Algorithms and Datastructures Static Arrays, Dynamic Arrays, Amortized Analysis

Prof. Dr. Rolf Backofen

Bioinformatics Group / Department of Computer Science

Algorithms and Datastructures, December 2017

Structure

Static Arrays

Dynamic Arrays Introduction Amortized Analysis

Static Arrays

- ► Static arrays exist in nearly every programming language
- They are initialized with a fixed size n
- ▶ Problem: The needed size is not always clear at compile time

Static Arrays

Python

Python:

- We have dynamic sized lists
- Python does automatic resizing when needed

```
# Creates a list of "0"s with init. size 10
numbers = [0] * 10
# Prints number at index 7 ("0")
print("%d" % numbers[7])
# Saves number 42 at index 8
numbers[8] = 42
# Prints the number at index 8 ("42")
print("%d" % numbers[8])
```

Static Arrays

- ► The name "static array" has nothing to do with the keyword static from Java / C++
- Nor is the array allocated before the program starts
- ► The size of the array is static and can not be changed after creation
- ▶ The name "fixed-size array" would be more appropriate

Structure

Static Arrays

Dynamic Arrays Introduction Amortized Analysis

Introduction

Dynamic arrays:

- ▶ The array is created with an initial size
- ► The size can be dynamically modified
- ▶ **Problem:** We need a dynamic structure to store the data

Python

Python:

```
greetings = ["Good morning", "ohai"]
greetings.append("Guten morgen")
greetings.append("bonjour")
# Prints text at index 2 ("Guten morgen")
print("%s" % greetings[2])
# Removes all elements
greetings.clear();
```

Implementation 1

- ▶ We store the data in a fixed-size array with the needed size
- Append:
 - Create fixed-size array with the needed size
 - Copy elements from the old to the new array
- Remove:
 - Create fixed-size array with the needed size
 - Copy elements from the old to the new array

Implementation 1

First implementation:

- We resize the array before each append
- ▶ We choose the size exactly as needed

Implementation 1 - Python

```
class DynamicArray:
    def __init__(self):
        self.size = 0
        self.elements = []
    def capacity(self):
        return len(self.elements)
```

Implementation 1 - Python

```
class DynamicArray:
    def append(self, item):
        newElements = [0] * (self.size + 1)
        for i in range(0, self.size):
            newElements[i] = self.elements[i]
        self.elements = newElements
        newElements[self.size] = item
        self.size += 1
```

Implementation 1

Why is the runtime quadratic?

Implementation 1

Runtime:

Implementation 1

Analysis:

- Let T(n) be the runtime of n sequential append operations
- Let T_i be the runtime of each i-th operation
 - ▶ Then $T_i = A \cdot i$ for a constant A
 - We have to copy i-1 elements

$$T(n) = \sum_{i=1}^{n} T_i = \sum_{i=1}^{n} (A \cdot i) = A \cdot \sum_{i=1}^{n} i = A \cdot \frac{n^2 + n}{2}$$
$$= O(n^2)$$

Implementation 2

Idea:

- Better resize strategy
- We allocate more space than needed
- ▶ We over-allocate a constant amount of elements
 - Amount: C = 3 or C = 100

Implementation 2 - Python

```
def append(self, item):
    if self.size >= len(self.elements):
        newElements = [0] * (self.size + 100)
        for i in range(0, self.size - 1):
            newElements[i] = self.elements[i]
        self.elements = newElements
    self.elements[self.size] = item
    self.size += 1
```

Implementation 2

Why is the runtime still quadratic?

Implementation 2

Runtime for C=3: O(1)write 1 element O(1)write 1 element O(1)write 1 element O(1+3)write 1 element, copy 3 elements O(1)write 1 element O(1)write 1 element O(1+6)write 1 element, copy 6 elements

Implementation 2

Analysis:

- ▶ Most of the append operations now just cost O(1)
- ► Every C steps the costs for copying are added: $C, 2 \cdot C, 3 \cdot C, ...$ this means:

$$T(n) = \sum_{i=1}^{n} A \cdot 1 + \sum_{i=1}^{n/C} A \cdot i \cdot C$$

$$= A \cdot n + A \cdot C \cdot \sum_{i=1}^{n/C} i$$

$$= A \cdot n + A \cdot C \cdot \frac{\frac{n^2}{C^2} + \frac{n}{C}}{2}$$

$$= A \cdot n + \frac{A}{2 \cdot C} \cdot n^2 + \frac{A}{2} \cdot n = O(n^2)$$

▶ The factor of n^2 is getting smaller

Implementation 3

Idea:

Double the size of the array

```
def append(self, item):
    if self.size >= len(self.elements):
        newElements = [0] \
            * max(1, 2 * self.size)
        for i in range(0, self.size):
            newElements[i] = self.elements[i]
        self.elements = newElements
    self.elements[self.size] = item
    self.size += 1
```

Implementation 3

▶ Now the runtime is linear with some bumps. Why?

Implementation 2

Runtime for C = 2 (Double the size):

1	O(1)	write 1
1 2	O(1 + 1)	write 1, copy 1 element
1 2 3	$O(1 + \frac{2}{2})$	write 1, copy 2 elements
1 2 3 4	O(1)	write 1
1 2 3 4 5	O(1+4)	write 1, copy 4 elements
1 2 3 4 5 6	O(1)	write 1
1 2 3 4 5 6 7	O(1)	write 1
1 2 3 4 5 6 7 8	O(1)	write 1
1 2 3 4 5 6 7 8 9	O(1 + 8)	write 1, copy 8 elements

Implementation 3

Analysis:

- ▶ Now all appends cost O(1)
- ► Every 2^i steps we have to add the cost $A \cdot 2^i$ (for i = 0, 1, 2, ..., k with $k = floor(log_2(n-1))$
- ▶ In total that accounts to:

$$T(n) = n \cdot A + A \cdot \sum_{i=0}^{k} 2^{i} = n \cdot A + A(2^{k+1} - 1)$$

$$\leq n \cdot A + A \cdot 2^{(k+1)}$$

$$= n \cdot A + 2 \cdot A \cdot 2^{(k)}$$

$$\leq n \cdot A + 2 \cdot A \cdot n$$

$$= 3 \cdot A \cdot n$$

$$= O(n)$$

Dynamic Arrays Shrinking

How do we shrink the array?

- ▶ If the array is half-full, we can shrink it by half, like for the append operation
- ▶ If we append directly after shrinking we have to extend the array again
 - ▶ We leave some space for following append operations
 - \Rightarrow We only shrink the array to 75%

Dynamic Arrays Shrinking

Analysis:

- ▶ **Difficult:** We have a random number of *append / remove* operations
- We can not exactly predict when resizing is happening

Structure

Static Arrays

Dynamic Arrays Introduction Amortized Analysis

Amortized Analysis

Figure: Static array with capacity c_i

Notation:

- We have n instructions $O = \{O_1, \ldots, O_n\}$
- ▶ The size after operation i is s_i , with $s_0 := 0$
- ▶ The capacity after operation *i* is c_i , with $c_0 := 0$
- ▶ The cost of operation i is $cost(O_i)$ (previously named T_i)

Reallocation:
$$cost(O_i) \le A \cdot s_i$$
, Insert / Delete (Update): $cost(O_i) \le A$,

Amortized Analysis - Example

	Operation	on	Size s _i	Capactity c _i	Costs $cost(O_i)$
O_1	append	realloc.	<i>s</i> ₁	c ₁	$A \cdot s_1$
O_2	append		<i>s</i> ₂	$c_2=c_1$	$A \cdot 1$
<i>O</i> ₃	append		<i>s</i> ₃	$c_3=c_1$	$A \cdot 1$
O_4	remove		S ₄	$c_4=c_1$	$A \cdot 1$
<i>O</i> ₅	remove	realloc.	<i>s</i> ₅	<i>c</i> ₅	$A \cdot s_5$
<i>O</i> ₆	append		<i>s</i> ₆	$c_6=c_5$	$A \cdot 1$
<i>O</i> ₇	remove		<i>S</i> 7	$c_7=c_5$	$A \cdot 1$
<i>O</i> ₈	append		<i>s</i> ₈	$c_8=c_5$	$A \cdot 1$
<i>O</i> ₉	append	realloc.	<i>S</i> 9	<i>C</i> 9	$A \cdot s_9$
O_n	append		s _n	C _n	$A \cdot 1$

Amortized Analysis - Example

Implementation:

▶ If O_i is an append operation and $s_{i-1} = c_{i-1}$: ⇒ Resize array to $c_i = \lfloor \frac{3}{2} s_i \rfloor = \text{floor} \left(\frac{3}{2} s_i \right)$ ⇒ $cost(O_i) = A \cdot s_i$

$$\begin{array}{c|c}
s_{i-1} = 7 \\
\hline
1 | 2 | 3 | 4 | 5 | 6 | 7 \\
\hline
c_{i-1} = s_{i-1} = 7
\end{array}
\Rightarrow
\begin{array}{c|c}
s_{i} = s_{i-1} + 1 = 8 \\
\hline
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 \\
\hline
12 = c_{i} = \lfloor \frac{3}{2}s_{i} \rfloor = 8
\end{array}$$

Figure: Append operation with reallocation

Result: after operation we have $c_i = \frac{3}{2} \cdot s_i$

Amortized Analysis - Example

Implementation:

▶ If O_i is an remove operation and $s_{i-1} \le \frac{1}{3}c_{i-1}$: ⇒ Resize array to $c_i = \lfloor \frac{3}{2}s_i \rfloor = \text{floor}\left(\frac{3}{2}s_i\right)$ ⇒ $cost(O_i) = A \cdot s_i$

Figure: Remove operation with reallocation

Result: after operation we have again $c_i = \frac{3}{2} \cdot s_i$

Amortized Analysis - Proof

Idea for proof:

- Expensive are only operations where reallocations are necessary
- If we just reallocated, it takes some time until the next reallocation is required.
- ▶ **Assumption:** After a costly *reallocation* of size *X* we have at least *X* operations of runtime *O*(1)
- ▶ **Then:** Total cost of *n* operations is maximally $2 \cdot n$

Amortized Analysis - Proof

Table: Dynamic Array with $C_{\text{ext}} = \frac{3}{2}$

Operation		Size	Capacity	Costs	
Operation		si	Ci	$cost(O_i)$	
O_1	app.	realloc.	<i>s</i> ₁	$c_1 = 4$	$C_1 \cdot s_1$
O_2	арр.		<i>s</i> ₂	$c_2=c_1$	C_2
O_3	арр.		<i>s</i> ₃	$c_3=c_1$	C_2
<i>O</i> ₄	арр.		<i>S</i> ₄	$c_4=c_1$	C_2
O_5	app.	realloc.	<i>S</i> ₅	$c_5 = \left\lfloor \frac{3}{2} s_5 \right\rfloor = 7$	$C_1 \cdot s_5$
06	арр.		<i>s</i> ₆	$c_6=c_5$	C_2
<i>O</i> ₇	арр.		<i>S</i> 7	$c_7=c_5$	C_2
<i>O</i> ₈	арр.	realloc.	<i>s</i> ₈	$c_8 = \frac{3}{2}s_8 = 12$	$C_1 \cdot s_8$
				• • •	

distance $4 \ge \left\lfloor \frac{s_1}{2} \right\rfloor$

distance

$$3 \ge \left\lfloor \frac{s_5}{2} \right\rfloor$$

Amortized Analysis - Proof

To show:

- ▶ **Lemma:** If a *reallocation* occurs at O_i the nearest reallocation is at O_j with $j i > \frac{s_i}{2}$
- ► Corollary: $cost(O_1) + \cdots + cost(O_n) \le 4 A \cdot n$

Proof: Worst Case Same Operation

Table: Case 1: $\frac{1}{2}s_i$ appends

Amortized Analysis - Proof

Table: Case 2: $\frac{1}{2}s_i$ removes

Amortized Analysis

Proof of lemma:

- ▶ If a reallocation happens at O_i and then again at O_j , then $j i \ge s_i/2$
- ▶ After operation O_i the capacity is

$$c_i = \left\lfloor \frac{3}{2} \cdot s_i \right\rfloor$$

- ▶ Lets consider a operation O_i to O_k with $k i \le \frac{s_i}{2}$:
 - Case 1: Since the *reallocation* we have inserted at maximum floor $(\frac{1}{2} \cdot s_i)$ elementsation

$$s_k \leq s_i + \left\lfloor \frac{s_i}{2} \right\rfloor = \left\lfloor \frac{3}{2} s_i \right\rfloor = c_i$$
 no reallocation needed

Amortized Analysis

Proof of lemma - continued:

► Case 2: Since the *reallocation* we have removed at maximum $\left\lfloor \frac{1}{2} s_i \right\rfloor$ elements

$$s_k \ge s_i - \left\lfloor \frac{s_i}{2} \right\rfloor = \left\lceil \frac{1}{2} s_i \right\rceil$$

 $\Rightarrow 3 \cdot s_k \ge \left\lceil \frac{3}{2} s_i \right\rceil \ge \left\lfloor \frac{3}{2} s_i \right\rfloor = c_i$

no reallocation needed

Amortized Analysis - Proof of Corollary

Corollary:

$$cost(O_1) + \cdots + cost(O_n) \le 4A \cdot n$$

- lacksquare Let the *reallocations* be at operations $\mathrm{cost}(\mathcal{O}_{i_1}),\ldots,\mathrm{cost}(\mathcal{O}_{i_m})$
- ▶ The cost of all reallocations are $A \cdot (s_{i_1} + \cdots + s_{i_m})$
- With the lemma we know:

$$i_2 - i_1 > \frac{s_{i_1}}{2}, \quad i_3 - i_2 > \frac{s_{i_2}}{2}, \quad \dots, \quad i_m - i_{m-1} > \frac{s_{i_{m-1}}}{2}$$

Amortized Analysis - Proof of Corollary

We can conclude that:

$$i_{2} - i_{1} > \frac{s_{i_{1}}}{2}$$
 \Rightarrow $s_{i_{1}} < 2(i_{2} - i_{1})$
 $i_{3} - i_{2} > \frac{s_{i_{2}}}{2}$ \Rightarrow $s_{i-2} < 2(i_{3} - i_{2})$
 \vdots
 $i_{m} - i_{m-1} > \frac{s_{i_{m-1}}}{2}$ \Rightarrow $s_{i_{m-1}} < 2(i_{m} - i_{m-1})$
 $s_{i_{m}} \le n$ (trivial)

Amortized Analysis - Proof of Corollary

▶ The costs of all reallocations are:

$$cost(realloc.) = A \cdot (s_{i_1} + \dots + s_{i_m})$$

$$< A \cdot (2(i_2 - i_1) + 2(i_3 - i_2) + \dots + 2(i_m - i_{m-1}) + n)$$

$$= A \cdot (2(i_m - i_1) + n)$$

$$\leq A \cdot (2n + n) = 3A \cdot n$$

Additionally we have to consider the respective constant costs for a normal append or remove $(\leq A \cdot n)$ therefore in total $\leq 4 \cdot A \cdot n$

Amortized Analysis - Alternate Proof of Corollary

Table: Case 1: $\frac{1}{2}s_i$ appends

Amortized Analysis - Alternate Proof of Corollary

- ▶ Total costs of $A \cdot \frac{3}{2} \cdot s_i$ for $\frac{s_i}{2} + 1$ operations
- Cost per operation:

$$\frac{\frac{3}{2}A \cdot s_i}{\frac{1}{2}s_i + 1} \le \frac{\frac{3}{2}A \cdot s_i}{\frac{1}{2}s_i} = 3 \cdot A = \text{const.}$$

Amortized Analysis - Alternate Proof of Corollary

Array	Costs	
O_i : $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	reallocation $A \cdot s_i$ (linear)	
O_{i+1} : $\boxed{1 \ \ 2 \ \ 3 \ \ 4 \ \ 5}$	A (constant)	Si
O_{i+2} : $\boxed{1 \mid 2 \mid 3 \mid 4}$	A (constant)	$\begin{cases} \frac{s_i}{2} \end{cases}$
O_{i+3} : 1 2 3 \times	A (constant)	times
O_j : 1 2 \times	reallocation $A \cdot s_j$ (linear)	

- ▶ Runtime analysis for local worst-case sequence
- Same total cost as previous slide

Amortized Analysis - Yet Another Proof of Corollary

Bank account paradigm:

- ▶ Idea: "Save first, spend later"
- For each operation we deposit some coins on an "bank account"
 - ⇒ We still have constant costs
- ▶ When we have a linear operation (reallocation) we pay with the coins from our "bank account"
- ► For the "double the size" strategy we have to pay two coins per operation

Amortized Analysis - Yet Another Proof of Corollary

Double the size:	$\operatorname{cost}(O_i)$	deposit / withdraw	accoun ^e value
1	O(1)	+2	2
1 2	$O(1 + \frac{1}{1})$	+2 -1	3
1 2 3	$O(1 + \frac{2}{2})$	+2 -2	3
1 2 3 4	O(1)	+2	5
1 2 3 4 5	O(1 + 4)	+2 -4	3
1 2 3 4 5 6	O(1)	+2	5
1 2 3 4 5 6 7	O(1)	+2	7
1 2 3 4 5 6 7 8	O(1)	+2	9
1 2 3 4 5 6 7 8 9	O(1 + 8)	+2 -8	3

Amortized Analysis - Yet Another Proof of Corollary

Figure: Array after realloc. (insert) operation

Why do we need to deposit 2 coints per operation?

- Each newly inserted element has to be copied later (first coin)
- Due to the factor of two there is for each new element also an old one in the array that also has to be copied (second coin)

Amortized Analysis - Yet Another Proof of Corollary

Figure: Array after realloc. (remove) operation

Shrinking strategy: If array 1/4 full shrink by half

- How many coins do we need per remove operation?
- ► **Worst case:** The previous remove operation triggered a *reallocation*
- ⇒ Array is half full

Amortized Analysis - Yet Another Proof of Corollary

Figure: Array after realloc. (remove) operation

Shrinking strategy: If array 1/4 full shrink by half

- Array is half full
- ▶ The nearest *reallocation* is after removing $\frac{1}{4}c_i$ elements
- ▶ We have to copy $\frac{1}{4}c_i$ elements
- \Rightarrow 1 coin per operation is enough

Further Literature

General

- [CRL01] Thomas H. Cormen, Ronald L. Rivest, and Charles E. Leiserson. Introduction to Algorithms. MIT Press, Cambridge, Mass, 2001.
- [MS08] Kurt Mehlhorn and Peter Sanders.
 Algorithms and data structures, 2008.
 https://people.mpi-inf.mpg.de/~mehlhorn/
 ftp/Mehlhorn-Sanders-Toolbox.pdf.

Further Literature

► Amortized Analysis

```
[Wik] Amortized analysis
    https:
    //en.wikipedia.org/wiki/Amortized_analysis
```