Projektiranje informacijskih sustava

SDLC faza analize - Modeliranje procesa (process modeling)

Ak. god. 2011/2012

- Procesni model (process model) ili model procesa je formalni način predstavljanja kako poslovni sustav radi.
- Procesni model opisuje aktivnosti koje se izvode i kako podaci teku među njima.
- Proces se obavlja uvijek na jednak način tj. za određeni ulaz daje isti izlaz. Trajanje procesa je konačno i odredivo tj. poznat je početak procesa, završetak, i ponavljanje.

- Uobičajena tehnika koja se koristi za stvaranje modela procesa je dijagram toka podataka (*Data Flow Diagrams*, DFD).
- Bez obzira što naziv dijagrama toka podataka može implicirati temeljenje na podacima u fokusu DFD tehnike su aktivnosti, procesi.
- Pored navedene metode koriste se i druge (npr. IDEFO (Integration Definition for Function Modeling)).

- U fazi analize se postavljaju <u>logički modeli procesa</u> koji opisuju procese bez da sugeriraju kako se oni realiziraju.
- U ovoj fazi je bitno da analitičar ispravno identificira procese bez opterećivanja implementacijskim detaljima.
- U fazi dizajna se logički modeli prebacuju u <u>fizičke</u> modele procesa koji pružaju informacije koje su neophodne da bi se izgradio konačni sustav.

Logički model

- Kupac izabire proizvode koje će naručiti iz dućana.
- Kupac preko web sučelja izabire proizvode koje će naručiti preko automatski generirane narudžbe koja će se e-mailom poslati u dućan.

ILI

 Kupac preko tiskanog kataloga izabire proizvode koje će naručiti telefonom iz dućana.

ILI

• Kupac dođe u dućan izabrati proizvode i usmeno kaže prodavatelju svoju narudžbu.

Dijagram toka podataka (DFD)

- DFD omogućava grafički prikaz procesa u sustavu i tijeka podataka između procesa.
- DFD dijagram se oslanja na tzv. DFD jezik koji definira DFD simbole, sintaktička pravila, konvencije imenovanje.
- DFD ima četiri osnovna elementa koji su prikazani sa odgovarajućim grafičkim simbolom. Ti elementi su:
 - 1. proces
 - 2. tok podataka
 - 3. spremište podataka
 - 4. vanjski entitet

Dijagram toka podataka (DFD)

- DFD je različit od dijagrama toka (flowchart) koji je namijenjen prikazivanju kontrole toka izvršavanja algoritma.
- DFD ne definira redoslijed izvršavanja procesa, niti da li se procesi izvršavaju paralelno ili sekvencijalno itd., dok dijagram toka ne definira ulazne i izlazne tokove podataka.
- Kod DFD-a se obično koriste dva stila simbola (Chris Gane i Trish Sarson, Tom DeMarco i Ed Yourdon), ali ne zajedno!

	Data Flow Diagram Element	Typical Computer-Aided Software Engineering Fields	Gane and Sarson Symbol	DeMarco and Yourdan Symbol
proces	Every <i>process</i> has A number A name (verb phase) A description One or more output data flows Usually one or more input data flows	Label (name) Type (process) Description (what is it) Process number Process description (Structured English) Notes	Name	Name
tok podataka	Every data flow has A name (a noun) A description One or more connections to a process	Label (name) Type (flow) Description Alias (another name) Composition (description of data elements) Notes	Name	Name
spremište podataka	Every data store has A number A name (a noun) A description One or more input data flows Usually one or more output data flows	Label (name) Type (store) Description Alias (another name) Composition (description of data elements) Notes	D1 Name	D1 Name
vanjski entitet	Every <i>external entity</i> has A name (a noun) A description	Label (name) Type (entity) Description Alias (another name) Entity description Notes	Name	Name

Proces

- Aktivnost ili funkcija obavljena zbog specifičnog poslovnog razloga, bilo da je ručni ili kompjuteriziran.
- Preporučeno imenovanje procesa je sa glagolom i imenicom (npr. "Naruči proizvod", "Otvori kredit", "Prijavi ispit",...)
- Svaki proces <u>mora</u> imati barem jedan ulazni tok i barem jedan izlazni tok podataka. Ako proces nešto radi generira nekakve izlazne podatke. Da bi proces nešto napravio treba imati nekakve ulazne podatke.

Tok podataka

- Jedan podatak (npr. ime proizvoda) ili logička kolekcija podataka (npr. podaci o proizvodu – šifra proizvoda, ime proizvoda, jedinična količina, ...).
- Uvijek započinje ili završava unutar procesa (jedan kraj toka podataka mora biti povezan sa procesom), jer tokovi podataka služe za povezivanje procesa.
- Tok podatka pokazuje koji ulazi idu u proces tj. koje izlaze proces kreira
- Preporučeno imenovanje toka podatka je sa imenicom (npr. "Ime", "Šifra", "Proizvod", "Ispit",...)

- Spremište podataka
 - Skup podataka koji su na neki način pohranjeni.
 - Spremište podataka se označava imenicom, te mu se dodjeljuje identifikacijski broj i opis (npr. "B1 Proizvodi",...).
 - Tokovi podataka koji izlaze iz spremišta pokazuju da je dohvaćen podatak iz spremišta.
 - Tokovi koji ulaze u spremište pokazuju da je dodan novi ili izmijenjen postojeći podatak.
 - Svako spremište podataka <u>mora</u> imati barem jedan ulazni tok i barem jedan izlazni tok podataka (ukoliko skladište ne održava ili koristi neki drugi informacijski sustav).
 - Ukoliko isti proces i dohvaća podatke iz skladišta i upisuje podatke u skladište tokovi podataka se trebaju prikazati odvojeno.

- Vanjski entitet
 - Osoba, organizacija ili sustav koji nije sastavni dio promatranog sustava, ali je u interakciji s njim.
 - Vanjski entiteti predstavljaju izvorište i/ili odredište podataka i predstavljaju granice sustava.
 - Svaki vanjski entitet treba imati oznaku i opis. Za označavanje vanjskog entiteta se koriste imenice (npr: "Student", "Kupac",...).
- Najvažnije je shvatiti da je vanjski entitet objekt iz "vanjskog" svijeta koji je povezan sa sustavom. Može i ne mora biti dio organizacije. Ljudi koji obavljaju proces NISU vanjski entiteti.

CASE DFD

- Dataflow dijagrami se mogu razvijati korištenjem različitih CASE alata.
- Na slajdu 9 su pored simbola navedeni i podaci koje uobičajno CASE alati koriste prilikom kreiranja dijagrama.
- Alati mogu biti niske razine poput Visio alata koji omogućava samo prikaz dijagrama do alata više razine poput Visible Analyst Workbench alata koji omogućava i provjeru sintaktičke ispravnosti dijagrama (http://www.visible.com/Solutions/edu_price.htm).

- Veliki poslovni procesi su presloženi da bi se prikazali jednim DFD-om, tako da je većina procesnih modela sastavljena od niza DFDova hijerarhijski organiziranih.
- Dijagram najviše razine bi trebao predstavljati kratak pregled cijelog sustava dok se na svakoj nižoj razini sustav prikazuje sve detaljnije.
- Pri hijarhijskom kreiranju DFD-a koriste se dva postupka:

- 1. Dekompozicija (*decomposition*) je postupak predstavljanja procesa kroz hijerarhiju DFD dijagrama pri čemu svaki *child* dijagram prikazuje dio dijagrama roditelja, ali sa više detalja.
- 2. Uravnoteženje ili balansiranje (balancing) osigurava da informacije predstavljene na jednoj razini hijerarhije DFD dijagrama odgovaraju informacijama predstavljenim na sljedećoj razini hijerarhije DFD dijagrama.

- Nije definirano na koji način se elementi DFD-a slažu.
- Uobičajeno je krenuti sa slaganjem procesa sa lijeva na desno i odozgo prema dole prema redosljedu kojim se procesi izvode, jer je to uobičajeni način pregledavanja dokumenta.
- Na dijagramu elemente treba organizirati tako da ima što manje križanja tokova podataka jer se tako povećava preglednost.
- Preporučeno je da dijagram ima između 3 i 7 (maksimalno) 9 procesa. Ako ima više od 9 procesa na toj razini predstavljanja sustava potrebno je neke procese grupirati zajedno, i prikazati ih na idućoj nižoj, detaljnijoj razini.

Odnos između razina DFD-a

Process M

- Konteksni dijagram (context diagram) je prvi DFD u svakom poslovnom procesu. Prikazuje kontekst u koji se poslovni proces uklapa.
- Sveukupni poslovni proces prikazuje kao samo jedan proces. Prikazuje sve vanjske entitete koji primaju informacije iz sustava ili donose informacije u sustav.
- Skladišta podataka se obično ne prikazuju u kontekstnom dijagramu (osim ako i sami nisu "vanjski" entiteti za promatrani sustav), a onda se i predstavljaju kao vanjski entiteti.

- Dijagram 0 razine (level 0 diagram) prikazuje sve glavne procese koje obuhvaća cjelokupni sustav.
- Prikazuje kako su glavni procesi povezani pomoću tokova podataka. Prikazuje vanjske entitete i glavne procese s kojima su oni u interakciji. Dodaje spremišta podataka.
- Svi procesni modeli imaju jedan i samo jedan dijagram 0 razine.

- Tokovi podataka (X,Y,Z) iz kontekstnog dijagram se također pojavljuju u dijagramu 0 razine.
- Dijagram 0 razine zamjenjuje jedini proces iz kontekstnog dijagrama (0) sa nova tri procesa (1,2,3). Dodaje se spremište podataka. Dodaju se dva nova toka podataka između procesa (A,B).
- Vanjski entiteti A i B su identični u kontekstnom dijagrama i u dijagramu 0 razine.

- Postupak dekompozicije se sastoji u razlaganju procesa sa promatrane razine hijerahije opisa sustava na manje sastavne dijelove. Ti sastavni dijelovi trebaju u potpunosti predstavljati proces više razine i uključivati sve funkcionalnosti razloženog procesa.
- Postupak balansiranja dijagrama osigurava da se sve informacije (tokovi podataka, skladišta) sa više razine hijerahije opisa sustava zadrže i na sljedećoj nižoj razini opisa sustava.

- Na sljedećoj razini se nalaze dijagrami 1 razine.
- Jedan dijagram 1 razine se radi za svaki glavni proces na dijagramu 0 razine. Prikazuje sve interne procese koje sačinjavanju jedan proces dijagrama 0 razine.
- Prikazuje kako se informacija kreće od i prema svakom od tih procesa.
- Ako se roditeljski (parent) proces rastavlja u tri procesa djecu (child), ova tri child procesa u potpunosti i kompletno izgrađuju parent proces.

Dijagram toka podataka (DFD)

- Procesi 2.1, 2.2 i 2.3 su "djeca" procesa 2 iz dijagrama 0 razine.
- Ti procesi u potpunosti izvršavaju sve funkcije procesa 2.
- Uobičajeno je prikazivati spremišta podataka na svim razinama DFD-a.

- Dijagram 2 razine prikazuje sve procese od kojih se sastoji jedan proces na dijagramu 1 razine.
- Prikazuje kako se informacija kreće od i prema svakom od ovih procesa. Dijagrami 2 razine nisu uvijek potrebni za sve procese 1 razine.
- Pravilno numeriranje (označavanje brojevima) svakog procesa pomaže korisniku razumjeti gdje se proces uklapa u cjelokupni sustav i na kojoj razini hijerarhijskog DFD-a se nalazi (2 proces iz dijagrama 0 razine, 2.1 proces iz dijagrama razine 1, 2.1.3 proces iz dijagrama razine 2,....).

- Proces 2.2 je rastavljen na procese 2.2.1,
 2.2.2 i 2.2.3
- Konstantno treba voditi računa o uravnoteženju sa prethodnom razinom dijagrama

Dijagram toka podataka (DFD)

- Kad prestati rastavljati DFD-e?
- Nije potrebno sve procese dovesti do iste razine dekompozicije. Neki dijelovi sustava mogu biti složeniji od drugih pa zahtijevaju veću dekompoziciju.
- Jedno pravilo koje se može koristiti za dubinu dekompozicije je da se svaki proces može realizirati sa 25-50 linija koda. Ili da opis procesa ne bude veći od jedne stranice.

Alternativni tokovi podataka

- Kada proces može proizvesti drugačije tokove podataka u drugačijim uvjetima kažemo da postoje <u>alternativni tokovi podataka</u>.
- Na dijagramu se uvijek zasebno prikazuju svi mogući tokovi podataka iz procesa i iz samog dijagrama nije vidljivo da li se tokovi podataka međusobno isključuju, da li se mogu dešavati istovremeno i sl.
- Naravno da je to bitno prilikom realizacije procesa pa je svaki proces iz DFD popraćen i tekstualnim <u>opisom procesa</u> (process description) koji detaljnije objašnjava proces pa i moguće višestruke tokove podataka.

Alternativni tokovi podataka

 Npr. na ovom DFD dijagramu proces "Primiti narudžbu" ima dva izlazna toka "Plaćeno" i "Nije plaćeno". Da li se ti tokovi mogu generirati paralelno, da li se međusobno isključuju,...?

Opisi procesa

- Tekstualni opisi procesa pružaju više informacija o procesu.
- Npr. proces "Primi narudžbu" prima podatke od kupca od željenim proizvodima, te pohranjuje te podatke u bazu zajedno sa podatkom da li su proizvodi plaćeni ili nisu plaćeni.

Opisi procesa

- Ako je logika na kojoj se temelji proces prilično kompleksna, može biti potrebno više detalja u obliku:
 - 1. Strukturiranog govornog jezika kratke rečenice koje opisuju što proces radi.
 - 2. Stabla odlučivanja (*decision trees*) prikazuju logiku odlučivanja u procesu kroz čvorove (pitanje) i grane (odgovore).
 - 3. Tablica odlučivanja (*decision tables*) prikazuju logiku odlučivanja kroz pravila koja uvjete povezuju sa akcijom.

Stabla odlučivanja

- Stabla odlučivanja su uobičajan način predstavljanja informacija (različitog tipa – numeričke, tekstualne,..) u obliku grafa.
- Podržavaju jednostavan mehanizam izvođenja zaključka.

Decision Tree: The Obama-Clinton Divide

Tablice odlučivanja

 Tablice odlučivanja slično kao i stabla odlučivanja omogućavaju modeliranje podataka u obliku ifthen-else (ili switchcase) pravila.

	Behaviour Status	Spends less than 100 dollars	Spends more than 100 dollars	Spends more than 150 dollars	Spends more than 200 dollars
1	Customer with bronze status	Pays 5 dollars for item	Pays 4 dollars for item	Pays 3 dollars for item	Pays 2 dollars for item
2	Customer with silver status	Pays 4 dollars for item	Pays 3 dollars for item	Pays 2 dollars for item	Pays 1 dollar for item
3	Customer with gold status	Pays 3 dollars for item	Pays 2 dollars for item	Pays 1 dollar for item	Item is free

Izrada DFD-a

- Izrada dijagrama toka podataka počinje sa slučajevima korištenja i definicijama zahtjeva.
- Identificirani slučajevi korištenja obično postaju procesi na 0 DFD razini, a imena slučajeva korištenja postaju imena procesa uz poštivanje navedenih pravila. Ulazi i izlazi slučaja korištenja postaju tokovi podataka s time da se obično se pojedinačni podaci spajaju u jedinstveni tok (ime, prezime + adresa = korisnički podaci).

Izrada DFD-a

- Izrada DFD-a kreće sa kontekstnim dijagramom gdje se cijeli sustav prikazuje kao jedan proces.
- Kod kontekstnog dijagrama bitno je identificirati vanjske entitete.
- Sljedeći korak je izrada fragmenata DFDa, po jednog za svaki slučaj korištenja.

- DFD fragment je dio DFD-a koji će se kombinirati sa drugim fragmentima u jedinstveni dijagram pa na taj način iz slučajeva korištenja dobijemo DFD dijagram 0 razine.
- DFD-ovi spajaju definirane slučajeve korištenja u jedinstveni dijagram.

- Nakon toga ide potrebna hijerarhijska dekompozicija do proizvoljne dubine.
 Potrebno je rastaviti procese 0 razine prema potrebi u dijagrame 1 razine, procese 1 razine u dijagrame 2 razine...
- Za ovo se koriste detalji slučajeva korištenja koji predstavljaju pojedinačne aktivnosti unutar slučaja korištenja.

- Zadnji korak u izradi DFD-a je validacija dijagrama.
- Potrebno je napraviti provjeru sintaktičkih i semantičkih grešaka u dijagramima.
- Izrada DFD je iterativan proces, koji se često izvodi sa nekoliko ponavljanja navedenih koraka u izradi DFD-a.

Izrada kontekstnog dijagrama

- 1. Nacrtati jedan proces koji predstavlja cijeli sustav (proces 0).
- 2. Pronaći sve ulaze i izlaze navedene na vrhu svih slučajeva korištenja koji dolaze iz ili idu prema vanjskim entitetima i nacrtati ih kao tok podataka u proces.
- 3. Nacrtati vanjske entitete kao izvor ili odredište toka podataka.

Izrada kontekstnog dijagrama

Izrada dijagram 0 razine

- 1. Svaki slučaj korištenja pretvoriti u DFD fragment.
- Numerirati proces istim brojem kojim je numeriran slučaj korištenja.
- Imenovanje DFD procesa treba poštivati norme imenovanja pa se imena slučajeva korištenja trebaju prilagoditi.
 Promijeniti ime procesa u glagolski izraz.
- 4. Izrada DFD-a često uključuje i dodavanje dodatnih tokova podataka. Naime slučajevi korištenja se rade s obzirom na to kako sustav ostvaruje interakciju s korisnikom pa obično ne opisuju kako se dobavljaju podaci u sustavu.

- Kako slučajevi korištenja ne opisuju kako se dobavljaju podaci u sustavu tako ne identificiraju spremišta podataka. Stoga je potrebno dodati tokove podataka da bi prikazali uporabu spremišta podataka kao izvorišta i odredište podataka.
- Ne postoje formalna pravila kako ćemo elemente DFD-a prikazati, ali je uobičajno da sheme (planovi) u pravilu stavljaju:
 - procese u središte
 - ulaze na lijevo
 - izlaze na desno
 - spremišta ispod procesa

Dijagram toka podataka (DFD)

Izrada dijagram 0 razine

- Nakon izrade fragmenata skup DFD fragmenata spaja se u jedan dijagram.
- Fragmenti se obično spajaju tako da se kronološki poredani procesi smještaju od vrha prema dnu, s lijeva na desno ("prvi" proces ide skroz lijevo gore, ...).
- Poželjno je minimizirati križanje linija jer je dijagram tako pregledniji.
- Po potrebi postupak se iterativno ponavlja. Dijagrami toka podataka se često crtaju mnogo puta prije nego što se dovrše, čak iako ih crtaju vrlo iskusni analisti sustava.

FIGURE 6-8

Combining DFD fragments to create the event-partitioned system model for the course registration system.

Kombiniranje fragmenata u jedinstveni DFD dijagram 0 razine

Dijagram 0 razine

Izrada dijagrama 1 razine

- 1. Svaki se slučaj korištenja pretvara u vlastiti DFD.
- Uzeti korake popisane na slučajevima korištenja i prikazati svaki kao proces na DFD-u 1 razine.
- 3. Ulazi i izlazi navedeni na slučajevima korištenja postaju tokovi podataka na DFD-ima.
- 4. Uključiti izvore i odredišta tokova podataka prema procesima i spremištima unutar DFD-a.

- Greške u DFD dijagramu mogu biti sintaktičke i semantičke.
- Sintaktičke greške se odnose na nepoštivanje sintaktičkih pravila DFD-a.Neki CASE alati mogu automatski provjeriti sintaktičke greške.
- Najčešće semantičke greške se odnose na narušavanje tzv. zakona o sačuvanju podataka (law of conservation of data):
 - Data at rest stays at rest until moved by a process.
 - Processes cannot consume or create data.

- Za svaki dijagram provjeriti da li svaki proces ima:
 - Jedinstveno ime te broj i opis
 - Najmanje jedan ulazni tok podataka (procesi koji nemaju ulazne podatke nazivaju se miracle error)
 - Najmanje jedan izlazni tok podataka (procesi koji nemaju izlazne podatke nazivaju se black hole error)
 - Imena izlaznih tokova podataka drugačija od imena ulaznih tokova podataka.
 - Između 3 do 9 procesa u dijagramu.

- Za svaki dijagram provjeriti da li svaki tok podataka ima:
 - Jedinstveno ime i opis
 - Spaja se na najmanje jedan proces
 - Pokazuje samo u jednom smjeru (ne dvosmjerne strelice)
 - Minimalan broj križanih linija

- Za svaki dijagram provjeriti da li svaki spremište podataka ima:
 - Jedinstveno ime i opis
 - Najmanje jedan ulazni tok podataka
 - Najmanje jedan izlazni tok podataka
- Za svaki dijagram provjeriti da li svaki vanjski entitet ima:
 - Jedinstveno ime i opis
 - Najmanje jedan ulazni ili izlazni tok podataka

Semantička validacija DFD-a

- Semantičke greške narušavaju točnost DFD-a u odnosu na stvarni poslovni proces. Obično su posljedica nerazumijevanja samog procesa od strane sistem analitičara.
- Jedan način semantička validacije se radi zajedno sa korisnikom kroz role-play proces slično kao i kod slučajeva korištenja.
- Korisnik prolazi kroz DFD i pokušava realizirati proces koristeći ulazne i izlazne tokove navedene u DFD-u.

Semantička validacija DFD-a

- Najčešća semantička greška je upravo nedostatak ulaznih podataka u proces kako bi se kreirali izlazni podaci.
- Drugi način semantičke validacije je konzistentnosti DFD hijerarhijskih dijagrama kako bi osigurali dosljednu dekompoziciju.
- Također je potrebno imati konzistentnost i u terminologiji. Stoga je potrebno provjeriti pozorno imena kako bi osigurali dosljednu uporabu izraza (npr. isti podaci se mogu na jednom DFD-u zvati "Podaci kupca", a na drugom "Podaci klijenta").

- Za skupinu dijagrama provjeriti:
 - Kontekstni dijagram: Svaki grupa DFD-a mora imati samo jedan kontekstni dijagram.
 - Rastavljanje: Svaki proces je potpuno i u cijelosti opisan sa procesima na njegovim dijete DFD-ima
 - Uravnoteženost: Svaki tok podataka, spremište podataka i vanjski entitet na višim razinama DFD-a prikazan je na DFD-ima niže razine koji je sastavljaju. Ni jedan tok podataka i spremište se ne pojavljuju na DFD-ima niže razine ako se ne pojavljuju na njihovim roditeljskim DFDima.

 Sustav za upravljanje ispitima treba omogućiti sve radnje vezane uz ispite, tj. omogućiti studentima prijavu i odjavu ispita, omogućiti profesorima pristup podacima o prijavljenim ispitima te omogućiti obradu podataka nakon ispita tj. zaključivanje ispitnog roka.

- Slučajevi korištenja prikazani u UML use-case dijagramu
- Identificirana su četiri slučaja korištenja – prijava ispita, odjava ispita, zaključivanje roka i pregled prijava

Slučaj korištenja: Prijava ispita ID:1 Važnost: Visoka

Primarni sudionik: Student

Kratki opis: Ovaj slučaj korištenja opisuje kako student prijavljuje ispit

Okidač: Student prijavljuje ispit

Tip okidača: Vanjski

Ulazi: Izvorište:

Podaci o studentu Student

Podaci o ispitu Sustav

Izlazi: Odredište:

Prijava Sustav

Slučaj korištenja: Odjava ispita ID:2 Važnost: Visoka

Primarni sudionik: Student

Kratki opis: Ovaj slučaj korištenja opisuje kako student odjavljuje ispit

Okidač: Student odjavljuje ispit

Tip okidača: Vanjski

Ulazi: Izvorište:

Podaci o studentu Student

Podaci o ispitu Sustav

Izlazi: Odredište:

Odjava Sustav

Slučaj korištenja: Zaključivanje ispita ID:3 Važnost: Visoka

Primarni sudionik: Sustav (tj. referada)

Kratki opis: Ovaj slučaj korištenja opisuje zaključivanje ispitnog roka

Okidač: Referada zaključuje ispit

Tip okidača: Vremenski

Ulazi: Izvorište:

Podaci o studentima koji Profesor

su položili ispit

Izlazi: Odredište:

Zaključena lista ispita Sustav

Slučaj korištenja: Pregled prijava ID:4 Važnost: Visoka

Primarni sudionik: Profesor

Kratki opis: Ovaj slučaj korištenja opisuje kako se dobiva pregled

prijavljenih studenata

Okidač: Profesor pregledava popis prijava za ispit

Tip okidača: Vanjski

Ulazi: Izvorište:

Podaci o prijavljenim Sustav

studentima

Izlazi: Odredište:

Podaci o studentima koji Profesor

su prijavili ispit

