Logik-Tutorium #10

Beweise mit dem prädikatenlogischen KdnS

Tristan Pieper Wintersemester 2024/2025 Mittwoch, 08.01.2025

Ziele für die Sitzung

Innerhalb der nächsten Wochen kann ich...

- [PL1] Aussagesätze in PL formalisieren.
- [PL2] Beweise mit dem prädikatenlogischen Kalkül des natürlichen Schließens führen.

Dazu kann ich nach der Sitzung...

- 1. ... einfache Aussagesätze mit Quantoren formalisieren.
- 2. ... die Regeln QT, ∀-Bes., ∃-Einf. anwenden.
- 3. ... die Regeln ∀-Einf., ∃-Bes. und ihre Einschränkungen erklären.

Organisation

- 1. Klausurtermin:
 - **Zeit:** Di., der 4. Februar 2025, 12:00 Uhr (Start um genau 12:30 Uhr) **Ort:** Parkstraße 6, HS 3
 - Amtlichen Lichtbildausweis mitbringen! (Perso, Reisepass, ...)
- 2. Wie/Wann zweite Probeklausur?
 - **Form:** unter Klausurbedingungen im Tut oder als Aufgabenblatt in Heimarbeit?
 - **Datum:** 15.1.2025 vs. 22.1.2025 (vorletztes Tut)?

Erinnerung: Themen zur Wiederholung im Tut über Mail an <u>tristan.pieper@uni-rostock.de</u> oder anonym per <u>https://evasys.uni-rostock.de/evasys/online.php?</u> <u>p=tplt2324</u> melden.

Klausurhinweise

Auf	gabentypen in der Klausur	Ziele im Tut
1.	Aussagesätze identifizieren	[LG2]
2.	Definition von Grundkonzepten	[LG1]
3.	Aussagenlogische Formalisierung	[AL1]
4.	Wenn-Dann-Sätze, "nur", notw. und hinr. Bed.	[LG3], [LG4], [LG5]
5.	Wahrheitstafel für logische Wahrheit, Folgerung und Äc	uivalenz [AL2]
6.	Beweise mit dem AL-KdnS	[AL3]
7.	Kombination aus 3. und 6.	
8.	Prädikatenlogische Formalisierung	[PL1]
9.	Aufgaben zum logischen Quadrat	[PL3]
10.	Beweise mit dem PL-KdnS	[PL2]
11.	Kombination aus 8. und 10.	

Erwärmung

Aufgabe

Formalisieren Sie die folgenden Sätze mit der Prädikatenlogik!

- 1. Bob ist ein Nachfahre von Alice.
- 2. Wenn Alice ein Nachfahre von Clarissa ist, dann auch Bob.
- 3. Bob ist Nachfahre von niemandem.
- 4. Jeder ist ein Nachfahre von irgendwem.

Beweisen von gültigen Schlüssen

In AL:

- in AL per Wahrheitstabelle oder durch Ableitung im KdnS
- Wahrheitstabelle ist eine semantische Beweismethode, sie nutzt die Definitionen der Bedeutung der Junktoren
- KdnS ist eine syntaktische Beweismethode, bei der wir mit Zeichen rumhantieren und Sätze umformen, Folgerbarkeit wird durch Ableitbarkeit gezeigt

In PL:

- wir haben auch hier Semantik! Aber wir haben keine Wahrheitstabelle, dafür ist PL zu komplex
- semantische Beweise machen Informatiker, das sieht eher so aus...

Theorem:

$$\frac{\forall x F x}{F a}$$

- 1. Angenommen das Theorem wäre falsch. Also gäbe es ein Modell $M = \langle \mathcal{F}, D \rangle$ sodass $[\![\forall x Fx]\!]^M = \mathbf{w}$ während $[\![Fa]\!]^M = \mathbf{f}$.
- 2. Es soll daher zum einen gelten: $[\forall xFx]^M = w$
 - a) $\llbracket \forall x Fx
 rbracket^M = \mathbf{w}$ gilt, gdw. alle $x \in D$ auch $x \in \llbracket F
 rbracket^M$ sind.
 - b) Da $\llbracket \forall x Fx \rrbracket^M = \mathbf{w}$, gilt dass alle $x \in D$ auch $x \in \llbracket F \rrbracket^M$ sind.
 - c) Daher gilt $D \subseteq \llbracket F \rrbracket^M$.
- 3. Zum anderen soll gelten: $[Fa]^M = f$
 - a) $\llbracket Fa \rrbracket^M = \mathbf{f}$ gdw. $\llbracket a \rrbracket^M \notin \llbracket F \rrbracket^M$
 - b) Da $a \in D$ ist, gibt es also ein $x \in D$, das $x \notin \llbracket F \rrbracket^M$ ist.
 - c) Daher gilt $D \nsubseteq \llbracket F \rrbracket^M$.
- 4. 2c) und 3c) widersprechen sich.
- 5. Widersprüche folgen nur aus Falschem.
- 6. Der Widerspruch folgte aus der Annahme, das Theorem wäre falsch.
- 7. Also ist es falsch anzunehmen, dass das Theorem falsch ist.
- 8. Also ist das Theorem wahr.

Fazit: Ableiten ist für Philosophen vollkommen ausreichend, geht schnell und ist nachvollziehbar.

Idee: Wir wollen am besten alle unsere AL-Regeln mitnehmen.

Beispiel

 $Aa
ightarrow \neg Ba$ Ax: x ist ein Apfel.

Aa Bx: x ist eine Birne.

 $\neg Ba$ a: dieser Apfel dort

Welche AL-Regel beweist die Gültigkeit des Schlusses?

Beispiel

$$\forall x (Ax \to \neg Bx)$$

Aa

 $\neg Ba$

Ax: x ist ein Apfel.

Bx: x ist eine Birne.

a: dieser Apfel dort

Achtung

Modus ponens kann nicht angewendet werden, denn er ist keine [⊤]-Regel und die erste Prämisse entspricht nicht dem Schema der Regel!

Achtung

Das logische Quadrat kann als Darstellung für diese 5 folgenden der insgesamt 6 neuen PL-Regeln verwendet werden.

$$\frac{\forall \psi \alpha}{\neg \exists \psi \neg \alpha} \, \frac{\exists \psi \alpha}{\neg \forall \psi \neg \alpha}$$

$$\mathbf{Q} \mathbf{T}^\mathsf{T}$$

$$\frac{\forall \psi \alpha}{\alpha [\psi/\pi]}$$
 $\forall \text{-Bes.}$

$$\dfrac{lpha}{\exists \psi lpha[\pi/\psi]}$$
 =-Einf.

$$egin{array}{c} \exists \psi lpha \ \hline lpha [\psi/\pi] \ \exists ext{-Bes.} \end{array}$$

$$\frac{\alpha}{\forall \psi \alpha [\pi/\psi]}$$
 $\forall \text{-Einf.}$

Das logische Quadrat, wie wir es kennen und für die Klausur lernen müssen

Das logische Quadrat, in dem sich die Regeln verstecken

Wo sind die neuen Regeln im logischen Quadrat versteckt ...? Machen wir uns auf die Suche!

Aufgabe

- 1. Erarbeiten Sie sich in Ihren Gruppen eines der Themen:
 - (M1) Allquantorbeseitigung und Allquantoreinführung
 - (M2) Existenzquantoreinführung und Existenzquantorbeseitigung
- 2. Präsentieren Sie Ihr Ergebnis im Plenum anhand mindestens eines Beispiels pro Regel! (Hinweise dazu auf dem Material.)

Übung

Aufgabe

Beweisen Sie das Daimonen-Argument mit dem prädikatenlogischen Kalkül des natürlichen Schließens!

"Es gibt Daimonen. Also gibt es auch Götter, denn alle Daimonen sind Kinder von Göttern."

Fassen Sie in einem Satz zusammen, was Sie aus der heutigen Sitzung mitnehmen!

Folien, Übungsblätter, Ablaufplan, Konzepte und Sourcecode: https://github.com/piepert/logik-tutorium-wise2023-2024