LLaMA: Open Efficient Foundation Language Models

23.06.30

이정민

Paper

LLaMA: Open and Efficient Foundation Language Models

• [2023, Computation and Language] 23.06.29 기준 506회 인용

LLaMA: Open and Efficient Foundation Language Models

Hugo Touvron; Thibaut Lavril; Gautier Izacard; Xavier Martinet Marie-Anne Lachaux, Timothee Lacroix, Baptiste Rozière, Naman Goyal Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin Edouard Grave; Guillaume Lample*

Meta AI

Abstract

We introduce LLaMA, a collection of foundation language models ranging from 7B to 65B parameters. We train our models on trillions of tokens, and show that it is possible to train state-of-the-art models using publicly available datasets exclusively, without resorting to proprietary and inaccessible datasets. In particular, LLaMA-13B outperforms GPT-3 (175B) on most benchmarks, and LLaMA-65B is competitive with the best models, Chinchilla-70B and PaLM-540B. We release all our models to the research community ¹.

performance, a smaller one trained longer will ultimately be cheaper at inference. For instance, although Hoffmann et al. (2022) recommends training a 10B model on 200B tokens, we find that the performance of a 7B model continues to improve even after 1T tokens.

The focus of this work is to train a series of language models that achieve the best possible performance at various inference budgets, by training on more tokens than what is typically used. The resulting models, called *LLaMA*, ranges from 7B to 65B parameters with competitive performance

LLaMA: Open and Efficient Foundation Language Models

❖ 연구 배경

• 제한된 computing budget 내에서 최고의 성능은 모델을 더 키울 때가 아니라 작은 모델을 보다 많은 데이터를 이용해서 학습 시킬 때 달성됨(by Chinchilla)

LLaMA: Open and Efficient Foundation Language Models

❖ 연구 배경

- 제한된 computing budget 내에서 최고의 성능은 모델을 더 키울 때가 아니라 작은 모델을 보다 많은 데이터를 이용해서 학습 시킬 때 달성됨(by Chinchilla)
- Chinchilla는 실제 LLM 서비스화에 중요한 **inference budget** 간과

LLaMA: Open and Efficient Foundation Language Models

❖ 기여점

- 주어진 inference budget 내에서 최고의 성능을 달성할 수 있는 LM 모델들을 더 많은 tokens를 사용해서 학습
- Open-source로 사용 가능하도록 publicly available data만 사용해서 학습

LLaMA: Open and Efficient Foundation Language Models

Architecture based Transformer

- Pre-Normalization (GPT-3)
 - ▶ 학습 안정성을 위해 transformer sub-layer의 output이 아닌 input에 RMSNorm 사용

Figure 1. (a) Post-LN Transformer layer; (b) Pre-LN Transformer layer.

[Pre-Normalization]

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing, C., ... & Liu, T. (2020, November). On layer normalization in the transformer architecture. In *International Conference on Machine Learning* (pp. 10524-10533). PMLR.

LLaMA: Open and Efficient Foundation Language Models

Architecture based Transformer

SwiGLU activation function (PaLM)

$$Swish_{\beta}(x) = x\sigma(\beta x)$$

 $GLU(x, W, V, b, c) = \sigma(xW + b) \otimes (xV + c)$
 $SwiGLU(x, W, V) = xW\sigma(xW) \otimes xV$

- ❖ Swish는 ReLU의 장점을 가지면서 미분 가능하며 단조 증가 함수가 아니라는 점에서 추가적인 장점을 가짐
- β : Hyper parameter
- ❖ W, V: 학습 대상

LLaMA: Open and Efficient Foundation Language Models

Architecture based Transformer

Rotary Embeddings (GPTNeo)

$$R_{\Theta,m}^{d} = \begin{cases} \cos m\theta_{1} & -\sin m\theta_{1} & 0 & 0 & \cdots & 0 & 0 \\ \sin m\theta_{1} & \cos m\theta_{1} & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cos m\theta_{2} & -\sin m\theta_{2} & \cdots & 0 & 0 \\ 0 & 0 & \sin m\theta_{2} & \cos m\theta_{2} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \cos m\theta_{d/2} & -\sin m\theta_{d/2} \end{cases}$$

Long-term decay

- ▶ Relative Position이 멀어지면 Inner product 값이 감소
- ▶ 먼 거리는 적은 유사도를 줌

Rope with Linear attention

▶ 보다 효율적인 연산 가능

 $\cos m\theta_{d/2}$

LLaMA: Open and Efficient Foundation Language Models

Efficient Implementation

- Efficient implementation of the causal multi-head attention operator 사용
 - ➤ Attention weights 저장 x, masked tokens에 대한 key/query score 계산 x
- Linear layer 후 계산되는 activation 값 저장 및 재사용
- 2,048개의 A100(80GB) GPU를 사용하여 1.4T tokens를 학습하기 위해 약 21일 소요

LLaMA: Open and Efficient Foundation Language Models

Experiments

- 모든 크기의 모델에서 더 많은 tokens를 학습시켜도 성능이 지속적으로 향상
- Zero-shot setting에서 우수한 성능을 도출함

		BoolQ	PIQA	SIQA	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA
GPT-3	175B	60.5	81.0	-	78.9	70.2	68.8	51.4	57.6
Gopher	280B	79.3	81.8	50.6	79.2	70.1	-	-	-
Chinchilla	70B	83.7	81.8	51.3	80.8	74.9	-		-
PaLM	62B	84.8	80.5	-	79.7	77.0	75.2	52.5	50.4
PaLM-cont	62B	83.9	81.4	-	80.6	77.0	-	-	-
PaLM	540B	88.0	82.3	-	83.4	81.1	76.6	53.0	53.4
LLaMA	7B	76.5	79.8	48.9	76.1	70.1	72.8	47.6	57.2
	13B	78.1	80.1	50.4	79.2	73.0	74.8	52.7	56.4
	33B	83.1	82.3	50.4	82.8	76.0	80.0	57.8	58.6
	65B	85.3	82.8	52.3	84.2	77.0	78.9	56.0	60.2

Table 3: Zero-shot performance on Common Sense Reasoning tasks.

LLaMA: Open and Efficient Foundation Language Models

Experiments

• 여러 few-shot setting 및 여러 task에서 우수한 성능을 도출함

		0-shot	1-shot	5-shot	64-shot
GPT-3	175B	14.6	23.0	-	29.9
Gopher	280B	10.1	-	24.5	28.2
Chinchilla 70B		16.6	-	31.5	35.5
	8B	8.4	10.6	-	14.6
PaLM	62B	18.1	26.5	-	27.6
	540B	21.2	29.3	-	39.6
	7B	16.8	18.7	22.0	26.1
I I aMA	13B	20.1	23.4	28.1	31.9
LLaMA	33B	24.9	28.3	32.9	36.0
	65B	23.8	31.0	35.0	39.9

Table 4: NaturalQuestions	Exact match	performance.
---------------------------	-------------	--------------

		0-shot	1-shot	5-shot	64-shot
Gopher	280B	43.5	-	57.0	57.2
Chinchill	a 70B	55.4	-	64.1	64.6
	7B	50.0	53.4	56.3	57.6
LLaMA	13B	56.6	60.5	63.1	64.0
LLawiA	33B	65.1	67.9	69.9	70.4
	65B	68.2	71.6	72.6	73.0

Table 5: **TriviaQA.** Zero-shot and few-shot exact match performance on the filtered dev set.

		RACE-middle	RACE-high
GPT-3	175B	58.4	45.5
	8B	57.9	42.3
PaLM	62B	64.3	47.5
	540B	68.1	49.1
	7B	61.1	46.9
I I aMA	13B	61.6	47.2
LLaMA	33B	64.1	48.3
	65B	67.9	51.6

Table 6: Reading Comprehension. Zero-shot accuracy.