Stichprobe aus einer Normalverteilung:

> x

-0.3109498 1.3417310 -0.9245257 -0.1026436 1.0769149

-1.1520844 -0.9227701 -1.7029334 -0.3855018 0.6828499

Stichprobe aus einer Normalverteilung:

> x

-0.3109498 1.3417310 -0.9245257 -0.1026436 1.0769149

-1.1520844 -0.9227701 -1.7029334 -0.3855018 0.6828499

Maximum-Likelihood-Schätzwert für μ :

$$\hat{\mu}_{\mathsf{ML}} = \bar{X} = -0.2399913$$

Stichprobe aus einer Normalverteilung:

> x

-0.3109498 1.3417310 -0.9245257 -0.1026436 1.0769149

-1.1520844 -0.9227701 -1.7029334 -0.3855018 0.6828499

Maximum-Likelihood-Schätzwert für μ :

$$\hat{\mu}_{\mathsf{ML}} = \bar{X} = -0.2399913$$

95%-Konfidenzintervall für μ :

$$[-0.9569236; 0.476941]$$

$(1-\alpha)$ - Konfidenzintervall für den Erwartungswert einer Normalverteilung

 σ bekannt:

$$\left[\bar{X}-z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}};\ \bar{X}+z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\right]$$

 σ unbekannt:

$$\left[ar{X}-t_{1-lpha/2;n-1}rac{\mathcal{S}}{\sqrt{n}};\;ar{X}+t_{1-lpha/2;n-1}rac{\mathcal{S}}{\sqrt{n}}
ight]$$

(1-lpha) - Konfidenzintervall für den Erwartungswert einer Normalverteilung

 σ bekannt:

$$\left[\bar{X}-z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}};\ \bar{X}+z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\right]$$

 σ unbekannt:

$$\left[\bar{X}-t_{1-\alpha/2;n-1}\frac{S}{\sqrt{n}};\; \bar{X}+t_{1-\alpha/2;n-1}\frac{S}{\sqrt{n}}\right]$$

Wie verändert sich das Konfidenzintervall, wenn

- n steigt?
- α sinkt?
- σ steigt?
- σ durch die Stichprobenstandardabweichung S geschätzt wird?

(1-lpha) - Konfidenzintervall für den Erwartungswert einer Normalverteilung

 σ bekannt:

$$\left[\bar{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}; \ \bar{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$$

Breite *b* des KI:

$$b = \bar{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} - \left(\bar{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 2z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$$

(1-lpha) - Konfidenzintervall für den Erwartungswert einer Normalverteilung

 σ bekannt:

$$\left[\bar{X}-z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}};\ \bar{X}+z_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\right]$$

Breite b des KI:

$$b = \bar{X} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} - \left(\bar{X} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 2z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Und damit gilt:

- Wenn *n* steigt, dann wird das KI schmaler.
- Wenn α sinkt wird $z_{1-\alpha/2}$ größer und damit das KI breiter.
- Wenn σ steigt wird das KI breiter.

Folgende konkrete Maßnahmen können wir ableiten, um das KI schmaler zu machen:

- Erhöhe den Stichprobenumfang. Das führt evtl. zu höheren Kosten.
- Wähle ein größeres α . Damit riskieren wir aber, den wahren Parameter nicht einzufangen.

Will man zu fester Irrtumswahrscheinlichkeit α ein Konfidenzintervall mit bestimmter Maximalbreite haben, kann man den notwendigen Stichprobenumfang berechnen:

$$b = 2z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$$

$$\Leftrightarrow n = \left(\frac{2z_{1-\alpha/2}\sigma}{b}\right)^2$$

Was ist mit dem letzten Fall: σ wird durch die Stichprobenstandardabweichung S geschätzt?

$$S = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(X_i - \bar{X})}$$

Was ist mit dem letzten Fall: σ wird durch die Stichprobenstandardabweichung S geschätzt?

$$S = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(X_i - \bar{X})}$$

α	$z_{1-\alpha/2}$	$t_{1-lpha/2;10}$	$t_{1-lpha/2;30}$
0,01	2,58	3,17	2,75
0,05	1,96	2,23	2,04
0,10	1,64	1,81	1,70

Was ist mit dem letzten Fall: σ wird durch die Stichprobenstandardabweichung S geschätzt?

$$S = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(X_i - \bar{X})}$$

α	$z_{1-\alpha/2}$	$t_{1-lpha/2;10}$	$t_{1-lpha/2;30}$
0,01	2,58	3,17	2,75
0,05	1,96	2,23	2,04
0,10	1,64	1,81	1,70

Und damit gilt:

- Wenn σ durch S geschätzt wird, wird das KI breiter.
- Wenn n > 30, ist $z_{1-\alpha/2} \approx t_{1-\alpha/2;n-1}$ und der Effekt ist vernachlässigbar.