Introduction to Robotics

Lecture 2

Types of Kinematic Pairs - Lower Pairs

Steps...

- 1. Identification of Problem Statement
- 2. Design and Calculations of the parts to be made
- 3. Manufacturing of Parts
- 4. Selection of Mechanical Components
- 5. Final Assembly
- 6. Testing
- 7. Repeat

Mechanical Components

Some "components" of assembly

- Members
 - Beams
 - Sections
- Shafts
- Bearings
- Gears
- Springs
- Couplings

Members - Beams

Members - Sections

Shafts

- Rotating members, used to transmit power and/or motion.
- Acts as the axis of rotation for components like Pulleys, Gears, Bearings, Flywheels, Sprockets, etc.

Bearings

Combination of Bearings

Journal Bearings

Gears

- Toothed elements used for transmission of rotary motion from one shaft to another.
- Used to convert an electric motor's high speed low torque to low speed high torque.

 Gears do not depend on friction unlike belt drives.

Transmission of Power

Advantages and Disadvantages

- Transmits exact velocity ratios
- Can be used to transmit large power
- High efficiency
- Reliable service
- Compact layout

- Manufacture requires special tools and equipments
- Error in cutting teeth may cause noise and vibrations during operation

Types of Gears

- Spur gears
- Helical gears
- Herringbone gears
- Rack and Pinion
- Bevel gears
- Worm gears
- Internal gears
- Planetary gears

Spur Gears

Helical gears

Herringbone gears

Rack and Pinion

Bevel gears

Worm Gears

Internal gears

Planetary gears

Springs

Leaf Spring

(a) Plain end, right hand

(b) Squared or closed end, right hand

(d) Plain end, ground, left hand

(a) Machine half loop-open

(b) Raised hook

(c) Short twisted loop

(d) Full twisted loop

Couplings

Selection of Mechanical Components

How to select the bearing you want...???

$$F_{iA} \le (F_{iB} + F_{ae})$$

$$\begin{cases} F_{eA} = 0.4F_{rA} + K_A(F_{iB} + F_{ae}) \\ F_{eB} = F_{rB} \end{cases}$$

$$(F_{eB} = 0.4F_{rA} + K_B(F_{eB} + F_{ae}))$$

$$F_{iA} > (F_{iB} + F_{ae})$$

$$\begin{cases} F_{eB} = 0.4F_{rB} + K_B(F_{iA} - F_{ae}) \\ F_{eA} = F_{rA} \end{cases}$$

$$R_D = \exp\left[-\left(\frac{x_B - x_0}{\theta - x_0}\right)^b\right]$$

$$F_B = F_D \left(\frac{x_D}{x_B}\right)^{1/a}$$

$$C_{10} = F_R = F_D \left(\frac{L_D}{L_R}\right)^{1/a} = F_D \left(\frac{\mathcal{L}_D n_D 60}{\mathcal{L}_B n_B 60}\right)^{1/a}$$

 $F_B x_B^{1/a} = F_D x_D^{1/a}$

Dimensions and Load Ratings for Single-Row 02-Series Deep-Groove and Angular-Contact Ball Bearings

Bore, mm	OD,	Width,	Fillet Radius, mm	Shou	lder	Load Ratings, kN						
				Diamet	er, mm	Deep G	roove	Angular Contact				
				ds	dн	C ₁₀	Co	C ₁₀	Co			
10	30	9	0.6	12.5	27	5.07	2.24	4.94	2.12			
12	32	10	0.6	14.5	28	6.89	3.10	7.02	3.05			
15	35	11	0.6	17.5	31	7.80	3.55	8.06	3.65			
17	40	12	0.6	19.5	34	9.56	4.50	9.95	4.75			
20	47	14	1.0	25	41	12.7	6.20	13.3	6.55			
25	52	15	1.0	30	47	14.0	6.95	14.8	7.65			
30	62	16	1.0	35	55	19.5	10.0	20.3	11.0			
35	72	17	1.0	41	65	25.5	13.7	27.0	15.0			
40	80	18	1.0	46	72	30.7	16.6	31.9	18.6			
45	85	19	1.0	52	77	33.2	18.6	35.8	21.2			
50	90	20	1.0	56	82	35.1	19.6	37.7	22.8			
55	100	21	1.5	63	90	43.6	25.0	46.2	28.5			
60	110	22	1.5	70	99	47.5	28.0	55.9	35.5			
65	120	23	1.5	74	109	55.9	34.0	63.7	41.5			
70	125	24	1.5	79	114	61.8	37.5	68.9	45.5			
75	130	25	1.5	86	119	66.3	40.5	71.5	49.0			
80	140	26	2.0	93	127	70.2	45.0	80.6	55.0			
85	150	28	2.0	99	136	83.2	53.0	90.4	63.0			
90	160	30	2.0	104	146	95.6	62.0	106	73.5			
95	170	32	2.0	110	156	108	69.5	121	85.0			

									co	ne			cu	p		
bore	outside diameter	width	rating at 500 rpm for 3000 hours L ₁₀		fac- tor	eff.	part numbers		max shaft fillet	width	backing shoulder diameters		max hous-	width	backing shoulder diameters	
		widin	one- row radial	thrust	tor	center	cone	cup	radius		Ulatii	cicis	ing fillet radius	wium		icicis
d	D	Т	N lbf	N lbf	K	a ^②			R ^①	В	d _b	d _a	r①	С	D _b	D _a
25.000 0.9843	52.000 2.0472	16.250 0.6398	8190 1840	5260 1180	1.56	-3.6 -0.14	♦ 30205	♦ 30205	1.0 0.04	15.000 0.5906	30.5 1.20	29.0 1.14	1.0 0.04	13.000 0.5118	46.0 1.81	48.5 1.91
5.000 0.9843	52.000 2.0472	19.250 0.7579	9520 2140	9510 2140	1.00	-3.0 -0.12	♦32205-В	◆ 3i	SIN	GLE	-RO	WS	TRA	AIGI	HT B	ORI
5.000 0.9843	52.000 2.0472	22.000 0.8661	13200 2980	7960 1790	1.66	-7.6 -0.30	♦ 33205	• :	4				D			→
5.000 .9843	62.000 2.4409	18.250 0.7185	13000 2930	6680 1500	1.95	-5.1 -0.20	♦30305	•:	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
25.000 0.9843	62.000 2.4409	25.250 0.9941	17400 3910	8930 2010	1.95	-9.7 -0.38	♦ 32305	•:	A				-a			
5.159 0.9905	50.005 1.9687	13.495 0.5313	6990 1570	4810 1080	1.45	-2.8 -0.11	07096	T	Ċ ¥		E	3	<i>a</i>	R		
5.400 .0000	50.005 1.9687	13.495 0.5313	6990 1570	4810 1080	1.45	-2.8 -0.11	07100	, <u>*</u>					1 1			•
.0000	50.005 1.9687	13.495 0.5313	6990 1570	4810 1080	1.45	-2.8 -0.11	07100-S			4	•		d_b —		—	22
25.400 .0000	50.292 1.9800	14.224 0.5600	7210 1620	4620 1040	1.56	-3.3 -0.13	L44642	L	0.14	0.5800	1.42	1.16	D _a —	0.4200	1.75	1.85
.0000	50.292 1.9800	14.224 0.5600	7210 1620	4620 1040	1.56	-3.3 -0.13	L44643	L44610	1.3 0.05	14.732 0.5800	31.5 1.24	29.5 1.16	1.3 0.05	10.668 0.4200	44.5 1.75	47.0 1.85
25.400 .0000	51.994 2.0470	15.011 0.5910	6990 1570	4810 1080	1.45	-2.8 -0.11	07100	07204	1.0 0.04	14.260 0.5614	30.5 1.20	29.5 1.16	1.3 0.05	12.700 0.5000	45.0 1.77	48.0 1.89
25.400	56.896 2.2400	19.368 0.7625	10900 2450	5740 1290	1.90	- 6.9 -0.27	1780	1729	0.8 0.03	19.837 0.7810	30.5 1.20	30.0 1.18	1.3	15.875 0.6250	49.0 1.93	51.0 2.01

Steps...

- Identification of Problem Statement
- 2. Design and Calculations of the parts to be made
- 3. Manufacturing of Parts
- 4. Selection of Mechanical Components
- 5. Final Assembly
- 6. Testing
- 7. Repeat

Final Assembly

Final Assembly

 The process of assembly can be basically defined as joining together all the parts and components.

- This process of joining can take place in 2 forms -
 - Permanent Joints
 - Non permanent Joints

Permanent Joint - Welding

Types of Welding

- Gas welding
- Arc Welding
- MIG
- TIG
- Spot Welding

MIG Welding

TIG Welding

Spot Welding

Non Permanent Joints

Non Permanent Joints

Non Permanent Joints

A six sided nut. Also referred to as a Finished Hex Nut.

Nylon Insert Jam Lock

A nylock nut with a reduced

height.

Heavy Hex A heavier pattern version of a standard hex nut.

Nylon Insert Lock A nut with a nylon insert to prevent backing off. Also referred to as a Nylock.

Jam A hex nut with a reduced height.

Cap the end of the fastener.

Acorn Acorn nuts are a high crown type of cap nut, used for appearance.

washers with a curved or used in dock and wood construction.

Fender An oversize flat washer used to A flat washer, used to distribute further distribute load especially on soft materials.

Internal Tooth Lock

A washer with internal 'teeth'.

Used to prevent nuts and bolts

from backing out.

Finishing A washer used to obtain a 'finished' look, Usually used with oval head screws.

A square shaped washer.

The most common style of washer used to prevent nuts and bolts from backing out.

Dock Dock washers have a larger outside diameter and are thicker than standard.

Flange A nut with a built in washer like flange.

Wing

A nut with 'wings' for hand

tightening.

A nut designed to be driven into wood to create a threaded hole.

A nut with a domed top over

Square A four sided nut.

Prevailing Torque Lock A non-reversible lock nut used for high temperature applications.

External Tooth Lock

A washer with external 'teeth'.

Used to prevent nuts and bolts

from backing out.

load. Available in SAE, USS and

other patterns.

Thick, large diameter, cast iron sculpted appearance. Typically

Steps...

- Identification of Problem Statement
- 2. Design and Calculations of the parts to be made
- 3. Manufacturing of Parts
- 4. Selection of Mechanical Components
- 5. Final Assembly
- 6. Testing
- 7. Repeat

Testing

Balancing of Shafts

Balancing of Shafts

Static Balancing-

Adjusting the components on the shaft such that shaft is balanced when stationary.

Dynamic Balancing-

Placing components such that the forces on the shaft are balanced when the shaft is in motion (rotation).

RE-ITERATE

Thank You

Tejas Rane (+91) 99208 90738