#### Careers in Organizations

Literature Review on Internal Labor Market

Renjie Zhong 2020200977@ruc.edu.cn

Renmin University of China

January 2023

#### Outline

- Introduction
- Markets
- Institutions
- Further Readings

#### Introduction

- "Black Box": an IO operation; a unitary agent for profit maximization, an one-multiple contract designer...
- the internal market: an administrative unit within which the pricing and allocation of labor is governed by a set of administrative rules and procedures (institutions)
  - **1)** Market: pricing-wage and allocation-career/promotion
  - 2 institutions: design sectors, institutions, policies to incentivze/match human resources
- We will later see the internal labor market featuring both market functioning (especially the lemon) and mechanism design

#### **Empirical Facts-Market**

Before introducing the theoretical models, review some common phenomena in internal labor market (BGH,1994)

- Many workers begin employment at the firm at a small number of positions
- dynamic: Nominal wage decreases and demotions are rare (but real wage decreases are not)
- Correlations:

Introduction 000

- 1 serial correlations: wage and promotion
- 2 Large wage increases early on in a worker's tenure predict promotions
- a positive relationship between seniority and wages
- Promotions tend to be associated with large wage increases, but these wage differences are small relative to the average wage differences across levels within the firm

#### **Empirical Facts-Institutions**

- Institutions: tradition v.s. innovative (CIA) (Osterman, 1994, 2000; Lawler et al., 1995)
  - (no) problem-solving teams and quality circles (information sharing)
  - 2 (no) job rotation
  - 3 much/little effort and resources put into worker screening during the recruitment process
  - 4 incentive pay v.s. hourly pay
  - **6** much/little on-the-job training
  - 6 high/low job security
- Policies: Peter Principle, compensation profile, mandatory retirement, up-or-out promotion policy, exchange of cadres, skill development etc.
- Sector Divisions and Organization Hierarchies

#### Theortical Models

Introduction

- Theortical Models:
  - identify and model a fundamental factor concerning the operation of internal labor markets
  - 2 capture important empirical relationships
- How are wages/careers decided given some properties of firms and workers?
  - 1 How does information asymmetry affect the market allocation?
  - 2 How to design optimal mechnism to match workers with firms/incentivize workers?
- Key assumptions:
  - n homo/hetero workers
  - 2 multiple careers(hierarchies)
  - 3 complete/incomplete information
  - 4 static/dynamic setting

#### Candid Models: Markets

- Candid Models (revised from (Waldman, 2012)):
  - 1) "endogenous growth": human (specific) capital accumulation
  - 2 Information: promotions as signals; symmetric learning and insurance
- Now increasing newly-emerged models incoporate these models to better explain more empirical conclusions

#### Basic Model: Notations

- Betrand setting:  $F_0$ ,  $F_1$
- heterogenous workers: ability  $\theta \sim F$
- dynamic setting:  $q_t$ ,  $\omega_t$  (t = 1, 2)
- workers' utility:  $u_A = \omega_1 + \omega_2$
- firms' profit:  $\pi_{it} = q_t \omega_t$

## Human Capital Acquisition (Gibbons and Waldman, 1999)

- binary distribution:  $\theta \in \{\theta_H, \theta_L\}$ ,  $\Pr(\theta = \theta_H) = p$
- work experience l and effective productivity  $\eta_t = \theta f(l) = \theta(1 + gl)$
- two activities:  $q^i = d^i + b^i(\eta_t + \epsilon_t)$  (i = 0, 1) with  $d^0 > d^1 > 0, b^1 > b^0 > 0$
- job assignment  $j_t \in \{0, 1\}$  and output  $q_t = (1 j_t)q^0 + j_tq^1$ promotion if  $j^1 < j^2$  demotion if  $j^1 > j^2$
- public signal:  $\phi_0 \subset \{\eta\}, \, \phi_1 = \{q_1, j_1\}$

#### Human Capital Acquisition (Gibbons and Waldman, 1999)

- **1**  $\theta$  realized and private,  $\phi_0$  public
- 2  $\omega_1^i$ : simultaneous offer
- **3** A chooses firm  $d_1 \in \{0, 1\}$  and recevies  $\omega_1^{d_1}$  (suppose  $d_1 = 1$ )
- **4**  $F_{d_1}$  chooses  $j_1$ , output realized and  $\phi_1$  observed
- **6**  $\omega_2^i$ : simultaneous offer
- **6** A chooses firm  $d_2 \in \{0, 1\}$  and recevies  $\omega_2^{d_2}$   $(d_2 = 1 \text{ when indifferent})$
- $\mathbf{O}$   $F_{d_2}$  chooses  $j_2$ , output realized

#### Human Capital Acquisition (Gibbons and Waldman, 1999)

- subgame-perfect equilibrium:  $\{\omega_t, d_t, j_t^{d_t}\}$
- $\eta_2^e(\phi) = E(\eta_2|\phi), \phi = \{\phi_0, \phi_1\}$ 
  - **1** Betrand Assumption matters: wage=expected productivity  $\omega_2^i(\phi) = (1 i^0)(d^0 + b^0 n_2^e(\phi)) + i^0(d^1 + b^1 n_2^e(\phi))$
  - 2 linear productivity assumption: assignment threshold  $\bar{\eta}^e = \frac{d^0 d^1}{h^1 h^0}$
  - 3 the first is similar to the second
  - 4 human capital acquisition makes the relative threshold decreasing holding the absolute threshold

- pros: consitent with empirical findings below
  - 1 a port of entry into the firm with small p
  - 2 Long-term employment relationships are common (depending on the selection!) firm-specific capital acquisition assumption matters
  - 3 demotions are rare (for the rational updating and human capital acqusition)
  - 4 positive correlation between promotion and wage (wage inequality and wage jumps)
  - 6 extensions: multiple stages for serially correlated wage and promotion
- cons:
  - 1 innate ability is a one-dimensional fixed attribute
  - empirical findings for older workers can only be explained by assuming learning is significant

- $\theta \in U[0,1]$
- promotion is publicly observed while output is not
- job assignment:  $q_1 = x \in (1/2, 1), q_2(j, \theta, d_2) = (1 + s1_{d_2=d_1})[(1 j)x + j\theta]$

- 1  $\omega_1^i$ : simultaneous offer
- **2** A chooses firm  $d_1 \in \{0, 1\}$  and recevies  $\omega_1^{d_1}$  (suppose  $d_1 = 1$ )
- 3  $\theta$  realized and observed by  $F_1$ , output also observed
- **4**  $(j^1, \omega_2^1)$  offered by  $F_1, j^1$  publicly observed while  $\omega_2^1$  not
- **6**  $(j^0, \omega_2^0)$  offered by  $F_1$
- **6** A chooses firm  $d_2 \in \{0, 1\}$  and recevies  $\omega_2^{d_2}$   $(d_2 = 1 \text{ when indifferent})$
- **7** output  $q_2(j, \theta, d_2)$  realized

- PBE:  $\{\omega_t^i, d_t, j^i, \mu\}$
- $\omega_2(j^1) = E((1-j^0)x + j^0\theta|j^1(\theta) = j^1)$ 
  - (Sequential) Betrand Assumption matters: wage=expected productivity of firm 0  $\omega_1^0 = \omega_2^1 = \omega_2(j^1)$
  - 2 (linear) productivity assumption: assignment threshold  $\bar{\theta} = \frac{1+2sx}{1+2s}$
  - 3 compared to first best, information asymmtry induces social efficiency

- pros:
  - 1) the importance of history of job assignments and resume design
  - 2 large wage increases upon promotion
  - 3 wage increases are small relative to wage differences across adjacent job levels.
- cons:
  - 1 no promotion is completely determined by observable characteristics
  - 2 not easily explain why the size of wage increases early at a job level forecast speed of promotion

- Candid Models (revised from (Lazear and Oyer,2012)):
  - 1 Contest Design: induce optimal average efforts, selection
  - Contract Design: tradeoff between incentives and insurance

$$y = e + \epsilon$$
 and decompse  $\frac{\partial \omega}{\partial y}$ 

3 Training Programs, Career Life Design, Organization of Work (Job Design)

## Contest Competitiveness (FNS, 2020)

- Incentives vs Discouragement is the key tradeoff when increasing competition in contest theory
  - Incentives: Increasing competition naturally increases contestants' incentives to exert high effort
  - ② Discouragement: Contestants' gains from exerting effort are reduced for beating their rivals harder
  - 3 the competitiveness of the competition:
    - 1 the number of contestants (scaling up and contestant entry)
    - 2 the reward structure (prize inequality)
- With homogeneous contestants and convex effort costs, increasing competitiveness means decreasing average effort.
  - Increasing competition  $\Rightarrow$  More spread-out distributions(extreme effort levels)
  - ⇒ Decreasing expected effort under convex costs

## Contest Competitiveness (FNS, 2020)

#### • Setup:

- 1  $n \ge 1$ : homogeneous risk-neutral contestants
- ②  $x_i$ : efforts,  $c(x_i): R_+ \to R_+$ : effort cost (differentiable, strictly increasing and convex)
- 3  $v = (v_1, v_2, ..., v_n) \in \mathbb{R}^n_+$ : an ordered vector of prizes where  $0 = v_1 \le v_2 \le ... \le v_n$  and  $v_1 < v_n, F_v(x)$ : distriution function
- **4**  $\pi_{\nu}(p) = \sum_{i=1}^{n} \nu_{i} \binom{n-1}{i-1} p^{i-1} (1-p)^{n-i}$ : the expected reward

#### Formalization

• Price Inequality:  $w, v \in P^n$  and  $\sum_{i=1}^k w_i = \sum_{i=1}^k v_i$ . Vector w is more unequal than v if w is more unequal than v in the Lorenz order.

that is 
$$\sum_{i=1}^{k} w_i \leq \sum_{i=1}^{n} v_i$$
, for all  $k = \{1, ..., n\}$ 

② Scaling: Let s > 1 be an integer;  $w \in P^{ns}$  is a scaling of  $v \in P^n$  if  $w_k = v_{[k/s]}$  for all  $k \in \{1, ..., n\}$ 

## Contest Competitiveness (FNS, 2020)

1 a unique symmetric equilibrium in mixed strategies:

$$\pi \circ F_{\nu}(x) - c(x) = 0, x \in [0, c^{-1}(\nu_n)]$$
  
 $\to F_{\nu}(x) = (\pi^{-1} \circ c)(x)$ 

- ② Suppose vector w is more unequal than (a scaling of) v. For any concave, strictly increasing function, u, of individual contestant effort  $E[u(X^v)] \leq E[u(X^w)]$
- 3 Intuition: contestants face a direct incentive to increase effort but all contestants increasing effort cannot be sustained in equilibrium
  - ⇒ requiring an increase in the payoff from intermediate effort levels and a decrease in the payoff from high effort levels
  - ⇒ increasing the likelihood contestants make extreme efforts(more spread-out distributions)
  - $\Rightarrow$  cost convexity comes into play

#### Mandatory Retirement (Waldman, 1984)

- Solution to moral hazard problem: pay less when young, more when old. inducing the desire for a long-term contract thus voluntarily avoid shirking voluntary in ex-ante sense while mandatory in ex-post sense (*T*)
- Notations:
  - **1**  $W^*(t)$  wage,  $V^*(t)$  VMP (constant),  $\tilde{W}(t)$  reservation wage (increasing)
  - 2 T such that  $\tilde{W}(t) = V^*(t)$ ,  $\int_0^T W^*(t)e^{-rt}dt = \int_0^T V^*(t)e^{-rt}dt$



#### Mandatory Retirement (Waldman, 1984)

- two cheating:  $\tilde{g}(t)$  (bankrupt),  $\theta_i \sim f(\theta_i)$  worker's benefit with cost c(t)
- expected rent:

$$R(t) = e^{rt} \int_t^T \left\{ W^*(\tau) - \tilde{W}(\tau) - \tilde{g}(\tau)e^{r\tau} \int_\tau^T \left[ W^*(\delta) - \tilde{W}(\delta) \right] e^{-r\delta} d\delta \right\} e^{-r\tau} d\tau$$

- cheating at t:  $\theta_i > R(t)$  determines  $\tilde{f}(t)$
- $\max \int_0^T \left\{ W^*(t) + \tilde{f}(t) [\theta e^{rt} \int_t^T W^*(\tau) e^{r\tau} d\tau] \tilde{g}(t) e^{rt} \int_t^T W^*(\tau) e^{r\tau} d\tau \right\} e^{-rt} dt$ 

  - 2 the boundary condition:  $V^*(T) \tilde{f}(T)c(T) = \tilde{W}(T)$
- Important Insights:
  - **1** Mandatory:  $W^*(T) > \tilde{W}(T)$ , Steeper Wage Path  $\Rightarrow$  Less Shirking
  - 2)  $\tilde{g}(t)$  increases: higher payment, shorter T
  - 3 Endogenous  $\tilde{g}(t)$  tradeoff between reduced worker cheating against increased firm cheating as  $W^*(t)$  becomes more end weighted (Mandory Still)

# Further Readings

- Survey Literature: The Handbook of OE (Personnel Economics by Lazear and Oyer, Internal Labor Market by Waldman)
- Specific Models:
  - wage and promotion dyanmics: Harris and Holmstrom(1982), Weiss (1984). Rongzhu Ke et.al(2018)
  - 2 human resources practices: Becker(1962, 1964), Lazear and Rosen(1981), Rosen(1982), Bernhardt (1995), Wu and Fu(2022)
  - 3 Gibbons, Waldman, Powell