- **8.** Recordemos de la Sección 2.4 que una circunferencia rodante de radio R describe una cicloide, la cual se puede parametrizar mediante $\mathbf{c}(t) = (Rt R \operatorname{sen} t, R R \operatorname{cos} t)$. Un arco de la cicloide se completa de t = 0 a $t = 2\pi$. Demostrar que este arco siempre es 4 veces el diámetro de la circunferencia rodante.
- **9.** Sea C el segmento rectilíneo que conecta el punto $\mathbf{p} = (1, 2, 0)$ con el punto $\mathbf{q} = (0, 1, -1)$.
 - (a) Determinar la curva $\mathbf{c}(t)$: $[a,b] \to \mathbb{R}^3$ que describe C
 - (b) Hallar la longitud de arco de $\mathbf{c}(t)$.
 - (c) Hallar $||\mathbf{p} \mathbf{q}||$.
- **10.** Calcular la longitud de la curva $\mathbf{c}(t) = (\log(\sqrt{t}), \sqrt{3}t, \frac{3}{2}t^2)$ para $1 \le t \le 2$.
- **11.** Hallar la longitud de la trayectoria $\mathbf{c}(t)$, definida por $\mathbf{c}(t) = (2 \cos t, 2 \sin t, t)$, si $0 \le t \le 2\pi$ y $\mathbf{c}(t) = (2, t 2\pi, t)$, si $2\pi \le t \le 4\pi$.
- **12.** Sea **c** la trayectoria $\mathbf{c}(t) = (t, t \text{ sen } t, t \text{ cos } t)$. Hallar la longitud de arco de **c** entre los puntos (0,0,0) y $(\pi,0,-\pi)$.
- **13.** Sea **c** la trayectoria $\mathbf{c}(t) = (2t, t^2, \log t)$, definida para t > 0. Hallar la longitud de arco de **c** entre los puntos (2, 1, 0) y $(4, 4, \log 2)$.

- **14.** La función longitud de arco s(t) para una trayectoria dada $\mathbf{c}(t)$, definida por $s(t) = \int_a^t \|\mathbf{c}'(\tau)\| d\tau$, representa la distancia recorrida por una partícula que viaja a lo largo de la trayectoria de \mathbf{c} durante un tiempo t, habiendo empezado a moverse en el instante a; es decir, proporciona la longitud de \mathbf{c} entre $\mathbf{c}(a)$ y $\mathbf{c}(t)$. Hallar las funciones longitud de arco para las curvas $\alpha(t) = (\cosh t, \, \sinh t, t)$ y $\beta(t) = (\cos t, \, \sin t, t)$, con a = 0.
- **15.** Sea $\mathbf{c}(t)$ una trayectoria dada, $a \leq t \leq b$. Sea $s = \alpha(t)$ una nueva variable, donde α es una función C^1 estrictamente creciente en [a,b]. Para cada s en $[\alpha(a), \alpha(b)]$ existe un t único tal que $\alpha(t) = s$. Definir la función $\mathbf{d}: [\alpha(a), \alpha(b)] \to \mathbb{R}^3$ mediante $\mathbf{d}(s) = \mathbf{c}(t)$.
 - (a) Razonar que las curvas ${\bf c}$ y ${\bf d}$ tienen la misma imagen.
 - (b) Demostrar que \mathbf{c} y \mathbf{d} tienen la misma longitud de arco.
 - (c) Sea $s=\alpha(t)=\int_a^t\|\mathbf{c}'(\tau)\|\,d\tau$. Definir \mathbf{d} como antes $\mathbf{d}(s)=\mathbf{c}(t)$. Demostrar que

$$\left\| \frac{d}{ds} \mathbf{d}(s) \right\| = 1.$$

Se dice que la trayectoria $s \mapsto \mathbf{d}(s)$ es una reparametrización de c por la longitud de arco (véase también el Ejercicio 17).

En los Ejercicios 16, 17 y 20-23 se desarrollan algunos aspectos de la geometría diferencial clásica de curvas.

- **16.** Sea \mathbf{c} : $[a,b] \to \mathbb{R}^3$ una trayectoria infinitamente diferenciable (existen derivadas de todos los órdenes). Suponemos que $\mathbf{c}'(t) \neq \mathbf{0}$ para todo t. El vector $\mathbf{c}'(t)/\|\mathbf{c}'(t)\| = \mathbf{T}(t)$ es tangente a \mathbf{c} en $\mathbf{c}(t)$, y puesto que $\|\mathbf{T}(t)\| = 1$, \mathbf{T} se denomina la tangente unitaria a \mathbf{c} .
 - (a) Demostrar que $\mathbf{T}'(t) \cdot \mathbf{T}(t) = 0$. [SUGEREN-CIA: derivar $\mathbf{T}(t) \cdot \mathbf{T}(t) = 1$.]
 - (b) Escribir una fórmula para $\mathbf{T}'(t)$ en términos de \mathbf{c} .
- 17. (a) Se dice que una trayectoria $\mathbf{c}(s)$ está parametrizada por la longitud de arco o, lo que es lo mismo, se dice que tiene rapidez unitaria si $\|\mathbf{c}'(s)\| = 1$. Para una curva parametrizada por la longitud de arco en [a, b], demostrar que $l(\mathbf{c}) = b a$.
 - (b) La *curvatura* en un punto $\mathbf{c}(s)$ de una trayectoria se define por $k = \|\mathbf{T}'(s)\|$ cuando

- la trayectoria está parametrizada por la longitud de arco. Demostrar que $k = \|\mathbf{c}''(s)\|$.
- (c) Si **c** está dada en términos de algún otro parámetro t y **c**' (t) nunca es **0**, demostrar que $k = \|\mathbf{c}'(t) \times \mathbf{c}''(t)\|/\|\mathbf{c}'(t)\|^3$.
- (d) Calcular la curvatura de la hélice ${\bf c}(t)=(1/\sqrt{2})(\cos t,\, \sin t,t)$. (Esta curva ${\bf c}$ es un múltiplo escalar de la hélice circular recta.)
- **18.** Demostrar que cualquier recta $\mathbf{l}(t) = \mathbf{x}_0 + t\mathbf{v}$, donde \mathbf{v} es un vector unitario, tiene curvatura cero.
- **19.** Consideremos la parametrización de la circunferencia unidad dada por $\mathbf{c}(t) = (\cos t, \sin t)$.
 - (a) Comprobar que ${\bf c}$ está parametrizada por la longitud de arco.
 - (b) Demostrar que la curvatura k de ${\bf c}$ es constante.