ECOLES PRIVEES ELMAARIF- ERRAJA

مدارس الرجاء والمعارف الحرة

Bac Blanc **Epreuve de Mathématiques** Classes:7C Durée: 4H 24/03/2015

La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation de la copie du candidat.

Exercice 1 (3 points)

- 1) On considère dans Z^2 l'équation (E): 6x + 11y = 2013.
- a. Montrer que pour tout couple (x, y) solution de (E), x est un multiple de 11 et y un multiple de 3.
- b. Déterminer une solution particulière de (E).
- c. Résoudre (E).
- 2) On désigne par d le PGCD de x et y où (x, y) est une solution de (E).
- a) Quelles sont les valeurs possibles de d?
- b) Déterminer, s'ils existent, les couples (p, q) d'entiers naturels tels que 6m + 11d = 2013, où d désigne le pgcd de p et q, et m leur ppcm.

Exercice 2 (4 points)

Le plan complexe est muni d'un repère orthonormé $(O; \vec{u}, \vec{v})$.

- 1. On pose : $P(z) = z^3 (5+3i)z^2 + (4+12i)z + 4 12i$ où z est un nombre complexe.
- a) Calculer P(2) et déterminer les nombres a et b tels que pour tout z de \mathbb{C} : P(z) = (z-2)(z²+az+b).
- b) Résoudre, dans l'ensemble des nombres complexes, l'équation P(z) = 0.
- 2. Soient les points A, B et C images des solutions de l'équation P(z) = 0 avec $Im(z_A) < Im(z_B) < Im(z_C)$.
- a) Calculer l'affixe du point G barycentre du système {(A;5),(B;-6),(C;-3)}.
- b) Placer les points A, B, C et G. Montrer que les points G, A, B et C sont cocycliques.
- c) Déterminer et représenter l'ensemble Γ des points M d'affixe z telle que le nombre $\frac{z-2i}{z-2i}$ soit imaginaire pur.
- 3. Pour tout point M du plan on pose $\varphi(M) = 5MA^2 6MB^2 3MC^2$ et Γ_k l'ensemble des points M tels que $\varphi(M) = k$, où k est un réel.
 - a) Discuter suivant les valeurs de k, la nature de $\Gamma_{\rm k}$.
 - b) Reconnaître et construire Γ_{-20} .

Exercice 3 (4 points)

Dans le plan, on considère un rectangle ABCD tel que AB = 2AD = 2a. Soit le point G tel que $G = bar\{(A,-2),(B,4),(C,3),(D,3)\}.$

- 1.a) Montrer que $G = bar\{(B,2),(C,5),(D,1)\}$.
- b) Déterminer des réels a ;b et c tels que $G = bar\{(A,a),(C,c),(D,d)\}$.
- c) On note I le milieu du segment [AB]. Montrer que $\overrightarrow{GC} = \frac{1}{4}\overrightarrow{IC}$ et placer G sur la figure.

- a) $M \in \Gamma_1 \Leftrightarrow |-2MA + 4MB + 3MC + 3MD| = |4GA + 4GB|$
- b) $M \in \Gamma_2 \Leftrightarrow |2\overline{MB} + 5\overline{MC} + \overline{MD}|| = |\overline{MA} + \overline{MB}||$
- c) $M \in \Gamma_3 \Leftrightarrow -2MA^2 + 4MB^2 + 3MC^2 + 3MD^2 = 6a^2$
- d) $M \in \Gamma_4 \Leftrightarrow 2MB^2 3MC^2 + MD^2 = 2a^2$
- e) $M \in \Gamma_5 \Leftrightarrow (-2\overline{MA} + 4\overline{MB} + 3\overline{MC} + 3\overline{MD})(\overline{MA} + \overline{MB}) = 0$.

Exercice 4 (4 points)

Soit la fonction f définie sur \mathbb{R} par $f(x)=(2-x)e^x$. Soit (C) la courbe représentative de f dans un repère orthonormé (O; i, j).

1. a) Justifier et interpréter graphiquement les limites suivantes :

$$\lim_{x \to \infty} f(x) = 0, \lim_{x \to +\infty} f(x) = -\infty \text{ et } \lim_{x \to +\infty} \frac{f(x)}{x} = -\infty.$$

- b) Dresser le tableau de variation de f.
- c) Donner l'équation de la tangente T à (C) au point A d'abscisse 0. Vérifier que A est un point d'inflexion de (C).
- d) Tracer la courbe (C).
- 2) On considère la suite numérique (U_n) définie pour tout entier naturel par : $U_n = \frac{L^n}{n!}$.
- a) Montrer que pour tout entier naturel $n \ge 2$, $0 \le \frac{U_{n+1}}{U_n} \le \frac{2}{3}$. b) Montrer que pour tout entier naturel $n \ge 2$, $0 \le U_n \le 2 \left(\frac{2}{3}\right)^{n-2}$. En déduire $\lim_{n \to +\infty} U_n$.
- 3) Pour tout entier naturel $n \ge 1$; on pose $I_n = \frac{1}{n!} \int_0^2 (2-x)^n e^x dx$ et $S_n = \sum_{k=0}^n U_k = 1 + 2 + \frac{2^k}{2!} + \frac{2^k}{3!} + \dots + \frac{2^k}{n!}$.
- a) Justifier que $I_1 = e^2 3$.
- b) Montrer que pour tout entier naturel $n \ge 1$, $0 \le I_n \le (e^2 1)U_n$. En déduire $\lim_{n \to \infty} I_n$.
- c) En utilisant une intégration par parties, montrer que $I_{n+1} = I_n U_{n+1}$.
- d) Démontrer par récurrence que pour tout entier $n \ge 1$, $e^2 = S_n + I_n$. En déduire que $\lim_{n \to \infty} S_n = e^2$.

Exercice 5 (5 points)

- 1) On considère la fonction numérique f définie sur $[0,+\infty[$ par : $\begin{cases} f(x) = x \ln(x+1) x \ln x, & x > 0 \\ f(0) = 0 \end{cases}$
- a) Montrer que f est continue à droite de zéro.
- b) Etudier la dérivabilité de f à droite de zéro. Donner une interprétation graphique.
- c) Montrer que $\lim f(x)=1$. Interpréter graphiquement.

- 2.a) Vérifier que $f''(x) = \frac{-1}{x(x+1)^2}$. En déduire le signe de f'(x).
- b) Dresser le tableau de variation de f .
- c) Construire la courbe de f.
- d) Calculer A_1 l'aire du domaine plan limité par la courbe (C), l'axe des abscisses et les droites d'équations x=0 et x=1 (On pourra utiliser une intégration par parties).
- 3) Pour tout entier naturel $n \ge 1$; on pose: $\begin{cases} f_n(x) = x^n \ln(1+\frac{1}{x}), & x > 0 \\ f_n(0) = 0 \end{cases}$ et $A_n = \int_0^1 f_n(x) dx$.
- a) Montrer que l'écriture précédente définit bien une suite numérique (A_n).
- b) Montrer que pour tout $x \in [0,1]$, on a $0 \le x^{n-1} f(x) \le x^{n-1}$ où f est la fonction définie dans la question 1).
- c) Justifier que $0 \le A_n \le \frac{1}{n}$. En déduire $\lim_{n \to +\infty} A_n$.
- 4) On pose $I_n = \int_0^1 x^n \ln(x+1) dx$.
- a) En utilisant une intégration par parties, calculer $I_1 = \int_0^1 x \ln(x+1) dx$.
- b) En utilisant une intégration par parties, montrer que $I_{n+1} = \frac{2\ln 2}{n+2} \frac{1}{(n+2)^2} \frac{n+1}{n+2}I_n$.
- 5) Soit n un entier naturel, $n \ge 1$. g_n la fonction définie par : $\begin{cases} g_n(x) = -x^n \ln x; & x > 0 \\ g_n(0) = 0 \end{cases}$
- a) Montrer que la fonction g_n est continue sur [0;1].
- b) Soit G_n la fonction définie sur [0;1] par :

$$G_{n}(t) = \frac{t^{n+1} \ln t}{n+1} + \frac{t^{n+1}}{(n+1)^{2}}; \quad t > 0$$

$$G_{n}(0) = 0$$

Montrer que G_n est une primitive de g_n sur [0;1].

- c) En déduire la valeur de $J_n = \int_0^1 g_n(t) dt$ en fonction de n. Vérifier que $J_1 = \frac{1}{4}$.
- 6.a) En utilisant 4.a) et 5.c) retrouver la valeur de A_1 calculée en 1.d).
- b) Calculer A2.

Fin.