5 шаг: изменение весов (и порогов при использовании пороговой функции) по формулам:

$$w_{ij}(t+1) = w_{ij}(t) - \eta \cdot \varepsilon_i \cdot x_j,$$

$$\theta_i(t+1) = \theta_i(t) - \eta \cdot \varepsilon_i,$$

где t-номер текущей итерации цикла обучения, w_{ij} - вес связи j-входа с i-нейроном, η - коэффициент обучения, задается от 0 до 1, x_j - входное значение, θ_i - пороговое значение i-нейрона.

6 шаг: проверка условия продолжения обучения (вычисление значения ошибки и/или проверка заданного количества итераций). Если обучение не завершено, то 2 шаг, иначе заканчиваем обучение.

Пример решения задачи

3адача. Просчитать одну итерацию цикла обучения по Δ -правилу однослойной бинарной неоднородной нейронной сети, состоящей из 2 нейронов и имеющей функции активации: гиперболический тангенс (k=1) и пороговую функцию (T=0,7). В качестве обучающей выборки использовать таблицу истинности для операций эквивалентности и дизъюнкции (не использовать первую строчку таблицы). Синаптические веса задать случайным образом.

Описание процесса решения. Для обучения нейронной сети по Δ - правилу необходимо:

- 1) Графически отобразить структуру нейронной сети. Определить размерность матрицы синаптических весов.
- 2) Определить обучающую выборку, представив ее в табличном виде.
- 3) Выбрать входные данные, на которых будет рассматриваться итерация цикла обучения.
- 4) Следуя алгоритмы обучения по Δ –правилу, просчитать одну итерацию цикла и представить новые синаптические веса в матричном виде.

Решение.

1) По заданию нейронная сеть состоит из двух нейронов, значит, входов у однослойной нейронной сети будет 2 и выходов 2, а синаптических весов 4. Первый нейрон имеет пороговую функцию активации, второй – гиперболический тангенс.

