Condiciones iniciales

-i w1 + w2=0

Se lo representamos: $x = cost \dot{x} = -sen(t) = x^2 + (\dot{x})^2 = 1$

Si representamos x y x, la que tenemas son gráficas.

Lo que se observa es que la solución es sumpre una gráfica donde la amplitud no cambia.

d'Qué ocurre si se aplica un esquema númerico como Euler?

EVIER
$$\mathbb{T}^{n+1} = \mathbb{T}^n + \Delta t \cdot A \cdot \mathbb{T}^n = \mathbb{T}^n \left(\mathbb{I} + \Delta t \cdot A \right)$$

EDOS $\mathbb{C}^{n+1} = \mathbb{T}^n \quad x_i \in \Lambda(A)$
 $\mathbb{E} = \mathbb{E} =$

De aqui no hemos calculado los autoralores

. .

$$\Gamma_{A} = A + \Delta t i \longrightarrow W_{7} = \begin{pmatrix} A \\ i \end{pmatrix}$$

$$\Gamma_{2} = A - \Delta t i \longrightarrow W_{2} = \begin{pmatrix} -1 \\ i \end{pmatrix}$$

$$\int_{0}^{\infty} K_{1} \begin{pmatrix} A \\ i \end{pmatrix} x_{1}^{0} + K_{2} \begin{pmatrix} -1 \\ i \end{pmatrix} x_{2}^{0}$$

$$\int_{0}^{\infty} K_{1} \begin{pmatrix} A \\ i \end{pmatrix} x_{1}^{0} + K_{2} \begin{pmatrix} A \\ i \end{pmatrix} x_{2}^{0}$$

$$\int_{0}^{\infty} K_{1} \begin{pmatrix} A \\ i \end{pmatrix} x_{1}^{0} + K_{2} \begin{pmatrix} A \\ i \end{pmatrix} x_{2}^{0}$$

$$\int_{0}^{\infty} K_{1} - K_{2} = A \qquad K_{1} = A/2$$

$$\int_{0}^{\infty} K_{1} + K_{2} = 0 \qquad K_{2} = -A/2$$

orgeneuts:

$$x_{\lambda} = \int e^{2\theta}$$
 $\int e^{-i\theta}$
 $\int \int \int \Delta t dt$

$$\int \int \int \Delta t dt$$

$$\nabla^{n} = \frac{1}{2} \left(\frac{(\beta e^{i\theta})^{n} + (\beta e^{-i\theta})^{n}}{i [\beta e^{i\theta})^{n} - i (\beta e^{i\theta})^{n}} \right) = \frac{1}{2} \cdot \beta^{n} \left(\frac{2 \cos(n\theta)}{2 \cos(n\theta)} \right) = \left(\frac{\beta^{n} \cdot \cos(n\theta)}{\beta^{n} \cdot \cos(n\theta)} \right)$$

x^=g^coo(ne) - cuaudo purtamo en python, en realidad habria punto, no rectas (pa defecto une esos puntos)

$$x^{1} = g \cdot cos \theta$$
 mayor que une Hay un error de fase parque $x^{2} = g^{2} \cdot cos(20)$ mas grande que antes θ us es exactamente Δt

Por touto el exer en un punto n:

$$E^{n} = \cos(t_{n}) - g^{n} \cos(n\theta) = \cos(n\Delta t) - (1+\Delta t^{2})^{2} \cos(n\theta)$$

$$t_{n} = dz$$

$$t_{n} = n\Delta t$$

$$t_{n} = n\Delta t$$

$$de AMPLITUD.$$

$$ERROR de FASE ye que to $\theta = \Delta t$$$

Esto significa que en el caso Euler, al aplicar a una

```
Para elle, en el caso Euler lo que se hace es
t hacer Δt pequeus para retrasar el crecumiento
                                                    x(t) = cos(t) de la amplitud
           (Purtou la gráfica desfarando el cos (tn) y cos (n0)
     PARA DRDENAR EL CÓDIGO
                                                                                     argumento _ ():
Imagen _ return
          Cuando se hable de módulos
          Para identificar modulos. lista de funcionalidad. especificación
          FīSICO
                                                                                MATEMATICO
                                                               Temporal_schemes.py
Non_lueal_systems.py (Newton, bisección)
                                                                 Cauchy-Problem. py
                                                                      Ej Integral I I magen
                                                                  I = \int dx

Sure hay una interface

cada casa

def Integral (a,b, f): un sabes que

es cada casa.
                                                                           I = Integral (0.1.9)

I = Integral (a=D, b=1, f=e, 1)
                                                def ex(x):
                                                 return x * * 2
                                                                            prent ("Integral de Xº entre [0,1]", I)
Puede ouver que como posametros de entroda tengamos funciones Falta definir \mathbb{T}

Nos pidan implementos \mathbb{T}^{n+1} = \mathbb{T}^n + \Delta t F(\mathbb{T}^n, t_n) Sexãa def Eulex (\mathbb{T}, t_1, t_2, F):

Teturn \mathbb{T} + [t_2 - t_1] \cdot F(U, t_1)

Teturn \mathbb{T} + [t_2 - t_1] \cdot F(U, t_2)
                                                                            Hay que indicax que es V . V vector (de numpy) > podria ser de complejos
   Crear un mádula de esquemas temporales
                                                                     \mathcal{T}^{n+1} = \mathcal{T}^n + \underline{\Delta t} \left( F^n + F^{n+1} \right)
 2 def Geonh-Nicolson (T, t1, t2, F):
                                                                    G(U^{n+1}) = U^{n+1} - U^n - \Delta E (F^n + F^{n+1})
    Construx residuo en funcion de f
```

La amplitud aumenta con el at.

```
Grank-Nicolson (T, t1, t2, F):
       def residural (x):
           return x-V-(t2-t1)/2 @ (F(V,t1)+F(X,t2))
      xeturn Newton I fun = Residual, x p=V).
                                           de que ocurre deutro se eucarga los
                                                                esquemas temporales
5 Cauchy - Problem py
De trate...
    def Cauchy-Problem py (time_domain, temporal-schemes F, Up):
                                                                   La treve la demensión
            V [:, 0]=V_O.
                                                                   del T
        for n in range (N+1):
                                                              Tune-domain
                   T [:, n+1] = Temporal_ Scheme ( T=V[:,n), te=, t1=, F)
                                                                   [tume=n]
  Tune-domain volor con not columnas
```