

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS DOCENTE: CARLOS ROMÁN

AYUDANTE: SANTIAGO GONZÁLEZ

MAT2505 - Ecuaciones Diferenciales Parciales

Ayudantía 1

- PROBLEMA 1

Sea $\Omega \subset \mathbb{R}^n$ abierto no vacío y $f \in L^1_{\mathrm{loc}}(\Omega)$ tal que

$$\int_{\Omega} f\psi = 0 \quad \forall \psi \in \mathcal{C}_c(\Omega).$$

Demuestre que f = 0 ctp.

SOLUCIÓN Primero supongamos que f es no negativa. Sea ψ como en el enunciado y sea K un compacto tal que supp $\psi \subset K$. Sea $(\psi_n)_n$ una sucesión de funciones $\mathcal{C}_c(\Omega)$ tal que $\psi_n \geq 0$ y $\psi_n(x) \to 1$ para todo $x \in K$. Como $1 \in L^1_{loc}(\Omega)$ aplica el TCD y tenemos que

$$0 = \lim_{n \to \infty} \int_K f \psi_n = \int_K f$$

Como f es positiva, concluimos que f=0 ctp en K y como el compacto era arbitrario, f=0 ctp en Ω . Para el caso general, basta considerar $f=f^+-f^-$.