Section 1 - Binary and Counting

Wednesday, June 19, 2019

10:37 AM

· SECTION 1 ·

DECIMAL-A NUMBER IN BASE 10 BWARY-A NUMBER IN BASE 2

$$\frac{205}{10^{2} \cdot 10^{2} \cdot 10^{2}}$$

$$(10^{2} \cdot 2) + (10^{2} \cdot 0) + (10^{2} \cdot 5) = 205$$

SO WHAT'S HAPPENING? ·WE HAVE BASE B. · EACH DIGIT CAN BE 0 7 B-1 · TYPICALLY NUMBERS HAVE SUBSCRIPTS WITH THE BASES. EG 92,0 10012 $\frac{V}{B^{\circ}} \cdot \cdot \cdot B^{\circ} \times B^{\circ}$ (v×B°)+...+ (w·B°) + (y·B') + (z·B°) BASE 10

THE ABOVE CONVERTS ANY NUMBER TO

· WHAT ABOUT THE OTHER WAY?

243=

·ALWAYS CONVERT TO BASE 10 THEN TO NEW BASE

~ BINARY + HEXADECIMAL ~

- ·BINARY IS BASE 2
- · HEXA DECIMAL IS BASE 6
- . 4 BITS IN BINARY IS A HEX DIGIT

 $1010 \longrightarrow A$

1010 0101 -> A 5

DECIMAL	BINARY	Hex	DEC	BINATT	Mes
0	0000	0	8	1000	8
	0001	1	9	1001	9
2	0010	2	10	1010	A
3	6011	3		[01]	B
4	0100	4	12	1100	C
5	0101	5	13	1101	D
6	0110	6	14	1110	E
7	0111	7	15		F