南方冶金学院考试试题

考试科目		考试日期	月
班级	学号	姓名	成绩

一、解答下列各题(每小题6分,共计60分)

1、,图示电路中,已知 V_i =12伏(单值)的低频正弦波。试画出电压 U_0 的波形,假定二极管是理想的。

2、图示为放大器的直流通道,假定晶体管的 U_{BE} 和 I_{CEO} 都可略去,计算各个管子的 I_{B} 、 I_{C} 和 U_{CE} 。

- 3、在分压偏置电路中,若下偏流电阻 R_{B2} 增大,而晶体管始终处于放大状态,则基极偏流 $I_{B}=$ _______,集电极电流 $I_{C}=$ _______,管压降 $U_{CE}=$ ________
- 4、找出图示电路中的交流反馈元件,并判定有哪些交流反馈,指出反馈类型。

5、根据相位条件判断下图能否产生自激振荡,并指出反馈信号取自何处?

8、由逻辑电路图写出F函数表达式,再用与非门实现该逻辑函数。(表达式)

9、填写下列逻辑门的真值表。

Y

10、有两个同型号的TTL与非门器件,甲电路的关门电平Voff=0.8伏,乙电路的关门电平Voff=1.1伏,试问输入低电平时,哪一个电路的 抗干扰能力强?

- 二、(10分)某射极输出器的电路如图所示,已知Ucc=12V, R_B =510K Ω , R_E =10K Ω , R_I =3K Ω ,晶体管的 β =50, L_E =0.6Ma
- (1) 画微变等效电路图;
- (2) 求γ_{be}和γ_i;
- ⊸+Ucc (3) 求电压放大倍数Au(计算值)。 R_B vi $R_{\mathbf{E}}$ R_L

三、(10分)图示运放电路,已知 V_{I} =12 $Sin \omega t$ 毫伏,求 U_{0} 。

四、(8分)图示电路,FT为主从JK触发器,F2为维阴型D触发器,初态均为0。试画出在CP作用下Q1及Q2的波形。

CP

N	Q ₂	Q ₁	Q_0
0			
1			
2			
3			
4			
5			
6			
7			
8			
9			

_И	 			-
Q0				
Q ₁				
O2				

答案

1,

- 2、50mA 2.5mA 5V
- 3、增大、增小、减小。
- 4、 R_3 ,单级串联电流负反馈; R_3 、 R_4 单级……, R_3 、 R_4 两级串联电压正反馈;
- 5、(a)能,取自 L_3 ; (b)不能,取自并联 R_C 两端。
- 6、R₁的作用: ①DE的限流电阻; ②下管的偏流电阻。

Y =
$$\overline{(A+B)(C+D)}$$
 = $\overline{A+B}$ + $\overline{C+D}$ = $\overline{A} \cdot \overline{B}$ + $\overline{C} \cdot \overline{D}$
= $\overline{\overline{AB} + \overline{CD}}$ = $\overline{\overline{AB} \cdot \overline{CD}}$ 门

9、 同或门 异或门

2018/9/17

0	0	0	
0	1	1	
1	0	1	
1	1	1	

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

10、乙电路的抗干扰能力强

二、(10分)

(1) 略

$$r_{be} = 200 + (\beta + 1)\frac{26}{IE} = 200 + 51 \times \frac{26}{0.6} = 2.3K$$

$$r_i = R_B /\!\!/ [(\beta + 1)R_E /\!\!/ R_L] = 510 /\!\!/ [51 \times 10 /\!\!/ 3] = 96K$$

(3)
$$\mathring{Au} = \frac{(1+\beta)R_E/R_L}{r_{be} + (1+\beta)R_E/R_L} = \frac{51 \times 10 // 3}{2.5 + 51 \times 10 // 13} = \frac{117.7}{2.5 + 117.7}$$

$$r_{be} + (1+\beta)R_{E} /\!\!/ R_{L}$$

$$= 0.979$$

$$i = \frac{U_{i}}{3/\!\!/ 3 + 3} = \frac{2U_{i}}{9}$$

$$i = \frac{1}{2}i = \frac{U_{i}}{9}$$

$$i_{F} = \frac{U_{0} - V_{A}}{12} = \frac{U_{0}}{12} = -i'$$

$$\therefore \frac{U_{0}}{12} = -\frac{U_{i}}{9}$$

$$U_0 = -\frac{12}{9}U_i = -16Sin\omega t$$
 毫伏

四、(10分)

五、(12分)

