Quantum Lattice Models and Anyonic Theories

Kriteen Shrestha

(In collaboration with Noah Ringrose and mentors Chumeng Di, Brett Hungar, Kyle Kawagoe, Professor David Penneys)

ROMUS @ The Ohio State University University of California, Santa Barbara

Contents

Quantum Lattice Models

- ② Ground State and Excitations
- Interacting with Anyons

Quantum Lattice Models

What are Quantum Lattice Models?

Defining the Hilbert Space (Toric Code)

$$\mathcal{H}_{tot} = \bigotimes_{e \in \Gamma} \mathcal{H}_e$$

Defining the Operators

Pauli matrices:

$$\sigma^{x} = X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$\sigma^{y} = Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$
$$\sigma^{z} = Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

We define the two operators,
$$A_v = \prod_{e \in \Gamma} X_e$$
 and $B_p = \prod_{e \in \Gamma} Z_e$.

Ground State and Excitations

Ground State

$$H = -\sum_{v \in \Gamma} \mathbf{A}_v - \sum_{p \in \Gamma} B_p$$

- \bullet $H^{\dagger} = H$
- ullet Lowest H o maximize A_v and $B_p o$ eigenvalue =1
 - Eigenvalues corresponds to energy levels

$$A_v |\psi\rangle = B_p |\psi\rangle = |\psi\rangle$$

Excited State

Excited state = Violations of H

- ullet Violation Eigenvalue of operator is eq 1
 - $A_v |\phi\rangle = -|\phi\rangle \implies |\phi\rangle$ is a violation of A_v
 - $A_v |\phi\rangle = |\phi\rangle \implies |\phi\rangle$ is **not** a violation of A_v (satisfies A_v)
- Anyon Lowest energy excited state
- Flux Violation of A_v operator
- Charge Violation of B_p operator
- **Dyons** Violation of both A_v and B_p operators

Interacting with Anyons

Creating Anyons

Fluxes

$$S^Z_{\gamma} := \prod_{e \in \gamma} Z_e$$

Charges

$$S^X_{\tilde{\gamma}} := \prod_{e \in \tilde{\gamma}} X_e$$

Braiding and Fusing Anyons

R-symbol

F-symbol

Accomplishments and Next Steps

What we did...

- For a given group, found a universal unitary movement operator for any arbitrary anyon
- Utilized that definition to calculate the categorical data for non-abelian anyons

...and what's to come

• Exploring interactions of anyons with our definition in various and more generalized models (Quantum Double, Levin-Wen)

References

- 1 David Green, Peter Huston, Kyle Kawagoe, David Penneys, Anup Poudel, Sean Sanford. (2024) Enriched string-net models and their excitations. arXiv:2305.14068
- 2 "Topological Order in Quantum Systems." MIT, n.d., https://xgwen.mit.edu/sites/default/files/documents/topo.pdf.
- 3 "Topological Order and Quantum Computation." Topological Condensed Matter Theory Group, n.d., https://topocondmat.org/w12_manybody/topoorder.html.

Thank you!

Special thanks to my collaborators and mentors, the Ohio State University Department of Mathematics, and the ROMUS program for this invaluable experience.

