

L'ecture: 04

Queuing System

Problem: A banking queuing system in a cash counter have several data is given below:

Customer	1	2	3	4	5	6
Inter arrival time	-	2	4	1	2	6
Service Time	2	1	3	2	1	4

Calculate the Average waiting time, Utilization and Service time of this system. Also calculate the chronological ordering of events with graph.

Solution:

Customer	Inter arrival	Arrival	Service	Time Service	Waiting	Time Service	Idle Time
	time	Time	Time	Begin	Time	End	
1	-	0	2	0	0	2	0
2	2	2	1	2	0	3	0
3	4	6	3	6	0	9	3
4	1	7	2	9	2	11	0
5	2	9	1	11	2	12	0
6	6	15	4	15	0	19	3
Total			15		4	19	6

Average Waiting Time: 4/6= 0.67

Utilization: $\frac{end\ time-idle\ time}{end\ time} \times 100 = \frac{19-6}{19} * 100 = 68.42.\%$

Total Service Time: 15

Chronological Ordering of events:

Event type	Customer Number	Event Clock
Arrival	1	0
Departure	1	2
Arrival	2	2
Departure	2	3
Arrival	3	6
Arrival	4	7
Departure	3	9
Arrival	5	9
Departure	4	11
Departure	5	12
Arrival	6	15
Departure	6	19

Random Number Generator

LCM (Linear Congruential Method)

 $X_{i+1} = (a. X_i + C) \mod m$

$$R_i = \frac{Xi}{m}$$

X₀ = Seed element

a= multiplier

C= increment

m= Module

if C=0 => multiplicative LCM

 $C \neq 0 \Rightarrow mixed LCM$

Problem 1: Using LCM generate a sequence of random number with $X_0 = 3$, a = 5 C=1 and m = 8

Solution:

 $X_0 = 3$; $R_0 = \frac{3}{8} = 0.37$

 $X_{0+1}=(5*3+1) \mod 8=0$; $R_1=\frac{0}{8}=$ **0**

 $X_2 = (5*0+1) \mod 8 = 1$; $R_2 = \frac{1}{8} = 0.125$

 $X_3 = (5*1+1) \mod 8 = 6$; $R_3 = \frac{6}{8} = 0.75$

 $X_4 = (5*6+1) \mod 8 = 7$; $R_4 = \frac{7}{8} = 0.875$

 $X_5 = (5*7+1) \mod 8 = 4$; $R_5 = \frac{4}{8} = 0.5$

 $X_6 = (5*4+1) \mod 8 = 5$; $R_6 = \frac{5}{8} = 0.625$

 $X_7 = (5*5+1) \mod 8 = 2$; $R_7 = \frac{2}{8} = 0.25$

 $X_8 = (5*2+1) \mod 8 = 3$; $R_8 = \frac{3}{8} = 0.37$

Sequence: 3, 0,1,6,7,4,5, 2,3

Random Number: 0.37, 0, 0.125, 0.75, 0.875, 0.5, 0.625, 0.25

Problem 2 (try yourself): Using LCM generate a sequence of random number with $X_0 = 27$, $a = 27$
17, C=43 and m= 100
Solution: