Precalculus: Chapter 5 Notes

Amin Mesbah

1 EXPONENTS

LAWS OF EXPONENTS

If s, t, a, and b are real numbers with a > 0 and b > 0, then

$$a^{s} \cdot a^{t} = a^{s+t}$$
 $(a^{s})^{t} = a^{st}$ $(ab)^{s} = a^{s} \cdot b^{s}$ (1.1)

$$1^{s} = 1$$
 $a^{-s} = \frac{1}{a^{s}} = \left(\frac{1}{a}\right)^{s}$ $a^{0} = 1$ (1.2)

EXPONENTIAL FUNCTIONS

An **exponential function** is a function of the form

$$f(x) = Ca^x (1.3)$$

where $a \in \mathbb{R}$, a > 0, $a \neq 1$, and $C \neq 0$ is a real number. The domain of f is \mathbb{R} . The base a is the **growth factor**, and because $f(0) = Ca^0 = C$, we call C the **initial value**.

For $f(x) = Ca^x$, where a > 0 and $a \neq 1$, if $x \in \mathbb{R}$, then

$$\frac{f(x+1)}{f(x)} = a \qquad \text{or} \qquad f(x+1) = af(x) \tag{1.4}$$

The number e

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \tag{1.5}$$

SOLVING EXPONENTIAL EQUATIONS

Use this property, expressing each side of the equation using the same base:

If
$$a^u = a^v$$
, then $u = v$ (1.6)

2 Logarithms

 $\log_a x$ represents the exponent to which a must be raised to obtain x.

$$y = \log_a x$$
 if and only if $x = a^y$ (2.1)

$$y = \ln x$$
 if and only if $x = e^y$ (2.2)

$$y = \log x$$
 if and only if $x = 10^y$ (2.3)

The domain of $y = \log_a x$ is $\{x | x > 0\}$.

LOGARITHMIC FUNCTIONS

The logarithmic function is the inverse of the exponential function.

If
$$f(x) = a^x$$
, then $f^{-1}(x) = \log_a x$ (2.4)

The domain of f^{-1} is the range of f. The range of f^{-1} is the domain of f.

PROPERTIES OF LOGARITHMS

In the following properties, M, N, and a are positive real numbers, $a \neq 1$, and $r \in \mathbb{R}$.

$$\log_a 1 = 0 \qquad log_a a = 1 \tag{2.5}$$

$$a^{\log_a M} = M \qquad \qquad \log_a a^r = r \tag{2.6}$$

$$\log_a M^r = r \log_a M a^x = e^{x \ln a} (2.7)$$

$$\log_a(MN) = \log_a M + \log_a N \qquad \qquad \log_a \left(\frac{M}{N}\right) = \log_a M - \log_a N \qquad (2.8)$$

If
$$M = N$$
, then $\log_a M = \log_a N$ If $\log_a M = \log_a N$, then $M = N$ (2.9)

CHANGE OF BASE FORMULA

If $a \neq 1$, $b \neq 1$, and M are positive real numbers, then

$$\log_a M = \frac{\log_b M}{\log_b a}$$
 so, $\log_a M = \frac{\log M}{\log a}$ and $\log_a M = \frac{\ln M}{\ln a}$ (2.10)