A non-communicating calculator is allowed. Full credit will only be given if all steps used are clearly communicated (free body diagrams, algebra, etc).

- 1. What are the coordinates of the centroid of the I-beam section shown?
- 2. Say we wanted to use the method of composite parts to confirm our answer. Finish the table below calculate the I-beam centroid.

Component	A_i	\bar{x}_i	\bar{y}_i	$\bar{x}_i A_i$	$\bar{y}_i A_i$
Top Rectangle	$\frac{7cm^2}{5 cm^2}$	3,5cm	6.5 cm	24.5	45.5
Center Rectangle	$5 cm^2$	3.5 cm	3,50		17.5
Bottom Rectangle	Femi	$3.5~\mathrm{cm}$	$0.5~\mathrm{cm}$	24.5	3.5
TOTALS:	$\sum A_i =$			$\sum \bar{x}_i A_i =$	$\sum \bar{y}_i A_i =$
	19 cm2			66.5	66.5

•
$$\bar{x} = \frac{\sum \bar{x}_i A_i}{\sum A_i} = \frac{66.5}{19} = 3.5 \text{cm}$$
• $\bar{y} = \frac{\sum \bar{y}_i A_i}{\sum A_i} = 3.5 \text{cm}$

$$\bullet$$
 $\bar{y} = \frac{\sum \bar{y}_i A_i}{\sum A_i} = 3.6$ cm

