# SPEED CONTROL OF A BRUSHLESS DC MOTOR USING A MICROCONTROLLER

# Assignment - 8

| Abhinav S        | 2015B5A30490P | Aparna M        | 2016A8PS0307P |
|------------------|---------------|-----------------|---------------|
| Deepak Vasudevan | 2015B5A30415P | Ardra Ayyappath | 2016A3PS0261P |
| Gokul Srinivasan | 2015B5A30581P |                 |               |

## **ABSTRACT**

This project aims to control the speed of a brushless DC motor. This is necessary because BLDC motors are used in a variety of everyday circuits including CD drives, drones, electric vehicles, etc. Here, we use an automatic speed controller that has an in-built back EMF sensor.

#### SIMULINK MODEL

The simulink model is given in the following figure,



The back EMF decoder decides the switches that need to be turned on, depending on the trapezoidal back EMF obtained from the motor.

#### SIMULATION RESULTS

The model works for a small range of speeds. While the motor settles at a constant speed, there seems to be an issue with its sensitivity to the duty cycle. The trapezoidal waveforms are obtained though.

#### HARDWARE MODEL

The following components are required. We have,

- 1. A BLDC Motor: A2212/13T was chosen. It has 14 stator poles and is an outrunner motor, hence the enclosing case is actually the rotor.
- 2. ESC: This speed controller is an IC that consists of a back EMF sensor, a voltage regulator and a 3 phase inverter. It expects only a PWM input with a certain duty cycle as input.
- 3. Arduino Uno: This is the microcontroller that is attached to the motor and ESC. It is also interfaced to the hex keypad, which enables independent input of speed without the requirement of a computer.
- 4. Digital Tachometer: To verify/test results by measuring speed.
- 5. Power Supply
- 6. Hex keypad This requires 8 pins on the Arduino.

#### **PROCEDURE**

- 1. The circuit is assembled. The Arduino can be powered up by the laptop or the ESC itself.
- 2. The required speed is fed using the hex keypad. When the speed changes, the voltage and currents drawn are noted to calculate input power.
- 3. The current and voltage are noted for the same duty cycle, after putting a small load on the shaft.
- 4. Torque is calculated using the following equation,

$$T = P_{IN}/\omega$$

It is to be noted that the above equation assumes an efficiency of 1.

#### **OBSERVATIONS**

1. No Load

| Speed (RPM) | Speed (rad/s) | Vdc (V) | Idc (A) | Pin (W) | Torque (N m) |
|-------------|---------------|---------|---------|---------|--------------|
| 3177        | 332.694662    | 11.9    | 0.21    | 2.499   | 0.007511392  |
| 3390        | 354.9999699   | 11.9    | 0.23    | 2.737   | 0.00770986   |
| 3571        | 373.9542455   | 11.9    | 0.23    | 2.737   | 0.007319077  |
| 3946        | 413.2241537   | 11.9    | 0.25    | 2.975   | 0.007199482  |
| 3953        | 413.957192    | 11.9    | 0.25    | 2.975   | 0.007186733  |
| 4320        | 452.3893421   | 11.9    | 0.27    | 3.213   | 0.007102289  |
| 4781        | 500.6651492   | 11.9    | 0.28    | 3.332   | 0.006655147  |
| 4844        | 507.2624938   | 11.9    | 0.29    | 3.451   | 0.006803184  |
| 5045        | 528.3111646   | 11.9    | 0.3     | 3.57    | 0.006757381  |
| 5410        | 566.5338752   | 11.9    | 0.31    | 3.689   | 0.006511526  |
| 5520        | 578.0530483   | 11.9    | 0.32    | 3.808   | 0.006587631  |
| 5688        | 595.6459671   | 11.9    | 0.33    | 3.927   | 0.006592842  |
| 5971        | 625.2816578   | 11.9    | 0.34    | 4.046   | 0.006470684  |
| 6090        | 637.7433087   | 11.9    | 0.35    | 4.165   | 0.006530841  |
| 6247        | 654.1843102   | 11.9    | 0.35    | 4.165   | 0.006366707  |
| 6391        | 669.263955    | 11.9    | 0.36    | 4.284   | 0.006401062  |
| 6628        | 694.0825369   | 11.9    | 0.37    | 4.403   | 0.006343626  |



## 2. Loaded

| Speed (RPM) | Speed (rad/s) | Vdc (V) | Idc (A) | Pin (W) | Torque (N m) |
|-------------|---------------|---------|---------|---------|--------------|
| 3161        | 331.0191459   | 11.9    | 0.22    | 2.618   | 0.007908908  |
| 3384        | 354.3716513   | 11.9    | 0.23    | 2.737   | 0.00772353   |
| 3566        | 373.4306468   | 11.9    | 0.23    | 2.737   | 0.00732934   |
| 3926        | 411.1297586   | 11.9    | 0.26    | 3.094   | 0.007525605  |
| 3940        | 412.5958352   | 11.9    | 0.25    | 2.975   | 0.007210446  |
| 4300        | 450.294947    | 11.9    | 0.27    | 3.213   | 0.007135323  |
| 4624        | 484.2241477   | 11.9    | 0.28    | 3.332   | 0.006881111  |
| 4800        | 502.6548246   | 11.9    | 0.29    | 3.451   | 0.006865546  |
| 5036        | 527.3686868   | 11.9    | 0.3     | 3.57    | 0.006769458  |
| 5375        | 562.8686838   | 11.9    | 0.31    | 3.689   | 0.006553927  |
| 5500        | 575.9586532   | 11.9    | 0.32    | 3.808   | 0.006611586  |
| 5611        | 587.582546    | 11.9    | 0.32    | 3.808   | 0.006480792  |
| 5956        | 623.7108615   | 11.9    | 0.34    | 4.046   | 0.00648698   |
| 6081        | 636.8008309   | 11.9    | 0.35    | 4.165   | 0.006540507  |
| 6224        | 651.7757559   | 11.9    | 0.35    | 4.165   | 0.006390235  |
| 6384        | 668.5309167   | 11.9    | 0.36    | 4.284   | 0.006408081  |
| 6628        | 694.0825369   | 11.9    | 0.37    | 4.403   | 0.006343626  |



### **REFERENCES**

[1] Vishnuvardhan Vadla, Chappidi Suresh and Ravi Naragani, "Simulation of Fuzzy Based Current Control Strategy for BLDC Motor Drive," International Journal of Scientific Engineering and Technology Research, vol. 04, issue 24, pp.4626-4632, July 2015

[2] .Vinatha U, Swetha Pola and K P Vittal, "Simulation of Four Quadrant Operation & Speed Control of BLDC Motor on MATLAB / SIMULINK"