Control Theory

Controllability (reachability) part 2

Robert Szalai

Department of Engineering Mathematics University of Bristol

Controllability definition and test

Definition

The system

$$\dot{x} = Ax + Bu$$

with initial condition $\mathbf{x}(0) = \mathbf{x}_0$ is **controllable** (or **reachable**) if there exists a final time $0 < \underline{t}_1 < \infty$ and a control input $\underline{\mathbf{u}} : [0, \underline{t}_1] \to \mathbb{R}^m$, such that for any $\mathbf{x}_0, \mathbf{x}_1 \in \mathbb{R}^n$ we have $\mathbf{x}(t_1) = \mathbf{x}_1$.

Theorem

The system

$$\angle T$$
 $\dot{x} = Ax + Bu$

is controllable (or reachable) if and only if the matrix

$$W_r = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$$
has full rank.

Assume **A** is complete (semisimple) with eigenvalues

 $\lambda_1, \lambda_2, \ldots, \lambda_n$

Controllability: interpretation (1)

Transform the matrix

 $W_r = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} \quad \times \in \mathbb{R}^n$

into
$$oldsymbol{ au}^{-1}$$

$$T^{-1}W_{r} = T^{-1}\begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}$$

$$= \begin{bmatrix} E & T & AT & C & \cdots & T^{-1}A & \cdots$$

define

and eigenvectors

Controllability: interpretation (2) $T^{-1}U_{r} - \begin{bmatrix} \ell_{1} e_{2} & 0 \\ 0 & \ell_{1} \end{bmatrix}$ $\lambda_{1}^{n-1} = \lambda_{1}^{n-1}$ $\lambda_{i} \neq \lambda_{j} \quad i \neq j$ $\lambda_{i} \neq \lambda_{j} \quad i \neq j$

Controllability: interpretation (3)

Theorem

The system

is controllable (or reachable) if

- 1. B is a vector
- 2. **A** is complete (semisimple) with with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$, eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ and transformation matrix

$$T = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n]_{\mathbf{v}}$$

- 3. $\lambda_i \neq \lambda_j$ for all $i \neq j$
- 4. The vector $\mathbf{T}^{-1}\mathbf{B}$ has only non-zero entries

Example: controllability interpretation

Consider
$$\dot{\mathbf{x}} = \begin{pmatrix} -2 & 1 \\ 0 & -1 \end{pmatrix} \mathbf{x} + \begin{pmatrix} a \\ b \end{pmatrix} \mathbf{u}$$
 $\lambda_2 = -\lambda$

For which values of a and b is this control-

lable?

$$V_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $V_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$
 $T^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} E^{-1} D = \begin{pmatrix} \alpha - b \\ b \end{pmatrix}$
 $b \neq 0$ $\alpha \neq b$

The End