

AD-779 737

DEVELOPMENT OF AN EMPIRICALLY BASED
COMPUTER PROGRAM TO PREDICT THE AERO-
DYNAMIC CHARACTERISTICS OF AIRCRAFT
VOLUME II. PROGRAM USER GUIDE

Roy T. Schemensky

General Dynamics

Prepared for:

Air Force Flight Dynamics Laboratory

November 1973

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

Unclassified

AD 779737

Security Classification

DOCUMENT CONTROL DATA - R & D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) General Dynamics Corporation Convair Aerospace Division Fort Worth, Texas		2a. REPORT SECURITY CLASSIFICATION Unclassified 2b. GROUP
3. REPORT TITLE Development of an Empirically Based Computer Program to Predict the Aerodynamic Characteristics of Aircraft Volume II: Program User Guide		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report - December 1972 through October 1973		
5. AUTHOR(S) (First name, middle initial, last name) Roy T. Schemensky		
6. REPORT DATE November 1973	7a. TOTAL NO. OF PAGES 223	7b. NO. OF REFS
8a. CONTRACT OR GRANT NO. F33615-73-C-3043	8a. ORIGINATOR'S REPORT NUMBER(S) AFFDL-TR-73-144 Volume II	
8b. PROJECT NO. 147601	8b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)	
10. DISTRIBUTION STATEMENT Approved for public release; Distribution unlimited.		
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY AFFDL/FXM	
13. ABSTRACT <p>This report (Volume II, Program User Guide) describes the computer program developed for the evaluation of the aerodynamic characteristics of large aircraft (bombers, tankers, and transports). The program calculates lift, moment, and drag characteristics of aircraft through the subsonic, transonic, and supersonic speed regimes, and includes the capability of calculating the effect of high-lift systems in both free air and in ground effect for landing and takeoff. The input to the computer program requires the configuration geometry and the aerodynamic conditions for which solutions are desired. The program includes the capability of analyzing both fixed-wing and variable-sweep-wing configurations as well as the aerodynamic characteristics of supercritical wing designs. Details of the methods, equations, and substantiating data for this program are contained in Volume I, Empirical Methods. Although this program was developed to handle the bomber, tanker, transport class of aircraft, it is also applicable to fighter type aircraft without maneuver devices.</p>		

DD FORM 1 NOV 65 1473

Unclassified

Security Classification

~~Unclassified~~

Security Classification

14. KEY WORDS	LINK A		LINK B		LINK C	
	ROLE	WT	ROLE	WT	ROLE	WT
Aerodynamic Characteristics Drag Prediction Lift Prediction Moment Prediction High-Lift Prediction Computer Program Transport Aircraft Drag Due to Lift Vortex Lift						

1a/

~~Unclassified~~

Security Classification

**DEVELOPMENT OF AN EMPIRICALLY BASED
COMPUTER PROGRAM TO PREDICT THE
AERODYNAMIC CHARACTERISTICS OF AIRCRAFT**

Volume II Program User Guide

R. T. SCHEMENSKY

Approved for public release; distribution unlimited.

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

ACCESSTION TO:	
RTS	White Section <input checked="" type="checkbox"/>
DDC	Buff Section <input type="checkbox"/>
UNANNOUNCED	
JUSTIFICATION.....	
BY.....	
DISTRIBUTION/AVAILABILITY CODES	
Dist.	AVAIL. and/or SPECIAL

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/5 June 1974 - 100

ic

This report was prepared by the Convair Aerospace Division of General Dynamics Corporation, Fort Worth, Texas, for the Air Force Flight Dynamics Laboratory under Contract F33615-73-C-3043, Project 147601. The work reported here was performed in the period December 1972 through October 1973. This report was submitted by the author in October 1973.

The results of this work are documented in two volumes. Volume I presents the methodology developed in this study; Volume II contains the users manual for a computer program which automates these methods.

The work was accomplished under the direction of Mr. J. Kenneth Johnson of the Air Force Flight Dynamics Laboratory (FXM). The author wishes to acknowledge the valuable assistance of Mr. Eugene L. Crosthwait, Convair Aerospace Division, in the development of the empirical methods for the wing lift and wave drag characteristics.

This technical report has been reviewed and is approved.

Philip P. Antonatos
Philip P. Antonatos
Chief, Flight Mechanics Division
Air Force Flight Dynamics Laboratory

TABLE OF CONTENTS

	<u>Page</u>
1. COMPUTER PROGRAM DESCRIPTION	1
2. PROGRAM INPUT	5
3. SAMPLE PROBLEMS	32
4. PROGRAM AND SUBROUTINE DESCRIPTIONS	57
5. PROGRAM LISTING	89

Preceding page blank

1. COMPUTER PROGRAM DESCRIPTION

The Large Aircraft Aerodynamic Prediction Program has been coded in Fortran Extended Version 3.0 to operate on the CDC 6600 computer facility at W-PAFB. This program is also operational on the General Dynamics CDC 6600 computer (procedure code R1T).

The main program controls the calling of three primary overlay programs XINPT, GEOM, and SURVEY. In turn, XINPT calls two secondary overlay programs INPT and NINPT; while SURVEY calls four secondary overlay programs VGEOM, MCRIT, AERO, and LSHL. These programs bring the desired subroutines into the core and direct the calling of the subroutines to make the necessary computations. Figure 1 shows the overlay structure and the subroutines called from these programs.

Card input occurs on file name TAPE5 and data output occurs on file name TAPE6.

The deck structure for a run consists of a job card, system control cards, end-of-record card, binary object decks, end-of-record card, problem data deck, end-of-file card. The structure of the binary object decks and overlay control cards are listed in Table I. The problem data deck is described in the Program Input Section.

Figure 1 PROGRAM OVERLAY STRUCTURE

Table 1
DECK STRUCTURE FOR OVERLAYS

OVERLAY (0, 0)
PROGRAM MRIT
 SUBROUTINE LNTP
 FUNCTION DLNT
 SUBROUTINE TLNT

OVERLAY (1, 0)
PROGRAM XINPT
 SUBROUTINE SETUP

OVERLAY (1, 1)
PROGRAM INPT

OVERLAY (1, 2)
PROGRAM NINPT
 SUBROUTINE CONV

OVERLAY (2, 0)
PROGRAM GEOM

OVERLAY (3, 0)
PROGRAM SURVEY
 SUBROUTINE ADJUST
 BLOCK DATA

OVERLAY (3, 1)
PROGRAM VGEOM

OVERLAY (3, 2)
PROGRAM MCRIT
 SUBROUTINE CPZT
 SECT
 CPUOV

OVERLAY (3, 3)
PROGRAM AERO
 SUBROUTINE CDDR
 CLWBT
 AER2
 TAIL
 AALO
 CLBRK
 CDL1
 ADCL
 KGIN

Table 1 (Cont'd)

SUBROUTINE CDL2
AERA
AFTCD
TDRG
DMIN
FDRG
CFEQ
FFACT
IFACT
WDRG
CDWN
CDWT
CDRG
BDRG
CMOW
WBAC
ACCR
ATMOS
PLSQ
MTXEQ

OVERLAY (3, 4)

PROGRAM LSHL

SUBROUTINE SSET
DSET
MSET
DAERO

2. PROGRAM INPUT

The input to this program is described in the following section. Three data types are specified in the card descriptions. Type A indicates that alphabetic or numeric characters should be entered. Type I indicates integers which should be right-adjusted within the specified columns with no decimal point. Type F indicates a real number and may be tabulated anywhere within the specified columns and should include a decimal point. The program input is illustrated by the sample cases in the Sample Problem Section.

Card 1 - Title - Enter any alphanumeric characters to identify each problem. This data is printed out at the top of each aerodynamic survey problem. Columns 1-66.

Card 2 KPRINT(I), Printout Option Indicators - Setting a given KPRINT indicator to 1 causes the program to print out certain types of data. Columns 1-27. KPRINT(11) through (27) are used for diagnostic purposes to dump data generated in various subroutines and are not intended to be used for normal computer runs.

<u>KPRINT and Column No.</u>	<u>Print Out</u>
1	Airfoil ordinates and pressure distribution
2 - 10	Not used
11	Dump Subroutine AER2
12	.
13	GEOM
14	.
15	AALO
16	CDL2
17	BDRG
18	CLBRK
19	AERA
20	WBAC
21	CFEQ
22	CDWW
23	TAIL
24	CDL1
25	CDDR
26	ADJUST
27	CMOW
	CPZT
	Dump Subroutine SSET

Card 3 - Input Control Card - Write "FORMAT" or "NAMELIST" beginning in Column 1 if format or namelist input option is desired.

Cards 4, 5, ..., 27 - Configuration Definition Cards, Format Input Option (For NAMELIST input option go to card 43)

The aircraft geometry is represented as a series of bodies for the fuselage, canopy, and stores; open-nosed bodies for the nacelles; and a series of airfoil surfaces for the wing, tail surfaces, pylon and ventral fins. For cranked or complex wing planforms, the wing is represented as a series of surface panels. Figures 2 through 7 illustrate many of the geometric parameters which are used to define an aircraft configuration. In the

input to the program, those parameters that are marked with an asterisk (*) indicate that if zero or blank is entered the program will calculate that parameter using the available geometric data; otherwise the input value will be used.

Card 4 (Required, all Type I)

<u>Column</u>	<u>Symbol</u>	<u>Definition</u>
4-5	NBODYS	Total number of body types used to represent the configuration
9-10	NNACS	Total number of nacelle types used to represent the configuration
14-15	NSURFS	Total number of airfoil surfaces used to represent the configuration
20	NHT	Enter 1 if a horizontal tail is present
25	NVT	Enter 1 if a single vertical tail is present, 2 for a twin vertical tail
30	ISWP	Variable sweep indicator 0 fixed wing geometry 1 variable sweep wing
34-35	NPNLS	Number of wing panels used to represent the wing surface (≤ 10)
40	IHLS	Enter 1 or 2 if geometry for the high-lift system is to be input. Enter 1 for single high-lift system, enter 2 if the high-lift system is defined by two segments (see Figure 6)
45	IREF	Angle of attack reference indicator 0 referenced to wing root chord plane 1 referenced to fuselage centerline

Card 5 (Required, all Type F)

<u>Column</u>	<u>Symbol</u>	<u>Definition</u>
1-10	SREF	Reference area (ft^2)
11-20	*CMAC	Wing mean aerodynamic chord (in.)
21-30	*XCG	Fuselage station for moment reference point (in.). If zero is input the program will use the quarter-chord of the wing MAC.
31-40	ZCG	Height of moment reference point relative to wing root chord plane
41-50	ROUGH	Surface roughness height for friction drag (in.)
51-60	FMISC	Miscellaneous drag factor as a percentage of total friction and form drag

Card 6 (Required if NBODYS > 0, all Type F)

1-10	BLEN(I)	Body length (in.)
11-20	BWID(I)	Body width (in.)
21-30	BHGT(I)	Body height (in.)
31-40	*BAWET(I)	Body wetted area (ft^2)
41-50	BQ(I)	Interference factor
51-60	BNO(I)	Number of bodies of this type

Card 7 (Required if NBODYS > 0, all Type F)

1-10	*BAMX(I)	Body maximum cross-sectional area (in^2)
11-20	BABS(I)	Body base area (in^2)
21-30	BLNS(I)	Nose length (in.)
31-40	BLBT(I)	Boattail length (in.)

Card 7 (Continued)

<u>Column</u>	<u>Symbol</u>	<u>Definition</u>
41-50	BASE(I)	Base drag area (in^2)
51-60	BFUS	Aft fuselage upsweep angle (deg.)
61-66	AB	Ratio of aft fuselage width to height in the upswept region

Repeat cards 6 and 7 for I=1 to NBODY5. Note the BFUS and AB are only entered for I=1 which corresponds to the fuselage input.

Card 8 (Required if NNACS > 0, all Type F)

1-10	ELEN(I)	Nacelle length (in.)
11-20	EWID(I)	Nacelle width (in.)
21-30	EHGT(I)	Nacelle height (in.)
31-40	*EAWET(I)	Total wetted area (ft^2)
41-50	EQF(I)	Interference factor
51-60	ENO(I)	Number of nacelles of this type

Card 9 (Required if NNACS > 0, all Type F)

1-10	*EAMX(I)	Nacelle maximum cross-sectional area (in^2)
11-20	EIM(I)	Nacelle inlet area (in^2)
21-30	EXIT(I)	Nacelle exit area (in^2)
31-40	ELNS(I)	Nose length (in.)
41-50	ELBT(I)	Boattail length (in.)

Repeat cards 8 and 9 for I=1 to NNACS.

Card 10 (Required only if NPNLS=1, otherwise go to card 13,
all Type F)

<u>Column</u>	<u>Symbol</u>	<u>Definition</u>
1-10	AR	Aspect ratio
11-20	TAPR	Taper ratio
21-30	SWPLE	Leading-edge sweep (deg.)
31-40	SPLAN	Wing planform area (ft^2)
41-50	TWIST	Wing twist (deg.) negative for washout
51-60	WINC	Wing incidence (deg.) relative to fuselage centerline

Card 11 (NPNLS=1, all Type F except as noted)

1-10	TW (Type A)	Type wing section (begin in Col. 1) 64-210 (example 6-series) 00XX-64 (example 4-digit) SUPERCRT (example supercritical) BICONVEX (example biconvex)
11-20	CAM(1)	Wing camber design C_L (decimal value)
21-30	TOC(1)	Wing thickness (decimal value)
31-40	XLEW	X-position of point on wing leading edge (in.)
41-50	YWW	Y-position of point on wing leading edge (in.)
51-60	YB	Y-distance of intersection of wing with fuselage (in.)

Card 12 (NPNLS=1, all Type F)

1-10	SWMT	Maximum thickness sweep (deg.)
11-20	*CBAR(1)	Exposed wing mean aerodynamic chord (in.)

Card 12 (Continued)

<u>Column</u>	<u>Symbol</u>	<u>Definition</u>
21-30	*AWET(1)	Wetted area (ft^2)
31-40	CONCL	Wing conical camber design C_L

Skip to card 17 after card 12.

Card 13 (NPNLS > 1, all Type F)

1-10	SPLAN	Planform area (ft^2). For fixed wing configurations if zero is input the program will calculate the theoretical planform area by extending the wing panel geometry that is input to the fuselage centerline. For variable sweep configurations the planform area of the movable panel extended to the centerline must be input. For wings with a highly swept inboard strake, the value of the theoretical planform area of the wing, ignoring the strake, should be input.
11-20	TAPR	Taper ratio of wing planform (required input for variable sweep)
21-30	SWPLE	Leading-edge sweep (deg.) of wing planform. (Required input for variable sweep)

Card 14 (NPNLS > 1, all Type F except as noted)

1-10	TW (Type A)	Type wing section
11-20	TWIST	Wing twist (deg.) negative for washout
21-30	WINC	Wing incidence (deg.)
31-40	SWMT	Average maximum thickness sweep for the entire wing planform (deg.)
41-50	CONCL	Wing conical camber design C_L

Card 15 (NPNLS > 1, all Type F)

<u>Column</u>	<u>Symbol</u>	<u>Definition</u>
1-10	CAM(I)	Panel camber design C_L
11-20	TOC(I)	Panel thickness ratio
21-30	XLE(I)	Inboard X-position of panel leading edge (in.)
31-40	YW(I)	Inboard Y-position of panel leading edge (in.)
41-50	CRW(I)	Inboard chord length of panel (in.)
51-60	*CBAR(I)	Panel mean aerodynamic chord length (in.)
61-66	*AWET(I)	Panel wetted area (ft^2)

Repeat card 15 for I=1 to NPNLS

Card 16 (NPNLS > 1, all Type F)

1-10	XLE(NPNLS+1)	Outboard X-position of last panel's leading edge (in.)
11-20	YW(NPNLS+1)	Outboard Y-position of last panel's leading edge (in.)
21-30	CRW(NPNLS+1)	Outboard chord length of panel (in.)

Card 17 (TW = "SUPERCRT", all Type F)

1-10	XMU	x/c position of maximum thickness on upper surface
11-20	ZMU	upper surface thickness (Z_u/c)
21-30	XML	x/c position of maximum thickness on lower surface
31-40	ZML	Lower surface thickness (must be input as a negative value)

Card 17 (Continued)

<u>Column</u>	<u>Symbol</u>	<u>Definition</u>
41-50	ZPTE	Trailing edge slope (deg.)
51-60	ZTHICK	Thickness at trailing edge

Card 18 (ISWP=1, all Type F)

1-10	XPIVOT	X-location of wing pivot (in.)
11-20	YPIVOT	Y-location of wing pivot (in.)
21-30	XAPEX	X-location of centerline apex of movable panel (in.)
31-40	AFTSW	Maximum aft sweep (deg.)
41-50	*AFTCB	Mean aerodynamic chord of movable panel in aft sweep position (in.)
51-60	*AFTOC	Thickness ratio of movable panel in aft sweep position
61-66	*AFTAW	Wetted area of movable panel in aft sweep position

Card 19 (NSURFS \geq 2, all Type F except as noted) Enter horizontal tail geometry first, then vertical tail followed by any additional airfoil surfaces.

1-10	TS(I) (Type A)	Type airfoil surface
11-20	SCAM(I)	Surface camber design C_L
21-30	STOC(I)	Thickness ratio
31-40	SMTSW(I)	Maximum thickness sweep (deg.)
41-50	SHF(I)	Hinge factor or interference factor

Card 20 (NSURFS \geq 2, all Type F)

1-10	SWL(I)	Surface leading-edge sweep (deg.)
11-20	SWT(I)	Trailing-edge sweep (deg.)

Card 20 (Continued)

<u>Column</u>	<u>Symbol</u>	<u>Definition</u>
21-30	STAPR(I)	Taper ratio
31-40	SCR(I)	Exposed root chord (in.)
41-50	*SBAR(I)	Exposed mean aerodynamic chord (in.)
51-60	*SAWET(I)	Wetted area (ft^2)

Card 21 ($\text{NSURFS} \geq 2$, $\text{NHT}=1$, all Type F)

1-10	HTLE	X-location of horizontal tail exposed root chord (in.)
11-20	HTY	Y-location of exposed root chord (in.)
21-30	HTZ	Z-location relative to wing chord plane of horizontal tail (in.)
31-40	HTINC	Incidence of horizontal tail (deg.)

Repeat cards 19 and 20 for $I=2$ to NSURFS.

Card 22 ($\text{NPMLS} \geq 3$, all Type F) Since the aerodynamic center calculation is restricted to one or two panel wings, an equivalent two-panel wing must be defined for moment calculation whenever 3 or more panels are used to define the main wing.

1-10	CLE(1)	X-location of leading edge at inboard span station of inboard panel (in.)
11-20	YC(1)	Y-location of leading edge at inboard span station of inboard panel (in.)
21-30	CCR(1)	Chord length of inboard panel at inboard span station (in.)
31-40	CLE(2)	X-location of leading edge at inboard span station of outboard panel (in.)
41-50	YC(2)	Y-location of leading edge at inboard span station of outboard panel (in.)
51-60	CCR(2)	Chord length of outboard panel at inboard span station (in.)

Card 23 (NPNLS ≥ 3 , all Type F)

<u>Column</u>	<u>Symbol</u>	<u>Definition</u>
1-10	CLE(3)	X-location of leading edge at outboard span station of outboard panel (in.)
11-20	YC(3)	Y-location of leading edge at outboard span station of outboard panel (in.)
21-30	CCR(3)	Chord length of outboard panel at outboard span station (in.)

Card 24 (Required if IHLS > 0, otherwise go to card 30)

1-20	FLAP (Type A)	Type flap (begin in Col. 1) PLAIN FLAP S.S. FLAP (single slotted) D.S. FLAP (double slotted) T.S. FLAP (triple slotted) INPUT (user defined)
21-40	SLAT (Type A)	Type slat (begin in Col. 21) L.E. FLAP KRUGER SLAT SLAT (slotted type) INPUT
41-45	NF (Type I)	If flap type was "INPUT" indicate number of flap sectional data points to be entered, NF ≤ 5 .
46-50	NS (Type I)	If slat type was "INPUT" indicate number of slat sectional data points to be entered, NS ≤ 5 .

Card 25 (IHLS > 0, all Type F)

1-10	BF1I	Inboard span station of first flap segment
11-20	BF1O	Outboard span station of first flap segment
21-30	CF1(1)	Flap chord to wing chord ratio of first flap segment

Card 25 (Continued)

<u>Column</u>	<u>Symbol</u>	<u>Definition</u>
31-40	BS1I	Inboard span station of first slat segment
41-50	BS1O	Outboard span station of first slat segment
51-60	CS1	Slat chord to wing chord ratio of first slat segment

Card 26 (IHLS=2, all Type F)

1-10	BF2I	Inboard span station of second flap segment
11-20	BF2O	Outboard span station of second flap segment
21-30	CF2(1)	Flap chord ratio of second flap segment
31-40	BS2I	Inboard span station of second slat segment
41-50	BS2O	Outboard span station of second slat segment
51-60	CS2	Slat chord ratio

Card 27 (FLAP = "D.S." or "T.S.", all Type F) For double-slotted flaps (or triple-slotted) the additional flap chord ratios are then read in.

1-10	CF1(2)	Second flap chord of first flap segment for double- or triple-slotted flap
11-20	CF1(3)	Third flap chord of first flap segment for triple-slotted flap
21-30	CF2(2)	Second flap chord of second flap segment for double- or triple-slotted flap
31-40	CF2(3)	Third flap chord of second flap segment for triple-slotted flap

Card 28 (Required if "INPUT" was used for flap type on card 29,
all Type F)

Flap Section Data

<u>Column</u>	<u>Symbol</u>	<u>Definition</u>
1-10	DF(I)	Flap deflection (deg.)
11-20	CFOC(I)	Wing chord to wing chord ratio in extended position
21-30	DCLOF(I)	Change in lift at zero angle of attack due to flap deflection
31-40	DCLMF(I)	Change in maximum lift due to flap deflection
41-50	DCDF(I)	Change in profile drag due to flap deflection
51-60	DCMOF	Change in moment at zero angle of attack due to flap deflection

Repeat card 28 for I=1 to NF.

Card 29 (Required if "INPUT" was used for slat type on card 29,
all Type F)

1-10	DS(I)	Slat deflection (deg.)
11-20	CSOC(I)	Wing chord to wing chord ratio in extended position
21-30	DCLOS(I)	Change in lift at zero angle of attack due to slat deflection
31-40	DCLMS(I)	Change in maximum lift due to slat deflection
41-50	DCDS(I)	Change in profile drag due to slat deflection
51-60	DCMDS(I)	Change in moment at zero angle of attack due to slat deflection

Repeat card 29 for I=1 to NS.

Cards 30, 31, 32, and 33 - Problem Control Cards

Card 30 (Required, all Type I)

<u>Column</u>	<u>Symbol</u>	<u>Definition</u>
4-5	NSURV	Number of high speed lift, drag, moment surveys to be run (NSURV \leq 20)
10	NHLSV	Number of low speed, high lift survey conditions to be run (NHLSV \leq 5)
14-15	NCLAS	Number of evenly spaced C_L values in the high speed survey
21	IT(1)	Transition location indicator, 1st survey
22	IT(2)	Transition location indicator, 2nd survey
:	:	:
40	IT(20)	Transition location indicator, 20th survey

For the i th survey condition, set IT=0 or blank if the flow is to be fully turbulent on all aircraft components, otherwise, set IT equal to the transition pattern number defined by the card 32 input.

41	ITRM(1)	Trim indicator, 1st survey
42	ITRM(2)	Trim indicator, 2nd survey
:	:	:
60	ITRM(20)	Trim indicator, 20th survey

For the i th survey condition, set ITRM=0 or blank if the horizontal tail is fixed, set ITRM=1 if the horizontal tail will vary to trim out the moment.

Card 31 (NSURV > 0, all Type F)

<u>Column</u>	<u>Symbol</u>	<u>Definition</u>
1-10	FMSURV(I)	Mach number for the survey condition
11-20	ALT(I)	Altitude for the survey condition. Reynolds number can be input here instead of altitude by inputting a negative value of RN/ft multiplied by 10^6
21-30	DHSV(I)	Horizontal tail setting (If ITRM(I)=1, the program will calculate the tail setting)
31-40	SWPV(I)	Leading-edge sweep angle (deg.) (Required input only for variable- sweep configurations)
41-50	CLLO(I)	Low C_L value for the survey condition
51-60	CLHI(I)	High C_L value for the survey condition

Repeat card 31 for each survey condition, I=1, NSURV.

Card 32 (IT#0, 6F10.0 Format)

Each survey has a transition indicator assigned to it. If IT#0 for any survey, a boundary-layer transition pattern must be defined for each component of the aircraft. Up to five different transition patterns can be used in the surveys. Each transition pattern is numbered sequentially by the order it is input beginning with J=1 for the first transition pattern.

Transition location on a component is indicated by inputting the fraction of the component length where transition occurs.

TRB(J,K1)	Transition location on body K1 (K1 = 1, NBODYS)
TRN(J,K2)	Transition location on nacelle K2 (K2 = 1, NNACCS)

Card 32 (Continued)

<u>Column</u>	<u>Symbol</u>	<u>Definition</u>
	TRU(J,K3)	Transition location on upper surface of panel K3 (K3 = 1, NPNLS)
	TRL(J,K3)	Transition location on lower surface of panel K3
	TRS(J,K4)	Transition location on upper and lower surface of airfoil surface K4 (K4 = 2, NSURFS)

For each transition pattern J, first input the body transition location followed in turn by all the nacelle, wing panel, and airfoil surface transition locations. Repeat Card 32 input for each transition pattern J=1, to J_{MAX} where $J_{MAX} = \text{maximum value of } IT(I=1, 20)$.

Card 33 (NHLSV > 0, all Type F)

1-10	DFI(1,I)	Flap deflection (deg.) of first flap element
11-20	CPF(I)	Wing chord with flap extended to wing chord with flap retracted ratio
21-30	DSI(I)	Slat deflection (deg.)
31-40	CPS(I)	Wing chord with slat extended to clean wing chord ratio
41-50	DELCD(I)	Landing gear drag
51-60	H(I)	Height of wing $\bar{c}/4$ above ground (ft.)

"PLAIN", "S.S.", or "INPUT" trailing-edge-flap types are single-element flaps. If FLAP = "D.S." or "T.S.", the deflection of each flap element must be input beginning with DFI(1,I) in Columns 1-10, DFI(2,I) in Columns 11-20 and for "T.S." flaps DFI(3,I) in Columns 21-30. The data for CPF(I), CPS(I), etc. are then shifted to the right on the card.

Repeat card 33 for I=1, to NHLSV.

Card 34 - Format Input Control Card - Write "ADJUST" beginning in Column 1 to indicate if adjustment factors are to be applied to some of the aerodynamic parameters predicted by the program. If no adjustment factors are to be read in, write "END OF INPUT" beginning in Column 1 to indicate that all Configuration Definition and Problem Control Cards have been read in and go to card 41.

Cards 35 through 39 - Adjustment Option Cards - The adjustment option allows certain predicted items in the computer procedure to be adjusted to match a desired value. Thus, the predictions can be adjusted to match wind tunnel data, for instance, so that perturbations in geometry for trade studies can be predicted from a firm baseline. An aerodynamic parameter of interest (A_{PRED}) can be adjusted to match an experimental value (A_{EXP}) by the equation

$$A_{EXP} = (A_{PRED}) \cdot YM + YA$$

where YM and YA are input correlation multiplier and adder that are a function of Mach number or lift coefficient.

Card 35 (Type I) Set a given IVAL indicator equal to a non-zero value to identify it as being an aerodynamic parameter to be adjusted. Begin with IVAL=1 for the first parameter to be identified, IVAL=2 for the second parameter, etc.

<u>Column</u>	<u>Symbol</u>	<u>Definition</u>
1	IVAL(1)	Adjust C_{M_0} as a function of Mach number
2	IVAL(2)	Adjust C_{DMISC} as a function of Mach number
3	IVAL(3)	Adjust α_{L0} as a function of Mach number
4	IVAL(4)	Adjust M_{CR} as a function of lift coefficient
24-25	NXVAR	Number of Mach values in the table of Mach function adjust factors (≤ 15)
29-30	NADJ	Number of parameters to be adjusted as a function of Mach number
34-35	NXCL	Number of C_L values in the table of lift function adjust factors (≤ 15)
39-40	NADJ2	Set equal to 1 if M_{CR} is to be adjusted

Card 36 (NXVAR > 0, all Type F)

<u>Column</u>	<u>Symbol</u>	<u>Definition</u>
1-10	X(1)	Mach numbers for the table of Mach
11-20	X(2)	function adjust factors
21-30	X(3)	
31-40	X(4)	
41-50	X(5)	
51-60	X(6)	

Repeat card 36 until NXVAR values of X are read in.

Card 37 (NXVAR > 0, all Type F)

1-10	YM(J=1, I=1)	Multiplier factor
11-20	YA(J=1, I=1)	Adder factor
21-30	YM(J=2, I=1)	
31-40	YA(J=2, I=1)	
41-50	YM(J=3, I=1)	
51-60	YA(J=3, I=1)	

Repeat card 37 until NXVAR values are read in (J=NXVAR) for each aerodynamic parameter to be adjusted (I=1 to NADJ).

Card 38 (NXCL > 0, all Type F)

1-10	XCL(1)	C _L values for the table of lift
11-20	XCL(2)	function adjust factors
21-30	XCL(3)	
31-40	XCL(4)	
41-50	XCL(5)	
51-60	XCL(6)	

Repeat card 38 until NXCL values of XCL are read in.

Card 39 (NXCL > 0, all Type F)

<u>Column</u>	<u>Symbol</u>	<u>Definition</u>
1-10	YM(J=1, I=NXVAR+1)	Multiplier factor
11-20	YA(J=1, I=NXVAR+1)	Adder factor
21-30	YM(J=2, I=NXVAR+1)	
31-40	YA(J=2, I=NXVAR+1)	
41-50	YM(J=3, I=NXVAR+1)	
51-60	YA(J=3, I=NXVAR+1)	

Repeat card 39 until NXCL values are read in (J=NXCL).

Card 40 - Format Input Control Card - Write "END OF INPUT" beginning in Column 1 to indicate that all Configuration Definition, Problem Control and Adjust Cards have been read in.

Card 41 - Repeat Problem Control Card - Write "END" to terminate a problem. This clears the input common blocks and reads card 1 as the next card. Write "SAVE" to repeat a problem with only small changes to the geometry or conditions to be run. Additional values will be read in on cards 42 through 50 which will update the previous problem; values not read in will remain unchanged.

Card 42 - New Title - Enter any alphanumeric characters to identify each problem. Columns 1-66.

Card 43 (Required, all Type I)

1	L(1)	BODYS Namelist data to be read in
2	L(2)	NACEL Namelist data to be read in
3	L(3)	WING Namelist data to be read in
4	L(4)	SURFS Namelist data to be read in
5	L(5)	SURV Namelist data to be read in
6	L(6)	STOL Namelist data to be read in
7	L(7)	ADJUST Namelist data to be read in

Set L(1), L(2), ... L(7) equal to 1 if that particular set of Namelist data is to be read in. Only the values that are read in will change the values in storage from the previous problem.

Use of NAMELIST in Input Data

Input data must be in a special form in order to read using a NAMELIST list. The first character (column 1) in each card to be read must be blank. The second character in the first card of a group of data cards must be an \$ (dollar sign), immediately followed by the NAMELIST name. The NAMELIST name must be followed by two blanks and must not contain any embedded blanks. This name is followed by data items separated by commas. (A comma after the last item is optional.) The end of a data group is signaled by \$. The form of the data items in an input card may be

(1) Variable name = constant

The variable name may be a subscripted array name or a single variable name. The constant may be integer, real, literal, complex, or logical.

(2) Array name = set of constants (separated by commas)

The array name is not subscripted. The set of constants consist of constants of the type integer, real, literal, complex, or logical. The number of constants must be less than or equal to the number of elements in the array. Successive occurrences of the same constant can be represented in the form K * constant.

The variable names and array names specified in the input data set must appear in the NAMELIST list, but the order is not significant.

Each data card must begin with a complete variable or array name or constant. Embedded blanks are not permitted in names or constants. Trailing blanks after integers or exponents are treated as zeros.

NOTE: All data items on a card are entered in Columns 9-56.

Card 44 - BODYS NAMELIST - Namelist input variables

NBODY\$S, NNACS, NSURFS, NHT, NVT, ISWP, NPNLS, SREF, CMAC,
IREF, ROUGHK, XCG, ZCG, CONCL, BLEN(I), BWID(I), BHGT(I),
BAWET(I), BQ(I), BNO(I), BAMX(I), BABS(I), BLNS(I), BLBT(I),
BASE(I), BFUS, AB, FMISC

Card 45 - NACEL NAMELIST

NNACS, SREF, ELEN(I), EWID(I), EHGT(I), EAWET(I), EQF(I),
ENO(I), EAMX(I), EIN(I), EXIT(I), ELNS(I), ELBT(I)

Card 46 - WING NAMELIST **

NSURFS, ISWP, NPNLS, AR, TAPR, SWPLE, SPLAN, TWIST, WING,
TW, CAM(I), TOC(I), XLE(I), YW(I), CRW(I), CBAR(I), AWET(I),
SWMT, XPIVOT, YPIVOT, XAPEX, AFTSW, AFTCB, AFTOC, AFTAW,
SREF, CMAC, CLE(I), YC(I), CCR(I), XLEW, YWW, YB, XCG,
CONCL

Card 47 - SURFS NAMELIST **

NSURFS, NHT, NVT, SREF, SBAR(I), TS(I), SCAM(I), STOC(I),
SAWET(I), SMTSW(I), SHF(I), SWL(I), SWT(I), STAPR(I), SCR(I),
HTLE, HTY, HTZ, HTINC

Card 48 - SURV NAMELIST

NSURV, NHLSV, NCLAS, IT(I), ITRM(I), FMSURV(I), ALT(I),
DHSV(I), SWPV(I), CLLO(I), CLHI(I), DFI(I), CPF(I), DSI(I),
CPS(I), DELCD(I), H(I), KPRINT(I), TRB(I), TRN(I), TRU(I),
TRL(I), TRS(I), DFI2(I), CPF2(I), DSI2(I), CPS2(I)

Card 49 - STOL NAMELIST ***

IHLS, NF, NS, FLAP, SLAT, DF(I), CFDC(I), DCLOF(I), DCLMF(I),
DCDF(I), DCMOF(I), DS(I), CSOC(I), DCLOS(I), DCLMS(I),
DCOS(I), DCMOS(I), BF1I, BF10, CF1, BF2I, BF20, CF2, BS1I,
BS10, CS1, BS2I

Card 50 - ADJUST NAMELIST

IVAL(I), NXVAR, NXCL, X(I), XCL(I), YM(J,I), YA(J,I)

** TW and TS indicate type of airfoil section; the following code
is used for NAMELIST input.

CODE	AIRFOIL TYPE	CODE	AIRFOIL TYPE
1	63-0XX	10	00XX-62
2	64-0XX	11	00XX-63
3	65-0XX	12	00XX-64
4	66-0XX	13	00XX-65
5	63AOXX	14	00XX-66
6	64AOXX	15	00XX-33
7	65AOXX	16	00XX-34
8	Supercritical	17	00XX-35
9	Biconvex	18	00XX-93
		19	00XX-94
		20	00XX-95

*** FLAT and SLAT indicate type of high lift system; the following code is used for NAMELIST input.

CODE	FLAP TYPE	CODE	SLAT TYPE
0	No flap	0	No slat
1	Plain flaps	1	Leading-edge flap
2	Single-slotted flap	2	Slotted slat
3	Double-slotted flap	3	Kruger slat
4	Triple-slotted flap	4	Input section data
5	Input section data		

After all the NAMELIST data is read in, card 41 is the next card to be read in.

Figure 2 BODIES

Figure 3 NACELLES

STAPR = SCT/SCR

**Figure 4 AIRFOIL SURFACE GEOMETRY
(OTHER THAN MAIN WING)**

$$AR = b^2 / \text{SPLAN}$$

$$\text{TAPR} = CT / CR$$

$$\text{SPLAN} = b / 2(CR + CT)$$

SINGLE PANEL
WING EXAMPLE

THREE PANEL
WING EXAMPLE

WHEN MORE THAN TWO PANELS ARE USED TO DEFINE THE WING AN EQUIVALENT TWO-PANEL WING MUST ALSO BE DEFINED FOR MOMENT CALCULATIONS

Figure 5 WING SURFACE GEOMETRY

Figure 6 AIRCRAFT GEOMETRY REPRESENTATION

$BF_{1I} = y_1/b/2$
 $BF_{1O} = y_2/b/2$
 $BS_{1I} = y_5/b/2$
 $BS_{1O} = y_6/b/2$
 $CF_1 = C_f/C$
 $CFOC = C_f^t/C$

Figure 7 HIGH LIFT SYSTEM GEOMETRY

3. SAMPLE PROBLEMS

Three configurations are analyzed to illustrate the Large Aircraft input techniques and output formats. Problem 1 considers a transport configuration and demonstrates the Format input option and the high-speed lift and drag calculations. Problem 2 demonstrates the input to define the high-lift system for a transport configuration, some dump options and the high-lift system calculations in both free air and in ground effect. Problem 2 also demonstrates the use of the Repeat Problem Control Card to rerun the problem changing the defined configuration from a full-span flap to a partial-span flap high-lift system. Problem 3 demonstrates the Namelist input option for a wing-body configuration.

An abbreviated sample-problem output listing for Problem 1 is presented in pages 35 through 42 corresponding to the configuration defined by the input data in Table 2. The first page of output prints the problem title and the printout option indicators that were set. The next set of output is a listing of some of the input data which occurs when the FORMAT input option is used. The next set of output is a dump of the geometry calculated in Program GEOM which occurs when KPRINT(12) is set equal to 1. A summary of the configuration geometry used in friction drag calculations follows along with a table of the prediction for the critical Mach number versus lift and fuselage aft-end upsweep drag versus wing angle of attack. The last set of data consist of either a tabulation of the predicted drag, moment and angle of attack versus lift for a fixed horizontal tail setting, or a tabulation of drag, tail setting, and angle of attack versus lift for a trimmed ($C_M=0$) condition.

Several columns of drag versus lift are shown tabulated in the last set of data so that a breakdown of the items contributing to the total drag buildup can be seen. Basic drag due to lift of the wing-body combination is shown in one column, transonic-rise-plus-fuselage aft-end upsweep drag (if any) is shown in another column, while the lift and drag for a zero-horizontal-tail setting are shown in the last two columns on the page. A listing of the items contributing to minimum drag is also shown in the output, along with values of the lift-curve slope, zero-lift angle of attack, polar shape factors, tail-off zero-lift moment, tail-off moment curve slope, separation lift coefficient and maximum lift coefficient.

The input data for sample-problem 2 is shown in Table 3. The sample-problem output listing for problem 2 is presented in pages 44 through 51. Problem 2 set many of the printout option indicators to dump data generated in various subroutines. The dumped data is useful for checking out the program or evaluating the output in detail. The definition of the parameters that are dumped can be determined from the listing of the subroutine. For the high-lift survey problems the final output consists of a table of alpha, C_L , C_D , C_M for both free-air and in-ground effect up to the maximum lift coefficient.

Namelist input data for sample-problem 3 is shown in Table 4 and the output listing is presented in pages 53 through 56.

Table 2 SAMPLE PROBLEM 1

C-141A FLIGHT TEST ANALYSIS NASA CR - 1558										
1										
FORMAT INPUT										
3	1	5	1	1	0	2	0	1		
3228.0	266.47		732.88		0.0		0.0		5.00	P010001
1590.0	170.0		170.0		4347.52					P010002
22600.0	0.0		204.0		610.0		0.0		7.0	P010003
404.0	70.14		70.14		822.0		1.2		2.0	P010004
3860.0	0.0		202.0		202.0		0.0			P010005
299.84	43.8		43.8		136.8		1.3		1.0	P010006
1508.2	0.0		150.0		145.0		0.0			P010007
199.22	66.0		66.0		1045.96		1.3		4.0	P010008
3421.2	1800.0		1344.96		55.0		100.0			P010009
3228.0	0.373									P010010
0011-63	-5.58		4.89		25.0					P010011
0.4	0.1195		450.0		48.0		380.04		310.3	P010012
0.4	0.11		641.6		404.6		240.7		186.3	P010013
928.03	959.7		131.89							P010014
64A010.5	0.0		0.105		25.0		1.1			P010015
29.0	11.4		0.35		171.15		115.5		893.74	P010016
1512.0	0.0		276.0		0.0					P010017
64A013	0.0		0.13		35.0		1.1			P010018
38.5	22.5		0.60863		273.17		219.7		819.4	P010019
64A010	0.0		0.1		73.0		1.3			P010020
73.0	72.0		0.99		200.0		200.0		223.24	P010021
64A010	0.0		0.1		73.0		1.3			P010022
73.0	72.0		0.99		200.0		200.0		214.88	P010023
12	0	21					000000111111			P010024
0.6	-2.47683	0.0		28.0	0.0		1.0			P010025
0.7	-2.47683	0.0		28.0	0.0		1.0			P010026
0.75	-2.47683	0.0		28.0	0.0		1.0			P010027
0.775	-2.47683	0.0		28.0	0.0		1.0			P010028
0.8	-2.47683	0.0		28.0	0.0		1.0			P010029
0.81	-2.47683	0.0		28.0	0.0		1.0			P010030
0.6	-2.47683			28.0	0.0		1.0			P010031
0.7	-2.47683			28.0	0.0		1.0			P010032
0.75	-2.47683			28.0	0.0		1.0			P010033
0.775	-2.47683			28.0	0.0		1.0			P010034
0.8	-2.47683			28.0	0.0		1.0			P010035
0.81	-2.47683			28.0	0.0		1.0			P010036
0.6	-2.47683			28.0	0.0		1.0			P010037
0.7	-2.47683			28.0	0.0		1.0			P010038
0.75	-2.47683			28.0	0.0		1.0			P010039
0.775	-2.47683			28.0	0.0		1.0			P010040
0.8	-2.47683			28.0	0.0		1.0			P010041
0.81	-2.47683			28.0	0.0		1.0			P010042
END OF INPUT										
END										

GENERAL DYNAMICS
F-104 PROCEDURE #17

CONVAIR AEROSPACE DIVISION
PROBLEM 165029-01

FORT WORTH OPERATION
71/10/74 PAGE 001

EMPIRICALLY BASED COMPUTER PROGRAM
TO PREDICT THE AERODYNAMIC CHARACTERISTICS
OF LARGE AIRCRAFT

C-141A FLIGHT TEST ANALYSIS NASA CR - 1558

KFFINT(12) = 4

GENERAL AERODYNAMICS

CCAVAP/AEROSPACE DIVISION
PROBLEM 18529-D1FORT WORTH OPERATION
51/10/74 PAGE 072

PROC 1. INPUT PARAMETERS

MPC VS = 1 MACS = 1 NSURFS = 5 NHT = 1 NVT = 1 ISHP = 0 NPMLS = 2
 SREF = 3228.000 SC.FT. CMAC = 266.472 IN. FUS. STA. C.G. = 732.000 IN. ZCG = 0 JRN IN.

NO. SLEEN SHID BHGT BAWET RAMX BABS BLNS BLBT BASE BD EHO

1	1890.000	175.000	4347.522	22667.000	0.000	294.000	610.000	0.000	1.000
2	464.000	75.140	822.000	3865.000	0.000	262.000	202.000	0.000	1.000
3	299.000	43.800	136.000	1575.300	0.000	150.000	145.000	0.000	2.000

NO. ELEN SHIC E+GT EAWET CAMX EIN EXIT ELNS ELBT EOF EHO

1	199.220	66.000	66.000	9045.900	3422.200	1090.000	1366.950	99.000	1.000
									4.000

AIRFOIL TYPE = N-11-53 TWIST = -5.587 DEG. INCIDENCE = 4.691 DEG.

WING PANEL GEOMETRY NO. CAMEFD T/C XLE VN C3W CBAR ANET

1	0.4ft	110	45.000	48.000	367.000	315.300	3134.210		
2	0.4ft	111	641.600	404.600	247.700	186.300	2932.200		
			928.030	959.770	131.690				

GEOMETRY FOR ADDITIONAL AIRFOIL SURFACES

AIRFOIL	CAMFO	T/C	SMTSH	SHF	L.E.SWF	T.O.SHP	TAFER	CR	SBAR	SADET
64A11P.	Normal	.115	25.000	1.000	29.000	11.400	*350	171.151	115.500	693.741
FLAT 13	Relax	.130	35.000	1.000	36.500	22.500	*679	271.171	249.700	
FLAT 13	Normal	.110	75.000	1.711	73.000	72.000	*990	271.171	249.700	819.41
64A11C	Normal	.110	73.000	1.300	73.000	72.000	*990	271.171	249.700	225.241

12 DRAG POLARS TC BE GENERATED AT THE FOLLOWING CONDITIONS
MACH NO. ALTITUDE TAIL SETTING L.E. SHEEF FRCH CL TO CL

•600	-2.477	0.000	29.000	0.000	0.000	1.000
•700	-2.477	0.000	28.500	0.000	0.000	1.000
•750	-2.477	0.000	28.000	0.000	0.000	1.000
•775	-2.477	0.000	26.000	0.000	0.000	1.000
•800	-2.477	0.000	28.000	0.000	0.000	1.000
•810	-2.477	0.000	28.000	0.000	0.000	1.000
•850	-2.477	0.000	28.000	0.000	0.000	1.000
•860	-2.477	0.000	28.000	0.000	0.000	1.000
•870	-2.477	0.000	28.000	0.000	0.000	1.000
•875	-2.477	0.000	28.000	0.000	0.000	1.000
•880	-2.477	0.000	28.000	0.000	0.000	1.000
•890	-2.477	0.000	28.000	0.000	0.000	1.000
•900	-2.477	0.000	28.000	0.000	0.000	1.000
•910	-2.477	0.000	28.000	0.000	0.000	1.000
•920	-2.477	0.000	28.000	0.000	0.000	1.000
•930	-2.477	0.000	28.000	0.000	0.000	1.000
•940	-2.477	0.000	28.000	0.000	0.000	1.000
•950	-2.477	0.000	28.000	0.000	0.000	1.000
•960	-2.477	0.000	28.000	0.000	0.000	1.000
•970	-2.477	0.000	28.000	0.000	0.000	1.000
•975	-2.477	0.000	28.000	0.000	0.000	1.000
•980	-2.477	0.000	28.000	0.000	0.000	1.000
•985	-2.477	0.000	28.000	0.000	0.000	1.000
•990	-2.477	0.000	28.000	0.000	0.000	1.000
•995	-2.477	0.000	28.000	0.000	0.000	1.000
•998	-2.477	0.000	28.000	0.000	0.000	1.000
•999	-2.477	0.000	28.000	0.000	0.000	1.000
•9995	-2.477	0.000	28.000	0.000	0.000	1.000
•9999	-2.477	0.000	28.000	0.000	0.000	1.000

GENERAL DYNAMICS
REGN FORCECLP-211

CONVAIR AFSCSPACER DIVISION
PROBLEM 1AF5929-01

FORT WORTH OPERATION
01/10/74 PAGE 10-3

END OF INFILE *****

CO 1
CITY OF NEW YORK
DEPARTMENT OF FINANCIAL
SERVICES

GENERALYNAMICS
B&W F6C/CFLR 24T

CONVATO AEROSPACE DIVISION
PO BOX 185829-L1

FORT WORTH OPERATION
01/10/74 PAGE 445

CONFIGURATION SUMMARY

	LENGTH (FT.)	WETTED AREA (SD. FT.)	FR OR T/C	INTERFERENCE FACTOR	MAX. T/C SWEET (DEG.)
PCDY NUMBER 1	132.59101	4767.52211	9.35294	1.00000	
PCDY NUMBER 2	13.66667	52.11111	5.75991	1.20000	
PCDY NUMBER 3	24.99667	136.86103	6.04565	1.30000	
NACELLE NO. 4	16.60167	165.95303	3.01868	1.30000	
WING PANEL NO. 1	16.0	11951		25.0001	
WING PANEL NO. 2	25.05372	2134.20000	*11000	25.0001	
AIFFOIL SURFACE NC. 2	15.52501	2032.20000	*10500	35.0001	
AIFFOIL SURFACE NC. 3	9.62510	893.74000	*13500	1.30000	
AIFFOIL SURFACE NC. 4	16.35833	819.40000	*11000	1.30000	
AIFFOIL SURFACE NC. 5	16.66667	223.24300	*11000	1.30000	
AIFFOIL SURFACE NC. 6	16.66667	214.80000	*11000	1.30000	

4-DIGIT AIRFOIL SECTION

FOR 100TH DEGREE APP

CONVENTIONAL DIVISION

FACT CRITICAL TABLE

CL. FACT CRITICAL

1.000	6555
1.007	6707
1.014	6859
1.021	7011
1.028	7163
1.035	7315
1.042	7467
1.049	7619
1.056	7771
1.063	7923
1.070	8075
1.077	8227
1.084	8379
1.091	8531
1.098	8683
1.105	8835
1.112	8987
1.119	9139
1.126	9291
1.133	9443
1.140	9595
1.147	9747
1.154	9899
1.161	10051
1.168	10203
1.175	10355
1.182	10507
1.189	10659
1.196	10811
1.203	10963
1.210	11115
1.217	11267
1.224	11419
1.231	11571
1.238	11723
1.245	11875
1.252	12027
1.259	12179
1.266	12331
1.273	12483
1.280	12635
1.287	12787
1.294	12939
1.301	13091
1.308	13243
1.315	13395
1.322	13547
1.329	13699
1.336	13851
1.343	14003
1.350	14155
1.357	14307
1.364	14459
1.371	14611
1.378	14763
1.385	14915
1.392	15067
1.399	15219
1.406	15371
1.413	15523
1.420	15675
1.427	15827
1.434	15979
1.441	16131
1.448	16283
1.455	16435
1.462	16587
1.469	16739
1.476	16891
1.483	17043
1.490	17195
1.497	17347
1.504	17499
1.511	17651
1.518	17803
1.525	17955
1.532	18107
1.539	18259
1.546	18411
1.553	18563
1.560	18715
1.567	18867
1.574	19019
1.581	19171
1.588	19323
1.595	19475
1.602	19627
1.609	19779
1.616	19931
1.623	20083
1.630	20235
1.637	20387
1.644	20539
1.651	20691
1.658	20843
1.665	20995
1.672	21147
1.679	21299
1.686	21451
1.693	21603
1.700	21755
1.707	21907
1.714	22059
1.721	22211
1.728	22363
1.735	22515
1.742	22667
1.749	22819
1.756	22971
1.763	23123
1.770	23275
1.777	23427
1.784	23579
1.791	23731
1.798	23883
1.805	24035
1.812	24187
1.819	24339
1.826	24491
1.833	24643
1.840	24795
1.847	24947
1.854	25099
1.861	25251
1.868	25403
1.875	25555
1.882	25707
1.889	25859
1.896	26011
1.903	26163
1.910	26315
1.917	26467
1.924	26619
1.931	26771
1.938	26923
1.945	27075
1.952	27227
1.959	27379
1.966	27531
1.973	27683
1.980	27835
1.987	28087
1.994	28239
2.001	28391
2.008	28543
2.015	28695
2.022	28847
2.029	29099
2.036	29251
2.043	29403
2.050	29555
2.057	29707
2.064	29859
2.071	30011
2.078	30163
2.085	30315
2.092	30467
2.099	30619
2.106	30771
2.113	30923
2.120	31075
2.127	31227
2.134	31379
2.141	31531
2.148	31683
2.155	31835
2.162	31987
2.169	32139
2.176	32291
2.183	32443
2.190	32595
2.197	32747
2.204	32899
2.211	33051
2.218	33203
2.225	33355
2.232	33507
2.239	33659
2.246	33811
2.253	33963
2.260	34115
2.267	34267
2.274	34419
2.281	34571
2.288	34723
2.295	34875
2.302	35027
2.309	35179
2.316	35331
2.323	35483
2.330	35635
2.337	35787
2.344	35939
2.351	36091
2.358	36243
2.365	36395
2.372	36547
2.379	36699
2.386	36851
2.393	37003
2.400	37155
2.407	37307
2.414	37459
2.421	37611
2.428	37763
2.435	37915
2.442	38067
2.449	38219
2.456	38371
2.463	38523
2.470	38675
2.477	38827
2.484	38979
2.491	39131
2.498	39283
2.505	39435
2.512	39587
2.519	39739
2.526	39891
2.533	40043
2.540	40195
2.547	40347
2.554	40499
2.561	40651
2.568	40803
2.575	40955
2.582	41107
2.589	41259
2.596	41411
2.603	41563
2.610	41715
2.617	41867
2.624	42019
2.631	42171
2.638	42323
2.645	42475
2.652	42627
2.659	42779
2.666	42931
2.673	43083
2.680	43235
2.687	43387
2.694	43539
2.701	43691
2.708	43843
2.715	44005
2.722	44157
2.729	44309
2.736	44461
2.743	44613
2.750	44765
2.757	44917
2.764	45069
2.771	45221
2.778	45373
2.785	45525
2.792	45677
2.799	45829
2.806	45981
2.813	46133
2.820	46285
2.827	46437
2.834	46589
2.841	46741
2.848	46893
2.855	47045
2.862	47197
2.869	47349
2.876	47491
2.883	47643
2.890	47795
2.897	47947
2.904	48099
2.911	48251
2.918	48403
2.925	48555
2.932	48707
2.939	48859
2.946	49011
2.953	49163
2.960	49315
2.967	49467
2.974	49619
2.981	49771
2.988	49923
2.995	50075
3.002	50227
3.009	50379
3.016	50531
3.023	50683
3.030	50835
3.037	50987
3.044	51139
3.051	51291
3.058	51443
3.065	51595
3.072	51747
3.079	51899
3.086	52051
3.093	52203
3.100	52355
3.107	52507
3.114	52659
3.121	52811
3.128	52963
3.135	53115
3.142	53267
3.149	53419
3.156	53571
3.163	53723
3.170	53875
3.177	54027
3.184	54179
3.191	54331
3.198	54483
3.205	54635
3.212	54787
3.219	54939
3.226	55091
3.233	55243
3.240	55395
3.247	55547
3.254	55699
3.261	55851
3.268	56003
3.275	56155
3.282	56307
3.289	56459
3.296	56611
3.303	56763
3.310	56915
3.317	57067
3.324	57219
3.331	57371
3.338	57523
3.345	57675
3.352	57827
3.359	57979
3.366	58131
3.373	58283
3.380	58435
3.387	58587
3.394	58739
3.401	58891
3.408	59043
3.415	59195
3.422	59347
3.429	59499
3.436	59651
3.443	59803
3.450	59955
3.457	60107
3.464	60259
3.471	60411
3.478	60563
3.485	60715
3.492	60867
3.499	61019
3.506	61171
3.513	61323
3.520	61475
3.527	61627
3.534	61779
3.541	61931
3.548	62083
3.555	62235
3.562	62387
3.569	62539
3.576	62691
3.583	62843
3.590	62995
3.597	63147
3.604	63299
3.611	63451
3.618	63603
3.625	63755
3.632	63907
3.639	64059
3.646	64211
3.653	64363
3.660	64515
3.667	64667
3.674	64819
3.681	64971
3.688	65123
3.695	65275
3.702	65427
3.709	65579
3.716	65731
3.723	65883
3.730	66035
3.737	66187
3.744	66339
3.751	66491
3.758	66643
3.765	66795
3.772	66947
3.779	67099
3.786	67251
3.793	67403
3.800	67555
3.807	67707
3.814	67859
3.821	68011
3.828	68163
3.835	68315
3.842	68467
3.849	68619
3.856	68771
3.863	68923
3.870	69075
3.877	69227
3.884	69379
3.891	69531
3.898	69683
3.905	69835
3.912	69987
3.919	70139
3.926	70291
3.933	70443
3.940	70595
3.947	70747
3.954	70899
3.961	71051
3.968	71203
3.975	71355
3.982	71507
3.989	71659
3.996	71811
4.003	71963
4.010	72115
4.017	72267
4.024	72419
4.031	72571
4.038	72723
4.045	72875
4.052	73027
4.059	73179
4.066	73331
4.073	73483
4.080	73635
4.087	73787
4.094	73939
4.101	74091
4.108	74243
4.115	74395
4.122	74547
4.129	74699
4.136	74851
4.143	75003
4.150	75155
4.157	75307
4.164	75459
4.171	75611
4.178	75763
4.185	75915
4.192	76067
4.199	7

GENERAL FLIGHT TEST

CONVENTIONAL DIVISION

FOR 1974 PREPARATION

C-141A FLIGHT TEST ANALYSIS NASA CR - 15FA
MACP AC = .701 RR/FT = 2.476AF/AC

L.E. SHEET ANGLE = 7.04 DEG.
TRIMMED CONDITION

CL.	TOTAL CD	0H	ALPHA	CD LIFT	CD RAFT	CL AT DH=0	CD AT DH=0
.021	.11646	1.47497	-5.95	.36125	.61194	.11716	.01716
.051	.11627	1.31974	-4.61	.20112	.51170	.01660	.01660
.116	.11621	1.15097	-4.18	.01135	.01164	.01656	.01656
.164	.11642	.999966	-3.74	.01134	.01134	.01671	.01671
.212	.11692	.83462	-3.31	.01189	.01137	.01713	.01713
.259	.11775	.67748	-2.87	.01171	.01125	.01762	.01762
.307	.11870	.51565	-2.43	.01277	.01134	.01678	.01678
.355	.12011	.35737	-2.01	.01651	.01134	.01713	.01713
.403	.12151	.15665	-1.55	.01569	.01134	.02159	.02159
.451	.12236	.02762	-1.12	.01752	.01137	.02326	.02326
.498	.12525	-.11561	-0.69	.01966	.01177	.02528	.02528
.546	.12749	-.29999	-0.25	.01212	.01169	.02756	.02756
.594	.12997	-.46214	+1.1	.01463	.01161	.03112	.03112
.641	.13227	-.62910	+0.62	.01751	.01155	.03297	.03297
.689	.13557	-.79757	+1.16	.02165	.01146	.03671	.03671
.737	.13919	-.95871	+1.49	.02476	.01142	.03936	.03936
.784	.14234	-.11245	+1.97	.02772	.01137	.04297	.04297
.832	.14641	-.12898	+2.37	.03164	.01168	.04726	.04726
.871	.15162	-.14557	+2.67	.03582	.01192	.05261	.05261
.919	.15804	-.16217	+2.94	.04026	.01212	.05925	.05925
.957	.16560	-.17881	+3.68	.04496	.01227	.06716	.06716

CLB = +11.64 PER NEG.
K = .01164
CFL = -.01164

CLB = 1.29036
CLMAX = 1.2879

DRA G EPEAKDOWN -----
FRICTION = .71057
FCP = .01174
INTERF = .01212
WAVE = .01212
PASE = .01212
CABER = .01212
CPAC RISER spring
PIPE = .01212
FUMA = .01212

FUSAGE	BONIES	NACELLES	WING	HORIZ TAIL	VERT TAIL	SURFACES
.01232	.01162	.01175	.01422	.01169	.01158	.01158
.01174	.01199	.01098	.01112	.01113	.01105	.01105
.01212	.01177	.01115	.01125	.01119	.01113	.01113
.01212	.01177	.01115	.01125	.01119	.01113	.01113
.01212	.01177	.01115	.01125	.01119	.01113	.01113

Table 3 SAMPLE PROBLEM 2

NACA TN D-7034 4-ENGINE STOL TRANSPORT (HIGH WING)							005573P060001
1 1111 1111 1111							005573P060002
FORMAT INPUT							005573P060003
1	0	3	1	1	0	1	005573P060004
5.143		11.28	27.09		-3.73		005573P060005
68.268		10.404	9.504				005573P060006
		0.0	12.15	25.2	0.0		005573P060007
7.0		0.3	29.0	5.143	-5.05	2.85	005573P060008
66-012		0.0	0.12	24.27	14.7692	4.75	005573P060009
25.0							005573P060010
66-012		0.0	0.12	7.5	1.0		005573P060011
12.5		-7.5	0.44	9.816			005573P060012
58.255		0.0	17.67	0.0			005573P060013
66-012		0.0	0.12	22.0	1.0		005573P060014
27.0		6.0	0.52	14.628			005573P060015
D.S. FLAP			SLAT				005573P060016
0.134		1.0	0.16	0.134	1.0	0.15	005573P060017
0.38							005573P060018
	0	1					005573P060019
30.0		30.0	1.16	19.0	1.1		005573P060020
1.14							005573P060021
END OF INPUT							005573P060022
SAVE							005573P060023
NACA TN D-7034 PARTIAL SPAN FLAP							005573P060024
	1						005573P060025
\$STOL BF10=0.75\$							005573P060026
END OF PROBLEM							005573P060027

CC = 00027

GENERAL DYNAMICS
66CC PROCEDURE KIT

CONVAIR AEROSPACE DIVISION
PROBLEM 00557-3-6

FORT WORTH OPERATION
10/30/73 PAGE 00G2

EMPIRICALLY BASED COMPUTER PROGRAM
TO PREDICT THE AERODYNAMIC CHARACTERISTICS
OF LARGE AIRCRAFT

NACA TN 0-7654 4-ENGINE STOL TRANSPORT (HIGH WING)

KPRINT(1) = 1
KPRINT(11) = 1
KPRINT(12) = 1
KPRINT(13) = 1
KPRINT(14) = 1
KPRINT(16) = 1
KPRINT(17) = 1
KPRINT(18) = 1
KPRINT(19) = 1
KPRINT(24) = 1
KPRINT(25) = 1
KPRINT(26) = 1
KPRINT(27) = 1

GENERAL PROCEDURES **CUNIBRAPER SPANWISE DIVISION** **1934-1935 PREPARATORY**

PROBLEM INPUT PARAMETERS

NBODYS = 1 NNACS = 4 NSURFS = 3 NHT = 1 NVT = 1 ISWP = 1 NPMLS = 1
 SREF = 5.143 SQ.FT. CHAC = 11.280 IN. FUS. STA. C.G. = 27.090 IN. ZCG = -3.730 IN.

NO.	dLEN	BWID	BHGT	BAMX	BAES	BLNS	BLBT	BASE	SA	BWD
1	08.268	1.6434	9.544	-0.010	-3.000	0.060	12.150	25.200	1.000	1.000

ASPECT RATIO = 7.10 TAHER RATIO = .3100 L.E.SWEET = 29.000 PLANFORM AREA = 5.14 SQ.FT.

WIST = -5.0 DEG. INCIENCE = 2.050 DEG. CAMBER = 0.0000 THICKNESS = .1200
 AIRFULL TYPE = 66-12 CAMBER = 0.0000 THICKNESS = .1200
 WING LOCATION (X,Y) = 24.2700 14.7692 FUSelage INTERSECTION = 4.7500
 MAX. THICKNESS SWP. = 25.0000 CdAR = -1.0000 ANET = -0.3100

GEOMETRY FOR ADDITIONAL AIRFOIL SURFACES

AIRFULL	CAMBER	T/C	SMTSH	SMF	L.E. SMP	1.E. SMP	TAPER	CR	SEAR	SAWT
66-1-2	.0-.3	.12	7.500	.0.000	42.500	-7.000	.440	9.816	-0.000	.0.000
66-1-12	.0-.0	.120	22.000	1.000	27.000	6.000	.520	14.626	-0.000	-0.000

END OF INPUT

GENERAL DYNAMICS
PROCEDURE R11

CONVAIR AEROSPACE DIVISION
PROBLEM UNIT 3-6

FORT WORTH OPERATION
11/30/73 PAGE 764

GENERAL DYNAMICS
600 PROGRESS

**GUNNAR AERUSPALE DIVISION
PROBLEM 60557 J-46**

FOR MORTH OPERATION
11/30/73 PAGE 005

CONFIGURATION SUMMARY

Reproduced from
best available copy.

GENERAL DYNAMICS
66600 PROGRESS ST.
CONVAIR AEROSPACE DIVISION
PROBLEM 60557-3-16.

FORT WORTH OPERATION
10/30/73 PAGE 006

GENERAL DYNAMICS
660C PROCEDURE RIT

CONVAIR AEROSPACE DIVISION
PROBLEM 005573-06
FORT WORTH OPERATION
13/30/73 PAGE 007

1.3250.	1.31.00	1.28570	1.28330	1.041345	-0.23390	6.12546
CMDN UUHF	"	*0.2304	*0.2265	*0.01693	0.03.070	6.24112
-5.05.00	"	*4.4539	*3.3453	-0.00449	*9.063	12.000 J.0.0J0
4.14.724						
WBAC DUMP	.52349	-0.85180	*0.625	*0.0785	*.37379	*43528
CUL2 DUMP	*61132	*0.9522	*23301	1.0.000	*17038	
*2.0000	J.0.J.J.J	0.0.000	*0.0679	0.0.0000	*19579	*91263
AERA DUFF HIGH	*93166	*J*654	1.0.0057			
J.0.J.J.L	HIGH ASPECT RATIO	2.0.5362	7.0.0000	*0.26671	1.11346	*74785
SSET DUMR	*13277	2.0.0362				3.61475
3.05725	1.0.52946	*29814	*.6.410	*.0.4650	*69475	1.000.0
*19657	*1.46040	1.0.1000	2.0.1237	1.24190	*J.0.0J0	*77.0
*54970	*0.00000	4.99879	4.0.31481	*0.00000	*.07952	*04993
*0.00000	*27533	*33018	*6.000	1.5.8543	*.33737	*2.0674
*0.00000	*0.9436	*0.07126	*0.000	2.3.3591	*.14.22	1.0.3727
1.0.69581	*9.000	*3.0.010	2.0.000	3.0.0000	3.0.0000	0.0000
19.0.0.0.J	*13793	*32759	0.0.0000	*13636	7.0.2240	*07890

GENERAL DYNAMICS
6600 PROCEDEUR R1T

CONVAIR AEROSPACE DIVISION
PROBLEM 005573-46

HIGH LIFT CONSTANTS

ZKD =	.014111	ZKC =	.106656
ZKJF =	.821255	ZKIF =	.257277
ZKLS =	-.6497	ZKMS =	.694746
ZKLF =	2.21473		

SMPHL =	.391467	ZMD =	.03724
ZKF =	.16200	ZDC =	.206210
AK =	7.00000	ZFR =	.311111
ZCL =	0.00000		

ZODMIN =	.329376	ZODI =	.046105
ZODJF =	.623149	ZODL =	.033333
ZODC =	.661142		

ZCHMF =	-.874933
ZCHCS =	.136419
ZCHC =	-.631826

FORT WORTH OPERATION
10/30/73 PAGE #08

ZKA =	.276285
ZKLE =	.506445
AK =	.667792

ZKOS =	.000000
ZCLF =	.276826

GENERAL DYNAMICS
6660 PROCEDURE R1T
CONVAIR AEROSPACE DIVISION
PROBLEM U5557 3-06
HIGH LIFT SURVEY

FOR) WURJ-1 OPERATION
10/30/73 PAGE 0169

HIGH-LIFT SURVEY

ALPHA	B _L	C _D
7.00	1.95779	•4+972
1.00	2.04793	•46795
2.00	2.07970	•49730
3.00	2.08452	•53279
4.00	2.03418	•57416
5.00	2.03982	•62361
6.00	2.04392	•68012
7.00	2.04042	•70914
8.00	2.04732	•80962
9.00	2.04634	•88935
9.42	2.04634	1.08935
NAMELIST INPUT COMPLETE		
GEOMETRY DATA DUMP, COMMON BLOCKS		
6.0054	0.0000	0.0000
6.0054	3.01234	3.00000
5.5271	1.02464	0.00000
6.0054	0.00000	0.00000
5.0051	0.4456	0.30000
6.0054	0.00000	0.00000
6.0054	0.00000	0.00000
6.0054	1.00000	1.00000
5.0051	0.1456	0.00000
6.0054	0.00000	0.00000
6.0054	0.00000	0.00000

CH	ACRD	CLGD	CGC	CMC
-72670	2.1	1.96283	39124	74092
-77365	1.291	2.18319	46266	79993
-82024	2.380	2.19321	4233	66027
-82024	3.457	2.28714	4523	92137
-91240	4.518	2.30492	46772	98297
-96719	5.559	2.42651	52167	114481
-1.0153	6.579	2.47168	56694	1.10671
-1.0657	7.576	2.50161	66284	1.1647
-1.12027	8.548	2.51389	77427	1.2297
-1.17253	3.496	2.51152	9095	1.2914
0.0300	0.0000	0.0000	0.0000	0.0000
0.0300	0.0040	0.0000	0.0000	0.0000
0.0300	0.0011	0.0000	0.0000	0.0000
0.0300	0.0044	0.0000	0.0000	0.0000
0.1319	0.1201	0.0000	0.0000	0.0000
0.0300	0.0011	0.0000	0.0000	0.0000
0.0300	0.0000	0.0000	0.0000	0.0000
0.0300	0.0000	0.0000	0.0000	0.0000
0.0300	0.0000	0.0000	0.0000	0.0000
2.3225	1.1909	0.0000	3956	6642
0.0300	0.0000	0.0000	5561	6642
0.2168	-1.1363	5.1343	2.6595	3.3647

Table 4 SAMPLE PROBLEM 3

WING 1 NASA TN D-5805 Q/C SWP = 25 DEG.	P030001
1	P030002
NAMELIST INPUT	P030003
\$BODY\$ NBODY\$=1, XCG=25.013, BLEN(1)=48.8, BWID(1)=+.9, BHGT(1)=4.9, BLNS(1)=14.0, BLBT(1)=1.0, BASE(1)=0.0\$	P030004
\$NACEL NNACS=0\$	P030005
\$WING SREF=1.5, SPLAN=1.5, NPNLS=1, AR=6.0, TAPR=0.4, SWPLE=28.27, TW=5.0, LAM(1)=5.0, TOC(1)=0.08, XLEH=20.587, YWH=2.45, YD=2.45, CBAR(1)=6.38, SWMT=25.0\$	P030006
\$SURFS NSURFS=1, NHT=1, NVT=0\$	P030007
\$SURV NSURV=7, NHLSV=1, FMSURV(1)=0.225, 0.456, 0.605, 0.717, 0.77, 0.022, 0.883, ALT(1)=-1.5, -2.55, 5*-3.5, DHSV(1)=7*0.0, J, SWPV(1)=7*28.27, CLL0(1)=7*0.0, CLHI(1)=7*1.0, NCLAS=21\$	P030008
\$STOL IHLS=0\$	P030009
SADJUST IVAL(1)=20*0\$	P030010
SAVE	P030011
WING 2 NASA TN D-5805 Q/C SWEEP = 35 DEG.	P030012
1 1	P030013
\$BODY\$ XCG=26.416\$	P030014
\$WING SWPLE=37.663, XLEH=20.6136, SWMT=35.0\$	P030015
SAVE	P030016
WING 3 NASA TN D-5805 Q/C SWEEP = 45 DEG.	P030017
1 1	P030018
\$BODY\$ XCG=28.02\$	P030019
\$WING SWPLE=47.01, XLEH=21.964, SWMT=45.0\$	P030020
SAVE	P030021
WING 4 NASA TN D-5805 Q/C SWEEP = 35 DEG. T/C = 0.06	P030022
1 1 1	P030023
\$BODY\$ XCG=26.418\$	P030024
\$WING SWPLE=37.66, XLEH=20.6136, SWMT=35., TOC(1)=3.06\$	P030025
\$SURV FMSURV(1)=0.292, 0.5, 0.702, 0.755, 0.807, 0.863, 0.932, ALT(1)=-1.8, -2.7, 5*-3.6\$	P030026
END	P030027
	P030028
	P030029
	P030030
	P030031
	P030032
	P030033

**EMPIRICALLY BASED COMPUTER PROGRAM
TO PREDICT THE AERODYNAMIC CHARACTERISTICS
OF LARGE AIRCRAFT**

GENERAL DYNAMICS
660C PROJECT R/T

CONVAIR AEROSPACE DIVISION
PRBLEM 186280-03

FORT WORTH OPERATION
10/16/73 PAGE 0102

CONFIGURATION SUMMARY

	LENGTH (FT.)	WETTED AREA (SQ. FT.)	FF OR T/C	INTERFERENCE FACTOR	MAX. T/C SWEET (DEG.)
BODY NUMBER 1	.06667	4.36693	9.95916	1.00000	25.00001
KING PANEL NO. 1	.53167	2.46988	.06000		
6A SERIES AIRFOIL SECTION					

GENERAL DYNAMICS
BEND FROCCURE KIT

CONVAIR AEROSPACE DIVISION
PROBLEM 1b028u-u3.

MACH CRITICAL TABLE

CL MACH CRITICAL

.00000	.8675
.10000	.8516
.20000	.8351
.30000	.8165
.40000	.7932
.50000	.7656
.60000	.7342
.70000	.6966
.80000	.6576
.90000	.6159
1.00000	.5740

GENERAL DYNAMICS
6600 PROCEDURE RIT

CONVAIR AEROSPACE DIVISION
PROBLEM 10628v-03
FOR 100TH OPERATION
14/16/73 PAGE 216

WING 1 NASA TN D-5875 Q/C SNR = 25 DEG.
MACH NO. = .225 RN/FT = 1.500E+06 L.C. SWEET ANGLE = 21.27 DEG.

CL	TOTAL CD	CH	ALPHA	C/L LIFT	CD RISE	TAIL DEFN. (W) = 0.03 DEG.	CL AT DH=0	CD AT DH=0
0.061	.12249	.0.90000	.0.00	.0.27000	.0.00000	.0.00000	.0.00000	.0.00000
.052	.12475	.0.0331	.61	.33026	.0.00000	.0.00000	.0.00000	.0.00000
.143	.12153	.0.0064	1.22	.0.1114	.0.00000	.0.00000	.0.00000	.0.00000
.153	.12233	.0.00992	1.62	.0.05234	.0.00000	.0.00000	.0.00000	.0.00000
.264	.12405	.0.01223	2.43	.0.04416	.0.00000	.0.00000	.0.00000	.0.00000
.250	.12693	.0.01653	3.64	.0.0551	.0.00000	.0.00000	.0.00000	.0.00000
.304	.12985	.0.01984	3.65	.0.09317	.0.00000	.0.00000	.0.00000	.0.00000
.353	.13324	.0.02315	4.26	.0.11275	.0.00000	.0.00000	.0.00000	.0.00000
.443	.13714	.0.02645	5.66	.0.01665	.0.00000	.0.00000	.0.00000	.0.00000
.454	.14156	.0.02976	5.47	.0.02146	.0.00000	.0.00000	.0.00000	.0.00000
.504	.14651	.0.03307	6.58	.0.02612	.0.00000	.0.00000	.0.00000	.0.00000
.251	.05263	.0.03396	6.74	.0.03214	.0.00000	.0.00000	.0.00000	.0.00000
.664	.16348	.0.03685	7.62	.0.04296	.0.00000	.0.00000	.0.00000	.0.00000
.953	.17493	.0.02449	8.76	.0.05844	.0.00000	.0.00000	.0.00000	.0.00000
.750	.19926	.0.03000	1.13	.0.07676	.0.00000	.0.00000	.0.00000	.0.00000
.754	.12439	.0.03951	11.77	.0.10391	.0.00000	.0.00000	.0.00000	.0.00000
.653	.15439	.0.09092	1.63	.0.13301	.0.00000	.0.00000	.0.00000	.0.00000
.654	.16944	.0.04865	2.75	.0.15651	.0.00000	.0.00000	.0.00000	.0.00000
.954	.22649	.0.10445	23.12	.0.20812	.0.00000	.0.00000	.0.00000	.0.00000
.954	.27277	.0.11026	25.73	.0.25229	.0.00000	.0.00000	.0.00000	.0.00000
1.003	.32185	.0.11606	26.59	.0.30136	.0.00000	.0.00000	.0.00000	.0.00000

CLA = .00023 PER DEG.
K = .10418
CML = C.L. CL = .0661

56

DRAG BREAKDOWN -----

FRICTION	= .01678	FUELAGE	= 0.00000	HACELLES	= 0.00000	WING	= 0.00000	SURFACE	= 0.00000
FORM	= .00175	.0.00079	.0.00010	.0.00000	.0.00000	.0.00000	.0.00000	.0.00000	.0.00000
INTERF	= .00195	.0.00076	.0.00000	.0.00000	.0.00000	.0.00000	.0.00000	.0.00000	.0.00000
WAVE	= 0.00000	.0.00000	.0.00000	.0.00000	.0.00000	.0.00000	.0.00000	.0.00000	.0.00000
BASE	= 0.00000	.0.00000	.0.00000	.0.00000	.0.00000	.0.00000	.0.00000	.0.00000	.0.00000
CAMBER	= 0.00000	.0.00000	.0.00000	.0.00000	.0.00000	.0.00000	.0.00000	.0.00000	.0.00000
DRAG RISE=0.00000									
MISC	= 0.00000								
CDMIN	= .02349								

CLA = .00000 PER DEG.
K = .00000
CML = C.L. CL = .0661

56

CD = .00000

CDMAX = .000178
CLMAX = .000272

WING TAIL
VERT TAIL
SURFACE

4. PROGRAM AND SUBROUTINE DESCRIPTIONS

(arranged in alphabetical order)

This section contains a brief outline of the purpose and use of each program or subroutine.

Subroutine AALO

Purpose

To compute zero lift angle of attack. The zero-lift angle of attack is computed as the sum of the increments due to camber, twist and incidence.

Use

CALL AALO (SPEED)

where speed is the Mach number, the computed value of zero-lift angle is contained in COMMON BLKC01.

Subroutine ACCR

Purpose

ACCR computes the aerodynamic center at low lift and at stall for single panel wings. The subroutine also obtains the lift curve slope of the wing. The low lift aerodynamic center is obtained through use of triple-interpolation of the data presented in Figures 4.1.4.2-22 and -27 in the DATCOM.

Use

CALL ACCR (SPEED, AR, SWPLE, SWPMC, TR, PLAN, TOC, TW,
FMCRO, XACR, CLAX, XACS)

where input is

SPEED	Mach number
AR	Aspect ratio of exposed wing
SWPLE	Leading-edge sweep
SWPMC	Mid-chord sweep
TR	Taper ratio

SPAN	Exposed planform area
TOC	Thickness ratio
TW	Type airfoil section indicator
FMCRO	Zero-lift critical Mach number for complete configuration

and output is

XACR	Low lift aerodynamic center referenced to leading-edge of exposed root chord
CLAX	Lift-curve slope of exposed planform
XACS	Aerodynamic center at stall

Subroutines called

TLNT
AER2
LNTP

Subroutine ADCL

Purpose

To compute the effect of camber on the displacement of the drag polar. For Mach numbers less than 1.0, the lift coefficient for minimum profile drag is computed; for Mach numbers greater than or equal to 1.0, the lift coefficient for minimum drag is computed.

Use

CALL ADCL (SPEED, CLOPT)

where speed is the Mach number and CLOPT is the C_L for minimum profile drag subsonically. Supersonically, CLOPT is the polar displacement C_L for $C_D \text{min}$.

Subroutine ADJUST

Purpose

The subroutine adjusts an aerodynamic parameter, y_1 , to a new value, y_2 , by the equation

$$y_2 = y_1 \cdot V_M + V_A$$

where V_M and V_A are correlation multiplier and adder factors determined from input. The factors V_M and V_A are a function of either Mach number or C_L .

Use

CALL ADJUST (ID, ID2, XVAR, YVAR), where

ID	Parameter identification number for Mach number cases
ID2	Parameter identification number for C_L cases
XVAR	Value of Mach number if ID greater than 0, or value of C_L if ID = 0 and ID2 greater than 0
YVAR	Input value y_1 is changed to output value y_2

Subroutines called

LNTP

Subroutine AERA

Purpose

The subroutine calculates angle of attack for a given untrimmed C_L condition. For supersonic Mach numbers the linear relation

$$\alpha = C_L / C_{L\alpha} + \alpha_{L0}$$

is used. For subsonic conditions the angle of attack is calculated by one of three different methods depending on whether the wing is a high aspect ratio, low aspect ratio or has a cranked leading edge. For low-aspect-ratio and cranked wings the effect of vortex lift is accounted for in the angle calculations.

Use

CALL AERA (SPEED, CL, ALPHA), where

SPEED	Mach number (I)
CL	Lift coefficient (I)
ALPHA	Angle of attack (0)

Subroutines called

DLNT
LNTP

Program AERO

Purpose

This program controls the sequence of calculations required to compute the trimmed lift, drag, moment, and angle of attack for a given set of conditions. The set of conditions are contained in COMMON BLKOV3 as one Mach number, altitude, trim indicator and untrimmed lift coefficient. The trim indicator is used to determine if a fixed horizontal tail setting is specified (in which case moment is calculated) or if the tail setting is calculated to produce a zero moment. The results of the aerodynamic calculations are contained in COMMON BLKC01.

The sequence of the calling of subroutines for aerodynamic calculations is controlled by the parameter JPASS, contained in COMMON BLKOV3, which is defined by program SURVEY. The parameter JPASS is used to prevent calling certain subroutines on repeat passes through AERO if the value they calculate remains fixed. An example would be where lift is the only change in the set of conditions received from COMMON BLKOV3; in this case it is unnecessary to recompute minimum drag for each CL.

Use

CALL OVERLAY (4HOVLY,3,3)

Subroutines called

ADJUST
AERA
AERAL (second entry point in AERA)
AFTCD
ATMOS
CDDR
CDDR1 (second entry point in CDDR)
CDL1
CDL2
CDRG
CLBRK

(AERO continued)

Subroutines called

CLWBT
CMOW
DMIN
TDRG
WBAC

Subroutine AER2

Purpose

AER2 computes the lift-curve slope for a wing surface defined by the data in COMMON BLKCLA. The lift-curve slope is computed using a modified Polhamus expression in the subsonic range which is extended to match the two-dimensional linear-theory value at high supersonic Mach numbers.

Use

CALL AER2 (SPEED, CLA), where

SPEED is the Mach number and
CLA is the computed lift-curve value in per
 degree units

Subroutine AFTCD

Purpose

Subroutine AFTCD computes the drag increment, as a function of alpha, due to the fuselage aft-end upsweep.

Use

CALL AFTCD (ALPHA, CDAFT), where

ALPHA is the angle of attack of the wing
CDAFT is the aft-end drag increment due to
 upsweep angle

Subroutines called

DLNT

Subroutine ATMOS

Purpose

Given a geometric altitude H in feet the following quantities are computed:

T - Temperature in degrees Rankin

SIGMA - Ratio of density to that at sea level

D - Density in Lb-sec²/ft⁴

THETA - Ratio of temperature to that at sea level

DELTA - Ratio of pressure to that at sea level

A - Speed of sound in ft/sec

V - Viscosity coefficient in Lb-sec/ft²

K - Error indicator

Data represents mean annual, mid-latitude, dry air conditions. Data below altitudes of -5000 meters or greater than 90 kilometers is invalid.

The equations and tables used in computation are essentially the same as those used in computing U.S. Standard Atmosphere, 1962, and this routine maintains the same degree of accuracy as the tables in U.S. Standard Atmosphere, 1962.

Use

CALL ATMOS (H, T, SIGMA, D, THETA, DELTA, A, V, K)

Reference

U.S. Standard Atmosphere, 1962; Government Printing Office

Subroutine BDRG

Purpose

To compute the base drag of an arbitrary body. The subroutine uses an empirical equation to determine base drag.

Use

CALL BDRG (SPEED, AB, SREF, CBD), where

SPEED	Mach number (I)
AB	Base area (I)
SREF	Reference area (I)
CDB	Base drag coefficient (O)

BLOCK DATA

Purpose

To define data in COMMON blocks which represent tables and charts that are used in various subroutines.

Subroutine CDDR

Purpose

Subroutine CDDR calculates the drag rise along with defining the two limit Mach numbers and the lift-curve slope at those Mach numbers. The limit Mach numbers and associated lift-curves are used later in subroutine CDL1 to define the polar shape in the transonic region.

CDDR has two entry points, on the first pass through the constants in the drag rise equation are computed along with the two limit Mach numbers and their associated lift-curves. For subsequent passes only the drag rise is computed.

Use

CALL CDDR (CL, XMACH, RNOFT, CDR)
CALL CDDR1

Subroutines called

CLWBT
FDRG
LNTP
WDRG

Subroutine CDL1

Purpose

This subroutine calculates the constants which are used by subroutine CDL2 to determine the drag polar.

Use

CALL CDL1 (SPEED, RNOFT, FK, DELCL, PRIMEK, AKD, AKB), where

SPEED	Mach number (I)
RNOFT	Reynolds no./foot (I)
FK	Polar shape factor below polar break lift coefficient (0)
DELCL	Polar lift displacement (0)
PRIMEK	Additional drag factor for drag polar above polar break (0)
AKD	Theoretical drag-due-to-lift factor (0)
AKB	Separation drag factor used to calculate drag polar above separation lift coefficient (0)

Subroutines called

ADCL
DLNT
KGIN
LNTP

Subroutine CDL2

Purpose

This subroutine computes the drag-due-to-lift using the polar shape factors determined by subroutine CDL1 and the polar break and separation lift coefficients determined by subroutine CLBRK.

Use

CALL CDL2 (SPEED, CL, AEROK, DELCL, PRIMEK, AKD, AKB, CDL), where

SPEED	Mach number (I)
CL	Lift coefficient (I)
AEROK	Polar shape factor below polar break lift coefficient (I)
DELCL	Polar lift displacement (I)
PRIMEK	Additional drag factor for drag polar above polar break (I)
AKD	Theoretical drag-due-to-lift factor (I)
AKB	Separation drag factor (I)
CDL	Drag due to lift (0)

Subroutine CDRG

Purpose

This subroutine calculates the drag increment due to wing camber. Wing camber causes a lift displacement in the drag polar; this displacement lift increment is related to the difference between the minimum profile drag and the minimum drag of the polar.

Use

CALL CDRG (SPEED, AEROK, DELCL, CDC), where

SPEED	Mach number (I)
AEROK	Polar shape factor (I)
DELCL	Polar lift displacement (I)
CDC	Camber drag (O)

Subroutine CDWN

Purpose

This subroutine calculates the nose wave drag of body and nacelle components.

Use

CALL CDWN (AMAX, XLNOS, RIN, CDW), where

AMAX	Maximum cross-sectional area (I)
XLNOS	Length of nose (I)
RIN	Radius of inlet area (I)
CDW	Wave drag of component based on maximum cross-sectional area (O)

Subroutine called

DLNT

Subroutine CDWT

Purpose

This subroutine calculates the boattail wave drag of body and nacelle components.

Use

CALL CDWT (AMAX, XLAFT, REX, CDW), where

AMAX	Maximum cross-sectional area (I)
XLAFT	Length of boattail (I)
REX	Exit or base area (I)
CDW	Wave drag of component based on maximum cross-sectional area (O)

Subroutine called

LNTP

Subroutine CDWW

Purpose

This subroutine calculates the wave drag for airfoil surface components.

Use

CALL CDWW (CDOSR), where CDOSR is the wing wave drag based on the configuration reference area.

Also the data in COMMON BLKWP must be defined prior to calling CDWW. The data in BLKWP is

AR	Aspect ratio of surface based on exposed planform area
ZLAM	Taper ratio of exposed planform
ZLE	Leading-edge sweep
ZTE	Trailing-edge sweep
ZM	Mach number
SOSR	Exposed area to reference area ratio
TYPE	Airfoil type indicator
CAM	Section camber
TOC	Section thickness to chord ratio

Subroutine CFEQ

Purpose

This subroutine calculates the flat-plate skin friction coefficient using the White-Christoph technique for turbulent

flow, the Blasius relation for laminar flow, and a momentum thickness matching technique for partial laminar-turbulent flow.

Use

CALL CFEQ (RNOFT, ZMACH, CBAR, XTR, CF), where

RNOFT	Reynolds number/foot
ZMACH	Mach number
CBAR	Length
XTR	Distance along CBAR where transition occurs
CF	Skin friction coefficient

Subroutine CLBRK

Purpose

Subroutine CLBRK calculates the lift coefficients for polar break, separation drag onset, and maximum lift. The subroutine also calculates other aerodynamic parameters used in subroutine AERA to compute angle of attack as a function of C_L .

Use

CALL CLBRK (SPEED, RE, RNOFT), where

SPEED	Mach number (I)
RE	Reynolds number parameter (I)
RNOFT	Reynolds number/foot (I)

The output, contained in COMMON BLKC01, is defined as,

CLPB	Polar break lift coefficient
CLDB	Separation lift coefficient
CLMAX	Maximum lift coefficient
ABRK	Angle of attack for polar break
AMAX	Angle of attack at CLMAX
DAMAX	Increment in angle of attack between AMAX and a linear value of alpha at CLMAX
DEL	Tail lift increment to CLMAX
CLS	Lift coefficient where CL versus alpha becomes nonlinear
ARLO	Aspect ratio limit between low AR and high AR calculations

Subroutines called

DLNT
LNTP

Subroutine CLWBT

Purpose

CLWBT controls the sequence of calculations that compute the total wing-body-tail lift curve slope, zero lift angle of attack, and the factors used to compute drag and lift increments due to a horizontal tail deflection.

Use

CALL CLWBT (SPEED), where SPEED is the Mach number, the output is contained in COMMON BLKC01.

Subroutines called

AALO
ADJUST
AER2
TAIL

Subroutine CMOW

Purpose

Subroutine CMOW computes the moment at zero-lift for the wing-body configuration.

Use

CALL CMOW (SPEED, CMO), where

SPEED	Mach number (I)
CMO	Wing-body C_m^G

Subroutine called

TLNT

Subroutine CONV

Purpose

CONV converts input data to feet and radian units for the namelist input program NINPT. The subroutine makes the conversion only to the variables that are redefined in the NINPT program.

Use

```
CALL CONV  
CALL CONV1
```

Subroutine CPUOV

Purpose

This subroutine calculates the pressure coefficient, Cp at x/c for an infinite sheared wing. The Cp is obtained by solving Equations (93) and (90) in the Royal Aero. Soc. TDM-6312. The arrays corresponding to S⁽¹⁾(x), S⁽²⁾(x), S⁽³⁾(x), S⁽⁴⁾(x), and S⁽⁵⁾(x) in Equation (93) are obtained from COMMON BLKCPI and were defined in subroutine CPZT.

Use

```
CALL CPUOV (S, A, SWP, IV, CPI, CP, XM), where
```

S	Sign indicator (+1 for upper surface Cp, and -1 for lower surface Cp) (I)
A	Angle of attack (I)
SWP	Sweep angle (I)
IV	Control point, x/c = $\frac{1}{2}(1 - \cos(\frac{IV\pi}{32}))$ (I)
CPI	Incompressible Cp (O)
CP	Compressible value of Cp (O)
XM	Mach number (I)

Subroutine CPZT

Purpose

This subroutine computes the critical Mach number using the local Mach number normal to the isobar in the mid-span region

of the wing. The mid-chord sweep and the aspect ratio of the wing are used to define an effective isobar sweep. The subroutine obtains the airfoil geometry from subroutine SECT and the pressure distribution around the airfoil from subroutine CPUOV. The subroutine then uses the incompressible pressure at the crest of the airfoil and isentropic flow relationships to calculate the critical Mach number on the wing. The predicted wing critical Mach number is prevented from exceeding the critical Mach number of the fuselage which is calculated as a function of fuselage fineness ratio.

Use

CALL CPZT (ID, XMACH, TOC, CLD, SWEEP), where

ID	Type identification of the airfoil (I)
XMACH	Mach number for compressible Cp solutions (I) (set equal to 0.6 in Program MCRIT)
TOC	Airfoil section thickness ratio (I)
CLD	Airfoil section camber (I)
SWEEP	Mid-chord sweep at mid-semi-span of the wing (I)

The output which consists of a series of critical Mach number and lift combinations, increasing from a six-degree angle of attack are contained in COMMON BLKA05.

Subroutines called

CPUOV
LNTP
SECT

Subroutine DAERO

Purpose

This subroutine computes the lift, moment and drag in free air and in ground effect of the high-lift system. Subroutine DAERO uses the incremental effect of flap and leading-edge device computed in subroutines DSET and MSET along with the clean airplane aerodynamics computed by program AERO to compute the total lift, drag and moment versus angle of attack in both free air and ground effect.

Use

CALL DAERO (ALPHA, CL, CD, CM, AGRD, CLG, CDG, CMG, H, DF), where

ALPHA	Angle of attack (I)
CL	Lift coefficient (O)
CD	Drag coefficient (O)
CM	Moment coefficient (O)
AGRD	Angle of attack in ground effect (O)
CLG	Lift coefficient in ground effect (O)
CDG	Drag coefficient in ground effect (O)
CMG	Moment coefficient in ground effect (O)
H	Height of wing $\bar{c}/4$ point above ground (I)
DF	Flap deflection (I)

Subroutines called

DLNT
LNTP

Function DLNT

Purpose

DLNT is a two-dimensional, nth-order Lagrangian interpolation procedure.

Use

CALL DLNT (XBAR, YBAR, X, Y, F, NX, NY, NXMAX, LOX, LOY),
where

XBAR	The X value at which a value of the function is to be interpolated (I)
YBAR	The Y value at which a value of the function is to be interpolated (I)
X	The array of X values (I)
Y	The array of Y values (I)
F	The values of the function $f(x,y)$ (I)
NX	The size of the X array and the F array in the X direction (I)
NY	The size of the Y array and the F array in the Y direction (I)
NXMAX	The dimension of the F array in the X direction in the calling routine (I)
LOX, LOY	Number of points to be used in the X and Y directions, respectively, in the interpolations: 1 for step, 2 for linear, 3 for parabolic, 4 for cubic, etc. (I)

Subroutine called

LNTP

Subroutine DMIN

Purpose

Subroutine DMIN controls the sequence of calculations necessary to compute minimum drag.

Use

CALL DMIN (SPEED, RNOFT, CDMIN), where

SPEED	Mach number (I)
RNOFT	Reynolds number/ft (I)
CDMIN	Minimum drag (O)

Subroutines called

ADJUST
BDRG
FDRG
WDRG

Subroutine DSET

Purpose

Subroutine DSET computes the incremental lift and drag of flaps and leading-edge devices. This subroutine uses the two-dimensional section data calculated in subroutine SSET along with the geometry of the high lift system in order to compute the incremental effect on the airplane.

Use

CALL DSET (BFI, BFO, BSI, BSO, CF), where

BFI	Inboard span station of flap (I)
BFO	Outboard span station of flap (I)
BSI	Inboard span station of leading-edge device (I)
BSO	Outboard span station of leading-edge device (I)
CF	Chord ratio of trailing-edge flap (I)

The output is contained in COMMON BLKCO2 where

DCL0F	Increment in lift at zero angle of attack due to flap deflection
DCLOS	Increment in lift at zero angle of attack due to leading-edge device
DCLMF	Increment in maximum lift due to flap deflection
DCLMS	Increment in maximum lift due to leading-edge device
DCDMIN	Increment in minimum drag due to high-lift system
DCLF	Displacement in drag polar due to flap deflection
DCLS	Displacement in drag polar due to leading-edge device
SPLANX	Planform area with high-lift system deployed
RCLA	Ratio of lift curve slope with high-lift system to clean airplane lift-curve slope.

Subroutines called

DLNT
LNTP

Subroutine FDRG

Purpose

This subroutine calculates friction, form and interference drag for all the components on the airplane.

Use

CALL FDRG (SPEED, RNOFT), where

SPEED	Mach number (I)
RNOFT	Reynolds number/ft (I)

The output is contained in COMMON BLKC01.

Subroutines called

CFEQ
FFACT
IFACT

Subroutine FFACT

Purpose

Subroutine FFACT computes the form factors for each component.

Use

CALL FFACT (ID, GEOM, TYP, CLD, SPEED, CRITM, FF), where

ID	Identification for bodies, nacelles, or surface components (I)
GEOM	Fineness ratio for bodies and nacelle components; or thickness ratio for surface components (I)
TYP	Airfoil type identification number (I)
CLD	Airfoil camber (I)
SPEED	Mach number (I)
CRITM	Critical Mach number of configuration (I)
FF	Form factor (O)

Program GEOM

Purpose

Program GEOM computes many of the geometric parameters that are used in aerodynamic calculations. The geometry that was read in as input is used to calculate the additional geometry needed for aerodynamic calculations. The input geometry is contained in COMMON's BLKA01, BLKA02, and BLKA03 and the geometry calculated in program GEOM is output in COMMON BLKG01.

Use

CALL OVERLAY (4HOVLY, 2, 0)

Subroutine IFACT

Purpose

Subroutine IFACT computes the interference factors for each component.

Use

CALL IFACT (ID, PARM, CRITM, SPEED, FI), where

ID	Identification for bodies or surface components (I)
PARM	Fuselage Reynolds number for bodies, or maximum thickness sweep for surface components (I)
CRITM	Critical Mach number of configuration (I)
SPEED	Mach number (I)
FI	Interference factor (0)

Subroutine called

DLNT

Program INPT

Purpose

The configuration geometry and the aerodynamic conditions to be run are read in using formatted input statements. The program also converts the input data from inch and degree units to feet and radians.

Use

CALL OVERLAY (4HOVLY, 1, 1)

Subroutine KGIN

Purpose

This subroutine computes the polar shape factor and polar displacement for a drag polar with drag rise added. A least-squares, second-degree curve is fitted to the drag polar with drag rise. This is needed by subroutine CDL1 in order to interpolate the polar shape in the transonic region between M_{L1} and M_{L2} .

Use

CALL KGIN (CLDB, AKIN, DECLIN, SPEED, AKOUT, DCLOUT), where

CLDB	Upper C_L limit for polar calculation (I)
AKIN	Polar shape factor without drag rise (I)
DECLIN	Polar displacement C_L without drag rise (I)

SPEED	Mach number (I)
AKOUT	Equivalent polar shape factor with drag rise (0)
DCLOCUT	Equivalent polar displacement with drag rise (0)

Subroutines called

CDDR1
LSPCF

Subroutine LNTP

Purpose

LNTP is a one-dimensional, nth-order Lagrangian interpolation procedure.

Use

CALL LNTP (XBAR, YBAR, X, Y, M, NO), where

XBAR	The abscissa value at which an ordinate is to be interpolated (I)
YBAR	The interpolated ordinate (0)
X	The array of abscissas (I)
Y	The array of ordinates (I)
M	The size of the arrays (I)
NO	The number of points to be used in the interpolation. NO=1 for step, NO=2 for linear, NO=3 for parabolic, NO=4 for cubic, etc. (I)

Program LSHL

Purpose

LSHL controls the sequence of calculations to produce lift, moment, and drag variations with angle of attack for each low-speed, high-lift survey condition specified by the input. For each high-lift survey, the program computes the incremental effect for an inboard and an outboard high-lift system segment. The program then sets up a DO LOOP to calculate the total lift, drag and moment for changing angle of attack up to CLMAX.

Use

CALL OVERLAY (4HOVLY, 3, 4)

Subroutines called

DAERO
DSET
MSET
SSET

Program MCRIT

Purpose

Program MCRIT constructs a table of critical Mach number versus C_L from either an input table or by using an empirical method.

Use

CALL OVERLAY (4HOVLY, 3, 2)

Subroutines called

ADJUST
CPZT
LNTF

Program MRIT (MAIN PROGRAM)

Purpose

This program controls the logic of the calling of the three primary overlays. The lengths of the principal COMMON blocks used in all three overlays are also specified in this program.

Programs called

OVERLAY(4HOVLY, 1, 0)	(XINPT)
OVERLAY(4HOVLY, 2, 0)	(GEOM)
OVERLAY(4HOVLY, 3, 0)	(SURVEY)

Subroutine MSET

Purpose

Subroutine MSET computes the incremental moment at zero lift of flaps and leading-edge devices. This subroutine uses the two-dimensional section data calculated in Subroutine SSET along with the geometry of the high-lift system in order to compute the incremental effect on the airplane.

use

CALL MSET (BFI, BFO, BSI, BSO), where

BFI	Inward span station of flap (I)
BFO	Outward span station of flap (I)
BSI	Inward span station of leading-edge device (I)
BSO	Outboard span station of leading-edge device (I)

The output is contained in COMMON BLKC(2) where,

DCMO	Increment in C_m due to high-lift system
CDMCL	Increment in slope of the moment versus lift curve

Subroutines called

DLNT

Subroutine MTXEQ

Purpose

MTXEQ solves a set of simultaneous equations. This subroutine will solve the matrix equation $AX = B$ for the unknown matrix X. The dimensions of the matrices must be:

A: NxN B: NxM

where M is the number of B vectors to be transformed into X vectors. At the same time, this subroutine computes a scaled version of the determinant of the matrix A.

The solution of the matrix equation $AX = B$ is accomplished by upper triangularizing the A matrix using a maximum row element as a pivot point for each stage in the reduction of the matrix A.

This entails searching in the first column of the reduced (N-K) x (N-K) A matrix for the element whose absolute value is the largest. A row interchange is then performed to bring this element into the A_{KK} position. After completion of the triangularization, back substitution is used to obtain the X matrix.

Use

CALL MTXEQ (A, X, B, N, K), where

A The array containing the elements of the matrix A. Array A must have dimensions NxN.

X The array containing the elements of the matrix X. Array X must have dimensions NxK.

B The array containing the elements of the matrix B. Array B must have dimensions NxK.

N Number of columns and rows in the matrix A.

K Number of columns in the matrix B and X.

Program NINPT

Purpose

The configuration geometry and the aerodynamic conditions to be run are read in using NAMELIST input statements. The program calls subroutine CONV to convert the input data to feet and radians units. For cases which are to be rerun with only a slight change in input from the previous case, an indicator is used to read only certain sets of namelist data.

Use

CALL OVERLAY (4HOVLY, 1, 2)

Subroutines called

CONV

CONVL (second entry point in CONV)

Subroutine PLSQ

Purpose

To fit a polynomial of degree K to the set of points (X_i, Y_i) for $i = 1, \dots, N$, by the method of least squares.

The method of solution is as follows:

Given a set of N points, coefficients are found such that:

$$Y = C(K+1) + C(K) \cdot X + C(K-1) \cdot X^2 + \dots$$

$$+ C(1) \cdot X^{K-1} + C(0) \cdot X^K$$

is the best least-square fit to Y_i for an K th degree fit.

PLSQ solves the regression matrix equation by calling MTXEQ.

Use

CALL PLSQ (X, Y, N, K, C, LIST, EMAX, ERMS, EMEQ), where

X	Array of N independent variables
Y	Array of N dependent variables
N	Number of variables
K	Degree of the least-squares polynomial
C	Array of coefficients, high order to low order, of the least-squares polynomial
LIST	Error analysis output indicator =0 suppresses error analysis printout =1 prints error analysis
EMAX	Maximum absolute error obtained by using the least-square fit polynomial to approximate the dependent variable
ERMS	RMS error obtained by using the least-square fit polynomial
EMEQ	Maximum deviation from unity in the linear system check solution

Subroutine called

MTXEQ

Subroutine SECT

Purpose

Subroutine SECT calculates the thickness and camber airfoil ordinates which are used in subroutine CPZT to calculate pressure distributions. SECT can calculate, using internal methods, the section data for the standard NACA 6-series and 4-digit airfoils along with a biconvex and Whitcomb's supercritical airfoil. The subroutine can also obtain the airfoil ordinates at the control points, x/c , needed for pressure solutions by interpolation on a table of input ordinates.

Use

CALL SECT (ID, TOC, CLD), where

ID	Airfoil section identification number (I)
TOC	Airfoil thickness ratio (I)
CLD	Airfoil camber (I)

The output is contained in COMMON BLKR07.

Subroutine called

LNTP

Subroutine SETUP

Purpose

Places initial values of 0.0 in the input and geometry common blocks. This is done to prevent indeterminate values to be used in program calculations if input data did not specify values.

Use

CALL SETUP

Subroutine SSET

Purpose

Subroutine SSET computes the two-dimensional section data used in subroutines DSET and MSET to compute the incremental lift, drag and moment due to a high-lift system. SSI either computes the two-dimensional increments using a empirical modification of thin-airfoil theory, or SSET obtains the two-dimensional increments from input data if available.

Use

CALL SSET (DF, DS, CFOC, CSOC, OTE, ROT), where

DF	An array containing the flap deflection of each element of the trailing-edge flap (I)
DS	Deflection of the leading-edge device (I)
CFOC	An array containing the chord length ratios of each element of the trailing-edge flap (I)
CSOC	Chord length ratio of the leading-edge device (I)
OTE	Airfoil trailing-edge angle (I)
ROT	Airfoil leading-edge radius divided by thickness (I)

The output is contained in COMMON BLKCOL, where

DC1F	Two-dimensional increment in lift at zero angle of attack due to flap deflection
DC1MF	Two-dimensional increment in maximum lift due to flap deflection
DCDFFS	Increment in profile drag due to flap deflection
DCMFS	Two-dimensional increment in momentum at zero alpha due to flap deflection
DC1S	Two-dimensional increment in lift at zero angle of attack due to leading-edge device
DC1MS	Two-dimensional increment in maximum lift due to leading-edge device
DCDSS	Increment in profile drag due to leading-edge device

DCDMSS Two-dimensional increment in moment at
 zero alpha due to leading-edge device

Subroutines called

DLNT
LNTP

Program SURVEY

Purpose

SURVEY controls the sequence of calculations to produce a lift, moment and drag variation for each high-speed survey condition specified by the input.

For variable sweep configurations the program will first call program VGEOM with the wing leading-edge sweep set at the forward position and then recall program VGEOM with the sweep set at the aft position. This is done in order to setup program VGEOM for geometry calculations at any arbitrary sweep position. SURVEY then enters a DO LOOP where the high sweep survey conditions are set up. SURVEY calls VGEOM and MCRIT to recalculate the geometry and the configuration critical Mach number each time the leading-edge sweep is changed in a survey. SURVEY then enters an inner DO LOOP where a sequence of untrimmed CL are generated and program AERO is called to obtain the trimmed lift, moment and drag. SURVEY then prints out the results.

If a series of low-speed, high-lift surveys were specified by the input, SURVEY then calls program LSHL to perform those calculations.

Use

CALL OVERLAY (4HOVLY, 3, 0)

Programs called

OVERLAY(4HOVLY, 3, 1)	(VGEOM)
OVERLAY(4HOVLY, 3, 2)	(MCRIT)
OVERLAY(4HOVLY, 3, 3)	(AERO)
OVERLAY(4HOVLY, 3, 4)	(LSHL)

Subroutine TAIL

Purpose

Subroutine TAIL computes the lift curve slope contribution of the tail along with factors used to compute lift and drag increments due to a horizontal tail deflection. These factors are computed by first solving for the downwash, dynamic-pressure, exposed area lift-curve slope, carry-over lift factors and induced drag for the tail.

Use

CALL TAIL (SPEED), where SPEED is the input Mach number.

The output, contained in COMMON BLKC01, is

CLAT	Lift-curve slope contribution of the tail
A	Trim drag factor
B	Trim drag factor
AOH	Angle of zero lift of the tail
CLDH	Change in lift due to tail deflection factor
DEDA	Change in downwash per change in angle of attack

Subroutines called

AER2
LNTP

Subroutine TDRG

Purpose

Subroutine TDRG calculates moment using the wing-body C_{m_0} and aerodynamic center along with the tail lift and moment arm. Depending upon user options the moment can be calculated at a fixed horizontal tail setting, or a tail setting can be computed which will trim out the moment. Lift and drag increments due to tail deflection are also computed.

Use

CALL TDRG (ITRIM, SPEED, DCLT, DCCT), where

ITRIM	Trim indicator, =0 if tail setting specified by input, =1 if tail setting is to be computed to trim out moment
SPEED	Mach number
DCLT	Increment in lift due to tail deflection relative to zero tail setting
DCDT	Increment in drag due to tail deflection relative to zero tail setting

Subroutine TLNT

Purpose

TLNT is a triple-linear interpolation procedure.

Use

CALL TLNT (XBAR, YBAR, ZBAR, FBAR, X, Y, Z, F, NX, NY, NZ, NXMAX, NYMAX), where

XBAR	The X value at which a value of the function is to be interpolated (I)
YBAR	The Y value at which a value of the function is to be interpolated (I)
ZBAR	The Z value at which a value of the function is to be interpolated (I)
FBAR	The interpolated value of the function F(X,Y,Z) (I)
X	The array of X values (I)
Y	The array of Y values (I)
Z	The array of Z values (I)
F	The three-dimension array F values (I)
NX	The size of the X array and the F array in the X direction (I)
NY	The size of the Y array and the F array in the Y direction (I)
NZ	The size of the Z array and the F array in the Z direction (I)
NXMAX	The dimension of the F array in the X direction in the calling routine (I)
NYMAX	The dimension of the F array in the Y direction in the calling routine (I)

Subroutines called

DLNT, LNTP

Program VGEOM

Purpose

Program VGEOM computes the geometry parameters that vary with wing sweep for variable-sweep configurations. The program is first called by program SURVEY at the forward and most aft sweep positions in order to set up VGEOM for any arbitrary sweep calculation.

Use

CALL OVERLAY (4HOVLY, 3, 1)

Subroutine WBAC

Purpose

Subroutine WBAC computes the aerodynamic center location for wing-body configurations. The subroutine calculates the aerodynamic center of the wing carry-over lift on the body, and the aerodynamic center of the forebody. A composite aerodynamic center is then computed using the aerodynamic center and lift curve slope of each component.

Use

CALL WBAC (SPEED, XACR), where

SPEED	Mach number (I)
XACR	Aerodynamic center of the wing-body configuration reference to the leading edge of the exposed root chord

Subroutines called

ACCR
DLNT
LNTP

Subroutine WDRG

Purpose

This subroutine calculates the wave drag for all the components on the airplane.

Use

CALL WDRG (FMACH), where

FMACH Mach number

The output is contained in COMMON BLKC01.

Subroutines called

CDWN
CDWT
CDWW

Program XINPT

Purpose

XINPT controls the sequence of input for new problems or allows the previous problem to be repeated with only a small change in input. For each new problem the title card, print dump card, and input control card are read from the input file. The subroutine SETUP is then called to zero out all the input common blocks, then depending upon the input control card either of the secondary overlay programs INPT or NINPT are then called to continue reading the input file. After the input file is read for a given problem, control is then transferred back to MRIT where the solution to the problem is obtained. After each solution is obtained control is then transferred back to XINPT and the repeat problem control card is then read. If end-of-file on tape 5 is read the program is terminated. If a perturbation of the previous problem is indicated, NINPT is called where the revised input is then read.

Use

CALL OVERLAY (4HOVLY, 1, 0)

Programs called

SETUP
OVERLAY(4HOVLY, 1, 1) (INPT)
OVERLAY(4HOVLY, 1, 2) (NINPT)
EXIT

5. PROGRAM LISTING

```

OVERLAY (OVLY,0,0)
PROGRAM MR1T(INPUT,OUTPUT,TAPES=INPUT,TAPE6=OUTPUT)
  LARGE AIRCRAFT AERODYNAMIC PREDICTION PROCEDURE
C
COMMON /BLKA01/ N4(7)          R1T0001
COMMON /BLKA02/ A02(433)        R1T0002
COMMON /BLKA03/ A03(20)         R1T0003
COMMON /BLKA04/ N3(3), A04(78)   R1T0004
COMMON /BLKA05/ A05(131), NMCR, NXSET R1T0005
COMMON /BLKSUR/ N1(42), SUR(370)  R1T0006
COMMON /BLKHLS/ N2, HLS(70)      R1T0007
COMMON /BLKG01/ G1(200)          R1T0008
COMMON /BLKPRY/ KPRINT(50)       R1T0009
COMMON /BLKADJ/ ADJ(322)         R1T0010
COMMON /BLKTIL/ TITLE(6)         R1T0011
COMMON /BLKOV1/ IJ              R1T0012
C
 15 IJ = 0                      R1T0013
20 CALL OVERLAY(4HOVLY,1,0)      R1T0014
C
  CALL OVERLAY(4HOVLY,2,0)        R1T0015
  CALL OVERLAY(4HOVLY,3,0)        R1T0016
C
  GO TO 20                       R1T0017
C
  END                           R1T0018
C

```

CC = 00026

```

SUBROUTINE LNTP(XBAR,YBAR,X,Y,M,NO) R1T0031
C
C LAGRANGIAN INTERPOLATION R1T0032
C   1) INCREASING OR DECREASING X ARRAY R1T0033
C   2) LINEAR EXTRAPOLATION ONLY R1T0034
C   3) NO = NUMBER OF POINTS USED IN INTERPOLATION R1T0035
C   4) M = TOTAL NUMBER OF POINTS IN X ARRAY R1T0036
C   5) IF(NO.LE.0.OR.M.LE.0) YBAR = 0.0 R1T0037
C   6) IF(M.EQ.1.AND.NO.GT.0) YBAR=Y(1) R1T0038
C   7) IF(NO.EQ.1.AND.M.GT.0) YBAR=Y(NEAREST X(I)) R1T0039
C   8) IF(NO.GT.M) INTERPOLATION AS IF NO=M R1T0040
C
C DIMENSION X(M) , Y(M) R1T0041
C
C YBAR=0.0 R1T0042
N=NO R1T0043
IF(N.GT.M) N=M R1T0044
IF(M.LE.0.OR.N.LT.0) RETURN R1T0045
IF(M.GT.1) GO TO 10 R1T0046
YBAR=Y(1) R1T0047
RETURN R1T0048
C
10 MDC=0 R1T0049
IF(X(M).LT.X(1)) MDC=1 R1T0050
DO 20 I=2,M R1T0051
I1=I-1+MDC R1T0052
I2=I-MDC R1T0053
IF(XBAR.GE.X(I1).AND.XBAR.LE.X(I2)) GO TO 40 R1T0054
20 CONTINUE R1T0055
I1=1 R1T0056
IF((MDC.EQ.0.AND.XBAR.GE.X(M)).OR.(MDC.NE.0.AND.XBAR.LE.X(M))) R1T0057
1 I1=M-1 R1T0058
I2=I1+1 R1T0059
GO TO 45 R1T0060
C
40 IF(N.GT.2) GO TO 60 R1T0061
45 IF(N.LT.2) GO TO 55 R1T0062
50 YBAR=Y(I1)+(XBAR-X(I1))*(Y(I2)-Y(I1))/(X(I2)-X(I1)) R1T0063
      RETURN R1T0064
C
55 YBAR=Y(I1) R1T0065
IF(ABS(XBAR-X(I2)).LT.ABS(XBAR-X(I1))) YBAR=Y(I2) R1T0066
      RETURN R1T0067
C
60 J=I-N/2 R1T0068
IF(I.LT.N/2+1) J=1 R1T0069
IF(I.GT.M-N/2) J=M-N+1 R1T0070
NT=N+J-1 R1T0071
C
DO 80 I=J,NT R1T0072
ELL=1.0 R1T0073
DO 70 K=J,NT R1T0074
IF(K.NE.I) ELL=ELL*(XBAR-X(K))/(X(I)-X(K)) R1T0075
70 CONTINUE R1T0076
80 YBAR=YBAR+ELL*Y(I) R1T0077
      RETURN R1T0078

```

R1T0087
R1T0088

C

END

CC = 00058

```

FUNCTION DLNT (XBAR,YBAR,X,Y,F,NX,NY,NXMAX,LCX,LOY) R1T0090
C C DOUBLE LAGRANGE INTERPOLATION R1T0091
C C DIMENSION X(1),Y(1),F(NXMAX,1),FT(25) R1T0092
C C FBAR=0.0 R1T0093
C C IF(LOY.GT.25) LOY=25 R1T0094
C C LLX=LOX R1T0095
C C IF(LLX.GT.NX) LLX=NX R1T0096
C C IF(NY.GT.1) GO TO 10 R1T0097
C C CALL LNTP (XBAR,FBAR,X,F(1,1),NX,LLX) R1T0098
C C GO TO 30 R1T0099
C C
C 10 LLY=LOY R1T0100
C C IF(LOY.GT.NY) LLY=NY R1T0101
C C DO 20 I=1,NY R1T0102
C C CALL LNTP (XBAR,FT(I),X,F(1,I),NX,LLX) R1T0103
C 20 CONTINUE R1T0104
C C CALL LNTP (YBAR,FBAR,Y,FT,NY,LLY) R1T0105
C C
C 30 DLNT=FBAR R1T0106
C C
C RETURN R1T0107
C C END R1T0108

```

CC = 00025

```
C SUBROUTINE TLNT(XBAR,YBAR,ZBAR,FBAR,X,Y,Z,F,NX,NY,NZ,NXMAX,NYMAX) R1T0116
C TRIPLE LINEAR INTERPOLATOR R1T0117
C DIMENSION X(1),Y(1),Z(1),F(NXMAX,NYMAX,1),FT(25) R1T0118
C DO 10 I=1,NZ R1T0119
C 10 FT(I) = DLNT(XBAR,YBAR,X,Y,F(1,1,I),NX,NY,NXMAX,2,2) R1T0120
C CALL LNTP(ZBAR,FBAR,Z,FT,NZ,2) R1T0121
C RETURN R1T0122
C END R1T0123
R1T0124
R1T0125
R1T0126
R1T0127
R1T0128
R1T0129
```

CC = 00014

```

OVERLAY(1,0) R1T0131
PROGRAM XINPT R1T0132
C R1T0133
COMMON /BLKPRT/ KPRINT(50) R1T0134
COMMON /BLKTIL/ TITLE(6) R1T0135
COMMON /BLKDV1/ IJ R1T0136
C R1T0137
DIMENSION W(4), IS(12) R1T0138
DATA W / 4HFORM, 4HNAME, 4HSAVE, 4HEND / R1T0139
C R1T0140
IF( IJ.GE.1 ) GO TO 70 R1T0141
20 CONTINUE R1T0142
C R1T0143
C R1T0145
READ(5,1000) (TITLE(I), I = 1,6 ) R1T0146
IF( EOF(5).NE.0 ) CALL EXIT R1T0147
WRITE(6,2000) (TITLE(I), I= 1,6 ) R1T0148
C R1T0149
READ(5,1001) (KPRINT(I), I=1,50) R1T0150
C R1T0151
DO 50 I = 1, 50 R1T0152
IF( KPRINT(I).GT.0 ) WRITE(6,2001) I, KPRINT(I) R1T0153
50 CONTINUE R1T0154
CALL SETUP R1T0155
C R1T0156
IJ = 1 R1T0157
70 READ(5,1002) WORD R1T0158
IF( EOF(5).NE.0 ) CALL EXIT R1T0159
IF( WORD.EQ.W(1) ) CALL OVERLAY(4HOVLY,1,1) R1T0160
IF( WORD.EQ.W(2) ) IJ = 1 R1T0161
IF( WORD.EQ.W(2) ) CALL OVERLAY(4HOVLY,1,2) R1T0162
IF( WORD.EQ.W(3) ) IJ = 2 R1T0163
IF( WORD.EQ.W(3) ) CALL OVERLAY(4HOVLY,1,2) R1T0164
IF( WORD.EQ.W(4) ) GO TO 20 R1T0165
C R1T0166
1000 FORMAT( 6A10 ) R1T0167
1001 FORMAT( 5O11 ) R1T0168
1002 FORMAT( A4 ) R1T0169
2000 FORMAT(1H1,////, 27X,*EMPIRICALLY BASED COMPUTER PROGRAM* // R1T0170
1 23X,*TO PREDICT THE AERODYNAMIC CHARACTERISTICS* R1T0171
2 // 35X,*OF LARGE AIRCRAFT* (10(/)), 27X, 6A10 ) R1T0172
2001 FORMAT(5X,*KPRINT(*,I2,*), *,I2) R1T0173
C R1T0174
END R1T0175

```

CC = 00044

```

SUBROUTINE SETUP R1T0177
C
C ZEROES OUT INPUT COMMON BLOCKS R1T0178
C
COMMON /BLKA01/ N(7) R1T0179
COMMON /BLKA02/ A02(433) R1T0180
COMMON /BLKA03/ A03(20) R1T0181
COMMON /BLKA04/ N3(3), A04(78) R1T0182
COMMON /BLKSUR/ N1(42), SUR(370) R1T0183
COMMON /BLK HLS/ N2, HLS(70) R1T0184
COMMON /BLKADJ/ IVAL(20), X(15), YM(135), YA(135), XCL(15), NXVAR, NXCL R1T0185
COMMON /BLKG01/ G1(200) R1T0186
C
N2      = 0 R1T0187
NXVAR   = 1 R1T0188
NXCL    = 1 R1T0189
C
DO 10 I = 1, 20 R1T0190
A03(I) = 0.0 R1T0191
IVAL(I)= 0 R1T0192
IF( I.LE.3 ) N3(I) = 0 R1T0193
IF ( I.LE.7 ) N(I) = 0 R1T0194
IF ( I.LE.15) X(I) = 0.0 R1T0195
IF( I.LE.15) XCL(I) = 0.0 R1T0196
10 CONTINUE R1T0197
C
DO 20 I = 1, 433 R1T0198
A02(I) = 0.0 R1T0199
IF( I.LE.41 ) N1(I) = 0 R1T0200
IF( I.LE.50 ) HLS(I) = 0.0 R1T0201
IF( I.LE.78 ) A04(I) = 0.0 R1T0202
IF( I.LE.140) SUR(I) = 0.0 R1T0203
IF( I.LE.200 ) G1(I) = 0.0 R1T0204
IF( I.GT.135) GO TO 20 R1T0205
YM(I)   = 1.0 R1T0206
YA(I)   = 0.0 R1T0207
20 CONTINUE R1T0208
C
DO 30 I = 1, 20 R1T0209
I1      = I + 44 R1T0210
I2      = I + 204 R1T0211
I3      = I + 379 R1T0212
A02(I1) = 1.0 R1T0213
A02(I2) = 1.0 R1T0214
IF( I.LE.10 ) A02(I3) = 1.0 R1T0215
30 CONTINUE R1T0216
C
RETURN R1T0217
END R1T0218
R1T0219
R1T0220
R1T0221
R1T0222
R1T0223

```

CC = 00049

```

OVERLAY(1,1) R1T0225
PROGRAM INPT R1T0226
C R1T0227
C PROBLEM DATA INPUT R1T0228
C R1T0229
COMMON /BLKA01/ NBODYS, NNACS, NSURFS, NHT, NVT, ISWP, NPMLS R1T0230
COMMON /BLKA02/ SKEF, AR, TAPR, SWPLE, R1T0231
1 BLEN(10), BWID(10), BHGT(10), BAWET(10), BG(10), R1T0232
2 BNJ(10), BAMX(10), BABS(10), BLNS(10), BLBT(10), R1T0233
3 BASE(10), ELEN(10), EWID(10), EHGT(10), R1T0234
4 EAWET(10), EAMX(10), EIN(10), EXIT(10), ELNS(10), R1T0235
5 ELBT(10), EQF(10), ENO(10), CBAR(10), TW, R1T0236
5 XLEW, YHW, YB, CR, B02, BFUS, FMISC, AB, AFTAW, R1T0237
6 CAM(10), TOC(10), AWET(10), SWMT, SPLAN, CCNCL, R1T0238
7 TWIST, ETWIST, WINC, XLE(11), CRW(11), YW(11), R1T0239
8 XPIVOT, YPIVOT, XAPEX, AFTSW, AFTCB, AFTOC, R1T0240
9 SBAR(10), TS(10), SCAM(10), STOC(10), SAWET(10), R1T0241
1 SMTSW(10), SHF(10), SWL(10), SWT(10), STAPR(10), R1T0242
2 SCR(10), HTLE, HTY, HTZ, HTINC R1T0243
COMMON /BLKA03/ ROUGHK, CLE(3), CCR(3), YC(3), XCG, ZCG, CMAC, IREF, A1(6) R1T0244
COMMON /BLKA04/ IHLS, NF, NS, FLAP, SLAT, DF(5), CF0C(5), R1T0245
1 DCLOF(5), DCLMF(5), DCDF(5), DCMOF(5), R1T0246
2 DS(5), CSOC(5), DCLOS(5), DCLMS(5), DCDS(5), R1T0247
3 DCMOS(5), BF1I, BF1O, CF1(3), BF2I, BF2O, CF2(3), R1T0248
4 BS1I, BS1O, CS1, BS2I, BS2O, CS2 R1T0249
COMMON /BLKA05/ XMU, ZMU, XML, ZML, ZPTE, ZTHICK, R1T0250
1 RLE, OTE, DY, XMT, DYC, R1T0251
2 CIMAX, CLMCRI(10), XMCR(10), R1T0252
3 XT(33), YT(33), XYC(33), NMCR, NXSET R1T0253
C R1T0254
COMMON /BLKSUR/ NSURV, NCLAS, IT(20), ITRM(20), FMSURV(20), R1T0255
1 ALT(20), DHSV(20), SWPV(20), CLLO(20), CLHI(20), R1T0256
2 TRB(5,10), TRN(5,10), TRU(5,10), TRL(5,10), R1T0257
3 TRS(5,10) R1T0258
COMMON /BLKHLS/ NHLSV, DFI(3,5), CPF(5), DSI(5), CPS(5), R1T0259
1 DELCD(5), H(5), DFI2(3,5), CPF2(5), DSI2(5), R1T0260
2 CPS2(5) R1T0261
C R1T0262
COMMON /BLKADJ/ IVAL(20), X(15), YM(15,9), YA(15,9), XCL(15), R1T0263
1 NXVAR, NXCL R1T0264
C R1T0265
DIMENSION W(10), TTT(22), TS1(10), TS3(10) R1T0266
C R1T0267
DATA W / 4HPLAI, 4HS.S., 4HD.S., 4HT.S., 4HINPU, 4HL.E., R1T0268
1 4HSLAT, 4HKRUE, 4HINPU, 4HADJU/ R1T0269
DATA TTT / 3H63-, 3H64-, 3H65-, 3H66-, 3H63A, 3H64A, 3H65A, 3HSUP, 3HBIC, R1T0270
1 3H-62, 3H-63, 3H-64, 3H-65, 3H-66, 3H-33, 3H-34, 3H-35, 3H-93, R1T0271
2 3H-94, 3H-95, 3HINP, 3H2IN / R1T0272
DATA TS1 / 10*0.0 /, TS3 / 1.0* 0.0 / R1T0273
C R1T0274
C CONFIGURATION DEFINITION R1T0275
C R1T0276
100 READ(5,1001) NBODYS, NNACS, NSURFS, NHT, NVT, ISWP, NPMLS, IHLS, R1T0277
1 IREF R1T0278
WRITE(6,2000) NBODYS, NNACS, NSURFS, NHT, NVT, ISWP, NPMLS R1T0279
C R1T0280

```

```

      READ(5,1000) SREF, CMAC, XCG, ZCG, ROUGHK, FMISC
      WRITE(6,2001) SREF, CMAC, XCG, ZCG
C
      IF( NBODYS.EQ.0 ) GO TO 120
      DO 110 I = 1, NBODYS
      READ(5,1000) BLEN(I), BWID(I), BHGT(I), BAWET(I), BQ(I), BNO(I)
      IF( I.EQ.1 ) READ(5,1008) BAMX(I), BABS(I), BLNS(I), BLBT(I),
      1           BASE(I), BFUS, AB
      IF( I.NE.1 ) READ(5,1000) BAMX(I), BABS(I), BLNS(I), BLBT(I),
      1           BASE(I)
C
      IF( BQ(I).EQ.0.0 ) BQ(I) = 1.0
      IF( BNO(I).EQ.0.0 ) BNO(I) = 1.0
      IF( I.EQ.1 ) WRITE(6,2002)
      WRITE(6,2003) I,BLEN(I),BWID(I),BHGT(I),BAWET(I),BAMX(I),BABS(I),
      1           BLNS(I),BLBT(I),BASE(I),BQ(I), BNO(I)
C
      110 CONTINUE
C
      120 IF( NNACS.EQ.0 ) GO TO 140
      DO 130 I = 1, NNACS
      READ(5,1000) ELEN(I), EWID(I), EHGT(I), EAWEt(I), EQF(I), ENO(I)
      READ(5,1000) EAMX(I), EIN(I), EXIT(I), ELNS(I), ELBT(I)
C
      IF( EQF(I).EQ.0.0 ) EQF(I) = 1.0
      IF( ENO(I).EQ.0.0 ) ENO(I) = 1.0
      IF( I.EQ.1 ) WRITE(6,2004)
      WRITE(6,2003) I,ELEN(I),EWID(I),EHGT(I),EAWEt(I),EAMX(I),EIN(I),
      1           EXIT(I),ELNS(I),ELBT(I),EQF(I), ENO(I)
C
      130 CONTINUE
C
      140 IF( NPNLS.GT.1 ) GO TO 145
      READ(5,1000) AR, TAPR, SWPLE, SPLAN, TWIST, WINC
      WRITE(6,2006) AR, TAPR, SWPLE, SPLAN, TWIST, WINC
      READ(5,1004) TW1,TW2,TW3,CAM(1),TOC(1),XLEW,YWW, YB
      READ(5,1000) SWMT, CBAR(1), AWET(1), CONCL
C
      WRITE(6,2008) TW1,TW2,TW3, CAM(1), TOC(1), XLEW, YWW, YB,
      1           SWMT, CBAR(1), AWET(1)
      GO TO 160
C
      145 READ(5,1000) SPLAN, TAPR, SWPLE
      READ(5,1004) TW1,TW2,TW3, TWIST, WINC, SWMT, CONCL
      WRITE(6,2009) TW1,TW2,TW3, TWIST, WINC, SWMT
      IF( ISWP.GT.0 ) WRITE(6,2010) SPLAN, TAPR, SWPLE
C
      DO 150 I = 1, NPNLS
      IF( I.EQ.1 ) WRITE(6,2011)
      READ(5,1008) CAM(I), TOC(I), XLE(I), YW(I), CRW(I),
      1           CBAR(I), AWET(I)
      WRITE(6,2003) I, CAM(I), TOC(I), XLE(I), YW(I), CRW(I),
      1           CBAR(I), AWET(I)
C
      150 CONTINUE
      I      = 1 + NPNLS

```

```

        READ(5,1000) XLE(I), YW(I), CRW(I) R1T0337
        WRITE(6,2012) XLE(I), YW(I), CRW(I) R1T0338
C
C 160 IF( TW1.EQ.TTT(8) ) READ(5,1000) XMJ,ZMJ,XML,ZML,ZPTE,ZTHICK R1T0339
C
C     IF( TW1.EQ.TTT(21).OR.TW1.EQ.TTT(22) ) READ(5,1000) R1T0340
C         RLE, OTE, DY, XMT, DYC, C1MAX R1T0341
C         IF( TW1.EQ.TTT(21) ) READ(5,1009) NXSET, ( XT(I), YT(I),
C             XYC(I), I = 1,NXSET ) R1T0342
C         IF( TW1.EQ.TTT(22) ) READ(5,1009) NMCR, ( CLMCR(I),
C             XMCR(I), I = 1, NMCR ) R1T0343
C
C         IF( ISWP.EQ.0 ) GO TO 170 R1T0344
C         READ(5,1008) XPIVOT, YPIVOT, XAPEX, AFTSW, AFTCB, AFTOC, AFTAW R1T0345
C
C 170 IF( NSURFS.LE.1 ) GO TO 185 R1T0346
C DO 180 I = 2, NSURFS R1T0347
C     J = I - 1 R1T0348
C     IF( J.EQ.1 ) WRITE(6,2013) R1T0349
C     READ(5,1004) TS1(J),TS2,TS3(J), SCAM(J), STOC(J), SMTSW(J), R1T0350
C         SHF(J) R1T0351
C         READ(5,1000) SWL(J), SWT(J), STAPR(J), SCR(J), SBAR(J), SAWET(J) R1T0352
C         WRITE(6,2007) TS1(J),TS2,TS3(J), SCAM(J), STOC(J), SMTSW(J), R1T0353
C         SHF(J), SWL(J), SWT(J), STAPR(J), SCR(J), SBAR(J), R1T0354
C         SAWET(J) R1T0355
C
C         IF( NHT.NE.0.AND.J.EQ.1 ) READ(5,1000) HTLE, HTY, HTZ, HTINC R1T0356
C
C 180 CONTINUE R1T0357
C 185 IF( NPNLS.LE.2 ) GO TO 190 R1T0358
C
C     READ(5,1000) (CLE(I), YC(I), CCR(I), I =1,3) R1T0359
C
C 190 CONTINUE R1T0360
C
C
C     HIGH LIFT SYSTEM GEOMETRY IS READ IN IF IHLS GE 1 R1T0361
C
C 200 IF( IHLS.EQ.0 ) GO TO 205 R1T0362
C     READ(5,1007) FLAP, SLAT, NF, NS R1T0363
C     READ(5,1000) BF1I, BF1O, CF1(1), BS1I, BS1O, CS1 R1T0364
C     IF( IHLS.EQ.2 ) READ(5,1000) BF2I, BF2O, CF2(1), BS2I, BS2O, CS2 R1T0365
C     IF( FLAP.EQ.W(3).OR.FLAP.EQ.W(4) ) READ(5,1000) CF1(2), CF1(3), R1T0366
C         CF2(2), CF2(3) R1T0367
C     IF( FLAP.EQ.W(5) ) READ(5,1000) (DF(I), CFCC(I), DCLOF(I), R1T0368
C         DCLMF(I), DCDF(I), DCMOF(I), I=1,NF ) R1T0369
C
C     IF( SLAT.EQ.W(5) ) READ(5,1000) (DS(I), CSOC(I), DCLOS(I), R1T0370
C         DCLMS(I), DCDS(I), DCMOS(I), I=1,NS ) R1T0371
C
C     PROBLEM CONTROL R1T0372
C
C 205 READ(5,1003) NSURV, NHLSV, NCLAS, (IT(I),I=1,20), (ITRM(I),I=1,20) R1T0373
C     IF( NSURV.EQ.0 ) GO TO 220 R1T0374
C     WRITE(6,2014) NSURV R1T0375
C     DO 210 I =1, NSURV R1T0376
C     READ(5,1000) FMSURV(I), ALT(I), DHSV(I), SWPV(I), CLLO(I), CLHI(I) R1T0377
C     IF( ITRM(I).EQ.0 ) WRITE(6,2015) FMSURV(I), ALT(I), DHSV(I), R1T0378

```

```

1           SWPV(I), CLL0(I), CLHI(I)          R1T0393
1           IF( ITRM(I).EQ.1 ) WRITE(6,2016) FMSURV(I), ALT(I), SWPV(I),
1                           CLL0(I), CLHI(I)          R1T0394
210 CONTINUE                                     R1T0395
C
C   B.L. TRANSITION LOCATIONS ARE READ IN FOR EACH COMPONENT      R1T0396
C
C   J1      = 0                                         R1T0397
DO 215 I = 1, NSURV                            R1T0398
IF( IT(I).EQ.0 ) GO TO 215                      R1T0399
J      = IT(I)                                    R1T0400
IF( J.LE.J1 ) GO TO 215                          R1T0401
IF( NBODY.S.GT.0 ) READ(5,1000) (TRB(J,K), K=1,NBODY.S)    R1T0402
IF( NNACS.GT.0 ) READ(5,1000) (TRN(J,K), K=1,NNACS)       R1T0403
IF( NPNLS.GT.0 ) READ(5,1000) (TRU(J,K),TRL(J,K),K=1,NPNLS) R1T0404
IF( NSURFS.GT.0 ) READ(5,1000) (TRS(J,K), K = 2, NSURFS)   R1T0405
J1      = J                                         R1T0406
215 CONTINUE                                     R1T0407
C
C   220 IF( NHLSV.EQ.0 ) GO TO 250               R1T0408
DO 230 I = 1, NHLSV                            R1T0409
NDF      = 1                                       R1T0410
IF( FLAP.EQ.W(3) ) NDF = 2                     R1T0411
IF( FLAP.EQ.W(4) ) NDF = 3                     R1T0412
C
C   READ(5,1000) (DFI(J,I), J=1,NDF), CPF(I), DSI(I), CPS(I),     R1T0413
1           DELCD(I), H(I)                         R1T0414
IF( IHLS.EQ.2 ) READ(5,1000) (DFI2(J,I), J=1,NDF), CPF2(I),    R1T0415
1           DSI2(I), CPS2(I)                      R1T0416
230 CONTINUE                                     R1T0417
C
C   250 READ(5,1005) WORD, WRD                  R1T0418
IF( WORD.EQ.W(10)) GO TO 260                  R1T0419
GO TO 270                                     R1T0420
260 READ(5,1006) (IVAL(I), I=1,20), NXVAR, NADJ, NXCL, NADJ2    R1T0421
IF(NXVAR.EQ.0) GO TO 266                      R1T0422
READ(5,1000) ( X(I), I = 1, NXVAR )           R1T0423
DO 265 I = 1, NADJ                           R1T0424
READ(5,1000) (YM(J,I), YA(J,I), J= 1, NXVAR )   R1T0425
265 CONTINUE                                     R1T0426
266 IF( NXCL.EQ.0 ) GO TO 268                  R1T0427
READ(5,1000) ( XCL(I), I =1, NXCL)            R1T0428
DO 267 I = 1, NADJ2                         R1T0429
READ(5,1000) (YM(J,NXVAR+I), YA(J,NXVAR+I), J=1,NXCL)   R1T0430
267 CONTINUE                                     R1T0431
268 CONTINUE                                     R1T0432
READ(5,1005) WORD, WRD                        R1T0433
C
C   270 WRITE(6,2005) WORD,WRD                  R1T0434
C
C   A      = 1./57.2957796                      R1T0435
C   B      = 1./12.                           R1T0436
C   C      = 1./144.                         R1T0437

```

C	SWPLE = SWPLE * A	R1T0449
	SWMT = SWMT * A	R1T0450
	AFTSW = AFTSW * A	R1T0451
	DO 300 I = 1, 10	R1T0452
	SMTSW(I) = SMTSW(I) * A	R1T0453
	SWL(I) = SWL(I) * A	R1T0454
	SWT(I) = SWT(I) * A	R1T0455
300	CONTINUE	R1T0456
C	XPIVOT = XPIVOT * B	R1T0457
	YPIVOT = YPIVOT * B	R1T0458
	XAPEX = XAPEX * B	R1T0459
	AFTCB = AFTCB * B	R1T0460
	HTLE = HTLE * B	R1T0461
	HTY = HTY * B	R1T0462
	HTZ = HTZ * B	R1T0463
	CMAC = CMAC * B	R1T0464
	XCG = XCG * B	R1T0465
	ZCG = ZCG * B	R1T0466
	XLEW = XLEW * B	R1T0467
	YWW = YWW * B	R1T0468
	YB = YB * B	R1T0469
	CR = CR * B	R1T0470
	BO2 = BO2 * B	R1T0471
	DO 310 I = 1, 10	R1T0472
	BLEN(I) = BLEN(I) * B	R1T0473
	BWID(I) = BWID(I) * B	R1T0474
	BHGT(I) = BHGT(I) * B	R1T0475
	BLNS(I) = BLNS(I) * B	R1T0476
	BLBT(I) = BLBT(I) * B	R1T0477
	ELEN(I) = ELEN(I) * B	R1T0478
	EWID(I) = EWID(I) * B	R1T0479
	EHGT(I) = EHGT(I) * B	R1T0480
	ELNS(I) = ELNS(I) * B	R1T0481
	ELBT(I) = ELBT(I) * B	R1T0482
	CBAR(I) = CBAR(I) * B	R1T0483
	XLE(I) = XLE(I) * B	R1T0484
	CRW(I) = CRW(I) * B	R1T0485
	YW(I) = YW(I) * B	R1T0486
	SBAR(I) = SBAR(I) * B	R1T0487
	SCR(I) = SCR(I) * B	R1T0488
310	CONTINUE	R1T0489
	XLE(11) = XLE(11) * B	R1T0490
	CRW(11) = CRW(11) * B	R1T0491
	YW(11) = YW(11) * B	R1T0492
	DO 315 I = 1, 3	R1T0493
	CLE(I) = CLE(I) * B	R1T0494
	CCR(I) = CCR(I) * B	R1T0495
	YC(I) = YC(I) * B	R1T0496
315	CONTINUE	R1T0497
C	DO 320 I = 1, 10	R1T0498
	BAMX(I) = BAMX(I) * C	R1T0499
	BABS(I) = BABS(I) * C	R1T0500
	BASE(I) = BASE(I) * C	R1T0501
		R1T0502
		R1T0503
		R1T0504

```

EAMX(I) = EAMX(I) * C R1T0505
EIN(I) = EIN(I) * C R1T0506
EXIT(I) = EXIT(I) * C R1T0507
320 CONTINUE R1T0508
C R1T0509
DO 340 I = 1, 10 R1T0510
DO 330 J = 1, 22 R1T0511
C R1T0512
IF( TW1.EQ.TTT(J) ) TW = J R1T0513
IF( TW3.EQ.TTT(J) ) TW = J R1T0514
IF( TS1(I).EQ.TTT(J) ) TS(I) = J R1T0515
IF( TS3(I).EQ.TTT(J) ) TS(I) = J R1T0516
C R1T0517
330 CONTINUE R1T0518
340 CONTINUE R1T0519
C R1T0520
XFLAP = FLAF R1T0521
XSLAT = SLAT R1T0522
FLAP = 0.0 R1T0523
SLAT = 0.0 R1T0524
C R1T0525
DO 350 I = 1,5 R1T0526
IF(XFLAP.EQ.W(I)) FLAP = I R1T0527
J = I + 5 R1T0528
IF(XSLAT.EQ.W(J)) SLAT = I R1T0529
350 CONTINUE R1T0530
C R1T0531
1000 FORMAT(6F10.0) R1T0532
1001 FORMAT(12I5) R1T0533
1002 FORMAT(F10.0, A3, F3.0, F4.0, 4F10.0) R1T0534
1003 FORMAT(3I5, 5X, 40I1) R1T0535
1004 FORMAT(A3,A1,A3,3X, 5F10.0) R1T0536
1005 FORMAT( A4,A10) R1T0537
1006 FORMAT( 20I1, 4I5) R1T0538
1007 FORMAT( A4, 16X, A4, 16X, 4I5) R1T0539
1008 FORMAT(6F10.0,F6.0) R1T0540
1009 FORMAT( 1I5/(6F10.0) ) R1T0541
C R1T0542
2000 FORMAT(1H1, * PROBLEM INPUT PARAMETERS//5X, *N800YS **,I2,
1 5X,*NNACS **,I2,5X,*NSURFS **,I2,5X,*NHT **,I2,5X,
2 *NVT **,I2,5X,*ISHP **,I2,5X,*NPNLS **,I2 / ) R1T0543
2001 FORMAT(5X,*SREF **,F9.3,* SQ.FT.*,**CMAC **,F9.3,* IN.**,
1 5X,*FIUS. STA. C.G. ==F9.3,* IN.**,5X,*ZCG ==F8.3,* IN.**/ ) R1T0544
2002 FORMAT(T3,*ND.* , T10,*BLEN*, T20,*BWID*,T30,*BHGT*, T40,*BAWET*,
1 T50,*BAMX*,T60,*BABS*,T70,*BLNS*,T80,*BLBT*,T90,*BASE*,
2 T100,*BQ*, T110,*BNO* / ) R1T0545
2003 FORMAT(15, 11F10.3) R1T0546
2004 FORMAT(/T3,*ND.* , T10,*ELEN*, T20,*EWID*,T30,*EHGT*, T40,*EAWET*,
1 T50,*EAMX*,T60,*EIN*, T70,*EXIT*,T80,*ELNS*,T90,*ELBT*,
2 T100,*EQF*,T110,*ENO* / ) R1T0547
2005 FORMAT(//5X, A4, A10, 10%, 5H***** , /1H1 ) R1T0548
2006 FORMAT(//* ASPECT RATIO ==F7.3, 5X,*TAPER RATIO ==F6.4,
1 5X,*L.E.SWEEP ==F7.3, 5X,*PLANFORM AREA ==F8.2,* SQ.FT.*/
2 5X,*TWIST ==F7.3,* DEG.* , 5X,*INCIDENCE ==F7.3,* DEG.* ) R1T0549
2007 FORMAT(2X,A3,A1,A3, 11F10.3) R1T0550
2008 FORMAT(5X, *AIRFOIL TYPE **,2X,A3,A1,A3,5X,*CAMBER ==F7.4,5X, R1T0551

```

1	*THICKNESS =#F8.4 /5X, *WING LOCATION (X,Y) = *,	R1T0561
2	2F12.4,*FUSLAGE INTERSECTION =#F9.4 /5X,	R1T0562
3	*MAX. THICKNESS SWP. =#F7.3,5X,*CBAR =#F8.4,5X,	R1T0563
4	*AWET =#F8.3 //)	R1T0564
2009	FORMAT(/ 5X,*AIRFOIL TYPE =*,2X,A3,A1,A3,5X,*TWIST =#F7.3,* DEG.* ,	R1T0565
1	5X,*INCIDENCE =#F7.3,* DEG.* ,5X,*MAX. THICKNESS SWP. =*,	R1T0566
2	F7.3,* DEG.*)	R1T0567
2010	FORMAT(5X,*VARIABLE GEOM. WING PLANFORM AREA =#F9.3,* SQ.FT.* ,	R1T0568
1	5X,*TAPER RATIO =#F6.4,5X,*L.E.SWEEP =#F7.3,* DEG.* /)	R1T0569
2011	FORMAT(/5X,*WING PANEL GEOMETRY*/T3,*NO.,T10,*CAMBER*, T20,	R1T0570
1	*T/C*, T30,*XLE*, T40,*YW*, T50,*CRW*, T60,*CBAR*,	R1T0571
2	T70,*AWET* /)	R1T0572
2012	FORMAT(25X,3F10.3)	R1T0573
2013	FORMAT(/5X,*GEOMETRY FOR ADDITIONAL AIRFOIL SURFACES* /	R1T0574
1	T2,*AIRFOIL *, T15,*CAMBER*, T25,*T/C*, T35,*SMTSH*,	R1T0575
2	T45,*SHF*, T55,*L.E.SWP*, T65,*T.E.SWP*, T75,*TAPER*,	R1T0576
3	T85,*CR*, T95,*SBAR*, T105,*SAWET* /)	R1T0577
2014	FORMAT(/ /5X, 15,* DRAG POLARS TO BE GENERATED AT THE FOLLOWING CONDITI	R1T0578
1	ONS* /T5, *MACH NO.* , T20,*ALTITUDE*, T35,*TAIL SETTING*,	R1T0579
2	T53,*L.E.SWEEP*, T70,*FROM CL*, T85,*TO CL* /)	R1T0580
2015	FORMAT(F15.4, SF15.3)	R1T0581
2016	FORMAT(F15.4, F15.3,15H TRIMMED, 3F15.3)	R1T0582
C		R1T0583
C		R1T0584
	END	R1T0585

CC = 00361

```

OVERLAY(1,2) R1T0587
PROGRAM NINPT R1T0588

C C READS IN UT WITH A NAMELIST FORMAT R1T0589
C C

COMMON /BLKOV1/ IJ R1T0590
COMMON /BLKA01/ NBODY5, NNACS, NSURFS, NHT, NVT, ISWP, NPMLS R1T0591
COMMON /BLKA02/ SREF, AR, TAPR, SWPLE, R1T0592
1 BLEN(10), BWID(10), BHGT(10), BAWET(10), BQ(10), R1T0593
2 BNO(10), BAMX(10), BABS(10), BLNS(10), BLBT(10), R1T0594
3 BASE(10), ELEN(10), EWID(10), EHGT(10), R1T0595
4 EAWET(10), EAMX(10), EIN(10), EXIT(10), ELNS(10), R1T0596
5 ELBT(10), EQF(10), ENO(10), CBAR(10), TW, R1T0597
6 XLEW, YWW, YB, CR, B02, BFUS, FMISC, AB, AFTAW, R1T0598
7 CAM(10), TOC(10), AWET(10), SWMT, SPLAN, CONCL, R1T0599
8 TWIST, ETWIST, WINC, XLE(11), CRW(11), YH(11), R1T0600
9 XPIVOT, YPIVOT, XAPEX, AFTSW, AFTCB, AFTOC, R1T0601
10 SBAR(10), TS(10), SCAM(10), STOC(10), SAWET(10), R1T0602
11 SMTSW(10), SHF(10), SWL(10), SWT(10), STAPR(10), R1T0603
12 SCR(10), HTLE, HTY, HTZ, HTINC R1T0604
13 COMMON /BLKA03/ ROUGHK, CLE(3), CCR(3), YC(3), XCG, ZCG, CMAC, IREF, A1(6) R1T0605
14 COMMON /BLKA04/ IHLS, NF, NS, FLAP, SLAT, DF(5), CF0C(5), R1T0606
1 DCLDF(5), DCLMF(5), DCDF(5), DCMDF(5), R1T0607
2 OS(5), CSOC(5), DCLOS(5), DCLMS(5), DCDS(5), R1T0608
3 DCMOS(5), BF1I, BF1O, CF1(3), BF2I, BF2O, CF2(3), R1T0609
4 BS1I, BS1O, CS1, BS2I, BS2O, CS2 R1T0610
15 C C R1T0611
16 COMMON /BLKSUR/ NSURV, NCLAS, IT(20), ITRM(20), FMSURV(20), R1T0612
17 ALT(20), DHSV(20), SWPV(20), CLLO(20), CLHI(20), R1T0613
18 TRB(5,10), TRN(5,10), TRU(5,10), TRL(5,10), R1T0614
19 TRS(5,10) R1T0615
20 COMMON /BLKHLS/ NHLSV, DF1(3,5), CPF(5), DSI(5), CPS(5), R1T0616
21 DELCD(5), H(5), DF12(3,5), CPF2(5), DSI2(5), R1T0617
22 CPS2(5) R1T0618
23 C C R1T0619
24 COMMON /BLKADJ/ IVAL(20), X(15), YM(15,9), YA(15,9), XCL(15), R1T0620
25 NXVAR, NXCL R1T0621
26 COMMON /BLKTIL/ TITLE(6) R1T0622
27 COMMON /BLKPRT/ KPRINT(50) R1T0623
28 C C R1T0624
29 DIMENSION L(9) R1T0625
30 C C R1T0626
31 NAMELIST/BODY5/ NBODY5, NNACS, NSURFS, NHT, NVT, ISWP, NPMLS, CMAC, IREF, R1T0627
32 SREF, ROUGHK, XCG, ZCG, BFUS, AB, FMISC, BLEN, BWID, BHGT, R1T0628
33 BAWET, BQ, BNO, BAMX, BABS, BLNS, BLBT, BASE/ R1T0629
34 NACEL/ NNACS, SREF, ELEN, EWID, EHGT, EAWET, EQF, ENO, R1T0630
35 EAMX, EIN, EXIT, ELNS, ELBT/ R1T0631
36 WING/ NSURFS, ISWP, NPMLS, AR, TAPR, SWPLE, SPLAN, TWIST, R1T0632
37 WINC, TW, CAM, TOC, XLE, YH, CRW, CBAR, AWET, SWMT, CMAC, R1T0633
38 XPIVOT, YPIVOT, XAPEX, AFTSW, AFTCB, AFTOC, SREF, AFTAW, R1T0634
39 CLE, YC, CCR, XLFW, YWW, YB, CR, B02, XCG, CONCL/ R1T0635
40 SURFS/ NSURFS, NHT, NVT, SREF, SBAR, TS, SCAM, STOC, SAWET, R1T0636
41 SMTSW, SHF, SWL, SWT, STAPR, SCR, HTLE, HTY, HTZ, HTINC/ R1T0637
42 SURV/ NSURV, NCLAS, NHLSV, IT, ITRM, FMSURV, ALT, DHSV, SWPV, R1T0638
43 CLLO, CLHI, TRB, TRN, TRU, TRL, TRS, DF1, CPF, DSI, CPS, R1T0639
44 C C R1T0640
45 A A R1T0641
46 A A R1T0642

```

```

B      DELCD,H,DFI2,CPF2,DSI2,CPS2,KPRINT/          RIT0643
C      STOL/ IHLS,NF,NS,FLAP,SLAT,DF,CFOC,DCLOF,DCLMF,DCDF,    RIT0644
D      DCMUF,DS,CSOC,DCLOS,DCLMS,DCDS,DCMCS,BF11,        RIT0645
E      BF10,CF1,BF2I,BF20,CF2,BS1I,BS10,CS1,BS2I,        RIT0646
F      BS20,CS2,H,DFI2,CPF2,DSI2,CPS2/          RIT0647
C      ADJUST/ IVAL, NXVAR, NXCL, X, XCL, YM, YA       RIT0648
RIT0649
C      DO 100 I = 1,9
L(I) = 1
100 CONTINUE
C
CALL CONV
IF( IJ.EQ.1 ) GO TO 200
READ(5,1000) (TITLE(I), I = 1,6)
READ(5,1001) (L(I), I = 1,9)
C
200 IF( L(1).EQ.1 ) READ(5,BODY5)          RIT0659
IF( L(2).EQ.1 ) READ(5,NACEL)           RIT0660
IF( L(3).EQ.1 ) READ(5,WING)            RIT0661
IF( L(4).EQ.1 ) READ(5,SURFS)           RIT0662
IF( L(5).EQ.1 ) READ(5,SURVI)           RIT0663
IF( L(6).EQ.1 ) READ(5,STOL)            RIT0664
IF( L(7).EQ.1 ) READ(5,ADJUST)          RIT0665
RIT0666
C      WRITE(6,2000)
C
CALL CONV1
C
350 CONTINUE
1000 FORMAT( 6A10 )
1001 FORMAT( 50I1 )
2000 FORMAT(5X,*NAMELIST INPUT COMPLETED* )
C
END
RIT0667
RIT0668
RIT0669
RIT0670
RIT0671
RIT0672
RIT0673
RIT0674
RIT0675
RIT0676

```

CC = 00090

```

      SUBROUTINE CONV          R1T0678
C                                         R1T0679
C                                         R1T0680
C                                         R1T0681
C                                         R1T0682
C                                         R1T0683
C                                         R1T0684
C                                         R1T0685
C                                         R1T0686
C                                         R1T0687
C                                         R1T0688
C                                         R1T0689
C                                         R1T0690
C                                         R1T0691
C                                         R1T0692
C                                         R1T0693
C                                         R1T0694
C                                         R1T0695
C                                         R1T0696
C                                         R1T0697
C                                         R1T0698
C                                         R1T0699
C                                         R1T0700
C
C                                         IF( A1(4).NE.B1(4) ) A1(4) = A1(4) * A   R1T0701
C                                         IF( A1(275).NE.B1(275) ) A1(275) = A1(275) * A   R1T0702
C                                         IF( A1(317).NF.B1(317) ) A1(317) = A1(317) * A   R1T0703
C                                         DO 300 I = 1, 10   R1T0704
C                                         IF( A1(369+I).NF.B1(369+I) ) A1(369+I) = A1(369+I)*A   R1T0705
C                                         IF( A1(389+I).NE.B1(389+I) ) A1(389+I) = A1(389+I)*A   R1T0706
C                                         IF( A1(399+I).NE.B1(399+I) ) A1(399+I) = A1(399+I)*A   R1T0707
C                                         300 CONTINUE   R1T0708
C                                         DO 400 I = 1, 10   R1T0709
C                                         IF( A1(224+I).NE.B1(224+I) ) A1(224+I) = A1(224+I) * B   R1T0710
C                                         IF( A1(319+I).NE.B1(319+I) ) A1(319+I) = A1(319+I) * B   R1T0711
C                                         IF( A1(419+I).NE.B1(419+I) ) A1(419+I) = A1(419+I) * B   R1T0712
C                                         IF( A1(104+I).NE.B1(104+I) ) A1(104+I) = A1(104+I) * C   R1T0713
C                                         IF( A2(1+I).NE.B2(1+I) ) A2(1+I) = A2(1+I) * B   R1T0714
C                                         400 CONTINUE   R1T0715
C                                         DO 500 I = 1, 20   R1T0716
C                                         IF( A1(84 +I).NE.B1(84 +I) ) A1(84 +I) = A1(84 +I) * B   R1T0717
C                                         IF( A1(184+I).NF.B1(184+I) ) A1(184+I) = A1(184+I) * B   R1T0718
C                                         IF( A1(64 +I).NE.B1(64 +I) ) A1(64 +I) = A1(64 +I) * C   R1T0719
C                                         500 CONTINUE   R1T0720
C                                         DO 600 I = 1, 30   R1T0721
C                                         IF( A1(4 + I).NE.B1(4 + I) ) A1(4 + I) = A1(4 + I) * B   R1T0722
C                                         IF( A1(114+I).NE.B1(114+I) ) A1(114+I) = A1(114+I) * B   R1T0723
C                                         IF( A1(280+I).NE.B1(280+I) ) A1(280+I) = A1(280+I) * B   R1T0724
C                                         IF( A1(154+I).NE.B1(154+I) ) A1(154+I) = A1(154+I) * C   R1T0725
C                                         600 CONTINUE   R1T0726
C                                         IF( A1(314).NE.B1(314) ) A1(314) = A1(314) * B   R1T0727
C                                         IF( A1(315).NE.B1(315) ) A1(315) = A1(315) * B   R1T0728
C                                         IF( A1(316).NE.B1(316) ) A1(316) = A1(316) * B   R1T0729

```

IF(A1(318).NE.B1(318)) A1(318) = A1(318) * B	R1T0734
IF(A1(430).NE.B1(430)) A1(430) = A1(430) * B	R1T0735
IF(A1(431).NE.B1(431)) A1(431) = A1(431) * B	R1T0736
IF(A1(432).NE.B1(432)) A1(432) = A1(432) * B	R1T0737
IF(A1(236).NE.B1(236)) A1(236) = A1(236) * B	R1T0738
IF(A1(237).NE.B1(237)) A1(237) = A1(237) * B	R1T0739
IF(A1(238).NE.B1(238)) A1(238) = A1(238) * B	R1T0740
IF(A1(239).NE.B1(239)) A1(239) = A1(239) * B	R1T0741
IF(A1(240).NE.B1(240)) A1(240) = A1(240) * B	R1T0742
IF(A1(241).NE.B1(241)) A1(241) = A1(241) * B	R1T0743
IF(A1(291).NE.B1(291)) A1(291) = A1(291) * B	R1T0744
IF(A1(302).NE.B1(302)) A1(302) = A1(302) * B	R1T0745
IF(A1(313).NE.B1(313)) A1(313) = A1(313) * B	R1T0746
IF(A2(12).NE.B2(12)) A2(12) = A2(12) * B	R1T0747
IF(A2(13).NE.B2(13)) A2(13) = A2(13) * B	R1T0748
C	R1T0749
RETURN	R1T0750
END	R1T0751

CC = 00074

```

OVERLAY(2,0) R1T0753
PROGRAM GEOM R1T0754
C COMPUTES GEOMETRIC PARAMETERS FOR AERO CALCULATIONS R1T0755
C
COMMON /BLKA01/ NBODYS, NNACCS, NSURFS, NHT, NVT, ISWP, NPMLS R1T0756
COMMON /BLKA02/ SREF, AR, TAPR, SWPLE, R1T0757
1     BLEN(10), BWID(10), BHGT(10), BAWET(10), BG(10), R1T0760
2     BNO(10), BAMX(10), BABS(10), BLNS(10), BLBT(10), R1T0761
3     BASE(10), ELEN(10), EWID(10), EHGT(10), R1T0762
4     EAWET(10), EAMX(10), EIN(10), EXIT(10), ELNS(10), R1T0763
5     ELBT(10), EQF(10), END(10), CBAR(10), TW, R1T0764
5     XLEW, YWW, YBOD, CR, B02, A2(4), R1T0765
6     CAM(10), TOC(10), AWET(10), SWMT, SPLAN, CONCL, R1T0766
7     TWIST, ETWIST, INC, XLE(11), CRW(11), YH(11), R1T0767
8     XPIVOT, YPIVOT, XAPEX, AFTSK, AFTCB, AFTOC, R1T0768
9     SBAR(10), TS(10), SCAM(10), STOC(10), SAWE(10), R1T0769
1     SMTSW(10), SHF(10), SWL(10), SWT(10), STAPR(10), R1T0770
2     SCR(10), HTLE, HTY, HTZ, HTINC R1T0771
COMMON /BLKA03/ ROUGHK, CLE(3),CCR(3),YC(3), XCG,ZCG,CMAC,A1(7) R1T0772
C
COMMON /BLKG01/ FRBOD(10), ARS(10), SSEX(10), FRNAC(10), SWP, R1T0773
1     SWPQC, SWPMC, SWPTE, DOB, TOCW, CLD, SEXW, ESHMC, R1T0774
2     SXX(10), XLESWX(10), XMCWX(10), ARW, TR, WPLAN, R1T0775
3     CB, YB, XB, R1T0776
4     CRX, CBX, CTX, YIX, YOX, SIX, SCX, ARI, ARXR, R1T0777
5     CBXP, AROP, SOXP, SWPLEI, SWPMCI, SWPMCO, R1T0778
6     ESWQC, FSWLE, ESWTE, CROB, DXOB, XHT, XCRTF, R1T0779
7     XH, OMEGA, FOC, TWST, DINC, G1(5), DXQC, G3(81) R1T0780
C
COMMON /BLKPRT/ KPRINT(50) R1T0782
C
DIMENSION FOCX(22) R1T0783
DIMENSION G2(200) R1T0784
EQUIVALENCE (G2(1), FRBOD(1)) R1T0785
DATA FOCX / 4*0.05515,3*0.06651,15*0.079 / R1T0786
C
TWST = TWIST R1T0787
DINC = WINC R1T0788
C
DO 100 I = 1, NBODYS R1T0789
BDIA2 = BWID(I) * BHGT(I) R1T0790
FRBOD(I) = 0.0 R1T0791
IF( BAMX(I).EQ.0.0 ) BAMX(I) = 0.7854 * BDIA2 R1T0792
IF( BAWET(I).EQ.0.0 ) BAWET(I) = (2.8*BLNS(I) +2.5*BLBT(I) R1T0793
1      *(1.+SQRT(BABS(I)/BAMX(I))) + (BLEN(I) -BLNS(I) -BLBT(I)) R1T0794
2      *4. 1 * SQRT(.7854 * BAMX(I)) * BNO(I) R1T0795
IF( BDIA2.GT.0.0 ) FRBOD(I) = BLEN(I)/SQRT(BDIA2) R1T0796
100 CONTINUE R1T0797
C
DO 200 I = 1, NNACCS R1T0798
EDIA2 = EWID(I) * EHGT(I) R1T0799
FRNAC(I) = 0.0 R1T0800
IF( FAMX(I).EQ.0.0 ) FAMX(I) = 0.7854 * EDIA2 R1T0801
IF( EAWET(I).EQ.0.0 ) EAWET(I) = (2.5*ELNS(I) * (1. + R1T0802
1      SQRT(EIN(I)/EAMX(I))) + 2.5 *ELBT(I) R1T0803

```

```

1      *(1.+SQRT(EXIT(I)/EAMX(I))) + (ELEN(I) -ELNS(I) -ELBT(I)) R1T0809
2      *4.) * SQRT(.7854 * BAMX(I)) * ENO(I) R1T0810
IF( EDIA2.GT.0.0 ) FRNAC(I) = ELEN(I)/SQRT(EDIA2) R1T0811
200 CONTINUE R1T0812
C
210 NP      = NPNLS + 1 R1T0813
IF( NPNLS.NE.1 ) GO TO 220 R1T0814
TSWP    = TAN(SWPLE) R1T0815
CO      = 4./AR  *(1.-TAPR)/(1.+TAPR) R1T0816
R1T0817
C
C      GEOMETRY FOR SIMPLE TRAPEZOIDAL WINGS IS CALCULATED HERE R1T0818
C
SWP      = SWPLE R1T0819
SWPQC   = ATAN(TSWP - CO * 0.25) R1T0820
SWPMC   = ATAN(TSWP - CO * 0.50) R1T0821
SWPTF   = ATAN(TSWP - CO ) R1T0822
B02     = 0.5 * SQRT(SPLAN * AR) R1T0823
YW(1)   = YBOD R1T0824
XLF(1)  = XLEW + (YBOD - YWH) * TSWP R1T0825
DOB     = YW(1)/B02 R1T0826
R1T0827
C
CR      = SPLAN/(B02*(1.+TAPR)) R1T0828
XCRTF   = XLEW -YWH * TSWP + CR R1T0829
CRX     = CR * (1. - DOB*(1.-TAPR) ) R1T0830
CTX     = CR * TAPR R1T0831
IF( CBAR(1).EQ.0.0 ) CBAR(1) = (CRX + CTX**2/(CRX+CTX))*0.66667 R1T0832
YIX     = B02 * (1.-DOB) R1T0833
CB      = 0.66667 * CR * (1. + TAPR*TAPR/(1. + TAPR)) R1T0834
YR     = B02/3. * (1. + 2.*TAPR)/(1.+ TAPR) R1T0835
XB      = YB * TSWP + XLE(1) - YW(1)*TSWP R1T0836
R1T0837
C
ESWMC   = SWPMC R1T0838
ESWQC   = SWPQC R1T0839
ESWLE   = SWPLE R1T0840
ESWTE   = SWPTE R1T0841
TOCW    = TOC(1) R1T0842
CLD     = CAM(1) R1T0843
TR      = TAPR R1T0844
SEXW    = SPLAN/(1.+TR) * (2.-(1.-TR)*(YW(1)/B02 +1.)) R1T0845
1          * (1.-YW(1)/B02) R1T0846
SXX(1)  = SEXW R1T0847
IF( AWET(1).EQ.0.0 ) AWET(1) = SEXW * (2. +.1843*TOCW R1T0848
1          +1.5268*TOCW**2 -.8395*TOCW**3) R1T0849
XLESHX(1) = SWPLE R1T0850
XMCSWX(1) = SWPMC R1T0851
ARW     = AR R1T0852
WPLAN   = SPLAN R1T0853
SIX     = SEXW R1T0854
ARXR    = 4.* YIX**2/SIX R1T0855
SWPLEI  = SWP R1T0856
SWPMCI  = SWPMC R1T0857
R1T0858
C
YW(2)   = B02 R1T0859
XLE(2)  = XLE(1) + (YW(2)-YW(1)) * TSWP R1T0860
CRW(1)  = CRX R1T0861
CRW(2)  = CTX R1T0862
R1T0863
R1T0864

```

```

CROB   = 0.5 * CR/B02          R1T0865
DXOB   = CR0B - 0.75 * TAN(SWPQC) R1T0866
C
220 IF( NPNLS.GT.2 ) GO TO 240    R1T0867
DO 230 I = 1, NP               R1T0868
CLE(I) = XLE(I)                R1T0869
CCR(I) = CRW(I)                R1T0870
YC(I) = YW(I)                  R1T0871
230 CONTINUE                   R1T0872
C
240 IF(NPNLS.LE.1) GO TO 310      R1T0873
C GEOMETRY FOR MULTIPLE PANEL WINGS IS CALCULATED HERE R1T0874
C
WPLAN = SPLAN                 R1T0875
B02   = YW(NP)                 R1T0876
TR    = TAPR                   R1T0877
SWP   = SWPLE                 R1T0878
ETA   = YW(1)/YW(2)            R1T0879
CRCL  = (CRW(1) - ETA * CRW(2)) / (1.-ETA) R1T0880
CR0B  = 0.5 * CRCL/B02        R1T0881
DOB   = YW(1)/B02              R1T0882
SFXW  = 0.0                    R1T0883
T0CW  = 0.0                    R1T0884
CLD   = 0.0                    R1T0885
COSMC = 0.0                    R1T0886
COSQC = 0.0                    R1T0887
TANLE = 0.0                    R1T0888
TANTE = 0.0                    R1T0889
SUMCB = 0.0                    R1T0890
SUMYB = 0.0                    R1T0891
SUMXB = 0.0                    R1T0892
C
DO 300 I =1, NPNLS             R1T0893
DYW   = YW(I+1) - YW(I)        R1T0894
SX    = (CRW(I+1) + CRW(I)) * DYW R1T0895
DXLE  = -XLE(I) + XLE(I+1)     R1T0896
XLESW = ATAN(DXLE/DYW)         R1T0897
DXTE  = DXLE + (CRW(I+1) - CRW(I)) R1T0898
IF( I.EQ.1 ) XCRTE = XLE(1) + YW(1)*TAN(XLESW) + CRCL R1T0899
DX    = DXLE + 0.5 * (CRW(I+1) - CRW(I)) R1T0900
DXQ   = DXLE + 0.25 * (CRW(I+1) - CRW(I)) R1T0901
XTESW = ATAN(DXTE/DYW)         R1T0902
XMCSE = ATAN(DX/DYW)           R1T0903
XQCSW = ATAN(DXQ/DYW)          R1T0904
C
CR    = CRW(I)                 R1T0905
CT    = CRW(I+1)                R1T0906
T     = CT/CR                  R1T0907
C
SXX(I) = SX                   R1T0908
XLESWX(I) = XLESW              R1T0909
XMCSEW(I) = XMCSE              R1T0910
C
CB    = 0.66667 * CR * (1. + T*T/(1.+T)) R1T0911
IF( CBAR(I).EQ.0.0 ) CBAR(I) = CB R1T0912
YB    = 0.33333 * DYW * (1.+2.*T)/(1.+T) + YW(I) R1T0913

```

```

XB      = XLE(I) - XLE(1) + (YB - YW(I))*TAN(XLESW) R1T0921
C
DYX1   = 0.75*BO2 - YW(I) R1T0922
DYX2   = 0.75*BO2 - YW(I+1) R1T0923
IF( DYX1.GE.0.0.AND.DYX2.LT.0.0 ) X1 = XLE(I) + CRW(I)*0.25 R1T0924
1           + DYX1 * TAN(XQCSW) R1T0925
C
IF( AWET(I).EQ.0.0 ) AWET(I) = SX * (2. + .1843*TOC(I) R1T0926
1           + 1.5268*TOC(I)**2 -.8345*TOC(I)**3) R1T0927
TOCW   = TOCW + SX * TOC(I)**2 R1T0928
COSMC  = COSMC + COS(XMCSW) * SX R1T0929
COSQC  = COSQC + COS(XQCSW) * SX R1T0930
TANLE  = TANLE + TAN(XLESW) * SX R1T0931
TANTE  = TANTE + TAN(XTESW) * SX R1T0932
CLD    = CLD + CAM(I)**2 * SX R1T0933
SEXW   = SEXW + SX R1T0934
SUMCB  = SUMCB + CB*SX R1T0935
SUMYB  = SUMYB + YB*SX R1T0936
SUMXB  = SUMXB + XB*SX R1T0937
C
300 CONTINUE R1T0938
C
TOCW   = SQRT(TOCW/SEXW) R1T0939
CLD    = SQRT(CLD/SEXW) R1T0940
ESWMC  = ACOS(COSMC/SEXW) R1T0941
FSWQC  = ACOS(COSQC/SEXW) R1T0942
ESWLFB = ATAN(TANLE/SEXW) R1T0943
ESWTE  = ATAN(TANTE/SEXW) R1T0944
C
CB      = SUMCB/SEXW R1T0945
YB      = SUMYB/SEXW R1T0946
XR      = SUMXB/SEXW + XLE(1) R1T0947
X2      = XLE(1) - YW(I)*TAN(XLESWX(1)) + 0.75 * CRCL R1T0948
DXOB   = (X2 - X1)/BO2 R1T0949
C
IF( WPLAN.EQ.0.0 ) WPLAN = SEXW + (CRCL + CRW(1)) * YW(I) R1T0950
ARW   = 4. * BO2**2/WPLAN R1T0951
TRK   = (TAN(ESWLFB) - TAN(ESWTE)) * 0.25 * ARW R1T0952
IF( ISWP.EQ.0 ) TR = (1.-TRK)/(1.+TRK) R1T0953
TRLIM = CRW(INP)/CRCL R1T0954
IF( TR.LT.TRLIM ) TR = TRLIM R1T0955
C
310 IF( NSURFS.LE.1 ) GO TO 410 R1T0956
XNVT   = NVT R1T0957
DO 400 J = 2, NSURFS R1T0958
I       = J-1 R1T0959
C
SSFX(I) = SAWET(I)*0.5 R1T0960
IF(SCR(I).LE.0.0) GO TO 400 R1T0961
ARS(I)  = SSEX(I)/SCR(I)**2 R1T0962
C
IF(SWL(I).EQ.SWT(I)) GO TO 400 R1T0963
ARS(I) = 4.* (1.-STAPR(I))/(1.+STAPR(I))/(TAN(SWL(I))-TAN(SWT(I))) R1T0964
SSFX(I) = (SCR(I) * (1.+STAPR(I)))**2 * ARS(I) * 0.25 R1T0965

```

```

C IF(NHT.EQ.0.AND.NVT.GT.0) SSEX(1) = 0.5 * XNVT * SSEX(1) R1T0977
C IF(NHT.EQ.1.AND.NVT.GT.0) SSEX(2) = 0.5 * XNVT * SSEX(2) R1T0978
C
C IF( SAWET(I).EQ.0.0 ) SAWET(I) = SSEX(I) * (2. +.1843*STOC(I)) R1T0979
C 1 +1.5268*STOC(I)**2 -.8395*STOC(I)**3) R1T0980
C IF( SBAR(I).EQ.0.0 ) SBAR(I) = 0.66667 * SCR(I) * R1T0981
C 1 (1.+STAPR(I)**2/(1.+STAPR(I))) R1T0982
C
C 400 CONTINUE R1T0983
C
C 410 IF( XCG.EQ.0.0 ) XCG = XB + 0.25 * CB R1T0984
C IF( CMAC.EQ.0.0 ) CMAC = CB R1T0985
C NI = TW R1T0986
C FOC = CLD * FOXC(NI) R1T0987
C DXQC = XLE(1+NPNLS)+CRW +NPNLS)*0.25 -XLE(1)-CRW(1)*0.25 R1T0988
C
C GEOMETRY FOR THE HORIZONTAL TAIL IS CALCULATED R1T0989
C
C XH = 0.0 R1T0990
C OMEGA = 0.0 R1T0991
C
C IF( NHT.EQ.0 ) GO TO 415 R1T0992
C BHT = SQRT(ARS(1) + SSEX(1)) R1T0993
C XHT = BHT/6. * (1. + 2.*STAPR(1))/(1.+ STAPR(1))*TAN(SWL(1)) R1T0994
C 1 + SBAR(1) * 0.25 + HTLE R1T0995
C
C XH = SQRT((HTZ-ZCG)**2 + (XHT-XCG)**2) R1T0996
C OMEGA = ATAN((HTZ-ZCG)/(XHT-XCG)) R1T0997
C
C 415 IF( NPNLS.LF.1 ) GO TO 420 R1T0998
C
C CRANKED WING GEOMETRY IS CALCULATED R1T0999
C
C CRX = CCR(1) R1T1000
C CHX = CCR(2) R1T1001
C CTX = CCR(3) R1T1002
C YIX = YC(2) - YC(1) R1T1003
C YOX = YC(3) - YC(2) R1T1004
C
C SIX = (CRX + CBX) * YIX R1T1005
C SOX = (CBX + CTX) * YOX R1T1006
C API = 4. * YIX**2 / SIX R1T1007
C ARXR = 4. * (YIX+YOX)**2 /(SIX+SOX) R1T1008
C
C DYP = YIX * 0.5 R1T1009
C CHXP = CTX + (YOX + DYP) * (CBX-CTX)/YOX R1T1010
C SOXP = (CBXP + CTX) * (YOX + DYP) R1T1011
C ARDP = 4. * (YOX + DYP)**2 /SOXP R1T1012
C
C SWPLFI = ATAN((CLE(2)-CLE(1))/YIX) R1T1013
C SWPLFO = ATAN((CLE(3)-CLE(2))/YOX) R1T1014
C SWPMCI = ATAN((CLE(2)-CLE(1)+(CRX-CRX)*0.5)/YIX) R1T1015
C SWPMCO = ATAN((CLE(3)-CLE(2)+(CTX-CTX)*0.5)/YOX) R1T1016
C
C 420 IF( KPRINT(12).EQ.0 ) GO TO 421 R1T1017
C WRITE(6,1000) (G2(I), I = 1, 111) R1T1018

```

```

C
421 WRITE(6,2000) RIT1033
  IF( NBODY5.GT.0 ) WRITE(6,2001) (I,BLEN(I),BAWET(I),FRBCD(I),
  1           BQ(I), I = 1, NBODY5) RIT1034
C
  IF( NNACS.GT.0 ) WRITE(6,2002) (I,ELEN(I),EAWET(I),FRNAC(I),
  1           EQF(I), I = 1,NNACS) RIT1035
C
  IF( NSURFS.EQ.0 ) GO TO 450 RIT1036
  X      = SWMT * 57.2958 RIT1037
  DO 425 I = 1, NPNLS RIT1038
    IF( I.NE.NPNLS ) WRITE(6,2003) I, CBAR(I), AWET(I), TOC(I)
  425 IF( I.EQ.NPNLS ) WRITE(6,2003) I, CBAR(I), AWET(I), TOC(I), X RIT1039
C
  NS      = NSURFS - 1 RIT1040
  IF( NS.LE.0 ) GO TO 450 RIT1041
  DO 430 I = 1, NS RIT1042
  J      = I +1 RIT1043
  X      = SMTSH(I) * 57.2958 RIT1044
  WRITE(6,2004) J, SBAR(I), SAWET(I), STOC(I), SHF(I), X RIT1045
  430 CONTINUE RIT1046
  450 CONTINUE RIT1047
1000 FORMAT(5X, *GEOMETRY DATA DUMP, COMMON BLKG01*/(1X,10F12.4)) RIT1055
2000 FORMAT(1H1, 5X, *CONFIGURATION SUMMARY* // RIT1056
  1     3IX, *LENGTH*, 7X, *WETTED AREA*, 5X, *FR CR T/C*, RIT1057
  2     4X, *INTERFERENCE*, 4X, *MAX. T/C SWEEP* / RIT1058
  3     30X, *(FT.)*, 8X, *(SQ. FT.)*, 20X, RIT1059
  4     *FACTOR*, 8X, *(DEG.)* / ) RIT1060
2001 FORMAT(5X, *BODY NUMBER* I2, 5X, 4F15.5) RIT1061
2002 FORMAT(5X, *NACELLE NO.* I2, 5X, 4F15.5) RIT1062
2003 FORMAT(5X, *WING PANEL NO.* I2, 2X, 3F15.5, 15X, F15.5) RIT1063
2004 FORMAT(5X, *AIRFOIL SURFACE NO.* I2, F12.5, 4F15.5) RIT1064
C
  END RIT1065
RIT1066

```

CC = 00314

```

OVERLAY(3,0) RIT1068
PROGRAM SURVEY RIT1069
C RIT1070
C AERODYNAMIC SURVEY RIT1071
C COMMON /BLKA01/ NBODYS, NNACS, NSURFS, NHT, NVT, ISWP, NPNLS RIT1072
C RIT1073
C COMMON/BLKSUR/ NSURV, NCLAS, IT(20), ITRM(20), FMSURV(20), RIT1074
1 ALT(20), DHSV(20), SWPV(20), CLLO(20), CLHI(20), RIT1075
2 TRBNWS(250) RIT1076
RIT1077
C COMMON /BLKHLS/ NHLSV, HLS(70) RIT1078
C RIT1079
C COMMON /BLKTIL/ TITLE(6) RIT1080
COMMON /BLKOV3/ ITYP, XMACH, TOC, CLD, SWPMC, H, FM, ITL, JPASS, RIT1081
1 ROT, OTE, ITRIM RIT1082
C RIT1083
C COMMON /BLKC01/ CL, CD, CM, ALPHA, CDM, CDL, CDR, CDRO, CLT, CDT, RIT1084
1 DA, FK, DELCL, CMO, DCMCL, XACWB, CLA, ALD, RIT1085
2 TCD(5), CDFUS(5), CD80D(5), CONAC(4), CDWING(4), RIT1086
3 CDHT(4), CDVT(4), CDSURF(4), RIT1087
4 C1(9), CLPB, CLDB, CLMAX, C2(9), CDC, C3(10), RIT1088
5 C4(7), CDMISC, DEDA, CDAFT, C5(5) RIT1089
RIT1090
COMMON /BLKA02/ A1(433) RIT1091
COMMON /BLKA03/ A2(13), IREF, A3(6) RIT1092
COMMON /BLKVGM/ KPASS, SWP, VGM(27) RIT1093
COMMON /BLKC03/ C03(22) RIT1094
C RIT1095
C COMMON /BLKC01/ G1(200) RIT1096
C RIT1097
C COMMON /BLKB02/ AA(22), BB(22), CC(22), DD(22), XT(22) RIT1098
C RIT1099
C DIMENSION XOTE(20), YOTE(20) RIT1100
DATA XOTE / 34.6,38.4,46.4,60.2,57.5,59.5,66.5,30.0,95.0,50.0, RIT1101
1 63.0,82.8,113.0,153.0,63.0,82.8,113.0,63.0,82.8,113./, RIT1102
2 YOTE / 4*14.8,3*14.05,40.0,0.0,0.11*13.8 / RIT1103
C RIT1104
IF( ISWP.EQ.0 ) GO TO 100 RIT1105
KPASS = 1 RIT1106
SWP = A1(4) RIT1107
CALL OVERLAY(4HOVLY,3,1) RIT1108
KPASS = 2 RIT1109
SWP = A1(317) RIT1110
CALL OVERLAY(4HOVLY,3,1) RIT1111
100 KPASS = 0 RIT1112
C RIT1113
TOC = G1(46) RIT1114
CLD = G1(47) RIT1115
ITYP = A1(235) RIT1116
WINC = A1(280) RIT1117
IF( NSURV.EQ.0 ) GO TO 510 RIT1118
C RIT1119
SWP2 = SWPV(1) RIT1120
C RIT1121
JPASS = 0 RIT1122
DO 500 L = 1, NSURV RIT1123

```

```

FM      = FMSURV(L)          R1T1124
H       = ALT(L)             R1T1125
DH      = DHSV(L)            R1T1126
SWEEP   = SWPV(L)            R1T1127
CLLOW   = CLL0(L)            R1T1128
ITL     = IT(L)              R1T1129
ITRIM   = ITRM(L)            R1T1130
C
XNCL   = NCLAS - 1          R1T1131
DCL    = 0.0                 R1T1132
IF( XNCL.GT.0.0 ) DCL = (CLHI(L) - CLL0(L))/XNCL R1T1133
C
SWP    = SWEEP/57.2957796    R1T1134
IF( ISWP.GT.0.AND.SWEEP.NE.SWP2 ) JPASS = 0      R1T1135
SWP2   = SWEEP               R1T1136
C
IF( ISWP.GT.0.AND.JPASS.EQ.0 ) CALL OVERLAY(4HOVLY,3,1) R1T1137
E02   = 0.25 * SQRT(G1(80)*G1(82)) R1T1138
DO 200 IP = 1, NPNLS        R1T1139
SWPMW = G1(69+IP)           R1T1140
IF( ISWP.GT.0.AND.IP.EQ.NPNLS ) GO TO 190          R1T1141
IF( A1(302+IP).LE.E02.AND.A1(303+IP).GT.E02) GO TO 210 R1T1142
GO TO 200               R1T1143
190 IF( A1(302+NPNLS).LE.E02 ) SWPMW = G1(69+NPNLS) R1T1144
200 CONTINUE                R1T1145
C
210 IF( SWPMW.GT.G1(49) ) SWPMW = G1(49)          R1T1146
SWPMC = SWPMW * 57.2958 R1T1147
TOG   = G1(46)              R1T1148
CLD   = G1(47)              R1T1149
ITYP  = A1(235)             R1T1150
XMACH = 0.6                 R1T1151
C
IF( JPASS.EQ.0 ) CALL OVERLAY(4HOVLY,3,2)          R1T1152
C
IF( JPASS.EQ.2 ) JPASS = 1                          R1T1153
C
DO 300 M = 1, NCLAS          R1T1154
XM1   = M-1                R1T1155
CL    = CLLOW + DCL * XM1          R1T1156
C
CALL OVERLAY(4HOVLY,3,3,6HRECALL)                  R1T1157
C
SWEEP  = G1(41) * 57.29578 R1T1158
IF( M.NE.1 ) GO TO 220 R1T1159
WRITE(6,1005) (TITLE(K), K=1,6) R1T1160
IF( H.GE.0.0.AND.ITRIM.EQ.0 ) WRITE(6,1000) FM,H,SWEEP,DH R1T1161
RN    = -H * 1.0E6            R1T1162
IF( H.LT.0.0.AND.ITRIM.EQ.0 ) WRITE(6,1006) FM,RN,SWEEP,DH R1T1163
IF( H.GE.0.0.AND.ITRIM.NE.0 ) WRITE(6,1008) FM, H, SWEEP R1T1164
IF( H.LT.0.0.AND.ITRIM.NE.0 ) WRITE(6,1009) FM,RN, SWEEP R1T1165
220 ANGLE = ALPHA            R1T1166
IF( IREF.EQ.1 ) ANGLE = ALPHA - WINC R1T1167
C
CDRA  = CDR + CDAFT          R1T1168
IF( ITRIM.EQ.0 ) WRITE(6,1001) CLT, CDT, CM, ANGLE, CDL, CDRA, R1T1169

```

```

1           CL, CD          R1T1179
IF( ITRIM.EQ.1 ) WRITE(6,1001) CLT, CDT, CM, ANGLE, CDL, CDRA,
1           CL, CD          R1T1180
R1T1181
R1T1182
R1T1183
R1T1184
R1T1185
R1T1186
R1T1187
R1T1188
R1T1189
R1T1190
R1T1191
R1T1192
R1T1193
R1T1194
R1T1195
R1T1196
R1T1197
R1T1198
510 IF( NHLSV.EQ.0 ) GO TO 700
ROT      = AA(ITYP)/TOC + BB(ITYP) + CC(ITYP)*TOC + DD(ITYP)*TOC**2 R1T1199
IF( ITYP.EQ.8 ) ROT = 0.88216 * TOC**0.006
OTE      = XOTE(ITYP)*TOC + YOTE(ITYP) *CLD
R1T1200
R1T1201
R1T1202
R1T1203
R1T1204
R1T1205
R1T1206
R1T1207
R1T1208
R1T1209
R1T1210
R1T1211
R1T1212
R1T1213
R1T1214
R1T1215
R1T1216
R1T1217
R1T1218
R1T1219
R1T1220
R1T1221
R1T1222
R1T1223
1000 FORMAT(1X, *MACH NO. ==F6.3, 5X,*ALTITUDE ==F7.0,* FT.* , 5X,
1           *SWEEP ANGLE ==F6.2,* DEG.* , 5X,*TAIL DEFL. (DH) ==F6.2, R1T1224
2           * DEG.* //T10,*CL*, T22,*TOTAL CD*, T38,*CM*, T53,*ALPHA*, R1T1225
3           T68,*CD LIFT*, T82,*CD R+AFT*, T97,*CL AT DH =0*, R1T1226
4           T113,*CD AT DH=0*, / ) R1T1227
R1T1228
1001 FORMAT(5X,F8.3,2F15.5, F15.2, 4F15.5)
1002 FORMAT(/10H     CLA =,F8.5,1X,*PER DEG.* ,10H     ALD =,F8.5,1X, R1T1229
1           *DEG.* , 29X,10H     CLDB =,F8.5 /
1           10H     K =,F8.5, 9X,           10H     DELCL =,F8.5 , R1T1230
2           34X,10H     CLMAX =,F8.5 /
2           10H     CM/CL =,F8.4 // R1T1231
R1T1232
R1T1233
R1T1234

```

3 * DRAG BREAKDOWN ----- *, 8X,*FUSLAGE*, 9X,*BODIES*, 7X,*NACELLES* RIT1235
 4*,3IX,*WING*, 5X,*HORIZ TAIL*, 6X,*VERT TAIL*, 7X,*SURFACES*) RIT1236
 1003 FORMAT(5X,1OHFRICITION =,F7.5,7F15.5 / RIT1237
 1 5X,1OHFORM =,F7.5,7F15.5 / RIT1238
 2 5X,1OHINTERF =,F7.5,7F15.5 / RIT1239
 3 5X,1OHWAVE =,F7.5,7F15.5) RIT1240
 1004 FORMAT(5X,1OHBASE =,F7.5, 2F15.5 / RIT1241
 1 5X,1OHCAMBER =,F7.5 / RIT1242
 2 5X,1OHDRA G RISE=,F7.5 / RIT1243
 3 5X,1OHMISC =,F7.5) RIT1244
 1005 FORMAT(1H1, /1X, 6A10) RIT1245
 1006 FORMAT(1X, *MACH NU. ==F6.3, 5X,*RN/FT ==1PE15.4,5X, RIT1246
 1 *L.E. SWEEP ANGLE ==OPF6.2,* DEG.* ,5X,*TAIL DEFL. (DH) == RIT1247
 2 F6.2,* DEG.* RIT1248
 2 //T10,*CL*, T22,*TOTAL CD*, T38,*CH*, T53,*ALPHA*, RIT1249
 3 T68,*CD LIFT*, T82,*CD R+AFT*, T97,*CL AT DH=0*, RIT1250
 4 T113,*CD AT DH=0*, /) RIT1251
 1007 FORMAT(/5X, 1OH CDM IN =,F7.5 //) RIT1252
 1008 FORMAT(1X, *MACH NO. ==F6.3, 5X,*ALTITUDE ==F7.0,* FT.* , 5X, RIT1253
 1 *L.E. SWEEP ANGLE ==F6.2,* DEG.* ,5X,*TRIMMED CONDITION* RIT1254
 2 //T10,*CL*, T22,*TOTAL CD*, T38,*DH*, T53,*ALPHA*, RIT1255
 3 T68,*CD LIFT*, T82,*CD R+AFT*, T97,*CL AT DH =0*, RIT1256
 4 T113,*CD AT DH=0*, /) RIT1257
 1009 FORMAT(1X, *MACH NO. ==F6.3, 5X,*RN/FY ==1PE15.4,5X, RIT1258
 1 *L.E. SWEEP ANGLE ==OPF6.2,* DEG.* ,5X,*TRIMMED CONDITION* RIT1259
 2 //T10,*CL*, T22,*TOTAL CD*, T38,*DH*, T53,*ALPHA*, RIT1260
 3 T68,*CD LIFT*, T82,*CD R+AFT*, T97,*CL AT DH=0*, RIT1261
 4 T113,*CD AT DH=0*, /) RIT1262
 C RIT1263
 END RIT1264

CC = 00198

```

C      SUBROUTINE ADJUST(ID, ID2, XVAR, YVAR)          R1T1266
C      ADJUST Y-VARIABLE USING CORRELATION FACTORS      R1T1267
C
C      COMMON /BLKADJ/ IVAL(20), X(15), YM(15,9), YA(15,9), XCL(15),
1      NXVAR, NXCL                                         R1T1268
C
C      COMMON /BLKPRT/ KPRINT(50)                         R1T1269
C
C      YVARI = YVAR                                     R1T1270
C      IF( ID.EQ.0 ) GO TO 300                          R1T1271
50     NV      = IVAL(ID)                            R1T1272
C
C      IF( NV.EQ.0 ) RETURN                           R1T1273
100    CALL LNTP(XVAR, VM, X, YM(1,NV), NXVAR, 2)   R1T1274
200    CALL LNTP(XVAR, VA, X, YA(1,NV), NXVAR, 2)   R1T1275
      GO TO 500                                         R1T1276
C
C      300 NV      = IVAL(ID2)                         R1T1277
C      IF( NV.EQ.0 ) RETURN                           R1T1278
400    CALL LNTP(XVAR, VM, XCL, YM(1,NV), NXCL, 2)  R1T1279
      CALL LNTP(XVAR, VA, XCL, YA(1,NV), NXCL, 2)  R1T1280
C
C      500 YVAR   = YVARI * VM + VA                  R1T1281
C
C      IF( KPRINT(24).EQ.0 ) RETURN                   R1T1282
C      WRITE(6,1000) ID, YVARI, XVAR, VM, VA, YVAR
1000  F 10AT(5X,*ADJUST DUMP*, 5X, *ID =*,I5/1X,5F15.5 )
      RETURN
      END

```

CC = 00030

```

BLOCK DATA R1T1297
C COMMON /BLKB01/ XSWPL(11), YRMIN(11) R1T1298
C COMMON /BLKB02/ AAA(22), BBB(22), CCC(22), DDD(22), XTT(22) R1T1299
C COMMON /BLKB03/ BOT(12), ATSW(6), TPRT(6), FXAC1(216), FXAC2(216) R1T1300
C COMMON /BLKB04/ XBD4(5), YBD4(5), ZBD4(3), FBD4(5,5,3) R1T1301
C COMMON /BLKB05/ XDY0(6), YXMN(6), ZIBD5(6,6) R1T1302
C COMMON /BLKB06/ XBD6(4), YBD6(4), ZBD6(6), FBD61(4,4,6), R1T1303
1 FBD62(4,4,6), FBD63(4,4,6) R1T1304
C COMMON /BLK4AP/ MAP, TRANS, DY, AMAP(22), BMAP(11) R1T1305
COMMON /BLKT22/ XIN13(10), YIN13(7), ZOUT13(10,7), ZOUT14(10,7) R1T1306
C COMMON /BLKA15/ NXIN15, XIN15(6), NYIN15, YIN15(5), R1T1307
1 FOUT15(6,5), FOUT16(6,5) R1T1308
COMMON /BLKCLB/ X1(6), Y1(6), X9(8), Y9(8), XAR(5), YDCL(5) R1T1309
C COMMON /BLKA16/ XSWP(7), YTR(4), FEP35(7,4), FEP7(7,4), R1T1310
1 XCLDB(7), YAKB(7) R1T1311
C COMMON /BLKMAX/ XTR(6), YC1(6), YC2(6), XSWP1(6), YA(4), R1T1312
1 YB(4), XDV(8), XM(4), CTAB(8,4), DTAB(8,4), R1T1313
2 XXCLM(13), YYDY(6), FCLMX(13,6), XXXC2(9), R1T1314
3 YYHACH(5), FOCLHX(9,5), XDY1(9), YXMT(4), R1T1315
4 ZC1MAX(9,4), XDY2(8), YFOC(6), ZDC1M(8,6), R1T1316
5 ZFOC1M(8,6) R1T1317
COMMON /BLKA12/ XSP(8), YDYA(6), FDA(8,6), XAB(6), YCO(8), R1T1318
1 PKVDFM(6,8), XANG(10), YRTOC(7), FRA(10,7) R1T1319
COMMON /BLKMY3/ SPAN(6), YTPR(4), FKB(6,4), FKS(6), FKD(6,4) R1T1320
COMMON /BLKMY4/ XC2(6), YAST(9), FDAM(6,9), XCT(6), YM(5), FDAM2(6,5) R1T1321
COMMON /BLKMY5/ XXXCLM(9), FCLMX(9,6) R1T1322
COMMON /BLKMX6/ XX(12), XY(7), XF(12,7) R1T1323
COMMON /BLKMX7/ SPAN2(11), YTPR2(5), FKS(11,5) R1T1324
COMMON /BLKMX8/ SPAN3(6), YTPR3(4), FKM(6,4) R1T1325
COMMON /BLKMX9/ SPAN4(5), YBFI1(5), FKA(5,5), R1T1326
1 SPAN5(5), YBFI2(3), FKF(5,3) R1T1327
C DATA XSWPL / 0.0,.17453,.34906,.5236,.65813,.87266,1.04719, R1T1328
1 1.13446,1.22173,1.34390,1.57079 /, R1T1329
2 YRMIN / 0.53, 0.53, 0.52, 0.515, 0.505, 0.49, 0.45, R1T1330
3 0.39, 0.30, 0.12, 0.10 /, R1T1331
C DATA BOT / 0.0, .4, .8, 1.2, 1.6, 1.8, 2., 2.4, 2.8, 3.2, 3.6, 4./, R1T1332
1 ATSW / 1., 2., 3., 4., 5., 6. /, R1T1333
2 TPRT / 0., 0.2, 0.25, 0.33, 0.5, 1.0 /, R1T1334
C FIG. 4.1.4.2-22 DATCOM **** R1T1335
DATA FXAC1/.25,.24,.23,.22,.20,.18,.17,.25,.32,.37,.40,.42, R1T1336
1 7*0.335, .39, .44, .48, .495, .5, R1T1337
2 .42, .44, .45, .46, .465,.475,.50, .56, .56, .57, 2*.58, R1T1338

```

```

3   .50, .53, .55, .575,.60, .62, 6*0.67, R1T1353
4   .58, .62, .66, .695,.73, .755,.83, .78, .78, .765,.75, .75, R1T1354
5   .68, .72, .76, .79, .83, .765,.98, .90, .90, .87, .85, .84, R1T1355
6   .29, .27, .25, .25, .23, .215,.20, .28, .33, .39, .44, .46, R1T1356
7   .40, .41, .41, .405,.40, .40, .40, .48, .52, .54, .56, .57, R1T1357
8   .51, .53, .54, .555,.57, .58, .60, .65, .665,.68, .69, .69, R1T1358
9   .64, .66, .68, .70, .73, .70, .795,.80, .81, .815,.805,.80, R1T1359
A   .75, .77, .80, .82, .87, .91, .97, .955,.95, .96, .93, .92, R1T1360
B   .87, .895,.915,.945,1.0, 1.05,1.15,1.12,1.1, 1.1, 1.05,1.03, R1T1361
C   .30, .29, .275,.26, .245,.24, .23, .30, .35, .40, .45, .475, R1T1362
D   .41, .42, .425,.425,.42, .415,.41, .50, .54, .57, .595,.60, R1T1363
E   .54, .555,.57, .58, .60, .61, .63, .68, .69, .71, .72, .72, R1T1364
F   .67, .69, .71, .73, .76, .79, .82, .83, .845,.865,.85, .845, R1T1365
G   .80, .82, .84, .86, .90, .95, 1.02,1.01,1.0, 1.01,.98, .97, R1T1366
H   .93, .95, .97, .99, 1.05,1.1, 1.25,1.2, 1.16,1.17,1.11,1.1 / R1T1367
    DATA FXAC2 /
I   .32, .31, .30, .28, .25, .24, .23, .31, .37, .42, .475,.50, R1T1368
J   .45, .46, .46, .455,.45, .445,.44, .54, .57, .60, .63, .64, R1T1369
K   .595,.60, .61, .62, .64, .65, .665,.72, .74, .76, .78, .775, R1T1370
L   .73, .745,.765,.78, .80, .83, .88, .89, .90, .93, .92, .91, R1T1371
M   .89, .90, .91, .93, .96, 1.0, 1.07,1.08,1.08,1.1, 1.06,1.05, R1T1372
N   1.04,1.05,1.06,1.09,1.12,1.17,1.27,1.26,1.25,1.26,1.21,1.2, R1T1373
O   .36, .34, .325,.31, .30, .275,.25, .34, .41, .48, .52, .55, R1T1374
P   .52, .52, .52, .52, .51, .505,.50, .60, .63, .67, .71, .72, R1T1375
Q   .70, .70, .705,.71, .72, .735,.75, .80, .82, .87, .89, .89, R1T1376
R   .88, .885,.89, .90, .915,.94, .98, 1.0, 1.02,1.07,1.05,1.05, R1T1377
S   1.04,1.05,1.05,1.06,1.09,1.12,1.19,1.2, 1.22,1.26,1.22,1.21, R1T1378
T   1.2, 1.21,1.22,1.24,1.27,1.3, 1.38,1.4, 1.42,1.45,1.4, 1.38, R1T1379
U   .50, .48, .46, .44, .40, .38, .34, .42, .50, .60, .70, .76, R1T1380
V   .75, .75, .745,.74, .72, .70, .68, .73, .80, .88, .97, 1.0, R1T1381
W   5*1.0, .98,.96,1.01,1.08,1.19,1.22,1.23, R1T1382
X   5*1.24,1.23,1.21,1.29,1.38,1.48,1.48,1.49, R1T1383
Y   5*1.49,1.47,1.44,1.55,1.66,1.77,1.73,1.75, R1T1384
Z   3*1.74,1.73,1.71,1.70,1.68,1.81,1.95,2.06,1.98,2.0 / R1T1385
    C
    C ** FIGURE 4.1.4.1-2 , DATCOM *****
    DATA XBD4 / 0.0, .34907, .69813, .87267, 1.0472 /, R1T1386
1     YBD4 / 0.0, 1.5, 3.5, 6.0, 10.0 /,
2     ZBD4 / 0.0, 0.5, 1.0 /, R1T1387
3     FBD4 / 5*0.0, 0.0, 0.0, 0.0, -.0002, -.0005, R1T1388
4     0.0, -.0007, -.002, -.0027, -.0037, R1T1389
5     0.0, -.0019, -.0044, -.006, -.008, R1T1390
6     0.0, -.008, -.016, -.021, -.0265, R1T1391
7     5*0.0, 0.0, 0.0, -.0005, -.0008, -.0011, R1T1392
8     0.0, -.001, -.0029, -.0045, -.0068, R1T1393
9     0.0, -.003, -.007, -.0093, -.013, R1T1394
1     0.0, -.008, -.016, -.021, -.0265, R1T1395
2     5*0.0, 0.0, -.0002, -.0006, -.001, -.0012, R1T1396
3     0.0, -.0013, -.003, -.004, -.0052, R1T1397
4     0.0, -.0031, -.0066, -.0088, -.012, R1T1398
5     0.0, -.008, -.016, -.0207, -.026 /, R1T1399
    C
    DATA XDY0 / 0.8, 1.1, 1.4, 1.6, 2.0, 2.4 /, R1T1400
1     YXMN / 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 /, R1T1401
2     Z1BD5 / 3.74,4.395,5.432,6.348,8.545,11.231, 4.029,4.517, R1T1402
3     5.249,5.982,7.874,10.254, 4.395,4.639,5.127,5.616, R1T1403

```

```

4      7.081,8.973, 4.7,4.834,5.127,5.432,6.287,7.691, RIT1409
5      5.371,5.213,5.188,5.31,5.799,6.836, RIT1410
6      6.226,5.738,5.432,5.335,5.616,6.409 / RIT1411
C      RIT1412
C      RIT1413
FIGURE 4.1.4.2-25 DATCOM *****
DATA XBD6 / 0., 1., 2., 3., /, RIT1414
1      YBD6 / -2., -1., 0., 1., /, RIT1415
2      ZBD6 / 0., 1., 2., 3., 4., 5., /, RIT1416
3      FBD61 / 0.,.125,.16,.17,0.,.115,.17,.2,0.,.15,.195,.195,0., RIT1417
4 .165,.2,.2,.18,.26,.28,.3,.18,.27,.305,.32,.18,.285,.32,.32,.18, RIT1418
5 .3,2*.32,.34,.39,.4,.412,.34,.405,.435,.45,.34,.425,2*.445,.34, RIT1420
6 .445,.45,.45,.5,.505,.515,.53,.5,.525,.54,.55,.5,.545,2*.55,.5,3* RIT1421
7 .55,.665,.62,.623,.626,.665,.653,.66,.665,8*.665, RIT1422
8 .815,.73,.728,.722,.815,.775,.778,.78,.815,.79,.78,.815, RIT1423
9 3*.775 / RIT1424
DATA FB062 / 0.,.135,.17,.186,0.,.12,.19,.215,0.,.175,2*.215,0.,.2RIT1425
1,2*.235,.2,.28,.298,.314,.2,.3,.35,.365,.2,.32,2*.36,.2,.365,2*.38RIT1426
2,.4,.43,.44,.45,.4,.47,.495,.508,.4,.49,2*.51,.4,3*.52, RIT1427
3 .6,.575,.578,.58,.6,.61,.63,.65,.6,.64,2*.65,.6,3*.65, RIT1428
4 .8,3*.72,.8,.77,.78,.792,.8,.795,.792,.79,.8,3*.78, RIT1429
5 .98,.84,.83,.82,.98,3*.92,.98,.925,2*.915,.98,3*.885 /, RIT1430
6 FBD63 / 0.,.15,.18,.2,0.,.135,.23,.28,0.,.2,2*.275,0.,.24,2*.28, RIT1431
7 .26,.35,.365,.38,.26,.365,.42,.45,.26,.405,2*.455,.26,3*.475, RIT1432
8 .5,.535,.55,.565,.5,.585,.61,.63,.5,.605,2*.63,.5,3*.65, RIT1433
9 .75,3*.735,.75,.78,.795,.81,.75,3*.8,.75,3*.82, RIT1434
1 .98,.905,.895,.885,.98,3*.95,.98,.95,2*.945,.98,3*.96, RIT1435
2 1.17,1.06,1.03,1.,1.17,1.1,1.08,1.065,1.17,1.09,2*1.065,1.17, RIT1436
3 3*1.08 / RIT1437
C      RIT1438
DATA XIN13/ 0.0,1., 2., 3., 4., 5., 6., 7., 8., 20. /, RIT1439
1      YIN13/ 0.0, 20.0, 35.0, 50.0, 65.0, 72.5, 90.0 /, RIT1440
2      ZOUT13/ .00973,.00973,.0093,.009,.0089,.0087,4*0.0086, RIT1441
3      .00973,.00973,.0093,.009,.0089,.0087,4*0.0086, RIT1442
4      .0097,.0097,.00927,.00902,.0089,.00872,4*0.00862, RIT1443
5      .0096,.0096,.0092,.009,.0089,.00872,4*0.00863, RIT1444
6      .00943,.00943,.00897,.00882,.00875,.0085,4*.00854, RIT1445
7      .0093,.0093,.0088,.0087,.00862,.0085,4*0.00844, RIT1446
8      .0093,.0093,.0088,.0087,.00862,.0085,4*0.00844 / RIT1447
DATA ZOUT14/1.28,1.28,1.27,1.252,1.244,1.233,1.227,1.217,2*1.21, RIT1448
1      1.28,1.28,1.27,1.252,1.244,1.233,1.227,1.217,2*1.21, RIT1449
2      1.324,1.324,1.311,1.295,1.281,1.266,1.258,1.24,2*1.23,RIT1450
3      1.363,1.363,1.35,1.33,1.313,1.292,1.283,1.261,2*1.25, RIT1451
4      1.392,1.392,1.38,1.36,1.339,1.317,1.303,1.279,2*1.27, RIT1452
5      1.403,1.403,1.392,1.371,1.349,1.325,1.31,1.285,2*1.28,RIT1453
6      1.403,1.403,1.392,1.371,1.349,1.325,1.31,1.285,2*1.28/RIT1454
C      RIT1455
DATA AMAP / 22.0, 21.7, 19.2, 18.35, 22.0, 21.2, 19.2, 27.0,11.75,RIT1456
1      24.,24.,22.,20.,20.,19.,17.,15.,29.,27.,25., 2*0. /, RIT1457
2      BMAP / 4 * 1.75, 3 * 2.0, 4 * 0.0 / RIT1458
C      RIT1459
DATA NXIN15/ 6 /, RIT1460
1      XIN15/ 0.0, 0.5, 0.6, 0.8, 0.9, 1.0 /, RIT1461
2      NYIN15/ 5 /, RIT1462
3      YIN15 / 0.0, 5.0, 15.0, 20.0, 23.0 /, RIT1463
4      FOUT15/ 0.865, 0.756, 0.71, 0.6, 0.51, 0.45, RIT1464

```

```

5      0.865, 0.756, 0.71, 0.6, 0.51, 0.45,          RIT1465
6      0.925, 0.965, 0.958,.905,.845, 0.78,          RIT1466
7      0.978, 1.02,1.03, 1.02, 0.99, 0.975,          RIT1467
8      0.99, 1.04,1.05, 1.05, 1.045,1.04 /,          RIT1468
9      FOUT16/ 6 * 1.05, 1.05, 1.04, 1.02,.94,.88,.84, RIT1469
1      1.05, 1.05, 1.04, 1.01, 0.995, 0.985,          RIT1470
2      6 * 1.05, 6 * 1.05 /,                         RIT1471
DATA X1   / 0.7243, 0.8727, 1.0472, 1.2217, 1.3963, 1.5708 /, RIT1472
1      Y1   / 0.85, 0.69, 0.575, 0.51, 0.483, 0.48 /, RIT1473
2      X9   / 0.3665,0.5236,0.6981,0.8727,1.0472,1.2217,1.3963,1.6/, RIT1474
3      Y9   / 0.85,.625,.435,.35,0.375,0.447,0.478, 0.48 /, RIT1475
4      XAR  / 1.0, 2.3, 3.0, 4.0, 5.0 /,             RIT1476
5      YDCL  / -0.16, 0.0, 0.05, 0.085, 0.0855 /,    RIT1477
                                         RIT1478
C
DATA AAA / 8.48243E-4, 8.03417E-4, 3.31322E-6, -1.72323E-3, RIT1479
4      2.02978E-3, 1.36146E-4, 3.79206E-5, 15 * 0.0 /, RIT1480
5      BBB / -.0296429, -.0349676, -.0142049, .0310185, RIT1481
6      -.07305, -4.05767E-3, -1.03545E-3, 15 * 0.0 /, RIT1482
7      CCC / 1.23835, 1.15999, 1.03825, 0.585837, 1.57142, .712684, RIT1483
8      .639394, 0.0, 0.0, 5 * 1.1019, 3 * .275475, RIT1484
9      3 * 3.3057, 0.0, 0.0 /,                         RIT1485
1      DDD / -2.47002, -1.71448, -1.9292, -.559968, -2.99739, RIT1486
2      .0188291, .0607728, 15 * 0.0 /,               RIT1487
3      XTT / .35, .375, .41, .45, .37, .39, .42, .371, .5, .2, RIT1488
4      .3, .4, .5, .6, .3, .4, .5, .3, .4, .5, 0.0, 0.0 /, RIT1489
DATA XSWP / 0.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0 /, RIT1490
1      YTR  / 0.0, 0.25, 0.5, 1.0 /,               RIT1491
2      FFP35 / 0.94,0.951,0.96,0.968,0.973,0.974,0.971, RIT1492
3      0.992,0.995,0.997,0.999,0.998,0.992,0.984, RIT1493
4      1.0,1.0,0.999,0.997,0.988,0.971,0.944, RIT1494
5      0.996,0.992,0.986,0.975,0.959,0.93,0.863 /, RIT1495
6      FEP7  / 0.89,0.907,0.923,0.936,0.944,0.948,0.942, RIT1496
7      0.99,0.994,0.996,0.998,0.991,0.978,0.956, RIT1497
8      0.996,0.992,0.987,0.98,0.961,0.924,0.86, RIT1498
9      0.986,0.968,0.942,0.91,0.874,0.833,0.79 /, RIT1499
DATA XCLDB / 0.0, 0.3, 0.4, 0.5, 0.6, 0.7, 2.0 /, RIT1500
1      YAKB  / 0.33,0.352,0.44,0.625,1.0,1.47, 2.0 /, RIT1501
                                         RIT1502
C
C
DATA XTR  / 0.0, 0.1, 0.2, 0.3, 0.5, 1.0 /,          RIT1503
1      YC1  / 0.0,0.225,0.47,0.5,0.32, 0.0 /,          RIT1504
2      YC2  / 0.0,0.22,0.5, 0.91, 1.05, 0.85 /,          RIT1505
3      XSWP1 / 0.0, 30.0, 50.0, 60.0 /,                RIT1506
4      YA   / 0.9, 1.04, 1.2, 1.3 /,                  RIT1507
5      YB   / 0.0, 0.24, 0.5, 0.71 /,                 RIT1508
6      XDY  / 0.0, 2.0, 2.25, 2.5, 3.0, 4.0, 4.5, 10.0 /, RIT1509
7      XM   / 0.2, 0.4, 0.6, 1.0 /,                  RIT1510
DATA CTAB / 8 * 0.0, -.02,-.02,-.26,-.32,-.355,-.41,-.445,-.45, RIT1511
9      .12,.12, -.36, -.43, -.5, -.64, -.72, -.72, RIT1512
1      .58,.58, -.15, -.34, -.57, -.76, -.92, -.92 /, RIT1513
2      DTAB  / 8 * 0.0, -.085,-.085, .02, .055, .045, .02,.02,.02, RIT1514
3      -.2, -.2, -.01, -.02, -.03, -.07, -.09, -.09,0.0 /, RIT1515
4      XXCLM / 0.0, .2, .4, .6, .8, 1., 1.2, 1.6, 2.0, 2.4, 2.8, RIT1516
5      3.2, 4.4 /,                         RIT1517
6      YYDY  / 0.0, .25, .5, .75, 1.0, 10.0 /,        RIT1518
DATA FCLMX / 0.9, 1.375, 1.57, 1.645, 1.645, 1.575, 1.4, 1.14, RIT1519
                                         RIT1520

```

```

8      1.02, .96, .92, .91, .9, .75, 1.28, 1.48, 1.55, R1T1521
9      1.56, 1.5, 1.33, 1.11, 1.0, .94, .9, .88, .875, R1T1522
1      .68, 1.19, 1.4, 1.47, 1.475, 1.4, 1.27, 1.08, R1T1523
2      .975, .92, .88, .85, .84, .6, 1.1, 1.3, 1.375, R1T1524
3      1.385, 1.33, 1.23, 1.06, .96, .9, .865, .84, .83, R1T1525
4      .4, 1.02, 1.2, 1.29, 1.31, 1.27, 1.19, 1.04, .94, R1T1526
5      .88, .84, .83, .82, .4, 1.02, 1.2, 1.29, 1.31, R1T1527
6      1.27, 1.18, 1.02, .91, .85, .82, .8, .8 /, R1T1528
7      XXC2 / 0.0, 2.0, 4., 6., 8., 10., 12., 14., 20./, R1T1529
8      YYMACH / 0.0, 0.2, 0.4, 0.6, 1.0 /, R1T1530
9      FDCLMX / -.11, -.08, 0.0, .115, .23, .335, .36, .22, 0.0, R1T1531
1      -.11, -.08, 0.0, .115, .23, .335, .36, .22, 0.0, R1T1532
2      -.11, -.08, 0.0, .1, .2, .3, .32, .18, 0.0, R1T1533
3      -.11, -.08, 0.0, .08, .15, .21, .205, .08, 10*0.0/ R1T1534
C      R1T1535
C      ** FIGURE 4.1.1.4-5, DATCOM *****
C      R1T1536
C      R1T1537
DATA XDY1 / 0.0, 1.1, 2.25, 2.5, 3.0, 3.5, 4., 4.5, 6. /, R1T1538
1      YXMT / 0.3, 0.35, 0.4, 0.45 /, R1T1539
2      ZC1MAX / 0.8, 0.8, 1.315, 1.43, 1.58, 1.58, 1.54, 1.47, 1.41, R1T1540
3      0.8, 0.8, 1.315, 1.43, 1.51, 1.52, 1.49, 1.41, 1.36, R1T1541
4      0.8, 0.8, 1.315, 1.39, 1.45, 1.45, 1.43, 1.35, 1.34, R1T1542
5      0.8, 0.8, 1.3, 1.33, 1.35, 1.36, 1.33, 1.32, 1.32 /, R1T1543
6      XDY2 / 0.0, 1.0, 2.0, 2.2, 2.4, 3.0, 5.2, 10.0 /, R1T1544
7      YFDC / 0.0, 2.0, 4.0, 6.0, 8.0, 100.0 /, R1T1545
8      ZDC1M / 10*0.0, 0.1, 0.13, 0.15, 0.145, 0.05, 0.0, R1T1546
9      0.0, 0.11, 0.275, 0.3, 0.3, 0.22, 0.10, 0.0, R1T1547
1      0.1, 0.26, 0.44, 0.465, 0.45, 0.30, 0.17, 0.0, R1T1548
2      0.2, 0.40, 0.60, 0.620, 0.60, 0.39, 0.25, 0.0, R1T1549
3      0.2, 0.40, 0.60, 0.620, 0.60, 0.39, 0.25, 0.0 / R1T1550
DATA Z2DC1M/ 9*0...15..28, .28, .27, .18, .07, .07, R1T1551
1      .1, .28, .49, .47, .41, .26, .12, .12, R1T1552
2      .2, .41, .61, .60, .55, .35, .17, .17, R1T1553
3      .33, .52, .68, .65, .60, .39, .20, .20, R1T1554
4      .33, .52, .68, .65, .60, .39, .20, .20 / R1T1555
C      R1T1556
DATA XSP / 0.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 90.0/, R1T1557
1      YDYA / 0.0, 1.2, 2.0, 3.0, 4.0, 50.0 /, R1T1558
2      FDA / 1.8, 2.2, 3.4, 5.0, 7.4, 10.2, 13.4, 13.4, R1T1559
3      1.8, 2.2, 3.4, 5.0, 7.4, 10.2, 13.4, 13.4, R1T1560
4      0.1, 1.1, 2.3, 3.9, 5.8, 6.75, 9.9, 9.9, R1T1561
5      1.3, 1.7, 2.4, 3.2, 4.2, 5.3, 6.7, 6.7, R1T1562
6      2.2, 2.0, 2.1, 2.3, 2.5, 2.85, 3.25, 3.25, R1T1563
7      2.2, 2.0, 2.1, 2.3, 2.5, 2.85, 3.25, 3.25 / R1T1564
C      R1T1565
DATA XAB / 0.0, 1.0, 2.0, 3.0, 4.0, 6.0 /, R1T1566
1      YCO / -1., -.75, -.5, -.25, 0.0, .25, .5, .75 /, R1T1567
2      FKVOFM / 1.57, 1.74, 2.02, 2.30, 2.58, 2.75, R1T1568
3      1.78, 1.95, 2.18, 2.52, 2.85, 2.90, R1T1569
4      2.03, 2.21, 2.42, 2.71, 3.00, 3.15, R1T1570
5      2.48, 2.60, 2.73, 2.93, 3.19, 3.33, R1T1571
6      3.13, 3.15, 3.20, 3.28, 3.45, 3.60, R1T1572
7      3.79, 3.80, 3.81, 3.82, 3.88, 3.98, R1T1573
8      6 * 4.45, 6 * 5.0 / R1T1574
DATA XANG / 0.0,.0698,.1396,.2094,.2792,.3490,.4188,.4886, R1T1575
1      0.5584, 0.6980 /, R1T1576

```

```

2     YRTOC / 0.0, 0.03, 0.05, 0.08, 0.12, 0.16, 0.5 /, RIT1577
3     FRA / 0.45, 0.245, 0.075, 7*0.0, RIT1578
4           1.0, .62, .40, .255, -19., 148., 11., 079., 05, 0.0, RIT1579
5           1.0, .84, .72, .48, .34, .252, 195, 142, 1, 0.0, RIT1580
6           1.0, .90, .858, .758, .618, .46, .345, .25, .17, 0.0, RIT1581
7           1.0, .917, .885, .814, .72, .62, .51, .38, .23, 0.0, RIT1582
8           1.0, .925, .895, .835, .76, .665, .565, .46, .35, 0.0, RIT1583
9           1.0, .925, .895, .835, .76, .665, .565, .46, .35, 0.0 /, RIT1584
C
1     DATA SPAN / 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 /, RIT1585
2     YTPR / 0.0, 0.25, 0.5, 1.0 /, RIT1586
3     FKB / 0.0, 0.3, 0.555, 0.77, 0.925, 1.0, RIT1588
4           0.0, 0.28, 0.53, 0.75, 0.915, 1.0, RIT1589
5           0.0, 0.265, 0.51, 0.73, 0.9, 1.0, RIT1590
6           0.0, 0.25, 0.48, 0.70, 0.885, 1.0 /, RIT1591
7     FKS / 0.0, 0.31, 0.63, 0.85, 0.945, 1.0 /, RIT1592
8     FKD / 0.0, 0.38, 0.64, 0.84, 0.965, 1.0, RIT1593
9           0.0, 0.295, 0.54, 0.74, 0.9, 1.0, RIT1594
1           0.0, 0.24, 0.475, 0.68, 0.855, 1.0, RIT1595
1           0.0, 0.2, 0.4, 0.6, 0.8, 1.0 /, RIT1596
C
1     DATA XC2 / 0.0, 1.0, 2.0, 3.0, 4.0, 5.0 /, RIT1597
2     YAST / 0.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 9.0, 30.0 /, RIT1598
3     FDAM / 10., 7., 4., 1.5, 0., 5, 8.6, 5.5, 2.5, 5., -3., 5., RIT1600
4           7.5, 4., 1., -6., 1., 5, 5.5, 1.5, -1.2, -2.5, -1., 5., RIT1601
5           3., -1.5, -4.1, -3., -1., 5, -2, -4.5, -5., -3., -1., 5., RIT1602
6           -2.3, -6.5, -5., -3., -1., 5, -4.5, -7., -5., -3., -1., 5., RIT1603
7           -8., -7., -5., -3., -1., 0.5 /, RIT1604
8     XCT / 4.0, 6.0, 8.0, 10.0, 12.0, 14.0 /, RIT1605
9     YM / 0.2, 0.4, 0.6, 0.8, 1.0 /, RIT1606
1     FDAM2 / 0., 1.5, 4., 7.2, 11., 15., 0., 0., 8, 3., 6., 9.5, 13.5, RIT1607
1           0., 3, 1.5, 3.2, 5.5, 8.6, 0., 0., 5, 2., 4., 7., RIT1608
2           0., 8, 3., 6., 9.5, 13.5 /, RIT1609
C
1     DATA XXXCLM / 0.0, .2, .4, .6, .8, 1., 1.2, 1.6, 2.0 /, RIT1610
1     FCLMXX / 0.7, 1.2, 1.37, 1.43, 1.43, 1.365, 1.25, 1.08, .99, RIT1611
1           .65, 1.12, 1.29, 1.355, 1.365, 1.305, 1.21, 1.07, .98, RIT1612
2           .6, 1.09, 1.23, 1.29, 1.295, 1.24, 1.17, 1.05, .97, RIT1613
3           .55, 1.0, 1.15, 1.23, 1.24, 1.20, 1.15, 1.04, .96, RIT1614
4           .5, .91, 1.09, 1.17, 1.20, 1.175, 1.13, 1.02, .935, RIT1615
5           .5, .91, 1.09, 1.17, 1.20, 1.165, 1.11, 1.0, .91 /, RIT1616
C
1     DATA XX / 0.0, .4, .8, 1.0, 1.2, 1.4, 1.6, 2.0, 2.4, 2.8, 3.2, 3.37 /, RIT1617
1     XY / 0., -1309, -1745, -2618, -3490, -4363, 1.0 /, RIT1618
2     XF / 8*1.0, .915, .63, .29, 0.0, RIT1619
3     8*1.0, .915, .63, .29, 0.0, RIT1620
4     7*1.0, .915, .755, .52, .245, 0.0, RIT1621
5     1.0, .97, .95, .97, 1.0, .95, .87, .69, .552, .38, .185, 0.0, RIT1622
6     .92, .90, .90, .95, 1.0, .95, .845, .63, .48, .31, .150, 0.0, RIT1623
7     .79, .80, .84, .91, 1.0, .945, .83, .585, .425, .27, .128, 0., RIT1624
8     .79, .80, .84, .91, 1.0, .945, .83, .585, .425, .27, .128, 0. /, RIT1625
C
1     DATA SPAN2 / 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 /, RIT1626
1     YTPR2 / 0.0, 0.2, 0.333, 0.5, 1.0 /, RIT1627
2     FKS / 0.0, 0.0285, 0.0435, 0.0490, 0.0480, 0.0417, RIT1628
3           0.0320, 0.0212, 0.0112, 0.0035, 0.0, RIT1629

```

4	0.0, 0.0310, 0.0460, 0.0545, 0.0565, 0.0530,	RIT1633
5	0.0460, 0.0350, 0.0240, 0.0120, 0.0,	RIT1634
6	0.0, 0.0290, 0.0460, 0.0560, 0.0590, 0.0570,	RIT1635
7	0.0510, 0.0410, 0.0290, 0.0150, 0.0,	RIT1636
8	0.0, 0.0270, 0.0450, 0.0560, 0.0610, 0.0600,	RIT1637
9	0.0545, 0.0450, 0.0330, 0.0180, 0.0,	RIT1638
1	0.0, 0.0225, 0.0400, 0.0525, 0.0605, 0.0620,	RIT1639
2	0.0600, 0.0520, 0.0400, 0.0230, 0.0 /	RIT1640
		RIT1641
C		
1	DATA SPAN3 / 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 /,	RIT1642
2	YTPR3 / 0.0, 0.25, 0.5, 1.0 /,	RIT1643
3	FKM / 0.0, 0.645, 1.045, 1.240, 1.320, 1.330,	RIT1644
4	0.0, 0.440, 0.760, 0.955, 1.070, 1.120,	RIT1645
5	0.0, 0.310, 0.575, 0.775, 0.930, 1.030,	RIT1646
6	0.0, 0.200, 0.400, 0.600, 0.800, 1.000 /	RIT1647
1	DATA SPAN4 / 0.0, 0.4, 0.8, 1.6, 2.4 /,	RIT1648
2	YBFI1 / 0.0, 0.05, 0.1, 0.15, 0.2 /,	RIT1649
3	FKA / 0.0, 0.38, 0.68, 1.00, 1.13,	RIT1650
4	0.0, 0.40, 0.74, 1.12, 1.32,	RIT1651
5	0.0, 0.49, 0.83, 1.38, 1.75,	RIT1652
6	0.0, 0.57, 1.05, 1.81, 2.43,	RIT1653
7	0.0, 0.70, 1.27, 2.34, 3.37 /	RIT1654
1	DATA SPAN5 / 0.2, 0.4, 0.6, 0.8, 1.0 / ,	RIT1655
2	YBFI2 / 0.0, 0.1, 0.2 /,	RIT1656
3	FKF / 4.00, 1.60, 0.60, 0.17, 0.0,	RIT1657
4	3.40, 1.55, 0.65, 0.26, 0.12,	RIT1658
	2.96, 1.46, 0.72, 0.40, 0.25 /	RIT1659
		RIT1660
	END	

CC = 00364

```

OVERLAY(3,1) R1T1662
PROGRAM VGEOM R1T1663

C C COMPUTES GEOMETRY FOR VARIABLE-SWEEP CONFIGURATIONS R1T1664
C C

COMMON /BLKVGM/ KPASS, SWPLE, DOBR, CLDR, ARWR, SWLER, SWQCR, R1T1665
1 SWMCR, SWTER, TOCR, TANSR, DZ, SXR, SWPMCR, R1T1666
2 CBXR, CTXR, CBXPR, SOXPR, ARXRR, AROPR, FOCR, R1T1667
2 DA1, DAC1, DSWP1, CPOCR, R1T1668
3 DA2, DAC2, DSWP2, DTOC R1T1669

C COMMON /BLKA01/ NBODYS, MNACS, NSURFS, NHT, NVT, ISWP, NPMLS R1T1670
C

COMMON /BLKA02/ SREF, AR, TAPR, SWPR, R1T1671
1 BLEN(10), BWID(10), BHGT(10), BAWET(10), BQ(10), R1T1672
2 BNO(10), BAMX(10), BABS(10), BLNS(10), BLBT(10), R1T1673
3 BASE(10), ELEN(10), EWID(10), EHGT(10), R1T1674
4 EAWE(10), EAMX(10), EIN(10), EXIT(10), ELNS(10), R1T1675
5 ELBT(10), EQF(10), ENO(10), CBAR(10), TW, R1T1676
6 XLEW, YHW, YBD, CR, B02, BFUS, FMISC, AB, AFTAW, R1T1677
7 CA(10), TOC(10), AMET(10), SWMT, SPLAN, CONCL, R1T1678
8 TWIST, ETWIST, WINC, XLE(11), CRW(11), YW(11), R1T1679
9 XPIVOT, YPIVOT, XAPEX, AFTSW, AFTCB, AFTOC, R1T1680
1 SBAR(10), TS(10), SCAM(10), STOC(10), SAMET(10), R1T1681
2 SMTSW(10), SHF(10), SWL(10), SWT(10), STAPR(10), R1T1682
3 SCR(10), HTLE, HTY, HTZ, HTINC R1T1683

C COMMON /BLKG01/ FRBDD(10), ARS(10), SSEX(10), FRNAC(10), SWP, SWPQC, R1T1684
1 SWPMC, SWPTE, DOB, TOCW, CLD, SEXW, ESWMC, R1T1685
2 SXX(10), XLESWX(10), XMCSWX(10), ARW, TR, WPLAN, R1T1686
3 CB, YB, XB, CRX, CBX, CTX, YIX, YOX, SIX, SOX, R1T1687
4 ATI, ARXR, CBXP, AROP, SOXP, SWPLEI, SWPLEC, R1T1688
5 SMPMC1, SWPMCO, ESWQC, ESWLE, ESWTE, CROB, DXOB, R1T1689
6 XHT, XCRTF, XH, OMEGA, FOC, TWIST, DINC, SWPMT, R1T1690
7 CBAR2, CLDS, TOCS, SWET, DXQC, G1(81) R1T1691

C COMMON /BLKPRT/ KPRT, INT(50) R1T1692
C DIMENSION X(6), Y(6), XT(6), YT(6), D(6), P(6) R1T1693

C C

IF( KPASS.EQ.1 ) GO TO 5 R1T1694
IF(SWPLE.EQ.SWPR) GO TO 10 R1T1695
IF( KPASS.EQ.2 ) GO TO 20 R1T1696
GO TO 25 R1T1697

5 DOBR = DOB
CLDR = CLD
SWLER = ESWLE
SWQCR = ESWQC
SWMCR = ESWMC
SWTER = ESWTF
ARWR = ARW
TOCR = TOCW
CBXR = CBX
CTXR = CTX
CBXPR = CBXP

```

SOXPR	= SOXP	R1T1718
ARXRR	= ARXR	R1T1719
AROPR	= AROP	R1T1720
FOCR	= FOC	R1T1721
SXR	= SXX(NPNLS)	R1T1722
SWPMCR	= XMCSWX(NPNLS)	R1T1723
GO TO 15		R1T1724
C C		R1T1725
10 DOB	= DOBR	R1T1727
TR	= TAPR	R1T1728
CLD	= CLDR	R1T1729
CBAR2	= CBAR(NPNLS)	R1T1730
TWIST	= TWIST	R1T1731
CINC	= WINC	R1T1732
SWPMT	= SWMT	R1T1733
WPLAN	= SPLAN	R1T1734
ARW	= ARWR	R1T1735
CLDS	= CAM(NPNLS)	R1T1736
TOCS	= TOC(NPNLS)	R1T1737
SWET	= AWET(NPNLS)	R1T1738
DXQC	= XLF(1+NPNLS)+CRW(1+NPNLS)*0.25 -XLE(1)-CRW(1)*0.25	R1T1739
CLD	= CLDR	R1T1740
DOB	= DOBR	R1T1741
TOCW	= TOCR	R1T1742
SXX(NPNLS)	= SXR	R1T1743
XLESWX(NPNLS)	= SWPR	R1T1744
XMCSWX(NPNLS)	= SWPMCR	R1T1745
CBX	= CBXR	R1T1746
CTX	= CTXR	R1T1747
SOX	= SXR	R1T1748
YDX	= YW(1+NPNLS) - YW(NPNLS)	R1T1749
CRXP	= CBXPR	R1T1750
SOXP	= SOXPR	R1T1751
ARXR	= ARXRR	R1T1752
AROP	= AROP	R1T1753
SWPLEO	= SWPR	R1T1754
SWPMCO	= SWPMCR	R1T1755
SEXW	= SXX(1) + SXX(2)	R1T1756
C		R1T1757
ESWL	= SWLER	R1T1758
ESWQC	= SWQCR	R1T1759
ESWMC	= SWMCR	R1T1760
ESWTF	= SWTER	R1T1761
GO TO 50		R1T1762
C		R1T1763
15 BO2	= YW(1+NPNLS)	R1T1764
CR	= SPLAN/(1.+TAPR) /BO2	R1T1765
CRX2	= CR * .(1.- YW(NPNLS)/BO2 *(1.-TAPR))	R1T1766
DZ	= CR * TAPR * TAN(TWIST/57.296)	R1T1767
TANSR	= TAN(SWPR) * (1.- (1.-TAPR)*CR/BO2/TAN(SWPR))	R1T1768
SX2	= (CRX2 + CR*TAPR) * (YW(1+NPNLS) - YW(NPNLS))	R1T1769
SWET	= SX2 * (2.+.1843*TOC(NPNLS) +1.5268*TOC(NPNLS)**2 1 - .8395*TOC(NPNLS)**3)	R1T1770
DAI	= AWFT(NPNLS) - SWET	R1T1771
DAC1	= CBAR(NPNLS) -.66667 *(CRX2 + (CR*TAPR)**2/	R1T1772
		R1T1773

```

1          (CRX2 + CR*TAPR) )
SWPMC = ATAN(0.5 *(TANSR + TAN(SWPR)) ) R1T1774
DSWP1 = SWMT - ATAN(0.5 *(TAN(SWPR) + TAN(SWPMC)) ) R1T1775
SWPTE = ATAN(TANSR) R1T1776
CPJCR = 0.5 * (COS(SWPR)/COS(SWPR-SWPMC) + COS(SWPTE))/ R1T1777
1          COS(SWPMC-SWPTE) ) R1T1778
C
DAZ = 0.0 R1T1779
DAC2 = 0.0 R1T1780
DSWP2 = 0.0 R1T1781
DTDC = 0.0 R1T1782
C
GO TO 50 R1T1783
C
20 CONTINUE R1T1784
C
C
25 Y(2) = YW(1+NPMLS) R1T1785
CR = SPLAN/(Y(2)*(1.+TAPR)) R1T1786
X(4) = CR + XAPEX R1T1787
X(1) = XAPEX R1T1788
Y(1) = 0.0 R1T1789
Y(4) = 0.0 R1T1790
X(2) = X(1) + Y(2) * TAN(SWPR) R1T1791
X(3) = X(2) + TAPR * CR R1T1792
Y(3) = Y(2) R1T1793
DO 30 I = 1,4 R1T1794
C(I) = SQRT((X(I) - XPIVOT)**2 + (Y(I) - YPIVOT)**2) R1T1795
P(I) = ATAN((X(I) - XPIVOT) / (Y(I) - YPIVOT)) R1T1796
IF((Y(I) - YPIVOT).LE.0.0) P(I) = P(I) + 3.141592 R1T1797
30 CONTINUE R1T1798
C
DSWP = SWPLF - SWPR R1T1799
C
DO 40 I = 1,4 R1T1800
XT(I) = XPIVOT +D(I) * SIN(DSWP + P(I)) R1T1801
YT(I) = YPIVOT +D(I) * COS(DSWP + P(I)) R1T1802
40 CONTINUE R1T1803
DXQC = 0.75* XT(2) +0.25* XT(3) -XLE(1) - CRW(1)*0.25 R1T1804
SWPTF = ATAN((XT(3) - XT(4))/(YT(3) - YT(4))) R1T1805
CO = TAN(SWPTE) / TAN(SWPLF) R1T1806
SWPQC = ATAN((1.0 - (1.0 - CO)/4.0)* TAN(SWPLF)) R1T1807
SWPMC = ATAN((1.0 - (1.0 - CO)/2.0)* TAN(SWPLF)) R1T1808
XFWD = XT(2) - YT(2) * TAN(SWPLF) R1T1809
XAFT = XT(3) - YT(3) * TAN(SWPTE) R1T1810
CRCLP = XAFT - XFWD R1T1811
CPOC = 0.5 * (COS(SWPLF)/COS(SWPLF - SWPMC) + COS(SWPTE))/ R1T1812
1          COS(SWPMC - SWPTE) ) R1T1813
CLDS = CAM(NPMLS) * CPOC/CPOCR R1T1814
TOCS = TOC(NPMLS) * CPOC/CPOCR R1T1815
DOB = DOBR * Y(2)/YT(2) R1T1816
C
45 CONTINUE R1T1817
TTIP = 1.0 + YT(2)* TAN(SWPLF) * (CO - 1.0)/CRCLP R1T1818
TW1ST = ATAN1DZ/(CRCLP*TTIP) * 57.296 R1T1819
R1T1820
R1T1821
R1T1822
R1T1823
R1T1824
R1T1825
R1T1826
R1T1827
R1T1828
R1T1829

```

```

C      DINC = WINC * (1.-TAN(DSWP) * TANSR) * COS(DSWP)          R1T1830
C      C3    = CRCLP * (1.0 - (YT(3)/YT(2))*(1.0 - TTIP) )        R1T1831
C      WPLAN = (CRCLP + C3) * YT(3) + C3 *(YT(2)-YT(3))          R1T1832
C      ARW   = 4. * YT(2)**2/WPLAN                                R1T1833
C      YMID  = YT(3) +(YT(2) - YT(3)) / (1.0/SQRT(C3/(TTIP*CRCLP)) + 1.0) R1T1834
C      TR    = 1. - (YMID/YT(2)) * (1.-TTIP)                      R1T1835
C      XTE2  = XT(4) + YW(NPNLS)*TAN(SWPTE)                      R1T1836
C      CRX2  = CRCLP * (1.-YW(NPNLS)/YT(2) * (1.-TTIP))          R1T1837
C      SX2   = WPLAN - (CRCLP + CRX2) * YW(NPNLS)                  R1T1838
C      STOTAL= SX2                                              R1T1839
C      TOCW  = TOCS                                             R1T1840
C      CLD   = CLDS                                             R1T1841
C      IF( NPNLS.EQ.1 ) GO TO 46                                  R1T1842
C
C      S1    = (XT(4)-XT(3))/(YT(4)-YT(3))                      R1T1843
C      S2    = (XLE(1)+CRW(1)-XLE(2)-CRW(2))/(YW(1)-YW(2))       R1T1844
C      IF( S1.EQ.S2 ) GO TO 46                                  R1T1845
C      YI    = (XT(4)-XLE(1)-CRW(1) +S1*YT(4) -S2*YW(1))/(S1-S2) R1T1846
C      DA    = (XTF2 - XLE(2) - CRW(2)) * (YW(2) - YI)           R1T1847
C      SX2   = SX2 + DA                                         R1T1848
C      STOTAL= SXX(1) + SX2                                     R1T1849
C      TOCW  = SQRT((TOC(1)**2*SXX(1) + TOCS**2*SX2)/STOTAL)    R1T1850
C      CLD   = SQRT((CAM(1)**2*SXX(1) + CLDS**2*SX2)/STOTAL)     R1T1851
C
C      46 SWET  = SX2 * (2.+1843*TOCS +1.5268*TOCS**2 -.8395*TOCS**3) R1T1852
C      1      +DA1 +(DA2-DA1) * (SWPLE-SWPR)/(AFTSW-SWPR)          R1T1853
C      TP    = TR * CRCLP/CRX2                                    R1T1854
C      CBAR2 = 0.66667 * CRX2 * (1. + (TP**2/(1.+TP)) )          R1T1855
C      CBAR2 = CBAR2 + DAC1 + (DAC2 - DAC1) * DSWP/(AFTSW-SWPR)    R1T1856
C
C      SWPMT = SWPQC + DSWP1 + (DSWP2-DSWP1) * DSWP/(AFTSW-SWPR) R1T1857
C      TOCW  = TOCW + DTOC * DSWP/(AFTSW - SWPR)                 R1T1858
C
C      COSMC = COS(XMCSWX(1)) * SXX(1) + COS(SWPQC) * SX2        R1T1859
C      COSQC = COS(ATAN(0.5*(TAN(XLESWX(1))+TAN(XMCSWX(1)))) * SXX(1) R1T1860
C      1      + COS(SWPQC) * SX2                                     R1T1861
C      TANLE = TAN(XLESWX(1)) * SXX(1) + TAN(SWPLE) * SX2          R1T1862
C      TANTE = (2.*TAN(XMCSWX(1))- TAN(XLESWX(1))) *SXX(1)       R1T1863
C      1      + TAN(SWPTE) * SX2                                     R1T1864
C
C      ESWMC = ACOS(COSMC/STOTAL)                                 R1T1865
C      ESWQC = ACOS(COSQC/STOTAL)                                 R1T1866
C      ESWLE = ATAN(TANLE/STOTAL)                                 R1T1867
C      ESWTE = ATAN(TANTE/STOTAL)                                 R1T1868
C
C      SEXW  = STOTAL                                             R1T1869
C      SXX(NPNLS) = SX2                                           R1T1870
C      XLESWX(NPNLS)= SWPLE                                      R1T1871
C      XMCSWX(NPNLS)= SWPMC                                     R1T1872
C      CRX  = CRX2                                              R1T1873
C      CTX  = CRCLP * TR                                         R1T1874
C      SNX  = SX2                                              R1T1875
C      YOX  = YMID - YW(NPNLS)                                    R1T1876
C      CBXP = CRCLP * (1.-(YW(1)+YW(2))*5 *(1.-TR)/YMID )      R1T1877
C      SNXP = (CBXP + CTX) * (YMID -(YW(1)+YW(2))*5)            R1T1878

```

```

ARXR = 4. * (YMID - YW(1))**2 /SEXW          R1T1886
AROP = 4. * (YMID - (YW(1)+YW(2)*.5) )**2/SOXP   R1T1887
SWPLED = SWPLE        R1T1888
SWPMCO = SWPMC        R1T1889
FOC = CLD * FOCR /CLUR   R1T1890
C
C IF( KPASS.NE.2) GO TO 50      R1T1891
C
C IF( AFTAW.GT.0.0 ) DA2 = AFTAW - SWET      R1T1892
IF( AFTCB.GT.0.0 ) DAC2 = AFTCB - CBAR2    R1T1893
IF( AFTOC.GT.0.0 ) DTOC = AF1OC - TOCS    R1T1894
50 CONTINUE      R1T1895
SWP = SWPLE      R1T1896
C
IF( KPRINT(12).EQ.1 ) WRITE(6,1000) KPASS, SWPLE, DA1, DAC1,      R1T1897
1      DSWP1, CPOCR, DA2, DAC2, DSWP2, DTOC, DA      R1T1898
2      , TH1ST, DINC, SWPMT, CBAR2, CLDS, TOLS, SWET, DOB, TOCW,      R1T1899
3      CLD, SEXW, ESWLE, ESWQC, ESWMC, ESWTE, ARW, TR, WPLAN      R1T1900
1000 FORMAT(5X, *VGEOM DUMP, KPASS =*,I3, 10X,*SWPLE =* F12.4 /      R1T1901
1      (1X, 7F15.5 )      R1T1902
C
END      R1T1903

```

CC = 00246

```

OVERLAY(3,2) R1T1909
PROGRAM MCRIT R1T1910
C R1T1911
C COMPUTES CRITICAL MACH NUMBER R1T1912
C R1T1913
COMMON /BLKOV3/ ID, XMACH, TDC, CLD, SWEEP, CV3(3), JPASS, R1T1914
1 DV3A(3)
COMMON /BLKA05/ SCW(6), SECTG(5), C1MAX, CLMCR(10), XMCR(10), R1T1915
1 XT(33), YT(33), YC(33), NMCR, NXSET R1T1916
C R1T1917
COMMON /BLKC03/ CLTAB(11), TABMCR(11) R1T1918
C R1T1919
IF( ID.LE.23 ) CALL CPZT(ID, 0.6, TDC, CLD, SWEEP) R1T1920
C R1T1921
100 CLTAB(1) = 0.0 R1T1922
DO 200 I = 1, 11 R1T1923
IF( I.GT.1 ) CLTAB(I) = CLTAB(I-1) + 0.1 R1T1924
CALL LNTP(CLTAB(I), TABMCR(I), CLMCR, XMCR, NMCR, 2) R1T1925
CALL ADJUST(0.4, CLTAB(I), TABMCR(I)) R1T1926
IF( TABMCR(I).LT.0.0 ) TABMCR(I) = 0.0 R1T1927
R1T1928
C R1T1929
200 CONTINUE R1T1930
C R1T1931
300 WRITE(6,1000) (CLTAB(I), TABMCR(I) , I =1,11) R1T1932
R1T1933
1000 FORMAT(1H1, 5X, * MACH CRITICAL TABLE * // 5X * CL *, 5X R1T1934
I * MACH CRITICAL * //(5X,2F15.4) ) R1T1935
C R1T1936
END R1T1937

```

CC = 00029

```

SUBROUTINE CPZT(ID, XMACH, TOC, CLD, SWEEP) RIT1939
C CALCULATES AIRFOIL PRESSURES - BRITISH METHOD RIT1940
C AND COMPUTES MACH CRITICAL USING CREST CRITERIA RIT1941
C COMMON /BLKA01/ NBODY5, NNACS, NSURFS, NHT, NVT, ISWP, NPNLS RIT1942
C COMMON /BLKA05/ SCW(6), SECTG(5), C1MAX, CLMCR(10), XMCR(10), RIT1943
1 ORD(99), NMCR, NXSET RIT1944
COMMON /BLKROT/ XU(32), ZT(32), ZS(32), ROC, ZTE RIT1945
COMMON /BLKCPI/ SA(32), SB(32), SC(32), SD(32), SE(32) RIT1946
COMMON /BLKPRT/ KPRINT(50) RIT1947
COMMON /BLKG01/ G1(200) RIT1948
C DIMENSION COSE(32), SINE(32), S1(32,32), S2(32,32), S3(33,32), RIT1949
1 S4(32,32), S5(32,32), YCPI(32), DZDXUT(32) RIT1950
C PI = 3.1415927 RIT1951
AR = G1(80) RIT1952
SWP = SWEEP/57.29578 RIT1953
COSPHI = ( COS(SWP) )**((AR/(1.4+AR))) RIT1954
IF( SWEEP.GT.40.0 ) COSPHI = 0.5 * (COSPHI +.76604**((AR/(1.4+AR)))) RIT1955
COSPHI IS THE COSINE OF THE EFFECTIVE ISOBAR SWEEP RIT1956
SWP = ACOS(COSPHI) RIT1957
C NCP = 31 RIT1958
NMCR = 0 RIT1959
DO 100 I= 1,NCP RIT1960
C XI = I RIT1961
XN = NCP + 1 RIT1962
NX = NCP + 1 RIT1963
COSE(I)= COS(XI*PI/XN) RIT1964
SINE(I)= SIN(XI*PI/XN) RIT1965
XU(I) = 0.5*(1.0 + COSE(I)) RIT1966
100 CONTINUE RIT1967
C CALL SECT(ID, TOC, CLD) RIT1968
C DO 300 IV = 1, NCP RIT1969
DO 200 IU = 1, NCP RIT1970
C IMV = IU - IV RIT1971
S1(IU,IV) = XN/SINE(IU) RIT1972
S2(IU,IV) = COSE(IU)/(SINE(IU)**2) RIT1973
S3(IU,IV) = XN/SINE(IU) RIT1974
S4(IU,IV) = XN/SINE(IU) - 2.0 * ((-1.0)**IU -1.0) / RIT1975
1 ( XN * SINE(IU) * (1.0 - COSE(IU)) ) RIT1976
S5(IU,IV) = - S2(IU,IV) RIT1977
IF( IU.EQ.IV ) GO TO 150 RIT1978
C SIGN = ((-1.0)**IMV - 1.0)/XN RIT1979
DEM = (COSE(IU) - COSE(IV)) RIT1980
S1(IU,IV) = SIGN * 2.0 * SINE(IU) /(DEM**2) RIT1981
S2(IU,IV) = (-2.0*(-1.0)**IMV*SINE(IU))/(SINE(IV)*DEM) RIT1982

```

```

S3(IU,IV) = S1(IU,IV) - SIGN * 2.0 * (1.0/(SINE(IU)*DEM)) RIT1995
S4(IU,IV) = 2.0 * SIGN * (1.0 - COSE(IU)*COSE(IV)) / RIT1996
1           (SINE(IV) * DEM**2) RIT1997
2           - 2.0 * ((-1.0)**IU - 1.0) / RIT1998
3           (XN * SINE(IV) * (1.0 - COSE(IU))) RIT1999
S5(IU,IV) = -2.0 * (-1.0)**INV /DEM RIT2000
C
150 IF( KPRINT(26).NE.3 ) GO TO 200 RIT2001
    WRITE(6,1000) S1(IU,IV), S2(IU,IV), S3(IU,IV)
    1           ,S4(IU,IV), S5(IU,IV) RIT2002
200 CONTINUE RIT2003
    S3(NX,IV) = ((-1.0)**IV - 1.0)/(XN*(1.0 + COSE(IV))) RIT2004
300 CONTINUE RIT2005
C
C     IF( KPRINT(26).EQ.3 ) WRITE(6,1000) (S3(NX,J), J=1,NCP) RIT2006
C
ALPHA = 6.0 RIT2007
350 A = ALPHA/57.296 RIT2008
NMCR = NMCR + 1 RIT2009
XM = XMACH RIT2010
IF( XM.GT.0.9 ) XM = 0.9 RIT2011
IF(XM.LE.0.0 ) XM = 0.01 RIT2012
XM2 = XM**2 RIT2013
IF( KPRINT(1).EQ.1 ) WRITE(6,1001) XM, ALPHA, SWEEP RIT2014
CLI = 0.0 RIT2015
CL = 0.0 RIT2016
DCPIM1 = 0.0 RIT2017
CCPM1 = 0.0 RIT2018
CMI = 0.0 RIT2019
CM = 0.0 RIT2020
DO 500 IV = 1, NCP RIT2021
SA(IV) = 0.0 RIT2022
IF(ID.LT.10.OR.ID.GT.20) SB(IV) = 0.0 RIT2023
SC(IV) = S3(NX,IV) * SQRT(ROC/2.0) RIT2024
SD(IV) = 0.0 RIT2025
SE(IV) = 0.0 RIT2026
DO 400 IU = 1, NCP RIT2027
C
SA(IV) = SA(IV) + S1(IU,IV)*ZT(IU) RIT2028
IF(ID.LT.10.OR.ID.GT.20) SB(IV) = SB(IV) + S2(IU,IV)*ZT(IU) RIT2029
SC(IV) = SC(IV) + S3(IU,IV)*ZT(IU) RIT2030
SD(IV) = SD(IV) + S4(IU,IV)*ZS(IU) RIT2031
SE(IV) = SE(IV) + S5(IU,IV)*ZS(IU) RIT2032
400 CONTINUE RIT2033
C
CALL CPUOV(1.0, A, SWP, IV, CPIU, CPU, XM) RIT2034
C
CALL CPUOV(-1., A, SWP, IV, CPIL, CPL, XM) RIT2035
C
DCPI = CPIL - CPIU RIT2036
DCP = CPL - CPU RIT2037
C
DZDXU = SB(IV) + SF(IV) RIT2038
DZDXL = -SB(IV) + SE(IV) RIT2039
C
YCPI(IV) = CPIU RIT2040

```

```

DZDXUT(IV) = DZDXU RIT2051
C IF( KPRINT(1).EQ.1 ) WRITE(6,1000) XU(IV),CPIU,CPL,DCPI,DZDXU,
1 DZDXL, CPU, CPL, DCP, XU(IV) RIT2052
C
DX = XU(NCP) RIT2053
XB = 0.5 * (1. + XU(1)) RIT2054
IF( IV.NE.1 ) DX = XU(IV-1) - XU(IV) RIT2055
IF( IV.NE.1 ) XB = 0.5 * (XU(IV-1) + XU(IV)) RIT2056
CLI = CLI + DX * (DCPI + DCPIM1) * 0.5 RIT2057
CL = CL + DX * (DCP + DCPM1) * 0.5 RIT2058
CMI = CMI + DX * (DCPI + DCPIM1)*0.5 * (XB - 0.25) RIT2059
CM = CM + DX * (DCP + DCPM1) *0.5 * (XB - 0.25) RIT2060
C DCPIM1 = DCPI RIT2061
DCPM1 = DCP RIT2062
C 500 CONTINUE RIT2063
C
CLI = CLI + XU(NCP) * DCPI* 0.5 RIT2064
CL = CL + XU(NCP) * DCP * 0.5 RIT2065
CMI = CMI + XU(NCP) * DCPI * 0.5 * (0.5*XU(NCP) -0.25) RIT2066
CM = CM + XU(NCP) * DCP * 0.5 * (0.5*XU(NCP) -0.25) RIT2067
CPCRIT = (1.42857/XM2) * (0.52828 *(1. + 0.2 *XM2)**3.5 -1.) RIT2068
C
IF( KPRINT(1).GT.0 ) WRITE(6,1002) CLI,CMI,CPCRIT,ZTE,CL,CM RIT2069
600 CONTINUE RIT2070
C
IF( A.LT.DZDXUT(NCP) ) GO TO 610 RIT2071
NMCR = NMCR - 1 RIT2072
ALPHA = ALPHA -1. RIT2073
GO TO 350 RIT2074
C
610 CALL LNTP(A, XCREST, DZDXUT, XU, NCP, 4) RIT2075
C
620 CALL LNTP(XCREST, CPCR, XU, YCPI, NCP, 4) RIT2076
C
CPCRST = CPCR/COSPHI**2 RIT2077
630 CPI2 = CPCRST * CPCRST RIT2078
XMDDN = 1. / (1.0323 -.8365*CPCRST -.361*CPI2 -.1336*CPCRST**3 RIT2079
1 -.0173*CPCRST**4) RIT2080
IF( ID.EQ.8 ) XMDDN = 1. / (1.012 -.8551*CPCRST RIT2081
1 -.4493*CPI2 -.2219*CPCRST**3 -.0447*CPCRST**4) RIT2082
C
XMDD = XMDDN/COSPHI RIT2083
IF( XMDD.LE.0.82.OR.ID.EQ.8 ) GO TO 640 RIT2084
IF( XMDD.LF.1.08 ) XMDD = .2686 -.5729*XMDD +2.7123*XMDD**2 RIT2085
1 -.14582*XMDD**3 RIT2086
IF( XMDD.GT.1.08 ) XMDD = 0.8545 +.1132*XMDD RIT2087
C
640 FMCRB = 1.0 RIT2088
IF( NBODYS.GE.1 ) FMCRB = 1.0439 - 0.5828/G1(1) RIT2089
IF( G1(1).GT.10.0 ) FMCRB = 0.98 RIT2090
IF( XMDD.GT.FMCRB ) XMDD = FMCRB RIT2091
C
BMDD2 = 1. - (XMDD * COS(SWP))**2 RIT2092

```

```

      IF( BMDD2.GT.0.0 ) CLMDD = CLI/SQRT(BMDD2)          RIT2107
C
      IF( KPRINT(1).GT.0 ) WRITE(6,1003) XMDD,CLMDD,XCREST,CPCR,COSPHI RIT2108
      CLMCR(NMCR) = CLMDD
      XMCR(NMCR) = XMDD
C
      700 IF( CLI.LE.0.0 ) RETURN
      IF( NMCR.GE.10 ) RETURN
      ALPHA = ALPHA - 1.
      GO TO 350
C
      1000 FORMAT(5X,10F12.6)                                RIT2117
C
      1001 FORMAT(1H1, // / / / 10X, 57HPRESSURE DISTRIBUTION AND SURFACE SLOPES FRI2120
      10R 2-D AIRFOIL , 6X,*MACH ==F6.4, 5X,*ALPHA ==F6.3 // / RIT2121
      1           10X,*SWEEP ANGLE ==*, F7.3 // RIT2122
      2           12X,*X/C*, 7X,*CPI(UPPER)*,2X,*CPI(LOWER)*,4X,*DCPI*, RIT2123
      3           5X,*DZ/DX(UPPER)*,2X,*DZ/DX(LOWER)*,1X,*CP(UPPER)*, RIT2124
      4           2X,*CP(LOWER)*,4X,*DCP*, 9X,*X/C* // ) RIT2125
C
      1002 FORMAT(// 10X,*CLI ==F7.4, 10X,*CMI ==F7.4, 20X,*CP(M=1) = *, RIT2127
      1           F8.4, 10X, *ZTE ==F7.4 / 11X,*CL ==F7.4, 6X,*CM(C/4) == RIT2128
      2           F7.4 / ) RIT2129
C
      1003 FORMAT( / 10X,*MACH CRIT ==F7.4, 10X, *CL AT MDD ==F7.4, 10X, RIT2131
      1           *X-CREST ==F7.4, 10X,*CP-CREST ==F8.4 / RIT2132
      2           50X, *COSINE OF EFFECTIVE ISOBAR ==F7.4 // ) RIT2133
C
      END                                                 RIT2136
RIT2135

```

CC = 00197

```

C SUBROUTINE SECT(ID, TOC, CLD) R1T2137
C CALCULATES THICKNESS AND CAMBER R1T2138
C
COMMON /BLKCP1/ SA(32), SB(32), SC(32), SD(32), SE(32) R1T2139
COMMON /BLKR07/ XU(32), ZT(32), ZS(32), ROC, ZTE R1T2140
COMMON /BLKA05/ XMU, ZMU, XML, ZML, ZPTE, ZTHIK, RLE, A4(25), R1T2141
1 XT(33), YT(33), YC(33), NMCR, NXSET R1T2142
COMMON /BLKBD2/ AA(22), BB(22), CC(22), DD(22), XTT(22) R1T2143
COMMON /BLKPRT/ KPRINT(50) R1T2144
C
DIMENSION XSECT(26),Y164A(26),CAMB(26) R1T2145
DIMENSION Y163A(26),Y165A(26),Y163(26),Y164(26),Y165(26), R1T2146
1 Y166(26),CAMB1(26) R1T2147
DIMENSION A0(11), A1(11), A2(11), A3(11), D1(11), D2(11), D3(11) R1T2148
C
DATA XSECT/ 0.0,0.005,0.0075,0.0125,0.025,0.05,0.075,0.1, R1T2149
1 0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6, R1T2150
2 0.65,0.7,0.75,0.8,0.85,0.9,0.95,1.0 / R1T2151
DATA Y163 / 0.0,.00829,.01004,.01275,.01756,.0244,.0295,.03362, R1T2152
1 .03994,.04445,.04753,.04938,.05,.04938,.04766,.04496, R1T2153
2 .0414,.03715,.03234,.02712,.02166,.01618,.01088, R1T2154
3 .00604,.00214,0.0 / R1T2155
DATA Y164 / 0.0,.0082,.00989,.0125,.01701,.02343,.02826,.03221, R1T2156
1 .03842,.04302,.04639,.04864,.0498,.04988,.04843, R1T2157
2 .04586,.04238,.0382,.03345,.02827,.02281,.01722, R1T2158
3 .01176,.00671,.00248,0.0 / R1T2159
DATA Y165 / 0.0,.00772,.00932,.01169,.01574,.02177,.02647,.0304, R1T2159
1 .03666,.04143,.04503,.0476,.04924,.04996,.04963, R1T2160
2 .04812,.0453,.04146,.03682,.03156,.02584,.01987, R1T2161
3 .01385,.0081,.00306,0.0 / R1T2162
DATA Y166 / 0.0,.00759,.00913,.01141,.01516,.02087,.02536,.02917, R1T2163
1 .0353,.04001,.04363,.04636,.04832,.04953,.05,.04971, R1T2164
2 .04865,.04665,.04302,.03787,.03176,.02494,.01773, R1T2165
3 .01054,.00408,0.0 / R1T2166
DATA Y163A/ 0.0,.00816,.00983,.0125,.01737,.02412,.02917,.03324, R1T2167
1 .0395,.044,.04714,.04913,.04955,.04968,.04837,.04613, R1T2168
2 .04311,.03943,.03517,.03044,.02545,.0204,.01535,.0103, R1T2169
3 .00525,.00021 / R1T2170
DATA Y164A/ 0.0,0.00804,0.00969,0.01225,0.01688,0.02327, R1T2171
1 0.02815,0.03199,0.03813,0.04272,0.04606,0.04837, R1T2172
2 0.04968,0.04995,0.04894,0.04684,0.04388,0.04021, R1T2173
3 0.03597,0.03127,0.02623,0.02103,0.01582,0.01062, R1T2174
4 0.00541,0.00021 / R1T2175
DATA Y165A/ 0.0,.00765,.00928,.01183,.01623,.02182,.0265,.0304, R1T2176
1 .03653,.04127,.04483,.04742,.04912,.04995,.04983, R1T2177
2 .04863,.04632,.04304,.03899,.03432,.02912,.02352, R1T2178
3 .01771,.01188,.00604,.00021 / R1T2179
DATA CAMB / 0.0,0.00281,0.00396,0.00603,0.01055,0.01803, R1T2180
1 0.02432,0.02981,0.03903,0.04651,0.05257,0.05742, R1T2181
2 0.06120,0.06394,0.06571,0.06651,0.06631,0.06508, R1T2182
3 0.06274,0.05913,0.05401,0.04673,0.03607,0.02452, R1T2183
4 0.01226,0.0 / R1T2184
DATA CAMB1/ 0.0,.0025,.0035,.00535,.0093,.0158,.0212,.02585, R1T2185
1 .03365,.0398,.04475,.0486,.0515,.0355,.05475,.05515, R1T2186
2 .05475,.05355,.0515,.0486,.04475,.0398,.03365,.02585, R1T2187

```

```

3      .0158,0.0 /
DATA A0 / 5 * 0.2969, 3 * 0.14845, 3 * 0.514246 /,
1      A1 / 0.213337, -.096082, -.246867, -.310275, -.271118,
2      0.412103, 0.193233, 0.083362, -.840115, 2*0.0 /,
3      A2 / -2.931954, -.54331, 0.175334, 0.3417, 0.1402,
4      -1.67261, -.538168, -.18315, 1.1101, 2*0.0 /,
5      A3 / 5.22917, 0.559395, -.266917, -.32182, -.082137,
6      1.68869, .283208, -.00691, -1.09401, 2*0.0 /,
7      D1 / 0.2, 0.234, 0.315, 0.465, 0.7, 0.234, 0.315,
8      0.465, 0.234, 0.315, 0.465 /,
9      D2 / -.040625, -.068571, -.233333, -.684, -1.6625,
1      -.068571, -.233333, -.684, -.068571, -.233333, -.684 /,
2      D3 / -.070312, -.093878, -.032407, 0.292, 1.3125,
3      -.093878, -.032407, 0.292, -.093878, -.032407, 0.292 /,
C
NCP    = 31
ROC    = AA(ID) + BB(ID)*TOC + CC(ID)*TOC*TOC + DD(ID)*TOC**3
C
ID    = 1 TO 4, 6 SERIES AIRFOIL          IJ = 1
ID    = 5 TO 7, 6A SERIES AIRFOIL        IJ = 1
ID    = 8, SUPERCRITICAL AIRFOIL       IJ = 2
ID    = 9, PICONVEX                      IJ = 3
ID    = 10 TO 20, 4 DIGIT AIRFOIL       IJ = 4
ID    = 21,22, INPUT AIRFOIL            IJ = 5
C
IF( ID.LE.7 ) IJ = 1
IF( ID.EQ.8 ) IJ = 2
IF( ID.EQ.9 ) IJ = 3
IF( ID.GE.10.AND.ID.LE.20 ) IJ = 4
IF( ID.GE.21 ) IJ = 5
C
GO TO (200,300,100,900,700) , IJ
C
100 WRITE(6,2000)
DO 110 I = 1,NCP
ZT(I) = 2.0*TOC*XU(I)*(1.0 - XU(I))
SB(I) = 2.*TOC * (1.-XU(I))
ZS(I) = 0.0
110 CONTINUE
ROC = 0.0
GO TO 960
C
200 IF( ID.LE.4 ) WRITE(6,2003)
IF( ID.GT.4 ) WRITE(6,2001)
DO 220 I = 1,NCP
X = XU(I)
IF( ID.LE.4 ) CALL LNTP(X, ZS1, XSECT, CAMB1, 26, 4)
IF( ID.GT.4 ) CALL LNTP(X, ZS1, XSECT, CAMB, 26, 4)
ZS(I) = ZS1 * CLD
210 IF( ID.EQ.1 ) CALL LNTP(X, ZT(I), XSECT, Y163, 26, 4)
IF( ID.EQ.2 ) CALL LNTP(X, ZT(I), XSECT, Y164, 26, 4)
IF( ID.EQ.3 ) CALL LNTP(X, ZT(I), XSECT, Y165, 26, 4)
IF( ID.EQ.4 ) CALL LNTP(X, ZT(I), XSECT, Y166, 26, 4)
IF( ID.EQ.5 ) CALL LNTP(X, ZT(I), XSECT, Y163A, 26, 4)
IF( ID.EQ.6 ) CALL LNTP(X, ZT(I), XSECT, Y164A, 26, 4)
IF( ID.EQ.7 ) CALL LNTP(X, ZT(I), XSECT, Y165A, 26, 4)

```

```

C   220 ZT(I) = ZT(I) * TOC/0.1          R1T2249
    GO TO 960                                R1T2250
C   300 WRITE(6,2002)
      WRITE(6,1000) XMU,ZMU, XML,ZML, ZPTE, ZTHIK
    400 CONTINUE
C   **** * * * * * * * * * * * * * * * * * * * * *
C   CARDS 2257 THRU 2335 ARE NOT SHOWN IN THIS LISTING
C   **** * * * * * * * * * * * * * * * * * * * * *
C   GO TO 960
C
C   700 ROC    = RLE
C
DO 800 I = 1, NCP                         R1T2341
X      = XU(I)                                R1T2342
CALL LNTP(X, ZT(I), XT, YT, NXSET, 4)       R1T2343
CALL LNTP(X, ZS1, XT, YC, NXSET, 4)          R1T2344
ZS(I) = ZS1 * CLD                           R1T2345
800 CONTINUE                                 R1T2346
GO TO 960                                   R1T2347
C
C   900 WRITE(6,2004)
I4D    = ID - 9                            R1T2351
ROC    = 0.5 * (AO(I4D)*TOC/.2)**2          R1T2352
C
DO 950 I = 1, NCP                         R1T2353
X      = XU(I)                                R1T2354
IF( X.GT.XTT(ID) ) GO TO 910               R1T2355
C
ZT(I) = AO(I4D) * SQRT(X) + A1(I4D) * X + A2(I4D) * X**2
1      + A3(I4D) * X**3                      R1T2358
SB(I) = 0.5 * AO(I4D)/SQRT(X) +A1(I4D) +2.*A2(I4D)*X
1      + 3.* A3(I4D) * X**2                  R1T2359
GO TO 940                                   R1T2360
C
910 X      = (1. - X)
ZT(I) = 0.002 + D1(I4D) * X + D2(I4D) * X*X + D3(I4D) * X**3
SB(I) = -D1(I4D) -2.* D2(I4D)*X -3.* D3(I4D)*X*X
C
940 ZT(I) = TOC/.2 * ZT(I)                  R1T2367
SB(I) = TOC/.2 * SB(I)                     R1T2368
CALL LNTP(X, ZS1, XSECT, CAMB1, 26, 4)     R1T2369
ZS(I) = ZS1 * CLD                           R1T2370
C
950 CONTINUE                                 R1T2371
C
960 IF( KPRINT(1).EQ.0 ) RETURN             R1T2372
      WRITE(6,1004) TOC, CLD, ROC            R1T2373
DO 970 I = 1, NCP
INV    = NCP + 1 - I                        R1T2374

```

ZUP = ZT(INV) + ZS(INV)	R1T2379
ZLO = -ZT(INV) + ZS(INV)	R1T2380
WRITE(6,1005) XU(INV), ZT(INV), ZS(INV), ZUP, ZLO	R1T2381
970 CONTINUE	R1T2382
C 1000 FORMAT(/5X,*XMU =*,F10.6,3X,*ZMU =*,F10.6,3X,*XML =*,F10.6,	R1T2383
1 3X,*ZML =*F10.6, /	R1T2384
1 3X,*ZPTE =*F10.6,3X,*ZTHIK =*,F10.6 //)	R1T2385
1001 FORMAT(5X, 7F10.6 /)	R1T2386
1002 FORMAT(15,5X,5F10.0)	R1T2387
1003 FORMAT(10F6.0)	R1T2388
1004 FORMAT(10X, *T/C =*F7.4, 10X,*CAMBER =*F7.4, 10X,*L.E.RADIUS =*,	R1T2389
1 F8.5 //TL7,*X/C*,T26,*THICKNESS*,T44,*CAMBER*,T60,	R1T2390
2 *UPPER*,T75,*LOWER*)	R1T2391
1005 FORMAT(5X, 5F15.5)	R1T2392
2000 FORMAT(/ 10X, *BICONVEX AIRFOIL SECTION* /)	R1T2393
2001 FORMAT(/10X, *6A SERIES AIRFOIL SECTION * /)	R1T2394
2002 FORMAT(/ 10X, *SUPERCritical AIRFOIL SECTION* /)	R1T2395
2003 FORMAT(/10X, *6 SERIES AIRFOIL SECTION* /)	R1T2396
2004 FORMAT(/10X, *4-DIGIT AIRFOIL SECTION* /)	R1T2397
RETURN	R1T2398
END	R1T2399
	R1T2400

CC = 00190

```

SUBROUTINE CPUOV(S, A, SWP, IV, CPI, CP, XM) R1T2402
C
C COMPUTES CP FOR AN INFINITELY SHEARED WING R1T2403
C
COMMON /BLKCP1/ SA(32), SB(32), SC(32), SD(32), SE(32) R1T2404
C
COMMON /BLKR07/ XU(32), ZT(32), ZS(32), RCC, ZTE R1T2405
C
10 COSA = COS(A) R1T2406
SINA = SIN(A) R1T2407
COSL = COS(SWP) R1T2408
SINL = SIN(SWP) R1T2409
C
20 F1 = SA(IV) R1T2410
F2 = SB(IV) R1T2411
F3 = SC(IV) R1T2412
F4 = SD(IV) R1T2413
F5 = SE(IV) R1T2414
FX = SQRT((1. - XU(IV))/XU(IV)) R1T2415
30 DUL = 1.0/(1. + (F2 + S* F5)/COSL)**2 ) R1T2416
C
40 UIOV2 = DUL * ( COSA * (1. + F1 * COSL + S* F4 * COSL) R1T2417
1 + S* SINA * COSL * (1. + F3/COSL) * FX )**2 R1T2418
2 + DUL * ( COSA * SINL * (F1 + S* F4) R1T2419
3 + S* SINA * SINL * (1. + F3/COSL) * FX )**2 R1T2420
4 + (SINL * COSA)**2 * (1. - DUL) R1T2421
C
CPI = 1.0 - UIOV2 R1T2422
C
CP = CPI R1T2423
C
50 CPI0 = (1. - SINL * SINL + F1 * F1 + 2.0 * F1 * CCSL) R1T2424
1 / (1. + (F2/COSL)**2 ) - SINL * SINL R1T2425
CPI0 = 1.0 - CPI0 R1T2426
IF( CPI0.GT.0.0 ) CPI0 = 0.0 R1T2427
C
XMN = XM * COSL R1T2428
IF( XM.LE.0.01.OR.XMN.GE.1.0 ) RETURN R1T2429
C
XM2 = XM * XM R1T2430
BETA = SQRT(1. - XMN * XMN) R1T2431
C
SINA = SINA/BETA R1T2432
60 TEST = (COSL * COSL - CPI0 * XMN) * XM2 R1T2433
IF( TEST.GE.1.0 ) WRITE(6,1000) R1T2434
IF( TEST.GE.1.0 ) GO TO 200 R1T2435
C
70 B = SQRT(1.0 - TEST) R1T2436
C
F1 = F1/B R1T2437
F4 = F4/BETA R1T2438
F3 = F3/B R1T2439
80 DUL = 1.0/(1. + ((F2 + S* F5)/(B * COSL))**2 ) R1T2440
C
90 UIOV2 = DUL * ( COSA * (1. + F1 * COSL + S* F4 * CCSL) R1T2441
1 + S* SINA * COSL * (1. + F3/COSL) * FX )**2 R1T2442

```

```

2      + DUL * ( COSA * SINL * (F1 +S* F4)          R1T2458
3      +S* SINA * SINL * (1. + F3/COSL) * FX )**2    R1T2459
4      + (SINL * COSA)**2 * (1. - DUL)                R1T2460
C
100 CP      = -1.42857/XM2                         R1T2461
C
TEST      = 1.0 + 0.2 * XM2 * (1. - UOV2)           R1T2462
IF( TEST.LE.0.0 ) GO TO 200                         R1T2463
CP      = -CP * ( TEST**3.5 - 1.0 )                  R1T2464
R1T2465
R1T2466
C
200 CONTINUE
RETURN
1000 FORMAT(10X,*KUCHEMAN-WEBER CORRECTION FACTOR REACHES LIMIT* ) R1T2467
END                                         R1T2468
                                              R1T2469
                                              R1T2470
                                              R1T2471

```

CC = 00070

```

OVERLAY (3,3) R1T2473
PROGRAM AERO R1T2474
C R1T2475
C AERODYNAMICS R1T2476
C R1T2477
COMMON /BLKOV3/ ITYP, OV3A(4), ALT, SPEED, SWEEP, JPASS, OV3B(2), R1T2478
1 ITRIM R1T2479
C R1T2480
COMMON /BLKG01/ G1(200) R1T2481
C R1T2482
COMMON /BLKA02/ A1(433) R1T2483
C R1T2484
COMMON /BLKC01/ CL, CD, CM, ALPHA, CDM, CCL, CDR, CDRO, CLT, CDT, R1T2485
1 DH, FK, DELCL, CMO, DCMCL, XACWB, CLA, ALO, R1T2486
2 CL(45), CLDB, CLMAX, C2(7), FML1, FML2, CDC, R1T2487
3 C3(12), XACS, C4(6), CDAFT, C5(5) R1T2488
C R1T2489
C CB = G1(83) R1T2490
C R1T2491
RNOFT = ABS(ALT) * 10.0**6 R1T2493
IF( ALT.LT.0.0) GO TO 80 R1T2494
CALL ATMOS(ALT,T,SIGMA,RHO,THETA,DELTA,CA,AMU,1) R1T2495
RNOFT = SPEED*CA*RHO/AMU R1T2496
80 CONTINUE R1T2497
C R1T2498
70 FMACH=SPEED R1T2499
C R1T2500
C R1T2501
IF( JPASS.EQ.0 ) CALL CDDR(0.0, FMACH, RNOFT, CDRO) R1T2502
IF( JPASS.EQ.1 ) CALL CDDR1(0.0, FMACH, RNOFT, CDRO) R1T2503
CALL CDR1(CL, FMACH, RNOFT, CDRCL) R1T2504
CDR = CDRCL - CDRO R1T2505
IF( SPEED.GT.FML1 ) CDR = 0.0 R1T2506
C R1T2507
IF( JPASS.EQ.2 ) GO TO 30 R1T2508
C R1T2509
CALL DMIN(FMACH, RNOFT, CDMIN) R1T2510
CALL CLWBT(FMACH) R1T2511
RE = RNOFT * CB R1T2512
IF( RE.GT.4.0E6 ) RE = 4.0E6 R1T2513
RE = RE/1.0E6 R1T2514
C R1T2515
CALL CLBRK(FMACH, RE, RNOFT) R1T2516
CALL CDL1(FMACH, RNUFT, FK, DELCL, PRIMEK, AKD, AKB) R1T2517
CALL CDRG(FMACH, FK, DELCL, CDC) R1T2518
CALL CMOW(FMACH, CMO) R1T2519
CALL ADJUST(1.0, FMACH, CMO) R1T2520
C R1T2521
CALL WBAL(FMACH, XACWB) R1T2522
C R1T2523
30 CONTINUE R1T2524
CALL CDL2(FMACH, CL, FK, DELCL, PRIMEK, AKD, AKB, CDL) R1T2525
IF( JPASS.LE.1 ) CALL AERA(FMACH, CL, ALPHA) R1T2526
CALL AERA1(FMACH, CL, ALPHA) R1T2527
IF( JPASS.GT.0 ) GO TO 50 R1T2528

```

```

C IF( A1(241).EQ.0.0 ) GO TO 50 R1T2529
C DO 40 I = 1, 21 R1T2530
  ANG = I - 1 R1T2531
  CALL AFTCD(ANG, DCD) R1T2532
  IF ( I.EQ.1 ) WRITE(6,1000) R1T2533
  40 WRITE(6,1001) ANG, DCD R1T2534
  50 CALL AFTCD(ALPHA, CDAFT) R1T2535
    CALL TDRG(ITRIM, FMACH, DCLT, DCDT) R1T2536
C CDM = CDMIN + CDC + CDRO R1T2537
C CD = CDM + CDL + CDR + CDAFT R1T2538
C CDT = CD + DCDT R1T2539
C CLT = CL + DCLT R1T2540
C
C JPASS = 2 R1T2541
C
1000 FORMAT( /// 10X, *FUSLAGE AFT-END UPSWEEP DRAG * // R1T2542
  1          10X, *WING ANGLE*, 10X, *DELCD* / ) R1T2543
1001 FORMAT( 1X, 2F15.5 ) R1T2544
  FND R1T2545

```

CC = 00079

```

SUBROUTINE CDDR(CL, XMACH, RNOFT, CDR)          R1T2553
C                                                 R1T2554
C COMPUTES DRAG RISE                           R1T2555
C                                                 R1T2556
C COMMON /BLKC03/ CLTAB(11), TABMCR(11)          R1T2557
C                                                 R1T2558
C COMMON /BLKC01/ C1(18), TCD(5), C2(48), FMCRO, FML1, FML2, CDC, R1T2559
1           CLAMCR, CLAML2, C3(12), P0, A3, PL, C4(8) R1T2560
C                                                 R1T2561
C COMMON /BLKG01/ G1(200)                         R1T2562
C                                                 R1T2563
C COMMON /BLKPRT/ KPRINT(50)                      R1T2564
C                                                 R1T2565
C ESWMC   = G1(49)                               R1T2566
C TOC     = G1(46)                               R1T2567
C FOC     = G1(111)                               R1T2568
C                                                 R1T2569
C RNOFT1 = RNOFT / XMACH                        R1T2570
C CALL LNTP(0.0, FMCRO, CLTAB, TABMCR, 11, 2)    R1T2571
C                                                 R1T2572
C CALL FDRG(1.0, RNOFT1)                          R1T2573
C CDFF    = TCD(2) + TCD(3)                      R1T2574
C                                                 R1T2575
C CALL WDRG(1.00001)                            R1T2576
C CDW1    = TCD(4)                               R1T2577
C                                                 R1T2578
C CALL WDRG(1.01)                                R1T2579
C CDW2    = TCD(6)                               R1T2580
C                                                 R1T2581
C CDWP    = (CDW2 - CDW1) * 100.                  R1T2582
C CDW1    = CDW1 - CDFF                         R1T2583
C                                                 R1T2584
C XM      = 1.-FMCRO                            R1T2585
C                                                 R1T2586
C A3      = (XM * CDWP - 2.* CDW1)/XM**3        R1T2587
C A2      = (3.* CDW1 - XM * CDWP)/XM**2        R1T2588
C PL      = 25. * (TOC + 2.* FOC) * COS(ESWMC)**3 R1T2589
C P7      = A2 - PL                             R1T2590
C                                                 R1T2591
C                                                 R1T2592
C FML1    = .0.95                                R1T2593
C IF( FMCRO.GT.30.90 ) FML1 = FMCRO  .05       R1T2594
C IF( FML1.GT.1.0 ) FML1 = 1.0                   R1T2595
C FML2    = FML1 + 0.15                          R1T2596
C                                                 R1T2597
C RNOFT2 = RNOFT*FMCRO/XMACH                    R1T2598
C CALL FDRG(FMCRO,RNOFT2)                       R1T2599
C CALL WDRG(FMCRO)                            R1T2600
C CALL CLWBT(FMCRO)                           R1T2601
C CLAMCR = C1(17)                             R1T2602
C                                                 R1T2603
C RNOFT2 = RNOFT*FML2/XMACH                    R1T2604
C CALL FDRG(FML2,RNOFT2)                       R1T2605
C CALL WDRG(FML2)                            R1T2606
C CALL CLWBT(FML2)                           R1T2607
C CLAML2 = C1(17)                             R1T2608

```

```

C      IF( KPRINT(23).EQ.1 ) WRITE(6,1000) FMCRO, A2, A3, FML1, FML2,
1          CLAMCR, CLAML2, CDW1, CDFF, CDWP          R1T2609
C          R1T2610
C          R1T2611
C          R1T2612
C          R1T2613
C          R1T2614
C          R1T2615
C          R1T2616
C          R1T2617
C          R1T2618
C          R1T2619
C          P1T2620
C          R1T2621
C          R1T2622
C          R1T2623
C          R1T2624
C          R1T2625
C          R1T2626
C          R1T2627
C          R1T2628

ENTRY CDDR1
CDR   = 0.0          R1T2610
CDRD  = 0.0          R1T2611
CALL LNTP(CL, XMCR, CLTAB, TABMCR, 11, 2)          R1T2612
IF( XMACH.GT.1.0 ) RETURN          R1T2613
XM    = XMACH - XMCR          R1T2614
XMO   = XMACH - FMCRO          R1T2615
IF( XMO.GT.0.0 ) CDRD = P0 * XMO**2 + A3 * XMO**3          R1T2616
IF( XM.GT.0.0 ) CDR  = PL * XM**2          R1T2617
IF( XM.GT.0.12 ) CDR  = 0.0144*PL + 0.24*PL * (XM -.12)          R1T2618
CDR   = CDR + CDRD          R1T2619

C          RETURN
1000 FORMAT(5X, *CDDR DUMP* / (1X, 7F15.5))
END          R1T2620

```

CC = v '076

```

SUBROUTINE CLWBT(SPEED) R1T2630
C R1T2631
C COMPUTES WING-BODY-TAIL LIFT CONTRIBUTION R1T2632
C R1T2633
COMMON /BLKG01/ G1(44), DDB, TOC, CLD, SEXW, ESWMC, G2(30), R1T2634
1 AR, TR, SPLAN, G3(118) R1T2635
R1T2636
COMMON /BLKA01 / NBODYS, NNACS, NSURFS, NHT, NVT, ISWP, NPNLS R1T2637
R1T2638
COMMON /BLKA02 / SREF, A1(432) R1T2639
R1T2640
COMMON /BLKCOL/ C1(16), CLA, ALO, C2(35), CLAW, CLAB, CLAT, A, B, R1T2641
1 ADH, C, ABREAK, CLDH, CLPB, CLDB, CLMAX, ABRK, R1T2642
2 AMAX, DAMAX, DEL, CLS, ARLO, C3(29) R1T2643
R1T2644
COMMON /BLKCLA/ CLAI(11) R1T2645
R1T2646
CLAW = 0.0 R1T2647
R1T2648
CLAI(1) = SPLAN R1T2649
CLAI(2) = TOC
CLAI(3) = TR
CLAI(4) = AR
CLAI(5) = 0.0
IF( A1(234).EQ.8. ) CLAI(5) = 0.0334
CLAI(6) = CLD
CLAI(7) = 0.0
IF( A1(234).EQ.8. ) CLAI(7) = 0.09
CLAI(8) = DDB
CLAI(9) = 0.0
IF( A1(234).EQ.8. ) CLAI(9) = 1.173763 * TOC
CLAI(10)=ESWMC
CLAI(11)= SREF
R1T2655
R1T2656
R1T2657
R1T2658
R1T2659
R1T2660
R1T2661
R1T2662
R1T2663
R1T2664
R1T2665
R1T2666
R1T2667
CLAT = 0.0 R1T2668
A = 0.0 R1T2669
B = 0.0 R1T2670
C = 0.0 R1T2671
ABREAK = 90.0 R1T2672
R1T2673
R1T2674
R1T2675
R1T2676
R1T2677
R1T2678
CLAB= 0.0 R1T2679
IF (NBODYS.EQ.0) GO TO 30 R1T2680
R1T2681
20 CALL TAIL(SPEED)
30 CONTINUE
R1T2682
R1T2683
R1T2684
R1T2685
WB = A1(14)
HB = A1(24)
AB = A1(64)
BL = A1(4)

```

```
BLN    = A1(84)          R1T2686
PERIM = 3.14159*SQRT((WB**2 + HB**2)/2.) R1T2687
BHPF = WB/HB*PERIM/SQRT(AB)      R1T2688
AKI    = 0.009942*BHPF -.000379*BHPF**2 +.00001*BHPF**3 R1T2689
CLAB   = AKI * (BL/BLN)**0.3333 * AB/SRE1 R1T2690
C
C      50 CLA = CLAW + CLAT + CLAB      R1T2691
C
C      CALL AAALD(SPEED)      R1T2692
C      CALL ADJUST(3.0, SPEFD, ALD)      R1T2693
C
C      RETURN      R1T2694
C      END      R1T2695
C
C      R1T2696
C      R1T2697
C      R1T2698
```

CC = 00069

```

SUBROUTINE AER2(SPEED, CLA) R1T2700
C
C LIFT CURVE SLOPE R1T2701
C
COMMON /BLKPRT/ KPRINT(50) R1T2702
COMMON /BLKCLA/ SPLAN, TOC, TAPER, ARWS, DMSTR, CLD, DML, DOB, R1T2703
1 EPSL, SWPMC, SREF R1T2704
C
C
COSZ = COS(SWPMC) R1T2705
PI = 3.14159 R1T2706
TWOD = 1.0 R1T2707
IF( SPEED.LT.1.0 ) TWOD = 1. + EPSL/SQRT(1.-SPEED**2) R1T2708
C
C
CSUB0 = (10.0 + 0.91 * ARWS**3)/(10.0 + ARWS**3) R1T2709
ZMSTR = CSUB0 + (1.0 -CSUB0) * (1.0 - COSZ)**2 R1T2710
ZMSTRO = ZMSTR R1T2711
ZMSTR = ZMSTR + DMSTR R1T2712
ZM1 = 1.0 -2.0 * TOC * (ARWS**3/(4.0 +ARWS**3)) R1T2713
1 * COSZ**1.5* (1.0 + 1.5*CLD**1.5) R1T2714
ZM10 = ZM1 R1T2715
IF( ZM10.GT.ZMSTRO ) ZM10= ZMSTRO R1T2716
ZM1 = ZM10 + DM1 R1T2717
IF( ZM1.GT.ZMSTR ) ZMSTR = ZM1 R1T2718
ZM2 = ZM1 + TOC + DM1*0.5 R1T2719
ZM30 = 1.0 + TOC R1T2720
ZM3 = ZM30 R1T2721
IF( ZM2.GT.1.0 ) ZM3 = ZM2 + TOC R1T2722
C
SIG1=0.0 R1T2723
SIG2=0.0 R1T2724
IF( ZM2.NE.ZM1) SIG1 = 0.5*((SPEED -ZM1)/(ZM2 -ZM1)) R1T2725
IF( ZM3.NE.ZM2) SIG2 = 0.5*(1.0 + (SPEED -ZM2)/(ZM3 -ZM2)) R1T2726
C
TOCL = 1.0/(4.4*ARWS*COSZ**1.5 ) R1T2727
DTOCL =(TOC - TOCL)/COSZ R1T2728
IF( DTOCL.LT.0.0) DTOCL = 0.0 R1T2729
ARDT = ARWS * DTOCL R1T2730
IF( DTOCL.GT.0.07) DTOCL = 0.07 R1T2731
IF( ARDT.GT.0.1 ) ARDT = 0.1 R1T2732
GAMMA = 9.0 * (DTOCL/(1.0 + 0.5 * ARDT) ) R1T2733
C
GAMAO = GAMMA R1T2734
IF( ZM30.NE.ZM10 ) GAMMA = GAMAO *(ZM3-ZM1)/(ZM30-ZM10) R1T2735
IF( GAMMA.GT.GAMAO ) GAMMA = GAMAO R1T2736
C
XF = (16.0 +3.0*ARWS**2)/18.0 +5.0*ARWS**2 R1T2737
XKB = (1.0 +DOB)*(1.0 -DOB)**XF R1T2738
XKT = 1.0 R1T2739
IF(SPEED.GE.ZM1.AND.SPEED.LE.ZM2) XKT = 1.0 -(4.0*SIG1*(1.0 R1T2740
1 - SIG1))**3 * GAMMA R1T2741
IF(SPEED.GT.ZM2.AND.SPEED.LE.ZM3) XKT = 1.0 -(4.0*SIG2*(1.0 R1T2742
1 - SIG2))**3 * GAMMA R1T2743
5 CONTINUE R1T2744

```

```

C
Y1      = 2.0 + 0.66667 * SQRT(TAPER) - TAPER**2          R1T2756
Y      = (1.0 + PI * ARWS)/(3.0 + PI * ARWS) + Y1          R1T2757
TWOS    = 1.0                                              R1T2758
IF( ZMSTR.LT.1.0 ) TWOS = 1. + EPSL/SQRT(1.-ZMSTR**2)      R1T2759
R1T2760
R1T2761
C
CLAO    = (TWOS * PI * ARWS)/(TWOS + SQRT(TWOS + (1.0 -
1      COSZ**1.3334) * (ARWS/(2.0*COSZ))**2 ) )          R1T2762
R1T2763
IF( SPEED.GT.0.0 ) BETAP = (SPEED - ZMSTR) * (1.0 +
1      (ZMSTR/SPEED)**Y )**2                                R1T2764
R1T2765
Z1      = PI * ARWS / CLAO                                 R1T2766
Z1      = 3.0 * Z1 * ( Z1 - 1.0 ) * COSZ**0.6667            R1T2767
Z      = ZMSTR * CLAO + ARWS**2/Z1                          R1T2768
R1T2769
R1T2770
C
C      IF(SPEED.GT.ZMSTR) GO TO 10                           R1T2771
R1T2772
C
CLAB    = (.0548311*TWOD*ARWS)/(TWOD + SQRT(TWOD + (1.0 -
1      COSZ**1.3334 *(SPEED/ZMSTR)**2.667)*(ARWS/(2.*COSZ))**2 R1T2773
R1T2774
2
GO TO 20
10 CLAB = 1.0/(57.3 *((ZMSTR/SPEED)**Z /CLAO + BETAP/4.0)) R1T2775
R1T2776
R1T2777
R1T2778
R1T2779
R1T2780
R1T2781
R1T2782
R1T2783
R1T2784
R1T2785
R1T2786
C
20 CONTINUE
CLA     = CLAB * XKT * XKB * SPLAN/SREF                  R1T2787
R1T2788
C
C
25 IF( KPRINT(11).EQ.0 ) GO TO 30
WRITE(6,1000) SPEED, CLA, CLAB, XKT, XKB, SPLAN, SREF,      R1T2789
1           ZMSTR, ZM1, ZM2, ZM3, COSZ, CSUB0, ARDT,        R1T2790
2           TOC, TAPFR, ARWS, DMSTR, CLD, DM1, DOB, TWOD, SWPMC R1T2791
1000 FORMAT(10X*AER2 DUMP*, 6F15.5 /(19X,6F15.5) )
R1T2792
R1T2793
R1T2794
C
30 RETURN
END

```

CC = 00095

```

SUBROUTINE TAIL(SPEED) RIT2796
C RIT2797
C COMPUTES TAIL FLOW FIELD AND LIFT RIT2798
C RIT2799
C COMMON /BLKCLA/ CLAI(11) RIT2800
C RIT2801
C COMMON /BLKA02/ SREF, A1(428), HTLE, HTY, HTZ, TINC RIT2802
C COMMON /BLKB01/ XSWPL(11), YRMIN(11) RIT2803
C RIT2804
C COMMON /BLKG01/ G1(79), AR, TR, SPLAN, CB, YB, XMAC, GZ(16), RIT2805
1 SWPQC, G3(4), XHT, XCRTE, G4(92) RIT2806
C RIT2807
C COMMON /BLKC01/ C1(37), CDWING(4), C2(12), CLAW, CLAB, CLAT, A, B, RIT2808
1 AOH, C, ASTR, CLDH, C3(31), DEDA, C4(6) RIT2809
C RIT2810
C COMMON /BLKPRT/ KPRINT(50) RIT2811
C RIT2812
C ** DOWNWASH IS CALCULATED *** RIT2813
C RIT2814
C RIT2815
ARHT = G1(11) RIT2816
SEXHT = G1(21) RIT2817
SWLHT = A1(389) RIT2818
HTLAM = A1(409) RIT2819
CAMHT = A1(339) RIT2820
HTOC = A1(349) RIT2821
SWMCHT = ATAN(TAN(SWLHT) - 2./ARHT * (1.-HTLAM)/(1.+HTLAM)) RIT2822
RIT2823
10 ZKA = 1./AR - 1./(1. + AR**1.7) RIT2824
IF( AR.LT.2.3 ) ZKA = 0.37 - 0.0567 * AR RIT2825
ZKTR = (10. - 3.0 * TR)/7.0 RIT2826
B = SQRT( AR * SPLAN ) RIT2827
C RIT2828
DEDA = 0.0 RIT2829
XLHT = XHT - XMAC RIT2830
IF( XLHT.LE.0.0 ) GO TO 30 RIT2831
C RIT2832
HHT = HTZ RIT2833
RIT2834
ZKH = (1. - HHT/B)/(2.0 * XLHT/B)**0.33333 RIT2835
C RIT2836
COSQ = SQRT(COS(SWPQC)) RIT2837
20 DEDAO = 4.44 * (ZKA * ZKTR * ZKH * COSQ )**1.19 RIT2838
C RIT2839
IF( KPRINT(21).EQ.0 ) GO TO 21 RIT2840
WRITE(6,1000)CLAW,DEDAO,CDWING(1),CDWING(2),CDWING(3),CDWING(4),
1 HTLE,A1(281),CB,ZKA,ZKTR,ZKH,COSQ RIT2841
21 CONTINUE RIT2842
CALL AER2(0.1, CLAO)
DEDA = DEDAO * CLAW/CLAO
C RIT2843
C ** DYNAMIC PRESSURE AT THE TAIL ***
C RIT2844
C RIT2845
30 CDO = CDWING(1)+CDWING(2)+CDWING(3)+CDWING(4) RIT2846
C RIT2847
XDC = (XHT - XCRTE)/CB RIT2848
C RIT2849
RIT2850
RIT2851

```

```

DQQQ = 0.0 R1T2852
IF( XOC.LE.0.0 ) GO TO 50 R1T2853
C R1T2854
ZWOC = 0.68 * SQRT(CDO + (XOC + 0.15)) R1T2855
DQQQO = 2.42 * SQRT(CDO)/(XOC + 0.3) R1T2856
C R1T2857
GAMMA = ATAN(HTZ/(XOC*CB)) R1T2858
AW = 2.0 R1T2859
CL = CLAW* AW R1T2860
EW = 0.51566 * CL/AR R1T2861
ZOC = XOC * TAN(GAMMA + EW - AW/57.3) R1T2862
Z0ZW = ZOC/ZWOC R1T2863
C R1T2864
IF( Z0ZW.GE.1.0 ) GO TO 50 R1T2865
C R1T2866
DQQQ = DQQQO * (COS(1.570796* Z0ZW))**2 R1T2867
C R1T2868
50 QQQ = 1.0 - DQQQ R1T2869
C R1T2870
C ** CARRY-OVER FACTORS ZKWB AND ZKBW ARE COMPUTED ***
C R1T2871
R1T2872
R1T2873
60 DOBHT = 2.0 * HTY/(2.0 * HTY + SQRT(ARHT * SEXHT) ) R1T2874
C R1T2875
ZKWB = 1.0028 + .7116*DOBHT + .42*DOBHT**2 -.1366*DOBHT**3 R1T2876
ZKBW = .0004 + 1.2662*DOBHT + .6018*DOBHT**2 + .1263*DOBHT**3 R1T2877
C R1T2878
C ** LIFT-CURVE-SLOPE OF THE EXPOSED SURFACE IS COMPUTED ***
C R1T2879
R1T2880
CLAI(1) = SEXHT R1T2881
CLAI(2) = HTOC R1T2882
CLAI(3) = HTLAM R1T2883
CLAI(4) = ARHT R1T2884
CLAI(5) = 0.0 R1T2885
CLAI(6) = CAMHT R1T2886
C R1T2887
CLAI(7) = 0.0 R1T2888
CLAI(8) = 0.0 R1T2889
CLAI(9) = 0.0 R1T2890
CLAI(10) = SWMCHT R1T2891
C R1T2892
70 CALL AER2(SPEED, CLA) R1T2893
CLAT = CLA * (ZKWB + ZKBW) * (1. - DEDA) * QQQ R1T2894
CLDH = CLA * ZKWB * QQQ R1T2895
C R1T2896
C ** INDUCED DRAG FACTOR FOR TAIL IS COMPUTED ***
C R1T2897
R1T2898
CALL LNTP(SWLHT, RTSUB, XSWPL, YRMIN, 11, 21) R1T2899
RTAIL = RTSUB R1T2900
IF( SPEED.LE.0.9 ) GO TO 80 R1T2901
ZNDM = 12.0 * (COS(SWLHT)**1.6) * (SPEED - 0.9) R1T2902
FNDM = 1.0/(1. + ZNDM + ZNDM*ZNDM) R1T2903
RTAIL = RTSUB * FNDM R1T2904
C R1T2905
80 HTK1 = (1.-RTAIL) * 0.01745 /(CLA * ZKWB) R1T2906
HTK2 = RTAIL * 0.31831/ARHT * SREF/SEXHT R1T2907

```

```

HTK = HTK1 + HTK2 R1T2908
C
A = HTK * CLDH * CLDH R1T2909
B = 2.0 * HTK * CLAT * CLDH R1T2910
AOH = (1.-DEDA) * (A1(279) - TINC) R1T2911
C
C
IF( KPRINT(21).EQ.1 ) WRITE(6,1000) CLAT, SPEED, CLA, ZKWB, DGBHT, R1T2915
1 ZKBW, DEDA, QQQ, CLDH, A, B, AOH, DEDAO, R1T2916
2 RTSUB,RTAIL,HTK1,HTK2,HTK R1T2917
C
RETURN R1T2918
1000 FORMAT(10X,*TAIL LIFT DUMP* /1X, 7F15.5) R1T2920
END R1T2921

```

CC = 00126

```

SUBROUTINE AALO(SPEED) R1T2923
C
C   CALCULATE . ZERO LIFT ANGLE OF ATTACK R1T2924
C
C   COMMON /BLKA02/ AL(433) R1T2925
C
C   COMMON /BLKG01/ G1(44), DOB, TOC, CLD, G2(33), TAP, G3(20), R1T2926
C   1           ESWQC, G4(98) R1T2927
C
C   COMMON /BLKC01/ C4(16), CLA, ALO, C5(35), C1, C2, C3, C6(44) R1T2928
C
C   COMMON /BLKPRT/ KPRINT(50) R1T2929
C
C
C
C   ALOC    = 0.0 R1T2930
C   ALOT    = 0.0 R1T2931
C   AL0I    = 0.0 R1T2932
C   TWIST   = G4(10) R1T2933
C   RINC    = AL(280) R1T2934
C   DINC    = G4(11) R1T2935
C   TINC    = AL(433) R1T2936
C
C   XMCR    = 0.75 R1T2937
C   XMNO    = SPEED * COS(ESWQC) R1T2938
C
C   TOCO    = TOC/COS(ESWQC) R1T2939
C   IF( TOCO.LT.0.1 ) XMCR = 0.75 + 1.25 * (0.1 - TOCO) R1T2940
C   DALODC = 5.6 R1T2941
C   IF( XMNO.GT.XMCR ) DALODC = 5.6 - 249.0 * (XMNO - XMCR)**2 R1T2942
C   IF( DALODC.LT.0.0 ) DALODC = 0.0 R1T2943
C
C   ALOC    = - DALODC * CLD R1T2944
C
C
C   200 IF( TWIST.EQ.0.0 ) GO TO 300 R1T2945
C   IF( SPEED.GT.1.0 ) GO TO 300 R1T2946
C   TAU = TWIST R1T2947
C   BETA = SQRT(1.0 - SPEED**2) R1T2948
C   SWPQCB = 90.0 R1T2949
C   IF( BETA.GT.0.0 ) SWPQCB = ATAN(TAN(ESWQC)/BETA) * 57.29578 R1T2950
C   DALO = 0.093 - 0.000571*SWPQCB + 0.5761*TAP - 0.2645*TAP**2 R1T2951
C   ALOT = - DALO * TAU R1T2952
C
C   300 IF( DINC.EQ.0.0.AND.TINC.EQ.0.0 ) GO TO 400 R1T2953
C   ZKRW = .0004 + 1.2662*DOB + .6018*DOB**2 + .1263*DOB**3 R1T2954
C   ZKWB = 1.0028 + .7116*DOB + .42 *DOB**2 - .1366*DOB**3 R1T2955
C   CLAB = C3 + ZKRW/(ZKRW + ZKWB) * C1 R1T2956
C   AL0I = (CLAB * DINC + C2 *(DINC - TINC))/CLA R1T2957
C   1           + (RINC - DINC) R1T2958
C
C   400 ALO =          + ALOC + ALOT + AL0I R1T2959
C   IF( KPRINT(13).GT.0 ) WRITE(6,1000) ALO, ALOC, ALOT, R1T2960
C   1           AL0I, SPEED, ESWQC, TOC, CLD, TAU, SWPQCB, DOB, R1T2961
C   2           TAP, C1, C2, C3, CLAB, ZKRW, ZKWB, DINC, TINC R1T2962
C   3           ,RINC R1T2963

```

C
1000 FORMAT(5X,*AALO DUMP*,5X,*ALO =*,F6.3,5X,*ALOC =*,F6.3,
1 5X,*ALOT =*,F6.3,5X,*ALOI =*,F6.3 /(5X,7F15.5)
RETURN
END

R1T2979
R1T2980
R1T2981
R1T2982
R1T2983

CC = 00061

```

SUBROUTINE CLBRK(SPEED, RE, RNOFT) R1T2985
C CALCULATES LIFT BREAK CL AND CLMAX R1T2986
C
COMMON /BLKG01/ G1(45), TOC, CLD, SEXW, G2(31), AR, TR, SPLAN, R1T2987
1 CB, G3(18), SWPQC, SWPLE, G4(97) R1T2988
C
COMMON /BLKA01/ NBODYS, NNACS, NSURFS, NHT, NVT, ISWP, NPNLS R1T2989
C
COMMON /BLKA02/ SREF, A1(432) R1T2990
C
COMMON /BLKPRT/ KPRINT(50) R1T2991
COMMON /BLKC01/ C3(16), CLA, ALO, C4(35), CLAW, CLAB, CLAT, C6(6), R1T2992
1 CLPB, CLDB, CLMAX, ABRK, AMAX, DAMAX, DEL, R1T2993
2 CLS, ARLO, C5(29) R1T2994
C
COMMON /BLKMAP/ MAP, TRANS, DY, AMAP(22), BMAP(11) R1T2995
COMMON /BLKCLB/ X1(6), Y1(6), X9(8), Y9(8), XAR(5), YDCL(5) R1T2996
C
COMMON /BLKB02/ AA(22), BB(22), CC(22), DD(22), XT(22) R1T2997
C
COMMON /BLKB05/ XDY0(6), YXMN(6), ZIBD5(6,6) R1T2998
C
COMMON /BLKMAX/ XTR(6), YC1(6), YC2(6), XSWP(4), YA(4), R1T2999
1 YB(4), XDY(8), XM(4), CTAB(8,4), DTAB(8,4), R1T3000
2 XXCLM(13), YYDY(6), FCLMX(13,6), XXXC2(9), R1T3001
3 YYMACH(5), FDCLMX(9,5), XDY1(9), YXMT(4), R1T3002
4 ZCIMAX(9,4), XDY2(8), YFOC(6), ZDC1M(8,6), R1T3003
5 Z2DC1M(8,6) R1T3004
COMMON /BLKMX2/ XSP(8), YDY(6), FDA(8,6), XAB(6), YCO(8), R1T3005
1 FKVDFM(6,8), XANG(10), YRTDC(7), FRA(10,7) R1T3006
COMMON /BLKMX4/ XC2(6), YAST(9), FDAM(6,9), XCT(6), YM(5), FDAM2(6,5) R1T3007
COMMON /BLKMX5/ XXXCLM(9), FCLMXX(9,6) R1T3008
C
DIMENSION XF1(7), YF1(7), YF2(7) R1T3009
C
DATA XF1 / 5.0, 6.0, 6.47712, 6.77815, 6.95424, 7.39794, 8. /, R1T3010
1 YF1 / -.125, -.11, -.02, -.01, 0., 0.03, 0.035 /, R1T3011
2 YF2 / -.1063, -.0713, -.055, -.0175, 0., 0.0375, 0.0463/ R1T3012
C
IF( SPEED .GE. 1.0 ) GO TO 20 R1T3013
C
NI * A1(234) R1T3014
CONCL = A1(276) R1T3015
DY0 = AMAP(NI) * TOC R1T3016
IF( DY0.LT.0.8 ) DY0 = 0.8 R1T3017
IF( DY0.GT.2.4 ) DY0 = 2.4 R1T3018
C
XMN = SPEED * COS(SWPQC) R1T3019
IF( XMN.LT.0.2 ) XMN = 0.2 R1T3020
XMNO = XMN R1T3021
CLIN = CLD/COS(SWPQC)**2 R1T3022
IF( XMN.GT.0.7 ) XMNO = 0.7 R1T3023
C
ABRK0 = DLNT(DY0, XMNO, XDY0, YXMN, ZIBD5, 6, 6, 6, 4, 2) R1T3024
ABRK = ( ABRK0 + (12.05-4.1*XMN)*CLIN ) * COS(SWPQC) R1T3025

```

```

ABRKLO = 2./COS(SWPLE) R1T3041
IF( ABRK.LT.ABRKLO ) ABRK = ABRKLO
CLPBO = CLA * ABRK R1T3042
C R1T3043
DCLPB = 0.0 R1T3044
FPB = 1.54 R1T3045
IF( XMN.GT.0.5 ) FPB = 1.54 - 2.9 * (XMN - 0.5) R1T3046
IF( CONCL.GT.0.0 ) DCLPB = FPB * ((CONCL + .0643)*COS(SWPQC))**2 R1T3047
C R1T3048
CLPB = CLPBO + DCLPB R1T3049
C R1T3050
DCLDRF = 0.1226 -.00714*SPEED -.12857*SPEED**2 R1T3051
C R1T3052
IF( NI.LE.9 ) DY = AMAP(NI)*TOC +BMAP(NI)*CLD R1T3053
IF( NI.GT.9 ) DY = AMAP(NI)*TOC +1.75*CLD R1T3054
C R1T3055
TRANS = 0.0 R1T3056
IF( DY.GT.1.65 ) TRANS = (DY - 1.65)/.4 R1T3057
IF( DY.GE.2.05 ) TRANS = 1.0 R1T3058
IF( SWPLE.GE.0.87 ) TRANS = 0.0 R1T3059
CLDB = CLPB + TRANS *(-.0376 -.24414*SPEED -.0685*SPEED**2 R1T3060
1 +.4149*SPEED**3 + RE * DCLDRF ) R1T3061
C R1T3062
GO TO 30 R1T3063
C R1T3064
20 BETAC = SQRT(SPEED * SPEED - 1.)/TAN(SWPLE) R1T3065
CLSB1 = 0.85 R1T3066
CLSB9 = 0.85 R1T3067
IF( SWPLE.GT.0.7243 ) CALL LNTP(SWPLE, CLSB1, X1, Y1, 6, 4) R1T3068
IF( SWPLE.GT.0.3665 ) CALL LNTP(SWPLE, CLSB9, X9, Y9, 8, 4) R1T3069
CALL LNTP(XAR, DCLR, XAR, YDCL, 5, 4) R1T3070
CLSB9 = CLSB9 + DCLR R1T3071
CLSB = CLSB1 + (CLSB9 - CLSB1)*(BETAC - .1) * 1.25 R1T3072
CLSB = CLSB + 0.5 * CLD R1T3073
CLPB = CLSB R1T3074
CLDB = CLSB R1T3075
C R1T3076
SUPersonic MAXIMUM LIFT COEFFICIENT **** R1T3077
CNA048 = CLAW * 14.325 * SQRT(SPEED*SPEED -1.) R1T3078
C R1T3079
OM = 1./SPEED R1T3080
CLMAX = 0.7722 + 0.3384 * OM +1.1648 * OM*OM -0.8215 * OM**3 R1T3081
C R1T3082
CM1 = 1. - CNA048 R1T3083
IF(CM1.LT.0.0 ) CM1 = 0.0 R1T3084
C R1T3085
CLMAX = CLMAX - 0.048 * CM1 R1T3086
C R1T3087
AMAX = 68.5429 -177.2327 * OM +461.9204 *OM*OM R1T3088
1 -629.4522 * OM**3 +321.4001 * CM**4 R1T3089
C R1T3090
AMAX = AMAX +15.8074 -3.0001*CNA048 -12.8073*CNA048**2 R1T3091
C R1T3092
IF( CLMAX.GT.1.25 ) CLMAX = 1.25 R1T3093
IF( AMAX.GT.54.5 ) AMAX = 54.5 R1T3094
C R1T3095

```

```

GO TO 300 R1T3097
30 CONTINUE R1T3098
C CLMAX = 0.0 R1T3099
NI = A1(234) R1T3100
DY = AMAP(NI) * TOC R1T3101
CALL LNTP(TR, C1, XTR, YC1, 6, 4) R1T3102
CALL LNTP(TR, C2, XTR, YC2, 6, 4) R1T3103
C C1COS = (C1 + 1.) * COS(SWPLF) R1T3104
ARUP = 4./C1COS R1T3105
ARLO = 3./C1COS R1T3106
C XMT = XT(NI) R1T3107
IF( XMT.LT.0.3 ) XMT = 0.3 R1T3108
IF( XMT.GT.0.45 ) XMT = 0.45 R1T3109
IF( AR.LE.ARLO ) GO TO 200 R1T3110
C C1MAXB = DLNT(DY, XMT, XDY1, YXMT, ZC1MAX, 9, 4, 9, 2,2) R1T3111
FOC = 5.500 * CLD R1T3112
DC1MAX = DLNT(DY, FOC, XDY2, YFOC, ZDC1M, 8, 6, 8, 2,2) R1T3113
IF( XMT.GE.0.35 ) DC1MAX = DLNT(DY,FOC,XDY2,YFOC,ZDC1M,8,6,8,2,2) R1T3114
C RNCB = ALOG10(RNOFT * CB) R1T3115
CALL LNTP(RNCB, F1, XFL, YF, 7, 2) R1T3116
CALL LNTP(RNCB, F2, XFL, YF, 7, 2) R1T3117
DC1RN = F1 + F2 * DY R1T3118
C C1MAX = C1MAXB + DC1MAX + DC1RN R1T3119
C SWEEP = SWPLE * 57.2956 R1T3120
100 CALL LNTP(SWEEP, A, XSWP, YA, 4, 4) R1T3121
CALL LNTP(SWEEP, B, XSWP, YB, 4, 4) R1T3122
C DYM14 = DY - 1.4 R1T3123
IF( DYM14.LT.0.0 ) DYM14 = 0.0 R1T3124
IF( DY.GT.2.5 ) DYM14 = 1.1 R1T3125
C CLMOC1 = A - B * DYM14 R1T3126
CLMAX = CLMOC1 * C1MAX R1T3127
C C = DLNT(DY, SPEED, XDY, XM, CTAB, 8, 4, 8, 2,2) R1T3128
D = DLNT(DY, SPEFD, XDY, XM, DTAB, 8, 4, 8, 2,2) R1T3129
C DCLMAX = C + (D - C) * SWEEP/60. R1T3130
CLMAX = CLMAX + DCLMAX R1T3131
C 120 DAMAX = DLNT(SWEEP, DY, XSP, YDY, FDA, 8, 6, 8, 2,2) R1T3132
AMAX = CLMAX/CLAW +ALO +DAMAX R1T3133
CLS = CLA * (AMAX - 2.*DAMAX - ALO) R1T3134
GO TO 300 R1T3135
C LOW ASPECT RATIO METHOD R1T3136
C 200 CONTINUE R1T3137

```

```

C ABETA = AR/SQRT(1. - SPEED * SPEED) R1T3153
C XC(M = ABETA * C1COS R1T3154
C IF( XMT.LE.0.35.OR.XCLM.GE.2.0 ) CLMXB = DLNT(XCLM, DY, XXCLM, R1T3155
C YYDY, FCLMX, 13, 6, 13, 2,2) R1T3156
C IF( XMT.GT.0.35.AND.XCLM.LT.2.0 ) CLMXB = DLNT(XCLM, DY, XXXCLM, R1T3157
C YYDY, FCLMXX, 9, 6, 9, 2,2) R1T3158
C R1T3159
C C2TAN = (C2 + 1.) * AR * TAN(SWPLE) R1T3160
C DCLMX = DLNT(C2TAN, SPEED, XXX2, YYMACH, FDCLMX, 9, 5, 9, 2,2) R1T3161
C R1T3162
C CLMAX = CLMXB + DCLMX R1T3163
C AST = AR * COS(SWPLE) * (1.+ 4.0 * TR*TR) R1T3164
C AMAXB = 35.0 R1T3165
C IF( XCLM.GT.0.9 ) AMAXB = 49.8473 -20.6922*XCLM +5.0674*XCLM**2 R1T3166
C -0.4279*XCLM**3 R1T3167
C IF( XCLM.GT.3.6 ) AMAXB = 21.0 R1T3168
C IF( C2TAN.LE.4.5 ) DAM = DLNT(C2TAN,AST, XC2, YAST,FDAM,6,9,6,4,2) R1T3170
C IF( C2TAN.GT.4.5 ) DAM = DLNT(C2TAN,SPEED,XCT,YM,FDAM2,6,5,6,4,2) R1T3171
C R1T3172
C AMAX = AMAXB + JAM R1T3173
C R1T3174
C 300 CONTINUE R1T3175
C TAIL CONTRIBUTION TO CLMAX ***** R1T3176
C R1T3177
C DEL = CLAT * 57.3 * SIN(AMAX/57.3) * COS(AMAX/57.3)**2 R1T3178
C CLMAX = CLMAX + DEL R1T3179
C R1T3180
C IF( KPRINT(16).EQ.1 ) WRITE(6,1000) CLPB, CLDB, ABRKO, ABRK, R1T3181
C 1 XMN, DYO, DCLPB, TRANS, BETAC, DY, C1, C2, AMAX, ARUP, R1T3182
C 2 ARLO,XMT,CIMAXB,DC1MAX,CLMOC1,DCLMAX,DEL, R1T3183
C 3 XCLM, CLMXB, C2TAN, DC1MX, CLMAX, DC1RN, RNCB R1T3184
1000 FORMAT(10X,*CLBRK DUMP* /(1X, 7F15.5) )
C R1T3185
C RETURN R1T3186
C END R1T3187
R1T3188

```

CC = 00204

```

C SUBROUTINE CDL1(SPEED, RNOFT, FK, DELCL, PRIMEK, AKD, AKB) R1T3190
C COMPUTES DRAG DUE TO LIFT CONSTANTS R1T3191
C COMMON /BLKA01/ NBODYS, NNACS, NSURFS, NHT, NVT, ISWP, NPNLS R1T3192
C COMMON /BLKA02/ SREF, A1(22), CBAR(10), TW(10), CAM(10), TOC(10), R1T3193
1 A2(12), CONCL, A3(25), YW(11), A4(120) R1T3194
C COMMON /BLKG01/ G1(44), DOB, TOCW, CLD, R1T3195
1 G3(12), XLESW(10), G4(10), AR, TR, SPLAN,CB, R1T3200
2 G5(18), SWPQC, SWPLE, G6(11), CBAR2, CLDS, TOCS, R1T3201
3 G7(83) R1T3202
C COMMON /BLKBD1/ XSWPL(11), YRMIN(11) R1T3203
C COMMON /BLKBD2 / AA(22), BB(22), CC(22), DD(22), XT(22) R1T3204
C COMMON /BLKA16/ XSWP(7), YTR(4), FEP35(7,4), FEP7(7,4), R1T3205
1 XCLDB(7), YAKB(7) R1T3206
C COMMON /BLKC01/ C1(100) R1T3207
C COMMON /BLKPRT/ KPRINT(50) R1T3208
C DIMENSION OCURV(13), RCURV(13), XRN(9), YDRT1(9), YDRT2(9) R1T3209
C DATA OCURV / 2., 4., 6., 10., 20., 30., 40., 50., 60., R1T3210
1 80., 100., 130., 200./, R1T3211
2 RCURV / 0.17,0.37,0.48,0.6,0.73,0.782,0.81,0.83,0.84, R1T3212
3 0.855,0.865,0.874,0.874 / R1T3213
DATA XRN / 0., 5., 7., 10., 20., 40., 100., 300., 600. /, R1T3214
1 YDRT1 / .07,.07,.05,.025, 5*0.0 /, R1T3215
2 YDRT2 / .175,.175,.165,.12,.05,.03,.015,.005,0.0 / R1T3216
C CLM = C1(17) * 57.29578 * SREF/SPLAN R1T3217
C B02X = YW(1+NPNLS) - YW(1) R1T3218
C FKL1 = 0.0 R1T3219
C DCL1 = 0.0 R1T3220
C FKL2 = 0.0 R1T3221
C DCL2 = 0.0 R1T3222
C CLMO = CLM R1T3223
C CLM2 = C1(77) * 57.29578 * SREF/SPLAN R1T3224
C RBAR = 0.0 R1T3225
C CLDR = C1(64) R1T3226
C CALL LNTP(CLDR, AKB, XCLDB, YAKB, 7, 2) R1T3227
C FAKB = 1.24 -.04 * RNOFT * CB * 1.0E-6 R1T3228
C IF (.AKB.LT.1.0 ) FAKB = 1.0 R1T3229
C AKB = FAKB * AKB * SREF/SPLAN R1T3230
C B = -1.41 +1.442*TR -1.26*TR**2 +.528*TR**3 R1T3231
C C = 0.7125 -1.497*TR +1.476*TR**2 -.6909*TR**3 R1T3232
C EO = 1.0 + 8 * DOB + C * DOB**2 R1T3233
C FMACH = SPEED R1T3234

```

```

FMCRO = C1(72) R1T3246
FML1 = C1(73) R1T3247
FML2 = C1(74) R1T3248
IFI FMACH.GT.FMCRO ) FMACH = FMCRO R1T3249
IFI SPEED.GE.FMCRO.AND.SPEED.LT.FML2 ) CLMO= C1(76) * R1T3250
1      57.29578 * SREF/SPLAN R1T3251
IFI SPEED.GT.1.0 ) CALL ADCL(SPEED, CLOPT) R1T3252
IFI SPEED.LT.FML2 ) CALL ADCL(FMACH, CLOPT) R1T3253
C
NI = TW(1) R1T3254
DO 100 I = 1, NPNLS R1T3255
C
TC = TOC(I) R1T3256
RLEOC = AA(NI) +BB(NI)*TOC(I) +CC(NI)*TOC(I)**2 R1T3257
1      +DD(NI)*TOC(I)**3 R1T3258
IFI NI.EQ.8 ) RLEOC = 0.88216 * TOC(I)**1.606 R1T3260
RLF = RLEOC * CBAR(I) R1T3261
IFI ISWP.EQ.0.OR.I.NE.NPNLS ) GO TO 90 R1T3263
RLEOC = AA(NI) +BB(NI)*TOCS + CC(NI)*TOCS**2 + DD(NI)*TOCS**3 R1T3264
IFI NT.EQ.8 ) RLEOC = 0.88216 * TOCS**1.606 R1T3265
RLF = RLEOC * CBAR2 R1T3266
TC = TOCS R1T3267
C
90 CONTINUE R1T3268
C
RNLER = RLF * RNOFT/10.0**3 R1T3269
COTANS = 5.0 - 6.511 * XLESW(I) R1T3270
IFI SWPLE.GT.0.35 ) COTANS = 1./TAN(XLESW(I)) R1T3273
C
OMEGA = RNLER * COTANS * SQRT(1. - (FMACH * COS(XLESW(I)))**2 ) R1T3275
CALL LNTP(OMEGA, RT, OCURV, RCURV, 13, 2) R1T3276
CALL LNTP(XLFSW(I),RMIN,XSWPL,YRMIN, 11, 2) R1T3277
IFI RT.LT.RMIN ) RT = RMIN R1T3278
DRT = 0.0 R1T3279
C
CALL LNTP(RNLER, DRT1, XRN, YDRT1,9,2) R1T3280
CALL LNTP(RNLER, DRT2, XRN, YDRT2,9,2) R1T3282
IFI TC.GT.0.03 ) DRT = DRT1 * (TC - 0.03)/0.03 R1T3283
IFI TC.GT.0.06 ) DRT = DRT1 + DRT2 * (TC - 0.06)/0.06 R1T3284
RT = RT + DRT R1T3285
C
RI = RT +(0.824 -RT) *(CLD + CONCL)/0.6 R1T3286
C
IFI RI.GT.0.874 ) RI = 0.874 R1T3287
C
RBAR = RBAR + RI * (YW(I+1) - YW(I))/B02X R1T3288
100 CONTINUE R1T3290
C
AT = AR * TR/COS(SWPLE) R1T3291
DELR = 0.0482*AT -0.01102*AT**2 +0.001197*AT**3 R1T3295
1      -0.00004833*AT**4 R1T3296
C
R = RBAR + DELR R1T3297
C
FK = ((1.-R)/CLMO +R/(3.14159*AR*EO)) * SREF/SPLAN R1T3298
C

```

```

E      = 1./(3.14159 * AR * FK) * SREF/SPLAN          R1T3302
DELCL = CLOPT * (1.-E)                                R1T3303
PRIMEK = 0.518/SQRT(AR)                               R1T3304
C
SWPC4 = SWPQC * 57.29578                            R1T3305
IF( SWPC4.GT.60.0 ) SWPC4 = 60.0                      R1T3306
EP35  = DLNT(SWPC4, TR, XSWP, YTR, FEP35, 7, 4, 7, 2,2) R1T3307
EP7   = DLNT(SWPC4, TR, XSWP, YTR, FEP7, 7, 4, 7, 2,2) R1T3308
IF( AR.LE.3.5 ) EP = 1. - (1.-EP35) * AR/3.5        R1T3309
IF( AR.GT.3.5 ) EP = EP35 + (EP7 - EP35)*(AR-3.5)/3.5 R1T3310
C
EPP   = EP * (1.-DOB**2)                            R1T3311
AKD   = 1./(3.14159 * AR * EPP) * SREF/SPLAN        R1T3312
C
RD    = R                                         R1T3313
H    = 1.1                                       R1T3314
ARTANS = AR * TAN(SWPFL)                          R1T3315
IF( ARTANS.GT.3.5 ) H = 1.1 + 0.1*(ARTANS - 3.5)    R1T3316
IF( SPEED.GE.1.0 ) PRIMEK = H/CLM * SREF/SPLAN      R1T3317
C
IF( SPEED.LE.FML2 ) GO TO 200                      R1T3322
ZNDM  = 12. * (COS(SWPFL)**1.6) * (SPEED-FMCRO)     R1T3323
FNDM  = 1./(1. + ZNDM + ZNDM**2)                   R1T3324
R     = RD * FNDM                                 R1T3325
FK    = ((1.-R)/CLM + R/(3.14159*AR*EO)) * SREF/SPLAN R1T3326
DELCL = CLOPT                                     R1T3327
C
GO TO 500                                         R1T3328
C
200 CALL KGIN(CLDB, FK, DELCL, SPEED, FKL1, DCL1)    R1T3329
IF( SPEED.LE.FML1 ) GO TO 500                      R1T3330
C
DRAG POLAR IS CALCULATED BY LINEAR INTERPOLATION BETWEEN THE R1T3331
LIMITS FML1 AND FML2.                                R1T3332
C
ZNDM  = 12. * (COS(SWPFL)**1.6) * (FML2 - FMCRO)    R1T3333
FNDM  = 1./(1. + ZNDM + ZNDM**2)                   R1T3334
RL2   = RD * FNDM                                 R1T3335
FKL2  = ((1.-RL2)/CLM2 + RL2/(3.14159*AR*EO)) * SREF/SPLAN R1T3336
CALL ADCL(FML2, DCL2)                               R1T3337
C
CALL KGIN(0.50, FK, DELCL, FML1, FKL1, DCL1)       R1T3338
C
FK    = FKL1 + (FKL2-FKL1)*(SPEED-FML1)/(FML2-FML1) R1T3339
DEICL = DCL1 + (DCL2-DCL1)*(SPEED-FML1)/(FML2-FML1) R1T3340
C
500 IF( KPRINT(22).EQ.0 ) RETURN                    R1T3341
      WRITE(6,1000) SPEED, FMACH, FK, DELCL, PRIMEK, AKD, AKB, R1T3342
      1           CLDB, CLM, SREF, SPLAN, FMCRO, FML1, FML2, R1T3343
      2           RLF, RNLER, OMEGA, R, RBAR, RT, CLD, CONCL, E, AR, SWPC4, R1T3344
      3           EP, DOB, SWPLF, FKL1, DCL1, FKL2, DCL2, RMIN, R1T3345
      4           , (TOC(I), CBAR(I), XLESW(I), YW(I), I = 1,NPNLS), R1T3346
      5           YW(I+NPMLS)                                R1T3347
C
1000 FORMAT(5X, *CDL1 DUMP* /(1X, 7F15.5) )          R1T3348
      RETURN                                              R1T3349

```

END

R1T3358

CC = 00169

```

C SUBROUTINE ADCL(SPEED, CLOPT) R1T3360
C POLAR AXIS DISPLACEMENT R1T3361
C COMMON /BLKA02/ SREF, A1(432) R1T3362
C COMMON /BLKG01/ G1(46), CLD, SEXW, G2(33), SPLAN, G3(20), R1T3363
1 ESWLE, G4(97) R1T3364
C CONCL = A1(276) R1T3365
R1T3366
R1T3367
R1T3368
R1T3369
R1T3370
R1T3371
R1T3372
R1T3373
R1T3374
R1T3375
R1T3376
R1T3377
R1T3378
R1T3379
R1T3380
R1T3381
R1T3382
R1T3383
R1T3384
R1T3385
R1T3386
R1T3387
R1T3388
R1T3389
R1T3390

C IF( CLD.GT.0.0 ) CLOPT = -.001 +16.934*FDC -216.2697*FDC**2
1 +1781.3562*FDC**3
IFI CONCL.GT.0.0)CLOPT = CLOPT -.0017 +1.1334*CONCL
1 -1.8498*CONCL**2 +1.0605*CONCL**3
IFI A1(234).EQ.8. 1 CLOPT = 0.51951 * CLD**0.75
GO TO 20

C 10 BETAT = 10.
IFI ESWLE.GT.0.0 ) BFTAT = SQRT(SPEED**2 -1.)/TAN(ESWLE)
DELCL = CLD * (0.25 - 0.225 * BETAT )
IFI BETAT.GE.1.11 ) DELCL = 0.0
CLOPT = DELCL
C 20 CLOPT = CLOPT * SPLAN/SREF
RETURN
END

```

CC = 00031

```

C      SUBROUTINE KGIN(CLDB, AKIN, DECLIN, SPEED, AKOUT, DCLOUT)      R1T3392
C      COMPUTES POLAR USING LEAST-SQUARES CURVE FIT                  R1T3393
C
C      COMMON /BLKPRT/ KPRINT(50)                                         R1T3394
C      DIMENSION CL(11), CDL(11), SA(12), RE(11)                         R1T3395
C
C      DCL      = CLDB/10.0                                              R1T3396
C      CL(1)   = 0.0                                                       R1T3397
C
C      DO 20 I = 1, 11                                                 R1T3398
C      IF( I.NE.1 ) CL(I) = CL(I-1) + DCL                           R1T3399
C      CLX    = CL(I)                                                 R1T3400
C
C      CALL CDDR1(CLX, SPEED, CDR)                                     R1T3401
C
C      IF( I.EQ.1 ) CDR0 = CDR                                         R1T3402
C      DCDR   = CDR - CDR0                                         R1T3403
C
C      40 CDL(I) = AKIN * (CL(I) - DECLIN)**2 + DCDR                 R1T3404
C      20 CONTINUE                                                 R1T3405
C
C      CALL PLSQ(CL,CDL,7,2,SA,0,EMAX,ERMS,EMEQ)                      R1T3406
C
C      AKOUT    = SA(1)                                                 R1T3407
C      DCLOUT   = -SA(2)/(2.0 * AKOUT )                                R1T3408
C      ERR       = SA(3) - AKOUT * DCLOUT**2                            R1T3409
C
C      IF( ABS(ERR).LT.0.001.OR.KPRINT(14).EQ.0 ) GO TO 30            R1T3410
C
C      WRITE (6,1000) SPEED,ERR,AKOUT,DCLOUT,                          R1T3411
C      1      AKIN, DECLIN, ( CL(I), CDL(I), I = 1,7 )                R1T3412
C      1000 FORMAT(10X *KGIN* 5X,*MACH =*F8.5,2X*ERR =*F8.5,2X,4F8.5,/ R1T3413
C      1      1X,,4F8.5      )                                         R1T3414
C
C      30 RETURN                                                 R1T3415
C      END                                                       R1T3416

```

CC = 00037

```

SUBROUTINE CDL2(SPFED, CL, AEROK, DELCL, PRIMEK, AKD, AKB, CDL) R1T3430
C R1T3431
C COMPUTES DRAG DUE TO LIFT R1T3432
C R1T3433
C COMMON /BLKPRT/ KPRINT(50) R1T3434
C R1T3435
C COMMON /BLKC01/ C1(100) R1T3436
C R1T3437
C CLPB = C1(63) R1T3438
C CLDB = C1(64) R1T3439
C R1T3440
C R1T3441
20 CONTINUE R1T3442
CDL = AEROK * (CL - DELCL)**2 R1T3443
IF( CL.LE.CLPB ) GO TO 500 R1T3444
C R1T3445
C DRAG DUE TO LIFT ABOVE POLAR BREAK R1T3446
CDL = CDL + PRIMEK * (CL - CLPB)**2 R1T3447
IF( CL.LE.CLDB ) GO TO 500 R1T3448
C R1T3449
C DRAG DUE TO LIFT ABOVE DRAG BREAK (CLDB) R1T3450
C R1T3451
IF( SPEED.GE.1.0 ) GO TO 410 R1T3452
CDPDB = AEROK * (CLDB - DELCL)**2 - AKD * CLDB**2 R1T3453
1      + PRIMEK * (CLDB - CLPB)**2 R1T3454
C R1T3455
DCDB = AKB * (CL - CLDB)**2 R1T3456
DCDB = DCDB + 0.08 * SQRT(DCDB) R1T3457
C R1T3458
CDL = CDPDB + DCDB + AKD * CL**2 R1T3459
C R1T3460
400 IF( SPEED.LT.1.0 ) GO TO 500 R1T3461
410 CONTINUE R1T3462
CDL = (AEROK - PRIMEK) * (CLPB - DELCL)**2 R1T3463
1      + PRIMEK * (CL - DELCL)**2 R1T3464
C R1T3465
C R1T3466
C R1T3467
500 CONTINUE R1T3468
IF( KPRINT(14).LE.0 ) GO TO 50 R1T3469
WRITE(6,1000) SPEED, CL, CDL, AEROK, DELCL, PRIMEK, CLPB, R1T3470
1      CLDB, AKD, AKB R1T3471
KPRINT(14) = KPRINT(14) - 1 R1T3472
50 CONTINUE R1T3473
RETURN R1T3474
1000 FORMAT (10X, *CDL2 DUMP*/(1X, 7F15.5 ) ) R1T3475
END R1T3476

```

CC = 00047

```

C SUBROUTINE AERA(SPEED, CL, ALPHA) R1T3478
C CALCULATES ANGLE OF ATTACK R1T3479
C COMMON /BLKC01/ C1(100) R1T3480
C COMMON /BLKG01/ G1(44), DOB, TOC, CLD, SEXW, SWPMC, R1T3481
C 1 G2(30), AR, TR, SPLAN, G3(6), YIX, YOX, R1T3482
C 2 SIX, SOX, ARI, C4(4), SWLEI, G5(3), SWPQC, R1T3483
C 3 SWPLF, SWPTE, G6(96) R1T3484
C COMMON /BLKA02/ SREF, A1(432) R1T3485
C COMMON /BLKPRT/ KPRINT(50) R1T3486
C COMMON /BLKA01/ NBODY5, NNACS, NSURFS, NHT, NVT, ISWP, NPNLS R1T3487
C COMMON /BLKT22/ XIN13(10), YIN13(7), ZOUT13(10,7), ZOUT14(10,7) R1T3488
C COMMON /BLKMX2/ XSWP(8), YDY(6), FDA(8,6), XAB(6), YCO(8), R1T3489
C 1 FKVOFM(6,8), XANG(10), YRTOC(7), FRA(10,7) R1T3490
C COMMON /BLKMX6/ XX(12), XY(7), XF(12,7) R1T3491
C DIMENSION CLTAB(13), ATAB(13) R1T3492
C EQUIVALENCE (CLA, C1(17)), (ALO,C1(18)), (CLAW,C1(54)), R1T3493
C 1 (CL, C1(64)), (CLMAX,C1(65)), (AMAX,C1(67)), R1T3494
C 2 (DAMA, C1(68)), (DEL,C1(69)), (CLS,C1(70)), R1T3495
C 3 (ARLO,C1(71)), (CDL,C1(6)) R1T3496
C
C SWFP=SWPLF*57.29578 R1T3497
C KPRT = KPRINT(17) R1T3498
C CLVM1 = 0.0 R1T3499
C
C 10 ALPHA = CL/CLA + ALO R1T3500
C IF( SPEED.GT.1.0 ) RETURN R1T3501
C IF( NPNLS.GT.1 ) GO TO 250 R1T3502
C IF( AR.LE.ARLO ) GO TO 100 R1T3503
C
C 20 CONTINUE R1T3504
C
C IF( KPRT.GT.0 ) WRITE(6,1000) CL, ALPHA, AR, ARLO, CLMAX, CLS, R1T3505
C 1 DAMAX, CLA, ALO R1T3506
C
C IF( CL.LE.CLS ) GO TO 200 R1T3507
C
C HIGH ASPECT RATIO LIFT METHOD **** R1T3508
C
C DA = 0.0 R1T3509
C DCL = CLMAX - CLS R1T3510
C DA = ((CL - CLS)/DCL)**2 * DAMAX R1T3511
C
C 30 ALPHA = ALPHA + DA R1T3512
C IF( CL.LE.CLMAX ) GO TO 200 R1T3513
C ALPHA = ALPHA + 5.0 R1T3514
C IF( ALPHA.GT.90.0 ) ALPHA = 90.0 R1T3515
C
C GO TO 200 R1T3516
C 100 CONTINUE R1T3517

```

```

C   LOW ASPECT RATIO LIFT METHOD      *****
C
AS    = 0.0
Z    = 2. * COS(SWPMC) / AR
HOB  = (AMAX - AS)/114.6 /AR   * 1.5 * (TR +TR**2)/(1.+TR+TR**2)R1T3538
XEP  = 1.0014 -1.969*HOB +3.0021*HOB**2 -2.0072*HOB**3          R1T3539
DCLFP = (Z + SQRT(1.+ Z**2))/(XEP*Z + SQRT(1. +(XEP*Z)**2))     R1T3540
DCLPA = (DCLFP -1.) * CLAW * 57.3                                R1T3541
CLPA  = CLA * 57.3                                              R1T3542
DCLD  = - CLA * ALO
CLVM1 = CLMAX - CLPA * SIN(AMAX/57.3) * COS(AMAX/57.3)**2 -DCLO R1T3544
CLVM2 = CLVM1 - DCLPA * SIN(AMAX/57.3) * COS(AMAX/57.3)**2       R1T3545
IF( CLVM1.LE.0.0 ) DAMAX = AMAX - CLMAX/CLA - ALO
IF( CLVM1.LE.0.0 ) CLS = CLA * (AMAX - 2.*DAMAX - ALO)
IF( CLVM1.LE.0.0 ) GO TO 20
C
CO    = TAN(SWPTE)/TAN(SWPLE)
BETA  = SQRT(1. - SPEED**2)
ABETA = 4.0/TAN(SWPLE) /(1.-CO) * BETA
TOCR = TOC
IF( AI(234).EQ.9 ) TOCR = 0.0
C
110 CLVDFM = DLNT(ABETA, CO, XAB, YCO, FKVDFM, 6,8,6,2,2)        R1T3556
TS2   = TAN(SWPLE)**2
FM    = SQRT((1. + TS2)/(BETA**2 + TS2))
CLVA = CLVDFM * FM * SEXW/SREF
C
ATAB(1)= 0.0
DO 120 I = 1, 13
IF( I.GT.1 ) ATAB(I) = ATAB(I-1) + 3.0
ANG   = ATAB(I)* 0.01745
DCLP  = 0.0
IF( ATAB(I).LE.AS ) GO TO 115
C
C   TIP VORTEX EFFECT
C
HOB   = (ATAB(1) -AS)/114.6 /AR   *1.5 *(TR+TR*TR)/(1.+TR+TR*TR) R1T3570
XEP   = 1.0014 -1.969*HOB +3.0021*HOB**2 -2.0072*HOB**3          R1T3571
IF( HOB.LE.0.0 ) XEP = 1.0
DCLFP = (Z +SQRT(1.+Z*Z))/(XEP*Z + SQRT(1.+(XEP*Z)**2))        R1T3573
DCLPA = (DCLFP -1.) * CLAW * 57.3                                R1T3574
DCLP  = DCLPA * SIN(ANG)                                         R1T3575
115 CONTINUE
C   LEADING EDGE EFFECT (RA)
RA    = DLNT(ANG, TOCR, XANG, YRTOC, FRA, 10, 7, 10, 2,2)        R1T3577
C
C   VORTFX BREAKDOWN EFFECT (FVL)
X     = AR
FVL  = 0.0
IF( X.LT.3.37 ) FVL = DLNT(X,ANG, XX, XY, XF, 12, 7, 12, 4,2)    R1T3583
C
CLV  = (1.-RA) * FVL * CLVA * SIN(ANG)**2 * COS(ANG)             R1T3585
IF( CLV.GT.CLVM2 ) CLV = CLVM2
CLP  = CLPA * SIN(ANG) * COS(ANG)**2                            R1T3587
CLTAB(I) = DCLD + CLV + CLP + DCLP
IF( KPRINT(17).EQ.2.AND.I.EQ.1 ) WRITE(6,1002)                  R1T3589

```

```

      IF( KPRINT(17).EQ.2 ) WRITE(6,1001) CLTAB(I), ATAB(I), RA,
1          CLP, CLV, DCLP                                R1T3590
C
120 CONTINUE                                         R1T3591
C
      IF( KPRT.GT.0 ) WRITE(6,1003) CL, ALPHA, AR, ARLO, Z, HOB, DCLPA, R1T3592
1          CLPA, DCLO, CLVM1, CLVM2, TOCR, CLVA, RA, FVL, R1T3593
2          ANG                                         R1T3594
C
125 IF( CLVM1.LE.0.0 ) GO TO 20                         R1T3595
130 CALL LNTP(CL, ALPHA, CLTAB, ATAB, 13, 4)           R1T3596
C
      GO TO 200                                         R1T3597
C
CALCULATES ANGLE OF ATTACK AT HIGH LIFT BY MODIFIED R1T3598
WINSTAN METHOD.                                     R1T3599
C
C
290 CONTINUE                                         R1T3600
300 BETA   = SQRT(1. - SPEED**2)                      R1T3601
BETAN   = BETA * TAN(SWLEI)                           R1T3602
A       = DLNT(BETAN,SWEEP, XIN13,YIN13,ZOUT13, 10,7,10, 2,2) R1T3603
EN     = DLNT(BETAN,SWEEP, XIN13,YIN13,ZOUT14, 10,7,10, 2,2) R1T3604
C
C
      ACLARU = CLDB/CLA + ALO                          R1T3605
EBRK   = YIX/(YIX + YOX)                            R1T3606
CLB    = A * ACLARU**EN * EBRK/ARI * CLAW * 57.29578 R1T3607
C
310 IF( CL.LE.CLDB ) GO TO 200                        R1T3608
CLT    = CLB + CL - CLDB                            R1T3609
ALPHA = (CLT * ARI/(A * CLAW * 57.29578 * EBRK))**(.1./EN) R1T3610
C
      IF( KPRT.GT.0 ) WRITE(6,1004) CL, ALPHA, AR, A, EN, ACLARU, R1T3611
1          EBRK, CLB, CLDB, CLAW                         R1T3612
C
200 CONTINUE                                         R1T3613
IF( ALPHA.LT.6.0 ) GO TO 205                        R1T3614
CDLA   = CL * TAN(ALPHA/57.296)                     R1T3615
IFI CDLA.LT.CDL ) CDL = CDLA                         R1T3616
205 RETURN                                         R1T3617
C
1000 FORMAT(5X, *AERA DUMP    HIGH ASPECT RATIO* /(1X,7F15.5) ) R1T3618
1003 FOR IAT(5X, *AERA DUMP    LOW ASPECT RATIO* /(1X,7F15.5) ) R1T3619
1004 FORMAT(5X, *AERA DUMP    CRANKED WING* /(1X,7F15.5) ) R1T3620
1001 FORMAT(5X,*VORTEX LIFT*, 6F15.5)                R1T3621
1002 FORMAT(//5X,*VORTEX LIFT*, 8X,*CL*,12X,*ALPHA*,13X,*R*, 13X, R1T3622
1          *CLP*, 11X,*CLV*, 11X, *DCLP*, / )          R1T3623
ENTRY AFRA1                                         R1T3624
400 KPRT   = KPRINT(17) - 1                           R1T3625
ALPHA   = CL/CLA + ALO                            R1T3626
IFI( SPEED.GT.1.0 ) RETURN                         R1T3627
IFI( NPNLS.GT.1 ) GO TO 310                        R1T3628
IFI( AR.LE.ARLO.AND.CLVM1.GT.0.0 ) GO TO 125      R1T3629
GO TO 20                                         R1T3630
C
END                                         R1T3631

```

CC = 00168

```

SUBROUTINE AFTCD(ALPHA, CDAFT) R1T3647
C R1T3648
C COMPUTE DRAG INCREMENT DUE TO FUSELAGE UPSWEEP R1T3649
C R1T3650
C COMMON /BLKA02/ A1(433) R1T3651
C R1T3652
C DIMENSION X(6), Y(4), Z(6,4) R1T3653
C R1T3654
C DATA X / -5., 0., 5., 10., 15., 20. /, R1T3655
1   Y / 0., 5., 10., 15. /, R1T3656
2   Z / 2*0.0, .01, .045, .125, .28, 0., .0005, .013, .054, .142, R1T3657
3   .33, 0., .004, .0175, .065, .172, .41, 0., .014, .023, R1T3658
4   .085, .215, .53 / R1T3659
C R1T3660
WINC = A1(280) R1T3661
BFUS = A1(241) R1T3662
AB = A1(243) R1T3663
IF( AB.EQ.0.0 ) AB = 1.0 R1T3664
BAMX = A1(65) R1T3665
SREF = A1(1) R1T3666
C R1T3667
CDAFT = 0.0 R1T3668
IF( BFUS.EQ.0.0 ) RETURN R1T3669
AFUS = ALPHA - WINC R1T3670
BMA = BFUS - AFUS R1T3671
C R1T3672
DCD = DLNT(BMA, AFUS, X,Y,Z, 6,4,6, 4,2) R1T3673
CDAFT = DCD * BAMX/SREF * AB/1.5 R1T3674
C R1T3675
RETURN R1T3676
END R1T3677

```

CC = 00031

```

SUBROUTINE TDRG(ITRIM, SPEED, DCLT, DCOT) R1T3679
C COMPUTES EFFECT OF TRIM R1T3680
C COMMON /BLKA02/ A3(280), XLE(11), A4(142) R1T3681
C COMMON /BLKA03/ A1(10), XCG, ZCG, CMAC, A2(7) R1T3682
C COMMON /BLKG01/ G1(82), CB, YB, XB, CRX, G2(22), XH, OMEGA, R1T3683
1 G3(90) R1T3684
C COMMON /BLKC01/ CL,CD,CM,ALPHA,C1(6),DH,FK,DELCL,CMO,DCMCL,XACWB, R1T3685
1 C2(39), CLAT, AH, BH, HSTAR, CH, ABREAK, CLDH, R1T3686
2 CLPB, CLDB, CLMAX, C3(22), XACS, C4(12) R1T3687
R1T3688
R1T3689
R1T3690
R1T3691
R1T3692
R1T3693
R1T3694
R1T3695
R1T3696
R1T3697
R1T3698
R1T3699
R1T3700
R1T3701
R1T3702
R1T3703
R1T3704
R1T3705
R1T3706
R1T3707
R1T3708
R1T3709
R1T3710
R1T3711
R1T3712
R1T3713
R1T3714
R1T3715
R1T3716
R1T3717
R1T3718
R1T3719
R1T3720
R1T3721
R1T3722
R1T3723
R1T3724

60 CONTINUE
IF( DH.EQ.0.0 ) GO TO 100
DCLT = DH*CLDH
DCOT = AH*DH**2 + BH*DH*(ALPHA -HSTAR)
IF(ALPHA.GT.ABREAK) DCOT = DCOT + CH*DH*(ALPHA-ABREAK)

100 RETURN
END

```

CC = 00046

```

SUBROUTINE DMIN(SPEED, RNOFT, CDMIN) RLT3726
C RLT3727
C RLT3728
C RLT3729
C RLT3730
C RLT3731
C RLT3732
C RLT3733
C RLT3734
C RLT3735
C RLT3736
C RLT3737
C RLT3738
C RLT3739
C RLT3740
C RLT3741
C RLT3742
C RLT3743
C RLT3744
C RLT3745
C RLT3746
C RLT3747
C RLT3748
C RLT3749
C RLT3750
C RLT3751
C RLT3752
C RLT3753
C RLT3754
C RLT3755
C RLT3756
C RLT3757
C RLT3758
C RLT3759
C RLT3760
C RLT3761
C RLT3762
C RLT3763

C MINIMUM DRAG
C COMMON /BLKA01/ NBODY5, NNACS, NSURFS, NHT, NVT, ISWP, NPMLS
C COMMON /BLKA02/ SREF, A1(103), BASE(10), A2(319)
C COMMON /BLKC01/ C1(18), TCD(5), CDFUS(5), CDBOD(5), C2(59),
1           CDMISC, C3(7)

C CDFUS(5) = 0.0
C CDBOD(5) = 0.0
C FMISC = A2(128)
C CALL FDRG(SPEED, RNOFT)
C CDMISC = (TCD(1) + TCD(2) + TCD(3)) * FMISC * 0.01
C CALL ADJUST(2,0, SPEED, CDMISC)
C DO 20 I = 1, NBODY5
CALL BDRG(SPEED, BASE(I), SREF, CDB)
IF( I.EQ.1 ) CDFUS(5) = CDB
IF( I.GT.1 ) CDBOD(5) = CDBOD(5) + CDB
20 CONTINUE
C TCD(5) = CDFUS(5) + CDBOD(5)
C CALL WDRG(SPEED)
C CDMIN = TCD(1) + TCD(2) + TCD(3) + TCD(4) + TCD(5)
C CDMIN = CDMIN + CDMISC
C
C 30 RETURN
END

```

CC = 00038

SUBROUTINE FDNG(SPEED, RNOFT)

R1T3765

THIS SUBROUTINE CALCULATES FRICTION, FORM, AND INTERFERENCE

R1T3766

COMMON /BLKA01/ NBODYS, NNACS, NSURFS, NLT, NVT, ISWP, NPMLS

R1T3767

COMMON /BLKA02/ SREF, AR, TAPR, SWPLE,

R1T3768

```

1     BLEN(10), BWID(10), BHGT(10), BAWET(10), BQ(10),
2     BNO(10), BAMX(10), BABS(10), BLNS(10), BLBT(10),
3     BASE(10), ELEN(10), EWID(10), EHGT(10),
4     EAWEt(10), EAMX(10), EIN(10), EXIT(10), ELNS(10),
5     ELBT(10), EOF(10), ENO(10), CBAR(10), TW,
6     XLEW, YWW, YB, CR, BDZ, BFJS, FMISC, AB, AFTAW,
7     CAH(10), TOC(10), AWET(10), SWMT, SPLAN, CONCL,
8     TWIST, FTWIST, WINC, XLE(11), CRW(11), YW(11),
9     XPIVOT, YPIVOT, XAPEX, AFTSW, AFTCB, AFTOC,
10    SBAR(10), TS(10), SCAM(10), STOC(10), SAWET(10),
11    SMTSH(10), SHF(10), SWL(10), SWT(10), STAPR(10),
12    SCR(10), HTLF, HTY, HTZ, HTINC

```

R1T3769

```

1     COMMON /BLKC01/ C1(18), TCD(5) CDFUS(5), CDBOD(5), CDNAC(4),
1           CDWING(4), CDHT(4), CDVT(4), CDSURF(4), C2(47)

```

R1T3770

COMMON /BLKOV3/ OV3A(7), J, OV3B(4)

R1T3771

```

1     COMMON /BLKSUR/ SUR(162), TRB(5,10), TRN(5,10), TRU(5,10),
1           TRL(5,10), TRS(5,10)

```

R1T3773

```

1     COMMON /BLKG01/ FRBOD(10), G1(20), FRNAC(10), G2(73),
1           SWPMT, CBAR2, CLDS, TOCS, SWET, G3(82)

```

R1T3774

CRITM = C2(19)

R1T3775

XTR = 0.0

R1T3776

DO 10 I=1,3

R1T3777

TCD(I) = 0.0

R1T3778

CDFUS(I) = 0.0

R1T3779

CDBOD(I) = 0.0

R1T3800

CDNAC(I) = 0.0

R1T3801

CDWING(I)= 0.0

R1T3802

CDHT(I) = 0.0

R1T3803

CDVT(I) = 0.0

R1T3804

CDSURF(I)= 0.0

R1T3805

10 CONTINUE

R1T3806

BODY CONTRIBUTIONS

R1T3807

IF (NBODYS.EQ.0) GO TO 30

R1T3808

DO 20 I =1,NBODYS

R1T3809

IF(J.GT.0) XTR = SRB(J,I) * BLEN(I)

R1T3810

CALL CFEQ(RNOFT,SPEED,BLEN(I),XTR,CDF)

R1T3811

CALL FFACT(1, FRBOD(I), 0, 0, SPEED, 0.0, FF)

R1T3812

DRAG = CDF*BAWET(I)/SREF

R1T3813

IF (I.GT.1) GO TO 25

R1T3814

FI = BQ(I)

R1T3815

IFI = SPEED.GT.1.0) FI = 1.

R1T3816

CDBOD(1) = CDBOD(1) + DRAG

R1T3817

CDBOD(2) = CDBOD(2) + DRAG*(FF - 1.)

R1T3818

CDBOD(3) = CDBOD(3) + DRAG*FF*(FI - 1.)

R1T3819

R1T3820

```

GO TO 20
25 REFUS = RNOFT*BL.EN(1) R1T3821
CALL IFACT(1, REFUS, CRITM, SPEED, FI) R1T3822
CDFUS(1) = DRAG R1T3823
CDFUS(2) = DRAG*(FF -1.) R1T3824
CDFUS(3) = DRAG*(FF)*(FI -1.) R1T3825
20 CONTINUE R1T3826
R1T3827
C NACELLE CONTRIBUTIONS R1T3828
C 30 IF (NNACS.EQ.0) GO TO 40 R1T3829
DO 35 I =1,NNACS R1T3830
IFI J.GT.0 I XTR = TRN(J,I) * ELEN(I) R1T3831
CALL CFEQ(RNOFT,SPEED,ELEN(I),XTR,CDF) R1T3832
CALL FFACT(2, FRNAC(I), 0, 0, SPEED, 0.0, FF) R1T3833
DRAG = CDF*EAWET(I)/SREF R1T3834
FI = EQF(I) R1T3835
IFI SPEED.GT.1. I FI = 1. R1T3836
CDNAC(1) = CDNAC(1) + DRAG R1T3837
CDNAC(2) = CDNAC(2) + DRAG*(FF -1.) R1T3838
CDNAC(3) = CDNAC(3) + DRAG*FF*(FI-1.) R1T3839
35 CONTINUE R1T3840
R1T3841
C WING CONTRIBUTION R1T3842
C 40 IF (NPMLS.EQ.0) GO TO 50 R1T3843
DO 45 I = 1, NPMLS R1T3844
IFI J.GT.0 I XTR = TRU(J,I) * CBAR(I) R1T3845
CALL CFEQ(RNOFT,SPFED, CBAR(I), XTR, CDFU) R1T3846
IFI J.GT.0 I XTR = TRL(J,I) * CBAR(I) R1T3847
CALL CFEQ(RNOFT,SPEED, CBAR(I), XTR, CDFL) R1T3848
CDF = 0.5 * (CDFU + CDFL) R1T3849
R1T3850
CALL FFACT(3, TOC(I), TW, CAM(I), SPEED, CRITM, FF) R1T3851
IFI I.EQ.1 I CALL IFACT(2, SWMT, CRITM, SPEED, FI) R1T3852
DRAG = CDF*AWET(I)/SREF R1T3853
R1T3854
C
IFI ISWP.LI.O.AND.I.EQ.NPMLS I CALL CFEQ(RNOFT,SPEED,CBARZ, R1T3855
O.O,CDF) R1T3856
IFI ISWP.GT.0.AND.I.EQ.NPMLS I CALL FFACT(3,TOCS,TW,CLDS, R1T3857
SPFED,CRITM,FF) R1T3858
IFI ISWP.GT.0 I CALL IFACT(2, SWPMT, CRITM, SPEED, FI) R1T3859
IFI ISWP.GT.0.AND.I.EQ.NPMLS I DRAG = CDF * SWET / SREF R1T3860
R1T3861
C
CDWING(1)= CDWING(1) + DRAG R1T3862
CDWING(2)= CDWING(2) + DRAG*(FF-1.) R1T3863
CDWING(3)= CDWING(3) + DRAG*FF*(FI-1.) R1T3864
R1T3865
45 CONTINUE R1T3866
R1T3867
C SURFACE CONTRIBUTION R1T3868
C 50 IF (NSURFS.EQ.1) GO TO 60 R1T3869
NSURF1 = NSURFS - 1 R1T3870
DO 55 I = 1, NSURF1 R1T3871
IFI J.GT.0 I XTR = TRS(J,I) * SBAR(I) R1T3872
CALL CFEQ(RNOFT, SPEED, SBAR(I), XTR, CDF) R1T3873
CALL FFACT(3, STOC(I), TSII, SCAM(I), SPEED, 0.0, FF) R1T3874
CALL IFACT(3, SMTSW(I), CRITM, SPEED, FI) R1T3875
IFI SPEED.LE.1. I FT = FI * SHF(I) R1T3876

```

```

DRAG = CDF*SAWET(I)/SREF R1T3877
IF ( I.EQ. 1.AND. NHT.GT.0) GO TO 100 R1T3878
200 IF ( NHT.EQ.0 ) GO TO 260 R1T3879
IF ( I.EQ.2.AND.NVT.GT.0) GO TO 101 R1T3880
201 IF (NVT.EQ.0) GO TO 270 R1T3881
IF ( I.GT.2 ) GO TO 102 R1T3882
GO TO 55 R1T3883
260 IF ( I.EQ.1.AND.NVT.GT.0) GO TO 101 R1T3884
IF ( NVT.EQ.0 ) GO TO 102 R1T3885
270 IF ( I.GT.1 ) GO TO 102 R1T3886
GO TO 55 R1T3887
100 CDHT(1) = DRAG R1T3888
CDHT(2) = DRAG*(FF-1.) R1T3889
CDHT(3) = DRAG*FF*(FI - 1.) R1T3890
GO TO 200 R1T3891
101 CDVT(1) = DRAG R1T3892
CDVT(2) = DRAG*(FF-1.) R1T3893
CDVT(3) = DRAG*FF*(FI - 1.) R1T3894
GO TO 201 R1T3895
102 CDSURF(1) = CDSURF(1) + DRAG R1T3896
CDSURF(2) = CDSURF(2) + DRAG*(FF-1.) R1T3897
CDSURF(3) = CDSURF(3) + DRAG*FF*(FI - 1.) R1T3898
GO TO 55 R1T3899
55 CONTINUE R1T3900
60 CONTINUE R1T3901
DO 70 I = 1,3 R1T3902
1 TCD(I) = CDFUS(I) + CDBOD(I) + CDNAC(I) + CDWING(I) R1T3903
    +CDHT(I) + CDVT(I) + CDSURF(I) R1T3904
70 CONTINUE R1T3905
RETURN R1T3906
END R1T3907

```

CC = 00143

```

SUBROUTINE CFEG(RNOFT,ZMACH,CBAR,XTR,CF) R1T3909
C R1T3910
C THIS SUBROUTINE CALCULATES THE SKIN FRICTION COEFFICIENT R1T3911
C USING THE WHITE-CHRISTOPH TECHNIQUE. R1T3912
C R1T3913
COMMON /BLKPR1/ KPRINT(50) R1T3914
COMMON /BLKA03/ ROUGHK, A1(19) R1T3915
C R1T3916
FTURB(X) = T*T**2*0.430/( ALOG10(RNL*X*T**1.67*F))**2.56 R1T3917
C R1T3918
FLAM(Y) = 1.328*CFCFIL/SQRT(Y*RNL) R1T3919
C R1T3920
FPRIM(X) = 0.43*T*T*F*((ALOG10(RNL *X*T**1.67*F))**(-2.56) R1T3921
1 -1.11178*(ALOG10(RNL *X*T**1.67*F))**(-3.56)) R1T3922
C R1T3923
IF( KPRINT(19).GT.0 ) WRITE(6,1001) RNOFT,ZMACH,CLAR,XTR,ROUGHK R1T3924
IF( CBAR.LE.0.0.OR.CBAR.GT.10000.) GO TO 500 R1T3925
C R1T3926
ZMACH2 = ZMACH*ZMACH R1T3927
T = 1.0/(1.0+ 0.178*ZMACH2) R1T3928
F = 1.0 + 0.03916*ZMACH2*T R1T3929
DXNP1 = 0.0 R1T3930
RNCO = 0.0 R1T3931
RNL = RNOFT R1T3932
IF( ROUGHK.LE.0.0 ) GO TO 5 R1T3933
C R1T3934
RNL = RNOFT * CBAR R1T3935
AKI= 37.587 + 4.615*ZMACH+2.949*ZMACH2+4.132*ZMACH*ZMACH2 R1T3936
RNCO = AKI*(CBAR*12./ROUGHK)**1.0489 R1T3937
IF (RNL.GT.RNCO) RNL = RNCO R1T3938
RNL = RNL/CBAR R1T3939
5 CONTINUE R1T3940
C R1T3941
CFCFIL = (1.0+ 0.1256*ZMACH2)**(-.12) R1T3942
IF (XTR.LE.0.0) GO TO 100 R1T3943
DXN = 0.1 * XTR R1T3944
C R1T3945
10 DP = FPRIM(DXN)
IF (DP.EQ.0.0) GO TO 200
DXNP1 = DXN - (DXN * FTURB(DXN) - XTR * FLAM(XTR))/DP
IF ( DXNP1.LE.0.0) DXNP1 = 0.5 * DXN
DX = ABS(DXNP1 - DXN)
DY = 0.0001*CBAR
IF (DX.LE.DY) GO TO 20
DXN = DXNP1
GO TO 10
C R1T3955
20 XP = DXNP1 + CBAR - XTR
CF = (XP/CBAR)*FTURB(XP)
GO TO 300
C R1T3958
100 CF = FTURB(CBAR)
GO TO 300
C R1T3962
200 WRITE (6,1000) DXN, RNL
CF = 0.0

```

```

300 CFBAR = FTURB(CBAR) R1T3965
  IF ( KPRINT(19).EQ.0) GO TO 400 R1T3966
  WRITE(6,1003) CF, CFBAR, DXNP1, CFCFIL, RNL, RNCO R1T3967
C R1T3968
  400 RETURN R1T3969
  500 CF      * 0.0 R1T3970
  WRITE(6,1002) CBAR R1T3971
  RETURN R1T3972
C R1T3973
1000 FORMAT(10X,*SUBROUTINE CFEQ WILL NOT CONVERGE*/ 1X,3F15.7 ) R1T3974
1001 FORMAT(10X,*CFEQ INPUT*, 1PE15.4,0P4F15.7 ) R1T3975
1002 FORMAT(10X,*CBAR =*,1PE14.5,2X,*OUT OF RANGE IN CFEQ, CF SET EQUALR1T3976
   1 TO ZERO* // )
1003 FORMAT(10X,*CFEQ OUTPUT*, 4F15.7, 1P2E15.4 ) R1T3977
  FND R1T3978
                           R1T3979

```

CC = 00071

```

C      SUBROUTINE FFACT(ID,GEOM, TYP,CLD,SPEED,CRITM,FF)          R1T3981
C      THIS SUBROUTINE CALCULATES FORM FACTORS FOR EACH COMPONENT.   R1T3982
C
C      ITYP = TYP
C      FF = 1.0
C      IF (SPEED.GT.1.0) GO TO 40
C
C      GO TO (10,20,30) ID
C
C      FUSELAGE OR BODIES (ID=1)
C      10 FR = GEOM
C          FF = 1.0 + 60./FR**3.0 + 0.0025*FR
C          GO TO 40
C
C      NACELLE (ID=2)
C      20 FR = GEOM
C          FF = 1.0 + 0.35/FR
C          GO TO 40
C
C      WING AND SURFACES (ID=3)
C      30 TOC = GEOM
C          TOC2= TOC*TOC
C          IF (ITYP.LE. 7) FF = 1.0 + 1.44*TOC + 2.0*TOC2
C          IF (ITYP.EQ. 9) FF = 1.0 + 1.2 *TOC + 100.*TOC2*TOC2
C          IF (ITYP.GE. 10.AND. ITYP.LE.20) FF = 1.0 + 1.68*TOC +3.*TOC2
C          IF (ITYP.NE. 8) GO TO 40
C          DELTAM = SPEED - CRITM
C          IF (DELTAM.GE.0.01 ZK = 0.202
C          IF (DELTAM.LE.-.2) ZK = 0.12
C          IF (DELTAM.GT.-.2.AND.DELTAM.LT.0.0) ZK = 0.202 + .8972*DELTAM
C          1     +2.1944*DELTAM**2 -1.2340*DELTAM**3
C          FF =ZK*CLD/.4+1.44*TOC + 2.0*TOC2 +1.
C
C      40 RETURN
C      END

```

CC = 00036

```

3

C      SUBROUTINE IFACT(ID,PARAM,CRITM,SPEED,FI)          R1T4018
C      THIS SUBROUTINE CALCULATES INTERFERENCE FACTORS FOR THE R1T4019
C      FUSELAGE AND LIFTING SURFACES. R1T4020
C      DIMENSION XMACH(7),REFUS(9), WBR(63) R1T4021
C
C      DATA    XMACH /   0.25,0.4,0.6,0.7,0.8,0.85,0.9 /, R1T4022
C      1       REFUS / 3.0,10.,20.,30.,40.,60.,80.,200.,100000./, R1T4023
C      1       WBR   / 1.063,1.02,.979,.955,.926,.902,.867, R1T4024
C      1           1.076,1.036,.996,.972,.942,.92,.884, R1T4025
C      1           1.066,1.059,1.02,.996,.966,.943,.91, R1T4026
C      1           1.044,1.049,1.037,1.013,.988,.968,.939, R1T4027
C      1           0.993,1.018,1.032,1.015,1.003,.993,.973, R1T4028
C      1           0.940,0.992,1.018,1.014,1.014,1.01,1.007, R1T4029
C      1           0.932,0.984,5*1.015, R1T4030
C      1           0.924,0.976,5*1.015,0.924,0.976,5*1.015 / R1T4031
C
C      FI = 1.0 R1T4032
C      IF (SPEED.GT.1.0) GO TO 30 R1T4033
C
C      GO TO (10,20,20) ID R1T4034
C
C      FUSELAGE CORRELATION FACTOR (RWB) R1T4035
C      10 PAR10 = PARAM/10.0**6 R1T4036
C      XM1   = CRITM - .1 R1T4037
C      XM   = SPEED R1T4038
C      IF( XM.GT.XM1 ) XM = XM1 R1T4039
C
C      FI    = DLNT( XM, PAR10, XMACH, REFUS, WBR, 7,9,7,2,2) R1T4040
C      RWB = FI R1T4041
C      GO TO 30 R1T4042
C
C      LIFTING SURFACES R1T4043
C      20 A = COS(PARAM) R1T4044
C      IF (A.GE.0.75) RLS = -.9946 + 5.3568*A -4.5389*A*A +1.2487*A**3 R1T4045
C      IF (A.GT.0.65.AND.A.LT.0.75) RLS=.9966 -.752*(.75-A) R1T4046
C      IF (A.LE.0.65) RLS = 0.9214 R1T4047
C      B = SPEED - 0.25 R1T4048
C      IF (B.LT.0.0) B=0.0 R1T4049
C      RLS = RLS - .0015 + .1818*B - .2756*B*B + 1.0677*B**3 R1T4050
C      FI = RLS*RWB R1T4051
C      IF (ID.EQ.3) FI = RLS R1T4052
C
C      30 RETURN R1T4053
C      END R1T4054

```

CC = 00046

```

SUBROUTINE WDRG(FMACH) R1T4065
C COMPUTES TOTAL AIRPLANE WAVE DRAG R1T4066
C COMMON /BLKA01/ NBODYS, NNACS, NSURFS, NHT, NVT, ISWP, NPMLS R1T4067
C COMMON /BLKA02/ SREF, A1(53), BNO(10), R1T4068
1 BAMX(10), BABS(10), BLNS(10), R1T4069
2 BLBT(10), BASE(10), E1(40), EAMX(10), FIN(10), R1T4070
3 EXIT(10), ELNS(10), ELBT(10), EQF(10), ENO(10), R1T4071
4 WI(95), S1(30), STOC(10), S2(30), R1T4072
5 SWL(10), SWT(10), STAPR(10), SCR(10), S3(4) R1T4073
C COMMON /BLKG01/ FRBCD(10), ARS(10), SSEX(10), FRNAC(10), SWPLE, R1T4074
1 SWPQC, SWPMC, SWPTE, DOB, TOCH, CLD, SEXW, B1(31), R1T4075
2 AR, TAPR, SPLAN, G1(20), ESWLE, ESWTE, G2(96) R1T4076
C COMMON /BLKWP0/ WPD(9) R1T4077
C COMMON /BLKBTA/ BETA R1T4078
C COMMON /BLKC01/ C1(18), TCD(5), CDFUS(5), CDBOD(5), CDNAC(4), R1T4079
1 CDWING(4), CDHT(4), CDVT(4), CDSURF(4), C2(47) R1T4080
C TCU(4) = 0.0 R1T4081
CDFUS(4) = 0.0 R1T4082
CDBOD(4) = 0.0 R1T4083
CDNAC(4) = 0.0 R1T4084
CDWING(4) = 0.0 R1T4085
CDHT(4) = 0.0 R1T4086
CDVT(4) = 0.0 R1T4087
CDSURF(4) = 0.0 R1T4088
C IF( FMACH.LF.1.0 ) RETURN R1T4089
BETA = SQRT( FMACH**2 - 1.) R1T4090
C BODY CONTRIBUTIONS R1T4091
IF( NBODYS.EQ.0 ) GO TO 100 R1T4092
DO 50 I = 1, NBODYS R1T4093
C CALL CDWN(BAMX(I), BLNS(I), 0.0, CDW1) R1T4094
REX = SQRT(BABS(I)/3.14159) R1T4095
CALL CDWT(BAMX(I), BLBT(I), REX, CDW2) R1T4096
C IF( I.EQ.1 ) CDFUS(4) = (CDW1 + CDW2) * BAMX(I)/SREF R1T4097
IF( BNO(I).EQ.0.0 ) BNO(I) = 1.0 R1T4098
IF( I.GT.1 ) CDBOD(4) = CDBOD(4) + (CDW1+CDW2)*BAMX(I)/SREF*BNO(I) R1T4099
50 CONTINUE R1T4100
C NACELLE CONTRIBUTION R1T4101
100 IF( NNACS.EQ.0 ) GO TO 200 R1T4102
C DO 150 I = 1, NNACS R1T4103
RIN = SQRT(EIN(I)/3.141593) R1T4104
RFX = SQRT(EXIT(I)/3.141593) R1T4105

```

```

C          CALL CDWN(EAMX(I), ELNS(I), RIN, CDW1)          R1T4121
C          CALL CDWN(EAMX(I), ELBT(I), REX, CDW2)          R1T4122
C          IF( ENO(I).EQ.0.0 ) ENO(I) = 1.0                R1T4123
C          CDNAC(4) = (CDW1 + CDW2) * EAMX(I)/SREF * ENO(I) + CDNAC(4) R1T4124
150 CONTINUE                                         R1T4125
C          WING CONTRIBUTION                           R1T4126
C          200 WPD(1) = AR * (1.-DOB)**2 * SPLAN/SEXW      R1T4127
C          WPD(2) = TAPR/(1.-DOB*(1.-TAPR))            R1T4128
C          WPD(3) = ESWLE                            R1T4129
C          WPD(4) = ESWTE                            R1T4130
C          WPD(5) = FMACH                            R1T4131
C          WPD(6) = SEXW/SREF                         R1T4132
C          WPD(7) = W1(I1)                            R1T4133
C          WPD(8) = CLD                               R1T4134
C          WPD(9) = TOCW                             R1T4135
C          CALL CDWH(CDW1)                           R1T4136
C          CDWING(4) = CDW1                          R1T4137
C          250 IF( NSURFS.LE.1 ) GO TO 300             R1T4138
DO 290 J = 2, NSURFS
I           = J-1
C          WPD(1) = ARS(I)
C          WPD(2) = STAPR(I)
C          WPD(3) = SWL(I)
C          WPD(4) = SWT(I)
C          WPD(6) = SSEX(I)/SREF
C          WPD(7) = S1(10+I)
C          WPD(8) = S1(20+I)
C          WPD(9) = STOC(I)
C          CALL CDWH(CDW1)
IF( I.EQ.1.AND.NHT.GT.0 ) CDHT(4) = CDW1
IF( NHT.EQ.0 ) GO TO 260
IF( I.EQ.2.AND.NVT.GT.0 ) CDVT(4) = CDW1
IF( NVT.EQ.0 ) GO TO 270
IF( I.GT.2 ) CDSURF(4) = COSURF(4) + CDW1
GO TO 290
C          260 IF( I.EQ.1.AND.NVT.GT.0 ) CDVT(4) = CDW1
IF( NVT.EQ.0 ) GO TO 280
270 IF( I.GT.1 ) CDSURF(4) = COSURF(4) + CDW1
GO TO 290
C          280 COSURF(4) = COSURF(4) + CDW1
290 CONTINUE
C          300 TCD(4) = CDFUS(4) +CDBOD(4) +CDNAC(4) +CDWING(4) +CDHT(4)
1           +CDVT(4) +CDSURF(4)
C          RETURN

```

END

RIT4177

CC = 00113

```

SUBROUTINE CDWN(AMAX, XLNDS, RIN, CDW) R1T4179
C R1T4180
C NOSF WAVE DRAG (BODY COMPONENT) R1T4181
C R1T4182
C COMMON /BLKBTA/ BETA R1T4183
C R1T4184
C DIMENSION XLD(7), YBETA(4), FCDW(7,4) R1T4185
C R1T4186
C DATA XLD / 1., 2., 3., 4., 6., 8., 12. /, R1T4187
1   YBETA/ 0.0, 0.32, .458, 0.6633 /, R1T4188
2   FCDW / .1656,.0617,.0373,.0287,.0198,.0149,.0083, R1T4189
3   .2376, .1256, .088, .061, .0308, .0177, .0082, R1T4190
4   .2952, .1667, .1067, .066, .0311, .0175,.0081, R1T4191
5   .3816, .2010, .1031, .0624,.0297, .0172,.0079 / R1T4192
C R1T4193
CDW = 0.0 R1T4194
IF( AMAX.LE.0.0) GO TO 50 R1T4195
DMAX=SQRT(AMAX/0.785398) R1T4196
ELDD=XLNDS/DMAX R1T4197
IF(RIN.GT.0.0) GO TO 40 R1T4198
IFI ELDD.LE.0.0 ) GO TO 50 R1T4199
C R1T4200
IFI BETA.GE.0.6633 ) GO TO 20 R1T4201
C R1T4202
10 CDW = DLNT(ELDD,BETA, XLD, YBETA, FCDW, 7,4,7, 2,2) R1T4203
GO TO 50 R1T4204
C R1T4205
20 X = BETA/SQRT(1.+ ELDD**2) R1T4206
CDW = (1.2 + 1.15 * X)/(1. + 1.9 * X) /(1. + ELDD**2) R1T4207
GO TO 50 R1T4208
C R1T4209
C R1T4210
FOR A BODY WITH AN OPEN NOSE, SUCH AS A NACELLE, THE CONTRIBUTION R1T4211
OF THE NOSE TO THE TOTAL BODY WAVE DRAG COEFFICIENT IS COMPUTED ASR1T4212
INDICATED BELOW. (THE EXPRESSIONS USED FOR OPEN AND CLOSED BODY R1T4213
BOATTAIL CONTRIBUTIONS DO NOT REQUIRE THIS DISTINCTION--SEE CDWT.)R1T4214
C R1T4215
40 SQRTB = SQRT(BETA)
IFI SQRTB.LT.0.8144 ) SQRTB = 0.8144
CDW = ((1.-2.*RIN/DMAX)/ELDD)**1.5/SQRTB
C R1T4216
50 RETURN
END

```

CC = 00043

```

C SUBROUTINE CDWT(AMAX, XLAFT, REX, CDW) R1T4223
C BOATTAIL WAVE DRAG (BODY COMPONENT) R1T4224
C COMMON /BLKBTA/ BETA R1T4225
C DIMENSION DBOD(5), CDWBT(5) R1T4226
C
C CDW = 0.0 R1T4227
C IF( AMAX.LE.0.0) RETURN R1T4228
C IF (XLAFT .LE. 0.0001) RETURN R1T4229
C DMAX=SQRT(AMAX/0.785398 ) R1T4230
C ELDD=XLAFT/DMAX R1T4231
C X=BETA/ELDD R1T4232
C Y=X*X R1T4233
C Z=ELDD*ELDD R1T4234
C
C BOATTAIL WAVE DRAG IS A FUNCTION OF BOATTAIL FINENESS RATIO, BASE R1T4235
C DIAMETER/MAXIMUM DIAMETER, AND MACH NUMBER. COMPUTE THE BOATTAIL R1T4236
C WAVE DRAG COEFFICIENT AT FOUR DBOD() VALUES AND INTERPOLATE TO R1T4237
C
C DBOD(1)=0.0 R1T4238
C CDWBT(1) = (1.165 -.5112*X -.5372*Y +.3964*X*Y)/Z R1T4239
C IF( X.GT.1.0 ) CDWBT(1) = 0.513/X/Z R1T4240
C
C DBOD(2)=0.4 R1T4241
C CDWBT(2) = (1.067 -1.709*X +1.6632*Y -.686*X*Y)/Z R1T4242
C IF( X.GT.1.0 ) CDWBT(2) = 0.3352/X/Z R1T4243
C
C DBOD(3)=0.6 R1T4244
C CDWBT(3) = (0.7346 -1.4618*X +1.5795*Y -.6542*X*Y)/Z R1T4245
C IF( X.GT.1.0 ) CDWBT(3) = 0.1980/X/Z R1T4246
C
C DBOD(4)=0.8 R1T4247
C CDWBT(4) = (0.2555 -.5008*X +.5024*Y -.2077*X*Y)/Z R1T4248
C IF( X.GT.1.0 ) CDWBT(4) = 0.0494/X/Z R1T4249
C
C CDWBT(5)=0.0 R1T4250
C DBOD(5)=1.0 R1T4251
C BDOD=2.0*REX/DMAX R1T4252
C CALL LNTP(BODD, CDW, DBOD, CDWBT, 5, 2) R1T4253
C
C RETURN R1T4254
C END R1T4255

```

CC = 00045

```

C SUBROUTINE CDWW(CDOSR)
C PROCEDURE FOR WING PRESSURE DRAG R1T4269
C
C COMMON /BLKWP/ AR, ZLAM, ZLE, ZTE, ZM, SOSR, TYPE, CAM, TOC R1T4270
C
C COMMON /BLKPRT/ KPRINT(50) R1T4271
C COMMON /BLKB02/ AA(22), BB(22), CC(22), DD(22), XT(22) R1T4272
C
C 10 N      = TYPE R1T4273
C
C     HOT    = CAM * 0.055 /TOC R1T4274
C     XTOC=XT(N) R1T4275
C     TOC2= TOC**2 R1T4276
C     ROOT=(AA(N)+BB(N)*TOC+CC(N)*TOC2+DD(N)*TOC2*TOC)/TOC R1T4277
C     IF (N.EQ.8) ROOT= 0.88216*(TOC)**1.606/TOC R1T4278
C
C CALCULATION OF QUANTITIES THAT ARE FUNCTIONS OF GEOMETRY. R1T4279
C
C 17 ZKW =1.0 R1T4280
C     TOC2 = TOC**2 R1T4281
C     TOC13 = TOC**0.33333333 R1T4282
C     TOC53 = TOC**1.6666667 R1T4283
C     ARW = AR* TOC13 R1T4284
C     ARW3 = TOC*AR**3 R1T4285
C     DEN1 = 1.0/ARW+ARW3 R1T4286
C     DEN2 = 2.0/ARW3+1.0 R1T4287
C     ZKT   = 1.+4.*(.5-XTOC*(1.+.5*SQRT(ROOT))**2 R1T4288
C           -0.25 * SQRT(ROOT) * (1.-XTOC)**2 R1T4289
C     ZKC = 1.0 +      2.5* HOT **2 R1T4290
C     ZKB = 1.069 R1T4291
C     IF( ZKW.EQ.1.2 ) ZKB = 1.0 R1T4292
C     TR1 = 0.5/(1.+ZLAM)**2 R1T4293
C     TR2 = 1./((1.+ZLAM)**2)**2 R1T4294
C     ZLAM1 = 1. + TR2 * (TAN(ZLE) + TAN(ZTE))**2 R1T4295
C     IF( ZLE.GE.ZTE ) ZKP = ((COS(ZLE) + TR1 * (TAN(ZLE))**2 R1T4296
C           - TAN(ZTE)**2))/ZLAM1 R1T4297
C     IF( ZTE.GT.ZLE ) ZKP = ((COS(ZTE) + TR1 * (TAN(ZTE))**2 R1T4298
C           - TAN(ZLE)**2))/ZLAM1 R1T4299
C
C     ZK = (2.0/DEN1 + 3.33/DEN2)*ZKP R1T4300
C     X = ARW*ZKP R1T4301
C     IF(ARW.GE.1.0) X=.SQR(ZKP/( 1.7321*(1.0-ZKP)+1.0/(ZKP*ARW**2))) R1T4302
C
C THIS DO LOOP SOLVES FOR *ARE* BY NEWTCN'S METHOD. R1T4303
C
C DO 100 I=1,10 R1T4304
C     X3 = X**3 R1T4305
C     X4 = X*X3 R1T4306
C     F = (2.0*X)/(X4+1.0) + (3.33*X3)/(X3+2.0) - ZK R1T4307
C     FP = (2.0-6.0*X4)/((X4+1.0)**2) + (20.0*X**2)/((X3+2.0)**2) R1T4308
C     FFP = F/FP R1T4309
C     IF(KPRINT(20).EQ.2 .AND. I.EQ.1) WRITE(6,90) R1T4310
C
C     IF(KPRINT(20).EQ.2) WRITE(6,95) I, X, F, FP, FFP R1T4311
C

```

```

X      = X-FFP R1T4323
IF (ABS(FFP).LE.0.0001) GO TO 110 R1T4324
100 CONTINUE R1T4325
110 IF(KPRINT(20).EQ.2) WRITE(6,36) R1T4326
C           IF(KPRINT(20).EQ.2) WRITE(6,45) ZLE, ZTE, TOC2, TOC13, TOC53, R1T4327
1               ARW, ARW3, DEN1, DEN2, ZKT, ZKC, ZLAM1, ZKP R1T4328
C           R1T4329
C           R1T4330
C           R1T4331
BETA2 = ZM**2-1.0 R1T4332
BETA  = SQRT(BETA2) R1T4333
DIV   = BETA/TOC2 R1T4334
BETAW = BETA/TOC13 R1T4335
BETAW2= BETAW**2 R1T4336
BETAW3= BETAW*BETAW2 R1T4337
CD1   = 0.0 R1T4338
CD2   = 0.0 R1T4339
CDA   = TOC2*(2.0+3.333/(ZKW**2.8)) R1T4340
ZKLIN = CDA/TOC2 R1T4341
IF (ZM.GT.1.0) CD1 = CDA/BETA R1T4342
TEST1 = 1.0/COS(ZLE) + 0.01 R1T4343
IF (ZM.GT.TEST1)CD2 = CDA/SQRT(BETA2-TAN(ZLE)**2) R1T4344
ARE=X R1T4345
TEST  = ABS(TAN(ZLE)) R1T4346
UEXP  = (1.+2.*ZLAM**0.33333) R1T4347
FB    = 0.3 + 0.7*ZKP**UEXP R1T4348
XM    = 0.5*(1.+ZLAM**2*(2.-ZLAM)**3) R1T4349
Z     = COS(ZLE) + COS(ZTE) R1T4350
IF (BETA.GT.TEST) XM = (TEST/BETA)**2 R1T4351
130 ZML  = SQRT(TEST**2+1.0) R1T4352
ARE3 = ARE**3 R1T4353
ZKW1 = ZKW**3.8 R1T4354
T1   = 1./ARE / (1.+ZLAM) * FB * BETAW** (1.+ZKW) ) R1T4355
T2   = ARE3 / (1.+0.33333 *ARE3 *BETAW**4) R1T4356
T3   = 2./ARE3 / (1.+(.66667+ZLAM) *BETAW** (1.+ZKW1) *FB) R1T4357
T4   = 1./ (1.+3.* ARE * BETAW**4) R1T4358
ZFEXP = FB**XM R1T4359
FBXM=FB**XM R1T4360
D1   = ZKB * ZKW * BETAW * FBXM +(T1+T2) R1T4361
D2   = ZKB * ZKW1 + BETAW * FBXM +(T3+T4) R1T4362
CDW  = ZKT * ZKW * ZKC * ZKB * TOC53 * (2./01 +3.33/02) R1T4363
CDWA = CDW/TOC53 R1T4364
CDOSR=CDW*SOSR R1T4365
IF (ZM.GT.1.0) CDD= CDW*DIV R1T4366
AREW = ARE R1T4367
ARE = AREW/TOC13 R1T4368
C           R1T4369
C           IF(KPRINT(20).EQ.2) WRITE(6,47) R1T4370
C           R1T4371
C           IF (KPRINT(20).EQ.2) WRITE(6,48) DIV,BETA2,BETAW,BETAW2,CDA,CD1,CD2,R1T4372
1               TEST,XM,FB,ZML,T1,T2,T3,T4,D1,D2,CDW,CDD R1T4373
C           R1T4374
VLE   = ZLE * 57.2956 R1T4375
VTE   = ZTE * 57.2956 R1T4376
IF (KPRINT(20).GT.0) WRITE(6,25) AR,ZKP,ZLAM,ZKT,VLE,ZKC,VTE, R1T4377
1               ZKLIN,TOC-ARW,TYPE,CAM,TOC,TOC13,XTOC,TOC53,ROOT, R1T4378

```

```

2          FB, HOT, ZML, ZKW, ARE, SDSR, AREW      R1T4379
C
C 550 IF (KPRINT(20).GT.0) WRITE(6,600)           R1T4380
C
C     IF (KPRINT(20).EQ.1) WRITE(6,610) ZM,BETAW,XM,ZFEXP,CDWA,CDW,
C           1                                         CDD1,CDD2,CDDSR   R1T4381
C
C
C 90 FORMAT(4H0 I,5X,1HX,14X,1HF,14X,2HFP,13X,3HFP/)    R1T4382
C 95 FORMAT(1H ,I3,3X,1P4E15.7)                      R1T4383
C 36 FORMAT(1H0,2X,3HZLE,12X,3HZTE,12X,4HTOC2,11X,5HTOC13,10X,5HTOC53/ R1T4384
C     1     1H ,2X,3HARW,12X,4HARW3,1JX,4HDEN1,11X,4HDEN2,11X,3HZKT/ R1T4385
C     1     3X,3HZKC,12X,5HZLAM1,10X,3HZKP )           R1T4386
C
C 45 FORMAT(1H0,1P5E15.7/(1X,1P5E15.7))             R1T4387
C 47 FORMAT(1H0,2X,3HDIV,12X,5HBETA2,10X,5HBETAW,10X,6HBETAW2,9X,3HCDA/R1T4388
C     1     1H ,2X,3HCD1,12X,3HCD2,12X,4HTEST,11X,2HXM,13X,2HFB/ R1T4389
C     1     1H ,2X,3HZML,12X,2HT1,13X,2HT2,13X,2HT3,13X,2HT4/ R1T4390
C     1     1H ,2X,2HD1,13X,2HD2,13X,3HCDW,12X,6HKLINEQ) R1T4391
C
C 48 FORMAT(1H0,1P5E15.7/(1X,1P5E15.7))             R1T4392
C 25 FORMAT(///,16X,36H W I N C P R E S S U R E D R A G// R1T4393
C
C 111X,17H INPUT PARAMETERS,16X,18H OUTPUT PARAMETERS// R1T4394
C 17X,19H ASPECT RATIO = ,F7.4,10X,12H KPLANF = ,F7.4/ R1T4395
C 17X,19H TAPER RATIO = ,F7.4,10X,12H KTHICK = ,F7.4/ R1T4396
C 17X,19H LE SWEEP DEG = ,F7.4,10X,12H KCAMB = ,F7.4/ R1T4397
C 17X,18H TE SWEEP DEG = ,F8.4,10X,12H KLINTH = ,F7.4/ R1T4398
C 17X,19H THICK RATIO = ,F7.4,10X,12H ARWIG = ,F7.4/ R1T4399
C 17X,19H AIRFOIL TYPE = ,F3.0,F4.3,F5.3,5X,12H T/C 1/3 = ,F7.4/ R1T4400
C 17X,19H XT/C = ,F7.4,10X,12H T/C 5/3 = ,F7.4/ R1T4401
C 17X,19H RO/T = ,F7.4,10X,12H F = ,F7.4/ R1T4402
C 17X,19H H/T = ,F7.4,10X,12H H* = ,F7.4/ R1T4403
C 17X,19H KW = ,F7.4,10X,12H ARE = ,F7.4/ R1T4404
C 17X,19H SW/SREF = ,F7.4,10X,12H AREW = ,F7.4/ R1T4405
C
C 600 FORMAT (//31X,8H RESULTS //,72H MACH BWIG EXP FEXP CDWIGP R1T4411
C     1   CD   CDTH2D   CDTH3D   CD/SREF )           R1T4412
C
C 610 FORMAT(1H , 4(F5.3,2X),5(F7.5,2X))           R1T4413
C
C     RETURN
C
C     END

```

CC = 00149

```

SUBROUTINE CDRG(SPEED, AEROK, DELCL,CDC) R1T4417
CAMBER DRAG R1T4418
COMMON /BLKG01/ G1(47), SEXW, G2(31), AR, TR, SPLAN, G3(118) R1T4419
COMMON /BLKA02/ SREF, A1(432) R1T4420
CDC = 0.0 R1T4421
ARSREF = AR * SPLAN/SREF R1T4422
E = 1.0/(3.14159*ARSREF*AEROK) R1T4423
COEF1 = 1.0/(3.14159*ARSREF*(1.0-E)) R1T4424
COEF2 = 0.7 * SEXW/SREF R1T4425
IF( E.GE.1.0 ) GO TO 15 R1T4426
IFI SPEED.GE.1.0 I GO TO 5 R1T4427
IFI COEF1.GT.COEF2 ) GO TO 15 R1T4428
5 CDC = COEF1 * DELCL**2 R1T4429
GO TO 10 R1T4430
15 CONTINUE R1T4431
CDC = COEF2 * DELCL**2 R1T4432
10 RETURN R1T4433
END R1T4434
R1T4435
R1T4436
R1T4437
R1T4438
R1T4439
R1T4440

```

CC = 00024

```

SUBROUTINE BDRG(SPEED, AB, SREF, CDB) R1T4442
C R1T4443
C BASE DRAG R1T4444
C R1T4445
C COMMON /BLKPRT/ KPRINT(50) R1T4446
C R1T4447
C CDB = 0.0 R1T4448
IF( AB.LE.0.0 ) RETURN R1T4449
IF( SPEED.GE.1.0), GO TO 10 R1T4450
CDB = (0.1 + 0.1222 * SPEED**8) * AB/SREF R1T4451
GO TO 20 R1T4452
C R1T4453
10 CONTINUE R1T4454
CDB = (1.42 / (3.15 + SPEED*SPEED) ) * AB /SREF R1T4455
IFI SPEED.LE.1.8 ) CDB = 0.2222 * AB/SREF R1T4456
C R1T4457
20 CONTINUE R1T4458
IFI(KPRINT(15).EQ.0) GO TO 30 R1T4459
WRITE(6,1000) SPEED, AB, SREF, CDB R1T4460
1000 FORMAT(10X*MACH ==F10.7,5X*BASE AREA ==F10.7,5X*SREF ==*
1 F12.5,5X*BASE DRAG ==F10.7 / ) R1T4461
R1T4462
C R1T4463
30 RETURN R1T4464
END R1T4465

```

CC = 00024

```

C SUBROUTINE CMOW(SPEED, CMO) R1T4467
C COMPUTES ZERO LIFT PITCHING MOMENT OF WING R1T4468
C COMMON /BLKB04/ XBD4(5), YBD4(5), ZBD4(3), FBD4(5,5,3) R1T4469
C COMMON /BLKA01/ NBODYS, NNACS, NSURFS, NHT, NVT, ISWP, NPNLS R1T4470
C COMMON /BLKA02/ A1(433) R1T4471
C COMMON /BLKC01/ C1(100) R1T4472
C COMMON /BLKG01/ G1(49), SXX(10), G2(42), ESWQC, G3(98) R1T4473
C COMMON /BLKPRT/ KPRINT(50) R1T4474
C DIMENSION CMC4(20) R1T4475
C DATA CMC4 / 4*-0.25, 3*-0.219, -0.3, 0.0, 11*-0.2066 / R1T4476
C
C FMCR = C1(72) R1T4477
C CMOS = 0.0 R1T4478
C NI = A1(235) R1T4479
C
C DO 100 I = 1, NPNLS R1T4480
C CMOS = CMOS + A1(244 + I) * SXX(I) * CMC4(NI) R1T4481
100 CONTINUE R1T4482
C
C CMO = 0.0 R1T4483
C IF( SPEED.GE.1. ) RETURN R1T4484
C
C ARXR = G2(35) R1T4485
C TOC = G1(46) R1T4486
C TWIST = A1(278) R1T4487
C SEXW = G1(48) R1T4488
C CMOS = CMOS/SEXW R1T4489
C
C CMOB = ARXR * COS(ESWQC)**2/(ARXR + 2.*COS(ESWQC)) * CMOS R1T4490
C
C TRX = G2(29)/G2(27) R1T4491
C CALL TLNT(ESWQC,ARXR,TRX,CMOOT,XBD4,YBD4,ZBD4,FBD4,5,5,3,5,5) R1T4492
C CMOT = CMOOT * TWIST R1T4493
C
C FMACH = SPEED R1T4494
C IF( FMACH.GT.FMCR ) FMACH = FMCR R1T4495
C CMACH = (1. + 5.9*TOC*FMACH**5)/SQRT(1.-(FMACH*COS(ESWQC))**2) R1T4496
C
C CMO = (CMOB + CMOT) * CMACH R1T4497
C
C IF( KPRINT(25).GT.0 ) WRITE(6,1000) CMO, CMOB, CMOT, CMACH, R1T4498
C 1 CMOS, ARXR, TOC, TWIST, ESWQC, TRX, CMOOT, FMCR, R1T4499
C 2 ( A1(234+I), A1(244+I), SXX(I), I = 1,NPNLS!) R1T4500
C
C 1000 FORMAT(5X, *CMOW DUMP*/(1X,7F15.5) ) R1T4501
C
C RETURN R1T4502

```

END

R1T4523

CC = 00057

```

SUBROUTINE WBAC(SPEED, XACR) R1T4525
C COMPUTES PITCHING MOMENT SLOPE OF WING R1T4526
C C COMMON /BLKA01/ NBODY5,NNACS,NSURFS,NHT,NVT,ISWP,NPNLS R1T4527
C COMMON /BLKA02/ A02(433) R1T4528
C COMMON /BLKA03/ ROUGHK, CLE(3), CCR(3), YC(3), A03(10) R1T4529
C COMMON /BLKG01/ G1(44), DOB, TOC, CLD, G2(32), AR, TR, SPLAN, R1T4530
1 G3(3), CRX, CBX, CTX, YIX, YOX, SIX, SOX, ARI, R1T4531
2 ARXR, CBXP, AROP, SOXP, SWPLEI, SWPLEO, R1T4532
3 SWPMCI, SWPMCO, G4(99) R1T4533
C COMMON /BLKC01/ C1(100) R1T4534
C COMMON /BLKPRT/ KPRINT(50) R1T4535
C DIMENSION XDB(8), YDOB(8), XBDDOL(5), YAON(6), FCP(5,6) R1T4536
C DATA XDB / 0., .05, .1, .15, .2, .3, .4, .5 /, R1T4537
1 YDOB / 0., .1, .154, .19, .219, .266, .3, .33 / R1T4538
C DATA XBDDOL / 0.4, .7, 1.0, 1.25, 1.67 /, R1T4539
1 YAON / 0., .4, .8, 1.2, 1.6, 2.0 /, R1T4540
2 FCP / .54,.535,.525,.516,.5, .42,.435,.45,.46,.46, R1T4541
3 .35,.377,.4,.414,.425, .295,.33,.355,.375,.394, R1T4542
4 .246,.285,.32,.345,.365, .21,.25,.288,.315,.34 / R1T4543
C ARI = ARXR R1T4544
TR1 = CTX/CRX R1T4545
TW = A02(235) R1T4546
FMCRD = C1(72) R1T4547
C IF(NPNLS.GT.1) ARI = AR1 R1T4548
IF(NPNLS.GT.1) TR1 = CBX/CRX R1T4549
C 20 CALL ACCR(SPEED,ARI,SWPLEI,SWPMCI,TR1,SIX,TOC,TW,FMCRD,XACR,CLAI, R1T4550
1 XACSW) R1T4551
XACRX = XACR R1T4552
IF( NPNLS.EQ.1 ) GO TO 100 R1T4553
C CRANKED WING PLANFORMS R1T4554
C TR2 = CTX/CBXP R1T4555
C CALL ACCR(SPEED,AROP,SWPLEO,SWPMCO,TR2,SOXP,TOC,TW,FMCRD, R1T4556
1 XACRP, CLAOP, XACSOP) R1T4557
C XACRO = XACRP * CBXP/CRX - YIX*0.5*TAN(SWPLEO)/CRX R1T4558
1 + YIX * TAN(SWPLEI)/CRX R1T4559
XACSO = XACSOP * CBXP/CRX + XACRO - XACRP*CBXP/CRX R1T4560
C XACR = (CLAI * SIX * XACRX + CLAOP * SOXP * XACRO )/ R1T4561

```

```

1           (CLAI * SIX + CLAOP * SOXP)          R1T4581
C
C XACSW = (CLAI * SIX * XACRX + CLAOP * SOXP * XACSO ) / R1T4582
1           (CLAI * SIX + CLAOP * SOXP)          R1T4583
100 XACWB = XACR                                     R1T4584
C
C
C WING-BODY COMBINATION
C
BLN      = A02(85)                                R1T4586
XLE      = A02(281)                                R1T4587
TANSQC = 0.5 * (TAN(SWPLEI) + TAN(SWPMCI))        R1T4588
B02      = 0.5 * SQRT(AR * SPLAN)                  R1T4589
YWX      = A02(303)                                R1T4590
DIA      = DOB * B02 * 2.                           R1T4591
IF( SPEED.GE.1.2 ) GO TO 200                      R1T4592
C SUBSONIC CALCULATION OF XACN (NOSE) AND XACBW (WING CARRY-OVER) R1T4593
XLEQ    = BLN + 1.6 *(XLE - BLN)                  R1T4594
XACN    = -0.54 * XLEQ/CRX                         R1T4595
C
BARE    = ARXR * SQRT(1.-FMCR0**2)                R1T4596
IF( SPEED.LT.FMCR0 ) BARE = ARXR * SQRT(1.-SPEED**2) R1T4597
CALL LNTP(DOB, FDOB, XDB, YDUB, 8, 4)            R1T4598
DXQC    = G4(18)                                  R1T4599
XACBW   = 0.25 + DXQC * FDOB/CRX                 R1T4600
C
IF( BARE.GE.4. ) GO TO 190                        R1T4601
XACBWO = 0.125 * ARXR * TAN(SWPLEI) * (1.+CTX/CRX) R1T4601
IF( XACBWO.GT.0.5 ) XACBWO = 0.5                  R1T4602
C
XACBW   = (XACBWO - XACBW) * (BARE - 4.)**2/16. + XACBW R1T4603
190 XACBWI = XACBW                               R1T4604
XACN1   = XACN                                 R1T4605
C
IF( SPEED.LE.FMCR0 ) GO TO 290                  R1T4606
C
C SUPERSONIC CALCULATION OF XACN & XACBW
200 BETA   = 0.663325                            R1T4607
IF( SPEED.GT.1.2 ) BETA = SQRT(SPEED**2 - 1.)    R1T4608
C
AON     = (XLE - BLN)/BLN                         R1T4609
IF( AON.LT.0. ) AON = 0.                          R1T4610
BDOL   = BETA * DIA /BLN                         R1T4611
C
C FIGURE 4.2.2.1-23A DATCOM                         *****
XCPOL  = DLNT(BDOL, AON, XBDC ,YAON,FCP, 5,6,5, 2,2) R1T4612
XACN   = XLE/CRX * (XCPOL - 1.)                   R1T4613
C
BDOC   = BETA * DIA/CRX                           R1T4614
BCOT   = BETA * TAN(SWPLEI)                      R1T4615
A1     = 0.5845                                  R1T4616
IF( BCOT.GE.1. ) A1 = 0.5985 + 0.00214*ALOG(BCOT) R1T4617
IF( BCOT.LT.1.0.AND.BCOT.GT.0.1) A1 = 0.5985 + 0.00607*ALOG(BCOT) R1T4618
C
C FIGURE 4.3.2.1-37A DATCOM                         *****
XACBW  = 0.5 + A1*BDOC -.1057*BDOC**2 +.0172*BDOC**3 R1T4619

```

```

IF( SPEED.GE.1.2 ) GO TO 290 R1T46301
C
XACN = XACN1 + (XACN - XACN1) *(SPEED-FMCRG)/(1.2-FMCRG) R1T46302
XACBW = XACBW1+ (XACBW-XACBW1)*(SPEED-FMCRG)/(1.2-FMCRG) R1T46303
R1T46304
C
290 CLAB = C1(55) R1T4631
CLAW = C1(54) R1T4632
FKBW = 0.0004 +1.2662*DOB +.6018*DOB**2 +.1263*DOB**3 R1T4633
FKWB = 1.0028 +.7116*DOB +.42*DOB**2 -.1366*DOB**3 R1T4634
CLABW = FKBW/(FKBW + FKWB) * CLAW R1T4635
CLAWB = FKWB/(FKBW + FKWB) * CLAW R1T4636
R1T4637
C
300 XACR = (XACN * CLAB + XACWB * CLAWB + XACBW * CLABW)/ R1T4638
1 (CLAB + CLAW) R1T4639
R1T4640
C
XACS = (XACN * CLAB + XACSW * CLAWB + XACBW * CLABW)/ R1T4641
1 (CLAB + CLAW) R1T4642
C1(88) = XACS R1T4643
R1T4644
C
IF( KPRINT(18).EQ.0 ) GO TO 400 R1T4645
WRITE(6,1000) XACR, XACN,CLAB, XACWB,CLAWB, XACBW,CLABW, R1T4646
1 XACS, SPEED, XLEQ, FDOB R1T4647
R1T4648
C
400 RETURN R1T4649
1000 FORMAT(5X,*WBAC DUMP* / (5X,6F15.5) )
END R1T4650
R1T4651
R1T4652

```

CC = 00138

```

SUBROUTINE ACCRI SPEED,AR,SWPLE,SWPMC,TR,SPLAN,TOC,TW,FMCRC,  

! XACR, CLAX, XACS ) R1T4654  

! R1T4655  

C COMPUTES AERODYNAMIC CENTER OF SINGLE PANEL WINGS R1T4656  

C COMMON /BLKB03/ BOT(12), ATSW(6), TPRT(6), FXAC(12,6,6) R1T4657  

C COMMON /BLKB06/ XBD6(4), YBD6(4), ZBD6(6), FBD61(4,4,6), R1T4658  

! FBD62(4,4,6), FBD63(4,4,6) R1T4659  

C COMMON /BLKCLA/ X(11) R1T4660  

COMMON /BLKPRT/ KPRINT(50) R1T4661  

COMMON /BLKC01/ C1(100) R1T4662  

COMMON /BLKMAP/ MAP, TRANS, DY, AMAP(22), BMAP(11) R1T4663  

C DIMENSION XDY(6), YAC(6), XVAL(3), VAL(3) R1T4664  

DATA XVAL / 0.0, 0.2, 0.5 / R1T4665  

DATA XDY / .2, .4, .6, .8, 1.2, 1.6 /, R1T4666  

! YAC / .67,.585,.55,.555,.59,.61 / R1T4667  

C NI      = TW R1T4668  

DY      = AMAP(NI) * TOC R1T4669  

ARLO    = C1(71) R1T4670  

C SB      = 2. R1T4671  

IF( SPEED.EQ.1.0 ) GO TO 20 R1T4672  

IF( SPEED.GT.1.0 ) GO TO 10 R1T4673  

C TANOB   = TAN(SWPLE)/SQRT(1.-SPEED**2) R1T4674  

IF( TANOB.LE.1.0 ) SB = TANOB R1T4675  

IF( TANOB.GT.1.0 ) SB = 2. - 1./TANOB R1T4676  

GO TO 20 R1T4677  

C 10 TANOB = TAN(SWPLE)/SQRT(SPEED**2 - 1.) R1T4678  

IF( TANOB.LE.1. ) SB = 4.-TANOB R1T4679  

IF( TANOB.GT.1. ) SB = 2.+1./TANOB R1T4680  

C 20 ARTSW = AR * TAN(SWPLE) R1T4681  

C CALL TLNT(SB,ARTSW,TR, XAC1, BOT,ATSW,TPRT,FXAC, 12,6,6, 12,6) R1T4682  

C KPR11    = KPRINT(11) R1T4683  

KPRINT(11) = 0 R1T4684  

X(1)      = SPLAN R1T4685  

X(2)      = 0.0 R1T4686  

X(3)      = TR R1T4687  

X(4)      = AR R1T4688  

X(5)      = 0.0 R1T4689  

IF( TW.EQ.8. ) X(5) = 0.0334 R1T4690  

X(6)      = 0.0 R1T4691  

X(7)      = 0.0 R1T4692  

IF( TW.EQ.8. ) X(7) = 0.09 R1T4693  

X(8)      = 0.0 R1T4694  

X(9)      = 0.0 R1T4695  

IF( TW.EQ.8. ) X(9) = 1.173763 * TOC R1T4696  

X(10)     = SWPMC R1T4697

```

```

30 X(11) = SPLAN R1T4710
C CALL AER2(SPEED, CLAX) R1T4711
C XAC2 = XAC1 R1T4712
VBAR = (SPEED**2 - 1.) / TOC**0.6667 R1T4713
ABAR = AR * TOC**0.3333 R1T4714
C IF( VBAR.GE.1.0.OR.VBAR.LE.-2. ) GO TO 40 R1T4715
C TRANSONIC AERODYNAMIC CENTER R1T4716
C CALL TLNT(ABAR,VBAR,ARTSW,VAL(1),XBD6,YBD6,ZBD6,FBD61,4,4,6,4,4) R1T4717
CALL TLNT(ABAR,VBAR,ARTSW,VAL(2),XBD6,YBD6,ZBD6,FBD62,4,4,6,4,4) R1T4718
CALL TLNT(ABAR,VBAR,ARTSW,VAL(3),XBD6,YBD6,ZBD6,FBD63,4,4,6,4,4) R1T4719
C CALL LNTP(TR, XAC2, XVAL, VAL, 3, 2) R1T4720
C
40 XACR = XAC1 R1T4721
IF( SPEED.LE.FMCRO.OR.SPEED.GE.1.2 ) GO TO 50 R1T4722
FM1 = FMCRO + 0.05 R1T4723
FM2 = SQRT(1.+ TOC**.66667) R1T4724
XACR = XAC2 R1T4725
C
IF( SPEED.GT.FM1.AND.SPEED.LT.FM2 ) GO TO 50 R1T4726
IF( SPEED.LE.FM1 ) XACR = XAC1 + (XAC2-XAC1)*(SPEED-FMCRO)/.05 R1T4727
IF( SPEED.GE.FM2 ) XACR = XAC2 + (XAC1-XAC2)*(SPEED-FM2)/
1 (1.2 - FM2) R1T4728
C
50 ARHI = 2.* ARLO R1T4729
XACS = (1.+2.*TR)/12.* ARTSW + (1. + TR**2/(1.+TR))/3. R1T4730
IF( AR.GT.ARHI ) GO TO 60 R1T4731
CALL LNTP(DY, XACS1, XDY, YAC, 6, 2) R1T4732
XACS = XACS1 + (1.+2.2*TR)/17.544 * ARTSW -0.2 R1T4733
C
60 IF( KPRINT(18).EQ.2 ) WRITE(6,1000) SPEED, AR, SWPLE, SWPMC,
1 TR, SPLAN, TOC, TW, FMCRO, XACR, CLAX, R1T4734
2 SB, ARTSW, XAC1, ABAR, VBAR, VAL, XAC2, R1T4735
3 FM1, FM2, ARHI, XACS R1T4736
C
1000 FORMAT(5X, *ACCR DUMP* /{5X,6F15.5} )
C
KPRINT(11) = KPR11 R1T4737
RETURN R1T4738
END R1T4739

```

CC = 00101

```

OVERLAY(3,4) R1T4756
PROGRAM LSHL R1T4757
C R1T4758
COMMON /BLKHLS/ NHLSV, DFI(3,5), CPF1(5), DS1(5), CPS1(5), R1T4759
1 DELCD(5), H(5), DFI2(3,5), CPF2(5), DS2(5), R1T4760
2 CPS2(5) R1T4761
COMMON /BLKA04/ IHLS,NXF,NXS, A2(62), BF1I, BF1O, CF1(3), BF2I, R1T4762
1 BF2O, CF2(3), BS1I, BS1O, CS1, BS2I, BS2O, CS2 R1T4763
COMMON /BLKC01/ C1(85), CPF, CPS, XACS, DCDLG, C2(11) R1T4764
COMMON /BLKG01/ G1(200) R1T4765
COMMON /BLKC02/ CO2(11) R1T4766
C R1T4767
COMMON /BLKDV3/ ITYP, NV3A(7), JPASS, RCT, OTE, ITRIM R1T4768
C R1T4769
DIMENSION DF(3), CFDC(3), COL(10) R1T4770
DATA DF / 3*0.0 /, CFDC / 3*0.0 / R1T4771
DATA COL / 10*0.0 / R1T4772
C R1T4773
DO 700 I = 1, NHLSV R1T4774
DF(1) = DFI(1,I) R1T4775
DF(2) = DFI(2,I) R1T4776
DF(3) = DFI(3,I) R1T4777
DS = DS1(I) R1T4778
CPF = CPF1(I) R1T4779
CPS = CPS1(I) R1T4780
IF( CPF.EQ.0. ) CPF = 1. R1T4781
CFDC(1)= CF1(1) / CPF R1T4782
CFDC(2)= CF1(2) / CPF R1T4783
CFDC(3)= CF1(3) / CPF R1T4784
IF( CPS.EQ.0. ) CPS = 1. R1T4785
CSOC = CS1 / CPS R1T4786
DCDLG = DELCD(I) R1T4787
HGT = H(I) R1T4788
DFLAP = DF(1) + DF(2) + DF(3) R1T4789
C R1T4790
BF1 = BF1I R1T4791
BF2 = BF1O R1T4792
CF = CF1(1) + CF1(2) + CF1(3) R1T4793
BS1 = BS1I R1T4794
BS2 = BS2O R1T4795
C R1T4796
CALL SSET(DF, DS, CFDC, CSOC, OTE, ROT) R1T4797
CALL DSET(BF1, BF2, BS1, BS2, CF) R1T4798
CALL MSET(BF1, BF2, BS1, BS2) R1T4799
IF( IHLS.EQ.1 ) GO TO 500 R1T4800
C R1T4801
C R1T4802
C R1T4803
C R1T4804
C R1T4805
C R1T4806
C R1T4807
C R1T4808
C R1T4809
C R1T4810
C R1T4811

```

```

CFOC(3)= CF2(3) * CPF          R1T4812
CSOC  = CS2 * CPS             R1T4813
C
DA      = CO2(8) - G1(B2)       R1T4814
DR      = CO2(11) - 1.          R1T4815
DO 300 J = 1, 10               R1T4816
300 COL(J) = CO2(J)            R1T4817
R1T4818
C
BFI     = BF2I                R1T4819
BF0     = BF20                R1T4820
CF      = CF2(1) + CF2(2) + CF2(3) R1T4821
BSI     = BS2I                R1T4822
BS0     = BS20                R1T4823
R1T4824
C
CALL SSET(DF, DS, CFOC, CSOC, OTE, ROT) R1T4825
CALL DSET(BFI, BF0, BSI, BS0, CF)          R1T4826
CALL MSET(BFI, BF0, BSI, BS0 )             R1T4827
R1T4828
C
CO2(8) = CO2(8) + DA          R1T4829
CO2(11)= CO2(11) + DR         R1T4830
DO 400 J = 1, 10               R1T4831
400 IF( J.NE.8 ) CO2(J) = CO2(J) + COL(J) R1T4832
R1T4833
C
500 ALPHA = -1.                R1T4834
CL      = - 10.                R1T4835
600 ALPHA = ALPHA + 1.         R1T4836
CLI    = CL                   R1T4837
CALL DAFRO(ALPHA, CL, CD, CM, AGRD, CLG, CDG, CMG, HGT, DFLAP) R1T4838
IF( ALPHA.EQ.0.0 ) WRITE(6,2000) R1T4839
IF( HGT.EQ.0.0 ) WRITE(6,2001) ALPHA, CL, CD, CM R1T4840
IF( HGT.GT.0.0 ) WRITE(6,2001) ALPHA,CL,CD,CM,AGRD,CLG,CDG,CMG R1T4841
R1T4842
C
IF( ALPHA.GT.60.0 ) GO TO 700 R1T4843
IF( CL.GT.CLI ) GO TO 600 R1T4844
600 CONTINUE R1T4845
R1T4846
2000 FORMAT(1H1, 20X, *HIGH LIFT SURVEY* // 15X, *ALPHA* 10X, R1T4847
1   * CL * 10X,* CD * 10X,* CM *10X,*AGRD*10X,* CLG*10X,* CDG* R1T4848
2   10X, *CMG * / ) R1T4849
2001 FORMAT(5X, F15.2, 3F15.5, F15.3, 3F15.5) R1T4850
END R1T4851

```

CC = 00096

```

SUBROUTINE SSET(DF, DS, CFOC, CSOC, OTE, ROT) R1T4853
C COMPUTES SECTION INCREMENTS FOR FLAPS AND SLATS R1T4854
C COMMON /BLKPRT/ KPRINT(50) R1T4855
C COMMON /BLKCO1/ C1(77), DC1F, DC1MF, DCDFS, DCMFS, DC1S, R1T4856
1 DC1MS, DCDSS, DCMSS, CPF, CPS, C2(13) R1T4857
C COMMON /BLKA04/ IHLS, NXF, NXS, TF, TS, XDF(5), FCPF(5), R1T4858
1 FDC1F(5), FDCMXF(5), FCDF(5), FCMF(5), R1T4859
2 XDS(5), FCPS(5), FDC1S(5), FDCMS(5), FDCDS(5), R1T4860
3 FDMFS(5), A04(16) R1T4861
C DIMENSION DF(3),CFOC(3), ETA(3), C10(3), DCL(3), RMAX(3), R1T4862
1 DCLM(3), PCM(3), DCM(3), X1(4), Y1(8), F1(4,8), R1T4863
2 X2(5), Y2(6), F2(5,6), X3(6), Y3(4), F3(6,4), R1T4864
3 A0(4), A1(4), XROT(5), YEMAX(5,3),XXDS(4), YED(4,3) R1T4865
C DATA A0 / 0.915, 1.215, 1.39, 1.545 /, R1T4866
1 A1 / -.01186, -.0115, -.0125, -.0130 /, R1T4872
2 X1 / 0., .1, .2, .3 /, R1T4873
3 Y1 / 0., 10., 20., 30., 40., 50., 60., 70. /, R1T4874
4 F1 / 5*0.0,.001,.004,.0085, 0.,.009,.02,.032, R1T4875
5 0.,.019,.0425,.07, 0.,.0325,.071,.118, R1T4876
5 0.,.049,.104,.17, 0.,.063,.14,.237, R1T4877
5 0.,.084,.18,.295 /, R1T4878
6 X2 / 0., .1, .2, .3, .4 /, R1T4879
7 Y2 / 0., 10., 20., 30., 40., 50. /, R1T4880
8 F2 / 6*0.0,.001,.003,.006,.012, 0.,.03,.0075,.013,.023, R1T4881
9 0.,.011,.024,.0385,.059, 0.,.02,.045,.079,.117, R1T4882
9 0.,.03,.069,.127,.205 /, R1T4883
1 X3 / 0., 1., 2., 4., 6., 8. /, R1T4884
2 Y3 / .2, .3, .4, .656 /, R1T4885
3 F3 / 0.,.01,.02,.058,.155,.28,0.,.01,.02,.05,.12,.24, R1T4886
4 0.,.01,.02,.046,.091,.2,0.,.008,.016,.032,.057,.106/ R1T4887
DATA XROT / 0.0, 0.07, 0.08, 0.1, 0.2 /, R1T4888
1 YEMAX / 0.56, 0.98, 1.02, 0.95, 0.0, R1T4889
2 .56, 1.34, 1.74, 1.72,.8,.56,1.09,1.2,1.15,.2 /, R1T4890
3 XXDS / 0.0, 15.0, 25.0, 45.0 /, R1T4891
4 YED / 1.0, 1.0, .96, .25, 1.0,1.0,.75,0., R1T4892
5 1.0, 1.0, .97, .67 /, R1T4893
C DC1F = 0.0 R1T4894
DC1MF = 0.0 R1T4895
DCDFS = 0.0 R1T4896
DCMFS = 0.0 R1T4897
DC1S = 0.0 R1T4898
DC1MS = 0.0 R1T4899
DCDSS = 0.0 R1T4900
DCMSS = 0.0 R1T4901
C IF( TF.EQ.0. ) GO TO 100 R1T4902
IF( TF.GE.5. ) GO TO 60 R1T4903
C TRAILING-EIGE DEVICE **** R1T4904
R1T4905
R1T4906
R1T4907
R1T4908

```

```

NF      = TF          R1T4909
CFP     = CFOC(1) + CFP(2) + CFP(3) R1T4910
IF (TF.EQ.1.) ZKM = 1.0031 -.928*CFP + 9.9869*CFP**2 R1T4911
1       -7.1843*CFP**3 R1T4912
IF( TF.EQ.1.0.AND.CFP.LT.0.1 ) ZKM = 1.0 R1T4913
IF( TF.GT.1.) ZKM = 1.2029 -1.1834*CFP +13.145*CFP**2 R1T4914
1       -11.5455*CFP**3 R1T4915
IF( TF.GT.1.0.AND.CFP.LT.0.1 ) ZKM = 1.2 R1T4916
ZKD    = 1.9 - 0.0225 * (DF(1)+DF(2)+DF(3)) R1T4917
IF( ZKD.LT.1.0 ) ZKD = 1.0 R1T4918
ZKT    = 1.23 + 4.5 * ROT R1T4919
ZKMAX  = ZKT * ZKD R1T4920
C
IF( TF.LE.2. ) NT = 1 R1T4921
IF( TF.EQ.3. ) NT = 2 R1T4922
IF( TF.EQ.4. ) NT = 3 R1T4923
C
PHI    = DF(1) R1T4924
C
DO 50 I = 1, NT R1T4925
IF( I.GT.1 ) PHI = DF(I) + PHI R1T4926
IF( I.EQ.NT) PHI = PHI + OTE R1T4927
IF( I.GT.1 ) CFP = CFP - CFOC(I-1) R1T4928
ETA(I) = AD(NF) + A1(NF)*PHI R1T4929
IF(TF.EQ.1.0.AND.PHI.GT.35.0 ) ETA(I) = 1.5912 -.05068*PHI R1T4930
1       +.000754*PHI**2 -.0000039*PHI**3 R1T4931
IF( ETA(I).GT.0.77 ) ETA(I) = 0.77 R1T4932
C
DFR    = DF(I)/57.2956 R1T4933
OF    = ACOS(1. - 2.*CFP) R1T4934
C10(I) = 2.*(OF + SIN(OF)) R1T4935
C
DCL(I) = ETA(I) * C10(I) * DFR R1T4936
DC1F   = DC1F + DCL(I) R1T4937
C
XS    = 0.0 R1T4938
IF( TS.GT.0.0.AND.DS.GT.0.0 ) XS = CSOC R1T4939
X    = ACOS(2.*XS - 1.) R1T4940
RMAX(I) = 1. -(OF/(OF + SIN(OF))) * (1.+ ALOG(ABS(SIN(.5*(X+OF))/ R1T4941
1       SIN(.5*(X-OF)))) ) / (OF * TAN(.5*X) ) ) R1T4942
C
DCLM(I) = DCL(I) * RMAX(I) * ZKMAX R1T4943
IF( DCLM(I).GT.DCL(I) ) DCLM(I) = DCL(I) R1T4944
DC1MF   = DC1MF + DCLM(I) R1T4945
C
RCM(I) = - CFP * SIN(OF)/C10(I) R1T4946
C
DCM(I) = DCL(I) * RCM(I) * ZKM R1T4947
`DCMFS = DCMFS + DCM(I) R1T4948
C
50 CONTINUE R1T4949
C
DCL2   = DC1F*DC1F R1T4950
CFP     = CFP(1) + CFP(2) + CFP(3) R1T4951
IF( TF.EQ.1. ) DCDFS = DLNT(CFP, DF(1), X1, Y1, F1, 4,8,4,4,2) R1T4952
IF( TF.EQ.2. ) DCDFS = DLNT(CFP, DF(1), X2, Y2, F2, 5,6,5,4,2) R1T4953

```

```

IF( TF.GF.3.) DCDFS = DLNT(DCL2, CFP, X3, Y3, F3, 6,4, 6,4,2) R1T4965
C
C      GO TO 100
60 CALL LNTP(DF(1), DC1F, XDF, FDC1F, NXF, 4) R1T4966
CALL LNTP(DF(1), DC1MF, XDF, FDCMXF, NXF, 4) R1T4967
CALL LNTP(DF(1), DCDFS, XDF, FCDF, NXF, 4) R1T4968
CALL LNTP(DF(1), DCMFS, XDF, FCMF, NXF, 4) R1T4969
CALL LNTP(DF(1), CPF, XDF, FCPF, NXF, 4) R1T4970
C
100 IF( TS.LE.0. ) GO TO 200 R1T4971
IF( TS.GE.4. ) GO TO 150 R1T4972
C      LEADINE-EDGE DEVICE **** R1T4973
C
OS      = ACOS(1. - 2.*CSOC) R1T4974
C1LE    = 2.*(SIN(OS) - OS) R1T4975
CMXLE   = 2.* SIN(OS) R1T4976
CMLE    = (1.-CSOC)*SIN(OS)/C1LE R1T4977
DSR     = DS/57.2956 R1T4978
NS      = TS R1T4979
CALL LNTP(ROT, EMAX, XROT, YEMAX(1,NS), 5,2) R1T4980
CALL LNTP(OS, ED, XXDS, YED(1,NS), 4, 2) R1T4981
C
DC1S    = C1LE * DSR R1T4982
DC1MS   = CMXLE * EMAX + ED * DSR R1T4983
DCDSS   = 0.0 R1T4984
DCMSS   = CMLE * DC1S R1T4985
C
GO TO 200 R1T4986
150 CALL LNTP(DS, DC1S, XDS, FDC1S, NXS, 4) R1T4987
CALL LNTP(DS, DC1MS, XDS, FDC1MS, NXS, 4) R1T4988
CALL LNTP(DS, DCDSS, XDS, FDCDSS, NXS, 4) R1T4989
CALL LNTP(DS, DCMSS, XDS, FDCMSS, NXS, 4) R1T4990
CALL LNTP(DS, CPS, XDS, FCPS, NXS, 4) R1T4991
C
200 IF( KPRINT(27).EQ.1 ) HRITE(6,1000) DC1F, DC1MF, DCDFS, DCMFS, R1T4992
1           DC1S, DC1MS, DCDSS, DCMSS, CPF, CPS, DCL, ETA, C10, R1T4993
2           DCLM, RMAX, ZKMAX, DCM, RCM, ZKM, C1LE, CMXLE, EMAX, R1T4994
3           ED, TF, TS, DF, DS, CFDC, CSOC, OTE, ROT R1T4995
C
1000 FORMAT(5X, *SSET DUMP* /15X, 7F15.5) R1T4996
C
RETURN R1T4997
END R1T4998

```

CC = 00155

```

C SUBROUTINE DSET(BFI, BFO, BSI, BSO, CFI) RIT5009
C AERODYNAMIC CONTROL ROUTINE FOR HIGH LIFT SYSTEMS RIT5010
C COMMON /BLKC02/ DCLOF, DCLOS, DCLMF, DCLMS, DCDMIN, DCLF, DCLS, RIT5011
C 1 SPLANX, DCMO, DCMCL, RCLA RIT5012
C COMMON /BLKC01/ C1(11), AK, DCL, C2(64), DC1F, DC1MF, DCDFS, RIT5014
C 1 DCMFS, DC1OS, DC1MS, DCDSS, DCMSS, CPF, CPS, C3(13) RIT5015
C COMMON /BLKG01/ G1(200) RIT5016
C
C COMMON /BLKMX3/ SPAN(6), YTPR(4), FKB( 6,4), FKS(6), FKD( 6,4) RIT5017
C COMMON /BLKMX9/ SPAN4(5), YBFI1(5), FKA(5,5), RIT5018
C 1 SPAN5(5), YBFI2(3), FKF(5,3) RIT5019
C
C ZKT = 1.0 RIT5020
C SWPLE = G1(103) RIT5021
C SWPMC = G1(49) RIT5022
C TPR = G1(81) RIT5023
C AR = G1(80) RIT5024
C SPLAN = G1(82) RIT5025
C DCLS = 0.0 RIT5026
C
C ZKB1 = DLNT(BFI, TPR, SPAN, YTPR, FKB, 6,4, 6,2,2) RIT5027
C ZKB0 = DLNT(BFO, TPR, SPAN, YTPR, FKB, 6,4, 6,2,2) RIT5028
C ZKB = ZKB0 - ZKB1 RIT5029
C
C ASC = SQRT(1. - (1.-CF)**1.61 ) RIT5030
C ZKC = 1. + 1.875 * (1.-ASC)**2 /AR RIT5031
C
C CALL LNTP(BSI, ZKSI, SPAN, FKS, 6, 4) RIT5032
C CALL LNTP(BSO, ZKSO, SPAN, FKS, 6, 4) RIT5033
C ZKS = ZKSO - ZKSI RIT5034
C
C SPLANX = SPLAN * (1. + (CPF-1.)/(1.+TPR) * (2.-(1.-TPR) RIT5035
C 1 * (BFO + BFI)) * (BFO - BFI) RIT5036
C 2 + (CPS-1.)/(1.+TPR) * (2.-(1.-TPR)*(BSO-BSI)) RIT5037
C 3 * (BSO - BSI) ) RIT5038
C
C 20 CLOC1 = AR/(2. + SQRT(4.+ (SPLAN * AR/SPLANX /COS(SWPMC))**2) ) RIT5039
C CLOC1R = AR/(2.+ SQRT(4.+ (AR/COS(SWPMC))**2 ) ) RIT5040
C RCLA = CLOC1/CLOC1R RIT5041
C
C DCLOF = ZKT * DC1F * CLOC1 * ZKC * ZKB RIT5042
C DCLMF = ZKT * DC1MF * CLOC1 * ZKC * ZKB * COS(SWPMC) RIT5043
C
C DCLOS = DC1OS * CLOC1 * ZKS RIT5044
C DCLMS = DC1MS * CLOC1 * ZKS * COS(SWPLE) RIT5045
C
C 30 WRITE(6,1000) ZKB, ZKC, ZKS, CLOC1, DC1F, DC1MF, DC1OS, RIT5046
C 1 DC1MS, DCLOS, DCLOF RIT5047
C
C CALCULATION OF DRAG PARAMETERS RIT5048
C
C SWPHL = ATAN(TAN(SWPLE) - 4./AR * (1.-TPR)/(1.+TPR) * (1.-CF) ) RIT5049

```

```

C
ZKDI = DLNT(BFI, TPR, SPAN, YTPR, FKD, 6, 4, 6, 2,2) R1T5065
ZKDO = DLNT(BFO, TPR, SPAN, YTPR, FKD, 6, 4, 6, 2,2) R1T5066
ZKD = ZKDO - ZKDI R1T5067
R1T5068
R1T5069
R1T5070
R1T5071
R1T5072
R1T5073
R1T5074
R1T5075
R1T5076
R1T5077
R1T5078
R1T5079
R1T5080
R1T5081
R1T5082
R1T5083
R1T5084
R1T5085
R1T5086
R1T5087
R1T5088
R1T5089
R1T5090
R1T5091
R1T5092
R1T5093
R1T5094
R1T5095
R1T5096
R1T5097
R1T5098
R1T5099
R1T5100
R1T5101
R1T5102
R1T5103
R1T5104
R1T5105
R1T5106
R1T5107
R1T5108
R1T5109
R1T5110
R1T5111

C 40 CONTINUE
E = AR/6.283
D = BFO

C
ZKA = DLNT(E, BFI, SPAN4, YBFI1, FKA, 5, 5, 5, 4, 2 ) R1T5074
ZKF = DLNT(D, BFI, SPAN5, YBFI2, FKF, 5, 3, 5, 2, 2 ) R1T5075
C
C
C
C 45 WRITE(6,1001) SWPHL, ZKD, ZKA, ZKF, CDO, SWPLE, AR, TPR, AK, DCL
EK = 0.31831/AR/AK
C
50 CONTINUE
DCLF = (1.-EK) * DCLOF/(1.+1.16*CLOC1*(.5-CF) )
CDC = 0.0
IF( EK.LT.1.0 ) CDC = (DCLF**2 + 2.*DCLF*DCL)*0.31831/
1 (AR * (1.-EK))
C
DCDF = DCDFS * COS(SWPHL) * ZKD
DCDS = DCSS * COS(SWPLE) * ZKD
CDI = ZKA * ZKF * DCLOF**2 *0.31831/AR
C
DCDMIN = DCDF + DCDS + CDI + CDC
WRITE(6,1002) DCDMIN, CDI, DCDS, DCDF, DCL, DCLF, CDC
C
60 RETURN
1000 FORMAT(1H1, 10X, *HIGH LIFT CONSTANTS*, // 10X
1 *ZKB == F10.6, 10X *ZKC == F10.6, 10X *ZKS == R1T5097
2 F10.6 / 10X *CLOC1== F10.6, 10X *DC1F == F10.6,
3 10X *DC1MF== F10.6 / 10X *DC1OS== F10.6, 10X R1T5098
4 *DC1MS == F10.6, 10X R1T5099
6 *DCLOS== F10.6 /10X *DCLOF== F10.6 ) R1T5100
1001 FORMAT( // 10X *SWPHL== F10.6, 10X *ZKD == F10.6, R1T5101
1 10X *ZKA == F10.6 / 10X *ZKF == F10.6, 10X R1T5102
2 *CDC == F10.6, 10X *SWPLE== F10.6 / 10X R1T5103
3 *AR == F10.6, 10X *TPR == F10.6, 10X R1T5104
4 *AK == F10.6 /10X *DCL == F10.6 ) R1T5105
1002 FORMAT( //10X, *DCDMIN == F10.6, 10X *CDI == F10.6, 10X R1T5106
1 *DCDS == F10.6 /10X *DCDF == F10.6, 10X R1T5107
2 *DCL == F10.6, 10X *DCLF == F10.6 /10X *CDC == F10.6 ) R1T5108
1003 FORMAT (6F10.6)
END

```

CC = 00103

```

C      SUBROUTINE MSET(BFI, BFO, BSI, BSO )          R1T5113
C      COMPUTES MOMENT SHIFT DUE TO FLAPS AND SLATS AT CL = 0   R1T5114
C
COMMON /BLKC02/ DCLOF, DCLGS, DCLMF, DCLMS, DCDMIN, DCLF, DCLS,    R1T5115
I      SPLANX, DCMO, DCMCL, RCLA                         R1T5116
I      COMMON /BLKC01/ C1(77), DC1F, DC1MF, DCDFS, DCMFS,    R1T5117
I      DC1S, DCIMS, DCDSS, DCMSS, CPF, CPS, C2(13)        R1T5118
COMMON /BLKG01/ G1(200)                                     R1T5119
R1T5120
C      COMMON/BLKMX7/ SPAN2(11), YTPR2(5), FKSW(11,5)       R1T5121
COMMON/BLKMX8/ SPAN3(6), YTPR3(4), FKM(6,4)                R1T5122
R1T5123
C      TPR      = G1(81)                                R1T5124
AR       = G1(80)                                R1T5125
SWPHC   = G1(49)                                R1T5126
CMCL    = C1(15)                                R1T5127
CLA     = C1(17)                                R1T5128
ALO     = C1(18)                                R1T5129
R1T5130
C      FLAP CALCULATIONS START HERE                  R1T5131
R1T5132
C      DCMAF = 0.0                                    R1T5133
DCMCLF = 0.0                                    R1T5134
IF( DCMFS.EQ.0.0.AND.DC1F.EQ.0.0.AND.CPF.EQ.0.0 ) GO TO 40   R1T5135
R1T5136
C      ZKSWI= DLNT(BFI, TPR, SPAN2, YTPR2, FKSW, 11, 5, 11, 2, 2) R1T5137
ZKSWO= DLNT(BFO, TPR, SPAN2, YTPR2, FKSW, 11, 5, 11, 2, 2)   R1T5138
ZKSW = ZKSWO - ZKSWI                                R1T5139
R1T5140
C      ZKMO = DLNT (BFO, TPR, SPAN3, YTPR3, FKM, 6, 4, 6, 2, 2) R1T5141
ZKMI = DLNT (BFI, TPR, SPAN3, YTPR3, FKM, 6, 4, 6, 2, 2)   R1T5142
ZKM = ZKMO - ZKMI                                R1T5143
R1T5144
C      DCMAF = DCMFS * CPF**2 * ZKM + 0.5 * AR * TAN(SWPHC)   R1T5145
1           * DC1F * ZKSW                                R1T5146
R1T5147
C      DCMCLF = (-0.25 * CPF * (CPF-1.) + CMCL * (CPF**2-1.))* ZKM   R1T5148
R1T5149
40 CONTINUE                                         R1T5150
R1T5151
C      SLAT CALCULATIONS START HERE                  R1T5152
R1T5153
C      DCMAS = 0.0                                    R1T5154
DCMCLS = 0.0                                    R1T5155
IFI DCMSS.EQ.0.0.AND.DC1S.EQ.0.0.AND.CPS.EQ.0.0 ) GO TC 50   R1T5156
R1T5157
ZKMSO = DLNT(BSO, TPR, SPAN3, YTPR3, FKM, 6, 4, 6, 2, 2)   R1T5158
ZKMSI = DLNT(BSI, TPR, SPAN3, YTPR3, FKM, 6, 4, 6, 2, 2)   R1T5159
ZKMS = ZKMSO - ZKMSI                                R1T5160
R1T5161
C      ZKSNSO = DLNT(BSO, TPR, SPAN2, YTPR2, FKSW, 11, 5, 11, 2, 2) R1T5162
ZKSNSI = DLNT(BSI, TPR, SPAN2, YTPR2, FKSW, 11, 5, 11, 2, 2)   R1T5163
ZKSNS = ZKSNSO - ZKSNSI                            R1T5164
R1T5165
C      DCMAS = DCMSS * CPS**2 * ZKMS + 0.5 * AR * TAN(SWPHC)   R1T5166
1           * DC1S * ZKSNS                                R1T5167
R1T5168

```

```

C      DCMCLS = (-0.25 * CPS *(CPS-1.) + CMCL * (CPS**2-1.)) * ZKMS      R1T5169
C
C      ADD FLAP AND SLAT MOMENTS
C
50 DCMMA = DCMAF + DCMAS
DCMCL = DCMCLF + DCMCLS
C
C      CLO = -CLA * ALO
DCMO = DCMA - CMCL * (DCLOF + DCLOS) - CMCL * (CLO+DCLOF+DCLOS) R1T5178
C
C      WRITE(6,1001) DCMAF, DCMAS, DCMO
C
1001 FORMAT(//10X,*DCMOF = *F10.6/10X,*DCMOS = *F10.6/
1           10X, *DCMO = * F10.6)
      RETURN
      END

```

CC = 00074

```

SUBROUTINE DAERO(ALPHA, CL, CD, CM, AGRD, CLG, CDG, CMG, H, DF) R1T5188
C COMPUTES LIFT MOMENT AND DRAG FOR HIGH-LIFT SYSTEMS IN R1T5189
C FREE AIR OR GROUND EFFECT R1T5190
C
COMMON /BLKC02/ DCLOF, DCLOS, DCLMF, DCLMS, DCDMIN, DCLF, DCLS, R1T5191
1 SPLANX, DCM0, DCMCL, RCLA R1T5192
COMMON /BLKG01/ G1(200) R1T5193
COMMON /BLKA02/ A1(433) R1T5194
COMMON /BLKA03/ A03(12), CMAC, A03A(7) R1T5195
COMMON /BLKA04/ A2(66), BF1C, A3(4), BF20, A4(9) R1T5196
COMMON /BLKC01/ C1(4), CDMINB, C2(6), FK, DELCL, CM0, CMCL, R1T5197
1 XACMB, CLA, ALD, C3(19), COWING(4), C7(12), R1T5198
1 CLAN, CLAT, AH, BH, HSTAR, R1T5199
2 C4(5), CLMAXB, ABRK, AMAX, DAMAX, R1T5200
3 C5(25), DEDA, C6(6) R1T5201
C
DIMENSION XDX(6), YA(6), YB(6), XTR(6), YAR(4), Z1(6,4), R1T5202
1 XBF(6), Z2(6) R1T5203
C
DATA XDX / -1., -.6, -.2, .2, .6, 1. /, R1T5204
1 YA / -3.71,-3.03,-2.63,-2.34,-2.13,-2. /, R1T5205
1 YB / .466,.5,.664,.901.1.1,1.171 /, R1T5206
C
FIG.S 4.7.1-18A&B IN DATCOM R1T5207
DATA XTR / 1., 2., 3., 4., 5., 6. /, R1T5208
1 YAR / 4., 6., 8., 10. /, R1T5209
2 Z1 / .825,.772,.745,.726,.715,.712, .855,.772,.738,.715, R1T5210
3 .7,.695, .8,.775,.727,.702,.69,.685, R1T5211
4 .895,.776,.723,.697,.68,.675 /, R1T5212
5 XBF / 0., .2, .4, .6, .8, 1. /, R1T5213
6 Z2 / 0., .34, .58, .76, .89, 1. /, R1T5214
C
SPLAN = G1(82) R1T5215
AR = G1(80) R1T5216
TR = G1(81) R1T5217
CCDLG = C5(21) R1T5218
ESWOC = G1(102) R1T5219
OMEGA = G1(110) R1T5220
XH = G1(109) R1T5221
C
CL0 = -CLA*ALD + DCLOF + DCLOS R1T5222
CLMAX = CLMAXB + DCLMF + DCLMS R1T5223
CLAHL = CLAN + CLAT + CLAW * RCLA R1T5224
AK = FK * SPLAN/SPLANX R1T5225
DCL = DELCL + DCLF + DCLS R1T5226
CDMIN = CDMINB + DCDMIN + DCDLG R1T5227
C
ALIN = (CLMAX - CL0)/CLAHL - DAMAX R1T5228
C
CL = CLAHL * ALPHA + CL0 R1T5229
IF( ALPHA.LE.ALIN ) GO TO 20 R1T5230
C
DELM = CLAHL * (ALIN + 2.* DAMAX) + CL0 - CLMAX R1T5231
DEL = ((ALPHA - ALIN) *0.5/DAMAX )**2 * DELM R1T5232
C
R1T5233
R1T5234
R1T5235
R1T5236
R1T5237
R1T5238
R1T5239
R1T5240
R1T5241
R1T5242
R1T5243

```

```

CL      = CL - DEL          R1T5244
C
20 CD      = CDMIN + AK*(CL - DCL)**2          R1T5245
IF( ALPHA.LE.ALIN ) GO TO 30                  R1T5246
C
EO      = 0.31831/AR/AK          R1T5247
E      = EO + (0.3 - EO) * 0.5 * (ALPHA - ALIN)/DAMAX  R1T5248
IF( E.LE.0.0 ) E = 0.1          R1T5249
CD      = CDMIN + 0.31831/AR/E * (CL - DCL)**2          R1T5250
C
30 CMOTOT = CM0 + DCM0          R1T5251
DCMDCL = CMCL + DCMCL          R1T5252
CLTAIL = CLAT * (ALPHA-HSTAR)  R1T5253
CLWB   = CL - CLTAIL          R1T5254
CM      = CMOTOT + DCMDCL * CLWB          R1T5255
1      -CLTAIL * XH * COS(OMEGA - ALPHA/57.3)/CMAC  R1T5256
C
C GROUND EFFECTS ARE NOW CALCULATED          R1T5257
C
DCLWG  = 0.0          R1T5258
DCLTG  = 0.0          R1T5259
DCMWG  = 0.0          R1T5260
DCMTG  = 0.0          R1T5261
DCDG   = 0.0          R1T5262
AGR0   = ALPHA          R1T5263
OMEGA  = G1(110)        R1T5264
B02    = A1(240)        R1T5265
DXOB   = G1(106)        R1T5266
CROB   = G1(105)        R1T5267
HTZ    = A1(432)        R1T5268
C
IF( H.EQ.0.0 ) GO TO 50          R1T5269
CDWNG = CDWING(1) + CDWING(2) + CDWING(3) + CD - CDMIN  R1T5270
CALL LNTP(DXOB, A, XDX, YA, 6, 4)          R1T5271
CALL LNTP(DXOB, B, XDX, YB, 6, 4)          R1T5272
SIGP   = 2.71828 **(A * (H/B02)**B)          R1T5273
C
HOC    = H/(CROB*B02) * .5          R1T5274
A2D    = 9.1189 * CL / (CUS(ESWQC)**2)        R1T5275
DLOLO  = 0.058/(HOC**1.7) - 0.0085/HOC * A2D        R1T5276
IF( HOC.LT.0.4 ) DLOLO = DLOLO - 0.02/(HOC**2) + 0.05/HOC  R1T5277
C
DDCLF = -.142 +.2272*HOC -.0902*HOC**2          R1T5278
C
SIG   = 2.71828 **(-2.48 * (H/B02)**.768)        R1T5279
C
R     = SQRT(1. +(H/B02)**2) - H/B02          R1T5280
T     = 0.03979 * HOC / (HOC**2 - .015625)        R1T5281
DCLWG = (9.12/AR + 7.16*CROB) * CLWB * CLAW * SIGP * RCLA  R1T5282
1     + 0.5 * AR * CROB * DLOLO * R * CLWB          R1T5283
2     + DDCLF * (DF/50.)**2          R1T5284
C
DCDG1 = -SIG * 0.31831*CLWB**2/AR          R1T5285
DCDG   = DCDG1 -(CDWNG + DCDG1) * R * T * CLWB        R1T5286
C
C GROUND EFFECTS ON HORIZONTAL TAIL ARE CALCULATED          R1T5287

```

```

C IF( CLAT.EQ.0.0 ) GO TO 40 R1T5298
C TRIV = 6. R1T5299
C IF( TR.NE.0.0 ) TRIV = 1./TR R1T5300
C BPWOB = DLNT(TRIV, AR, XTR, YAR, Z1, 6,4, 6, 4,2) R1T5301
C BF = BF10 R1T5302
C IF( BF20.GT.BF ) BF = BF20 R1T5303
C CALL LNTP(BF, BF0BWP, XBF, Z2, 6, 4) R1T5304
C SPAN = BD2 *2. R1T5305
C BWP = BPWOB * SPAN R1T5306
C BFP = BWP * BF0BWP R1T5307
C BEFF = BWP R1T5308
C IF( BFP.NE.0.0 ) BEFF = CLO/((CLO -DCLOF)/BWP + DCLOF/BFP) R1T5309
C HH = (H + HTZ)*COS(ALPHA/57.3) - XH*SIN(ALPHA/57.3) R1T5310
C DE = DEDA * ALPHA * (BEFF**2 + (HH-H)**2)/(BEFF**2 + (HH+H)**2) R1T5311
C DCLTG = DE * CLAT/(1.-DEDA) R1T5312
C 40 AGRD = ALPHA -(DCLWG +DCLTG)/CLAHL R1T5313
C DCMWG = DCMDCL * DCLWG R1T5314
C DCMTG = -DCLTG * XH * COS(OMEGA -AGRD/57.2956) R1T5315
C 50 CLG = CLWB + CLAT *(AGRD-HSTAR) + DCLTG R1T5316
C CMG = CMOTOT + DCMDCL * CLWB R1T5317
C 1 -(CLG-CLWB) * XH * COS(CMega -AGRC/57.2956) R1T5318
C CDG = CD + DCDG R1T5319
C RETURN R1T5320
C END R1T5321
C R1T5322
C R1T5323
C R1T5324
C R1T5325
C R1T5326
C R1T5327
C R1T5328
C R1T5329

```

CC = 00145

SUBROUTINE ATOMS TRACE

CDC 6600 FTN V3.0-P351 OPT=1 06/2

SUBROUTINE ATOMS (ZFT, TM, SIGMA, RHO, THETA, DELTA, CA, AMU, K)
C THIS IS A SUBROUTINE TO COMPUTE CERTAIN ELEMENTS OF THE 1962
C U.S. STANDARD ATMOSPHERE UP TO 90 KILOMETERS.

C THIS MODEL REPRESENTS MEAN ANNUAL, MID-LATITUDE, DRY AIR
C CONDITIONS. DATA ON LATITUDINAL AND SEASONAL VARIATIONS ARE
C AVAILABLE FROM THE OFFICE OF THE STAFF METEOROLOGIST (ASD/WE).

C CARE MUST BE EXERCISED WHEN USING THIS AND OTHER MODELS FOR
C ENGINEERING PURPOSES AND IT IS STRONGLY URGED THAT USERS CONTACT
C ASD/WE FOR INTERPRETATION AND ASSISTANCE.

C CALLING SEQUENCE...

CALL ATOMS (ZFT, TM, SIGMA, RHO, THETA, DELTA, CA, AMU, K)
C ZFT = GEOMETRIC ALTITUDE (FEET)
C TM = MOLECULAR SCALE TEMPERATURE (DEGREES RANKINE)
C SIGMA = RATIO OF DENSITY TO THAT AT SEA LEVEL
C RHO = DENSITY (LB-SEC**2*FT**(-4) OR SLUGS-FT**3)
C THETA = RATIO OF TEMPERATURE TO THAT AT SEA LEVEL
C DELTA = RATIO OF PRESSURE TO THAT AT SEA LEVEL
C CA = SPEED OF SOUND (FT/SEC)
C AMU = VISCOSITY COEFFICIENT (LB-SEC/FT**2)

C K = 1 NORMAL
C = 2 ALTITUDE LESS THAN -5000 METERS OR GREATER THAN 90 KM
C = 3 FLOATING POINT OVERFLOW

C ALL DATA AND FUNDAMENTAL CONSTANTS ARE IN THE METRIC SYSTEM AS
C THESE QUANTITIES ARE DEFINED AS EXACT IN THIS SYSTEM.

C THE RADIUS OF THE EARTH (REFT59) IS THE VALUE ASSOCIATED WITH THE
C 1959 ARDC ATMOSPHERE SO THAT PROGRAMS CURRENTLY USING THE LIBRARY
C ROUTINE WILL NOT REQUIRE ALTERATION TO USE THIS ROUTINE.

DIMENSION HB(10),TMB(10),DELTAB(10),ALM(10),ARAY(10,4)
EQUIVALENCE(ARAY(1,1),HB),(ARAY(1,2),TMB),(ARAY(1,3),DELTAB),
*(ARAY(1,4),ALM)

DATA ((ARAY(I,J),J=1,4),I=1,10)/

X	-5.0	,	320.65	,	1.75363	E 00	,	-6.5
X	0.0	,	288.15	,	1.00000	E 00	,	-6.5
X	11.0	,	216.65	,	2.23361	E-01	,	0.0
X	20.0	,	216.65	,	5.40328	E-02	,	1.0
X	32.0	,	228.65	,	0.56663	E-03	,	2.8
X	47.0	,	270.65	,	1.09455	E-03	,	0.0
X	52.0	,	270.65	,	5.82289	E-04	,	-2.0
X	61.0	,	252.65	,	1.79718	E-04	,	-4.0
X	79.0	,	180.6	,	1.02410	E-05	,	0.0
X	88.743	,	180.65	,	1.62230	E-06	,	0.0

DATA REFT59/2.0855531E 07/, GZ /9.80665/,

A AMZ /28.9644 /, RSTAR /5.31432/,

B FTOKM/3.048E-04 /, S /110.4 /,

SUBROUTINE ATHOS TRACE CDC 6600 FTN V3.0-P351 OPT=1 06/22

```

      C     AMUZ /1.2024E-05/, CAZ /1116.45/, CS1
      D     RHOZ /0.076474/, GZENG /32.1741/ CS1
C   CONVERT GEOMETRIC ALTITUDE TO GEOPOTENTIAL ALTITUDE CS1
      HFT = (REFT59/(REFT59+ZFT))*ZFT CS1
C   CONVERT HFT AND ZFT TO KILOMETERS CS1
      Z = FTTOKH*ZFT CS1
      H = FTTOKH*HFT CS1
      K = 1 CS1
      TMZ = TMB(2) CS1
      IF (H.LT.-5.0.OR.Z.GT.90.0) GO TO 16 CS1
      DO 10 M=1,10 CS1
      IF (H-HB(M)) 11,12,10 CS1
10 CONTINUE CS1
      GO TO 16 CS1
11 M = M-1 CS1
12 DELH = H-HB(M) CS1
      IF (ALM(M).EQ.0.0) GO TO 13 CS1
      TMK = TMB(M)+ALM(M)*DELH CS1
C   GRADIENT IS NON ZERO, PAGE 10, EQUATION I.2.10-(3) CS1
      DELTA = DELTAB(M)*( (TMB(M)/TMK)**(GZ*AMZ/(RSTAR*ALM(M)))) CS1
      GO TO 14 CS1
13 TMK = TMB(M) CS1
C   GRADIENT IS ZERO, PAGE 10, EQUATION I.2.10-(4) CS1
      DELTA = DELTAB(M)*EXP(-GZ*AMZ*DELH/(RSTAR*TMB(M))) CS1
14 THETA = TMK/TMZ CS1
      SIGMA = DELTA/THETA CS1
      ALPHA = SQRT(THETA**3)*( (TMZ+S)/(TMK+S)) CS1
C   CONVERSION TO ENGLISH UNITS CS1
      TM = 1.8*TMK CS1
      RHO = RHOZ*SIGMA/GZENG CS1
      CA = CAZ*SQRT(THETA) CS1
      AMU = AMUZ*ALPHA/GZENG CS1
C   CALL OVERFL(J) CS1
C   GO TO (15,17), J CS1
C   15 K = K+2 CS1
      GO TO 17 CS1
16 K = 2 CS1
17 RETURN CS1
      END CS1
  
```

UBROUTINE PLSQ TRACE

CDC 6600 FTN V3.0-P351 OPT=1 06/22

```
SUBROUTINE PLSQ(X,Y,N,K,C,LIST,EMAX,ERMS,EMEQ)          CS1
C
C      PLSQ      POLYNOMIAL LEAST SQUARE CURVE FIT          CS1
C
C
C      PLSQ WILL FIT A GIVEN SET OF DATA TO A          CS1
C      POLYNOMIAL OF DEGREE K OF THE FORM...          CS1
C
C      Y=C(K+1)+C(K)*X+C(K-1)*X**2+...+C(2)*X**(K-1)+C(1)*X**K          CS1
C
C      PLSQ THEN COMPUTES THE MAXIMUM ERROR AND ROOT          CS1
C      MEAN SQUARE ERROR OBTAINED BY USING THE C          CS1
C      COEFFICIENTS TO RE-COMPUTE Y FROM X          CS1
C
C      USAGE...
C
C      DIMENSION X(N), Y(N), C(L)          CS1
C          WHERE L IS K+1          CS1
C      CALL PLSQ(X,Y,N,K,C,LIST,EMAX,ERMS,EMEQ)          CS1
C
C          WHERE,
C
C          X  IS THE ARRAY OF N INDEPENDENT VARIABLES          CS1
C
C          Y  IS THE ARRAY OF N DEPENDENT VARIABLES          CS1
C
C          N  IS THE NUMBER OF INDEPENDENT(DEPENDENT)          CS1
C          VARIABLES          CS1
C
C          K  IS THE DEGREE OF THE LEAST SQUARES POLYNOMIAL          CS1
C
C          C  IS THE ARRAY OF THE COEFFICIENTS, HIGH ORDER          CS1
C          TO LOW ORDER, OF THE LEAST SQUARES POLYNOMIAL          CS1
C
C          LIST =0  SUPPRESSES THE ERROR ANALYSIS OUTPUT          CS1
C          =1  GIVES THE ERROR ANALYSIS OUTPUT          CS1
C
C          EMAX  IS THE MAXIMUM ABSOLUTE ERROR OBTAINED          CS1
C          BY USING THE COMPUTED C COEFFICIENTS TO          CS1
C          APPROXIMATE THE DEPENDENT VARIABLE          CS1
C
C          ERMS  IS THE ROOT MEAN SQUARE ERROR OBTAINED          CS1
C          BY USING THE COMPUTED C COEFFICIENTS TO          CS1
C          APPROXIMATE THE DEPENDENT VARIABLE          CS1
C
C          EMEQ  IS THE MAXIMUM DEVIATION FROM UNITY          CS1
C          IN THE LINEAR SYSTEM CHECK SOLUTION          CS1
C
C
C          PLSQ CALLS SUBROUTINES FXEM AND MTXEQ          CS1
C
C          PLSQ USES 1309 CELLS OF BLANK COMMON          CS1
C
C
C          COMMON      MTXEQT(664), CF, DIF, I, J, JC, JK,          CS1
C
```

```

SUBROUTINE PLSQ      TRACE          C0C 6600 FTN V3.0-P351 OPT=1 06/28

*           L, LL, LU, M, SUM, XI, XM(576),
*           XMAX, XMIN, XP, YC, YM(48)          CS1
* DIMENSION X(N), Y(N), C(24),          CS1
*           XDP(48), XYDP(24)          CS1
* EQUIVALENCE (MTXEQT(1),XDP(1)), (MTXEQT(97),XYDP(1))          CS1
* DATA KMAX/ 23/          CS1
C           CS1
C           CHECK K AND N FOR PROPER RANGE          CS1
C           CS1
C           IF (K .GT. KMAX .OR. N .LE. K .OR. K .LE. 0)      GO TO 200          CS1
C           L=K+1          CS1
C           CS1
C           FIND MINIMUM AND MAXIMUM VALUES FOR X          CS1
C           CS1
C           XMIN=X(1)          CS1
C           XMAX=X(1)          CS1
C           DO 10 I=2,N          CS1
C           XMIN = AMINI(XMIN,X(I))          CS1
10         XMAX = AMAX1(XMAX,X(I))          CS1
C           CS1
C           ZERO DOUBLE PRECISION ARRAYS FOR SUMMING          CS1
C           CS1
C           M=2*K+1          CS1
C           DO 20 I=1,M          CS1
20         XDP(I) = 0.0          CS1
C           DO 25 I=1,L          CS1
25         XYDP(I) = 0.0          CS1
C           CS1
C           TRANSFORM RANGE OF X TO (-1,+1) AND          CS1
C           COMPUTE SUMS OF POWERS OF X AND SUMS          CS1
C           OF Y TIMES POWERS OF X          CS1
C           CS1
C           C1 = 2.0 / (XMAX - XMIN)          CS1
C           C2 = (XMAX + XMIN) / (XMAX - XMIN)          CS1
C           LL=K+2          CS1
C           LU=2*K+1          CS1
C           DO 40 I=1,N          CS1
C           XP = 1.0          CS1
C           XI = C1 * X(I) - C2          CS1
C           DO 30 J=1,L          CS1
C           XDP(J)=XDP(J)+XP          CS1
C           XYDP(J)=XYDP(J)+XP*Y(I)          CS1
30         XP=XP*XI          CS1
C           DO 40 J=LL,LU          CS1
C           XDP(J)=XDP(J)+XP          CS1
40         XP=XP*XI          CS1
C           CS1
C           STORE ABOVE COMPUTED SUMS IN ARRAY XM          CS1
C           AND COMPUTE ROW SUMS FOR CHECK SOLUTION          CS1
C           CS1
C           DO 50 I=1,L          CS1
C           LL=I+L          CS1
C           YM(LL)=0.0          CS1
C           LU=(I-1)*L          CS1
C           JK=I-1          CS1

```

UBROUTINE PLSQ TRACE

CDC 6600 FTN V3.0-P351 OPT=1 06/22

```
DO 50 J=1,L          CS1
JK=JK+1             CS1
JC=L+U+J            CS1
XM(JC)=XDP(JK)     CS1
50 YM(LL)=YM(LL)+XM(JC) CS1
DO 60 I=1,L          CS1
60 YM(I)=XYDP(I)    CS1
C
C   SOLVE THE SYSTEM XM*C=YM      CS1
C
C   CALL MTXEQ(XM,YM,YM,L,2)    CS1
C
C   REORDER AND MOVE SOLUTION TO C AND FIND CS1
C   MAXIMUM ERROR IN CHECK SOLUTION CS1
C
EMEQ=0.0             CS1
DO 70 I=1,L          CS1
JK=K-I+2             CS1
C(JK)=YM(I)          CS1
JC=I+L               CS1
70 EMEQ=AMAX1(EMEQ,ABS(YM(JC)-1.0)) CS1
C
C   ADJUST COEFFICIENTS FOR ORIGINAL RANGE CS1
C   OF X                         CS1
C
DO 80 I=1,K          CS1
DO 80 J=1,I          CS1
80 C(J)=C(J)*C1      CS1
C1=(XMAX+XMIN)/2.0   CS1
DO 90 I=1,K          CS1
M=L-I+1              CS1
DO 90 J=2,M          CS1
90 C(J)=-C1+C(J-1)+C(J) CS1
C
C   INITIATE PRINT OF ERROR ANALYSIS IF LIST .NE. 0 CS1
C
IF (LIST.EQ.1) PRINT 1001 CS1
C
C   COMPUTE MAXIMUM AND ROOT MEAN SQUARE ERRORS CS1
C   AND OUTPUT ERROR ANALYSIS IF LIST .NE. 0 CS1
C
EMAX=0.0              CS1
SUM=0.0                CS1
DO 130 I=1,N          CS1
YC=C(I)                CS1
DO 100 J=1,K          CS1
100 YC=YC*X(I)+C(J+1) CS1
DIF=YC-Y(I)            CS1
IF (LIST.EQ.0) GO TO 120 CS1
IF (I.GT.L) GO TO 110  CS1
PRINT 1002, I, X(I), Y(I), YC, DIF, C(I)  CS1
GO TO 120              CS1
110 PRINT 1002, I, X(I), Y(I), YC, DIF        CS1
120 EMAX=AMAX1(EMAX,ABS(DIF))    CS1
130 SUM=SUM+DIF**2       CS1
```

SUBROUTINE PLSQ TRACE CDC 6600 FTN V3.0-P35L OPT=1 06/22
 ERMS=SQRT(SUM/FLOAT(N)) CS1
 IF (LIST.EQ.1) PRINT 1003, EMAX, ERMS, EMEQ CS1
 RETURN CS1
 C CS1
 C GIVE ERROR MESSAGE AND RETURN TO CS1
 C SYSTEM VIA FXEM CS1
 C CS1
 200 PRINT 1000, N, K CS1
 CALL SYSTEM (200,1L) CS1
 RETURN CS1
 1000 FORMAT (3H0N=,I12,3H K=,I12,29HINCORRECT FOR SUBROUTINE PLSQ) CS1
 1001 FORMAT (1H1,20X,32HPLSQ POLYNOMIAL LEAST SQUARE CS1
 *24HCURVE FIT ERROR ANALYSIS// CS1
 *6H0 I,11X,9HX - GIVEN,11X,9HY - GIVEN,11X, CS1
 *10HY - FITTED,12X,5HERROR,16X,4HB(I)//) CS1
 1002 FORMAT (1X,I5,8X,5(1PE14.6,6X)) CS1
 1003 FORMAT (1HD,9X,5HEMAX=,1PE15.6,9X,5HERMS=,E15.6, CS1
 *9X,5HEMEQ=,E15.6) CS1
 END CS1

SUBROUTINE MTXEQ TRACE

CDC 6600 FTN V3.0-P351 OPT=1 06/22

```
SUBROUTINE MTXEQ(A,X,B,N,K) CS1
C MATRIX EQUATION SOLVER (7894 FORTRAN IV) CS1
C USAGE... CS1
C TO SOLVE THE LINEAR SYSTEM AX=B CS1
C CALL MTXEQ(A,X,B,N,K) CS1
C WHERE A MUST BE DIMENSIONED N X N CS1
C X MUST BE DIMENSIONED N X K CS1
C B MUST BE DIMENSIONED N X K CS1
C N IS THE NO. OF EQUATIONS (ROWS IN A,X,B) CS1
C K IS THE NO. OF SOLUTION VECTORS (COLS. IN X,B) CS1
C 664 CELLS OF BLANK COMMON ARE USED. CS1
C NOTE... TO CHANGE DIMENSIONS OF ARRAYS C AND PIV, ALSO CS1
C CHANGE VALUES OF NMAX AND NKMAX IN DATA STATEMENT. CS1
C
C DIMENSION A(N,N), B(N,K), X(N,K) CS1
C COMMON ATPE, I, IFROM, IP1, IPIV, ITO, CS1
1 J, KP, L, NP, NP1, NPJ, NPK, RM CS1
COMMON PIV(26), C(24,26) CS1
DATA NMAX, NKMAX/ 24, 26/ CS1
C
C GET ARGUMENTS N AND K. CS1
C
NP=N CS1
KP=K CS1
C
ST N AND K FOR CORRECT RANGE CS1
C
IF (NP.LE.0.OR.NP.GT.NMAX) GO TO 190 CS1
IF (KP.LE.0.OR.(NP+KP).GT.NKMAX) GO TO 190 CS1
C
MOVE ARRAYS A(I,J) AND B(I,J) INTO C(I,J) CS1
C
DO 10 J=1,NP CS1
DO 10 I=1,NP CS1
10 C(I,J)=A(I,J) CS1
DO 20 J=1,KP CS1
NPJ=NP+J CS1
DO 20 I=1,NP CS1
20 C(I,NPJ)=B(I,J) CS1
C
SET TO PERFORM N ELIMINATION SWEEPS (I=1,N) CS1
C
NP1=NP+1 CS1
NPK=NP+KP CS1
DO 120 I=1,NP CS1
IP1=I+1 CS1
C
```

SUBROUTINE HTXEQ TRACE

CDC 6600 FTN V3.0-P351 OPT=1 06/22

```
C      SEARCH FOR NEXT PIVOT ROW (I-TH PIVOT IS IN COL. I)          CS1
C
C      ATPE=0.
DO 60 J=I,NP
IF (ABS(C(J,I))-ATPE) 40,30,30
30  ATPE=ABS(C(J,I))
IPIV=J
40  CONTINUE
C
C      OPERATE ON THE PIVOT ROW
C
IF (ATPE) 210,210,50
50  DO 60 J=IPI1,NPK
60  PIV(J)=C(IPIV,J)/C(IPIV,I)
C
C      PERFORM ELIMINATIONS BELOW THE DIAGONAL (COL. I)
C
IFROM=NP
ITO=NP
70  IF (IFROM-IPIV) 80,100,80
80  RM=-C(IFROM,I)
DO 90 J=IPI1,NPK
90  C(IT0,J)=C(IFROM,J)+RM*PIV(J)
IT0=IT0-1
100 IFROM=IFROM-1
IF (IFROM-I) 110,70,70
C
C      PUT THE I-TH PIVOT ROW IN THE VACATED ROW I
C
110 DO 120 J=IPI1,NPK
120 C(I,J)=PIV(J)
C
C      NOW DO THE BACK SOLUTION
C
I=NP
130 IP1=I
I=I-1
IF (I) 140,130,130
140 DO 150 J=NPI1,I
DO 150 L=IP1,NP
150 C(I,J)=C(I,J)-C(I,L)*C(L,J)
GO TO 130
C
C      MOVE THE SOLUTION TO ARRAY X(I,J)
C
160 DO 170 J=1,KP
NPJ=NP+J
DO 170 I=1,NP
170 X(I,J)=C(I,NPJ)
180 RETURN
C
190 PRINT 1000, NP, KP
CALL SYSTEM (200,1L )
STOP
210 PRINT 1001
```

SUBROUTINE MTXEQ TRACE

CDC 6600 FTN V3.0-P351 OPT=1 06/22

CALL SYSTEM (200,1L)
STOP
1000 FORMAT(3H0N=I12,5H K=I12,3H ARE INCORRECT FOR SUBROUTINE MTXEQ)
1001 FORMAT (37H0DET(A)=8 IN CALL TO SUBROUTINE MTXEQ)
END

CS1

CS1

CS1

CS1

CS1

CS1