Análise do Comportamento das Operações de Entrada e Saída de um *Workflow* Científico de Alto Desempenho

Lucas Cruz^{1,2}, Micaella Coelho², Luiz Gadelha², Carla Osthoff², Kary Ocaña²

¹Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ) Petrópolis – RJ – Brasil

> ²Laboratório Nacional de Computação Científica (LNCC) Petrópolis – RJ – Brasil

{lucruz, micaella, lgadelha, osthoff, karyann}@lncc.br

Abstract. We present an analysis of the behavior of the I/O operations of the scientific workflow version ParslRNA-Seq, coupled to HPC environments. The article discusses the choice of which workflow modeling modifications lead to improved performance and computational scalability, based on reduced expenses with I/O operations.

Resumo. Apresentamos uma análise do comportamento das operações de E/S da versão do workflow científico ParslRNA-Seq, acoplada a ambientes de CAD. O artigo traz discussões sobre a eleição de quais modificações na modelagem do workflow levam a melhora do desempenho e escalabilidade computacional, baseado em redução de gastos em operações de E/S.

1. Introdução

A técnica de Sequenciamento de RNA (RNA-Seq) é utilizada nas análises de expressão de genes do transcritoma, para o estudo de um conjunto de transcritos de uma célula em uma dada condição fisiológica ou de desenvolvimento, como o câncer. Na bioinformática, a modelagem de experimentos de RNA-Seq é um desafio devido à complexidade, manipulação de grandes volumes de dados e pelo custo computacional. *Workflows* científicos são abstrações que representam esses experimentos como um fluxo encadeado de atividades as quais são executadas por aplicações com diversas características, dentre elas a de Computação de Alto Desempenho (CAD). Com o uso de sistemas de gerência ou linguagens de programação é possível modelar, gerenciar e analisar os *workflows*.

Este trabalho é uma extensão de [Cruz et al. 2021] o qual apresenta o *workflow* científico ParslRNA-Seq, com desempenho validado por análises comparativas computacionais e de inferência em análises de Expressão Diferencial de Genes (EDG), no qual foi desenvolvida uma versão paralela e distribuída em múltiplos nós, com ganhos de desempenho em até 70%. O presente trabalho apresenta análises do desempenho das operações de Entrada e Saída (E/S) deste mesmo *workflow*, em ambientes de CAD, com o objetivo de investigar a possibilidade de aumentar ainda mais o ganho de desempenho através da redução do tempo de execução com as operações de E/S.

2. Trabalhos Relacionados

[Cruz et al. 2020] apresenta análises de desempenho do ParslRNA-Seq_alfa executado no ambiente do supercomputador Santos Dumont (SDumont). As análises mostram que

o gerenciamento do Parsl em conjunto com o parâmetro *multithread* do Bowtie2, levam a reduções significativas no Tempo Total de Execução (TTE) do *workflow*, saindo de cerca de 3 dias para, aproximadamente, 1 hora e 10 minutos. [Cruz et al. 2021] apresenta uma versão otimizada do ParslRNA-Seq, onde são observados ganhos de desempenho de até 70% em relação a versão *alfa* dentro de ambientes de CAD. Essa melhora reduziu o TTE do *workflow* de, aproximadamente, 1 hora e 10 minutos para cerca de 24 minutos.

3. Metodologia

O ParsIRNA-Seq é composto por seis atividades [Cruz et al. 2021]: A atividade 1, Bowtie, faz o mapeamento e comparação das leituras dos genomas, caractere a caractere, em arquivos extremamente extensos; A atividade 2, Sort, realiza uma ordenação nas leituras e converte o formato de saída do arquivo da atividade 1, para um formato binário comprimido; A atividade 3, Split_Picard, faz a manipulação para o particionamento das leituras, o que gera uma quantidade de *n* subarquivos. A atividade 4, HTSeq, faz a contagem dessas leituras processando cada subarquivo em um núcleo de CPU; A atividade 5, Merge_HTSeq, combina as subsoluções geradas; e, por fim, a atividade 6, DESeq, aplica estatísticas de EDG sobre as contagens realizadas. Das seis atividades, as atividades 1 e 2 fazem execução *multithreads* e a atividade 4, execução *multicore*.

Para a análise foi reproduzido o melhor cenário de execução observado nos trabalhos anteriores. O conjunto de dados de entrada utilizados contém ao todo seis arquivos, pertencentes a um experimento real de RNA-Seq, com tamanhos variando entre 1.8 GB e 3.0 GB. O ambiente computacional utilizado SDumont e foram alocados seis nós computacionais para execução do *workflow*, dos quais se compõem por duas CPUs Ivy Bridge Intel Xeon E5-2695v2 (12c @2.4GHz) e 64 GB de memória RAM. Para análise foi utilizado o perfilador Darshan, que tem como propósito investigar o comportamento de E/S de aplicações em ambientes de alto desempenho.

4. Resultados e Análise

Na presente seção, são discorridas análises das atividades que se apresentam de forma mais relevante em relação as operações de E/S: Bowtie e Sort. As análises levam em consideração o arquivo de menor e maior tamanho, 1.8 GB e 3.0 GB, respectivamente. A Figura 1 apresenta a média do custo das operações usando POSIX: de leitura (vermelho); de escrita (verde); e, outras operações que não envolvem E/S (rosa).

Figura 1. Atividades Bowtie e Sort: menor arquivo (esquerda) e maior (direita).

Análise das operações de E/S da atividade Bowtie. Para a atividade Bowtie as operações de escrita são as que mais se destacam. De modo que para o arquivo de maior tamanho, o TTE é cerca de 4 minutos e 23 segundos e cerca de 90% desse tempo é consumido em operações de escrita. Em média, a atividade escreveu 11 GB. Já para o

arquivo de menor tamanho, o TTE é de 2 minutos e 32 segundos e cerca de 80% desse tempo é gasto para operações de escrita. Em média, a atividade escreveu 6.0 GB. O que se constata é que a operação principal dessa atividade é a escrita, dado a variação de 10% na porcentagem do tempo gasto para tal entre o maior e menor arquivo. Além disso, o tamanho dos blocos que essa aplicação usa para escrita variam entre 1 KB e 10 KB.

Análise das operações de E/S da atividade Sort. Para a atividade Sort as operações de escrita já não estão tão em destaque. De modo que para o arquivo de maior tamanho, o TTE é cerca de 1 minuto e 31 segundos e cerca de 70% desse tempo é consumido em operações de leitura e cerca de 10% em operações de escrita. Em média são lidos 13 GB e escritos 1.1 GB. Já o arquivo de menor tamanho, o TTE é de 41 segundos, cerca de 5% é consumido em operações de leitura e em torno de 15% em operações de escrita. Em média são lidos 7.3 GB e escritos 657 MB. O que se constata é que a medida que o tamanho do arquivo aumenta, maior será a quantidade e mais tempo será gasto realizando operações de leitura. Isso pode ocorrer devido ao tamanho do arquivo e ao tamanho de blocos que a atividade do Sort utiliza para leitura (de 100 KB a 1 MB) e escrita (1 MB a 4 MB), ou seja, como o tamanho de blocos de leitura são menores, quanto maior for o tamanho do arquivo mais blocos de leitura serão requeridos e maior será a quantidade de operações de leitura a serem realizadas.

5. Conclusão

A partir das análises do comportamento das operações de E/S das atividades Bowtie e Sort do *workflow* ParslRNA-Seq, é notório uma relação entre o tamanho do arquivo de entrada e a quantidade de operações de E/S. Em geral, a atividade Bowtie consome mais tempo em escrita, no entanto, essa escrita é feita em blocos de tamanho 1 KB a 10 KB, independentemente do tamanho do arquivo. O que pode influenciar no tempo de execução da atividade. Para a atividade Sort essa relação é bem mais perceptível, dado que há uma diferença de cerca de 65% no tempo gasto com operações de leitura entre maior e menor aquivo. E o tamanho dos blocos de leitura estão sempre dentro de uma faixa entre 100 KB e 1 MB, independentemente do tamanho do arquivo. Uma forma de reduzir o custo dessas operações de E/S é fazendo alteração no tamanho dos blocos, no entanto, é necessário realizar modificações dentro das próprias aplicações. Uma outra forma de reduzir gastos com E/S é realizando modificações na própria configuração de execução do *workflow*, para que as operações de E/S sejam feitas diretamente no SSD (*Solid State Drive*) do nó computacional em uso. Ambas abordagens fazem parte do próximos passos desse estudo.

Referências

Cruz, L., Coelho, M., Gadelha, L., Ocaña, K., and Osthoff, C. (2020). Avaliação de desempenho de um workflow científico para experimentos de rna-seq no supercomputador santos dumont. In *Anais Estendidos do XXI Simpósio em Sistemas Computacionais de Alto Desempenho*, pages 86–93, Porto Alegre, RS, Brasil. SBC.

Cruz, L., Coelho, M., Terra, R., Carvalho, D., Gadelha, L., Osthoff, C., and Ocaña, K. (2021). Workflows científicos de rna-seq em ambientes distribuídos de alto desempenho: Otimização de desempenho e análises de dados de expressão diferencial de genes. In *Anais do XV Brazilian e-Science Workshop*, pages 57–64, Porto Alegre, RS, Brasil. SBC.