目 录

第一章	流体流动与输送机械 •••••••••••••••••••••••••••••••••(2)
第二章	非均相物系分离 ••••••••••••••••••••••••••••••••••••
第三章	传热 · · · · · · (42)
第四章	蒸发
第五章	气体吸收 · · · · · · · · · · · · · · · · · · ·
第六章	蒸馏 · · · · · · · · · · · · · · · · · · ·
第七章	固体干燥 • • • • • • • • (119)

第一章 流体流动与输送机械

1. 某烟道气的组成为 CO_2 13%, N_2 76%, H_2O 11%(体积%),试求此混合气体在温度 500℃、压力 101.3kPa 时的密度。

解:混合气体平均摩尔质量

$$M_m = \sum y_i M_i = (0.13 \times 44 + 0.76 \times 28 + 0.11 \times 18) \times 10^{-3} = 28.98 \times 10^{-3} \text{ kg/m}$$

: 混合密度

$$\rho_m = \frac{pM_m}{RT} = \frac{101.3 \times 10^3 \times 28.98 \times 10^{-3}}{8.31 \times (273 + 500)} = 0.457 \text{ kg} / \text{m}$$

2. 已知 20℃时苯和甲苯的密度分别为 879 kg/m³ 和 867 kg/m³, 试计算含苯 40%及甲苯 60%(质量%)的混合液密度。

解:
$$\frac{1}{\rho_m} = \frac{a_1}{\rho_1} + \frac{a_2}{\rho_2} = \frac{0.4}{879} + \frac{0.6}{867}$$

混合液密度 $\rho_m = 8.7 \text{ 18k g}/\text{ m}$

3. 某地区大气压力为 101.3kPa,一操作中的吸收塔塔内表压为 130kPa。若在大气压力为 75 kPa 的高原地区操作该吸收塔,且保持塔内绝压相同,则此时表压应为多少?

解:
$$p_{\pm} = p_a + p_{\pm} = p_a' + p_{\pm}'$$

 $\therefore p_{\pm}' = (p_a + p_{\pm}) - p_a' = (101.3 + 130) - 75 = 156.3 \text{kPa}$

4. 如附图所示,密闭容器中存有密度为 900 kg/m³ 的液体。容器上方的压力表读数为 42kPa,又在液面下装一压力表,表中心线在测压口以上 0.55m,其读数为 58 kPa。试计算液面到下方测压口的距离。

解:液面下测压口处压力

$$p = p_0 + \rho g \Delta z = p_1 + \rho g h$$

$$\Delta z = \frac{p_1 + \rho g h - p_0}{\rho g} = \frac{p_1 - p_0}{\rho g} + h = \frac{(58 - 42) \times 10^3}{900 \times 9.81} + 0.55 = 2.36 \,\mathrm{m}$$

5. 如附图所示,敞口容器内盛有不互溶的油和水,油层和水层的厚度分别为 700mm 和 600mm。在容器底部开孔与玻璃管相连。已知油与水的密度分别为 $800~{
m kg/m}^3$ 和 $1000~{
m kg/m}^3$ 。

题 5 附图

- (1) 计算玻璃管内水柱的高度:
- (2) 判断 A 与 B、C 与 D 点的压力是否相等。
- 解: (1) 容器底部压力

$$p = p_a + \rho_{M}gh_1 + \rho_{M}gh_2 = p_a + \rho_{M}gh$$

$$\therefore h = \frac{\rho_{\dot{\text{1}}h_1} + \rho_{\dot{\text{1}}h_2}}{\rho_{\dot{\text{1}}h_1}} = \frac{\rho_{\dot{\text{1}}h_1}}{\rho_{\dot{\text{1}}h_1}} h_1 + h_2 = \frac{800}{1000} \times 0.7 + 0.6 = 1.16 \,\text{m}$$

$$(2) p_A \neq p_B p_C = p_D$$

6. 为测得某容器内的压力,采用如图所示的 U 形压力计,指示液为水银。已知该液体密度为 900kg/m³, h=0.8m, R=0.45m。试计算容器中液面上方的表压。

解:如图,1-2为等压面。

$$p_1 = p + \rho g h \qquad p_2 = p_a + \rho_0 g R$$

$$p + \rho g h = p_a + \rho_0 g R$$

则容器内表压:

$$p - p_a = \rho_0 gR - \rho gh = 13600 \times 0.45 \times 9.81 - 900 \times 0.8 \times 9.81 = 53.0 \text{ k P}$$
 &

7. 如附图所示,水在管道中流动。为测得 A-A'、B-B' 截面的压力差,在管路上方安装一 U 形压差计,指示液为水银。已知压差计的读数 R=180mm,试计算 A-A'、B-B' 截面的压力差。已 知水与水银的密度分别为 1000kg/m^3 和 13600 kg/m^3 。

解:图中,1-1′面与2-2′面间为静止、连续的同种流体,且处于同一水平面,因此为等压面,即

$$p_1 = p_1$$
, $p_2 = p_2$

$$\mathcal{Z} \qquad p_{1'} = p_{A} - \rho g m$$

$$p_{1} = p_{2} + \rho_{0} g R = p_{2'} + \rho_{0} g R$$

$$= p_{B} - \rho g (m + R) + \rho_{0} g R$$

所以 $p_A - \rho g m = p_B - \rho g (m + R) + \rho_0 g R$

整理得 $p_A - p_B = (\rho_0 - \rho)gR$

题 7 附图

由此可见, U 形压差计所测压差的大小只与被测流体及指示液的密度、读数 R 有关,而与 U 形压差计放置的位置无关。

代入数据
$$p_A - p_B = (13600 - 1000) \times 9.81 \times 0.18 = 22249 \text{ Pa}$$

8. 用 U 形压差计测量某气体流经水平管道两截面的压力差,指示液为水,密度为 $1000 kg/m^3$,读数 R 为 12 mm。为了提高测量精度,改为双液体 U 管压差计,指示液 A 为含 40% 乙醇的水溶液,密度为 $920 kg/m^3$,指示液 C 为煤油,密度为 $850 kg/m^3$ 。问读数可以放大多少倍?此时读数为多少?

解:用U形压差计测量时,因被测流体为气体,则有

$$p_1 - p_2 \approx Rg \rho_0$$

用双液体U管压差计测量时,有

$$p_1 - p_2 = R'g(\rho_A - \rho_C)$$

因为所测压力差相同, 联立以上二式, 可得放大倍数

$$\frac{R'}{R} = \frac{\rho_0}{\rho_A - \rho_C} = \frac{1000}{920 - 850} = 14.3$$

此时双液体U管的读数为

$$R' = 14.3R = 14.3 \times 12 = 171.6$$
mm

9. 图示为汽液直接混合式冷凝器,水蒸气与冷水相遇被冷凝为水,并沿气压管流至地沟排出。现已知真空表的读数为 78kPa,求气压管中水上升的高度 h。

解:
$$p + \rho g h = p_a$$

题 9 附图

水柱高度
$$h = \frac{p_a - p}{\rho g} = \frac{78 \times 10^3}{10^3 \times 9.81} = 7.95 \,\mathrm{m}$$

10. 硫酸流经由大小管组成的串联管路,其尺寸分别为 φ 76×4mm 和 φ 57×3.5mm。已知硫酸的密度为 1830 kg/m³,体积流量为 9m³/h,试分别计算硫酸在大管和小管中的(1)质量流量;(2)平均流速;(3)质量流速。

解: (1) 大管: φ76×4mm

$$m_s = V_s \cdot \rho = 9 \times 1830 = 16470 \text{ kg/l}$$

 $u_1 = \frac{V_s}{0.785 d^2} = \frac{9/3600}{0.785 \times 0.068^2} = 0.69 \text{ m/s}$
 $G_1 = u_1 \rho = 0.69 \times 1830 = 1262.7 \text{kg/(m}^2 \cdot \text{s)}$

(2) 小管: \$57 × 3.5mm

质量流量不变
$$m_{s2} = 16470 \text{ kg/h}$$

$$u_2 = \frac{V_s}{0.785 d_2^2} = \frac{9/3600}{0.785 \times 0.05^2} = 1.27 \text{ m/s}$$
 或:
$$u_2 = u_1 (\frac{d_1}{d_2})^2 = 0.69 (\frac{68}{50})^2 = 1.27 \text{ m/s}$$

$$G_2 = u_2 \cdot \rho = 1.27 \times 1830 = 2324 \cdot 1 \text{kg/(m}^2 \cdot \text{s})$$

11. 如附图所示,用虹吸管从高位槽向反应器加料,高位槽与反应器均与大气相通,且高位槽中液面恒定。现要求料液以 1m/s 的流速在管内流动,设料液在管内流动时的能量损失为 20J/kg (不包括出口),试确定高位槽中的液面应比虹吸管的出口高出的距离。

解: 以高位槽液面为 1-1'面,管出口内侧为 2-2'面,在 1-1'~ 2-2'间列柏努力方程:

$$z_1 g + \frac{p_1}{\rho} + \frac{1}{2} u_1^2 = z_2 g + \frac{p_2}{\rho} + \frac{1}{2} u_2^2 + \sum W_f$$

简化:
$$H = (\frac{1}{2} u_2^2 + \sum W_f) / g$$
$$= (\frac{1}{2} \times 1 + 20) \div 9.81 = 2.09 \,\mathrm{m}$$

12. 一水平管由内径分别为 33mm 及 47mm 的两段直管组成,水在小管内以 2.5m/s 的速度流向大管,在接头两侧相距 1m 的 1、2 两截面处各接一测压管,已知两截面间的压头损失为 70mmH₂O,

问两测压管中的水位哪一个高,相差多少?并作分析。

解: 1、2两截面间列柏努利方程:

$$z_1 + \frac{p_1}{\rho g} + \frac{1}{2g}u_1^2 = z_2 + \frac{p_2}{\rho g} + \frac{1}{2g}u_2^2 + \sum h_f$$

其中:
$$z_1 = z_2$$
 $u_2 = u_1 \left(\frac{d_1}{d_2}\right)^2 = 2.5 \left(\frac{33}{47}\right)^2 = 1.23 \,\mathrm{m}/\mathrm{s}$

$$\Delta h = \frac{p_1 - p_2}{\rho g} = \frac{1}{2g} (u_2^2 - u_1^2) + \sum h_f = \frac{1}{2 \times 9.81} (1.23^2 - 2.5^2) + 0.07 = -0.17 \,\mathrm{m}$$

说明2截面处测压管中水位高。这是因为该处动能小,因而静压能高。

13. 如附图所示,用高位槽向一密闭容器送水,容器中的 —— 表压为 80kPa。已知输送管路为 ϕ 48×3.5 mm 的钢管,管路系 统的能量损失与流速的关系为 $\Sigma W_f = 6.8u^2$ (不包括出口能量 损失), 试求:

题 13 附图

- (1) 水的流量;
- 若需将流量增加 20%, 高位槽应提高多少 m?

解: (1) 如图在高位槽液面 1-1 与管出口内侧 2-2 间列柏努利方程

$$z_1 g + \frac{p_1}{\rho} + \frac{1}{2} u_1^2 = z_2 g + \frac{p_2}{\rho} + \frac{1}{2} u_2^2 + \sum W_f$$

简化:
$$z_1 g = \frac{p_2}{\rho} + \frac{1}{2} u_2^2 + \sum W_f$$
 (1)

即
$$10 \times 9.81 = \frac{80 \times 10^{3}}{1000} + \frac{1}{2}u_{2}^{2} + 6.8u_{2}^{2}$$

解得 $u_2 = 1.57 \,\text{m/s}$

流量
$$V_S = \frac{\pi}{4} d^2 u_2 = 0.785 \times 0.041^2 \times 1.57 = 2.07 \times 10^{-3} \, m^3 / s = 7.45 \, \text{m}^3 / \text{h}$$

(2) 流量增加 20%, 则u'₂ = 1.2×1.57 = 1.88 m/s

此时有
$$z'_1g = \frac{p_2}{\rho} + \frac{1}{2}u'_2^2 + \sum W'_f$$

$$z_1' = (\frac{80 \times 10^3}{1000} + \frac{1}{2} \times 1.88^2 + 6.8 \times 1.88^2) / 9.81 = 10.78 \text{ m}$$

即高位槽需提升 0.78m。

14. 附图所示的是丙烯精馏塔的回流系统,丙烯由贮槽回流至塔顶。丙烯贮槽液面恒定,其液面上方的压力为 2.0MPa(表压),精馏塔内操作压力为 1.3MPa(表压)。塔内丙烯管出口处高出贮槽内液面 30m,管内径为 140mm,丙烯密度为 600kg/m³。现要求输送量为 40×10³kg/h,管路的全部能量损失为 150J/kg(不包括出口能量损失),试核算该过程是否需要泵。

题 14 附图

解:在贮槽液面 1-1'与回流管出口外侧 2-2'间列柏努利方程:

$$z_{1}g + \frac{p_{1}}{\rho} + \frac{1}{2}u_{1}^{2} + W_{e} = z_{2}g + \frac{p_{2}}{\rho} + \frac{1}{2}u_{2}^{2} + \sum W_{f}$$

$$\text{figh:} \quad \frac{p_{1}}{\rho} + W_{e} = z_{2}g + \frac{p_{2}}{\rho} + \frac{1}{2}u_{2}^{2} + \sum W_{f}$$

$$W_{e} = \frac{p_{2} - p_{1}}{\rho} + \frac{1}{2}u_{2}^{2} + z_{2}g + \sum W_{f}$$

$$u_{2} = \frac{\frac{m_{s}}{\rho}}{0.785 d^{2}} = \frac{40 \times 10^{3} / 3600 \times 600}{0.785 \times 0.14^{2}} = 1.2 \text{m/s}$$

$$\therefore W_{e} = \frac{(1.3 - 2.0) \times 10^{6}}{600} + \frac{1}{2} \times 1.2^{2} + 30 \times 9.81 + 150$$

$$= -72 \cdot 16 \text{J/k}$$

- :. 不需要泵,液体在压力差的作用下可自动回流至塔中
- 15. 用压缩空气将密闭容器中的硫酸压送至敞口高位槽,如附图所示。输送量为 $2m^3/h$,输送管路为 φ 37×3.5mm 的无缝钢管。两槽中液位恒定。设管路的总压头损失为 1m (不包括出口),硫酸的密度为 1830 kg/m^3 。试计算压缩空气的压力。

解: 以容器中液面为 1-1'面,管出口内侧为 2-2'面,且以 1-1'面为基准,在 1-1'~2-2'间列柏努力方程:

7

$$\frac{p_1}{\rho g} + \frac{1}{2g}u_1^2 + z_1 = \frac{p_2}{\rho} + \frac{1}{2g}u_2^2 + z_2 + \sum h_f$$

简化:

$$\frac{p_1}{\rho g} = \frac{1}{2g} u_2^2 + z_2 + \sum h_f$$

其中:
$$u_2 = \frac{V_s}{\frac{\pi}{4}d^2} = \frac{2/3600}{0.785 \times 0.03^2} = 0.786 \text{ m/s}$$

代入:
$$p_1 = \rho g (\frac{1}{2g} u_2^2 + z_2 + \sum h_f)$$

= $1830 \times 9.81 \times (\frac{1}{2 \times 9.81} \times 0.786^2 + 12 + 1)$
= $234 \, \text{kP}_3 (表压)$

- 16. 某一高位槽供水系统如附图所示,管子规格为 φ 45×2.5mm。当阀门全关时,压力表的读数为 78kPa。当阀门全开时,压力表的读数为 75 kPa,且此时水槽液面至压力表处的能量损失可以表示为 $\Sigma W_f = u^2$ J/kg(u 为水在管内的流速)。试求:
 - (1) 高位槽的液面高度;
 - (2) 阀门全开时水在管内的流量(m³/h)。

解: (1) 阀门全关, 水静止

$$p = \rho g h$$

$$\therefore h = \frac{p}{\rho g} = \frac{78 \times 10^3}{10^3 \times 9.81} = 7.95 \,\mathrm{m}$$

在水槽 1-1'面与压力表 2-2'面间列柏努力方程:

$$z_1 g + \frac{p_1}{\rho} + \frac{1}{2} u_1^2 = z_2 g + \frac{p_2}{\rho} + \frac{1}{2} u_2^2 + \sum W_f$$

简化:
$$z_1 g = \frac{p_2}{\rho} + \frac{1}{2} u_2^2 + \sum W_f$$

$$7.95 \times 9.81 = \frac{75 \times 10^{3}}{1000} + \frac{1}{2}u_{2}^{2} + u_{2}^{2}$$

解之:
$$u_2 = 1.412 \text{ m/s}$$

∴ 流量:
$$V_s = \frac{\pi}{4} d^2 u_2 = 0.785 \times 0.04^2 \times 1.412 = 1.773 \times 10^{-3} \,\text{m}^3/\text{s}$$
$$= 6.38 \,\text{m}^3/\text{h}$$

17. 用泵将常压贮槽中的稀碱液送至蒸发器中浓缩,如附图所示。泵进口管为 φ 89×3. 5mm,

碱液在其中的流速为 1.5m/s; 泵出口管为φ 76×3mm。贮槽中碱液的液面距蒸发器入口处的垂直距离为 7m。碱液在管路中的能量损失为 40J/kg(不包括出口)蒸发器内碱液蒸发压力保持在 20kPa(表压),碱液的密度为 1100kg/m³。设泵的效率为 58%,试求该泵的轴功率。

题 17 附图

解:取贮槽液面为 1-1 截面,蒸发器进料口管内侧为 2-2 截面,且以 1-1 截面为基准面。

在 1-1 与 2-2 间列柏努利方程:

$$z_1 g + \frac{p_1}{\rho} + \frac{1}{2} u_1^2 + W_e = z_2 g + \frac{p_2}{\rho} + \frac{1}{2} u_2^2 + \sum W_f$$
 (a)

或
$$W_e = (z_2 - z_1)g + \frac{1}{2}(u_2^2 - u_1^2) + \frac{p_2 - p_1}{\rho} + \Sigma W_f$$
 (b)

其中:
$$z_1=0$$
; $p_1=0$ (表压); $u_1\approx 0$

$$z_2$$
=7m; p_2 =20×10³ Pa (表压)

已知泵入口管的尺寸及碱液流速,可根据连续性方程计算泵出口管中碱液的流速:

$$u_2 = u_{\lambda} \left(\frac{d_{\lambda}}{d_2}\right)^2 = 1.5 \left(\frac{82}{70}\right)^2 = 2.06 \text{ m/s}$$

$$\rho$$
 =1100 kg/m³, Σ $W_{\rm f}$ =40 J/kg

将以上各值代入(b)式,可求得输送碱液所需的外加能量

$$W_e = 7 \times 9.81 + \frac{1}{2} \times 2.06^2 + \frac{20 \times 10^3}{1100} + 40 = 129$$
 J/kg

碱液的质量流量

$$m_s = \frac{\pi}{4} d_2^2 u_2 \rho = 0.785 \times 0.07^2 \times 2.06 \times 1100 = 8.72$$
 kg/s

泵的有效功率

$$N_e = W_e m_s = 129 \times 8.72 = 1125 \text{ W} = 1.125 \text{ kW}$$

泵的效率为58%,则泵的轴功率

$$N = \frac{N_e}{n} = \frac{1.125}{0.58} = 1.94$$
 kW

- 18. 如附图所示, 水以 15m³/h 的流量在倾斜管中流过, 管内径由 100mm 缩小到 50mm。 *A、B* 两点的垂直距离为 0.1m。在两点间连接一 U 形压差计,指示剂为四氯化碳,其密度为 1590 kg/m³。若忽略流动阻力,试求:
 - (1) U形管中两侧的指示剂液面哪侧高,相差多少 mm?
 - (2) 若保持流量及其他条件不变,而将管路改为水平放置,则压差计的读数有何变化? 解: 在 1-1 与 2-2 截面间列柏努利方程

其中:
$$u_1 = \frac{V_S}{0.785 d_1^2} = \frac{15/3600}{0.785 \times 0.1^2} = 0.531 \,\text{m/s}$$

$$u_2 = \frac{V_S}{0.785 d_2^2} = \frac{15/3600}{0.785 \times 0.05^2} = 2.123 \,\text{m/s}$$

$$z_2 - z_1 = 0.1m \qquad \Sigma W_f = 0$$

$$\frac{p_1 - p_2}{\rho} = (z_2 - z_1)g + \frac{1}{2}(u_2^2 - u_1^2)$$

$$= 0.1 \times 9.81 + 0.5 \times (2.123^2 - 0.531^2) = 3.093$$

由静力学基本方程:

$$(p_1 + \rho g z_1) - (p_2 + \rho g z_2) = (\rho_0 - \rho) g R$$

$$R = \frac{(p_1 + \rho g z_1) - (p_2 + \rho g z_2)}{(\rho_0 - \rho) g} = \frac{(p_1 - p_2) + \rho g (z_1 - z_2)}{(\rho_0 - \rho) g}$$

$$= \frac{3.093 \times 1000 - 1000 \times 9.81 \times 0.1}{(1590 - 1000) \times 9.81} = 0.365 \text{ m}$$
(2)

故U形压差计两侧为左低右高。

(2) 当管路水平放置时:

由柏努利方程
$$\frac{p_1 - p_2}{\rho} = \frac{1}{2} (u_2^2 - u_1^2)$$

由静力学方程
$$\frac{p_1 - p_2}{\rho} = \frac{Rg(\rho_0 - \rho)}{\rho}$$

两式联立:
$$\frac{Rg(\rho_0 - \rho)}{\rho} = \frac{1}{2}(u_2^2 - u_1^2)$$

可见,流量不变时, u_1,u_2 ,不变,即U形压差计读数不变。

- 19. 附图所示的是冷冻盐水循环系统。盐水的密度为 1100 kg/m^3 ,循环量为 $45 \text{ m}^3/\text{h}$ 。管路的内径相同,盐水从 A 流经两个换热器至 B 的压头损失为 9m,由 B 流至 A 的压头损失为 12m,问:
 - (1) 若泵的效率为 70%, 则泵的轴功率为多少?
- (2) 若 A 处压力表的读数为 153kPa,则 B 处压力表的读数为多少?

解: (1) 对于循环系统:

$$H_e = \sum h_f = 9 + 12 = 21$$
m

$$N_e = H_e \cdot V_s \rho g = 21 \times \frac{45}{3600} \times 1100 \times 9.81 = 2.83 \text{ kW}$$

∴ 轴功率 :
$$N = \frac{N_e}{n} = \frac{2.83}{0.7} = 4.04 \text{ kW}$$

$$\frac{p_A}{\rho g} + \frac{1}{2g}u_A^2 + z_A = \frac{p_B}{\rho g} + \frac{1}{2g}u_B^2 + z_B + \sum h_{fAB}$$

简化:
$$\frac{p_A}{\rho g} = \frac{p_B}{\rho g} + z_B + \sum h_{fAB}$$

$$153 \times 10^{3} = p_{B} + 1100 \times 9.81 \times (7+9)$$

∴
$$p_B = -19656 \ p_a(₹)$$

:: B处真空度为 19656 Pa。

题 19 附图

同,均为 φ 76×2.5mm。水流经吸入与压出管路(不包括喷头)的能量损失分别为 $\Sigma W_{f1}=2u^2$ 及 $\Sigma W_{f2}=10u^2$ (J/kg),式中,u 为水在管内的流速。在操作条件下,泵入口真空表的读数为 26.6kPa,喷头处的压力为 98.1kPa(表压)。试求泵的有效功率。

题 20 附图

解:以水槽液面为 1-1 截面,泵入口处为 2-2 截面,且以 1-1 面为基准面。在两截面间列柏努利方程

$$z_1g + \frac{p_1}{\rho} + \frac{1}{2}u_1^2 = z_2g + \frac{p_2}{\rho} + \frac{1}{2}u_2^2 + \sum W_{f1}$$

简化为
$$z_2g + \frac{p_2}{\rho} + \frac{1}{2}u_2^2 + \sum W_{f1} = 0$$

$$\mathbb{E} \qquad 1.5 \times 9.81 - \frac{26.6 \times 10^3}{1000} + \frac{1}{2}u_2^2 + 2u_2^2 = 0$$

$$z_1 g + \frac{p_1}{\rho} + \frac{1}{2}u_1^2 + W_e = z_3 g + \frac{p_3}{\rho} + \frac{1}{2}u_3^2 + \sum W_f$$

简化为
$$W_e = z_3 g + \frac{p_3}{\rho} + \frac{1}{2} u_3^2 + \sum W_f$$

$$W_e = z_3 g + \frac{p_3}{\rho} + \frac{1}{2} u_3^2 + 2u^2 + 10u^2 = z_3 g + \frac{p_3}{\rho} + 12.5u_3^2$$

其中 $u = u_3 = u_2 = 2.18 \,\mathrm{m} \,/\,\mathrm{s}$

则
$$W_e = 14 \times 9.81 + \frac{98.1 \times 10^3}{1000} + 12.5 \times 2.18^2 = 2948 \text{J/k}$$
 §

水的流量:
$$m_S = V_s \rho = \frac{\pi}{4} d^2 u \rho = 0.785 \times 0.071^2 \times 2.18 \times 1000 = 8.63 \text{ kg/s}$$

泵有效功率
$$N_e = m_S W_e = 8.63 \times 294.8 = 2544 W = 2.544 \text{ kW}$$

21. 25℃水以 35 m^3 /h 的流量在 φ 76×3mm 的管道中流动,试判断水在管内的流动类型。

解: 查附录 25℃水物性:

$$\rho = 996.95 \,\mathrm{kg/m}^3$$
, $\mu = 0.903 \,\mathrm{cP}$

$$u = \frac{V_s}{0.785 d^2} = \frac{\frac{35}{3600}}{0.785 \times 0.07^2} = 2.53 \,\text{m/s}$$

$$Re = \frac{du \rho}{u} = \frac{0.07 \times 996.95 \times 2.53}{0.903 \times 10^{-3}} = 1.955 \times 10^5 \,\text{A}000$$

:. 为湍流

22. 运动黏度为 $3.2\times10^{-5}\mathrm{m}^2/\mathrm{s}$ 的有机液体在 $\boldsymbol{\varphi}$ 76×3. 5mm 的管内流动,试确定保持管内层流流动的最大流量。

解:
$$Re = \frac{du\rho}{\mu} = \frac{du}{\nu} = 2000$$

$$\therefore u_{\text{max}} = \frac{2000 \text{ v}}{d} = \frac{2000 \times 3.2 \times 10^{-5}}{0.069} = 0.927 \text{ m/s}$$

$$\therefore V_{\text{max}} = \frac{\pi}{4} d^2 u_{\text{max}} = 0.785 \times 0.069^2 \times 0.927 = 3.46 \times 10^{-3} \text{ m}^3/\text{s}$$

$$= 12.46 \text{ m}^3/\text{h}$$

23. 计算 10 ℃ 水以 2.7×10^{-3} m³/s 的流量流过 φ 57×3. 5mm、长 20 m 水平钢管的能量损失、压头损失及压力损失。(设管壁的粗糙度为 0.5 mm)

解:
$$u = \frac{V_s}{0.785 d^2} = \frac{2.7 \times 10^{-3}}{0.785 \times 0.05^2} = 1.376 \,\mathrm{m/s}$$

 $10^{\circ}\mathrm{C}$ 水物性:
 $\rho = 999.7 \,\mathrm{kg/m}^3$, $\mu = 1.305 \times 10^{-3} \,\mathrm{p_a} \cdot \mathrm{s}$
 $Re = \frac{du \,\mathrm{p}}{\mu} = \frac{0.05 \times 999.7 \times 1.376}{1.305 \times 10^{-3}} = 5.27 \times 10^4$
 $\frac{\varepsilon}{d} = \frac{0.5}{50} = 0.01$
查得 $\lambda = 0.041$
 $\therefore \sum W_f = \lambda \frac{l}{d} \frac{u^2}{2} = 0.041 \times \frac{20}{0.05} \times \frac{1.376^2}{2} = 15.53 \,\mathrm{J/kg}$
 $\sum h_f = \sum W_f / g = 1.583 \,\mathrm{m}$
 $\Delta P_f = \sum W_f \cdot \rho = 15525 \,P_a$

24. 如附图所示,水从高位槽流向低位贮槽,管路系统中有两个 90° 标准弯头及一个截止阀,管内径为 100mm,管长为 20m。设摩擦系数 $\lambda=0.03$,试求:

- (1) 截止阀全开时水的流量;
- (2) 将阀门关小至半开,水流量减少的百分数。

解:如图取高位槽中液面为 1-1'面,低位贮槽液面为 2-2'截面,且以 2-2'面为基准面。在 1-1'与 2-2'截面间列柏努利方程:

$$z_1 g + \frac{1}{2} u_1^2 + \frac{p_1}{\rho} = z_2 g + \frac{1}{2} u_2^2 + \frac{p_2}{\rho} + \sum W_f$$

其中: z_1 =4; $u_1 \approx 0$; p_1 =0 (表压);

$$z_2$$
=0; u_2 ≈0; p_2 =0 (表压)

简化得 $z_1 g = \sum W_f$

题 24 附图

各管件的局部阻力系数:

进口突然缩小
$$\zeta = 0.5$$

90°标准弯头 2 个
$$\zeta = 0.75 \times 2 = 1.5$$

截止阀(全开)
$$\zeta = 6.0$$

出口突然扩大
$$\zeta = 1.0$$

$$\Sigma \zeta = 0.5 + 1.5 + 6.0 + 1.0 = 9.0$$

$$\Sigma W_f = \left(\Sigma \zeta + \lambda \frac{l}{d}\right) \frac{u^2}{2} = \left(9.0 + 0.03 \times \frac{20}{0.1}\right) \frac{u^2}{2} = 7.5u^2$$
$$4 \times 9.81 = 7.5u^2$$

$$u = 2.29 \text{ m/s}$$

水流量
$$V_S = \frac{\pi}{4} d^2 u = 0.785 \times 0.1^2 \times 2.29 = 0.018 \,\mathrm{m}^3 / \mathrm{s} = 64.8 \,\mathrm{m}^3 / \mathrm{h}$$

(2) 截止阀关小至半开时:

截止阀半开的局部阻力系数 $\zeta = 9.5$

此时总阻力

$$\Sigma W_f' = \left(\Sigma \zeta' + \lambda \frac{l}{d}\right) \frac{u'^2}{2} = \left(12.5 + 0.03 \times \frac{20}{0.1}\right) \frac{u'^2}{2} = 9.25 u'^2$$

阀门关小后,局部阻力发生变化,但由于高位槽高度 z_1 不变,所以管路总阻力不变,即

$$\Sigma W_f = \Sigma W_f$$

$$7.5u^2 = 9.25u^2$$

$$\frac{V_s}{V_s} = \frac{u}{u} = \sqrt{\frac{7.5}{9.25}} = 0.9$$

即流量减少10%。

25. 如附图所示,用泵将贮槽中 20℃的水以 40m³/h 的流量输送至高位槽。两槽的液位恒定,且相差 20m,输送管内径为 100mm,管子总长为 80m (包括所有局部阻力的当量长度)。试计算泵所需的有效功率。(设管壁的粗糙度为 0.2mm)

解:
$$u = \frac{V_s}{\frac{\pi}{4} d^2} = \frac{\frac{40}{3600}}{0.785 \times 0.1^2} = 1.415 \text{ m/s}$$

20°C水物性: $\rho = 998.2$ kg/m³, $\mu = 1.005$ cP

$$Re = \frac{dup}{\mu} = \frac{0.1 \times 998.2 \times 1.415}{1.005 \times 10^{-3}} = 1.405 \times 10^{-5}$$

根据 $\varepsilon/d = 0.2/100 = 0.002$, 查得 $\lambda = 0.025$

题 25 附图

在贮槽 1 截面到高位槽 2 截面间列柏努力方程:

$$z_1 g + \frac{p_1}{\rho} + \frac{1}{2} u_1^2 + W_e = z_2 g + \frac{p_2}{\rho} + \frac{1}{2} u_2^2 + \sum W_f$$

简化:
$$W_e = z_2 g + \sum W_f$$

$$\overline{\text{III}}: \quad \sum W_f = \lambda \frac{l + \sum l_e}{d} \frac{u^2}{2} = 0.025 \times \frac{80}{0.1} \times \frac{1.415^2}{2} = 20.0 \text{J/kg}$$

$$\therefore We = 20 \times 9.81 + 20.0 = 2162 \text{J/k}$$

$$m_s = V_s \cdot \rho = \frac{40}{3600} \times 998.2 = 11.09 \text{ kg/s}$$

$$Ne = We \cdot m_s = 216.2 \times 11.09 = 2398 \text{ W} \approx 2.40 \text{ kW}$$

26. 有一等径管路如图所示,从 A 至 B 的总能量损失为 ΣW_f 。 若压差计的读数为 R,指示液的密度为 ρ_0 ,管路中流体的密度为 ρ ,试推导 ΣW_f 的计算式。

题 26 附图

解: 在 A-B 截面间列柏努利方程, 有

$$z_A g + \frac{p_A}{\rho} + \frac{1}{2} u_A^2 = z_B g + \frac{p_B}{\rho} + \frac{1}{2} u_B^2 + \sum W_f$$

等径直管, 故上式简化为

$$z_A g + \frac{p_A}{\rho} = z_B g + \frac{p_B}{\rho} + \sum W_f$$

$$\sum W_f = (z_A - z_B)g + \frac{p_A - p_B}{\rho}$$
(1)

对于U形压差计,由静力学方程得

$$p_{A} + z_{A}\rho g = p_{B} + (z_{B} - R)\rho g + R\rho_{0}g$$

$$(p_{A} - p_{B}) + (z_{A} - z_{B})\rho g = R(\rho_{0} - \rho)g$$
(2)

(1)、(2) 联立,得

$$\sum W_f = \frac{R(\rho_0 - \rho)g}{\rho}$$

27. 求常压下 35℃的空气以 12m/s 的速度流经 120m 长的水平通风管的能量损失和压力损失。 管道截面为长方形,长为 300mm,宽为 200mm。(设 $\varepsilon/d=0.0005$)

解: 当量直径:

$$de = \frac{4ab}{2(a+b)} = \frac{2ab}{a+b} = \frac{2 \times 0.3 \times 0.2}{0.3 + 0.2} = 0.24 \,\mathrm{m}$$

35°C空气物性: $\rho = 1.1465 \text{ kg/m}^3$, $\mu = 18.85 \times 10^{-6} \text{ p}_a \cdot \text{s}$

Re =
$$\frac{d_e u \rho}{\mu}$$
 = $\frac{0.24 \times 1.1465 \times 12}{18.85 \times 10^{-6}}$ = 1.752 × 10⁵

由
$$\varepsilon/d = 0.0005$$
 ,查得 $\lambda = 0.019$

$$\therefore \sum W_f = \lambda \frac{l}{d_e} \frac{u^2}{2} = 0.019 \times \frac{120}{0.24} \times \frac{12^2}{2} = 684 \text{ J/k};$$

$$\Delta P_f = \sum W_f \cdot \rho = 684 \times 1.1465 = 784.2 \text{Pa}$$

28. 如附图所示,密度为 800 kg/m³、黏度为 1.5 mPa·s 的液体,由敞口高位槽经 φ 114×4mm 的钢管流入一密闭容器中,其压力为 0.16MPa(表压),两槽的液位恒定。液体在管内的流速为 1.5m/s,管路中闸阀为半开,管壁的相对粗糙度 $\varepsilon/d=0.002$,试计算两槽液面的垂直距离 Δz 。

解: 在高位槽 1 截面到容器 2 截面间列柏努力方程:

$$\begin{split} z_1 g + \frac{p_1}{\rho} + \frac{1}{2} u_1^2 &= z_2 g + \frac{p_2}{\rho} + \frac{1}{2} u_2^2 + \sum W_f \\ \text{简化:} \quad \Delta z g &= \frac{p_2}{\rho} + \sum W_f \\ \\ \text{Re} &= \frac{du \rho}{\mu} = \frac{0.106 \times 800 \times 1.5}{1.5 \times 10^{-3}} = 8.48 \times 10^4 \\ \\ \text{由} \quad \mathcal{E}/d &= 0.002 \text{ , } \\ \underline{\Phi} \beta \lambda = 0.026 \end{split}$$

$$\therefore \sum W_f = (\lambda \frac{l}{d} + \sum \xi) \frac{u^2}{2} = (0.026 \times \frac{30 + 160}{0.106} + 0.5 + 2 \times 0.75 + 4.5 + 1) \times \frac{1.5^2}{2}$$

$$= 60.87 \text{ J/kg}$$

$$\therefore \Delta z = \left(\frac{p_2}{\rho} + \sum W_f\right) / g = \left(\frac{0.16 \times 10^6}{800} + 60.87\right) / 9.81 = 26.6 \text{m}$$

29. 从设备排出的废气在放空前通过一个洗涤塔,以除去其中的有害物质,流程如附图所示。 气体流量为 3600m³/h, 废气的物理性质与 50℃的空气相近,在鼓风机吸入管路上装有 U 形压差计, 指示液为水,其读数为 60mm。输气管与放空管的内径均为 250mm,管长与管件、阀门的当量长度 之和为 55m(不包括进、出塔及管出口阻力),放空口与鼓风机进口管水平面的垂直距离为 15m,已 估计气体通过洗涤塔填料层的压力降为 2.45kPa。管壁的绝对粗糙度取为 0.15mm, 大气压力为 101.3 kPa。试求鼓风机的有效功率。

解: 以吸入管测压处为 1-1'面,洗涤塔管出口内侧为 2-2'面, 列柏努力方程:

定程:
$$z_1g + \frac{p_1}{\rho} + \frac{1}{2}u_1^2 + W_e = z_2g + \frac{p_2}{\rho} + \frac{1}{2}u_2^2 + \Sigma W_f$$
 简化:
$$\frac{P_1}{\rho} + W_e = Z_2g + \Sigma W_f$$
 题 29 附图

其中: $p_1 = \rho_{H_2O} gR = 1000 \times 9.81 \times 0.06 = 588.6 p_a$

$$u = \frac{V_s}{0.785 \times d^2} = \frac{\frac{3600}{3600}}{0.785 \times 0.25^2} = 20.38 \,\mathrm{m/s}$$

50°C空气物性: $\rho = 1.093 \text{ kg/m}^3$, $\mu = 19.6 \times 10^{-6} \text{ p}_a \cdot \text{s}$

$$Re = \frac{du\rho}{\mu} = \frac{0.25 \times 1.093 \times 20.38}{19.6 \times 10^{-6}} = 2.84 \times 10^{5}$$

$$\mathbb{Z} \qquad \frac{\varepsilon}{d} = \frac{0.15}{250} = 0.0006$$

查得 λ = 0.018

$$\therefore We = z_2 g + \sum W_f - p_1 / \rho$$

$$= 15 \times 9.81 + 33755886/1.093 = 298.56J/k$$

:.
$$Ne = m_s \cdot We = V_s \cdot \rho \cdot We = \frac{3600}{3600} \times 1.093 \times 2983 .6 = 3.26 \text{kW}$$

30. 密度为 850kg/m^3 的溶液,在内径为 0.1 m 的管路中流动。当流量为 $4.2 \times 10^{-3} \text{m}^3 \text{/s}$ 时,溶液在

6m长的水平管段上产生 450Pa 的压力损失, 试求该溶液的黏度。

解: 流速

$$u = \frac{V_S}{0.785 d^2} = \frac{4.2 \times 10^{-3}}{0.785 \times 0.1^2} = 0.535 \,\text{m/s}$$

设液体在管内为层流流动,则

$$\Delta p_f = \frac{32\,\mu lu}{d^2}$$

黏度
$$\mu = \frac{\Delta p_f d^2}{32 l u} = \frac{450 \times 0.1^2}{32 \times 6 \times 0.535} = 0.0438 \text{ Pa} \cdot \text{s}$$

校核
$$Re$$
: $Re = \frac{d\rho u}{\mu} = \frac{0.1 \times 850 \times 0.535}{0.0438} = 1038 < 2000$

流动为层流,以上计算正确。该液体的黏度为 0.0438Pa · s。

31. 黏度为 30cP、密度为 $900kg/m^3$ 的某油品自容器 A 流过内径 40mm 的管路进入容器 B 。两 容器均为敞口,液面视为不变。管路中有一阀门,阀前管长 50m, 阀后管长 20m (均包括所有局部阻力的当量长度)。当阀门全关时, 阀前后的压力表读数分别为 88.3kPa 和 44.2kPa。现将阀门打开至 1/4 开度,阀门阻力的当量长度为30m。试求:

(2) 定性分析阀前、阀后压力表读数的变化。

解:(1) 阀关闭时流体静止,由静力学基本方程可得:

$$z_A = \frac{p_1 - p_a}{\rho g} = \frac{88.3 \times 10^3}{900 \times 9.81} = 10 \text{ m}$$

$$z_B = \frac{p_2 - p_a}{\rho g} = \frac{44.2 \times 10^3}{900 \times 9.81} = 5 \text{ m}$$

当阀打开1/4 开度时, 在 A 与 B 截面间列柏努利方程:

$$z_A g + \frac{1}{2} u_A^2 + \frac{p_A}{\rho} = z_B g + \frac{1}{2} u_B^2 + \frac{p_B}{\rho} + \Sigma W_f$$

其中: $p_A = p_B = 0$ (表压), $u_A = u_B = 0$

题 31 附图

由于该油品的黏度较大,可设其流动为层流,则

$$\lambda = \frac{64}{\text{Re}} = \frac{64\,\mu}{d\rho u}$$

代入式 (a), 有
$$(z_A - z_B)g = \frac{64 \,\mu}{d\rho u} \frac{l + \Sigma l_e}{d} \frac{u^2}{2} = \frac{32 \,\mu (l + \Sigma l_e)u}{d^2 \rho}$$
$$\therefore u = \frac{d^2 \rho (z_A - z_B)g}{32 \,\mu (l + \Sigma l_e)} = \frac{0.04^2 \times 900 \times (10 - 5) \times 9.81}{32 \times 30 \times 10^{-3} \times (50 + 30 + 20)} = 0.736 \text{ m/s}$$

校核: Re =
$$\frac{d\rho u}{\mu} = \frac{0.04 \times 900 \times 0.736}{30 \times 10^{-3}} = 883.2 < 2000$$

假设成立。

油品的流量:

$$V_S = \frac{\pi}{4} d^2 u = 0.785 \times 0.04^2 \times 0.736 = 9.244 \times 10^{-4} \,\text{m}^3/\text{s} = 3.328 \,\text{m}^3/\text{h}$$

(2) 阀打开后:

在 A 与 1 截面间列柏努利方程:

$$z_A g + \frac{1}{2} u_A^2 + \frac{p_A}{\rho} = z_1 g + \frac{1}{2} u_1^2 + \frac{p_1}{\rho} + \sum W_{fA-1}$$

简化得
$$z_A g = \frac{1}{2} u_1^2 + \frac{p_1}{\rho} + \sum W_{fA-1}$$

或
$$z_A g = \frac{p_1}{\rho} + (\lambda \frac{l_1}{d} + 1) \frac{u_1^2}{2}$$

$$\frac{p_1}{\rho} = z_A g - (\lambda \frac{l_1}{d} + 1) \frac{u_1^2}{2}$$

显然,阀打开后 u_1 \uparrow , $p_1 \downarrow$, 即阀前压力表读数减小。

在 2 与 B 截面间列柏努利方程:

$$z_2 g + \frac{1}{2} u_2^2 + \frac{p_2}{\rho} = z_B g + \frac{1}{2} u_B^2 + \frac{p_B}{\rho} + \sum W_{f2-B}$$

简化得
$$\frac{p_2}{\rho} = z_B g + (\lambda \frac{l_2}{d} - 1) \frac{u_2^2}{2}$$

因为阀后的当量长度 l_2 中已包括突然扩大损失,也即 $\lambda \frac{l_2}{d} - 1 > 0$,

故阀打开后 $u_2 \uparrow$, $p_2 \uparrow$,即阀后压力表读数增加。

32. 20℃苯由高位槽流入贮槽中,两槽均为敞口,两槽液面恒定且相差 5m。输送管为 φ 38×3mm 的钢管(ε =0. 05mm)总长为 100m(包括所有局部阻力的当量长度),求苯的流量。

解: 在两槽间列柏努力方程,并简化:

$$\Delta zg = \sum W_f$$

$$\mathbb{E}: \quad \Delta z g = \lambda \frac{l + \sum l_e}{d} \frac{u^2}{2}$$

代入数据:
$$5 \times 9.81 = \lambda \times \frac{100}{0.032} \frac{u^2}{2}$$

化简得:
$$\lambda u^2 = 0.03139$$

$$\frac{\varepsilon}{d} = \frac{0.05}{32} = 0.0015$$

查完全湍流区 $\lambda = 0.022$

设
$$\lambda = 0.021$$
, 由(1)式得 $u = 1.22 \text{ m/s}$

由附录查得20℃苯物性:

$$\rho = 879 \text{ kg/m}^3$$
 $\mu = 0.737 \text{ mP}_a \text{ s}$

$$R_e = \frac{d\rho u}{\mu} = \frac{0.032 \times 879 \times 1.22}{0.737 \times 10^{-3}} = 4.66 \times 10^4$$

查图, $\lambda = 0.026$

再设 $\lambda = 0.026$, 由(1)得u = 1.10m/s

$$R_e = \frac{0.032 \times 879 \times 1.10}{0.737 \times 10^{-3}} = 4.20 \times 10^{-4}$$

查得 $\lambda = 0.26$ 假设正确

$$\therefore u = 1.10 \,\mathrm{m} \,/\,\mathrm{s}$$

流量:
$$V_s = \frac{\pi}{4} d^2 u = 0.785 \times 0.032^2 \times 1.1 = 8.84 \times 10^{-4} \text{ m}^3 / \text{s} = 3.183 \text{ m}^3 / \text{h}$$

33. 某输水并联管路,由两个支路组成,其管长与内径分别为: $l_1 = 1200 \,\mathrm{m}$, $d_1 = 0.6 \,\mathrm{m}$; $l_2 = 800 \,\mathrm{m}$, $d_1 = 0.8 \,\mathrm{m}$ 。已知总管中水的流量为 $2.2 \,\mathrm{m}^3/\mathrm{s}$,水温为 $20 \,\mathrm{C}$,试求各支路中水的流量。(设管子的粗糙度为 $0.3 \,\mathrm{mm}$)

解: 设两支路中的流动均进入阻力平方区,由 $\varepsilon/d_1=0.3/600=0.0005$ 及 $\varepsilon/d_2=0.3/800=0.000375$,查得 $\lambda_1=0.017$, $\lambda_2=0.0156$

$$\begin{split} V_{S1}: V_{S2} &= \sqrt{\frac{d_1^5}{\lambda_1(l + \Sigma l_e)_1}} : \sqrt{\frac{d_2^5}{\lambda_2(l + \Sigma l_e)_2}} \\ &= \sqrt{\frac{0.6^5}{0.017 \times 1200}} : \sqrt{\frac{0.8^5}{0.0156 \times 800}} = 0.0617 : 0.162 \\ V_{S2} &= \frac{0.162}{0.0617} V_{S1} = 2.6256 V_{S1} \end{split}$$

$$\nabla$$
 $V_S = V_{S1} + V_{S2} = 3.6256 V_{S1}$

$$\therefore V_{S1} = \frac{V_S}{3.6256} = \frac{2.2}{3.6256} = 0.61 \,\text{m}^3/\text{s}$$

$$V_{S2} = 2.6256 V_{S1} = 2.6256 \times 0.61 = 1.60 \,\mathrm{m}^3/\mathrm{s}$$

校核 Re:

支管 1:
$$u_1 = \frac{V_{S1}}{0.785 d_1^2} = \frac{0.61}{0.785 \times 0.6^2} = 2.16 \,\text{m/s}$$

$$Re_1 = \frac{d_1 \rho u_1}{\mu} = \frac{0.6 \times 1000 \times 2.16}{1 \times 10^{-3}} = 1.296 \times 10^6$$

流动接近阻力平方区, $\lambda_1 = 0.017$ 。

支管 2:
$$u_2 = \frac{V_{S2}}{0.785 d_2^2} = \frac{1.60}{0.785 \times 0.8^2} = 3.18 \,\text{m/s}$$

$$Re_2 = \frac{d_2 \rho u_2}{\mu} = \frac{0.8 \times 1000 \times 3.18}{1 \times 10^{-3}} = 2.54 \times 10^6$$

流动接近阻力平方区, $\lambda_1 = 0.0156$ 。

故以上计算有效。两支管的流量分别为0.61m3/s、1.60m3/s

34. 如附图所示,高位槽中水分别从 *BC* 与 *BD* 两支路排出,其中水面维持恒定。高位槽液面与两支管出口间的距离为 10m。 *AB* 管段的内径为 38mm、长为 28m; *BC* 与 *BD* 支管的内径相同,均为 32mm,长度分别

题 34 附图

- (1) BC 支路阀门全关而 BD 支路阀门全开时的流量:
- (2) BC 支路与 BD 支路阀门均全开时各支路的流量及总流量。
- 解: (1) 在高位槽液面与 BD 管出口外侧列柏努利方程:

$$\frac{p_1}{\rho} + z_1 g + \frac{1}{2} u_1^2 = \frac{p_2}{\rho} + z_2 g + \frac{1}{2} u_2^2 + \sum W_f$$

简化:
$$\Delta zg = \sum W_{fABD}$$

$$\overline{\text{mi}} \quad \sum W_{fABD} = \sum W_{fAB} + \sum W_{fBD} = \lambda \frac{l_{AB}}{d_1} \frac{u_1^2}{2} + \lambda \frac{l_{BD}}{d_2} \frac{u_2^2}{2}$$

∴ 有:
$$10 \times 9.81 = 0.03 \frac{28}{0.038} \frac{u_1^2}{2} + 0.03 \frac{15}{0.032} \frac{u_2^2}{2}$$

化简
$$11.05u_1^2 + 7.03u_2^2 = 98.1$$

又由连续性方程:

$$u_2 = \left(\frac{d_1}{d_2}\right)^2 u_1 = \left(\frac{38}{32}\right)^2 u_1 = 1.41u_1$$

代入上式:

$$11.05u_1^2 + 7.03 \times 1.41^2u_1^2 = 98.1$$

解得: $u_1 = 1.98 \,\mathrm{m/s}$

流量:
$$V_s = \frac{\pi}{4} d_1^2 u_1 = 0.785 \times 0.038^2 \times 1.98 = 2.244 \times 10^{-3} \text{ m}^3 / \text{s} = 8.08 \text{ m}^3 / \text{h}$$

- (2) 当 BD, BC 支路阀均全开时:
 - :: C,D 出口状态完全相同,分支管路形如并联管路,

$$\therefore \sum W_{fBc} = \sum W_{fBD}$$

$$\lambda \frac{l_{BC}}{d_3} \frac{u_3^2}{2} = \lambda \frac{l_{BD}}{d_2} \frac{u_2^2}{2}$$

$$\therefore 12u_3^2 = 15u_3^2$$

$$\therefore u_3 = 1.118 u_2 \tag{1}$$

$$\nabla V_{s_1} = V_{s_2} + V_{s_3}$$

$$\frac{\pi}{4} d_1^2 u_1 = \frac{\pi}{4} d_2^2 u_2 + \frac{\pi}{4} d_3^2 u_3$$

$$38^2 u_1 = 32^2 u_2 + 32^2 u_3 = 32^2 \times 2.118 u_2$$

$$\therefore u_1 = 1.502 u_2 \tag{2}$$

在高位槽液面与 BD 出口列柏努利方程:

$$\Delta Z \cdot g = \sum W_f = \sum W_{fAB} + \sum W_{fBD}$$

$$10 \times 9.81 = 0.03 \frac{28}{0.038} \frac{u_1^2}{2} + 0.03 \frac{15}{0.032} \frac{u_2^2}{2}$$

$$11.05 u_1^2 + 7.03 u_2^2 = 98.1 \tag{3}$$

将(2)代入(3)式中:

$$11.05 \times 1.502^{2} u_{2}^{2} + 7.03 u_{2}^{2} = 98.1$$

解得: $u_2 = 1.752 \text{ m/s}$ $u_1 = 2.63 \text{ m/s}$ $u_3 = 1.96 \text{ m/s}$

流量:
$$V_{s1} = \frac{\pi}{4} d_1^2 u_1 = 0.785 \times 0.038^2 \times 2.63 = 2.98 \times 10^{-3} \text{ m}^3 / \text{s} = 10.73 \text{ m}^3 / \text{h}$$

$$V_{s2} = \frac{\pi}{4} d_2^2 u_2 = 0.785 \times 0.032^2 \times 1.752 = 1.408 \times 10^{-3} \text{ m}^3 / \text{s} = 5.07 \text{ m}^3 / \text{h}$$

$$V_{s3} = \frac{\pi}{4} d_3^2 u_3 = 0.785 \times 0.032^2 \times 1.96 = 1.576 \times 10^{-3} \text{ m}^3 / \text{s} = 5.6 \text{ m}^3 / \text{h}$$

35. 在内径为 80mm 的管道上安装一标准孔板流量计,孔径为 40mm, U 形压差计的读数为 350mmHg。管内液体的密度为 1050kg/m³,黏度为 0.5cP,试计算液体的体积流量。

$$u = \frac{V_s}{0.785 \, d_1^2} = \frac{7.11 \times 10^{-3}}{0.785 \times 0.08^2} = 1.415 \, \text{m/s}$$

$$R_e = \frac{d_1 u \rho}{\mu} = \frac{0.08 \times 1.415 \times 1050}{0.5 \times 10^{-3}} = 2.38 \times 10^{-5}$$

$$\overline{\mathbb{M}} R_{ec} = 7 \times 10^4 R_e > R_{ec}$$

:: 假设正确,以上计算有效。

36. 用离心泵将 20℃水从水池送至敞口高位槽中,流程如附图所示,两槽液面差为 12m。输送管为φ 57×3.5mm 的钢管,吸入管路总长为 20m,压出管路总长为 155m(均包括所有局部阻力的当量长度)。用孔板流量计测量水流量,孔径为 20mm,流量系数为 0.61,U 形压差计的读数为 600mmHg。摩擦系数可取为 0.02。试求:

题 36 附图

- (1) 水流量, m³/h:
- (2) 每 kg 水经过泵所获得的机械能;
- (3) 泵入口处真空表的读数。

解: (1)
$$V_s = C_0 A_0 \sqrt{\frac{2Rg(\rho_0 - \rho)}{\rho}}$$

$$= 0.61 \times 0.785 \times 0.02^2 \sqrt{\frac{2 \times 0.6 \times 9.81 \times (13600 - 1000)}{1000}}$$

$$= 2.33 \times 10^{-3} \text{ m}^3 /_{\text{s}} = 8.39 \text{ m}^3 /_{\text{h}}$$

(2) 以水池液面为1-1′面, 高位槽液面为2-2′面, 在1-1′~2-2′面间列柏努利方程:

$$\frac{p_1}{\rho} + \frac{1}{2}u_1^2 + z_1g + W_e = \frac{p_2}{\rho} + \frac{1}{2}u_2^2 + z_2g + \sum W_f$$

简化:
$$W_e = \Delta zg + \sum W_f$$

$$\overrightarrow{m} \quad \sum W_f = \lambda \frac{l + \sum l_e}{d} \frac{u^2}{2}$$

其中:
$$u = \frac{V_s}{0.785 d^2} = \frac{2.33 \times 10^{-3}}{0.785 \times 0.05^2} = 1.19 \text{ m/s}$$

$$\therefore \sum W_f = 0.02 \times \frac{175}{0.05} \times \frac{1.19^2}{2} = 49.56 \text{ J/kg}$$

$$\therefore W_e = 12 \times 9.81 + 49.56 = 167.28 \text{ J/kg}$$

(3) 在水池液面1-1′面与泵入口真空表处3-3′面间列柏努利方程:

$$\frac{p_1}{\rho} + \frac{1}{2}u_1^2 + z_1g = \frac{p_3}{\rho} + \frac{1}{2}u_3^2 + z_3g + \sum W_{f1-3}$$

简化为 $0 = \frac{p_3}{\rho} + \frac{1}{2}u_3^2 + Z_3g + \sum W_{f1-3}$

其中
$$\sum W_{f1-3} = \lambda \frac{(l + \sum l_e)_{\text{吸入}}}{d} \frac{u_3^2}{2} = 0.02 \times \frac{20}{0.05} \times \frac{1.19^2}{2} = 5.66 \text{ J/kg}$$

$$\frac{p_3}{\rho} = -\left(\frac{1}{2}u_3^2 + Z_3g + \sum W_{f1-3}\right) = -\left(\frac{1.19^2}{2} + 1.5 \times 9.81 + 5.66\right) = -21.1$$

$$p_3 = -21.1\rho = -21.1 \times 10^3 \text{ Pa} = -21.1 \text{kPa}$$

即泵入口处真空表的读数为 21.1kPa。

37. 水在某管路中流动。管线上装有一只孔板流量计,其流量系数为 0.61, U 形压差计读数为 200mm。若用一只喉径相同的文丘里流量计替代孔板流量计,其流量系数为 0.98,且 U 形压差计中的指示液相同。问此时文丘里流量计的 U 形压差计读数为若干?

解: 由流量公式:

$$V_{S} = C_{0} A_{0} \sqrt{\frac{2R_{1}g(\rho_{0} - \rho)}{\rho}}$$
 $V_{S} = C_{V} A_{0} \sqrt{\frac{2R_{2}g(\rho_{0} - \rho)}{\rho}}$

流量相同时,

$$\frac{R_2}{R_1} = \left(\frac{C_0}{C_V}\right)^2 = \left(\frac{0.61}{0.98}\right)^2 = 0.387$$

故文丘里流量计的读数

$$R_2 = 0.387 R_1 = 0.387 \times 200 = 77.4 \text{mm}$$

38. 某气体转子流量计的量程范围为 4~60m³/h。现用来测量压力为 60kPa (表压)、温度为 50℃

的氨气,转子流量计的读数应如何校正?此时流量量程的范围又为多少?(设流量系数 C_R 为常数,当地大气压为 $101.3~\mathrm{kPa}$)

解:操作条件下氨气的密度:

$$\rho_2 = \frac{pM}{RT} = \frac{(101.3 + 60) \times 10^3 \times 0.017}{8.31 \times (273 + 50)} = 1.0 \ 2 \ \text{kg/m}^3$$

$$\therefore \frac{V_{S2}}{V_{S1}} \approx \sqrt{\frac{\rho_1}{\rho_2}} = \sqrt{\frac{1.2}{1.022}} = 1.084$$

即同一刻度下, 氨气的流量应是空气流量的 1.084 倍。

此时转子流量计的流量范围为 $4\times1.084\sim60\times1.084\text{m}^3/\text{h}$,即 $4.34\sim65.0\text{ m}^3/\text{h}$ 。

39. 在一定转速下测定某离心泵的性能,吸入管与压出管的内径分别为 70mm 和 50mm。当流量为 30 m³/h 时,泵入口处真空表与出口处压力表的读数分别为 40kPa 和 215kPa,两测压口间的垂直距离为 0.4m,轴功率为 3.45kW。试计算泵的压头与效率。

解:
$$u_1 = \frac{V_s}{\frac{\pi}{4} d_1^2} = \frac{\frac{30}{3600}}{0.785 \times 0.07^2} = 2.166 \text{ m/s}$$

$$u_2 = \frac{\frac{30}{3600}}{0.785 \times 0.05^2} = 4.24 \text{ g/s}$$

在泵进出口处列柏努力方程,忽略能量损失;

$$\frac{p_1}{\rho g} + \frac{1}{2g}u_1^2 + Z_1 + H_e = \frac{p_2}{\rho g} + \frac{1}{2g}u_2^2 + Z_2$$

$$H_e = \frac{p_2 - p_1}{\rho g} + \frac{1}{2g}(u_2^2 - u_1^2) + \Delta Z$$

$$= \frac{(215 + 40) \times 10^3}{10^3 \times 9.81} + \frac{1}{2 \times 9.81}(4.24 \, \text{Å} - 2.11 \, \text{Å}) + 0.4$$

$$= 27.07 \text{m}$$

$$N_e = QH \rho g = \frac{30}{3600} \times 10^3 \times 9.81 \times 27.07 = 2.213 \, \text{kW}$$

$$\therefore \eta = \frac{N_e}{N} \times 100 \, \% = \frac{2.213}{3.45} \times 100 \, \% = 64.1 \%$$

40. 在一化工生产车间,要求用离心泵将冷却水从贮水池经换热器送到一敞口高位槽中。已知高位槽中液面比贮水池中液面高出 10m,管路总长为 400m(包括所有局部阻力的当量长度)。管内径为 75mm,换热器的压头损失为 $32\frac{u^2}{2g}$,摩擦系数可取为 0.03。此离心泵在转速为 2900rpm 时的性能如下表所示:

$Q/(m^3/s)$	0	0.001	0.002	0.003	0.004	0.005	0.006	0.007	0.008
H/m	26	25.5	24.5	23	21	18.5	15.5	12	8.5

试求: (1) 管路特性方程;

(2) 泵工作点的流量与压头。

解:(1)管路特性曲线方程:

$$\begin{split} H_e &= \frac{\Delta P}{\rho g} + \Delta Z + \frac{1}{2g} \Delta u^2 + \sum h_f = \Delta Z + \sum h_f \\ &= \Delta Z + \lambda \frac{l + \sum l_e}{d} \frac{u^2}{2g} + \sum h_f = \Delta Z + (\lambda \frac{l + \sum l_e}{d} + 32) \frac{u^2}{2g} \\ H_e &= 10 + (0.03 \times \frac{400}{0.075} + 32) \frac{1}{2 \times 9.81} \times (\frac{Q}{0.785 \times 0.075})^2 \\ &= 10 + 5.019 \times 10^5 Q^2 \end{split}$$

(2)在坐标纸中绘出泵的特性曲线及管路特性曲线的工作点:

$$Q = 0.0045 \text{ m}^3 / M = 20.17 \text{ m}$$

- 41. 用离心泵将水从贮槽输送至高位槽中,两槽 均为敞口,且液面恒定。现改为输送密度为 1200 kg/m³ 的某水溶液,其他物性与水相近。若管路状况不变,试说明:
 - (1) 输送量有无变化?
 - (2) 压头有无变化?
 - (3) 泵的轴功率有无变化?

(4) 泵出口处压力有无变化?

解: ρ 变化时, 泵特性曲线不变。

管路特性曲线
$$H_e = \Delta z + \frac{\Delta p}{\rho g} + BQ^2 = \Delta z + BQ^2$$
 不变

- (1) 输送量不变; (2) 压头不变;
- (3) 轴功率:

$$N = \frac{N_e}{\eta} = \frac{QH\rho g}{\eta}$$
 增加

(4) 在贮槽液面 1-1′和泵出口 2-2′间列柏努力方程:

$$\frac{P_1}{\rho g} + \frac{1}{2g}u_1^2 + Z_1 + H_e = \frac{P_2}{\rho g} + \frac{1}{2g}u_2^2 + Z_2 + \sum h_f$$

简化:
$$P_2 = \rho g \left[H_e - \frac{1}{2g} u_2^2 - Z_2 - \sum h_f \right]$$

$$::$$
工作点 Q, H_e 不变, $::$ u $\sum h_f$ 不变

即P, 随 ρ 的增加而增加。

- 42. 用离心泵将水从敞口贮槽送至密闭高位槽。高位槽中的气相表压为 98.1kPa,两槽液位相差 10m,且维持恒定。已知该泵的特性方程为 $H=40-7.2\times10^4Q^2$ (单位:H—m,Q—m³/s),当管 路中阀门全开时,输水量为 0.01 m³/s,且流动已进入阻力平方区。试求:
 - (1) 管路特性方程:
- (2) 若阀门开度及管路其他条件等均不变,而改为输送密度为 1200 kg/m³的碱液,求碱液的输送量。
 - 解:(1)设输送水时管路特性方程为

$$H_e = A + BQ^2$$

其中,
$$A = \Delta z + \frac{\Delta p}{\rho g} = 10 + \frac{98.1 \times 10^3}{1000 \times 9.81} = 20$$

当输水量为 0.01 m³/s 时,由泵特性方程与管路特性方程联立:

$$40 - 7.2 \times 10^4 \times 0.01^2 = 20 + B \times 0.01^2$$

得
$$B = 1.28 \times 10^{5}$$

即此时管路特性方程为 $H_e = 20 + 1.28 \times 10^5 Q^2$

(2) 当改送密度为 1200 kg/m³的碱液时, 泵特性方程不变, 此时管路特性方程

$$A' = \Delta z + \frac{\Delta p}{\rho g} = 10 + \frac{98.1 \times 10^3}{1200 \times 9.81} = 18.3$$

流动进入阻力平方区,且阀门开度不变,则 B 不变。因此管路特性方程变为

$$H_e = 18.3 + 1.28 \times 10^5 Q^2$$

将该方程与泵特性方程联立,

$$40 - 7.2 \times 10^4 Q^2 = 18.3 + 1.28 \times 10^5 Q^2$$

可得碱液输送量 $Q' = 0.0104 \text{ m}^3/\text{s}$

- 43. 用离心泵向设备送水。已知泵特性方程为 $H=40-0.01Q^2$,管路特性方程为 $H_a=25+0.03Q^2$,两式中Q的单位均为 m^3/h ,H的单位为 m。试求:
 - (1) 泵的输送量;
 - (2) 若有两台相同的泵串联操作,则泵的输送量为多少?若并联操作,输送量又为多少?

解: (1)
$$\begin{cases} H = 40 - 0.01Q^{2} \\ H_{e} = 25 + 0.03Q^{2} \end{cases}$$

联立:
$$40 - 0.01Q^2 = 25 + 0.03Q^2$$

解得:
$$Q = 19.36 \,\mathrm{m}^3 / \mathrm{h}$$

(2) 两泵串联后:

泵的特性:
$$H = 2(40 - 0.01Q^2)$$

与管路特性联立:

$$25 + 0.03Q^2 = 2 \times (40 - 0.01Q^2)$$

解得:
$$Q = 33.17 \, \text{m}^3 / \text{h}$$

(3) 两泵并联后:

泵的特性:
$$H = 40 - 0.01(\frac{Q}{2})^2$$

与管路特性联立:

$$25 + 0.03Q^2 = 40 - 0.01(\frac{Q}{2})^2$$

解得: $Q = 21.48 \,\mathrm{m}^3/\mathrm{h}$

44. 用型号为 IS65-50-125 的离心泵将敞口贮槽中 80℃的水送出,吸入管路的压头损失为 4m, 当地大气压为 98kPa。试确定此泵的安装高度。

解: 查附录:
$$80^{\circ}$$
C水, $P_v = 0.4736 \times 10^{5}$ Pa, $\rho = 971.8$ kg/m³

在附录中查得 IS65-50-125 泵的必需气蚀余量 (NPSH) r=2.0m

泵允许安装高度:

$$H_{gft} = \frac{P_0 - P_v}{\rho g} - (NPSH)_r - \sum h_{flllhh}$$
$$= \frac{98 \times 10^3 - 0.4736 \times 10^5}{971.8 \times 9.81} - 2.0 - 4$$
$$= -0.69 \text{ m}$$

为安全起见,再降低0.5m,即Hg = -0.69-0.5=-1.2m

即泵需要安装在水槽液面以下1.2m或更低位置。

- 45. 用离心泵从真空度为 360mmHg 的容器中输送液体,所用泵的必需汽蚀余量为 3m。该液体在输送温度下的饱和蒸汽压为 200mmHg, 密度为 900kg/m³, 吸入管路的压头损失为 0.5m, 试确定泵的安装位置。若将容器改为敞口,该泵又应如何安装? (当地大气压为 100kPa)
 - 解: (1) 当容器内真空度为 360mmHg 时,

$$H_{g\text{fit}} = \frac{p_0 - p_v}{\rho g} - (NPSH)_r - \sum h_{f\text{MDA}}$$

$$= \frac{(100 \times 10^3 - \frac{360}{760} \times 101325) - \frac{200}{760} \times 101325}{900 \times 9.81} - 3 - 0.5 = -0.63 \,\text{m}$$

故泵宜安装在液面以下(0.63+0.5)=1.13m 更低的位置。

(2) 当容器敞口时,

$$H_{g\acute{\pi}} = \frac{p_0 - p_v}{\rho g} - (NPSH)_r - \sum h_{f\%\lambda}$$
$$= \frac{100 \times 10^3 - \frac{200}{760} \times 101325}{900 \times 9.81} - 3 - 0.5 = 4.8 \text{m}$$

故泵宜安装在液面以上低于(4.8-0.5)=4.3m的位置。

46. 如附图所示,用离心泵将某减压精馏塔塔底的釜液送至贮槽,泵位于贮槽液面以下 2m 处。 已知塔内液面上方的真空度为 500mmHg, 且液体处于沸腾状态。吸入 管路全部压头损失为 0.8m, 釜液的密度为 890kg/m3, 所用泵的必需汽 蚀余量为 2.0m, 问此泵能否正常操作?

解: 因塔内液体处于沸腾状态,则液面上方的压力即为溶液的 饱和蒸汽压,即 $p_0 = p_{\nu}$

题 46 附图

该泵的允许安装高度:

$$Hg_{fi} = \frac{p_0 - p_V}{\rho g} - (NPSH)_r - \sum h_{fill h}$$

= -2.0 - 0.8 = -2.8 m

而实际安装高度 $Hg_{\mathfrak{L}} = -2.0 \,\mathrm{m} > Hg_{\mathfrak{L}}$, 说明此泵安装不当,泵不能正常操作,会发生气蚀 现象。

47. 用内径为 120mm 的钢管将河水送至一蓄水池中,要求输送量为 60~100m³/h。水由池底部 进入,池中水面高出河面 25m。管路的总长度为 80m,其中吸入管路为 24m(均包括所有局部阻力 的当量长度),设摩擦系数 λ 为 0.028。, 试选用一台合适的泵, 并计算安装高度。设水温为 20℃, 大气压力为 101.3kPa。

解: 以大流量 Q=100m³/h 计。

在河水与蓄水池面间列柏努力方程,并简化:

$$H_e = \Delta Z + \sum h_f = \Delta Z + \lambda \frac{l + \sum l_e}{d} \frac{u^2}{2g}$$

$$u = \frac{Q}{0.785 d^2} = \frac{100/3600}{0.785 \times 0.12^2} = 2.46 \text{ m/s}$$

$$\therefore H_e = 25 + 0.028 \times \frac{80}{0.12} \times \frac{2.46^2}{2 \times 9.81} = 30.76 \,\mathrm{m}$$

由 $Q = 100 \text{ m}^3 / \text{h}$, $H_e = 30.76 \text{ m}$ 选泵 IS100-80-160,其性能为:

$$Q = 100 \text{ m}^3 / \text{h}$$
, $H = 32 \text{ m}$, $\eta = 78 \%$, $N = 11.2 \text{kW}$, $(NPSH)_r = 4.0 \text{ m}$

确定安装高度:

$$20^{\circ} \text{ C /K}, \quad \rho = 998.2 \frac{\text{kg}}{\text{m}^3}$$
 $P_{\nu} = 2.335 \text{ kPa}$

$$Hg_{fi} = \frac{p_0 - p_v}{\rho g} - (NPSH)_r - \sum h_{fightharpoons}$$

$$\Sigma h_{\text{fW}} = \lambda \frac{(l + \sum l_e)_{\text{W}}}{d} \frac{u^2}{2g} = 0.028 \times \frac{24}{0.12} \times \frac{2.46^2}{2 \times 9.81} = 1.73 \,\text{m}$$

$$\therefore Hg_{\text{fit}} = \frac{(101.3 - 2.335) \times 10^{3}}{998.2 \times 9.81} - 4.0 - 1.73 = 4.4 \text{m}$$

减去安全余量0.5m, 实为3.9m以下。

即泵可安装在河水面上不超过3.9m的地方。

48. 常压贮槽内装有某石油产品,在贮存条件下其密度为 760 kg/m³。现将该油品送入反应釜中,输送管路为φ 57×2mm,由液面到设备入口的升扬高度为 5m,流量为 15m³/h。釜内压力为 148kPa (表压),管路的压头损失为 5m (不包括出口阻力)。试选择一台合适的油泵。

解:
$$u = \frac{V_s}{\frac{\pi}{4}d_2} = \frac{\frac{15}{3600}}{0.785 \times 0.053^2} = 1.89 \,\text{m/s}$$

在水槽液面1-1′与输送管内侧2-2′面间列柏努力方程,简化有:

$$H_e = \Delta z + \frac{\Delta p}{\rho g} + \frac{1}{2g} u_2^2 + \sum h_f$$

$$H_e = 5 + \frac{148 \times 10^3}{760 \times 9.81} + \frac{1}{2 \times 9.81} \times 1.89^2 + 5 = 30.03 \,\mathrm{m}$$

由 $Q=15 \, {\rm m}^3 / {\rm h}$ $H_e=30.03 \, {\rm m}$, 查油泵样本,选泵 $60 \, {\rm Y}\text{-}60 \, {\rm B}$ 其性能为:

流量
$$19.8 \, \text{m}^3 / \text{h}$$
 压头 $38 \, \text{m}$ 轴功率 $3.75 \, \text{kW}$

效率 55% 气蚀余量 2.6m

49. 现从一气柜向某设备输送密度为 1.36kg/m³ 的气体, 气柜内的压力为 650Pa (表压), 设备

内的压力为 102.1kPa (绝压)。通风机输出管路的流速为 12.5m/s,管路中的压力损失为 500Pa。试计算管路中所需的全风压。(设大气压力为 101.3kPa)

解:
$$p_T = (p_2 - p_1) + \frac{\rho}{2}u_2^2 + \Delta p_f$$

= $[(102.1 - (101.3 + 0.65))] \times 10^3 + \frac{1.36}{2} \times 12.5^2 + 500$

第二章 非均相物系分离

1、试计算直径为 30µ m 的球形石英颗粒 (其密度为 2650kg/ m³), 在 20℃水中和 20℃常压空气 中的自由沉降速度。

解: 已知 d=30μ m、ρ =2650kg/m³

(1)
$$20^{\circ}\text{C} \text{ J/k}$$
 $\mu = 1.01 \times 10^{-3} \text{Pa·s}$ $\rho = 998 \text{kg/m}^3$

设沉降在滞流区,根据式(2-15)

$$u_t = \frac{d^2(\rho_s - \rho)g}{18\mu} = \frac{(30 \times 10^{-6})^2 \times (2650 - 998) \times 9.81}{18 \times 1.01 \times 10^{-3}} = 8.02 \times 10^{-4} \,\text{m/s}$$

校核流型

$$Re_t = \frac{du_t \rho}{\mu} = \frac{30 \times 10^{-6} \times 8.02 \times 10^{-4} \times 998}{1.01 \times 10^{-3}} = 2.38 \times 10^{-2} \in (10^{-4} \sim 2)$$

假设成立, $u_{r}=8.02\times10^{-4}$ m/s 为所求

$$\rho = 1.21 \text{kg/m}^3$$

设沉降在滞流区

$$u_{t} = \frac{d^{2}(\rho_{s} - \rho)g}{18\mu} = \frac{(30 \times 10^{-6})^{2} \times (2650 - 1.21) \times 9.81}{18 \times 1.81 \times 10^{-5}} = 7.18 \times 10^{-2} \text{ m/s}$$

校核流型:

$$Re_t = \frac{du_t \rho}{\mu} = \frac{30 \times 10^{-6} \times 7.18 \times 10^{-2} \times 1.21}{1.81 \times 10^{-5}} = 0.144 \in (10^{-4} \sim 2)$$

假设成立, $u=7.18\times10^{-2}$ m/s 为所求。

2、密度为 2150kg/ m³ 的烟灰球形颗粒在 20℃空气中在滞流沉降的最大颗粒直径是多少?

解: 吕知 o = 2150kg/m³

当 $Re_t = \frac{du_t \rho}{u} = 2$ 时是颗粒在空气中滞流沉降的最大粒径,根据式(2-15)并整理

$$\frac{d^3(\rho_s - \rho)g\rho}{18\mu^2} = \frac{du_t\rho}{\mu} = 2$$
 所以

$$d = \sqrt[3]{\frac{36\,\mu^2}{(\rho_s - \rho)g\rho}} = \sqrt[3]{\frac{36 \times (1.81 \times 10^{-5})^2}{(2150 - 1.21) \times 9.81 \times 1.21}} = 7.73 \times 10^{-5} \,\mathrm{m} = 77.3 \,\mu\mathrm{m}$$

3、直径为 10μ m 的石英颗粒随 20℃的水作旋转运动,在旋转半径 R=0.05m 处的切向速度为 12m/s,,求该处的离心沉降速度和离心分离因数。

解: 已知 $d=10\mu$ m、 R=0.05m 、 $u_i=12$ m/s

设沉降在滞流区,根据式 (2-15) g 改为 u/R 即

$$u_r = \frac{d^2(\rho_s - \rho)}{18\mu} \cdot \frac{u_i^2}{R} = \frac{10^{-10} \times (2650 - 998)}{18 \times 1.01 \times 10^{-3}} \times \frac{12^2}{0.05} = 0.0262 \text{ m/s} = 2.62 \text{ cm/s}$$

校核流型

$$Re_t = \frac{du_r \rho}{\mu} = \frac{10^{-5} \times 0.0262 \times 998}{1.01 \times 10^{-3}} = 0.259 \in (10^{-4} \sim 2)$$

 u_r =0.0262m/s 为所求。

所以
$$K_c = \frac{u_i^2}{Rg} = \frac{12^2}{0.05 \times 9.81} = 294$$

- 4、用一降尘室处理含尘气体,假设尘粒作滞流沉降。下列情况下,降尘室的最大生产能力如何 变化?
 - (1) 要完全分离的最小粒径由 60µ m 降至 30µ m;
 - (2) 空气温度由 10℃升至 200℃;
 - (3) 增加水平隔板数目,使沉降面积由 10m^2 增至 30 m^2 。

解: 根据
$$u_{tc} = \frac{d_c^2(\rho_s - \rho)g}{18\mu}$$
 及 $V_S = blu_{tc}$

(1)
$$\frac{V_s'}{V_c} = \frac{u_{ic}'}{u_{ic}} = (\frac{d_c'}{d_c})^2 = (\frac{30}{60})^2 = \frac{1}{4}$$

(2) 查 10℃空气 μ=1.76×10⁻⁵Pa·s

$$\frac{V_s'}{V_s} = \frac{u_{tc}'}{u_{tc}} = \frac{\mu}{\mu'} = \frac{1.76 \times 10^{-5}}{2.60 \times 10^{-5}} = 0.677$$

(3)
$$\frac{V_s'}{V_s} = \frac{(bl)'}{(bl)} = \frac{30}{10} = 3.0$$

5、已知含尘气体中尘粒的密度为 2300kg/ m^3 。气体流量为 1000 m^3 /h、黏度为 3.6×10^{-5} Pa.s、密度为 0.674 kg/ m^3 ,若用如图 2-6 所示的标准旋风分离器进行除尘,分离器圆筒直径为 400mm,试估算其临界粒径及气体压强降。

解: 己知
$$\rho$$
 s=2300kg/m³ 、 V_h =1000m³/h 、 μ =3.6×10-5Pa.s 、 ρ =0.674 kg/m³、 D =400mm=0.4m,

根据标准旋风分离器 h=D/2 、B=D/4

故该分离器进口截面积 $A=hB=D^2/8$

所以
$$u_i = \frac{V_s}{A} = \frac{1000 \times 8}{3600 \times 0.4^2} = 13.89 \,\text{m/s}$$

根据式(2-26) 取标准旋风分离器 N=5 则

$$d_c = \sqrt{\frac{9\,\mu B}{\pi N \rho_s u_i}} = \sqrt{\frac{9 \times 3.6 \times 10^{-5} \times 0.4 / 4}{3.14 \times 5 \times 2300 \times 13.89}} = 0.8 \times 10^{-5} \,\mathrm{m} = 8 \,\mu\mathrm{m}$$

根据式(2-30) 取 ξ =8.0

$$\Delta p_f = \xi \frac{\rho u_i}{2} = 8.0 \times \frac{0.674 \times 13.89^2}{2} = 520 \,\text{Pa}$$

6、有一过滤面积为 0.093 m² 的小型板框压滤机,恒压过滤含有碳酸钙颗粒的水悬浮液。过滤时间为 50 秒时,共得到 2.27×10⁻³ m³ 的滤液;过滤时间为 100 秒时。共得到 3.35×10⁻³ m³ 的滤液。试求当过滤时间为 200 秒时,可得到多少滤液?

解: 已知 $A=0.093\text{m}^2$ 、 $t_1=50\text{s}$ 、 $V_1=2.27\times10^{-3}\text{m}^3$ 、 $t_2=100\text{s}$ 、 $V_2=3.35\times10^{-3}\text{m}^3$ 、 $t_3=200\text{s}$

曲于
$$q_1 = \frac{V_1}{A} = \frac{2.27 \times 10^{-3}}{0.093} = 24.41 \times 10^{-3}$$

$$q_2 = \frac{V_2}{A} = \frac{3.35 \times 10^{-3}}{0.093} = 36.02 \times 10^{-3}$$

根据式 (2-38a)

$$\begin{cases} q_1^2 + 2q_e q_1 = Kt_1 & \Longrightarrow \\ q_2^2 + 2q_e q_2 = Kt_2 \end{cases} \begin{cases} (24.41 \times 10^{-3})^2 + 2 \times 24.41 \times 10^{-3} q_e = 50 K \\ (36.02 \times 10^{-3})^2 + 2 \times 36.02 \times 10^{-3} q_e = 100 K \end{cases}$$

联立解之:
$$q_e$$
=4.14×10⁻³ K =1.596×10⁻⁵

因此
$$q_3^2 + 2 \times 4.14 \times 10^{-3} q_3 = 200 \times 1.596 \times 10^{-5}$$
 $q_3 = 0.0525$ 所以 $V_3 = q_3 A = 0.0525 \times 0.093 = 4.88 \times 10^{-3} \text{m}^3$

7、某生产过程每年须生产滤液 3800 m^3 ,年工作时间 5000h,采用间歇式过滤机,在恒压下每一操作周期为 2.5h,其中过滤时间为 1.5h,将悬浮液在同样操作条件下测得过滤常数为 $K=4\times10^{-6}\mathrm{m}^2/\mathrm{s}$; $q_e=2.5\times10^{-2}\mathrm{m}^3/\mathrm{m}^2$ 。滤饼不洗涤,试求:

- (1) 所需过滤面积,
- (2) 今有过滤面积 8m²的过滤机,需要几台?

解: 已知生产能力为 3800m^3 滤液/年,年工作日 5000h, T=2.5h , t=1.5h ,

$$K=4\times10^{-6} {\rm m}^2/{\rm s}$$
 , $q_{\rm e}=2.5\times10^{-2} {\rm m}^3/{\rm m}^2$,

(1) 因为 Q=3800/5000=0.76m³滤液/h

由式 (2-42)

$$0.76 = \frac{3600 \, V}{T} = \frac{V}{2.5}$$

由式 (2-38a)

$$\left(\frac{V}{A}\right)^{2} + 2q_{e}\left(\frac{V}{A}\right) = Kt$$

$$\left(\frac{1.9}{A}\right)^{2} + 2 \times 2.5 \times 10^{-2} \left(\frac{1.9}{A}\right) = 4 \times 10^{-6} \times 1.5 \times 3600$$

$$2.16 \times 10^{-2} A^{2} = 3.61 + 9.5 \times 10^{-2} A$$

解之
$$A=14.7 \text{ m}^2 \approx 15 \text{ m}^2$$

- (2) 因为过滤机为 $8 \text{ m}^2/台$, 所以需 2 台过滤机。
- 8、BMS50/810-25 型板框压滤机,滤框尺寸为 810×810×25mm,共 36 个框,现用来恒压过滤某悬浮液。操作条件下的过滤常数为 $K=2.72\times10^{-5}$ m²/s; $q_e=3.45\times10^{-3}$ m³/m²。每滤出 1 m³ 滤液的同时,生成 0.148 m³ 的滤渣。求滤框充满滤渣所需时间。若洗涤时间为过滤时间的 2 倍,辅助时间 15min,其生产能力为多少?

解:滤框总容积
$$V_0$$
=0.81²×0.025×36=0.590 m³
过滤面积 A =0.81²×2×36=47.2 m²

$$q = \frac{V}{A} = \frac{V_0}{vA} = \frac{0.590}{0.148 \times 47.2} = 0.0845 \text{ m}^3/\text{m}^2$$

$$t = \frac{q^2 + 2q_e q}{K} = \frac{0.0845^2 + 2 \times 3.45 \times 10^{-3} \times 0.0845}{2.72 \times 10^{-5}} = 283 \text{ s}$$

生产总周期为 T=283+2×283+15×60=1749s

由
$$\frac{V}{A} = \frac{V_0}{vA}$$
 得一个周期滤液量为 $V = \frac{V_0}{v} = \frac{0.590}{0.148} = 3.99 \,\text{m}^3$

所以生产能力为
$$Q = \frac{3600 V}{T} = \frac{3600 \times 3.99}{1749} = 8.21 \text{m}^3$$
滤液 / h

9、有一直径为 1.75m,长 0.9m 的转筒真空过滤机。操作条件下浸没度为 126°,转速为 1r/min,滤布阻力可以忽略,过滤常数 K 为 5.15×10^{-6} m²/s,求其生产能力。

解: 因为过滤面积 $A=\pi DL=3.14\times1.75\times0.9=4.95$ m²

由式 (2-45a)

$$Q = 60 A \sqrt{60 n \psi K} = 60 \times 4.95 \times \sqrt{60 \times 1 \times 0.35 \times 5.15 \times 10^{-6}}$$

= 3.09 m³滤液 / h

10、某转筒真空过滤机每分钟转 2 转,每小时可得滤液 4 m^3 。若过滤介质阻力可以忽略,每小时获得 6 m^3 滤液时转鼓转速应为多少?此时转鼓表面滤饼的厚度为原来的多少倍?操作中所用的真空度维持不变。

解: 己知
$$Q_1$$
=4 m^3/h , n_1 =2 $\mathrm{r/min}$, Q_2 =6 m^3/h , V_e =0

由式(2-45a)两边平方,得

$$Q_1^2 = (60 A)^2 \times 60 \psi K n_1$$
 1

$$Q_2^2 = (60 A)^2 \times 60 \psi Kn_2$$
 2

(2)/(1)

$$\frac{n_2}{n_1} = \frac{Q_2^2}{Q_1^2}$$
所以 $n_2 = (\frac{6}{4})^2 \times 2 = 4.5 \text{r/min}$

由式 (2-35) 得
$$v_1 = \frac{L_1 A}{V_1}$$
 $v_2 = \frac{L_2 A}{V_2}$

而 $v_1=v_2$ 又 A 不变,以 1 小时为计算基准,则 $Q_1=V_1$ $Q_2=V_2$

故
$$\frac{L_1}{V_1} = \frac{L_2}{V_2}$$
 $L_2 = (\frac{V_2}{V_1})L_1 = (\frac{6}{4})L_1 = 1.5L_1$

第三章 传热

1、某加热器外面包了一层厚为 300mm 的绝缘材料,该材料的导热系数为 0.16W/(m.℃),已测得该绝缘层外缘温度为 30℃,距加热器外壁 250mm 处为 75℃,试求加热器外壁面温度为多少?

解:
$$\frac{Q}{A} = \frac{t_1 - t_2}{\frac{b_1}{\lambda_1}} = \frac{t_2 - t_3}{\frac{b_2}{\lambda_2}}$$

$$\therefore t_1 = \frac{t_2 - t_3}{\frac{b_2}{\lambda_2}} \times \frac{b_1}{\lambda_1} + t_2 = \frac{75 - 30}{\frac{0.05}{0.16}} \times \frac{0.25}{0.16} + 75 = 300 \,^{\circ} \text{C}$$

2、某燃烧炉的平壁由下列三种砖依次砌成;

耐火砖 b_I =230mm, λ_I =1.05 W/(m·°C)

绝热砖 b_2 =230mm, $λ_2$ =0.151W/(m·℃)

建筑砖 b_3 =240mm, λ_3 =0.93W/(m·°C)

已知耐火砖内侧温度为 1000 $^{\circ}$, 耐火砖与绝热砖界面处的温度为 940 $^{\circ}$, 要求绝热砖与建筑砖界面处的温度不得超过 138 $^{\circ}$, 试求:

- (1) 绝热层需几块绝热砖;
- (2) 普通砖外侧温度为多少?

解: (1) b₂=?

$$\frac{Q}{A} = \frac{t_1 - t_2}{\frac{b_1}{\lambda_1}} = \frac{t_2 - t_3}{\frac{b_2}{\lambda_2}}$$

$$1000 - 940 \qquad 940 - 138$$

$$\frac{1000 - 940}{\frac{0.23}{1.05}} = \frac{940 - 138}{\frac{b_2}{0.151}} = 273.9$$

$$b_2 = 0.442 \,\mathrm{m}$$

230mm
52=442mm<230×2mm

则:绝热层需两块绝热砖。

校核 t₂=?

$$\frac{940 - t_2}{\frac{0.46}{0.151}} = 273.9$$

$$\therefore t_2 = 105.6^{\circ} C < 138^{\circ} C$$

 $(2) t_{4=}?$

$$\frac{Q}{A} = \frac{t_3 - t_4}{\frac{b_3}{\lambda_3}} = 273.9 = \frac{105.6 - t_4}{\frac{0.24}{0.93}}$$

$$\therefore t_4 = 34.9^{\circ} \text{ C}$$

 $3 \times \phi 50 \times 5$ mm的不锈钢管, 导热系数 $\lambda_1 = 16 \text{W} / (\text{m·K})$, 外面包裹厚度为 30 mm 导热系数 $\lambda_2 = 0.2 \text{W}/$ (m·K)的石棉保温层。若钢管的内表面温度为 623 K, 保温层外表面温度为 373 K, 试求每米管 长的热损失及钢管外表面的温度。

解: 已知钢管的内半径
$$r_1 = \frac{50 - 2 \times 5}{2} = 20 \,\text{mm}$$
 钢管的外半径 $r_2 = \frac{50}{2} = 25 \,\text{mm}$

保温层的外半径 $r_3 = 25 + 30 = 55 \,\mathrm{mm}$

根据式 (3-12a), 每米管长的热损失

习题 3-3 附图

$$Q = \frac{2\pi L (t_1 - t_3)}{\frac{1}{\lambda_1} \ln \frac{r_2}{r_1} + \frac{1}{\lambda_2} \ln \frac{r_3}{r_2}}$$

$$= \frac{2\pi \times 1 \times (623 - 373)}{\frac{1}{16} \ln \frac{25}{20} + \frac{1}{0.2} \ln \frac{55}{25}} = \frac{1570}{0.014 + 3.94} = 397 \text{ W}$$

由于是定态热传导,故各层传导的热量应该相等,可得到钢管外表面的温度 t₂。

$$t_2 = t_1 - \frac{Q}{2\pi l} \cdot \frac{1}{\lambda_1} \ln \frac{r_2}{r_1} = 623 - \frac{397}{2\pi \times 1} \times \frac{1}{16} \ln \frac{25}{20} = 622 \text{ K}$$

- 4、Φ60×3 mm的铝合金管(导热系数近似按钢管选取),外面依次包有一层 30mm 的石棉和 30mm 的 软木。石棉和软木的导热系数分别为 $0.16W / (m \cdot K)$ 和 $0.04W / (m \cdot K)$ (管外涂防水胶,以免 水汽渗入后发生冷凝及冻结)。
 - (1) 已知管内壁温度为-110℃, 软木外侧温度为 10℃, 求每米管长上损失的冷量;
 - (2) 计算出钢、石棉及软木层各层热阻在总热阻中所占的百分数:
- (3) 若将两层保温材料互换(各层厚度仍为 30mm),钢管内壁面温度仍为 -110℃,作为近似 计算,假设最外层的石棉层表面温度仍为10℃。求此时每米管长损失的冷量。

提示: 保温层互换后, 保温层外壁面与空气间的对流传热膜系数与互换前相同。

解: (1)
$$t_1=-110$$
°C $t_4=10$ °C
$$r_1=0.027\text{m} \qquad r_2=0.030\text{m} \qquad r_3=0.060\text{m} \qquad r_4=0.090\text{m}$$

$$\lambda_1=45\text{W}/(\text{m}\cdot\text{K}) \quad \lambda_2=0.16\text{W}/(\text{m}\cdot\text{K}) \quad \lambda_3=0.04\text{W}/(\text{m}\cdot\text{K})$$
 每米管长损失的冷量:

$$q = \frac{2\pi(t_1 - t_4)}{\frac{1}{\lambda_1} \ln \frac{r_2}{r_1} + \frac{1}{\lambda_2} \ln \frac{r_3}{r_2} + \frac{1}{\lambda_3} \ln \frac{r_4}{r_3}} = \frac{2\pi(-110 - 10)}{\frac{1}{45} \ln \frac{30}{27} + \frac{1}{0.16} \ln \frac{60}{30} + \frac{1}{0.04} \ln \frac{90}{60}} = -52.1 \text{W/m}$$

$$(2) \sum R = R_1 + R_2 + R_3$$

$$R_1 = \frac{1}{45} \ln \frac{30}{27} = 0.00234 (\text{m}^2 \cdot \text{K}) / \text{W}$$

$$R_2 = \frac{1}{0.16} \ln \frac{60}{30} = 4.332 (\text{m}^2 \cdot \text{K}) / \text{W}$$

$$R_3 = \frac{1}{0.04} \ln \frac{90}{60} = 10.137 (\text{m}^2 \cdot \text{K}) / \text{W}$$

$$\sum R = 0.00234 + 4.332 + 10.137 = 14.471 (\text{m}^2 \cdot \text{K}) / \text{W}$$

各层热阻在总热阻中所占的分数:

$$R_1 = R_{ij} = \frac{0.00234}{14.471} = 0.016\%$$
 $R_2 = R_{ij} = \frac{4.332}{14.471} = 29.94\%$ $R_3 = R_{ij} = \frac{10.137}{14.471} = 70.05\%$

由以上计算可知钢管热阻很小,且 $R_{\text{软} + k} > R_{\pi_{\text{H}}}$ 。

(3) 若将礼和之互换,厚度不变,且认为九和4不变。

$$q = \frac{2\pi(-110 - 10)}{\frac{1}{45}\ln\frac{30}{27} + \frac{1}{0.04}\ln\frac{60}{30} + \frac{1}{0.16}\ln\frac{90}{60}} = -37.94 \text{W/m}$$

以上计算可以看出,将保温性能好的材料放在里层,保温或保冷效果好。但此计算不严格,因 为保冷好,则 t₄应增大,即 t₄′ > 10℃。

5、欲测某绝缘材料的导热系数,将此材料装入附图所示的同心套管 间隙内。已知管长 l=1.0m. $r_1=10$ mm, $r_2=13$ mm, $r_3=23$ mm, $r_4=27$ mm。 在管内用热电偶加热, 当电热功率为 1.0kW 时, 测得内管的内壁温 度为 900℃, 外管的外壁温度为 100℃, 金属管壁的导热系数为 50W/ (m·K), 试求绝缘材料的导热系数。若忽略壁阻, 会引起多大的 误差?

解: 按题意求得:

$$r_{m1} = \frac{r_2 - r_1}{\ln \frac{r_2}{r_1}} = \frac{13 - 10}{\ln \frac{13}{10}} = 11.4 \text{mm}$$

$$r_{m2} = \frac{r_3 - r_2}{\ln \frac{r_3}{r_2}} = \frac{23 - 13}{\ln \frac{23}{13}} = 17.5 \,\text{mm}$$

$$r_{m3} = \frac{r_4 - r_3}{\ln \frac{r_4}{r_3}} = \frac{27 - 23}{\ln \frac{27}{23}} = 24.9 \text{mm}$$

$$A_{m1} = 2\pi l r_{m1} = 2 \times 3.14 \times 1 \times 11.4 \times 10^{-3} = 7.16 \times 10^{-2} \text{ m}^2$$

$$A_{m2} = 2\pi l r_{m2} = 2 \times 3.14 \times 1 \times 17.5 \times 10^{-3} = 0.11 \text{ m}^2$$

$$A_{m3} = 2\pi l r_{m3} = 2 \times 3.14 \times 1 \times 24.9 \times 10^{-3} = 0.156 \,\mathrm{m}^2$$

内管壁的热阻为:
$$R_1 = \frac{r_2 - r_1}{\lambda_1 A_{m1}} = \frac{0.013 - 0.01}{50 \times 7.16 \times 10^{-2}} = 8.38 \times 10^{-4} \text{ K/W}$$

外管壁的热阻为:
$$R_2 = \frac{r_4 - r_3}{\lambda_3 A_{m3}} = \frac{0.027 - 0.023}{50 \times 0.156} = 5.13 \times 10^{-4} \text{ K/W}$$

通过多层管壁的热流量为:

$$Q = \frac{t_1 - t_4}{R_1 + \frac{r_3 - r_2}{\lambda_2 \cdot A_{m2}} + R_2} = \frac{900 - 100}{8.38 \times 10^{-4} + \frac{0.023 - 0.013}{\lambda_2 \times 0.11} + 5.13 \times 10^{-4}} = 1000 \text{ W}$$

则: $\lambda_2=0.114 \text{ W/ (m·K)}$ 。

若忽略两侧金属壁的热阻,则

$$Q = \frac{t_1 - t_4}{\frac{r_3 - r_2}{\lambda_3 \cdot A_{-3}}} = \frac{900 - 100}{\frac{0.023 - 0.013}{\lambda_3 \times 0.11}} = 1000 \text{ W}$$

则: $\lambda'_2=0.114 \text{ W/ (m·K)}$ 。

由于金属壁的热阻远小于绝缘材料的热阻,在实验精度范围内,金属壁的热阻可以忽略。

6、冷却水在**Φ**25×2.5 mm, 长为 2m 的钢管中以 1m/s 的流速通过。冷却水的进、出口温度为 20℃和 50℃, 求管壁对水的对流传热系数?

解: 定性温度
$$t_{\text{定}} = \frac{20 + 50}{2} = 35^{\circ} \text{C}$$

查得水在35℃时的物性参数:

$$\rho = 994 \text{ kg/m}^3$$
, $c_p = 4.17 \text{ kJ/(kg} \cdot ^{\circ} \text{C)}$, $\mu = 72.8 \times 10^{-5} \text{ Pa} \cdot \text{s}$, $\lambda = 0.6257 \text{ W/(m} \cdot ^{\circ} \text{C)}$

管内径为: d=25-2×2.5=20mm=0.02m

$$Re = \frac{du \,\rho}{\mu} = \frac{0.02 \times 1 \times 994}{72.8 \times 10^{-5}} = 2.73 \times 10^{-4} \times 10^{-4} \text{ in it.}$$

$$Pr = \frac{\mu \cdot c_p}{\lambda} = \frac{0.7225 \times 10^{-3} \times 4.174 \times 10^{-3}}{0.6257} = 4.82 \quad (0.7 < \text{Pr} < 160)$$

$$\frac{l}{d} = \frac{2}{0.02} = 100 > 60$$

水被加热, k=0.4, 得:

$$\alpha = 0.023 \frac{\lambda}{d} \text{Re}^{0.8} \text{Pr}^{0.4} = 0.023 \times \frac{0.6257}{0.02} \times (2.73 \times 10^4)^{0.8} \times (4.82)^{0.4} = 4778 \text{ W/(m}^2 \cdot ^{\circ} \text{ C)}$$

7、一列管式换热器,由 38 根 ϕ 25×2.5 mm的无缝钢管组成,苯在管内以 8.32kg/s 的流速通过,从 80℃ 冷却至 20℃。求苯对管壁的对流传热系数;若流速增加一倍,其他条件不变,对流传热系数又有何变化?

解: 定性温度
$$t_{\text{定}} = \frac{20 + 80}{2} = 50 \,^{\circ} \,\text{C}$$

查得苯在 50℃时的物性参数:

$$\rho = 860 \text{ kg/m}^3, \ c_p = 1.80 \text{ kJ/(kg} \ \cdot^{\text{o}} \text{ C)}, \ \mu = 0.45 \, \text{mPa} \cdot \text{s}, \quad \lambda = 0.14 \, \text{W/(m} \cdot^{\text{o}} \text{ C)}$$

管内径为: d=25-2×2.5=20mm=0.2m

$$u = \frac{m_s}{\rho \cdot A} = \frac{8.32}{860 \times 0.785 \times 0.02^2 \times 38} = 0.81 \,\text{m/s}$$

$$Re = \frac{du \,\rho}{du \,\rho} = \frac{0.02 \times 0.81 \times 860}{20.02 \times 0.81 \times 860} = 3.096 \times 10^4 > 1$$

$$Re = \frac{du\rho}{\mu} = \frac{0.02 \times 0.81 \times 860}{0.45 \times 10^{-3}} = 3.096 \times 10^{-4} > 10^{-4} \text{ mg/m}$$

$$Pr = \frac{\mu \cdot c_p}{\lambda} = \frac{0.45 \times 10^{-3} \times 1.8 \times 10^{-3}}{0.14} = 5.79 \quad (0.7 < \text{Pr} < 160)$$

苯被冷却, k=0.3, 则:

$$\alpha = 0.023 \frac{\lambda}{d} \text{Re}^{0.8} \text{ Pr}^{0.3} = 0.023 \times \frac{0.14}{0.02} \times (3.096 \times 10^4)^{0.8} \times (5.79)^{0.3} = 1067 \text{ W/(m}^2 \cdot ^{\circ} \text{ C)}$$

(2) 流速增加一倍, u'=2u, 其他条件不变

由于
$$\alpha \propto Re^{0.8} \propto u^{0.8}$$
 所以 $\alpha_1 = \alpha(\frac{u_1}{u})^{0.8} = 1067 \times 2^{0.8} = 1858 \text{ W/(m}^2 \cdot ^{\circ} \text{ C)}$

8、质量分数为 98%,密度 ρ =1800kg/m³的硫酸,以 1m/s 的流速在套管换热器的内管中被冷却,进、出口温度分别为 90℃和 50℃,内管直径为 ϕ 25×2.5 mm。管内壁平均温度为 60℃。试求硫酸对管壁的对流传热系数。

已知70℃硫酸的物性参数如下:

$$c_p = 1.528 \text{ kJ/(kg} \cdot ^{\circ} \text{ C)}, \ \mu = 6.4 \text{mPa} \cdot \text{s}, \ \lambda = 0.365 \text{ W/(m} \cdot ^{\circ} \text{ C)}$$

壁温 60℃时的硫酸黏度 µ_w = 8.4mPa · s

$$(1267 \text{ W/ } (\text{m}^2 \cdot ^{\circ}\text{C}))$$

解: 定性温度
$$t_{\text{定}} = \frac{50 + 90}{2} = 70 \,^{\circ}\text{C}$$

查得硫酸在70℃时的物性参数:

$$c_p = 1.528 \text{ kJ/kg} \cdot {}^{\circ} \text{ C}, \ \mu = 6.4 \text{mPa} \cdot \text{s}, \ \lambda = 0.365 \text{ W/(m} \cdot {}^{\circ} \text{ C)}$$

壁温 60℃时的硫酸黏度 μ_w = 8.4mPa ·s

因为黏度较大,故用式(3-16)计算

过渡流校正

$$f = 1 - \frac{6 \times 10^5}{\text{Re}^{1.8}} = 1 - \frac{6 \times 10^5}{(5625)^{1.8}} = 0.8934$$

$$\alpha_{\text{jd}} = \alpha \times f = 1418 \times 0.8934 = 1267 \text{ W/(m} \cdot^{\text{o}} \text{ C)}$$

9、原油在 ϕ 89×6 皿的管式炉对流段的管内以 0.5m/s 的流速流过而被加热,管长 6m。已知管内壁温度为 150℃,原油的平均温度为 40℃。试求原油在管内的对流传热系数。

已知原油的物性参数为:

 $\rho = 850 \text{ kg/m}^3$, $c_p = 2 \text{kJ/(kg} \cdot ^\circ \text{C)}$, $\mu = 26 \text{ mPa} \cdot \text{s}$, $\lambda = 0.13 \text{ W/(m} \cdot ^\circ \text{C)}$, $\beta = 0.0011 (1/^\circ \text{C})$ 原油 150℃ 时的黏度 $\mu_w = 3.0 \text{mPa} \cdot \text{s}$

解:原油在管内流动的 Re

$$Re = \frac{du\rho}{\mu} = \frac{0.077 \times 0.5 \times 850}{26 \times 10^{-3}} = 1259 \qquad (\cancel{E})$$

$$Pr = \frac{\mu \cdot c_p}{\lambda} = \frac{26 \times 10^{-3} \times 2 \times 10^3}{0.13} = 400 \qquad (0.6 < Pr < 6700)$$

$$Re \cdot Pr \cdot \frac{d}{l} = 1259 \times 400 \times \frac{0.077}{6} = 6462 > 10$$

$$\frac{l}{d} = \frac{6}{0.077} = 77.9 > 10$$

所以原油在管内的对流传热系数用式(3-19)计算

$$\alpha = 1.86 \frac{\lambda}{d} (\text{Re} \cdot \text{Pr} \cdot \frac{d}{l})^{\frac{1}{3}} (\frac{\mu}{\mu_w})^{0.14}$$

$$(\frac{\mu}{\mu})0.14 = (\frac{26}{3})^{0.14} = 1.353$$

$$\alpha = 1.86 \times \frac{0.13}{0.077} \times (1259 \times 400 \times \frac{0.077}{6})^{\frac{1}{3}} \times 1.353 = 79.2 \text{ W/(m}^2 \cdot \text{K)}$$

由于

$$Gr = \frac{gd^{3} \rho^{2} \beta \Delta t}{\mu^{2}} = \frac{9.81 \times 0.077^{3} \times 850^{2} \times 0.001 \times (150 - 40)}{(26 \times 10^{-3})^{2}} = 5.265 \times 10^{5} > 2.5 \times 10^{4}$$

所以对流传热系数需校正

$$f = 0.8(1 + 0.015 \, Gr^{\frac{1}{3}}) = 1.77$$

$$\alpha' = \alpha \times f = 79.2 \times 1.77 = 140 \text{ W/(m} \cdot ^{\circ} \text{ C)}$$

10、铜氨溶液在由四根**Φ**45×3.5 ㎜钢管并联的蛇管中由 38℃冷却至 8℃,蛇管的平均曲率半径为 0.285 m。已知铜氨溶液的流量为 2.7m³/h,黏度为 2.2×10⁻³Pa·s,密度为 1200km/m³,其余物性常数 可按水的 0.9 倍选用,试求铜氨溶液的对流传热系数。

解:定性温度
$$t_{\text{定}} = \frac{38+8}{2} = 23^{\circ} \text{ C}$$

查得水在23℃时的物性参数,并折算为铜氨液的物性:

$$c_n = 0.9 \times 4.18 = 3.76 \text{ kJ/(kg} \cdot ^{\circ} \text{ C)}, \quad \lambda = 0.9 \times 0.6045 = 0.544 \text{ W/(m} \cdot ^{\circ} \text{ C)}$$

四组蛇管并联的横截面积:

$$A = 4 \times (\frac{\pi}{4} d^2) = 3.14 \times 0.038^2 = 0.00453 \text{ m}^2$$

管内流速
$$u = \frac{V}{A} = \frac{2.7/3600}{0.00453} = 0.166 \text{ m/s}$$

$$Re = \frac{du\rho}{\mu} = \frac{0.038 \times 0.166 \times 1200}{2.2 \times 10^{-3}} = 3420 < 10^{4}$$
 过渡区

$$Pr = \frac{\mu \cdot c_p}{\lambda} = \frac{2.2 \times 10^{-3} \times 3.76 \times 10^{3}}{0.544} = 15.2$$

铜氨液被冷却,k=0.3,则:

$$\alpha = 0.023 \frac{\lambda}{d} Re^{0.8} Pr^{0.3} = 0.023 \times \frac{0.544}{0.038} \times (3420)^{0.8} \times (15.2)^{0.3} = 500.4 \text{ W/(m}^2 \cdot ^{\circ} \text{ C)}$$

过渡流需校正

$$f = 1 - \frac{6 \times 10^5}{\text{Re}^{1.8}} = 1 - \frac{6 \times 10^5}{(3420)^{1.8}} = 0.7388$$

$$\alpha_{ij} = \alpha \times f = 500.4 \times 0.7388 = 369.7 \text{ W/(m} \cdot ^{\text{o}} \text{ C)}$$

弯管校正

$$\alpha_{\approx} = \alpha_{\geq} (1 + 1.77 \frac{d}{R}) = 369.7 \times (1 + 1.77 \times \frac{0.038}{0.285}) = 456.9 \text{ W/(m}^2 \cdot \text{K)}$$

11、有一列管式换热器,外壳内径为 190mm,内含 37 根 ϕ 19×2 ㎜的钢管。温度为 12℃,压力为 101.3kPa 的空气,以 10m/s 的流速在列管式换热器管间沿管长方向流动,空气出口温度为 30℃。试 求空气对管壁的对流传热系数。

解: 定性温度
$$t_{\text{定}} = \frac{12 + 30}{2} = 21^{\circ} \text{ C}$$

查得空气在21℃时的物性参数:

$$\rho = 1.205 \text{ kg/m}^3$$
, $c_p = 1.005 \text{ kJ/(kg} \cdot ^{\circ} \text{ C)}$, $\mu = 1.81 \times 10^{-5} \text{ Pa} \cdot \text{s}$, $\lambda = 2.591 \times 10^{-2} \text{ W/(m} \cdot ^{\circ} \text{ C)}$

$$de = \frac{d_1^2 - nd_2^2}{d_1 + nd_2} = \frac{0.19^2 - 37 \times 0.019^2}{0.19 + 37 \times 0.019} = 0.02547 \text{ m}$$

$$Re = \frac{d_e u \rho}{\mu} = \frac{0.02547 \times 10 \times 1.205}{1.81 \times 10^{-5}} = 1.696 \times 10^4 > 10^4$$
 湍流

$$Pr = \frac{\mu \cdot c_p}{\lambda} = \frac{1.81 \times 10^{-5} \times 1.005 \times 10^{3}}{2.591 \times 10^{-2}} = 0.702$$

空气被加热,k=0.4,则:

$$\alpha = 0.023 \frac{\lambda}{d} \text{Re}^{0.8} \text{ Pr}^{0.4} = 0.023 \times \frac{2.591 \times 10^{-2}}{0.02547} \times (1.696 \times 10^{4})^{0.8} \times (0.702)^{0.3} = 49.1 \text{W/(m}^{2} \cdot ^{\circ} \text{C)}$$

12、在接触氧化法生产硫酸的过程中,用反应后高温的 SO_3 混合气预热反应前气体。常压 SO_3 混合气在一由 ϕ 38×3 mm钢管组成、壳程装有圆缺型挡板的列管换热器壳程流过。已知管子成三角形排列,中心距为 51mm,挡板间距为 1.45m,换热器壳径为 ϕ 2800;又 SO_3 混合气的流量为 4×10⁴m³/h,其平均温度为 145℃.若混合气的物性可近似按同温度下的空气查取,试求混合气的对流传热系数(考虑部分流体在挡板与壳体之间短路,取系数为 0.8)

解:本题为列管式换热器管外强制对流传热,对流传热系数按式 3-25 计算

$$N_u = 0.36 \text{ Re}^{0.55} \text{ Pr}^{\frac{1}{3}} (\frac{\mu}{\mu_w})^{0.14}$$

管子正三角形排列时,
$$d_e = \frac{4(\frac{\sqrt{3}}{2}t^2 - \frac{\pi}{4}{d_0}^2)}{\pi d_0} = \frac{4(\frac{\sqrt{3}}{2}51^2 - \frac{\pi}{4}38^2)}{\pi \times 38} = 37.5 \text{mm}$$

管外流体流过的最大截面积 S_{max} 计算:

$$S_{\text{m a x}} = hD(1 - \frac{d_0}{t}) = 1.45 \times 2.8 \times (1 - \frac{38}{51}) = 1.035 \text{ m}^2$$

管外流体的流速
$$u = \frac{V}{S} = \frac{4 \times 10^4}{3600 \times 1.035} = 10.7 \text{ m/s}$$

定性温度 $t_{g} = 145 \, ^{\circ} \, \mathrm{C}$ 下查得空气的物性参数:

$$c_n = 1.014 \text{ kJ/(kg} \cdot ^{\circ} \text{ C)}, \ \mu = 2.39 \times 10^{-5} \text{ Pa} \cdot \text{s}, \ \lambda = 3.527 \times 10^{-2} \text{ W/(m} \cdot ^{\circ} \text{ C)}, \ \rho = 0.845 \text{ kg/m}^{-3}$$

$$Re = \frac{d_e u \rho}{\mu} = \frac{0.0375 \times 10.7 \times 0.845}{2.39 \times 10^{-5}} = 1.415 \times 10^{-4}$$

$$Pr = \frac{\mu \cdot c_p}{\lambda} = \frac{2.39 \times 10^{-5} \times 1.014 \times 10^{3}}{3.527 \times 10^{-2}} = 0.687$$

因气体黏度变化较小,故 $\frac{\mu}{\mu_w} \approx 1$,由因部分流体在单板与壳体之间隙短路,取实际对流传热系数为

计算值的 0.8 倍

$$\alpha = 0.8 \times 0.36 \frac{\lambda}{d_e} Re^{0.55} Pr^{\frac{1}{3}} = 0.8 \times 0.36 \frac{0.03527}{0.0375} \times (14150)^{0.55} \times (0.687)^{\frac{1}{3}} = 46 \text{ W/(m}^2 \cdot \text{K)}$$

13、在油罐中装有水平放置的水蒸气管,以加热罐中的重油。重油的平均温度为 20℃,水蒸气管外壁的平均温度为 120℃,管外径为 60mm。已知 70℃时的重油物性数据如下:

试求水蒸气管对重油每小时每平方米的传热量 kJ/(m²·h)?

解:
$$\mu = \rho \cdot v = 900 \times 2 \times 10^{-3} = 1.8 \text{Pa} \cdot \text{s}$$

$$\mathbb{J} \quad Gr = \frac{g\beta(t_w - t)d^3}{v^2} = \frac{9.81 \times 3 \times 10^{-4} \times (120 - 20) \times 0.06^3}{(2 \times 10^{-3})^2} = 15.9$$

$$Pr = \frac{\mu \cdot c_p}{\lambda} = \frac{1.8 \times 1.88 \times 10^3}{0.175} = 1.934 \times 10^4$$

$$Gr \cdot Pr = 15.9 \times 1.934 \times 10^4 = 3.08 \times 10^5$$

查表 3-4, 得 C=0.54, n=1/4, 于是

$$\alpha = 0.54 \times \frac{\lambda}{d_0} (Gr \cdot Pr)^{1/4} = 0.54 \times \frac{0.175}{0.06} \times (3.08 \times 10^5)^{1/4} = 37.1 \text{W/(m}^2 \cdot \text{K)}$$

所以水蒸气管对重油每小时每平方米的传热量

$$\frac{Q}{A} = \alpha(t_w - t) = 37.1 \times (120 - 20) \times 3600 = 1.336 \times 10^4 \text{ kJ/(m}^2 \cdot \text{h)}$$

- 14、压强为 $4.76 \times 10^5 \text{Pa}$ 的饱和水蒸气,在外径为 100 mm,长度为 0.75 m 的单根直立圆管外冷凝。管外壁温度为 110 ℃。
- 试求(1)圆管垂直放置时的对流传热系数;(2)管子水平放置时的对流传热系数;
 - (3) 若管长增加一倍,其他条件均不变,圆管垂直放置时的平均对流传热系数。

解: 压强为 4.76×10⁵Pa 的饱和蒸汽温度为 150℃,

此时水蒸气的汽化潜热 r=2119kJ/kg

冷凝液定性温度膜温 $t = \frac{150 + 110}{2} = 130$ °C, 查 130 ℃ 时水的物性参数

$$\mu = 21.77 \times 10^{-5} \text{ Pa} \cdot \text{s}, \quad \lambda = 0.6862 \text{ W/(m} \cdot \text{K)}, \quad \rho = 934.8 \text{kg/m}^3$$

(1)管垂直放置时

假设液膜中的液体作层流流动,由式 3-31 计算平均对流传热系数

$$\alpha = 1.13 \left(\frac{r\rho^2 g\lambda^3}{\mu I \Delta t} \right)^{1/4} = 1.13 \times \left(\frac{2119 \times 10^3 \times 934.8^2 \times 9.81 \times 0.6862^3}{21.77 \times 10^{-5} \times 0.75 \times (150 - 110)} \right)^{1/4}$$
$$= 6187 \text{ W/(m}^2 \cdot \text{K)}$$

验证 Re:

$$Re = \frac{(\frac{4S}{b})(\frac{m_s}{S})}{\mu} = \frac{4Q}{\pi d_o r \mu} = \frac{4\alpha\pi d_o l \Delta t}{\pi d_o r \mu} = \frac{4\alpha l \Delta t}{r \mu} = \frac{4 \times 6187 \times 0.75 \times (150 - 110)}{2119 \times 10^3 \times 21.77 \times 10^{-5}} = 1609 < 1800$$

所以假设层流是正确的。

(3) 管水平放置

由式(3-29)和式(3-31)可得单管水平放置和垂直放置时的对流传热系数α'和α的比值为

$$\frac{\alpha'}{\alpha} = \frac{0.725}{1.13} \left(\frac{l}{d_o}\right)^{1/4} = 0.642 \left(\frac{0.75}{0.1}\right)^{1/4} = 1.062$$

所以单根管水平放置时的对流传热系数为:

$$\alpha' = 1.062 \times 6187 = 6573 \text{ W/(m}^2 \cdot \text{K)}$$

(3)管长为 0.75m 时,液膜流动的 *Re*=1608,故管长增加一倍后,液膜成湍流状态。此时的对流传热系数为:

$$\alpha = 0.0077 \left(\frac{\rho^2 g \lambda^3}{\mu^2} \right)^{1/3} Re^{0.4}$$

所以

$$\alpha = 0.0077 \left(\frac{\rho^2 g \lambda^3}{\mu^2} \right)^{1/3} \left(\frac{4\alpha l \Delta t}{r \mu} \right)^{0.4}$$

$$= 0.0077 \times \left(\frac{934.8^2 \times 9.81 \times 0.6862^3}{(21.77 \times 10^{-5})^2} \right)^{1/3} \left(\frac{4 \times \alpha \times 1.5 \times 40}{2119 \times 10^3 \times 21.77 \times 10^{-5}} \right)^{0.4}$$

$$\therefore \alpha = 8639.5 \text{ W/(m}^2 \cdot \text{K)}$$

因此当液膜从层流转变为湍流时,冷凝对流传热系数急剧增加。

- 15、载热体流量为1500kg/h,试计算以下各过程中载热体放出或得到的热量。
 - (1) 100℃的饱和水蒸气冷凝成 100℃的水;
 - (2) 110℃的苯胺降温至 10℃;
 - (3) 比热为 3.77kJ/(kg·K)的 NaOH 溶液从 370K 冷却到 290K;
 - (4) 常压下 150℃的空气冷却至 20℃;
 - (5) 压力为 147.1kPa 的饱和水蒸气冷凝后并降温至 50℃。
- 解: (1) 查饱和水蒸气 $t_c = 100$ °C, 汽化潜热 r=2258kJ/kg

$$Q = m_s r = 1500 \times 2258 = 3.39 \times 10^6 \text{ kJ/h} = 941 \text{ kW}$$

(2) 定性温度
$$t = \frac{110 + 10}{2} = 60$$
°C, 查 60 °C 时苯胺的物性参数 $c_n = 2.198 \, \text{kJ/} \, (\text{kg} \cdot ^{\circ} \, \text{C})$

$$Q = m_s c_p (t_1 - t_2) = 1500 \times 2.198 \times (110 - 10) = 3.3 \times 10^5 \text{ kJ/h} = 91.6 \text{kW}$$

(3)
$$Q = m_s c_p (t_1 - t_2) = 1500 \times 3.77 \times (370 - 290) = 4.52 \times 10^5 \text{ kJ/h} = 125.7 \text{kW}$$

(4) 定性温度
$$t = \frac{150 + 20}{2} = 85\,^{\circ}\text{C}$$
, 查 $85\,^{\circ}\text{C}$ 时空气的物性参数 $c_n = 1.009\,\text{kJ/(kg}\cdot^{\circ}\text{C})$

$$Q = m_s c_p (t_1 - t_2) = 1500 \times 1.009 \times (150 - 20) = 1.97 \times 10^5 \text{ kJ/h} = 54.7 \text{kW}$$

(5) 压力为 147.1kPa 的水的饱和温度为 t_s = 110.7°C,汽化潜热 r=2230.1kJ/kg

定性温度
$$t = \frac{110.7 + 50}{2} = 80.4^{\circ} C$$
, 查 80.4° C 时水的物性参数
$$c_p = 4.195 \, \text{kJ/(kg } \cdot ^{\circ} \text{C)}$$

$$Q = m_s r + m_s c_p (t_1 - t_2) = 1500 \times (2230.1 + 4.195 \times (110.7 - 50))$$

$$= 3.73 \times 10^6 \, \text{kJ/h} = 1035.2 \, \text{kW}$$

16、每小时 8000m³(标准状况)的空气在蒸汽加热器中从 12℃被加热到 42℃,压强为 400kPa 的饱和水蒸气在管外冷凝。若设备的热损失估计为热负荷的 5%,试求该换热器的热负荷和蒸气用量。

解: 热量衡算:
$$Q = 1.05Q_{\Rightarrow} = 1.05 \times m_{s2} \times c_{n2} \times (t_2 - t_1)$$

查得标准状况下的空气物性参数

$$ho = 1.293 \, \text{kg/m}^3$$
 $c_p = 1.005 \, \text{kJ/(kg} \cdot ^{\circ} \text{C})$
400 kPa 饱和水蒸气的潜热 $r = 2138.5 \, \text{kJ/kg}$

$$Q = 1.05 Q_{\text{ph}} = 1.05 \times \frac{8000 \times 1.293}{3600} \times 1.005 \times (42 - 12) = 91 \text{kW}$$

蒸汽用量:
$$m_{s1} = \frac{Q}{r} = \frac{91}{2138.5} = 0.0426 \text{ kg/s}$$

17、在一套管式换热器中,用冷却水将 1.25kg/s 的苯由 350K 冷却至 300K, 冷却水进出口温度分别为 290K 和 320K。试求冷却水消耗量。

解: 由苯的定性温度
$$t = \frac{350 + 300}{2} = 325 \,\mathrm{K}$$
, 查苯的物性参数 $c_p = 1.84 \,\mathrm{kJ/}$ $(\mathrm{kg} \cdot ^{\mathrm{o}} \,\mathrm{C})$

由苯计算热负荷
$$Q = m_{s1} \times c_{p1} \times (T_1 - T_2) = 1.25 \times 1.84 \times (350 - 300) = 115 \text{ kW}$$

由冷却水的定性温度 $t=\frac{290+320}{2}=305\,\mathrm{K}$, 查水的物性参数 $c_p=4.18\,\mathrm{kJ/}$ $(\mathrm{kg}\cdot^{\mathrm{o}}\mathrm{C})$

$$Q = m_{s2} \times c_{p2} \times (t_2 - t_1)$$

$$m_{s2} = \frac{Q}{c_{p2} \times (t_2 - t_1)} = \frac{115}{4.18 \times (320 - 290)} = 0.916 \,\text{kg/s}$$

18、在一列管式换热器中,将某溶液自 15℃加热至 40℃,载热体从 120℃降至 60℃。试计算换热器 逆流和并流时的冷、热流体平均温度差。

$$\begin{array}{cccc}
120 & \longrightarrow & 60 \\
40 & \longleftarrow & 15 \\
\hline
80 & & 45
\end{array}$$

$$\Delta t_{mij} = \frac{\Delta t_1 - \Delta t_2}{\ln(\frac{\Delta t_1}{\Delta t_2})} = \frac{80 - 45}{\ln(\frac{80}{45})} = 60.83 \,^{\circ} \,^{\circ} \,^{\circ} \,^{\circ}$$

$$\text{Hii: } \Delta t_{mi} = \frac{\Delta t_1 - \Delta t_2}{\ln(\frac{\Delta t_1}{\Delta t_2})} = \frac{105 - 20}{\ln(\frac{105}{20})} = 51.3 \,^{\circ} \,^{\circ}$$

19、在一单壳程、四管程的列管式换热器中,用水冷却油。冷却水在壳程流动,进出口温度分别为15℃和32℃。油的进、出口温度分别为100℃和40℃。试求两流体间的温度差。

解: 先按逆流时计算,逆流时平均温度差为

$$\Delta t_{mij} = \frac{\Delta t_1 - \Delta t_2}{\ln(\frac{\Delta t_1}{\Delta t_2})} = \frac{68 - 25}{\ln(\frac{68}{25})} = 43.0^{\circ} \text{ C}$$

$$100 \longrightarrow 40$$

$$32 \longleftarrow 15$$

$$68 \longrightarrow 25$$

折流时的对数平均温度差为 $\Delta t_m = \phi \Delta t_{m\dot{\psi}}$ 其中 $\varphi = f(R, P)$

$$R = \frac{T_1 - T_2}{t_2 - t_1} = \frac{100 - 40}{32 - 15} = 3.53$$

$$P = \frac{t_2 - t_2}{T_1 - t_1} = \frac{32 - 15}{100 - 15} = 0.2$$

由图 3-27 (a) 查得 φ = 0.9, 故 Δt_m = 0.9×43.0 = 38.7° C

20、在一内管为 Ø 180×10mm 的套管式换热器中,管程中热水流量为 3000kg/h,进、出口温度分别为 为 90℃和 60℃。壳程中冷却水的进、出口温度分别为 20℃和 50℃,总传热系数为 2000W/(m²·℃)。试求:(1)冷却水用量;(2)逆流流动时的平均温度差及管子的长度;(3)并流流动时的平均温度 差及管子的长度;

解: (1) 水的比热 $c_p = 4.186 \, \text{kJ/(kg} \cdot ^{\circ} \text{C)}$

$$m_{s1} \times c_{p1} \times (T_1 - T_2) = m_{s2} \times c_{p2} \times (t_2 - t_1)$$

$$m_{s2} = \frac{m_{s1} \times c_{p1} \times (T_1 - T_2)}{c_{p2} \times (t_2 - t_1)} = \frac{3000 \times 4.186 \times (90 - 60)}{4.186 \times (50 - 20)} = 3000 \text{ kg/h}$$

(2) 逆流时平均温度差为

$$\Delta t_m = \frac{40 + 40}{2} = 40 \,^{\circ}\text{C}$$

$$\begin{array}{c}
90 & \longrightarrow & 60 \\
50 & \longleftarrow & 20 \\
\hline
40 & 40
\end{array}$$

$$Q = m_{s1} \times c_{p1} \times (T_1 - T_2) = KA\Delta t_m$$

$$A = \frac{m_{s1} \times c_{p1} \times (T_1 - T_2)}{K\Delta t_m} = \frac{3000 \times 4.186 \times 10^3 \times (90 - 60)}{3600 \times 2000 \times 40} = 1.31 \text{m}^2$$

$$l = \frac{A}{\pi d} = \frac{1.31}{3.14 \times 0.18} = 2.32 \text{ m}$$

(3) 并流时平均温度差为

$$\Delta t_{m} \stackrel{\text{iff}}{=} = \frac{\Delta t_1 - \Delta t_2}{\ln(\frac{\Delta t_1}{\Delta t_2})} = \frac{70 - 10}{\ln(\frac{70}{10})} = 30.8^{\circ} \text{ C}$$

$$\frac{90}{20} \longrightarrow 50$$

$$Q = m_{s1} \times c_{p1} \times (T_1 - T_2) = KA\Delta t_m$$

$$A = \frac{m_{s1} \times c_{p1} \times (T_1 - T_2)}{K\Delta t_m} = \frac{3000 \times 4.186 \times 10^3 \times (90 - 60)}{3600 \times 2000 \times 30.6} = 1.71 \text{ m}^2$$

$$l = \frac{A}{\pi d} = \frac{1.71}{3.14 \times 0.18} = 3.03 \text{ m}$$

解:
$$d_2 = 0.02 \,\text{m}$$
, $d_1 = 0.025 \,\text{m}$, $d_m = 0.0225 \,\text{m}$, $b = 0.0025 \,\text{m}$
 $\alpha_2 = 40 \,\text{W/(m}^2 \cdot \text{K)}$, $\alpha_1 = 3000 \,\text{W/(m}^2 \cdot \text{K)}$

查得碳钢的导热系数 $\lambda = 45 \text{W/(m \cdot K)}$

取管内 CO₂ 侧污垢热阻 $R_{s2}=0.53\times10^{-3}$ (m²·K/W)

管外水侧热阻
$$R_{c1}=0.21\times10^{-3}$$
 (m²·K/W)

(1)总传热系数(以外表面积计)

$$\begin{split} &\frac{1}{K_1} = \frac{1}{\alpha_1} + R_{s1} + \frac{b}{\lambda} \frac{d_1}{d_m} + R_{s2} \frac{d_1}{d_2} + \frac{1}{\alpha_2} \frac{d_1}{d_2} \\ &= \frac{1}{3000} + 0.21 \times 10^{-3} + \frac{0.0025}{45} \times \frac{0.025}{0.0225} + 0.53 \times 10^{-3} \times \frac{0.025}{0.02} + \frac{1}{40} \times \frac{0.025}{0.02} \\ &= 3.25 \times 10^{-2} \,\mathrm{m}^2 \cdot \mathrm{K/W} \\ &K_1 = 30.7 \,\mathrm{W/(m^2 \cdot K)} \end{split}$$

(2) 管内 CO_2 气体的对流传热系数增大一倍,即 $\alpha'_2=80W/(m^2\cdot K)$

$$\frac{1}{K_1} = \frac{1}{\alpha_1} + R_{s1} + \frac{b}{\lambda} \frac{d_1}{d_m} + R_{s2} \frac{d_1}{d_2} + \frac{1}{\alpha'_2} \frac{d_1}{d_2}$$

$$= \frac{1}{3000} + 0.21 \times 10^{-3} + \frac{0.0025}{45} \times \frac{0.025}{0.0225} + 0.53 \times 10^{-3} \times \frac{0.025}{0.02} + \frac{1}{80} \times \frac{0.025}{0.02}$$

$$= 1.69 \times 10^{-2} \text{ (m}^2 \cdot \text{K)/W}$$

$$K_1 = 59.2 \text{W/(m}^2 \cdot \text{K)}$$

$$\frac{K'_1 - K_1}{K'_1} = \frac{59.2 - 30.7}{30.7} \times 100 \% = 92.8\%$$

总传热系数增加 92.8%

(3) 若管外水的对流传热系数增大一倍, α'_1 =6000W/(m^2 ·K)

$$\begin{split} &\frac{1}{K_1} = \frac{1}{\alpha_1'} + R_{s1} + \frac{b}{\lambda} \frac{d_1}{d_m} + R_{s2} \frac{d_1}{d_2} + \frac{1}{\alpha_2} \frac{d_1}{d_2} \\ &= \frac{1}{6000} + 0.21 \times 10^{-3} + \frac{0.0025}{45} \times \frac{0.025}{0.0225} + 0.53 \times 10^{-3} \times \frac{0.025}{0.02} + \frac{1}{40} \times \frac{0.025}{0.02} \\ &= 3.23 \times 10^{-2} \, (\text{m}^2 \cdot \text{K}) / \text{W} \\ &K_1 = 30.9 \, \text{W/(m}^2 \cdot \text{K}) \end{split}$$

总传热系数增加 0.7%

22、在一内管为 ρ 25×2.5mm 的套管式换热器中,用水冷却苯,冷却水在管程流动,入口温度为 290K,对流传热系数为 850W/($m^2 \cdot \mathbb{C}$)。 壳程中流量为 1.25kg/s 的苯与冷却水逆流换热,苯的进、出口温度 为 350K、300K,苯的对流传热系数为 1700W/($m^2 \cdot \mathbb{C}$)。已知管壁的导热系数为 45W/($m \cdot \mathbb{C}$),苯的比 热为 c_p =1.9kJ/($kg \cdot \mathbb{C}$),密度为 ρ =880kg/ m^3 。忽略污垢热阻。

试求: 在水温不超过 320K 的最少冷却水用量下, 所需总管长为多少? (以外表面积计)

解: 冷却水的平均温度
$$t_m = \frac{290 + 320}{2} = 305 \,\mathrm{K}$$
,

查得 305K 时水的比热容为 $c_p = 4.174 \, \text{kJ/(kg} \cdot ^{\circ} \, \text{C)}$

热负荷
$$Q = m_{s1} \times c_{p1} \times (T_1 - T_2) = 1.25 \times 1.9 \times 10^3 \times (350 - 300) = 118.8$$
kW

冷却水用量:
$$m_{s2} = \frac{Q}{c_{p2}(t_2 - t_1)} = \frac{118.8 \times 10^3}{4.174 \times 10^3 \times (320 - 290)} = 0.949 \,\text{kg/s}$$

平均温度差为

$$\Delta t_{mij} = \frac{\Delta t_1 - \Delta t_2}{\ln(\frac{\Delta t_1}{\Delta t_2})} = \frac{30 - 10}{\ln(\frac{30}{10})} = 18.2^{\circ} \text{ C}$$

$$\frac{350}{320} \longrightarrow \frac{300}{290}$$

$$\frac{320}{30} \longrightarrow \frac{300}{10}$$

基于外表面积的总传热系数 K_1

$$\frac{1}{K_1} = \frac{1}{\alpha_1} + \frac{b}{\lambda} \frac{d_1}{d_m} + \frac{1}{\alpha_2} \frac{d_1}{d_2} = \frac{1}{1700} + \frac{0.0025}{45} \times \frac{0.025}{0.0225} + \frac{1}{850} \times \frac{0.025}{0.02} = 2.12 \times 10^{-3} \text{ (m}^2 \cdot \text{K)/W}$$

$$K_1 = 471.6 \text{ W/(m}^2 \cdot \text{K)}$$

总传热面积:
$$A = \frac{Q}{K\Delta t_m} = \frac{118.8 \times 10^3}{471.6 \times 18.2} = 13.84 \,\mathrm{m}^2$$

总管长: $I = \frac{A}{\pi d} = \frac{13.84}{3.14 \times 0.025} = 176.3 \,\mathrm{m}$

23、一套管式换热器,用饱和水蒸气加热管内湍流的空气,此时的总传热系数近似等于空气的对流传热系数。若要求空气量增加一倍,而空气的进出口温度仍然不变,问该换热器的长度应增加多少?

解: 总传热量: $Q = KA \Delta t_m = K\Delta t_m \cdot \pi dl$

空气量增加一倍后: Q' = 2Q

此时总传热系数 $K' \approx \alpha_2' = 2^{0.8} \times \alpha_2 = 1.74 \alpha_2 \approx 1.74 K$

 \therefore 空气的进出口温度不变, $\therefore \Delta t'_m = \Delta t_m$

$$\frac{l'}{l} = \frac{Q'/K'}{Q/K} = \frac{2}{1.74} = 1.149$$

则管长要增加 15%。

现有传热面积:

24、有一单管程列管式换热器,该换热器管径为 ϕ 25×2.5mm,管子数 37 根,管长 3 米。今拟采用此换热器冷凝并冷却 CS_2 饱和蒸汽,自饱和温度 46°C冷却到 10°C。 CS_2 在壳程冷凝,其流量为 300kg/h,冷凝潜热为 351.6kJ/kg。冷却水在管程流动,进口温度为 5°C,出口温度为 32°C,逆流流动。已知 CS_2 在冷凝和冷却时的传热系数分别为 $K_1 = 291$ W/(m 2 ·K) 及

习题 24 附图

 $K_2 = 174$ W/(m $^2 \cdot$ K) 。 问此换热器是否适用? (传热面积 A 及传热系数均以外表面积计)解: 已知列管尺寸 $\phi 25 \times 2.5$ mm; l = 3m; n = 37 题中所给的两个 K 值均以外表面积为基准。

$$A_{\cancel{x}} = \pi \cdot d_1 \cdot l \cdot n$$

= 3.14 × 0.025 × 3 × 37 = 8.71 m²

总传热量 $Q = Q_1 + Q_2$

(式中 Q_1 为冷凝段热负荷, Q_2 为冷却段热负荷)

已知
$$r = 351.6$$
kJ/kg 查得 $\frac{46+10}{2} = 28$ °C 时

 CS_2 的比热 $c_{n1} = 0.963 \text{kJ} / (\text{kg} \cdot \text{K})$

$$Q = m_{\rm s1} r + m_{\rm s1} c_{p1} \left(46 - 10 \right) = 29.3 + 2.89 = 32.19 \, {\rm kW} \, \, \sharp \div \, Q_1 = 29.3 \, {\rm kW} \, \, ; \quad Q_2 = 2.89 \, {\rm kW} \, \, ; \quad Q_3 = 2.89 \, {\rm kW} \, \, ; \quad Q_4 = 2.89 \, {\rm kW} \, \, ; \quad Q_5 = 2.89 \, {\rm kW} \, \, ; \quad Q_5 = 2.89 \, {\rm kW} \, \, ; \quad Q_5 = 2.89 \, {\rm kW} \, \, ; \quad Q_5 = 2.89 \, {\rm kW} \, \, ; \quad Q_5 = 2.89 \, {\rm kW} \, \, ; \quad Q_7 = 2.89 \, {\rm kW} \, \, ; \quad Q_8 = 2.89 \, {\rm kW} \, \, ; \quad Q_9 = 2.89 \, {\rm kW} \, \, ; \quad Q_{11} = 2.89 \, {\rm kW} \, \, ; \quad Q_{12} = 2.89 \, {\rm kW} \, \, ; \quad Q_{13} = 2.89 \, {\rm kW} \, \, ; \quad Q_{14} = 2.89 \, {\rm kW} \, \, ; \quad Q_{15} =$$

为求 A_1 、 A_2 就应求出两段交界处冷却水温度t'

$$m_{s2}c_{p2}(32-5)=Q$$

$$\therefore m_{s2} = \frac{Q}{c_{n2}(32-5)} = \frac{32.19}{4.187 \times 27} = 0.285 \text{kg/s}$$

对于冷凝段

$$Q_1 = m_{s2} c_{p2} (32 - t)$$

$$\therefore t = 32 - \frac{Q_1}{m_{s2} c_{n2}} = 32 - \frac{29.3}{4.187 \times 0.285} = 7.45^{\circ}\text{C}$$

则

$$\Delta t_{\text{m1}} = \frac{38.55 - 14}{\ln \frac{38.55}{14}} = 24.24 \,^{\circ}\text{C}$$

$$\frac{46}{32} \longrightarrow \frac{46}{7.45}$$

$$14 \qquad 38.55$$

$$\Delta t_{\text{m2}} = \frac{38.55 - 5}{\ln \frac{38.55}{5}} = 16.43 \,^{\circ}\text{C}$$

$$\frac{46}{7.45} \longrightarrow 5$$

$$38.55 \longrightarrow 5$$

传热面积富裕
$$\frac{8.71-5.17}{5.17}$$
 = 68.5%

 $t/^{\circ}C$ 46 32 10 5 K_1

25、由¢25×2.5mm 的锅炉钢管组成的废热锅炉, 壳程为压力 2570kPa (表压)的沸腾水。管内为合 成转化气,温度由 575°C下降到 472°C。已知转化气侧 $\alpha_2=300$ W/($m^2\cdot$ °C),水侧 $\alpha_1=10^4$ W/($m^2\cdot$ °C)。忽 略污垢热阻,试求平均壁温 T_W 和 t_W 。

解: 以外表面积为基准的总传热系数

$$\frac{1}{K_1} = \frac{1}{\alpha_1} + \frac{b}{\lambda} \frac{d_1}{d_m} + \frac{1}{\alpha_2} \frac{d_1}{d_2}$$

$$= \frac{1}{10000} + \frac{0.0025}{45} \times \frac{0.025}{0.0225} + \frac{1}{300} \times \frac{0.025}{0.02} = 4.33 \times 10^{-3} \,(\text{m}^2 \cdot \text{K})/\text{W}$$

$$K_1 = 231 \,\text{W/(m}^2 \cdot \text{K})$$

平均温度差:

压力 2570kPa (表压) 下水的饱和温度为: 226.4℃

管内壁壁温(T 取热流体进出口平均温度 $T = \frac{575 + 472}{2} = 523.5$ °C)

$$T_W = T - \frac{Q}{\alpha_2 A_2} = 523.5 - \frac{68630 \times \pi \times d_1 \times l}{300 \times \pi \times d_2 \times l} = 523.5 - \frac{68630 \times 0.025}{300 \times 0.02} = 237.5^{\circ} \text{ C}$$

管外壁壁温

$$t_W = T_W - \frac{bQ}{\lambda A_W} = 237.5 - \frac{0.0025}{45} \times \frac{68630 A_1}{A_W} = 237.5 - \frac{0.0025}{45} \times \frac{68630 \times 25}{22.5} = 233.3^{\circ} \text{ C}$$

26、有一单壳程、双管程列管式换热器。壳程为 120℃饱和水蒸气冷凝,常压空气以 12m/s 的流速在管程内流过。列管为 ϕ 38×2.5mm 钢管,总管数为 200 根。已知空气进口温度为 26℃,要求被加热到 86℃。又已知蒸汽侧对流传热系数为 10^4 W/(m^2 ·K),壁阻及垢阻可忽略不计。试求:

- (1) 换热器列管每根管长为多少米?
- (2) 由于此换热器损坏,重新设计了一台新换热器,其列管尺寸改为 ø54×2mm,总管数减少 20%,但每根管长维持原值。用此新换热器加热上述空气,求空气的出口温度。
- 解: (1) 由热量衡算式和传热速率方程计算完成任务所需的传热面积,然后在计算出管长。

查
$$t_{\text{定}} = \frac{(26+86)}{2} = 56$$
 ℃ 时, 空气的物性

$$c_{p2} = 1.005 \,\text{kJ/(kg} \cdot \text{K)}$$
,

$$\lambda_2 = 2.861 \times 10^{-2} \text{ W/(m} \cdot \text{K)}$$

$$\rho = 1.076 \text{kg} / \text{m}^3$$
, $\mu = 1.985 \times 10^{-5} \text{Pa} \cdot \text{s}$

$$m_{s_2} = V\rho_2 = 0.785 d_2^2 u_2 \rho_2 \frac{n}{2} = 0.785 \times 0.033^2 \times 12 \times 1.076 \times \frac{200}{2} = 1.104 \text{ kg/s}$$

$$Q = m_{s_2} c_{p_2} (t_2 - t_1) = 1.104 \times 1.005 \times (86 - 26) = 66.57 \text{ kW}$$

$$Re = \frac{du\rho}{\mu} = \frac{0.033 \times 12 \times 1.076}{1.985 \times 10^{-5}} = 2.15 \times 10^4 > 10^4 \quad (治療液)$$

$$Pr = \frac{c_p \mu}{\lambda} = \frac{1.005 \times 10^3 \times 1.985 \times 10^{-5}}{0.02861} = 0.697$$

$$\therefore \alpha_2 = 0.023 \frac{\lambda}{d} \text{Re}^{0.8} \text{Pr}^{0.4} = 0.023 \times \frac{0.02861}{0.033} \times (2.15 \times 10^4)^{0.8} \times 0.697^{0.4} = 50.46 \text{ W/(m}^2 \cdot \text{K)}$$

$$\frac{1}{K_1} = \frac{1}{\alpha_1} + \frac{d_1}{\alpha_2 d_2} = \frac{1}{10^4} + \frac{0.038}{50.46 \times 0.033}$$

解得:
$$K_1 = 43.63 \text{ W/(m}^2 \cdot \text{K)}$$

$$\Delta t_{\rm m} = \frac{94 - 34}{\ln(\frac{94}{34})} = 59 \,^{\circ}\text{C}$$

$$\frac{120}{26} \longrightarrow 86$$

$$94 \qquad 34$$

$$A_1 = \frac{Q}{K_1 \Delta t_m} = \frac{66.57 \times 10^3}{43.63 \times 59} = 25.86 \,\mathrm{m}^2$$

$$\therefore A_1 = \pi \cdot d_1 \cdot l \cdot n$$

$$\therefore l = \frac{A_1}{\pi \cdot d_1 \cdot n} = \frac{25.86}{3.14 \times 0.038 \times 200} = 1.084 \,\mathrm{m}$$

解法2

$$\therefore \alpha_1 >> \alpha_2$$
 $\therefore K_2 \approx \alpha_2 = 50.46 \text{ W/(m}^2 \cdot \text{K)}$

$$A_2 = \frac{Q}{K_2 \Delta t_{\rm m}} = \frac{66.57 \times 10^3}{50.46 \times 59} = 22.36 \,{\rm m}^2$$

$$\therefore l = \frac{A_2}{\pi \cdot d_2 \cdot n} = \frac{22.36}{3.14 \times 0.033 \times 200} = 1.079 \text{ m}$$

可见这种近似是允许的。

(2) 改为 ϕ 54×2mm列管, $d_2' = 0.05$ m

$$n' = 0.8n = 0.8 \times 200 = 160$$

$$l' = 1.08 \text{m}$$

令空气出口温度为 t;

热量衡算:
$$\frac{Q'}{Q} = \frac{m_{s2}c_{p2}(t_2' - 26)}{m_{s2}c_{p2}(86 - 26)} = \frac{t_2' - 26}{60}$$
 (1)

速率方程:
$$\frac{Q'}{Q} = \frac{K_2'}{K_2} \frac{A_2'}{A_2} \frac{\Delta t_{\rm m}'}{\Delta t_{\rm m}} \approx \frac{\alpha_2'}{\alpha_2} \frac{A_2'}{A_2} \frac{\Delta t_{\rm m}'}{\Delta t_{\rm m}}$$
(2)

式中 $\Delta t_{\rm m} = 59 \, ^{\circ}$

$$\Delta t'_{\rm m} = \frac{t'_2 - 60}{\ln \frac{94}{120 - t'_2}}$$

$$\frac{120}{26} \longrightarrow \frac{120}{2}$$

$$\frac{26}{94} \longrightarrow \frac{t'_2}{120 - t'_2}$$

$$\frac{A_2'}{A_2} = \frac{\pi \cdot d_2' \cdot l \cdot n'}{\pi \cdot d_2 \cdot l \cdot n} = \frac{d_2' \cdot n'}{d_2 \cdot n} = \frac{0.05 \times 160}{0.033 \times 200} = 1.212$$

$$\frac{\alpha_2'}{\alpha_2} = \frac{d_2}{d_2'} \cdot \left(\frac{\text{Re'}}{\text{Re}}\right)^{0.8} = \frac{d_2}{d_2'} \cdot \left(\frac{d_2'}{d_2}\right)^{0.8} \cdot \left(\frac{u'}{u}\right)^{0.8} = \frac{d_2}{d_2'} \cdot \left(\frac{d_2'}{d_2}\right)^{0.8} \cdot \left[\left(\frac{d_2}{d_2'}\right)^{0.8} \cdot \left(\frac{d_2'}{d_2'}\right)^{0.8} \cdot \left(\frac{d_2'}{d_2'}\right)^{0.8} - \left(\frac{d_2'}{d_2'}\right)^{0.8} \cdot \left(\frac{d_2'}{d_2'}\right)^{0.8} \cdot \left(\frac{d_2'}{d_2'}\right)^{0.8} = \left(\frac{0.033}{0.05}\right)^{0.8} \cdot \left(\frac{1}{0.8}\right)^{0.8} = 0.566$$

将以上各值代入(2)后再与(1)式联立

$$\frac{t_2' - 26}{60} = 0.566 \times 1.212 \times \frac{\left(t_2' - 26\right)}{\ln \frac{94}{120 - t_2'} \cdot 59}$$

解得: t'₂ = 73℃

- 27、试计算一外径为 50mm, 长为 10m 的氧化钢管, 其外壁温度为 250℃时的辐射热损失。若将此管附设在:
- (1)与管径相比很大的车间内,车间内为石灰粉刷的壁面,壁面温度为27℃,壁面黑度为0.91;
- (2)截面为 200mm×200mm 的红砖砌的通道,通道壁温为 20℃。

解:由表 3-8 查的氧化钢管黑度为 ε_1 =0.8,石灰粉刷壁面的黑度 ε_2 =0.15

(1) 由于炉门被极大的四壁包围,由表 3-9 知

$$\varphi$$
=1, A = A_1 =3.14×0.05×10=1.57 m^2 ,

$$C_{1-2} = \varepsilon_1 C_0 = 0.8 \times 5.669 = 4.535 \text{W/} (\text{m}^2 \cdot \text{K}^4)$$

所以
$$Q_{1-2} = C_{1-2} \varphi_{1-2} A \left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_2}{100} \right)^4 \right]$$

=
$$4.535 \times 1 \times 1.57 \times \left(\left(\frac{250 + 273}{100} \right)^4 - \left(\frac{27 + 273}{100} \right)^4 \right) = 4.75 \text{ kW}$$

(2) 查红砖&=0.93, **Φ**=1,

$$\frac{A_1}{A_2} = \frac{\pi dl}{4al} = \frac{3.14 \times 0.05 \times 10}{4 \times 0.2 \times 10} = 0.196$$
,此为表 3-9 中的第五种情况

$$C_{1-2} = \frac{C_0}{\frac{1}{\varepsilon_1} + \frac{A_1}{A_2} (\frac{1}{\varepsilon_2} - 1)} = \frac{5.669}{\frac{1}{0.8} + 0.196 (\frac{1}{0.93} - 1)} = 4.48 ,$$

所以

$$Q_{1-2} = C_{1-2} \varphi_{1-2} A \left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_2}{100} \right)^4 \right]$$

= $4.48 \times 1 \times 1.57 \times \left(\left(\frac{273 + 250}{100} \right)^4 - \left(\frac{273 + 20}{100} \right)^4 \right) = 4744 \text{ W} = 4.74 \text{ kW}$

28、在一大车间内有一圆柱形焙烧炉,炉高 6m,外径 6m,炉壁内层为 300mm 的耐火砖,外层包有 20mm 的钢板,已测得炉内壁温度为 320℃,车间内温度为 23℃,假设由炉内传出的热量全部从炉外壁以辐射的方式散失。试求此炉每小时由炉壁散失的热量为若干?已知耐火砖 $\lambda = 1.05 \text{W} / (\text{m} \cdot \text{K})$,炉壁黑度 $\epsilon = 0.8$,钢板热阻可以不计。

提示: T_w^4 可用试差法求解, 炉外壁温度在 110-120 \mathbb{C} 之间。

解:辐射面积:

$$A = \pi \cdot d_{yh} L + 0.785 d_{yh}^{2} = \pi \times 6 \times 6 + 0.785 \times 6^{2} = 141.3 \text{m}^{2}$$

$$Q_{\frac{46}{100}} = \varepsilon_1 C_0 A \left[\left(\frac{t_w + 273}{100} \right)^4 - \left(\frac{296}{100} \right)^4 \right]$$

$$= 0.8 \times 5.669 \times 141.3 \left[\left(\frac{t_w + 273}{100} \right)^4 - 76.8 \right]$$

$$= 641 \times \left[\left(\frac{t_w + 273}{100} \right)^4 - 76.8 \right]$$
(1)

耐火砖圆柱热传导:

 $Q_{\text{\tiny $\#$}} = Q_1 + Q_2$

习题 28 附图

$$Q_{1} = \frac{2\pi \cdot l(t_{1} - t_{w})}{\frac{1}{\lambda} \ln \frac{r_{2}}{r_{1}}}$$

$$= \frac{2\pi \cdot 6 \times (320 - t_{w})}{\frac{1}{1.05} \times \ln \frac{3.0}{2.68}} = 373 \times (320 - t_{w})$$

耐火砖顶部热传导:

$$Q_2 = \frac{A'\lambda}{b} (t_1 - t_w) = \frac{0.785 \times 6^2 \times 1.05}{0.3} \times (320 - t_w) = 99 \times (320 - t_w)$$

$$\therefore Q_{\text{des}} = 472 \left(320 - t_{\text{w}}\right) \tag{2}$$

联立(1)与(2)式

$$641 \times \left[\left(\frac{t_{\text{w}} + 273}{100} \right)^{4} - 76.8 \right] = 472 \times (320 - t_{\text{w}})$$

$$\left(\frac{t_{\text{w}} + 273}{100} \right)^{4} - 76.8 = 0.736 \times (320 - t_{\text{w}})$$

试差解得: t_w = 115℃

∴
$$Q_{\text{损失}} = 641(3.88^4 - 76.8) = 96\text{kW}$$

或
$$Q_{损失} = 472(320-115) = 96.8$$
kW

29、平均温度为 150℃的机器油在 ϕ 108×6mm 的钢管中流动,大气温度为 10℃。设油对管壁的对流传热系数为 350 W/(\mathbf{m}^2 ·℃),管壁热阻和污垢热阻忽略不计。试求此时每米管长的热损失。又若管外包一层厚 20mm,导热系数为 0.058 W/(\mathbf{m}^2 ·℃)的玻璃布层,热损失将减少多少?对流辐射联合传热系数 $\alpha_t = 9.4 + 0.052 (t_{w_t} - t)$ W/(\mathbf{m}^2 ·℃)。

解:在定态条件下,各串联热阻 $\Delta t_1/R_1$ 相等

(1) 不保温时的热损失

因管壁热阻忽略不计,可认为管内、外壁温度均为 t_{W} 。

$$\frac{Q}{l} = \frac{(150 - t_w)}{\frac{1}{(350 \times 3.14 \times 0.096)}} = \frac{t_w - 10}{\frac{1}{[(9.4 + 0.052(t_w - 10)) \times 3.14 \times 0.108]}}$$

 $\Leftrightarrow t_{\text{w}}$ -10= θ

$$\frac{(140 - \theta)}{9.47 \times 10^{-3}} = \frac{\theta}{\frac{1}{(3.19 + 0.01764 \,\theta)}}$$

于是
$$1.671 \times 10^{-4} \theta^2 - 1.03 \theta - 140 = 0$$

求解得: $\theta = 133.0^{\circ} \text{C} \Rightarrow t_w = 143.0^{\circ} \text{C}$

按管外壁散热得:

$$\frac{Q}{I}$$
 = (3.19 + 0.01764 × 133) × 133 = 736 W/m

(2) 若加了 20mm 厚的保温层后,管壁温度为 t_{W1} ,保温层外壁温度为 t_{W2} 。

则:

$$\frac{Q}{l} = \frac{(150 - t_{w1})}{9.47 \times 10^{-3}} = \frac{t_{w1} - t_{w2}}{\frac{1}{2\pi \times 0.058} \ln(\frac{148}{108})} = \frac{t_{w2} - 10}{\frac{1}{(9.4 + 0.052(t_{w2} - 10)) \times 3.14 \times 0.148}}$$

$$\Rightarrow \frac{(150 - t_{w2})}{9.47 \times 10^{-3} + 0.865} = \frac{t_{w2} - 10}{\frac{1}{(9.4 + 0.052(t_{w2} - 10)) \times 3.14 \times 0.148}}$$

$$\Rightarrow t_{w} - 10 = \theta_{2}, \quad \Leftrightarrow \frac{t_{w2} - 10}{\frac{1}{(9.4 + 0.052(t_{w2} - 10)) \times 3.14 \times 0.148}}$$

$$\Rightarrow \frac{(140 - \theta_{2})}{0.874} = \frac{\theta_{2}}{\frac{1}{(4.37 + 0.0242(\theta_{2}))}}$$

$$0.0211\,\theta_2^2 + 4.82\,\theta_2 - 140 = 0$$

解得:
$$\theta = 26.1^{\circ} \text{ C} \Rightarrow t_{\text{vi}} = 36.1^{\circ} \text{ C}$$

按管外壁散热得:

$$\frac{Q}{l} = \frac{(150 - 36.1)}{0.874} = 130 \text{ W/m}$$

热损失减少 $\frac{746 - 130}{746} \times 100\% = 82.6\%$

30、某化工厂在生产过程中,需将纯苯液体从 80 ℃冷却到 55 ℃ 其流量为 20000kg/h。冷却介质采用 35℃的循环水。试选用合适型号的换热器。定性温度下流体物性列于本题附表中。

习题 3-30 附表

	密度,kg/m³	比热容,kJ/(kg·℃)	黏度,Pa·s	导热系数,kJ/(m·℃)
苯	828.6	1.841	3.52×10 ⁻⁴	0.129
循环水	992.3	4.174	0.67×10 ⁻³	0.633

解 (1)试算和初选换热器的型号

① 计算热负荷和冷却水消耗量

热负荷:
$$Q = m_{s1}c_{p1}(T_1 - T_2) = \frac{20000 \times 1.841 \times 10^3 \times (80 - 55)}{3600} = 2.56 \times 10^5 \text{ W}$$
 冷却水流量:
$$m_{s2} = \frac{Q}{c_{p2}(t_2 - t_1)} = \frac{2.56 \times 10^5}{4.174 \times 10^3 \times (43 - 35)} = 7.67 \text{ kg/s}$$

② 计算两流体的平均温度差

暂按单壳程、双管程考虑, 先求逆流时平均温度差

$$\Delta t_{m} = \frac{\Delta t_{1} - \Delta t_{2}}{\ln \frac{\Delta t_{1}}{\Delta t_{2}}} = \frac{37 - 20}{\ln \frac{37}{20}} = 27.6 \, ^{\circ}\mathbb{C}$$

$$10 \quad \frac{80}{43} \quad \frac{55}{43} \quad \frac{43}{37} \quad \frac{55}{20}$$

$$11 \quad P = \frac{t_{2} - t_{1}}{T_{1} - t_{1}} = \frac{43 - 35}{80 - 60} \quad 35 = 0.178$$

$$R = \frac{T_{1} - T_{2}}{t_{2} - t_{1}} = \frac{80 - 55}{43 - 35} = 3.125$$

由图 3-27 (a) 查得 $\varphi = 0.94$, 因为 $\varphi > 0.8$, 选用单壳程可行。

所以
$$\Delta t_{m} = \varphi \cdot \Delta t'_{m} = 0.94 \times 27.6 = 25.9 \,^{\circ}$$
C

③初选换热器规格

根据两流体的情况,假设 $K_{\text{th}}=450\text{W}/(\text{m}^2\cdot\text{C})$,传热面积 A_{th} 应为

$$A_{\text{fit}} = \frac{Q}{K_{\text{fit}} \Delta t_{\text{min}}} = \frac{2.56 \times 10^{5}}{450 \times 25.9} = 22 \text{ m}^2$$

本题为两流体均不发生相变的传热过程。为使苯通过壳壁面向空气中散热,提高冷却效果,令苯走壳程,水走管程。两流体平均温度差<50°C,可选用固定管板式换热器。由换热器系列标准,初选换热器型号为G400 II-1.6-22,有关参数如下。

壳径/mm	400	管长/m	3
公称压强/MPa	1.6	管子总数	102
管程数	2	管子排列方法	正三角形
壳程数	1	管中心距/mm	32
管子尺寸/mm	φ25×2.5	折流档板间距/mm	150
实际传热面积/mm²	23.2	折流板型式	圆缺型

(2)校核总传热系数 K

①管程对流传热系数α,

管程流通面积 $A_2 = 0.016 \text{ m}^2$

管程冷却水流速
$$u_2 = \frac{m_{s2}}{\rho_2 A_2} = \frac{7.67}{992.3 \times 0.016} = 0.483 \text{ m/s}$$

$$Re_2 = \frac{d_2 u_2 \rho_2}{\mu_2} = \frac{0.02 \times 0.483 \times 992.3}{0.67 \times 10^{-3}} = 1.43 \times 10^4 \text{ (湍流)}$$

$$Pr_2 = \frac{c_{p_2} \mu_2}{\lambda_2} = \frac{14.174 \times 10^3 \times 6.7 \times 10^{-4}}{0.633} = 4.42$$

$$\alpha_2 = 0.023 \frac{\lambda}{d_2} \text{Re}_2^{0.8} \text{Pr}_2^{0.4}$$

=
$$0.023 \times \frac{0.633}{0.02} \times (1.43 \times 10^4)^{0.8} \times (4.42)^{0.4} = 2783 \text{ W} / (\text{m}^2 \cdot \text{°C})$$

②壳程对流传热系数 α_l ,按式(3-25)计算

$$\alpha_1 = 0.36 \left(\frac{\lambda_1}{d_e}\right) \left(\frac{d_e u_1 \rho_1}{\mu_1}\right)^{0.55} \left(\frac{c_{p1} \mu_1}{\lambda_1}\right)^{\frac{1}{3}} \left(\frac{\mu_1}{\mu_w}\right)^{0.14}$$

流体通过管间最大截面积为

$$S = hD(1 - \frac{d_o}{t}) = 0.15 \times 0.4 \times (1 - \frac{0.025}{0.032}) = 0.013 \text{ m}^2$$

苯的流速为

$$u_1 = \frac{m_{s1}}{\rho_1 \cdot S} = \frac{20000 / 3600}{828.6 \times 0.0131} = 0.512$$
 m/s

管子正三角形排列的当量直径

$$d_e = \frac{4 \times (\frac{\sqrt{3}}{2}t^2 - \frac{\pi}{4}d_1^2)}{\pi d_1} = \frac{4 \times (\frac{\sqrt{3}}{2} \times 0.032^2 - \frac{\pi}{4} \times 0.025^2)}{\pi \times 0.025} = 0.02 \,\mathrm{m}$$

$$Re_1 = \frac{d_e u_1 \rho_1}{\mu_1} = \frac{0.02 \times 0.512 \times 828.6}{0.352 \times 10^{-3}} = 2.41 \times 10^4$$

$$Pr_1 = \frac{c_{p1}\mu_1}{\lambda_1} = \frac{1.841 \times 10^3 \times 0.352 \times 10^{-3}}{0.129} = 5.02$$

壳程中苯被冷却,取
$$(\frac{\mu_1}{\mu_W})^{0.14} = 0.95$$

所以
$$\alpha_1 = 0.36 \times \frac{0.129}{0.02} \times (2.41 \times 10^4)^{0.55} \times (5.02)^{\frac{1}{3}} \times 0.95 = 9714 \text{ W} / (m^2 \cdot \text{C})$$

③污垢热阻

管内、外侧污垢热阻分别取为

$$R_{s1} = 1.72 \times 10^{-4} \text{ m}^2 \cdot \text{°C / W}$$
 , $R_{s2} = 2.00 \times 10^{-4} \text{ m}^2 \cdot \text{°C / W}$

④总传热系数 K

管壁热阻可忽略,总传热系数K为

$$\frac{1}{K_1} = \frac{1}{\alpha_1} + R_{s1} + R_{s2} \frac{d_1}{d_2} + \frac{d_1}{\alpha_2 d_2}$$

$$= \frac{1}{971.4} + 1.72 \times 10^{-4} + 0.0002 \times \frac{0.025}{0.02} + \frac{0.025}{2783 \times 0.02}$$

$$K = 526.2 \text{W} / (\text{m}^2 \cdot \text{C})$$

⑤ 传热面积 A

$$A = \frac{Q}{K \cdot \Delta t_{m \neq f}} = \frac{2.56 \times 10^5}{526.2 \times 25.9} = 18.8 \text{ m}^2$$

安全系数为

$$\frac{23.2 - 18.8}{18.2} \times 100\% = 23.4\%$$

故所选择的换热器是合适的。选用固定管板式换热器,型号为 G400 II-1.6-22

第四章 蒸发

- 1、用一单效蒸发器将 2500kg/h 的 NaOH 水溶液由 10%浓缩到 25%(均为质量百分数),已知加热蒸气压力为 450kPa,蒸发室内压力为 101.3kPa,溶液的沸点为 115℃,比热容为 3.9kJ/(kg \cdot ℃),热损失为 20kW。试计算以下两种情况下所需加热蒸汽消耗量和单位蒸汽消耗量。
- (1) 进料温度为 25℃; (2) 沸点进料。

解:

(1) 求水蒸发量 W

应用式(4-1)

$$W = F(1 - \frac{x_0}{x_1}) = 2500 (1 - \frac{0.1}{0.25}) = 1500 \text{ kg/h}$$

(2) 求加热蒸汽消耗量

应用式 (4-4)

$$D = \frac{FC_{0}(t_{1} - t_{0}) + Wr' + Q_{L}}{r}$$

由书附录查得 450kPa 和 115℃下饱和蒸汽的汽化潜热为 2747.8 和 2701.3kJ/kg则进料温度为 25℃时的蒸汽消耗量为:

$$D = \frac{2500 \times (115 - 25) + 1500 \times 2701 \cdot .3 + 20 \times 3600}{2747 \cdot .8} = \frac{8.78 \times 10^{5} + 4.05 \times 10^{6} + 7.2 \times 10^{4}}{2747 \cdot .8} = 1820 \text{ kg/h}$$

单位蒸汽消耗量由式(4-5a)计算,则

$$\frac{D}{W} = 1.21$$

原料液温度为 115℃时

$$D_2 = \frac{1500 \times 2701 .3 + 20 \times 3600}{2747 .8} = 1500 \text{ kg/h}$$

单位蒸汽消耗量

$$\frac{D_2}{W} = 1.0$$

由以上计算结果可知,原料液的温度愈高,蒸发1kg水所消耗的加热蒸汽量愈少。

2、试计算 30% (质量百分数)的 NaOH 水溶液在 60 kPa (绝)压力下的沸点。

解:

$$:: t_{A} = T' + \Delta'$$

T 查 蒸汽在 600kPa 下的饱和温度为 85.6°C,汽化潜热为 2652kJ/kg

其中 f由式 (4-10) 求得,即

$$f = 0.0162 \frac{(T'+273)^2}{r'} = 0.0162 \frac{(85.6+2.7)}{2.65.2} = 0.7.8.5$$

查附录 △'黨为160℃

$$\therefore 1 = 60 \times 0.785 = 47.1 ^{\circ}\text{C}$$

$$t_A = 85.6 + 47.1 = 1.3.27$$
 °C

3、在一常压单效蒸发器中浓缩 CaCl₂ 水溶液,已知完成液浓度为 35.7% (质分数),密度为 1300kg/m³,若液面平均深度为 1.8m,加热室用 0.2MPa (表压)饱和蒸汽加热,求传热的有效温差。解:

确定溶液的沸点 t1

(1)计算 Д

查附录 *p*=101.3kPa, *T* [']=100℃, *r* [']=2677.2 kJ/kg

查附录 常压下 35%的 $CaCl_2$ 水溶液的沸点近似为 t_A = 115 $^{\circ}$ C

$$\therefore \Delta' = 115 - 100 = 15 \,^{\circ}\text{C}$$

(2)计算 △"

$$p_{\text{av}} = p + \frac{\rho_{\text{av}} \cdot g \cdot h}{2} = 101.3 \times 10^3 + \frac{1300 \times 9.81 \times 1.8}{2} = 1.128 \times \text{k P a}$$

查附录 当 $p_{av}=1.128\times10^3$ kPa 时,对应的饱和蒸汽温度 $T_{pav}=102.7$ °C

$$\therefore \Delta'' = 1027 - 100 = 2.7 ^{\circ}C$$

- (3)取⊿^{""} = 1 ℃
- (4)溶液的沸点

$$t_1 = T' + \Delta' + \Delta'' + \Delta''' = 100 + 15 + 2.7 + 1 = 1187$$
 °C

则传热的有效温度差 Δt 为:

0.4MkPa (表压) 饱和蒸汽的饱和蒸汽温度 T=133.4℃

$$\Delta t = T - t_1 = 133.4 - 118.7 = 14.7 \,^{\circ}\text{C}$$

- 4、用一双效并流蒸发器将 10%(质量%,下同)的 NaOH 水溶液浓缩到 45%,已知原料液量为 5000kg/h,沸点进料,原料液的比热容为 3.76kJ/kg。加热蒸汽用蒸气压力为 500 kPa(绝),冷凝器压力为 51.3kPa,各效传热面积相等,已知一、二效传热系数分别为 K_1 =2000 W/($m^2 \cdot K$), K_2 =1200 W/($m^2 \cdot K$),若不考虑各种温度差损失和热量损失,且无额外蒸汽引出,试求每效的传热面积。解:
- (1) 总蒸发量由式(4-24) 求得

$$W = F(1 - \frac{x_0}{x_n}) = 5000 (1 - \frac{0.1}{0.45}) = 3.88 \Re g/h$$

(2) 设各效蒸发量的初值, 当两效并流操作时

$$W_1: W_2 = 1:1.1$$

$$X W = W_1 + W_2$$

$$W_1 = \frac{3889}{21} = 1852 \text{ kg/h}$$

$$W_{21} = 203 \text{ kg/h}$$

再由式 (4-25) 求得

故

$$x_1 = \frac{Fx_0}{(F - W_1)} = \frac{50000.1}{1852} = 0.159$$
$$x_2 = 0.45$$

(3)假定各效压力,求各效溶液沸点。按各效等压降原则,即各效的压差为:

$$\Delta p = \frac{500 - 51.3}{2} = 224.4 \text{ kPa}$$

$$p_1 = 500 - 224.4 = 275.6 \text{ kPa}$$

$$p_3 = 51.3 \text{ kPa}$$

查第一效 p_1 =275.6 kPa 下饱和水蒸气的饱和蒸汽温度 T_1 =130.2 $^{\circ}$ 0,其 r_1 =2724.2 kJ/kg 查第二效 p_2 =51.3 kPa 下饱和水蒸气的饱和蒸汽温度 T_2 =81.8 $^{\circ}$ 0,其 r_2 =2645.3 kJ/kg

查加热蒸汽 p=500kPa 下, 饱和温度 T=151.7℃,r=2752.8 kJ/kg

(4) 求各效的传热面积,由式(4-33)得

因不考虑各种温度差损失和热损失, 且无额外蒸汽引出, 故加热蒸汽消耗

$$\begin{split} D_1 &= W_1 = 1 \ 8 \ 5 \ \mathbf{R} \ \mathbf{g} / \mathbf{h} \\ D_2 &= W_2 = 2037 \ \mathbf{kg/h} \\ &\therefore T_1 = t_1 \qquad \qquad T_2 = t_2 \qquad \qquad T_1 = T_1^{'} \\ A_1 &= \frac{Q_1}{K_1 \Delta t_1} = \frac{D_1 r_1}{K_1 (T - t_1)} = \frac{1852 \times 2724 .2}{2000 \times (151 .7 - 130 .2)} = 117 .3 \quad \mathbf{m}^2 \\ A_2 &= \frac{Q_2}{K_2 \Delta t_2} = \frac{W_2 r_2}{K_2 (T_1^{'} - t_2)} = \frac{2037 \times 2645 .3}{1200 \times (130 .2 - 81 .8)} = 92 .8 \quad \mathbf{m}^2 \end{split}$$

- (5) 校核第 1 次计算结果,由于 $A_1 \neq A_2$,重新计算。
- 1) $A_1 = A_2 = A$

调整后的各效推动力为:

$$\Delta t_1' = \frac{Q_1}{K_1 A}$$

$$\Delta t_2' = \frac{Q_2}{K_2 A}$$

将上式与式(4-34)比较可得

$$\Delta t_1' = \frac{A_1 \Delta t_1}{A}$$
 $\Delta t_2' = \frac{A_2 \Delta t_2}{A} = 69.5$

经处理可得:

$$A = \frac{A_1 \Delta t_1 + A_2 \Delta t_2}{\Delta t_1 + \Delta t_2} = \frac{117.3 \times 21.5 + 92.8 + 48.4}{21.5 + 48.4} = 100.3 \text{ m}^2$$

则
$$\Delta t_1' = 25.1 \,^{\circ}\text{C}$$
, $\Delta t_2' = 44.8 \,^{\circ}\text{C}$

2) 重新调整压降

$$\Delta t_1' = T - t_1'$$
, M $t_1' = 151.7 - 25.1 = 126.6 °C$

其对应的饱和压力 p_1 =244.3kPa 时,其 r_1 = 2718 kJ/kg

第五章 气体吸收

气液平衡

1. 在常压、室温条件下,含溶质的混合气的中,溶质的体积分率为 10%,求混合气体中溶质的摩尔分率和摩尔比各为多少?

解:

当压力不太高,温度不太低时,体积分率等于分摩尔分率,即

v=0.10

根据
$$Y = \frac{y}{1-y}$$
,所以 $Y = \frac{0.1}{1-0.1} = 0.11$

2. 向盛有一定量水的鼓泡吸收器中通入纯的 CO_2 气体,经充分接触后,测得水中的 CO_2 平衡浓度为 2.875×10^{-2} kmo $1/m^3$,鼓泡器内总压为 101.3 kPa,水温 30° C,溶液密度为 1000 kg/ m^3 。试求亨利系数 E、溶解度系数 H 及相平衡常数 m。

解:

查得 30℃, 水的 p_s = 4.2kPa

$$p_A^* = p - p_s = 101.3 - 4.2 = 97.1$$
kPa

稀溶液:
$$c \approx \frac{\rho}{M_s} = \frac{1000}{18} = 55.56 \,\text{kmol/m}^{-3}$$

$$x = \frac{c_A}{c} = \frac{2.875 \times 10^{-2}}{55.56} = 5.17 \times 10^{-4}$$

$$E = \frac{p_A^*}{x} = \frac{97.1}{5.17 \times 10^{-4}} = 1.876 \times 10^{5} \text{ kPa}$$

$$H = \frac{c_A}{p_A^*} = \frac{2.875 \times 10^{-2}}{97.1} = 2.96 \times 10^{-4} \text{ kmol/(kPa} \cdot \text{m}^3)$$

$$m = \frac{E}{p} = \frac{1.876 \times 10^{5}}{101.3} = 1854$$

3. 在压力为 101. 3kPa, 温度 30℃下, 含 CO₂ 20% (体积分率) 空气-CO₂混合气与水充分接触, 试求液相中 CO₂的摩尔浓度、摩尔分率及摩尔比。

解:

查得 30℃下 CO2 在水中的亨利系数 E 为 1.88×105kPa

CO₂为难溶于水的气体,故溶液为稀溶液

$$H = \frac{\rho_s}{EM_s} = \frac{1000}{1.88 \times 10^5 \times 18} = 2.96 \times 10^{-4} \text{ kmol/(m}^{-3} \cdot \text{kPa)}$$

$$p_A^* = yp = 0.20 \times 101.33 = 20.3 \text{kPa}$$

$$c_A^* = Hp_A = 2.96 \times 10^{-4} \times 20.3 = 6.01 \times 10^{-3} \text{ kmol/m}^{-3}$$

$$m = \frac{E}{p} = \frac{1.88 \times 10^5}{101.3} = 1852$$

$$x = \frac{y}{m} = \frac{0.20}{1852} = 1.08 \times 10^{-4}$$

$$X = \frac{x}{1-x} = \frac{1.08 \times 10^{-4}}{1-1.08 \times 10^{-4}} = 1.08 \times 10^{-4}$$

4. 在压力为 505kPa,温度 25°C下,含 CO_220 %(体积分率)空气 $-CO_2$ 混合气,通入盛有 $1m^3$ 水的 $2m^3$ 密闭贮槽,当混合气通入量为 $1m^3$ 时停止进气。经长时间后,将全部水溶液移至膨胀床中,并减压至 20kPa,设 CO_2 大部分放出,求能最多获得 CO_2 多少 kg?。

解:

设操作温度为 25 °C, $C0_2$ 在水中的平衡关系服从亨利定律,亨利系数 E 为 1.66×10^5 kPa。解:

$$p_{\rm A}^* = Ex$$
 (1)
 $p_{\rm A}^* = 1.66 \times 10^5 x$

气相失去的 CO2摩尔数=液相获得的 CO2摩尔数

$$\frac{(p_{A} - p_{A}^{*})V_{G}}{RT} = cV_{L}x$$

$$\frac{(0.2 \times 505 - p_{A}^{*}) \times 1}{8.314 \times 298} = \frac{1000}{18} \times 1 \times x$$

$$0.0408 - 4.04 \times 10^{-4} p_{A}^{*} = 55.56x$$
(2)

(1) 与 (2) 解得: $x = 3.33 \times 10^{-4}$

减压后:
$$m = \frac{E}{p} = \frac{1.66 \times 10^5}{20} = 8300$$

$$x_1 = \frac{y_1}{m} = \frac{1}{8300} = 1.2 \times 10^{-4}$$

稀溶液: $x \approx X = \frac{W/44}{1000/18}$
 $W = 2444 \times 3.33 \times 10^{-4} = 0.81 \text{kg}$
 $W_1 = 2444 \times 1.2 \times 10^{-4} = 0.29 \text{kg}$
 $\Delta W = 0.81 - 0.29 = 0.52 \text{kg}$

5. 用清水逆流吸收混合气中的氨,进入常压吸收塔的气体含氨 6% (体积),氨的吸收率为 93.3%,溶液出口浓度为 0.012 (摩尔比),操作条件下相平衡关系为 $Y^*=2.52X$ 。试用气相摩尔比表示塔顶和塔底处吸收的推动力。

解:

$$Y_{_{1}} = \frac{y_{_{1}}}{1 - y_{_{1}}} = \frac{0.06}{1 - 0.06} = 0.064 \qquad Y_{_{1}}^{*} = 2.52 \, X_{_{1}} = 2.52 \times 0.012 = 0.03024$$

$$Y_{_{2}} = Y_{_{1}}(1 - \varphi) = 0.064(1 - 0.933) = 0.00429 \qquad Y_{_{2}}^{*} = 2.52 \, X_{_{2}} = 2.52 \times 0 = 0$$
 掛页:
$$\Delta Y_{_{2}} = Y_{_{2}} - Y_{_{2}}^{*} = 0.00429 = 0.00429$$

塔底:
$$\Delta Y_1 = Y_1 - Y_1^* = 0.064 - 0.03024 = 0.034$$

- (1) 从液相分析 SO₂ 的传质方向;
- (2) 从气相分析,其他条件不变,温度降到0℃时SO₂的传质方向;
- (3) 其他条件不变,从气相分析,总压提高到 202.6kPa 时 SO_2 的传质方向,并计算以液相摩尔分率差及气相摩尔率差表示的传质推动力。

解: (1)查得在总压 101.3kPa, 温度 30℃条件下 SO₂在水中的亨利系数 E=4850kPa

所以
$$m = \frac{E}{p} = \frac{4850}{101.3} = 47.88$$

从液相分析

$$x^* = \frac{y}{m} = \frac{0.3}{47.88} = 0.00627 < x = 0.01$$

故 SO₂必然从液相转移到气相,进行解吸过程。

(2) 查得在总压 101.3kPa, 温度 0℃的条件下, SO₂在水中的亨利系数 E=1670kPa

$$m = \frac{E}{p} = \frac{1670}{101.3} = 16.49$$

从气相分析

$$y^* = mx = 16.49 \times 0.01 = 0.16 < y = 0.3$$

故 SO₂必然从气相转移到液相,进行吸收过程。

(3) 在总压 202.6kPa, 温度 30℃条件下, SO₂在水中的亨利系数 E=4850kPa

$$m = \frac{E}{p} = \frac{4850}{202.6} = 23.94$$

从气相分析

$$y^* = mx = 23.94 \times 0.01 = 0.24 < y = 0.3$$

故 SO₂必然从气相转移到液相,进行吸收过程。

$$x^* = \frac{y}{m} = \frac{0.3}{23.94} = 0.0125$$

以液相摩尔分数表示的吸收推动力为:

$$\Delta x = x^* - x = 0.0125 - 0.01 = 0.0025$$

以气相摩尔分数表示的吸收推动力为:

$$\Delta v = v - v^* = 0.3 - 0.24 = 0.06$$

扩散与单相传质

- 7. 在温度为 20° 、总压为 101.3kPa 的条件下, SO_2 与空气混合气缓慢地沿着某碱溶液的液面流过,空气不溶于该溶液。 SO_2 透过 1mm 厚的静止空气层扩散到溶液中,混合气体中 SO_2 的摩尔分率为 0.2, SO_2 到达溶液液面上立即被吸收,故相界面上 SO_2 的浓度可忽略不计。已知温度 20° C时, SO_2 在空气中的扩散系数为 0.18cm²/s。试求 SO_2 的传质速率为多少?
- 解: SO_2 通过静止空气层扩散到溶液液面属单向扩散,已知: SO_2 在空气中的扩散系数 D=0.18cm²/s= 1.8×10^{-5} m²/s

扩散距离 z=1mm=0.001m, 气相总压 p=101.3kPa

气相主体中溶质 SO_2 的分压 $p_{A1}=p \cdot v_{A1}=101.3 \times 0.2=20.26$ kPa

气液界面上 SO_2 的分压 $p_{A2}=0$

所以,气相主体中空气(惰性组分)的分压 $p_{\text{Bl}}=p-p_{\text{Al}}=101.3-20.26=81.04$ kPa 气液界面上的空气(惰性组分)的分压 $p_{\text{B2}}=p-p_{\text{A2}}=101.3-0=101.3$ kPa 空气在气相主体和界面上分压的对数平均值为:

$$p_{\rm Bm} = \frac{p_{\rm B2} - p_{\rm B1}}{\ln \frac{p_{\rm B2}}{p_{\rm B1}}} = \frac{101.3 - 81.04}{\ln \frac{101.3}{81.04}} = 90.8 \text{kPa}$$

$$N_{\rm A} = \frac{Dp}{RTzp_{\rm Bm}} (p_{\rm A1} - p_{\rm A2})$$

$$= \frac{1.8 \times 10^{-5}}{8.314 \times 293 \times 0.001} \cdot \frac{101.3}{90.8} \cdot (20.26 - 0)$$

$$= 1.67 \times 10^{-4} \text{kmol/(m}^2 \cdot \text{s})$$

8. 在总压为 100kPa、温度为 30℃时,用清水吸收混合气体中的氨,气相传质系数 $k_{\rm G}$ =3.84×10⁻⁶ kmol/(m²•s•kPa),液相传质系数 $k_{\rm L}$ =1.83×10⁻⁴ m/s,假设此操作条件下的平衡关系服从亨利定律,测得液相溶质摩尔分率为 0.05,其气相平衡分压为 6.7kPa。求当塔内某截面上气、液组成分别为 y=0.05,x=0.01 时

- (1) 以 ($p_A p_A^*$)、($c_A^* c_A$) 表示的传质总推动力及相应的传质速率、总传质系数;
- (2) 分析该过程的控制因素。

解: (1) 根据亨利定律
$$E = \frac{p_A^*}{x} = \frac{6.7}{0.05} = 134 \text{ kPa}$$

相平衡常数
$$m = \frac{E}{p} = \frac{134}{100} = 1.34$$

溶解度常数
$$H = \frac{\rho_s}{EM_s} = \frac{1000}{134 \times 18} = 0.4146$$

以气相分压差 ($p_A - p_A^*$) 表示总推动力时:

$$p_{\Delta} - p_{\Delta}^* = 100 \times 0.05 - 134 \times 0.01 = 3.66 \text{kPa}$$

$$\frac{1}{K_G} = \frac{1}{Hk_A} + \frac{1}{k_G} = \frac{1}{0.4146 \times 1.83 \times 10^{-4}} + \frac{1}{3.86 \times 10^{-6}} = 13180 + 260417 = 273597$$

$$K_G = 3.66 \times 10^{-6}$$
 kmol/ (m² • s • kPa)

$$N_{\rm A} = K_{\rm G} (p_{\rm A} - p_{\rm A}^*) = 3.66 \times 10^{-6} \times 3.66 = 1.34 \times 10^{-5} \,\text{kmol/} \,\,(\text{m}^2 \cdot \text{s})$$

以($c_{\rm A}^*$ - $c_{\rm A}$)表示的传质总推动力时:

$$c_{\rm A} = \frac{0.01}{0.99 \times 18 / 1000} = 0.56 \text{ kmol/m}^3$$

$$c_{\rm A}^* - c_{\rm A}^{} = 0.4146 \times 100 \times 0.05 - 0.56 = 1.513 \text{ kmol/m}^3$$

$$K_{\rm L} = \frac{K_{\rm G}}{H} = \frac{3.66 \times 10^{-6}}{0.4146} = 8.8 \times 10^{-6} \,\text{m/s}$$

$$N_{\rm A} = K_{\rm L} (c_{\rm A}^* - c_{\rm A}) = 8.8 \times 10^{-6} \times 1.513 = 1.3314 \times 10^{-5} \,\text{kmol/} \,\,(\text{m}^2 \cdot \text{s})$$

(2)与($p_A-p_A^*$)表示的传质总推动力相应的传质阻力为 273597($m^2 \cdot s \cdot kPa$)/ kmol;

其中气相阻力为
$$\frac{1}{k_G}$$
 = 13180 m² · s · kPa/ kmol;

液相阻力
$$\frac{1}{Hk_{\perp}}$$
 = 260417 m² • s • kPa/ kmol;

气相阻力占总阻力的百分数为 $\frac{260417}{273597} \times 100\% = 95.2\%$ 。

故该传质过程为气膜控制过程。

- 9. 若吸收系统服从亨利定律或平衡关系在计算范围为直线,界面上气液两相平衡,推导出 K_L 与 k_L 、 k_G 的关系。
- 解:因吸收系统服从亨利定律或平衡关系在计算范围为直线

$$c^*_A = Hp_A$$

界面上气液两相平衡

$$c_{Ai} = Hp_{Ai}$$
的关系式

曲
$$N_{\Lambda} = K_{\tau} (c_{\Lambda}^* - c_{\Lambda})$$
得

$$\frac{1}{K_{\rm I}} N_{\rm A} = (c_{\rm A}^* - c_{\rm A}) \tag{1}$$

$$N_{\rm A} = k_{\rm G} \left(\frac{{\rm c}_{\rm A}^*}{{\rm H}} - \frac{{\rm c}_{\rm Ai}}{{\rm H}} \right)$$

$$\frac{H}{k_G}N_A = (c_A^* - c_{Ai}) \tag{2}$$

由 $N_{\rm A} = k_{\rm L} (c_{\rm Ai} - c_{\rm A})$ 得

$$\frac{1}{k_{\rm L}} N_{\rm A} = (c_{\rm Ai} - c_{\rm A}) \tag{3}$$

(2) 式+(3) 式, 并与(1) 式比较得

$$\frac{1}{K_{\rm L}} = \frac{1}{k_{\rm L}} + \frac{H}{k_{\rm G}}$$

吸收过程设计型计算

10. 用 20℃的清水逆流吸收氨一空气混合气中的氨,已知混合气体总压为 101.3 kPa,其中氨的分压为 1.0133 kPa,要求混合气体处理量为 773 m^3 /h,水吸收混合气中氨的吸收率为 99%。在操作条件下物系的平衡关系为 $Y^* = 0.757\,X$,若吸收剂用量为最小用的 2 倍,试求(1)塔内每小时所需清水的量为多少 kg?(1)塔底液相浓度(用摩尔分率表示)。解:

(1)
$$Y_{1} = \frac{p_{A}}{p_{B}} = \frac{1.0133}{101.3 - 1.0133} = 0.01$$

$$Y_{2} = Y_{1}(1 - \eta) = 0.01(1 - 0.99) = 1 \times 10^{-4}$$

$$V = \frac{773 \times 273}{293 \times 22.4} (1 - 0.01) = 31.8 \text{kmol/h}$$

$$L_{\min} = V \frac{Y_{1} - Y_{2}}{X_{1}^{*} - X_{2}} = \frac{31.8(0.01 - 0.0001)}{0.01 - 0.0001} = 23.8 \text{kmol/h}$$

实际吸收剂用量 L=2L_{min}=2×23.8=47.6kmol/h

$$=856.8 \text{ kg/h}$$

(2)
$$X_1 = X_2 + V (Y_1 - Y_2) / L = 0 + \frac{31.8(0.01 - 0.0001)}{47.6} = 0.0066$$

11. 在一填料吸收塔内,用清水逆流吸收混合气体中的有害组分 A,已知进塔混合气体中组分 A 的浓度为 0.04(摩尔分率,下同),出塔尾气中 A 的浓度为 0.005,出塔水溶液中组分 A 的浓度为 0.012,操作条件下气液平衡关系为 $Y^*=2.5X$ 。试求操作液气比是最小液气比的倍数?解:

$$Y_1 = \frac{y_1}{1 - y_1} = \frac{0.04}{1 - 0.04} = 0.0417$$

$$Y_2 = \frac{y_2}{1 - y_2} = \frac{0.005}{1 - 0.005} = 0.005$$

$$X_1 = \frac{x_1}{1 - x_1} = \frac{0.012}{1 - 0.012} = 0.0121$$

$$\left(\frac{L}{V}\right)_{\min} = \frac{Y_1 - Y_2}{X_1^* - X_2} = \frac{Y_1 - Y_2}{\frac{Y_1}{m}} = m(1 - \frac{Y_2}{Y_1}) = 2.5(1 - \frac{0.005}{0.0417})$$

= 2.2

$$\frac{L}{V} = \frac{Y_1 - Y_2}{X_1 - X_2} = \frac{0.0417 - 0.005}{0.0121 - 0} = 3.03$$

$$\frac{L}{V} / \left(\frac{L}{V}\right)_{\text{min}} = \frac{3.03}{2.2} = 1.38$$

12. 用 SO_2 含量为 1.1×10^{-3} (摩尔分率)的水溶液吸收含 SO_2 为 0.09(摩尔分率)的混合气中的 SO_2 。已知进塔吸收剂流量为 37800kg/h,混合气流量为 100kmol/h,要求 SO_2 的吸收率为 80%。在吸收操作条件下,系统的平衡关系为 $Y^*=17.8X$,求气相总传质单元数。

解: 吸收剂流量 $L = \frac{37800}{18} = 2100 \text{ kmol/h}$

$$Y_1 = \frac{y_1}{1 - y_1} = \frac{0.09}{1 - 0.09} = 0.099$$

$$Y_2 = Y_1(1-\eta) = 0.099(1-0.8) = 0.0198$$

惰性气体流量 $V = 100(1 - y_1) = 100(1 - 0.09) = 91$ kmol/h

$$X_1 = X_2 + \frac{V}{L}(Y_1 - Y_2) = 1.1 \times 10^{-3} + \frac{91}{2100}(0.099 - 0.0198) = 4.53 \times 10^{-3}$$

$$\Delta Y_1 = Y_1 - Y_1^* = 0.099 - 17.8 \times 4.53 \times 10^{-3} = 0.0184$$

$$\Delta Y_2 = Y_2 - Y_2^* = 0.0198 - 17.8 \times 1.1 \times 10^{-3} = 2.2 \times 10^{-4}$$

$$\Delta Y_{m} = \frac{\Delta Y_{1} - \Delta Y_{2}}{\ln \frac{\Delta Y_{1}}{\Delta Y_{2}}} = \frac{0.0184 - 2.2 \times 10^{-4}}{\ln \frac{0.0184}{2.2 \times 10^{-4}}} = 4.1 \times 10^{-3}$$

$$N_{oG} = \frac{Y_1 - Y_2}{\Delta Y_m} = \frac{0.099 - 0.0198}{4.1 \times 10^{-3}} = 19.3$$

12. 空气中含丙酮 2%(体积百分数)的混合气以 0.024kmol/m²•s 的流速进入一填料塔,今用流速为 0.065kmol/m²•s 的清水逆流吸收混合气中的丙酮,要求丙酮的回收率为 98.8%。已知操作压力为 100 kPa,操作温度下的亨利系数为 177 kPa,气相总体积吸收系数为 0.0231 kmol/m³•s,试用解吸因数法求填料层高度。

解

已知
$$y_1 = \frac{2}{100-2} = 0.0204 \qquad Y_1 = \frac{y_1}{1-y_1} = \frac{0.0204}{1-0.0204} = 0.0208$$

$$Y_2 = Y_1(1-\eta) = 0.0208 (1-0.988) = 0.000250$$

$$X_2 = 0$$

$$m = \frac{E}{p} = \frac{177}{100} = 1.77$$
 因此时为低浓度吸收,故 $\frac{V}{\Omega} \approx 0.024 \text{kmol/m}^2 \cdot \text{s}$
$$S = \frac{mV}{L} = \frac{1.77 \times 0.024}{0.065} = 0.654$$

$$\frac{Y_1 - mX_2}{Y_2 - mX_2} = \frac{Y_1}{Y_2} = \frac{1}{1-\eta} = \frac{1}{1-0.988} = 83.3$$

$$N_{\text{OG}} = \frac{1}{1-S} \ln \left[(1-S) \frac{Y_1 - mX_2}{Y_2 - mX_2} + S \right]$$

$$N_{\rm OG}$$
 也可由 $S=0.654$ 和 $\frac{Y_{\rm 1}-mX_{\rm 2}}{Y_{\rm 2}-mX_{\rm 2}}$ =83.3,查图 5-25 得到 $N_{\rm OG}$ =9.78

 $= \frac{1}{1 - 0.654} \ln \left[(1 - 0.654) \times 83.3 + 0.654 \right]$

$$H_{\text{OG}} = \frac{V}{K_{y} a \Omega} = \frac{0.024}{0.0231} = 1.04 \,\text{m}$$

所以
$$Z = N_{\text{og}} \cdot H_{\text{og}} = 9.78 \times 1.04 = 10.17 \text{m}$$

=11.0

14. 在逆流吸收的填料吸收塔中,用清水吸收空气~氨混合气中的氨,气相流率为 $0.65 \text{kg/(m}^2 \cdot \text{S})$ 。操作液气比为最小液气比的 1.6 倍,平衡关系为 $y^* = 0.92 x$,气相总传质系数 $K_y a$ 为 $0.043 \text{kmo} 1/(\text{m}^3 \cdot \text{S})$ 。试求:

- (1) 吸收率由 95%提高到 99%, 填料层高度的变化。
- (2) 吸收率由 95%提高到 99%, 吸收剂用量之比为多少?

解: (1) 吸收率为 95%时:

$$V=0.65 / 29=0.0224 \text{ kmo} 1/(\text{m}^2 \cdot \text{S})$$

$$H_{\text{OG}} = \frac{V}{K_{v}a} = \frac{0.0224}{0.043} = 0.521 \,\text{m}$$

$$\left(\frac{L}{V}\right)_{\min} = \frac{Y_1 - Y_2}{X_1^* - X_2} = \frac{Y_1 - Y_2}{Y_2 / m} = m \, \eta = 0.92 \times 0.95 = 0.874$$

$$\frac{L}{V} = 1.6 \left(\frac{L}{V}\right)_{\text{min}} = 1.6 \times 0.874 = 1.398$$

$$L=0.0224\times1.398=0.0313 \text{ kmol/}(\text{m}^2 \cdot \text{S})$$

$$S = \frac{mV}{L} = \frac{0.92}{1.398} = 0.658$$

$$N_{og} = \frac{1}{1-S} \ln \left[(1-S) \frac{Y_1 - mX_2}{Y_2 - mX_2} + S \right]$$

$$N_{cc} = \frac{1}{1 - 0.658} \ln \left[(1 - 0.658) \frac{1}{1 - 0.95} + 0.658 \right] = 5.89$$

$$Z = N_{\text{og}} \cdot H_{\text{og}} = 5.89 \times 0.521 = 3.1 \text{m}$$

吸收率为99%时:

$$H'_{\text{OG}} = H_{\text{OG}} = \frac{V}{K_v a} = \frac{0.0224}{0.043} = 0.521 \,\text{m}$$

$$\left(\frac{L}{V}\right)_{\min} = \frac{Y_1 - Y_2}{X_1^* - X_2} = \frac{Y_1 - Y_2}{Y_2^2 / m} = m \eta^* = 0.92 \times 0.99 = 0.911$$

$$\left(\frac{L}{V}\right)' = 1.6 \left(\frac{L}{V}\right)'_{\text{min}} = 1.6 \times 0.911 = 1.457$$

$$L = 0.0224 \times 1.457 = 0.0326 \text{ kmol/} (\text{m}^2 \cdot \text{S})$$

$$S' = \frac{mV}{L} = \frac{0.92}{1.457} = 0.631$$

$$N' \propto = \frac{1}{1 - S'} \ln \left[(1 - S') \frac{Y_1 - mX_2}{Y_2 - mX_2} + S' \right]$$

$$N'_{\infty} = \frac{1}{1 - 0.631} \ln \left[(1 - 0.631) \frac{1}{1 - 0.99} + 0.631 \right] = 9.82$$

$$Z' = N'_{\text{OG}} \cdot H_{\text{OG}} = 9.82 \times 0.521 = 5.1 \text{m}$$

$$\frac{Z'}{Z} = \frac{5.11}{3.1} = 1.65$$

(2) $L=0.0224\times1.398=0.0313 \text{ kmol/(m}^2 \cdot \text{S)}$

 $L = 0.0224 \times 1.457 = 0.0326 \text{ kmo} 1/(\text{m}^2 \cdot \text{S})$

$$\frac{L'}{L} = \frac{0.0326}{0.0313} = 1.04$$

- 15. 用纯溶剂在填料塔内逆流吸收混合气体中的某溶质组分,已知吸收操作液气比为最小液气比的倍数为 β ,溶质 A 的吸收率为 η ,气液相平衡常数 m。试推导出:
- (1) 吸收操作液气比 $\frac{L}{V}$ 与 η 、 β 及 m之间的关系;
- (2) 当传质单元高度 H_{α} 及吸收因数 A 一定时,填料层高度 Z 与吸收率 η 之间的关系?

解: (1)
$$\eta = \frac{Y_1 - Y_2}{Y_1}$$

$$\left(\frac{L}{V}\right)_{\min} = \frac{Y_1 - Y_2}{X_1^* - X_2} = \frac{Y_1 - Y_2}{Y_2 / m} = m \eta$$

$$\frac{L}{V} = \beta \left(\frac{L}{V}\right) = \beta \eta m$$

(2)
$$Z = N_{\text{og}} \cdot H_{\text{og}} = H_{\text{og}} \cdot \frac{Y_{_{1}} - Y_{_{2}}}{(Y_{_{1}} - mX_{_{1}}) - (Y_{_{2}} - mX_{_{2}})} \ln \frac{Y_{_{1}} - mX_{_{1}}}{Y_{_{2}} - mX_{_{2}}}$$

$$X_{1} = X_{2} + \frac{V}{L}(Y_{1} - Y_{2}) = \frac{V}{L}Y_{1}\eta = \frac{\eta Y_{1}}{Am}$$

$$Z = H_{oc} \cdot \frac{Y_{1} - Y_{2}}{\frac{Y_{1} - mX_{1} - Y_{2}}{\ln \frac{Y_{1} - mX_{1}}{Y_{2}}}} = \frac{H_{oc}}{1 - \frac{mV}{L}} \ln \frac{Y_{1} - mX_{1}}{Y_{2}}$$

$$= \frac{H_{OG}}{1 - \frac{mV}{L}} \ln \frac{Y_1 - m\frac{\eta Y_1}{Am}}{Y_1(1 - \eta)} = \frac{H_{OG}}{1 - \frac{mV}{L}} \ln \frac{1 - \frac{\eta}{A}}{1 - \eta}$$

吸收过程的操作型计算

16. 在一填料塔中用清水吸收氨一空气中的低浓氨气, 若清水量适量加大, 其余操作条件不变, 则 Y_2 、 X_1 如何变化?(已知体积传质系数随气量变化关系为 $k_v a \propto V^{0.8}$)

解: 用水吸收混合气中的氨为气膜控制过程,故 $K_v a \approx k_v a \propto V^{0.8}$

因气体流量 V 不变,所以 $k_y a$ 、 $K_y a$ 近似不变, H_{OG} 不变。

因塔高不变,故根据 $Z=N_{\rm og}\cdot H_{\rm og}$ 可知 $N_{\rm og}$ 不变。

当清水量加大时,因 $S=\frac{m}{L/V}$,故 S 降低,由图 5-25 可以看出 $\frac{Y_1-mX_2}{Y_2-mX_2}$ 会增大,故 Y_2 将下

降。

根据物料衡算 $L(X_1 - X_2) = V(Y_1 - Y_2) \approx VY_1$ 可近似推出 X_1 将下降。

- 17. 某填料吸收塔在 101.3 kPa,293K 下用清水逆流吸收丙酮—空气混合气中的丙酮,操作液气比为 2.0,丙酮的回收率为 95%。已知该吸收为低浓度吸收,操作条件下气液平衡关系为 $Y=1.18\,X$,吸收过程为气膜控制,气相总体积吸收系数 K_Ya 与气体流率的 0.8 次方成正比。(塔截面积为 1m^2)
- (1) 若气体流量增加 15%, 而液体流量及气、液进口组成不变, 试求丙酮的回收率有何变化?
- (2) 若丙酮回收率由 95%提高到 98%,而气体流量,气、液进口组成,吸收塔的操作温度和压力皆不变,试求吸收剂用量提高到原来的多少倍。

解:

(1) 设操作条件变化前为原工况

$$S = \frac{mV}{L} = \frac{1.18}{2.0} = 0.59$$

$$X_2 = 0, \quad \frac{Y_1 - mX_2}{Y_2 - mX_2} = \frac{Y_1}{Y_2} = \frac{1}{1 - \eta} = \frac{1}{1 - 0.95} = 20$$

$$N_{\text{OG}} = \frac{1}{1 - S} \ln \left[(1 - S) \frac{Y_1 - mX_2}{Y_2 - mX_2} + S \right]$$

$$= \frac{1}{1 - 0.59} \ln \left[(1 - 0.59) \times 20 + 0.59 \right]$$

= 5.3 0 1

设气量增加 15%时为新工况

因
$$H_{\text{OG}} = \frac{V}{K_{Y} a \Omega}$$
, $K_{Y} a \propto V^{0.8}$

所以
$$H_{\text{OG}} \propto \frac{V}{V^{0.8}} = V^{0.2}$$

故新工况下
$$H'_{\text{OG}} = H_{\text{OG}} \left(\frac{V'}{V} \right)^{0.2} = H_{\text{OG}} 1.15^{0.2} = 1.028 H_{\text{OG}}$$

因塔高未变, 故 $N_{\text{og}} \cdot H_{\text{og}} = N_{\text{og}} \cdot H_{\text{og}}$

$$N_{\text{OG}}' = \frac{N_{\text{OG}} \cdot H_{\text{OG}}}{H_{\text{OG}}'} = \frac{N_{\text{OG}} \cdot H_{\text{OG}}}{1.028 H_{\text{OG}}} = \frac{5.301}{1.028} = 5.157$$

$$\therefore S = \frac{mV}{I} \quad , \quad S' = \frac{mV'}{I}$$

$$\therefore S' = \frac{V'}{V}S = 1.15 \times 0.59 = 0.679$$

新工况下:

$$N'_{\text{OG}} = \frac{1}{1 - S'} \ln \left[\left(1 - S' \right) \frac{Y_1 - mX_2}{Y'_2 - mX_2} + S' \right]$$

$$5.157 = \frac{1}{1 - 0.679} \ln \left[\left(1 - 0.679 \right) \frac{Y_1}{Y'_2} + 0.679 \right]$$

$$5.157 = \frac{1}{1 - 0.679} \ln \left[\left(1 - 0.679 \right) \frac{1}{1 - n'} + 0.679 \right]$$

解得丙酮吸收率η变为92.95%

(2) 当气体流量不变时,对于气膜控制的吸收过程, H_{og} 不变,故吸收塔塔高不变时, N_{og} 也不变

化,即将丙酮回收率由 95%提高到 98%,提高吸收剂用量时,新工况下 $N^{''}$ og = $N_{\rm og}$ =5.301

$$S'' = \frac{mV}{L''}$$
 , $\eta'' = 0.98$

$$N^{"}_{OG} = \frac{1}{1 - S^{"}} \ln \left[\left(1 - S^{"} \right) \frac{1}{n^{"}} + S^{"} \right]$$

$$5.301 = \frac{1}{1 - S^{"}} \ln \left[\left(1 - S^{"} \right) \frac{1}{1 - 0.98} + S^{"} \right]$$

用试差法解得 S "=0.338

$$\frac{S}{S} = \frac{L}{L} = \frac{0.59}{0.338} = 1.746$$

所以吸收剂用量应提高到原来的 1.746 倍。

18. 在一逆流操作的吸收塔中,如果脱吸因数为 0.75,气液相平衡关系为 $Y^* = 2.0X$,吸收剂进塔 浓度为 0.001 (摩尔比,下同),入塔混合气体中溶质的浓度为 0.05 时,溶质的吸收率为 90%。试 求入塔气体中溶质浓度为 0.04 时, 其吸收率为多少? 若吸收剂进口浓度为零, 其他条件不变, 则其 吸收率又如何? 此结果说明了什么?

解:
$$X_2 = 0.001$$
 时:

原工况
$$S = 0.75$$
 $Y_2 = Y_1(1-\eta) = 0.05(1-0.9) = 0.005$
$$N_{oG} = \frac{1}{1-S} \ln \left[(1-S) \frac{Y_1 - mX_2}{Y_2 - mX_2} + S \right]$$

$$N_{oG} = \frac{1}{1-0.75} \ln \left[(1-0.75) \frac{0.05 - 2 \times 0.001}{0.005 - 2 \times 0.001} + 0.75 \right] = 6.233$$
 新工况 $H'_{oG} = H_{oG}$ $Z' = Z$
$$N'_{oG} = \frac{1}{1-S} \ln \left[(1-S) \frac{Y_1' - mX_2}{T_1' - mX_2} + S \right]$$

$$N'_{OG} = \frac{1}{1-S} \ln \left[(1-S) \frac{Y_1' - mX_2}{Y_2' - mX_2} + S \right]$$

$$N \propto = N \propto = \frac{1}{1 - 0.75} \ln \left[(1 - 0.75) \frac{0.04 - 2 \times 0.001}{Y_2 - 2 \times 0.001} + 0.75 \right] = 6.233$$

解得
$$Y_2 = 4.375 \times 10^{-3}$$

$$\eta' = \frac{Y_1' - Y_2'}{Y_1'} = \frac{0.04 - 4.375 \times 10^{-3}}{0.04} = 0.8906 = 89.06\%$$

 $X_2 = 0$ 时:

原工况
$$S = 0.75$$
 $Y_2 = Y_1(1-\eta) = 0.05(1-0.9) = 0.005$

$$N_{OG} = \frac{1}{1 - S} \ln \left[(1 - S) \frac{Y_1 - mX_2}{Y_2 - mX_2} + S \right]$$

$$N_{OG} = \frac{1}{1 - 0.75} \ln \left[(1 - 0.75) \frac{0.05}{0.005} + 0.75 \right] = 4.715$$

新工况

$$H'_{\text{og}} = H_{\text{og}}$$
 $Z' = Z$

$$N'_{\infty} = \frac{1}{1 - S} \ln \left[(1 - S) \frac{Y_1'}{Y_2'} + S \right]$$

$$N'_{\infty} = N_{\infty} = \frac{1}{1 - 0.75} \ln \left[(1 - 0.75) \frac{0.04}{Y_2'} + 0.75 \right] = 4.715$$

解得 $Y_2' = 4.00 \times 10^{-3}$

$$\eta' = \frac{Y_1' - Y_2'}{Y_1'} = \frac{0.04 - 4.00 \times 10^{-3}}{0.04} = 0.9 = 90\%$$

从计算结果看, 塔高一定, 当用纯溶剂吸收混合气体中的溶质时, 入塔气体组成变化, 其他条件不变, 其吸收率不变。

19. 在一逆流操作的填料塔中,用纯溶剂吸收混合气体中溶质组分,当液气比为 1.5 时,溶质的吸收率为 90%,在操作条件下气液平衡关系为 $Y^* = 0.75\,X$ 。如果改换新的填料时,在相同的条件下,溶质的吸收率提高到 98%,求新填料的气相总体积吸收系数为原填料的多少倍?

$$S = \frac{mV}{L} = \frac{0.75}{1.5} = 0.5$$

$$N_{OG} = \frac{1}{1 - S} \ln \left[(1 - S) \frac{Y_1 - mX_2}{Y_2 - mX_2} + S \right] = \frac{1}{1 - S} \ln \left[(1 - S) \frac{1}{1 - \eta} + S \right]$$

$$N_{OG} = \frac{1}{1 - 0.5} \ln \left[(1 - 0.5) \frac{1}{1 - 0.90} + 0.5 \right] = 3.41$$

新工况: S' = S

$$N'_{GG} = \frac{1}{1 - 0.5} \ln \left[(1 - 0.5) \frac{1}{1 - 0.98} + 0.5 \right] = 6.477$$

$$H_{GG} = \frac{V}{K_{y} a \Omega} = \frac{Z}{N_{GG}} \qquad H'_{GG} = \frac{V}{K_{y}' a \Omega} = \frac{Z}{N'_{GG}}$$

$$\frac{K'_{y} a}{K_{x} a} = \frac{N'_{GG}}{N} = \frac{6.477}{3.41} = 1.900$$

20. 在一填料吸收塔内用洗油逆流吸收煤气中含苯蒸汽。进塔煤气中苯的初始浓度为 0.02 (摩尔比,下同),操作条件下气液平衡关系为 $Y^* = 0.125 \, X$,操作液气比为 0.18,进塔洗油中苯的浓度为 0.003,出塔煤气中苯浓度降至 0.002。因脱吸不良造成进塔洗油中苯的浓度为 0.006,试求此情况下 (1) 出塔气体中苯的浓度;

(2) 吸收推动力降低的百分数?

解: 原工况:

$$S = \frac{mV}{L} = \frac{0.125}{0.18} = 0.6944$$

$$N_{OG} = \frac{1}{1 - S} \ln \left[(1 - S) \frac{Y_1 - mX_2}{Y_2 - mX_2} + S \right]$$

$$N_{OG} = \frac{1}{1 - 0.6944} \ln \left[(1 - 0.6944) \frac{0.02 - 0.125 \times 0.003}{0.002 - 0.125 \times 0.003} + 0.6944 \right] = 4.837$$

$$\Delta Y_m = \frac{Y_1 - Y_2}{N_{OG}} = \frac{0.02 - 0.002}{4.837} = 0.003721$$

新工况: $H'_{\text{OG}} = H_{\text{OG}}$ Z' = Z S' = S

$$N_{OG} = N_{OG} = \frac{1}{1 - 0.6944} \ln \left[(1 - 0.6944) \frac{0.02 - 0.125 \times 0.006}{Y_2 - 0.125 \times 0.006} + 0.6944 \right] = 4.837$$

解得 $Y_2' = 0.002344$

$$\Delta Y'_{m} = \frac{Y_{1} - Y'_{2}}{N_{OG}} = \frac{0.02 - 0.002344}{4.837} = 0.00365$$

$$\frac{\Delta Y_m - \Delta Y_m'}{\Delta Y_m} = \frac{0.003721 - 0.00365}{0.003721} = 0.01908 = 1.91\%$$

- 21. 在一塔径为 880m 的常压填料吸收塔内用清水吸收混合气体中的丙酮,已知填料层高度为 6m, 在操作温度为 25 °C时,混合气体处理量为 2000 m³/h,其中含丙酮 5%。若出塔混合物气体中丙酮含量达到 0.263%,每 1kg 出塔吸收液中含 61.2kg 丙酮。操作条件下气液平衡关系为 $Y^* = 2.0$ X,试求:
- (1) 气相总体积传质系数及每小时回收丙酮的 kg 数;
- (2) 若将填料层加高 3m, 可多回收多少 kg 丙酮?

解:
$$Q = 0.785 \times 0.88^{2} = 0.61 \text{m}^{2}$$

$$V = \frac{2000 \times 273}{22.4 \times 298} (1 - 0.05) = 77.71 \text{ kmol/h}$$

$$Y_{1} = \frac{0.05}{1 - 0.05} = 0.0526 \qquad X_{2} = 0 \qquad X_{1} = \frac{61.2/58}{938.8/18} = 0.0202$$

$$\Delta Y_{1} = Y_{1} - Y_{1}^{*} = 0.0526 - 2 \times 0.0202 = 0.0122$$

$$\Delta Y_{1} = Y_{1} - Y_{1}^{*} = 0.0526 - 2 \times 0.0202 = 0.0122$$

$$\Delta Y_{2} = Y_{2} - Y_{2}^{*} = 0.00263$$

$$\Delta Y_{m} = \frac{\Delta Y_{1} - \Delta Y_{2}}{\ln \frac{\Delta Y_{1}}{\Delta Y_{2}}} = \frac{0.0122 - 0.00263}{\ln \frac{0.0122}{0.00263}} = 0.00624$$

$$N_{oG} = \frac{Y_{1} - Y_{2}}{\Delta Y_{m}} = \frac{0.0526 - 0.00263}{0.00624} = 8.008$$

$$H_{oG} = \frac{V}{K_{y}a\Omega} = \frac{Z}{N_{oG}}$$

$$K_{y}a = \frac{V}{Z\Omega}N_{oG} = \frac{77.7}{6 \times 0.61} \times 8.008 = 170 \text{ kmol/(m}^{-3} \cdot \text{h)}$$

$$W = V(Y_{1} - Y_{2}) = 77.7 \times (0.0526 - 0.00263) = 3.883 \text{ kmol/h} = 225.19 \text{ kg/h}$$

$$(2) \qquad H_{oG} = \frac{V}{K_{y}a\Omega} = \frac{Z}{N_{oG}} = \frac{6}{8.008} = 0.7493 \text{ m}$$

$$N_{OG} = \frac{Z'}{H_{OG}} = \frac{6+3}{0.7493} = 12.01$$

$$H_{0G} = \frac{1}{K_{Y}a\Omega} - \frac{1}{N_{0G}} = \frac{6+3}{8.008} = 0.7493 \text{ II}$$

$$N'_{0G} = \frac{Z'}{H_{0G}} = \frac{6+3}{0.7493} = 12.01$$

$$\frac{L}{V} = \frac{Y_{1} - Y_{2}}{X_{1} - X_{2}} = \frac{0.0526 - 0.00263}{0.0202 - 0} = 2.474$$

$$S' = S = \frac{2}{2.474} = 0.8084$$

$$N'_{0G} = \frac{1}{1 - 0.8084} \ln \left[(1 - 0.8084) \frac{0.0526}{Y_{2}'} + 0.8084 \right] = 12.01$$

解得 $Y_{2}' = 0.001096$

$$W' = V(Y_1 - Y_2) = 77.7 \times (0.0526 - 0.001096) = 4.002 \text{ kmol/h} = 232.11 \text{ kg/h}$$

 $\Delta W = W - W' = 225.19 - 232.11 = 6.918 \text{ kg/h}$

22. 用纯溶剂在一填料吸收塔内,逆流吸收某混合气体中的可溶组分。混合气体处理量为 $1.25 \text{Nm}^3/\text{s}$,要求溶质的回收率为 99. 2%。操作液气比为 1.71,吸收过程为气膜控制。已知 $10 \, \mathbb{C}$ 下,相平衡关系 $Y^* = 0.5 \, X$,气相总传质单元高度为 $0.8 \, \text{m}$ 。试求:

- (1) 吸收温度升为 30℃时,溶质的吸收率降低到多少? (30℃时,相平衡关系 $Y^* = 1.2X$)
- (2) 若维持原吸收率,应采取什么措施(定量计算其中的2个措施)。

解:

(1) 原工况:
$$S = \frac{mV}{L} = \frac{0.5}{1.71} = 0.292$$

$$N_{oG} = \frac{1}{1-S} \ln \left[(1-S) \frac{Y_1 - mX_2}{Y_2 - mX_2} + S \right] = \frac{1}{1-S} \ln \left[(1-S) \frac{1}{1-\eta} + S \right]$$

$$N_{oG} = \frac{1}{1-0.292} \ln \left[(1-0.292) \frac{1}{1-0.992} + 0.292 \right] = 6.34$$

$$Z = N_{oG} \cdot H_{oG} = 6.34 \times 0.8 = 5.072 \,\mathrm{m}$$

新工况:
$$H'_{\text{OG}} = H_{\text{OG}}$$
 $Z' = Z$

$$S' = \frac{m'}{m}S = \frac{1.2}{0.5} \times 0.292 = 0.7008$$

$$N_{OG} = N_{OG} = \frac{1}{1 - 0.7008} \ln \left[(1 - 0.7008) \frac{1}{1 - \eta} + 0.7008 \right] = 6.34$$

解得 $\eta' = 0.95$

- (2) 温度升高,平衡线上移,推动力减小,保持吸收率不变,可采取措施:
 - 1) L/V 增加, 即增加溶剂量;

$$S = S$$

$$\frac{mV}{L} = \frac{m'V}{L}$$

$$L = \frac{m}{m}L = \frac{1.2}{0.5}L = 2.4L$$

2) 增加填料层高度

L/V 不变,温度升高, $S = \frac{m}{m}S = \frac{1.2}{0.5} \times 0.292 = 0.7008$,推动力减小靠增加塔高弥补。

$$N'_{OG} = \frac{1}{1 - 0.7008} \ln \left[(1 - 0.7008) \frac{1}{1 - 0.992} + 0.7008 \right] = 12.17$$

温度改变,对气膜控制吸收过程,传质单元高度不变, $H_{\infty}=H_{\infty}=0.8$

$$Z' = N'_{\text{OG}} \cdot H_{\text{OG}} = 12.17 \times 0.8 = 9.736 \text{ m}$$

$$\Delta Z = 9.736 - 5.072 = 4.664 \text{ m}$$

23. 在一塔高为 4m 填料塔内,用清水逆流吸收混合气中的氨,入塔气体中含氨 0.03(摩尔比),混合气体流率为 0.028kmo1/($m^2 \cdot s$),清水流率为 0.0573kmo1/($m^2 \cdot s$)要求吸收率为 98%,气相总体积吸收系数与混合气体流率的 0.7次方成正比。已知操作条件下物系的平衡关系为 $Y^* = 0.8X$,试求:

- (1) 当混合气体量增加 20%时, 吸收率不变, 所需塔高?
- (2) 压力增加 1 倍时,吸收率不变,所需塔高? (设压力变化气相总体积吸收系数不变)解:

原工况:
$$y_1 = \frac{Y_1}{1+Y_1} = \frac{0.03}{1+0.03} = 0.029$$

$$V = 0.028 \times (1 - 0.029) = 0.0272 \text{ kmol/(m}^2 \cdot \text{s})$$

$$S = \frac{mV}{L} = \frac{0.8 \times 0.0272}{0.0573} = 0.38$$

$$N_{OG} = \frac{1}{1 - S} \ln \left[(1 - S) \frac{1}{1 - \eta} + S \right]$$

$$N_{OG} = \frac{1}{1 - 0.38} \ln \left[(1 - 0.38) \frac{1}{1 - 0.98} + 0.38 \right] = 5.56$$

$$H_{\text{OG}} = \frac{V}{K_{V} a \Omega} = \frac{Z}{N_{\text{OG}}} = \frac{4}{5.56} = 0.720 \,\text{m}$$

(1) 气体流量增加 20%

因水吸收氨为气膜控制,所以 //增加,传质单元高度变化

$$H_{\text{og}} = \frac{V}{K_{\text{u}} a \Omega} \propto \frac{V}{V^{0.7}} = V^{0.3}$$

$$\frac{H_{\text{OG}}^{'}}{H_{\text{OG}}} = (\frac{V^{'}}{V})^{0.3} = (1.2)^{0.3} = 1.056$$

 $H'_{OG} = 1.056 \times 0.720 = 0.760 \,\mathrm{m}$

$$S' = \frac{mV'}{L} = \frac{0.8 \times 0.0272 \times 1.2}{0.0573} = 0.456$$

$$N'_{\infty} = \frac{1}{1 - 0.456} \ln \left[(1 - 0.456) \frac{1}{1 - 0.98} + 0.456 \right] = 6.103$$

 $Z' = N'_{\text{OG}} \cdot H'_{\text{OG}} = 6.103 \times 0.760 = 4.64 \text{ m}$

(2) 压力加 1 倍
$$m = \frac{p}{n} m = \frac{0.8}{2} = 0.4$$

$$S' = \frac{m'V}{L} = \frac{0.4 \times 0.0272}{0.0573} = 0.19$$

$$N'_{OG} = \frac{1}{1 - 0.19} \ln \left[(1 - 0.19) \frac{1}{1 - 0.98} + 0.19 \right] = 4.58$$

$$:: H_{\text{og}} = \frac{V}{K_{v} a \Omega}$$

$$Z' = N'_{\text{OG}} \cdot H_{\text{OG}} = 4.58 \times 0.720 = 3.298 \,\text{m}$$

- 24. 在一填料吸收塔内,用含溶质为 0.0099 (摩尔比)的吸收剂逆流吸收混合气中溶质的 85%,进 塔气体中溶质浓度为 0.091 (摩尔比),操作液气比为 0.9,已知操作条件下系统的平衡关系为
- $Y^* = 0.86 X$, 假设体积传质系数与流动方式无关。试求
- (1) 逆流操作改为并流操作后所得吸收液的浓度;
- (2) 逆流操作与并流操作平均吸收推动力的比。

解: 逆流吸收时,已知 $Y_1 = 0.091$, $X_2 = 0.0099$

所以
$$Y_2 = Y_1(1-\eta) = 0.091(1-0.85) = 0.0136$$

$$X_1 = X_2 + V (Y_1 - Y_2) / L = 0.0099 + \frac{(0.091 - 0.01365)}{0.9} = 0.09584$$

$$Y^*_1 = 0.86 X_1 = 0.86 \times 0.09584 = 0.0824$$

$$Y^*_2 = 0.86 X_2 = 0.86 \times 0.0099 = 0.008514$$

$$\Delta Y_1 = Y_1 - Y_1^* = 0.091 - 0.0824 = 0.0086$$

$$\Delta Y_2 = Y_2 - Y_2^* = 0.01365 - 0.008514 = 0.005136$$

$$\Delta Y_{\rm m} = \frac{\Delta Y_1 - \Delta Y_2}{\ln \frac{\Delta Y_1}{\Delta Y_2}} = \frac{0.0086 - 0.005136}{\ln \frac{0.0086}{0.005136}} = 0.00672$$

$$N_{\text{OG}} = \frac{Y_1 - Y_2}{\Delta Y_{\text{m}}} = \frac{0.091 - 0.01365}{0.00672} = 11.51$$

改为并流吸收后,设出塔气、液相组成为 Y_1 、 X_1 ,进塔气、液相组成为 Y_2 、 X_3 、。

物料衡算: $(X_1 - X_2)L = V(Y_2 - Y_1)$

$$N_{OG} = \frac{Y_2 - Y_1^{'}}{(Y_2 - mX_2) - (Y_1^{'} - mX_1^{'})} = \frac{Y_2 - Y_1^{'}}{(Y_2 - Y_1^{'}) + m(X_1^{'} - X_2^{'})} = \frac{\ln \frac{Y_2 - mX_2^{'}}{(Y_1^{'} - mX_1^{'})}}{\ln \frac{Y_2 - mX_2^{'}}{(Y_1^{'} - mX_1^{'})}}$$

将物料衡算式代入 N_{OG} 中整理得:

$$N_{\text{OG}} = \frac{1}{1 + \frac{m}{L}} \ln \frac{Y_2 - mX_2}{Y_1' - mX_1'}$$

逆流改为并流后, 因 $k_v a$ 不变,即传质单元高度 H_{OG} 不变,故 N_{OG} 不变。

所以 $11.51 = \frac{1}{1 + \frac{0.86}{0.0}} \ln \frac{0.091 - 0.86 \times 0.0099}{Y_1' - 0.86 X_1'}$

$$Y_1' - 0.86 X_1' = 1.38 \times 10^{-11}$$

由物料衡算式得: $Y_1' + 0.9X_1' = 0.0999$

将此两式联立解得: $X_1^{'} = 0.0568$

$$Y_1' = 0.0488$$

$$\Delta Y_{\rm m}^{'} = \frac{Y_2 - Y_1^{'}}{N_{\rm OG}} = \frac{0.091 - 0.0488}{11.51} = 0.00367$$

$$\frac{\Delta Y_{\rm m}}{\Delta Y_{\rm m}'} = \frac{0.00672}{0.00367} = 1.84$$

由计算结果可以看出,在逆流与并流的气、液两相进口组成相等及操作条件相同的情况下,逆 流操作可获得较高的吸收液浓度及较大的吸收推动力。 25. 含烃摩尔比为 0.0255 的溶剂油用水蒸气在一塔截面积为 $1 \, \mathrm{m}^2$ 的填料塔内逆流解吸,已知溶剂油流量为 $10 \, \mathrm{kmol/h}$,操作气液比为最小气液比的 1.35 倍,要求解吸后溶剂油中烃的含量减少至摩尔比为 0.0005。已知该操作条件下,系统的平衡关系为 $Y^* = 33 \, X$,液相总体积传质系数 $K_X a = 30 \, \mathrm{kmol/(m^3 \cdot h)}$ 。假设溶剂油不挥发,蒸汽在塔内不冷凝,塔内维持恒温。求:(1)解吸所需水蒸气量为多少 $\, \mathrm{kmol/h}$;(2)所需填料层高度。

解:

已知
$$X_1 = 0.000$$
 %, $X_2 = 0.0255$, $Y_1 = 0$, $m = 33$, $\frac{V}{L} = 1.35 \left(\frac{V}{L}\right)_{\min}$ $Y_2^* = 33X_2 = 33 \times 0.0255 = 0.8415$
$$\left(\frac{V}{L}\right)_{\min} = \frac{X_2 - X_1}{Y_2^* - Y_1} = \frac{0.0255 - 0.0005}{0.8415 - 0} = 0.0297$$

$$\frac{V}{L} = 1.35 \left(\frac{V}{L}\right)_{\min} = 1.35 \times 0.0297 = 0.04$$

蒸汽用量
$$V=1.35\left(\frac{V}{L}\right)_{min}$$
 $L=0.04\times10=0.4$ kmol/h

(2)
$$A = \frac{V}{mL} = \frac{1}{33 \times 0.04} = 0.7576$$

$$\frac{X_2 - X_1^*}{X_1 - X_1^*} = \frac{X_2}{X_1} = \frac{0.0255}{0.0005} = 51$$

$$N_{OL} = \frac{1}{1 - A} \ln \left[(1 - A) \frac{X_2 - X_1^*}{X_1 - X_1^*} + A \right]$$

$$= \frac{1}{1 - 0.7576} \ln \left[(1 - 0.7576) \times 51 + 0.7576 \right]$$

$$= 10.62$$

$$H_{OL} = \frac{L}{K_X a \Omega} = \frac{10}{30} = 0.33 \,\text{m}$$

填料层高度 $Z = N_{\text{OL}} \cdot H_{\text{OL}} = 10.62 \times 0.33 = 3.50 \text{m}$

第六章 蒸馏

1.单位换算

- (1) 乙醇-水恒沸物中乙醇的摩尔分数为 0.894, 其质量分数为多少?
- (2) 苯-甲苯混合液中,苯的质量分数为 0.21, 其摩尔分数为多少?

大气中 O_2 含量为 0.21, N_2 含量为 0.79(均为体积分率),试求在标准大气压下, O_2 和 N_2 的分压为多少? O_2 和 N_2 的质量分数为多少?

解: (1) 质量分数

$$a_A = \frac{M_A x_A}{M_A x_A + M_B x_B} = \frac{46 \times 0.894}{46 \times 0.894 + 18 \times 0.106} = 0.956$$

(2) 摩尔分数

(苯分子量: 78; 甲苯分子量: 92)

$$x_{A} = \frac{\frac{a_{A}}{M_{A}}}{\frac{a_{A}}{M_{A}} + \frac{a_{B}}{M_{B}}} = \frac{0.21/78}{0.21/78 + 0.79/92} = 0.239$$

(3)

$$P_{O} = P \cdot y_{O} = 0.21$$

$$P_{N} = 1 - P_{O} = 0.79$$

$$a_{O} = \frac{M_{O}x_{O}}{M_{O}x_{O} + M_{N}x_{N}} = \frac{32 \times 0.21}{32 \times 0.21 + 28 \times 0.79} = 0.233$$

$$a_{N} = 1 - a_{O} = 1 - 0.233 = 0.767$$

2. 正庚烷和正辛烷在 110℃时的饱和蒸气压分别为 140kPa 和 64.5kPa。试计算混合液由正庚烷 0.4 和正辛烷 0.6(均为摩尔分数)组成时,在 110℃下各组分的平衡分压、系统总压及平衡蒸气组成。(此溶液为理想溶液)

解:

$$P_A = P_A^O \cdot x_A = 140 \times 0.4 = 56 \text{ kPa}$$

 $P_B = P_B^O \cdot x_B = 64.5 \times 0.6 = 38.7 \text{ kPa}$
 $P = P_A + P_B = 56 + 38.7 = 94.7 \text{ kPa}$
 $y_A = \frac{P_A}{P} = \frac{56}{94.7} = 0.591$
 $y_B = 1 - y_A = 1 - 0.591 = 0.409$

3. 试计算压力为 101.3kPa 时,苯-甲苯混合液在 96℃时的气液平衡组成。已知 96℃时, $p_{\rm A}^{\rm o}$ =160.52kPa, $p_{\rm B}^{\rm o}$ =65.66kPa。

解:液相苯的分率:
$$x_A = \frac{P - P_B^{\ o}}{P_A^{\ o} - P_B^{\ o}} = \frac{101.3 - 65.66}{160.52 - 65.66} = 0.376$$

气相苯的分率:
$$y_A = \frac{P_A^{\ o} \cdot x_A}{P} = \frac{160.52 \times 0.376}{101.3} = 0.596$$

4. 在 101.3 kPa 时正庚烷和正辛烷的平衡数据如下:

温度/℃	液相中正庚烷的摩尔分数	气相中正庚烷的摩尔分数
98.4	1.0	1.0
105	0.656	0.81
110	0.487	0.673
115	0.311	0.491
120	0.157	0.280
125.6	0	0

试求: (1) 在压力 101.3 kPa 下,溶液中含正庚烷为 0.35 (摩尔分数) 时的泡点及平衡蒸汽的瞬间组成?

- (2) 在压力 101.3 kPa 下被加热到 117℃时溶液处于什么状态? 各相的组成为多少?
- (3) 溶液被加热到什么温度时全部气化为饱和蒸汽?

解: t-x-y 图

由 t-x-y 图可知

- (1) 泡点为 114℃, 平衡蒸汽的组成为 0.54 (摩尔分数);
- (2) 溶液处于汽液混合状态,液相组成为0.24(摩尔分数),气相组成为0.42(摩尔分数);
- (3)溶液加热到119℃时全部汽化为饱和蒸汽。
- 5. 根据某理想物系的平衡数据,试计算出相对挥发度并写出相平衡方程式。

温度/℃	p _A °/kPa	$p_{ m B}{}^{ m o}\!/{ m kPa}$	
70	123.3	31.2	
80	180.4	47.6	
90	252.6	70.1	
100	349.8	101.3	

解:

温度/℃	70	80	90	100
$\alpha = \frac{P_A^{O}}{P_B^{O}}$	3.952	3.790	3.603	3.453

(1)
$$\alpha_m = \frac{3.952 + 3.790 + 3.603 + 3.453}{4} = 3.70$$

$$(2) \qquad y = \frac{3.7x}{1 + 2.7x}$$

6. 在一连续操作的精馏塔中,某混合液流量为 5000kg/h,其中轻组分含量为 0.3 (摩尔分数,下同),要求馏出液轻组分回收率为 0.88,釜液中轻组分含量不高于 0.05,试求塔顶馏出液的摩尔流量和摩尔分数。已知 $M_A=114$ kg/kmol, $M_B=128$ kg/kmol。

解: 进料混合物的平均摩尔质量:

$$M = M_A x_A + M_B x_B = 114 \times 0.3 + 128 \times 0.7 = 123.8 \text{kg/kmol}$$

进料混合液的摩尔流量: $F = \frac{5000}{123.8} = 40.39 \text{ kmol/h}$

F = D + W 物料衡算:

 $Fx_F = Dx_D + Wx_W$

则: 40.39 = D + W $40.39 \times 0.3 = 40.39 \times 0.88 \times 0.3 + W \times 0.05$

联立求解得: W= 29.1 kmol/h

D=11.31 kmol/h

塔顶馏出液摩尔分数:
$$x_D = \frac{F \cdot x_F \cdot \eta}{D} = \frac{40.39 \times 0.3 \times 0.88}{11.31} = 0.943$$

7. 在一连续精馏塔中分离苯一氯仿混合液,要求馏出液中轻组分含量为 0.96(摩尔分数,下同)的苯。进料量为 75kmol/h,进料中苯含量为 0.45,残液中苯含量为 0.1,回流比为 3.0,泡点进料。试求: (1) 从冷凝器回流至塔顶的回流液量和自塔釜上升的蒸气摩尔流量; (2) 写出精馏段、提馏段操作线方程。

解: 物料衡算:

$$F = D + W$$

$$Fx_F = Dx_D + Wx_W$$

75 = D + W

 $75 \times 0.45 = D \times 0.96 + W \times 0.1$

联立求解得: $D = \frac{F(x_F - x_W)}{x_D - x_W} = \frac{75 \times (0.45 - 0.1)}{0.96 - 0.1} = 30.52 \text{ kmol/h}$

W=F-D=75-30.52=44.48 kmol/h

- (1) 从冷凝器回流至塔顶的回流液量: $L = R \cdot D = 3 \times 30.52 = 91.56 \text{ kmol/h}$ 自塔釜上生蒸汽的摩尔流量: $V' = V = (R+1)D = (3+1) \times 30.52 = 122.1 \text{ kmol/h}$
- (2) 精馏段操作线方程:

$$y_{n+1} = \frac{R}{R+1}x_n + \frac{x_D}{R+1} = \frac{3}{3+1}x_n + \frac{0.96}{3+1} = 0.75x_n + 0.24$$

(3) 提馏段操作线方程:

提馏段下降液体组成: L' = L + F = 91.56 + 75 = 166.56

$$y_{m+1} = \frac{L'}{V'} x_m - \frac{W}{V'} x_w = \frac{166.56}{122.1} x_m - \frac{44.48 \times 0.1}{122.1} = 1.36 x_m - 0.0364$$

8. 某连续精馏塔,泡点进料,已知操作线方程如下:

精馏段: v=0.8x+0.172

提馏段: *y*=1.3*x*-0.018

试求: 原料液、馏出液、釜液组成及回流比。

解:精馏段操作线的斜率为:

$$\frac{R}{R+1} = 0.8 \Rightarrow R = 4$$

由精馏段操作线的截距:

$$\frac{x_D}{R+1}$$
 = 0.172 →塔顶馏出液组成 x_D = 0.86

提馏段操作线在对角线上的坐标为 (xw, xw),则

$$y_W = x = x_W$$

$$\therefore x_W = 1.3x_W - 0.018$$

$$\Rightarrow x_W = 0.06$$

由于泡点进料,q线为垂直线。精馏段与提馏段操作线交点的横坐标为 $x_{\rm F}$:

$$y = 0.8x_F + 0.172$$

 $y = 1.3x_F - 0.018$
 $\Rightarrow x_F = 0.38$

9. 采用常压精馏塔分离某理想混合液。进料中含轻组分 0.815 (摩尔分数,下同),饱和液体进料,塔顶为全凝器,塔釜间接蒸气加热。要求塔顶产品含轻组分 0.95,塔釜产品含轻组分 0.05,此物系的相对挥发度为 2.0,回流比为 4.0。试用:(1)逐板计算法;(2)图解法分别求出所需的理论塔板数和加料板位置。

解: 物料衡算:

$$F = D + W$$

$$Fx_F = Dx_D + Wx_W$$

则:
$$F = D + W$$
$$F \times 0.815 = D \times 0.95 + W \times 0.05$$

联立求解得:
$$D = \frac{F(x_F - x_W)}{x_D - x_W} = \frac{F \times (0.815 - 0.05)}{0.95 - 0.05} = 0.85 F \text{ kmol/h}$$

$$W = F - D = 0.15F \text{ kmol/h}$$

提馏段下降液体组成: $L' = L + F = RD + F = 4 \times 0.85F + F = 4.4F$

自塔釜上生成蒸汽的摩尔流量: $V'=V=(R+1)D=(4+1)\times 0.85F=4.25F$

精馏段操作线方程:
$$y_{n+1} = \frac{R}{R+1}x_n + \frac{x_D}{R+1} = \frac{4}{4+1}x_n + \frac{0.95}{4+1} = 0.8x_n + 0.19$$

提馏段操作线方程:
$$y_{m+1} = \frac{L'}{V'}x_m - \frac{W}{V'}x_w = \frac{4.4F}{4.25F}x_m - \frac{0.15F \times 0.05}{4.25F} = 1.04x_m - 0.0018$$

相平衡方程:
$$y = \frac{2.0x}{1+x} \Rightarrow x = \frac{y}{2-y}$$

(1) 逐板计算法

因为: y₁=x_D=0.95

由相平衡方程得:
$$x_1 = \frac{y_1}{2 - y_1} = \frac{0.95}{2 - 0.95} = 0.905$$

由精馏段操作线方程: $y_2 = 0.8x_1 + 0.19 = 0.8 \times 0.905 + 0.19 = 0.914$

交替使用相平衡方程和精馏段操作线方程至 $x < x_F$ 后,交替使用相平衡方程和提馏段操作线方程 至 $x < x_W$ 。

各板上的汽液相组成

	1	2	3	4	5	6	7	8	9	10
У	0.95	0.914	0.863	0.788	0.674	0.527	0.370	0.234	0.136	0.074
x	0.905	0.841	0.759	0.650	0.508	0.357	0.227	0.133	0.073	0.039

第三块板为进料板,理论板数为10块。

(2) 图解法

交替在相平衡方程和精馏段操作线方程之间作梯级,至 $x < x_F$ 后,交替在相平衡方程和提馏段操作线方程作梯级至 $x < x_W$ 。

10. 在一常压连续精馏塔中分离苯-甲苯混合液。已知原料液中含苯 0.4 (摩尔分率,下同),要求塔顶产品组成含苯 0.90,塔釜残液组成含苯 0.1,操作回流比为 3.5,试绘出下列进料状况下的精馏段、提馏段操作线方程。(1)q=1.2;(2)气液混合进料,汽化率为 0.5;(3)饱和蒸汽进料。

解:精馏段操作线方程:

$$y_{n+1} = \frac{R}{R+1}x_n + \frac{x_D}{R+1} = \frac{3.5}{3.5+1}x_n + \frac{0.90}{3.5+1} = 0.778x_n + 0.20$$

(1) q = 1.2

$$y = \frac{q}{q-1}x - \frac{x_F}{q-1} = \frac{1.2}{1.2-1}x - \frac{0.4}{1.2-1} = 6x - 2$$

(2) 汽液混合进料, 汽化率为 0.5

$$q = 0.5$$

 $y = \frac{q}{q-1}x - \frac{x_F}{q-1} = \frac{0.5}{0.5-1}x - \frac{0.4}{0.5-1} = -x + 0.8$

(3) q = 0, $y = x_F$

在x-y图上分别作出上述三种情况下的精馏段操作线和q线,由其交点作出提馏段操作线。

11. 在连续精馏塔中分离含甲醇 0.3 (摩尔分数,下同)的水溶液,以便得到含甲醇 0.95 的馏出液

和 0.03 的釜液。操作压力为常压,回流比为 1.0, 泡点进料, 试求:(1) 理论板数及加料板位置;(2) 从第二块理论板上升的蒸气组成。

习题 3-11 附表 常压下甲醇-水的平衡数据

게 庄 /°C	液相中甲醇的	气相中甲醇的	N 15: 100	液相中甲醇的	气相中甲醇的	
温度/℃	摩尔百分数	摩尔百分数	温度/℃	摩尔百分数	摩尔百分数	
100	0.0	0.0	75.3	40.0	72.9	
96.4	2.0	13.4	73.1	50.0	77.9	
93.5	4.0	23.4	71.2	60.0	82.5	
91.2	6.0	30.4	69.3	70.0	87.0	
89.3	8.0	36.5	67.6	80.0	91.5	
87.7	10.	41.8	66.0	90.0	95.8	
84.4	15.0	51.7	65.0	95.0	97.9	
81.7	20.0	57.9	64.5	100	100.0	
78.0	30.0	66.5				

解:由 $x=x_D, y=y_D$ 在x-y图上得a点

精馏段截距:
$$\frac{x_D}{R+1} = \frac{0.95}{1+1} = 0.475$$
 在

x-y 图上得 *c* 点

过 $x=x_F$ 作垂直线与精馏段操作线交与 d 点:

过 $x=x_{\rm W}$ 作垂直线与对角线交于 b 点,连接 db 为提馏段操作线。

在平衡线与操作线之间作梯级, 塔内理 论板数为 10 块, 第 11 块为塔釜, 第 8 块为加料板。

- (2) 由习题 11 附图可得,从第二块理论板上升的蒸汽组成为 0.92
- 12. 用一连续精馏塔分离苯-甲苯混合液,原料中含苯 0.4 (摩尔分数,下同),要求塔顶馏出液中含

苯 0.97, 釜液中含苯 0.02, 若原料液温度为 25℃, 求进料热状况参数 q 为多少? 若原料为气液混合物, 气液比为 3:4, q 值为多少?

习题 3-12 附表 常压下苯-甲苯的平衡数据

₩ 产 /°0	液相中苯的摩	气相中苯的摩	カード 1 ₈ 0	液相中苯的摩	气相中苯的摩
温度/℃	尔百分数	尔百分数	温度/℃	尔百分数	尔百分数
80.2	1	1	100	0.256067	0.452824
84.1	0.822807	0.922359	104	0.155186	0.305256
88.0	0.658917	0.829677	108	0.058149	0.126931
92.0	0.50778	0.720202	110.4	0	0
96.0	0.376028	0.595677			

解:由附图所示的苯-甲苯 t-x-y 图得泡点温度为 94.5℃。

查得: r_{*}=r_F=31018.3kJ/kmol,

平均温度 t= (25+94.5) /2=59.75℃

苯的比热容: $c_p = 143.7 \text{kJ/kmol} \cdot \text{K}$

甲苯的比热容: $c_p = 169.5 \text{kJ/kmol} \cdot \text{K}$

原料液的平均比热容: $c_{pm} = 143.7 \times 0.44 + 169.5 \times 0.56 = 159.18$ kJ/(kmol·K)

$$q = \frac{H - h_f}{H - h} = \frac{r + c_p(t_b - t)}{r} = \frac{31018 \cdot .3 + 159 \cdot .18 \times (93.5 - 25)}{31018 \cdot .3} = 1.35$$

汽液混合物: $q = \frac{4}{3+4} = 0.57$

习题 12 附图

13. 续习题 11, 若原料液温度为 40℃, 其他条件相同, 求所需理论板数及加料板位置。并与习题 11 结果比较。

解:由习题 11 所示的甲醇-水平衡数据得泡点温度为 78℃。

查得: r = 36167k, J/kmol, r = 41592k, J/kmol,

原料液平均汽化热: $r_m = 36167 \times 0.3 + 41592 \times 0.7 = 39965$ kJ/kmol

平均温度 t= (40+78) /2=59℃

水的比热容: $c_p = 4.187 \, kJ / kg \cdot K = 75.37 \, kJ/kmol \cdot K$

甲醇的比热容: $c_p = 85.75 \text{ kJ/kmol} \cdot \text{K}$

原料液的平均比热容: $c_{pm}=85.75\times0.3+75.37\times0.7=78.48$ kJ/kmol·K

$$q = \frac{H - h_f}{H - h} = \frac{r + c_p(t_b - t)}{r} = \frac{39965 + 78.48(78 - 40)}{39965} = 1.075$$

q线方程:

$$y = \frac{q}{q-1}x - \frac{x_F}{q-1} = \frac{1.075}{1.075 - 1}x - \frac{0.3}{1.075 - 1} = 14.33x - 4.0$$

作 q 线,由 q 线与精馏段操作线的交点做提馏段操作线。在平衡线与操作线之间作梯级,塔内理论板数为 10 块,第 11 块为塔釜,第 7 块为加料板。比习题 11 的塔板数略有减少。)

习题 13 附图

14. 用一连续操作的精馏塔分离丙烯-丙烷混合液,进料含丙烯 0.8 (摩尔分数,下同),常压操作,泡点进料,要使塔顶产品含丙烯 0.95,塔釜产品含丙烷 0.95,物系的相对挥发度为 1.16,试计算: (1)最小回流比;(2)所需的最少理论塔板数。

解: (1) 泡点进料, q=1 则 $x_q=x_F=0.8$

$$y_q = \frac{\alpha x_q}{1 + (\alpha - 1)x_q} = \frac{1.16 \times 0.8}{1 + 0.16 \times 0.8} = 0.823$$

$$\therefore R_{\min} = \frac{x_D - y_q}{y_q - x_q} = \frac{0.95 - 0.823}{0.823 - 0.8} = 5.52$$

(2) 全回流时的最小理论板数

$$N_{\min} = \frac{\lg[(\frac{x_D}{1 - x_D})(\frac{1 - x_W}{x_W})]}{\lg \alpha} - 1 = \frac{\lg[(\frac{0.95}{0.05})(\frac{0.95}{0.05})]}{\lg 1.16} - 1 = 38.7 \, (\text{不包括再沸器})$$

15. 求习题 11 的最小回流比 Rin。

解:

习题 15 附图

方法一:

由 x_F 作 q线与平衡线相交与 q点,连接 aq延长至纵轴,得截距:

$$\frac{x_D}{R_{\min} + 1} = 0.53 \Rightarrow R_{\min} = 0.79$$

方法二:

由图读出 q 点坐标 (0.3, 0.67), 带入 R_{min} 的计算式

$$R_{\min} = \frac{x_D - y_q}{y_q - x_q} = \frac{0.95 - 0.67}{0.67 - 0.3} = 0.76$$

16. 求习题 12 的最小回流比 Rain。

解:

习题 16 附图

(1) 原料液温度为 25°C时, q=1.352, 则 q 线方程为

$$y = \frac{q}{q-1}x - \frac{x_F}{q-1} = \frac{1.352}{1.352 - 1} - \frac{0.4}{1.352 - 1} = 3.84x - 1.14$$

在 x-y 图上作出 q 线,则可以由附图读出 q 点坐标 (0.46, 0.68), 带入 R_{\min} 的计算式

$$R_{\min} = \frac{x_D - y_q}{y_q - x_q} = \frac{0.97 - 0.68}{0.68 - 0.46} = 1.32$$

(2) 汽液混合进料,汽液比为 3: 4 时,q 值为 0.57,则 q 线方程为

$$y = \frac{q}{q-1}x - \frac{x_F}{q-1} = \frac{0.57}{0.57 - 1} - \frac{0.4}{0.57 - 1} = -1.33x - 0.93$$

在x-y 图上作出q线,则可以由附图读出q点坐标(0.32,0.52),带入 R_{min} 的计算式

$$R_{\min} = \frac{x_D - y_q}{y_q - x_q} = \frac{0.97 - 0.52}{0.52 - 0.32} = 2.25$$

- 17. 用一连续精馏塔分离苯-甲苯混合液。进料液中含苯 0.4 (质量分数,下同),要求馏出液中含苯 0.97,釜液中含苯 0.02,操作回流比为 2.0,泡点进料,平均相对挥发度为 2.5。使用捷算法确定所需的理论塔板数。
- 解: 先将质量分数换算为摩尔分数:

$$x_{F} = \frac{\frac{a_{F}}{M_{A}}}{\frac{a_{F}}{M_{A}} + \frac{(1 - a_{F})}{M_{B}}} = \frac{0.4 \frac{78}{78}}{0.4 \frac{78}{78} + 0.6 \frac{92}{92}} = 0.44$$

$$x_{D} = \frac{a_{D}/M_{A}}{a_{D}/M_{A} + (1 - a_{D})/M_{B}} = \frac{0.97/78}{0.97/78 + 0.03/92} = 0.974$$

$$x_{W} = \frac{a_{W}/M_{A}}{a_{W}/M_{A} + (1 - a_{W})/M_{B}} = \frac{0.02/78}{0.02/78 + 0.98/92} = 0.0235$$

泡点进料, q=1 则 $x_a=x_F=0.44$

$$y_q = \frac{\alpha x_q}{1 + (\alpha - 1)x_q} = \frac{2.5 \times 0.44}{1 + 1.5 \times 0.44} = 0.663$$

$$\therefore R_{\min} = \frac{x_D - y_q}{y_q - x_q} = \frac{0.974 - 0.663}{0.663 - 0.44} = 1.395$$

(2) 全回流时的最小理论板数

$$N_{\min} = \frac{\lg[(\frac{x_D}{1 - x_D})(\frac{1 - x_W}{x_W})]}{\lg \alpha} - 1 = \frac{\lg[(\frac{0.974}{1 - 0.974})(\frac{1 - 0.0235}{0.0235})]}{\lg 2.5} - 1 = 7.02 \text{ (π0 括再沸器)}$$

$$\frac{R - R_{\min}}{R + 1} = \frac{2 - 1.395}{2 + 1} = 0.2$$

由吉利兰图查得:
$$\frac{N-N_{\min}}{N+2} = 0.45$$

所需的理论塔板数 N_T=14.4 (不包括塔釜)

操作回流比为 2.0, 采出率 *D/F*=0.5, 求以下二种情况下的操作线方程及所需理论板数: (1) 塔釜采用间接蒸气加热; (2) 釜中液体用水蒸气直接加热。甲醇-水的气液平衡数据见习题 11。

解:采用间接蒸汽加热

精馏段操作线方程

习题 6-18 附图

$$y = \frac{R}{R+1}x + \frac{x_D}{R+1} = \frac{2}{2+1} + \frac{0.9}{2+1}$$
$$= 0.67x_n + 0.3$$

操作线的两端点为 a(0.9,0.9), c(0,0.3)

提馏段操作线: 连接q线 $x_F = 0.5$ 与精馏段操作线y = 0.67x + 0.3的交点 d(0.5,0.635)和点 b(0.1,0.1),

提馏段操作线方程式为: $y_{m+1} = 1.34x_m - 0.034$

图解法求理论板数,需3.9块理论板。

(2) 采用直接蒸汽加热

精馏段操作线同(1), 即 $y_{n+1} = 0.67 x_n + 0.3$

提馏段操作线
$$y = \frac{L'}{V'}x - \frac{W'}{V'}x'_W$$

$$V' = V_0 = V = (R+1)D = 3D$$
, $W' = L' = L + F = RD + F = 2D + \frac{D}{0.5} = 4D$

所以
$$y = \frac{4}{3}x - \frac{4}{3}x'_{W}$$
, 该操作线经过点 $(x'_{W}, 0)$

由全塔物料衡算方程 $Fx_F + V_0y_0 = Dx_D + W'x'_W$

$$x'_W = \frac{Fx_F - Dx_D}{W} = \frac{2D \times 0.5 - D \times 0.9}{4D} = 0.025$$

连结点 d(0.5,0.635)和点 b'(0.025,0),可得提馏段操作线方程。 $y_{\scriptscriptstyle m+1}=1.34(x_{\scriptscriptstyle m}-0.025)$

直接蒸汽加热和间接蒸汽加热两种情况下提馏段操作线重合,图解法求理论板,需4.8块理论板。

19. 用连续精馏塔分离含甲醇 0.20 (摩尔分数,下同)的水溶液,希望得到含甲醇 0.96 和 0.5 的溶液各半,釜液浓度不高于 0.02。回流比 2.2,泡点进料。

试求: (1) 所需理论板数及加料口、侧线采出口的位置;

(2) 若只从塔顶取出 0.96 的甲醇溶液,问所需理论板数比(1) 多还是少?

解 (1) 第一段操作线方程
$$y_{n+1} = \frac{R}{R+1} x_n + \frac{x_{D1}}{R+1}$$

因 R = 2.2 , $x_{D1} = 0.96$, 则精馏操作线方程为: $y_{n+1} = 0.6875 x_n + 0.3$

第二段操作线方程
$$V'=L'+D_1+D_2$$
 , $V'y_{s+1}=L'x_s+D_1x_{D1}+D_2x_{D2}$

$$y_{s+1} = \frac{L'}{V'} x_s + \frac{D_1 x_{D1} + D_2 x_{D2}}{V'} \; , \quad L = L' + D_2$$

所以
$$y_{s+1} = \frac{L - D_2}{L + D_1} x_s + \frac{D_1 x_{D1} + D_2 x_{D2}}{L + D_1}$$

整理得
$$y_{s+1} = \frac{R - D_2 / D_1}{R + 1} x_s + \frac{x_{D1} + (D_2 / D_1) x_{D2}}{R + 1}$$

因 $D_2/D_1=1$,可得第二段操作线方程为: $y_{s+1}=0.375\,x_s+0.456$

第一段与第二段操作线方程相交于点 $d_1(0.5,0.6435)$,第二段操作线与 q 线 $x=x_F=0.2$ 相交于点 $d_2(0.2,0.531)$

则第三段操作线方程可以通过如下方法得到:

连结点
$$d_2(0.2,0.531)$$
和点 $e(0.02,0.02)$,得 $\frac{y_{m+1}-0.02}{0.531-0.02} = \frac{x_m-0.02}{0.2-0.02}$,

可得第三操作线方程: $y_{m+1} = 2.84x_m - 0.037$

- (2) 图解法得所需理论板数 9, 第 4 块为侧线采出, 第 6 块为进料板。
- (3) 精馏段操作线方程同上 $y_{n+1} = 0.6875 x_n + 0.3$

提馏段操作线方程: 精馏段操作线与 q 线 x=xF=0.2 交于 $d_2'(0.2,0.438)$,连结点 $d_2'(0.2,0.438)$ 和 点 e(0.02,0.02) ,得提馏段操作线方程 $y_{m+1}=2.42\,x_m-0.026$ 图解法得所需理论板数 8,比不侧线采出所需理论板数少。

(图略)

20. 用仅有两块理论塔板的精馏塔提取水溶液中易挥发组分,流率为 50kmol/h 的水蒸气由塔釜加入。温度为 20 $^{\circ}$ 、组成为 0.2、流率为 100kmol/h 的料液由塔顶加入。气液两相均无回流。已知料液泡点为 80 $^{\circ}$ 、平均定压比热容为 100kJ/(kmol $^{\circ}$ $^{\circ}$),气化潜热为 40000 kJ/kmol。若汽液平衡关系为 $^{\circ}$ 为 $^{\circ}$ 3 $^{\circ}$, 试求轻组分的回收率。

解: 先确定加料热状况:

$$q = \frac{r + C_P(t_s - t)}{r} = \frac{40000 + 100 \times (80 - 20)}{40000} = 1.15$$

塔内液相 $L = qF = 1.15 \times 100 = 115 \text{ kmol/h}$

塔内汽相

$$V = V_0 + (1 - q)F = 50 - 0.15 \times 100 = 35 \text{kmol/h}$$

由于无回流,所以L=W,V=D

由塔底部物料衡算式导出操作线方程

习题 20 附图

$$V_0 y = Lx - Wx_w,$$

或
$$y = \frac{L}{V_0} x - \frac{W}{V_0} x_W = \frac{115}{50} x - \frac{115}{50} x_W = 2.3x - 2.3x_W$$

塔釜的上升蒸汽应与 x_w 成平衡,即 $y_w = 3x_w$

而塔釜的上升蒸汽与第二块板的液相满足操作线方程,即 $y_W = 2.3x_2 - 2.3x_W$

所以
$$3x_W = 2.3x_2 - 2.3x_W$$
, 即 $x_2 = 2.304x_W$ 。

因为
$$y_2 = 3x_2 = 6.912_W$$

所以由操作线方程 $y_2 = 2.3x_1 - 2.3x_W$

可得
$$6.912_W = 2.3x_1 - 2.3x_W$$

解得
$$x_1 = 4.005 x_W$$
。

又
$$y_1 = 3x_1 = 12.015x_W$$
,得 $x_D = 12.015x_W$ 。

将结果代入轻组分的物料衡算式

$$Fx_F = Dx_D + Wx_W,$$

$$100 \times 0.2 = 35 \times 12.015 \, x_W \, + 115 \, x_W$$

由此可以解得: $x_W = 0.037$, $x_D = 0.445$

轻组分的回收率
$$\eta = \frac{Dx_D}{Fx_E} \times 100\% = \frac{35 \times 0.445}{100 \times 0.2} \times 100\% = 77.88\%$$

- 21、一个只有提馏段的精馏塔,组成为 0.5 (摩尔分数,下同)的饱和液体自塔顶加入,若体系的相对挥发度为 2.5, 塔底产品组成控制为 0.03, 当塔顶回流比为 0.27 时,求:
 - (1) 塔顶组成的最大可能值;
 - (2) 若要求塔顶产品组成达到 0.8, 回流比至少为多少?

解(1) 塔顶产品的极限组成

由总物料衡算得,
$$\frac{W}{D} = \frac{x_D - x_F}{x_F - x_W} = \frac{x_D - 0.5}{0.5 - 0.03} = \frac{x_D - 0.5}{0.47}$$
 (a)

设进料与回流的混合液的组成为 x₀,则提馏段操作线方程为

$$y_1 = \frac{L'}{V'} x_0 - \frac{W}{V'} x_W = \frac{qF + L}{qF + L - W} x_0 - \frac{W}{qF + L - W} x_W$$

将 F = D + W、 q = 1 及 $y_1 = x_D$ 代入上式可得,

$$x_{D} = \frac{q(D+W)+L}{q(D+W)+L-W} x_{0} - \frac{W}{q(D+W)+L-W} x_{W} = \frac{1+R+W/D}{1+R} x_{0} - \frac{W/D}{1+R} x_{W}$$

$$x_{D} = \frac{1.27+W/D}{1.27} x_{0} - \frac{W/D}{1.27} \times 0.03$$
(b)

即

按上升蒸汽和下降达到汽液平衡的假定,则 $y_1 = \frac{\alpha x_0}{1 + (\alpha - 1)x_0}$,即

$$x_D = \frac{2.5x_0}{1 + 1.5x_0} \tag{c}$$

式 (a) (b) (c)联立求解,得 $x_D = 0.74$, $x_0 = 0.532$, $\frac{W}{D} = 0.51$

按此题的要求,即使塔为无限高,所得塔顶产品组成也只能达到0.74

(2) 产品合格时的最小回流比

接 $y_1 = x_D = 0.8$ 考虑,即为满足产品合格的最小回流比。

$$\frac{W}{D} = \frac{x_D - x_F}{x_F - x_W} = \frac{0.8 - 0.5}{0.5 - 0.03} = 0.638$$

再由

$$y_1 = 0.8 = \frac{\alpha x_0}{1 + (\alpha - 1)x_0} = \frac{2.5x_0}{1 + 1.5x_0}$$
解得 $x_0 = 0.615$ 。

将
$$x_0 = 0.615$$
 、 $\frac{W}{D} = 0.638$ 代入提馏段操作线方程 $y_1 = \frac{1 + R + W/D}{1 + R} x_0 - \frac{W/D}{1 + R} x_W$

$$\text{III } 0.8 = \frac{1 + R_{\min} + 0.638}{1 + R_{\min}} \times 0.615 - \frac{0.638}{1 + R \min} \times 0.03$$

解得所需最小回流比 $R_{min} = 1.02$

- 22. 在连续精馏塔中分离一理想溶液,原料液轻组分含量为 0.5 (摩尔分数,下同),泡点进料。塔顶采用分凝器和全凝器。分凝器向塔内提供泡点温度的回流液,其组成为 0.88,从全凝器得到塔顶产品,其组成为 0.95。要求易挥发组分的回收率为 96%,并测得离开塔顶第一层理论板的液相组成为 0.79。
- 试求: (1) 操作回流比为最小回流比的倍数;
 - (2) 若馏出液流量为 50kmol/h, 求所需的原料液流量。
- 解:分凝器相当于一块理论板
 - (1) 操作回流比与最小回流比

由附图所知,
$$y_0 = x_D = 0.95$$
, $x_0 = 0.88$

由相平衡方程知
$$y_0 = \frac{\alpha \cdot x_0}{1 + (\alpha - 1) \cdot x_0}$$

即
$$0.95 = \frac{0.88 \times \alpha}{1 + (\alpha - 1) \times 0.88}$$

解得
$$\alpha = 2.59$$

由 x₁用相平衡方程求 y₁,即

$$y_1 = \frac{\alpha \cdot x_1}{1 + (\alpha - 1) \cdot x_1} = \frac{2.59 \times 0.79}{1 + 1.59 \times 0.79} = 0.907$$

由精馏段操作线方程求操作回流比

$$y_1 = \frac{R}{R+1} x_0 + \frac{x_D}{R+1}$$
 即:
$$0.907 = \frac{R}{R+1} \times 0.88 + \frac{0.95}{R+1}$$
 解得
$$R=1.593$$

最小回流比 R_{min}

泡点进料, q=1 则 $x_a=x_F=0.5$

$$y_{q} = \frac{\alpha x_{q}}{1 + (\alpha - 1)x_{q}} = \frac{2.59 \times 0.5}{1 + 1.59 \times 0.5} = 0.721$$

$$\therefore R_{\min} = \frac{x_{D} - y_{q}}{y_{q} - x_{q}} = \frac{0.95 - 0.721}{0.721 - 0.5} = 1.036$$

$$\text{III} \frac{R}{R_{+}} = \frac{1.593}{1.036} = 1.538$$

(2) 原料液流量 F

由回收率得
$$\frac{D \cdot x_D}{F \cdot x_F} = \frac{50 \times 0.95}{F \times 0.5} = 0.96$$

所以: F=99koml/h

23. 精馏分离某理想混合液,已知:操作回流比为 3.0,物系的相对挥发度为 2.5, x_D =0.96。测得精馏段第二块塔板下降液体的组成为 0.45,第三块塔板下降液体组成为 0.4(均为易挥发组分的摩尔分数)。求第三块塔板的气相单板效率。

解:精馏段操作线方程:

$$y_{n+1} = \frac{R}{R+1}x_n + \frac{x_D}{R+1} = \frac{3.0}{3.0+1}x_n + \frac{0.96}{3.0+1} = 0.75x_n + 0.24$$
 已知 x_2 =0.45, 由精馏段操作线方程

得 y₃

$$y_3 = 0.75 \times 0.45 + 0.24 = 0.5775$$

同理: x₃=0.4, 可得 y₄=0.54

y3*由相平衡方程求解

$$y_3^* = \frac{\alpha \cdot x_3}{1 + (\alpha - 1) \cdot x_3} = \frac{2.5 \times 0.4}{1 + 1.5 \times 0.4} = 0.625$$

则第三块塔板的气相单板效率为:

$$E_{MV} = \frac{y_n - y_{n+1}}{y_n * - y_{n+1}} = \frac{0.5775 - 0.54}{0.625 - 0.54} = 0.441$$

24、如附图,用一个蒸馏釜和一层实际板组成的精馏塔分离二元理想溶液。组成为 0.2 的料液在泡点温度下由塔顶加入,系统的相对挥发度为 3.5。若使塔顶轻组分的回收率达到 80%,并要求塔顶产品组成为 0.30,试求该层塔板的液相默弗里板效率。

解: 由物料衡算及回收率可得:

$$\eta = 0.8 = \frac{Dx_D}{Fx_F} = \left(\frac{x_F - x_W}{x_D - x_W}\right) \frac{x_D}{x_F} = \left(\frac{0.2 - x_W}{0.3 - x_W}\right) \frac{0.3}{0.2}$$

习题 24 附图.

由该式可和解得 $x_W = 0.0857$

因为全塔为提馏段,且泡点加料,所以L=F,D=V

$$\frac{L}{V} = \frac{F}{D} = \frac{1}{D/F} = \frac{1}{(x_F - x_W)/(x_D - x_F)} = 1.876$$

$$\frac{W}{V} = \frac{F - D}{D} = \frac{F}{D} - 1 = 1.876 - 1 = 0.876$$

所以提馏段操作线方程为 $y_{n+1} = \frac{L}{V} x_n - \frac{W}{V} x_W = 1.876 x_n - 0.0751$

已知 $y_1 = x_D = 0.3$,则与 y_1 在理论上成平衡的液相组成为

$$x_1^* = \frac{y_1}{\alpha - (\alpha - 1)y_1} = \frac{0.3}{3.5 - 2.5 \times 0.3} = 0.109$$

该板的实际液相组成与自塔上升的蒸汽组成 y_w 满足操作线方程,而 y_w 与塔釜液相组成成相平衡关系:

$$y_W = \frac{\alpha x_W}{1 + (\alpha - 1)x_W} = \frac{3.5 \times 0.0857}{1 + 2.5 \times 0.0857} = 0.247$$

将此结果代入操作线方程,可得 $x_1 = \frac{y_W + 0.0751}{1.876} = 0.171$

该板的默弗里板效率为:
$$E_{mL} = \frac{x_{n-1} - x_n}{x_{n-1} - x_n^*} = \frac{x_F - x_1}{x_F - x_1^*} = \frac{0.2 - 0.171}{0.2 - 0.109} = 31.9\%$$

25、将二硫化碳和四氯化碳混合液于常压下进行间歇精馏。料液组成含二硫化碳 0.4 (摩尔分数,下同),当釜内残液中二硫化碳含量降到 0.079 时停止操作。若保持馏出液的组成恒定为 0.95,操作终止时回流比为最小回流比的 1.76 倍。

试求此精馏塔的理论板数(7.5层)

液相中二硫化碳的摩	气相中二硫化碳的摩	液相中二硫化碳的摩	气相中二硫化碳的摩
尔百分数	尔百分数	尔百分数	尔百分数
0.0	0.0	0.3908	0.6340
0.0296	0.0823	0.5318	0.7470
0.0615	0.1555	0.6630	0.8290
0.1106	0.2660	0.7574	0.8790
0.1435	0.3325	0.8604	0.9320
0.2580	0.4950	1.0	1.0

习题 25 附表 常压下二硫化碳和四氯化碳的平衡数据如下:

解: 在 x-y 图上绘平衡曲线和对角线,如本题附图所示,在该图上读得: 当 x_{We} =0.079 时,与之平衡的 y_{We} =0.20,则:

$$R_{\text{min}} = \frac{x_D - y_{We}}{y_{We} - x_{We}} = \frac{0.95 - 0.2}{0.2 - 0.079} = 6.2$$
所以 $R = 1.76 \times 6.2 = 10.9$

$$x_{2} = 0.95$$

$$\frac{x_D}{R+1} = \frac{0.95}{10.9+1} = 0.08$$

连接 a (0.95,0.95)和点 b (在 y 轴上的截距为 0.08),直线 ab 即为操作线。从点 a 开始在平衡线 和操作线间绘梯级,共需 7.5 层理论板(包括再沸器)。

- 26. 用常压精馏塔分离苯和甲苯混合液。已知精馏塔每小时处理含苯 0.44 (摩尔分数,下同)的混合液 100kmol,要求馏出液中含苯 0.975,残液中含苯 0.0235。操作回流比为 3.5,采用全凝器,泡点回流。物系的平均相对挥发度为 2.47。试计算泡点进料时以下各项:
- (1) 理论板数和进料位置;
- (2) 再沸器热负荷和加热蒸汽消耗量,加热蒸汽绝压为 200kPa;
- (3) 全凝器热负荷和冷却水的消耗量(冷却水进、出口温度 t_1 =25℃, t_2 =40℃)。

已知苯和甲苯的汽化热为 427kJ/kg 和 410kJ/kg, 水的比热为 4.17kJ/(kg. ℃), 绝压为 200kPa 的饱和水蒸气潜热为 2205kJ/kg。再沸器和全凝器的热损失忽略。

解: (1) 理论板数和加料板位置

根据物系的相对挥发度,在 x-y 图上标绘平衡曲线和对角线,如本题附图 6-26 所示。

精馏段操作线截距
$$\frac{x_D}{R+1} = \frac{0.975}{3.5+1} = 0.217$$

在附图 6-26 上连接点(0.975, 0.975)和(0, 0.217),即为精馏段操作线 ac。

泡点进料,q 线为通过 x_F =0.44 的垂线 ed,连接点 b(0.0235, 0.0235)和点 d,即为提馏段操作线。按图解法在附图 6-26 上画梯级,图解的理论板数为 11(不包括再沸器),第六块理论板为进料板。

(2)、再沸器热负荷和加热蒸汽消耗量

先由物料衡算求 D 和 W, 即

$$F = D + W$$

$$Fx_F = Dx_D + Wx_W$$

[00 = D + W]

 $100 \times 0.44 = D \times 0.975 + W \times 0.0235$

联立求解得:

 $D = 43.77 \,\text{kmol/h}$ $W = 56.23 \,\text{kmol/h}$

精馏段上升蒸汽量: $V = (R+1)D = (3.5+1) \times 43.77 = 196.97 \text{ kmol/h}$

提馏段上升蒸汽量: $V' = V - (1-q)F = 196.7 - (1-q) \times 100 = 196.97$ kmol/h

因釜残液中苯含量很低,故可近似按甲苯计算,再沸器的热负荷为:

$$Q_B = V' \cdot r_B \cdot M_B = 196.97 \times 410 \times 92 = 7.43 \times 10^6$$
 kJ/h

水蒸气消耗量为:

$$m_{sB} = \frac{Q_B}{r} = \frac{7.43 \times 10^6}{2205} = 3370$$
 kg/h

(3) 全凝器热负荷和冷却水消耗量

因馏出液中甲苯含量很低,故可近似按纯苯计算,全凝器热负荷为:

$$Q_C = V \cdot r_A \cdot M_A = 196.97 \times 427 \times 78 = 6.56 \times 10^6$$
 kJ/h

冷却水消耗量为:

$$m_{sC} = \frac{Q_C}{c_{pc}(t_2 - t_1)} = \frac{6.56 \times 10^6}{4.17(35 - 25)} = 1.57 \times 10^5$$
 kg/h

27、试计算下列生产条件下筛板塔的空塔气速和塔径。

$$V_h = 1400 \text{ m}^3/\text{h}, L_h = 4\text{m}^3/\text{h}, \rho_V = 2.6 \text{kg/m}^3, \rho_L = 800 \text{ kg/m}^3,$$

 $\sigma = 12 \text{ mN/m}, H_T = 400 \text{ mm}, h_L = 0.06 \text{ m}$

解:允许气速是最大气速的 0.7 倍。

分离空间的高度为

$$H_T$$
- h_L =0.4 -0.06 =0.34m

气液动能参数为:

$$\frac{L_s}{V_s} \sqrt{\frac{\rho_L}{\rho_V}} = \frac{4/3600}{1400/3600} \times \sqrt{\frac{800}{2.6}} = 0.0501$$

由图 6-57 查得气体负荷因子 C₂₀=0.072, 修正表面张力后的 C 值为:

$$C = C_{20} \left(\frac{\sigma}{20}\right)^{0.2} = 0.072 \times \left(\frac{0.012}{0.02}\right)^{0.2} = 0.065 \,\text{m/s}$$

c. 计算塔径

最大允许空塔气速为:
$$u_{\text{max}} = C\sqrt{\frac{\rho_L - \rho_V}{\rho_V}} = 0.065\sqrt{\frac{800 - 2.6}{2.6}} = 1.14 \,\text{m/s}$$

选取空塔气速为: $u = 0.7 \times u_{\text{max}} = 0.7 \times 1.14 = 0.798 \,\text{m/s}$

塔径:

$$D = \sqrt{\frac{V_s}{\frac{\pi}{4}u}} = \sqrt{\frac{1400 / 3600}{0.785 \times 0.798}} = 0.621 \,\mathrm{m}$$

塔径的计算值不是整数时,应予以圆整。故直径应取为 0.7m。

28、设计一精馏塔, 其物料性质、进料量及组成、馏出液及釜液组成、回流比、冷却水温度、加热蒸汽压力均不变。当进料状态由泡点进料改为饱和蒸汽进料时, 塔板数是否相同? 再沸器所需蒸汽量是否改变?

- 29、有一正在操作的精馏塔分离某混合液。若下列条件改变,问馏出液及釜液组成有何改变? 假设其他条件不变,塔板效率不变。
 - (1) 回流比下降;
 - (2) 原料中易挥发组分浓度上升;
 - (3) 进料口上移。
- 解: (1) 回流比下降,馏出液组成减小,釜液组成增大。
 - (2) x_F上升,馏出液组成增大,釜液组成增大。
 - (3) 馏出液组成减小,釜液组成增加。
- 30、在精馏塔操作中,若F、V维持不变,而 x_F 由于某种原因降低,问可用哪些措施使 x_D 维持不变?并比较这些方法的优缺点。
- 解:可以采用以下措施。
 - (1) 增大回流比 R, 但会减少塔顶产品产量
 - (2) 降低进料管位置,缺点是釜液组成增大,使塔底产品纯度下降
- (3)减少进料的焓(如有可能,即原来的料液通过预热的,降低其预热程度),即相当于增大 提馏段回流比,但以减小塔顶产品产量为代价。

可根据允许付出的代价,选择其中一法,或同时用多于一法的组合。

第七章 固体干燥

- 1. 已知湿空气的(干球)温度为50℃,湿度为0.02kg/kg干气,试计算下列两种情况下的相对湿度及同温度下容纳水分的最大能力(即饱和湿度),并分析压力对干燥操作的影响。
 - (1) 总压为 101. 3kPa; (2) 总压为 26.7 kPa。

解: (1) p=101.3kPa 时:

查得50℃水的饱和蒸汽压为12.34kPa,则相对湿度

$$\varphi = \frac{p_v}{p_s} \times 100\% = \frac{3.156}{12.34} \times 100\% = 25.57\%$$

饱和湿度: $H_S = 0.622 \frac{p_S}{p - p_S} = 0.622 \times \frac{12.34}{101.3 - 12.34} = 0.086 \text{kg/kg}$ 干气

(2) p' = 26.7kPa 时:

$$p'_{v} = \frac{Hp'}{0.622 + H} = \frac{0.02 \times 26.7}{0.622 + 0.02} = 0.832 \text{ kPa}$$

$$\varphi' = \frac{p'_{v}}{p_{s}} \times 100 \% = \frac{0.832}{12.34} \times 100 \% = 6.74 \%$$

$$H'_S = 0.622 \frac{p_S}{p' - p_S} = 0.622 \times \frac{12.34}{26.7 - 12.34} = 0.535 \text{ kg/kg} \mp \frac{12.34}{12.34} = 0.535 \text{ kg/kg}$$

由此可知,当操作压力下降时,从,从↑,可吸收更多的水分,即减压对干燥有利。

2. 常压下湿空气的温度为 80℃、相对湿度为 10%。试求该湿空气中水汽的分压、湿度、湿比容、比热及焓。

解:
$$t = 80$$
 °C, $\varphi = 10\%$

查得80℃下水的饱和蒸汽压为47.38kPa。

比热
$$c_H = 1.01 + 1.88 H = 1.01 + 1.88 \times 0.031 = 1.068 \text{ kJ/kg} 干气 \cdot ^{\circ}\text{C}$$

$$I_H = (1.01 + 1.88 H)t + 2492 H$$

$$= 1.068 \times 80 + 2492 \times 0.031 = 162.69 \text{ kJ/kg} 干气$$

- 3. 已知空气的干球温度为 60℃,湿球温度为 30℃,总压为 101.3 kPa,试计算空气的性质:
- (1) 湿度; (2) 相对湿度; (3) 焓; (4) 露点温度。

解: (1)
$$t_W = 30$$
°C ,可查得 $p_S = 4.247\,\mathrm{kPa}$, $r_W = 2423\,.7\mathrm{kJkg}$

$$H_W = 0.622 \frac{p_S}{p - p_S} = 0.622 \times \frac{4.247}{101.3 - 4.247} = 0.0272 \text{ kg/kg} + 4.247$$

得
$$H = H_w - \frac{\alpha}{k_H r_w} (t - t_w) = 0.0272 - \frac{1.09}{2423.7} \times (60 - 30) = 0.0137 \text{ kg/kg 干气}$$

$$p_v = \frac{Hp}{0.622 + H} = \frac{0.0137 \times 101.3}{0.622 + 0.0137} = 2.183 \text{ kPa}$$

60℃下水的饱和蒸汽压为 19.92kPa,则相对湿度

$$\varphi = \frac{p_v}{p} \times 100\% = \frac{2.183}{19.92} \times 100\% = 10.96\%$$

(3) 焓

$$I_H = (1.01 + 1.88 H)t + 2492 H$$

=(1.01 + 1.88 × 0.0137) × 60 + 2492 × 0.0137 = 96.29 kJ/kg + 4

(4) 露点温度:

由 $p_d = p_v = 2.183\,\mathrm{kPa}$, 查饱和蒸汽压表,得 $t_d = 18.8$ °C。

4. 在 I-H 图上确定本题附表中空格内的数值。

	干球温度	湿球温度	露点温度	湿度	相对湿度	焓	水汽分压
	t/°C	t _w /°C	t _d /℃	H/kg/kg 干气	$/\Phi\%$	/ I kJ/kg 干气	p _{v/} kPa
1	(30)	(20)	15	0.011	40	60	1. 9
2	(70)	45	42. 5	0.063	30	240	(9.5)
3	(60)	35	30	(0.03)	23	140	4. 5

4	(50)	37	35. 5	0. 042	(50)	60	6. 2
5	(40)	25	(20)	0. 015	30	80	2. 2

5. 常压下将温度为 25℃、相对湿度为 50%的新鲜空气与温度为 50℃、相对湿度为 80%的废气混合,混合比为 2: 3(以绝干空气为基准),试计算混合后的湿度、焓及温度。

解: (1)
$$t_1 = 25$$
° C , $\varphi_1 = 50$ % 的新鲜空气:

$$25$$
°C 时, $p_{S1} = 3.168$ kPa

$$\therefore H_1 = 0.622 \frac{\varphi_1 p_{S1}}{p - \varphi_1 p_{S1}} = 0.622 \times \frac{0.5 \times 3.168}{101.3 - 0.5 \times 3.168} = 9.88 \times 10^{-3} \text{ kg/kg} + \%$$

$$I_{H1} = (1.01 + 1.88 H_1)t_1 + 2492 H_1$$

$$=(1.01+1.88\times9.88\times10^{-3})\times25+2492\times9.88\times10^{-3}=50.34$$
 kJ/kg \mp 气

$$t_2 = 50$$
° $C, \varphi_2 = 80$ %的废气:

$$50$$
°C 时, $p_{S2} = 12.34$ kPa

$$\therefore H_2 = 0.622 \frac{\varphi_2 p_{S2}}{p - \varphi_2 p_{S2}} = 0.622 \times \frac{0.8 \times 12.34}{101.3 - 0.8 \times 12.34} = 0.0672 \text{ kg/kg} + 12.34$$

$$I_{H2} = (1.01 + 1.88 H_2)t_2 + 2492 H_2$$

=
$$(1.01 + 1.88 \times 0.0672) \times 50 + 2492 \times 0.0672 = 224.3$$
kJ/kg \mp 气

所以混合湿度

$$H_M = \frac{2}{5}H_1 + \frac{3}{5}H_2 = \frac{2}{5} \times 9.88 \times 10^{-3} + \frac{3}{5} \times 0.0672 = 0.0443 \text{ kg/kg}$$

混合焓:

$$I_M = \frac{2}{5}I_1 + \frac{3}{5}I_2 = \frac{2}{5} \times 50.34 + \frac{3}{5} \times 224.3 = 154.7 \text{kJ/kg} + \frac{3}{5}$$

$$\overrightarrow{\text{m}}$$
 $I_M = (1.01 + 1.88 H_M) t_M + 2492 H_M$

$$\therefore t_M = \frac{I_M - 2492 \, H_M}{1.01 + 1.88 \, H_M} = \frac{154.7 - 2492 \times 0.0443}{1.01 + 1.88 \times 0.0443} = 40.5 \,^{\circ}\text{C}$$

- 6. 干球温度为 20℃、湿球温度为 16℃的空气,经过预热器温度升高到 50℃后送至干燥器内。 空气在干燥器内绝热冷却,离开干燥器时的相对湿度为 80%,总压为 101.3kPa。试求:
 - (1) 在 I-H 图中确定空气离开干燥器时的湿度;
 - (2)将 100m³新鲜空气预热至 50℃所需的热量及在干燥器内绝热冷却增湿时所获得的水分量。

解: (1) 空气
$$t_0 = 20\,^{\circ}\mathrm{C}$$
, $t_W = 16\,^{\circ}\mathrm{C}$, 查得 $H_0 = 0.01\mathrm{kg/kg}$ 干气

预热后:
$$t_1 = 50$$
°C, $H_1 = 0.01$ kg/kg 干气

绝热冷却后, 查得 $t_2 = 30$ °C, $H_2 = 0.018$ kg/kg 干气

(2) 湿空气的比容:

$$\mathbf{v}_H = (0.773 + 1.244 \, H_0) \times \frac{273 + t_0}{273}$$

$$= (0.773 + 1.244 \times 0.01) \times \frac{273 + 20}{273} = 0.843 \, \text{m}^3$$
湿气 / kg 干气

则 100m3 湿空气中绝干空气的质量:

$$L = \frac{V}{v_H} = \frac{100}{0.843} = 118.62 \,\mathrm{kg}$$

预热器加入热量:

$$Q_P = L(I_1 - I_0) = Lc_H(t_1 - t_0)$$

= 118.62 × (1.01 + 1.88 × 0.01) × (50 – 20) = 3661 kJ

获得水分量:

$$W = L(H_2 - H_1) = 118.62 \times (0.018 - 0.01) = 0.95 \text{ kg}$$

- 7. 湿空气在总压 101.3kPa、温度 10℃下,湿度为 0.005 kg/kg 干气。试计算:
- (1) 相对湿度 $\boldsymbol{\phi}_1$;
- (2) 温度升高到 35℃时的相对湿度**Φ**₂;
- (3) 总压提高到 115kPa, 温度仍为 35℃时的相对湿度 ϕ_{3} ;
- (4) 如总压提高到 1471kPa,温度仍维持 35℃,每 100m³ 原湿空气所冷凝出的水分量。

解: (1) 10°C水饱和蒸汽压 $p_{S1} = 1.226$ kPa

$$p_v = \frac{Hp}{0.622 + H} = \frac{0.005 \times 101.3}{0.622 + 0.005} = 0.808 \,\text{kPa}$$

$$\varphi_1 = \frac{p_v}{p_{s1}} \times 100\% = \frac{0.808}{1.226} \times 100\% = 65.9\%$$

(2) $t_2 = 35^{\circ}\text{C}$, $p_{S2} = 5.621 \text{kPa}$

$$\varphi_2 = \frac{p_v}{p_{s2}} \times 100\% = \frac{0.808}{5.621} \times 100\% = 14.4\%$$

(3) p' = 115 kPa 时,

$$p_{v}' = \frac{Hp'}{0.622 + H} = \frac{0.005 115}{0.622 + 0.005} = 0.91 \text{ \% P a}$$

$$\varphi_2' = \frac{p_v}{p_{s2}} \times 100\% = \frac{0.917}{5.621} \times 100\% = 16.3\%$$

(4)
$$p' = 1471 \, \text{kPa}$$
, $t_2 = 35 \, \text{℃ 时}$:

饱和湿度
$$H_S = 0.622 \frac{p_S}{p - p_S} = 0.622 \frac{5.621}{1471 - 5.621} = 0.0024 \text{ kg/kg} 干气$$

原湿空气比容

$$v_H = (0.773 + 1.244 H_1) \times \frac{273 + t_1}{273}$$

$$= (0.773 + 1.244 \times 0.005) \times \frac{273 + 10}{273} = 0.808 \,\text{m}^3 \,\text{W} \,\text{// kg} \,\text{// kg}$$

100m3原湿空气中绝干空气质量

$$L = \frac{V}{v_H} = \frac{100}{0.808} = 123.76 \,\mathrm{kg} \mp 5$$

则冷凝出水

$$W = L (H - H_S) = 123.76 \times (0.005 - 0.0024) = 0.322 \text{ kg}$$

8. 附图为某物料在 25℃时的平衡曲线。如果将含水 量为 0.35kg 水 / kg 干料的此种物料与 ϕ = 50%的湿空气 接触,试确定该物料平衡水分和自由水分,结合水分和非 结合水分的大小。

解:
$$\phi = 50\%$$
,

平衡水分
$$X^* = 0.095 \, \text{kg/kg}$$
干料

则自由水分

$$X - X^* = 0.35 - 0.095 = 0.255 \text{ kg/kg} \mp \$4$$

9. 在常压干燥器中将某物料从湿基含水量 10%干燥至 2%,湿物料处理量为 300kg/h。干燥 介质为温度 80℃、相对湿度 10%的空气,其用量为 900kg/h。试计算水分汽化量及空气离开干燥器 时的湿度。

60 70 80

习题 8 附图

φ (%)

解: t = 80°C, $\varphi = 10$ %, 在 H-I 图中查得 $H_1 = 0.031$ kg/kg 干气

绝干空气质量
$$L = \frac{L'}{1+H_1} = \frac{900}{1+0.031} = 872.94 \text{ kg}$$
干气 / h

物料干基含水量

$$X_1 = \frac{w_1}{1 - w_1} = \frac{0.1}{1 - 0.1} = 0.1111 \text{ kg/kg} + \text{KP}$$

$$X_2 = \frac{w_2}{1 - w_2} = \frac{0.02}{1 - 0.02} = 0.0204 \text{ kg/kg} + \text{kg}$$

绝干物料量
$$G_C = G_1(1-w_1) = 300 \times (1-10\%) = 270 \text{ kg/h}$$

汽化水分量
$$W = G_C(X_1 - X_2) = 270 \times (0.111 - 0.0204) = 24.49 \text{ kg/h}$$

$$\mathbb{Z} W = L(H_2 - H_1)$$

则干燥器空气出口湿度

$$H_2 = H_1 + \frac{W}{L} = 0.031 + \frac{24.49}{872.94} = 0.059 \text{ kg/kg} + 7$$

10. 在某干燥器中干燥砂糖晶体,处理量为 100kg/h, 要求将湿基含水量由 40%减至 5%。干燥介质为干球温度 20℃,湿球温度 16℃的空气,经预热器加热至 80℃后送至干燥器内。空气在干燥器内为等焓变化过程,空气离开干燥器时温度为 30℃,总压为 101.3kPa。试求:(1)水分汽化量;(2)干燥产品量;(3)湿空气的消耗量;(4)加热器向空气提供的热量。

解:(1)水分汽化量

$$\begin{split} W &= G_1 - G_2 = G_1 - \frac{1 - w_1}{1 - w_2} G_1 = \frac{w_1 - w_2}{1 - w_2} G_1 = \frac{0.4 - 0.05}{1 - 0.05} \times 100 = 36.84 \, \text{kg/h} \\ \overrightarrow{\text{DL}} \qquad X_1 &= \frac{w_1}{1 - w_1} = \frac{0.4}{1 - 0.4} = \frac{2}{3} \, \text{kg/kg} \, \mp \$ \\ X_2 &= \frac{w_2}{1 - w_2} = \frac{0.05}{1 - 0.05} = \frac{1}{19} \, \text{kg/kg} \, \mp \$ \\ G_C &= G_1 (1 - w_1) = 100 \times (1 - 0.4) = 60 \, \text{kg/h} \\ W &= G_C (X_1 - X_2) = 60 \times (\frac{2}{3} - \frac{1}{19}) = 36.84 \, \text{kg/h} \end{split}$$

(2) 干燥产品量

$$G_2 = G_1 - W = 100 - 36.84 = 63.16 \text{ kg/h}$$

(3) 由
$$t_0 = 20$$
°C, $t_{W0} = 16$ °C 查图,得 $H_0 = 0.01$ kg/kg 干气 预热后 $t_1 = 80$ °C, $H_1 = 0.01$ kg/kg 干气

$$I_1 = (1.01 + 1.88 H_1)t_1 + 2492 H_1$$

= $(1.01 + 1.88 \times 0.01) \times 80 + 2492 \times 0.01 = 107.22 \text{ kJ/kg} + 50.01 = 107.22 \text{ kJ/kg}$

出口空气: 等焓过程 $I_2 = I_1$

$$(1.01 + 1.88 H_2)t_2 + 2492 H_2 = 107.22$$

$$(1.01 + 1.88 \times H_2) \times 30 + 2492 H_2 = 107.22$$

得: $H_2 = 0.03 \text{ kg/kg}$ 干气

$$\overline{\mathbb{H}}$$
 $W = L (H_2 - H_1)$

$$L = \frac{W}{H_2 - H_1} = \frac{36.84}{0.03 - 0.01} = 1842 \text{ kg/h}$$

湿空气用量

$$L' = L(1 + H_0) = 1842 \times (1 + 0.01) = 1860 \text{ kg/h}$$

(4) 预热器中的加热量:

$$Q_p = L(I_1 - I_0) = Lc_H(t_1 - t_0)$$

= $\frac{1842}{3600} \times (1.01 + 1.88 \times 0.01) \times (80 - 20) = 31.58 \text{kW}$

11. 在常压干燥器中,将某物料从湿基含水量 5%干燥到 0.5%。干燥器的生产能力为 7200kg 干料/h。已知物料进、出口温度分别为 25 ℃、65 ℃,平均比热为 1.8kJ/(kg \bullet ℃)。干燥介质为温度 20 ℃、湿度 0.007 kg / kg 干气的空气,经预热器加热至 120 ℃后送入干燥器,出干燥器的温度为 80 ℃。干燥器中不补充热量,且忽略热损失,试计算绝干空气的消耗量及空气离开干燥器时的湿度。

解: 物料干基含水量

$$X_1 = \frac{0.05}{1 - 0.05} = 0.05263$$
 $X_2 = \frac{0.005}{1 - 0.005} = 0.005025$

:.
$$W = G_C(X_1 - X_2) = 7200 \times (0.05263 - 0.005025) = 342.76 \text{ kg/h}$$

$$\nabla W = L(H_2 - H_1)$$

干燥器中不补充热量,且忽略热损失,则

$$Q_D = L(I_1 - I_2) + G_C(I_2 - I_1) = 0$$

$$\mathbb{U} \qquad L(I_1 - I_2) = G_C(I_2 - I_1) \tag{2}$$

$$G_C(I_2 - I_1) = G_C c_{M2}(\theta_2 - \theta_1) = 7200 \times 1.8 \times (65 - 25) = 518400$$

 $\overrightarrow{\text{III}}$ $I_1 = (1.01 + 1.88 \times 0.007) \times 120 + 2492 \times 0.007 = 140.22$

$$I_2 = (1.01 + 1.88 H_2) \times 80 + 2492 H_2 = 80.8 + 2642.4 H_2$$

将上式代入(2)中,

$$L(140.22 - 80.8 - 2642.4H_{2}) = 518400 \tag{3}$$

联立 (1)、(3) 得: $H_2 = 0.01685 \text{ kg/kg}$ 干气, L = 34798 kg/h

- 12. 用热空气干燥某种湿物料,新鲜空气的温度为 20℃、湿度为 0. 006kg / kg 干气,为保证干燥产品质量,要求空气在干燥器内的温度不能高于 90℃,为此,空气在预热器内加热至 90℃后送入干燥器,当空气在干燥器内温度降至 60℃时,再用中间加热器将空气加热至 90℃,空气离开干燥器时温度降至 60℃,假设两段干燥过程均可视为等焓过程,试求:
- (1)在 I-H图上定性表示出空气通过干燥器的整个过程;

解:空气状态变化过程如图所示。

A:
$$t_A = 20$$
 °C, $H_A = 0.006$ kg/kg ∓ 4

 $(1.01 + 1.88 \times 0.006) \times 90 + 2492 \times 0.006 = (1.01 + 1.88 H_{C1}) \times 60 + 2492 H_{C1}$

得
$$H_{C1} = 0.0178 \text{ kg/kg}$$
 干气

也即
$$H_{B2} = 0.0178 \text{ kg/kg}$$
 干气

$$X I_{B_2} = I_C$$

$$(1.01 + 1.88 \times 0.0178) \times 90 + 2492 \times 0.0178 = (1.01 + 1.88 H_C) \times 60 + 2492 H_C$$

得
$$H_C = 0.0298 \text{ kg/kg}$$
 干气

故汽化 1kg 水所需干空气用量

$$l = \frac{1}{H_C - H_A} = \frac{1}{0.0298 - 0.006} = 42.02 \,\text{kg/kg} \,\text{TK}$$

新鲜空气用量

$$l' = l(1 + H_A) = 42.02 \times 1.006 = 42.3 \text{kg/kg} \text{ /k}$$

- 13. 在常压连续逆流干燥器中,采用废气循环流程干燥某湿物料,即由干燥器出来的部分废气与新鲜空气混合,进入预热器加热到一定的温度后再送入干燥器。已知新鲜空气的温度为 25℃、湿度为 0.005kg/kg 干气,废气的温度为 40℃、湿度为 0.034kg/kg 干气,循环比(循环废气中绝干空气质量与混合气中绝干空气质量之比)为 0.8。湿物料的处理量为 1000kg/h,湿基含水量由 50%下降至 3%。假设预热器的热损失可忽略,干燥过程可视为等焓干燥过程。试求:
 - (1) 在 I-H 图上定性绘出空气的状态变化过程;
 - (2) 新鲜空气用量;
 - (3) 预热器中的加热量。

解: (1) 废气循环流程如下图所示。

空气状态变化过程如图所示。

图中:
$$\frac{CM}{MA} = \frac{1}{4}$$

(2) 物料干基含水量

$$X_1 = \frac{0.5}{1 - 0.5} = 1$$
 $X_2 = \frac{0.03}{1 - 0.03} = \frac{3}{97}$

绝干物料

$$G_C = G_1(1 - w_1) = 1000 \times (1 - 0.5) = 500 \text{ kg/l}$$

汽化水

分量

$$W = G_C(X_1 - X_2) = 500 \times (1 - \frac{3}{97}) = 484.5 \text{kg/h}$$

对整个干燥过程进行物料衡算

$$W = L(H_2 - H_0)$$

则绝干空气用量

$$L = \frac{W}{H_2 - H_0} = \frac{484.5}{0.034 - 0.005} = 16707 \text{ kg/h}$$

新鲜空气用量

$$L' = L(1 + H_0) = 16707 \times (1 + 0.005) = 16790 \text{ kg/h}$$

(3) 预热器中加热量

$$Q_{P} = L_{1}(I_{1} - I_{M}) = L_{1}(I_{2} - I_{M})$$

$$I_{1} = L + L_{2} = \frac{L}{0.2} = 5L$$

$$I_{M} = \frac{1}{5}I_{0} + \frac{4}{5}I_{2}$$

$$\therefore Q_P = 5L \left[I_2 - (\frac{1}{5}I_0 + \frac{4}{5}I_2) \right] = L(I_2 - I_0)$$

其中 $I_2 = (1.01 + 1.88 \times 0.034) \times 40 + 2492 \times 0.034 = 127.68 \text{ kJ/h}$

$$I_0 = (1.01 + 1.88 \times 0.005) \times 25 + 2492 \times 0.005 = 37.945 \, \text{kJ/h}$$

$$\therefore$$
 $Q_P = 16707 \times (127.68 - 37.945) = 1.5 \times 10^6 \text{ kJ/h} = 416.7 \text{kW}$

- 14. 若空气用量相同,试比较下列三种空气作为干燥介质时,恒速阶段干燥速率的大小关系。
 - (1) *t*=60℃, *H*=0.01kg/kg 干气;
 - (2) *t*=70℃,*H*=0.036kg/kg 干气;
 - (3) t=80°C,H=0.045kg/kg 干气。
- 解: (1) 由 t=60°C, t=0.01kg/kg 干气查图,得 $t_w=28$ °C , t=0.024kg/kg 干气

传热推动力:
$$(t-t_w)_1 = 60 - 28 = 32$$
°C

传质推动力:
$$(H_W - H)_1 = 0.024 - 0.01 = 0.014 \text{ kg/kg}$$
干气

(2) 同理: 传热推动力: $(t-t_w)_2 = 70-40 = 30$ °C

传质推动力:
$$(H_W - H)_2 = 0.049 - 0.036 = 0.013 \text{ kg/kg} 干气$$

(3) 传热推动力: $(t-t_w)_3 = 80-44 = 36$ °C

传质推动力:
$$(H_W - H)_3 = 0.062 - 0.045 = 0.017 \text{ kg/kg} 干气$$

恒速阶段干燥速率与其推动力成正比,比较之,有:(3)>(2)>(1)。

15. 有一盘架式干燥器,器内有 50 只盘,每盘的深度为 0.02m, 边长为 0.7m 见方, 盘内装有某湿物料,含水率由 1 kg/kg 干料干燥至 0.01 kg/kg 干料。空气在盘表面平行掠过,其温度为 77℃,相对湿度为 10%,流速为 2m/s。物料的临界含水量与平衡含水量分别为 0.3 和 0kg/kg 干料,干燥后

的密度为 600kg/m³。设降速阶段的干燥速率近似为直线,试计算干燥时间。

解: 由
$$t = 77$$
°C, $\varphi = 10\%$, 查得 $t_w = 38$ °C, $r_W = 2406$ kJ/kg,

 $H = 0.027 \,\mathrm{kg/kg} \mp \%$.

湿比容
$$\begin{aligned} v_H &= (0.773 + 1.244\,H) \times \frac{273 + t}{273} \\ &= (0.773 + 1.244 \times 0.027) \times \frac{273 + 77}{273} = 1.034\,\text{m}^3/\text{kg} 干气 \\ 湿空气密度 & \rho = \frac{1+H}{2} = \frac{1+0.027}{273} = 0.993\,\text{kg/m}^3 \end{aligned}$$

湿空气密度
$$\rho = \frac{1+H}{v_H} = \frac{1+0.027}{1.034} = 0.993 \text{ kg/m}^3$$

空气质量流速 $G = ou = 0.993 \times 2 = 1.986 \text{ kg/(m}^2 \cdot \text{s})$

$$\alpha = 14.3G^{0.8} = 14.3 \times 1.986^{0.8} = 24.76 \text{ W/(m}^2 \cdot \text{K)}$$

$$U_C = \frac{\alpha}{r_W} (t - t_W) = \frac{24.76}{2406 \times 10^3} \times (77 - 38) = 4.01 \times 10^{-4} \text{ kg/(m}^2 \cdot \text{s)}$$

干燥产品量
$$G_2 = V\rho = 50 \times 0.7^2 \times 0.02 \times 600 = 294 \text{ kg}$$

绝干物料量
$$G_C = G_2(1 - w_2) = \frac{G_2}{1 + X_2} = \frac{294}{1 + 0.01} = 291.1 \text{kg}$$

干燥面积
$$A = 50 \times 0.7^2 = 24.5 \text{m}^2$$

恒速阶段

$$\tau_1 = \frac{G_C(X_1 - X_C)}{U_C A} = \frac{291.1 \times (1 - 0.3)}{4.01 \times 10^{-4} \times 24.5} = 2.074 \times 10^4 \text{ s} = 5.76 \text{ h}$$

降速阶段

$$\tau_2 = \frac{G_C(X_C - X^*)}{U_C A} \ln \frac{X_C - X^*}{X_2 - X^*} = \frac{291.1 \times 0.3}{4.01 \times 10^{-4} \times 24.5} \ln \frac{0.3}{0.01} = 3.023 \times 10^{-4} \text{ s} = 8.40 \text{ h}$$

总干燥时间
$$\tau = \tau_1 + \tau_2 = 5.76 + 8.40 = 14.16 h$$

16. 在恒定干燥条件下,将物料由干基含水量 0.33kg/kg 干料干燥到 0.09kg/kg 干料,需要 7 小 时, 若继续干燥至 0.07kg/kg 干料, 还需多少时间?

已知物料的临界含水量为 0.16kg/kg 干料, 平衡含水量为 0.05kg/kg 干料。设降速阶段的干燥速 率与自由水分成正比。

解:
$$\tau = \tau_1 + \tau_2 = \frac{G_C(X_1 - X_C)}{U_C A} + \frac{G_C(X_C - X^*)}{U_C A} \ln \frac{X_C - X^*}{X_2 - X^*}$$

即
$$7 = \frac{G_C}{U_C A} [0.33 - 0.16 + (0.16 - 0.05) \ln \frac{0.16 - 0.05}{0.09 - 0.05}]$$

解得
$$\frac{G_C}{U_C A} = 24.9$$

当
$$X_{2}^{'}=0.07$$
时,

$$\tau = 24.9 \times [0.33 - 0.16 + (0.16 - 0.05) \ln \frac{0.16 - 0.05}{0.07 - 0.05}] = 8.9 h$$

$$\therefore \Delta \tau = 8.9 - 7 = 1.9h$$