

TEST REPORT

Test report no.: 1-4545/17-01-02-A

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01

Applicant

SIGFOX

425, rue Jean Rostand 31670 Labège / FRANCE

Phone: -/-Fax: -/-

Contact: Susanne Barreiro

e-mail: susana.barreiro@sigfox.com

Phone: +33 5 82 08 07 46

Manufacturer

SIGFOX

425, rue Jean Rostand 31670 Labège / FRANCE

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence-Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item

 Kind of test item:
 SNT Base station

 Model name:
 SBS-T3-902

 FCC ID:
 2ACK7SBST3902

 IC:
 12204A-SBST3902

 Frequency:
 902 MHz - 928 MHz

Technology tested: proprietary

Antenna: External rod antenna

Power supply: 10.5 V to 14.0 V DC by power supply

Temperature range: -20°C to +55°C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:
Marco Bertolino	Christoph Schneider

Lab Manager

Radio Communications & EMC

Lab Manager Radio Communications & EMC

Table of contents

1	Table o	Table of contents2						
2	Genera	al information	3					
		Notes and disclaimer						
	2.3	Test laboratories sub-contracted	3					
3	Test st	andard/s and references	2					
4	Test e	nvironment	5					
5	Test it	em	5					
		General descriptionAdditional information						
6	Descri	ption of the test setup	6					
	6.2	Shielded semi anechoic chamberShielded fully anechoic chamber	8					
7	Seque	nce of testing	10					
	7.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	10					
	7.2	Sequence of testing radiated spurious 30 MHz to 1 GHz	11					
		Sequence of testing radiated spurious 1 GHz to 18 GHzSequence of testing radiated spurious above 18 GHz						
8		rement uncertainty						
9		ary of measurement results						
10		neasurements						
	10.1	Additional comments	16					
11	Mea	surement results	17					
	11.1	Spurious Emissions Radiated < 30 MHz	17					
	11.2	Spurious Emissions Radiated > 30 MHz						
	11.2.1 11.2.2	Spurious emissions radiated 30 MHz to 1 GHz						
40		ervations						
12								
Anr	nex A	Glossary						
Anr	nex B	Document history	38					
Δnr	nex C	Accreditation Certificate	38					

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-4545/17-01-02 and dated 2017-09-26.

2.2 Application details

Date of receipt of order: 2017-07-20
Date of receipt of test item: 2017-07-21
Start of test: 2017-07-21
End of test: 2017-09-21

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices
Guidance	Version	Description
ANSI C63.4-2014 ANSI C63.10-2013	-/- -/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

Temperature :		T _{nom} T _{max} T _{min}	+22 °C during room temperature tests No tests under extreme conditions required No tests under extreme conditions required
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
Power supply :		$\begin{array}{c} V_{nom} \\ V_{max} \\ V_{min} \end{array}$	12.0 V DC by power supply No tests under extreme conditions required No tests under extreme conditions required

5 Test item

5.1 General description

Kind of test item	:	SNT Base station
Type identification	:	SBS-T3-902
HMN	:	-/-
PMN	:	SBS-T3
HVIN	:	SBS-T3-902
FVIN	:	TAPOS v4.2
S/N serial number	:	Base station: 00005F21-K2
HW hardware status	:	V3.0_0.a, V3.0_1.a (second mother board V3.0_0.b, V3.0_1.b)
FW software status	:	TAPOS v4.2
Frequency band	:	902 MHz – 928 MHz
Type of radio transmission Use of frequency spectrum		FHSS
Type of modulation	:	DBPSK
Number of channels	:	Two hopping tables with 50 channels each
Antenna	:	External rod antenna
Antenna Gain	:	Max. 2.0 dBi (according datasheet)
Power supply	:	10.5 V to 14.0 V DC by power supply
Temperature range	:	-20°C to +55°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-4545/17-01-02_AnnexA

1-4545/17-01-02_AnnexB

1-4545/17-01-02_AnnexD

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \(\mu V/m \))$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	01.02.2017	31.01.2018
4	А	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	Ve	-/-	-/-
5	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
6	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
7	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
8	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018
9	Α	Spectrum-Analyzer	FSU26	R&S	200809	300003874	k	31.01.2017	30.01.2018

6.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A, B	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
2	А	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vIKI!	14.02.2017	13.02.2019
3	A, B	Switch / Control Unit	3488A	HP	-/-	300000199	ne	-/-	-/-
4	В	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	k	07.07.2017	06.07.2019
5	A, B	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	31.01.2017	30.01.2018
6	Α	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
7	А	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
8	А	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-

6.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna 50 cm

 $FS = U_R + CA + AF$

(FS-field strength; U_R-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP	00419	300002268	ev	-/-	-/-
2	Α	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	25.01.2017	24.01.2018
3	Α	Horn Antenna 18,0- 40,0 GHz	LHAF180	Microw.Devel	39180-103-022	300001748	k	22.05.2015	22.05.2018

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

^{*)}Note: The sequence will be repeated three times with different EUT orientations.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

7.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

8 Measurement uncertainty

Measurement uncertainty					
Test case	Uncertainty				
Antenna gain	± 3 dB				
Carrier frequency separation	± 21.5 kHz				
Number of hopping channels	-/-				
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative				
Maximum output power	± 1 dB				
Detailed conducted spurious emissions @ the band edge	± 1 dB				
Band edge compliance radiated	± 3 dB				
Spurious emissions conducted	± 3 dB				
Spurious emissions radiated below 30 MHz	± 3 dB				
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB				
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB				
Spurious emissions radiated above 12.75 GHz	± 4.5 dB				

9 Summary of measurement results

	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
\boxtimes	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 2	Passed	2017-10-23	See Note 1

Test specification clause	Test case	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (a)	Antenna gain	Nominal	Nominal	CW				\boxtimes	-/-
§15.247(a)(1) RSS - 247 / 5.1 (c)	Carrier frequency separation	Nominal	Nominal	DBPSK				\boxtimes	-/-
§15.247(a)(1) RSS - 247 / 5.1 (c)	Number of hopping channels	Nominal	Nominal	DBPSK				\boxtimes	-/-
§15.247(a)(1) (iii) RSS - 247 / 5.1 (c)	Time of occupancy (dwell time)	Nominal	Nominal	DBPSK				\boxtimes	-/-
§15.247(a)(1) RSS - 247 / 5.1 (c)	Spectrum bandwidth of a FHSS system bandwidth	Nominal	Nominal	DBPSK				\boxtimes	-/-
§15.247(b)(1) RSS - 247 / 5.4 (a)	Maximum output power	Nominal	Nominal	DBPSK				\boxtimes	-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	Nominal	Nominal	DBPSK				\boxtimes	-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	Nominal	Nominal	DBPSK				\boxtimes	-/-
§15.247(d) RSS - 247 / 5.5	Spurious emissions conducted	Nominal	Nominal	DBPSK				\boxtimes	-/-
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	Nominal	Nominal	DBPSK	×				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	Nominal	Nominal	DBPSK / RX mode	×				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	Nominal	Nominal	DBPSK / RX mode	×				-/-
§15.107(a) §15.207	Conducted emissions below 30 MHz (AC conducted)	Nominal	Nominal	-/-			\boxtimes		EUT ceases transmitting after connecting the charger

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

Note 1: rad. Emission only, see test report 1-1899/16-01-08 for further information.

10 RF measurements

10.1 Additional comments

Reference documents: Test report 1-1899/16-01-08

Special test descriptions: Only Spurious emissions were measured.

In normal mode it is possible to choose between two different hopping tables.

Hopping table 1:

Channel #	Frequency (MHz)	Channel#	Frequency (MHz)		
1	902.8	26	917.8		
2	905.2	27	918.1		
3	913.9	28	911.8		
4	902.5	29	906.7		
5	903.7	30	906.1		
6	903.1	31	909.4		
7	917.5	32	913.6		
8	906.4	33	914.5		
9	907.0	34	915.7		
10	904.3	35	908.8		
11	904.0	36	907.9		
12	908.5	37	914.8		
13	910.0	38	907.6		
14	904.6	39	917.2		
15	913.0	40	914.2		
16	911.2	41	908.2		
17	905.5	42	909.7		
18	902.2	43	910.3		
19	904.9	44	915.4		
20	903.4	45	909.1		
21	905.8	46	910.9		
22	907.3	47	913.3		
23	912.4	48	915.1		
24	911.5	49	912.1		
25	912.7	50	910.6		

hopping table 2:

Channel #	Frequency	Channel #	Frequency
Channel #	(MHz)	Channel #	(MHz)
1	912.4	26	927.4
2	914.8	27	927.7
3	924.7	28	922.6
4	912.1	29	917.5
5	913.3	30	915.7
6	912.7	31	920.2
7	927.1	32	924.4
8	917.2	33	925.3
9	917.8	34	926.5
10	913.9	35	919.6
11	913.6	36	918.7
12	919.3	37	925.6
13	920.8	38	918.4
14	914.2	39	926.8
15	923.8	40	925.0
16	922.0	41	919.0
17	915.1	42	920.5
18	911.8	43	921.1
19	914.5	44	926.2
20	913.0	45	919.9
21	915.4	46	921.7
22	918.1	47	924.1
23	923.2	48	925.9
24	922.3	49	922.9
25	923.5	50	921.4

Frequencies tested:

For hopping table 1: 902.2 MHz, 910.0 MHz, 918.1 MHz For hopping table 2: 911.8 MHz, 920.5 MHz, 927.7 MHz

Test mode: Special software is used.

EUT is transmitting pseudo random data by itself

11 Measurement results

11.1 Spurious Emissions Radiated < 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

Measurement:

Measurement parameter								
Detector:	Peak / Quasi Peak							
Sweep time:	Auto							
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz							
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz							
Span:	9 kHz to 30 MHz							
Trace-Mode:	Max Hold							
Used equipment:	See chapter 6.2 B							
Measurement uncertainty:	See chapter 8							

Limits:

FCC		IC					
TX spurious emissions radiated < 30 MHz							
Frequency (MHz)	Field strength (dBµV/m)		Measurement distance				
0.009 – 0.490	2400/F	F(kHz)	300				
0.490 – 1.705	24000/F(kHz)		24000/F(kHz)		30		
1.705 – 30.0	3	0	30				

Result:

SPURIOUS EMISSIONS LEVEL [dBμV/m]									
L	owest chann	nel	M	Middle channel			Highest channel		
Frequency [MHz]	Detector	Level [dBµV/m]	Frequency [MHz]	Detector	Level [dBµV/m]	Frequency [MHz]	Detector	Level [dBµV/m]	
	All emissions were more than 10 dB below the limit.								

Plots:

Plot 1: 902.2 MHz

Plot 2: 910.0 MHz

Plot 3: 918.1 MHz

Plot 4: 911.8 MHz

Plot 5: 920.5 MHz

Plot 6: 927.7 MHz

11.2 Spurious Emissions Radiated > 30 MHz

11.2.1 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed at channel low, mid and high.

Measurement:

Measurement parameters						
Detector	Peak / Quasi Peak					
Sweep time	Auto					
Resolution bandwidth	3 x VBW					
Video bandwidth	120 kHz					
Span	30 MHz to 1 GHz					
Trace mode	Max hold					
Measured modulation	DBPSK					
Test setup	See sub clause 6.1 A					
Measurement uncertainty	See sub clause 8					

Limits:

FCC	IC
Band-edge Compliance of con	ducted and radiated emissions

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance
30 - 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10
Above 960	54.0	3

Result:

See result table below the plots.

Plots:

Plot 1: 902.2 MHz, 30 MHz – 1 GHz, horizontal & vertical polarisation

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
31.271	24.48	30.0	5.52	1000	120	100.0	٧	280.0	12.1
32.931	23.67	30.0	6.33	1000	120	170.0	٧	171.0	12.3
35.552	21.87	30.0	8.13	1000	120	100.0	٧	10.0	12.7
36.568	22.89	30.0	7.11	1000	120	100.0	٧	-9.0	12.8
51.430	22.42	30.0	7.58	1000	120	98.0	٧	10.0	13.5
79.920	20.23	30.0	9.77	1000	120	170.0	٧	261.0	8.1

Plot 2: 910.0 MHz, 30 MHz – 1 GHz, horizontal & vertical polarisation

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
32.506	19.51	30.0	10.49	1000	120	101.0	٧	10.0	12.3
33.305	19.53	30.0	10.47	1000	120	170.0	V	100.0	12.4
35.360	17.25	30.0	12.75	1000	120	98.0	٧	91.0	12.7
45.038	17.83	30.0	12.17	1000	120	101.0	٧	10.0	13.6
51.599	19.88	30.0	10.12	1000	120	98.0	٧	100.0	13.5
80.576	20.47	30.0	9.53	1000	120	170.0	٧	280.0	8.2

Plot 3: 918.1 MHz, 30 MHz – 1 GHz, horizontal & vertical polarisation

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.855	20.55	30.0	9.45	1000	120	98.0	V	280.0	12.0
32.038	19.21	30.0	10.79	1000	120	101.0	٧	100.0	12.2
42.383	16.82	30.0	13.18	1000	120	98.0	V	91.0	13.4
49.616	18.71	30.0	11.29	1000	120	98.0	V	181.0	13.7
80.166	21.26	30.0	8.74	1000	120	170.0	٧	190.0	8.1
80.675	20.43	30.0	9.57	1000	120	101.0	٧	91.0	8.2

Plot 4: 911.8 MHz, 30 MHz – 1 GHz, horizontal & vertical polarisation

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
32.102	19.58	30.0	10.42	1000	120	170.0	٧	1.0	12.2
43.163	18.03	30.0	11.97	1000	120	98.0	٧	190.0	13.5
46.367	16.97	30.0	13.03	1000	120	170.0	٧	1.0	13.7
51.571	20.30	30.0	9.70	1000	120	98.0	٧	100.0	13.5
78.605	21.12	30.0	8.88	1000	120	170.0	٧	271.0	8.3
81.538	19.30	30.0	10.70	1000	120	101.0	٧	100.0	8.3

Plot 5: 920.5 MHz, 30 MHz – 1 GHz, horizontal & vertical polarisation

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
32.115	20.74	30.0	9.26	1000	120	170.0	٧	4.0	12.2
47.954	17.53	30.0	12.47	1000	120	98.0	٧	-10.0	13.7
51.391	20.81	30.0	9.19	1000	120	98.0	٧	-9.0	13.6
51.886	20.58	30.0	9.42	1000	120	101.0	٧	81.0	13.5
77.738	19.87	30.0	10.13	1000	120	170.0	٧	280.0	8.4
80.723	20.90	30.0	9.10	1000	120	170.0	٧	100.0	8.2

Plot 6: 927.7 MHz, 30 MHz – 1 GHz, horizontal & vertical polarisation

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
30.896	19.92	30.0	10.08	1000	120	170.0	٧	-10.0	12.0
32.571	20.38	30.0	9.62	1000	120	170.0	٧	81.0	12.3
45.692	18.93	30.0	11.07	1000	120	100.0	٧	280.0	13.6
51.368	20.92	30.0	9.08	1000	120	98.0	٧	10.0	13.6
77.707	19.59	30.0	10.41	1000	120	170.0	٧	190.0	8.4
80.159	20.46	30.0	9.54	1000	120	170.0	٧	10.0	8.1

11.2.2 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed in the mode with the highest output power.

Measurement parameters					
Detector	Peak / RMS				
Sweep time	Auto				
Resolution bandwidth	1 MHz				
Video bandwidth	3 x RBW				
Span	1 GHz to 26 GHz				
Trace mode	Max hold				
Measured modulation	DBPSK				
Test setup	See sub clause 6.2 A (1 GHz – 18 GHz) See sub clause 6.3 A (18 GHz – 26 GHz)				
Measurement uncertainty	See sub clause 8				

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

ANSI C63.10 - FCC Public Notice DA 00-705

If the dwell time of the hopping signal is less than 100 ms (per channel), the reading may be adjusted by a factor: $F = 20\log (dwell time/100 ms)$

FCC			IC					
	TX spurious emissions radiated							
radiator is operating, the radio frequence that in the 100 kHz bandwidth within the conducted or a radiated measurement.	y power that is produce band that contains to Attenuation below the all in the restricted by	uced by the intention he highest level of the general limits specioands, as defined in	ectrum or digitally modulated intentional al radiator shall be at least 20 dB below he desired power, based on either an RF fied in Section 15.209(a) is not required. §15.205(a), must also comply with the					
§15.209								
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance					
Above 960	54.0 (average) 74.0 (peak)		3					

Result:

For radiated spurious emission the limits of 15.209 applies for all frequencies mentioned in 15.205. If the dwell time of the hopping signal is less than 100 ms (per channel), the reading may be adjusted by a factor:

F = 20*log (dwell time/100 ms)

One pulse train is higher than 100 ms so the correction factor is 0.

	TX spurious emissions radiated [dBμV/m]						
	-/-			-/-			
F [MHz]	F [MHz] Detector Level [dBµV/m]		F [MHz]	Detector	Level [dBµV/m]		
	-/-			-/-			
No peaks	No peaks closer 10 dB to the limit detected.			No peaks closer 10 dB to the limit detected.			
	-/-		-/-				
-/-	, Peak		-/-	Peak			
-/-	AVG		-/-	AVG			
	-/-			-/-			
-/-	Peak		-/-	Peak			
-/-	AVG		-/-	AVG			
	-/-			-/-			
1	Peak		-/-	Peak			
-/-	AVG		-/-	AVG			

Plots:

Plot 1: 902.2 MHz, 1 GHz – 18 GHz, horizontal & vertical polarisation

Plot 2: 902.2 MHz, 18 GHz – 26 GHz, horizontal & vertical polarisation

Date: 21.SEP.2017 08:24:19

Plot 3: 910.0 MHz, 1 GHz – 18 GHz, horizontal & vertical polarisation

Plot 4: 910.0 MHz, 18 GHz – 26 GHz, horizontal & vertical polarisation

Date: 21.SEP.2017 08:26:20

Plot 5: 918.1 MHz 1 GHz – 18 GHz, horizontal & vertical polarisation

Plot 6: 918.1 MHz 18 GHz – 26 GHz, horizontal & vertical polarisation

Date: 21.SEP.2017 08:28:11

Plot 7: 911.8 MHz, 1 GHz – 18 GHz, horizontal & vertical polarisation

Plot 8: 911.8 MHz, 18 GHz – 26 GHz, horizontal & vertical polarisation

Date: 21.SEP.2017 08:30:19

Plot 9: 920.5 MHz, 1 GHz – 18 GHz, horizontal & vertical polarisation

Plot 10: 920.5 MHz, 18 GHz – 26 GHz, horizontal & vertical polarisation

Date: 21.SEP.2017 08:32:03

Plot 11: 927.7 MHz 1 GHz – 18 GHz, horizontal & vertical polarisation

Plot 12: 927.7 MHz 18 GHz – 26 GHz, horizontal & vertical polarisation

Date: 21.SEP.2017 08:33:53

12 Observations

No observations except those reported with the single test cases have been made.

Annex A Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
ОС	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
ОР	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz

Annex B Document history

Version	Applied changes	Date of release	
-/-	Initial release	2017-09-26	
Α	Editorial changes	2017-10-23	

Annex C Accreditation Certificate

first page	last page
Deutsche Akkreditierungsstelle GmbH Beliehene gemäß § 8 Absatz 1 AkkstelleG (I.V.m. § 1 Absatz 1 AkkstelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, ILAC und IAF zur gegenseitigen Anerkennung Akkreditierung Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüffaboratorium CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken	Deutsche Akkreditierungsstelle GmbH Standort Berlin Standort Frankfurt am Main Standort Braunschweig Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen: Funk Mobiffunk (GSM / DCS) + OTA Elektromagnetische Verträglichkeit (EMV) Produksischerheit SAR / EMF Umwett Smart Card Technology Bluetooth* Autometertes Nenationetertes Kanadische Anforderungen UJ-Anforderungen Ausstik. Near Field Communication (NFC) Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheid vom 25.11.2016 mit der Akkreditierungsummer D-PL-12076-01 und ist gültig bis 17.01.2018. Sie besteht aus diesem Deckblatt, der Rückseite des Deckblatts und der folgenden Anlage mit insgesamt 63 Seiten. Registrierungsnummer der Urkunde: D-PL-12076-01-01 Frankfurt, 25.11.2016 Im Außerg (Dipl. Ing. 1647 half Egner Abteilungsleiter	Die auszugsweise Veröffentlichung der Akkreditierungsurkunde bedarf der vorherigen schriftlichen Zustimmung der Deutsche Akkreditierungsstelle Gmbif (DAKS). Ausgenommen davon ist die separate Weiterverhertung des Deckblates durch der unserlig genannte Konformitalbewertungsstelle in unveränderter Form. Es darf nicht der Anschein erweckt werden, dass sich die Akkreditierung auch auf Bereiche erstreckt, die über den durch die DAKS bestätigten Akkreditierungsbereich linausgehen. Die Akkreditierung erfolgte gemäß des Gesetzes über die Akkreditierungsstelle (AkkStelleG) vom 31. Juli 2009 (BGB). Is. 2652) sowie der Verordnung (EG) Nr. 765/2000 des Europalsichen Pralaments und des Rates vom 9. Juli 2008 über die Vorschriften für des Kateditierung und Ankreüberwachung im Zusammenhang mit der Vermarktung von Produkten (Abl. L. 218 vom 9. Juli 2008, S. 30). Die DAKS ist Unterzeichner der Multilaterialer Abkommen zu gegenseitige Ankreinenung der European co-operation (Fa.) des Hiemanional Accreditation Forum (AF) und der international Laboratory Accreditation (Cooperation (Ind.C.). Die Unterzeichner dieser Abkommen erhennen ihre Akkreditierungen gegenseitig an. Der aktuelle Stand der Mitgiliedschaft kann folgenden Webseiten entnommen werden: EA: www.european-accreditation.org

Note: The current certificate including annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

http://www.dakks.de/as/ast/d/D-PL-12076-01-01.pdf

http://www.dakks.de/as/ast/d/D-PL-12076-01-02.pdf