28. Problemas propuestos en clase de óptimos con restricciones de desigualdad IV

Problema 28.1 Publicidad Pérez se anuncia en melodramas y en juegos de fútbol. Cada comercial en un melodrama cuesta 5.000 euros y cada comercial en un juego de fútbol cuesta 10.000 euros. Si se compran S comerciales en melodramas, serán vistos por $5\sqrt{S}$ hombres y por $20\sqrt{S}$ mujeres (los datos vienen en millones de espectadores). Si se compran F comerciales en juegos de fútbol, serán vistos por $17\sqrt{F}$ hombres y por $7\sqrt{F}$ mujeres. Publicidad Pérez quiere que por lo menos 40 millones de hombres y por lo menos 60 millones de mujeres vean

- a) Formula un PNL que minimice el coste de Publicidad Pérez para alcanzar suficientes espectadores. sus comerciales.
- b) Suponga que el número de muneres alcanzadas con F comerciales en juego de fútbol y con S comerciales en melodramas es de $7\sqrt{F}+20\sqrt{S}-0,2\sqrt{FS}$. ¿Por qué podría ser esto una representación más realista de número de espectadores femeninos que ven los comerciales de Publicidad Pérez?.

Problema 28.2 Un fabricante que produce un solo artículo tiene dos tipos de cliente. Si se producen q_1 unidades para el cliente 1, entonces el cliente 1 estará dispuesto a pagar $70-4q_1$ cientos de euros. Si se producen q_2 unidades para el cliente 2, entonces el cliente 2 estará dispuesto a pagar $150-15q_2$ cientos de euros. Para q>0, el costo para producir q unidades es 100+15q cientos de euros. ¿Cuánto tendría que vender el monopolio a cada cliente para maximizar su ganancia?

Problema 28.3 Un comerciante puede comprar hasta 17.25 kg de un producto químico a 10 euros/kg. Se puede convertir el producto químico, a un costo de 3 euros/kg, en un kg del producto 1, y a un costo de 5 euros/kg, en un kg de producto 2. Si se producen x_1 kg del producto 1 se venderá a $30-x_1$ euros/kg. Si se producen x_2 kg del producto 2, éste se venderá a $50-2x_2$ euros/kg. Determine cómo el comerciante puede maximizar sus ganancias.

Problema 28.4 Supongamos que se va a construir una carretera entre las ciudades A y B. La ciudad B está situada 30 km al este y 50 km al norte de A. Entre A y B hay una cordillera de 10 km de ancho y las ciudades están situadas de tal manera que existen 10 km de llano antes de llegar a la cordillera. El coste de construir la carretera en llano es de un millón de euros por km y sobre los montes A millones de euros. Al analizar la ruta adecuada, los expertos han reducido el problema a construir tres secciones rectas. Quedan por calcular los puntos en que la carretera entra y deja la región montañosa los cuales están parametrizados por las variables x_1 (medida que va desde el paralelo de la ciudad A al paralelo de la entrada de la carretera en la zona montañosa) y x_2 (medida que va desde el paralelo de la ciudad B al paralelo de la entrada de la carretera en la zona montañosa).

a) Plantea y resuelve el problema de minimizar el coste total.

 $b) \ Comprobar \ que \ la \ soluci\'on \ cumple \ las \ condiciones \ suficientes \ de \ segundo \ orden.$

Problema 28.5 Una empresa produce un bien en competencia perfecta. La función de producción del bien es

$$q = f(k, l) = 8k^{\frac{1}{4}}l^{\frac{1}{2}}$$

y su precio de venta es p=4. Los precios de los factores de capital y trabajo son, respectivamente r=8 y l=4.

 ${\it Calcular\ los\ niveles\ de\ capital\ y\ trabajo},\ as\'i\ como\ la\ cantida\ producida\ del\ bien,\ que\ maximizan\ los\ beneficios\ de\ la\ empresa.}$