Planar Configuration Spaces of Disk Arrangements and Hinged Polygons

Clinton Bowen

Cal State Northridge

December 6, 2016

Motivation: Hinged Dissection

- * Dudeney Problem: Can a square and an equilateral triangle of the same area have a common dissection into four pieces?
- * Can finite collection of polygons of equal area has a common hinged dissection?

Figure: A collection of polygons with hinges.

Motivation: Hinged Dissection

- * Dudeney Problem: Can a square and an equilateral triangle of the same area have a common dissection into four pieces?
- * Can finite collection of polygons of equal area has a common hinged dissection?

Figure: blah

Motivation: Protein Folding

Protein folding is the process in which a protein chain acquires its 3-dimensional structure.

- * Proteins in an organism fold into a specific geometric pattern (sometimes referred as its *native state*).
- * Geometric patterns can determine a protein's function and behavior.

Figure: The structure of rat cytosolic PEPCK variant E89A in complex with oxalic acid and GTP [?].

Contribution

It is strongly NP-hard to decide whether a polygonal linkage whose inge graph is a *tree* can be realized.

It is strongly NP-hard to decide whether a polygonal linkage whose inge graph is a *tree* can be realized with fixed orientation.

It is NP-Hard to decide whether a given ordered tree with positive vertex weights is the contact graph of a disk arrangements with pecified radii.

Logic Engine Realized as Hinged Polygons.pdf

* Suppose we are given an Boolean formula with m clauses and n variables in 3-CNF form, Φ, we construct the polygonal linkage similarly to the logic engine.

Figure: Caption Text

Logic Engine Realized as Hinged Polygons.pdf

* Breu and Kirkpatrick [?] proved that it is NP-hard to decide whether a graph *G* is the contact graph of unit disks in the plane, i.e., recognizing *coin graphs* is NP-hard; see also [?].

Planar 3SAT

- * Define the associated graph A(Φ) as follows: the vertices correspond to the variables and clauses in Φ. We place an edge in the graph if variable x_i appears in clause C_i.
- * Given a Boolean formula Φ in 3-CNF such that its associated graph is planar, decide whether it is satisfiable is a 3-SAT problem.

Figure: Caption Text

honeycomb.pdf

- * Define the associated graph A(Φ) as follows: the vertices correspond to the variables and clauses in Φ. We place an edge in the graph if variable x_i appears in clause C_i.
- * Given a Boolean formula Φ in 3-CNF such that its associated graph is planar, decide whether it is satisfiable is a 3-SAT problem.

Figure: Caption Text

Transmitter Gadget

* A transmitter gadget is constructed for each edge $\{x_i, C_j\}$ of the graph $A(\Phi)$; it consists of a sequence of junctions and corridors from a variable gadget's junction to a clause junction.

Figure: Caption Text

Variable Gadget

* Variable x_i corresponds to a cycle in the associated graph $\tilde{A}(\Phi)$, which has been embedded as a cycle in the hexagonal tiling, with corridors and junctions. In each junction along this cycle, attach a small hexagon in the common boundary of the two corridors in the cycle.

Figure: Caption Text

Figure: Caption Text

Clause Junction Gadget

* The clause gadget lies at a junction adjacent to three transmitter gadgets (see Fig. ?? and Section ??). At such a junction, we attach a unit line segment to an arbitrary vertex of the junction, and a small hexagon of side length $\frac{1}{3}$ to the other end of the segment.

Figure: Caption Text

Motivation: Weighted Trees and Disk Arrangements

- * Is it strongly NP-hard to decide whether a polygonal linkage whose hinge graph is a *tree* can be realized?
- * Is it NP-Hard to decide whether a given ordered tree with positive vertex weights is the contact graph of a disk arrangements with specified radii?

Figure: Caption Text

Modified Auxiliary Gadget

- * The modified auxiliary gadget channels and junctions in a hexagonal grid enclosed by six frame hexagons.
- * A comment about NAE3SAT....

Figure: Caption Text

Approximation of Hexagon with a Disk Arrangement

- * A drawing of a tree *T* overlayed with a corresponding disk arrangement, each disk with unit radius.
- * The nodes of the tree are the centers of the disks.

Figure: A tree overlayed with a disk arrangement