Optimization

Econ 5170

Computational Methods in Economics

2022-2023 Spring

Optimization Problems

Canonical problem:

$$\min_{x} f(x)
s.t. g(x) = 0
h(x) \le 0$$

- $-f:\mathbb{R}^n\to\mathbb{R}$ is the *objective function*
- $-g:\mathbb{R}^n \to \mathbb{R}^m$ is the vector of m equality constraints
- h : \mathbb{R}^n → \mathbb{R}^ℓ is the vector of *I inequality constraints*.

• Examples:

- Maximization of consumer utility subject to a budget constraint
- Optimal incentive contracts
- Portfolio optimization
- Life-cycle consumption

Assumptions

- Always assume f, g, and h are continuous
- Usually assume f, g, and h are C^1
- Often assume f, g, and h are C^3

Topics

- Unconstrained optimization
 - Unconstrained optimization problems occur naturally maximum likelihood, minimize moment criteria
 - * They are also the foundation of constrained optimization methods
- Constrained optimization
 - * Optimal life-cycle problems with budget constraint
 - * Maximize profit given production constraints
 - * Optimal taxation given incentive compatibility constraints
 - * Econometric estimation of structural models

One-dimensional Unconstrained Minimization: Newton's Method

$$\min_{x\in\mathbb{R}} f(x),$$

- Assume f(x) is C^2 functions f(x)
 - At a point a, the quadratic polynomial, p(x)

$$p(x) \equiv f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2$$

is the second-order approximation of f(x) at a

- Approximately minimize f by minimizing p(x) and solve

$$p'(x) = f'(a) + f''(a)(x - a) = 0$$

- If f''(a) > 0, then p is convex, and $x_m = a - f'(a)/f''(a)$.

Newton's Method

Algorithm: Newton's Method in \mathbb{R}^1

Initialize. Choose initial guess x_0 and stopping parameters δ , $\epsilon > 0$.

Step 1.
$$x_{k+1} = x_k - f'(x_k)/f''(x_k)$$
.

Step 2. If $|x_k - x_{k+1}| < \epsilon(1 + |x_k|)$ and $|f'(x_k)| < \delta$, STOP and report success; else go to step 1.

- Properties:
 - Newton's method finds critical points, that is, solutions to f'(x) = 0, not min or max.
 - If x_n converges to x^* , must check $f''(x^*)$ to check if min or max
 - Only find local extrema.
- Good news: convergence is locally quadratic. **Theorem 1** Suppose that f(x) is minimized at x^* , C^3 in a neighborhood of x^* , and that $f''(x^*) \neq 0$. Then there is some $\epsilon > 0$ such that if $|x_0 - x^*| < \epsilon$, then the x_n sequence converges quadratically to x^* ; in particular,

$$\lim_{n \to \infty} \frac{|x_{n+1} - x^*|}{|x_n - x^*|^2} = \frac{1}{2} \left| \frac{f'''(x^*)}{f''(x^*)} \right|$$

is the quadratic rate of convergence.

- Consumer problem example:
 - Consumer has \$1; price of x is \$2, price of y is \$3, utility function is $x^{1/2} + 2y^{1/2}$.
 - If θ is amount spent on x then we have

$$\max_{\theta} \left(\frac{\theta}{2}\right)^{1/2} + 2\left(\frac{1-\theta}{3}\right)^{1/2}$$

Solution $\theta^* = 3/11 = 0.272727$

- If θ_0 =1/2, Newton iteration is

0.5, 0.2595917942, 0.2724249335, 0.2727271048, 0.2727272727

and magnitude of the errors are

$$2.3(-1), 1.3(-2), 3.1(-4), 1.7(-7), 4.8(-14)$$

- Problems with Newton's method
 - May not converge if initial guess is too far away from solution.
 - f''(x) may be difficult to calculate.

Multidimensional Unconstrained Optimization: Comparison Methods

- Grid Search
 - Pick a finite set of points, X; for example, a Cartesian grid:

$$V = \{v_i \mid i = 1, \dots, n\}$$
$$X = \{x \in \mathbb{R}^n \mid \forall i, x_i \in V\}$$

- Compute f(x), $x \in \mathbf{X}$, and locate max
- Grid search is often the first method to use.
 - * Only involves function evaluations
 - * It is embarrassingly parallelizable
 - * It should get you a good initial guess
- A good initial guess is not critical for grid search, but is for all good algorithms
- Grid search is slooooooow, so you should always switch to something better
- General lesson: start with a reliable but slow method to find good initial guess for a faster method

Polytope Methods (a.k.a. Nelder-Mead, simplex, "amoeba") —
 Matlab code: fminsearch

Algorithm 4.3 Polytope Algorithm

Initialize. Choose the stopping rule parameter ϵ . Choose an initial simplex $\{x^1, x^2, \dots, x^{n+1}\}$

- Step 1. Reorder vertices so $f(x^i) \ge f(x^{i+1}), i = 1, \dots, n$.
- Step 2. Look for least i, s.t. $f(x^i) > f(y^i)$ where y^i is reflection of x^i . If such an i exists, set $x^i = y^i$, and go to step 1. Otherwise, go to step 3.
- *Step 3.* Stopping rule: If the width of the current simplex is less than ϵ , STOP. Otherwise, go to step 4.
- Step 4. Shrink simplex: For $i = 1, 2, \dots, n$ set $x^i = \frac{1}{2} (x^i + x^{n+1})$, and go to step 1.

The intuition is to replace the worst point with a point reflected through the centroid of the remaining n points.

Multidimensional Optimization: Newton's Method

• Idea: Given x^k , compute local quadratic approximation, p(x), of f(x) around x^k , and let x^{k+1} be max of p(x)

Algorithm 4.4 Newton's Method in \mathbb{R}^n

Initialize. Choose x^0 and stopping parameters δ and $\epsilon>0$. Step 1. Compute Hessian, $H\left(x^k\right)$, and gradient, $\nabla f\left(x^k\right)$, and solve $H\left(x^k\right)s^k=-\left(\nabla f\left(x^k\right)\right)^{\top}$ for the step s^k .

Step 2. $x^{k+1} = x^k + s^k$.

Step 3. If $\|x^k - x^{k+1}\| < \epsilon \left(1 + \|x^k\|\right)$ go to step 4, else go to step 1. Step 4. If $\|\nabla f(x^{k+1})\| < \delta \left(1 + \|f(x^{k+1})\|\right)$, STOP and report success;

Step 4. If $\|\nabla f(x^{k+1})\| < \delta(1+|f(x^{k+1})|)$, STOP and report success; else STOP and report convergence to nonoptimal point.

Multidimensional Optimization: Newton's Method

- Stopping rule: Don't be too fussy!
 - Good values for ε and δ are close to the square root of machine epsilon.
 - First use sloppy ε and δ , such as 10^{-3} .
 - Then reduce ε and δ until failure.
 - You can try to push them below square root of machine epsilon but you will probably not get too far.

Theorem 2 Suppose that f(x) is C^3 , minimized at x^* , and that $H(x^*)$ is nonsingular. Then there is some $\epsilon > 0$ such that if $||x^0 - x^*|| < \epsilon$, then the sequence converges quadratically to x^* .

- Problems with Newton's method:
 - May not converge
 - Computational demands may be excessive
 - * need at least $\mathcal{O}(n^2)$ time to compute $H(x^k)$, perhaps more if one does not have efficient code for H(x)
 - * need $\mathcal{O}(n^2)$ space for $H(x^k)$
 - * need $\mathcal{O}(n^3)$ time to solve $H(x^k)s^k = -(\nabla f(x^k))^{\top}$ for s^k
 - May converge to local solution, not global solution
 - We now consider methods which address these problems.

Direction Set Methods

- Problem: may not converge, or go to wrong kind of extremum
- Solution: if we always move uphill, we will eventually get to a local maximum

Algorithm 4.5 Generic Direction Method

Initialize. Choose initial x^0 and stopping parameters δ and $\epsilon > 0$.

- Step 1. Compute a search direction s^k .
- Step 2. Solve $\lambda_k = \arg\min_{\lambda} f(x^k + \lambda s^k)$
- Step 3. $x^{k+1} = x^k + \lambda_k s^k$.
- Step 4. If $\|x^k x^{k+1}\| < \epsilon (1 + \|x^k\|)$, go to step 5, else go to step 1. Step 5. If $\|\nabla f(x^{k+1})\| < \delta (1 + f(x^{k+1}))$, STOP and report success; else STOP and report convergence to nonoptimal point.

Direction Set Methods

- Possible direction set methods
 - Steepest Descent: $s_k = \nabla f(x^k)$
 - Newton's Method with Line Search (Quasi-Newton Method):

$$H_k s^k = -(\nabla f(x^k))^{\top}$$
 — Matlab code: fminunc

Quasi-Newton Methods

- Problem: Hessians are expensive to compute
- Solution: Don't need true Hessians (see Carter, 1993), so approximate them

Generic Quasi-Newton Method

Choose initial x^0 , Hessian $H^0(I)$ and stopping parameters δ and $\epsilon > 0$

- Step 1. Solve $H_k s^k = -\left(\nabla f\left(x^k\right)\right)^{\top}$ for the search direction s^k . Step 2. Solve $\lambda_k = \arg\min_{\lambda} f\left(x^k + \lambda s^k\right)$
- Step 3. $x^{k+1} = x^k + \lambda_L s^k$
- Step 4. Compute H_{k+1} using H_k , $\nabla f\left(x^{k+1}\right)$, x^{k+1} , $\nabla f\left(x^k\right)$, etc.
- Step 5. If $\|x^k x^{k+1}\| < \epsilon (1 + \|x^k\|)$, go to step 6; else go to step 1. Step 6. If $\|\nabla f(x^{k+1})\| < \delta (1 + f(x^{k+1}))$, STOP and report success;
- else STOP and report convergence to nonoptimal point.

• Example: BFGS:

$$z_{k} = x^{k+1} - x^{k}$$

$$y_{k} = \left(\nabla f\left(x^{k+1}\right)\right)^{\top} - \left(\nabla f\left(x^{k}\right)\right)^{\top}$$

$$H_{k+1} = H_{k} - \frac{H_{k}z_{k}z_{k}^{\top}H_{k}}{z_{k}^{\top}H_{k}z_{k}} + \frac{y_{k}y_{k}^{\top}}{y_{k}^{\top}z_{k}}$$

- Preserves positive definiteness
- Uses only gradients that are already needed
- Note: The Hessian iterates H_k may not converge to true Hessian at solution, even if x_k converges to solution. Never use approximate Hessians to compute standard errors!

Example: A Dynamic Optimization Problem

- Life-cycle savings problem.
 - an individual lives for T periods
 - earns wages w_t in period $t, t = 1, \dots, T$
 - consumes c_t in period t
 - earns interest on savings per period at rate r
 - define S_t to be end-of-period savings:

$$S_{t+1} = (1+r)S_t + w_{t+1} - c_{t+1}$$

- Set initial wealth: $S_0 = 0$ Utility function $\sum_{t=1}^{T} \beta^t u(c_t) + W(S_T)$
- Substitute $c_t = S_{t-1}(1+r) + w_t S_t$
- Problem now has T choices:

$$\max_{S_{t}} \sum_{t=1}^{T} \beta^{t} u \left(S_{t-1}(1+r) + w_{t} - S_{t}\right) + W\left(S_{T}\right)$$

- Newton's method looks impractical if T large. BUT
 - Hessian is tridiagonal (a sparse matrix)
 - * The choice of S_t interacts only with the choices for S_{t-1} and S_{t+1}
 - * Newton step is easy to compute.
 - * The normal Hessian has size T^2
 - * The tridiagonal matrix has size 3T
 - Sparse Hessians are common in dynamic problems because time t variables interact only with time t-1 and time t+1 variables.
 - You must recognize this and implement Newton or quasi-Newton method with sparse Hessians.

• Suppose $S_0 = 0$ and you want to solve

$$\max_{S_{t}} \sum_{t=1}^{T} \beta^{t} \log (S_{t-1}(1+r) + w_{t} - S_{t}) + W(S_{T})$$

- Newton's method takes the guess S^k and computes a new guess S^{k+1} .
- Problem: S^{k+1} could imply consumption, $c_t = S_{t-1}(1+r) + w_t S_t$, will be negative at some t causing computer to crash.
- A possible solution: Alter objective function
 - E.G.; replace u (c) = log c with, for some small $\varepsilon > 0$

$$\widetilde{u}(c) = \begin{cases} u(c), & c > \varepsilon \\ u(\varepsilon) + u'(\varepsilon)(c - \varepsilon) + u''(\varepsilon)(c - \varepsilon)^2/2, & c \le \varepsilon \end{cases}$$

- Maintains curvature
- Equals real u(c) on most of domain, which hopefully includes solution
- Not as easy to apply to multivariate functions
- General solution: add constraints to keep this from happening.

Constrained Linear Optimization – Linear Programming

Canonical linear programming problem is

$$\min_{x} a^{\top} x$$
s.t. $Cx = b$

$$x \ge 0$$

- $Dx \le f$: use slack variables, s, and constraints $Dx + s = f, s \ge 0$.
- $Dx \ge f$: use $Dx s = f, s \ge 0$.
- $x \ge d$: define y = x d and min over y

Linear Programming

- Basic method is the simplex method.
 - Initialization: Find some point on boundary of constraints, such as A.
 - Step 1: Note which constraints are active at A and points nearby. Find feasible directions and choose steepest descent direction.
 - Step 2: Follow that direction to next vertex on boundary, and go back to step 1.
 - Continue until no direction reduces the objective.
 - Stops in finite time since there are only a finite set of vertices.

For example:

$$\min_{x,y} -2x - y$$
s.t. $x + y \le 4$, $x, y \ge 0$

$$x \le 3$$
, $y \le 2$

Linear Programming

- Initialization: Find A.
- Step 1: two directions: from A: to B and to O, with B better.
- Step 2: go to H

General problem:

$$\min_{x} f(x)$$
s.t. $g(x) = 0$

$$h(x) \le 0$$

- $f: X \subseteq \mathbb{R}^n \to \mathbb{R}$: objective function with n choices
 - $-g:X\subseteq\mathbb{R}^n\to\mathbb{R}^m:m$ equality constraints
 - $-\ h:X\subseteq\mathbb{R}^n o \mathbb{R}^\ell:\ell$ inequality constraints
 - -f,g, and h are C^2 on X

• Karush-Kuhn-Tucker (KKT) theorem: if there is a local minimum at x^* then there are multipliers $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^\ell$ such that x^* is a stationary, or critical, point of \mathcal{L} , the Lagrangian,

$$\mathcal{L}(x,\lambda,\mu) = f(x) + \lambda^{\top} g(x) + \mu^{\top} h(x)$$

• First-order conditions, $\mathcal{L}_{x}\left(x^{*},\lambda^{*},\mu^{*}\right)=0$, imply that $\left(\lambda^{*},\mu^{*},x^{*}\right)$ solves

$$cf_{x} + \lambda^{\top} g_{x} + \mu^{\top} h_{x} = 0$$

$$\mu_{i} h^{i}(x) = 0, \quad i = 1, \dots, \ell$$

$$g(x) = 0$$

$$h(x) \leq 0$$

$$\mu \geq 0$$

The KKT conditions are

$$\nabla_{x}L(x^{*},\lambda^{*}) = 0 \text{ i.e. } \nabla f(x^{*}) = \sum_{i \in E \cup I} \lambda_{i}^{*} \nabla g_{i}(x^{*})$$

$$g_{i}(x^{*}) = 0, \forall i \in E$$

$$g_{i}(x^{*}) \geq 0, \forall i \in I$$

$$\lambda_{i}^{*} \geq 0, \forall i \in I$$

$$\lambda_{i}^{*} g_{i}(x^{*}) = 0, \forall i \in E \cup I$$

• At a solution, x, all equality constraints must hold.

 Some inequality constraints will be active, that is, equal zero. For each solution x, define the active set of constraints

$$A(x) = E \cup \{i \in I \mid g_i(x) = 0\}$$

- Given x^* and $A(x^*)$, we say that the linear independence constraint qualification (LICQ) holds if the set of active constraint gradients $\{\nabla g_i(x^*) \mid i \in A(x^*)\}$ is linearly independent.
- If LICQ holds then the multipliers are unique; otherwise, they are called "unbounded."

A Kuhn-Tucker Approach

- Idea: try all possible Kuhn-Tucker systems and pick best
 - Let \mathcal{J} be the set $\{1, 2, \cdots, \ell\}$.
 - For a subset $\mathcal{P}\subset\mathcal{J}$, define the P problem, corresponding to a combination of binding and nonbinding inequality constraints

$$g(x) = 0$$

$$h^{i}(x) = 0, \quad i \in \mathcal{P}$$

$$\mu^{i} = 0, \quad i \in \mathcal{J} - \mathcal{P}$$

$$f_{x} + \lambda^{\top} g_{x} + \mu^{\top} h_{x} = 0$$

- Solve (or attempt to do so) each \mathcal{P} -problem
- Choose the best solution among those \mathcal{P} -problem with solutions consistent with all constraints.
- We can do better in general.

- Many constrained optimization methods use a penalty function approach:
 - Replace constrained problem with related unconstrained problem.
 - Permit anything, but make it "painful" to violate constraints.
- Penalty function: for canonical problem

$$\min_{x}$$
 $f(x)$
s.t. $g(x) = a$,
 $h(x) \le b$.

construct the *penalty function* problem F(x; P, a, b)

$$\min_{x} f(x) + \frac{1}{2} P \left(\sum_{i} (g^{i}(x) - a_{i})^{2} + \sum_{j} (\max [0, h^{j}(x) - b_{j}])^{2} \right)$$

where P > 0 is the penalty parameter.

- If P is "infinite" then the two problems are identical.
- Hopefully, for large P, their solutions will be close.

- Problem: for large P, the Hessian of F, F_{xx} , is ill-conditioned at x away from the solution.
- Solution: solve a sequence of problems.
 - Solve $\min_{x} F(x; P_1, a, b)$ with a small choice of P_1 to get x^1 .
 - Then execute the iteration

$$x^{k+1} \in \arg\min_{x} F(x; P_{k+1}, a, b)$$

where we use x^k as initial guess in iteration k+1, and $F_{xx}(x^k; P_{k+1}, a, b)$ as the initial Hessian guess

- Simple example
 - Consumer buys good y (price is 1) and good z (price is 2) with income 5.
 - Utility is $u(y, z) = \sqrt{yz}$.
 - Optimal consumption problem is

$$\max_{y,z} \sqrt{yz}$$

s.t. $y + 2z \le 5$.

with solution $(y^*, z^*) = (5/2, 5/4), \lambda^* = 8^{-1/2}$.

- Penalty function is

$$u(y,z) - \frac{1}{2}P(\max[0, y + 2z - 5])^2$$

Iterates are in Table 4.7 (stagnation due to finite precision)

Table 4.7
Penalty function method applied to (4.7.8)

\overline{k}	P_k	$(y,z)-(y^*,z^*)$	Constraint violation	λ error
0	10	(8.8(-3), .015)	1.0(-1)	-5.9(-3)
1	10^{2}	(8.8(-4), 1.5(-3))	1.0(-2)	-5.5(-4)
2	10^{3}	(5.5(-5), 1.7(-4))	1.0(-3)	2.1(-2)
3	10^{4}	(-2.5(-4), 1.7(-4))	1.0(-4)	1.7(-4)
4	10^{5}	(-2.8(-4), 1.7(-4))	1.0(-5)	2.3(-4)

• Suppose $f: X \subseteq \mathbb{R}^n \to \mathbb{R}, g: X \subseteq \mathbb{R}^n \to \mathbb{R}^m, h: X \subseteq \mathbb{R}^n \to \mathbb{R}^\ell$, and we want to solve

$$\min_{x} f(x)$$
s.t. $g(x) = 0$

$$h(x) \le 0$$

The penalty function approach produces an unconstrained problem

$$\max_{x \in \mathbb{R}^n} F(x; P, a, b)$$

• Problem: F(x; P, a, b) may not be defined for all x.

Example: Consumer demand problem

$$\max_{y,z} u(y,z)$$

s.t. $py + qz \le I$

Penalty method

$$\max_{y,z} u(y,z) - \frac{1}{2} P(\max[0, py + qz - I])^2$$

- Problem: u(y,z) will not be defined for all y and z, such as

$$u(y,z) = \log y + \log z$$

$$u(y,z) = y^{1/3}z^{1/4}$$

$$u(y,z) = (y^{1/6} + z^{1/6})^{7/2}$$

- Penalty method may crash when computer tries to evaluate u(y, z)!

2022-2023 Spring

- Strategy 1: Transform variables
 - * If functions are defined only for $x_i > 0$, then reformulate in terms of $z_i = \log x_i$
 - * For example, let $\widetilde{y} = \log y$, $\widetilde{z} = \log z$ and solve

$$\max_{\widetilde{y},\widetilde{z}} u\left(e^{\widetilde{y}},e^{\widetilde{z}}\right) - \frac{1}{2} P\left(\max\left[0,pe^{\widetilde{y}} + qe^{\widetilde{z}} - I\right]\right)^{2}$$

- * Problem: log transformation may not preserve shape; e.g., concave function of x may not be concave in $\log x$
- Strategy 2: Alter objective and constraint functions so that they are defined everywhere (see discussion above)

- Strategy 3: Express the domain where functions are defined in terms of inequality constraints that are enforced by the algorithm at every step.
 - * E.g., if utility function is $\log(x) + \log(y)$, then add constraints $x \geq \delta$; $y \geq \delta$ for some very small $\delta > 0$ (use, for example, $\delta \approx 10^{-6}$; don't use $\delta = 0$ since roundoff error may still allow negative x or y)
 - * In general, you can avoid domain problems if you express the domain in terms of linear constraints.
 - * If the domain is defined by nonlinear functions, then create new variables that can describe the domain in linear terms.

Active Set Approach

Problems:

- Kuhn-Tucker approach has too many combinations to check
 - st some choices of ${\mathcal P}$ may have no solution
 - * there may be multiple local solutions to others.
- Penalty function methods are costly since all constraints are in the function, even if only a few bind at solution.

Active Set Approach

Solution: refine K-T with a good sequence of subproblems, ignoring constraints that you think won't be active at the solution.

- Let \mathcal{J} be the set $\{1,2,\cdots,\ell\}$
- for $\mathcal{P} \subset \mathcal{J}$, define the \mathcal{P} problem

$$\min_{x} f(x)$$

s.t. $g(x) = 0$,
 $h^{i}(x) \leq 0$, $i \in \mathcal{P}$

ullet Choose an initial set of constraints, \mathcal{P} , and solve the optimization problem. If that solution satisfies all constraints, then you are done.

Active Set Approach

- Otherwise
 - Add constraints which are violated by most recent guess
 - ullet Periodically drop constraints in ${\mathcal P}$ which fail to bind
 - Increase penalty parameters
 - Repeat
- The simplex method for linear programing is really an active set method.

Interior-Point methods

Consider

$$\min_{x \in \mathbb{R}^n} c^{\top} x$$
s.t. $Ax = b$

$$x \ge 0$$

where $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, and A is an $m \times n$ matrix.

 Karush-Kuhn-Tucker conditions for this optimization problem are as follows.

$$A^{\top}\lambda + s = c$$
 $Ax = b$
 $x_i s_i = 0, \quad i = 1, 2, ..., n$
 $x \ge 0$
 $s \ge 0$

Interior-Point methods

- Interior-point methods solve a sequence of perturbed problems.
 - Consider the following perturbation of the KKT conditions.

$$A^{\top}\lambda + s = c$$

$$Ax = b$$

$$x_i s_i = \mu, \quad i = 1, 2, \dots, n$$

$$x > 0$$

$$s > 0$$

- The complementarity condition $x_i s_i = 0$ is replaced by $x_i s_i = \mu$ for some positive scalar $\mu > 0$.

Interior-Point methods

- Assuming that a solution $(x^{(0)},\lambda^{(0)},s^{(0)})$ to this system is given for some initial value of $\mu^{(0)}>0$, interior-point methods decrease the parameter μ and thereby generate a sequence of points $(x^{(k)},\lambda^{(k)},s^{(k)})$ that satisfy the non-negativity constraints on the variables strictly, $x^{(k)}>0$ and $s^{(k)}>0$.
- As μ is decreased to zero, a point satisfying the original first-order conditions is reached.
- The set of solutions to the perturbed system,

$$C = \{x(\mu), \lambda(\mu), s(\mu) \mid \mu > 0\}$$

is called the central path.

 Matlab code, fmincon, contains both active set and interior point algorithms.