Symmetries, Fields and Particles Summary Notes

Sam Crawford Based on the Course Given by Nick Dorey

Michaelmas 2017

Contents

1	Lie Groups and Lie Algebras			
	1.1	Basic Definitions	3	
	1.2	Matrix Groups	4	
	1.3	Some Properties of Lie Algebras	4	
	1.4	The Exponential Map	6	

CONTENTS CONTENTS

2	Rep	resentations	6
	2.1	Basic Definitions	6
	2.2	The Representation Theory of $\mathfrak{su}(2)$	8
	2.3	Derived Representations	11
	2.4	The Clebsch-Gordan Decomposition	12
3	The	Cartan Classification	13
	3.1	The Killing Form	13
	3.2	Complexification	14
	3.3	The Cartan-Weyl Basis	15
	3.4	Root Strings	19
	3.5	The Real Geometry of Roots	20
	3.6	Simple Roots	21
	3.7	Dynkin Diagrams	25
4	Rec	onstructing the Lie Algebra	27
	4.1	Representations of g	28
	4.2	Root and Weight Lattices	29
	4.3	Highest Weight Representations	31
5	Sym	nmetries in Quantum Mechanics	33

1 Lie Groups and Lie Algebras

1.1 Basic Definitions

Definition 1.1 Lie group

A **Lie group** is a group G that admits a smooth manifold structure, i.e. is locally diffeomorphic to \mathbb{R}^n , where n is the *dimension* of the Lie group. Furthermore, the maps L_q , R_q and Inv : $G \to G$ defined by

$$L_g(h) = gh,$$
 $R_g(h) = hg,$ $Inv(h) = h^{-1}$ (1.1)

should be diffeomorphisms of G.

Definition 1.2Left invariant

A vector field $X \in \mathfrak{X}(G)$ is **left invariant** if

$$(L_q)_*X|_h = X|_{qh}.$$
 (1.2)

In words, the pushforward of the vector field by the L_g diffeomorphism is simply the value of the vector field at the target point.

Proposition 1.1

The space of left-invariant vector fields is an $n = \dim(G)$ dimensional vector space which is homeomorphic to T_eG , the tangent space to the identity of G.

Proof Omitted.

Definition 1.3 Lie algebra

A **Lie algebra** is a vector space \mathfrak{g} equipped with a bilinear operator $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ satisfying

- (i) (Anti-Commutativity) $[x,y] = -[y,x], \ \forall \ x,y \in \mathfrak{g},$
- (ii) (Jacobi Identity) $[x,[y,z]]+[y,[z,x]]+[z,[x,y]]=0,\ \forall\ x,y,z\in\mathfrak{g}.$

Proposition 1.2

The space of left-invariant vector fields on a Lie group G is closed under the Lie bracket $[X,Y] \circ f := X \circ (Y \circ f) - Y \circ (X \circ f)$, and thus forms a Lie algebra \mathfrak{g} .

Proof Omitted.

1.2 Matrix Groups

Most groups we will be dealing with will be subgroups of GL(V), the space of invertible linear operators on a vector space V (which itself will often be \mathbb{R}^n or \mathbb{C}^n). Here we will define some such Lie groups along with their associated algebras.

Remark. As a general rule, as we tend to consider subgroups of the form $H = f^{-1}(c)$, where $f: GL(V) \to \mathbb{F}^n$ is a smooth map with regular value c. In this case, we can define the associated Lie algebra \mathfrak{h} as the set of matrices M such that

$$\lim_{\epsilon \to 0} \frac{f(1 + \epsilon M) - c}{\epsilon} = 0. \tag{1.3}$$

Example 1.1

The **special linear group** is the level set $SL(n, \mathbb{F}) = \det^{-1}(1) \subset GL(n, \mathbb{F})$. The Lie algebra is $\mathfrak{su}(n, \mathbb{F}) := \{M \in GL(n, \mathbb{F}) : \operatorname{Tr}(M) = 0\}$

Example 1.2

The **orthogonal groups** are defined by $O(p,q) = \{M : M^T \eta M = \eta\}$ using a metric η of signature (p,q). The Lie algebra $\mathfrak{o}(p,q)$ consists of operators which are skew-adjoint with respect to the metric. There are also the **special orthogonal groups** $SO(p,q) = O(p,q) \cap SL(p+q,\mathbb{R})$, the Lie algebra being similarly defined. Finally, if the field is \mathbb{C} , with a Hermitian inner product, we instead define the **(special) unitary group** (S)U(n).

1.3 Some Properties of Lie Algebras

Here we will define some objects associated with Lie algebras that will be useful for finding results later on.

Definition 1.4 Structure constants

For a finite dimensional Lie algebra $\mathfrak g$ with a basis $\{T^a\}_{a=1}^{\dim\mathfrak g}$, then we can describe the structure of the Lie algebra using the **structure constants**. A set of numbers f_c^{ab} such that

$$[T^a, T^b] = f_c^{ab} T^c. (1.4)$$

Remark. Using a set of structure constants, we can express the properties of a Lie algebra from Definition 1.3 as

$$(i) f_c^{ab} = -f_c^{ba},$$

(ii)
$$f_c^{[ab} f_c^{d]c} = 0$$
.

Definition 1.5

Isomorphism (Lie algebra)

Two Lie algebras \mathfrak{g} and \mathfrak{g}' are **isomorphic** if there exists a homomorphism φ : $\mathfrak{g} \to \mathfrak{g}'$ which commutes with the Lie brackets, i.e.

$$[\varphi(x), \varphi(y)]' = \varphi([x, y]) \quad \forall \ x, y \in \mathfrak{g}. \tag{1.5}$$

Remark. As one might expect, isomophism is the natural notion of 'equivalence' between Lie algebras.

Definition 1.6Lie subalgebra

A **Lie subalgebra** $\mathfrak{h} \subset \mathfrak{g}$ is a subspace of \mathfrak{g} that is closed under the Lie bracket of \mathfrak{g} , i.e. is itself a Lie algebra.

Definition 1.7 *Ideal*

An **ideal** \mathfrak{h} of \mathfrak{g} is a Lie subalgebra which, for $h \in \mathfrak{h}, x \in \mathfrak{g}$ satisfies

$$[h, x] \in \mathfrak{h}. \tag{1.6}$$

Remark. Stealing some notation to be introduced later, an alternative definition of an ideal is a subspace \mathfrak{h} such that $\mathrm{Ad}_h:\mathfrak{g}\to\mathfrak{h},\ \forall\ h\in\mathfrak{h}.$

Example 1.3

The two **trivial** ideals of *any* Lie algebra \mathfrak{g} are $\{0\}$ and $\{\mathfrak{g}\}$ itself

Example 1.4

The derived algebra is the ideal

$$i(\mathfrak{g}) := \{ [x, y] : x, y \in \mathfrak{g} \}. \tag{1.7}$$

A related ideal is the **centre**, defined by

$$J(\mathfrak{g}) := \{ x \in \mathfrak{g} : [x, y] = 0 \,\forall \, y \in \mathfrak{g} \} \tag{1.8}$$

Remark. Again, we can steal the notation of [LINK] to define the ideal as

$$i(\mathfrak{g}) \coloneqq \bigcup_{x \in \mathfrak{g}} \operatorname{Img}(\operatorname{Ad}_x).$$
 (1.9)

And the centre as

$$J(\mathfrak{g}) := \bigcap_{x \in \mathfrak{g}} \operatorname{Ker}(\operatorname{Ad}_x). \tag{1.10}$$

Definition 1.8

Abelian (Lie algebra)

A Lie algebra g is **Abelian** if its Lie bracket is the trivial map

$$[\cdot,\cdot]:\mathfrak{g}\times\mathfrak{g}\to\{0\}. \tag{1.11}$$

Remark. For an Abelian Lie algebra, $\mathfrak{i}(\mathfrak{g}) = \{0\}$, and $J(\mathfrak{g}) = \mathfrak{g}$.

Definition 1.9 Simple

A Lie algebra g is **simple** if it is not Abelian and has *only* trivial ideals

Remark. Similarly to the above, for a simple Lie algebra, $\mathfrak{i}(\mathfrak{g})=\mathfrak{g}$, and $J(\mathfrak{g})=\{0\}$.

1.4 The Exponential Map

2 Representations

2.1 Basic Definitions

Definition 2.1

Representation (of a Lie algebra)

A **representation** of a *Lie algebra* g is an isomorphism

$$R: \mathfrak{g} \to \operatorname{End}(V),$$
 (2.1)

where the Lie bracket for $\operatorname{End}(V)$ is a commutator. The vector space V is known as the **representation space** and the dimension of V is the **dimension** of the representation.

Definition 2.2

Representation (of a group)

A **representation** of a *group* G, which need *not* be a Lie group, is a group isomorphism

$$D: G \to GL(V). \tag{2.2}$$

Where, in this case, the isomorphism condition is that D commutes with the group multiplication D(gh) = D(g)D(h). The representation space and dimension of the representation are defined exactly as above.

Proposition 2.1

If $\operatorname{Exp}(\mathfrak{g}) = H \subset G$ is bijective, then a representation R of \mathfrak{g} 'exponentiates' to the representation $D(\operatorname{Exp}(x)) = \operatorname{Exp}(R(x))$ of H.

Proof Omitted.

Example 2.1

(i) The **trivial representation** of a Lie algebra is the trivial map

$$R_0: \mathfrak{g} \to \operatorname{End}(\{0\}).$$
 (2.3)

(ii) If $\mathfrak{g} \subset GL(V)$, then the **fundamental representation** of \mathfrak{g} is the inclusion map

$$R_f \equiv i : \mathfrak{g} \hookrightarrow GL(V).$$
 (2.4)

(iii) The **adjoint representation** of a Lie algebra utilises the fact that it is itself a vector space. The fact that

$$Ad: x \mapsto (Ad_x: y \mapsto [x, y]) \in GL(\mathfrak{g})$$
 (2.5)

is a Lie algebra isomorphism can be proved using the Jacobi identity.

Definition 2.3

Isomorphism (representation)

Two representations, R_1 and R_2 , of a Lie algebra $\mathfrak g$ are **equivalent** (or **isomorphic**) if there is a linear bijection between the representation spaces $S:V_1\to V_2$ such that

$$R_2(x) = SR_1(x)S^{-1}, \quad \forall \ x \in \mathfrak{g}.$$
 (2.6)

Definition 2.4

Invariant subspace

Given a representation $R: \mathfrak{g} \to GL(V)$, an **invariant subspace** U of V is a vector subspace such that

$$R(x): V \to U, \quad \forall \ x \in \mathfrak{g}.$$
 (2.7)

Remark. The two trivial invariant subspaces of a representation space V are $\{0\}$ and V.

Definition 2.5

Irreducible representation (irrep)

A representation of a Lie algebra is **irreducible** (it is an **irrep**) if it *only* has trivial invariant subspaces.

2.2 The Representation Theory of $\mathfrak{su}(2)$

The Lie algebra $\mathfrak{su}(2)$ is actually a *real* vector space, as is simply by the fact that $x^{\dagger} = -x \Rightarrow (ix)^{\dagger} = ix$, thus the skew-adjoint condition is not \mathbb{C} linear. The standard basis of $\mathfrak{su}(2)$ consists of the *Pauli matrices* $\{\sigma_i\}_{i=1}^3$. However, if we *complexify* the vector space of $\mathfrak{su}(2)$, we end up with a far more interesting Lie algebra.

Definition 2.6

Cartan-Weyl basis

The Cartan-Weyl basis of $\mathfrak{su}(2)$ consists of the three generators

$$H = \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \tag{2.8a}$$

$$E^{+} = \frac{1}{2} \left(\sigma_1 + i \sigma_2 \right) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \tag{2.8b}$$

$$E^{-} = \frac{1}{2} \left(\sigma_1 - i\sigma_2 \right) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}. \tag{2.8c}$$

In this basis, the Lie bracket is determined by

$$[H, E^{\pm}] = \pm 2E^{\pm}, \quad [E^+, E^-] = H.$$
 (2.9)

Remark. With respect to this basis, the operator Ad_H is diagonal, as

$$Ad_H H = 0, \quad Ad_H E^{\pm} = \pm 2E^{\pm}.$$
 (2.10)

For [REASONS], this means that for any finite dimensional representation R, R(H) is also diagonalisable.

Proposition 2.2

Let $R : \mathfrak{su}(2) \to GL(V)$ be a finite dimensional *irreducible* representation. Then for any eigenvalue v of R(H), the set

$$\{R(E^{\pm})^n v \neq 0 : n \in \mathbb{Z}^+\}$$

forms an eigenbasis of V with respect to R(H).

Proof. Firstly, we will show that, if $R(H)v = \lambda v$, the non-zero vectors $R(E^{\pm})^n v$ are indeed eigenvectors of R(H). Consider

$$R(H) [R(E^{\pm})v] = R(E^{\pm}) [R(H)v] + [R(H), R(E^{\pm})] v,$$

$$= R(E^{\pm})(\lambda v) + R([H, E^{\pm}])v,$$

$$= \lambda R(E^{\pm})v \pm 2R(E^{\pm})v = (\lambda \pm 2) [R(E^{\pm})v].$$
 (2.11)

A simple inductive argument then allows us to conclude that the result holds for any nsuch that $R(E^{\pm})^n v \neq 0$.

Secondly, as the $R(E^{\pm})^n v$ have different eigenvalues with respect to R(H), they must be linearly independent. Therefore, as the representation is finite dimensional, there must be values n_+ , n_- such that

$$R(E^{\pm})^{n_{\pm}}v \neq 0, \quad R(E^{\pm})^{n_{\pm}+1}v = 0.$$
 (2.12)

Thus the set forms a basis of some subspace

$$U = \left(\bigoplus_{n=0}^{n_+} \left[R(E^+)^n v \right] \right) \oplus \left(\bigoplus_{n=1}^{n_-} \left[R(E^-)^n v \right] \right)$$
 (2.13)

of V. Our final argument is to show that this subspace is *invariant* under the representation and thus, by irreducibility, must be V itself. Clearly $R(E^+)[R(E^+)^n v] =$ $R(E^+)^{n+1} \in U$, and similar for E^- . But what about $R(E^\pm)[R(E^\mp)^n v]$? We can show that this is also an eigenvector of R(H), as

$$R(H) [R(E^{+})R(E^{-})v] = (R(E^{+})R(H) + 2R(E^{+})) R(E^{-})v,$$

$$= (\lambda - 2)R(E^{+})R(E^{-})v + 2R(E^{+})R(E^{-})v,$$
 (2.14)

$$= \lambda [R(E^{+})R(E^{-})v].$$

For the space U to be invariant, we must then have $R(E^+)R(E^-)v \propto v$, note this is not guaranteed by the vectors sharing an eigenvalue, as we have not shown/assumed R(H)to be non-degenerate. To do this, we shall take our initial eigenvector to be v_{Λ} , the **highest weight vector**, which is defined such that $n_+ = 0$, implying $n_- = Dim(U) - 1$. In this case we have

$$R(E^{+})R(E^{-})v_{\Lambda} = [R(E^{+}), R(E^{-})]v_{\Lambda},$$

= $R(H)v_{\Lambda} = \Lambda v_{\Lambda}.$ (2.15)

By induction, one can then prove that

$$R(E^+)R(E^-)v_{\Lambda-2\ell} \propto v_{\Lambda-2\ell} \tag{2.16}$$

where $v_{\Lambda-2\ell} := R(E^-)^{\ell} v_{\Lambda}$, i.e. $\Lambda - 2\ell$ is the eigenvalue of $v_{\Lambda-2\ell}$, known as the **weight**, with respect to R(H). Thus we can rewrite U, which we have now proved to be an invariant subspace, and hence V, as

$$U = V = \bigoplus_{\ell=0}^{N-1} \text{Span}\{v_{\Lambda-2\ell}\}.$$
 (2.17)

Remark. Firstly, it is worth pointing out that the component eigenspaces are known as weight spaces.

Secondly, as a corollary, we can relate Λ to the dimension of V as

2.3 Derived Representations

Definition 2.7

Conjugate representation

If R is a rep of \mathfrak{g} , then its **conjugate representation** is $\overline{R}: x \mapsto R(x)^*$. The meaning of the conjugation $R(x)^*$ is in general rather abstract. However, if we have a matrix representation of R(x), then $R(x)^*$ is simply the matrix whose entries are the typical complex scalar conjugate of the corresponding entries of R(x).

Definition 2.8

Direct sum & tensor product

Given two representations $R_{1/2}: \mathfrak{g} \to GL(V_{1/2})$, we can combine them in two different ways

1. The **direct sum** $R_1 \oplus R_2$ has a dimension $Dim(V_1) + Dim(V_2)$, and is defined by

$$[(R_1 \oplus R_2)(x)] (v_1 \oplus v_2) = (R_1(x)v_1) \oplus (R_2(x)v_2). \tag{2.18}$$

2. The **tensor product** $R_1 \otimes R_2$ had dimension $Dim(V_1)Dim(V_2)$, and is defined by

$$[(R_1 \otimes R_2)(x)] (v_1 \otimes v_2) = (R_1(x)v_1) \otimes v_2 + v_1 \otimes (R_2(x)v_2).$$
 (2.19)

Definition 2.9 *Fully reducible*

A representation is **fully reducible** if it can be written as a direct sum of finitely many *non-trivial* irreps.

Proposition 2.3

All finite number of tensor products of finite dimensional irreps of a complex simple Lie algebra are fully reducible. I.e., if $|\mathcal{R}|, |\mathcal{R}'| \in \mathbb{N}$

$$\bigotimes_{R \in \mathcal{R}} R = \bigoplus_{R' \in \mathcal{R}'} \mathfrak{M}(R')R', \tag{2.20}$$

where $\mathfrak{M}(R') \in \mathbb{Z}$ denotes the *multiplicity* of the rep R' in the decomposition.

Perhaps for any finite dimensional Hilbert space \mathcal{H} , as any operator can be written as $\mathcal{O} = \sum_{ij} c_{ij} |i\rangle\langle j|$, the conjugate operator is $\mathcal{O}^* = \sum_{ij} c_{ij}^* |i\rangle\langle j|$, where $\{|i\rangle\}_{i=1}^n$ is an orthonormal basis of \mathcal{H}

Proof Omitted.

2.4 The Clebsch-Gordan Decomposition

Generally speaking, the Clebsch-Gordan decomposition is the process by which we explicitly perform the decomposition of (2.20) for the tensor product of a pair of representations (i.e. when $|\mathcal{R}|=2$). However, we shall limit our attention to the case $\mathfrak{g}=\mathfrak{su}(2)$.

As irreps of $\mathfrak{su}(2)$ are determined up to similarity by their highest weights, we can express a decomposition generally as

$$R_{\Lambda} \otimes R_{\Lambda'} = \bigoplus_{\Lambda'' \in \mathbb{Z}^+} \mathfrak{M}_{\Lambda\Lambda'}^{\Lambda''} R_{\Lambda''}. \tag{2.21}$$

By considering eigenvalues of $R_{\Lambda}\otimes R_{\Lambda'}$, we see that the values of Λ'' for which $\mathfrak{M}\neq 0$ are those for which $\Lambda''=\lambda+\lambda'$ for some $|\lambda|\leq \Lambda, |\lambda'|\leq \Lambda'$. Thus, the highest such is $\Lambda''=\Lambda+\Lambda'$. The highest weight of $(R_{\Lambda}\otimes R_{\Lambda'})/R_{\Lambda+\Lambda'}^{-1}$ must then be $\Lambda+\Lambda'-2$. Thus, we can assume that it contains $R_{\Lambda+\Lambda'-2}$. Recall that if V_{Λ} is the rep space of R_{Λ} , then $\mathrm{Dim}(V_{\Lambda})=\Lambda+1$, thus with the first two elements of the decomposition found thus far, we have identified a $2(\Lambda+\Lambda')$ dimensional subspace. If we continue the argument to $R_{\Lambda+\Lambda'-2\ell}$ then the dimension of the partial direct sum's rep space is

$$\sum_{i=0}^{\ell} (\Lambda + \Lambda' - 2i + 1) = (\ell + 1)(\Lambda + \Lambda' - \ell + 1). \tag{2.22}$$

Using the RHS of (2.22), we see that the partial sum has the same dimension as the tensor product if $\ell=\Lambda,\Lambda'$. Note that this argument only works when each of the $R_{\Lambda-\Lambda'-2\ell}$ are distinct, thus the correct solution is the lowest of Λ and Λ' . This gives us $\Lambda-\Lambda'-2\ell=|\Lambda-\Lambda'|$ and hence

$$R_{\Lambda} \otimes R_{\Lambda'} = R_{\Lambda + \Lambda'} \oplus R_{\Lambda + \Lambda' - 2} \oplus \cdots \oplus R_{|\Lambda - \Lambda'| + 2} \oplus R_{|\Lambda - \Lambda'|}. \tag{2.23}$$

Example 2.2

The z component of an electron's spin has eigenvalues $\pm \frac{1}{2}\hbar$, thus it can be considered to form a 2 dimensional rep R_1 of $\mathfrak{su}(2)$. If we want to consider the spin eigenstates for a system containing a pair of electrons, from the Clebsch-Gordan decomposition we see that [WE GET A SINGLET (R_0) REP AND A TRIPLET (R_2)].

This is a slight abuse of notation, this 'remainder' representation is basically defined such that it satisfies $R_{\Lambda+\Lambda'} \oplus (R_{\Lambda} \otimes R_{\Lambda'})/R_{\Lambda+\Lambda'} = (R_{\Lambda} \otimes R_{\Lambda'})$

3 The Cartan Classification

In which *all possible* finite dimensional semi-simple Lie algebras are determined and classified.

3.1 The Killing Form

Definition 3.1 *Killing form*

The **Killing form** of a Lie algebra \mathfrak{g} over the field \mathbb{F} is the symmetric bilinear map $\kappa : \mathfrak{g} \times \mathfrak{g} \to \mathbb{F}$ defined by

$$\kappa(x, y) = \operatorname{Tr} \left(\operatorname{Ad}_{x} \circ \operatorname{Ad}_{y} \right). \tag{3.1}$$

The symmetry and linearity of the inner product are inherited from the cyclicity and linearity of the trace operation respectively.

Proposition 3.1

The Killing form of a Lie algebra is **invariant**, defined as the property

$$\kappa(\mathrm{Ad}_z x, y) = -\kappa(x, \mathrm{Ad}_z y),\tag{3.2}$$

i.e. Ad_z is a skew-adjoint operator $\forall z \in \mathfrak{g}$.

Proof. Basically use cyclicity and the fact that Ad is a rep of g.

Definition 3.2 *Semisimple*

A Lie algebra is **semisimple** if it has no Abelian ideals. Equivalently, a semisimple Lie algebra is a direct sum of finitely many *simple* Lie algebras.

THEOREM 3.1 (Cartan's criterion)

A finite dimensional Lie algebra is semisimple *if and only if* its Killing from is non-degenerate.

Partial Proof. We shall prove that a Lie algebra $\mathfrak g$ with an Abelian ideal $\mathfrak j$ (i.e. one that is not semisimple) has a degenerate Killing form. This is fairly easy, as we can show that $\kappa(j,x)=0 \ \forall \ j\in \mathfrak j, x\in \mathfrak g$. To do this, we prove that all eigenvalues of $\mathrm{Ad}_j\circ\mathrm{Ad}_x$ are 0. Suppose that $y\in \mathfrak g$ is an eigenvector. The fact that $\mathfrak j$ is an ideal means that

 $\operatorname{Ad}_{j}(\operatorname{Ad}_{x}y) \in \mathfrak{j}$, thus either $y \in \mathfrak{j}$ or its eigenvalue is 0. Assuming the former to be true, then $\operatorname{Ad}_{x}y \in \mathfrak{j}$. Then, as \mathfrak{j} is Abelian, we have that $\operatorname{Ad}_{j}(\operatorname{Ad}_{x}y) = 0$. Thus, again, the eigenvalue is 0. As the Killing form is the sum over the eigenvalues, it too is zero.

3.2 Complexification

Definition 3.3

Complexification

Given a basis $\{T^a\}$ of a Lie algebra \mathfrak{g} over \mathbb{R} , the **complexification** $\mathfrak{g}_{\mathbb{C}}$ of \mathfrak{g} is simply $\mathrm{Span}_{\mathbb{C}}\{T^a\}$.

Definition 3.4 *Real form*

Given a complex Lie algebra \mathfrak{g} , a real Lie algebra \mathfrak{h} is said to be a **real form** of \mathfrak{g} if its complexification is \mathfrak{g} , i.e. $\mathfrak{h}_{\mathbb{C}} = \mathfrak{g}$.

Remark. Note that, in general, a complex Lie algebra admits multiple *inequivalent* real forms. In fact, one can find real Lie algebras \mathfrak{g} such that their complexifications $\mathfrak{g}_{\mathbb{C}}$ admit real forms inequivalent to the original \mathfrak{g} .

Example 3.1

To demonstrate the above remark, consider $\mathfrak{su}(2)_{\mathbb{C}}$. As the complexification invalidates the skew-Hermitian condition, this is simply the set of 2×2 traceless complex matrices, i.e. $\mathfrak{sl}(2,\mathbb{C})$. Now this also has the real form $\mathfrak{sl}(2,\mathbb{R})$, the set of traceless real matrices, which is inequivalent to $\mathfrak{su}(2)$.

Definition 3.5 *Compact type*

A real Lie algebra is of **compact type** if its Killing form is negative definite, i.e. $\kappa(x,x) < 0, \ \forall \ x \in \mathfrak{g}$.

Remark. Whilst we shall not prove it here, the reason for this name is that if a Lie group is topologically compact, then its associated Lie algebra will always be of compact type.

THEOREM 3.2

Every complex, semisimple, finite-dimensional Lie algebra has a real form of compact type.

3.3 The Cartan-Weyl Basis

Definition 3.6

Ad-diagonalisable

An element $x \in \mathfrak{g}$ is **ad-diagonalisable** if Ad_x is diagonalisable.

Definition 3.7

Cartan subalgebra

A Cartan subalgebra (abbreviated CSA) \mathfrak{h} is a maximal Abelian subalgebra of ad-diagonalisable elements of \mathfrak{g} . I.e. if, $\forall H, H' \in \mathfrak{h}$,

- (i) Ad_H is diagonalisable
- (ii) [H, H'] = 0
- (iii) If $x \notin \mathfrak{h}$ is ad-diagonalisable, then $\exists \tilde{H} \in \mathfrak{h}$ such that $[x, \tilde{H}] \neq 0$.

Proposition 3.2

All CSAs of a Lie algebra have the same dimension.

Proof Omitted.

Definition 3.8

Rank (Lie algebra)

The **rank** of a Lie algebra is the dimension of its CSAs.

Example 3.2

The Lie algebra $\mathfrak{su}(2)_{\mathbb C}$ has rank 1, as H is ad-diagonalisable, but E^\pm are not, thus $\mathfrak{h}=\mathrm{Span}_{\mathbb C}\{H\}.$

In general, we can define a CSA of $\mathfrak{su}(n)_{\mathbb{C}}$ as $\mathfrak{h}=\mathrm{Span}\{H^i\}_{i=1}^r$, where

$$(H^i)_{ab} = \delta_{ai}\delta_{bi} - \delta_{a(i+1)}\delta_{b(i+1)}. \tag{3.3}$$

From this it follows that r = n - 1 is the rank of $\mathfrak{su}(n)_{\mathbb{C}}$.

Remark. As \mathfrak{h} is Abelian, $[\mathrm{Ad}_H, \mathrm{Ad}_{H'}] = 0$, $\forall H, H' \in \mathfrak{h}$. Thus, we can find a basis of \mathfrak{g} which is an eigenbasis of *all* Ad_H simultaneously. Naturally the intersubsection of the kernels of these maps is \mathfrak{h} itself, as this is just a restatement of the maximality condition.

Definition 3.9

Step operators, roots & the root set

Eigenvectors outside of \mathfrak{h} are known as **step operators**. The are denoted E^{α} , where α is a linear functional on \mathfrak{h} , called a **root**, such that

$$Ad_H E^{\alpha} = \alpha(H) E^{\alpha}. \tag{3.4}$$

In words, the root encodes the eigenvalues of E^{α} for all Ad_H , $H \in \mathfrak{h}$. The collection of all such roots is Φ , the **root set** of \mathfrak{h} .

Example 3.3

[DO EXAMPLE OF $\mathfrak{su}(2)_{\mathbb{C}}$ USING ABOVE BASIS OF CSA]

Definition 3.10

Cartan-Weyl basis

The Cartan-Weyl basis for a Lie algebra g is the basis given by

$$\mathcal{B}(\mathfrak{g}) = \{H_i\}_{i=1}^r \cup \{E^\alpha\}_{\alpha \in \Phi},\tag{3.5}$$

such that $\{H_i\}$ spans a Cartan subalgebra $\mathfrak{h} \in \mathfrak{g}$ with root set Φ .

Remark. The Lie algebra can then be expressed in this basis as

$$[H, H'] = 0, \forall H, H' \in \mathfrak{h}, \tag{3.6a}$$

$$[H, E^{\alpha}] = \alpha(H)E^{\alpha}, \, \forall \, H \in \mathfrak{h}, \, \alpha \in \Phi, \tag{3.6b}$$

$$[E^{\alpha}, E^{\beta}] = \begin{cases} N_{\alpha\beta} E^{\alpha+\beta} & \text{If } \alpha + \beta \in \Phi, \\ 0 & \text{If } \alpha + \beta \neq 0, \notin \Phi. \end{cases}$$
(3.6c)

The first two of these are easy enough to see. For (3.6c), consider the following application of the Jacobi identity

$$[H, [E^{\alpha}, E^{\beta}]] = -[E^{\alpha}, [E^{\beta}, H]] - [E^{\beta}, [H, E^{\alpha}]],$$

= $(\alpha(H) + \beta(H))[E^{\alpha}, E^{\beta}].$ (3.7)

Thus, if the RHS does not vanish, $[E^{\alpha}, E^{\beta}]$ is another step operator of \mathfrak{g} with root $\alpha + \beta$. We shall return to the case $\beta = -\alpha$ later.

Proposition 3.3

(Some facts step operators and the Killing form)

- (i) $\kappa(H, E^{\alpha}) = 0, \forall H \in \mathfrak{h}, \alpha \in \Phi$
- (ii) $\kappa(E^{\alpha}, E^{\beta}) = 0, \ \forall \ \alpha \neq -\beta$ (iii) $\forall H \in \mathfrak{h}, \ \exists H' \in \mathfrak{h} \ \text{s.t.} \ \kappa(H, H') \neq 0$
- (iv) $\forall \alpha \in \Phi, -\alpha \in \Phi, \text{ and } \kappa(E^{\alpha}, E^{-\alpha}) \neq 0.$
- (i) *Proof.* Recall that $\forall \alpha \in \Phi, \exists H' \in \mathfrak{h}$ such that $\alpha(H') \neq 0$, thus

$$\kappa (H, \alpha(H')E^{\alpha}) = \kappa (H, \operatorname{Ad}_{H'}E^{\alpha}) = -\kappa (\operatorname{Ad}_{H'}H, E^{\alpha}) = 0$$
 (3.8)

$$\Rightarrow \kappa(H, E^{\alpha}) = 0$$

(ii) *Proof.* As before, we multiply the expression by $\alpha(H')$ for some $H' \in \mathfrak{h}$ to get

$$\kappa \left(\alpha(H') E^{\alpha}, E^{\beta} \right) = \kappa \left(\operatorname{Ad}_{H'} E^{\alpha}, E^{\beta} \right)
= \kappa \left(E^{\alpha}, -\operatorname{Ad}_{H'} E^{\beta} \right) = -\beta(H') \kappa(E^{\alpha}, E^{\beta}).$$
(3.9)

Thus, $(\alpha(H') + \beta(H')) \kappa(E^{\alpha}, E^{\beta}) = 0$. As our choice of H' was arbitrary, this can only hold $\forall H' \in \mathfrak{h}$ if either $\alpha = -\beta$, or the desired equation is satisfied.

- (iii) *Proof.* This is merely a consequence of (i) and the fact that κ is non-degenerate.
- (iv) Proof. Again, this is just a consequence of (i), (ii) and the non-degeneracy of κ.

Remark. As, by definition, the adjoint operators of the CSA share eigenvalues, the restriction $\kappa|_{\mathfrak{h}\times\mathfrak{h}}$ has a particularly nice form. Using the fact that a trace is a sum over eigenvalues, we have that

$$\kappa(H, H') = \sum_{\delta \in \Phi} \delta(H)\delta(H'). \tag{3.10}$$

Remark. Note that (i) implies that $\kappa|_{\mathfrak{h}\times\mathfrak{h}}$ is non-degenerate, thus it induces an isomorphism

$$\hat{\kappa}: \mathfrak{h} \to \mathfrak{h}^*, H \mapsto (H' \mapsto \kappa(H, H')).$$
(3.11)

Moreover, we can use the *inverse* of this isomorphism to map $\alpha \in \Phi \subset \mathfrak{h}^*$ to unique elements of \mathfrak{h} . Thus we can define H^{α} such that

$$\kappa(H^{\alpha}, H) = \alpha(H). \tag{3.12}$$

We then use this map to define an inner product on Φ as

$$(\alpha, \beta) := \kappa(H^{\alpha}, H^{\beta}) = \beta(H^{\alpha}) = \alpha(H^{\beta}). \tag{3.13}$$

We can also rewrite this inner product using (3.10) as

$$(\alpha, \beta) = \sum_{\delta \in \Phi} (\delta, \alpha)(\delta, \beta). \tag{3.14}$$

Recall that earlier we wished to compute $[E^{\alpha}, E^{-\alpha}]$. From (3.7), we know that the result, should it be non-zero, commutes with all $H \in \mathfrak{h}$. Furthermore, observe that

$$\kappa([E^{\alpha}, E^{-\alpha}], H) = -\kappa(E^{-\alpha}, [E^{\alpha}, H]) = \alpha(H)\kappa(E^{\alpha}, E^{-\alpha}). \tag{3.15}$$

From property (iv), we know that $\kappa(E^{\alpha}, E^{-\alpha}) \neq 0$, thus we can divide throught to see that

$$\kappa\left(\frac{[E^{\alpha}, E^{-\alpha}]}{\kappa(E^{\alpha}, E^{-\alpha})}, H\right) = \alpha(H), \quad \forall H \in \mathfrak{h}.$$
(3.16)

thus $[E^{\alpha}, E^{-\alpha}] = H^{\alpha} \kappa(E^{\alpha}, E^{-\alpha}).$

Definition 3.11

We can rescale E^{α} and H^{α} to

$$e^{\alpha} := \sqrt{\frac{2}{(\alpha, \alpha)\kappa(E^{\alpha}, E^{-\alpha})}} E^{\alpha},$$
 (3.17a)

$$h^{\alpha} := \frac{2}{(\alpha, \alpha)} H^{\alpha}. \tag{3.17b}$$

Remark. These new vectors satisfy the brackets

$$[h^{\alpha}, h^{\beta}] = 0, \tag{3.18a}$$

$$[h^{\alpha}, e^{\beta}] = \frac{2(\alpha, \beta)}{(\alpha, \alpha)},\tag{3.18b}$$

$$[e^{\alpha}, e^{\beta}] = \begin{cases} n_{\alpha\beta}e^{\alpha+\beta} & \text{If } \alpha + \beta \in \Phi, \\ h^{\alpha} & \text{If } \alpha + \beta = 0, \\ 0 & \text{Else.} \end{cases}$$
 (3.18c)

Definition 3.12 $\mathfrak{sl}(2)_{\alpha}$ *Subalgebra*

Using the definitions of h^{α} , $e^{\pm \alpha}$ above, the $\mathfrak{sl}(2)_{\alpha}$ subalgebra of \mathfrak{g} is defined as $\mathrm{Span}_{\mathbb{C}}\{h^{\alpha},e^{+\alpha},e^{-\alpha}\}$, which is naturally isomorphic to $\mathfrak{sl}(2;\mathbb{C})$.

3.4 Root Strings

Definition 3.13 Root strings

Let $\alpha, \beta \in \Phi$. The α -string passing through β is the set of roots

$$S_{\alpha,\beta} := \{ \beta + n\alpha : n \in \mathbb{Z}, \beta + n\alpha \in \Phi \}. \tag{3.19}$$

Associated to the root string is the vector subspace of g

$$V_{\alpha,\beta} := \operatorname{Span}_{\mathbb{C}} \{ e^{\gamma} : \gamma \in S_{\alpha,\beta} \}. \tag{3.20}$$

Remark. One can fairly easily show that $V_{\alpha,\beta}$ is an invariant space of the adjoint representation of $\mathfrak{sl}(2)_{\alpha}$, and thus is itself a representation. From (3.18), we see that the weights of this rep are

$$\Lambda_{\alpha,\beta} = \left\{ \frac{2(\alpha,\gamma)}{\alpha,\alpha} : \gamma \in S_{\alpha,\beta} \right\}. \tag{3.21}$$

Using the general form of γ , we see these weights are actually

$$\frac{2(\alpha,\beta)}{(\alpha,\alpha)} + 2n,\tag{3.22}$$

where the valid values of n must fall between two finite values n_- and n_+ . From here, we can employ our knowledge of $\mathfrak{su}(2)$ rep theory to declare that

$$\Lambda_{\alpha,\beta} = \{\Lambda, \Lambda - 2, \cdots, -\Lambda + 2, -\Lambda\},\tag{3.23}$$

for some $\Lambda \in \mathbb{Z}$. Comparing these two definitions we see

$$\Lambda = \frac{2(\alpha, \beta)}{(\alpha, \alpha)} + 2n_+, \quad -\Lambda = \frac{2(\alpha, \beta)}{(\alpha, \alpha)} + 2n_-. \tag{3.24}$$

Adding these together, we arrive at the important result

$$R_{\alpha,\beta} := \frac{2(\alpha,\beta)}{(\alpha,\alpha)} = -(n_+ + n_-) \in \mathbb{Z}. \tag{3.25}$$

Substituting $(\alpha, \beta) = \frac{1}{2}(\alpha, \alpha)R_{\alpha, \beta}$ into (3.14), we see that

$$(\alpha, \beta) = \frac{1}{4}(\alpha, \alpha)(\beta, \beta) \sum_{\delta \in \Phi} R_{\alpha, \delta} R_{\beta, \delta},$$

$$= \frac{1}{2}(\alpha, \alpha) \frac{(\alpha, \beta)}{R_{\beta, \alpha}} \sum_{\delta \in \Phi} R_{\alpha, \delta} R_{\beta, \delta}.$$
(3.26)

Thus

$$(\alpha, \alpha) = \frac{2R_{\beta, \alpha}}{\sum_{\delta \in \Phi} R_{\alpha, \delta} R_{\beta, \delta}} \in \mathbb{Q}.$$
 (3.27)

Meaning that the inner product between any two roots is not only real, but rational!

3.5 The Real Geometry of Roots

Proposition 3.4

The root set Φ spans \mathfrak{h}^*

Proof. Recall that the non-degeneracy of κ means that $\forall \lambda \in \mathfrak{h}, \exists H_{\lambda} \in \mathfrak{h}$ such that

$$\kappa(H_{\lambda}, H) = \lambda(H), \quad \forall H \in \mathfrak{h}.$$
(3.28)

Well, using (3.10), we can write this inner product as

$$\lambda(H) = \sum_{\delta \in \Phi} \delta(H_{\lambda})\delta(H), \quad \forall H \in \mathfrak{h}.$$
 (3.29)

Thus
$$\lambda = \sum_{\delta \in \Phi} \delta(H_{\lambda}) \, \delta \Rightarrow \lambda \in \operatorname{Span}_{\mathbb{C}} \Phi.$$

Proposition 3.5

Let $\{\alpha_{(i)}\}_{i=1}^r \subset \Phi$ be any set of linearly independent roots, then $\Phi \subset \operatorname{Span}_{\mathbb{R}}\{\alpha_{(i)}\} =: \mathfrak{h}_{\mathbb{R}}$.

Proof. As $\operatorname{Span}_{\mathbb{C}}\{\alpha_{(i)}\}=\mathfrak{h}^*\supset\Phi$, we know that $\beta=\sum_i\beta^i\alpha_{(i)}$ for some potentially complex coefficients β . However, taking the inner product of each side with another $\alpha_{(i)}$, we see that

$$(\beta, \alpha_{(j)}) = \sum_{i=1}^{r} \beta^{i}(\alpha_{(i)}, \alpha_{(j)}),$$

$$\Rightarrow \beta^{i} = \sum_{j} \Delta_{ij}^{-1}(\beta, \alpha_{(j)}),$$
(3.30)

where $\Delta_{ij} := (\alpha_{(i)}, \alpha_{(j)})$ is a matrix that is invertible by the non-degeneracy of κ . From the 'important result', we deduced that all inner products between roots are real. Hence the RHS, and β^i are real.

Proposition 3.6

Let $\mathfrak{h}_\mathbb{R}$ be as before, then the map $(\cdot,\cdot):\mathfrak{h}_\mathbb{R}\times\mathfrak{h}_\mathbb{R}\to\mathbb{R}$ is a Euclidean inner product.

Proof. Using (3.14) for $\alpha = \beta$ we have

$$(\alpha, \alpha) = \sum_{\delta \in \Phi} (\delta, \alpha)(\delta, \alpha) = \sum_{\delta \in \Phi} [(\delta, \alpha)]^2.$$
 (3.31)

As (δ, α) is real, this sum is always greater than or equal to zero, with equality iff $(\delta, \alpha) = 0 \,\forall \, \delta \in \Phi$. However, the fact that Φ is in the real span of $\{\alpha_{(i)}\}$ means that this can only occur when $\alpha = 0$.

Remark. The significance of this result is that it allows us to define a norm on $\mathfrak{h}_{\mathbb{R}}$, $|\alpha| = \sqrt{(\alpha, \alpha)}$, as well as apply the Cauchy-Schwarz inequality to define an angle φ between roots such that $(\alpha, \beta) = |\alpha| |\beta| \cos \varphi$. Moreover, returning to our integer $R_{\alpha,\beta}$ we now have

$$R_{\alpha,\beta} = 2\frac{|\beta|}{|\alpha|}\cos\varphi, \quad R_{\beta,\alpha} = 2\frac{|\alpha|}{|\beta|}\cos\varphi.$$
 (3.32)

Multiplying these results in

$$4\cos^2\varphi = R_{\alpha,\beta}R_{\beta,\alpha} \Rightarrow \cos\varphi = \pm\frac{\sqrt{n}}{2},\tag{3.33}$$

where $n \in \mathbb{N} \cap [0, 4] = \{0, 1, 2, 3, 4\}$. This restricts the possible angles to only

$$\varphi = \begin{cases} 0 & \text{If } \alpha = \beta, \\ \pi & \text{If } \alpha + \beta = 0, \\ \frac{\pi}{2} & \text{If } (\alpha, \beta) = 0, \\ \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3} & \text{If } (\alpha, \beta) > 0, \\ \frac{5\pi}{6}, \frac{3\pi}{4}, \frac{2\pi}{3} & \text{If } (\alpha, \beta) < 0. \end{cases}$$
(3.34)

3.6 Simple Roots

Remark. As $\alpha \in \Phi \Rightarrow -\alpha \in \Phi$, we can split our root system in half. By considering an arbitrary hyperplane of $\mathfrak{h}_{\mathbb{R}}^*$, we can label the roots as either 'positive' or 'negative', depending on which side of the hyperplane they fall on. We shall label each half of the root system under such a cut as Φ_{\pm} accordingly.

Definition 3.14 Simple Root

A **simple root** is a positive root which cannot be expressed as the sum of two other positive roots, i.e. it is an irreducible of the monoid Φ_+ .

Proposition 3.7

(Properties of Simple Roots)

Let $\alpha, \beta \in \Phi$ be simple roots, then:

- (i) $(\alpha \beta) \notin \Phi$
- (ii) The α -string through β has length

$$\ell_{\alpha,\beta} = 1 - 2\frac{(\alpha,\beta)}{(\alpha,\alpha)} \tag{3.35}$$

- (iii) $(\alpha, \beta) \leq 0$.
- (iv) Any positive root can be written as a linear combination of simple roots with *integer* coefficients, thus the simple roots span $\mathfrak{h}_{\mathbb{R}}^*$

Proof.

- (i) $\alpha = (\alpha \beta) + \beta$, thus if $(\alpha \beta) \in \Phi_+$, then α is not simple. If $(\alpha \beta) \in \Phi_-$, then $(\beta \alpha) \in \Phi_+ \Rightarrow \beta = (\beta \alpha) + \alpha$ thus β is not simple. As both α and β are simple, $(\alpha \beta) \notin \Phi_- \cup \Phi_+ = \Phi$
- (ii) Consider the root string

$$S_{\alpha,\beta} := \{ \beta + n\alpha : n \in \mathbb{Z}, \beta + n\alpha \in \Phi \}. \tag{3.36}$$

The first result tells us that we cannot have n = -1, thus $n_{-} = 0$, from (3.25) that

$$n_{+} = -2\frac{(\alpha, \beta)}{(\alpha, \alpha)}. (3.37)$$

The desired result is then obtained as $\ell_{\alpha,\beta} = n_+ - n_- + 1$.

- (iii) This result follows from the previous result, and the fact that $n_+ \ge 0$.
- (iv) Select a root $\beta \in \Phi_+$, if it is simple, we are done. If not, then $\exists \beta_1, \beta_2 \in \Phi_+$ such that $\beta = \beta_1 + \beta_2$. For any of these roots which are not simple, repeat this step. When(/if) this process terminates, we will have expressed β as an integer sum of simple roots.

Proposition 3.8

Simple roots are linearly independent in $\mathfrak{h}_{\mathbb{R}}^*.$

Proof. Let $\lambda \in \mathfrak{h}_{\mathbb{R}}^*$ be some linear combination of simple roots $\{\alpha_{(i)}\}$. We can split this combination depending on whether the coefficients are positive or negative

$$\lambda = \sum_{c_i > 0} c_i \alpha_{(i)} + \sum_{c_i < 0} c_i \alpha_{(i)} =: \lambda_+ - \lambda_-.$$
 (3.38)

Consider now the norm of λ

$$(\lambda, \lambda) = \underbrace{(\lambda_+, \lambda_+) + (\lambda_-, \lambda_-)}_{>0} - 2(\lambda_+, \lambda_-). \tag{3.39}$$

We can show that this must be *strictly* greater than zero, thus proving that λ cannot vanish and the $\alpha_{(i)}$ are linearly independent. Looking at the final term, we have

$$-2(\lambda_+, \lambda_-) = 2 \sum_{c_i > 0} \sum_{c_j < 0} \underbrace{c_i c_j}_{i \neq j \Rightarrow < 0} \underbrace{(\alpha_{(i)}, \alpha_{(j)})}_{i \neq j \Rightarrow < 0} > 0.$$

$$(3.40)$$

Remark. As the simple roots also span Φ , this means that they must form a **basis** of $\mathfrak{h}_{\mathbb{R}}^*$, thus there are exactly r simple roots.

Definition 3.15

The **Cartan** matrix is more a list of integers, and is defined for a set of simple roots $\Phi_S = \{\alpha_{(i)}\}$ as

$$A^{ij} := 2 \frac{\left(\alpha_{(i)}, \alpha_{(j)}\right)}{\left(\alpha_{(j)}, \alpha_{(j)}\right)}.$$
(3.41)

Remark. From the simple roots we can define the 'generators' - in a sense to be explained later - $\{h^i := h^{\alpha_{(i)}}, e^i_{\pm} := e^{\pm \alpha_{(i)}}\}_{i=1}^r$, which satisfy

$$[h^i, h^j] = 0,$$
 $[h^i, e^j_{\pm}] = \pm A^{ji} e^j_{\pm},$ $[e^i_+, e^j_-] = \delta_{ij} h^i.$ (3.42)

There is one more result we can obtain, using the rep. theory of $\mathfrak{sl}(2)_{\alpha_{(i)}}$. Specifically, we look at the representation obtained from the adjoint map acting on e^j_{\pm} . From result (ii) of Proposition 3.7, we know that the length of the $\alpha_{(i)}$ string through $\alpha_{(j)}$ terminates

at $n_+ = -A^{ji}$. This gives us the maximum value of n for which $(Ad_{e_{\pm}^i})^n e_{\pm}^j \neq 0$, as $n \leq n_+ \Rightarrow \alpha_{(j)} + n\alpha_{(i)} \in S_{ij} \Rightarrow (\mathrm{Ad}_{e^i_+})^n e^j_\pm = e^{\pm(\alpha_{(j)} + n\alpha_{(i)})}$. Thus we know that

$$\left(Ad_{e_{\pm}^{i}}\right)^{(1-A^{ji})}e_{\pm}^{j}=0. \tag{3.43}$$

The equations (3.42) and (3.43) together form the Chevalley-Serre relations. Note that the idiosyncrasies of these relations for a particular Lie algebra are encoded entirely within the Cartan matrix

THEOREM 3.3

(Cartan Classification - Partial Statement)

A finite dimensional, simple, complex Lie algebra is determined up to isomorphism by its Cartan matrix.

Proposition 3.9

(Constraints on the Cartan Matrix)

- (0) $A^{ji} \in \mathbb{Z}$,
- $\begin{array}{ll} \text{(i)} & A^{ii}=2,\\ \text{(ii)} & A^{ij}=0 \Leftrightarrow A^{ji}=0,\\ \text{(iii)} & A^{ij}<0\,\forall\,i\neq j, \end{array}$
- (iv) A = DS for some diagonal matrix D and some positive definite matrix S

Proof. Properties (0) through to (iii) follow immediately from (3.41). To prove (iv), note that A can be decomposed as $A^{ij} = \sum_{k=1}^{r} D_{ik} S_{kj}$, where

$$D_{ik} := \frac{2\delta_{ik}}{(r_i, r_j)}, \qquad S_{kj} := (r_i, r_j). \tag{3.44}$$

From Proposition 3.6 we know that (\cdot, \cdot) is a Euclidean inner product, thus each entry on the diagonal of D is positive, and S is positive definite.

Remark. For the derived Lie algebra to be simple(?) we further impose that A cannot be expressed as $A^{(1)} \oplus A^{(2)}$ where $A^{(i)}$ are themselves Cartan matrices, if this is the case, we say that A is **reducible**.

Proposition 3.10

For $i \neq j$, the only valid pairs of values for (A^{ij}, A^{ji}) are (order irrelevant): (0,0), (-1,-1), (-1,-2), (-1,-3).

The sign of e^i_{\pm} is assumed to be the same as that of e^j_{\pm} as otherwise (i) of 3.7 tells us that the expression vanishes

Proof. Note that (3.33) tells us that $A^{ij} \cdot A^{ji}$ is some integer between 0 and 4. However, we can discount 4, as this implies that $\varphi_{ij} = 0$ which in turn implies that $\alpha_{(i)}$ and $\alpha_{(j)}$ are colinear. Property (iii) of Proposition 3.9 tells us that each of A^{ij} , A^{ji} is a negative integer. The above four pairs are the only way to express each integer between 0 and 3 as a product of two negative integers.

3.7 Dynkin Diagrams

A Dynkin diagram is a pictorial representation of a Cartan matrix. Each *simple* root is represented by a node. The number of edges connecting the i^{th} node to the j^{th} is $\text{Max}\{|A^{ij}|,|A^{ji}|\}$, if this is greater than one then we include an arrow such that $|A^{ij}| > |A^{ji}|$ means the arrow points from the i^{th} node to the j^{th} . For example:

Example 3.4

The three possible Cartan matrices (up to permutation) have Dynkin diagrams:

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \qquad A = \begin{pmatrix} 2 & -2 \\ -1 & 2 \end{pmatrix} \qquad A = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix}$$

THEOREM 3.4

(Cartan Classification)

The only possible finite dimensional, simple, complex Lie algebras are the countable families

$$A_n: \bullet - - \bullet - - \bullet - - \bullet \longrightarrow \mathfrak{su}(n+1)_{\mathbb{C}}$$

$$1 \qquad 2 \qquad 3 \qquad n-1 \qquad n$$

$$B_n: \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \mathfrak{so}(2n+1)_{\mathbb{C}}$$
1 2 3 $n-1$ n

$$C_n$$
: $\bullet - \bullet - \bullet - \bullet - \bullet \longrightarrow \mathfrak{sp}(2n)_{\mathbb{C}}$

$$D_n: \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow n \longrightarrow \mathfrak{so}(2n)_{\mathbb{C}}$$

$$1 \qquad 2 \qquad n-2 \qquad n$$

where $n = \text{Rank}(\mathfrak{g})$, as well as the special cases

Remark.

- $A_1 \simeq B_1 \simeq C_1 \simeq D_1 \ (\Rightarrow \mathfrak{su}(2)_{\mathbb{C}} \simeq \mathfrak{so}(3)_{\mathbb{C}} \simeq \mathfrak{sp}(2)_{\mathbb{C}}),$
- $B_2 \simeq C_2 \ (\Rightarrow \mathfrak{so}(5)_{\mathbb{C}} \simeq \mathfrak{sp}(4)_{\mathbb{C}}),$
- $D_2 \simeq A_1 \oplus A_1 \ (\Rightarrow \mathfrak{so}(4)_{\mathbb{C}} \simeq \mathfrak{su}(2)_{\mathbb{C}} \oplus \mathfrak{su}(2)_{\mathbb{C}}),$
- $D_3 \simeq A_3 \ (\Rightarrow \mathfrak{so}(6)_{\mathbb{C}} \simeq \mathfrak{su}(4)_{\mathbb{C}}).$

4 Reconstructing the Lie Algebra

Given a Dynkin diagram/Cartan matrix, we immediately know about the simple roots, and also have $3 \cdot \text{Rank}(\mathfrak{g})$ generators for the Lie algebra from the Chevalley-Serre relations (3.42) and (3.43). The challenge then is to construct the rest of the root system

THEOREM 4.1

To find the positive roots Φ_+ from the simple roots Φ_s of a simple Lie algebra, it is sufficient to consider root strings of the form

$$\delta + n\alpha_{(i)},$$

where $\delta \in \Phi_+$ and $\alpha_{(i)} \in \Phi_S$.

Example 4.1

(Reconstructing $\mathfrak{su}(3)_{\mathbb{C}}$ from A_2)

Reading off from the Dynkin diagram, we see that

$$A_2 = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}. \tag{4.1}$$

Label the simple roots α and β . For both the α string through β and vice versa, $n_+=1$, thus from either we obtain a single new root $\delta=(\alpha+\beta)$. Now, the result that $n_-=0$ for simple root strings did *not* require the 'through' root to be simple, thus $n_-=0$ for both the α string through δ and the β string, and

$$\ell_{\alpha\delta} = 1 - 2\frac{(\alpha, \delta)}{(\alpha, \alpha)}$$

$$= 1 - \left(2\frac{(\alpha, \alpha)}{(\alpha, \alpha)} + 2\frac{(\alpha, \beta)}{(\alpha, \alpha)}\right)$$

$$= 1 - \left(A^{11} + A^{21}\right) = 1 - (2 + (-1)) = 0.$$
(4.2)

By symmetry, the same is true for $\ell_{\beta\delta}$. Thus, by the above theorem, we have exhausted all the possibilities for positive roots, and can write down our full root system

$$\Phi = \{\alpha, \beta, \delta = (\alpha + \beta), -\alpha, -\beta, -\delta\}. \tag{4.3}$$

From this root system, we can then write down the corresponding Cartan-Weyl basis for $\mathfrak g$

$$\mathfrak{g} = \operatorname{Span}_{\mathbb{C}}\{h^{\alpha}, h^{\beta}, e^{\pm \alpha}, e^{\pm \beta}, e^{\pm \delta}\}, \tag{4.4}$$

where the Lie brackets are given by (3.18)

Remark. From property (iv) of Proposition 3.7, we know that any positive root can be expressed as $\delta = \sum_{i=1}^{r} m_i \alpha_{(i)}$, for some integers $m_i \geq 0$. Similarly to (4.2), we can deduce that

$$\ell_{\alpha_{(j)}\delta} = 1 - \sum_{i=1}^{r} A^{ij} m_i. \tag{4.5}$$

4.1 Representations of g

Definition 4.1 Weight Space

Suppose that we have some representation of a Lie algebra $R: \mathfrak{g} \to GL(V)$ such that R(H) is diagonalisable $\forall H \in \mathfrak{h}$. Then a **weight space** is some subspace $V_{\lambda} \subset V$, indexed by a functional $\lambda \in \mathfrak{h}^*$, known as a **weight**, such that $\forall v \in V_{\lambda}$

$$R(H)v = \lambda(H)v. \tag{4.6}$$

Remark. If R is the adjoint rep of \mathfrak{g} , then the weights of the rep are just the roots of \mathfrak{g} .

Proposition 4.1

(Some Facts About Weights of Representations)

(i) Let S denote the set of weights of a representation, the representation space is then spanned by

$$V = \bigoplus_{\lambda \in S_R} V_{\lambda},\tag{4.7}$$

(ii) For a weight λ and root α , if $\lambda + \alpha$ is also a weight, then

$$R(e^{\alpha}): V_{\lambda} \to V_{\lambda+\alpha}.$$
 (4.8)

(iii) For a weight λ and root α , $v \in V_{\lambda}$

$$R(h^{\alpha})v = 2\frac{(\alpha,\lambda)}{(\alpha,\alpha)} \in \mathbb{Z}$$
 (4.9)

Proof.

(i) This is simply a consequence of the assumption that all R(H) are diagonalisable, as they share an eigenbasis which spans the vector space.

(ii) Let $v \in V_{\lambda}$, assuming $R(e^{\alpha})v \neq 0$, we have

$$R(H) [R(e^{\alpha})v] = R(e^{\alpha})R(H)v + R([H, e^{\alpha}]) v$$

$$= \lambda(H) [R(e^{\alpha})v] + \alpha(H) [R(e^{\alpha})v]$$

$$= (\lambda + \alpha)(H) [R(e^{\alpha})v].$$
(4.10)

(iii) Recall (3.13), which tells us that $\lambda(H^{\alpha}) = (\alpha, \lambda)$, this works as κ induces an isomorphism between $\mathfrak h$ and *all of* $\mathfrak h^*$, not just roots. Then the rescaling of H^{α} (3.17b) gives the desired equality. To prove that this is integral, consider the $\mathfrak{sl}(2)_{\alpha}$ subalgebra of $\mathfrak g$. Let $S_{\alpha,\lambda} \coloneqq \{\lambda + n\alpha \in S : n = \mathbb{Z}\}$, then

$$V_{\alpha} := \bigoplus_{\mu \in S_{\alpha,\lambda}} V_{\mu} \tag{4.11}$$

is a representation space of $\mathfrak{sl}(2;\mathbb{C})$ with weights $\frac{2(\alpha,\mu)}{(\alpha,\alpha)}$.³ From our representation theory of $\mathfrak{sl}(2;\mathbb{C})$ we know that these weight must be integers.

4.2 Root and Weight Lattices

Remark. There was a glaring omission in (4.7), namely, what weights does a given representation admit?

Definition 4.2 *Root/Co-root Lattice*

Given a set of simple roots Φ_S for a root system Φ , the **root lattice** is the superset of Φ defined by

$$\mathcal{L}[\mathfrak{g}] := \operatorname{Span}_{\mathbb{Z}} \Phi_{S}. \tag{4.12}$$

If we define the **co-roots** associated to Φ_S as

$$\check{\alpha}_{(i)} := \frac{2\alpha_{(i)}}{(\alpha_{(i)}, \alpha_{(i)})},\tag{4.13}$$

then the co-root lattice is

$$\check{\mathcal{L}}(\mathfrak{g}) := \operatorname{Span}_{\mathbb{Z}} \{\check{\alpha}_{(i)}\}_{i=1}^{r}. \tag{4.14}$$

For completeness, the representation is $H \mapsto R(h^{\alpha})$, $E^{\pm} \mapsto R(e^{\pm \alpha})$, note that the rescaled algebra was needed for the Lie algebra isomorphism to have the correct coefficients for the Lie brackets.

Definition 4.3

Dual Lattice & Weight Lattice

Given a vector space V with inner product (\cdot, \cdot) . The **dual** of a lattice \mathcal{L} with respect to the inner product is defined by

$$\mathcal{L}^* := \{ v \in V : (u, v) \in \mathbb{Z}, \, \forall \, u \in \mathcal{L} \}. \tag{4.15}$$

The weight lattice $\mathcal{L}_W[\mathfrak{g}]$ is the dual of the co-root lattice, explicitly

$$\mathcal{L}_{W}[\mathfrak{g}] = \left\{ \lambda \in \mathfrak{h}^* : \frac{2(\alpha_{(i)}, \lambda)}{(\alpha_{(i)}, \alpha_{(i)})} \in \mathbb{Z}, i = 1, \cdots, r \right\}$$
(4.16)

Definition 4.4

Fundamental weights

A basis of the co-root lattice $\{\check{\alpha}_{(i)}\}$ induces a basis for the weight lattice $\{\omega_{(i)}\}$ satisfying

$$(\check{\alpha}_{(i)}, \omega_{(i)}) = \delta_{ij}. \tag{4.17}$$

These are then referred to as the **fundamental weights** of g

Definition 4.5Dynkin Labels

Given a basis of fundamental weights for $\mathcal{L}_W[\mathfrak{g}]$, the coordinates of $\lambda \in \mathcal{L}_W[\mathfrak{g}]$ form a tuple (λ^i) known as the **Dynkin labels** of the weight λ .

Remark. As the simple roots form a basis of $\mathfrak{h}_{\mathbb{R}}^*$, we can express the fundamental weights as

$$\omega_{(i)} = \sum_{j=1}^{r} B_i^j \alpha_{(j)}.$$
 (4.18)

Substituting this and (4.13) into (4.17) we see that

$$\sum_{k=1}^{r} \frac{2B_j^k}{(\alpha_{(i)}, \alpha_{(i)})} (\alpha_{(i)}, \alpha_{(k)}) = \sum_{k=1}^{r} B_j^k A_{ki} = \delta_{ij}.$$
(4.19)

Thus B is the inverse of A, i.e.

$$\alpha_{(i)} = \sum_{j=1}^{r} A_i^j \omega_{(j)}.$$
 (4.20)

4.3 Highest Weight Representations

Proposition 4.2

Every finite dimensional irreducible representation $R:\mathfrak{g}\to GL(V)$ has a **highest weight** $\Lambda\in\mathcal{L}_W[\mathfrak{g}]$ with respect to some choice of Φ_+ such that, $\forall\,v\in V_\Lambda,\alpha\in\Phi_+,\,R(e^\alpha)v=0$. Further more, all other weights of the representation are of the form

$$\lambda = \Lambda - \sum_{i=1}^{r} \mu^{i} \alpha_{(i)}, \tag{4.21}$$

for some $\mu^i \in \mathbb{Z}^+$. The highest weight characterises a representation uniquely up to isomorphism.

Proof (partial). The argument works similarly to that of the special case $\mathfrak{su}(2)_{\mathbb{C}}$. Let Λ be any weight of R. If $R(e^{\alpha}):V_{\Lambda}\to\{0\}\,\forall\,\alpha\in\Phi_+$, then we are done. If not, then we can find some $\alpha\in\Phi_+$ such that $\Lambda+\alpha$ is a root. Relabel this to be our new Λ . We can repeat this process only finitely many times, as each weight space is linearly independent of the rest - by the same argument as for $\mathfrak{su}(2)_{\mathbb{C}}$ - and by hypothesis the rep space is finite dimensional. To prove (4.21), we rely on the fact that V is irreducible. Recall that if $\Lambda-\alpha$ is a weight, then $R(e^{-\alpha}):V_{\Lambda}\to V_{\Lambda-\alpha}$. By acting on V_{Λ} by arbitrarily many step operators, we obtain a set of weights $\tilde{S}_R=\{\Lambda-\sum_i\mu^i\alpha_{(i)}\in S_R:\mu^i\in\mathbb{Z}\}$. We need only use simple roots as $\Phi\subset\mathcal{L}[\mathfrak{g}]$. As this is an invariant subspace, and R is irreducible, U=V, and $\tilde{S}_R=S_R$. Finally, that the integers μ^i must be positive follows from the definition of Λ , as if we have some $\mu^j<0$, then $\Lambda+\mu^j\alpha_{(j)}$ is a weight, which contradicts the selection of Λ to be the highest weight.

Remark. What is missing from this proof some sort of convexity argument, that $\lambda - n\alpha_{(i)} \in S_R \Rightarrow \lambda - m\alpha_{(i)} \, \forall \, 0 < m < n$.

Proposition 4.3

If $\lambda = \sum_i \lambda^i \omega_{(i)} \in S_R$, then $\lambda - \sum_i m^i \alpha_{(i)} \in S_R \, \forall \, m^i \in \{0, 1, \cdots, \lambda^i\}$. In words, the Dynkin labels of a weight λ tell us how many times the corresponding *root* can be subtracted from that weight. Thus, if a weight has no positive roots, this result cannot be applied.

Example 4.2

(Representation Theory of A_2)

As this is a rank 2 Lie algebra, each weight has 2 Dynkin labels. Let the highest weight of a rep R be $\Lambda \leadsto (\Lambda_1, \Lambda_2)$. It helps to note that the Dynkin labels of the simple roots are $\alpha_{(1)} \leadsto (2, -1), \alpha_{(2)} \leadsto (-1, 2)$. Thus, $\lambda = \Lambda - \sum_i \mu^i \alpha_{(i)}$ has Dynkin labels

$$(\lambda_1, \lambda_2) = (\Lambda_1 - 2\mu^1 + \mu^2, \Lambda_2 + \mu^1 - 2\mu^2). \tag{4.22}$$

The complete set of weights is then obtained through an application of the above proposition. Say we choose $\Lambda=(2,1)$, then we immediately have two 'strings' of weights, of length 2 and 1 respectively. By considering all the strings possible through these new weights, we can continue to obtain the full set of weights:

Note: if you ever need to do this in an exam, it is sufficient to draw the lattice orthogonally, e.g. left for $\alpha_{(2)}$, down for $\alpha_{(1)}$. The result should be something like:

$$-\alpha_{(2)} \leadsto (1, -2) \qquad (3, -1) \longleftarrow (2, 1)$$

$$-\alpha_{(1)} \leadsto (-2, 1) \qquad (1, 0) \longleftarrow (0, 2)$$

$$(1, -3) \longleftarrow (0, -1) \longleftarrow (-1, 1) \longleftarrow (-2, 3)$$

$$\downarrow \qquad \qquad \downarrow$$

$$(-1, -2) \longleftarrow (-2, 0) \longleftarrow (-3, 2)$$

5 Symmetries in Quantum Mechanics

Remark. Traditionally, in quantum mechanics, the Hilbert space of quantum states is decomposed into a direct sum of eigenspaces of the Hamiltonian

$$\mathcal{H} = \bigoplus_{n \ge 0} \mathcal{H}_n,\tag{5.1}$$

where $|n\rangle \in \mathcal{H}_n \Rightarrow \hat{H}|n\rangle = E_n|n\rangle$.

Definition 5.1

Symmetry Transformation

A symmetry transformation of a quantum system is an automorphism \hat{U} on its Hilbert space \mathcal{H} such that $\hat{U}\hat{H}\hat{U}^{\dagger}=\hat{H}$.

Definition 5.2 *Conserved Quantity*

A conserved quantity is an observable $\hat{I} = \hat{I}^{\dagger}$ such that $[\hat{I}, \hat{H}] = 0$.

Remark. If \hat{I} commutes with \hat{H} , then so too does $e^{\alpha \hat{I}} \, \forall \, \alpha \in \mathbb{C}$. Further, if \hat{I} is Hermitian, then $e^{is\hat{I}}$ is unitary $\forall \, s \in \mathbb{R}$. Thus, if \hat{I} is a conserved quantity, then it generates a family of symmetry transformations $e^{is\hat{I}}$. This is essentially a quantum Noether's theorem.

Given a maximal set of linearly independent conserved quantities $\{\hat{I}^a\}_{a=1}^d$, then $\mathfrak{g} := \operatorname{Span}_{\mathbb{R}} \{\hat{I}^a\}_{a=1}^d$ forms a real Lie algebra, where the Lie bracket is given by commutation of the observables. The group G formed by exponentiating \mathfrak{g} leaves each \mathcal{H}_n invariant, due to all of the operators commuting with \hat{H} . For reasons I cannot justify, for each n, we can construct a representation of $R:\mathfrak{g}\to GL(\mathcal{H}_n)$ such that R(x) is skew-Hermitian $\forall\,x\in\mathfrak{g}$. It may have something to do with the fact that the exponential map gives unitary operators.

Here we tacitly define an isomorphism between Hilbert spaces to be a map which preserves addition (i.e. is linear) and the inner product. Thus an *auto*morphism is a unitary operator.