

Inspire...Educate...Transform.

Statistics and Probability in Decision Modeling

Multiple Linear Regression

Dr. Sridhar Pappu Executive VP – Academics, INSOFE

October 07, 2018

Degrees of Freedom

Degrees of freedom, v: # of independent observations for a source of variation minus the number of independent parameters estimated in computing the variation.*

When sample size is considered, degrees of freedom are n-1.

* Roger E. Kirk, Experimental Design: Procedures for the Behavioral Sciences. Belmont, California: Brooks/Cole, 1968.

Influential Observations - Leverage

How much the observation's value on the **predictor variable** differs from the mean of the **predictor variable**.

That is, it tells us about extreme x values, which have the potential to highly influence the regression in certain conditions. Remember Eric McCoo.

Influential Observations - Leverage

Leverage of the i^{th} data point is given by:

$$h_i = \frac{1+z^2}{n}$$

The sum of leverages = # of parameters, p (regression coefficients including intercept).

EXCEL ACTIVITY

Influential Observations - Leverage

Flag observations whose h > 3* avg(h) or h > 2* avg(h)

$$Avg(h) = \frac{sum(h)}{n} = \frac{p}{n}$$

Influential Observations - Distance

Based on error of prediction and is measured by <u>Studentized</u> Residual. This is calculated on the **dependent** variable and is a measure of 'outlierness'.

Recall <u>Student's</u> t-test. So, Studentizing is related to calculating the t-statistic of the metric in question, i.e., it is related to error of prediction of that observation divided by the standard deviation of the errors of prediction.

Influential Observations - Distance

$$stdres_i = \frac{e_i}{\sqrt{MSE(1 - h_i)}}$$

<u>Investigate</u> observations with internally studentized residuals smaller than -2 or larger than 2.

Recall the empirical rule for normal distribution and the assumption that residuals follow normal distribution.

EXCEL ACTIVITY

Influential Observations - Distance

Influential Observations - Cook's D

Measures <u>overall influence</u> of an observation by seeing the impact on the regression coefficients when this observation is omitted. It accounts both for **leverage** and **residual**.

$$D_i = \frac{1}{p} (stdres_i)^2 \left(\frac{h_i}{1 - h_i} \right)$$

Influential Observations - Cook's D

Handling Influential Observations

• Temptation to drop intercept if it is **not significant**.

SUMMARY OUTPUT					<u>'</u>			
Regression St	tatistics				!			
Multiple R	0.717055011				;			
R Square	0.514167888				,			
Adjusted R Square	0.494734604				į			
Standard Error	4.21319131				,			
Observations	27							
ANOVA					<i>i</i>			
	df	SS	MS	F	Significance F			
Regression	1	469.6573265	469.6573265	26.4581054	2.57053E-05			
Residual	25	443.7745253	17.75098101		;			
Total	26	913.4318519		;				
				,				
	Coefficients	Standard Error	t Stat	P-value ψ	Lower 95%	Upper 95%	Lower 99.0%	Upper 99.0%
Intercept	-4.154014573	2.447784673	-1.697050651	0.102104456	-9.195321476	0.88729233	-10.97705723	2.669028089
Big Mac Price (\$)	3.547427488	0.689658599	5.143744297	2.57053E-05	2.127049014	4.967805962	1.625048409	5.469806567

• Physical process makes intuitive sense for y=0 when x=0. For example, if the speed of the car = 0 mph, the distance travelled before it comes to a stop = 0 ft.

- However, you should evaluate other metrics before deciding on Regression Through Origin (RTO).
- Also, if (0,0) or values close to the origin are not in the dataset, you should be cautious about using RTO, as it is quite possible that data are not linear in the vicinity of the origin.

Excel gives a lower R² when the trendline method is used. This is using the R² formula we learned earlier (1-SSE/SST).

RTO output from Excel

speed	2.90913214	0.14136864	20.5783418	9.2278E-26	2.62504123	3.19322306
Intercept	0	#N/A	#N/A	#N/A	#N/A	#N/A
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Total	50	124903				
Residual	49	12953.7768	264.362793			
Regression	1	111949.223	111949.223	423.468152	1.8549E-25	
	df	SS	MS	F	Significance F	
ANOVA						
Observations	50					
Standard Erro	16.2592371					
Adjusted R Sq	0.87588114					
R Square	0.89628931					
Multiple R	0.94672557					
Regression	Statistics					
SUIVIIVIARYOU	1701					
SUMMARY OU	TDLIT					

RTO output from R

```
Call:
lm(formula = dist \sim speed + 0, data = cars)
Residuals:
            10 Median
   Min
                                   Max
-26.183 -12.637 -5.455 4.590 50.181
Coefficients:
      Estimate Std. Error t value
speed 2.9091
                  0.1414 20.58
     Pr(>ltl)
speed <2e-16 ***
Signif. codes:
 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'
 0.1 ' ' 1
Residual standard error: 16.26 on 49 degrees of freedom
Multiple R-squared: 0.8963, Adjusted R-squared: 0.8942
F-statistic: 423.5 on 1 and 49 DF, p-value: < 2.2e-16
```


The high R² values output by the software in models without intercepts is misleading, although mathematically sound. The SST calculation is used with respect to the origin instead of the mean.

$$((y_i - 0)^2 \text{ instead of } (y_i - \bar{y})^2)$$

This gives a much higher SST resulting in higher R². It is, therefore, best to check for other performance criteria when doing RTO. There needs to be a VERY STRONG reason for doing RTO, though.

Multiple Linear Regression THE OUTPUT

Multiple Linear Regression

- Simple Linear Regression models the effect of one independent variable, x, on one dependent variable, y
- Multiple Regression models the effect of several independent variables, x_1 , x_2 etc., on one dependent variable, y
- The different x variables are combined in a linear way and each has its own regression coefficient:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \varepsilon$$

• The β parameters reflect the **independent contribution** of each independent variable, x, to the value of the dependent variable, y.

Interpreting Regression Coefficients

SUMMARY OUTPUT		A coefficient is the slope of the linear relationship between the dependent							
Regression St	atistics	variable	variable (DV) and the independent						
Multiple R	0.89666084	contribu	contribution of the independent variable						
R Square	0.804000661		·						
Adjusted R Square 0.750546296		(IV), i.e.	(IV), i.e., that part of the IV that is						
Standard Error 2.90902388		independent of (or uncorrelated with) all							
Observations	15	-							
		other IV	other IVs.						
ANOVA									
	df	SS	MS	F	Significance F				
Regression	3	381.8467141	127.282238	15.04087945	0.00033002				
Residual	11	93.08661926	8.462419933						
Total	14	474.9333333							
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%			
Intercept	12.04617703	9.312399791	1.29356313	0.222319528	-8.450276718	32.54263077			
Stock 2 (\$)	0.878777607	0.26187309	3.355738482	0.006412092	0.302398821	1.455156393			
Stock 3 (\$)	0.220492727	0.143521894	1.536300286	0.152714573	-0.095396832	0.536382286			

Assumptions of Multiple Linear Regression

- Same as simple linear regression
 - Linearity
 - Independence of errors
 - Homoscedasticity (constant variance)
 - Normality of errors

Methods of checking assumptions are also the same

Determining the Multiple Regression Equation

- k+1 equations to solve for k independent variables and the intercept.
- In solving for intercept and slope in a simple linear regression model, we needed $\sum x$, $\sum y$, $\sum xy$, and $\sum x^2$.
- For multiple regression model with 2 independent variables, we need $\sum x_1$, $\sum x_2$, $\sum y$, $\sum x_1^2$, $\sum x_2^2$, $\sum x_1x_2$, $\sum x_1y$, and $\sum x_2y$.

Determining the Multiple Regression Equation - Excel

In a real estate study, multiple variables were explored to determine the price of a house.

- # of bedrooms
- # of bathrooms
- Age of the house
- # of square feet of living space
- Total # of square feet of space
- # of garages

Find the equation if you want to predict the price of the house by total square feet and age of the house.

Determining the multiple regression equation – Interpreting the output

SUMMARY OUTPUT		What is the equation?					
Regression Statis	stics	$\hat{v} = 1$	57.35 ± 0.0	177 <i>Area</i> -	- 0.666 <i>Age</i>		
Multiple R	0.860872681						
R Square	0.741101773	Are ·	the coeff	icients a	nd the m	odel sign	ificant?
Adjusted R Square	0.715211951	7 (1 C					iiiioaiici
Standard Error	11.96038667	Yes					
Observations	23						
ANOVA							
	df	SS	MS	F	Significance F		
Regression	2	8189.723012	4094.861506	28.62521631	1.35298E-06		
Residual	20	2861.016988	143.0508494				
Total	22	11050.74					
				_ ,			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	
Intercept	57.35074586	10.00715186	5.73097587	1.31298E-05	36.47619286	78.22529885	
Area (sq ft) (x1)	0.017718036	0.00314562	5.632605205	1.63535E-05	0.011156388	0.024279685	
Age of House (years) (x2)	-0.666347946	0.227996703	-2.922620973	0.008417613	-1.141940734	-0.190755157	

Residuals – Practice Assignment

Residuals are determined the same way as in simple linear regression. The predicted value is calculated by substituting the predictor values of interest. The residual is again the difference between the observed and the predicted values, $y - \hat{y}$.

SSE and Standard Error of the Estimate, *SE* – Practice Assignment

$$SSE = \sum (y - \hat{y})^2$$

$$SE = \sqrt{\frac{SSE}{n-k-1}}$$

Coefficient of Multiple Determination, R² – Practice Assignment

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

Adjusted R² - Excel

As additional independent variables are added to the regression model, the value of R² increases.

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

However, sometimes these variables are insignificant and add no real value, yet inflating the R² value.

Adjusted R² takes into consideration both the additional information and the changed degrees of freedom.

Adjusted
$$R^2 = 1 - \frac{\frac{SSE}{(n-k-1)}}{\frac{SST}{n-1}} = R^2 - (1-R^2) \frac{k}{n-k-1} = 1 - \frac{MSE}{MST}$$

Sample R Output

```
Call:
lm(formula = ToxinConc$Toxin ~ ToxinConc$Rain + ToxinConc$NoonTemp +
   ToxinConc$Sunshine + ToxinConc$WindSpeed, data = ToxinConc)
Residuals:
-1.8818 2.0498 -0.6314 0.4787 -0.5805 1.2508 -0.1921 -0.1813
     9
            10
-1.1552 0.8429
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
                              7.1051 4.449 0.00671 **
(Intercept)
                  31.6084
ToxinConc$Rain 7.0676
                              1.0031 7.046 0.00089 ***
ToxinConc$NoonTemp -0.4201 0.2413 -1.741 0.14215
ToxinConc$Sunshine -0.2375 0.5086 -0.467 0.66018
ToxinConc$WindSpeed -0.7936
                              0.2977 -2.666 0.04458 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.574 on 5 degrees of freedom
Multiple R-squared: 0.9186, Adjusted R-squared: 0.8535
F-statistic: 14.11 on 4 and 5 DF, p-value: 0.006232
```


Multiple Linear Regression

HANDLING SPECIAL SITUATIONS

Nonlinear Models - Polynomial Regression

For example, $y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \epsilon$ How is this a special case of the general linear model? Replace x_1^2 with x_2 , so that $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$

Multiple linear regression assumes a linear fit of the regression coefficients and regression constant, but not necessarily a linear relationship of the independent variable values.

Nonlinear Models - Polynomial Regression - Excel

Sales volume versus # of sales reps and # of sales reps squared

Tukey's Ladder of Transformations

Ladder for x							
Up ladder	Neutral	Down ladder					
\dots, x^4, x^3, x^2, x	\sqrt{x} , x , $\log x$	$-\frac{1}{\sqrt{x}}, -\frac{1}{x}, -\frac{1}{x^2}, -\frac{1}{x^3}, \dots$					
Ladder for y							
Up ladder	Neutral	Down ladder					
\dots, y^4, y^3, y^2, y	\sqrt{y} , y , $logy$	$-\frac{1}{\sqrt{y}}, -\frac{1}{y}, -\frac{1}{y^2}, -\frac{1}{y^3}, \dots$					

Tukey's Four-Quadrant Approach

Move toward log X, $-1/\sqrt{X}$,..., or toward log Y, $-1/\sqrt{Y}$,...

Move toward
$$X^2, X^3, ... or$$
 toward log Y, $-1/\sqrt{Y}, ...$

Based on Tukey's 4-Quadrant Approach, what transformation do you recommend?

SQRT Transformation on X

LOG Transformation on X

Data	Equation		Ahead of % People (Prediction for Day 78)
Original	0.8201x + 35.373	88.7%	99.34
Square Root on X	9.7558x + 9.1202	96.6%	95.28
Log on X	57.858x - 19.512	99.8%	89.96

More thoughts on Transformations

DATA TRANSFORMATION

As suggested by Tabachnick and Fidell (2007) and Howell (2007), the following guidelines (including SPSS compute commands) should be used when transforming data.

If your data distribution is...

Moderately positive skewness

Substantially positive skewness

Substantially positive skewness (with zero values)

Moderately negative skewness

Substantially negative skewness

Use this transformation method.

Square-Root

NEWX = SQRT(X)

Logarithmic (Log 10)

NEWX = LG10(X)

Logarithmic (Log 10)

NEWX = LG10(X + C)

Square-Root

NEWX = SQRT(K - X)

Logarithmic (Log 10)

NEWX = LG10(K - X)

C = a constant added to each score so that the smallest score is 1.

 \mathbf{K} = a constant from which each score is subtracted so that the smallest score is 1; usually equal to the largest score + 1.

Source: http://oak.ucc.nau.edu/rh232/courses/eps625/handouts/data%20transformation%20handout.pdf

Last accessed: May 12, 2016

More thoughts on Transformations

- Square-root transformation: $X \to \sqrt{X}$
 - Use where variance is proportional to mean ($\sigma^2 \propto \mu$). Occurs when data consists of counts, such as in urine or blood analyses or microbiological data.
 - If some values are zero or very small, use instead $\sqrt{X} + \sqrt{X+1}$.
 - Poisson variables, where mean = variance, square-root transformation will lead to homoscedasticity.
- Reciprocal transformation: $X \to \frac{1}{X}$
 - Use where standard deviation is proportional to the square of the mean $(\sigma \propto \mu^2)$.
- boxcox() in MASS package of R
- PROC TRANSREG in SAS

Box, G. E. P. and Cox, D. R. (1964). An analysis of transformations, *Journal of the Royal Statistical Society*, Series B, *26*, 211-252.

Approach to determine whether to transform X or Y to achieve linearity, homoscedasticity and normality:

- 1. Often, a transformation that fixes one, fixes all.
- 2. In general, transforming both is not required, although sometimes it is.
- 3. A general rule of thumb:
 - 1. Transform Y first to remove heteroscedasticity and non-normality.
 - 2. Then transform X to remove non-linearity.

Nonlinear Models – With Interaction

Interaction can be examined as a separate independent variable in regression.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \varepsilon$$

For example,

- Individually each of two drugs might improve symptoms, but when taken together, they may interact and cause a decline in health.
- Fire increases a balloon's levity (hot air balloon). Hydrogen also increases levity as in the Zeppelins. But fire and hydrogen dramatically reduce the levity.

Nonlinear Models – Without Interaction - Excel

SUMMARY OUTPUT							
Regression St	atistics						
Multiple R	0.687213365						
R Square	0.47226221	Model is	cignifican	t hut no	ither of th	he variat	oloc id
Adjusted R Square	0.384305911	Model 13	Significal	it but ne	itilei oi ti	ie variat	JIES IS
Standard Error	4.570195728						
Observations	15						
ANOVA							
	df	SS	MS	F	Significance F		
Regression	2	224.2930654	112.1465327	5.369282452	0.021602756		
Residual	12	250.6402679	20.88668899				
Total	14	474.9333333					
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	
Intercept	50.85548009	3.790993168	13.41481713	1.38402E-08	42.59561554	59.11534464	
Stock 2 (\$)	-0.118999968	0.19308237	-0.616317112	0.54919854	-0.539690313	0.301690376	
Stock 3 (\$)	-0.07076195	0.198984841	-0.35561478	0.728301903	-0.504312675	0.362788775	

Nonlinear Models – With Interaction - Excel

SUMMARY OUTPUT							along with the
Regression S	tatistics	intera	<mark>ction terr</mark>	<mark>m are no</mark>	w signific	ant.	
Multiple R	0.89666084	• Nada	l wa na a in a	oianifia			
R Square	0.804000661	• Mode	l remains	Significa	ant.		
Adjusted R Square	0.750546296	• Adiust	ed R-sq	halduah			
Standard Error	2.90902388	Aujust	.eu 11-34 (adubieu.			
Observations	15						
ANOVA							
	df	SS	MS	F	Significance F		
Regression	3	381.8467141	127.282238	15.04087945	0.00033002		
Residual	11	93.08661926	8.462419933				
Total	14	474.9333333					
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	
Intercept	12.04617703	9.312399791	1.29356313	0.222319528	-8.450276718	32.54263077	
Stock 2 (\$)	0.878777607	0.26187309	3.355738482	0.006412092	0.302398821	1.455156393	
Stock 3 (\$)	0.220492727	0.143521894	1.536300286	0.152714573	-0.095396832	0.536382286	
Stock 2*Stock 3	-0.009984949	0.002314083	-4.314862356	0.00122514	-0.015078211	-0.00489169	

Indicator (Dummy) Variables

Categorical variables such as gender, geographic region, occupation, marital status, level of education, economic class, religion, buying/renting a home, etc. can also be used in multiple regression analysis.

If there are *n* levels in a category, *n-1* dummy variables need to be inserted into the regression analysis replacing that category.

Indicator (Dummy) Variables

If a survey question asks about the region of country your office is located in, with North, South, East and West as the options, the recoding can be done as follows:

Region	North	West	South
North	1	0	0
East	0	0	0
North	 1	0	0
South	0	0	1
West	0	1	0
West	0	1	0
East	0	0	0

Indicator (Dummy) Variables - Excel

Consider the issue of gender discrimination in the salary earnings of workers in some industries. If there is discrimination, how much is one gender earning more than the other?

Indicator (Dummy) Variables - Excel

SUMMARY OUTPUT								
Regression Statis	stics							
Multiple R	0.933293402							
R Square	0.871036574							
Adjusted R Square	0.869727301							
Standard Error	0.095635901							
Observations	200							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	2	12.16964651	6.084823253	665.2824405	2.40412E-88			
Residual	197	1.801806432	0.009146226					
Total	199	13.97145294						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	Jpper 95.0%
Intercept	1.821901302	0.059565421	30.58655988	9.46086E-77	1.704433585	1.939369019	1.704434	
Age (10 years)	0.083754451	0.018135789	4.618186202	6.97762E-06	0.047989241	0.11951966	0.047989	0.11952
Gender (1=Male, 0=Female)	0.467628629	0.014321506	32.65219766	2.00282E-81	0.439385488	0.49587177	0.439385	0.495872

Separate equation for each gender

Indicator (Dummy) Variables – Interpreting Coefficients and Relationship to ANOVA

		AN(AVC					(OLS				
Anova: Single Factor							SUMMARY OUTPUT						
							Regression S	tatistics					
SUMMARY							Multiple R	0.376964139					
Groups	Count	Sum	Average	Variance			R Square	0.142101962					
Exp-Fresher	55	119.7279	2.176871	0.096379			Adjusted R Square	0.133392337					
Exp-Low	70	168.6399	2.409142	1			Standard Error	0.246663853					
Exp-Med				0.049032			Observations	200					
					``~.		ANOVA						
								df	SS	MS	F	Significance F	
ANOVA							Regression	2	1.985370871	0.992685	16.31551	2.77596E-07	
_	SS	d f	MS	F	Dyalya	Forit	Residual	197	11.98608207				
Source of Variation		df		,	P-value	F crit -	Total	199	13.97145294				
Between Groups	1.985371	2	0.992685	16.31551	2.78E-07	3.04175303							
Within Groups	11.98608	197	0.060843					Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
							Intercept	2.176871087	0.033260147	65.44983	1.3E-135	2.111279448	2.242463
Total	13.97145	199					Exp-Low	0.232270784	0.044445741	5.22594	4.4E-07	0.14462027	0.319921
TULAI	13.5/143	199					Exp-Med	0.213174092	0.043789018	4.868209	2.3E-06	0.126818687	0.299529

- Mean of the reference group in ANOVA is the intercept in OLS.
- Differences between means of groups are the coefficients in OLS.

Indicator (Dummy) Variables – Interpreting Coefficients and Relationship to ANOVA

Choice of reference group is not important; end results remain the same.

What will be the salary of a fresher in the two cases below where *Fresher* is the reference group in the 1^{st} case and *Low experience* is the reference group in the 2^{nd} ?

د -							Regression S	tatistics					
Multiple R	0.376964139						Multiple R	0.376964139					
R Square	0.142101962						R Square	0.142101962					
Adjusted R Square	0.133392337						Adjusted R Square	0.133392337					
Standard Error	0.246663853						Standard Error	0.246663853					
Observations	200						Observations	200					
ANOVA							ANOVA						
	df	SS	MS	F	Significance F			df	SS	MS	F	ignificance	F
Regression	2	1.985370871	0.992685	16.31551	2.77596E-07		Regression	2	1.985370871	0.992685	16.31551	2.78E-07	
Residual	197	11.98608207	0.060843				Residual	197	11.98608207	0.060843			
Total	199	13.97145294					Total	199	13.97145294				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	2.176871087	0.033260147	65.44983	1.3E-135	2.111279448	2.242463	Intercept	2.409141871	0.029481969	81.71577	6.3E-154	2.351001	2.467283
Exp-Low	0.232270784	0.044445741	5.22594	4.4E-07	0.14462027	0.319921	Exp-Fresher	-0.232270784	0.044445741	-5.22594	4.4E-07	-0.31992	-0.14462
Exp-Med	0.213174092	0.043789018	4.868209	2.3E-06	0.126818687	0.299529	Exp-Med	-0.019096692	0.040993015	-0.46585	0.641836	-0.09994	0.061745

p-values here indicate if the level (or group) is significantly different from the reference level (or group).

What might you do if there is no significant difference as is the case between low and medium experience? Also, check the averages in ANOVA output.

A possible action could be to combine Low and Medium groups into a single group

Indicator (Dummy) Variables – Interpreting Coefficients and Relationship to ANOVA

Interpret the coefficients of the <u>numeric</u> and <u>categorical</u> variables below.

SUMMARY OUTPUT							SUMMARY OUTPUT						
Regression Statis	tics						Regression Statis	stics					
Multiple R	0.948085877						Multiple R	0.948085877					
R Square	0.898866831						R Square	0.898866831					
Adjusted R Square	0.896792304						Adjusted R Square	0.896792304					
Standard Error	0.08512366						Standard Error	0.08512366					
Observations	200						Observations	200					
ANOVA							ANOVA						
	df	SS	MS	F	ignificance	F		df	SS	MS	F	ignificance	F
Regression	4	12.55848	3.139619	433.2877	8.41E-96		Regression	4	12.55848	3.139619	433.2877	8.41E-96	
Residual	195	1.412977	0.007246				Residual	195	1.412977	0.007246			
Total	199	13.97145					Total	199	13.97145				
	Coefficients	andard Erro	t Stat	P-value	Lower 95%	Upper 95%		Coefficients	andard Erro	t Stat	P-value	Lower 95%	Upper 95
Intercept	1.631967642	0.059023	27.64988	2.15E-69	1.515563	1.748372	Intercept	1.746712428	0.054233	32.20771	5.32E-80	1.639754	1.8536
Age (10 years)	0.122503981	0.016996	7.20789	1.22E-11	0.088985	0.156023	Age (10 years)	0.122503981	0.016996	7.20789	1.22E-11	0.088985	0.15602
Gender (1=Male, 0=Female)	0.430437318	0.013721	31.37032	3.96E-78	0.403376	0.457498	Gender (1=Male, 0=Female)	0.430437318	0.013721	31.37032	3.96E-78	0.403376	0.45749
Exp-Low	0.114744786	0.016665	6.885566	7.7E-11	0.081879	0.147611	Exp-Fresher	-0.114744786	0.016665	-6.88557	7.7E-11	-0.14761	-0.0818
Exp-Med	0.100583631	0.016081	6.254777	2.47E-09	0.068868	0.132299	Exp-Med	-0.014161156	0.01419	-0.99797	0.319532	-0.04215	0.01382

- Numeric: For unit change in Age (numeric), Salary increases by 0.1225 (x 1000 \$).
- Categorical (Dummy): If a person is a fresher, (s)he makes 0.1147 (x 1000\$) less than a person with low experience.

Multiple Linear Regression MODEL BUILDING METHODS

CrudeOilOutput

		CrudeOilO	atput		
WorldOil	USEnergy	USAutoFuelRate	USNuclear	USCoal	USDryGas
55.7	74.3	13.4	83.5	598.6	21.7
55.7	72.5	13.6	114	610	20.7
52.8	70.5	14	172.5	654.6	19.2
57.3	74.4	13.8	191.1	684.9	19.1
59.7	76.3	14.1	250.9	697.2	19.2
60.2	78.1	14.3	276.4	670.2	19.1
62.7	78.9	14.6	255.2	781.1	19.7
59.6	76	16	251.1	829.7	19.4
56.1	74	16.5	272.7	823.8	19.2
53.5	70.8	16.9	282.8	838.1	17.8
53.3	70.5	17.1	293.7	782.1	16.1
54.5	74.1	17.4	327.6	895.9	17.5
54	74	17.5	383.7	883.6	16.5
56.2	74.3	17.4	414	890.3	16.1
56.7	76.9	18	455.3	918.8	16.6
58.7	80.2	18.8	527	950.3	17.1
59.9	81.4	19	529.4	980.7	17.3
60.6	81.3	20.3	576.9	1029.1	17.8
60.2	81.1	21.2	612.6	996	17.7
60.2	82.2	21	618.8	997.5	17.8
60.2	83.9	20.6	610.3	945.4	18.1
61	85.6	20.8	640.4	1033.5	18.8
62.3	87.2	21.1	673.4	1033	18.6
64.1	90	21.2	674.7	1063.9	18.8
66.3	90.6	21.5	628.6	1089.9	18.9
67	89.7	21.6	666.8	1109.8	18.9

Model Building: Search Procedures

Suppose a model to predict the world crude oil production (barrels per day) is to be developed and the predictors used are:

- US energy consumption (BTUs)
- Gross US nuclear electricity generation (kWh)
- US coal production (short-tons)
- Total US dry gas (natural gas) production (cubic feet)
- Fuel rate of US-owned automobiles (miles per gallon)

What does your intuition say about how each of these variables would affect the oil production?

Model Building: Search Procedures

Two considerations in model building:

- Explaining most variation in dependent variable
- Keeping the model simple AND economical

Quite often, the above two considerations are in conflict of each other.

If 3 variables can explain the variation nearly as well as 5 variables, the simpler model is better. Search procedures help choose the more attractive model.

Search Procedures: All Possible Regressions

All variables used in all combinations. For a dataset containing k independent variables, 2^k-1 models are examined. In the example of the oil production, 31 models are examined.

Tedious, Time-Consuming, Inefficient, Overwhelming.

Search Procedures: Stepwise Regression

Starts a model with a single predictor and then adds or deletes predictors one step at a time.

- Step 1
 - Simple regression model for each of the independent variables one at a time.
 - Model with largest absolute value of t selected and the corresponding independent variable considered the best single predictor, denoted x_1 .
 - If no variable produces a significant t, the search stops with no model.

Why LARGEST absolute t value and not the **SMALLEST?**

Visualize the normal (or **t**) distribution, recall hypothesis testing, think of what the null hypothesis is and then understand what the largest and smallest absolute **t** values mean in terms of the distance from the null value.

Search Procedures: Stepwise Regression

- Step 2
 - All possible two-predictor regression models with x_1 as one variable.
 - Model with largest absolute t value in conjunction with x_1 and one of the other k-1 variables denoted x_2 .
 - Occasionally, if x_1 becomes insignificant, it is dropped and search continued with x_2 .
 - If no other variables are significant, procedure stops.
- The above process continues with the 3rd variable added to the above 2 selected and so on.

Search Procedures: Stepwise Regression - Excel

Step 1

Dependent Variable	Independent Variable	t Ratio	<i>p</i> -value	R ²
Oil production	Energy consumption	11.77	1.86e-11	85.2%
Oil production	Nuclear	4.43	0.000176	45.0
Oil production	Coal	3.91	0.000662	38.9
Oil production	Dry gas	1.08	0.292870	4.6
Oil production	Fuel rate	3.54	0.00169	34.2

$$y = 13.075 + 0.580x_1$$

Search Procedures: Stepwise Regression - Excel

Step 2

Dependent Variable, <i>y</i>	_	Independent Variable, x ₂	t Ratio of x ₂	<i>p</i> -value	R ²
Oil production	Energy consumption	Nuclear	-3.60	0.00152	90.6%
Oil production	Energy consumption	Coal	-2.44	0.0227	88.3
Oil production	Energy consumption	Dry gas	2.23	0.0357	87.9
Oil production	Energy consumption	Fuel rate	-3.75	0.00106	90.8

$$y = 7.14 + 0.772x_1 - 0.517x_2$$

t value for Energy Consumption is now at 11.91 and still significant (2.55e-11).

Search Procedures: Stepwise Regression - R

Step 3

Dependent Variable, <i>y</i>	Independent Variable, x ₁				<i>p</i> - value
Oil production	Energy consumption	Fuel rate	Nuclear	-0.43	0.672
Oil production	Energy consumption	Fuel rate	Coal	1.71	0.102
Oil production	Energy consumption	Fuel rate	Dry gas	-0.46	0.650

No t ratio is significant at $\alpha = 0.05$. No new variables are added to the model.

Search Procedures: Stepwise Regression - R

AIC (Akaike's Information Criterion) --

AIC = $2k + n \ln(RSS/n)$ where RSS is Residual Sum of Squares or SSE.

k is the number of parameters including intercept.

Sum of Sq is the additional reduction in SSE due to the addition of a variable or additional increase in SSE due to the removal of a variable. > stepAICOil <- stepAIC(CrudeOilOutputlm, direction = "both")
Start: AIC=15.29</pre>

		Df	Sum	of Sq	RSS	AIC
-	CrudeOilOutput\$USDryGas	1		0.151	29.661	13.425
-	CrudeOilOutput\$USNuclear	1		0.651	30.161	13.860
<1	none>				29.510	15.293
-	CrudeOilOutput\$USAutoFuelRate	1		2.640	32.150	15.521
-	CrudeOilOutput\$USCoal	1		2.683	32.193	15.555
-	CrudeOilOutput\$USEnergy	1		31.720	61.231	32.270

Step: AIC=13.42

	Df	Sum of Sq	RSS	AIC
- CrudeOilOutput\$USNuclear	1	0.583	30.243 11.	931
<none></none>			29.661 13.	425
- CrudeOilOutput\$USCoal	1	4.296	33.956 14.	941
- CrudeOilOutput\$USAutoFuelRate	1	4.575	34.236 15.	154
+ CrudeOilOutput\$USDryGas	1	0.151	29.510 15.	293
- CrudeOilOutput\$USEnergy	1	137.158	166.818 56.	329

Step: AIC=11.93

CrudeOilOutput\$WorldOil ~ CrudeOilOutput\$USEnergy + CrudeOilOutput\$USAutoFuelRate +
 CrudeOilOutput\$USCoal

	Df	Sum of Sq	RSS	AIC
<none></none>			30.243	11.931
- CrudeOilOutput\$USCoal	1	3.997	34.240	13.158
+ CrudeOilOutput\$USNuclear	1	0.583	29.661	13.425
+ CrudeOilOutput\$USDryGas	1	0.082	30.161	13.860
- CrudeOilOutput\$USAutoFuelRate	1	13.531	43.774	19.545
- CrudeOilOutput\$USEnergy	1	195.845	226.088	62.234

Multiple Linear Regression HANDLING MULTICOLLINEARITY

Multicollinearity - R

Two or more independent variables are highly correlated.

	Energy consumption	Nuclear	Coal	Dry gas	Fuel rate
Energy consumption	1				
Nuclear	0.856	1			
Coal	0.791	0.952	1		
Dry gas	0.057	-0.404	-0.448	1	
Fuel rate	0.791	0.972	0.968	-0.423	1

Multicollinearity - R

Multicollinearity

Sign of estimated regression coefficient when interacting may be opposite of the signs when used as individual predictors.

For example, fuel rate and coal production are highly correlated (0.968).

$$\hat{y} = 44.869 + 0.7838(fuel rate)$$

$$\hat{y} = 45.072 + 0.0157(coal)$$

$$\hat{y} = 45.806 + 0.0277(coal) - 0.3934(fuel rate)$$

Multicollinearity

Multicollinearity can lead to a model where the model (F value) is significant but all individual predictors (t values) are insignificant.

(Recall the with- and without-interaction example)

SUMMARY OUTPUT			Correlation between stock 2						
Regression St	tatistics		and stock 3 is 0.96						
Multiple R	0.687213365								
R Square	0.47226221								
Adjusted R Square	0.384305911								
Standard Error	4.570195728								
Observations	15								
ANOVA									
	df	SS	MS	F	Significance F				
Regression	2	224.2930654	112.1465327	5.369282452	0.021602756				
Residual	12	250.6402679	20.88668899						
Total	14	474.9333333							
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%			
Intercept	50.85548009	3.790993168	13.41481713	1.38402E-08	42.59561554	59.11534464			
Stock 2 (\$)	-0.118999968	0.19308237	-0.616317112	0.54919854	-0.539690313	0.301690376			
Stock 3 (\$)	-0.07076195	0.198984841	-0.35561478	0.728301903	-0.504312675	0.362788775			

Multicollinearity

 Variance Inflation Factor (VIF): A regression analysis is conducted to predict an independent variable by the other independent variables. The independent variable being predicted becomes the dependent variable in this analysis.

$$VIF = \frac{1}{1 - R_i^2}$$

VIF quantifies how much the variance of an estimated coefficient gets inflated in the presence of correlated predictors, compared to the baseline variance when only that one variable is present.

Recall the *Standard Error of the Slope* = $\frac{SE}{\sqrt{SS_{\chi\chi}}}$ where $SS_{\chi\chi} = \sum (x - \bar{x})^2$ and hence the baseline **variance** of the slope (coefficient) is $\frac{\sigma^2}{\sum (x - \bar{x})^2}$

Multicollinearity - VIF

- VIF > 4 (R_i^2 >0.75), 5 (R_i^2 >0.80) and 10 (R_i^2 >0.90) are commonly used as rules of thumb to indicate severe multicollinearity.
- In practical situations, sometimes even 1.5 is considered as large VIF.
- Remove such variables, rebuild models and compare with earlier model. Make decision based on whether accuracy of prediction is more important to the business or interpretation of the model and the coefficients.
- Let us look at 2 cases to understand why blindly using the rules of thumb for VIF may be impractical. Stepwise regression prevents multicollinearity to a great extent.

Case 1: Motor Trend Car Road Tests - mtcars dataset in R

Data was extracted from the *Motor Trend* US magazine with a goal to predicting the fuel consumption (mpg) using 10 variables dealing with automobile design and performance.

	mpg [‡]	cyl [‡]	disp [‡]	hp [‡]	drat [‡]	wt [‡]	qsec [‡]	vs [‡]	am [‡]	gear [‡]	carb [‡]
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4
Lincoln Continental	10.4	8	460.0	215	3.00	5.424	17.82	0	0	3	4
Chrysler Imperial	14.7	8	440.0	230	3.23	5.345	17.42	0	0	3	4
Fiat 128	32.4	4	78.7	66	4.08	2.200	19.47	1	1	4	1
Honda Civic	30.4	4	75.7	52	4.93	1.615	18.52	1	1	4	2
Toyota Corolla	33.9	4	71.1	65	4.22	1.835	19.90	1	1	4	1
Toyota Corona	21.5	4	120.1	97	3.70	2.465	20.01	1	0	3	1
Dodge Challenger	15.5	8	318.0	150	2.76	3.520	16.87	0	0	3	2
AMC Javelin	15.2	8	304.0	150	3.15	3.435	17.30	0	0	3	2
Camaro Z28	13.3	8	350.0	245	3.73	3.840	15.41	0	0	3	4
Pontiac Firebird	19.2	8	400.0	175	3.08	3.845	17.05	0	0	3	2
Fiat X1-9	27.3	4	79.0	66	4.08	1.935	18.90	1	1	4	1

mpg Miles/(US) gallon
cyl Number of cylinders
disp Displacement (cu.in.)
hp Gross horsepower
drat Rear axle ratio
wt Weight (1000 lbs)
qsec 1/4 mile time
vs V/S
am Transmission (0 = automatic, 1 = manual)
gear Number of forward gears

carb Number of carburetors

Case 1: mtcars - Model Building

```
Call:
lm(formula = mpg \sim ., data = mtcars)
Residuals:
    Min
             10 Median
                                     Max
-3.4506 -1.6044 -0.1196 1.2193 4.6271
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 12.30337
                       18.71788
                                   0.657
                                           0.5181
            -0.11144
                        1.04502
                                  -0.107
                                           0.9161
cyl
                        0.01786
disp
             0.01334
                                   0.747
                                           0.4635
            -0.02148
                        0.02177
                                  -0.987
                                           0.3350
hp
             0.78711
                        1.63537
                                   0.481
                                           0.6353
drat
            -3.71530
                        1.89441
                                 -1.961
                                           0.0633 .
wt
             0.82104
                        0.73084
                                  1.123
                                           0.2739
gsec
             0.31776
                        2.10451
                                  0.151
                                           0.8814
VS
             2.52023
                        2.05665
                                  1.225
                                           0.2340
am
             0.65541
                        1.49326
                                  0.439
                                           0.6652
gear
            -0.19942
                        0.82875
                                 -0.241
                                           0.8122
carb
Signif. codes: 0 '***' 0.001 '**'
                                   0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 2.65 on 21 degrees of freedom Multiple R-squared: 0.869, Adjusted R-squared: 0.8066 F-statistic: 13.93 on 10 and 21 DF, p-value: 3.793e-07

- Very good Adjusted R²
- No significant variable at 5% significance level
- Model is significant
- Indicates multicollinearity

```
> vif(mtcarslm)
```

```
disp
      cyl
                                    drat
                            hp
                                                 wt
                                                          qsec
15.373833 21.620241
                                3.374620 15.164887
                     9.832037
                                                      7.527958
                                     carb
       VS
                 am
                          aear
4.965873
          4.648487
                      5.357452
                                7.908747
```

- Rules of thumb indicate almost everything is highly collinear
- Let's run StepAIC

Case 1: mtcars - Model Building

```
> mtcarsStepAIC <- stepAIC(mtcarslm)</pre>
Start: AIC=70.9
mpg \sim cyl + disp + hp + drat + wt + qsec + vs + am + gear + carb
       Df Sum of Sq
                      RSS
             0.0799 147.57 68.915
            0.1601 147.66 68.932
            0.4067 147.90 68.986
- carb 1
            1.3531 148.85 69.190
- gear 1
            1.6270 149.12 69.249
- drat 1
            3.9167 151.41 69.736
- disp 1
            6.8399 154.33 70.348
- qsec 1
            8.8641 156.36 70.765
                   147.49 70.898
<none>
       1 10.5467 158.04 71.108
       1 27.0144 174.51 74.280
Step: AIC=68.92
mpg \sim disp + hp + drat + wt + qsec + vs + am + gear + carb
       Df Sum of Sa
                      RSS
            0.2685 147.84 66.973
            0.5201 148.09 67.028
            1.8211 149.40 67.308
- drat 1
            1.9826 149.56 67.342
- disp 1
            3.9009 151.47 67.750
            7.3632 154.94 68.473
                   147.57 68.915
<none>
- gsec 1 10.0933 157.67 69.032
       1 11.8359 159.41 69.384
       1 27.0280 174.60 72.297
Step: AIC=66.97
mpg \sim disp + hp + drat + wt + qsec + am + qear + carb
       Df Sum of Sa
                      RSS
- carb 1
            0.6855 148.53 65.121
- gear 1
            2.1437 149.99 65.434
```

```
> mtcarsStepAIC

Call:
lm(formula = mpg ~ wt + qsec + am, data = mtcars)

Coefficients:
(Intercept) wt qsec am
    9.618 -3.917 1.226 2.936
```

- StepAIC identified 3 variables as significant
- Let us build the model with these 3

Case 1: mtcars - Model Building

```
Call:
lm(formula = mpq \sim am + qsec + wt, data = mtcars)
Residuals:
   Min
           10 Median
                      3Q
                               Max
-3.4811 -1.5555 -0.7257 1.4110 4.6610
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
                     6.9596 1.382 0.177915
(Intercept) 9.6178
            am
        1.2259 0.2887 4.247 0.000216 ***
qsec
           -3.9165 0.7112 -5.507 6.95e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.459 on 28 degrees of freedom
Multiple R-squared: 0.8497, Adjusted R-squared: 0.8336
```

F-statistic: 52.75 on 3 and 28 DF, p-value: 1.21e-11

```
> vif(mtcarslm2)
    am    qsec    wt
2.541437 1.364339 2.482952
```

- Adjusted R² improved
- All variables are significant
- Model is significant
- VIF values are around 2.5 or less

Case 2: Predicting Fungal Toxin Contamination

A drug precursor molecule is extracted from a type of nut, which is commonly contaminated by a fungal toxin that is difficult to remove during the purification process. The suspected predictors of the amount of fungus are:

- Rainfall (cm/week)
- Noon temperature (°C)
- Sunshine (h/day)
- Wind speed (km/h)

The fungal toxin concentration is measured in $\mu g/100$ g.

FungalToxinContamination

Toxin	Rain	NoonTemp	Sunshine	WindSpeed
18.1	1.3	20.9	6.23	13.3
28.6	2.28	25.4	8.13	10.8
15.9	1.11	28.2	10.21	10.9
19.2	0.74	23.7	6.96	8.2
19.3	1.32	26.5	9.04	9.8
14.8	0.51	23.9	7.84	12.3
21.7	1.56	26.7	6.69	10
16.5	1.32	30	8.3	12.2
23.8	2.05	24.9	9.22	10.7
19	1.37	22	8.37	15

Case 2: Model Building

```
Call:
lm(formula = ToxinConc$Toxin ~ ToxinConc$Rain + ToxinConc$NoonTemp +
   ToxinConc$Sunshine + ToxinConc$WindSpeed, data = ToxinConc)
Residuals:
-1.8818 2.0498 -0.6314 0.4787 -0.5805 1.2508 -0.1921 -0.1813
     9
            10
-1.1552 0.8429
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
(Intercept)
                    31.6084
                               7.1051
                                        4.449
                                              0.00671 **
ToxinConc$Rain
                                       7.046 0.00089 ***
                   7.0676 1.0031
ToxinConc$NoonTemp -0.4201 0.2413 -1.741 0.14215
ToxinConc$Sunshine
                  -0.2375 0.5086
                                       -0.467 0.66018
ToxinConc$WindSpeed -0.7936
                               0.2977 -2.666 0.04458 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.574 on 5 degrees of freedom
Multiple R-squared: 0.9186, Adjusted R-squared: 0.8535
F-statistic: 14.11 on 4 and 5 DF, p-value: 0.006232
```

Multiple regression tends to remove correlated pairs of IVs, as in the case of Noon Temperature and Sunshine here.

Case 2: Model Building - R

```
> vif(ToxinConclm)
                                                                 ToxinConc$Rain
                                                                                 ToxinConc$NoonTemp
                                                                                                    ToxinConc$Sunshine ToxinConc$WindSpeed
                                                                       1.031045
                                                                                          1.616535
                                                                                                              1.415269
                                                                                                                                 1.209717
> correlation
                                        NoonTemp
                                                     Sunshine
                                                                 WindSpeed
                Toxin
                               Rain
Toxin
                        0.868734134
                                     -0.07319548 -0.05169949 -0.270555628
Rain
           0.86873413
                        1.0000000000
                                      0.11691043
                                                  0.16841144 -0.002180167
                        0.116910426
NoonTemp
          -0.07319548
                                                  0.50082303 -0.368972511
Sunshine
          -0.05169949
                        0.168411437
                                                  1.000000000
                      -0.002180167 -0.36897251 -0.01843949
          -0.27055563
```

There doesn't appear to be any strongly correlated variables either using correlation values or the VIF, although in some situations, a VIF of 1.5 is considered high.

It may be worthwhile to build another model keeping one of the correlated variables in the model. The more significant can be preferred but business intuition may be cautiously used to include other statistically insignificant variable(s).

Let us do StepAIC first.

Case 2: Model Building - R

```
> ToxinConclm1 <- stepAIC(ToxinConclm, direction = "both")</pre>
Start: AIC=12.14
ToxinConc$Toxin ~ ToxinConc$Rain + ToxinConc$NoonTemp + ToxinConc$Sunshine +
   ToxinConc$WindSpeed
                     Df Sum of Sq
                                      RSS
                                             AIC

    ToxinConc$Sunshine 1

                            0.540 12.927 10.567
                                   12.387 12.141
<none>

    ToxinConc$NoonTemp 1 7.510 19.897 14.880

    ToxinConc$WindSpeed 1 17.603 29.990 18.983

    ToxinConc$Rain

                      1 122.991 135.378 34.055
Step: AIC=10.57
ToxinConc$Toxin ~ ToxinConc$Rain + ToxinConc$NoonTemp + ToxinConc$WindSpeed
                     Df Sum of Sq
                                      RSS
                                             AIC
                                   12.927 10.567
<none>
+ ToxinConc$Sunshine
                      1 0.540 12.387 12.141

    ToxinConc$NoonTemp 1 13.417 26.344 15.686

    ToxinConc$WindSpeed 1 19.688 32.615 17.822

- ToxinConc$Rain
                      1 122.830 135.757 32.083
```


Case 2: Model Building – R

```
Call:
lm(formula = ToxinConc$Toxin ~ ToxinConc$Rain + ToxinConc$NoonTemp +
   ToxinConc$WindSpeed, data = ToxinConc)
Residuals:
   Min
            10 Median
-1.6394 -0.9308 0.1394 0.6545 2.0909
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
(Intercept)
                    31.5651
                                6.6253
                                         4.764 0.00311 **
ToxinConc$Rain
                     7.0108
                                0.9285
                                         7.551 0.00028
ToxinConc$NoonTemp
                    -0.4790
                                0.1919 -2.495 0.04682 *
                                0.2718
                                        -3.023 0.02331 *
ToxinConc$WindSpeed -0.8218
Residual standard error: 1.468 on 6 degrees of freedom
Multiple R-squared: 0.915,
                               Adjusted R-squared: 0.8726
F-statistic: 21.54 on 3 and 6 DF, p-value: 0.001298
```

Toxin concentrations increase with increasing rainfall and decrease in drier climates characterized by higher temperatures and wind speeds.

The business can take a decision to rent farms in drier climates if the cost benefits of saved nuts versus higher rents are high.

Multicollinearity and Standardization - Excel

- 1. If **interaction** terms are used in regression, standardizing the variables first reduces collinearity.
- 2. If **power** terms (polynomial regression) are included, standardization again reduces collinearity.
- Except in above cases, standardization has no bearing on multicollinearity among main effects.
- 4. Standardization does not improve model performance or R-squared, etc.
- 5. If interpreting the magnitude of coefficients in terms of the **weightage of the corresponding variable** is desired, then standardizing is required. The raw coefficients do not carry any such interpretation.

Also read: http://www.listendata.com/2017/04/how-to-standardize-variable-in-regression.html

Last accessed: January 05, 2018

Multiple Linear Regression

RECAP - OUTPUT ANALYSIS

What is the total variation and its explainable and unexplainable components?

SUMMARY OUTPUT									_
					SST	S = SSR + S	SSE		
Regression St	atistics								
Multiple R	0.89666084	5	$SST = \sum_{i=1}^{n} (y_i)^{i}$	$(\bar{y}_i - \bar{y}_i)^2$	SSR	$2 = \sum_{i=1}^{n} (\hat{y}_i - \hat{y}_i)$	$(\bar{y})^2 S$	SE =	$\sum (y_i - \hat{y}_i)^2$
R Square	0.804000661		۷.,						
Adjusted R Square	0.750546296								
Standard Error	2.90902388								
Observations	15								
ANOVA									
	df		SS	MS		F	Significa	nce F	
Regression	3		381.8467141	127.28	32238	15.04087945	0.000	33002	
Residual	11	\Box	93.08661926	8.46242	19933				
Total	14	•	474.9333333						
	Coefficients	St	tandard Error	t Sta	t	P-value	Lower	95%	Upper 95%
Intercept	12.04617703		9.312399791	1.2935	56313	0.222319528	-8.4502	76718	32.54263077
Stock 2 (\$)	0.878777607		0.26187309	3.35573	38482	0.006412092	0.302398821		1.455156393
Stock 3 (\$)	0.220492727		0.143521894	1.53630	00286	0.152714573	-0.0953	96832	0.536382286
Stock 2*Stock 3	-0.009984949		0.002314083	-4.31486	52356	0.00122514	-0.0150	78211	-0.00489169

How much of total variation can be explained by variation in independent variables?

SUMMARY OUTPUT							
Regression St	atistics						
Multiple R	0.89666084	SSR	38	1.85			
R Square	0.804000661	${SST} = \frac{1}{2}$	17	4.93			
Adjusted R Square	0.750546296	<u> </u>	4/	4.73			
Standard Error	2.90902388						
Observations	15						
ANOVA							
	df	SS		MS	F	Significance F	
Regression	3	381.84671	41	127.282238	15.04087945	0.00033002	
Residual	11	93.086619	26	8.462419933			
Total	14	474.93333	33				
	Coefficients	Standard Erro	or	t Stat	P-value	Lower 95%	Upper 95%
Intercept	12.04617703	9.3123997	91	1.29356313	0.222319528	-8.450276718	32.54263077
Stock 2 (\$)	0.878777607	0.261873	09	3.355738482	0.006412092	0.302398821	1.455156393
Stock 3 (\$)	0.220492727	0.1435218	94	1.536300286	0.152714573	-0.095396832	0.536382286
Stock 2*Stock 3	-0.009984949	0.0023140	83	-4.314862356	0.00122514	-0.015078211	-0.00489169

What is the correlation between actual and expected values?

SUMMARY OUTPUT						
Regression St	atistics					
Multiple R	0.89666084	$\sqrt{R^2}$: Correl	ation betwe	en y and \hat{y}	}	
R Square	0.804000661	-				
Adjusted R Square	0.750546296					
Standard Error	2.90902388					
Observations	15					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	3	381.8467141	127.282238	15.04087945	0.00033002	
Residual	11	93.08661926	8.462419933			
Total	14	474.9333333				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	12.04617703	9.312399791	1.29356313	0.222319528	-8.450276718	32.54263077
Stock 2 (\$)	0.878777607	0.26187309	3.355738482	0.006412092	0.302398821	1.455156393
Stock 3 (\$)	0.220492727	0.143521894	1.536300286	0.152714573	-0.095396832	0.536382286
Stock 2*Stock 3	-0.009984949	0.002314083	-4.314862356	0.00122514	-0.015078211	-0.00489169

How much of total variation can be explained by variation in independent variables (IVs) that *actually affect* the DV? Don't forget that this does not mean those are not important or that they don't have

Regression St	atistics					
Multiple R	0.89666084					
R Square	0.804000661			12	MSE	
Adjusted R Square	0.750546296	$R^2 - (1)$	$(-R^2)\frac{R^2}{n-R^2}$	1		
Standard Error	2.90902388	`	n-1	k-1	MST MST	
Observations	15					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	3	381.8467141	127.282238	15,04087945	0.00033002	
Residual	11	93.08661926	8.462419933			
Total	14	474.9333333	33.923809521			
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	12.04617703	9.312399791	1.29356313	0.222319528	-8.450276718	32.54263077
Stock 2 (\$)	0.878777607	0.26187309	3.355738482	0.006412092	0.302398821	1.455156393
Stock 3 (\$)	0.220492727	0.143521894	1.536300286	0.152714573	-0.095396832	0.536382286
Stock 2*Stock 3	-0.009984949	0.002314083	-4.314862356	0.00122514	-0.015078211	-0.00489169

What is the "average" deviation of the actual values from the expected values?

SUMMARY OUTPUT						
Regression St	atistics					
Multiple R	0.89666084					
R Square	0.804000661					
Adjusted R Square	0.750546296					
Standard Error	2.90902388	\sqrt{MSE}				
Observations	15					
ANOVA						
	df	SS	MS	F	Significance F	
Regression	3	381.8467141	127.282238	15.04087945	0.00033002	
Residual	11	93.08661926	8.462419933			
Total	14	474.9333333				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	12.04617703	9.312399791	1.29356313	0.222319528	-8.450276718	32.54263077
Stock 2 (\$)	0.878777607	0.26187309	3.355738482	0.006412092	0.302398821	1.455156393
Stock 3 (\$)	0.220492727	0.143521894	1.536300286	0.152714573	-0.095396832	0.536382286
Stock 2*Stock 3	-0.009984949	0.002314083	-4.314862356	0.00122514	-0.015078211	-0.00489169

What is the average of the squared errors?

SUMMARY OUTPUT						
Regression St	atistics					
Multiple R	0.89666084					
R Square	0.804000661					
Adjusted R Square	0.750546296					
Standard Error	2.90902388	S	<mark>SE </mark>			
Observations	15	$MSE = \frac{SS}{df_e}$				
			TTOI			
ANOVA						
	df	SS	MS	F	Significance F	
Regression	3	381.8467141	127.282238	15.04087945	0.00033002	
Residual	11	93.08661926	8.462419933			
Total	14	474.9333333				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	12.04617703	9.312399791	1.29356313	0.222319528	-8.450276718	32.54263077
Stock 2 (\$)	0.878777607	0.26187309	3.355738482	0.006412092	0.302398821	1.455156393
Stock 3 (\$)	0.220492727	0.143521894	1.536300286	0.152714573	-0.095396832	0.536382286
Stock 2*Stock 3	-0.009984949	0.002314083	-4.314862356	0.00122514	-0.015078211	-0.00489169

Is the model significant?

SUMMARY OUTPUT						
Regression St	atistics					
Multiple R	0.89666084					
R Square	0.804000661					
Adjusted R Square	0.750546296	MSR	D codo f	or critical F	af(0.05.2.1)	11) _ 2 [0
Standard Error	2.90902388	$F = \frac{1}{MSE}$	R code ii	or Critical F.	qf(0.05,3,1)	(11) = 3.36
Observations	15	\				
ANOVA						
	df	SS	MS	F	Significance F	
Regression	3	381.8467141	127.282238	15.04087945	0.00033002	
Residual	11	93.08661926	8.462419933			
Total	14	474.9333333				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	12.04617703	9.312399791	1.29356313	0.222319528	-8.450276718	32.54263077
Stock 2 (\$)	0.878777607	0.26187309	3.355738482	0.006412092	0.302398821	1.455156393
Stock 3 (\$)	0.220492727	0.143521894	1.536300286	0.152714573	-0.095396832	0.536382286
Stock 2*Stock 3	-0.009984949	0.002314083	-4.314862356	0.00122514	-0.015078211	-0.00489169

What do regression coefficients mean?

SUMMARY OUTPUT			relationship between the dependent									
Regression St	atistics		variable	(DV) and	d the inde	pendent	t					
Multiple R	0.89666084		contribu	i tion of t	he indepe	endent v	ariahle					
R Square	0.804000661				-		ariabic					
Adjusted R Square	0.750546296		(IV), i.e.,	that par	rt of the I\	√ that is						
Standard Error	2.90902388		indenen	independent of (or uncorrelated with) all								
Observations	15		·									
			other IVs.									
ANOVA												
	df	SS	MS	F	Significance F							
Regression	3	381.8467141	127.282238	15.04087945	0.00033002							
Residual	11	93,08661926	8.462419933									
Total	14	474.9333333										
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%						
Intercept	12.04617703	9.312399791	1.29356313	0.222319528	-8.450276718	32.54263077						
Stock 2 (\$)	0.878777607	0.26187309	3.355738482	0.006412092	0.302398821	1.455156393						
Stock 3 (\$)	0.220492727	0.143521894	1.536300286	0.152714573	-0.095396832	0.536382286						
Stock 2*Stock 3												

A coefficient is the slope of the linear

How much will the variation be between the estimated coefficient and the corresponding true population

Regression St	atistics									
Multiple R	0.89666084									
R Square	0.804000661									
Adjusted R Square	0.750546296	SE								
Standard Error	2.90902388	SE_{l}	$SE_{b_1} = \frac{SE}{\sqrt{1 - R^2_{(x_1, x_2 x_3)}}} \sqrt{1 - R^2_{(x_1, x_2 x_3)}}$							
Observations	15									
		other Xs as independent								
ANOVA		, par								
	df	SS	MS	F	Significance F					
Regression	3,	381.8467141	127.282238	15.04087945	0.00033002					
Residual	11	93.08661926	8.462419933							
Total	14	474.9333333								
	p.p.o.									
	Loefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%				
Intercept b_0	12.04617703	9.312399791	1.29356313	0.222319528	-8.450276718	32.54263077				
Stock 2 (\$) b_1	0.878777607	0.26187309	3.355738482	0.006412092	0.302398821	1.455156393				
Stock 3 (\$) b ₂	0.220492727	0.143521894	1.536300286	0.152714573	-0.095396832	0.536382286				
Stock 2*Stock 3 b ₃	-0.009984949	0.002314083	-4.314862356	0.00122514	-0.015078211	-0.00489169				

Are the coefficients significant?

SUMMARY OUTPUT							
Regression St	atistics						
Multiple R	0.89666084						
R Square	0.804000661			P code for	critical t: qt	(0 025 11)	_ 2 20
Adjusted R Square	0.750546296	$t-\frac{b_i-\beta_{i_1}}{2}$	null	K code for	-	(0.023,11)	— 2.20
Standard Error	2.90902388	$t = \frac{1}{SF_t}$	$\beta_{i_{null}} = 0$				
Observations	15		$p_{i_{null}} - 0$				
ANOVA							
	df	59	MS	F	Significance F		
Regression	3	381/8467141	127.282238	15.04087945	0.00033002		
Residual	11	93/08661926	8.462419933				
Total	14	4,9333333					
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	
Intercept	12.04617703	9.312399791	1.29356313	0.222319528	-8.450276718	32.54263077	
Stock 2 (\$)	0.878777607	0.26187309	3.355738482	0.006412092	0.302398821	1.455156393	
Stock 3 (\$)	0.220492727	0.143521894	1.536300286	0.152714573	-0.095396832	0.536382286	
Stock 2*Stock 3	-0.009984949	0.002314083	-4.314862356	0.00122514	-0.015078211	-0.00489169	

What are the confidence intervals for the coefficients?

Multiple Linear Regression CASE - MONEYBALL

Case - Oakland A's 2002 Success (Moneyball)

Case Study – Data (baseball-reference.com and MITx)

- 1232 rows, 15 variables
- Statistics for 40 teams from 1962 to 2012
- Oakland A was trying to make playoffs in 2002 and so, 902 rows of data from pre-2002 dates used.

Team	League	Year	RS	RA	W	OBP	SLG	ВА	Playoffs	RankSeason	RankPlayoffs	G	ООВР	OSLG
ANA	AL	2001	691	730	75	0.327	0.405	0.261	0			162	0.331	0.412
ARI	NL	2001	818	677	92	0.341	0.442	0.267	1	5	1	162	0.311	0.404
ATL	NL	2001	729	643	88	0.324	0.412	0.26	1	7	3	162	0.314	0.384
BAL	AL	2001	687	829	63	0.319	0.38	0.248	0			162	0.337	0.439
BOS	AL	2001	772	745	82	0.334	0.439	0.266	0			161	0.329	0.393
CHC	NL	2001	777	701	88	0.336	0.43	0.261	0			162	0.321	0.398
CHW	AL	2001	798	795	83	0.334	0.451	0.268	0			162	0.334	0.427
CIN	NL	2001	735	850	66	0.324	0.419	0.262	0			162	0.341	0.455
CLE	AL	2001	897	821	91	0.35	0.458	0.278	1	6	4	162	0.341	0.417
COL	NL	2001	923	906	73	0.354	0.483	0.292	0			162	0.35	0.48
DET	AL	2001	724	876	66	0.32	0.409	0.26	0			162	0.357	0.461

Case Study – Scatter plot

- No. of wins for each team
- Red Case when team went to playoffs
- Black Case when team did not go to playoffs
- Vertical blue line DePodesta's estimate for # of wins required (99)

Case Study – Scatter plot

- DePodesta also estimated that a team on an average needed to score 169 runs more (814-645) per game than their opponent to make the 99 wins
- Strong correlation = 0.94
- Model also predicted 99 wins for a 169-run difference

$$W = 80.881375 + 0.105766 * RD$$

 $W = 80.881375 + 0.105766 * 169 = 98.8$

Case Study – Regression for RS

- Run difference = Runs Scored (RS) Runs Allowed (RA)
- RS is a function of OBP (On Base Percentage), SLG (Slugging Percentage) and BA (Batting Average)
- Adj. $R^2 = 0.93$

- However, coefficient of BA is negative, which is nonintuitive (higher batting average leading to lower chance of winning!). This indicates multi-collinearity.
- Removing BA gives a model with Adj. $R^2 = 0.9294$

```
call:
lm(formula = RS \sim OBP + SLG + BA, data = moneyball)
Residuals:
   Min
            10 Median
-70.941 -17.247 -0.621 16.754 90.998
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept)
            -788.46
                         19.70 -40.029 < 2e-16 ***
            2917.42
                        110.47 26.410 < 2e-16 ***
OBP
            1637.93
                         45.99 35.612 < 2e-16 ***
SLG
                        130.58 -2.826 0.00482 **
            -368.97
BA
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 24.69 on 898 degrees of freedom
Multiple R-squared: 0.9302, Adjusted R-squared: 0.93
F-statistic: 3989 on 3 and 898 DF, p-value: < 2.2e-16
call:
lm(formula = R5 ~ OBP + SLG, data = moneyball)
Residuals:
    Min
            10 Median
-70.838 -17.174 -1.108 16.770 90.036
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
            -804.63
                          18.92 -42.53
OBP
             2737.77
                          90.68
                                 30.19
            1584.91
                          42.16
                                 37.60
SLG
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 24.79 on 899 degrees of freedom
```

Multiple R-squared: 0.9296, Adjusted R-squared: 0.9294 F-statistic: 5934 on 2 and 899 DF, p-value: < 2.2e-16 73026

Case Study – Regression for RA

- RA is a function of OOBP (Opponent On Base Percentage) and OSLG (Opponent Slugging Percentage)
- Missing values removed. 902 values got dropped to 90.

```
• Adj. R^2 = 0.9052
```

```
call:
lm(formula = RA \sim OOBP + OSLG, data = moneyball)
Residuals:
   Min
            10 Median
                                  Max
-82.397 -15.178 -0.129 17.679 60.955
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -837.38
                         60.26 -13.897 < 2e-16 ***
            2913.60 291.97 9.979 4.46e-16 ***
OOBP
            1514.29 175.43 8.632 2.55e-13 ***
OSLG
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 25.67 on 87 degrees of freedom
  (812 observations deleted due to missingness)
Multiple R-squared: 0.9073, Adjusted R-squared: 0.9052
F-statistic: 425.8 on 2 and 87 DF, p-value: < 2.2e-16
```


Case Study – Prediction

- Predict how many runs A's will score and allow in 2002 indicating whether they will make the playoffs or not.
- Inputs to RS and RA models are average team OBP, SLG, OOBP and OSLG values in 2001, assuming team quality remains the same in 2002.
- Values in 2001 (data file has for the entire season including playoffs; the values below are for the regular season as predictions are for that part only)

- OBP: 0.339

- SLG: 0.430

- OOBP: 0.307

- OSLG: 0.373

Case Study – Prediction

Equations

$$RS = -804.96 + 2737.77 * OBP + 1584.91 * SLG$$

 $RA = -837.38 + 2913.60 * OOBP + 1514.29 * OSLG$
 $W = 80.881375 + 0.105766 * RD$

Calculations

$$RS = -804.96 + 2737.77 * 0.339 + 1584.91 * 0.430 = 804.66 \sim 805$$

 $RA = -837.38 + 2913.60 * 0.307 + 1514.29 * 0.373 = 621.93 \sim 622$
 $W = 80.881375 + 0.105766 * 183 = 100.2 \sim 100$

Results

Metric	Model Prediction	DePodesta's Estimate	Actual
RS	805	800-820	800
RA	622	650-670	654
Wins	100	93-97	103

Theoretical World vs the Practical World - Advice

Is it true that the majority of business problems can be solved with linear and logistic regression models?

Ryan Barnes, Data Scientist at Mountain America Credit Union (2015-present)

Answered Jun 23 · Upvoted by Edward Williams, M.A. Statistics, University of Wisconsin - Madison (1968) and Martin Lukac, Ph.D. Sociology & Statistics, KU Leuven (2020) · 2 min read

Let me let you in on a secret about the difference between school (data science competitions too) and the real world. In the real world things break. Data shifts because the guy entering it into the system leaves the job and the new guy does it a little bit differently. The world changes around your model, like the NBA 3-point line gets moved back, and so your data distribution on 3 point attempts made shifts. Other things out of your control happen.

In the real world you are constantly balancing between getting the "right answer", getting an answer quickly, and getting a solution that isn't fragile, and that is easy to debug when it does break (because it will break). In my professional life, time and again I thought that a linear model wasn't powerful enough, and started with something more complicated. Then I was forced to come back to a linear model. Why?

Once I had an optimization problem, I had developed a cool genetic algorithm to solve the problem for setting the optimal cutoff values for a fraud model. It would spin for a day or two up to a week depending on how complex the rule it was trying to optimize, but it would get fantastic results. It worked like a charm every time we needed to set these thresholds. Turns out nobody used it. When asked why, the humans weren't patient enough to wait for the machine to think.

So I threw together a linear regression to set the thresholds. The result wasn't nearly as optimal. But it ran in a couple of seconds. Everyone uses that system. It gets them better results than just using a gut feeling, and it is fast. Are we leaving money on the table? Maybe, depends on your perspective, if no one uses it, we are leaving way more money on the table than by doing a linear regression.

How about if that thing broke. It was nearly impossible to debug, and the results were stochastic to boot. So you never knew if you had the best possible result. With a linear model, I can write a unit test. I can figure out why it gave the answer that it did, and it is just a more solid algorithm that is nearly impossible to break.

So to answer your question, can you solve any business problem with linear regression and probability models? Probably not, I'm looking at PR or HR problems for example, but in terms of data science, they are rock solid models and should be your go to models. Only when they won't work, and you are 100% sure that they aren't working should you move onto anything else.

Source: https://www.quora.com/ls-it-true-that-the-majority-of-business-problems-can-be-solved-with-linear-and-logistic-regression-models

Last accessed: July 12, 2018

73026

HYDERABAD

2nd Floor, Jyothi Imperial, Vamsiram Builders, Old Mumbai Highway, Gachibowli, Hyderabad - 500 032

+91-9701685511 (Individuals)

+91-9618483483 (Corporates)

BENGALURU

Floors 1-3, L77, 15th Cross Road, 3A Main Road, Sector 6, HSR

Layout, Bengaluru – 560 102

+91-9502334561 (Individuals)

+91-9502799088 (Corporates)

Social Media

Web: http://www.insofe.edu.in

Facebook: https://www.facebook.com/insofe

Twitter: https://twitter.com/Insofeedu

YouTube: http://www.youtube.com/InsofeVideos

SlideShare: http://www.slideshare.net/INSOFE

LinkedIn: http://www.linkedin.com/company/international-school-of-engineering

This presentation may contain references to findings of various reports available in the public domain. INSOFE makes no representation as to their accuracy or that the organization subscribes to those findings.