

汇报

LoRa组网综述:

研究问题、当前解

决方案和未决问题

王昊

日期: 2020/07/21

目录 content

- 02 LORA的简要技术背景
 - 03 LORA网络的现有部署
 - 04 研究问题的分类
 - 05 当前解决方案
- 06 未决问题
- 07 结论

介绍

INTRODUCTION

Internet-of-Things

IoT

Robust Operations

Humidity Temperature

Wider Coverage

Large Geographical Area

High Energy Efficiency

Mostly Battery Powered

Conventional Technologies

Zigbee

Bluetooth

Shorter Range

LPWAN Technologies

Cellular-IoT Technology

Based on Cellular Infrastructure

Proprietary Networks

Autonomous
With Third-Party Infrastructure

Lora Networking

Autonomous
Without Third-Party Infrastructure

Cellular-IoT Technology

Advantages

Disadvantages

Types

Proprietary Networks

Advantages

Disadvantages

Types

Lora Networking

Advantages

Open Source Over the Air Update Low Cost

Applications

Differences

Devise a Taxonomy for Problems
Upper Layers Discussed
Recent Performance Measurements

Recent Technical Advancements

Further Improve Performance

LORA的简要技术背景

TECHNICAL BACKGROUND

LoRa Stack

Sub-GHz ISM Band

LoRa

Physical Layer:

Chirp Spread Spectrum

LoRaWAN

MAC Layer:

ALOHA: Exponential Back-Off

TDMA: Time-Slot

Chirp Spread Spectrum

Frequency Varies Linearly within the Available Bandwidth

Spreading Factor

Time on Air Number of Data Bits **Bandwidth**

Data Rate

Code Rate

Resilience to Noise

LoRa System

Architecture

Unique Properties

Ultra-Long Distance

Line-Of-Sight Communication

SF、TP、CR、PRR

Long Lifetime of Nodes

Duty Cycle

Channel Activity Detection

Reduce Overheads: No Signalling

Concurrent Reception of Gateways

Orthogonal SF

LORA网络的现有部署

EXISTING DEPLOYMENTS

EXISTING DEPLOYMENTS

Smart Cities and Urban Deployments

Waste Management

Monitor Solar Power Plants (Legacy)

Power Monitoring

Smart Meters

Smart Metering Applications

Smart Golf Course

Sensor of Golf Cart

Smart Islands

Reports Water Quality

研究问题的分类

TAXONOMY

Energy Consumption

Energy Efficiency

Improve the Longevity of End-Devices
Unavoidable Circumstances

End-Device Operations

Micro-Controller Operations
Wireless Transmissions

Techniques

Consume Instantaneous Bandwidth Light MAC Protocols

Communication Range

Technology

Rudiment Chirps Spread Spectrum

Challenge

Signal Attenuation
Propagation Losses and Fading
Gateways Decode Signals

Estimating the Coverage

Anisotropic Unexplored Mathematical Models

Aim

Confined Region and Spectrum
Share Limited Spectrum Concurrently

Link Coordination

Scheduler : ALOHA / TDMA (Cannot Handle Collisions)

Resource Allocation

Vary Parameters

Dynamic Deployed Environment

Error Correction

Existing Schemes

Hamming Code
Spreading Factors

止于至
Data Corruption)

Channel Coding

DaRe: Application Layer Redundant Data (Bursty Packet Loss)

Interference Cancellation

Extract Collided Signals (Inadequate Number)

Security

Security Key Attacks

Eavesdropping Selective Forwarding Local Selective Forwarding Local Local

Current Key Technology

AES-128 Bit Encryption Never Update Key

Requirements

Key Generation
Key Update Mechanism
Third-Party Authorization₂₂

当前解决方案

CURRENT SOLUTIONS

Ambient Energy

PLoRa: Passive RF Chips

Weak Signals

Avoid Retransmission
Detect but Not Decode

More Gateways

Dynamic Allocation

More Gateways

1 Device : N Gateways Improve Network Density

Cheap Radios

Carrier Frequency Intrinsic Property
Disentangle Collided Signals
(Radio Imperfections)

Integrate LPWANs

'GUN Radio 'Experimented Commercial Device Ambiguous

Error Correction

Channel Coding

Drake: Redundant Information

(Difficulty to Create Degree of Distribution)

(Increase Number of Collision)

Carrier Frequency Intrinsic Property
Disentangle Collided Signals
(Only 5-10 Devices Concurrently)
Distributed Error Correction Tech Proposed

Additional Preambles

Ideal-CSMA: Low PRR (Synchronously)

CSMA-CAD : SF Randomized, PRR Doubled Retransmission Scheme

Theoretically Proven

Channel Coding

Data Compression

RS-LoRa

Coarse-Grained Information Parameter Combination Network Density

Multiple Access

Link Coordination

Adaptive Data Rate

Data Rate
Channel Allocation
Energy Consumption

Network Density

More Gateways (Directional Antennae)
Assign Dynamic Parameter
ADR

Performance

Deployed Environment Genetic Algorithm Usage of ACKs

Multiple Access

Resource Allocation

Vulnerabilities

Key Generation

Blockchain Mechanism

Encryption Keys: Physical Access Computationally Difficult Join Request : DevNonce Random Number Generator Algorithm Large Scale Deployments (Incompatible with LoRaWAN specification) Low Powered Devices

未决问题

OPEN ISSUES

Placement of Gateways Link Co-ordination

Categories of Applications

Dynamic Retransmission Policies

(Downlink ACK)

Communication Range

Security

LoRa Chips Evolve
Light Modifications of Chips

Each Deploying Applicatsion

止于至善

结论

CONCLUSION

Structure

感谢老师

Thanks For Listening

王昊

日期: 2020/07/21

