

TABLE OF CONTENTS

- Introduction and 02 Methodology
- Results
- Conclusions

PROJECT Summary

- Data Collection
- Data Wrangling
- EDA with Data Visualisation
- EDA with SQL
- Interactive Map using Folium
- Dashboard with Plotly Dash
- Predictive Models
- EDA Results and Conclusions

ABOUT THE PROJECT

The commercial space age is here, companies are making space travel affordable for everyone. Virgin Galactic is providing suborbital spaceflights. Rocket Lab is a small satellite provider. Blue Origin manufactures sub-orbital and orbital reusable rockets. Perhaps the most successful is SpaceX. SpaceX's accomplishments include: Sending spacecraft to the International Space Station. Starlink, a satellite internet constellation providing satellite Internet access. Sending manned missions to Space. One reason SpaceX can do this is the rocket launches are relatively inexpensive. SpaceX advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upwards of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage. Therefore, if we can determine if the first stage will land, we can determine the cost of a launch.

Methodology- Data Collection

We collected data from 2 sources

- SpaceX REST API This dataset gave us data about rocket used in launch, payload delivery, landing outcome etc.
 - https://github.com/Shubham2376G/trainingIBM/blob/main/jupyter_lab s_spacex_data_collection_api.ipynb
- Wikipedia Another popular data source we used to scrap Falcon 9 launch data using BeautifulSoup.
 - https://github.com/Shubham2376G/trainingIBM/blob/main/jupyter_lab s_webscraping.ipynb

Methodology- Data Wrangling

https://github.com/Shubham2376G/trainingIBM/blob/main/labs_jupyter_spacex_Data_wrangling.ipynb

Methodology-EDA with SQL

SQL queries performed includes

- Display the names of the unique launch sites in the space mission
- Display 5 records where launch sites begin with the string 'CCA'
- Display the total payload mass carried by boosters launched by NASA (CRS)
- Display average payload mass carried by booster version F9 v1.1
- List the date when the first succesful landing outcome in ground pad was acheived.
- List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- List the total number of successful and failure mission outcomes
- List the names of the booster_versions which have carried the maximum payload mass
- List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015.

https://github.com/Shubham2376G/trainingIBM/blob/main/jupyter_labs_eda_sql_coursera_sqllite.ipynb

Methodology-EDA with Visualisation

https://github.com/Shubham2376G/trainingIBM/blob/main/jupyter-labs-eda-dataviz.ipynb.jupyterlite.ipynb

Folium Map

https://github.com/Shubham2376G/trainingIBM/blob/main/lab_jupyter_launch_site_location.jupyterlite_folium.ipynb

Plotly Dashboard

Methodology-Predictive Classification

- Low Weighted payloads have more success chances than higher weighted payloads
- Success rate for spaceX launches is directly proportional to time (in year).
- KSC LC 39A launch site had the most success rate
- Orbit GEO, SSO, HEO, ES L1 has the most success rate
- SVM model has the Highest prediction accuracy as compared to other predictive models

• There is higher number of launches from site CCAFS SLC 40 as compared to other sites

Lower payloads shows high success rate at all the sites

Orbit GEO, SSO, HEO, ES L1 has the most success rate

Success rate for spaceX launches is directly proportional to time (in year)

Display the names of the unique launch sites in the space mission

launch_site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

Display 5 records where launch sites begin with the string 'CCA'

DATE	time_utc_	booster_version	launch_site	payload	payload_mass_kg_	orbit	customer	mission_outcome	landing_outcome
2010-06- 04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010-12- 08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012-05- 22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012-10- 08	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013-03- 01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

- 45596
- Display average payload mass carried by booster version F9 v1.1
 - 0 2928.40
- List the date when the first successful landing outcome in ground pad was acheived.
 - 0 2015-12-22
- List the total number of successful and failure mission outcomes
 - 0 100

• List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

booster_version

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

List the names of the booster_versions which have carried the maximum payload mass

booster_version

F9 B5 B1048.4

F9 B5 B1049.4

F9 B5 B1051.3

F9 B5 B1056.4

F9 B5 B1048.5

F9 B5 B1051.4

F9 B5 B1049.5

F9 B5 B1060.2

F9 B5 B1058.3

F9 B5 B1051.6

F9 B5 B1060.3

F9 B5 B1049.7

Confusion Matrix : All models have almost same accuracy

Conclusion

- SVM model has the Highest prediction accuracy as compared to other predictive models
- Low Weighted payloads have more success chances than higher weighted payloads
- Success rate for spaceX launches is directly proportional to time (in year).
- KSC LC 39A launch site had the most success rate
- Orbit GEO, SSO, HEO, ES L1 has the most success rate

