6.842 Randomness and Computation

April 16, 2022

Homework 4

Yuchong Pan MIT ID: 911346847

1. Collaborators and sources: Guanghao Ye, Zixuan Xu.

Proof. Note that if $n \in \{1,2\}$, then the statement holds trivially. Therefore, WLOG assume that $n \geq 2$. Let L_0 be the set of the left vertices in the graph. For each $L \subset L_0$, let $N_1(L)$, $N_2(L)$ and $N_3(L)$ be the neighborhoods of L in the subgraphs of the graph induced by the three random permutations, respectively. Then

$$\mathbb{P}\left[\exists L \subset L_{0}, |L| \leq \frac{n}{2}, |N(L)| < (1+\varepsilon)|L|\right]$$

$$\leq \sum_{\substack{L \subset L_{0} \\ 0 < |L| \leq \frac{n}{2}}} \mathbb{P}[|N(L)| < (1+\varepsilon)|L|]$$

$$= \sum_{\substack{L \subset L_{0} \\ 0 < |L| \leq \frac{n}{2}}} \mathbb{P}\left[\exists R \subset R_{0} \setminus N_{1}(L), |R| = \lceil \varepsilon |L| \rceil - 1, N_{2}(L) \cup N_{3}(L) \subset R\right]$$

$$\leq \sum_{\substack{L \subset L_{0} \\ 0 < |L| \leq \frac{n}{2}}} \sum_{\substack{R \subset R_{0} \setminus N_{1}(L) \\ |R| = \lceil \varepsilon |L| \rceil - 1}} \mathbb{P}\left[N_{2}(L) \cup N_{3}(L) \subset R\right]$$

$$= \sum_{\ell=1}^{\frac{n}{2}} \binom{n}{\ell} \binom{n-\ell}{\lceil \varepsilon \ell \rceil - 1} \binom{\binom{\ell+\lceil \varepsilon \ell \rceil - 1}{\ell}}{\binom{n}{\ell}}^{2}$$

$$\leq \sum_{\ell=1}^{\frac{n}{2}} \binom{n}{\ell} \binom{n-\ell}{\lceil \varepsilon \ell \rfloor} \binom{\binom{\ell+\lceil \varepsilon \ell \rceil - 1}{\ell}}{\binom{n}{\ell}}^{2}$$

$$= \sum_{\ell=1}^{\frac{n}{2}} \frac{n!}{\ell!(n-\ell)!} \cdot \frac{(n-\ell)!}{(\lfloor \varepsilon \ell \rfloor)!(n-\ell-\lfloor \varepsilon \ell \rfloor)!} \cdot \binom{\binom{\ell+\lfloor \varepsilon \ell \rfloor}!}{\frac{\ell!(n-\ell)!}{\ell!(n-\ell)!}}^{2}$$

$$= \sum_{\ell=1}^{\frac{n}{2}} \frac{((n-\ell)!)^{2}((\ell+\lfloor \varepsilon \ell \rfloor)!)^{2}}{n!\ell!(\lfloor \varepsilon \ell \rfloor !)^{3}(n-\ell-\lfloor \varepsilon \ell \rfloor)!}.$$

$$(2)$$

Stirling's approximation says that for all $k \in \mathbb{N}$,

$$\sqrt{2\pi k} \left(\frac{k}{e}\right)^k e^{\frac{1}{12k+1}} < k! < \sqrt{2\pi k} \left(\frac{k}{e}\right)^k e^{\frac{1}{12k}}.$$
 (3)

We apply (3) to each factorial in (2); specifically, we apply the upper bound to the numerator and the lower bound to the denominator. First, we count the contributions of e^k from the factorials in each term of (2):

$$\exp\left(n+\ell+3\lfloor\varepsilon\ell\rfloor+(n-\ell-\lfloor\varepsilon\ell\rfloor)-(2(n-\ell)+2(\ell+\lfloor\varepsilon\ell\rfloor))\right)=\exp(0)=1.$$

Second, we count the contributions of $e^{\frac{1}{12k}}$ in the upper bound and $e^{\frac{1}{12k+1}}$ in the lower bound from the factorials in each term of (2):

$$\exp\left(\frac{1}{12}\left(\frac{2}{n-\ell} + \frac{1}{\ell+\lfloor\varepsilon\ell\rfloor}\right) - \left(\frac{1}{12n+1} + \frac{1}{12\ell+1} + \frac{3}{12\lfloor\varepsilon\ell\rfloor+1} + \frac{1}{12(n-\ell-\lfloor\varepsilon\ell\rfloor)+1}\right)\right) \\ \leq \exp\left(\frac{1}{12}\cdot(2+1)\right) < 1.29,$$

by noting that $n - \ell \ge 1$ and $\ell + \lfloor \varepsilon \ell \rfloor \ge 1$ for all $\ell \in [n/2]$. Take $\varepsilon = 0.01$. Third, we count the contributions of k^k from the factorials in each term of (2):

$$\frac{(n-\ell)^{2(n-\ell)}(\ell+\lfloor\varepsilon\ell\rfloor)^{2(\ell+\lfloor\varepsilon\ell\rfloor)}}{n^{n}\ell^{\ell}\lfloor\varepsilon\ell\rfloor^{3\lfloor\varepsilon\ell\rfloor}(n-\ell-\lfloor\varepsilon\ell\rfloor)^{n-\ell-\lfloor\varepsilon\ell\rfloor}}
\leq \frac{(n-\ell)^{2(n-\ell)}(\ell+\varepsilon\ell)^{2(\ell+\varepsilon\ell)}}{n^{n}\ell^{\ell}(\varepsilon\ell)^{3\varepsilon\ell}(n-\ell-\varepsilon\ell)^{n-\ell-\varepsilon\ell}}
\leq \frac{(1+\varepsilon)^{2(1+\varepsilon)}}{\varepsilon^{3\varepsilon}} \left(\frac{n-\ell}{n}\right)^{n-\ell+\lfloor\varepsilon\ell\rfloor} \left(\frac{\ell}{n}\right)^{\ell-\lfloor\varepsilon\ell\rfloor} \left(1+\frac{\lfloor\varepsilon\ell\rfloor}{n-\ell-\lfloor\varepsilon\ell\rfloor}\right)^{n-\ell-\lfloor\varepsilon\ell\rfloor}
< 1.18 \cdot 1 \cdot \left(\frac{1}{2}\right)^{0.99\ell} \cdot e^{0.01\ell}
< 1.18 \cdot 0.51^{\ell}.$$
(4)

Note that (4) is due to the fact that for each term in (1),

$$\binom{n}{\ell}\binom{n-\ell}{\lfloor \varepsilon\ell\rfloor}\left(\frac{\binom{\ell+\lfloor \varepsilon\ell\rfloor}{\ell}}{\binom{n}{\ell}}\right)^2 \leq \binom{n}{\ell}\binom{n-\ell}{\varepsilon\ell}\left(\frac{\binom{\ell+\varepsilon\ell}{\ell}}{\binom{n}{\ell}}\right)^2,$$

by the monotonicity of the generalized binomial coefficient (with factorials replaced by the gamma function $\Gamma(r)=(r-1)!$). Fourth, we count the contributions of $\sqrt{2\pi k}$ from the factorials in each term of (2). Note that $k^k>\sqrt{2\pi k}$ for all $k\geq 1.99$. Since n>3, then $n-\ell\geq n-(1+\varepsilon)\ell\geq 1.99$ for all $\ell\in[n/2]$. Note also that $(1+\varepsilon)\ell\geq 2$ for all $\ell\in\{2,\ldots,n/2\}$. Hence, the contribution of $\sqrt{2\pi k}$ is not upper bounded by k^k from the factorials in each term only if $\ell=1$, in which case, since $n\geq 3$,

$$\binom{n}{\ell}\binom{n-\ell}{\lfloor \varepsilon\ell\rfloor}\left(\frac{\binom{\ell+\lfloor \varepsilon\ell\rfloor}{\ell}}{\binom{n}{\ell}}\right)^2 = \binom{n}{1}\binom{n-1}{\lfloor 0.01\cdot 1\rfloor}\left(\frac{\binom{1+\lfloor 0.01\cdot 1\rfloor}{1}}{\binom{n}{1}}\right)^2 = \frac{1}{n}\leq \frac{1}{3}.$$

Moreover, the contribution of $\sqrt{2\pi k}$ from each term with $\ell \in \{2, \dots, n/2\}$ is at most $1.18 \cdot 0.51^{\ell}$. Therefore,

$$\mathbb{P}\left[\exists L \subset L_{0}, |L| \leq \frac{n}{2}, |N(L)| < (1+\varepsilon)|L|\right] \\
\leq \sum_{\ell=1}^{\frac{n}{2}} \binom{n}{\ell} \binom{n-\ell}{\lfloor \varepsilon \ell \rfloor} \left(\frac{\binom{\ell+\lfloor \varepsilon \ell \rfloor}{\ell}}{\binom{n}{\ell}}\right)^{2} \\
= \binom{n}{1} \binom{n-1}{\lfloor 0.01 \cdot 1 \rfloor} \left(\frac{\binom{1+\lfloor 0.01 \cdot 1 \rfloor}{\binom{n}{\ell}}}{\binom{n}{1}}\right)^{2} + \sum_{\ell=2}^{\frac{n}{2}} \binom{n}{\ell} \binom{n-\ell}{\lfloor \varepsilon \ell \rfloor} \left(\frac{\binom{\ell+\lfloor \varepsilon \ell \rfloor}{\ell}}{\binom{n}{\ell}}\right)^{2}$$

$$\leq \frac{1}{3} + \sum_{\ell=2}^{\frac{n}{2}} 1 \cdot 1.29 \cdot \left(1.18 \cdot 0.51^{\ell} \right)^{2}$$

$$< 0.34 + 1.8 \sum_{\ell=2}^{\frac{n}{2}} 0.27^{\ell}$$

$$< 0.34 + 1.8 \sum_{\ell=2}^{\infty} 0.27^{\ell}$$

$$= 0.34 + 1.8 \cdot 0.27^{2} \cdot \frac{1}{1 - 0.27}$$

$$< 0.52$$

It follows that

$$\mathbb{P}\left[|N(L)| \ge (1+\varepsilon)|L| \ \forall L \subset L_0, |L| \le \frac{n}{2}\right] \ge 1 - \mathbb{P}\left[\exists L \subset L_0, |L| \le \frac{n}{2}, |N(L)| < (1+\varepsilon)|L|\right] > 1 - 0.52 = 0.48.$$

2. (a) Collaborators and sources: none.

Proof. Note that $\mathbb{1}_{\text{test accepts}} = (1 + f(x)f(y)f(z))/2$. By the Fourier transform of f and by linearity of expectation,

$$\mathbb{E}[f(x)f(y)f(z)] = \mathbb{E}\left[\left(\sum_{S\subset[n]}\hat{f}(S)\chi_S(x)\right)\left(\sum_{T\subset[n]}\hat{f}(T)\chi_T(y)\right)\left(\sum_{U\subset[n]}\hat{f}(U)\chi_U(z)\right)\right]$$
$$=\sum_{S,T,U\subset[n]}\hat{f}(S)\hat{f}(T)\hat{f}(U)\,\mathbb{E}\left[\chi_S(x)\chi_T(y)\chi_U(x\circ y\circ w)\right].$$

Let $S, T, U \subset [n]$. For all $i \in [n]$, since $x_i, y_i \in \{\pm 1\}$, then $x_i^2 = y_i^2 = 1$. Hence,

$$\chi_{S}(x)\chi_{T}(y)\chi_{U}(x \circ y \circ w) = \left(\prod_{i \in S} x_{i}\right) \left(\prod_{i \in T} y_{i}\right) \left(\prod_{i \in U} x_{i} y_{i} w_{i}\right)$$

$$= \left(\prod_{i \in S \cap U} x_{i}^{2}\right) \left(\prod_{i \in T \cap U} y_{i}^{2}\right) \left(\prod_{i \in S \triangle U} x_{i}\right) \left(\prod_{i \in T \triangle U} y_{i}\right) \left(\prod_{i \in U} w_{i}\right)$$

$$= \chi_{S \triangle U}(x)\chi_{T \triangle U}(y)\chi_{U}(w).$$

If S = T = U, since w_1, \ldots, w_n are all chosen independently and since $\mathbb{E}[w_i] = (-1) \cdot \delta + 1 \cdot (1 - \delta) = 1 - 2\delta$ for all $i \in [m]$, then

$$\mathbb{E}\left[\chi_{S\triangle U}(x)\chi_{T\triangle U}(y)\chi_{U}(w)\right] = \mathbb{E}\left[\prod_{i\in S}w_{i}\right] = \prod_{i\in S}\mathbb{E}\left[w_{i}\right] = (1-2\delta)^{|S|}.$$

Now, suppose that either $S \neq U$ or $T \neq U$. WLOG assume that $S \neq U$. Then $S \triangle U \neq \emptyset$. Let $j \in S \triangle U$. For $x \in \{\pm 1\}^n$, let $x^{\oplus j}$ be the vector obtained by flipping the j^{th} bit in x. Then we can partition $\{\pm 1\}^n$ into (unordered) pairs $(x, x^{\oplus j})$. Therefore,

$$\mathbb{E}\left[\chi_{S\triangle U}(x)\right] = \frac{1}{2^n} \sum_{x \in \{\pm 1\}^n} \chi_{S\triangle U}(x) = \frac{1}{2^n} \sum_{\text{pairs } (x, x^{\oplus j})} \left(\chi_{S\triangle U}(x) + \chi_{S\triangle U}\left(x^{\oplus j}\right)\right)$$
$$= \frac{1}{2^n} \sum_{\text{pairs } (x, x^{\oplus j})} \left(x_j \prod_{i \in (S\triangle U) \setminus \{j\}} x_i + (-x_j) \prod_{i \in (S\triangle U) \setminus \{j\}} x_i\right) = 0.$$

Since x, y and w are chosen independently, then for all $S, T, U \subset [n]$ such that either $S \neq U$ or $T \neq U$,

$$\mathbb{E}\left[\chi_{S\triangle U}(x)\chi_{T\triangle U}(y)\chi_{U}(w)\right] = \mathbb{E}\left[\chi_{S\triangle U}(x)\right]\mathbb{E}\left[\chi_{T\triangle U}(y)\right]\mathbb{E}\left[\chi_{U}(w)\right] = 0.$$

Therefore,

$$\mathbb{P}[\text{test accepts}] = \mathbb{E}\left[\mathbb{1}_{\text{test accepts}}\right] = \mathbb{E}\left[\frac{1 + f(x)f(y)f(z)}{2}\right] = \frac{1}{2} + \frac{1}{2}\mathbb{E}[f(x)f(y)f(z)]$$
$$= \frac{1}{2} + \frac{1}{2}\sum_{S,T,U\subset[n]}\hat{f}(S)\hat{f}(T)\hat{f}(U)\mathbb{E}\left[\chi_{S\triangle U}(x)\chi_{T\triangle U}(y)\chi_{U}(w)\right]$$
$$= \frac{1}{2} + \frac{1}{2}\sum_{S\subset[n]}(1 - 2\delta)^{|S|}\hat{f}(S)^{3}.$$

(b) Collaborators and sources: none.

Proof. Let $f: \{\pm 1\}^n \to \{\pm 1\}$ be a dictator function. Then $f = \chi_{\{j\}}$ for some $j \in [n]$. Therefore, $\hat{f}(\{j\}) = 1$ and $\hat{f}(S) = 0$ for all $S \subset [n]$ with $S \neq \{j\}$. By part (a),

$$\mathbb{P}[\text{test accepts}] = \frac{1}{2} + \frac{1}{2} \sum_{S \subset [n]} (1 - 2\delta)^{|S|} \hat{f}(S)^3$$

$$= \frac{1}{2} + \frac{1}{2} \left((1 - 2\delta)^{|\{j\}|} \hat{f}(\{j\})^3 + \sum_{\substack{S \subset [n] \\ S \neq \{j\}}} (1 - 2\delta)^{|S|} \hat{f}(S)^3 \right)$$

$$= \frac{1}{2} + \frac{1}{2} \left((1 - 2\delta)^1 \cdot 1^3 + \sum_{\substack{S \subset [n] \\ S \neq \{j\}}} (1 - 2\delta)^{|S|} \cdot 0^3 \right)$$

$$= \frac{1}{2} + \frac{1}{2} (1 - 2\delta) = 1 - \delta.$$

(c) Collaborators and sources: none.

Proof. Let $f: \{\pm 1\}^n \to \{\pm 1\}$ be such that f passes with probability at least $1 - \varepsilon$ for some $\varepsilon \in (0, 1/2)$. By part (a),

$$1 - \varepsilon \le \mathbb{P}[\text{test accepts}] = \frac{1}{2} + \frac{1}{2} \sum_{S \subset [n]} (1 - 2\delta)^{|S|} \hat{f}(S)^3.$$

Rearranging the above inequality and applying Parseval's identity yield

$$1 - 2\varepsilon \le \sum_{S \subset [n]} (1 - 2\delta)^{|S|} \hat{f}(S)^3 \le \left(\max_{S \subset [n]} (1 - 2\delta)^{|S|} \hat{f}(S) \right) \sum_{S \subset [n]} \hat{f}(S)^2$$
$$= \left(\max_{S \subset [n]} (1 - 2\delta)^{|S|} \hat{f}(S) \right) \cdot 1 = \max_{S \subset [n]} (1 - 2\delta)^{|S|} \hat{f}(S).$$

Hence, there exists $S \subset [n]$ such that $(1-2\delta)^{|S|} \hat{f}(S) \geq 1-2\varepsilon$. Set $\delta = \varepsilon$ in the test. Then $(1-2\varepsilon)^{|S|} \hat{f}(S) \geq 1-2\varepsilon$. Since $\varepsilon \in (0,1/2)$, then $1-2\varepsilon \in (0,1)$, so $(1-2\varepsilon)^{|S|} \in (0,1]$. Therefore,

$$\hat{f}(S) \ge \frac{1 - 2\varepsilon}{(1 - 2\varepsilon)^{|S|}} \ge \frac{1 - 2\varepsilon}{1} = 1 - 2\varepsilon.$$

(d) Collaborators and sources: none.

By part (c), if f passes with probability at least $1 - \varepsilon$ for some $\varepsilon \in (0, 1/2)$, then there exists $S \subset [n]$ such that $(1 - 2\varepsilon)^{|S|} \hat{f}(S) \geq 1 - 2\varepsilon$ by setting $\delta = \varepsilon$ in the test. Since $\operatorname{dist}(f, \chi_S) \in [0, 1]$, then $\hat{f}(S) = 1 - 2\operatorname{dist}(f, \chi_S) \in [-1, 1]$. Since $\varepsilon \in (0, 1/2)$, then $1 - 2\varepsilon \in (0, 1)$. If $|S| \geq 2$, then $0 < (1 - 2\varepsilon)^{|S|} < 1 - 2\varepsilon$, so $(1 - 2\varepsilon)^{|S|} \hat{f}(S) < 1 - 2\varepsilon$, a contradiction. Therefore, one of the following two cases holds:

- (i) |S| = 1 and $\hat{f}(S) = 1$ (so dist $(f, \chi_S) = 0$, and $f = \chi_S$ is a dictator function);
- (ii) |S| = 0 and $\hat{f}(S) \ge 1 2\varepsilon$ (so dist $(f, \chi_{\emptyset}) \le \varepsilon$).

Hence, if f is ε -close to $\chi_{\emptyset} \equiv 1$ (a non-dictator function), then f also passes with probability at least $1 - \varepsilon$.

Note that for any dictator function, say $\chi_{\{j\}}$ for some $j \in [n]$,

$$\mathbb{P}_{x \in \{\pm 1\}^n} \left[\chi_{\{j\}}(x) = 0 \right] = \mathbb{P}_{x \in \{\pm 1\}^n} \left[x_j = 0 \right] = \frac{\left| \{ x \in \{\pm 1\}^n : x_j = 0 \} \right|}{2^n} = \frac{2^{n-1}}{2^n} = \frac{1}{2}.$$

In other words, any dictator function equals 0 for half of the inputs, and 1 for the other half. We give a simple fix to the test by applying the following new test before the original test. For any sufficiently small $\eta > 0$, we independently and uniformly sample $\Theta(\log(1/\eta))$ random inputs from $\{\pm 1\}^n$, and reject if and only if more than 3/4 of the values are 1. If f is ε -close to $\chi_{\emptyset} \equiv 1$ for some $\varepsilon \in (0, 1/8)$, then by the Chernoff bound,

$$\mathbb{P}[\text{new test rejects } f] = 1 - \mathbb{P}[\le 3/4 \text{ of the values are } 1] \ge 1 - e^{-\Theta(\log(1/\eta))} = 1 - \Theta(\eta).$$

On the other hand, if f is a dictator function, then by the Chernoff bound,

$$\mathbb{P}[\text{new test accepts } f] = 1 - \mathbb{P}[>3/4 \text{ of the values are } 1] \ge 1 - e^{-\Theta(\log(1/\eta))} = 1 - \Theta(\eta).$$

Hence, if f passes the combination of the new test and the original test with probability at least $1 - \varepsilon$ and with $\delta = \varepsilon$ in the original test for some sufficiently small $\varepsilon > 0$, then f is a dictator function with probability at least $1 - \Theta(\eta)$; on the other hand, if f is a dictator function, then the union bound implies that f passes the combined test with probability at least $1 - \Theta(\eta) - \delta$. This shows that the combined test is a dictator test.

3. Collaborators and sources: Guanghao Ye.

Proof. Let \mathcal{A} be a PAC learning algorithm for a class C that runs in poly $(\log n, 1/\varepsilon, 1/\delta)$ time. We denote by $\operatorname{error}_{\mathcal{D}}(h) = \mathbb{P}_{x \sim \mathcal{D}}[h(x) \neq f(x)]$ the error of a hypothesis h with respect to f with inputs drawn from distribution \mathcal{D} . We denote by $\operatorname{error}_{S}(h) = |\{x \in S : h(x) \neq f(x)\}|/|S|$ the error of h in the sample set S. We give a PAC learning algorithm in Algorithm 1 with running time poly $(\log n, 1/\varepsilon, \log(1/\delta))$. Let \mathcal{D} be the distribution of inputs.

```
1 \ell \leftarrow \lceil \log_2(3/\delta) \rceil

2 foreach i \leftarrow 1, \dots, \ell do

3 run \mathcal{A} with accuracy \varepsilon/2 and confidence 1/2, obtaining a hypothesis h_i

4 m \leftarrow \lceil (12/\varepsilon^2) \log(6\ell/\delta) \rceil

5 foreach j \leftarrow 1, \dots, m do

6 draw x_j \sim \mathcal{D}

7 S \leftarrow \{x_1, \dots, x_m\}

8 i^* \leftarrow \arg\min_{i \in [\ell]} (\operatorname{error}_S(h_i))

9 return h_{i^*}
```

Algorithm 1: A PAC learning algorithm with running time poly(log $n, 1/\varepsilon, \log(1/\delta)$), given accuracy $\varepsilon > 0$ and confidence $\delta > 0$.

Since each call to \mathcal{A} runs in poly(log $n, 1/\varepsilon$) time, then the running time of Algorithm 1 is

$$O\left(\log\frac{1}{\delta}\right)\operatorname{poly}\left(\log n, \frac{1}{\varepsilon}\right) + O\left(\frac{1}{\varepsilon^2}\log\frac{\log\frac{1}{\delta}}{\delta}\right) = \operatorname{poly}\left(\log n, \frac{1}{\varepsilon}, \log\frac{1}{\delta}\right).$$

First, since $\mathbb{P}[\operatorname{error}_{\mathcal{D}}(h_i) \leq \varepsilon/2] \geq 1 - 1/2 = 1/2$ for each $i \in [\ell]$, then

$$\mathbb{P}\left[\exists i \in [\ell], \operatorname{error}_{\mathcal{D}}(h_i) \leq \varepsilon/2\right] \geq 1 - \left(1 - \frac{1}{2}\right)^{\ell} = 1 - \left(\frac{1}{2}\right)^{\lceil \log_2\left(\frac{3}{\delta}\right) \rceil} \geq 1 - \left(\frac{1}{2}\right)^{\log_2\left(\frac{3}{\delta}\right)} = 1 - \frac{\delta}{3}.$$

Second,

$$\mathbb{P}\left[|\operatorname{error}_{\mathcal{D}}(h_{i}) - \operatorname{error}_{S}(h_{i})| < \frac{\varepsilon}{4} \,\forall i \in [\ell]\right] \\
= 1 - \mathbb{P}\left[\exists i \in [\ell], |\operatorname{error}_{\mathcal{D}}(h_{i}) - \operatorname{error}_{S}(h_{i})| \ge \frac{\varepsilon}{4}\right] \\
\ge 1 - \sum_{i=1}^{\ell} \mathbb{P}\left[|\operatorname{error}_{\mathcal{D}}(h_{i}) - \operatorname{error}_{S}(h_{i})| \ge \frac{\varepsilon}{4}\right] \qquad \text{(union bound)} \\
= 1 - \sum_{i=1}^{\ell} \mathbb{P}\left[|\operatorname{error}_{\mathcal{D}}(h_{i}) - \operatorname{error}_{S}(h_{i})| \ge \frac{\varepsilon}{4 \operatorname{error}_{\mathcal{D}}(h_{i})} \cdot \operatorname{error}_{\mathcal{D}}(h_{i})\right] \\
\ge 1 - \sum_{i=1}^{\ell} 2 \exp\left(-\frac{1}{3}m \operatorname{error}_{\mathcal{D}}(h_{i}) \cdot \left(\frac{\varepsilon}{4 \operatorname{error}_{\mathcal{D}}(h_{i})}\right)^{2}\right) \qquad \text{(Chernoff bound)} \\
= 1 - \sum_{i=1}^{\ell} 2 \exp\left(-\frac{m\varepsilon^{2}}{12 \operatorname{error}_{\mathcal{D}}(h_{i})}\right)$$

$$\geq 1 - \ell \cdot 2 \exp\left(-\frac{\left\lceil \frac{12}{\varepsilon^2} \log \frac{6\ell}{\delta} \right\rceil \cdot \varepsilon^2}{12 \cdot 1}\right)$$

$$\geq 1 - 2\ell \exp\left(-\frac{\frac{12}{\varepsilon^2} \log \frac{6\ell}{\delta} \cdot \varepsilon^2}{12}\right)$$

$$= 1 - 2\ell \exp\left(-\log \frac{6\ell}{\delta}\right)$$

$$= 1 - 2\ell \cdot \frac{\delta}{6\ell}$$

$$= 1 - \frac{\delta}{3}.$$

Since i^* minimizes $\operatorname{error}_S(h_i)$ over $i \in [\ell]$, then by the union bound,

$$\mathbb{P}\left[\operatorname{error}_{S}\left(h_{i^{*}}\right) < \frac{3\varepsilon}{4}\right] \geq \mathbb{P}\left[\exists i \in [\ell], \operatorname{error}_{S}\left(h_{i}\right) < \frac{3\varepsilon}{4}\right]$$

$$\geq \mathbb{P}\left[\left(\left|\operatorname{error}_{\mathcal{D}}\left(h_{i}\right) - \operatorname{error}_{S}\left(h_{i}\right)\right| < \frac{\varepsilon}{4} \ \forall i \in [\ell]\right) \land \left(\exists i \in [\ell], \operatorname{error}_{\mathcal{D}}\left(h_{i}\right) \leq \frac{\varepsilon}{2}\right)\right]$$

$$\geq 1 - \left(\frac{\delta}{3} + \frac{\delta}{3}\right)$$

$$= 1 - \frac{2\delta}{3}.$$

By the union bound again,

$$\mathbb{P}\left[\operatorname{error}_{\mathcal{D}}\left(h_{i^{*}}\right) < \varepsilon\right] \geq \mathbb{P}\left[\left(\left|\operatorname{error}_{\mathcal{D}}\left(h_{i}\right) - \operatorname{error}_{S}\left(h_{i}\right)\right| < \frac{\varepsilon}{4} \ \forall i \in [\ell]\right) \wedge \left(\operatorname{error}_{S}\left(h_{i^{*}}\right) < \frac{3\varepsilon}{4}\right)\right]$$

$$\geq 1 - \left(\frac{\delta}{3} + \frac{2\delta}{3}\right)$$

$$= 1 - \delta.$$

4. (a) Collaborators and sources: Guanghao Ye.

First, we give an algorithm in Algorithm 2 which, given a set S of samples, finds a consistent decision list h such that h(x) = f(x) for all $x \in S$.

```
1 h \leftarrow empty decision list
2 repeat
3 foreach literal \ell (i.e., a variable or its negation) do
4 S' \leftarrow \{x \in S : \ell(x) = f(x)\}
5 if there exists b \in \{0, 1\} such that f(x) = b for all x \in S' then
6 append to h a decision "if \ell(x) then output b"
7 S \leftarrow S \setminus S'
8 break
9 until S \neq \emptyset
10 return h
```

Algorithm 2: An algorithm which, given a set S of samples, finds a consistent decision list h such that h(x) = f(x) for all $x \in S$.

We show that Algorithm 2 is correct. Consider an iteration of the **repeat** loop, with set S_0 of remaining samples. Then $S_0 \neq \emptyset$. It suffices to show that there exist a literal ℓ and $b \in \{0,1\}$ such that $S' \neq \emptyset$ and f(x) = b for all $x \in S'$, where $S' = \{x \in S_0 : \ell(x) = f(x)\}$. Since f is a decision list, let "if $\ell^*(x)$ then output b^* " be the first decision in f that has not been added to h so far. Let S_0^* be the set of samples that are not output by decisions prior to ℓ^* in f. Let S^* be the set of samples output by decision "if $\ell^*(x)$ then output b^* " in f. Then $S^* = \{x \in S_0^* : \ell^*(x) = f(x)\}$ and $f(x) = b^*$ for all $x \in S^*$. Let $S' = \{x \in S_0 : \ell^*(x) = f(x)\}$. Since all decisions prior to ℓ^* in f has been added to h, then $S_0 \subset S_0^*$, so $S' \subset S^*$. Therefore, $f(x) = b^*$ for all $x \in S'$. If $S' \neq \emptyset$, then we are done. Otherwise, we run the same argument for the next decision in f, until we find a decision in f for which $S' \neq \emptyset$. We claim that this is possible. To see this, since $\emptyset \neq S_0 \subset S_0^*$, then there exists a decision after literal ℓ^* in f for which $S' \neq \emptyset$. This completes the proof.

Second, we show that $|S| = \ln(n!4^n)$ is necessary to ensure (ε, δ) PAC learning. To see this, we claim that each variable appears at most once in a decision list. Suppose that variable x_i first appears in a decision list f as literal ℓ . Let S_0 be the set of points $\{0,1\}^n$ that remain after this decision. Then $\ell(x) \neq f(x)$ for all $x \in S_0$. This shows that literal ℓ need not appear in h again. Moreover, $\neg \ell(x) = f(x)$ for all $x \in S_0$. At any point after literal ℓ in f, if we were to add literal $\neg \ell$, then there would exist $b \in \{0,1\}$ such that f(x) = b for all remaining x such that $\neg f(x) = f(x)$; since $\neg \ell(x) = f(x)$ for all remaining x, then we can simply end the decision list. Therefore, if $|S| < \ln(n!4^n)$, then we can possibly output wrong answers for 2^{n-1} points.

5. Collaborators and sources: Guanghao Ye.

Proof. We apply Occam's Razor; i.e., we give Algorithm 3.

1 draw $M=(1/\varepsilon)(\ln |\mathcal{C}|+\ln(1/\delta))$ samples from $\{0,1\}^n$, where \mathcal{C} is the set of all decision lists 2 run Algorithm 2 to find a consistent decision list h such that h(x)=f(x) for all $x\in S$ 3 return h

Algorithm 3: An algorithm which finds a decision list h such that $\mathbb{P}_{x \sim \mathcal{D}}[f(x) \neq h(x)] < \varepsilon$ with probability at least $1 - \delta$.

First, we claim that each variable appears at most once in a decision list. Suppose that variable x_i first appears in a decision list f as literal ℓ . Let S_0 be the set of points $\{0,1\}^n$ that remain after this decision. Then $\ell(x) \neq f(x)$ for all $x \in S_0$. This shows that literal ℓ need not appear in h again. Moreover, $\neg \ell(x) = f(x)$ for all $x \in S_0$. At any point after literal ℓ in f, if we were to add literal $\neg \ell$, then there would exist $b \in \{0,1\}$ such that f(x) = b for all remaining x such that $\neg f(x) = f(x)$; since $\neg \ell(x) = f(x)$ for all remaining x, then we can simply end the decision list.

Therefore,

$$|\mathcal{C}| = \sum_{k=1}^{n} k! 2^k 2^k \le n \cdot n! 4^n \le n \cdot n^n 4^n = n^{n+1} 4^n.$$

It follows that

$$M = \frac{1}{\varepsilon} \left(\ln |\mathcal{C}| + \ln \frac{1}{\delta} \right) \le \frac{1}{\varepsilon} \left(\ln \left(n^{n+1} 4^n \right) + \ln \frac{1}{\delta} \right) = O\left(\frac{1}{\varepsilon} \left(n \log n + \log \frac{1}{\delta} \right) \right).$$

It is easy to see that Algorithm 3 runs in $O(|S| \cdot 2n \cdot n) = O(Mn^2) = O((n^2/\varepsilon)(n \log n + \log(1/\delta)))$ time, which is polynomial in n, $1/\varepsilon$ and $\log(1/\delta)$.

By Occam's Razor, the probability that any decision list h such that $\mathbb{P}_{x \in \mathcal{D}}[f(x) \neq h(x)] \geq \varepsilon$ is consistent with the samples with probability at most δ . This completes the proof.