Michał Hawryszko

Tomasz Najda

# **ZST – Projekt Implementacyjny**

### Cel Projektu

Celem naszego projektu jest zapoznanie się z analizą i modelowaniem zasobów sieci telekomunikacyjnych na potrzeby systemów zarządzania konfiguracją. Zapoznamy się także z budowaniem styków zarządzania w takich systemach w oparciu o wybraną przez nas sieć, czyli **EON(Elastic Optical Network).** 

# Adaptacja klienta SNMP do monitorowania konfiguracji systemu.

Jako klienta SNMP wybraliśmy **iReasoning MIB Browser (Personal Edition).** Można go znaleźć pod adresem: http://www.ireasoning.com/downloadmibbrowserfree.php.

Po zainstalowaniu potrzebnego oprogramowania systemu(**SNMP Service**) możemy przejść do przeprowadzenia testów współpracy z agentem SNMP systemu Windows.

#### **Testy Współpracy**

Aby sprawdzić czy współpraca istnieje wysłaliśmy żądania z klienta SNMP do agenta SNMP. W odpowiedzi otrzymaliśmy żądane informacje co pozwala nam stwierdzić, że nasz klient jest połączony z agentem i zdolny do monitorowania konfiguracji systemu.

1

#### Konfiguracja żądań:

Address: localhost OID: .1.3.6.1.2.1.1 Operations: Get Subtree

| Result Table  |                                                  |             |               |
|---------------|--------------------------------------------------|-------------|---------------|
| Name/OID      | Value △                                          | Type        | IP:Port       |
| sysDescr.0    | Hardware: Intel64 Family 6 Model 42 Stepping 7 A | OctetString | 127.0.0.1:161 |
| sysObjectID.0 | .1.3.6.1.4.1.311.1.1.3.1.1                       | OID         | 127.0.0.1:161 |
| sysUpTime.0   | 48 minutes 36 seconds (291606)                   | TimeTicks   | 127.0.0.1:161 |
| sysContact.0  |                                                  | OctetString | 127.0.0.1:161 |
| sysName.0     | 0x4D 0x69 0x63 0x68 0x61 0xB3 0x2D 0x4B 0x6      | OctetString | 127.0.0.1:161 |
| sysLocation.0 |                                                  | OctetString | 127.0.0.1:161 |
| sysServices.0 | 76                                               | Integer     | 127.0.0.1:161 |

Address: localhost OID: .1.3.6.1.2.1.4.3.0 Operations: Get Next (wykonaliśmy kilkukrotnie)

| Result Table        |         |           |               |  |
|---------------------|---------|-----------|---------------|--|
| Name/OID            | Value △ | Туре      | IP:Port       |  |
| ipInReceives.0      | 809229  | Counter32 | 127.0.0.1:161 |  |
| ipInHdrErrors.0     | 0       | Counter32 | 127.0.0.1:161 |  |
| ipInAddrErrors.0    | 0       | Counter32 | 127.0.0.1:161 |  |
| ipForwDatagrams.0   | 0       | Counter32 | 127.0.0.1:161 |  |
| ipInUnknownProtos.0 | 0       | Counter32 | 127.0.0.1:161 |  |
| ipInDiscards.0      | 1680    | Counter32 | 127.0.0.1:161 |  |
| ipInDelivers.0      | 810471  | Counter32 | 127.0.0.1:161 |  |
| ipOutRequests.0     | 458501  | Counter32 | 127.0.0.1:161 |  |
| ipOutDiscards.0     | 2       | Counter32 | 127.0.0.1:161 |  |
| pOutNoRoutes.0      |         | Counter32 | 127.0.0.1:161 |  |

### Modele Informacyjne implementowane przez agenta

- System informacje o systemie
- Interfaces informacje o dostępnych interfejsach
- AT (Adress Translation)
- IP (Internet Protocol)
- ICMP (Internet Control Message Protocol)
- TCP (Transmission Control Protocol)
- UDP (User Datagram Protocol)
- EGP (Exterior Gateway Protocol)
- SNMP (Simple Network Management Protocol)
- Host różne informacje na temat urządzenia hosta np. ilość pamięci



# Model informacyjny pola komutacyjnego węzła sieci

#### Weryfikacja poprawności składniowej

Model został zaimplementowany poprawnie, co potwierdza zrzut ekranu znajdujący się obok. Wszystkie elementy znajdują się na odpowiednich miejscach oraz posiadają odpowiednie dla nich typy.

#### Krótki opis modelu

- 1) eonInterfaceTable –tabela zawierająca interfejsy węzła sieciowego.Elementy zawierają swój identyfikator (index), minimalną i maksymalną częstotliwość nośnej na porcie wejściowym i wyjściowym wyrażoną w Hz oraz pasmo, czyli liczbę zajętych szczelin (12.5 GHz) w siatce G.694.1.
- 2) eonInSegmentTable– tabela zawierająca opis danych w węźle otrzymanych na portach wejściowych. Element zawiera swój identyfikator (index), atrybuty opisujące interfejs, częstotliwość nośnej, liczbę zajętych szczelin pasma, indeks krosujący, właściciela oraz status.
- 3) eonOutSegmentTable tabela zawierająca dane w węźle przekazane na porty wyjściowe. Element w tabeli zawiera swój identyfikator (index), atrybuty opisujące interfejs, częstotliwość nośnej, liczbę zajętych szczelin pasma, indeks krosujący, właściciela oraz status.
- 4) eonXCTable tabela krosująca. Odpowiada za przekierowania danych z portu wejściowego na port wyjściowy. Potrzebne atrybuty w każdym elemencie tabeli to: indeks, indeks elementu wejściowego, indeks elementu wyjściowego, numer identyfikacyjny "Carrier Switched Path", właściciela oraz status.

