代号	9-06A
模块	计算机辅助设计
层次	基础型

Matlab 7.0 使用说明

(数值计算部分)

华中科技大学国家机械基础课程教学基地 2010年 9 月

目 录

第一部分 基本操作	1
§1.Matlab 的使用	1
1-1.直接输入命令	1
1-2.用 M 文件开发程序	1
§ 2. M 文件程序的主要语句和主要函数	2
2-1.Matlab 的数字特征	2
2-2.主要语句	3
2-3.常用函数	4
2-4.几个常用的命令	5
§ 3. 矩阵的有关计算	5
3-1.矩阵的输入	5
3-2.矩阵/向量的运算	6
3-3.矩阵的范数	6
3-4.向量的范数	7
3-5.矩阵的条件数	7
3-6.矩阵的特征值和特征向量	8
§4.Matlab 绘图	9
4-1.绘图的基本命令	9
4-2. 图形的交互编辑	11
第二部分 数值计算	12
§ 1. 方程求根	12
1-1.牛顿迭代法	
1-2. 图解法确定迭代的初始点	13
§ 2. 线性方程组	13
2-1.迭代法的收敛性	
2-2.线性方程组的病态问题	14
2-3.求解线性方程组	
§ 3.插值和拟合	16
3-1.Lagrange 插值	
3-2.代数多项式插值	17
3-3. 插值误差	
3-4.分段线性插值	
3-5.数据的曲线拟合	
§ 4. 数值积分	
4-1.复合梯形求积公式	
4-2.复合 Simpson 求积公式	
§ 5. 常微分方程的数值解法	
5-1.Euler 方法	
5-2.改进的 Euler 方法	
5-3.四阶龙格-库塔方法	24

习题		27
一、	方程求根	27
二,	线性方程组	27
三、	插值与拟合	28
四、	数值积分	29
五、	常微分方程	30
《计算方法》	实验报告	31
一,	方程求根	31
二,	线性方程组	31
三、	插值与拟合	32
	数值积分	
五、	常微分方程	33

第一部分 基本操作

§ 1.Matlab 的使用

Matlab 的使用方法有两种:(1)在 Matlab 的命令窗口(Matlab Command Windows)中直接输入命令,即可得到结果;(2)在 Matlab 的编辑窗口(Matlab Editor)内编写 M 文件,然后在命令窗口执行该文件,得到所需的结果。

1-1.直接输入命令

在命令窗口中,直接输入命令。例如:

键入 x=3+5 显示 x=8

若键入 x=3+5; 不能直接显示结果,

还须键入 x 方可显示 x=8

1-2.用 M 文件开发程序

1.设置当前目录

M 文件分为脚本 M 文件(相当于主程序)和函数 M 文件(相当于子程序或函数)。子程序或函数调用时,须在当前目录内操作,故建议将用户创建的子目录设置为当前目录。这样,所有程序及命令的操作都在用户子目录内,较为方便。以下操作只须设置一次,以后再进入 Matlab 系统时,当前目录即为已设定的目录。

设置当前目录步骤为:

- ① 将鼠标移至 Matlab 图标,按右键弹出下拉菜单;
- ② 点击"属性",弹出 Matlab 属性窗口:
- ③ 将该窗口内"起始位置"栏中的路径更改为用户创建的子目录路径;
- ④ 点击"应用",最后点击"确定"。

2.如何编写程序

对于 Matlab 命令窗口的上方菜单条,点击 File→New→M-file,则弹出 Matlab 的编辑窗口。在编辑窗口内键入 M 文件,最后点击该窗口上方菜单条中的 File→Save 保存文件。

3.例示

- 1) 计算函数 $f(x_1, x_2) = 2x_1^2 + 7x_2^2 3x_1x_2 5x_1 + 3x_2 12$
- ① 编辑窗口中输入该函数 M 文件 function y=demof_1(x1,x2) y=2*x1^2+7*x2^2-3*x1*x2-5*x1+3*x2-12;

输入完毕后存盘(默认文件名为 demof 1.m)

② 在命令窗口中调用该函数

键入 y=demof_1(2,3)

显示 y=40

键入 y=demof 1(3,-5)

显示 y=196

2) 计算一组数据
$$\mathbf{x}_{i}$$
 $(i=1,2,\cdots,n)$ 的 $S_{1} = \frac{\sum_{i=1}^{n} x_{i}}{n}$ 和 $S_{2} = \sqrt{\frac{\sum_{i=1}^{n} x_{i}^{2}}{n}}$

① 在编辑窗口中键入该函数的 M 文件

function [s1,s2]=demof 2(x)

n=length(x);

s1=sum(x)/n;

 $s2=sqrt(sum(x.^2)/n);$

这是一个具有多个返回值的函数,调用语句的左边须为向量。输入完毕后保存文件(默认文件名为 demof 2.m)。

② 在命令窗口中调用函数

输入数组 x=[1,2,3,4,5]

输入调用 [t1,t2]=demof_2(x)

显示 t1=3

t2=3.3166

- ③ 或者,通过主程序调用该函数
- i) 首先, 在编辑窗口输入脚本 M 文件如下:

x=input('x==');

[s1,s2]=demof 2(x);

fprintf('s1=%12.5f

s2=%12.5f',s1,s2);

- ii) 保存该文件,备下次使用。
- iii) 运行该脚本 M 文件,即在命令窗口点击 File→Open,调用该文件(该文件在编辑窗口);点击 Debug→Run,在命令窗口显示待输入的数值变量提示 x==

输入一组数据,如

[2,-3,0,9,13,55]

则显示结果

s1=12.66667

s2=23.40940

§ 2. M 文件程序的主要语句和主要函数

2-1.Matlab 的数字特征

1.数字类型

Matlab 中所有变量均为双精度,整型和实型之间没有差别。几个特殊的数字,如 pi 表示 π 的值、inf 表示 ∞ 、eps 表示计算机精度 2. 2204×10⁻¹⁶ 等。

2.算术运算符

加	减	乘	除	乘方
+	-	*	1	٨

3.逻辑比较符

大于	小于	大于等于	小于等于	and	or	if 语句中的不等于	if 语句中的等于
>	<	>=	<=	&		~=	==

4.数组变量

- (1)数组的表示
 - 一维数组 (等同于向量), 例如:

x=[1,3,-4,7,21]

y=3:7 (等同于 y=[3,4,5,6,7])

z=3:0.5:6 (等同于 z=[3,3.5,4,4.5,5,5.5,6])

v=['g', 'k', 'm']

二维数组 (等同于矩阵), 例如一个 3×2 数组:

m=[0.1,0.2,0.3;0.7,0.8,0.9]

(2)数组的元素

对应于上述数组,x(2)=3,y(3)=5,m(2,1)=0.7 等等。二维数组的整行或整列可以一个冒号表示,例如:m(1,:)=0.1 0.2 0.3,m(:,2)=0.2

0.8

(3)数组的运算

两数组的加(+)、减(-)运算符与向量的运算相同,而乘(.*)、除(./)、乘方(.^)运算符不同。例如,对于数组 a 和 b

相加 Z=a+b a 和 b 的对应元素相加

相减 Z=a-b a和b的对应元素相减

 相乘
 Z=a.*b
 a 和 b 的对应元素相乘

 相除
 Z=a./b
 a 和 b 的对应元素相除

乘方 Z=a.^1.3 a 的所有元素的 1.3 次方

2-2.主要语句

1. if-end 语句

每个 if 语句必须以一个 end 结束, 二者一一对应。例如:

① if n==2,price=17;

end

② if n≤5,price=15;

else price=12;

end

③ if a>5,tap=10;

elseif a<5,tap=-10; (如有必要,可多次使用 elseif)

else tap=1;

end

2. for-end 语句

① for x=1:0.5:9

 $y=x^2-5*x-3$;

end

上述语句一次计算 x=1, 1.5, 2, …, 9 时 y 的值。若改为 for x=[-2,0,15], 则依次计算 x=-2,0,15 时的值。

② for x=0:0.1:10

 $y=\sin(x)$;

if y<0,y=0; (循环中可以插入 if-end 语句)

end

end

3. while-end 语句

```
① i=1;
c=0;
x=[-8,0,12,33,-6,5,-7];
while i<=length(x)
    if x(i)<0,c=c+1;
    end
    i=i+1;
end
fprintf('C=%d',c);
上述语句为统计数组 x 中小于 0 的元素个数。
② while 1
    if x>xlimit,break;
end
    iend
```

while 1-end 将可以无限循环下去,当条件 x>xlimit 得到满足时,通过 break 语句中止循环。

4. 输入、输出语句

输入(input)语句举例如下:

z=input('input z=');

输入一个数

zp=input('Your name=','s');

输入一个字符或字符串

输出(fprintf)与 C 语言的输出语句类似,如

fprintf('Volume=%12.5f\n',vol);

除%12.5f格式,还可以输出%12.5e格式、%d格式、%s

格式等。

2-3.常用函数

1. 常用教学函数

- ① 三角函数: $sin(x) \cdot cos(x) \cdot tan(x) \cdot asin(x) \cdot acos(x) \cdot atan(x)$
- ② 初等函数: abs(x)、sqrt(x)、round(x)(四舍五入取整)、fix(x)(去尾数取整)、mod(x,y)(取余数)、exp(x)(以 e 为底的指数)、log(x)(以 e 为底的对数)、log10(x)(以 10 为底的对数)

2. 常用功能函数

- ① sum(x) 求向量/数组元素之和
- ② max(x) 求向量/数组的最大值
- ③ min(x) 求向量/数组的最小值
- ④ rand(n) 生成随机数,当 n=1 时返回一个随机数; n>1 时,返回 $n\times n$ 随机矩阵
- ⑤ feval(f_name,x)计算以 x 为参数, 名为 f_name 的函数,

例如, s name='sin'

则 y=feval(s_name,x)等价于 y=sin(x)

⑥ eval(s) 执行字符串 s 所代表的命令

例如 s='x=cos(pi/3)'

则 eval(s)等价于执行 x=cos(pi/3)

2-4.几个常用的命令

1. cd 显示或改变当前目录

- ① cd 显示当前目录
- ② cd c:\matlabrll\work 将此目录设置为当前目录

2. dir 列出当前目录或列出指定目录中的文件

- ① dir 显示当前目录中的内容
- ② dir c:\matlabrll\bin 显示此目录中的内容
- 3. disp 显示变量内容
- 4. type 列出指定文件的全部内容
- 5. clear 清除内容中的变量和函数
- 6. home 清屏并将光标移至左上角
- 7. exit 或 quit 退出 Matlab

§ 3. 矩阵的有关计算

3-1.矩阵的输入

1.在命令窗口内直接输入

对于
$$a = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
,可采用如下输入
$$a = \begin{bmatrix} 1,2,3;4,5,6;7,8,9 \end{bmatrix}$$
 或 $a = \begin{bmatrix} 1 & 2 & 3;4 & 5 & 6;7 & 8 & 9 \end{bmatrix}$ 或 $a = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$

789]

2.创建 M 文件

对于大型矩阵直接输入不方便,可以采用创建 M 文件的方式,即在编辑窗口中输入该矩阵(输入格式同 3-1 的 1),然后保存在当前目录,每次进入 Matlab 时该矩阵已自动调入内容。

3.生成特殊矩阵的命令

① zeros 生成 0 阵

例如, a=zeros(3) 生成 3×3 的 0 阵 a=zeros(3,2) 生成 3×2 的 0 阵

b=zeros(size(a)) 生成与矩阵 a 维数相同的 0 阵

② ones 生成 1 阵 格式同 zeros

③ eye 生成单位阵 格式同 zeros

4.向量的输入

行向量 x=[1,2,3,4,5]

列向量 x=[1,2,3,4,5]'

3-2.矩阵/向量的运算

1. 加减

c=a+b

c=a-b

c=a+3 (矩阵亦可与数量运算)

2. 乘

c=a*b

c=3*a

3. 求逆

c=inv(a) (a 须为非奇异方阵)

4. 除

- ① 矩阵的左除 c=a\b (等效于 a-1*b)
- ② 矩阵的右除 c=a/b (等效于 b*a-1)

5. 行列式的值

b=det(a) (a 须为方阵)

6. 转置

c=a'

3-3.矩阵的范数

对于矩阵
$$A = \begin{bmatrix} 3 & -7 & 5 \\ 6 & 8 & 4 \\ 9 & 7 & 3 \end{bmatrix}$$

1.无穷范数

定义: $\|A\|_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$, 即矩阵元素的绝对值按行相加的最大值

输入命令 p=norm(A,inf)

显示 p=19

2.1-范数

定义:
$$\|A\|_{1} = \max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ij}|$$
,即矩阵元素绝对值按列相加的最大值输入命令 p=norm(A,1) 显示 p=22

3.2-范数

定义:
$$\|A\|_2 = \sqrt{\lambda_{\max}(A^TA)}$$
, $\lambda_{\max}(A^TA)$ 表示为 A^TA 的最大特征值输入命令 p=norm(A,2)或 p=norm(A) 显示 p=15.8687

3-4.向量的范数

1.无穷范数

定义:
$$\|V\|_{\infty} = \max_{1 \leq i \leq n} |v_i|$$

输入命令 p=norm(V,inf) 即 max(abs(V))
显示 p=7
输入命令 p=norm(V,-inf) 即 min(abs(V))
显示 p=1

2.1-范数

定义:
$$\|V\|_1 = \sum_{i=1}^n |\nu_i|$$
 输入命令 $p=\text{norm}(V,1)$ 显示 $p=17$

3.2-范数

定义:
$$\|V\|_2 = \sqrt{\sum_{i=1}^n v_i^2}$$
 输入命令 p=norm(V,2)或 p=norm(V) 显示 p=9.7468

3-5.矩阵的条件数

定义: A 为非奇异矩阵, $\operatorname{cond}(A)_r = \|A^{-1}\|_r \|A\|_r$ 为矩阵 A 的条件数。其中 $r=\infty$,1,2;分别称为无穷范数条件数、1-范数条件数、2-范数条件数。

对于矩阵
$$A = \begin{bmatrix} 3 & 2 & 4 \\ 2 & 4 & 1 \\ 3 & 1 & 7 \end{bmatrix}$$

1.无穷范数条件数

2.1-范数条件数

3.2-范数条件数

3-6.矩阵的特征值和特征向量

定义:设 A 是 $\mathbf{n} \times \mathbf{n}$ 的矩阵,满足关系式 $\mathbf{A} \mathbf{X}_{\mathbf{i}} = \lambda_{\mathbf{i}} X_{\mathbf{i}}$,则 $\lambda_{\mathbf{j}}$ ($\mathbf{i} = 1, 2, \cdots, \mathbf{n}$)为 A 的特征值,向量 $X_{\mathbf{i}}$ 为 $\lambda_{\mathbf{i}}$ 对应的特征向量。

对于矩阵
$$A = \begin{bmatrix} 3 & 2 \\ 1 & 2 \end{bmatrix}$$

1.特征值

输入命令
$$d=eig(A)$$
 显示 $d=4$
$$1 \qquad (即 \lambda_1=4, \lambda_2=1)$$

2.特征向量和特征值

输入命令
$$[v,d]=eig(A)$$
 显示 $v=0.8944-0.7071$ $0.4472-0.7071$ $0.4472-0.7071$ $d=4-0$ $0=1$ 以上结果即为 $\lambda_1=4$ 、其对应的特征向量为 $\begin{bmatrix} 0.8944\\0.4472\end{bmatrix}$; $\lambda_2=1$ 、其对应的特征向量为 $\begin{bmatrix} -0.7071\\0.7071\end{bmatrix}$ 。

§ 4.Matlab 绘图

4-1.绘图的基本命令

1.plot 画出点数据集合的曲线

1) 基本格式

plot(x,,y) x,y 是点的坐标数组 例如 x=0:0.2:10 y=x.^3-12*x.^2-7*x+12 plot(x,y)

- 2) 扩展格式
- ① plot(x,y,'linewidth',3) 设置线的粗细

'linewidth'和 3 控制所绘线的粗细,当用较小的数代替 3 时,线变细,反之亦然,此数的默认值是 0.5。

② plot(x,y,'r') 设置线的颜色 r 表示画出红色的线,其余颜色设置见下表:

红	黄	紫	青	绿	兰	白	黑
r	у	m	c	g	b	W	k

③ plot(x,y,'+') 设置绘出线的标记 上述命令表示用标记+绘出线,设置标记见下表:

星形	点	十字形	叉形	菱形	圆形	五角形	正方形	三角形
*		+	×	D	О	P	S	^

颜色与标记可以组合使用,例如 plot(x,y,'+g')

2.grid 画网格

格式 grid on 绘图形加上网格

grid off 去掉网格

3.hold 保持图形

格式 hold on 保持图形

hold off 取消此功能

使用 plot 绘出一条曲线后,再绘出另一条曲线之前,需用此命令将原曲线保持下来。

4.xlabel 和 ylabel 给坐标轴加标注

给x和y坐标轴加上标注

例如 xlabel('x') 给 x 轴加上标注 x

ylabel('y=sin(x)') 给 y 轴加上标注 y=sin(x)

5.title 给图形加上标题

例如 title('pressure Rario')

6.clf和 cla 清除图形窗口中的全部内容

7.subplot 绘制图形阵列

调用格式为 subplot(m,n,k) 在图形窗口内绘制 m×n 个图形阵列,k 是图形窗口的序号。见下述[例 2]。

8.示例

[例 1] 输入下面的 M 文件并运行之

```
clf;

x=0:0.2:10;

y1=sin(x);

y2=exp(-0.4*x);

y3=y1.*y2;

plot(x,y1,'r');

hold on

plot(x,y2,'g');

plot(x,y3,'linewidth',3);

grid on

xlabel('X');

ylabel('Y1=sin(X) Y2=exp(-0.4*X) Y3=Y1*Y2');
```


[例 2] 输入下面的 M 文件并运行之

clf;

t=0:0.1:30;

subplot(2,2,1);plot(t,sin(t));

title('SubPlot No:1');

xlabel('t');ylabel('Y=sin(t)');

subplot(2,2,2);plot(t,t.*sin(t));

title('SubPlot No:2');

xlabel('t');ylabel('Y=t*sin(t)');

subplot(2,2,3);plot(t,t.*sin(t).^2);

title('SubPlot No:3');

 $xlabel('t');ylabel('Y=t*sin(t)^2');$

subplot(2,2,4);plot(t,t.^2.*sin(t).^2);

title('SubPlot No:4');

 $xlabel('t');ylabel('Y=t^2*sin(t)^2');$

40

SubPlot No:2

SubPlot No:1

垂直叠放的两个图形可通过如下方式绘制:

 $subplot(2,1,1);plot(\cdots;$

 $subplot(2,1,2);plot(\cdots;$

4-2. 图形的交互编辑

图 4-2-1 所示为图形窗口左上角局部。

1. 改变曲线的属性

用鼠标点击菜单栏中按钮 , 移动鼠标 使其指向所要编辑曲线上的任意一点。按下鼠标右键, 曲线变成连续的黑点, 并弹出下拉菜单。点击菜单中各条命令, 则可以改变曲线的颜色、线宽、标记和曲线类型等属性。

2.其他的编辑命令

通过编辑窗口内的 Tools 菜单项亦可完成若干编辑功能。读者可以自行摸索。

第二部分 数值计算

§ 1. 方程求根

1-1.牛顿迭代法

```
[例 1]求解方程(0.01x+1)\sin x - \frac{x-0.01}{x^2+1} - 0.0096 = 0在x_0=4 附近的一个根。
```

1. 编写牛顿迭代法的函数 M 文件

```
function x=Newt n(f name,x0)
x=x0;
xb=x+1;
k=0;
n=50;
del x=0.01;
while abs(x-xb) > 0.000001
    k=k+1;
    xb=x;
    if k>=n break;end;
    y=feval(f name,x);
    y_driv=(feval(f_name,x+del_x)-y)/del_x;
    x=xb-y/y driv;
    fprintf('k=\%3.0f,x=\%12.5e,y=\%12.5e,yd=\%12.5e \ ',k,x,y,y\_driv);
end;
fprintf('\n
             Final answer=\%12.6e\n',x);
用默认文件名 Newt_n.m 存盘。
```

2. 编写待求方程的函数 M 文件

```
function y=eqn_1(x)
y=(0.01*x+1)*sin(x)-(x-0.01)*(x^2+1)^(-1)-0.0096;
用默认文件名 eqn_1.m 存盘。
```

3. 求解步骤

1-2. 图解法确定迭代的初始点

方程 $(0.01x+1)\sin x - \frac{x-0.01}{x^2+1} - 0.0096 = 0$ 具有多重根,若要求出某一区间(如 $x \in [0,10]$)的所有根,可用图解法确定其初始点,然后再调用 Newt n 函数解之,具体步骤为:

1.绘方程曲线

该方程的解也就是 $\begin{cases} y_1 = (0.01x+1)\sin x \\ y_2 = \frac{x-0.01}{x^2+1} - 0.0096 \end{cases}$ 的交点,故应绘出曲线 y_1 和 y_2 ,观测两条曲线交点的坐

标值。输入 M 文件如下:

clf; hold on; x=0:0.01:10; y1=(0.01*x+1).*sin(x); y2=(x-0.01)./(x.^2+1)-0.0096; plot(x,y1,'r'); plot(x,y2,'g');

观测图形,两条曲线在 $x \in [0,10]$ 有 3 个交点,交点 x 坐标值约为 3、6.5 和 9.5,可将这些点作为牛顿迭代法的初始点。

2. 求解

键入: Newt_n('eqn_1',3)

显示: ans=2.8217

键入: Newt n('eqn 1',6.5)

显示: ans=6.4351

键入: Newt_n('eqn_1',9.5)

显示: ans=9.3189

§ 2. 线性方程组

2-1.迭代法的收敛性

[例 2]对于
$$\begin{cases} 10x_1 - x_2 - 2x_3 = 7.2 \\ -x_1 + 10x_2 - 2x_3 = 8.3$$
 建立 Jocobi 迭代格式为:
$$-x_1 - x_2 + 5x_3 = 4.2 \end{cases}$$

$$\begin{bmatrix} x_1^{k+1} \\ x_2^{k+1} \\ x_3^{k+1} \end{bmatrix} = \begin{bmatrix} 0 & 0.1 & 0.2 \\ 0.1 & 0 & 0.2 \\ 0.2 & 0.2 & 0 \end{bmatrix} \begin{bmatrix} x_1^k \\ x_2^k \\ x_3^k \end{bmatrix} + \begin{bmatrix} 0.72 \\ 0.83 \\ 0.42 \end{bmatrix}, 判断其收敛性。$$

1) 解法一:

① 输入迭代矩阵
$$B = \begin{bmatrix} 0 & 0.1 & 0.2 \\ 0.1 & 0 & 0.2 \\ 0.2 & 0.2 & 0 \end{bmatrix}$$

② 调用求矩阵特征值命令 (eig 命令)

输入: eig(B)

矩阵 B 的谱半径 $\rho(B)$ 为该矩阵的最大特征值,故 $\rho(B)$ =0.3372<1,该迭代格式收敛。

2) 解法二:

调用求矩阵范数的命令 (norm 命令)

若矩阵 B 的任意一种算子的范数小于 1,则迭代收敛。故可计算 $\|B\|_{\infty}$ $\|B\|_{1}$ 或 $\|B\|_{2}$ 中的任意一种,只要小于 1,即可判断出迭代收敛。

输入: norm(B,1) 显示: ans=0.4000

即 $\|B\|_1$ =0.4000<1,该迭代格式收敛。亦可调用 norm(B,2)或 norm(B,inf)来判断。

[例 3]对于[例 2]的线性方程组,若建立迭代格式为

$$\begin{bmatrix} x_1^{k+1} \\ x_2^{k+1} \\ x_3^{k+1} \end{bmatrix} = \begin{bmatrix} 0 & 10 & -2 \\ -1 & 0 & 5 \\ 5 & -0.5 & 0 \end{bmatrix} \begin{bmatrix} x_1^k \\ x_2^k \\ x_3^k \end{bmatrix} + \begin{bmatrix} -8.3 \\ -4.2 \\ -3.6 \end{bmatrix}, 其收敛性如何?$$

2-2.线性方程组的病态问题

[例 4]分析方程组 $\begin{bmatrix} 1 & 1 \\ 1 & 1.0001 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ 的病态性。

- ① 输入该方程的系数矩阵 $A = \begin{bmatrix} 1 & 1 \\ 1 & 1.0001 \end{bmatrix}$
- ② 调用求矩阵条件数命令 (cond 命令)

输入: cond(A,1)

显示: ans=4.0004e+004

即 $\operatorname{cond}(A) = \|A^{-1}\|_{_{\! 1}} \cdot \|A\|_{_{\! 1}} = 4.0004 \times 10^4 >> 1$,该方程组是病态方程组。亦可调用 $\operatorname{cond}(A)$ 或 $\operatorname{cond}(A, \operatorname{inf})$ 命令

来判断。

2-3.求解线性方程组

1.调用 x=A\b 命令求解方程组

对于线性方程组 AX=b(其中 A 为 $n\times n$ 的矩阵、x 和 b 均为 n 维列向量),有 $X=A^{-1}b$,该式与 Matlab 的矩阵左除运算等效,即 $X=A\setminus b$ 。

[例 5]求解
$$\begin{cases} 3x_1 + 2x_2 = -1 \\ x_1 - x_2 = 1 \end{cases}$$

① 输入系数矩阵
$$A = \begin{bmatrix} 3 & 2 \\ 1 & -1 \end{bmatrix}$$
 和常数列向量 $b = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

2.利用 LU 分解求解方程组

1) LU 分解

对于
$$\begin{cases} 2x_1 + x_2 - 3x_3 = 2 \\ -x_1 + 3x_2 + 2x_3 = 0 \\ 3x_1 + x_2 - 3x_3 = 1 \end{cases}$$

① 输入系数矩阵
$$A = \begin{bmatrix} 2 & 1 & -3 \\ -1 & 3 & 2 \\ 3 & 1 & -3 \end{bmatrix}$$
和常数项列向量 $b = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$

② 调用 LU 分解命令(lu 命令)

其中 l 为单位下三角阵 (对角线元素均为 l),u 为上三角; p 为置换矩阵,它记录了选主元高斯消去法中行交换的信息。它们之间的关系为 p*A=l*u

2) 利用 LU 分解求解线性方程组

对于AX=b,用p左乘方程两边,得

∵pA=1u 则 1uX=pb

令 uX=y (a) 则 1y=pb (b)

通过对原方程组系数矩阵 A 的 LU 分解,将求解 AX=b 的问题转化为求解方程组(a)和方程组(b)。其操作步骤为:

① 求方程组(b)中的未知变量 y

输入: y=1\(p*b) 显示: y=1.0000 0.3333 1.3000

② 求方程组(a) 中的未知变量 X

输入: X=u\y 显示: X=-1.0000 0.4545 -1.1818

亦可将上述①、②的命令合并为 X=u\(1\(p*b))

§3.插值和拟合

3-1.Lagrange 插值

1.编写 Lagrange 函数 M 文件

```
\begin{split} &\text{function} \quad fi=&\text{lagrange}(x,y,xi) \\ &\text{fi}=&\text{zeros}(size(xi)); \\ &\text{npl}=&\text{length}(y); \\ &\text{for} \quad i=&1:\text{npl} \\ &\text{z=ones}(size(xi)); \\ &\text{for} \quad j=&1:\text{npl} \\ &\text{if} \quad i\sim&=&j,z=&z.*(xi-x(j))/(x(i)-x(j)); \\ &\text{end}; \\ &\text{end}; \\ &\text{end}; \\ &\text{fi}=&\text{fi}+&z*y(i); \end{split}
```

注意: ① 插值节点坐标 x、y 为数组,待插值的 xi 可以是一个标量,亦可以是数组。

② Lagrange 函数 M 文件必须保存在当前目录内。

2.调用 Lagrange 插值函数

[例 6]已知插值节点

$\mathbf{x}_{\mathbf{k}}$	2	4	6	8	10
y_k	5	7	9	11	13

求 xi=2.5、5、7.3、9.1 时的函数值。

① 在命令窗口内输入插值节点坐标 x、y以及待插值的数据 xi 如下:

x=[2,4,6,8,10] y=[5,7,9,11,13] xi=[2.5,5,7.3,9.1]

② 调用 Lagrange 函数

输入: yi=lagrange(x,y,xi)

显示: yi=5.5000 8.0000 10.3000 12.1000

3-2.代数多项式插值

1.代数多项式的表示方法

已知(n+1)个节点信息 (x_i,y_i) i=0,1···,n可以构造一个n次代数插值多项式

$$p_n = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

在 Matlab 里,上述多项式用一个数组表示,其元素为多项式的系数,并且从左至右按降幂排列。例如,多项式 $v=2x^3+4x-5$ 被表示为 $p=[2\ 0\ 4\ -5]$ 。

2. 代数多项式的插值计算

分成二步进行: ①通过 polyfit 命令,对已知(n+1)个节点唯一确定一个 n 次代数插值多项式;② 利用这个代数插值多项式计算待插点处的函数值。

1) 构造 n 次代数插值多项式

调用格式 polyfit(x, y, n)

其中数组 x, y 是已知节点坐标, n 是代数插值多项式的阶数。利用该命令可求得 n 次代数多项式

$$p(x) = c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0$$
 的系数。

例如,

输入节点数据: x=[1.1, 2.3, 3.9, 5.1]

y=[3.887, 4.276, 4.651, 2.117]

调用命令: a=polyfit(x, y, length(x)-1)

显示: a=-0.2015 1.4385 -2.7477 5.4370

其中 length(x)-1=4-1=3, 故所得的多项式是:

$$v = -0.2015x^3 + 1.4385x^2 - 2.7477x + 5.4370$$

2) 代数多项式的插值计算

调用格式 polyval(a, xi)

其中 a 为插值多项式的系数数值, xi 为待插点数组。若要计算 xi=1.8, 1.95, 2.93, 4.8 时的函数值, 调用该命令即可。

输入: xi=[1.8, 1.95, 2.93, 4.8]

yi=polyval(a, xi)

显示: yi=3.9771 4.0552 4.6685 3.1127

若调用 Lagrange 插值,可得到与上面相同的结果,说明了插值多项式存在的唯一性。

3-3. 插值误差

以下用作图方法观察插值的误差。

[例 7]已知曲线 $f(x) = e^{\frac{x}{1.5}} - 2\sin x$,采用 3 个节点

X	1.1	2.3	5.1
у	f(1.1)	f(2.3)	f(5.1)

构造插值多项式 $p_2(x)$ 作为 f(x)的近似,通过作图的方法观察在 $x \in [1.1,5.1]$ 的误差。

运行以下脚本 M 文件

clear,clf;hold on;

x=[1.1,2.3,5.1];

 $y=\exp(x/1.5)-2*\sin(x);$

plot(x,y,'o');

n=length(x)-1;

coeff=polyfit(x,y,n);

xp=1.1:0.05:5.1;

yp=polyval(coeff,xp);

plot(xp,yp,'r');

yh=exp(xp/1.5)-2*sin(xp);

plot(xp,yh,'k');

xlabel('X');

ylabel('f(x) P(x),data points:o');

图中黑线为曲线 $f(x) = e^{\frac{x}{1.5}} - 2\sin x$,

红线为由3个节点构成的2次插值多项式,圆圈表示插值节点。

3-4.分段线性插值

调用格式 yi=interpl(x,y,xi,'linear')

其中数组 x 和 y 为已知节点坐标,xi 是待插值的标量或数组,对应的 yi 值通过线性插值算出。注意,调用格式中的数组全部用列向量表示。

[例 8]已知数据

[1,1,1]=1,1,2,1,1,1							
	$\mathbf{X}_{\mathbf{k}}$	1	3	5.2	8	10	13
	y_k	4	6	3	8	9.1	-4

求 xi=4,5.5,11.7 时线性插值函数之值。

①在命令窗口内输入列数组 x、y 和 xi

x=[1, 3, 5. 2, 8, 10, 13]

y=[4, 6, 3, 8, 9.1, -4]

xi=[4, 5. 5, 11. 7]

②调用分段线性插值命令

yi=interp1(x,y,xi,'linear')

显示: yi=4.6364

3.5357

1.6767

3-5.数据的曲线拟合

[例 9]已知一组数据,作拟合曲线

i	0	1	2	3	4	5
X _i	0.1	0.4	0.5	0.7	0.7	0.9

y _i	0.61	0.92	0.99	1.52	1.47	2.03

1) 方法一: 求解正规方程

将上述一组数据标在坐标纸上,观察到各点在一条直线附近,可设拟合曲线为

$$y=c_0+c_1x$$

其正规方程为:

$$\begin{bmatrix} (\varphi_0, \varphi_0) & (\varphi_0, \varphi_1) \\ (\varphi_1, \varphi_0) & (\varphi_1, \varphi_1) \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} (\varphi_0, f) \\ (\varphi_1, f) \end{bmatrix}$$

其中
$$\varphi_0(x) = 1, \varphi_1(x) = x$$

$$(\varphi_{0}, \varphi_{0}) = \sum_{i=0}^{5} \varphi_{0}(x_{i}) \cdot \varphi_{0}(x_{i}) = \sum_{i=0}^{5} 1 \cdot 1 = 6$$

$$(\varphi_{0}, \varphi_{1}) = (\varphi_{1}, \varphi_{0}) = \sum_{i=0}^{5} \varphi_{0}(x_{i}) \cdot \varphi_{1}(x_{i}) = \sum_{i=0}^{5} 1 \cdot x_{i} = 3.3$$

$$(\varphi_{1}, \varphi_{1}) = \sum_{i=0}^{5} \varphi_{1}(x_{i}) \cdot \varphi_{1}(x_{i}) = \sum_{i=0}^{5} x_{i}^{2} = 2.21$$

$$(\varphi_{0}, f) = \sum_{i=0}^{5} \varphi_{0}(x_{i}) \cdot y_{i} = \sum_{i=0}^{5} 1 \cdot y_{i} = 7.54$$

$$(\varphi_{1}, f) = \sum_{i=0}^{5} \varphi_{1}(x_{i}) \cdot y_{i} = \sum_{i=0}^{5} x_{i} \cdot y_{i} = 4.844$$

在 Matlab 命令窗口中

输入: a=[6,3.3;3.3,2.21]

b=[7.54,4.844]'

 $c=a\b$

显示: c=0.2862

1.7646

即所要求的拟合曲线为 y=0.2862+1.7646x

2) 方法二: 调用 polyfit(x,y,n)

调用 polyfit(x,y,n),可求得拟合代数多项式 $p(x) = c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0$ 的系数,其中 x, y 为节点坐标数组,n 为拟合多项式的阶数。对于[例 9]中的节点数据,求拟合直线方程,操作如下:

c=polyfit(x, y, 1)

显示: c=1.7646 0.2862

即所要求的拟合曲线为 y=1.7646x+0.2862

§ 4. 数值积分

4-1.复合梯形求积公式

[例 10]用复合梯度公式求 $I = \int_0^1 \frac{4}{1+x^2} dx$ (此题的解析解为 π)。

复合梯形求积公式为

1) 输入复合梯形公式的函数 M 文件

```
function t=trapezia(a, b, n, f_name)
h=(b-a)/n;
fa=feval(f_name, a);
fb=feval(f_name, b);
t1=0;
for k=1:n-1
    x(k)=a+k*h;
    t1=t1+feval(f_name, x(k));
end;
t=h*(fa+2*t1+fb)/2;
```

2) 输入待积分的函数 M 文件

[例 10] 中的被积函数为 $f(x) = \frac{4}{1+x^2}$,其 M 文件如下,并以 func_ts.m 文件名存盘。 function y=func_ts(x)

function y=func_ts($y=4/(1+x^2)$;

3) 调用复合梯形公式

若取 n=8,则输入: t=trapezia(0,1,8,'func_ts') 显示: t=3.1390

4-2.复合 Simpson 求积公式

复合 Simpson 求积公式为

$$I = \int_{a}^{b} f(x)dx \approx \frac{h}{3} \left\{ \frac{1}{2} \left[f(a) + f(b) \right] + \sum_{k=1}^{n} \left[2f(x_{2k-1}) + f(x_{2k}) \right] \right\}$$

其中
$$h = \frac{b-a}{n}, x_k = a+k\frac{h}{2}, k=1,2,\dots,2n$$
。

1) 输入复合 Simpson 公式的函数 M 文件

function s=simpson(a,b,n,f name)

h=(b-a)/n;

for k=1:2*n

x(k)=a+k*h/2;

end;

fa=feval(f name,a);

fb=feval(f name,b);

s1=0;

s2=0;

for k=1:n

s1=s1+feval(f_name,x(2*k-1)); s2=s2+feval(f_name,x(2*k));

end;

s=h*(0.5*(fa-fb)+2*s1+s2)/3;

- 2) 输入待积分的函数 M 文件 此处仍以[例 10]中的被积函数为例,且以 fun_ts.m 文件名存盘。
- 3) 调用复合 Simpson 公式

若取 n=4, 则输入: s=simpson(0,1,4,'func ts')

通过对复合梯形公式和复合 Simpson 公式的比较,对于同一个被积函数,前者划分为 8 等分、计算结果为 3.1390;后者划分为 4 等分、计算结果为 3.141。两种算法计算被积函数值的次数相近(复合梯形公式计算被积函数值 9 次、复合 Simpson 公式 10 次),但复合 Simpson 公式的精度(代数精度 3)高于复合梯形公式(代数精度 1)。

§ 5. 常徽分方程的数值解法

5-1.Euler 方法

1) 计算公式

对于初值问题 $\begin{cases} y' = f(x,y) \\ y(x_0) = y_0 \end{cases}$, Euler 公式 $y_{\text{\tiny FI}} = y_i + h \cdot f(x_i,y_i)$ 。以下通过例题,说明 Euler 方法的

使用。

[例 11]质量 m=70kg 的人在 t=0 时刻从飞机上跳出,假设跳伞者垂直下降,且初始时刻垂直速度速度 $v(t_1)$ =0,空气阻力 F= cv^2 (N),c=0.27kg/m,取步长 h=0.1。试求速度,并绘出 $0 \le t \le 20s$ 的解的图形。

2) 分析

由牛顿第二定律, $m\frac{dv}{dt} = -F + mg$,式中重力加速度 g=9.8m/s²。那么,建立初值问题为:

$$\begin{cases} v' = f(t, v) = -\frac{cv^2}{m} + g \\ v(t_1) = 0 \end{cases}$$
 (5-1)

根据例题要求, $t \in [a,b] = [0,20]$,将求解区间离散如下:

其中等分数 $n = \frac{b-a}{h}$

对于所求的(5-1)式,采用 Euler 公式,可得下述的计算格式:

$$\begin{cases} t_1 = 0 \\ t_i = t_1 + (i-1)h \end{cases} i = 2, 3, \dots, n+1$$

$$\begin{cases} v_1 = 0 \\ v_i = v_{i-1} + h^* f(t_{i-1}, v_{i-1}) \end{cases} i = 2, 3, \dots, n+1$$

```
编写 f(t,v)函数程序
3)
    function f=descent(t,v)
    c=0.27,m=70,g=9.8;
    f=-c*v^2/m+g;
4) 编写该问题的 Euler 法求解程序
    clear,clc;
    a=0,b=20,h=0.1;
    n=(b-a)/h;
    t(1)=0;
    v(1)=0;
    for i=2:n+1
         t(i)=t(1)+(i-1)*h;
         v(i)=v(i-1)+h*descent(t(i-1),v(i-1));
    end;
    for i=1:n+1
         fprintf('Time=%f',t(i));
         fprintf(' Velocity=%f\n',v(i));
    end;
    plot(t,v);
    xlabel('Time (s)');
    ylabel('Velocity
                       (m/s)');
```

5) 运行

求解[例 11]的结果如下:

Velocity=0.000000
Velocity=18.730327
Velocity=32.989678
Velocity=41.671830
Velocity=46.250031
Velocity=48.480593
Velocity=49.525261
Velocity=50.005441
Velocity=50.224250
Velocity=50.323563
Velocity=50.368558

5-2.改进的 Euler 方法

1) 计算公式

对于初值问题 $\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$, 改进的 Euler 公式为

$$\begin{cases} \overline{y}_{i+1} = y_i + hf(x_i, y_i) \\ y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, y_{i+1})] \end{cases}$$

以下通过例题,说明改进的 Euler 方法的使用。

[例 12]求解
$$\begin{cases} y' = f(x,y) = y - \frac{2x}{y} \\ ex \in [0,1] \\ y(x_1) = 1 \end{cases}$$
 在 $x \in [0,1]$ 上各节点的数值解,取长步 h=0.1。

2) 分析

根据题意 $x \in [0,1]$, 求解区间离散如下:

其中等分数 $n = \frac{b-a}{h}$.

对于[例 12]所求问题,采用改进的 Euler 公式,得如下计算格式:

$$\begin{cases} x_1 = 0 \\ x_i = x_1 + (i-1)h^{i} = 2, 3, \dots, n+1 \end{cases}$$

$$\begin{cases} y_{1} = 1 \\ y_{i} = y_{i-1} + h \cdot f(x_{i-1}, y_{i-1}) & i = 2, 3, \dots, n+1 \\ y_{i} = y_{i-1} + \frac{h}{2} \left[f(x_{i-1}, y_{i-1}) + f(x_{i}, y_{i}) \right] \end{cases}$$

- 3) 编写相应的程序
- ① 编写[例 12]中的 f(x,y)的函数程序 function f=algeb(x,y) f=y-2*x/y;
- ② 编写改进 Euler 方法的求解程序

clear,clc;

a=0,b=1,h=0.1;

n=(b-a)/h;

x(1)=0;

y(1)=1;

for i=2:n+1

x(i)=x(1)+(i-1)*h;

yp(i)=y(i-1)+h*algeb(x(i-1),y(i-1));

y(i)=y(i-1)+0.5*h*(algeb(x(i-1),y(i-1))+algeb(x(i),yp(i)));

end;
for i=1:n+1
 fprintf('x=%f',x(i));
 fprintf(' y=%f\n',y(i));
end

4) 运行结果

采用改进的 Euler 方法求解本例所得结果,与采用 Euler 方法所得结果比较见下表:

节点	精确解	Euler 方法	改进的 Euler 方法
0	1	1	1
0.1	1.095445	1.1	1.095909
0.2	1.183216	1.191818	1.184097
0.3	1.264911	1.277438	1.266201
0.4	1.341641	1.358213	1.343360
:	:	:	:
:	:	:	:

由表中数据可知,当步长 h 相同时,改进的 Euler 方法的计算精度比 Euler 方法的高,读者可自行采用 Euler 方法求解此例。

5) 步长 h 对求解精度的影响

以改进的 Euler 方法求解本例,取步长 h=0.05、0.1、0.2 时的结果如下表:

节点	节点 精确解		h=0.1	h=0.2		
0	1	1	1	1		
0.05		1.048869				
0.1	1.095445	1.095561	1.095909			
0.15		1.140345				
0.2	1.183216	1.183437	1.184097	1.186667		
0.25		1.225017				
0.3	1.264911	1.264911 1.265236 1.266201				
0.35		1.304219				
0.4	0.4 1.341641		1.343360	1.348312		
:	:	:	:	:		
:	:	:	:	:		

从表中结果中, 当步长h取得越小, 计算精度则越高, 计算量却因此而加大。

读者将本节(3)中所述改进 Euler 方法程序的第 8 行 yp(i)=...删去并将第 9 行 y(i)=...改写成 y(i)=y(i-1)+h*algeb(x(i-1),y(i-1)),即可得到 Euler 方法求解的程序。

5-3.四阶龙格-库塔方法

1) 计算方法

对于初值问题
$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0 \end{cases}$$
,常用的四阶龙格-库塔公式为:

$$\begin{cases} k_1 = f(x_i, y_i) \\ k_2 = f\left(x_i + \frac{h}{2}, y_i + \frac{h}{2}k_1\right) \\ k_3 = f\left(x_i + \frac{h}{2}, y_i + \frac{h}{2}k_2\right) \\ k_4 = f(x_i + h, y_i + hk_3) \\ y_{i+1} = y_i + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4) \end{cases}$$

以下仍以[例 12]所求的问题为例,说明四阶龙格-库塔方法的使用。

2) 分析

离散求解区间[0,1]

,其中等分数 $n = \frac{b-a}{h}$ 。对

于[例 12]所求问题,采用四阶龙格-库塔公式的计算格式为

$$\begin{cases} x_1 = 0 \\ x_i = x_1 + (i-1)h \end{cases} i = 2, 3, \dots, n+1$$

$$\begin{cases} k_1 = a \lg eb(x_{i-1}, y_{i-1}) \\ k_2 = a \lg eb\left(x_{i-1} + \frac{h}{2}, y_{i-1} + \frac{h}{2}k_1\right) \\ k_3 = a \lg eb\left(x_{i-1} + \frac{h}{2}, y_{i-1} + \frac{h}{2}k_2\right) \\ k_4 = a \lg eb(x_{i-1} + h, y_{i-1} + hk_3) \\ y_i = y_{i-1} + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)i = 2, 3, \dots, n+1 \end{cases}$$

3) 编写四阶龙格-库塔计算程序

clear,clc;

a=0,b=1,h=0.2;

n=(b-a)/h;

x(1)=0;

y(1)=1;

for i=2:n+1

k1=algeb(x(i-1),y(i-1));

k2=algeb(x(i-1)+h/2,y(i-1)+h*k1/2);

k3=algeb(x(i-1)+h/2,y(i-1)+h*k2/2);

k4=algeb(x(i-1)+h,y(i-1)+h*k3);

y(i)=y(i-1)+h*(k1+2*k2+2*k3+k4)/6;

x(i)=x(1)+(i-1)*h;

end;

$$\label{eq:formula} \begin{split} &\text{for} \quad i{=}1{:}n{+}1\\ &\quad &\text{fprintf('x=\%f',x(i));}\\ &\quad &\text{fprintf('}\quad y{=}\%f\backslash n',y(i));\\ &\text{end;} \end{split}$$

4) 运行结果

 节点	精确解	Euler 方法	改进 Euler 方	四阶龙格-库
ᆔ	个月 4月 用件	h=0.1	法 h=0.1	塔 h=0.2
0	1	1	1	1
0.1	1.095445	1.1	1.095909	
0.2	1.183216	1.191818	1.184097	1.183229
0.3	1.264911	1.277438	1.266201	
0.4	1.341641	1.358213	1.343360	1.3411667
:	:	:	:	:
:	:	:	:	:

从上表数据可知,四阶龙格-库塔方法取 h=0.2 时的精度比改进的 Euler 方法取 h=0.1 时要高。从节点 0 到 0.2,四阶龙格-库塔方法用了一步,调用 f(x,y)4 次,改进的 Euler 方法用了二步,每步调用 f(x,y)2 次,共调用了 f(x,y)也是 4 次。两者计算相同,但前者精度高于后者。

习题

一、方程求根

1.用牛顿迭代法求解下列方程的正根

(1)
$$0.5e^{\frac{x}{3}} - \sin x = 0$$

$$(2)\log(1+x)-x^2=0$$

(3)
$$e^x - 5x^2 = 0$$

$$(4) x^3 + 2x - 1 = 0$$

$$(5)\sqrt{x+2} - x = 0$$

2.两个椭圆最多有 4 个交点, 其方程如下:

$$(x-1)^2 + (y-3+2x^2) = 5$$

$$2(x-3)^2 + \left(\frac{y}{3}\right)^2 = 4$$

试用图解法与牛顿迭代法找出交点坐标。

提示: 消掉 x 或 y, 只剩一个变量再求解。

3.先用图解法确定初始点,然后再求方程 $x\sin x-1=0$ $x\in[0,10]$ 的所有根。

二、线性方程组

1.计算下列矩阵的逆矩阵,并验证 AA-1=I 和 A-1A=I。

$$A = \begin{bmatrix} 4 & 3 & 2 & 1 \\ 3 & 3 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 1 & 2 \\ 8 & 1 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 1 & 2 \\ 8 & 1 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 5 & 1 \\ -1 & 6 & 3 \\ 8 & -9 & 5 \end{bmatrix}$$

2.对下述矩阵进行 LU 分解并验证此分解

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & -1 & 0 \\ -3 & 4 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

3.用 LU 分解求解下列方程组

$$\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -1 & 1 \\ -3 & 4 & -1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$

4.用三角分解法分别求 A 的逆矩阵:

记 $b_1 = [1 \ 0 \ 0]^T$ 、 $b_2 = [0 \ 1 \ 0]^T$ 、 $b_3 = [0 \ 0 \ 1]^T$,用三角分解法分别求解线性方程组 $AX = b_1$ 、 $AX = b_2$ 、

 $AX=b_3$ 。由于三个方程组的系数矩阵相同,可以将分解后的矩阵重复使用。对于第一个方程组,由于 A=LU,所以求解下三角方程组 $LY=b_1$,再求解上三角方程组 UX=Y,则可得 A^{-1} 的第一列列向量;类似 可解第二、第三个方程组,得 A^{-1} 的第二列列向量和第三列列向量。由三个列向量拼装可得逆矩阵 A^{-1} .

设矩阵
$$A = \begin{bmatrix} 20 & 2 & 3 \\ 1 & 8 & 1 \\ 2 & -3 & 15 \end{bmatrix}$$

5.给定 n×n 的 Hilber 矩阵 $A = [a_{ij}]$ 其中 $a_{ij} = \frac{1}{1+\mathrm{i}+j}$ 。计算 n=2,3,…,14 时 A 的条件数,A 的行列式值以及 A 行列式值与 A^{-1} 行列式值的乘积。

提示: Hilber 矩阵是一个著名的病态矩阵,随 \mathbf{n} 的增大 \mathbf{A} 接近奇异,乘积 $|\mathbf{A}|\cdot|\mathbf{A}^{-1}|$ 对舍入误差非常敏感,乘积与 $\mathbf{1}$ 有明显偏差。

6.验证 Hilber 矩阵的病态性:

对于矩阵
$$H = \begin{bmatrix} 1 & 1/2 & 1/3 \\ 1/2 & 1/3 & 1/4 \\ 1/3 & 1/4 & 1/5 \end{bmatrix}$$
,取右端向量 $b = \begin{bmatrix} 11/6 \\ 13/12 \\ 47/60 \end{bmatrix}$,验证:

- 1) 向量 $X = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ 是方程组 HX=b 的准备解;
- 2) 取右端向量 b 的三位有效数字得 $b = \begin{bmatrix} 1.83 & 1.08 & 0.783 \end{bmatrix}^T$,求方程组的解,并与 $X = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ 作比较,说明矩阵的病态性。

三、插值与拟合

1.以下表格数据由函数 f(x)=ex 得到,

\mathbf{x}_{k}	0	0.4	0.8	1.2
f(x _k)	1.0	1.491	2.225	3.320

采用 Larange 插值,求 x_i =0.2,0.6,1.0 处的函数值 y_i ,以及误差值 $f(x_i)-y_i$ 。

- 2.编写程序,用间距为 h=0.4 的等距插值点计算区间 $0 \le x \le 2$ 上函数 y=x·cosx 的 Lagrange 插值,且每隔 0.1 计算一次插值误差,并画出误差分布图。
- 3.用 polyfit 命令将下列多项式转换为幂级数形式。

$$u(x) = \frac{(x-1)(x-2.5)(x-4)(x-6.1)(x-7.2)(x-10)}{(5-1)(5-2.5)(5-4)(5-6.1)(5-7.2)(5-10)}$$

4.已知飞机降落曲线为 $y(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$,式中 y 表示飞机高度,x 表示飞机距指挥塔的距

离。该函数满足条件 y(0)=0、y(12000)=1000、y'(0)=0、y'(12000)=0

- 1) 试利用所满足的条件确定飞机降落曲线;
- 2) 绘制出飞机降落曲线。

5.用最小二乘法确定拟合直线(用正则方程求,再用 polyfit 命令验证)

i	0	1	2	3	4
X _i	1.0	1.5	2.0	2.5	3.0
y _i	2.0	3.2	4.1	4.9	5.9

6.用 polyfit 对下面数据做二次多项式拟合,并绘出图形。

i	0	1	2	3	4	5	6
X _i	0	1	2	3	4	5	6
y _i	0	2.3	4.2	5.7	6.5	6.9	6.8

7.用三次多项式拟合下面数据,并做出图形。

i	0	1	2	3	4	5
\mathbf{x}_{i}	0	0.2	0.4	0.6	0.8	1.0
y _i	0	7.78	10.68	8.37	3.97	0

8.由开普勒第一定律知,小行星轨道的椭圆方程为

$$a_1x^2 + 2a_2xy + a_3y^2 + 2a_4x + 2a_5y + 1 = 0$$

已知所测出的5个观察点坐标数据(单位:万公里)为

Xi	53605	58460	62859	66662	68894
y i	6026	11179	16954	23492	68894

29

试建立该椭圆方程。

四、数值积分

1.用复合梯形求积法计算下列积分,取 n=2、4、8、16

- (a) $\int_0^{\frac{\pi}{4}} tgx dx$
- $(b) \int_0^1 e^x dx$
- $(c) \int_0^1 \frac{1}{2+r} dx$

2.用复合 Simpson 求积法计算下列积分,取 n=4、8、16、32

(a)
$$\int_0^{\pi} \frac{1}{2 + \cos x} dx$$

$$(b) \int_0^2 \frac{\log(1+x)}{x} dx$$

$$(c) \int_0^{\frac{\pi}{2}} \frac{1}{1+\sin^2 x} dx$$

3.用复合梯形求积法计算下面积分,取 h=0.4、0.2、0.1。 $I = \int_0^{0.8} f(x) dx$,其中被积函数以下面表格形式给出:

X	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
f(x)	0	2.1220	3.0244	3.2568	3.1399	2.8579	2.5140	2.1639	1.8358

4.在习题 3 中,利用 h=0.2、0.1 的梯形法积分结果进行龙贝格积分,以求得更精确的积分值。

五、常微分方程

1.试用 Euler 法及改进 Euler 法计算初值问题

$$\begin{cases} y'(t) = y(t) - \frac{2t}{y(t)}, t \in [0,1] \\ y(0) = 1 \end{cases}$$

取步长 h=0.2, 并比较两者误差。

2.用四阶龙格-库塔法求解下列初值问题。

(1)
$$y' = -\frac{0.9y}{1+2x}$$
 $y(0) = 1$

(2)
$$y' = -\frac{xy}{1+x^2}$$
 $y(0) = 2$

《计算方法》实验报告

一、方程求根

1.用牛顿迭代法求解下列方程的正根

$$\log(1+x)-x^2=0 \quad x=$$

$$e^x - 5x^2 = 0 \qquad x =$$

$$x^3 + 2x - 1 = 0$$
 $x =$

$$\sqrt{x+2}-x=0$$
 $x=$

2.先用图解法确定初始点,然后再求方程 $x\sin x-1=0$ $x\in[0,10]$ 的所有根。

二、线性方程组

1.计算下列矩阵的逆矩阵,并验证之。

$$B = \begin{bmatrix} 1 & 4 & 5 \\ 2 & 1 & 2 \\ 8 & 1 & 1 \end{bmatrix}, B^{-1} = \begin{bmatrix} \\ \\ \end{bmatrix}, BB^{-1} = \begin{bmatrix} \\ \\ \end{bmatrix}, B^{-1}B = \begin{bmatrix} \\ \\ \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & 5 & 1 \\ -1 & 6 & 3 \\ 8 & -9 & 5 \end{bmatrix}, C^{-1} = \begin{bmatrix} \\ \\ \end{bmatrix}, CC^{-1} = \begin{bmatrix} \\ \\ \end{bmatrix}, C^{-1}C = \begin{bmatrix} \\ \\ \end{bmatrix}$$

2.用两种方法求解下列线性方程组

$$\begin{pmatrix}
1 & \begin{bmatrix}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix}$$

$$(2) \begin{bmatrix} 2 & -1 & 1 \\ -3 & 4 & -1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$

- ① 调用 x=A/b 命令
- (1) x=[(2) x=[
- $]^{T}$

② 利用 LU 分解

$$(1) l = \begin{bmatrix} & & \\ & & \end{bmatrix} u = \begin{bmatrix} & & \\ & & \end{bmatrix} p = \begin{bmatrix} & & \\ & & \end{bmatrix}$$

调用命令 y=l\(p*b), 求得 y=[

调用命令 x=u\y, 求得 x=「

$$(2) I = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix} u = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix} p = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$$

$$p =$$

调用命令 y=l\(p*b), 求得 y=[调用命令 x=u\y, 求得 x=[$]^T$

三、插值与拟合

1.以下表格数据由函数 f(x)=ex 得到,

X _k	0	0.4	0.8	1.2
f(x _k)	1.0	1.491	2.225	3.320

采用 Lagrange 插值,求 x_i =0.2, 0.6, 1.0 处的函数值 y_i 。以及误差值 $f(x_i)$ - y_i 。

$$x_i = 0.2$$

$$y_i =$$

$$f(x_i)-y_i=$$

$$x_i = 0.6$$

$$y_i =$$

$$f(x_i)-y_i=$$

$$x_{i}=1.0$$

$$y_i = f(x_i) - y_i =$$

2.已知飞机降落曲线为 $y(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$, 式中 y 表示飞机高度, x 表示飞机距指挥塔的距

离。该函数满足条件 $\nu(0)=0$ 、 $\nu(12000)=1000$ 、 $\nu'(0)=0$ 、 $\nu'(12000)=0$

- 试利用所满足的条件确定飞机降落曲线;
- 2) 绘制出飞机降落曲线。

3.用三次多项式拟合下面数据,并做出图形

i	0	1	2	3	4	5
Xi	0	0.2	0.4	0.6	0.8	1.0
y _i	0	7.78	10.68	8.37	3.97	0

四、数值积分

1.用复合梯形求积法计算下列积分,取 n=2、4、8、16

(1)
$$\int_0^1 e^x dx$$
 $T_2 = T_4 = T_8 = T_{16} =$

$$T_2 =$$

$$=$$
 I_{\circ}

$$T_{16} =$$

32

(2)
$$\int_0^1 \frac{1}{2+x} dx$$
 $T_2 = T_4 = T_8 = T_{16} =$

$$T_2 =$$

$$=$$
 $T_8 =$

2.用复合 Simpson 求积法计算下列积分,取 n=4、8、16、32

(a)
$$\int_0^{\pi} \frac{1}{2 + \cos x} dx$$
 $S_4 =$ $S_8 =$ $S_{16} =$ $S_{32} =$ (b) $\int_0^2 \frac{\log(1+x)}{x} dx$ $S_4 =$ $S_8 =$ $S_{16} =$ $S_{32} =$ (c) $\int_0^{\pi} \frac{1}{1 + \sin^2 x} dx$ $S_4 =$ $S_8 =$ $S_{16} =$ $S_{32} =$

$$=$$
 $S_{16} =$

$$(b) \int_0^2 \frac{\log(1+x)}{x} dx$$

$$S_4 =$$

$$S_{16}$$

$$S_{32} =$$

$$(c) \int_0^{\frac{\pi}{2}} \frac{1}{1+\sin^2 x} dx$$

$$S_4 =$$

$$S_8 =$$

$$S_{22}$$

五、常微分方程

1.试用 Euler 法及改进 Euler 法计算初值问题

$$\begin{cases} y'(t) = y(t) - \frac{2t}{y(t)}, t \in [0,1] \\ y(0) = 1 \end{cases}$$

取步长 h=0.2。

Euler 法:

改进 Euler 法:

2.用四阶龙格-库塔法求解初值问题
$$y' = -\frac{xy}{1+x^2}$$
 $y(0) = 2$ $x \in [0,10]$, 取 h=1.0。