

TD N°1 Machine à état

Conception et synthèse d'une machine à état de Moore

<u>Détecteur de séquence</u> (combinaison de coffre ou recherche de caractères par exemple) Le système à réaliser possède une entrée **E** et une sortie **S**.

E reçoit des bits en série (séquence d'entrée). Le système est cadencé par une horloge H. Chaque fois qu'une séquence 010 se présente en entrée, la sortie S passe à 1 dès le dernier bit détecté, puis retourne à 0 au bit suivant, quel qu'il soit.

- 1) Proposer un graphe d'état (sans overlapping) complet respectant le cahier des charges en assignant aux états, dans un premier temps, des lettres A, B, etc.
- 2) Combien de bascule(s) seront nécessaires pour coder les états en Binaire Naturel (BN)? Par la suite vous utiliserez <u>des bascules JK</u> (Questions 4 et 5).
- 3) Dresser à partir du graphe d'état codé en BN la table des transitions selon le modèle (forme compacte) suivant :

Etat	Etat suivant		
actuel	(futur)		S
(présent)	E=0	E=1	

Etat actuel	Etat suivant (futur)		S
(présent)	E=0	E=1	
(present)	L-0	C-1	

4) En déduire les équations de l'état futur et de S en fonction de Q_0 , Q_1 et E. On notera $Q_0(LSB)$ et $Q_1(MSB)$ les états actuels et Q_0^* et Q_1^* les <u>états futurs</u>. On rappelle la table de transition d'une JK:

Q_n	Q_{n+1}	J _n	K _n
0	0	0	X
0	1	1	Х
1	0	Х	1
1	1	Х	0

5) Dessiner le schéma structurel du détecteur de séquence à l'aide d'opérateurs combinatoires à 2 entrées (ET, OU, NON) et séquentiel (Bascule JK). Encadrer les différents blocs constituant cette machine à états.