AD-A131 389 DU (DEPLETED URANIUM) CHIP RECOVERY PROGRAM PHASE I A 1/1 MACHINING STUDY FOR. (U) SOUTH CREEK INDUSTRIES INC REFORD NY J CONBOY ET AL. JUL 83 AMMRC-TR-83-42 UNCLASSIFIED DAAG46-83-C-0004 F/G 13/8 NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS:1963 A

AD

AMMRC TR 83-42

DU CHIP RECOVERY PROGRAM, PHASE I -

A Machining Study for the Production of Contaminant-Free Chips

July 1983

J. Conboy and P. Shevchik South Creek Industries, Inc. P.O. Box 53 Rexford, New York 12148

FINAL REPORT

Contract No. DAAG46-83-C-0004

Approved for public release; distribution unlimited.

Prepared for

ARMY MATERIALS AND MECHANICS RESEARCH CENTER Watertown, Massachusetts 02172

U.S. ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND Dover, New Jersey 07801

83 08 10 **002**

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

Mention of any trade names or manufacturers in this report shall not be construed as advertising nor as an official indorsement or approval of such products or companies by the United States Government.

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed.

Do not return it to the originator.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENT	ATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM		
1. REPORT NUMBER	2 GOVT ACCESSION NO.	3 RECIPIENT'S CATALOG NUMBER		
AMMRC TR 83-42	10-4/3/3	(0)		
4. TITLE (and Subtitle)		5 TYPE OF REPORT & PERIOD COVERED		
DU CHIP RECOVERY PROGRAM, P	HASE I - A Machining	Final Report -		
Study for the Production of	Contaminant-Free	5 Jan 83 - 5 Jul 83		
Chips		6 PERFORMING ORG. REPORT NUMBER		
7. AUTHOR(4)		8 CONTRACT OR GRANT NUMBER(s)		
J. Conboy and P. Shevchik	·	DAAG46-83-C-0004		
9. PERFORMING ORGANIZATION NAME AND		10 PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
South Creek Industries, Inc	•			
P.O. Box 53 Rexford, New York 12148	•	AMCMS Code: 69400R.234		
11. CONTROLLING OFFICE NAME AND ADDR	ESS	12. REPORT DATE		
U.S. Army Armament Research	and Development	July 1983		
Command Dover, New Jersey, 07801		13 NUMBER OF PAGES		
14 MONITORING AGENCY NAME & ADDRESS	(if different from Controlling Office)	15. SECURITY CLASS (of this report)		
Army Materials and Mechanic	s Research Center			
ATTN: DRXMR-K		Unclassified		
Watertown, Massachusetts (2172	154. DECLASSIFICATION DOWNGRADING SCHEDULE		
16. DISTRIBUTION STATEMENT (of this Repo	,,			
Approved for public releas	e; distribution unlimi	ted.		
17 DISTRIBUTION STATEMENT (of the aberra	ct entered in Block 20, if different fro	m Report)		
18 SUPPLEMENTARY NOTES				
19 KEY WORDS (Continue on reverse side if no	cessary and identify by block number,)		
Depleted uranium	Lathes			
Anaerobic processes	Oxygen equipment			
Carbide tools	Controlled atmospheres	5		
Recycled materials	Machinability			
20 ABSTRACT (Continue on reverse side if ne	enemy and identify by block number)			
(SFF	REVERSE SIDE)			
(522				

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Block No. 20

ABSTRACT

The present depleted uranium (DU) machining process used in the production of the M774 and M833 DU penetrators incurs excessive costs due to the necessity for burial of the radioactive metal turnings (chips). The alternative to burial was the recycling of the chips to form usable depleted uranium thereby eliminating disposal problems and increasing the supply of depleted uranium. An inert atmosphere was proposed to produce contaminate-free chips that will alow remelting to required chemical specifications of the penetrator material. A lathe enclosure was designed to provide a controlled atmosphere of argon gas maintaining a positive pressure of 0.25 psi within. Dry argon gas was used as a coolant at the tool workpiece interface. The chips were analyzed for oxygen and carbon content; the contaminants most critical to the remelting of the chips. The chemical analysis showed consistently low oxygen and carbon "pick-up." The significance of these results was substantiated by the successful melting of depleted uranium chips in an electric resistance furnace at AMMRC.

PREFACE

This is the final report, Phase I under Contract DAAG46-83-C-0004 covering the period from January 5, 1983 to July 5, 1983. The program sponsored by U.S. Army Armament Research and Development Command is being monitored by the Army Materials and Mechanics Research Center (AMMRC), Watertown, Massachusetts. Mr. H. Whitney of AMMRC is the contracting officer's technical representative.

1.0 TABLE OF CONTENTS

<u>PARAGRAPH</u>	DESCRIPTION	PAGE
1.0	TABLE OF CONTENTS	1
2.0	LIST OF ILLUSTRATIONS, TABLES & APPENDICES	2
3.0	GENERAL SCOPE	3
	3.1 Enclosure	3
	3.2 Tool Holder/Inserts	3
	3.3 Coolant/Atmosphere	3
	3.4 Instrumentation	9
4.0	TEST EVALUATION	11
	4.1 GFM/DU Bar Stock	11
	4.2 Density Checks	12
	4.3 Test Procedure	12
	4.4 Open Air Test	12
	4.5 Controlled Atmosphere Tests	12
	4.6 Observations	16
5.0	CONCLUSIONS	18
6.0	RECOMMENDATIONS	18

2.0 <u>ILLUSTRATIONS</u>, TABLES AND <u>APPENDICES</u>

2.1	LIST OF ILLUSTRATIONS	
FIGURE #	DESCRIPTION	PAGE
1	SIDE VIEW ENCLOSURE	4
2	TOP VIEW ENCLOSURE	5
3	LATHE & PERIPHERAL EQUIPMENT	6
4	TEST SCHEMATIC	7
5	TOOL HOLDER	8
6	THERMOCOUPLE CALIBRATION CURVE	10
2.2	LIST OF TABLES	
TABLE #	DESCRIPTION	PAGE
I	CHEMISTRY ANALYSIS OF WAFERS	11
II	CHEMISTRY ANALYSIS OF "OPEN AIR" TEST	12
III	CHEMISTRY ANALYSIS OF "CONTROLLED ATMOSPHERE" TESTS	13
IV	OXYGEN/COMPOSITE TEST DATA	14
V	CARBON/COMPOSITE TEST DATA	15
2.3	<u>APPENDICES</u>	
APPENDIX #	DESCRIPTION	
A	TEST PROCEDURE	
В	TEST DATA SHEETS	

-3.0 GENERAL SCOPE

To date, an economical process for the recovery of depleted uranium metal turnings does not exist. The burial of these radioactive chips has an appreciable cost impact on the overall production of the M774 and M833 DU penetrators.

Under this contract, an investigation was made to provide a system to produce "contaminant-free" DU chips that would be suitable for subsequent reprocessing into a usable solid mass.

3.1 ENCLOSURE

South Creek Industries, Inc. (SCI) designed, fabricated and installed a controlled atmosphere chamber (as shown in Figures 1 through 4) on a Pratt & Whitney 12" Model "C" lathe at the AMMRC DU machining facility. The chamber provided an inert or "non-oxidizing" atmosphere, surrounding the workpiece during the machining operations.

3.2 TOOL HOLDER/INSERTS

A specially adapted tool holder and cutting inserts were fabricated for the machining operations. Using an EDM drilling technique, a tool holder and ten (10) carbide inserts were fabricated, as shown in Figure 5. The purpose of this approach was to provide an internal coolant (argon) passage through the tool to the workpiece as an added cooling effect.

3.3 COOLANT/ATMOSPHERE

It was originally intended that liquid argon would be used as a source of coolant gas to the workpiece. Preliminary "check-out" tests indicated that "dry"argon gas was adequate to provide the necessary cooling to the tool and the test bars.

TOOLHOLDER FIGURE 5

3.4 INSTRUMENTATION

3.4.1 TEMPERATURE

"K" type chromel alumel thermocouples were used to indicate temperatures at the cutting tool, at the gas inlet and the ambient temperature inside the enclosure. A Biddle Versa Cal digital readout instrument was used to monitor instantaneous temperatures. A Leeds & Northrup Speedomatic, Type K-68, was used for the continuous strip chart recorder. Figure 6 shows the thermocouple calibration curve. A steel bar was machined, without coolant to determine the variation between the exact tool tip temperature and the tool insert thermocouple reading. An independent thermocouple was used to check the tool tip temperature.

3.4.2 PRESSURE

A simple water manometer was used to monitor the chamber pressure. A pressure relief valve, set at three (3) psi, was used to vent any overpressures. All tests were conducted at a positive (0.25 psi) pressure inside the enclosure.

3.4.3 CHAMBER ATMOSPHERE

An oxygen analyzer, MSA Model No. 245R, was used to monitor the oxygen level inside the chamber during the tests. All tests were conducted with the oxygen level inside the chamber at less than 1.0%

3.4.4 CHEMISTRY ANALYSIS

Luvac Corporation of Boylston, Mass. performed the chemistry analysis of the DU chips. A Leico-136 model was used for the oxygen analysis and a Leico EC-12 was used for the carbon analysis. Both instruments use a combustion/infra-red detection technique.

FIGURE 6

3.4.5 ARGON FLOW

An Oxweld Flowmeter, Type B, O to 60 CFH, was used to monitor the argon flow rates. Dry argon, provided by AMMRC, with a purity of 99.996% was used as the coolant and environmental media.

4.0 TEST EVALUATION

A series of ten (10) machining tests were conducted on GFM DU/0.75% Ti right cylindrical bars. Three (3) samples of the machine turnings from each bar were submitted for analysis.

4.1 GFM/DU BAR STOCK

Twelve (12) each DU/0.75% Ti bars were provided by AMMRC for experimental machining. The bars were nominally 1.22-inches in diameter by 14.125-inches long, age hardened to Rc41 to Rc43. Chemistry analysis of the heat indicated an initial carbon range from 30 ppm to 80 ppm. The chemistry analysis did not include the oxygen content.

Wafers were cut from the bottom of each bar and submitted for an independent analysis. Results were as follows:

TABLE I

		(Grams)		PPM
Bar No.	Sample No.	Weight	<u>0xygen</u>	Carbon
K09 - 80	07 601	8.0	29	40
K09 - 10	07 602	9.0	34	30
K09 - 40	07 603	14.0	49	40
	08 604	5.5	39	30
K10 - 30	605	8.5	60	- 40
K10 - 9	06 606	7.0	40	50
K09 - 9	07 607	8.5	40	50
K09 - 3	04 608	10.0	45	50
	08 609	11.0	38	50
K09 - 7		7.0	46	40
	06 611	7.0	32	50

4.2 DENSITY CHECKS

Using measured weights and dimensions, an approximate average density of 18.6 grams/cc was calculated for three (3) representative bars. This was done to check any gross impurities.

4.3 TEST PROCEDURE

The procedure shown in Appendix A was used as a guide in the performance of the tests. Data sheets were executed for each test and are shown in Appendix B.

4.4 "OPEN AIR" TEST

This test was made on Bar # K09 - 807, without the use of the enclosure and using a water-soluble oil as a coolant. Results were as follows:

		TABLE II	PPM	
Bar #	Test #	Sample #	0xygen	Carbon
K09 - 807	Open Air	107	318	100
K09 - 807	Open Air	108	219	80
K09 - 807	Open Air	109	109	100

Test parameters are shown in Appendix B - "Test Data".

In addition to this open air test, another chip was chosen indiscriminately from the lathe bed and submitted for analysis. In all probability, this chip had been exposed to air and water for a long period of time. Chemistry results indicated:

507	ppm	0xyg en
520	ppm	Carbon

4.5 "CONTROLLED ATMOSPHERE" TESTS

A series of nine (9) machining tests were performed under controlled conditions as described in the data sheets in Appendix B. Operating parameters were adjusted to optimize results. The chemistry results are shown in the following table.

TABLE III

Day #	Took #	Cala #	PPM	_
Bar #	Test #	Sample #	<u>Oxygen</u>	<u>Carbon</u>
K09 - 807	1	201 202 203	89 80 77	30 50 80
K09 - 107	2**	204 205 206	128** 139** 129**	70 70 90
K09 - 407	3	207 208 209	52 69 83	50 60 60
K09 - 908	4	210 211 212	76 95 103	50 40 50
K10 - 306	5	213 214 215	81 115 96	60 80 90
K10 - 906	6	216 217 218	59 69 63	60 70 73
K09 - 907	7	219 220 221	63 71 94	30 40 80
K09 ~ 808	8	222 223 224	60 56 68	30 30 40
K09 - 707	9	225 226 227	51 63 84	20 40 50

^{**}High oxygen content is attributed to low gas pressure in the argon bottle and the corresponding high tool temperature, as shown on the data sheets in Appendix B.

The average of 76ppm - oxygen, cited in the summary, excludes the three high analyses in test #2.

A composite of the above data is shown in Tables IV and V.

						_				•	_			
	LYSIS CUT S				×	*		0	225 225 225	K09-	6	61 0	168	.030"
ANALYSIS APOSITE DATA	WAFER ANALYSIS IST SKIN CUT 'INNER CUTS				*	×	× 0		222 223 224	K09-	8	610	170	.030"
C ANALYSI COMPOSITE	K & X ×		×			×	* 0		221 220 216	K09-	7	610	162	.030"
			×	0	*				215 217 812	K10-	9	1000	158	.050.
·		×	×	0		*			215 214 213	K10- 306	5	788	170	.050.
\ 					×	×	*		212 211 210	K09-	4	610	167	.040"
18. K.T				×	0	*			208 208 209	K09-	3	453	154	.040.
_		×	×				*		204 205 204	K09- 107	2	357	284	.050.
			×		×	*	0		203 202 201	K09- 807	1	177	176	. 02 0
PPM CARBON	125—		75		-15-		25	1	SAMPLE #	BAR I.D.	TEST #		TOOL TEMP OF	DEPTH OF CUT

Þ

4.6 OBSERVATIONS

During these machining tests, several significant items were noted:

- Machine turnings that were relatively free of oxide contamination were bright and lustrous, with an appearance comparable to a clean steel chip.
- With a slight increase in the oxide level, the chips discolor very rapidly. During the "check-out" tests and test #2, it was immediately obvious that a reaction was occurring, by observing the discoloration of the chip as it was being machined. The chemistry results confirmed these predicted high oxide levels.
- During the chemistry analysis, the DU chips were exposed to air for a period of ten to fifteen minutes to perform the weighing operation. In addition, the oxygen level inside the chamber rose to approximately 10%, when the top cover was removed and the chips were placed in the identified containers. Both of these operations could have contributed to the oxygen content of the chips. With a totally enclosed system (from lathe to melting), this exposure to air would be eliminated.
- During test #2, the argon pressure in the gas bottle dropped below 500 psi; the tool temperature rose appreciably. The moisture content in the argon (quoted at 10 ppm) could have been the contributing factor to the high oxide level in chips. A cold trap and maintaining adequate minimum gas pressure throughout the machining operations should eliminate this problem.

- By maintaining the gas inlet temperature at approximately 50⁰F and the gas pressure in the bottle at greater than 1000 psi, the corresponding tool temperature was held at 170⁰F or below. These operating parameters provided the best results over the last four tests.
- The only operating parameters changed throughout the tests were the speeds (RPM) and depth of cuts. No appreciable impact on the overall results was noted due to these changes.
- One anomaly noted in the chemistry results was the lower oxide level in the "skin" cuts from each DU bar. It was expected that the outer surface of the bar would be higher, due to its prolonged exposure to air.
- Visual observation of the tool wear indicated no obvious deterioration; this was confirmed by the low carbon pick-up on all tests.
 However, more detailed studies should be performed in this area.
- In production operations, the analysis of the resultant heat from the melting of the DU chips would be the criteria for rejection or acceptance of the material for subsequent reprocessing into DU penetrators. Therefore, the <u>averages</u> of the oxygen and carbon content in the starting material (wafer analysis) and in the final machine turnings (chip analysis) would closely approximate the total contaminants in the heat:

Chambine Neteriel	AVERAGE CARBON (PPM)	AVERAGE OXYGEN (PPM)
Starting Material (Wafer Analysis) . Final Material	43	41
(Chip Analysis) .	53	76
Net "Change"	10	35

5.0 CONCLUSIONS

The results discussed above have been obtained on a small scale system. However, it is reasonable to conclude that this data could be extrapolated to larger, overall systems. The generation of "contaminant-free" chips, as accomplished in this Phase I program, is the first step in providing a successful DU chip recovery system.

As an adjunct to this study, some chips were placed in a small graphite crucible, coated with yttria, and inserted into an electric resistance furnace for melting. The chips were held at a temperature of 2700^OF for a period of one (1) hour. These chips were successfully melted into a solid mass.

6.0 RECOMMENDATIONS

On the basis of exploratory results obtained during the course of this work, it is clear that additional effort should be directed toward several potential problem areas:

6.1 MACHINING

Due to the unique nature of this gas-cooled process, SCI suggests a machining study to assure compatibility with existing machining programs, cycle times and production output, as follows:

- 6.1.1 Duplicate tool insert materials, feeds, speeds and depth of cuts durrently being used by penetrator manufacturers; all work to be performed under an argon atmosphere.
- 6.1.2 Perform a tool wear study under the above conditions.
- 6.1.3 Optimize inert gas flow to control chip temperature.

6.2 MELTING TECHNIQUES

The purpose of this investigation would be to find the best and most economical method of converting "pure" chips into solid, usable material. Some areas to consider:

- 6.2.1 Electric resistance melting.
- 6.2.2 Vacuum induction/continuous melt.

6.3 ARGON RECYCLING

The purpose of this study would be to provide a safe, economical and practical system for providing argon to the various enclosures. The following are suggested for further investigation:

- 6.3.1 Gas alarm systems and hazard analysis.
- 6.3.2 Equipment for separation of air and other impurities in the recycling system.
- 6.3.3 Continuous argon and air monitoring devices.
- 6.3.4 Gas purity requirements.

6.4 ENCLOSURE CONCEPTS

The purpose of this study is to develop design concepts for the CNC lathes, conveyers, and other peripheral equipment as follows:

- 6.4.1 Develop isolation mechanisms to insure an inert atmosphere during shutdown and maintenance periods.
- 6.4.2 Maintenance accessibility.
- 6.4.3 Service lines to all equipment.

- 6.4.4 Shutdown procedures.
- 6.4.5 Rod blank entry/penetrator exit.
- 6.4.6 Safety aspects for chip handling.
- 6.4.7 Minimize effects on other lathe operations, in the event of a shutdown.
- 6.4.8 Vacuum pumps/manifolds/exhaust systems/filters/accumulators.

A C K N O W L E D G M E N T S

The authors wish to express their appreciation to G. Bruggeman, H. Whitney, E. Emerson, R. Folvin, F. Hodi, S. Clemente, and P. Burke of AMMRC for their participation and active interest in the program and their cooperative assistance in carrying it to a successful completion.

APPENDIX A

TEST PROCEDURE

APPENDIX A

CHIP RECOVERY PROGRAM DAAG46-83-C-0004

MACHINING TEST PROCEDURE

REPRODUCIBILITY TESTING

After obtaining optimum temperature and gas flow rates in the equipment "check out" phase, a series of ten (10) tests will be conducted as a verification phase of the program.

I. "OPEN-AIR" TEST

To provide a data base, the first DU bar will be machined, using a water soluble oil, in the open atmosphere. Chips will be analyzed for oxygen and carbon content. The outer layer or first "skin" cut will be analyzed separately. 200 grams of chips will be analyzed for this test.

II. "CONTROLLED ATMOSPHERE" TESTS

A series of nine (9) tests will be performed to verify results. The objective of these tests is to determine general operating parameters that will minimize any oxygen or carbon "pick-up" in the machining chips. The following procedures will be followed:

- 1. Identified sample containers will be placed in the enclosure before start of test.
- 2. Place identified DU bar into enclosure; set up for cutting.
- 3. Seal enclosure; purge and pressurize with argon and check oxygen level.
- 4. Record initial data on the test data sheet: (Attachment #1)
 - (a) Test number.
 - (b) DU bar identification number.
 - (c) Date
 - (d) Initials
 - (e) Start time
 - (f) Tool insert identification
 - (g) Temperatures
 - (h) Rates
 - (i) Pressures

MACHINING TEST PROCEDURE (Continued - page 2)

- 5. After enclosure atmosphere reaches less than 1% oxygen, start machining (skin surface) with argon gas flow to cutting area.
- 6. Stop machining; with a minimum argon flow, open access to enclosure. Using long forcepts, place chips in sample container. Seal and transfer chip samples to chemistry laboratory.
- 7. Seal and check condition of enclosure. Record temperatures, rates, and pressures where applicable, before starting second cut.
- 8. Vary operating parameters, as needed, to control tool temperature, ease of machining and best overall performance.

 Comment sheets will be attached to the data sheet to denote any changes made during the test. (Attachment #2).
- 9. After approximately 200 grams of chips are generated, step (6) will be repeated for the transfer of samples to chemistry.
- 10. Analyze DU chips for oxygen and carbon content.
- 11. Results of chemistry analysis will be evaluated before proceeding with the next test. A 24 hour "turn-around" in chemistry will be necessary to expedite the machining tests.
- 12. Record all necessary data at the end of test:
 - (a) Enclosure pressure
 - (b) Enclosure temperature
- 13. Proceed with the next test (new DU bar), following the same procedure.

TEST #								DATE		
BAR #	1							INITIALS		
DAAG46-83-C-0004				SEQUEL , IAL CUTS	c curs					
DATA	Start	lst	2nd	3rd	4th	5th	6th	7th	8th	End
Tine										
Sample container #										
Insert Ident. (rake)								•		
Temperatures Enclosure			·							
Tool										
Gas flow										
Accumulator						-				
Rates Gas flow										
Tool Feed										
Speed (RPM)										
Depth of cut										
Pressures Leak rate										
Enclosure										
Argon flow	-									
Accumulator										
		-		~ 		-		-	-	

MACHINING TEST PROCEDURE

DAAG46-83-C-0004	
Test #	Date
Bar #	Initials
COMMENTS:	

APPENDIX B

DATA SHEETS

BAR # K09-807

1st Test

INITIALS JTC

DAAG46-83-C-0004

SEQUEITIAL CUES

	7
	444
	7 16
	716
I	¥
	4

DATA	Start	100	2nd	3rd	deh	Sth	6th	7th	428	End
Tine		A.M. 10:40	10:55	11:00	11:20	11:25	Р.М. 3:05	3:10	3:15	
Sample container #		201	Scrap	Scrap	202	203	107	108	601	
Insert Ident. (rake)	2-3 2-3	50Neg				(TPG 432	50Neg	•	
Temperatures OF	70	7.1	. 22	74	73	74		-	:	
Tool (Max.) OF	69.4	110	091	182	160	176			:	
Gas flow OF	46	46	40	42	39.6	40.1	••	1		
Accumulator										
Rates Gas flow CFM		2.0	,			K				
Tool Feed "/Rev		.0155	.0155	.0155	.0100	.0100	.0155	.0155	.0155	:
Speed (RPM)		276				*	302		₹	
Depth of cut "		. 020	.050	3 3 4 4	^	.045	.020	.050	.050	
Pressures Leak rate % 02		41.0				*	•	•		
Enclosure PSI		.0.25	0 0 0 0		-	^	1	;	!	
Argon flow	·			·						
Accumilator										
	-						_	_	_	

MACHINING TEST PROCEDURE (Continued - page 2)

DAAG46-83-C-0004

Date__ 5/18/83 Test # Final (1st Test) Bar #_ K09-807 Initials JTC

COMMENTS:

- Cut outer (oxide) skin (.020") (sample #201)
 Cut and removed next layer (.050") of chips (scrap)
 Cut and removed next layer (.050") of chips (scrap)
 Cut next layer (.050") and samples (#202)
 Cut next layer (.050") and samples (#203)

- . Submitted samples to LUVAC at noon . Used same bar for "open air" tests, using a water soluble oil as a lubricant
- . Used approximate feeds and speeds as the enclosure test
- . Sampled outer skin (#107)
- . Removed .050" layer and scrapped) Submitted to LUVAC 5/19/83 1:00 P.M.
- . Cut .050" and sampled (#108) . Cut .050" and sampled (#109)

	Pf	M				
LUVAC Results	02	C	(Received	5/19/82	4:30	P.M.)
#201	89	30				
#202	80	50				
#203	77	80				
#107	318	100				
#108	219	80				
#109	170	100				

AAR 6 K09-107

2nd Test

4/19/83 Initials JTC

DAAG 46-83-C-0004

SEQUETTIAL CUTS

DATA	Start	1	20.4	32.4	447	133		7.76	440	1
files		A.H. 11:00	1:05	01:11	11:15	11:20	170	3	3	2
Sample container #		204	Scrap	Scrap	205	506				
Insert Ident. (rake)'	2-7 883	5 ⁰ Neg				~				
Temperatures Enclosure	72	73	72.5	73	73	73				
Tool (Max.)0F	74.5	284	240	267	277	283				
Gas flow OF	71.0	99	55	64	63	64				
Accumulator			·							
Rates Gas flow CFM		2.0				<				
Tool Feed "/Rev.		.010				^				
Speed (RPM)		357				<				
Depth of cut		.020	050		<	.045				
Pressures Leak rate 1 02		<1.0				{				
Enclosure PSI		0.25				⟨~				
Argon flow	•									
Accumilator										

DAAG46-83-C-0004

Test # Final (2nd test)	Date4/19/83
Bar # K09-107	Initials JTC

- . Cut outer layer (.020") and sampled (#204) . Chips appeared darker (bronze) in color
- . Noted argon pressure at 500 psi in bottle; temperature at the cutting tool was higher than previous test; gas flow temperature at the cutting tool was higher than previous test; gas flow temperature was approximately 20° higher than 1st test (Bar K09-807).

 Removed two (2) layers of .050" each and scrapped.

 Cut next .050" layer and sampled (#205).

 Cut next .050" layer and sampled (#206).

 Submitted samples to LUVAC at 1:30 P.M.

- . RPM increased from test #1

Results (5/	20/83)	
•	PP	M
	02	C
#204	128	70
#205	139	70
#206	129	90

BAR # K09-407

3rd Test

INITIALS

DAAG46-83-C-0004

SEQUETTIAL CUTS

DATA		Start	İst	2nd	3rd	4th	5ch	6th	7th	8th	End
Time					11:00						
Sample container			207	208	209						
Insert Jdent. (rake)		(K-68)	5 ⁰ Neg		<				,		
Temperatures 0	0 _F	74	74	73.6	73.8						
Tool (Max.) OF		74	154	153	154						
Gas flow	0.F	73.4	53.5	48.8	46.7						
Accumulator											
Rates Gas flow CF	CFM		2.0		<						
	"/Rev.		.010		<						
Speed (RPM)			453		~						
Depth of cut			.040"	-	~						
	x 02		<1.0		<						
Enclosure	PSI		0.25		<		·				
Argon flow											
Accumilator											
	-										

DAAG46-83-C-0004

Test #_	Final (3rd Test)	Date	5/24/83	•
Bar #	K09-407	Initia	ls_JTC	

- . Preliminary checks were made to eliminate the discolored chips . By maintaining high pressure (<500 PSI) in the argon bottle, the gas flow temperature was kept at a minimum of 520F.
- . Bright lustered chips were generated
- . Chips were submitted to LUVAC at 4:00 P.M.
- . Rpm increased from Test #2

Results:	Pi	PM
	02	C
#207	52	50
#208	69	60
#209	83	60

4th Test

5/24/83 INITIALS JTC

DAAG46-83-C-0004

EAR # K09-908

SEQUELTIAL CUTS

DATA	Start	İst	2nd	3rd	6th	5th	6th	7th	8th	End
Time		A.M. 11:10	11:15	11:20						
Sample container #		210	ยา	212						
Insert Ident. (rake)	(K-68)	5 ⁰ Neg.								
Temperatures OF	74		•	•						
rool (Max.) ⁰ F		154	167	155						
Gas flow 0F		50.5	19.5	48.5						
Accumulator										
Rates Gas flow CFM		2.0								
rool reed "/Rev.		.010								
Speed (RPM)		610		^						
Depth of cut	•	. 040		^						
Pressures Leak rate \$ 02		<1.0		~						
Enclosure PSI		0.25		<		-				
Argon flow	•									
Accumulator										
-										

DAAG46-	8.	3-0	-0	0	0	đ
---------	----	-----	----	---	---	---

Test #	Final (4th test)	Date 5/	24/83	<i>-</i>
Bar #	K09-908	Initials	JTC	

- . RPM increased from test #3
- . Maintained gas flow temperature at approximately $50^{\rm O}{\rm F}$
- Noted that chips were "bright" with no discoloration.
 Eliminated the "scrap" layers that were cut on previous tests, based on previous chemistry results.
 Submitted samples to LUVAC 4:00 P.M.

Results:	PP	M
	02	C
#210	76	50
#211	95	40
#212	103	50

BAR # K10-306

5th Test

5/24/83 INITIALS JTC

DALC 46-83-C-0004

SEQUELTIAL CUTS

DATA	Start	lot	2nd	3rd	4ch	Sth	6th	76.6	8th	End
Time		7.R. 1:15	1:25	1:35						
Sample container !		213	214	215						
Insert Ident. (rake)	К-68	5 ^o Neg.		<						
Temperatures OF	1.71			·						
rool (Nax) OF		163	991	170						
Gas flow OF		57	55	49						
Accumulator										
Rates Gas flow CEM		2.0		ζ>						
rool Feed		.010		<						
Speed (RPM)		788		K						
Depth of cut		. 030	.030	.050						
Pressures Leak rate % 02		<1.0		<						
Enclosure PSI		0.25		^		·				
Argon flow				·						
Accumulator										
					_					

DAAG46-83-C-0004

Test # Final (5th test)	Date 5/24/83	
Bar # K10-306	Initials JTC	

COMMENTS:

- . Increased RPM to 788
- . Took normal three (3) samples as per previous test
- . "Bright" chips noted
 . Submitted to LUVAC at 4:00 P.M.

Results	P!	PM
	02	C
#213	81	60
#214	115	80
#215	96	90

Low pressure in bottle (~500 PSI) Note:

Test # Final

DAAG46-83-C-0004

6th Test SEQUETITAL CUTS

Date 5/24/83

DATA	Start	lst	2nd	3rd	4th	5th	6th	1 7th	Bth	End
Tine		P.M. 2:00	2:10	2:20						
Sample container #		216	217	218						
Insert Ident. (rake).	(K-68)	Neg Rake								
Temperatures 0F Enclosure 0F	77									
$T\infty^{1}$ (Max) $0_{\rm F}$		158	139	142						
Gas flow 0F		46	45	40.1						
Accumulator										
Rates Gas flow CFM		2.0								
Tool Feed "/REV		.010								
Speed (RPM)		1000	1000	1000						
Depth of cut		.050	.040	.040						
Pressures Leak rate % 02		1.0	-	 						
		0.25								
ľ	·									
Accumulator										

DAAG46-83-C-0004

Test #	Final (6th Test)	Date	5/24/83	•
Bar #	K10-906	Initials	JTC	

- Increase RPM to 1000 (Max. on Pratt Whitney lathe)
 Used new argon bottle for added pressure and cooling effect
 Chips appeared "bright"
 Submitted three (3) samples to LUVAC at 4:00 P.M.

Results:		
	PP	M
	02	C
#216	59	60
#217	69	70
#218	63	73

MAR # K09-907

7th Test

INITIALS

DAAC46-83-C-0004

SEQUETTIAL CUTS

DATA	Start	lst	2nd	3rd	4th	5th	6th	7th	8th	End
Time		A.M. 11:10	11:17	11:25						
Sample container #				221						
Insert Edent. (rake)'	10 ⁰ Neg.	(with		breaker)				,		
Temperatures Enclosure			•	₱ F						
1001 (Max.) OF		161	158	162						
Gas flow OF	52	53.5	52	52.3						
Accumulator				٠						
Rates Gas flow CFM		2.0	2.0	2.0						
Tool Feed "/Rey.		.0155	5510	.0155						
Speed (RPM)		610		610						
Depth of cut		. 030	.030	.040						
Pressures Leak rate 1 02		<1.0	<1.0	<1.0						
Enclosure PSI		0.25	0.25	0.25		·				
Argan flow	·									
Accumulator										
	_									

DAAG46-83-C-0004

Test # Final (7th Test	Date 5/25/83
Bar # K09-907	Initials JTC

- . 100 Neg. provided smaller chips; clean and "bright" . Reduced RPM to 610 for comparison data . Submitted to LUVAC at 4:00 P.M.

- . Gas pressure 2100 PSI

Results:	PP	M
	02	C
#219	63	30
#220	71	40
#221	94	80

710

INTTIALS SEQUETTIAL CUTS 8th Test DAAG-46-83-C-0004 BAR 8 K09-808

DATA	Start	lst	2nd	3rd	4th	Sth	6th	7.5%	Bth	Bnd
Tine			1:20	1:25						
Sample container !			223	224						
Insert Ident. (rake)	10 ⁰ Neg.	(with	breaker							
Tenperatures Enclosure				₽						
Tool (Max.) OF		157	149	170						
Gas flow OF		53	43.9	43.2						
Accumulator								·		
Rates Gas flow CEM		2.0	2.0	2.0						
		.0155	.0155	.0155						
Speed (RPH)		610	019	610						
Depth of cut		. 030	.030	.040						
Pressures Leak rate % 02		<1.0	k1.0	<1.0						
Enclosure				0.25		·				
Argon flow										
Accumulator										

DAAG46-83-C-0004

Test # Final (8th test)	Date 5/25/83	<u> </u>
Bar # K09-808	Initials JTC	

- . Same parameters as test #7 . Noted bright chips
- Submitted samples to LUVAC at 4:00 P.M.
 Gas Pressure 1800 PSI

Results:	PP	M
	02	C
#222	60	30
#223	56	30
#224	68	40

9th Test

5/25/83 INITIALS JTC

- DALG 46-83-C-0004 MAR # K09-707

SEQUELTIAL CUTS

DATA	Start	lst	2nd	3rd	4th	5th	6th	7th	Bth	End
Time		P.M. 1:40	1:52	2:05						
Sample container #		225	226	227						
,	10 ⁰ Neg	w/Breaker	er							
Temperatures			•							
Tool (Max.) OF		160	156	168						
Gas flow OF		39.6	41.0	41.0						
Accumulator				•		·				
Rates Gas flow CFM		2.0	2.0	2.0						
Tool Feed "/Rev.		.0155	2510.	.0155						
Speed (RPM)		610	010	610						
Depth of cut		030	030	040						
Pressures Leak rate \$ 02		∢1.0	دا.0	د].0						
Enclosure PSI		0.25	0.25	0.25						
Argon flow				·						
Accumilator										
	-	-	-			-				

DAAG46-83-C-000	DAA	G46	-8	3-0	-00	SO.
-----------------	-----	-----	----	-----	-----	-----

Test #	Final (9th test)	Date 5/25/83	
Bar #	K09-707	Initials JTC	

COMMENTS:

- Same parameters as 7th and 8th tests
 Noted bright chips
 Gas pressure 1500 psi
 Submitted samples to LUVAC at 4:00 P.M.

Results:

	P.P	M
#225	0 ₂	C 20
#226	63	40
#227	84	50

TEST # Chips for Melt Test

BAR # K09-304

INTERALS JIC

DATE 5/25/83

DALG46-83-C-0004

SEQUETTAL CUTS

DATA	Start	1	270.5	25.5	447	443				
21m		A.M. 10:15	10:17	10:18		357	750	/50	55	B B
Sample container #		(K09-304 plastic tox)	plastic	ox)						
Insert Ident. (rake)		15ºNeg	w/ breaker	ker				,		
Temperatures Enclosure			•	Ø N		•				
Tool (Max.) OF		160	169	167						
Gas flow OF	54	51	50.2	51						
Accumulator										
Rates Gas flow										
Tool Feed		.0155		~						
Speed (RPM)		610		^						
Depth of cut		.030"		<						
Pressures Leak rate \$ 02		٨١.0		~						
Enclosure PSI		0.25		^						
Argon flow	·									
Accumulator										
				_						

DISTRIBUTION LIST

No. Copi		То
12		der, Defense Technical Information Center, Cameron Station, Building 5, uke Street, Alexandria, Virginia 22314
	Comman	der, U.S. Army Armament Research and Development Command,
	Dover,	New Jersey 07801
10	ATTN:	DRDAR-LCU-M, Mr. William Sharpe, Building 94
3		SARPM-PBM-MC, Mr. Dave Edgar, Building 171
	Direct	or, Army Materials and Mechanics Research Center,
		own, Massachusetts 02172
2	ATTN:	
1		DRXMR-K, Mr. J. Jeffrey
ī		DRXMR-PR
8		DRXMR-MD, Mr. H. Whitney

Final Report 5 January 1983 to 5 July 1983 Rexford, New York 12148
Technical Report AMMRC TR 83-42, July 1983
illus-tables, Contract DAAG 46-83-C-0004,
AMCMS Code 69400R-234 (ARRADCOM) Avmy Materials and Mechanics Research Center, Watertown, Massachusetts 02172 DU CHIP RECOVERY PROGRAM, PHASE I - A Contaminant-Free Chips - J. Conboy and Machining Study for the Production of South Creek Industries, P. Shevchik

The present depleted uranium (DU) machining process used in the production of the M774 and M833 DU penetrators incurs excessive costs due to the necessity for burial of the radioactive metal turnings (chips). The alternative to burial was the recycling of the chips to form usable depleted uranium thereby eliminating disposal problems and increasing the supply of depleted uranium. An inert atmosphere was proposed to produce contaminate-free chips that will allow remelting to required chemical specifications of the penetrator material. A lathe enclosure was designed to provide a controlled atmosphere of argon gas maintaining a positive pressure of 0.25 psi within. Dry argon gas was used as a coolant at the tool workpiece interface. The chips were analyzed for oxygen and carbon content; the contaminants most critical to the remelting of the chips. The chemical analysis showed consistently low oxygen and carbon "pick-up." the significance of these results was substantiated by the successful melting of depleted uranium chips in an electric resistance furnace at AMMRC.

UNCLASSIFIED UNCLASSIFIED Final Report 5 January 1983 to 5 July 1983 South Creek Industries, Inc.
Rexford, New York 12148
Technical Report AMMRC TR 83-42, July 1983
illus-tables, Contract DAAG 46-83-C-0004,
AMCMS Cnde 69400R-234 (ARRADCOM) Army Materials and Mechanics Research Center, Waterlown, Massachusetts 02172 DU CHIP RECOVERY PROGRAM, PHASE I - A Machining Study for the Production of Contaminant-Free Chips - J. Conboy and P. Shevchik

Anaerobic processes

Carbide tools

Depleted uranium

Key Words

The present depleted uranium (DU) machining process used in the production of the M774 and M833 DU penetrators incurs excessive costs due to the necessity for burial of the radioactive metal turnings (chips). The alternative to burial was the recycling of the chips to form usable depleted uranium. Thereby eliminating disposal prohosed to produce contaminate effect uranium. An inert atmosphere was proposed to produce contaminate-free chips that will allow remelting to required chemical specifications of the penetrator material. A lathe enclosure was designed to provide a controlled atmosphere of argon gas maintaining a positive pressure of 0.25 psi within. Dry argon gas was used as a coolant at the tool workpiece interface. The chips were analyzed for oxygen and carbon content; the contaminants most critical to the remelting of the chips. The chemical analysis showed consistently low oxygen and carbon "pick-up." the significance of these results was substantiated by the successful melting of depleted uranium chips in an electric resistance furnace at AMMRC.

Materials and Mochanics Research Center, Watertown, Massachusetts 02172 DU CHIP RECOVERY PROGRAM, PHASE I - A Machining Study for the Production of Contaminant-Free Chips - J. Conboy and P. Shevchik Army

UNCLASSIF JED UNLIMITED DISTRIBUTION

ş

Anaerobic processes Carbide tools

Depleted uranium

Key Words

Final Report 5 January 1983 to 5 July 1983 Technical Report AWMRC TR 83-42, July 1983 illus-tables, Contract DAAG 46-83-C-0004, AMCMS Code 69400R-234 (ARRADCOM) <u>۳</u> Rexford, New York 12148 South Creek Industries.

UNCLASSIFIED UNLIMETED DISTRIBUTION Anaerobic processes Depleted uranium **Kry Words**

Carbide tools

The present depleted uranium (DU) machining process used in the production of the M734 and M833 DU penetrators incurs excessive costs due to the necessity for burial of the radioactive metal turnings (chips). The alternative to burial was the recycling of the chips to form usable depleted uranium thereby eliminating disposal problems and increasing the supply of depleted uranium. An inert atmosphere was probosed to produce contaminate-free chips that will allow remelting to required chemical specifications of the penetrator material. A lathe enclosure was designed to provide a controlled atmosphere of argon gas maintaining a positive pressure of 0.25 psi within. Dry argon gas was used as a coolant at the tool workpiece interface. The chips were analyzed for oxygen and carbon content; the contaminants most critical to the remelting of the chips. The chemical analysis showed consistently low oxygen and carbon "pick-up." the significance of these results was substantiated by the successful melting of depleted uranium chips in an electric resistance furnace at AWMRC.

Army Materials and Mechanics Research Center, Matertown, Massachusetts 02172 DU CHIP RECOVERY PROGRAM, PHASE I - A Machining Study for the Production of Contaminant-Free Chips - J. Conboy and P. Shevchik

Final Report 5 January 1983 to 5 July 1983 Rexford, New York 12148 Technical Report AMMRC TR 83-42, July 1983 illus-tables, Contract DAAG 46-83-C-0004, AMCMS Code 69400R-234 (ARRADCOM)

Depleted uranium Anaerobic processes Carbide tools

South Creek Industries, Inc.

Key Words

UNCLASSIFIED
UNITED DISTRIBUTION

The present depleted uranium (DU) machining process used in the production of the M774 and M833 DU penetrators incurs excessive costs due to the necessity for burial of the radioactive metal turnings (chips). The alternative to burial was the recycling of the chips to form usable depleted uranium. An inert atmosphere was proposed to produce contaminate-free chips that will allow remelting to required chemical specifications of the penetrator material. A lathe enclosure was designed to provide a controlled atmosphere of argon gas maintaining a positive pressure of 0.25 psi within. Dry argon gas was used as a coolant at the tool workpiece interface. The chips were analyzed for oxygen and carbon content; the contaminants most critical to the remelting of the chips. The chemical analysis showed consistently low oxygen and carbon "pick-up." the significance of these results was substantiated by the successful melting of depleted uranium chips in an electric resistance furnace at AMMRC.

ATTACHMENT

FILMED

9-83