RECOMENDACIÓN UIT-R P.838-1

MODELO DE LA ATENUACIÓN ESPECÍFICA DEBIDA A LA LLUVIA PARA LOS MÉTODOS DE PREDICCIÓN

(Cuestión UIT-R 201/3)

(1992-1999)

La Asamblea de Radiocomunicaciones de la UIT,

considerando

 a) que es necessario calcular la atenuación producida por la lluvia a partir de valores de intensidad de lluvia conocidos,

recomienda

1 que se utilice el siguiente procedimiento.

La atenuación específica γ_R (dB/km) se obtiene a partir de la intensidad de la lluvia R (mm/h) mediante la ley exponencial:

$$\gamma_R = k R^{\alpha} \tag{1}$$

En el Cuadro 1 se indican los valores de k y α , que dependen de la frecuencia, para las polarizaciones lineales (horizontal: H, vertical: V) y para trayectos horizontales. Pueden obtenerse los valores de k y α a frecuencias diferentes de las indicadas en el Cuadro 1 mediante interpolación, utilizando una escala logarítmica para la frecuencia y para k, y una escala lineal para α .

Los valores del Cuadro 1 han sido probados y se han considerado lo suficientemente precisos como para realizar predicciones de la atenuación hasta frecuencias de 55 GHz.

Para la polarización lineal y circular, y para cualquier geometría del trayecto, los coeficientes de la ecuación (1) pueden calcularse mediante los valores del Cuadro 1 utilizando las ecuaciones siguientes:

$$k = \left[k_H + k_V + (k_H - k_V) \cos^2 \theta \cos 2 \tau \right] / 2$$
 (2)

$$\alpha = \left[k_H \alpha_H + k_V \alpha_V + (k_H \alpha_H - k_V \alpha_V) \cos^2 \theta \cos 2\tau \right] / 2k$$
 (3)

donde θ es el ángulo de elevación del trayecto y τ es el ángulo de inclinación de la polarización con respecto a la horizontal ($\tau = 45^{\circ}$ para la polarización circular).

CUADRO 1

Coeficientes de regresión para estimar el valor de la atenuación específica de la ecuación (1)

Frecuencia (GHz)	k_H	k_V	α_H	$lpha_V$
1	0,0000387	0,0000352	0,912	0,880
2	0,000154	0,000138	0,963	0,923
4	0,000650	0,000591	1,121	1,075
6	0,00175	0,00155	1,308	1,265
7	0,00301	0,00265	1,332	1,312
8	0,00454	0,00395	1,327	1,310
10	0,0101	0,00887	1,276	1,264
12	0,0188	0,0168	1,217	1,200
15	0,0367	0,0335	1,154	1,128
20	0,0751	0,0691	1,099	1,065
25	0,124	0,113	1,061	1,030
30	0,187	0,167	1,021	1,000
35	0,263	0,233	0,979	0,963
40	0,350	0,310	0,939	0,929
45	0,442	0,393	0,903	0,897
50	0,536	0,479	0,873	0,868
60	0,707	0,642	0,826	0,824
70	0,851	0,784	0,793	0,793
80	0,975	0,906	0,769	0,769
90	1,06	0,999	0,753	0,754
100	1,12	1,06	0,743	0,744
120	1,18	1,13	0,731	0,732
150	1,31	1,27	0,710	0,711
200	1,45	1,42	0,689	0,690
300	1,36	1,35	0,688	0,689
400	1,32	1,31	0,683	0,684