ELEC 2 : Composants usuels (1) GISTRE

Corentin 'Kmikaz' Vigourt 25/02/2024

Sommaire

- Schématiques
- Composants
- Résistances
- Diodes
- Condensateurs
- Inductances
- Lois de Kirchhoff
- Manipulations du jour

Schématiques

Quèsaco?

- Schéma représentant un circuit électronique
- Souvent fait dans le but de générer une carte électronique
- Sert aussi de documentation technique
- Plus c'est propre, mieux c'est

Exemple

Carte Vitrine Evolutek 2022

Règles simples

- Mettre les inputs le plus possible à gauche
- Mettre les outputs le plus possible à droite
- Découper les blocs importants
- Mettre les labels de puissances vers le haut
- Mettre les labels de GND vers le bas
- Être propre
- VRAIMENT PROPRE

Composants

Les composants

- Tout est composant (Amen)
- Possède des caractéristiques qui sont communes sur un même type
- Possède toujours une datasheet plus ou moins accessible
- Peut exister sur une carte de test du fabricant
- Pour les microcontrôleurs, vous avez en plus le Reference Manual

Composants usuels

Il existe deux standards de symboles :

- US
- EU

La version **US** est la plus utilisée

Composants passifs NF C 03-204 et NF C 03-206 Symboles généraux d'une résistance Potentiomètre à contact mobile (deux variantes) Thermistance Symboles généraux d'un condensateur Inductance, bobine, enroulement, Condensateur variable (2 variantes) Deux symboles du transformateur à Inductance à noyau magnétique deux enroulements Semi-conducteurs NF C 03-205 2 symboles de la diode Diode à effet de claquage dans à semi-conducteur un seul sens (diode zéner) Diode électroluminescente Diode à capacité variable (D.E.L. ou L.E.D.) Triac Thyristor, gachette P Transistor bipolaire type NPN Transistor bipolaire type PNP Transistor à effet de champ (TEC) à Transistor à effet de champ à jonction avec canal de type N jonction avec canal de type P Transistor à effet de champ Transistor bipolaire à grille isolée (MOSFET) à canal N à grille isolée (IGBT)

Comment reconnaitre un composant

Chaque composant possède des inscriptions / un code couleur pour les reconnaître

Une inscription n'est pas forcément sa valeur, à vérifier dans la datasheet!

Ce qui est important

- Première page : preview du composant
- Pin configuration
- Spécifications (notamment les caractéristiques électroniques)
- Detailed Description (pour plus de détail sur le fonctionnement)
- Application
- Footprint (pour faire des cartes)

Exemple de datasheet

Exemple: cd74hct21

Meilleurs fabricant en terme de datasheet

- Texas Instruments
- STMicroelectronis
- Microchip

Résistances (encore ...)

Les rôles de la résistance

- Limiter le courant
- Réduire la tension
- Contrôler les cycles de temporisation (Séance 6)

De quoi dépend une résistance électrique

- Du matériaux
- De la section du conducteur
- De la longueur
- La température

$R = \rho \frac{l}{s}$

Avec:

- 1. R la résistance en Ohms
- 2. ρ la résistivité du matériaux en Ohm-mètre
- 3. *l* la longueur en mètre
- 4. s la section du conducteur en m²

Différents types

- Fixe
- Variable

Caractéristiques d'une résistances

- Sa valeur en Ohms
- La tolérance en %
- La puissance max en Watts
- La tension max en Volts

Pour rappel:

$$P = U \times I$$

Avec:

- 1. P la puissance en Watts
- 2. U la tension en Volts
- 3. I l'intensité en Ampères

Association de résistances

$$Req = R1 + R2 + R3$$

En parallèle:

$$\frac{1}{Req} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3}$$

Résistance de Pullup / Pulldown

- Résistance de tirage à un état
- Force un signal à :
 - L'état haut (Pull Up)
 - L'état bas (Pull down)
- Toujours prendre une valeur haute de résistances

Diodes (la partie boring)

Semi-conducteurs dopés

Semi-conducteur:

<<Un semi-conducteur est un matériau qui a les caractéristiques électriques d'un isolant, mais pour lequel la probabilité qu'un électron puisse contribuer à un courant électrique, quoique faible, est suffisamment importante.>>

On peut modifier les propriétés électroniques des semi-conducteur via le dopage

Type N:

Plus d'électrons qui ne sont pas dans les liaisons covalentes. Résultats, les électrons supplémentaires se déplacent en continu.

Type P:

Moins d'électrons ce qui laisse des trous dans la structure du cristal qui sont comblés par les électrons voisins. Résultats, les trous se déplacent en continu.

Jonction PN

Fusion de semi-conducteurs de type N et type P.

Ce qui permet de pouvoir contrôler le sens de circulations dans le semi-conducteur.

Une diode est une simple jonction PN

Note: Quand le courant traverse la diode, la chute de tension à ses bornes reste constante.

Polarisation de la diode

• Directe:

Si la tension est positive entre l'anode et la cathode, elle est conductrice.

• Inverse:

Si la tension est négative entre l'anode et la cathode; elle est bloquante.

Rôles de la diode

- Protéger (surtensions)
- Redresser le courant alternatif
- Faire des portes logiques
- Réguler (diode zener)
- Faire de la lumière (led)

Différents types

- Standard
- Schottky
- Zener
- Électroluminescente (led)

Caractéristiques d'une diode

- Tension de seuil
- Tension inverse max
- Courant max
- Puissance max

Dans quel sens ça se câble?

Condensateurs (truc qui explose)

Quèsaco?

- Composant capable de stocker de l'énergie
- permet de changer la forme des signaux transmis par le courant
- Stocke de l'énergie tant qu'elle est pas sollicitée par le circuit
- A la différence d'une pile, il ne produit pas de particules chargées
- Peut conserver l'énergie pendant des heures
- Sa capacité se mesure en Farads

Différents types

- Non polarisés (céramique)
- Variables

Ses rôles

- Stocker de l'énergie
- Bloquer le courant continu
- Lisser la tension
- Créer des signaux
- Régler des fréquences

Ses caractéristiques

- Capacité
- Tension max

Le danger des condensateurs

Inductances (a little boring sry)

Qu'est-ce que induire un courant?

- Lorsque l'on fait circuler un courant électrique dans un conducteur, on génère un champ électromagnétique (faible en général)
- Si on déplace un aimant à proximité d'un conducteur, on induit une tension au bornes du conducteur, si bien qu'il peut être parcouru d'un courant
- Ce courant induit dépend de :
 - La force de l'aimant
 - La forme du flux magnétique
 - o La vitesse de l'aimant
- Si on enroule un câble pour faire une bobine et qu'on la place autour d'un aimant, on est capable de produire un fort courant induit
- L'inductance, notée L, se mesure en Henrys

Qu'est-ce qu'une inductance

- Une bobine très magnétique
- Produit un courant induit en sens inverse du courant
- Vient <<s'opposer au variation de courant>>
- Quand I est stable, l'inductance arrête d'influencer le courant

Ses rôles

- Filter (Séance 6)
- Transformer le courant (Transformateur)
- Isoler une source d'énergie électrique
- Élever ou abaisser une tension

Ses caractéristiques

- Son inductance
- Son courant efficace
- Son courant de saturation
- Sa tolérance
- La résistance max

Lois Kirchhoff

Loi des noeuds

Ce que dit la loi:

<< La somme algébrique des intensités des courants qui entrent par un noeud est égale à la somme algébrique des intensités des courants qui en sortent.>>

C'est à dire :

$$\sum Ientrants = \sum Isortants$$

Dans notre exemple:

$$11 + 13 = 12 + 14$$

Note:

Le courant fourni n'est pas divisé de la même façon entre toutes les branches. 12 n'est pas forcément égale à 13 ou 14.

Loi des mailles

Ce que dit la loi:

<< Dans une maille d'un réseau électrique, la somme des tensions le long de cette maille est toujours nulle.>>

C'est à dire :

$$\sum V = 0$$

Dans notre exemple:

$$VCC = Uac = Ubd$$

Note:

La tension n'est pas répartie de la même façon entre les composants d'une même branche. La tension fournie n'est pas forcément répartie équitablement entre R1 et R2.

Manipulations du jour

Au programme

- Loi des Noeuds et Loi de Mailles
- Condensateurs
- Portes logiques

Des questions?