A Appendix

A.1 Proofs

 $\begin{array}{ll} \textbf{Lemma 1.} & \textit{If mbody}(\mathfrak{m}, I_{d}, I_{s}) = (J, \overline{I_{x}} \ \overline{x}, I_{e} \ e_{0}), \ \textit{then} \ \overline{x} : \overline{I_{x}}, \textit{this} : J \vdash e_{0} : I_{0} \\ \textit{for some} \ I_{0} <: I_{e}. \end{array}$

Proof. By the definition of mbody, the target method m is found in J. By the method typing rule (T-METHOD), there exists some $I_0 <: I_e$ such that $\bar{x} : \bar{I}_x$, this: $J \vdash e_0 : I_0$.

Lemma 2 (Weakening). *If* $\Gamma \vdash e : I$, *then* $\Gamma, x : J \vdash e : I$.

Proof. Straightforward induction.

Proof. Since mbody(m, J, J) is defined, by (T-INTF) we derive that mbody(m, I, J) is also defined. Suppose that

$$\begin{split} & \texttt{findOrigin}(\mathfrak{m},J,J) = \{I_0\} \\ & \texttt{findOverride}(\mathfrak{m},J,I_0) = \{K\} \\ & \texttt{findOrigin}(\mathfrak{m},I,J) = \{I_0'\} \\ & \texttt{findOverride}(\mathfrak{m},I,I_0') = \{K'\} \end{split}$$

Below we use $I[\mathfrak{m}\uparrow J]$ to denote the type of method \mathfrak{m} defined in I that overrides J. We have to prove that $K'[\mathfrak{m}\uparrow I'_0]=K[\mathfrak{m}\uparrow I_0]$. Two facts:

 A. By (T-INTF), can0verride ensures that an override between any two original methods preserves the method type. Formally,

$$I_1 <: I_2 \ \Rightarrow \ I_1[\mathfrak{m} \uparrow I_1] = I_2[\mathfrak{m} \uparrow I_2]$$

- B. By (T-METHOD) and (T-ABSMETHOD), any partial override also preserves method type. Formally,

$$I_1 <: I_2 \Rightarrow I_1[\mathfrak{m} \uparrow I_2] = I_2[\mathfrak{m} \uparrow I_2]$$

By definition of findOverride, $K \ll I_0$, $K' \ll I'_0$. By Fact B,

$$K[\mathfrak{m}\uparrow I_0]=I_0[\mathfrak{m}\uparrow I_0]\quad K'[\mathfrak{m}\uparrow I_0']=I_0'[\mathfrak{m}\uparrow I_0']$$

Hence it suffices to prove that $I_0'[m \uparrow I_0'] = I_0[m \uparrow I_0]$. Actually when calculating findOrigin(m, J, J), by the definition of findOrigin we know that $I_0 <: J$ and $I_0[m$ override $I_0]$ is defined. So when calculating findOrigin(m, I, J) with I <: J, I_0 should also appear in the set before pruned, since the conditions are again satisfied. But after pruning, only I_0' is obtained, by definition of prune it implies $I_0' <: I_0$. By Fact A, the proof is done.

Lemma 4 (Term Substitution Preserves Typing). If $\Gamma, \overline{x} : \overline{I_x} \vdash e : I$, and $\Gamma \vdash \overline{y} : \overline{I_x}$, then $\Gamma \vdash [\overline{y}/\overline{x}]e : I$.

Proof. We prove by induction. The expression e has the following cases:

Case Var. Let e = x. If $x \notin \overline{x}$, then the substitution does not change anything. Otherwise, since \overline{y} have the same types as \overline{x} , it immediately finishes the case.

Case Invk. Let $e = e_0.m(\overline{e})$. By (T-Invk) we can suppose that

$$\begin{split} \Gamma, \overline{x} : \overline{I_x} \vdash e_0 : I_0 \quad \mathtt{mbody}(m, I_0, I_0) &= (_, \overline{J}_, I_) \\ \Gamma, \overline{x} : \overline{I_x} \vdash \overline{e} : \overline{I_e} \quad \overline{I_e} <: \overline{J} \quad \Gamma, \overline{x} : \overline{I_x} \vdash e : I \end{split}$$

By induction hypothesis,

$$\Gamma \vdash [\overline{y}/\overline{x}]e_0 : I_0 \quad \Gamma \vdash [\overline{y}/\overline{x}]\overline{e} : \overline{I_e}$$

Again by (T-Invk), $\Gamma \vdash [\overline{y}/\overline{x}]e : I$.

Case New. Straightforward.

Case Anno. Straightforward by induction hypothesis and (T-ANNO).

Proof for Theorem 1

Proof.

Case S-Invk. Let

$$\begin{split} e &= ((\mathtt{J})\mathtt{new}\; \mathtt{I}()).\mathtt{m}(\overline{\nu}) \quad \Gamma \vdash e : \mathtt{I}_e \\ e' &= (\mathtt{I}_{e_0})[\overline{(\mathtt{I}_{x})\nu}/\overline{x}, (\mathtt{I}_0)\mathtt{new}\; \mathtt{I}()/\mathtt{this}]e_0 \\ \mathtt{mbody}(\mathtt{m},\mathtt{I},\mathtt{J}) &= (\mathtt{I}_0,\overline{\mathtt{I}_x}\;\overline{x},\mathtt{I}_{e_0}\;e_0) \end{split}$$

Since mbody(m, I, J) is defined, the definition of mbody ensures that I <: J. And since e is well-typed, by (T-INVK),

$$\Gamma \vdash \overline{\nu} : \overline{I_{\nu}} \quad \overline{I_{\nu}} <: \overline{I_{x}}$$

By the rules (T-ANNO) and (T-NEW),

$$\Gamma \vdash \overline{(I_x)\nu} : \overline{I_x} \quad \Gamma \vdash (I_0) \text{new } I() : I_0$$

On the other hand, by Lemma ??,

$$\overline{x}:\overline{I_x}$$
, this: $I_0\vdash e_0:I'_{e_0}$ $I'_{e_0}<:I_{e_0}$

By Lemma ??,

$$\Gamma, \overline{x} : \overline{I_x}, \text{this} : I_0 \vdash e_0 : I'_{e_0}$$

Hence by Lemma ??, the substitution preserves typing, thus

$$\Gamma \vdash [\overline{(I_x)\nu}/\overline{x}, (I_0)\mathtt{new}\ I()/\mathtt{this}]e_0: I'_{e_0}$$

Since $I_{e_0}' <: I_{e_0}$, the conditions of (T-Anno) are satisfied, hence $\Gamma \vdash e' : I_{e_0}$. Now we only need to prove that $I_{e_0} = I_e$. Since I_{e_0} is from mbody(m, I, J), whereas I_e is from mbody(m, J, J), by the rule (T-INVK) on e. Since I <: J, by Lemma ??,
$$\begin{split} I_{e_0} &= I_e. \\ \textbf{Case C-Receiver.} & \text{Straightforward induction.} \end{split}$$

Case C-Args. Straightforward induction.

Case C-StaticType. Immediate by (T-Anno).

Case C-FReduce. Immediate by (T-Anno) and induction.

Case C-AnnoReduce. Immediate by (T-Anno) and transitivity of <:.

Proof for Theorem 2

Proof. Since e is well-typed, by (T-INVK) and (T-ANNO) we know that

By (T-INTF), mbody(m, I, J) is also defined, and the type checker ensures the expected number of arguments.

On the other hand, since I <: J, by the definition of findOrigin,

$$findOrigin(m, I, J) \subseteq findOrigin(m, I, I)$$

By (T-New), can Override(I) = True. By the definition of can Override, any $J_0 \in \text{findOrigin}(m, I, I)$ satisfies that $\text{findOverride}(m, I, J_0)$ contains only one interface, in which the m that overrides J_0 is a concrete method. Therefore mbody(m, I, J) also provides a concrete method, which finishes the proof.