

4.1 Đồ thị

1 - Các khái niệm cơ bản

Định nghĩa: Đơn Đồ thị

G= (V, E), V tập đỉnh, E tập cạnh gồm cặp các đỉnh không phân biệt trước sau

Định nghĩa: Đa Đồ thị

G=(V, E) tồn tại cạnh bội, hay còn gọi là cạnh song song: giữa hai đỉnh có nhiều hơn một cạnh

1 - Các khái niệm cơ bản

Định nghĩa: Giả Đồ thị

Đồ thị có "Khuyên" là cạnh có đỉnh đầu và cuối trùng nhau

Định nghĩa: Đồ thị có hướng

Đồ thị có cạnh phân biệt: Đỉnh đầu,

đỉnh cuối

hướng

Định nghĩa: Đa Đồ thị có

1 - Các khái niệm cơ bản

Định nghĩa: đỉnh liền kề, cạnh liên thuộc

Đỉnh u, v gọi là kề nhau nếu có cạnh (u,v)

Cạnh (u,v), (v,t) gọi là kề nhau vì chung đỉnh v

e=(u,v) thì e gọi là cạnh liên thuộc của đỉnh u,v

1 - Các khái niệm cơ bản

Định nghĩa: Bậc của đồ thị: Đồ thị vô hướng

Bậc của một đỉnh trong đồ thị là số cạnh liên thuộc với nó (số cạnh nối với đỉnh đó)

Bậc của đồ thị là tổng tất cả các bậc của các đỉnh

Khuyên được tính 2 lần cho bậc của đỉnh đó

Ký hiệu Deg(v) hoặc m(v)

Đỉnh bậc 0 gọi là đỉnh cô lập

Đỉnh bậc 1 gọi là đỉnh treo

deg(a)=3; deg(f)=0;

deg(c)=1

1 - Các khái niệm cơ bản

Định nghĩa: Bậc của đồ thị: Đồ thị có hướng

Bậc vào của v ký hiệu deg ⁻ (v) là số cung có đỉnh cuối là v Bậc ra của v ký hiệu deg ⁺(v) là số cung có đỉnh đầu là v Khuyên góp thêm 1 đơn vị cho bậc vào, một cho bậc ra.

 $Deg^{-}(A)=0.$

 $Deg^{+}(A)=3$

 $Deg^{-}(D)=3.$

 $Deg^{+}(D)=1$

1 - Các khái niệm cơ bản

Định lý:

- Cho G=(V,E) là đồ thị vô hướng. Khi đó bậc của đồ thị là một số chẵn.
- 2. Số đỉnh bậc lẻ trong một đồ thị là một số chẵn

1 - Các khái niệm cơ bản

Định nghĩa: đường đi, chu trình

Đường đi từ u tới v là một dãy các cạnh: $(x_0, x_1), (x_1, x_2), \dots, (x_{n-1}, x_n)$

Trong đó $x_0 = u$, $x_n = v$;

Hoặc: đường đi là dãy các đỉnh $(x_0, x_1, x_2, ..., x_{n-1}, x_n)$ trong đó:

- * $X_0 = U, X_0 = V$
- * 2 đỉnh liên tiếp là một cạnh.

Độ dài đường đi: số cạnh nó đi qua.

Chu trình là đường đi mà đỉnh đầu đỉnh cuối trùng nhau.

Đường đi đơn, chu trình đơn: cạnh không bị lặp lại.

1 - Các khái niệm cơ bản

Định nghĩa: Đồ thị liên thông

Đồ thị gọi là liên thông nếu hai đỉnh bất kỳ luôn tồn tại đường đi giữa chúng

Định nghĩa: Đồ thị con

Đồ thị con của đồ thị G = (V, E) là đồ thị H= (W,F) trong đó W⊆V và F⊆E

2- Một số loại đồ thị đặc biệt

Đồ thị đầy đủ: K_n là đồ thị có n đỉnh mỗi đỉnh đều kề các đỉnh còn lại, mọi đỉnh có bậc n-1

Đồ thị V_{ong} : $C_{\text{n,}}$ n>2 là đồ thị mỗi đỉnh có bậc =2 và tạo thành 1 chu trình duy nhất

Đồ thị Bánh xe: W_{n,} n>2 nhận được từ đồ thị vòng bằng cách thêm 1 đỉnh nằm trong đồ thị vòng và nối đỉnh này với n đỉnh bên ngoài

Đồ thị Khối n chiều: Q_{n_i} n=1,2,3 là đồ thị mỗi đỉnh là 1 xâu nhị phân n bít, hai đỉnh kề nhau khác nhau 1 bít

Đồ thị Phân đôi: $K_{m'n}$ gồm có 2 tập đỉnh, tập V_1 chứa m đỉnh, tập V_2 chứa n đỉnh, và không tồn tại cạnh nối 2 đỉnh thuộc cùng 1 tập

Đồ thị phẳng là đồ thị có thể biểu diễn trên mặt phẳng mà các cạnh không cắt nhau ngoài đỉnh

3- Biểu diễn đồ thị

a. Biểu diễn bằng Ma trận đỉnh kề

Đồ thị có n đỉnh thì ma trận kề M có kích thước nxn

$$m_{ij} = \begin{cases} 1, & \text{n\'eu đỉnh i k\reath dình j} \\ 0, & \text{n\'eu đỉnh i không k\reath dình j} \end{cases}$$

	Α	В	С	D
Α	0	1	1	1
В	1	0	1	0
C	1	1	0	1
D	1	0	1	0

3- Biểu diễn đồ thị

a. Biểu diễn bằng Ma trận đỉnh kề

Đồ thị có n đỉnh thì ma trận M có kích thước nxn

 $m_{ij} = \{S \tilde{\mathbf{c}} \, \mathbf{c} \, \mathbf{n} \, \mathbf{h} \, t \hat{\mathbf{v}} \, d \hat{\mathbf{i}} \, \mathbf{n} \, \mathbf{h} \, i \, d \tilde{\mathbf{e}} \, \mathbf{n} \, d \hat{\mathbf{i}} \, \mathbf{n} \, \mathbf{h} \, j \}$

	Α	В	С	D
Α	0	1	2	1
В	1	1	1	0
C	2	1	0	1
D	1	0	1	0

3- Biểu diễn đồ thị

a. Biểu diễn bằng Ma trận đỉnh kề

Đồ thị có n đỉnh thì ma trận kề M có kích thước nxn

 $m_{ij} = \{S \circ cạnh từ đỉnh i đến đỉnh j$

	Α	В	С	D
Α	0	1	1	0
В	1	0	1	0
C	0	0	0	1
D	1	0	0	0

- 3- Biểu diễn đồ thị
- b. Biểu diễn bằng Danh sách đỉnh kề

Đỉnh	Đỉnh Kề		
А	B, C, D		
В	A, C		
С	A, B, D		
D	A,C		

3- Biểu diễn đồ thị

c. Biểu diễn bằng Ma trận cạnh kề

Đồ thị có n đỉnh m cạnh Ma trận nxm

$$m_{ij} = \begin{cases} 1, & \text{n\'eu đỉnh i liên thuộc là cạnh j} \\ 0, & \text{n\'eu đỉnh i không là liên thuộc cạnh j} \end{cases}$$

	AB	ВС	CD	AD	AC
Α	1	0	0	1	1
В	1	1	0	0	0
С	0	1	1	0	1
D	0	0	1	1	0

