תרגיל 9־ המספר e, סדרות מתכנסות במובן הרחב

חדו"א: סדרות וטורים

1

נגדיר סדרה

$$.a_n = \frac{n!e^n}{n^n}$$

- $n\in\mathbb{N}$ לכל $rac{a_{n+1}}{a_n}=rac{e}{\left(1+rac{1}{n}
 ight)^n}$ לכל.
 - מתקיים כי $n\in\mathbb{N}$ מתקיים כי

$$.1 \le \frac{\alpha_{n+1}}{\alpha_n} \le \frac{n+1}{n}$$

רמז: השתמשו באי־השוויון לגבי הסדרות המתכנסות ל־e שהוכחנו בכיתה.

- .(רמז: אינדוקציה) $n\in\mathbb{N}$ לכל $a_n\leq n\cdot e$ מונוטונית עולה, ומקיימת מונוטונית עולה, ומקיימת 3
- 4. השתמשו במסקנות הקודמות ובגבול $\lim_{n o \infty} \sqrt[n]{n} = 1$ שהוכחנו בכיתה, על מנת להראות כי

$$\lim_{n\to\infty}\frac{e\sqrt[n]{n!}}{n}=1$$

2

נתונה סדרות $+\infty$ י ווונה בהכרח אחת $\{a_nb_n\}_{n=1}^\infty$ כך שהסדרה $\{a_nb_n\}_{n=1}^\infty$ מתכנסת במובן הרחב ל־ $+\infty$ י האם בהכרח אחת מהסדרות $\{a_nb_n\}_{n=1}^\infty$ או $\{b_n\}_{n=1}^\infty$ מתכנסת במובן הרחב ל־ $+\infty$ י אם כן־ הוכיחו זאת, אחרת־ מצאו דוגמה הסותרת את הטענה.

 $n\in\mathbb{N}$ לכל $a_n,b_n\geq 0$ כי בנוסף נניח אם נכונה אם הטענה נכונה אם

3

 $\left\{b_n=rac{1}{a_n}
ight\}_{n=1}^\infty$ סדרה המתכנסת במובן הרחב ל־ $\infty+$, וכך ש־0 לכל $\alpha_n
eq 0$ לכל $+\infty+$, וכך ש-0 סדרה המתכנסת במובן הרחב ל- $\infty+$, וכך ש-0 לכל $-\infty+$.

האם הטענה ההפוכה גם נכונה? בדקו האם קיימת סדרה $\{a_n\}_{n=1}^\infty$ המתכנסת ל־0 כך שהסדרה $\{a_n\}_{n=1}^\infty$ איננה האם הטענה ההפוכה גם נכונה? בדקו האם קיימת אם נניח בנוסף כי $a_n>0$ לכל $a_n>0$

4

בדקו מי מהסדרות הבאות מונוטונית עולה/יורדת ומי מהן מתכנסת במובן הרחב ל־ $\pm\infty$. במידה והסדרה אכן מתכנסת, הוכיחו זאת לפי הגדרת התכנסות במובן הרחב.

$$.a_n = n!$$
 .1

- $.a_n = (-n)^n$.2
- $a_n = \ln\left(\frac{1}{n}\right)$.3
- $.a_n = \left(1 + \frac{(-1)^n}{2}\right)e^n$.4

5 (* תרגיל זה אינו חובה להגשה)

בתרגיל זה מובאות סדרות שונות. בדקו מי מהן מונוטונית עולה/יורדת, מי מהן חסומה, מי מהן מתכנסת ומי מהן מתכנסת במובן הרחב. אין חובה להגיש תרגיל זה, והוא מיועד לתרגול שלכם לנושא הסדרות.

- $a_n = \sqrt{n^2 n} n .1$
- .0 < x < y < 1 כאשר $\alpha_n = \frac{1+x+x^2+...+x^n}{1+y+y^2+...+y^n}$.2
 - $a_n = \sin(n) \cdot (0.999)^n$.3
 - $.a_n = n^{(-1)^n}$.4
 - $a_n = \left(\frac{2n-1}{2n+1}\right)^{2n}$.5
 - $.a_n = \frac{n!}{2^n}$.6

אי־שוויון הממוצעים * 6

בתרגיל זה נוכיח את העובדה הבאה

משפט 1 יהא $\mathfrak{m} \in \mathbb{N}$ ויהיו $\mathfrak{m} \in \mathbb{N}$ מספרים אי־שליליים. אז

$$.\sqrt[m]{x_1 \cdot \ldots \cdot x_m} \leq \frac{x_1 + \ldots + x_m}{m}$$

- m=2 הראו כי אי־שוויון הממוצעים נכון עבור 1.
- .2m עבורו אי־שווין הממוצעים נכון, אז אי־השוויון נכון גם עבור סדרות באורך $\mathfrak{m}\in\mathbb{N}$ הראו כי אם קיים $\mathfrak{m}\in\mathbb{N}$ עבורו אי־שווין הממוצעים נכון לסדרות באורך \mathfrak{g}^k , לכל
 - באופן הבאר, גישוויון הממוצעים לכל $m\in\mathbb{N}$, תחת ההנחה הנוספת כי $x_i\leq 1$ לכל הבאר הוכיחו את אי־שוויון הממוצעים לכל
- נרחיב את הסדרה ,m ארירותיים אות בהינתן הדרה .m בהינתן שריה הא שרירותיים אות שרירותיים אות יהיו $m,n\in\mathbb{N}$ איי כך שלקבע לסדרה באורך איי כך שנקבע

$$x_{m+1} = x_{m+2} = \dots = x_n = 1$$

- ערכי הראו כי בהנחה הנוספת לגבי (השתמשו כאן הי $x_1 \cdot \dots \cdot x_m \leq x_1 \cdot x_1 \cdot \dots \cdot x_m \cdot x_{m+1} \cdot \dots \cdot x_n$ (ב) (ב) הראו כי (x_i)
 - $.\frac{x_1+...+x_m+x_{m+1}+...+x_n}{n} \leq \frac{x_1+...+x_m}{m}$ כי הראו כי
- (ד) הסיקו את אי־שוויון הממוצעים במקרה הנדון בו בו 1 לכל הסיקו את אי־שוויון הממוצעים במקרה הנדון בו $k\in\mathbb{N}$ מתאים. הקודמים עבור $n=2^k$

 $\max\{x_1,\dots,x_m\}\leq M$ כך ש־ M>0 כך ש- x_1,\dots,x_m וסדרת מספרים אי־שליליים וסדרת $i=1,\dots,m$ לכל עב ונסמן $y_i=\frac{x_i}{M}$

$$.\sqrt[m]{x_1\cdot\ldots\cdot x_m}=M\sqrt[m]{y_1\cdot\ldots\cdot y_m}\quad \text{i}\qquad \frac{x_1+\ldots x_m}{m}=M\frac{y_1+\ldots+y_m}{m}$$

5. הסיקו את אי־שוויון הממוצעים בגירסתו הכללית.