

Search For Delayed Photons Using Timing with CMS Detector.

PhD Oral Exam

Tambe E. Norbert ∫ 1

¹University Of Minnesota

Search For Delayed Photons Using Timing with CMS Detector.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and

Trigger
Event
Selection

Analysis Strategy

Background Estimation

Systematics

Results

Using

Timing with CMS Detector. Tambe E.

Norbert Outline

Introduction Production

and Decay

Dataset

Selection Analysis Strategy

and Trigger Event

Outline

- Introduction
 - Production and Decay
- 3 Dataset and Trigger
- 4 Event Selection
- 6 Analysis Strategy
- 6 Background Estimation
- Systematics
- 8 Results
- Summary

Estimation Systematics

Background

Results

Where are we now?

Search For Delayed Photons Using

Timing with CMS Detector.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Analysis Strategy

Background Estimation Systematics

Results

universe.

The Universe Set

The set
$$S = \{ \cdots 0, \frac{1}{2}, 1, \frac{3}{2}, 2 \cdots \} \cdot \hbar$$

where s is the spin of a particle. represents our past, current and probably future understanding of the universe around us. As of the moment Currently we know:

- $s = \frac{1}{2}\hbar$ Describes all the matter in our universe.
- ullet ${f s}={f 1}\hbar$ Describes gauge interactions.
- $s = 0\hbar$ Responsible for giving mass.
- $s = 2\hbar$ Describes gravity (gauged?).
- $s = \frac{3}{2}\hbar$?? Dark Matter?

However, this magic set only describes $\approx 4.6\%$ of our total

Introduction

Search For Delayed Photons Using Timing

with CMS Detector. Tambe E.

Norbert

Outline

Introduction Production

and Decay

Dataset

and

Trigger
Event
Selection

Analysis Strategy

Background Estimation

Systematics

Results

Long-Lived Particle Models

- ★ Gauge Mediated Supersymmetry Breaking (GMSB)
 - Next-to-lightest SUSY (NLSP) is Neutralino ($\tilde{\chi}_1^0$)
 - $\triangleright eV keV$ Lightest-SUSY particle (LSP) is Gravitino (\tilde{G}).
 - ▶ Gravitino is a Dark Matter Candidate.
 - ⋆ General Gauge Mediation (GGM)
 - ightharpoonup NLSP is a mixture of fermions (Bino, Wino, Higssino).
 - Several SUSY particles can be NLSP.

ECAL Resolution

- † ECAL timing resolution $\sigma_t < 500$ ps.
- † Use timing to identify photons and electrons from long-lived decay.

LHC Supersymmetry Production

200

SUSY production mostly in strong interactions at LHC.

arXiv:1206.2892

SUSY sparticle mass [GeV]

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections

200

and

Strategy Background Estimation

Systematics

Results 5/48

Cascade Decay Chain

Search For Delayed Photons Using Timing with CMS Detector. Tambe E.

Norbert

Outline

Introduction

Production and Decay

Dataset and

Trigger Event Selection

Analysis Strategy

Background Estimation

Systematics

Results

Y. Kats et al: arXiv:1110.6444v2

Delayed Photon Production

Search For Delayed Photons Using Timing with CMS Detector.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger Event

Selection Analysis Strategy

Background Estimation

Systematics

Results

Double Photon

Single Photon

1 Photon, Jets, Large MET

Tranverse Decay Distance

Search For

Delayed Photons Using Timing with CMS Detector.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection Analysis

Strategy Background Estimation

Systematics

Results

8/48 Summary

Distance Travelled

$$L_T = c\tau \cdot (\gamma \beta_T) = c\tau \cdot \left(\frac{p_T}{m}\right)$$

Proper Decay Length

$$c\tau_{\rm NLSP} = C_{\rm grav}^2 \frac{1}{\kappa} \left(\frac{m_{\rm NLSP}}{GeV}\right)^{-5} \left(\frac{\sqrt{\rm F}}{TeV}\right)^4$$

Ruderman, D. Shih arXiv:1103.6083

Datasets

Search For Delayed Photons Using Timing with CMS Detector.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Analysis Strategy Background

Estimation Systematics

Results

9 / 48 Summary

• Data $(19.1fb^{-1})$

Dataset Name	Recorded Luminosity $[fb^{-1}]$
/Run2012B/SinglePhoton/EXODisplacedPhoton-PromptSkim-v3	5.1
/Run2012C/SinglePhoton/EXODisplacedPhoton-PromptSkim-v3	6.9
/Run2012D/SinglePhoton/EXODisplacedPhoton-PromptSkim-v3	7.1
/Run2012C/Cosmics/Run2012C-22Jan2013-v1/RECO	3130384(events)
/Run2012D/Cosmics/Run2012C-22Jan2013-v1/RECO	52430 (events)
/SingleElectron/Run2012A-22Jan2013-v1/AOD	5.2
/DoubleElectron/Run2012C-22Jan2013-v1/AOD	4.8

Signal MC [GMSB (SPS8)]

Λ [TeV]	100	120	140	160	180	300
$M_{\tilde{\chi}_1^0} [GeV/c^2]$	140	169	198	227	256	430
$c\tau$	215	325	130	245	185	
(mm)	425	645	515	490	365	495
	1700	1290	1030	975	730	
	3400	1935	2060	1945	1100	995
	5100	2955	2920	2930	2195	2960
	6000	3870	3985	3910	3950	
	9300	5985	6000	5875	5980	6000
		9825	10450	9815	10450	10450

• √+ lets MC

•	/+ Jets MC		
	\hat{p}_T [GeV /c]	σ_{LO} (pb)	Number of events
	50 - 80	3322.3	1995062
	80 - 120	558.3	1992627
	120 - 170	108.0	2000043
	170 - 300	30.1	2000069
	300 - 470	2.1	2000130
	470 - 800	0.212	1975231

HLT Trigger

Search For Delayed Photons Using Timing with CMS Detector.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event

Selection

Analysis Strategy

Background Estimation

Systematics

Results

HLT_DisplacedPhoton65_CaloIdVL_IsoL_PFMET25

HLT_Photon50_CaloIdVL_IsoL (Study Trigger)

ECAL Timing

Search For Delayed Photons Using Timing with CMS

Detector.

Tambe E.

Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection Analysis

Strategy
Background
Estimation

Systematics

Systematic

Results

- Time Reconstruction
 - 10 digitized samples used.
 - Fit and Weighted methods used to extract time.
- Time Measurement

$$T_{MAX} = \frac{\sum_{i} \frac{I_{MAX,i}}{\sigma_i^2}}{\sum_{i} \frac{1}{\sigma_i^2}}$$

- Time Performance
 - ullet Time resolution better than $200~{
 m ps}$ for $E>30~{
 m GeV}$

ECAL Timing(2)

Search For Delayed Photons

Photons Using Timing with CMS Detector.

Tambe E.

Norbert Outline

Outilli

Introduction Production and Decay

Dataset and Trigger

Trigger

Event
Selection

Analysis Strategy

Background Estimation

Systematics

Results

• Photon Timing

- T_{γ} = Average Time of all Crystals.
- $T_{\gamma} = \mathsf{Seed}$ (most energetic) Crystal Time.

- Similar behavior seen in Seed and Average Time.
- We use seed time as Photon Measured Time in this analysis.

ECAL Timing(3): MC Vs Data

Figure: (LEFT): Before (RIGHT): After

- Timing corrections from data applied to $\gamma+$ Jets MC.
- \bullet $\gamma+$ Jets MC timing aligns better with data after corrections are applied.

Delayed Photons Using Timing with CMS Detector. Tambe E. Norbert

Search For

Outline

Production and Decay

Dataset and Trigger

Event Selection Analysis Strategy

Background Estimation

Systematics

Results 13/48

Long-Lived Decay

Search For Delayed Photons Using Timing with CMS Detector.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and

and Trigger

Selection Analysis

Strategy

Background
Estimation

Systematics

Results

Source of Delayed Photon?

- Slow moving particle; $\beta << 1$,
- Non-nominal flight path,
- Stopped in subdetectors,

Slow Vs Off-Pointing Decay

Norbert

Outline

Introduction

Production and Decay

∆ t2 (ns)

Dataset and Trigger

Selection Analysis Strategy

Background Estimation

Systematics

Delayed photons mostly from slow moving neutralino decays.

Event Selection

Search For Delayed Photons Using Timing with CMS Detector.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Analysis Strategy Background Estimation

Systematics

Results Summary

Object	Selection	Criteria

Variable	Selection Cuts
Photon $p_T(\gamma^{1(2)})$	> 80(45) GeV
$ \eta_{\gamma} $,(EB only),	< 3.0 (< 1.5)
Semi-minor axis (S_{Minor})	$0.12 \le S_{Minor} \le 0.38$
H/E	< 0.05
Track Vito, $\Delta R(\gamma, track)$	> 0.6
HCAL, ECAL, Track, Isolation	< 4.0, < 4.5, < 0.2
Cone Size(Iso γ) $\Delta R(\gamma,SC)$	< 0.4
Spike Swiss-Cross	$1 - E_4/E_1) < 0.98$
Jets must satisfy	JetID Requirements
Leading Jet p_T	$>35~{\sf GeV}$
Number Of Constituents	> 1
$\Delta R(\gamma, jet) = \sqrt{(\phi_{\gamma} - \phi_{jet})^2 + (\eta_{\gamma} - \eta_{jet})^2}$	> 0.3
E_T^{miss}	$>25~{\sf GeV}$

Kinematics Distribution

Norbert

Outline

Introduction

Production

and Decay

and Trigger Event

Selection

Analysis Strategy

Background Estimation

Systematics

Results

• Different Λ values with the same $c\tau(10 \text{ m})$. Photon p_T is harder with higher values of Λ .

Signal Efficiency and Acceptance

Norbert Outline

Introduction

Production

and Decay

and Trigger

Event Selection

Analysis Strategy Background

Estimation Systematics

systematic

Results

Sharp drop in efficiency immediately beyond ECAL radius for slow moving neutralino decay as source of delayed photon.

Signal Efficiency and Acceptance(II)

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Analysis Strategy

Background Estimation

Systematics

Results Summary

Figure: Off-Pointing

Acceptance peaks at transverse decay length 800 mm with delayed photons from off-pointing neutralino decays.

Signal Efficiency and Acceptance(III)

Search For Delayed Photons Using Timing with CMS Detector.

Tambe E. Norbert

Outline

Introduction

Production

and Decay Dataset

and Trigger

Event Selection

Analysis Strategy

Background Estimation

Systematics

Results

Figure: 2 Dim Efficiency

Analysis Strategy

Search For Delayed Photons Using Timing with CMS Detector.

Tambe E.

Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection Analysis

Strategy

Background
Estimation

Systematics

Results

Background Source

• Collision: Mis-measured time of Z/W/top events.

• Non-Collision:Out-time events from LHC proton Beam/Cosmic/Anomalous Spikes.

Strategy

I Identify, tag and reject Non-Collision events.

II Perform ABCD background estimation technique on residual non-collision events.

III Perform ABCD background estimation technique on collision events.

IV Performed a combined ABCD background estimation technique.

 Clusure Test: Verify background estimation methodology by performing a combined ABCD technique on a control sample.

• Cross-Check: Background estimation of collision events on another Control Sample.

Sources Of Background

Search For Delayed Photons Using Timing with CMS Detector.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset

and Trigger

Event Selection

Analysis Strategy

Background Estimation

Systematics

Results

Events Cleaning

Search For Delayed Photons Using Timing with CMS Detector.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger Event

Selection Analysis

Strategy Background

Systematics

Results

Estimation

▶ Non-collision events like proton Beam Induced Background (BIM or Halos)/Cosmic/Anomalous spikes contribute towards delayed photons ECAL timing.

Need to defined a cleaning mechanism for identifying and rejecting non-collision events.

Features around $\phi=0,\pm\pi$ and η -dependence shows that background sources originate from both collision and non-collision events.

In-Time Vs Out-Of-Time Events

We estimate these background by defining two Control samples.

In-time events Control Sample (IT-CS)
Out-of-time events Control Sample (OT-CS)

Control Sample (In-time Events)

IT-CS: >2 Jets Events with photon ECAL time, $t\in[-1,1]$ ns.

Control Sample (Out-Of-time Events

OT-CS: 0 Jet Events with photon ECAL time, t<-3 ns or t>2 ns.

Events from above CSs provide a unique approach to estimate possible background contribution in signal.

Delayed Photons Using Timing with CMS Detector. Tambe E.

Outline

Introduction
Production
and Decay

Norbert

Dataset and Trigger

Event Selection Analysis

Strategy
Background
Estimation

Systematics

Results 24 / 48

Halo Photon (HP)

Search For Delayed Photons Using Timing with CMS

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection Analysis

Strategy

Background
Estimation

Systematics

Results

_

Beam Halo Muons

- Proton beam interacting with gas/air particles in the beam pipe,
- Proton beam colliding with the collimators upstream prior to entering the CMS detector.

will produce energetic muons traveling parallel with main proton beam and showering in the Calorimeters.

Halo Photon (II)

Search For Delayed Photons Using Timing with CMS Detector.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger Event

Selection Analysis Strategy

Background Estimation

Systematics

Results

Using Halo kinematics, We can tag and estimate halo photons produced from halo muons showering in ECAL as follows:

Halo Photon (III)

Search For Delayed Photons Using Timing with CMS Detector.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection Analysis

Strategy

Background
Estimation

Entries/0.05 rad

Systematics

Systematic

Results 27 / 48 Additionally, using halo muon hits from CSC segment matched in ϕ to Superclusters in ECAL, we can in additionally identify, tag and remove halo photon events with large timing.

Halo Photon Matching

$$\Delta\phi(CSCSeg,\gamma) = |\phi_{CSCSeg} - \phi_{\gamma}|$$

Halo Photon (IV)

Search For Delayed Photons Using Timing with CMS Detector.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and

and Trigger Event

Selection Analysis Strategy

Background Estimation

Systematics

Results

Satellite/Ghost Beam Halos

- Fill empty RF buckets.
- Trail main bunches by ≈ 5 ns.
- \bullet 10^{-5} protons compared to main bunches.
- Can contribute to main collision photons.
- Show a 2.5 ns pattern in EE,
- Tagged using $\Delta \phi(CSCseg, \gamma)$.

LHC LDM Proton Beam Profile

Halo Photon (V)

Search For Delayed Photons Using Timing with CMS Detector.

Tambe E. Norbert

Outline

Introduction Production

and Decay

Dataset
and
Trigger

Event Selection Analysis Strategy

Background Estimation

Systematics

Results

Halo Photon Event Properties

- \bullet Halo photons populate around $\phi=0,\pm\pi$
- ECAL time mostly < -3 ns but can also arrive late(ghosts).
- Halo events most contain no jets (0-jet events).
- Rare cases can be associated with "pile-up" events.

Halo Photon Tagging Criteria

- Use $\Delta \phi(CSCseg, \gamma) < 0.05$ randians.
- Shower shape($0.8 < S_{Major} < 1.65 \ {\rm and} \ S_{minor} < 0.2)$

Ghost/Satellite EE

HP Tagging Efficiency/mis-Tag Rate

Search For Delayed Photons Using Timing with CMS Detector.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger Event

Analysis Strategy

Background Estimation

Systematics

Results

Halo Photon Tagging Efficiency

- Control Sample Selection,
 - $\Delta \phi(CSCseg, \gamma) < 0.05$ randians
 - Same $\Delta t_H^{exp} = -\frac{R}{2c} \exp^{-\eta}$ ECAL time Vs η dependence.
- Efficiency evaluated in 5η bins for S_{Major} η dependence.

Halo Photon mis-Tag Rate

- Control Sample Selection:
 - $\bullet >= 2$ -jets events with $E_T^{miss} < 60 \text{ GeV}$
 - ECAL time, |t| < 1 ns.
- mis-tag rate eveluated in 5η bins for S_{major} η dependence.

Search For

Delaved Photons Using Timing with CMS

Detector.

Tambe E. Norbert

Introduction

Production

and Decay

Dataset

Trigger Event

Selection

Analysis Strategy Background

and

Outline

HP Tagging Efficiency/mis-Tag Rate(I)

• Tagging Efficiency $\approx 98\%$

mis-Tag Rate

mis-tag rate $\approx 3\%$

Estimation Systematics

Results

31/48

Cosmic Muons

Search For Delayed Photons Using Timing with CMS

Detector.

Tambe E.

Norbert

Outline

Outili

Introduction Production

and Decay
Dataset
and
Trigger

Event Selection Analysis

Strategy

Background
Estimation

Systematics

Results

Cosmic Muons

- Muons from cosmic rays in CMS detector.
- Hits in muon detectors (DT/CSC) and shower in ECAL.
- Produce energetic photons with out-of-time.
- Using DT segment matched to ECAL cluster position in $\delta\eta$ and $\delta\phi$ can eliminate cosmic events.

 $DT(\delta\eta,\delta\phi)$ tagging of cosmic muons in data and a pure cosmic sample(without LHC proton beam) is comparable.

Anomalous ECAL Spike

Search For Delayed Photons Using Timing with CMS Detector.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection Analysis

Strategy Background

Estimation

Systematics

Results

ECAL Spikes

- Energetic particles(neutrons) from proton collision directly hitting APDs/VPTs.
- Associated with hadronic activity.
- Observed as photons with early time due to no crystal scintillation.
- Can produced late ECAL timing photons with small shower shape.
- ID and rejected requiring $1-\frac{E_4}{E_1}<0.9$ of crystal energy deposit and χ^2 from pulse shape fitting.

Spike Identification and Rejection

Background Estimation

Search For Delayed Photons Using Timing with CMS Detector.

> Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection Analysis

Strategy

Background
Estimation

Systematics

Results

After tagging and cleaning Halo/Cosmic/Spike events, We apply ABCD background estimation technique on residual Non-collision background events to estimate their contribution to possible signal.

$PF-E_T^{MISS}(PF-MET)$ Adjustment

Search For Delayed Photons Using Timing with CMS Detector.

Tambe E. Norbert

Outline

Introduction Production

and Decay Dataset

and Trigger Event

Selection Analysis Strategy

Background Estimation

Systematics

Results

 $E_T^{\mathsf{miss}}(\gamma)$

PF-MET calculation fails to take into consideration E_T from out-of-time photons. We make PF-MET adjustment by taking into account the E_T of out-of-time photons for E_T^{miss} measurements. This new PF-MET is called $E_T^{\mathsf{miss}}(\gamma)$.

As a result our signal selection criteria is defined as:

SIGNAL: $\geq 1\gamma + \geq 2Jets + E_T^{\text{miss}} > 60, E_T^{\text{miss}}(\gamma) >$ 60 GeV

ABCD Technique: Non-Collision Background

Using Timing with CMS Detector. Tambe E. Norbert

Search For Delayed

Photons

Outline

Introduction
Production
and Decay

Dataset and Trigger Event

Selection Analysis Strategy

Background Estimation

Systematics

Results

Assume similar distribution in earlier and delayed ECAL time for untagged non-collision events.

$E_T^{\mathbf{miss}} > 60 \text{ GeV}$

$$\frac{D}{C} = \frac{B}{A}, \Rightarrow$$

$$\mathbf{D} = \frac{\mathbf{B}}{\mathbf{A}} \cdot \mathbf{C}$$

ABCD Technique: Collision Background

Search For Delayed Photons Using Timing with CMS Detector. Tambe E.

Norbert

Outline

Introduction
Production
and Decay

Dataset and Trigger

Event Selection

Analysis Strategy

Background Estimation

Systematics

Results

Assume similar distribution in earlier and in-time, in-time and delayed ECAL time for collision events.

$$\frac{Q}{D'} = \frac{F}{F'}, \Rightarrow$$

$$\mathbf{Q_d} = rac{\mathbf{F}}{\mathbf{F}'} \cdot \mathbf{D}'$$

Combined ABCD Background Estimation

Photons
Using
Timing
with CMS
Detector.
Tambe E.

Search For Delayed

Norbert Outline

Introduction Production

and Decay

Dataset

and Trigger Event

Selection Analysis Strategy

Background Estimation Systematics

Results

Equations and Results.

Closure Test Results: 0,1-Jet Events

Results Of Background Estimation

Delayed Photons Using Timing with CMS Detector. Tambe E.

Search For

Norbert Outline

Introduction

Production and Decay

Dataset

Trigger
Event
Selection
Analysis

and

Strategy

Background
Estimation

Systematics

Background Estimation Cross-Check

Delayed Photons Using Timing with CMS Detector. Tambe E. Norbert

Search For

Outline

Introduction
Production

and Decay

Dataset

Trigger Event Selection Analysis

and

Strategy Background Estimation

Systematics Results

Results 40 / 48 Using $Z \to ee$ events.

Systematics

Search For Delayed Photons Using Timing with CMS Detector.

Tambe E. Norbert

Outline

Introduction Production

and Decay

and Trigger

Selection Analysis Strategy

Background Estimation

Systematics

Results 41/48 Background estimation is Data driven. Thus, most of a systematics come from signal,including:

Experimental Systematics

- Definition of Absolute or Zero time,
- ECAL time Resolution,
- Unclustered Energy,
- Jet energy scale,
- Jets energy resolution,
- Photon energy scale,
- Luminosity. We use standard CMS luminosity uncertainty.

Theoretical Systematics

- Choice of PDF.
- Re-normalization group equations.

Systematics(II

Photons
Using

Systematic Uncertainties

Source Uncertainty(%) Absolute time(Zero time) $10 \sim 6$ $10 \sim 4$ Unclustered Energy $4 \sim 2$ Photon Energy Scale ECAL Time Resolution $5\sim2$ $9 \sim 3$ Jet Energy Scale Jet Energy Resolution $9\sim2$ 2.6 Luminosity Choice of PDF < 1

 Systematics is obtained by studying the effects of varying by a few amount of a particular source of systematic on the total number of objects passing object selection cuts.

Delayed Photons Using Timing with CMS Detector. Tambe E.

Search For

Outline

Introduction Production

Norbert

and Decay

Dataset and Trigger

Selection Analysis Strategy

Background Estimation

Systematics

Results

Search For Delayed Photons Using Timing with CMS Detector.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection Analysis

Strategy Background Estimation

Systematics

Results Summary

Events Passing Final Selection

Sample	Lifetime($c au$)[mm]	Number Of Events
GMSB $\Lambda=180~{ m TeV}$	10500	
${\rm GMSB}~\Lambda=180~{\rm TeV}$	6000	
${\rm GMSB}~\Lambda=180~{\rm TeV}$	4000	
${\rm GMSB}~\Lambda=180~{\rm TeV}$	3000	
${\rm GMSB}~\Lambda=180~{\rm TeV}$	2000	
${\rm GMSB}~\Lambda=180~{\rm TeV}$	1000	
${\rm GMSB}~\Lambda=180~{\rm TeV}$	500	
Data	1.00	
Background Total	0.014	

Observed Event

Search For Delayed Photons Using Timing with CMS Detector.

> Tambe E. Norbert

Outline

Introduction

Production

and Decay

Dataset

and

Trigger Event

Selection Analysis Strategy

Background Estimation

Systematics

Exclusion Limits

 $\rightarrow \gamma \tilde{G}$, $\Lambda = 180 \text{ TeV}$

 \pm 1 σ Expected

± 2σ Expected

Search For Delaved Photons Using Timing with CMS Detector.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and

Trigger Event

Analysis Strategy

Background Estimation

Systematics

Results Summary

CMS

Preliminary

Figure: Mass Limit

19.1fb⁻¹(8 TeV)

SPS8 Theory LO Cross-Section

Expected 95% CL Upper Limit

Observed 95% CL Upper Limit

c au-Mass Limits

Search For Delayed Photons Using Timing with CMS Detector.

Tambe E. Norbert

Outline

Introduction

Production and Decay

Dataset and Trigger

Event Selection

Analysis Strategy

Background Estimation

Systematics

Delayed Photons Using Timing with CMS Detector. Tambe E.

Search For

Outline

Norbert

Introduction

Production and Decay Dataset

Trigger Event Selection

and

Analysis Strategy Background

Estimation Systematic

Search For Delayed Photons Using Timing with CMS Detector.

Norbert

Tambe E.

Outline

Introduction
Production
and Decay

Dataset and Trigger Event

Selection Analysis Strategy

Background Estimation

Systematics