Inestabilidades barotropicas y baroclinicas

Mathurin A. Choblet

Facultad de Física USC

15 de enero 2020

Contenido

- Inestabilidades barotropicas
 - Ondas en un flujo con cizalla horizontal
- Criterios para la inestabilidad
 - Rayleigh
 - Fjørtoft
 - Velocidad de crecimiento de las inestabilidades
- 3 Inestabilidades baroclinicas

Inestabilidades barotropicas

- fluido barotropico: $\rho = \rho(p)$
- ullet inestabilidades causadas por cizalla horizontal de $ec{v}$

Ejemplo: Ondas de Rossby

Fuente: GFD lecture by Nick Hall, University of Toulouse, p. 33

Ondas en un flujo con cizalla

Ecuaciones del momento lineal

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} - fv = -\frac{1}{\rho_0} \frac{\partial p}{\partial x}$$
$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} - fu = -\frac{1}{\rho_0} \frac{\partial p}{\partial y}$$
$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

Modelo del flujo

$$u = \bar{u}(y) + u'(x, y, t)$$

$$v = v'(x, y, t)$$

$$p = \bar{p}(y) + p'(x, y, t)$$

Approximacion lineal: $u'\frac{\partial u'}{\partial x}\approx 0, f=2\Omega\sin\phi\approx f_0+\beta y$

Ecuaciones del momento lineal ajustadas

$$\begin{split} \frac{\partial u'}{\partial t} + u' \frac{\partial u'}{\partial x} + v' \frac{\partial \bar{u}}{\partial y} - fv' &= -\frac{1}{\rho_0} \frac{\partial \rho'}{\partial x} \\ \frac{\partial v'}{\partial t} + u' \frac{\partial v'}{\partial x} + v' \frac{\partial v'}{\partial y} - fu' &= -\frac{1}{\rho_0} \frac{\partial \rho'}{\partial y} \end{split}$$

Unir las ecuaciones: derivar con respeto a x y y

Introdución de una función de corriente para las turbulencias

$$\frac{\partial u'}{\partial x} + \frac{\partial v'}{\partial y} = 0$$

$$\rightarrow u' = -\frac{\partial \psi}{\partial y}, v' = +\frac{\partial \psi}{\partial x}$$

Después de simplificaciones matematicas obtenemos para la funcion de corriente:

$$\left(\frac{\partial}{\partial t} + \bar{u}\right) \Delta \psi + \left(\beta - \frac{d^2 \bar{u}}{dy^2}\right) \psi = 0$$

Solución sinusoidal

$$\psi(x,y,t) = \phi(y)e^{ik(x-ct)}$$

Ecuación de Rayleigh

$$\frac{d^2\phi}{dy^2} - k^2\phi + \frac{\beta - d^2\bar{u}/dy^2}{\bar{u}(y) - c}\phi = 0$$

Condiciones de contorno:

• flujo entre dos paredes $\rightarrow \phi(y=0) = \phi(y=L) = 0$

Criterios para la inestabilidad

Ecuación de Rayleigh

$$\frac{d^{2}\phi}{dy^{2}} - k^{2}\phi + \frac{\beta - d^{2}\bar{u}/dy^{2}}{\bar{u}(y) - c}\phi = 0$$

- Estudio general de la ecuacion de Rayleigh difícil
- ¿Para que tipo de $\bar{u}(y)$, $c = c_r + i c_i$ tiene parte imaginaria?

El criterio de Rayleigh

Multiplicación por ϕ^* + integración en el área de interés

$$-\int_0^L \left(\left| \frac{d\phi}{dy} \right|^2 + k^2 |\phi|^2 \right) dy + \int_0^L \frac{\beta - d^2 \bar{u}/dy^2}{\bar{u} - c} |\phi|^2 dy = 0$$

La parte imaginaria es

$$c_i \int_0^L \left(\beta - \frac{d^2 \bar{u}}{dy^2}\right) \frac{|\phi|^2}{|\bar{u} - c|^2} dy = 0$$

Teorema de Rayleigh-Kuo

$$\beta - \frac{d^2\bar{u}}{dy^2} = \frac{d}{dy} \left(\underbrace{f_0 + \beta y - \frac{d\bar{u}}{dy}}_{Q} \right)$$

tiene que cambiar de signo \rightarrow vorticidad absoluta Q necesita extremo. Criterio necesario, no suficiente.

El criterio de Fjørtoft

Observamos la parte real de la integral anterior:

$$\int_0^L (\beta - \bar{u}_{yy}) \frac{(\bar{u} - c_r)}{|\bar{u} - c|^2} |\psi|^2 dy = \int_0^L \underbrace{\left| \frac{\partial \psi}{\partial y} \right|^2 + k^2 |\psi|^2}_{>0} dy$$

Introduciendo un zero (criterio Rayleigh) con una constante u_0 obtenemos:

$$\int_0^L (\beta - \bar{u}_{yy}) \frac{(\bar{u} - u_0)}{|\bar{u} - c|^2} |\psi|^2 dy > 0$$

Teorema de Fjørtoft

$$(\beta - \bar{u}_{yy})(\bar{u} - u_0) > 0$$

 u_0 es el valor donde $\beta - \bar{u}_{yy} = 0$.

- Condición necesaria para la inestabilidad de un flujo
- Más fuerte que el criterio de Rayleigh

Ejemplo: Perfiles $\bar{u}(y)$ estables y inestables (Fuente: Vallis p. 261)

Flujo de Poiseuille:

 \rightarrow estable según Rayleigh

Polinomio de tercer grado:

ightarrow Estable según Fjørthoft, aunque inestable según Rayleigh!

Velocidad de crecimiento de las inestabilidades

Derivación similar que antes desde la ecuación de Rayleigh:

Teorema del semicírculo de Howard (eta=0)

$$U_{min} < c_r < U_{max}$$

$$\left(c_r - \frac{U_{min} + U_{max}}{2}\right)^2 + c_i^2 \le \left(\frac{U_{max} - U_{min}}{2}\right)^2$$

Fuente: Cushman-Roisin p. 297

Inestabilidades baroclinicas

atmósfera baroclinica ≡ cizalla vertical (viento termico)

Fuente: Vallis p. 262

- Inestabilidad toma la energía de la energía potencial liberada
- Se resuelva con la aproximación synoptica...
- Responsable del transporte de calor en la atmósfera
- Las inestabilidades reales en la atmósfera llevan modos barotropicos y baroclinicos

Bibliografía

- Introduction to Geophysical Fluid Dynamics, Benoit Cushman-Roisin y Jean-Marie Beckers
- Apuntes del curso GFD de Nick Hall, University of Toulouse (también en Youtube)
- Atmospheric and Oceanic Fluid Dynamics, Geoffrey K. Vallis
- Lectures on "Introduction to Geophysical Fluid Dynamics", Pavel Berloff, Imperial College London