Matemática Discreta I - MATA42 - Ila Unidade

Profa. Isamara Alves (DMAT/IME/UFBA)

AULA - 16/04/2019

Relações - Fecho

DEFINIÇÃO: (Fecho Reflexivo de uma Relação)

Seja $A \in \mathcal{P}(\mathcal{U})$, e seja a RELAÇÃO \mathcal{R} em A. Indicamos por $ref(\mathcal{R})$ e denominamos FECHO REFLEXIVO DA RELAÇÃO \mathcal{R} a seguinte relação em A: $ref(\mathcal{R}) := \mathcal{R} \cup \Delta_A$; Δ_A é a relação IDENTIDADE em A.

Observação: Notemos que $ref(\mathcal{R})$ é a menor relação reflexiva contendo a relação \mathcal{R} .

Exemplo:

- 2 $S = \{\langle x, y \rangle, \langle y, z \rangle, \langle z, x \rangle\} \text{ em } A = \{x, y, z\};$ $ref(S) = S \cup \Delta_A = \{\langle x, y \rangle, \langle y, z \rangle, \langle z, x \rangle, \langle x, x \rangle, \langle y, y \rangle, \langle z, z \rangle\}$

Relações - Fecho

DEFINIÇÃO: (Fecho Simétrico de uma Relação)

Seja $A \in \mathcal{P}(\mathcal{U})$, e seja a \mathcal{R} RELAÇÃO em A. Indicamos por $sim(\mathcal{R})$ e denominamos FECHO SIMÉTRICO DA RELAÇÃO \mathcal{R} a seguinte relação em A: $sim(\mathcal{R}) := \mathcal{R} \cup \mathcal{R}^{-1}$.

Observação: Notemos que $sim(\mathcal{R})$ é a menor relação simétrica contendo a relação \mathcal{R} ; ou seja, $sim(\mathcal{R})$ é uma relação simétrica e qualquer outra relação simétrica contendo \mathcal{R} , contém $sim(\mathcal{R})$. Exemplo:

Relações - Fecho

DEFINIÇÃO: (Fecho Transitivo de uma Relação)

Seja $A \in \mathcal{P}(\mathcal{U})$, e seja a RELAÇÃO \mathcal{R} em A. Indicamos por $tra(\mathcal{R})$ e denominamos FECHO TRANSITIVO DA RELAÇÃO \mathcal{R} a seguinte relação em A: $tra(\mathcal{R}) := \bigcup_{m \in \mathbb{N}^*} \mathcal{R}^m$.

Observação: Notemos que $tra(\mathcal{R})$ é a menor relação transitiva contendo a relação \mathcal{R} ; isto é, $tra(\mathcal{R})$ é uma relação transitiva e qualquer outra relação transitiva contendo \mathcal{R} , contém $tra(\mathcal{R})$. Exemplo:

- ① $\mathcal{R} = \{\langle x, y \rangle, \langle x, z \rangle, \langle z, y \rangle\}$ em $A = \{x, y, z\}$; $tra(\mathcal{R}) = \mathcal{R}$, pois \mathcal{R} já é uma relação transitiva.
- ② $S = \{\langle x, y \rangle, \langle y, z \rangle, \langle z, x \rangle\}$ em $A = \{x, y, z\}$; $tra(S) = \bigcup_{m \in \mathbb{N}^*} S^m = S \cup S^2 \cup S^3 \cup S^4 \cup \cdots = S \cup S^2 \cup S^3 = S \cup S^{-1} \cup \Delta_A = \nabla_A$.

Relações - Fecho - Exercícios

Exercícios:

Determine os fechos reflexivo, simétrico e transitivo das relações abaixo:

(a)
$$\mathcal{R} = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 3, 2 \rangle\}$$
 em $A = \{1, 2, 3\}$;
$$ref(\mathcal{R}) = \mathcal{R} \cup \Delta_A = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 3, 2 \rangle, \langle 2, 2 \rangle, \langle 3, 3 \rangle\}; \\ sim(\mathcal{R}) = \mathcal{R} \cup \mathcal{R}^{-1} = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 3, 2 \rangle, \langle 2, 3 \rangle\}; \\ \mathcal{R}^2 = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 3, 1 \rangle, \langle 2, 1 \rangle, \langle 2, 2 \rangle\}; \\ \mathcal{R}^3 = \mathcal{R}o\mathcal{R}^2 = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 2, 2 \rangle, \langle 3, 1 \rangle, \langle 3, 2 \rangle\} = \mathcal{R} \cup \mathcal{R}^2; \\ \mathcal{R}^4 = \mathcal{R}o\mathcal{R}^3 = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 2, 2 \rangle, \langle 3, 1 \rangle, \langle 3, 2 \rangle\} = \mathcal{R}^3; \\ \mathcal{R}^5 = \mathcal{R}o\mathcal{R}^4 = \mathcal{R}^3; \cdots; \\ assim, tra(\mathcal{R}) = \bigcup_{m \in \mathbb{N}^*} \mathcal{R}^m = \mathcal{R} \cup \mathcal{R}^2 \cup \mathcal{R}^3 = \mathcal{R}^3.$$

(b)
$$\mathcal{S} = \{\langle x, y \rangle \mid x > y\} \text{ em } \mathbb{N},$$
 $ref(\mathcal{S}) = \mathcal{S} \cup \Delta_{\mathbb{N}} = \{\langle x, y \rangle \mid x \geq y\},$ $sim(\mathcal{S}) = \mathcal{S} \cup \mathcal{S}^{-1} = \{\langle x, y \rangle \mid x > y \lor y > x\} = \nabla_{\mathbb{N}} - \Delta_{\mathbb{N}},$ $tra(\mathcal{S}) = \mathcal{S}.$

Relação de

Definição: (Congruência)

Sejam os inteiros x,y,q, seja o inteiro positivo d, e seja o inteiro não-negativo r. Vamos definir $x:=d.q+r;\ 0\le r< d$; isto é, q é o QUOCIENTE e r é o RESTO da divisão de x por d: r=x-d.q. Dizemos que "x é CONGRUENTE MÓDULO d ao y" se, e somente se, o resto r da divisão por d é igual. Assim, $\exists k\in\mathbb{Z}\mid x-y=d.k$. Notação: $x\equiv y \pmod{d}$ ou $x\mod{d}=y\mod{d}$ ou $x\equiv_d y$

```
Exemplos: 20 \equiv_3 17; pois 20 \mod 3 = 17 \mod 3 \Rightarrow 20 - 17 = 3.k; k \in \mathbb{Z} 22 \equiv_3 19; pois 22 \mod 3 = 19 \mod 3 \Rightarrow 22 - 19 = 3.k; k \in \mathbb{Z}
```

Relação de Congruência

Exemplo: Seja a um inteiro positivo maior que 1. Mostre que a relação $\mathcal{R} = \{\langle x, y \rangle \mid x \equiv y \pmod{a}\}$ é uma relação de equivalência no conjunto dos inteiros.

- Reflexiva: $x \equiv x \pmod{a}$; pois, $x \mod a = x \mod a \Rightarrow \exists k \in \mathbb{Z} : x x = k.a.$
- Simétrica: $x \equiv y \pmod{a} \Rightarrow y \equiv x \pmod{a}$; pois, $x \mod a = y \mod a \Rightarrow y \mod a = x \mod a \Rightarrow \exists k, m \in \mathbb{Z} : x y = k.a \text{ e } y x = m.a.$
- Transitiva: $x \equiv y \pmod{a}$ e $y \equiv z \pmod{a} \Rightarrow x \equiv z \pmod{a}$; pois, $x \mod a = y \mod a$ e $y \mod a = z \mod a \Rightarrow x \mod a = z \mod a$ $\Rightarrow \exists k, m \in \mathbb{Z} : x y = k.a \text{ e } y z = m.a$ $\Rightarrow x (m.a + z) = k.a \Rightarrow x z = (k + m).a; (k + m) \in \mathbb{Z}.$

Logo, R é uma relação de equivalência pois é simultaneamente, reflexiva, simétrica e transitiva.

Relação de Equivalência - Exemplos

Relação de Equivalência: (Exemplos)

- ① A relação de igualdade $\Delta_{\mathbb{R}} = \mathcal{R} = \{\langle x, y \rangle \in \mathbb{R} \times \mathbb{R} \mid x = y\}$ é uma relação de equivalência.
- ② A relação de "equivalência lógica ⇔" é uma relação de equivalência.
- **③** A relação em \mathbb{Z} denominada "CONGRUÊNCIA MÓDULO 3": $\mathcal{R} = \{\langle x,y \rangle \in \mathbb{Z} \times \mathbb{Z} \mid x \equiv_3 y\} = \{\langle x,y \rangle \in \mathbb{Z} \times \mathbb{Z} \mid \exists k \in \mathbb{Z}; x-y=3k\}$, é uma relação de equivalência em \mathbb{Z} ; ou seja, \mathcal{R} é simultaneamente reflexiva, simétrica e transitiva:
 - (i) reflexiva: x x = 0 = 3k; k = 0; assim, $x \equiv_3 x$;
 - (ii) simétrica: para $x \equiv_3 y \Leftrightarrow x y = 3k$; multiplicando a equação por (-1): $y x = 3(-k) \Leftrightarrow y \equiv_3 x$;
 - (iii) transitiva: para $x \equiv_3 y \Leftrightarrow x y = 3k$; e para $y \equiv_3 z \Leftrightarrow y - z = 3m \Rightarrow y = z + 3m$; substituindo em $x \equiv_3 y$: $x - (z + 3m) = 3k \Rightarrow x - z = 3(k - m)$; $\Leftrightarrow x \equiv_3 z$.

Relação de Equivalência - Classe de Equivalência

DEFINIÇÃO: (Classe de Equivalência)

Seja $\mathcal R$ uma relação de equivalência em A e seja $x \in A$. Dizemos que o conjunto $[x]_{\mathcal R} := \{y \in A \mid x \mathcal R y\}$ é a CLASSE DE EQUIVALÊNCIA de x em $\mathcal R$.

NOTAÇÃO: $[x]_{\mathcal{R}}$, \bar{x} , ou x/\mathcal{R} . Exemplos:

- **①** Para a relação de igualdade "=", temos que para $x \in \mathbb{N}$, a classe $[x]_{=} := \{x\}$
- ② Para a relação de "CONGRUÊNCIA MÓDULO $3, \equiv_3$ ", temos as classes: $[0]_{\equiv_3} = \{\dots, -6, -3, 0, 3, 6, \dots\}; (0 y = 3k; k \in \mathbb{Z})$ $[1]_{\equiv_3} = \{\dots, -5, -2, +1, +4, \dots\}; (1 y = 3k; k \in \mathbb{Z})$ e $[2]_{\equiv_3} = \{\dots, -4, -1, +2, +5, \dots\}; (2 y = 3k; k \in \mathbb{Z}).$

Note que paramos na classe $[2]_{\equiv_3}$ porque as próximas serão repetições das anteriores, i.é, $[3]_{\equiv_3} = [0]_{\equiv_3}$; $[4]_{\equiv_3} = [1]_{\equiv_3}, \dots$

Relação de Equivalência - Conjunto Quociente

DEFINIÇÃO: (Conjunto Quociente)

Seja \mathcal{R} uma relação de equivalência em A. Dizemos que o conjunto $[A]_{\mathcal{R}} := \{[x]_{\mathcal{R}} \mid x \in A\}$ é o CONJUNTO QUOCIENTE de A por \mathcal{R} . NOTAÇÃO: $[A]_{\mathcal{R}}$, \bar{A} , ou A/\mathcal{R} .

Exemplos:

- **1** Para a relação de igualdade "=", temos que para $x \in \mathbb{N}$, a classe $[\mathbb{N}]_{=} := \{\{x\} \mid x \in \mathbb{N}\};$ pois, $[x]_{=} := \{x\}$. Note que $\bigcup_{x \in \mathbb{N}} \{x\} = \mathbb{N};$ e ainda, esses conjuntos são disjuntos.
- ② Para a relação de "CONGRUÊNCIA MÓDULO 3, ≡3", temos que o conjunto quociente contém apenas três elementos:
 [Z]₌₃ = {[0]₌₃, [1]₌₃, [2]₌₃}.
 Obs: Denotamos por [Z]₌₃ ou Z/Z₃, ou simplesmente, Z₃.
 Note que [0]₋ ∪ [1]₋ ∪ [2]₋ = Z; e ainda, esses conjuntos são
 - Note que $[0]_{\equiv_3} \cup [1]_{\equiv_3} \cup [2]_{\equiv_3} = \mathbb{Z}$; e ainda, esses conjuntos são disjuntos.

Relação de Equivalência - Propriedades

Lema:

- $\forall x \in A, x \in [x]_{\mathcal{R}}.$ Assim, $[x]_{\mathcal{R}} \neq \emptyset$.
- ② $\forall x, y \in A$, se $x\mathcal{R}y$, então $[x]_{\mathcal{R}} = [y]_{\mathcal{R}}$.
- **③** $\forall x, y \in A$, se $\neg(x\mathcal{R}y)$, então $[x]_{\mathcal{R}} \cap [y]_{\mathcal{R}} = \emptyset$.

DEFINIÇÃO: (Partição)

Sejam A um conjunto e $\{A_i\}_{i\in\mathcal{I}}$ uma família de subconjuntos não vazios de A.

- ① Dizemos que o conjunto $\{A_i\}_{i\in\mathcal{I}}$ é uma COBERTURA de A se, e somente se, $\bigcup_{i\in\mathcal{I}}A_i=A$.
- ② Dizemos que o conjunto $\{A_i\}_{i\in\mathcal{I}}$ é uma PARTIÇÃO de A se, e somente se, $\{A_i\}_{i\in\mathcal{I}}$ é uma cobertura de A e os elementos da família são 2 a 2 disjuntos, ou seja, para quaisquer $i,j\in\mathcal{I}; i\neq j$, temos que $A_i\cap A_j=\emptyset$.

Exercícios

Exemplos:

- ① $[\mathbb{N}]_{=} = \{\{x\} \mid x \in \mathbb{N}\}$ é uma partição de \mathbb{N} , pois é uma cobertura de \mathbb{N} : $\bigcup_{x \in \mathbb{N}} \{x\} = \mathbb{N}$ e; $\forall y \in \mathbb{N}; y \neq x, \{x\} \cap \{y\} = \emptyset$.
- ② $[\mathbb{Z}]_{\equiv_3} = \{[0]_{\equiv_3}, [1]_{\equiv_3}, [2]_{\equiv_3}\}$ é uma partição de \mathbb{Z} ; pois é uma cobertura de \mathbb{Z} : $[0]_{\equiv_3} \cup [1]_{\equiv_3} \cup [2]_{\equiv_3} = \mathbb{Z}$; e; $[0]_{\equiv_3} \cap [1]_{\equiv_3} = \emptyset$; $[0]_{\equiv_3} \cap [2]_{\equiv_3} = \emptyset$.

Exercício: Quais são as classes de equivalência correspondentes à relação de congruência módulo 5 em \mathbb{Z} ? E qual é o conjunto quociente?

- $$\begin{split} \bullet & \hspace{0.5cm} [0]_{\equiv_5} = \{ \dots, -15, -10, -5, 0, 5, 10, 15, \dots \} \\ & \hspace{0.5cm} [1]_{\equiv_5} = \{ \dots, -14, -9, -4, 1, 6, 11, 16, \dots \} \\ & \hspace{0.5cm} [2]_{\equiv_5} = \{ \dots, -13, -8, -3, 2, 7, 12, 17, \dots \} \\ & \hspace{0.5cm} [3]_{\equiv_5} = \{ \dots, -12, -7, -2, 3, 8, 13, 18, \dots \} \\ & \hspace{0.5cm} [4]_{\equiv_5} = \{ \dots, -11, -6, -1, 4, 9, 14, 19, \dots \} \\ \end{split}$$
- $\bullet \ [\mathbb{Z}]_{\equiv_5} = \{[0]_{\equiv_5}, [1]_{\equiv_5}, [2]_{\equiv_5}, [3]_{\equiv_5}, [4]_{\equiv_5}\}.$

Relação de Equivalência em A - Partição em A

Proposição:

Seja A um conjunto não-vazio. Então, toda relação de equivalência em A determina uma partição em A e, toda partição em A determina uma relação de equivalência em A.

Exemplos:

- Sejam $A = \{1, 2, 3, 4, 5\}$ e a seguinte partição em A; $\mathcal{P} = \{\{1, 2\}, \{3\}, \{4, 5\}\}$, então pela proposição acima determinamos uma relação de equivalência em A: $\mathcal{R} = \{\langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 3, 3 \rangle, \langle 4, 4 \rangle, \langle 5, 5 \rangle, \langle 4, 5 \rangle, \langle 5, 4 \rangle\}$
- Sejam $A = \{1,2,3,4\}$ e a seguinte relação de equivalência em A; $\mathcal{R} = \{\langle 1,1 \rangle, \langle 1,2 \rangle, \langle 2,1 \rangle, \langle 2,2 \rangle, \langle 3,4 \rangle, \langle 4,3 \rangle, \langle 3,3 \rangle, \langle 4,4 \rangle\}$, vamos determinar as classes de equivalência: $[1]_{\mathcal{R}} = \{1,2\}; [2]_{\mathcal{R}} = \{1,2\}; [3]_{\mathcal{R}} = \{3,4\};$ e $[4]_{\mathcal{R}} = \{3,4\};$ a partição de A determinada por esta relação : $\mathcal{P} = \{[1]_{\mathcal{R}}, [3]_{\mathcal{R}}\} = \{\{1,2\}, \{3,4\}\}$ Note que $\mathcal{P} = [A]_{\mathcal{R}}$; com, $[1]_{\mathcal{R}} \cup [3]_{\mathcal{R}} = A$ e $[1]_{\mathcal{R}} \cap [3]_{\mathcal{R}} = \emptyset$.