Stat 300A Theory of Statistics

Homework 3

Andrea Montanari

Due on October 17, 2018

- Solutions should be complete and concisely written. Please, use a separate sheet (or set of sheets) for each problem.
- We will be using Gradescope (https://www.gradescope.com) for homework submission (you should have received an invitation) no paper homework will be accepted. Handwritten solutions are still fine though, just make a good quality scan and upload it to Gradescope.
- You are welcome to discuss problems with your colleagues, but should write and submit your own solution.

1: Convex compact parameter space

Let $\mathscr{P} = \{ \mathsf{P}_{\boldsymbol{\theta}} : \boldsymbol{\theta} \in \Theta \}$ be a statistical model with $\Theta \subseteq \mathbb{R}^d$ a convex compact set, and Θ is not a singleton $(\Theta \text{ contains at least two points})$. Let $\Theta^{\varepsilon} = \{ \boldsymbol{\theta} : d(\boldsymbol{\theta}, \Theta) \leq \varepsilon \}$, where $d(\boldsymbol{\theta}, \Theta) \equiv \inf \{ \boldsymbol{v} \in \Theta : \| \boldsymbol{v} - \boldsymbol{\theta} \|_2 \}$. Assume the estimator $\hat{\boldsymbol{\theta}}$ to take values in \mathbb{R}^d (i.e. the decision space is $\mathcal{A} = \mathbb{R}^d$).

- (a) Consider the case of square loss $L(\hat{\boldsymbol{\theta}}, \boldsymbol{\theta}) = \|\hat{\boldsymbol{\theta}} \boldsymbol{\theta}\|_2^2$. Assume that (for some $\varepsilon, \delta > 0$) $P_{\boldsymbol{\theta}}(\hat{\boldsymbol{\theta}}(\boldsymbol{X}) \notin \Theta^{\varepsilon}) > \delta$ for all $\boldsymbol{\theta} \in \Theta$. Prove that $\hat{\boldsymbol{\theta}}(\cdot)$ cannot be minimax optimal.
- (b) Keeping to the square loss, consider now the linear model $P_{\theta} = N(D\theta, \sigma^2 I_n)$, where $D \in \mathbb{R}^{n \times d}$ is a known design matrix, of rank d, and $\sigma^2 > 0$ is known noise variance. Prove that no affine estimator (i.e. no etimator of the form $\hat{\theta}(y) = My + \theta_0$) can be minimax optimal.
- (c) Produce a counter-example showing that the conclusion at point (a) does no longer hold if Θ is not convex.
- (d) Consider the case d=1, $\Theta=[\theta_{\min},\theta_{\max}]$, and assume that L is continuous, with $a\mapsto L(a,\theta)$ is strictly decreasing for $a<\theta$, and strictly increasing for $a>\theta$. Assume that (for some $\varepsilon,\delta>0$) $P_{\theta}(\hat{\theta}(\boldsymbol{X})\not\in\Theta^{\varepsilon})>\delta$ for all $\theta\in\Theta$, and that the risk function $\theta\mapsto R(\hat{\theta};\theta)$ is continuous. Prove that $\hat{\theta}$ cannot be minimax optimal.

What can you conclude if $a \mapsto L(a, \theta)$ is decreasing (but not necessarily strictly decreasing) for $a < \theta$ and increasing (but not necessarily strictly decreasing) for $a > \theta$.

2: On the minimax estimator of a binomial parameter

Let $X \sim \mathsf{P}_{\theta} = \mathrm{Binom}(n, \theta)$, where $\theta \in \Theta = [0, 1]$, and we consider the square loss $L(\hat{\theta}, \theta) = (\hat{\theta} - \theta)^2$. Recall that a minimax estimator is given by

$$\hat{\theta}_{\text{MM}}(X) = \frac{\sqrt{n}}{1 + \sqrt{n}} \cdot \frac{X}{n} + \frac{1}{1 + \sqrt{n}} \cdot \frac{1}{2}.$$
 (1)

We know already that this is Bayes optimal with respect to the prior distribution $Q = \text{Beta}(\sqrt{n}/2, \sqrt{n}/2)$.

(a) Consider the case n=1. Construct a two points prior $Q=q\delta_{\theta_1}+(1-q)\delta_{\theta_2}$ whose Bayes optimal estimator coincides with $\hat{\theta}_{\text{MM}}$.

(b) Show that, for any n, there exists a prior supported on m number of points for some integer m, whose Bayes estimators coincides with $\hat{\theta}_{\text{MM}}$.

[You can assume that the linear system $\sum_{i=0}^{m} q_i(i/m)^k = \int \theta^k Q(d\theta), k \in \{0, \dots, n+1\}$ has a solution $\mathbf{q} = (q_0, \dots, q_m) \geq 0$ for m large enough. (Here $Q = \text{Beta}(\sqrt{n}/2, \sqrt{n}/2)$.)]

3: Minimax estimation of sparse vectors

Let $\Theta \subseteq \mathbb{R}^d$ and consider estimation with a loss $L : \mathcal{A} \times \mathbb{R}^d \to \mathbb{R}_{\geq 0}$ upper bounded by L_0 : $\sup_{a \in \mathcal{A}, \boldsymbol{\theta} \in \Theta} L(a, \boldsymbol{\theta}) \leq L_0$.

(a) Prove that, for any probability distribution \mathbb{Q} on \mathbb{R}^d ,

$$R_{\rm M}(\Theta) \ge R_{\rm B}(\mathsf{Q}) - L_0 \, \mathsf{Q}(\Theta^c) \,, \tag{2}$$

where $Q(\Theta^c) = \int_{\Theta^c} Q(d\theta)$ is the probability of Θ^c under Q, and $R_B(Q) = \int_{\mathbb{R}^d} R(A; \theta) Q(d\theta)$. (Here we assume that P_{θ} is not only defined for $\theta \in \Theta$, but for any $\theta \in \mathbb{R}^d$.)

Given two integers $1 \le k \le d$, and a real number $M \ge 0$, define the set of vectors

$$\Theta(d, k; M) = \left\{ \boldsymbol{\theta} \in \{0, +M, -M\}^d : \|\boldsymbol{\theta}\|_0 \le k \right\}, \tag{3}$$

where $\|\boldsymbol{\theta}\|_0 = |\text{supp}(\boldsymbol{\theta})|$ is the number of non-zero entries in $\boldsymbol{\theta}$. We we are interested in the minimax error for the Gaussian location model with this parameters space $\mathscr{P} = \{\mathsf{P}_{\boldsymbol{\theta}} : \boldsymbol{\theta} \in \Theta(d, k; M)\}$, action space \mathbb{R}^d , and square loss $L(\hat{\boldsymbol{\theta}}, \boldsymbol{\theta}) = \|\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}\|_2^2$. We will denote this minimax risk by $R_{\mathrm{M}}(d, k; M)$.

- (b) Prove that, in determining the minimax error, we can restrict ourselves to estimators that take values in $\mathcal{A} = B^d(\mathbf{0}; M\sqrt{k}) = \{\boldsymbol{\theta} \in \mathbb{R}^d : \|\boldsymbol{\theta}\|_2 \leq M\sqrt{k}\}$. Further, we can replace the square loss by $\tilde{L}(\hat{\boldsymbol{\theta}}, \boldsymbol{\theta}) = \min(\|\hat{\boldsymbol{\theta}} \boldsymbol{\theta}\|_2^2; 4M^2k)$
- (c) Prove that there exists a least favorable prior Q_* , and that it can be taken of the form

$$Q_* = \sum_{\ell=0}^k p_\ell Q_\ell \tag{4}$$

where $p = (p_{\ell})_{0 \le \ell \le k}$ is a probability distribution over $\{0, 1, ..., k\}$, and Q_{ℓ} is the uniform distribution over vectors in $\boldsymbol{\theta} \in \Theta(d, k; M)$ with $\|\boldsymbol{\theta}\|_0 = \ell$.

[Hint: Note that this claim is equivalent to $Q_*(\{\boldsymbol{\theta}_1\}) = Q_*(\{\boldsymbol{\theta}_2\})$, for any $\boldsymbol{\theta}_1, \boldsymbol{\theta}_2 \in \Theta(d, k; M)$ with $\|\boldsymbol{\theta}_1\|_0 = \|\boldsymbol{\theta}_2\|_0$.]

Computing the Bayes risk for the prior Q_* described above is somewhat intricate. We thus consider a simpler prior $Q_{M,\varepsilon}$. Under $Q_{M,\varepsilon}$ the coordinates of $\boldsymbol{\theta}$ are independent with $Q_{M,\varepsilon}(\{\theta_i=M\})=Q_{M,\varepsilon}(\{\theta_i=-M\})=\varepsilon/2$, and $Q_{M,\varepsilon}(\{\theta_i=0\})=1-\varepsilon$. Equivalently $Q_{M,\varepsilon}=q_{M,\varepsilon}\times\cdots\times q_{M,\varepsilon}$, where $q_{M,\varepsilon}$ is the three points distribution $q_{M,\varepsilon}=(1-\varepsilon)\delta_0+(\varepsilon/2)\delta_M+(\varepsilon/2)\delta_{-M}$.

(d) Prove that

$$R_{\mathrm{M}}(d, k; M) \ge \tilde{R}_{\mathrm{B}}(\mathsf{Q}_{M,\varepsilon}) - 4M^2k \,\mathbb{P}\Big(\mathrm{Binom}(d, \varepsilon) > k\Big).$$
 (5)

where $\tilde{R_{\rm B}}$ is the Bayes risk for the loss function \tilde{L} .

Setting $\varepsilon = (k/d)(1-\eta)$, it is possible to show (for instance by Bernstein inequality [BLM13]) that

$$\mathbb{P}\Big(\text{Binom}(d,\varepsilon) > k\Big) \le e^{-k\eta^2/4} \,. \tag{6}$$

Let $R_{\scriptscriptstyle \mathrm{B}}$ denote the Bayes risk for the square loss. It is also possible to show that

$$\tilde{R}_{\mathrm{B}}(\mathsf{Q}_{M,\varepsilon}) \ge R_{\mathrm{B}}(\mathsf{Q}_{M,\varepsilon}) - (M^2 + 1) \, o_{\eta}(k) \,,$$
 (7)

where $o_{\eta}(k)$ is a quantity such that $\lim_{k\to\infty} o_{\eta}(k)/k = 0$ for any $\eta > 0$.

(e) Prove that the above implies implies

$$R_{\mathcal{M}}(d,k;M) \ge dR_{\mathcal{B}}(\mathsf{q}_{M,\varepsilon}) - (M^2 + 1)o_{\eta}(k). \tag{8}$$

where $R_{\text{B}}(\mathsf{q}_{M,\varepsilon})$ is the Bayes risk for the one-dimensional problem of estimating $\theta \sim \mathsf{q}_{M,\varepsilon}$ from $X = \theta + Z, Z \sim \mathsf{N}(0,1)$.

Optional

This question will not be graded and is mainly food for thought:

• Continuing from the previous problem, what is the behavior of $R_{\rm B}(q_{M,\varepsilon})$ with ε and M? What are the consequences for $R_{\rm M}(d,k;M)$? Of particular interest is the regime $\varepsilon \ll 1$ (corresponding to $k \ll d$).

References

[BLM13] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A nonasymptotic theory of independence. Oxford university press, 2013.