## 阿弥陀籤のあれこれ

2025年3月24日11時51分更新

この紙では阿弥陀籤(あみだくじ)を引くと必ず下まで辿り着くことを示す。まずは阿 弥陀籤を行うための土台を用意しよう。ここでは単純無向グラフを用いる。

定義 1 単純無向グラフ X とは、 $V_X$  と  $E_X$  の二つの集合と像が必ず二元集合になる写像  $\operatorname{inc}_X: E_X \to 2^{V_X}$  の組  $(V_X, E_X, \operatorname{inc}_X)$  のことをいう。V を X の頂点集合,E を X の辺集合,  $\operatorname{inc}_X$  を X の隣接写像と呼ぶ。X の二つの頂点 v, w が  $\{v,w\} \in \operatorname{inc}_X(E_X)$  を満たすとき,v と w は隣接するという。

定義 2n と m を正整数とする。次の 5 条件を満たす単純無向グラフ X を**梯子**と呼ぶ。

- (a)  $V_X$  は  $\{1,2,\ldots,n\}$  ×  $\{0,1,2,\ldots,m+1\}$  でラベル付けされている。(i,j) ∈  $\{1,2,\ldots,n\}$  ×  $\{0,1,2,\ldots,m+1\}$  に対応する頂点を  $v_{i,j}$  と書くことにする。
- (b) 各  $i \in \{1, ..., n\}$  に対し  $v_{i,j}$  と  $v_{i,k}$  が隣接するのは j = k+1 のときかつそのときに限る。
- (c) 各 $i \in \{1, ..., n\}$  に対し $v_{i,0}$  は $v_{i,1}$  としか隣接しない。
- (d) 各 $i \in \{1, ..., n\}$  に対し $v_{i,m+1}$  は $v_{i,m}$  としか隣接しない。
- (e) 各頂点の次数は 3 以下である。ここで頂点 v の次数とは # $\{e \in E_X \mid v \in \text{inc}_X(e)\}$  のことをいう。

梯子の辺eの端点 $v_{i,k}$ と $v_{i,l}$ が $i \neq j$ となるときeを**橋**と呼ぶ。

定義 3 梯子 X を考える。 $v_{i,j}$  に対して  $v_{i,j+1},v_{i,j+2},\dots,v_{i,j+k},\dots$  と数えていき, $v_{i,j+k}$  の次数が 3 となるような最初の頂点を  $t(v_{i,j})$  と書くことにする。そのような番号がなければ  $t(v_{i,j})=v_{i,m+1}$  とする。番号  $s\in\{1,\dots,n\}$  に対して以下の操作を考えて,各 i に関し  $w_i$  と  $w_{i+1}$  が隣り合うような頂点の列  $K_s=(w_0,w_1,\dots,w_n,w_{n+1},\dots)$  を構成することを考える。

手順 1  $w_0 = v_{s,0}$  と置き  $t(w_0) = v_{s,n_1}$  となる番号  $n_1$  を取り  $w_1 = v_{s,1}$ ,  $w_2 = v_{s,2}$ , ...,  $w_{n_1} = v_{s,n_1}$  と決定する。 $n_1 = m+1$  であれば  $K_s$  を  $w_{n_1}$  で打ち止めにする。そうでなければ次の手順 2 に移る。

手順 2  $w_{n_1+1}$  を  $w_{n_1}$  と橋によって隣接する頂点と置き, $w_{n_1+1}$  に対して手順 1 のようにして

 $w_{n_1+2},...,w_{(n_1+1)+n_2}$ を決定していく。

 $K_s$  を X における s の阿弥陀籤 と呼ぶ。

例4図1は梯子の例である。この梯子の阿弥陀籤は

$$K_1 = (v_{1,0}, v_{1,1}, v_{2,2}, v_{2,3}, v_{3,1}, v_{3,2}, v_{2,1}, v_{2,2}, v_{1,1}, v_{1,2}, v_{1,3}, v_{1,4}),$$

$$K_2 = (v_{2,0}, v_{2,1}, v_{3,2}, v_{3,3}, v_{3,4}),$$

$$K_3 = (v_{3,0}, v_{3,1}, v_{2,3}, v_{2,4})$$

である。



図 1 n=3, m=3 の梯子の例

**命題 5** 梯子 X と番号 s に対しその阿弥陀籤  $K_s$  は有限列である。

**証明** 背理法による。X が無限列であったとすると  $(v_a, v_{a+1})$  がそれ以降の番号 b において  $(v_b, b_{c+1})$  と一致するような a が存在する。c をこのようなことが成立する最小の番号とし, $v_c = v_{c+k}$  かつ  $v_{c+1} = v_{c+k+1}$  となる番号 k を取る。すると阿弥陀籤の構成法から c > 1 であり

$$K_s = (v_0, v_1, \dots, v_{c-1}, v_c, v_{c+1}, \dots, v_{c+k-1}, v_c, v_{c+1}, \dots, v_{c+k-1}, v_c, \dots)$$

と表すことができる。阿弥陀籤の構成から  $v_{c-1} \neq v_{c+1}$ ,c の最小性から  $v_{c-1} \neq v_{c+k-1}$  であり  $v_c$  の次数は 3 である。ところが  $v_{c-1}$  と  $v_c$  が橋で結ばれているなら  $v_{c+1} = v_{c-1}$  となり矛盾し,そうでないとすると  $v_{c-1} = v_{c+k-1}$  となり矛盾する。ゆえに  $K_s$  は有限列でなければならない。

**注意 6**  $w_0 = v_{s,j}, j \in \{1, ..., m\}$  から手順 1 と手順 2 に従って列 K を構成するとき,K が無限列になる場合がある。図 2 の梯子について, $w_0 = v_{1,1}$  として列 K を構成すると

$$K = (v_{1,1}, v_{1,2}, v_{2,1}, v_{2,2}, v_{1,1}, v_{1,2}, v_{2,1}, v_{2,2}, v_{1,1}, \dots)$$

のように循環する列になる。この例では命題 5 の証明において c=0 となることに注意する。



図2 反例のための梯子