## Oscillations libres dans un circuit RLC série

■ <u>Le circuit RLC</u> est constitué d'un condensateur initiallement chargé monté en série avec une résistance R et une bobine

Les régimes des oscillations



<u>la résistance est nulle</u>, les oscillations sont périodiques. Le circuit LC est alors le siège d'oscillations propres non amorties. Le régime est alors <u>périodique</u> la période To des oscillations est appelée période propre



R est faible, l'amplitude des oscillations n'est pas constante mais décroît : les oscillations s'amortissent. Le régime est dit pseudopériodique la pseudopériode  $T \approx T_0$ 



<u>R est élevée,</u> il n'y a plus d'oscillations. Le régime est dit <u>apériodique</u>

■ l'équation différentielle de la tension 
$$u_{\mathcal{C}}$$
:  $\frac{d^2u_C}{dt^2} + \frac{(R+r)}{L} \frac{du_C}{dt} + \frac{1}{LC} u_C = 0$ 

■ l'équation différentielle de la charge 
$$q$$
:  $\frac{d^2q}{dt^2} + \frac{(R+r)}{L} \frac{dq}{dt} + \frac{1}{LC} q = 0$ 

■ <u>Si Rt=R+r=O (</u>circuit LC idéale)



 $\supset$  Solution de l'équation différentielle :  $u_C = U_m \cos(\frac{2\pi}{T_0} \cdot t + \varphi)$ 

 $\Rightarrow$  La période propre  $T_0$ :  $T_0 = 2\pi\sqrt{LC}$  (à démontrer)

Expression de la l'intensité du courant i:  $i = \frac{dq}{dt} = \frac{2\pi . CU_m}{T_0} cos(\frac{2\pi}{T_0} \cdot t + \varphi + \frac{\pi}{T_0})$ 



## L'energie totale emmagasinée dans un circuit RLC

Au régime permanent l'énergie totale est constante  $R_{t=0}$ 

$$E_{t} = E_{e} + E_{m} = \frac{1}{2}C.u_{C}^{2} + \frac{1}{2}L.i^{2} = \frac{1}{2}C.U_{m}^{2} = \frac{1}{2}L.I_{m}^{2}$$

Au régime périodique et apériodique l'énergie totale du circuit décroît à cause de  $R_T$  qui dissipe l'énergie par effet de Joule . montrer que :  $\frac{dE_t}{dt} = -Ri^2 \quad \text{énergie en ( \mu J) } \quad \text{régime périodique }$ 





**Entretien des oscillations**: pour entretenir les oscillations dans un circuit il faut lui fournir de l'énergie pour compenser les pertes par effet Joule dans les résistances ; à l'aide d'un générateur de tension  $u_s=R_0$ i. montrer que  $R_0=R_t$