ECON2125/6012

Fedor Iskhakov

CONTENTS

1	Welcome	3
2	Plan for this lecture	5
3	Instructor	7
4	Timetable	9
5	Course web pages	11
6	Tutorials	13
7	Tutors	15
8	Prerequisites	17
9	Focus?	19
10	Assessment	21
11	Questions	23
12	Attendance	25
13	Comments for lectures notes/slides	27
14	Definitions and facts	29
15	Facts	31
16	Note on Assessments	33
17	Reading materials	35
18	Key points for the administrative part	37
19	Optimization intro, examples	39
20	Elements of set theory and analysis	41
21	Elements of linear algebra	43
22	Elements of Probability	45

23	Fundamentals of optimization	47
24	Unconstrained optimization	49
25	Constrained optimization	51
26	Practical session	53
27	Envelope and maximum theorems	55
28	Dynamic optimization	57
29	Revision	59

Preliminary schedule

Week	Date	Topic	Notes
1	July 27	Introduction	Recorded lecture
2	Aug 3	Optimization intro, examples	Tutorials start
3	Aug 10	Elements of set theory and analysis	
4	Aug 17	Elements of linear algebra	
Test		15%	Submit by Aug 23
5	Aug 24	Elements of Probability	
6	Aug 31	Fundamentals of optimization	
Test		15%	Submit by Sept 3
Break			2 weeks
7	Sept 21	Unconstrained optimization	
8	Sept 28	Constrained optimization	
Test		15%	Submit by Oct 4
9	Oct 5	Practical session/invited speaker	TBA
10	Oct 12	Envelope and maximum theorems	
11	Oct 19	Dynamic optimization	
12	Oct 26	Revision	
Exam		55%	During exam period

Links to external resources

Course Wattle page Schedule, announcements, teaching team contacts, recordings, assignement, grades Course overview Class summary General course description in ANU Programs and Courses

CONTENTS 1

2 CONTENTS

ONE

WELCOME

Course title: "Optimization for Economics and Financial Economics"

- Elective second year course in the *Batchelor of Economics* program ECON2125
- Compulsory second math course in the Master of Economics program ECON6012

The two courses are identical in content and assessment, but final grades may be adjusted depending on your program.

TWO

PLAN FOR THIS LECTURE

- 1. Organization
- 2. Administrative topics
- 3. Course content
- 4. Motivation
- 5. Self-learning materials

THREE

INSTRUCTOR

Fedor Iskhakov Professor of Economics at RSE

• Office: 1021 HW Arndt Building

• Email: fedor.iskhakov@anu.edu.au

• Web: fedor.iskh.me

• Contact hours: Thursday 9:30-11:30

FOUR

TIMETABLE

Face-to-face:

- Lectures: Thursday 15:30 17:30
- Location: DNF Dunbar Lecture Theatre, Physics Bldg 39A

Online:

- Echo-360 recordings on Wattle
- All notes and materials on optim.iskh.me

Face-to-face is strictly preferred

FIVE

COURSE WEB PAGES

- Wattle Schedule, announcements, teaching team contacts, recordings, assignement, grades
- Online notes Lecture notes, slides, assignment tasks
- Lecture slides should appear online the previous day before the lecture
- Details on assessment including the exam instructions will appear on Wattle

SIX

TUTORIALS

• Enrollments open on Wattle

Tutorial questions

- posted on the course website
- not assessed, help you learn and prepare

Tutorials start on week 2

14 Chapter 6. Tutorials

SEVEN

TUTORS

Wending Liu

Email: Wending.Liu@anu.edu.auRoom: 1018 HW Arndt Building

• Office hours: TBA

Chien Yeh

• Email: Wending.Liu@anu.edu.au

• Room: Room 2106, Copland Bld (24)

• Office hours: TBA

16 Chapter 7. Tutors

EIGHT

PREREQUISITES

See Course overview and Class summary

What you actually need to know:

- basic algebra
- basic calculus
- some idea of what a matrix is, etc.

 \approx content of EMET1001/EMET7001 math course

NINE

FOCUS?

Q: Is this optimization or a general math-econ course?

A: A general course on mathematical modeling for economics and financial economics. Optimization will be an important and recurring theme.

20 Chapter 9. Focus?

TEN

ASSESSMENT

- 3 timed open book tests (15% each)
- Final exam (55%)

The three tests spread out through the semester will check the knowledge of the immediately preceding material. The final closed book in-person exam will cover the entire course.

ELEVEN

QUESTIONS

- 1. Administrative questions: RSE admin
- Bronwyn Cammack Senior School Administrator
- Email: enquiries.rse@anu.edu.au
- "I can not register for the tutorial group"
- 2. Content related questions: please, refer to the tutors
- "I don't understand why this function is conves"
- 3. Other questions: to Fedor
- "I'm working hard but still can not keep up"
- "Can I please have extra assignment for more practice"

TWELVE

ATTENDANCE

- Please, do not use email for instructional questions\Instead make use of the office hours
- Attendance of tutorials is *very highly* recommended You will make your life much easier this way
- Attendance of lectures is *highly* recommended But not mandatory

THIRTEEN

COMMENTS FOR LECTURES NOTES/SLIDES

- Cover exactly what you are required to know
- Code inserts are the exception, they are not assessable

In particular, you need to know:

- The definitions from the notes
- The facts from the notes
- How to apply facts and definitions

If a concept in not in the lecture notes, it is not assessable

FOURTEEN

DEFINITIONS AND FACTS

The lectures notes/slides are full of definitions and facts.

Definition

Functions $f:\mathbb{R} \to \mathbb{R}$ is called *continuous at* x if, for any sequence $\{x_n\}$ converging at x, we have $f(x_n) \to f(x)$.

Possible exam question: "Show that if functions f and g are continuous at x, so is f+g."

You should start the answer with the definition of continuity:

"Let $\{x_n\}$ be any sequence converging to x. We need to show that $f(x_n) + g(x_n) \to f(x) + g(x)$. To see this, note that ..."

FIFTEEN

FACTS

In the lecture notes/slides you will often see

Fact

The only N-dimensional subset of \mathbb{R}^N is \mathbb{R}^N .

This means either:

- theorem
- proposition
- lemma
- · true statement

All well known results. You need to remember them, have some intuition for, and be able to apply.

32 Chapter 15. Facts

SIXTEEN

NOTE ON ASSESSMENTS

Assessable = definitions and facts + last year level math + a few simple steps of logic

Exams and tests will award:

- Hard work
- Deeper understanding of the concepts

In each question there will be a easy path to the solution

SEVENTEEN

READING MATERIALS

Primary reference: lecture slides

Books:

- "Mathematics for Economists" (1994) by Simon, C. and L. Blume
- "A First Course in Optimization" (1996) Theory by Rangarajan Sundaram
- "A Primer in Econometric Theory" (2016) by John Stachurski

Readings are supplementary but will provide a more detailed explanation with additional examples.

• Each lecture will reference book chapters

EIGHTEEN

KEY POINTS FOR THE ADMINISTRATIVE PART

- Tutorials start next week, please register before the next lecture
- Course content = what's in lecture notes/slides
- Lecture slides are available online and will be updated throughout the semester
- Optimization is a recurring theme but not the only topic

NINETEEN

OPTIMIZATION INTRO, EXAMPLES

$\overline{}$			D -		
G	н	А	P	ΙE	к

TWENTY

ELEMENTS OF SET THEORY AND ANALYSIS

C	н	Δ	P٦	ΓF	R

TWENTYONE

ELEMENTS OF LINEAR ALGEBRA

C	н	Δ	P٦	ΓF	R

TWENTYTWO

ELEMENTS OF PROBABILITY

$\hat{}$	ш	Λ	PΤ	┎ᆮ	n
٠.	п	ч	_	_	ь

TWENTYTHREE

FUNDAMENTALS OF OPTIMIZATION

	-			_
\sim L	Λ	О٦	ГЕ	
СП	н	_		п

TWENTYFOUR

UNCONSTRAINED OPTIMIZATION

C	н	Δ	P٦	ΓF	R

TWENTYFIVE

CONSTRAINED OPTIMIZATION

TWENTYSIX

PRACTICAL SESSION

TWENTYSEVEN

ENVELOPE AND MAXIMUM THEOREMS

TWENTYEIGHT

DYNAMIC OPTIMIZATION

TWENTYNINE

REVISION