Contingency Tables Chi-Square Tests of Independence

Demetris Athienitis

Section 1

- Tests
 - Pearson
 - LRT

Framework

With a multinomial, $\mu_{ij}=n\pi_{ij}$ and we wish to test

$$\mathsf{H}_0: \mu_{ij} = \mu_{ij}^0$$

Under the assumption of independence

$$\mu_{ij}^0 = n\pi_{ij}$$
$$= n(\pi_{i+})(\pi_{+j})$$

by ind.

and the MLEs under independence, are

$$\hat{\mu}_{ij} = n\hat{\pi}_{i+}\hat{\pi}_{+j}$$

$$= n\frac{n_{i+}}{n}\frac{n_{+j}}{n}$$

$$= \frac{(n_{i+})(n_{+j})}{n}$$

Pearson

The Pearson chi-square test statistic, with the condition that $\hat{\mu}_{ij}>5 \ \forall i,j$ is asymptotically

$$X^{2} = \sum_{ii} \frac{(n_{ij} - \hat{\mu}_{ij})^{2}}{\hat{\mu}_{ij}} \stackrel{\text{H}_{0}}{\sim} \chi^{2}_{(I-1)(J-1)}$$

with p-value $P\left(\chi^2_{(I-1)(J-1)} \geq X^2
ight)$ (area to the right of the test statistic)

$$\chi^2_{(J-1)(J-1)}$$
 distribution

Example (Job Satisfaction)

Data from General Social Survey (1991)

Income					
	Dissat	Little	Moderate	Very	Total
< 5k	2	4	13	3	22
5k - 15k	2	6	22	4	34
15k - 25k	0	1	15	8	24
> 25k	0	3	13	8	24
Total	4	14	63	23	104

> job_test=chisq.test(job); job_test

data: job

X-squared = 11.524, df = 9, p-value = 0.2415

Warning: Chi-squared approximation may be incorrect

Example (continued)

Warning because many expected frequencies are < 5

As p-value is large, with **caution/reservations**, we conclude that we fail to reject the null of independence.

Likelihood Ratio

$$H_0: \theta \in \Theta_0$$
 vs $H_1: \theta \in \Theta_1$

The likelihood ratio is given by

$$\Lambda = \frac{\text{maximum likelihood when } \textit{H}_0 \text{ is true}}{\text{maximum likelihood when parameters are unrestricted}}$$

So if the ratio is close to 1 it implies that the estimated parameter(s) under the null are close in proximity to the unrestricted MLEs and hence null is plausible.

Likelihood Ratio

For example, $H_0: \theta=\theta_0$. To determine if the null value θ_0 is plausible, compare it to the maximum likelihood estimate $\hat{\theta}_{\text{MLE}}$, by seeing how close the likelihood functions are at θ_0 and $\hat{\theta}_{\text{MLE}}$.

Likelihood Ratio Test

The Likelihood Ratio Test (LRT) statistic is asymptotically

$$G^2 = -2 \log \Lambda \stackrel{\mathsf{H_0}}{\sim} \chi_{df}^2$$

 $\label{eq:degrees} \mbox{degrees of freedom} = \mbox{no. of parameters in general} \\ - \mbox{no. of parameters under H_0}$

LRT for multinomial

For an $I \times J$ table the likelihood is

$$L(\pi_{ij}; n_{ij}) = \frac{n!}{n_{11}! \cdots n_{IJ}!} \pi_{11}^{n_{11}} \cdots \pi_{IJ}^{n_{IJ}}$$

$$\Rightarrow \Lambda = \frac{\left(\frac{n_{i+} n_{+j}}{n^2}\right)^{n_{ij}}}{\left(\frac{n_{ij}}{n}\right)^{n_{ij}}}$$

Ignoring constants and recalling $\hat{\mu}_{ij} = (n_{i+}n_{+j})/n$,

$$G^2 = 2\sum_{ij} n_{ij} \log \left(\frac{n_{ij}}{\hat{\mu}_{ij}}\right)$$

with (I-1)(J-1) degrees of freedom...shown next.

LRT for multinomial

- In general, there are IJ groupings in the multinomial with IJ, π_{ij} 's, hence IJ-1 free parameters in general.
- ullet Under H_0 , I-1 free π_{i+} 's and J-1 free π_{+j} 's

$$df = (IJ - 1) - [(I - 1) + (J - 1)]$$

= $(I - 1)(J - 1)$

Example (Job Satisfaction continued)

- > library(DescTools)
- > GTest(job)

data: job

G = 13.467, X-squared df = 9, p-value = 0.1426

Remark

- No warning message was given for G^2
- As $n \to \infty$, $X^2 \stackrel{d}{\to} \chi^2$ faster than $G^2 \stackrel{d}{\to} \chi^2$, but they are usually similar and asymptotically equivalent, i.e. $X^2 G^2 \stackrel{d}{\to} 0$
- These tests treat X and Y as nominal and reordering rows or columns has no effect. Methods for ordinal tests (section 2.5 of textbook as well as author's other textbooks) do exist

Standardized residuals

- Once we have established a dependence in the data, it is of interest to explore where the dependence lies
- Which cells in the table have higher/lower counts than expected (under independence)?
- To explore this, we can look at standardized residuals

Definition (Standardized/Adjusted Residuals)

$$r_{ij} = rac{n_{ij} - \hat{\mu}_{ij}}{\sqrt{\hat{\mu}_{ij}(1 - p_{i+})(1 - p_{+j})}} \stackrel{\mathsf{H}_0}{\sim} N(0, 1)$$

Hence, $|r_{ij}| > 2$ considered significant.

Example (Job Satisfaction continued)

Residuals are:

Section 2

- Tests
 - Pearson
 - LRT

Partitioning chi-squared statistics

The sum of two independent chi-squared random variables also follows a chi-squared distribution

Lemma

Let $\chi^2_{\nu_1}$ and $\chi^2_{\nu_2}$ be independent. Then,

$$\chi^2_{\nu_1} + \chi^2_{\nu_2} \sim \chi^2_{\nu_1 + \nu_2}$$

The G^2 statistic can be partitioned into separate components to help represent certain aspects of the association.

 Income						
	Dissat	Little	Moderate	Very	G^2	df
Low					0.30	3
< 5k	2	4	13	3		
5k - 15k	2	6	22	4		
High					1.19	3
15k - 25k	0	1	15	8		
> 25k	0	3	13	8		
Low vs High					11.98	3
< 15 <i>k</i>	4	10	35	7		
> 15 <i>k</i>	0	4	28	16		
					13.47	9

- Note that the partitioned G^2 values sum to the full table value
- Within low salary or high salary jobs, we see a very small G^2 value
- If we collapse the two low category groups into one, and collapse the two high salary categories into one, then we see a larger G^2 value
- $G^2=11.98$ with 3 degrees of freedom gives a p-value of 0.007. Much different story than looking at the full table

We learned

Can test for independence using

- Pearson
- LRT
- \bullet and that LRT G^2 may be partitioned