Indexy a úvod do indexní analýzy

Supplementum ke cvičení 4ST201 Statistika

Lubomír Štěpánek^{1, 2}

 Oddělení biomedicínské statistiky Ústav biofyziky a informatiky
lékařská fakulta
Univerzita Karlova, Praha

²Katedra biomedicínské informatiky Fakulta biomedicínského inženýrství České vysoké učení technické v Praze

(2019) Lubomír Štěpánek, CC BY-NC-ND 3.0 (CZ)

Dílo lze dále svobodně šířit, ovšem s uvedením původního autora a s uvedením původní licence. Dílo není možné šířit komerčně ani s ním jakkoliv jinak nakládat pro účely komerčního zisku. Dílo nesmí být jakkoliv upravováno. Autor neručí za správnost informací uvedených kdekoliv v předložené práci, přesto vynaložil nezanedbatelné úsilí, aby byla uvedená fakta správná a aktuální, a práci sepsal podle svého nejlepšího vědomí a svých "nejlepších" znalostí problematiky.

Obsah

- Opakování
- 2 Jednoduché indexy
- 3 Složené indexy
- Souhrnné indexy
- 5 Řetězcové a bazické indexy
- 6 Literatura

Příklad

Opakování

 V přiloženém souboru _13_cviceni_.xlsx v záložce HDP_sezonnost je čtvrtletní časová řada HDP České republiky v období od 1. čtvrtletí 2002 do 4. čtvrtletí 2006. Modelujme trendovou složku pomocí složené přímky a paraboly a sezónní složku pomocí regresního přístupu a odhadněme vývoj této časové řady na rok 2007.

Literatura

Jednoduché indexy

Opakování

- srovnávají dvě hodnoty téhož ukazatele ve dvou různých časových okamžicích nebo dvou různých kontextech
 - ullet ukazatelem bývá cena p, množství q nebo tržba Q=pq
- pro účely porovnání indexů mezi sebou je předpokladem homogennost, stejnorodost produktů
- hodnoty ukazatele nejsou nijak dále členěny ani agregovány

Literatura

Řetězcové a bazické indexv

Intenzivní ukazatele

Opakování

- intenzivní ukazatele je smysluplné průměrovat, nikoliv sčítat
- cenový index I_p porovnává cenu p_1 a cenu p_0 , tedy

$$I_p = \frac{p_1}{p_0}$$

absolutní přírůstek je pak

$$\Delta p = p_1 - p_0$$

Řetězcové a bazické indexv

Extenzivní ukazatele

Jednoduché indexy

- extenzivní ukazatele je smysluplné sčítat, nikoliv průměrovat
- objemový index I_n porovnává množství q_1 a množství q_0 , tedy

$$I_q = \frac{q_1}{q_0}$$

absolutní přírůstek je pak

$$\Delta q = q_1 - q_0$$

• index tržeb I_Q porovnává tržbu $Q_1=p_1q_1$ a tržbu $Q_0=p_0q_0$, tedy

$$I_Q = \frac{Q_1}{Q_0} = \frac{p_1 q_1}{p_0 q_0} = \frac{p_1}{p_0} \cdot \frac{q_1}{q_0} = \frac{I_p}{I_q}$$

absolutní přírůstek je pak

$$\Delta Q = Q_1 - Q_0$$

 V prodejně se v lednu prodalo 47 kusů jisté knihy po 1200 Kč. V únoru došlo ke zlevnění knihy na 950 Kč a bylo prodáno 65 kusů. Porovnejme prodej v obou měsících pomocí indexů a absolutních rozdílů extenzivních a intenzivních ukazatelů.

Literatura

Složené ukazatele

- složené indexy dostaneme shrnutím dílčích hodnot ukazatelů jednoho indexu
 - shrnutí odpovídá logické možnosti agregace, např. nad více regiony, prodejnami či jinými jednotkami
- extenzivní ukazatele lze shrnout součtem (úhrnem), intenzivní ukazatele lze shrnout průměrem

Složené intenzivní ukazatele

Opakování

- složené intenzivní ukazatele jsou shrnuty průměrem
- ullet index proměnlivého složení $I_{ar p}$ porovnává průměrnou cenu $ar p_1$ a průměrnou cenu \bar{p}_0 , tedy

$$I_{\bar{p}} = \frac{\bar{p}_1}{\bar{p}_0} = \frac{\frac{\sum Q_1}{\sum q_1}}{\frac{\sum Q_0}{\sum q_0}} = \frac{\frac{\sum p_1 q_1}{\sum q_1}}{\frac{\sum p_0 q_0}{\sum q_0}} = \frac{\frac{\sum Q_1}{\sum \frac{Q_1}{p_1}}}{\frac{\sum Q_0}{\sum \frac{Q_0}{p_0}}}$$

absolutní přírůstek je

$$\Delta \bar{p} = \bar{p}_1 - \bar{p}_0 = \frac{\sum p_1 q_1}{\sum q_1} - \frac{\sum p_0 q_0}{\sum q_0}$$

Složené extenzivní ukazatele množství

- složené extenzivní ukazatele jsou shrnuty součtem
- složený index množství $I_{\sum q}$ porovnává celkové množství $\sum q_1$ a celkové množství $\sum q_0$, tedy

$$I_{\sum q} = \frac{\sum q_1}{\sum q_0}$$

absolutní přírůstek je

$$\Delta_{\Sigma q} = \sum q_1 - \sum q_0$$

Složené extenzivní ukazatele tržby

ullet složený index tržeb $I_{\sum Q}$ porovnává celkovou tržbu $\sum Q_1$ a celkovou tržbu $\sum Q_0$, tedy

$$I_{\sum Q} = \frac{\sum Q_1}{\sum Q_0} = \frac{\sum p_1 q_1}{\sum p_0 q_0}$$

absolutní přírůstek je

$$\Delta_{\Sigma Q} = \sum Q_1 - \sum Q_0 = \sum p_1 q_1 - \sum p_0 q_0$$

Příklad

 Kniha se prodává ve dvou prodejnách. Průběh prodeje je patrný z tabulky uvedené dole. Pomocí složených indexů množství, tržby a ceny charakterizujme vývoj celkového množství prodaných kusů, celkových tržeb a průměrné ceny.

		cena [Kč]		množství [ks]	
		leden	únor	leden	únor
prodejna	první	1200	950	47	65
	druhá	1050	890	105	120

Souhrnné ukazatele

- souhrnné indexy charakterizují změnu extenzivního či intenzivního ukazatele nehomogenního produktu
- principem je vyjádření souhrnné změny veličiny, jejíž dílčí hodnoty nelze shrnovat
- vždy volíme základní¹ a běžné² období, které porovnáváme

¹značeno dolním indexem ()

²značeno dolním indexem 1

Laspeyresův cenový a objemový index

• Laspeyresův cenový index vyjadřuje relativní změnu cen (p_0, p_1) při stálém objemu prodeje odpovídajícím základnímu období (q_0) , tedy

$$I_p^{(L)} = \frac{\sum p_1 q_0}{\sum p_0 q_0} = \frac{\sum I_p \cdot p_0 q_0}{\sum p_0 q_0} = \frac{\sum I_p \cdot Q_0}{\sum Q_0}$$

• Laspeyresův objemový index vyjadřuje relativní změnu objemu prodeje (q_0, q_1) při cenové hladině odpovídající základnímu období (p_0) , tedy

$$I_q^{(L)} = \frac{\sum p_0 q_1}{\sum p_0 q_0} = \frac{\sum I_q \cdot p_0 q_0}{\sum p_0 q_0} = \frac{\sum I_q \cdot Q_0}{\sum Q_0}$$

Paascheho cenový a objemový index

• Paascheho cenový index vyjadřuje relativní změnu cen (p_0, p_1) při stálém objemu prodeje odpovídajícím běžnému období (q_1) , tedy

$$I_p^{(P)} = \frac{\sum p_1 q_1}{\sum p_0 q_1} = \frac{\sum p_1 q_1}{\sum \frac{p_1 q_1}{I_p}} = \frac{\sum Q_1}{\sum \frac{Q_1}{I_p}}$$

• Paascheho objemový index vyjadřuje relativní změnu objemu prodeje (q_0, q_1) při cenové hladině odpovídající běžnému období (p_0) , tedy

$$I_q^{(R)} = \frac{\sum p_1 q_1}{\sum p_1 q_0} = \frac{\sum p_1 q_1}{\sum \frac{p_1 q_1}{I_q}} = \frac{\sum Q_1}{\sum \frac{Q_1}{I_q}}$$

 Fisherův cenový index vyjadřuje geometrický průměr Laspeyresova a Paascheho cenového indexu, tedy

$$I_p^{(F)} = \sqrt{I_p^{(L)} \cdot I_p^{(P)}}$$

 Fisherův objemový index vyjadřuje geometrický průměr Laspeyresova a Paascheho objemového indexu, tedy

$$I_q^{(F)} = \sqrt{I_q^{(L)} \cdot I_q^{(P)}}$$

Příklad

- Ceny a prodané množství pěti druhů zboží (A, B, C, D, E) v březnu (základní období) a v červnu (běžné období) roku 2006 jsou uvedeny v následující tabulce.
 - Určeme pomocí souhrnných cenových indexů, jak se změnily ceny v červnu oproti březnu.
 - (ii) Určeme pomocí souhrnných objemových indexů, jak se změnilo množství prodaného zboží v červnu oproti březnu.

		cena	[Kč]	množství [ks]		
		březen	červen	březen	červen	
zboží	Α	8	10	30	20	
	В	4	6	50	40	
	C	5	8	50	30	
	D	7	7	30	20	
	Ε	9	8	10	20	

Řetězcové a bazické indexy

- jednoduché indexy se často sdruženy do delších časových řad
- Ize je vztahovat ke stejnému, nebo k proměnlivému základu
- bazické indexy mají stejný základ, tedy

$$\frac{q_1}{q_0}, \frac{q_2}{q_0}, \frac{q_3}{q_0}, \dots,$$

a měří změnu proti základu (bazi)

 řetězové indexy mají proměnlivý základ daný předcházejícím obdobím, tedy

$$\frac{q_1}{q_0}, \frac{q_2}{q_1}, \frac{q_3}{q_2}, \dots,$$

a měří změnu proti předchozímu období

Příklad

Opakování

- V tabulce máme časovou řadu HDP v České republice v letech 2000–2005. Určeme řadu
 - (i) bazických indexů se základem v roce 2000,
 - (ii) řadu řetězových indexů.

Jednoduché indexy

rok	2000	2001	2002	2003	2004	2005
HDP [Kč]	2189,2	2352,2	2464,4	2577,1	2781,1	2978,2

Literatura

Literatura

Děkuji za pozornost!

lubomir.stepanek@vse.cz lubomir.stepanek@lf1.cuni.cz lubomir.stepanek@fbmi.cvut.cz

https://github.com/LStepanek/4ST201 Statistika