- (5) 若 \circ_i 是含有单位元的运算, $x^{-1} \in A$ 是 x 关于 \circ_i 的逆元,则 $\varphi(x^{-1})$ 是 $\varphi(x)$ 关于 $\bar{\circ}_i$ 运算的 逆元.
- 定理 **15.9** 设 $V = \langle A, \circ_1, \circ_2, \cdots, \circ_r \rangle$ 是代数系统,对于 $i = 1, 2, \cdots, r$, \circ_i 是 k_i 元运算. \sim 是 V 上的同余关系,V 关于 \sim 的商代数 $V/\sim = \langle A/\sim, \bar{\circ}_1, \bar{\circ}_2, \cdots, \bar{\circ}_r \rangle$. 令 \circ_i, \circ_j 是 V 中的两个二元运算.
- (1) $\dot{\pi}$ \circ_i 是可交换的(或可结合的,幂等的),则 $\ddot{\circ}_i$ 在 V/\sim 中也是可交换的(或可结合的,幂等的).
- (2) 若 o_i 对 o_i 是可分配的,则 \bar{o}_i 对 \bar{o}_i 在 V/\sim 中也是可分配的.
- (3) 若 o_i , o_i 满足吸收律,则 \bar{o}_i , \bar{o}_i 在 V/\sim 中也满足吸收律.
- (4) 若 e (或 θ)是 V 中关于 o_i 运算的单位元(或零元),则 [e] (或 $[\theta]$)是 V/\sim 中关于 \overline{o}_i 运算的单位元(或零元).
- (5) 若 \circ_i 为 V 中含有单位元的运算,且 $x \in A$ 关于 \circ_i 的逆元为 x^{-1} ,则在 V/\sim 中 [x] 关于 $\bar{\circ}_i$ 运算的逆元是 $[x^{-1}]$.
- 定理 **15.11** 设 $V = \langle A, \circ_1, \circ_2, \cdots, \circ_r \rangle$ 是代数系统,其中 \circ_i 为 k_i 元运算, $i = 1, 2, \cdots, r$. \sim 为 V 上的同余关系,则自然映射 $g: A \to A/\sim, g(a) = [a], \forall a \in A$ 是从 V 到 V/\sim 上的同态映射.

定理 15.12 (同态基本定理) 设 $V_1 = \langle A, \circ_1, \circ_2, \cdots, \circ_r \rangle, V_2 = \langle B, \circ_1', \circ_2', \cdots, \circ_r' \rangle$ 是同类型的代数系统,对于 $i = 1, 2, \cdots, r$, o_i, o_i' 是 k_i 元运算. $\varphi: A \to B$ 是 V_1 到 V_2 的同态,关系 \sim 是 φ 导出的 V_1 上的同余关系,则 V_1 关于同余关系 \sim 的商代数同构于 V_1 在 φ 下的同态像,即 $V_1/\sim \cong \langle \varphi(A), o_1', o_2', \cdots, o_r' \rangle$.