

1. Introduce

Bio-M001A is a Bio-module in healthcare; The Bio-module measures and transfers various types of bio-data including ECG, RESP, GSR, HR, PPG, HCM and BIA etc, integrated Bio-Processor with Analog Front-End to make an all-in-one health monitoring solution.

The algorithm core runs in Bio-Processor, including SPO2, motion recognition, dynamic heart rate monitoring, trend analysis of blood pressure, Emotional and mental stress etc.

The Bio-module integrates red (660 nm), green (520 nm) and infrared (940 nm) three-color LED and photodiode(PD) sensor to realize PPG-related applications; and supports four electrodes to achieve applications with human electrical activities and impedance activities; on-module 14-bit three-axis Gsensor for motion/sleep applications.

The Bio-module hardware interface supports SPI/I2C/UART optional, FPC connector reference DF37NB-30DS-0.4V.

APPLICATIONS

- 1. Fitness, wristband devices;
- 2. Healthcare devices;
- 3. Mobile devices and robots etc;

FEATURES

- Single lead ECG :
 - 3 electrodes with right leg driver;
 - Lead-off detect:
- Bio-impedance with 4 electrodes:
 - Built-in DAC and multi-frequency waveform generator;
 - Support RESP, BIA and GSR etc;
- PPG:
 - on-module red (660 nm), green (520 nm) and IR (940 nm) LED and PD;
 - Support HR, SPO2 and bio-assay etc;

- Electrodes mean interface:
 - Support electrodes as input keypad;
 - Support pair of electrodes as data channel: eg,USB/UART etc;
 - Support pair of electrodes as power charger channel;
- Gsensor:
 - Built-in 14 bits 3-axis Gsensor, range + 2G, + 4G, + 8g, + 16g;
 - Pedometer, Action recognition;
- Hardware interface:
 - Optional SPI/UART/I2C;
 - FPC connector <u>DF37NB-30DS-0.4V</u>,from hirose;
- Small size, suitable for wristband devices:
 - 22x26mm;

4. Hardware interface

4. 1 FPC Connector

Bio-M001A provides 30-pin FPC connector (reference DF37NB-30DS-0.4V) to access analog and digital data.

4. 1. 1 Pins map

Figure 1

Figure 2

4. 1. 2 FPC Pins

Table 1:

Name	No.	Туре	Function
P0_2	1	I/0	GPO.2; hardware intface switch
P0_0	2	I/0	GPO.0; hardware intface switch
PO_1_INT	3	I/0	GPO.1; INT Output, the rising edge active
P0_4	4	I/0	GPO.4; firmware upgrade mode switch
VSS	5	POWER	Ground
LD_LA_TOUCH	6	AO	Lead-off detection analog output from left arm
VOPT	7	POWER	Power supply driving PPG led
PO_7_SPI_SDI_SDA	8	I/0	GPO.7; SDI of slave spi; SDA of slave I2C
P1_0_SPI_SCK_SCL	9	I/0	GP1.0; SCK of slave spi; SCL of slave I2C
LD_RA_TOUCH	10	AO	Lead-off detection analog output0 from right arm
RH_KEY_TOUCH	11	AO	Lead-off detection analog output1 from right arm
P1_3_SPI_SD0_RX	12	I/0	GP1.3; SDO of slave spi; RX of UART
P2_5_UTX	13	I/0	GP2.5; TX of UART
P1_2_SPI_SCS	14	I/0	GP1.2; SCS of slave spi
P3_2	15	I/0	GP3. 2
P3_3	16	I/0	GP3. 3
	17		
LH_DRV	18	S0	Drive source about left hand, ECG RLD output
	19		
LH_REC	20	SI	Input about ECG/impedance from left hand
RH_REC	21	SI	Input about ECG/impedance from right hand
	22		
RH_DRV	23	S0	Drive source about right hand
	24		
AVSS	25	POWER	Analog ground
VSS	26	POWER	Ground
ECG_SIG	27	AO	ECG analog output
IMP_DC	28	AO	Body impedance analog DC output
OPT_PPG	29	AO	PPG analog output
VDD33	30	POWER	Power supply

Note: AO--Analog Output,SO--Source Output,SI--Source Input

4. 1. 3 Strapping Pins

Bio-M001A has three strapping pins:

- P0 2
- P0_0
- P0 4

During reset, Bio-M001A interface and work mode are configured by sampling strapping pin voltage level. The final mode will determine the actual functions of the five pins of P0_7, P1_0, P1_3, P2_5 and P1_2.

The internal default of the module is weak pull-up, and we can complete pull-down by external resistor. After reset, the strapping pins work as the normal functions pins.. Refer to the following table:

Table 2 Hardware interface definition:

	Hardware intface method										
pin	pin default SPI UART I2C(Address=0x66) I2C(Address=0x67)										
P0_0	pull-up	1	0	1	0						
P0_2	pull-up	1	0	0	1						

Table 3 Work mode definition:

Work mode								
pin	default	Normal	Boot					
P0_4	pull-up	1	0					

4. 2 Hardware interface

Standard I2C,SPI and UART interfaces are used to communicate with the Bio-module. Hardware interface definition is referred to table 2. Function map for pins is referred to table 4.

Table 4:

Hardware intface pins map									
intface	P0_7	P1_0	P1_2	P1_3	P2_5				
SPI	SDI	SCK	SCS	SD0	X				
I2C	SDA	SCL	X	X	X				
UART	X	X	X	RX	TX				

4. 2. 1 I2C Operation

Bio-M001A supports slave I2C, I2C bus uses SCL and SDA as signal lines. Both lines are connected to VDDIO externally via pull-up resistors so that they are pulled high when the bus is free. The I2C device address of Bio-M001A is shown below Table 5. The LSB bit of the 7bits device address is configured via $P0_0$, $P0_2$ pins; Refer to table 2 for address configuration.

Table 5:

I2C Address									
SAD6	SAD5	SAD4	SAD3	SAD2	SAD1	SAD0	W/R		
1	1	0	0	1	1	LSB	0/1		

4. 2. 2 SPI Operation

Bio-M001A support 4-wires slave SPI; As shown in Figure 3. The falling edge of SCS, in conjunction with the rising edge of SCLK, determines the start of framing. Data is 8 bits. and MSB first mode.

4. 3 Sensors map

Bio-M001A integrates three major sensors:

- A. Optical transceiver sensor for collecting PPG signal. As shown in Fig. 5, R/G/IR LED is red, green and infrared light emitting area, and PD is photodiode sensitive area;
- B. Electrode sensor for collecting electrical and impedance signals of human body. As shown in Fig. 5, xH_REC is connected with limb leads for sensing electrical and impedance activities, and xH_DRV is connected with driving electrode.
- C. GSensor for feeling motion;

Figure 5

5 Registers

5. 1 Registers map

Table 6 describes the list of registers about Bio-M001A. Table 6:

Name	Addr	Type	Description	Default
Reg_INT_DATAL	0x00	R	Interrupt data low 8 bits	0x00
Reg_INT_DATAM	0x01	R	Interrupt data middle 8 bits	0x00
Reg_INT_DATAH	0x02	R	Interrupt data high 8 bits	0x00
Reg_INT_DATATYPE	0x03	R	Interrupt data type	0x00
Reg_DEVICE_ID	0x04	R	Device ID	0x21/0xA1
Reg_FIRMWARE_VER	0x05	R	Firmware version	0xXX
Reg_BL_VERSION	0x06	R	Boot loader version	0x01/x81
Reg_PSTATUS	0x07	R	Reserve	0x00
Reg_FUN_CMD0	0x08	R/W	Function CMD 0	0x00
Reg_MODE_CMD1	0x09	R/W	Mode and Function CMD 1	0x00
Reg_BL_DATA	0x0A	W	Upload CMD during upgrading	0x00

5. 2 Registers Description

5. 2. 1 Reg_INT_DATAL (00H)

The register is updated when a new interrupt occurs, and the value is defined by the Reg_INT_DATATYPE field. During firmware update, the register content is response value for firmware upgrade command. The definitions are as follows:

Table 7:

Firmware upgrade response description						
RSP Name	RSP Value	Description				
BL_RSP_OK	0x01	Response ok				
BL_RSP_PARA_ERROR	0x02	Command parameter error				
BL_RSP_CMD_ERROR	0x03	Command error				
BL_RSP_ERASE_ERROR	0x04	FLASH erase error				
BL_RSP_PROGRAM_ERROR	0x05	FLASH Programming error				
BL_RSP_CRC_ERROR	0x06	CRC Check error				
BL_RSP_VERIFY_ERROR	0x07	FLASH Verify error				
BL_RSP_UNKNOW	0x08	Unknow error				

5. 2. 2 Reg INT DATAM (01H)

The register is updated when a new interrupt occurs, and the value is defined by the Reg_INT_DATATYPE field.

5. 2. 3 Reg INT DATAH (02H)

The register is updated when a new interrupt occurs, and the value is defined by the Reg_INT_DATATYPE field.

5. 2. 4 Reg INT DATATYPE (03H)

When a new interrupt occurs, the register and 0x00H-0x02H registers will be updated. The high 4-bits (Data Type field) of the register indicates the interrupt data type, and please refer to table 9.

When the data type is set to a value associated with the embedded 24-bit analog-to-digital converter (AD) in Bio-M001A, the low 4-bits of the register are used as the AD Sample Sequence field to indicate the sequence number of the data sampled by AD; the sequence number is used to verify that data frames are continuous and that no packets are lost.

Table 9:

	Data Type Map								
Data Type	Reg_INT_DATAL	Reg_INT_DATAM	Reg_INT_DATAH						
0h	Low 8-bits AD data for Green/DC PPG	Middle 8-bits AD data for Green/DC PPG	High 8-bits AD data for Green/DC PPG						
1h	Low 8-bits AD data for Red/DC PPG	Middle 8-bits AD data for Red/DC PPG	High 8-bits AD data for Red/DC PPG						
2h	Low 8-bits AD data for IR/DC PPG	Middle 8-bits AD data for IR/DC PPG	High 8-bits AD data for IR/DC PPG						
3h	Low 8-bits AD data for Impedance	High 8-bits AD data for Impedance	High 8-bits AD data for Impedance						
4h	Low 8-bits AD data for GSR	Low 8-bits AD data for GSR	Low 8-bits AD data for GSR						
5h	Reserve	Reserve	Reserve						
6h	Reserve	Reserve	Reserve						
7h	Low 8-bits AD data for Green/AC PPG	Middle 8-bits AD data for Green/AC PPG	High 8-bits AD data for Green/AC PPG						
8h	Low 8-bits AD data for Red/AC PPG	Middle 8-bits AD data for Red/AC PPG	High 8-bits AD data for Red/AC PPG						
9h	Low 8-bits AD data for IR/AC PPG	Middle 8-bits AD data for IR/AC PPG	High 8-bits AD data for IR/AC PPG						
Ah	Low 8-bits AD data for RESP	Low 8-bits AD data for RESP	Low 8-bits AD data for RESP						
Bh	Low 8-bits AD data for ECG	Low 8-bits AD data for ECG	Low 8-bits AD data for ECG						
Ch	Reserve	Reserve	Reserve						
Dh	GSensor	GSensor	GSensor						
Eh	Reserve	Reserve	Reserve						
Fh	Response for firmware upgrade	Reserve	Reserve						

Table 8:

Reg_INT_DATATYPE								
	Data	Туре		AD S	amp1e	Sequ	ence	
0	0	0	0	0	0	0	0	

5. 2. 5 Reg DEVICE ID (04H)

The low 7-bits of the register indicate device special identifier (0x21), the bit7 indicates current operation mode, 0 for Boot mode, 1 for normal mode.

Table 10:

	Device ID										
MODE	MODE Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0										
0/1	0	1	0	0	0	0	1				

5. 2. 6 Reg FIRMWARE VER (05H)

This register indicates firmware version of device. The specific value can refer to released production version.

5. 2. 7 Reg BL VERSION (06H)

The low 7-bits of the register indicate boot loader version of device, the bit7 indicates current operation mode, 0 for Boot mode, 1 for normal mode.

Table 11:

	Device ID										
MODE Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0											
0/1	0	1	0	0	0	0	1				

5. 2. 8 Reg PSTATUS (07H)

The register is reserved.

5. 2. 9 Reg_FUN_CMD0 (08H)

This is a functional control register that operates in two ways; when the high 3-bits of register Reg_MODE_CMD1 is defined as FW Upgrade mode (see Table 14 and Table 16), the register content is firmware upgrade command, and the command definitions please refer to table 13;

If the high 3-bits of register Reg_MODE_CMD1 is not defined as FW Upgrade mode, then please refer to Table 12 for the register content; if the related bits are set to 1, the related functions can be enabled.

<u>Please note:</u> After writing this register, the register Reg_MODE_CMD1 (09H) must be followed to write, and the operation will be effective. For specific function commands, please refer to table 15.

Table 12:

	Function CMD Map												
GSR	GSR RESP Impedance Preserve PPG_IR PPG_GREEN PPG_RED ECG_EXT_AD												
Bit7	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0												
0	0	0	0	0	0	0	0						

Table 13:

Firmware upgrade command description					
BL CMD Name	CMD Value	Description			
BL_CMD_ERASEAPP	0x62	FLASH Erase			
BL_CMD_JMPAPP	0x63	Jump to APP			
BL_CMD_APRDY	0x64	APP ready OK			
BL_CMD_PROGRAM	0x6F	FLASH Programme			

5. 2. 10 Reg_MODE_CMD1 (09H)

This is a mode and function control register, and a normal operation command consists of three parts: Function Mode + Function CMD + Start bit;

Mode are defined by high 3-bits of the register, as shown in Table 14 and Table 16;

When Start bit is set to 1, it means the current operation is started, otherwise it means stopped.

The function command includes Reg_FUN_CMD0 and the low 4 bits of this register. For specific function commands, please refer to table 15.

Table 15:

Function CMD description			
Function CMD	Description		
ECG_EXT_AD	ECG, Using external AD sampling		
PPG_RED	PPG with red led		
PPG_GREEN	PPG with green led		
PPG_IR	PPG with IR led		
Impedance	Limb bio-impedance		
RESP	Respiratory		
GSR	Electrodermal activity		
ECG_INT_AD	ECG, Using internal AD sampling		
Preserve	Reserve		

Table 14:

Function CMD1 Map							
Fun	ction M	lode	Start	Preserve	Preserve	Preserve	ECG_INT_AD
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	0	0	0	0	0	0	0

Table 16:

Function Mode Map						
Function Mode Value		Value	Mode	Decemintion		
Bit7	Bit6	Bit5	Mode	Description		
1	1	1	Halt mode	power saving mode		
1	1	0	Obey mode	Passive measurement mode		
1	0	1	Watch mode	Supervision mode		
1	0	0	Calibration	Calibration mode		
0	1	1	FW Upgrade	Firmware update mode		

5. 2. 11 Reg BL DATA (OAH)

This register is used for large data block operation when Bio-MOO1A is upgrading firmware. The original binary data block of the firmware can be written directly to this register, and then the internal flash is programmed.

6 Firmware update

During power on, Bio-M001A will start according to the flow, as shown in Figure 6; and Bio-M001A can be entered into boot or app mode under certain setting.

During reset, the PO_4 Pin is pull-down, or send request during APP mode (Refer to 5. 2. 10), Bio-MOO1A will be entered into boot mode.

Figure 6