Independence Testing using Chi-Square Test

Abdul Khader, Syed

31 October 2022

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import math
import random

from scipy.stats import chi2_contingency, chi2

df = pd.read_excel("./data/grocery_database.xlsx", sheet_name = "campaign_data", engine = "openpyxl")
df = df[df['mailer_type'] != 'Control']
df.head()
```

	$customer_id$	campaign_name	$campaign_date$	$mailer_type$	signup_flag
0	74	delivery_club	2020-07-01	Mailer1	1
1	524	$delivery_club$	2020-07-01	Mailer1	1
2	607	$delivery_club$	2020-07-01	Mailer2	1
3	343	$delivery_club$	2020-07-01	Mailer1	0
4	322	$delivery_club$	2020-07-01	Mailer2	1

df.shape

(711, 5)

df.groupby("mailer_type")["signup_flag"].value_counts(normalize=True)

		signup_flag
mailer_type	signup_flag	
Mailer1	0	0.672000
	1	0.328000
Mailer2	0	0.622024
	1	0.377976

Test of Independence

using Chi-Square Test χ^2

Null Hypothesis

 H_0 : There is **NO** significance relation between the Mailer Type and User Signing Up

Alternate Hypothesis

 H_1 : There is a significance relation between the Mailer Type and User Signing Up

Creating the Contigency Table

```
contingency_table = pd.crosstab(df["mailer_type"], df["signup_flag"])
contingency_table
```

signup_flag mailer_type	0	1
Mailer1 Mailer2	$252 \\ 209$	123 127

```
contingency_mailer = contingency_table[1]

d1 = df[df.mailer_type == "Mailer1"]
mailer1_count = d1.shape[0]

d2 = df[df.mailer_type == "Mailer2"]
mailer2_count = d2.shape[0]

print("The signup rate for mailer1 is: " + str(contingency_mailer[0]/mailer1_count))
print("The signup rate for mailer2 is: " +str(contingency_mailer[1]/mailer2_count))
```

```
The signup rate for mailer2 is: 0.37797619047619047

stat,p,dof = chi2_contingency(contingency_table)[0:3]
confidence level = 0.95
```

The signup rate for mailer1 is: 0.328

```
print("The chisquare stat is: ", round(stat, 3))
print("chi-square critical value is: ", round(chi2.ppf(confidence_level, df=dof), 3))
print("The chisquare p-value is: ", round(p,3))

The chisquare stat is: 1.728
chi-square critical value is: 3.841
The chisquare p-value is: 0.189
```

Conclusion

The p-value is greater than 0.05 or chisquare value is less than critical value, we **CAN NOT REJECT** the null hypothesis.

Therefore, there is no significant relationship between the mailer type used(Fancy or Classical) and the Signing up of User.

Why are we using chi-square distribution in this case?

Here we have,

- Atleast one Categorial Variable(The type of Mail)
- Mutually Exculsive values of the Categorial Variable
- The observations are independent

How it looks with Guassian Distribution

We use guassian distribution when we need to compate an observation variable with a number value like that of mean.