l	A modular server system, comprising:
2	a midplane having a system management bus and a plurality of blade interfaces;
3	a plurality of server blades connected to said blade interfaces, with each server
ļ	blade having a server blade system management bus connected to said system
5	management bus; and
5	a storage blade connected to one of said blade interfaces, said storage blade
7	having a storage blade system management bus connected to said system management
}	bus, said storage blade to store operating system (OS) software for said plurality of server
)	blades.
	2. The modular server system of claim 1, wherein each server blade comprises a
	provisioning module to provision each server blade with said OS software.
	3. The modular server system of claim 1, wherein said storage blade comprises:
!	a hard disk drive;
3	a hard disk drive controller; and
ļ	a provisioning module to provision each server blade with said OS software.

- 1 4. The modular server system of claim 3, wherein said hard disk drive is one of a
- 2 plurality of hard disk drives configured as a redundant array of independent discs (RAID)
- 3 system.

ļ

1

TOOSETT OLIBOOT

The modular server system of claim 4, wherein said RAID system is a level five RAID system. 2 1 The modular server system of claim 4, wherein said RAID system includes a 6. 1 compact disc read only memory (CD-ROM). 1 The modular server system of claim 4, wherein said provisioning module 7. I comprises: 2 a connection module to create a connection with a server blade; 3 idaeria. an identification module to determine an identifier for said server blade; a search module to retrieve an OS identifier associated with said server blade identifier; and a loading module to retrieve an OS associated with said OS identifier from said 7 RAID system and load said dentified server blade with said OS. 8 1 The modular server system of claim 7, wherein a plurality of server blades use a 8. same OS. 2 The modular server system of claim 7, wherein a plurality of server blades use a 9. different OS. 10. A storage blade, comprising: a hard disk drive: 2

	3	\ a hard disk drive controller; and
	4	a provisioning module to provision a plurality of server blades with OS software
	5	stored on said hard disk Crive.
	1	
	1	11. The storage blade of claim 10, wherein said hard disk drive is one of a plurality of
	2	hard disk drives configured as a redundant array of independent discs (RAID) system.
	I	
	1	12. The storage blade of claim 11, wherein said hard disk drive controller is a RAID
	2	controller.
	1	
	1	13. The storage blade of claim 12, wherein said RAID system is a level five RAID
J	2	system.
	1	
	1	14. The storage blade of claim 13, wherein said RAID system includes a compact disc
	2	read only memory (CD-ROM).
	ı	
	l	15. The storage blade of claim 13, wherein said provisioning module comprises:
	2	a connection module to create a connection with a server blade;
	3	an identification module to determine an identifier for said server blade;
	4	a search module to retrieve an OS identifier associated with said server blade
	5	identifier; and
	6	a loading module to retrieve an OS associated with said OS identifier from said
	7	RAID system and load said identified server blade with said OS.

l

Sub	`	16.	A method to provision a plurality of servers, comprising:
	2		receiving a request to load an operating system (OS) from each of a plurality of
	3	server	blades;
	4		determining an identifier for each of said plurality of server blades;
	5		searching for an OS identifier associated with said server blade identifier;
	6		retrieving an OS from a storage system using said OS identifier; and
	7		loading each server blade with its retrieved OS.
	1		
	1	17.	The method of claim 16, wherein said receiving comprises:
	2		creating a conjection between each of said server blades and said storage system;
	3	and	
F	4		receiving said request over said connection.
	ì		
	1	18.	The method of claim 16, wherein said determining comprises receiving said
The man term that the	2	server	blade identifier with said request from each server blade.
	1		
	1	19.	The method of claim 16, wherein said server blade identifier is a dynamic host

configuration protocol (DHCP) address. 2

The method of claim 16, wherein said searching comprises searching for said OS 20.

identifier in an OS identifier list.

A method to provision a plurality of servers, comprising: 21.

ATTORNEY DOCKE JMBER: 042390.P11636

	2	\	creating a connection with a storage blade, said storage blade having a plurality of
	3	opera	ting system (OS) software;
	4	/	sending a request to provision said server blade with one of said OS software; and
	5		receiving OS software in response to said request.
X	ì		
Con.	1	22.	The method of claim 21, wherein said request includes a server blade identifier
	2	and ar	n OS identifier.
	1		
	1	23.	The method of claim 21, wherein said server blade identifier is a dynamic host
¥	2	config	guration protocol DHCP) address.
o o	1		
g F	1	24.	The method of claim 21, further comprising:
TOOST, Othosopt	2		receiving said request at said storage blade;
 	3		identifying an OS for said server blade using said OS identifier; and
	4		sending said OS to said server blade over said connection.
T _i	1		
	1	25.	The method of claim 21, further comprising:
	2		storing said OS software in memory; and
	3		executing said OS software.
	1		1
	1	26.	An article comprising:
	2		a storage medium;

loosetto lleool

ATTORNEY DOCKE JMBER: 042390.P11636

3	said storage medium including stored instructions that, when executed by a			
4	processor, result in provisioning a plurality of servers by receiving a request to load an			
5	operating system (OS) from each of a plurality of server blades, determining an identifier			
6	for each of said plurality of server blades, searching for an OS identifier associated with			
7	said server blade identifier, retrieving an OS from a storage system using said OS			
8	identifier, and loading each server blade with its retrieved OS.			
1				
1	27. The article of claim 26, wherein the stored instructions, when executed by a			
2	processor, further result in said receiving by creating a connection between each of said			
3	server blades and said storage system, and receiving said request over said connection.			
ı				
1	28. The article of claim 26, wherein the stored instructions, when executed by a			
2	processor, further result in said determining by receiving said server blade identifier with			
3	said request from each server blade.			
1				
1	29. An article comprising:			
2	a storage medium;			
3	said storage medium including stored instructions that, when executed by a			
4	processor, result in provisioning a plurality of servers by creating a connection with a			
5	storage blade, said storage blade having a plurality of operating system (OS) software,			
6	sending a request to provision said server blade with one of said OS software, and			
7	receiving OS software in response to said request.			

- The article of claim 29, wherein the stored instructions, when executed by a l 30.
- processor, further result in receiving said request at said storage blade, identifying an OS 2
- for said server blade using said OS identifier, and sending said OS to said server blade 3
- over said connection.