§6.1 向量代数 §6.2 平面和空间直线的方程(平面方程)

1. 平行于向量a = (6,7,-6)的单位向量为_ $\pm (\frac{6}{11},\frac{7}{11},\frac{5}{11})$

2. 已知a,b均为单位向量,且 $a \cdot b = \frac{1}{2}$,则以向量a,b为邻边的平行四边形的面积

4. 设|a|=3,|b|=5,若a+kb与a-kb垂直,则常数k=_______.((はたードルド)と=の)

6. $\mathfrak{P}_a = (4, -2, 4), b = (6, 3, -2), \text{ MPr } j_b a = \frac{l^o}{7}$

二、设长方体的各棱与坐标轴平行,已知长方体的两个顶点坐标分别为(1,1,2),(3,4,5),试 写出余下六个顶点的坐标.

三、一向量的终点为B(2,-1,7),在x,y,z轴上的投影依次为4,-4,7,求此向量的始点坐标, 方向余弦和方向角.

· . AB = (4, -4.7)

$$\therefore d = \alpha \kappa \omega \frac{y}{g}, \quad \varphi = \alpha \kappa \omega (-\frac{y}{g}), \quad \omega \vec{y} = \alpha \kappa \omega \frac{7}{g}$$

四、设a=3i+5j+8k,b=2i-4j-7k,c=5i+j-4k,求向量l=4a+3b-c在X轴上的投影以及在y轴上的分向量.

五、设
$$a=3i-j-2k, b=i+2j-k$$
,求:

(1)
$$\mathbf{a} \times \mathbf{b}$$
; (2) $\text{Prj}_{\mathbf{b}}\mathbf{a}$; (3) $\cos(\mathbf{a},\mathbf{b})$.

(2)
$$P_{ij} \neq \alpha = \frac{\vec{a} \cdot \vec{b}}{\vec{b}} = \frac{3 \times 1 + (-0) \times 2 + (-1) \times (-1)}{\sqrt{1^2 + 2^2 + (-1)^2}} = \frac{3}{\sqrt{6}}$$

(3)
$$cos(\vec{a},\vec{b}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} = \frac{3 \times 1 + (-1) \times 2 + (-1) \times (-1)}{\sqrt{3^2 + (-1)^2 + (-1)^2} \cdot \sqrt{1^2 + 3^2 + (-0)^2}} = \frac{3}{2\sqrt{2}}$$

六、已知 A(1,-1,2), B(5,-6,2), C(1,3,-1), 求与 \overrightarrow{AB} , \overrightarrow{AC} 都垂直的单位向量.

七、在Oxy 面上, 求垂直于a = (5, -3, 4), 并与 \mathbf{a} 等长的向量 \mathbf{b} .

八、已知空间三点 A(1,1,1), B(2,3,4), C(3,4,5), 求 ΔABC 的面积.

$$\overrightarrow{AB} = (1, 2, 3)$$
 $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 4 & 2 & 3 \end{vmatrix} = (-1, 2, -1)$

$$2 & 3 & k \end{vmatrix} = (-1, 2, -1)$$

$$2 & 3 & k \end{vmatrix}$$

$$S_{ABC} = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} \sqrt{(-1)^2 + 2^2 + (-1)^2} = \frac{16}{2}$$

九、已知平面 Ax + By + Cz + D = 0, 根据要求填写系数应满足的条件:

过原点	平行于z轴	包含x轴	平行于xOy平面
D=0	c = 0	A=D=0	A=B=0

十、求满足下列条件的平面方程:

2. 过点(1,1,1)和点(0,1,-1)且与平面x+y+z=0相垂直. 答: 2×-y-3=0

5. 平行于x轴且经过两点(4,0,-2),(5,1,7).

3 (x-3) 7 (4-0)+5(1+1

设年面 By+ 4+10-10

6. 平面x-2y+2z+21=0 与平面7x+24z-5=0 之间的二面角的平分面.

$$\frac{|x-2y+2y+2|}{\sqrt{1^2+(-1)^2+2^2}} = \frac{|7x+24y-5|}{\sqrt{7^2+0^2+2y^2}}$$

$$x-2y+28+21 = \pm \frac{7x+2xx-5}{25}$$

§6.2 平面和空间直线的方程(续) §6.3 曲面和曲线的方程

一、填空题(一)

1. 过点
$$M_1(4,1,2), M_2(-3,5,-1)$$
的直线方程为 $\frac{x^{-\nu}}{7} = \frac{9-1}{-\nu} = \frac{8-2}{3}$

2. 设直线
$$\frac{x-1}{1} = \frac{y+1}{2} = \frac{z-1}{\lambda}$$
 与直线 $x+1 = y-1 = z$ 相交,则 $\lambda = \frac{1}{2}$.

3. 直线
$$\begin{cases} 3x - y + 2z = 0, \\ 6x - 3y + 2z = 0 \end{cases}$$
 与 z 轴的夹角为 an wn 3.

4. 过点(2,-1,3) 且平行于直线
$$\frac{x-2}{2} = \frac{y}{1} = \frac{z+1}{5}$$
 的直线方程为 $\frac{x-2}{2} = \frac{3+1}{1} = \frac{3-3}{5}$ ¥4j

5. 过点
$$(0,2,4)$$
且与平面 $x+2z=1$ 和 $y-3z=2$ 都相交的直线方程为 $\frac{2}{3}=\frac{3-y}{1}$. $3=\vec{n}_1\times\vec{n}_2=\vec{j}_3$

6. 过点(0,1,2) 且与直线
$$\frac{x-1}{1} = \frac{y-1}{-1} = \frac{z}{2}$$
 垂直相交的直线方程为 $\frac{x-1}{2} = \frac{z-1}{2} = \frac{z-1}{2}$. $= (-2,3,1)$

in 对称式为程:
$$\frac{x}{5} = \frac{y-\frac{2}{3}}{1} = \frac{3+1}{-2}$$
 (=t)

三、确定下列各组中的直线和平面间的位置关系:

1.
$$\frac{x-2}{3} = \frac{y+2}{1} = \frac{z-3}{-4} \neq x + y + z = 3;$$

$$\vec{s} = (3, 1, -v)$$
 $\vec{h} = (1, 1, 1)$

又立成上立(2,-2,3)高起年而方程,水サナカニ3

故 直溪 在平面上.

2.
$$\begin{cases} x+3y+2z+1=0, & \text{for } 4x-2y+z-2=0. \\ 2x-y-10z+3=0 \end{cases} \neq 4x-2y+z-2=0.$$

$$\Rightarrow \vec{n}_{1} \vec{k} \vec{n}_{2} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \vec{i} & \vec{j} & \vec{k} \\ \vec{i} & \vec{j} & \vec{k} \end{vmatrix} = (-28, 14, 7)$$

$$\Rightarrow \vec{k} = (-4, 2, -1)$$

$$\therefore \vec{k} = (4, -2, 1)$$

$$\therefore \vec{k} = (4, -2, 1)$$

四. 求点
$$M_0(3,-4,4)$$
 到直线 $\frac{x-4}{2} = \frac{y-5}{-2} = \frac{z-2}{1}$ 的距离.

$$M(4.5.2) = (2, -2, 1)$$

$$MoM = (1, 9, -2) = (51 = \sqrt{2^{2}+(-3)^{2}+1^{2}} = 3, MoM \times 5 = | 19^{-2} | = (5, -5, -20)$$

$$d = \frac{|M_0M \times 5|}{|5|} = \frac{|5\sqrt{2}|}{3} = 5\sqrt{2}$$

$$Mo$$

五、求直线
$$\begin{cases} 2x-4y+z=0,\\ 3x-y-2z-9=0 \end{cases}$$
 在 xOy 面上的投影直线的方程.

方15一:平面东

ia过直线的平面東方程为 2×-4y+}+入(3×-y-23-9)=0

プリラニ、消毒を得投影をアメータリー9:投資 アメータリニタ

六、选择题

1.
$$52x^2 - \frac{y^2}{4} + z^2 = 1$$
 表示 (A)

A. 旋转双曲面 B. 双叶双曲线 C. 双曲柱面 D. 锥面

2. 二次曲面
$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$
 与平面 $y = h$ 相截,其截痕是空间中的(B)

A 双曲线 B

勿线

椭圆 D

七、填空题(二)

1. 一动点到坐标原点的距离等于它到点(2,3,4)的距离的一半,则该动点的轨迹方程为

2. xOy 平面上的双曲线 $4x^2-9y^2=36$ 绕 y 轴旋转所得的旋转面方程为 $4x^2+4x^2-9y^2=36$ 筝叶双电

3. xOy 平面上的圆 $(x-2)^2+y^2=1$ 绕 y 轴旋转所得的旋转面方程为 $x^2+y^2+y^2+3=\sqrt{x^2+y^2}$ 轮 轮形

5. 根据方程填入图形名称

	平面解析几何中	空间解析几何中
y = x + 1	立海	平约于飞的的平面
$x^2 - y^2 = 1$	双业线	双电柱面,(母伴科科

9. 根据曲线填入它们在三个坐标面上的投影曲线的方程

	在 xOy 面	在 yOz 面	在 zOx 面
$\begin{cases} z = x^2 + y^2, \\ x + y + z = 1; \end{cases}$	3=0	1 3=(1-4-9)+45 x=0	1 y=0
$\begin{cases} x = \cos \theta, \\ y = \sin \theta, \\ z = 2\theta. \end{cases}$	\\ \dagger{\lambda + y^2 = 1} \\ \dagger{\lambda = 0}	{ x = cm } } y = 0	\$ y= 5 m 3/2 x=0

10. 试在表中填入下列曲面所围成的立体在三个坐标面上的投影

	在 xOy 面	在 yOz 面	在 zOx 面
$z = x^2 + y^2 - 3$	{(x·y) x + y 2 ≤ 1 }	{(4,2) 4=3 ≤2-4=	{(1,x) x
$z=2-x^2-y^2$. , , ,	{(y, 1) y = 3 ≤ 2 - y = 1 }	HEXE!
$z = \sqrt{x^2 + y^2} - 3$	{(x.y) x = y = 1}	{ (4.9) - 454 51 , 05} 51}	{(3,x) 00} = 1 , -10 x 9}
$x^2 + y^2 = 1$, $z = 0$			

八、画出下列方程所表示的曲面或曲线:

1.
$$(x-\frac{a}{2})^2 + y^2 = (\frac{a}{2})^2$$
;

2.
$$\begin{cases} z = \sqrt{1 - x^2 - y^2}, \\ y = x. \end{cases}$$

九、画出由平面 $x = 0, z = 0, x = 1, y = 2, z = \frac{y}{4}$ 所围成的立体的图形.

自测题一(向量代数与空间解析几何)

1、已知
$$a$$
, b 为非零向量,且 $a+b$ $|=$ $a-b$ |,则必有:(C)

A,
$$a-b=0$$
; B, $a+b=0$; C, $a \cdot b=0$; D, $a \times b=0$

2、设
$$a$$
, b , c 为非零向量且 $(a \times b) \cdot c = 2$,则 $[(a+b) \times (b+c)] \cdot (c+a) = (A)$

A. 4; B. 2; C.
$$-2$$
; D. 0. it (axb).c = (axc).a = (cxa).b

3、直线
$$\frac{x-1}{-1} = \frac{y-1}{0} = \frac{z-1}{1}$$
与平面 $2x+y-z+4=0$ 的夹角为: (内)

A,
$$\frac{\pi}{6}$$

B,
$$\frac{\pi}{3}$$

$$C, \frac{\pi}{4}$$

D,
$$\frac{\pi}{2}$$

A.
$$\frac{\pi}{6}$$
 B. $\frac{\pi}{3}$ C. $\frac{\pi}{4}$ D. $\frac{\pi}{2}$ Since $\frac{15 \cdot \vec{n}}{15 \cdot |\vec{n}|} = \frac{13}{15}$

4、点(1,1,1)在平面
$$x+2y-z+1=0$$
 的投影为: (c) もまする 免疫 みれ ベニュナト リニュナル

A,
$$(-\frac{1}{2},0,\frac{3}{2})$$
; B, $(1,-1,0)$; C, $(\frac{1}{2},0,\frac{3}{2})$; D, $(0,1,-1)$

5、方程
$$x^2 - y^2 + z^2 = 1$$
表示的旋转曲面和旋转轴为(c)

$$A$$
、单叶双曲面、 \mathcal{X} 轴;

A、单叶双曲面、
$$X$$
轴; B、双叶双曲面、 X 轴;

$$C$$
、单叶双曲面、 y 轴;

D、双叶双曲面、
$$y$$
轴。

1、过点
$$M(1,2,-1)$$
 且与直线
$$\begin{cases} x = -t + 2 & \vec{y} = (-1,3,1) \\ y = 3t - 4$$
 垂直的平面方程是 $x = -t + 2$
$$x = t - 1 & \vec{y} = (-1,3,1) \\ x$$

3、曲面
$$z=2-\sqrt{x^2+y^2}$$
 可以由曲线 $\frac{1}{x=0}$ 或 $\frac{1}{y=0}$ 绕 Z 轴旋转一周得到。

4、曲线
$$\begin{cases} x^2 + y^2 = 1 \\ z = x^2 \end{cases}$$
 在 yOz 面上的投影为 $\begin{cases} 3 + y^2 = 1 \\ x = 0 \end{cases}$ (一にりょう) 気流する (うながれる $y^2 + y^2 = 1$

5.点
$$P(3,-1,2)$$
到直线
$$\begin{cases} x+y-z+1=0 \\ 2x-y+z-4=0 \end{cases}$$
 的距离为 $d = (PM \times x)$

三.解下列各题(每题10分,共40分)

1、求直线
$$\begin{cases} x+y+z+1 = 0 \\ 2x-y+3z+2 = 0 \end{cases}$$
 的对称式方程和参数式方程.

$$\begin{bmatrix} 1 & 3 & k \\ 1 & 1 & 1 \\ 2 & -1 & 3 \end{bmatrix} = \begin{bmatrix} 4 & -1 & -3 \\ -1 & -3 \end{bmatrix}$$

2、化曲线的一般方程 $\begin{cases} z = \sqrt{4 - x^2 - y^2} \\ (x - 1)^2 + y^2 = 1 \end{cases}$ 为参数方程.

$$\begin{cases}
\chi = 1 + Lost \\
y = stat
\end{cases}$$

$$d = 2 \leq 1 + \frac{1}{2}$$

3、设一向量与X轴y轴夹角相等,而与z轴所成的角是它们的两倍,求该向量的单位向量.

4.求
$$z = \sqrt{x^2 + y^2}$$
, $x^2 + y^2 = 1 + 5 = 0$ 所围立体在三个坐标面上的投影.

四.解下列各题 (每题 10 分, 共 30 分)

1.试求点 $M_1(3,1,-4)$ 关于直线 $L: \begin{cases} x-y-4z+9=0, \text{ 的对称点 } M_2 \text{ 的坐标.} \\ 2x+y-2z=0 \end{cases}$

$$\left(\frac{3+\chi_{L}}{2}, \frac{1+y_{L}}{2}, \frac{-4+\xi_{L}}{2}\right) = (1, 2, 2)$$

2.已知点 A(1,0,0) , B(0,2,1) 试在 z 轴上找一点 C , 使得 ΔABC 的面积最小.

3.有一束平行于直线 L: x=y=-z 的平行光束照射不透明球面 $S: x^2+y^2+z^2=2z$,求球面在 xOy 面上留下的阴影部分的边界曲线方程.

経色がかかし気色の平面为(メーロ)+(ターロ)-(3ー1)=ロ

