4.5 Gunn diode

Module:4 Microwave Sources

Course: BECE305L – Antenna and Microwave Engineering

-Dr Richards Joe Stanislaus

Assistant Professor - SENSE

Email: richards.stanislaus@vit.ac.in

Module:4 Microwave Sources 5 hours

 Microwave frequencies and applications, Microwave Tubes: TWT, Klystron amplifier, Reflex, Klystron & Magnetron. Semiconductor Devices: Gunn diode, Tunnel diode, IMPATT – TRAPATT - BARITT diodes, PIN Diode.

8.1 Gunn diodes – Transferred electron devices (TEDs)

- GUNN diodes are also known as Transferred electron devices
- Low noise devices named after JB Gunn

8.1 Gunn diodes – Transferred electron devices (TEDs)

- GUNN diodes are also known as Transferred electron devices
- Low noise devices named after JB Gunn
- Periodic fluctuation of current passing through n-type gallium arsenide (n-GaAr) sample when the voltage difference exceeded a certain threshold.

8.1 Gunn diodes – Transferred electron devices

(TEDs)

GUNN diodes are also known as Transferred electron devices

Low noise devices – named after JB Gunn

Periodic fluctuation of current passing through Cathode n-type gallium arsenide (n-GaAr) sample when the voltage difference exceeded a certain threshold.

- Similar observation in p-type GaAs, Indium phosphate (InP) and in semiconductors (CdTe, Tnsb, InAs, etc)
- Two metallic ends act as cathode and anode in single bulk semiconductor

• DC voltage - generates electric field inside the sample with electric current.

- DC voltage generates electric field inside the sample with electric current.
- When Electric field < critical threshold value E_{th} obeys ohms law $(E \propto J)$

- DC voltage generates electric field inside the sample with electric current.
- When Electric field < critical threshold value E_{th}
 - obeys ohms law $(E \propto J)$
- When $E_{th} < E$ (slightly) $< E_S$ sustaining value

Differential resistance $\frac{dV}{dI}$ or $\frac{dE}{dJ}$ is **negative**

- DC voltage generates electric field inside the sample with electric current.
- When Electric field < critical threshold value E_{th} obeys ohms law $(E \propto I)$
- When $E_{th} < E$ (slightly)< E_s sustaining value
- Negative slope of J E curve.

Differential resistance $\frac{dV}{dI}$ or $\frac{dE}{dI}$ is negative

- This differential resistance is utilized for microwave gunn oscillators
- External resistance compensation is provided in the circuit to sustain oscillations

- Threshold value varies with type of material.
- n type GaAs, critical/ threshold value 3.2 kV/cm
- InP: 10.5 kV/cm

- Threshold value varies with type of material.
- n-type GaAs, critical/ threshold value 3.2 kV/cm
- InP: 10.5 kV/cm

 Applications: Low power microwave oscillator at microwave frequencies in transmitters and also as local oscillators in receiver front ends

ve resistance region

 E_s

8.3 Construction details and electrical equivalent

- Gold contacts as anode and cathode
- n type GaAs semiconductor
 Regions of high doping (n⁺)
- GaAs is poor conductor heat is generated.
 Hence generally a <u>Copper heat sink</u> is used.

8.3 Construction details and electrical equivalent

- Gold contacts as anode and cathode
- n type GaAs semiconductor Regions of high doping (n^+)
- GaAs is poor conductor heat is generated.
 Hence generally a Copper heat sink is used.
- C_j , $-R_j$: Diode capacitance and resistance Negative resistance -5Ω to -20Ω

8.3 Construction details and electrical equivalent

- Gold contacts as anode and cathode
- n type GaAs semiconductor Regions of high doping (n^+)
- GaAs is poor conductor heat is generated.
 Hence generally a Copper heat sink is used.
- C_j , $-R_j$: Diode capacitance and resistance \sim Negative resistance -5Ω to -20Ω
- R_s Total resistance due to ohmic contacts
- C_p , L_p : package capacitance and inductances

GaAs: Three conduction sub-bands or valleys
 (X, Γ, L)

Energy band diagram

- GaAs: Three conduction sub-bands or valleys (Γ, L, X)
- GaAs: <u>Superior electron mobility</u> with one maximum valence band and one minimum conduction band(Γ) occurring at same wave vector. (k =propagation constant = $2\pi/\lambda$).

Energy band diagram

- GaAs: Three conduction sub-bands or valleys (Γ, L, X)
- GaAs: Superior electron mobility with one maximum valence band and one minimum conduction band(Γ) occurring at same wave vector(k =propagation constant = $2\pi/\lambda$).
- 1.42 eV band gap energy of separation between the valence and conduction bands(Γ)

Conductivity of the material \propto electron mobility μ_n

Energy band diagram

- GaAs: Three conduction sub-bands or valleys (Γ, L, X)
- GaAs: Superior electron mobility with one maximum valence band and one minimum conduction band(Γ) occurring at same wave vector (k =propagation constant = $2\pi/\lambda$).
- 1.42 eV band gap energy of separation between the valence and conduction bands(Γ)

Conductivity of the material \propto electron mobility μ_n

Mobility of electron depends upon:

Concentration of impurity N in the semiconductor

- Temperature T Kelvin
- Is inversely proportional to electron effective mass, m_n

Energy band diagram

Current density is related to mobility by

$$J = en\mu_n E = e(n_X \mu_X + n_\Gamma \mu_\Gamma + n_L \mu_L)E$$

Energy band diagram

Current density is related to mobility by

$$J = en\mu_n E = e(n_X \mu_X + n_\Gamma \mu_\Gamma + n_L \mu_L)E$$

- $e = 1.6 \times 10^{-19} C$ electronic charge
- *E:* Electric field in semiconductor sample

Energy band diagram

Current density is related to mobility by

$$J = en\mu_n E = e(n_X \mu_X + n_\Gamma \mu_\Gamma + n_L \mu_L)E$$

- $e = 1.6 \times 10^{-19} C$ electronic charge
- *E:* Electric field in semiconductor sample
- n, μ : electron concentration, electron mobility
- GaAs: Effective mass of these electrons in conduction band = 0.067 times mass of free electrons

Energy band diagram

Current density is related to mobility by

$$J = en\mu_n E = e(n_X \mu_X + n_\Gamma \mu_\Gamma + n_L \mu_L)E$$

- $e = 1.6 \times 10^{-19} C$ electronic charge
- *E:* Electric field in semiconductor sample
- n, μ : electron concentration, electron mobility
- GaAs: Effective mass of these electrons in conduction band = 0.067 times mass of free electrons

Energy band diagram

Lowest valley in conduction band (Γ) is narrow and

highest slope (dE/dk) – Electrons have low effective mass and high mobility.

Current density is related to mobility by

$$J = en\mu_n E = e(n_X \mu_X + n_\Gamma \mu_\Gamma + n_L \mu_L)E$$

- $e = 1.6 \times 10^{-19} C$ electronic charge
- *E:* Electric field in semiconductor sample
- n, μ : electron concentration, electron mobility
- GaAs: Effective mass of these electrons in conduction band = 0.067 times mass of free electrons

Energy band diagram

Lowest valley in conduction band (Γ) is narrow and highest slope (dE/dk) – Electrons have low effective mass and high mobility.

Valleys X and L are wider with lower slopes, hence large effective mass and lower electron mobility.

• At room temperature 300K, most electrons of conduction band are in Γ valley (lowest)

• When Gunn diode is biased with a dc voltage, electric field *E* is established across it.

• At room temperature 300K, most electrons of conduction band are in Γ valley (lowest)

• When Gunn diode is biased with a dc voltage, electric field *E* is established across it.

At low bias voltage (low field state): Increase in conductivity is due to lowest valley (high mobility electrons) – Current increases steadily with applied field (Region a)

• At room temperature 300K, most electrons of conduction band are in Γ valley (lowest)

• When Gunn diode is biased with a dc voltage, electric field *E* is established across it.

At low bias voltage (low field state): Increase in conductivity is due to lowest valley (high mobility electrons) – Current increases steadily with applied field (Region a)

 As applied voltage is increased, Electric field increases, electrons are transferred from lowest valley (high mobility) to upper valley (lower mobility) -> decrease in rise of conductivity.

- At room temperature 300K, most electrons of conduction band are in Γ valley (lowest)
- When Gunn diode is biased with a dc voltage, electric field *E* is established across it.
- At low bias voltage (low field state): Increase in conductivity is due to lowest valley (high mobility electrons) Current increases steadily with applied field (Region a)
- As applied voltage is increased, Electric field increases, electrons are transferred from lowest valley (high mobility) to upper valley (lower mobility) -> decrease in rise of conductivity.
- Beyond a E_{th} , majority of conduction band electrons are transferred to lower mobility upper valley -> Beyond which conductivity decreases with increase in Electric field.

• Beyond a E_{th} , majority of conduction band electrons are transferred to lower mobility upper valley -> Beyond which conductivity decreases with increase in Electric field. "Transferred Electron effect"

 E_{th}

 E_s

• Beyond a E_{th} , majority of conduction band electrons are transferred to lower mobility upper valley -> Beyond which conductivity decreases with increase in Electric field. "Transferred Electron effect"

• Decrease in current in region b: negative reistance: $\frac{dJ}{dE}$ is negative, device behavior – differential negative resistance. Hence Gunn diodes are called Transfer Electron Device (TED)

• Beyond a E_{th} , majority of conduction band electrons are transferred to lower mobility upper valley -> Beyond which conductivity decreases with increase in Electric field. "Transferred Electron effect"

• Decrease in current in region b: negative reistance: $\frac{dJ}{dE}$ is negative, device behavior – differential negative resistance. Hence Gunn diodes are called Transfer Electron Device (TED)

• Beyond a sustaining field $E = E_s$, almost all conduction band electrons are in the upper valley: Upper valley mobility is less than lower valley.

GaAs

Energy

Γ-vallev

X-valley

Energy band diagram

L-valley

T = 300 K

8.4 Theory of operation

• Beyond a E_{th} , majority of conduction band electrons are transferred to lower mobility upper valley -> Beyond which conductivity decreases with increase in Electric field. "Transferred Electron effect"

• Decrease in current in region b: negative reistance: $\frac{dJ}{dE}$ is negative, device behavior – differential negative resistance. Hence Gunn diodes are called Transfer Electron Device (TED)

• Beyond a sustaining field $E = E_s$, almost all conduction band electrons are in the upper valley: Upper valley mobility is less than lower valley.

• $E > E_s$: net mobility of electrons – determined by Upper valley mobility: slope is positive J - E but lower than lower valley.

Conduction band $E_x = 1.90 \text{ eV}$ $E_{l} = 1.71 \text{ eV}$ $E_q = 1.42 \text{ eV}$ Band gap Wave vector Valence band –ve resistance region

GaAs

8.5 Criteria for Gunn effect

 Atleast two sub-bands in conduction band with lower conduction sub band should have high mobility than upper valley sub-band.

GaAs

8.5 Criteria for Gunn effect

- Atleast two sub-bands in conduction band with lower conduction sub band should have high mobility than upper valley sub-band.
- Band gap energy $E_g \gg$ thermal energy kT = 0.026eV at room temperature

8.5 Criteria for Gunn effect

- Atleast two sub-bands in conduction band with lower conduction sub-band should have high mobility than upper valley subband.
- Band gap energy $E_g \gg$ thermal energy kT = 0.026eV at room temperature
- Energy separation between two bands must be much lower than E_g but higher than kT

kT << Energy separation << E_g

 GaAs, InP (Indium Phosphate), CdTe (Cadmium telluride)

8.5 Criteria for Gunn effect

Properties	Si	<i>G</i> .	GaAs
Breakdown Field, V/m	approx. 3×10^5	approx. 1×10^5	approx. 4×10^5
Dielectric Constant	119	16.0	13 1
Effective Density of States in the Conduction Band, N/cm ³	2.8×10^{19}	1.04×10^{10}	4.7×10^{17}
Effective Density of States in the Valence Band, Nv/cm ³	1.04×10^{18}	6.0×10^{18}	7.0×10^{18}
Energy Gap at 300K (eV)	1.12	066	1.424
Intrinsic Carrier Concentration (cm ³)	1.45×10^{10}	2.4×10^{13}	1.79×10^6
Electron Mobility μ (cm ² /V.s)	1500	3900	8500
Hole Mobility μ_p (cm ² /V.s)	475	1900	400
Thermal Conductivity at 300 K (W/cm·°C)	15	0.6	0.46

8.6 Gunn mode of oscillations (Transit time TT mode)

• In GaAs, in region b, the drift velocity decreases as there is decrease in mobility in upper valley (conduction band) with increase in electric field – Forms high field domain.

- In GaAs, in region b, the drift velocity decreases as there is decrease in mobility in upper valley (conduction band) with increase in electric field Forms high field domain.
- Assume at point A, excess –ve charge due to random noise/fluctuation on biasing/non-uniform doping. This creates electric field.
- Field towards left (cathode) is lower than field towards right (anode).

- In GaAs, in region b, the drift velocity decreases as there is decrease in mobility in upper valley (conduction band) with increase in electric field Forms high field domain.
- Assume at point A, excess —ve charge due to random noise/fluctuation on biasing/non-uniform doping. This creates electric field.
- Field towards left (cathode) is lower than fiedld towards right (anode).
- When diode is biased at $E_A(a)$, carriers (current) flowing from cathode are larger than carriers from anode This increases excess —ve charge at A.

 E_s

- In GaAs, in region b, the drift velocity decreases as there is decrease in mobility in upper valley (conduction band) with increase in electric field Forms high field domain.
- Assume at point A, excess –ve charge due to random noise/fluctuation on biasing/non-uniform doping. This creates electric field.
- Field towards left (cathode) is lower than fiedld towards right (anode).
- When diode is biased at $E_A(a)$, carriers (current) flowing from stathode are larger than carriers from anode This increases excess —ve charge at A.
- When RF noise reverses, field at left of A is lower than before, field towards right is greater than previous. – More space charge accumulation. – Fields accumulate and increase towards Eth

• This process continues until high and low fields both reach values outside the b region (-ve resistance region) at a and c (currents in both regions are equal now)

- This process continues until high and low fields both reach values outside the b region (-ve resistance region) at a and continues (currents in both regions are equal now)
- No further accumulation of Charge at A, and stable accumulation layer is formed.
- When the accumulation and depletion layers approach, they attract each other and pass through the diode in the form of domain.

- This process continues until high and low fields both reach values outside the b region (-ve resistance region) at a and continues (currents in both regions are equal now)
- No further accumulation of Charge at A, and stable accumulation layer is formed.
- When the accumulation and depletion layers approach, they attract each other and pass through the diode in the form of domain.
- Since $V = -\int E dx$ across semiconductor remains constant, field inside the domain will be large. No additional domain forms until the existing domain disappears at Anode.
- Domain starts at cathode due to instability in carrier distribution.

Formation of strong space charge instability depends on

- a) conditions of availability of enough charge in crystal (doping)
- b) sufficient length of the specimen should be available for building up of charges within the electron's transit time

For uniformly doped bulk diodes, four basic modes are:

- 1. Gunn Oscillation mode
- 2. Stable amplification mode
- 3. LSA oscillation mode
- 4. Bias circuit oscillation mode

length (cm/s)

1. Gunn Oscillation mode:

Product of frequency and length $fl = 10^7 cm/s$

Product of doping and length $n_0 l > 10^{12}/cm^2$

Unstable due to cyclic formation of

a) accumulation layer or

b) high field domain: in a circuit with low impedance $(f_{oscillation}$: near $f_{intrinsic})$

For high Q cavity, when coupled properly to load, domain is quenched/delayed or both. Oscillation frequency:

Depends on resonant frequency of the cavity

2. Stable amplification mode:

Product of frequency and length $fl = 10^7 cm/s$

Product of doping and length $10^{11}/cm^2 < n_0 l < 10^{12}/cm^2$

3. LSA oscillation mode:

Product of frequency and length $fl > 10^7 cm/s$ (greater than)

doping divided by frequency: $2x10^4 < n_0/f < 2x10^5$

4. Bias circuit oscillation mode:

When there is either Gunn or LSA oscillations Product of frequency and length $fl \ll 10^6 cm/s$

When bulk diode is biased to threshold, average current suddenly drops and Gunn oscillations begins.

This results in oscillations in bias circuit 1 kHz to 100 MHz

8.8 LSA mode: Limited Spacecharge Accumulation mode

- Most of the operating domains are maintained in negative conductance state
- Space charge accumulation near cathode has time to collapse when signal voltage is maintained below threshold (maximum)
- Simplest state
- Uniformly doped semiconductor without any internal space-charge
- Internal electric field will be uniform without and proportional to applied field level

8.8 LSA mode: Limited Spacecharge Accumulation mode

3. LSA oscillation mode:

Product of frequency and length $fl > 10^7 cm/s$ (greater than)

doping times length: $n_0L = 10^{12}/cm^2$

Figure 7-3-5 Mode chart. (After M. Uenohara [24]; reprinted by permission of McGraw-Hill Book Company.)

8.9 Microwave generation

- High field domain moves through the sample with uniform velocity v_d and gets collected at anode.
- New domain forms at cathode and again the process repeats as pulse.

8.9 Microwave generation

- High field domain moves through the sample with uniform velocity v_d and gets collected at anode.
- New domain forms at cathode and again the process repeats as pulse.
- Pulse current output with intrinsic period T = transit time of domain
- $T = l_{eff}/v_d$ where $l_{eff} \approx l$ length of sample and v_d is the drift velocity.

 Local oscillators in Radars, signal sources in lab

• Gunn diode is Mounted in waveguide cavity formed by short circuit termination at one end and by an iris at other end.

- Local oscillators in Radars, signal sources in lab
- Gunn diode is Mounted in waveguide cavity formed by short circuit termination at one end and by an iris at other end.
- Diode is mounted at center perpendicular to broadwall - at maximum electric field point (TE10).
- Intrinsic frequency f_0 of oscillations depends on the drift velocity v_d due to the high field domain and effective length l. $f_0 = v_d/l$

- GaAs: $v_d = 10^5 m/s$
- Cavity is tuned by SC plunger
- For frequency fine-tuning, tuning screw is used before iris

Degree of coupling - adjusted by selecting inductive iris.

- GaAs: $v_d = 10^5 m/s$
- Cavity is tuned by SC plunger
- For frequency fine-tuning, tuning screw is used before iris
- Total resistive loading from cavity and external load >1.20 x Gunn device resistance $-R_j$
- $-\frac{R_L R_j}{R_L R_j}$ will be negative

Degree of coupling - adjusted by selecting inductive iris.

- GaAs: $v_d = 10^5 m/s$
- Cavity is tuned by SC plunger
- For frequency fine-tuning, tuning screw is used before iris
- Total resistive loading from cavity and external load >1.20 x Gunn device resistance $-R_i$
- $-\frac{R_L R_j}{R_L R_j}$ will be negative
- Gun diode at metal post $(<\lambda/4)$
- Post diameter 5mm at 10GHz

Degree of coupling - adjusted by selecting inductive iris.