

CS 275 – Introduction to Databases

Week 1 - Overview of Databases

An Overview of Databases

- A database is a structured collection of related meaningful data
- Structured
 - There is some relationship and organization within the pieces of data
 - It is not simply a collection of related data
- Related
 - A database does not just collect data about everything
 - Data models some real world thing (your book calls it a miniworld or universe of discourse.
- · Meaningful data
 - The data represents some aspect of the miniworld

Examples of Databases

- · A grocery store
 - Data
 - · Possible inventory
 - Current stock
 - Employees
 - Departments
 - Structure
 - Current stock must come from possible inventory
 - Employees maintain department
 - ...
 - MiniworldThe stuff in a grocery store

OSU Oregon State

Another example

- Bank
 - Data
 - Customers
 - Accounts
 - Employees
 - Rates
 - Structure
 - Customers have accounts
 - · Accounts have interest rates
 - Employees contact customers
 - Miniworld
 - · The bank and related outside information

What may not be a database

- · A pile of hard drives
 - They have data, but may not have meaning
 - There is no structure to the data that we know
 - The data is not confined to describing a specific miniworld

What do we do with a database?

- There are many kinds of databases
 - Static geographic data in a hiking GPS
 - Dynamic data in an Excel spreadsheet that I use for grades
 - Dynamic data in a website like Amazon.com
- These are three examples, this class focuses on the latter example

OSU Oregon State

Introducing the DBMS

- A DataBase Management System (DBMS) is a tool for accessing a database
- Provides
 - Redundancy control
 - Access control
 - Persistent storage
 - Querying system
 - Backup
 - Concurrent access
 - Enforcing constraints

ľ	Ī	ļ	١	l	
	Dre fate	90	ıS	b	te:

The downsides to the DBMS

- DBMS gives us a lot but there are costs
 - Overhead
 - Complexity
- When not to use a DBMS?
 - Embedded system with little memory
 - Static data
 - Single user

Who works with the database?

- Admins Control user access, manage backups, work with physical hardware
- Designers Create schemas
- Application developers Write queries that work directly with the data
- End users Generally work though an application to view and modify data

OSU Oregon State

Who to think about

- · Focus on the application developer
 - Design your data so it makes sense to them
 - Consider the types of queries they will want to run
- Then focus on the end user
 - Make sure that all the data they want actually exists
 - Make sure the database is the best tool to meet their needs

OSU Oregon State

Layers of Abstraction

- People like to talk about layers
- · External layer
 - For end user
 - Data must make sense
- Conceptual level
 - How the data is organized for the database designer
 - Diagrams and schemas are used here
- Internal level
 - Mappings to the actual data on the physical storage media

Data Independence

- · Logical data independence
 - The idea that changes at the conceptual level should not break the external level
 - Adding data types should not break external level
 - Removing or changing usually will break the external level
- · Physical data independence
 - Falling back to a backup hard drive should not break the conceptual level
 - Usually handled well by the DBMS