MEAT & CANCER: A CRITICAL REVIEW BASED ON CAUSAL ANALYSIS

A PREPRINT

Enrique Otero Madrid, Spain @eoteromuras

September 16, 2019

ABSTRACT

According to World Health Organization (WHO), processed meat has been declared Group 1 carcinogenic to humans. That means that according to epidemiological studies there is a convincing evidence that the agent causes cancer. However, reviewing some of the mainly referred studies with the lenses of causal inference analysis reveals flaws that would invalidate these conclusions. The author(s) intention is to discuss these studies with statistical rigour. By applying last accepted knowledge in the field of causal inference as diagrams and *do-calculus*. With main focus on transparent exposition of health domain assumptions. And the translation of these assumptions into explicit language, diagrams and formulas. So the veracity of domain assumptions can be refuted according to domain expertise. And any conclusion derived from these assumptions being validated or invalidated on the basis of axiomatic logic and maths.

Keywords Meat · Cancer · Causality

1 Introduction

In October 2015 IARC held an expert panel that considered the evidence for red and processed meat as possible human carcinogens. They classified processed meat as a Group 1 carcinogenic to humans, and red meat as Group 2A, probably carcinogenic.¹ A summary of the final evaluations were published online in The Lancet Oncology.² And the details of these conclusions were published later in a monograph in 2016.³

The consumption of processed meat was associated with small increases in the risk of cancer in the studies reviewed. In these studies, the risk generally increased with the amount of meat consumed.¹

In the next sections we will focus on two studies supporting IARC conclusions, and we will remark different flaws detected in them. Particularly:

- As starting point, in Section 2 we will present IARC monograph and Chan meta-analysis, ⁴ as it's the main reference for IARC when they conclude "each 50 gram portion of processed meat eaten daily increases the risk of colorectal cancer by 18%". We will remark potential problems related to heterogeneity. And some considerations regarding confounders.
- Finally in Section 3 we'll discuss a study by Cross et al⁵ as an example of generating strange and questionable conclusions based on the wrong procedure of conditioning on a collider. This study is particularly relevant as it's the one that contributes the most to results on Chan's meta-analysis.

For this purposes we will use different causal inference techniques as causal diagrams and *do-calculus*, as presented by Pearl and Mackenzie.⁶

Table 1: Summary relative risk of processed meat and colorectal cancer. Chan et al. meta-analysis

Pooled RR (95% CI)	n	Heterogeneity (I2)
1.18 (1.10–1.28), P-value=0.00	9	12%, P-value=0.33

RR – relative risk; CI – confidence interval; n – number of studies

2 Processed Meat and Colorectal Cancer Incidence

IARC Working Group analyzed both "20 large [...] cohort studies [...] extended from as early as the 1990s until the 2010s", and "a large number of case-control studies (approximately 150)". The monograph describes also five criteria they applied in reviewing and interpreting the available literature in order to be considered for their meta-analysis.

Regarding case-control studies, they considered that "approximately 10% of all case-control studies reviewed were informative for the assessment of the consumption of processed meat in relation to incidence of cancer of the colorectum". Taking into account previous statement of approximately 150 control-studies, they should be 150/10 = 15 informative studies. However they say: "Six of the nine studies considered showed positive associations with cancer of the colorectum." Could this difference (9 vs. 15) be a typo?

In relation to cohort studies, the IARC presented conclusions from a meta-analysis including data from 10 of these studies that "reported a statistically significant dose–response association between consumption of red meat and/or processed meat and cancer of the colorectum". More concretely, they refer to Chan et al,⁴ where "dose-response relationships were expressed per increment of intake of 100 grams per day for red and processed meat, and 50 grams per day for processed meat as in previous meta-analyses".⁷

2.1 Dose-response Analysis on Processed Meat. Heterogeneity and Confounders

26 publications from 21 studies were included in Chan's meta-analysis.⁴ Being 15 publications from 14 studies on processed meat. Results in Table 1.

A relatively low I-squared level of 12% with a relatively high p-value of 0.33 should indicate no significant heterogeneity between studies. So the combined results would not be invalidated. Though critizism has been done to I-squared as an adequate measure of heterogeneity, specially when the number of studies is small.⁸

In relation to confounders, Chan claims: "we cannot rule out residual confounding". Though "in all studies, relative risk estimates were adjusted for age and sex, and all except two adjusted for total energy intake. More than half of the study results were adjusted for body mass index (BMI), smoking, alcohol consumption, or physical activity, close to half controlled for dairy food or calcium intake, social economic status, family history of colorectal cancer, or plant food or folate intake. In some studies, the estimates were controlled for use of nonsteroidal anti-inflammatory drugs, fish or white meat intake".

Chan's paper refers to other studies with similar conclusions. ^{9,10} Though it adds also: "In a more recent article on the NHS and the HPFS, the associations of red meat and processed meat and colon cancer were attenuated after better adjustment for confounders and longer followup". ¹¹

The biggest study analyzed by Chan's et al⁴ regarding number of people was Cross et al⁵ with 494036 men and women. In this study adjusts were made on "Age, sex, ethnicity, BMI, smoking habits, alcohol intake, physical activity, total energy intake, fruit and vegetable intake, education level, marital status, family history of cancer". And according to weight and results Cross's study is the one that contributes the most to RR for colorectal cancer on the consumption of processed meat on Chan's meta-analysis. So in section 3 we'll try to prove that Cross study could be flawed due to implicitly conditioning on a collider.

3 Leukemia versus Life-style Cancers. The Collider Bias

As previously said, Cross' analysis, published on 2007,⁵ was the second biggest study included on Chan's meta-analysis. And the one that partially contributed more to increase the summary relative risk (RRs) for processed meat on colorectal cancer. Chan's pooled estimation of 1.18 was finally included in the IARC monograph³ and into WHO's claim.¹ But ignoring Cross' study could reduce Chan's pooled RR from 1.18 to 1.10.

In this context, we will show in this section an example of probable bad control in Cross' study leading to some strange results.

Extracted from: "Surprisingly, both leukemia and melanoma were inversely associated with processed meat intake; the inverse association for leukemia was mainly for lymphocytic leukemia (n = 534; $HR^1 = 0.70$; 95% CI = 0.52-0.93; p for trend = 0.05) and not myeloid and monocytic leukemia (n = 457; HR = 0.88; 95% CI = 0.64-1.20; p for trend = 0.73)."

But according to described cohort follow-up: "[it] was calculated from baseline (1995–1996) until censoring at the end of 2003, or when the participant moved out of one of the eight study areas, had a cancer diagnosis, or died, whichever came first". Thus, analyzing several types of cancer as target while implicitly conditioning on not having any other cancer converts the variable "any cancer" in a collider.

Considering

- X: processed meat
- Y: leukemia
- C1: colorectal cancer
- C: any type of cancer

and assuming the following causal diagram:

So conditioning on the collider C opens the path Y -> C <-C1 <-X, invalidating the results of the study. This situation is typically known as *collider bias*. Being a well known example the *Berkson Paradox* described for instance in Pearl and Mackenzie's *The Book of Why*. 6

And this could explain these strange results, where cancers as colorectal, usually associated with dietary lifestyle, have Hazard Ratios above 1 (HR=1.2), whereas leukemia shows apparently an inverse relation to processed meat, with an HR of 0.7. As we can see in Figure 1

Moreover even despite or because of the collider bias some patterns could be noticed. For instance, between the 4 most prevalent types of cancer, colorectal and lung cancer show similar results in this study, with higher HR values. While prostate and female breast show values closer to 1. Besides, Cross et al point that "a stepwise addition of the covariates to a simple age- and sex-adjusted model showed that the effects of red and processed meat intake on cancer risk were attenuated the most by the addition of the smoking variable to the models".

All this patterns and hints could be useless because of the collider bias. Or they could indicate "dietary" and/or "life style" as possible confounder of both meat consumption and smoking and some types of cancers as colorectal or lung. While prostate or breast cancer would be less dependent from presumptive or proved bad habits.

4 Conclusions

Processed meat has been classified by WHO as Group 1 carcinogenic to humans.¹ Several analysis have been considered to generate this conclusion. Specifically, WHO claims that "an analysis of data from 10 studies estimated that every 50 gram portion of processed meat eaten daily increases the risk of colorectal cancer by about 18%". This conclusion comes from Chan's et al meta-analysis.⁴ And this meta-analysis has been highly dependent on Cross's et al study.⁵

First of all some critizism could be made on the heterogeneity of Chan's meta-analysis. And I-squared as an inadequate measure of this heterogeneity in this case due to the small number of studies.⁸

But our goal was to review with "causal glasses" the association between meat and cancer. And our main contribution was to demonstrate that Cross's case study is an example of collider bias. Calling into question Chan's conclusions and WHO's claim.

Moreover, explicitly showing assumptions and causal diagrams can help synergies between health domain and causal inference in statistics. Avoiding knowledge silos and contributing to new advances on nutrition and cancer research.

¹HR stands for Hazard Ratio. It would be also interesting to go deeper into how Cross's Hazard Ratios (HR) have been converted to Chan's pooled Relative Risks (RR). Being these metrics similar but not the same

Figure 1: HRs and 95% CIs for the 5th Versus 1st Quintile of Processed Meat Intake and Cancer Risk for Both Sexes Combined (Except for Sex-Specific Cancers). From Cross et al.⁵

References

¹ Q&A on the carcinogenicity of the consumption of red meat and processed meat. World Health Organization. https://www.who.int/features/qa/cancer-red-meat/en/. Published October 2015. Accessed September 3, 2019.

² Bouvard V, Loomis D, Guyton K et al. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015;16(16):1599-6006

³ IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Red Meat and Processed Meat. Vol 114. International Agency for Research on Cancer. https://monographs.iarc.fr/wp-content/uploads/2018/06/mono114.pdf. Published June 2018. Accessed September 3, 2019.

⁴ Chan D, Lau R, Aune D et al. Red and Processed Meat and Colorectal Cancer Incidence: Meta-Analysis of Prospective Studies. PLoS One. 2011;6(6):e20456

⁵ Cross AJ, Leitzmann MF, Gail MH, Hollenbeck AR, Schatzkin A, Sinha R. A prospective study of red and processed meat intake in relation to cancer risk. PLoS Med. 2007;4(12):e325. doi:10.1371/journal.pmed.0040325

⁶ Pearl J, Mackenzie D. The Book of Why. The New Science of Cause and Effect. New York, NY: Basic Books; 2018.

⁷ Sandhu MS, White IR, McPherson K. Systematic review of the prospective cohort studies on meat consumption and colorectal cancer risk; a meta-analytical approach. Cancer Epidemiol Biomarkers Prev. 2001 May;10(5):439-46.

⁸ von Hippel PT. The heterogeneity statistic I2 can be biased in small meta-analyses. BMC Med Res Methodol. 2015 Apr 14;15:35. doi: 10.1186/s12874-015-0024-z.

⁹ World Cancer Research Fund / American Institute for Cancer Research. Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective. Washington, DC: American Institute for Cancer Research. https://www.wcrf.org/sites/default/files/english.pdf. Published 2007. Accessed September 3,2019.

¹⁰ Wei EK, Colditz GA, Giovannucci EL, Fuchs CS, Rosner BA. Cumulative risk of colon cancer up to age 70 years by risk factor status using data from the Nurses' Health Study. Am J Epidemiol. 2009 Oct 1;170(7):863-72. doi: 10.1093/aje/kwp210.

¹¹ Wei EK, Giovannucci E, Wu K et al. Comparison of risk factors for colon and rectal cancer. Int J Cancer. 2004 Jan 20;108(3):433-42.2.