ESC 201: Introduction to Electronics

Assignment 11 solutions

Ans 1

Half Subtractor Truth table

Input		Output		
X	Y	DTH.	Bout	
0	0	0	0	
0	l	1	(
1	0	1	0	
l	1	0	0	

$$DrH. = X \oplus Y$$

$$Bout = \overline{X} \cdot Y$$

Ans-2

4 to 16 decoder using five 2 to 4 decoder.

3.(ii)

F(A,B,C) = \(\Sigma(3,5,6)\) using multiplexer:

A	В	C	F		
0	0	0	0	F=0	
0	1	0	0	F=C	=>
0	1		1		
1	0	1	1	F=C	
	1 1	0	10	F= C	
	1 1		10		

4

16x1 multiplexer using two 8x1 and one 2x1 multiplexer

ANS 5
$$F(A,B,C,D) = \sum (1,3,4,11,12,13,14,15)$$

AB CD	F			
00 00	0			
00 01	1	F= D		
00 10	0			
0011	1			
01 00	1			
0101	0	F= ED		
0110	0	1-00		
0111	0			
1000	0			
1001	0	F= CD		
1010	0			
1011	1			
1100	1			
(101)	Ĭ.	F=1		
(1 10	.(
_ 11 11	1			

(i) AND gate using 2 to 1 MUX

$$X_0 = 0$$

$$X_1 = A$$

$$X_1 = A$$

$$X_1 = A$$

$$X_2 = B$$

(iii) NAND gate using two 2 to 1 MUX

$$XI_{0}^{=0}I$$

$$XI_{$$