CLAIM AMENDMENTS

Claim 1 (original). A polybenzoxazole precursor comprising a partial structure selected from the group consisting of

wherein each of A^1 to A^7 is a univalent substituent independently selected from the group consisting of H, F, CH_3 , CF_3 , OCH_3 and OCF_3 ;

T is a residue selected from the group consisting of

wherein each of A^8 to A^{21} is a univalent substituent independently selected from the group consisting of H, F, CH_3 , CF_3 , OCH_3 and OCF_3 ;

$$6$$
 or $\sqrt{\chi}$

wherein X is selected from the group consisting of $-CH_2-$, $-CF_2-$, $-C(CH_3)_2-$, $-C(CF_3)_2-$, $-C(OCH_3)_2-$, $-C(OCF_3)_2-$

 $C(CH_3)(C_6H_5)-$, $-C(C_6H_5)_2-$, -O-, -(NH)-, $-(N-CH_3)-$ and $-(N-C_6H_5)-$;

wherein M is selected from the group consisting of residues represented by formulas 10-14

in which Q is selected from the group consisting of C-H, C-F, C-CH₃, C-CF₃, C-OCH₃, C-OCF₃ and N,

and residues represented by formulas 15-34 shown below:

wherein Q is defined as above, provided that at least one Q signifies N and a maximum of two N atoms are present per ring.

Claim 2 (original). The polybenzoxazole precursor of claim 1, further comprising at least one acetylene group.

Claim 3 (original). The polybenzoxazole precursor of claim 2, wherein said acetylene group is present in the main chain.

Claim 4 (original). The polybenzoxazole precursor of claim 2, wherein said acetylene group is present in a side chain.

Claim 5 (original). The polybenzoxazole precursor of claim 2, wherein said acetylene group is present in a chain terminating group.

Claim 6 (original). The polybenzoxazole precursor of claim 2, wherein said acetylene group is present in the residue of a carboxylic acid selected from the group consisting of

Claim 7 (original). A photoresist solution, comprising a polybenzoxazole precursor of claim 1, a diazoketone photoactive component, and an organic solvent.

Claim 8 (original). The photoresist solution of claim 7, wherein the weight ratio of polybenzoxazole precursor to diazoketone is in the range from 1:20 to 20:1.

Claim 9 (original). The photoresist solution of claim 8, wherein a weight ratio of polybenzoxazole precursor to diazoketone is in a range from 1:10 to 10:1

Claim .10 (currently amended). A polybenzoxazole containing a partial structure selected from the group consisting of

wherein each of A^1 to A^7 is a univalent substituent independently selected from the group consisting of H, F, CH_3 , CF_3 , OCH_3 and OCF_3 ; and

T is a residue selected from the group consisting of the residues represented by the following formulas 5-34 defined above

wherein each of A⁸ to A²¹ is a univalent substituent independently selected from the group consisting of H, F, CH₃, CF₃, OCH₃ and OCF₃;

wherein X is selected from the group consisting of $-CH_2-$, $-CF_2-$, $-C(CH_3)_2-$, $-C(CF_3)_2-$, $-C(OCH_3)_2-$, $-C(OCF_3)_2-$, $-C(OCH_3)_3-$, $-C(OCH_$

wherein M is selected from the group consisting of residues represented by formulas 10-14

in which Q is selected from the group consisting of C-H, C-F, C-CH₃, C-OCH₃, C-OCF₃ and N,

and residues represented by formulas 15-34 shown below:

wherein Q is defined as above, provided that at least one Q signifies N and a maximum of two N atoms are present per ring.

Claim 11 (currently amended). The polybenzoxazole precursor of claim 1, wherein said partial structure is

wherein each of A^1 to A^3 is a univalent substituent independently selected from the group consisting of H, F, CH₃, CF₃, OCH₃ and OCF₃; and

T is a residue selected from the group consisting of the residues represented by the following formulas 5-34 defined

wherein each of A⁸ to A²¹ is a univalent substituent independently selected from the group consisting of H, F, CH₃, CF₃, OCH₃ and OCF₃;

`)

wherein X is selected from the group consisting of $-CH_2-$, $-CF_2-$, $-C(CH_3)_2-$, $-C(CF_3)_2-$, $-C(OCH_3)_2-$, $-C(OCF_3)_2-$, $-C(OCF_$

wherein M is selected from the group consisting of residues represented by formulas 10-14

in which Q is selected from the group consisting of C-H, C-F, C-CH₃, C-CF₃, C-OCH₃, C-OCF₃ and N,

and residues represented by formulas 15-34 shown below:

-11-

wherein Q is defined as above, provided that at least one Q signifies N and a maximum of two N atoms are present per ring.

-12-

Claim 12 (currently amended). The polybenzoxazole precursor of claim 1, wherein said partial structure is

wherein each of A^1 to A^7 is a univalent substituent independently selected from the group consisting of H, F, CH_3 , CF_3 , OCH_3 and OCF_3 ; and

T is a residue selected from the group consisting of the residues represented by the following formulas 5-34 defined

wherein each of A⁸ to A²¹ is a univalent substituent independently selected from the group consisting of H, F, CH₃, CF₃, OCH₃ and OCF₃;

wherein X is selected from the group consisting of $-CH_{2}$, $-CE_{2}$, $-C(CH_{3})_{2}$, $-C(CE_{3})_{2}$, $-C(OCH_{3})_{2}$, $-C(OCE_{3})_{2}$

) .

 $C(CH_3)(C_6H_5)$ -, $-C(C_6H_5)_2$ -, -O-, -(NH)-, $-(N-CH_3)$ - and $-(N-C_6H_5)$ -;

wherein M is selected from the group consisting of

residues represented by formulas 10-14

in which Q is selected from the group consisting of C-H, C-F, C-CH₃, C-OCH₃, C-OCF₃ and N,

and residues represented by formulas 15-34 shown below:

wherein Q is defined as above, provided that at least one
Q signifies N and a maximum of two N atoms are present per
ring.

Claim 13 (original). The polybenzoxazole precursor of claim 1, wherein each of A^1 to A^7 is H.

Claim 14 (original). The polybenzoxazole precursor of) claim 1, wherein T is

in which each Q is CH and M is

Claim 15 (original). The polybenzoxazole precursor of claim 1, wherein T is

in which each Q is CH and M is

Claim 16 (original). The polybenzoxazole precursor of claim 1, wherein T is

-16-

in which Q in each outside ring is N and each Q in the) middle ring is CH.

> Claim 17 (original). The polybenzoxazole precursor of claim 1, wherein T is

in which six of the substituents A^8 to A^{21} are CH_3 and the remainder of the substituents A^8 to A^{21} are H.

Claim 18 (original). The polybenzoxazole precursor of claim 5, wherein said chain terminating group is a residue of

Claim 19 (original). The polybenzoxazole precursor of claim 18, wherein T is

in which each Q is CH and M is

11

Claim 20 (original). A process for preparing a polybenzoxazole precursor containing a partial structure selected from the group consisting of

3 HO C-T-O CH HO C-T-O CH C-T-O CH A1-A3 NH-C- and -C-HN
$$A_{1-A}^{1}$$
 A_{1-A}^{2}

wherein each of A^1 to A^7 and T are as defined above, comprising the steps of

providing at least one reactant selected from the group consisting of bis-o-aminophenols and o-aminophenolcarboxylic acids,

causing the reactant to react with at least one dicarboxylic acid compound,

mixing the reaction mixture with a precipitating agent to precipitate a solid polybenzoxazole precursor,

and isolating the polybenzoxazole precursor from the reaction mixture.

-18-