Image Fusion Emerging Applications and Techniques

AY 2025-26

GITAM (Deemed-to-be) University

Department of Electrical Electronics and Communication Engineering

Project Team:

- BU22EECE0100518 Haripriya K
 BU22EECE0100317-
- BU22EECE0100317-Sadiya Samrin K

Project Mentor:

 Dr.Ajay Kumar Mandava Project In-charge:

Capstone Project –

Introduction

(PROJ2999)

Dr.Kshitij Shakya

Objective and Goals

Objective

- •Study existing image fusion techniques (pixel, spatial, transform domains).
- •Implement traditional methods for multi-focus, multi-exposure, and thermal-RGB fusion.
- Compare algorithms using qualitative & quantitative metrics.
- •To evaluate the potential real-world applications of the developed techniques in areas such as medical imaging, computer vision, and security.

Goals

Main Goals :-

- Identify the most effective method for each application.
- Propose an optimized framework for image fusion.

Additional Goals :-

- Evaluate real-world applications (medical imaging, computer vision, security).
- Contribute to robust and adaptive fusion techniques.

Project Plan

Gant Chart - Milestones and Activities Resources : <u>Canva.com</u>

	Week 1-3	Week 4-5	Week 6-7 Review-1	Week 8-9	Week9-10	Week 11-13	Week 14- 15
Problem understanding & Literature survey							
Dataset collection & preprocessing methods							
Implementation							
Comparative analysis & unified framework design							
Documentation, final report & presentation							

Literature Survey

Key Publications

- •Li, S., Kang, X., & Fang, L. (2017). Pixel-level image fusion: A survey of the state of the art. Information Fusion, 33, 100–112.
- → Comprehensive survey of pixel-based fusion methods.
- •Zhang, Y., et al. (2020). DenseFuse: A fusion approach to infrared and visible images. IEEE TIP, 29, 4795–4805.
- → Deep learning-based IR + visible fusion.
- •Ma, J., et al. (2019). FusionGAN: A generative adversarial network for infrared and visible image fusion. *Information Fusion*, 48, 11–26.
- → GAN-based approach; preserves texture and thermal cues.
- •Liu, Y., et al. (2017). Multi-focus image fusion with dense SIFT. Signal Processing, 130, 38–51.
- → Classical multi-focus fusion using handcrafted features.

Key Resources – Whitepaper | Application Notes | Datasheet | Others

- •ASTM D4788-03 (2013): Standard test method for detecting delaminations in bridge decks using infrared thermography.
- •Fluke (2021): What does infrared mean? Application note on thermal imaging basics.
- •FLIR Systems: Datasheets for FLIR One Pro, FLIR T-Series (thermal camera specs).
- •ASCE (2020): Changing the infrastructure equation Infrastructure monitoring with asset management.

Existing Implementations – Products | Opensource | GitHub etc

- •FLIR One Pro, FLIR T-Series Commercial IR cameras for SHM.
- •Fluke TiX series Industrial thermal cameras.
- Open Source / GitHub:
- •DenseFuse (https://github.com/hli1221/densefuse-pytorch) PyTorch implementation of infrared-visible fusion.
- •Deep Image Fusion Toolbox (MATLAB File Exchange).
- Exposure Fusion (https://github.com/rocapp/exposure-fusion).

Architecture

Structural Diagram

Behaviour Diagram

Architecture

Multi-Focus Image Fusion

- Takes two or more images focused at different depths.
- Detects sharp/blurred regions using focus measures.
- Generates decision maps to identify infocus areas.
- Combines them into a single all-infocus image.

Applications: Medical imaging, microscopic analysis, photography. Advantages: Clear details from foreground to background.

Architecture

Multi-Exposure Image Fusion

- Reads multiple images with different exposurelevels.
- Generates weight maps (wellexposedness, contrast, saturation).
- Uses guided filtering to refine maps and avoidartifacts.
- Fuses base (illumination) and detail (texture) layers for reconstruction.

Applications: HDR imaging, photography, surveillance.

Advantages: Balanced brightness, vivid colors, sharp details.

Behaviour Diagram

Architecture

Thermal-RGB Image Fusion

- Captures thermal and visible (RGB) images simultaneously.
- Aligns both images using preprocessing and registration.
- Extracts key features from thermal (heat) and RGB (texture).
- Fuses them to create a single informative image.

Applications: Surveillance, defense, search & rescue.

Advantages: Combines heat detection with clear visual context.

Use Cases & Testing

Use Cases

- •Structural Health Monitoring (SHM): Detect cracks, delamination, moisture intrusion in concrete/bridges.
- •Surveillance: Thermal + RGB fusion for low-light object detection.
- Medical Imaging: CT + MRI fusion for diagnosis.
- •Remote Sensing: PAN-MS, thermal-RGB fusion for land cover classification.
- •Autonomous Systems: Thermal + RGB fusion in drones for search & rescue, nighttime navigation.

Test Cases

- Multi-focus: Fuse two partially focused images of a scene → all-in-focus output.
- Multi-exposure: Fuse underexposed + overexposed images → balanced illumination.
- Thermal–RGB: Fuse daytime RGB with nighttime IR → structure defects + heat leakage.
- Benchmark Datasets:
- TNO Image Fusion Dataset (thermal + visible).
- Lytro Multi-focus Dataset.
- MEF (Multi-Exposure Fusion) Dataset.
- Custom SHM datasets (USACE, crack datasets).

Implementation and Results

Iteration 1 : Thermal & RGB

Implementation and Results

MULTI EXPOSURE

INPUT-1

Preprocessed input 1

INPUT-2

Preprocessed input 2

INPUT-3

Preprocessed input 1

Implementation and Results

MULTI EXPOSURE

FUSED IMAGE

Dept EECE, GST Bengaluru

PRE-PROCESSED IMAGE

PRE + POST PROCESSED
OUTPUT IMAGE

Conclusion:

Image fusion combines multiple image sources to enhance detail and information. Multi-focus fusion improves depth-of-field, multi-exposure fusion balances brightness and texture, and thermal-RGB fusion merges heat and visual details. These methods aid applications in medical imaging, surveillance, photography, and autonomous systems, providing richer and more interpretable imagery.

THANKYOU

Have a Great Day!

