$$\begin{split} S_{N_{i}}^{t} &= S_{N_{i}}^{t} \otimes S_{N_{i}}^{t} \\ &= \left\{ \left(-\varepsilon \right) \right\} \otimes \left\{ f \right\} \\ &= \left\{ \left(-\varepsilon , f \right) \right\} \\ S_{N_{i}}^{f} &= \left(S_{N_{i}}^{f} \times S_{N_{i}}^{t} \right) \cup \left(S_{N_{i}}^{t} \times S_{N_{i}}^{f} \right) \\ &= \left\{ \left(+\varepsilon \right), \left(= \right) \right\} \times \left\{ f \right\} \right) \cup \left\{ \left(-\varepsilon \right) \right\} \times \left\{ t \right\} \right) \\ &= \left\{ \left(+\varepsilon , f \right), \left(= , f \right), \left(-\varepsilon , t \right) \right\} \\ S_{N_{i}} &= \left\{ \left(-\varepsilon , f \right), \left(+\varepsilon , f \right), \left(= , f \right), \left(-\varepsilon , t \right) \right\} \\ S_{N_{i}}^{f} &= S_{N_{i}}^{f} \otimes S_{N_{i}}^{f} \\ &= \left\{ \left(+\varepsilon , f \right), \left(= , f \right), \left(-\varepsilon , t \right) \right\} \otimes \left\{ \left(= \right), \left(-\varepsilon \right) \right\} \\ &= \left\{ \left(+\varepsilon , f , = \right), \left(= , f , -\varepsilon \right), \left(-\varepsilon , t , = \right) \right\} \\ S_{N_{i}}^{t} &= \left\{ S_{N_{i}}^{t} \times f_{N_{i}} \right\} \cup \left\{ \left(f \right) \right\} \cup \left\{ \left(+\varepsilon , f \right) \right\} \times \left\{ \left(+\varepsilon \right) \right\} \right) \\ &= \left\{ \left(-\varepsilon , f \right) \right\} \times \left\{ \left(= \right) \right\} \cup \left\{ \left(+\varepsilon , f \right) \right\} \times \left\{ \left(+\varepsilon \right) \right\} \right\} \\ S_{N_{i}} &= \left\{ \left(+\varepsilon , f , = \right), \left(+\varepsilon , f , +\varepsilon \right) \right\} \\ S_{N_{i}} &= \left\{ \left(+\varepsilon , f , = \right), \left(-\varepsilon , f , -\varepsilon \right), \left(-\varepsilon , f , = \right), \left(+\varepsilon , f , +\varepsilon \right) \right\} \\ S_{N_{i}} &= \left\{ \left(+\varepsilon , f , = \right), \left(-\varepsilon , f , -\varepsilon \right), \left(-\varepsilon , f , = \right), \left(+\varepsilon , f , +\varepsilon \right) \right\} \\ S_{N_{i}} &= \left\{ \left(+\varepsilon , f , = \right), \left(-\varepsilon , f , -\varepsilon \right), \left(-\varepsilon , f , = \right), \left(+\varepsilon , f , +\varepsilon \right) \right\} \\ S_{N_{i}} &= \left\{ \left(+\varepsilon , f , = \right), \left(-\varepsilon , f , -\varepsilon \right), \left(-\varepsilon , f , = \right), \left(-\varepsilon , f , -\varepsilon \right) \right\} \\ S_{N_{i}} &= \left\{ \left(+\varepsilon , f , = \right), \left(-\varepsilon , f , -\varepsilon \right), \left(-\varepsilon , f , -\varepsilon \right), \left(-\varepsilon , f , -\varepsilon \right) \right\} \\ S_{N_{i}} &= \left\{ \left(+\varepsilon , f , -\varepsilon \right), \left(-\varepsilon , f , -\varepsilon \right), \left(-\varepsilon , f , -\varepsilon \right), \left(-\varepsilon , f , -\varepsilon \right) \right\} \\ S_{N_{i}} &= \left\{ \left(+\varepsilon , f , -\varepsilon \right), \left(-\varepsilon , f , -\varepsilon \right), \left(-\varepsilon , f , -\varepsilon \right), \left(-\varepsilon , f , -\varepsilon \right) \right\} \\ S_{N_{i}} &= \left\{ \left(+\varepsilon , f , -\varepsilon \right), \left(-\varepsilon , f , -\varepsilon \right), \left(-\varepsilon , f , -\varepsilon \right), \left(-\varepsilon , f , -\varepsilon \right) \right\} \\ S_{N_{i}} &= \left\{ \left(+\varepsilon , f , -\varepsilon \right), \left(-\varepsilon , f , -\varepsilon \right), \left(-\varepsilon , f , -\varepsilon \right) \right\} \\ S_{N_{i}} &= \left\{ \left(+\varepsilon , f , -\varepsilon \right), \left(-\varepsilon , f , -\varepsilon \right), \left(-\varepsilon , f , -\varepsilon \right) \right\} \\ S_{N_{i}} &= \left\{ \left(+\varepsilon , f , -\varepsilon \right), \left(-\varepsilon , f , -\varepsilon \right), \left(-\varepsilon , f , -\varepsilon \right) \right\} \\ S_{N_{i}} &= \left\{ \left(+\varepsilon , f , -\varepsilon \right), \left(-\varepsilon , f , -\varepsilon \right), \left(-\varepsilon , f , -\varepsilon \right) \right\} \\ S_{N_{i}} &= \left\{ \left(+\varepsilon , f , -\varepsilon \right), \left(-\varepsilon , f , -\varepsilon \right), \left(-\varepsilon , f , -\varepsilon \right) \right\} \\ S_{N_{i}} &= \left\{ \left(+\varepsilon , f , -\varepsilon \right), \left(-\varepsilon , f , -\varepsilon \right), \left(-\varepsilon , f , -\varepsilon$$

针对谓词 p_r ,满足以上5个BRE约束的测试用例如表2-9所示。对比图2-19、图2-20,注 意图中结点的 BRO 约束集与 BRE 约束集的相似性。另外,表 2-8 与表 2-9 中的 $t_1 \sim t_4$ 是一样 的,只有 t_5 不一样; 表 2-8 中的 t_5 不能满足约束 $(+\varepsilon)$,因为 $\varepsilon=1$ 。练习 2. 34 要求读者比较 用算法 BRO-CSET、BRE-CSET 导出的测试用例的差异。

	77	c P	r > s	测 试 用 例		
	a + H < c					
1	+ ε	f	=	$\langle a=1, b=1, c=1, p=false, r=1, s=1 \rangle$		
			11360-316	< a = 1, b = 0, c = 1, p = false, r = 1, s = 2 >		
	=	f	-ε			
2				$\langle a=1, b=1, c=3, p=true, r=1, s=1 \rangle$		
	- ε	-ε t -				
	-ε f	f	= 100	< a = 0, b = 2, c = 3, p = false, r = 0, s = 0 >		
		S (2)		< a = 1, b = 1, c = 1, p = false, r = 2, s = 0 >		
5	+ &	f	+ ε	$\langle a = 1, b = 1, c = 1, p = 10155, \cdots \rangle$		

表 2-9 满足例 2.30 中谓词 p,的 BRE 约束的测试用例($\varepsilon = 1$)

4. _ 生成非奇异表达式的 BOR 约束集

前面章节描述的算法 BOR-CSET、BRO-CSET、BRE-CSET 为只包含奇异表达式的谓词生成 约束集,以便最后生成 BOR、BRO、BRE 充分的测试集。然而,当谓词包含非奇异表达式, 在遍历谓词的抽象语法树过程中,合并结点的约束集时可能会引起冲突(参见练习2.37)。如 果对这些冲突处理得不好的话,导出的约束集不能确保能够检测出被测谓词中所有的布尔操作 符故障。在本节中,将改进算法 BOR-CSET, 以便能为包含非奇异表达式的谓词生成约束集。

根据第2.7.1节中的解释,在一个非奇异表达式中,某个布尔变量出现了多次。例如,下 表列出了一些非奇异表达式及其析取范式。注意,省略了 AND 运算符,用+代替 OR 运算符, 用上划线代表字母的补。

谓词(<i>p</i> _r)	析取范式 (DNF)	p,中相互奇异的组件
ab(b+c) $a(bc+bd)$ $a(bc+b+de)$	$abb + abc$ $abc + abd$ $abc + a \bar{b} + ade$	a; b(b+c) a; (bc+bd) $a; (bc+\overline{b}+de)$

注意,上表中相互奇异的组件并不完全是奇异组件。