Método Guloso

Notas de aula da disciplina IME 04-10823 ALGORITMOS E ESTRUTURAS DE DADOS II

> Paulo Eustáquio Duarte Pinto (pauloedp arroba ime.uerj.br)

> > junho/2012

Troco mínimo

"Dados os tipos de moedas de um país, determinar o número mínimo de moedas para dar um troco de valor n."

Exemplo: $M = \{1, 5, 10, 25, 50, 100\}$ n = 37

O número mínimo de moedas é 4:

T(37) = 1 + T(37 - 25) = 1 + 1 + T(12 - 10) =2 + 1 + T(2 - 1) = 3 + T(1) = 4

Basta, a cada passo, usar a moeda de maior valor possível.

Troco mínimo

Mas...

nem sempre essa estratégia funciona!

Exemplo: $M = \{1, 5, 12, 24, 50, 100\}$ n = 20

Usando a estratégia anterior:

$$T(20) = 1 + T(20 - 12) = 1 + 1 + T(8 - 5) = 2 + 1 + T(3 - 1) = 3 + 1 + T(2 - 1) = 4 + T(1) = 5$$

O resultado é ERRADO, pois é possível dar um troco usando 4 moedas de 5.

Troco mínimo

Quando o método guloso funciona, o algoritmo é, em geral, eficiente.

Figurativamente, a solução gulosa consiste em, a cada passo, escolher o melhor pedaço possível e não se arrepender.

Para saber se o guloso funciona, é necessário PROVAR que o algoritmo resolve o problema.

Porque o método funciona com as moedas brasileiras?

M = {1, 5, 10, 25, 50, 100}
1. A tabela abaixo mostra o máximo de moedas de cada tipo usado em um troco mínimo, pois, para cada aumento nesses valores, existe outra opção com menos moedas. Adicionalmente, não se pode usar simultâneamente 2 moedas de 10 e 1 de 5.

1(1)	2(5)	3(10)	4(25)	5(50)	6(100)
4	1	2	1	1	∞

- 2. O valor máximo conseguido com as moedas tipos 1 a 5 é 99. Logo, qualquer troco x > 99 usa tantas moedas de 100 quanto necessário, transformando o problema para um troco y = x - 100*[x/100] < 100.
- 3. O valor máximo conseguido com as moedas tipos 1 a 4 é 49. Logo, qualquer troco \times , 100 > \times > 49, usa 1 moeda de 50, transformando o problema para um troco y = x - 50 < 50.

Porque o método funciona com as moedas brasileiras?

 $M = \{1, 5, 10, 25, 50, 100\}$

- O valor máximo conseguido com as moedas tipos 1 a 3 é 24. Logo, qualquer troco x, 50 > x > 24, usa 1 moeda de 25, transformando o problema para um troco y = x - 25 < 25.
- 5. O valor máximo conseguido com as moedas tipos 1 e 2 é 9. Logo, qualquer troco \times , $25 > \times > 9$, usa 1 ou 2 moedas de 10, transformando o problema para um troco $y = \times -10^* \lfloor \times/10 \rfloor < 10$.
- 6. O valor máximo conseguido com as moedas do tipo 1 é 4. Logo, todo valor \times , 10 > \times > 4 usa 1 moeda de 5.

Conclusão: o troco mínimo obtido pelas considerações anteriores é exatamente aquele obtifo vom o algoritmo guloso. Logo, o método guloso funciona corretamente para esse conjunto de moedas.

Troco mínimo - Conjunto Guloso de Moedas

Teorema 1: (Cowen, Cowen & Steinberg)

"Suponha que $C_1=\{a_1,\ a_2,\ \ldots a_k\}$ seja um conjunto de moedas guloso e seja $C_2=\{a_1,\ a_2,\ \ldots a_k,\ a_{k+1}\}$ e m = $\lceil a_{k+1}/a_k\rceil$. Então C_2 é guloso sse $G(C_2,m,a_k)$ \leq m".

Obs:

- 1) G(C,m) é o número mínimo de moedas para um troco n, usando C .
- 2) O conjunto $C_1 = \{1\}$ é guloso, pois só gera uma solução.

```
3) Os demais conjuntos são gulosos, pois:

C_2 = \{1,5\} \text{ m} = 5 \text{ e } G(C_2,5) = 1 \text{ ≤ 5}.

C_3 = \{1,5,10\} \text{ m} = 2 \text{ e } G(C_3,10) = 1 \text{ ≤ 2}.

C_4 = \{1,5,10,25\} \text{ m} = 3 \text{ e } G(C_4,30) = 2 \text{ ≤ 3}.
        C_5 = \{1,5,10,25,50\}, m = 2 \in G(C_5,50) = 1 \le 2.
        C_6 = \{1, 5, 10, 25, 50, 100\}, m = 2 e G(C_6, 100) = 1 \le 2.
```


Compactação de Dados: Huffman(1952)

O objetivo da compactação de dados é diminuir o tamanho de uma mensagem codificada.

Normalmente os métodos de compactação de dados usam códigos de tamanho variável, para atribuir códigos pequenos para símbolos frequentes e códigos maiores para símbolos raros.

A vantagem de um código prefixos é que não existe ambiguidade na decodificação de dados.

Compactação de Dados: Huffman

O código de Huffman é um código ótimo de prefixos de tamanho variável, que utiliza uma árvore na criação do código e na decodificação.

Ex: a = 0; b = 10; c = 11; abcbbac é codificado como 010111010011

Árvore de Huffman

Compactação de Dados: Huffman

Cria um código de prefixos de tamanho variável, usando um algoritmo gulosocom complexidade O(n. log n).

Árvores de Huffman: árvores estritamente binárias enraizadas, com as codificações nas folhas, usadas na compactação e na descompactação.

Exemplo: Símbolo/Freq.	Codificação	Árvore de Huffman
(a, 26)	1	
(b, 15)	011	
(c, 10)	010	() (<u>a</u>)
(d, 10)	001	
(e, 8)	000	$Q \times$
		e d c b

Compactação de Dados: Huffman

Algoritmo de Huffman: inicia com uma floresta de folhas, correspondentes aos símbolos e aglutina, sucessivamente, subárvores com soma total de frequências mínima.

Exemplo: {(a, 26), (b, 15), (c, 10), (d, 10), (e, 8) }

Passo 1

Passo 2

Compactação de Dados: Huffman Exercício:

Criar a árvore de Huffman para a seguinte situação:

(a, 35)

(b, 26) (c, 13)

(d, 13)

(e, 7) (f, 6)

Calcular o tamanho médio da codificação.

Compactação de Dados: Huffman

Idéia do algoritmo: criar a árvore com o auxílio de um Heap

Algoritmo:

```
CriaFolhas; CriaHeap (H);
    Para i de 1 a n-1:
         p \leftarrow H[1].arv;
         Troca(1, n-i+1); DesceHeap(1, n-i);
         q \leftarrow H[1].arv;
         Aloca(r); r^{\uparrow}.le \leftarrow p; r^{\uparrow}.ld \leftarrow q;
         r1.f \leftarrow p1.f + q1.f;
         H[1].arv \leftarrow r;
         DesceHeap(1, n-i);
   Fp;
                                      Complexidade: O(n.log n)
    T \leftarrow H[1].arv;
Fim;
```

Compactação de Dados: Huffman

Correção do Algoritmo

Lema: Para qualquer árvore de Huffman ótima existe outra árvore equivalente onde os 2 símbolos de menor frequência são irmãos.

Teorema: O algoritmo de Huffman é correto.

Compactação de Dados: Huffman

Correção do Algoritmo

Teorema: O algoritmo de Huffman é correto.

ova: Indução em n (número de símbolos).

Seja T_H uma árvore de Huffman e T_O uma árvore ótima. Em T_H , os 2 símbolos de menor frequência, f_1 e f_2 são irmãos. Caso em T_{O} is simbolos de menor frequência, f_1 e f_2 são irmãos. Caso em T_0 esses símbolos não sejam irmãos, podemos remanejar para que sejam. Consideremos, respectivamente, as árvores $T_{\mu'}$ e T_0 ' para n-1 símbolos onde os dois símbolos de menor frequência foram fundidos. Por hipótese, T_0 e T_0 ' são ótimas. Seria absurdo termos $c(T_0) \cdot c(T_0') \cdot f_1 + f_2$, pois poderíamos construir, a partir de T_0 ', uma árvore para n símbolos com custo menor que o de T_0 . De forma análoga, seria absurdo $c(T_0) \cdot c(T_0') \cdot f_1 + f_2$ pois agora T_0' é que não seria ótima. Portanto, $c(T_0) = c(T_0') + f_1 + f_2$. Mas $c(T_H) = c(T_H') + f_1 + f_2$, por construção. Segue-se que $c(T_H) = c(T_0)$ e, portanto, T_H também é ótima. Logo, o algoritmo é correto.

Compactação de Dados: Huffman

Outro algoritmo, quando os dados já estão ordenados

Usa duas filas Q1 e Q2:
Algoritmo:
Esvazia filas;
Cria raízes para símbolos e enfila em Q1;
Enquanto (filas não vazias);
Se Q1 vazia e Q2 só tem um elemento, termina.
Senão

Obtem subárvores a1 e a2 de Q1 e Q2 com
menores frequências.
Desenfila a1 e a2.
Junta a3 = a1 + a2;
Enfila a3 em Q2;
Fe;
Fim;

A raiz da árvore está no começo de Q2.

Merge ótimo

"Dados n arquivos com tamanhos t₁, t₂...t_n, determinar a sequência ótima (menor número de operações) de merge dos mesmos, para transformar em 1 único arquivo."

Exemplo: { 300, 500, 150, 400, 200}

Fazendo merges da esquerda para a direita:
T(n) = (300+500)+(800+150)+(950+400)+(1350+200)=4650

Fazendo merges da direita para a esquerda:
T(n) = (200+400)+(600+150)+(750+500)+(1250+300)=4150

A solução ótima requer 3450 operações apenas!


```
Seleção de Tarefas

Algoritmo:

Ordenar tarefas por data fim;

S 	— T[1]; r 	— T[1].f;

Para i de 2 a n:

Se (T[i].c > r) Então

S 	— S + T[i]; r 	— T[i].f;

Fp;

Fim;

Complexidade: O(n.log n)
```

Método Gulo:

Correção do Algoritmo

Teorema: O algoritmo de Seleção de Tarefas é correto.

Prova: Seja S o conjunto encontrado pelo algoritmo e So um conjunto ótimo, ambos ordenados por data de fim. Seja j o primeiro índice tal que as tarefas dos 2 conjuntos sejam diferentes. Então podemos substituir a tarefa toj de So pela tj de S. Podemos fazer isso sucessivamente. Ao final não poderá sobrar nenhuma tarefa em So, pois o algoritmo teria selecionado essa tarefa. Logo, os dois conjuntos têm o mesmo número de elementos e, portanto, S também é ótimo.

Nétodo Guloso

Cobertura mínima de Segmentos

"Dados dois pontos a e b e n segmentos com extremos $(c_1, f_1), (c_2, f_2), \dots (c_n, f_n)$, determinar o número mínimo de segmentos que cobre o intervalo (a, b)."

A cobertura <mark>mínima</mark> é de <mark>4</mark> segmentos !

létodo Guloso

Cobertura mínima de Segmentos

Exercício:

Escrever um algoritmo para determinar se o conjunto de n segmentos $S = \{(c_1, f_1), ...(c_n, f_n)\}$ cobre ou não o intervalo (a, b).

Método Guloso

Cobertura mínima de Segmentos Solução:

```
VerificaCobertura;
```

```
Ordenar S por c<sub>i</sub>;
p ← a; cobre ← V;
Para i de 1 a n:
Se (p < b) Então
Se (c<sub>i</sub> > p) Então cobre ← F
Senão Se (f<sub>i</sub> > p) Então p ← f<sub>i</sub>;
Fp;
Se (p < b) Então cobre ← F
Retornar cobre;
Fim;
```

Método Gu

Cobertura mínima de Segmentos

Exemplo: a=1, b=12(S = {(3,6), (2,5), (4,9), (7,13), (5,6),(6,7), (8,12), (5,9),(4,8),(1,4),(3,4)} Ordenando: (S'= {(1,4),(2,5), (3,6), (3,4), (4,9), (4,8), (5,9), (5,6), (6,7), (7,13),(8,12)}

i	ci	f_i	p	cobre
			1	1
1	1	4	4	1
2	2	5	5	1
3	3	6	6	1
4	3	4	6	1
5	4	9	9	1
6	4	8	9	1
7	5	9	9	1
8	5	6	9	1
9	6	7	9	1
10	7	13	13	1
11	8	12	13	1

Método Gulos

Cobertura mínima de Segmentos

Determinação da cobertura, supondo-se que o conjunto de segmentos cobre o intervalo dado.

Idéia do Algoritmo:

Supõe-se que o conjunto de segmentos S cobre o intervalo $(a,\ b)$ dado (ver exercício).

Ordena-se 5 pelos começos dos segmentos e, para pontos de referência, definidos em ordem crescente, seleciona-se os segmentos que cobrem esses pontos e têm o maior extremo direito.

Inicialmente o ponto de referência é a. Cada vez que se escolhe um segmento e acrescenta-se ao conjunto solução R, muda-se o ponto de referência para o final do segmento escolhido. O algoritmo pára quando o ponto de referência é \geq b.

Método Guloso

Cobertura mínima de Segmentos

Determinação da cobertura, supondo-se que o conjunto de segmentos cobre o intervalo dado.

CoberturaMinima;

```
Ordenar S por c_i; R \leftarrow \emptyset; c_0 \leftarrow -\infty; f_0 \leftarrow -\infty; c_{n+1} \leftarrow \infty; f_{n+1} \leftarrow \infty; p \leftarrow a; q \leftarrow 0; Para i de 1 a n+1: Se (c_i > p) Então R \leftarrow R + (c_q, f_q); p \leftarrow f_q; q \leftarrow i; Se (p \ge b) Então Sair do loop; Senão Se (f_i > f_q) Então q \leftarrow i; Fp; Imprimir R;
```

átada Gulas

Cobertura mínima de Segmentos

Preencher a tabela de atribuição de valores às variáveis do algoritmo de Cobertura Mínima para os segmentos:

i	ci	f_i	р	q	R
0	-00	-00	1	0	Ø
1					
2					
10					
11					
12					

Método Guloso

Cobertura mínima de Segmentos

Exercício:

Demonstrar a corretude do algoritmo de cobertura mínima de segmentos.

Método Gulos

Sequenciamento de Tarefas com receita máxima

"Dadas n tarefas unitárias com datas limite de fim e receitas dadas, (l_1, r_1) , (l_2, r_2) ,... (l_n, r_n) , determinar a receita máxima que se pode ter, sabendo-se que a receita de uma tarefa só é considerada se ela for realizada dentro do tempo limite."

Exemplo:

Tarefa	T1	T2	ТЗ	T4	T5	Т6
I_i	1	1	2	3	3	4
r.	7	8	4	6	5	10

A receita ótima é 29!

Método Gulo

Sequenciamento de Tarefas com receita máxima

Algoritmo: ordenar as tarefas, de forma decrescente por receita e selecionar, gulosamente, tal que cada tarefa em avaliação não conflite com o conjunto já escolhido.

Exemplo:

Tarefa	T5 +	T2	T1	T4	Т6	T3
I_i	4	1	1	3	3	2
\mathbf{r}_{i}	10	8	7	6	5	4

Seleciona T5

Tarefa	T5
I_i	4
\mathbf{r}_{i}	10

Sequenciamento de Tarefas com receita máxima

Algoritmo:
Ordenar tarefas por receita;
S ← Ø;
Para i de 1 a n:
Se (ViavelIncluir (S, T[i]) Então
Incluir (S, T[i]);
Fp;
Fim;
Incluir (S, T): inclui ordenadamente por l.
ViavelIncluir (S, T): verdadeiro se, à direita do ponto de

Método Gulos

Sequenciamento de Tarefas com receita máxima Correção do Algoritmo

Teorema: O algoritmo de Sequenciamento... é correto.

Prova: Seja S o conjunto encontrado pelo algoritmo e So um conjunto ótimo, ambos ordenados por data limite. Podemos remanejar as tarefas comuns tal que fiquem em mesma posição nos dois conjuntos . Seja t_i a tarefa de receita máxima de S que não está em So. Podemos substituir toi por t_i , em So. Ao final do processo, S \subseteq So. Mas não podemos ter S \subset So nem So \subset S. Portanto S = So, ou seja, S \acute{e} ótimo. Logo, o algoritmo \acute{e} correto.

Sequenciamento de Tarefas com receita máxima Exercício:

inclusão nenhuma tarefa T; está em posição j = li.

Indicar o sequenciamento e a receita ótima para as tarefas:

Tarefa	T1	T2	Т3	T4	T5	Т6	T7	Т8	Т9	T10
I_i	2	4	2	5	4	3	1	9	5	3
\mathbf{r}_{i}	10	7	12	8	5	6	9	1	5	4

Método Gulos

Sequenciamento de Tarefas com receita máxima Exercício:

Indicar o sequenciamento e a receita ótima para as tarefas:

Solução:

Tarefa	ТЗ	T1	ТЗ	T2	T4	Т8	Receita máxima
I _i	2	2	3	4	5	9	12+10+6+7+8+1
\mathbf{r}_i	12	10	6	7	8	1	44

Método Gulo

Seguenciamento de Tarefas c/ penalidade mínima

Dadas n tarefas unitárias com datas limite de fim e penalidades dadas, $(l_1, p_1), (l_2, p_2), \ldots$ (l_n, p_n) , determinar a penalidade mínima para realizar todas as tarefas, sabendo-se que a penalidade se aplica quando a tarefa é realizada após o tempo limite.

Exemplo:

Tarefa	T1	T2	Т3	T4	T5	Т6
I,	1	1	3	4	3	4
p _i	7	8	4	6	10	5

Sequenciamento de Tarefas c/ receita máxima (2)

Dadas n tarefas unitárias com datas limite de fim, receitas e penalidades dadas, (l_1, r_1, p_1) , (l_2, r_2, p_2) , ... (l_n, r_n, p_n) , determinar a receita máxima para realizar todas as tarefas, sabendo-se que a penalidade se aplica quando a tarefa é realizada após o tempo limite.

Exemplo:

Tarefa	T1	T2	ТЗ	T4	T5	T6
I_i	1	1	3	4	3	4
r _i	20	8	14	6	10	15
p _i	7	8	4	6	10	5

Sequenciamento de Tarefas c/ penalidade mínima

Dadas n tarefas unitárias com datas limite de fim e penalidades dadas, (l_1, p_1) , (l_2, p_2) , ... (l_n, p_n) , determinar a penalidade mínima para realizar todas as tarefas, sabendo-se que a penalidade se aplica quando a tarefa é realizada após o tempo limite, diariamente.

Exemplo:

Tarefa	T1	T2	ТЗ	T4	T5	T6
I_i	3	2	1	1	5	4
p i	5	10	6	9	3	5

Exercício: Escrever algoritmos para os seguintes problemas

Problema 1: Travessia

Tem-se n pessoas para atravessar uma ponte, numa noite escura, e uma única lanterna. No máximo duas pessoas podem atravessar de cada vez. São dados os tempos de travessia de cada um. Qual o tempo mínimo total de travessia?

Ex: n=4 tempos: 1, 2, 5, 10 tempo mínimo = 17.

Problema 2: Cortes quadrados

Tem-se uma chapa retangular de dimensões inteiras $p \times q$ e quer-se transformar esse retângulo no mínimo de quadrados, fazendo-se sempl cortes em toda a extensão da chapa. Qual o mínimo de quadrados?

Ex: corte de uma chapa 5×6 :

FIM