APMA 1655 Honors Statistical Inference I

February 26, 2023

Homework 2

Name: Tanish Makadia Due: 11 pm, February 17

Collaborators: N/A

• You are strongly encouraged to work in groups, but solutions must be written independently.

Please feel free to use all the results in the Appendix of HW 2 without proving them.

1 Problem Set

1. (2 points) Suppose (Ω, \mathbb{P}) is a probability space, and B is a event with $\mathbb{P}(B) > 0$. We define a function $\tilde{\mathbb{P}}$ of subsets of Ω by the following

$$\tilde{\mathbb{P}}(A) \stackrel{\text{def}}{=} \mathbb{P}(A \mid B)$$
, for all $A \subset \Omega$.

Please prove that $\tilde{\mathbb{P}}$ is a probability, i.e., $(\Omega, \tilde{\mathbb{P}})$ is a probability space as well.

Proof. We will prove that $(\Omega, \tilde{\mathbb{P}})$ is a probability space by proving the following three axioms:

- $\tilde{\mathbb{P}}(A \subset \Omega) \ge 0$: $\tilde{\mathbb{P}}(A) = \mathbb{P}(A \mid B) \ge 0$
- $\bullet \ \ \underline{\tilde{\mathbb{P}}(\Omega)=1} \colon \ \tilde{\mathbb{P}}(\Omega) = \mathbb{P}(\Omega \,|\, B) = \frac{\mathbb{P}(\Omega \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B)}{\mathbb{P}(B)} = 1$
- \bullet Countable Additivity: Let $A_1,\dots,A_{\mathfrak{m}}\subset\Omega$ be mutually disjoint events.

$$\begin{split} \tilde{\mathbb{P}}(A_1 \cup \dots \cup A_m) &= \mathbb{P}((A_1 \cup \dots \cup A_m) \,|\, B) \\ &= \frac{\mathbb{P}((A_1 \cup \dots \cup A_m) \cap B)}{\mathbb{P}(B)} \\ &= \frac{\mathbb{P}((A_1 \cap B) \cup \dots \cup (A_m \cap B))}{\mathbb{P}(B)} \\ &= \frac{\mathbb{P}(A_1 \cap B) + \dots + \mathbb{P}(A_m \cap B)}{\mathbb{P}(B)} \\ &= \tilde{\mathbb{P}}(A_1) + \dots + \tilde{\mathbb{P}}(A_m) \end{split}$$

- 2. (1 point) Let (Ω, \mathbb{P}) be a probability space and \mathfrak{n} be a positive integer. B_1, B_2, \ldots, B_n are events and provide a partition of Ω , i.e.,
 - $\bigcup_{i=1}^n B_i = \Omega$,
 - B_1, B_2, \ldots, B_n are mutually disjoint.

Let A be any event. Please prove that $A \cap B_1, A \cap B_2, A \cap B_3, ..., A \cap B_n$ are mutually disjoint, i.e.,

$$(A \cap B_i) \cap (A \cap B_i) = \emptyset$$
, if $i \neq j$.

Proof. Let $B_i, B_j \in \{B_k\}_{k=1}^n$ such that $i \neq j$. We have that $B_i \cap B_j = \emptyset$. It follows that $A \cap B_i \subset B_i$ and $A \cap B_j \subset B_j$. Thus, it must be the case that $(A \cap B_i) \cap (A \cap B_j) = \emptyset$.

- 3. (2 points) A box contains w white balls and b black balls. A ball is chosen at random.
 - If the chosen ball is white, we add d white balls to the box, that is, now there are w + d white balls and b black balls.
 - If the chosen ball is black, we add d black balls to the box, that is, now there are w white balls and b + d black balls.

After adding the d balls, another ball is drawn at random from the box. Show that the probability that the second chosen ball is white does not depend on d. Hint: Use the law of total probability (LTP).

Proof. Let W, B denote "white" and "black" respectively.

We have that $\Omega = \{(W, W), (W, B), (B, W), (B, B)\}$. Let $A = \{(W, W), (B, W)\}$ represent the event that the second ball picked is white. We will now create a partition of Ω using the following elements:

$$B_1 = \{(W, W)\}$$
 $B_2 = \{(W, B)\}$ $B_3 = \{(B, W)\}$ $B_4 = \{(B, B)\}$

Since B_1, \ldots, B_4 are mutually disjoint and $B_1 \cup \cdots \cup B_4 = \Omega$, we have that $\{B_i\}_{i=1}^4$ forms a partition of Ω .

By the law of total probability,

$$\mathbb{P}(A) = \sum_{i=1}^{4} \mathbb{P}(A \mid B_i) \cdot \mathbb{P}(B_i)$$

$$= \sum_{i=1}^{4} \mathbb{P}(A \cap B_i)$$

$$= \mathbb{P}(W, W) + \mathbb{P}(B, B) + \mathbb{P}(\emptyset) + \mathbb{P}(\emptyset)$$

$$= \frac{w}{w+b} \cdot \frac{w+d}{w+b+d} + \frac{b}{w+b} \cdot \frac{w}{w+b+d}$$

$$= \frac{w^2 + dw + bw}{(w+b)(w+b+d)}$$

$$= \frac{w(w+b+d)}{(w+b)(w+b+d)}$$

$$= \frac{w}{(w+b)(w+b+d)}$$

$$= \frac{w}{w+b}$$

Therefore, we have proven that $\mathbb{P}(A)$ does not depend on d.

- 4. (1 point) Suppose the underlying probability space is (Ω, \mathbb{P}) . Let G and H be events such that $0 < \mathbb{P}(G) < 1$ and $0 < \mathbb{P}(H) < 1$. Give a formula for $\mathbb{P}(G|H^c)$ in terms of $\mathbb{P}(G)$, $\mathbb{P}(H)$ and $\mathbb{P}(G \cap H)$ only.
 - *Proof.* (a) We will first show that $\mathbb{P}(G \cup H^c) = \mathbb{P}(G) + \mathbb{P}((H \cup G)^c)$.

$$\begin{split} \mathbb{P}(\mathsf{G} \cup \mathsf{H}^c) &= \mathbb{P}((\mathsf{G} \cup \mathsf{H}^c) \cap \Omega) & (\mathsf{A} \cap \Omega = \mathsf{A}) \\ &= \mathbb{P}((\mathsf{G} \cup \mathsf{H}^c) \cap (\mathsf{G} \cup \mathsf{G}^c)) & (\text{def of complement}) \\ &= \mathbb{P}([(\mathsf{G} \cup \mathsf{H}^c) \cap \mathsf{G}] \cup [(\mathsf{G} \cup \mathsf{H}^c) \cap \mathsf{G}^c]) & (\text{distributive law}) \\ &= \mathbb{P}(\mathsf{G} \cup (\mathsf{H}^c \cap \mathsf{G}^c)) & (\text{distributive law}) \\ &= \mathbb{P}(\mathsf{G}) + \mathbb{P}(\mathsf{H}^c \cap \mathsf{G}^c) & (\text{additivity}) \\ &= \mathbb{P}(\mathsf{G}) + \mathbb{P}((\mathsf{H} \cup \mathsf{G})^c) & (\text{De Morgan's law}) \end{split}$$

(b) Next, we will show that $\mathbb{P}(G \cap H^c) = \mathbb{P}(G) - \mathbb{P}(G \cap H)$.

$$\begin{split} \mathbb{P}(G \cap H^c) &= \mathbb{P}(G) + \mathbb{P}(H^c) - \mathbb{P}(G \cup H^c) & (\text{def of } \mathbb{P}) \\ &= \mathbb{P}(G) + \mathbb{P}(H^c) - \mathbb{P}(G) - \mathbb{P}((H \cup G)^c) & (\text{substitute (a)}) \\ &= \mathbb{P}(G) + 1 - \mathbb{P}(H) - \mathbb{P}(G) - 1 + \mathbb{P}(H \cup G) & (\text{def of complement}) \\ &= \mathbb{P}(H \cup G) - \mathbb{P}(H) & (\text{subtraction}) \\ &= \mathbb{P}(H) + \mathbb{P}(G) - \mathbb{P}(G \cap H) - \mathbb{P}(H) & (\text{def of } \mathbb{P}) \\ &= \mathbb{P}(G) - \mathbb{P}(G \cap H) & (\text{subtraction}) \end{split}$$

(c) Finally, we will express $\mathbb{P}(G \mid H^c)$ in terms of $\mathbb{P}(G)$, $\mathbb{P}(H)$, and $\mathbb{P}(G \cap H)$.

$$\begin{split} \mathbb{P}(G \,|\, H^c) &= \frac{\mathbb{P}(G \cap H^c)}{\mathbb{P}(H^c)} & \text{(conditional probability)} \\ &= \frac{\mathbb{P}(G) - \mathbb{P}(G \cap H)}{\mathbb{P}(H^c)} & \text{(substitute (b))} \\ &= \frac{\mathbb{P}(G) - \mathbb{P}(G \cap H)}{1 - \mathbb{P}(H)} & \text{(def of complement)} \end{split}$$

5. (1 point) Suppose we have the following

$$\mathbb{P}(\text{"snow today"}) = 30\%,$$

$$\mathbb{P}(\text{"snow tomorrow"}) = 60\%,$$

$$\mathbb{P}(\text{"snow today and tomorrow"}) = 25\%.$$

Given that it snows today, what is the probability that it will snow tomorrow?

Proof.

$$\mathbb{P}(\text{``snow tomorrow''} \mid \text{``snow today''}) = \frac{\mathbb{P}(\text{``snow tomorrow''} \cap \text{``snow today''})}{\mathbb{P}(\text{``snow today''})}$$

$$= 0.25/3$$

$$= 5/6$$

- 6. (3 points) Let (Ω, \mathbb{P}) be a probability space. Suppose we have two events A and B such that $\mathbb{P}(A) > 0$ and $\mathbb{P}(B) > 0$. Please prove that the following three equations are equivalent.
 - (a) $\mathbb{P}(A \mid B) = \mathbb{P}(A)$,
 - (b) $\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$,
 - (c) $\mathbb{P}(B|A) = \mathbb{P}(B)$.

Proof. We will show that equations (b) and (c) are equivalent to (a).

• (b) \iff (a):

$$\mathbb{P}(A \cap B) = \mathfrak{p}(A) \cdot \mathbb{P}(B) \tag{b}$$

$$\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \mathbb{P}(A)$$
 (division)

$$\mathbb{P}(A\,|\,B) = \mathbb{P}(A) \qquad \qquad \text{(conditional probability)}$$

• (c) \iff (a):

$$\mathbb{P}(\mathsf{B}\,|\,\mathsf{A}) = \mathbb{P}(\mathsf{B})\tag{c}$$

$$\frac{\mathbb{P}(A \mid B) \cdot \mathbb{P}(B)}{\mathbb{P}(A)} = \mathbb{P}(B)$$
 (Bayes' Rule)

$$\begin{split} \mathbb{P}(A \,|\, B) \cdot \mathbb{P}(B) &= \mathbb{P}(B) \cdot \mathbb{P}(A) \\ \mathbb{P}(A \,|\, B) &= \mathbb{P}(A) \end{split} \qquad \qquad \text{(multiplication)} \end{split}$$

Therefore, we have that (a) \iff (b) \iff (c).

2 Appendix

Please feel free to use all the results in the appendix without proving them.

2.1 Appendix 1

Let A, B, and C be events. Then, we have

- (Commutative Law) $A \cup B = B \cup A$,
- (Commutative Law) $A \cap B = B \cap A$,
- (Associative Law) $(A \cup B) \cup B = A \cup (B \cup C)$,
- (Associative Law) $(A \cap B) \cap C = A \cap (B \cap C)$,
- (Distributive law) $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$,
- (Distributive law) $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$,
- $(A \cup B)^c = A^c \cap B^c$,
- $(A \cap B)^c = A^c \cup B^c$.

2.2 Appendix 2

Let A_1, A_2, \ldots be any sequence of events and B be an event. We have the following

$$\begin{split} \left(\bigcup_{n=1}^{\infty}A_{n}\right)^{c} &= \bigcap_{n=1}^{\infty}A_{n}^{c}, \\ \left(\bigcap_{n=1}^{\infty}A_{n}\right)^{c} &= \bigcup_{n=1}^{\infty}A_{n}^{c}, \\ B \cap \left(\bigcup_{n=1}^{\infty}A_{n}\right) &= \bigcup_{n=1}^{\infty}(B \cap A_{n}), \\ B \cup \left(\bigcap_{n=1}^{\infty}A_{n}\right) &= \bigcap_{n=1}^{\infty}(B \cup A_{n}). \end{split}$$