# Применение методов квантования к решению задачи оптимизации нейронных сетей

Шлыков Илья

2022



## Введение

Квантование нейронной сети - метод преобразования данных, который позволяет уменьшить размер модели и получить преимущество в скорости работы, при небольшой потери качества.

## Симметричное равномерное квантование

Самым простым методом среди существующих можно считать метод симмметричного равномерного квантования. Для некоторых данных X, которые изменяются в диапозоне (I,u) и некоторого значения среза  $C \in (0, max(|I|, |u|))$  симметричное квантование к int8 может быть сформированно как:

$$q = round(clip(x, c)/s)$$
 (1)

где  $clip(x,c) = min(max(x,-c),c), s = 2*c/(2^8-1)$  в свою очередь s это коэффициент масштабирования для проецирования чисел c запятой в 8-битное целое число. Деквантованые веса могут быть вычеслены как: x=q\*s



### Аффинный квантователь

Более общим методом является метод аффинного квантователя, который отличается от предыдущего метода, тем что помимо параметра s, появляется новый параметр Z(zero-point), который имеет тот же тип, что и квантованные значения q, и является квантованным значением, соответствующим действительному значению 0. Таким образом гарантируется, что 0 будет представлен среди квантованных значений. После того как параметры определены, процесс квантования может быть представлен как:

$$x_{int} = round(\frac{x}{s}) + Z$$
 (2)

$$q = clip(0, N_{levels} - 1, x_{int})$$
(3)

Деквантование: x = (q - Z) \* s



#### Стохастический квантователь

Стохастическое квантование моделирует аддитивный шум, с последующим округлением. Задается следующим образом:

$$x_{int} = round(\frac{x+\epsilon}{S}) + Z, \epsilon \ Unif(-1/2, 1/2)$$
 (4)

$$q = clip(0, N_{levels} - 1, x_{int})$$
 (5)

Деквантование происходит аналогично деквантованию в аффинном квантователе



## Квантование во время обучения

При квантовании после обучения, есть вероятность сильно потерять в точности так как обучалась сеть с неквантованными значениями. Для того, чтобы повысить точность можно применить метод квантования во время обучения, за счет того, что сеть будет обучаться используя уже проквантованные веса.

# Learned step size quantization (LSQ)

LSQ метод основан на s масштабировании, но также использует градиент, который вычисляется используя straight through estimator(STE), для корректировки размера шага.

$$y = w_q * x + b$$

$$w_q = [w/s] * s$$

$$\delta y / \delta s = \frac{\delta y}{\delta w_q} * \frac{\delta w_q}{\delta s}$$

$$\frac{\delta w_q}{\delta s} = s\delta / \delta s ([w/s]) + [w/s]$$

Так как функция [w/s] не дифференцируемая используем STE

$$\delta/\delta s([w/s]) = \delta/\delta s(w/s) = -w/s^2$$



# Learned step size quantization (LSQ)

Итоговый результат:

$$\frac{\delta w_q}{\delta s} = \begin{cases}
-w/s + [w/s] & \text{if } -Q_N < w/s < Q_P \\
-Q_N & \text{if } w/s < -Q_N \\
Q_P & \text{if } w/s > Q_P
\end{cases}$$
(6)

Корректировка весов будет выглядеть следующим образом:

$$w_{float} = w_{float} - \mu \delta L / \delta w_{out} * I_{w_{out}} \in (w_{min}, w_{max})$$

