

Báo cáo Đồ án giữa kỳ

Đề tài: Smart Lighting Control System

Sinh viên thực hiện:

Trần Hiếu Tâm (21127423)

Giảng viên hướng dẫn:

TS. Nguyễn Đức Hoàng Hạ

Th
S. Đỗ Thị Thanh Hà

TP. Hồ Chí Minh, tháng 11 năm 2024

TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN **KHOA CÔNG NGHỆ THÔNG TIN**

Báo cáo Đồ án giữa kỳ

Đề tài: Smart Lighting Control System

Học phần: Nhập môn lập trình kết nối vạn vật - 21KHDL

Sinh viên thực hiện:

Trần Hiếu Tâm (21127423)

Giảng viên hướng dẫn:

TS. Nguyễn Đức Hoàng Hạ

Th
S. Đỗ Thị Thanh Hà

Mục lục

1	Đặc	tả yêu cấu	1					
2	Thi	Thiết kế hệ thống						
	2.1	Thiết kế tổng quát	3					
	2.2	Thiết kế chi tiết	4					
	2.3	Sơ đồ mạch điện đề xuất	5					
	2.4	Sơ đồ máy trạng thái hữu hạn (FSM - Finite-state Machine)	6					
	2.5	Sơ đồ truyền nhận dữ liệu	8					
		2.5.1 Truyền dữ liệu, tín hiệu giữa Controller và các thiết bị	9					
		2.5.2 Truyền dữ liệu, tín hiệu từ Controller đến Web Service	10					
		2.5.3 Truyền dữ liệu, tín hiệu từ Web Service đến Controller	11					
3	Đề	xuất các giải pháp	12					
4	Kế	Kế hoạch kiểm thử						
	4.1	Kiểm tra từng thành phần	15					
	4.2	Kiểm tra tích hợp	16					
5	Kết	quả triển khai	17					
	5.1	Giả lập hệ thống trên Tinkercad	17					
	5.2	Triển khai hệ thống trên thiết bị thật	18					
	5.3	Triển khai Website	19					
	5.4	Giới thiệu chức năng website	21					
	5.5	Release	22					
Tã	ai liệ	ı tham khảo	23					

Danh sách bảng

1	Danh sách các thành phần của hệ thống	4
2	Bảng chuyển đổi trạng thái của đèn LED trong hệ thống	7
3	Các thiết bị truyền dữ liệu, tín hiệu đến Controller	9
4	Các thiết bị nhận tín hiệu từ Controller	9
5	Bảng mô tả ý nghĩa của các trường dữ liệu gửi từ Controller đến Web Service $\ \ .$	10
6	Bảng mô tả ý nghĩa của các trường dữ liệu gửi từ Web Service đến Controller $\ \ .\ \ .$	11
7	Danh sách đề xuất các giải pháp cho hệ thống	14
8	Kiểm tra các thành phần hệ thống	15
9	Các bước tích hợp và kiểm tra hệ thống	16

Danh sách hình vẽ

1	System Design	3
2	Sơ đồ mạch điện dự kiến triển khai hệ thống	5
3	Sơ đồ máy trạng thái hữu hạn của đèn LED trong hệ thống	6
4	Sơ đồ truyền nhận dữ liệu giữa các thiết bị, Controller và Web Server	8
5	Triển khai mạch Arduino trên Tinkercad	17
6	Triển khai hệ thống thực tế	18
7	Triển khai hệ thống thực tế tích hợp Web Service	18
8	Giao diện Web Service sau khi kết nối với Web Server thành công	20
9	Các thành phần chính của Website	21

1 Đặc tả yêu cầu

Hệ thống điều khiển ánh sáng thông minh (tiếng Anh: Smart Lighting Control System) là một hệ thống tự động điều chỉnh đèn dựa trên điều kiện ánh sáng xung quanh và hỗ trợ người dùng điều khiển thủ công khi cần thiết nhằm tiết kiệm năng lượng điện cũng như có thể vận hành hiệu quả, chính xác mà không cần sự can thiệp của con người.

Yêu cầu:

- Hệ thống gồm 01 đèn LED, 01 cảm biến ánh sáng dùng để điều khiển tự động đèn LED theo điều kiện ánh sáng xung quanh (Auto Mode) và 01 nút bấm dùng để điều khiển thủ công (Manual Mode).
- Hê thống vân hành theo 2 chế đô (mode): Auto Mode và Manual Mode.
- Khi bắt đầu chạy thì hệ thống sẽ chạy theo Auto Mode: Đèn LED sẽ tự động tắt (Off) khi trời sáng và sẽ tự động sáng nhấp nháy (Blinking) khi trời tối.
- Khi nhấn vào nút bấm thì hệ thống sẽ chuyển từ đổi từ Auto Mode sang Manual Mode: Đèn sẽ tạm thời không vận hành tự động (Auto Mode) theo điều kiện ánh sáng môi trường. Theo đó, nếu người dùng nhấn nút bấm thì đèn sẽ tắt nếu đèn đang sáng và ngược lại, nếu người dùng nhấn nút bấm thì đèn sẽ bật nếu hiện tại đèn đang tắt. Nếu người dùng nhấn nút khi đèn đang blinking thì đèn sẽ tắt.
- Nếu hệ thống đang trong Manual Mode, khi có sự chuyển đổi ánh sáng ngày đêm thì hệ thống sẽ mặc định chuyển về Auto Mode và đèn LED sẽ vận hành tự động theo điều kiện ánh sáng môi trường.
- Ngoài ra, khi hệ thống đang trong Manual Mode mà sau N phút người dùng không nhấn nút bấm điều khiển bật tắt đèn thủ công thì hệ thống sẽ tự động chuyển sang Auto Mode. Người dùng có thể thiết lập giá trị N này qua website (Nếu người dùng cài đặt N = 0 thì hệ thống sẽ chỉ chuyển từ Manual Mode sang Auto Mode khi có sự chuyển đổi ánh sáng ngày đêm).
- Hệ thống sẽ hỗ trợ website để người dùng theo dõi trạng thái đèn hiện tại (Bật, Tắt, Blinking), mode (Auto Mode hay Manual Mode), điều kiện ánh sáng hiện tại (Light hay Night), điều kiện thời gian N để chuyển mode cho hệ thống. Ngoài ra, người dùng có thể bật, tắt đèn thông qua Website này, cũng như điều chỉnh thông số N (Đơn vị: millisecond).

Ràng buộc:

- Hệ thống mô phỏng chỉ được thử nghiệm trên nguồn điện thấp (5-10V), không sử dụng điện dân dụng (220V) để thử nghiệm và vận hành hệ thống này.
- Hệ thống không được sử dụng các loại cảm biến thu thập dữ liệu riêng tư của con người dưới mọi hình thức.
- Hệ thống luôn phải được cung cấp điện liên tục khi vận hành.
- Thiết bị và linh kiện nên phổ biến ở thị trường Việt Nam, có thể dễ dàng tìm kiếm trên địa bàn Thành phố Hồ Chí Minh. Đồng thời ưu tiên sử dụng các thiết bị và linh kiện mà Tinkercad có hỗ trợ mô phỏng.
- Chi phí không vượt quá 200.000 VNĐ (bằng chữ: Hai trăm nghìn Việt Nam Đồng chẵn)

2 Thiết kế hệ thống

2.1 Thiết kế tổng quát

Hình 1: System Design

Block Diagram của hệ thống được mô tả qua hình 1 cho biết thiết kế tổng quát của đồ án này. Theo đó, hệ thống gồm các thành phần sau: (1) Các thiết bị Input là Pushbutton (tên tiếng Việt: nút nhấn) để nhận tín hiệu bật tắt đèn của người dùng và Photoresistor (tên tiếng Việt: quang trở) để đo lường độ sáng của môi trường xung quanh hệ thống; (2) Thiết bị Output là đèn LED; (3) Controller đóng vai trò là thiết bị để nhận dữ liệu từ thiết bị Input, điều khiển thiết bị Output cũng như truyền và nhận dữ liệu qua Web Service; (4) Web Service là một ứng dụng web được triển khai nhằm mục đích cho người dùng biết được trạng thái hiện tại của đèn LED cũng như điều khiển đèn LED từ xa thông qua nút trên Website. Các thành phần trên sẽ được mô tả chi tiết tại bảng 1.

2.2 Thiết kế chi tiết

nh phần	Tên thiết bị/Công	Cách thiết lập		
	nghệ đề xuất			
troller	Arduino Uno R3 AT-	- Nguồn và GND: Nối chân 5V và GND của Arduino		
	mega328	với nguồn điện và GND cho các thiết bị.		
		- Chân Digital: Nối các thiết bị như LED và Push-		
		button vào chân Digital (Pin 2-13) của Arduino để		
		truyền/nhận tín hiệu điều khiển.		
		- Chân Analog In: Nối cảm biến ánh sáng vào chân		
		Analog In (Pin A0-A5) để đọc tín hiệu ánh sáng.		
Service	/	- Triển khai trên Local Host: Cài đặt Flask trên laptop		
		để tạo server cục bộ.		
	HTML, CSS	- Gửi/Nhận Dữ liệu: Thiết lập kết nối giữa Arduino		
		và Web Service thông qua cổng USB của Arduino để		
		trao đổi dữ liệu điều khiển và giám sát trạng thái đèn		
	25	LED từ Web Service đến Arduino và ngược lại.		
		- Kết nối với Arduino: Nối một chân của Pushbutton		
	-	với chân Digital của Arduino và chân còn lại với GND.		
		- Điện trở: Thêm điện trở giữa chân Digital và GND		
	Pusn Button	để ổn định tín hiệu, tránh nhiễu. Arduino sẽ đọc tín hiệu từ Pushbutton để điều khiển đèn LED.		
tomosistom	Im 202 Ontical Dha	- Kết nối với Arduino: Nối chân tín hiệu của module		
toresistor	-	cảm biến ánh sáng (LDR) với chân Analog In của Ar-		
	9	duino. Nối chân VCC và GND của module với chân		
	Sensor Module	5V và GND của Arduino.		
		- Đọc cường độ ánh sáng: Arduino sẽ đọc giá trị từ		
		LDR để xác định trạng thái sáng tối của môi trường		
		xung quanh.		
)	5mm Color Led	- Kết nối với Arduino: Nối chân dương của LED với		
		chân Digital của Arduino qua một điện trở để bảo vệ		
		LED. Nối chân âm của LED với GND.		
		- Điều khiển Bật/Tắt: Arduino sẽ điều khiển LED dựa		
		trên tín hiệu từ cảm biến ánh sáng hoặc Pushbutton		
		hoặc nhấn nút bật tắt từ Website.		
ŀ	Service	Arduino Uno R3 AT- mega328 Service Local Host, triển khai bằng Flask, HTML, CSS Button 6x6x5 mm Miniature Micro Momentary Tactile Tact Touch Push Button toresistor Lm393 Optical Photosensitive Ldr Light Sensor Module		

Bảng 1: Danh sách các thành phần của hệ thống

Bảng 1 cho biết mô tả chi tiết về các thành phần Controller, Web Service, Pushbutton, Photoresistor, đèn LED của hệ thống đã được thiết kế trên System Design ở hình 1. Theo đó, bảng 1 đưa ra đề xuất thiết bị, công nghệ phù hợp cũng như cách thiết lập các thiết bị đó để có cơ sở thiết kế chi tiết và triển khai ở các giai đoạn sau (như thiết kế sơ đồ mạch điện, FSM, sơ đồ truyền nhận dữ liệu, triển khai giả lập và triển khai trên thiết bị thật).

2.3 Sơ đồ mạch điện đề xuất

Hình 2: Sơ đồ mạch điện dự kiến triển khai hệ thống

Sơ đồ mạch điện trên hình 2 mô tả một mạch bao gồm một nút nhấn (Pushbutton), một quang trở (Photoresistor) và một đèn LED được kết nối với các chân của vi điều khiển Arduino UNO. Các chân Arduino UNO được sử dụng bao gồm: chân nguồn 5V và GND; chân Digital In D2 và chân Digital Out D7; chân Analog In A0. Nguồn điện 5V được cung cấp cho mạch qua chân 5V và chân GND. Khi nút nhấn được bấm, mạch cho phép dòng điện đi qua các điện trở và quang trở đến chân A0 (chân Analog) để đo ánh sáng từ quang trở. Chân D2 (Digital Pin) được sử dụng để theo dõi trạng thái của nút nhấn và D7 (Digital Pin) được sử dụng để điều khiển đèn LED. Đèn LED, quang trở và nút nhấn được mắc nối tiếp qua các điện trở để hạn chế dòng điện nhằm bảo vệ các thiết bi trên khỏi dòng điên quá lớn và đảm bảo mach hoat đông ổn đinh.

2.4 Sơ đồ máy trạng thái hữu hạn (FSM - Finite-state Machine)

Hình 3: Sơ đồ máy trạng thái hữu hạn của đèn LED trong hệ thống

Sơ đồ FSM (Finite State Machine) ở hình 3 mô tả hệ thống điều khiển đèn với hai chế độ: Auto-Mode và ManualMode. Khi Arduino UNO được nạp điện (Power ON), chế độ Auto-Mode được kích hoạt. Trong Auto-Mode, nếu là ban ngày (Day), đèn sẽ ở trạng thái OFF; nếu chuyển sang ban đêm (Night), đèn sẽ chuyển sang trạng thái BLINKING. Khi trời sáng trở lại (Night sang Day), đèn sẽ quay về trạng thái OFF và ngược lại, khi trời chuyển từ sáng sang tối (Day sang Night) thì đèn sẽ sang trạng thái BLINKING. Khi người dùng nhấn nút, hệ thống chuyển sang ManualMode.

Trong ManualMode, đèn có thể được bật (ON) hoặc tắt (OFF) thông qua nút nhấn. Ở trạng thái ON, nếu nhấn nút lần nữa, đèn sẽ chuyển sang OFF và ngược lại. Hệ thống sẽ quay lại AutoMode khi có sự chuyển đổi từ ngày sang đêm, đêm sang ngày hoặc khi hết thời gian quy định (timeout). Ở bất kỳ trạng thái nào, hệ thống sẽ kết thúc hoạt động khi bị ngắt nguồn (tức là Shut Down).

Sự chuyển đổi trạng thái của sơ đồ FSM ở hình 3 được mô tả thông qua bảng 2: Bảng chuyển đổi trạng thái của đèn LED trong hệ thống.

Current	Input	Condition	Next	Output
State			State	
Initial State	Power ON	Current Condition == Day	AutoMode - OFF	Start AutoMode
Initial State	Power ON	Current Condition ==	AutoMode -	Start blinking LED
		Night	BLINKING	with AutoMode
AutoMode -	$\text{Day} \rightarrow \text{Night}$	-	AutoMode -	Start blinking LED
OFF	Transition		BLINKING	
AutoMode -	$Night \rightarrow Day$	-	AutoMode -	Turn off LED
BLINKING	Transition		OFF	
AutoMode -	Press Button	-	ManualMode	
OFF			- ON	and turn on LED
AutoMode -	Press Button	-	ManualMode	
BLINKING			- OFF	and turn off LED
ManualMode - ON	Press Button	-	ManualMode - OFF	Turn off LED
ManualMode - OFF	Press Button	-	ManualMode - ON	Turn on LED
ManualMode	Day-Night Tran-	Current Condition ==	AutoMode -	Switch to AutoMode
- ON	sition	Day	OFF	and turn off LED
ManualMode	Day-Night Tran-	Current Condition ==	AutoMode -	Switch to AutoMode
- ON	sition	Night	BLINKING	and start blinking LED
ManualMode	Timeout	Current Condition ==	AutoMode -	Switch to AutoMode
- ON		Day	OFF	and turn off LED
ManualMode	Timeout	Current Condition ==	AutoMode -	Switch to AutoMode
- ON		Night	BLINKING	and start blinking LED
ManualMode	Day-Night Tran-	Current Condition ==	AutoMode -	Switch to AutoMode
- OFF	sition	Day	OFF	and turn off LED
ManualMode	Day-Night Tran-	Current Condition ==	AutoMode -	Switch to AutoMode
- OFF	sition	Night	BLINKING	and start blinking LED
ManualMode	Timeout	Current Condition ==	AutoMode -	Switch to AutoMode
- OFF		Day	OFF	and turn off LED
ManualMode	Timeout	Current Condition ==	AutoMode -	Switch to AutoMode
- OFF	CI + D	Night	BLINKING	and start blinking LED
AutoMode - OFF	Shut Down	-	Shutdown State	Shut Down System
AutoMode -	Shut Down	-	Shutdown	Shut Down System and
BLINKING			State	turn off LED
ManualMode	Shut Down	-	Shutdown	Shut Down System and
- ON			State	turn off LED
ManualMode	Shut Down	-	Shutdown	Shut Down System
- OFF			State	

Bảng 2: Bảng chuyển đổi trạng thái của đèn LED trong hệ thống

Căn cứ FSM trên hình 3, bảng 2 ở trên mô tả chuyển đổi trạng thái của đèn LED trong hệ thống.

2.5 Sơ đồ truyền nhân dữ liêu

Hình 4: So đồ truyền nhận dữ liệu giữa các thiết bị, Controller và Web Server

Sơ đồ tại hình 4 mô tả quá trình truyền nhận dữ liệu giữa Arduino UNO và Web Service qua cổng USB. Arduino đọc giá trị từ quang trở (qua cổng A0), nút nhấn (qua cổng D2) và căn cứ vào các dữ liệu đó để điều khiển đèn LED (qua cổng D7). Trong quá trình xử lý, Arduino UNO gửi liên tục các thông tin hiện thời về thời gian timeout (đơn vị: millisecond), chế độ đang vận hành hệ thống (AutoMode hay ManualMode), điều kiện ánh sáng môi trường (Day hay Night), trạng thái nhấp nháy (đèn có đang Blinking không) và trạng thái đèn (đang sáng - ON hay đang tắt - OFF) đến Web Service thông qua USB Port dưới dạng 1 chuỗi ký tự. Ở chiều ngược lại, Web Service cũng có thể gửi lệnh điều khiển dưới hình thức người dùng thao tác trên Website và Web Service sẽ xử lý thành 1 chuỗi các trường dữ liệu và gửi tới Arduino để thay đổi trạng thái hệ thống. Việc truyền nhận dữ liệu giữa Arduino UNO và Web Service thông qua cổng USB được diễn ra liên tục nhằm cập nhật chính xác nhất trạng thái hiện thời của hệ thống.

Sơ đồ tại hình 4 được mô tả chi tiết và rõ ràng hơn thông qua các phần 2.5.1, 2.5.2, 2.5.3.

2.5.1 Truyền dữ liệu, tín hiệu giữa Controller và các thiết bị

Thiết bị	Pin giao tiếp	Điện thế	Giá trị	Ý nghĩa
Photoresistor	A0	0V đến 5V	0 đến 1023	Cường độ ánh sáng của
				môi trường xung quanh hệ
				thống
Pushbutton	D2	0V	LOW	Released
1 usingutton	D_2	5V	HIGH	Pressed

Bảng 3: Các thiết bị truyền dữ liệu, tín hiệu đến Controller

Thiết bị	Pin giao tiếp	Điện thế	Giá trị	Ý nghĩa
LED	D7	5V	HIGH	ON: tức bật sáng đèn LED
		0V	LOW	OFF: tức tắt đèn LED

Bảng 4: Các thiết bị nhận tín hiệu từ Controller

Người đọc có thể tham khảo sơ đồ mạch điện trên hình 2, sơ đồ truyện nhận dữ liệu trên hình 4 và mạch giả lập hệ thống trên Tinkercad tại hình 5 để có góc nhìn rộng hơn về các thiết bị này và các pin liên quan được đề cập trong bảng 3 và bảng 4.

2.5.2 Truyền dữ liệu, tín hiệu từ Controller đến Web Service

• Cấu trúc:

```
<switch_mode_duration>,<condition>,<mode>,<blink_state>,<led_state>\n"
```

• Mỗi thông tin cách nhau bởi dấu phẩy, kết thúc chuỗi thông tin gửi bằng dấu "\n"

Trường dữ liệu	Ý nghĩa	Giá trị gửi	Giá trị hiển thị trên Website
switch_mode_duration	Thời gian chờ từ lần nhấn nút cuối cùng để hệ thống tự động chuyển từ Manual Mode sang Auto Mode, có thể được người dùng cài đặt trên Website. Lưu ý: nếu đặt giá trị là 0, điều kiện timeout này sẽ không được áp dụng. Đơn vị: millisecond.	0 đến 4,294,967,295	0 đến 4,294,967,295 (millisecond)
condition	Điều kiện ánh sáng của môi trường xung quanh hệ thống (sáng hay tối)	0	Night Day
mode	Chế độ hiện tại điều khiển hệ thống là Tự động (Auto) hay Thủ công (Manual)	0	Manual Auto
blink_state	Cho biết đèn LED có đang trong trạng thái chớp nháy hay không.	1	Not Blinking (thực tế: không hiện trên Website trạng thái này) Blinking
led_state	Cho biết đèn LED có đang tắt hay không.	0	Off
	Cho biết đèn LED có đang sáng hay không.	1	On

Bảng 5: Bảng mô tả ý nghĩa của các trường dữ liệu gửi từ Controller đến Web Service

2.5.3 Truyền dữ liệu, tín hiệu từ Web Service đến Controller

- Cấu trúc:
- "<switch_mode_duration>,<is_push_button>\n"
- Mỗi thông tin cách nhau bởi dấu phẩy, kết thúc chuỗi thông tin gửi bằng dấu "\n"

Trường dữ liệu	Ý nghĩa	Giá trị nhập	Giá trị gửi
		trên Website	
switch_mode_duration	Thời gian chờ từ lần nhấn	0 đến	0 đến $4,294,967,295$
	nút cuối cùng để hệ thống tự	4,294,967,295	
	động chuyển từ Manual Mode	(millisecond)	
	sang Auto Mode, có thể được		
	người dùng cài đặt trên Web-		
	site. Lưu ý: nếu đặt giá trị		
	là 0, điều kiện timeout này sẽ		
	không được áp dụng. Đơn vị:		
	millisecond.		
is_push_button	Button trên Website có đang	Đang không	0
	được nhấn hay không để bật,	nhấn	
	tắt đèn LED của hệ thống.		
		Đã nhấn	1

Bảng 6: Bảng mô tả ý nghĩa của các trường dữ liệu gửi từ Web Service đến Controller

3 Đề xuất các giải pháp

Component	Giải pháp 1	Giải pháp 2	Giải pháp 3	Quyết định giải
/Module				pháp
Controller	Arduino Uno R3	Raspberry Pi	ESP32	Arduino Uno R3
	ATmega328	3B+	- Chi phí: \sim 150.000	ATmega328
	- Chi phí: ∼100.000	- Chi phí:	VNĐ	Đáp ứng đủ yêu cầu,
	VNĐ	>1.890.000 VNĐ	- Tích hợp sẵn Wifi	chi phí hợp lý, dễ sử
	- Dễ lập trình và	- Có khả năng xử lý	và Bluetooth	dụng.
	mở rộng	cao hơn	- Phù hợp cho IoT	
	- Phù hợp cho các	- Hỗ trợ hệ điều	và hệ thống có kết	
	hệ thống cơ bản	hành	nối mạng	
		- Phù hợp cho các		
		ứng dụng phức tạp		
Web Service	Local Host	Cloud Hosting	Raspberry Pi	Local Host (Flask,
	(Flask, HTML,	- Dùng nền tảng	làm Server	HTML, CSS)
	CSS)	đám mây (AWS,	- Kết nối trực tiếp	Chi phí thấp và đáp
	- Triển khai cục bộ	Azure)	với cảm biến	ứng được yêu cầu cơ
	trên máy tính	- Chi phí: phí duy	- Chi phí thiết lập	bản của đồ án.
	- Chi phí: Miễn phí	trì hàng tháng	cao hơn	
	- Thích hợp cho	- Khả năng mở	- Phù hợp cho các	
	giai đoạn thử	rộng tốt	hệ thống nhỏ gọn,	
	nghiệm	- Truy cập từ xa	tự chủ	
		tiện lợi		

Component	Giải pháp 1	Giải pháp 2	Giải pháp 3	Quyết định giải
/Module				pháp
Pushbutton	6x6x5 mm Tac-	Công tắc cảm	Công tắc nhấn	6x6x5 mm Tactile
	tile Push Button	ứng chạm	IP67	Push Button
	- Chi phí thấp	- Chi phí cao hơn	- Chống nước và	Đơn giản, chi phí
	- Đơn giản, dễ lắp	(khoảng 20.000	bụi, phù hợp môi	thấp, dễ sử dụng.
	đặt	VNĐ)	trường ngoài trời	
		- Tạo trải nghiệm	- Chi phí cao hơn	
		hiện đại	(khoảng 20.000	
		- Có thể nhúng vào	VNĐ)	
		thiết kế đẹp mắt	- Độ bền cao	
Photoresistor	Lm393 Optical	Cảm biến ánh	Cảm biến	Lm393 Optical
	Photosensitive	sáng BH1750	TSL2561	Photosensitive
	LDR	- Chi phí cao hơn	- Chi phí khoảng	LDR
	- Chi phí thấp	(~40.000 VNĐ)	140.000 VNĐ	Đáp ứng yêu cầu
	(khoảng 20.000	- Độ chính xác cao	- Đo ánh sáng với	chi phí thấp và dễ
	VNĐ)	hơn	độ chính xác cao,	sử dụng trong môi
	- Độ nhạy cao với	- Kết nối qua giao	dải rộng	trường ánh sáng đơn
	ánh sáng	thức I2C	- Phù hợp cho các	giản.
	- Dễ kết nối với Ar-		dự án cần đo ánh	
	duino		sáng chính xác	

Component	Giải pháp 1	Giải pháp 2	Giải pháp 3	Quyết định giải
/Module				pháp
LED	5mm Color LED	LED RGB	Grove - LED	5mm Color LED
	- Đơn giản, dễ lắp	- Đổi màu, tạo hiệu	Button	Chi phí thấp, đáp
	đặt	ứng	- Có tích hợp sẵn	ứng yêu cầu chiếu
	- Chi phí thấp	- Chi phí cao hơn	kèm theo với Push-	sáng cơ bản.
	$(\sim 9.000 \text{ VNĐ}/30)$	(~16.000 VNĐ)	button.	
	đèn)	- Phù hợp nếu cần	- Tuổi thọ sử dụng	
		thay đổi màu sắc	cao hơn (100.000	
			lần bật tắt)	
			- Chi phí cao hơn	
			(~66.000 VNĐ)	

Bảng 7: Danh sách đề xuất các giải pháp cho hệ thống

Bảng 7 đưa ra mô tả các giải pháp khả thi cho các Component/Module của hệ thống. Việc đa dạng hóa các giải pháp giúp hệ thống có nhiều phương án dự phòng, nhiều phương án phát triển hệ thống theo các hướng đi mới hiệu quả hơn và có khả năng khắc phục được những hạn chế còn tồn đọng (nếu có). Cần căn cứ vào Đặc tả yêu cầu và những ràng buộc, hạn chế cũng như bản thiết kế hệ thống để có thể đưa ra được *Quyết định giải pháp* hợp lý nhất cho quá trình phát triển hệ thống ở thời điểm hiện tại. Các giải pháp có chi phí thấp, dễ mua, dễ thiết lập và sử dụng, có phiên bản giả lập, đáp ứng đầy đủ ở mức cơ bản mà đặc tả yêu cầu đề ra là những giải pháp được chọn hiện tại dựa trên cơ sở như còn gặp nhiều hạn chế về kinh phí và trình độ hiện tại của lập trình viên hệ thống.

4 Kế hoạch kiểm thử

4.1 Kiểm tra từng thành phần

Thành phần	Kiểm tra	
Controller (Arduino	- Kiểm tra Controller khởi tạo đúng và tất cả các chân (pins)	
Uno R3 ATmega328)	được cấu hình theo thiết kế.	
	- Kiểm tra giao tiếp nối tiếp dữ liệu Serial giữa Arduino và	
	máy tính thông qua USB Port để đảm bảo khả năng truyền	
	dữ liệu chính xác.	
Web Service (Local	- Kiểm tra các route của Flask xử lý yêu cầu và trả về kết	
Host với Flask, HTML,	quả như mong đợi.	
CSS)	- Giả lập dữ liệu gửi từ Arduino và kiểm tra dữ liệu được	
	nhận và hiển thị chính xác. Đồng thời xuất kết quả gửi từ	
	Flask trên terminal để đảm bảo tính chính xác của dữ liệu	
	gửi đến Arduino.	
Pushbutton (6x6x5 mm - Xác nhận nút nhấn ghi nhận trạng thái thay đổi (nh		
Miniature Micro Mo-	thả) và gửi dữ liệu đến Controller.	
mentary Tactile Tact		
Push Button)		
Photoresistor (Lm393	- Đo độ nhạy sáng và đảm bảo đọc giá trị analog chính xác	
Optical Photosensitive	trên chân A0.	
LDR Light Sensor	- Kiểm tra khả năng của quang trở để phân biệt giữa ngưỡng	
Module)	sáng ngày và đêm. (Đặc biệt tại môi trường dự kiến triển	
	khai hệ thống)	
LED (5mm Color LED)	- Kiểm tra đèn LED phản hồi tín hiệu kỹ thuật số từ chân	
	D7 cho các trạng thái BẬT, TẮT và NHẤP NHÁY.	
	- Kiểm tra độ sáng/độ rõ của đèn LED trong điều kiện bình	
	thường.	
Pushbutton (6x6x5 mm Miniature Micro Momentary Tactile Tact Push Button) Photoresistor (Lm393 Optical Photosensitive LDR Light Sensor Module)	nhận và hiển thị chính xác. Đồng thời xuất kết quả gửi t Flask trên terminal để đảm bảo tính chính xác của dữ liệ gửi đến Arduino. - Xác nhận nút nhấn ghi nhận trạng thái thay đổi (nhấn v thả) và gửi dữ liệu đến Controller. - Đo độ nhạy sáng và đảm bảo đọc giá trị analog chính xá trên chân A0. - Kiểm tra khả năng của quang trở để phân biệt giữa ngưỡn sáng ngày và đêm. (Đặc biệt tại môi trường dự kiến triể khai hệ thống) - Kiểm tra đèn LED phản hồi tín hiệu kỹ thuật số từ châ D7 cho các trạng thái BẬT, TẮT và NHẤP NHÁY. - Kiểm tra độ sáng/độ rõ của đèn LED trong điều kiện bìn	

Bảng 8: Kiểm tra các thành phần hệ thống

Quy trình kiểm tra các thành phần hệ thống được mô tả ở bảng 8 phản ánh sự cần thiết trong việc kiểm thử độc lập từng thiết bị để xác định khả năng sử dụng hiện tại của các thiết bị cũng như tính đúng đắn của dữ liệu mà các thiết bị này trả về. Đây là bước quan trọng trong việc xác định lỗi (nếu có) đến từ thiết bị nào để có phương án khắc phục phù hợp về phần mềm và phần cứng. Ngoài ra, việc kiểm thử này cũng giúp lập trình viên hệ thống có thể cập nhật thông số môi trường sẽ vận hành hệ thống để có sự hiệu chỉnh thông số trong phần mềm một cách phù hợp nhất. Việc kiểm tra từng thành phần này sẽ cần được triển khai cho tất cả phiên bản của hệ thống (trong trường hợp này là phiên bản giả lập và phiên bản triển khai thực tế).

4.2 Kiểm tra tích hợp

Bước	Tích hợp	Kiểm tra
1	Arduino + Dịch vụ Web	- Kiểm tra phản hồi của dịch vụ web khi Arduino
		gửi dữ liệu giả lập từ nút nhấn, cảm biến ánh
		sáng và các dữ liệu kèm theo khác.
3	Arduino + Dịch vụ Web	- Thay đổi điều kiện ánh sáng xung quanh để
	+ Quang trở	kích hoạt quang trở và kiểm tra sự thay đổi trạng
		thái trên dịch vụ web.
4	Arduino + Dịch vụ Web	- Kiểm tra đèn LED BẬT, TẮT hoặc NHẤP
	$+ $ Quang $tr\mathring{\sigma} + $ LED	NHÁY dựa trên đầu vào từ cảm biến ánh sáng,
		được ghi nhận trên dịch vụ web.
4	Arduino + Dịch vụ Web	- Kiểm tra đèn LED BẬT, TẮT hoặc NHẤP
	+ Quang trở $+$ LED $+$	NHÁY dựa trên đầu vào từ nút nhấn, được ghi
	Nút nhấn	nhận trên dịch vụ web.
5	Tích hợp toàn bộ hệ	- Thực hiện kiểm tra toàn diện cho cả hệ thống
	thống	khi tất cả các thành phần hoạt động, đảm bảo
		hành vi FSM khớp với thiết kế (TẮT, BẬT,
		NHẤP NHÁY).
		- Xác nhận trạng thái của đèn LED thay đổi
		chính xác dựa trên cả nút nhấn vật lý và nút
		nhấn trên Website cũng như dựa trên đầu vào
		từ cảm biến ánh sáng, và tất cả dữ liệu được ghi
		lại trên dịch vụ web.
		- Xác nhận các thông tin khác hiển thị trên Web-
		site được nhận từ Arduino khớp với thực tế.

Bảng 9: Các bước tích hợp và kiểm tra hệ thống

Quy trình kiểm tra tích hợp hệ thống thể hiện qua bảng 9 nhằm kiểm tra xem việc vận hành giữa các thành phần với nhau đúng với đặc tả yêu cầu và mô tả hệ thống đặt ra. Quy trình này đảm bảo rằng tất cả kịch bản kiểm thử sẽ bao phủ càng toàn diện càng tốt các yêu cầu mà đặc tả đã đề cập đến. Việc kiểm tra tích hợp này sẽ cần được triển khai cho tất cả phiên bản của hệ thống (trong trường hợp này là phiên bản giả lập và phiên bản triển khai thực tế).

5 Kết quả triển khai

5.1 Giả lập hệ thống trên Tinkercad

Hình 5: Triển khai mạch Arduino trên Tinkercad

Hệ thống được giả lập trên Tinkercad được mô tả như hình 5 này sử dụng Arduino Uno R3 và bao gồm các thành phần: cảm biến ánh sáng (LDR), đèn LED và nút nhấn. Cảm biến ánh sáng được kết nối với cổng Analog In A0 của Arduino thông qua một điện trở cho phép Arduino đo mức điện áp thay đổi theo cường độ ánh sáng xung quanh. Đèn LED được điều khiển thông qua cổng Digital D7 của Arduino, có thể phản hồi lại theo tín hiệu từ cảm biến ánh sáng hoặc tín hiệu từ nút nhấn. Nút nhấn cho phép người dùng chuyển chế độ vận hành hệ thống từ AutoMode sang ManualMode và điều khiển đèn LED bật/tắt một cách thủ công. Thông qua đó ta thấy hệ thống phiên bản giả lập trên Tinkercad giải quyết tương đối đầy đủ những yêu cầu mà đặc tả và bản thiết kế hệ thống đã đề ra. Ngoài ra, người dùng có thể mở cửa sổ Serial Monitor của Tinkercad để giả lập sự truyền nhận dữ liệu giữa Arduino Uno R3 và Web Service thông qua các câu lệnh như Serial.print(), Serial.available() và Serial.readStringUntil('\n').

5.2 Triển khai hệ thống trên thiết bị thật

Hình 6: Triển khai hệ thống thực tế

Hình 7: Triển khai hệ thống thực tế tích hợp Web Service

Hệ thống thực tế trên hình 6 và hình 7 được bố trí và lắp đặt tương tự như triển khai giả lập trên Tinkercad ở hình 5. Mạch được cung cấp nguồn bằng USB Port nối với Laptop và sẽ truyền nhận dữ liệu giữa mạch và Laptop thông qua cổng này.

5.3 Triển khai Website

- Bước 1: Cài đặt Python, Flask và các thư viện liên quan
- Bước 2: Lập trình và tổ chức các file sau
 - Source\IoT-SmartLighting\IoT-SmartLighting.ino: Đây là file mã nguồn cho Arduino, được viết bằng ngôn ngữ C/C++ trong môi trường Arduino IDE. File này chứa các đoạn mã để điều khiển các phần cứng trong hệ thống Smart Lighting, như đọc dữ liệu từ cảm biến ánh sáng, điều khiển đèn LED, và xử lý nút bấm.
 - Source\static\images\Logo-HCMUS.png: Hình ảnh hiển thị trên website.
 - Source\static\style.css: File CSS này chứa các quy tắc và định dạng giao diện cho trang web. Nó quy định cách thức hiển thị các thành phần như màu sắc, phông chữ, bố cục, và phong cách của trang web.
 - Source\templates\index.html: Đây là file HTML chính để tạo giao diện người dùng cho ứng dụng web. File này chứa cấu trúc của trang web, nơi người dùng có thể tương tác với hệ thống IoT để điều khiển cũng như theo dõi trạng thái hiện tại của đèn LED.
 - Source\app.py: Đây là file Python chứa mã nguồn cho web server của ứng dụng, được xây dựng bằng Flask framework. File này xử lý các yêu cầu từ trình duyệt web, giao tiếp với Arduino để nhận dữ liệu cảm biến và gửi lệnh điều khiển đến các thiết bị. Nó là thành phần quan trọng giúp kết nối giữa người dùng và phần cứng của hệ thống IoT.
- Bước 3: Sử dụng Arduino IDE để nạp code .ino vào Controller.
- Bước 4: Kết nối Arduino (đã được nạp code trước) với Laptop thông qua USB Port. Lưu ý,
 không mở ứng dụng khác sử dụng chung port với Flask đang chạy.

- Bước 5: Chạy localhost thông qua cmd từ folder Source
- 1 flask --app app run
- Bước 6: Xem trên Localhost và Terminal
- 1 http://127.0.0.1:5000/

Hình 8: Giao diện Web Service sau khi kết nối với Web Server thành công

5.4 Giới thiệu chức năng website

Website gồm có các chức năng sau:

- Theo dõi trạng thái đèn bao gồm Off, On và Blinking.
- Theo dõi chế độ vận hành hệ thống hiện tại (Auto Mode hay Manual Mode), trạng thái ánh sáng môi trường xung quanh hệ thống (Day hay Night), timeout từ Manual Mode sang Auto Mode bao nhiêu Millisecond (nếu hiển thị 0 thì hệ thống sẽ bỏ qua điều kiện timeout này khi vận hành)
- Khi nhấn vào nút bấm trên Website thì nó vận hành giống như nút bấm vật lý thực tế của hệ thống (thay đổi trạng thái hiện tại của đèn LED trong Manual Mode từ On sang Off, Off sang On, Blinking sang Off).
- Khi nhập giá trị vào Switch to Auto Mode Duration và Enter thì giá trị sẽ được gửi cho hệ thống theo đơn vị Millisecond, không tác động đến trạng thái nút bấm trên Website. Nếu nhập vào giá trị 0 thì hệ thống mặc nhiên bỏ điều kiện này khi vận hành.

Hình 9: Các thành phần chính của Website

5.5 Release

21127423, Tran Hieu Tam, https://www.youtube.com/watch?v=MielNnFK-BU,
https://drive.google.com/drive/folders/1Cm12i8CtkhcVk8lisDeS54gof4zHMSak?usp=sharing

Project Information

• Release Version: 1.0

• Release Date: November 11, 2024

• Author: Trần Hiếu Tâm

• Contact Email: thtam21@clc.fitus.edu.vn

• Location: Ho Chi Minh City, Viet Nam

• GitHub Repository: https://github.com/HieuTam/HCMUS-IoT-SmartLightingControlSystem

Copyright

Faculty of Information Technology, VNUHCM-University of Science

Tài liệu

- [1] Arduino. Arduino Home Page, 2024. https://www.arduino.cc/.
- [2] krshelar. Light Sensor using Arduino, 2020. https://www.tinkercad.com/things/ek9dwFldgEI-light-sensor-using-arduino.
- [3] Pallets. Flask User's Guide, 2010. https://flask.palletsprojects.com/.
- [4] Công ty cổ phần công nghệ giáo dục F8. HTML CSS từ Zero đến Hero, 2024. https://fullstack.edu.vn/courses/html-css.
- [5] W3Schools. CSS Tutorial, 2024. https://www.w3schools.com/css/.
- [6] W3Schools. HTML Tutorial, 2024. https://www.w3schools.com/html/.
- [7] Nguyễn Đức Hoàng Hạ. An Introduction to Programming the Internet of Things (IoT) Lecturer Slides, 2024. https://drive.google.com/drive/folders/1Vo7YCZSkvnj8ns3Y5iACijcrUE82hDja.