Prova tipo A

P2 de Álgebra Linear I – 2011.2

8 de Outubro de 2011.

Nome:	Matrícula:
Assinatura:	Turma:

Preencha CORRETA e COMPLETAMENTE todos os campos (nome, matrícula, assinatura e turma).

Provas sem nome não serão corrigidas e terão nota <u>ZERO</u>. Provas com os campos matrícula, assinatura e turma não preenchidos ou preenchidos de forma errada serão penalizadas com a perda de 1 ponto por campo.

Duração: 1 hora 50 minutos

\mathbf{Q}	1.a	1.b	1.c	1.d	2.a	2.b	2.c	3.a	3.b	3.c	4	soma
\mathbf{V}	1.0	0.5	1.0	1.0	1.0	1.0	1.0	0.5	0.5	1.0	1.5	10.0
N												

Instruções – leia atentamente

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- O desenvolvimento de cada questão deve estar a seguir **Resposta**. Desenvolvimentos fora do lugar (p. ex. no meio dos enunciados, nas margens, etc) não serão corrigidos!!.
- Escreva de forma clara e legível. Justifique de forma <u>ordenada</u> e <u>cuidadosa</u> suas respostas. Respostas sem justificativa não serão consideradas.

Observação

justificar: Legitimar. Dar razão a. Provar a boa razão do seu procedimento. cuidado: Atenção, cautela, desvelo, zelo. cuidadoso: Quem tem ou denota cuidado. fonte: mini-Aurélio

1) Considere o subespaço vetorial \mathbb{W} de \mathbb{R}^3 de equação cartesiana

$$W: x + 2y - 3z = 0$$

e o conjunto de vetores \mathcal{V} de \mathbb{W} ,

$$\mathcal{V} = \{(4,1,2), (0,3,2), (3,0,1), (1,1,1), (2,-1,0), (1,4,3)\}.$$

- (a) Determine uma base β de \mathbb{W} tal que as coordenadas do vetor $\overrightarrow{u} = (1,1,1)$ na base β sejam $(\overrightarrow{u})_{\beta} = (1,1)$.
- (b) Determine uma base γ de \mathbb{W} formada por vetores do conjunto \mathcal{V} tal que as coordenadas do vetor $\overrightarrow{u} = (1, 1, 1)$ na base γ sejam $(\overrightarrow{u})_{\gamma} = (0, 1)$.
- (c) Determine uma base ortonormal $\eta = \{\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3\}$ de \mathbb{R}^3 tal que \overrightarrow{v}_1 seja paralelo a (1, 1, 1) e $\xi = \{\overrightarrow{v}_1, \overrightarrow{v}_2\}$ seja uma base de \mathbb{W} .
- (d) Considere o vetor $\overrightarrow{u} = (1, 1, 1)$ e a base

$$\alpha = \{(1,1,0), (0,1,1), (1,0,1)\}$$

de \mathbb{R}^3 . Determine as coordenadas do vetor \overrightarrow{u} na base α .

Nota: as coordenadas dos vetores estão escritas na base canônica, exceto nos caso em que outra base está explicitada.

Resposta:

2) Considere os vetores de \mathbb{R}^3

$$\overrightarrow{u}_1 = (1, 1, 2), \quad \overrightarrow{u}_2 = (2, 0, 1)$$

e a transformação linear

$$T : \mathbb{R}^3 \to \mathbb{R}^3, \qquad T(\overrightarrow{v}) = (\overrightarrow{v} \cdot \overrightarrow{u}_1) \overrightarrow{u}_1 + (\overrightarrow{v} \cdot \overrightarrow{u}_2) \overrightarrow{u}_2.$$

- (a) Determine a matriz de T na base canônica.
- (b) Determine o conjunto de vetores \overrightarrow{v} tais que $T(\overrightarrow{v}) = \overrightarrow{v}$.
- (c) Considere o plano

$$\mathbb{V} \colon x + y + 2z = 0.$$

Determine uma base do subespaço $T(\mathbb{V})$, isto é a imagem do plano \mathbb{V} pela transformação linear T. Observe que

$$T(\mathbb{V}) = \{ T(\overrightarrow{v}) \text{ tais que } \overrightarrow{v} \in \mathbb{V} \}$$

Nota: as coordenadas dos vetores estão escritas na base canônica.

Resposta:

- 3) Considere o plano (subespaço vetorial) \mathbb{V} : x+y+z=0 e uma transformação linear $L\colon \mathbb{R}^3\to\mathbb{R}^3$ que verifica as seguintes propriedades
- (A) L(1,1,1) = (1,1,1),
- **(B)** L(1,-1,0) = (1,-1,0),
- (C) A imagem de $\mathbb V$ pela transformação linear L, o subespaço $L(\mathbb V)$, é uma reta. Lembre que

$$L(\mathbb{V}) = \{L(\overrightarrow{v}) \text{ tais que } \overrightarrow{v} \in \mathbb{V}\}.$$

- (a) Determine uma base do subespaço vetorial $L(\mathbb{V})$.
- (b) Determine uma base da imagem de L.
- (c) Determine a matriz (na base canônica) de uma transformação linear L que verifique as propriedades (A), (B) e (C).

Nota: as coordenadas dos vetores estão escritas na base canônica.

Resposta:

4) Determine a inversa da matriz A a seguir

$$A = \left(\begin{array}{ccc} 1 & 2 & 1 \\ 1 & 0 & 2 \\ 1 & -3 & 1 \end{array}\right).$$

Critério de correção: Um erro nos coeficientes da matriz inversa nota 1.0, dois erros nota 0.5, três ou mais erros nota zero. O desenvolvimento da questão é necessário.

Escreva a resposta final a <u>caneta</u> no retângulo.

Somente serão corrigidas respostas a caneta escritas no retângulo abaixo.

$$A^{-1} = \left(\begin{array}{c} \\ \\ \end{array} \right).$$

Resposta (desenvolvimento):