INTRODUÇÃO AO PENSAMENTO ALGORÍVMICO

PROVA DE CORRETUDE

Profa. Dra. Marcela Xavier Ribeiro

DC/UFSCar

INVARIANTES DE LAÇO ALGORITMOS ITERATIVOS

- é uma técnica para provar que um algoritmo está correto
- escolhe-se uma propriedade (relação entre variáveis) do algoritmo que se deseja verificar. Se essa propriedade se mantiver verdadeira antes, durante e depois da execução do laço, dizemos que o programa está correto

INVARIANTES DE LAÇO

- Inicialização
 - A propriedade é verdadeira antes da primeira iteração do laço
- Manutenção
 - À medida que o laço é iterado, a propriedade deve permanecer verdadeira
- Terminação
 - Ao final do laço a propriedade continua verdadeira? Logo, o algoritmo está correto

INVARIANTE DE LAÇO EXEMPLO

Cálculo da somatória dos números de 1 a N;

Soma = 1 //soma contém a soma de 1, início do problema

Para i = 2 até N faça: //soma contém a soma de 1 até i Soma = soma + i;

Imprima (soma) //no final do laço i = N, então soma contém a soma de 1 até N

INDUÇÃO ALGORITMOS RECURSIVOS

- A base: mostrar que o enunciado vale para n = 0, ou n = 1
- O passo indutivo: mostrar que, se o enunciado vale para n = k, então o mesmo enunciado vale para n = k + 1.

INDUÇÃO

- Prova-se que o enunciado é verdadeiro para um valor inicial;
- Prova-se que o processo usado para ir de um valor para o próximo é valido.
- Se ambas as coisas são provadas, então qualquer valor pode ser obtido através da repetição desse processo.
- Para entender por que os dois passos são suficientes, é útil pensar no efeito dominó: se você tem uma longa fila de dominós em pé e você puder assegurar que:
 - O primeiro dominó cairá.
 - Sempre que um dominó cair, seu próximo vizinho também cairá.
 - Assim, você pode concluir que todos os dominós cairão.

Fonte: https://pt.wikipedia.org/wiki/Indu%C3%A7%C3%A3o_matem%C3%A1tica

EXEMPLO

Queremos provar que: 1 + 2 + ... + n = n.(n + 1)/2

Hipótese da Indução (H.I.):

supor verdadeiro:
$$I(n) = n.(n + 1)/2$$

Caso base:

$$n = 1$$
, sabe-se que $I(1) = 1$
 $I(1) = 1 \cdot (1 + 1)/2 = 1$

Passo indutivo:

Provar que
$$I(n + 1) = (n + 1).(n + 2)/2$$

sabe-se $I(n+1) = I(n) + (n+1)$
temos pela hipótese que $I(n) = n.(n+1)/2$
 $(n + 1).(n + 2)/2 = n(n+1)/2 + (n+1)$

 $(n^2 + 3n + 2)/2 = (n^2 + 3n + 2)/2$

O que é verdadeiro.

PARA A PRÓXIMA AULA

- Listar 3 exemplos de
 - problemas iterativos e definir invariantes de laço;
 - problemas recursivos e como seria a prova por indução.

INTRODUÇÃO AO PENSAMENTO ALGORÍTMICO

PROVA DE CORRETUDE

Profa. Dra. Marcela Xavier Ribeiro

DC/UFSCar

