Text Mining w R WhyR? 2017 - warsztat

Norbert Ryciak

Politechnika Warszawska, Sages

4 października 2017

Prowadzący

- Wydział Matematyki i Nauk Informacyjnych PW
 - doktorant (zastosowanie deep learningu w analizie tekstu)
- Instytut Podstaw Informatyki PAN
 - projekt CLARIN (zadanie analizy sentymentu)

- Sages
 - opiekun <u>bootcampu Data Science</u>, trener

Latent Dirichlet Allocation

Motywacja: przedstawienie tekstu jako mieszanki tematów.

Motywacja: przedstawienie tekstu jako mieszanki tematów. Temat - rozkład prawdopodobieństwa na zbiorze słów.

Motywacja: przedstawienie tekstu jako mieszanki tematów. Temat - rozkład prawdopodobieństwa na zbiorze słów.

Przykład:

- Mam gorączkę i katar.
- Graliśmy w siatkówkę.
- Sport to zdrowie.

Motywacja: przedstawienie tekstu jako mieszanki tematów.

Temat - rozkład prawdopodobieństwa na zbiorze słów.

Przykład:

- Mam gorączkę i katar.
- Graliśmy w siatkówkę.
- Sport to zdrowie.

Załóżmy, że mamy dwa tematy: "zdrowie" i "sport". Wówczas:

Motywacja: przedstawienie tekstu jako mieszanki tematów.

Temat - rozkład prawdopodobieństwa na zbiorze słów.

Przykład:

- Mam gorączkę i katar.
- Graliśmy w siatkówkę.
- Sport to zdrowie.

Załóżmy, że mamy dwa tematy: "zdrowie" i "sport". Wówczas:

- Pierwsze zdanie = 100% zdrowie
- Drugie zdanie = 100% sport
- Trzecie zdanie = 50% sport + 50% zdrowie

Rozkład Dirichleta

Rysunek: Gęstość trójwymiarowego rozkładu Dirichleta Dir(α).

Wektor losowy $(x_1,...,x_K)$ z K-wymiarowego rozkładu Dirichleta to punkt na (K-1)-wymiarowym sympleksie, czyli $x_1+...+x_K=1$, $x_i\geqslant 0$.

Model LDA - sformułowanie

LDA - Latent Dirichlet Allocation.

Model LDA - sformułowanie

LDA - Latent Dirichlet Allocation.

Proces generowania dokumentu d:

- **1** Ustal liczbę słów w dokumencie N_d .
- **②** Losuj rozkład tematów w dokumencie $heta_d \sim \mathsf{Dir}(lpha)$.
- **3** Dla $i = \{1, ..., N_d\}$:
 - $oldsymbol{0}$ Losuj temat z_{di} z rozkładu dyskretnego $oldsymbol{ heta}_d$.
 - $m{ ilde{ ilde{Q}}}$ Losuj słowo w_{di} z rozkładu dyskretnego $m{eta}_{z_{di}}$

Wygładzany model LDA

$$oldsymbol{arphi}_k \sim extstyle extstyle$$

1 Inicjalizacja: każde słowo przypisz do losowego tematu.

- Inicjalizacja: każde słowo przypisz do losowego tematu.
- ② Dla każdego słowa w_{dj} , $j=1,...,N_d$, d=1,...,M, powtarzaj:
 - ▶ Oblicz $P(z_{di} = k | \mathbf{w}, \mathbf{z}_{-di}, \alpha, \beta)$ dla k = 1, ..., K.
 - ▶ Wylosuj z_{dj} z powyższego rozkładu.

- Inicjalizacja: każde słowo przypisz do losowego tematu.
- ② Dla każdego słowa w_{di} , $j = 1, ..., N_d$, d = 1, ..., M, powtarzaj:
 - ▶ Oblicz $P(z_{di} = k | \mathbf{w}, \mathbf{z}_{-di}, \alpha, \beta)$ dla k = 1, ..., K.
 - ▶ Wylosuj *z_{di}* z powyższego rozkładu.

$$P(z_{dn} = k | \mathbf{z}_{-(dn)}, \mathbf{w}, \alpha, \beta) \propto \frac{n_{k, w_{dn}}^{(\cdot)} + \beta}{n_{k, (\cdot)}^{(\cdot)} + \beta V} \cdot \frac{n_{k, (\cdot)}^{d} + \alpha_{k}}{N_{d} + \sum_{k=1}^{K} \alpha_{k}},$$

 $n_{k,w}^d$ - liczność przypisań słowa w do tematu k w dokumencie d.

- Inicjalizacja: każde słowo przypisz do losowego tematu.
- ② Dla każdego słowa w_{di} , $j = 1, ..., N_d$, d = 1, ..., M, powtarzaj:
 - ▶ Oblicz $P(z_{di} = k | \mathbf{w}, \mathbf{z}_{-di}, \alpha, \beta)$ dla k = 1, ..., K.
 - ▶ Wylosuj *z_{di}* z powyższego rozkładu.

$$P(z_{dn} = k | \mathbf{z}_{-(dn)}, \mathbf{w}, \alpha, \beta) \propto \frac{n_{k, w_{dn}}^{(\cdot)} + \beta}{n_{k, (\cdot)}^{(\cdot)} + \beta V} \cdot \frac{n_{k, (\cdot)}^{d} + \alpha_{k}}{N_{d} + \sum_{k=1}^{K} \alpha_{k}},$$

 $n_{k,w}^d$ - liczność przypisań słowa w do tematu k w dokumencie d.

$$\hat{\theta}_{di} = \frac{n_{i,(\cdot)}^{d} + \alpha_{i}}{N_{d} + \sum_{i=1}^{k} \alpha_{i}}, \quad i = 1, ..., k, \ d = 1, ..., M,$$

$$\hat{\varphi}_{ij} = \frac{n_{i,j}^{(\cdot)} + \beta}{n_{i,j}^{(\cdot)} + \beta V}, \quad i = 1, ..., K, \ j = 1, ..., V.$$

Predykcja tematów w nowych dokumentach

Próbkowanie Gibbsa:

- Inicjalizacja tematami najbardziej prawdopodobnymi dla odpowiednich słów.
- Analogiczne losowanie sekwencyjne: losujemy na podstawie

$$P(z_{dn} = k | \mathbf{z}_{-(dn)}, \mathbf{w}, \alpha, \beta) \propto \frac{n_{k,(\cdot)}^d + \alpha_k}{N_d + \sum_{k=1}^K \alpha_k}.$$

• $\frac{n_{k,w_{dn}}^{(\cdot)} + \beta}{n_{k,(\cdot)}^{(\cdot)} + \beta V}$ jest ustalone.