Gradient Descent

Johanni Brea

Introduction à l'apprentissage automatique

GYMINF 2021

- 1. Gradient Descent
- 2. Stochastic Gradient Descent
- 3. Adaptive Learning Rates and Momentum
- 4. Early Stopping

Gradient Descent

- 1. Input: loss function L, initial guess $\beta^{(0)} = \left(\beta_0^{(0)}, \dots, \beta_p^{(0)}\right)$ learning rate η , maximal number of steps T.
- 2. For t = 1, ..., T

$$\beta_i^{(t)} = \beta_i^{(t-1)} - \delta_i$$

3. Return $\beta^{(T)}$

Gradient Descent

- 1. Input: loss function L, initial guess $\beta^{(0)} = \left(\beta_0^{(0)}, \dots, \beta_p^{(0)}\right)$ learning rate η , maximal number of steps T.
- 2. For t = 1, ..., T

$$\beta_i^{(t)} = \beta_i^{(t-1)} - \delta_i$$

3. Return $\beta^{(T)}$

Automatic Differentiation software uses the chain rule and symbolic derivatives for primitive functions, to compute the derivative of almost any code we write.

- 1. Gradient Descent
- 2. Stochastic Gradient Descent
- 3. Adaptive Learning Rates and Momentum
- 4. Early Stopping

Stochastic Gradient Descent (SGD)

Computing the loss over all samples $1, \ldots, n$ can be computationally costly. A subset of the training data may be sufficient to estimate the gradient direction.

Stochastic Gradient Descent (SGD)

Computing the loss over all samples $1, \ldots, n$ can be computationally costly.

A subset of the training data may be sufficient to estimate the gradient direction.

1. Input: loss function L, initial guess

$$\beta^{(0)} = \left(\beta_0^{(0)}, \dots, \beta_p^{(0)}\right)$$

learning rate η , maximal number of steps T, tolerance Δ , batch size B.

- 2. For t = 1, ..., T
 - ▶ Determine batch of training indices I

$$\beta_i^{(t)} = \beta_i^{(t-1)} - \delta_i$$

3. Return $\beta^{(T)}$

where $L(\beta; \mathcal{I})$ is the loss function evaluated on the training samples with indices in \mathcal{I} , e.g.

$$L(\beta; \mathcal{I}) = \frac{1}{B} \sum_{i \in \mathcal{I}} \left(y_i - x_i^T \beta \right)^2$$

Stochastic Gradient Descent (SGD)

Computing the loss over all samples $1, \ldots, n$ can be computationally costly.

A subset of the training data may be sufficient to estimate the gradient direction.

1. Input: loss function L, initial guess

$$\beta^{(0)} = \left(\beta_0^{(0)}, \dots, \beta_p^{(0)}\right)$$

learning rate η , maximal number of steps T, tolerance Δ , batch size B.

- 2. For t = 1, ..., T
 - ▶ Determine batch of training indices I

- $\beta_i^{(t)} = \beta_i^{(t-1)} \delta_i$
- 3. Return $\beta^{(T)}$

where $L(\beta;\mathcal{I})$ is the loss function evaluated on the training samples with indices in \mathcal{I} , e.g.

$$L(\beta; \mathcal{I}) = \frac{1}{B} \sum_{i \in \mathcal{I}} \left(y_i - x_i^T \beta \right)^2$$

Example B = 6

	batch 1	batch 2	batch 3	b
\mathcal{I}	1 8 3 13 93	9 14 2 26 31		

- 1. Gradient Descent
- 2. Stochastic Gradient Descent
- 3. Adaptive Learning Rates and Momentum

Stochastic Gradient Descent

4. Early Stopping

Adaptive Learning Rates and Momentum

Momentum

$$\mathbf{v}_{i}^{(t)} = \mu v_{i}^{(t-1)} + (1-\mu)\delta_{i}$$

$$\beta_i^{(t)} = \beta_i^{(t-1)} - v_i^{(t)}$$

Adaptive Learning Rates and Momentum

Momentum

$$\mathbf{v}_{i}^{(t)} = \mu v_{i}^{(t-1)} + (1-\mu)\delta_{i}$$

$$\beta_i^{(t)} = \beta_i^{(t-1)} - v_i^{(t)}$$

Adaptive Learning Rates

For every parameter a different learning rate η_i can be chosen. It can also change over time.

https://doi.org/10.1371/journal.pcbi.1007640

Adaptive Learning Rates and Momentum

Momentum

$$\mathbf{v}_{i}^{(t)} = \mu v_{i}^{(t-1)} + (1-\mu)\delta_{i}$$

$$\beta_i^{(t)} = \beta_i^{(t-1)} - v_i^{(t)}$$

Adaptive Learning Rates

For every parameter a different learning rate η_i can be chosen. It can also change over time.

https://doi.org/10.1371/journal.pcbi.1007640

Modern methods like ADAM(W) include momentum and automatically adapting learning rates for the different parameters.

- 1. Gradient Descent
- 2. Stochastic Gradient Descent
- 3. Adaptive Learning Rates and Momentum
- 4. Early Stopping

Early Stopping

Start with small weights and stop gradient descent when validation loss starts to increase.

training data validation data

black line: a flexible neural network trained with gradient descent

X Stochastic Gradient Descen

Quiz

▶ If we choose a small learning rate larger than zero, the training loss in gradient descent is decreasing in every step.

Quiz

- ▶ If we choose a small learning rate larger than zero, the training loss in gradient descent is decreasing in every step.
- ▶ If we choose a small learning rate larger than zero, the training loss in stochastic gradient descent is decreasing in every step.

Quiz

- ▶ If we choose a small learning rate larger than zero, the training loss in gradient descent is decreasing in every step.
- ▶ If we choose a small learning rate larger than zero, the training loss in stochastic gradient descent is decreasing in every step.
- ➤ Stochastic gradient descent requires less computation than full gradient descent for each update of the parameters.

