Ejercicio 3

viernes, 2 de diciembre de 2022

5:48 p. m.

Conociendo la transferencia en vacío:

$$\frac{V_2}{V_1} = \frac{s^2 + 1}{2s^2 + 1}$$

- a) Obtenga un circuito con 3 inductores y 1 capacitor
- b) Obtenga un circuito con 3 capacitores y 1 Inductor

	$\frac{V_2}{V_1} = K \cdot \frac{1}{A} = \frac{2}{3} \cdot \frac{(s^2 + 1)}{(2s^2 + 1)}$	K = 2/3
Amalizando la t	ransferencia 20 los (2) x - 2 5 218 da T	$(\$ \rightarrow \infty) = 2$ $\xrightarrow{\partial D}$ 20 $\log(\frac{2}{6}) \cong -9,542425$
		$ \psi = 2$ $ \psi = 2$ $ \psi = 1/342425$
Se Verifico Cir	witalmente	