Package 'endogeneity'

August 21, 2023

Type Package
Title Recursive Two-Stage Models to Address Endogeneity
Version 2.1.3
Date 2023-08-20
Author Jing Peng
Maintainer Jing Peng <jing.peng@uconn.edu></jing.peng@uconn.edu>
Description Various recursive two-stage models to address the endogeneity issue of treatment variables in observational study or mediators in experiments. The details of the models are discussed in Peng (2023) <doi:10.1287 isre.2022.1113="">.</doi:10.1287>
License GPL (>= 3)
Encoding UTF-8
VignetteBuilder knitr
Imports Rcpp, pbivnorm, maxLik, statmod, MASS, data.table
LinkingTo Rcpp, RcppArmadillo
Suggests knitr, rmarkdown
RoxygenNote 7.2.3
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-08-21 04:02:35 UTC
R topics documented:
bilinear 2 biprobit 4 biprobit_latent 6 biprobit_partial 9 endogeneity 11 linear_probit 13 pln 15 pln_linear 17

2 bilinear

Index		3 3
	probit_linear_partial	29
	probit_linear_latent	
	probit_linearRE	
	probit_linear	22
	pln_probit	19

bilinear

Recusrive Bivariate Linear Model

Description

Estimate two linear models with bivariate normally distributed error terms.

First stage (Linear):

$$m_i = \boldsymbol{\alpha}' \mathbf{w_i} + \lambda u_i$$

Second stage (Linear):

$$y_i = \beta' \mathbf{x_i} + \gamma m_i + \sigma v_i$$

Endogeneity structure: u_i and v_i are bivariate normally distributed with a correlation of ρ .

The identification of this model requires an instrumental variable that appears in w but not x. This model still works if the first-stage dependent variable is not a regressor in the second stage.

Usage

```
bilinear(form1, form2, data = NULL, par = NULL, method = "BFGS", verbose = 0)
```

Arguments

form1	Formula for the first linear model
form2	Formula for the second linear model
data	Input data, a data frame
par	Starting values for estimates
method	Optimization algorithm. Default is BFGS
verbose	A integer indicating how much output to display during the estimation process.
	• <0 - No ouput
	• 0 - Basic output (model estimates)

- 0 Basic output (model estimates)
- 1 Moderate output, basic ouput + parameter and likelihood in each iteration
- 2 Extensive output, moderate output + gradient values on each call

bilinear 3

Value

A list containing the results of the estimated model, some of which are inherited from the return of maxLik

- estimates: Model estimates with 95% confidence intervals. Prefix "1" means first stage variables.
- estimate or par: Point estimates
- variance_type: covariance matrix used to calculate standard errors. Either BHHH or Hessian.
- var: covariance matrix
- · se: standard errors
- var_bhhh: BHHH covariance matrix, inverse of the outer product of gradient at the maximum
- se_bhhh: BHHH standard errors
- · gradient: Gradient function at maximum
- · hessian: Hessian matrix at maximum
- gtHg: $g'H^-1g$, where H^-1 is simply the covariance matrix. A value close to zero (e.g., <1e-3 or 1e-6) indicates good convergence.
- · LL or maximum: Likelihood
- AIC: AICBIC: BIC
- n_obs: Number of observations
- n_par: Number of parameters
- LR_stat: Likelihood ratio test statistic for $\rho = 0$
- LR_p: p-value of likelihood ratio test
- iterations: number of iterations taken to converge
- message: Message regarding convergence status.

Note that the list inherits all the components in the output of maxLik. See the documentation of maxLik for more details.

References

Peng, Jing. (2023) Identification of Causal Mechanisms from Randomized Experiments: A Framework for Endogenous Mediation Analysis. Information Systems Research, 34(1):67-84. Available at https://doi.org/10.1287/isre.2022.1113

See Also

```
Other endogeneity: biprobit_latent(), biprobit_partial(), biprobit(), linear_probit(), pln_linear(), pln_probit(), probit_linearRE(), probit_linear_latent(), probit_linear_partial(), probit_linear()
```

4 biprobit

Examples

```
library(MASS)
N = 2000
rho = -0.5
set.seed(1)

x = rbinom(N, 1, 0.5)
z = rnorm(N)

e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]

m = -1 + x + z + e1
y = -1 + x + m + e2

est = bilinear(m~x+z, y~x+m)
print(est$estimates, digits=3)
```

biprobit

Recusrive Bivariate Probit Model

Description

Estimate two probit models with bivariate normally distributed error terms.

First stage (Probit):

$$m_i = 1(\boldsymbol{\alpha}' \mathbf{w_i} + u_i > 0)$$

Second stage (Probit):

$$y_i = 1(\boldsymbol{\beta}' \mathbf{x_i} + \gamma m_i + \sigma v_i > 0)$$

Endogeneity structure: u_i and v_i are bivariate normally distributed with a correlation of ρ .

w and x can be the same set of variables. Identification can be weak if w are not good predictors of m. This model still works if the first-stage dependent variable is not a regressor in the second stage.

Usage

```
biprobit(form1, form2, data = NULL, par = NULL, method = "BFGS", verbose = 0)
```

Arguments

par

form1	Formula for the first probit model
form2	Formula for the second probit model
data	Input data, a data frame

Starting values for estimates

biprobit 5

method

Optimization algorithm. Default is BFGS

verbose

A integer indicating how much output to display during the estimation process.

- <0 No ouput
- 0 Basic output (model estimates)
- 1 Moderate output, basic ouput + parameter and likelihood in each iteration
- 2 Extensive output, moderate output + gradient values on each call

Value

A list containing the results of the estimated model, some of which are inherited from the return of maxLik

- estimates: Model estimates with 95% confidence intervals. Prefix "1" means first stage variables.
- estimate or par: Point estimates
- variance_type: covariance matrix used to calculate standard errors. Either BHHH or Hessian.
- var: covariance matrix
- · se: standard errors
- · var_bhhh: BHHH covariance matrix, inverse of the outer product of gradient at the maximum
- se_bhhh: BHHH standard errors
- gradient: Gradient function at maximum
- · hessian: Hessian matrix at maximum
- gtHg: $g'H^-1g$, where H^-1 is simply the covariance matrix. A value close to zero (e.g., <1e-3 or 1e-6) indicates good convergence.
- LL or maximum: Likelihood
- AIC: AICBIC: BIC
- n obs: Number of observations
- n_par: Number of parameters
- LR_stat: Likelihood ratio test statistic for $\rho = 0$
- LR_p: p-value of likelihood ratio test
- · iterations: number of iterations taken to converge
- message: Message regarding convergence status.

Note that the list inherits all the components in the output of maxLik. See the documentation of maxLik for more details.

References

Peng, Jing. (2023) Identification of Causal Mechanisms from Randomized Experiments: A Framework for Endogenous Mediation Analysis. Information Systems Research, 34(1):67-84. Available at https://doi.org/10.1287/isre.2022.1113

6 biprobit_latent

See Also

```
Other endogeneity: bilinear(), biprobit_latent(), biprobit_partial(), linear_probit(), pln_linear(), pln_probit(), probit_linearRE(), probit_linear_latent(), probit_linear_partial(), probit_linear()
```

Examples

```
library(MASS)
N = 2000
rho = -0.5
set.seed(1)

x = rbinom(N, 1, 0.5)
z = rnorm(N)

e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]

m = as.numeric(1 + x + z + e1 > 0)
y = as.numeric(1 + x + z + m + e2 > 0)

est = biprobit(m~x+z, y~x+z+m)
print(est$estimates, digits=3)
```

biprobit_latent

Recursive Bivariate Probit Model with Latent First Stage

Description

Estimate two probit models with bivariate normally distributed error terms, in which the dependent variable of the first stage model is unobserved.

First stage (Probit, m_i^* is unobserved):

$$m_i^* = 1(\boldsymbol{\alpha}' \mathbf{w_i} + u_i > 0)$$

Second stage (Probit):

$$y_i = 1(\boldsymbol{\beta}' \mathbf{x_i} + \gamma m_i^* + \sigma v_i > 0)$$

Endogeneity structure: u_i and v_i are bivariate normally distributed with a correlation of ρ .

w and x can be the same set of variables. The identification of this model is generally weak, especially if w are not good predictors of m. γ is assumed to be positive to ensure that the model estimates are unique.

biprobit_latent 7

Usage

```
biprobit_latent(
  form1,
  form2,
  data = NULL,
  EM = FALSE,
  par = NULL,
  method = "BFGS",
  verbose = 0,
  maxIter = 500,
  tol = 1e-05,
  tol_LL = 1e-06
)
```

Arguments

form1	Formula for the first probit model, in which the dependent variable is unobserved. Use a formula like ~w to avoid specifying the dependent variable.
form2	Formula for the second probit model, the latent dependent variable of the first stage is automatically added as a regressor in this model
data	Input data, a data frame
EM	Whether to maximize likelihood use the Expectation-Maximization (EM) algorithm, which is slower but more robust. Defaults to FLASE, but should change to TRUE is the model has convergence issues.
par	Starting values for estimates
method	Optimization algorithm. Default is BFGS
verbose	A integer indicating how much output to display during the estimation process.
	• <0 - No ouput
	• 0 - Basic output (model estimates)
	• 1 - Moderate output, basic ouput + parameter and likelihood in each iteration
	• 2 - Extensive output, moderate output + gradient values on each call
maxIter	max iterations for EM algorithm
tol	tolerance for convergence of EM algorithm
tol_LL	tolerance for convergence of likelihood

Value

A list containing the results of the estimated model, some of which are inherited from the return of maxLik

- estimates: Model estimates with 95% confidence intervals. Prefix "1" means first stage variables.
- estimate or par: Point estimates
- variance_type: covariance matrix used to calculate standard errors. Either BHHH or Hessian.

8 biprobit_latent

- var: covariance matrix
- · se: standard errors
- gradient: Gradient function at maximum
- hessian: Hessian matrix at maximum
- gtHg: $g'H^-1g$, where H^-1 is simply the covariance matrix. A value close to zero (e.g., <1e-3 or 1e-6) indicates good convergence.
- · LL or maximum: Likelihood
- AIC: AICBIC: BIC
- n_obs: Number of observations
- n_par: Number of parameters
- iterations: number of iterations taken to converge
- message: Message regarding convergence status.

Note that the list inherits all the components in the output of maxLik. See the documentation of maxLik for more details.

References

Peng, Jing. (2023) Identification of Causal Mechanisms from Randomized Experiments: A Framework for Endogenous Mediation Analysis. Information Systems Research, 34(1):67-84. Available at https://doi.org/10.1287/isre.2022.1113

See Also

```
Other endogeneity: bilinear(), biprobit_partial(), biprobit(), linear_probit(), pln_linear(), pln_probit(), probit_linear(), probit_linear(), probit_linear()
```

Examples

```
library(MASS)
N = 2000
rho = -0.5
set.seed(1)

x = rbinom(N, 1, 0.5)
z = rnorm(N)

e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]

m = as.numeric(1 + x + z + e1 > 0)
y = as.numeric(1 + x + z + m + e2 > 0)

est = biprobit(m~x+z, y~x+z+m)
print(est$estimates, digits=3)
```

biprobit_partial 9

```
est_latent = biprobit_latent(~x+z, y~x+z)
print(est_latent$estimates, digits=3)
```

biprobit_partial

Recursive Bivariate Probit Model with Partially Observed First Stage

Description

Estimate two probit models with bivariate normally distributed error terms, in which the dependent variable of the first stage model is partially observed (or unobserved).

First stage (Probit, m_i is partially observed):

$$m_i = 1(\boldsymbol{\alpha}' \mathbf{w_i} + u_i > 0)$$

Second stage (Probit):

$$y_i = 1(\boldsymbol{\beta}' \mathbf{x_i} + \gamma m_i + \sigma v_i > 0)$$

Endogeneity structure: u_i and v_i are bivariate normally distributed with a correlation of ρ .

Unobserved m_i should be coded as NA. w and x can be the same set of variables. Identification can be weak if w are not good predictors of m. Observing m_i for 10%~20% of observations can significantly improve the identification of the model.

Usage

```
biprobit_partial(
  form1,
  form2,
  data = NULL,
  EM = FALSE,
  par = NULL,
  method = "BFGS",
  verbose = 0,
  maxIter = 500,
  tol = 1e-05,
  tol_LL = 1e-06
)
```

Arguments

form2

form1 Formula for the first probit model, in which the dependent variable is partially

observed.

Formula for the second probit model, the partially observed dependent variable of the first stage is automatically added as a regressor in this model (do not add manually)

10 biprobit_partial

data Input data, a data frame

EM Whether to maximize likelihood use the Expectation-Maximization (EM) algo-

rithm, which is slower but more robust. Defaults to FLASE, but should change

to TRUE is the model has convergence issues.

par Starting values for estimates

method Optimization algorithm. Default is BFGS

verbose A integer indicating how much output to display during the estimation process.

• <0 - No ouput

• 0 - Basic output (model estimates)

• 1 - Moderate output, basic ouput + parameter and likelihood in each itera-

tion

• 2 - Extensive output, moderate output + gradient values on each call

maxIter max iterations for EM algorithm

tol tolerance for convergence of EM algorithm tol_LL tolerance for convergence of likelihood

Value

A list containing the results of the estimated model, some of which are inherited from the return of maxLik

• estimates: Model estimates with 95% confidence intervals. Prefix "1" means first stage variables.

• estimate or par: Point estimates

• variance_type: covariance matrix used to calculate standard errors. Either BHHH or Hessian.

• var: covariance matrix

· se: standard errors

• gradient: Gradient function at maximum

• hessian: Hessian matrix at maximum

• gtHg: $g'H^-1g$, where H^-1 is simply the covariance matrix. A value close to zero (e.g., <1e-3 or 1e-6) indicates good convergence.

• LL or maximum: Likelihood

AIC: AICBIC: BIC

• n_obs: Number of observations

• n_par: Number of parameters

• iterations: number of iterations taken to converge

• message: Message regarding convergence status.

Note that the list inherits all the components in the output of maxLik. See the documentation of maxLik for more details.

endogeneity 11

References

Peng, Jing. (2023) Identification of Causal Mechanisms from Randomized Experiments: A Framework for Endogenous Mediation Analysis. Information Systems Research, 34(1):67-84. Available at https://doi.org/10.1287/isre.2022.1113

See Also

```
Other endogeneity: bilinear(), biprobit_latent(), biprobit(), linear_probit(), pln_linear(), pln_probit(), probit_linearRE(), probit_linear_latent(), probit_linear_partial(), probit_linear()
```

Examples

```
library(MASS)
N = 5000
rho = -0.5
set.seed(1)
x = rbinom(N, 1, 0.5)
z = rnorm(N)
e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]
m = as.numeric(1 + x + 3*z + e1 > 0)
y = as.numeric(1 + x + z + m + e2 > 0)
est = biprobit(m^x+z, y^x+z+m)
print(est$estimates, digits=3)
# partially observed version of m
observed_pct = 0.2
m_p = m
m_p[sample(N, N*(1-observed_pct))] = NA
est_partial = biprobit_partial(m_p~x+z, y~x+z)
print(est_partial$estimates, digits=3)
```

endogeneity

Recursive two-stage models to address endogeneity

Description

This package supports various recursive two-stage models to address the endogeneity issue. The details of the implemented models are discussed in Peng (2022). In a recursive two-stage model, the dependent variable of the first stage is also the endogenous variable of interest in the second stage. The endogeneity is captured by the correlation in the error terms of the two stages.

12 endogeneity

Recursive two-stage models can be used to address the endogeneity of treatment variables in observational study and the endogeneity of mediators in experiments.

The first-stage supports linear model, probit model, and Poisson lognormal model. The second-stage supports linear and probit models. These models can be used to address the endogeneity of continuous, binary, and count variables. When the endogenous variable is binary, it can be unobserved or partially unobserved, but the identification can be weak.

Functions

bilinear: recursive bivariate linear model

biprobit: recursive bivariate probit model

biprobit_latent: recursive bivariate probit model with latent first stage

biprobit_partial: recursive bivariate probit model with partially observed first stage

linear-probit: recursive linear-probit model

probit_linear: recursive probit-linear model

probit_linear_latent: recursive probit-linear model with latent first stage

probit_linear_partial: recursive probit-linear model with partially observed first stage

probit_linearRE: recursive probit-linearRE model in which the second stage is a panel linear model with random effects

pln: Poisson lognormal (PLN) model

pln_linear: recursive PLN-linear model

pln_probit: recursive PLN-probit model

References

Peng, Jing. (2023) Identification of Causal Mechanisms from Randomized Experiments: A Framework for Endogenous Mediation Analysis. Information Systems Research, 34(1):67-84. Available at https://doi.org/10.1287/isre.2022.1113

linear_probit 13

linear_probit

Recursive Linear-Probit Model

Description

Estimate linear and probit models with bivariate normally distributed error terms.

First stage (Linear):

$$m_i = \boldsymbol{\alpha}' \mathbf{w_i} + \sigma u_i$$

Second stage (Probit):

$$y_i = 1(\boldsymbol{\beta}' \mathbf{x_i} + \gamma m_i + v_i > 0)$$

Endogeneity structure: u_i and v_i are bivariate normally distributed with a correlation of ρ .

The identification of this model requires an instrumental variable that appears in w but not x. This model still works if the first-stage dependent variable is not a regressor in the second stage.

Usage

```
linear_probit(
  form_linear,
  form_probit,
  data = NULL,
  par = NULL,
  method = "BFGS",
  init = c("zero", "unif", "norm", "default")[4],
  verbose = 0
)
```

Arguments

verbose

form_linear Formula for the linear model

form_probit Formula for the probit model

data Input data, a data frame

par Starting values for estimates

method Optimization algorithm. Default is BFGS

init Initialization method

A integer indicating how much output to display during the estimation process.

- <0 No ouput
- 0 Basic output (model estimates)
- 1 Moderate output, basic ouput + parameter and likelihood in each iteration
- 2 Extensive output, moderate output + gradient values on each call

14 linear_probit

Value

A list containing the results of the estimated model, some of which are inherited from the return of maxLik

- estimates: Model estimates with 95% confidence intervals
- estimate or par: Point estimates
- · variance_type: covariance matrix used to calculate standard errors. Either BHHH or Hessian.
- · var: covariance matrix
- se: standard errors
- var_bhhh: BHHH covariance matrix, inverse of the outer product of gradient at the maximum
- se_bhhh: BHHH standard errors
- gradient: Gradient function at maximum
- · hessian: Hessian matrix at maximum
- gtHg: $g'H^-1g$, where H^-1 is simply the covariance matrix. A value close to zero (e.g., <1e-3 or 1e-6) indicates good convergence.
- · LL or maximum: Likelihood
- AIC: AICBIC: BIC
- n obs: Number of observations
- n_par: Number of parameters
- LR_stat: Likelihood ratio test statistic for $\rho = 0$
- LR_p: p-value of likelihood ratio test
- iterations: number of iterations taken to converge
- message: Message regarding convergence status.

Note that the list inherits all the components in the output of maxLik. See the documentation of maxLik for more details.

References

Peng, Jing. (2023) Identification of Causal Mechanisms from Randomized Experiments: A Framework for Endogenous Mediation Analysis. Information Systems Research, 34(1):67-84. Available at https://doi.org/10.1287/isre.2022.1113

See Also

Other endogeneity: bilinear(), biprobit_latent(), biprobit_partial(), biprobit(), pln_linear(), pln_probit(), probit_linearRE(), probit_linear_latent(), probit_linear_partial(), probit_linear()

pln 15

Examples

```
library(MASS)
N = 2000
rho = -0.5
set.seed(1)

x = rbinom(N, 1, 0.5)
z = rnorm(N)

e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]

m = 1 + x + z + e1
y = as.numeric(1 + x + m + e2 > 0)

est = linear_probit(m~x+z, y~x+m)
print(est$estimates, digits=3)
```

pln

Poisson Lognormal Model

Description

Estimate a Poisson model with a log-normally distributed heterogeneity term, which is also referred to as the Poisson-Normal model.

$$E[y_i|x_i, u_i] = exp(\boldsymbol{\alpha}'\mathbf{x_i} + \lambda u_i)$$

The estimates of this model are often similar to those of a negative binomial model.

Usage

```
pln(
  form,
  data = NULL,
  par = NULL,
  method = "BFGS",
  init = c("zero", "unif", "norm", "default")[4],
  H = 20,
  verbose = 0
)
```

Arguments

form Formula data Input data, a data frame

16 pln

par Starting values for estimates
method Optimization algorithm.
init Initialization method
H Number of quadrature points

verbose A integer indicating how much output to display during the estimation process.

• <0 - No ouput

• 0 - Basic output (model estimates)

1 - Moderate output, basic ouput + parameter and likelihood in each iteration

• 2 - Extensive output, moderate output + gradient values on each call

Value

A list containing the results of the estimated model, some of which are inherited from the return of maxLik

• estimates: Model estimates with 95% confidence intervals

• estimate or par: Point estimates

• variance_type: covariance matrix used to calculate standard errors. Either BHHH or Hessian.

• var: covariance matrix

· se: standard errors

• gradient: Gradient function at maximum

· hessian: Hessian matrix at maximum

• gtHg: $g'H^-1g$, where H^-1 is simply the covariance matrix. A value close to zero (e.g., <1e-3 or 1e-6) indicates good convergence.

• LL or maximum: Likelihood

AIC: AICBIC: BIC

• n_obs: Number of observations

• n_par: Number of parameters

• LR_stat: Likelihood ratio test statistic for the heterogeneity term $\lambda = 0$

• LR_p: p-value of likelihood ratio test

• iterations: number of iterations taken to converge

• message: Message regarding convergence status.

Note that the list inherits all the components in the output of maxLik. See the documentation of maxLik for more details

References

Peng, Jing. (2023) Identification of Causal Mechanisms from Randomized Experiments: A Framework for Endogenous Mediation Analysis. Information Systems Research, 34(1):67-84. Available at https://doi.org/10.1287/isre.2022.1113

pln_linear 17

Examples

```
library(MASS)
N = 2000
set.seed(1)

# Works well when the variance of the normal term is not overly large
# When the variance is very large, it tends to be underestimated
x = rbinom(N, 1, 0.5)
z = rnorm(N)
y = rpois(N, exp(-1 + x + z + 0.5 * rnorm(N)))
est = pln(y~x+z)
print(est$estimates, digits=3)
```

pln_linear

Recursive PLN-Linear Model

Description

Estimate a Poisson Lognormal model and a linear model with bivariate normally distributed error/heterogeneity terms.

First stage (Poisson Lognormal):

$$E[m_i|w_i, u_i] = exp(\boldsymbol{\alpha}'\mathbf{w_i} + \lambda u_i)$$

Second stage (Linear):

$$y_i = \beta' \mathbf{x_i} + \gamma m_i + \sigma v_i$$

Endogeneity structure: u_i and v_i are bivariate normally distributed with a correlation of ρ .

This model is typically well-identified even if w and x are the same set of variables. This model still works if the first-stage dependent variable is not a regressor in the second stage.

Usage

```
pln_linear(
  form_pln,
  form_linear,
  data = NULL,
  par = NULL,
  method = "BFGS",
  init = c("zero", "unif", "norm", "default")[4],
  H = 20,
  verbose = 0
)
```

18 pln_linear

Arguments

form_pln Formula for the first-stage Poisson lognormal model

form_linear Formula for the second-stage linear model

data Input data, a data frame
par Starting values for estimates
method Optimization algorithm.
init Initialization method

H Number of quadrature points

verbose A integer indicating how much output to display during the estimation process.

• <0 - No ouput

• 0 - Basic output (model estimates)

1 - Moderate output, basic ouput + parameter and likelihood in each iteration

• 2 - Extensive output, moderate output + gradient values on each call

Value

A list containing the results of the estimated model, some of which are inherited from the return of maxLik

- estimates: Model estimates with 95% confidence intervals. Prefix "pln" means first stage variables.
- estimate or par: Point estimates
- variance_type: covariance matrix used to calculate standard errors. Either BHHH or Hessian.
- var: covariance matrix
- · se: standard errors
- · gradient: Gradient function at maximum
- · hessian: Hessian matrix at maximum
- gtHg: $g'H^-1g$, where H^-1 is simply the covariance matrix. A value close to zero (e.g., <1e-3 or 1e-6) indicates good convergence.
- · LL or maximum: Likelihood
- AIC: AICBIC: BIC
- n_obs: Number of observations
- n_par: Number of parameters
- LR_stat: Likelihood ratio test statistic for $\rho = 0$
- LR_p: p-value of likelihood ratio test
- iterations: number of iterations taken to converge
- message: Message regarding convergence status.

Note that the list inherits all the components in the output of maxLik. See the documentation of maxLik for more details.

pln_probit 19

References

Peng, Jing. (2023) Identification of Causal Mechanisms from Randomized Experiments: A Framework for Endogenous Mediation Analysis. Information Systems Research, 34(1):67-84. Available at https://doi.org/10.1287/isre.2022.1113

See Also

```
Other endogeneity: bilinear(), biprobit_latent(), biprobit_partial(), biprobit(), linear_probit(), pln_probit(), probit_linearRE(), probit_linear_latent(), probit_linear_partial(), probit_linear()
```

Examples

```
library(MASS)
N = 2000
rho = -0.5
set.seed(1)

x = rbinom(N, 1, 0.5)
z = rnorm(N)

e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]

m = rpois(N, exp(1 + x + z + e1))
y = 1 + x + m + e2

est = pln_linear(m~x+z, y~x+m)
print(est$estimates, digits=3)
```

pln_probit

Recursive PLN-Probit Model

Description

Estimate a Poisson Lognormal model and a Probit model with bivariate normally distributed error/heterogeneity terms.

First stage (Poisson Lognormal):

$$E[m_i|w_i, u_i] = exp(\boldsymbol{\alpha}'\mathbf{w_i} + \lambda u_i)$$

Second stage (Probit):

$$y_i = 1(\boldsymbol{\beta}' \mathbf{x_i} + \gamma m_i + \sigma v_i > 0)$$

Endogeneity structure: u_i and v_i are bivariate normally distributed with a correlation of ρ .

This model is typically well-identified even if w and x are the same set of variables. This model still works if the first-stage dependent variable is not a regressor in the second stage.

20 pln_probit

Usage

```
pln_probit(
  form_pln,
  form_probit,
  data = NULL,
  par = NULL,
  method = "BFGS",
  init = c("zero", "unif", "norm", "default")[4],
  H = 20,
  verbose = 0
)
```

Arguments

form_pln Formula for the first-stage Poisson lognormal model

form_probit Formula for the second-stage probit model

data Input data, a data frame
par Starting values for estimates

method Optimization algorithm. Without gradient, NM is much faster than BFGS

init Initialization method

H Number of quadrature points

verbose A integer indicating how much output to display during the estimation process.

• <0 - No ouput

- 0 Basic output (model estimates)
- 1 Moderate output, basic ouput + parameter and likelihood in each iteration
- 2 Extensive output, moderate output + gradient values on each call

Value

A list containing the results of the estimated model, some of which are inherited from the return of maxLik

- estimates: Model estimates with 95% confidence intervals. Prefix "pln" means first stage variables.
- estimate or par: Point estimates
- variance_type: covariance matrix used to calculate standard errors. Either BHHH or Hessian.
- var: covariance matrix
- · se: standard errors
- gradient: Gradient function at maximum
- hessian: Hessian matrix at maximum
- gtHg: $g'H^-1g$, where H^-1 is simply the covariance matrix. A value close to zero (e.g., <1e-3 or 1e-6) indicates good convergence.

pln_probit 21

- · LL or maximum: Likelihood
- AIC: AICBIC: BIC
- n_obs: Number of observations
- n_par: Number of parameters
- LR_stat: Likelihood ratio test statistic for $\rho = 0$
- LR_p: p-value of likelihood ratio test
- iterations: number of iterations taken to converge
- message: Message regarding convergence status.

Note that the list inherits all the components in the output of maxLik. See the documentation of maxLik for more details.

References

Peng, Jing. (2023) Identification of Causal Mechanisms from Randomized Experiments: A Framework for Endogenous Mediation Analysis. Information Systems Research, 34(1):67-84. Available at https://doi.org/10.1287/isre.2022.1113

See Also

```
Other endogeneity: bilinear(), biprobit_latent(), biprobit_partial(), biprobit(), linear_probit(), pln_linear(), probit_linearE(), probit_linear(), probit_linear()
```

Examples

```
library(MASS)
N = 2000
rho = -0.5
set.seed(1)

x = rbinom(N, 1, 0.5)
z = rnorm(N)

e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]

m = rpois(N, exp(-1 + x + z + e1))
y = as.numeric(1 + x + z + log(1+m) + e2 > 0)

est = pln_probit(m~x+z, y~x+z+log(1+m))
print(est$estimates, digits=3)
```

22 probit_linear

probit_linear

Recursive Probit-Linear Model

Description

Estimate probit and linear models with bivariate normally distributed error terms.

First stage (Probit):

$$m_i = 1(\boldsymbol{\alpha}' \mathbf{w_i} + u_i > 0)$$

Second stage (Linear):

$$y_i = \beta' \mathbf{x_i} + \gamma m_i + \sigma v_i$$

Endogeneity structure: u_i and v_i are bivariate normally distributed with a correlation of ρ .

w and x can be the same set of variables. Identification can be weak if w are not good predictors of m. This model still works if the first-stage dependent variable is not a regressor in the second stage.

Usage

```
probit_linear(
  form_probit,
  form_linear,
  data = NULL,
  par = NULL,
  method = "BFGS",
  init = c("zero", "unif", "norm", "default")[4],
  verbose = 0
)
```

Arguments

form_probit Formula for the probit model
form_linear Formula for the linear model
data Input data, a data frame
par Starting values for estimates

method Optimization algorithm. Default is BFGS

init Initialization method

verbose A integer indicating how much output to display during the estimation process.

- <0 No ouput
- 0 Basic output (model estimates)
- 1 Moderate output, basic ouput + parameter and likelihood in each iteration
- 2 Extensive output, moderate output + gradient values on each call

probit_linear 23

Value

A list containing the results of the estimated model, some of which are inherited from the return of maxLik

- estimates: Model estimates with 95% confidence intervals
- estimate or par: Point estimates
- · variance_type: covariance matrix used to calculate standard errors. Either BHHH or Hessian.
- var: covariance matrix
- se: standard errors
- var_bhhh: BHHH covariance matrix, inverse of the outer product of gradient at the maximum
- se_bhhh: BHHH standard errors
- gradient: Gradient function at maximum
- · hessian: Hessian matrix at maximum
- gtHg: $g'H^-1g$, where H^-1 is simply the covariance matrix. A value close to zero (e.g., <1e-3 or 1e-6) indicates good convergence.
- · LL or maximum: Likelihood
- AIC: AICBIC: BIC
- n obs: Number of observations
- n_par: Number of parameters
- LR_stat: Likelihood ratio test statistic for $\rho = 0$
- LR_p: p-value of likelihood ratio test
- iterations: number of iterations taken to converge
- message: Message regarding convergence status.

Note that the list inherits all the components in the output of maxLik. See the documentation of maxLik for more details.

References

Peng, Jing. (2023) Identification of Causal Mechanisms from Randomized Experiments: A Framework for Endogenous Mediation Analysis. Information Systems Research, 34(1):67-84. Available at https://doi.org/10.1287/isre.2022.1113

See Also

Other endogeneity: bilinear(), biprobit_latent(), biprobit_partial(), biprobit(), linear_probit(), pln_linear(), pln_probit(), probit_linearRE(), probit_linear_latent(), probit_linear_partial()

24 probit_linearRE

Examples

```
library(MASS)
N = 2000
rho = -0.5
set.seed(1)

x = rbinom(N, 1, 0.5)
z = rnorm(N)

e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]

m = as.numeric(1 + x + z + e1 > 0)
y = 1 + x + z + m + e2

est = probit_linear(m~x+z, y~x+z+m)
print(est$estimates, digits=3)
```

probit_linearRE

Recursive Probit-LinearRE Model

Description

A panel extension of the probit_linear model. The first stage is a probit model at the individual level. The second stage is a panel linear model at the individual-time level with individual-level random effects. The random effect is correlated with the error term in the first stage.

First stage (Probit):

$$m_i = 1(\boldsymbol{\alpha}' \mathbf{w_i} + u_i > 0)$$

Second stage (Panel linear model with individual-level random effects):

$$y_{it} = \boldsymbol{\beta}' \mathbf{x_{it}} + \gamma m_i + \lambda v_i + \sigma \epsilon_{it}$$

Endogeneity structure: u_i and v_i are bivariate normally distributed with a correlation of ρ .

This model uses Adaptive Gaussian Quadrature to overcome numerical challenges with long panels. w and x can be the same set of variables. Identification can be weak if w are not good predictors of m. This model still works if the first-stage dependent variable is not a regressor in the second stage.

Usage

```
probit_linearRE(
  form_probit,
  form_linear,
  id,
  data = NULL,
  par = NULL,
```

probit_linearRE 25

```
method = "BFGS",
H = 20,
stopUpdate = F,
init = c("zero", "unif", "norm", "default")[4],
verbose = 0
)
```

Arguments

form_probit Formula for the probit model at the individual level

form_linear Formula for the linear model at the individual-time level

id group id, character if data supplied or numerical vector if data not supplied

data Input data, must be a data.table object

par Starting values for estimates

method Optimization algorithm. Default is BFGS

H Number of quadrature points

stopUpdate Adaptive Gaussian Quadrature disabled if TRUE

init Initialization method

verbose A integer indicating how much output to display during the estimation process.

• <0 - No ouput

• 0 - Basic output (model estimates)

 1 - Moderate output, basic ouput + parameter and likelihood in each iteration

• 2 - Extensive output, moderate output + gradient values on each call

Value

A list containing the results of the estimated model, some of which are inherited from the return of maxLik

- estimates: Model estimates with 95% confidence intervals
- estimate or par: Point estimates
- variance_type: covariance matrix used to calculate standard errors. Either BHHH or Hessian.
- var: covariance matrix
- se: standard errors
- var_bhhh: BHHH covariance matrix, inverse of the outer product of gradient at the maximum
- se bhhh: BHHH standard errors
- gradient: Gradient function at maximum
- hessian: Hessian matrix at maximum
- gtHg: $g'H^-1g$, where H^-1 is simply the covariance matrix. A value close to zero (e.g., <1e-3 or 1e-6) indicates good convergence.
- LL or maximum: Likelihood

26 probit_linearRE

- AIC: AICBIC: BIC
- n_obs: Number of observations
- n_par: Number of parameters
- time: Time takes to estimate the model
- LR_stat: Likelihood ratio test statistic for $\rho = 0$
- LR_p: p-value of likelihood ratio test
- iterations: number of iterations taken to converge
- message: Message regarding convergence status.

Note that the list inherits all the components in the output of maxLik. See the documentation of maxLik for more details.

References

Chen, H., Peng, J., Li, H., & Shankar, R. (2022). Impact of Refund Policy on Sales of Paid Information Services: The Moderating Role of Product Characteristics. Available at SSRN: https://ssrn.com/abstract=4114972.

See Also

```
Other endogeneity: bilinear(), biprobit_latent(), biprobit_partial(), biprobit(), linear_probit(), pln_linear(), pln_probit(), probit_linear_latent(), probit_linear_partial(), probit_linear()
```

Examples

```
library(MASS)
library(data.table)
N = 500
period = 5
obs = N*period
rho = -0.5
set.seed(100)
e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]
t = rep(1:period, N)
id = rep(1:N, each=period)
w = rnorm(N)
m = as.numeric(1+w+e1>0)
m_long = rep(m, each=period)
x = rnorm(obs)
y = 1 + x + m_{long} + rep(e2, each=period) + rnorm(obs)
dt = data.table(y, x, id, t, m=rep(m, each=period), w=rep(w, each=period))
est = probit_linearRE(m~w, y~x+m, 'id', dt)
print(est$estimates, digits=3)
```

probit_linear_latent 27

probit_linear_latent Recursive Probit-Linear Model with Latent First Stage

Description

Latent version of the Probit-Linear Model.

First stage (Probit, m_i^* is unobserved):

$$m_i^* = 1(\boldsymbol{\alpha}' \mathbf{w_i} + u_i > 0)$$

Second stage (Linear):

$$y_i = \beta' \mathbf{x_i} + \gamma m_i^* + \sigma v_i$$

Endogeneity structure: u_i and v_i are bivariate normally distributed with a correlation of ρ .

w and x can be the same set of variables. The identification of this model is generally weak, especially if w are not good predictors of m. γ is assumed to be positive to ensure that the model estimates are unique.

Usage

```
probit_linear_latent(
  form_probit,
  form_linear,
  data = NULL,
  EM = TRUE,
  par = NULL,
  method = "BFGS",
  verbose = 0,
  maxIter = 500,
  tol = 1e-06,
  tol_LL = 1e-08
)
```

Arguments

verbose

form_probit	Formula for the first-stage probit model, in which the dependent variable is latent
form_linear	Formula for the second stage linear model. The latent dependent variable of the first stage is automatically added as a regressor in this model
data	Input data, a data frame
EM	Whether to maximize likelihood use the Expectation-Maximization (EM) algorithm, which is slower but more robust. Defaults to TRUE.
par	Starting values for estimates
method	Optimization algorithm. Default is BFGS

A integer indicating how much output to display during the estimation process.

28 probit_linear_latent

- <0 No ouput
- 0 Basic output (model estimates)
- 1 Moderate output, basic ouput + parameter and likelihood in each iteration
- 2 Extensive output, moderate output + gradient values on each call

maxIter max iterations for EM algorithm

tol tolerance for convergence of EM algorithm

tol_LL tolerance for convergence of likelihood

Value

A list containing the results of the estimated model, some of which are inherited from the return of maxLik

- estimates: Model estimates with 95% confidence intervals
- estimate or par: Point estimates
- variance_type: covariance matrix used to calculate standard errors. Either BHHH or Hessian.
- var: covariance matrix
- · se: standard errors
- · gradient: Gradient function at maximum
- hessian: Hessian matrix at maximum
- gtHg: $g'H^-1g$, where H^-1 is simply the covariance matrix. A value close to zero (e.g., <1e-3 or 1e-6) indicates good convergence.
- LL or maximum: Likelihood
- AIC: AICBIC: BIC
- n_obs: Number of observations
- n_par: Number of parameters
- iter: number of iterations taken to converge
- message: Message regarding convergence status.

Note that the list inherits all the components in the output of maxLik. See the documentation of maxLik for more details.

References

Peng, Jing. (2023) Identification of Causal Mechanisms from Randomized Experiments: A Framework for Endogenous Mediation Analysis. Information Systems Research, 34(1):67-84. Available at https://doi.org/10.1287/isre.2022.1113

See Also

Other endogeneity: bilinear(), biprobit_latent(), biprobit_partial(), biprobit(), linear_probit(), pln_linear(), pln_probit(), probit_linear(), probit_linear()

Examples

```
library(MASS)
N = 2000
rho = -0.5
set.seed(1)

x = rbinom(N, 1, 0.5)
z = rnorm(N)

e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]

m = as.numeric(1 + x + z + e1 > 0)
y = 1 + x + z + m + e2
est = probit_linear(m~x+z, y~x+z+m)
print(est$estimates, digits=3)

est_latent = probit_linear_latent(~x+z, y~x+z)
print(est_latent$estimates, digits=3)
```

probit_linear_partial Recursive Probit-Linear Model with Partially Observed First Stage

Description

Partially observed version of the Probit-Linear Model.

First stage (Probit, m_i is partially observed):

$$m_i = 1(\boldsymbol{\alpha}' \mathbf{w_i} + u_i > 0)$$

Second stage (Linear):

$$y_i = \boldsymbol{\beta}' \mathbf{x_i} + \gamma m_i + \sigma v_i$$

Endogeneity structure: u_i and v_i are bivariate normally distributed with a correlation of ρ .

Unobserved m_i should be coded as NA. w and x can be the same set of variables. Identification can be weak if w are not good predictors of m. Observing m_i for a small proportion of observations (e.g., 10~20%) can significantly improve the identification of the model.

Usage

```
probit_linear_partial(
  form_probit,
  form_linear,
  data = NULL,
```

```
EM = TRUE,
  par = NULL,
  method = "BFGS",
  verbose = 0,
  maxIter = 500,
  tol = 1e-06,
  tol_LL = 1e-08
)
```

Arguments

form_probit Formula for the first-stage probit model, in which the dependent variable is par-

tially observed

form_linear Formula for the second stage linear model. The partially observed dependent

variable of the first stage is automatically added as a regressor in this model (do

not add manually)

data Input data, a data frame

EM Whether to maximize likelihood use the Expectation-Maximization (EM) algo-

rithm, which is slower but more robust. Defaults to TRUE.

par Starting values for estimates

method Optimization algorithm. Default is BFGS

verbose A integer indicating how much output to display during the estimation process.

• <0 - No ouput

• 0 - Basic output (model estimates)

• 1 - Moderate output, basic ouput + parameter and likelihood in each itera-

tion

• 2 - Extensive output, moderate output + gradient values on each call

maxIter max iterations for EM algorithm

tol tolerance for convergence of EM algorithm tol_LL tolerance for convergence of likelihood

Value

A list containing the results of the estimated model, some of which are inherited from the return of maxLik

- estimates: Model estimates with 95% confidence intervals
- estimate or par: Point estimates
- variance_type: covariance matrix used to calculate standard errors. Either BHHH or Hessian.
- var: covariance matrix
- · se: standard errors
- gradient: Gradient function at maximum
- · hessian: Hessian matrix at maximum

• gtHg: $g'H^-1g$, where H^-1 is simply the covariance matrix. A value close to zero (e.g., <1e-3 or 1e-6) indicates good convergence.

· LL or maximum: Likelihood

AIC: AICBIC: BIC

• n_obs: Number of observations

• n_par: Number of parameters

• iterations: number of iterations taken to converge

• message: Message regarding convergence status.

Note that the list inherits all the components in the output of maxLik. See the documentation of maxLik for more details.

References

Peng, Jing. (2023) Identification of Causal Mechanisms from Randomized Experiments: A Framework for Endogenous Mediation Analysis. Information Systems Research, 34(1):67-84. Available at https://doi.org/10.1287/isre.2022.1113

See Also

```
Other endogeneity: bilinear(), biprobit_latent(), biprobit_partial(), biprobit(), linear_probit(), pln_linear(), pln_probit(), probit_linearRE(), probit_linear_latent(), probit_linear()
```

Examples

```
library(MASS)
N = 1000
rho = -0.5
set.seed(1)
x = rbinom(N, 1, 0.5)
z = rnorm(N)
e = mvrnorm(N, mu=c(0,0), Sigma=matrix(c(1,rho,rho,1), nrow=2))
e1 = e[,1]
e2 = e[,2]
m = as.numeric(1 + x + z + e1 > 0)
y = 1 + x + z + m + e2
est = probit_linear(m~x+z, y~x+z+m)
print(est$estimates, digits=3)
# partially observed version of m
observed_pct = 0.2
m_p = m
m_p[sample(N, N*(1-observed_pct))] = NA
est_latent = probit_linear_partial(m_p~x+z, y~x+z)
```

print(est_latent\$estimates, digits=3)

Index

```
* endogeneity
    bilinear, 2
    biprobit, 4
    biprobit_latent, 6
    biprobit_partial, 9
     linear_probit, 13
     pln_linear, 17
     pln_probit, 19
     probit_linear, 22
     probit_linear_latent, 27
     probit_linear_partial, 29
     probit_linearRE, 24
bilinear, 2, 6, 8, 11, 14, 19, 21, 23, 26, 28, 31
biprobit, 3, 4, 8, 11, 14, 19, 21, 23, 26, 28, 31
biprobit_latent, 3, 6, 6, 11, 14, 19, 21, 23,
         26, 28, 31
biprobit_partial, 3, 6, 8, 9, 14, 19, 21, 23,
         26, 28, 31
endogeneity, 11
linear_probit, 3, 6, 8, 11, 13, 19, 21, 23, 26,
         28, 31
pln, 15
pln_linear, 3, 6, 8, 11, 14, 17, 21, 23, 26, 28,
         31
pln_probit, 3, 6, 8, 11, 14, 19, 19, 23, 26, 28,
probit_linear, 3, 6, 8, 11, 14, 19, 21, 22, 26,
         28, 31
probit_linear_latent, 3, 6, 8, 11, 14, 19,
         21, 23, 26, 27, 31
probit_linear_partial, 3, 6, 8, 11, 14, 19,
         21, 23, 26, 28, 29
probit_linearRE, 3, 6, 8, 11, 14, 19, 21, 23,
         24, 28, 31
```