

TANGO 커뮤니티 소개

성명 조창식

소속 ETRI

- 1 TANGO 프로젝트
 - 1. Intro
 - 2. 신경망 응용 개발의 어려움
 - 3. 해외 MLOps 동향
- 2 TANGO 차별성
 - 1. Detection 자동 생성/학습
 - 2. 다양한 배포 환경 지원
 - 3. 타겟 디바이스 인지형 신경망 자동생성
- 3 TANGO 공개SW
 - 1. 모든 개발 과정을 Github에서
 - 2. Well Defined SW architecture
 - 3. 성과 확산
 - 4. Future Work

 $\underline{\underline{\mathbf{T}}}$ arget $\underline{\underline{\mathbf{N}}}$ o-code neural network $\underline{\underline{\mathbf{G}}}$ eneration and $\underline{\underline{\mathbf{O}}}$ perations framework

(타것 인지형 No-code 기반 신경망 자동 생성/배포 통합개발 프레임워크)

타겟 장비(클라우드,엣지,온디바이스)의 HW 성능 특성을 인지하여 신경망을 잘 모르는 산업현장(공장,의료) 사용자도 최적의 신경망을 자동생성/배포할 수 있도록 지원하는 통합개발 프레임워크

AI 대중화 시대의 필수 전략 기술 (AI Democratization)

*

TANGO 히스토리

- ◎ 2021.04 신경망 자동생성 통합개발 프레임워크 과제 시작
- ୭ 2022.02 비공개 GitHub 저장소 운영
- ◎ 2022.09 공개 GitHub 저장소 운영
- ◎ 2022.10.31 Pre 릴리즈 (tango-22.11-pre1)
- ◎ 2022.11.01 1회 TANGO 커뮤니티 컨퍼런스 (AT센터 세계로룸)

94개 기관 158명이 참석

- ◎ 2022.11.30 22년 하반기 정식 릴리즈 (tango-22.11)
- ◎ 2023.05.31 23년 상반기 정식 릴리즈 (tango-23.06)
- ◎ 2023.10.23 23년 하반기 정식 릴리즈 (tango-23.10)
- ◎ 2023.11.01 2회 TANGO 커뮤니티 컨퍼런스

신경망 응용 개발의 어려움

신경망 학습

신경망 배포

응용SW 개발

🦷도메인 전문가

ML scientist

도메인 지식과 신경망 전문지식에 대한 고도의 개발경험 요구

신경망 응용 개발의 어려움

클라우드 기반 신경망 개발: 수동 코딩

데이타 준비 및 수동 레이블링 신경망 모델 코딩 신경망 모델 학습/평가 응용 프로그램 코딩

학습모델 클라우드상 배포

실행/ 모니터링

기존 AutoML: Classification 중심, 부분 자동화

데이타 준비 및 수동 레이블링 Classification용 신경망 생성 신경망 모델 학습/평가 응용 프로그램 코딩

학습모델 클라우드상 배포 실행/ 모니터링

목표 기술: Detection 지원, No Code 및 다종 디바이스 지원

데이터 준비

Auto Labelling Classification/ Detection 신경망 생성

신경망 모델 학습/평가 응용 프로그램 코딩

클라우드/ 엣지/ 온디바이스 배포

실행/ 모니터링

퍼블릭 클라우드 AutoML 기반 MLOps 도구 각축

구글 Vertex.Al

MS Azur ML

Amazon Sagemaker

오픈소스 Kubeflow

수동 프로그래밍을 쉽게 하기 위해, 라이브러리/API를 추상화하는 방향으로 진화 AutoML API 제공, Python 라이브러리를 사용하여 쉬운 코딩 지향

중급 이상의 신경망 전문지식 요구

해외 MLOps 동향

퍼블릭 클라우드 AutoML 기반 MLOps 도구 각축

MLOps 도구 특징

- ◎ 다양한 인공지능 응용 지원
- ◎ 다양한 AutoML(NAS, HPO) 알고리즘 지원
- ◎ 다양한 배포환경 지원 (클라우드, 엣지, 온디바이스)
- o 손쉬운 웹 UI 제공

지원 응용

- Image Classification
- Tabular Classification
- Tabular Regression
- Text Classification
- Object Detection
- Text Embedding
- Question Answering
- Sentence Pair Classification
- Image Embedding
- Named Entity Recognition
- Instance Segmentation
- Text Generation
- Text Summarization
- Semantic Segmentation
 - Machine Translation

지원 알고리즘

- ENAS
- DARTS
- P-DARTS
- SPOS
- CDARTS
- ProxylessNAS

주로, Tabular 데이터에 대한 AutoML 적용[ML], 이미지의 경우 Classification에 집중, 하이퍼파라메터 최적화 위주[DL] 배포는 자사 클라우드에 최적화

Classification, Detection, Segmentation 비교

단순히 <mark>단일</mark> 이미지 분류

의료에 적용

여러 객체 분류와 위치까지 표시

공장에 적용 (TANGO의 주요 타겟)

객체의 윤곽까지 표시

데이터 라벨링에 장시간 소요

해외 MLOps 동향

Classification, Detection, Segmentation 산업체 적용 예

Classification (폐결핵검사)

- ◎폐질환 분석
- 정상과 폐결핵인지 분류
- 폐결핵은 5개 병으로 세분화
- 영상의학과 의사가 라벨링
- 특징벡터 기반 연합학습
- Densenet 백본 사용

Detection (용접불량 검사)

- ○파이프 성형시 용접불량 탐지
- 파이프 X선 촬영 비파괴검사
- 용접부위의 정확한 불량부위 검출 (과다용접, 기공, 크랙 부위 등)
- 파이프 X선 이미지 영상의 육안 검사로 라벨링
- YOLO 신경망 사용

Segmentation (칫솔불량 검사)

- ○칫솔 불량부위 검출
 - 정상 칫솔과 불량 칫솔을 구분
 - 대표적인 불량은 손잡이 기포
 - 일반인도 육안으로 라벨링 가능
 - 라벨링 소요 시간 많음
 - Unet 신경망 적용

Detection을 지원하는 신경망 자동생성 도구

•

Detection을 지원하는 신경망 자동생성 도구(세계최고 성능 추구)

Figure 3: EfficientDet architecture – It employs EfficientNet [39] as the backbone network, BiFPN as the feature network, and shared class/box prediction network. Both BiFPN layers and class/box net layers are repeated multiple times based on different resource constraints as shown in Table 1.

- Classification는 백본만 있음 (Resnet, Densenet)
- Object Detection(객체 탐지)는 백본, 넥, 헤드로 구성됨
- Detection 분야는 아직도 진화 중 (YOLO3/4/5/6/7, PPYOLO, YOLOX, ScaledYOLO ,,,,)

넥 계층의 연결선에 대한 탐색을 통하여 정확도, 성능을 고려한 신경망 자동생성

Detection을 지원하는 신경망 자동생성 도구

:\

백본과 넥 신경망 탐색을 통합한 신경망 자동 생성 기술

• 백본과 넥의 동시 탐색을 통해 객체 탐지 신경망의 구성 요소와 연결 구조를 고려하여 최적의 신경망 구조 탐색 가능

신경망 자동 탐색 Input Backbone & Neck 통합 탐색 모바일 특화 신경망 탐색 Scalable Latency Neck Latency Supernet data Predictor Backbone 15ms Neck 18ms **Progressive** Shrinking Sub-network Candidate Network Backbone coco image dataset Optimal network Evolutionary Algorithm

다양한 배포 환경 지원

•

다양한 배포환경, 다양한 추론엔진 지원

- (다양한 타겟 환경 통합 지원) 구글, Nvidia, Intel 등 글로벌 기업들은 자사의 클라우드 혹은 자사 가속HW에 특화된 기술만 제공
- (실행 코드 자동 생성) 신경망 모델을 타겟 환경에서 실행하는데 필수적인 코드의 자동 생성 지원
 - ◉ HW의 다양성 지원
 - x86(windows, Linux), ARM 등 CPU 지원
 - CUDA, NPU, ARM Mali, 퀄컴 Adreno 등 다양한 가속환경 지원
 - ◉ 추론엔진의 다양성 지원
 - PyTorch, NVIDIA TensorRT, 안드로이드 스마트폰 TensorFlow Lite 추론엔진 지원
 - Apache 재단의 TVM, ARM사 ACL(Arm Compute Library) 추론엔진 지원

다양한 배포 환경 지원

*

다양한 가속 환경, 다양한 추론엔진 지원

Target Environment	Device Environment		Runtime engine
Cloud Environment	GCP(Google Cloud Platform)		PyTorch
Kubernetes Environment	x86 + NVIDIA GPU	PC	PyTorch
	ARM CPU + NVIDIA GPU	Jetson Nano	TensorRT
OnDevice Environment	ARM CPU + NVIDIA GPU	Jetson AGX Orin	TensorRT, PyTorch
		Jetson AGX Xavier	TensorRT, PyTorch
		Jetson Nano	TensorRT, PyTorch
	ARM CPU + Adreno GPU	S22	Tensorflow Lite(Android)
	ARM CPU + Mali GPU	Odroid-N2	TVM, ACL

타겟 디바이스 인지형 신경망 자동생성

- 타겟 적응형 신경망 자동 생성을 위한 세밀한 신경망 모델 추천
- (현재) 사용자가 직접 디바이스의 정보 입력 및 등급 설정
- (추가) NLP 이용한 디바이스의 사양 자동 설정 기능
- (추가) 기존에 학습했던 결과에 따른 추천 기능 반영

모든 개발 과정을 Github에서

main 브랜치는 항상 컴파일/실행 버전 유지, 문서는 위키 페이지로 단일화

소스 (브랜치) 관리

- ❷ 담당자별 브랜치에서 개발
- ◎ 담당자별 단위 테스트
- ◎ 담당자별 통합 테스트
- ୭ 통합 테스트(수동), No CI/CD yet
- ◎ main 브랜치에 merge/push

문서 관리

- ◎ 모든 문서는 위키 페이지에 공유
- 단일 참조 포인트
- ◉ 개발 가이드
- TANGO Architecture
- YAML (컨테이너 통신)
- Rest API
- Container Port Map

이슈 관리

- ◉ 이슈 관리
- GitHub Issues
- ◎ Backlogs 관리
- GitHub Project, Kanban 스타일

https://github.com/ML-TANGO/TANGO/wiki

모든 개발 과정을 Github에서

매년 두 번의 릴리즈 버전을 완성하고 하반기에 공개SW 세미나 추진

Well Defined SW architecture

Docker 기반 MSA 구조

요구사항 분석

- ◎ Web 기반 UI
- ◎ 다양한 기술 스택 지원 언어: Python, C++, ... 딥러닝 프레임워크: PyTorch, Tensorflow
- ◎ 다양한 HW 타겟 온디바이스, 클라우드(온프레미스) CPU, GPGPU(Cuda), NPU, ...
- ◉ 버전 관리, 이슈관리

- ◎ 모듈화(서비스 컨테이너화)
- 시스템 분해 및 추상화하여 기능별로 분리
- 성능향상, 시스템 수정, 재사용, 유지관리 편리
- ◎MSA Benefits (출처: https://microservices.io)
- Highly maintainable and testable
- Loosely coupled
- Independently deployable
- Organized around business capabilities
- Owned by a small team

Well Defined SW architecture

Docker 기반 MSA 구조, Rest API 통신, YAML 데이터 교환 정의

python O PyTorch Vue.js

Well Defined SW architecture

다양한 알고리즘 추가 및 향후 기능 확장에 최적화된 MSA(도커) 구조

알고리즘 다양화

- ◎ Base Model Select (다중 Approach 접근)
- ETRI (태스크 기반 Rule-based 제안)
- 조지아공대 (Feature Engineering 기반 제안)
- ◎ Neck NAS (다중 알고리즘 접근)
- 중앙대(All-in-one), 고려대(Porxyness NAS), ETRI (SuperNet NAS) 병렬

기능 확장

- ◉ 드래그 & 드랍 파이프라인 관리
- ◎ Multi-Node Multi GPU 분산 학습
- ◎ Backend.ai(래블업) 오케스트레이션
- ◎ Tango as a Service (탱고 클라우드화)
- 국내 CSP 솔루션화

성과 확산 (실증 및 산업적용)

- ㈜웨다 : 스마트공장
 - TANGO 알고리즘을 Blue.ai에 내재화
 - 다양한 산업현장의 실제 데이터를 가지고 검증 및 사업화
- ㈜래블업:인프라
 - TANGO as a Service (TaaS) PoC
 - 클러스터 세션 기반의 멀티노드 연산 지원
 - TANGO를 Backend.AI 기반으로 연동
- ㈜에이브노틱스: 스마트선박
 - 스마트선박에 TANGO AutoML 알고리즘 및 프레임워크 사용
 - 스마트선박용 온디바이스 배포에 적용
- 서울대병원 : 의료
 - 서울대병원 실제 데이터에 TANGO 알고리즘 적용
 - 병의 예후 예측 기술 개발 (DDPM 기반)

성과 확산 (라이선스 및 품질관리)

•

- 듀얼 라이선스를 통한 기술이전 (공개SW 과제의 사업화 모델 제시)
 - 연구용 사용: GPL 라이선스, 코드 공개의무 있음
 - 사업용 사용: ETRI 기술이전, 코드 공개의무 없음
- 오픈소스 라이선스 검증 및 코드 품질 관리
 - TANGO 코드 릴리즈마다 검증
 - 탱고 라이선스와 사용하는 공개 라이브러리와의 라이선스 충돌 해결
 - ETRI ICAS (Integrated Code Analysis System), Protex 사용하여 코드 품질 관리 및 검증
- 인공지능 개발시 발생하는 라이선스 이슈 해석 중
 - 코드 사용, 알고리즘 사용, Model Zoo, Transfer Learning

<그림 3> 소스코드 통합분석 시스템(ICAS) 구조

•

- TANGO as a Service
 - TANGO를 구글 GCP 클라우드 GKE 엔진으로 SaaS화
 - TANGO 프로젝트내에 Repository 개설, Pilot으로 진행 (래블업)
- 파이프라인 편집 도구
 - TANGO의 다양한 AutoML 알고리즘을 그래프 편집으로 동적 파이프라인화
 - CI/CD 지원
 - Ex) MS directshow 편집 도구
- 분산 컴퓨팅 지원
 - 멀티노드, 멀티 GPU 학습 환경 구축
 - 연합학습 기능 TANGO 결합
- 생성형AI 태스크 처리
 - 생성형AI에 대한 AutoML 적용 및 MLOps화
 - 다양한 산업 도메인에 적용

https://github.com/ML-TANGO

Tango는 Al-SW 지식이 부족한 타 산업에서도

Al 기반 SW를 손쉽게 개발할 수 있도록 함으로써

Al-SW 기술의 전 산업 확산·디지털 혁신이 촉진할 것이다.

Tango는 개발과정에서부터 전 과정이 오픈소스로 공개되는 만큼, 많은 분들이 TANGO Github에 참여하여 주시기를 희망합니다.

