Introduction to SPI and I2C

Dr. Farid Farahmand

PIC Serial Interface

PIC Out for MSSP (Master Synchronous Serial Port)

MSSP Module - SPI

- Supports SPI and I2C Protocols
- SPI: Serial Peripheral Interface
 - Applications: Interface to EEPROM, ADC, Sensors, LCD
 - Characteristics: Slower than parallel port, fewer signals
- SPI General Operation:
 - 4- Wire communication (clock, data in, data out, CS)
 - Synchronous → high speed interfaces can be handled
 - Master/Slave configuration the master chip controls all the slaves and provided clock
 - Uses serial data exchange protocols (MSB goes out first)
 - Data exchange can be on rising or falling edge of the clock

SPI Protocol Interface

Write/Read Characters into SSPBUFF

SPI Protocol Interface

Data is being broadcasted to all chips

SPI Application Example

Registers: SSPCON1 SSPSTAT TRISC

SPI Programing Example

- Assume:
 - Fosc = 10 MHz;
 - Data Transfer is 2.5 MHz
 - Data is sampled at the falling RCØ
 - Data sent at the rising edge of the clock
 - Idle clock state is HIGH
- What will be the configuration for the Master and Slave Chips
- Write the code to transmit characters

SPI Programing Example (solution) Master Mode

- SSPCON1 Register
- Set to SPI Mater Mode Fosc/4 = 2.5 MHz
- SSPCON1 bit.CKP = 1
- SSPCON1 bit.EN = 1
- $\rightarrow SSPCON1 = 0011 0000$
- SSPSTAT Register
- SSPSTAT bit.SMP = 0; rising edge; idle is high
- SSPSTAT bit.CKE = 1
- SSPSTAT bit.BF = 0
- $\rightarrow SSPSTAT = 0100 0000$

Master

- TRISC Register
- TRISCbit.SDO (RC5) = 0

Data Out

Data In

Clock

Select

SDO

SDI

SCK

SS

Slave

SDI

SDO

SCK

RCØ

- TRISCbit.SDI (RC4) = 1
- TRISCbit.SCK (RC3) = 0
- TRISCbit.SS (RC0) = 0
- $\rightarrow TRSC = 0001\ 0000$

SPI Programing Example (solution) Slave Mode

- SSPCON1 Register
- $\rightarrow SSPCON1 = 0011 0100$
- SSPSTAT Register (same)
- \rightarrow SSPSTAT = 0100 0000

- TRISC Register
- TRISCbit.SDO (RC5) = 0
- TRISCbit.SDI (RC4) = 1
- TRISCbit.SCK (RC3) = 1
- TRISCbit.SS (RC0) = 1
- $\rightarrow TRSC = 0001\ 1001$

SPI Programing Example (solution) Master Mode Program

- Setup TRISC, SSPCON1, & SSPSTAT
- Set ChiSel=0
- Write a charcter (0x55) into SSPBUF
- Loop: Check if SSPBUF.bit.BF = 1 (buffer is full)
- IF so : MOVF SSPBUF→WREG
- Set ChipSel = 1 (deactivate the slave chip)

Inter-Integrated Circuit (I2C) Interface

- Created by Philips Inc
- Designed to interface ICs on PCB boards (I2C)
- Characteristics:
 - 2-Wire (SCK & SDA)
 - Synchronous (100 Kbs or 400 Kbps)
 - Master/Slave modes of operation
 - Addressing can be 7 or 10 bit

Pin Out for MSSP 12C Interface

12C Interface

• 2- Wire Interface

Registers:

SSPCON1 SSPSTAT

TRISC

SSPCON2 (port idle or not)
SSPADD (address)
SSPSR
SSPBUF (data read/write)

12C Programing Example

- Assume:
 - Fosc = 10 MHz;
 - I2C Master Mode
 - Transmission Rate is 100 KHz
 - Enable slew rate for high speed
 - No error detection
- What will be the configuration for the Master
- Write the code to transmit characters

12C Programing Example (solution)

Master Mode

- SSPCON1 Register
- Set to SPI Mater Mode Fosc/4 = 2.5 MHz
- SSPCON1 bit.CKP = 1
- SSPCON1 bit.EN = 1
- $\rightarrow SSPCON1 = 0011 0000$
- SSPSTAT Register
- SSPSTAT bit.SMP = 0; rising edge; idle is high
- SSPSTAT bit.CKE = 1
- SSPSTAT bit.BF = 0
- $\rightarrow SSPSTAT = 0100 0000$

- TRISC Register
- TRISCbit.SDO (RC5) = 0
- TRISCbit.SDI (RC4) = 1
- TRISCbit.SCK (RC3) = 0
- TRISCbit.SS (RC0) = 0
- $\rightarrow TRSC = 0001\ 0000$

Programing Example

W = SSCON2 If bit0-bit 4 of SSPCON2 = 1 \rightarrow not in idle mode Else: Check SSPSTATbit.RW; If 1 \rightarrow Transmit

W = Character
MOVWF SSPBUF

Check SSPSTATbit.BF = 0
Go to next Character Transmission

