Wydział	lmię i nazwisko		Rok	Grupa	Zespół
WIEIT	1.		2020	15:45	7
	2.		2020		
PRACOWNIA	Temat:				Nr ćwiczenia
FIZYCZNA		25			
WFiIS AGH					20
Data wykonania	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA
20.10.2020	23.10.2020				
20.10.2020	20.10.2020				

Interferencja fal akustycznych

 $Dzmitry\ Mikialevich$

Wojciech Sikora

Spis treści

1		2
	1.2 Opis ćwiczenia	2
2	Układ Pomiarowy	2
3	Przebiegi doświadczenia	3
4	Wyniki Pomiarów	3
5	Opracowanie wyników Pomiarów	3
	5.1 Obliczenia i niepewności	3
	5.1.1 Obliczenia	3
	5.1.2 Niepewności	4
	5.2 Wykres otrzymanych wartości v w funkcji częstotliwości drgań źródła f	4
	· · · · · · · · · · · · · · · · · · ·	4
	5.4 Prędkość dzwięku dla temperatury $t_0 = 0$ °C	5
	5.5 Porównanie obliczonej prędkości dźwięku z wartością tablicową	
		5
	5.7 Wnioski	6

1 Wstęp

1.1 Cel ćwiczenia

Pomiar predkości dźwięku w powietrzu przy użyciu rury Quinckego. Wyznaczenie wykładnika κ w równaniu adiabaty.

1.2 Opis ćwiczenia

Doświadczenie wykonujemy z wykorzystaniem równania fali dzwiękowej:

$$y = y_m sin(kx - \omega t)$$

Superpozycja dwóch fal jest określona przy pomocy równania:

$$y = y_m sin(\omega t - \phi)$$

gdzie:

$$y_m = \sqrt{y_{m1}^2 + y_{m2}^2 + 2y_{m1}y_{m2}cosk(x_1 - x_2)}$$

Celem było obliczenie odległości pomiędzy kolejnymi minimami amplitudy nakładających się dwóch fal. W ten sposób otrzymaliśmy długość fali, która pozwoliła nam obliczyć prędkość dźwięku ze wzoru:

$$\upsilon = f \cdot \lambda$$

Na dokładność wykonanego pomiaru wpływają czynniki takie jak temperatura powietrza, czy - w mniejszym stopniu - jego wilgotność.

2 Układ Pomiarowy

W skład układu pomiarowego weszły następujące elementy:

- 1. Rura Quinckego
- 2. Generator mocy 20 Hz 20 kHz
- 3. Licznik do odczytu częstotliwości
- 4. Oscyloskop

Rysunek 1: Badany układ rury Quinckego

3 Przebiegi doświadczenia

W ramach doświadczenia przeprowadziliśmy 11 serii pomiarów odległości między minimami amplitudy przy różnych częstotliwościach dźwięku. Z każdej serii pomiaru uzyskaliśmy średnią, która pozwoliła ustalić długość fali, a w konsekwencji - prędkość rozchodzenia się dźwięku. Badane częstotliwości były z zakresów 800-1200 Hz oraz 2000-3200 Hz

4 Wyniki Pomiarów

Częstotliwość f	Położenia Walajnych pojnim św. [mm]				Różnica położeń				Średnia różnica Długość fali	Prędkość Dzwięku		
[TT]	Kolejnych minimów [mm]				Kolejnych minimów [mm]						·	
[Hz]	a_1	a_2	a_3	a_4	a_5	Δ_1	Δ_2	Δ_3	Δ_4	[mm]	[mm]	[m/s]
873	133	263				130				130	260	226,98
936	59	255	438			196	183			189,5	379	354,744
997	65	168	245	418		103	77	173		117,66	235,32	234,614
1136	85	218	370			133	152			142,5	285	323,76
2002	71	154	247	335	421	83	93	88	86	87,5	175	350,35
2128	58	135	219	301	380	77	84	82	79	80,5	161	342,608
2238	45	124	200	276	355	79	76	76	79	77,5	155	346,89
2368	11	41	120	152	223	30	79	32	71	53	106	251,008
2555	40	76	150	214	286	36	74	64	72	61,5	123	314,265
2796	34	98	158	220	280	64	60	62	60	61,5	123	343,908
3027	31	86	147	203	261	55	61	56	58	57,5	115	348,105

Tabela 1: Pomiary położeń minimów i obliczenia prędkości dzwięku

Temperatura w pomieszczeniu: $T=21.5\,^{\circ}\mathrm{C}=294,65\,K$, Niepewność pomiarowa $u(T)=0.5\,^{\circ}\mathrm{C}=0,5\,K$

5 Opracowanie wyników Pomiarów

5.1 Obliczenia i niepewności

5.1.1 Obliczenia

Za pomocą następujących wzorów uzyskaliśmy wartośći:

Różnic położeń kolejnych minimów:

$$\Delta_i = a_{i+1} - a_i$$

Średnią róźnicę:

$$\overline{\Delta} = \frac{\sum \Delta_i}{n}$$

Długość fali:

$$\lambda = 2 \cdot \overline{\Delta}$$

Prędkość fali:

$$\upsilon = f \cdot \lambda$$

Gdzie:

 a_i - i-ty minimum,

n - ilość różnic położeń kolejnych pomiarów,

f - częstotliwość.

5.1.2 Niepewności

Częstotliwość f [Hz]	Średnia różnica [mm]	$u(\overline{\Delta})$ [mm]	Prędkość dzwięku $[m/s^2]$	$u(v) [m/s^2]$
873	130	2	226,98	1,75
936	189,5	6,5	354,744	6,09
997	117,66	28,67	234,614	28,59
1136	142,5	9,5	323,76	10,8
2002	87,5	2,1	350,35	4,2
2128	80,5	1,56	342,608	3,32
2238	77,5	0,87	346,89	1,95
2368	53	12,82	251,008	30,36
2555	61,5	8,78	314,265	22,44
2796	61,5	0,96	343,908	2,69
3027	57,5	1,33	348,105	4,03

Tabela 2: Niepewności typu A

Na Tablicy 2 przedstawione są niepewności pomiaru typu A, oprócz niepewności dla f = 873 Hz, która była oszacowana jako 2 mm.

5.2 Wykres otrzymanych wartości v w funkcji częstotliwości drgań źródła f

Rysunek 2: Wykres otrzymanych wartości v w funkcji częstotliwości drgań źródła f

5.3 Wartość średnia \bar{v} i niepewność standardową $\mathbf{u}(\mathbf{v})$

Jak widać z Rysunku 2 i Tablicy 2 mamy kilka błędów grubych, np. dla częstotliwości 997, 2368 i 2555 Hz, u(v) dużo przekracza oczekiwaną wartość. W związku z tym pomjamy te częstotliwości w dalszych obliczeniach.

Wartość średnia prędkości:

$$\overline{v} = \frac{\sum v_i}{n} = 329,67 \, m/s$$

Niepewność standartowa:

$$u(v) = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n(n-1)}} = 15,02 \, m/s$$

Taka duża wartość niepewności jest związana z trudnością wyznaczania dokładnego miejsca minimum i niedokładne mierzenie średniej odległości między kolejnymi odchyleniami.

5.4 Prędkość dzwięku dla temperatury $t_0 = 0$ °C

Korzystając ze wzoru na prędkość dźwięku w gazach przeliczamy zmierzoną prędkość na prędkość dla temperatury $T_0=0\,^{\circ}\mathrm{C}=273.15~K$

Zmierzona przed rozpoczęciem pomiarów temperatura pomieszczenia wynosiła $T=21.5\,^{\circ}\mathrm{C}=294.65\,K$

$$\upsilon_0 = \overline{\upsilon}\sqrt{\frac{T_0}{T}}$$

$$v_0 = 317, 41 \, m/s$$

5.5 Porównanie obliczonej prędkości dźwięku z wartością tablicową

Korzystając z prawa przenoszenia niepewności:

$$u(v_0) = u(v)\sqrt{\frac{T_0}{T}} = 13,92 \, m/s$$

Przyjmując współczynnik k = 2 liczymy niepewność rozszerzoną:

$$U(v_0) = k \cdot u(v_0) = 2 \cdot 13,92 = 27,84 \, m/s$$

Wartość tablicowa prędkości dźwięku dla suchego powietrza w temperaturze 0°C wynosi 331,5 m/s.

$$|331, 5 - 317, 41| = 14,09 < 27,84 = U(v_0)$$

Wartość tablicowa jest mniejsza od otrzymanych wyników pomiarów, a obliczona niepewność większa niż faktyczny błąd.

5.6 Wartość wykładnika adiabaty

Korzystając ze wzoru na prędkość dźwięku w gazach:

$$\upsilon = \sqrt{\frac{\kappa RT}{\mu}}$$

Gdzie T - temperatura bezwzględna, R - stała gazowa, μ - masa molowa molekułu gazu, a κ - wykładnik adiabaty.

Obliczamy masę molową dla powietrza (mieszaniny azotu (78%), tlenu (21%) i argonu(1%)) jako średnią ważoną mas molowych składników:

$$\mu = 0.78 \cdot 28 + 0.21 \cdot 32 + 0.01 \cdot 40 = 29.86 \frac{g}{mol} = 0.02986 \frac{kg}{mol}$$

Stała $R=8,31\;\frac{J}{mol\cdot K}$

Przekształcamy wzór, uzyskując wykładnik adiabaty:

$$\kappa = \frac{\mu v^2}{RT} = 1,28$$

Z prawa przenoszenia niepewności względnej:

$$u(\kappa) = \sqrt{\left[\frac{2v\mu}{RT}u(v)\right]^2 + \left[\frac{v^2\mu}{RT^2}u(T)\right]^2} = 0,87$$

5

5.7 Wnioski

- Dowiedzieliśmy się, że za pomocą rury Quinckiego jest możliwe szacowanie prędkości dzwięku w dowolnym gazie.
- Obliczono średnią prędkość dzwięku $v=329,67\,m/s$ z niepewnością $u(v)=15,02\,m/s$ w temperaturze T = 294,65 [K] zmierzonej z niepewnością u(T) = 0,5 K. W związku z niedokładnym oszacowaniem minimumów w niektórych przypadkach (szczególnie dla małych częstotliwości) wartość niepewności jest duża, co nie przeszkadza w analizie doświadczenia i uzyskania prędkości średniej dzwięku, która mieści się w niepewności pomiarowej, i dalszym szacowaniu wartości adiabaty.
- Z wykorzystaniem pomiarów obliczono prędkość dźwięku w temperaturze równej T=273,15 K, która wyniosła $v_0 = 317,41 \, m/s$ z niepewnością rozszerzoną równą $u(v_0) = 27,84 \, m/s$
- Obliczono wykładnik adiabaty $\kappa=1,28$ z niepewnością $u(\kappa)=0,87$ co zgadza się wartością tablicową