ERTH655/CEE623
Groundwater Modeling

Finite Difference Technique

Aly I. El-Kadi

Finite difference grid

Example: Saturated fresh water flow for steady state

Objective: estimate water levels
Input: well fluxes, recharge boundary
conditions, aquifer data, (conductivity,
storage coefficient, aquifer thickness)

$$\frac{\partial}{\partial x} \left(K_{xx} \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_{yy} \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_{zz} \frac{\partial h}{\partial z} \right)_{\Lambda} = S_{z} \frac{\partial h}{\partial t}$$
Saturated 3-D equation

Head dependent interaquifer flow

Mass balance equation for a set of neighboring nodes:

$$Q_{21} + Q_{31} + Q_{41} + Q_{51} = \Delta x_1 \Delta y_1 S_1 \frac{\partial h_1}{\partial t}$$
 (1)

Darcy's law:

$$Q_{21} = -\Delta x_1 T_{21} \left(\frac{\partial h}{\partial y} \right)_{21}$$
 (2)

Difference form:

Definition of a partial derivative:

$$\frac{\partial h}{\partial t} \approx \frac{h^n - h^{n-1}}{\Delta t} \tag{4}$$

n = current time level (t+ Δt), n-1 = previous time level (t). Inserting equations (3) and (4) into (1) will provide a relationship between head values at the neighboring nodes:

$$a h^{n} + b h^{n} + c h^{n} + d h^{n} + e h^{n} = f$$
1 2 1 3 1 1 1 4 1 5 1

in which a, b, c, d, e, and f are known coefficients, functions of Δx , Δy , Δt , T, and S, with values that depend on the type of finite-difference approximation.

Equation (5) can be generalized at node i,j to read:

$$a_i h_{i-1, j}^n + b_i h_{i, j-1}^n + c_i h_{i, j}^n + d_i h_{i+1, j}^n + e_i h_{i, j+1}^n = f_i$$
 (6)

Types of finite-difference approximation

$$Q_{21} = -\Delta x_1 T_{21} \left(\frac{\partial h}{\partial y} \right)_{21} \tag{7}$$

$$Q_{21} \approx \Delta x_{1} T_{21} \left(\frac{h_{2} - h_{1}}{\Delta y} \right)_{21}$$

Equations above estimates the average volumetric flux between cells over a time interval Δt . Heads used in this equation can be taken as those at certain time t' in the interval between t and $t+\Delta t$:

$$h(t') = (1 - \omega)h(t) + \omega h(t + \Delta t) \tag{8}$$

in which ω is a weighting factor between 0 and 1.

t = t' or $\omega = 0$ will produce an explicit finite difference scheme.

$$h(t') = h(t)$$

$$h_{i,j}^{n} = g_{i}h_{i,j}^{n-1} + m_{i}h_{i-1,j}^{n-1} + u_{i}h_{i+1,j}^{n-1} + v_{i}h_{i,j-1}^{n-1} + q_{i}h_{i-1,j+1}^{n-1}$$
(9)

The solution is obtained by starting from the initial values and estimating directly the values after a time increment Δt for all nodes in the system. The values of g_i , m_i , etc. are functions of Δx , Δy , Δt , T, and S.

The solution is easy to program but a restriction should be made on the value of Δt in order to obtain a stable solution. For stability of the solution, value of Δt should satisfy the condition at every node:

$$\frac{T}{S} \left(\frac{\Delta t}{\Delta x^2} + \frac{\Delta t}{\Delta y^2} \right) \le \frac{1}{2} \tag{10}$$

 \rightarrow Small Δt .

Plus large rounding error $O(\Delta x)$.

- \square For $\omega = 1 \rightarrow$ fully implicit scheme
- □ For $0 < \omega < 1 \rightarrow \text{implicit scheme}$
- □ For $\omega = 0.5 \rightarrow$ well known Crank-Nicholson implicit scheme.

$$a_i h_{i-1, j}^n + b_i h_{i, j-1}^n + c_i h_{i, j}^n + d_i h_{i+1, j}^n + e_i h_{i, j+1}^n = f_i$$

The exact expressions for the quantities a_i , b_i , c_i , etc., will depend on ω

For example, for fully implicit scheme, and homogenous and isotropic systems:

$$a_{i} = \frac{T}{\Delta x^{2}} \qquad b_{i} = \frac{T}{\Delta y^{2}}$$

$$c_{i} = -\frac{2T}{\Delta x^{2}} - \frac{2T}{\Delta y^{2}} - \frac{S}{\Delta t} \qquad (11)$$

$$d_{i} = \frac{T}{\Delta x^{2}} \qquad e_{i} = \frac{T}{\Delta y^{2}}$$

$$f = -\frac{Sh_{i,j}^{n-1}}{\Delta t}$$

Implicit formulations (systems of equations)can be put in the matrix form:

$$[K]{h} = {F} \tag{12}$$

In which K is matrix of known coefficient, h is unknown vector, and F is known vector. Can be solved by matrix techniques either by direct or indirect (iterative) techniques.

Example – One dimensional problem

$$a_i h_{i-1} + b_i h_i + c_i h_{i+1} = d_i$$

i = 1, 2, ... N; N total number of nodes

$$N = 6$$
:

Equations can be written as:

$$i = 1 b_1h_1 + c_1h_2 = d_1$$

$$2 a_2h_1 + b_2h_2 + c_2h_3 = d_2$$

$$3 a_3h_2 + b_3h_3 + c_3h_4 = d_3$$

$$4 a_4h_3 + b_4h_4 + c_4h_5 = d_4$$

$$5 a_5h_4 + b_5h_5 + c_5h_6 = d_5$$

$$6 a_6h_5 + b_6h_6 = d_6$$

Or in matrix form:

$$\begin{bmatrix} b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \\ a_4 & b_4 & c_4 \\ & & a_5 & b_5 & c_5 \\ & & & a_6 & b_6 \end{bmatrix} \quad \begin{matrix} h_1 \\ h_2 \\ h_3 \\ h_4 \end{matrix} = \begin{matrix} d_2 \\ d_3 \\ d_4 \end{matrix}$$

$$\begin{matrix} h_3 \\ h_4 \end{matrix} = \begin{matrix} d_3 \\ d_4 \end{matrix}$$

$$\begin{matrix} h_3 \\ h_4 \end{matrix} = \begin{matrix} d_3 \\ d_4 \end{matrix}$$

$$\begin{matrix} h_3 \\ h_4 \end{matrix} = \begin{matrix} d_3 \\ d_4 \end{matrix}$$

$$\begin{matrix} h_3 \\ h_4 \end{matrix} = \begin{matrix} d_3 \\ d_4 \end{matrix}$$

$$\begin{matrix} h_1 \\ h_2 \\ d_3 \end{matrix} = \begin{matrix} d_3 \\ d_4 \end{matrix} = \begin{matrix}$$

Matrix direct schemes

- ☐ Matrix inversion
- ☐ Elimination back substitution

Matrix iterative schemes

The Jacobi method

Arrange equation in the form:

$$h_{i,j}^{n} = F\left(h_{i-1,j}^{n}, h_{i+1,j}^{n}, h_{i,j-1}^{n}, h_{i,j+1}^{n}\right)$$

If neighboring values are known, can calculate $h_{i,j}$. But they are not, so make a guess, starting from initial condition. Then update using the new values as guesses and continue until convergence within acceptable error.

The Gauss-Seidel method

Same but use the last updated values (go row by row)

Others: Over relaxation, iterative alternating direction implicit procedure, etc.

MODFLOW Packa	ges / Processes		×			
Flow package BCF - Block-Co HUF - Hydrogo LPF - Layer Pr UPW - Upstre	eologic Unit Flow operty Flow	Optional packages / processes BCT - Block Centered Transport BFH - Boundary Flow and Head CHD1 - Time-Variant Specified-Head CLN - Connected Linear Network Process DPT - Dual Porosity Transport		MODFLOW PCG Package		
Solver DE4 - Direct GMG - Geome LMG - Link-AM NWT - Newtor PCG - Pre. Cor PCGN - PCG v SIP1 - Strongly SMS - Sparse SOR1 - Slice S	n njGradient vith Imp. Nonlin. v Impl. Proc. Matrix \ LMG-USG	DRN1 - Drain DRT1 - Drain Retum ETS1 - Evapotranspiration Segments EVT1 - Evapotranspiration GAGE - Gage GHB1 - General-Head Boundary GNC - Ghost Node Correction HFB6 - Horizontal Flow Barrier LAK3 - Lake MNW1 - Multi-Node Well MNW2 - Multi-Node Well MNW1 - Multi-Node Well Information PCB - Prescribed Concentration PCB - Prescribed Concentration STR1 - Recharge RIV1 - River SFR2 - Streamflow-Routing STR1 - Stream SUB - Subsidence SWI2 - Seawater Intrusion UZF - Unsaturated Zone Flow WEL1 - Well		Maximum number of outer iterations (MXITER): Number of inner iterations (ITER1): Matrix preconditioning method (NPCOND): Active cells surrounded by dry cells (IHCOFADD): Head change criterion for convergence (HCLOSE): Residual criterion for convergence (RCLOSE): Relaxation parameter (RELAX): Eigenvalue upper bound (NBPOL): Damping for all, or if < 0, only SS stress periods (DAMPPCG): Damping for transient stress periods (DAMPPCGT): Printout interval (IPRPCG): Printing of convergence info (MUTPCG):	0.01 1.0 (<>2) Calculate eigenva 1.0 0.0 0 (2) No printing	of HC(~ (m) (m^3/d)
Help		✓ WEL1 - Well OK Cancel				