Domain Driven Decompositional Semantics

Pranjal Singh

Supervisor: Dr. Amitabha Mukerjee

B.Tech - M.Tech Dual Degree

Thesis Defense

Department of Computer Science & Engineering IIT Kanpur

June 15, 2015

Outline

- Introduction
- 2 Background
- 3 Datasets
- 4 Method and Experiments
- 6 Results
- 6 Conclusion and Future Work

Outline

Introduction

- Introduction
- 2 Background
- 3 Datasets
- Method and Experiments
- 5 Results
- **6** Conclusion and Future Work

Introduction to Decompositional Semantics

Introduction

-0000

Decompositional Semantics is a way to describe a language entity word/paragraph/document by a constrained representation that identifies the most relevant representation conveying the semantics of the whole.

For example, a document can be broken into aspects such as its tf-idf representation, distributed semantics vector, etc.

Introduction to Decompositional Semantics

Why need Decompositional Semantics?

It is language independent

Introduction

00000

 It decomposes language entity into various aspects that are latent in its meaning

• All aspects are important in their own ways

Introduction to Decompositional Semantics

Decompositional Semantics in Sentiment Analysis domain,

- ullet A set of documents $D = \{d_1, \dots, d_{|D|}\}$
- A set of aspects $A = \{a_1, \dots, a_{|M|}\}$
- ullet Training data for n (n < |D|) documents, $\mathcal{T} = \{\mathit{I}_{d_1}, \ldots, \mathit{I}_{d_n}\}$

Example:

Introduction

00000

Documents	tf-idf	Word Vector Average	Document Vector	BOW
d_1	0	0	1	0
d_2	0	1	1	0
d_3^-	1	0	0	1
d_4	×	x	x	×
d_5	1	1	1	1

Using \mathcal{T} , D and A, the supervised classifier \mathcal{C} learns a representation to predict sentiments of individual documents.

Problem Statement

Better Language Representation

- To highlight the vitality of Decompositional Semantics in language representation
- To use Distributional Semantics for under resourced languages such as Hindi
- To demonstrate the effect of various parameters on language representation

Contribution of this thesis

Hindi

Introduction 0000

- Better representation of Hindi text using Distributional semantics
- Achieved state-of-the-art results for sentiment analysis on product and movie review corpus

Paper accepted in regICON'15

New Corpus

- Released a corpus of 700 Hindi movie reviews
- Largest corpus in Hindi in reviews domain

English

- Proposed a more generic representation of English text
- Achieved state-of-the-art results for sentiment analysis on IMDE movie reviews and Amazon electronics reviews

Submitted in FMNI P'15

Contribution of this thesis

Hindi

Introduction 0000

- Better representation of Hindi text using Distributional semantics
- Achieved state-of-the-art results for sentiment analysis on product and movie review corpus

Paper accepted in regICON'15

New Corpus

- Released a corpus of 700 Hindi movie reviews
- Largest corpus in Hindi in reviews domain

English

- Proposed a more generic representation of English text
- Achieved state-of-the-art results for sentiment analysis on IMDE movie reviews and Amazon electronics reviews

Submitted in FMNI P'15

Contribution of this thesis

Hindi

Introduction

0000

- Better representation of Hindi text using Distributional semantics
- Achieved state-of-the-art results for sentiment analysis on product and movie review corpus

Paper accepted in regICON'15

New Corpus

- Released a corpus of 700 Hindi movie reviews
- Largest corpus in Hindi in reviews domain

English

- Proposed a more generic representation of English text
- Achieved state-of-the-art results for sentiment analysis on IMDB movie reviews and Amazon electronics reviews

Submitted in FMNI P'15

Outline

- 1 Introduction
- 2 Background
- 3 Datasets
- 4 Method and Experiments
- 6 Results
- **6** Conclusion and Future Work

Bag of Words(BOW) Model

- ullet Document d_i represented by $v_{d_i} \in \mathbb{R}^{|V|}$
- Each element in v_{d_i} denotes presence/absence of each word
- Drawbacks:
 - High-dimensionality
 - Ignores word ordering
 - Ignores word context
 - Verv sparse

Bag of Words(BOW) Model

- ullet Document d_i represented by $v_{d_i} \in \mathbb{R}^{|V|}$
- Each element in v_{d_i} denotes presence/absence of each word
- Drawbacks:
 - High-dimensionality
 - Ignores word ordering
 - Ignores word context
 - Very sparse

Term Frequency-Inverse Document Frequency(tf-idf) Model

- ullet Document d_i represented by $v_{d_i} \in \mathbb{R}^{|V|}$
- Each element in v_{d_i} is the product of term frequency and inverse document frequency: $tfidf(t,d) = tf(t,d) \times \log(\frac{\|D\|}{df(t)})$
- Gives weights to terms which are less frequent and hence important
- Drawbacks
 - High-dimensionality
 - Ignores word ordering
 - Ignores word context
 - Very sparse

Term Frequency-Inverse Document Frequency(tf-idf) Model

- Document d_i represented by $v_{d_i} \in \mathbb{R}^{|V|}$
- Each element in v_{d_i} is the product of term frequency and inverse document frequency: $tfidf(t,d) = tf(t,d) \times \log(\frac{||D||}{df(t)})$
- Gives weights to terms which are less frequent and hence important
- Drawbacks:
 - High-dimensionality
 - Ignores word ordering
 - Ignores word context
 - Very sparse

Distributed Representation of Words (Mikolov et al., 2013b)

- ullet Each word $w_i \in V$ is represented using a vector $v_{w_i} \in \mathbb{R}^k$
- ullet The vocabulary V can be represented by a matrix $V \in \mathbb{R}^{k imes |V|}$
- Vectors (v_{w_i}) should encode the semantics of the words in vocabulary
- Drawbacks
 - Ignores exact word ordering
 - Cannot represent documents as vectors without composition

Distributed Representation of Words(Mikolov et al., 2013b)

- ullet Each word $w_i \in V$ is represented using a vector $v_{w_i} \in \mathbb{R}^k$
- ullet The vocabulary V can be represented by a matrix $V \in \mathbb{R}^{k imes |V|}$
- Vectors (v_{w_i}) should encode the semantics of the words in vocabulary
- Drawbacks:
 - Ignores exact word ordering
 - Cannot represent documents as vectors without composition

Distributed Representation of Documents(Le and Mikolov, 2014)

- ullet Each document $d_i \in D$ is represented using a vector $v_{d_i} \in \mathbb{R}^k$
- ullet The set D can be represented by a matrix $D \in \mathbb{R}^{k imes |D|}$
- \bullet Vectors (v_{d_i}) should encode the semantics of the documents
- Comments:
 - Can represent documents
 - Ignores contribution of indvidual word while building document vectors

Distributed Representation of Documents(Le and Mikolov, 2014)

- Each document $d_i \in D$ is represented using a vector $v_{d_i} \in \mathbb{R}^k$
- ullet The set D can be represented by a matrix $D \in \mathbb{R}^{k imes |D|}$
- \bullet Vectors (v_{d_i}) should encode the semantics of the documents
- Comments:
 - Can represent documents
 - Ignores contribution of indvidual word while building document vectors

Background on Sentiment Analysis

- Pang et al.(2004) obtained 87.2% accuracy on a dataset that discarded objective sentences and used text categorization techniques on the subjective sentences
- Socher et al.(2013) used recursive neural network over sentiment treebank for sentiment classification
- Le and Mikolov (2014) use document vector model and obtained 92.6% accuracy on IMDB movie review dataset

Background on Sentiment Analysis

There has been limited work on sentiment analysis in Hindi

- Joshi et al.(2010) used In-language sentiment analysis, Machine Translation and Resource Based Sentiment Analysis to achieve 78.1% accuracy
- Mukherjee et al.(2012) presented the inclusion of discourse markers in a BOW model to improve the sentiment classification accuracy by 2-4%
- Mittal et al.(2013) incorporate hand-coded rules dealing with negation and discourse relations achieving 80.2% accuracy

Background on Sentiment Analysis

There has been limited work on sentiment analysis in Hindi

- Joshi et al.(2010) used In-language sentiment analysis, Machine Translation and Resource Based Sentiment Analysis to achieve 78.1% accuracy
- Mukherjee et al.(2012) presented the inclusion of discourse markers in a BOW model to improve the sentiment classification accuracy by 2-4%
- Mittal et al.(2013) incorporate hand-coded rules dealing with negation and discourse relations achieving 80.2% accuracy

Outline

- Introduction
- 2 Background
- 3 Datasets
- 4 Method and Experiments
- 6 Results
- 6 Conclusion and Future Work

Outline

- 1 Introduction
- 2 Background
- 3 Datasets
- 4 Method and Experiments
- 6 Results
- 6 Conclusion and Future Work

Distributed Word Representation

Skipgram

- Each current word acts as an input to a log-linear classifier with continuous projection layer, and predict words within a certain range before and after the current word
- The objective is to maximize the probability of the context given a word:

$$p(c|w;\theta) = \frac{\exp^{v_c \cdot v_w}}{\sum_{c' \in C} \exp^{v_c \cdot v_w}}$$

• v_c and $v_w \in R^d$ are vector representations for context c and word w respectively. C is the set of all available contexts. The parameters θ are v_{Ci} , v_{wi} for $w \in V$, $c \in C$, $i \in 1, ..., d$

Distributed Word Representation

- \bullet Weights between the input layer and the output layer can be represented by a $V \times N$ matrix ${\bf W}$
- Each row of ${\bf W}$ is the N-dimension vector representation v_w of the associated word of the input layer
- ullet Given a word, assuming $x_k=1$ and $x_{k'}=0$ for k'
 eq k, then

$$h = x^T W = W_{(k,.)} := v_{w_l}$$

 $u_j = v'_{w_j}^T . h$

- v_{w_l} is the vector representation of the input word w_l and u_j is the score of each word in the vocabulary
- There is a different weight matrix $\mathbf{W'} = \{w'_{ij}\}$ which is a $N \times V$ matrix between hidden and output layer
- Softmax function is used to predict probabilities and Stochastic Gradient Descent is used to update the parameters of the model

Distributed Document Representation

Motivation

- Drawbacks in BOW like sparsity, high-dimensionality, inability to encode context information and consider word ordering
- Composition models alone cannot represent documents (Blacoe and Lapata, 2012)
- Recursive Tensor Neural Networks (Socher et al.,2013) are computationally expensive and cannot be composed into document vectors when there are multiple sentences due to parsing issues
- Presence of similarity measures to deal with synonyms or semantically similar documents

Distributed Document Representation

- Every document is now mapped to a unique vector and id, represented by a matrix D
- Word vector matrix W is shared across all documents and contexts are now separately sampled for each document
- The only difference in this model is that h is now constructed with both W and D.

The *Principle of Compositionality* is that meaning of a complex expression is determined by the meaning of its constituents and the rules which guide this combination. It is also known as *Frege's Principle*. For example,

The movie is funny and the screenplay is good

In the above sentence, consider the word vectors are represented by w(x) and the sentence vector as S(x). Hence,

$$S(x) = c_1 w_1(x) \Theta c_2 w_2(x) \Theta c_3 w_3(x) \Theta c_4 w_4(x) \dots \Theta c_k w_k(x)$$
 (1)

where Θ can be any operation(e.g., addition, multiplication) and c_i s are constants.

- We describe two approaches to incorporate graded weighting into word vectors for building document vectors.
- Let v_{w_i} be the vector representation of the i^{th} word. Then document vector v_{d_i} for i^{th} document is:

$$v_{d_i} = \left\{ egin{array}{ll} 0 & w_k \in stopwords \ \sum\limits_{w_k \in d_i} v_{w_k} & w_k \notin stopwords \end{array}
ight.$$

The above equation is 0-1 step-function which ignores contribution of all stop words.

Another schema which incorporates idf weight is:

$$v_{d_i} = \left\{egin{array}{ll} 0 & idf(w_k, d_i) \leq \delta \ \sum\limits_{w_k \in d_i} idf(w_k, d_i).v_{w_k} & otherwise \end{array}
ight.$$

where δ is a pre-defined threshold below which the word has no importance and above which the idf terms gives importance to that particular word.

- We describe two approaches to incorporate graded weighting into word vectors for building document vectors.
- Let v_{w_i} be the vector representation of the i^{th} word. Then document vector v_{d_i} for i^{th} document is:

$$v_{d_i} = \left\{ egin{array}{ll} 0 & w_k \in stopwords \ \sum\limits_{w_k \in d_i} v_{w_k} & w_k \notin stopwords \end{array}
ight.$$

The above equation is 0-1 step-function which ignores contribution of all stop words.

Another schema which incorporates idf weight is:

$$v_{d_i} = \left\{egin{array}{ll} 0 & idf(w_k,d_i) \leq \delta \ \sum\limits_{w_k \in d_i} idf(w_k,d_i).v_{w_k} & otherwise \end{array}
ight.$$

where δ is a pre-defined threshold below which the word has no importance and above which the *idf* terms gives importance to that particular word.

- We describe two approaches to incorporate graded weighting into word vectors for building document vectors.
- Let v_{w_i} be the vector representation of the i^{th} word. Then document vector v_{d_i} for i^{th} document is:

$$v_{d_i} = \begin{cases} 0 & w_k \in stopwords \\ \sum_{w_k \in d_i} v_{w_k} & w_k \notin stopwords \end{cases}$$

The above equation is 0-1 step-function which ignores contribution of all stop words.

Another schema which incorporates idf weight is:

$$v_{d_i} = \left\{ egin{array}{ll} 0 & idf(w_k, d_i) \leq \delta \ \sum\limits_{w_k \in d_i} idf(w_k, d_i).v_{w_k} & otherwise \end{array}
ight.$$

where δ is a pre-defined threshold below which the word has no importance and above which the idf terms gives importance to that particular word.

Composition	Accuracy	
Multiplication	50.30	
Average	88.42	
Weighted Average	89.56	

Table 1 : Results of Vector Composition with different Operations

Method	Weight	Accuracy(1)	Accuracy(2)
0-1	0	93.84	93.06
Weighting	1	93.91	93.18
Graded idf Weighting	2	93.89	93.17
	2.5	93.87	93.16
	2.8	93.86	93.16
	3	93.86	93.22
	4	93.83	93.12

Table 2: Results on IMDB Movie Reviews(Composite Document Vector);Accuracy(2) is when we exclude tf-idf features

Work Flow

Figure 1: Work Flow

Outline

- Introduction
- 2 Background
- 3 Datasets
- 4 Method and Experiments
- 6 Results
- 6 Conclusion and Future Work

Outline

- 1 Introduction
- 2 Background
- Opening the second of the s
- Method and Experiments
- 5 Results
- 6 Conclusion and Future Work

Weightages

Song Features

- Artist similarity has been assigned a weight of 60%
- 20% each for loudness & tempo
- These values have been evaluated to good results

Similarity v/s Popularity

- 65% weightage has been assgined to similarity and 35% to popularity
- A few number of test runs suggested the above weightages to be good

Weightages

Song Features

- Artist similarity has been assigned a weight of 60%
- 20% each for loudness & tempo
- These values have been evaluated to good results

Similarity v/s Popularity

- ullet 65% weightage has been assgined to similarity and 35% to popularity
- A few number of test runs suggested the above weightages to be good

Performance Evaluation

- Most recent t tracks have been considered for testing
- Following m tracks are taken for current mood
- Recommended songs are then matched with the t tracks
- The rank of the top recommendation that appears in the test set is noted
- The similarity of the most similar mood window is also noted

Similar Users	Mood Length	Weights	Confidence	Rank
50	5	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	62.89 %	944
75	5	1/3, 1/3, 1/3	48.45 %	3879
100	5	1/3, 1/3, 1/3	48.45 %	84
150	5	1/3, 1/3, 1/3	51.01 %	135
200	5	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	52.63 %	211
50	10	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	45.06 %	3418
75	10	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	45.50 %	4751
100	10	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	46.93 %	1722
50	5	$\frac{1}{5}, \frac{2}{5}, \frac{2}{5}$	43.28 %	4033
50	5	$\frac{3}{5}, \frac{1}{5}, \frac{1}{5}$	70.57 %	936
75	5	$\frac{3}{5}, \frac{1}{5}, \frac{1}{5}$	60.03 %	4367
100	5	$\frac{3}{5}, \frac{1}{5}, \frac{1}{5}$	62.10 %	78
150	5	$\frac{3}{5}, \frac{1}{5}, \frac{1}{5}$	64.73 %	120

Table 3: Test Results for Last.FM user: 3en

Similar Users	Mood Length	Weights	Confidence	Rank
50	5	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	62.39 %	2376
75	5	1/3, 1/3, 1/3	50.43 %	N/A
100	5	1/3, 1/3, 1/3	50.43 %	7608
150	5	1/3, 1/3, 1/3	50.43 %	8828
200	5	1/3, 1/3, 1/3	52.40 %	10018
50	10	1/3, 1/3, 1/3	48.91 %	N/A
75	10	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	48.91 %	N/A
100	10	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	48.91 %	N/A
50	5	$\frac{1}{5}, \frac{2}{5}, \frac{2}{5}$	43.28 %	N/A
50	5	$\frac{3}{5}, \frac{1}{5}, \frac{1}{5}$	70.70 %	2391
75	5	$\frac{3}{5}, \frac{1}{5}, \frac{1}{5}$	66.15 %	N/A
100	5	$\frac{3}{5}, \frac{1}{5}, \frac{1}{5}$	66.15 %	7095
150	5	$\frac{3}{5}, \frac{1}{5}, \frac{1}{5}$	66.15 %	7767

Table 4: Test Results for Last.FM user: RJ

Similar Users	Mood Length	Weights	Confidence	Rank
50	5	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	62.59 %	59
75	5	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	50.43 %	607
100	5	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	48.37 %	736
150	5	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	51.94 %	1095
200	5	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	51.94 %	1428
50	10	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	48.91 %	2632
75	10	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	48.91 %	3736
100	10	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	46.91 %	4304
50	5	$\frac{1}{5}, \frac{2}{5}, \frac{2}{5}$	43.28 %	563
50	5	$\frac{3}{5}, \frac{1}{5}, \frac{1}{5}$	70.94 %	85
75	5	$\frac{3}{5}, \frac{1}{5}, \frac{1}{5}$	66.15 %	555
100	5	$\frac{3}{5}, \frac{1}{5}, \frac{1}{5}$	63.88 %	650
150	5	$\frac{3}{5}, \frac{1}{5}, \frac{1}{5}$	64.59 %	970

Table 5: Test Results for Last.FM user: eartle

Similar Users	Mood Length	Weights	Confidence	Rank
50	5	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	61.84 %	141
75	5	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	49.83 %	629
100	5	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	49.71 %	674
150	5	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	51.10 %	4351
200	5	1/3, 1/3, 1/3	51.48 %	4363
50	10	1/3, 1/3, 1/3	47.49 %	3160
75	10	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	47.49 %	3135
100	10	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	47.54 %	3225
50	5	$\frac{1}{5}, \frac{2}{5}, \frac{2}{5}$	43.28 %	4422
50	5	$\frac{3}{5}, \frac{1}{5}, \frac{1}{5}$	67.74 %	103
75	5	$\frac{3}{5}, \frac{1}{5}, \frac{1}{5}$	66.18 %	470
100	5	$\frac{3}{5}, \frac{1}{5}, \frac{1}{5}$	64.43 %	471
150	5	$\frac{3}{5}, \frac{1}{5}, \frac{1}{5}$	64.43 %	5227

Table 6: Test Results for Last.FM user: franhale

Similar Users	Mood Length	Weights	Confidence	Rank
50	5	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	62.64 %	4953
75	5	1/3, 1/3, 1/3	50.09 %	9857
100	5	1/3, 1/3, 1/3	50.09 %	11647
150	5	1/3, 1/3, 1/3	51.10 %	6587
200	5	1/3, 1/3, 1/3	51.48 %	8008
50	10	1/3, 1/3, 1/3	48.08 %	N/A
75	10	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	48.08 %	2584
100	10	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$	48.08 %	2887
50	5	$\frac{1}{5}, \frac{2}{5}, \frac{2}{5}$	43.28 %	N/A
50	5	$\frac{3}{5}, \frac{1}{5}, \frac{1}{5}$	70.75 %	5005
75	5	$\frac{3}{5}, \frac{1}{5}, \frac{1}{5}$	65.97 %	7819
100	5	$\frac{3}{5}, \frac{1}{5}, \frac{1}{5}$	65.97 %	9345
150	5	$\frac{3}{5}, \frac{1}{5}, \frac{1}{5}$	68.19 %	5749

Table 7: Test Results for Last.FM user: massdosage

Optimizations

- Parallelization: Independent jobs have been forked in parallel to reduce runtime
- On-Demand Caching: Not only avoids loading the entire DB into memory, but also prevents disk access each time the same resource is called for. Also reduces multiple file accesses
- Minimal data handling: Minimal data is stored in memory in a serialized JSON format

Future Work

- Larger and newer dataset
- Machine learning to implement feedback mechanism for user specific weightages
- More features like MFCC can be included appropriately
- Code can be optimized even further by the use of distributed systems

Thank you!