

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

SECURIT PROBABBATION					
CUN		MENTATION	MENTATION PAGE		
16. REPORT SE UNCLAS AD-A 148 834		1b. RESTRICTIVE MARKINGS			
2a. SECURITY (3. DISTRIBUTION/AVAILABILITY OF REPORT			
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE		APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED			
4. PERFORMING ORGANIZATION REPORT NUMBER	R(S)	S. MONITORING ORGANIZATION REPORT NUMBER(S)			
4.44		AFOSR-TR- 84-1121			
6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL University of S. California (If applicable)		78. NAME OF MONITORING ORGANIZATION			
Dept. of Electrical Engineering		AFOSR/NM			
6c. ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (Cit	7b. ADDRESS (City, State, and ZIP Code)		
Los Angeles, CA 90089		Bolling A	Bolling AFB, DC 20332-6448		
8a. NAME OF FUNDING/SPONSORING	8b. OFFICE SYMBOL		I INSTRUMENT IDE		UMBER
ORGANIZATION AFOSR	(If applicable) NM	AFOSR	-80-0013	·	
Bc. ADDRESS (City, State, and ZIP Code)	102		UNDING NUMBERS		
a. Appress (city, state, and air cope)		PROGRAM		TASK	WORK UNIT
Bolling AFB, DC 20332		61102F	NO . 2304	NO.	ACCESSION NO.
11. TITLE (Include Security Classification) INPUT-OUTPUT STABILITY ANALYS:	IS WITH MAGNETIC	C HYSTERESIS	NON-LINEARIT	Y	
12. PERSONAL AUTHOR(S) M.G. Safonov, K. Karimlou					
13a. TYPE OF REPORT 13b. TIME C	OVERED Dec TO 16 Dec	14. DATE OF REPO	RT (Year, Month, D	ey) 15. PAGE	COUNT
16. SUPPLEMENTARY NOTATION					
22ND IEEE CONFERENCE ON DECI:	SION AND CONTRO	L, 14-16 Dec	83, Marriott	Hotel, Sa	n Antonio
Texas 17. COSATI CODES	18. SUBJECT TERMS	(Continue on reverse	if necessary and	identify by blo	ck number)
FIELD GROUP SUB-GROUP	- No. 1		•		
	In	this do	en ment		
19. ABSTRACT (CONTINUE on reverse if necessary	and identify by block	number)	•		
Popov type frequency domagnetic hysteresis non-li	ain conditions	for stability	of feedback	systems o	ontaining
	- • · · · · · · · · · · · · · · · · · ·	\sim		D	T
		, `			
				EL	Parameter (1)
				DEC	2 7 1984
				U	
DTIE FILE COPY					
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT QUINCLASSIFIED/UNLIMITED SAME AS	RPT. 🔲 DTIC USERS		CURITY CLASSIFICA SIFIED	TION	
22a NAME OF RESPONSIBLE INDIVIDUAL Capt. Thomas		225 TELEPHONE ((202) 767-	Include Area Code) 5026	22c. OFFICE S NM	YMBOL
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE					

The 22nd IEEE Conference on Decision and Control Marriott Hotel San Antonio, Texas December 14-16, 1983

INPUT-CUTPUT STABILITY ANALYSIS WITH MAGNETIC HYSTERESIS NON-LINEARITY

M. G. Safonov and K. Karimlou

Department of Electrical Engineering - Systems
University of Southern California
Los Angeles, CA 90089

Abstract

Popov type frequency domain conditions for stability of feedback systems containing ferromagnetic hysteresis non-linearity are established.

I. Introduction

Popov criterion and its extensions consider non-linear elements that are memoryless and pass through the origin, i.e., $f(0) \approx 0$. For an important class of non-linearities, ferromagnetic hysteresis, none of the above conditions are satisfied, i.e., it is neither non-dynamic nor pass through the origin. Therefore, to analyze the stability of systems containing this type of non-linearity, appropriate modifications to Popov's approach should be made.

Published material to tackle this problem is scarce. The only work known to us is by Lecoq and Hopkin [1], where by letting the derivative of their input signals to belong to exponentially weighted L₂ spaces, they obtained bounded input-bounded output stability for systems containing hysteresis non-linearities.

In the present paper we analyze the stability of feedback systems of the form shown in fig. (1a), where N is a ferromagnetic hysteresis non-linearity and H is a linear element. The analysis is done by substitution of the model for the hysteresis proposed by Chua and Stromsmoe [2]. Then the concept of passivity is utilized to derive Popov type frequency domain conditions on the linear element H for stability of the feedback system. It will be shown that if the same conditions as in the classical Popov criterion are satisfied by inputs u and u and linear element H then the feedback system of fig. (1a) is stable if the non-linear element N is a ferromagnetic hysteresis.

II. Hysteresis Modeling

The model for ferromagnetic hysteresis of Chua and Stromsmoe [2] is given by

$$\frac{dy}{dt} = go\{x(t) - fo(y(t))\}$$
 (2.1)²

where x(t) and y(t) are real-valued, continuous input and output signals of the hysteresis non-linearity

Research supported in part by AFOSR Grant 80-0013 and in part by NSF Grant INT-8302754.

By the classical Popov criterion, we refer to the earliest version of the result obtained by Popov [3] and also derived by different approaches in [4], [5], [6], and not later generalizations of the result by Yakubovich [7] among others.

PARTY ANDROSES, RESISTER, EDITORETA SERVICES

(b) Ferromagnetic Hysteresis Loop.

Fig. 1
Table 1
Notations

Symbol	Meaning
R,R,	Field of real and positive real numbers.
L	The space of signals such that x(t) dt exists.
L	The space of bounded signals.
L _{2e}	The space of signals which are square integrable on every bounded interval [0.1] [9].
L ₂	The Hilbert space of signals which are
2	square integrable on (-α, π) with inner product < x, y >,
< x, y >	f* y*(t) x(t) dt
[*]	√< x, x >
< x, y > _T	$\int_{\Omega} T_{y}^{*}(t) x(t) dt$
$\ \mathbf{x}^{t}\ _{\mathbf{T}}$	√< x, x> _T
r×	Truncated x [6]
×₁ ✓	Set of instances of time of interest. Convolution Algebra [6].
Re [+]	Real part of a complex quantity.

o: Functional Composition.

$$g(0) = f(0) = 0$$

Equation (2.1) models the behavior of ferromagnetic hysteresis successfully and with very good accuracy. It predicts the expansion of the area of the hysteresis loop with increasing frequency and predicts minor hysteresis loops such as commonly occur when a d-c plus periodic input is applied.

After plotting the hysteresis loop for a convenient signal, simple procedures are given in [2] to determine g and f for that loop. When non-linear functions g and f are determined, they can be substituted in the model of equation (2.1) to predict, with good accuracy, the hysteresis shape and/or its output for any arbitrary input. For further detail and examples see [2].

III. Passivity and Stability

<u>Definition (3.1) [6]</u>: Let H: $L_{2e} - L_{2e}$. Then H is <u>passive</u> iff there exists some constant $6 \le R$ such that

$$< Hx, x>_{T} \ge 5$$
 $\forall x \in L_{2}$
 $\forall T \in J$

Definition (3.2) [6]: Let H: $L_{2e} = L_{2e}$. Then H is strictly passive iff there exists 5 > 0 and some constant $5 \in R$ such that

$$< Hx, x>_T \ge 5 | x_T| + 8 \quad \forall x \in L_{2e}$$

 $\forall T \in J$

Definition (3.3) [11]: The feedback system of fig. (1a) is said to be finite gain L_2 -stable if

- a) $e_1, e_2, y_1, y_2 \in L_2 \quad \forall u_1, u_2 \in L_2$
- b) There exists constants ρ_1 and ρ_2 such that $\|\mathbf{e}_1\|$, $\|\mathbf{e}_2\|$, $\|\mathbf{y}_1\|$, $\|\mathbf{y}_2\| \le \rho_1\|\mathbf{u}_1\| + \rho_2\|\mathbf{u}_2\| \ \forall \mathbf{u}_1, \mathbf{u}_2 \in L_2$

In the following well-known theorem, the concept of passivity is used to establish finite gain L₂-stability of feedback system shown in fig. (la), where N and H are considered to be operators in the general sense.

Theorem (3.1): Consider the feedback system shown in fig. (1a)

$$e_1 = u_1 - He_2$$

 $e_2 = u_2 + Ne_1$

where H, N: $L_{2e} - L_{2e}$. Assume that for any $u_1, u_2 \in L_2$ there are solutions $e_1, e_2 \in L_{2e}$. Suppose that there are real constants v, δ , and ϵ such that

$$||Hx||_{T} \le v ||x|_{T}$$
 (3.1)

$$< Hx, x>_{T} \ge 6 ||x||_{T}^{2}$$
 (3.2)

$$\langle x, Nx \rangle_{\overline{T}} \geq \varepsilon \|Nx\|_{\overline{T}}^2$$
 (3.3)

¥x€L_{2e}, ¥T€J

Under these conditions if

$$t+\varepsilon>0 \tag{3.4}$$

Then the feedback system is finite gain L₂-stable.

Proof: See for example [6].

IV. Main Results

Substitution of the model given by equation (2.1) for the hysteresis non-linearity N gives the feedback system of fig. (2). Note that although the standard magnetic hysteresis non-linearity, as shown in fig. (1b), is the plot of flux linkage (c(t)) vs. current (i(t)) of an inductor (transformer), but from circuit analysis point of view, the input and output of the model replaced for N as shown in fig. (2) are current through and voltage across the inductor (transformer).

Next, the main stability result is presented.

Theorem (4.1): Consider the feedback system of fig. (2), where $h(t) \in L_1(R_+)^4$, and $h(t) \in \mathcal{A}$.

Assume that for any $u_1, u_2 \in L_2$, there are solutions $e_1, e_2, y_1, y_2 \in L_{2e}$. If a constant $q \ge 0$ exists such that for some constant δ

Re
$$\{(1+q)u\}H(ju)\}=\delta>0 \quad \forall u\geq 0$$
 (4.1)

Then Vu,, u, u, EL,

- a) (i) $e_1, \dot{e}_1, e_2, y_1, y_2, \dot{y}_2 \in L_2$.
 - (ii) there exists constants c_1 and c_2 such that $\|e_1\|$, $\|\hat{e}_1\|$, $\|e_2\|$, $\|y_1\|$, $\|y_2\|$, $\|\hat{y}_2\|$, i.e., finite gain L_2 -stability.
- b) e₁, e₂, y₁, y₂ ∈ L_a, are continuous, and go to zero

Proof: See appendix.

Upper and lower bounds of non-linearities g and f can be taken into consideration to obtain less conservative classes of linear element H(s). As an example, an upper bound on g is exploited in the

The voltage across an inductor (transformer) is proportional to rate of change of the flux linkage, constant of proportionality being the number of turns.

 $^{^{4}}$ h(t) is the impulse response of H(s).

following Corollary.

Corollary (4.1): Consider the feedback system of fig. 2, where genetor $\{0,k\}$, $h\{t\} \in L_1(\mathbb{R}_+)$, $h(t) \in A$. Assume that for any $u_1, u_2 \in L_2$, there exists solutions $e_1, e_2, y_1, y_2 \in L_{2e}$. If a constant $q \ge 0$ exists such that for some constant &

Re
$$\{(1+q)\omega\}H(j\omega)^{\frac{1}{2}} + \frac{1}{k} = \varepsilon > 0 \quad \forall \omega \geq 0$$
 (4. 2)
then $\forall u_1, u_1, u_2 \in L_2$ conclusions of Theorem (4. 1)

Proof: For outline of the proof, see appendix.

V. Conclusion

Popov type frequency domain conditions for stability of feedback systems containing ferromagnetic hysteresis non-linearity are established. To obtain the results, model of Chua and Stromsmoe [2] for hysteresis is employed and the concept of passivity is utilized.

Vl. Appendix

To simplify the proof of Theorem (4, 1) and Corollary (4.1), the following two lemmas will be proved first.

Lemma (A.1): Let $q \ge 0$, $g \in sector (0, \infty)$. Then the system of fig. (A.1) is passive [6].

Fig. (A. 1)

Proof:
$$\langle y, x \rangle_T = \langle g(z), \sigma + q z \rangle_T$$

= $\langle g(z), z \rangle_T + q \langle g(z), z \rangle_T$

(i):
$$\langle g(\tau), \tau \rangle_{T} \geq 0$$
 because gisector $(0, \pi)$

(ii):
$$q < g(z), \hat{z} >_T = q \int_0^z g(z) \hat{z} dz$$

$$= q \int_0^z (T) g(z) dz$$

Define $G(z) = \int_{0}^{z} g(\xi)d\xi$, where $G: R \rightarrow R$.

Clearly $G(\tau) \ge 0 \ \forall \ x \in \mathbb{R}$. Then $q < p(z), \hat{z} >_T \ge -q C[c(o)] \quad \forall T \ge 0$

(i) and (ii) implies $\langle y, x \rangle_T \ge -q G[c(o)] + T \ge 0$ Passivity follows.

Lemma (A. 2): Le: q > 0, if sector (0, =), $\frac{df(x)}{dx} > 0$. Then the system of fig. (A. 2) is passive.

Fig. (A. 2)

Proof:
$$\langle y, x \rangle_T = \langle \sigma + q \dot{\tau}, \dot{\tau} \rangle_T$$

= $\langle f(\tau), \dot{\sigma} \rangle_T + q \langle \frac{d}{d\tau} [f(\tau)], \dot{\sigma} \rangle_T$

(i) $\langle f(\phi), \dot{\phi} \rangle_T \geq -F[c(0)] \quad \forall T \geq 0$ where F: R-R, by lemma (A. 1, (ii)).

(ii)
$$q < \frac{d}{dt} [f(c)], c >_T = q \int_0^T \frac{d}{dt} [f(c)] \frac{dc}{dt} dc$$

= $q \int_0^T \frac{d}{dc} [f(c)] [\frac{dc}{dt}]^2 dt \ge 0$

because $\frac{d}{dx}[f(x)] > 0$ and $\left[\frac{dx}{dx}\right]^2 \ge 0$

(i) and (ii) implies that $\langle y, x \rangle_T \ge -F[z(0)] \forall T \ge 0$ Passivity follows.

Fig. (A. 3)

Proof of Theorem (4.1): (a): By inclusion of the multiplier (1+qs), q > 0, transform the feedback system of fig. (2) to the one shown in fig. (A.3).

(i):
$$\langle y_1, \tilde{e}_1 \rangle_T = \langle y_1, \tilde{e} \rangle_T + \langle y_1, \tilde{\tau} \rangle_T$$

(ia): $\langle y_1, \tilde{e} \rangle_T \ge -q G[e(0)]$ by lemma (A.1)

(ib):
$$\langle y_1, \overline{\tau} \rangle_T \ge -q F[c(0)]$$
 by lemma (A.2)

Then (ia) and (ib) implies that feed forward block is passive,

(ii) (1+qs)H(s) is strictly passive if inequality (4.1) is satisfied. Since h(t) (L, (R)) and h (t) f. d. (1+qs)H(s) has finite gain.

Therefore, by Theorem (3, 1) the feedback system of fig. (A. 3) is finite gain L2-stable ¥ u1, u1, u2 € L2, i. e., E1, e2, y1, 52 € L2 and $||\tilde{e}_1||, ||e_2||, |y_1||, |\tilde{y}_2| \le \varepsilon_1 ||u_1| + qu_1| - \varepsilon_2 ||u_2||.$

From Fig. (A. 3), $y_2(t) = m(t) + \hat{y}_2(t)$ where $m(t) = L^{-1} \{ \frac{1}{1+\alpha s} \}^{5}$, $m(t) \in L_{1}$ and $\tilde{y}_{2}(t) \in L_{2}$, therefore, y2(t), y2(t) £ L2 [6, Appendix C]. Furthermore, $\|y_2(t)\|_{L_2} = \|m(t) + \tilde{y}_2(t)\|_{L_2} \le \|m(t)\|_{L_1} \|\tilde{y}_2(t)\|_{L_2}$ [6, App. C].

But "m(t) is finite (= Constant C).

Therefore

L-1[.]; Inverse Laplace Transform.

$$\begin{split} \|y_2(t)\|_{L_2} & \leq C \|\tilde{y}_2(t)\|_{L_2} \\ & \leq C c_1^* \|u_1 + q\tilde{u}_1\|_{L_2} + C c_2^* \|u_2\|_{L_2} \\ & \leq C c_1^* (\|u_1\|_{L_2} + q\|\tilde{u}_1\|_{L_2}) + C c_2^* \|u_2\|_{L_2} \end{split}$$

On the other hand, $\hat{y}_{2}(t) = \hat{m}(t) * \bar{y}_{2}(t)$. Then $\|\hat{y}_{2}(t)\|_{L_{2}} \le \|\hat{m}(t)\|_{L_{1}} \|\bar{y}_{2}(t)\|_{L_{2}}$

$$\leq C_1 b_1^{1}(\|n^1\|^{\Gamma^2} + d_1 n^1\|^{\Gamma^2}) + C_1 b_1^{2} \|n^2\|^{\Gamma^2}$$

$$\leq C_1 b_1^{1}(\|n^1\|^{\Gamma^2} + d_1 n^1\|^{\Gamma^2}) + C_1 b_1^{2} \|n^2\|^{\Gamma^2}$$

because $\lim_{t\to\infty} m(t)^2 L_1$ is finite too.

Similarly, $e_1(t) = m(t) * \tilde{e}_1(t)$. Therefore, similar conclusions for $e_1(t)$ follow immediately.

(b): $y_2, \hat{y}_2 \in L_2$ and $e_1, \hat{e}_2 \in L_2$ implies that $y, e \in L_n$, are continuous, and go to zero as t - e[11]. Since the model, i.e., equation (2.1), is a continuous mapping from input to output [2], therefore, $e_1 \in L_n$, and $e_1(t) = 0$ as t - e implies that the same properties hold for $y_1(t)$, i.e., $y_1(t) \in L_n$, is continuous, and go to zero as t - e.

Similar conclusions for e2 are immediate,

Proof Outline of Corollary (4.1): Apply a positive feedback of gain $\frac{1}{k}$ around g. To compensate for it, apply a positive feed forward with gain 1/k to H(s). Let $\hat{g} = (g^{-1} - \frac{1}{k})^{-1}$. Then $\hat{g} \in \text{sector } (0, =)$ and $\hat{g}(0) = 0$. Following the same procedure as Theorem (4.1). Conclusions are immediate.

References

- [1] Lecoq, L. P. and Hopkin, A. M., "A Functional Analysis Approach to L_o Stability and Its Applications to Systems with Hysteresis,"

 IEEE Trans. Auto. Control, Vol. AC-17,
 No. 3, p. 328, June 1972.
- [2] Chua, L.O. and Stromsmoe, K.A., "Lumped-Circuit Models for Non-linear Inductors Exhibiting Hysteresis Loop," IEEE Trans. on Circuit Theory, Vol. CT-17, p. 564, Nov. 1970.
- [3] Popov, V. M., "Absolute Stability of Nonlinear Systems of Automatic Control," <u>Automat. i Telemeh</u>, Vol. 22, No. 8, p. 961, <u>Aug. 1961.</u>
- [4] Hsu, J. C. and Meyer, A. U., Modern Control Principles and Applications, McGraw-Hill, 1968.
- [5] Narenda, K.S. and Taylor, J.H., Frequency
 Domain Criteria for Absolute Stability,
 Academic Press, New York, 1973.
- [6] Desoer, C.A. and Vidyasagar, M., Feedback Systems: Input-Output Properties, Academic Press, New York, 1975.

- [7] Yakubovich, V.A., "The Matrix Inequality Method in the Theory of Stability of Non-linear Control Systems. II. Absolute Stability in a Class of Non-linearities with a Condition on Derivative," <u>Automat. i Telemeh</u>, Vol. 26, No. 4, p. 577, April 1965.
- [8] Zames, G., "On the Input-Output Stability of Time Varying Non-linear Feedback Systems, Part I: Conditions Derived Using Concepts of Loop Gain, Conicity, and Positivity," IEEE Trans. Auto. Control, Vol. AC-11, p. 225, April 1966.
- [9] Safonov, M.G., "Propagation of Conic Model Uncertainty in Hierarchical Systems," IEEE Trans. Auto. Control. Vol. AC-28, p. 701, June 1983.
- [10] MacFarlane, A. G. J., Engineering Systems
 Analysis, Reading, Mass., Addison-Wesley,
 1964.
- [11] Willems, J. C., The Analysis of Feedback Systems, Cambridge, Mass., MIT Press, 1971.

Acces	ion for			
jm - 0	S. L. 1	1		
	•			
	ಭಾರಕರೆ			
1.5	· atdon			
•				
	\n/			
Lability Codes				
1	Avail and			
೨ ೭೪೬	Special			
, 1				
4				
11				
' >	for many and	· · · · · · · · · · · · · · · · · · ·		
/ § .)			
	7.)			
\ `1	7			

END

FILMED

1-85

DTIC

