

The Scots College

2001 TRIAL HSC EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using a blue or black pen
- Board-approved calculators may be used
- A table of standard integrals is provided on page 8
- Ail necessary working should be shown in every question
- Start each question in a new booklet.

Total Marks: (84) Weighting: 35% HSC

- Attempt Questions 1 7
- All questions are of equal value

Total marks (84) Attempt Questions 1 – 7 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet.

a. Evaluate
$$\int_{0}^{2\sqrt{3}} \frac{dx}{4+x^2}$$

b. Differentiate
$$\cos^3 x$$

c. Find the point which divides the line joining (4, 6) and (13, 5) externally in the ratio 4:1

2

1

- d. Write down the equation of the vertical asymptote of $y = \frac{2x}{3x-1}$
 - $=\frac{2x}{3x-1}$

e. Solve for x: $\frac{3}{x+5} \le 1$

2

3

f. Evaluate $\int_{0}^{\frac{1}{\sqrt{2}}} \frac{2x^3}{\sqrt{1-x^4}} dx \text{ using the substitution } u = x^4$

End of Question 1

Question 2 (12 marks) Use a SEPARATE writing booklet.			Marks
a.	_	all the letters, how many different arrangements can be made the word MATHEMATICS?	2
b.	Find a	all values of θ in the range $0 \le \theta \le 2\pi$ for which $\sin \theta + \sqrt{3} \cos \theta = 1$	4
c.	i.	Show that the function $f(x) = 2x^2 + x - 2$ cuts the x axis between $x = 0$ and $x = 1$	1
	ii.	Use the method of halving the interval twice to find an approximation to the root of this equation.	3
	iii.	Starting with a value of $x = 0.7$ use Newton's method once to find an approximation to this root correct to 3 decimal places.	2

End of Question 2

Question 3 (12 marks) Use a SEPARATE writing booklet.

Marks

a. The region R is bounded by the curve $y = \cos x$, x = 0, $x = \frac{\pi}{2}$ and the x - axis.

i. Sketch R

1

ii. Find the exact volume of the solid generated when the region R is rotated about the x – axis.

2

b. If α , β , γ , are the roots of the cubic polynomial equation $x^3 + 4x^2 - 6x - 8 = 0$ Find the value of $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$

2

¢.

ABCD is a cyclic quadrilateral. EF is a tangent at D. If BD bisects $\angle ABC$, prove that AC is parallel to EF

2

d. i. By equating coefficients, find the values of A and B in the identity

 $A(2\sin x + \cos x) + B(2\cos x + \sin x) = 7\sin x + 11\cos x$

2

ii. Hence show that $\int_{0}^{\frac{\pi}{2}} \frac{7 \sin x + 11 \cos x}{2 \sin x + \cos x} dx = \frac{5\pi}{2} + \ln 8$

3

End of Question 3

3

Question 4 (12 marks) Use a SEPARATE writing booklet.

Marks

2

P is a variable point on the parabola $x^2 = 8y$ with parameter p. The normal at P cuts the y axis at A and R is the midpoint of AP.

i. Show that the normal at P has equation $x + py = 4p + 2p^3$

ii. Show that R has coordinates $(2p,2p^2+2)$

iii. Show that the locus of R is a parabola and show that the vertex of this parabola is the focus of the parabola $x^2 = 8y$.

b. i. Evaluate $\int_{1}^{3} \frac{dx}{x}$

i. Use Simpson's rule with 3 function values to approximate $\int_{1}^{3} \frac{dx}{x}$

iii. Use your results to parts i and ii to obtain an approximation for e.

Give your answer correct to 3 decimal places.

End of Question 4

Marks

2

2

3

1

a. Prove by induction that, for all integers $n \ge 1$.

$$\frac{1}{1\times 2} + \frac{1}{2\times 3} + \frac{1}{3\times 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

3

b. i. Find the domain over which the function $y = x^2 + 6x$ is monotonic increasing.

2

 Find the inverse function over this restricted domain, and sketch a graph of this inverse function clearly showing its domain and range.

3

3

iii Evaluate $\cos \left[\tan^{-1} \left(-\frac{1}{\sqrt{3}} \right) \right]$

1

iv. Sketch the graph of $y = 3\sin^{-1}\left(\frac{x}{2} - 1\right)$

End of Question 5

a. When the temperature T of a certain body is 65°C it is cooling at the rate of 1°C per minute.

Assuming Newton's law of cooling: $\frac{dT}{dt} = -k(T-S)$ where

T is the temperature of the body at time t minutes S is the temperature of the surrounding medium k is a constant

i. Verify that $T = S + Ae^{-k}$ is a solution of the given differential equation, where A is a constant.

ii. Determine the value of k given that S, which is constant, is 15°C.

iii. Find T when t = 20 minutes, giving your answer to the nearest degree 2

iv. How long will it take for the temperature of the body to fall to 35°C?

The acceleration of a particle P, moving along a straight line has an acceleration given by

$$\frac{d^2x}{dt^2} = -4\left(x + \frac{16}{x^3}\right)$$

Given that P is initially at rest at the point x = 2 m, show that the velocity v m/s at any time is given by

 $v^2 = 4\left(\frac{16-x^4}{x^2}\right)$

ii. Hence, or otherwise, show that when P is halfway to the origin, the speed is given by $2\sqrt{15}$ m/s

End of Question 6

- An arrow is fired horizontally at 60ms⁻¹ from the top of a 20m high wall. Taking $g = 10 \text{ ms}^{-2}$
 - Show, using calculus, that the horizontal and vertical components of the arrows ì. motion are given by

$$x = 60t$$

$$y = -5t^2 + 20$$

- ii. Find the time taken for the arrow to hit the ground. 2
- Find the distance that the point of impact will be from the base iii. of the wall. 1
- Find the angle with which the arrow will strike the ground, iv. 2
- A squad of 8 is chosen at random from 3 baseball teams A, B and C with 10 players in each team.
 - If 5 of the squad are chosen from the A team, 2 from the B team and 1 is chosen from the C team, in how many ways can the squad be formed? 2
 - Find the probability that Joe from the B team and Fred from the A team will be chosen. 2

End of paper

The Scots College Mathematics Department 2001 Written by: D Hamaty Assessed by: D Scardino

$$\int x^n dx = \frac{1}{n+1} x^{n+1} + C, \quad n \neq -1; x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x + C, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + C, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax + C, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax + C, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax + C, \quad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax + C, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + C, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a} + C, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}) + C, \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2}) + C$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right) + C$$

NOTE: $\ln x = \log_{1} x$, x > 0