

COLLEGE OF ENGINEERING

Gene Regulatory Network Inference using Bayesian Graphic Model with Gene Expression Data in Cancer Cells

Tanjin Xu, Jun He, Xingyi Li

MAR 20, 2015

Outline

- Introduction
- Related work
- Methodology
- Result
- Discussion
- Conclusion

- Bayesian Network
 - Compact representation of probability distribution via conditional independence

- Directed Acyclic Graph (DAG)
 - Nodes random variables
 - Edges direct influence
- Define a unique distribution in a factored from

$$P(B,E,A,C,R) = P(B)P(E)P(A \mid B,E)P(R \mid E)P(C \mid A)$$

 Gene Regulatory Network (GRN)

- Nodes genes
- Edges gene interactions (regulation relationship)

Structure Learning

Why learning GRN?

- The genes' expression are all messed up in cancer and novel transcipts might be generated (new edges introduced)
- The structure is undermined
- Locate the significant genes (nodes) and interactions (edges) for target therapy

Why Bayesian Network?

- Conditional independencies & graphical language capture structure of many real-world distributions
- Graph structure provides much insight into domain "knowledge discovery"
- Capable of combining domain knowledge with data
- Dealing with missing data & hidden variables
 - In this project, assume data is complete

Structure Learning (cont.)

Constraint Based

- Test independencies & add edges according to the tests
- Cons
 - Independence tests are less reliable on small samples
 - One incorrect independence test might propagate far

Search and Score

- Define a selection criterion that measures goodness of a model
- Search in the space of all models (or orders)
- Score functions: **BDe**, BDeu, BIC, etc.
- Search algorithms: K2 (ordered), Hill-climbing, Simulated annealing...

Mix models

- Test for almost all independencies
- Search and score

Gene expression data

Learning gene regulatory networks

Input:

Gene expression data – measurement of mRNA levels of all genes

- Goal: Reconstruct the gene regulatory network that controls gene expression
- Method: Probabilistic graphical models to represent the regulatory network

Related work

- BNs were first applied to gene expression studies in the analysis of the yeast cell cycle by *Friedman*, et al., 2000
 - Applied both multinomial model and Gaussian model using heuristic search
 - Only normal cells
- Seeded Bayesian Networks by Quackenbush, et al., 2008
 - Almost the same pipeline as Friedman
 - Combined different sources of gene interactions as priors (seeds)
 - Expression data from microarray in cancer celllines *not real cancer cells*
 - Only 40 genes are analyzed
- Learning a Markov Logic Network for supervised gene regulatory network inference, *Brouard*, et al., 2013
 - Build a binary classifier based on existing knowledge about known gene interactions
 - Not appropriate for cancer gene expression analysis

Outline

- Introduction
- Related work
- Methodology
- Result
- Discussion
- Conclusion

Methodology

- Feature selection
 - Original gene expression data
 - Continuous data
 - 46585 (genes) x 432 (samples)
 - Possible DAG number: $n!2^{n(n-1)/2}$

Figure 2: log(sd) vs. log(mean)

- Criteria
 - Genes with significant variance over all samples

$$\frac{\sigma}{\mu} > c, \sigma$$
 – standar deviation; μ – mean

•
$$C = 1, \sigma > 2$$

- Discretization
 - Normalized to [0,1] over all samples for each gene
 - Discretized to 0 (low-level) or 1 (high-level)

Search Algorithms

Bayesian score & priors

BDe score:

$$score_{B}(G, D) = logP(D | G) + logP(G)$$

- The posterior
 - Dirichlet prior

$$Pr(D \mid G) = \int Pr(D \mid G, \Theta) Pr(\Theta \mid G) d\Theta$$
$$p(\Theta) \sim Dirichlet(\alpha_1, \alpha_2, ..., \alpha_k)$$

Closed form

$$\Pr(D \mid G) = \prod_{i=1}^{n} \prod_{u_i \in Val(Pa^G(X_i))} \frac{\Gamma(\alpha_{X_i \mid u_i}^G)}{\Gamma(\alpha_{X_i \mid u_i}^G + M[u_i])} \prod_{x_i^j \in Val(X_i)} \left[\frac{\Gamma(\alpha_{X_i^j \mid u_i}^G + M[x_i^j, u_i])}{\Gamma(\alpha_{X_i^j \mid u_i}^G)} \right]$$

$$\alpha_{x_i^j \mid u_i}^G = \frac{\alpha}{\mid x_i^j \mid \mid u_i \mid}, \alpha = 2 \text{ (Friedman et al., 2008)}$$

Structure prior

$$P(G) = e^{-|G|}$$
, where |G| represents # of edges in G

How to calculate Gamma?

- Gamma(200) → INF
- Suppose each random variable X_i is binary, for each $u_i \in Val(Pa^G(X_i))$ the inner product can be written as:

$$\frac{\Gamma(\alpha_{x_{i}^{0}|u_{i}} + M[x_{i}^{0}, u_{i}])}{\Gamma(\alpha_{x_{i}^{0}|u_{i}})} \cdot \frac{\Gamma(\alpha_{x_{i}^{1}|u_{i}} + M[x_{i}^{1}, u_{i}])}{\Gamma(\alpha_{x_{i}^{1}|u_{i}})} \cdot \frac{\Gamma(\alpha_{x_{i}^{0}|u_{i}} + \alpha_{x_{i}^{1}|u_{i}})}{\Gamma(\alpha_{x_{i}^{0}|u_{i}} + \alpha_{x_{i}^{1}|u_{i}} + M[u_{i}])}$$

$$= \frac{\Gamma(\alpha_{0} + M_{0}) \cdot \Gamma(\alpha_{1} + M_{1}) \cdot \Gamma(\alpha_{0} + \alpha_{1})}{\Gamma(\alpha_{0}) \cdot \Gamma(\alpha_{1}) \cdot \Gamma(\alpha_{0} + \alpha_{1} + M_{0} + M_{1})}$$

As
$$\Gamma(x+1) = x\Gamma(x) = x(x-1)\Gamma(x-1) = \cdots$$

Let $\alpha = \alpha_0 + \alpha_1$, $M = M_0 + M_1$, the equation above can be written as:

 $(\alpha + M - 1)(\alpha + M - 2) \cdots \alpha$

$$\frac{(\alpha_0 + M_0 - 1)(\alpha_0 + M_0 - 2)\cdots\alpha_0\Gamma(\alpha_0)\cdot(\alpha_1 + M_1 - 1)(\alpha_1 + M_1 - 2)\cdots\alpha_1\Gamma(\alpha_1)\Gamma(\alpha)}{\Gamma(\alpha_0)\cdot\Gamma(\alpha_1)\cdot(\alpha + M - 1)(\alpha + M - 2)\cdots\alpha\Gamma(\alpha)}$$

$$= \frac{(\alpha_0 + M_0 - 1)(\alpha_0 + M_0 - 2)\cdots\alpha_0\cdot(\alpha_1 + M_1 - 1)(\alpha_1 + M_1 - 2)\cdots\alpha_1}{\Gamma(\alpha_0 + M_0 - 1)(\alpha_0 + M_0 - 2)\cdots\alpha_0\cdot(\alpha_1 + M_1 - 1)(\alpha_1 + M_1 - 2)\cdots\alpha_1}$$

How to calculate Gamma? (cont.)

Generally if Xi has k states, the formula can be written as:

with the log format:

$$\Rightarrow \sum_{i} \sum_{j=1}^{m_i} \log(\alpha_i + m_i - j) - \sum_{k=1}^{m} \log(\alpha + m - k)$$

Then the closed form of the posterior probability:

$$\sum_{i=1}^{n} \sum_{u_{i} \in val(pa(x_{i}))} \left(\left(\sum_{j \in val(x_{i})} \sum_{k=0}^{M[x_{i}^{j}, u_{i}]-1,} \log(\partial_{x_{i}^{j}|u_{i}}^{g} + k) \right) - \sum_{k=0}^{M[u_{i}]-1} \log(\left(\sum_{j \in val(x_{i})} \partial_{x_{i}^{j}|u_{i}}^{g} \right) + k) \right)$$

Bootstrapping

Sampling with replacement

Estimated confidence of each edge i
networks that contain the edge

total # networks (N)

Outline

- Introduction
- Related work
- Methodology
- Result
- Discussion
- Conclusion

Bootstrapping

• 74 iterations

Genes Name	Node #	Average out-degree	
IGKV3-20	38	11.164	
IGKV3D-7	31	8.6301	
IGKV1OR10-1	37	7.2603	
AC027612.6	22	6.6027	
RP11-1166P10.8	25	6.0959	
IGHV3OR16-9	56	5.9452	
IGKV1OR9-2	29	5.0822	
IGLV1-47	10	4.5753	
IGKV1D-27	28	4.5068	
IGHV4-4	15	4.3014	

Gene pairs			Confidence level	
SNORD3B-2	50	RP11-160E2.6	51	1
IGKV3D-7	31	IGLC6	23	0.93151
RP11-1166P10.8	25	IGKV4-1	6	0.89041
IGKV3-20	38	IGKV1D-42	9	0.87671
IGHV4-61	20	IGKV1-27	44	0.87671
IGKV3-20	38	IGKV1D-27	28	0.86301
IGHV4-4	15	IGHV4-61	20	0.86301
IGKV3-20	38	IGHV4OR15-8	47	0.83562
IGKV3-20	38	IGHV2-5	16	0.83562
IGKV3-20	38	IGHV4-4	15	0.83562

Discussions

- Genes with top-3 out-degrees
 - IGKV3-20, IGKV3D-7,IGKV10R10-1
 - These IgG related genes can be expressed in bladder cancer and drive cancer progression (Liang et al., 2013)
- Some genes relations are very robust
 - SNORD3B-2 → RP11-160E2.6 (1)
 - IGKV3D-7 → IGLC6 (0.93151)
 - Non-coding genes also have important role in cancer -- Verified by Nallar et al., 2013
- GRN is a sparse network (57 nodes, 81 edges)
 - No more than a few dozen genes directly affect its transcription

Discussions (cont.)

- TO-DOs in future
 - Apparently some genes were strongly enriched
 - Need better feature selection strategy
 - Search optimization
 - Combine priors from existing literature
 - Global optimum structure
 - Better validation
 - · Compare with existing literature about gene interactions in cancer
 - Integrate with "driver" gene detection
 - A different model (Gaussian instead of multinomial?)

Conclusions

- Learned a Bayesian network structure with cancer gene expression data
- Enhanced approach for Bayesian score computation
- Verified the importance of the hub genes and the robust gene connections in the learned network through existing literature

Thank you!