

COMP9414:人工智能第5b讲。语

言模型

韦恩-沃布克

电点 由写 : w. wobcke@unsw. edu. au

新南威尔士大学 ©W.Wobcke等人,2019-

COMP9414语言模型

概率语言模型

- 基于从大型文本/语音语料库中得出的统计数据
 - ▲布朗语料库(1960年代)--100万字
 - ▲ 佩恩树库(1980年代) --700万字
 - ▲ 北美新闻(1990年代)--3.5亿字
 - ▲ IBM 10亿字

COMP9414语言模型

2

本讲座

- 语篇标签化
 - ▲ n-gram模型
 - ▲ 隐马尔科夫模型
 - ▲ 维特比算法
- ■词义歧义
 - ▲ 互惠信息
 - ▲ 基于类的模型

- ▲ 谷歌、脸书和微软 数以万亿计的文字
- 与认为语言能力基于(先天)知识的观点相反的是
- 我的想法是语言能力是可以学习的。.有足够的数据...

COMP9414语言模型

3

潘恩树库标签集

新南威 尔士大 学 ©W.Wobcke等人,2019-2022年

Tag	Description	Example	Tag	Description	Example
CC	coord. conjunction	and, or	RB	adverb	extremely
CD	cardinal number	one, two	RBR	adverb, comparative	never
DT	determiner	a, the	RBS	adverb, superlative	fastest
EX	existential there	there	RP	particle	up, off
FW	foreign word	noire	SYM	symbol	+, %
IN	preposition or sub- conjunction	of, in	TO	"to"	to
JJ	adjective	small	UH	interjection	oops, oh
JJR	adject., comparative	smaller	VB	verb, base form	fly
JJS	adject., superlative	smallest	VBD	verb, past tense	flew
LS	list item marker	1, one	VBG	verb, gerund	flying
MD	modal	can, could	VBN	verb, past participle	flown
NN	noun, singular or mass	dog	VBP	verb, non-3sg pres	fly
NNS	noun, plural	dogs	VBZ	verb, 3sg pres	flies
NNP	proper noun, sing.	London	WDT	wh-determiner	which, that
NNPS	proper noun, plural	Azores	WP	wh-pronoun	who, what
PDT	predeterminer	both, lot of	WP\$	possessive wh-	whose
POS	possessive ending	's	WRB	wh-adverb	where, how
PRP	personal pronoun	he, she			

语篇标签化

- DT大/JJ陪审团/NN评论/VBD在/IN一个/DT数字/NN的/IN其他/J J主题/NNS./。
- 那里/EX是/VBP 70/CD儿童/NNS那里/RB
- 初步/JJ发现/NNS是/VBD报告/VBN在/IN今天/NN's/POS新/NNP英格兰/NNP杂志/NNP的/IN医学/NNP./。

COMP9414语言模型

5

为什么这很难?

含糊不清, 比如说背部

- 盈利增长处于次要地位/JJ
- 后面的一个小建筑/NNN
- 绝大多数参议员支持/VBP该法案
- 戴夫开始向后退/VB走向门口
- 使国家能够回购/偿还债务
- 那时候我21岁了/RB

概率论的表述

- 事件。词w的出现,带有标签t的词的出现
- 给定单词序列 w_1 , ---, w_n , 选择 t_1 , ---, t_n , 以便 $P(t_1$, --, t_n | \mathbf{w}_1 , --, \mathbf{w}_n) 是最大的。
- 应用贝叶斯规则
 - $^{\Delta} P(t1, --, tn|w1, --, wn) = \frac{P(w1, --, wn |t1, --, tn) \circ P(t1, --, tn)}{P(w, t--, wn)}$
 - ▲ 因此最大化*P*(*w*₁, --, *w*_n | **t**₁, --, *t*_n)。 *P*(*t*₁, --, *t*_n)

COMP9414语言模型

7

单元模式

最大化 $P(w_1, --, w_n | \mathbf{t}_1, --, t_n)$ 。 $P(t_1, --, t_n)$

- · 应用独立假设
 - $P(w_1, --, w_n | \mathbf{t}_1, --, t_n) = P(w_1 | \mathbf{t}_1) \circ --- P(w_n | \mathbf{t})_n$
 - · 由t产生的词w的概率与上下文无关
 - $P(t_1, --, t_n) = P(t_1)_{\circ} --- .P(t)_n$
 - · 标签序列的概率与顺序无关
- 估计概率

新南威

尔士大

- P(w|t) = #(w与标签t一起出现)/#(有标签t的词)
- P(t) = #(带有标签t的词)/#词
- · 选择使 $\Pi P(t_i | \mathbf{w}_i)$ 最大化的标签序列。
- 为每个词选择最常见的标签

马尔科夫链

- 贝叶斯网络
 - ▲ P(S₀) 指定初始条件
 - $\triangle P(S_{i+1} | S_i)$ 指定动态(如果每个i都相同,则为静止)。
- 独立性假设
 - $\triangle p(s_{i+1} | s_0, --, s_i) = p(s_{i+1} | s_i)$
 - Δ 过渡概率仅取决于当前状态 S_i 与达到该状态的历史无关 S_0 , - , S_{i-1}
 - △ 鉴于现在,未来是独立于过去的。

COMP9414语言模型

9

隐马尔科夫模型

- 贝叶斯网络
 - ▲ P(S₀) 指定初始条件
 - △ P(S_{i+1} | S_i)指定动态
 - △ P(O_i |S_i)指定 "观察"。
- 独立性假设
 - $\triangle P(S_{i+1} | S_0, --, S_i) = P(S_{i+1} | S_i)$ (马尔可夫链)。
 - $\triangle p(o_i \mid S_0, --, S_{i-1}, S_i, o_0, --, o_{i-1}) = p(o_i \mid S_i)$

Bigram模型

最大化 $P(w_1, --, w_n | \mathbf{t}_1, --, t_n)$ 。 $P(t_1, --, t_n)$

- 应用独立假设(马尔可夫假设)。
 - $^{\Lambda} P(w_1, --, w_n | \mathbf{t}_1, --, t_n) = \Pi P(w_i | \mathbf{t}_i)$
 - ▲ 观察(词)只取决于状态(标签)。
 - $P(t_1, --, t_n) = P(t_n | t_{n-1}) \circ --- .P(t_1 | \phi)$, 其中 $\phi =$ 开始
 - ▲ 大图模型:状态(标签)只取决于先前的状态(标签)。
- 估计概率
 - $\triangle P(t_i | \mathbf{t}_i) = \#((t_i, t_i)$ 发生)/#(t_i 开始一个大数)
 - △ 选择使 Π P(w_i | \mathbf{t}_i)最大化的标签序列。 $P(t_i$ | \mathbf{t}_{i-1})
 - ▲ 由有限状态机生成的语篇

COMP9414语言模型

新南威

尔士大

11

用于POS标签的马尔科夫模型

▲ 观察(词)只取决于当前状态(标签)。

©W.Wobcke等人, 2019-

2022年

过渡概率定义静止分布

用于POS标签的隐马尔可夫模型

COMP9414语言模型

13

计算概率

例子

w	P(w ART)	P(w N)	P(w P)	P(w V)
a	0.36	0	0	0
苍蝇	0	0.025	0	0.076
花	0	0.063	0	0.05
喜欢	0	0.012	0	0.1

P(苍蝇/N像/V a/ART花/N)=

P(N|start)。P(f|lies|N)。P(V|N)。 $P(\bar{a}|X|V)$ 。P(ART|V)。P(a|ART)。P(N|ART)。 $P(\bar{x}|X|V)$

= 0.29 x 0.025 x 0.43 x 0.1 x 0.65 x 0.36 x 1 x 0.063

最有可能的序列,即使P(苍蝇/V) >P(苍蝇/N)。

COMP9414语言模型

15

维特比算法

- 1. 向前扫过(一次一个词),只保存每个标签t的最可能序列(及其概率) $_{i}$ 的 w_{i}
- 2. 选择最高概率的最终状态
- 3. 沿着链子往回走,提取标签序列

词义歧义

例子

我应该换掉那把愚蠢的锁,让你留下钥匙,如果我知道你 会回来打扰我,只要一秒钟。

16

锁定=---

离开 = - - -

第二=---

返回 = - - -

COMP9414语言模型

17

窗户

考虑在一个关于w的窗口中的共同发生情

γ Π									
1)L									
	w_1					w			w_n
	,, I								· · n

- 词的感觉应该与 "相关 "的词类共同出现
- 选择w的意义s, 使 $P(w \text{ as } s|w_1, --, w_n)$ 最大化。
- 応用贝叶斯规则
 - $_{\bullet}$ 最大化 $_{P(w1,--,wn|w \text{ as } s), P(w \to s)}^{P(w1,--,wn|w \text{ as } s), P(w \to s)}$
- 应用独立假设
 - $\triangle P(w_1, --, w_n \mid w \text{ as } s) = \prod P(w_i \mid w \text{ as } s)$

简单的(编造的)例子

词语	桥梁/结构	桥梁/牙齿	任何窗口
牙齿	1	10	300
悬挂	200	1	2000
的	5500	180	500 000
牙医	2	35	900
总数	5651	194	501 500

P (桥梁/结构) =5651/501 500 = 0.0113

 $P(桥/牙) = 194/501500 = 3.87 \times 10^{-4}$

 $P(牙|桥/结构) = 1/5651 = 1.77 \times 10^{-4}$

P (牙|桥/牙) = 10/194 = 0.052

如果窗口包含 "牙齿",则首选桥梁/牙齿

COMP9414语言模型

19

相互信息

$$MI(x, y) = \log \frac{P(x, y)}{P(x)_{\circ} P(y)}$$

$$MI(sense(w), w) = \underbrace{N.\#(sense(w_1), w_2)}$$

- 估计概率。*P(w_i* | w as *s)*
 - △ #(w_i 在w为s周围的n 个词窗口中)/#(w为s的窗口)

■ MI = 0: $sense(w_1)$ 和 w_2 是有条件的独立。

- MI < 0: $sense(w_1)$ 和 w_2 一起出现的次数少于随机次数
- MI > 0: $sense(w_1)$ 和 w_2 一起出现的次数多于随机出现的次数
- 增加相互信息就相当于假设了独立性
- 选择w的感觉 $s = \operatorname{argmaxs} \in \operatorname{senses}_{(w) \Sigma W \mid_{\textit{Guindow}}(w)} MI(s, w_i)$

基于类的方法

- 使用预定义的 "意义类",例如WordNet、Wikipedia
 - ▲锁 → 机械装置 ←工具、曲柄、齿轮、----
 - **△**锁 → *身体部位* ← 头发、眼睛、手、---
- 通过添加词的意义来计算词的意义的计数
- 把所有的P(w为s)仅仅看作是P(s),即P(任何具有s意义的词)。
- 优势
 - △减少空间和时间的复杂性
 - ▲ 降低数据稀疏度
 - ▲ 允许无监督的学习

新南威尔士大学

©W.Wobcke等人, 2019-2022年

COMP9414语言模型

21

总结

- 统计学(和神经网络)模型在许多任务上表现良好
 - ▲ 语料部分标记
 - ▲ 词义歧义
 - △ 对传统分析器的控制
 - △ 概率分析法
- 问题
 - ▲ 不切实际的简化假设(似乎有效)。
 - ▲ 要求有非常多的(标示)文本
 - △ 在(甚至是大型)文本语料库中的单词出现的稀疏程度

△ 随着时间的推移,词语使用的变化(例如,参议员奥巴马)。