STA513 – Analisis Statistika untuk Bisnis, Ekonomi, dan Indu<mark>stri</mark>

Semester Ganjil 2020/2021

Pengujian Hipotesis

untuk rata-rata dan proporsi

disusun oleh:

Bagus Sartono
bagusco@gmail.com
0852-1523-1823

Prodi Statistika dan Sains Data

Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor

2020

Apa yang dimaksud hipotesis?

- Hipotesis adalah pernyataan atau klaim terhadap nilai dari parameter:
 - rata-rata populasi

teladan:Rata-rata pengeluaran internet per bulan seorang mahasiswa adalah μ = 150 ribu rupiah

proposi populasi

teladan: proporsi mahasiswa yang mengakses internet melalui internet rumahan (wifi) adalah p = 0.34

- Hipotesis Nol (null hypothesis, H0)
 - pernyataan mengenai parameter populasi yang akan diuji
 - memuat tanda "=", atau ≥, ≤
 - menyatakan status quo
- Hipotesis Tandingan (alternative hypothesis, H1)
 - berlawanan dengan H0
 - Biasanya merupakan pernyataan yang didukung oleh peneliti

teladan:

- rata-rata waktu kerja ASN selama WFH adalah 8 jam (H0: μ = 8)
- rata-rata waktu kerja ASN selama WFH tidak sama dengan 8 jam (H1: $\mu \neq 8$)

Sumber: Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Proses Pengujian Hipotesis

Pernyataan: rata-rata waktu kerja ASN selama WFH adalah 8 jam

 H_0 : $\mu = 8$

Seberapa mungkin rata-rata 6.5 jam terjadi jika benar bahwa μ = 8?

Jika kecil kemungkinannya....

Tolak H0

Andaikan didapatkan rata-rata contoh

$$\bar{x} = 6.5$$

Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Alasan menolak H₀

H0: $\mu = 8$.

Taraf Nyata (level of significance), α

- digunakan sebagai batas "seberapa kecil" kemungkinan rata-rata contoh jika H0 benar
 - menentukan wilayah penolakan H0
- Nilai yang biasa digunakan 0.01, 0.05, or 0.10
- Ditentukan di awal oleh peneliti
- Menentukan titik kritis pengujian hipotesis

Taraf Nyata dan Wilayah Penolakan

Taraf Nyata = α

→ melambangkan
nilai titik kritis

wilayah penolakan adalah yang di-arsir biru

Kesalahan dalam Mengambil Keputusan

- Type I Error (Galat Tipe I)
 - Menolak hipotesis yang benar
 - ullet Peluang terjadinya nya dinotasikan lpha
 - Disebut juga taraf nyata pengujian
 - Ditentukan oleh peneliti di awal penelitian
- Type II Error (Galat Tipe II)
 - Gagal menolak hipotesis nol yang salah
 - Peluang terjadinya dinotasikan β
- Galat Tipe I dan Galat Tipe II tidak pernah terjadi bersamaan
- Jika α diperkecil, maka β membesar

Kemungkinan Kejadian hasil Pengujian Hipotesis

	Kondisi Sebenarnya	
Keputusan	H₀ Benar	H₀ Salah
Tidak Tolak H ₀	Tepat (1 - α)	Type II Error (β)
Tolak H ₀	Type I Error (α)	Tepat (1-β)

Kejadian (Peluang)

Pengujian Hipotesis untuk Rata-Rata

- untuk populasi yang menyebar normal, ada dua uji yang dapat digunakan
- Uji Z (Z test), digunakan jika ragam (σ^2) atau simpangan baku (σ) populasi diketahui
- Uji t (t test), digunakan jika ragam (σ^2) atau simpangan baku (σ) populasi diketahui

Statistik Uji dan Wilayah Penolakan

Uji Z

statistik uji
$$Z_{hitung} = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

Bentuk Hipotesis	Wilayah Penolakan H ₀
$H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$	Tolak H ₀ jika $ z_{hitung} > z_{\alpha/2}$
$H_0: \mu \ge \mu_0$ $H_1: \mu < \mu_0$	Tolak H_0 jika $z_{hitung} < -z_{\alpha}$
$H_0: \mu \le \mu_0$ $H_1: \mu > \mu_0$	Tolak H ₀ jika z _{hitung} > z _α

Uji t statistik uji
$$t_{hitung} = \frac{\overline{x} - \mu_0}{\sqrt[S]{n}}$$

Bentuk Hipotesis	Wilayah Penolakan H ₀
$H_0 : \mu = \mu_0$ $H_1 : \mu \neq \mu_0$	Tolak H ₀ jika $ t_{hitung} > t_{(\alpha/2; db=n-1)}$
$H_0: \mu \ge \mu_0$ $H_1: \mu < \mu_0$	Tolak H ₀ jika $t_{hitung} < -t_{(\alpha; db=n-1)}$
$H_0: \mu \le \mu_0$ $H_1: \mu > \mu_0$	Tolak H_0 jika $t_{hitung} > t_{(\alpha; db=n-1)}$

Nilai p (p-value) pengujian

- p-value: peluang memperoleh statistik uji lebih ekstrim (≤ atau ≥) daripada yang diperoleh dari data contoh saat ini jika H0 benar
 - disebut juga taraf nyata teramati (observed level of significance)
 - Nilai α terkecil agar H₀ bisa ditolak
- Pengambilan keputusan berdasarkan nilai p
 - Jika nilai p < $\alpha \rightarrow$ tolak H0
 - Jila nilai $p \ge \alpha \rightarrow \text{tidak tolak H0 (terima H0)}$

memperoleh p-value untuk uji hipotesis satu arah ke kanan

p-value =
$$P(Z > \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}, jika H_0 benar)$$

= $P(Z > Z_{hitung} | \mu = \mu_0)$

memperoleh p-value untuk uji hipotesis satu arah ke kiri

p-value =
$$P(Z < \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}, jika H_0 benar)$$

= $P(Z < Z_{hitung} \mid \mu = \mu_0)$

memperoleh p-value untuk uji hipotesis dua arah

p-value =
$$2 * P(Z > \left| \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \right|$$
, jika H_0 benar)
= $2 * P(Z > |Z_{hitung}| | \mu = \mu_0)$

ilustrasi

Manajer SDM perusahaan memperkirakan bahwa rata-rata jam kerja pegawai saat WFH lebih dari 8 jam. Perusahaan ingin menguji hal tersebut. (nilai simpangan baku, σ , diasumsikan sebesar 1.5 jam). Andaikan dari survei terhadap 64 orang diperoleh rata-rata 8.2 jam.

Bentuk hipotesis

 H_0 : $\mu \le 8$ rata-rata jam kerja tidak melebihi 8 jam per hari

 H_1 : $\mu > 8$ rata-rata jam kerja lebih dari 8 jam per hari

statistik uji

$$z_{\text{hitung}} = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{8.2 - 8.0}{\frac{1.5}{\sqrt{64}}} = 1.07$$

karena $z_{hitung} = 1.07 < 1.28$

- → Tidak Tolak H₀
- → Belum cukup bukti untuk mengatakan jam kerja per hari lebih dari 8 jam

$$P(\bar{x} \ge 8.2 | \mu = 8.0)$$
 menghitung nilai-p

karena nilai-p > α \rightarrow Tidak Tolak H0

 $\hat{n} - n$

Pengujian Hipotesis untuk Proporsi

- Jika ukuran contoh besar, sebaran \hat{p} dapat didekati menggunakan sebaran normal
 - Pengujian hipotesis proporsi dapat menggunakan Uji Z (Z-test for proportion)
- Jika ukuran contoh tidak cukup besar... metodenya akan dibahas pada diskusi yang lain.
- Rule of thumb mengatakan ukuran contoh besar: $n\hat{p}(1-\hat{p}) > 9$

Uji Z untuk Proporsi

ctatictik mii

$Z_{hitung} = \frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$
Wilayah Penolakan H ₀
Tolak H_0 jika $ z_{hitung} > z_{\alpha/2}$
Tolak H_0 jika $z_{hitung} < -z_{\alpha}$
Tolak H ₀ jika $z_{hitung} > z_{\alpha}$

Example: Z Test for Proportion

A marketing company claims that it receives 8% responses from its mailing. To test this claim, a random sample of 500 were surveyed with 25 responses. Test at the α = .05 significance level.

Check:

Our approximation for P is $\hat{p}=25/500=.05$

$$nP(1 - P) = (500)(.05)(.95)$$

= 23.75 > 9

Z Test for Proportion: Solution

$$H_0: P = .08$$

 $H_1: P \neq .08$

$$\alpha = .05$$

$$n = 500, \hat{p} = .05$$

Critical Values: ± 1.96

Test Statistic:

$$z = \frac{\hat{p} - P_0}{\sqrt{\frac{P_0(1 - P_0)}{n}}} = \frac{.05 - .08}{\sqrt{\frac{.08(1 - .08)}{500}}} = \frac{-2.47}{}$$

Decision:

Reject H_0 at $\alpha = .05$

Conclusion:

There is sufficient evidence to reject the company's claim of 8% response rate.

p-Value Solution

(continued)

Calculate the p-value and compare to α

(For a two sided test the p-value is always two sided)

Reject H_0 since p-value = .0136 < α = .05

Terima Kasih

Inspiring Innovation with Integrity in Agriculture, Ocean and Biosciences for a Sustainable World