NLP: N-Gram Models

Sargur N. Srihari srihari@cedar.buffalo.edu

This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/CSE676

Topics in NLP

- 1. Overview
- 2. N-gram Models
- 3. Neural Language Models
- 4. High-dimensional Outputs
- 5. Combining Neural LMs with n-grams
- 6. Neural Machine Translation
- 7. Attention Models
- 8. Historical Perspective

Use of probability in NLP

- Some tasks involving probability
 - 1. Predicting the next word

2. Which is more probable?

all of a sudden I notice three guys standing on the sidewalk

Same set of words in a different order is nonsensical:

on guys all I of notice sidewalk three a sudden standing the

Probability essential in tasks with ambiguous input:

- Speech recognition
- Spelling correction, grammatical error correction
- Machine translation

Computing the probability of a word

- Consider task of computing $P(w \mid h)$
 - the probability of a word w given some history h
 - Suppose the history h is"its water is so transparent that"
 - We want the probability that the next word is the:
 P(the | its water is so transparent that)
 - Estimate probability from frequency counts (C)
 P(the | its water is so transparent that) =
 C (its water is so transparent that the) / C (its water is so transparent that)
- Even the web is not big enough to estimate probability from frequency counts

A better method for probabilities

Chain rule of probability

$$P(X_1...X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1^2) ... P(X_n|X_1^{n-1}) = \prod_{k=1}^{n} P(X_k|X_1^{k-1})$$

Applying it to words

$$P(w_1) = P(w_1)P(w_2|w_1)P(w_3|w_1)\dots P(w_n|w_1) = \prod_{k=1}^{n} P(w_k|w_1) = \prod_{k=1}^{n} P(w_k|w_1)$$

- shows link between computing joint probability of a sequence and computing the conditional probability of a word given previous words.
- The intuition of the n-gram model is that instead of computing the probability of a word given its entire history, we can approximate the history by just the last few words

Bigram Probabilities

- Bigram
 - instead of computing the probability
 P(the|Walden Pond's water is so transparent that)
 - we approximate it with the probabilityP(the|that)
- We are making the assumption that

$$-P(w_n|w^{n-1}) = P(w_n|w_{n-1})$$

N-Gram Models

- An *n*-gram is a sequence of tokens, e.g., words
 - n-gram models define the conditional probability of the nth token given the previous n-1 tokens
- Products of conditional distributions define probability distributions of longer sequences

$$P(x_1,..,x_{\tau}) = P(x_1,..,x_{n-1}) \prod_{t=n}^{\tau} P(x_t \mid x_{t-n+1},..,x_{\tau-1})$$
 Sequence of length n

Comes from chain rule of probability

$$-P(x_1,...x_n)=P(x_n|x_1,...x_{n-1})P(x_1,...x_{n-1})$$

• Distribution of $P(x_1,...,x_{n-1})$ may be defined by a different model with a smaller value of n

Common *n*-grams

- Count how many times each possible n-gram occurs in the training set
 - Models based on n-grams have been core building block of NLP
- For small values of n, we have

```
n=1: unigram P(x_1)
```

n=2: bigram $P(x_1, x_2)$

n=3: trigram $P(x_1, x_2, x_3)$

Examples of n-grams

1. Frequencies of 4 and 3-grams

4-gram	FirstTerms	LastTerm	Frequency		
	Your house is	great	19		
	Your house looks	dirty	3		
	Your house looks	lovely	13		
	Your house looks	nice	21		
	Your house looks	peaceful	4		
	Your house seem	awful	4		
3-gram	FirstTerms	LastTerm	Frequency		
	house looks	clean	20		
	house looks	dark	6		
	house looks	dirty	13		
	house looks	haunting	2		
	house looks	lovely	14		
	house looks	nice	28		
	house looks	peaceful	9		
	house looks	unclean	3		
	I				

- 2. Protein Sequencing
- 3. DNA Sequencing
- 4. Computational linguistics (character)
- 5. Computational Linguistics (word)

Field	Unit	Sample sequence	1-gram sequence	2-gram sequence	3-gram sequence	
Vernacular name			unigram	bigram	trigram	
Order of resulting Markov model			0	1	2	
Protein sequencing	amino acid	Cys-Gly-Leu-Ser-Trp	, Cys, Gly, Leu, Ser, Trp,	, Cys-Gly, Gly-Leu, Leu-Ser, Ser-Trp,	, Cys-Gly-Leu, Gly-Leu-Ser, Leu-Ser-Trp,	
DNA sequencing	base pair	AGCTTCGA	, A, G, C, T, T, C, G, A,	, AG, GC, CT, TT, TC, CG, GA,	, AGC, GCT, CTT, TTC, TCG, CGA,	
Computational linguistics	character	to_be_or_not_to_be	, t, o, _, b, e, _, o, r, _, n, o, t, _, t, o, _, b, e,	, to, o_, _b, be, e_, _o, or, r_, _n, no, ot, t_, _t, to, o_, _b, be,	, to_, o_b, _be, be_, e_o, _or, or_, r_n, _no, not, ot_, t_t, _to, to_, o_b, _be,	
Computational linguistics	word	to be or not to be	, to, be, or, not, to, be,	, to be, be or, or not, not to, to be,	, to be or, be or not, or not to, not to be,	

Unigram and Bigram Probabilities

Unigram Counts

i	want	to	eat	chinese	food	lunch	spend
2533	927	2417	746	158	1093	341	278

Bigram Counts

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

Bigram Probabilities

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

 $P(\langle s \rangle \text{ i want english food } \langle /s \rangle)$

 $= P(i \mid <s>)P(want \mid i)P(english \mid want)$

P(food | english)P(</s>| food)

 $= .25 \times .33 \times .0011 \times 0.5 \times 0.68$

= .000031

Training *n*-Gram Models

 Usually train both an n-gram model and an n-1 gram model making it easy to compute

$$P(x_{t} \mid x_{t-n+1},...,x_{\tau-1}) = \frac{P_{n}(x_{t-n+1},...,x_{t})}{P_{n-1}(x_{t-n+1},...,x_{t-1})} \\ probability$$
 n-1 gram probability

- Simply by looking up two stored probabilities
- For this to exactly reproduce inference in P_n we must omit the final character from each sequence when we train P_{n-1}

Example of Trigram Model Computation

- How to compute probability of "THE DOG RAN AWAY"
 - The first words of the sentence cannot be handled by the default formula on conditional probability because there is no context at the beginning of the sentence
 - Instead we must use the marginal probability over words at the start of the sentence. We thus evaluate P_3 (THE DOG RAN)
 - The last word may be predicted using the typical case, of using conditional distribution P(AWAY|DOG RAN)
 - Putting this together

$$P(THE\ DOG\ RAN\ AWAY) = \frac{P_3(THE\ DOG\ RAN)P_3(DOG\ RAN\ AWAY)}{P_2(DOG\ RAN)}$$

Limitation of Maximum Likelihood for *n*-gram models

- P_n estimated from training samples is very likely to be zero in many cases even though the tuple $x_{t-n+1},...,x_t$ may appear in test set
 - When P_{n-1} is zero the ratio is undefined
 - When P_{n-1} is non-zero but P_n is zero the log-likelihood is $-\infty$
- To avoid such catastrophic outcomes, n-gram models employ smoothing
 - Shift probability mass of observed tuples to unobserved similar ones

Smoothing techniques

- 1. Add non-zero mass to next symbol values
 - Justified as Bayesian inference with a uniform or Dirichlet prior over count parameters
- 2. Mixture of higher/lower-order *n*-gram models
 - with higher-order models providing more capacity and lower-order models more likely to avoid counts of zero
- 3. Back-off methods look-up lower-order n-grams if frequency of context $x_{t-1}, \ldots, x_{t-n+1}$ is too small to use higher-order model
 - More formally, they estimate distribution over x_t by using contexts $x_{t-n+k}, \ldots, x_{t-1}$, for increasing k, until a sufficiently reliable estimate is found

N-gram with Backoff

- For high order models, e.g, N= 5, only a small fraction of N-grams appear in training corpus
 - a problem of data sparsity
 - with 0 probability for almost all sentences
- To counteract this, several back-off techniques have been suggested, the most popular being:

– where α and p are called back-off coefficients and discounted probabilities, respectively

Shortcomings of *n*-gram models

- Vulnerable to curse of dimensionality
- There are $|V|^n$ possible n-grams and |V| is large
- Even with a massive training set most n-grams will not occur
- One way to view a classical n-gram model is that it is performing nearest-neighbor lookup
 - In other words, it can be viewed as a local nonparametric predictor, similar to k-nearest neighbors
 - Any two words are at same distance from each other

Class-based language models

- To improve statistical efficiency of n-gram models
 - Introduce notion of word categories
 - Share statistics of words in same categories
- Idea: use a clustering algorithm to partition words into clusters based on their cooccurrence frequencies with other words
 - Model can then use word-class IDs rather than individual word-IDs to represent context
- Still much information is lost in this process