Grup 1

UPC - AA

10 de juny de 2020

Index

- 1 Introducció
 - Network Creation Games
 - Bounded Budget Network Creation Game
- 2 Definició dels models
 - SUM
 - MAX
 - Resultats
- Best response és NP-hard
 - Theorem 2.1
 - k-CENTER
 - Reducció de k-CENTER a MAX
 - k-MEDIAN
 - Reducció de k-MEDIAN a SUM

Introducció

Article: Bounded Budget Network Creation Game

Autors: Sayan Ehsani, Saber Shokat Fadaee, Mohammadamin

Fazli, Abbas Mehrabian, Sina Sadeghian Sadeghabad,

Mohammadali Safari and Morteza Saghafian

Publicació: ACM Transaction on Algorithms, Vol. 11, No. 4, Article 34

Data de publicació: Abril 2015

DOI: 10.1145/2701615

Network Creation Games

Un *Network creation game* es centra en **modelar xarxes** de la vida real des del punt de vista de la **teoria de jocs**.

Cada node u representa un jugador i cada jugador té una estratègia S_u , representada per un conjunt d'arestes que el jugador crea, on cada aresta té cost de creació α .

El vector d'estratègia $S = (S_1, ..., S_n)$ conté l'estratègia de cada jugador i G(S) és el graf no-dirigit resultant d'aplicar les estratègies.

Objectiu de cada node:

- Minimitzar la creació d'arestes
- Minimitzar la distància als altres nodes

Network Creation Games

Cada node vol minimitzar la seva funció de cost, que definim com:

$$c(u) = \alpha n_u + \sum_{v \in V(G)} \operatorname{dist}(u, v)$$

On $n_u = |S_u|$ i G és el graf que representa la xarxa.

Definim el cost social com la suma dels costos de tots els nodes:

$$SC(S) = \alpha |E| + \sum_{u,v \in V(G)} \text{dist}(u,v)$$

Network Creation Games

El **preu de l'anarquia** (*PoA*) mesura la pèrdua d'eficiència deguda a l'actitud egoista dels jugadors. Es calcula:

$$PoA = \frac{\max_{s \in S} SC(s)}{\min_{e \in E} SC(e)}$$

On $E \subseteq S$ és el conjunt amb totes les estratègies que són equilibris.

Definicions:

- Donat un graf dirigit G, denotem el seu conjunt de vèrtexs com V(G).
- lacksquare U(G) es un graf no-dirigit obtingut ignorant les direccions en G.
- Si $\overrightarrow{uv}, \overrightarrow{vu} \in G$ llavors $uv \in U(G)$ te multiplicitat 2 i anomenem la parella $\{u,v\}$ brace.
- \blacksquare dist(u, v) denota la distancia entre u i v a U(G).
- Si u i v estan en components connexos diferents de U(G) llavors $\operatorname{dist}(u,v) = C_{inf} = n^2$.
- No tenim α , és a dir, les arestes no tenen cost.

Denotem un Bounded budget network creation game com:

$$(b_1,b_2,\ldots,b_n)$$
-BG

On b_1, b_2, \ldots, b_n són enters no negatius que representen el pressupost de cada jugador (n és el nombre de jugadors).

Cada jugador i té assignada una estratègia $S_i \subseteq \{1, 2, \dots, n\} \setminus \{i\}$ amb $|S_i| = b_i$.

Podem construir un graf G a partir del conjunt de totes les estratègies afegint una aresta $\overrightarrow{u_iv_j}$ a G si i només si $j \in S_i$. Anomenen a aquests grafs *realitzadors* de (b_1,b_2,\ldots,b_n) -BG.

Direm que un vèrtex està en la millor resposta (*best response*) si no pot disminuir el seu cost mantenint fixes les estratègies de la resta de vèrtexs.

$$(2,2,1,0) - \mathsf{BG}$$
 $S = (\{2,4\},\{1,4\},\{2\},\{\})$

Definició dels models

A l'article [1] es consideren 2 models de bounded budget network creation games:

- SUM
- MAX

Els models difereixen en la definició de la funció de cost.

Model SUM

Definim la funció de cost del model SUM com:

$$c_{\text{SUM}}(u) = \sum_{v \in V(G)} \text{dist}(u, v) \tag{1}$$

Model SUM

Volem computar $c_{SUM}(3)$

$$dist(3,1) = 2$$

 $dist(3,2) = 1$
 $dist(3,4) = 2$

$$c_{\text{SUM}}(3) = 5$$

Model MAX

Definim la funció de cost del model MAX com:

$$c_{\text{MAX}}(u) = \max\{\text{dist}(u, v) : v \in V(G)\} + (\kappa - 1)n^2$$
 (2)

On κ és el nombre de components connexos de U(G).

El primer terme $\max\{\mathrm{dist}(u,v):v\in V(G)\}$ és l'excentricitat de u. El terme $(\kappa-1)n^2$ s'afegeix per incentivar decréixer el nombre de components connexos.

Model MAX

Volem computar $c_{\text{MAX}}(3)$

$$dist(3,1) = 2$$

 $dist(3,2) = 1$
 $dist(3,4) = 2$

Cal tenir en compte que $\kappa = 1$

$$c_{\text{MAX}}(3) = 2 + 0 \cdot 4^2 = 2$$

Resultats

Es demostra que:

- Per tota seqüència no negativa (b_1, b_2, \dots, b_n) en el joc (b_1, b_2, \dots, b_n) -BG hi ha un equilibri de Nash i el preu d'estabilitat és $\Theta(1)$ en les dues versions.
- En els casos on la suma dels pressuposts és igual a n-1 el *PoA* és $\Theta(n)$ i $\Theta(\log n)$ en MAX i SUM respectivament.
- El PoA quan el pressupost de tots els jugadors és igual a 1 és $\Theta(1)$ en les dues versions.
- A mesura que s'incrementa el pressupost dels jugadors el diàmetre del graf **no** disminueix. Per la versió de MAX hi han instàncies amb tots el pressuposts positius on el PoA és $\Omega(\sqrt{\log n})$.

Resultats

- En la versió SUM el *PoA* té com a límit superior $2^{O(\sqrt{\log n})}$.
- Pel model SUM, si cada jugador té pressupost k, llavors tots els *equilibrium graphs* de diàmetre major 3 seran k-CONNECTED.

Table I. Our Bounds on the Price of Anarchy in Various Classes of Instances (*n* is the Number of Players)

Budget Constraints	MAX	SUM
$\sum_{i=1}^{n} b_i = n - 1$	$\Theta(n)$	$\Theta(\log n)$
$\overline{b_i} = 1, i = 1, 2, \dots, n$	$\Theta(1)$	$\Theta(1)$
$b_i \geq 1, i = 1, 2, \dots, n$	$\Omega(\sqrt{\log n})$	$2^{O(\sqrt{\log n})}$
no constraints	$\Theta(n)$	$2^{O(\sqrt{\log n})}$

Figura: Taula extreta del article [1]

Teorema

L'article enuncia i demostra el següent teorema:

Theorem

The problem of finding a player's best response in both ${\rm MAX}$ and ${\rm SUM}$ versions of the bounded budget network creation games is NP-hard.

La demostració es basa en una reducció de k-CENTER a MAX i de k-MEDIAN a SUM. On k-CENTER i k-MEDIAN són NP-hard [2, 3, 4].

k-CENTER

Problem (k-CENTER)

Donat un graf no-dirigit H i un enter positiu k es vol trobar un subconjunt S de k vèrtexs que minimitzi la distància màxima de un vèrtex a S:

$$\min_{S \subseteq V(H):|S|=k} \left(\max_{v \in V(H)} \operatorname{dist}(v,S) \right)$$
 (3)

$$\operatorname{dist}(v,S) = \min\{\operatorname{dist}(v,u) : u \in S\}$$
(4)

k-CENTER

We first consider the K-center problem. An instance of this problem is given by a graph G = (V, E), a positive integer K < |V| and a non-negative function c on the edges of the graph. The distance d(u, v) for all $u, v \in V$ is assumed to be the length of a shortest path between vertices u and v, where path length is the sum of the c_i 's over all edges of the path; $d(u, u) \equiv 0$. The distance $d(u, S) = u \cap c_i = 0$ for all $u \in V$ and $S \subseteq V$. The objective is to choose $S \subseteq V$, |S| = K so that $\max_{u \in V} d(u, S)$ is minimum. Let z''(C, c, K') be the minimum value.

The α -approximate K-center problem is to find a K-center whose value z(G,c,K) satisfies

$$z(G, c, K) \leq \alpha z^*(G, c, K)$$
 for all G, c and K

where α is a real number, $\alpha \ge 1$. Note that c=1 corresponds to finding an optimal solution and the quality of the approx $2\theta^{*'}$ in required decreases with increasing α .

Given a graph G and an integer K < |V|, the a-mating set problem [5] is to decide whether there exists a set of K vertices with the property that the remaining vertices are adjacent to this set. This problem is NP-complete [5]. Note that a graph has dominating set of size K if and only if the K-center problem with $c_0 = 1$ for all $e \in E$ has $e \in E$ has $e \in E$. Furthermore $e \in E$ is an integer. Thus

Proposition 2. The α -approximate K-center problem is NP-hard for $\alpha < 2$.

Figura: Wen-Lian Hsu i George L. Nemhauser. (1979) [2]

Reducció de k-CENTER a MAX

Donat un graf no dirigit H de n vèrtexs i un enter positiu k volem trobar una solució òptima a k-CENTER.

Considerem ara un graf G tal que U(G)=H i un joc $(b_1,b_2,\ldots,b_n,b_{n+1})$ -BG on b_i és el grau de sortida del vèrtex i de G i $b_{n+1}=k$.

La millor resposta ($best\ response$) del jugador n+1 amb les estratègies de la resta marcades per G és una solució òptima de k-CENTER.

k-MEDIAN

Problem (k-MEDIAN)

Donat un graf no dirigit H i un enter positiu k es vol trobar un conjunt $S \subseteq V(H)$ de k vèrtexs tal que es minimitzi la suma de les distancies de cada vèrtex en V(H) a el vèrtex més proper de S.

$$\min_{S \subseteq V(H):|S|=k} \left(\sum_{v \in V(G)} \operatorname{dist}(v, m_S(v)) \right)$$
 (5)

On $m_S(v)$ és el vèrtex de S més proper a v.

k-MEDIAN

The s-median problem is \mathcal{NP} -hard, even in Euclidean space [GaJ, KaH, MeS, Pap]. Without any probabilistic assumptions [ACC, FiH, Pap], no approximation algorithms are known. Even if the cost matrix is symmetric, by similar reasoning as in [KaH, SaG], it is easy to show the following:

Lemma 2 The ϵ -approximation problem for the smedian problem is NP-hard even if the cost matrix is symmetric.

Figura: Jyh-Han Lin i Jeffrey Scott Vitter. (1992) [3]

ON THE COMPLEXITY OF SOME COMMON GEOMETRIC LOCATION PROBLEMS*

NIMROD MEGIDDO† AND KENNETH J. SUPOWIT:

Abstract. Given n demand points in the plane, the p-center problem is to find p supply points (anywhere in the plane) so as to minimize the maximum distance from a demand point to its respective nearest supply point. The p-modian problem is to minimize the sum of distances from demand points to their respective nearest supply points. We prove that the p-center and the p-modian problems relative to both the Euclidean and the rectilinear metrics are NP-hard. In fact, we prove that it is NP-hard even to approximate the p-center problems sufficiently closely. The reductions are from 3-satisfiability.

Figura: Nimrod Megiddo i Kenneth Supowit. (1984) [4]

Reducció de k-MEDIAN a SUM

Apliquem el mateix principi que en el cas de k-CENTER i MAX:

Donat un graf no dirigit H de n vèrtexs i un enter positiu k volem trobar una solució òptima a k-MEDIAN.

Considerem ara un graf G tal que U(G)=H i un joc $(b_1,b_2,\ldots,b_n,b_{n+1})$ -BG on b_i és el grau de sortida del vèrtex i de G i $b_{n+1}=k$.

La millor resposta (best response) del jugador n+1 amb les estratègies de la resta marcades per G és una solució òptima de k-MEDIAN.

Bibliografia

- Shayan Ehsani et al. "On a Bounded Budget Network Creation Game". A: ACM Transactions on Algorithms 11.4 (23 de juny de 2015), pàg. 1 25. ISSN: 1549-6325, 1549-6333. DOI: 10.1145/2701615. arXiv: 1111.0554.
- Wen-Lian Hsu i George L. Nemhauser. "Easy and hard bottleneck location problems". A: Discrete Applied Mathematics 1.3 (1 de nov. de 1979), pàg. 209-215. ISSN: 0166-218X. DOI: 10.1016/0166-218X (79) 90044-1.
- Jyh-Han Lin i Jeffrey Scott Vitter. "e-approximations with minimum packing constraint violation (extended abstract)". A: *Proceedings of the twenty-fourth annual ACM symposium on Theory of Computing.* STOC '92. Victoria, British Columbia, Canada: Association for Computing Machinery, 1 de jul. de 1992, pàg. 771 782. ISBN: 978-0-89791-511-3. DOI: 10.1145/129712.129787.
- Nimrod Megiddo i Kenneth Supowit. "On the Complexity of Some Common Geometric Location Problems". A: *SIAM J. Comput.* 13 (1 de febr. de 1984), pàg. 182-196. DOI: 10.1137/0213014.

Index

- 1 Introducció
 - Network Creation Games
 - Bounded Budget Network Creation Game
- 2 Definició dels models
 - SUM
 - MAX
 - Resultats
- Best response és NP-hard
 - Theorem 2.1
 - k-CENTER
 - Reducció de k-CENTER a MAX
 - k-MEDIAN
 - Reducció de k-MEDIAN a SUM