Carefully PRINT your fu	ll name:			
CIRCLE your section:	Section 1 (Tu)	Section 2 (Tu)	Section 3 (Hasselblatt)	
MATH 135		am 1 points)	October 17, 2022 12 noon-1:20 p.m.	
Instructions: No books, notes, calculators, or external help from any person or device are allowed. Except in the true-false questions, justify all of your steps. Write only in the space provided and do not attach any extra page. Please sign the following pledge: I pledge that in this exam I have neither given nor received assistance or cheated in any other way.				
Signature:				

- 1. (10 points) Circle either True or False. You do not need to justify your choice.
 - (a) **True** / **False**: \mathbb{Z} is dense in \mathbb{R} .
 - (b) **True** / **False:** Every function $f: \mathbb{Z} \to \mathbb{R}$ is continuous.
 - (c) **True** / **False:** The product of monotone sequences is monotone.
 - (d) **True** / **False:** $\mathbb{Q} \cap [0,1]$ is a closed set in \mathbb{R} .
 - (e) **True** / **False:** An unbounded sequence does not converge.

Name:			
_ ,,,,			

2. (30 points)

(a) (5 pts) We learned that Q is countable, so there is a sequence $\{a_n\}$ in which every rational number appears as a term.

Does this sequence necessarily have a monotone subsequence? Justify your answer by quoting the statement of a theorem.

(b) (5 pts) Consider the function $f: [0,1] \to \mathbb{R}$ defined by $f(x) = x^8 + x^3 \sin 3 + \sqrt{5}$. Is this function uniformly continuous? Justify your answer by quoting statements of theorems.

(c) (10 pts) Let $f: D \to \mathbb{R}$. State the ϵ - δ -criterion for continuity at a point $x_0 \in D$.

(d) (10 pts) Choose the statement to negate depending on your section. The following definition is implicit in our textbook:

(**Prof. Hasselblatt's section**) A sequence $\{a_n\}$ is said to *converge* if $\exists a \in \mathbb{R} \ \forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geq N \ |a_n - a| < \epsilon$.

$$\exists a \in \mathbb{R} \ \forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \ge N \quad |a_n - a| < \epsilon$$

State a definition of "A sequence is said to diverge if..." by negating this state-

(**Prof. Tu's section**) Negate $\exists a \in \mathbb{R}$ such that $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that $\forall n \geq N, |a_n - a| < \epsilon$

3. (10 points) Suppose $A \subset \mathbb{R}$ is a nonempty set which is bounded below. Prove that there is a sequence $\{a_n\}$ in A that converges to $\inf A$.	

Name:
4. (10 points) Suppose $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = \begin{cases} x & \text{if } x \notin \mathbb{Z} \\ -x & \text{if } x \in \mathbb{Z}. \end{cases}$ Using the definition of continuity at a point, prove that f is not continuous at $x = 1$.

5.	(15 points) Prove the sandwich theorem (squeeze theorem): Let $L \in \mathbb{R}$ and let $\{x_n\}$ and $\{z_n\}$ be sequences that both converge to L . Assume $\{y_n\}$ is a sequence such that $\forall n \in \mathbb{N}$, $x_n \leq y_n \leq z_n$. Prove that $y_n \to L$ as $n \to \infty$ using the ϵ - N -definition of limit.

	Name:
6.	(10 points) Assuming $\sin x$ is a continuous function of x , prove that there is a solution of the equation $x^7 + \sin x + 15 = 0$.

7.	(15 points) Using the ϵ - N -definition of limit, prove that $\frac{n^2-4}{2n^2-n+1}$ converges to $1/2$. (Hint: $2n^2-n+1=n^2+(n^2-n)+1$.)
_	
_	
_	
_	
_	
_	
_	
_	
_	
	(End of Exam)