ECON4004 – Lab 3 solutions

Question 1

- (i) To calculate how main participated in the training program one can issue the commands
- . count if train==1
 185
- . count if train==0
 260

185 out of 445 participated in the job training program. The longest time in the experiment was 24 months (obtained from the variable *mosinex*, which denotes the number of months prior to January 78 in the experiment).

- (ii) A regression of train on the explanatory variables gives
- . regress train unem74 unem75 age educ black hisp married

Source	SS	df	MS	Number of obs	=	445
Model Residual	2.41922955 105.670658	7 437	.345604222		= = =	1.43 0.1915 0.0224
Total	108.089888	444	.243445693	Adj R-squared Root MSE	=	0.0067 .49174
train	Coef.	Std. Err.	t	P> t [95% Co	onf.	Interval]

train	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
unem74	.02088	.0772939	0.27	0.787	1310341	.172794
unem75 age	0955711 .0032057	.0719021 .0034027	-1.33 0.94	0.184 0.347	236888 003482	.0457459
educ	.0120131	.0133419	0.90	0.368	0142092	.0382354
black	0816663	.0877325	-0.93	0.352	2540963	.0907637
hisp	2000168	.1169708	-1.71	0.088	4299122	.0298785
married	.0372887	.0644037	0.58	0.563	0892909	.1638683
_cons	.3380222	.1894451	1.78	0.075	0343147	.7103591

The F statistic for joint significance of the explanatory variables is F(7,437) = 1.43 with p-value = .19. Therefore, they are jointly insignificant at even the 15% level. Note that, even though we have estimated a linear probability model, the null hypothesis we are testing is that all slope coefficients are zero, and so there is no heteroskedasticity under H_0 . This means that the usual F statistic is asymptotically valid.

(iii) We first estimate the model $P(train = 1|\mathbf{x}) = \Phi(\beta_0 + \beta_1 unem74 + \beta_2 unem75 + \beta_3 age + \beta_4 educ + \beta_5 black + \beta_6 hisp + \beta_7 married)$ by probit maximum likelihood, and obtain

. probit train unem74 unem75 age educ black hisp married

Iteration 0: log likelihood = -302.1 Iteration 1: $log\ likelihood = -297.01499$ Iteration 2: $log\ likelihood = -297.0088$ Iteration 3: log likelihood = -297.0088

Probit regression Number of obs LR chi2(7) 10.18 Prob > chi2 0.1785 Pseudo R2 0.0169

Log likelihood = -297.0088

train	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
unem74	.0530256	.1992686	0.27	0.790	3375337	.4435849
unem75	2477249	.18505	-1.34	0.181	6104163	.1149665
age	.0083443	.0087982	0.95	0.343	0088999	.0255886
educ	.0314431	.0343238	0.92	0.360	0358304	.0987165
black	2069299	.2249003	-0.92	0.358	6477264	.2338666
hisp	5397772	.3085029	-1.75	0.080	-1.144432	.0648773
married	.0966251	.1655823	0.58	0.560	2279101	.4211604
_cons	4241079	.4870267	-0.87	0.384	-1.378663	.5304469

In the probit model, the way to test whether the all included regressors are jointly significant is to perform a likelihood ratio test. This test compares the value of the likelihood when all regressors are included and with that when no regressors are included. The test statistic follows the chi-square distribution (denoted by χ^2), with degrees of freedom equal to the number of regressors. In our case, and as shown in the Stata output above, the likelihood ratio test for joint significance is 10.18. In a χ_7^2 distribution this gives p-value = .18, which is very similar to that obtained for the LPM in part (ii).

- (iv) Training eligibility was randomly assigned among the participants, so it is not surprising that train appears to be independent of other observed factors. However, there can be a difference between eligibility and actual participation, as men can always refuse to participate if chosen.
 - (v) The simple LPM results are as follows:
- . regress unem78 train, r

Linear regression Number of obs 445 F(1, 443) 6.50 Prob > F 0.0111 R-squared 0.0139 Root MSE .45941

unem78	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
train	1106029	.0433918	-2.55	0.011	1958823	0253236
_cons	.3538462	.0297212	11.91	0.000	.295434	.4122583

Participating in the job training program lowers the estimated probability of being unemployed in 1978 by .111, or 11.1 percentage points. This is a large effect: the probability of being unemployed without participation is .354, and the training program reduces it to .243. The differences is statistically significant at almost the 1% level against at two-sided alternative. (Note that this is another case where, because training was randomly assigned, we have confidence that OLS is consistently estimating a causal effect, even though the *R*-squared from the regression is very small. There is much about being unemployed that we are not explaining, but we can be pretty confident that this job training program was beneficial.)

(vi) The estimated probit model is as follows:

```
. probit unem78 train, r
```

Iteration 0: log pseudolikelihood = -274.73494
Iteration 1: log pseudolikelihood = -271.58459
Iteration 2: log pseudolikelihood = -271.5828
Iteration 3: log pseudolikelihood = -271.5828

Probit regression Number of obs = 445 Wald chi2(1) = 6.23 Prob > chi2 = 0.0126 Log pseudolikelihood = -271.5828 Pseudo R2 = 0.0115

unem78	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
train	3209508	.128621		0.013	5730433	0688582
_cons	3749572	.0798356		0.000	531432	2184824

where standard errors are in parentheses. It does not make sense to compare the coefficient on *train* for the probit, –.321, with the LPM estimate. The probabilities have different functional forms. However, note that the probit and LPM *t* statistics are essentially the same (although the LPM standard errors should be made robust to heteroskedasticity).

- (vii) There are only two fitted values (i.e., predicted probabilities of unem78=1) in each case. In the LPM, they are equal to .354 when train = 0 and .243 when train = 1. In the probit model they are equal to $\Phi(-.3749572) = .354$ when train = 0 and $\Phi(-.3749572-.3209508)=.243$ when train = 1, where Φ denotes the cumulative normal distribution. Hence, fitted values are identical in both models. This has to be the case, because any method simply delivers the cell frequencies as the estimated probabilities. The LPM estimates are easier to interpret because they do not involve the transformation by $\Phi(\cdot)$, but it does not matter which is used provided the probability differences are calculated.
- (viii) The fitted values are no longer going to be identical because the model is not saturated. That is, the explanatory variables are not an exhaustive, mutually exclusive set of dummy variables. To obtain the fitted probabilities from the LPM we run the following command:

. regress unem78 train unem74 unem75 age educ black hisp married, r

Linear regression
Number of obs = 445 F(8, 436) = 3.93 Prob > F = 0.0002 R-squared = 0.0462 Root MSE = .45545

unem78	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
train	1117028	.0438196	-2.55	0.011	1978267	0255789
unem74	.0386926	.0698225	0.55	0.580	098538	.1759231
unem75	.0159613	.0654068	0.24	0.807	1125906	.1445132
age	.0000433	.0032717	0.01	0.989	0063869	.0064735
educ	.0001442	.0116097	0.01	0.990	0226737	.0229622
black	.1888328	.065795	2.87	0.004	.0595179	.3181477
hisp	0377011	.081827	-0.46	0.645	1985255	.1231234
married	0254373	.0591917	-0.43	0.668	1417739	.0908993
_cons	.1631823	.1615939	1.01	0.313	1544176	.4807822

To calculate the predicted probabilities, we used the predict command with the option xb, which calculates the linear index (hence the xb name), which in turn is equal to the predicted probability in the LPM. We name this predicted probability p lpm, calculated as follows:

. predict p_lpm, xb

We then run the corresponding probit model

. probit unem78 train unem74 unem75 age educ black hisp married, r

Iteration 0: log pseudolikelihood = -274.73494
Iteration 1: log pseudolikelihood = -263.3816
Iteration 2: log pseudolikelihood = -263.3128
Iteration 3: log pseudolikelihood = -263.31279

Probit regression Number of obs = 445 Wald chi2(8) = 22.97 Prob > chi2 = 0.0034 Log pseudolikelihood = -263.31279 Pseudo R2 = 0.0416

unem78	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
train	3365897	.1306059	-2.58	0.010	5925726	0806068
unem74	.106094	.2083582	0.51	0.611	3022806	.5144686
unem75	.0636124	.1916636	0.33	0.740	3120414	.4392662
age	.0006757	.0093354	0.07	0.942	0176213	.0189728
educ	0018916	.0351258	-0.05	0.957	0707369	.0669538
black	.6336688	.2764519	2.29	0.022	.0918331	1.175504
hisp	1649409	.368144	-0.45	0.654	88649	.5566081
married	077768	.1788681	-0.43	0.664	4283431	.2728071
_cons	-1.010331	.5220632	-1.94	0.053	-2.033556	.0128939

To calculate the predicted probabilities from the probit we use again predict but with the option p, which denotes probability. If instead we used the option xb it would calculate again the value of the estimated linear index. We name this predicted probability from the probit as p_probit, and calculate it as follows:

When we correlated the two predicted probabilities, we obtain

	p_lpm	p_probit
p_lpm	1.0000	
p_probit	0.9932	1.0000

Hence, we observe a still very high correlation of .9932. This is due to the fact that the explanatory variables other than *train* are insignificant (with the exception of *black*). Therefore, the predicted probabilities are still primarily determined by *train*, and hence they are highly correlated.

(ix) To obtain the average partial effect of train using the probit model, we obtain fitted probabilities for each man for train = 1 and train = 0. Of course, one of these is a counterfactual, because the man was either in job training or not. Importantly, we evaluate the other regressors at their actual outcomes. The APE is the average, over all observations, of the differences in the estimated probabilities.

We evaluate the APE, using the margins command, which calculates marginal effect. Since *train* is a binary variable we can write it as ib0.train. This notation tells Stata that train is a binary variable (hence the i), and that its base value is 0. Typically Stata understands on its own that a variable is binary, but it is better to indicate it explicitly. We do the same thing for all binary variables in the specification. On the other hand, *age* and *educ* can be treated as continuous variables, and thus can be written as c.age and c.educ. Hence we first run the command

. probit unem78 ib0.train ib0.unem74 ib0.unem75 c.age c.educ ib0.black ib0.hisp ib0.married, r

Iteration 0: log pseudolikelihood = -274.73494
Iteration 1: log pseudolikelihood = -263.3816
Iteration 2: log pseudolikelihood = -263.3128
Iteration 3: log pseudolikelihood = -263.31279

Probit regression Number of obs = 445 Wald chi2(8) = 22.97 Prob > chi2 = 0.0034 Log pseudolikelihood = -263.31279 Pseudo R2 = 0.0416

		Robust				
unem78	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
1.train	3365897	.1306059	-2.58	0.010	5925726	0806068
1.unem74	.106094	.2083582	0.51	0.611	3022806	.5144686
1.unem75	.0636124	.1916636	0.33	0.740	3120414	.4392662
age	.0006757	.0093354	0.07	0.942	0176213	.0189728
educ	0018916	.0351258	-0.05	0.957	0707369	.0669538
1.black	.6336688	.2764519	2.29	0.022	.0918331	1.175504
1.hisp	1649409	.368144	-0.45	0.654	88649	.5566081
1.married	077768	.1788681	-0.43	0.664	4283431	.2728071
_cons	-1.010331	.5220632	-1.94	0.053	-2.033556	.0128939

To estimate the APE of train, we run the margins command as follows:

. margins, dydx(ib0.train)

Average marginal effects Number of obs = 445

Model VCE : Robust

Expression : Pr(unem78), predict()

dy/dx w.r.t. : 1.train

		Delta-method Std. Err.	Z	P> z	[95% Conf.	. Interval]
1.train	1123307	.0426718	-2.63	0.008	1959659	0286955

Note: dy/dx for factor levels is the discrete change from the base level.

Note: we would have obtained the same results if we used the command margins, dydx(train), as Stata understands that there is one variable named train and it is binary. It is safer, however, to use the full naming specification of *train*, that is, use margins,dydx(ib0.train)

With the variables in part (ii) appearing in the probit, the estimated APE is about –.112. Interestingly, rounded to three decimal places, this is the same as the coefficient on *train* in the linear regression. In other words, the linear probability model and probit give virtually the same estimated APEs.

(ix) To obtain the average partial effects of all regressors, we can use the command margins,dydx(*), where * tell Stata to cacluate the APE(AME) for all regressors. Hence we get

. margins, dydx(*)

Average marginal effects Number of obs = 445

Model VCE : Robust

Expression : Pr(unem78), predict()

dy/dx w.r.t. : 1.train 1.unem74 1.unem75 age educ 1.black 1.hisp 1.married

		Delta-method				
	dy/dx	Std. Err.	z	P> z	[95% Conf.	Interval]
1.train	1123307	.0426718	-2.63	0.008	1959659	0286955
1.unem74	.0353018	.0684546	0.52	0.606	0988667	.1694704
1.unem75	.0213189	.0640299	0.33	0.739	1041774	.1468153
age	.0002272	.0031391	0.07	0.942	0059253	.0063798
educ	000636	.011811	-0.05	0.957	0237851	.022513
<pre>1.black</pre>	.188783	.068846	2.74	0.006	.0538472	.3237188
1.hisp	0536882	.1155716	-0.46	0.642	2802044	.172828
1.married	0258306	.0586199	-0.44	0.659	1407235	.0890623

Note: dy/dx for factor levels is the discrete change from the base level.

We note that other than *train*, only being black has a statistically significant APE(AME), at increases on average the probability of being unemployed in 1978 by about 18.8 percentage points. We expect this result, as the coefficient of black was statistically significant in the probit regression. Almost always (i.e., with very few exceptions) a statistically significant probit coefficient will imply a statistically significant APE, and vice versa.

The result for *black* is very similar to the APE from the OLS regression, which is equal to the estimated coefficient. The remaining variables have statistically insignificant APES, with broadly similar patterns as the estimated OLS coefficients.

Question 2

(i) We first run the following probit

. probit vhappy ib0.occattend ib0.regattend ib1994.year, r

Iteration 0: log pseudolikelihood = -10397.033
Iteration 1: log pseudolikelihood = -10339.48
Iteration 2: log pseudolikelihood = -10339.463
Iteration 3: log pseudolikelihood = -10339.463

Probit regression Number of obs = 16,864

Number of obs = 16,864 Wald chi2(8) = 115.69 Prob > chi2 = 0.0000 Pseudo R2 = 0.0055

Log pseudolikelihood = -10339.463

		Robust				
vhappy	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
1.occattend	.0122544	.0233063	0.53	0.599	0334251	.0579338
1.regattend	.3053249	.0300724	10.15	0.000	.2463841	.3642656
year						
1996	.0482759	.0350063	1.38	0.168	0203352	.116887
1998	.0798343	.0350279	2.28	0.023	.0111808	.1484878
2000	.0894637	.0352215	2.54	0.011	.0204308	.1584966
2002	.0455899	.0434216	1.05	0.294	039515	.1306947
2004	.072181	.0435383	1.66	0.097	0131526	.1575146
2006	.0638691	.0344714	1.85	0.064	0036936	.1314318
_cons	6070756	.0262339	-23.14	0.000	658493	5556582

(note how we denote using 1994 as the base year).

We then calculate the APEs (average marginal effects) as follows:

. margins,dydx(*)

Average marginal effects Number of obs = 16,864

Model VCE : Robust

Expression : Pr(vhappy), predict()

dy/dx w.r.t. : 1.occattend 1.regattend 1996.year 1998.year 2000.year 2002.year 2004.year 2006.year

	dy/dx	Delta-method Std. Err.	Z	P> z	[95% Conf.	Interval]
1.occattend	.0042834	.008156	0.53	0.599	0117021	.0202688
1.regattend	.1122627	.0114661	9.79	0.000	.0897896	.1347358
year						
1996	.016581	.0120244	1.38	0.168	0069864	.0401483
1998	.0276457	.0121309	2.28	0.023	.0038696	.0514217
2000	.0310558	.0122297	2.54	0.011	.007086	.0550256
2002	.0156473	.0149673	1.05	0.296	0136881	.0449826
2004	.0249465	.0151473	1.65	0.100	0047417	.0546347
2006	.0220265	.0118825	1.85	0.064	0012628	.0453157

Note: dy/dx for factor levels is the discrete change from the base level.

Rounded to four decimal places, the APE for *occattend* is about .0043 (t = .53) and that for *regattend* is about .1123 (t = 9.79).

For a linear model estimated by OLS, we obtain the following results:

. regress vhappy ib0.occattend ib0.regattend ib1994.year, $\ensuremath{\text{r}}$

Linear regression
Number of obs = 16,864 F(8, 16855) = 13.58 Prob > F = 0.0000 R-squared = 0.0071

Root MSE

.45965

		Robust				
vhappy	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
1.occattend	.0042648	.008024	0.53	0.595	0114632	.0199928
1.regattend	.1121737	.0113857	9.85	0.000	.0898565	.134491
year						
1996	.0167487	.012032	1.39	0.164	0068353	.0403327
1998	.0278593	.0121477	2.29	0.022	.0040486	.05167
2000	.0312657	.0122258	2.56	0.011	.007302	.0552295
2002	.0157476	.0149857	1.05	0.293	013626	.0451211
2004	.0251635	.0151638	1.66	0.097	0045591	.0548861
2006	.0221839	.011884	1.87	0.062	00111	.0454779
_cons	.2713457	.0088906	30.52	0.000	.2539191	.2887723

Hence, the APEs from a LPM are .0043 and .1122 (robust t = 9.85). So, they are very similar to the ones obtained using the probit.

(ii) We first generate the highinc variable using the following command

. ta income

total family income	Freq.	Percent	Cum.
lt \$1000	176	1.17	1.17
\$1000 to 2999	182	1.21	2.38
\$3000 to 3999	150	1.00	3.38
\$4000 to 4999	156	1.04	4.41
\$5000 to 5999	209	1.39	5.80
\$6000 to 6999	202	1.34	7.15
\$7000 to 7999	218	1.45	8.59
\$8000 to 9999	399	2.65	11.25
\$10000 - 14999	1,251	8.32	19.56
\$15000 - 19999	1,099	7.30	26.87
\$20000 - 24999	1,278	8.49	35.36
\$25000 or more	9,725	64.64	100.00
Total	15,045	100.00	

. ta income, nol

total family income	Freq.	Percent	Cum.
1	176	1.17	1.17
2	182	1.21	2.38
3	150	1.00	3.38
4	156	1.04	4.41
5	209	1.39	5.80
6	202	1.34	7.15
7	218	1.45	8.59
8	399	2.65	11.25
9	1,251	8.32	19.56
10	1,099	7.30	26.87
11	1,278	8.49	35.36
12	9,725	64.64	100.00
Total	15,045	100.00	

[.] qui gen highinc=(income==12) if income<.

Adding the extra regressors, we then perform the following probit estimation:

. probit vhappy ib0.occattend ib0.regattend ib1994.year ib0.highinc ib0.unem10 c.educ c.teens, r

Iteration 0: log pseudolikelihood = -5975.8765 Iteration 1: log pseudolikelihood = -5820.2106 Iteration 2: log pseudolikelihood = -5819.8741 log pseudolikelihood = -5819.8741 Iteration 3:

Probit regression Number of obs 9,768 Wald chi2(12) 300.46 Prob > chi2 = Pseudo R2 = 0.0000 0.0261

Log pseudolikelihood = -5819.8741

		Robust				
vhappy	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
1.occattend	0199884	.0309522	-0.65	0.518	0806535	.0406767
1.regattend	.2674814	.0400858	6.67	0.000	.1889146	.3460481
year						
1996	.0359605	.0462361	0.78	0.437	0546605	.1265815
1998	.05327	.0459723	1.16	0.247	0368341	.1433741
2000	.088205	.0469093	1.88	0.060	0037356	.1801456
2002	0523669	.057301	-0.91	0.361	1646749	.0599411
2004	.0199594	.05804	0.34	0.731	0937968	.1337157
2006	0181192	.0459246	-0.39	0.693	1081299	.0718914
1.highinc	.3066568	.0310986	9.86	0.000	.2457048	.3676089
1.unem10	2682503	.0297608	-9.01	0.000	3265804	2099201
educ	.0114743	.00493	2.33	0.020	.0018117	.021137
teens	0506173	.0279823	-1.81	0.070	1054616	.0042271
_cons	8438437	.0717174	-11.77	0.000	9844073	7032802

Before proceeding, we note that the estimation sample is now much smaller, due to missing values in income and unem10.

We then calculate the APEs (average marginal effects):

. margins,dydx(*)

Average marginal effects Number of obs = 9,768

Model VCE : Robust

Expression : Pr(vhappy), predict()

dy/dx w.r.t. : 1.occattend 1.regattend 1996.year 1998.year 2000.year 2002.year 2004.year 2006.year 1.highi

		Delta-method							
	dy/dx	Std. Err.	z	P> z	[95% Conf.	Interval]			
1.occattend	0067564	.0104412	-0.65	0.518	0272208	.013708			
1.regattend	.0949556	.0147451	6.44	0.000	.0660558	.1238554			
year									
1996	.0121567	.0156335	0.78	0.437	0184845	.0427979			
1998	.0180866	.0156108	1.16	0.247	01251	.0486832			
2000	.0302029	.0160774	1.88	0.060	0013082	.0617141			
2002	0172918	.0188189	-0.92	0.358	0541762	.0195925			
2004	.0067199	.0195793	0.34	0.731	0316549	.0450947			
2006	0060395	.0153063	-0.39	0.693	0360393	.0239604			
1.highinc	.1019708	.0100237	10.17	0.000	.0823247	.1216169			
1.unem10	0891086	.0096003	-9.28	0.000	1079248	0702925			
educ	.0038862	.0016685	2.33	0.020	.0006161	.0071563			
teens	0171432	.0094726	-1.81	0.070	0357092	.0014228			

Note: dy/dx for factor levels is the discrete change from the base level.

We observe that the APE for *regattend* is about .0950 (t = 6.44). So, the APE estimate and its t statistic are somewhat lower when including the additional regressors, but it is still pretty large and very statistically significant. A person who reports attending a religious service regularly has, on average, almost a .10 higher probability of being "very happy."

(iii) The signs of the APEs of *highinc*, *unem*10, *educ*, and *teens* seem reasonable. Being in the highest income group (which, unfortunately, was not indexed to inflation) leads to about a .10 higher probability of being very happy, on average. Being unemployed in the past 10 years lowers the probability of being very happy by slightly less, about .09. Both are very statistically significant. Education has a slight positive effect: each year of education increase the probability of being very happy by about .004. Finally, having teenagers reduces the probability of being very happy. Each teenager is estimated to reduce the probability by about .017, although it is only marginally statistically significant.

(iv) If we add *black* and *female* to the probit from part (ii), we obtain

. probit vhappy ib0.occattend ib0.regattend ib1994.year ib0.highinc ib0.unem10 c.educ c.teens ib0.black ib0.female, r

Iteration 0: log pseudolikelihood = -5975.8765
Iteration 1: log pseudolikelihood = -5813.317
Iteration 2: log pseudolikelihood = -5812.9143
Iteration 3: log pseudolikelihood = -5812.9143

vhappy	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
1.occattend	011234	.0310918	-0.36	0.718	0721728	.0497047
1.regattend	.2803592	.0403941	6.94	0.000	.2011882	.3595303
year						
1996	.0397522	.0462319	0.86	0.390	0508606	.130365
1998	.0588921	.0459845	1.28	0.200	0312358	.1490201
2000	.0920765	.0469144	1.96	0.050	.0001259	.1840271
2002	0466923	.0573371	-0.81	0.415	159071	.0656864
2004	.022665	.0580557	0.39	0.696	091122	.136452
2006	0122806	.0459256	-0.27	0.789	1022931	.0777318
1.highinc	.2933894	.0315375	9.30	0.000	.2315771	.3552017
1.unem10	2647602	.0297972	-8.89	0.000	3231617	2063588
educ	.0102917	.0049369	2.08	0.037	.0006155	.0199679
teens	0456549	.0280588	-1.63	0.104	1006492	.0093395
1.black	1585431	.0427019	-3.71	0.000	2422373	0748489
1.female	.0046444	.0274705	0.17	0.866	0491967	.0584855
_cons	8124185	.0741288	-10.96	0.000	9577082	6671288

The APEs are calculated as follows:

. margins,dydx(*)

Average marginal effects Number of obs = 9,768

Model VCE : Robust

Expression : Pr(vhappy), predict()

dy/dx w.r.t. : 1.occattend 1.regattend 1996.year 1998.year 2000.year 2002.year 2004.year 2006.year 1

1.female

	dy/dx	Delta-method Std. Err.	z	P> z	[95% Conf.	Interval]
1.occattend	003796	.0104944	-0.36	0.718	0243647	.0167726
1.regattend	.0995761	.0148751	6.69	0.000	.0704215	.1287308
year						
1996	.0134091	.0155983	0.86	0.390	017163	.0439811
1998	.0199608	.0155881	1.28	0.200	0105913	.0505128
2000	.0314606	.0160452	1.96	0.050	.0000126	.0629085
2002	015392	.0188097	-0.82	0.413	0522584	.0214745
2004	.0076119	.0195416	0.39	0.697	0306889	.0459127
2006	0040866	.0152816	-0.27	0.789	034038	.0258649
1.highinc	.0975514	.0101856	9.58	0.000	.077588	.1175149
1.unem10	0878733	.0096084	-9.15	0.000	1067053	0690412
educ	.0034814	.001669	2.09	0.037	.0002101	.0067527
teens	0154439	.0094879	-1.63	0.104	0340399	.0031522
1.black	0520126	.0135295	-3.84	0.000	07853	0254953
1.female	.0015709	.0092902	0.17	0.866	0166376	.0197793

Note: dy/dx for factor levels is the discrete change from the base level.

In the probit regression, *black* is statistically significant (t = -3.71) while *female* is not (t = .17). The APE for *black* is about -.052, so that, other things in the model fixed, black people are, on average, .052 less likely to be very happy.

Adding an interaction between *black* and *female* we obtain (note that the interaction term can be written as ib0.black#ib0.female):

. probit vhappy ib0.occattend ib0.regattend ib1994.year ib0.highinc ib0.unem10 c.educ c.teens ib0.black ib0.female ib0.black#ib0.female, r

```
Iteration 0: log pseudolikelihood = -5975.8765
Iteration 1: log pseudolikelihood = -5812.7988
Iteration 2: log pseudolikelihood = -5812.3758
Iteration 3: log pseudolikelihood = -5812.3758
```

Probit regression Number of obs = 9,768
Wald chi2(15) = 311.41
Prob > chi2 = 0.0000
Log pseudolikelihood = -5812.3758 Pseudo R2 = 0.0274

		Robust		5. I I	F0F% 6 6	T . 17
vhappy	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval
1.occattend	0112967	.0310944	-0.36	0.716	0722406	.0496472
1.regattend	.2804282	.040397	6.94	0.000	.2012515	.359605
year						
1996	.0405292	.0462255	0.88	0.381	0500712	.1311296
1998	.0593751	.045978	1.29	0.197	0307401	.1494903
2000	.0930056	.0469089	1.98	0.047	.0010658	.1849454
2002	046499	.0573297	-0.81	0.417	1588631	.0658651
2004	.0236477	.0580533	0.41	0.684	0901346	.13743
2006	0120646	.0459179	-0.26	0.793	102062	.0779328
1.highinc	.2921699	.031546	9.26	0.000	.2303408	.353999
1.unem10	2646808	.0297977	-8.88	0.000	3230832	2062784
educ	.0103567	.0049357	2.10	0.036	.0006829	.0200305
teens	0448346	.0280778	-1.60	0.110	0998661	.0101969
1.black	1042254	.0675687	-1.54	0.123	2366576	.0282069
1.female	.0145224	.0290475	0.50	0.617	0424096	.0714544
black#female						
1 1	0894085	.0861391	-1.04	0.299	2582381	.0794211
_cons	8183322	.0742853	-11.02	0.000	9639287	6727357

Writing the interaction term as ib0.black#ib0.female is important if we want to calculate the APEs, as Stata needs to know all the terms in the specification in which any particular variable shows up, so as to put it equal to 0 and 1 (when binary), or differentiate with respect to it (when continuous) correctly. If instead we had created a newly variable denoting the interaction term, then Stata would not know that this new variable consists of the interaction of the *black* and *female* variables.

We note from the probit results that the interaction term has a statistically insignificant *t* statistic, and the same is true for the *black* and *female* binary variables. This is likely due to the collinearity between the variables and their interaction. When we test the three dummies jointly we get

```
. testparm ib0.black ib0.female ib0.black#ib0.female
```

Hence, the three dummy variables are jointly very significant. It appears that a model with just *black* fits these data best.