LS

LS
Pecap: —Bias Vs Vouviance
- Thumb rule
low bies — higher complexity
— Thumb rule low bies — higher complexity low variance — low complexity complexity
Har to define Complexity?
Regularization:
- Method to control complexity of a ML mode
Componenes: Representativ
- Loss function
· · · · · · · · · · · · · · · · · · ·
Invesarl of MSE, we define an now loss function
L(w) = MSE(w) + X & (w) Scalar >0 L Scalar General level of regularization (legularizer'' promote simpler w penalize "Lin likely" w
legularizar' -
pnimote simpler W
penalize Un likely W

かり kgulorizerをfo, Loss function 前の取電地、一句対 KogMorizer Frank: Bell, 1x14KKy) reglarize 6 of the 12 norm Beh, WV 1) of (w) = ||w|| Squared LZ norm 2) \$(w) = ||w||, L] horm " Clartic net" Ψ φ(V) = \(\frac{1}{2}\) (W; - \(\frac{1}{2}\) \(\frac{1}{2 Interpretation in terms of linear pegrossium. 1 L(w) = 1 ly-xw| 2 +0x | w| 2 See PL(w) = 0 and solve for * Lidge regression and larger &, W smaller, Elw: 211 y-xw/2 +0x/w/1, hence less variance more differentian local differentian local limits - ble LASSO Cannot optimize using GD but can use other algorithm
regression

[sub gradient descent , LA125 , Fixed point d(w) = ||w||2 -> shrinks value of w Øcw)= //w||, → spansifies w Most of wifficiences are "O"

Cogistic Vograssion Thus by: hognession Training dataset. (x, y)

Anta (abol (How to model classification ? 1=0 -> NO Y=1 ->YES pros: can use | inear regression directly. Cons: Y= <wx> - Not scale invariant [low x give lony] Solution: Instead of finding model of Yi=fixi) Instead we predict Pwb (yi=1) xi) = f(xi) L> conditional probability of phedicting lable YES given data point Xi [assume 2 (lasses)

Combine into one ognation Prob (Y; | X;) = f(X;) >; (1-f(x;)) (-4; YI=OB Pataset (X1, Y1) With independent samples (K, /2) (Kn, Yn) X=[X1, ---, Xh) /= [Xi] Prob (y|X) = p(y; |X;) p(Y2|X) - p(yn)Xn) = T) prob(yi/Xi) = 1 +(x;);(1+(x;)1-);

$$| Coss = entropy | Exhibits | Coss | City | City$$

Y; (09-fix;)+(1-Y;)(09(1-fixi)

Multicase classification k classes 1, ..., k prob (y = k | xi) = exp (<W/Xi>)

2: normalization of "partition function" Z = \frac{k}{2} exp (<Wk, X;>>) | k \ 0/1/p) \frac{k}{2}

L(w)= 1/2 1; (w)

in dicentor

Oyistic legenion

1 #一步車車

$$P(y;|X_i) = f(x_i) + b_1 + (-f(x_i))^{a_1y_i+b_2}$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i))^{a_1+b_2} = f(x_i)$$

$$P(y_i = |X_i) = f(x_i) + (-f(x_i$$

$$\begin{vmatrix} b_1 - a_1 = 0 \\ b_1 - a_1 = 0 \end{vmatrix}$$

$$\begin{vmatrix} b_1 - a_1 = 0 \\ b_2 - a_1 = 0 \end{vmatrix}$$

$$\Rightarrow b = \frac{1}{2}$$

$$Q_1 = \frac{1}{2}$$

$$Q_2 = \frac{1-\gamma_i}{2}$$

$$Q_3 = \frac{1-\gamma_i}{2}$$

(A) ⇒ sigmoid: | te-z = | te-<w.xi>

(MUSS OMFHOPY i= [HYi] loy He-(w,xr> + (-Yi) loy e(w)Xi)