Práctico de Estructuras Jerárquicamente Organizadas

1. $B \subset A$ medibles $\Longrightarrow \mu(A-B) = \mu(A) - \mu(B)$

 $(A-B)\cup B=A$ dado que $B\subset A$, además es una unión disjunta. Entonces, aplicando medida: $\mu((A-B)\cup B)=\mu(A)=\mu(A-B)+\mu(B)$ $\therefore \mu(A-B)=\mu(A)-\mu(B)$

2.
$$A_1 \subset A_2 \subset \dots$$
 medibles $\Longrightarrow \lim_{j \to \infty} \mu(A_j) = \mu \left(\bigcup_{j=1}^{\infty} A_j \right)$

$$\bigcup_{i=1}^{j} A_i = A_1 \cup \left(\bigcup_{i=1}^{j} (A_i - A_{i-1})\right)$$
 básicamente estoy diciendo lo mismo, pero la segunda unión es disjunta lo

cual es importante. Tomando límite:

$$\bigcup_{i=1}^{\infty} A_i = A_1 \cup \left(\bigcup_{i=1}^{\infty} (A_i - A_{i-1})\right)$$

Tomando medida

$$\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right) = \mu\left(A_{1} \cup \left(\bigcup_{i=1}^{\infty} (A_{i} - A_{i-1})\right)\right) = \mu(A_{1}) + \sum_{i=1}^{\infty} \mu(A_{i} - A_{i-1})$$

$$= \mu(A_{1}) + \lim_{j \to \infty} \sum_{i=1}^{j} \mu(A_{i} - A_{i-1}) = \lim_{j \to \infty} \sum_{i=1}^{j} \mu(A_{i}) - \mu(A_{i-1}) = \lim_{j \to \infty} \left[\sum_{i=1}^{j} \mu(A_{i}) - \sum_{i=1}^{j-1} \mu(A_{i})\right]$$

$$= \lim_{j \to \infty} \mu(A_{j})$$

$$\therefore \mu\left(\bigcup_{i=1}^{\infty} A_{i}\right) = \lim_{j \to \infty} \mu(A_{j}) \implies \lim_{j \to \infty} \mu(A_{j}) = \lim_{j \to \infty} \mu\left(\bigcup_{i=1}^{j} A_{i}\right) = \mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)$$

3. $\mu(A+x) = \mu(A)$ para A medible

Veamos que se cumple para cajas:

$$C_k = \left\{ y \in \mathbb{R}^n / a_i \le y_i \le b_i \right\}$$

$$\mu(C_k) = \prod_i (b_i - a_i)$$

$$C_k + x = \left\{ y + x \in \mathbb{R}^n / a_i \le y_i + x_i \le b_i \right\}$$

$$\mu(C_k + x) = \prod_i (b_i - a_i) = \mu(C_k)$$

Ahora, sea una unión de cajas arbitraria tal que: $A \subset \bigcup_{k=1}^{\infty} C_k$

Es fácil ver que $A + x \subset \bigcup_{k=1}^{\infty} (C_k + x)$

$$\implies \mu(A+x) \leq \sum_{k=1}^{\infty} \mu(C_k+x) = \sum_{k=1}^{\infty} \mu(C_k)$$

tomando ínfimo:

$$\mu(A+x) \le \mu(A)$$

Esto vale para A, x arbitrarios, luego:

$$\mu(A) = \mu(A + x - x) \leqslant \mu(A + x) \implies \mu(A) = \mu(A + x)$$

4.
$$\mu(\mathbb{Q}) = 0$$

Usaremos 3 resultados:

- 1. $\mu(\{r\}) = 0$, lo cual es obvio por que a cualquier r real lo puedo meter en una caja de largo ε y el ínfimo de eso es cero.
- 2. Cualquier conjunto numerable tiene medida cero.

Esto se debe a que si B es numerable, entonces lo puedo escribir como:

$$B = \{r_1, r_2, r_3, \dots\} = \bigcup_{k=1}^{\infty} \{r_k\} \text{ pero como esta unión es disjunta}$$

$$\mu(B) = \mu\left(\bigcup_{k=1}^{\infty} \{r_k\}\right) = \sum_{k=1}^{\infty} \mu(\{r_k\}) = 0$$

3. \mathbb{Q} es numerable.

Basta con probar que $\mathbb{Q}_{>0}$ es numerable, porque si lo es, $\mathbb{Q}_{>0} = \{q_1, q_2, \dots\}$

Entonces numero $\mathbb{Q} = \{0, q_1, -q_1, q_2, -q_2, \dots\}$

Una numeración de $\mathbb{Q}_{>0}$ es:

5. Demostrar
$$H^s\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}H^s(A_i)$$
 si $d(A_i,A_j)\geqslant \varepsilon>0$ $\forall ij$

Supongamos $x_0 \in (A_i \cap A_j)$

$$d(A_i, A_j) = \inf(||x - y|| / x \in A_i, y \in A_j) \Longrightarrow \text{para } x_0, ||x_0 - x_0|| = 0$$

Luego $d(A_i, A_j) = 0$ lo cual contradice la suposición.

Luego $A_i \cap A_j = \emptyset$

Luego
$$H^s \left(\bigcup_{i=1}^{\infty} A_i \right) = \sum_{i=1}^{\infty} H^s(A_i)$$

6. Asumir $0 < H^s(F) < \infty$ y calcular las dimensiones de Haussdorf de:

· Conjunto de Cantor C

$$C = \left(\frac{1}{3}C\right) \cup \left(\frac{1}{3}C + \frac{2}{3}\right)$$

$$H^{s}(C) = H^{s}\left(\frac{1}{3}C\right) + H^{s}\left(\frac{1}{3}C + \frac{2}{3}\right) = \frac{2}{3^{s}}H^{s}(C) \Longrightarrow s = \frac{\ln 2}{\ln 3}$$

$$\mathcal{P} = \left(\frac{1}{3}\mathcal{P}\right) \cup \left(\frac{1}{3}\mathcal{P} + \left(\frac{2}{3}, 0\right)\right) \cup \left(\frac{1}{3}\mathcal{P} + \left(0, \frac{2}{3}\right)\right) \cup \left(\frac{1}{3}\mathcal{P} + \left(\frac{2}{3}, \frac{2}{3}\right)\right)$$

$$H^{s}(\mathcal{P}) = \frac{4}{3^{s}}H^{s}(\mathcal{P}) \Longrightarrow s = \frac{\ln 4}{\ln 3}$$

• Volumen de Cantor V

similarmente:
$$s = \frac{\ln 8}{\ln 3}$$

Curva de Kock K

$$\mathbf{K} = \left(\frac{1}{3}\mathbf{K}\right) \cup \left(\frac{1}{3}\Re_{1}(\mathbf{K}) + \vec{c}_{1}\right) \cup \left(\frac{1}{3}\Re_{2}(\mathbf{K}) + \vec{c}_{2}\right) \cup \left(\frac{1}{3}\mathbf{K} + \frac{2}{3}\right)$$

$$H^{s}(\mathbf{K}) = H^{s}\left(\frac{1}{3}\mathbf{K}\right) + H^{s}\left(\frac{1}{3}\Re_{1}(\mathbf{K}) + \vec{c}_{1}\right) + H^{s}\left(\frac{1}{3}\Re_{2}(\mathbf{K}) + \vec{c}_{2}\right) + H^{s}\left(\frac{1}{3}\mathbf{K} + \frac{2}{3}\right) = \frac{4}{3^{s}}H^{s}(\mathbf{K})$$

$$\implies s = \frac{\ln 4}{\ln 3}$$

7. $F = \bigcup_{i=1}^{n} (\lambda_j \Re_j(F) + \overrightarrow{c}_j) \text{ con } F_j = \lambda_j \Re_j(F) + \overrightarrow{c}_j \text{ disjuntos excepto tal vez por algunos}$

puntos finitos. Encontrar una fórmula para la dimensión de F

$$H^{s}(F) = H^{s}\left(\bigcup_{j=1}^{P} (\lambda_{j} \Re_{j}(F) + \overrightarrow{c}_{j})\right) = \sum_{j=1}^{P} H^{s}(\lambda_{j} \Re_{j}(F) + \overrightarrow{c}_{j}) \text{ por que son disjuntos salvo en finitos puntos.}$$

$$\sum_{j=1}^{P} H^{s}(\lambda_{j} \Re_{j}(F) + \overrightarrow{c}_{j}) = \sum_{j=1}^{P} \lambda_{j}^{s} H^{s}(F)$$

Luego la fórmula que cumple la dimensión fractal es:

$$\sum_{j=1}^{P} \lambda_j^s = 1$$

Calcular dim_IF , dim_CF , $dim_{BC}F$ para

dim_I(C) del Conjunto de Cantor C

$$dim_I(C) = \lim_{r \to 0} \frac{S(r)}{-\log_2 r}$$

$$S(r) = -\sum_{i} p_i \log_2 p_i$$

 p_i : probabilidad de que un punto de F caiga en la partición i-ésima

Sea
$$r_k = 3^{-k}$$

$$\vec{p}_{k=1} = \left(\frac{1}{2}, 0, \frac{1}{2}\right)$$

$$\vec{p}_{k=2} = \left(\frac{1}{4}, 0, \frac{1}{4}, 0, 0, 0, \frac{1}{4}, 0, \frac{1}{4}\right)$$

en general, hay 2^k términos que valen $p_i = 2^{-k}$

$$S_k = -\sum_{i=1}^{2^k} 2^{-k} \log_2(2^{-k}) = k$$

$$dim_I(C) = \lim_{k \to \infty} \frac{S_k}{-\log_2(3^{-k})} = \lim_{k \to \infty} \frac{k}{k \log_2 3} = \frac{1}{\log_2 3} = \frac{\ln 2}{\ln 3}$$

muy similar, para el polvo de cantor y el volumen de cantor que dan $\frac{\ln 4}{\ln 3}$, $\frac{\ln 8}{\ln 3}$ respectivamente.

• $dim_C(C)$ del Conjunto de Cantor C

$$dim_{C}(C) = \lim_{r \to 0} \frac{\log_{2}C(r)}{\log_{2}r}$$

$$C(r) = \frac{cant. \ pares \ de \ puntos \ a \ distancia \ menor \ a \ r}{cant. \ de \ pares \ de \ puntos \ del \ conjunto \ total}$$
 Sea $r_k = 3^{-k}$ y sea un $sampleo$ de $N \gg 1$ aleatorio del conjunto.

La cantidad de pares de puntos en total es $N(N-1) \approx N^2$

La cantidad de pares de puntos para a una distancia menor que $\frac{1}{3}$ es $\frac{N}{2} \left(\frac{N}{2} - 1 \right) * 2 \approx 2 \left(\frac{N}{2} \right)^{-1}$

por que básicamente lo que hice fue desconectar los dos subconjuntos entre $\left[0,\frac{1}{3}\right]$ y $\left[\frac{1}{3},\frac{2}{3}\right]$ y éstos

son 2 conjuntos idénticos pero con $\frac{N}{2}$ puntos.

En general en el paso k tendré

$$C_k \approx 2^k \frac{N^2}{N^2 (2^k)^2} = 2^{-k}$$

$$dim_C(C) = \lim_{k \to \infty} \frac{\log_2 C_k}{\log_2 (3^{-k})} = \lim_{k \to \infty} \frac{-k \log_2 2}{-k \log_2 3} = \frac{\ln 2}{\ln 3}$$

• $dim_{BC}(C)$ del Conjunto de Cantor C

$$dim_{BC}(C) = \lim_{r \to 0} \frac{\log_2 N_r(C)}{-\log_2 r}$$

 $N_r(C)$: número de cajas que cubren el conjunto

Tomo cajas de longitud 3^{-k}

Entonces para el tamaño $\frac{1}{2}$, 2 cajas cubren el conjunto.

para el tamaño $\frac{1}{3^2}$, 4 cajas cubren el conjunto.

en general $N_{3^{-k}} = 2^k$

$$dim_{BC}(C) = \lim_{k \to \infty} \frac{\log_2 2^k}{-\log_2 3^{-k}} = \lim_{k \to \infty} \frac{k \log_2 2}{k \log_2 3} = \frac{\ln 2}{\ln 3}$$

dim_{BC}(K) de la curva de Koch K
 Tomo cajas de área L*3^{-k} de la manera:

Entonces $N_k(\mathbf{K}) = 4^k$

$$dim_{BC}(\mathbf{K}) = \lim_{k \to \infty} \frac{\log_2 4^k}{-\log_2 (3^{-k}L)} = \lim_{k \to \infty} \frac{k \log_2 4}{k \log_2 3 - \log_2(L)} = \frac{\ln 4}{\ln 3}$$

10.

11. Demostrar que dado $\{p_i\}$ tal que $\sum_i p_i = 1$, D_q es no decreciente con q.

$$D_q = \lim_{r \to 0} \frac{S_q(r)}{-\ln r} , S_q(r) = \frac{1}{1-q} \ln \left(\sum_i p_i^x \right)$$

basta con demostrar que $S_{\it q}$ es no decreciente con $\it q$.

$$S(q) = \frac{1}{1-q} \ln \left(\sum_{i} p_{i}^{x} \right)$$

$$S'(q) = \frac{1}{(1-q)^{2}} \ln \left(\sum_{i} p_{i}^{x} \right) + \frac{1}{1-q} \frac{1}{\sum_{i} p_{i}^{x}} \sum_{i} p_{i}^{x} \ln p_{i}$$

$$-(1-q)^{2} S'(q) = -\ln \left(\sum_{i} p_{i}^{x} \right) - (1-q) \sum_{i} \frac{p_{i}^{x}}{\sum_{i} p_{i}^{x}} \ln p_{i}$$

$$p_{i}^{x}$$

Sea
$$z_i = \frac{p_i^x}{\sum_i p_i^x}$$
, notar que $\sum_i z_i = 1$

$$-(1-q)^2 S'(q) = -\ln\left(\sum_i p_i^x\right) - (1-q)\sum_i z_i \ln p_i$$

$$= -\left(\sum_i z_i\right) \ln\left(\sum_i p_i^x\right) - \sum_i z_i \ln p_i + x \sum_i z_i \ln p_i$$

$$= -\sum_{i} z_{i} \ln \left(\sum_{i} p_{i}^{x} \right) - \sum_{i} z_{i} \ln p_{i} + \sum_{i} z_{i} \ln p_{i}^{x}$$

$$= \sum_{i} z_{i} \ln \left(\frac{p_{i}^{x}}{\sum_{i} p_{i}^{x}} \right) - \sum_{i} z_{i} \ln p_{i}$$

$$= \sum_{i} z_{i} \ln z_{i} - \sum_{i} z_{i} \ln p_{i}$$

Este último término es siempre positivo, a esto se le llama la desigualdad de Gibbs, y se prueba así:

$$\sum_{i} z_{i} \ln z_{i} - \sum_{i} z_{i} \ln p_{i} = -\sum_{i} z_{i} \ln \frac{p_{i}}{z_{i}}$$

 $\ln x \le x - 1 \ \forall x$

$$\Longrightarrow -\sum_{i} z_{i} \ln \frac{p_{i}}{z_{i}} \geqslant -\sum_{i} z_{i} \left(\frac{p_{i}}{z_{i}} - 1 \right) = -\sum_{i} p_{i} + \sum_{i} z_{i} = 0$$

Luego
$$-(1-q)^2S'(q)\geqslant 0$$
 :: $S'(q)\leqslant 0$

Luego D_q es no creciente.

12. -