Ministère des Enseignements Secondaires Direction des Examens, des Concours et de la Certification

Examen: BEPC Session: 2013 Série: Toutes Epreuve: MATHEMATIQUES Durée: 2h Coefficient: 4

PARTIE A: ACTIVITES NUMERIQUES (6,5 points)

EXERCICE 1 (2,5 points)

On pose $X = \frac{1 - \sqrt{5}}{2}$.

1. Calculer et rendre rationnel le dénominateur du nombre $\frac{X+1}{X}$. [1,5pt]

2. Sachant que 2, 23 $<\sqrt{5}<$ 2, 24, déterminer un encadrement de X par deux nombres décimaux. [1pt]

EXERCICE 2 (2 points)

1. Développer et réduire le polynôme (2x - 3)(x + 2). [0,5pt]

2. Résoudre dans \mathbb{R} l'équation (2x-3)(x+2)=0. [1pt]

3. Recopier sur votre feuille de composition la réponse juste de la question suivante. L'ensemble des réels x tels que $-5 \le 2x - 3 \le 3$ est : [0,5pt]

(a) [-5,3] (b) [-1,3] (c) [-1,3]

EXERCICE 3 (2 points)

On a relevé le taux de cholestérol dans le sang, en centigramme par centilitre (cg/cl), de 25 hommes dont l'âge varie de 50 à 59 ans, et on a obtenu les résultats suivants :

ч					
	210	242	200	185	197
p	203	138	152	265	178
	187	218	175	197	132
	146	183	188	144	248
	237	196	255	240	185

1. Recopier et compléter le tableau suivant :

[1,25pt]

Taux de cholestérol	[120,150[[150,180[[180, 210[[210, 240 [[240, 270[
Effectif					

2. A partir de $240\,cg/cl$, on considère que le sujet est à surveiller. Quel est le pourcentage de sujets à surveiller dans ce groupe? [0,75pt]

PARTIE A: ACTIVITES GEOMETRIQUES (6,5 points)

EXERCICE 1 (3 points)

Le plan est rapporté au repère orthonormé (O, I, J). On donne les points A(2,1) et B(0,2).

1. Ecrire une équation cartésienne de la droite (AB). [1pt]

2. Tracer dans un repère (O, I, J) la droite (D) d'équation cartésienne 2x - y - 1 = 0. [1pt]

3. Construire l'image du triangle OAB par l'homothétie de centre O et de rapport $\frac{1}{2}$. [1pt]

EXERCICE 2 (3,5 points)

On donne un triangle *ABC* tel que : AC = 6cm, AB = 8cm et BC = 10cm.

1. Montrer que le triangle *ABC* est rectangle.

[0,5pt]

- 2. Soit (C) le cercle circonscrit au triangle ABC et O le centre du cercle. Calculer le rayon du cercle (C). [0,5pt]
- 3. (a) Calculer le sinus de l'angle \widehat{ABC} .

[0,5pt]

(b) En déduire une mesure de chacun des angles \widehat{ABC} et \widehat{AOC} .

[1pt]

(c) E est le milieu de [AB]; montrer que les droites (AC) et (OE) sont parallèles.

[1pt]

N.B. On donne

α en degré	35,45	36,15	36,87	37,58
sin α	0,58	0,59	0,6	0,61

PROBLEME (7 points)

Une citerne transparente a la forme d'un cône de capacité 1800 litres. L'aire de la base S est de $1,5m^2$.

1. Calculer la hauteur de cette citerne.

[1pt]

2. Cette citerne étant pleine d'eau, on ouvre le robinet situé sur la partie inférieure : à un moment donné, on constate qu'il reste 225 litres d'eau dans la citerne. Cette eau prend la forme d'un cône semblable au grand et de base *S*'.

(a) Calculer le rapport
$$\frac{V'}{V} = k^3$$
. [1pt]

(b) En déduire la hauteur h' du petit cône. [1pt](V, volume d'eau initial et V' volume d'eau à ce moment, k coefficient de réduction)

4. On désigne par t le temps en minutes d'écoulement du robinet et V(t) le volume en mètre cube, de l'eau qui reste dans la citerne après le temps t.

(a) Montrer que
$$V(t) = 1,8-0,015t$$
. [1pt]

(b) Calculer
$$V(90)$$
 et $V(120)$. [1pt]

(c) Après combien de temps restera t-il exactement $0.9m^3$ d'eau dans la citerne? [1pt]

N.B. On notera que 0,
$$125 = \frac{1}{8} = \left(\frac{1}{2}\right)^3$$
.

