

BUS935 Advanced Freight Transportation Theory (Doctor)

제 6주차 리포트

과 목:화물운송론

교수명: 정 성 태 교수님

코 드:

과 정 : 박사과정 2학기

학생명: 김 경 민

1. 운송의 개념과 운송수단별 특징

1) 운송의 개념과 기능

◆ 운송의 개념:

- 운송(運送)이란 자동차, 철도, 선박, 항공기 등 교통수단을 이용하여 사람 또는 재화의 출발지(공급지) 와 도착지(수요지)간의 공간적 거리의 조정과 시간적 간격을 줄이기 위한 장소적 이동현상 또는 행위 이다
- 2) 화물운송의 수요는 재화에 대한 파생적 수요에 해당한다.
- 2) 작물문용의 구요는 데치에 대한 파공의 구요에 대공한다. 3) 운송은 사람이나 재화를 한 장소에서 다른 장소로 신속하고, 안전하며, 저렴하게, 고객이 원하는 장 소와 시간에 이동시키는 물리적 행위로 장소적(공간적)효용 및 시간적 효용을 창출함
- 4) 최적의 운송이란 '고객이 요구하는 운송서비스를 경제적으로 제공하는 것'이다
- 운송은 물류활동 중 가장 큰 비중을 차지하며, 물류활동의 목표인 비용결감과 고객서비스 향상에 초

◆ 운송의 기능:

- 약속된 장소와 기간 내에 재화를 고객에게 전달하는 기능
- 판매와 생산을 조정하여 생산계획의 안정화와 원활화를 도모하는 기능
- 2) 문류계획(수송, 배송, 재고, 보관하역, 정보관리 등)을 올바로 수행하게 하는 기능 4) 운송 중 운송수단에 일시적으로 재화를 보관하는 기능(이동재고기능)
- 5) 생산과 소비의 지리적, 장소적, 공간적 거리의 격차해소와 상품의 판매촉진 기능

2) 운송시스템의 기본 요소

◆ 운송시스템의 기본 요소

화물이 상차하고 목격지에 도착할때까지 상차와 하자, 운행과 중계,혼합, 환격등 다양한 작업들을 효율적으로 체계화하는 것을 운송시스템이라고 한다. 효율적인 운송시스템이 작동하기 위해서는 Link, Mode, Node, 의 3가지 요소가 필요하다.

Mode	운송을 직접 담당하는 수단	자동차 나 화장공기 성도 파이프라만
Node	운송을 위한 개화를 효율적으로 처리하기 위한 장소, 시설, 거정	몰류센터, 계조공항, 화물터이날,역,항만,공항
Link	온송수단이 온행에 이용하는 투급 요소계로	공로, 철도, 배상향로, 내수면로, 항공로

3) 운송의 특성

◆ 운송의 특성

- 즉시재(Instantaneous Goods): 운송의 공급은 운송수단을 보유하고 있다고 생산이 이어지는 것이 아니고 수요자의 요청에 따라 실찰적으로 운송행위가 이루어질 때 비로소 운송공급이 이루어지는 즉시재이다.
- 공적운송(Unused Capacity): 운송수단이 화물을 적재하지 않고 운송하는 것을 말하며 공적운송은 생산설비의 낭비라고 할 수 있으나 실질적으로 운송서비스를 수행하는 과정에서 필연적으로 발생할 수 밖에 없어 공적운송률(공차율) 을 최소화/ 영차율(책재하고 운송)극대화
- 결합생산(Joint Production): 운송은 단독으로 생산을 하기로 하지만 많은 경우, 다른 운송수단과 연결하여 운송(복합운송)하고, 수송과 배송이 연결된다.
- 복합생산(Multiple Composite Production): 운송업은 하나의 운송장비로서 여러가지 생산물을 생산하게 된다. 즉 동일한 운송 수단에 다양한 화물을 혼재하고 다양한 목적지를 순회하면서 운송서비스를 제공함으로써 다양한 개별 수요를 복합적으로 생산하는 형태

4) 운송모델의 변화추세

- 운송의 형태는 소비나 생산형태의 변화에 맞춰 변해간다. 즉 생산과 소비의 종속의 변수라는 의미. 생산과 소비가 대량생산, 대량소비에서 소량다품 생산, 개별맞춤형 생산으로 변화함에 따라 운송의 형태 및 모델도 급속하게 변하고 있다. 재고의 문제점, 물류서비스가 상품의 매출에 지대한역할을 한다는 인식에 따라 물류서비스의 역할도 급속하게 변하고 있다.
- 소량 다빈도 수.배송
- JIT 수. 배송
- 복합운송의 일반화
- 공동 수.배송
- 배송의 택배화
- 항공운송의 급종

5) 운송의 경제적 역활

- 협의의 운송은 유통에 있어서 재화의 장소적 분리문제를 해소하며, 보관 및 시간 조절기능을 수행하고 있지만, 광의의 운송은 경제 전체 다양한 영향을 미치고 있다. 물류교환의 촉진, 가격의 안정과 평준화, 지역적 분업 화 경쟁조성, 대량생산과 대량소비, 도시화, 무점포 판매 및 전자상거래의 활성화 등이 운송의 경제적 역할에 해당된다.

6) 기업의 물류변화 방향

현재		변화 방향
상/물류 혼재형	⇒	상/물류 분리형
소품종 대량물류	⇒	다품종 소량물류
재고 과다형	⇒	재고축소형
저투자/노동집약형	==>	고투자/고기능형
생산과 판매에 종속	⇒	생산, 판매, 물류의 독립
거점 분산형	⇒	거점 집약형
독립/개별 수배송		공동/통합형 수배송
국내/국외 물류분리형	=>	국내/국외 물류 통합형

7) 국내운송과 국제운송의 기능상 차이

기능	국내운송	국제운송
운송	주로 배송활동에 중점을 두고 물류거점을 이용한 공로운송(자동차운송, 철도운송, 내 륙운송)	항만이나 공항을 이용한 복합일관운송(해상 운송, 항공운송, 복합운송)
보관	물류센터나 집배송센터 중심의 보관 기능 및 유통창고의 기능강조	항만, 공항, 내륙거점 등의 복합화물 터미널 등에서의 보관작업, 보세구역이나 보세창고 에서 보관
하역	물류센터나 집배송센터의 포크리프트, 지 게차 등으로 작업	항만, 공항, 터미널에서 크레인, 포크리프트 등으로 작업
포장	포장의 경제성, 편리성, 간이성에 중점	운송의 연계성(복합운송)에 중점 (팔레트, 컨테이너 단위)
정보	화주, 운송업체, 운송주선업체 등의 주로 개별적 정보 이용	특정 터미널을 축으로 국내 화주로 부터 해외 고객에 이르는 과정을 EDI나 인터넷을 통해 국제간 화물추적시스템 중요

8) 운송수단별 장/단점

수단	장 점	단 점
화물 자동차	Door to Door 운송편리, 운송 완결점 근거리 신속한 운송가능 화물특성에 따라 차량이용가능	대량, 장거리 부적합 환경오염 유발(대기,소음) 적재중량,교통체중취약
철도	대량, 중량물 수송에 용이 정시성과 전천후 운송수단 중장거리 및 안전보장에 적합	화물차량과 연계운송 필요 화차확보에 시간소요 운임 비탄력적, 화물파손 높슴
선박	대량, 장거리 운송에 적합 단위당 운송료 저렴,용적화물 적합 컨테이너운송을 통한 일괄운송시스템	기후에 영향을 많이 받음 육로운송과 연계운송 필요 항만설비투자와 항만 내 하역
항공기	신속한 운항 가능 소량·경량의 고가화물·장거리운송 적합 파손율이 적음	운송단가 높고,기후영향 중량과 용적제한이 많슴 육상운송 연계, 공항 내 하역

9) 트레이드 오프의 개념

물류관리 트레이드-오프의 개념: 물류시스템을 구성하는 요소들간의 Trade-Off 발생. 물류의 한 부분에서의 초과 현상은 다른 부문에서의 희생을 초래됨

- ◆ 운송수단 선정시 상충관계(trade-off)로 불류전략 수립시 운송비용과 재고유지비용(서비스) 의 균형검을 이루는 곳에서 총비용관점에서 파악해야 함. 1) 속도가 높은 운송수단일수록 운송빈도수가 더욱 높아져 수송비는 증가함 2) 속도가 낮은 운송수단일수록 운송빈도수가 더욱 낮아져 보관비(재고유지비)는 증가함.

2. 운송합리화 방안과 운임 결정요소

1) 운송전략의 수립 10원칙

- 1. 운송재고 상반관계(Trade-off)의 원칙 :운송비와 재고비용 상관관계
- 2, 자가용 차량과 영업용 차량 조합(mix)의 원칙: 근거리는 자가, 원거리는 영업용
- 3. 단일 원거리운송의 원칙: 중간에 환적없이 동일한 운송수단으로 최종 목적지운송
- 4. 수배송 일원화의 원칙: 수송과 배송을 연결, 물류센터 내 재고 제로:

직송시스템(Cross-Docking) 구축

- 5. 회전수 향상의 원칙 : 운송을 담당하는 차량 운행횟수를 늘릴 수 있는 방안 강구
- 6. 상하차 신속의 원칙 : 차량의 상하차 소요시간을 절감하여 차량대기시간 최소화
- 7. 배송특성 대응의 원칙 : 도심지역 배송밀도 높고 운행거리 짧아

배송특성에 맞게 배차

- 8. 리드타임 충족의 원칙: 구매자의 희망 배송리드타임을 충족하여 경제적인 선택
- 9. 수송단가 분기점의 원칙 : 운송단가를 계산 영업용보다 낮은 때 자가, 반대는 영업
- 10. 횡지관리의 원칙: 오지지역 운송시 상품판매량과 운송량 적을 때 타사 이용

2) 운송합리화 기본사항

운송합리화 기본사항

1. 회적의 운송수단 선택	6. 적제율 항상	
2. 최단의 운송 루트 개발	7. 수송체계의 다변화	
3. 김짜기 격재효율 개발	8. 일관 파랫트화, 일관 복합 운송 증대	
4. 계회운송 중대	9. 첨단 정보 시스템 도입 확대	
5. 운송불량의 대항화, 표준화	10. 아웃소싱물 통한 3자 불류확대	

요송시스템 합리화

시스템 정비 : 계획화	정보 시스템 구축	
1. 문송계획의 세계화, 합리화	1. 자료 거리의 견산화 [Data Base]구축	
2. 차량 소요책회의 체계화	2. 관련 서브시스템의 전산화 활용	
3. 경제적 의량 운행 일정 계획 작성	· 최격 배와 시스템 · 최적 배송루트 시스템	
4. 수 배송 루트의 변경	· 문양 계산 설격 집계시스템 = 주문 흝하 시스템	
5. 수 배송 사이글의 변경	- 공차정보 시스템 . = Networking . = TMS, GPS	

3) 운송합리화 추진방향과 실천방안

추진 방향	설명
고객지향	SCM개념에 입각하여 서비스에 대한 고객의 만족을 국대화하는 방향으로 전개
비용결감	서비스와 비용을 항상 Trade-off 관계에 있으므로 고객지항과 비용결감은 적절한 조화가 필요
전사격 관점	물류부서만의 활동으로 국한시킬 것이 아니라 기업건체의 자원에서 경영건략의 일부로 변 영하여야 함
정보화	물류간리의 핵심은 경보화, 정보기술과 물류정보를 효과적으로 이용하는 물류정보시스템 구축이 필요함

실천방 안	세부 실천방안	
물류경로와 수송한테 강비	공동 수배송, Cross-Docking 시스템 도입	
차량격재 개선	혼재, 유닛로드시스템 도입	
경제성 분석	수송 수단의 변경, 걱정 방문주기 변경	
수배송 계획시스템 경비	경제적 차량운행경로계획 작성	
수송 평가시스템 구축	수송관련 실적정보의 유지/보관 평가항목의 설정 및 개선조치	
수송 정보시스템 구축	운송 자료처리의 찬산화 가량위지추적 및 화물추적시스템 도입	
제3자 물류서비스 확대	운송 및 보관 활동 아웃소성	

4) 특장차의 정의와 종류

- 특장차의 정의: 차량의 적재함을 특수한 화물에 적합하도록 구조를 갖추거나 특수한 작업이 가능하도록 기계자치를 부착한 차량.
- 특장차 종류: 덤프트럭, 믹서트럭, 분엽채수송차, 액체수송차, 냉동냉장차, 차량운송용 차량, 동물운송용 차량, 활어운송차량, 중량물 운송차량, 무진동차량
- 차량형태별 분류: 내장탑(택배이용), 냉장탑(빙과류), 윙바디(물류창고), 리프트탑(무거운 단일제품운송), 탱크로리(유조차), VAN(현금수송)

5) 화물자동차 운수사업의 종류

화물자동차 운송사업	화물자동차주선사업	화물자동차가맹사업
화물자동차운송사업은 화물 자동차를 보유하고 직접 운 송사업을 영위하는 형태의 사업	화주와 운송업자 중간에서 화물운 송을 중계하는 사업	타인의 수요에 응하여 자기의 화 물자동차를 사용하여 유상으로 화물을 운송하거나 소속 화물자
·일반화물자동차운송사업	일반화물자동차운송주선업자	동차운송가맹점(차량을 보유하고 운송을 담당하는 가맹점에 한 한
-개별화물자동차운송사업	이사화물운송주서업	다) 에 의뢰하여 화물을 운송하게 하는 사업
-용달화물자동차운송사업	NAME TO TUE	

6) 화물자동차의 효율적인 운용관리 방안

7) 화물운송 운임의 결정에 영향을 주는 요소

◆ 운임의 결정에 영향을 주는 요소

- 1) 거리 : 고정비(유송시간)와 변동비(연료비 수리비 타이어비)에 영향을 주는 가장 중요한 요소
 - ▶ 운송거리가 길어질수록 총운송원가는 증가하지만, '거리의 경제'가 존재하여 거리가 길어질수록 ton, Km당 운송비는 체감한다.
- 2) 운송화물의 크기 : 화물단위(무게 부피)가 클수록 대형차량 이용-운송단위당 부담하는 고경비. 일반관리비는 낮아지고, 변동비 소모 효율성이 향상되어 단위당 운송비도 낮아진다.
- 3) 밀도: 밀도는 무게,부피,면적을 통합시킨 개념으로 동일한 중량이라면 부피, 면적이 적은 화물이 말도가 높다는 개념으로 동일한 용적의 용기에 많이 적재하여 운송비는 낮아짐.
- 4) 적재성: 제품규격이 적재공간활용에 어떤 영향을 미치는가의 정도로 화물형상의 다양성, 비정형성은 적재공간 효율성을 낮게 하여 높은 수준의 운송료가 협상됨.
- 5) 취급: 화물의 상하차에 많은 인력, 시간소요 및 특수장비사용 경우 운송비 증가초래, 즉 화물취급이 어려울수록 운송비는 높은 수준에서 이루어진다.
- 6) 책임: 화물사고의 발생가능성이 높으면 배상가능성, 책임수준도 높아져 운송비 높아진다.
- 7) 시장요인: 경쟁상황, 복화운송가능성, 대기 차량의 수 등에 따라 운임수준이 결정됨

8) 화물운송운임의 산정기준과 표준운송원가 산정방법

◆ 화물자동차 운임산정의 기준

- 1) 중략기류 : 시에트 | 철강과 강이 부피에 비해 무거운 화목 중 중약화물에 점용 (M/T:Metric Ton)
- 2) 용적기준 : 연화, 목재, 자동차 등과 같이 중량에 비해 부피가 큰 용적화물에 적용 (CBM:CuBic Meter)
- 3) 종가기준 : 화폐, 보석, 고가품의 운임은 송장 가맥의 일정액을 부과하는 것으로 종가운임율이라고 함
- 4) 개수 BOX기큐 : 화물 개수에 따라 운입부과(마리 대당), 박스단위 운입계산 (컨테이너, 택배화물 등)
- 5) 무차별운임 (FAK : Freight All Kinds) : 품목에 관계없이 중량 또는 용격을 기준하여 운임 계산
- 6) Revenue Ton : 용격과 종량 중에서 운송업자에게 유리하게 적용한 (비교우위 수익기준) 운임기준
- 7) 특수화물 운임 : 취급에 특별한 장비 및 추위를 요하는 화물에 대한 추가운임 또는 항중운임 격용

◆Pilot Test를 통한 표준운송원가 산정방법

화물차량·톤급/거리별/ 철도·중량과 화차단위/ 선박·중량·용격(1m3 = 1톤)/ 항공(1m3 = 166kg) (운송비 기준 : 운송원가 + 걱정이윤)

◆ 운송비 산정 공식: TC 총비용) = E + d + T + (V-D)R

TC = 홍네용, E = 운영비(인건비, 유류비, 유지비 등), d = 강가상각비, T= 세공, V = 재산 총 가액,

D = 감가상각 누계액, R = 정상수익율, (V-D)R = 정상이익

- ·변동비 최대 비중은 유류비가 차지한다. 타이어의 사용량은 차량운행거리, 도로사청, 화물의 최재 상태, 운행실태 등의 요인의 의해 차이가 발생한다.
- ◆ 연간 타이어 소모비용 = 연간 총운행거리/교환기준거리 x 대당 부착개수 x 타이어의 기준단가

3. 택배와 국제특송, 철도운송

- 1) 택배(소화물 일괄운송)의 개념과 서비스 특성
- 택배란 "화물자동차운수사업법 시행규칙" 제6조3항에서 '운송사업자의 **일관책임하에 화물을 집화,분류,배송하는 형태의 운송사업**'이라고 규정.
- ▶ 택배서비스 정의: 불특정 다수의 화주의 요청에 의해 소형, 소량의 화물 을 송화인의 문전에서 잡화하여 택배업체의 일관책임하에 수화인의 문전 까지 신속하게 배달해 주는 운송서비스이다.

- ◆ 택배(소화물 일관운송) 서비스의 특징
- 1) 서비스 속성대비 가격의 경제성 2) 물품의 인도의 신속성, 신속한 대용
- 3) 자유로운 배송시간대의 편리성 4) 안전한 물품의 인도, 신뢰성
- 5) 다양한 물품배달 및 대급지불수단의 다양성, 단일요금체제의 확립
- 6) 문전배송, 욵송서비스의 혁신성, 소형, 소량화물의 운송을 위한 운송체계
- 공식적인 약관에 따른 보증제도, 규격화된 포장서비스를 제공하고. 운송장의 작성으로 소화물의 분실파손 등에 대한 손해 배상제도를 확립.
- 8) 무인 드론의 이착륙 제어시스템 활용-드론 택배시장 크게 성장 예측
- ▶ 사업자체로서의 특징: 장치산업, 네트워크 산업, 정보시스템 사업, 노동집약적 산업

2) 택배 운송장의 역할과 중요성

- 1) 계약서 역할-운송장 기록내용이 곧 계약내용이 된다.
- 2) 택배요금 영수증 역할-운송장에 기록된 요금으로 영수증
- 3) 화물인수중 역할-택배회사가 화물을 송화인으로부터 이상 없이 인수함을 증명.
- 4) 정보처리 자료 역할-바코드 추적정보, 집화 정보
- 5) 화물취급 지시서 역할-지역정보, 취급주의사항, 안전인도
- 6) 배달에 대한 증빙 역할-배달여부의 확인, 책임소재.
- 7) 요금 청구서 역할-착불 경우 수화인에게 요금 청구
- 8) 수입관리자료 역할-선불화물, 착화물 경우 입금표와 수입금, 운송장 첨부제출
- 9) 화물 Picking 및 패킹 지시서 역할-B2C화물 취급 기업 경우

3) 택배의 유형

- ◆ Point to Point System: 일정한 권역별로 터미널을 구축하고 해당 권역 내에 산재해 있는 영업소나 집배센터는 해당 권역터미널로 집하된 화물을 발송하고 그 터미널로부터 배달화물을 인계받아 배달업무를 수행하는 형태의 처리시스템.
- ◆ Hub & Spoke System : 영업소 또는 집배센터에서 집하한 화물을 하나의 대 형터미널로 집결시킨 후 전 영업소 및 집배센터별로 배달행선지를 구분, 분류하 여 간선 운송시키는 시스템.
- ◆ 결흥형 System: Point of Point (P to P)System 과 Hub & Spoke (H&S) System의 양시스템의 문제점을 보완하기 의한 것이 절흥형 System.

4) 국제특송의 환경요인

5) 철도운송의 장/단점과 운송서비스 결정요소

장 점

- 운암코스트가 경제적이다
- 장거리, 대량고속운송이 가능
- 안전도가 높고, 회사전용선의 이용가능
- 계획적인 운행 가능, 기존시설 이용가능 건국적인 네트워크, 친환경운송수단
- 운입할인제도, 고객유치 위한 시설제공
 화물보관편리, 기후에 영향을 받지 않음

단 점

- 서비스 완결성미흡-환격 작업이 필요
- 열차를 편성하는 데 시간소요
- 화치의 소재관리 어려움
- 배차의 탄력성이 없고, 기동성이 낮음
- 운임설정의 경격성, 화주의 부대비용부담
- 격재 중량당 용적이 작다
- 문전까지 집배서비스 불가능

◆ 철도운송서비스의 결정요소

- 1) 운송비용과 운송시간-경쟁수단과의 가격 및 시간 경쟁력
- 2) 유연성-화주요구의 시간대, 물동량 변화에 대한 탄력적 대응정도
- 3) 서비스의 청시성-요구시간 내 목적지까지 전달하는 서비스의 신뢰성
- 4) 서비스의 적합성-운송화물의 특성(대량, 장거리 운송화물, 특수운송장비 등의 필요 부합정도
- 5) 접근성-출발지, 목적지로 부터 선로망, 화물취급역, ICD, CY등 공간적 연결정도
- 6) 화물정보 제공성 운송화물의 위치, 상태관련 정보제공 수준
- 7) 안전성-운송서비스 과정에서 화물의 분실, 파손 정도

6) TOFC 방식과 COFC 방식

- TOFC(Trailer on Flat Car)방식: RO-RO방식으로 컨테이너를 적재한 트레일러 자체 를 철도화차에 상차하거나 화차로부터 하차하는 방식으로, 챙겨루 방식과 피기백 (Pigy-back)방식, 고속운송과 컨테이너를 결합한 프레이트 라이너(Freight Liner)빙 식도 있슴
- COFC(Container on Flat Car)방식:컨테이너 자체만을 철도화차에 상차하거나 철 도화차로부터 하차하는 방식으로, 지게차에 의한 방식과 Transfer Crane으로 매달 아 싣는 방식과 트럭이 화물열차에 대해 직각으로 후진하여 적재하는 플렉시밴 (Flexi-Van)방식

7) ICD 의 정의와 작업절차

◆ ICD (Inland Container Depot; 내륙컨테이너통관기지) 정의: 항만 혹은 공항이 아닌 내륙에 위치하여 배후 지역에서 운송된 여러 종류의 화물을 일시적 저장 및 취급에 대한 서비스를 제공하는 종합물류터미널의 기능을 다하는 곳 으로, ICD는 CY가 단순히 컨테이너의 광치기능을 하는 것에 비해 신속한 통관 및 B/L 발급을 통한 수출대금의 조기결제가 가능토록 하는 이른바 '내륙에 있는 부두'의 개념으로 CY의 기능이 확대, 발견된 것.

▶ 우리나라는 현재 수도권 부곡역 의왕, 부산권 양산역, 전남 장성 ICD 운영.

◆ ICD의 철도화물 작업절차

