Homework 5

eilouie, Augen

Evan Louie Austin Yen CMPS 101 5/11/16

Heapify (A,i) 1. Delete (A,i) left = 2i , right = 2i+1 n = A.length n=len(A) [N] A, [i]A gawa if (left < n) and A[left] < A[i] LENJ = NULL min: left) and + [Well & A [] n = N - 1else man a la manual return Heapfy (A;i) Min = i if (right < n) and (A [right] < A [min]) · Y No 155 Yes min = right Alexand - Armina if (min!= i) [min] A, [i] A cmin] Heapity (A, min) The time complexity of Delete is O(logn). In the delete function, everything except for heapity runs in O(1) time. Hegoify is what does the majority of the work. In heapthy there is I recursive call that depends on the case, and, the rest (smapping ruins in O(1) time. The children's subtrees have at most 21/3 The worst case occurs when the bottom last of the tree is * Adapted From half full $T(n) \leq T(2n/3) + C$ a=1 b=3/2 $f(n)=n^{\circ}=1$ n log b a = N log 3/2 = M° = 1 f(n) equals 1, which is equal to n'0931.
So the second case applies therefore $T(n) = O(n^{\log_{3n} 1} \log n) = O(\log n)$

2.1. K-Sort (A, K) B = Build-Martegy (A)

return Medifred - Heapsort (B, i, K)

Build - Maxteas (A) soze - Allength for i = [1/2] to 1 Max-Heapity (Ai)

Max Heaporty (A,i) left = 2i , right = 2: +1 n = len(A) if (left < n) and (A[left] > A[i]) A[i] = A[A size] max = left A size = A size - 1

max = i walling if (right < n) and (A [right] > A [max]) MAD = right if (max ! = i) [xam] A [i] A gaw]

Max-Heapify (A, mux)

The time complexity 1 - sort is the time it takes for Build-Maxilleap and hadified - Heapsert. In class we proved that to build a max heap, it takes O(n). For MediFred - Heapsort, we extract the war from the toot, then place that value at the end of the array which take O(1). After we called Heapsty, to maintain the heap properties. We do this enture process K times isome we only want to sorr k elements. In the last problem we proved heapity takes O(logn) time. In this case it only taxes log(k) times because we are only sorting the first & largest elements. The time complexity is O(n+ klogk), since we call Build-Maxtleap and Modifred-Heapsont runs hapify is times.

Modified - Heapsort (A, i, K)

Asize. A length Intialize output Array or size k

Ksize = K. length for i = 1 Halk

Max = A[1]

M[Ksize] = max

Msize = Ksize -1

Max-Heapify (A, i)

return M

2.2 Sort britage (A. .. Ak)

Intralize array (B) of 512e k

for i to k

B[i] = A; // Add each array to B so that B is an array of arrays

Butlo - Minheap (B) // Build min heap assuming it rensiders eath inar arrays first index

Intralize array (of 512e n

j = 0

for i to n

min = B[0][j] // Altho build heap, the min value is the flot index of the fot array

Add min to array (Mextract the Sort index of the root array

B[0] remove (B[0][i])

time complexity of sort-Arrays is O(nlogk). This is because the for-loop runs for n times, which is the total amount of elements in all arrays: within this for loop we are calling heaptfy, which as defined in question I to run O(logn) times. In this case since the size of the heap is k. Heapify runs in O(logk). This for loop runs, O(nlogk).

Building the min-heap, and adding each array to B both run in k times. So the total time competity would be O(2k+ nlogk) = O(nlogk).

Heapity (B, BLO])

Heturn C

Q3. 1

Initialize new array B Build Hap(A)

for i= 0 to A.lmgth -1

Min-Extract Min(A)

B. append (min)

Build Heap. (4)

Jehra B

Edract Min (4)

min = A[0]

A[0] = A[A.length -1]

A.remare (1[A.length -1])

return min

The stability of heap sort depends on the heapity function. It using a minheap, one has to consider the child comparisons for a parent. If
heapity decides to swap from the right side hist when the left and
right are equal, then heap sort is not stable. This can happen when you
use "is (A [left] < A [right])" to swap the parent with a child.

because it then swaps the right side in an else statement. To ensure that
the left child is swapped hist, "if (A [left] = A [right])" could be used.

Q3.2

To extract something and maintain the min-heap, heapily must be called. Although the extraction by swapping the root with a leaf takes O(1) time, we must call heapily on the resulting heap so that the leaf doesn't stay at the root of the min-heap where it likely doesn't belong. Since the time complexity of heapify is O(log n), O(log n) is the best we can do her Extract Min.

04 Insert (Root, A) Insert recursively moves down the if (Root = null) tree until it finds an empty spot laked initialize new mode with key A The recurrence to do this would be else if (A < Root. key) T(n) < T(21/3)+1 Masker Theren: a=1, b= 2, C=1 Insert (Root. left, A) n/03/15 = NO= 1, C = Q(1) else if (A > Root. key) -> T(n) = θ(119 n) = θ(D) Insert (Root. right, A) Delete has to search for Delete (node, A) if (node. key = A) any mode with a key equal if node only has one child to A. The actual deleting process nade = its child takes O(1). Since Delete its child = null recursively searches, its worst else if mode has 2 children case would involve if the key of modelest Z key of mode right travasing the depth of the nock = nock - left free. Like Insort, the Delete (noch. left, A) recommend is T(n) ST(2/2)+1 Therefore, like Insert, it's time complexity is $\theta(\log n) = \theta(0)$ node = node. right Delek (node. right, A) else if mode buy (A Delete (node-left, A) Delete (node. right, A)

	Range (a, b)
	refurn FindRange(root, a, b)
	Find Ronge (node, a, b)
	if (node key <= b and node key >= a)
	return 1 + Find Range (mode. left, a, b) + Find Range (node right, a, b)
	else if (node key ca)
	return Find Ronge (mode. right, a, b)
	else.
	return Find Ronge (mde. left, a, b)
	Electer rule, 414, 6)
	Material ()
	lange calls Find Ronge. Find Ronge begins at the root. It recurively searches for
	any mode with a key within the range given. When it finds such a mode, it
	any mode with a key within the range given. When it finds such a mode, it adds I and continues searching. In essence, if moves down the depth of
) , , ,	any mode with a key within the range given. When it finds such a mode, it adds I and continues searching. In essence, if moves down the depth of the tree. Like Insert and Delete, its recurrence is T(n) ST(27/3) +1. Its time completes
) , , ,	any mode with a key within the range given. When it finds' such a mode, it adds I and continues searching. In essence, if moves down the depth of the tree. Like Insert and Delete, its recurrence is $I(n) \le I(2^n/3) + 1$. Its time complete would then be $O(\log n) = O(D)$
27.5	any node with a key within the range given. When it hinds' such a mode, it adds I and continues searching. In essence, if moves down the depth of the tree. Like Insert and Delete, its recurrence is $I(n) \le I(2^n/3) + 1$. Its time complete would then be $\theta(\log n) = \theta(D)$
27.5	any node with a key within the range given. When it hinds' such a mode, it adds I and continues searching. In essence, if moves down the depth of the tree. Like Insert and Delete, its recommend is $I(n) \le I(2n/3) + 1$. Its time complete, would then be $\theta(\log n) = \theta(D)$
1 / 2 2 / 14 2 / 14 2 / 16 2 / 16	any node with a key within the range given. When it hinds' such a mode, it adds I and continues searching. In essence, if moves down the depth of the tree. Like Insert and Delete, its recommend is $I(n) \le I(2^{n}/3) + 1$. Its time complete, would then be $O(\log n) = O(D)$
1 / 2 2 / 14 2 / 14 2 / 16 2 / 16	any node with a key within the range given. When it hinds' such a mode, it adds I and continues searching. In essence, if moves down the depth of the tree. Like Insert and Delete, its recommend is $I(n) \le I(2n/3) + 1$. Its time complete, would then be $\theta(\log n) = \theta(D)$
1 /s ()	any node with a key within the range given. When it hinds' such a mode, it adds I and continues searching. In essence, if moves down the depth of the tree. Like Insert and Delete, its recommend is $I(n) \le I(2^{n}/3) + 1$. Its time complete, would then be $O(\log n) = O(D)$
1 /s ()	any node with a key within the range given. When it hinds' such a mode, it adds I and continues searching. In essence, if moves down the depth of the tree. Like Insert and Delete, its recommend is $I(n) \le I(2^{n}/3) + 1$. Its time complete, would then be $O(\log n) = O(D)$
1 / 2 2 / 14 2 / 14 2 / 16 2 / 16	any node with a key within the range given. When it hinds' such a mode, it adds I and continues searching. In essence, if moves down the depth of the tree. Like Insert and Delete, its recommend is $I(n) \le I(2^{n}/3) + 1$. Its time complete, would then be $O(\log n) = O(D)$
1 / 2 2 / 14 2 / 14 2 / 16 2 / 16	any node with a key within the range given. When it hinds' such a mode, it adds I and continues searching. In essence, if moves down the depth of the tree. Like Insert and Delete, its recommend is $I(n) \le I(2^{n}/3) + 1$. Its time complete, would then be $O(\log n) = O(D)$
1 / 2 2 / 14 2 / 14 2 / 16 2 / 16	any node with a key within the range given. When it hinds' such a mode, it adds I and continues searching. In essence, if moves down the depth of the tree. Like Insert and Delete, its recommend is $I(n) \le I(2^{n}/3) + 1$. Its time complete, would then be $O(\log n) = O(D)$
1 / 2 2 / 14 2 / 14 2 / 16 2 / 16	any node with a key within the range given. When it hinds' such a mode, it adds I and continues searching. In essence, if moves down the depth of the tree. Like Insert and Delete, its recommend is $I(n) \le I(2^{n}/3) + 1$. Its time complete, would then be $O(\log n) = O(D)$
1 / 2 2 / 14 2 / 14 2 / 16 2 / 16	any node with a key within the range given. When it hinds' such a mode, it adds I and continues searching. In essence, if moves down the depth of the tree. Like Insert and Delete, its recommend is $I(n) \le I(2^{n}/3) + 1$. Its time complete, would then be $O(\log n) = O(D)$
1 / 6 C	any node with a key within the range given. When it hinds' such a mode, it adds I and continues searching. In essence, if moves down the depth of the tree. Like Insert and Delete, its recommend is $I(n) \le I(2^{n}/3) + 1$. Its time complete, would then be $O(\log n) = O(D)$
1 /s of the course of the cour	any node with a key within the range given. When it hinds' such a mode, it adds I and continues searching. In essence, if moves down the depth of the tree. Like Insert and Delete, its recommend is $I(n) \le I(2^{n}/3) + 1$. Its time complete, would then be $O(\log n) = O(D)$
1 /s of the course of the cour	any node with a key within the range given. When it hinds' such a mode, it adds I and continues searching. In essence, if moves down the depth of the tree. Like Insert and Delete, its recommend is $I(n) \le I(2^{n}/3) + 1$. Its time complete, would then be $O(\log n) = O(D)$
1 /s Week So 6	any node with a key within the range given. When it hinds' such a mode, it adds I and continues searching. In essence, if moves down the depth of the tree. Like Insert and Delete, its recommend is $I(n) \le I(2^{n}/3) + 1$. Its time complete, would then be $O(\log n) = O(D)$
1 / c C	any node with a key within the range given. When it hinds' such a mode, it adds I and continues searching. In essence, if moves down the depth of the tree. Like Insert and Delete, its recommend is $I(n) \le I(2^{n}/3) + 1$. Its time complete, would then be $O(\log n) = O(D)$

4.2 -	Block Delete (a)
	Block (root, a)
	Block (node, a)
	if (node. koy < a)
(8	Delete (nade, nade. key)
	Block (node-left, a)
	Block (node right, a)
a Take	if (node. key = a)
	De lete (node, node tuy)
	Block (node. loft, a)
	if (node > a)
	Block (node left, a)
	The note with a very within the range were When it and copy
	. All I said confines someting to some it may do a she
	Block Delete earches and deletes any node with a key less than or equal to
	a. Like Range, it can traverse the depth of the tree, starting hors the
	ront. Like Range, the movement down the tree is O(log n). However, Block
	calls Delete several times, or the number of mode less than or equal to a.
	The worst case would be if a is equal to or greater than the largest
	key in the tree. Therefore, the time complexity is O (nlog n + log n), or O(nD+D).