Estimation

If $x_1, x_2, x_3, \dots, x_n$ is a random sample of size 'n' from a large population $X_1, X_2, X_3, \dots, X_N$

of size 'N' then usually the sample mean and variance are denoted by \bar{x} and s^2 and population mean and

variance are denoted by μ and σ^2 , i.e. $\bar{x} = \frac{x_1 + x_2 + x_3 + \cdots + x_n}{n}$, $s^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2$ and

$$\mu = \frac{X_1 + X_2 + X_3 + \dots + X_N}{N}, \sigma^2 = \frac{1}{N} \sum_{i=1}^N (X_i - \mu)^2 = \frac{1}{N} \sum_{i=1}^N X_i^2 - \mu^2.$$

Poll Que. If $x_1, x_2, x_3, \dots, x_n$ is a random sample of size 'n' from a large population $X_1, X_2, X_3, \dots, X_N$ of size 'N' then which of the following is correct:

(a)
$$E(x_i) = \mu^2$$
, $E(\bar{x}) = \mu$ (b) $E(x_i) = \mu$, $E(\bar{x}) = \mu$ (c) $E(x_i) = \mu$, $E(\bar{x}) = \mu^2$ (d) None of these.

Poll Que. If $x_1, x_2, x_3, \dots, x_n$ is a random sample of size 'n' from a large population $X_1, X_2, X_3, \dots, X_N$ of size 'N' then which of the following is correct:

(a)
$$V(x_i) = \frac{\sigma^2}{n}$$
, $V(\bar{x}) = \sigma^2$ (b) $V(x_i) = \sigma^2$, $V(\bar{x}) = \sigma^2$

$$V(x_i) = \sigma^2, V(\bar{x}) = \frac{\sigma^2}{n}$$
 (d) None of these.

Poll Que. If $x_1, x_2, x_3, \dots, x_n$ is a random sample of size 'n' from a large population $X_1, X_2, X_3, \dots, X_N$

of size 'N' then which of the following is correct:

(a)
$$E(s^2) = \left(\frac{n-1}{n}\right)\sigma^2$$
 (b) $E(s^2) = \left(\frac{n+1}{n}\right)\sigma^2$ (c) $E(s^2) = \sigma^2$ (d) None of these.

Theorem 6.9. Let $X_1, X_2, ..., X_n$ be n random variables then

Que. If X_1 and X_2 are two random variables, a_1 and a_2 are two constants then $V(a_1X_1 + a_2X_2) = ?$

(a)
$$a_1^2V(X_1) + a_2^2V(X_2) - 2a_1^2a_2^2Cov(X_1, X_2)$$

(b)
$$a_1^2V(X_1) + a_2^2V(X_2) + 2a_1^2a_2^2Cov(X_1, X_2)$$

(c)
$$a_1^2V(X_1) + a_2^2V(X_2) - 2a_1a_2Cov(X_1, X_2)$$

(a)
$$a_1^2V(X_1) + a_2^2V(X_2) - 2a_1^2a_2^2Cov(X_1, X_2)$$

 (b) $a_1^2V(X_1) + a_2^2V(X_2) + 2a_1^2a_2^2Cov(X_1, X_2)$
 (c) $a_1^2V(X_1) + a_2^2V(X_2) - 2a_1a_2Cov(X_1, X_2)$
 (d) $a_1^2V(X_1) + a_2^2V(X_2) + 2a_1a_2Cov(X_1, X_2)$

Remark: If $x_1, x_2, x_3, \dots, x_n$ is a random sample of size 'n' from a large population $X_1, X_2, X_3, \dots, x_n$ of size 'N' then $E(x_i) = \mu$, $E(\bar{x}) = \mu$, $V(x_i) = \sigma^2$, $V(\bar{x}) = \frac{\sigma^2}{n}$, $E(s^2) = \left(\frac{n-1}{n}\right)\sigma^2$, $E(S^2) = \sigma^2$ where $S^2 = \frac{1}{n-1}\sum_{i=1}^n (x_i - \bar{x})^2$.

Remark: If $x_1, x_2, x_3, \dots, x_n$ is a random sample of size 'n' from a large population $X_1, X_2, X_3, \dots, X_N$

of size 'N' then
$$E(x_i) = \mu$$
, $E(\bar{x}) = \mu$, $V(x_i) = \sigma^2$, $V(\bar{x}) = \frac{\sigma^2}{n}$, $E(s^2) = \frac{n-1}{n} \sigma^2$, $E(S^2) = \sigma^2$ where $S^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$.

12.11. Unbiased Estimate for population Mean (μ) and Variance (σ^2) . Let $x_1, x_2, ..., x_n$ be a random sample of size n from a large population $X_1, X_2, ..., X_N$ (of size N) with mean μ and variance σ^2 . Then the sample mean (\bar{x}) and variance (s^2) are given by

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
, and $s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$
 $E(\overline{x}) = E\left(\frac{1}{n} \sum_{i=1}^{n} x_i\right) = \frac{1}{n} \sum_{i=1}^{n} E(x_i)$

Now

Since x_i is a sample observation from the population X_i , (i = 1, 2, ..., N) it can take any one of the values $X_1, X_2, ..., X_N$ each with equal probability 1/N.

$$E(x_i) = \frac{1}{N}X_1 + \frac{1}{N}X_2 + \dots + \frac{1}{N}X_N$$

$$= \frac{1}{N}(X_1 + X_2 + \dots + X_N) = \mu \qquad \dots (1)$$

$$\therefore E(\bar{x}) = \frac{1}{n} \sum_{i=1}^{n} (\mu) = \frac{1}{n} n \mu \implies E(\bar{x}) = \mu \qquad \dots (12.6)$$

Thus the sample mean (\bar{x}) is an unbiased estimate of the population mean (μ) .

Now
$$E(s^2) \stackrel{\vee}{=} E\left[\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2\right] = E\left[\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \overline{x}^2\right]$$

= $\frac{1}{n} \sum_{i=1}^{n} E(x_i^2) - E(\overline{x})^2$...(2)

We have
$$V'(x_i) = E[x_i - E(x_i)]^2 = E(x_i - \mu)^2$$
, [From (1)]

$$= \frac{1}{N} [(X_1 - \mu)^2 + (X_2 - \mu)^2 + \dots + (X_N - \mu)^2] = \sigma^2 \dots (3)$$

Also we know that

$$V(x) = E(x^2) - [E(x)]^2 \implies E(x^2) = V(x) + \{E(x)\}^2 \qquad \dots (4)$$

In particular

$$E(x_i^2) = V(x_i) + \{E(x_i)\}^2 = \sigma^2 + \mu^2$$
 ...(5)

Also from (4), $E(\bar{x}^2) = V(\bar{x}) + \{E(\bar{x})\}^2$

But
$$V(\bar{x}) = \frac{\sigma^2}{n}$$
, where σ^2 is the population variance. $(c.f. \S 12.13)$

$$E(\bar{x}^{2}) = \frac{\sigma^{2}}{n} + \mu^{2}$$
 [Using (12.6)] ...(5a)

$$E(s^{2}) = \frac{1}{n} \sum_{i=1}^{n} (\sigma^{2} + \mu^{2}) - \left(\frac{\sigma^{2}}{n} + \mu^{2}\right)$$

$$= \frac{1}{n} n (\sigma^{2} + \mu^{2}) - \left(\frac{\sigma^{2}}{n} + \mu^{2}\right) = \left(1 - \frac{1}{n}\right) \sigma^{2}$$

$$= \frac{n-1}{n} \sigma^{2} \qquad ...(12.7)$$

Since $E(s^2) \neq \sigma^2$, sample variance is not an unbiased estimate of population variance.

From (12.7), we get

$$\frac{n}{n-1}E(s^2) = \sigma^2 \implies E\left(\frac{ns^2}{n-1}\right) = \sigma^2$$

$$\Rightarrow E\left[\frac{1}{n-1}\sum_{i=1}^n (x_i - \bar{x})^2\right] = \sigma^2 \text{ i.e., } E(S^2) = \sigma^2 \qquad \dots (12.8)$$
where
$$S^2 = \frac{1}{n-1}\sum_{i=1}^n (x_i - \bar{x})^2 \qquad \dots (12.8a)$$

where

$$\therefore$$
 S² is an unbiased estimate of the population variance σ^2 .

Proof. Let x_i , (i = 1, 2, ..., n) be a random sample of size n from a population with variance σ^2 , then the sample mean \bar{x} is given by

$$\overline{x} = \frac{1}{n}(x_1 + x_2 + \dots + x_n)$$

$$\therefore V(\overline{x}) = V \left[\frac{1}{n}(x_1 + x_2 + \dots + x_n) \right] = \frac{1}{n^2}V(x_1 + x_2 + \dots + x_n)$$

$$= \frac{1}{n^2} \left[V(x_1) + V(x_2) + \dots + V(x_n) \right],$$

the covariance terms vanish since the sample observations are independent, [c.f. Remark (ii) § 6.6]

But
$$V(x_i) = \sigma^2$$
, $(i = 1, 2, ..., n)$ [From (3) of § 12·11]

$$V(\bar{x}) = \frac{1}{n^2} (n\sigma^2) = \frac{\sigma^2}{n}$$

$$\Rightarrow \qquad S.E.(\bar{x}) = \sqrt{\frac{\sigma^2}{n}} = \frac{\sigma}{\sqrt{n}} \qquad ...(12·9)$$

Characteristics of Estimators. The following are some of the criteria that should be satisfied by a good estimator.

(i) Unbiasedness (ii) Consistency (iii) Efficiency (iv) Sufficiency.

Definition: Any function of random sample $x_1, x_2, x_3, \dots, x_n$ that are being observed, say, $T_n(x_1, x_2, x_3, \dots, x_n)$ is called a **statistic**. Clearly a statistic is a random variable. If it is used to estimate an unknown **parameter** ' θ ' of the distribution then it is called an **estimator**. A particular value of the estimator, say, is called an **Estimate** of ' θ '.

Definition: A statistic $T_n(x_1, x_2, x_3, \dots, x_n)$ is said to be an Unbiased estimator of parameter $\gamma(\theta)$ if $E(T_n) = \gamma(\theta)$ for all $\theta \in \Theta$.

Remark: If $E(T_n) > \gamma(\theta)$ then is said to be positively biased and if $E(T_n) < \gamma(\theta)$ then is said to be negatively biased. The amount of bias $b(\theta) = E(T_n) - \gamma(\theta)$.

Poll Que. If $x_1, x_2, x_3, \dots, x_n$ is a random sample of size 'n' from a Nothen $t = \frac{1}{n} \sum_{i=1}^{n} x_i^2$ is an unbiased estimator of:

(a) $1 + \mu$ (b) $1 + \mu^2$ (c) $n + \mu^2$ (d) *None of these*.

Poll Que. Which of the following is/are correct?

- (a) Sample mean is an Unbiased Estimator of population mean.
- (b) Sample variance is an Unbiased Estimator of population variance.

(c) $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$ is an Unbiased Estimator of population variance.

(d) None of these.

Poll Que. If $x_1, x_2, x_3, \dots, x_n$ is a random sample of size 'n' from a Normal population $N(\mu, 1)$

then $t = \frac{1}{n} \sum_{i=1}^{n} x_i^2$ is an unbiased estimator of:

(a)
$$1 + \mu$$

(b)
$$1 + \mu^2$$

(c)
$$n + \mu^2$$

(a) $1 + \mu$ (b) $1 + \mu^2$ (c) $n + \mu^2$ (d) *None of these*.

Remark: If 'T' is an unbiased estimator of ' θ ' then 'T²' is a biased estimator of ' θ^2 '.

7.1. Bernoulli Distribution. A random variable X which takes two values 0 and 1, with probabilities q and p respectively, i.e., P(X = 1) = p, P(X=0)=q, q=1-p is called a Bernoulli variate and is said to have a Remoulli distribution.

Remark: (i) If in binomial distribution, number of trials 'n' = 1 then the binomial distribution becomes Bernoulli distribution.

(ii) Sum of 'n' independent Bernoulli variates is a binomial variate i.e. if $x_1, x_2, x_3, \dots, x_n$ is a random sample of size 'n' drawn from Bernoulli population with parameter ' θ ' then $T = \sum_{i=1}^{n} x_i \sim B(n, \theta)$.

Poll Que. If $x_1, x_2, x_3, \dots, x_n$ is a random sample of size 'n' drawn on 'X' which takes the values '1' or '0' with respective probabilities ' θ ' and ' $(1 - \theta)$ ' then t = $\frac{[\sum x_i(\sum x_i-1)]}{n(n-1)}$ is an unbiased estimator of:

(a)
$$1 + \theta$$

(b)
$$1 + \theta^2$$

(c)
$$n + \theta^2$$

(a) $1 + \theta$ (b) $1 + \theta^2$ (c) $n + \theta^2$ (d) *None of these*.

Poll Que. Let 'X' be distributed in the Poisson form with parameter ' θ '. Then the only unbiased estimate

of
$$\exp\{-(k+1)\theta\}$$
, $k > 0$ is:

(a)
$$T(X) = (-k)^{-X}$$
 (b) $T(X) = (k)^{-X}$ (c) $T(X) = (-k)^{X}$ (d) *None of these*.

Example 15.4. Let X be distributed in the Poisson form with parameter θ . Show that the only unbiased estimator of $\exp[-(k+1)\theta]$, k>0, is $T(X) = (-k)^X$ so that

$$T(x) > 0$$
 if x is even $T(x) < 0$ if x is odd.

15.3. Consistency. An estimator $T_n = T(x_1, x_2, ..., x_n)$, based on a random sample of size n, is said to be consistent estimator of $\gamma(\theta)$, $\theta \in \Theta$, the parameter space, if T_n converges to $\gamma(\theta)$ in probability.

i.e., if
$$T_n \xrightarrow{p} \gamma(\theta) \text{ as } n \to \infty$$
 ...(15·1)

In other words, T_n is a consistent estimator of $\gamma(\theta)$ if for every $\varepsilon > 0$, $\eta > 0$, there exists a positive integer $n \ge m$ (ε , η) such that

$$P\left[|T_n - \gamma(\theta)| < \varepsilon\right] \to 1 \text{ as } n \to \infty$$
 ::.(15.2)

$$\Rightarrow P\left[\exists T_n - \gamma(\theta) \mid < \varepsilon\right] > 1 - \eta \; ; \; \forall \; n \ge m \qquad \dots (15.2a)$$

where m is some very large value of n.

15.4.2. Sufficient Conditions for Consistency.

Theorem 15.2. Let $\{T_n\}$ be a sequence of estimators such that for all $\theta \in \Theta$,

(i)
$$E_{\theta}(T_n) \to \gamma(\theta), n \to \infty$$

and

and

(ii)
$$Var_{\theta}(T_n) \to 0$$
, as $n \to \infty$.

Then T_n is a consistent estimator of $\gamma(\theta)$.

Poll Que. Which of the following is/are correct?

(a) Sample mean is only an Unbiased Estimator of population mean.

- (b) Sample mean is only a consistent Estimator of population mean.
- (c) Sample mean is both Unbiased and consistent Estimator of population mean.
- (d) None of these.

Example 15.5. (a) Prove that in sampling from a $N(\mu, \sigma^2)$ population, the sample mean is a consistent estimator of μ :

Unbiasedness is a property associated with finite n. A statistic $T_n = T(x_1, x_2, ..., x_n)$, is said to be an unbiased estimator of $\gamma(\theta)$ if $E(T_n) = \gamma(\theta)$, for all $\theta \in \Theta$

15.4.1. Invariance Property of Consistent Estimators.

Theorem 15.1. If T_n is a consistent estimator of $\gamma(\theta)$ and $\psi(\gamma(\theta))$ is a continuous function of $\gamma(\theta)$, then $\psi(T_n)$ is a consistent estimator of $\psi(\gamma(\theta))$.

Poll Que. If $x_1, x_2, x_3, \dots, x_n$ are random observations on a Bernoulli variate 'X' taking the value '1' with probability 'p' and the value '0' with probability '(1-p)', then $\frac{\sum x_i}{n} \left(1 - \frac{\sum x_i}{n}\right)$ is a consistent estimator of:

(a) p(1-p) (b) 1-p (c) p (d) *None of these*.

Example 15.6. If $X_1, X_2, ..., X_n$ are random observations on a Bernoulli variate X taking the value 1 with probability p and the value 0 with probability (1-p), show that :

$$\frac{\sum x_i}{n} \left(1 - \frac{\sum x_i}{n} \right)$$
 is a consistent estimator of $p(1-p)$.

Solution. Since $X_1, X_2, ..., X_n$ are i.i.d Bernoulli variates with parameter 'p',

$$T = \sum_{i=1}^{n} x_{i} \sim B(n, p)$$

$$E(T) = np \quad \text{and} \quad \text{Var}(T) = npq$$

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} x_{i} = \frac{T}{n}$$

$$E(\bar{X}) = \frac{1}{n} E(T) = \frac{1}{n} \cdot np = p$$

$$\text{Var}(\bar{X}) = \text{Var}\left(\frac{T}{n}\right) = \frac{1}{n^{2}} \cdot \text{Var}(T) = \frac{pq}{n} \to 0 \text{ as } n \to \infty.$$

Since $E(\overline{X}) \to p$ and $Var(\overline{X}) \to 0$, as $n \to \infty$; \overline{X} is a consistent estimator of p.

Also $\frac{\sum x_i}{n} \left(1 - \frac{\sum x_i}{n} \right) = \overline{X}$ $(1 - \overline{X})$, being a polynomial in \overline{X} , is a continuous function of \overline{X} .

Since \overline{X} is consistent estimator of p, by the invariance property of consistent estimators (Theorem 15·1), \overline{X} $(1 - \overline{X})$ is a consistent estimator of p(1-p).

15.5. Efficient 'Estimators. Efficiency. Even if we confine ourselves to unbiased estimates, there will, in general, exist more than one consistent estimator of a parameter. For example, in sampling from a normal population $N(\mu, \sigma^2)$, when σ^2 is known, sample mean \bar{x} is an unbiased and consistent estimator of μ [c.f. Example 15.5a].

$$V(Md) = \frac{1}{4n} \cdot 2\pi\sigma^2 = \frac{\pi\sigma^2}{2n}$$
Since
$$E(Md) = \mu$$

$$V(Md) \to 0$$
, as $n \to \infty$

median is also an unbiased and consistent estimator of μ .

If, of the two consistent estimators T_1 , T_2 of a certain parameter θ , we have

$$V(T_1) < V(T_2)$$
, for all n ...(15·11)

then T_1 is more efficient than T_2 for all samples sizes.

We have seen above:

For all
$$n$$
, $V(\bar{x}) = \frac{\sigma^2}{n}$
and for large n , $V(Md) = \frac{\pi\sigma^2}{2n} = 1.57 \frac{\sigma^2}{n}$

Since $V(\bar{x}) < V(Md)$, we conclude that for normal distribution, sample mean is more efficient estimator for μ than the sample median, for large samples at least.

15.5.1. Most Efficient Estimator. If in a class of consistent estimators for a parameter, there exists one whose sampling variance is less than that of any such estimator, it is called the most efficient estimator. Whenever such an estimator exists, it provides a criterion for measurement of efficiency of the other estimators.

Efficiency (Def.) If T_1 is the most efficient estimator with variance V_1 and T_2 is any other estimator with variance V_2 , then the efficiency E of T_2 is defined as:

$$E = \frac{V_1}{V_2} \qquad \dots (15.12)$$

Obviously, E cannot exceed unity.

If $T, T_1, T_2, ..., T_n$ are all estimators of $\gamma(\theta)$ and Var(T) is minimum, then the efficiency E_i of T_i , (i = 1, 2, ..., n) is defined as:

$$E_i = \frac{\text{Var } T}{\text{Var } T_i}; i = 1, 2, ..., n$$
 ...(15·12a)

Obviously $E_i \le 1$, i = 1, 2, ... n.

For example, in the normal samples, since sample mean \bar{x} is the most efficient estimator of μ [c.f. Remark to Example 15.31], the efficiency E of Md for such samples, (for large n), is:

$$E = \frac{V(\bar{x})}{V(Md)} = \frac{\sigma^2/n}{\pi\sigma^2/(2n)} = \frac{2}{\pi} = 0.637$$

Example 15.7. A random sample $(X_1, X_2, X_3, X_4, X_5)$ of size 5 is drawn from a normal population with unknown mean μ . Consider the following estimators to estimate μ .

(i)
$$t_1 = \frac{X_1 + X_2 + X_3 + X_4 + X_5}{5}$$

(ii)
$$t_2 = \frac{X_1 + X_2}{2} + X_3$$
, (iii) $t_3 = \frac{2X_1 + X_2 + \lambda X_3}{3}$

where λ is such that t_3 is an unbiased estimator of μ .

Find λ . Are t_1 and t_2 unbiased? State giving reasons, the estimator which is best among t_1 , t_2 and t_3 .

(a)
$$\lambda = -1$$
 (b) $\lambda = 0$ (c) $\lambda = 1$ (d) *None of these*.

(a) only ' t_1 ' is unbiased (b) only ' t_2 ' is unbiased (c) both ' t_1 ' and ' t_2 ' are unbiased (d) *None of these*.

(a) t_1 is most efficient (b) t_2 is most efficient (c) t_3 is most efficient (d) *None of these*.

$$V(t_1) = \frac{1}{25} \left[V(X_1) + V(X_2) + V(X_3) + V(X_4) + V(X_5) \right] = \frac{1}{5} \sigma^2$$

$$V(t_2) = \frac{1}{4} \left[V(X_1) + V(X_2) \right] + V(X_3) = \frac{1}{2} \sigma^2 + \sigma^2 = \frac{3}{2} \sigma^2$$

$$V(t_3) = \frac{1}{9} \left[4V(X_1) + V(X_2) \right] = \frac{1}{9} (4\sigma^2 + \sigma^2) = \frac{5}{9} \sigma^2 \qquad (\because \lambda = 0)$$

Since $V(t_1)$ is the least, t_1 is the best estimator (in the sense of least variance) of μ .

Example 15.8. X_1 , X_2 , and X_3 is a random sample of size 3 from a population with mean value μ and variance σ^2 , T_1 , T_2 , T_3 are the estimators used to estimate mean value μ , where

$$T_1 = X_1 + X_2 - X_3$$
, $T_2 = 2X_1 + 3X_3 - 4X_2$, and $T_3 = (\lambda X_1 + X_2 + X_3)/3$

- (i) Are T_1 and T_2 unbiased estimators?
 - (ii) Find the value of λ such that T_3 is unbiased estimator for μ .
- (iii) With this value of λ is T_3 a consistent estimator?
- (iv) Which is the best estimator?

Poll Que. Which of the following is the probability density function of the random variable $X \sim N(\mu, \sigma^2)$?

(a)
$$\frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{\sigma^2}\right)$$
 (b) $\frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{(x-\mu)^2}{2\sigma^2}\right)$ (c) $\frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ (d) $\frac{1}{2\pi\sqrt{\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$.

- 15.10. Methods of Estimation. So far we have been discussing the requisites of a good estimator. Now we shall briefly outline some of the important methods for obtaining such estimators. Commonly used methods are
 - (i) Method of Maximum Likelihood Estimation.
 - (ii) Method of Minimum Variance.
 - (iii) Method of Moments.
 - (iv) Method of Least Squares.
 - (v) Method of Minimum Chi-square
 - (vi) Method of Inverse Probability.

Likelihood Function. Definition. Let $x_1, x_2, ..., x_n$ be a random sample of size n from a population with density function $f(x, \theta)$. Then the likelihood function of the sample values $x_1, x_2, ..., x_n$, usually denoted by $L = L(\theta)$ is their joint density function, given by

$$L = f(x_1, \theta) f(x_2, \theta) \dots f(x_n, \theta) = \prod_{i=1}^n f(x_i, \theta). \dots (15.53)$$

L gives the relative likelihood that the random variables assume a particular set of values $x_1, x_2, ..., x_n$. For a given sample $x_1, x_2, ..., x_n$, L becomes a function of the variable θ , the parameter.

The principle of maximum likelihood consists in finding an estimator for the unknown parameter $\theta = (\theta_1, \theta_2, ..., \theta_k)$, say, which maximises the likelihood function $L(\theta)$ for variations in parameter *i.e.*, we wish to find $\hat{\theta} = (\hat{\theta}_1, \hat{\theta}_2, ..., \hat{\theta}_k)$ so that

$$L(\stackrel{\wedge}{\theta}) > L(\theta) \quad \forall \ \theta \in \Theta$$

i.e., $L(\stackrel{\wedge}{\theta}) = \operatorname{Sup} L(\theta) \ \forall \ \theta \in \Theta$.

Thus if there exists a function $\hat{\theta} = \hat{\theta} (x_1, x_2, ..., x_n)$ of the sample values which maximises L for variations in θ , then $\hat{\theta}$ is to be taken as an estimator of θ . $\hat{\theta}$ is usually called Maximum Likelihood Estimator (M.L.E.). Thus $\hat{\theta}$ is the solution, if any, of $\frac{\partial^2 L}{\partial x_1} = \frac{\partial^2 L}{\partial x_2} = \frac{\partial^2 = \frac{\partial^2 L}{\partial x$

 $\frac{\partial L}{\partial \theta} = 0$ and $\frac{\partial^2 L}{\partial \theta^2} < 0$...(15.54)

Since L > 0, and $\log L$ is a non-decreasing function of L; L and $\log L$ attain their extreme values (maxima or minima) at the same value of θ . The first of the two equations in (15.54) can be rewritten as

$$\frac{1}{L} \cdot \frac{\partial L}{\partial \theta} = 0 \quad \Rightarrow \quad \frac{\partial \log L}{\partial \theta} = 0, \qquad \dots (15.54a)$$

a form which is much more convenient from practical point of view.

If θ is vector valued parameter, then $\hat{\theta} = (\hat{\theta}_1, \hat{\theta}_2, ..., \hat{\theta}_k)$, is given by the solution of simultaneous equations:

$$\frac{\partial}{\partial \theta_i} \log L = \frac{\partial}{\partial \theta_i} \log L \ (\theta_1, \theta_2, ..., \theta_k) = 0 \ ; \ i = 1, 2, ..., k$$

$$...(15.54b)$$

Equations (15.54a) and (15.54b) are usually referred to as the *Likelihood Equations* for estimating the parameters.

Solution.
$$X \sim N$$
 (μ , σ^2) then
$$L = \prod_{i=1}^{n} \left[\frac{1}{\sigma \sqrt{2\pi}} \exp\left\{ -\frac{1}{2\sigma^2} (x_i - \mu)^2 \right\} \right]$$

$$= \left(\frac{1}{\sigma \sqrt{2\pi}} \right)^n \exp\left\{ -\sum_{i=1}^{n} (x_i - \mu)^2 / 2\sigma^2 \right\}$$

$$\log L = -\frac{n}{2} \log (2\pi) - \frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$$

Poll Que. Which of the following is the probability density function of the random variable $X \sim N(\mu, \sigma^2)$?

(a) $\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{\sigma^2}\right)$ (b) $\frac{1}{\sqrt{2\pi}} \exp\left(\frac{(x-\mu)^2}{\sigma^2}\right)$ (c) $\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{\sigma^2}\right)$ (d) $\frac{1}{2\pi\sqrt{\pi}} \exp\left(-\frac{(x-\mu)^2}{\sigma^2}\right)$

Poll Que. If $x_1, x_2, x_3, \dots, x_n$ is a random sample of size 'n' from a Normal population $N(\mu, \sigma^2)$ then $\log L = ?$

(a)
$$-\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\sigma) - \frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2$$
 (b) $-\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2$

(c)
$$-\frac{n}{2}\log(\pi) - \frac{n}{2}\log(\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2$$
 (d) $-\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\sigma^2) - \frac{1}{\sigma^2}\sum_{i=1}^n (x_i - \mu)^2$.

Example 15.31. In random sampling from normal population $N(\mu; \sigma^2)$, find the maximum likelihood estimators for

- (i) μ when σ^2 is known,
- (ii) σ^2 when μ is known, and

(iii) the simultaneous estimation of μ and σ^2 .

For part (i) (a) MLE for '
$$\mu$$
' when ' σ^2 ' is known is $\frac{\overline{x}}{2}$ (b) MLE for ' μ ' when ' σ^2 ' is known is \overline{x}

(c) MLE for '
$$\mu$$
' when ' σ^2 ' is known is $2\overline{x}$ (d)
None of these.

For part (ii) (a) MLE for '
$$\sigma^2$$
' when ' μ ' is known is $\frac{1}{n}\sum_{i=1}^n(x_i-\overline{x})^2$

(b) MLE for '
$$\sigma^2$$
' when ' μ ' is known is $\frac{1}{n-1}\sum_{i=1}^n(x_i-\mu)^2$

(c) MLE for '
$$\sigma^2$$
' when ' μ ' is known is $\frac{1}{n}\sum_{i=1}^n(x_i-\mu)^2$

(d) None of these.

For part (iii) (a) MLE for ' μ ' and ' σ^2 ' are \overline{x} and s^2 respectively

(b) MLE for '
$$\mu$$
' and ' σ^2 ' are \overline{x} and $\frac{1}{n}\sum_{i=1}^n(x_i-\mu)^2$ respectively

(c) MLE for '
$$\mu$$
' and ' σ^2 ' are \overline{x} and $\frac{1}{n-1}\sum_{i=1}^n(x_i-\bar{x})^2$

respectively (d) *None of these*.

Solution. $X \sim N (\mu, \sigma^2)$ then

$$L = \prod_{i=1}^{n} \left[\frac{1}{\sigma \sqrt{2\pi}} \exp \left\{ -\frac{1}{2\sigma^{2}} (x_{i} - \mu)^{2} \right\} \right]$$

$$= \left(\frac{1}{\sigma \sqrt{2\pi}} \right)^{n} \exp \left\{ -\sum_{i=1}^{n} (x_{i} - \mu)^{2} / 2\sigma^{2} \right\}$$

$$\log L = -\frac{n}{2} \log (2\pi) - \frac{n}{2} \log \sigma^{2} - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}$$

Case (i). When σ^2 is known, the likelihood equation for estimating μ is

$$\frac{\partial}{\partial \mu} \log L = 0 \implies -\frac{1}{2\sigma^2} \sum_{i=1}^{n} 2(x_i - \mu)(-1) = 0$$
or
$$\sum_{i=1}^{n} (x_i - \mu) = 0 \implies \sum_{i=1}^{n} x_i - n\mu = 0$$

$$\stackrel{\wedge}{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x} \qquad \dots (*)$$

 $n_{i=1}$

Hence M.L.E. for μ is the sample mean \bar{x} .

Case (ii). When μ is known, the likelihood equation for estimating σ^2 is

$$\frac{\partial}{\partial \sigma^2} \log L = 0 \implies -\frac{n}{2} \times \frac{1}{\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0$$

$$\Rightarrow n - \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 = 0, \quad i.e., \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2 \qquad \dots (**)$$

Case (iii). The likelihood equations for simultaneous estimation of μ and σ^2 are

$$\frac{\partial}{\partial \mu} \log L = 0 \text{ and } \frac{\partial}{\partial \sigma^2} \log L = 0, \text{ thus giving}$$

$$\hat{\mu} = \overline{x} \qquad [\text{From (*)}]$$
and
$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2 \qquad [\text{From (**)}]$$

$$= \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2 = s^2, \text{ the sample variance.}$$

Poll Que. (i) Which of the following is the maximum likelihood estimate of the parameter ' α ' of

a population having density function: $\frac{2}{\alpha^2}(\alpha - x)$, $0 < x < \alpha$ when a sample of unit size is drawn

from the population? (Here x is the sample value).

(a)
$$2x$$
 (b) x (c) $\frac{x}{2}$ (d) None of these.

Poll Que. (ii) Is the above MLE is biased?

Example 15.32. Prove that the maximum likelihood estimate of the parameter α of a population having density function:

$$\frac{2}{\alpha^2}(\alpha - x), 0 < x < \alpha$$

for a sample of unit size is 2x, x being the sample value. Show also that the estimate is biased. [Burdwan Univ. B.Sc. (Maths. Hons.), 1991]

Solution. For a random sample of unit size (n = 1), the likelihood function is:

$$L(\alpha) = f(x, \alpha) = \frac{2}{\alpha^2}(\alpha - x); 0 < x < \alpha$$

Likelihood equation gives:

$$\frac{d}{d\alpha} \log L = \frac{d}{d\alpha} \left[\log 2 - 2 \log \alpha + \log (\alpha - x) \right] = 0$$

$$\Rightarrow -\frac{2}{\alpha} + \frac{1}{\alpha - x} = 0 \Rightarrow 2(\alpha - x) - \alpha = 0 \Rightarrow \alpha = 2x$$

Hence MLE of α is given by $\hat{\alpha} = 2x$.

$$E(\hat{\alpha}) = E(2X) = 2 \int_0^{\alpha} x \cdot f(x, \alpha) dx$$
$$= \frac{4}{\alpha^2} \int_0^{\alpha} x(\alpha - x) dx = \frac{4}{\alpha^2} \left| \frac{\alpha x^2}{2} - \frac{x^3}{3} \right|_0^{\alpha} = \frac{2}{3} \alpha$$

Since $E(\hat{\alpha}) \neq \alpha$, $\hat{\alpha} = 2x$ is not an unbiased estimate of α .

Springer Ebooks.pdf

$$P(-3 \le Z \le 3) = 0.9973, i.e., P(|Z| \le 3) = 0.9973$$
 $P(|Z| > 3) = 1 - P(|Z| \le 3) = 0.0027$ $P(-1.96 \le Z \le 1.96) = 0.95, i.e., P(|Z| \le 1.96) = 0.95$ $P(|Z| > 1.96) = 1 - P(|Z| \le 1.96) = 0.05$ $P(|Z| \le 2.58) = 0.99$ $P(|Z| > 2.58) = 0.01$