

TIP105, TIP106, TIP107 PNP SILICON POWER DARLINGTONS

- **Designed for Complementary Use with** TIP100, TIP101 and TIP102
- 80 W at 25°C Case Temperature
- **8 A Continuous Collector Current**
- Maximum $V_{CE(sat)}$ of 2.5 V at $I_C = 8$ A

Pin 2 is in electrical contact with the mounting base.

at 25°C case temperature (unless otherwise noted) absolute maximum ratings

RATING			VALUE	UNIT
	TIP105		-60	
Collector-base voltage (I _E = 0)	TIP106	V_{CBO}	-80	V
	TIP107		-100	
	TIP105		-60	
Collector-emitter voltage (I _B = 0)	TIP106	V_{CEO}	-80	V
	TIP107		-100	
Emitter-base voltage			-5	V
Continuous collector current			-8	Α
Peak collector current (see Note 1)			-15	Α
Continuous base current			-1	Α
Continuous device dissipation at (or below) 25°C case temperature (see Note 2)			80	W
Continuous device dissipation at (or below) 25°C free air temperature (see Note 3)			2	W
Unclamped inductive load energy (see Note 4)			10	mJ
Operating junction temperature range			-65 to +150	°C
Storage temperature range			-65 to +150	°C
Lead temperature 3.2 mm from case for 10 seconds			260	°C

- NOTES: 1. This value applies for $t_p \le 0.3$ ms, duty cycle $\le 10\%$. 2. Derate linearly to 150°C case temperature at the rate of 0.64 W/°C.
 - 3. Derate linearly to 150°C free air temperature at the rate of 16 mW/°C.
 - 4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, $I_{B(on)}$ = -5 mA, R_{BE} = 100 Ω , $V_{BE(off)} = 0$, $R_S = 0.1 \Omega$, $V_{CC} = -20 \text{ V}$.

TIP105, TIP106, TIP107 PNP SILICON POWER DARLINGTONS

electrical characteristics at 25°C case temperature

PARAMETER TEST CONDITIONS		TONS	MIN	TYP	MAX	UNIT		
Colle	Collector-emitter			TIP105	-60			
V _{(BR)CEO}	breakdown voltage	$I_C = -30 \text{ mA}$	$I_B = 0$	TIP106	-80			V
breakdown voltage	(see Note 5)		TIP107	-100				
	Collector-emitter	V _{CE} = -30 V	I _B = 0	TIP105			-50	
I _{CEO}	cut-off current	$V_{CE} = -40 \text{ V}$	$I_B = 0$	TIP106			-50	μΑ
Cut-off current	$V_{CE} = -50 \text{ V}$	$I_B = 0$	TIP107			-50		
	Collector cut-off	V _{CB} = -60 V	I _E = 0	TIP105			-50	
I _{CBO}		$V_{CB} = -80 \text{ V}$	$I_E = 0$	TIP106			-50	μΑ
	current	$V_{CB} = -100 \text{ V}$	$I_E = 0$	TIP107			-50	
I	Emitter cut-off	V _{EB} = -5 V	I _C = 0				-8	mA
IEBO	current	VEB3 V	IC = 0				-0	111/4
h	Forward current	V _{CE} = -4 V	I _C = -3 A	(see Notes 5 and 6)	1000		20000	
h _{FE}	transfer ratio	$V_{CE} = -4 V$	$I_C = -8 A$	(see Notes 5 and 6)	200			
Colle	Collector-emitter	I _B = -6 mA	I _C = -3 A	(see Notes 5 and 6)			-2	V
V _{CE(sat)}	saturation voltage	$I_B = -80 \text{ mA}$	$I_C = -8 A$				-2.5	٠
V	Base-emitter	V _{CE} = -4 V	I _C = -8 A	(see Notes 5 and 6)			-2.8	V
V_{BE}	voltage	$V_{CE} = -4 V$	IC = -0 K	(see Notes 5 and 6)			-2.0	٧
V _{EC}	Parallel diode	I _⊏ = -8 A	I _B = 0	(see Notes 5 and 6)			-3.5	V
	forward voltage	I _E = -8 A	1B – 0	(See Notes 5 and 6)			-3.3	V

NOTES: 5. These parameters must be measured using pulse techniques, t_p = 300 μ s, duty cycle \leq 2%.

thermal characteristics

PARAMETER			TYP	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			1.56	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance			62.5	°C/W
$C_{\theta C}$	Thermal capacitance of case		0.9		J/°C

resistive-load-switching characteristics at 25°C case temperature

PARAMETER	TEST CONDITIONS †			MIN	TYP	MAX	UNIT
t _d Delay time					35		ns
t _r Rise time	I _C = -8 A	$I_{B(on)} = -80 \text{ mA}$	$I_{B(off)} = 80 \text{ mA}$		300		ns
t _s Storage time	$V_{BE(off)} = 5 V$	$R_L = 5 \Omega$	$t_p = 20 \mu s, dc \le 2\%$		900		ns
t _f Fall time					1.3		μs

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

^{6.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

TYPICAL CHARACTERISTICS

Figure 3.

MAXIMUM SAFE OPERATING REGIONS

THERMAL INFORMATION

MAXIMUM POWER DISSIPATION vs CASE TEMPERATURE 100 \mathbf{P}_{tot} - Maximum Power Dissipation - \mathbf{W} 80 60 40 20 0 25 75 100 125 150 T_C - Case Temperature - $^{\circ}C$

Figure 5.

MECHANICAL DATA

TO-220

3-pin plastic flange-mount package

This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

NOTES: A. The centre pin is in electrical contact with the mounting tab.

- B. Mounting tab corner profile according to package version.
- C. Typical fixing hole centre stand off height according to package version. Version 1, 18.0 mm. Version 2, 17.6 mm.