Devoir surveillé nº 1

Consignes: - Les documents et outils électroniques sont interdits.

- Le devoir a un total de 24 points. Les notes ≥ 20 seront considérées comme 20.
- Vous devez justifier vos réponses au maximum.
- Les affirmations irresponsables vous font perdre la confiance du correcteur : Il faut les éviter à tout prix.
- La bonne compréhension et interprétation des questions fait partie du devoir.
- Le barème est donné à titre indicatif.

Convention. Dans la suite, G désigne un groupe.

Exercice 1 (Question de cours). (5 pts) Soit X un G-ensemble n'ayant qu'une seule orbite. Montrer qu'il existe un sous-groupe H de G, que l'on spécifiera, et une bijection entre G-ensembles $G/H \to X$.

Exercice 2. (9 pts)

- 1) Soit $G = GL_2(\mathbf{F}_2)$. En déterminant une action de G sur un ensemble, montrer que $G \simeq \mathscr{S}_3$.
 - Correction. On laisse P être le sous-ensemble des droites vectorielles de \mathbf{F}_2^2 qui passent par l'origine. Clairement, $P = \{\mathbf{F}_2\vec{e}_1, \mathbf{F}_2\vec{e}_2, \mathbf{F}_2(\vec{e}_1 + \vec{e}_2)\} = \{1, 2, 3\}$. On obtient une action de G sur P et un morphisme $T: G \to \mathscr{S}_3$. Or, G est un groupe avec $(4-1)\cdot(4-2)=6$ éléments. Clairement, $T\begin{pmatrix}1&1\\0&1\end{pmatrix}=(23)$ et $T\begin{pmatrix}0&1\\1&1\end{pmatrix}=(123)$. Donc

l'image de T possède pl
su de 3 éléments \Rightarrow elle doit être \mathscr{S}_3 .

2) Soit maintenant $G = \operatorname{GL}_2(\mathbf{F}_3)$ et soit $H = \left\{ \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} : \lambda \in \mathbf{F}_3^* \right\}$ le sous-groupe distingué des homothéties. En déterminant une action de G sur un ensemble, montrer que $G/H \simeq \mathscr{S}_4$

Correction. Ensuite, on prendra P les droites vectorielles de \mathbf{F}_3^2 . Il est facile de les compter : on a $\{\mathbf{F}_3\vec{e}_1,\mathbf{F}_3\vec{e}_2,\mathbf{F}_3(\vec{e}_1+\vec{e}_2),\mathbf{F}_3(2\vec{e}_1+\vec{e}_2)\}$. Ceci donne un $T:G\to\mathscr{S}_4$. Clairement, $H\subset \operatorname{Ker} T$. En fait, si $x=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ fixe $\mathbf{F}_3\vec{e}_1$ et $\mathbf{F}_3\vec{e}_2$, alors $x=\begin{pmatrix} \lambda \\ \mu \end{pmatrix}$,

et $G/H \simeq \text{Im. Or, l'image possède 24 éléments.}$ **Exercice 3.** (10pts) On suppose G fini. Soit H < G un sous-groupe et $T: G \to \text{Bij}(G/H)$ le morphisme associé à l'action de G sur G/H. Le coeur de H, désigné par \mathscr{C}_H dans la suite, est le sous-groupe $\operatorname{Ker} T$. 1) (3 pts) Montrer que si $N \triangleleft G$ est contenu dans H, alors $N \subseteq \mathscr{C}_H$. Correction. En effet, si $n \in N$ et $gH \in G/H$, on voit que $n * gH = gg^{-1}ngH = gn'H =$ gH. Donc $N \subset \operatorname{Ker} T$. 2) (3 pts) Exprimer \mathscr{C}_H en fonction des conjugués $\{{}^gH:g\in G\}$. Correction. On sait que $St_{eH} = H$ et que $St_{gH} = {}^{g}St_{eH} = {}^{g}H$. Donc, $x \in \mathscr{C}_{H}$ si et seulement si $x \in \bigcap_q {}^g H$. Donc ker $=\bigcap_q {}^g H$.

et une telle matrice ne peut pas fixer $\mathbf{F}_3(\vec{e}_1 + \vec{e}_2)$, sauf quand $\lambda = \mu$. Donc ker T = H

et $k \mid m$. Mais si ℓ est un diviseur premier de k, on sait que $\ell \geqslant p$ et donc ℓ ne peut

pas diviser m. Par conséquent, k=1.

2