Nash Equilibrium Existence Proof

- Use Kakutani's fixed point theorem. We need
 - $f: A \rightarrow A$ such that
 - ▶ for all $a \in A$ the set f(a) is nonempty and convex
 - ▶ the graph of f is closed (i.e. for all sequences $\{x_n\}$ and $\{y_n\}$ such that $y_n \in f(x_n)$ for all $n, x_n \to x, y_n \to y$, we have $y \in f(x)$).
- Use $B(a) = \times_{i \in N} B_i(a_{-i})$.
 - B : A → A.
 - ▶ For all $a \in A$ the set B(a) is nonempty (Why?).
 - ▶ For all $a \in A$ the set B(a) is convex (Why?).
 - B has a closed graph (Why?).
- Thus B has a fixed point, which is a Nash equilibrium.