H.W. 1. Identify the J.T. Distortion for Low Spin Complexes

H.W. 2. Identify the J.T. Distortion for High Spin Complexes

H.W. 3 Discuss about colour of $[Ti(H_2O)_6]^{3+}$ using CFT

the $[Ti(H_2O)_6]^{3+}$ complex has a d^1 electron configuration,

Since, Jahn-Teller Distortion occurs, the energy levels are spilt more here. Hence two transitions occur and result a broad absorption (look at two blue-arrows describing the absorption).

494 nm = 20,300 cm⁻¹

H. W. 4 A: Explain the enthalpy of hydration of transition metal ions from the given graphical report.

H.W. 4B: In case of strong field ligand (CN⁻) ionic radii of M²⁺

Chelate Effect?

H. W. 5: How can you justify the chelate formation is linked with entropy Gain?

$$Cd^{2+} + 4 NH_3 \leftrightarrow [Cd(NH_3)_4]^{2+}$$

 $Cd^{2+} + 4 MeNH_2 \leftrightarrow [Cd(MeNH_2)_4]^{2+}$

 $Cd^{2+} + 2 en \leftrightarrow [Cd(en)_2]^{2+}$

Ligands

4 NH₃

4 MeNH₂

log β
7.44
6.52
10.62