Homework 2

Madilyn Simons

- 1. By definition, $\binom{p}{k} = \frac{p!}{k!(p-k)!} = p \frac{(p-1)!}{k!(p-k)!}$. Since k < p and p-k < p, neither k! nor (p-k)! have any prime factors that divide p, and $\frac{p!}{k!(p-k)!}$ is an integer, $\frac{(p-1)!}{k!(p-k)!}$ must also be an integer. This implies that $p \mid \binom{p}{k}$.
- 2. By definition of binomial coefficients,

$$(a+b)^p = \sum_{k=0}^p \binom{p}{k} a^{p-k} b^k = (a^p + b^p) + \sum_{k=1}^{p-1} (\binom{p}{k} a^{p-k} b^k).$$

Since $p|\binom{p}{k}$ for all k < p and all numbers between 1 and p-1 (inclusive) as less than p, $\sum_{k=0}^{p} \binom{p}{k} a^{p-k} b^k$ is divisible by p. This means that $\sum_{k=0}^{p} \binom{p}{k} a^{p-k} b^k \equiv 0 \pmod{p}$. Consequently,

$$(a^p + b^p) + \sum_{k=1}^{p-1} {p \choose k} a^{p-k} b^k \equiv (a^p + b^p) + 0 \equiv a^p + b^p \pmod{p}.$$

3. Let a be some element of $\mathbb{Z}/m\mathbb{Z}$. Assume a is a unit and let a^{-1} be its inverse. Also assume a is a zero divisor and let $ab \equiv 0 \pmod{m}$ for some nonzero element b of $\mathbb{Z}/m\mathbb{Z}$ (by definition of zero divisor). As such,

$$a^{-1}ab \equiv (a^{-1}a)b \equiv 1b \equiv b \pmod{m}$$

and

$$a^{-1}ab \equiv a^{-1}(ab) \equiv a^{-1}(0) \equiv 0 \pmod{m}$$

Thus, $b \equiv 0 \pmod{m}$. This is a contradiction. Therefore, a cannot be a zero divisor and a unit.

4. Let a be some nonzero element of $\mathbb{Z}/m\mathbb{Z}$. Either (a,m)=1 or (a,m)>1. First, let (a,m)=1. If (a,m)=1, then a is a unit and we are done. Next, let (a,m)=c for some c such that c>1. Let $a=p_0^{a_0}p_1^{a_1}...p_k^{a_k}$ be the prime factorization of a such that $a_i\geq 0$ for all i. Similarly, let $m=p_0^{m_0}p_1^{m_1}...p_k^{m_k}$ be the prime factorization of m such that $m_i\geq 0$ for all i. Since a and m are not relatively prime and a is a nonzero element, there exists some $d=p_0^{max(a_0,m_0)}...p_k^{max(a_k,m_k)}$, which is divisible by a and is a zero element of $\mathbb{Z}/m\mathbb{Z}$. Let $x=p_0^{x_0}...p_k^{x_k}$ such that $x_i \cdot a_i=$

 $max(a_i,m_i)$ for all i. Thus, $ax\equiv d\equiv 0\pmod m$. We know that x is a nonzero element because x could only be a nonzero element if $x_i=0$ for all i, implying that $max(a_i,m_i)=0$ for all i (which would only be true if a=1 and p=1). Therefore, if $(a,m)\neq 1$, then a is a zero divisor.