Recall

let S_1, S_2, \ldots, S_n be sets

The cartesian product is the set $S_1 \times S_2 \times \ldots \times S_n = \frac{5}{2}(S_1, S_2, \ldots, S_n) \Big| S_1 \in S_1$

Theorem

G, x G 2 x... x Gn = \(\frac{2}{911921...9n} \) g; \(\frac{6}{6}, \) is a group called the direct product of G; \(\frac{5}{6}, \) \(\frac{5}{6}, \) with a binary operation defined componentwise

Proof

1) W(q,,92,-19n),(q,,92,00) E G, x... × Gn

 $\exists' (g_{i},g_{i},...,g_{n},g_{n})(g_{i},g_{i},...,g_{n},g_{n}) \in G_{i} \times ... \times G_{n}$

The bin op betined on G, x.. xGn is associative

(dentity is (e₁,...,e_n) where e; is identity of G;

Inverse of $(g_1,...,g_n)$ is $(g_1',...,g_n')$ where g_1' is the inverse of $g_i \in G_i$