Comparateurs : applications pratiques

Application pratique hyst1

Sur la base de réflexions et de calculs théoriques, répondez aux questions suivantes concernant le schéma ci-contre :

Quel est le nom du circuit réalisé autour de U1 ?

Comparateur simple non-inverseur

Schéma du Circuit 1 :

Quelle condition la tension $U_{\rm e}$ doit-elle remplir afin que la LED D_1 soit allumée ?

$$D_1$$
 est allumée si U_s = U_s Haut \Rightarrow si U_+ > $U_ \Rightarrow$ \underline{si} U_e > 2.5 \underline{V}

Quelle condition la tension U_e doit-elle remplir afin que la LED D_1 soit éteinte ?

$$D_1$$
 est éteinte si $U_s = U_{s Bas} \Rightarrow$ si $U_+ < U_- \Rightarrow \underline{si U_e} < 2.5 V$

Dessinez la caractéristique de transfert théorique U_{s} = f(U_{e}) :

Résumez le comportement théorique de la LED D_1 en fonction de la tension d'entrée U_e :

 D_1 est éteinte lorsque U_e < 2.5V et allumée lorsque U_e > 2.5V

Page: 1/5 Hystérèse s.docx

Schéma de mesure :

Le générateur de fonctions G_1 réglé comme ceci est équivalent à une source de tension DC.

A l'aide du potentiomètre P_1 , on peut faire varier la tension DC d'entrée U_{eDC} entre 2 limites DC. On peut ainsi simuler le signal donné par le module du capteur lorsque la lumière naturelle varie. Calculez les valeurs théoriques minimale et maximale de U_{eDC} que P_1 permet de simuler :

Lorsque le curseur de P1 est tout en bas :

$$\underline{\underline{U_{\text{e}\,\text{min}}}} \ = \ \underline{U_{R_7}} \ = \ \underline{U_{G1}} \ \cdot \frac{R_7}{R_6 \ + \ P_1 \ + \ R_7} \ = \ 5V \ \cdot \frac{56k\Omega}{56k\Omega \ + \ 10k\Omega \ + \ 56k\Omega} \ = \ \underline{\underline{2.3V}}$$

Lorsque le curseur de P1 est tout en haut :

$$\underline{\underline{U_{\text{e max}}}} = \underline{U_{(P_1 + R_7)}} = \underline{U_{G1}} \cdot \frac{P_1 + R_7}{R_6 + P_1 + R_7} = 5V \cdot \frac{10k\Omega + 56k\Omega}{56k\Omega + 10k\Omega + 56k\Omega} = \underline{2.7V}$$

Sur la base du schéma précédent, réalisez ce montage sur plaque d'expérimentation.

Faites varier P_1 et observez le comportement réel de la LED D_1 . Indiquez ci-dessous vos observations :

Lorsque $U_e < 2.5V$, la LED est éteinte, lorsque $U_e > 2.5V$, la LED est allumée.

La LED D1 se comporte-t-elle réellement comme prévu théoriquement à la page 1 ?

Oui

Hystérèse s.docx Page: 2/5

Schéma de mesure :

Modifiez les réglages du générateur de fonctions G_1 comme indiqué ci-dessus. Maintenant le générateur est équivalent à une source de tension DC sur laquelle on a ajouté du <u>bruit</u>. G_1 et P_1 simulent alors le signal donné par le module soumis à des parasites.

Faites varier P_1 et observez le comportement réel de la LED D_1 . Indiquez ci-dessous vos observations :

Lorsque U_e est très proche de $2.5V_{DC}$, la LED n'est pas pleinement allumée ni éteinte, mais elle clignote. La sortie n'est donc stable ni à l'état haut, ni à l'état bas. La transition entre le niveau haut et bas n'est pas franche.

La LED D1 se comporte-t-elle réellement comme prévu théoriquement à la page 1 ?

Non, il devrait y avoir une transition nette de la sortie lorsque la tension d'entrée passe le seuil.

A votre avis, d'où provient ce comportement ?

Du bruit sur la tension U_{e} qui fait osciller la sortie.

La LED D_1 symbolise l'éclairage public. Voyez-vous un problème de fonctionnement avec ce Circuit 1 ?

Oui, lorsque lumière du jour commencera à baisser et atteindra le seuil auquel l'éclairage public devrait s'allumer, au lieu de s'allumer et de rester allumé, il va clignoter (s'allumer puis s'éteindre et se rallumer juste après) durant plusieurs minutes, jusqu'à ce qu'il fasse suffisamment nuit pour qu'il reste allumé.

Hystérèse s.docx Page: 3/5

Schéma du Circuit 2 :

Ajoutez au Circuit 1 la résistance R_1 comme ci-contre :

Faites varier P_1 et observez le comportement réel de la LED D_1 . Indiquez ci-dessous vos observations :

La transition entre les états est cette fois-ci très nette, mais le niveau pour passer de l'état bas à l'état haut n'est pas le même que celui pour passer de l'état haut à l'état bas.

Que provoque la résistance R1 ?

De l'hystérèse.

Hystérèse s.docx Page: 4/5

Menu Time > choisir 100ms.

On désire mesurer la caractéristique de transfert $U_s = f(U_e)$ du Circuit 1 puis du Circuit 2 pour toute la plage de la tension d'entrée.

On pourrait relever point par point une succession de mesures statiques 1 en faisant varier manuellement U_e avec une alimentation de laboratoire et en mesurant U_s avec un voltmètre, mais on peut aussi plus élégamment visualiser la caractéristique de transfert sur l'écran de l'oscilloscope en mode XY en mesure quasi-statique 1 . Cette mesure, de prime abord anodine, est cependant assez délicate et demande des réglages particuliers :

Il faut faire varier automatiquement U_e entre OV et SV. Mais :

- Si U_e varie trop lentement, la trace ne sera pas visible sur l'oscillo, on ne verra qu'un point qui se déplace lentement.
- Si U_e varie trop rapidement, la vitesse de réaction limitée de l'AOP faussera la mesure (visible déjà à 400Hz, essayez !).
- Un bon compromis est de choisir la fréquence du signal à 25Hz.

Complétez ci-dessous le schéma de mesure nécessaire et donnez le réglage de tous les appareils :

 S_1 ouvert = Circuit 1 S_1 fermé = Circuit 2

(LED D₁ enlevée)

Réglages de P₁:

Mode: X-Y Sensibilité X: 0.5VDC/div. Référence X: gauche Sensibilité Y: 1VDC/div. Référence Y: bas + 1div.

Pour effectuer une bonne copie d'écran (c'est-à-dire une « photo instantanée » de l'écran), il faut que la trace « laisse une traînée » sur l'écran, il faut augmenter la persistance d'affichage : Bouton Display > Menu Persistence > choisir Variable persistence ;

Imprimez une copie d'écran de votre oscilloscope, mettez en évidence les valeurs particulières sur la copie d'écran imprimée, puis <u>appe-lez, pour chaque mesure, le formateur</u> afin qu'il puisse comparer l'affichage sur votre oscilloscope et votre impression sur papier.

Avec une échelle horizontale de 500mV/div, le phénomène à visualiser sur le **Circuit 2** est de même ordre de grandeur que l'épaisseur de la trace, il n'est donc pas visible. Zoomez horizontalement à 50mV/div pour le voir. (Prenez une copie d'écran avec chaque échelle.)

Si vous deviez tout de même mesurer la caractéristique de transfert d'un comparateur à hystérèse manuellement point par point (mesure statique¹), à quoi devriez-vous faire attention ?

Il faut mesurer des points avec $U_{\rm e}$ croissant de 0V à 5V et aussi mesurer des points avec $U_{\rm e}$ décroissant de 5V à 0V pour visualiser l'hystérésis !

Hystérèse s.docx Page: 5/5

¹ Voir extrait du glossaire d'électronique (p. 57, 28 et 45)