Defining the physical sources of sour Non-radiating filter desig Sources of sound in an axi-symmetric j Conclusio

Separating propagating and non-propagating dynamics in fluid-flow equations

Samuel Sinayoko,

A. Agarwal and Z. Hu

University of Southampton
Institute of Sound and Vibration Research

May 2009

Institute of Sound and
Vibration Research
Sources of sound in an axi-symmetric jet
Conclusion

Introduction

How to define the physical sources of sound?

Objectives

- Derive an expression for the physical sources of sound.
- ② Demonstrate that it is possible to separate the radiating and non-radiating parts of the flow.
- Ompute the physical sources of sound.

Outline

- Defining the physical sources of sound
 - Goldstein's theory
 - Equations
- 2 Non-radiating filter design
 - Problem description
 - Filter defining properties
 - Local filter
 - Global filter
- Sources of sound in an axi-symmetric jet
 - Flow description
 - Filter design
 - Sound sources

Goldstein's theory

Goldstein's theory

Goldstein's theory

These sources should be close to the true sources of sound.

Governing equation for fluctuating quantities

Flow filtering

$$\mathcal{L}f = \overline{f} \tag{1}$$

Flow decomposition

$$f=\overline{f}+f' \tag{2}$$

Governing equation for fluctuating quantities

Flow filtering

$$\mathcal{L}f = \overline{f} \tag{1}$$

Flow decomposition

$$f = \overline{f} + f' \tag{2}$$

Conservation of mass

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho \mathbf{v}_j}{\partial \mathbf{x}_i} = \mathbf{0},\tag{3}$$

$$\frac{\partial \overline{\rho}}{\partial t} + \frac{\partial \overline{\rho v_j}}{\partial x_i} = 0. \tag{4}$$

Flow filtering

$$\mathcal{L}f = \overline{f} \tag{1}$$

Flow decomposition

$$f = \overline{f} + f' \tag{2}$$

Conservation of mass

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho v_j}{\partial x_j} = 0, \tag{3}$$

$$\frac{\partial \overline{\rho}}{\partial t} + \frac{\partial \overline{\rho} v_j}{\partial x_i} = 0.$$
 (4)

Conservation of mass for fluctuating quantities

$$\frac{\partial \rho'}{\partial t} + \frac{\partial (\rho v_j)'}{\partial x_i} = 0.$$

Governing equation for fluctuating quantities

Conservation of mass for fluctuating quantities

$$\frac{\partial \rho'}{\partial t} + \frac{\partial (\rho v_j)'}{\partial x_j} = 0.$$
 (5)

Momentum conservation for fluctuating quantities

$$\frac{\partial(\rho v_i)'}{\partial t} + \frac{\partial(\rho v_i v_j)'}{\partial x_i} + \frac{\partial p'}{\partial x_i} = \frac{\partial \sigma'_{ij}}{\partial x_i}.$$
 (6)

Conservation of mass for fluctuating quantities

$$\frac{\partial \rho'}{\partial t} + \frac{\partial (\rho v_j)'}{\partial x_j} = 0.$$
 (5)

Momentum conservation for fluctuating quantities

$$\frac{\partial(\rho v_i)'}{\partial t} + \frac{\partial(\rho v_i v_j)'}{\partial x_j} + \frac{\partial p'}{\partial x_i} = \frac{\partial \sigma'_{ij}}{\partial x_j}.$$
 (6)

Taking $\partial(6)/\partial x_i - \partial(5)/\partial t$ gives

$$\frac{\partial^2 p'}{\partial x_i x_i} - \frac{\partial^2 \rho'}{\partial t^2} + \frac{\partial^2 (\rho v_i v_j)'}{\partial x_i \partial x_j} = \frac{\partial^2 \sigma'_{ij}}{\partial x_i \partial x_j}.$$
 (7)

Governing equation for fluctuating quantities

Favre averaging,
$$\tilde{f} = \overline{\rho f}/\overline{\rho}$$
, (8)

Governing equation

$$\frac{\partial^{2} \rho'}{\partial x_{i} \partial x_{i}} - \frac{\partial^{2} \rho'}{\partial t^{2}} + \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} (\tilde{v}_{i} \tilde{v}_{j} \rho' + \overline{\rho} \tilde{v}_{j} v'_{i} + \overline{\rho} \tilde{v}_{i} v'_{j}) = \frac{\partial^{2} \sigma_{ij'}}{\partial x_{i} \partial x_{j}} + s$$
 (9)

Governing equation for fluctuating quantities

Favre averaging,
$$\tilde{f} = \overline{\rho f}/\overline{\rho}$$
, (8)

Governing equation

$$\frac{\partial^{2} \rho'}{\partial x_{i} \partial x_{i}} - \frac{\partial^{2} \rho'}{\partial t^{2}} + \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} (\tilde{v}_{i} \tilde{v}_{j} \rho' + \overline{\rho} \tilde{v}_{j} v'_{i} + \overline{\rho} \tilde{v}_{i} v'_{j}) = \frac{\partial^{2} \sigma_{ij'}}{\partial x_{i} \partial x_{j}} + s$$
 (9)

Source definition

$$s = -\frac{\partial^2}{\partial x_i \partial x_j} \left(T_{ij} + \rho v_i' v_j' + \tilde{v}_i \rho' v_j' + \tilde{v}_j \rho' v_i' \right)$$

$$T_{ij} = -\overline{\rho} (\widetilde{v_i v_j} - \tilde{v}_i \tilde{v}_j).$$
(10)

$$T_{ii} = -\overline{\rho}(\widetilde{v_i}\widetilde{v_i} - \widetilde{v_i}\widetilde{v_i}). \tag{11}$$

Outline

- Defining the physical sources of sound
 - Goldstein's theory
 - Equations
- Non-radiating filter design
 - Problem description
 - Filter defining properties
 - Local filter
 - Global filter
- Sources of sound in an axi-symmetric jet
 - Flow description
 - Filter design
 - Sound sources

Problem description

Parallel flow

Problem description

Pressure field

Filter defining properties

Defining properties

Fourier transform

$$f(\mathbf{x},t) \to F(\mathbf{k},\omega)$$

$$f(\mathbf{x},t) \to F(\mathbf{k},\omega)$$

 $\overline{f}(\mathbf{x},t) \to \overline{F}(\mathbf{k},\omega)$

Filter defining properties

Defining properties

Fourier transform

$$f(\mathbf{x},t) \to F(\mathbf{k},\omega)$$

$$\overline{f}(\mathbf{x},t) \to \overline{F}(\mathbf{k},\omega)$$

Non-radiating condition

$$\overline{F}(\mathbf{k},\omega) = 0$$
 for $|\mathbf{k}| = \frac{|\omega|}{c_{\infty}}$

Defining properties

Fourier transform

$$f(\mathbf{x},t) \to F(\mathbf{k},\omega)$$

$$\overline{f}(\mathbf{x},t) \to \overline{F}(\mathbf{k},\omega)$$

Non-radiating condition

$$\overline{F}(\mathbf{k},\omega) = 0$$
 for $|\mathbf{k}| = \frac{|\omega|}{G_{\infty}}$

Additional requirement

$$\overline{F}(\mathbf{k},\omega) = F(\mathbf{k},\omega) \quad \text{for} \quad |\mathbf{k}| \neq \frac{|\omega|}{G_{\infty}}$$

Vibration Research Sources of sound in an axi-symmetric jet

Local filter

Local filter

Filter definition

D'Alembertian filter

$$\overline{f}(\mathbf{x},t) = \left(\frac{1}{c_{\infty}^2} \frac{\partial^2}{\partial t^2} - \nabla^2\right) f(\mathbf{x},t),$$

Local filter

Local filter Filter definition

D'Alembertian filter

$$\overline{f}(\mathbf{x},t) = \left(\frac{1}{c_{\infty}^2} \frac{\partial^2}{\partial t^2} - \nabla^2\right) f(\mathbf{x},t),$$

Frequency domain

$$\overline{F}(\mathbf{k},\omega) = \left(|\mathbf{k}|^2 - \frac{\omega^2}{c_{\infty}^2} \right) F(\mathbf{k},\omega)$$

Local filter

Local filter Filter definition

D'Alembertian filter

$$\overline{f}(\mathbf{x},t) = \left(\frac{1}{c_{\infty}^2} \frac{\partial^2}{\partial t^2} - \nabla^2\right) f(\mathbf{x},t),$$

Frequency domain

$$\overline{F}(\mathbf{k},\omega) = \left(|\mathbf{k}|^2 - \frac{\omega^2}{c_{-2}^2} \right) F(\mathbf{k},\omega)$$

$$\Rightarrow \overline{F}(\mathbf{k},\omega) = 0$$
 for $|\mathbf{k}| = \frac{|\omega|}{c_{\infty}}$

Local filter Results

Local filter

Global filter

Filter definition

$$\bar{f} = \mathbf{w} * f \tag{12}$$

$$\overline{F} = WF$$
 (13)

efining the physical sources of sounc Non-radiating filter design cres of sound in an axi-symmetric je Conclusion Problem description Filter defining propertie Local filter Global filter

Global filter

Filter definition

Global filter

Filter definition

Gaussian filter

$$W(\mathbf{k},\omega) = \exp\left(-rac{(k_{X}-lpha)^{2}}{2\sigma^{2}}
ight) + \exp\left(-rac{(k_{X}+lpha)^{2}}{2\sigma^{2}}
ight)$$

$$\alpha = 0.68 \text{m}^{-1}, \quad \sigma = 0.1 \text{m}^{-1}.$$

Global filter Results

Global filter Results

Global filter

Comparison with analytical result along profile y = 15m

Outline

- Defining the physical sources of sounce
 - Goldstein's theory
 - Equations
- Non-radiating filter design
 - Problem description
 - Filter defining properties
 - Local filter
 - Global filter
- Sources of sound in an axi-symmetric jet
 - Flow description
 - Filter design
 - Sound sources

Flow description

Mean flow excited at two frequencies:

$$\omega_1 = 2.2$$
,

$$\omega_2 = 3.4$$
,

$$\Delta\omega = 1.2$$
.

Flow description Filter design Sound sources

Flow description

Pressure field

Flow description Filter design Sound sources

Flow description Frequency analysis

Hydrodynamic region

Flow description Frequency analysis

Hydrodynamic region

Acoustic region

Flow description Frequency analysis

Hydrodynamic region

Acoustic region

Filter design Definition

Tanh filter

$$W(\mathbf{k},\omega) = rac{1}{2} \left[1 + anh \left(rac{|\mathbf{k}| - k_{co}}{\sigma}
ight)
ight],$$

$$k_{co} = 1.3, \quad \sigma = 0.2.$$

Introductio Defining the physical sources of soun Non-radiating filter desig ources of sound in an axi-symmetric je

Flow description
Filter design
Sound sources

Filter design

Validation

Pressure field p

Flow description
Filter design
Sound sources

Filter design

Validation

Filtered pressure \overline{p}

Introduction
Defining the physical sources of sound
Non-radiating filter design
Burces of sound in an axi-symmetric je

Flow description
Filter design
Sound sources

Filter design

Validation

Fluctuating pressure p'

Flow description
Filter design
Sound sources

Sound sources

Using non-radiating filter

Sound source s

Sound sources

Sound sources Using non-radiating filter

Sound source s

Spectrum at (4.0, 0.55)

Flow descriptio Filter design Sound sources

Sound sources

Using time average filter

Sound source s

Flow description
Filter design
Sound sources

Sound sources

Using time average filter

Sound source s

Spectrum at (5.5, 0.5)

Sound sources

Evolution in time

(source)

Conclusion and future work

Results

- Sound source definition
- Separation possible with convolution filters.
- Clearer physical interpretation of the sources.

Conclusion and future work

Results

- Sound source definition
- Separation possible with convolution filters.
- Clearer physical interpretation of the sources.

Future work

- Mixing-layer and a two-dimensional jet.
- Physical mechanism behind the sound sources.

Defining the physical sources of sounce

Non-radiating filter design
Sources of sound in an axi-symmetric jet

Conclusion

Acknowledgements

Engineering and Physical Sciences Research Council

