Final project Guns in 51 US states

Eugenia Lou (EHL180001) I-Ting Chao (IXC171230) Rishabh Daga (RXD180021) Kaiyue Liu (KXL180021) Mehraj SK (MXS180076)

Contents

1.	Obj	ective	3
2.	Vari	able definitions	3
3.	Sun	nmary statistic and distributions	4
	Sun	nmary statistic	4
	Dist	ributions	5
4.	Cor	relation matrix	11
	Viol	ent crime rate across different years	12
	Ave	rage avginc V.S average of vio across different years	12
	Sha	II-carry law V.S average of vio across different years	13
	Viol	ent crime rate across different states	14
5.	Ехр	ectation	15
6.	App	proach	15
7.	Мо	delsdels	16
	i.	Checking for Heteroskedasticity:	16
	ii.	Model 1 - Pooled OLS model (without cluster robust errors)	18
	iii.	Model 2 - Pooled OLS model (adjusted for cluster robust errors)	19
	iv.	Hausman test for Endogeneity	20
	V.	Model 3 - Fixed Effects Model – Entity Fixed (adjusted for cluster rob	ust
	erro	ors)	21
	vi.	Model 4 - Fixed Effects Model – Entity and Time Fixed	22
	vii.	F-Test for significance of time variables	23
8.	Con	clusion	24
۵	Lim	itations of analysis	24

1. Objective

The objective of this project is to understand how shall-issues laws affect crime rate across 51 states in U.S from 1977 to 1999.

2. Variable definitions

- The data total observations are 1173, across 51 states within 23 years with no missing value so this is a balanced panel data.
- Dependent variable identified violent(vio)
- Expected explanatory variables rob, mur, shall, incarc_rate, density, avginc, pop, pm1029, pw1064, pb1064, stateid, year

Variable	type	Definition
vio	numeri cal	violent crime rate (incidents per 100,000 members of the population)
rob	numeri cal	robbery rate (incidents per 100,000)
mur	numeri cal	murder rate (incidents per 100,000)
shall	binary	= 1 if the state has a shall-carry law in effect in that year= 0 otherwise
incarc_rate	numeri cal	incarceration rate in the state in the previous year (sentenced prisoners per 100,000 residents; value for the previous year)
density	numeri cal	population per square mile of land area, divided by 1000
avginc	numeri cal	real per capita personal income in the state, in thousands of dollars
рор	numeri cal	state population, in millions of people
pm1029	numeri cal	percent of state population that is male, ages 10 to 29
pw1064	numeri	percent of state population that is white, ages 10 to 64

	cal	
pb1064	numeri cal	percent of state population that is black, ages 10 to 64
stateid	charact er	ID number of states (Alabama = 1, Alaska = 2, etc.)
year	charact er	Year (1977-1999)

3. Summary statistic and distributions

Summary statistic

Variable	Mean	Median	Std	Min	Max
vio	503.07	439.45	334.28	47.00	2,921.80
rob	161.82	107.45	170.51	6.40	1,635.10
mur	7.67	11.25	7.52	0.20	80.60
incarc_rate	226.58	166.00	178.89	19.00	1,913
density	0.35	0.08	1.36	0.00	11.10
avginc	13.72	9.83	2.56	8.55	23.65
рор	4.82	3.92	5.25	0.40	33.15
pm1029	16.08	17.59	1.73	12.21	22.35
pw1064	62.95	54.90	9.76	21.78	76.53
pb1064	5.34	8.50	4.89	0.25	26.98

Distributions

4. Correlation matrix

- Higher percentage of white populations tends to have lower crime rate
- Higher percentage of black populations tends to have higher crime rate
- Higher percentage of male populations tends to have lower crime rate
- Higher percentage of white populations might like to live in lower density of population area
- Higher density of population area tends to have higher crime rate

Violent crime rate across different years

Average avginc V.S average of vio across different years

Shall-carry law V.S average of vio across different years

Violent crime rate across different states

5. Expectation

- Rob: We expect that higher robbery rate because higher violent crime rate, so we expect rob is positive.
- Mur: We expect that higher murder rate because higher violent crime rate, so we expect mur is positive.
- Shall: The argument claims that allow citizens to carry concealed guns would decrease violent crime rate, so we expect that shall is negative.
- incarc_rate: The law system would affect human behavior, which means strict laws would decrease crime rate. Therefore, we expect that this variable to be negative.
- Density: Higher population density tends to have higher crime rate.
- Avginc: People who have lower income may involve more illegal activities to get money, so we expect that avginc is negative.
- Pop: We do not have any expectation whether it is positive or negative on this variable, because when population increased, people who commit crime might also increase.
- Pm1029: Male populations are expected to involve more illegal activities, thus the crime rate increased.
- Pw1064: Contrary to black populations.
- Pb1064: Black populations are more likely to involve illegal activities, so we expected it is positive.
- Although there are more and more state with shall-carry law in effect, the overall violent crime rate still slightly increase from 1977 to 1999

6. Approach

- 1. Conduct exploratory data analysis and correlation matrix
- 2. Check Heteroscedasticity by Breusch-Pagan test
- 3. Use the Pooled ordinary least squares without cluster robust error
- 4. Use the Pooled ordinary least squares with cluster robust error
- 5. Check Endogenous problem by Hausman test
- 6. Run the entity fixed effect model with cluster robust error
- 7. Run the entity and time fixed effect model with cluster robust error

7. Models

i. Checking for Heteroskedasticity:

We use white test for testing heteroskedasticity. The White test fit an OLS on the residuals and all the Xs, then calculates the White statistics which follows a chi-square distribution.

The null hypothesis is that no heteroskedasticity exists and all the coefficients for the OLS is 0.

The alternative hypothesis is that there is heteroskedasticity and at least one of the coefficients for the OLS is not 0.

We used R for this task using the bptest function. BPtest only tests linear heteroskedasticity but it would suffice.

The BP statistics calculated is 39.952, and it is significant. We have enough evidence to reject the null hypothesis and conclude there is heteroskedasticity in this dataset.

```
studentized Breusch-Pagan test

data: vio ~ incarc_rate + pb1064 + pw1064 + pm1029 + pop +
  avginc + density + shall

BP = 39.952, df = 8, p-value = 3.271e-06
```

We further confirm our findings on the scale-location plot which shows standardized residuals on fitted values which is a linear combination of all the Xs. We can clearly see on the plot that the variance of residuals changes over Y_predicted, and this shows heteroskedasticity exists. Since var(e) is not constant.

In the later part, we also fitted 2 pooled OLS without and with cluster robust errors, and the later model has significantly higher standard errors, this also is a sign of heteroskedasticity, and confirms our theory.

ii. Model 1- Pooled OLS model (without cluster

robust errors)

Key Observations:

- 1. The coefficient equals -0.368, which suggests that shall-issue laws reduce the violent crime rate by 36%. This is a huge effect and highly significant as well.
- 2. As expected all the other variables are positively contributing to crime including pop, avginc, density etc.
- 3. We will now run a regression to correct for heteroskedasticity.

iii. Model 2- Pooled OLS model (adjusted for

cluster robust errors)

. regress log > e(cluster s	_	carc_rate pb:	1064 pw10	D64 pm102	9 pop avginc	density, vc
Linear regress	Bion			Number	of obs =	1,173
				F(8, 50) =	62.13
				Prob >	F =	0.0000
				R-squar	ed =	0.5643
				Root MS	E =	.42769
log_vio	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
shall	3683869	.113937	-3.23	0.002	5972361	1395378
incarc rate	.0016126	.0005999	2.69	0.010	.0004076	
						.0028177
pb1064	.0808526	.0713875	1.13	0.263	0625334	
_ pb1064 pw1064	.0808526 .0312005	.0713875 .03409	1.13 0.92	0.263 0.364		
-					0625334	.2242386 .0996723
pw1064	.0312005	.03409	0.92	0.364	0625334 0372713	.2242386 .0996723
pw1064 pm1029	.0312005 .0088709	.03409	0.92 0.26	0.364 0.796	0625334 0372713 0596137	.2242386 .0996723 .0773554
pw1064 pm1029 pop	.0312005 .0088709 .0427098	.03409 .0340964 .011729	0.92 0.26 3.64	0.364 0.796 0.001	0625334 0372713 0596137 .0191515	.2242386 .0996723 .0773554 .0662681

Key Observations:

- 1. We can see that the standard errors have increased to .114 from .0325 for Shall variable. This indicates the presence of heteroskedasticity in the data.
- 2. Other variables such as pop avginc and density also show significant increase in SE.
- 3. We can now suspect that there is endogeniety because there could be some qualitative factors that got added in the error term. One example could be the attitude of people towards driving in each state.
- 4. We will proceed with fixed effects model as that will confirm the existence of endogeniety, however, we show endogeniety using hausman test as well. We reject the null hypothesis of no endogeniety at 6% level.

iv. Hausman test for Endogeneity

shall	0279935	034406	.0064124						
incarc_rate	.000076	.0003103	0002343	.0000625					
pb1064	.0291862	.0788527	0496665	.0134343					
pw1064	.0092501	.0275948	0183447	.0026951					
pm1029	.0733254	.0411452	.0321802	.004474					
qoq	0047544	.0156487	0204031	.0050154					
avginc	.0009587	.0090237	008065	.0015127					
year									
78	.0585261	.0467262	.0117999						
79	.1639486	.1446496	.0192989						
80	.2170759	.1948856	.0221903						
81	.2172551	.1866042	.030651						
82	.1946328	.1540466	.0405862						
83	.158645	.105391	.0532539	.0039485					
84	.1929883	.1243402	.0686481	.007715					
85	.2444764	.1631641	.0813123	.0101575					
86	.3240904	.2297914	.094299	.0125222					
87	.324365	.2168778	.1074873	.0148186					
88	.3867412	.2647078	.1220334	.0173247					
89	.4422143	.3063517	.1358626	.0196668					
90	.5430478	.3594444	.1836034	.0276469					
91	.5959456	.4022777	.1936679	.0291873					
92	.6275171	.4204634	.2070537	.0314318					
93	.6497414	.4324066	.2173348	.0330578					
94	.6354187	.404894	.2305247	.0352098					
95	.6276831	.384303	.2433801	.0374058					
96	.5713423	.3170672	.2542751	.0393173					
97	.5501153	.2845673	.265548	.0412996					
98	.4932904	.2131114	.280179	.0438737					
99	.4328776	.1389619	.2939157	.046243					
density	091555	.0697575	1613125	.067037					
b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic chi2(29) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 41.63 Prob>chi2 = 0.0606 (V_b-V_B is not positive definite)									
			-						

We can reject the null hypothesis of no Endogeneity at ~6% significance level.

v. Model 3- Fixed Effects Model – Entity Fixed

(adjusted for cluster robust errors)

. xtreg log_vi	o shall incar	c_rate pb106	4 pw1064	pm1029 j	pop avginc	density, fe vce
Fixed-effects	(within) regr	ression		Number (of obs	= 1,173
Group variable	: stateid	Number	of groups	= 51		
R-sq:				Obs per	group:	
within =	0.2178			-	min	= 23
between =	0.0033				avq	= 23.0
overall =	0.0001				max	= 23
				F/8 50\		= 34.10
corr(u i, Xb)	= -0 3687					= 0.0000
COII (u_I, ND)	0.5007			1100)	-	0.0000
log_vio	Coef.	Robust Std. Err.	t	P> t	[95% Cor	nf. Interval]
shall	0461415	.0417616	-1.10	0.275	1300223	3 .0377392
incarc_rate	000071	.0002504	-0.28	0.778	0005739	.0004318
pb1064	.1042804	.0326849	3.19	0.002	.0386308	.1699301
pw1064	.0408611	.0134585	3.04	0.004	.0138289	.0678932
pm1029	0502725	.0206949	-2.43	0.019	0918394	10087057
pop	.0115247	.014224	0.81	0.422	0170452	.0400945
avginc	0092037	.0129649	-0.71	0.481	0352445	.016837
density	1722901	.1376129	-1.25	0.216	4486936	.1041135
_cons	3.866017	.7701057	5.02	0.000	2.319214	5.412819
sigma u	.68024951					
sigma e	.16072287					
rho		(fraction o	f varian	ice due to	o u_i)	

Key Observations

- The results change when we run the fixed effects model with states fixed.
- The absolute effect of Shall decreases to 4.6%. The effect of shall issue laws on the violent crime rate is no longer statistically significantly different from zero due to significant p values.
- It would seem that there are important omitted variable bias or unobserved Endogeneity in the specification without fixed effects.

• The regression model with fixed effects is more credible because this controls for unobserved characteristics that vary between states but that are constant over time

vi. Model 4- Fixed Effects Model – Entity and Time

Fixed

r, fe vce(cluster state	nsity i.year,	den	p avginc	pm1029	4 pw1064	c_rate pb10	o shall incar	xtreg log_vi
	1,173	=	obs	Number		ession	(within) reg	Fixed-effects
	51	-	groups	Number			: stateid	Group variable
			roup:	Obs per				R-sq:
	23	=	min				0.4180	within =
	23.0	=	avg				0.0419	between =
	23	=	max				0.0009	overall =
	56.86	=		F(30,50				
	0.0000 n stateid)	= in	clusters	Prob > ed for	r. adjus	(Std. E	= -0.2929	corr(u_i, Xb)
			clusters		er. adjus	(Std. E	= -0.2929	corr(u_i, Xb)
		s in			er. adjus		= -0.2929 Coef.	log_vio
	n stateid)	in		ed for	1000 February - 1000 February	Robust		_
	n stateid)	in nf.	[95% Cor	ed for	t	Robust Std. Err.	Coef.	log_vio
	Interval]	in nf.	[95% Cor	ed for P> t 0.495	t -0.69	Robust Std. Err.	Coef.	log_vio
	Interval] .0537886	of.	[95% Cor 1097757	P> t 0.495	-0.69 0.37	Robust Std. Err. .0407168 .0002079	Coef. 0279935 .000076	log_vio shall incarc_rate
	Interval] .0537886 .0004935 .1286916	of.	[95% Cor 1097757 0003416 0703192	P> t 0.495 0.716	-0.69 0.37 0.59	Robust Std. Err. .0407168 .0002079 .0495407	Coef0279935 .000076 .0291862	log_vio shall incarc_rate pb1064
	Interval] .0537886 .0004935 .1286916 .0569662	in if.	[95% Cor 1097757 0003416 0703192 0384659	P> t 0.495 0.716 0.558 0.699	-0.69 0.37 0.59 0.39	Robust Std. Err. .0407168 .0002079 .0495407 .0237564	Coef0279935 .000076 .0291862 .0092501	log_vio shall incarc_rate pb1064 pw1064
	Interval] .0537886 .0004935 .1286916 .0559662	s in	[95% Cor 1097757 0003416 0703192 0384659	P> t 0.495 0.716 0.558 0.699 0.168	-0.69 0.37 0.59 0.39 1.40	Robust Std. Err. .0407168 .0002079 .0495407 .0237564 .0524733	Coef0279935 .000076 .0291862 .0092501	log_vio shall incarc_rate pb1064 pw1064 pm1029

W1401000000						
year	1222276		2	1217121217	WELL THE LOCAL CO.	COUNTY
78	.0585261	.0161556	3.62	0.001	.0260767	.090975
79	.1639486	.0244579	6.70	0.000	.1148233	.213073
80	.2170759	.0334184	6.50	0.000	.1499531	.284198
81	.2172551	.0391956	5.54	0.000	.1385284	.295981
82	.1946328	.0465743	4.18	0.000	.1010856	.2881
83	.158645	.0593845	2.67	0.010	.0393676	.277922
84	.1929883	.0770021	2.51	0.015	.0383251	.347651
85	.2444764	.0922217	2.65	0.011	.0592438	.429709
86	.3240904	.1089181	2.98	0.004	.1053219	.542858
87	.324365	.1249881	2.60	0.012	.073319	.575411
88	.3867412	.1397074	2.77	0.008	.1061305	. 667351
89	.4422143	.1535358	2.88	0.006	.1338286	.750599
90	.5430478	.1960859	2.77	0.008	.1491976	. 93689
91	.5959456	.2040685	2.92	0.005	.1860618	1.00582
92	.6275171	.2170306	2.89	0.006	.1915982	1.06343
93	.6497414	.2246177	2.89	0.006	.1985834	1.10089
94	.6354187	.2332437	2.72	0.009	.1669349	1.10390
95	.6276831	.2423607	2.59	0.013	.1408874	1.11447
96	.5713423	.2534067	2.25	0.029	.06236	1.08032
97	.5501153	.2613516	2.10	0.040	.0251751	1.07505
98	.4932904	.2746546	1.80	0.079	0583697	1.0449
99	.4328776	.2862197	1.51	0.137	1420117	1.00776
_cons	3.765525	1.152108	3.27	0.002	1.451448	6.07960
sigma_u	.6663043					
sigma_e	.1400264					
rho	.95770338	(fraction o	of varia	nce due t	oui)	

Key Observations

- The results change when we run the fixed effects model with both states and time fixed.
- Effect of Shall is now 2.78% instead of 4.6% in the only state fixed model
- Coefficient is still not significantly different from 0 as observed in p values
- As per the below test, time variables are statistically significant. So we can conclude that this model is a better fit than the only state fixed model.

vii. F-Test for significance of time variables

```
. testparm i.year
 (1) 78.year = 0
 (2) 79.year = 0
 (3) 80.year = 0
(4) 81.year = 0
(5) 82.year = 0
(6) 83.year = 0
(7) 84.year = 0
 (8) 85.year = 0
(9) 86.year = 0
(10) 87.year = 0
(11) 88.year = 0
(12) 89.year = 0
(13) 90.year = 0
(14) 91.year = 0
(15) 92.year = 0
(16) 93.year = 0
(17) 94.year = 0
(18) 95.year = 0
 (19) 96.year = 0
(20) 97.year = 0
(21) 98.year = 0
 (22) 99.year = 0
      F(22, 50) = 21.62
           Prob > F = 0.0000
```

Since F-value is very high, time variables are statistically significant.

8. Conclusion

- There is a large estimated effect of concealed weapons laws in pooled OLS models.
- This effect is however due to omitted variable bias and unobserved characteristics because the effect disappears when state and time effects are added.
- So the model with both time and state fixed effects is the best model.
- We can conclude that there is no significant effect of concealed weapon laws on the violent crime rate.

9. Limitations of analysis

- Even the FE estimate could have following bias:
 - > It captures only within variation
 - > It captures only variables which are constant
- FE estimator is still biased if the unobserved heterogeneity changing over time, and correlated with the regressors.
- This means that if some variable such as attitude of people towards driving changes over time then it will not be captured here.
- We will need more data to check for that effect but it is really difficult to get such data