Book 10 Proposition 66

A (straight-line) commensurable in length with a binomial (straight-line) is itself also binomial, and the same in order.

Let AB be a binomial (straight-line), and let CD be commensurable in length with AB. I say that CD is a binomial (straight-line), and (is) the same in order as AB.

A E B C F D

For since AB is a binomial (straight-line), let it have been divided into its (component) terms at E, and let AE be the greater term. AE and EB are thus rational (straight-lines which are) commensurable in square only [Prop. 10.36]. Let it have been contrived that as AB(is) to CD, so AE (is) to CF [Prop. 6.12]. Thus, the remainder EB is also to the remainder FD, as AB (is) to CD [Props. 6.16, 5.19 corr.]. And AB (is) commensurable in length with CD. Thus, AE is also commensurable (in length) with CF, and EB with FD [Prop. 10.11]. And AE and EB are rational. Thus, CF and FD are also rational. And as AE is to CF, (so) EB (is) to FD [Prop. 5.11]. Thus, alternately, as AE is to EB, (so) CF (is) to FD [Prop. 5.16]. And AE and EB [are] commensurable in square only. Thus, CF and FD are also commensurable in square only Prop. 10.11. And they are rational. CD is thus a binomial (straight-line)

[Prop. 10.36]. So, I say that it is the same in order as AB.

For the square on AE is greater than (the square on) EB by the (square) on (some straight-line) either commensurable or incommensurable (in length) with (AE). Therefore, if the square on AE is greater than (the square on) EB by the (square) on (some straight-line) commensurable (in length) with (AE) then the square on CF will also be greater than (the square on) FD by the (square) on (some straight-line) commensurable (in length) with (CF) [Prop. 10.14]. And if AE is commensurable (in length) with (some previously) laid down rational (straight-line) then CF will also be commensurable (in length) with it [Prop. 10.12]. And, on account of this, AB and CD are each first binomial (straightlines) Def. 10.5—that is to say, the same in order. And if EB is commensurable (in length) with the (previously) laid down rational (straight-line) then FD is also commensurable (in length) with it [Prop. 10.12], and, again, on account of this, (CD) will be the same in order as AB. For each of them will be second binomial (straight-lines) [Def. 10.6]. And if neither of AE and EB is commensurable (in length) with the (previously) laid down rational (straight-line) then neither of CF and FD will be commensurable (in length) with it

[Prop. 10.13], and each (of AB and CD) is a third (binomial straight-line) [I And if the square on AE is greater than (the square on) EB by the (square) on (some straight-line) incommensurable (in length) with (AE) then the square on CF is also greater than (the square on) FD by the (square) on

(some straight-line) incommensurable (in length) with (CF) [Prop. 10.14]. And if AE is commensurable (in length) with the (previously) laid down rational (straight-line) then CF is also commensurable (in length) with it [Prop. 10.12], and each (of AB and CD) is a fourth (binomial straight-line) [Def. 10.8]. And if EB (is commensurable in length with the previously laid down rational straight-line) then FD (is) also (commensurable in length with it), and each (of AB and CD) will be a fifth (binomial straight-line) [Def. 10.9]. And if neither of AE and EB (is commensurable in length with the previously laid down rational straight-line) then also neither of CF and FD is commensurable (in length) with the laid down rational (straight-line), and each (of AB and CD) will be a sixth (binomial straight-line) [Def. 10.10].

Hence, a (straight-line) commensurable in length with a binomial (straight-line) is a binomial (straight-line), and the same in order. (Which is) the very thing it was required to show.