Alec Zitzelberger & Brandon Lee Dring Implementation 3 Report:

Part 1:

a. The linear program for the general problem written as an objective and set of constraints Minimum m (Max abs deviation)

Subject To:

m >= 0 // we only need positive maxes from an absolute value

$$m >= -(x*a + b - y)$$

 $m >= (x*a + b - y)$

B. The best solution for the specific problem above

solver objective: 0.57142857

Val of a: 1.7142857 Val of b: 1.8571429

C. The output of the LP solver that you used (showing that an optimal solution was found)

Val of a: 1.7142857 Val of b: 1.8571429

SOLUTION: y = 1.7142857x + 1.8571429

Part 2:

a. A description for a linear program for finding the best fit curve for temperature data.

Minimum m(Max abs dev):

Subject to:

B. The values of all of the variables to your linear program in the optimal solution that your linear program solver finds for the Corvallis data. Solving this LP may take a while depending on your computer. Be patient. Include the output of the LP solver that you use (showing that an optimal solution was found)

Values(For raw data):

Solver: 14.23554 Val of x: 8.0214197

Val of x1/slope: 0.00010694836

Val of x2: 4.2808907 Val of x3: 8.1868578 Val of x4: -0.79063079 Val of x5: -0.29536021

D. x1 is the slope of temperature increase by day for the raw data.

So x1 * 365 * 100 = 3.9036151400000003 degrees per century.. But!

To find the line of best fit for the data:

M = 4.0334403880277316e-05

B = 10.869131808331797

So,

Change of average temperature over the data period for $\boldsymbol{\mathsf{line}}$ of $\boldsymbol{\mathsf{best}}$ fit is

Y = M* 22305 + B

Which comes out to 11.768658792

Then 11.76 - 10.86 = 0.9 degree difference over the course of 50 years in this case **Which is indeed a warming trend**

e. Repeat b-d for SF

I. Values(For raw data):

Solver: 23.178256 Val of x: 15.114899 Val of x1/slope: -4.6730411e-06

Val of x2: -1.6643722 Val of x3: 2.4138607 Val of x4: -0.88761774 Val of x5: -0.53528776

Line of best fit data:

M = 7.2151379710181921e-06

B = 13.562575584085966

Y = M * 47795 + B

Y = 13.90742310341078

So, there is a change of 0.34484751932481394 degree difference, but what is interesting with this data is that it is only over the past 12 years. *Which is a warming trend still.*

II.

III. 0.34484751932481394 degree difference over 12 years so 0.028737293 degree change on average per year. This * 100 = 2.873729328 degree change in a century.

No sinusoidal data since the discontinuity in the years from NOAA