Week 4

1/22:

Observables and Hermitian Operators

4.1 Harmonic Oscillator: Raising and Lowering Operators

• Raising operator: The operator defined as follows. Denoted by \hat{a}_+ , a_+ . Given by

$$\hat{a}_{+} = \frac{1}{\sqrt{2\hbar m\omega}} \left[-i\hat{\vec{p}} + m\omega\hat{\vec{x}} \right]$$

• Lowering operator: The operator defined as follows. Denoted by \hat{a}_{-} , a_{-} . Given by

$$\hat{a}_{-} = \frac{1}{\sqrt{2\hbar m\omega}} [i\hat{\vec{p}} + m\omega\hat{\vec{x}}]$$

• Number operator: The operator defined as follows. Denoted by a_+a_- . Given by

$$a_{+}a_{-} = \hat{a}_{+} \circ \hat{a}_{-} = \frac{1}{2\hbar m\omega} \left[\hat{\vec{p}}^{2} + m^{2}\omega^{2}x^{2} - im\omega[\hat{\vec{p}},\hat{\vec{x}}] \right]$$

- Properties of these operators.
 - We can express $\hat{\vec{p}}, \hat{\vec{x}}$ in terms of a_+, a_- via

$$\hat{\vec{p}} = i\sqrt{\frac{\hbar m\omega}{2}}(\hat{a}_{+} - \hat{a}_{-}) \qquad \qquad \hat{\vec{x}} = \sqrt{\frac{\hbar}{2m\omega}}(\hat{a}_{+} + \hat{a}_{-})$$

■ It follows that

$$[\hat{\vec{p}},\hat{\vec{x}}] = \frac{i\hbar}{2}[a_+ - a_-, a_+ + a_-] = \frac{i\hbar}{2}([a_+, a_-] - [a_-, a_+]) = i\hbar[a_+, a_-]$$

■ Consequently, since $[\hat{\vec{p}}, \hat{\vec{x}}] = -i\hbar$, we have that

$$[a_+, a_-] = -1$$

■ We also have that

$$[a_{-}, a_{+}] = 1$$

– Since $[\hat{\vec{p}}, \hat{x}] = -i\hbar$ and $\omega^2 = k/m$, we have that

$$\begin{split} a_{+}a_{-} &= \frac{1}{2\hbar m\omega} \left[\hat{\vec{p}}^{2} + m^{2}\omega^{2}x^{2} - m\hbar\omega \right] \\ &= \frac{1}{\hbar\omega} \left[\underbrace{\frac{\hat{\vec{p}}^{2}}{2m} + \frac{kx^{2}}{2}}_{\hat{H}} - \frac{\hbar\omega}{2} \right] \\ \hat{H} &= \hbar\omega \left(a_{+}a_{-} + \frac{1}{2} \right) \end{split}$$

■ Because of the properties of $[a_+, a_-]$ proven above, we similarly have that

$$\hat{H} = \hbar\omega \left(a_{-}a_{+} - \frac{1}{2} \right)$$

- We can also derive this equation in a manner exactly analogous to the first one.
- How does the number operator act on the eigenstate $|\psi_n\rangle$ of the harmonic oscillator?
 - Since $E_n = \hbar\omega(n+1/2)$, we have that

$$\hbar\omega \left(a_{+}a_{-} + \frac{1}{2}\right) |\psi_{n}\rangle = \hat{H} |\psi_{n}\rangle$$

$$\hbar\omega \left(a_{+}a_{-} + \frac{1}{2}\right) |\psi_{n}\rangle = \hbar\omega \left(n + \frac{1}{2}\right) |\psi_{n}\rangle$$

$$a_{+}a_{-} |\psi_{n}\rangle = n |\psi_{n}\rangle$$

- How do the raising and lowering operators act on the eigenstate $|\psi_n\rangle$ of the harmonic oscillator?
 - Using a number of the above substitutions, we have that

$$\begin{split} \hat{H}(a_{+} | \psi_{n} \rangle) &= \left[\hbar \omega \left(a_{+} a_{-} + \frac{1}{2} \right) \right] (a_{+} | \psi_{n} \rangle) \\ &= \hbar \omega \left(a_{+} a_{-} a_{+} + \frac{1}{2} a_{+} \right) | \psi_{n} \rangle \\ &= \hbar \omega a_{+} \left(a_{-} a_{+} + \frac{1}{2} \right) | \psi_{n} \rangle \\ &= \hbar \omega a_{+} \left(a_{+} a_{-} + 1 + \frac{1}{2} \right) | \psi_{n} \rangle \\ &= \hbar \omega a_{+} \left(n + 1 + \frac{1}{2} \right) | \psi_{n} \rangle \\ &= E_{n+1}(a_{+} | \psi_{n} \rangle) \end{split}$$

– This means that \hat{H} acts on $a_+ |\psi_n\rangle$ the same way it acts on $|\psi_{n+1}\rangle$. In other words, it must be that

$$a_+ |\psi_n\rangle \propto |\psi_{n+1}\rangle$$

Similarly,

$$\hat{H}(a_-|\psi_n\rangle) = E_{n-1}(a_-|\psi_n\rangle)$$

so

$$a_{-}|\psi_{n}\rangle\propto|\psi_{n-1}\rangle$$

- These actions are why a_+, a_- are called the raising and lowering operators!
- We now seek to determine the constants of proportionality.
- First off, note that a_+ and a_- are adjoints, i.e.,

$$a_+^{\dagger} = a_-$$

- This identity is evident from the original \hat{a}_+, \hat{a}_- definitions, where the only difference between the two definitions is the conjugacy of the imaginary momentum term!
- Is this correct, or do I have to appeal to the formal $\langle \psi_i | \hat{a}_+ \psi_j \rangle = \langle \hat{a}_+^{\dagger} \psi_i | \psi_j \rangle$ definition??

- Then for a_+ , we know that if

$$a_+ |\psi_n\rangle = c_+ |\psi_n\rangle$$

then

$$\begin{aligned} c_+^2 &= c_+^2 \left\langle \psi_{n+1} | \psi_{n+1} \right\rangle \\ &= \left\langle c_+ \psi_{n+1} | c_+ \psi_{n+1} \right\rangle \\ &= \left\langle a_+ \psi_n | a_+ \psi_n \right\rangle \\ &= \left\langle \psi_n | a_+^\dagger a_+ | \psi_n \right\rangle \\ &= \left\langle \psi_n | a_- a_+ | \psi_n \right\rangle \\ &= \left\langle \psi_n | a_+ a_- + 1 | \psi_n \right\rangle \\ &= (n+1) \left\langle \psi_n | \psi_n \right\rangle \\ &= n+1 \end{aligned}$$

so that, taking square roots,

$$c_{+} = \sqrt{n+1}$$

- By the same method — namely

$$c_{-}^{2} = \langle a_{-}\psi_{n}|a_{-}\psi_{n}\rangle = \langle \psi_{n}|a_{+}a_{-}|\psi_{n}\rangle = n$$

we can also learn that

$$c_{-}=\sqrt{n}$$

- Therefore,

$$a_{+} |\psi_{n}\rangle = \sqrt{n+1} |\psi_{n+1}\rangle$$
 $a_{-} |\psi_{n}\rangle = \sqrt{n} |\psi_{n-1}\rangle$

- Note that what we have done here to derive this fact is far more slick than working directly with the unintuitive and complicated formal definitions of a_+, a_- .
- Now is a good time to mention a bit more about Dirac notation.
 - A "ket" represents a vector in a Hilbert space, so $|\psi_n\rangle$ demonstrates that we are talking about the wave function as a vector in the abstract linear algebra sense, not as a function $\psi_n: \mathbb{R}^4 \to \mathbb{C}$.
 - A "bra" represents a linear functional on a Hilbert space. In quantum mechanics, the linear functional $\langle \eta |$ is given by

$$\langle \eta | := \int \mathrm{d}^3 \vec{r} \; \eta^*$$

- Observe that this "functional" does indeed map any $|\psi_n\rangle$ given to it as an argument to a number $\langle \eta | \psi_n \rangle$!
- $|\psi_n\rangle$ can be defined in terms of a_+ , $|\psi_0\rangle$, and constants.
 - Observe that since $a_+ |\psi_0\rangle = |\psi_1\rangle$ and $a_+ |\psi_1\rangle = \sqrt{2} |\psi_2\rangle$, we have that

$$|\psi_2\rangle = \frac{a_+}{\sqrt{2}} |\psi_1\rangle = \frac{a_+^2}{\sqrt{2}} |\psi_0\rangle$$

- Similarly,

$$|\psi_3\rangle = \frac{a_+}{\sqrt{3}} |\psi_2\rangle = \frac{a_+^3}{\sqrt{3 \cdot 2}} |\psi_0\rangle$$

- Generalizing, we have that

$$|\psi_n\rangle = \frac{a_+^n}{\sqrt{n!}} |\psi_0\rangle$$

• Thus, we have that

$$\psi_n(x) = \left(\frac{1}{\sqrt{2\hbar m\omega}}\right)^n \frac{1}{\sqrt{n!}} \left(-\hbar \frac{\mathrm{d}}{\mathrm{d}x} + xm\omega\right)^n \psi_0(x)$$

where we may recall that

$$\psi_0(x) = \left(\frac{m\omega}{\hbar\pi}\right)^{1/4} e^{-m\omega x^2/2\hbar}$$

- Final observations about the raising and lowering operators.
 - Since $a_{-}|\psi_{0}\rangle = 0$ (as we may readily verify by direct computation), we have that

$$\hbar \frac{\mathrm{d}\psi_0}{\mathrm{d}x} + m\omega x\psi_0 = 0$$

- We also know that

$$d(\ln(\psi_0)) = -\frac{m\omega}{\hbar} \frac{dx^2}{2}$$
$$\psi_0 \propto e^{-m\omega x^2/2\hbar}$$

SO

- What is the point of this line?? What new information does it give us?
- Raising and lowering operators allow us to compute the kinetic and potential energy of the harmonic oscillator.
 - Kinetic energy.

$$\begin{split} \left\langle \psi_n \left| \frac{\vec{p}^2}{2m} \right| \psi_n \right\rangle &= -\frac{\hbar \omega}{4} \left\langle \psi_n | (a_+ - a_-)^2 | \psi_n \right\rangle \\ &= -\frac{\hbar \omega}{4} \left\langle \psi_n | a_+^2 + a_-^2 - a_+ a_- - a_- a_+ | \psi_n \right\rangle \\ &= -\frac{\hbar \omega}{4} \left[\underbrace{\left\langle \psi_n | a_+^2 | \psi_n \right\rangle}_{\propto \left\langle \psi_n | \psi_{n-2} \right\rangle} + \underbrace{\left\langle \psi_n | a_-^2 | \psi_n \right\rangle}_{\propto \left\langle \psi_n | \psi_n \right\rangle} - \underbrace{\left\langle \psi_n | a_+ a_- | \psi_n \right\rangle}_{2n \left\langle \psi_n | \psi_n \right\rangle} - \underbrace{\left\langle \psi_n | 1 | \psi_n \right\rangle}_{\left\langle \psi_n | \psi_n \right\rangle} \right] \\ &= \frac{\hbar \omega}{4} (2n+1) \\ &= \frac{\hbar \omega}{2} \left(n + \frac{1}{2} \right) \\ &= \frac{E_n}{2} \end{split}$$

Potential energy.

$$\langle \psi_n | \hat{H} | \psi_n \rangle = E_n$$

$$\langle \psi_n | \frac{\hat{p}^2}{2m} | \psi_n \rangle + \langle \psi_n | \frac{k\hat{x}^2}{2} | \psi_n \rangle = \frac{E_n}{2} + \frac{E_n}{2}$$

$$\langle \psi_n | \frac{k\hat{x}^2}{2} | \psi_n \rangle = \frac{E_n}{2}$$

- Implication: In an energy eigenstate, the harmonic oscillator has equal values of kinetic and potential energies!

- Computing more observables.
 - We can show that

$$\langle \psi_n | \hat{\vec{x}} | \psi_n \rangle = \langle \psi_n | \hat{\vec{p}} | \psi_n \rangle = 0 \qquad \langle \psi_n | \hat{\vec{x}}^{\, 2} | \psi_n \rangle = \frac{\hbar \omega}{k} \left(n + \frac{1}{2} \right) \qquad \langle \psi_n | \hat{\vec{p}}^{\, 2} | \psi_n \rangle = \hbar \omega m \left(n + \frac{1}{2} \right)$$

• It follows from the above computations and the facts that

$$\Delta x^2 = \langle \psi_n | \hat{\vec{x}}^2 | \psi_n \rangle - (\langle \psi_n | \hat{\vec{x}} | \psi_n \rangle)^2 \qquad \Delta p^2 = \langle \psi_n | \hat{\vec{p}}^2 | \psi_n \rangle - (\langle \psi_n | \hat{\vec{p}} | \psi_n \rangle)^2$$

that

$$\Delta x^{2} \cdot \Delta p^{2} = \hbar^{2} \left(n + \frac{1}{2} \right)^{2}$$
$$\Delta x \cdot \Delta p = \frac{\hbar}{2} (2n + 1)$$

- Implication: The ground state $\psi_0(x)$ is represented by a Gaussian since in this case, $\Delta x \cdot \Delta p = \hbar/2$.
- Review from last class.
 - Mostly stuff I already wrote down.
 - One new equation formalizing the even/odd solutions:

$$f_n(x) = (-1)^n f_n(-x)$$

- The first four Hermite polynomials:

$$H_0(\xi) = 1$$
 $H_1(\xi) = 2\xi$ $H_2(\xi) = 4\xi^2 - 2$ $H_3 = 8\xi^3 - 12\xi$

- Summary of the characteristics of E_n : The energy is quantized and grows linearly with n in quanta of $\hbar\omega$, and has a minimum value $\hbar\omega/2$.
- As with other time-independent potentials, the general solution to the Schrödinger equation will be

$$\psi(x,t) = \sum_{n} c_n \psi_n(x) e^{-iE_n t/\hbar}$$

where

$$\langle \psi | \hat{H} | \psi \rangle = \sum_{n} |c_n|^2 E_n$$

4.2 Time Dependence and Coherent States

- 1/24: Review of the harmonic oscillator.
 - Our Hamiltonian is

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2} + \frac{kx^2}{2} = \frac{\hat{\vec{p}}^2}{2m} + \frac{k\hat{\vec{x}}^2}{2}$$

- We have an analogy with the classical $\omega^2 = k/m$.
- Under this Hamiltonian, $\hat{H} | \psi_n \rangle = E_n | \psi_n \rangle$ implies that

$$E_n = \hbar\omega \left(\frac{1}{2} + n\right)$$

- The raising and lowering operators are given by

$$a_{+} = \frac{1}{\sqrt{2\hbar m\omega}} [-i\hat{\vec{p}} + m\omega\hat{\vec{x}}] \qquad a_{-} = \frac{1}{\sqrt{2\hbar m\omega}} [i\hat{\vec{p}} + m\omega\hat{\vec{x}}]$$

■ Together, these imply that

$$\hat{H} = \hbar\omega \left(a_+ a_- + \frac{1}{2} \right)$$

■ We also have that

$$a_{+}a_{-} |\psi_{n}\rangle = n |\psi_{n}\rangle$$

$$a_{+} |\psi_{n}\rangle = \sqrt{n+1} |\psi_{n+1}\rangle$$

$$a_{-} |\psi_{n}\rangle = \sqrt{n} |\psi_{n-1}\rangle$$

- We call a_+a_- the number operator.
- We should go home and learn these formulas.
- The full eigenstate is

$$\psi(x,t) = \sum_{n=0}^{\infty} \underbrace{c_n \psi_n(x) e^{-iE_n t/\hbar}}_{\psi_n(x,t)}$$

- Two properties of this eigenstate.
 - 1. We have that

$$|\psi\rangle = \sum_{n=0}^{\infty} c_n e^{-iE_n t/\hbar} |\psi_n\rangle$$

which implies that

$$\sum_{n=0}^{\infty} |c_n|^2 = 1$$

since $\langle \psi | \psi \rangle = 1$ and $\langle \psi_n | \psi_m \rangle = \delta_{nm}$.

2. We have that

$$\langle \psi | \hat{H} | \psi \rangle = \sum_{n=0}^{\infty} |c_n|^2 E_n$$

- We have that

$$\left\langle \psi_n \left| \frac{k \hat{\vec{x}}^{\,2}}{2} \right| \psi_n \right\rangle = \frac{\hbar \omega}{2} \left(n + \frac{1}{2} \right) = \frac{E_n}{2} \qquad \qquad \left\langle \psi_n \left| \frac{\hat{\vec{p}}^{\,2}}{2m} \right| \psi_n \right\rangle = \frac{\hbar \omega}{2} \left(n + \frac{1}{2} \right) = \frac{E_n}{2}$$

- Note that this makes sense because the sum $E_n/2 + E_n/2$ of potential and kinetic should be E_n , and it will be!
- Additionally, recall that we have

$$\hat{\vec{p}}^2 \propto (a_+ - a_-)^2$$
 $\hat{\vec{x}}^2 \propto (a_+ + a_-)^2$

■ Thus, we have that

$$\langle \psi_n | \hat{\vec{p}} | \psi_n \rangle = \langle \psi_n | (a_+ - a_-) | \psi_n \rangle = 0 \qquad \langle \psi_n | \hat{\vec{x}} | \psi_n \rangle = \langle \psi_n | (a_+ + a_-) | \psi_n \rangle = 0$$

- The harmonic oscillator is a very important problem in physics, and we should know it by heart!
 (In order to pass the class.)
- Recall as well that there is a correspondence between the Dirac notation and the functional notation, given by

$$\psi_n(x) \mapsto |\psi_n\rangle$$

- As an additional example,

$$\frac{1}{\sqrt{2\hbar m\omega}} \begin{bmatrix} -\hbar \frac{\mathrm{d}}{\mathrm{d}x} + m\omega x \end{bmatrix} \psi_n(x) = \sqrt{n+1} \psi_{n+1}(x) \quad \mapsto \quad a_+ |\psi_n\rangle = \sqrt{n+1} |\psi_{n+1}\rangle$$

- One more example:

$$\hbar \frac{\mathrm{d}\psi_0}{\mathrm{d}x} + m\omega x \psi_0(x) = 0 \quad \mapsto \quad a_- |\psi_0\rangle = 0$$

■ Note that solving this ODE yields the solution

$$\psi_0 = C \exp\left(-\frac{m\omega x^2}{2\hbar}\right)$$

- It appears that this is how we intuitively derive the ansatz we used last Friday!
- Now we start on some new content.
- Observe that

$$\frac{2m\omega\hat{\vec{x}}}{\sqrt{2\hbar m\omega}} = a_{+} + a_{-}$$
$$\hat{\vec{x}} = \sqrt{\frac{\hbar}{2m\omega}}(a_{+} + a_{-})$$

• In classical mechanics, the solution to the harmonic oscillator is

$$x(t) = A\sin\omega t + B\cos\omega t$$

- We now investigate the observables of $|\psi\rangle$.
- To start with, we show how $\langle \psi | \hat{x} | \psi \rangle$ varies with time. This will lead into a discussion of something called coherent states. Let's begin.
 - We start with

$$\langle \psi | \hat{\vec{x}} | \psi \rangle = \sum_{m,n=0}^{\infty} c_m^* c_n e^{i(E_m - E_n)t/\hbar} \langle \psi_m | \hat{\vec{x}} | \psi_n \rangle$$

- We can algebraically manipulate the above to

$$\langle \psi | \hat{\vec{x}} | \psi \rangle = \sum_{m,n=0}^{\infty} c_m^* c_n e^{i(\hbar \omega (m-n))t/\hbar} \sqrt{\frac{\hbar}{2m\omega}} \left(\sqrt{n+1} \delta_{m,n+1} + \sqrt{n} \delta_{m,n-1} \right)$$

$$= \sum_{n=0}^{\infty} c_{n+1}^* c_n e^{i\omega t} \sqrt{\frac{\hbar}{2m\omega}} \sqrt{n+1} + \sum_{n=1}^{\infty} c_{n-1}^* c_n e^{-i\omega t} \sqrt{\frac{\hbar}{2m\omega}} \sqrt{n}$$

$$= \sum_{n=0}^{\infty} c_{n+1}^* c_n e^{i\omega t} \sqrt{\frac{\hbar}{2m\omega}} \sqrt{n+1} + \sum_{n=0}^{\infty} c_n^* c_{n+1} e^{-i\omega t} \sqrt{\frac{\hbar}{2m\omega}} \sqrt{n+1}$$

$$= \sqrt{\frac{\hbar}{2m\omega}} \cos(\omega t) \left[\sum_{n=0}^{\infty} \left(c_{n+1}^* c_n + c_n^* c_{n+1} \right) \sqrt{n+1} \right]$$

$$+ \sqrt{\frac{\hbar}{2m\omega}} \sin(\omega t) \left[\sum_{n=0}^{\infty} \left(c_{n+1}^* c_n - c_n^* c_{n+1} \right) \sqrt{n+1} \right]$$

- Thus,

$$\langle \psi | \hat{\vec{x}} | \psi \rangle = A \cos \omega t + B \sin \omega t$$

where

$$A = 2 \operatorname{Re} \left[\sum_{n=0}^{\infty} c_{n+1}^* c_n \sqrt{n+1} \right] \sqrt{\frac{\hbar}{2m\omega}} \qquad B = 2 \operatorname{Im} \left[\sum_{n=0}^{\infty} c_{n+1}^* c_n \sqrt{n+1} \right] \sqrt{\frac{\hbar}{2m\omega}}$$
$$= \operatorname{Re} \left[\sum_{n=0}^{\infty} c_{n+1}^* c_n \sqrt{n+1} \right] \sqrt{\frac{2\hbar}{m\omega}} \qquad = \operatorname{Im} \left[\sum_{n=0}^{\infty} c_{n+1}^* c_n \sqrt{n+1} \right] \sqrt{\frac{2\hbar}{m\omega}}$$

- Now for large values of n,

$$\sqrt{n+1}\sqrt{\frac{2\hbar}{m\omega}} = \sqrt{\frac{2\hbar\omega(n+1)}{m\omega^2}} \approx \sqrt{\frac{2E_n}{m\omega^2}}$$

where

$$E_n = \hbar\omega \left(n + \frac{1}{2}\right)$$
 $x = A\sin\omega t$ $E = \frac{m\omega^2 A^2}{2}$ $A = \sqrt{\frac{2E}{m\omega^2}}$

- How can we just ignore the real and imaginary sum terms??
- Now take the harmonic oscillator. Notice that \sum_n is dominated by large values of $n \approx \bar{n}$, close to \bar{n} , where $\bar{n} \gg 1$. Thus,

$$\langle \psi | \hat{\vec{x}} | \psi \rangle = \sqrt{\frac{2E\bar{n}}{m\omega^2}} \sum_{n=0}^{\infty} \text{Re} \left[\sum c_{n+1}^* c_n \right] \sin \omega t$$

and

$$\langle \psi | \hat{\vec{x}}^2 | \psi \rangle - (\langle \psi | \hat{\vec{x}} | \psi \rangle)^2 \neq 0$$

- This is *not* classical motion.
- The states that come closest to realizing classical motion are called **coherent states**.
- Coherent state (of the harmonic oscillator): A state in which the uncertainty in $\hat{\vec{x}}$ is minimized. Denoted by $|\alpha\rangle$.
- It turns out that the coherent states of the harmonic oscillator are the eigenstates of the lowering operator. Denoting the corresponding eigenvalue by α , we have that

$$a_{-} |\alpha\rangle = \alpha |\alpha\rangle$$

- Aside: $|\alpha\rangle$ can surely be expressed as a linear combination of the ψ_n . What does the lowering operator do to ψ_0 , in particular, should it have a nonzero coefficient?
 - It acts as follows, simply zeroing it out.

$$a_{-}\left|\psi_{0}\right\rangle = 0\left|\psi_{0}\right\rangle$$

- Now what is $|\alpha\rangle$?
- Well, for a state to be coherent, we must have

$$\begin{split} &\frac{\hbar}{2} = \sigma_x^2 \\ &= \langle \alpha | \hat{\vec{x}}^2 | \alpha \rangle - (\langle \alpha | \hat{\vec{x}} | \alpha \rangle)^2 \\ &= \frac{\hbar}{2m\omega} \left[\langle \alpha | (a_+ + a_-)^2 | \alpha \rangle - (\langle \alpha | (a_+ + a_-) | \alpha \rangle)^2 \right] \\ &= \frac{\hbar}{2m\omega} \left[\langle \alpha | a_+^2 + a_+ a_- + a_- a_+ + a_-^2 | \alpha \rangle - (\langle \alpha | (a_+ + a_-) | \alpha \rangle)^2 \right] \\ &= \dots \end{split}$$

- We'll finish this up next time.
- Is it really $\hbar/2$ here??

4.3 Hermitian Operators; Position and Momentum Eigenstates

1/26: • Recap of the harmonic oscillator.

- The Hamiltonian (in terms of \hat{p}, \hat{x} ; and in terms of a_+, a_-).
- The definitions of a_+, a_- .
- The effect of a_+, a_- on $|n\rangle := |\psi_n\rangle$.
- The effect of \hat{H} on $|n\rangle$.
- Adjoints of the **ladder operators**:

$$(a_{+})^{\dagger} = a_{-}$$
 $(a_{-})^{\dagger} = a_{+}$

- The commutator $[a_-, a_+] = 1$.
- The formula for a generic state $|\psi\rangle$, i.e.,

$$|\psi\rangle = \sum_{n=0}^{\infty} c_n e^{-iE_n t/\hbar} |n\rangle$$

- This will of course appear as a question in the midterm and final!
- We must also remember that

$$1 = \langle \psi | \psi \rangle = \sum_{n=0}^{\infty} |c_n|^2 \qquad 1 = \langle \psi | \hat{H} | \psi \rangle = \sum_{n=0}^{\infty} |c_n|^2 E_n$$

- The probability of measuring the energy of $|\psi\rangle$ as E_n is $|c_n|^2$.
 - So when we perform a measurement, the energy of $|\psi\rangle$ collapses to that of one eigenstate.
- Ladder operator: An element in the class of operators that send $|n\rangle$ to scalar multiples of $|n+i\rangle$ for some $i \in \mathbb{Z} \setminus \{0\}$.
 - The raising and lowering operators are ladder operators!
- The midterm.
 - -50% of the midterm will be related to harmonic oscillator content, esp. the last few equations above following the definition of $|\psi\rangle$.
 - The midterm will only cover what we covered through today.
 - The midterm may be on February 5. It sounds like it will be on Friday, February 9, though.
 - It will take place in this classroom.
 - It will be open book.
 - Can we bring virtual notes, or does everything have to be printed out??
 - The midterm questions will be the same level as the PSet questions; there may even be some repetition! Def take a look at the PSets.
 - PSet 1 through PSet 4 will be covered on the midterm.
 - Foundations of quantum mechanics plus one-dimensional problems.
 - We will be allowed to turn in the midterm through 1:00 PM, though it shouldn't take us more than 50 minutes.
- The first two problems of PSet 4 must be solved; the third one can be dropped or can be solved for 5 bonus points.
- We now begin on new content.

• Recall the following expression from last class.

$$\langle \psi | \hat{\vec{x}} | \psi \rangle = \sqrt{\frac{2\hbar}{m\omega}} \sum_{n=0}^{\infty} \left[\sqrt{n+1} \cos(\omega t) \operatorname{Re}(c_{n+1}^* c_n) + \sqrt{n+1} \sin(\omega t) \operatorname{Im}(c_{n+1}^* c_n) \right]$$

- This is a really complicated expression, especially as we prepare to talk about coherent states.
- Thus, it was quite difficult to prove that

$$\langle \psi | \hat{\vec{x}}^2 | \psi \rangle \neq (\langle \psi | \hat{\vec{x}} | \psi \rangle)^2$$

- Can we introduce a notation that will allow us to work with this expression and similar ones more easily?
- Wagner restates the definition of a coherent state and and the uncertainty principles.
- Recall that

$$a_{-}|\alpha\rangle = \alpha |\alpha\rangle$$

and that

$$|\alpha\rangle = \sum_{n} c_n |n\rangle$$

• The Hermitian conjugate of a_- is a_+ and hence, the Hermitian conjugate of $a_- |\alpha\rangle$ is

$$\langle \alpha | a_+ = \langle \alpha | \alpha^*$$

• Thus, since $\langle \alpha | \alpha \rangle = 1$

$$\langle \alpha | a_+ a_- | \alpha \rangle = \alpha \, \langle \alpha | a_+ | \alpha \rangle = \alpha \, \langle \alpha | \alpha^* | \alpha \rangle = \alpha^* \alpha \, \langle \alpha | \alpha \rangle = \alpha^* \alpha$$

- We now seek to verify that an eigenstate of a_- does, in fact, minimize the uncertainty in \hat{x} .
 - For simplicity, we will consider $|\alpha\rangle$ at t=0 (this will remove the complex exponential from calculations).
 - First off, we have that

$$\langle \alpha | \hat{\vec{x}} | \alpha \rangle = \sqrt{\frac{\hbar}{2m\omega}} \langle \alpha | (a_+ + a_-) | \alpha \rangle = (\alpha^* + \alpha) \sqrt{\frac{\hbar}{2m\omega}}$$

and

$$\langle \alpha | \hat{\vec{x}}^{2} | \alpha \rangle = \frac{\hbar}{2m\omega} \langle \alpha | (a_{+} + a_{-})(a_{+} + a_{-}) | \alpha \rangle$$

$$= \frac{\hbar}{2m\omega} [\langle \alpha | a_{+}^{2} | \alpha \rangle + \langle \alpha | a_{+} a_{-} | \alpha \rangle + \langle \alpha | a_{-} a_{+} | \alpha \rangle + \langle \alpha | a_{-}^{2} | \alpha \rangle]$$

$$= \frac{\hbar}{2m\omega} [(\alpha^{*})^{2} \underbrace{\langle \alpha | \alpha \rangle}_{1} + \alpha^{*} \alpha + \langle \alpha | \underbrace{(a_{-} a_{+} - a_{+} a_{-} + a_{+} a_{-}) | \alpha \rangle}_{1} + \alpha^{2}]$$

$$= \frac{\hbar}{2m\omega} [(\alpha^{*})^{2} + \alpha^{2} + 2|\alpha|^{2} + 1]$$

- Combining these, we have that

$$\langle \alpha | \hat{\vec{x}}^2 | \alpha \rangle - (\langle \alpha | \hat{\vec{x}} | \alpha \rangle)^2 = \frac{\hbar}{2m\omega} [(\alpha^*)^2 + \alpha^2 + 2|\alpha|^2 + 1 - (\alpha^*)^2 - \alpha^2 - 2|\alpha|^2] = \frac{\hbar}{2m\omega}$$

- Second, we have that

$$\langle \alpha | \hat{\vec{p}} | \alpha \rangle = \sqrt{\frac{\hbar m \omega}{2}} \langle \alpha | (a_{+} - a_{-}) | \alpha \rangle = \sqrt{\frac{\hbar m \omega}{2}} (\alpha^{*} - \alpha)$$

and

$$\begin{split} \langle \alpha | \hat{\vec{p}}^2 | \alpha \rangle &= -\frac{\hbar m \omega}{2} \left\langle \alpha | (a_+ - a_-)(a_+ - a_-) | \alpha \right\rangle \\ &= -\frac{\hbar m \omega}{2} \left[(\alpha^*)^2 + \alpha^2 - |\alpha|^2 - \left\langle \alpha | \underbrace{a_- a_+}_{a_+ a_- + 1} | \alpha \right\rangle \right] \\ &= -\frac{\hbar m \omega}{2} \left[(\alpha^*)^2 + \alpha^2 - 2|\alpha|^2 - 1 \right] \end{split}$$

- Combining these, we have that

$$\langle \alpha | \hat{\vec{p}}^2 | \alpha \rangle - (\langle \alpha | \hat{\vec{p}} | \alpha \rangle)^2 = \frac{\hbar m \omega}{2} \left[-(\alpha^*)^2 - \alpha^2 + 2|\alpha|^2 + 1 + (\alpha^*)^2 + \alpha^2 - 2|\alpha|^2 \right] = \frac{\hbar m \omega}{2}$$

- Therefore,

$$\sigma_p^2 \sigma_x^2 = \frac{\hbar m\omega}{2} \cdot \frac{\hbar}{2m\omega}$$
$$= \frac{\hbar^2}{4}$$
$$\sigma_p \sigma_x = \frac{\hbar}{2}$$

as desired.

• If we reassert full time dependence, we obtain

$$|\alpha\rangle(t) = \sum_{n} c_n e^{-iE_n t/\hbar} |n\rangle$$

- Then

$$a_{-} |\alpha\rangle = \sum_{n=0}^{\infty} c_n e^{-iE_n t/\hbar} \sqrt{n} |n-1\rangle$$
$$= \sum_{n=0}^{\infty} c_{n+1} e^{-iE_{n+1} t/\hbar} \sqrt{n+1} |n\rangle$$

- And recall that

$$a_{-}|\alpha\rangle = \alpha |\alpha\rangle$$

- Thus, via term-by-term transitivity for each $|n\rangle$,

$$\alpha c_n = c_{n+1} e^{-i(E_{n+1} - E_n)t/\hbar} \sqrt{n+1}$$

$$\alpha c_n = c_{n+1} e^{-i\omega t} \sqrt{n+1}$$

- If α is real and $\psi_{\alpha}(x)$ denotes the time-independent factor in $|\alpha\rangle$, then

$$a_{-}\psi_{\alpha}(x) = \alpha\psi_{\alpha}(x)$$
$$\left[\hbar \frac{\mathrm{d}}{\mathrm{d}x} + m\omega x\right]\psi_{\alpha}(x) = \alpha\psi_{\alpha}(x)$$

- Then

$$\frac{1}{\psi_{\alpha}}\frac{\mathrm{d}}{\mathrm{d}x}\psi_{\alpha} + \left(\frac{m\omega x}{\hbar} - \alpha\right) = 0$$

- Thus, solving the differential equation, we obtain

$$\psi_{\alpha} = \exp\left[-\frac{m\omega}{2\hbar}(x - \langle x \rangle)^2\right]$$

which is a Gaussian.

- Therefore,

$$a_{-}|0\rangle = 0|0\rangle$$

- We will program the time evolution of a coherent state in Python or Mathematica??
 - A real wave function is a crazy thing that does flip from side to side at T/2 and T.
 - Essentially,

$$|\psi(x,t)|^2 = |\psi(-x,t+T/2)|^2$$

- A coherent state is just a Gaussian that oscillates back and forth to both sides of the y-axis.