

Data Mining

Chapter 1: Introduction

Yunming Ye, Baoquan Zhang
School of Computer Science
Harbin Institute of Technology, Shenzhen

Agenda

- Overview of this Course
- What is Data Mining
- Data mining: Tasks & Applications
- Structured Formulation of Data

1.1 Overview of this Course

TA Information

- 贾鹏飞
- Email: jiapengfei@stu.hit.edu.cn
- Tel:18463102736

- 于德民
- Email: deminy@stu.hit.edu.cn
- Tel: 15898867086

Course Homepage

QQ discussion group

Group number: 649742601

• Group name: 2024春-数据挖掘

Textbook

Data Mining: Concepts and Techniques (Third Edition) by J. Han and M. Kamber, Morgan Kaufmann Publishers, 2012

Other Recommended Books

- Ian, Goodfellow, Yoshua, Bengio, Aaron Courville. Deep Learning. The MIT Press, ISBN: 978-0262035613, USA 2016.
- Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, Vipin Kumar. Introduction to Data Mining (Second Edition, 英文影印版). 机械工业出版社, ISBN: 9787111637882, 2019.

Course Coverage

第9周↩	1←	5-6↩	数据挖掘的基本概念和流程介绍; 数据的结构化表示;数据理解的主 要问题及方法。↩	叶允明↩
第 10 周↩	1←	5-6↩	数据预处理的主要问题及方法;回 归与分类预测概述;线性回归。↩	叶允明↩
第 10 周↩	3←	5-6↩	支持 <u>向量机</u> 概述;硬间隔线性支持 向量机。↩	叶允明↩
第 10 周↩	6←	5-6↩	软间隔线性支持向量机;非线性支持向量机。↩	叶允明↩
第 11 周↩	1←	5-6↩	决策树归纳;集成学习方法。↩	叶允明↩
第 11 周↩	3←	5-6↩	聚类方法概述;经典聚类算法 (一)。↩	叶允明↩
第 12 周↩	1←	5-6↩	经典聚类算法(二); 离群点检测 概述; 经典离群点检测算法。↩	叶允明↩
第 12 周↩	3←	5-6←	推荐系统概述;经典推荐算法。↩	叶允明↩

			i i	
第 13 周↩	3←	5-6↩	深度神经网络 (一): CNN 系列。↩	张保权↩
第 14 周↩	1←	5-6↩	深度神经网络(二): RNN 系列。↩	张保权↩
第 14 周↩	3←	5-6↩	深度神经网络(三): Transformer 系列。↩	张保权↩
第 15 周↩	3←	5-6↩	深度神经网络(四): GAN 系列。↩	张保权↩
第 15 周↩	7←	5-6↩	深度神经网络(五): 扩散模型系列。↩	张保权↩
第 16 周↩	1←	5-6↩	关系图学习方法专题。↩	张保权↩
第 16 周↩	3←	5-6↩	小样本学习、大模型技术专题。↩	张保权↩

Class Format and Requirements

- Pre-requisites: data structure and algorithms, a good working knowledge of Python or Java (for the project implementation).
- Lecture & discussion
- Final grade will be determined as follows:
 - > Homework
 - > Final exam

What can you learn from this course?

- How to design and implement a data mining project in real applications
 - Data mining as a process or workflow
 - Data mining software tools
- Classical & advanced data mining algorithms
 - Including classical and new algorithms
- Basic ideas in data mining research

1.2 What is Data Mining?

Necessity Is the Mother of Invention

- Data explosion problem
 - Automated data collection tools, widely used database systems, Internet and WWW applications
- We are drowning in data, but starving for knowledge!

客户名	年龄	性别	月入账	月消费	
张小明	26	男	30k	5k	
李小红	29	女	25k	15k	

"年龄在25-30、没有入账20-30k、消费支出5k-10k,则很可能购买A基金产品"

What Is Data Mining?

- Data mining (knowledge discovery from data)
 - Extraction of interesting (<u>non-trivial</u>, <u>implicit</u>, <u>previously unknown</u> and <u>potentially useful</u>) patterns or knowledge from huge amount of data
 - Apply extracted knowledge for decision making

How to implement a data mining project?

Example: weather prediction

- Predicting the mean temperature of next day
 - daily climate time series data

Date	Mean Temp	Humidity	Wind Speed	Pressure	
	•••				
2017-01-02	7.40	92.00	2.980	1017.80	
2017-01-03	7.17	87.00	4.63	1018.67	

How to Implement a Data Mining Project

- Process model for practical DM project
 - Workflow
 - > Iterative

Data Mining: On What Kinds of Data?

- Traditional database and appllications
 - > Relational database, data warehouse, transactional database
- Advanced database and advanced applications
 - > Text databases and the World-Wide Web
 - Multimedia data
 - Data streams and time-series data, sequence data (incl. biosequences)
 - Spatial data and spatiotemporal data
 - Graphs, social networks and link databases

The role of Data Mining System in Business Intelligence Platform

Data Mining: Confluence of Multiple Disciplines

Major Research Issues in Data Mining

Mining methodology

- Mining different kinds of knowledge from diverse data types, e.g., bio, stream, Web
- Performance: efficiency, effectiveness, and scalability
- Handling noise and incomplete data
- Incorporation of background knowledge
- Parallel, distributed and incremental mining methods

User interaction

- Data mining query languages and ad-hoc mining
- Expression and visualization of data mining results

Applications and social impacts

- Domain-specific data mining
- Protection of data security, integrity, and privacy

A Brief History of Data Mining Society

- 1989 IJCAI Workshop on Knowledge Discovery in Databases
 - Knowledge Discovery in Databases (G. Piatetsky-Shapiro and W. Frawley, 1991)
- 1991-1994 Workshops on Knowledge Discovery in Databases
 - Advances in Knowledge Discovery and Data Mining (U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, 1996)
- 1995-1998 International Conferences on Knowledge Discovery in Databases and Data Mining (KDD'95-98)
 - Journal of Data Mining and Knowledge Discovery (1997)
- ACM SIGKDD conferences since 1998 and SIGKDD Explorations
- More conferences on data mining
 - PAKDD (1997), PKDD (1997), SIAM-Data Mining (2001), (IEEE) ICDM (2001), etc.
- ACM Transactions on KDD starting in 2007

Conferences and Journals on Data Mining

- KDD Conferences
 - ACM SIGKDD Int. Conf. on Knowledge Discovery in Databases and Data Mining (KDD)
 - > SIAM Data Mining Conf. (SDM)
 - (IEEE) Int. Conf. on Data Mining (ICDM)
 - Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD)
 - Conf. on Principles and practices of Knowledge Discovery and Data Mining (PKDD)

- Other related conferences
 - ACM SIGMOD
 - VLDB
 - (IEEE) ICDE
 - WWW, SIGIR
 - ICML, CVPR, NIPS
- Journals
 - Data Mining and Knowledge Discovery (DAMI or DMKD)
 - IEEE Trans. On Knowledge and Data Eng. (TKDE)
 - KDD Explorations
 - ACM Trans. on KDD

1.3 Data Mining: Tasks & Applications

Classification

来深圳出差,组织深圳和北京的小伙伴们一起陶陶居了一把,多么美好的记忆啊。

毕竟是深圳,广式点心一类的还是比不上广州,深圳同事考虑再三推荐陶陶居,于是我们就.....

Regression

Clustering Definition

Given a set of data points, find 'high-quality' clusters

Outlier/Anomaly Detection

- Detect significant deviations from normal behavior
- Applications:
 - Credit Card Fraud Detection
 - Network Intrusion
 Detection

Association Rule Discovery

- Given a set of records each of which contain some number of items from a given collection;
 - Produce dependency rules which will predict occurrence of an item based on occurrences of other items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

```
Rules Discovered:

{Milk} --> {Coke}

{Diaper, Milk} --> {Beer}
```

Recommendation System: Collaborative Filtering

	Book1	Book2	Book3	Book4	Book5	Book6	
User1							
User2							
User3							
User4							
User5							
User6	?	?		?	?	?	?

Other Advanced Tasks

 Structured prediction Ground truth **Prediction result**

Other Advanced Tasks

Graph mining tasks

Why Data Mining?—Potential Applications

- Data analysis and decision support
 - Market analysis and management
 - Target marketing, customer relationship management (CRM), market basket analysis, cross selling, market segmentation
 - > Risk analysis and management
 - Forecasting, customer retention, improved underwriting, quality control, competitive analysis
 - Fraud detection and detection of unusual patterns (outliers)
- Other Applications
 - Text mining (news group, email, documents) and Web mining
 - Stream data mining
 - Bioinformatics and bio-data analysis
 - **>**

1.4 Structured Formulation of Data

What is Data?

Objects

- Data: observation and measurement of world
- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as variable, field, characteristic, or feature
- A collection of attributes describe an object
 - Object is also known as record, point, case, sample, entity, or instance

Attributes

Structured Data

- Data Structuring:
 - [Object Attribute Attribute Value]

Simplest structured data:

$$\begin{aligned} \textbf{\textit{D}} &= \{x_1, x_2, \dots, x_i, \dots, x_m\}, \ (i = 1 \dots m), \\ \text{where } x_i &= \{x_{i1}, x_{i2}, \dots, x_{ij}, \dots, x_{in}\} \ (j = 1 \dots n), \ x_{ij} \in \textbf{\textit{R}} \end{aligned}$$

Types of Attributes

- Numeric attribute (Continuous)
 - Has real numbers (floating-point) as attribute values
 - Sales, temperatures, length, salary
- Categorical attribute (Discrete)
 - ✓ Nominal
 - Examples: ID numbers, eye color, zip codes
 - One-hot encoding
 - Ordinal
 - Examples: {"A", "B+", "C"}
 - represented as (or mapped to) integer variables

Document Data

"Tom is playing ball"

"He is a team coach"

	team	coach	pla y	ball	score	game	wi n	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Color Image Data

Graph Data

Spatio-Temporal Data

Average Monthly Temperature of land and ocean

Example: Sales Forecasting

举报 🖒 7 💬 3

2021-11-29 17:08

- Problem: How to predict product sales effectively?
- What data do you need?
- How to process the data?
- How to modeling?

Core Challenge for Data Mining

- Heterogeneous and uncertain attributes from multiple data sources
- Find correlation in big data

图片引自http://blog.sina.com.cn/s/blog_6773d7b90100jnsd.html

0	1	1	0	0	0	0	0
1	0	0	7	7	0	0	0
1	0	0	0	0	1	1	0
0	1	0	0	0	0	0	1
0	1	0	0	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	0	0	1	0	0
0	0	0	1	1	0	0	0

Acknowledgements

- Some text, figures and formulations are from WWW. Thanks for their sharing. If you have copyright claim please contact with me at yym@hit.edu.cn.
- This lecture is distributed for nonprofit purpose.

Thank You for Your Attention

Contact me at: yym@hit.edu.cn

Tel: 26033008, 13760196623

Address: Rm.1402, H# Building