- 1. (a) $(1/2) \stackrel{2}{=} 1/4$
 - (b) 2 = 4
 - (c) $(5/2)^{-2} = (2/5)^2 = 4/25$
 - (d) $(1/5)^{-2} = 5^2 = 25$

JE MATHS

JE MATHS

2. = 1/(1-2)+1/(1+2/3)= -1+3/5= -2/5

3. (a) x^{-2}

JE MATHS

(b) $-1/2 \times x^{-2}$

JE MATHS

JE MATHS

JE MATHS

4. (a) $2^{2x} \times 2^{-4x} = 2^{-2x} = 1/(2^{2x})$

(b) $2^{-2x} \div 2^{-x} = 2^{-x}$

JE MATHS

(c) $8m^{-6} \times n^6$

JE MATHS

JE MATHS

(d) $6m^4 \times n^{-6} \div (4m^{-4} \times n^6) = 3/2 \times m^8 \times n^{-12} = 3m^8/2n^{12}$

5. (a) $2 \times 2^n = 2^{n+1}$

JE MATHS

(b) $2^{-1} \times 2^{2n} = 2^{2n-1}$

(c) $(4 \times 2^n - 2 \times 2^n)/2^n = 2 \times 2^n/2^n = 2$

JE MATHS

(d) $2^{-n} \times 2^{4n} \div 2^{\mathbb{Z}_{n}^{\text{MATHS}}} = 2^{4n}$

6. (a)

x ²2+1/x ² JE MATHS (b)

x^4+2+1/x^4 JE MATHS

(c)

 $= 1/(x+1/y)^2$

 $= 1/(x^2+2x/y+1/y^2)$

(d)

 $= 1/(1/x+1/y)^2$

 $= 1/(1/x^2+2/xy+1/y^3)$

 $= x^{2}y^{2}(y^{2}+2xy+x^{2})$

= $x^{2}y^{7}(x+y)^{2}$ (better leave like that)

7. (a)
$$((3^n)^{\frac{n}{2}})/(3^n-1)=(3^n+1)(3^n-1)/(3^n-1)=3^n+1$$

JE MATHS

(b)
$$(2^{n}-1)(2^{2n}+2^{n}+1)$$

8. (a)
$$(2/3)^{x} = (2/3)^{-2}$$
 $x=-2$

(b)
$$3/5$$
 (3/5) $-3x = (3/5)^{-2}$ $-3x = -2$ $x = 2/3$

JE MATHS

JE MATHS

(c)

$$2^{4-2n} = 2^3$$

 $4-2x=3$
 $1=2x$
 $x=1/2$

(d)

$$(1/2)^{2x+4} = (1/2)^{3x-6}$$

 $2x+4=3x-6$
 $10 = x$
JB MATHS

9. (a)

$$x - y = 0$$

 $x + y = 2$
 $2x = 2$
 $x = 1$
 $y = 1$

(b)

$$x+y=3$$

 $2(x-y) = 3 \rightarrow x-y=1.5$
 $2x = 4.5$
 $x = 9/4$
 $y = 3-9/4=3/4$

JE MATHS

10.
$$2^{2n+2} - 2^{2n-1} = 1792$$

 $2^{2n-1}(2^{\frac{3}{2}}1) = 1792$
 $2^{2n-1} \times 8 = 1792$
 $2^{2n-1} = 256$
 $2^{2n-1} = 2^{8}$
 $2n-1 = 8$
 $n = 9/2$

JE MATHS

11. (a) $\sqrt{4}=2$

JE MATHS

(b)
$$\sqrt{(1/4)} = 1/2$$

(c) $(3/2) \stackrel{?}{=} 9/4$

(d) (27/8)^(4/3)=(3/2)^4=81/16

JE MATHS

12. (a) $15a^{1/2-1/3}$ $b^{1/3+1/2} = 15a^{1/6}b^{5/6}$

(b)
$$64x^3 \times y^{-4} \div (x^{-2} \times y^{-1}) = 64x^5 \times y^{-3}$$

13. (a) $-x^{3/2}_{JB MATHS}$

(b) $3x^{-2/3}$

(c) $xy^{-3/2}$

(d) $x^{3/2}y^{-2/3}$

JE MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS JE MATHS

14. (a) x-2+1/x

(b) $x^{3}+2+1/x^{3}$

JE MATHS

JE MATHS

15. (a) $x = 5^{1/5}$

> (c) $x = \pm 81^{1/4}$ $x = \pm 3$

(b)

 $x = 243^{3/5} = 3 = 27$ JE MATH (d)

 $x = \pm 9^{3/2}$ $x = \pm 27$

JE MATHS

16. (a) $2^{3x-3} = 2^{2}$ 3x-3=23x=5x = 5/3 JE MATHS

(b) $(2/5)^{3x+6} = (2/5)^{-x}$ 3x+6 = -x4x = -6x = -3/2 MATERS

JE MATHS

(c) $2^{2x} = 2^{3/2}$ 2x = 3/2x = 3/4JE MATHS

(d) $3\sqrt{2} \times 3^{2x+2} = 9\sqrt{6}$ $(\div 3\sqrt{2})$ $3^{2x+2} = 3\sqrt{3}$ $3^{2x+2} = 3 \times 3^{1/2}$ $\text{JE MATHS} \, 3^{2x+2} = 3^{3/2}$

> 2x + 2 = 3/22x = -1/2x = -1/4

JE.Maths

- 17. (a) $5\log_{x} x = 5$
 - (b) $\log_{x} x^{-2} = -2\log_{x} x = -2$
 - (c) $\log_x x^{1/2} = 1/2 \times \log_x x = 1/2$
 - (d) $\log_{x}^{\text{MATHS}} x^{-1/2} = -1/2 \times \log_{x} x = -1/2$ JE MATHS

JE MATHS

- (e) $\log_x x^{5/2} = 5/2 \times \log_x x = 5/2$
- (f) $\log_x x^{-3/2} = -3/2 \times \log_x x = 3/2$

JE MATHS

- 18. (a) $-\log_6 2 + \log_6 2 = 0$
 - (b) $\log_2(96 \div 6) = \log_2 16 = \log_2 2^4 = 4\log_2 2 = 4$

JE MATHS

- (c) $\log_3(4\times18\div8) = \log_39 = 2\log_33 = 2$
- (d) $\log_2(4 \div 8 \div 16) = \log_2(1/32) = \log_2 2^{-5} = -5\log_2 2 = -5$

JE MATHS

19. (a) $3/2\log_2 2 = 3/2$

JE MATHS

- (b) $3/2\log_3 3 = 3/2$
- (c) $-1/(1/2) \times \log_3 3 = -2$

JE MATHS

(d) $3n/2n \times \log_2 2 = 3/2$

JE MATHS

- 20. (a) (5)
 - (b)(3)

JE MATHS

- (c) (a) R MATHS
- (d) (b)

IE MATHS

JE MATHS

21. (a) log₂3+log₂5

(b)
$$-\log_2 3 \times 5$$

= $-\log_2 3 - \log_2 5$

(c)
$$\log_2 8 - \log_2 5$$

= $3\log_2 2 - \log_2 5$
= $3 - \log_2 5$

JE MATHS

JE MATHS

JE MATHS

(d)
$$log_2 10 - log_2 3$$

= $log_2 2 + log_2 5 - log_2 3$ JE MATHS
= $1 + log_2 5 - log_2 3$

(e)
$$\log_2 2 + \log_2 3 + \log_2 5$$

= $1 + \log_2 3 + \log_2 5$

JE MATHS

$$(f)\log_2 27 - \log_2 501$$

$$= 3\log_2 3 - \log_2 25 \times 2$$

$$= 3\log_2 3 - 2\log_2 5 - \log_2 2$$

$$= 3\log_2 3 - 2\log_2 5 - 1$$

$$= 3\log_2 3 - 2\log_2 5 - 1$$

JE MATHS

JE MATHS

22. (a)
=
$$\log_{10} 10 + \log_{10} x^2$$

= $1 + 2\log_{10} x$

(b) = $log_3x - log_33$ = $log_3x - 1$

JE MATHS

JE MATHS

(c)
=
$$3\log_2 2 + 3\log_2 x$$

= $3 + 3\log_2 x$

(d) = $\log_3(1/3x)$ (9/27=1/3) = $-(\log_3 3 - \log_3 x)$ = $-1 + \log_3 x$

23. (a)
$$4^{\log_4(5/6)} = 5/6$$

JE MATHS

(b)
$$t^{log_t(b^*a)} = {}^{\parallel B} b^{\text{MATHS}}$$

(c)
$$a^{log_a(x^*x)} = x^x$$

(d)
$$a^{1/x \times log_a x} = a^{log_a(x^{\wedge}1/x)} = x^{1/x}$$

JE MATHS

JE MATHS

JE MATHS

JE MATHS

JE MATHS

24. (a)

LHS =
$$\log_2 5 + \log_2 2 + \log_2 3 + \log_2 \sqrt{3}$$

= $\log_2 5 + \log_2 2 + \log_2 3 + 1/2 \times \log_2 3$
= $\log_2 5 + 1 + 3/2 \times \log_2 3 = RHS$

(b) LHS =
$$\log_2 8 - \log_2 25 - \log_2 \sqrt{30}$$

= $3\log_2 2 - 2\log_2 5 - 1/2\log_2 3 \times 5$
= $3\log_2 2 - 2\log_2 5 - 1/2 \times (\log_2 3 + \log_2 5)$
= $3 - 2\log_2 5 - 1/2 \times (\log_2 3 + \log_2 5)$
= $3 - 2\log_2 5 - 1/2 \times \log_2 3 + \log_2 5$
= $3 - 5/2 \times \log_2 5 - 1/2 \times \log_2 3 = RHS$

25. (a)

LHS=
$$log_x 8 - log_x 5 - log_x x^3$$
 (simplify 24/15=8/5)
= $3log_x 2 - log_x 5 - 3$
= $3p - r - 3 = RHS$

(b)

LHS=
$$\log_{x} 36 - \log_{x} 25 - \log_{x} x$$

= $2\log_{x} 6 - 2\log_{x} 5 - 1$
= $2\log_{x} 2 \times 3 - 2\log_{x} 5 - 1$
= $2\log_{x} 2 + 2\log_{x} 3 - 2\log_{x} 5 - 1$
= $2p + 2q - 2r - 1 = RHS$

26. LHS = $log_{an}x$

= log_ax/log_aan $= \log_a x/(\log_a a + \log_a n) \times MATHS$

 $= \log_a x/(1 + \log_a n)$

= RHS

27. (a) 3log₃5

(b) 3^{log_3m} JE MATHS

(c) $2^{log_20.4}$

(d) x^{log_xy}

28. (a) JB MATHS
$$log_2 \sqrt{x + log_2} 2 = log_2 y^3$$

$$log_2 2\sqrt{x} = log_2 y^3$$

$$2\sqrt{x} = y^3$$

IE MA(b)

(b)
$$log_5(2x-1)^3 = log_5(2x+1)^2 + log_55$$
$$log_5(2x-1)^3 = log_55(2x+1)^2$$
$$(2x-1)^3 = 5(2x+1)^2$$