Hartshorne Exercise I.4.9

ゆじ

2021年12月15日

このノートでは、[Ha, 演習 I.4.9] に幾何的な解答を与え、いくつかの関連する結果について証明する。基礎体 k は代数閉体であるとする。

Exercise ([Ha, 演習 I.4.9]). $X \subset \mathbb{P}^N$ を r 次元の部分多様体とし、 $N \geq r+2$ とする。 $P \notin X$ と線形部分空間 $\mathbb{P}^{N-1} \subset \mathbb{P}^N$ を適当にとるとき、点 P から \mathbb{P}^{N-1} への射影は X から像 $X' \subset \mathbb{P}^{N-1}$ への双有理射を引き起こすことを証明せよ。

1 定義や記号について

まずこのノートで用いる記号について説明しておく。

Notations. 体 k は代数閉体とする。

- 線形空間 V や代数多様体 X 上の局所自由層 E に対し、 V^{\vee} や E^{\vee} などでその双対を表す。
- 線形空間 V や代数多様体 X 上の局所自由層 E に対し、 $\mathbb{P}(V):\stackrel{\mathrm{def}}{=} \operatorname{Proj}(\operatorname{Sym}(V)), \mathbb{P}_X(E):\stackrel{\mathrm{def}}{=} \operatorname{Proj}_X(\operatorname{Sym}(E))$ と置く。V の 0 でない元 $v \in V$ は全射 $V^{\vee} \to k \cdot v^{\vee}$ を定め、この全射が $\mathbb{P}(V^{\vee})$ の点を一意的に定める。逆に $\mathbb{P}(V^{\vee})$ の点は V の 0 でない元を定数倍を除いて定める。
- 線形空間 V に対し、 $\mathbb{G}(V,r)$ で次元 r の線形空間への全射 $V \to W$ の同値類 (核が等しいときに同値と定める) を閉点とするグラスマン多様体を表す。特に、 $\mathbb{G}(V,2)$ は $\mathbb{P}(V)$ 内の直線を閉点とする多様体である。同じく、代数多様体 X 上の局所自由層 E に対し、 $\mathbb{G}_X(E,r)$ でグラスマン束を表す。
- 代数多様体 X に対し、 $\mathrm{Hilb}^n(X)$ で X 上の二点のなす $\mathrm{Hilbert}$ スキームを表す。 $\mathrm{Hilb}^n(X)$ の閉点は X の長さ n の閉部分スキームと 1:1 に対応する。

2 平面と多様体の交差について

この演習問題を証明するために、X と \mathbb{P}^N 内の線形部分多様体がどれくらい・どのように交わるかについて調べておく。なお、以下の Lemma 2.1 (ii) はこのノートでは用いないが、全く同じ方法でわかることなので記述しておく。

Lemma 2.1. V を次元 r+1 の線形空間、0 < s < r を整数とする。

(i) $X \subset \mathbb{P}(V)$ を次元 d < r - s の閉部分多様体とする。このとき、X と交わらない $\mathbb{P}(V)$ 内の次元 s の平面は $\mathbb{G}(V,s+1)$ の開集合をなす。

(ii) $X \subset \mathbb{P}(V)$ を次元 d = r - s の閉部分多様体とする。このとき、X と高々有限個の点でのみ交わる $\mathbb{P}(V)$ 内の次元 s の平面は $\mathbb{G}(V,s+1)$ の開集合をなす。

証明. まずはグラスマン多様体 $\mathbb{G}(V,s+1)$ によってパラメタライズされた $\mathbb{P}(V)$ 内の次元 s の平面の族について調べる。 $\mathbb{G}(V,s+1)$ 上のトートロジカルな全射を $V_{\mathbb{G}(V,s+1)} \to \mathcal{U}$ と置く。ここで \mathcal{U} はランク s+1 の局所自由層である。この全射が引き起こす閉埋め込み

$$\mathbb{P}_{\mathbb{G}(V,s+1)}(\mathcal{U}) \subset \mathbb{G}(V,s+1) \times \mathbb{P}(V)$$

を $\mathbb{P}(V)$ 側から調べる。各点 $p \in \mathbb{P}(V)$ 上の $\mathbb{P}_{\mathbb{G}(V,s+1)}(\mathcal{U})$ の fiber $\mathbb{P}_{\mathbb{G}(V,s+1)}(\mathcal{U})|_p \subset \mathbb{G}(V,s+1)$ は点 p を通る次元 s の平面を閉点とする多様体である:

$$\mathbb{P}_{\mathbb{G}(V,s+1)}(\mathcal{U}) \xrightarrow{\subset} \mathbb{G}(V,s+1) \times \mathbb{P}(V) \xrightarrow{\text{proj.}} \mathbb{P}(V)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow p$$

$$\mathbb{P}_{\mathbb{G}(V,s+1)}(\mathcal{U})|_{p} \xrightarrow{\subset} \mathbb{G}(V,s+1) \xrightarrow{\text{proj.}} *.$$

点 p を与える全射も同じ記号 $p:V\to k$ で表す。 $\mathbb{P}(V)$ 内の次元 s の平面は次元 s+1 の線形空間 W への全射 $V\to W$ と対応し、その平面が点 p を通ることは、全射 $V\to W$ の核が $\ker(p)$ に含まれることを意味する。従って、点 p を通る次元 s の平面は、次元 s の線形空間 W' への全射 $\ker(p)\to W'$ と対応する:

 $p:V \to k$ は $\mathbb{P}(V)$ 上のトートロジカルな全射 $V_{\mathbb{P}(V)} \to \mathcal{O}_{\mathbb{P}(V)}(1)$ の点 p への pull-back であり、従って $\ker(p)$ は $\Omega_{\mathbb{P}(V)}(1)$ の点 p への pull-back であることに注意する (cf. [ゆ, Remark 4])。以上より、 $\mathbb{P}(V)$ 上の 多様体の同型

$$\mathbb{P}_{\mathbb{G}(V,s+1)}(\mathcal{U}) \cong \mathbb{G}_{\mathbb{P}(V)}(\Omega_{\mathbb{P}(V)}(1),s)$$

が得られる。

Lemma 2.1の証明を完了するため、 $\mathbb{P}_{\mathbb{G}(V,s+1)}(\mathcal{U}) \subset \mathbb{G}(V,s+1) \times \mathbb{P}(V)$ と $\mathbb{G}(V,s+1) \times X$ の交差を考える。 $Y : \stackrel{\mathrm{def}}{=} \mathbb{P}_{\mathbb{G}(V,s+1)}(\mathcal{U}) \cap (\mathbb{G}(V,s+1) \times X)$ と置く (スキーム論的交差)。射影 $Y \to X$ はグラスマン東 $\mathbb{G}_{\mathbb{P}(V)}(\Omega_{\mathbb{P}(V)}(1),s) \to \mathbb{P}(V)$ の X への引き戻しであるから、 $Y \cong \mathbb{G}_X(\Omega_{\mathbb{P}(V)}(1)|_{X},s)$ である。従って

$$\dim Y = d + s(r - s) = rs - s^2 + d$$

となることがわかる。射影 $f:Y\to \mathbb{G}(V,s+1)$ の像 $\mathrm{Im}(f)$ は、ちょうど X と交わる s 次元の平面 $H\subset \mathbb{P}(V)$ を閉点とする $\mathbb{G}(V,s+1)$ の閉部分多様体であり、さらに各点 $[H]\in \mathrm{Im}(f)$ での f の fiber は $H\cap X$ と同型である。

$$Y \longrightarrow (G(V, s+1))$$

$$\uparrow \qquad \qquad \uparrow$$

$$H \cap X \longrightarrow [H].$$

 $\dim(\mathbb{G}(V,s+1)) = (r-s)(s+1) = rs-s^2+r-s$ であることに注意する。(i) を示す。d < r-s なので、 $\dim Y < \dim(\mathbb{G}(V,s+1))$ であり、特に、射影 $f: Y \to \mathbb{G}(V,s+1)$ の像は真の閉部分集合である。この

ことは (i) を示している。 (ii) を示す。 d+s=r なので X と次元 s の任意の平面 $\subset \mathbb{P}(V)$ が交わることから、射影 $f:Y\to \mathbb{G}(V,s+1)$ は全射である。一方、 $\dim Y=rs-s^2+d=rs-s^2+r-s=\dim(\mathbb{G}(V,s+1))$ であるから、 f は生成点で有限である。 すなわち、 $\mathbb{G}(V,s+1)$ のある開集合上で f の fiber は有限集合となる。このことは (ii) を示している。以上で Lemma 2.1の証明を完了する。

Lemma 2.1 (i) をより詳しく調べる。

Lemma 2.2. V を次元 r+1 の線形空間、0 < s < r を整数、 $X \subset \mathbb{P}(V)$ を次元 d < r-s の閉部分多様体とする。このとき、X と交わる $\mathbb{P}(V)$ 内の次元 s の平面のうちほとんどは X と一点で交わる。

証明. 2 点以上で交わる次元 s の平面の集合を調べる。 $\mathrm{Hilb}^2(X)$ を X 上の 2 点の $\mathrm{Hilbert}$ スキーム、 $\mathcal{U} \subset \mathrm{Hilb}^2(X) \times X$ を普遍的な閉部分スキーム、つまり長さ 2 の閉部分スキーム $Z \subset X$ に対応する点 $[Z] \in \mathrm{Hilb}^2(X)$ 上で

となる閉部分スキームとする。ただし $p: \mathrm{Hilb}^2(X) \times X \to \mathrm{Hilb}^2(X)$ は射影である。特に合成 $\mathcal{U} \subset \mathrm{Hilb}^2(X) \times X \xrightarrow{p} \mathrm{Hilb}^2(X)$ は有限平坦射でランク 2 である。閉埋め込み $X \subset \mathbb{P}(V)$ を与える全射 $V_X \to L$ を $\mathrm{Hilb}^2(X) \times X$ 上へ pull-back すれば、射の列

$$V_{\text{Hilb}^2(X)\times X} \to L_{\text{Hilb}^2(X)\times X} \to L_{\mathcal{U}}$$

を得る。これを射影 p で $Hilb^2(X)$ 上へ push すれば、ランク 2 の局所自由層への射

$$\Psi: V_{\mathrm{Hilb}^2(X)} \to p_*(L_{\mathcal{U}})$$

を得る。 $V_X \to L$ が閉埋め込みを与えることから (各 $\mathrm{Hilb}^2(X)$ の閉点の上に基底変換して確かめることで) 射 Ψ が全射であることがわかる。

各長さ 2 の閉部分スキーム $Z\subset X$ に対し、全射 $\Psi_Z:V\to L_Z$ が $\mathbb{P}(V)$ 内の直線を定める。全射 $V\to W$ がこの直線を含む次元 s の平面 $\subset \mathbb{P}(V)$ を定めるとする。このとき次元 s-1 の線形空間への全射 $\ker(\Psi_Z)\to W'$ が引き起こされる:

逆に次元 s-1 の線形空間への全射 $\ker(\Psi_Z)\to W'$ は包含射 $\ker(\Psi_Z)\subset V$ で push-out をとることで次元 s+1 の線形空間への全射 $V\to W$ を引き起こし、これらは 1:1 に対応する。 $\mathrm{Hilb}^2(X)$ 上の包含射 $\ker(\Psi)\subset V_{\mathrm{Hilb}^2(X)}$ はグラスマン束の間の閉埋め込み

$$\mathbb{G}_{\mathrm{Hilb}^2(X)}(\ker(\Psi), s-1) \subset \mathbb{G}(V, s+1) \times \mathrm{Hilb}^2(X)$$

を引き起こすが、以上の議論により、各閉点 $[Z] \in \mathrm{Hilb}^2(X)$ の fiber は

$$\mathbb{G}_{\mathrm{Hilb}^2(X)}(\ker(\Psi), s-1) \stackrel{\subset}{\longrightarrow} \mathbb{G}(V, s+1) \times \mathrm{Hilb}^2(X) \stackrel{p}{\longrightarrow} \mathrm{Hilb}^2(X)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad [Z] \uparrow \qquad [Z] \downarrow \qquad [Z] \downarrow$$

となり、すなわち、 $\mathbb{P}(V)$ 内の次元 s の平面のうち Z の定める $\mathbb{P}(V)$ 内の直線を通るものたちをパラメタライズする多様体が現れる。従って、射影 $g:\mathbb{G}_{\mathrm{Hilb}^2(X)}(\ker(\Psi),s-1)\to\mathbb{G}(V,s+1)$ の像はちょうど X と二点以上で交わる次元 s の平面たちからなる多様体である。特に、射影 $f:\mathbb{G}_X(\Omega_{\mathbb{P}(V)}(1)|_X,s)\to\mathbb{G}(V,s+1)$ の像に含まれる (f については Lemma 2.1の証明中を参照)。

 $X\subset \mathbb{P}(V)$ を超平面で d 回切ったのちできる 0 次元スキームのある点を選び、その点を通るように異なる超平面をいくつか選ぶことで、f のある fiber が 0 次元であることがわかる。従って fiber の次元の上半連続性 (cf. [Ha, Exercise II.3.22]) より f は generically finite であることがわかる。従って $\dim(\mathrm{Im}(f))=\dim(\mathbb{G}_X(\Omega_{\mathbb{P}(V)}(1)|_X,s))$ である。また、

$$\dim(\mathbb{G}_{\mathrm{Hilb}^2(X)}(\ker(\Psi), s-1)) = 2d + (s-1)((r+1-2) - (s-1)) = 2d + (s-1)(r-s)$$

$$< d + s(r-s) = \dim(\mathbb{G}_X(\Omega_{\mathbb{P}(V)}(1)|_X, s)) = \dim(\mathrm{Im}(f))$$

であるから、 ${\rm Im}(g)$ は ${\rm Im}(f)$ の真の閉部分集合となる。このことは X と交わる次元 s の平面のうちほとんどは X と 1 点で交わるということを示している。以上で Lemma 2.2の証明を完了する。

3 証明

この節では、冒頭の問題 [Ha, 演習 I.4.9] を少し一般的な形で証明する。

Proposition 3.1. $X \subset \mathbb{P}^N$ を r 次元の部分多様体、s を $N \geq r+s+2$ となる自然数とする。次を満たす線形部分多様体 $\mathbb{P}^s \subset \mathbb{P}^N$ を閉点に持つ $\mathbb{G}(N+1,s+1)$ の部分空間はある稠密開集合を含む:

• $\mathbb{P}^s \subset \mathbb{P}^N$ は $X \subset \mathbb{P}^N$ と交わらず、 \mathbb{P}^s に沿った射影 $\mathbb{P}^N \dashrightarrow \mathbb{P}^{N-s}$ は X から像 $X' \subset \mathbb{P}^{N-s}$ への双有 理射を引き起こす。

証明・ $V=H^0(\mathbb{P}^N,\mathcal{O}_{\mathbb{P}^N}(1))$ と置き、 $\mathbb{P}^N=\mathbb{P}(V)$ と書く。 $\mathbb{G}(V,s+1)$ 上のトートロジカルな全射を $V_{\mathbb{G}(V,s+1)}\to \mathcal{U}$ と置き、その核を \mathcal{K} とする。閉埋め込み $\mathbb{P}_{\mathbb{G}(V,s+1)}(\mathcal{U})\subset \mathbb{G}(V,s+1)\times \mathbb{P}(V)$ に沿った 爆発を B と置くと、 $[\mathfrak{G}, Corollary 9]$ より B は $R:\stackrel{\mathrm{def}}{=} \mathbb{P}_{\mathbb{G}(V,s+1)}(\mathcal{K})$ 上の \mathbb{P}^{s+1} -束であり、R 上の \mathbb{P}^{s+1} -束の 構造は、

$$0 \longrightarrow \mathcal{K}_R \longrightarrow V_R \longrightarrow \mathcal{U}_R \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$0 \longrightarrow \mathcal{O}_{R/\mathbb{G}(V,s+1)}(1) \longrightarrow \mathcal{E} \longrightarrow \mathcal{U}_R \longrightarrow 0$$

という完全列の間の射ができるようなランク s+2 の R 上の局所自由層 $\mathcal E$ により $B\cong \mathbb P_R(\mathcal E)$ で与えられている。全射 $V_R\to \mathcal E$ はグラスマン多様体への射 $q:\mathbb P_{\mathbb G(V,s+1)}(\mathcal K)\to \mathbb G(V,s+2)$ を引き起こすことに注意する。 $\mathbb G(V,s+1)\times \mathbb P(V)$ における $\mathbb P_{\mathbb G(V,s+1)}(\mathcal U)$ と $\mathbb G(V,s+1)\times X$ のスキーム論的交差を D と置き、

 $\mathbb{G}(V,s+1) \times X$ の D に沿った爆発を B_X と置く。以下の図式ができる (以下のように射に名前をつける):

閉点 $x\in\mathbb{P}_{\mathbb{G}(V,s+1)}(\mathcal{K})$ は p,q での像をとることで $p(x)\in\mathbb{G}(V,s+1)$ に対応する $\mathbb{P}(V)$ の s 次元平面 $H_{p(x)}$ と $q(x)\in\mathbb{G}(V,s+2)$ に対応する $\mathbb{P}(V)$ の s+1 次元平面 $H_{q(x)}$ を定め、 $H_{p(x)}\subset H_{q(x)}$ となる。 さらに σ での x の fiber $\sigma^{-1}(x)$ の π での像は、ちょうど $H_{q(x)}$ となる、つまり $\pi(\sigma^{-1}(x))=H_{q(x)}$ である。

 $Z\subset \mathbb{G}(V,s+2)$ を X と**交わる** s+1 次元平面のなす閉部分集合とする。各 s 次元平面 $H\subset \mathbb{P}(V)$ に対して、H に含まれない X の点が存在しないならば、 $X\subset H$ であるから、点 $[H]\in \mathbb{G}(V,s+1)$ の fiber $p^{-1}([H])$ と $q^{-1}(Z)$ は明らかに交わり、H に含まれない X の点が存在するならば、その点をとることで構成される新たな s+1 次元平面 H' の定める R の点は $q^{-1}(Z)$ と $p^{-1}([H])$ のどちらにも含まれる。従って射 $p|_{q^{-1}(Z)}:q^{-1}(Z)\to \mathbb{G}(V,s+1)$ は全射である。 $N\geq r+s+2$ であるから、Lemma 2.2より、X とちょうど 1 点で交わる s+1 次元平面からなる稠密開集合 $V\subset Z$ がある。 $V\subset Z$ は稠密であり、 $p|_{q^{-1}(Z)}:q^{-1}(Z)\to \mathbb{G}(V,s+1)$ は全射であるから、 $p(q^{-1}(V))\subset \mathbb{G}(V,s+1)$ は稠密な構成可能集合であり、特に開である。

 $N \geq r+s+2$ であるから、Lemma 2.1より、X と交わらない s 次元平面のなす空でない開集合 $U \subset \mathbb{G}(V,s+1)$ がある。各点 $[H] \in U$ に対し、H を軸とする射影 $\mathbb{P}(V) \dashrightarrow \mathbb{P}(\mathcal{K}_{[H]}) \cong \mathbb{P}^{N-s}$ を X に制限したものは (H が X と交わらないことから) $\mathbb{G}(V,s+1)$ 上の二つの射 $B_X \to B \to R$ の合成射 $r:B_X \to R$ の点 [H] での fiber に他ならない。点 $x \in R$ について

$$x \in \operatorname{Im}(r: B_X \to R)$$

- $\iff \pi(\sigma^{-1}) \cap X \neq \emptyset$
- \iff $X \ge q(x)$ に対応する $\mathbb{P}(V)$ の s+1 次元平面が交わる
- $\iff x \in q^{-1}(Z)$

であるから、 $\operatorname{Im}(r)=q^{-1}(Z)$ となる。点 $x\in q^{-1}(V)$ の $r:B_X\to R$ での fiber はちょうど X と q(x) に対応する $\mathbb{P}(V)$ の s+1 次元平面のスキーム論的交差であり、すなわちスキーム論的に 1 点である。従って、r は空でない開集合 $r^{-1}(q^{-1}(V))\subset B_X$ 上で同型射である。

 $W:\stackrel{\mathrm{def}}{=} p(q^{-1}(V))\cap U\subset \mathbb{G}(V,s+1)$ と置く。各点 $[H]\in W$ に対して、 $p^{-1}([H])\cap q^{-1}(V)\neq\varnothing$ であるから H を軸とする射影 $r_H:X\to \mathbb{P}(\mathcal{K}_{[H]})\cong \mathbb{P}^{N-s}$ は像への双有理射である。また、 $W\subset U$ であるから、s 次元平面 H は X とは交わらない。よって W は所望の開集合である。以上で証明を完了する。

参考文献

[Ha] R.Hartshorne, Algebraic Geometry. Springer-Verlag, New Tork, 1977. Graduate Text in Mathematics No. 52

[ゆ] ゆじノート, Blowing Up along Linear Subvariety.