Digital Biomarkers for Cognitive Performance

Amber, Gavincko, Kevin, and Zoila

Introduction

- Demand for telehealth increasing faster than ever
- Biomarker predicting cognitive task performance should be **personalized** [1]
- Hexoskin & cognitive tests can be used to train a personalized biomarker for cognition
- What statistical model and biometric data best predict cognitive performance?

Study Design & Dataset

- Subject wore Hexoskin for 30 testing sessions
 - One session is 48 hours over three days
- Data collected
 - **Biometrics** (heart rate, breath rate, cadence, blood glucose, blood pressure)
 - Cognitive test scores (immediate & delayed recognition, memory)

Time of Day	Permutation 1	Permutation 2	Permutation 3
9 AM	TV	Reading	TV
3 PM	Aerobic Exercise	Aerobic Exercise	No Exercise
11 PM	Sugar	Sugar	No Sugar

Data Cleaning

HexoSkin biometric datasets renamed according to Session and Day; loaded dataframes edited to reflect Day,

Session, and Permutation

Recent actions defined similarly;
flexibility on tagging entries between
activity schedules as opposed to
within the expected activity period.

Unfiltered extraction of entries
was 4,576,160; final filtered yield
was 4,268,132 entries

Immediate actions defined by Permutation,
Day, and Time; assumption made that
entries within 1 hour of the scheduled
activity timeslot reflected immediate activity.

Datasets merged, then incorporated with measures from cognition dataset corresponding to entries with appropriate Day, Permutation, and Time.

Fitting 3 LASSO Prediction Models

Omit Observations with NA

4,268,132 observations & 14 variables

Train & Validate LASSO model with 10-fold Cross Validation

Outcome: IR, DR or STROOP

Predictors: Systolic & Diastolic blood pressure, Heart rate, Breathing Rate, Cadence, Permutation, Immediate/Recent Action

Baseline Model: Numeric Predictors = 0, Permutation = 1, Immediate & Recent Action = Exercise

Determine Lambda that Minimizes Cross Validation Mean Squared Error (MSE)

Determine **Predictor Weight Estimates** in Optimal Model

Figure 1. MSE for various Stroop model cross validation lambda values

Results from 3 Prediction Models

Predictor Number	Model 1: STROOP Prediction	Model 2: Immediate Recognition (IR) Prediction	Model 3: Delayed Recognition (DR) Prediction
Intercept	STROOP score: 125.48	IR score: 98.0480	DR score: 67.5994
Predictor 1	Recent action: Reading (W = 8.22) vs. baseline: Exercise	Recent action: Reading (W = 3.159) vs. baseline: Exercise	Recent action: Reading (W = -7.74) vs. baseline: Exercise
Predictor 2	Immediate action: Sugar (W = 5.75) vs. baseline: Exercise	Immediate action: Sugar (W = -4.77) vs. baseline: Exercise	Recent Action: TV (W = 5.52) vs. baseline: Exercise

Table 1. Model intercept and significant predictor weight estimates for STROOP, IR and DR prediction models

Intercept Interpretation: the model predicts a subject will on average have a STROOP score of 125.48 points when all numeric predictors (i.e. heart rate) = 0 and all categorical variables (i.e. recent action) are at baseline: exercise.

Predictor Interpretation: the model predicts that when a subject's recent action is reading (compared to exercising), their STROOP score will on average be 8.22 points higher.

Limitations & Future Steps

- Braincheck Score units and scaling Need to understand how scores are calculated in order to develop a composite score
- <u>Subgroup analysis</u> Statistical significance between various groups of observations. Are predictions significant? Are existing samples significantly different?
- Lack of information on individual Adherence, external habits; each is their own.
- <u>Covariates</u> Composite variables can be investigated; activities may influence biometrics.

Thank You!

Appendix

LASSO: Penalization

$$\sum_{i=1}^{N} \left(w_0 + \sum_{j=1}^{k} w_j x_j - y_i \right)^2 + \lambda \sum_{j=1}^{k} |w_j|$$

Stroop MSE Graph