Linear Algebra Game

Adam Kern Uustin Morrill Letian Yang Huiyu Chen

 $July\ 7,\ 2025$

Chapter 1

VectorSpaces

1.1 ZeroScalarMultiplication

Definition 1. A *vector space* is a space over a field K with an abelian group V. It has four main properties:

- smul_add: $\forall a \in K, x, y \in V, a \bullet (x + y) = a \bullet x + a \bullet y$
- add_smul: $\forall a, b \in K, x \in V, (a+b) \bullet x = a \bullet x + b \bullet x$
- mul_smul: $\forall a, b \in K, x \in V, (a * b) \bullet x = a \bullet (b \bullet x)$
- one_smul: $\forall x \in V, 1 \in K \bullet x = x$

Theorem 2. In any vector space V over K, the scalar 0 multiplied by any vector gives the zero vector: $(0:K) \bullet w = (0:V)$

1.2 MultiplyingByTheZeroVector

Theorem 3. In any vector space V over K, any scalar a multiplied by the zero vector gives the zero vector: $(a:K): a \bullet (0:V) = (0:V)$

1.3 ScalingByNegativeOne

Theorem 4. In any vector space V over K, multiplying a vector by -1 gives its additive inverse: $(v:V):(-1:K) \bullet v = -v$

1.4 ZeroMustBelong

Definition 5. A *subspace* is a subset of a vector space that acts similarly to a vector space itself. It has three main properties:

- Nonempty: W.Nonempty
- Closure_Under_Addition: $\forall (xy:V), x \in W \rightarrow y \in W \rightarrow x + y \in W$
- Closure_Under_Scalar_Multiplication: $\forall (a:K)(x:V), x \in W \to a \bullet x \in W$

Theorem 6. This is a proof that any subspace contains the zero vector: $(0:V) \in W$

1.5 NegativesInSubspace

Theorem 7. This is a proof that if a subspace contains a vector 'x', it also contains '-x': $\forall (x:V), x \in W \to (-x) \in W$

Chapter 2

LinearIndependenceSpan

2.1 LinearCombinations

```
\textbf{Definition 8.} \ \exists (s:FinsetV)(f:V\to K), (\uparrow s\subseteq S) \land (x=Finset.sums(funv\Rightarrow fv\bullet v))
```

Theorem 9. If $v \in S$, then v is a linear combination of $S: S: SetVv: V(hv: v \in S): is_linear_combination KVSv$

2.2 IntroducingSpan

Definition 10. $x \in V | linear_combination KVSx$

Theorem 11. If $v \in S$, then $v \in spanKVS$: $S : SetVv : V(hv : v \in S) : v \in spanKVS$

- 2.3 MonotonicityOfSpan
- 2.4 LinearIndependence
- 2.5 LinearIndependenceOfSubsets
- 2.6 SupersetsSpanTheWholeSpace
- ${\bf 2.7} \quad Uniqueness Of Linear Combinations$
- ${\bf 2.8}\quad Linear Independence Of Set With Insertion$
- 2.9 SpanAfterRemovingElements