Design Document

Version 1.0

Cybersecurity Monitoring Client Requirements and Specifications For research project: Cybersecurity Considerations for Blockchain Systems

November 10, 2020

by

M. T. Midani and A. Gaonkar

Introduction

This document provides the functional requirements and design specifications for a light-weight client application to be developed, coded, and tested on a selected IoT device for this project.

The objective is to assess levels of cybersecurity risks of blockchain-based systems by capturing key parameters on the selected IoT device, hash & log these parameters on the device itself, and also push them to the VizLore Hyperledger server with cryptographic access to create permanent traces of the device signature and its operation. This information will be used by a subsequent phase of this project to create a mathematical model that will be able to detect and predict cyberattacks on IoT devices.

Task at Hand

The task at hand is to develop a *Cybersecurity Monitoring Client (CMC)* on a selected IoT device to monitor and log the following information:

- **Static information,** which is collected from device itself, such as manufacturer, hardware features, software features, version number, etc.,
- **Dynamic information**, which is generated during IP-based communication handshaking sequences, as defined by the respective communication protocols used by the device to connect with the network, such as security key lengths, encryption and signature algorithms, refresh periods, initialization vectors and similar cryptographic-relevant parameters.

These device parameters/attributes will be logged and stored as hashes with cryptographic access. This document will define the parameters to be captured on the device itself, and on the adjacent devices interacting with the IoT in a defined local cluster.

About the IoT Device

The selected IoT device is a RaspberryPi-based IoT system provided by VizLore for this project. This device is used as an edge device for smart access applications, supporting REST API interface with the Hyperledger fabric server.

IoT Device Protocol Stack

The selected IoT controller device functional decomposition and protocol stack are shown below.

The monitoring client is to be developed and integrated smoothly in this environment.

Note: The controller/client is not intended to be an active blockchain node but rather a client with access to blockchain ledger.

Design Requirements and Specifications

The IoT Cybersecurity Monitoring Client (CMC) shall acquire the following parameters:

- 1. Static Parameters: Upon device boot/startup sequence, the client shall make function calls to the OS to collect the following parameters:
 - a) Device MAC address & serial number
 - b) Manufacturer
 - c) OS type and version number
 - d) Memory size
 - e) If the device IP address was hard-coded, then this static address should also be collected by the client. If the IP address is dynamically assigned to the device, then the IP address will be determined using DHCP, as described in the next section.
 - f) Other static system parameters are to be considered

These parameters should be hashed and stored on the device and on the remote server.

- 2. IP layer Addressing Parameters: An IP device will typically run the DHCP protocol after a powerup sequence, and will exchanges the DHCP messages (Discover, Offer, Request, and Ack) with the local/remote Gateway. The IoT CMC shall capture the following parameters:
 - a) Device dynamic IP address and subnet mask
 - b) First Hop IP address and subnet mask
 - c) Name and IP address of the DNS server
 - d) Other IP layer parameters in the DHCP messages are to be considered

These parameters should be hashed and stored on the device and on the remote server.

- 3. IP Layer Error Reporting Protocol: This is the standard ICMP protocol used by IP devices to discover other IP devices on the Internet. The IoT CMC shall capture the following parameters:
 - a) Echo request & Reply (ping)
 - b) Destination unreachable
 - c) TTL Expired (routing loop, or destination is too far)
 - d) Traceroute information

These parameters should be hashed and stored on the device and on the remote server.

- 4. ARP Cache: On a single physical network, individual hosts are known to other devices in the network by their physical hardware address. Since higher-level protocols address destination hosts using IP addresses, a translation table between Physical MAC addresses and Network IP addresses is created by all the devices on the local network using the ARP protocol. This is known as the ARP Cache.
 - The ARP Cache should be captured periodically (periodicity to be determined), hashed. and stored on the device and on the remote server.
- 5. DNS: Each IP device has a name resolver routine, which knows the name of a local DNS server. The Resolver sends a DNS request to the DNS server to get the desired destination IP address from the destination name. The IP device keeps a DNS Cache in its memory.
 - The DNS Cache should be captured periodically (periodicity to be determined), hashed. and stored on the device and on the remote server
- 6. TCP layer Connectivity Parameters: TCP sessions are created and released all the time between IP devices communicating over the Internet. The IoT CMC shall capture the following parameters:
 - a) Source IP address and Port
 - b) Destination IP address and Port
 - c) Will be considering other parameters...

These parameters should be hashed and stored on the device and on the remote server.

- 7. SSL layer Connectivity Parameters: Every time the device establishes an SSL session with another entity (device/server) across the network, the SSL parameters are to be captured, hashed and stored on the device. This includes the following parameters:
 - d) Session Id
 - e) Cryptographic algorithm agreement
 - f) Server's digital certificate
 - g) Server's public Key

These parameters should be hashed and stored on the device and on the remote server.

Remote Server

The parameters listed above should be pushed to the Hyperledger fabric (server IP address will be provided) over the REST API interface to create a permanent record of this activity.

Concluding Remarks

This version of the document lists the initial parameter being considered for the IoT CMC. The list will be revised as we further investigate the capabilities of the selected IoT device. A balance is to be made between the volume of collected parameters and the value gained from a cybersecurity perspective.