PROBLEM AND CLIENT

BARANGAY SACRED HEART AND ANIMAL POUND

Ms. Francesca Camille Malig-David **Barangay Chairman**

Problem/s Encountered by the Client

Limitation of accurately determining the location of roaming stray animal and community animal control using traditional reporting such as **text messages**, **phone** calls, and rotation of animal control team.

Detailed Research and Statistics

The Philippines faces a significant public health issue with 12 million stray animals contributing to rabies transmission and other health risks (DOH 2024).

DESIGN OF STRAY DETECTION FOR SMART BARANGAY ANIMAL CONTROL USING DEEP LEARNING

Engr. Roman Richard
Team Adviser

MACAN, John Christian
System
Administration

CRUZ, Daniel
System
Administration

TEAM LEADER
CUEVAS, Christian Jay
Intellegent
System

DELA CRUZ, Alexander

Data Science

FLORES, Justine System Administration

PROJECT OBJECTIVES

- Design of a system that:
 - Detects animals such as Dogs and Cats.
 - Classify them if stray or not stray based on collar or leash.
 - Pins the location of the detected stray animals on a map and notifies the animal pound.
- Develop a web and mobile based system that displays the detected stray
- Test and evaluate the accuracy of the system.

CONSTRAINTS

SAFETY

PRECISION

EFFICIENCY

STORAGE CONSUMPTION

PERFORMANCE

INFERENCE TIME

MANUFACTURABILITY

TRAINNG TIME

COMPATIBILITY

MAINTAINABILITY INDEX SCORE

GENERAL SYSTEM ARCHITECTURE

DESIGN RATIONALE

TRADE-OFFS ANALYSIS (RAW VALUES)

CONSTRAINTS	PREFERENCE	IMPORTANCE (RAW)	IMPORTANCE (%)	DESIGN 1	DESIGN 2	DESIGN 3
SAFETY (precision)	MAXIMIZATION	10	25.00%	96%	91.70%	95.43%
EFFICIENCY (storage consumption)	MINIMIZATION	8	20.00%	64,601 KB	50,796 KB	133.491 KB
PERFORMANCE (inference time)	MINIMIZATION	9	22.50%	28.21 ms	12.51 ms	15.7 ms
MANUFACTURABILITY (training time)	MINIMIZATION	7	17.50%	13.119 hrs	8.7 hrs	1.12 hrs
COMPATIBILITY (maintainability index score)	MAXIMIZATION	6	15.50%	60.23	59.33	55.18

TRADE-OFFS ANALYSIS (NORMALIZED VALUES)

DESIGNS	CONSTRAINTS						
	Safety (Precision)	Efficiency (Storage Consumption)	Performance (Inference Time)	Manufacturability (Training Time)	Compatibility (Maintainability Index)		
Design 1: Real- Time Detection Transformer	10.0000	8.4976	1.0000	1.0000	10.0000		
Design 2: YOLOv8	1.0000	10.0000	10.000	4.3145	8.3960		
Design 3: RTMDet	8.8041	1.0000	8.035	10.000	1.000		

SENSITIVITY ANALYSIS

The result indicates that design 2 (YOLOv8) is the most effective and winning design.

IMPLEMENTATION PLAN & TIMELINE

AND THAT'S AND WRAP!

THANK YOU