Mask-Predict: Parallel Decoding of Conditional Masked Language Models

Илья Притуляк

Подходы к переводу текста

• Авторегрессионный машинный перевод Encoder Decoder C e • Неавторегрессионный машинный перевод Encoder Decoder

Проблема мультимодальности

- Хотим перевести с английского на русский "Thank you very much"
- Варианты переводов: "Спасибо тебе большое", "Большое тебе спасибо"
- Возможный перевод неавторегрессионной модели: "Спасибо тебе спасибо"

Архитектура и идея модели

- За основу взят обычный трансформер
- Self-attention в декодере теперь двунаправленный
- Хотим предсказать некоторое подмножество итоговых токенов на основе входного текста и остальных токенов

Обучение модели

- Маскируем k случайных токенов выходной последовательности, где k из Uniform(1, N) и предсказываем их
- Целевая функция: кросс-энтропия на маскируемых токенах

Обучение модели

- Маскируем k случайных токенов выходной последовательности, где k из Uniform(1, N) и предсказываем их
- Целевая функция: кросс-энтропия на маскируемых токенах
- Длину текста предсказываем при помощи токена [LEN] в энкодере

Инициализация:

1. Предсказываем длину ответа N

Инициализация:

- 1. Предсказываем длину ответа N
- 2. Маскируем все токены

Инициализация:

- 1. Предсказываем длину ответа N
- 2. Маскируем все токены
- 3. Предсказываем все токены с применением argmax

Итерация:

1. Маскируем n токенов с наименьшей вероятностью

Итерация:

[L]

 1. Маскируем n токенов с наименьшей вероятностью
 A B C D E F G

 2. Предсказываем их с применением argmax
 Decoder

 7
 A B B D E F F

 A B B D E F F
 A B B D E F F

Сколько итераций?

- Константное: 1-10
- $\log N, \sqrt{N}, N$

Сколько маскировать?

$$n = \left(1 - \frac{current\ iteration}{total\ iterations}\right)N$$

Пример применения

src	Der Abzug der franzsischen Kampftruppen wurde am 20. November abgeschlossen .				
t = 0	The departure of the French combat completed completed on 20 November.				
t = 1	The departure of French combat troops was completed on 20 November.				
t = 2	The withdrawal of French combat troops was completed on November 20th.				

Улучшаем выбор длины

- Так как у нас есть распределение на длинах перевода, можем взять несколько наиболее вероятных из них
- Выбрать наилучшую можно по формуле

$$\frac{1}{N} \sum \log p_i$$

Постановка экспериментов

- Наборы данных: WMT'14 EN-DE (4.5M sentence pairs), WMT'16 EN-RO (610k pairs), WMT'17 EN-ZH (20M pairs) в обоих направлениях
- Токенизация при помощи ВРЕ
- Основная метрика качества: BLEU
- Гиперпараметры модели в основном такие же, как и у трансформера

Постановка экспериментов

- Для обучения используются переводы большого трансформера
- Обучение происходит на батчах размера 128k токенов, 300k шагов
- После каждой эпохи качество замеряется на валидационной выборке
- Итоговая модель: усреднение пяти лучших состояний
- Beam size (авторегрессионная модель): 5
- Кандидатов длины (неавторегрессионная модель): 5

Качество перевода

Model	Dimensions	Iterations	WMT'14		WMT'16	
	(Model/Hidden)		EN-DE	DE-EN	EN-RO	RO-EN
NAT w/ Fertility (Gu et al., 2018)	512/512	1	19.17	23.20	29.79	31.44
CTC Loss (Libovický and Helcl, 2018)	512/4096	1	17.68	19.80	19.93	24.71
Iterative Refinement (Lee et al., 2018)	512/512	1	13.91	16.77	24.45	25.73
	512/512	10	21.61	25.48	29.32	30.19
(Dynamic #Iterations)	512/512	?	21.54	25.43	29.66	30.30
Small CMLM with Mask-Predict	512/512	1	15.06	19.26	20.12	20.36
	512/512	4	24.17	28.55	30.00	30.43
	512/512	10	25.51	29.47	31.65	32.27
Base CMLM with Mask-Predict	512/2048	1	18.05	21.83	27.32	28.20
	512/2048	4	25.94	29.90	32.53	33.23
	512/2048	10	27.03	30.53	33.08	33.31
Base Transformer (Vaswani et al., 2017)	512/2048	N	27.30			
Base Transformer (Our Implementation)	512/2048	N	27.74	31.09	34.28	33.99
Base Transformer (+Distillation)	512/2048	N	27.86	31.07		
Large Transformer (Vaswani et al., 2017)	1024/4096	N	28.40			
Large Transformer (Our Implementation)	1024/4096	N	28.60	31.71		

Качество перевода

Model	Dimensions	Iterations	T'17	
	(Model/Hidden)		EN-ZH	ZH-EN
Base CMLM with Mask-Predict	512/2048	1	24.23	13.64
	512/2048	4	32.63	21.90
	512/2048	10	33.19	23.21
Base Transformer (Our Implementation)	512/2048	N	34.31	23.74
Base Transformer (+Distillation)	512/2048	N	34.44	23.99
Large Transformer (Our Implementation)	1024/4096	N	35.01	24.65

Скорость перевода

Зачем нужно несколько итераций?

Ответ: чтобы решить проблему мультимодальности

Iterations	WMT'14 EN-DE		WMT'16 EN-RO		
	BLEU	Reps	BLEU	Reps	
T=1	18.05	16.72%	27.32	9.34%	
T=2	22.91	5.40%	31.08	2.82%	
T=3	24.99	2.03%	32.19	1.26%	
T=4	25.94	1.07%	32.53	0.87%	
T=5	26.30	0.72%	32.62	0.61%	

Больше длина — больше итераций?

Ответ: да, но не критично

	T=4	T = 10	T = N
$1 \le N < 10$	21.8	22.4	22.4
$10 \le N < 20$	24.6	25.9	26.0
$20 \le N < 30$	24.9	26.7	27.1
$30 \le N < 40$	24.9	26.7	27.6
$40 \le N$	25.0	27.5	28.1

Больше кандидатов длины — лучше?

Ответ: да, но в меру

Length	WMT'14 EN-DE		Length WMT'14 EN-D		WMT'1	6 EN-RO
Candidates	BLEU	LP	BLEU	LP		
$\ell = 1$	26.56	16.1%	32.75	13.8%		
$\ell = 2$	27.03	30.6%	33.06	26.1%		
$\ell = 3$	27.09	43.1%	33.11	39.6%		
$\ell = 4$	27.09	53.1%	32.13	49.2%		
$\ell = 5$	27.03	62.2%	33.08	57.5%		
$\ell = 6$	26.91	69.5%	32.91	64.3%		
$\ell = 7$	26.71	75.5%	32.75	70.4%		
$\ell = 8$	26.59	80.3%	32.50	74.6%		
$\ell = 9$	26.42	83.8%	32.09	78.3%		
Gold	27.27	_	33.20	_		

Необходима ли дистилляция?

Ответ: да

Iterations	WMT'14 EN-DE		WMT'16 EN-RO		
	Raw	Dist	Raw	Dist	
T=1	10.64	18.05	21.22	27.32	
T = 4	22.25	25.94	31.40	32.53	
T = 10	24.61	27.03	32.86	33.08	

Список литературы

- https://arxiv.org/abs/1904.09324
- https://youtu.be/MpuJaNJIVs0