Programación Concurrente ATIC Programación Concurrente (redictado)

Clase 3

Facultad de Informática UNLP

Acciones atómicas y Sincronización

Una acción atómica de *grano fino* (fine grained) se debe implementar por hardware.

- ¿La operación de asignación A=B es atómica?
 - $NO \Rightarrow (i) Load PosMemB, reg$
 - (ii) Store reg, PosMemA
- ¿Qué sucede con algo del tipo X=X+X?
 - (i) Load PosMemX, Acumulador
 - (ii) Add PosMemX, Acumulador
 - (iii) Store Acumulador, PosMemX

En lo que sigue, supondremos máquinas con las siguientes características:

- Los valores de los tipos básicos se almacenan en elementos de memoria leídos y escritos como acciones atómicas.
- Los valores se cargan en registros, se opera sobre ellos, y luego se almacenan los resultados en memoria.
- Cada proceso tiene su propio conjunto de registros (context switching).
- Todo resultado intermedio de evaluar una expresión compleja se almacena en registros o en memoria privada del proceso.

Interferencia: un proceso toma una acción que invalida las suposiciones hechas por otro proceso.

Ejemplo 1: ¿Qué puede suceder con los valores de E1, E2 y público?

Ejemplo 2: Cuáles son los posibles resultados con 3 procesadores. La lectura y escritura de las variables x, y, z son atómicas.

x = 0; y = 4; z=2;		(1) Puede descomponerse por ejemplo en:
co		(1.1) Load PosMemY, Acumulador
$\mathbf{x} = \mathbf{y} + \mathbf{z}$	(1)	(1.2) Add PosMemZ, Acumulador
// y = 3	(2)	(1.3) Store Acumulador, PosMemX
// z = 4	(3)	(2) Se transforma en: Store 3, PosMemY
oc		(3) Se transforma en: Store 4, PosMemZ

- y = 3, z = 4 en todos los casos.
- x puede ser:
 - 6 si ejecuta (1)(2)(3) o (1)(3)(2)
 - 5 si ejecuta (2)(1)(3)
 - 8 si ejecuta (3)(1)(2)
 - 7 si ejecuta (2)(3)(1) o (3)(2)(1)
 - 6 si ejecuta (1.1)(2)(1.2)(1.3)(3)
 - 8 si ejecuta (1.1)(3)(1.2)(1.3)(2)
 -

Ejemplo 3: Cuáles son los posibles resultados con 2 procesadores. La lectura y escritura de las variables x, y, z son atómicas.

(1) Puede descomponerse por ejemplo en:

- (1.1) Load PosMemX, Acumulador
- (1.2) Add PosMemY, Acumulador
- (1.3) Store Acumulador, PosMemZ

(2) Se transforma en:

- (2.1) Store 3, PosMemX
- (2.2) Store 4, PosMemY

$$x = 3$$
, $y = 4$ en todos los casos.
z puede ser: 4, 5, 6 o 7.

Nunca podría parar el programa y ver un estado en que x+y=6, a pesar de que z si puede terminar con ese valor,

- Si una expresión *e* en un proceso no referencia una variable alterada por otro proceso, la evaluación será atómica, aunque requiera ejecutar varias acciones atómicas de grano fino.
- Si una asignación x = e en un proceso no referencia ninguna variable alterada por otro proceso, la ejecución de la asignación será atómica.

Normalmente los programas concurrentes no son disjuntos ⇒ es necesario establecer algún requerimiento más débil ...

Referencia crítica en una expresión ⇒ referencia a una variable que es modificada por otro proceso.

Asumamos que toda referencia crítica es a una variable simple leída y escrita atómicamente.

Acciones atómicas y Sincronización Propiedad de "A lo sumo una vez"

Una sentencia de asignación x = e satisface la propiedad de "A lo sumo una vez" si:

- 1) e contiene a lo sumo una referencia crítica y x no es referenciada por otro proceso, o
- 2) e no contiene referencias críticas, en cuyo caso x puede ser leída por otro proceso.

Una expresiones *e* que no está en una sentencia de asignación satisface la propiedad de "*A lo sumo una vez*" si no contiene más de una referencia crítica.

Puede haber a lo sumo una variable compartida, y puede ser referenciada a lo sumo una vez

Acciones atómicas y Sincronización Propiedad de "A lo sumo una vez"

Si una sentencia de asignación cumple la propiedad ASV, entonces su ejecución *parece* atómica, pues la variable compartida será leída o escrita sólo una vez.

Ejemplos:

• int
$$x=0$$
, $y=0$; No co $x=x+1$ // $y=y+1$ oc; En to

No hay ref. críticas en ningún proceso. En todas las historias x = 1 e y = 1

• int
$$x = 0$$
, $y = 0$;
co $x=y+1 // y=y+1$ oc;

El 1er proceso tiene 1 ref. crítica. El 2do ninguna. Siempre y = 1 y x = 1 o 2

• int
$$x = 0$$
, $y = 0$;
co $x=y+1 // y=x+1$ oc;

Ninguna asignación satisface ASV. Posibles resultados: x = 1 e y = 2 / x = 2 e y = 1Nunca debería ocurrir x = 1 e $y = 1 \rightarrow ERROR$

Acciones atómicas y Sincronización Especificación de la sincronización

- Si una expresión o asignación no satisface ASV con frecuencia es necesario ejecutarla atómicamente.
- En general, es necesario ejecutar secuencias de sentencias como una única acción atómica → *Acción atómica de Grano Grueso*

Mecanismo de sincronización para construir una acción atómica *de grano grueso* (*coarse grained*) como secuencia de acciones atómicas de grano fino (*fine grained*) que aparecen como indivisibles.

 $\langle \mathbf{e} \rangle$ indica que la expresión \mathbf{e} debe ser evaluada atómicamente.

(await (B) S;) se utiliza para especificar sincronización.

La expresión booleana B especifica una condición de demora.

S es una secuencia de sentencias que se garantiza que termina.

Se garantiza que B es true cuando comienza la ejecución de S.

Ningún estado interno de S es visible para los otros procesos.

Acciones atómicas y Sincronización Especificación de la sincronización

Sentencia con alto poder expresivo, pero el costo de implementación de la forma general de *await* (exclusión mutua y sincronización por condición) es alto.

- Await general: (await (s>0) s=s-1;)
- Await para exclusión mutua: $\langle x = x + 1; y = y + 1 \rangle$
- Ejemplo await para sincronización por condición: (await (count > 0))

Si B satisface ASV, puede implementarse como *busy waiting* o *spin loop* do (not B) \rightarrow skip od (while (not B);)

Acciones atómicas incondicionales y condicionales

Acciones atómicas y Sincronización Especificación de la sincronización

Ejemplo: productor/consumidor con buffer de tamaño N.

```
cant: int = 0;
Buffer: cola;
process Productor
 { while (true)
     <await (cant < N); push(buffer, elemento); cant++ >
process Consumidor
 { while (true)
     <await (cant > 0); pop(buffer, elemento); cant-- >
```

¿Qué pasa si el buffer es un arreglo en lugar de una cola?

Propiedades

Propiedades de seguridad y vida

Una *propiedad* de un programa concurrente es un atributo verdadero en cualquiera de las historias de ejecución del mismo

Toda propiedad puede ser formulada en términos de dos clases: seguridad y vida.

- *seguridad* (safety)
 - Nada malo le ocurre a un proceso: asegura estados consistentes.
 - Una falla de seguridad indica que algo anda mal.
 - Ejemplos de seguridad: ausencia de interferencia (exclusión mutua) entre procesos, *partial correctness*.
- *vida* (liveness)
 - Eventualmente ocurre algo bueno con una actividad: progresa, no hay deadlocks.
 - Una falla de vida indica que las cosas dejan de ejecutar.
 - Ejemplos de vida: *terminación*, asegurar que un pedido de servicio será atendido, que un mensaje llega a destino, que un proceso eventualmente alcanzará su SC, etc ⇒ *dependen de las políticas de scheduling*.

¿Que pasa con la *total correctness*?

Propiedades de seguridad y vida

Ejemplo: Puente sobre río con ancho sólo para una fila de tráfico \Rightarrow los autos pueden moverse concurrentemente si van *en la misma dirección*

- Violación de *seguridad* si dos autos en distintas direcciones entran al puente al mismo tiempo.
- *Vida*: cada auto tendrá *eventualmente o*portunidad de cruzar el puente?.

Fairness

Fairness y políticas de scheduling

Fairness: trata de garantizar que los procesos tengan chance de avanzar, sin importar lo que hagan los demás

Una acción atómica en un proceso es *elegible* si es la próxima acción atómica en el proceso que será ejecutada. Si hay varios procesos ⇒ hay *varias acciones atómicas elegibles*.

Una política de scheduling determina cuál será la próxima en ejecutarse.

Ejemplo: Si la política es asignar un procesador a un proceso hasta que termina o se demora. ¿Qué podría suceder en este caso?

```
bool continue = true;
co while (continue); // continue = false; oc
```

Fairness y políticas de scheduling

Fairness Incondicional. Una política de scheduling es incondicionalmente fair si toda acción atómica incondicional que es elegible eventualmente es ejecutada.

En el ejemplo anterior, RR es incondicionalmente fair en monoprocesador, y la ejecución paralela lo es en un multiprocesador.

Fairness Débil. Una política de scheduling es débilmente fair si :

- (1) Es incondicionalmente fair y
- (2) Toda acción atómica condicional que se vuelve elegible eventualmente es ejecutada, asumiendo que su condición se vuelve *true* y permanece *true* hasta que es vista por el proceso que ejecuta la acción atómica condicional.

No es suficiente para asegurar que cualquier sentencia *await* elegible eventualmente se ejecuta: la guarda podría cambiar el valor (de *false* a *true* y nuevamente a *false*) mientras un proceso está demorado.

Fairness y políticas de scheduling

Fairness Fuerte. Una política de scheduling es fuertemente fair si:

- (1) Es incondicionalmente fair y
- (2) Toda acción atómica condicional que se vuelve elegible eventualmente es ejecutada pues su guarda se convierte en *true* con infinita frecuencia.

```
Ejemplo: ¿Este programa termina?

bool continue = true, try = false;

co while (continue) { try = true; try = false; }

// ⟨await (try) continue = false⟩

oc
```

No es simple tener una política que sea práctica y fuertemente fair. En el ejemplo anterior, con 1 procesador, una política que alterna las acciones de los procesos sería fuertemente fair, pero es impráctica. Round-robin es práctica pero no es fuertemente fair.

Herramientas para la concurrencia

> Memoria Compartida

- Variables compartidas
- Semáforos
- Regiones Críticas Condicionales
- Monitores

> Memoria distribuida (pasaje de mensajes)

- Mensajes asincrónicos
- Mensajes sincrónicos
- Remote Procedure Call (RPC)
- Rendezvous

Sincronización por Variables Compartidas

Locks - Barreras

Locks y barreras

Problema de la Sección Crítica: implementación de acciones atómicas en software (**locks**).

Barrera: punto de sincronización que todos los procesos deben alcanzar para que cualquier proceso pueda continuar.

En la técnica de *busy waiting* un proceso chequea repetidamente una condición hasta que sea verdadera:

- Ventaja de implementarse con instrucciones de cualquier procesador.
- Ineficiente en multiprogramación (cuando varios procesos comparten el procesador y la ejecución es intercalada).
- Aceptable si cada proceso ejecuta en su procesador.

El problema de la Sección Crítica

Las soluciones a este problema pueden usarse para implementar sentencias *await* arbitrarias.

¿Qué propiedades deben satisfacer los protocolos de entrada y salida?.

El problema de la Sección Crítica Propiedades a cumplir

Exclusión mutua: A lo sumo un proceso está en su SC

Ausencia de Deadlock (Livelock): si 2 o más procesos tratan de entrar a sus SC (y está libre), al menos uno tendrá éxito.

Ausencia de Demora Innecesaria: si un proceso trata de entrar a su SC y los otros están en sus SNC o terminaron, el primero no está impedido de entrar a su SC.

Eventual Entrada: un proceso que intenta entrar a su SC tiene posibilidades de hacerlo (eventualmente lo hará).

- Las 3 primeras son propiedades de seguridad, y la 4° de vida.
- Solución trivial $\langle SC \rangle$. Pero, ¿cómo se implementan los $\langle \rangle$?

El problema de la Sección Crítica.

Solución hardware: deshabilitar interrupciones

```
process SC[i=1 to n] {
    while (true) {
        deshabilitar interrupciones;  # protocolo de entrada
        sección crítica;
        habilitar interrupciones;  # protocolo de salida
        sección no crítica;
    }
}
```

- Solución correcta para una máquina monoprocesador.
- Durante la SC no se usa la multiprogramación → penalización de performance
- La solución no es correcta en un multiprocesador.

El problema de la Sección Crítica. Solución de "grano grueso"

bool in1=false, in2=false # MUTEX: \neg (in1 \wedge in2) #

No asegura el invariante MUTEX ⇒ solución de "grano grueso"

```
process SC1
{ while (true)
    {await (not in2) in1 = true;}
    sección crítica;
    in1 = false;
    sección no crítica;
    }
}
```

```
process SC2
{ while (true)
    { (await (not in1) in2 = true; )
        sección crítica;
        in2 = false;
        sección no crítica;
    }
}
```

• ¿Satisface las 4 propiedades?

El problema de la Sección Crítica.

Solución de "grano grueso" - ¿Cumple las condiciones?

Exclusión mutua: por construcción, P1 y P2 se excluyen en el acceso a la SC.

```
bool in1=false, in2=false # MUTEX: \neg(in1 \land in2) #
```

```
process SC1
{ while (true)
    {(await (not in2) in1 = true;) }
    sección crítica;
    in1 = false;
    sección no crítica;
    }
}

process SC2
{ while (true)
    {(await (not in1) in2 = true;) }
    sección crítica;
    in2 = false;
    sección no crítica;
    }
}
```

Ausencia de deadlock: si hay deadlock, P1 y P2 están bloqueados en su protocolo de entrada \Rightarrow in1 e in2 serían *true* a la vez. Esto NO puede darse ya que ambas son falsas en ese punto (lo son inicialmente, y al salir de SC, cada proceso vuelve a serlo).

Ausencia de demora innecesaria: si P1 está fuera de su SC o terminó, **in1** es *false*; si P2 está tratando de entrar a SC y no puede, **in1** es *true*; $(\neg in1 \land in1 = false) \Rightarrow no hay demora innecesaria.$

El problema de la Sección Crítica.

Solución de "grano grueso" - ¿Cumple las condiciones?

```
bool in1=false, in2=false # MUTEX: \neg(in1 \wedge in2) #
```

```
process SC1
{ while (true)
    { (await (not in2) in1 = true; )
        sección crítica;
        in1 = false;
        sección no crítica;
    }
}

process SC2
{ while (true)
    { (await (not in1) in2 = true; )
        sección crítica;
        in2 = false;
        sección no crítica;
    }
}
```

Eventual Entrada:

- Si P1 está tratando de entrar a su SC y no puede, P2 está en SC (**in2** es *true*). Un proceso que está en SC eventualmente sale \rightarrow **in2** será *false* y la guarda de P1 *true*.
- Análogamente para P2.
- Si los procesos corren en procesadores iguales y el tiempo de acceso a SC es finito, las guardas son *true* con infinita frecuencia.

Se garantiza la eventual entrada con una política de scheduling fuertemente fair.

El problema de la Sección Crítica. Solución de "grano grueso"

bool in1=false, in2=false # MUTEX: \neg (in1 \wedge in2) #

```
process SC1
{ while (true)
    {(await (not in2) in1 = true;) }
    sección crítica;
    in1 = false;
    sección no crítica;
    }
}

process SC2
{ while (true)
    {(await (not in1) in2 = true;) }
    sección crítica;
    in2 = false;
    sección no crítica;
    }
}
```

• ¿Si hay n procesos? \rightarrow Cambio de variables.

bool lock=false; # lock = in1 v in2 #

El problema de la Sección Crítica. Solución de "grano grueso"

bool lock=false; # lock = in1 v in2 #

• Generalizar la solución a *n* procesos

```
process SC [i=1..n]
{ while (true)
    {(await (not lock) lock= true;)
        sección crítica;
        lock = false;
        sección no crítica;
    }
}
```

El problema de la Sección Crítica. Solución de "grano fino": *Spin Locks*

Objetivo: hacer "atómico" el await de grano grueso.

Idea: usar instrucciones como *Test & Set* (TS), *Fetch & Add* (FA) o *Compare & Swap*, disponibles en la mayoría de los procesadores.

¿Como funciona Test & Set?

```
bool TS (bool ok);
{ < bool inicial = ok;
    ok = true;
    return inicial; >
}
```

El problema de la Sección Crítica. Solución de "grano fino": *Spin Locks*

```
bool lock = false;
process SC [i=1..n]
{ while (true)
    {(await (not lock) lock= true;)}
    sección crítica;
    lock = false;
    sección no crítica;
}
}
}
```

Solución tipo "spin locks": los procesos se quedan iterando (spinning) mientras esperan que se limpie lock.

Cumple las 4 propiedades si el scheduling es fuertemente fair.

Una política débilmente fair es aceptable (rara vez todos los procesos están simultáneamente tratando de entrar a su SC).

El problema de la Sección Crítica. Solución de "grano fino": Spin Locks

- Baja performance en multiprocesadores si varios procesos compiten por el acceso.
- *lock* es una variable compartida y su acceso continuo es muy costoso ("*memory contention*").
- Además, podría producirse un alto overhead por cache inválida

TS escribe siempre en lock aunque el valor no cambie \Rightarrow Mejor **Test-and-Test-and-Set**

Memory contention se reduce, pero no desaparece. En particular, cuando *lock* pasa a *false* posiblemente todos intenten hacer TS.

El problema de la Sección Crítica. Implementación de sentencias *await*

- Cualquier solución al problema de la SC se puede usar para implementar una acción atómica incondicional $\langle S; \rangle \Rightarrow$ SCEnter; S; SCExit
- Para una acción atómica condicional ⟨await (B) S;⟩ ⇒
 SCEnter; while (not B) {SCExit; SCEnter;} S; SCExit;
- Si S es skip, y B cumple ASV, (await (B);) puede implementarse por medio de \Rightarrow while (not B) skip;

Correcto, pero *ineficiente*: un proceso está spinning continuamente saliendo y entrando a SC hasta que otro altere una variable referenciada en *B*.

Para reducir contención de memoria ⇒
 SCEnter; while (not B) {SCExit; Delay; SCEnter;} S; SCExit;

Problema de la Sección Crítica.

Solución Fair: algoritmo Tie-Breaker

Spin locks \Rightarrow no controla el orden de los procesos demorados \Rightarrow es posible que alguno no entre nunca si el scheduling no es fuertemente fair (*race conditions*).

Algoritmo Tie-Breaker (2 procesos): protocolo de SC que requiere scheduling sólo débilmente fair y no usa instrucciones especiales ⇒ más complejo.

Usa una variable por cada proceso para indicar que el proceso comenzó a ejecutar su protocolo de entrada a la sección crítica, y una variable adicional para romper empates, indicando qué proceso fue el último en comenzar dicha entrada ⇒ esta última variable es compartida y de acceso protegido.

Demora (quita prioridad) al último en comenzar su entry protocol.

Solución Fair: algoritmo Tie-Breaker

Solución de "Grano Grueso" al Algoritmo Tie-Breaker

```
bool in1 = false, in2 = false;
int ultimo = 1;
process SC1 {
  while (true) {
                      in1 = true; ultimo = 1;
                      ⟨await (not in2 or ultimo==2);⟩
                      sección crítica;
                      in1 = false;
                      sección no crítica;
process SC2 {
  while (true) {
                      in2 = true; ultimo = 2;
                      ⟨await (not in1 or ultimo==1);⟩
                      sección crítica;
                      in2 = false;
                      sección no crítica;
```

Solución Fair: algoritmo Tie-Breaker

Solución de "Grano Fino" al Algoritmo Tie-Breaker

```
bool in1 = false, in2 = false;
int ultimo = 1;
process SC1 {
  while (true) {
                      in1 = true; ultimo = 1;
                      while (in2 and ultimo == 1) skip;
                      sección crítica;
                      in1 = false;
                      sección no crítica;
process SC2 {
  while (true) {
                      in2 = true; ultimo = 2;
                      while (in1 and ultimo == 2) skip;
                      sección crítica;
                      in2 = false;
                      sección no crítica;
```

Solución Fair: algoritmo Tie-Breaker

Generalización a *n* procesos:

- Si hay *n* procesos, el protocolo de entrada en cada uno es un *loop* que itera a través de *n-1* etapas.
- En cada etapa se usan instancias de *tie-breaker* para dos procesos para determinar cuáles avanzan a la siguiente etapa.

• Si a lo sumo a un proceso a la vez se le permite ir por las n-1 etapas \Rightarrow a lo sumo uno a

la vez puede estar en la SC.

Problema de la Sección Crítica. Solución Fair: algoritmo *Ticket*

Tie-Breaker n-proceso \Rightarrow complejo y costoso en tiempo.

Algoritmo Ticket: se reparten números y se espera a que sea el turno.

Los procesos toman un número mayor que el de cualquier otro que espera ser atendido; luego esperan hasta que todos los procesos con número más chico han sido atendidos.

Problema de la Sección Crítica. Solución Fair: algoritmo *Ticket*

Potencial problema: los valores de *próximo* y *turno* son ilimitados. En la práctica, podrían resetearse a un valor chico (por ejemplo, 1).

Cumplimiento de las propiedades:

- El predicado *TICKET* es un invariante global, pues *número* es leído e incrementado en una acción atómica y *próximo* es incrementado en una acción atómica \Rightarrow hay a lo sumo un proceso en la SC.
- La ausencia de deadlock y de demora innecesaria resultan de que los valores de *turno* son únicos.
- Con scheduling débilmente fair se asegura eventual entrada

El **await** puede implementarse con busy waiting (la expresión booleana referencia una sola variable compartida).

El incremento de *proximo* puede ser un load/store normal (a lo sumo un proceso puede estar ejecutando su protocolo de salida)

Solución Fair: algoritmo Ticket

¿Cómo se implementa la primera acción atómica donde se asigna el número?

• Sea Fetch-and-Add una instrucción con el siguiente efecto:

```
FA(var,incr): < temp = var; var = var + incr; return(temp) >
```

El problema de la Sección Crítica. Solución Fair: algoritmo *Bakery*

 $Ticket \Rightarrow$ si no existe FA se debe simular con otra SC y la solución puede no ser fair.

Algoritmo Bakery: Cada proceso que trata de ingresar recorre los números de los demás y se auto asigna uno mayor. Luego espera a que su número sea el menor de los que esperan.

Los procesos se chequean entre ellos y no contra un global.

- El algoritmo *Bakery* es más complejo, pero es *fair* y no requiere instrucciones especiales.
- No requiere un contador global *proximo* que se "entrega" a cada proceso al llegar a la SC.
- Esta solución de grano grueso no es implementable directamente.

Solución Fair: algoritmo Bakery

```
 \begin{aligned} & \text{int turno}[1:n] = ([n] \ 0); \\ & \{BAKERY: \ (\forall i: \ 1 \leq i \leq n: \ (SC[i] \ est\'a \ en \ su \ SC) \Rightarrow (turno[i] > 0) \land (\ \forall j: \ 1 \leq j \leq n, j \neq i: \ turno[j] = 0 \lor turno[i] < turno[j] \ ) \, \} \\ & \text{process } SC[i = 1 \ to \ n] \\ & \{ \quad \text{while } (true) \\ & \{ \quad \text{turno}[i] = max(turno[1:n]) + 1; \, \rangle \\ & \quad \text{for } [j = 1 \ to \ n \ st \ j <> i] \ \langle \ await \ (turno[j] == 0 \ or \ turno[i] < turno[j]); \, \rangle \\ & \quad \text{sección crítica} \\ & \quad \text{turno}[i] = 0; \\ & \quad \text{sección no crítica} \\ & \} \\ & \} \end{aligned}
```

Esta solución de grano grueso no es implementable directamente:

- La asignación a turno[i] exige calcular el máximo de n valores.
- El await referencia una variable compartida dos veces.

Solución Fair: algoritmo Bakery

```
int turno[1:n] = ([n] \ 0);
{BAKERY: (\forall i: 1 \le i \le n: (SC[i] \text{ está en su } SC) \Rightarrow (turno[i] > 0) \land (\forall j: 1 \le j \le n, j)
\neq i: turno[j] = 0 \vee turno[i] < turno[j] ) )
process SC[i = 1 \text{ to } n]
  while (true)
       { turno[i] = 1; //indica que comenzó el protocolo de entrada
          turno[i] = max(turno[1:n]) + 1;
         for [j = 1 \text{ to n st } j != i]
                                      //espera su turno
               while (turno[j]!=0) and ((turno[i],i) > (turno[j],j)) \rightarrow skip;
          sección crítica
          turno[i] = 0;
          sección no crítica
```


Sincronización Barrier

Algoritmo *Iterativo*: computan sucesivas mejores aproximaciones a una respuesta, y terminan al encontrarla o al converger. En cada iteración todos los procesos realizan el mismo trabajo sobre diferentes datos y requieren que haya finalizado el paso previa.

• Ignorando terminación, y asumiendo *n* tareas paralelas en cada iteración, se tiene la forma general:

```
while (true)
{ co [i=1 to n] código para implementar la tarea i; oc}
```

• Ineficiente, ya que produce n procesos en cada iteración \Rightarrow crear procesos al comienzo y sincronizarlos al final de cada iteración.

Sincronización barrier: el punto de demora al final de cada iteración es una barrera a la que deben llegar todos antes de permitirles pasar.

Sincronización *Barrier*Contador Compartido

n procesos necesitan encontrarse en una barrera:

- Cada proceso incrementa una variable *Cantidad* al llegar.
- Cuando *Cantidad* es *n* los procesos pueden pasar.

• Se puede implementar con:

```
FA(cantidad,1);
while (cantidad <> n) skip;
```

• **Problemas:** cantidad necesita ser 0 en cada iteración, puede haber contención de memoria, coherencia de cache,

Sincronización *Barrier*Contador Compartido

¿Cuando se reinicia Cantidad en 0?

Sincronización Barrier

Flags y Coordinadores

- Si no existe $FA \rightarrow Puede$ distribuirse Cantidad usando n variables (arreglo arribo[1..n]).
- El await pasaría a ser:
 (await (arribo[1] + ... + arribo[n] == n);)
- Reintroduce contención de memoria y es ineficiente.

Puede usarse un conjunto de valores adicionales y un proceso más ⇒ Cada Worker espera por un único valor

```
int arribo[1:n] = ([n] 0), continuar[1:n] = ([n] 0);
process Worker[i=1 to n]
{ while (true)
              código para implementar la tarea i;
              arribo[i] = 1;
              \langle \text{ await (continuar[i] == 1); } \rangle
              continuar[i] = 0;
process Coordinador
{ while (true)
             for [i = 1 \text{ to } n]
                   \{ \langle \text{ await (arribo[i] == 1); } \rangle \}
                      arribo[i] = 0;
              for [i = 1 \text{ to } n] continuar[i] = 1;
```

Sincronización *Barrier* Flags y Coordinadores

```
int arribo[1:n] = ([n] \ 0), continuar[1:n] = ([n] \ 0);
process Worker[i=1 to n]
{ while (true)
            código para implementar la tarea i;
            arribo[i] = 1;
            while (continuar[i] == 0) skip;
            continuar[i] = 0;
process Coordinador
{ while (true)
            for [i = 1 \text{ to } n]
                 { while (arribo[i] == 0) skip;
                   arribo[i] = 0;
            for [i = 1 \text{ to } n] continuar[i] = 1;
```

Sincronización Barrier Árboles

• Problemas:

- Requiere un proceso (y procesador) extra.
- El tiempo de ejecución del coordinador es proporcional a *n*.

• Posible solución:

- Combinar las acciones de *Workers* y *Coordinador*, haciendo que cada *Worker* sea también *Coordinador*.
- Por ejemplo, *Workers* en forma de árbol: las señales de arribo van hacia arriba en el árbol, y las de continuar hacia abajo \Rightarrow *combining tree barrier* (más eficiente para n grande).

Sincronización *Barrier*Barreras Simétrica

- En *combining tree barrier* los procesos juegan diferentes roles.
- Una *Barrera Simétrica* para *n* procesos se construye a partir de pares de barreras simples para dos procesos:

```
 \begin{aligned} W[i] &:: \langle \text{await (arribo[i] == 0);} \rangle \\ &\quad \text{arribo[i] = 1;} \\ &\quad \langle \text{await (arribo[j] == 1);} \rangle \\ &\quad \text{arribo[j] = 1;} \rangle \\ &\quad \text{arribo[j] = 0;} \end{aligned} \qquad \begin{aligned} W[j] &:: \langle \text{await (arribo[j] == 0);} \rangle \\ &\quad \text{arribo[i] == 1);} \rangle \\ &\quad \text{arribo[i] = 0;} \end{aligned}
```

• ¿Cómo se combinan para construir una barrera n proceso? Worker[1:n] arreglo de procesos. Si n es potencia de $2 \Rightarrow Butterfly Barrier$.

Workers	1	2	3	4	5	6	7	8
Etapa 1							_	
Etapa 2								
Etapa 3								

- log_2n etapas: cada *worker* sincroniza con uno distinto en cada etapa.
- En la etapa s, un worker sincroniza con otro a distancia 2^{s-1} .
- Cuando cada worker pasó log₂n etapas, todos pueden seguir.

Sincronización Barrier

Barreras Simétrica – Butterfly barrier

```
int E = log(N);
int arribo[1:N] = ([N] 0);
process P[i=1..N]
{ int j;
   while (true)
     { //Sección de código anterior a la barrera.
       //Inicio de la barrera
       for (etapa = 1; etapa \le E; etapa++)
          \{ j = (i-1) \text{ XOR } (1 << (\text{etapa-1})); \}
                                                  //calcula el proceso con cual sincronizar
             while (arribo[i] == 1) \rightarrow skip;
             arribo[i] = 1;
             while (arribo[j] == 0) \rightarrow skip;
             arribo[i] = 0;
        //Fin de la barrera
        //Sección de código posterior a la barrera.
```

53

Defectos de la sincronización por busy waiting

- ➤ Protocolos "busy-waiting": complejos y sin clara separación entre variables de sincronización y las usadas para computar resultados.
- Es difícil diseñar para probar corrección. Incluso la verificación es compleja cuando se incrementa el número de procesos.
- Es una técnica ineficiente si se la utiliza en multiprogramación. Un procesador ejecutando un proceso *spinning* puede ser usado de manera más productiva por otro proceso.

Necesidad de herramientas para diseñar protocolos de sincronización.

Tareas propuestas

- Investigar los semáforos como herramienta de sincronización entre procesos
- Buscar información sobre problemas clásicos de sincronización entre procesos y su resolución con semáforos.