Torch - Pytorch - Deep Learing (ANN,CNN,RNN) - Interview-Questions-Answers

1. What is PyTorch?

PyTorch is an open-source deep learning framework developed by Facebook for building and training neural networks.

2. What is a Tensor in PyTorch?

A Tensor is a multidimensional array similar to NumPy arrays but optimized for GPU acceleration.

3. How to import PyTorch?

import torch

4. Difference between NumPy arrays and PyTorch tensors?

Tensors can run on GPU for faster computation, whereas NumPy arrays run only on CPU.

5. How to create a tensor in PyTorch?

Using torch.tensor(), torch.zeros(), torch.ones(), or torch.rand().

6. How to check tensor device and datatype?

Use .device and .dtype attributes.

7. How to move a tensor to GPU?

tensor = tensor.to('cuda')

8. How to get the shape of a tensor?

Use tensor.shape or tensor.size().

9. How to create a tensor with random numbers?

torch.rand(size) or torch.randn(size) .

10. How to create identity matrix in PyTorch?

torch.eye(n) creates an $n \times n$ identity matrix.

11. What is autograd in PyTorch?

It's the automatic differentiation engine that computes gradients for backpropagation.

12. How to enable gradient tracking?

Set requires_grad=True while creating the tensor.

13. How to stop gradient tracking temporarily?

Use with torch.no_grad(): block.

14. What is the difference between torch. Tensor() and torch.tensor()?

torch.tensor() copies data; torch.Tensor() can create uninitialized tensors (not recommended).

15. How to get the number of elements in a tensor?

Use tensor.numel() .

16. How to reshape a tensor?

Use tensor.view() or tensor.reshape() .

17. How to concatenate tensors?

Use torch.cat((t1, t2), dim=axis) or torch.stack().

18. What is broadcasting in PyTorch?

It allows automatic expansion of tensors with different shapes for element-wise operations.

19. What is the difference between .view() and .reshape()?

view() requires contiguous memory; reshape() can handle non-contiguous tensors.

20. How to compute dot product or matrix multiplication?

Use torch.dot() for vectors or torch.mm() / @ for matrices.

21. How to compute transpose of a tensor?

Use tensor.T or tensor.transpose(0,1).

22. What are common activation functions in PyTorch?

ReLU, Sigmoid, Tanh, Softmax — available in torch.nn.functional.

23. What is a computational graph?

A dynamic structure in PyTorch that records tensor operations for gradient calculation.

24. What is the purpose of zero_grad()?

It resets gradients to zero before backpropagation in each iteration.

25. What's the difference between torch.save() and torch.load()?

torch.save() serializes and saves tensors/models; torch.load() restores them.

26. Create a 3×3 tensor of random numbers.

```
import torch
a = torch.rand(3,3)
print(a)
```

27. Create a tensor filled with zeros and ones.

```
zeros = torch.zeros(2,3)
ones = torch.ones(2,3)
print(zeros, ones)
```

28. Convert a Python list to a PyTorch tensor.

```
lst = [1,2,3,4]
t = torch.tensor(lst)
print(t)
```

29. Create a tensor with specific dtype (float32).

```
t = torch.tensor([1,2,3], dtype=torch.float32)
print(t.dtype)
```

30. Get tensor shape, size, and number of elements.

```
a = torch.rand(2,3,4)
print(a.shape, a.size(), a.numel())
```

31. Perform element-wise addition and multiplication.

```
a = torch.tensor([1,2,3])
b = torch.tensor([4,5,6])
print(a + b)
print(a * b)
```

32. Matrix multiplication (3×3 matrices).

```
A = torch.randint(1,10,(3,3))
B = torch.randint(1,10,(3,3))
print(A @ B) # or torch.mm(A, B)
```

33. Find transpose of a tensor.

```
A = torch.arange(9).reshape(3,3)
print(A.T)
```

34. Compute mean, max, min, sum.

```
a = torch.arange(1,6)
print(a.mean(), a.max(), a.min(), a.sum())
```

35. Reshape and flatten a tensor.

```
a = torch.arange(9)
print(a.view(3,3))
print(a.flatten())
```

36. Stack tensors vertically and horizontally.

```
x = torch.ones(2,3)
y = torch.zeros(2,3)
print(torch.cat((x,y), dim=0)) # vertical
print(torch.cat((x,y), dim=1)) # horizontal
```

37. Find indices of non-zero elements.

```
a = torch.tensor([0, 2, 0, 5, 0, 7])
print(torch.nonzero(a))
```

38. Create identity matrix and diagonal matrix.

```
I = torch.eye(4)
D = torch.diag(torch.tensor([1,2,3,4]))
print(I, D)
```

39. Compute dot product between two vectors.

```
a = torch.tensor([2,3,4])
b = torch.tensor([1,5,2])
print(torch.dot(a, b))
```

40. Compute matrix inverse and determinant.

```
A = torch.rand(3,3)
print(torch.inverse(A))
print(torch.det(A))
```

41. Apply element-wise exponential, sqrt, log.

```
x = torch.tensor([1., 4., 9.])
print(torch.sqrt(x), torch.exp(x), torch.log(x))
```

42. Normalize a tensor.

```
a = torch.rand(5)
a_norm = (a - a.min()) / (a.max() - a.min())
print(a norm)
```

43. Create a random tensor and move to GPU if available.

```
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
a = torch.rand(3,3).to(device)
print(a.device)
```

44. Enable gradient computation and perform backward pass.

```
x = torch.tensor([2.0, 3.0], requires_grad=True)
y = (x**2).sum()
y.backward()
print(x.grad)
```

45. Use torch.no grad() to disable gradient tracking.

```
x = torch.tensor([3.0], requires_grad=True)
with torch.no_grad():
    y = x * 2
print(y.requires grad) # False
```

46. Compute cosine similarity between two tensors.

```
a = torch.rand(3)
b = torch.rand(3)
cos_sim = torch.nn.functional.cosine_similarity(a, b, dim=0)
print(cos_sim)
```

47. Save and load a tensor.

```
t = torch.rand(3,3)
torch.save(t, 'tensor.pt')
loaded = torch.load('tensor.pt')
print(loaded)
```

48. Compute row-wise and column-wise sum.

```
A = torch.arange(6).reshape(2,3)
print(A.sum(dim=0)) # column
print(A.sum(dim=1)) # row
```

49. Compare two tensors element-wise.

```
a = torch.tensor([1,2,3])
b = torch.tensor([1,1,3])
print(a == b)
print(torch.equal(a,b))
```

50. Convert between PyTorch tensor and NumPy array.