Birla Institute of Technology & Science, Pilani, Hyderabad Campus

ACADEMIC-GRADUATE STUDIES AND RESEARCH DIVISION First Semester 2023-2024

Course Handout: Part-II

03/08/2023

In addition to Part-I (General Handout for all courses appended to the Time-Table) this document provides specific details regarding the course.

Course No.: BITS G553

Course Title: REAL TIME SYSTEMS

Instructor-In-Charge: SOUMYA J

1. Course Description: Real time software, Real time operating systems-scheduling, virtual memory issues and file systems, real time data bases, fault tolerance and exception handling techniques, reliability evaluation, data structures and algorithms for real time/embedded systems, programming languages, compilers and run time environment for real time/embedded systems, real time system design, real time communication and security, real time constraints and multi processing and distributed systems.

2.Objective:

Real-time systems need deterministic upper time-bound for the execution of a job. The objective of the course is to expose the students in characterization, design and validation issues of Real-time systems. After the completion of the course, students should be able to design complex real time systems using formal methods.

3.Scope:

The course focuses on the basic theory of Real-Time systems, tools, and real time operating systems. Specifically we discuss Real-Time Scheduling and validation, Real-Time communication, Real-Time Operating Systems, and Performance analysis and Optimization.

4.Text Books:

[T1] Jane Liu W. S.: Real-Time Systems, Pearson Education, India 2003

Reference books:

- [R1] Laplante Phillip A.: Real-Time System Design and Analysis. Third Edition PHI 2005.
- [R2] Krishna C.M. & Shin K.G.: Real-Time Systems, McGraw-Hill 1997

5. Course Plan and Learning Objectives

Modu	ıle Title	No	of	Reference	Learning Objectives
		class	ses		
1	Typical real- time applications	2		Ch2-T1	Understand several representative classes of real-time applications, the characteristics of the workloads generated by the applications and the relation between their timing and functional requirements

2	Reference model of Real- Time Systems	4	Ch3-T1	Understand a reference model characterizing 1)a workload model ,2) a resource model and (3) algorithms that define how the application uses the resources at all times.	
3	Approaches to Real-Time Scheduling	4	Ch4-T1	Understand commonly used approaches for scheduling realtime systems	
4	Clock-driven Scheduling	4	Ch5-T1	Understand details of clock-driven scheduling its merits and de-merits.	
5	Priority-driven Scheduling of periodic tasks	4	Ch6-T1	Understand priority-driven algorithms for scheduling periodic tasks on a processor and examine the merits and de-merits.	
6	Scheduling Aperiodic and Sporadic jobs	4	Ch7-T1	Understand algorithms for scheduling aperiodic and sporadic jobs in a priority-driven system.	
7	Resource Management	5	Ch8-T1	Study resource contention affects on the execution behavior and schedulability of jobs and study various resource access-control protocols.	
8	Real time communications	4	Ch11-T1	Study networking protocols with deterministic responses.	
9	Real-Time Operating Systems (RTOS)	5	Ch12-T1	Study operating systems supporting real-time scheduling and resource management policies. POSIX is taken as example standard.	
10	Advanced topics	4	Research papers	Discussion on advance topics and the current research in the field of real tie systems	

6. Evaluation Scheme:

EC	Evaluation	Type	Duration	Weight	Date
No.	Component				
1	Mid Sem	Closed Book	90	25% (75	09/10 - 2.00 -
	Examination		minutes	M)	3.30PM
2	Assignments+	Open Book	-	40% (120	To be announced
	Project+Presentations	_		M)	
3	Comprehensive	Closed Book	3 hours	35% (105	07/12 FN
	Exam			M)	

7.Make-up Policy:

Prior Permission of the Instructor-in-Charge is required to take a make-up for any component. A make-up test shall be granted only in **genuine** cases. There will be no make-up for the project /term paper presentations.

- **8. Chamber Consultation Hours:** To be announced in the class.
- **9. Notices:** All notices will be posted on CMS.
- **10. Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-Charge-BITS G553