Introduction to Analysis Lecture 4

Haoming Wang

25 April 2019

Abstract

This is the Lecture note for the *Introduction to Analysis* class in Spring 2019.

1 Rearrangement theorem

Given a seq. $a_n(n \in \mathbb{N})$, we can separate all terms into two subseq.s:

$$a_{n_1}, a_{n_2}, \cdots$$
 and $a_{n'_1}, a_{n'_2}, \cdots$

where $n_1 < n_2 < \cdots$ and $n'_1 < n'_2 < \cdots$ and $\{n_1, n_2, \cdots\} \cup \{n'_1, n'_2, \cdots\} = \mathbb{N}$, such that $a_{n_j} \ge 0 (j \in \mathbb{N}), a_{n'_k} \le 0 (k \in \mathbb{N})$. Let $p_j := a_{n_j} (j \in \mathbb{N})$ and $q_k := a_{n'_k} (k \in \mathbb{N})$.

Exercise 1. Show that $\sum_n |a_n| < \infty \Leftrightarrow \sum_j p_j < \infty$ and $\sum_k q_k < \infty$. Moreover, if any side holds, then

$$\sum_{n} |a_n| = \sum_{j} p_j + \sum_{k} q_k$$

and

$$\sum_{n} a_n = \sum_{j} p_j - \sum_{k} q_k.$$

Exercise 2. If $\sum_n a_n$ converges conditionally, show that

- 1. $\sum_j p_j = \infty$ and $\sum_k q_k = \infty$;
- 2. $\lim_{j\to\infty} p_j = \lim_{k\to\infty} q_k = 0$.

Exercise 3. If $\sum_n a_n$, $\sum_n b_n$ converges, show that $\sum_n (a_n \pm b_n) = \sum_n a_n \pm \sum_n b_n$.

Exercise 4. Inserting 0s to a series will not affect its convergence / divergence and its sum (if the sum exists).

Recall that a sequence a_n is a map $\mathbb{N} \stackrel{a}{\longrightarrow} \mathbb{R}$ where $n \mapsto a(n)$ denoted by a_n . A

subsequence a_{n_m} is a composite map

$$\mathbb{N} \xrightarrow{n.} \mathbb{N} \xrightarrow{a.} \mathbb{R}$$

where n. is an injection (or say n. \nearrow) and $m \mapsto n(m)$ denoted by n_m . A **rearrangement** is also a composite map

$$\mathbb{N} \xrightarrow{n(\cdot)} \mathbb{N} \xrightarrow{a.} \mathbb{R}$$

where $n(\cdot)$ is a bijection. (To distinguish it from the notion of subseq., we don't use subscripts here)

Now we gonna explore two questions: if a series \sum_n converges, $a_{n(m)}(m \in \mathbb{N})$ is a rearrangement of $a_n(n \in \mathbb{N})$, then

- 1. whether $\sum_{m} a_{n(m)}$ converges ?
- 2. whether $\sum_n a_n = \sum_m a_{n(m)}$?

Exercise 5. Let $\sum_n a_n$ be a positive series, show that

$$\sum_{n} a_{n} = \sup \{ a_{n_{1}} + \dots + a_{n_{k}} | n_{1} < \dots < n_{k}, k \in \mathbb{N} \}$$

including the case $\sum_n a_n = \infty$.

Exercise 6. If $\sum_n a_n$ is a convergent positive series, show that for every rearrangement $a_{n(m)} (m \in \mathbb{N})$ of $a_n (n \in \mathbb{N})$, we have that $\sum_n a_n = \sum_m a_{n(m)}$.

Exercise 7 (Dirichlet's Rearrangement Theorem (1829)). If $\sum_n a_n$ converges absolutely, show that for every rearrangement $a_{n(m)}(m \in \mathbb{N})$ of $a_n(n \in \mathbb{N})$, we have that $\sum_n a_n = \sum_m a_{n(m)}$.

Theorem 1 (Riemann's Rearrangement Theorem(1852)). If $\sum_n a_n$ converges conditionally, then for $\forall r \in \mathbb{R}$, there exists a rearrangement $a_{n(m)}(m \in \mathbb{N})$ of $a_n(n \in \mathbb{N})$ such that $\sum_m a_{n(m)} = r$.

Remark 1 (2S = S). Dirichelet made the following observation in 1827: Consider a alternating series

$$S = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} + \cdots$$

which is convergent (conditionally) by Leibniz's Criterion, and hence

$$2S = 2 - 1 + \frac{2}{3} - \frac{2}{4} + \frac{2}{5} - \frac{2}{6} + \frac{2}{7} - \frac{2}{8} + \frac{2}{9} - \frac{2}{10} + \cdots$$

$$= '(2 - 1) - \frac{2}{4} + \left(\frac{2}{3} - \frac{2}{6}\right) - \frac{2}{8} + \left(\frac{2}{5} - \frac{2}{10}\right) + \cdots$$

$$= 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} + \cdots$$

$$= S$$

2 Multiplying absolutely convergent series

Proposition 1. Let $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ converge absolutely, let

$$c_n = a_n b_0 + \dots + a_0 b_n = \sum_{j+k=n; j,k \geq 0} a_j b_k,$$

then $\sum_{n} |c_n| < \infty$ and $\sum_{n=0}^{\infty} c_n = (\sum_{n=0}^{\infty} a_n) \cdot (\sum_{n=0}^{\infty} b_n)$.

Proof. 1. $\sum_{n} |c_n| < \infty$ For all n,

$$\sum_{m=0}^{n} |c_{m}| = \sum_{m=0}^{n} \left| \sum_{\substack{j+k=m\\j,k \ge 0}} a_{j} b_{k} \right| \le \sum_{m=0}^{n} \sum_{\substack{j+k=m\\j,k \ge 0}} |a_{j}| |b_{k}|$$

$$\le \left(\sum_{i=0}^{n} |a_{i}| \right) \cdot \left(\sum_{k=0}^{n} |b_{k}| \right).$$

Since $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ converges absolutely, the partial sums of $|a_n|$, $|b_n|$ have upper bounds, denoted by M, N respectively, then $\sum_{m=0}^{n} |c_m|$ has a upper bound $M \cdot N$ and hence $\sum_{n=0}^{\infty} c_n$ converges absolutely.

2. $\sum_{n=0}^{\infty} c_n = (\sum_{n=0}^{\infty} a_n) \cdot (\sum_{n=0}^{\infty} b_n).$

Let $A_n := a_0 + \cdots + a_n$; $B_n := b_0 + \cdots + b_n$ and $C_n := c_0 + \cdots + c_n$, we claim that $\lim_{n \to \infty} (A_n B_n - C_n) = 0$. Then

$$|A_n B_n - C_n| = \sum_{\substack{j+k > n \\ 0 \le j, k \le n}} |a_j b_k|$$

$$\leq \left(\sum_{j=\lfloor n/2 \rfloor}^n |a_j|\right) \cdot \left(\sum_{k=0}^n |b_k|\right) + \left(\sum_{j=0}^n |a_j|\right) \cdot \left(\sum_{k=\lfloor n/2 \rfloor}^n |b_k|\right)$$

where $\sum_{k=0}^{n} |b_k|$, $\sum_{j=0}^{n} |a_j|$ are bounded, and tails $\sum_{j=\lfloor n/2\rfloor}^{n} |a_j|$, $\sum_{k=\lfloor n/2\rfloor}^{n} |b_k| \to 0$ as $n \to \infty$ since $\sum_n a_n$, $\sum_n b_n$ are converges abs. Thus $\lim_{n\to\infty} |A_n B_n - C_n| = 0$ and since $\lim_{n\to\infty} A_n$, $\lim_{n\to\infty} B_n$, $\lim_{n\to\infty} C_n$ exists, we have that

$$\sum_{n=0}^{\infty} c_n = \lim_{n \to \infty} C_n$$

$$= \lim_{n \to \infty} A_n B_b = \lim_{n \to \infty} A_n \cdot \lim_{n \to \infty} B_n$$

$$= \left(\sum_{n=0}^{\infty} a_n\right) \cdot \left(\sum_{n=0}^{\infty} b_n\right)$$

Theorem 2. If $\sum_n a_n$, $\sum_n b_n cvg$. abs., $\mathbb{N} \xrightarrow{(j(\cdot),k(\cdot))} \mathbb{N} \times \mathbb{N}$ is bijection where $n \mapsto (j(n),k(n))$, let $c_n := a_{j(n)}b_{k(n)} (n \in \mathbb{N})$, then $\sum_n |c_n| < \infty$ (cvg. abs.) and $\sum_n c_n = (\sum_n a_n)(\sum_n b_n)$.

Proof. 1. $\sum_{n} c_n$ cvg. abs.

For $\forall n \in \mathbb{N}$, let $l = \max\{j(1), \dots, j(n), k(1), \dots, k(n)\}$. Then

$$|c_1| + \dots + |c_n| = |a_{j(1)}b_{k(1)}| + \dots + |a_{j(n)}b_{k(n)}|$$

 $\leq \left(\sum_{j=1}^{l} |a_j|\right) \cdot \left(\sum_{k=1}^{l} |b_k|\right)$
 $\leq M \cdot N$

Thus $\sum_{n} c_n$ cvg. abs.

 $2. \sum_{n} c_n = (\sum_{n} a_n)(\sum_{n} b_n).$

Let $A_n = a_1 + \cdots + a_n$, $B_n = b_1 + \cdots + b_n$ and $C_n = c_1 + \cdots + c_n (n \in \mathbb{N})$. And define the bijection $\mathbb{N} \to \mathbb{N} \times \mathbb{N}$ by the second one in Figure 1. Then

$$A_n B_n = (a_1 + \dots + a_n)(b_1 + \dots + b_n)$$

$$= \sum_{1 \le j,k \le n} a_j b_k$$

$$= C_{n^2}$$

Thus $\lim_{n\to\infty} A_n B_n = \lim_{n\to\infty} C_{n^2} = \lim_{n\to\infty} C_n \Rightarrow \sum_n c_n = (\sum_n a_n)(\sum_n b_n).$

Figure 1: 3 kinds of bijections $(j(\cdot), k(\cdot))$