

FIGURE 1

Probability Range	Total #	# Pass	% Pass	# Fail	% Fail	# inflammation	% Pass
	Tested						wo/inflammatio
							n *
<40.5%	10	0	0	10	100		
40.5-50%	16	10	62.5	9	37.5		
20-60%	36	25	69.4	11	30.6	6	94.4
%02-09	41	27	99	14	34	12	95
70-75%	22	16	72.7	9	27.3	9	100
75-80%	19	14	73.7	5	26.3	5	100
%08<	09	53	88.3	7	11.7	7	100
Grand total	204	145		59			A. Marine Marine

FIGURE 2

FIGURE 3

Observed and Logistic Estimate of the Percent Rat Assays that Pass OsteoInductivity

FIGURE 4

1 -0.535299 0.306756 3.045135 0.080979 3.1E-08 6.97E-09 19.82913 8.47E-06 Standard Wald Error Stat. Error Column Estimate Distribution: BINOMIAL Link function: LOGIT Level of Effect Interc BMP*TGF Scale

	mean	st. dev.	minimum	maximum
BMP	538.5	384.73	15.6000	2179.5
TGF	102666.3	50908.00	102666.3 50908.00 886.2000 417608.0	417608.0
RATASSAY	2.	.46	0.0000	1.0

FIGURE 6

	Const.B0	BMP	TGF
Estimate	1.36196	00246	00001
Standard Error	.51127	99000	00000
t(190)	2.66390	-3.73437	-2.71528
p-level	.00839	.00025	.00723
-95%CL	.35347	00376	00002
+95%CL	2.37045	00116	00000
Wald's Chi-square	7.09634	13.94552	7.37275
p-level	.00773	.00019	.00663
Odds ratio (unit ch)	3.90383	.99754	66666
-95%CL	1.42400	.99624	86666
+95%CL	10.70216	.99884	1.00000
Odds ratio (range)		.00486	.01388
-95%CL		.00029	.00062
+95%CL		66080	.31036

FIGURE 7

z=exp(-1.36196+(0.002462)*x+(0.0000103)*y)/(1+exp(-1.36196+(0.002462)*x+(0.00000))Model: Logistic regression (logit)

FIGURE 8

Model: Logistic regression (logit) z=exp(-1.36196+(0.002462)*x+(0.0000103)*y)/(1+exp(-1.36196+(0.002462)*x+(0.0000

Figure 9

0.2 0.3 1 0.5 1 0.5 1 0.5 1 0.7 0.8 above

FIGURE 10

95% CI Lower	1.00	1.00	1.00	00000
Odds Ratio	1.00	1.00	1.00	3, P-Value
Д	-0.48 0.630 -0.40 0.688	-0.35 0.725	2.17 0.030	5, DF =
Ŋ	-0.48	-0.35	2.17	= 32.206
StDev	0.6476	6.3731E-06	1.7152E-08	Log-Likelihood = -102.711 Test that all slopes are zero: G = 32.206, DF = 3, P-Value = 0.000
Coef	-0.3123	-2.240E-06 6.3731E-06	3.7291E-08 1.7152E-08	Log-Likelihood = -102.711 Test that all slopes are
Predictor	Upper Constant BMP	1.00 TGF	1.00 BMP*TGF 1.00	Log-Likeli Test that

FIGURE 11

z=1/(1+exp(-(-0.3123 -0.0005835*x- 2.240E-06*y+3.7290E-08*x*y))) 3D Contour Plot (Elisa.STA 10v*194c)

FIGURE 12

FIGURE 13

above

0.2 0.3 0.5 0.5 0.6 0.8

FIGURE 14

RATASSAY - Parameter estimates (elisa.sta)

Distribution: BINOMIAL

Link function: LOGIT

Level of Effect

Standard Wald Error Stat.

1 -0.535299 0.306756 3.045135 0.080979 2 3.1E-08 6.97E-09 19.82913 8.47E-06 1 0 Column Estimate

Scale Statistica '99

BMP*TGF

Interc

FIGURE 15

 $z=exp(-0.535308+(3.10276e-8)^*x^*y)/(1+exp(-0.535308+(3.10276e-8)^*x^*y))$ 3D Contour Plot (Elisa.STA 10v*194c)

FIGURE 16

0.2 0.3 0.4 0.5 0.6

z=exp(-0.535308+(3.10276e-8)*x*y)/(1+exp(-0.535308+(3.10276e-8)*x*y))3D Contour Plot (Elisa.STA 10v*194c)

FIGURE 17

above

0.4 0.5 0.6 0.7 0.8 0.9

FIGURE 18

2.5e8 C:178 y=exp(-0.535308+(3.10276e-8)*x)/(1+exp(-0.535308+(3.10276e-8)*x))C:173 OCI:960 C:144 **2e8** Model: Logistic regression (logit) 1.5e8 C(C) THE CONTROLL OF THE CONTROL OF CONTROL INTERACT C:184 168 5e7 0 1.0 9.0 0.4 0.2 -0.2 0.8 1.2

YASSATAЯ

ö

FIGURE 19