

ARARAS/SP Curso: DSM

Disciplina: Matemática para Computação Prof. Vagner

5 de outubro de 2022

Lista 4

- 1. Verifique utilizando métodos de demonstrações que as seguintes sentenças sobre o inteiro n são equivalentes. p_1 : n é par, p_2 : n-1 ímpar e p_3 : n^2 é par. Sugestão: Mostre que as condicionais $p_1 \to p_2$, $p_2 \to p_3$, $p_3 \to p_1$ são verdadeiras.
- 2. Mostre que a soma de dois números inteiros ímpares é par.
- 3. Demonstre que se m + n e n + p são números inteiros pares, em que m, n e p são números inteiros, então m + p é par.
- 4. Use uma demonstração direta, para mostrar que todo número inteiro ímpar é a diferença de dois quadrados.
- 5. Use uma demonstração por contradição para provar que a soma de um número irracional e um racional é irracional.
- 6. Mostre que se n é um número inteiro e $n^3 + 5$ é ímpar, então n é par.
- 7. Assuma P(n) como a proposição "Se a e b são números reais positivos, então $(a+b)^n \ge a^n + b^n$ ". Comprove que P(1) é verdadeira.
- 8. Demonstre que se x é irracional, então $\frac{1}{x}$ é irracional.
- 9. Demonstre que se n é um número inteiro positivo, então n é par se e somente se 7n + 4 for par.
- 10. Use uma demonstração por contraposição para mostrar que se $x+y\geq 2$, em que x e y são números reais, então $x\geq 1$ ou $y\geq 1$