J-0x01 - Introduction

child block image

Why ML?

- Playing with blocks vs doing maths
- Sometimes we know how to solve problems (e.g., sorting)
- Sometimes we don't (e.g., recognise a cat, read handwriting on envelopes)
- Not magic

What is ML?

- 1. Some algorithms we know how to write
 - (a) Sort numbers
 - (b) Fly a plane
- 2. Some algorithms we don't know how to write (example: drive a car)
 - (a) Drive a car
 - (b) Read addresses on envelopes
 - (c) Detect spam
- 3. Maybe we can write programs to write programs when we can't
- 4. Some terms we used to use for ML
 - Artificial intelligence
 - Expert systems

fist image

Disclaimers

- The literature is overwhelmingly in English
- Time is short

tree image

Types of ML

- 1. Supervised
 - (a) Training data: input and correct responses
 - (b) Regression (continuous) (example: home prices)
 - (c) Classification (discrete) (example: medical outcome (alive/dead))
- 2. Unsupervised

- (a) Clustering
- (b) Deep neural networks
- (c) Associative (example: human experience, e.g. from a career)
- (d) Dimensionality reduction
- 3. Reinforcement
 - (a) Make a choice, get feedback
 - (b) Online
 - (c) Can be stochastic (example: predicting weather from local clues)

high five image

Talk about course structure

- Ten afternoon sessions
- In class: mostly theory, some code, not much maths
- Between classes: coding assignments (python)
- Communication: github, mailing list
- Ask questions via mail, eventually github issues
- Help each other via same
- Don't copy. Learn.

Curse of Dimensionality

- 1. Fléau (ou : malédiction) de la dimension
- 2. Volume of unit cube $\pm \epsilon$
- 3. Distance from (0, 0, ..., 0) to (1, 1, ..., 1)
- 4. Physics: $1/r^{d-1}$
- 5. It's easy to get lost...
- 6. Richard Ernest Bellman, Dynamic programming, Princeton University Press, 1957.

Probability

- 1. Event
- 2. Complement of an event
- 3. Disjoint (mutually exclusive)
- 4. Independent events knowing one outcome gives no information about other

- 5. addition (\times 2), multiplication \times 2)
- 6. Conditional probability
- 7. Marginal probability
- 8. Joint probability

Statistics

- 1. Goal for a bit: think like a statistician
- 2. What is statistics? $(\times 3)$
- 3. Said differently: goal is to compare reality to a model
- 4. Or to find a model and then compare.
- 5. Good statistical models are often relatively simple.
- 6. What is data science $(\times 5)$

Study design

- 1. Anecdote
- 2. Study types $(\times 2)$
- 3. Observational studies can't conclude causality
- 4. Observational studies can be
 - prospective: identify individuals, collect information
 - retrospective
 - we can combine them
- 5. Experimental studies
 - We do stuff
 - Can conclude causation if properly designed
 - controlling: hold other variables constant (e.g., drink pill with full glass of water even if we don't care)
 - randomization: cancel out effects we can't control
 - replication: enough participants
- 6. Study types example
 - Sunscreen use correlated to skin cancer rates.
 - Confounding variable

- 7. Random sampling hazards
 - Not actually random
 - Convenience sample
 - Non-response bias

Statistical concepts

- 1. Variable types
 - Input: Features
 - Input variables measure: Explanatory variable
 - Output: Response variable
 - Training set
 - Test set (tune parameters) (compare model parameters)
 - Validation set (tune hyperparameters) (measure performance of model)
 - Cross validation
 - Bias same errors regardless of input (inflexible)
 - Variance different errors with same input (too flexible)
- 2. Population statistics (\times 6)
 - sample mean vs population mean (\times 7)
 - Sample standard deviation and variance: divide by n-1
- 3. Distributions
 - Important: pdf (pmf), cdf, ppf (×5)
 - pdf = densité de probabilité
 - pmf = fonction de masse
 - cdf = fonction de répartition
 - ppf = ?
 - The rest: just so you've heard of them
 - Boxplot $(\times 2)$
- 4. Normal distributions $(\times 2)$
 - Sample mean vs population mean
 - How close are they?
 - Point estimate: if you have to guess, this is it
 - Correction: if I want to be on average weighted right as much possible

5. Sampling distributions (\times 3)

- Sampling mean is unimodal and approximately symmetric
- It is centred at population mean.
- The standard deviation of the sample mean tells us how far a point sample's mean is likely to be from the population mean. In other words, how much error we are likely to have in the point estimate's mean. **Standard error.**
- TODO: Generate uniform population, sample, and plot sampling distribution
- TODO Generate highly skewed population, sample, and plot sampling distribution
- In real life, we don't have access to the population parameters. We have to *estimate* them from samples. So we can't *know* the standard error (erreur type).

6. Confidence intervals (\times 3)

- Sampling is usually expensive.
- Reminder: Independent random samples!
- Correct language: "We are 95% confident that the population parameter is between..."
- Incorrect language: describe the confidence interval as capturing the population parameter with a certain probability.
- This is one of the most common errors: while it might be useful to think of it as a probability, the confidence level only quantifies how plausible it is that the parameter is in the interval.
- Another especially important consideration of confidence intervals is that they only try to capture the population parameter. Our intervals say *nothing* about the confidence of
 - capturing individual observations
 - a proportion of the observations
 - about capturing point estimates

Confidence intervals only attempt to capture population parameters.

J-0x01 - Features and Modeling

J-0x01 - Practicum

- Setting up an environment
- Jupyter notebook
- Titanic