Applications to Commutative Algebra

Applications to Commutative Algebra

1 Cohomological dimension

Lemma 1. Let A be a ring and M an A-module. Then

 $\sup_{M} \operatorname{proj.dim} M = \sup_{N} \operatorname{inj.dim} N.$

Proof. Note that

proj. dim $M \leq n$

if and only if

 $\operatorname{Ext}_{n+1}^{A}(M,N) = 0, \quad \forall N.$

And this is equivalent to

inj. dim $N \leq n$.

Remark 2. In fact, for fix N, we have

inj. $\dim N \leq n$

if and only if

 $\operatorname{Ext}_{n+1}^{A}(A/I, N) = 0, \quad \forall I$

By Lemma Yang: ?. Hence we have

 $\sup_{M \text{ finite}} \text{ proj.} \dim M = \sup_{M} \text{proj.} \dim M = \sup_{N} \text{inj.} \dim N.$

Definition 3. Let A be a ring. The cohomological dimension of A, denoted coh. $\dim A$, is defined as

 $\operatorname{coh.\,dim} A \coloneqq \sup_{M} \operatorname{proj.\,dim} M = \sup_{M} \operatorname{inj.\,dim} M.$

Definition 4. Let $(A, \mathfrak{m}, \mathsf{k})$ be a noetherian local ring. We say that a homomorphism of A-modules $f: M \to N$ is minimal if the induced map $M \otimes \mathsf{k} \to N \otimes \mathsf{k}$ is an isomorphism. Equivalently, f is minimal if and only if f is surjective and $\operatorname{Ker} f \subset \mathfrak{m} M$.

Definition 5. Let A be a noetherian local ring and M a finite A-module. A minimal projective resolution of M is a projective resolution

$$\cdots \to P_n \xrightarrow{d_n} P_{n-1} \xrightarrow{d_{n-1}} \cdots \to P_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} M \to 0$$

such that each homomorphism $P_i \to \operatorname{Ker} d_{i-1}$ is minimal.

Proposition 6. Let $(A, \mathfrak{m}, \mathsf{k})$ be a noetherian local ring and M a finite A-module. Then M has a minimal projective resolution. Moreover, any two minimal projective resolutions of M are isomorphic.

Proof. Suppose $M \otimes_A \mathsf{k} = \bigoplus \mathsf{k} \cdot \overline{x_i}$. Lift x_i to elements of M. Then we have a minimal homomorphism $d_0 : \bigoplus A \cdot x_i \to M$. Similarly choose minimal homomorphisms $d_k : A^{n_i} \to \operatorname{Ker} d_{i-1}$ for $i = 1, 2, \cdots$. This gives a minimal projective resolution.

Suppose we have two minimal homomorphism $f,g:A^n\to M$. After tensoring with k, we have isomorphisms between $f\otimes \mathsf{k}$ and $g\otimes \mathsf{k}$. Lifting to A, we get an homomorphism $\varphi:f\to g$. Here homomorphism between f,g means a homomorphism $A^n\to A^n$ such that $f=g\circ\varphi$. The homomorphism φ is represented by a matrix T. We have $\det T\not\in\mathfrak{m}$, whence φ is an isomorphism.

Proposition 7. Let $L_{\bullet} \to M$ be a minimal projective resolution and P_{\bullet} be an arbitrary projective resolution of M. Then we have $P_{\bullet} \cong L_{\bullet} \oplus P'_{\bullet}$ for some exact complexes P'_{\bullet} .

Date: June 24, 2025, Author: Tianle Yang, My Website

Proof. By Propostion ??, we have homomorphism

$$L_{\bullet} \xrightarrow{\varphi_{\bullet}} P_{\bullet} \xrightarrow{\psi_{\bullet}} L_{\bullet}.$$

between complexes. By Propostion ?? again, $T_{\bullet} := \psi_{\bullet} \circ \varphi_{\bullet}$ is homotopic to the identity by h_{\bullet} . Suppose T_{\bullet} is represented by a matrix. Since L_{\bullet} is minimal, we have

$$(T - \mathrm{id})(L_n) = (\mathrm{d}_{n+1} \circ h_n + h_{n-1} \circ \mathrm{d}_n)(L_n) \subset \mathfrak{m}L_n.$$

Then $\det T \notin \mathfrak{m}$ and hence T_{\bullet} is an isomorphism. It follows that ψ_{\bullet} is surjective, whence it splits P_{\bullet} into a direct sum $L \oplus P'_{\bullet}$ since L_{\bullet} is projective. By the Five Lemma, we see that P'_{\bullet} is exact.

Lemma 8. Let $(A, \mathfrak{m}, \mathsf{k})$ be a noetherian local ring and M a finite A-module. Then proj. dim $M \leq n$ if and only if $\operatorname{Tor}_{n+1}^A(M, \mathsf{k}) = 0$.

Proof. The necessity is clear. For the sufficiency, we have a minimal projective resolution

$$\cdots \to P_{n+1} \xrightarrow{\mathrm{d}_{n+1}} P_n \xrightarrow{\mathrm{d}_n} P_{n-1} \xrightarrow{\mathrm{d}_{n-1}} \cdots \to P_1 \xrightarrow{\mathrm{d}_1} P_0 \xrightarrow{\mathrm{d}_0} M \to 0.$$

Let $C := \operatorname{Im} d_n$. Then we have

$$0 \to P_{n+1} \xrightarrow{\mathrm{d}_{n+1}} P_n \xrightarrow{\mathrm{d}_n} C \to 0.$$

Hence $\operatorname{Tor}_1^A(C,\mathsf{k}) \cong \operatorname{Tor}_{n+1}^A(M,\mathsf{k}) = 0$. Let $K = \operatorname{Kerd}_n$. Then we have the short exact sequence

$$0 \to K \to P_n \to C \to 0.$$

Since $\operatorname{Tor}_1^A(C, \mathbf{k}) = 0$, there is an exact sequence

$$0 \to K \otimes_A \mathsf{k} \to P_n \otimes_A \mathsf{k} \to C \otimes_A \mathsf{k} \to 0.$$

Since $P_n \to C$ is minimal, we have $K \otimes_A \mathsf{k} = 0$. By the Nakayama's lemma, K = 0. This implies that proj. dim $C \leq 0$ and hence proj. dim $M \leq n$.

Proposition 9. Let $(A, \mathfrak{m}, \mathsf{k})$ be a noetherian local ring. Then coh. dim A = proj. dim k (finite or infinite).

Proof. The inequality coh. dim $A \ge \operatorname{proj.dim} k$ is by definition. Conversely, we can compute $\operatorname{Tor}_{n+1}^A(M, \mathsf{k})$ using minimal projective resolution of k for any finite A-module M. By Lemma 8, we have $\operatorname{proj.dim} M \le n$ if and only if $\operatorname{Tor}_{n+1}^A(M,\mathsf{k}) = 0$. This implies that $\operatorname{proj.dim} M \le n$ for all finite A-modules M if $\operatorname{proj.dim} k = n$. By Remark 2, we have $\operatorname{coh.dim} A \le n$.

Proposition 10. Let (A, \mathfrak{m}) be a noetherian local ring and M a finite A-module. Let $a \in \mathfrak{m}$ be an M-regular element. Then proj. dim $M/aM = \operatorname{proj.dim} M + 1$. Here we set $\infty + 1 = \infty$.

Proof. We have an exact sequence

$$0 \to M \xrightarrow{*a} M \to M/aM \to 0.$$

Take the long exact sequence with respect to Tor(-,k), we get

$$\cdots \to \operatorname{Tor}_{i+1}^A(M,\mathsf{k}) \to \operatorname{Tor}_{i+1}^A(M/aM,\mathsf{k}) \to \operatorname{Tor}_i^A(M,\mathsf{k}) \xrightarrow{*a} \operatorname{Tor}_i^A(M,\mathsf{k}) \to \cdots$$

Since the derived homomorphism of *a is zero, we have $\operatorname{Tor}_{i+1}^A(M/aM,\mathsf{k})=0$ if and only if $\operatorname{Tor}_i^A(M,\mathsf{k})=0$. By Lemma 8, we have proj. $\dim M/aM=\operatorname{proj.}\dim M+1$.

2 Depth and regularity by homological algebra

Proposition 11. Let $(A, \mathfrak{m}, \mathsf{k})$ be a noetherian local ring and M a finite A-module. Then

$$\operatorname{depth} M := \inf\{i : \operatorname{Ext}_{A}^{i}(\mathsf{k}, M) \neq 0\}.$$

Proof. Let $a \in \mathfrak{m}$ be M-regular and N = M/aM. Then we claim that

$$\inf\{i : \operatorname{Ext}_A^i(\mathsf{k}, N) \neq 0\} = \inf\{i : \operatorname{Ext}_A^i(\mathsf{k}, M) \neq 0\} - 1.$$

Indeed, we have an exact sequence

$$0 \to M \xrightarrow{a} M \to N \to 0.$$

It induces a long exact sequence

$$\cdots \to \operatorname{Ext}_A^{i-1}(\mathsf{k},M) \to \operatorname{Ext}_A^{i-1}(\mathsf{k},N) \to \operatorname{Ext}_A^{i}(\mathsf{k},M) \xrightarrow{\operatorname{Ext}_A^{i}(\mathsf{k},\operatorname{Mult}_a)} \operatorname{Ext}_A^{i}(\mathsf{k},M) \to \cdots$$

Note that $a \in \mathfrak{m}$, then $\operatorname{Ext}_A^i(\mathsf{k},\operatorname{Mult}_a) = 0$. It follows that when $\operatorname{Ext}_A^{i-1}(\mathsf{k},M) = 0$, we have $\operatorname{Ext}_A^{i-1}(\mathsf{k},N) = 0$ iff $\operatorname{Ext}_A^i(\mathsf{k},M) = 0$, whence the claim.

Let $n = \inf\{i : \operatorname{Ext}_A^i(\mathsf{k}, M) \neq 0\}$. Induct on n. Suppose first n = 0. Since k is a simple A-module, there is an injective homomorphism $\mathsf{k} \to M$. Then $\mathfrak{m} \in \operatorname{Ass} M$ and hence depth M = 0.

Suppose n > 0., let $a_1, \dots, a_m \in \mathfrak{m}$ be any M-regular sequence. Using the claim inductively on $M/(a_1, \dots, a_m)M$, we have $n \geq \text{depth}$. If M has no regular element, then $\mathfrak{m} \subset \bigcup_{\mathfrak{p} \in \operatorname{Ass} M} \mathfrak{p}$. Then $\mathfrak{m} = \mathfrak{p}$ for some $\mathfrak{p} \in \operatorname{Ass} M$. This show that we can find $x \neq 0 \in M$ such that $\mathfrak{p} = \operatorname{Ann} x$. It gives a homomorphism $k = A/\mathfrak{m} \to M$. That is a contradiction and hence M has a regular element. Let a be M-regular and N = M/aM. Then depth N = n - 1 by the claim and induction hypothesis. Hence we have depth $M \geq n$.

Lemma 12. Let $(A, \mathfrak{m}, \mathsf{k})$ be a noetherian local ring. Suppose we have exact sequences

$$0 \to A^{n_r} \xrightarrow{\mathrm{d}_r} A^{n_{r-1}} \xrightarrow{\mathrm{d}_{r-1}} \cdots \to A^{n_1} \xrightarrow{\mathrm{d}_1} A^{n_0},$$

such that $A^{n_i} \to \operatorname{Ker} d_{i-1}$ is minimal for all i. Then depth $A \ge r$.

Proof. Since d_r is injective and its image is contained in $\mathfrak{m}A^{n_{r-1}}$, we can choose $t \in \mathfrak{m}$ that is not a zero divisor. Denote the sequence by C_{\bullet} . Then we have a short exact sequence of complexes

$$0 \to C_{\bullet} \xrightarrow{*t} C_{\bullet} \to C_{\bullet}/tC_{\bullet} \to 0.$$

Consider the long exact sequence in homology

$$\cdots \to H_i(C_{\bullet}) \xrightarrow{*t} H_i(C_{\bullet}) \to H_i(C_{\bullet}/tC_{\bullet}) \to H_{i-1}(C_{\bullet}) \xrightarrow{*t} H_{i-1}(C_{\bullet}) \to \cdots$$

Since C_{\bullet} is exact, we have $H_i(C_{\bullet}) = 0$ for all i. In particular, $H_i(C_{\bullet}/tC_{\bullet}) = 0$ for all $i \geq 2$. Inductively, we can choose a regular sequence of length r in \mathfrak{m} .

Lemma 13. Let $(A, \mathfrak{m}, \mathsf{k})$ be a noetherian local ring and M a finite A-module. Suppose there is an injective homomorphism $\mathsf{k} \to M$. Then $\operatorname{proj.dim} M \ge \dim_{\mathsf{k}} T_{A,\mathfrak{m}}$.

Proof. Let $x_1, \dots, x_n \subset \mathfrak{m} \setminus \mathfrak{m}^2$ such that their images in $\mathfrak{m}/\mathfrak{m}^2$ form a basis. Then we have a complex

$$K_{\bullet} := 0 \to \wedge^n A^{\oplus n} \xrightarrow{\mathrm{d}_n} \wedge^{n-1} A^{\oplus n} \xrightarrow{\mathrm{d}_{n-1}} \cdots \to \wedge^1 A^{\oplus n} \xrightarrow{\mathrm{d}_1} \wedge^0 A^{\oplus n} \xrightarrow{\mathrm{d}_0} \mathsf{k} \to 0,$$

where

$$d_r: \wedge^r A^{\oplus n} \to \wedge^{r-1} A^{\oplus n}, \quad e_{i_1} \wedge \dots \wedge e_{i_r} \mapsto \sum_{k=1}^r (-1)^k x_{i_k} e_{i_1} \wedge \dots \wedge \widehat{e_{i_k}} \wedge \dots \wedge e_{i_r}.$$

Here $\widehat{e_{i_k}}$ means that we omit the k-th element. Let $P_{\bullet} \to M$ be the minimal projective resolution of M. Then we have a homomorphism of complexes

$$\varphi_{\bullet}:K_{\bullet}\to P_{\bullet}$$

induced by the injective homomorphism $k \to M$.

We claim that φ_i is injective and splits P_i into a direct sum $K_i \oplus F_i$ with F_i free for all $i \geq 0$. Since K_i and P_i are free, we just need to show that $\varphi_i \otimes_A \operatorname{id}_k$ is injective. Induct on i. For i = 0, note that $k \to M \otimes_A k$ is injective, by the commutative diagram

$$A \xrightarrow{\varphi_0 \otimes_A \operatorname{id}_{\mathsf{k}}} \mathsf{k} \quad ,$$

$$P_0 \otimes_A \mathsf{k} \xrightarrow{\cong} M \otimes_A \mathsf{k}$$

the image of $\varphi_0 \otimes_A id_k$ is not zero in $P_0 \otimes_A k$.

For i > 0, since K_{i-1} and P_{i-1} are free, we have a natural isomorphism between

$$\mathfrak{m}K_{i-1}\otimes_A\mathsf{k}\to\mathfrak{m}P_{i-1}\otimes_A\mathsf{k}$$

and

$$K_{i-1} \otimes_A \mathfrak{m}/\mathfrak{m}^2 \to P_{i-1} \otimes_A \mathfrak{m}/\mathfrak{m}^2$$
.

We have a commutative diagram

$$K_{i} \otimes_{A} \mathsf{k} \longrightarrow \mathfrak{m} K_{i-1} \otimes_{A} \mathsf{k} . \tag{1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$P_{i} \otimes_{A} \mathsf{k} \longrightarrow \mathfrak{m} P_{i-1} \otimes_{A} \mathsf{k}$$

4

Since $P_{i-1}/K_{i-1} \cong F_{i-1}$ is free, the right vertical map in (1) is injective. By construction of K_{\bullet} , $K_i \otimes_A \mathsf{k} \to \mathfrak{m} K_{i-1} \otimes_A \mathsf{k}$ is injective. Hence the left vertical map in (1) is injective. This completes the proof of the claim. By the claim, $P_i \neq 0$ for all $i \leq n$ and the conclusion follows.

Proposition 14 (Auslander-Buchsbaum formula). Let A be a noetherian local ring and M a finite A-module. Suppose proj. dim $M < \infty$. Then proj. dim $M = \operatorname{depth} A - \operatorname{depth} M$.

Proof. We have a minimal projective resolution

$$0 \to A^{n_r} \to A^{n_{r-1}} \to \cdots \to A^{n_1} \to A^{n_0} \to M \to 0.$$

By Lemma 12, we have depth $A \geq \text{proj.dim } M$.

Induct on depth M. Suppose depth M = 0. Then by Proposition 11, we have $\operatorname{Hom}_A(\mathsf{k}, M) \neq 0$, whence there is an injective homomorphism $\mathsf{k} \to M$. By Lemma 13, we have

$$\operatorname{depth} A \geq \operatorname{proj.dim} M \geq \operatorname{dim}_{\mathsf{k}} T_{A,\mathfrak{m}} \geq \operatorname{depth} A.$$

If depth M>0, choose a regular element $a\in\mathfrak{m}$ that is M-regular. Then by Propostion 10, we have

$$\operatorname{depth} M + \operatorname{proj.dim} M = \operatorname{depth}(M/aM) - 1 + \operatorname{proj.dim}(M/aM) + 1 = \operatorname{depth} A.$$

Theorem 15. Let (A, \mathfrak{m}) be a noetherian local ring. Then A is regular at \mathfrak{m} if and only if coh. dim $A < \infty$.

Proof. Suppose A is regular at \mathfrak{m} . Let x_1, \dots, x_n be a minimal generating set of \mathfrak{m} . Then x_1, \dots, x_n is an A-regular sequence since A is regular at \mathfrak{m} . By Proposition 10, we have proj. dim $k = \text{proj. dim } A/(x_1, \dots, x_n)A = n + \text{proj. dim } A = n$.

Conversely, suppose coh. dim $A < \infty$. Then by Proposition 9, we have proj. dim $k < \infty$. We have

$$\dim_{\mathsf{k}} T_{A,\mathfrak{m}} \leq \operatorname{proj.dim} \mathsf{k} \leq \operatorname{depth} A \leq \dim_{\mathsf{k}} T_{A,\mathfrak{m}}.$$

The first " \leq " follows from Lemma 13. The second " \leq " follows from Proposition 14. Hence we see that A is regular at m.

Theorem 16. Let A, \mathfrak{m} be a regular noetherian local ring. Then A is UFD.

Proof. Yang: To be completed.