

	many times, C% of the resulting CI will contain the true population parameters $z^* = \text{invNorm}(\text{tail prob}, 0, 1)$ $t^* = \text{invT}(\text{tail prob}, df)$			probability		et a statist r more ext ne directio	that you ic like this reme (in	Decision	H _A	H ₀	Power II	$P(Type\ I) = \alpha = Reject\ H_0\ incorrectly$ $Power = Rejecting\ H_0\ correctly$ $P(Type\ II) = \beta = Fail\ to\ Reject\ H_0\ incorrectly$ $Power = 1 - \beta$	
- Inference for Proportions and Means	Confidence Intervals	Set-Up		Conditions		Formula			ula		Conclusion		
		1-sample z interval for population proportions (capture p) p = [context]		1. Random (SRS/Assign) 2. $n \le .1N$ 3. $n\hat{p} \ge 10$ and $n(1 - \hat{p}) \ge 10$		$\hat{p}\pm z^*\sqrt{rac{\hat{p}(1-\hat{p})}{n}}$ TI84: 1-PropZInt					We are% confidence that the interval from to captures the true population proportion of [context].		
		1-sample t interval for population means (capture μ) $\mu = [context]$		1. Random (SRS/Assign) 2. n ≤ .1N 3. n ≥ 30 CLT n < 30 graph sample			$ar{x} \pm t^* \left(\frac{S_x}{\sqrt{n}} \right)$ TI84: tInterval					We are% confidence that the interval from to captures the true population mean of [context].	
		2-sample z interval for population proportions (capture p ₁ – p ₂) p ₁ = [context] p ₂ = [context]		1. Both Random (SRS/Assign) 2. Both $n \le .1N$ 3. Both $n\hat{p} \ge 10$ and $n(1 - \hat{p}) \ge 10$			$\hat{p}_1 - \hat{p}_2 \pm z^* \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$ TI84: 2-PropZInt				$\frac{n_2(1-\hat{p}_2)}{n_2}$	We are% confidence that the interval from to captures the true difference $(p_1 - p_2)$ in [context].	
		2-sample t interval for population means (capture $\mu_1 - \mu_2$) $\mu_1 = [\text{context}]$ $\mu_2 = [\text{context}]$		 Both Random (SRS/Assign) Both n ≤ .1N Each n ≥ 30 CLT n < 30 graph sample 		$\bar{x}_1 - \bar{x}_2 \pm t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$ TI84: 2-SampTInt			$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n}}$	2 2 2 2	We are% confidence that the interval from to captures the true difference $(\mu_1 - \mu_2)$ in [context].		
nce fo	Significance Tests	Test and Hypotheses		Conditions Formula		p-value Cond			ue	Conclu	sion $p < \infty$ Reject H_0 $p > \infty$ Fail to Reject H_0		
		1-sample z test for population proportions $H_0: p = p_0$ $p = [context]$ $H_A: p \ p_0$	1. Random (SRS/Assign) 2. $n \le .1N$ 3. $np_0 \ge 10$ and $n(1 - p_0) \ge 10$		Formula $z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$ TI84: 1-PropZTest		$\frac{\overline{p_0}}{\overline{p_0}}$	$ z = \underline{\qquad} $ normalcdf(L, U, 0, 1) $ p = \underline{\qquad} $ Beca reject evided to the properties of the propertie		reject H	e our p-value of is $ \infty =$, we $_0$ /fail to reject H_0 . There is/is not convincing e that [H_A in context]		
Unit 6 and 7		$ \begin{array}{ll} \textbf{1-sample t test} \ for \ population \\ means \\ H_0 \colon \mu = \mu_0 \qquad \qquad \mu = [context] \\ H_A \colon \mu \underline{\hspace{1cm}} \mu_0 \end{array} $	1. Random (SRS/Assign) 2. n ≤ .1N 3. n ≥ 30 CLT n < 30 graph sample		$t = \frac{\bar{x} - \mu_0}{S_x / \sqrt{n}}$ TI84: tTest			01 = n - 1 $todf(1 - 11 - df)$			reject H	Because our p-value of is \propto =, we reject H ₀ /fail to reject H ₀ . There is/is not convincing evidence that [H _A in context]	
		Matched Pairs 1-sample t test for a mean difference H_0 : $\mu_d = 0$ $\mu_d = [context]$ H_A : $\mu_d = 0$	2. $n \le .1N$ 3. $n \ge 30 C$	(SRS/Assign) CLT raph sample	t TI84: tTes	$x = \frac{\bar{x}_d}{S_x / \sqrt{n}}$	$t = \underline{\qquad}$ $df = n - 1$ $tcdf(L, U, df)$ $p = \underline{\qquad}$		reject H	Because our p-value of is \propto =, we reject H ₀ /fail to reject H ₀ . There is/is not convincing evidence that [H _A in context]			
		2-sample z test for population proportions $p_1 = [context]$ $p_2 = [context]$ $p_2 = [context]$	1. Random (SRS/Assign) 2. $n \le .1N$ 3. $n_1 p_C \ge 10$ $n_1 (1 - p_C) \ge 10$ $n_2 p_C \ge 10$ $n_2 (1 - p_C) \ge 10$		$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{p_c(1 - p_c)\left(\frac{1}{n_1} + \frac{x_1 + x_2}{n_1 + n_2}\right)}}$ $p_c = \frac{x_1 + x_2}{n_1 + n_2}$ TI84: 1-PropZTest		$\frac{\overline{1}}{\overline{n_1} + \overline{1}}$	$ \frac{\overline{1}}{n_2} $ $ z = \underline{\qquad \qquad } $ $ normalcdf(L, U, 0, 1) $ $ p = \underline{\qquad \qquad } $		reject H	e our p-value of is $ \propto =$, we $_0$ /fail to reject H_0 . There is/is not convincing e that [H_A in context]		
		2-sample t test for population means $ \begin{array}{ll} \text{Ho: } \mu_1 = \mu_2 \\ \text{Ha: } \mu_1 & \mu_2 \end{array} \begin{array}{ll} \mu_1 = [context] \\ \mu_2 = [context] \end{array} \begin{array}{ll} \text{1. Both Random (SRS/Assign)} \\ \text{2. Both } n \leq .1N \\ \text{3. Each } n \geq 30 \text{ CLT} \\ \text{n} < 30 \text{ graph sample} \end{array} $		≦ .1N ≥ 30 CLT	$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ TI84: 2-SampTTest		$\frac{s_2^2}{l_2}$	dI = n - 1 todf(I II df)			reject H	e our p-value of is $ \propto =$, we $_0$ /fail to reject H_0 . There is/is not convincing e that [H_A in context]	

	χ^2 Goodness of Fit Test	χ^2 Test for Homogeneity	χ^2 Test for Association/Independence			
Unit 8 – Inference for Categorical Data: Chi-Square	H ₀ : The claimed distribution is correct. H _A : At least one of the claimed proportions is incorrect. IN CONTEXT	2 separate samples from 2 unique populations H ₀ : There is no difference in the distribution of [context] H _A : There is a difference in the distribution of [context]	1 sample from a single population H ₀ :There is no association between & (They are independent) H _A : There is an association between & (They are not independent)			
	 Random (SRS/Assign) n ≤ .1N (Sampling w/o replacement) All expected counts ≥ 5 (Show table of expected counts) 	1. Random (SRS/Assign) 2. n ≤ .1N (Sampling w/o replacement) 3. All expected counts ≥ 5 (Show table of expected counts) expected counts in each cell = \frac{(row total)(column total)}{table total}	1. Random (SRS/Assign) 2. n ≤ .1N (Sampling w/o replacement) 3. All expected counts ≥ 5 (Show table of expected counts) expected counts in each cell = \frac{(row total)(column total)}{table total}			
	$\chi^{2} = \sum \frac{(O - E)^{2}}{E}$ TI84: χ^{2} GOFTest $\chi^{2} = \frac{1}{E}$ p-value = χ^{2} cdf(χ^{2} , 1e99, df) df = number of categories – 1	$\chi^2 = \sum \frac{(O-E)^2}{E}$ TI84: χ^2 Test $\chi^2 = \frac{1}{E}$ p-value = χ^2 cdf(χ^2 , 1e99, df) df = (number of rows – 1) (number of columns – 1)	$\chi^{2} = \sum \frac{(O - E)^{2}}{E}$ TI84: χ^{2} Test $\chi^{2} = \underline{\qquad}$ p-value = χ^{2} cdf(χ^{2} , 1e99, df) df = (number of rows – 1) (number of columns – 1)			
	Because our p-value of is $ \propto =$, we reject H_0 /fail to reject H_0 . There is/is not convincing evidence that [H_A in context]	Because our p-value of is $ \propto =$, we reject H_0 /fail to reject H_0 . There is/is not convincing evidence that [H_A in context]	Because our p-value of is $ \propto =$, we reject H_0 /fail to reject H_0 . There is/is not convincing evidence that $[H_A \text{ in context}]$			
Unit 9 – Inference for Slopes	population regression equation: sample regression equation: $\mu_y = \alpha + \beta x$ sample regression equation: $\hat{y} = \alpha + bx$ Sampling Distribution for Slope Shape: Approx. Normal as long $\sigma = \text{standard deviation of}$	t-interval for β Used to capture β , the true population slope $t^* = \text{invT(tail prob, df)}$ $SE_b = \frac{S}{S_x \sqrt{n}}$ TI84: LinRegTInt	We are% confident that the interval from to captures the true population slope of the regression line. [in context] If this interval contains 0, there is no evidence of an association.			
	conditions below are met Mean: $\mu_b = \beta$ output) Std. Dev: $\sigma_b = \frac{\sigma}{\sigma_x/\sqrt{n}}$ $\sigma_x = \text{standard deviation of } x$ - values $\sigma_x = \text{standard deviation of } x$ - values $\sigma_x = \text{standard deviation of } x$ -	t-test for β $H_0: \beta = 0$ $H_A: \beta = 0$ $\beta = [context]$ $t = \frac{b}{SE_b} = \frac{b}{p-value} = tcdf(L, U, df = n - 2)$ $t = \frac{b}{SE_b} = \frac{b}{r}$	evidence that [H _A in context]			
	$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	E: Equal SD Residual plot should have random scatter R: Random SRS or random assignment R: Random SRS or random assignment SRS or random scatter Coeff SE Predictor -20 4 x-value 6.5 1 s = 8 R-sq = 93.2%	Equation: $\hat{y} = -20 + 6.5x$ $SE_b = 1.3$ Ho: $\beta = 0$			