富消防大学校だより

■火災旋風の研究

1. はじめに

町全体が燃えるような大火災の中を竜巻が襲ったとし たら、いったい何が起こるのか? さらにその竜巻が炎 の竜巻になったとしたら……。答えの一部は災害の記録 の中にあります。しかし、その対策を立てられるほどに は、記録は多くはありません。

これらの竜巻は、たまたま運悪く火災の時に発生した のではなく、火災自身が引き起こしているのではないか、 ということが古くから言われていますが、過去の実験か らもそれは嘘ではなさそうです。ではこの竜巻がどうい うメカニズムで火災によって作り出されているのか?ど んな条件がそろった時にどれくらいの強さの竜巻が発生 するのか? といった今後の対策につながるような肝心 なことになると、はっきりしたことは分かっていません。 ここでは、火災の時に発生する竜巻「火災旋風」は何 を引き起こすのかを、過去の2つの災害を例に紹介し、 消防研究センターでの最近の研究結果の一部を紹介しま す。

2. 関東大震災と石油基地火災での火災旋風

火災旋風には大きく分けて2種類あります。ひとつは 炎を含んだ竜巻状の渦で、これはまさに火柱です。もう ひとつは炎を含まない空気の竜巻状の渦です。炎を含ま ない竜巻状の渦が、火災域の上を通って炎を含んだ渦に なることもあるそうです。火災旋風の報告が最も多いの は林野火災ですが、大規模な市街地火災や石油基地火災 でも発生しています。

1923年(大正12年)に発生した関東大震災では、直後か ら火災が発生し、東京では46時間にわたって約35kmを 焼き尽くしました。火災旋風は、炎を含むもの・含まな いもの両者が、東京で110個、横浜で30個発生したとい う報告があります。これらの火災旋風は、各地で、材木、 トタン板、屋根瓦、石、レンガ、荷車などを巻き上げた そうです。中でも最も大きな被害が出たのは、今の東京 都墨田区にあった被服廠跡とよばれる工場跡地です。こ こに地震後4万人の人々が、荷車にたくさんの家財道具 を載せて避難していましたが、そこを火災旋風が襲った と言われています。結局、この一個所の避難地だけで約 3万8千人の人々が亡くなりました。この火災旋風の高 さは100m~200mという証言もあれば、2階建てくらい

という証言もあります。風速は、直径30cm以上の木がね じ折られたことから、80m/s前後と推測されています。 この火災旋風が、炎を含んだ火柱のような渦だったのか、 含んでない渦だったのか、本当の所は今となってはわか りません(著者は、当時の記録などから、初めは炎を含 んでいない渦だったと思っています)。しかし、いずれ にしろ、火災旋風に襲われたと言われる時間帯には、こ の避難地の北・東・南には火の手が迫っており、西側を 流れる隅田川の対岸にも大規模な火災域が広がっていま した。さらに避難地内は、可燃物である家財道具と人で あふれかえっているという状態でした。そこを猛烈な風 の火災旋風が襲えば、周囲に迫った火災の火の粉が可燃 物に燃え移り、瞬く間に燃え広がることは容易に想像が つきます。火災だけでなく、この猛烈な風自体によって も被害が出ており、証言によれば、何百人という人があ ずきを投げ上げたように空中に巻き上げられたり、石垣 に顔と歯がたたきつけられていたりしたそうです。

石油貯蔵所でも火災旋風が起きています。1926年4月 7日、カリフォルニア州サン・ルイス・オビスポの石油 タンクが落雷で爆発炎上しました。大量の石油が飛び散 り、周囲3.5km に広がったころから、炎の中や周囲に猛 烈な火災旋風が発生し始めたそうです。この旋風は写真 も残っていますが、炎を含まない竜巻状の渦です。ある 旋風は石油貯蔵所から1km近く移動し、そこにあった家 を巻き上げて50m近く離れた所に落とし、中にいた家族 2人が亡くなったそうです。

写真1 関東大震災で発生した火災旋風の絵 (東京都復興記念館所蔵)

3. 研究紹介

炎を含まない火災旋風については、風が吹いている状 況下で火災域の風下側で発生した、という報告が多数あ ります。実際、火炎に風をあててやると、火炎の風下側 に非常に再現性良く竜巻状の渦が発生します。現在我々 は、このようなタイプの火災旋風について研究していま

写真 2 は、実験で火炎の風下に発生した炎を含まない 火災旋風です。炎を含まない火災旋風は、自然界では砂 や土などを巻き上げるので目に見えますが、実験では床 に白い煙を流して見えるようにしています。火炎の風下 で白煙が渦を巻きながら立ち上がっているのがわかりま す。渦を下から見た写真(床は透明ガラスで下から覗け ます)も載せていますが、時計回り、反時計回りの渦が 交互に現われている様子がわかります。1963年にアイス ランドで海底火山が爆発した際に、海面から上がる噴煙 の風下に、これらの実験写真とよく似た高さ400m程の 竜巻状の渦がペアで発生している写真が残っています。 規模は違っても、同じような現象が起きているのだと思 います。

ところで、この実験写真のような火炎の風下に発生す る火災旋風が上に向かって伸びるのはなぜでしょう? 火災旋風の上の方に、何か吸い込むものがあるのでしょ うか? 答えは炎からの上昇気流の中にあると考えてい ます。炎に風があたると、炎から立ち上がる上昇気流は、

直径90cmの容器内のメタノール火炎風下に発生する火災 旋風。左から右に風を吹かせている。 上:横から撮影。下:下から撮影。

(Shinohara, M., Matsushima, S., Proc. IMECE2007-41711, ASME, 2007より)

炎に風があたると、炎からの上昇気流は傾いて二股に分か れ渦を巻く

(Shinohara, M. and Kudo, K., Proc.6th AOSFST, pp.120-131, 2004 $\ensuremath{\mbox{\ensuremath{\upskel k}}}\xspace$)

図1のように風下に傾いて二股に分かれ、それぞれが渦 を巻きます。上昇気流に黒煙が含まれている場合には、 黒煙が渦を巻いているのを見ることができます。これら の2つ渦に挟まれた部分には上向きの気流ができます。 この上向きの気流は、図中に示した速度場にあるように、 地上付近にまで及んでいます。この上向きの気流が火災 旋風を吸い上げているのではないかと考えています。そ の証拠に、写真2で火災旋風は真上ではなく左上、つま り風上の方に向かって伸び上がっています。風下に流さ れるのならいざ知らず、なぜ風上に向かうのでしょう か? 風で傾いた火炎からの上昇気流は、火炎の近くで は火炎が伸びるそのほぼ延長線上にあります。つまり写 真2では、火炎から右上の方向に上昇気流が伸びている ことになります。すると、図1で説明した上昇気流中の 2つの渦に挟まれた上向きの気流は、写真2では左上方 向に向かっていることになります。したがって、火災旋 風はこの上向きの気流に吸い込まれるために、風上側 (写真2の左上方向)に伸び上がっていると考えると、 つじつまが合います。

4. おわりに

火災旋風の発生事例と研究結果の一端を紹介しまし た。火災旋風は実際の事例が少ないため、その研究は実 験に頼らざるを得ない部分があります。実際の火災旋風 を見る可能性が最も高いのは消防職員の方々です。こう いう状況でこういう火災旋風が発生していた、などとい う情報がございましたら、ぜひとも消防研究センターの 問い合わせ窓口 toiawase2009@fri.go.jp までお知らせ ください。一枚の写真、一つの情報が、火災旋風の発生 メカニズム、発生条件の解明を飛躍的に進める可能性が ありますので。お問い合わせについても前記の問い合わ せ窓口までお願いします。