Introduction to Artificial Intelligence

COMP307/AIML420

Neural Networks: Tutorial

Dr Andrew Lensen

Andrew.Lensen@vuw.ac.nz

NN Example: Your Turn!

Calculate the outputs of this network (feedforward): to 2dp

I_1	I_2	<i>w</i> ₁₃	<i>w</i> ₁₄	w_{23}	W ₂₄	W ₃₅	W ₃₆	W_{45}	W ₄₆	b_3	b_4	b_5	b_6
0.90	-0.20	0.72	-0.31	0.10	-0.92	-0.37	0.43	-0.19	0.78	0.01	0.38	-0.13	0.78

Z_3	
O_3	
Z_4	
O_4	
Z_5	
O_5	
z_6	
06	

Class = ____

Useful Formulae: Feedforward

• Weighted sum (ws)of a node:

$$z_j = \sum_i w_{ji} x_i + b_j$$

- Output of a node:
 - Where φ is the activation function.
- Assume φ is the sigmoid function:

$$\varphi(z_j) = \frac{1}{1 + e^{-z_j}}$$

 $O_j = \varphi(z_i)$

NN Example: Your Turn!

Calculate the new weights and biases (backprop): to 2dp

Inputs Hidden Outputs

w_{13}	
w_{14}	
w_{23}	
w_{24}	
w_{35}	
w ₃₆	
W_{45}	
<i>w</i> ₄₆	
b_3	
b_4	
b_5	
b_6	

Useful Formulae: Backprop

• Error term of an output node: $\beta_i = d_i - O_i$

• Error term of a hidden node:
$$\beta_j = \sum_k w_{j \to k} O_k (1 - O_k) \beta_k$$
- (For the sigmoid activation function)

Amount to change a weight: Δ

$$\Delta w_{i\to j} = \eta O_i O_j (1 - O_j) \beta_j$$

• Amount to change a bias: $\Delta b_i = \eta O_i (1 - O_i) \beta_i$

Notes on BP Algorithm

- 1 Epoch: all input examples (entire training set, batch, ...)
- A target of 0 or 1 cannot reasonably be reached. Usually interpret an output > 0.9 or > 0.8 as '1'
- Training may require *thousands* of epochs. A convergence curve will help to decide when to stop (over-fitting?)

NNs for (Multi-Class) Classification

Training a Neural Network

Initialise the weights (randomly)

Feedforward

- For each example, calculate the predicted outputs o_z using the current weights
- Calculate the total error $\sum_{z} (d_z o_z)^2$
- If the error is small enough, we can stop.
- Otherwise, we use back propagation to adjust the weights to make the error smaller.
 - Uses gradient descent (GD)

Back Propagation (BP) Algorithm

- Estimate the <u>contribution (gradient)</u> of each weight to the error, i.e. how much the error will be reduced by changing the weight (gradient)
- Change each weight (simultaneously) proportional to its contribution to reduce the error as much as possible
 - Move in the direction of the steepest gradient
- We calculate the contribution/gradient backwards (from the last/output layer to the first hidden layer)
- Error of a single output node is $d_z o_z$
 - $-d_z$ means "desired"
 - $-o_z$ means "output" (i.e. what we actually got)

Back Propagation (BP) Algorithm

- How big a change should we make to weight w_{i→i}?
 - Make a big change if will improve error a lot (big contribution)
 - Make a small change if little effect on error (small contribution)

- β_i is how "beneficial" a change is for node j ("error term")
- When changing $w_{i\rightarrow j}$, the error change should be:
 - Proportional to the output: o_i (larger output = more effect)
 - Proportional to the slope of the activation function at node j: slope;
 - Proportional to error term of j (β_i)

BP Algorithm Implementation

- Let η be the learning rate ("eta"...)
- Initialise all weights (+bias) to small random values
- Until total error is small enough, repeat:
 - For each input example:
 - Feed forward pass to get predicted outputs
 - Compute $\beta_z = d_z o_z$ for each output node
 - Compute $\beta_j = \sum_k w_{j\to k} o_k (1 o_k) \beta_k$ for each hidden node (working backwards from last to first layer)
 - Compute (+store) the weight changes for all weights $\Delta w_{i\rightarrow j} = \eta o_i o_j (1 o_j) \beta_j \text{ (proportional to all 3 factors)}$
 - Sum up weight changes for all input examples
 - Change weights!