Homework 2–CSC 320 Spring 2017

Due by conneX submission, Sunday June 10 at 11:55pm

1. (a) (10 Marks) Using the state partitioning algorithm presented in class, find the minimal automaton equivalent to the following:

- (b) (10 Marks) What is the language recognized by this automaton ($\Sigma = \{0, 1\}$)?
- 2. Prove the each of the following languages are not regular. You may use the pumping lemma, or closure properties of the regular languages.
 - (a) (5 MARKS) $\{0^n 1^m 0^n \mid m, n \ge 0\}$
 - (b) (5 Marks) $\{0^m 1^n \mid m \neq n\}$
 - (c) (5 MARKS) $\{wtw \mid w, t \in \{0,1\}^+\}$ (HINT: One way to do this is to use closure under intersection to get a simpler pumping lemma proof.)
- 3. Give CFGs for the following languages over $\sigma = \{0, 1\}$
 - (a) (5 Marks) $\{w \mid w = w^R\}$
 - (b) (5 Marks) $\{w \mid w \text{ contains the same number of 0's and 1's}\}$
 - (c) (5 Marks) $\{w \mid w = 0^n 1^n, n \ge 0\}$
- 4. (20 Marks) Give a CFG that generates the language

$$A = \{ \mathtt{a}^i \mathtt{b}^j \mathtt{c}^k \mid i = j \text{ or } j = k \text{ where } i, j, k \geq 0 \}$$

Is your grammar ambiguous. Why or why not?

5. (20 Marks) Convert the following grammar into a grammar in Chomsky normal form:

$$E \to E + T \mid T$$

$$T \to T * F \mid F$$

1

$$F \rightarrow (E) \mid \mathbf{num}$$

Note: I already gave you the CNF in class. So this is an easy question!

6. (20 Marks) Using the CNF version of the grammar

$$E \rightarrow E * E \mid E + E \mid (E) \mid \mathbf{id} \mid \mathbf{num}$$

given in class, show the result of running the CYK algorithm on the string $w = (\mathbf{id} + \mathbf{num}) * \mathbf{num}$. Just show the entries of the resulting table.

Note: I did not give the CNF in class. Use the following CNF grammar:

$$E \rightarrow EA \mid EB \mid LD \mid \mathbf{id} \mid \mathbf{num}$$

 $A \rightarrow ME$
 $B \rightarrow PE$
 $D \rightarrow ER$
 $M \rightarrow *$
 $P \rightarrow +$
 $L \rightarrow ($
 $R \rightarrow)$

7. (15 Marks) Is every grammar in CNF unambiguous? If your answer is "yes", provide a proof. If your answer is "no", provide a counterexample.