

MAPA – Material de Avaliação Prática da Aprendizagem

Acadêmico: André Luis de Souza Lima R.A. 21150930-5

Curso: ENGENHARIA DE SOFTWARE

Disciplina: FUNDAMENTOS E ARQUITETURA DE COMPUTADORES

Valor da atividade: 3,5 Prazo: 21/02/2022 a 29/04/2022

23:59 (horário de Brasília)

Respostas:

a) Calcule todas as saídas para A.B.C e apresente a tabela verdade.

Linha 1 -
$$S = 0.0.0 \rightarrow S = 0$$
 | **Linha 2 -** $S = 0.0.1 \rightarrow S = 0$

Linha 3 -
$$S = 0.1.0 \rightarrow S = 0$$
 | **Linha 4 -** $S = 0.1.1 \rightarrow S = 0$

Linha 5 -
$$S = 1.0.0 \rightarrow S = 0$$
 | **Linha 6 -** $S = 1.0.1 \rightarrow S = 0$

Linha 7 -
$$S = 1.1.0 \rightarrow S = 0$$
 | **Linha 8 -** $S = 1.1.1 \rightarrow S = 1$

Tabela 1 – Tabela verdade para a expressão A.B.C

- about 1 - about 10 adds part a chorocotto / about					
Linha	А	В	С	S	
1	0	0	0	0	
2	0	0	1	0	
3	0	1	0	0	
4	0	1	1	0	
5	1	0	0	0	
6	1	0	1	0	
7	1	1	0	0	
8	1	1	1	1	

Fonte: Elaborado pelo autor (Atividade MAPA)

b) Calcule todas as saídas para A+B+C e apresente a tabela verdade.

Linha 1 -
$$S = 0+0+0 \rightarrow S = 0 \mid Linha 2 - S = 0+0+1 \rightarrow S = 1$$

Linha 3 -
$$S = 0+1+0 \rightarrow S = 1 \mid Linha 4 - S = 0+1+1 \rightarrow S = 1$$

Linha 5 -
$$S = 1+0+0 \rightarrow S = 1 \mid Linha 6 - S = 1+0+1 \rightarrow S = 1$$

Linha 7 - $S = 1+1+0 \rightarrow S = 1 \mid \text{Linha 8 -} S = 1+1+1 \rightarrow S = 1$

Tabela 2 – Tabela verdade para a expressão A+B+C

Linha	А	В	С	S
1	0	0	0	0
2	0	0	1	1
3	0	1	0	1
4	0	1	1	1
5	1	0	0	1
6	1	0	1	1
7	1	1	0	1
8	1	1	1	1

Fonte: Elaborado pelo autor (Atividade MAPA)

c) Se alterarmos o valor da entrada A linha 6 para 0 e calcularmos A.B.C o resultado será verdadeiro? Justifique sua resposta.

Tabela 3 – Tabela verdade para a expressão A.B.C

Linha	А	В	С	S
1	0	0	0	0
2	0	0	1	0
3	0	1	0	0
4	0	1	1	0
5	1	0	0	0
6	0	0	1	0
7	1	1	0	0
8	1	1	1	1

Fonte: Elaborado pelo autor (Atividade MAPA)

O resultado não será verdadeiro, e sim falso, uma vez que o circuito seria implementado com a lógica de uma porta AND de 3 entradas. O valor seria verdadeiro (saída igual a 1) somente se todas as entradas A, B e C tivessem sinal lógico de entrada igual a 1, conforme pode ser notada na linha 8 da Tabela 3.

Cálculo linha 6 - $S = 0.0.1 \rightarrow S = 0$

d) Na linha 8 se colocarmos todas as entradas como 0 teremos uma porta XOR? Justifique sua resposta.

Linha	Α	В	С	s
1	0	0	0	?
2	0	0	1	?
3	0	1	0	?
4	0	1	1	?
5	1	0	0	?
6	1	0	1	?
7	1	1	0	?
8	1	1	1	?

Para atribuirmos um nome lógico a uma porta, é necessário considerar as possíveis combinações dos valores dos sinais de entrada que ela pode receber (no caso 3 variáveis) e verificar seu sinal de saída. Partindo da premissa de que se quer uma porta XOR (OU EXCLUSIVO - porta lógica que apresenta sinal 1 de saída para um número ímpar de sinal booleano alto ou 1), conclui-se que se ambas as entradas da linha 8 apresentarem sinal 0 ou nível baixo, teríamos como saída 0, se a lógica fosse de uma PORTA AND, como também saída 0 se PORTA OR. Para o caso de um XOR, a saída também será 0, pois não há nenhum valor de entrada igual a 1, nem somente em A ou B ou C, nem em todas as entradas com valores igual a 1. Portanto, não se pode admitir que com ambas as entradas em 0 haverá um PORTA XOR.

REFERÊNCIAS

CAPUANO, F. G.; IDOETA, I. V. **Elementos de eletrônica digital**. 42. ed. São Paulo: Érica, 2019.