Gaussian Noise Model

Inside the Binary Channel

Probability Density Function

- The histogram is not totally smooth since we count the samples in bins of finite width.
- As the bins get smaller and smaller, the curve gets smoother and smoother.
- It approaches a function known as the probability density function (pdf), f_v(v)

Gaussian Density Function

- The probability density function of many naturally occurring random quantities, such as noise, tends to have a bell-like shape, known as a Gaussian distribution.
- This very important result is called the Central-Limit Theorem.
- The Gaussian distribution is so common that it is also called the "normal" distribution.
- Applications:
 - Noise in communication systems
 - Particles in Brownian motion
 - Voltage across a resistor

Parameters Controlling the Shape

- The mean (m) is
 - Its average value over many samples
 - The center location of the pdf
- The standard deviation (σ) is
 - An indication the "spread" of the samples
 - A measure of the width of the pdf
- The variance (σ²) is
 - The square of the standard deviation
 - The average power over many samples

Changing the Mean and Variance

Changes in mean shift the center of mass of PDF

Changes in variance narrow or broaden the PDF

Calculating Probability by Integrating

• The probability that the noise v is between v₁ and v₂ is the area under the probability density function between v₁ and v₂

Example Probability Calculation

- Verify that overall area is 1:
 - Since the curve defines a rectangle, the area is base × height:

$$2\times\frac{1}{2}=1$$

- Find the probability that v is between 0.5 and 1.0:
 - The area of the shaded region is $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$
 - Thus, $P[0.5 < v < 1.0] = \frac{1}{4}$