

**Dr. Nick Feamster** Associate Professor

# Software Defined Networking

In this course, you will learn about software defined networking and how it is changing the way communications networks are managed, maintained, and secured.



# **This Lesson: Slicing Network Control**

- Overview of "network slicing"
  - What is slicing?
  - Why slice the network?
  - Flowspace and slicing policies
- FlowVisor: Virtualizing SDN Control
- Applications



#### **Current Network Devices**

Control Plane

- Computes forwarding rules
  - "128.8.128/16 --> port 6"
- Pushes rules down to data plane





Control/Data Protocol



Data Plane

- Enforces forwarding rules
- Exceptions pushed back to control plane





# Add a Slicing Layer Between Planes





# **Network Slicing**

- Divide the production network into logical slices
  - each slice controls its own packet forwarding
  - users pick which slice controls their traffic
  - existing production services run in own slice
- Enforce strong isolation between slices
  - actions in one slice do not affect another
- Each slice can mirror a production network
  - Production
  - Testing
  - Research



# Why Slice the Network?

- Multiple administrative groups
  - Different departments on a campus
- Multiple customers
  - Tenants in a shared data center
  - Researchers on a shared infrastructure
- Experiments vs. operational network
  - Support research without breaking real services
- Expanding a network's footprint
  - Lease components in another carrier's network
- Multiple services or applications in one domain

# Slicing: Forwarding and Policy

- Data plane unmodified (no performance penalty)
- Policy: Specifies resource limits for each slice
  - Link bandwidth
  - Maximum number of forwarding rules
  - Topology
  - Fraction of switch/router CPU



# Flow Space: Which Packets Does the Slice Control?





# One Example: FlowVisor

- FlowVisor: An OpenFlow controller that acts as a transparent proxy between OpenFlow switches and multiple OpenFlow controllers.
  - Slices: any combination of switch ports (layer 1), src/dst ethernet address or type (layer 2), src/dst IP address or type (layer 3), and src/dst TCP/UDP port or ICMP code/type (layer 4).
- Enforces isolation between each slice.



# FlowVisor on OpenFlow

Policy Check: Is this rule allowed? OpenFlow OpenFlow OpenFlow Controller Controller Controller OpenFlow 1 FlowVisor **OpenFlow OpenFlow Firmware** Data Path

Policy Check: Who controls this packet?



# **Examples: Ways to Slice the Network**

- By switch port
  - Basically the same functionality as VLANs
- By application (TCP port)
  - Would require some more complicated access control lists
  - Dynamism possibly a bit more difficult without SDN



# **Application: Testing**

 Connect fully operational networks that "mirror" the existing production topology

More realistic evaluation and testing

 Same control software can be "migrated" to production



# **Application: Home Networks / IoT**



- Multiple service providers on a sliced home network
- Access network owner gives a slice of the last mile to the user, rents another one to utility company, etc.



# **Summary**

- Slicing the SDN control plane allows for
  - Multiple administrative entities
  - Pre-production testing (operations or research)
  - Sharing between multiple tenants
- Slicing can be done by switch port, or any part of "flow space"
- FlowVisor is one example of slicing SDN control