Communication-Efficient Learning of Deep Networks from Decentralized Data

Um estudo do artigo e replicação dos resultados.

Pedro Tokar e Vitor Nascimento

https://github.com/vitor-n/federated-averaging

Contents

- 1. Motivação e background
- 2. Federated Optimization
- **3.** Algoritmo
- 4. Resultados experimentais
- 5. Conclusões e importância

Communication-Efficient Learning of Deep Networks from Decentralized Data

H. Brendan McMahan Eider Moore Daniel Ramage Seth Hampson Bla Google, Inc., 651 N 34th St., Seattle, WA 98103 USA

Blaise Agüera y Arcas

O *federated learning* é uma estratégia para treinar modelos de machine learning em cenários onde os dados de treinamento estão distribuídos em vários dispositivos e são potencialmente sensíveis. O artigo explora tais cenários e propõe uma forma de treinar um modelo de modo colaborativo sem a necessidade de centralizar os dados.

Motivação e background

Dispositivos móveis possuem grande poder computacional e são altamente difundidos pelo mundo.¹

- Em 2016, aproximadamente 3,7 bilhões smartphones estavam em uso;
- Projeções para 2025 apontam para 7,4 bilhões de smartphones ativos.

Estes dispositivos geram e tem acesso a uma grande variedade de dados, dos quais muitos podem ser utilizados para treinar modelos.

- Dados de sensores, como GPS, acelerômetros, giroscópios, etc.;
- Dados como fotos, áudios, textos, etc.

¹https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/

Além dos smartphones, que são os principais representantes destes tipos de dispositivos, diversos outros existem e são amplamente adotados:

- Smartwatches;
- Sensores IoT inteligentes;
- Veículos;
- Robôs atuadores em fábricas;
- Módulos de casa inteligente;
- E uma infinidade de outros tipos.

Uma série de modelos poderiam se beneficiar destes dados:

- Classificadores de imagens poderiam ser treinados com fotos de galerias;
- Modelos de texto poderiam ser treinados com dados de digitação de usuários;
- Modelos para prever preferências de usuários se beneficiam de estatísticas de uso;
- Aplicações de monitoramento de saúde podem ser treinadas com dados de movimentação;
- etc.

Entretanto, a maioria destes dados são sensíveis:

- Dados como fotos da câmera, áudio de ligações e textos digitados, são pessoais e não devem ser compartilhados sem consentimento.
- Além de dados gerados, uma quantidade massiva de dados são coletados passivamente de usuários.
- Exemplos: dados de digitação, dados de navegação na internet, estatísticas de uso de aplicativos, etc.

Por mais que estes dados possam ser anonimizados, agentes maliciosos ainda podem usá-los para rastrear pessoas (digital footprints).

Centralizar essa quantidade massiva de dados gerados também não é uma boa opção.

- Dados podem ser interceptados durante o upload para algum datacenter.
- Manter cópias dos dados em um datacenter aumenta o risco de vazamentos e acessos indevidos.
- Datasets, mesmo que anonimizados, podem ser usados para identificar pessoas²
- Manter todos esses dados em um só lugar requer uma grande quantidade de armazenamento.
- E muitas outras preocupações de privacidade...

²Latanya Sweeney. Simple demographics often identify people uniquely. 2000.

Em resumo:

- Dados são gerados massivamente em bilhões de smartphones e dispositivos equipados com sensores.
- Tais dados são valiosos para o treinamento de diversos tipos de modelos.
- A maioria destes dados são sensíveis em relação a privacidade.
- Mesmo quando os dados não são sensíveis, pode não ser viável centralizá-los.

O artigo introduz a abordagem do Federated Learning para lidar com esse cenário.

Ideia principal: cada cliente auxilia treinando o modelo localmente, sem precisar fazer upload dos dados. Uma central então agrega os modelos treinados.

Essa abordagem segue o princípio de focused collection.³

³https://obamawhitehouse.archives.gov/sites/default/files/privacy-final.pdf

Contribuições do artigo

- 1. Identificar o treino em dados descentralizados de dispositivos móveis como um problema a ser resolvido;
- 2. Propor um algoritmo simples e direto para lidar com este cenário;
- 3. Avaliar o funcionamento do algoritmo com testes empíricos em datasets e aplicações variadas.

Federated Optimization

O problema de otimização, neste contexto, possui algumas características especiais as quais se é necessário atenção:

- Dados não i.i.d
- Dados desbalanceados
- Comunicação limitada⁴

⁴A velocidade de upload normalmente é muito menor que a de download: https://www.speedtest.net/global-index/united-states

Rounds de Comunicação

Chamamos de *clientes* os dispositivos que contém os datasets locais e de *servidor* a máquina central que armazena o modelo e faz requisições aos *clients*.

Assume-se um esquema de comunicação síncrono, feito com rounds:

- Há um conjunto de *K* clientes, cada um com seu dataset próprio.
- A cada round, escolhe-se uma fração C de clientes (aleatoriamente).
- Os clientes selecionados recebem os parâmetros do modelo global.
- Cada cliente otimiza o modelo localmente e envia os parâmetros para o servidor.
- O servidor atualiza o modelo global com base nos parâmetros recebidos de cada cliente.

Figura 1: O servidor envia o estado do modelo global para os clientes selecionados (A). Os clientes otimizam o modelo com base no seu dataset local (B). Os parâmetros são agregados para atualizar o modelo global (C), depois disso o processo se repete.

Rounds de Comunicação

O treinamento descentralizado tem diferenças de custo do treinamento centralizado.

- Comunicação mais custosa.
- Processamento menos custoso.

Algoritmo

Em um problema geral de treinamento de uma rede neural, temos o seguinte problema de otimização:

$$\min_{w \in \mathbb{R}^d} f(w) \quad \text{onde} \quad f(w) \stackrel{\text{\tiny def}}{=} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Onde $f_i(w)$ é usualmente a perda da predição no dado (x_i, y_i) .

Já em Federated Optimization, temos:

- Conjunto de dados do cliente k: \mathcal{P}_k
- Uma função de perda geral: $f(w) = \sum_{k=1}^K \frac{n_k}{n} F_k(w)$, onde $n_k = |\mathcal{P}_k|$
- Uma função de perda para o cliente k: $F_k(w) = \frac{1}{n_k} \sum_{i \in \mathcal{P}_k} f_i(w)$.
- Parâmetros do modelo global na rodada t: w_t

O treinamento do modelo nos clientes é feito utilizando SGD. O learning rate η é o compartilhado entre os clientes.

Idealmente teríamos $\mathbb{E}_{\mathcal{P}_k}[F_k(w)] = f(w)$. Mas note que F_k nem sempre será uma aproximação ótima de f, como no caso não i.i.d.

FederatedSGD: versão em que cada cliente computa o gradiente uma única vez por round de comunicação.

Cada cliente k computa $g_k = \nabla F_k(w_t)$ e o servidor agrega os gradientes para update:

$$w_{t+1} \leftarrow w_t - \eta \sum_{k=1}^K \frac{n_k}{n} g_k$$

Equivalentemente pode-se fazer:

$$\forall k, \quad w_{t+1}^{(k)} \leftarrow w_t - \eta g_k$$

E então, no servidor, ocorre a agregação $w_{t+1} \leftarrow \sum_{k=1}^K \frac{n_k}{n} w_{t+1}^{(k)}$.

A primeira abordagem requer muitas rodadas de comunicação, já que cada passo de descida de gradiente requer a resposta dos clientes.

Para diminuir os rounds de comunicação e aproveitar melhor a capacidade computacional dos clientes, é possível fazer os clientes otimizarem os pesos diversas vezes antes de enviar para o servidor o estado.

$$w^{(k)} \leftarrow w^{(k)} - \eta \nabla F_k \big(w^{(k)} \big).$$

Este método é chamado de FederatedAveraging.

Servidor

8

9

```
1 Servidor executa:
```

- 2 inicializa w_0
- ³ para cada round t = 1, 2, ... faça:

 $\begin{aligned} m_t \leftarrow \sum_{k \in S_t} n_k \\ w_{t+1} \leftarrow \sum_{k \in S_t} \frac{n_k}{m_t} w_{t+1}^k \end{aligned}$

Cliente

```
1 ClientUpdate(k, w):
2 \mathcal{B} \leftarrow (\text{divide } \mathcal{P}_k \text{ em lotes de tamanho B})
3 para cada local epoch i de 1 até E do:
4 para cada batch b \in \mathcal{B} faça:
5 w \leftarrow w - \eta \nabla \ell(w; b)
6 retorna w ao servidor
```

Três parâmetros controlam a quantidade de computação feita em cada passo:

- C: Fração de quantos clientes são selecionados por round;
- E: Número de iterações que cada cliente faz por round;
- B: Tamanho do minibatch usado no cliente.

Nota-se que para $B=\infty$ e E=1, o algoritmo é equivalente ao FederatedSGD.

Resultados empíricos apontam que, para duas partições disjuntas de um mesmo dataset:

- Treinar dois modelos com **pesos** iniciais **diferentes** gera uma **má agregação**.
- Treinar dois modelos com **pesos** iniciais **iguais** gera uma **melhor agregação**.

O FederatedAveraging aproveita do segundo caso, uma vez que os clientes recebem o estado do modelo global antes de continuar o treino.

Figura 2: Testes realizados com o MNIST comparando duas estratégias: combinar modelos otimizados individualmente com e sem pesos iniciais iguais.⁵

⁵A mistura é feita da seguinte forma: $\theta w + (1 - \theta)w'$

Resultados experimentais

Para por em prova o funcionamento algoritmo, foram feitos testes usando o dataset MNIST e duas redes: um MLP com 2 camadas ocultas e uma CNN com dois layers convolucionais 5x5.

Duas configurações de distribuição de dados existiram:

- Uma distribuição i.i.d entre os clientes.
- Uma distribuição não i.i.d em que os clientes recebiam apenas 1 ou 2 dígitos em seus datasets.

Foram usados 100 clientes para este experimento.

Os modelos foram treinados com alguns valores de learning rate diferentes, e os resultados exibidos correspondem aos que apresentaram melhores treinos.

2NN —	– IID ——	——Non-IID ——					
C $B = \infty$	B = 10	$B = \infty$	B = 10				
0.0 1455	316	4278	3275				
$0.1 1474 \ (1.0 \times$	$(3.6\times)$	$1796\ (2.4\times)$	$664 (4.9 \times)$				
$0.2 ext{ } 1658 (0.9 \times$	$(4.1\times)$	$1528 (2.8 \times)$	$619 (5.3 \times)$				
0.5 — (—	-) 75 (4.2×)	— (—)	$443 (7.4 \times)$				
1.0 — (-	-) 70 (4.5×)	— (—)	$380 (8.6 \times)$				
CNN, E = 5							
0.0 387	50	1181	956				
$0.1 339 \ (1.1 \times 10^{-6})$	$(2.8\times)$	$1100 (1.1 \times)$	$206 (4.6 \times)$				
$0.2 337 \ (1.1 \times 1.1)$	$(2.8\times)$	$978 (1.2 \times)$	$200 (4.8 \times)$				
$0.5 164 (2.4 \times$	$(2.8\times)$	$1067 (1.1 \times)$	$261 (3.7 \times)$				
1.0 246 (1.6×	$() \qquad 16 (3.1\times)$	<u> </u>	97 (9.9×)				

Tabela 1: Rounds necessários para alcançar uma acurácia de 97% para o MLP e 99% para a CNN de acurácia no MNIST.

MNIST CNN, 99% ACCURACY						
CNN	E	B	u	IID	Non-IID	
FEDSGD	1	∞	1	626	483	
FEDAVG	5	∞	5	179 $(3.5\times)$	$1000 \ (0.5\times)$	
FEDAVG	1	50	12	65 $(9.6 \times)$	$(0.8\times)$	
FEDAVG	20	∞	20	234 $(2.7\times)$	672 $(0.7\times)$	
FEDAVG	1	10	60	$34 (\hat{1}8.4 \times \hat{)}$	350 $(1.4\times)$	
FEDAVG	5	50	60	29 (21.6 \times)	334 $(1.4\times)$	
FEDAVG	20	50	240	$32 (19.6 \times)$	426 $(1.1\times)$	
FEDAVG	5	10	300	$20~(31.3\times)$	229 $(2.1\times)$	
FEDAVG	20	10	1200	18 (34.8×)	173 $(2.8\times)$	

Tabela 2: Rounds necessários para alcançar 99% de acurácia no MNIST com c = 0.1.6

 $^{^6}u$ é a quantidade estimada de descidas do gradiente por rodada.

- Os experimentos com o MNIST confirmaram que a combinação de modelos treinados em dígitos diferentes gera um modelo que converge.
- Apesar de aumentar a fração C também melhorar os resultados, valores mais baixos já trazem resultados vantajosos e não requerem excesso de comunicação.
- Aumentar a quantidade de computações feitas nos clientes é vantajoso, e os valores de B e E devem ser balanceados de acordo com as capacidades dos clientes.

Hipótese levantada: fazer a média dos modelos traz um efeito de regularização similar a um *dropout*.

Além de redes classificadoras com o MNIST, também foram conduzidos testes com um modelo de linguagem LSTM treinado na obra completa de Willian Shakespeare.

Duas configurações de partição do dataset foram usadas:

- Uma distribuição i.i.d entre os clientes.
- Uma distribuição na qual cada cliente tinha as falas de uma personagem diferente.

Foram usados 1146 clientes para este experimento.

A segunda configuração, além de não ser i.i.d, também é desbalanceada, já que alguns personagens tem mais falas do que outros.

SHAKESPEARE LSTM, 54% ACCURACY

LSTM	E	B	u	IID	Non-IID
FEDSGD	1	∞	1.0	2488	3906
FEDAVG	1	50	1.5	$1635 (1.5 \times)$	549 $(7.1\times)$
FEDAVG	5	∞	5.0	613 $(4.1\times)$	597 $(6.5\times)$
FEDAVG	1	10	7.4	460 $(5.4\times)$	$164\ (23.8\times)$
FEDAVG	5	50	7.4	401 $(6.2\times)$	$152~(25.7\times)$
FEDAVG	5	10	37.1	$192 \ (13.0 \times)$	41 (95.3×)

Tabela 3: Rounds necessários para alcançar 54% de acurácia em Shakespeare com C = 0.1.

Conclusões e importância

Os experimentos empíricos mostram que o Federated Learning pode ser usado em cenários práticos, uma vez que o algoritmo foi capaz de treinar modelos de alta qualidade e precisão.

Também foi mostrado que esse sucesso de treino não se restringe a um único tipo de modelo, já que tanto classificadores quanto modelos de linguagem foram treinados.

Aplicações práticas

- Modelo de predição da próxima palavra do teclado Gboard;
- Sensoreamento de poluição do ar por meio de dispositivos IoT;
- Avaliação de modelos médicos com dados de diferentes clínicas e hospitais;
- Treinamento de robôs para se localizarem corretamente em novos ambientes;
- Treinamento de modelos de detecção de obstáculos para carros autônomos;
- Entre muitas outras.

- FedDyn: mais robusto à divergência das distribuições dos datasets locais, utiliza uma regularização dinâmica à cada round para facilitar a convergência;
- FCL: combina federated learning com técnicas de compressão de dados e com intermediários entre os clientes e os servidores;
- LFRL: combina técnicas de reinforcement learning com federated learning para garantir modelos que consigam "guardar conhecimento" mesmo após múltiplos treinos.

Obrigado!

• McMahan, H. B., Moore, E., Ramage, D., Hampson, S., & Arcas, B. a. Y. (2016, February 17). Communication-Efficient Learning of Deep Networks from Decentralized Data. arXiv.org. https://arxiv.org/abs/1602.05629

Links para as aplicações práticas

- Federated Learning for Mobile Keyboard Prediction
- [...] Prediction in Smart City Sensing Applications
- Federated benchmarking of medical artificial intelligence with MedPerf
- [...] A Learning Architecture for Navigation in Cloud Robotic Systems
- Federated Learning in Vehicular Networks