第二周作业参考

王睿

2023年3月26日

目录

第二	.周作业																													2
1.1	3月14	1日布置的	作业																											2
	1.1.1	教材习题	P68:2	,3,4 .																										2
	1.1.2	补充习题	1,2 .																											4
1.2	3月16	6 日布置的	作业																											5
	1.2.1	教材习题	P113:	3,4,5																										5
	1.2.2	补充习题	3,4,5																											6
	1.1	1.1 3月14 1.1.1 1.1.2 1.2 3月16 1.2.1	1.1.1 教材习题 1.1.2 补充习题 1.2 3月16日布置的 1.2.1 教材习题	1.1 3月14日布置的作业 1.1.1 教材习题 P68:2 1.1.2 补充习题 1,2 . 1.2 3月16日布置的作业 1.2.1 教材习题 P113:	1.1 3月14日布置的作业	1.1 3月14日布置的作业 1.1.1 教材习题 P68:2,3,4 1.1.2 补充习题 1,2 1.2 3月16日布置的作业 1.2.1 教材习题 P113:3,4,5	1.1 3月14日布置的作业	1.1 3月14日布置的作业 1.1.1 教材习题 P68:2,3,4 1.1.2 补充习题 1,2 1.2 3月16日布置的作业 1.2.1 教材习题 P113:3,4,5	1.1 3月14日布置的作业 1.1.1 教材习题 P68:2,3,4	1.1 3月14日布置的作业	1.1 3月14日布置的作业	1.1 3月14日布置的作业	1.1 3月14日布置的作业	1.1 3月14日布置的作业 1.1.1 教材习题 P68:2,3,4 1.1.2 补充习题 1,2 1.2 3月16日布置的作业 1.2.1 教材习题 P113:3,4,5	1.1 3月14日布置的作业 1.1.1 教材习题 P68:2,3,4 1.1.2 补充习题 1,2 1.2 3月16日布置的作业 1.2.1 教材习题 P113:3,4,5	1.1 3月14日布置的作业	1.1 3月14日布置的作业 1.1.1 教材习题 P68:2,3,4 1.1.2 补充习题 1,2 1.2 3月16日布置的作业 1.2.1 教材习题 P113:3,4,5	第二周作业 1.1 3月14日布置的作业 1.1.1 教材习题 P68:2,3,4 1.1.2 补充习题 1,2 1.2 3月16日布置的作业 1.2.1 教材习题 P113:3,4,5 1.2.2 补充习题 3,4,5												

一点说明

- 1. 作业讲义部分题过程可能有省略。如对作业仍有疑问可以在群里或答疑课上讨论。
- 2. 作业讲义会随时间更新。
- 3. 请及时核对自己在 BB 系统里的分数,如有问题请向对应的助教反馈。
- 4. 附录里的内容仅供有兴趣的同学参考,有可能涉及之后才会学习或课外的知识,不要求在现阶段掌握。
- 5. 讲义最好用电脑打开, 文档内置了链接功能, 复习或查看指定的作业很方便。

成绩说明:成绩公式为

$$score = \begin{cases} 10 - k \cdot \max\{n - n_0, 0\} & \text{ 未迟交} \\ 5 & \text{ 迟交} \end{cases}$$

其中 n 为错题数, n_0 为容忍度; k 为系数,取决于当周作业的题量。第二周不考虑补充题共 6 题,n=6,考虑到一些同学出现了计算失误、笔误、抄错题目等等情况, $n_0=1$; k=0.5。对于一些不严格的证明,助教也会酌情给分。也意味着作业得到满分不代表作业没有问题,请认真查看自己的作业。

上述评分标准对每个助教都成立。

1 第二周作业

1.1 3 月 14 日布置的作业

1.1.1 教材习题 P68:2,3,4

2. $\exists a$ 为何值时,下列线性方程组有解?有解时求出它的通解:

$$\begin{cases}
3x_1 +2x_2 +x_3 = 2 \\
x_1 -x_2 -2x_3 = -3 \\
ax_1 -2x_2 +2x_3 = 6
\end{cases}$$

$$(2) \begin{cases}
x_1 -4x_2 +2x_3 = -1 \\
-x_1 +11x_2 -x_3 = 3 \\
3x_1 -5x_2 +7x_3 = a
\end{cases}$$

$$(1) \begin{cases} 3x_1 + 2x_2 + x_3 &= 2 \\ x_1 - x_2 - 2x_3 &= -3 \Leftrightarrow \begin{pmatrix} 3 & 2 & 1 & 2 \\ 1 & -1 & -2 & -3 \\ a & -2 & 2 & 6 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & -1 & -2 & -3 \\ 3 & 2 & 1 & 2 \\ a & -2 & 2 & 6 \end{pmatrix}$$

$$\xrightarrow{\frac{-3r_1 \to r_2}{-ar_1 \to r_3}} \begin{pmatrix} 1 & -1 & -2 & -3 \\ 0 & 5 & 7 & 11 \\ 0 & a - 2 & 2 + 2a & 3a + 6 \end{pmatrix} \xrightarrow{\frac{-(a-2)/5}{5}} \xrightarrow{r_2 \to r_3} \begin{pmatrix} 1 & -1 & -2 & -3 \\ 0 & 5 & 7 & 11 \\ 0 & 0 & \frac{3}{5}a + \frac{24}{5} & \frac{4}{5}a + \frac{52}{5} \end{pmatrix}$$

$$\xrightarrow{\frac{5r_3}{3}} \begin{pmatrix} 1 & -1 & -2 & -3 \\ 0 & 5 & 7 & 11 \\ 0 & 0 & 3a + 24 & 4a + 52 \end{pmatrix}$$

故方程组无解的充要条件是 3a + 24 = 0, $4a + 22 \neq 0 \Rightarrow a = -8$. $a \neq -8$ 时,方程组的有效方程个数 = 未知元个数, 从而方程组有唯一解。利用回代可以解出

$$x_1 = \frac{4}{a+8}, x_2 = \frac{a-20}{3(a+8)}, x_3 = \frac{4(a+13)}{3(a+8)}$$

有一点要特别注意,在初等行变换中有未知量被涉及,尽量不要出现形如 1/a 形式的变换,是不够严谨的行为。

$$\begin{pmatrix}
x_1 & -4x_2 & +2x_3 & = -1 \\
-x_1 & +11x_2 & -x_3 & = 3 & \Leftrightarrow \begin{pmatrix}
1 & -4 & 2 & -1 \\
-1 & 11 & -1 & 3 \\
3 & -5 & 7 & a
\end{pmatrix} \xrightarrow{\begin{array}{c}
r_1 \to r_2 \\
-3r_1 \to r_3
\end{array}} \begin{pmatrix}
1 & -4 & 2 & -1 \\
0 & 7 & 1 & 2 \\
0 & 7 & 1 & a + 3
\end{pmatrix}$$

$$\xrightarrow{-r_2 \to r_3} \begin{pmatrix}
1 & -4 & 2 & -1 \\
0 & 7 & 1 & 2 \\
0 & 0 & 0 & a + 1
\end{pmatrix}$$

方程组无解的充要条件是 $a+1 \neq 0 \Rightarrow a \neq -1$ 。 a=-1 时,方程组的有效方程个数 = 2 < 未知元个数 = 3,方程组有多解。以 x_1, x_2 为主元, x_3 为自由元,可得方程组的通解为

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \frac{1}{7} \\ \frac{2}{7} \\ 0 \end{pmatrix} + t \begin{pmatrix} -\frac{18}{7} \\ -\frac{1}{7} \\ 1 \end{pmatrix}$$

3. a 为何值时,下列线性方程组有唯一解? a 为何值时,此方程组无解?

$$\begin{cases} x_1 + x_2 + x_3 = 3 \\ x_1 + 2x_2 - ax_3 = 9 \\ 2x_1 - x_2 + 3x_3 = 6 \end{cases}$$

$$\begin{cases} x_1 & +x_2 & +x_3 & = 3 \\ x_1 & +2x_2 & -ax_3 & = 9 \Leftrightarrow \begin{pmatrix} 1 & 1 & 1 & 3 \\ 1 & 2 & -a & 9 \\ 2x_1 & -x_2 & +3x_3 & = 6 \end{pmatrix} \xrightarrow{\begin{pmatrix} 1 & 1 & 1 & 3 \\ 2 & -1 & 3 & 6 \end{pmatrix}} \xrightarrow{\frac{-r_1 \to r_2}{-2r_1 \to r_3}} \begin{pmatrix} 1 & 1 & 1 & 3 \\ 0 & 1 & -a - 1 & 6 \\ 0 & -3 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{r_2 \leftrightarrow r_3} \begin{pmatrix} 1 & 1 & 1 & 3 \\ 0 & -3 & 1 & 0 \\ 0 & 1 & -a - 1 & 6 \end{pmatrix} \xrightarrow{\frac{-1}{3}r_2} \begin{pmatrix} 1 & 1 & 1 & 3 \\ 0 & 1 & -\frac{1}{3} & 0 \\ 0 & 1 & -a - 1 & 6 \end{pmatrix} \xrightarrow{\frac{-r_2 \to r_3}{-2r_2 \to r_3}} \begin{pmatrix} 1 & 1 & 1 & 3 \\ 0 & 1 & -\frac{1}{3} & 0 \\ 0 & 0 & -a - \frac{2}{3} & 6 \end{pmatrix}$$

方程组无解的充要条件是 $-a-\frac{2}{3}=0 \Rightarrow a=-\frac{2}{3}$ 。 $a\neq -\frac{2}{3}$ 时,方程组的有效方程个数 = 未知元个数,方程组有唯一解。利用回代可以解出

$$x_1 = \frac{3(3a+10)}{3a+2}, x_2 = -\frac{6}{3a+2}, x_3 = -\frac{18}{3a+2}$$

4. 求三次多项式 $f(x) = ax^3 + bx^2 + cx + d$,使 y = f(x) 的图像经过以下四个点: A(1,2), B(-1,3), C(3,0), D(0,2)。

问题可以转化为

$$\begin{cases} f(1) = 2 \\ f(-1) = 3 \\ f(3) = 0 \\ f(0) = 2 \end{cases} \Rightarrow \begin{cases} a + b + c + d = 2 \\ -a + b - c + d = 3 \\ 27a + 9b + 3c + d = 0 \end{cases} \Leftrightarrow \begin{pmatrix} 1 & 1 & 1 & 2 \\ -1 & 1 & -1 & 1 & 3 \\ 27 & 9 & 3 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix}$$

这个问题相当好求解,事实上,不用增广矩阵可能求解地更快1。这里给出结果

$$a = -\frac{5}{24}, b = \frac{1}{2}, c = -\frac{7}{24}, d = 2$$

 $^{^1}$ 比如将 r_1+r_2 后与 r_4 联立即得到 x_2,x_4 。这一操作相当于交换增广矩阵的两列(第二列与第三列),但要注意交换列之后的对应关系也随之交换 $x_2\leftrightarrow x_3$ 。

1.1.2 补充习题 1,2

补充习题 1 假定 3×4 的方程组的增广矩阵可以化简为如下的(约化)标准形

在求解该方程组时, 试问可以选取哪些未知元来组成自由元? 找出所有的可能性.

可以这样考虑:有 4 个未知量和 2 个线性无关的方程,需要引入 2 个自由元才能给出通解的一般形式,同时引入的自由元不能彼此制约(或线性无关。意味着不存在某个方程在引入自由元后成为一个仅包含被引入自由元的方程,此时其中一个自由元之间可以用其他自由元表示)。若增广矩阵的前四列对应 x_1, x_2, x_3, x_4 ,则从中选取 2 个的组合为 $C_4^2 = 6$,同时根据第二行的方程,应排除选择 x_3, x_4 的情况。即任选 x_1, x_2, x_3, x_4 中的 2 个作为自由元,且不是 x_3, x_4 ,共 5 种。

补充习题 2 (1) 给出一个由 3 个方程构成的关于未知元 x_1, x_2, x_3 的齐次线性方程组, 使得 $x_1 = 3, x_2 = -2, x_3 = 1$ 是它的一个解, 并且方程组的增广矩阵的约化标准形是以前两列为主元所在的列。

约化标准型的定义: 所有主元为 1,且在主元所在列,在主元上面的元素为 0,对给定的矩阵而言, 其通过一系列初等行变换所能得到的符合条件的标准形式存在且唯一,这样的标准形式称为原矩阵的约 化标准型。

齐次线性方程组一定有零解 $x_1=0, \cdots x_n=0$,而 $x_1=3, x_2=-2, x_3=1$ 是它的一个解,说明这个方程组存在多解,说明增广矩阵的标准型有不止一行是全部为 0 的形式。同时由于方程组的增广矩阵的约化标准形以前两列为主元,若前两列是 x_1, x_2 ,说明只有一个自由元 x_3 。同时对于齐次线性方程组,增广矩阵的最后一列一定全为 0。因此可知增广矩阵的约化标准形一定为

$$\begin{pmatrix}
1 & 0 & c_{13} & 0 \\
0 & 1 & c_{23} & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

此时还有 $x_1 = 3, x_2 = -2, x_3 = 1$ 是它的一个解的条件没有用到,我们可以直接构造

$$\begin{pmatrix}
1 & 0 & -3 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

即可使特解满足条件。由于题目要求3个方程构成,最后一行用前两个方程的线性组合就可以生成了,最简单的:

$$\begin{cases} x_1 & -3x_3 = 0 \\ x_2 + 2x_3 = 0 \\ x_2 + 2x_3 = 0 \end{cases}$$

(2) 是否存在一个由 3 个方程构成的关于未知元 x_1, x_2, x_3 的齐次线性方程组, 使得 $x_1 = 3, x_2 = -2, x_3 = 1$ 仍然是它的一个解, 但是方程组的增广矩阵的约化标准形是以第一列和第三列为主元所在的列?

与上一问类似的分析,我们知道增广矩阵的标准型有不止一行是全部为 0 的形式。若方程组的增广 矩阵的约化标准形是以第一列和第三列为主元所在的列,则增广矩阵的标准型形式为

$$\begin{pmatrix}
1 & c_{12} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

在这种条件下,一定有 $x_3 = 0$,与 $x_1 = 3$, $x_2 = -2$, $x_3 = 1$ 是它的一个解矛盾。因此不存在这样的 齐次线性方程组满足上述条件。

1.2 3月16日布置的作业

1.2.1 教材习题 P113:3,4,5

3. 设

$$m{A} = \left(egin{array}{ccc} -3 & -1 & -2 \ 1 & 3 & 4 \end{array}
ight), m{B} = \left(egin{array}{ccc} 2 & 2 & -2 \ 4 & -1 & -4 \ 4 & 3 & -3 \end{array}
ight), m{C} = \left(egin{array}{ccc} 1 & 1 \ -4 & 1 \ -1 & -2 \end{array}
ight)$$

计算 AB, BC, ABC, B^2, AC, CA

这一道题只是单纯的概念计算,对 T = AB,T 矩阵的第 i 行 j 列元素为 A 矩阵的第 i 行逐项乘 B 矩阵的第 j 列,即 $t_{ij} = \sum_{i} a_{ik}b_{kj}$ 。这里只写出结果

$$\mathbf{AB} = \begin{pmatrix}
-18 & -11 & 16 \\
30 & 11 & -26
\end{pmatrix}, \mathbf{BC} = \begin{pmatrix}
-4 & 8 \\
12 & 11 \\
-5 & 13
\end{pmatrix}, \mathbf{ABC} = \begin{pmatrix}
10 & -61 \\
12 & 93
\end{pmatrix},
\mathbf{B}^2 = \begin{pmatrix}
4 & -4 & -6 \\
-12 & -3 & 8 \\
8 & -4 & -11
\end{pmatrix}, \mathbf{AC} = \begin{pmatrix}
3 & 0 \\
-15 & -4
\end{pmatrix}, \mathbf{CA} = \begin{pmatrix}
-2 & 2 & 2 \\
13 & 7 & 12 \\
1 & -5 & -6
\end{pmatrix}$$

4. 计算
$$\begin{pmatrix} 1 & x & x^2 & \cdots & x^n \\ 1 & y & y^2 & \cdots & y^n \\ 1 & z & z^2 & \cdots & z^n \end{pmatrix} \begin{pmatrix} a_0 & b_0 & c_0 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ \vdots & \vdots & \vdots \\ a_n & b_n & c_n \end{pmatrix}$$

同样按定义逐行逐列给出即可。如得到矩阵第一行第二列对应左侧矩阵的第一行逐项乘右侧矩阵第

二列, 即为 $b_0 + b_1 x + b_2 x^2 + \cdots b_n x^n$ 。其他项类似。可得结果

$$\begin{pmatrix} 1 & x & x^{2} & \cdots & x^{n} \\ 1 & y & y^{2} & \cdots & y^{n} \\ 1 & z & z^{2} & \cdots & z^{n} \end{pmatrix} \begin{pmatrix} a_{0} & b_{0} & c_{0} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ \vdots & \vdots & \vdots \\ a_{n} & b_{n} & c_{n} \end{pmatrix} = \begin{pmatrix} \sum_{i=0}^{\infty} a_{i}x^{i} & \sum_{i=0}^{\infty} b_{i}x^{i} & \sum_{i=0}^{\infty} c_{i}x^{i} \\ \sum_{i=0}^{\infty} a_{i}y^{i} & \sum_{i=0}^{\infty} b_{i}y^{i} & \sum_{i=0}^{\infty} c_{i}y^{i} \\ \sum_{i=0}^{\infty} a_{i}z^{i} & \sum_{i=0}^{\infty} b_{i}z^{i} & \sum_{i=0}^{\infty} c_{i}z^{i} \end{pmatrix}$$

$$= \begin{pmatrix} a_{0} + a_{1}x + a_{2}x^{2} + \cdots + a_{n}x^{n} & b_{0} + b_{1}x + b_{2}x^{2} + \cdots + b_{n}x^{n} & c_{0} + c_{1}x + c_{2}x^{2} + \cdots + c_{n}x^{n} \\ a_{0} + a_{1}y + a_{2}y^{2} + \cdots + a_{n}y^{n} & b_{0} + b_{1}y + b_{2}y^{2} + \cdots + b_{n}y^{n} & c_{0} + c_{1}y + c_{2}y^{2} + \cdots + c_{n}y^{n} \\ a_{0} + a_{1}z + a_{2}z^{2} + \cdots + a_{n}z^{n} & b_{0} + b_{1}z + b_{2}z^{2} + \cdots + b_{n}z^{n} & c_{0} + c_{1}z + c_{2}z^{2} + \cdots + c_{n}z^{n} \end{pmatrix}$$

使用 ∑ 求和符号可以将答案表达得更简洁。

5. 计算
$$\left(\begin{array}{cccc} x_1 & x_2 & \cdots & x_m \end{array}\right) \left(\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{array}\right) \left(\begin{array}{c} y_1 \\ y_2 \\ \vdots \\ y_n \end{array}\right)$$

从左到右计算:

$$\left(\begin{array}{cccc} x_1 & x_2 & \cdots & x_m \end{array}\right) \left(\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{array}\right) \left(\begin{array}{c} y_1 \\ y_2 \\ \vdots \\ y_n \end{array}\right)$$

$$= \left(\begin{array}{cccc} a_{11}x_1 + a_{21}x_2 + \cdots + a_{m1}x_m & a_{12}x_1 + a_{22}x_2 + \cdots + a_{m2}x_m & \cdots & a_{1n}x_1 + a_{2n}x_2 + \cdots + a_{mn}x_m \end{array}\right) \left(\begin{array}{c} y_1 \\ y_2 \\ \vdots \\ y_n \end{array}\right)$$

$$= \left(\sum_{i=1}^{m} a_{i1} x_{i} \sum_{i=1}^{m} a_{i2} x_{i} \cdots \sum_{i=1}^{m} a_{in} x_{i}\right) \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{pmatrix}$$

$$= \left(\sum_{i=1}^{m} a_{i1} x_{i}\right) y_{1} + \left(\sum_{i=1}^{m} a_{i2} x_{i}\right) y_{2} + \cdots \left(\sum_{i=1}^{m} a_{in} x_{i}\right) y_{n}$$

$$= \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} x_{i}\right) y_{j} = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} x_{i} y_{j}$$

从右至左计算结果也是相同的,这是由于矩阵乘法满足结合律,但应注意运算不能交换。

1.2.2 补充习题 3,4,5

补充习题 3 熟悉教材 §4.1 中有的但是课堂上没有介绍的所有定义.

教材中提到的所有定义都比较重要,在后续运算中有很多巧妙的性质。比如上三角阵乘上三角阵一 定是上三角阵。希望大家多看几次加深印象

补充习题 4 验证: 矩阵乘法 AB 中的每个行向量都是 B 的行向量组的一个线性组合。 记 B 矩阵的按行可以写成

$$oldsymbol{B} = \left(egin{array}{c} oldsymbol{\xi}_1 \ oldsymbol{\xi}_2 \ drapprox \ oldsymbol{\xi}_n \end{array}
ight)_{n imes p} = \left(egin{array}{cccc} b_{11} & b_{12} & \cdots & b_{1p} \ b_{21} & b_{22} & \cdots & b_{2p} \ drapprox \ drapprox \ drapprox \ drapprox \ oldsymbol{\xi}_n \end{array}
ight)_{n imes p}$$

设 $C_{m \times p} = A_{m \times n} B_{n \times p}$ 的第 i 行行向量为 η_i ,即

$$oldsymbol{C} = \left(egin{array}{ccc} oldsymbol{\eta}_1 \ oldsymbol{\eta}_2 \ dots \ oldsymbol{\eta}_m \end{array}
ight)_{m imes p} = \left(egin{array}{cccc} c_{11} & c_{12} & \cdots & c_{1p} \ c_{21} & c_{22} & \cdots & c_{2p} \ dots & dots & dots \ c_{n1} & c_{n2} & \cdots & c_{np} \end{array}
ight)_{n imes p}$$

现在我们只考察 C 矩阵的一行,将运算显式地写出

$$\begin{cases} c_{i1} = a_{i1}b_{11} + a_{i2}b_{21} + \cdots + a_{in}b_{n1} \\ c_{i2} = a_{i1}b_{12} + a_{i2}b_{22} + \cdots + a_{in}b_{n2} \\ \vdots \\ c_{ip} = a_{i1}b_{1p} + a_{i2}b_{2p} + \cdots + a_{in}b_{np} \end{cases}$$

根据我们之前的考虑, $\boldsymbol{\xi}_j = \{b_{j1}, b_{j2}, \cdots, b_{jp}\}, \boldsymbol{\eta}_i = \{c_{i1}, c_{i2}, \cdots, c_{ip}\}$,因此上式看成是向量的 p 个分量,可重写成

$$\boldsymbol{\eta}_i = a_{i1}\boldsymbol{\xi}_1 + a_{i2}\boldsymbol{\xi}_2 + \cdots + a_{in}\boldsymbol{\xi}_n$$

即 C = AB 中的每个行向量都是 B 的行向量组的一个线性组合。

补充习题 5 计算
$$\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix}$$
 $\begin{pmatrix} b_1 & b_2 & \cdots & b_n \end{pmatrix}$.

结果非常简单,就是

$$\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix} \begin{pmatrix} b_1 & b_2 & \cdots & b_n \end{pmatrix} = \begin{pmatrix} a_1b_1 & a_1b_2 & \cdots & a_1b_n \\ a_2b_1 & a_2b_2 & \cdots & a_2b_n \\ \vdots & \vdots & & \vdots \\ a_mb_1 & a_mb_2 & \cdots & a_mb_n \end{pmatrix}$$

结果也可以直接运用定义算出,设得到矩阵为 C, $c_{ij} = \sum_{k=1}^{1} a_{ik} b_{kj} = a_{i1} b_{1j} = a_{i} b_{j}$

致谢

感谢胡铁宁、贺维易同学对本文档的校对工作和内容补充,感谢申伊塃老师以及同学对助教工作的支持。