

FOUNDATIONAL COURSE

August 14, 2018

Satellite Foundational Course for JPSS (SatFC-J)

Influence of Clouds and Precipitation

Learning Objectives

- Understand how microwave sensors provide moisture, cloud 1. properties, and precipitation information against different surface backgrounds (land vs. ocean).
- Interpret Total Precipitable Water (TPW), Cloud Liquid Water (CLW), 2. Rain Rate (RR), and Liquid Equivalent Snowfall Rate (SFR) products from example imagery.
- Describe how blended microwave and infrared precipitation 3. products are used to improve coverage of significant precipitation events.

Non-precipitating clouds are transparent

- Microwave detects moisture at all levels
- Infrared can detect moisture at different levels, but only in cloud-free regions

Total Precipitable Water (TPW)

Definition:

Liquid water equivalent if all the water vapor were condensed within a column of the atmosphere

- Observation Region:
 - global, over the oceans
 - excluding areas of sea ice and precipitation
- Observation Range:

0-75 mm

 $0-75 \text{ kg/m}^2$

NOAA Operational GCOM-W1 AMSR-2 Product Maps

Cloud Liquid Water (CLW)

Definition:

Depth of water if all the cloud droplets were accumulated within a column of the atmosphere

- Observation Region:
 - global, over the oceans
 - excluding areas of sea ice and precipitation
- Observation Range:

 $0-1.0 \, \text{mm}$

 $0-1.0 \text{ kg/m}^2$

NOAA Operational GCOM-W1 AMSR-2 Product Maps

Rain Rate (RR)

- Definition:
 - Depth of hourly rainfall at the ground surface
- Observation Region:
 - tropical to mid-latitude
 - higher accuracy over ocean than over land
- Observation Range: 0-50 mm/hr

NOAA Operational GCOM-W1 AMSR-2 Product Maps

Liquid Equivalent Snowfall Rate (SFR)

Definition:

Depth of hourly liquid equivalent of snowfall in the atmospheric column

- Observation Region:
 - temperatures >7 °F
 - mid and high latitudes
- Observation Range: 0.0012-0.2 in/hr (liquid)

Rain Rate from Infrared

Basic assumptions for opaque mid-latitude clouds:

- Cloud-top temperature (IR) is related to cloud-top height
- Cloud-top height is related to the strength of the updraft and rain rate

Microwave Interaction with Rain Cloud

Ice particles

- Scattering
- Higher frequencies (> 60 GHz)

Liquid raindrops

- Absorption / emission
- Lower frequencies (< 22 GHz)

Displacement due to viewing geometry (parallax error) is greater for ice than for raindrops.

Tropical Cyclone Analysis

- The low-level center and convective rain bands directly related to tropical cyclone intensity are often obscured by high clouds in visible, infrared, and water vapor imagery
- ~36 GHz able to sense clouds and moisture close to the surface
- ~89 GHz sensitive to both rain and ice rates

https://www.nrlmry.navy.mil/TC.html

Hurricane Maria: 18 September 2017

Thunderstorms

Precipitating clouds are not transparent

What makes brightness temperatures cooler over land surfaces?

36 GHz:

rain and wet ground

89 GHz:

rain, ice, and wet ground

Summary

- Microwave products related to atmospheric moisture include:
 - Total Precipitable Water
 - Cloud Liquid Water
 - Rain Rate
 - Liquid Equivalent Snowfall Rate
- The best precipitation estimation algorithms use a combination of:
 - infrared data from geostationary satellites (temporal advantage)
 - microwave data from polar-orbiting satellites (higher accuracy)
- Precipitation estimation is more reliable over the ocean, which provides a cold contrasting background.

Resources

- Microwave Remote Sensing: Clouds, Precipitation, and Water Vapor https://www.meted.ucar.edu/training_module.php?id=226
- A First Course in Atmospheric Radiation, 2nd Ed. (Petty 2006)
- SatFC-G: GOES-R Rainfall Rate http://rammb.cira.colostate.edu/training/visit/training_sessions/goes_r_rainfall_rate/

Questions? Email: Bernie.Connell@colostate.edu

Narrator: Erin Dagg

Editors: Erin Dagg, Bernie Connell

Other Contributors: Jorel Torres, Bob Kuligowski, Roger Edson