U[u_] := a u^2-b u^3+ c u^4;

 $Integrate [Exp[-U[u] / kT], \{u, -Infinity, Infinity\}]$

$$\int_{-\infty}^{\infty} e^{\frac{-a u^2 + b u^3 - c u^4}{kr}} dl u$$

a = 1; b = 0.5; c = 0.04; $Plot[U[u], \{u, -10, 10\}, PlotRange <math>\rightarrow \{-5, 5\}]$ a = .; b = .; c = .;

Plot[$\{\}$, $\{u, -5, 5\}$, PlotRange \rightarrow All]

 $\label{eq:findRoot} \text{FindRoot} \, [\, -\, \text{PolyLog} \, [\, 3 \, / \, \, 2 \, , \, -\, \text{Exp} \, [\, u \,] \,] \, = \, 4 \, , \, \, \{ u \, , \, \, 0 \, \} \,] \, [\, [\, 1 \, , \, \, 2 \,] \,]$

2.72977

cf = Compile[{{x, _Real}}, FindRoot[]

CompiledFunction $\{x\}$,

FindRoot $\left[u \text{ /.FindRoot } \left[-\text{PolyLog } \left[\frac{3}{2}, -e^{u}\right] = n, \{u, 0\}\right], \{u, 0\}\right], -\text{CompiledCode } -\right]$

f[e_, n_, kT_] :=

 $1 / (Exp[(e - FindRoot[-PolyLog[3/2, -Exp[u]] = n, {u, 0}][[1, 2]]) / kT] + 1)$

f[4, 0.3, 4]

0.218473

-PolyLog[3/2,-Exp[0]]//N PolyLog[3/2,Exp[0]]//N

0.765147

2.61238

PolyLog
$$\left[\frac{3}{2}, e\right]$$

<< PhysicalConstants`

Boltzmann Constant :: shdw:

 $Symbol\ Boltzmann Constant\ appears\ in\ multiple\ contexts\ \{Physical Constants`,\ Global`\};\ definitions\ in\ context\ Physical Constants`\ may\ shadow\ or\ be\ shadowed\ by\ other\ definitions.$

BoltzmannConstant

1.38065
$$\times$$
 10 $^{-23}$ Joule

Kelvin