$$\vec{U}_1 = \vec{V}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

$$\boxed{2} \quad \overrightarrow{U}_2 = \overrightarrow{V}_2 - \cancel{P} \cancel{N} \overrightarrow{V}_2$$

$$\frac{\text{proj}_{\overrightarrow{V_1}}\overrightarrow{V_2} = (||\overrightarrow{V_2}|| \cos \theta) \widehat{V_1}}{= (||\overrightarrow{V_2}|| \cos \theta) \overrightarrow{V_1}}$$

$$= \left(\frac{\overrightarrow{V}_2 \cdot \overrightarrow{V}_1}{||\overrightarrow{V}_1||^2} \right) \overrightarrow{V}_1$$

$$= \left(\begin{array}{c} \overrightarrow{V_2} \cdot \overrightarrow{V_1} \\ \overrightarrow{V_2} \cdot \overrightarrow{V_1} \end{array}\right) \overrightarrow{V_1}$$

$$= \left(\frac{2(1) + 3(1) + 0(0)}{1(1) + 1(1) + 0(0)}\right) \overrightarrow{V_1}$$

$$=$$
 $5\overrightarrow{V_1}$

$$= 2.5 \overrightarrow{V_1}$$

= $2.5 (1)$

$$=$$
 $\left(\begin{array}{c} -2.5 \\ 0 \end{array}\right)$

$$\vec{\mathsf{U}}_2 = \vec{\mathsf{V}}_2 - \mathsf{proj}_{\vec{\mathsf{V}}_1} \vec{\mathsf{V}}_2$$

$$\vec{U}_{2} = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} - \begin{pmatrix} 2.5 \\ 2.5 \\ 0 \end{pmatrix}$$

$$\vec{U}_{2} = \begin{pmatrix} -0.5 \\ 0.5 \\ 0 \end{pmatrix}$$

3 To verify
$$\overrightarrow{u}_1 \perp \overrightarrow{u}_2$$
, i.e., $\cos \theta = 0$ where $\theta = 90$ is $\cos \theta = |\overrightarrow{u}_1 \cdot \overrightarrow{u}_2|$ $|\overrightarrow{u}_1| ||\overrightarrow{u}_2||$

$$\frac{1110311}{2+0} = \sqrt{2}$$

$$||\vec{u}_1|| = \sqrt{|^2 + 1^2 + 0} = \sqrt{2}$$

$$||\vec{u}_2|| = \sqrt{(-0.5)^2 + (0.5)^2 + 0} = \sqrt{0.5}$$

$$||\vec{u}_1|| ||\vec{u}_2|| = (\sqrt{2})(\sqrt{0.5}) = 1$$

$$\vec{u}_1 \cdot \vec{u}_2 = 1(-0.5) + 1(0.5) + 0(0)$$

= -0.5 + 0.5 +0

Am.: cos
$$\theta = 0$$

thereby proving that the angle between vectors \vec{u}_i and \vec{u}_z is 90° and are perpendicular to each other.

4] Yes, the orthogonal set of vectors STi_1 , Ti_2 y span the xy-plane as their z-coordinate is 0. If represented in a 3D space it can be seen that they span only the xy-plane as per below. $||\vec{u}_1|| = \sqrt{|^2+|^2+0}$ $||\overrightarrow{u_2}|| = \sqrt{(-0.5)^2 + (0.5)^2 + 0} = \sqrt{0.7071}$ 10.5