Chapter 1: Part II: Asymptotic Notations

Devesh C Jinwala , IIT Jammu, India

June 9, 2021

Design and Analysis of Algorithms IIT Jammu, Jammu Asymptotic Notations

• def: for a given function g(n), we say that O(g(n)) = f(n) — if there exists positive constants c and $n_{\underline{0}}$ such that, $0 \le f(n) \le cg(n)$, for all $n \ge n_{\underline{0}}$

$f(n) = O(g(n)) \Rightarrow$

f(n) is dominated in the growth by g(n) i.e. f(n) is of the order at the most g(n) i.e. g(n) grows at least as fast as f(n)

 The Big-oh defines an upper bound for a function within a constant factor i.e. except for a constant factor and a finite number of exceptions, f is bounded above by g.

$f(n) = O(g(n)) \Rightarrow$

f(n) is dominated in the growth by g(n) i.e. f(n) is of the order at the most g(n) i.e. g(n) grows at least as fast as f(n)

• Can f(n) grow faster than g(n)?

f(n) = 0 g(u)

• Can f(n) grow faster than g(n)?

• Can g(n) grow faster than f(n)? qg(n)doesn't matter n_0

Figure 2.1 Big-oh notation: $t(n) \in O(g(n))$

- (0(1))
 - Can f(n) grow faster than g(n)?
 - Can g(n) grow faster than f(n)?

What does the growth rate imply?

The Big-Oh Notation Illustrations

Function	notation in O
f(n) = 5n + 8	f(n) = O(?) O(n)
$f(n) = n^2 + 3n - 8$	f(n) = O(?)
$F(n) = 12n^2 - 11$	f(n) = O(?)
$F(n) = 5*2^n + n^2$	f(n) = O(?)
f(n) = 3n + 8	$F(n) = O(n^2)?$
f(n) = 5n + 8	f(n) = O(1)?
0	

 $(f(x) = 5n + f p_i t \cdot f(n)) = 9n$

 allows us to keep track of the leading term while ignoring smaller terms

$$f(n) = 5n + 6n$$

$$= 13n$$

- allows us to keep track of the leading term while ignoring smaller terms
- allows us to make concise statements that give approximations to the quantities to analyze.

 allows us to keep track of the leading term while ignoring smaller terms

- allows us to keep track of the leading term while ignoring smaller terms
- allows us to make concise statements that give approximations to the quantities to analyze.

• if f(n) = O(g(n)), what is the upper bound ?

- if f(n) = O(g(n)), what is the upper bound ?
- Do we specify how tight this upper bound is?

- if f(n) = O(g(n)), what is the upper bound ?
- Do we specify how tight this upper bound is?
- Consider that $f(n) = O(n) \& g(n) = O(n^2)$. Is f(n) = O(g(n)) saying the same as reverse i.e. g(n) = O(f(n))?

- if f(n) = O(g(n)), what is the upper bound ?
- Do we specify how tight this upper bound is?
- Consider that $f(n) = O(n) \& g(n) = O(n^2)$. Is f(n) = O(g(n)) saying the same as reverse i.e. g(n) = O(f(n))?
- The symbol = is not proper truly it is ϵ which should be used i.e. $f(n) \in O(g(n))$

The Big-Oh notation...

 When O notation bounds the worst case running time of an algorithm, by implication we also bound the running time of an algorithm on EVERY input.

The Big-Oh notation...

- When O notation bounds the worst case running time of an algorithm, by implication we also bound the running time of an algorithm on EVERY input.
- this is not so when using other notations i.e. the worst case $\theta(n^2)$ or $\theta(n)$ does not apply to every input.

Abuse

Technically, it is abuse to say that the running time of insertion sort is $O(n^2)$. Why?

• the big- Ω notation is used to specify this aspect i.e. to define a lower bound for a function within a constant factor.

- the big- Ω notation is used to specify this aspect i.e. to define a lower bound for a function within a constant factor..
- definition: the function $f(n) = \Omega$ (g(n)) is true iff there exists positive constants c and n_0 such that f(n) >= c(g(n)) for all $n n \ge n_0$ i.e. 0 <= c(g(n)) <= f(n).

- the big- Ω notation is used to specify this aspect i.e. to define a lower bound for a function within a constant factor..
- definition: the function $f(n) = \Omega$ (g(n)) is true iff there exists positive constants c and n_0 such that f(n) >= c(g(n)) for all $n n \ge n_0$ i.e. 0 <= c(g(n)) <= f(n).
- i.e. except for a constant factor and a finite number of exceptions, f is bounded below by g.

- the big- Ω notation is used to specify this aspect i.e. to define a lower bound for a function within a constant factor.
- definition: the function $f(n) = \Omega$ (g(n)) is true iff there exists positive constants c and n_0 such that f(n) >= c(g(n)) for all $n n \ge n_0$ i.e. 0 <= c(g(n)) <= f(n).
- i.e. except for a constant factor and a finite number of exceptions, f is bounded below by g.
- $f(n) = \Omega(g(n))$ implies that

- the big- Ω notation is used to specify this aspect i.e. to define a lower bound for a function within a constant factor.
- definition: the function $f(n) = \Omega$ (g(n)) is true iff there exists positive constants c and n_0 such that f(n) >= c(g(n)) for all $n n \ge n_0$ i.e. 0 <= c(g(n)) <= f(n).
- i.e. except for a constant factor and a finite number of exceptions, f is bounded below by g.
- $f(n) = \Omega(g(n))$ implies that

$\Omega(n) \Rightarrow$

f(n) always dominates the growth of g(n) i.e. f(n) is of the order at least g(n) i.e. g(n) grows at the most as fast as f(n).

The Big Omega

- Can f(n) grow faster than g(n)?
- Can g(n) grow faster than f(n)?

) if f(n)= 0 (g(n))

The Big-Oh Notation Illustrations

Function	notation in Ω
f(n) = 3n + 8	$f(n) = \Omega(?) N$
$f(n) = n^2 + 3n - 8$	$f(n) = \Omega(?)$
$F(n) = 12n^2 - 11$	$f(n) = \Omega(?) h^{\perp}$
$F(n) = 6*2^n + n^2$	$f(n) = \Omega(?)_{2}$
f(n) = 3n + 8	$f(n) = \Omega(n^2)?$
f(n) = 5n + 8	$f(n) = \Omega(1)$?

• Is it correct to say that $3n + 8 = \Omega(1)$?

- Is it correct to say that $3n + 8 = \Omega(1)$?
- There could be several functions g(n) for which $f(n) = \Omega$ (g(n)) the function g(n) is only lower bound on n.

- Is it correct to say that $3n + 8 = \Omega(1)$?
- There could be several functions g(n) for which $f(n) = \Omega$ (g(n)) the function g(n) is only lower bound on n.
- hence, for $f(n)=\Omega(g(n))$ to be meaningful, g(n) should be as large a function of n as possible.

- Is it correct to say that $3n + 8 = \Omega(1)$?
- There could be several functions g(n) for which $f(n) = \Omega$ (g(n)) the function g(n) is only lower bound on n.
- hence, for $f(n)=\Omega(g(n))$ to be meaningful, g(n) should be as large a function of n as possible.
- Given two choices viz. $3n+3=\Omega(n)$ and $3n+3=\Omega(1)$, which one shall we choose ?

- Is it correct to say that $3n + 8 = \Omega(1)$?
- There could be several functions g(n) for which $f(n) = \Omega$ (g(n)) the function g(n) is only lower bound on n.
- hence, for $f(n)=\Omega(g(n))$ to be meaningful, g(n) should be as large a function of n as possible.
- Given two choices viz. $3n+3=\Omega(n)$ and $3n+3=\Omega(1)$, which one shall we choose ?
- if $f(n) = O(\Omega(n))$, what is the lower bound ?

- Is it correct to say that $3n + 8 = \Omega(1)$?
- There could be several functions g(n) for which $f(n) = \Omega$ (g(n)) the function g(n) is only lower bound on n.
- hence, for $f(n)=\Omega(g(n))$ to be meaningful, g(n) should be as large a function of n as possible.
- Given two choices viz. $3n+3=\Omega(n)$ and $3n+3=\Omega(1)$, which one shall we choose ?
- if $f(n) = O(\Omega(n))$, what is the lower bound ?
- Do we specify how tight this lower bound is?

• When we say $f(n)=\Omega(g(n))$, does it mean that g(n)=O(f(n))?

$$f(n) = c \cdot g(n)$$
 $g(n) = o(f_n)$

- When we say $f(n)=\Omega(g(n))$, does it mean that g(n)=O(f(n))?
- Would the growth of f(n) dominate the growth of (g(n))?

- When we say $f(n)=\Omega(g(n))$, does it mean that g(n)=O(f(n))?
- Would the growth of f(n) dominate the growth of (g(n)) ?
- Consider $f(n) = n^2 \& g(n) = 2n^2$

- When we say $f(n)=\Omega(g(n))$, does it mean that g(n)=O(f(n))?
- Would the growth of f(n) dominate the growth of (g(n))?
- Consider $f(n)=n^2 \& g(n)=2n^2$

When we use Ω -notation to describe a lower bound,

- When we say $f(n)=\Omega(g(n))$, does it mean that g(n)=O(f(n))?
- Would the growth of f(n) dominate the growth of (g(n))?
- Consider $f(n) = n^2 \& g(n) = 2n^2$

When we use Ω -notation to describe a lower bound.

• we are also implying a lower bound on the running time of the algorithm on arbitrary inputs as well.

Tutorial Problem No 2...

- When we say $f(n)=\Omega(g(n))$, does it mean that g(n)=O(f(n))?
- Would the growth of f(n) dominate the growth of (g(n))?
- Consider $f(n) = n^2 \& g(n) = 2n^2$

When we use Ω -notation to describe a lower bound,

- we are also implying a lower bound on the running time of the algorithm on arbitrary inputs as well.
- the bounds $O(n^2)$ and $\Omega(n)$ are as tight bounds as possible.

Tutorial Problem No 2...

- When we say $f(n)=\Omega(g(n))$, does it mean that g(n)=O(f(n))?
- Would the growth of f(n) dominate the growth of (g(n))?
- Consider $f(n)=n^2 \& g(n)=2n^2$

When we use Ω -notation to describe a lower bound,

- we are also implying a lower bound on the running time of the algorithm on arbitrary inputs as well.
- the bounds $O(n^2)$ and $\Omega(n)$ are as tight bounds as possible.
- Can we say that the running time of insertion sort is $\Omega(n^2)$?

Tutorial Problem No 2...

- When we say $f(n)=\Omega(g(n))$, does it mean that g(n)=O(f(n))?
- Would the growth of f(n) dominate the growth of (g(n))?
- Consider $f(n) = n^2 \& g(n) = 2n^2$

When we use Ω -notation to describe a lower bound.

- we are also implying a lower bound on the running time of the algorithm on arbitrary inputs as well.
- the bounds $O(n^2)$ and $\Omega(n)$ are as tight bounds as possible.
- Can we say that the running time of insertion sort is $\Omega(n^2)$?
- Can we say that the running time of insertion sort is O(n)?

The Big- Θ notation...

- Neither the big-O notation nor the big- Ω notation describe the asymptotically tight bounds.
- Θ-notation to express tighter bounds used to specify the exact order of growth of functions.
- def: we say that $f(n) = \Theta((g)n)$ iff there exists positive constants c_1 and c_2 and a number n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$
- $f(n) = \Theta((g)n)$ iff f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

The Big- Θ notation...

- Neither the big-O notation nor the big- Ω notation describe the asymptotically tight bounds.
- Θ-notation to express tighter bounds used to specify the exact order of growth of functions.
- def: we say that $f(n) = \Theta((g)n)$ iff there exists positive constants c_1 and c_2 and a number n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$
- $f(n) = \Theta((g)n)$ iff f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

The Big-⊖ Notation...

The Big- Θ Notation...

Given $f(n) = \Theta g(n)$

- Can f(n) grow faster than g(n)?
- Can g(n) grow faster than f(n)?

The Big-⊖ Notation...

Given
$$f(n) = \Theta g(n)$$

- Can f(n) grow faster than g(n)?
- Can g(n) grow faster than f(n)?

• What does the growth rate imply?

The Big-⊖ Notation...

Function	notation in 0		
f(n) = 3n + 8	$f(n) = \theta(?)$		
$f(n) = 10n^2 + 3n - 8$	$f(n) = \theta(?)$		
$F(n) = 12n^2 - 11$	$f(n) = \theta(?)$		
$F(n) = 6*2^n + n^2$	$f(n) = \theta(2^n)?$		
$F(n) = 6*2^n + n^2$	$f(n) = \theta(n^2)?$		
f(n) = 3n + 8	$f(n) = \theta(n^2)?$		
f(n) = 5n + 8	$f(n) = \theta(1)?$		

The Asymptotic Classes

Complexity of Data Structures

Data Structure	Time Complexity							Space Complexity	
	Average				Worst				Worst
	Access	Search	Insertion	Deletion	Access	Search	Insertion	Deletion	
Array	O(1)	O(n)	O(n)	O(n)	O(1)	O(n)	O(n)	O(n)	O(n)
Stack Stack	O(n)	O(n)	O(1)	O(1)	O(n)	O(n)	O(1)	O(1)	O(n)
Singly- Linked List	O(n)	O(n)	O(1)	O(1)	O(n)	O(n)	O(1)	O(1)	O(n)
Doubly- Linked List	O(n)	O(n)	O(1)	O(1)	O(n)	O(n)	O(1)	O(1)	O(n)
Skip List	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(n)	O(n)	O(n)	O(n)	O(n log(n))
Hash Table	-	O(1)	O(1)	O(1)	-	O(n)	O(n)	O(n)	O(n)
Binary Search Tree	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(n)	O(n)	O(n)	O(n)	O(n)
Cartesian Tree	-	O(log(n))	O(log(n))	O(log(n))	-	O(n)	O(n)	O(n)	O(n)
B-Tree	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(n)
Red-Black Tree	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(n)
Splay Tree	-	O(log(n))	O(log(n))	O(log(n))	-	O(log(n))	O(log(n))	O(log(n))	O(n)
AVL Tree	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(log(n))	O(n)

Complexities of Sorting Algorithms

type of Scoting ti'm softing Space Algorithm Time Complexity Complexity Best Worst Worst Average /Quiøksort $O(n \log(n))$ O(n log(n)) O(n^2) O(log(n))Mergesort O(n log(n)) O(n log(n)) O(n log(n)) O(n) O(n log(n)) Timsort O(n) $O(n \log(n))$ O(n) Heapsort $O(n \log(n))$ $O(n \log(n))$ $O(n \log(n))$ 0(1) **Bubble Sort** O(n^2) O(n^2) 0(1) O(n) Insertion Sort O(n) $O(n^2)$ O(n^2) O(1)Selection Sort O(n^2) $O(n^2)$ O(n^2) O(1)

 $O((nlog(n))^2)$

O(n+k)

O(nk)

O(n+k)

Ref: Eric- http://bigocheatsheet.com/

0(1)

O(n)

O(n)

O(n+k)

O(nk)

Shell Sort

Bucket Sort

Radix Sort

 $O((nlog(n))^2)$

O(n^2)

O(nk)

 To sort n elements, one needs information about the sequence of these elements
 i.e. given two elements, the relative order could be

- To sort n elements, one needs information about the sequence of these elements
 - i.e. given two elements, the relative order could be
- Decision tree at a higher level of abstraction

- To sort n elements, one needs information about the sequence of these elements
 - i.e. given two elements, the relative order could be
- Decision tree at a higher level of abstraction
- For an input sequence of three elements, what would be the total number of 2-element comparisons ?

- To sort n elements, one needs information about the sequence of these elements
 - i.e. given two elements, the relative order could be
- Decision tree at a higher level of abstraction
- For an input sequence of three elements, what would be the total number of 2-element comparisons ?
- Draw a decision tree showing the number of comparisons of any n-distinct elements say for n = 3.

- To sort n elements, one needs information about the sequence of these elements
 - i.e. given two elements, the relative order could be
- Decision tree at a higher level of abstraction
- For an input sequence of three elements, what would be the total number of 2-element comparisons ?
- Draw a decision tree showing the number of comparisons of any n-distinct elements say for n = 3.
 - represent each internal node by $a_i:a_i$ in the range $1 \le i \le n$

- To sort n elements, one needs information about the sequence of these elements
 - i.e. given two elements, the relative order could be
- Decision tree at a higher level of abstraction
 - For an input sequence of three elements, what would be the total number of 2-element comparisons?
- Draw a decision tree showing the number of comparisons of any n-distinct elements - say for n = 3.
 - \mathfrak{F} represent each internal node by $a_i:a_j$ in the range $1\leq i\leq n$
 - denote each leaf by permutation $(\pi(1), \pi(2), \pi(3), \pi(4)...$ $\pi(n))$

Theorem: Any Locisian tree
has height 2 (n lg n) that soft n element -> Consider a devision tree of height h that sorts in elements. -> How many leaves does this tree have? (a) If the height & a tree is h, then MIS[2h] inaximally it can have 2h leaves. 16) if a decision tre represent scoting of n element, then it will have N! leaves

$$n \mid \leq \lceil 2^n \rceil$$

i.e. $\log n \mid \leq \log \lceil 2^n \rceil = \Omega(n \log n)$
 $\log n \mid \leq k - - \cdot \cdot (i)$
 $\Rightarrow \text{Stixling!}$ of possimation applied to our use:

 $\log n \vdash n \mid = \sqrt{2 \pi n} \left(\frac{n}{e} \right)^n \left(1 + O(1/n) \right)$
 $\log n \vdash n \mid = \sqrt{2 \pi n} \left(\frac{n}{e} \right)^n \left(1 + O(1/n) \right)$
 $\log n \vdash n \mid = \sqrt{2 \pi n} \left(\frac{n}{e} \right)^n \left(1 + O(1/n) \right)$

optimal comparison based sorb. (680) any (optimal) -> the best we can Avoof: 1) Any contaison (n 105 n) do. Vat least nlog n ies of Hs and O(nlog m)

not comparison facel