Problem Set 1 Solutions

Calvin Walker

Problem 1:

- a) Let M be the partial matching of groups A and B. We start with $M = \emptyset$
 - 1. a_1 offers b_3 which is accepted as b_3 is unmatched, $M = \{(a_1, b_3)\}$
 - 2. a_2 offers b_1 which is accepted as b_1 is unmatched, $M = \{(a_1, b_3), (a_2, b_1)\}$
 - 3. a_3 offers b_4 which is accepted as b_4 is unmatched, $M = \{(a_1, b_3), (a_2, b_1), (a_3, b_4)\}$
 - 4. a_4 offers b_1 which is accepted as b_1 prefers a_4 to a_2 , $M = \{(a_1, b_3), (a_3, b_4), (a_4, b_1)\}$
 - 5. a_2 offers b_4 which is rejected as b_4 prefers a_3 to a_2 , $M = \{(a_1, b_3), (a_3, b_4), (a_4, b_1)\}$
 - 6. a_2 offers b_3 which is accepted as b_3 prefers a_2 to a_1 , $M = \{(a_2, b_3), (a_3, b_4), (a_4, b_1)\}$
 - 7. a_1 offers b_2 which is accepted as b_2 is unmatched, $M = \{(a_1, b_2), (a_2, b_3), (a_3, b_4), (a_4, b_1)\}$

The final matching is $M = \{(a_1, b_2), (a_2, b_3), (a_3, b_4), (a_4, b_1)\}$

- b) We start with $M' = \emptyset$, but now group B makes the offers to group A
 - 1. b_1 offers a_1 which is accepted as a_1 is unmatched, $M' = \{(b_1, a_1)\}$
 - 2. b_2 offers a_3 which is accepted as a_3 is unmatched, $M' = \{(b_1, a_1), (b_2, a_3)\}$
 - 3. b_3 offers a_3 which is accepted as a_3 prefers b_3 to a_2 , $M' = \{(b_1, a_1), (b_3, a_3)\}$
 - 4. b_4 offers a_1 which is rejected as a_1 prefers b_1 to b_4 , $M' = \{(b_1, a_1), (b_3, a_3)\}$
 - 5. b_4 offers a_4 which is accepted as a_4 is unmatched, $M' = \{(b_1, a_1), (b_3, a_3), (b_4, a_4)\}$
 - 6. b_2 offers a_4 which is rejected as a_4 prefers b_4 to b_2 , $M' = \{(b_1, a_1), (b_3, a_3), (b_4, a_4)\}$
 - 7. b_2 offers a_2 which is accepted as a_2 is unmatched, $M' = \{(b_1, a_1), (b_2, a_2), (b_3, a_3), (b_4, a_4)\}$

The final matching is $M = \{(b_1, a_1), (b_2, a_2), (b_3, a_3), (b_4, a_4)\}$. Compared to part (a), persons b_1, b_2, b_3 , and b_4 are happier with the new stable matching M', as they each have a match higher in their preference lists.

c)

Problem 2:

- a) (i) $O(n^2)$
 - (ii) $O(n \log n)$
 - (iii) $O(n^3)$
 - (iv) $O(\log^{10} n)$
 - (v) $O(n \log n)$
- b) $2^{\log \log n}$, $\log n$, $2^{\log n}$, $2^{2\log n}$, n, $n \log n$, $\frac{n^2}{\log n}$, n^2 , $n^{\log n}$, $2^n = 2^{2n}$, $n2^n$

Problem 3:

- a) No, it is not possible that everyone in group A is matched with their least preferred partner. Oberve that if some a_i makes an offer to their last choice b_j , then all other people in B except b_j must be unavailable to a_i , and thus matched. There are only n-1 other people in A, so b_j must be unmatched, which means that no person in A has made an offer to b_j . So b_j must be a less preferred partner for some already matched person in A, so not everyone in group A is matched with their least preferred partner.
- b) Yes, it is possible that everyone in group B is matched with their least preferred partner. Consider the following example. Group A's preference lists:
 - a_1 : b_1 ...
 - a_2 : b_2 ...

:

 a_n : b_n ...

Group B's preference lists:

 $b_1: \dots a_1$ $b_2: \dots a_2$ \vdots $b_n: \dots a_n$

If we run the Gale-Shapley algorithm with group A making the offers, the resulting stable matching will be $M = \{(a_1, b_1), (a_2, b_2), \dots (a_n, b_n)\}$, so every person in B will be matched with their least preferred partner.

c)

Problem 4: