#### Musique Assistée par Ordinateur Informatique et techniques du spectacle vivant et de la production audiovisuelle

#### Aurélien Roux<sup>1</sup>

<sup>1</sup>AMMD - http://www.ammd.net

© A. Roux (orl@ammd.net) 20 octobre 2013 - Copyleft: ce document est une oeuvre libre, vous pouvez la copier, la diffuser et la modifier selon les termes de la Licence Art Libre

http://www.artlibre.org

20 octobre 2013

- part de l'esthétique
  - musique électronique
  - ► hip hop / musiques urbaines

- part de l'esthétique
  - musique électronique
  - hip hop / musiques urbaines
- besoin technique
  - régie son ou lumières embarquée sur une tournée,

- part de l'esthétique
  - musique électronique
  - hip hop / musiques urbaines
- besoin technique
  - régie son ou lumières embarquée sur une tournée,
- besoin promotionnel
  - réalisation d'une compilation d'artistes locaux
  - réalisation d'un teaser radio d'une programmation

- part de l'esthétique
  - musique électronique
  - hip hop / musiques urbaines
- besoin technique
  - régie son ou lumières embarquée sur une tournée,
- besoin promotionnel
  - réalisation d'une compilation d'artistes locaux
  - réalisation d'un teaser radio d'une programmation
- création et arts numériques

#### MAO?

Utilisation de machines/d'outils informatiques pour le contrôle, le traitement et la génération d'événements.

 $\Rightarrow$  Exemple d'événement : **le son**.

#### MAO : Problématiques

Synoptique des objectifs en MAO



- Machine informatique
  - Ordinateurs (PC, Mac, Raspberry Pi...),
  - ► Tablettes, smartphones...
  - Board de programmation, systèmes embarqués (Arduino, Teensy...),
  - Consoles de mixage, console lumières...

- Machine informatique
  - Ordinateurs (PC, Mac, Raspberry Pi...),
  - Tablettes, smartphones...
  - Board de programmation, systèmes embarqués (Arduino, Teensy...),
  - Consoles de mixage, console lumières...
- Interface d'acquisition / émission de données
  - carte son
  - carte vidéo.
  - module DMX...

- Machine informatique
  - Ordinateurs (PC, Mac, Raspberry Pi...),
  - Tablettes, smartphones...
  - Board de programmation, systèmes embarqués (Arduino, Teensy...),
  - Consoles de mixage, console lumières...
- ► Interface d'acquisition / émission de données
  - carte son
    - préamplification,
    - conversion analogique/numérique.
  - carte vidéo.
  - module DMX...

- Machine informatique
  - Ordinateurs (PC, Mac, Raspberry Pi...),
  - ► Tablettes, smartphones...
  - Board de programmation, systèmes embarqués (Arduino, Teensy...),
  - Consoles de mixage, console lumières...
- Interface d'acquisition / émission de données
  - carte son
    - préamplification,
    - conversion analogique/numérique.
  - carte vidéo,
  - module DMX...
- Diffusion
  - façade de diffusion son,
  - projecteurs lumières et blocs de puissance électrique,
  - vidéoprojecteur,
  - machines mécaniques...



#### La machine informatique : un espace limité

- ▶ Un événement réel existe à tous les instants ⇒ infini.
- ► Sur Terre, les systèmes sont de tailles *finies*.
  - ⇒ Choix dans les données de l'événement.

#### Hardware - Acquisition



#### Hardware - Acquisition



#### Hardware - Génération



#### Hardware - Génération





#### Enregistrement

Action de stocker le son sur un support en vue d'une utilisation immédiate ou différée.

- mono
  - peu fidèle.

#### Enregistrement

Action de stocker le son sur un support en vue d'une utilisation immédiate ou différée.

- mono
  - peu fidèle.
- stéréo
  - restitue une image sonore + ou réaliste de l'événement,
  - convient pour :
    - diffusion radio,
    - petites formes acoustiques,
    - conférences...

#### Enregistrement

Action de stocker le son sur un support en vue d'une utilisation immédiate ou différée.

- mono
  - peu fidèle.
- stéréo
  - restitue une image sonore + ou réaliste de l'événement,
  - convient pour :
    - ► diffusion radio,
    - petites formes acoustiques,
    - conférences
- multipistes
  - stocke les instruments dans des pistes séparées (fichiers séparés),
  - ▶ isolation des pistes,
  - mixage des différentes pistes en aval,
  - correction individuelle des pistes.



#### Instruments virtuels

- ▶ Instruments *joués* par la machine informatique
  - ► lecture d'échantillons sonores (samplers),
  - synthèse sonore (synthétiseurs).

#### Instruments virtuels

- ▶ Instruments *joués* par la machine informatique
  - lecture d'échantillons sonores (samplers),
  - synthèse sonore (synthétiseurs).
- Nécessité d'une partition (MIDI, par ex.) ou d'un contrôle (par ex. clavier maître) en amont pour faire jouer l'instrument.

#### Instruments virtuels

- ▶ Instruments *joués* par la machine informatique
  - lecture d'échantillons sonores (samplers),
  - synthèse sonore (synthétiseurs).
- Nécessité d'une partition (MIDI, par ex.) ou d'un contrôle (par ex. clavier maître) en amont pour faire jouer l'instrument.
- Les paramètres de l'instrument peuvent être contrôlés à tout moment ⇒ pour une partition donnée, la sortie audio n'est pas définitive.

- ► Placement d'événements
  - ▶ le long d'une *timeline*,
  - sur/dans différentes pistes.

Le cas du son

- Placement d'événements
  - ▶ le long d'une *timeline*,
  - sur/dans différentes pistes.
- Evénements audio (enregistrements, samples...)
- ► Partitions et/ou contrôles d'instruments virtuels

- Placement d'événements
  - ▶ le long d'une *timeline*,
  - sur/dans différentes pistes.
- ► Evénements audio (enregistrements, samples...)
- Partitions et/ou contrôles d'instruments virtuels
- Mixage (stéréo, quadriphonique, 5.1, 7.1, ambisonique...)
- Diffusion (idem)

- Placement d'événements
  - ▶ le long d'une *timeline*,
  - sur/dans différentes pistes.
- Evénements audio (enregistrements, samples...)
- Partitions et/ou contrôles d'instruments virtuels
- Mixage (stéréo, quadriphonique, 5.1, 7.1, ambisonique...)
- Diffusion (idem)
- Peu ou pas d'interaction dans le cas d'une utilisation en live (déroulement de la timeline)

- Jeu synchrone
  - d'événements audio (enregistrement, samples, boucles) dans un tableau,
  - ▶ de partitions et/ou de contrôles d'instruments virtuels.

- Jeu synchrone
  - d'événements audio (enregistrement, samples, boucles) dans un tableau,
  - de partitions et/ou de contrôles d'instruments virtuels.
- ► Placement des événements/instrument virtuels dans différentes pistes

- ▶ Jeu synchrone
  - d'événements audio (enregistrement, samples, boucles) dans un tableau,
  - de partitions et/ou de contrôles d'instruments virtuels.
- Placement des événements/instrument virtuels dans différentes pistes
- Exemple : boîte à rythmes (MPC en hip hop)

- Jeu synchrone
  - d'événements audio (enregistrement, samples, boucles) dans un tableau,
  - ▶ de partitions et/ou de contrôles d'instruments virtuels.
- ► Placement des événements/instrument virtuels dans différentes pistes
- Exemple : boîte à rythmes (MPC en hip hop)
- Mixage et diffusion live ou différé

- Jeu synchrone
  - d'événements audio (enregistrement, samples, boucles) dans un tableau,
  - de partitions et/ou de contrôles d'instruments virtuels.
- ► Placement des événements/instrument virtuels dans différentes pistes
- Exemple : boîte à rythmes (MPC en hip hop)
- Mixage et diffusion live ou différé
- ► Grande capacité d'interaction en live (choix des *séquences* jouées ou non)

- Jeu synchrone
  - d'événements audio (enregistrement, samples, boucles) dans un tableau,
  - de partitions et/ou de contrôles d'instruments virtuels.
- Placement des événements/instrument virtuels dans différentes pistes
- Exemple : boîte à rythmes (MPC en hip hop)
- Mixage et diffusion live ou différé
- Grande capacité d'interaction en live (choix des séquences jouées ou non)
- Bouclage live (live-looping): enregistrement des boucles audio/partitions en direct et restitution/traitement immédiats
  - Camille,
  - ► Ezra,
  - Nosfel,
  - Renaud Garcia Fons.



# Les effets (FX)

Traitements directs ou différés des événements.

- ▶ Dynamique (compresseur, limiteur, expandeur...)
- ► Temporel (delay, reverb, reverse...)
- Fréquentiel (égalisation, filtrage, transposition, octaver...)
- Modulation (amplitude, fréquentiel...)
- Synthèse granulaire, side-chaining, génération...

#### Arts numériques? Esotérique?

- ► Programmation graphique
  - Pure Data, Max MSP, Processing, SuperCollider...
  - acquisition/traitement/génération/concomittance de n'importe quel type d'événements (audio, lumières, vidéos, mouvements...) avec interaction entre eux possibles,
  - très forte modularité,
  - interfaçage aisé de nombreux périphériques (programmation board, tablettes, wii-mote...)

#### Arts numériques? Esotérique?

- Programmation graphique
  - Pure Data, Max MSP, Processing, SuperCollider...
  - acquisition/traitement/génération/concomittance de n'importe quel type d'événements (audio, lumières, vidéos, mouvements...) avec interaction entre eux possibles,
  - très forte modularité,
  - interfaçage aisé de nombreux périphériques (programmation board, tablettes, wii-mote...)
- Board de programmation (Arduino, Teensy...)
  - permet d'acquérir/générer des signaux depuis de nombreux contrôleurs/vers de nombreux actionneurs :
    - capteur de position, de luminosité, microphone, accéléromètre...
    - vidéoprojecteur, projecteur lumières, synthétiseurs, moteur pas à pas, robot, machines...

#### Arts numériques? Esotérique?

- ► Programmation graphique
  - Pure Data, Max MSP, Processing, SuperCollider...
  - acquisition/traitement/génération/concomittance de n'importe quel type d'événements (audio, lumières, vidéos, mouvements...) avec interaction entre eux possibles,
  - très forte modularité,
  - interfaçage aisé de nombreux périphériques (programmation board, tablettes, wii-mote...)
- ▶ Board de programmation (Arduino, Teensy...)
  - permet d'acquérir/générer des signaux depuis de nombreux contrôleurs/vers de nombreux actionneurs :
    - capteur de position, de luminosité, microphone, accéléromètre...
    - vidéoprojecteur, projecteur lumières, synthétiseurs, moteur pas à pas, robot, machines...
- Vj-ing

### Type de données : signal audio

#### **Définitions**

- ► signal audio :
  - variation temporelle d'une quantité physique
  - bande fréquentielle comprise dans {20Hz – 20kHz}
- format de l'information :
  - pression acoustique (micro)
  - tension électrique (câbles)
  - données binaires bits (8 par octets)

### Type de données : signal audio

#### Définitions

- ► signal audio :
  - variation temporelle d'une quantité physique
  - bande fréquentielle comprise dans {20Hz - 20kHz}
- format de l'information :
  - pression acoustique (micro)
  - tension électrique (câbles)
  - données binaires bits (8 par octets)

#### **Fichiers**

- ► WAV (PCM / AIFF)
  - ► 24 bits : (16.10<sup>6</sup>) / 16 bits : 65536
  - 44.1 kHz, 48 kHz, 88.2 kHz, ...
- ► MP3/OGG
  - compression avec pertes
  - format mp3 sous brevet
- ► FLAC
  - format sans perte
  - compactage

## Type de données : messages MIDI

- Définitions
  - ▶ message MIDI :
    - message normalisé
    - suite d'événements MIDI
  - canaux MIDI:
    - 1. 16 canaux disponibles en émission.
    - chaque message peut être émis ou reçu sur un ou plusieurs canaux,

## Type de données : messages MIDI

- Définitions
  - ▶ message MIDI :
    - message normalisé
    - suite d'événements MIDI
  - canaux MIDI:
    - 1. 16 canaux disponibles en émission.
    - chaque message peut être émis ou reçu sur un ou plusieurs canaux,

- Événements MIDI
  - note on/off
    - play/stop notes
    - hauteur [1,128], vélocité[1,128]
  - pitch bend
    - modulation de hauteur
    - pitch (offset) [-8192,8192]
  - control change
    - modification paramètres
    - numéro [1,128], valeur [1,128]
  - program change
    - changement de set
    - numéro [1,128]

## Type de données : autres protocoles

- ► Open Sound Control (OSC) : transport d'informations dans l'ordinateur et sur le réseau
- ► DMX : transport d'informations pour la gestion des lumières en scénographie
- ArtNet : transport d'informations pour la lumières via le réseau,
- ▶ Ethersound / Cobranet... : transport de son via le réseau

### Pro-Tools

- Standard en studio (historique)
- 3 versions
  - Express nombreuses limitations packagé "gratuitement" avec certaines cartes son
  - XX version de base, limitation de fonctionnalités, peu de plugins - 600 euros
  - ➤ XX HD version HD, limitation de fonctionnalités moindre, peu de plugins 600 euros (mise à niveau)
  - ▶ mise à jour : 1000 euros
- ► Mixage audio, séquenceur/arrangeur, instruments virtuels
- Relativement inadapté pour des applications live
- Compatible Windows, Mac OS

### Logic Pro

- ▶ 200 euros
- ► Mixage audio, séquenceur/arrangeur, instruments virtuels
- ► Relativement inadapté pour des applications live
- Compatible Mac OS (Windows pour les anciennes versions)

### Reaper

- 3 versions
  - ► Full license 200 euros
  - Discount License 60 euros
  - Evaluation (60 jours)
- Mixage audio, séquenceur/arrangeur, instruments virtuels
- Relativement inadapté pour des applications live
- Compatible Windows, Mac OS

### Cubase

- Standard de l'autoproduction & musique électronique
- 3 versions
  - ► Full version 600 euros
  - Artist 300 euros limitations de fonctionnalités
  - ► Elements 100 euros nombreuses limitations
- Mixage audio, séquenceur/arrangeur, instruments virtuels
- ► Très adapté pour musique électronique
- Relativement inadapté pour des applications live
- Compatible Windows, Mac OS

### Ableton Live

- Nouvelle référence en musique électronique
- 4 versions
  - Suite 600 euros (inclue une version de Max)
  - Standard 350 euros limitations de fonctionnalités
  - Intros 80 euros nombreuses limitations
  - Démo très nombreuses limitations et durée limitée (30 jours)
- Mixage audio, séquenceur/arrangeur, instruments virtuels, bouclage live
- Très adapté pour musique électronique
- Désigné pour des applications live
- Compatibilité avec applications extérieures via ReWire
- Compatible Windows, Mac OS

### EnergyXT

- ▶ 39 euros (mises à jour gratuite
- Mixage audio, séquenceur/arrangeur, instruments virtuels, bouclage live, patchage live
- Très adapté pour musique électronique
- Désigné pour des applications live
- Compatibilité avec applications extérieures et utilisable en tant que plugin ou standalone.
- Compatible Windows, Mac OS, GNU/Linux

### Liberté

First, the freedom to copy a program and redistribute it to your neighbors, so that hey can use it as well as you. Second, the freedom to change a program, so that you can control it instead of it controlling you; for this, the source code must be made available to you.

# Définitions (1)

#### 4 libertés

- ▶ liberté 0 : liberté d'exécuter le programme, pour tous les usages
- ▶ liberté 1 : liberté d'étudier le code source de l'adapter à ses besoins
- ▶ liberté 2 : liberté de redistribuer des copies
- ▶ liberté 3 : liberté d'améliorer les programmes et de publier ces améliorations

# Définitions (2)

#### des licences

- domaine public : renoncement aux droits d'auteurs
- BSD : 4 libertés assurées peu de restrictions (citation de l'auteur)
- ► Copyleft : 4 libertés assurées pour un programme et pour tout ce qui en découlera ⇒ VIRALITÉ

### Informatique & Technique du spectacle

Logiciels libres
Historique

## Historique (1)

un fondateur



### des dates

➤ Avant 1980 : le logiciel ne dépend pas du droit d'auteur, le code source est livré avec les logiciels.

- ➤ Avant 1980 : le logiciel ne dépend pas du droit d'auteur, le code source est livré avec les logiciels.
- ▶ 1980 : les codes se ferment, les logiciels deviennent privateurs.

- ➤ Avant 1980 : le logiciel ne dépend pas du droit d'auteur, le code source est livré avec les logiciels.
- ▶ 1980 : les codes se ferment, les logiciels deviennent privateurs.
- ▶ 1984 : naissance du projet GNU (GNU's Not Unix), et de l'éditeur de texte Emacs.

- ➤ Avant 1980 : le logiciel ne dépend pas du droit d'auteur, le code source est livré avec les logiciels.
- ▶ 1980 : les codes se ferment, les logiciels deviennent privateurs.
- ▶ 1984 : naissance du projet GNU (GNU's Not Unix), et de l'éditeur de texte Emacs.
- ▶ 1985 : fondation de la Free Software Foundation / Devise : free software free society

- ➤ Avant 1980 : le logiciel ne dépend pas du droit d'auteur, le code source est livré avec les logiciels.
- ▶ 1980 : les codes se ferment, les logiciels deviennent *privateurs*.
- ▶ 1984 : naissance du projet GNU (GNU's Not Unix), et de l'éditeur de texte Emacs.
- ▶ 1985 : fondation de la Free Software Foundation / Devise : free software free society
- ▶ 1991 : création du noyau Linux

- ➤ Avant 1980 : le logiciel ne dépend pas du droit d'auteur, le code source est livré avec les logiciels.
- ▶ 1980 : les codes se ferment, les logiciels deviennent privateurs.
- ▶ 1984 : naissance du projet GNU (GNU's Not Unix), et de l'éditeur de texte Emacs.
- ▶ 1985 : fondation de la Free Software Foundation / Devise : free software - free society
- ▶ 1991 : création du noyau Linux
- ▶ 1992 : mise en place du premier système d'exploitation libre : GNU/Linux

#### des dates

- ➤ Avant 1980 : le logiciel ne dépend pas du droit d'auteur, le code source est livré avec les logiciels.
- ▶ 1980 : les codes se ferment, les logiciels deviennent privateurs.
- ▶ 1984 : naissance du projet GNU (GNU's Not Unix), et de l'éditeur de texte Emacs.
- ▶ 1985 : fondation de la Free Software Foundation / Devise : free software - free society
- 1991 : création du noyau Linux
- ▶ 1992 : mise en place du premier système d'exploitation libre : GNU/Linux
- 2002 : début du développement des outils cruciaux pour la MAO

28/49

### des exemples

► Mozilla Firefox/Thunderbird (navigateur web et client mail)

└ Hist ori que

- ► Mozilla Firefox/Thunderbird (navigateur web et client mail)
- OpenOffice.org (suite bureautique)

- Mozilla Firefox/Thunderbird (navigateur web et client mail)
- OpenOffice org (suite bureautique)
- Apache (serveur web)

- ► Mozilla Firefox/Thunderbird (navigateur web et client mail)
- OpenOffice org (suite bureautique)
- Apache (serveur web)
- MySQL/PostgreSQL (bases de données)

- Mozilla Firefox/Thunderbird (navigateur web et client mail)
- OpenOffice org (suite bureautique)
- Apache (serveur web)
- ► MySQL/PostgreSQL (bases de données)
- ▶ PureData, Ardour, Jackd, SooperLooper, SuperCollider...

### des répercussions

► Documentation libre

### des répercussions

- Documentation libre
- Partage de connaissances / écriture communautaire (Wikipedia)

### des répercussions

- Documentation libre
- Partage de connaissances / écriture communautaire (Wikipedia)
- ► Art & Licences de libre diffusion (Licence Art Libre, Creative Commons)

-Avantages / Inconvénients / Discussion

## Avantages / Inconvénients

des échanges, des réflexions



Informatique & Technique du spectacle

—Principes et éléments de base de la MAO sous GNU/Linux

— Préalables : Apparence, interfaces, usage

### **Précisions**

### Ce que GNU/Linux n'est pas

- ► GNU/Linux n'est pas un type d'interface graphique
- ► GNU/Linux n'est pas une ligne de commande

Préalables : Apparence, interfaces, usage

## Interfaces graphiques (1)

### Démarrage (Mac Intel)



Préalables : Apparence, interfaces, usage

## Interfaces graphiques (1)

### Démarrage (PC)

```
Ubuntu 8.04, kernel 2.6.24-16-generic
Ubuntu 8.04, kernel 2.6.24-16-generic (recovery mode)
Ubuntu 8.04. memtest86+
 Use the ↑ and ↓ keys to select which entry is highlighted.
 Press enter to boot the selected OS. 'e' to edit the
 commands before booting, or 'c' for a command-line.
```

Préalables : Apparence, interfaces, usage

## Interfaces graphiques (2)

Gestionnaire de login (avec choix du nom d'utilisateur)



Préalables : Apparence, interfaces, usage

## Interfaces graphiques (2)

Gestionnaire de login (sans choix du nom d'utilisateur)



Préalables : Apparence, interfaces, usage

## Interfaces graphiques (3)

#### Le système graphique

- ► **Serveur X** : construit l'image affichée sur le moniteur
- ▶ Gestionnaire de fenêtres : représente les applications sous forme de fenêtres
- ► Bureau (optionnel) : métaphore de bureau sur lequel on étale des documents

Principes et éléments de base de la MAO sous GNU/Linux

Préalables : Apparence, interfaces, usage

### Interfaces graphiques (3)

#### Gnome



- Principes et éléments de base de la MAO sous GNU/Linux
  - Préalables : Apparence, interfaces, usage

### Interfaces graphiques (3)

#### **KDE**



└─Principes et éléments de base de la MAO sous GNU/Linux

Préalables : Apparence, interfaces, usage

### Interfaces graphiques (3)

### **XFCE**



Principes et éléments de base de la MAO sous GNU/Linux

Préalables : Apparence, interfaces, usage

### Interfaces graphiques (3)

### Compiz Fusion



Préalables : Apparence, interfaces, usage

### Abstraction matérielle / Système de fichiers

- Système de fichiers en arbre
  - dossier = branche

- Tout est fichier :
  - /dev/sda : disque dur (matériel)
  - /dev/dsp : carte son
  - /dev/input/mice : souris

Préalables : Apparence, interfaces, usage

### Utilisateurs - Groupes - Permissions (1)

- Utilisateurs / Applications
- Groupes d'utilisateurs / Applications
- Permissions / privilèges

▶ r : lecture

▶ w : écriture

▶ x : exécution

#### Exemples: Is-I

\$ ls -l main tex

-rwxrwxrwx 1 toto disk 16184 jan 17 18 :06 main.tex

 $\$  ls -l /dev/dsp crw-rw—-+ 1 root audio 14, 3 jan 16 13 :21 /dev/dsp

- └─Principes et éléments de base de la MAO sous GNU/Linu×
  - Description de la chaîne audionumérique sous GNU/Linux

# jackd (1)

#### Principes du serveur de son

- développement débuté en 2002
- issu de l'observation des solutions existantes (Pro Tools, Cubase...) et de leurs limites
- basé sur l'objectif de faire communiquer des applications entre elles avec une basse latence
- ► logiciel démon

- Principes et éléments de base de la MAO sous GNU/Linux
  - Description de la chaîne audionumérique sous GNU/Linux

## jackd (2)

### jackd dans GNU/Linux



- Principes et éléments de base de la MAO sous GNU/Linux
  - Description de la chaîne audionumérique sous GNU/Linux

# jackd (3)

### contrôle/paramètrage de jackd

- ► ligne de commande
  - ▶ jackd : lance le serveur
  - jack\_lsp : liste les ports du serveur
  - jack\_connect/disconnect : connecte/déconnecte un port à un autre
- interfaces graphiques (frontend)
  - qjackctl
  - patchage
  - •

- Principes et éléments de base de la MAO sous GNU/Linux
  - Description de la chaîne audionumérique sous GNU/Linux

## jackd (4)

### Qjackctl (1)



#### Informatique & Technique du spectacle

- Principes et éléments de base de la MAO sous GNU/Linux
  - Description de la chaîne audionumérique sous GNU/Linux

# jackd (5)

### Qjackctl (2)





- Principes et éléments de base de la MAO sous GNU/Linux
  - Description de la chaîne audionumérique sous GNU/Linux

### **Drivers**

#### Audio

- ► ALSA : bus PCI et USB
- CoreAudio : bus PCI et USB
- Freebob : FireWire
- ► FFADO : FireWire

#### MIDI

- ALSAseq
- ▶ Jack midi
- ► a2jmidid