PREDICTION OF SEASONAL FLU VACCINES UPTAKE ¶

Student name: Paul Mawa Musau

Scheduled project review date: 24/05/2023

· Student title: Data Scientist

Problem Statement

This study aims to create a prediction model to anticipate whether or not people will get a flu shot during the annual flu season. The flu season occurs on an annual basis, and each year people choose whether or not to get the flu shot. The model should be able to discover patterns and factors that influence people's vaccination decisions using historical data. The goal is to accurately predict whether an individual will get the flu shot or not by assessing data such as age groups, genders, and other relevant features.

Project Objectives

To grasp the statistical implications of variables such as age groups, genders, and the existence of children in homes, analyze them.Respond to enquiries about targeting certain subsets of the population to increase overall immunization rates.Excluding any specified aims,

investigate the factors influencing individuals' decision to obtain the flu vaccination during the annual flu season. Create a predictive model to forecast whether or not people will receive the

Data Description The datasets used for this project were downloaded from Kaggle (%22https://www.kaggle.com/datasets/arashnic/flu-data). It contains information on the social, economic and demographic backgrounds of the respondents as well as their opinions on the H1N1 and seasonal flu vaccines. The training data has 26707 rows and 36 columns. The information contained with the columns is as follows as described by the data dictionary (%22https://www.kaggle.com/datasets/arashnic/flu-data):

No.	Column	Description
1	respondent_id	Unique and random identifier for the respondents
2	h1n1_concern	Level of concern about H1N1 flu with 0 being not concerned at all and 3 being very concerned
3	h1n1_knowledge	Level of knowledge about H1N1 with 0 being no knowledge and 2 being a lot of knowledge
4	behavioral_antiviral_meds	Has taken any antiviral medication (0-no,1-yes)
5	behavioral_avoidance	Has avoided close contact with anyone with flu-like symptoms (0-no,1-yes)
6	behavioral_face_mask	Has bought a face mask (0-no,1-yes)
7	behavioral_wash_hands	Has frequently washed hands or used hand sanitizer (0-no,1-yes)
8	behavioral_large_gatherings	Has reduced time at large gatherings (0-no,1-yes)
9	behavioral_outside_home	Has reduced contact with people outside of own household (0-no,1-yes)
10	behavioral_touch_face	Has avoided touching eyes, nose or mouth (0-no,1-yes)
11	doctor_recc_h1n1	H1N1 flu vaccine was recommended by doctor (0-no,1-yes)
12	doctor_recc_seasonal	H1N1 flu vaccine was recommended by doctor (0-no,1-yes)
13	chronic_med_condition	Has any of the following chronic conditions: asthma or any lung condition, a heart condition, a kidney condition, sickle cell anaemia or any other anaemia, a neurological or neouromuscular condition, a liver condition, or a weakened immune system as a result of a chronic illness or medicines taken for a chronic illness (0-no,1-yes)
14	child_under_6_months	Has regular close contact with a child under the age of six months (0-no,1-yes)
15	health_worker	Is a healthcare worker (0-no,1-yes)
16	health_insurance	Has health insurance (0-no,1-yes)
17	opinion_h1n1_vacc_effective	Respondent's opinion on the efficacy of the vaccine with 1 being not at all effective and 5 being very effective
18	opinion_h1n1_risk	Respondent's opinion about risk of getting sick with H1N1 flu without vaccine with 1 being very low and 5 being very high
19	opinion_h1n1_sick_from_vacc	Respondent's worry of getting sick from H1N1 vaccine with 1 being not worried at all and 5 being very worried
20	opinion_seas_vacc_effective	Respondent's opinion about seasonal flu vaccine effectiveness with 1 being not effective at all and 5 being very effective

No.	Column	Description
21	opinion_seas_risk	Respondent's opinion about risk of getting sick with seasonal flu without vaccine with 1 being very low and 5 being very high
22	opinion_seas_sick_from_vacc	Respondent's worry of getting sick from taking seasonal flu vaccine with 1 being not worried at all and 5 being very worried
23	age_group	Age group of respondents
24	education	Self-reported educational level
25	race	Race of respondent
26	sex	Sex of respondent
27	income_poverty	Household annual income of respondent with respect to 2008 Census poverty thresholds
28	marital status	Marital status of respondent
29	rent_or_own	Housing situation of respondent
30	employment_status	Employment status of respondent
31	hhs_geo_region	Respondent's residence using a 10-region geographic classification defined by the U.S. Dept. of Health and Human Services. Values are represented as short random character strings
32	census_msa	Respondent's residence within metropolitan statistical areas (MSA) as defined by the U.S. Census
33	household_adults	Number of other adults in the household, top-coded to 3
34	household_children	Number of children in the household, top-coded to 3
35	employment_industry	Type of industry respondent is employed in. Values are represented as short random character strings

DATA UNDERSTANDING

Reading the Data

```
In [201]:
            # import relevant library
               import pandas as pd
               # Load features into dataframe
               df = pd.read_csv('H1N1_Flu_Vaccines.csv', index_col='respondent_id')
               df.head()
    Out[201]:
                             h1n1_concern h1n1_knowledge behavioral_antiviral_meds behavioral_avoida
                respondent_id
                          0
                                      1.0
                                                     0.0
                                                                            0.0
                                                                            0.0
                          1
                                      3.0
                                                     2.0
                          2
                                      1.0
                                                                            0.0
                                                     1.0
                                                                            0.0
                          3
                                      1.0
                                                     1.0
                                      2.0
                                                     1.0
                                                                            0.0
In [202]:
            ▶ # import display that can display maximum columns and rows
               pd.set_option('display.max_columns', 500)
               pd.set option('display.max rows', 200)
```

Out[203]:

In [203]: ► df.head()

	h1n1_concern	h1n1_knowledge	behavioral_antiviral_meds	behavioral_avoida
respondent_id				
0	1.0	0.0	0.0	
1	3.0	2.0	0.0	
2	1.0	1.0	0.0	
3	1.0	1.0	0.0	
4	2.0	1.0	0.0	
4				•

<class 'pandas.core.frame.DataFrame'>
Int64Index: 26707 entries, 0 to 26706
Data columns (total 37 columns):

рата #	Columns (total 37 columns):	Non-Null Count	Dtype
0	h1n1_concern	26615 non-null	float64
1	h1n1_knowledge	26591 non-null	float64
2	behavioral_antiviral_meds	26636 non-null	float64
3	behavioral_avoidance	26499 non-null	float64
4	behavioral_face_mask	26688 non-null	float64
5	behavioral_wash_hands	26665 non-null	float64
6	behavioral_large_gatherings	26620 non-null	float64
7	behavioral_outside_home	26625 non-null	float64
8	behavioral_touch_face	26579 non-null	float64
9	doctor_recc_h1n1	24547 non-null	float64
10	doctor_recc_seasonal	24547 non-null	float64
11	<pre>chronic_med_condition</pre>	25736 non-null	float64
12	child_under_6_months	25887 non-null	float64
13	health_worker	25903 non-null	float64
14	health_insurance	14433 non-null	float64
15	<pre>opinion_h1n1_vacc_effective</pre>	26316 non-null	float64
16	opinion_h1n1_risk	26319 non-null	float64
17	opinion_h1n1_sick_from_vacc	26312 non-null	float64
18	opinion_seas_vacc_effective	26245 non-null	float64
19	opinion_seas_risk	26193 non-null	float64
20	opinion_seas_sick_from_vacc	26170 non-null	float64
21	age_group	26707 non-null	object
22	education	25300 non-null	object
23	race	26707 non-null	object
24	sex	26707 non-null	object
25	income_poverty	22284 non-null	object
26	marital_status	25299 non-null	object
27	rent_or_own	24665 non-null	object
28	employment_status	25244 non-null	object
29	hhs_geo_region	26707 non-null	object
30	census_msa	26707 non-null	object
31	household_adults	26458 non-null	float64
32	household_children	26458 non-null	float64
33	employment_industry	13377 non-null	object
34	employment_occupation	13237 non-null	object
35	h1n1_vaccine	26707 non-null	int64
36	seasonal_vaccine	26707 non-null	int64
	es: float64(23), int64(2), obj		
	rv usage: 7.7+ MB	J = - - ()	

memory usage: 7.7+ MB

```
In [205]: 

# preview summary statistics of columns
df.describe()
```

Out[205]:		h1n1_concern	h1n1_knowledge	behavioral_antiviral_meds	behavioral_avoidance	be	
	count	26615.000000	26591.000000	26636.000000	26499.000000		
	mean	1.618486	1.262532	0.048844	0.725612		
	std	0.910311	0.618149	0.215545	0.446214		
	min	0.000000	0.000000	0.000000	0.000000		
	25%	1.000000	1.000000	0.000000	0.000000		
	50%	2.000000	1.000000	0.000000	1.000000		
	75%	2.000000	2.000000	0.000000	1.000000		
	max	3.000000	2.000000	1.000000	1.000000		
	4					•	
In [206]: ▶	# get	the shape of	the data				
Out[206]:	(26707	7, 37)					
In [207]: ▶	<pre># get df.col</pre>	column names					
Out[207]:	<pre>Index(['h1n1_concern', 'h1n1_knowledge', 'behavioral_antiviral_meds',</pre>						

```
In [275]: # get the missing values in percentage

missing_values = (df.isna().sum()).to_frame().sort_values(by=0, ascending=print('Total missing values:' ,missing_values.sum()[0])
missing_values
```

Total missing values: 60762

Out[275]:

0

employment_occupation	13470
employment_industry	13330
health_insurance	12274
income_poverty	4423
doctor_recc_h1n1	2160
doctor_recc_seasonal	2160
rent_or_own	2042
employment_status	1463
marital_status	1408
education	1407
chronic_med_condition	971
child_under_6_months	820
health_worker	804
opinion_seas_sick_from_vacc	537
opinion_seas_risk	514
opinion_seas_vacc_effective	462
opinion_h1n1_sick_from_vacc	395
opinion_h1n1_vacc_effective	391
opinion_h1n1_risk	388
household_adults	249
household_children	249
behavioral_avoidance	208
behavioral_touch_face	128
h1n1_knowledge	116
h1n1_concern	92
behavioral_large_gatherings	87
behavioral_outside_home	82
behavioral_antiviral_meds	71
behavioral_wash_hands	42
behavioral_face_mask	19
sex	0
race	0
age_group	0
hhs_geo_region	0
census_msa	0
h1n1 vaccino	Λ

0

seasonal_vaccine 0

Out[209]:		age_group	education	race	sex	income_poverty	marital_status	rer
	respondent_id							
	0	55 - 64 Years	< 12 Years	White	Female	Below Poverty	Not Married	
	1	35 - 44 Years	12 Years	White	Male	Below Poverty	Not Married	
	2	18 - 34 Years	College Graduate	White	Male	<= \$75,000, Above Poverty	Not Married	
	3	65+ Years	12 Years	White	Female	Below Poverty	Not Married	
	4	45 - 54 Years	Some College	White	Female	<= \$75,000, Above Poverty	Married	
	26702	65+ Years	Some College	White	Female	<= \$75,000, Above Poverty	Not Married	
	26703	18 - 34 Years	College Graduate	White	Male	<= \$75,000, Above Poverty	Not Married	
	26704	55 - 64 Years	Some College	White	Female	NaN	Not Married	
	26705	18 - 34 Years	Some College	Hispanic	Female	<= \$75,000, Above Poverty	Married	
	26706	65+ Years	Some College	White	Male	<= \$75,000, Above Poverty	Married	
	26707 rows × 1	2 columns						

In [210]:
check for duplicated values

df.duplicated().sum()

Out[210]: 0

```
# Check the numerical columns
In [211]:
                 num_col = df.select_dtypes(exclude='object')
                 num col
    Out[211]:
                                 h1n1_concern h1n1_knowledge behavioral_antiviral_meds behavioral_avoida
                  respondent_id
                              0
                                                             0.0
                                            1.0
                                                                                       0.0
                                                                                       0.0
                              1
                                            3.0
                                                             2.0
                              2
                                            1.0
                                                             1.0
                                                                                       0.0
                              3
                                            1.0
                                                             1.0
                                                                                       0.0
                              4
                                            2.0
                                                             1.0
                                                                                       0.0
                              ...
                                            ...
                                                              ...
                          26702
                                            2.0
                                                             0.0
                                                                                       0.0
                          26703
                                            1.0
                                                             2.0
                                                                                       0.0
                          26704
                                            2.0
                                                             2.0
                                                                                       0.0
                          26705
                                            1.0
                                                             1.0
                                                                                       0.0
                          26706
                                           0.0
                                                             0.0
                                                                                       0.0
                 26707 rows × 25 columns
```

Key Observations

- · There are no duplicates in our data.
- There are 60,762 missing values from both numerical and categorical data.
- The columns hhs_geo_region, employment_industry, and employment_occupation are encoded with random strings; they may need to be changed to numbers for readability in order to anonymize the data.

DATA CLEANING

```
In [212]:
           # handle missing numerical values
              # instantiate imputer
              import numpy as np
              from sklearn.impute import SimpleImputer
              imputer = SimpleImputer(missing_values=np.nan, strategy='median')
              num_col.iloc[:,:] = imputer.fit_transform(num_col)
In [213]:
           ▶ num_col.isna().sum()
   Out[213]: h1n1 concern
                                              0
              h1n1 knowledge
                                              0
              behavioral_antiviral_meds
                                              0
              behavioral avoidance
                                              0
              behavioral face mask
                                              0
              behavioral_wash_hands
                                              0
              behavioral large gatherings
                                              0
              behavioral_outside_home
              behavioral_touch_face
              doctor recc h1n1
              doctor recc seasonal
                                              0
              chronic_med_condition
                                              0
              child_under_6_months
                                              0
              health worker
                                              0
              health insurance
              opinion_h1n1_vacc_effective
                                              0
                                              0
              opinion h1n1 risk
              opinion_h1n1_sick_from_vacc
                                              0
              opinion_seas_vacc_effective
                                              0
              opinion seas risk
              opinion_seas_sick_from_vacc
              household adults
                                              0
              household children
                                              0
              h1n1 vaccine
                                              0
              seasonal_vaccine
              dtype: int64
```

```
In [214]:
          # instantiate imputer
             imputer = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
             cat_col.iloc[:,:] = imputer.fit_transform(cat_col)
In [215]:
          M cat_col.isna().sum()
   Out[215]: age group
                                    0
                                    0
             education
                                    0
             race
                                    0
             sex
             income_poverty
                                    0
             marital_status
                                    0
             rent_or_own
                                    0
             employment_status
                                    0
                                    0
             hhs_geo_region
             census_msa
                                    0
             employment_industry
                                    0
             employment_occupation
                                    0
```

dtype: int64

DATA TRANSFORMATION

Out[216]:		age_group	education	race	sex	income_poverty	marital_status	rent_or_own	emp
	0	3.0	1.0	3.0	0.0	2.0	1.0	0.0	
	1	1.0	0.0	3.0	1.0	2.0	1.0	1.0	
	2	0.0	2.0	3.0	1.0	0.0	1.0	0.0	
	3	4.0	0.0	3.0	0.0	2.0	1.0	1.0	
	4	2.0	3.0	3.0	0.0	0.0	0.0	0.0	
	26702	4.0	3.0	3.0	0.0	0.0	1.0	0.0	
	26703	0.0	2.0	3.0	1.0	0.0	1.0	1.0	
	26704	3.0	3.0	3.0	0.0	0.0	1.0	0.0	

26707 rows × 12 columns

0.0

4.0

3.0

3.0

1.0

3.0

0.0

1.0

26705

26706

→

0.0

0.0

0.0

0.0

1.0

0.0

Out[217]:

		h1n1_concern	h1n1_knowledge	behavioral_antiviral_meds	behavioral_avoidance	be					
	0	1.0	0.0	0.0	0.0	,					
	1	3.0	2.0	0.0	1.0						
	2	1.0	1.0	0.0	1.0						
	3	1.0	1.0	0.0	1.0						
	4	2.0	1.0	0.0	1.0						
	26702	2.0	0.0	0.0	1.0						
	26703	1.0	2.0	0.0	1.0						
	26704	2.0	2.0	0.0	1.0						
	26705	1.0	1.0	0.0	0.0						
	26706	0.0	0.0	0.0	1.0						
2	26707 rows × 37 columns										
	4					•					

Key Observations

- I used the simple Imputer from the sklearn library to handle the missing values in both numerical and categorical variables.
- Went ahead and imported the Ordinal Encoder from the sklearn library to encode and transform the categorical variables to numerical.
- Since this will preserve the general distribution of categorical data, each split is handled differently using the numerical columns we used most frequently.
- Since the majority of our values are repeated classes, we chose the categorical columns with the highest frequency as our approach.
- Joined the two variables together using concantenation to come up with a clean dataset.

In [218]: # import the relevant libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline import warnings warnings.filterwarnings('ignore') from plotly.subplots import make subplots import plotly.graph_objects as go from sklearn.model_selection import train_test_split,cross_val_score,Grid from sklearn.impute import SimpleImputer from sklearn.preprocessing import OrdinalEncoder from sklearn.linear model import LogisticRegression from sklearn.metrics import accuracy_score,roc_auc_score,ConfusionMatrixD: from sklearn.ensemble import RandomForestClassifier from xgboost import XGBClassifier from sklearn.feature_selection import RFECV from sklearn.ensemble import GradientBoostingClassifier import joblib

Graph depicting the balance / imbalance of the size distributions of h1n1_vaccine and seasonal_vaccine


```
In [221]:  ▶ data_df.seasonal_vaccine.value_counts()
```

Out[221]: 0.0 14272 1.0 12435

Name: seasonal_vaccine, dtype: int64

In [222]: | data_df.h1n1_vaccine.value_counts()

Out[222]: 0.0 21033 1.0 5674

Name: h1n1_vaccine, dtype: int64

I decided to go with 'seasonal_vaccine' as my target variable since it is less imbalanced.

Univariate Analysis

Key Observations

- The majority of responders are above the age of 65, while the difference between the categories is fairly small.
- The majority of respondents are college graduates.
- White people account for roughly 80% of the dataset.
- · Almost 60% of those polled are female.
- Nearly 60% of respondents earn between the poverty level and around \$75,000 per year.
- The majority of respondents are employed.
- · Majority of respondents own their own houses.
- most of the respondents are from the MSA, Not Principle City.
- Almost 60% of respondents are married.

Bivariate Analysis

Key Observations

- Health insurance it appears that people without health insurance did not receive the seasonal vaccine in big numbers when compared to those with insurance who were evenly distributed.
- Health workers In comparison to non-health employees, the majority of health workers received the seasonal vaccine.
- Marital status The majority of the unmarried population received the immunizations, but it is evenly distributed in the married class.
- Chronic med condition Those taking chronic medicine had a greater intake of the vaccine than none, while those without chronic illnesses had a higher rate of not taking the vaccine.

Multivariate Analysis

```
▶ plt.figure(figsize=(12,8))
In [225]:
              plt.title("Age group analysis with Marital status\n\n",fontsize=20,fontwei
              plt.pie([4835,3543,4971,5369,6581], radius=1,
                      colors=['darkorange', 'c','deepskyblue','royalblue',"deeppink"],
                      labels=['18 - 34 Years','35 - 44 Years','45 - 54 Years','55 - 64
                      autopct='%.2f%%',
                      pctdistance=0.85, textprops = {"fontsize":14, "fontweight": "bold"}
                      wedgeprops=dict(width=0.6, edgecolor='white',linewidth=3))
              plt.pie([1902,2933,2311,1232,3057,1914,3243,2126,3042,3539], radius=0.7,
                      colors=['palegoldenrod','orange', 'cadetblue', 'lightseagreen',
                               '#56C7F2','#30B7EA','dodgerblue', 'deepskyblue',"mediumvio
                      wedgeprops=dict(width=0.3, edgecolor='w',linewidth=3),textprops =
                       labels=['M','NM','M','NM','M','NM','M',
                                'NM','M','NM'],autopct='%.2f‱',
                      pctdistance=0.8, labeldistance=0.4, rotatelabels= True)
              legend = plt.legend(bbox_to_anchor=(1, 0.7),
                        labels=['18 - 34 Years','35 - 44 Years','45 - 54 Years','55 - 64
                                 "M : Married","NM : Non Married"],
                        title = "Age group with Marital status indication\n",
                        ncol=3,
                        fontsize=13)
              legend.set_title("Age group with Marital status indication\n",prop={"size'
              legend.draw frame(False)
              # Set the desired background color
              background color = 'white' # Replace with your desired color
              # Set the style with the desired background color
              sns.set_style("whitegrid", {'axes.facecolor': background_color})
              plt.axis('equal')
              plt.show()
```

Age group analysis with Marital status

Key Observations

- In the pie chart above I was just trying to visualize and see the relation between different age groups and marital status in percentage.
- In overall 65 years and above have the highest percentage in receiving vaccination compared to other age-groups.
- Respondents that are 65 years and not married appear to have a fairly higher percentage of receiving the vaccine compared to married respondents.
- Respondents that are 55-64 years and married appear to have a higher percentage of receiving the vaccine compared to non-married respondents.
- Respondents that are 45-54 years and married appear to have a higher percentage of receiving the vaccine compared to non-married respondents.
- Respondents that are 35-44 years and married appear to have a higher percentage of receiving the vaccine compared to non-married respondents.
- Respondents that are 18-34 years and not married appear to have a higher percentage of receiving the vaccine compared to married respondents.

Feature Selection

Out[226]:

	data_df1	scores
0	h1n1_concern	325.148276
1	h1n1_knowledge	115.652237
2	behavioral_antiviral_meds	0.918545
3	behavioral_avoidance	42.141343
4	behavioral_face_mask	62.214095
5	behavioral_wash_hands	58.594846
6	behavioral_large_gatherings	69.677957
7	behavioral_outside_home	50.332544
8	behavioral_touch_face	123.369866
9	doctor_recc_h1n1	839.733852
10	doctor_recc_seasonal	2421.579654
11	chronic_med_condition	557.625394
12	child_under_6_months	4.427147
13	health_worker	383.862558
14	health_insurance	27.094311
15	opinion_h1n1_vacc_effective	286.280388
16	opinion_h1n1_risk	866.169464
17	opinion_h1n1_sick_from_vacc	16.260163
18	opinion_seas_vacc_effective	991.273021
19	opinion_seas_risk	2794.888237
20	opinion_seas_sick_from_vacc	80.551802
21	household_adults	71.806568
22	household_children	538.442999
23	age_group	1997.217625
24	education	5.762772
25	race	91.674338
26	sex	94.243768
27	income_poverty	38.808131
28	marital_status	26.849772
29	rent_or_own	215.311327
30	employment_status	67.380193
31	hhs_geo_region	14.872176
32	census_msa	7.253763
33	employment_industry	1669.849661
34	employment_occupation	7.185226

```
In [227]: # Preview top 15 scores
print(data_df_score.nlargest(15, 'scores'))
```

```
data df1
                                       scores
19
              opinion seas risk
                                  2794.888237
10
           doctor recc seasonal
                                  2421.579654
23
                       age_group
                                  1997.217625
33
            employment industry
                                  1669.849661
18
    opinion seas vacc effective
                                   991.273021
16
              opinion_h1n1_risk
                                   866.169464
9
               doctor recc h1n1
                                   839.733852
11
          chronic med condition
                                   557.625394
                                   538.442999
22
             household children
13
                  health_worker
                                   383.862558
0
                   h1n1 concern
                                   325.148276
15
    opinion_h1n1_vacc_effective
                                   286.280388
29
                    rent or own
                                   215.311327
8
          behavioral touch face
                                   123.369866
1
                 h1n1 knowledge
                                   115.652237
```

Checking for Multicollinearity

```
In [228]: # check for correlation
    corr = data_df.corr()['seasonal_vaccine'].sort_values(ascending = False)
    corr_data = corr[(corr > 0.1)]
    corr_data
```

```
Out[228]: seasonal_vaccine
                                           1.000000
           opinion_seas_risk
                                           0.386916
           h1n1 vaccine
                                           0.377143
           doctor recc seasonal
                                           0.360696
           opinion_seas_vacc_effective
                                           0.358869
                                           0.277454
           age group
           opinion h1n1 risk
                                           0.215650
           opinion_h1n1_vacc_effective
                                           0.203187
           doctor_recc_h1n1
                                           0.198560
           chronic med condition
                                           0.169465
           h1n1 concern
                                           0.154488
           health worker
                                           0.126977
           health insurance
                                           0.124929
           behavioral_touch_face
                                           0.119925
           h1n1 knowledge
                                           0.119779
           behavioral wash hands
                                           0.112254
                                           0.101743
           Name: seasonal_vaccine, dtype: float64
```

In [229]: ▶	fir	<pre># subsetting the final dataframe to desired columns final_data_df=data_df.loc[:,['opinion_seas_risk','doctor_recc_seasonal','a</pre>							
	4					•			
Out[229]:		opinion_seas_risk	doctor_recc_seasonal	age_group	opinion_seas_vacc_effective	opinio			
	0	1.0	0.0	3.0	2.0				
	1	2.0	0.0	1.0	4.0				
	2	1.0	0.0	0.0	4.0				
	3	4.0	1.0	4.0	5.0				
	4	1.0	0.0	2.0	3.0				
	4					•			
In [230]: ▶		check the shape nal_data_df.shap							
Out[230]:	(26	5707, 14)							

Key Observations

- I used Kbest from the sklearn library to extract the best features.
- · I checked the features that scored the best.
- Did some correlations of the features with our target variable seasonal_vaccine in percentage.
- I hard coded a subset of features with high correlations and best score from the data and assigned them a new variable name final_data_df for modeling.

Train Test Split

```
In [231]: # split the data into train and test sets
# I have assigned 75% of the original data on the training set and 25% on
# create a copy of the data set

model = final_data_df.copy()

# Define X and y
X = model.drop('seasonal_vaccine', axis=1)
y = model.seasonal_vaccine

# set the random seed to be 0
random_seed = 0

#split the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,
```

MODEL BUILDING

- We are going to define a few functions that will help us with model selection
- We start with our base model which in this case we will be using DecisionTreeClassifier

Base Model

DecisionTree

 The function below will aid to plot a learning curve to evaluate the performance on training and validation sets

```
In [283]:
           ▶ | from sklearn.model selection import learning curve
              def plot learning curve(model):
                  # Plotting the learning curve
                  # Generate the learning curve using the learning curve function
                  train sizes, train scores, test scores = learning curve(
                      model, X_train, y_train, scoring='accuracy')
                  # Calculate the mean and standard deviation of the training scores
                  train mean = np.mean(train scores, axis=1)
                  train std = np.std(train scores, axis=1)
                  # Calculate the mean and standard deviation of the validation scores
                  test_mean = np.mean(test_scores, axis=1)
                  test std = np.std(test scores, axis=1)
                  # Plot the training scores and fill the area between the upper and low
                  plt.figure(figsize=(10, 8))
                  plt.plot(train_sizes, train_mean, 'o-', color='r', label='Training sc(
                  plt.fill between(
                      train sizes, train mean - train std, train mean + train std, alpha
                  # Plot the validation scores and fill the area between the upper and l
                  plt.plot(train_sizes, test_mean, 'o-', color='g', label='Validation s
                  plt.fill between(
                      train sizes, test mean - test std, test mean + test std, alpha=0.1
                  # Set the x-axis LabeL
                  plt.xlabel('Training examples')
                  # Set the y-axis label
                  plt.ylabel('Score')
                  # Add a legend to the plot
                  plt.legend(loc='best')
                  # Add a grid to the plot
                  plt.grid(True)
                  plt.show()
```

Create a Pipeline

```
In [234]:

    def model(pipeline):

                 # fit the model
                 pipeline.fit(X_train, y_train)
                 # predict the train and test set
                 y_train_pred = pipeline.predict(X_train)
                 y_test_pred = pipeline.predict(X_test)
                 # test the accuracy
                 acc_train = accuracy_score(y_train_pred, y_train)
                 acc_test = accuracy_score(y_test_pred, y_test)
                 # Print the scores
                 print(f'The Model Train accuracy is: {acc_train:.3f}')
                 print(f'The Model Test accuracy is: {acc test:.3f}')
                 print('\n')
                 print('-----
                 # print the report
                 print(classification report(y test,y test pred))
              model(gridsearch)
```

The Model Train accuracy is: 0.916 The Model Test accuracy is: 0.707

	precision	recall	f1-score	support	
0.0	0.72	0.75	0.73	3568	
1.0	0.69	0.66	0.68	3109	
accuracy			0.71	6677	
macro avg	0.71	0.70	0.70	6677	
weighted avg	0.71	0.71	0.71	6677	

```
In [235]: # creating confusion matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test,y_test_pred)
# Making the Confusion Matrix
cm = confusion_matrix(y_test_pred, y_test)
sns.heatmap(cm,annot=True, fmt='g')
plt.savefig('confusion.png')
```



```
In [289]: #performing cross validation
    cross_val = cross_val_score(pipeline,X_train,y_train,cv=10)
    print(f"Cross Validation Accuracy: {round(cross_val.mean()*100,4)}%")
```

Cross Validation Accuracy: 73.7244%

In [284]: ▶ # plotting the learning curve
plot_learning_curve(gridsearch)

Key Observations

- The model shows good performance on the training dataset, achieving an accuracy of 91.6%
- However, when applied to the test dataset and unseen data, the accuracy drops to 70.7% which significantly means our base model is overfitting.
- The cross-validation accuracy provides further evidence of the model's overall performance, indicating that it performs consistently at around 73.72% accuracy across different subsets of the data.
- The learning curve and accuracy measures show that the model is overfitting, as
 evidenced by the reduction in training score and reduced cross-validation accuracy.

Random Forest

```
In [278]:
           ▶ | from sklearn.ensemble import RandomForestClassifier
              X_train1, X_test1, y_train1, y_test1 = train_test_split(X, y, test_size= (
              pipeline1 = Pipeline([('scaler' , StandardScaler()),
                                           ('tree1', RandomForestClassifier())])
              # setting basic parameter
              grid = [{'tree1__criterion': ['entropy','gini'],
                        'tree1 n estimators': [len(range(100))],
                        'tree1 max depth':[2,3,4,5]}]
              gridsearch1 = GridSearchCV(estimator=pipeline1,
                                          param_grid= grid,
                                          scoring='accuracy',
                                          cv=5)
              model(gridsearch1)
              The Model Train accuracy is: 0.765
              The Model Test accuracy is: 0.767
                                          recall f1-score
                             precision
                                                             support
                                  0.77
                                                      0.79
                       0.0
                                            0.81
                                                                 3568
                       1.0
                                  0.77
                                            0.72
                                                      0.74
                                                                 3109
                                                      0.77
                                                                6677
                  accuracy
                                                      0.76
                                                                 6677
                 macro avg
                                  0.77
                                            0.76
              weighted avg
                                  0.77
                                            0.77
                                                      0.77
                                                                6677
```

```
In [237]:  print(gridsearch1.best_params_)

{'tree1__criterion': 'gini', 'tree1__max_depth': 5, 'tree1__n_estimator s': 100}
```

Evaluate the model using the best parameters

support	f1-score	recall	precision	
3568	0.79	0.81	0.77	0.0
3109	0.74	0.72	0.77	1.0
6677	0.77			accuracy
6677	0.77	0.77	0.77	macro avg
6677	0.77	0.77	0.77	weighted avg

```
In [288]: #performing cross validation
    cross_val = cross_val_score(pipeline1,X_train1,y_train1,cv=10)
    print(f"Cross Validation Accuracy: {round(cross_val.mean()*100,4)}%")
```

Cross Validation Accuracy: 73.5034%

In [285]: ▶ # plotting the learning curve

plot_learning_curve(gridsearch1)

Key Observations

- The model has a training accuracy of 76.4% and a test accuracy of 76.9% and a cross validation accuracy of 73.50%.
- The learning curve shows that generalization is improving initially, with the test score increasing and the training score falling.
- The test score, however, gradually plateaus and begins to drop, indicating limits in catching complicated patterns and probable overfitting.
- The temporary dip suggests that there may be certain instances in the validation set where the model struggles to make accurate predictions.
- The following increase in the validation score suggests that the model adjusts and improves its performance in such difficult situations as well.
- To achieve the requisite levels of accuracy, the model must be refined through hyperparameter tuning.

Gradient Boosting

```
In [243]:
           # instantiate gradient boosting
              X_train2, X_test2, y_train2, y_test2 = train_test_split(X, y, test_size= (
              pipeline2 = Pipeline([('scaler' , StandardScaler()),
                                  ('gradient', GradientBoostingClassifier())])
              # setting basic parameter
              grid2 = [{'gradient_loss' : ['log_loss', 'deviance'],
                        gradient__learning_rate': [ 0.2, 0.3, 0.4,],
                       'gradient__n_estimators': [len(range(120))]}]
              gridsearch2 = GridSearchCV(estimator=pipeline2,
                                         param grid= grid2,
                                         scoring='accuracy',
                                         cv=5)
              model(gridsearch2)
              The Model Train accuracy is: 0.778
              The Model Test accuracy is: 0.770
                            precision recall f1-score support
                                 0.78
                                           0.80
                                                     0.79
                       0.0
                                                               3568
                                 0.76
                       1.0
                                           0.73
                                                     0.75
                                                               3109
                                                     0.77
                  accuracy
                                                               6677
                 macro avg
                                 0.77
                                           0.77
                                                     0.77
                                                               6677
              weighted avg
                                 0.77
                                           0.77
                                                     0.77
                                                               6677
In [253]:
           print(gridsearch2.best_params_)
              {'gradient_learning_rate': 0.2, 'gradient_loss': 'deviance', 'gradient
              n estimators': 120}
```

Evaluate the model using the best parameters

The Model Train accuracy is: 0.778 The Model Test accuracy is: 0.770

	precision	recall	f1-score	support	
0.0	0.78	0.80	0.79	3568	
1.0	0.76	0.73	0.75	3109	
accuracy			0.77	6677	
macro avg	0.77	0.77	0.77	6677	
weighted avg	0.77	0.77	0.77	6677	

```
In [287]: #performing cross validation
    cross_val = cross_val_score(pipeline2,X_train2,y_train2,cv=10)
    print(f"Cross Validation Accuracy: {round(cross_val.mean()*100,4)}%")
```

Cross Validation Accuracy: 76.953%

In [286]:

plotting the learning curve

plot_learning_curve(gridsearch2)

Key Observations

- The model has a training accuracy of 77.8% and a test accuracy of 77% and a cross validation accuracy of 76.95%.
- The learning curve shows that generalization is improving, with the test score increasing and the training score falling.
- These findings show that the model performed well in terms of accuracy on both the training and test datasets, with consistent performance evaluated by cross-validation.
- The rising validation score indicates that the model generalizes well to unseen data, as it consistently improves its predictive accuracy.

AdaBoost

```
In [241]:
           ▶ | from sklearn.ensemble import AdaBoostClassifier
              X_train3, X_test3, y_train3, y_test3 = train_test_split(X, y, test_size= (
              pipeline3 = Pipeline([('scaler' , StandardScaler()),
                                  ('ADA', AdaBoostClassifier())])
              cv=7
              # setting basic parameter
              ada = [{'ADA_learning_rate': [0.1, 0.2, 0.3, 0.4,],
                       'ADA__n_estimators': [len(range(50))]}]
              adaboost = GridSearchCV(estimator=pipeline3,
                                        param_grid= ada,
                                        scoring='accuracy',
                                        cv=cv)
              model(adaboost)
              The Model Train accuracy is: 0.766
              The Model Test accuracy is: 0.769
                            precision recall f1-score
                                                             support
                       0.0
                                 0.77
                                           0.81
                                                      0.79
                                                                3568
                                           0.72
                                                                3109
                       1.0
                                 0.77
                                                      0.74
                                                      0.77
                                                                6677
                  accuracy
                 macro avg
                                 0.77
                                           0.77
                                                      0.77
                                                                6677
              weighted avg
                                 0.77
                                           0.77
                                                      0.77
                                                                6677
In [254]:
          print(adaboost.best params )
              {'ADA learning rate': 0.4, 'ADA n estimators': 50}
```

Evaluate the model using the best parameters

	precision	recall	f1-score	support	
0.0	0.77	0.81	0.79	3568	
1.0	0.77	0.72	0.74	3109	
accuracy			0.77	6677	
macro avg	0.77	0.77	0.77	6677	
weighted avg	0.77	0.77	0.77	6677	

```
In [257]: #performing cross validation
cross_val = cross_val_score(pipeline3,X_train3,y_train3,cv=10)
print(f"Cross Validation Accuracy: {round(cross_val.mean()*100,4)}%")
```

Cross Validation Accuracy: 76.5751%

In [291]: ▶ # plotting the learning curve

plot_learning_curve(adaboost)

Key Observations

- The model has a training accuracy of 76.6% and a test accuracy of 76.9% and a cross validation accuracy of 76.575%.
- The learning curve shows that the training score starts with a high note suggesting overfitting however, it suddenly declines.
- This indicates that the model initially struggles to fit the training data and may not capture all of the patterns available in the data.
- However, as the model receives more training data and learns from it, the training score gradually improves.
- · Both the train and test set reach a point where the model start to drop gradually.

XGBoosting

```
In [242]:
          xgb.XGBClassifier()
              # splitting the dataset
             X_train4, X_test4, y_train4, y_test4 = train_test_split(X, y, test_size= (
             pipeline4 = Pipeline([('scaler' , StandardScaler()),
                                         ('xgb', xgb.XGBClassifier())])
              cv = 5
              # setting basic parameters
             xgb = [{'xgb_eta': [0.1, 0.2, 0.3, 0.4,],
                       'xgb gamma': [len(range(1,50))],
                       'xgb__max_depth': [len(range(1,10))],
                       'xgb__subsample': [len(range(0,1))],
                       'xgb__booster': ['gbtree','dart']}]
             xgboost = GridSearchCV(estimator=pipeline4,
                                   param_grid= xgb,
                                    scoring='accuracy',
                                    cv=cv)
             model(xgboost)
              The Model Train accuracy is: 0.768
              The Model Test accuracy is: 0.770
                           precision
                                        recall f1-score
                                                           support
                       0.0
                                 0.79
                                          0.79
                                                    0.79
                                                              3568
                       1.0
                                 0.75
                                          0.75
                                                    0.75
                                                              3109
                  accuracy
                                                    0.77
                                                              6677
                                0.77
                                          0.77
                                                    0.77
                                                              6677
                 macro avg
                                 0.77
                                          0.77
                                                    0.77
              weighted avg
                                                              6677
In [258]:
           print(xgboost.best_params_)
              {'xgb__booster': 'gbtree', 'xgb__eta': 0.2, 'xgb__gamma': 49, 'xgb__max_
              depth': 9, 'xgb subsample': 1}
```

The Model Train accuracy is: 0.768
The Model Test accuracy is: 0.770

	precision	recall	f1-score	support	
0.0 1.0	0.79 0.75	0.79 0.75	0.79 0.75	3568 3109	
accuracy macro avg weighted avg	0.77 0.77	0.77 0.77	0.77 0.77 0.77	6677 6677 6677	

```
In [261]: #performing cross validation
    cross_val = cross_val_score(pipeline4,X_train4,y_train4,cv=10)
    print(f"Cross Validation Accuracy: {round(cross_val.mean()*100,4)}%")
```

Cross Validation Accuracy: 75.7114%

In [292]: ▶ # plotting the learning curve

plot_learning_curve(xgboost)

Key Observations

- The model has a training accuracy of 76.8% and a test accuracy of 77% and a cross validation accuracy of 75.71%.
- The learning curve shows that the training score starts with a high note suggesting overfitting however, it suddenly declines.
- These results indicate that the model performs consistently across different datasets, as the training and test accuracies are similar.
- The achieved accuracies are rather high, showing that the model predicts the outcome variable successfully.
- The model is learning from the training data and improving its performance on both the training and validation sets.
- Both scores are increasing, which implies that the model benefits from more training and has the potential to become more accurate.

MODEL EVALUATION

Out[293]:

	Model	Model_Train_Accuracy	Model_Test_Accuracy	Cross_Validation_Accurac
	Decision_tree	0.916	0.707	0.7372
	1 Random_forest	0.764	0.769	0.7350
:	2 Gradient_boosting	0.778	0.770	0.7695
:	3 AdaBoosting	0.766	0.769	0.7657
	4 XGBoost	0.768	0.770	0.7571
4				•

```
▶ # Create subplots with 1 row and 2 columns
In [295]:
                                                fig, axes = plt.subplots(1, 2, figsize=(22, 8)) # Adjust the figsize as it
                                                # Plot Model Test Accuracy in the first subplot
                                                axes[0].plot(scores_data['Model'], scores_data['Model_Test_Accuracy'], mar
                                                axes[0].plot(scores_data['Model'], scores_data['Model_Train_Accuracy'], make axes[0].plot(scores_data['Model_Train_Accuracy'], make axes[0].plot(scores_data['Model_Train_A
                                                axes[0].set xlabel('Model')
                                                axes[0].set ylabel('Model Test Accuracy')
                                                axes[0].set_title('Model Test Accuracies and train accuracy')
                                                axes[0].tick params(axis='x', rotation=90)
                                                axes[0].grid(True)
                                                # Plot Cross Validation Accuracy in the second subplot
                                                axes[1].plot(scores data['Model'], scores data['Cross Validation Accuracy
                                                axes[1].set_xlabel('Model')
                                                axes[1].set ylabel('Cross Validation Accuracy')
                                                axes[1].set_title('Cross Validation Accuracies')
                                                axes[1].tick_params(axis='x', rotation=90)
                                                axes[1].grid(True)
```


Use above subplots and learning curve to find best model

Measures of success:

- Accuracy and ability to generalize over unseen data.
- Potential to learn from more data and not be at risk of over-fitting.

Filtering:

- The Accuracy plot above clearly shows that Decision Tree does not match this criteria, as
 it has the lowest accuracy score.
- This is followed by Random Forest and AdaBoosting, both of which have low accuracy and hence do not make the cut.
- · We are left with Gradient Boost and XGBoost.

- · XGBoost has lower cross validation score compared to Gradient Boost.
- As more data is trained for the gradient boosting model, the validation score steadily
 increases along with the training score. It is adjusting to perform better in difficult
 situations while increasing the accuracy of its predictions.
- From the above analysis, Gradient boost has better prospects on performance as more data is used.

BEST MODEL: GRADIENT BOOST

Pickle

This is done to avoid having to retrain the model.

```
In [296]: # import necessary library
import joblib

# Create an instance of the GradientBoostingClassifier with specified para
gradient_boosting = GradientBoostingClassifier(loss='deviance', learning_r

# Save the trained model using joblib.dump

joblib.dump(gradient_boosting, 'gradient_boosting.pkl')

Out[296]: ['gradient_boosting.pkl']
```

Conclusion

- While this dataset contains some intriguing insights, it is heavily weighted in favor of specific communities and classifications.
- The gradient boosting model was optimal despite the fact that the dataset contains biases within our features. The data needs to be better balanced.
- The data should be better sampled to avoid biases and ensure that all groups are adequately represented, and it would benefit from more data since accuracy increased as more data was submitted.

Recommendations

- Careful examination of the significance of identified predictors, such as opinion_seas_risk,
 will help understand underlying factors and ensure fairness in decision-making
- According to the models, people's opinions have a significant impact on their chance to take immunizations. Given this, the following suggestions can be made:
- Campaigns should be launched to raise public knowledge about the effectiveness of the seasonal flu vaccine as well as the hazards connected with the virus.
- It would be beneficial to emphasize the safety of the vaccines for public use.

- The seasonal flu vaccine is more likely to be used by older persons. The younger population could, therefore, be targeted for such campaigns.
- To ensure better data gathering, a broader range of demographic groups should be included, resulting in a more diverse and balanced dataset.
- It is recommended to validate conclusions by combining external data from diverse sources to improve generalizability.
- Techniques like as oversampling, undersampling, or the use of weighted loss functions