Floating Point

SPRING, 2019
INVOUNG-KEE GROE

This Powerpoint slides are modified from its original version available at http://www.cs.cmu.edu/afs/cs/academic/class/15213-s09/www/lectures/ppt-sources/

Last Time: Integers

- Representation: unsigned and signed
- Conversion, casting
 - Bit representation maintained but reinterpreted
- Expanding, truncating
 - Truncating is mod 2^w
- Addition, negation, multiplication, shifting
 - Operations are mod 2^w

- "Ring" properties hold
 - Associative, commutative, distributive, additive 0 and inverse
- Ordering properties do not hold

$$u > 0 \Rightarrow u + v > v$$

$$u > 0, v > 0 \Rightarrow u \cdot v > 0$$

Today: Floating Point

- ► Background: Fractional binary numbers
- ▶ IEEE floating point standard: Definition
- Example and properties
- ▶ Rounding, addition, multiplication
- ► Floating point in C
- Summary

Fractional binary numbers

▶ What is 1011.101₂?

Fractional Binary Numbers

- ► Representation
 - Bits to right of "BINARY POINT" represent fractional powers of 2
 - ° Represents rational number: $\sum_{k=-i}^{i} b_k 2^k$

Fractional Binary Number

Value	Representation
5-3/4	101.112
2-7/8	10.1112
63/64	0.1111112

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 just below
 1.0

•
$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^i} + \dots \to 1.0$$

• Use notation $1.0 - \varepsilon$

Representable Numbers

- ▶ Limitation #1
 - ° Can only exactly represent numbers of the form $\frac{x}{2^k}$
 - Other rational numbers have repeating bit representations

Value	Representation
1/3	0.01010101[01]2
1/5	0.001100110011[0011]2
1/10	0.0001100110011[0011]2

- ▶ Limitation #2
 - Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

Today: Floating Point

- ► Background: Fractional binary numbers
- ▶ IEEE floating point standard: Definition
- ► Example and properties
- ► Rounding, addition, multiplication
- ► Floating point in C
- ▶ Summary

I IEEE Floating Point

- ▶ IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

► Numerical Form:

$$(-1)^s \times M \times 2^E$$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0)
- Exponent E weights value by power of two
- Encoding
 - MSB s is sign bit s
 - exp field encodes E (but is NOT equal to E)
 - frac field encodes M (but is NOT equal to M)

S	exp	frac
---	-----	------

Precisions

► Single precision: 32 bits

▶ Double precision: 64 bits

S	exp	frac
1	11	52

► Extended precision: 80 bits (Intel only)

S	exp	frac	
1	15	64	
VI INTEVAZANT LINTE	VERCITY (

Normalized Values

- ► Condition: $\exp \neq 000...0$ and $\exp \neq 111...1$
- ► Exponent coded as biased value: E = Exp Bias
 - Exp: unsigned value of exp
 - Bias = 2^{e-1} 1, where e is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- ► Significand coded with implied leading 1: $M = 1.xxx...x_2$
 - ° xxx...x: bits of frac
 - $^{\circ}$ Minimum when **000...0** (**M** = **1.0**)
 - Maximum when **111...1** (**M** = **2.0** ϵ)
 - Oet extra leading bit for "free"

Normalized Encoding Example

- ► Value: Float **F** = **15213.0**
 - ° $15213_{10} = 11101101101101_2 = 1.1101101101101_2 \times 2^{13}$
- Significand
 - M = 1.11011011011₂
- Exponent
 - ° E = 13
 - Bias = 127
 - $^{\circ}$ Exp = 140 = 10001100₂
- Result 0 10001100 110110110100000000000

s exp frac

Denormalized Values

- ightharpoonup Condition: exp = 000...0
- ► Exponent value: E = -Bias + 1
 - Instead of E = 0 Bias
 - -126 (32) or -1022 (64)
- Significand coded with implied leading0: M = 0.xxx...x₂
 - xxx...x: bits of frac

- ightharpoonup (-1) s \times M \times 2^E
 - Cases
 - $^{\circ}$ exp = 000...0, frac = 000...0
 - Represents value 0
 - Note distinct values: +0 and -0 (why?)
 - $^{\circ}$ exp = 000...0, frac \neq 000...0
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equi-spaced

Special Values

- ► Condition: exp = 111...1
- ▶ Case: exp = 111...1, frac = 000...0 [부정]
 - ° Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - ° E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- ▶ Case: exp = 111...1, frac ≠ 000...0 [불능]
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $+\infty \times 0$

Visualization

	-∞	-normalized	-denorm			+denorm	+normalized	+∞	
NaN				-0	+0				NaN

Today: Floating Point

- ► Background: Fractional binary numbers
- ▶ IEEE floating point standard: Definition
- Example and properties
- ► Rounding, addition, multiplication
- ► Floating point in C
- ▶ Summary

Tiny Floating Point Example

- ▶ 8-bit Floating Point Representation
 - Sign bit is in the most significant bit
 - Next four bits are the exponent, with a bias of 7.
 - Last three bits are frac
- ► Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

■ Values Related to the Exponent

Ехр	ехр	Е	2 ^E	
0	0000	-6	1/64	denom
1	0001	-6	1/64	
2	0010	-5	1/32	
3	0011	-4	1/16	
4	0100	-3	1/8	
5	0101	-2	1/4	
6	0110	-1	1/2	
7	0111	0	1	
8	1000	+1	2	
9	1001	+2	4	
10	1010	+3	8	
11	1011	+4	16	
12	1100	+5	32	
13	1101	+6	64	
14	1110	+7	128	
15	1111	n/a	inf or NaN	

Dynamic Range (Positive Only) s exp frac E

Value

	0	0000	000	-6		0	١,	IA	
	0	0000	001	-6		1/8*1/64	=	1/512	closest to zero
Denormalized	0	0000	010	-6		2/8*1/64	=	2/512	
numbers		1							
	0	0000	110	-6		6/8*1/64	=	6/512	
	0	0000	111	-6		7/8*1/64	=	7/512	largest denorm
	0	0001	000	-6		8/8*1/64	=	8/512	smallest norm
	0	0001	001	-6		9/8*1/64	=	9/512	
	0	0110	110	-1		14/8*1/2	=	14/16	
Normalizad	0	0110	111	-1	11	15/8*1/2	=	15/16	closest to 1 below
Normalized	0	0111	000	0	11	8/8*1	=	1	
numbers	0	0111	001	0		9/8*1	=	9/8	closest to 1 above
	0	0111	010	0		10/8*1	=	10/8	
			9"					· >	
	0	1110	110	7		14/8*128	=	224	
	0	1110	111	7		15/8*128	=	240	largest norm
	0	1111	000	n/a		inf			

Distribution of Values

- ► 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{3-1}-1=3$

▶ Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

- ► 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{3-1} 1 = 3$

Do It Yourself

- ► Convert **10.4**₁₀ to single precision floating point
- ► Recall that:

10.4₁₀ is 1010.[0110]₂

Solution to DIY

- 1. Normalize
 - $^{\circ}$ 1010.0110₂ x 2⁰ = 1.0100110 x 2³
- 2. Determine sign bit
 - $^{\circ}$ Positive, so S = 0
- 3. Determine exponent
 - $^{\circ}$ 2³ so 3 + bias (= 127) = 130 = 10000010₂
- 4. Determine Significand
 - Drop leading 1 of mantissa, expand to 23 bits = 0100110011001100110

0 10000010 0100110011001100110

Inter	esting Numb	ers		4//	single,double}
	Description	ехр	frac	Numerical	Approx. Value
	Zero	0000	0000	0.0	
	Smallest Positive Denormalized	0000	0001	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$	Single $\approx 1.4 \times 10^{-45}$ Double $\approx 4.9 \times 10^{-324}$
	Largest Denormalized	0000	1111	$(1.0 - \varepsilon) \times 2^{-}$ {126,1022}	Single $\approx 1.18 \times 10^{-38}$ Double $\approx 2.2 \times 10^{-308}$
	Smallest Positive Normalized	0001	0000	$1.0 \times 2^{-\{126,1022\}}$	Just larger than largest denormalized
	One	0111	0000	1.0	
	Largest Normalized	1110	1111	$(2.0-\varepsilon) \times 2^{\{127,1023\}}$	Single $\approx 3.4 \times 10^{38}$ Double $\approx 1.8 \times 10^{308}$

Special Properties of Encoding

- ▶ FP (Floating Point) zero same as integer zero
 - All bits are zero
- ► Can (Almost) use unsigned integer comparison
 - Must first compare sign bits
 - $^{\circ}$ Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denormalized vs. normalized
 - Normalized vs. infinity

Today: Floating Point

- ► Background: Fractional binary numbers
- ► IEEE floating point standard: Definition
- ► Example and properties
- ► Rounding, addition, multiplication
- ► Floating point in C
- ▶ Summary

Floating Point Operations

 \rightarrow x \times_f y = Round(x \times y)

- ► Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Four Modes of Rounding

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	-\$1
Round down (-∞)	\$1	\$1	\$1	\$2	-\$2
Round up (+∞)	\$2	\$2	\$2	\$3	-\$1
Nearest Even (default)	\$1	\$2	\$2	\$2	-\$2

- ► Round down
 - Rounded result is close to but no greater than true result
- ► Round up
 - ° Rounded result is close to but no less than true result
- ▶ What are the advantages of the modes?

Closer Look at Round-To-Even

- ▶ Default rounding mode
 - Hard to get any other kind without dropping into assembly
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or under- estimated
- ► Applying to other decimal places / bit positions
 - When exactly halfway between two possible values
 - ROUND SO THAT LEAST SIGNIFICANT DIGIT IS EVEN
 - Example: Round to nearest hundredth

Exercise

7.8949999	7.89	Less than half way
7.8950001	7.90	Greater than half way
7.8950000	7.90	Half way—round up
7.8850000	7.88	Half way—round down

► Round to nearest hundredth

Rounding Binary Numbers

- ▶ Binary Fractional Numbers
 - "Even" when least significant bit is 0
 - "Half way" when bits to right of rounding position = 100...
- Examples
 - Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	down	2
2 3/16	10.001102	10.012	up	2 1/4
2 7/8	10.111002	11.002	up	3
2 5/8	10.101002	10.102	down	2 1/2

Floating Point Multiplication

ightharpoonup Exact Result: $(-1)^s \times M \times 2^E$

° Sign s:

s1 ^ s2

Significand M: M1 × M2

• Exponent E: E1 + E2

Fixing

- $^{\circ}$ If M ≥ 2, shift M right, increment E
- If **E** out of range, overflow
- Round M to fit frac precision
- ► Implementation
 - Biggest chore is MULTIPLYING SIGNIFICANDS

 $(-1)^{s1} \times M1 \times 2^{E1} \times (-1)^{s2} \times M2 \times 2^{E2}$

Floating Point Addition

- ► Assume **E1** > **E2**
- ightharpoonup Exact Result: $(-1)^s \times M \times 2^E$
 - Sign **s**, significand **M**:
 - Result of signed align & add
 - Exponent E: E1
- Fixing
 - \circ If M ≥ 2, shift M right, increment E
 - if M < 1, shift M left k positions, decrement E by k
 - Overflow if **E** out of range
 - Round M to fit frac precision

Mathematical Properties of FP Add

- ▶ Compare to those of Abelian Group
 - Closed under addition?
 - But may generate infinity or NaN
 - ° Commutative?
 - Associative?
 - Overflow and inexactness of rounding
 - (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14
 - o 0 is additive identity?
 YES
 - Every element has additive inverse
 - Except for infinities & NaNs
- Monotonicity
 - \circ a ≥ b \Rightarrow a+c ≥ b+c?
 - Except for infinities & NaNs

Almost

Almost

YES

Mathematical Properties of FP Multiplication

- ► Compare to Commutative Ring
 - ° Closed under multiplication?
 - But may generate infinity or NaN
 - Multiplication Commutative?
 - Multiplication is Associative?
 - Possibility of overflow, inexactness of rounding
 - (1e20*1e20) *1e-20= inf, 1e20* (1e20*1e-20) = 1e20
 - 1 is multiplicative identity?
 - Multiplication distributes over addition?
 - Possibility of overflow, inexactness of rounding
 - 1e20*(1e20-1e20)=0.0, 1e20*1e20 1e20*1e20 = NaN

YES

YES

NO

YES

NO

Monotonicity

 $a \ge b \& c \ge 0 \Rightarrow a *c \ge b *c?$

Except for infinities & NaNs

Almost

Today: Floating Point

- ► Background: Fractional binary numbers
- ► IEEE floating point standard: Definition
- ► Example and properties
- ► Rounding, addition, multiplication
- ► Floating point in C
- ▶ Summary

Floating Point in C

- C guarantees two levels
 - float single precision
 - double double precision
- Conversions / Casting
 - Casting between int, float, and double changes bit representation

$^{\circ}$ double/float \Rightarrow int

- Truncates fractional part
- Like rounding toward zero
- Not defined when out of range or NaN: Generally sets to T_{\min}
- $^{\circ}$ int \Rightarrow double
 - Exact conversion, as long as int has ≤ 53 bit word size
- \circ int \Rightarrow float
 - Will round according to rounding mode

Floating Point Puzzles

- ▶ For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither a nor f is NaN

```
x == (int) (float) x
x == (int) (double) x
f == (float) (double) f
d == (float) d
f == -(-f);
2/3 == 2/3.0
d < 0.0
                 ((d*2) < 0.0)
d > f
                 -f > -d
d * d >= 0.0
```


Today: Floating Point

- ► Background: Fractional binary numbers
- ▶ IEEE floating point standard: Definition
- ► Example and properties
- ► Rounding, addition, multiplication
- ► Floating point in C
- Summary

Summary

- ▶ IEEE Floating Point has clear mathematical properties
- ▶ Represents numbers of form $M \times 2^E$
- ▶ One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- ▶ Not the same as real arithmetic
 - Violates associativity / distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

