Apprentissage, réseaux de neurones et modèles graphiques (RCP209) Neural Networks and Deep Learning

Nicolas Thome

Prenom.Nom@cnam.fr http://cedric.cnam.fr/vertigo/Cours/m12/

Département Informatique Conservatoire Nationnal des Arts et Métiers (Cnam)

Outline

- Deep Convolutionnal Neural Nets
- 2 Case Study: LeNet 5 Model

- Fully connected networks: no assumption on data structure
 - Structure can be learned but need lots of annoatated data
 - Prior knowlege on data structure ⇒ useful
- Example: MLP training for shape recognition from color images

Input image encoding:

- Color (RBG) ?
- Grayscale $L = \frac{R+B+G}{3}$?

Scalability issue with Fully Connected Networks (MLP)

⇒ # Parameter explosion even for a single hidden layer!

- Invariance and robustness to deformation (stability)
- What we expect:
 - Small deformation in input space ⇒ similar representations
 - Large transfo in input space ⇒ very dissimilar representations
- Example (image): impact of a 2 pixel shift

154 input change from 2 shift left 77 : black to white 77 : white to black

@LeCun

Conclusion of MLP on raw data

- Brute force connection of images as input of MLP NOT a good idea
 - No Invariance/Robustness of the representation because topology of the input data completely ignored
 - \Rightarrow e.g. indifferent to permutations of input pixel
 - Nb of weights grows largely with the size of the input image

Taking advantage of structure: Convolution

How to limit the number of parameters?

- Sparse connectivity: hidden unit only connected to a local patch
 - Weights connected to the patch: filter or kernel
 - Inspired by biological systems: cell only sensitive to a small sub-region of the input space (receptive field). Many cells tiled to cover the entire visual field

Taking advantage of structure: Convolution

How to limit the number of parameters?

- Shared Weights
 - Hidden nodes at different locations share the same weights
 - Substantially reduces the number of parameters to learn
 - Keep spatial information in a 2D feature map (hidden layer map)

- ⇒ Computing responses at hidden nodes equivalent to convolving input image with a linear filter (learned)
- ⇒ A learned filter as a feature detector

Convolution: Scalar Images

2D convolution with a Finite Impulse Response (FIR) h of size d (odd):

$$f'(i,j) = (f \star h)(i,j) = \sum_{n=-\frac{d-1}{2}}^{\frac{d-1}{2}} \sum_{m=-\frac{d-1}{2}}^{\frac{d-1}{2}} f(i-n,m-j)h(n,m)$$

• Simply centering filer h in pixel $(x, y) \Rightarrow$ weighted sum

• Output for 1 filer (resp. K filters): 1 2D map (resp. K 2D maps)

Convolution: Vectorial Images (depth M)

- Each filter has size dxdxM
- Example with M = 3, e.g. color images:

Convolutionnal Layers

- ullet Convolution layer \Leftarrow local feature from previous layers
- Feature maps are equivariant to translation
- Followed by non-linearity (activation function)

⇒ How to gain (local) shift invariance ?

Pooling Layers

- Spatial agregation for each layer
- If stride s > 1, sptial resolution decreases (subsampling) ⇒ gaining invariace to local translations

hidden neurons (output from feature map)

Pooling Layers

Pooling Layers: Examples

Max-pooling:

$$h_j^n(x,y) = \max_{\bar{x} \in N(x), \, \bar{y} \in N(y)} h_j^{n-1}(\bar{x}, \bar{y})$$

Average-pooling:

$$h_j^n(x,y) = 1/K \sum_{\bar{x} \in N(x), \bar{y} \in N(y)} h_j^{n-1}(\bar{x},\bar{y})$$

L2-pooling:

$$h_j^n(x,y) = \sqrt{\sum_{\bar{x} \in N(x), \bar{y} \in N(y)} h_j^{n-1}(\bar{x},\bar{y})^2}$$

L2-pooling over features:

$$h_j^n(x, y) = \sqrt{\sum_{k \in N(j)} h_k^{n-1}(x, y)^2}$$

Slide credits: M. A. Ranzatto

Convolutional Neural Networks (ConvNets)

- An elementary block: Convolution + Non linearity + pooling
- Stack several blocks: Convolutional Neural Networks (ConvNets)

Convolutional Neural Networks (ConvNets)

 Generally, Feature maps stacked together at one point ⇒ fully connected layers

Figure: Important building blocks in CNN

ConvNets: Conclusion

- ullet Crucial step for tacking advantage of structure \Rightarrow local processing
- Useful for many data types and applications:
 - Low-level signal, e.g. image, audio (speech, music)
 - More semantic data, e.g. modern text embedding (word2vec) or RNN
- Block [Convolution + Non linearity + pooling] intuitive for modeling hierarchical information outraction

ConvNets and Manifold Untangling

Manifold Untangling

ConvNets and Manifold Untangling

Convnet: 2 conv and 1 FC layer: latent space vs input space visu

Outline

- Deep Convolutionnal Neural Nets
- Case Study: LeNet 5 Model

80's: 1st Convolutionnal Neural Networks

LeNet 5 Model [LBD⁺89], trained using back-prop

- Input: 32x32 pixel image. Largest character is 20x20
- 2 successive blocks [Convolution + Sigmoid + Pooling (+sigmoid)]
 Cx: Convolutional layer, Sx: Subsampling layer
- C5: convolution layer ~ fully connected
- 2 Fully connected layers Fx

C1 Layer

- Convolutional layer with 6 5x5 filters ⇒ 6 feature maps of size 28x28 (no padding).
- # Parameters: 5^2 per filer + bias $\Rightarrow (5 * 5 + 1) * 6 = 156$
 - If it was fully connected: (32*32+1)*(28*28)*6 parameters $5 \sim 10^6$!

S2 Layer

- Subsampling layer = pooling layer
- Pooling area: 2x2 in C1
- Pooling stride: $2 \Rightarrow 6$ features maps of size 14x14
- Pooling type: sum, multiplied by a trainable param + bias
 ⇒ 2 parameters per channel
- Total # Parameters: 2 * 6 = 12

C3 Layer: Convolutional

• C3: 16 filters \Rightarrow 16 feature maps of size 10x10 (no padding)

• 5x5 filters connected to a subset of S2 maps ⇒ 0-5 connected to 3, 6-14 to 4, 15 connected to 6

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	X				X	Х	Х			X	X	Х	Х		Х	Х
1	X	X				Х	Х	X			X	Х	X	Х		Х
2	X	Х	Х				Х	Х	Х			Х		Х	х	Х
3		Х	Х	Х			Х	Х	Х	Х			Х		Х	Х
4			Х	Х	Х			Х	Х	Х	X		Х	Х		Х
5				Х	Х	Х			Х	X	X	Х		Х	Х	Х

• # Parameters: 1516 (5 * 5 * 3 + 1) * 6 + (5 * 5 * 4 + 1) * 9 + (5 * 5 * 6 + 1) = 456 + 909 + 151

S4 Layer

- Subsampling layer = pooling layer
- Pooling area: 2x2 in C3
- Pooling stride: $2 \Rightarrow 16$ features maps of size 5x5
- Pooling type: sum, multiplied by a trainable param + bias
 ⇒ 2 parameters per channel
- Total # Parameters: 2 * 6 = 12

C5 Layer: Convolutionnal layer

- 120 $5 \times 5 \times 16$ filters \Rightarrow whole depth of S4 (\neq C3)
- Each maps in S4 is $5x5 \Rightarrow$ single value for each C5 maps
- C5 120 features map of size 1x1 (vector of size 120)
 ⇒ spatial information lost, ~ to a fully connected layer
- Total # Parameters: (5 * 5 * 16 + 1) * 120 = 48210

F6 Layer: Fully Connected layer

- 84 fully connected units.
- # Parameters: 84*(120+1)=10164

F7 Layer (output): Fully Connected layer

- 10 (# classes) fully connected units.
- # Parameters: 10*(84+1)=850

- Evaluation on MNIST
- Total # parameters ~ 60000
 - 60,000 original datasets: test error: 0.95%
 - 540,000 artificial distortions + 60,000 original: Test error: 0.8%

Successful deployment for postal code reading in the US

References I

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hubbard, and Lawrence D Jackel, *Backpropagation applied to handwritten zip code recognition*, Neural computation 1 (1989), no. 4, 541–551.