Simulación y Modelización

 2^{do} cuatrimestre 2018

Ingeniería Informática Universidad Nacional de Avellaneda

Guía Práctica 6 Distribuciones de Probabilidad

1. Introducción

Las distribuciones de probabilidad son funciones que devuelven la probabilidad de ocurrencia de los distintos eventos en un experimento. Por ejemplo, las probabilidades de cara y ceca en el lanzamiento de una moneda.

Hay distribuciones discretas en el que los resultados del experimento pertenecen a un conjunto discreto (ej.: \mathbb{N}), por ejemplo el lanzamiento de una moneda o un dado. la cantidad de personas que hay en un negocio en un momento dado.

Y hay distribuciones continuas en el que los resultados del experimento toman valores en un rango continuo (ej.: \mathbb{R}), por ejemplo la temperatura de una habitación o el tiempo de llegada del próximo cliente a un negocio.

Cada variable aleatoria se asocia a una distribución de probabilidades.

Referencia general: https://www.probabilitycourse.com

2. Ejercicios

2.1. Ejercicio 1

La función nmupy.random.random genera un valor aleatorio en el intervalo [0,1). Se pide verificar mediante un conjunto de experimentos que los valores aleatorios corresponden a una distribución uniforme:

- 1. Generar una lista de 100 valores y graficar un histograma con 50 bins
- 2. Idem 1) con una lista de 1000 valores
- 3. Idem 1) con una lista de 10000 valores
- 4. Idem 1) con una lista de 100000 valores

Referencia: https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.random.rand.html

Referencia: https://matplotlib.org/api/_as_gen/matplotlib.pyplot.hist.html Referencia: https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)

2.2. Ejercicio 2

Escribir funciones para generar variables aleatorias asociadas a las distribuciones discretas detalladas en https://www.probabilitycourse.com/chapter3/3_1_5_special_discrete_distr.php

- $\blacksquare X \sim Bernoulli(p)$
- $X \sim Geometric(p)$
- $\blacksquare X \sim Binomial(n, p)$
- $\blacksquare X \sim Pascal(m, p)$
- $\blacksquare X \sim Hypergeometric(b, r, k)$

2.3. Ejercicio 3

Mediante el método inverso escribir una función para generar una variable aleatoria con distribución exponencial $(X \sim Exponential(\lambda))$.

Referencia: https://en.wikipedia.org/wiki/Inverse_transform_sampling
Referencia: https://www.probabilitycourse.com/chapter4/4_2_2_exponential.php

2.4. Ejercicio 4

Utilizando la función del ejercicio 3 escribir otra función para generar una variable aleatoria con distribución Poisson $(X \sim Poisson(\lambda))$.