UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE ESCOLA DE CIÊNCIA E TECNOLOGIA

PROJETOS COM MICROCONTROLADORES E MINICOMPUTADORES DOCENTES: MARCELO BORGES NOGUEIRA E MARCONI CÂMARA RODRIGUES

DISCENTES: HELDER MARCOS DANTAS DE MEDEIROS E WESLEY BRITO DA SILVA

COLEIRA AUTOMÁTICA PARA CÃES CEGOS

INTRODUÇÃO

A visão é um sentido importante tanto para os seres humanos como para os animais. No caso dos cães, a visão é para se situar e para se comunicar, porém, alguns acontecimentos podem cessar essas percepções. Segundo Barrie, 1979, a cegueira ataca os animais das mais diversas raças, idades e portes, podendo ser causadas por consequências de doenças como glaucomas, catarata, deslocamento de retina, diabetes, hipertensão, tumores, infecções de retina, herança genética ou até mesmo acidentes.

A falta da visão impõe novos desafios aos cães que precisaram aprender a se orientar sem se bater, tropeçar ou cair. Haja vista, que os acidentes podem causar lesões graves nos animais.

OBJETIVO

Desenvolver uma coleira para cães cegos, visando propiciar uma melhor qualidade de vida para esses animais. O equipamento elaborado foi baseado na versão do produto de mercado da empresa Blindog, criada por Launa Wandecy Pereira Silva.

FUNCIONAMENTO

A coleira aqui construída possui no seu protótipo um sensor ultra sônico HC-SR04, conectado a placa micro controladora arduino pro-mini , que será alimentada por uma bateria de 9v e, terá também, um vibrador conectado. Ao se aproximar dos obstáculos como móveis, paredes entre outros, o sensor irá detectar e enviará os dados lidos para a placa pro mine, a qual acionara o vibrador. Depois de alguns dias usando coleira ultra sônica o cão terá mapeado todo os obstáculos existentes no seu ambiente passando a circular com segurança. Isso trará mais independência e qualidade de vida para o cão.

COMPONENTES E METÓDOS

Se seguir as instruções desse relatório poderá construir uma coleira ultra sônica para cão. A seguir será passada toda lista de componentes e materiais que foram utilizados nesse projeto, além do passo a passo com ilustrações projeto.

COMPONENTES:

- 1 Arduino pro mini;
- 1 Bateria de 9 volts;
- 1 Mini Motor Vibracall;
- 10 cm de fio azul para o arduino;
- 10 cm de fio vermelho para o arduino;
- 1 sensor ultra sônico HR-SR04;
- 1 interruptor chave gangorra 3 terminais;
- Diversos palitos de picolés.

OBJETOS UTILIZADOS:

- Ferro de solda;
- Estanho para solda;

IMAGENS

Ferro de Solda 40 Watts

Mini Motor Vibracall

Arduino Pro-Mini

Fio Azul e Vermelho

Bateria 9 Volts

Estanho

Sensor Ultrassônico HC-SR04

Interruptor Chave Gangorra 3 Terminais

Palitos de Picolé

A maioria dos componentes foram comprados na "natalmarks". Os materiais foram soldados e montados pela equipe.

MONTAGEM:

Coleira Pré-Montada

Coleira Inteligente Estabelecida Em Seu Recipiente

Circuito Utilizado

CÓDIGO:

O código desenvolvido pela equipe é descrito a seguir:

```
int motor = 3;
int focinho = 15;
#include <Ultrasonic.h>
Ultrasonic ultrassom(8, 7)
long distancia;
void setup() {
```

```
Serial.begin(9600);
 pinMode(motor, OUTPUT);
}
void loop()
 distancia = ultrassom.Ranging(CM
 Serial.print(distancia);
 Serial.println("cm");
 if (distancia <= focinho) {
  analogWrite(motor, 0);
 }
 if (distancia > 15 && distancia <= 17) {
  analogWrite(motor, 255);
 if (distancia > 17 && distancia <= 20) {
  analogWrite(motor, 190);
 }
 if (distancia > 20 && distancia <= 22) {
  analogWrite(motor, 160);
 if (distancia > 22 && distancia <= 25) {
  analogWrite(motor, 130);
 }
 if (distancia > 25 && distancia <= 26) {
  analogWrite(motor, 120);
 }
 if (distancia > 26 && distancia <= 27) {
  analogWrite(motor, 110);
 if (distancia > 27 && distancia <= 28) {
  analogWrite(motor, 100);
 }
 if (distancia > 28 && distancia <= 29) {
```

```
analogWrite(motor, 85);
}
if (distancia > 29 && distancia <= 30) {
    analogWrite(motor, 75);
}
if (distancia > 30 && distancia <= 31) {
    analogWrite(motor, 50);
}
if (distancia > 31 && distancia <= 32) {
    analogWrite(motor, 40);
}

if (distancia > 32) {
    analogWrite(motor, 0);
}
delay(100);
}
```

CONSIDERAÇÕES FINAIS

Espera-se que esse equipamento possa contribuir para a melhoria da qualidade de vida desses animais, uma vez que a ausência da visão afeta a autoconfiança e até o seu próprio desenvolvimento.

REFERÊNCIAS

(Rio Grande do Norte). Blindog. Disponível em: https://www.blindog.com.br/>. Acesso em: 22 nov. 2018.

SILVA, Luana Wandecy Pereira. **Blindog: coleira inteligente para cães cego.** 2018. Disponível em: https://repositorio.ufrn.br/jspui/handle/123456789/25392>. Acesso em: 22 nov. 2018.

THOMSEN, Adilson. **Como utilizar o sensor ultrasônico HC-SR04.** 2015. Disponível em: http://buildbot.com.br/blog/como-utilizar-o-sensor-ultrasonico-hc-sr04/. Acesso em: 22 nov. 2018.