2 ONE-DIMENSIONAL SEARCH METHODS

7.2 Let $f(x) = x^2 + 4\cos x$, $x \in \mathbb{R}$. We wish to find the minimizer x^* of over the interval [1,2].						
a. Plot $f(x)$ vers	. Plot $f(x)$ versus x over the interval [1, 2].					
b. Use the golde intermediate ste			cate x^* to wi	thin an ur	ncertainty of 0.2. Display al	
Iteration k	a_k	b_k	$f(a_k)$	$f(b_k)$	New uncertainty interval	
c. Repeat part b using a table:	using the I	ibonacci me	ethod, with $arepsilon$	= 0.05. Di	splay all intermediate steps	
Iteration k	ρ_k	$a_k b_k$	$f(a_k)$	$f(b_k)$	New uncertainty interval	
d. Apply Newton 1.	n's method,	using the s	ame number	of iteration	ons as in part b, with $x^{(0)} =$	
Newton's metho	d to devise	e a method	to approxim	ate log(2)	onentials. Based on this, use [where "log" is the natura orm two iterations.	