Return times in infinite ergodic theory

Bruno Seefeld

January 13, 2025

1 Examples

1.1 Bernoulli shift

Let $X = \{-1,1\}^{\mathbb{Z}}$ and $\phi: X \to \mathbb{R}$ be given by $\phi(x_n)_n = x_0$. Take $U = \{x \in X | x_0 = 1\}$ which we denote by [0:1]. We have, for n > 0, $\sigma^{-n}(U) \cap U = [0:1,n:1]$. When n is even, $\sigma^{-n}(U) \cap U \cap \{|S_{\phi}(n,)| < \epsilon\} = \emptyset$; when $n \geq 3$ is odd, $\sigma^{-n}(U) \cap U \cap |\{S_{\phi}(n,)| < \epsilon\} = [0:1,W,n:1]$ with W being a block of length n-1 summing to -2.

The measure of each block is $\frac{1}{2}^{n+1}$ and there are $\binom{n-1}{\frac{n+1}{2}}$ such blocks, therefore the intersection has measure $B_n = \frac{1}{2}^{n+1} \binom{n-1}{\frac{n+1}{2}}$, so that the set R(U) is syndetic. Since $B_n \to 0$, the set $R_{\lambda}(U)$ is not syndetic though.

1.2 Some irrational rotations

2 The general case

Let (X, \mathcal{B}, μ) be an infinite measure σ - finite measure space and T a measure preserving conservative ergodic transformation. We have:

Theorem 2.1 (Hopf ratio ergodic theorem) For $f, g \in L_1(X, \mu), g \geq 0$,

$$\frac{S_n(f)}{S_n(g)} \to \frac{\int f d\mu}{\int g f \mu}$$
 a.e on X

and by taking a sequence of sets $A_n \uparrow X$ and $g_N = \mathbb{1}_{A_N}$ we get

Corollary 2.1.1 (Birkhoff ergodic theorem) For $f \in L_1(X, \mu)$

$$\frac{1}{n}S_n(f) \to 0$$
 a.e on X .

So by taking a set $A \in \mathcal{B}$ with $0 < \mu(A) < \infty$ we can apply the Dominated Convergence Theorem and get that $\frac{1}{n} \sum_{k=0}^{n-1} \mu(A \cap T^{-k}A) \to 0$. Therefore the set of λ -large return times of A cannot be syndetic, since if there was a gap τ we would have for all n large $\frac{1}{n} \sum_{k=0}^{n-1} \mu(A \cap T^{-k}A) \ge \frac{1}{\tau} \lambda \mu(A)^2 > 0$, a contradiction.

2.1 Skew-products

For a probability space (X, \mathcal{B}, μ) , an ergodic measure preserving transformation T, and an integrable function $\phi \in L_1(X, \mu)$ we can define the **skew-product** $F_{\phi}: X \times \mathbb{R} \to X \times \mathbb{R}$ by

$$F_{\phi}(x,t) = (T(x), t + \phi(x))$$

with the invariant measure being the product of μ and Lebesgue.

The second coordinate of the iterates of F_{ϕ} is given by $S_n(x)$ for n > 0 and $\sum_{j=-1}^{-n} \phi(T^j x)$ for n < 0. There is nothing special with the group \mathbb{R} , we could change it by any locally compact group and it's Haar measure.

With this last information in mind consider $\phi: X \to \mathbb{Z}$ with zero integral.

=====next writing -Atkinson for $\mathbb Z$ -atkinson showed that a certain set is infinite -the results show that it can't be syndetic for a Khitnchine type bound -can it be true if we remove the bound?.