ASYMPTOTIC ANALYSIS

April 24, 2015

ANGEL NOÉ MARTÍNEZ GONZÁLEZ

MOTIVATION I

WHY ANALYSING ALGORITHMS?

- Predict resources an algorithm requires: memory, bandwidth, etc.
- Identify the most efficient algorithm between several others.
- ► Improve efficiency of an existing algorithm.
- ► For fun!

MOTIVATION II

HOW DO WE ANALYSE ALGORITHMS?

- ▶ Model of the technology: RAM, PC.
- ► Mathematical tools or analysis (not so damn complicated!).
- ► Asymptotic analysis, i.e. when n goes to infinity.

WE ONLY CONSIDER TWO IMPORTANT FACTORS:

- 1. Input size $n \in \mathbb{N}$. Assume n large.
- 2. Running time T(n): number of primitive operations or "steps" executed for the given input.

GETTING STARTED: THE SORTING PROBLEM I

Given a sequence of numbers $A = [a_1, a_2, ..., a_n]$ as input, generate a permutation of the input such that $a'_1 \leq a'_n \leq ... \leq a'_n$

```
INSERTION-SORT (A)
   for j = 2 to A. length
       kev = A[i]
       // Insert A[j] into the sorted sequence A[1...j-1].
       i = i - 1
       while i > 0 and A[i] > key
6
           A[i+1] = A[i]
           i = i - 1
       A[i+1] = kev
```

GETTING STARTED: THE SORTING PROBLEM II

ANALYSIS

- ► Assume each instruction has a constant given time.
- ▶ Look how many times the instruction is executed.
- ► Take the product of the two above.
- ► The total running time is the sum of all instructions running times.

GETTING STARTED: THE SORTING PROBLEM III

Insertion-Sort (A)		cost	times
1 for	j = 2 to A.length	c_1	n
$2 \qquad k$	xey = A[j]	c_2	n-1
3 /	7 Insert $A[j]$ into the sorted		
	sequence $A[1 j - 1]$.	0	n-1
4 i	= j - 1	c_4	n-1
5 v	vhile $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8 A	4[i+1] = key	c_8	n-1

GETTING STARTED: THE SORTING PROBLEM IV

The running time T(n) for insertion sort is

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

Solving recurrences

$$T(n) = (c_5 + c_6 + c_7) \frac{1}{2}n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right)n - (c_2 + c_5 + c_5 + c_8)$$

Which can be represented as

$$T(n) = a \cdot n^2 + b \cdot n + c$$

WORST AND AVERAGE CASE I

AVERAGE CASE

- 1. Analyse the average running time of an algorithm.
- 2. Requires domain knowledge.
- 3. Analyse for specific inputs.
- 4. Bit more complex to analyse input distributions, etc.

WORST AND AVERAGE CASE II

WORST CASE

- 1. Upper bounds on the running time of an algorithm.
- 2. Worst case occurs fairly often!
- 3. Analysis hold for every input.
- 4. Useful for general purpose algorithms.
- 5. Mathematically more tractable.

We will focus mainly in the worst case analysis.

BIG O NOTATION I

Denotes asymptotic upper bound. For a given function g(n), we denote by O(g(n)) the set of functions

$$O(g(n)) = \{f(n) : \text{There exists positive constans } c \text{ and } n_0 \}$$

such that $0 \le f(n) \le cg(n)$ for all $n > n_0\}$

We say that T(n) = O(g(n)) when T(n) is bounded above for a constant multiple of g(n).

BIG O NOTATION II

IN OTHER WORDS

T(n) = O(g(n)) if and only if exist $c, n_0 > 0$ such that

$$T(n) \le cg(n)$$

for all $n \ge n_0$ and c, n_0 independent of n.

HOW TO COMPARE? I

DIVIDE AND CONQUER INTRO: MERGE SORT

MERGE-SORT(A, p, r)

- 1: **if** p < r **then**
- 2: $q = \lfloor (p+r)/2 \rfloor$
- 3: MERGE-SORT(A, p, q)
- 4: MERGE-SORT(A, q, r)
- 5: MERGE(A, p, q, r)
- 6: end if

MERGE(A, p, q, r)

- 1: $B = 1^{st}$ part of array.
- 2: $C = 2^{nd}$ part of array.
- 3: i = 1, j = 1
- 4: **for** k = 1 to n **do**
- 5: **if** B[i] < C[j] **then**
- 6: A[k] = B[i]
- 7: else
- 8: A[k] = C[j]
- 9: end if
- 10: end for

Motivation Starting Cases Big Oh **Comparing** Guiding Big Ω and Θ Little ω and θ

HOW TO COMPARE? II

AN EXAMPLE TREE

At each level $j = 0, 1, ..., log_2(n)$, there are 2^j subproblems of size $n/2^j$.

HOW TO COMPARE? III

Now let's say that subroutine MERGE(A, p, q, r) takes $m \cdot x$, with $x = n/2^j$ and a constant m. Then for each level MERGE(A, p, q, r) costs

$$2^j \cdot m \cdot \frac{n}{2^j} = m \cdot n$$

Then, the running time of MERGE-SORT(A, p, r) is

$$T(n) = m \cdot n \cdot log_2(n) + m \cdot n$$

Finally we get that $O(m \cdot n \cdot log_2(n) + m \cdot n)$ is better than $O(a \cdot n^2 + b \cdot n + c)$.

GUIDING PRINCIPLES I

WHEN ANALYSING ALGORITHMS

- ► Don't pay attention in constant factors: dependent on architecture, compiler, programmer, etc.
- ► Consider each input as equally likely.
- \blacktriangleright Assume very large input problems, i.e. large n.
- ▶ Use the abstraction power of asymptotic analysis: $O(n \cdot log_2(n))$ is better than $O(n^2)$.

GUIDING PRINCIPLES II

SOMETIMES LOOK DEEPER!

Motivation Starting Cases Big Oh Comparing Guiding Big Ω and Θ Little ω and θ

GUIDING PRINCIPLES III

From http://bigocheatsheet.com/

Big Ω and Θ I

BIG Ω : provides an asymptotic lower bound.

 $T(n) = \Omega(f(n))$ if and only if exist constants c and n_0 such that

$$T(n) \ge cf(n)$$

For all $n \ge n_0$.

Big Ω and Θ II

BIG Θ : provides asymptotic ranges.

 $T(n) = \Theta(f(n))$ if and only if exist constants c_1 , c_2 and n_0 such that

$$c_1f(n) \le T(n) \le c_2f(n)$$

For all $n \geq n_0$.

Note $T(n) = \Theta(f(n))$ implies that T(n) = O(f(n)) and $T(n) = \Omega(f(n))$.

Little 0, ω and θ I

Little o, ω and θ lose tightness in the bounds.

$$o(g(n)) = \{f(n) : \exists c, n_0 > 0 \mid 0 \le f(n) < cg(n) \ \forall \ n \ge n_0 \ \}$$

$$\omega(g(n)) = \{f(n) : \exists c, n_0 > 0 \mid 0 \le cg(n) < f(n) \ \forall \ n \ge n_0 \ \}$$

$$\theta(g(n)) = \{f(n) : \exists c_1, c_2, n_0 > 0 \mid c_1g(n) < f(n) < c_2g(n) \ \forall \ n \ge n_0 \ \}$$