# 1 Special Congruences

### 1.1 Wilson's Theorem & Fermat's Little Theorem

#### 1. Wilson's Theorem: If p is prime then

$$(p-1)! \equiv -1 \mod p$$

*Proof.* The case where p=2 is trivial to show, so let's look at primes  $p\geq 3$ . Consider the set of numbers  $\{1,2,3,4,5,\cdots,p-1\}$ . Suppose a is one of

even number of integers

these, then  $\exists b \in \mathbb{Z}$  such that  $ab \equiv 1 \mod p$  (a multiplicative inverse). Because the equation  $ax \equiv 1 \mod p$  has one solution because  $\gcd(a,p)=1 \mid 1$ . Note that  $\gcd(a,p)=1$  because a is one of  $\{1,2,3,\cdots,p-1\}$ . Could we have, for some  $a \in \{1,2,3,\cdots,p-1\}$  that  $a^2 \equiv 1 \mod p$ ? Suppose  $a^2 \equiv 1 \mod p$ , then  $p \mid a^2 - 1$  so  $p \mid (a+1)(a-1)$ , either  $p \mid (a+1)$  or  $p \mid (a-1)$ . If  $p \mid (a+1)$  then  $a \equiv -1 \mod p$  or  $a \equiv p-1 \mod p$ . If  $p \mid (a-1)$  then  $a \equiv 1 \mod p$ .

**Ex.** Suppose p = 11, the set is  $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ . Then the respective pairs would be  $2 \cdot 6$ ,  $3 \cdot 4$ ,  $5 \cdot 9$ , and  $7 \cdot 8$ . Notice that 1 and 10 do not have a pair that results in congruence mod 11.

In general in  $\{1, 2, 3, \dots, p-1\}$  the integers all pair up such that their products are congruent 1 mod p, except for 1 and p-1. Thus,

$$(p-1)! = (1)(2)(3)\cdots(p-1) \equiv p-1 \equiv -1 \mod p$$

Ex. Find the least non-negative residue of 20! mod 23.

Note: We see 20! and think  $20! \equiv -1 \mod 21$ , but 21 is not prime so there is no guarantee and it does not apply anyways because we have  $\mod 23$ . However,  $22! \equiv -1 \mod 23$ 

$$22! \equiv -1 \mod 23$$
  
 $(22)(21)(20!) \equiv -1 \mod 23$   
 $(-1)(-2)(20!) \equiv -1 \mod 23$   
 $(2)(20!) \equiv -1 \mod 23$   
 $(2)(20!) \equiv 22 \mod 23$   
 $20! \equiv 11 \mod 23$ 

In this case, 11 is the least non-negative residue.

2. **Fermat's Little Theorem:** Suppose p is prime and  $a \in \mathbb{Z}$  with  $p \nmid a$ . Then,

$$a^{p-1} \equiv 1 \mod p$$

**Ex.** p = 97 and a = 10, so  $10^{96} \equiv 1 \mod 97$ .

*Proof.* Consider the set of integers  $S = \{a, 2a, 3a, \dots, (p-1)a\}$  (there are p-1 integers in this set).

- First observe that none are congruent 0 mod p because if  $p \mid ka$  for some  $1 \leq k \leq (p-1)$ . Then  $p \mid k$  or  $p \mid a$  but  $p \nmid a$  so  $p \mid k$  but  $1 \leq k \leq p-1$ .
- Second, no two are congruent one another  $\mod p$  because if  $k_1a \equiv k_2a \mod p$  for some  $1 \leq k_1 \leq p-1$  and  $1 \leq k_2 \leq p-1$ . Then  $p \mid (k_1a-k_2a) = p \mid a(k_1-k_2)$ , since  $p \nmid a$  then  $p \mid (k_1-k_2)$ . But this is impossible because  $1-(p-1) \leq k_1-k_2 \leq (p-1)-1$ .

Thus the set S, is we take all  $\mod p$ , is equivalent to the set  $T = \{1, 2, 3, \dots, p-1\}$  in some order. Since,  $\mod p$ , all the numbers in S is congruent to all the numbers in T, we have

$$(a)(2a)(3a)\cdots((p-1)a) \equiv (1)(2)(3)\cdots(p-1) \mod p$$

$$a^{p-1}(p-1)! \equiv (p-1)! \mod p$$

$$a^{p-1}(-1) \equiv (-1) \mod p$$

$$a^{p-1} \equiv 1 \mod p$$

Notice that we can canel all of the  $1, 2, 3, \dots, p-1$  without affecting the modulus because they are coprime to p.

**Ex.** Find the least non-negative residue of  $5^{123} \mod 13$ . Well  $13 \nmid 5$  so  $5^{12} \equiv 1 \mod 13$ . Then 123 = 12(10) + 3 so

$$5^{123} = 5^{12(10)+3} = 5^{12^{10}} 5^3 \equiv (1)^{10} 5^3 \mod 13$$
  
 $\equiv 5^3 \mod 13$   
 $\equiv 5 \cdot 25 \mod 13$   
 $\equiv 5(-1) \mod 13$   
 $\equiv -5 \mod 13$   
 $\equiv 8 \mod 13$ 

So 8 is the least non-negative residue.

**Corollary:** From  $a^{p-1} \equiv 1 \mod p$  we get  $a^p \equiv a \mod p$ . Note that  $a^p \equiv a \mod p$  even when  $p \mid a$  because if  $p \mid a$  then  $a \equiv 0 \mod p$  and  $a^p \equiv a \mod p$  is saying  $0 \equiv 0 \mod p$ .

- 3. Closing Notes: This is relevant to cryptography for one of two reasons.
  - Encryption (which involved big exponents) is both practical and theoretically possible based on Fermat's Little Theorem and Euler's Theorem.
  - Pseudoprime is a non-prime which "behaves like a prime". e.g. in FLiT maybe p is not prime but still when  $p \nmid a$  we get  $a^{p-1} \equiv 1 \mod p$ .

### 1.2 Fermat Pseudoprimes & Carmichael Numbers

1. **Introduction:** Primes are useful. Given  $n \in \mathbb{Z}^+$  how can we check if n is prime? We could divide by everything (computationally intensive). Or we could use some tests which give insight.

### 2. Fermat Pseudoprimes:

(a) **Reminder:** FLiT: If p is prime and  $p \nmid a$  then  $a^{p-1} \equiv 1 \mod p$ . Suppose we have some  $n \in \mathbb{Z}$  with  $n \geq 2$ . Suppose we find some a with  $n \nmid a$  and  $a^{n-1} \not\equiv 1 \mod n$ . We can conclude that n is not prime.

**Ex:** Let n = 63, observe that if a = 2 then  $n \nmid a$  clearly and  $2^{62} \equiv 4 \not\equiv 1$  mod 63. Thus, 63 is not prime.

**Definition:** a = 2 is a Fermat Witness to the fact that 63 is composite.

However, we might have some n and a with  $n \nmid a$  and  $a^{n-1} \equiv 1 \mod n$  but still have n composite.

**Ex.** Let n = 341 and a = 2, then  $341 \nmid 2$  and observe

$$2^{340} \equiv 1 \mod 341$$

Even though  $n=341=11\cdot 31$  is not prime it still "passes Fermat's Little Theorem with a=2."

**Definition:** a = 2 is a Fermat Liar for n = 341.

(b) **Definition:** Suppose n is composite and  $b \in \mathbb{Z}$  satisfies gcd(n, n) = 1 and  $b^{n-1} \equiv 1 \mod n$ . Then we say n is a Fermat Pseudoprime to the base b.

**Ex:** So 341 is a Fermat Pseudoprime with the base b = 2.

**Ex:** Likewise, 645 is a Fermat Pseudoprime with the base b = 2.

#### 3. Carmichael Numbers:

- (a) **Introduction:** Given some n we wish to test if it is prime.
  - Pick some b with gcd(b, n) = 1. Suppose we find  $b^{n-1} \equiv 1 \mod n$ . Either n is prime or b is a liar and n is a Fermat Pseudoprime with base b
  - Try another b with  $gcd(b, n) = 1 \cdots$

So, is it possible that we could try all b with gcd(b, n) = 1 and always get  $b^{n-1} \equiv 1 \mod n$  and still have a composite n? The answer, yes!

(b) **Definition:** A number n is a Carmichael Number if it is a Fermat Pseudoprime for every base b with gcd(b, n) = 1. These are sometimes called Absolute Pseudoprimes.

**Ex:** n = 561 is a Carmichael Number. Note that  $561 = 3 \cdot 11 \cdot 17$ . Suppose b satisfies  $\gcd(b, 561) = 1$ . Then

- $\gcd(b,3)=1$  so by FLiT  $b^2\equiv 1 \mod 3$ . So  $b^{560}=(b^2)^{280}\equiv 1 \mod 3$  so  $3\mid b^{560}-1$ .
- gcd(b, 11) = 1 so by FLiT  $b^{10} \equiv 1 \mod 11$ . So  $b^{560} = (b^{10})^{56} = (1)^{56} \equiv 1 \mod 11$  so  $11 \mid b^{560} 1$ .
- gcd(b,17)=1 so by FLiT  $b^{16}\equiv 1 \mod 17$ . So  $b^{560}=(b^{16})^{35}\equiv (1)^{35}\equiv 1 \mod 17$  so  $17\mid b^{560}-1$ .

So  $3 \cdot 11 \cdot 17 \mid b^{560} - 1 \implies 561 \mid b^{560} - 1$ . Therefore  $b^{560} \equiv 1 \mod 561$ .

(c) **Theorem:** Suppose  $n = p_1 p_2 \cdots p_k$  such that  $\forall i$  we have  $p_i - 1 \mid n - 1$ . Then n is a Carmichael Number.

*Proof.* Suppose  $\gcd(b,n)=1$ . Claim that  $b^{n-1}\equiv 1 \mod n$  well, for each i we have  $\gcd(b,p_i)=1$ . By FLiT we have  $b^{p_i-1}\equiv 1 \mod p_i$  then  $b^{n-1}=b^{\alpha(p_i-1)}\equiv (1)^{\alpha}\equiv 1 \mod p_i$ . Thus,  $p_i\mid b^{n-1}-1$  for all i. Therefore,  $n\mid b^{n-1}-1$  so  $b^{n-1}\equiv 1 \mod n$ .

## 1.3 Euler's Theorem

1. **Introduction:** Fermat's Little Theorem tells us that is p is a prime and if  $p \nmid a$  then  $a^{p-1} \equiv 1 \mod p$ . This is relevant for both calculation and cryptography. Since this is useful for reducing large powers of  $a \mod p$  it might be helpful if we had a version for when the modulus is not prime.

#### 2. Preliminaries:

(a) **Definition:** Define the Euler Phi-Function  $\phi : \mathbb{Z}^+ \to \mathbb{Z}$ . For  $n \in \mathbb{Z}^+$  we define  $\phi(1) = 1$  and  $\phi(n) =$  the number of positive integers less than n which are coprime to n.

**Ex.**  $\phi(10) = 4$  because the set  $\{1, 3, 7, 9\}$  is all coprime to 10.

**Ex.**  $\phi(97) = 96$  because  $\{1, 2, \dots, 96\}$  are all coprime to 96.

**Definition:** If n is prime then  $\phi(n) = n - 1$ .

(b) **Recall:** A complete residue system mod n is a set of n integers, none of them congruent to each other mod n. CRS mod 8 is  $\{0, 1, 2, \dots, 7\}$ .

(c) **Definition:** A reduced residue system mod n is a set of  $\phi(n)$  integers all of which are coprime to n and no two of which are congruent to each other mod n.

**Ex.** RRS mod 10 is  $\{1, 3, 7, 9\}$  or  $\{11, -7, 7, 29\}$ .

(d) **Theorem:** Suppose  $\{r_1, r_2, \cdots r_{\phi(n)}\}$  is a RRS mod n. Then suppose  $a \in \mathbb{Z}$  with  $\gcd(a, n) = 1$ . Then  $\{ar_1, ar_2, \cdots ar_{\phi(n)}\}$  is also a RRS mod n.

*Proof.* We see there are  $\phi(n)$  of them. Claim that each is coprime to n.

- By means of contradiction, suppose we have some  $ar_i$  not coprime to n, that is  $\gcd(ar_i, n) \neq 1$ . Then  $\exists$  a prime p with  $p \mid ar_i$  and  $p \mid n$ . Since  $p \mid ar_i$  so  $p \mid a$  or  $p \mid r_i$ . If  $p \mid a$  then, along with  $p \mid n$ , we have a contradiction because  $\gcd(a, n) = 1$ . If  $p \mid r_i$  then, along with  $p \mid n$ , we have a contradiction because  $\gcd(r_i, n) = 1$ . So the  $ar_i$  are coprime to n.
- Suppose we have  $ar_i \equiv ar_j \mod n$ , since gcd(a, n) = 1 we can cancel. So  $r_i \equiv r_j \mod n$ . So no two new elements are congruent mod n.

3. **Euler's Theorem:** Suppose n is a modulus and  $\gcd(a,n)=1$ . Then  $a^{\phi(n)}\equiv 1 \mod n$ .

**Note.** If n = p = prime we have  $\phi(n) = n - 1$  and we get Fermat's Little Theorem.

*Proof.* Given a modulus n, let  $S = \{r_1, \dots, r_{\phi(n)}\}$  be any RRS. Then by the theorem above,  $S' = \{ar_1, \dots ar_{\phi(n)}\}$  is also a RRS. It follows that S and S' consist of the same integers mod n. Thus,

$$(ar_1)(ar_2)\cdots(ar_{\phi(n)})\equiv r_1r_2\cdots r_{\phi(n)} \bmod n$$
  
 $a^{\phi(n)}\equiv 1 \bmod n$ 

4. Use For Calculation: To reduce  $9^{453} \mod 16$ , we note that  $\gcd(9,16) = 1$  so Euler's Theorem tells us that  $9^{\phi(16)} \equiv 1 \mod 16$ . Since  $\phi(16) = 8$  we ahve  $9^8 \equiv 1 \mod 9$  and so:

$$9^{453} = 9^{8(56)+5} \equiv 9^5 \equiv 9(81)^2 \equiv 9 \mod 16$$

5. Note: If gcd(a, n) = 1 then  $a^{\phi(n)-1}$  is a multiplicative inverse of  $a \mod n$ .

#### 1.4 Problems

- 1. Use Fermat's Little Theorem to find the least nonnegative residue of  $2^{1000003} \mod 17$ .
- 2. Use Fermat's Little Theorem to solve the following, giving the result as the least nonnegative residue.
  - (a)  $7x \equiv 12 \mod 17$
  - (b)  $10x \equiv 13 \mod 19$
- 3. Use Fermat's Little Theorem to show that  $30|(n^9-n)$  for all positive integers n.
- 4. The definition of n being a Fermat pseudoprime to base b does not actually require that gcd(b, n) = 1 because it's not possible to have  $b^{n-1} \equiv 1 \mod n$  with  $gcd(b, n) \neq 1$ . Prove this.
- 5. We didn't exclude even integers from the definition of a Fermat Pseudoprime. Some books do. Show that with our definition 4 is a Fermat Pseudoprime to a certain base.
- 6. Prove that if n is an odd Fermat Pseudoprime to some base then it must be so to an even number of bases.
- 7. Prove that 1105 is a Carmichael number.
- 8. Use Euler's Theorem to find the units digit of 7<sup>999999</sup>.
- 9. Solve each of the following using Euler's Theorem. Solutions should be least nonnegative residues.
  - (a)  $5x \equiv 3 \mod 14$
  - (b)  $4x \equiv 7 \mod 15$
  - (c)  $3x \equiv 5 \mod 16$
- 10. Prove that if gcd(a, 30) = 1 then  $60 \mid a^4 + 59$ .