Dependency2Vec

An alternate approach for word vector representations

Neural Embeddings

- NLP techniques for mapping words or phrases to dense vector representations
- Represent words in a continuous space, semantically similar words are mapped to nearby points
- All techniques depend on Distributional Hypothesis
- Enable efficient computation of semantic similarities of words and other linguistic relations

$$v(king) - v(man) + v(woman) = v(queen)$$

- Techniques
 - word2vec (Mikolov et al., 2013 Efficient Estimation of Word Representations in Vector Space)
 - o paragraph2vec (Le, Mikolov, 2014 Distributed Representations of Sentences and Documents)
 - GloVe (Pennington et al., 2014 Global Vectors for Word Representation)
 - o dependency2vec (Levy, Goldberg, 2014 Dependency-Based Word Embeddings)
 - o sense2vec (Trask et al., 2015 A fast and accurate method for word sense disambiguation)
 - FastText (Bojanowski et al., 2016 Enriching Word Vectors with Subword Information)

Context and Similarity

Topical Context (Relatedness)

- Embeds words by their domain similarity, words often seen together in sentences.
- Considers a context as a window of words surrounding a given target word.
- The context used by word embedding approaches like word2vec.
- Relies on a bag of words.
- Answers the question: what words are typically seen together in a sentence?

Australian scientist discovers star with telescope

Syntactic Dependencies

- Describes the process of analyzing the structure of a given sentence
- Tags each word with a part-of-speech (POS) tag that describes the word's syntactic function
- Determines the syntactic relationships between words (Dependency tags) in the sentence,
 represented with dependency parse tree.
- These syntactic relationships are directly related to the underlying meaning of the sentence in question.

Context and Similarity

Functional Context (Similarity)

- Embeds words their syntactic relationships in sentences.
- Considers a context as a target word, its dependency modifiers, and its root word.
- The context used by word embedding approaches like dependency2vec
- Answers the question: what words share the same functional meaning?

WORD	CONTEXT	
australian	scientist/amod_INV	
scientist	australian/amod, discovers/nsubj_INV	
discovers	scientist/nsubj, star/dobj, telescope/prep_with	
star	discovers/dobj_INV	
telescope	discovers/prep_with_INV	

dependency2vec

dependency2vec: SkipGram Model

- word2vec uses the SkipGram model to predict the surrounding window of context words from a target word
- Generates context:target pairs ([austrailian, discovers], scientist), ([scientist, star], discovers)....
- Inverts the pairs and attempts to predict each context from its target word.
- The task becomes to predict "austrailian" and "discovers" from "scientist", "scientist", "star" from "discovers"

dependency2vec: SkipGram Modification

- Where dependency2vec differs from word2vec is how it represents context.
- Is a modification of the SkipGram model to consider arbitrary contexts.
- No longer a linear window of a surrounding words, but the dependency context pairs we saw earlier.
- Both word embedding approaches operate in exactly the same way, the SkipGram context modification is the core difference.
- Advantages
 - Captures word relations that are outside of a linear window
 - Reduces the weighting of coincidental words, words in the same window that bare no useful relation.
- Intuition: words that appear in similar dependency contexts should have be functionally similar.

Comparing Model Ouput

word2vec vs dependency2vec

Target word: **Hogwarts**

word2vec	dependency2vec
harry	Castleobruxo
dubmbledore	Durmstrang Institute
magic	Harvard

word2vec vs dependency2vec

Target word: Bitches

word2vec	dependency2vec
Bitch - 0.868	Females - 0.866
Fuckers - 0.761	Hoes - 0.864
Fuck - 0.753	Mfs - 0.848
Asses - 0.734	Dudes - 0.812
Ass - 0.718	Niggaz - 0.806
Chicks - 0.711	Chicks - 0.783
Assholes - 0.710	Girls - 0.753
Fucking - 0.707	Boys - 0.750

Real numbers represent cosine similarity to the target word