SHAMBHUNATH INSTITUTEOF ENGINEERING AND TECHNOLOGY

Subject Code: BAS101

Subject: Engineering Physics

Course: B.Tech

SEMESTER: 1st semester

FIRST SESSIONAL EXAMINATION, ODD SEMESTER, (2022-2023)

(For Sec E Only)

Time -1hr 30 min

Maximum Marks - 30

SECTION - A

1. Attempt all questions in brief.

$\mathbf{O}\mathbf{N}$	OUESTION	·		
	QUESTION Explain the failure of classical theory.	Marks	CO	BL
		2	CO1	L1
b.	Explain the properties of matter.	2	CO1	L1
c.	Briefly discuss plank's radiation law.	2	CO ₁	L1
u.	Write Heisenberg's uncertainty principle.	2	CO1	T.1

SECTION - B

2. Attempt any **ONE** of the following.

QN	QUESTION	Marks	CO	BL
a.	Derive time independent Schrödinger wave equation. Write significance and properties of wave function.	5	CO1	L4
b.	What is Compton's effect? Derive expression for Compton's shift. Why Compton's shift is not observed in visible light?	5	CO1	L4

3. Attempt any <u>ONE</u> of the following.

a.	Describe the Davisson & Germer experiment to demonstrate the wave nature of electrons.	5	CO1	L2
b.	Show that de-Broglie wave group associated with a moving particles travels with same velocity as the particle i.e. $v_g = v$.	5	CO1	L3

SECTION - C

4. Attempt any \underline{ONE} part of the following:

QN	QUESTION	Marks	CO	BL
a.	(i). Define group velocity and phase velocity. Also prove that	3		L6
	$\mathbf{v_g} = \mathbf{v_p} - \lambda \frac{d\mathbf{v_p}}{d\lambda}$	-	CO1	
	(ii). What is the wavelength of a α-particle which has been accelerated from rest through a potential difference of 200V?	3		L5
	A particle is moving in one dimensional box of length L described by			COLUMN TO STATE OF THE PARTY OF
	U=0 for 0< x< L			
b.	$U = \infty \text{ for } x < 0 \text{ and } x > L$	6	CO1	L3
	Write and solve its Schrödinger's wave equation and obtain Eigen value and		1	
	Eigen function. Prove that energy of the matter particle is in quantized form.			

5. Attempt any <u>ONE</u> part of the following:

QN	QUESTION	Marks	CO	BL
a.	An electron is confined to move between two rigid walls separated by 10 ⁻⁹ m.find the de-Broglie wavelength representing the first three allowed energy states of the electron and corresponding energies.	6	CO1	L5
	energy states of the electron and corresponding energy. An X-ray photon is found to have its wavelength doubled on being scattered through 90° find the wavelength and energy of the incident photon.	6	CO2	L5

Constants: Mass of proton $= 1.67 \times 10^{-27} \text{ kg.}$ Mass of electron $= 9.1 \times 10^{-31} \text{ kg.}$ Charge of proton $= 1.6 \times 10^{-19} \text{ C.}$ Planck's constant h $= 6.625 \times 10^{-34} \text{ J-sec.}$ Velocity of light $= 3 \times 10^8 \text{ m/s.}$

Bloom's Taxonomy Level (BL):Remember (L1), Understanding (L2), Apply (L3), Analyze (L4), Evaluating (L5), Creating (L6)