





# **Table of Content What will We Learn Today?**

- 1. Regression
- 2. Linear Regression
- 3. Lasso and Ridge
- 4. Decision Tree and Random Forest Regression
- 5. Evaluation metrics for regression







# Regression







# Regression

- Regression: metode yang mencoba untuk menentukan kekuatan dan karakter hubungan antara satu variabel dependen dan serangkaian variabel lainnya (dikenal sebagai independent variables).
- Regression algorithms = continuous values (such as price, salary, age, etc).
- Classification algorithms = discrete values (such as stroke or normal, spam or not spam, etc)
- Keduanya masuk dalam kategori supervised learning









# Classification, regression, clustering

| price    | bedrooms | bathrooms | sqft_living | sqft_lot | floors | waterfront | view | condition | grade | sqft_above | sqft_basement | yr_built |
|----------|----------|-----------|-------------|----------|--------|------------|------|-----------|-------|------------|---------------|----------|
| 221900.0 | 3        | 1.00      | 1180        | 5650     | 1.0    | 0          | 0    | 3         | 7     | 1180       | 0             | 1955     |
| 538000.0 | 3        | 2.25      | 2570        | 7242     | 2.0    | 0          | 0    | 3         | 7     | 2170       | 400           | 1951     |
| 180000.0 | 2        | 1.00      | 770         | 10000    | 1.0    | 0          | 0    | 3         | 6     | 770        | 0             | 1933     |
| 604000.0 | 4        | 3.00      | 1960        | 5000     | 1.0    | 0          | 0    | 5         | 7     | 1050       | 910           | 1965     |
| 510000.0 | 3        | 2.00      | 1680        | 8080     | 1.0    | 0          | 0    | 3         | 8     | 1680       | 0             | 1987     |

#### Regression (house price dataset)

|      | id    | gender | age  | hypertension | heart_disease | ever_married | work_type     | Residence_type    | avg_glucose_level | bmi  | smoking_status  | stroke |
|------|-------|--------|------|--------------|---------------|--------------|---------------|-------------------|-------------------|------|-----------------|--------|
| 0    | 9046  | Male   | 67.0 | 0            | 1             | Yes          | Private       | Urban             | 228.69            | 36.6 | formerly smoked | 1      |
| 1    | 51676 | Female | 61.0 | 0            | 0             | Yes          | Self-employed | Rural             | 202.21            | NaN  | never smoked    | 1      |
| 2    | 31112 | Male   | 80.0 | 0            | 1             | Yes          | Private       | Rural             | 105.92            | 32.5 | never smoked    | 1      |
| 3    | 60182 | Female | 49.0 | 0            | 0             | Yes          | Private       | Urban             | 171.23            | 34.4 | smokes          | 1      |
| 4    | 1665  | Female | 79.0 | 1            | 0             | Yes          | Self-employed | Rural             | 174.12            | 24.0 | never smoked    | 1      |
|      |       | 1000   | 1922 | 2023         | 922           | 1220         | 620           | 10 / 100<br>00 mm | 1993              | 1.12 | (22)            | us:    |
| 5105 | 18234 | Female | 80.0 | 1            | 0             | Yes          | Private       | Urban             | 83.75             | NaN  | never smoked    | 0      |
| 5106 | 44873 | Female | 81.0 | 0            | 0             | Yes          | Self-employed | Urban             | 125.20            | 40.0 | never smoked    | 0      |
| 5107 | 19723 | Female | 35.0 | 0            | 0             | Yes          | Self-employed | Rural             | 82.99             | 30.6 | never smoked    | 0      |
| 5108 | 37544 | Male   | 51.0 | 0            | 0             | Yes          | Private       | Rural             | 166.29            | 25.6 | formerly smoked | 0      |
| 5109 | 44679 | Female | 44.0 | 0            | 0             | Yes          | Govt_job      | Urban             | 85.28             | 26.2 | Unknown         | 0      |
|      |       |        |      |              |               |              |               |                   |                   |      |                 |        |

Classification (stroke dataset)



Clustering (customer dataset)











- Membangun hubungan diantara dua variables dengan garis lurus.
- Variabel independen merupakan variabel yang memengaruhi atau menyebabkan perubahan.
- Variabel dependen adalah variabel yang dipengaruhi atau yang menjadi akibat karena adanya variabel independen.
  - Simple linear regression: Y = a + bX + u
  - Multiple linear regression: Y = a + b<sub>1</sub>X<sub>1</sub> + b<sub>2</sub>X<sub>2</sub> + b<sub>3</sub>X<sub>3</sub> + ... + b<sub>t</sub>X<sub>t</sub> + u

#### Where:

- Y = the variable that you are trying to predict (dependent variable).
- X = the variable that you are using to predict Y (independent variable).
- a = the intercept.
- b = the slope.
- u = the regression residual.







- Linear regression (regresi linier) mencoba menggambar garis yang paling dekat dengan data dengan menemukan slope dan intercept dan meminimalkan regression errors.
- Ordinary Least Squares (OLS) adalah metode estimasi yang paling umum untuk model linier

Garis optimal yang memberikan nilai sum of squared errors (SSE) terendah













- Example
  - y (dependent variable) = price (harga rumah)
  - x (independent variable) = sqft\_living (luas rumah)





Q = Rumah dengan luas1000 *square feet*, berapa harganya kira kira? A = USD 237562.663





# Example

- House Sales in King County, USA.
- Dataset ini berhubungan dengan harga rumah di King County, yang termasuk juga Seattle.
   Berhubungan dengan rumah yang dijual dari Mei 2014 sampai Mei 2015.
- Source : https://www.kaggle.com/harlfoxem/housesalesprediction

| price    | bedrooms | bathrooms | sqft_living | sqft_lot | floors | waterfront | view | condition | grade | sqft_above | sqft_basement | yr_built |
|----------|----------|-----------|-------------|----------|--------|------------|------|-----------|-------|------------|---------------|----------|
| 221900.0 | 3        | 1.00      | 1180        | 5650     | 1.0    | 0          | 0    | 3         | 7     | 1180       | 0             | 1955     |
| 538000.0 | 3        | 2.25      | 2570        | 7242     | 2.0    | 0          | 0    | 3         | 7     | 2170       | 400           | 1951     |
| 180000.0 | 2        | 1.00      | 770         | 10000    | 1.0    | 0          | 0    | 3         | 6     | 770        | 0             | 1933     |
| 604000.0 | 4        | 3.00      | 1960        | 5000     | 1.0    | 0          | 0    | 5         | 7     | 1050       | 910           | 196      |
| 510000.0 | 3        | 2.00      | 1680        | 8080     | 1.0    | 0          | 0    | 3         | 8     | 1680       | 0             | 1987     |
|          |          | like -    |             |          |        |            |      |           |       |            |               |          |





Kita bisa menggunakan library sklearn

```
import pandas as pd
from sklearn.linear model import LinearRegression
from sklearn.model_selection import train_test_split
df X = df.drop(['id','date','price'],axis=1)
df y = df['price']
X = df_X.astype(float).values
y = df y.astype(float).values
X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=42)
reg = LinearRegression()
reg.fit(X train, y train)
print('coefficient of determination of training set')
print(reg.score(X train, y train))
print('coefficient of determination of testing set')
print(reg.score(X_test, y_test))
print('coefficient')
print(reg.coef)
print('intercept')
print(reg.intercept )
print('prediction')
y pred = reg.predict(X test)
print(y pred[:10])
print('real value')
print(y test[:10])
```

```
coefficient of determination of training set
 0.6995155846436758
 coefficient of determination of testing set
 0.6994627057969862
 coefficient
 [-3.43081477e+04 4.03129700e+04 1.12001375e+02
   5.27154218e+03 5.43877177e+05 5.50830616e+04 2.31460673e+04
   9.49081794e+04 7.22190669e+01 3.97823083e+01 -2.59441847e+03
   2.19209734e+01 -5.56358731e+02 5.95216324e+05 -1.96904658e+05
  1.62077488e+01 -3.30430480e-01
 intercept
 6641646.708113588
 prediction
  737302.05741739 283239.58524974 831732.87582315 495383.02095338
   385779.81919026 474179.42285135]
 real value
  365000. 865000. 1038000. 1490000. 711000. 211000. 790000.
   384500. 605000.1
price = 279.51011741*sqft living + -41947.4540187625
     coefficient/slope/
                                               intercept
     kemiringan
```





#### Bias and variance

- Linear regression mencari nilai coefficient yang meminimalkan nilai sum of squared errors (SSE).
- Tetapi mungkin ini bukan model terbaik, karena akan memberikan coefficient untuk semua features.
- Termasuk feature yang mempunyai "kemampuan prediksi yang rendah".
- Ini akan menghasilkan model yang "high-variance, low bias".
- Solusi = regularization
  - Kita bisa memodifikasi cost function untuk memberi batasan nilai coefficients.





https://towardsdatascience.com/bias-variance-and-regularization-in-linear-regression-lasso-ridge-and-elastic-net-8bf81991d0c5





# Lasso and Ridge







# L1 Regularization

- Lasso (least absolute shrinkage and selection operator) regression
- Lasso memberi tambahan "absolute value of magnitude" dari coefficient sebagai penalti untuk loss function
- Menambahkan sum of the coefficient values (the L-1 norm) dan mengalikan dengan constant lambda.

$$\sum_{i=1}^n (Y_i - \sum_{j=1}^p X_{ij} eta_j)^2 + \lambda \sum_{j=1}^p |eta_j|$$
 Loss function Lasso





Loss function Linear Regression







# **L2** Regularization

- Ridge regression
- Ridge regression menambahkan "squared magnitude" dari coefficient sebagai penalti untuk loss function
- Menambahkan sums the squares of coefficient values (the L-2 norm) dan mengalikan dengan constant lambda.

$$\sum_{i=1}^n (y_i - \sum_{j=1}^p x_{ij}eta_j)^2 + \lambda \sum_{j=1}^p eta_j^2$$



Loss function Ridge

$$\sum_{i=1}^n (Y_i - \sum_{j=1}^p X_{ij}\beta_j)^2$$



Loss function Linear Regression







# **DT and RF Regresion**







# **Decision Tree Regression**

Decision trees bisa diaplikasikan pada kasus classification dan regression





- Mudah dipahami dan di-interpretasikan.
- Kerugian



Solusi : pruning







## **Random Forest Regression**

- Random forest adalah algoritma dalam Supervised Learning yang menggunakan ensemble learning method untuk kasus classification dan regression.
- Hasil prediksi adalah label terbanyak (untuk kasus classification) atau rata rata hasil prediksi (untuk kasus regression) dari model tree yang banyak.









# **Evaluation metrics for Regression**







#### **Evaluation metrics**

- Pearson correlation coefficient (r) = mengukur kekuatan dan arah hubungan linier antara dua variabel (-1 to 1).
- Coefficient determination (r² or r square) = memberikan proporsi varians (fluktuasi) dari satu variabel yang diprediksi dari variabel lainnya (0 to 1).
- Root mean square error (RMSE) = merupakan besarnya tingkat kesalahan hasil prediksi. Semakin kecil (mendekati 0) semakin baik (*prediction errors*).

| 1                                           | U                                                                                            |
|---------------------------------------------|----------------------------------------------------------------------------------------------|
| Performance Metric                          | Formula                                                                                      |
| Root Mean Square Error (RMSE)               | $\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2}$                                          |
| Pearson correlation coefficient (r)         | $\sum_{i=1}^{n} (y_i - \bar{y}_i)(\hat{y}_i - \bar{\hat{y}}_i)$                              |
|                                             | $\sqrt{\sum_{i=1}^{n}(y_i-\bar{y}_i)^2}\sqrt{\sum_{i=1}^{n}(\hat{y}_i-\ \bar{\hat{y}}_i)^2}$ |
| Coefficient determination (r <sup>2</sup> ) | $r^2 = [Correlation Coefficient]^2$                                                          |







# Performance comparison

• Hasil perbandingan dari model regresi yang diaplikasikan pada house price dataset

| Model             | RMSE                | r2   |
|-------------------|---------------------|------|
| Linear regression | 208296              | 0.69 |
| Lasso             | 208297              | 0.69 |
| Ridge             | 208297              | 0.69 |
| DT regression     | 192962              | 0.74 |
| RF regression     | <mark>144539</mark> | 0.85 |





# Thank YOU

