Tracleer® 62,5 mg / 125 mg Filmtabletten

1. BEZEICHNUNG DES ARZNEIMITTELS

Tracleer 62,5 mg Filmtabletten Tracleer 125 mg Filmtabletten

2. QUALITATIVE UND QUANTITATIVE ZUSAMMENSETZUNG

62,5 mg: Jede Filmtablette enthält 62,5 mg Bosentan (als Monohydrat).

125 mg: Jede Filmtablette enthält 125 mg Bosentan (als Monohydrat).

Vollständige Auflistung der sonstigen Bestandteile siehe Abschnitt 6.1.

3. DARREICHUNGSFORM

Filmtablette (Tabletten):

62,5 mg: Orange-weiße, runde, bikonvexe Filmtabletten, auf denen auf einer Seite "62,5" eingeprägt ist.

125 mg: Orange-weiße, ovale, bikonvexe Filmtabletten, auf denen auf einer Seite "125" eingeprägt ist.

4. KLINISCHE ANGABEN

4.1 Anwendungsgebiete

Behandlung der pulmonal arteriellen Hypertonie (PAH) zur Verbesserung der körperlichen Belastbarkeit und Symptome bei Patienten mit der funktionellen WHO-/NYHA-Klasse III.

Die Wirksamkeit wurde nachgewiesen bei:

- Primärer (idiopathischer und erblicher) pulmonal arterieller Hypertonie
- Sekundärer pulmonal arterieller Hypertonie in Assoziation mit Sklerodermie ohne signifikante interstitielle Lungenerkrankung
- Pulmonal arterieller Hypertonie in Assoziation mit kongenitalen Herzfehlern und Eisenmenger-Physiologie

Verbesserungen des Krankheitsbildes wurden ebenso bei Patienten mit pulmonal arterieller Hypertonie der funktionellen WHO-/NYHA-Klasse II gezeigt (siehe Abschnitt 5.1).

Tracleer ist außerdem indiziert zur Reduzierung der Anzahl neuer digitaler Ulzerationen bei Patienten mit systemischer Sklerose, die an digitalen Ulzerationen leiden (siehe Abschnitt 5.1).

4.2 Dosierung und Art der Anwendung

Art der Anwendung

Die Tabletten werden morgens und abends mit oder unabhängig von den Mahlzeiten eingenommen. Es wird empfohlen, die Filmtabletten mit etwas Wasser einzunehmen.

Dosierung

Pulmonal arterielle Hypertonie

Die Behandlung sollte nur durch einen Arzt eingeleitet und überwacht werden, der in der Behandlung der pulmonal arteriellen Hypertonie erfahren ist.

Erwachsene

Bei erwachsenen Patienten sollte die Behandlung mit Tracleer mit einer Dosierung von zweimal täglich 62,5 mg über einen Zeitraum von 4 Wochen begonnen werden und anschließend auf eine Erhaltungsdosis von zweimal täglich 125 mg erhöht werden.

Die gleichen Empfehlungen gelten für die Wiederaufnahme der Behandlung mit Tracleer nach Therapieunterbrechung (siehe Abschnitt 4.4).

Kinder und Jugendliche

Daten aus pharmakokinetischen Studien mit Kindern haben gezeigt, dass die Plasmakonzentrationen von Bosentan bei Kindern mit PAH im Alter von 1 Jahr bis zu 15 Jahren im Durchschnitt niedriger waren als bei erwachsenen Patienten und auch durch eine Steigerung der Dosis von Tracleer auf über 2 mg/kg Körpergewicht oder durch Steigerung der Dosierungsfrequenz von zweimal täglich auf dreimal täglich nicht erhöht wurden (siehe Abschnitt 5.2). Eine Erhöhung der Dosis oder der Dosierungsfrequenz hat wahrscheinlich keinen zusätzlichen klinischen Nutzen.

Aufgrund dieser pharmakokinetischen Befunde beträgt die empfohlene Start- und Erhaltungsdosis von Tracleer bei Kindern mit PAH im Alter von 1 Jahr oder älter 2 mg/kg Körpergewicht morgens und abends (siehe Abschnitte 5.1 und 5.2).

Bei Neugeborenen mit persistierender pulmonaler Hypertonie des Neugeborenen (PPHN) wurde kein Nutzen von Bosentan in der Standard-of-Care-Behandlung gezeigt. Eine Dosierungsempfehlung kann nicht gegeben werden (siehe Abschnitte 5.1 und 5.2)

Handhabung im Fall einer klinischen Verschlechterung der PAH

Im Fall einer klinischen Verschlechterung (z.B. Abnahme der Gehstrecke im 6-Minuten-Gehtest um mindestens 10% im Vergleich zum Ausgangswert vor der Behandlung) trotz einer mindestens 8-wöchigen Behandlung mit Tracleer (Erhaltungsdosis seit mindestens 4 Wochen) sollten alternative Therapien in Erwägung gezogen werden. Dennoch können einige Patienten, die nach 8-wöchiger Behandlung mit Tracleer nicht angesprochen haben, möglicherweise nach weiteren 4 bis 8 Behandlungswochen positiv auf die Behandlung ansprechen.

Im Fall einer späteren klinischen Verschlechterung trotz einer Behandlung mit Tracleer (z.B. nach mehreren Behandlungsmonaten) sollte eine Neubewertung der Behandlung erfolgen. Einige Patienten, die nicht ausreichend auf die Tracleer-Dosis von zweimal täglich 125 mg ansprechen, können möglicherweise ihre körperliche Belastbarkeit leicht verbessern, wenn die Dosis auf zweimal täglich 250 mg erhöht wird. Eine sorgfältige Nutzen-Risiko-Bewertung sollte erfolgen und in Betracht ziehen, dass die Beeinflussung der Leberfunktion dosisabhängig ist (siehe Abschnitte 4.4 und 5.1).

Absetzen der Behandlung

Es gibt nur begrenzte Erfahrungen bei einem plötzlichen Absetzen von Tracleer bei Patienten mit pulmonal arterieller Hypertonie. Es gibt keine Hinweise auf einen akuten Reboundeffekt. Dennoch sollte zur Vermeidung einer möglichen schweren klinischen Verschlechterung infolge eines möglichen Reboundeffektes eine stufenweise Reduzierung der Dosis (Halbierung der Dosis für 3 bis 7 Tage) in Betracht gezogen werden. Es wird empfohlen, eine engmaschige Über-

wachung während des Absetzens durchzuführen. Wenn ein Absetzen von Tracleer in Betracht gezogen wird, sollte das Absetzen stufenweise erfolgen, während mit einer alternativen Therapie begonnen wird.

Systemische Sklerose mit bestehenden digitalen Ulzerationen

Die Behandlung sollte nur durch einen Arzt eingeleitet und überwacht werden, der in der Behandlung der systemischen Sklerose erfahren ist.

Erwachsene

Die Behandlung mit Tracleer sollte mit einer Dosierung von zweimal täglich 62,5 mg über einen Zeitraum von 4 Wochen begonnen werden und anschließend auf eine Erhaltungsdosis von zweimal täglich 125 mg erhöht werden. Die gleichen Empfehlungen gelten für die Wiederaufnahme der Behandlung mit Tracleer nach Therapieunterbrechung (siehe Abschnitt 4.4).

Die Erfahrungen aus kontrollierten klinischen Studien sind in diesem Indikationsbereich auf 6 Monate begrenzt (siehe Abschnitt 5.1).

Das Ansprechen des Patienten auf die Behandlung und die Notwendigkeit einer Fortsetzung der Therapie sollten in regelmäßigen Abständen überprüft werden. Es ist eine sorgfältige Nutzen-Risiko-Abwägung vorzunehmen, wobei insbesondere die Lebertoxizität von Bosentan zu berücksichtigen ist (siehe Abschnitte 4.4 und 4.8).

Kinder und Jugendliche

Für Patienten unter 18 Jahren liegen keine Daten zur Wirksamkeit und Unbedenklichkeit vor. Für Kleinkinder mit dieser Erkrankung liegen keine pharmakokinetischen Daten zu Tracleer vor.

Spezielle Patientengruppen

Patienten mit eingeschränkter Leberfunktion

Tracleer ist bei mittleren bis schweren Leberfunktionsstörungen (siehe Abschnitte 4.3, 4.4 und 5.2) kontraindiziert. Bei Patienten mit leichten Leberfunktionsstörungen (d. h. Child-Pugh-Klasse A) ist keine Dosisanpassung erforderlich (siehe Abschnitt 5.2).

Patienten mit Nierenfunktionsstörungen

Bei Patienten mit Nierenfunktionsstörungen ist keine Dosisanpassung erforderlich. Bei Dialyse-Patienten ist keine Dosisanpassung erforderlich (siehe Abschnitt 5.2).

Ältere Patienten

Bei Patienten über 65 Jahren ist keine Dosisanpassung erforderlich.

4.3 Gegenanzeigen

- Überempfindlichkeit gegen den Wirkstoff oder einen der in Abschnitt 6.1 genannten sonstigen Bestandteile
- Mittlere bis schwere Leberfunktionsstörung, d.h. Child-Pugh-Klasse B oder C (siehe Abschnitt 5.2)
- Vor Behandlungsbeginn Erhöhung der Leber-Aminotransferasewerte, d.h. Aspartat-Aminotransferase (AST) und/oder Alanin-Aminotransferase (ALT) auf mehr als das Dreifache des oberen Normwertes (siehe Abschnitt 4.4)

Die Leber-Aminotransferasewerte müssen vor Behandlungsbeginn und danach während der Behandlung mit Tracleer monatlich gemessen werden. Zusätzlich müssen die Leber-Aminotransferasewerte 2 Wochen nach jeder Dosissteigerung gemessen werden.

Empfehlungen bei Erhöhung der ALT- und/oder AST-Werte

ALT- und/oder AST-Werte

Behandlung und Kontrollempfehlungen

> 3 und \leq 5 \times ONW

Die Leber-Aminotransferasewerte sollten durch einen weiteren Leberenzymtest verifiziert werden. Bei Bestätigung des Befundes sollte individuell über die Fortführung der Therapie mit Tracleer, eventuell mit
einer reduzierten Dosis, oder über das Absetzen von Tracleer entschieden werden (siehe Abschnitt 4.2). Weitere Kontrollen der Aminotransferasewerte sollten mindestens alle 2 Wochen durchgeführt
werden. Wenn die Aminotransferasewerte auf den Stand vor Behandlungsbeginn zurückgegangen sind, sollte eine Fortsetzung oder Wiederaufnahme der Behandlung mit Tracleer gemäß den unten aufgeführten Bedingungen in Betracht gezogen werden.

> 5 und $\leq 8 \times ONW$

Die Leber-Aminotransferasewerte sollten durch einen weiteren Leberenzymtest verifiziert werden. Bei Bestätigung des Befundes sollte das Arzneimittel abgesetzt und die Kontrolle der Aminotransferasewerte mindestens alle 2 Wochen durchgeführt werden. Wenn die Aminotransferasewerte auf den Stand vor Behandlungsbeginn zurückgegangen sind, sollte eine Wiederaufnahme der Behandlung mit Tracleer gemäß der unten aufgeführten Bedingungen in Betracht gezogen werden.

 $> 8 \times ONW$

Das Arzneimittel muss abgesetzt werden. Die Behandlung darf nicht wieder aufgenommen werden.

Bei den assoziierten klinischen Symptomen einer Leberschädigung, d.h. Übelkeit, Erbrechen, Fieber, Bauchschmerzen, Gelbsucht, ungewöhnlicher Lethargie oder Ermüdung, grippeartigen Beschwerden (Arthralgie, Myalgie, Fieber) muss die Behandlung abgebrochen werden. Eine Wiederaufnahme der Behandlung mit Tracleer darf nicht in Betracht gezogen werden.

Wiederaufnahme der Behandlung

Eine Wiederaufnahme der Behandlung sollte nur in Betracht gezogen werden, wenn der mögliche Nutzen einer Behandlung mit Tracleer die möglichen Risiken überwiegt und wenn die Leber-Aminotransferasewerte auf den Stand vor Behandlungsbeginn zurückgegangen sind. Es wird empfohlen, einen Hepatologen hinzuzuziehen. Bei einer Wiederaufnahme der Behandlung sind die Hinweise in Abschnitt 4.2 zu befolgen. Nach erfolgter Wiederaufnahme der Behandlung müssen die Aminotransferasewerte innerhalb der ersten 3 Tage kontrolliert werden, dann nochmals nach weiteren 2 Wochen und danach entsprechend der oben aufgeführten Empfehlungen.

ONW = Oberer Normwert

- Gleichzeitige Anwendung von Cyclosporin A (siehe Abschnitt 4.5)
- Schwangerschaft (siehe Abschnitte 4.4 und 4.6)
- Frauen im gebärfähigen Alter, die keine zuverlässigen Verhütungsmethoden anwenden (siehe Abschnitte 4.4, 4.5 und 4.6)

4.4 Besondere Warnhinweise und Vorsichtsmaßnahmen für die Anwendung

Die Wirksamkeit von Tracleer bei Patienten mit schwerer pulmonal arterieller Hypertonie ist nicht belegt. Bei Verschlechterung des klinischen Zustandes sollte die Umstellung auf eine für schwere Stadien der Erkrankung empfohlene Therapie (z. B. Epoprostenol) in Betracht gezogen werden (siehe Abschnitt 4.2).

Das Nutzen-Risiko-Verhältnis von Bosentan bei Patienten mit pulmonal arterieller Hypertonie der funktionellen WHO-/NYHA-Klasse I wurde nicht untersucht.

Die Behandlung mit Tracleer sollte nur begonnen werden, wenn der systemische systolische Blutdruck höher als 85 mmHg ist.

Es wurde nicht nachgewiesen, dass Tracleer die Abheilung bereits bestehender digitaler Ulzerationen begünstigt.

Leberfunktion

Die mit Bosentan assoziierten Erhöhungen der Leber-Aminotransferasewerte, d.h. Aspartat- und Alanin-Aminotransferase (AST und/oder ALT), sind dosisabhängig. Die Veränderungen der Leberenzymwerte treten typischerweise innerhalb der ersten 26 Wochen der Behandlung auf. Sie können aber auch später während der Behandlung auftreten (siehe Abschnitt 4.8). Diese Anstiege sind möglicherweise zum Teil auf die kompetitive Hemmung der Gallensalz-Ausscheidung aus Hepatozyten zurückzuführen. Jedoch sind wahrscheinlich auch andere Mechanismen, die noch nicht eindeutig nachgewiesen worden sind, am Auftreten von Leberfunktionsstörungen beteiligt. Eine Zytolyse infolge der Akkumulation von Bosentan in Hepatozyten mit möglicherweise schwerer Leberschädigung oder ein immunologischer Mechanismus sind nicht ausgeschlossen. Das Risiko für eine Leberfunktionsstörung kann möglicherweise auch erhöht sein, wenn Bosentan gleichzeitig mit Arzneimitteln verabreicht wird, die Inhibitoren der Gallensalz-Export-Pumpe sind, wie z. B. Rifampicin, Glibenclamid und Cyclosporin A (siehe Abschnitte 4.3 und 4.5). Die Datenlage ist jedoch limitiert.

Hämoglobinkonzentration

Die Behandlung mit Bosentan war mit dosisabhängigen Erniedrigungen der Hämoglobinkonzentration assoziiert (siehe Abschnitt 4.8). In plazebokontrollierten Studien waren die mit Bosentan in Zusammenhang stehenden erniedrigten Hämoglobinkonzentrationen nicht progredient und stabilisierten sich innerhalb der ersten 4 bis 12 Wochen nach Behandlungsbeginn. Es wird empfohlen, die Hämoglobinkonzentration vor Behandlungsbeginn, in monatlichem Abstand während der ersten 4 Behandlungsmonate und danach vierteljährlich zu überprüfen. Bei klinisch relevanter Erniedrigung der Hämoglobinkonzentration sollten in weiteren Bewertungen und Untersuchungen die Ursache und Notwendigkeit einer spezifischen Behandlung geklärt werden. Nach Markteinführung wurden Fälle von Anämien beschrieben, die Bluttransfusionen erforderten (siehe Abschnitt 4.8).

Frauen im gebärfähigen Alter

Da Tracleer hormonale Kontrazeptiva wirkungslos machen kann, und unter Berücksichtigung des Risikos einer Verschlechterung der pulmonalen Hypertonie im Rahmen einer Schwangerschaft, sowie unter Berücksichtigung der teratogenen Effekte, die bei Tieren beobachtetet wurden,

- darf Tracleer bei Frauen im gebärfähigen Alter nur dann eingenommen werden, wenn zuverlässige Verhütungsmethoden angewendet werden und wenn ein Schwangerschaftstest vor Behandlungsbeginn negativ ist
- dürfen hormonale Kontrazeptiva nicht als alleinige Verhütungsmethode während der Behandlung mit Tracleer eingesetzt werden
- sind Monatliche Schwangerschaftstests während der Behandlung zu empfehlen, um die Früherkennung einer Schwangerschaft zu ermöglichen.

Für weitere Informationen siehe Abschnitte 4.5 und 4.6.

Pulmonale veno-okklusive Krankheit

Es gibt Fallberichte über Lungenödeme, die nach Anwendung von Vasodilatanzien (hauptsächlich Prostazykline) bei Patienten mit einer pulmonalen veno-okklusiven Erkrankung auftraten. Daher sollte, falls nach Anwendung von Bosentan bei Patienten mit pulmonal arterieller Hypertonie Symptome eines Lungenödems auftreten, die Möglichkeit einer assoziierten veno-okklusiven Erkrankung in Betracht gezogen werden. Nach der Markteinführung wurden Lungenödeme bei mit Tracleer behandelten Patienten mit der Verdachtsdiagnose einer pulmonalen veno-okklusiven Krankheit selten berichtet.

Anwendung bei Patienten mit pulmonal arterieller Hypertonie und begleitender Linksherzinsuffizienz

Bei Patienten mit pulmonal arterieller Hypertonie und begleitender Linksherzinsuffizienz wurde keine spezifische Studie durchgeführt. Jedoch wurden 1611 Patienten (804 Bosentan- und 807 Plazebo-Patienten) mit schwerer chronischer Herzinsuffizienz (CHF) über einen mittleren Zeitraum von 1,5 Jahren in einer plazebokontrollierten Studie behandelt (AC-052-301/302

[ENABLE 1 & 2]-Studie). In dieser Studie kam es während der ersten 4-8 Wochen der Bosentan-Behandlung zu einer frühen erhöhten Hospitalisierungsrate aufgrund von CHF, deren Ursache eine erhöhte Flüssigkeitsretention sein könnte. In dieser Studie manifestierte sich die Flüssigkeitsretention durch eine frühe Gewichtszunahme, eine erniedrigte Hämoglobinkonzentration und eine erhöhte Inzidenz von Beinödemen. Bei Studienende war zwischen Bosentanund Plazebo-Patienten insgesamt weder ein Unterschied in Bezug auf Hospitalisierungen aufgrund von Herzinsuffizienz noch in Bezug auf die Mortalität zu beobachten. Daher wird empfohlen, Patienten auf Anzeichen einer Flüssigkeitsretention (z. B. Gewichtszunahme) zu überwachen, insbesondere dann, wenn gleichzeitig eine schwere systolische Dysfunktion vorliegt. In einem solchen Fall empfiehlt sich die Aufnahme einer Diuretika-Behandlung oder die Erhöhung der jeweils aktuellen Diuretikadosis. Bei Patienten, die Anzeichen einer Flüssigkeitsretention aufweisen, empfiehlt sich die Behandlung mit Diuretika vor Behandlungsbeginn mit Tra-

Anwendung bei pulmonal arterieller Hypertonie in Assoziation mit HIV-Infektion

Die Erfahrungen aus klinischen Studien zur Behandlung von Patienten mit pulmonal arterieller Hypertonie in Assoziation mit HIV-Infektion, die mit antiretroviralen Arzneimitteln behandelt wurden, sind begrenzt (siehe Abschnitt 5.1). Eine Wechselwirkungsstudie mit Bosentan und Lopinavir/ Ritonavir zeigte bei gesunden Probanden erhöhte Plasmakonzentrationen von Bosentan, wobei die höchsten Spiegel in den ersten 4 Behandlungstagen auftraten (siehe Abschnitt 4.5). Wenn bei Patienten unter Therapie mit Ritonavir-verstärkten Proteaseinhibitoren eine Behandlung mit Tracleer eingeleitet wird, sollte die Verträglichkeit von Tracleer engmaschig kontrolliert werden, zu Beginn der Behandlung insbesondere hinsichtlich der Leberfunktionswerte und des Risikos eines Blutdruckabfalls. Fin erhöhtes Risiko für eine Leberschädigung und hämatologische Nebenwirkungen kann bei Dauertherapie mit Bosentan in Kombination mit antiretroviralen Arzneimitteln nicht ausgeschlossen werden. Aufgrund der induzierenden Wirkung von Bosentan auf CYP450-Isoenzyme besteht die Möglichkeit von Interaktionen, die die Wirksamkeit der antiretroviralen Therapie beeinträchtigen könnten (siehe Abschnitt 4.5). Deshalb sollten diese Patienten auch bezüglich ihrer HIV-Infektion engmaschig kontrolliert werden.

Anwendung bei pulmonaler Hypertonie in Assoziation mit chronisch obstruktiver Lungenerkrankung (COPD)

Die Sicherheit und Verträglichkeit von Bosentan wurde im Rahmen einer nicht-kontrollierten, explorativen Studie mit 11 Patienten mit pulmonaler Hypertonie in Assoziation mit schwerer COPD (Stadium III der GOLD-Klassifikation) über einen Zeitraum von 12 Wochen untersucht. Es wurde eine Zunahme des Atemminutenvolumens und eine Abnahme der Sauerstoffsättigung beobachtet. Das häufigste unerwünschte Ereignis war Dyspnoe, die sich nach Absetzen von Bosentan wieder zurückbildete.

<u>Die gleichzeitige Anwendung anderer</u> Arzneimittel

Die gleichzeitige Anwendung von Tracleer und Cyclosporin A ist kontraindiziert (siehe Abschnitte 4.3 und 4.5).

Die gleichzeitige Anwendung von Tracleer mit Glibenclamid, Fluconazol oder Rifampicin wird nicht empfohlen. Für weitere Details siehe Abschnitt 4.5.

Gleichzeitige Anwendung eines CYP3A4-Inhibitors und eines CYP2C9-Inhibitors mit Tracleer sollte vermieden werden (siehe Abschnitt 4.5).

4.5 Wechselwirkungen mit anderen Arzneimitteln und sonstige Wechselwirkungen

Bosentan ist ein Induktor der Cytochrom-P450-Isoenzyme CYP2C9 und CYP3A4. In vitro-Daten legen auch eine Induktion von CYP2C19 nahe. Folglich werden die Plasmakonzentrationen der durch diese Isoenzyme metabolisierten Substanzen bei gleichzeitiger Einnahme von Tracleer gesenkt. Die Möglichkeit einer veränderten Wirksamkeit der durch diese Isoenzyme metabolisierten Arzneimittel sollte in Betracht gezogen werden. Eine Dosisanpassung dieser Arzneimittel kann nach Beginn, Dosisänderung oder Absetzen einer gleichzeitigen Behandlung mit Tracleer erforderlich werden

Bosentan wird durch CYP2C9 und CYP3A4 metabolisiert. Eine Hemmung dieser Isoenzyme kann die Plasmakonzentration von Bosentan erhöhen (siehe Ketoconazol). Der Einfluss von CYP2C9-Inhibitoren auf die Bosentan-Konzentration wurde nicht untersucht. Eine solche Kombination sollte nur mit Vorsicht angewendet werden.

Fluconazol und andere CYP2C9- und CYP3A4-Inhibitoren: Die gleichzeitige Verabreichung von Fluconazol, das überwiegend CYP2C9 inhibiert, jedoch in gewissem Ausmaß auch CYP3A4, könnte zu starken Erhöhungen der Plasmakonzentrationen von Bosentan führen. Diese Kombination wird nicht empfohlen. Aus dem gleichen Grund wird die gleichzeitige Verabreichung sowohl eines potenten CYP3A4-Inhibitors (wie Ketoconazol, Itraconazol oder Ritonavir) als auch eines CYP2C9-Inhibitors (wie Voriconazol) mit Tracleer nicht empfohlen.

Cyclosporin A: Die gleichzeitige Verabreichung von Tracleer und Cyclosporin A (einem Kalzineurininhibitor) ist kontraindiziert (siehe Abschnitt 4.3). Bei gleichzeitiger Anwendung waren die initialen Tal-Plasmakonzentrationen von Bosentan ungefähr 30-fach höher als nach alleiniger Verabreichung von Bosentan. Im Steady-state waren die Bosentan Plasmakonzentrationen 3- bis 4-fach höher als nach alleiniger Verabreichung von Bosentan. Der Mechanismus dieser Interaktion beruht höchstwahrscheinlich auf einer Hemmung der durch Transportproteine vermittelten Aufnahme von Bosentan in die Hepatozyten durch Cyclosporin A. Die Plasmakonzentrationen von Cyclosporin A (ein CYP3A4-Substrat) nahmen um ungefähr 50 % ab. Dies ist höchstwahrscheinlich auf die Induktion von CYP3A4 durch Bosentan zurückzuführen.

Tacrolimus, Sirolimus: Die gleichzeitige Verabreichung von Tacrolimus oder Sirolimus und Tracleer wurde beim Menschen nicht untersucht. In Analogie zur gleichzeitigen Anwendung von Cyclosporin A könnte die gleichzeitige Anwendung von Tacrolimus oder Sirolimus und Tracleer zu einem Anstieg der Plasmakonzentrationen von Bosentan führen. Die Plasmakonzentrationen von Tacrolimus oder Sirolimus könnten durch die gleichzeitige Verabreichung von Tracleer abfallen. Daher wird die gleichzeitige Anwendung von Tracleer mit Tacrolimus oder Sirolimus nicht empfohlen. Patienten, die eine Kombinationstherapie benötigen, sollten zur Erfassung von unerwünschten Arzneimittelwirkungen engmaschig überwacht und die Plasmakonzentrationen von Tacrolimus und Sirolimus engmaschig kontrolliert werden.

Glibenclamid: Die gleichzeitige Verabreichung von zweimal täglich 125 mg Bosentan über 5 Tage führte zu einer Erniedrigung der Plasmakonzentrationen von Glibenclamid (einem CYP3A4-Substrat) um 40 % mit möglicherweise signifikant erniedrigter hypoglykämischer Wirkung. Die Plasmakonzentrationen von Bosentan waren um 29% erniedrigt. Darüber hinaus wurde bei Patienten, die diese Kombination erhielten, eine erhöhte Inzidenz von Aminotransferasenerhöhungen beobachtet. Sowohl Glibenclamid als auch Bosentan hemmen die Gallensalz-Export-Pumpe, was die erhöhten Aminotransferasewerte erklären könnte. Diese Kombination sollte nicht angewendet werden. Es liegen keine Daten zu Wechselwirkungen mit anderen Sulfonylharnstoffen

Rifampicin: Bei 9 gesunden Probanden führte die gleichzeitige Verabreichung von zweimal täglich 125 mg Bosentan während 7 Tagen mit Rifampicin, einem starken Induktor von CYP2C9 und CYP3A4, zu einer Erniedrigung der Plasmakonzentration von Bosentan um 58 %. In einem einzelnen Fall betrug die Erniedrigung fast 90 %. Infolge dessen ist eine signifikant reduzierte Wirksamkeit von Bosentan zu erwarten, wenn es gleichzeitig mit Rifampicin verabreicht wird. Die gleichzeitige Anwendung von Tracleer und Rifampicin wird nicht empfohlen. Daten zu anderen CYP3A4-Induktoren, wie z.B. Carbamazepin, Phenobarbital, Phenytoin und Johanniskraut liegen nicht vor, aber bei ihrer gleichzeitigen Verabreichung ist eine reduzierte systemische Verfügbarkeit von Bosentan zu erwarten. Eine klinisch relevante Reduktion der Wirksamkeit kann nicht ausgeschlossen werden.

Lopinavir/Ritonavir (und andere Ritonavir-verstärkte Proteaseinhibitoren): Die gleichzeitige Verabreichung von zweimal täglich 125 mg Bosentan und zweimal täglich 400/100 mg Lopinavir/Ritonavir über 9,5 Tage führte bei gesunden Probanden zu einer ungefähr 48-fach höheren initialen Tal-Plasmakonzentrationen von Bosentan als nach alleiniger Verabreichung von Bosentan. An Tag 9 waren die Plasmakonzentrationen von Bosentan ungefähr 5-fach höher als nach alleiniger Verabreichung von Bosentan. Diese Interaktion ist höchstwahrscheinlich auf die Hemmung der durch Transportproteine vermittelten Aufnahme von Bosentan

Tracleer® 62,5 mg / 125 mg Filmtabletten

Actelion

in die Hepatozyten durch Ritonavir sowie der Hemmung von CYP3A4 und der daraus resultierenden Abnahme der Clearance von Bosentan zurückzuführen. Bei gleichzeitiger Anwendung mit Lopinavir/Ritonavir oder anderen Ritonavir-verstärkten Proteaseinhibitoren sollte die Verträglichkeit von Tracleer überwacht werden.

Nach gleichzeitiger Verabreichung mit Bosentan über 9,5 Tage waren die Plasmaspiegel von Lopinavir und Ritonavir in einem klinisch nicht signifikanten Ausmaß (um ungefähr 14 % bzw. 17 %) erniedrigt. Es könnte jedoch sein, dass die vollständige Induktion durch Bosentan noch nicht erreicht war, so dass eine weitere Abnahme des Plasmaspiegels der Proteaseinhibitoren nicht auszuschließen ist. Eine angemessene Überwachung der HIV-Therapie wird empfohlen. Ähnliche Effekte sind für andere Ritonavirverstärkte Proteaseinhibitoren zu erwarten (siehe Abschnitt 4.4).

Andere antiretrovirale Arzneimittel: Aufgrund mangelnder Daten können keine spezifischen Empfehlungen hinsichtlich anderer verfügbarer antiretroviraler Arzneimittel gemacht werden. Die Kombination von Nevirapin und Bosentan wird aufgrund der ausgeprägten Hepatotoxizität von Nevirapin, die additive Effekte bezüglich der Lebertoxizität von Bosentan haben könnte, nicht empfoblen

Hormonale Kontrazeptiva: Die gleichzeitige Verabreichung von zweimal täglich 125 mg Bosentan über einen Zeitraum von 7 Tagen mit einer einzelnen Dosis eines oralen Kontrazeptivums, das 1 mg Norethisteron und 35 µg Ethinylestradiol enthielt, führte zu einer Erniedrigung der AUC von Norethisteron und Ethinylestradiol um 14 %bzw. 31 %. Allerdings betrug bei einzelnen Personen die Erniedrigung bis zu 56 % bzw. 66 %. Daher wird die alleinige Anwendung hormonaler Kontrazeptiva, unabhängig von der Darreichungsform (z.B. orale, injizierbare, transdermale oder implantierbare Formulierungen) nicht als wirksame und sichere Verhütungsmethode angesehen (siehe Abschnitte 4.4 und 4.6).

Warfarin: Die gleichzeitige Verabreichung von zweimal täglich 500 mg Bosentan über 6 Tage führte zu einer Erniedrigung der Plasmakonzentrationen von S-Warfarin (einem CYP2C9-Substrat) und R-Warfarin (einem CYP3A4-Substrat) um 29 % bzw. 38 %. Klinische Erfahrungen über die gleichzeitige Verabreichung von Bosentan und Warfarin bei Patienten mit pulmonal arterieller Hypertonie zeigten keine klinisch signifikanten Veränderungen der International Normalized Ratio (INR) oder der Warfarin-Dosis (Vergleich Ausgangslage mit Ende der klinischen Studien). Außerdem wurde die Warfarin-Dosis während der Studien aufgrund von Veränderungen der INR oder aufgrund von Nebenwirkungen bei den mit Bosentan behandelten Patienten genau so oft verändert wie bei den Patienten der Plazebo-Gruppe. Eine Dosisanpassung von Warfarin und ähnlichen oralen Antikoagulanzien ist bei Beginn einer Therapie mit Bosentan nicht erforderlich, aber eine engmaschige Überwachung der INR wird insbesondere zu Behandlungsbeginn und während der Auftitrierung empfohlen.

Simvastatin: Die gleichzeitige Verabreichung von zweimal täglich 125 mg Bosentan während 5 Tagen senkte die Plasmakonzentrationen von Simvastatin (einem CYP3A4-Substrat) und dessen aktivem β-Hydroxysäure-Metaboliten um 34 % bzw. 46 %. Die Plasmakonzentrationen von Bosentan blieben bei der gleichzeitigen Verabreichung von Simvastatin unbeeinflusst. Die Überwachung der Cholesterinwerte und eine nachfolgende Dosisanpassung sollten in Betracht gezogen werden.

Ketoconazol: Die gleichzeitige Verabreichung von zweimal täglich 62,5 mg Bosentan während 6 Tagen mit Ketoconazol, einem starken CYP3A4-Inhibitor, erhöhte die Plasmakonzentrationen von Bosentan auf ungefähr das Doppelte. Eine Dosisanpassung von Tracleer ist nicht erforderlich. Obwohl durch in-vivo-Studien nicht belegt, sind ähnliche Erhöhungen der Bosentan-Plasmakonzentrationen mit anderen potenten CYP3A4-Inhibitoren zu erwarten (wie z.B. Itraconazol oder Ritonavir). Bei gleichzeitiger Anwendung mit einem CYP3A4-Inhibitor besteht jedoch für Patienten, die schlechte CYP2C9-Metabolisierer sind, ein Risiko für erhöhte Plasmakonzentrationen von Bosentan. Diese können stärker ausgeprägt sein, was zu potenziell schädlichen Nebenwirkungen führen kann.

Epoprostenol: Begrenzte Daten aus einer Studie (AC-052-356 [BREATHE-3]) bei 10 pädiatrischen Patienten, die mit einer Kombination von Bosentan und Epoprostenol behandelt wurden, belegen, dass sich die C_{max}- und AUC-Werte von Bosentan nach Verabreichung von Einzel- wie auch von Mehrfachdosen bei Patienten mit oder ohne kontinuierliche Infusion von Epoprostenol ähnlich waren (siehe Abschnitt 5.1).

Sildenafil: Die gleichzeitige Verabreichung von zweimal täglich 125 mg Bosentan (Steady-state) mit dreimal täglich 80 mg Sildenafil (Steady-state) während 6 Tagen bei gesunden Probanden führte zu einer Erniedrigung der AUC von Sildenafil um 63 % und einer Erhöhung der AUC von Bosentan um 50 %. Es wird empfohlen, die gleichzeitige Anwendung mit Vorsicht einzusetzen.

 $\it Digoxin:$ Die gleichzeitige Verabreichung von zweimal täglich 500 mg Bosentan mit Digoxin über 7 Tage führte zu einer Erniedrigung der AUC, $\rm C_{max}$ und $\rm C_{min}$ von Digoxin um 12 %, 9 % bzw. 23 %. Der Mechanismus dieser Wechselwirkung ist möglicherweise auf eine Induktion von P-Glykoprotein zurückzuführen. Diese Wechselwirkung hat wahrscheinlich keine klinische Relevanz.

Kinder und Jugendliche:

Studien zur Erfassung von Wechselwirkungen wurden nur bei Erwachsenen durchgeführt.

4.6 Fertilität, Schwangerschaft und Stillzeit

Schwangerschaft

Tierexperimentelle Studien haben eine Reproduktionstoxizität (Teratogenität, Embryotoxizität, siehe Abschnitt 5.3) gezeigt. Es liegen keine verlässlichen Daten zur Anwen-

dung von Tracleer bei Schwangeren vor. Das potenzielle Risiko für den Menschen ist weiterhin nicht bekannt. Tracleer ist während der Schwangerschaft kontraindiziert (siehe Abschnitt 4.3).

Anwendung bei Frauen im gebärfähigen Alter

Bevor eine Behandlung mit Tracleer bei Frauen im gebärfähigen Alter begonnen wird, sollte eine bestehende Schwangerschaft ausgeschlossen, die Patientin angemessen über wirksame und sichere Verhütungsmethoden informiert und eine zuverlässige Empfängnisverhütung begonnen werden. Patientinnen und Verordner müssen sich bewusst sein, dass aufgrund pharmakokinetischer Wechselwirkungen Tracleer hormonale Kontrazeptiva wirkungslos machen kann (siehe Abschnitt 4.5). Deshalb sollten Frauen im gebärfähigen Alter hormonale Kontrazeptiva (einschließlich oraler, iniizierbarer, transdermaler oder implantierbarer Formulierungen) nicht als alleinige Verhütungsmethode einsetzen, sondern eine zusätzliche oder eine andere wirksame und sichere Verhütungsmethode anwenden. Bei Zweifeln, welche Verhütungsmethoden einer individuellen Patientin zu empfehlen sind, sollte konsiliarisch ein Gynäkologe hinzugezogen werden. Da während einer Tracleer-Therapie hormonale Kontrazeptiva möglicherweise versagen und man auch bedenken muss, dass im Rahmen einer Schwangerschaft ein Risiko für eine schwerwiegende Verschlechterung einer pulmonalen Hypertonie besteht, wird empfohlen, während der Behandlung mit Tracleer monatliche Schwangerschaftstests durchzuführen, um eine eingetretene Schwangerschaft frühzeitig zu erkennen.

Stillzeit

Es ist nicht bekannt, ob Bosentan in die Muttermilch übergeht. Stillen wird während einer Behandlung mit Tracleer nicht empfohlen

Fertilität

Tierexperimentelle Studien zeigten testikuläre Wirkungen (siehe Abschnitt 5.3). In einer Studie, bei der der Einfluss von Bosentan auf die testikuläre Funktion bei männlichen PAH-Patienten untersucht wurde, zeigten 8 von 24 Patienten eine verminderte Spermienkonzentration von mindestens 42% des Ausgangswertes nach 3 bzw. 6 Monaten Behandlung mit Bosentan. Basierend auf diesen Erkenntnissen und präklinischen Daten kann nicht ausgeschlossen werden, dass Bosentan eine nachteilige Wirkung auf die Spermatogenese bei Männern haben könnte. Bei Jungen kann eine langfristige Auswirkung auf die Fruchtbarkeit nach der Behandlung mit Bosentan nicht ausgeschlossen werden.

4.7 Auswirkungen auf die Verkehrstüchtigkeit und die Fähigkeit zum Bedienen von Maschinen

Es wurden keine spezifischen Studien durchgeführt, um den Einfluss von Tracleer auf die Verkehrstüchtigkeit und die Fähigkeit zum Bedienen von Maschinen zu beurteilen. Allerdings kann Tracleer Hypotonie mit Symptomen wie Benommenheit oder Synkopen verursachen, die die Verkehrstüch-

tigkeit und die Fähigkeit zum Bedienen von Maschinen beeinträchtigen könnte.

4.8 Nebenwirkungen

In 20 plazebokontrollierten Studien, mit vielfältigen therapeutischen Indikationen, wurden 2486 Patienten mit Bosentan in Dosierungen von 100 mg bis 2000 mg täglich und 1838 Patienten mit Plazebo behandelt. Die mittlere Behandlungsdauer betrug 45 Wochen. Nebenwirkungen wurden als Ereignisse, vorkommend bei mindestens 1 % der mit Bosentan behandelten Patienten und mit einer mindestens um 0,5 % größeren Häufigkeit als die unter Plazebo-Behandlung, definiert. Die häufigsten Nebenwirkungen waren Kopfschmerzen (11,5%), Ödeme/Flüssigkeitsretention (13,2%), veränderte Leberwerte (10,9%) und Anämie/ Hämoglobin-Erniedrigung (9,9%).

Die Behandlung mit Bosentan wurde mit dosisabhängigen Erhöhungen der Leber-Aminotransferasewerte und Erniedrigungen der Hämoglobinkonzentration assoziiert (siehe Abschnitt 4.4, Besondere Warnhinweise und Vorsichtsmaßnahmen für die Anwendung).

Bei der Bewertung von Nebenwirkungen in den 20 plazebokontrollierten Studien mit Bosentan und nach Markteinführung werden folgende Häufigkeiten zugrunde gelegt:

Sehr häufig (≥ 1/10)

Häufig (≥ 1/100, < 1/10)

Gelegentlich (≥ 1/1 000, < 1/100)

Selten (≥ 1/10 000, < 1/1 000)

Sehr selten (< 1/10 000)

Nicht bekannt (Häufigkeit auf Grundlage der verfügbaren Daten nicht abschätzbar)

In jeder Häufigkeitsklasse werden die Nebenwirkungen nach abnehmendem Schweregrad angegeben. Klinisch relevante Unterschiede in den Nebenwirkungen zwischen der gesamten Datenmenge und den zugelassenen Indikationen wurden nicht beobachtet. (siehe *Tabelle 1*)

Nach Markteinführung wurden bei Patienten mit mehreren Begleiterkrankungen und Begleitmedikationen seltene Fälle von ungeklärter Leberzirrhose nach langandauernder Behandlung mit Tracleer berichtet. Ebenfalls traten seltene Fälle von Leberversagen auf. Diese Fälle bestätigen die Bedeutung der strikten Einhaltung von regelmäßigen monatlichen Leberenzymwert-Kontrollen während der Behandlung mit Tracleer (siehe Abschnitt 4.4).

Kinder und Jugendliche

Nicht-kontrollierte Studien bei Kindern und Jugendlichen:

Das Sicherheitsprofil in der ersten unkontrollierten Studie an Kindern mit Filmtabletten (BREATHE-3: n = 19, Alter im Median: 10 Jahre [3 bis 15 Jahre], offen, Bosentan zweimal täglich 2 mg/kg über 12 Wochen) war bei dieser Population demjenigen in den Zulassungsstudien für erwachsene Patienten mit PAH ähnlich. Die häufigsten Nebenwirkungen in BREATHE-3 waren Gesichtsrötung/Flush (21%), Kopfschmerzen und veränderte Leberfunktionswerte (je 16%).

Eine Sammelanalyse der unkontrollierten pädiatrischen Studien bei PAH mit Bosen-

Tabelle 1

Systemorganklasse	Häufigkeit	Nebenwirkung		
Erkrankungen des Blutes und des Lymphsystems	häufig	Anämie, erniedrigter Hämoglobinwert (siehe Abschnitt 4.4)		
	nicht bekannt	Anämie oder erniedrigte Hämoglobinwerte die eine Transfusion von Erythrozytenkon- zentrat erfordern ¹		
	gelegentlich	Thrombozytopenie ¹		
	gelegentlich	Neutropenie, Leukopenie ¹		
Erkrankungen des Immunsystems	häufig	Überempfindlichkeitsreaktionen (einschließlich Dermatitis, Juckreiz und Rash) ²		
	selten	Anaphylaxie und/oder Angioödeme ¹		
Erkrankungen des Nervensystems	sehr häufig	Kopfschmerzen ³		
	häufig	Synkopen ^{1,4}		
Herzerkrankungen	häufig	Palpitationen ^{1,4}		
Gefäßerkrankungen	häufig	Flush-Symptomatik		
	häufig	Hypotonie ^{1,4}		
Erkrankungen der Atemwege, des Brustraums und Mediastinums	häufig	Nasale Kongestion ¹		
Erkrankungen des Gastrointestinaltrakts	häufig	Gastroösophagealer Reflux, Durchfall		
Leber- und Gallenerkrankungen	sehr häufig	Veränderte Leberfunktionswerte, (siehe Abschnitt 4.4)		
	gelegentlich	Aminotransferase-Erhöhung assoziiert mit Hepatitis (einschließlich möglicher Exazer- bation einer zugrunde liegenden Hepatitis) und/oder Gelbsucht¹ (siehe Abschnitt 4.4)		
	selten	Leberzirrhose, Leberversagen ¹		
Erkrankungen der Haut und des Unterhautzellgewebes	häufig	Erythem		
Allgemeine Erkrankungen und Beschwerden am Verabreichungsort	sehr häufig	Ödeme, Flüssigkeitsretention ⁵		

- Daten stammen aus der Beobachtung nach Markteinführung, Häufigkeiten basieren auf statistischer Modellierung von Daten aus plazebokontrollierten klinischen Studien.
- ² Überempfindlichkeitsreaktionen wurden bei 9,9 % der Patienten unter Bosentan und 9,1 % der Patienten unter Plazebo gemeldet.
- 3 Kopfschmerzen wurden bei 11,5 % der Patienten unter Bosentan und 9,8 % der Patienten unter Plazebo gemeldet.
- ⁴ Dieser Typ von Nebenwirkungen kann auch in Zusammenhang mit der zugrundeliegenden Erkrankung stehen.
- Ödeme oder Flüssigkeitsretention wurde bei 13,2 % der Patienten unter Bosentan und 10,9 % der Patienten unter Plazebo gemeldet.

tan 32 mg Tabletten zur Herstellung einer Suspension zum Einnehmen (FUTURE-1/2, FUTURE-3/Extension) umfasste insgesamt 100 Kinder, die mit Bosentan 2 mg/kg Körpergewicht zweimal täglich (n = 33), 2 mg/kg Körpergewicht dreimal täglich (n = 31) oder 4 mg/kg Körpergewicht zweimal täglich (n = 36) behandelt wurden. Bei der Studieaufnahme waren 6 Patienten zwischen 3 Monaten und 1 Jahr alt, 15 Kinder waren zwischen 1 Jahr und weniger als 2 Jahre, und 79 waren zwischen 2 und 12 Jahre alt. Die mediane Behandlungsdauer betrug 71,8 Wochen (0,4 bis 258 Wochen).

Das Sicherheitsprofil in dieser Sammelanalyse nicht-kontrollierter pädiatrischer Studien war ähnlich, wie das in den Zulassungsstudien bei erwachsenen Patienten mit PAH beobachtete, ausgenommen Infektionen, die häufiger (69,0 % vs 41,3 %) als bei Erwachsenen gemeldet wurden. Dieser Unterschied in der Infektionshäufig-

keit kann zum Teil aufgrund der längeren mittleren Behandlungsexposition in den pädiatrischen (Median: 71,8 Wochen), im Vergleich zu den erwachsenen Patienten (Median: 17,4 Wochen), erklärt werden. Die häufigsten Nebenwirkungen waren Infektionen der oberen Atemwege (25 %), pulmonal (arterielle) Hypertonie (20%), Nasopharyngitis (17 %), Pyrexie (15 %), Erbrechen (13%), Bronchitis (10%), Bauchschmerzen (10%) und Durchfall (10%). Es gab keine relevanten Unterschiede in der Häufigkeit von Nebenwirkungen zwischen pädiatrischen Patienten unter 2 und über 2 Jahren. Dies basiert jedoch nur auf der Analyse von 21 Kindern unter 2 Jahren (einschließlich 6 Patienten im Alter von 3 Monaten bis 1 Jahr). Unerwünschte Ereignisse wie Leberanomalien und Anämie/Hämoglobinabnahme traten bei 9 % beziehungsweise 5 % der pädiatrischen Patienten auf.

In einer randomisierten, plazebokontrollierten Studie, durchgeführt an PPHN Patienten

Tracleer® 62,5 mg / 125 mg Filmtabletten

Actelion

(FUTURE-4), wurden insgesamt 13 Neugeborene mit Bosentan-Tabletten zur Herstellung einer Suspension zum Einnehmen bei einer Dosis von 2 mg/kg Körpergewicht zweimal täglich (8 Patienten waren unter Plazebo) behandelt. Die mittlere Behandlungsdauer mit Bosentan- beziehungsweise Plazebo betrug 4,5 Tage (0,5 bis 10,0 Tage) beziehungsweise 4,0 Tage (2,5 bis 6,5 Tage). Die häufigsten unerwünschten Ereignisse, die bei den mit Bosentan, beziehungsweise bei den mit Plazebo behandelten Patienten auftraten, waren Anämie oder Hämoglobinabnahme (7 bzw. 2 Patienten), generalisierte Ödeme (3 bzw. 0 Patienten) und Erbrechen (2 bzw. 0 Patienten).

Laborwertveränderungen

Veränderungen der Leberfunktionswerte

Während der klinischen Studien traten dosisabhängige Erhöhungen der Leber-Aminotransferasewerte im Allgemeinen in den ersten 26 Wochen der Behandlung auf, entwickelten sich in der Regel allmählich und waren meist asymptomatisch. Nach Markteinführung wurden seltene Fälle von Leberzirrhose und Leberversagen berichtet.

Der Mechanismus dieser Nebenwirkung ist unklar. Diese Anstiege der Aminotransferasewerte können bei Fortsetzung der Behandlung mit der Erhaltungsdosis von Tracleer oder nach Dosisreduktion spontan zurückgehen, jedoch kann ein Pausieren oder Absetzen erforderlich sein (siehe Abschnitt 4.4).

In den 20 zusammengefassten plazebokontrollierten Studien wurden Erhöhungen der Leber-Aminotransferasewerte bei 11,2 % der mit Bosentan behandelten Patienten – im Vergleich zu 2,4 % der Plazebo-Patienten \geq 3 fache des oberen Normwertes (ONW) beobachtet. Erhöhung auf \geq 8 × ONW wurde bei 3,6 % der Patienten unter Bosentan und 0,4 % der Patienten unter Plazebo beobachtet. Erhöhungen der Leber-Aminotransferasewerte waren mit erhöhtem Bilirubin (\geq 2 × ONW) assoziiert, ohne Nachweis einer Gallenstauung bei 0,2 % (5 Patienten) unter Bosentan und 0,3 % (6 Patienten) unter Plazebo.

In der Sammelanalyse der Daten von 100 PAH-Patienten aus nicht-kontrollierten Studien an Kindern, FUTURE-1/2 und FUTURE-3/Extension, wurden Erhöhungen der Leber-Aminotransferasewerte $\geq 3 \times \text{ONW}$ bei 2 % der Patienten beobachtet.

In der FUTURE-4-Studie mit 13 Neugeborenen mit PPHN und einer Behandlung mit Bosentan 2 mg/kg zweimal täglich für weniger als 10 Tage (0,5 bis 10,0 Tage) gab es keine Fälle von Leber-Aminotransferasen $\geq 3 \times \text{ONW}$ während der Behandlung, jedoch trat ein Fall von Hepatitis 3 Tage nach Behandlungsende mit Bosentan auf.

Hämoglobin

In den plazebokontrollierten Studien an Erwachsenen wurde über eine Abnahme der Hämoglobinkonzentration auf weniger als 10 g/dl des Anfangswertes bei 8,0 % der mit Bosentan behandelten Patienten und 3,9 % der mit Plazebo behandelten Patienten berichtet (siehe Abschnitt 4.4).

In der Sammelanalyse der Daten von 100 pädiatrischen PAH-Patienten aus nicht-kontrollierten Studien FUTURE-1/2 und FUTURE-3/Extension wurde über eine Abnahme der Hämoglobinkonzentration vom Ausgangswert auf weniger als 10 g/dl bei 10,0 % der Patienten berichtet. Es gab keine Abnahme der Hämoglobinkonzentration auf Werte unter 8 g/dl.

In der FUTURE-4-Studie entwickelten 6 der 13 mit Bosentan behandelten Neugeborenen mit PPHN während der Behandlung eine Abnahme der Hämoglobinwerte von innerhalb der Referenzwerte bei Behandlungsbeginn auf Werte unterhalb der unteren Normgrenze.

Meldung des Verdachts auf Nebenwirkungen

Die Meldung des Verdachts auf Nebenwirkungen nach der Zulassung ist von großer Wichtigkeit. Sie ermöglicht eine kontinuierliche Überwachung des Nutzen-Risiko-Verhältnisses des Arzneimittels.

Angehörige von Gesundheitsberufen sind aufgefordert, jeden Verdachtsfall einer Nebenwirkung über das unten aufgeführte nationale Meldesystem anzuzeigen.

Deutschland

Bundesinstitut für Arzneimittel und Medizinprodukte Abt. Pharmakovigilanz Kurt-Georg-Kiesinger Allee 3 D-53175 Bonn Website: http://www.bfarm.de

Österreich

Gesundheitswesen
Inst. Pharmakovigilanz
Traisengasse 5
AT-1200 WIEN
Fax: + 43 (0) 50 555 36207

Website: http://www.basg.gv.at/

België/Belgique/Belgien

Föderalagentur für Arzneimittel und Gesundheitsprodukte Abteilung Vigilanz EUROSTATION II Victor Hortaplein, 40/40 B-1060 BRUSSEL

4.9 Überdosierung

Bosentan wurde gesunden Probanden als Einzeldosis von bis zu 2400 mg und Patienten mit einer anderen Erkrankung als pulmonaler Hypertonie in Dosierungen von bis zu 2000 mg/Tag zwei Monate lang verabreicht. Die häufigste Nebenwirkung waren leichte bis mäßige Kopfschmerzen.

Eine massive Überdosierung kann zu einer ausgeprägten Hypotonie führen, die eine aktive Herz-Kreislauf-Unterstützung erforderlich machen kann. Nach Markteinführung wurde ein Fall einer Überdosierung von 10000 mg Tracleer bei einem erwachsenen männlichen Patienten berichtet. Dieser Patient litt unter Übelkeit, Erbrechen, Hypotonie, Schwindelanfällen, Schweißausbrüchen und verschwommenem Sehen. Mit zusätzlichen blutdruckstützenden Maßnahmen erholte er sich innerhalb von 24 Stunden vollständig. Hinweis: Bosentan kann nicht durch Dialyse aus der systemischen Zirkulation entfernt werden

5. PHARMAKOLOGISCHE EIGEN-SCHAFTEN

5.1 Pharmakodynamische Eigenschaften

Pharmakotherapeutische Gruppe: Andere Antihypertonika, ATC-Code: C02KX 01

Wirkmechanismus

Bosentan ist ein dualer Endothelin-Rezeptor-Antagonist (ERA) mit einer Affinität zu Endothelin-A- und -B (ET $_{\rm A}$ - und ET $_{\rm B}$ -)-Rezeptoren. Bosentan verringert sowohl den pulmonalen als auch den systemischen Gefäßwiderstand, wodurch es zu einem Anstieg des Herzzeitvolumens ohne Anstieg der Herzfrequenz kommt.

Das Neurohormon Endothelin-1 (ET-1) zählt zu den stärksten bekannten Vasokonstriktoren und kann auch Fibrose, Zellproliferation, Herzhypertrophie und Remodelling fördern und ist pro-inflammatorisch. Diese Effekte werden durch die Bindung von Endothelin an ETA- und ETB-Rezeptoren vermittelt, die im Endothel und in glatten Gefäßmuskelzellen lokalisiert sind. Die ET-1-Konzentrationen im Gewebe und Plasma sind bei einigen kardiovaskulären Störungen und Bindegewebserkrankungen erhöht, einschließlich pulmonal arterieller Hypertonie, Sklerodermie, akuter und chronischer Herzinsuffizienz, Myokardischämie, systemischer Hypertonie und Arteriosklerose, was eine pathogenetische Rolle von ET-1 bei diesen Erkrankungen nahelegt. Bei pulmonal arterieller Hypertonie und Herzinsuffizienz sind erhöhte ET-1-Konzentrationen, bei Abwesenheit eines Endothelin-Rezeptor-Antagonisten, eng mit Schweregrad und Prognose dieser Erkrankungen korreliert.

Bosentan konkurriert mit ET-1 und anderen ET-Peptiden um die Bindung an E T_A - und E T_B -Rezeptoren. Die Affinität von Bosentan zu E T_A -Rezeptoren (K_i = 4,1–43 nanomolar) ist etwas höher als zu E T_B -Rezeptoren (K_i = 38–730 nanomolar). Bosentan antagonisiert spezifisch ET-Rezeptoren und bindet nicht an andere Rezeptoren.

Wirksamkeit

Tiermodelle

In Tiermodellen zur pulmonalen Hypertonie führte die chronische orale Verabreichung von Bosentan zur Abnahme des pulmonalen Gefäßwiderstandes und Rückbildung der pulmonalen vaskulären und rechtsventrikulären Hypertrophie. In einem Tiermodell zur pulmonalen Fibrose führte Bosentan zur Reduktion von Kollagenablagerungen in der Lunge.

Wirksamkeit bei erwachsenen Patienten mit pulmonal arterieller Hypertonie

Zwei randomisierte, doppelblinde, multizentrische plazebokontrollierte Studien wurden bei 32 (Studie AC-052-351) und 213 (Studie AC-052-352 [BREATHE-1]) erwachsenen Patienten mit pulmonal arterieller Hypertonie mit funktioneller WHO-/NYHA-Klasse III – IV durchgeführt (idiopathische/familiäre PAH oder PAH überwiegend in Assoziation mit Sklerodermie). Nach 4-wöchiger Behandlung mit zweimal täglich 62,5 mg Bosentan wurden in diesen Studien die Erhaltungsdosen von zweimal täglich 125 mg (in AC-052-351) und zweimal täglich 125 mg und 250 mg (in AC-052-352) untersucht.

Tabelle 2

	PVR (dyn⋅s/cm⁵)		6-Minuten-Gehstrecke (m)	
	Plazebo (n = 88)	Bosentan (n = 80)	Plazebo (n = 91)	Bosentan (n = 86)
Ausgangswert; Mittelwert (SD)	802 (365)	851 (535)	431 (92)	443 (83)
Veränderung gegenüber dem Ausgangswert; Mittelwert (SD)	128 (465)	-69 (475)	-8 (79)	11 (74)
Behandlungseffekt	-22,6%		19	
95 % KI	-34, -10		-4, 42	
p	< 0,0001		0,0758	

PVR = pulmonaler vaskulärer Widerstand

Bosentan wurde zu der laufenden Therapie der Patienten hinzugefügt, die eine Kombination von Antikoagulanzien, Vasodilatatoren (z.B. Kalzium-Antagonisten), Diuretika, Sauerstoff und Digoxin, nicht aber Epoprostenol, beinhalten konnte. Die Kontrollgruppe erhielt Plazebo zusätzlich zur laufenden Therapie.

Der primäre Endpunkt jeder Studie war die Veränderung der 6-Minuten-Gehstrecke nach 12 Wochen bei der ersten Studie und nach 16 Wochen bei der zweiten Studie. In beiden Studien führte die Behandlung mit Bosentan zu signifikanten Steigerungen der körperlichen Belastbarkeit. Die plazebokorrigierten Steigerungen der Gehstrecke im Vergleich zum Ausgangswert bei Studienbeginn betrugen 76 Meter (p = 0,02; t-Test) bzw. 44 Meter (p = 0,0002; Mann-Whitney U-Test), gemessen zum Zeitpunkt des primären Endpunktes der jeweiligen Studie. Die Unterschiede zwischen den beiden Gruppen mit zweimal täglich 125 mg und zweimal täglich 250 mg waren statistisch nicht signifikant, jedoch gab es einen Trend zu einer verbesserten körperlichen Belastbarkeit bei der mit zweimal täglich 250 mg behandelten Gruppe.

Die Verbesserung der Gehstrecke war nach 4-wöchiger Behandlung erkennbar, nach 8-wöchiger Behandlung deutlich ausgeprägt und blieb bei einer bis zu 28 Wochen dauernden doppelblinden Behandlung erhalten, die bei einem Teil der Patienten durchgeführt wurde.

Eine retrospektive Responder-Analyse auf Basis der Veränderung der Gehstrecke, der funktionellen WHO-/NYHA-Klasse und der Dyspnoe ergab bei 95 Patienten, die dem Dosisarm zweimal täglich 125 mg Bosentan in den plazebokontrollierten Studien zugeordnet waren: In Woche 8 trat bei 66 Patienten eine Verbesserung auf, 22 waren stabil und bei 7 trat eine Verschlechterung auf. Von den 22 Patienten, die in Woche 8 stabil waren, trat bei 6 in Woche 12/16 eine Verbesserung und bei 4 eine Verschlechterung in Bezug auf den Ausgangswert auf. Von den 7 Patienten mit einer Verschlechterung in Woche 8 wiesen 3 eine Verbesserung in Woche 12/16 und 4 eine Verschlechterung in Bezug auf den Ausgangswert auf.

Nur in der ersten Studie wurden invasive hämodynamische Parameter beurteilt. Die Behandlung mit Bosentan führte zu einem deutlichen Anstieg des Herzindex, assoziiert mit einer signifikanten Reduktion des pulmonalarteriellen Drucks, des pulmonalen Gefäßwiderstands und des mittleren rechtsatrialen Drucks.

Die Behandlung mit Bosentan führte zu einer Reduktion der Symptome der pulmonal arteriellen Hypertonie. Bei den mit Bosentan behandelten Patienten verbesserte sich die Dyspnoe, die während der Gehtests gemessen wurde. Zu Beginn der Studie AC-052-352 wurden 92 % der 213 Patienten als funktioneller Schweregrad WHO-/ NYHA-Klasse III und 8 % als Klasse IV eingestuft. Die Behandlung mit Bosentan führte bei 42,4 % der Patienten zu einer Verbesserung des funktionellen Schweregrads um eine WHO-/NYHA-Klasse (Plazebo 30,4 %). In beiden Studien war die gesamte Veränderung der funktionellen WHO-/NYHA-Klasse bei den Bosentan-Patienten signifikant besser als bei den Plazebo-Patienten. Die Behandlung mit Bosentan war mit einer signifikanten Reduktion der Häufigkeit der klinischen Verschlechterung assoziiert im Vergleich zu Plazebo nach 28 Wochen (10,7% vs. 37,1%; p = 0,0015).

In einer randomisierten, doppelblinden, multizentrischen plazebokontrollierten Studie (AC-052-364 [EARLY]) erhielten 185 Patienten mit PAH der funktionellen WHO-/NYHA-Klasse II (6-Minuten-Gehstrecke bei Studienbeginn im Mittel 435 Meter) 4 Wochen lang zweimal täglich 62,5 mg Bosentan, anschließend 6 Monate zweimal täglich 125 mg (n = 93) oder Plazebo (n = 92). Die in die Studie eingeschlossenen Patienten waren hinsichtlich der PAH entweder nicht therapiert (n = 156) oder stabil auf Sildenafil eingestellt (n = 29). Gemeinsame primäre Endpunkte waren die prozentuale Veränderung des pulmonalen vaskulären Widerstandes (PVR) und die Veränderung der 6-Minuten-Gehstrecke gegenüber dem Ausgangswert nach 6 Monaten im Vergleich zu Plazebo. Die oben stehende Tabelle zeigt die im Prüfplan festgelegten untersuchten Parameter.

Die Behandlung mit Bosentan war mit einer Reduktion der Häufigkeit der klinischen Verschlechterung assoziiert, definiert als Kombination aus symptomatischer Krankheitsprogression, Hospitalisierung aufgrund von PAH oder Tod, im Vergleich zu Plazebo (entsprechend einer Risikoreduktion von 77 %, 95 % Kl 20 % – 94 %, p = 0,0114). Der Behandlungseffekt wurde insbesondere durch eine Verbesserung im Bereich der symptomatischen Krankheitsprogression bestimmt. In der Bosentan-Gruppe wurde ein Patient wegen Verschlechterung der PAH hospitalisiert gegenüber 3 Hospitalisiert

sierungen in der Plazebo-Gruppe. Während des 6-monatigen doppelblinden Studienzeitraumes trat in jeder Behandlungsgruppe nur ein Todesfall auf, daher können keine Schlussfolgerungen hinsichtlich des Überlebens gezogen werden.

Langzeit-Daten wurden von allen 173 Patienten erhoben, die mit Bosentan in der kontrollierten Phase der EARLY-Studie behandelt wurden und/oder in ihrer offenen Verlängerungsstudie von Plazebo auf Bosentan umgestellt wurden. Die mittlere Dauer der Bosentan-Exposition betrug 3,6 ± 1,8 Jahre (Bereich bis 6,1 Jahre), wobei 73 % der Patienten für mindestens 3 Jahre und 62 % für mindestens 4 Jahre behandelt wurden. Während der offenen Verlängerungsstudie konnten die Patienten eine zusätzliche PAH Behandlung nach Bedarf bekommen. Die Mehrzahl der Patienten wurden als idiopathische oder erbliche pulmonal arterielle Hypertonie (61%) diagnostiziert. Insgesamt 78% der Patienten verblieb in WHO-/ NYHA-Klasse II. Die Kaplan-Meier-Schätzungen für das Überleben waren 90 % und 85% nach einer Behandlungsdauer mit Bosentan von 3 bzw. 4 Jahren. Zu den gleichen Zeitpunkten waren 88% und 79% der Patienten ohne Verschlechterung ihrer PAH (definiert als Gesamtmortalität. Lungentransplantation, atriale Septostomie oder Beginn einer intravenösen oder subkutanen Prostanoid-Behandlung). Der relative Beitrag einer früheren Plazebo-Behandlung in der doppelblinden Phase sowie Begleitmedikationen während der offenen Verlängerungsperiode, sind unbekannt.

In einer prospektiven, multizentrischen, randomisierten, doppelblinden, plazebokontrollierten Studie (AC-052-405 [BREATHE-5]) wurden Patienten in der funktionellen WHO-/NYHA-Klasse III mit PAH in Assoziation mit angeborenen Herzfehlern und Eisenmenger-Physiologie 4 Wochen lang mit zweimal täglich 62,5 mg Bosentan, dann weitere 12 Wochen mit zweimal täglich 125 mg Bosentan (n = 37, wobei bei 31 ein überwiegend bidirektionaler Rechts-Links-Shunt vorlag) behandelt. Der primäre Endpunkt der Studie bestand darin, zu zeigen, dass Bosentan die bestehende Hypoxämie nicht verschlechtert. Nach 16 Wochen verbesserte sich die mittlere Sauerstoffsättigung in der Bosentan-Gruppe um 1,0% (95% KI 0,7% - 2,8%) im Vergleich zur Plazebo-Gruppe (n = 17 Patienten), was zeigt, dass Bosentan die Hypoxämie nicht negativ beeinflusste. In der Bosentan-Gruppe kam es zu einer signifikanten Abnahme des mittleren pulmonalen vaskulären Widerstandes (am ausgeprägtesten war dieser Effekt in der Subgruppe der Patienten mit bidirektionalem intrakardialen Shunt). Nach 16 Wochen betrug die mittlere plazebokorrigierte Steigerung der 6-Minuten-Gehstrecke 53 Meter (p = 0,0079), was eine Verbesserung der Belastbarkeit widerspiegelt. Sechsundzwanzig Patienten haben in der 24-wöchigen offenen Verlängerungsphase (AC-052-409) der BREATHE-5 Studie weiterhin Bosentan erhalten (mittlere Behandlungsdauer = 24.4 ± 2.0 Wochen) und die Wirksamkeit wurde im Allgemeinen beibehalten.

16 Patienten mit PAH in Assoziation mit HIV-Infektion (funktionelle WHO-/NYHA-Klasse III) wurden in einer offenen, nicht-Studie (AC-052-362 vergleichenden [BREATHE-4]) 4 Wochen lang mit zweimal täglich 62,5 mg Bosentan und anschließend für weitere 12 Wochen mit zweimal täglich 125 mg Bosentan behandelt. Nach 16-wöchiger Behandlung war die Belastbarkeit verglichen mit den Ausgangswerten signifikant verbessert: Die mittlere Steigerung der 6-Minuten-Gehstrecke betrug 91,4 Meter im Vergleich zum Ausgangswert von durchschnittlich 332,6 Metern (p < 0,001) bei Studienbeginn. Es können keine formalen Schlüsse hinsichtlich des Einflusses von Bosentan auf die Wirksamkeit der antiretroviralen Therapie gezogen werden (siehe auch Abschnitt 4.4).

Es liegen keine Studien vor, die eine günstige Auswirkung für eine Tracleer-Behandlung auf das Überleben von Patienten untersucht haben. Allerdings wurde langfristig der Vitalstatus und damit das Überleben von allen 235 mit Bosentan behandelten Patienten der zwei plazebokontrollierten Zulassungsstudien (AC-052-351 und AC-052-352) sowie ihren entsprechenden offenen Verlängerungsstudien dokumentiert. Die mittlere Behandlungsdauer mit Bosentan betrug bei diesen Patienten 1,9 ± 0,7 Jahre (Minimaldauer: 0,1 Jahr; Maximaldauer: 3,3 Jahre). Durchschnittlich wurden die Patienten für 2 ± 0,6 Jahre beobachtet. Die Mehrzahl der Patienten hatten eine primäre pulmonal arterielle Hypertonie (72%) und fielen in die funktionelle WHO-/NYHA Klasse III (84 %). Bei der Gesamtheit dieser Patienten betrug die Kaplan-Meier-Überlebensrate 93 % bzw. 84 % nach einjähriger bzw. zweijähriger Behandlung mit Bosentan. Bei Patienten mit PAH in Assoziation mit systemischer Sklerose war dieser Wert geringer. Die berechnete Überlebensrate könnte durch eine Initiierung einer Behandlung mit Epoprostenol bei 43/235 Patienten beeinflusst worden sein.

Studien bei Kindern mit pulmonal arterieller Hypertonie

BREATHE-3 (AC-052-356)

Bosentan-Filmtabletten wurden in einer offenen, unkontrollierten Studie bei 19 pädiatrischen Patienten mit pulmonal arterieller Hypertonie im Alter von 3 bis 15 Jahren untersucht. Diese Studie war primär als pharmakokinetische Studie angelegt (siehe Abschnitt 5.2). Die Patienten hatten primäre pulmonale Hypertonie (10 Patienten) oder pulmonal arterielle Hypertonie in Assoziation mit einem angeborenen Herzfehler (9 Patienten) und waren bei Behandlungsbeginn in WHO-Funktionsklasse II (n = 15 Patienten, 79%) oder Klasse III (n = 4 Patienten, 21 %). Die Patienten wurden in drei Körpergewichtsgruppen eingeteilt und über 12 Wochen mit einer Dosis von etwa 2 mg/kg zweimal täglich behandelt. Zum Zeitpunkt des Studienbeginns erhielt bereits die Hälfte der Patienten in jeder Gruppe intravenöses Epoprostenol. Die Epoprostenol-Dosis blieb während der Studiendauer konstant.

Hämodynamische Parameter wurden bei 17 Patienten erfasst. Der Herzindex stieg in Bezug auf den Ausgangswert im Mittel um 0,5 l/min/m² an, der mittlere pulmonale arterielle Druck nahm um 8 mm Hg, der PVR nahm um 389 dyn·s·cm⁻⁵ ab. Die Verbesserungen der hämodynamischen Parameter in Bezug auf den Ausgangswert traten mit oder ohne gleichzeitige Verabreichung von Epoprostenol ein. Die Veränderungen der Belastungstests-Parameter in Woche 12 waren in Bezug auf den Ausgangswert sehr variabel und erreichten keine statistische Signifikanz.

FUTURE-1/2 (AC-052-365/AC-052-367) FUTURE-1 war eine offene, unkontrollierte Studie, die mit der Tablette zur Herstellung einer Suspension zum Einnehmen bei einer Erhaltungsdosis von 4 mg/kg zweimal täglich bei 36 Patienten zwischen 2 und 11 Jahre alt durchgeführt wurde. Die Studie wurde zunächst als eine pharmakokinetische Studie geplant (siehe Abschnitt 5.2). Zu Beginn der Studie hatten die Patienten idiopathische (31 Patienten [86 %]) oder familiäre (5 Patienten [14 %]) PAH und waren in der WHO-Funktionsklasse II (n = 23 Patienten, 64%) oder Klasse III (n = 13 Patienten, 36%). In der FUTURE-1-Studie betrug die Behandlungsdauer im Median 13,1 Wochen (8,4 bis 21,1 Wochen). Bei 33 Patienten wurde die Behandlung mit Bosentan-Tabletten zur Herstellung einer Suspension zum Einnehmen zweimal täglich 4 mg/kg in der unkontrollierten FUTURE-2-Verlängerungsphase über eine mediane Gesamtbehandlungsdauer von 2,3 Jahren (0,2 bis 5,0 Jahren) fortgesetzt. Zu Beginn der FUTURE-1-Studie nahmen 9 Patienten Epoprostenol. Neun Patienten wurden neu auf PAH-spezifischen Arzneimittel während der Studie eingestellt. Die Kaplan-Meier-Schätzung für die Ereignisfreiheit bezüglich einer Verschlechterung der PAH (Tod, Lungentransplantation oder Hospitalisierung infolge Verschlechterung der PAH) betrug nach 2 Jahren 78,9%. Die Kaplan-Meier-Schätzung für das Gesamtüberleben betrug 91,2 % nach 2 Jahren.

FUTURE-3 (AC-052-373)

In dieser offenen, randomisierten Studie mit der 32 mg Bosentan-Tablette zur Herstellung einer Suspension zum Einnehmen wurden 64 Kinder mit stabiler PAH im Alter von 3 Monaten bis 11 Jahren über 24-Wochen randomisiert mit Bosentan zweimal täglich 2 mg/kg (n = 33) oder dreimal täglich 2 mg/kg (n = 31) behandelt. 43 Kinder (67,2%) waren zwischen 2 und 11 Jahre, 15 (23,4%) zwischen 1 und 2 Jahre und 6 (9,4%) zwischen 3 Monaten und 1 Jahr alt. Die Studie wurde primär als eine pharmakokinetische Studie geplant (siehe Abschnitt 5.2) und Wirksamkeitsendpunkte waren rein exploratorisch. Die Ätiologien der PAH, nach Dana-Point-Klassifikation, waren: idiopathische PAH (46%), hereditäre (vererbbare) PAH (3%), PAH in Assoziation mit korrigierender Herzchirurgie (38%) und PAH-CHD, in Assoziation mit systemisch-pulmonalen Shunts, einschließlich Eisenmenger-Syndrom (13%). Zu Beginn der Studienbehandlung waren die pädiatrischen Patienten in der WHO-Funktionsklasse I (n = 19 Patienten, 29%), Klasse II (n = 27 Patienten, 42%) oder Klasse III (n = 18 Patienten, 28%). Bei Studieneintritt waren die Patienten mit PAH-Arzneimitteln [am häufigsten Monotherapie mit PDE-5-Hemmer (Sildenafil) (35,9%), Monotherapie mit Bosentan (10,9%) und Kombination von Bosentan, Iloprost und Sildenafil bei 10,9% der Patienten] vorbehandelt und setzten ihre PAH-Behandlung während der Studie fort.

Zu Studienbeginn hatten weniger als die Hälfte der eingeschlossen Patienten nur Behandlung mit Bosentan (45,3 % = 29/64) ohne Kombination mit anderen PAH-Arzneimitteln. 40,6% (26/64) der Patienten blieben während der 24 wöchigen Studie bei der Bosentan-Monotherapie ohne Verschlechterung der PAH. Die Analyse der Gesamtpopulation der Studie (64 Patienten) zeigte, dass zumindest die Mehrheit der Patienten, beruhend auf der nicht Kindspezifischen Bewertung der WHO-Funktionsklasse (97 % zweimal täglich, 100 % dreimal täglich) und auf allgemeinem klinischen Gesamteindruck (94 % zweimal täglich, 93% dreimal täglich) der Ärzte während der Behandlungsperiode stabil blieb (d.h. ohne Verschlechterung). Die Kaplan-Meier-Schätzung für die Ereignisfreiheit bezüglich einer Verschlechterung der PAH (Tod, Lungentransplantation oder Hospitalisierung infolge PAH Verschlechterung) betrug nach 24 Wochen 96,9 %, beziehungsweise 96,7% in der zweimal täglich-, bzw. dreimal täglich-behandelten Gruppe.

Es gab keinen Beweis für einen klinischen Nutzen der Dosierung von dreimal täglich 2 mg/kg im Vergleich zu von zweimal täglich 2 mg/kg.

Studie bei Neugeborenen mit persistierender pulmonaler Hypertonie des Neugeborenen (PPHN):

FUTURE-4 (AC-052-391)

Die Studie war eine doppelblinde, plazebokontrollierte, randomisierte Studie bei Früh-Neugeborenen (Gestationsalter 36-42 Wochen) mit PPHN. Patienten mit suboptimaler Reaktion auf inhaliertes Stickstoffmonoxid (iNO) trotz einer Beatmung von mindestens 4 Stunden wurden zusätzlich mit Bosentan-Tabletten zur Herstellung einer Suspension zum Einnehmen zweimal täglich in einer Dosierung von 2 mg/kg (n = 13) oder Plazebo (n = 8) über Magensonde bis zur vollständigen iNO-Beatmungsentwöhnung oder bis zum Therapieversagen (definiert als Notwendigkeit einer extrakorporalen Membranoxygenierung [ECMO] oder Initiierung eines alternativen pulmonalen Vasodilators) maximal 14 Tage lang behandelt.

Die mittlere Behandlungsexposition während der Studie betrug in der Bosentan-Gruppe 4,5 Tage (0,5 bis 10,0 Tage) und in der Plazebogruppe 4,0 Tage (2,5 bis 6,5 Tage).

Die Ergebnisse zeigten keinen zusätzlichen Nutzen von Bosentan in dieser Population:

- Die mittlere Zeit bis zur vollständigen iNO-Beatmungsentwöhnung betrug 3,7 Tage (95 % CLs 1,17; 6,95) unter Bosentan und 2,9 Tage (95 % CLs 1,26; 4,23) unter Plazebo (p = 0,34).
- Die mittlere Zeit bis zur vollständigen Entwöhnung von der mechanischen Beatmung betrug 10,8 Tage (95 % CLs 3,21; 12,21 Tage) unter Bosentan und

8

- 8,6 Tage (95% CLs 3,71; 9,66 Tage) unter Plazebo (p = 0,24).
- Bei einem Patienten aus der Bosentan-Gruppe trat ein Therapieversagen (definiert als Notwendigkeit für ECMO laut Protokoll) auf, das basierend auf steigenden Oxigenierungs-Index-Werten innerhalb von 8 h nach der ersten Gabe der Studienmedikation festgestellt wurde. Der Patient erholte sich innerhalb der Nachbeobachtungszeit von 60 Tagen.

Kombination mit Epoprostenol

Die Kombination von Bosentan und Epoprostenol wurde in zwei Studien untersucht: AC-052-355 (BREATHE-2) und AC-052-356 (BREATHE-3). Bei AC-052-355 handelte es sich um eine multizentrische. randomisierte, doppelblinde Parallelgruppen-Studie mit Bosentan vs. Plazebo, an der 33 Patienten mit schwerer pulmonal arterieller Hypertonie teilnahmen, die gleichzeitig Epoprostenol erhielten. Bei AC-052-356 handelte es sich um eine offene, unkontrollierte Studie. Während der 12-wöchigen Studie erhielten 10 der 19 pädiatrischen Patienten gleichzeitig Bosentan und Epoprostenol. Das Sicherheitsprofil der Kombination unterschied sich nicht von dem für die jeweiligen Einzelsubstanzen erwarteten Sicherheitsprofil, und die Kombinationstherapie wurde von Kindern und Erwachsenen gut vertragen. Die klinische Wirksamkeit der Kombination konnte noch nicht belegt werden.

Systemische Sklerose mit bestehenden digitalen Ulzerationen

Es wurden zwei multizentrische, randomisierte, plazebokontrollierte Doppelblind-Studien an 122 (Studie AC-052-401 [RAPIDS-1]) und 190 (Studie AC-052-331 [RAPIDS-2]) erwachsenen Patienten mit systemischer Sklerose und digitalen Ulzerationen (entweder bestehende digitale Ulzerationen oder anamnestisch bekannte digitale Ulzerationen innerhalb des vorangehenden Jahres) durchgeführt. In der Studie AC-052-331 mussten die Patienten mindestens ein kürzlich aufgetretenes digitales Ulkus aufweisen. In beiden Studien zusammen litten 85 % der Patienten zu Studienbeginn (Baseline) an aktiven digitalen Ulzerationen. Nach der 4-wöchigen Einleitungstherapie mit zweimal täglich 62,5 mg Bosentan betrug die untersuchte Erhaltungsdosis in beiden Studien zweimal täglich 125 mg. Die doppelblinde Behandlungsphase betrug in der Studie AC-052-401 16 Wochen und in Studie AC-052-331 24 Wochen.

Basistherapien für systemische Sklerose und digitale Ulzerationen waren erlaubt, wenn deren Dosierungen im Verlauf des Monats vor Beginn der Behandlung sowie während des doppelblinden Studienabschnitts konstant blieben.

In beiden Studien war die Gesamtzahl neuer digitaler Ulzerationen während der Behandlungsperiode als primärer Endpunkt definiert. Während der Therapiedauer führte die Behandlung mit Bosentan gegenüber Plazebo zu einer geringeren Anzahl neuer digitaler Ulzerationen. In der Studie AC-052-401 entwickelten die Patienten in der Bosentan-Gruppe während der 16-wöchigen, doppelblinden Behandlungsphase

durchschnittlich 1,4 neue digitale Ulzerationen, verglichen mit 2,7 neuen digitalen Ulzerationen in der Plazebogruppe (p = 0,0042). In der Studie AC-052-331 betrugen die korrespondierenden Werte während der 24-wöchigen, doppelblinden Behandlungsphase 1,9 bzw. 2,7 neue digitale Ulzerationen (p = 0,0351). Im Verlauf beider Studien kam es bei den mit Bosentan behandelten Patienten im Vergleich zur Plazebo-Gruppe seltener zur Entwicklung multipler neuer digitaler Ulzerationen; darüber hinaus verging bei diesen Patienten mehr Zeit bis zum Auftreten jeder einzelnen neuen digitalen Uzeration als in der Plazebo-Gruppe. Der Effekt von Bosentan auf die Verminderung der Anzahl neuer digitaler Ulzerationen war bei Patienten mit multiplen digitalen Ulzerationen stärker ausgeprägt.

In beiden Studien wurde kein Einfluss von Bosentan auf die Abheilungsdauer der digitalen Ulzerationen beobachtet.

5.2 Pharmakokinetische Eigenschaften

Die Pharmakokinetik von Bosentan wurde hauptsächlich an gesunden Probanden untersucht. Limitierte Daten von Patienten zeigen, dass die systemische Verfügbarkeit von Bosentan bei erwachsenen Patienten mit pulmonal arterieller Hypertonie etwa zweifach höher ist als bei gesunden erwachsenen Probanden.

Bei gesunden Erwachsenen hat Bosentan eine dosis- und zeitabhängige Pharmakokinetik. Clearance und Verteilungsvolumen nehmen mit ansteigenden intravenösen Dosen ab und steigen im weiteren zeitlichen Verlauf an. Nach oraler Verabreichung ist die systemische Verfügbarkeit bis zu 500 mg proportional zur Dosis. Bei höheren oralen Dosen steigen $\rm C_{max}$ und AUC unterproportional zur Dosis an.

Resorption

Bei gesunden Probanden beträgt die absolute Bioverfügbarkeit von Bosentan ungefähr 50 %. Sie wird durch Nahrungsmittel nicht beeinträchtigt. Die maximalen Plasmakonzentrationen werden nach 3–5 Stunden erreicht.

Verteilung

Bosentan wird stark (> 98 %) an Plasmaproteine gebunden, hauptsächlich an Albumin. Bosentan dringt nicht in Erythrozyten ein

Das Verteilungsvolumen ($\rm V_{ss}$) von ungefähr 18 Litern wurde nach intravenöser Verabreichung von 250 mg bestimmt.

Biotransformation und Ausscheidung

Nach intravenöser Verabreichung einer Einzeldosis von 250 mg beträgt die Clearance 8,2 l/h. Die terminale Eliminationshalbwertszeit (t_{1/2}) beträgt 5,4 Stunden.

Nach wiederholter Gabe gehen die Plasmakonzentrationen allmählich auf 50 % bis 65 % der Konzentrationen nach einmaliger Gabe zurück. Diese Abnahme ist wahrscheinlich auf eine Autoinduktion der Stoffwechselenzyme der Leber zurückzuführen. Steady-state-Bedingungen werden innerhalb von 3 bis 5 Tagen erreicht.

Bosentan wird nach hepatischer Metabolisierung in der Leber durch die Cytochrom-

P450-Isoenzyme CYP3A4 und CYP2C9 durch biliäre Exkretion ausgeschieden. Weniger als 3 % einer oral verabreichten Dosis finden sich im Urin.

Bosentan bildet drei Metaboliten, von denen nur einer pharmakologisch aktiv ist. Dieser Metabolit wird überwiegend unverändert über die Galle ausgeschieden. Bei erwachsenen Patienten ist die systemische Verfügbarkeit des aktiven Metaboliten größer als bei gesunden Probanden. Bei Patienten mit Hinweisen auf das Vorliegen einer Cholestase kann die systemische Verfügbarkeit des aktiven Metaboliten erhöht sein.

Bosentan ist ein Induktor von CYP2C9 und CYP3A4, möglicherweise auch von CYP2C19 und P-Glykoprotein. *In-vitro* hemmt Bosentan in Hepatozyten-Kulturen die Gallensalz-Export-Pumpe.

In-vitro-Daten zeigten, dass Bosentan keinen relevanten inhibitorischen Effekt auf die untersuchten CYP-Isoenzyme (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2D6, 2E1, 3A4) hat. Daher ist nicht zu erwarten, dass Bosentan zu einer Erhöhung der Plasmakonzentrationen der durch diese Isoenzyme verstoffwechselten Arzneimittel führt.

Pharmakokinetik bei besonderen Populationen

Aufgrund der untersuchten Aspekte jedes einzelnen Parameters ist nicht zu erwarten, dass die Pharmakokinetik von Bosentan bei Erwachsenen in relevantem Umfang durch Geschlecht, Körpergewicht, Rasse oder Alter beeinflusst wird.

Kinder

Die Pharmakokinetik bei pädiatrischen Patienten wurde in 4 klinischen Studien (BREATHE-3, FUTURE-1, FUTURE-3 und FUTURE-4, siehe Abschnitt 5.1) untersucht. Aufgrund der begrenzten Daten bei Kindern unter 2 Jahren, bleibt die Pharmakokinetik in dieser Altersklasse nicht gut charakterisiert.

Die Studie AC-052-356 [BREATHE-3] untersuchte die Pharmakokinetik nach Verabreichung von Einzel- und Mehrfachdosen der Bosentan-Filmtablette bei 19 Kindern im Alter von 3 bis 15 Jahren mit pulmonal arterieller Hypertonie (PAH), die auf Basis ihres Körpergewicht mit Dosen von 2 mg/ kg zweimal täglich therapiert wurden. In dieser Studie nahm die systemische Verfügbarkeit von Bosentan über die Zeit so ab, wie es von den Enzym-induzierenden Eigenschaften von Bosentan bekannt ist. Die mittleren AUC (CV %)-Werte von Bosentan bei pädiatrischen Patienten, die mit zweimal täglich 31,25 mg, 62,5 mg oder 125 mg behandelt wurden, lagen jeweils bei 3496 (49), 5428 (79) und 6124 (27) ng·h/ml und waren niedriger als der Wert von 8149 (47) ng·h/ml, der bei erwachsenen Patienten mit PAH, die zweimal täglich 125 mg erhielten, beobachtet wurde. Im Steady-state betrug die systemische Verfügbarkeit bei pädiatrischen Patienten in den Gewichtsgruppen mit 10-20 kg, 20-40 kg und > 40 kg 43%, 67% bzw.75% der systemischen Verfügbarkeit bei Erwachsenen.

In der Studie AC-052-365 [FUTURE-1] erhielten 36 Kinder mit PAH im Alter von 2-11 Jahren Tabletten zur Herstellung einer Suspension zur Einnahme. Es wurde keine lineare Dosisabhängigkeit beobachtet. Im Steady-State waren die Plasmakonzentrationen von Bosentan und die AUC, nach oraler Gabe von 2 und 4 mg/kg ähnlich (AUC_r: 3577 ng·h/ml und 3371 ng·h/ml bei zweimal täglich 2 mg/kg bzw. zweimal täglich 4 mg/kg). Die durchschnittliche Exposition gegenüber Bosentan entsprach bei diesen Kindern etwa der Hälfte der Exposition bei Erwachsenen bei einer Erhaltungsdosis von 125 mg zweimal täglich, zeigte aber eine beträchtliche Überlappung mit den Expositionen bei Erwachsenen.

In der Studie AC-052-373 [FUTURE-3] mit den Tabletten zur Herstellung einer Suspension zum Einnnehmen war die Exposition von Bosentan bei den zweimal täglich mit 2 mg/kg behandelten Patienten vergleichbar mit der Bosentan-Exposition in der FUTURE-1-Studie. In der Gesamtpopulation (n = 31) ergab die Dosierung von zweimal täglich 2 mg/kg eine tägliche Exposition von 8535 ng·h/ml; AUC_τ war 4268 ng·h/ml (CV: 61%). Bei Patienten zwischen 3 Monaten und 2 Jahren war die tägliche Exposition 7879 ng·h/ml; AUC, war 3939 ng·h/ml (CV: 72 %). Bei Patienten zwischen 3 Monaten und 1 Jahr (n = 2) war AUC, 5914 ng·h/ml (CV: 85%) und bei Patienten zwischen 1 und 2 Jahren (n = 7) war AUC₋ 3507 ng·h/ml (CV: 70 %). Bei den Patienten über 2 Jahre (n = 22) erreichte die tägliche Exposition 8820 ng·h/ml; AUC, war 4410 ng·h/ml (CV: 58%). Die Dosierung von Bosentan dreimal täglich 2 mg/kg erhöhe die Exposition nicht. Die tägliche Exposition betrug 7275 ng·h/ml (CV: 83%,

Auf Basis der Befunde aus den Studien BREATHE-3, FUTURE-1 und FUTURE-3 scheint es so zu sein, dass die Exposition gegenüber Bosentan bei Kindern schon bei niedrigeren Dosen ein Plateau erreicht als bei Erwachsenen und dass Dosierungen über 2 mg/kg zweimal täglich (4 mg/kg zweimal täglich oder 2 mg/kg dreimal täglich) bei Kindern nicht zu einer steigenden Exposition gegenüber Bosentan führen.

In der Studie AC-052-391 [FUTURE-4], die bei Neugeborenen durchgeführt wurde, stiegen die Bosentan-Konzentrationen im ersten Dosisinterval langsam und kontinuierlich an, was in einer geringen Exposition (AUC $_{0-12}$ in Vollblut: 164 ng·h/ml, n = 11) resultierte. Im Steady-State betrug die AUC $_{\tau}$ in Vollblut 6165 ng·h/ml (CV: 133 %, n = 7), was vergleichbar mit der bei erwachsenen PAH-Patienten beobachteteten Exposition war, die zweimal täglich 125 mg erhalten hatten, wobei das Blut/Plasma-Verteilungsverhältnis von 0,6 berücksichtigt wurde.

Die Auswirkungen dieser Befunde auf die Hepatotoxizität sind nicht bekannt. Das Geschlecht sowie die gleichzeitige intravenöse Verabreichung von Epoprostenol hatten keinen signifikanten Einfluss auf die Pharmakokinetik von Bosentan.

Leberfunktionsstörungen

Bei Patienten mit leicht eingeschränkter Leberfunktion (Child-Pugh-Klasse A) wurden keine relevanten Veränderungen in der Pharmakokinetik beobachtet. Bei diesen Patienten war die Fläche unter der Konzentrations-Zeit-Kurve im Fließgleichgewicht (steady-state AUC) von Bosentan 9 % höher und die des aktiven Metaboliten, Ro 48-5033, 33 % höher als bei gesunden Probanden.

Die Wirkung einer mäßig eingeschränkten Leberfunktion (Child-Pugh-Klasse B) auf die Pharmakokinetik von Bosentan und seinem primären Metaboliten Ro 48-5033 wurde in einer Studie mit 5 Patienten mit pulmonaler Hypertonie in Assoziation mit portaler Hypertension (Pfortaderhochdruck) und Leberfunktionsstörung der Child-Pugh-Klasse B sowie mit 3 Patienten mit pulmonal arterieller Hypertonie anderer Ursachen und normaler Leberfunktion, untersucht. Bei den Patienten mit Child-Pugh-Klasse B-Leberfunktionsstörung betrug die mittlere (95 % KI) steadystate AUC von Bosentan 360 (212-613) ng·h/ml, d.h. 4,7 mal höher und die mittlere steady-state AUC des aktiven Metaboliten Ro 48-5033 betrug 106 (58,4-192) ng·h/ ml, d.h. 12,4 mal höher als bei den Patienten mit normaler Leberfunktion (Bosentan: mittlere [95 % KI] AUC: 76,1 [9,07-638] ng·h/ml; Ro 48-5033: mittlere [95% KI] AUC 8,57 [1,28-57,2] ng·h/ml). Obwohl die Zahl der eingeschlossenen Patienten begrenzt war und die Patienten eine hohe Variabilität aufwiesen, zeigen diese Daten eine deutliche Zunahme der Exposition gegenüber Bosentan und seinem primären Metaboliten Ro 48-5033 bei Patienten mit mäßiger Leberfunktionsstörung (Child-Pugh-Klasse B).

Die Pharmakokinetik von Bosentan wurde bei Patienten mit Leberfunktionsstörungen der Child-Pugh-Klasse C nicht untersucht. Tracleer ist bei Patienten mit mäßiger bis schwerer Leberfunktionsstörung (Child-Pugh-Klasse B oder C) kontraindiziert (siehe Abschnitt 4.3).

Nierenfunktionsstörungen

Bei Patienten mit schweren Nierenfunktionsstörungen (Kreatinin-Clearance 15-30 ml/ min) sanken die Plasmakonzentrationen von Bosentan um ca. 10%. Im Vergleich zu Probanden mit normaler Nierenfunktion waren bei diesen Patienten die Plasmakonzentrationen der Bosentan-Metaboliten auf ungefähr das Doppelte erhöht. Bei Patienten mit Nierenfunktionsstörung ist keine Dosisanpassung erforderlich. Es liegt keine spezifische klinische Erfahrung bei Dialyse-Patienten vor. Aufgrund der physikalisch-chemischen Eigenschaften und dem hohen plasmaproteingebundenen Anteil ist nicht davon auszugehen, dass Bosentan durch Dialyse in signifikantem Ausmaß aus der systemischen Zirkulation entfernt wird (siehe Abschnitt 4.2).

5.3 Präklinische Daten zur Sicherheit

Im Mausmodell ergab eine zweijährige Kanzerogenitätsstudie bei Plasmakonzentrationen, die 2- bis 4-fach über den Plasmakonzentrationen bei humantherapeutischer Dosis lagen, einen Anstieg der kombinierten Inzidenz von hepatozellulären Adeno-

men und Karzinomen bei männlichen, nicht jedoch bei weiblichen Mäusen. Im Rattenmodell führte die orale Verabreichung von Bosentan über zwei Jahre bei männlichen, nicht iedoch bei weiblichen Ratten zu einem geringen, signifikanten Anstieg der kombinierten Inzidenz von follikulären Adenomen und Karzinomen der Schilddrüse. Die dabei verwendeten Plasmakonzentrationen lagen 9- bis 14-fach über den Plasmakonzentrationen, die bei humantherapeutischer Dosis erreicht werden. Genotoxische Untersuchungen mit Bosentan verliefen negativ. Bei Ratten gab es Hinweise auf leichte Schilddrüsenhormonstörungen durch Bosentan. Allerdings gab es keine Hinweise, dass Bosentan bei Menschen die Schilddrüsenfunktion beeinträchtigt (Thyroxin,

Die Wirkung von Bosentan auf die mitochondriale Funktion ist nicht bekannt.

Bosentan hat sich bei Ratten mit Plasmaspiegeln, die über dem 1,5-fachen der Plasmakonzentrationen nach humantherapeutischer Dosis lagen, als teratogen erwiesen. Teratogene Wirkungen, einschließlich Missbildungen von Kopf und Gesicht sowie der großen Gefäße, waren dosisabhängig. Die Ähnlichkeiten zwischen den mit anderen ET-Rezeptor-Antagonisten beobachteten Missbildungen und denen von ET-Knock-out-Mäusen weisen auf einen Klasseneffekt hin. Bei Frauen im gebärfähigen Alter müssen entsprechende Vorsichtsmaßnahmen getroffen werden (siehe Abschnitte 4.3, 4.4 und 4.6).

Die Entwicklung einer Tubulusatrophie in den Hoden sowie eine Beeinträchtigung der Fertilität wurden mit der Langzeitgabe von Endothelin-Rezeptor-Antagonisten bei Nagetieren in Verbindung gebracht.

Bei Fertilitätsstudien mit männlichen und weiblichen Ratten konnten bei 21- bzw. 43-fachen Plasmakonzentrationen im Vergleich zum erwarteten human-therapeutischen Bereich keine Auswirkungen auf Spermienzahl, -motilität und -vitalität oder auf Paarungsverhalten und Fruchtbarkeit beobachtet werden. Es gab auch keine unerwünschten Wirkungen auf die Entwicklung des Embryos vor der Implantation oder auf die Implantation selbst.

Eine leicht erhöhte Inzidenz einer Atrophie der Hodentubuli wurde bei Ratten, denen oral Bosentan in einer so geringen Dosis wie 125 mg/kg/Tag (ca. 4-fache der maximalen empfohlenen Humandosis (MRHD) und der niedrigsten getesteten Dosierung) zwei Jahre lang gegeben wurde aber nicht bei Gabe einer höheren Dosierung bis zu 1500 mg/kg/Tag (etwa 50-fache der MRHD) über 6 Monate, beobachtet. In einer Toxizitätsstudie bei Jungtieren von Ratten, die vom Tag 4 nach der Geburt bis zum Erwachsenenalter behandelt wurden, wurde verringertes absolutes Gewicht der Hoden und Nebenhoden sowie eine reduzierte Anzahl Spermien in den Nebenhoden nach dem Absetzen beobachtet. Der NOAEL (No Observed Adverse Effect Level) betrug das 21-fache (am Tag 21 nach der Geburt) beziehungsweise das 2,3-fache (am Tag 69 nach der Geburt) der humantherapeutischen Exposition.

10 005855-17942

Allerdings wurden keine Effekte auf die allgemeine Entwicklung, das Wachstum, die sensorische und kognitive Funktion sowie die Reproduktionsleistung bei Jungtieren mit dem 7-fachen (bei männlichen Ratten) und dem 19-fachen (bei weiblichen Ratten) der humantherapeutischen Dosis am Tag 21 nach der Geburt festgestellt. Im Erwachsenenalter (Tag 69 nach der Geburt) wurden keine Effekte von Bosentan bei dem 1,3-fachen (Männchen) bzw. dem 2,6-fachen (Weibchen) der therapeutischen Exposition bei Kindern mit PAH festgestellt.

6. PHARMAZEUTISCHE ANGABEN

6.1 Liste der sonstigen Bestandteile

Tablettenkern:

Maisstärke

Vorverkleisterte Stärke

Carboxymethylstärke-Natrium (Typ A)

Povidon

Glyceroldibehenat

Magnesiumstearat

Filmüberzug:

Hypromellose

Triacetin

Talkum Titandioxid (E 171)

Eisenoxidhydrat (É 172)

Eisen(III)-oxid (E 172)

Ethylcellulose

6.2 Inkompatibilitäten

Nicht zutreffend.

6.3 Dauer der Haltbarkeit

4 Jahre.

6.4 Besondere Vorsichtsmaßnahmen für die Aufbewahrung

Nicht über 30°C lagern.

6.5 Art und Inhalt des Behältnisses

PVC/PE/PVDC-Aluminium-Blisterpackungen mit 14 Filmtabletten.

62,5 mg: Die Packungen enthalten 14, 56 oder 112 Tabletten.

125 mg: Die Packungen enthalten 56 oder 112 Tabletten.

Es werden möglicherweise nicht alle Packungsgrößen in den Verkehr gebracht.

6.6 BesondereVorsichtsmaßnahmen für die Beseitigung und sonstige Hinweise zur Handhabung

Keine besonderen Anforderungen für die Beseitigung.

7. INHABER DER ZULASSUNG

Actelion Registration Ltd Chiswick Tower, 13th Floor 389 Chiswick High Road London W4 4AL Vereiniates Königreich

8. ZULASSUNGSNUMMERN

62,5 mg: EU/1/02/220/001 EU/1/02/220/002 EU/1/02/220/003 125 mg: EU/1/02/220/004 EU/1/02/220/005

9. DATUM DER ERTEILUNG DER ZULASSUNG/VERLÄNGERUNG DER ZULASSUNG

Datum der Zulassung: 15. Mai 2002

Datum der letzten Verlängerung der Zulassung: 20. April 2012

10. STAND DER INFORMATION

August 2015

Ausführliche Informationen zu diesem Arzneimittel sind auf den Internetseiten der Europäischen Arzneimittel Agentur: http://www.ema.europa.eu/ verfügbar.

Verkaufsabgrenzung

Verschreibungspflichtig

Packungsgrößen in Deutschland

Tracleer® 62,5 mg/125 mg
56 Filmtabletten N2
Tracleer® 62,5 mg
14 Filmtabletten (Klinikpackung)

Kontaktadresse in Deutschland

Actelion Pharmaceuticals Deutschland GmbH

Konrad-Goldmann-Straße 5b 79100 Freiburg i. Br. Tel.: +49(0)761 4564 0 Fax.: +49(0)761 4564 45

www.actelion.de

Zentrale Anforderung an:

Rote Liste Service GmbH

Fachinfo-Service

Mainzer Landstraße 55 60329 Frankfurt