北京邮电大学 2023—2024 学年第二学期

《概率论与数理统计》期末考试试题 (3 学分·A 卷)

	考试	一、学生参加考试须带学生证或学院证明,未带者不准进入考场。学生必须按照监考教师指定座位就坐。
	注	二、书本、参考资料、书包等物品一律放到考场指定位置。
	意	三、学生不得另行携带、使用稿纸,要遵守《北京邮电大学考场规则》,有考场违纪或
	事	作弊行为者,按相应规定严肃处理。
	项	四、学生必须将答题内容做在试题答卷上,做在草稿纸上一律无效。
	一、填	空选择题(每小题4分,共40分)
1.	己	四男性有5%是色盲者,女性有0.25%是色盲者。从男女人数相等的人群中
	随机	地挑选一人,此人是色盲者的概率为。
2.	设	A, B, C 为相互独立的随机事件, $P(A) = P(B) = P(C) = \frac{1}{2}$,
	则 P	$(A \cup B \mid C) = \underline{\hspace{1cm}}$
3.		一质点在随机外力的作用下,从原点0出发,每次 等可能地 向左或向右移
	动一	个单位长度, 共移动6次。则质点刚好回到原点的概率为。
4.	某么	会局在长度为t的时间间隔内收到的紧急呼救次数X服从参数为 ^t 的
	泊松	分布,而与时间间隔的起点无关(时间以小时计)。则某天下午12时至
	下午	2时至少收到2次紧急呼救的概率为。
		恒机变量 X_1, X_2, X_3 相互独立,且 $X_1 \sim U(0,6)$, $X_2 \sim N(1,3)$, X_3 服从指数
	分布	且 $E(X_3) = \frac{1}{3}$ 。则 $Y = X_1 + 2X_2 - 3X_3$ 的标准差为。
6.	设二	工维随机变量 (X,Y) 在区域 $D = \{0 < x < 1, 0 < y < 1\}$ 上服从二维均匀分布,
	则 P	$X^2 + Y^2 \le 1\} = \underline{\hspace{1cm}} \circ$
		$X_1, X_2,, X_n$ 为来自总体 X 的简单随机样本,其中总体 X 的概率密度函数
	为 f _x	$(x) = $ $\begin{cases} cx^2, & 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$, $\Phi(x)$ 表示标准正态分布函数,则利用中心极限定理

可得 $P\{\sum_{i=1}^{80} X_{i} \leq 66\}$ 的近似值为_

- $(A) \Phi(1)$
- (B) $\Phi(\sqrt{3})$
- (C) $\Phi(\sqrt{6})$
- (D) $\Phi(2\sqrt{3})$

8. 设总体 X 的概率分布为

其中 $p(0 是未知参数。设<math>X_1, X_2, ..., X_n$ 为来自总体X的简单随机样本, \overline{X} 和 S^2 分别为样本均值和样本方差。若 $2\overline{X}-kS^2$ 为p的无偏估计,则k=___?

- 9. 设 X_1, X_2, X_3 为来自正态总体 $X \sim N(0, \sigma^2)$ 的简单随机样本, $\sigma > 0$,则当常数 $\alpha = _____$ 时,统计量 $S = \frac{X_1 - X_2}{\alpha |X_3|}$ 服从_____分布。
 - (A) $\sqrt{2}$, F(1,1) (B) 2, F(2,1) (C) $\sqrt{2}$, t(1) (D) 2, t(2)

- 10. 设某批矿砂中的镍含量(以%计)服从正态分布 $X \sim N(\mu, \sigma^2)$,从中任取n个 样本。其平均镍含量为 \bar{x} ,标准差为 \bar{s} 。则这批矿砂中镍含量的方差 σ^2 的置信 水平为1-α=0.9的单侧置信下限为
 - (A) $\bar{x} \frac{s}{\sqrt{n}} t_{0.1} (n-1)$
- (B) $\bar{x} \frac{s}{\sqrt{n}} t_{0.9}(n-1)$

(C) $\frac{(n-1)s^2}{\chi_{0,1}^2(n-1)}$

(D) $\frac{(n-1)s^2}{\chi_{0.9}^2(n-1)}$

二、计算题(共10分)

设随机变量 X 的分布函数为 $F(x) = \begin{cases} \ln x, & 1 \le x < e, \end{cases}$ $a, x \ge e.$

- (1)确定常数a;
- (2) 求 $P\{1 < X < \sqrt{e}\};$
- (3) 求概率密度 f(x)。

三、计算题(共10分)

设圆的直径X服从区间(0,1)上的均匀分布。

- (1) 求圆的面积 $Y = \frac{\pi X^2}{4}$ 的概率密度函数;
- (2) 求函数的数学期望E(2Y+1)。

四、计算题(共10分)

设二维随机变量(X,Y)的概率分布为

Y	0	1	2	
-1	0.1	0.1	b	
1	a	0.1	0.1	

若事件 $\{\max(X,Y)=2\}$ 与事件 $\{\min(X,Y)=1\}$ 相互独立。

- (1)确定常数 a 和 b;
- (2) 求 Y 的分布律;
- (3) 求X = 1 时Y 的条件分布律。

五、计算题(共10分)

设随机变量(X,Y) 服从二维正态分布 $N(1,-1;1,4;-\frac{1}{2})$ 。

- (1) X+Y和X-Y分别服从什么分布?给出分布类型和参数取值。
- (2) 求X+Y和X的相关系数 ρ , X+Y和X是否相关?
- (3) X+Y 和 X 是否相互独立?为什么。

六、计算题(共10分)

设总体 X 的概率密度为 $f(x;\theta) = \begin{cases} \theta 2^{\theta} x^{-(\theta+1)}, & x > 2, \\ 0, & \text{其他.} \end{cases}$ 其中 $\theta > 1$ 是未知参数。

 $X_1, X_2, ..., X_n$ 是来自总体X的简单随机样本, $x_1, x_2, ..., x_n$ 为样本观测值。

- (1) 求 θ 的矩估计量 $\hat{\theta}_1$;
- (2) 求 θ 的最大似然估计量 $\hat{\theta}_2$ 。

七、计算题(共10分)

在 20 世纪 70 年代后期人们发现,酿造啤酒时,在麦芽干燥过程中会形成致癌物质亚硝基二甲胺 (NDMA)。20 世纪 80 年代初期开发了一种新的麦芽干燥过程。设老过程中形成 NDMA 含量(以 10 亿份中的含量计)服从正态分布 $N(\mu_1,\sigma_1^2)$,新过程中形成 NDMA 含量服从正态分布 $N(\mu_2,\sigma_2^2)$,参数 $\mu_1,\mu_2,\sigma_1^2,\sigma_2^2$ 均未知。

- 答用的是WOESO 由州北京市用泉水园 新星球石

技术人员独立地对两种过程中形成 NDMA 含量做抽样测试, 测得数据如下:

老过程: $n_1 = 11$, $\overline{x}_1 = 5.2$, $s_1^2 = 0.98$

新过程: $n_2 = 11$, $\bar{x}_2 = 1.7$, $s_2^2 = 1.00$

· 医宝宝原原生命中国国际服。据黄帝代表正常特示表(2)0、

- (1) 在检验水平 $\alpha = 0.10$ 下,检验假设: $H_0: \sigma_1^2 = \sigma_2^2$, $H_1: \sigma_1^2 \neq \sigma_2^2$ 。
- (2) 在检验水平 $\alpha = 0.10$ 下,检验假设: $H_0: \mu_1 \mu_2 = 2$, $H_1: \mu_1 \mu_2 \neq 2$ 。

在解题过程中,你可能需要用到数据: $F_{0.05}(10,10) = 2.98 \ F_{0.05}(11,11) = 2.81 \$

 $t_{0.05}(20) = 1.7247$, $t_{0.10}(20) = 1.3253$.