Preprocessing Pipeline

hreeee@yonsei.ac.kr 강사 백혜림

전처리의 늪에 오신 것을 환영합니다.

- 가장 재미없고(?) 반복적인 끝이 없는 작업
- 하지만 가장 중요 어쩌면 모델링만큼

NLP Project Workflow

문제 정의

- 단계를 나누고 simplify
- !와 "를 정의

데이터 수집

- 문제 정의에 따른 수집
- 필요에 따라 레이블링

데이터 전처리 및 분석

- 형태를 가공
- 필요에 따라 EDA 수행

배포

- RESTful API를 통한 배포
- 상황에 따라 유지/보수

평가

- 실험 설계
- 테스트셋 구성

알고리즘 적용

- 가설을 세우고 구현/적용

Preprocessing Workflow

데이터(코퍼스) 수집

- 구입, 외주
- 크롤링을 통한 수집

정제

- Task에 따른 노이즈 제거
- 인코딩 변환

레이블링(Optional)

- 문장마다 또는 단어마다 labeling 수행

Batchify

- 사전 생성 및 word2index 맵핑 수행
- 효율화를 위한 전/후처리

Subword Segmentation (Optional)

- 단어보다 더 작은 의미 단위 추가 분절 수행

Tokenization

- 형태소 분석기를 활용하여 분절 수행

말뭉치(Corpus)란?

• 자연어처리를 위한 문장들로 구성된 데이터셋

• 복수표현: Corpora

- 포함된 언어 숫자에 따라,
 - Monolingual Corpus
 - Bi-lingual Corpus
 - Multilingual Corpus
- Parallel Corpus: 대응되는 문장 쌍이 labeling 되어 있는 형태

English	Korean	
I love to go to school.	나는 학교에 가는 것을 좋아한다.	
I am a doctor.	나는 의사 입니다.	

Service Pipeline

정제

- 학습 데이터와 같은 방식의 정제 수행

Tokenization

- 학습 데이터와 같은 방식의 분절 수행

Subword Segmentation

- 학습 데이터로부터 얻은 '모델'을 활용하여 똑같은 분절 수행

Detokenization (Optional)

- 사람이 읽을 수 있는 형태로 변환(index2word)
- 분절 복원

Prediction

- 모델에 넣고 추론 수행
- 필요에 따라 search 수행 (자연어 생성)

Batchify

- 학습 데이터로부터 얻은 사전에 따른 word2index 맵핑 수행

Data Crawling

Preprocessing Workflow

데이터(코퍼스) 수집

- 구입, 외주
- 크롤링을 통한 수집

정제

- Task에 따른 노이즈 제거
- 인코딩 변환

레이블링(Optional)

- 문장마다 또는 단어마 다 labeling 수행

Batchify

- 사전 생성 및 word2index 맵핑 수행
- 효율화를 위한 전/후처리

Subword Segmentation (Optional)

- 단어보다 더 작은 의미 단위 추가 분절 수행

Tokenization

- 형태소 분석기를 활용하 여 분절 수행

데이터 구입 및 외주의 한계

- 구입
 - 정제 및 레이블링이 완료된 양질의 데이터를 얻을 수 있음
 - 양이 매우 제한적
 - 구입처: 대학교, 한국전자통신연구원(ETRI), 플리토 등

• 외주

- 수집, 정제 및 레이블링을 외주 줄 수 있음
- 가장 높은 비용 → 양이 매우 제한적
- 품질 관리를 위한 인력이 추가로 필요

최대 10만 단위

무료 공개 데이터

- 공개 사이트
 - AI-HUB
 - WMT competetion
 - Kaggle
 - OPUS (http://opus.nlpl.eu/)
- 마찬가지로 양이 매우 제한적
- 한국어 코퍼스는 흔치 않음

최대 10만 단위

Crawling

- 무한한 양의 코퍼스 수집 가능
 - 원하는 도메인 별로 수집 가능
- 하지만 품질이 천차만별이며, 정제 과정에 많은 노력 필요
 - e.g. 특수문자, 이모티콘, 노이즈, 띄어쓰기

Crawling

• 아직은 회색지대 하지만 적법한 절차에 따른 크롤링이 필수

• robots.txt

```
$ wget https://www.ted.com/robots.txt
$ cat robots.txt
User-agent: *
Disallow: /latest
Disallow: /latest-talk
Disallow: /latest-playlist
Disallow: /people
Disallow: /profiles
Disallow: /conversations
User-agent: Baiduspider
Disallow: /search
Disallow: /latest
Disallow: /latest-talk
Disallow: /latest-playlist
Disallow: /people
                       http://www.robotstxt.org/
Disallow: /profiles
```


저작권이 존재하는 코퍼스로부터 학습한 모델과 그 생성물의 저작권은 누가 갖는가?

수집처

수집처	도메인	문체	수집 난이도	양방향	정제 난이도	비고
블로그	일반	대화체	낮음	X	최상	
N* 지식인	다양함	대화체	낮음	X	중간	
뉴스 기사	시사	문어체	낮음	0	낮음	문법 준수
Wikipedia	다양함	문어체	덤프 제공	0	낮음	
나무위키	다양함	문어체	낮음	X	낮음	
커뮤니티	다양함	대화체	중간	X	높음	클리앙 등
TED	다양함	대화체	낮음	0	낮음	
자막	일반	대화체	낮음	0	높음	

Data Cleaning

Preprocessing Workflow

데이터(코퍼스) 수집

- 구입,외주
- 크롤링을 통한 수집

정저

- Task에 따른 노이즈 제가
- 인코딩 변환

레이블링(Optional)

- 문장마다 또는 단어마다 labeling 수행

Batchify

- 사전 생성 및 word2index 맵핑 수행
- 효율화를 위한 전/후처리

Subword Segmentation (Optional)

- 단어보다 더 작은 의미 단위 추가 분절 수행

Tokenization

- 형태소 분석기를 활용하여 분절 수행

Two Steps

- 기계적인 노이즈제거
 - 전각문자 변환
 - Task에 따른 (전형적인) 노이즈 제거
- Interactive 노이즈 제거
 - 코퍼스의 특성에 따른 노이즈 제거
 - 작업자가 상황을 확인하며 작업 수행

주의할 점

- Task에 따른특성
 - 풀고자 하는 문제의 특성에 따라 전처리 전략이 다름
 - 신중한 접근이 필요
 - e.g. 이모티콘은 필요 없는 정보일까?

- 언어, 도메인, 코퍼스에 따른 특성
 - 각 언어, 도메인, 코퍼스 별 특성이 다르므로 다른 형태의 전처리 전략이 필요

전각문자 제거

- 유니코드 이전의 한글, 한자, 일본어는 전각 문자로 취급되었음
- 한자 등과 함께 표기된 반각 문자로 표기 가능한 전각 문자의 경우, 반각 문자로 치환
 - 중국어, 일본어 문서의 경우 많은 경우 전각 치환 필요
 - 오래된 한국어 문서의 경우 종종 전각 치환 필요

• 전각 문자의 예:

- !"#\$%&'() * + , . /
- 0123456789
- : ; < = > ? @
- ABCDEFGHIJKLMNOPQRSTUVWXYZ
- [\]^_`
- abcdefghijklmnopqrstuvwxyz
- { | } ~

대소문자 통일(Optional)

- 코퍼스에 따라 대소문자 표기법이 다름
- 하나의 단어를 다양하게 표현하면 희소성이 높아짐
- 딥러닝의 시대에 오면서 필요성 하락 및 생략 가능

No	New York City
1	NYC
2	nyc
3	N.Y.C.
4	Nyc

정규식을 활용한 정제

- 정규식(regular expression)을 활용하면 복잡한 규칙의 노이즈도 제거/치환 가능
- 코딩 없이 단순히 텍스트 에디터(Sublime Text, VSCode 등)도 가능

Interactive 노이즈제거 과정

- 규칙에 의해 노이즈를 제거하기 때문에, 노이즈 전부를 제거하는 것은 어려움
- 따라서 반복적인 규칙 생성 및 적용 과정이 필요
- 끝이 없는 과정
 - 노력과 품질 사이의 trade-off
 - Sweet spot을 찾아야함

Summary

- 전처리 과정은 Task와 언어, 도메인과 코퍼스의 특성에 따라 다르다.
- 시간과 품질 사이의 trade-off
- 따라서 전처리 중에서도 특히 데이터 노이즈 제거의 경우, 많은 노하우가 필요

Regular Expression

실무 팁: RegEx 적용 방법

1. Text Editor 활용

- 파일을 열어 적용 과정을 보면서 정제
- 바로 결과를 확인할 수 있음
- 적용 과정이 log로 남지 않음
 - 재활용 불가

2. 전용 모듈 작성 및 활용

- Python등을 활용하여 모듈을 만들고 regex 리스트를 파일로 받아서 처리
- 한번에 모든 regex를 적용
 - 중간 결과 확인 불가
- regex 재활용 가능

Text Editors with RegEx

- Sublime Text 3, VSCode
 - 무료
- EmEditor
 - 유료
 - 다양한 인코딩 지원
 - 대용량 corpus (GB 단위) 로딩 가능

- 2, 3, 4, 5, c, d, e 중의 character
- [2345cde]
- (2|3|4|5|c|d|e)

[-]

- 2, 3, 4, 5와 c, d, e 중의 character
- [2-5c-e]

[^]

- 2, 3, 4, 5와 c, d, e를 제외한 모든 character
- [^2-5c-e]

()

- x를 ₩1에 지정, yz를 ₩2에 지정
- (x)(yz)

RegEx의 꿀기능

- 양 끝에 알파벳(소문자)으로 둘러싸인 'bc'를 제거하기
 - abcd
 - 0bc1
- 적용 예제

$$([a-z])bc([a-z]) \rightarrow \forall 1\forall 2$$

- abcd → ad
- 0bc1 → 0bc1

- x 또는 y가 나타남. 그리고 ₩1에 지정
- (x|y)

?

- •x가 0번 또는 1번 나타남
- x?

+

• x가 한 번 이상 나타남

• X+

- x가 나타나지 않을 수도, 반복될 수도 있음
- 강력한 표현. 유의해서 사용해야 함
- X*

 ${n}, {n}, {n,}, {n,m}$

- n번 반복
- x{n}

 ${n}, {n,}, {n,m}$

- n번 이상 반복
- x{n,}

 ${n}, {n}, {n,}, {n,m}$

- n번부터 m번까지 반복
- x{n,m}

•

- any character
- 매우 강력한 표현. 유의해서 사용해야 함

- ^ \$
- 문장의 시작과 끝을 표시
- ^x\$

그 밖의 지정 문자

Meta Characters	Description
₩s	공백 문자white space
₩S	공백 문자를 제외한 모든 문자
₩w	alphanumeric(알파벳 + 숫자) + '_' ([A-Za-z0-9_]와 같음)
₩W	non-alphanumeric 문자 및 '_' 제외 ([^A-Za-z0-9_]와 같음)
₩d	숫자 ([0-9]와 같음)
₩D	숫자를 제외한 모든 문자 ([^0-9]와 같음)

지연어노이즈제거

불완전한문장으로구성된대화의경우

• 한 문장씩 주고 받는 대화와 달리 메신저는 한 문장을 여러 번에 나눠 전송하거나 여러 문장을 한 번에 전송하는 경우가 있습니다.

예1) A: "아니아니" "오늘이 아니고" "내일이지" / B: "그럼 오늘 사야겠네. 내일 필요하니까?"

문장의길이가너무길거나짧은경우

• 아주 짧은 문장은 의미가 없을 수 있고, 대체로 사용빈도가 높은 리액션에 해당하는 경우가 많아서 언어 모델을 왜곡시킬 우려가 있기 때문에 제외해주는 게 좋습니다.

예1) А: "ㅋㅋㅋ", "ㅠㅠㅠ"

아주 긴 문장은 대화와는 관계가 없는 문장일 수 있습니다.

예2) A: "이 편지는 영국에서부터 시작되어…"

채팅데이터에서문장시간간격이너무긴경우

• 메신저는 누가 자판을 치는지 모르기 때문에 서로의 말이 얽히게 됩니다. 따라서 서로의 말의 텀이 짧으면 그것은 대화가 아니라 서로 할말만 하는 상태일 수 있습니다.

```
예1) A: "겨울왕국2" / B: "보러가자" / A: "엊그제 봤는데 잼씀" / B: "오늘 저ㄴ 아니
ㅡㅡ"
```

혹은 말의 텀이 너무 길다면 그것은 연속된 대화로 보기 어렵습니다.

예2) A: "나 10만원만 빌려줄 수 있어?" / ····· / B: "아 미안 지금 봤다 아직 필요해?"

바람직하지않은문장의사용

• 욕설의 비율이나, 오타의 비율이 높은 문장은 자연어 모델 학습에 사용하지 않는 것이 좋습니다.

노이즈유형(1)문장부호: Hi, my name is john

•문장 부호 양쪽에 공백을 추가하는 방법을 취하자!

```
def pad_punctuation(sentence, punc):
    for p in punc:
        sentence = sentence.replace(p, " " + p + " ")

return sentence

sentence = "Hi, my name is john."

print(pad_punctuation(sentence, [".", "?", "!", ","]))
```

노이즈유형(2)대소문자: First, open the first chapter

•모든 단어를 소문자로 바꾸는 방법

```
sentence = "First, open the first chapter."

print(sentence.lower())

sentence = "First, open the first chapter."

print(sentence.upper())
```

노이즈유형(3)특수문자: He is a ten-year-old boy

• 사용할 알파벳과 기호들을 정의해 이를 제외하고 모두 제거하자!

```
import re
sentence = "He is a ten-year-old boy."
sentence = re.sub("([^a-zA-Z.,?!])", " ", sentence)
print(sentence)
```

배운것들을종합하기

https://www.gutenberg.org/files/2397/2397-h/2397-h.htm

def cleaning_text(text, punc, regex):

return

print(cleaning_text(corpus, ["", ", ", "!", "?"], "([^a-zA-Z0-9.,?!₩n])"))

- 노이즈 유형 1, 2, 3 다 사용해서, 정제하기

Labeling

Preprocessing Workflow

데이터(코퍼스) 수집

- 구입, 외주
- 크롤링을 통한 수집

정제

- Task에 따른 노이즈 제거
- 인코딩 변환

레이블링(Optional)

- 문장마다 또는 단어마 다 labeling 수행

Batchify

- 사전 생성 및 word2index 맵핑 수행
- 효율화를 위한 전/후처리

Subword Segmentation (Optional)

- 단어보다 더 작은 의미 단위 추가 분절 수행

Tokenization

- 형태소 분석기를 활용하 여 분절 수행

Label

- Text Classification
 - INPUT: sentence
 - OUTPUT: class
- Token Classification
 - INPUT: sentence
 - OUTPUT: tag for each token → sequence
- Sequence-to-Sequence
 - INPUT: sentence
 - OUTPUT: sentence

Label Example

Sentence → Class

- TSV 형태의 하나의 파일
 - 각 row가 문장과 대응되는 레이블
 - 문장 column과 레이블 column 구성

Sentence → Sentence (Sequence)

- TSV 형태의 하나의 파일
 - 각 row가 대응되는 문장 쌍
 - 각 문장 별로 column을 구성
- 두 개 이상의 파일로 구성
 - 같은 순서의 row가 대응되는 문장 쌍
 - 한 문장당 여러 레이블이 존재 할 경우
 - e.g. 한국어 ←→ 영어 ←→ 중국어

Tip: 레이블링 직접 진행하기

- Human Labeling은 prototyping 시, 굉장히 강력한 도구 (두려워 하지 말자)
- 효율적인 레이블링 도구를 구성하자 (e.g. 엑셀)

Tokenization

Two Steps

- 1. Sentence Segmentation
- 2. Tokenization

Sentence Segmentation

- 보통 훈련 시 우리가 원하는 입력 데이터는
 - 1 sentence/line
- 우리가 수집한 corpus는
 - 한 라인에 여러 문장이 들어있거나,
 - 한 문장이 여러 라인에 들어있음
- Sentence Segmentation을 통해 원하는 형태로 변환
 - 마침표 등을 단순히 문장의 끝으로 처리하면 안됨!
 - e.g. 3.141592, U.S.
- NLTK를 활용하여 변환 가능
 - from nltk.tokenize import sent_tokenize

Multiple sentence/line

현재 TED 웹사이트에는 1,000개가 넘는 TED강연들이 있습니다. 여기 계신 여러분의 대다수는 정말 대단한 일이라고 생각하시겠죠 -- 전 다릅 니다. 전 그렇게 생각하지 않아요. 저는 여기 한 가지 문제점이 있다고 생각합니다. 왜냐하면 강연이 1,000개라는 것은, 공유할 만한 아이디어들 이 1,000개 이상이라는 뜻이 되기 때문이죠. 도대체 무슨 수로 1,000개나 되는 아이디어를 널리 알릴 건가요?

현재 TED 웹사이트에는 1,000개가 넘는 TED강연들이 있습니다.

여기 계신 여러분의 대다수는 정말 대단한 일이라고 생각하시겠죠 -- 전 다릅니다.

전 그렇게 생각하지 않아요.

저는 여기 한 가지 문제점이 있다고 생각합니다.

왜냐하면 강연이 1,000개라는 것은, 공유할 만한 아이디어들이 1,000개 이상이라는 뜻이 되기 때문이죠.

도대체 무슨 수로 1,000개나 되는 아이디어를 널리 알릴 건가요?

Multiple line/sentence

```
현재 TED 웹사이트에는 1,000개가 넘는 TED강연들이 있습니다.
여기 계신 여러분의 대다수는
정말 대단한 일이라고 생각하시겠죠 --
전 다릅니다. 전 그렇게 생각하지 않아요.
저는 여기 한 가지 문제점이 있다고 생각합니다.
왜냐하면 강연이 1,000개라는 것은,
공유할 만한 아이디어들이 1,000개 이상이라는 뜻이 되기 때문이죠.
도대체 무슨 수로
1,000개나 되는 아이디어를 널리 알릴 건가요?
```

```
현재 TED 웹사이트에는 1,000개가 넘는 TED강연들이 있습니다.
여기 계신 여러분의 대다수는 정말 대단한 일이라고 생각하시겠죠 -- 전 다릅니다.
전 그렇게 생각하지 않아요.
저는 여기 한 가지 문제점이 있다고 생각합니다.
왜냐하면 강연이 1,000개라는 것은, 공유할 만한 아이디어들이 1,000개 이상이라는 뜻이 되기 때문이죠.
도대체 무슨 수로 1,000개나 되는 아이디어를 널리 알릴 건가요?
1,000개의 TED 영상 전부를 보면서
```

Tokenization

- Why?
 - 두개이상의 다른token들의 결합으로 이루어진 단어를 쪼개어, vocabulary 숫자를 줄이고, 희소성(sparseness)을 낮추기 위함

Example

before:

North Korea's state mouthpiece, the Rodong Sinmun, is also keeping mum on Kim's summit with Trump while denouncing ever-tougher U.S. sanctions on the rogue state.

after:

North Korea 's state mouthpiece , the Rodong Sinmun , is also keeping mum on Kim 's summit with Trump while denouncing ever-tougher U.S. sanctions on the rogue state .

Korean Tokenization

- Why?
 - 교착어: 어근에 접사가 붙어 다양한 단어가 파생됨
 - 띄어쓰기 통일의 필요성

Tokenization for Other Languages

- 영어: 띄어쓰기가 이미 잘 되어 있음. NLTK를 사용하여 comma 등 후처리
- 중국어: 기본적인 띄어쓰기가 없음. Character 단위로 사용해도 무방
- 일본어: 기본적인 띄어쓰기가 없음.

형태소분석 및품사태깅(Part of Speech Tagging)

- 형태소 분석: 형태소를 비롯하여, 어근, 접두사/접미사, 품사(POS, part-of-speech) 등 다양한 언어적 속성의 구조를 파악하는 것
- 품사 태깅: 형태소의 뜻과 문맥을 고려하여 그것에 마크업을 하는 일

출처: https://konlpy-ko.readthedocs.io/ko/v0.4.3/morph/

POS Tagger for Other Languages

언어	프로그램명	제작언어	특징	
한국어	Mecab	C++	일본어 Mecab을 wrapping. 속도가 가장 빠름	
한국어	KoNLPy	복합	설치와 사용이 편리하나, 일부 tagger의 경우 속도가 느림	
일본어	Mecab	C++	속도가가장빠름	
중국어	Stanford Parser	Java	미국 스탠포드에서 개발	
중국어	PKU Parser	Java	북경대학교에서 개발	
중국어	Jieba	Python	가장 최근에 개발. Python으로 제작되어 시스템 구성에 용이	

품사태깅예제(feat. Mecab)

• 아버지가 방에 들어가신다.

ㅇ 아버지	NNG
-------	-----

- o 가 JKS
- 방 NNG
- o 에 JKB
- 들어가 VV
- o 신다 EP+EF
- \circ . SF
- < **<EOS>**

• 아버지 가방에 들어가신다.

- 아버지 NNG
- o 가방 NNG
- o 에 JKB
- 들어가 VV
- o 신다 EP+EF
- \circ . SF
- < **<EOS>**

태그	설명	태그	설명
NNG	일반 명사	EP	선어말 어미
NNP	고유 명사	EF	종결 어미
NNB	의존 명사	EC	연결 어미
NNBC	단위를 나타내는 명사	ETN	명사형 전성 어미
NR	수사	ETM	관형형 전성 어미
NP	대명사	XPN	체언 접두사
VV	동사	XSN	명사 파생 접미사
VA	형용사	XSV	동사 파생 접미사
VX	보조 용언	XSA	형용사 파생 접미사
VCP	긍정 지정사	XR	어근
VCN	부정 지정사	SF	마침표, 물음표, 느낌표
MM	관형사	SE	줄임표
MAG	일반 부사	SSO	여는괄호(, [
MAJ	접속 부사	SSC	닫는괄호),]
IC	감탄사	SC	구분자, · /:
JKS	주격 조사	SY	
JKC	보격 조사	SL	외국어
JKG	관형격 조사	SH	한자
JKO	목적격 조사	SN	숫자
JKB	부사격 조사		
JKV	호격 조사		
JKQ	인용격 조사		
JX	보조사		
JC	접속 조사		

분절 예제 (feat. Mecab with Owakati)

\$ echo '아버지가 방에 들어가신다.' | mecab -O wakati 아버지 가 방 에 들어가 신다.

\$ echo '아버지 가방에 들어가신다.' | mecab -O wakati 아버지 가방 에 들어가 신다.

Summary

- 한국어의경우
 - 1) 접사를 분리하여 희소성을 낮추고,
 - 2) 띄어쓰기를 통일하기 위해 tokenization을 수행
- 굉장히 많은 POS Tagger가 존재하는데,
 - 전형적인 쉬운 문장(표준 문법을 따르며, 구조가 명확한 문장)의 경우, 성능이 비슷함
 - 하지만 신조어나 고유명사를 처리하는 능력이 다름
 - 따라서, 주어진 문제에 맞는 정책을 가진 tagger를 선택하여 사용해야 함

Characteristic of Tokenization Style

토큰 평균 길이에 따른 성격과 특징

짧을 수록

- Vocabulary 크기 감소
 - 희소성 문제 감소
- OoV가 줄어듬
- Sequence의 길이가 길어짐
 - 모델의 부담 증가
- 극단적 형태: character 단위

길 수록

*OoV: Out of Vocabulary, <UNK>로 치환

- Vocabulary 크기 증가
 - 희소성 문제 증대
- OoV가 늘어남
- Sequence의 길이가 짧아짐
 - 모델의 부담 감소

토큰 길이에 따른 Trade-off 존재

정보량에 따른 이상적인 형태

• 빈도가 높을 경우 하나의 token으로 나타내고,

• 빈도가 낮을 경우 더 잘게 쪼개어, 각각 빈도가 높은 token으로 구성한다.

압축 알고리즘?

토큰화실습을 해보자!

Google Colab으로 이동~

Subword Segmentation

단어보다 더 작은 의미 단위: Subword

• 많은 언어들에서, 단어는 더 작은 의미 단위들이 모여 구성됨

언어	단어	조합
영어	Concentrate	con(=together) + centr(=center) + ate(=make)
한국어	집중(集中)	集(모을 집) + 中(가운데 중)

- 따라서 이러한 작은 의미 단위로 분절할 수 있다면 좋을 것
- 하지만 이를 위해선 언어별 subword 사전이 존재해야 할 것

Byte Pair Encoding (BPE) 알고리즘

- 압축 알고리즘을 활용하여 subword segmentation을 적용 [Sennrich at el., 2015]
- 학습 코퍼스를 활용하여 BPE 모델을 학습 후, 학습/테스트 코퍼스에 적용
- 장점:
 - 희소성을 통계에 기반하여 효과적으로 낮출 수 있다.
 - 언어별 특성에 대한 정보 없이, 더 작은 의미 단위로 분절 할 수 있다.
 - OoV를 없앨 수 있다. (seen character로만 구성될 경우)
- 단점:
 - 학습 데이터 별로 BPE 모델도 생성됨

BPE Training & Applying

Training

- © 단어 사전 생성 (빈도 포함)
- © Character 단위로 분절 후, pair 별 빈도 카운트
- © 최빈도 pair를 골라, merge 수행
- ④ Pair 별 빈도 카운트 업데이트
- ⑤ 3번 과정 반복

Applying

- © 각 단어를 character 단위로 분절
- © 단어 내에서 '학습 과정에서 merge에 활용된 pair의 순서대로' merge 수행

Training Example

```
vocab {'l o w </w>': 5, 'l o w e r </w>': 2, 'n e w e s t </w>': 6, 'w i d e s t </w>': 3}
pairs (1, 0): 7, (0, w): 7, (w, </w>): 5, (w, e): 8, (e, r): 2, (r, </w>): 2, (n, e): 6, (e, w): 6, (e, s): 9, (s, t): 9, (t, </w>): 9, (w, i): 3, (i, d): 3, (d, e): 3
best pair ('e', 's') 9
vocab {'l o w </w>': 5, 'l o w e r </w>': 2, 'n e w es t </w>': 6, 'w i d es t </w>': 3}
pairs (1, 0): 7, (0, w): 7, (w, </w>): 5, (w, e): 2, (e, r): 2, (r, </w>): 2, (n, e): 6, (e, w): 6, (w, es): 6, (es, t): 9, (t, </w>): 9, (w, i): 3, (i, d): 3, (d, es): 3
best pair ('es', 't') 9
vocab {'l o w </w>': 5, 'l o w e r </w>': 2, 'n e w est </w>': 6, 'w i d est </w>': 3}
pairs (l, o): 7, (o, w): 7, (w, </w>): 5, (w, e): 2, (e, r): 2, (r, </w>): 2, (n, e): 6, (e, w): 6, (w, est): 6, (est, </w>): 9, (w, i): 3, (i, d): 3, (d, est): 3
best pair ('est', '</w>') 9
vocab {'l o w </w>': 5, 'l o w e r </w>': 2, 'n e w est</w>': 6, 'w i d est</w>': 3}
pairs (1, 0): 7, (0, w): 7, (w, </w>): 5, (w, e): 2, (e, r): 2, (r, </w>): 2, (n, e): 6, (e, w): 6, (w, est </w>): 6, (w, i): 3, (i, d): 3, (d, est </w>): 3
best pair ('l', 'o') 7
vocab {'lo w </w>': 5, 'lo w e r </w>': 2, 'n e w est</w>': 6, 'w i d est</w>': 3}
pairs (lo, w): 7, (w, </w>): 5, (w, e): 2, (e, r): 2, (r, </w>): 2, (n, e): 6, (e, w): 6, (w, est</w>): 6, (w, i): 3, (i, d): 3, (d, est</w>): 3
best pair ('lo', 'w') 7
```

Training Example

```
vocab {'low </w>': 5, 'low e r </w>': 2, 'n e w est</w>': 6, 'w i d est</w>': 3}
pairs (low, </w>): 5, (low, e): 2, (e, r): 2, (r, </w>): 2, (n, e): 6, (e, w): 6, (w, est </w>): 6, (w, i): 3, (i, d): 3, (d, est </w>): 3
best pair ('n', 'e') 6
vocab {'low </w>': 5, 'low e r </w>': 2, 'ne w est </w>': 6, 'w i d est </w>': 3}
pairs (low, </w>): 5, (low, e): 2, (e, r): 2, (r, </w>): 2, (ne, w): 6, (w, est</w>): 6, (w, i): 3, (i, d): 3, (d, est</w>): 3
best pair ('ne', 'w') 6
vocab {'low </w>': 5, 'low e r </w>': 2, 'new est </w>': 6, 'w i d est </w>': 3}
pairs (low, </w>): 5, (low, e): 2, (e, r): 2, (r, </w>): 2, (new, est</w>): 6, (w, i): 3, (i, d): 3, (d, est</w>): 3
best pair ('new', 'est</w>') 6
vocab {'low </w>': 5, 'low e r </w>': 2, 'newest</w>': 6, 'w i d est </w>': 3}
pairs (low, </w>): 5, (low, e): 2, (e, r): 2, (r, </w>): 2, (w, i): 3, (i, d): 3, (d, est</w>): 3
best pair ('low', '</w>') 5
vocab {'low</w>': 5, 'low e r </w>': 2, 'newest</w>': 6, 'w i d est</w>': 3}
pairs (low, e): 2, (e, r): 2, (r, </w>): 2, (w, i): 3, (i, d): 3, (d, est</w>): 3
best pair ('w', 'i') 3
vocab {'low</w>': 5, 'low e r </w>': 2, 'newest</w>': 6, 'wi d est</w>': 3}
```

Segmentation Example

lastest news

- 1) latest </w> news </w>
- 2) latest </w> news </w>
- 3) latest </w> news </w>
- 4) | latest</w>news</w>
- 5) latest</w> ne ws </w>
- 6) | latest</w> new s </w>

applicable pairs in order

- 1) ('e', 's')
- 2) ('es', 't')
- 3) ('est', '</w>')
- 4) ('l', 'o')
- 5) ('lo', 'w')
- 6) ('n', 'e')
- 7) ('ne', 'w')
- 8) ('new', 'est</w>')
- 9) ('low', '</w>')
- 10)('w', 'i')

Subword Segmentation Modules

- Subword-nmt
 - https://github.com/rsennrich/subword-nmt
- WordPiece
 - Upgrade BPE version. Currently unavailable...?
- SentencePiece
 - https://github.com/google/sentencepiece

OoV가 미치는 영향

- 입력 데이터에 OoV가 발생할 경우, <UNK> 토큰으로 치환하여 모델에 입력
 - e.g. 나는 학교에 가서 밥을 먹었다. → 나 는 <UNK > 에 가 서 <UNK > 을 먹 었 다.
- 특히, <u>이전 단어들을 기반으로 다음 단어를 예측</u>하는 task에서 치명적
 - e.g. Natural Language Generation
- 어쨌든 모르는 단어지만, 알고있는 subword들을 통해 의미를 유추해볼 수 있음
 - e.g. 버카충

Summary

- BPE 압축 알고리즘을 통해 통계적으로 더 작은 의미 단위(subword)로 분절 수행
- BPE를 통해 OoV를 없앨 수 있으며, 이는 성능상 매우 큰 이점으로 작용
- 한국어의 경우
 - 띄어쓰기가 제멋대로인 경우가 많으므로, normalization 없이 바로 subword segmentation을 적용하는 것은 위험
 - 따라서 형태소 분석기를 통한 tokenization을 진행한 이후, subword segmentaion을 적용하는 것을 권장

Detokenization

Tokenization

- 1. 영어 원문
 - There's currently over a thousand TED Talks on the TED website.
- 2. tokenization을 수행하고, 기존 띄어쓰기와 구분을 위해 _ (U+2581) 삽입
 - _There 's _currently _over _a _thousand _TED _Talks _on _the _TED _website.
- 3. subword segmentation을 수행, 공백구분위한 _ 삽입
 - __There _'s __currently __over __a __thous and __TED __T all ks __on __the __TED __we b site _.

Detokenization

- 1. whitespace를 제거
 - __There_'s__currently__over__a__thousand__TED__Talks__on__the__
 _TED__website_.
- 2. __을 white space로 치환
 - There_'s currently over a thousand TED Talks on the TED website_.
- 3. _를 제거
 - There's currently over a thousand TED Talks on the TED website.

Appendix: Align Parallel Corpus

Why we need

• Parallel Corpus?

English	Korean
I love to go to school.	나는 학교에 가는 것을 좋아한다.
I am a doctor.	나는 의사 입니다.

- 주요 수집 대상
 - 뉴스 기사, 드라마/영화 자막
- 대부분의 경우, 문서 단위의 matching은 되어 있지만, 문장 단위는 되어 있지 않음

Champollion

- 최초로 이집트 상형문자를 해독한 역사학자
- Perl로 제작 됨
 - https://github.com/LowResourceLanguages/champollion
- ratio parameter의 역할
 - source 언어의 character 당 target 언어의 character 비율

(Jean-François Champollion, Image from Wikipedia)

• 결과 형태:

```
omitted <=> 1
omitted <=> 2
omitted <=> 3
1 <=> 4
2 <=> 5
3 <=> 6
4,5 <=> 7
6 <=> 8
7 <=> 9
8 <=> 10
9 <=> omitted
```

단어 번역 사전에 기반하여 사전을 최대한 만족하는 sentence align을 찾는 방식

How to build Word Translation Dictionary

- MUSE: https://github.com/facebookresearch/MUSE
- This project includes two ways to obtain cross-lingual word embeddings:
 - Supervised: using a train bilingual dictionary, learn a mapping from the source to the e target space.
 - Unsupervised: without any parallel data or anchor point, learn a mapping from the s ource to the target space.

Example: MUSE Result

```
stories <> 이야기
stories <> 소설
contact <> 연락
contact <> 연락처
contact <> 접촉
green <> 녹색
green <> 초록색
green <> 빨간색
dark <> 어두운
dark <> 어둠
dark <> 짙
song <> 노래
song <> 곡
song <> 음악
salt <> 소금
```

Procedure to Build Parallel Corpus

- 1) Bi-lingual Corpus 정제 (e.g. 노이즈 제거)
- 2) Tokenization 수행 (No subword segmentation)
- 3) 각 언어별 코퍼스에 대해서 word embedding 수행 (FastText 활용)
- 4) MUSE를 활용하여 word translation dictionary 추출
- 5) Champollion을 활용하여 align 수행

TIP: 전처리의 중요성

전처리의 중요성

- 오픈 소스 문화의 확산
- 데이터가 더 큰 자산
- 반복되고 지치는 업무지만, 소홀히 하면 안됨
 - 이상적인 팀 구성

Preprocessing Summary

NLP Project Workflow

문제 정의

- 단계를 나누고 simplify
- !와 "를 정의

데이터 수집

- 문제 정의에 따른 수집
- 필요에 따라 레이블링

데이터 전처리 및 분석

- 형태를 가공
- 필요에 따라 EDA 수행

배포

- RESTful API를 통한 배포
- 상황에 따라 유지/보수

평가

- 실험 설계
- 테스트셋 구성

알고리즘 적용

- 가설을 세우고 구현/적용

Preprocessing Workflow

데이터(코퍼스) 수집

- 구입, 외주
- 크롤링을 통한 수집

정제

- Task에 따른 노이즈 제거
- 인코딩 변환

레이블링(Optional)

- 문장마다 또는 단어마다 labeling 수행

Batchify

- 사전 생성 및 word2index 맵핑 수행
- 효율화를 위한 전/후처리

Subword Segmentation (Optional)

- 단어보다 더 작은 의미 단위 추가 분절 수행

Tokenization

- 형태소 분석기를 활용하여 분절 수행

Service Pipeline

정제

- 학습 데이터와 같은 방식의 정제 수행

Tokenization

- 학습 데이터와 같은 방식의 분절 수행

Subword Segmentation

- 학습 데이터로부터 얻은 '모델'을 활용하여 똑같은 분절 수행

Detokenization (Optional)

- 사람이 읽을 수 있는 형태로 변환(index2word)
- 분절 복원

Prediction

- 모델에 넣고 추론 수행
- 필요에 따라 search 수행 (자연어 생성)

Batchify

- 학습 데이터로부터 얻은 사전에 따른 word2index 맵핑 수행

Summary

- 정제
 - Task와 언어 및 도메인에 따른 특성
 - 풀고자 하는 문제의 특성에 따라 전처리 전략이 다름
 - 끝이 없는 과정
 - 노력과 품질 사이의 trade-off
 - Sweet spot을 찾아야함
- 분절
 - 한국어의 경우 <u>띄어쓰기 normalization을 위해 형태소 분석</u>기 활용이 필요
 - Subword segmentation을 통해 좀 더 잘게 분절 할 수 있음
- 모두 비슷한 알고리즘을 사용하고 있으므로, 결국 데이터의 양과 품질이 좌우함
 - 따라서 전처리 과정을 경시해서는 안됨