Simplification of Boolean Functions Map Method

- Complexity of the digital logic gates that implement a Boolean function
 - directly related to the complexity of the algebraic expression implemented.
- Simplification by algebraic means is awkward
 - due to the lack of specific rules to predict succeeding steps.
- Map method provides
 - straightforward procedure for minimizing Boolean functions
 - Can be considered as pictorial form of a truth table or as an extension of the Venn diagram
- First proposed by Veitch (1) and slightly modified by Karnaugh (2),
 - known as the "Veitch diagram" or the "Karnaugh map."

Karnaugh Map

- Map is a diagram made up of squares.
 - Each square represents one minterm.
 - presents a visual diagram of all possible ways a function may be expressed in a standard form.
- By recognizing various patterns,
 - alternative algebraic expressions for the same function is derived.
 - Simplest expression is selected (with minimum literals- not necessarily unique).

Two variable map

• Useful way to represent any one of the 16 Boolean functions of two variables

Three variable map

- Minterms are arranged, not in a binary sequence, but in a sequence where,
 - only one bit changes from 1 to 0 or from 0 to 1.

Simplify the Boolean function:

$$F = x'yz + x'yz' + xy'z' + xy'z$$

- 1 marked in each square as needed to represent the function.
- Adjacent squares are grouped together (minterms differ by 1 variable).

Simplify the Boolean function:

$$F = x'yz + x'yz' + xy'z' + xy'z$$

• Ans: F=x'y+xy'

Simplify F = x'yz + xy'z' + xyz + xyz'

Simplify F = A'C + A'B + AB'C + BC

Simplify $F(x,y,z) = \Sigma(0, 2, 4, 5, 6)$.

Four variable map

- 16 minterms
- Rows and columns are numbered
 - with only one digit changing value between two adjacent rows or columns.
- Each square can be obtained from the concatenation of the row number with the column number.

Four variable map (continued..)

<i>m</i> ₀	m_{1}	<i>m</i> ₃	m ₂
m 4	m ₅	m ₇	<i>m</i> 6
m ₁₂	m ₁₃	m 15	m ₁₄
m ₈	m 9	m ₁₁	^m 10

(a)

Simplify $F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

Simplify F = A'B'C' + B'CD' + A'BCD' + AB'C'

Product of Sums Simplification

- All problems were on sum of products.
- Write the equation for F'.
- Find its's complement F" to get the equation of the function in the POS form.

Simplify $F(A, B, C, D) = \Sigma(0, 1, 2, 5, 8, 9, 10)$

- (a) sum of products
- (b) product of sums.

$$F = (A' + B') (C' + D') (B' + D')$$

Simplify $F(x, y, z) = \Pi(0, 2, 5, 7)$

Don't care Conditions

- A four-bit decimal code has six combinations which are not used.
- Digital circuit using this code operates under the assumption that
 - unused combinations never occurs when the system works properly.
- Hence, we don't care what the function o/p is for these combinations.
 - can be used for further simplification of the function.
- It is marked as 'X' to distinguish it from 1's and 0's.
 - For simplification, it can assume either 0 or 1, whichever gives the simplest expression.

Simplify

 $F(w, x, y, z) = \Sigma(1,3, 7, 11, 15)$ and the don't-care conditions:

$$d(w, x, y, z) = \Sigma(0, 2, 5)$$

NAND and NOR Implementation

Two grapic symbol for NAND gate

Two grapic symbols for NOR gate.

Three grapic symbols for inverter.

Implement F = AB + CD + E

- a) AND and OR gates.
- b) Using NAND gates.

Implement with NAND gates

- $F(x, y, z) = \Sigma(0, 6)$
- Implement F'.

NOR implementation

TABLE 3-3
Rules for NAND and NOR Implementation

Case	Function to simplify	Standard form to use	How to derive	Implement with	Number of levels to F
(a)	$\boldsymbol{\mathit{F}}$	Sum of products	Combine 1's in map	NAND	2
(b)	F'	Sum of products	Combine 0's in map	NAND	3
(c)	$\boldsymbol{\mathit{F}}$	Product of sums	Complement F' in (b)	NOR	2
(d)	F'	Product of sums	Complement F in (a)	NOR	3

Implement with NOR gates

- $F(x, y, z) = \Sigma(0, 6)$
- Implement F'.

Review

- Map method for 3 and 4 variables.
- Don't care condition
- NOR and NAND implementation