

Università degli Studi dell'Insubria Dipartimento di Scienze Teoriche e Applicate

Architettura degli elaboratori

Il Livello Logico-Digitale:

Metodo di Karnaugh

Un'ottimizzazione ricorrente

- Consideriamo due «mintermini» (addendi di una SP) che condividono TUTTE LE VARIABILI ECCETTO UNA
 - es:
 A B /C + A /B /C (condividono A e /C, ma non B)
 - Allora, ottimizzando:
 A B /C + A /B /C = A /C (B + /B) = A /C 1= A /C
 - ▶ (1° mettiamo in evidenza i termini in comune, 2° il resto si annulla!)
- Generalizzando:

$$F(X1, X2, ..., Xn) Y + F(X1, X2, ..., Xn) / Y =$$

 $F(X1, X2, ..., Xn) (Y + / Y) = F(X1, X2, ..., Xn)$

- Chiamiamo tali min-termini: "adiacenti"
 - (la variabile che non condividono, necessariamente, appare in un mintermine naturale, e nell'altro negata)

Un'ottimizzazione ricorrente

- Va ancora meglio quando QUATTRO min-termini diversi condividono TUTTE LE VARIABILI ECCETTO DUE!
 - es:

```
A /B C + A /B /C + /A /B C + /A /B /C (/B condiviso, ma non A e C)
```

Allora, ottimizzando:

```
A /B C + A /B /C + /A /B C + /A /B /C =

/B (AC + A/C + /A C + /A/C) =

=

Fa 1! (sempre vero)

Sono tutte le quattro combinazioni possibili di A e C: esattamente una è sempre verificata.

Dim:

AC + A/C + /AC + /A/C = = A(/C + C) + /A(C + C)
= A1 + /A1
= A + /A = 1
```


Generalizzando

- In una funzione booleana a k variabili...
- Quando 2ⁿ min-termini condividono tutte le variabili eccetto n:
 - \triangleright 1) si mettono in evidenza le k-n variabili condivise
 - 2) il resto diventa una costante e scompare
 - \triangleright 3) rimane un solo min-termine con le k-n variabili condivise
- Es: con una funzione a k = 4 variabili
 - 2 min-termini condividono 3 variabili (tutto eccetto 1 var)
 - → diventano un solo min-termine a 3 variabili
 - 4 min-termini condividono 2 variabili (tutto eccetto 2 vars)
 - → diventano un solo min-termine a 2 variabili
 - 8 min-termini condividono 1 variabile (tutto eccetto 3 vars)
 - → diventano un solo min-termine a 1 variabile
- Più sono, più si semplifica!!!

Mappe di Karnaugh

- Idea: redisporre le righe della tabella di verità in modo che l'adiacenza (logica) corrisponda all'adiacienza (fisica)
 - scopo: rendere facile trovare i gruppi di min-termini «che condividono tutte le var eccetto N»
- Queste tabelle di verità redisposte opportunamente si chiamano Mappe di Karnaugh
 - dal loro ideatore

Sintesi + semplificazione:

Funz. boolana come Tavola di verità (riscritta come Mappa di Karnaugh)

Espressione booleana già molto ottimizzata

Nota:

- L'adiacenza fisica non è rispettata se scriviamo le tabelle nel modo banale...
 - ▶ cioè come abbiamo fatto finora →
 - Ogni riga riguarda una configurazione di bit anche molto diversa dalla riga precedente
 - Qui: in rosso i bit di input che cambiano valore rispetto alla riga precedente

а	b	С	F(a,b,c)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Mappe di Karnaugh per due variabili

Tab di veritá				 Map∣	pa di	Karnaugh
	а	b	F(a,b)	а	b	F(a,b)
	0	0	0	0	0	0
	0	1	0	0	1	0
	1	0	0	1	1	1
	1	1	1	1	0	0

Scambio due righe!

- In rosso i bit che cambiano rispetto alla riga precedente
- NB: la prima riga è preceduta dall'ultima. La mappa "gira"

Mappe di Karnaugh per due variabili

Coppie di righe successive corrispondono sempre a min-termini adiacenti

	а	b	F	а	b	F	а	b	F		а	b	F
	0	0	X	0	0	X	0	0	X		0	0	X
	0	1	X	0	1	X	0	1	X		0	1	X
	1	1	X	1	1	X	1	1	X		1	1	X
	1	0	X	1	0	X	1	0	X		1	0	X /
(0	SO	erisco lo per idono		S	fferiscolo per vidon		5	ifferis solo p livido:) (co	S	feriscolo pe vidon	

Α	В	С	F(A,B,C)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Tabella di verità classica

Karnaugh

(corrispondente)

- Elementi adiacenti corrispondono sempre a min-termini adiacenti
- Esempi:

A B C	0	1
0 0	X	X
0 1	X	X
11	X	X
10	X	X

0	1
X	X
X	X
X	X
X	X
	X X X

B C	0	1
0 0	X	X
0 1	X	X
1 1	X	X
1 0	X	X

B C	0	1
0 0	X	X
0 1	X	X
1 1	X	X
1 0	X	X

differiscono solo per c (condividono a = 0 e b = 0) differiscono solo per b (condividono a = 1 e c = 1) differiscono solo per a (condividono b = 0 e c = 1) differiscono solo per a (condividono b = 1 e c = 1) differiscono solo per **b** (condividono **a = 1** e **c = 0**)

- Gruppi di 2x2 o 1x4 elementi condividono 1 (tutti meno 2) elementi!
- Esempi:

condividono
b = 0
(differiscono
per a e c)

condividono
 c = 1
(differiscono
 per a e b)

condividono
 c = 0
(differiscono
 per a e b)

condividono a = 0(differiscono
per b e c)

condividono
a = 1
(differiscono
per b e c)

Esempio per la funzione di tre variabili A, B, C
 F(A, B, C) = /A/B/C + /AB/C + A/BC + ABC + AB/C

Esempio per la funzione di tre variabili A, B, C
 F(A, B, C) = /A/B/C + /AB/C + A/BC + ABC + AB/C

A/BC e ABC sono mintermini adiacenti (differiscono solo per B)

Esempio per la funzione di tre variabili A, B, C
 F(A, B, C) = /A/B/C + /AB/C + A/BC + ABC + AB/C

Esempio per la funzione di tre variabili A, B, C
 F(A, B, C) = /A/B/C + /AB/C + A/BC + ABC + AB/C

Mintermini adiacenti (differiscono per A)

Semplificazioni possibili

• $F(A, B, C) = \frac{A}{B}C + \frac{A}{B}C + \frac{A}{B}C + \frac{A}{B}C + \frac{A}{B}C = \frac{A}{C}C + \frac{A}{$

Semplificazioni possibili

Mintermini che differiscono per A e B

Riscrivere tabella delle verità data come mappa di Karnaugh

A	В	С	F						
0	0	0	0		В	0	0	1	1
0	0	1	0	A	C	0	1	1	0
0	1	0	0						
0	1	1	1		0	0	0	1	0
1	0	0	0		1	0	1	1	1
1	0	1	1						
1	1	0	1						
1	1	1	1						

- Identificare un insieme di gruppi adiacenti di 2ⁿ celle di tutti 1 in modo che tutti gli 1 appartengano ad almeno un gruppo (SP)
- oppure, di tutti 0 in modo che tutti gli 0 appartengano... (PS)
- Criteri per trovare i gruppi:
 - ▶ I gruppi devono essere rettangolari (o quadrati) di dimensione 2ⁿ
 - Più i gruppi sono grandi e più letterali verranno eliminati
 - Meno gruppi danno luogo a meno termini
 - Lo stesso 1 o 0 può essere incluso in più gruppi
 - Ricordarsi che le mappe sono circolari:

 Ogni gruppo corrisponde a un mintermine contenente solo le variabili che non cambiano.

BC + AC + AB

Ogni gruppo corrisponde a un mintermine contenente solo le variabili che non cambiano.

Uso degli zeri

Si ricava l'espressione in forma di prodotto di somme

(A+B)(B+C)(A+C)

riprova:

- = (AB+B+AC+BC)(A+C) = (B+AC)(A+C)=AB+AC+BC+AC
- = AB+AC+BC ← la soluz. precedente

esempi di gruppi da 2

altro esempio di gruppo da 4

C	0	0	1	1	
ABD	0	1	1	0	
0 0	X	X	X	X	
0 1	X	X	X	X	condividono B=0 D=0
11	X	X	X	X	differiscono per A e C
1 0	X	X	X	X	

altro esempio di gruppo da 4

C A B	0	0	1	0	
0 0	X	X	X	X	condividono
0 1	X	X	X	X	A=1 differiscono
11	X	X	X	Х	per B D C
1 0	х	X	X	X	

esempio di gruppo da 8

esempio di gruppo da 8

condividono D=0
differiscono per A B C

C A B	0	0	1 1	0
0 0	1	1	0	1
0 1	1	1	0	0
11	0	1	1	0
1 0	1	1	0	1

Esempio

F = /A/C + /CD + /B/D + ABD

Limiti del metodo di Karnaugh

- I risultati dell'applicazione del metodo di Karnaugh sono normalmente meglio della semplice derivazione dell'espressione in prima forma normale, ma non sono necessariamente ottimi.
 - sono sempre e comunque somme di prodotti (o prodotti di somme)
 - è un vantaggio (semplicità e velocità della rete risultante)
 - è uno svantaggio (escludo altre ottimizzazioni logiche)
- Ad es. con Karnough posso dedurre che F = AB+BC
 - F richiede <u>tre</u> porte
- Ma noi sappiamo che F = AB+BC = B (A+C)
 - che richiede <u>due</u> porte