Velegapudi Ramakrishna Siddhartha Engineering College::Vijayawada

(Autonomous)

VR20

II /IV B Tech Degree Examinations Third Semester

Department of Mathematics

20ES3102 DISCRETE MATHEMATICAL STRUCTURES

Time:3Hrs **MODEL QUESTION PAPER** Max Marks:70

Part – A is Compulsory

Answer one (01) question from each unit of Part – B

Q.	No	Cognitive Levels(K): K1-Remember; K2-Understand; K3-Apply; K4-Analyze; K5-E Question	Marks	Course	Cog.					
۷.		Question	Widiks	Outcome	Leve					
Part - A 10X1=10M										
1	а	Define propositional function.	1	CO1	K1					
	b	Define Universe of Discourse.	1	CO1	K1					
	С	Define quantifiers.	1	CO1	K1					
	d	How many ways the sum can be obtained of 8 when two indistinguishable dice are rolled	1	CO2	K1					
	е	Is the "divides" relation on the set of positive integers reflexive?	1	CO2	K1					
	f	Define partially ordered set.	1	CO3	K1					
	g	Define a group and give an example.	1	CO3	K1					
	h	Define group homomorphism.	1	CO3	K5					
	I	Define Planar graph.	1	CO4	K1					
	j	What is a Graph coloring?	1	CO4	K2					
Par	t - B			4X1	5 =601					
	,	UNIT - I								
2	а	Obtain the truth table for the following proposition: $((p\rightarrow \sim q)\rightarrow r))\rightarrow (r\rightarrow (q\lor r)).$	7M	CO1	К3					
	b	Test the validity of the following argument.	8M	CO1	K5					
		All the integers are rational numbers.								
		Some integers are power of 2.								
		Therefore, some rational numbers are powers of 2.								
	•	(OR)	1		ı					
3	а	If P is an odd prime, then show that P has the form 6n+1 or 6n+5 or P=3	7M	CO1	К3					
	b	Find the number of solutions of $e_1+e_2+e_3=17$ where $0 < e_i$ for each i, with $2 \le e_1 \le 5$, $3 \le e_2 \le 6$, $4 \le e_3 \le 7$	8M	CO1	К3					
	•	UNIT - II								
4	а	Let m be a positive integer with m> 1. Show that the relation $R = \{ (a,b) / a \equiv b \pmod{m} \}$ is an equivalence relation on the set of integers.	7M	CO2	K5					
	b	Solve the recurrence relation $a_n - 5$ $a_{n-1} + 6$ $a_{n-2} = 4^n$ for $n \ge 2$.	8M	CO2	K5					
		(OR)								
5	а	Find the solution to the recurrence relation $a_n = 6 a_{n-1} - 11 a_{n-2} + 6 a_{n-3}$ for $n \ge 3$.	7M	CO2	К3					
		⊤∪ a _{n-3} 101 11≤ 3.								

	b	Draw the Hasse diagram for the partial ordering $\{(A, B) / A \subseteq B\}$ on the power set $P(S)$, where $S = \{a,b,c\}$			8M	CO2	K5
			UNIT - III	L			
6	a	Let $(G,*)$ be a group $(1)(x*y)$ $1 = y$ $(2) x * y = x * x$ $(3) y * x = z * y$ (4) For any two $a * x = b$ and $x * a$	7M	CO3	К3		
	b	Let f: $G \rightarrow G$ ' be a Let e and e' be the id (ii) $f(a^{-1}) = (f(a))^{-1}$ for	dempotent element in G. group homomorphism from (G,*) to (G', o). identity elements of G and G' then (i) $f(a) = e'$ for all a in G. (iii) $f(a*b^{-1}) = f(a)$ o ($f(b)$)-1 (iv) $f(H)$ is a subgroup of G whenever H is a			CO3	K3
			(OR)				
7	a		group of a cyclic group (G,*) is c	•	7M	CO3	К3
	b	A finite group (G, permutations of G.	*) of order n is isomorphic to	a group of	8M	CO3	К3
			UNIT - IV		· · · · · ·		
8	а	If G is a connecte Where V denote the number of edg of G.	E denotes	7M	CO4	К3	
	b	_	heorem to show that there are as with regions of degree 5,8,9 a with degree 9.	8M	CO4	K5	
			(OR)				
9	а	Prove that, a comp	ly if $n \le 4$.	7M	CO4	К3	
	b Show that the digraphs D_1 and D_2 given in figure are isomorphism					CO4	К3
			Name in Capitals	Sign	nature w	vith Date	
Course Coordinator			Dr. E.S.R.RAVI KUMAR				
		Coordinator					
Pro	gran	n Coordinator					
Head of the Department Dr. Ch. BABY RANI							