Session 1

Tree basics

Email = oscar.lao@cnag.crg.eu
Skype = oscar.lao

Before we start

- Some basic rules
 - Please, if you want to contact me, use the oscar.lao@ibe.upf-clisc.es email (I also check the ESCI one, but less).
- Classroom dynamic
 - Each session is divided in two parts of ~55 minutes.
 - Two hours of theory. Two hours of practical (bring your own laptop!)
- Assessments
- Project shared with ASAB
 - To be done in groups of ~four people.
- Exams
 - Midterm and final exam

Before we start

- Weekly Assignments are individual, NOT BY PAIRS.
- Plagiarism
- Python
- Comment your code

WHY IS THIS A JOKE?

Human evolutionary genetics

P-distance = 4

What is a tree?

What is a tree?

What is a tree

- Type of graph
- Connected acyclical graph
 - Leaf: vertex of degree one
- Depicts the relationship between Operational Taxonomic Unit (OTUs)

Rooted

Unrooted

How do we root a tree?

How do we root a tree?

In the context of graph theory, what is a root?

•

In the context of a tree, what does a root mean?

Bifurcated vs multifurcated

Resolved vs unresolved

Tree topology

Distance between trees

total number of bipartitions that are in one tree but not in the other

Distance between trees

Branch length

 Newick format - Each internal node is defined by the connections $_{L1}$ $(\ ,\)$ (A:L1,B:L2 Length between nodes is defined by (N1:L3,C:L4) ((A:L1,B:L2):L3,C :L4) (C:L4,

(A:L1,B:L2):L3)

(A:L1,((C:L6,B:L3):L2,D:L5):L4)

Trees vs reality

When a tree is not reflecting reality?

Trees vs reality

Horizontal gene transfer

Recent speciation

Trees vs reality

TIMEFORA BREAK

Remember: each locus observed in all current sequences comes from a single ancestor

More than just substitutions

- normal soma: daughter cells carry mutation – 'somatic mosaic'
- cancer: clonal expansion of mutant cells

Germ-line mutation - heritable

ACGTACTGACTG

ACGGACTGACTG

Human evolutionary genetics

More than just substitutions

Human evolutionary genetics

More than just substitutions

Human evolutionary genetics

More than just substitutions: gene duplications and deletions

Genetic divergence is a measure of **TIME** divergence

How to model the relationship between mutation and time

- Assume t, an amount of time
- Assume μ , a mutation rate
- Which is the probability that n mutations occur in a branch of t length with μ mutation rate?

Recurrent mutations blur everything!

multiple substitutions single substitution parallel substitution

convergent substitution back substitution

From Phylogenetic Handbook: "The proportion of different homologous sites is called observed distance, sometimes also called p-distance, and it is expressed as the number of nucleotide differences per site. p-distance is very intuitive measure. Unfortunately, it suffers from a shortcoming: if the severe degree of divergence is high, pdistances are generally not very informative with regard to the number of substitutions that actually occurred"

Recurrent mutations blur everything!

How to model this process? For each nucleotide at generation t

Probability to change of one nucleotide from one generation to anot

How to model this process? For each nucleotide at generation t Substitution

How to model this process? For each nucleotide at generation t

How to model this process? For each nucleotide at generation t

Substitution matrix

$$Q = \begin{pmatrix} \mathbf{A} & \mathbf{C} & \mathbf{G} & \mathbf{T} \\ -\mu(\alpha\pi_C + b\pi_G + c\pi_T) & \alpha\mu\pi_C & b\mu\pi_G & c\mu\pi_T \\ g\mu\pi_A & -\mu(g\pi_A + d\pi_G + e\pi_T) & d\mu\pi_G & e\mu\pi_T \\ h\mu\pi_A & i\mu\pi_C & -\mu(h\pi_A + j\pi_C + f\pi_T) & f\mu\pi_T \\ j\mu\pi_A & k\mu\pi_C & l\mu\pi_G & -\mu(i\pi_A + k\pi_C + l\pi_G) \end{pmatrix}$$

Instantaneous rate matrix Q. Each entry in the matrix represents the instantaneous substitution rate form nucleotide i to nucleotide j (rows, and columns, follow the order \boldsymbol{A} , \boldsymbol{C} , **G**, **T**). m is the mean instantaneous substitution rate; a, b, c, d, e, f, q, h, i, j, k, l, are relative rate parameters describing the relative rate of each nucleotide substitution to any other. π_A π_{C} , π_{T} , π_{G} , are frequency parameters corresponding to the nucleotide frequencies (Yang, 1994). Diagonal elements are chosen so that the sum of each row is equal to zero.

$$\Lambda = egin{pmatrix} \lambda_1 & \dots & 0 \ dots & \ddots & dots \ 0 & \dots & \lambda_4 \end{pmatrix},$$

$$P(t) = e^{Qt} = e^{U^{-1}(\Lambda t)U} = U^{-1}e^{\Lambda t}U$$

How to model the change over time?

Table 1.1 Substitution-rate matrices for commonly used Markov models of nucleotide substitution

	From	То					
		T	С	A	G		т
JC69 (Jukes and Cantor 1969)	T		λ	λ	λ		41 15 26
	C	λ		λ	λ	1000	
	A	λ	λ		λ	JC69	//
	G	λ	λ	λ			14 % /4
K80 (Kimura 1980)	T		α	β	β		$A \Longrightarrow$
	C	α		β	B		
	A	β	β		α		
	G	β	β	α			
781 (Felsenstein 1981)	T		$\pi_{\mathbf{C}}$	π_{A}	$\pi_{\mathbf{G}}$		T
	C	π_{T}		π_{A}	π_{G}		1 7
	A	π_{T}	$\pi_{\mathbb{C}}$		$\pi_{\mathbf{G}}$		1 1 1
	G	π_{T}	$\pi_{\mathbf{C}}$	π_{A}		K80	W
IKY85 (Hasegawa et al. 1984, 1985)	T		$\alpha\pi_{\rm C}$	$\beta \pi_A$	$\beta\pi_{\mathbf{G}}$	1100	↓ // 🔾
in 105 (Inaegawa er al. 1704, 1705)	Ċ	$\alpha\pi_{\mathrm{T}}$	·	$\beta \pi_A$	$\beta\pi_G$		
	A	$\beta \pi_{\rm T}$	$\beta\pi_{\rm C}$, A	απα		$(A) \rightleftharpoons ($
	G	$\beta\pi_{\rm T}$	$\beta\pi_{\rm C}$	$\alpha \pi_A$			
84 (Felsenstein, DNAML program since 1984)	T		$(1 + \kappa/\pi \gamma)\beta\pi C$	$\beta\pi_A$	$\beta\pi_{G}$		
p - g	C	$(1 + \kappa/\pi \gamma)\beta\pi T$		$\beta\pi_A$	$\beta\pi_{G}$		
	A	$\beta \pi_{\rm T}$	$\beta\pi_{C}$		$(1 + \kappa/\pi_R)\beta\pi_G$		$T \longrightarrow$
	G	$\beta \pi_{\rm T}$	$\beta\pi_{\rm C}$	$(1 + \kappa/\pi_R)\beta\pi_A$			
N93 (Tamura and Nei 1993)	T		$\alpha_1\pi_C$	$\beta \pi_A$	$\beta \pi_G$		11 1
	C	$\alpha_1\pi_T$	-1	$\beta\pi_A$	$\beta\pi_{G}$	HKY85	XX
	A	$\beta \pi_{\rm T}$	$\beta\pi_{\rm C}$		$\alpha_2\pi_G$		11 1/2
	G	$\beta \pi_{\rm T}$	$\beta\pi_{\rm C}$	$\alpha_2\pi_A$			A
GTR (REV) (Tavaré 1986; Yang 1994b; Zharkikh 1994)	T		$a\pi_{\mathbf{C}}$	$b\pi_{\rm A}$	$c\pi_{\mathbf{G}}$		•
ork (REST) (Tartare 1900, Tang 19910, Establish 1991,	C	$a\pi \tau$		$d\pi_{A}$	eπG		
	A	$b\pi_{\rm T}$	$d\pi_{\mathbb{C}}$		$f\pi_{\mathbf{G}}$		
	G	$c\pi_{T}$	$e\pi_{\mathbf{C}}$	$f\pi_A$			
JNREST (Yang 1994b)	T		q _{TC}	q_{TA}	q_{TG}		
1111101 (1111g 17770)	C	$q_{\rm CT}$	AIC	q _{CA}	qCG		
	A	qAT	q_{AC}	4CA	9AG		
	G	q _G T	q _{GC}	q_{GA}	TAG		

The diagonals of the matrix are determined by the requirement that each row sums to 0. The equilibrium distribution is $\pi=(1/4,1/4,1/4,1/4)$ under JC69 and K80, and $\pi=(\pi_T,\pi_C,\pi_A,\pi_G)$ under F81, F84, HKY85, TN93, and GTR. Under the general unrestricted (UNREST) model, it is given by the equations $\pi Q=0$ under the constraint $\sum_i \pi_i=1$.

Remember: divergence is a measure of **TIME** of divergence

The trajectory of a particular nucleotide follows a Markov Chain A -> G -> A

Markov Chains

Markov Chains

Markov chain
$$A \longrightarrow A \longrightarrow C \longrightarrow A \longrightarrow G \longrightarrow T$$

$$P(AACAGGT) = P(AACAGG)P(T \lor AACAGG)$$

 $P(AACAGGT) = P(AACAG)P(G \lor AACAG)P(T \lor AACAGG)$

From
$$P(X;Y) = P(Y)P(X|Y)$$

$$P(AACAGGT) = P(A)P$$
 ¿

However, in a MC, the probability at a position depends ONLY on the previous state

Markov Chains

Markov chain $A \rightarrow A \rightarrow C \rightarrow A \rightarrow G \rightarrow G \rightarrow T$ $P(AA \leftarrow A \rightarrow P) = P(A)P \leftarrow P$ Prior probability $A \rightarrow C \rightarrow A \rightarrow C \rightarrow P$

Markov chains time-homogeneous time continuous stationary

Underlying assumptions:

- (1) At any given site in a sequence, the rate of change from base i to base j is independent
- from the base that occupied that site prior *i* (*Markov property*).
- (2) Substitution rates do not change over time (*homogeneity*).
- (3) The relative frequencies of A, C, G, and T (π_A , π_C , π_G , π_T) are at equilibrium (**stationarity**).

How to compute the probability of changing from nucleotide i to j after t_1+t_2 times?

The Chapman-Kolmogorov theorem

$$t_1 + t_2$$

How to compute the probability of changing from nucleotide i to j after t_1+t_2 times?

The Chapman-Kolmogorov theorem

$$p_{ij}(t_1+t_2) = \sum_{k} p_{ik}(t_1) p_{kj}(t_2)$$

$$j$$

Can you propose an algorithm forward in time for simulating the evolution of a sequence over t generations?

Can you propose another algorithm forward in time for simulating the evolution of a sequence over t generations?

Imagine a single nucleotide and different s times

Can you propose another algorithm forward in time for simulating the evolution of a sequence over t generations?

Imagine a single nucleotide and different s times

- Transformation method
 - A function of a random variable is itself a random variable

```
u \; U(0,1)Random variable uniformly distributed in the range [0,1]
```

 $CDF_{\theta}(x)$ Cumulative density function of variable X

How to get a random sample of x?

Transformation method Cumulative density function from which I want to get random samples

Inverse distribution of the cumulative density function using parameters θ from which we want to get random samples

$$x = CDF_{\theta}^{-1}(u)$$

$$u \ U(0,1)$$

Transformation method

Inverse Cumulative density function from which I want to get random samples

Inverse CDF

Bernoulli distribution with parameter p

$$u \ U(0,1)$$

$$x = \begin{cases} 0 & \text{if } u$$

Example: The Exponential distribution

$$f(x) = \theta^{-1} e^{\frac{-x}{\theta}}$$

$$CDF_{\theta}(x) = 1 - e^{\frac{-x}{\theta}}$$

$$u = 1 - e^{\frac{-x}{\theta}}$$

$$\chi = ?$$

Inverse Cumulative density function from which I want to get random samples

Inverse CDF

For this particular case where the function is Norr

$$N(\theta)$$
 $\theta \in \{\mu, \sigma\}$
 $\Phi^{-1}(u) = \sqrt{2} \operatorname{erf}^{-1}(2u - 1)$
 $CDF_{\theta}^{-1}(u) = \mu + \sigma \Phi^{-1}(u)$

Not very easy to compute

Approximations (for Normal distribution)

Box and Muller (1958)

$$u_1 \ U(0,1)$$
 $u_2 \ U(0,1)$

$$x_1 = \sqrt{-2\log(u_1)}\sin(2\pi u_2),$$

$$x_2 = \sqrt{-2\log(u_1)}\cos(2\pi u_2)$$

Simulating random variables from an arbitrary discrete distribution with a finite number of certs (25teg 45es)4,0.1

1st Approach

- Generate the CDF
 - Sort from the smallest to the largest value
 - Estimate CDF

- Generate
- Pick category x such that

Approach

Problem: For each trial, it requires looking until we suffix the conditio

Unlikely events, but I have to check them

pproach: The alias method (Walker 1974; Kronmal and Peterson 197

"Any discrete distribution with n cells can be expressed as an equiprobable mixture of n two-point distributions"

pproach: The alias method (Walker 1974; Kronmal and Peterson 197

i	Α	С	Т	G	Sum	
	0.1	0.3	0.2	0.4	1	
	0.4	1.2	0.8	1.6	4	
					-	Each row must add to 1
	<u>*</u>					
			1			

Maximum value of the columnwhich row the other cell refers to ("alias")

pproach: The alias method (Walker 1974; Kronmal and Peterson 197

i	Α	С	Т	G	Sum	
	0.1	0.3	0.2	0.4	1	
	0.4	1.2	0.8	1.6	4	
					1	
					1	
					1	
					1	
	*					

Maximum value of the columonwhich row the other cell refers to

From each row, only two cells can be occupied.
One of the cells must be a column with the same id as row

pproach: The alias method (Walker 1974; Kronmal and Peterson 197

Box 9.2

Algorithm: generate the cutoff and alias vectors F and L for the alias method (Kronmal and Peterson 1979)

(Summary: this creates two vectors F_i and L_i i = 1, 2, ..., n)

- 1. (Initialize.) Set $F_i \leftarrow np_i$, i = 1, 2, ..., n.
- 2. (initialize the indicator table I_i , $i=1,2,\ldots,n$.) Let $I_i=-1$ if $F_i<1$ or $I_i=1$ if $F_i\geq 1$.
- 3. (Main loop.) Repeat the following steps until none of I_i is -1. (Pick up a cell j with $I_j = -1$ and a cell k with $I_k = 1$. Generate distribution $q^{(j)}$, finalizing F_j and L_j for cell j.)
 - 3a. Scan the *I* vector to find a *j* such that $I_j = -1$ and a cell *k* such that $I_k = 1$.
 - 3b. Set $L_j \leftarrow k$. Set $F_k \leftarrow F_k (1 F_j)$. $(1 F_j)$ is the probability on cell k used up by distribution $q^{(j)}$.)
 - 3c. (Update I_j and I_k .) Set $I_j \leftarrow 0$. If $F_k < 1$, set $I_k \leftarrow -1$.

pproach: The alias method (Walker 1974; Kronmal and Peterson 197

i	Α	С	Т	G	Sum	
	0.1	0.3	0.2	0.4	1	
	0.4	1.2	0.8	1.6	4	

pproach: The alias method (Walker 1974; Kronmal and Peterson 197

1. (Initialize.) Set $F_i \leftarrow np_i$, i = 1, 2, ..., n.

i	Α	С	Т	G	Sum
	0.1	0.3	0.2	0.4	1
	0.4	1.2	0.8	1.6	4
	0.4	1.2	0.8	1.6	

pproach: The alias method (Walker 1974; Kronmal and Peterson 197

2. (initialize the indicator table I_i , $i=1,2,\ldots,n$.) Let $I_i=-1$ if $F_i<1$ or $I_i=1$ if $F_i\geq 1$.

i	A	С	Т	G	Sum
	0.1	0.3	0.2	0.4	1
	0.4	1.2	0.8	1.6	4
	0.4	1.2	0.8	1.6	
	-1	1	-1	1	

pproach: The alias method (Walker 1974; Kronmal and Peterson 197

3a. Scan the *I* vector to find a *j* such that $I_j = -1$ and a cell *k* such that $I_k = 1$.

i	Α	С	Т	G	Sum
	0.1	0.3	0.2	0.4	1
	0.4	1.2	0.8	1.6	4
	0.4	1.2	0.8	1.6	
					_
	-1	1	-1	1	

pproach: The alias method (Walker 1974; Kronmal and Peterson 197 $_{3b. \text{ Set } L_j \leftarrow k.}$

i	Α	С	Т	G	Sum
	0.1	0.3	0.2	0.4	1
	0.4	1.2	0.8	1.6	4
	0.4	1.2	0.8	1.6	
	4				
	-1	1	-1	1	

pproach: The alias method (Walker 1974; Kronmal and Peterson 197

3b. Set $L_j \leftarrow k$. Set $F_k \leftarrow F_k - (1 - F_j)$. $(1 - F_j)$ is the probability on cell k used up by distribution $q^{(j)}$.)

i	Α	С	Т	G	Sum
	0.1	0.3	0.2	0.4	1
	0.4	1.2	0.8	1.6	4
	0.4			1-0.4	1
	0.4	1.2	0.8	1.6-(1- 0.4)	
	4	1	-1	1	

pproach: The alias method (Walker 1974; Kronmal and Peterson 197

3c. (Update I_j and I_k .) Set $I_j \leftarrow 0$. If $F_k < 1$, set $I_k \leftarrow -1$.

i	Α	С	Т	G	Sum
	0.1	0.3	0.2	0.4	1
	0.4	1.2	0.8	1.6	4
	0.4			0.6	1
				1	1
	0.4	1.2	0.8	1	
	4				
	0	1	-1	0	

pproach: The alias method (Walker 1974: Kronmal and Peterson 197

3. (Main loop.) Repeat the following steps until none of I_i is -1. (Pick up a cell j with $I_j = -1$ and a cell k with $I_k = 1$. Generate distribution $q^{(j)}$, finalizing F_j and L_j for cell i)

\mathbf{i} cell j .		_	_	_	
1	A	J	I	G	Sum
	0.1	0.3	0.2	0.4	1
	0.4	1.2	0.8	1.6	4
	0.4			0.6	
				1	
	0.4	1.2	0.8	1	
	4				
	0	1	-1	0	

pproach: The alias method (Walker 1974; Kronmal and Peterson 197

i	A	С	T	G	Sum
	0.1	0.3	0.2	0.4	1
	0.4	1.2	0.8	1.6	4
	0.4			0.6	1
				1	1
	0.4	1.2	0.8	1	
	4				
	0	1	-1	0	

pproach: The alias method (Walker 1974; Kronmal and Peterson 197

i	A	С	Т	G	Sum
	0.1	0.3	0.2	0.4	1
	0.4	1.2	0.8	1.6	4
	0.4			0.6	1
		1			1
		0.2	0.8		1
				1	
	0.4	1.0	0.8	1	
	4		2		
	0	0	0	0	

pproach: The alias method (Walker 1974; Kronmal and Peterson 197

i	A	С	Т	G	Sum
	0.1	0.3	0.2	0.4	1
	0.4	1.2	0.8	1.6	4
	0.4			0.6	1
		1			1
		0.2	0.8		1
				1	
	0.4	1.0	0.8	1	
	4		2		
	0	0	0	0	

pproach: The alias method (Walker 1974; Kronmal and Peterson 197

Box 9.1

Alias algorithm (To generate a random variable i from the specified discrete distribution p_i , i = 1, 2, ..., n, using the cutoff and alias vectors F and L.)

- 1. (Stimulate a random integer k over 1, 2, ..., n, and a random number $r \sim U(0, 1)$.) Generate random number $u \sim U(0, 1)$. Set $k \leftarrow [nu] + 1$ and $r \leftarrow nu + 1 k$
- 2. (Sample from $q^{(k)}$.) If $r \le F_k$, set $i \leftarrow k$; otherwise, set $i \leftarrow L_k$.

pproach Bis: Extension of the Alias by Vose (A Linear Algorithm For Generating Rars With a Given Distribution)

i	A	С	Т	G	Sum
	0.1	0.3	0.2	0.4	1
	0.4	1.2	0.8	1.6	4
	0.4			0.6	1
		1			1
		0.2	0.8		1
				1	
	0.4	1.0	0.8	1	
	4		2		
	0	0	0	0	

A backward approach

A backward approach

A backward approach

Can you propose an algorithm backward in time for simulating the evolution of K sequences until complete coalescence?