Validity of the Small-Signal Model

- Basically linearization
 of the operating
 region around the Q point
- This linearization should not contain any higher-order terms

• To start with, assume $V_A \rightarrow \infty$ $> I_{CO} = I_S \exp(V_{BEO}/V_T)$

• Thus:

$$\begin{split} I_{c} &= I_{S} \exp \left(\frac{V_{be}}{V_{T}} \right) = I_{S} \exp \left(\frac{V_{BEQ} + V_{i}}{V_{T}} \right) \\ &= I_{S} \exp \left(\frac{V_{BEQ}}{V_{T}} \right) \exp \left(\frac{V_{i}}{V_{T}} \right) = I_{CQ} \exp \left(\frac{V_{i}}{V_{T}} \right) \end{split}$$

• Expand the *exponential term* in series:

$$I_{c} = I_{CQ} \left[1 + \frac{V_{i}}{V_{T}} + \frac{1}{2!} \left(\frac{V_{i}}{V_{T}} \right)^{2} + \frac{1}{3!} \left(\frac{V_{i}}{V_{T}} \right)^{3} + \cdots \right]$$

• Thus:

$$i_{c} = I_{c} - I_{CQ} = I_{CQ} \left[\frac{v_{i}}{V_{T}} + \frac{1}{2!} \left(\frac{v_{i}}{V_{T}} \right)^{2} + \frac{1}{3!} \left(\frac{v_{i}}{V_{T}} \right)^{3} + \cdots \right]$$

• True linearization of i_c - v_i relation can be achieved only if all higher-order terms can be neglected $\Rightarrow v_i$ should be $<< V_T$

Small-Signal Model Parameters

• Incremental Emitter Resistance (r_F):

$$r_{E} = \frac{v_{i}}{i_{e}} = \frac{\Delta V_{BE}}{\Delta I_{E}} \equiv \frac{dV_{BE}}{dI_{E}} = \frac{V_{T}}{I_{E}}$$

• *Transconductance* (g_m):

$$g_{\rm m} = \frac{i_{\rm c}}{v_{\rm i}} = \frac{\Delta I_{\rm C}}{\Delta V_{\rm BE}} \equiv \frac{dI_{\rm C}}{dV_{\rm BE}} \bigg|_{V_{\rm CE} \text{ constant}} = \frac{I_{\rm C}}{V_{\rm T}}$$

- ightharpoonup Thus, $g_m r_E = I_C / I_E = \alpha \approx 1$
- > A frequently used approximation:
 - $g_m = 1/r_E$
- \triangleright For $I_C = 1$ mA:
 - $r_E = 26 \Omega$ and $g_m = 1/26 A/V$
- \rightarrow As I_C \uparrow :
 - $g_m \uparrow$ and $r_E \downarrow$
 - Also $P_D \uparrow$
- \triangleright Gain = f(g_m)
 - ⇒ For *higher gain*, the circuit has to be fed *more* power