2.핵심행사 수요예측 모델 v2.0(2024_phase1)

*모델 개선 사항

- 1. 카테고리 확장 학습
 - a. AS IS: 신선(채소, 정육/수산/계란, 과일), 우유/유제품 카테고리 → TO- BE : 전 카테고리 확장(편리한것 포함)
- 2. 행사 정보 고도화
 - a. 행사 데이터 정보 DB화 → 기대효과: 정확한 행사 정보를 통해 모델의 성능 고도화
 - î. AS IS: 수기 데이터 기반 학습(프로모션 & 기획전 관리, 핵심행사리스트, 발주 참고등 구글 시트 기반) → TO-BE: B마트 어드민내 등록된 행사 상품 기반 학습
 - 참고 테이블: market.bm_exhibition(기획전), market.pt_recommended_product(번쩍할인)
 - 행사 기간, 노출 순서, 메인 배너 노출 여부등의 행사 관련 정보 수집
 - b. 행사 구좌 유형 변경 → 기대효과: MKT 캠페인등 주요 행사 효과의 정확한 구분을 통해 모델이 세부적으로 학습가능
 - AS IS: 개인적인 기준에 의거한 구분(5일장, 과재고, 빅세일, 주말장보기, 신규 첫주문등) → TO- BE: MD실과 협의한 5가지 행사 구좌 유형 구분(번쩍할인, MKT 캠페인, 광고, 주말장보기, 그외 행사)
- 3. 상품 가격 & 할인율 정보 고도화
 - a. 상품의 정상가격(할인전 가격) 과 판매가격 (할인율 가격) 정보 Tracking →모델 학습에 주요한 원인으로 작용하는 할인율 정보 고도화 가능
 - iઁAS IS: 수기 행사 리스트에 기재되어 있는 상품의 정상가격과 할인가격을 사용하여 정보의 한계 존재 → To BE: 구매 영수층 기반의 정상가격과 할인 가격을 통해 실 제 판매된 상품의 가격, 할인율 정보 학습

 상품 마스터 테이블의 정상가격, 구매 영수증 테이블의 상품가격 정보 Tracking
 - b. 전시 상품 ID(Product id) 기반하의 학습으로 묶음 상품, 골라담기 정보 필터링 가능
 - i. AS IS: 물류 상품 ID 기반(sku_code)의 학습으로 묶음 상품, 골라담기 상품들이 모두다 동일한 상품가격 정보 & 할인율로 구분되어 데이터 Noise 존재 → TO BE: 정확한 구분을 통해 골라담기 상품의 판매량은 제거하고, 묶음 상품은 묶음 상품의 가격을 Tracking

- 4. 주요 Feature 확강 a. 날씨 데이터 추가 → 기대효과: 날씨에 민감한 B마트 특성상, 기온과 강수량 여부 구분을 통해 모델의 정확도 상승 효과 i. AS IS: 현재 모델에는 고려되어있지않음 → TO- BE: 하루 최저, 최고 기온 & 강수량(눈/비 포함) 데이터를 통해 모델 학습, 현시점 기준 10일 이후의 날씨 중기 예보 데이터 활용

지역	08일(금)		09일(토)		10일	[(일)	119	[(월)	- 12일(화)	13일(수)	1/0//E)
714	오전	오후	오전	오후	오전	오후	오전	오후	12 2 (31)	132(十)	14일(목)
서울 인천 경기도	10%	10%	10%	10%	10%	10%	30%	30%	40%	20%	· <u>·</u> · 20%
강원도 영서	10%	10%	10%	10%	10%	10%	30%	30%	30%	20%	20%
강원도 영동	10%	10%	10%	10%	10%	10%	30%	20%	20%	10%	20%
대전 세종 충청남도	10%	10%	10%	10%	10%	10%	30%	20%	40%	20%	20%
충청북도	10%	10%	10%	10%	10%	10%	30%	30%	40%	20%	20%
광주 전라남도	10%	10%	10%	10%	10%	20%	30%	20%	20%	20%	20%

- b. 상품의 이동평균 데이터 변경(표준편차 추가) i. AS IS: 상품 가격, 판매량, 결품(17시) 2주, 5주, 8주 평균 값 활용 → TO-BE: 상품 사격, 판매량, 결품(17시) 1주, 4주,7주 평균, 표준 편차
- 5. 예측 판매량 보정 작업 a. 모델에서 예측 성능이 떨어지는 상품의 경우 기존 판매량 정보와 4주 평균 판매량 정보를 통해 판매량 보정

*활용 데이터

- *데이터 예시
- → 행사 데이터에 대한 데이터 부족으로 신선 3개 카테고리의 데이터를 모두 활용하나 카테고리 정보를 통해 구분하도록 학습
- 1) 대상 품목: 신선 3개 카테고리(채소, 과일, 정육/수산/계란)
 - 기본적으로 상품단위 정보 활용(EX. 과일 SKU의 경우 73개 FC의 합산된 판매량 정보)
- 2) 대상 기간: 2023-01-01 ~ 2024-02-14(결품률이 안정되기 시작한 시점인 10월 이후 데이터 활용)
- 3) 활용 변수: 상품 정보, 가격, 할인, 시계열 정보(이동평균선), 행사, 시간 정보등

index	데이터 유형	컬럼명	컬럼 의미	데이터타입	비고
1	기본정보	date_cd	일자	datetime	
2		category	depth카테고리	varchar	
3		sku_code	sku 코드	varchar	

5	가격, 할인	standard_sale_price	정상가격(할인전 가격)	integer	
6	시계역- 이동평교	sale_price	판매가격(할인후 가격)	integer	
7		discount_rate	할인율	float	행사 수기 데이터 활용
8	시계열- 이동평균 (실적, 가격, 결품)	sale_qty	판매수량/판매수량 편차 (1주/4주 /7주)	float	
9		sale_price	판매가격/판매가격 편차 (1주/4주 /7주)	float	
10		lack_17	17시 결품수/결품편차(1주/4주/7 주)	integer	
11	행사	lightning_sale	번쩍할인 행사 여부	binary	
12		mkt	MKT 캠페인 행사 여부	binary	
13		ad_event	광고 행사 여부	binary	
14		waste_sale	과재고 행사 여부	binary	
15		week_sale	주말 장보기 행사 여부	binary	
16		etc_event	기타 행사 여부	binary	
17		no_regist_event	B마트 어드민 행사 여부	binary	
18	-	not_event	비행사 여부	binary	
19		main_expousre	매인 베너 노출 여부	binary	
20		position_no	노 출순 서	integer	결측값 다수 존재, 수기 데이터 활용
21	상품 정보	sku_grade	상 품등 급	categorical	수기데이터 활용
22	-	fc_storage_method	상품 보관방법	categorical	냉장, 냉동, 상온 구분
23	-	sale_able_dt	판매가능일수	categorical	상품의 판매가능일수
24	-	bunddle_yn	번들상품여부	binary	
25	시간 정보	у	년도	categorical	미래 데이터 예측을 위해 시간 정보 추가
26		m	월	categorical	
27	-	d	일	categorical	
28		week_day	요일	categorical	
49		temp_min	일평균 최저기온	float	API화 작업을 통해 날씨 데이터 & 날씨 중기 예보 데이터 추
50	날씨 정보	temp_max	일평균 최고기온	float	
51	1	rain_yn	비/눈 여부	binary	
			•		

- 4) 타겟 변수: 판매량 1) 대상 품목: 신선 3개 카테고리(채소, 과일, 정육/수산/계란)
 - 기본적으로 상품단위 정보 활용(EX. 과일 SKU의 경우 73개 FC의 합산된 판매량 정보)
- 2) 대상 기간: 2023-01-01 ~ 2024-02-14(결품률이 안정되기 시작한 시점인 10월 이후 데이터 활용)

3) 활용 변수: 상품 정보, 가격, 할인, 시계열 정보(이동평균선), 행사, 시간 정보등

index	데이터 유형	컬럼명	컬럼 의미	데이터타입	비고
1	기본정보	date_cd	일자	datetime	
2		category2	depth2 카테고리	varchar	
3	-	category3	depth3 카테고리	varchar	
4		category4	depth4 카테고리	varchar	
5		category5	depth5카테고리	varchar	
6		sku_code	sku 코드	varchar	
9		bunddle_yn	번들상품여부	binary	
10	가격, 할인	standard_sale_price	정상가격(할인전 가격)	integer	
11		sale_price	판매가격(할인후 가격)	integer	
12		discount_rate	할인율	float	구매내역 기반 할인율
13	시계열- 이동평균	saleqty_7_avg	판매수량 1주 평균	float	
14	(실적, 가격, 결품)	sale_qty_28_avg	판매수량 4주 평균	flotat	
15		sale_qty_49_avg	판매수량 7주 평균	float	
16		sale_qty_7_std	판매수량 1주 편차	float	
17		sale_qty_28_std	판매수량 4주 편차	flotat	
18		sale_qty_49_std	판매수량 7주 편차	float	
19		sale_price_7_avg	판매가격 1주 평균	float	
20		sale_price_28_avg	판매가격 4주 평균	flotat	
21		sale_price_49_avg	판매가격 7주 평균	float	
22		sale_price_7_std	판매가격 1주 편차	float	
23		sale_price_28_std	판매가격 4주 편차	flotat	
24		sale_price_49_std	판매가격 7주 편차	float	
25		lack_17_7_avg	17시 결품수 1주 평균	integer	
26		lack_17_28_avg	17시 결품수 4주 평균	integer	
27		lack_17_49_avg	17시 결품수 7주 평균	integer	
28		lack_17_7_std	17시 결품수 1주 편차	integer	
29		lack_17_28_std	17시 결품수 4주 편차	integer	
30		lack_17_49_std	17시 결품수 7주 편차	integer	

31	행사	lightning_sale	번쩍할인 행사 여부	binary	
32		mkt	MKT 캠페인 행사 여부	binary	
33		ad_event	광고 행사 여부	binary	
34		waste_sale	과재고 행사 여부	binary	
35		week_sale	주말 장보기 행사 여부	binary	
36		etc_event	기타 행사 여부	binary	
37		no_regist_event	B마트 어드민 행사 여부	binary	
38		not_event	비행사 여부	binary	
39		main_expousre	매인 베너 노출 여부	binary	
40		position_no	노 출순 서	integer	결측값 다수 존재, 수기 데이터 활용
41	상품 정보	sku_grade	상 품등 급	categorical	수기데이터 활용
42		fc_storage_method	상품 보관방법	categorical	냉장, 냉동, 상온 구분
43		sale_able_dt	판매가능일수	categorical	
44		bunddle_yn	번들상품여부	binary	
45	시간 정보	у	년도	categorical	미래 데이터 예측을 위해 시간 정보 추가
46		m	월	categorical	
47		d	일	categorical	
48		week_day	요일	categorical	
49		temp_min	일평균 최저기온	float	API화 작업을 통해 날씨 데이터 & 날씨 중기 예보 데이터 추
50	날씨 정보	temp_max	일평균 최고기온	float	
51		rain_yn	비/눈 여부	binary	

4) 타겟 변수: 판매량

*모델링 & 결과

1. 행사 수요예측 version1 모델과 동일한 LightGBM 사용

2. 모델 학습 결과

평가지표	행사 수요예측 모델_v2	행사 수요예측 모델_v1	이마트 수요예측 모델
MAE	14.14	24.53	6~30
MAPE	59.64%	64.5%	70-80%
SMAPE	21%	23%	-

- *이마트의 경우 주로 가공 카테고리 대상으로 분석하였으므로 신선과는 평가지표 자체에서 다른 경향성을 보일 수 있음
- → 기존 모델 대비 MAE는 10이상 줄어들며, 정확도 42% 상승, MAPE 정확도 6% 상승, SMAPE는 2% 상승하였음

- *feature importance 값이 높을 수록 모델의 판매량 예측에 영향력을 준 변수로 볼 수 있음
- 3. 시뮬레이션
 - 1 1 1 1 2 2 2 월 19일)에 핵심 행사 리스트에 해당하는 상품의 <mark>예측 판매량 산출후 업데이트 모델, 기존 모델, MD 예상 판매량 오차 비교</mark> → 해당 주차의 비교 대상 품목이 173개로 비교 표본이 많지않아 추후 정확한 분석 필요 판매량 정의

INDEX	판매량 유형	설명	비고	
-------	--------	----	----	--

1	ML 모델 예상 판매량_v2(변경)	고도화된 ML 모델에서 예측한 판매량	
2	ML 모델 예상 판매량_v1(기존)	기존 ML 모델에서 예측한 판매량	
3	MD 예상 판매량	핵심행사 리스트에 기재된 MD 예상 판매량	
4	실계 판매량	실제 해당 기간에 판매된 수량	

• 결과

- 173개 SKU 예측후 SKU의 행사 기간별 예상 판매량 산출(Ex. 하림 닭백숙 1,100g, 행사 기간 4/2 ~ 4/9 동안 1,637개 예상 판매량과 실제 판매량 비교) 173개중 90개의 ML 모델v2 오차율이 가장 뛰어난 것으로 판단(약 52%)

예측 성능 순위					
기준	ML 모델 예상 판매량_v2(변경)	ML 모델 예상 판매량_v1(기존)	MD 예상 판매량	합계	
전체	52%	27%	21%	100%	
순위(종합)	1위	3위	2위		

- *각 예상 판매량과 실제 판매량의 차이 비교
- *MD 예상 판매량과 핵심 행사 타겟치의 경우 값이 작성되어 있지 않은 경우가 존재하여, 정확한 판단을 위해 없는 경우를 제거한 Case에 대해서도 오차율 측정 • 단일성능 비교 • 1) ML VS MD

예측 성능 순위					
기준	ML모델	MD 예상 판매량	합계		
전체	73%	27%	100%		

- ML모델과 MD 예상 판매량중 정확도가 더욱 높은 유형은 ML 모델로 73%를 차지함 ML 모델의 성능이 MD 예상 판매량 대비 약 2.7배정도 높은것을 확인할 수 있음
- 2) ML(v2) VS ML(v1)

예측 성능 순위					
기준	ML모델	MD 예상 판매량	합계		
전체	62%	38%	100%		

- 새롭게 개발한 ML모델과 ML모델 이전버전중 정확도가 더욱 높은 유형은 ML 모델로 62%를 차지함 ML 모델의 성능이 이전 모델 대비 약 1.63배정도 높은것을 확인할 수 있음

raw_set: 비교데이터_0304.xlsx