Coding notes for Advanced Data Visualization

Mamata K C

2025-02-19

```
#loading packages
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
                                2.1.5
          1.1.4
## v dplyr
                     v readr
## v forcats 1.0.0
                      v stringr
                                 1.5.1
## v ggplot2 3.5.1 v tibble 3.2.1
## v lubridate 1.9.3
                      v tidyr
                                1.3.1
## v purrr
             1.0.2
## -- Conflicts ----- tidyverse conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(ggpubr)
library(ggrepel)
#loading color-blind palette
cbbPalette <- c("#000000", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7")
#loading data in R
sample.data.bac <- read.csv("BacterialAlpha.csv", na.strings = "na")</pre>
sample.data.bac
                Crop Time_Point Replicate Water_Imbibed shannon invsimpson
##
         Code
## 1
       S01_13
                                                 NA 6.624921 210.72795
                Soil
## 2
       S02_16
                Soil
                            0
                                      2
                                                 NA 6.612413 206.86664
## 3
       S03_19
                Soil
                           0
                                     3
                                                 NA 6.660853 213.01843
## 4
       S04_22
                Soil
                           0
                                     4
                                                 NA 6.660671 204.69080
                                    5
                                                 NA 6.610965 200.25523
## 5
       S05_25
                Soil
                            0
                                    6
## 6
       S06_28
                Soil
                           0
                                                 NA 6.650812 199.32110
## 7
                           6
       S61_32
                Soil
                                     1
                                                 NA 6.570679 200.23177
                                                 NA 6.492227 171.27965
## 8
       S62_35
                           6
                                     2
                Soil
                                                  NA 6.610986 192.08535
## 9
       S63_38
                Soil
                            6
                                     3
       S64_41
                           6
                                     4
## 10
                Soil
                                                 NA 6.472259 163.99814
## 11
       $65_44
                Soil
                           6
                                    5
                                                 NA 6.508824 181.69248
## 12
       S66_47
                            6
                                     6
                                                 NA 6.482495 176.90684
                Soil
## 13 S121_51
                Soil
                           12
                                     1
                                                 NA 6.276073 126.56259
                                     2
## 14 S122_54
                Soil
                          12
                                                 NA 6.461118 152.98152
## 15 S123_57
                Soil
                          12
                                     3
                                                NA 6.334648 138.92556
```

NA 6.461988 171.13732

12

Soil

16 S124_60

	4.7	G40F 60	a	40	_	37.4	0 504070	470 07500
	17	S125_63	Soil	12	5		6.501973	172.97532
	18	S126_66	Soil	12	6		6.354387	142.61016
	19	S181_70	Soil	18	1		6.299381	142.64506
##	20	S182_74	Soil	18	2		6.340644	145.48656
##	21	S183_78	Soil	18	3		6.282807	150.39829
##	22	S184_82	Soil	18	4		6.268316	141.14138
##	23	S186_90	Soil	18	6		6.289000	140.45260
##	24	CO1_11		0	1		6.618126	220.66218
##	25	CO2_14		0	2		6.627206	211.03921
##	26	CO3_17		0	3		6.616958	216.06631
##	27	C04_20		0	4		6.626465	215.93901
##	28	C05_23		0	5		6.642822	211.08960
##	29	C06_26	Cotton	0	6	0.0046	6.679131	216.31351
##	30	C61_30		6	1	0.0580	6.454741	170.03639
##	31	C62_33	Cotton	6	2	0.0440	6.484032	172.35279
##	32	C63_36	Cotton	6	3	0.0569	6.517958	173.41489
##	33	C64_39	Cotton	6	4	0.0841	6.476069	167.13138
##	34	C65_42	Cotton	6	5	0.0535	6.569722	197.01186
##	35	C66_45	Cotton	6	6	0.0029	6.482145	172.96394
##	36	C121_49	Cotton	12	1	0.0651	5.944568	71.55607
##	37	C122_52	Cotton	12	2	0.0527	6.187755	96.43939
##	38	C123_55	Cotton	12	3	0.0675	6.129460	81.26646
##	39	C124_58	Cotton	12	4	0.0545	6.028523	75.49726
##	40	C125_61	Cotton	12	5	0.0623	6.148179	98.94468
	41	C126_64	Cotton	12	6	0.0021	6.347332	150.05708
	42	C181_68		18	1	0.0034	6.301392	132.36230
##	43	C182_72		18	2		6.000205	83.90929
##	44	C183_76		18	3		5.981284	82.44127
	45	C184_80		18	4		5.578566	50.73174
	46	C185_84	Cotton	18	5		6.064655	87.82732
	47	_	Soybean	0	1		6.644864	216.86110
	48	_	Soybean	0	2		6.615662	211.32573
	49	_	Soybean	0	3		6.693987	230.45439
	50	_	Soybean	0	4		6.647502	234.80343
	51	SB05_24	•	0	5		6.605749	198.57265
	52	SB06_27	•	0	6		6.640696	215.26494
	53	_	Soybean	6	1		6.044229	89.13912
	54	_	Soybean	6	2		6.437589	154.21624
	55		Soybean	6	3		6.194632	83.11681
	56		Soybean	6	4		6.117393	87.20257
	57	_	Soybean	6	5		5.439798	29.48338
	58	_	Soybean	6	6		6.195816	108.22394
		SB121_50	•	12	1		4.393341	12.39587
		SB121_53	•	12	2		5.630929	52.97931
		SB123_56	-	12	3		5.579523	48.59842
		SB124_59	·	12	4		5.406651	34.08685
		SB125_62	•	12	5		5.863941	63.33020
		SB125_62 SB126_65	·	12	6		5.738025	57.88780
		SB120_03 SB181_69	•	18	1		5.671024	57.37726
		SB181_09 SB182_73	•	18	2		5.489406	43.16854
		SB182_73 SB183_77	•	18	3		5.713960	60.47882
		SB184_81	•	18	4		5.467076	44.06798
		SB184_81 SB185_85	•	18	5		5.729473	55.95864
		_	•		6		5.729473	
##	10	SB186_89	boybean	18	б	0.3010	0.000000	54.34527

```
##
        simpson richness
                               even
## 1
     0.9952545
                     3319 0.8171431
                     3079 0.8232216
## 2
      0.9951660
## 3
      0.9953056
                     3935 0.8046776
## 4
      0.9951146
                     3922 0.8049774
## 5
      0.9950064
                     3196 0.8192376
## 6
      0.9949830
                     3481 0.8155427
## 7
      0.9950058
                     3250 0.8125582
## 8
      0.9941616
                     3170 0.8053387
## 9
      0.9947940
                     3657 0.8057856
## 10 0.9939024
                     3177 0.8026420
## 11 0.9944962
                     2985 0.8134652
## 12 0.9943473
                     2770 0.8178151
## 13 0.9920988
                     3040 0.7825905
## 14 0.9934633
                     3192 0.8007927
## 15 0.9928019
                     2673 0.8027732
## 16 0.9941567
                     3180 0.8012745
## 17 0.9942188
                     3320 0.8019483
## 18 0.9929879
                     2773 0.8015438
## 19 0.9929896
                     2806 0.7934213
## 20 0.9931265
                     3047 0.7904155
## 21 0.9933510
                     2190 0.8168340
## 22 0.9929149
                     2488 0.8016534
## 23 0.9928802
                     2684 0.7965737
                     3076 0.8240330
## 24 0.9954682
## 25 0.9952615
                     3180 0.8217613
## 26 0.9953718
                     2938 0.8286233
## 27 0.9953691
                     3371 0.8157692
## 28 0.9952627
                     3435 0.8158938
## 29 0.9953771
                     3629 0.8148549
## 30 0.9941189
                     2767 0.8144250
## 31 0.9941979
                     3377 0.7980600
## 32 0.9942335
                     3804 0.7906489
## 33 0.9940167
                     3204 0.8022726
## 34 0.9949242
                     3250 0.8124399
## 35 0.9942184
                     3009 0.8093209
## 36 0.9860249
                     2779 0.7496447
## 37 0.9896308
                     3193 0.7668822
## 38 0.9876948
                     2859 0.7702042
## 39 0.9867545
                     2950 0.7545500
## 40 0.9898933
                     3018 0.7673379
## 41 0.9933359
                     2946 0.7945881
## 42 0.9924450
                     3266 0.7787840
## 43 0.9880824
                     2969 0.7504026
## 44 0.9878702
                     2636 0.7593336
## 45 0.9802885
                     2043 0.7318864
## 46 0.9886140
                     3113 0.7539969
## 47 0.9953888
                     3203 0.8232153
## 48 0.9952680
                     3055 0.8244294
## 49 0.9956607
                     3595 0.8176063
## 50 0.9957411
                     3253 0.8219646
## 51 0.9949641
                     3187 0.8188774
## 52 0.9953546
                     3190 0.8231136
## 53 0.9887816
                     2371 0.7777862
```

```
## 56 0.9885324
                   3006 0.7638754
## 57 0.9660826
                   2809 0.6850627
## 58 0.9907599
                   2680 0.7849191
## 59 0.9193280
                   2508 0.5612885
## 60 0.9811247
                   2403 0.7233538
## 61 0.9794232
                   2752 0.7044778
## 62 0.9706632
                   2946 0.6768294
## 63 0.9842097
                   3165 0.7275444
## 64 0.9827252
                   2705 0.7260697
## 65 0.9825715
                   2642 0.7197378
## 66 0.9768350
                   2773 0.6924349
## 67 0.9834653
                   2454 0.7320451
## 68 0.9773078
                   2365 0.7037462
## 69 0.9821297
                   2789 0.7221929
## 70 0.9815991
                   2050 0.7286456
#coding time-point and crop as factor (because we don't want it to be treated as continuous variable)
sample.data.bac$Time_Point <- as.factor(sample.data.bac$Time_Point)</pre>
sample.data.bac$Crop <- as.factor(sample.data.bac$Crop)</pre>
#viewing the structure of data
str(sample.data.bac)
## 'data.frame': 70 obs. of 10 variables:
## $ Code
                  : chr "S01_13" "S02_16" "S03_19" "S04_22" ...
## $ Crop
                  : Factor w/ 3 levels "Cotton", "Soil", ...: 2 2 2 2 2 2 2 2 2 2 ...
## $ Time_Point : Factor w/ 4 levels "0", "6", "12", "18": 1 1 1 1 1 2 2 2 2 ...
                 : int 1234561234...
## $ Replicate
## $ Water_Imbibed: num NA ...
## $ shannon
                 : num 6.62 6.61 6.66 6.66 6.61 ...
## $ invsimpson : num 211 207 213 205 200 ...
## $ simpson
                  : num 0.995 0.995 0.995 0.995 ...
## $ richness
                  : int 3319 3079 3935 3922 3196 3481 3250 3170 3657 3177 ...
                  : num 0.817 0.823 0.805 0.805 0.819 ...
## $ even
#changing the order of treatments to be plotted (default of gaplot is alphabetical order)
sample.data.bac$Crop <- factor (sample.data.bac$Crop, levels = c("Soil", "Cotton", "Soybean"))</pre>
#plotting boxplot
#Plot 1 - Bacterial Evenness
bac.even <- ggplot(sample.data.bac, aes(x=Time_Point, y= even, color= Crop)) + #Timepoint as x axis a
 geom_boxplot(position = position_dodge()) + #making boxplots side by side without overlapping
 geom_point(position = position_jitterdodge(0.05)) + #filling the data points in boxplot without ove
 xlab("Time") +
                   #labelling X axis
 ylab("Pielou's evenness") +
                                #labelling Y axis
 scale color manual (values = cbbPalette) + #choosing colorblind palette for colors of boxplot and da
 theme_classic() #making the background of plot uniform/white
bac.even
```

54 0.9935156

55 0.9879687

3248 0.7961603

2976 0.7744902

#Plot 2 - A

#subsetting data to exclude soil data
sample.data.bac.no.soil <- subset(sample.data.bac, Crop!= "Soil")
sample.data.bac.no.soil</pre>

##		Code	Crop	${\tt Time_Point}$	${\tt Replicate}$	${\tt Water_Imbibed}$	shannon	invsimpson
##	24	CO1_11	${\tt Cotton}$	0	1	0.0042	6.618126	220.66218
##	25	C02_14	${\tt Cotton}$	0	2	0.0091	6.627206	211.03921
##	26	C03_17	${\tt Cotton}$	0	3	0.0013	6.616958	216.06631
##	27	C04_20	Cotton	0	4	0.0087	6.626465	215.93901
##	28	C05_23	Cotton	0	5	0.0075	6.642822	211.08960
##	29	C06_26	Cotton	0	6	0.0046	6.679131	216.31351
##	30	C61_30	${\tt Cotton}$	6	1	0.0580	6.454741	170.03639
##	31	C62_33	${\tt Cotton}$	6	2	0.0440	6.484032	172.35279
##	32	C63_36	Cotton	6	3	0.0569	6.517958	173.41489
##	33	C64_39	Cotton	6	4	0.0841	6.476069	167.13138
##	34	C65_42	Cotton	6	5	0.0535	6.569722	197.01186
##	35	C66_45	Cotton	6	6	0.0029	6.482145	172.96394
##	36	C121_49	Cotton	12	1	0.0651	5.944568	71.55607
##	37	C122_52	Cotton	12	2	0.0527	6.187755	96.43939
##	38	C123_55	${\tt Cotton}$	12	3	0.0675	6.129460	81.26646
##	39	C124_58	${\tt Cotton}$	12	4	0.0545	6.028523	75.49726
##	40	C125_61	Cotton	12	5	0.0623	6.148179	98.94468
##	41	C126_64	Cotton	12	6	0.0021	6.347332	150.05708
##	42	C181 68	Cotton	18	1	0.0034	6.301392	132.36230

```
## 43 C182_72 Cotton
                                18
                                                    0.0632 6.000205
                                                                       83.90929
## 44
                                                                       82.44127
       C183_76 Cotton
                                18
                                           3
                                                     0.0514 5.981284
                                                                       50.73174
       C184 80
                Cotton
                                18
                                                     0.0577 5.578566
## 46 C185_84 Cotton
                                18
                                                     0.0554 6.064655
                                                                       87.82732
                                           5
## 47
       SB01_12 Soybean
                                 0
                                           1
                                                    0.1664 6.644864
                                                                      216.86110
## 48 SB02 15 Soybean
                                           2
                                 0
                                                    0.0942 6.615662
                                                                      211.32573
       SB03_18 Soybean
                                                    0.1248 6.693987
## 49
                                           3
                                                                      230.45439
                                 0
## 50 SB04_21 Soybean
                                 0
                                           4
                                                    0.1150 6.647502
                                                                      234.80343
## 51
       SB05_24 Soybean
                                 0
                                           5
                                                    0.0993 6.605749
                                                                      198.57265
## 52
       SB06_27 Soybean
                                 0
                                           6
                                                    0.1005 6.640696
                                                                      215.26494
## 53
       SB61_31 Soybean
                                 6
                                           1
                                                    0.2308 6.044229
                                                                       89.13912
## 54
      SB62_34 Soybean
                                 6
                                           2
                                                                      154.21624
                                                    0.2603 6.437589
## 55
     SB63_37 Soybean
                                 6
                                           3
                                                    0.2111 6.194632
                                                                       83.11681
## 56
                                 6
      SB64_40 Soybean
                                                    0.2808 6.117393
                                                                       87.20257
## 57
       SB65_43 Soybean
                                 6
                                           5
                                                    0.2712 5.439798
                                                                       29.48338
## 58 SB66_46 Soybean
                                 6
                                           6
                                                    0.2887 6.195816
                                                                      108.22394
## 59 SB121_50 Soybean
                                12
                                           1
                                                    0.2822 4.393341
                                                                       12.39587
## 60 SB122 53 Soybean
                                                    0.2557 5.630929
                                                                       52.97931
                                                                       48.59842
## 61 SB123_56 Soybean
                                12
                                           3
                                                    0.2982 5.579523
## 62 SB124_59 Soybean
                                12
                                           4
                                                    0.2489 5.406651
                                                                       34.08685
## 63 SB125_62 Soybean
                                12
                                           5
                                                    0.2573 5.863941
                                                                       63.33020
## 64 SB126_65 Soybean
                                12
                                                    0.2285 5.738025
                                                                       57.88780
## 65 SB181_69 Soybean
                                                    0.2528 5.671024
                                                                       57.37726
                                18
                                           1
## 66 SB182_73 Soybean
                                18
                                           2
                                                    0.2706 5.489406
                                                                       43.16854
                                           3
## 67 SB183_77 Soybean
                                18
                                                    0.3196 5.713960
                                                                       60.47882
## 68 SB184_81 Soybean
                                18
                                           4
                                                    0.2437 5.467076
                                                                       44.06798
## 69 SB185_85 Soybean
                                18
                                           5
                                                    0.2461 5.729473
                                                                       55.95864
                                                    0.3010 5.556356
## 70 SB186_89 Soybean
                                18
                                                                       54.34527
        simpson richness
                               even
## 24 0.9954682
                    3076 0.8240330
## 25 0.9952615
                    3180 0.8217613
                    2938 0.8286233
## 26 0.9953718
## 27 0.9953691
                    3371 0.8157692
## 28 0.9952627
                    3435 0.8158938
## 29 0.9953771
                    3629 0.8148549
## 30 0.9941189
                    2767 0.8144250
## 31 0.9941979
                    3377 0.7980600
## 32 0.9942335
                    3804 0.7906489
## 33 0.9940167
                    3204 0.8022726
## 34 0.9949242
                    3250 0.8124399
## 35 0.9942184
                    3009 0.8093209
## 36 0.9860249
                    2779 0.7496447
## 37 0.9896308
                    3193 0.7668822
## 38 0.9876948
                    2859 0.7702042
## 39 0.9867545
                    2950 0.7545500
## 40 0.9898933
                    3018 0.7673379
## 41 0.9933359
                    2946 0.7945881
## 42 0.9924450
                    3266 0.7787840
                    2969 0.7504026
## 43 0.9880824
## 44 0.9878702
                    2636 0.7593336
## 45 0.9802885
                    2043 0.7318864
## 46 0.9886140
                    3113 0.7539969
## 47 0.9953888
                    3203 0.8232153
## 48 0.9952680
                    3055 0.8244294
```

```
## 49 0.9956607
                    3595 0.8176063
## 50 0.9957411
                    3253 0.8219646
## 51 0.9949641
                    3187 0.8188774
## 52 0.9953546
                    3190 0.8231136
## 53 0.9887816
                    2371 0.7777862
## 54 0.9935156
                    3248 0.7961603
## 55 0.9879687
                    2976 0.7744902
                    3006 0.7638754
## 56 0.9885324
## 57 0.9660826
                    2809 0.6850627
## 58 0.9907599
                    2680 0.7849191
## 59 0.9193280
                    2508 0.5612885
## 60 0.9811247
                    2403 0.7233538
## 61 0.9794232
                    2752 0.7044778
## 62 0.9706632
                    2946 0.6768294
## 63 0.9842097
                    3165 0.7275444
## 64 0.9827252
                    2705 0.7260697
## 65 0.9825715
                    2642 0.7197378
## 66 0.9768350
                    2773 0.6924349
## 67 0.9834653
                    2454 0.7320451
## 68 0.9773078
                    2365 0.7037462
## 69 0.9821297
                    2789 0.7221929
## 70 0.9815991
                    2050 0.7286456
```

```
water.imbibed <- ggplot(sample.data.bac.no.soil, aes(Time_Point, 1000 * Water_Imbibed, color = Crop)) +
    geom_jitter(width = 0.5, alpha = 0.5) + #adding jitter points with transparency to show individual da
    stat_summary(fun = mean, geom = "line", aes(group = Crop)) + #adding lines to represent the mean valu
    stat_summary(fun.data = mean_se, geom = "errorbar", width = 0.5) + #adding error bars to represent th
    xlab("Hours post sowing") + #labelling x axis
    ylab("Water Imbibed (mg)") + #labelling y axis
    scale_color_manual(values = c(cbbPalette[[2]], cbbPalette[[3]]), name = "", labels = c("", "")) + #se
    theme_classic() + #using classic theme for the plot to make background plain white
    theme(strip.background = element_blank(), legend.position = "none") + #costumizing theme to remore st
    facet_wrap(~Crop, scales = "free") #creating separate panels for each crop and allowing free scales
water.imbibed</pre>
```



```
#Plot 3 -C
water.imbibed.cor <- ggplot(sample.data.bac.no.soil, aes (y= even, x = 1000 * Water_Imbibed, color = Cr
geom_point(aes(shape = Time_Point)) + #adding points with different shapes based on time points
geom_smooth(se=FALSE, method = lm) + #adding a linear model smooth line without confidence interval
xlab("Water Imbibed (mg)") + #labelling x axis
ylab("Pielou's evenness") + #labelling y axis
scale_color_manual(values = c(cbbPalette[[2]], cbbPalette[[3]]), name = "", labels = c("", "")) + #se
theme_classic() + #using classic theme for the plot to make background plain white
guides(color = "none") +
theme(strip.background = element_blank(), legend.posion = "right") + #costumizing theme to remore str
facet_wrap(~Crop, scales = "free") #creating separate panels for each crop and allowing free scales
water.imbibed.cor</pre>
```

Warning in plot_theme(plot): The 'legend.posion' theme element is not defined
in the element hierarchy.

'geom_smooth()' using formula = 'y ~ x'


```
#Combining multiple figures into a single figure

figure2 <- ggarrange(
   water.imbibed, #first figure to plot
   bac.even, #second figure to plot
   water.imbibed.cor, #third figure to plot
   labels = "auto", #automatically labelling the plots as A, B, C
   nrow = 3, #Arranging plots vertically in 3 rows
   ncol = 1, #Arranging plots in single column
   legend = FALSE #not including legend in the combined figure
)</pre>
```

```
## 'geom_smooth()' using formula = 'y ~ x'
```

Warning in plot_theme(plot): The 'legend.posion' theme element is not defined
in the element hierarchy.

figure2


```
#ggpubr can integrate statistics in plot
# integrating statistics into plots for exploratory analyses

#applying anova to the groups
bac.even +
   stat_compare_means(method = "anova")
```



```
#comparison within crop group at a single time point
bac.even +
geom_pwc(aes(group = Crop), method = "t.test", label = "p.adj.format")
```



```
## mapping: group = ~Crop, legend.var = ~Crop
## geom_pwc: na.rm = FALSE, remove.bracket = FALSE, parse = FALSE
## stat_pwc: method = t.test, method.args = list(), ref.group = NULL, stat.label = p.adj.signif, y.posi
## position_identity

bac.even +
    geom_pwc(aes(group = Crop), method = "t.test", label = "p.adj.signif") #denoting significance levels
```

geom_pwc(aes(group = Crop), method = "t.test", label = "p.adj.signif") #denoting significance levels

bac.even +
 geom_pwc(aes(group = Crop), method = "t.test", label = "{p.adj.signif}{p.adj.format}") #denoting sig

#comparison between time point (average evenness of all crops at certain time point compared with avera
bac.even +
geom_pwc(aes(group = Time_Point), method = "t.test", label = "p.adj.format")


```
#correlation
water.imbibed.cor +
    stat_cor() #gives pearson's correlation
```

'geom_smooth()' using formula = 'y ~ x'

Warning in plot_theme(plot): The 'legend.posion' theme element is not defined
in the element hierarchy.


```
water.imbibed.cor +
  stat_regline_equation() #gives regression line
```

'geom_smooth()' using formula = 'y ~ x'

Warning in plot_theme(plot): The 'legend.posion' theme element is not defined
in the element hierarchy.


```
water.imbibed.cor +
  stat_cor(label.y = 0.7) +
  stat_regline_equation()
```

'geom_smooth()' using formula = 'y ~ x'

Warning in plot_theme(plot): The 'legend.posion' theme element is not defined
in the element hierarchy.

#Differential abundance test for plotting while emphasizing most significant points
diff_abundance <- read.csv("diff_abund.csv") #loading data in R
str(diff_abundance)</pre>

```
'data.frame':
                    2375 obs. of 16 variables:
##
                             "BOTU_1387" "BOTU_1197" "BOTU_2475" "BOTU_1574" ...
##
   $ taxon
                      : chr
##
   $ lfc_CropCotton
                            0.016 0.1019 -0.0503 0.1019 0.0791 ...
                     : num
   $ lfc_CropSoybean : num
                             -0.305 0.191 -0.0213 0.2592 0.9588 ...
##
   $ p_CropCotton
                      : num
                             0.947 0.572 0.806 0.531 0.846 ...
   $ p_CropSoybean
                             0.193 0.28 0.915 0.103 0.016 ...
##
                      : num
##
   $ q_CropCotton
                             1 1 1 1 1 1 1 1 1 1 ...
                      : num
                      : num
   $ q_CropSoybean
                             1 1 1 1 1 ...
##
   $ diff_CropCotton : logi
                             FALSE FALSE FALSE FALSE FALSE ...
##
   $ diff_CropSoybean: logi
                             FALSE FALSE FALSE FALSE FALSE ...
   $ Kingdom
                             "Bacteria" "Bacteria" "Bacteria" ...
##
                      : chr
                             "Proteobacteria" "Proteobacteria" "Proteobacteria" "Proteobacteria" ...
##
   $ Phylum
                      : chr
                             "Gammaproteobacteria" "Gammaproteobacteria" "Gammaproteobacteria" "Gammapr
   $ Class
##
                       chr
                             "Legionellales" "Diplorickettsiales" "Diplorickettsiales" "Diplorickettsia
##
   $ Order
                      : chr
##
   $ Family
                       chr
                             "Legionellaceae" "Diplorickettsiaceae" "Diplorickettsiaceae" "Diplorickett
                             "Legionella" "Aquicella" "Aquicella" "unidentified" ...
##
   $ Genus
                      : chr
                            "BOTU_1387_Legionella" "BOTU_1197_Aquicella" "BOTU_2475_Aquicella" "BOTU_1
##
   $ Label
                      : chr
```

diff_abundance\$log10_pvalue <- -log10(diff_abundance\$p_CropSoybean) #adding column log10_pvalue in the

```
diff_abundance_label <- diff_abundance[diff_abundance$log10_pvalue>30,] #subsetting the dataset with lo
ggplot() +
   geom_point(data = diff_abundance, aes(x = lfc_CropSoybean, y = log10_pvalue, color = diff_CropSoybean
   theme_classic() #using classic theme for the plot to make background plain white
```



```
ggplot() +
  geom_point(data = diff_abundance, aes(x = lfc_CropSoybean, y = log10_pvalue, color = diff_CropSoybean
  theme_classic() + #using classic theme for the plot to make background plain white
  geom_text_repel(data = diff_abundance_label, aes(x = lfc_CropSoybean, y = log10_pvalue, color = diff_ender
```



```
#using all data points
ggplot() +
  geom_point(data = diff_abundance, aes(x = lfc_CropSoybean, y = log10_pvalue, color = diff_CropSoybean
  theme_classic() + #using classic theme for the plot to make background plain white
  geom_text_repel(data = diff_abundance, aes(x = lfc_CropSoybean, y = log10_pvalue, color = diff_CropSoybean)
```

Warning: ggrepel: 2372 unlabeled data points (too many overlaps). Consider
increasing max.overlaps


```
volcano <- ggplot() +
  geom_point(data = diff_abundance, aes(x = lfc_CropSoybean, y = log10_pvalue, color = diff_CropSoybean
  geom_text_repel(data = diff_abundance_label, aes(x = lfc_CropSoybean, y = log10_pvalue, color = diff_scale_color_manual(values = cbbPalette, name = "Significant") +
  theme_classic() +
  xlab("Log fold change Soil vs. Soybean") +
  ylab("-log10 p-value")
volcano</pre>
```



```
#using the same concept to emphasize only certain points as a different color and shape
ggplot() +
    geom_point(data = diff_abundance, aes(x = lfc_CropSoybean, y = log10_pvalue)) + #defining x as lfc cr
    geom_point(data = diff_abundance_label, aes(x = lfc_CropSoybean, y = log10_pvalue, color = diff_CropS
    theme_classic() +
    geom_text_repel(data = diff_abundance_label, aes(x = lfc_CropSoybean, y = log10_pvalue, color = diff_second = diff_second
```

