物理化学实验报告

学号: 实验日期: <u>2019 年 4 月 11 日</u>

实验名称: 凝固点降低法测定相对分子质量

一、 实验目的

(一) 用凝固点降低法测定萘的相对分子量

(二) 掌握步冷曲线法测定液体凝固点的方法

(三) 掌握数字贝克曼温度计的使用方法

二、 实验原理

化合物的分子量是一个重要的物理化学参数。用凝固点降低法测定物质的分子量是一种简单而又比较准确的方法。用凝固点降低法测定物质的分子量是一种简单而又比较准确的方法。稀溶液的凝固点降低(对析出物是纯溶剂的体系)与溶液中物质的摩尔分数的关系式为:

$$\Delta T_f = T_f^* - T_f = K_f \cdot b_B$$

式中, T_f^* 为纯溶剂的凝固点, T_f 为溶液的凝固点, b_B 为溶液中溶质 B 的质量摩尔浓度, K_f 为溶剂的凝固点降低常数,它的数值仅与溶剂的性质有关。

若称取一定量的溶质 W_B 和溶剂 W_A ,配成稀溶液,则此溶液的质量摩尔浓度为:

$$b_B = \frac{W_B}{W_A \cdot M_B}$$

代入得:

$$M_B = \frac{K_f W_B}{\Delta T_f W_A} \times 10^3 g/mol$$

若已知某溶剂的凝固点降低常数 K_f 值,通过实验测定此溶液的凝固点降低值 ΔT_f ,即可计算溶质的相对分子质量。

纯溶剂的凝固点是它的液相和固相共存时的平衡温度。若将纯溶剂缓慢冷却,理论上得到它的步冷曲线 ①,但实际的过程往往会发生过冷现象,液体的温度会下降到凝固点以下,待固体析出后会慢慢放出凝固热使体系的温度回到平衡温度,待液体全部凝固之后,温度逐渐下降得到曲线②。溶液的凝固点是该溶液的液相与纯溶剂得固相平衡共存的温度。当溶液逐渐冷却时,由于有部分溶剂凝固析出,使剩

余溶液浓度增大,因而剩余溶液与溶剂固相得平衡温度也在下降,冷却曲线不会出现"平阶",而是出现一转折点,该点所对应的温度即为凝固点,得到曲线③。

三、 仪器和药品

凝固点测定仪、水银温度计、SWC-II 型数字贝克曼温度计、压片机、秒表、环己烷、萘(分析纯)。

四、 实验步骤

1. 调节寒剂的温度

调节冰的量使寒剂 F 的温度处于 3℃左右。在实验过程中用搅拌器 D 经常搅拌并根据寒剂的温度要经常补充少量的冰,使寒剂保持此温度。

2. 环己烷的凝固点测定

用移液管吸取 30mL 环己烷,把它加入凝固点管 A。然后塞上橡皮塞,并调整贝克曼温度计的探头 B 使其浸入环己烷的液面之下。

先将盛放环己烷液体的凝固点管 A 直接插入寒剂 F 中,当刚有固体析出时迅速 将其外壁擦干,当其析出的固体完全融化后迅速将其插入空气套管 E 中。打开秒 表,每 15 秒记录一次待测系统的温度。

重复试验。取出凝固点管 A,用手温热之。待管中的固体刚完全熔化后,将它直接插入空气套管 E 中冷却。后续的操作同上,重复测量两次。

3. 溶液凝固点的测定

取出凝固点管 A,使管中的环己烷融化。把压成片状并已精确测量的萘加入到环己烷中。然后测定该溶液的凝固点,测定方法如上。

五、 实验数据记录

时间	纯溶剂温度 1/℃	纯溶剂温度 2 /℃	溶液温度 1/℃	溶液温度 2/℃
15	7.03	6.95	6.93	6.92
30	6.90	6.83	6.77	6.76
45	6.78	6.72	6.61	6.61
60	6.66	6.61	6.46	6.45
75	6.54	6.50	6.32	6.31
90	6.43	6.40	6.05	6.06
105	6.32	6.30	5.92	5.91
120	6.22	6.21	5.79	5.80
135	6.12	6.13	5.67	5.66
150	6.12	6.05	5.57	5.56
165	6.28	6.14	5.66	5.65
180	6.31	6.29	5.69	5.70
195	6.31	6.31	5.69	5.69
210	6.31	6.32	5.69	5.69
225	6.31	6.32	5.68	5.68
240	6.31	6.31	5.67	5.67
255	6.31	6.31	5.66	5.67
270	6.31	6.31	5.66	5.65
285	6.30	6.31	5.65	5.64
300	6.30	6.31	5.64	5.63
315	6.30	6.30	5.63	5.63
330	6.30	6.30	5.63	5.62
345	6.30	6.30	5.62	5.62
360	6.29	6.30	5.61	5.61
375	6.29	6.30	5.61	5.60
390	6.29	6.30	5.60	5.59
405	6.29	6.29	5.59	5.58

六、 实验数据处理

(一) 绘制步冷曲线

(二) 确定凝固点

作图比较得:

环己烷凝固点为 6.32℃

萘-环己烷溶液凝固点为 5.70℃

(三) 计算萘的相对分子质量

$$M_B = \frac{20.2}{6.32 - 5.70} \times \frac{1000 * 0.088}{23.22} = 123.48 \ g/mol$$

(四) 误差计算

$$\delta = \frac{128.18 - 123.48}{128.18} \times 100\% = 4.13\%$$