【数理逻辑】范式(合取范式 | 析取范式 | 大项 | 小项 | 极大项 | 极小项 | 主合取范式 | 主析取范式 | 等值演算方法求主析/合取范式 | 真值表法求主 析/合取范式)

文章目录

- 一. 相关概念
 - 1. 简单 析取 合取 式
 - (1)简单合取式
 - (2)简单析取式
 - 2. 极小项
 - (1)极小项简介
 - (2)极小项说明
 - (3)两个命题变项的极小项
 - (4)三个命题变项的极小项
 - (5)极小项成真赋值公式名称之间的转化与推演
 - 3. 极大项
 - (1)极大项简介
 - (2)极大项说明
 - (3)两个命题变项的极大项
 - (4)三个命题变项的极大项
 - (5) 极大项 成假赋值 公式 名称 之间 的 转化 与 推演
- 二. 题目解析
 - 1. 使用等值演算方式求 主析取范式 和 主合取范式
 - 2. 使用 真值表法 求 主析取范式 和 主合取范式
- 一. 相关概念
- 1. 简单 析取 合取 式
- (1)简单合取式

简单合取式:

• 1.组成: 命题变元 (p)或 f

(9条消息)【数理逻辑】范式 (合取范式 | 析取范式 | 大项 | 小项 | 极大项 | 极小项 | 主合取范式 | 主析取范式 | 等值演算方... 2022/10/24 下午5:54

- 2.概念:有限个命题变元或其否定式组成的合取式,称为简单合取式;
- 3.示例:
 - 。 ① 单个命题变元:p;
 - 。 ② 单个命题变元否定式:¬p
 - 。 ③ 两个 命题变元 或其否定式 构成的合取式: $p \land \neg q$
 - 。 ④ 三个 命题变元 或其否定式 构成的合取式 : $p \wedge q \wedge r$

(2)简单析取式

简单析取式:

- 1.组成: 命题变元 (p) 或 命题变元否定式 (¬p);
- 2.概念:有限个 命题变元 或其 否定式 组成的析取式, 称为 简单析取式;
- 3.示例:
 - 。 ① **单个命题变元**: p;
 - 。 ② 单个命题变元否定式:¬p
 - \circ ③ 两个 命题变元 或其否定式 构成的析取式 : $p \lor \neg q$
 - \circ ④ 三个 命题变元 或其否定式 构成的析取式 : $\mathbf{p} \lor \mathbf{q} \lor \mathbf{r}$

2. 极小项

(1)极小项简介

极小项:极小项 是一种简单合取式;

- 1.前提 (简单合取式): 含有 n 个 命题变项 的 简单合取式;
- 2.命题变项出现次数:每个命题变项均以文字的形式在其中出现,且仅出现一
- 3.命题变项出现位置: 第i ($1 \le i \le n$) 个文字出现在 左起 第i 个位置;
 - n 是指命题变项个数;
- 4.极小项总结:满足上述三个条件的简单合取式,称为极小项;
- 5. m_i 与 M_i 之间的关系: ① $\neg m_i \iff M_i$ ② $\neg M_i \iff m_i$

(2)极小项说明

关于 极小项 的 说明:

- 1.极小项个数: n 个 命题变元 会 产生 2^n 个 极小项;
- 2.互不等値: 2ⁿ 个极小项 坎 デブ等値:

(3)两个命题变项的 极小项

两个命题变项 p, q 的 极小项:

- 1.先写出 极小项 名称: \mathbf{M} 0 开始计数, $\mathbf{m}_0, \mathbf{m}_1, \mathbf{m}_2, \mathbf{m}_3$;
- 2.然后写出成真赋值:0,1,2,3 对应的二进制形式,即00,01,10,11;
- 3.最后写公式(简单合取式):
 - \circ ① 公式形式:公式是简单合取式 , $p \wedge q$, 其中 每个命题变项 p,q 之前都可能带着 否定符号 \neg ;
 - \circ ② 满足成真赋值:该公式需要满足 其上述 00,01,10,11 赋值是成真赋值,即根据成真赋值,反推出其公式;
 - 。 ③ 分析:成真赋值 为 0,0,合取符号 \wedge 两边都要为 真,赋值为 0,那么 对应命题变项 要带上 \neg 符号;
 - \circ ④ 对应: 凡是 0 赋值的,带 \neg 符号; 凡是 1 赋值的,对应 正常 命题变项;

公式	成真赋值	名称	
$\neg p \wedge \neg q$	0 0	m_0	
$\neg p \wedge q$	0 1	m_1	
$p \land \neg q$	1 0	m_2	
$p\wedge q$	1 1	m ₃	

(4)三个命题变项的 极小项

三个命题变项 p,q,r 的 极小项:

- 1.先写出 极小项 名称 : 从 0 开始计数 , $m_0, m_1, m_2, m_3, m_4, m_5, m_6, m_7$;
- 2.然后写出成真赋值:0,1,2,3,4,5,6,7 对应的二进制形式,即 000,001,010,011,100,101,110,111;
- 3.最后写公式(简单合取式):
 - 。 ① 公式形式:公式是简单合取式, $p \wedge q \wedge r$,其中 每个命题变项 p,q,r 之 前都可能带着 否定符号 \neg ;
 - ② 满足成真赋值:该公式需要满足 其上述
 000,001,010,011,100,101,110,111 赋值是成真赋值,即根据成真赋值, 反推出其公式:
 - 。 ③ 分析:成真赋值 为 0,0,0,三个命题变项都要为 真,赋值为 $\mathbf 0$,那么对应命题变项要带上 \neg 符号;
 - \circ ④ 对应: 凡是 0 赋值的,带 \neg 符号; 凡是 1 赋值的,对应 正常 命题变项;

公式	成真赋值	名称	
$\neg p \wedge \neg q \wedge \neg r$	0 0 0	m_0	
$\neg p \wedge \neg q \wedge r$	0 0 1	m_1	

 $\neg p \wedge q \wedge \neg r$

公式	成真赋值	名称	
$\neg p \wedge q \wedge r$	0 1 1	m_3	
$p \land \neg q \land \neg r$	1 0 0	m_4	
$p \wedge \neg q \wedge r$	1 0 1	m_5	
$p \wedge q \wedge \neg r$	1 1 0	m_6	
$p \wedge q \wedge r$	1 1 1	m_{7}	

(5) 极小项 成真赋值 公式 名称 之间 的 转化 与 推演

极小项 成真赋值 公式 名称 之间 的 转化 与 推演:

- 1.成真赋值 到 公式 之间的推演:公式 的 成真赋值列出,就是成真赋值;根据成真赋值 写出 公式,0 对应的 命题变项 带 否定 ¬,1 对应 正常的命题变项;
- 2.名称 到 成真赋值 之间的 推演:这个 最简单,直接将 下标 写成 二进制形式 即可
- 3.公式 到 名称 之间的 推演:直接推演 比较困难,必须通过 成真赋值 过渡一下, 先写出 成真赋值,然后将其当做 二进制数 转为 十进制的下标即可;

3. 极大项

(1)极大项简介

极大项:极大项是一种简单析取式;

- 1.前提 (简单析取式): 含有 n 个 命题变项 的 简单析取式;
- 2.命题变项出现次数:每个命题变项均以文字的形式在其中出现,且仅出现一次;
- 3.命题变项出现位置: 第i ($1 \le i \le n$) 个文字出现在 左起 第i 个位置;
 - 。 n 是指命题变项个数;
- 4.极大项总结:满足上述三个条件的简单析取式,称为极大项;

(2)极大项 说明

关于 极大项 的 说明:

- 1.极大项个数: n 个 命题变元 会 产生 2^n 个 极大项;
- 2.互不等值 : 2^n 个极大项 均 互不等值 ;
- 3.极大项 : m_i 表示 第 i 个极大项 , 其中 i 是该极大项 成假赋值 的 十进制表示 ;
- 4.极大项名称: 第 i 个极大J

(3)两个命题变项的极大项

两个命题变项 p, q 的 极大项:

- 1.先写出 极大项 名称: \mathbf{M} 0 开始计数, $\mathbf{M}_0, \mathbf{M}_1, \mathbf{M}_2, \mathbf{M}_3$;
- 2.然后写出成假赋值: 0, 1, 2, 3 对应的二进制形式,即 00, 01, 10, 11;
- 3.最后写公式(简单析取式):
 - 。 ① 公式形式:公式是简单析取式, $p \wedge q$, 其中 每个命题变项 p,q 之前都可能带着 否定符号 \neg ;
 - \circ ② 满足成假赋值:该公式需要满足 其上述 00,01,10,11 赋值是成假赋值,即根据成假赋值,反推出其公式;
 - 。 ③ 分析:成假赋值 为 0,0,合取符号 \wedge 两边都要为 假,赋值为 0,那么对应的命题变项是 正常的命题变项,不带否定符号 \neg ;
 - \circ ④ 对应: 凡是 1 赋值的,带 \neg 符号; 凡是 0 赋值的,对应 正常 命题变项;

公式	成假赋值	名称	
$p\vee q$	0 0	M_0	
$p \vee \neg q$	0 1	M_1	
$\neg p \vee q$	1 0	M_2	
$\neg p \vee \neg q$	1 1	M_3	

(4)三个命题变项的极大项

三个命题变项 p,q,r 的 极大项:

- 1.先写出 极大项 名称 : 从 0 开始计数 , $M_0, M_1, M_2, M_3, M_4, M_5, M_6, M_7$;
- 2.然后写出成假赋值:0,1,2,3,4,5,6,7 对应的二进制形式,即 000,001,010,011,100,101,110,111;
- 3.最后写公式(简单析取式):
 - 。 ① 公式形式:公式是简单析取式, $p \wedge q \wedge r$,其中 每个命题变项 p,q,r 之 前 都 可能 带着 否定符号 \neg ;
 - ② 满足成假赋值:该公式需要满足 其上述
 000,001,010,011,100,101,110,111 赋值是成假赋值,即根据成真赋值, 反推出其公式:
 - 。 ③ 分析:成假赋值 为 0,0,0,三个命题变项都要为 假,赋值为 $\mathbf 0$,那么对应命题变项 是正常的命题变项,不带否定符号 \neg ;
 - 。 ④ 对应 : 凡是 1 赋值的 , 带 \neg 符号 ; 凡是 0 赋值的 , 对应 正常 命题变项 ;

公式	成假赋值	名称	
$p \vee q \vee r$	0 0 0	M_0	
$p \vee q \vee \neg r$	0 0 1	M_1	

 $p \vee \neg q \vee r$

公式	成假赋值	名称	
$p \vee \neg q \vee \neg r$	0 1 1	M_3	
$\neg p \lor q \lor r$	1 0 0	M_4	
$\neg p \vee q \vee \neg r$	1 0 1	${ m M}_5$	
$\neg p \vee \neg q \vee r$	1 1 0	M_6	
$\neg p \vee \neg q \vee \neg r$	1 1 1	M_7	

(5) 极大项 成假赋值 公式 名称 之间 的 转化 与 推演

极大项 成假赋值 公式 名称 之间 的 转化 与 推演:

- 1.成假赋值 到 公式 之间的推演:公式 的 成假赋值列出,就是成假赋值;根据成假赋值 写出 公式,1 对应的 命题变项 带 否定 ¬,0 对应 正常的命题变项;
- 2.名称 到 成假赋值 之间的 推演:这个 最简单,直接将 下标 写成 二进制形式 即可
- 3.公式 到 名称 之间的 推演:直接推演 比较困难,必须通过 成假赋值 过渡一下, 先写出 成假赋值,然后将其当做 二进制数 转为 十进制的下标即可;

二. 题目解析

1. 使用等值演算方式求 主析取范式 和 主合取范式

题目:使用等值演算方式求 主析取范式 和 主合取范式;

- 条件: $A = (p \rightarrow \neg q) \rightarrow r$
- **问题 1**: 求 **主析取范式** 和 **主合取 范式**;

解答:

① 步骤 一: 求出一个合取范式:

$$(p \rightarrow \neg q) \rightarrow r$$

(使用蕴涵等值式: $A \to B \iff \neg A \lor B$, 消除 外层的 蕴涵符号)

$$\iff \neg(p \to \neg q) \lor r$$

(使用蕴涵等值式: $A \to B \iff \neg A \lor B$, 消除内层的 蕴涵符号)

$$\iff \neg(\neg p \lor \neg q) \lor r$$

(使用德摩根律: $\neg(A \lor B) \iff \neg A \land \neg B$, 处理 $\neg(\neg p \lor \neg q)$ 部分)

 $\iff (p \land q) \lor r$

(使用交换率: A ∨ B ←→ B ∨ ' ^ '

该题目最终结果:

 $(p \rightarrow \neg q)$

(步骤一的结论)

 $\iff (p \vee r) \wedge (q \vee r)$

(将步骤二和 步骤三 结果代入到上式中)

 $\iff (M_0 \wedge M_2) \wedge (M_0 \wedge M_4)$

(根据结合律 可以消去括号 将 $\mathbf{M}_0 \wedge \mathbf{M}_0$ 组合起来)

 $\iff (M_0 \wedge M_0) \wedge M_2 \wedge M_4$

(根据 幂等律: $A \wedge A \iff A$, 可以消去 一个 M_0)

 $\iff M_0 \wedge M_2 \wedge M_4$

2. 使用 真值 表法 求 主析取范式 和 主合取范式

题目:使用 真值表法 求 主析取范式 和 主合取范式;

- 条件: $A = (p \rightarrow \neg q) \rightarrow r$
- **问题 1**: 求 **主析取范式** 和 **主合取 范式**;

解答:

① 首先列出其真值表 (列的真值表越详细越好,算错好几次)

p q r	(¬q)	$(\mathrm{p} \to \neg \mathrm{q})$	$A = (p \to \neg q) \to r$	极小项	极大项
0 0 0	1	1	0	m_0	\mathbf{M}_0
0 0 1	1	1	1	\mathbf{m}_1	M_1
0 1 0	0	1	0	m_2	M_2
0 1 1	0	1	1	m_3	M_3
1 0 0	1	1	0	m_4	\mathbf{M}_4
1 0 1	1	1	1	\mathbf{m}_5	M_5
1 1 0	0	0	1	\mathbf{m}_6	M_6
1 1 1	0	0	1	m_7	M_7

② 真值表中 取值为 真 的项 对应的 极小项 m_i 构成 主析取范式;

 $m_1 \vee m_3 \vee m_5 \vee m_6 \vee m_7$

③ 真值表中 取值为 假 的项 对应的 极大项 m_i 构成 主合取范式;

 $M_0 \wedge M_2 \wedge M_4$

极小项 - 合取式 - 成真赋值 - 对应条件真值表中的 1 - 主析取范式 (多个合取式的析取

式)

