$\mathcal{S} = \iiint (\frac{1}{6} (6t_{1} \mathcal{A}^{\alpha_{i}} \mathcal{A}^{\theta}_{i} + 6 \mathcal{A}^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + 6 f^{\alpha\beta} \tau (\Delta + \mathcal{K})_{\alpha\beta} - 12t_{1} \mathcal{A}^{\theta}_{\alpha} \partial_{i} f^{\alpha_{i}} + 12t_{1} \mathcal{A}^{\theta}_{i} \partial_{i} f^{\alpha}_{\alpha} - 6t_{1} \partial_{i} f^{\theta}_{\theta} \partial_{i} f^{\alpha}_{\alpha} - 6t_{1} \partial_{i} f^{\alpha_{i}} \partial_{\theta} f^{\alpha_{i}} + 12t_{1} \partial_{i} f^{\alpha}_{\alpha} \partial_{\theta} f^{\theta}_{i} + 12t_{1} \partial_{i} f^{\alpha}_{\alpha} \partial_{\theta} f^{\theta}_{i} + 12t_{1} \partial_{i} f^{\alpha}_{\alpha} \partial_{\theta} f^{\alpha}_{i} + 12t_{1} \partial_{\theta} f^{\alpha}_{\alpha} \partial_{\theta} f^{\alpha}_{\alpha}$

Wave operator $\begin{smallmatrix} 0^+\mathcal{R}^{\parallel} & 0^+f^{\parallel} & 0^+f^{\perp} & 0^-\mathcal{R}^{\parallel} \end{smallmatrix}$

	. 51		. ,	. /		_									
^{0,+} <i>Я</i> [∥] †	-t. 1	Ī	$\sqrt{2} kt_{1}$	0	0										
^{0,+} <i>f</i> [∥] †	-i √2 ki	t. ·	$-2 k^2 t$.	0	0										
$0.^{+}f^{\perp}$ †	0		0	0	0										
^{0.} 'Æ"†	0		0	0	<i>t</i> . 2	$^{1.}^{+}\mathcal{H}^{\parallel}{}_{\alpha\beta}$	$^{1\overset{+}{.}}\mathcal{A}^{_{}^{\perp}}{}_{\alpha\beta}$	$1.^+f^{\parallel}_{lphaeta}$	$^{1}\mathcal{A}^{\parallel}{}_{lpha}$	$^{1}\mathcal{H}_{\ \alpha}^{\perp}$	$\frac{1}{2}f^{\parallel}_{\alpha}$	$^{1}f_{a}^{\perp}$			
					$^{1.}^{+}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	$\frac{1}{6} \left(6 k^2 r_{.5} + t_{.1} + 4 t_{.} \right)$	$-\frac{t2t.}{3\sqrt{2}}$	$-\frac{i k (t2 t.)}{3 \sqrt{2}}$	0	0	0	0			
					$^{1^+}_{\cdot}\mathcal{R}^{\scriptscriptstyle \perp}\dagger^{^{lphaeta}}$	3 72	$\frac{t.+t.}{\frac{1}{3}}$	$\frac{1}{3} ik(t_1 + t_1)$	0	0	0	0			
					$f^{\dagger}f^{\dagger}$	$\frac{i k (t 2 t.)}{3 \sqrt{2}}$	$-\frac{1}{3} i k (t_1 + t_2)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0			
					$^{1}\mathcal{A}^{\parallel}$ † lpha	0	0	0	$k^2 r_5 - \frac{t_1}{2}$	$\frac{\frac{t}{1}}{\sqrt{2}}$	0	īkt. 1			
					$^{1}\mathcal{A}^{\perp}\dagger^{\alpha}$	0	0	0	$\frac{\frac{t_1}{1}}{\sqrt{2}}$	0	0	0			
					$^{1}f^{\parallel}\dagger^{\alpha}$	0	0	0	0	0	0	0			
					f^{\perp} \uparrow^{α}	0	0	0	- īkt. 1	0	0	0	$^{2\overset{+}{.}}\mathcal{A}^{\parallel}{}_{lphaeta}$	$2.^{+}f^{\parallel}_{\alpha\beta}$	$2^{-}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$
												$^{2.}\mathcal{A}^{\parallel}\dagger^{\alpha\beta}$	t. 1/2	$-\frac{i k t}{\sqrt{2}}$	0
												$2.^+f^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i kt.}{\sqrt{2}}$	$k^2 t$.	0
												$\mathcal{F}^{\mathbb{F}}_{\mathcal{F}} \mathcal{F}^{\mathbb{F}}_{\mathcal{F}}$	0	0	$\frac{t}{2}$

Saturated propagator $0^+\sigma^ 0^+\tau^ 0^+\tau^ 0^+\tau^ 0^-\sigma^-$

_	·. σ _"		·. τ	∘. σ"										
^{0,+} σ †	$-\frac{1}{(1+2k^2)^2t}$	$\frac{i \sqrt{2} k}{(1+2 k^2)^2 t}$	0	0										
0. ⁺ τ †	$-\frac{i \sqrt{2} k}{(1+2 k^2)^2 t}$	$-\frac{2 k^2}{(1+2 k^2)^2 t_1}$	0	0										
0. ⁺ τ [⊥] †	0	0	0	0										
⁰⁻ σ †	0	0	0	$\frac{1}{t}$	$\overset{1^{+}}{\cdot}\sigma^{\parallel}{}_{\alpha\beta}$	$\overset{1^{+}}{\cdot}\sigma^{\!\scriptscriptstyle\perp}{}_{\alpha\beta}$	$1^+_{} \tau^{\parallel}{}_{\alpha\beta}$	$\frac{1}{2}\sigma^{\parallel}{}_{lpha}$	$\frac{1}{2}\sigma_{\alpha}^{\perp}$	$1^{-}\boldsymbol{\tau}^{\parallel}_{\alpha}$	$1^{-}\tau^{\perp}{}_{\alpha}$			
				$^{1^+}$ σ^{\parallel} lphaeta	$\frac{2(t,+t,)}{3t,t,+2k^2r,(t,+t,)\atop 12}$	$\frac{\sqrt{2} (t2t.)}{(1+k^2)(3t.t.+2k^2r.(t.+t.))}$	$\frac{i \sqrt{2} k (t2t.)}{(1+k^2) (3t.t.+2k^2r.(t.+t.))}$	0	0	0	0			
				$1.^+\sigma^{\perp}$ † $^{\alpha\beta}$	$\frac{\sqrt{2} (t_1 - 2t_1)}{(1 + k^2) (3t_1 t_1 + 2k^2 r_5 (t_1 + t_1))}$	$\frac{6 k^2 r.+t.+4 t.}{(1+k^2)^2 (3 t.t.+2 k^2 r. (t.+t.))}$	$\frac{i k (6 k^2 r.+t.+4 t.)}{(1+k^2)^2 (3 t. t.+2 k^2 r. (t.+t.))}$	0	0	0	0			
				$1.^+ \tau^{\parallel} \uparrow^{\alpha\beta}$	$-\frac{i\sqrt{2}k(t_{1}-2t_{1})}{(1+k^{2})(3t_{1}t_{2}+2k^{2}r_{5}(t_{1}+t_{1}))}$	$-\frac{ik(6k^2r+t+4t)}{(1+k^2)^2(3tt+2k^2r(t+t))}$	$\frac{k^2 \left(6 k^2 r.+t.+4 t.\right)}{\left(1+k^2\right)^2 \left(3 t. t.+2 k^2 r. \left(t.+t.\right)\right)}$	0	0	0	0			
				$\frac{1}{2}\sigma^{\parallel} + \alpha$	0	0	0	0	$\frac{\sqrt{2}}{t_1+2k^2t_1}$	0	$\frac{2ik}{t+2k^2t.}$			
				$\frac{1}{2}\sigma^{\perp}\uparrow^{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1+2k^2t_1}$	$\frac{-2 k^2 r_1 + t_1}{(t_1 + 2 k^2 t_1)^2}$	0 -	$\frac{i \sqrt{2} k (2 k^2 r_5 - t_1)}{(t_1 + 2 k^2 t_1)^2}$			
				$\frac{1}{2} \tau^{\parallel} +^{\alpha}$	0	0	0	0	0	0	0			
				$\frac{1}{2}\tau^{\perp} + \alpha$	0	0	0	$-\frac{2ik}{t+2k^2t}$	$\frac{i \sqrt{2} k (2 k^2 rt.)}{(t.+2 k^2 t.)^2}$	0	$\frac{-4 k^4 r + 2 k^2 t}{(t + 2 k^2 t)^2}$	$^{2^{+}}\sigma^{\parallel}{}_{lphaeta}$	$2^+_{\cdot} \tau^{\parallel}_{\alpha\beta}$	$2^{-}\sigma^{\parallel}_{\alpha\beta\chi}$
											$^{2^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_{.1}}$	$-\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t}$	0
											$2.^{+} \tau^{\parallel} \uparrow^{\alpha\beta}$	$\frac{2i \sqrt{2} k}{(1+2k^2)^2 t}$	$\frac{4 k^2}{(1+2 k^2)^2 t.}$	0
														2

Source constraints

Spin-parity form	Covariant form	Multiplicities
0.+ r == 0	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == 0$	1
$-2 i k^{0^+} \sigma^{\parallel} + {}^{0^+} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1
2 i k	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
$\frac{1}{\tau^{\parallel^{\alpha}}} = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$\overline{i k 1^+_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}^{\alpha\beta}} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} = \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\gamma} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{$	3
$-2 i k 2^{+}_{0} \sigma^{\parallel^{\alpha\beta}} + 2^{+}_{0} \tau^{\parallel^{\alpha\beta}} = 0$	$-i\left(4\partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\delta}+2\partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi}_{\ \chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi}-3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha}+2\partial_{\alpha}\partial^{\alpha}\partial_{\alpha}$	5
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+4ik^{\chi}\partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta\frac{\epsilon}{\delta}}-6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon}-6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\delta\alpha\epsilon}+$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha\beta\delta} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta\alpha\delta} + 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi\delta} - 2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta} = 0$	

16

Massive spectrum

Total expected gauge generators:

Massive particle

	Pole residue:	$\frac{\begin{vmatrix} -3t_1 \cdot t_1 \cdot (t_1 + t_2) + 3r_1 \cdot (t_1 + 2t_1) \\ \frac{1}{2} \cdot \frac{1}{2} \cdot (t_1 + t_2) \cdot (-3t_1 \cdot t_2 + 2r_1 \cdot (t_1 + t_2))}{1 \cdot 2} > 0$						
	Square mass:	$-\frac{\frac{3t.t.}{\frac{12}{2r.t.+2r.t.}}}{\frac{12}{51} + \frac{12}{52}} > 0$						
	Spin:	1						
	Parity:	Even						

Massless spectrum

(No particles)

Unitarity conditions

 $(t_{.} < 0 \&\& ((t_{.} < 0 \&\& r_{.} > 0) || (t_{.} > -t_{.} \&\& r_{.} > 0))) || (t_{.} > 0 \&\& -t_{.} < t_{.} < 0 \&\& r_{.} > 0)$