NAME	:	
Maxim	num Time: 15 minutes Maximum M	l arks: 30 pts
1.	[1 pt.] Consider the line $Y = X - 3$, does the point (0, 3) lies on the line.	[Yes / <u>No</u>
2.	[2 pts.] Consider the line Y = 2 * X + 7, slope of the line is2 and y-intercept is	7
3.	[2 pts.] Consider the line Y = 2 * X + 7, x-intercept of the line is7/2	
4.	[2 pts.] Consider the line Y = 3 * X – 5, a point (0,5) lies on this line.	
5.	[3 pts.] Consider two lines L_1 and L_2 represented by equations $Y = 2 X + 4$ and $Y = X + 2$ respecti	ively. The
	point of intersection of these two lines is (2,0).	
6.	[3 pts.] Consider a point P_1 (2, 5). The equation of the line which pass through points P_1 and has slope -2 is $y = -2 \times +9$.	
7.	[3 pts.] Consider two points P_1 (2, 5) and P_2 (1, 3). The equation of the line which pass through points P_1 and	
	P_2 isy = 2 x + 1	
8.	[2 pts.] Derivative of y in equation $y = 3x^2 - 5x + 2$ with respect to x is6 x - 5	
9.	[2 pts.] Partial derivatives of z in equation $z = 5 x^3 - 3 y^2 - 11$ with respect to x and y would be15 x^2	
	and 6 y	
10.	[2 pts.] Partial derivatives of z in equation $z = 5 x^3 * 3 y^2 - 2 x^2 + 5 y^3 + 9$ with respect to x and y	would be
11	$45 \times 2 \times 2 - 4 \times$ and $30 \times 3 \times 15 \times 2$	• /
11.	[2 pts.]In matrix algebra for two matrix A and B which qualify for multiplication, the expression	1 (A X B) = A
	x B ^T where A ^T is transpose of the matrix A is [True	e / <u>False</u>]
12.	[2 pts.] In matrix calculus for matrix \widetilde{X} and vector $\overrightarrow{\hat{w}}$, the following partial derivative will result	into
	$\frac{\partial}{\partial \hat{\mathbf{w}}} \tilde{X} \stackrel{\overrightarrow{\mathbf{w}}}{=} \underline{\tilde{X}'}$	
13.	[2 pts.] In matrix calculus for matrix \widetilde{X} , vector $\overrightarrow{\hat{w}}$ and transpose of $\overrightarrow{\hat{w}}$ represented as $\overrightarrow{\hat{w}}'$, the fo	llowing
	partial derivative will result into $\frac{\partial}{\partial \vec{\hat{w}}} \vec{\hat{w}}' \tilde{X} = \underline{\tilde{X}}$	
14	[2 pts.] In matrix calculus for matrix \widetilde{X} , vector $\overrightarrow{\hat{w}}$ and transpose of $\overrightarrow{\hat{w}}$ represented as $\overrightarrow{\hat{w}}'$, the fo	llowing

partial derivative will result into $\frac{\partial}{\partial \hat{\vec{w}}} \vec{\hat{w}}' \tilde{X} \vec{\hat{w}} = \underline{\tilde{X}} \vec{\hat{w}} + \tilde{X}' \vec{\hat{w}}$