

TEC0001 – Teoria da Computação Aula 03 Reconhecedores e Decisores

Karina Girardi Roggia karina.roggia@udesc.br

Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa Catarina

2016

Karina G. Roggia 2016 TEC0001 - Aula03 $1 \ / \ 1$

Sumário

Configurações

Linguagens Reconhecíveis

Linguagens Decidíveis

Configuração

Supondo

Escreveremos esta configuração como

abq3baca

Karina G. Roggia 2016 TEC0001 - Aula03 3 / 1

Configuração

Dados

- Estado $q \in Q$
- Cadeias $u, v \in \Gamma^*$

uqv

é a configuração em que:

- o estado atual é q
- o conteúdo da fita é uv
- a posição do cabeçote da fita é o primeiro símbolo de v

Computação por Configurações

A configuração C_1 **origina** a configuração C_2 se a máquina de Turing puder ir de C_1 para C_2 em um único passo.

Dados

- a, b, c ∈ Γ
- *u*, *v* ∈ Γ*
- $q_i, q_j \in Q$

Teremos que

se
$$\delta(q_i, b) = (q_j, c, E)$$
.

Teremos que

se
$$\delta(q_i, b) = (q_i, c, D)$$
.

Casos Especiais

Cabeçote em alguma das extremidades da configuração

- Extremidade esquerda. qibv origina
 - $q_j cv$ se $\delta(q_i, b) = (q_j, c, E)$
 - $cq_j v$ se $\delta(q_i, b) = (q_j, c, D)$
- Extremidade direita.
 - uaq_i é equivalente a uaq_i...

Configurações

Inicial

• $q_0 w$ sendo $w \in \Sigma^*$ a palavra de entrada

Configurações de Parada

Aceitação

• o estado da configuração é q_{aceita}

Rejeição

• o estado da configuração é q_{rejeita}

Karina G. Roggia 2016 TEC0001 - Aula03 7 / 1

Aceitação por Configuração

Definição (Aceitação por Configuração)

Uma Máquina de Turing $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_{aceita}, q_{rejeita} \rangle$ aceita a entrada $w \in \Sigma^*$ se existe uma sequência de configurações C_1, C_2, \ldots, C_k onde

- C₁ é q₀w,
- cada C_i origina C_{i+1} , e
- C_k é uma configuração de aceitação.

Partição sobre Σ^*

Linguagens Reconhecíveis

Definição (Linguagem Reconhecível)

Uma linguagem $L_R \subseteq \Sigma^*$ é dita **Reconhecível** se existe uma máquina de Turing $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_{aceita}, q_{rejeita} \rangle$ tal que

$$L(M) = L_R$$

Sinônimos:

- Linguagem Turing-Reconhecível
- Linguagem Recursivamente Enumerável

Linguagens Decidíveis

Linguagens em que LOOP $(M) = \emptyset$.

Definição (Linguagem Decidível)

Uma linguagem $L_R \subset \Sigma^*$ é dita **Decidível** se existe uma máquina de Turing $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_{aceita}, q_{reieita} \rangle$ tal que

$$L(M) = L_R \in LOOP(M) = \emptyset$$

Sinônimos:

- Linguagem Turing-Decidível
- Linguagem Recursiva

2016 TEC0001 - Aula03 11 / 11