BC2406 Analytics I Visual and Predictive Techniques

Unit 3

Data Exploration & Summaries

TECHNOLOGICAL WITH Based on Chew C. H. (2019) textbook: Analytics, Data Science and Al. Vol 1., Chap 2.

Purpose of Data Exploration

- Gain some understanding of the Dataset(s)
- Compare Data to Business Problem/Opportunity:
 - Sufficient?
 - Necessary?
 - No predictive value
 - · Identification value
 - Redundant
- · Detect Data problems/issues
 - Data Quality
 - Anomalies (something that deviates from what is standard, normal, or expected).

Seminar Objectives

- Learn some techniques for Data Exploration.
 - Basic Statistics
 - Basic Charts
 - No Data Cleaning yet (see unit 5 or textbook chap 5)
- How to use R to do Data Exploration better and much faster than spreadsheet.
- Introduce a good Rpackage for Data Exploration & Summaries: data.table

2

Data Exploration Techniques

- Statistics
- Visualization
- Models

Example: Health Insurance Coverage

- · Business Problem:
 - People may not have sufficient Health insurance.
- · Analytics Problem:
 - Develop a model to predict whether someone has health insurance or not, based on demographic information.
- · Potential Application:
 - Identify correct target market much more easily, faster and accurately so that they can be educated and have opportunity to be covered by health insurance.
- · Data:
 - Sample from Census of customer information and status of health insurance coverage – Y/N, in USA.
- Run: ADA1.3.1 health_ins_cust.R

5

summary(cust.df)

summary(cust.df)

summary(cust.df)

summary(cust.df)

hist(cust.df\$age, ylim=c(0,220), breaks = c(-10, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150), labels = T, col ="light blue")

Intervals can be controlled by the breaks argument.

Note: Left open, right closed interval by default.

plot(density(cust.df\$age)) for continuous variable age

Distribution of Age Peak age at around 50. 0.010 Quite a lot of elderly in the 0.005 sample. 50 Negative Age Way above age? 0 age? 100 yrs old. NANYANG TECHNOLOGICAL UNIVERSITY Really? 10 Nanyang Business School

plot(density(cust.df\$income)) for continuous variable income

Boxplot of a continuous variable (Income) across Employment Status

Who is contributing most to the Income outliers? Whose income is more variable?

13

Outliers

- There is a vast body of literature on outlier detection, and several definitions of outlier exist. For example, Tukey's boxand-whisker method for outlier detection is often appropriate.
- In this method, an observation is an outlier when it is larger than the so-called "whiskers" of the set of observations. The upper whisker is computed by adding 1.5 times the interquartile range to the third quartile and rounding to the nearest lower observation.

NANYANG TECHNOLOGICAL UNIVERSITY

Boxplot of a continuous variable (Income) across Employment Status

Distributions of Annual Income across Employment Status

Who is contributing most to the Income outliers? Whose income is more variable?

barplot(table(cust.df\$marital.stat)) to see distribution of categorical variables

17

```
par(las=2) # Default is las = 0
par(mar=c(5,8,4,2)) # Default is mar = c(5,4,4,2)
```

barplot(table(cust.df\$state.of.res), horiz = T, cex.names=0.5)

19

par(las=2) # Default is las = 0
par(mar=c(5,
$$\frac{8}{4}$$
,4,2)) # Default is mar = c(5, $\frac{4}{4}$,4,2)

barplot(table(cust.df\$state.of.res), horiz = T, cex.names=0.5)

Distribution of State of Residence

Scatterplot of two continuous variables (Age and Income)

Income across Age

Nanyang Business School

Scatterplot of Income across Age, with smooth curve

Health Insurance Coverage across Age (with jittered Y)

Nanyang Business School

Scatterplot of Health Insurance Coverage and Age

Scatterplot Matrix of Selected Variables with smooth curves

What's the usefulness of such a chart?

Stacked Bar Chart (Proportion)

"Never Married" has the highest proportion of no health insurance, while "Widowed" has the lowest proportion of no health insurance.

Stacked Bar Chart (Frequency)

But "widowed" is the smallest sub-population.

Others

- There are many other statistics and visualizations available that may help Data Exploration.
- · Guideline:
 - 1. What is the business problem/Opportunity?
 - 2. Ask specific questions about the Data. i.e. What do I need to know about the Data that could help answer/address the business problem/opportunity?
 - 3. How do I answer those data questions using R (or any other software)?
- It's not rushing in to try all possible statistics or charts from the Data in hope of finding something useful – waste of effort.
- · It begins with the business problem/Opportunity. Understand this first. Data exploration should be purpose-driven.

data.table package

FAST DATA EXPLORATION

Cheatsheet: datatable

· Refer to datatable Cheatsheet posted in NTULearn main site for summarized list of common procedures and their effects.

data.table documentation

- Reference document with detailed explanation from package creator
- See Main Site > Content > Slides and Activities > Unit 3 sub-folder > data.table documentation.pdf

Package data.table

- Fast
 - Read-in Data
 - Rscript Development
- Simple, consistent Syntax

- DT: Name of the Data Table
- i: Criteria for selecting rows
- j: Actions on the selected rows in terms of column variable(s)

Import data with read.csv() from Base R vs fread() from data.table

- Base R: data1 <- read.csv('health_ins_cust.csv')
- data.table: data2 <- fread('health_ins_cust.csv')
- Data values in data1 is the same as data2, but their structure is different.

Summary

- · Use of simple Summaries to explore data
- Use of simple Visualizations to explore data
- Some problems/issues may be detected now, others may be discovered with more sophisticated techniques or more subject-matter knowledge later.
- Start from understanding the business problem/opportunity/challenge.
 - Don't be too quick to jump in to explore data.
- Package data.table
 - Good for Big Data
 - Good for Small Data

34