

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE DEPARTAMENTO DE INGENIERÍA ELÉCTRICA TEORÍA ELECTROMAGNÉTICA - IEE2113

Profesor: Javier Silva

AYUDANTE: Jorge Andrés Matamala (jnmatamala@uc.cl)

Ayudantía 7

Adaptación de impedancias y guías de onda

Pregunta 1

Se tiene una línea de transmisión coaxial que opera a 50 MHz con $\epsilon_r=1$. Se requiere adaptar la carga de la antena a la línea mediante un stub de largo l_2 colocado a una distancia l_1 desde la base. Considerando que todos los tramos poseen las mismas características eléctricas, determine los largos l_1 y l_2

Pregunta 2

Usted le pregunta al profesor una duda y le responde lo siguiente

El ayudante escucha y contribuye comentando que $R_L=200~\Omega,~Z_0=100~\Omega$ y $Z_g=60+j40~\Omega.$

Sin entender las respuestas, acudes a tu amigo y te recomienda hacer dos cosas: encontrar Z_{in} y luego diseñar una red adaptadora basada en stub paralelo o corto-circuito que maximice la potencia a transferir desde la fuente a la carga.

Pregunta 3

La siguiente línea de transmisión sin pérdidas opera a una frecuencia de 700 MHz con una velocidad de fase por cada línea de $2.1 \cdot 10^8 \ m/s$. Usando la carta de Smith, encuentre el SWR en cada sección de la línea y la impedancia de entrada de la línea # 1.

Pregunta 4

Para un túnel de dimensiones aproximadas de 7 x 12 m construido con paredes conductoras.

- a Determine sobre qué rango de frecuencias en esta guía de onda se propaga uno y solo un modo. ¿A qué modo corresponde?
- b Determine las frecuencias de corte f_{mn} para los modos TE_{11} , TE_{01} y TM_{11} .
- c Calcule la longitud de onda λ_q para el modo TE_{10} en este túnel a 15MHz
- d Considerando las ondas a 15 MHz como ondas planas reflejadas desde las paredes laterales que inciden con ángulo θ_i ¿Cuál es el valor de θ_i para el modo TE_{10} ?
- e Escriba una expresión para $\vec{H}(x,y,z)$ para el modo TM_{11} usando las dimensiones de las guía de onda.
- f Una señal emisora de radio AM 1 MHz está por debajo de la frecuencia de corte para este túnel y por lo tanto tiene una distancia de atenuación de potencia igual a δ . Determine el valor numérico para δ (en m), que es una fracción de la distancia de penetración de la señal AM aproximada con respecto a la entrada del túnel.
- g ¿Qué tipo de problemas se pueden experimentar cuando se trata de escuchar una emisora FM, de ancho de banda 88-108 MHz dentro de túneles largos, asumiendo que las señales penetran en la entrada?