Công thức tính tổng n số hạng của cấp số cộng

1. Lý thuyết

Tổng n số hạng đầu tiên S_n được xác định bởi công thức:

$$S_{n} = u_{1} + u_{2} + ... + u_{n} = \frac{n(u_{1} + u_{n})}{2} = \frac{n[2u_{1} + (n-1)d]}{2}.$$

Trong đó: u₁ là số hạng đầu tiên của cấp số cộng d là công sai của cấp số cộng.

2. Công thức

Tổng n số hạng đầu tiên
$$S_n = \frac{n\left(u_1 + u_n\right)}{2}$$
 hoặc $S_n = \frac{n\left[2u_1 + \left(n - 1\right)d\right]}{2}$.

Tổng của số hạng thứ k đến số hạng thứ n của dãy (với k < n):

$$S = u_k + \ u_{k+1} + \ u_{k+2} + \ldots + \ u_n = S_n - S_{k\text{-}1}$$

3. Ví dụ minh họa

Ví dụ 1: Cho cấp số cộng (u_n) có $u_5 = -15$; $u_{20} = 60$.

- a) Tính tổng của 20 số hạng đầu tiên của cấp số cộng.
- b) Tính tổng $S = u_{21} + u_{22} + u_{23} + ... + u_{200}$.

Lời giải

Gọi d là công sai của cấp số cộng, ta có:

$$u_{20}-u_5=u_1+19d-u_1-4d=15d.\\$$

Khi đó:
$$15d = 60 - (-15) = 75$$
. Suy ra: $d = 5$.

Ta có:
$$u_5 = u_1 + 4d = -15 \Leftrightarrow u_1 = -15 - 4d = -35$$
.

a) Tổng của 20 số hạng đầu tiên của cấp số cộng:

$$S_{20} = \frac{n \left[2u_1 + (n-1)d \right]}{2} = \frac{20 \left[2.(-35) + 19.5 \right]}{2} = 250$$

b)
$$S_{200} = \frac{n[2u_1 + (n-1)d]}{2} = \frac{200[2.(-35) + 199.5]}{2} = 92500$$

$$S = u_{21} + \ u_{22} + \ u_{23} + \ldots + \ u_{200} = S_{200} - S_{20} = 92\ 500 - 250 = 92\ 250.$$

Ví dụ 2: Cho cấp số cộng (u_n) có dạng $u_n = 4n - 1$.

- a) Tính tổng 100 số hạng đầu tiên của cấp số cộng.
- b) Tính tổng $S = u_1 + u_4 + u_7 + u_{10} + u_{13} + ... + u_{301}$.

Lời giải

Ta có
$$u_1 = 4.1 - 1 = 3$$
 và $d = u_{n+1} - u_n = 4(n+1) - 1 - (4n-1) = 4$

a) Tổng 100 số hạng đầu tiên của cấp số cộng

$$S_{100} = \frac{n[2u_1 + (n-1)d]}{2} = \frac{100[2.3 + 99.4]}{2} = 20100$$

b) Dãy số là (v_n) : u_1 ; u_4 ; u_7 ; u_{10} ; ... u_{301} là cấp số cộng với số hạng đầu tiên là u_1 và công sai $d'=u_4-u_1=3d=12$.

Dãy
$$(v_n)$$
 có $\frac{301-1}{3}+1=101$ số hạng

$$S = u_1 + u_4 + u_7 + u_{10} + u_{13} + \dots + u_{301}$$

$$=\frac{101.[2.3+100.12]}{2}=60903.$$