Gradient Descent

CS[] Winter 2023 When n gets big enough, even using sparse methods or approximations for the nxn Hessian matrix H. Using only the gradient vector Pf (first derivatives), we am do GRADIENT DESCENT: $X_{k+1} = X_k - S_k \sqrt{f(x_k)}$ Togradient: downhill
stepsize (learning rate)

next guess HOW TO CHOOSE STEP SIZE Sk ? 1. I-dimensional line seach for buest point 2. Use a fixed value chosen by experiment. 3. More sophisticated adjustments depending on k and direction. Probably the most common approach is #Z, trial + error.

X K+1 = X K - S K \ f(x L) Recall: Of is perpendicular to the kerel curve J. Atinbrill - Of: downhill to gradient. Causes the path to zigzag: Convergence is controlled by KCH), the condition # of the Hessian, even though you don't use H. |f(xk+1)-f(x*)| = (1-1/(x)) |f(xk)-f(x) This is LINEAR convergence, not QUADRATIC (Newton) For the Strong function, H = [od], k(H) = 1SEE JUPYTER EXAMPLES OF STRANG-+ROSENBROCK.

GRADIENT DESCENT WITH MOMENTUM Think of a heavy ball rolling downhill. Instead of pure direction dk = - \(\forall f(x_k) \)
momentum mixes in some of dk-1: X = guess ; d = (8) for k=0,1,2, ... dk = - \(\forall f(\times_k) + \times_{\times_k-1} \\
\times_{\times_k+1} = \times_k + \times_{\times_k} \\
\times_{\times_k+1} = \times_k + \times_{\times_k} \\
\times_{\times_k+1} = \times_k + \times_{\times_k} \\
\times_{\times_k+1} = \times_k + \times_{\times_k+1} \\
\times_{\times_k+1} = \times_{\times_k+1} + \times_{\ Roughly speaking, this replaces K(H) with JK(H). If KCH)=100, (1-1-)=,99 This is huge! But it gives another parameter to twee See Jupyter examples with Strang + Rosenbrock.

NOTE: Much earlier in the course we saw an idea somewhat similar to momentum in conjugate gradient, which solves Ax=b by $x^* = \operatorname{argmin}(\frac{1}{2}x^TAx - x^Tb)$ Here $\nabla f(x) = Ax - b = -residual$, so rk in our CG code is just - VF. ... and the CG iterative step uses dk = - Of(xk) + Brdk-1, except that CG computes a new (optimal) Br at each step. NOT THE SAME AS MOMENTUM, BUT CURIOUSLY SIMILAR!

NESTEROV'S METHOD

Another way to accelerate gradient descent by using the previous Lircolandai Less intuitive than momentum but sometimes more stable. x = guess; d==0 for k = 0, 1, 2, ... dk= Bdk-1 - (7f(xk+8gk-1) One additional parameter 8. "lookahead gradient"