Functions:

An equation -x, y Two variables

Function notation -x, f(x) y = 21x + 4Equation form f(x) = 21x + 4If you give a function an

"x" Value, it will always equation a function?

Give you the same "y"

Functions are mathematical machines:

Is this a function?

a function has an input of 7 and an output of 12.

give me an example of a function that would do this

$$f(x) = x + 5$$

 $f(x) = x + 5$
 $f(x) = 2x - 2$
 $f(x) = 3x - 9$
 $f(x) = 12$

Some functions have a limited # of x values (inputs) that will work.

The list of possible x-values is called the "domain"
$$y = x + 2 \qquad (1, 5, 10, 20, 50, 100) \text{Restricted by definition}$$

$$y = \frac{7}{x} \qquad (x \neq 0) \qquad \text{Restricted by function}$$

$$y = x + 1 \qquad \text{No restriction}$$

The possible output values of a function are called the range.

$$y=|x|$$
 range: ?

× domain	range	
-202 -15	- 20 B	We can show functions as a table (angle: 4>0

Input	Output
1	15
3	20
5	15
7	20

Function!

Shoe Sizes The table shows men's shoe sizes in the United States and Australia. Write a rule for the Australian size as a function of the United States' size.

U.S. size	5	6	7	8	9	10
Australian size	3	4	5	6	7	8

U.S.
$$sizc = X$$

Aus. $sizc = f(x)$
 $f(x) = x - 2$

$$F = \frac{9}{5}c + 3a$$
 O_C
 $F = \frac{9}{5}c + 3a$
 O_C
 O_C

true functions can be graphed on an x-y axis - any vertical line will only hit the graph once (at most)

$$y = 6x - 4$$

What's the rule?

	y=6x
X	у
	<u>Д</u>
2	8
3	1
4	20

Metal Screws The table shows the number of threads per inch on a screw as a function of screw size.

Screw size number, <i>x</i>	0	1	2	3	4	5	6
Number of threads per inch, <i>y</i>	80	72	64	56	48	44	40

- **a.** Graph the function.
- **b.** Describe how the number of threads per inch changes as the screw size increases.
- **c.** Would it be reasonable to expect a #8 screw to have 32 threads per inch? *Explain*.

Homework:

- p. 38 4-18 (even), 24
- p. 46 2-8 (even), 16, 19