CONSTRAINT SATISFACTION PROBLEMS

Chapter 6

Outline

- Constraint Satisfaction Problems (CSP)
- Backtracking search for CSPs
- Local search for CSPs

Constraint satisfaction problems (CSPs)

- In standard <u>search problems</u>, <u>states</u>:
 - Atomic ("black box" with no internal structure)
 - Evaluated by domain-specific heuristics
 - ☐ <u>Tested</u> to see whether they are goal states
- In CSPs: a factored representation for each state
 - \square State is defined by variables X_i with values from domain D_i
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
 - Solution: one value for each variable that satisfies all the constraints

Constraint satisfaction problems (CSPs)

- Allows useful general-purpose algorithms to solve complex problems
 - with more power than standard search algorithms
 - general-purpose heuristics rather than problem-specific heuristics
- □ The main idea of algorithms for solving CSPs
 - □ To eliminate large portions of the search space all at once
 - by identifying variable/value combinations that violate the constraints

Constraint satisfaction problem

- □ Set of variables $X = \{X_1, X_2, ..., X_n\}$
- \square Set of domains $D = \{D_1, D_2, ..., D_n\}$
 - □ Each domain **Di** consists of a set of **allowable values** for variable **X**_i.
 - In many cases the domain is assumed to be the same for all variables
- □ Set of constraints $C = \{ c_i = (scope_i, rel_i) \mid i=1,...,h \}$
 - scope; subset of X, the variables that are constrained by c;
 - rel_i: is a relation and tells us which simultaneous assignments of values to variables in scope; are allowed

Constraint satisfaction problem

- State: defined by an assignment of values to some or all of the variables, $\{Xi = vi, Xj = vj, ...\}$
- Assignment can be:
 - Consistent: it does not violate any constraints
 - Complete: every variable is assigned
 - Partial: only some of the variables are assigned
- Solution: a consistent and complete assignment

Example: Map-Coloring

Coloring each region either red, green, or blue in such a way that no neighboring regions have the same color.

CSP formulation

- \square Set of variables $X = \{WA, NT, Q, NSW, V, SA, T\}$
- \square Domain of each variabile $D_i = \{\text{red, green, blue}\}$
- Constraints: adjacent regions must have different colors

```
C = \{SA \neq WA, SA \neq NT, SA \neq Q, SA \neq NSW, SA \neq V, WA \neq NT, NT \neq Q, Q \neq NSW, NSW \neq V \}
WA \neq NT, or
(WA,NT) in
\{(red,green),(red,blue),(green,red),(green,blue),(blue,red),(blue,green)\}
```

Example: Map-Coloring

Solutions are complete and consistent assignments

e.g., $\{WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green\}$

Constraint graph

- □ Constraint graph
 - nodes are variables
 - arcs show constraints

Why formulate a problem as a CSP?

- A natural representation for many problems
- We already have a CSP-solving system
 - it is often easier to solve a problem using it
 - than to design a custom solution using another search technique
- □ CSP solvers are faster than state-space searchers because the CSP solver can quickly eliminate large parts of the search space

Why <u>formulate</u> a problem as a CSP?

CSP solvers are faster than state-space searchers

Eg., if we choose $\{SA = blue\}$ in the Australia problem

- None of the five neighboring variables can take blue value
- Without constraint propagation
 - a search procedure should consider 3⁵ = 243 assignments for the five neighboring variables
- With constraint propagation
 - we never have to consider blue as a value
 - \blacksquare so we have only $2^5 = 32$ assignments to look

Varieties of CSPs

The simplest kind of CSP involves variables with discrete finite domains

Discrete variables

□ Finite domains:

- n variables, domain size d
- e.g., variables WA, NT, Q, NSW, V, SA, T in the map coloring problem and each variable has the domain $Di = \{red, blue, green\}$

Infinite domains:

- integers, strings, etc.
- e.g., job scheduling, variables are start/end days for each job
- \blacksquare constraints: StartJob₁ + 5 \le StartJob₃

Continuous variables

 common in the real world problems, studied in the field of operations research

Varieties of constraints

- □ Unary constraints involve a single variable
 - □ e.g., SA ≠ green
- Binary constraints involve pairs of variables
 - □ e.g., SA ≠ WA
- □ **Higher-order** constraints involve 3 or more variables
- Global constraints involve an <u>arbitrary number of variables</u>
 - e.g., Alldiff, which says that all of the variables involved in the constraint must have different values

Conversion to binary

Binary CSP: CSP where each constraint relates two variables

Any CSP can be converted into a CSP with only binary constraints