Variables Aleatorias II. Variables aleatorias continuas.

Estadística, Grado en Sistemas de Información

Constantino Antonio García Martínez

Universidad San Pablo Ceu

Contenidos

1. Variables aleatorias continuas

S. Ross. Introduction to Probability and Statistics for Engineers and Scientists. Chapter 4.

C.D. Barr, D.M. Diez, M. Çetinkaya-Rundel. OpenIntro Statistics. Chapters 2-3.

En muchos casos, la observación de un fenómeno aleatorio consiste en realizar medidas de magnitudes continuas. En este caso lo adecuado es $\Omega=\mathbb{R}$.

Ejemplo: Variables aleatorias continuas

Considera la VA X: "tiempo hasta el fallo (en años) de una pieza de un ordenador". Fíjate que $X \in [0,\infty)$ y que, por tanto, el espacio muestral es infinito.

Preguntar, por tanto, por la probabilidad de que el sistema falle exactamente a los dos años carece de sentido, ya que por Laplace:

En muchos casos, la observación de un fenómeno aleatorio consiste en realizar medidas de magnitudes continuas. En este caso lo adecuado es $\Omega=\mathbb{R}$.

Ejemplo: Variables aleatorias continuas

Considera la VA X: "tiempo hasta el fallo (en años) de una pieza de un ordenador". Fíjate que $X \in [0,\infty)$ y que, por tanto, el espacio muestral es infinito.

Preguntar, por tanto, por la probabilidad de que el sistema falle exactamente a los dos años carece de sentido, ya que por Laplace:

$$P(X=2)=\frac{1}{\infty}=0.$$

En muchos casos, la observación de un fenómeno aleatorio consiste en realizar medidas de magnitudes continuas. En este caso lo adecuado es $\Omega = \mathbb{R}$.

Ejemplo: Variables aleatorias continuas

Considera la VA X: "tiempo hasta el fallo (en años) de una pieza de un ordenador". Fíjate que $X \in [0,\infty)$ y que, por tanto, el espacio muestral es infinito.

Preguntar, por tanto, por la probabilidad de que el sistema falle exactamente a los dos años carece de sentido, ya que por Laplace:

$$P(X=2)=\frac{1}{\infty}=0.$$

Por tanto, todas nuestras preguntas probabilísticas con VAs continuas deben hacer referencia a intervalos. Por ejemplo, sí podríamos preguntar acerca de la probabilidad de que el sistema falle entre dos y tres años: P(2 < X < 3).

En muchos casos, la observación de un fenómeno aleatorio consiste en realizar medidas de magnitudes continuas. En este caso lo adecuado es $\Omega = \mathbb{R}$.

Ejemplo: Variables aleatorias continuas

Considera la VA X: "tiempo hasta el fallo (en años) de una pieza de un ordenador". Fíjate que $X \in [0, \infty)$ y que, por tanto, el espacio muestral es infinito.

Preguntar, por tanto, por la probabilidad de que el sistema falle exactamente a los dos años carece de sentido, ya que por Laplace:

$$P(X=2)=\frac{1}{\infty}=0.$$

Por tanto, todas nuestras preguntas probabilísticas con VAs continuas deben hacer referencia a intervalos. Por ejemplo, sí podríamos preguntar acerca de la probabilidad de que el sistema falle entre dos y tres años: P(2 < X < 3).

Fíjate que esta pregunta es equivalente a $P(2 \le X \le 3)$, $P(2 < X \le 3)$, etc.

Distribución de variables aleatorias continuas

La intuición es sencilla, para caracterizar una distribución continua debemos usar funciones continuas:

Distribución de variables aleatorias continuas

y esto obliga a transformar sumatorios en integrales:

$$P(a \le X \le b) = \sum_{x_i: a \le x_i \le b} P(X = x_i) \Rightarrow P(a \le X \le b) = \int_a^b f(x) dx$$

Por eso llamamos a f(x) función de densidad de probabilidad.

Función de densidad acumulada

Función de densidad acumulada

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u) du.$$

Fíjate que, por el teorema fundamental del cálculo:

$$\frac{dF(x)}{dx} = f(x).$$

Teoría fundamental de VAs

Variables aleatorias

Notación/Definición gral.	Caso discreto	caso continuo
	Función de probabilidad de masa (FPM): P(X=x)	Función de densidad de masa (FDM): $\mathbf{f}(\mathbf{x})$
	$P(X=x) \geq 0 \qquad \textstyle \sum_{x_i} P(X=x_i) = 1$	$f(x) \ge 0$ $\int f(x) dx = 1$
$F(x) = P(X \le x)$	$F(x) = \sum_{x_i: x_i \leq x} P(X = x_i)$	$F(x) = \int_{-\infty}^{x} f(u) du \iff f(x) = \frac{dF(x)}{dx}$
$P(a < X \leq b)$	$\sum_{x:a < x \le b} P(X = x) = \mathcal{F}(b) - \mathcal{F}(a)$	$\int_a^b f(x)dx = \mathcal{F}(\mathbf{b}) \cdot \mathcal{F}(\mathbf{a})$
	$\mathrm{FPM} \colon P(X=x,Y=y)$	FDM: $f_{xy}(x, y)$
	$P(X=x) = \sum_{y_j} P(X=x, Y=y_j)$	$f_x(x) = \int f_{xy}(x,y) dy$
	$P(X=x Y=y) = \frac{P(X=x,Y=y)}{P(Y=y)}$	$f_{x y}(x y) = \frac{f_{xy}(x,y)}{f_y(y)}$
	$P(X=x,Y=y) = P(X=x)P(Y=y) \label{eq:power_state}$	$f_{xy}(x,y) = f_x(x) f_y(y)$
	$F(x) = P(X \le x)$	Función de probabilidad de mass (FPM): $P(X=x)$ $P(X=x) \geq 0 \qquad \sum_{x_i} P(X=x_i) = 1$ $F(x) = P(X \leq x) \qquad \qquad F(x) = \sum_{x_i = x_i \leq x} P(X=x_i)$ $P(a < X \leq b) \qquad \qquad \sum_{x_i = x_i \leq x} P(X=x) = F(b) \cdot F(a)$ $FPM: P(X=x, Y=y)$ $P(X=x) = \sum_{x_i} P(X=x, Y=y)$ $P(X=x) = \sum_{x_i} P(X=x, Y=y)$ $P(X=x) = \sum_{x_i} P(X=x, Y=y)$

Funciones de densidad y distribución

Ejercicio: Función de densidad

Un call-center recibe llamadas durante todo el día. El tiempo T (en minutos) entre llamadas se modela la siguiente función de densidad.

$$f(x) = \begin{cases} c \cdot e^{-t/4.5} & 0 \le t < \infty \\ 0 & \text{en otro caso (e.o.c.)} \end{cases}$$

- 1. Dibuja la función de densidad.
- 2. Acaba de llegar una llamada. ¿Cuál es la probabilidad de que no se reciba ninguna llamada en los próximos 5 minutos?

Ejercicio: Función de distribución

Calcula la función de distribución de la VA T y dibújala. Usa la función de distribución para calcular la probabilidad de que el tiempo entre dos llamados sea entre 2 y 3 minutos.

Ejercicio: Media y varianza

Calcula la media y varianza de T.

Distribuciones conjuntas

Para calcular con **probabilidades en más de dos dimensiones**, es útil pensar en **volúmenes** (o hiper-volúmenes):

Distribuciones conjuntas, marginales y condicionadas

Ejercicio:

Supón que un ordenador depende de los componentes A y B, cuyas vidas respectivas X e Y se distribuyen conjuntamente con la función de densidad:

$$f(x,y) = \begin{cases} e^{-y} & 0 < x < y < \infty \\ 0 & \text{otherwise} \end{cases}$$

- Calcula la probabilidad de A y B duren ambos más de 2 unidades de tiempo.
- 2. Calcula la probabilidad de que B dure al menos tres unidades de tiempo más que A.
- 3. Calcula las funciones de densidad marginales.
- 4. Calcula la función de densidad condicional para Y si sabemos que A ha durado 5 unidades de tiempo. ¿Cuál es la probabilidad de que B dure entre entre 4 y 7 unidades de tiempo si A ha durado 5 unidades de tiempo?

Esperanzas

Ejercicio:

En el ejercicio de las dos componentes A y B. ¿Cuál es el valor esperado para Y si X=5?

Ejercicio:

Tiramos dardos a una diana de radio 1 con centro en el origen. Los dardos impactan aleatoriamente en el punto (X,Y). Supongamos que (X,Y) se distribuye uniformemente en la diana. ¿Cuál es la distancia esperada al origen?

Ejercicios extra

Ejercicio: Probabilidad geométrica

Dos personas acuerdan encontrarse entre las 12:00 y las 12:30 con la condición de que nadie esperará más de 5 minutos por el otro. La probabilidad de que llegada para cada persona es **uniforme** entre las 12:00 y las 12:30. ¿Probabilidad de que se encuentren?

Ejercicio: Distribuciones conjuntas

La distribución de X e Y viene dada por:

$$f(x) = \begin{cases} ce^{(-x^2)}e^{(-2y^2)} & -\infty < x < \infty, -\infty < y < \infty \\ 0 & \text{e.o.c} \end{cases}$$

Visualiza la función de densidad y calcula (a) P(X > 1, Y < 1); (b) P(X < Y)