Improved bounds for the sunflower lemma

Kewen Wu Peking University

Joint work with

Ryan Alweiss Princeton

Shachar Lovett UCSD

Jiapeng Zhang Harvard

Definitions

Main result •00

Definition (w-set system and r-sunflower)

A w-set system is a family of sets of size at most w.

An r-sunflower is r sets S_1, \ldots, S_r where

- Kernel: $Y = S_1 \cap \cdots \cap S_r$;
- **Petals**: $S_1 \setminus Y, \ldots, S_r \setminus Y$ are pairwise disjoint.

Main result 000

Definition (w-set system and r-sunflower)

A w-set system is a family of sets of size at most w.

An r-sunflower is r sets S_1, \ldots, S_r where

- Kernel: $Y = S_1 \cap \cdots \cap S_r$:
- **Petals**: $S_1 \setminus Y, \dots, S_r \setminus Y$ are pairwise disjoint.

Example

 $\{\{1,2\},\{1,3,4,6\},\{1,5\},\{2,3\}\}\$ is a 4-set system of size 4. It has a 3-sunflower $\{\{1,2\},\{1,3,4,6\},\{1,5\}\}$ with kernel $\{1\}$ and petals $\{2\}, \{3,4,6\}, \{5\}.$

Main result

Main result ○●○

Theorem (Erdős-Rado sunflower)

Any w-set system of size s has an r-sunflower.

Main result

Main result ○●○

Theorem (Erdős-Rado sunflower)

Any w-set system of size s has an r-sunflower.

Let's focus on r=3.

- Erdős and Rado 1960: $s = w! \cdot 2^w \approx w^w$.
- Kostochka 2000: $s \approx (w \log \log \log w / \log \log w)^w$.
- Fukuyama 2018: $s \approx w^{0.75w}$.
- Now: $s \approx (\log w)^w$ and this is tight for our approach.

Actual bound and further refinement

Theorem (Improved sunflower lemma)

For some constant C, any w-set system of size s has an r-sunflower, where

$$s = \left(Cr^2 \cdot \left(\log w \log \log w + (\log r)^2\right)\right)^w.$$

000

Theorem (Improved sunflower lemma)

For some constant C, any w-set system of size s has an r-sunflower, where

$$s = \left(Cr^2 \cdot \left(\log w \log \log w + (\log r)^2\right)\right)^w.$$

Recently, Anup Rao improved it to

$$s = (Cr(\log w + \log r)))^{w}.$$

Applications – Theoretical computer science

- Circuit lower bounds
- Data structure lower bounds
- Matrix multiplication
- Pseudorandomness
- Cryptography
- Property testing
- Fixed parameter complexity
- Communication complexity
- **.**..

Applications – Combinatorics

- Erdős-Szemerédi sunflower lemma
- Intersecting set systems
- Packing Kneser graphs
- Alon-Jaeger-Tarsi nowhere-zero conjecture
- Thersholds in random graphs
- ...

Section 3

Proof overview

Assume $\mathcal{F} = \{S_1, \dots, S_m\}$ is a w-set system. Define a width-w DNF $f_{\mathcal{F}}$ as $f_{\mathcal{F}} = \bigvee_{i=1}^m \bigwedge_{i \in S_i} x_i$.

Example

If
$$\mathcal{F} = \{\{1,2\}, \{1,3,4,6\}, \{1,5\}, \{2,3\}\}$$
, then $f_{\mathcal{F}} = (x_1 \wedge x_2) \vee (x_1 \wedge x_3 \wedge x_4 \wedge x_6) \vee (x_1 \wedge x_5) \vee (x_2 \wedge x_3)$.

Proof overview 0 • 0 0 0 0 0 0 0 0

Make it robust

Assume $\mathcal{F} = \{S_1, \dots, S_m\}$ is a w-set system. Define a width-w DNF $f_{\mathcal{F}}$ as $f_{\mathcal{F}} = \bigvee_{i=1}^m \bigwedge_{i \in S_i} x_i$.

Example

If
$$\mathcal{F} = \{\{1,2\}, \{1,3,4,6\}, \{1,5\}, \{2,3\}\}$$
, then $f_{\mathcal{F}} = (x_1 \wedge x_2) \vee (x_1 \wedge x_3 \wedge x_4 \wedge x_6) \vee (x_1 \wedge x_5) \vee (x_2 \wedge x_3)$.

Definition (Satisfying system)

 \mathcal{F} is satisfying if $\Pr[f_{\mathcal{F}}(x)=0]<1/3$ with $\Pr[x_i=1]=1/3$, i.e., $\Pr [\forall i \in [m], S_i \not\subset S] < 1/3 \text{ with } \Pr [x_i \in S] = 1/3.$

Satisfyingness implies sunflower

Assume \mathcal{F} is a set system on ground set $\{x_1, \ldots, x_n\}$.

Lemma

If \mathcal{F} is satisfying, then it has 3 pairwise disjoint sets.

In particular, 3 pairwise disjoint sets is a 3-sunflower.

Assume \mathcal{F} is a set system on ground set $\{x_1, \ldots, x_n\}$.

Lemma

If $\mathcal F$ is satisfying, then it has 3 pairwise disjoint sets.

In particular, 3 pairwise disjoint sets is a 3-sunflower.

Proof.

Color x_1, \ldots, x_n to red, green, blue uniformly and independenty.

Satisfyingness implies sunflower

Assume \mathcal{F} is a set system on ground set $\{x_1, \ldots, x_n\}$.

Lemma

If $\mathcal F$ is satisfying, then it has 3 pairwise disjoint sets.

In particular, 3 pairwise disjoint sets is a 3-sunflower.

Proof.

Color x_1, \ldots, x_n to red, green, blue uniformly and independenty. By definition, $\mathcal F$ contains a purely red (green/blue) set w.p > 2/3.

Satisfyingness implies sunflower

Assume \mathcal{F} is a set system on ground set $\{x_1, \ldots, x_n\}$.

Lemma

If $\mathcal F$ is satisfying, then it has 3 pairwise disjoint sets.

In particular, 3 pairwise disjoint sets is a 3-sunflower.

Proof.

Color x_1, \ldots, x_n to red, green, blue uniformly and independenty. By definition, $\mathcal F$ contains a purely red (green/blue) set w.p > 2/3. By union bound, $\mathcal F$ contains one purely red set, one purely green set, and one purely blue set w.p > 0.

Structure vs pseudorandomness

Assume $\mathcal{F} = \{S_1, \dots, S_m\}, m > \kappa^w$ is a w-set system. Define link $\mathcal{F}_Y = \{S_i \setminus Y \mid Y \subset S_i\}$, which is a (w - |Y|)-set system.

Example

If
$$\mathcal{F} = \{\{1,2\}\,,\{1,3,4\}\,,\{1,5\}\,,\{2,3\}\}$$
, then $\mathcal{F}_{\{2\}} = \{\{1\}\,,\{3\}\}$.

Structure vs pseudorandomness

Assume $\mathcal{F}=\left\{S_1,\ldots,S_m\right\}, m>\kappa^w$ is a w-set system. Define link $\mathcal{F}_Y=\left\{S_i\backslash Y\mid Y\subset S_i\right\}$, which is a (w-|Y|)-set system.

Proof overview

Example

If
$$\mathcal{F} = \{\{1,2\}\,,\{1,3,4\}\,,\{1,5\}\,,\{2,3\}\}$$
, then $\mathcal{F}_{\{2\}} = \{\{1\}\,,\{3\}\}.$

If there exists Y such that $|\mathcal{F}_Y| \ge m/\kappa^{|Y|} > \kappa^{w-|Y|}$, then we can apply induction and find 3-sunflower in \mathcal{F}_Y .

Structure vs pseudorandomness

Assume $\mathcal{F} = \{S_1, \dots, S_m\}, m > \kappa^w$ is a w-set system. Define link $\mathcal{F}_{Y} = \{S_{i} \setminus Y \mid Y \subset S_{i}\}, \text{ which is a } (w - |Y|) \text{-set system}.$

Example

If
$$\mathcal{F} = \{\{1,2\}\,,\{1,3,4\}\,,\{1,5\}\,,\{2,3\}\}$$
, then $\mathcal{F}_{\{2\}} = \{\{1\}\,,\{3\}\}.$

If there exists Y such that $|\mathcal{F}_V| > m/\kappa^{|Y|} > \kappa^{w-|Y|}$, then we can apply induction and find 3-sunflower in \mathcal{F}_{V} .

So induction starts at such \mathcal{F} , that $|\mathcal{F}_Y| < m/\kappa^{|Y|}$ holds for any Y.

Lemma

Let $\kappa > (\log w)^{O(1)}$. If $|\mathcal{F}_V| < m/\kappa^{|Y|}$ holds for any Y, then \mathcal{F} is satisfying, which means \mathcal{F} has 3 pairwise disjoint sets.

Let $\mathcal{F} = \{S_1, \dots, S_m\}$ be a w-(multi-)set system.

Let $\mathcal{F} = \{S_1, \dots, S_m\}$ be a w-(multi-)set system. Assume $|\mathcal{F}_Y| < m/\kappa^{|Y|}$ holds for any $Y \in \mathcal{F}$ is pseudorandom

Let $\mathcal{F} = \{S_1, \dots, S_m\}$ be a w-(multi-)set system. Assume $|\mathcal{F}_Y| < m/\kappa^{|Y|}$ holds for any $Y. \Leftarrow \mathcal{F}$ is pseudorandom Take $\approx 1/\sqrt{\kappa}$ -fraction of the ground set as W, and construct a w/2-(multi-)set system \mathcal{F}' from each S_i :

Let $\mathcal{F} = \{S_1, \dots, S_m\}$ be a w-(multi-)set system. Assume $|\mathcal{F}_Y| < m/\kappa^{|Y|}$ holds for any $Y \in \mathcal{F}$ is pseudorandom Take $\approx 1/\sqrt{\kappa}$ -fraction of the ground set as W, and construct a w/2-(multi-)set system \mathcal{F}' from each S_i :

■ Good: If there exists $|S_i \setminus W| \le w/2$ and $S_i \setminus W \subset S_i \setminus W$, then put $S_i \setminus W$ into \mathcal{F}' ; (j may equal i)

Let $\mathcal{F} = \{S_1, \dots, S_m\}$ be a w-(multi-)set system. Assume $|\mathcal{F}_Y| < m/\kappa^{|Y|}$ holds for any $Y \in \mathcal{F}$ is pseudorandom Take $\approx 1/\sqrt{\kappa}$ -fraction of the ground set as W, and construct a w/2-(multi-)set system \mathcal{F}' from each S_i :

■ Good: If there exists $|S_i \setminus W| \le w/2$ and $S_i \setminus W \subset S_i \setminus W$, then put $S_i \setminus W$ into \mathcal{F}' ; (j may equal i)E.g., $S_i \setminus W = \{1\}, S_i \setminus W = \{1, 2, 3, 4, 5\}.$

Let $\mathcal{F} = \{S_1, \dots, S_m\}$ be a w-(multi-)set system. Assume $|\mathcal{F}_Y| < m/\kappa^{|Y|}$ holds for any $Y \in \mathcal{F}$ is pseudorandom Take $\approx 1/\sqrt{\kappa}$ -fraction of the ground set as W, and construct a w/2-(multi-)set system \mathcal{F}' from each S_i :

- Good: If there exists $|S_i \setminus W| \le w/2$ and $S_i \setminus W \subset S_i \setminus W$, then put $S_i \setminus W$ into \mathcal{F}' ; (j may equal i)E.g., $S_i \setminus W = \{1\}, S_i \setminus W = \{1, 2, 3, 4, 5\}.$
- **Bad**: otherwise, we do nothing for S_i .

Example

If $\mathcal{F} = \{\{1, 2\}, \{1, 3\}, \{2, 3, 4\}, \{4, 5, 6, 7\}\}$ and $w = 4, W = \{1\}$, then $\mathcal{F}' = \{\{1,2\}, \{1,3\}, \{2,3,4\}, \{4,5,6,7\}\}.$

Then $|\mathcal{F}_Y'| \leq |\mathcal{F}_Y|$ and $|\mathcal{F}'| \approx |\mathcal{F}|$. $\Leftarrow \mathcal{F}'$ is also pseudorandom

Then $|\mathcal{F}_V'| \leq |\mathcal{F}_V|$ and $|\mathcal{F}'| \approx |\mathcal{F}|$. $\Leftarrow \mathcal{F}'$ is also pseudorandom Prove by encoding bad $(W, i) \rightarrow (W' = W \cup S_i, aux_1, k, aux_2)$, where S_i ranks $k < |\mathcal{F}|/\kappa^{w/2}$ in $\mathcal{F}_{S_i \cap S_i}$ for the first $j \leq i$ that $S_i \backslash W \subset S_i \backslash W$.

Then $|\mathcal{F}'_Y| \leq |\mathcal{F}_Y|$ and $|\mathcal{F}'| \approx |\mathcal{F}|$. $\Leftarrow \mathcal{F}'$ is also pseudorandom Prove by encoding bad $(W,i) \to (W' = W \cup S_i, \mathsf{aux}_1, k, \mathsf{aux}_2)$, where S_i ranks $k < |\mathcal{F}|/\kappa^{w/2}$ in $\mathcal{F}_{S_j \cap S_i}$ for the first $j \leq i$ that $S_j \backslash W \subset S_i \backslash W$.

Proof overview

Example

 $\mathcal{F}' = \left\{ \left\{ 1,2 \right\}, \left\{ 2,3,4 \right\}, \left\{ 1,4,5,6 \right\}, \left\{ 4,5,6,7 \right\} \right\}, W = \left\{ 1 \right\}, i = 4.$ Encode/decode bad pair (W,i):

Then $|\mathcal{F}'_Y| \leq |\mathcal{F}_Y|$ and $|\mathcal{F}'| \approx |\mathcal{F}|$. $\Leftarrow \mathcal{F}'$ is also pseudorandom Prove by encoding bad $(W,i) \to (W' = W \cup S_i, \mathsf{aux}_1, k, \mathsf{aux}_2)$, where S_i ranks $k < |\mathcal{F}|/\kappa^{w/2}$ in $\mathcal{F}_{S_j \cap S_i}$ for the first $j \leq i$ that $S_j \backslash W \subset S_i \backslash W$.

Example

 $\mathcal{F}' = \left\{ \left\{1,2\right\}, \left\{2,3,4\right\}, \left\{1,4,5,6\right\}, \left\{4,5,6,7\right\} \right\}, W = \left\{1\right\}, i = 4.$ Encode/decode bad pair (W,i):

$$W' = W \cup S_i = \{1, 4, 5, 6, 7\}$$

Then $|\mathcal{F}'_V| \leq |\mathcal{F}_V|$ and $|\mathcal{F}'| \approx |\mathcal{F}|$. $\Leftarrow \mathcal{F}'$ is also pseudorandom Prove by encoding bad $(W, i) \rightarrow (W' = W \cup S_i, aux_1, k, aux_2)$, where S_i ranks $k < |\mathcal{F}|/\kappa^{w/2}$ in $\mathcal{F}_{S_i \cap S_i}$ for the first $j \leq i$ that $S_i \backslash W \subset S_i \backslash W$.

Example

Then $|\mathcal{F}'_V| \leq |\mathcal{F}_V|$ and $|\mathcal{F}'| \approx |\mathcal{F}|$. $\Leftarrow \mathcal{F}'$ is also pseudorandom Prove by encoding bad $(W, i) \rightarrow (W' = W \cup S_i, aux_1, k, aux_2)$, where S_i ranks $k < |\mathcal{F}|/\kappa^{w/2}$ in $\mathcal{F}_{S_i \cap S_i}$ for the first $j \leq i$ that $S_i \backslash W \subset S_i \backslash W$.

Proof overview 00000000

Example

- $W' = W \cup S_i = \{1, 4, 5, 6, 7\}$ we find j=3 with $S_i\subset W'$
- \blacksquare aux₁ = *\$\$ with at least w/2 \$s

Then $|\mathcal{F}'_Y| \leq |\mathcal{F}_Y|$ and $|\mathcal{F}'| \approx |\mathcal{F}|$. $\Leftarrow \mathcal{F}'$ is also pseudorandom Prove by encoding bad $(W,i) \to (W' = W \cup S_i, \mathsf{aux}_1, k, \mathsf{aux}_2)$, where S_i ranks $k < |\mathcal{F}|/\kappa^{w/2}$ in $\mathcal{F}_{S_j \cap S_i}$ for the first $j \leq i$ that $S_j \backslash W \subset S_i \backslash W$.

Example

 $\mathcal{F}' = \left\{ \left\{ 1,2 \right\}, \left\{ 2,3,4 \right\}, \left\{ 1,4,5,6 \right\}, \left\{ 4,5,6,7 \right\} \right\}, W = \left\{ 1 \right\}, i = 4.$ Encode/decode bad pair (W,i):

- $W' = W \cup S_i = \{1, 4, 5, 6, 7\}$ we find j = 3 with $S_j \subset W'$
- lacksquare aux $_1=*\$\$\$$ with at least w/2 \$s we know $S_j\cap S_i=\{4,5,6\}$

Then $|\mathcal{F}'_V| \leq |\mathcal{F}_V|$ and $|\mathcal{F}'| \approx |\mathcal{F}|$. $\Leftarrow \mathcal{F}'$ is also pseudorandom Prove by encoding bad $(W, i) \rightarrow (W' = W \cup S_i, aux_1, k, aux_2)$, where S_i ranks $k < |\mathcal{F}|/\kappa^{w/2}$ in $\mathcal{F}_{S_i \cap S_i}$ for the first $j \leq i$ that $S_i \backslash W \subset S_i \backslash W$.

Proof overview 00000000

Example

- $W' = W \cup S_i = \{1, 4, 5, 6, 7\}$ we find j = 3 with $S_i \subset W'$
- **a** $aux_1 = *\$\$$ with at least w/2 \$s we know $S_i \cap S_i = \{4, 5, 6\}$
- k=2

Then $|\mathcal{F}_V'| \leq |\mathcal{F}_V|$ and $|\mathcal{F}'| \approx |\mathcal{F}|$. $\Leftarrow \mathcal{F}'$ is also pseudorandom Prove by encoding bad $(W, i) \rightarrow (W' = W \cup S_i, aux_1, k, aux_2)$, where S_i ranks $k < |\mathcal{F}|/\kappa^{w/2}$ in $\mathcal{F}_{S_i \cap S_i}$ for the first $j \leq i$ that $S_i \backslash W \subset S_i \backslash W$.

Example

- $W' = W \cup S_i = \{1, 4, 5, 6, 7\}$ we find j = 3 with $S_i \subset W'$
- $aux_1 = *\$\$\$$ with at least w/2 \$s we know $S_i \cap S_i = \{4, 5, 6\}$
- k=2 S_i ranks 2 in $\mathcal{F}_{\{4,5,6\}}$, we recover i=4

Then $|\mathcal{F}_V'| \leq |\mathcal{F}_V|$ and $|\mathcal{F}'| \approx |\mathcal{F}|$. $\Leftarrow \mathcal{F}'$ is also pseudorandom Prove by encoding bad $(W, i) \rightarrow (W' = W \cup S_i, aux_1, k, aux_2)$, where S_i ranks $k < |\mathcal{F}|/\kappa^{w/2}$ in $\mathcal{F}_{S_i \cap S_i}$ for the first $j \leq i$ that $S_i \backslash W \subset S_i \backslash W$.

Example

- $W' = W \cup S_i = \{1, 4, 5, 6, 7\}$ we find j = 3 with $S_i \subset W'$
- $aux_1 = *\$\$\$$ with at least w/2 \$s we know $S_i \cap S_i = \{4, 5, 6\}$
- k=2 S_i ranks 2 in $\mathcal{F}_{\{4,5,6\}}$, we recover i=4
- \blacksquare aux₂ = \$\$\$\$

Then $|\mathcal{F}_V'| \leq |\mathcal{F}_V|$ and $|\mathcal{F}'| \approx |\mathcal{F}|$. $\Leftarrow \mathcal{F}'$ is also pseudorandom Prove by encoding bad $(W, i) \rightarrow (W' = W \cup S_i, aux_1, k, aux_2)$, where S_i ranks $k < |\mathcal{F}|/\kappa^{w/2}$ in $\mathcal{F}_{S_i \cap S_i}$ for the first $j \leq i$ that $S_i \backslash W \subset S_i \backslash W$.

Example

- $W' = W \cup S_i = \{1, 4, 5, 6, 7\}$ we find j = 3 with $S_i \subset W'$
- \blacksquare aux₁ = *\$\$\$ with at least w/2 \$s we know $S_i \cap S_i = \{4, 5, 6\}$
- k=2 S_i ranks 2 in $\mathcal{F}_{\{4,5,6\}}$, we recover i=4
- we recover $W = W' \setminus \{4, 5, 6, 7\}$ \blacksquare aux₂ = \$\$\$\$

Let $\mathcal{F} = \{S_1, \dots, S_m\}$ be a w-(multi-)set system on $\{x_1, \dots, x_n\}$. Assume $|\mathcal{F}_Y| < m/\kappa^{|Y|}$ holds for any Y, and $\kappa = (\log w)^{O(1)}$.

Let $\mathcal{F} = \{S_1, \dots, S_m\}$ be a w-(multi-)set system on $\{x_1, \dots, x_n\}$. Assume $|\mathcal{F}_Y| < m/\kappa^{|Y|}$ holds for any Y, and $\kappa = (\log w)^{O(1)}$. It suffices to prove

 $\blacksquare \mathcal{F}$ is satisfying \iff w.h.p S contains some set of \mathcal{F} , and $\Pr[x_i \in S] = 1/3$.

Let $\mathcal{F} = \{S_1, \dots, S_m\}$ be a w-(multi-)set system on $\{x_1, \dots, x_n\}$. Assume $|\mathcal{F}_Y| < m/\kappa^{|Y|}$ holds for any Y, and $\kappa = (\log w)^{O(1)}$. It suffices to prove

00000000

 $\blacksquare \mathcal{F}$ is satisfying \iff w.h.p S contains some set of \mathcal{F} , and $\Pr[x_i \in S] = 1/3$.

Split S to several steps.

$$\begin{array}{l} \blacksquare \ \Pr\left[x_i \in S\right] = 1/3 \\ \approx \ \mathsf{take} \ 1/3\text{-fraction of the ground set as } S \\ \approx \ \mathsf{view} \ S \ \mathsf{as} \ W_1, W_2, \ldots, W_{\log w}, \ \mathsf{each} \ \mathsf{of} \approx 1/\sqrt{\kappa}\text{-fraction} \end{array}$$

Let $\mathcal{F} = \{S_1, \dots, S_m\}$ be a w-(multi-)set system on $\{x_1, \dots, x_n\}$. Assume $|\mathcal{F}_Y| < m/\kappa^{|Y|}$ holds for any Y, and $\kappa = (\log w)^{O(1)}$. It suffices to prove

 $\blacksquare \mathcal{F}$ is satisfying \iff w.h.p S contains some set of \mathcal{F} , and $\Pr[x_i \in S] = 1/3$.

Split S to several steps.

■ $\Pr[x_i \in S] = 1/3$ \approx take 1/3-fraction of the ground set as S \approx view S as $W_1, W_2, \dots, W_{\log w}$, each of $\approx 1/\sqrt{\kappa}$ -fraction

Then we iteratively apply reductions,

$$\mathcal{F} \xrightarrow{W_1} \mathcal{F}' \xrightarrow{W_2} \mathcal{F}'' \xrightarrow{W_3} \cdots \xrightarrow{W_{\log w}} \mathcal{F}^{\mathsf{last}}.$$

$$\underbrace{\mathcal{F}}_{\text{width-}w} \xrightarrow{W_1} \underbrace{\mathcal{F}'}_{\text{width-}w/2}$$

$$\underbrace{\mathcal{F}}_{\mathsf{width}\text{-}w} \xrightarrow{\underbrace{W_1}} \underbrace{\mathcal{F}'}_{\mathsf{width}\text{-}w/2} \xrightarrow{\underbrace{W_2}} \underbrace{\mathcal{F}''}_{\mathsf{width}\text{-}w/4}$$

$$\underbrace{\mathcal{F}}_{\text{width-}w} \xrightarrow{W_1} \underbrace{\mathcal{F}'}_{\text{width-}w/2} \xrightarrow{W_2} \underbrace{\mathcal{F}''}_{\text{width-}w/4} \xrightarrow{W_3} \cdots \xrightarrow{W_{\log w}} \underbrace{\mathcal{F}^{\mathsf{last}}}_{\text{width-}0}.$$

$$\underbrace{\mathcal{F}}_{\text{width-}w} \xrightarrow{W_1} \underbrace{\mathcal{F}'}_{\text{width-}w/2} \xrightarrow{W_2} \underbrace{\mathcal{F}''}_{\text{width-}w/4} \xrightarrow{W_3} \cdots \xrightarrow{W_{\log w}} \underbrace{\mathcal{F}^{\mathsf{last}}}_{\text{width-}0}.$$

- either we stop at W_i when some set is contained in $\bigcup_{j < i} W_j$,
 - $\Rightarrow S$ contains some set of $\mathcal F$

$$\underbrace{\mathcal{F}}_{\text{width-}w} \xrightarrow{W_1} \underbrace{\mathcal{F}'}_{\text{width-}w/2} \xrightarrow{W_2} \underbrace{\mathcal{F}''}_{\text{width-}w/4} \xrightarrow{W_3} \cdots \xrightarrow{W_{\log w}} \underbrace{\mathcal{F}^{\mathsf{last}}}_{\text{width-}0}.$$

- either we stop at W_i when some set is contained in $\bigcup_{j< i} W_j$, $\Rightarrow S$ contains some set of \mathcal{F}
- or, $\mathcal{F}^{\mathsf{last}}$ is a width-0 (multi-)set system of size $\approx m > \kappa^w$, and $\left|\mathcal{F}_Y^{\mathsf{last}}\right| \lessapprox \left|\mathcal{F}^{\mathsf{last}}\right|/\kappa^{|Y|}$ still holds for any Y. \Rightarrow Impossible

Recall $S = W_1 \cup \cdots \cup W_{\log w}$ and

$$\underbrace{\mathcal{F}}_{\text{width-}w} \xrightarrow{W_1} \underbrace{\mathcal{F}'}_{\text{width-}w/2} \xrightarrow{W_2} \underbrace{\mathcal{F}''}_{\text{width-}w/4} \xrightarrow{W_3} \cdots \xrightarrow{W_{\log w}} \underbrace{\mathcal{F}^{\mathsf{last}}}_{\text{width-}0}.$$

- either we stop at W_i when some set is contained in $\bigcup_{j < i} W_j$, $\Rightarrow S$ contains some set of \mathcal{F}
- or, $\mathcal{F}^{\mathsf{last}}$ is a width-0 (multi-)set system of size $\approx m > \kappa^w$, and $\left|\mathcal{F}_Y^{\mathsf{last}}\right| \lessapprox \left|\mathcal{F}^{\mathsf{last}}\right|/\kappa^{|Y|}$ still holds for any Y. \Rightarrow Impossible

Thus, (informally) we proved such \mathcal{F} is satisfying, which means \mathcal{F} has 3-sunflower (3 pairwise disjoint sets).

Section 4

Open problems

Erdős-Rado sunflower

Problem (Erdős-Rado sunflower conjecture)

Any w-set system of size $O_r(1)^w$ has r-sunflower.

- Our approach cannot go beyond $(\log w)^{(1-o(1))w}$. We need new ideas.
- Lift the sunflower size? $r=3 \implies r=4$
- Is $(\log w)^{(1-o(1))w}$ actually tight? Counterexamples?

Assume
$$\mathcal{F} = \{S_1, \dots, S_m\}$$
 and $S_i \subset \{1, 2, \dots, n\}$.

Problem (Erdős-Szemerédi sunflower conjecture)

There exists function $\varepsilon = \varepsilon(r) > 0$, such that, if $m > 2^{n(1-\varepsilon)}$, then \mathcal{F} has r-sunflower.

- Now:
 - general r: $\varepsilon = O_r (1/\log n)$ from ER sunflower.
 - r = 3: Naslund proved it using polynomial method.
- ER sunflower conjecture ⇒ ES sunflower conjecture.

Section 5

Thanks