Math for CS 2015/2019 solutions to "In-Class Problems Week 14, Wed. (Session 35)"

https://github.com/spamegg1

November 25, 2022

Contents

1	Problem 1
	1 (a)
	12 (b)
	3 (c)
	1.4 (d)
	6.5 (e)
	6 (f)
	7 (g)
2	Problem 2
3	Problem 3
	8.1 (a)
	3.2 (b)

1 Problem 1

1.1 (a)

Figure 1

Find a stationary distribution for the random walk graph in Figure 1.

Proof.
$$d(x) = d(y) = 1/2$$

1.2 (b)

Explain why a long random walk starting at node x in Figure 1 will not converge to a stationary distribution. Characterize which starting distributions will converge to the stationary one.

Proof. It won't converge to a stationary distribution, because you just alternate between nodes x and y.

1.3 (c)

Find a stationary distribution for the random walk graph in this figure.

Proof.
$$d(w) = 9/19, d(z) = 10/19.$$

You can derive this by setting

$$d(w) = (9/10)d(z),$$

$$d(z) = d(w) + (1/10)d(z)$$
, and

$$d(w) + d(z) = 1.$$

There is a unique solution.

1.4 (d)

If you start at node w above and take a (long) random walk, does the distribution over nodes ever get close to the stationary distribution? You needn't prove anything here, just write out a few steps and see what's happening.

Proof. Yes, it does. \Box

1.5 (e)

Explain why the random walk graph in this figure has an uncountable number of stationary distributions.

Proof. For any real number
$$0 there is a stationary distribution: $d(b) = d(c) = 0$, $d(a) = p$, $d(d) = 1 - p$.$$

1.6 (f)

If you start at node b in the last figure and take a long random walk, the probability you are at node d will be close to what fraction? Explain.

Proof.
$$1/3$$
.

1.7 (g)

Give an example of a random walk graph that is not strongly connected but has a unique stationary distribution. Hint: There is a trivial example.

Proof. Consider this graph. It's not strongly connected (there is no directed path between y and z).

To solve for the stationary distribution, we have the equations:

$$x = x \cdot 1$$

$$y = (1/2) \cdot y$$

$$z = (1/2) \cdot z$$

The last two equations force y=z=0, which forces x=1. This is a unique solution, so it's a unique stationary distribution.

2 Problem 2

Prove that for finite random walk graphs, the uniform distribution is stationary iff the probabilities of the edges coming into each vertex always sum to 1, namely

$$\sum_{u \in \mathrm{into}(v)} p(u,v) = 1$$

where into(w) ::= { $v \mid \langle v \to w \rangle$ is an edge}.

Proof. 1. Assume G is a finite random walk graph with vertex set $V = \{v_1, \dots, v_n\}$.

- 2. Assume the uniform distribution $\Pr[\text{at } v_i] = \frac{1}{n}$ on G is stationary. Want to prove $\sum_{u \in \text{into}(v_i)} p(u, v_i) = 1 \text{ for all } 1 \leq i \leq n.$
- 3. Since the distribution is stationary, $\Pr[\text{at } v_i] = \Pr[\text{go to } v_i \text{ at next step}]$. So by (2) we have $\frac{1}{n} = \Pr[\text{go to } v_i \text{ at next step}]$.
- 4. Notice that by definition, $\Pr[\text{go to } v_i \text{ at next step}] = \sum_{u \in \text{into}(v_i)} (p(u, v_i) \cdot \Pr[\text{at } u])$. So

we have
$$\frac{1}{n} = \sum_{u \in \text{into}(v_i)} (p(u, v_i) \cdot Pr[\text{at } u])$$
 by (3).

- 5. Again, since the distribution is stationary, $\Pr[\text{at } u] = \frac{1}{n}$ for all $u \in \text{into}(v_i)$ and all $1 \leq i \leq n$.
- 6. Combining 4,5 we get $\frac{1}{n} = \sum_{u \in \text{into}(v_i)} (p(u, v_i) \cdot Pr[\text{at } u]) = \frac{1}{n} \cdot \sum_{u \in \text{into}(v_i)} p(u, v_i).$
- 7. Cancelling 1/n we get $\sum_{u \in \text{into}(v_i)} p(u, v_i) = 1$.
- 8. Conversely, assume $\sum_{u \in \text{into}(v_i)} p(u, v_i) = 1$ for all $1 \leq i \leq n$. Want to prove that the uniform distribution $\Pr[\text{at } v_i] = \frac{1}{n}$ on G is stationary. The proof is very similar to the above steps.

3 Problem 3

A Google-graph is a random-walk graph such that every edge leaving any given vertex has the same probability. That is, the probability of each edge $\langle v \to w \rangle$ is 1/outdeg(v).

A digraph is symmetric if, whenever $\langle v \to w \rangle$ is an edge, so is $\langle w \to v \rangle$. Given any finite, symmetric Google-graph, let d(v) := outdeg(v)/e where e is the total number of edges in the graph.

3.1 (a)

If d was used for webpage ranking, how could you hack this to give your page a high rank? ...and explain informally why this wouldn't work for "real" page rank using digraphs?

3.2 (b)

Show that d is a stationary distribution.

- *Proof.* 1. Assume there are e edges in total in the graph G. We need to show for evert vertex v: $Pr[at \ v] = Pr[go \ to \ v \ at \ next \ step]$. Assume v is a vertex in G.
- 2. By the definition of our distribution we have $\Pr[\text{at } x] = d(x) = \text{outdeg}(x)/e$ for all vertices x. In particular $\Pr[\text{at } v] = d(v) = \text{outdeg}(v)/e$.
- 3. Since G is symmetric, $\operatorname{outdeg}(x) = \operatorname{indeg}(x)$ for all vertices x. So in particular, $\Pr[\operatorname{at} v] = \operatorname{indeg}(v)/e$.
- 4. Also remember that by definition of a Google-graph we have p(u, v) = 1/outdeg(u) for all other vertices u.
- 5. Then by (2), (3), (4), Pr[go to v at next step] is equal to:

$$\sum_{u \in \text{into}(v)} Pr[\text{at } u] \cdot p(u, v) = \sum_{u \in \text{into}(v)} \frac{\text{outdeg}(u)}{e} \cdot \frac{1}{\text{outdeg}(u)} = \frac{|\text{into}(v)|}{e} = \frac{|\text{into}(v)|}{e}$$

6. By (3) and (5) we see that $\Pr[\text{at } v] = \text{indeg}(v)/e = \Pr[\text{go to } v \text{ at next step}]$. So d is a stationary distribution.