Relatório 1º projeto ASA 2023/2024

Grupo: TP045

Aluno(s): David Antunes (nº 107061)

Descrição do problema e da solução:

O objetivo é construir um programa que, dada uma chapa de mármore, calcula o maior valor que pode ser obtido a partir da mesma, tendo em conta as dimensões e preço das peças fornecidas pelo utilizador. A chapa pode ser cortada verticalmente ou horizontalmente, dividindo o problema em dois sub problemas.

A solução consiste em testar todos os cortes possíveis para uma chapa, voltando cada uma das metades a entrar na linha de corte. Quando uma chapa tem as mesmas dimensões que uma peça, o seu valor é o máximo entre o valor da peça e a soma do valor obtido de cada uma das metades se a chapa for cortada segundo o melhor corte.

Análise Teórica:

Função recursiva da solução proposta:

```
v[0,y] = 0;
```

v[x, 0] = 0;

 $v[x,y] = max(P_{xy}, max(max_{0 \le k \le x/2}(v[x - k,y] + v[k,y]), max_{0 \le k \le y/2}(v[x, y - k] + v[x, k])))$ Sendo P_{xy} o valor da peça com as dimensões x * y, ou 0 caso não haja uma peça com essas dimensões.

Para uma chapa de dimensões X*Y, com n peças:

- Leitura dos dados de entrada, a depender linearmente do número de peças. Complexidade: O(n).
- Aplicação do algoritmo (programação dinâmica). Ciclo for para percorrer as colunas da matriz (X), dentro dele outro ciclo for para percorrer as linhas (Y), e dentro dele dois ciclos for em paralelo, para somar as metades de todos os cortes horizontais e verticais (X+Y). Complexidade: O(X*Y*(X+Y)).
- Apresentação dos dados. Complexidade: O(1).

Complexidade global da solução: O(X*Y*(X+Y)). Se n = X = Y = N, a complexidade é $O(N^3)$.

Avaliação experimental de resultados:

Considerando uma chapa de dimensões N*N e N peças, vamos construir um gráfico que relaciona N com o tempo que o programa demora a encontrar a melhor solução, de forma a verificar se a análise teórica está correta. A seguinte tabela apresenta os tempos de execução associados a 15 instâncias de tamanho incremental.

<u>N:</u>	Tempo (s)
100	0,009
200	0,014
300	0,036
400	0,059

500	0,106
600	0,166
700	0,287
800	0,644
900	1,662
1000	3,020
1100	4,351
1200	5,991
1300	7,655
1400	10,643
1500	13,602

Gráfico do tempo em função de N:

O tempo de execução não é linear nas dimensões da chapa. Assim, vamos pôr o eixo dos XX a variar com a quantidade prevista pela análise teórica, N^3 .

Ao mudar o eixo dos XX para N^3 obtemos uma relação linear com os tempos no eixo dos YY, confirmando que a implementação está de acordo com a análise teórica de $O(N^3)$.