Languages and MachinesChap 5 (pp 184-186): 1abcd, 12, 13, 22d, 23, 25d.

1.

(a) q0 b q1 a

(b)	(b)					
	[q0, abaa]	[q0, bbbabb]	[q0, bababa]	[q0, bbbaa]		
	⊢ [q0, baa]	⊢ [q1, bbabb]	⊢ [q1, ababa]	⊢ [q1, bbaa]		
	⊢ [q1, aa]	⊢ [q1, babb]	⊢ [q2, baba]	⊢ [q1, baa]		
	⊢ [q2, a]	⊢ [q1, abb]	⊢ [q0, aba]	⊢ [q1, aa]		
	$\vdash [q2, \lambda]$	⊢ [q2, bb]	⊢ [q0, ba]	\vdash [q2, a]		
	accepts	⊢ [q0, b]	⊢ [q1, a]	$\vdash [q2, \lambda]$		
		⊢ [q1, λ]	⊢ [q2, λ]	accepts		
		rejects	accepts			

(c)

See above.

12.

$$Q = \{q0, q1, q2, q3\}$$

Sigma =
$$\{a,b\}$$
 $F = \{q0\}$

$$F = \{q0\}$$

J Bolton Set 8

22.

23.

(a)					
	t	a	b		
	q0	{q0, q1}	0		
	q1	0	{q1, q2}		
	q2	{q0, q1}	0		

(b)

 $[q0, aaabb] \vdash [q0, aabb] \vdash [q1, bb] \vdash [q1, bb] \vdash [q1, b] \vdash [q2, lambda]$

- (c) Yes.
- (d)(a+b+)+

J Bolton Set 8

25.

(d) a, b q1 b q2 a, b q3 q4

Prove that for any DFA M, any two strings u and v, and any state q in M: delta-hat(q,uv) = delta-hat(delta-hat(q,u),v). Hint. Use induction on v.

```
Basis:
```

```
u = lambda, v = lambda

d^{(q, lambdalambda)} = d^{(q, lambda)} = q

d^{(q, lambdalambda)} = d^{(q, lambda)}, lambda) = d^{(q, lambda)} = q

u = lambda, v is an element of sigma and length(v) = 1

d^{(q, lambdav)} = d^{(q, v)} = d(q, v)

d^{(q, lambda), v)} = d^{(q, v)} = d(q, v)

u is an element of sigma and length(u) = 1 and v = lambda

d^{(q, ulambda)} = d^{(q, u)} = d^{(q, u)}

d^{(q, ulambda)} = d^{(q, u)} = d(q, u)
```

Inductive hypthesis:

 $d^{(q,uv)} = d^{(d,u)}(q,u),v$ for all for all strings where the length of v is less or equal to n.

Induction:

```
if v is length n+1, we can call it wa where length(a) = 1. Thus: d^{(q)}(q, uw) = d(d^{(q)}(q, uw), a) = d(d^{(q)}(q, u), w) = d(d^{(q)}(q, u), w) = d(d^{(q)}(q, uw), a)  [def. 5.2.4] = d(d^{(q)}(q, u), w), a) [Inductive hypothesis] d^{(q)}(q, u), wa) = d(d^{(q)}(q, u), w), a) [def. 5.2.4]
```