

Model Optimization and Tuning Phase

Template

Date	11 July 2024
Team ID	SWTID1720162737
Project Title	Predicting Compressive Strength Of Concrete Using Machine Learning
Maximum Marks	10 Marks

Model Optimization and Tuning Phase:

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Linear Regression		acc=r2_score(y_test,pred) print('accuracy of linear regression Regression:',acc*100) accuracy of linear regression Regression: 58.61758560675364
Ridge Regression		acc=r2_score(y_test,pred) print('accuracy of Ridge regression Regression:',acc*100) accuracy of Ridge regression Regression: 58.61760529691513
Lasso Regression		acc=r2_score(y_test,pred) print('accuracy of lasso regression Regression:',acc*100) accuracy of lasso regression Regression: 58.78727632129104

Random Forest Regression	<pre># Initialize the RandomforestRegressor rfr = RandomforestRegressor() # Define the parameter grid param_grid = { 'n_estimators': [100, 200, 300, 400, 500], 'max_depth': [None, 10, 20, 30, 40, 50], 'min_samples_plit': [2, 5, 18], 'min_samples_pleaf': [1, 2, 4], 'bootstrap': [True, False] } # Initialize GridSearchCV grid_search = GridSearchCV(estimator=rfr, param_grid=param_grid,</pre>	print(f'Optimal Hyperparameters:{best_params}') acc=72 score(y test,pred) print('accurac RandomForestRegression:',acc*100) Optimal Hyperparameters:{'bootstrap': True, 'max_depth': None, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 200} accuracy of RandomForestRegression: 93.22882639139073
Decision Tree Regression		acc=r2_score(y_test,pred) print('accuracy of Decision Tree Regression:',acc*100) accuracy of Decision Tree Regression: 88.49267192424941
Gradient Boosting regression	gs - Grallenthootlinglegressor() # beties the parameter distribution para dist = {	print(f'Optimal Hyperparameters:{best_params}') acc=r2_score(y_test,pred) print('accuracy of XGBoost Regression:',acc*100) Optimal Hyperparameters:{'learning_rate': 0.1, 'max_depth': 4, 'n_estimators': 500} accuracy of XGBoost Regression: 93.80577042460435
XGBoost Regression	#importing and building XXXXxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	print(f'Optimal Hyperparameters:{best params}') acc=r2_score(y_test,pred) print('accuracy of XGBoost Regression:',acc*100) Optimal Hyperparameters:('colsample_bytree': 0.954660201039391, 'learning_rate': 0.06175599 6320003385, 'max_depth': 6, 'min_child_weight': 2, 'n_estimators': 489, 'subsample': 0.6039 708314340944} accuracy of XGBoost Regression: 94.18826209575943

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric

Linear Regression	<pre>print('MSE:', metrics.mean_squared_error(y_test,pred)) print('MAE:', metrics.mean_absolute_error(y_test,pred)) print('RMSE:' ,np.sqrt(metrics.mean_squared_error(y_test,pred))) MSE: 110.18594180669501 MAE: 8.261594213211119 RMSE: 10.49694916662432</pre>
Ridge Regression	<pre>print('MSE:', metrics.mean_squared_error(y_test,pred)) print('MAE:', metrics.mean_absolute_error(y_test,pred)) print('RMSE:' ,np.sqrt(metrics.mean_squared_error(y_test,pred))) MSE: 110.18588937913565 MAE: 8.261589878127149 RMSE: 10.49694666934798</pre>
Lasso Regression	<pre>print('MSE:', metrics.mean_squared_error(y_test,pred)) print('MAE:', metrics.mean_absolute_error(y_test,pred)) print('RMSE:' ,np.sqrt(metrics.mean_squared_error(y_test,pred))) MSE: 109.73411869605009 MAE: 8.244898906700172 RMSE: 10.475405419173526</pre>
Random Forest Regression	<pre>print('MSE:', metrics.mean_squared_error(y_test,pred)) print('MAE:', metrics.mean_absolute_error(y_test,pred)) print('RMSE:' ,np.sqrt(metrics.mean_squared_error(y_test,pred))) MSE: 23.587089288556324 MAE: 3.514265078126178 RMSE: 4.856654124863775</pre>
Decision Tree Regression	<pre>print('MSE:', metrics.mean_squared_error(y_test,pred)) print('MAE:', metrics.mean_absolute_error(y_test,pred)) print('RMSE:' ,np.sqrt(metrics.mean_squared_error(y_test,pred))) MSE: 30.63972463414634 MAE: 3.6327804878048777 RMSE: 5.5353161277515435</pre>
Gradient Boosting regression	<pre>print('MSE:', metrics.mean_squared_error(y_test,pred)) print('MAE:', metrics.mean_absolute_error(y_test,pred)) print('RMSE:' ,np.sqrt(metrics.mean_squared_error(y_test,pred))) MSE: 25.861465265637968 MAE: 3.6224784271501735 RMSE: 5.085416921515675</pre>

XG Boost Regression

print('MSE:', metrics.mean_squared_error(y_test,pred))
print('MAE:', metrics.mean_absolute_error(y_test,pred))
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test,pred)))

MSE: 15.474491372763513
MAE: 2.4343691059205588
RMSE: 3.933763004142918

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
XG Boost	'XG Boost Regression' the best performance and generalizability on unseen
Regression.	data, considering factors beyond just raw accuracy.