j	
٠Ū	
:0	
j	
m	
ίΠ	
m	
44	
Œ	
O	
ŧ.	
TU	
15, 25, 11.	•
-	

4

5 6

7

8

1 2

3

1 2

3

1

2 3

1 2

3

5 6

CLAIMS

1.	À	method	for	visualizing	circuit	operation,
COI	np:	rising:				•

- a. obtaining device activity based on one or more of measured or simulated activity;
- b. expressing the device activity in a representation; and
- c. Pepresenting the expressed activity in a visual form.
- 2. A method according to claim 1, wherein said representation includes sequence, connectivity and causal relationship information.
- 3. A method according to claim 1, wherein said representing step includes the step of visualizing the expressed activity in an IC\CAD viewer.
- 4. A method according to claim 1, wherein said representing step includes the atep of visualizing the device activity representation as a simulation of optical emissions that occur as a result of the device activity.
- 5. A method according to claim 1, wherein the obtaining step includes the steps of:

applying device activity traces as inputs to the circuit; and

measuring sequences of logical states at designated elements.

2

1

2

4

1

3

4

1		
	>6. A method according to claim 5, wherein the expressin	g
70%	step includes the step of expressing the measured	
3	sequences in a sequence graph format.	

- 7. A method according to claim 1, wherein said obtaining step includes the step of obtaining an activity trace based on one or more of measured or simulated activity.
- 8. A method according to claim 1, wherein the visual form is a slow motion animation.
- 9. A method according to claim 8, wherein the slow motion animation is a video visualization.
 - 10. A method according to claim 1, wherein the visual form is an animated schematic.
 - 11. A method according to claim 10, wherein in the animated schematic, the devices or collection of devices appear highlighted, or change color, shape or otherwise visualize the occurrence of switching.
 - 12. A method according to claim 1 wherein audio representation of circuit activity augments the visualization by the occurrence of sound in conjunction with the visual indication of circuit activity.
- 1 13. A method according to claim 12, wherein the audio 2 frequency or other audio character is related to the 3 timing relationships of the switching events.

16	
And I	14. A method according to claim 13, wherein the timing
/20/	relationships of the switching events include delay from
¹ 3 (prior switching event, or device transition speed, or
4	input to output delay.
1	15. A method according to claim 1, wherein switching
2	behavior a mathematical graphical
3	representation which is related to a netlist.
	\ <u></u>
1	16. A method\according to claim 4, further comprising the
2	step of modeling the emissions as a hot electron
3	photoluminescence model.
1	17. A method according to claim 4, further comprising the
2	step of assigning the emission based on a two-state
3	(optically active δ_{Γ} not) model according to whether the
4	device is switching or not.
1	18. A method according to claim 17, wherein the method of
2	determining the switching state of a device is by
3	thresholding the current.
1	19. A method according to claim 17, further comprising
2	the step of assigning the switching state by checking for
3	logical state (0 or 1) transitions at nets corresponding
4	to the terminals of a device to detect if the device
5	switches in response to the input level(s) to the device.
1	20. A method according to claim 4, wherein an areal (x-y)
2	view of the simulation is produced from the simulation

emission.

3

0 0 -1	
	$ extstyle 21. \ ar{ extstyle A}$ method according to claim 1, further comprising the
DAX	step of designating regions of a device as an array of
2 0	
³ //	"pixe\s" overlaid to the device.
, /	
1	22. A method according to claim 20, wherein the areal
2 \	distribution model is a Gaussion distribution from point
3	sources from designated areas of the device.
1 .	23. A method according to claim 22, wherein the
2	illumination intensity at each pixel results from a Monte
3	Carlo simulation of events.
1	24. A method according to claim 1, wherein the visual
2	form is a current flow animation.
1	25. A method according to claim 1, wherein the visual
2	form is a local power dissipation animation.
1	26. A method according to claim 1, wherein the visual
2	form is a verification trace animation.
1	27. A method according to claim \(\), wherein the simulated
2	activity is a circuit electrical simulation and is
3	conducted for manufacturing test and subsequently
4 ·	animated.
1	28. A method according to claim 1, wherein the visual
2	form is a sequence graph depicting the causal order of

waveform transition events.

ر 29.	A method according to claim 27, wherein the	
elec	trical simulation is conducted for manufacturing	test
and	subsequently animated for optical emission.	

- 30. A method according to claim 1, wherein optical emission measurement data is compared to optical emission simulation data and the regions (in x,y,t) of agreement and/or disagreement between the two are identified.
- 31. A method according to claim 1, wherein logical state data gathered from optical emission measurement is compared to logical state data from simulation and the areas (in x,y,t) of agreement and/or disagreement between the two are identified.
- 32. A method according to claim 1, wherein the expressing step includes the step of expressing the device activity in a sequence graph format.
- 33. A method according to claim 32, wherein the sequence graph is derived from a netlist or schematic, and comprises a record of the events that occurred within the network as a result of the system input.
- 34. A method according to claim 1, wherein the obtaining step includes the step of obtaining optical emissions from the circuit as a result of stimuli input to the circuit.
- 1 35. A method according to claim 34, wherein the optical 2 emissions are generated by switching activity caused by 3 the input stimuli.

0.61	>36. A method according to Claim 1, wherein:
28a)/	the obtaining step includes the steps of
7 07	i) using an instruction trace to obtain a first
[4/	representation of device activity, and
5	ii) using a testvector sequence to obtain a
6	second representation of device activity; and
7	further including the step of comparing the
8	first and second representations to determine how well
9	the testvector recreates the activity generated by the
10	instruction trace.
10	instruction drace.
1	37. A method according to Claim 1, wherein:
2	
	the obtaining step includes the step of using a
3	testvector sequence to cause device activity; and
4	further including the step of analyzing said
5	device activity to verify or debug the testvector
6	sequence.
1	38. A method according to claim 1, wherein the circuit is
2	an asynchronous circuit.
1	39. A system for visualizing circuit behavior,
2	comprising:
3	a. means for simulating circuit activity;
4	b. means for expressing the circuit activity as
5	a device activity representation $igwedge$ and
6	c. means for visualizing the device activity
7	representation as a simulation of optical emissions that
8	may occur as a result of device activity.

0.61	
	10. A system according to claim 36, wherein said device
7 0	activty representation includes sequence, connectivity
3/	and causal relationship information.
ķ	41. A system according to claim 36, wherein said means
2	for visualizing includes an IC CAD viewer for visualizing
3	the expressed activity.
1	42. A system according to claim 36, wherein said means
2	for visualizing includes means for visualizing the device
3	activity representation as a simulation of optical
4	emissions that occur as a result of the device activity.
1	43. A system according to claim 36, wherein the means for
2	simulating circuit activity includes:
3	means for applying device activity traces as
4	inputs to the circuit; and
5	means for measuring sequences of logical states
6	at designated elements.