Limits

Example

Consider the quadratic function $f(x) = x^2 - 5x + 6$:

What happens to f(x) as $x \to 2$, but $x \ne 2$?

x	f(x)
2.1	-0.09
2.01	-0.0099
2.001	-0.000999
2	
1.999	0.001001
1.99	0.0101
1.9	0.11

It appears that $f(x) \to 0$ as $x \to 2$ (from either direction).

In the previous example, it turns out that f(x) is actually defined at x=2 and furthermore, f(2)=0. This special case will be used later as a formal definition of *continuity*. However, as previously stated, we don't actually care about the function value at x=2. In fact, the function might not even be defined at the x value in question.

Example

Consider the rational function:

$$f(x) = \frac{x^2 - 5x + 6}{x - 2}$$

Now, as $x \to 2$:

x	f(x)
2.1	-0.9
2.01	-0.99
2.001	-0.999
2	
1.999	-1.001
1.99	-1.01
1.9	-1.1

It appears that $f(x) \to -1$ as $x \to 2$ (from either direction), even though f(2) is not defined. To reiterate, we do not care what actually happens at x=2. In fact, let's define f(2)=1:

$$f(x) = \begin{cases} \frac{x^2 - 5x + 6}{x - 2}, & x \neq 2\\ 1, & x = 2 \end{cases}$$

Still, $f(x) \to -1$ as $x \to 2$, regardless of the fact that f(2) = 1. Once again, we do not care about the function at x = 2; we only care what happens near x = 2.

Example

Consider the function:

$$f(x) = \frac{\sin x}{x}$$

As $x \to 0$:

f(x)
0.841471
0.998334
0.999983
0.999983
0.998334
0.841471

It appears that $f(x) \to 1$ as $x \to 0$. Note that at x = 0, $f(x) = \frac{0}{0}$, which is a so-called *indeterminate form*; we cannot tell if the function is actually defined at x = 0 or not. In this case it is and f(0) = 1.

Definition: Limit of a Function at a Point

Let f(x) be a function on \mathbb{R} . To say that the *limit* of f(x) at x=c is L, denoted by $\lim_{x\to c} f(x)=L$, means that $f(x)\to L$ as $x\to c$ but $x\ne c$. In other words, for all $\epsilon>0$ there exists some $\delta>0$ such that if $0<|x-c|<\delta$ then $|f(x)-L|<\epsilon$.

Select an $\epsilon>0$ and then find a $\delta>0$ such that f(x) is contained in the bounding box. As $\epsilon\to 0$, this forces $\delta\to 0$ and the bounding box converges to the point (c,L). This does not imply that f(c)=L. In fact since |x-c|>0, $x\neq c$ so we don't care what actually happens at x=c.

Example

Consider the function $f(x) = x^2 + 2x - 1$ and note that $\lim_{x \to 1} f(x) = 2$. Find a suitable δ to two decimal places for $\epsilon = 0.1$.

Although this can be done analytically, the algebra tends to get messy. A convenient shortcut is to use a graphing calculator. The general procedure is as follows:

1. Graph the function and mark the ϵ -neighborhood around the limit by graphing the constant functions y=2+0.1=2.1 and y=2-0.1=1.9. Adjust the Window so that there is sufficient separation to see all three graphs.

2. Use the *intersection* function to determine the minimum and maximum x values around

x=1 such that the graph of the function is completely within the marked ϵ -neighborhood.

$$x_1 = 0.9748418$$

$$x_2 = 1.0248457$$

3. Calculate the distance of each endpoint from x = 1:

$$\delta_1 = 1.024845 - 1 = 0.0248457$$

$$\delta_2 = 1 - 0.9748418 = 0.0251582$$

4. Select the smaller of the two distances for δ :

$$\delta = \min\{\delta_1, \delta_2\} = 0.0248457$$

5. Be sure to round down to stay within the selected interval.

$$\delta = 0.024$$

Therefore, if |x - 1| < 0.024 then |f(x) - 2| < 0.1.

Find a suitable δ to four decimal places for $\epsilon=0.01$.

$$\delta_1 = 1.0024984 - 1 = 0.0024984$$

$$\delta_2 = 1 - 0.9974984 = 0.0025016$$

$$\delta = \min\{\delta_1, \delta_2\} = 0.0024984$$

$$\delta = 0.0024$$
.

Therefore, if |x - 1| < 0.0024 then |f(x) - 2| < 0.01.

Example

Solve the previous problem for $\epsilon = 0.1$ analytically.

 $\delta = \min\{\delta_1, \delta_2\} = 0.0248$

 $\delta = 0.248$

$$\begin{split} |f(x)-2| &< 0.1 \\ |(x^2+2x-1)-2| &< 0.1 \\ |x^2+2x-3| &< 0.1 \\ -0.1 &< x^2+2x-3 &< 0.1 \\ x^2+2x-3 &> -0.1 \\ x^2+2x-2.9 &> 0 \\ x &= \frac{-2\pm\sqrt{2^2-4(1)(-2.9)}}{2(1)} = -1\pm\sqrt{3.9} \\ x &= -2.9748, 0.9748 \\ 0^2+2(0)-2.9 &= -2.9 &< 0 \\ x &\in (-\infty, -2.9748) \cup (0.9748, \infty) \\ x^2+2x-3 &< 0.1 \\ x^2+2x-3.1 &< 0 \\ x &= \frac{-2\pm\sqrt{2^2-4(1)(-3.1)}}{2(1)} = -1\pm\sqrt{4.1} \\ x &= -3.0248, 1.0248 \\ 0^2+2(0)-3.1 &= -3.1 &< 0 \\ x &\in (-3.0248, 1.0248) \\ x &\in ((-\infty, -2.9748) \cup (0.9748, \infty)) \cap (-3.0248, 1.0248) \\ &\xrightarrow{-3.0248} -2.9748 & 0.9748 & 1.0248 \\ 0.9748 &< x &< 1.0248 \\ \delta_1 &= 1-0.9748 &= 0.0252 \\ \delta_2 &= 1.0248-1 &= 0.0248 \end{split}$$

However, proving that $\lim_{x \to c} f(x) = L$ cannot be done by example — the result must hold for all $\epsilon > 0$.

Strategy:

- 1. Assume that $\epsilon > 0$.
- 2. Rewrite $f(x) L < \epsilon$ as $g(x c) < \epsilon$ for $0 < |x c| < \delta$.
- 3. Consider $g(\delta) = \epsilon$.
- 4. Solve for $\delta(\epsilon)$.
- 5. Show that the selected δ works.

Helpful tools:

- 1. x = (x c) + c
- 2. Triangle inequality: |a+b| < |a| + |b|

Template:

- 0. Determine a suitable $\delta(\epsilon)$ on the side.
- 1. Assume that $\epsilon > 0$.
- 2. Let $\delta = \delta(\epsilon)$ previously found.
- 3. Show that if $0 < |x c| < \delta$ then f(x) L < e.

Example

Prove:
$$\lim_{x\to 1}(2x+5)=7$$

$$|(2x+5)-7|=|2x-2|=2|x-1|<\epsilon$$

$$2\delta=\epsilon$$

$$\delta=\frac{\epsilon}{2}$$

Assume that $\epsilon > 0$.

Let
$$\delta = \frac{\epsilon}{2}$$
.

Assume that
$$0 < |x - 1| < \delta$$
.

$$|f(x) - L| = |(2x + 5) - 7| = |2x - 2| = 2|x - 2| < 2\delta = 2\frac{\epsilon}{2} = \epsilon$$

Example

Prove:
$$\lim_{x \to 1} (x^2 + 2x - 1) = 2$$

$$|(x^{2} + 2x - 1) - 2)| = |x^{2} + 2x - 3|$$

$$= |(x - 1)(x + 3)|$$

$$= |x - 1||x + 3|$$

$$= |x - 1||(x - 1) + 4|$$

$$\leq |x - 1|(|x - 1| + 4)$$

$$= |x - 1|^{2} + 4|x - 1|$$

$$< \epsilon$$

$$\delta^{2} + 4\delta = \epsilon$$

$$\delta^{2} + 4\delta - \epsilon = 0$$

$$\delta = \frac{-4 \pm \sqrt{4^{2} - 4(1)(-\epsilon)}}{2(1)} = -2 \pm \sqrt{4 + \epsilon}$$

$$\delta = \sqrt{4 + \epsilon} - 2$$

Assume
$$\epsilon > 0$$
.
Let $\delta = \sqrt{4 + \epsilon} - 2$.

Assume that $0 < |x - 1| > \delta$

$$|f(x) - L| = |(x^2 + 2x - 1) - 2|$$

$$= |x^2 + 2x - 3|$$

$$= |(x - 1)(x + 3)|$$

$$= |x - 1||x + 3|$$

$$= |x - 1||(x - 1) + 4|$$

$$\leq |x - 1|(|x - 1| + 4)$$

$$< \delta(\delta + 4)$$

$$= \delta^2 + 4\delta$$

$$= (\sqrt{4 + \epsilon} - 2)^2 + 4(\sqrt{4 + \epsilon} - 2)$$

$$= (4 + \epsilon) - 4\sqrt{4 + \epsilon} + 4 + 4\sqrt{4 + \epsilon} - 8$$

$$= \epsilon$$