EE230: Lab-2 Unregulated DC Power Supply Learning

Prateek Garg, 20D070060 January 24, 2022

1 Overview of the experiment

1.1 Aim of the experiment

- 1. Understanding the limits of performance of a Zener regulator
- 2. Understanding a BJT based series voltage regulator to appreciate the basic blocks of an IC voltage regulator.

1.2 Methods

We start by analysing the circuits and then simulating in ngspice to check against theoretical expectations.

2 Design

2.1 Zener Regulator

In non conduction region :

$$I_z = 0$$

$$V_{out} < 12V$$

$$V_{out} = \frac{V_{in}}{R_s + R_l}$$

In conduction region : Using $R_z=125\Omega$ and $V_z{=}12\mathrm{V}$

$$V_{out} \ge 12V$$

$$V_{out} = (V_{in}/R_s + 12/125)/(1/R_s + 1/R_z + 1/R_l)$$

$$I_s = (V_{in} - V_{out})/R_s$$

$$I_z = (V_{out} - 12)/125$$

2.2 BJT Series Regulator

3 Simulation results

3.1 Zener Regulator

3.1.1 Code snippet

```
1 Zener Regulator Circuit
3 *Defining zener Subckt
_{\rm 4} .MODEL DF D ( IS=27.5p RS=0.620 N=1.10 CJ0=78.3p VJ=1.00 M
      =0.330 TT = 50.1n)
_{5} .MODEL DR D ( IS=5.49f RS=50 N=1.77 )
6 .SUBCKT ZENER_12 1 2
7 D1 1 2 DF
8 DZ 3 1 DR
9 VZ 2 3 10.8
10 .ENDS
11
12 *describe circuit
* <element-name> <nodes> <value/nodel>
14 Vin 1 0 dc 20
16 Vrs 2 3 dc 0
17 Rs 1 2 470
19 x3 4 3 ZENER_12
20 Viz 4 0 dc 0
22 RL 3 5 1k
23 Vil 5 0 dc 0
25 *analysis commandx
26
27 . op
29 .control
30 run
32 *display cmd
print v(3) i(Vrs) i(Vil) i(Viz)
34 *end control mode
35 .endc
37 *end netlist
38 .end
```

3.1.2 Simulation results

3.2 BJT Series Regulator

3.2.1 Code snippet

```
1 BJT Regulator Circuit
3 .include zener_B.txt
4 *Defining Models
5 .model bc547a NPN (IS=10f BF=200 ISE=10.3f IKF=50m NE=1.3
6 + BR=9.5 VAF=80 IKR=12m ISC=47p NC=2 VAR=10 RB=280 RE=1 RC=40
_7 + tr=0.3u tf=0.5n cje=12p vje=0.48 mje=0.5 cjc=6p vjc=0.7 mjc
     =0.33 \text{ kf} = 2f)
9 .model SL100 NPN (IS=100f BF=80 ISE=10.3f IKF=50m NE=1.3
10 + BR=9.5 VAF=80 IKR=12m ISC=47p NC=2 VAR=10 RB=100 RE=1 RC=10
11 + tr=0.3u tf=0.5n cje=12p vje=0.48 mje=0.5 cjc=6p vjc=0.7 mjc
     =0.33 \text{ kf}=2f)
13 *describe circuit
* <element-name > <nodes > <value/nodel >
15 Vin 1 0 dc 20
16 RC 1 3 1K
17 Q1 1 3 2 SL100
18 Q2 3 4 5 bc547a
19 xz 0 5 DI_1N4734A
20 R1 2 4 12.5K
21 R2 0 4 12.5K
22 RL 2 0 1k
24 *analysis commandx
25 . op
27 .control
28 run
30 *display cmd
31 print v(1) v(2) v(3) v(4) v(5)
32 *end control mode
33 .endc
**end netlist
36 .end
```

3.2.2 Simulation results

Zener Regulator

BJT Series Regulator


```
Circuit: bjt regulator circuit

Doing analysis at TEMP = 27.000000 and TNOM = 27.000000

No. of Data Rows : 1
v(1) = 2.000000e+01
v(2) = 1.202664e+01
v(3) = 1.272388e+01
v(4) = 6.250379e+00
v(5) = 5.518861e+00
ngspice 45 ->

BJT-Regulator-B.cir -- ready -- Quit
```


4 Experiment completion status

All the sections were completed