Map Reduce

Last Time ...

- ► MPII/O
- Randomized Algorithms
 - ▶ Parallel *k*-Select
 - ▶ Graph coloring
- ► Assignment 2
- ▶ Questions?

Today ...

- ▶ Map Reduce
 - Overview
 - ► Matrix multiplication
 - ▶ Complexity theory

MapReduce programming interface

- Two-stage data processing
 - Data can be divided into many chunks
 - A map task processes input data & generates local results for one or a few chunks
 - A reduce task aggregates & merges local results from multiple map tasks
- Data is always represented as a set of key-value pairs
 - Key helps grouping for the reduce tasks
 - ▶ Though key is not always needed (for some applications, or for the input data), a consistent data represent eases the programming interface

Motivation & design principles

- ▶ Fault tolerance
 - Loss of a single node or an entire rack
 - ► Redundant file storage
- ► Files can be enormous
- Files are rarely updated
 - Read data, perform calculations
 - Append rather than modify
- Dominated by communication costs and I/O
 - Computation is cheap compared with data access
- Dominated by input size

Example

- Count the occurrences of individual words in bunch of web pages
- Map task: find words in one or a few files
 - Input: <key = page url, value = page content>
 - Output: <key = word, value = word count>
- Reduce task: compute total word counts across multiple files
 - Input/output: <key = word, value = word count>

Dependency in MapReduce

- Map tasks are independent from each other, can all run in parallel
- A map task must finish before the reduce task that processes its result
- ▶ In many cases, reduce tasks are commutative
- Acyclic graph model

Implementations

- Original mapreduce implementation at Google
 - ► Not publicly available
 - ▶ C/C++
- ▶ Hadoop
 - ▶ Open Source Implementation Yahoo!, Apache
 - Java
- ▶ Phoenix++
 - ▶ Open Source Stanford
 - ► C++ Shared memory

Applications that don't fit

- MapReduce supports limited semantics
 - ► The key success of MapReduce depends on the assumption that the dominant part of data processing can be divided into a large number of independent tasks
- What applications don't fit this?
 - ► Those with complex dependencies Gaussian elimination, k-means clustering, iterative methods, n-body problems, graph problems, ...

MapReduce

- Map: chunks from DFS → (key, value)
 - ▶ User code to determine (k, v) from chunks (files/data)
- Sort: (k, v) from each map task are collected by a master controller and sorted by key and divided among the reduce tasks
- Reduce: work on one key at a time and combine all the values associated with that key
 - Manner of combination is determined by user code

MapReduce – word counting

- ▶ Input → set of documents
- ► Map:
 - reads a document and breaks it into a sequence of words $w_1, w_2, ..., w_n$
 - Generates (k, v) pairs, $(w_1, 1), (w_2, 1), ..., (w_n, 1)$
- System:
 - ightharpoonup group all (k, v) by key
 - \blacktriangleright Given r reduce tasks, assign keys to reduce tasks using a hash function
- ► Reduce:
 - Combine the values associated with a given key
 - ▶ Add up all the values associated with the word → total count for that word

Parallelism

- Reducers
- Reduce Tasks
- Compute nodes
- Skew (load imbalance)

- Easy to implement
- Hard to get performance

Node failures

- Master node fails
 - Restart mapreduce job
- Node with Map worker fails
 - Redo all map tasks assigned to this worker
 - ▶ Set this worker as idle
 - ▶ Inform reduce tasks about change of input location
- ▶ Node with Reduce worker fails
 - ▶ Set the worker as idle

Matrix-vector multiplication

- \triangleright $n \times n$ matrix M with entries m_{ij}
- Vector \boldsymbol{v} of length n with values v_i
- We wish to compute

$$x_i = \sum_{j=1}^n m_{ij} v_j$$

- ightharpoonup If $oldsymbol{v}$ can fit in memory
 - \blacktriangleright Map: generate $(i, m_{ij}v_i)$
 - \blacktriangleright Reduce: sum all values of i to produce (i, x_i)
- lacktriangle If $oldsymbol{v}$ is too large to fit in memory? Stripes? Blocks?
- What if we need to do this iteratively?

Matrix-Matrix Multiplication

- $P = MN \rightarrow p_{ik} = \sum_{j} m_{ij} n_{jk}$
- ▶ 2 mapreduce operations
 - ▶ Map 1: produce (k,v), $\left(j,\left(M,i,m_{ij}\right)\right)$ and $\left(j,\left(N,k,n_{jk}\right)\right)$
 - ▶ Reduce 1: for each $j \rightarrow (i, k, m_{ij}, n_{jk})$
 - ▶ Map 2: identity
 - \blacktriangleright Reduce 2: sum all values associated with key (i,k)

Matrix-Matrix multiplication

- ► In one mapreduce step
- ► Map:
 - ▶ generate $(k, v) \rightarrow ((i, k), (M, j, m_{ij})) & ((i, k), (N, j, n_{jk}))$
- ▶ Reduce:
 - ▶ each key (i,k) will have values $\left((i,k),\left(M,j,m_{ij}\right)\right)$ & $\left((i,k),\left(N,j,n_{jk}\right)\right)$ $\forall j$
 - \triangleright Sort all values by j
 - \blacktriangleright Extract m_{ij} & n_{jk} and multiply, accumulate the sum

Complexity Theory for mapreduce

Communication cost

- Communication cost of a task is the size of the input to the task
- We do not consider the amount of time it takes each task to execute when estimating the running time of an algorithm
- The algorithm output is rarely large compared with the input or the intermediate data produced by the algorithm

Reducer size & Replication rate

- \blacktriangleright Reducer size (q)
 - Upper bound on the number of values that are allowed to appear in the list associated with a single key
 - ▶ By making the reducer size small, we can force there to be many reducers
 - ► High parallelism → low wall-clock time
 - ▶ By choosing a small q we can perform the computation associated with a single reducer entirely in the main memory of the compute node
 - ▶ Low synchronization (Comm/IO) → low wall clock time
- ightharpoonup Replication rate (r)
 - \blacktriangleright number of (k,v) pairs produced by all the Map tasks on all the inputs, divided by the number of inputs
 - \triangleright r is the average communication from Map tasks to Reduce tasks

Example: one-pass matrix mult

- \blacktriangleright Assume matrices are $n \times n$
- ightharpoonup r replication rate
 - ▶ Each element m_{ij} produces n keys
 - ightharpoonup Similarly each n_{jk} produces n keys
 - \blacktriangleright Each input produces exactly n keys \rightarrow load balance
- ▶ q reducer size
 - \blacktriangleright Each key has n values from M and n values from N
 - **▶** 2*n*

Example: two-pass matrix mult

- \blacktriangleright Assume matrices are $n \times n$
- ightharpoonup r replication rate
 - \blacktriangleright Each element m_{ij} produces 1 key
 - ightharpoonup Similarly each n_{jk} produces 1 key
 - Each input produces exactly 1 key (2nd pass)
- ▶ q reducer size
 - \blacktriangleright Each key has n values from M and n values from N
 - \triangleright 2n (1st pass), n (2nd pass)

Real world example: Similarity Joins

- ▶ Given a large set of elements X and a similarity measure s(x,y)
- ightharpoonup Output: pairs whose similarity exceeds a given threshold t
- \blacktriangleright Example: given a database of 10^6 images of size 1MB each, find pairs of images that are similar
- Input: (i, P_i) , where i is an ID for the picture and P_i is the image
- ▶ Output: (P_i, P_j) or simply (i, j) for those pairs where $s(P_i, P_j) > t$

Approach 1

 \blacktriangleright Map: generate (k,v)

$$((i,j),(P_i,P_j))$$

- ▶ Reduce:
 - Apply similarity function to each value (image pair)
 - Output pair if similarity above threshold t
- ▶ Reducer size $-q \rightarrow 2$ (2MB)
- ▶ Replication rate $r \rightarrow 10^6 1$
- ▶ Total communication from map→reduce tasks?
 - ▶ $10^6 \times 10^6 \times 10^6$ bytes $\rightarrow 10^{18}$ bytes \rightarrow 1 Exabyte (kB MB GB TB PB EB)
 - ► Communicate over GigE \rightarrow 10¹⁰ sec \rightarrow 300 years

Approach 2: group images

- ▶ Group images into g groups with $\frac{10^6}{g}$ images each
- \blacktriangleright Map: Take input element (i, P_i) and generate
 - ▶ (g-1) keys $(u,v) | P_i \in \mathcal{G}(u), v \in \{1,...,g\} \setminus \{u\}$
 - \blacktriangleright Associated value is (i, P_i)
- ightharpoonup Reduce: consider key (u, v)
 - ▶ Associated list will have $2 \times \frac{10^6}{g}$ elements (j, P_j)
 - ▶ Take each (i, P_i) and (j, P_j) where i, j belong to different groups and compute $s(P_i, P_j)$
 - Compare pictures belonging to the same group
 - ▶ heuristic for who does this, say reducer for key (u, u + 1)

Approach 2: group images

- ▶ Replication rate: r = g 1
- ▶ Reducer size: $q = 2 \times 10^6/g$
- ▶ Input size: $2 \times 10^{12}/g$ bytes
- ▶ Say g = 1000,
 - ▶ Input is 2GB
 - ▶ Total communication: $10^6 \times 999 \times 10^6 = 10^{15}$ bytes → 1 petabyte

