### Билеты по матану

### Автор1, ..., Aвтор<math>N

### 18 июня 2020 г.

### Содержание

| 1. Инт | егральное исчисление                                                                                                      | 1  |
|--------|---------------------------------------------------------------------------------------------------------------------------|----|
| 1.1    | Билет 1: ! Дробление, ранг, оснащение, сумма Римана                                                                       | 1  |
| 1.2    | Билет 2: Оценка разности интеграла и интегральной суммы. Интеграл как предел интегральных сумм. Интегрируемость по Риману | 2  |
| 1.3    | Билет 3: Эквивалентная для суммы $\sum_{k=1}^{n} k^{p}$ . Формула трапеций                                                | 3  |
| 1.4    | Билет 4: NAME                                                                                                             | 4  |
| 1.5    | Билет 5: NAME                                                                                                             | 4  |
| 1.6    | Билет 6: NAME                                                                                                             | 4  |
| 1.7    | Билет 7: NAME                                                                                                             | 4  |
| 1.8    | Билет 8: NAME                                                                                                             | 4  |
| 1.9    | Билет 9: NAME                                                                                                             | 4  |
| 1.10   | Билет 10: NAME                                                                                                            | 4  |
| 1.11   | Билет 11: NAME                                                                                                            | 4  |
| 2. Met | рические и нормированные пространства                                                                                     | 5  |
| 2.1    | Билет 12: Метрические пространства. Примеры. Шары в метрических простран-                                                 |    |
|        | CTBAX                                                                                                                     | 5  |
| 2.2    | Билет 13: Открытые множества: определение и свойства                                                                      | 6  |
| 2.3    | Билет 14: Внутренние точки и внутренность множества. Свойства                                                             | 7  |
| 2.4    | Билет 15: Замкнутые множества: определение и свойства. Замыкание множества, связь со внутренностью                        | 8  |
| 2.5    | Билет 16: Свойства замыкания. Предельные точки. Связь с замыканием множества.                                             | 10 |
| 2.6    | Билет 17: Индуцированная метрика. Открытые и замкнутые множества в пространстве и в подпространстве                       | 13 |
| 2.7    | Билет 18: Скалярное произведение и норма. Свойства и примеры. Неравенство Коши-Буняковского                               | 14 |
| 2.8    | Билет 19: Предел последовательности в метрическом пространстве. Определение и основные свойства                           | 17 |
| 2.9    | Билет 20: Арифметические свойства пределов последовательности векторов. По-координатная сходимость                        | 18 |

СОДЕРЖАНИЕ СОДЕРЖАНИЕ

|    | 2.10 | Билет 21: Фундаментальные последовательности. Свойства. Полнота. Полнота $\mathbb{R}^d-1$                                  |
|----|------|----------------------------------------------------------------------------------------------------------------------------|
|    | 2.11 | Билет 22: Покрытия. Компактность. Компактность в пространстве и в подпространстве. Простейшие свойства компактных множеств |
|    | 2.12 | Билет 23: Теорема о пересечении семейства компак- тов. Следствие о вложенных                                               |
|    |      | компактах                                                                                                                  |
|    | 2.13 | Билет 24: NAME                                                                                                             |
|    | 2.14 | Билет 25: NAME                                                                                                             |
|    | 2.15 | Билет 26: NAME                                                                                                             |
|    | 2.16 | Билет 27: NAME                                                                                                             |
|    | 2.17 | Билет 28: NAME                                                                                                             |
|    | 2.18 | Билет 29: NAME                                                                                                             |
|    | 2.19 | Билет 30: NAME                                                                                                             |
|    |      | Билет 31: NAME                                                                                                             |
|    |      | Билет 32: NAME                                                                                                             |
|    |      | Билет 33: NAME                                                                                                             |
|    |      | Билет 34: NAME                                                                                                             |
|    |      | Билет 35: NAME                                                                                                             |
|    |      | Билет 36: NAME                                                                                                             |
|    |      | Билет 37: NAME                                                                                                             |
|    |      | Билет 38: NAME                                                                                                             |
|    | 2.28 | Билет 39: NAME                                                                                                             |
| 0  | TT - |                                                                                                                            |
| ა. |      | повые и функциональные ряды                                                                                                |
|    | 3.1  | Билет 40: NAME                                                                                                             |
|    | 3.2  | Билет 41: NAME                                                                                                             |
|    | 3.3  | Билет 42: NAME                                                                                                             |
|    | 3.4  | Билет 43: NAME                                                                                                             |
|    | 3.5  | Билет 44: NAME                                                                                                             |
|    | 3.6  | Билет 45: NAME                                                                                                             |
|    | 3.7  | Билет 46: NAME                                                                                                             |
|    | 3.8  | Билет 47: NAME                                                                                                             |
|    | 3.9  | Билет 48: NAME                                                                                                             |
|    |      | Билет 49: NAME                                                                                                             |
|    | 3.11 | Билет 50: NAME                                                                                                             |
|    | 3.12 | Билет 51: NAME                                                                                                             |
|    | 3.13 | Билет 52: NAME                                                                                                             |
|    | 3.14 | Билет 53: NAME                                                                                                             |
|    | 3.15 | Билет 54: NAME                                                                                                             |
|    | 3.16 | Билет 55: NAME                                                                                                             |
|    | 3.17 | Билет 56: NAME                                                                                                             |

СОДЕРЖАНИЕ СОДЕРЖАНИЕ

| 5.16                                                                             | 8 Билет 57: NAME                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.19                                                                             | 9 Билет 58: NAME                                                                                                                                                                                                                                                            |
| 3.20                                                                             | О Билет 59: NAME                                                                                                                                                                                                                                                            |
| 3.2                                                                              | 1 Билет 60: NAME                                                                                                                                                                                                                                                            |
| 3.25                                                                             | 2 Билет 61: NAME                                                                                                                                                                                                                                                            |
| 3.23                                                                             | 3 Билет 62: NAME                                                                                                                                                                                                                                                            |
| 3.24                                                                             | 4 Билет 63: NAME                                                                                                                                                                                                                                                            |
| 3.25                                                                             | 5 Билет 64: NAME                                                                                                                                                                                                                                                            |
| 3.20                                                                             | 6 Билет 65: NAME                                                                                                                                                                                                                                                            |
| 3.2                                                                              | 7 Билет 66: NAME                                                                                                                                                                                                                                                            |
| 3.28                                                                             | 8 Билет 67: Равномерная сходимость степенного ряда. Непрерывность суммы сте-                                                                                                                                                                                                |
|                                                                                  | пенного ряда. Теорема Абеля.                                                                                                                                                                                                                                                |
| 3.29                                                                             | 9 Билет 68: Почленное интегрирование суммы степенного ряда                                                                                                                                                                                                                  |
| 3.30                                                                             | Э Билет 69: Комплексная диффернцируемость. Дифференцирование степенного ряд                                                                                                                                                                                                 |
| 3.3                                                                              | 1 Билет 70: Формула для коэффициентов разложения в ряд аналитической функ-                                                                                                                                                                                                  |
|                                                                                  | ции. Несовпадение классов бесконечно дифференцируемых и аналитических функций.                                                                                                                                                                                              |
| 3 34                                                                             | 2 Билет 71: NAME                                                                                                                                                                                                                                                            |
|                                                                                  | В Билет 72: NAME                                                                                                                                                                                                                                                            |
| J.J.                                                                             | Dullet 72. IVAIVIE                                                                                                                                                                                                                                                          |
| . <b>Фу</b>                                                                      | нкции нескольких переменных                                                                                                                                                                                                                                                 |
| 4.1                                                                              | Билет 73: NAME                                                                                                                                                                                                                                                              |
| 4.2                                                                              | Билет 74: NAME                                                                                                                                                                                                                                                              |
| 4.3                                                                              | Билет 75: NAME                                                                                                                                                                                                                                                              |
| 4.4                                                                              | Билет 76: NAME                                                                                                                                                                                                                                                              |
|                                                                                  | Diffict 10. IVIIII                                                                                                                                                                                                                                                          |
| 4.5                                                                              | Билет 77: NAME                                                                                                                                                                                                                                                              |
| 4.5<br>4.6                                                                       |                                                                                                                                                                                                                                                                             |
| _                                                                                | Билет 77: NAME                                                                                                                                                                                                                                                              |
| 4.6                                                                              | Билет 77: NAME                                                                                                                                                                                                                                                              |
| 4.6<br>4.7                                                                       | Билет 77: NAME          Билет 78: NAME          Билет 79: NAME                                                                                                                                                                                                              |
| 4.6<br>4.7<br>4.8<br>4.9                                                         | Билет 77: NAME          Билет 78: NAME          Билет 79: NAME          Билет 80: NAME                                                                                                                                                                                      |
| 4.6<br>4.7<br>4.8<br>4.9<br>4.10                                                 | Билет 77: NAME          Билет 78: NAME          Билет 79: NAME          Билет 80: NAME          Билет 81: NAME          Вилет 82: NAME                                                                                                                                      |
| 4.6<br>4.7<br>4.8<br>4.9<br>4.10<br>4.11                                         | Билет 77: NAME          Билет 78: NAME          Билет 79: NAME          Билет 80: NAME          Билет 81: NAME          Вилет 82: NAME          Вилет 83: NAME                                                                                                              |
| 4.6<br>4.7<br>4.8<br>4.9<br>4.10<br>4.11<br>4.12                                 | Билет 77: NAME          Билет 78: NAME          Билет 79: NAME          Билет 80: NAME          Билет 81: NAME          Вилет 82: NAME          1 Билет 83: NAME          2 Билет 84: NAME                                                                                  |
| 4.6<br>4.7<br>4.8<br>4.9<br>4.10<br>4.11<br>4.12                                 | Билет 77: NAME         Билет 78: NAME         Билет 79: NAME         Билет 80: NAME         Билет 81: NAME         Вилет 82: NAME         Вилет 83: NAME         Вилет 84: NAME         Вилет 85: NAME                                                                      |
| 4.6<br>4.7<br>4.8<br>4.9<br>4.10<br>4.11<br>4.12<br>4.13                         | Билет 77: NAME         Билет 78: NAME         Билет 79: NAME         Билет 80: NAME         Билет 81: NAME         О Билет 82: NAME         1 Билет 83: NAME         2 Билет 84: NAME         3 Билет 85: NAME         4 Билет 86: NAME                                     |
| 4.6<br>4.7<br>4.8<br>4.9<br>4.10<br>4.11<br>4.12<br>4.14<br>4.14                 | Билет 77: NAME         Билет 78: NAME         Билет 79: NAME         Билет 80: NAME         Билет 81: NAME         Вилет 82: NAME         Вилет 83: NAME         Вилет 84: NAME         Вилет 85: NAME         Вилет 86: NAME         Билет 87: NAME                        |
| 4.6<br>4.7<br>4.8<br>4.9<br>4.10<br>4.11<br>4.12<br>4.14<br>4.14<br>4.10         | Билет 77: NAME         Билет 78: NAME         Билет 79: NAME         Билет 80: NAME         Билет 81: NAME         Вилет 82: NAME         Вилет 83: NAME         Вилет 84: NAME         Вилет 85: NAME         Вилет 86: NAME         Билет 87: NAME         Билет 88: NAME |
| 4.6<br>4.7<br>4.8<br>4.9<br>4.10<br>4.11<br>4.12<br>4.12<br>4.14<br>4.10<br>4.11 | Билет 77: NAME         Билет 78: NAME         Билет 79: NAME         Билет 80: NAME         Билет 81: NAME         Вилет 82: NAME         Вилет 83: NAME         Вилет 84: NAME         Вилет 85: NAME         Вилет 86: NAME         Билет 87: NAME                        |

СОДЕРЖАНИЕ СОДЕРЖАНИЕ

|           | 4.20 | Билет 92: NAME  | <br>34     |
|-----------|------|-----------------|------------|
|           | 4.21 | Билет 93: NAME  | <br>34     |
|           | 4.22 | Билет 94: NAME  | <br>34     |
|           | 4.23 | Билет 95: NAME  | <br>34     |
|           | 4.24 | Билет 96: NAME  | <br>34     |
|           | 4.25 | Билет 97: NAME  | <br>34     |
|           | 4.26 | Билет 98: NAME  | <br>34     |
| <b>5.</b> |      | рия меры        | <b>3</b> 5 |
|           | 5.1  | Билет 99: NAME  | <br>35     |
|           |      | Билет 100: NAME |            |
|           | 5.3  | Билет 101: NAME | <br>35     |
|           | 5.4  | Билет 102: NAME | <br>35     |
|           |      |                 |            |

### 1. Интегральное исчисление

А разве можно всё упростить, всё обобщить? И вообще, разве по чужому желанию можно обобщать и упрощать?

Джером Дэвид Сэлинджер, "Над пропастью во ржи"

Привет, Путник! Я рад сопровождать тебя в начале твоего долгого и тяжёлого пути к (не) отчислению. Запасись терпениеим. А лучше корвалолом.

### 1.1. Билет 1: ! Дробление, ранг, оснащение, сумма Римана.

#### Определение 1.1.

Дробление отрезка [a,b] – это набор точек au, такой что

$$\tau = \{x_k\}_{k=0}^n : a = x_0 < x_1 < x_2 < \dots < x_n = b$$

Ранг (мелкость) дробления —  $\max_{k=0}^{n-1}(x_{k+1}-x_k)=|\tau|$ 

Оснащение – набор точек, такой что

$$\{\xi_k\}_{k=0}^{n-1}: \xi_i \in [x_i, x_{i+1}]$$

Пара  $(\tau, \xi)$  – оснащённое дробление

#### Определение 1.2.

Сумма Римана (интегральная сумма)

 $f:[a,b]\mapsto R$  и оснащённое дробление  $(\tau,\xi)$ 

$$S(f, \tau, \xi) = \sum_{k=0}^{n-1} f(\xi_k)(x_{k+1} - x_k)$$

Какой короткий и классный билет:)

Ну, удачи...

# 1.2. Билет 2: Оценка разности интеграла и интегральной суммы. Интеграл как предел интегральных сумм. Интегрируемость по Риману.

#### Теорема 1.1.

орема 1.1. 
$$|S(f,\tau,\xi) - \int\limits_a^b f| \leqslant (b-a)\omega_f(|\tau|)$$
  $(\omega_f - \text{модуль непрерывности})$ 

#### Доказательство.

$$\begin{array}{lll} \Delta &:=& S(f,\tau,\xi) - \int\limits_a^b f \\ &=& \sum\limits_{k=0}^{n-1} f(\xi_k)(x_{k+1}-x_k) - \int\limits_k^b f \\ &=& \sum\limits_{k=0}^{n-1} f(\xi_k)(x_{k+1}-x_k) - \sum\limits_{k=0}^{n-1} x_{k+1} f \\ &=& \sum\limits_{k=0}^{n-1} (f(\xi_k)(x_{k+1}-x_k) - \int\limits_{x_k}^{x_{k+1}} f ) \\ &=& \sum\limits_{k=0}^{n-1} \int\limits_{x_k}^{x_{k+1}} f(\xi_k) - \int\limits_{x_k}^{x_{k+1}} f ) \\ &=& \sum\limits_{k=0}^{n-1} \int\limits_{x_k}^{x_{k+1}} f(\xi_k) - \int\limits_{x_k}^{x_{k+1}} f \\ &=& \sum\limits_{k=0}^{n-1} \int\limits_{x_k}^{x_{k+1}} (f(\xi_k) - f(t)) \ dt \\ |\Delta| &\leqslant& \sum\limits_{k=0}^{n-1} \int\limits_{x_k}^{x_{k+1}} (f(\xi_k) - f(t)) \ dt \\ &\leqslant& \sum\limits_{k=0}^{n-1} \int\limits_{x_k}^{x_{k+1}} |f(\xi_k) - f(t)| \ dt \\ &\leqslant& \sum\limits_{k=0}^{n-1} \int\limits_{x_k}^{x_{k+1}} |f(\xi_k) - f(t)| \ dt \\ &\leqslant& \sum\limits_{k=0}^{n-1} \int\limits_{x_k}^{x_k} |f(\tau|) \ dt \\ &\leqslant& \sum\limits_{k=0}^{n-1} \int\limits_{x_k}^{x_k} |f(\tau|) (x_{k+1}-x_k) \\ &\leqslant& \sum\limits_{k=0}^{n-1} \omega_f(|\tau|) (b-a) \end{array}$$

#### Следствие.

$$f \in C([a,b])$$
, тогда

Для любой последовательности оснащённых дроблений  $(\tau,\xi)_n$ , такой что  $|\tau_n|\to 0$ , верно:

$$\lim S(f, \tau_n, \xi_n) = \int_a^b f$$

#### Доказательство.

$$f \in C([a, b]) \Leftrightarrow \lim_{x \to 0} \omega_f(x) = 0 \Rightarrow \lim \omega_f(|\tau_n|)(b - a) = 0$$

#### Определение 1.3.

Функция интегрируема по Риману, если:

Для любой последовательности оснащённых дроблений  $(\tau,\xi)_n$ , такой что  $|\tau_n|\to 0$ , верно:  $\lim S(f,\tau_n,\xi_n)=I$ 

И для всех последовательностей *I* – одинаковый

*I* – интеграл Римана

# 1.3. Билет 3: Эквивалентная для суммы $\sum_{k=1}^{n} k^{p}$ . Формула трапеций.

#### Пример.

$$S_n(p) = 1^p + 2^p + 3^p + \dots + n^p$$

Ограничим  $S_n(p)$  сверху:  $S_n(p) < n \cdot n^p = n^{p+1}$ 

Чтобы ограничить снизу, возьмем только вторую половину слагаемых. Заметим, что каждое слагаемое  $\geq \frac{n}{2}$ . Получаем:  $S_n(p) > \frac{n}{2}(\frac{n}{2})^p = \frac{n^{1+p}}{2^{1+p}}$ 

$$\frac{n^{1+p}}{2^{1+p}} < S_n(p) < n^{p+1}$$

$$\lim_{n \to \infty} \frac{S_n(p)}{n^{p+1}} = \lim_{n \to \infty} \sum_{k=1}^n \frac{1}{n} (\frac{k}{n})^p = \int_0^1 f(t) dt$$

$$f:[0,1]\to\mathbb{R}$$
  $f(t)=t^p$ 

$$\xi_k = \frac{k}{n}$$

Мелкость дробления  $\frac{1}{n} \to 0$ .

$$\implies \frac{S_n(p)}{n^{p+1}} \to \int_0^1 t^p dt = \frac{1}{p+1} \implies S_n(p) \underset{n \to \infty}{\sim} \frac{n^{p+1}}{p+1}$$

При p = -1 считаем, что  $\frac{1}{p+1} = \infty$ .

#### Лемма.

 $f \in C^2[a,b]$ . Тогда:

$$\int_{\alpha}^{\beta} f(t) dt - \frac{f(\alpha) + f(\beta)}{2} (\beta - \alpha) = -\frac{1}{2} \int_{\alpha}^{\beta} f''(t) (t - \alpha) (\beta - t) dt$$

#### Доказательство.

$$\gamma := \frac{\alpha + \beta}{2}$$

$$\int_{\alpha}^{\beta} f(t) dt = \int_{\alpha}^{\beta} f(t)(t - \gamma)' dt = f(t)(t - \gamma) \Big|_{\alpha}^{\beta} - \int_{\alpha}^{\beta} f'(t)(t - \gamma) dt = f(\beta)(\beta - \gamma) - f(\alpha)(\alpha - \gamma) - \int_{\alpha}^{\beta} f'(t)(t - \gamma) dt = \int_{\alpha}^{\beta} f'(t)(t - \gamma) dt = \int_{\alpha}^{\beta} f'(t)(t - \alpha)(\beta - \gamma) - \int_{\alpha}^{\beta} f'(t)(t - \alpha)(\beta - \gamma) dt = \int_{\alpha}^{\beta} f'(t)(t - \alpha)(\beta - \gamma) dt = \int_{\alpha}^{\beta} f'(t)(t - \alpha)(\beta - \gamma) dt = \int_{\alpha}^{\beta} f'(t)(t - \alpha)(\beta - \gamma)' dt = \int_{\alpha}^{\beta} f'(t)(t - \alpha)(\beta - \gamma)' dt = \int_{\alpha}^{\beta} f'(t)(t - \alpha)(\beta - \gamma)' dt = \int_{\alpha}^{\beta} f''(t)(t - \alpha)(t - \gamma)' dt = \int_{\alpha}^{\beta} f''(t)(t - \alpha)(t - \gamma)' dt = \int_{\alpha}^{\beta} f''(t)(t - \alpha)(t - \gamma)' dt = \int_{\alpha$$

Теорема 1.2 (оценка погрешности в ф-ле трапеций).

 $f \in C^2[a,b]$  и au— дробление. Тогда:

$$\left| \int_{a}^{b} f - \sum_{k=1}^{n} \frac{f(x_{k-1}) + f(x_k)}{2} (x_k - x_{k-1}) \right| \leqslant \frac{|\tau|^2}{8} \int_{a}^{b} |f''|$$

В частности, если дробление на равные отрезки

$$\left| \int_{a}^{b} f - \frac{b-a}{n} \left( \frac{f(x_0)}{2} + \sum_{k=1}^{n-1} f(x_k) + \frac{f(x_n)}{2} \right) \right| S \leqslant \frac{(b-a)^2}{8n^2} \int_{a}^{b} |f''|$$

$$\Delta := \int_{a}^{b} f - \sum_{k=1}^{n} \frac{f(x_{k-1}) + f(x_{k})}{2} (x_{k} - x_{k-1}) = \sum_{k=1}^{n} \left( \int_{x_{k-1}}^{x_{k}} f - \frac{f(x_{k-1}) + f(x_{k})}{2} (x_{k} - x_{k-1}) \right) =$$

$$= -\frac{1}{2} \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} f''(t) (t - x_{k-1}) (x_{k} - t) dt$$

$$|t - x_{k-1}| |x_{k} - t| \leqslant \frac{(x_{k} - x_{k-1})^{2}}{4} \leqslant \frac{|\tau|^{2}}{4}$$

$$|\Delta| \leqslant \frac{1}{2} \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} |f''(t)| (t - x_{k-1}) (x_{k} - t) dt \leqslant \frac{1}{2} \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} |f''(t)| \frac{|\tau|^{2}}{4} dt = \frac{|\tau|^{2}}{8} \int_{a}^{b} |f''|$$

- 1.4. Билет 4: NAME
- 1.5. Билет 5: NAME
- 1.6. Билет 6: NAME
- 1.7. Билет 7: NAME
- 1.8. Билет 8: NAME
- 1.9. Билет 9: NAME
- 1.10. Билет 10: NAME
- 1.11. Билет 11: NAME

# 2. Метрические и нормированные пространства

# 2.1. Билет 12: Метрические пространства. Примеры. Шары в метрических пространствах.

#### Определение 2.1.

Метрическое пространства - пара  $\langle X, \rho \rangle$ , где X - множество,  $\rho: X \times X \mapsto \mathbb{R}$  - метрика,  $\rho$  обладает следующими свойствами:

- 1.  $\rho(x,y) \geqslant 0$ , и  $\rho(x,y) = 0 \iff x = y$
- $2. \ \rho(x,y) = \rho(y,x)$
- 3.  $\rho(x,z) \leqslant \rho(x,y) + \rho(y,z)$  (неравенство треугольника,  $\triangle$ )

#### Пример.

Обычная метрика на  $\mathbb{R}$ :  $\langle \mathbb{R}, \rho(x,y) = |x-y| \rangle$ .

#### Пример.

«Метрика лентяя» на произвольном множестве: 
$$\rho(x,y)= egin{cases} 0 & x=y \\ 1 & x 
eq y \end{cases}$$

#### Пример.

Обычная метрика на  $\mathbb{R}^2$  - длина отрезка:  $\rho(\langle x_1,y_1\rangle\,,\langle x_2,y_2\rangle)=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$ 

#### Пример

Множество - точки на поверхности сферы, метрика - кратчайшая дуга межту точками.

#### Пример.

Манхэттанская метрика на  $\mathbb{R}^2$ :  $\rho(\langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle) = |x_1 - x_2| + |y_1 - y_2|$ .

#### Пример.

Французкая железнодорожная метрка: Есть центральный объект, от него есть несколько «лучей».

Если A и B на одном луче, то  $\rho(A,B)=AB$ 

Если на разных:  $\rho(A, B) = AP + PB$ , где P - центральный объект.

#### Доказательство.

При условии что расстояния между объектами на одном луче являются метрикой, докажем что ФЖМ - метрика:

Если A и B находятся на одном луче, всё тривиально следует из того, что расстояние на луче - метрика.

Пусть A, B - на разных лучах  $\implies A \neq B, A, B \neq P$ .

$$\rho(A,B) = AP + PB > 0 \iff AP,PB > 0.$$
  
$$\rho(A,B) = AP + PB = PB + AP = BP + PA = \rho(B,A).$$

Пусть C лежит на одной ветке с A:

$$\rho(A, C) + \rho(C, B) = AC + (CP + PB) = (AC + CP) + PB \geqslant AP + PB = \rho(A, B).$$

Пусть C лежит на собственной ветке:

$$\rho(A,C) + \rho(C,B) = (AP + PC) + (CP + PB) \geqslant AP + PB = \rho(A,B).$$

#### Определение 2.2.

Пусть  $\langle X, \rho \rangle$  - метрическое пространство.

Открытым шаром радиуса  $r \in \mathbb{R}_{>0}$  с центром в  $a \in X$  называется  $B_r(a) = \{x \in X \mid \rho(a,x) < r\}$ .

Замкнутым шаром радиуса  $r \in \mathbb{R}_{>0}$  с центром в  $a \in X$  называется  $\overline{B}_r(a) = \{x \in X \mid \rho(a,x) \leqslant r\}.$ 

#### Свойства.

$$B_{r_1}(a) \cap B_{r_2}(a) = B_{\min\{r_1, r_2\}}(a)$$

Если  $a \neq b$ , то  $\exists r > 0$   $B_r(a) \cap B_r(b) = \varnothing$ .

#### Доказательство.

Возьмём  $r = \frac{\rho(a,b)}{2}$ 

Пусть  $x \in B_r(a) \cap B_r(b)$ .

Тогда  $\rho(a,x) < \frac{\rho(a,b)}{2}$  и  $\rho(x,b) < \frac{\rho(a,b)}{2}$ .

Но тогда  $\rho(a,x) + \rho(x,b) < \rho(a,b)$ , противоречие с  $\triangle$ .

Аналогичная пара свойств есть и у  $\overline{B}$ .

### 2.2. Билет 13: Открытые множества: определение и свойства.

#### Определение 2.3.

Пусть  $\langle X, \rho \rangle$  - метрическое пространство,  $A \subset X$ .

Точка  $a \in A$  называется внутренней если  $\exists r > 0 \quad B_r(a) \subset A$ .

Множество внутренних точек называется внутренностью множества, и обозначается  $\operatorname{Int} A$ .

#### Определение 2.4.

Пусть  $\langle X, \rho \rangle$  - метрическое пространство,  $A \subset X$ .

А называется открытым, если все его точки внутренние.

#### Свойства.

Пусть  $\langle X, \rho \rangle$  - метрическое пространство.

- 1.  $\varnothing$ , X открытые множества.
- 2. Объединение любого количества открытых множеств открыто

#### Доказательство.

Пусть  $\forall \alpha \in I \quad A_{\alpha}$  - открытое множество.  $A := \bigcup_{\alpha \in I} A_{\alpha}$ . Возьмём точку  $a, \exists \beta \in I \quad a \in A_{\beta}$ .

Так-как  $A_{\beta}$  открытое,  $\exists r > 0 \quad B_r(a) \subset A_{\beta} \subset A$ .

#### 3. Пересечение конечного количества открытых множеств открыто

#### Доказательство.

Пусть  $I = [1; n], \forall k \in I \quad a \in A_k, A_k$  - открытое.

Тогда  $\forall k \in I \quad \exists r_k > 0 \quad B_{r_k}(a) \subset A_k$ .

Пусть  $r = \min_{k} r_k > 0$ .

Тогда 
$$\forall k \in I \quad B_r(a) \subset B_{r_k}(a) \subset A_k \implies B_r(a) \subset \bigcap_{k=1}^n A_k.$$

4.  $\forall a \in X \quad \forall r \in \mathbb{R} \quad B_r(a)$  - открытое множество.

#### Доказательство.

Пусть  $x \in B_r(a)$ ,  $\tilde{r} = r - \rho(x, a)$ .

Покажем что  $B_{\tilde{r}}(x) \subset B_r(a)$ :

$$y \in B_{\tilde{r}}(x) \implies \rho(y, x) < \tilde{r}$$

$$\implies \rho(y, x) < r - \rho(x, a)$$

$$\implies \rho(y, x) + \rho(x, a) < r$$

$$\stackrel{\triangle}{\implies} \rho(y, a) < r$$

$$\implies y \in B_r(a)$$

# 2.3. Билет 14: Внутренние точки и внутренность множества. Свойства.

#### Определение 2.5 (повтор).

Пусть  $\langle X, \rho \rangle$  - метрическое пространство,  $A \subset X$ .

Точка  $a \in A$  называется внутренней если  $\exists r > 0 \quad B_r(a) \subset A$ .

Множество внутренних точек называется внутренностью множества, и обозначается Int A.

#### Свойства.

Пусть  $\langle X, \rho \rangle$  - метрическое пространство,  $A \subset X$ .

- 1. Int  $A \subset A$
- 2. Int A объеденение всех открытых множеств содержащихся в A.

#### Доказательство.

Пусть 
$$G = \bigcup_{\alpha \in I} U_{\alpha}$$
, где  $U_{\alpha} \subset A$  - открытое.

 $G \subset \operatorname{Int} A$ :

$$x \in G \implies \exists \alpha \in I \quad x \in U_{\alpha}$$
  
 $\implies \exists r > 0 \quad B_r(x) \subset U_{\alpha} \subset A$   
 $\implies x \in \text{Int } A$ 

Int 
$$A \subset G$$
:  $x \in \text{Int } A \implies \exists r > 0 \quad B_r(x) \subset A$ .  $B_r(x)$  - открытое множество, значит  $\exists \alpha \in I \quad U_\alpha = B_r(x) \implies x \in G$ .

 $3. \, \operatorname{Int} A$  - откртое множество

#### Доказательство.

A - объединение открытых множеств, значит открыто.

4. Int  $A = A \iff A$  - открыто

#### Доказательство.

Необходимость ( $\Longrightarrow$ ): Int A открыто.

Достаточность ( $\iff$ ): A открыто  $\implies$  все точки внутренние  $\implies$   $A=\operatorname{Int} A$ .

- 5.  $A \subset B \implies \operatorname{Int} A \subset \operatorname{Int} B$
- 6.  $\operatorname{Int}(A \cap B) = \operatorname{Int} A \cap \operatorname{Int} B$

#### Доказательство.

В сторону ⊂:

$$\left. \begin{array}{l} A \cap B \subset A \implies \operatorname{Int}(A \cap B) \subset \operatorname{Int} A \\ A \cap B \subset B \implies \operatorname{Int}(A \cap B) \subset \operatorname{Int} B \end{array} \right\} \implies \operatorname{Int}(A \cap B) \subset \operatorname{Int} A \cap \operatorname{Int} B$$

В сторону ⊃:

$$x \in \operatorname{Int} A \cap \operatorname{Int} B \implies \begin{cases} x \in \operatorname{Int} A \implies \exists r_1 : B_{r_1}(x) \subset A \\ x \in \operatorname{Int} B \implies \exists r_2 : B_{r_2}(x) \subset B \end{cases} \implies B_{\min\{r_1, r_2\}}(x) \subset A \cap B \implies x \in \operatorname{Int}(A \cap B)$$

7. Int Int A = Int A

#### Доказательство.

Заметим, что Int A - открытое по 3, дальше по 4 видно равенство.

### 2.4. Билет 15: Замкнутые множества: определение и свойства. Замыкание множества, связь со внутренностью.

#### Определение 2.6.

Пусть  $\langle X, \rho \rangle$  - метрическое пространство,  $A \subset X$ .

A называется замкнутым, если  $X \setminus A$  - открыто.

#### Свойства.

- 1.  $\varnothing, X$  замкнуты.
- 2. Пересечение любого количества замкнутых множеств замкнуто

Доказательство.

$$X \setminus \bigcap_{\alpha \in I} A_{\alpha} = \bigcup_{\alpha \in I} (X \setminus A_{\alpha})$$

Глава #2

Так как  $\forall \alpha \quad X \setminus A_\alpha$  - открытое, то  $\bigcup_{\alpha \in I} A_\alpha$  - открытое, значит  $\bigcap_{\alpha \in I} A_\alpha$  - замкнутое.

3. Объединение конечного количества замкнутых множеств замкнуто

Доказательство.

$$X \setminus \bigcup_{k=1}^{n} A_k = \bigcap_{k=1}^{n} (X \setminus A_k)$$

 $X\setminus A_k$  открыто, значит их конечное пересечение открыто, значит  $\bigcup_{k=1}^n A_k$  - замкнуто.

4.  $\forall a \in X \quad \forall r > 0 \quad \overline{B}_r(a)$  - замкнутое множество.

#### Доказательство.

Покажем что  $X \setminus \overline{B}_r(a) = \{x \in X \mid \rho(x, a) > r\}$  - открыто.

Пусть  $x \in X \setminus \overline{B}_r(a)$ .  $\tilde{r} = \rho(x, a) - r$ . Тогда докажем что  $B_{\tilde{r}}(x) \cap B_r(a) = \emptyset$ :

Пусть  $y \in B_{\tilde{r}}(x) \cap \overline{B}_r(a)$ , тогда  $\rho(x,y) < \tilde{r}, \rho(y,a) < r$ .

$$\rho(x,a) \stackrel{\triangle}{\leqslant} \rho(x,y) + \rho(y,a) < \tilde{r} + r = \rho(x,a).$$

Получили противоречие, значит  $B_{\tilde{r}}(x) \cap B_r(a) = \emptyset \implies B_{\tilde{r}}(x) \subset X \setminus \overline{B}_r(a)$ , значит  $X \setminus \overline{B}_r(a)$  - открытое.

#### Определение 2.7.

Пусть  $\langle X, \rho \rangle$  - метрическое пространство.

Замыкание множества  $A\subset X$  - пересечение всех замкнутых множеств, содержащих A. Обозначается  $\operatorname{Cl} A$  или  $\overline{A}.$ 

#### Теорема 2.1.

$$\operatorname{Cl} A = X \setminus \operatorname{Int}(X \setminus A).$$

#### Доказательство.

Будем доказывать в виде  $X \setminus \operatorname{Cl} A = \operatorname{Int}(X \setminus A)$ :

Знаем, что  $\operatorname{Int}(X\setminus A)=\bigcup_{\alpha}U_{\alpha}$  по всем  $U_{\alpha}$  таким, что  $U_{\alpha}\subset (X\setminus A)$  и  $U_{\alpha}$  открыто.

Пусть C - замкнутое множество, такое, что  $A\subset C$ . Тогда  $X\setminus C$  - открытое, и  $(X\setminus A)\subset (X\setminus C)\implies \exists \alpha\quad U_\alpha=X\setminus C.$ 

Аналогично в другую сторону -  $\forall \alpha \ X \setminus U_{\alpha}$  - замкнутое надмножество A.

Пусть  $C_{\alpha} = X \setminus U_{\alpha}$ .

$$X \setminus \operatorname{Cl} A = X \setminus \bigcap_{\alpha} C_{\alpha} = \bigcup_{\alpha} (X \setminus C_{\alpha}) = \bigcup_{\alpha} U_{\alpha} = \operatorname{Int}(X \setminus A).$$

 Глава #2
 9 из 35
 Автор: Игорь Энгель

## 2.5. Билет 16: Свойства замыкания. Предельные точки. Связь с замыканием множества.

#### Свойства.

- 1.  $A \subset \operatorname{Cl} A$
- $2. \ \mathrm{Cl}\,A$  замкнутое множество

#### Доказательство.

По определению,  $\operatorname{Cl} A$  - пересечение замкнутых множетв.

3.  $\operatorname{Cl} A = A \iff A$  замкнуто

Доказательство.

$$A = \operatorname{Cl} A \iff X \setminus A = X \setminus \operatorname{Cl} A$$
 $\iff X \setminus A = \operatorname{Int}(X \setminus A)$ 
 $\iff X \setminus A$  открыто
 $\iff A$  замкнуто

4.  $A \subset B \implies \operatorname{Cl} A \subset \operatorname{Cl} B$ 

Доказательство.

$$A \subset B \implies (X \setminus B) \subset (X \setminus A)$$

$$\implies \operatorname{Int}(X \setminus B) \subset \operatorname{Int}(X \setminus A)$$

$$\implies X \setminus \operatorname{Int}(X \setminus A) \subset X \setminus \operatorname{Int}(X \setminus B)$$

$$\implies \operatorname{Cl} A \subset \operatorname{Cl} B$$

5.  $Cl(A \cup B) = Cl A \cup Cl B$ 

Доказательство.

$$Cl(A \cup B) = X \setminus Int(X \setminus (A \cup B))$$

$$= X \setminus Int((X \setminus A) \cap (X \setminus B))$$

$$= X \setminus (Int(X \setminus A) \cap Int(X \setminus B))$$

$$= (X \setminus Int(X \setminus A)) \cup (X \setminus Int(X \setminus B))$$

$$= Cl A \cup Cl B$$

6. Cl(Cl A) = Cl A

Доказательство.

Cl A замкнуто по свойству 2, равенство следует из свойства 3.

#### Теорема 2.2.

Пусть  $\langle X, \rho \rangle$  - метрическое пространство,  $A \subset X$ .

$$a \in \operatorname{Cl} A \iff \forall r > 0 \quad B_r(a) \cap A \neq \varnothing.$$

#### Доказательство.

Hеобходимость ( $\Longrightarrow$ ):

Предположим что  $\exists r > 0 \quad B_r(a) \cap A = \emptyset$ .

Тогда  $a \notin A$  и  $B_r(a) \subset X \setminus A$ , значит  $a \in \operatorname{Int}(X \setminus A) \implies a \notin X \setminus \operatorname{Int}(X \setminus A) \implies a \notin \operatorname{Cl} A$ .

Достаточность ( $\iff$ ):

Пусть  $a \notin \operatorname{Cl} A$ , тогда  $\exists F$  - замкнутое надмножество A, такое, что  $a \notin F \implies a \in X \setminus F$ . При этом,  $X \setminus F$  открыто.

Тогда  $\exists r > 0 \quad B_r(a) \subset X \setminus F \subset X \setminus A$ .

Ho тогда 
$$B_r(a) \cap A = \emptyset$$
.

#### Следствие.

Пусть  $\langle X, \rho \rangle$  - метрическое пространство,  $A \subset X$ , а  $U \subset X$  - открытое множетсво. При этом  $A \cap U = \varnothing$ .

Тогда  $\operatorname{Cl} A \cap U = \emptyset$ 

#### Доказательство.

$$x \in \operatorname{Cl} A \cap U \implies x \in U$$

$$\implies \exists r > 0 \quad B_r(x) \subset U$$

$$\implies B_r(x) \cap A \subset U \cap A = \varnothing$$

$$\implies x \notin \operatorname{Cl} A$$

$$\implies x \notin \operatorname{Cl} A \cap U$$

Получили противоречие, значит таких x не существует.

#### Определение 2.8.

Пусть  $\langle X, \rho \rangle$  - метрическое пространство.

Проколотой окрестностью радиуса  $r \in \mathbb{R}_{>0}$  с центров в  $a \in X$  называется  $\mathring{B}_r(a) := B_r(a) \setminus \{a\} = \{x \in X \mid 0 < \rho(x,a) < r\}.$ 

#### Определение 2.9.

Пусть  $\langle X, \rho \rangle$  - метрическое пространство,  $A \subset X$ .

 $a \in A$  называется предельной точкой, если  $\forall r > 0 \quad \dot{B}_r(a) \cap A \neq \varnothing$ .

Множества предельных точек множества A обозначается A'.

#### Свойства.

1.  $\operatorname{Cl} A = A \cup A'$ 

Доказательство.

$$a \in \operatorname{Cl} A \iff \forall r > 0 \quad B_a(a) \cap A \neq \emptyset$$

$$\iff \begin{bmatrix} a \in A \\ \mathring{B}_r(a) \cap A \neq \emptyset \end{bmatrix}$$

$$\iff \begin{bmatrix} a \in A \\ a \in A' \end{bmatrix}$$

2.  $A \subset B \implies A' \subset B'$ 

Доказательство.

$$a \in A' \implies \forall r \quad \mathring{B}_r(a) \cap A \neq \varnothing$$
  
 $\implies \mathring{B}_r(a) \cap B \neq \varnothing$   
 $\implies a \in B'$ 

3.  $(A \cup B)' = A' \cup B'$ 

Доказательство.

$$A \subset A \cup B \implies A' \subset (A \cup B)'$$

$$B \subset A \cup B \implies B' \subset (A \cup B)'$$

$$\implies A' \cup B' \subset (A \cup B)'$$

Покажем другое включение: возьмём  $x \in (A \cup B)'$ .

Пусть  $x \notin A'$ : Тогда  $\exists R > 0 \quad \mathring{B}_R(x) \cap A = \varnothing$ .

Заметим, что  $\forall 0 < r \leqslant R \quad \mathring{B}_r(x) \cap A \subset B_R(x) \cap A = \varnothing$ , значит  $\forall r > 0 \quad \exists 0 < R_r < r \quad B_{R_r}(x) \cap A = \varnothing$ .

Так-как  $\mathring{B}_{R_r}(x)\cap (A\cup B)\neq \varnothing$ , значит  $\mathring{B}_{R_r}(x)\cap B\neq \varnothing$ . Тогда

$$\forall r > 0 \quad \mathring{B}_r(x) \cap B \supset \mathring{B}_{R_r}(x) \cap B \neq \varnothing.$$

Значит,  $x \in B'$ 

4.  $A' \subset A \iff A$  - замкнутое

Доказательство.

$$A$$
 - замкнутое  $\iff A = \operatorname{Cl} A$   $\iff A = A \cup A'$   $\iff A' \subset A$ 

Теорема 2.3.

Пусть  $\langle X, \rho \rangle$  - метрическое пространство,  $A \subset X$ .

 $a \in A' \iff \forall r > 0$   $B_r(a) \cap A$  содержит бесконечно много точек.

Heoбходимость ( ⇒ ):

Знаем, что  $\mathring{B}_r(a) \cap A \neq \emptyset$ , возьмём точку  $x_1 \in \mathring{B}_r(a) \cap A$ , возьмём  $r_2 = \rho(x_1, a)$ , знаем, что  $\mathring{B}_r(a) \cap A \neq \emptyset$ , можем взять точку оттуда, и вообще повторять бесконечное число раз.

Достаточность ( $\leqslant$ ):  $B_r(a) \cap A$  содержит бесконечно много точек  $\implies \mathring{B}_r(a) \cap A$  содержит бесконечно много точек  $\implies \mathring{B}_r(a) \cap A \neq \varnothing \implies a \in A'$ .

# 2.6. Билет 17: Индуцированная метрика. Открытые и замкнутые множества в пространстве и в подпространстве.

#### Определение 2.10.

Пусть  $\langle X, \rho \rangle$  - метрическое пространство,  $Y \subset X$ .

Тогда пара  $\langle Y, \rho|_{Y\times Y}\rangle$  называется метрическим подпростраством X.

Далее, при разговое о подпростравах обычно будет указываться только множество, а метрика использоваться та-же что и для основного пространства.

#### Теорема 2.4.

Пусть  $\langle X, \rho \rangle$  - метрическое пространство, Y - его подпространство.

 $A\subset Y$  открыто в Y тогда и только тогда, когда  $\exists G$  открытое в X, такое, что  $A=G\cap Y$ 

#### Доказательство.

Hеобходимость ( $\Longrightarrow$ ):

$$A$$
 - открыто в  $Y \implies \forall a \in A \quad \exists r_a > 0 \quad B^Y_{r_a}(a) \subset A$  
$$\implies A = \bigcup_{a \in A} B^Y_{r(a)}(A) \subset \bigcup_{a \in A} B^X_{r(a)}(a) =: G$$

G - подходящее множество - оно открыто как объединение открытых, покажем что  $A = G \cap Y$ :

$$B_r^Y(x) = B_r^X(x) \cap Y.$$
 
$$G \cap Y = Y \cap \bigcup_{a \in A} B_{r(a)}^X(a) = \bigcup_{a \in A} B_{r(a)}^Y(a) = A.$$

Достаточность ( $\iff$ ):

Пусть  $A = G \cap Y$ . Возьмём  $a \in A$ .

$$G$$
 открыто в  $X \implies \exists r>0 \quad B_r^X(a) \subset G$   $\implies B_r^X(a) \cap Y \subset G \cap Y$   $\implies B_r^Y(a) \subset A$   $\implies A$  открыто в  $Y$ 

#### Теорема 2.5.

Пусть  $\langle X, \rho \rangle$  - метрическое пространство, Y - его подпространство.

 $A \subset Y$  замкнуто тогда и только тогда, когда  $\exists F$  замкнутое в X, такое, что  $A = F \cap Y$ .

 $F:=X\backslash G$ , где G - открытое в X такое, что  $G\cap Y=Y\backslash A$  существование которого экивалентно открытости  $Y\backslash A\iff$  замкнутости A.

$$F \cap Y = (X \setminus G) \cap Y$$
$$= (X \cap Y) \setminus G$$
$$= Y \setminus G$$
$$= Y \setminus (G \cap Y)$$
$$= Y \setminus (Y \setminus A)$$
$$= A$$

# 2.7. Билет 18: Скалярное произведение и норма. Свойства и примеры. Неравенство Коши-Буняковского.

#### Определение 2.11.

Нормированным пространством над  $\mathbb{R}$  называется пара  $\langle X, \|\cdot\| \rangle$ , где X - линейное пространство над  $\mathbb{R}$  (далее одно и тоже обозначение используется для линейного пространства и его множества векторов), а  $\|\cdot\|: X \mapsto \mathbb{R}$  - норма, обладающая следующими свойствами  $\forall x,y \in X \quad \forall \lambda \in \mathbb{R}$ .

1. 
$$||x|| \ge 0$$
 и  $||x|| = 0 \iff x = \vec{0}$ 

$$2. \|\lambda x\| = \lambda \|x\|$$

3. 
$$||x + y|| \le ||x|| + ||y|| (\triangle)$$

#### Пример.

$$X = \mathbb{R}, \, ||x|| = |x|$$

#### Пример.

На  $X = \mathbb{R}^d$  можно задать бесконечно много норм:

$$||x||_1 = \sum_{i=1}^d |x_i|.$$

$$||x||_2 = \sqrt{\sum_{i=1}^d |x_i|^2}.$$

$$||x||_n = \sqrt[n]{\sum_{i=1}^d |x_i|^n}.$$

$$||x||_{\infty} = \max_{i \in 1, \dots, d} |x_i|.$$

#### Пример.

$$X = C[a, b], ||f|| = \max_{x \in [a, b]} |f(x)|.$$

Докажем неравенство треугольника:

$$||f + g|| = \max_{x \in [a,b]} |f(x) + g(x)|$$

$$= |f(x_0) + g(x_0)|$$

$$\leq |f(x_0) + |g(x_0)|$$

$$\leq \max_{x \in [a,b]} |f(x)| + \max_{x \in [a,b]} |g(x)|$$

$$= ||f|| + ||g||$$

#### Определение 2.12.

Пусть X - линейное пространство, тогда функция  $\langle\cdot,\cdot\rangle:X\times X\mapsto\mathbb{R}$  называется скалярным произведением, если удовлетворяет следующим свойствам  $\forall x,y,z\in X\quad\forall\lambda\in\mathbb{R}$  :

1. 
$$\langle x, x \rangle \geqslant 0$$
 и  $\langle x, x \rangle = 0 \iff x = \vec{0}$ .

2. 
$$\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$$

3. 
$$\langle x, y \rangle = \langle y, x \rangle$$

4. 
$$\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$$

#### Замечание.

Аналогичные определения можно дать над  $\mathbb{C}$ , тогда надо ещё потребовать  $\langle x, x \rangle \in \mathbb{R}$ , и третий пункт примет вид  $\langle x, y \rangle = \overline{\langle y, x \rangle}$ .

#### Пример.

$$X = \mathbb{R}^d, \langle x, y \rangle = \sum_{i=1}^d x_i y_i$$

#### Пример.

Пусть  $w_1, ..., w_d > 0$ , тогда

$$X = \mathbb{R}^d, \langle x, y \rangle = \sum_{i=1}^d w_i x_i y_i$$

#### Пример.

$$X = C[a, b], \langle f, g \rangle = \int_{a}^{b} f(t)g(t)dt$$

#### Свойства.

1. 
$$\langle \lambda x + \mu y, z \rangle = \lambda \langle x, z \rangle + \mu \langle y, z \rangle$$
 и  $\langle x, \lambda y + \mu z \rangle = \lambda \langle x, y \rangle + \mu \langle x, z \rangle$ 

2. Неравенство Коши-Буняковского:  $\langle x,y \rangle^2 \leqslant \langle x,x \rangle \cdot \langle y,y \rangle$ 

#### Доказательство.

Пусть  $t \in \mathbb{R}$ .

$$\langle x + ty, x + ty \rangle \ge 0.$$
  
 $\langle x + ty, x + ty \rangle = \langle x, x \rangle + 2t \langle x, y \rangle + t^2 \langle y, y \rangle.$ 

Это квадратное уровнение имеет корень только если x + ty = 0, значит не более одного корня. Его дискриминат  $\leq 0$ :

$$(2\langle x,y\rangle)^2 - 4\langle x,x\rangle \cdot \langle y,y\rangle \leqslant 0 \implies \langle x,y\rangle^2 \leqslant \langle x,x\rangle \cdot \langle y,y\rangle. \qquad \Box$$

3. 
$$||x|| = \sqrt{\langle x, x \rangle}$$
 - норма

(a) Первое свойство переносится напрямую, из аналогичных свойств для  $\langle x, x \rangle$  и  $\sqrt{\ }$ 

(b) 
$$\|\lambda x\| = \sqrt{\langle \lambda x, \lambda x \rangle} = \sqrt{\lambda^2 \langle x, x \rangle} = |\lambda| \sqrt{\langle x, x \rangle} = \lambda \|x\|$$

(c)

$$||x+y|| \leqslant ||x|| + ||y|| \iff \sqrt{\langle x+y, x+y \rangle} \leqslant \sqrt{\langle x, x \rangle} + \sqrt{\langle y, y \rangle}$$

$$\iff \langle x+y, x+y \rangle \leqslant \langle x, x \rangle + 2\sqrt{\langle x, x \rangle} \sqrt{\langle y, y \rangle} + \langle y, y \rangle$$

$$\iff \langle x, x \rangle + 2\langle x, y \rangle + \langle y, y \rangle$$

$$\iff \langle x, y \rangle \leqslant \sqrt{\langle x, x \rangle} \sqrt{\langle y, y \rangle}$$

$$\iff \langle x, y \rangle^2 \leqslant \langle x, x \rangle \langle y, y \rangle$$

Последнее неравенство - неравенство Коши-Буняковского.

#### Свойства.

1. 
$$\rho(x,y) = ||x-y||$$
 - метрика

#### Доказательство.

(а) Первое свойство переходит прямо

(b) 
$$\rho(y,x) = ||y-x|| = ||(-1)(x-y)|| = |(-1)|||x-y|| = \rho(x,y)$$

(c) 
$$||x - y|| \le ||x - z|| + ||z - y||$$
 ( $\triangle$  для нормы).

2. 
$$|||x|| - ||y||| \le ||x - y||$$

#### Доказательство.

$$||x|| = ||(x - y) + y|| \stackrel{\triangle}{\leqslant} ||x - y|| + ||y||.$$

$$||y|| = ||(y - x) + x|| \stackrel{\triangle}{\leqslant} ||y - x|| + ||x|| = ||x - y|| + ||x||.$$

$$||x|| \le ||x - y|| + ||y|| \implies ||x|| - ||y|| \le ||x - y||.$$
  
 $||y|| \le ||x - y|| + ||x|| \implies ||y|| - ||x|| \le ||x - y||.$ 

П

# 2.8. Билет 19: Предел последовательности в метрическом пространстве. Определение и основные свойства.

#### Определение 2.13.

Пусть  $\langle X, \rho \rangle$  - метрическое пространство,  $x_n \in X$ .

$$\lim_{n \to \infty} x_n = a \iff \forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \geqslant N \quad \rho(x_n, a) < \varepsilon.$$

#### Определение 2.14.

Пусть  $\langle X, \rho \rangle$  - метрическое пространство,  $E \subset X$ .

E называется ограниченным если  $\exists r > 0 \quad \exists a \in X \quad E \subset B_r(a)$ .

#### Свойства.

1. Предел единственнен

#### Доказательство.

Пусть  $\lim_{n\to\infty} x_n = a$ ,  $\lim_{n\to\infty} x_n = b$ ,  $a \neq b$ .

Возьмём  $\varepsilon = \frac{\rho(a,b)}{2}, \ a \neq b \implies \varepsilon > 0$ , возьмём  $N = \max\{N_a,N_b\}$ , где  $N_a,N_b$  - N из соответствующих определений предела при подстановке  $\varepsilon$ .

Тогда,  $\rho(x_N, a) < \varepsilon$  и  $\rho(x_N, b) < \varepsilon$ .

Но тогда  $\rho(a,b) \stackrel{\triangle}{\leqslant} \rho(a,x_N) + \rho(x_N,b) < 2\varepsilon = \rho(a,b)$ . Противоречие, значит предел единствененн.

2. 
$$\lim_{n \to \infty} x_n = a \iff \lim_{n \to \infty} \rho(x_n, a) = 0$$

#### Доказательство.

Определения посимвольно совпадают.

3. Если последовательность имеет предел, она ограничена

#### Доказательство.

$$\lim_{n\to\infty} x_n = a \implies \lim_{n\to\infty} \rho(x_n,a) = 0$$
 
$$\implies \rho(x_n,a) \text{ - ограниченная последовательность вещественных чисел}$$
 
$$\implies \exists R>0 \quad \rho(x_n,a) < R$$
 
$$\implies \{x_n\} \subset B_R(a)$$

4. Если a - предельная точка множества A, то можно выбрать последовательность  $x_n \in A$ , такую что  $\lim_{n \to \infty} x_n = a$ , и  $\rho(x_n, a)$  строго монотонно убывает.

#### Доказательство.

По определению предельной точки,  $\forall r > 0 \quad \mathring{B}_r(a) \neq \varnothing$ .

Пусть  $r_1=1,\,r_n=\min\{\frac{1}{n},\rho(x_{n-1},a)\},\,x_n\in \mathring{B}_{r_n}(a)$  - такой  $x_n$  всегда можно выбрать, так-как окрестность непуста. Тогда  $\rho(x_n,a)< r \implies \rho(x_n,a)< \frac{1}{n} \implies \rho(x_n,a)\to 0 \implies \lim_{n\to\infty} x_n=a,$  и при этом  $\rho(x_n,a)< r_n< \rho(x_{n-1},a).$ 

# 2.9. Билет 20: Арифметические свойства пределов последовательности векторов. Покоординатная сходимость.

#### Теорема 2.6.

Пусть  $\langle X, \|\cdot\| \rangle$  - нормированное пространство,  $x_n, y_n, a, b \in X, \lambda_n, \lambda \in \mathbb{R}, x_n \to a, y_n \to b, \lambda_n \to \lambda.$ 

Тогда:

$$||x_n - a|| \to 0.$$
$$||y_n - b|| \to 0.$$

1. 
$$x_n + y_n \rightarrow a + b$$

Доказательство.

$$0 \le \|(x_n + y_n) - (a + b)\|$$

$$= \|(x_n - a) + (y_n - b)\|$$

$$\le \|x_n - a\| + \|y_n - b\|$$

$$\to 0 + 0 = 0$$

2. 
$$\lambda_n x_n \to \lambda a$$

Доказательство.

$$0 \leqslant \|\lambda_n x_n - \lambda a\|$$

$$= \|\lambda_n x_n - \lambda_n a + \lambda_n a - \lambda a\|$$

$$= \|\lambda_n (x_n - a) + (\lambda_n - \lambda) a\|$$

$$\leqslant \|\lambda_n (x_n - a)\| + \|(\lambda_n - \lambda) a\|$$

$$= |\lambda_n| \|x_n - a\| + |(\lambda_n - \lambda)| \|a\|$$

$$\to |\lambda| \cdot 0 + 0 \cdot \|a\| = 0$$

3.  $x_n - y_n \rightarrow a - b$ 

Доказательство.

$$-y_n = -1 \cdot y_n \implies -1 \cdot b = -b, \ x_n + (-y_n) \to a + (-b) = a - b.$$

4.  $||x_n|| \to ||a||$ 

Доказательство.

$$0 \le |||x|| - ||a||| \le ||x - a|| \to 0.$$

5. Если задано скалярное произведение и  $||x|| = \sqrt{\langle x, x \rangle}$ , то  $\langle x_n, y_n \rangle \to \langle a, b \rangle$ .

Заметим следующий факт:

$$\frac{1}{4} (\|x+y\|^2 - \|x-y\|^2) = \frac{1}{4} (\langle x+y, x+y \rangle - \langle x-y, x-y \rangle) 
= \frac{1}{4} (\langle x, x \rangle + 2 \langle x, y \rangle + \langle y, y \rangle - (\langle x, x \rangle - 2 \langle x, y \rangle + \langle y, y \rangle)) 
= \frac{1}{4} \cdot 4 \langle x, y \rangle 
= \langle x, y \rangle$$

Теперь:

$$\langle x_{n}, y_{n} \rangle - \langle a, b \rangle = \langle x_{n}, y_{n} \rangle - \langle x_{n}, b \rangle + \langle x_{n}, b \rangle - \langle a, b \rangle$$

$$= \langle x_{n}, y_{n} - b \rangle - \langle x_{n} - a, y_{n} \rangle$$

$$= \frac{1}{4} \left( \|x_{n} + y_{n} - b\|^{2} - \|x_{n} - y_{n} + b\|^{2} - \|x_{n} - a + y_{n}\|^{2} + \|x_{n} - a - y_{n}\|^{2} \right)$$

$$\to \frac{1}{4} \left( \|a\|^{2} - \|a\|^{2} - \|b\|^{2} + \|b\|^{2} \right) = 0$$

#### Определение 2.15.

Пусть 
$$x_n \in \mathbb{R}^d$$
,  $x_n = (x_n^{(1)}, \dots, x_n^{(d)})$ .

Тогда  $x_n$  покоординатно сходится к  $x_0$ , если

$$\forall k \in [1, d] \quad \lim_{n \to \infty} x_n^{(k)} = x_0^{(k)}.$$

#### Теорема 2.7.

 $\mathbf{B} \ \mathbb{R}^d$  с евклидовой нормой сходимость по норме эквивалентна координатной.

#### Доказательство.

Необходимость (норма  $\Longrightarrow$  коорд):

$$\forall k \in [1, d] \quad 0 \leqslant (x_n^{(k)} - x_0^{(k)})^2 \leqslant \sum_{j=1}^d (x_n^{(j)} - x_0^{(j)})^2 = ||x_n - x_0||^2 \to 0.$$

Достаточноость (коорд  $\Longrightarrow$  норма)

$$0 \leqslant ||x - x_0||^2 = \sum_{k=1}^{d} (x_n^{(k)} - x_0^{(k)}) \to 0.$$

### 2.10. Билет 21: Фундаментальные последовательности. Свойства. Полнота. Полнота $\mathbb{R}^d$

Тут что-то странное с порядком билетов, рекомендуется сначала прочитать билет 22

#### Определение 2.16.

Пусть  $\langle X, \rho \rangle$  - метрическое пространоство.

Последовательность  $x_n$  называется фундаментальной

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n, m \geqslant N \quad \rho(x_n, x_m) < \varepsilon.$$

#### Лемма.

Фундаментальная последовательность ограничена

#### Доказательство.

Подставим  $\varepsilon = 1$ , получим  $\forall n \geqslant N \quad \rho(x_N, x_n) < 1 \implies x_n \in B_1(N)$ , пусть

$$r = \max\{1, \max_{k < N} \{\rho(x_N, x_k)\}\}.$$

Тогда  $\forall n \in \mathbb{N} \quad x_n \in B_r(x_N).$ 

**TODO:** Это все свойства фундаментальной последовательноти?

#### Определение 2.17.

Метрическое пространство называется полным, если любая фундаментальная последовательность имеет предел.

#### Лемма.

Пусть  $\langle X, \rho \rangle$  - метрическое пространство.

Пусть  $x_n \in X$  - фундаментальна, а  $\lim_{k \to \infty} x_{n_k} = a$ . Тогда  $\lim_{n \to \infty} x_n = a$ .

#### Доказательство.

$$\lim_{n \to \infty} x_{n_k} = a \implies \forall \varepsilon > 0 \quad \exists M \in \mathbb{N} \quad \forall k \geqslant M \quad \rho(x_{n_k}, a) < \varepsilon.$$

 $x_n$  - фундаментальна  $\implies \forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n, m \geqslant N \quad \rho(x_n, x_m) < \varepsilon$ .

Пусть  $L = \max\{N, n_M\}.$ 

Тогда  $\forall n > L \quad \exists k \quad \rho(x_n, a) < \rho(x_n, x_{n_k}) + \rho(x_{n_k}, a) < 2\varepsilon.$ 

Значит,  $\rho(x_n, a) \to 0 \implies x_n \to a$ .

#### Следствие.

#### 1. $\mathbb{R}^d$ - полное

#### Доказательство.

Пусть  $x_n \in \mathbb{R}^d$  - фундаментальная последовательность.

Тогда  $x_n$  ограничена  $\Longrightarrow \exists x_{n_k}$  - сходящаяся к точке из  $\mathbb{R}^d$  подпоследовательность (Больцано-Вейерштрасс из следующего билета), пусть  $\lim_{k\to\infty} x_{n_k} = a$ .

Тогда 
$$\lim_{n\to\infty} x_n = a \in \mathbb{R}^d$$
.

2. K - компакт в  $\langle X, \rho \rangle \implies \langle K, \rho \rangle$  - полное.

#### Доказательство.

K - компакт,  $x_n \in K$  - фундаментальна.

$$\exists x_{n_k} \in K \quad \lim_{k \to \infty} x_{n_k} = a \in K \implies \lim_{n \to \infty} x_n = a \in K.$$

# 2.11. Билет 22: Покрытия. Компактность. Компактность в пространстве и в подпространстве. Простейшие свойства компактных множеств.

#### Определение 2.18.

Пусть  $\langle X, \rho \rangle$  - метрическое пространство.

Семейство множеств  $U_{\alpha} \subset X$  называется открытым покрытием множества A (покрытием A открытыми множествами), если

- 1.  $A \subset \bigcup_{\alpha \in I} U_{\alpha}$
- 2.  $\forall \alpha \in I \quad U_{\alpha}$  открытое.

#### Определение 2.19.

Пусть  $\langle X, \rho \rangle$  - метрическое пространство.

 $K \subset X$  называется компактом, если из любого отркытого покрытия можно выбрать конечное открытое покрытие.

#### Теорема 2.8.

Пусть  $\langle X, \rho \rangle$  - метрическое пространтсво,  $Y \subset X$  - подпространство.

Тогда компактность  $K \subset Y$  в Y и в X равносильны.

#### Доказательство.

 $Y \implies X$ :

Пусть  $G_{\alpha} \subset X$  - открытое покрытие K в X.

Тогда  $U_{\alpha}=G_{\alpha}\cap Y$  - открытое покрытие K в Y.

Можем выбрать конечное  $U_{\alpha_k}$ .

 $U_{\alpha_k} \subset G_{\alpha_k} \implies G_{\alpha_k}$  - конечное открытое покрытие.

 $X \implies Y$ :

Пусть  $U_{\alpha} \subset Y$  - открытое покрытие K в Y.

Тогда  $\exists G_{\alpha}$  открытое в  $X \quad U_{\alpha} = G_{\alpha} \cap Y$ .

 $U_{\alpha} \subset G_{\alpha} \implies G_{\alpha}$  - открытое покрытие K в X.

Значит, можем выбрать конечное  $G_{\alpha_k}$ . Тогда

$$\bigcup_{k=1}^{n} U_{\alpha_k} = \bigcup_{k=1}^{n} (G_{\alpha_k} \subset Y) = Y \cap \bigcup_{k=1}^{n} G_{\alpha_k} \supset Y \cap K = K.$$

Значит,  $U_{\alpha_k}$  - конечное покрытие K в Y.

#### Теорема 2.9.

Пусть  $\langle X, \rho \rangle$  - метрическое пространство, K - компакт. Тогда

1. K - замкнуто

#### Доказательство.

Возьмём  $a \in X \setminus K$ .

Заметим, что  $\forall x \in K \quad B_{\frac{\rho(x,a)}{2}} \cap B_{\frac{\rho(x,a)}{2}}(x) = \varnothing.$ 

Возьмём открытое покрытие  $K\colon K\subset \bigcup_{x\in K}B_{\frac{\rho(x,a)}{2}}(x).$ 

Выберем конечное:  $K \subset \bigcup_{k=1}^n B_{\frac{\rho(a,x_k)}{2}}(x_k)$ .

Тогда, при  $r:=\min_k\{\frac{\rho(x_k,a)}{2}\},$   $B_r(a)\cap K=\varnothing\implies B_r(a)\subset X\backslash K\implies a\in \mathrm{Int}(X\backslash K)\implies X\backslash K$  открыто  $\implies K$  замкнуто.

#### 2. К - ограничено

#### Доказательство.

Возьмём  $a \in K$ .

Тогда  $\bigcup_{n=1}^{\infty} B_n(a)$  - открытое покрытие.

Выберем конечное: 
$$K \subset \bigcup_{k=1}^m B_{n_k}(a) = B_r(a), r := \max_k \{n_k\}.$$

#### Следствие.

Если K - компакт и  $\tilde{K}\subset K$  - замкнуто, то  $\tilde{K}$  - компакт.

#### Доказательство.

Пусть  $U_{\alpha}$  - открытое покрытие  $\tilde{K}$ .

Тогда, если добавить к нему  $X\setminus \tilde{K}$  (которое открыто так-как  $\tilde{K}$  замкнуто), получится открытое покрытие K. Выберем конечное.

$$\bigcup_{k=1}^{n} U_{\alpha_{k}} \cup (X \setminus \tilde{K}) \supset K \supset \tilde{K} \implies \bigcup_{k=1}^{n} U_{\alpha_{k}} \supset \tilde{K} \qquad \Box.$$

# 2.12. Билет 23: Теорема о пересечении семейства компак- тов. Следствие о вложенных компактах.

#### **Теорема 2.10.**

Пусть  $K_{\alpha}$  - семейство компактов, и для любого конечного набора компактов пересечение непусто.

Тогда 
$$\bigcap_{\alpha \in I} K_{\alpha} \neq \emptyset$$
.

#### Доказательство.

Предположим  $\bigcap_{\alpha \in I} K_{\alpha} = \emptyset$ .

Тогда  $\exists \alpha_0 \in I \quad K_{\alpha_0} \subset X \setminus \bigcap_{\alpha \in I}^{\alpha \neq \alpha_0} K_{\alpha} = \bigcup_{\alpha \in I}^{\alpha \neq \alpha_0} (X \setminus K_{\alpha})$  - получилось открытое покрытие.

Выберем конечное:  $K_{\alpha_0} \subset \bigcup_{k=1}^n (X \setminus K_{\alpha_k}) = X \setminus \bigcap_{k=1}^n K_{\alpha_k}$ .

Но тогда 
$$\bigcap_{k=0}^{n} K_{\alpha_k} = \emptyset$$
, противоречие.

#### Следствие.

Пусть  $K_1 \supset K_2 \supset K_3, \ldots$  - непустые компакты.

Тогда  $\bigcap_{k=1}^{\infty} K_k \neq \emptyset$ .

#### Доказательство.

Пересечение конечного числа компактов - компакт с максимальным номером  $\neq \varnothing$ .

- 2.13. Билет 24: NAME
- 2.14. Билет 25: NAME
- 2.15. Билет 26: NAME
- 2.16. Билет 27: NAME
- 2.17. Билет 28: NAME
- 2.18. Билет 29: NAME
- 2.19. Билет 30: NAME
- 2.20. Билет 31: NAME
- 2.21. Билет 32: NAME
- 2.22. Билет 33: NAME
- 2.23. Билет 34: NAME
- 2.24. Билет 35: NAME
- 2.25. Билет 36: NAME
- 2.26. Билет 37: NAME
- 2.27. Билет 38: NAME
- 2.28. Билет 39: NAME

### 3. Числовые и функциональные ряды

- 3.1. Билет 40: NAME
- 3.2. Билет 41: NAME
- 3.3. Билет 42: NAME
- 3.4. Билет 43: NAME
- 3.5. Билет 44: NAME
- 3.6. Билет 45: NAME
- 3.7. Билет 46: NAME
- 3.8. Билет 47: NAME
- 3.9. Билет 48: NAME
- 3.10. Билет 49: NAME
- 3.11. Билет 50: NAME
- 3.12. Билет 51: NAME
- 3.13. Билет 52: NAME
- 3.14. Билет 53: NAME
- 3.15. Билет 54: NAME
- 3.16. Билет 55: NAME
- 3.17. Билет 56: NAME
- 3.18. Билет 57: NAME
- 3.19. Билет 58: NAME
- 3.20. Билет 59: NAME
- 3.21. Билет 60: NAME
- 3.22. Билет 61: NAME
- 3.23. Билет 62: NAME
- 3.24. Билет 63: NAME
- 3.25. Билет 64: NAME

R – радиус сходимости, 0 < r < R. Тогда в круге  $|z| \le r$  ряд сходится равномерно.

#### Доказательство.

 $r < R \implies \sum_{n=0}^{\infty} a_n r^n$  сходится абсолютно. Для ряда  $\sum_{n=0}^{\infty} a_n z^n, \ |z| \leqslant r$  воспользуемся признаком Вейерштрасса.  $|a_nz^n|\leqslant |a_n|r^n,\, |a_n|r^n$  сходится  $\implies$  по признаку Вейерштрасса  $\sum\limits_{n=0}^{\infty}a_nz^n,\,\,|z|\leqslant r$ сходится равномерно.

#### Замечание.

Равномерной сходимости во всем круге может не быть.

Контрпимер  $R=1, \ \sum\limits_{n=0}^{\infty}z^n=\frac{1}{1-z}, \$ хвост ряда  $\sum\limits_{k=n}^{\infty}z^k=\frac{z^n}{1-z}\not\rightrightarrows 0, \$ т.к. можем одновременно приблизить числитель к единице, а знаминатель к нулю, и дробь получается сколь угодно большой.

#### Следствие.

Сумма степенного ряда непрерывна в круге сходимости.

#### Доказательство.

Возьмем произвольную точку w из круга сходимости, достаточно доказать лишь непрерывность в окресности. Берем r, т.ч. |w| < r < R. Знаем, что в круге |z| < r ряд равномерно сходится. Есть равномерная сходимость и каждое слагаемое это непрерывная функция  $\Longrightarrow$  в круге |z| < r сумма непрерывна  $\Longrightarrow$  есть непрерывность суммы и в w. В силу произольности wсумма непрерывна в любой точке |z| < R.



#### Теорема 3.2 (Абеля).

Пусть R – радиус сходимости ряда  $\sum\limits_{n=0}^{\infty}a_nz^n$  и ряд сходится при z=R. Тогда на отрезке [0,R] і сходится равномерно ряд сходится равномерно.

 $\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n R^n \left(\frac{x}{R}\right)^n$ . Применим признак Абеля.  $\sum_{n=0}^{\infty} a_n R^n$  сходится равномерно (нет зависимости от x),  $\left(\frac{x}{R}\right)^n \in [0,1]$   $\Longrightarrow$  равномерно огранич.,  $\left(\frac{x}{R}\right)^n$  монотонно убывает, тогда по признаку Абеля  $\sum_{n=0}^{\infty} a_n x^n$  сходится равномерно.

#### Следствие

 $f(x) = \sum_{n=0}^{\infty} a_n x^n$ , если выполнены условия теоремы, то  $f(x) \in C[0,R]$ , т.к. равномерная сходимость влечет непрерывность. В частности,  $\lim_{x\to R^-}\sum_{n=0}^{\infty}a_nx^n=\sum_{n=0}^{\infty}a_nR^n$ .

### 3.29. Билет 68: Почленное интегрирование суммы степенного ряда.

#### Лемма.

$$x_n, y_n \in \mathbb{R}$$
 и  $\lim_{n \to +\infty} x_n \in (0, +\infty)$ . Тогда  $\overline{\lim} x_n y_n = \lim x_n \overline{\lim} y_n$ .

#### Доказательство.

 $A=\lim x_n, B=\overline{\lim}y_n, C=\overline{\lim}x_ny_n$ . (Напоминание: верхний предел это наибольший из частичных).

 $\exists n_k$ , т.ч.  $x_{n_k}y_{n_k} \to C$ .  $\lim x_{n_k}y_{n_k} = \lim x_{n_k} \lim y_{n_k}$ , равенство есть, т.к. существует предел слева и предел  $x_{n_k}$ . Из равенства следует, что  $\lim y_{n_k} = \frac{C}{A} \leqslant B \implies C \leqslant AB$ .

 $\exists m_k,$  т.ч.  $y_{n_k} \to B$ .  $\lim x_{m_k} y_{m_k} = \lim x_{m_k} \lim y_{m_k} \implies \lim x_{m_k} y_{m_k} = AB \leqslant C$ .

Итого равенство.

#### Следствие.

Радиусы сходимости рядов  $\sum_{n=0}^{\infty} a_n z^n$ ,  $\sum_{n=0}^{\infty} a_n \frac{z^{n+1}}{n+1}$ ,  $\sum_{n=1}^{\infty} a_n n z^{n-1}$  совпадают.

#### Доказательство.

Домножение на z не влияет на радиус, поэтому докажем для рядов  $\sum_{n=0}^{\infty} a_n z^n$ ,

$$\sum_{n=0}^{\infty}a_n\frac{z^n}{n+1},\sum_{n=1}^{\infty}a_nnz^n.$$

$$R_1 = \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}}, R_2 = \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}}, R_3 = \frac{1}{\overline{\lim} \sqrt[n]{|a_n|} \sqrt[n]{n}}$$

 $\lim \sqrt[n]{n+1} = \lim \sqrt[n]{n} = 1$ , по лемме можем вытащить из под верхнего предела и окажется, что  $R_1 = R_2 = R_3$ .

#### Теорема 3.3 (Почленное интегрирование степенного ряда).

$$R$$
 – радиус сходимости ряда  $f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ . Тогда при  $|x - x_0| < R$ 

 $\int\limits_{x_0}^x f(t)dt = \sum\limits_{n=0}^\infty a_n rac{(x-x_0)^{n+1}}{n+1}$  и полученный ряд имеет тот же радиус сходимости.

#### Доказательство.

На  $[x_0,x]$  ряд сходится равномерно (теорема из билета  $67) \Longrightarrow f \in C[x_0,x]$  и можно интегрировать почленно  $\int\limits_{x_0}^x \sum\limits_{n=0}^\infty a_n (t-x_0)^n dt = \sum\limits_{n=0}^\infty a_n \int\limits_{x_0}^x (t-x_0)^n dt = \sum\limits_{n=0}^\infty a_n \frac{(x-x_0)^{n+1}}{n+1}.$ 

### 3.30. Билет 69: Комплексная диффернцируемость. Дифференцирование степенного ряда.

#### Определение 3.1.

 $f: E \mapsto \mathbb{C}, E \subset \mathbb{C}, z_0 \in \text{Int} E$ . Если существует  $k \in \mathbb{C}$ , такое что  $f(z) = f(z_0) + k(z - z_0) + o(z - z_0)$  при  $z \to z_0$ , то f – комплексно-дифференцируема в точке  $z_0$  и k – производная f в точке  $z_0$ .

#### Замечание.

1. 
$$k = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} =: f'(z_0)$$

#### 2. Существование производной равносильно дифференцированию

#### Теорема 3.4.

$$R$$
 – радиус сходимости ряда  $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ 

Тогда f – бесконечно дифференцируема в круге  $|z-z_0| < R$  и

$$f^{(m)}(z) = \sum_{n=m}^{\infty} n(n-1)\dots(n-m+1)a_n(z-z_0)^{n-m}$$

#### Доказательство.



Докажем индукцию по m. Рассмотрим m=1 и  $z_0=0$  (про  $z_0$  для простоты). Возьмем |z|< Rи подберем такое r, что |z| < r < R (картинка выше для пояснения). Возьмем |w| < r

$$f'(z) = \lim_{w \to z} \frac{f(w) - f(z)}{w - z} = \lim_{w \to z} \sum_{n=0}^{\infty} \frac{a_n w^n - a_n z^n}{w - z} = \lim_{w \to z} \sum_{n=1}^{\infty} a_n (w^{n-1} + w^{n-2} z + \dots + z^{n-1})$$

Первое равенство – просто вынесли ряд. Второе – просто поделили (что-то похожее на алгебре делали). Осталось доказать равномерную сходимость по |w| < r последнего ряда, чтобы поменять местами предел и сумму. Проверять будем с помощью признака Вейерштрасса:

$$|a_n(w^{n-1} + w^{n-2}z + \dots + z^{n-1})| \le |a_n|(|w|^{n-1} + |w|^{n-2}|z| + \dots + |z|^{n-1}) \le |a_n|nr^{n-1}|$$

Второе неравенство, так как |w| < r и z < r. Но ряд  $\sum_{n=1}^{\infty} |a_n| n r^{n-1}$  сходится, так как у ряда  $\sum_{n=0}^{\infty} a_n n z^{n-1}$  радиус сходимости R>r. Значит применился признак сходимости и мы можем n=1 поменять местами сумму с предлом.

$$\lim_{w \to z} \sum_{n=1}^{\infty} a_n (w^{n-1} + w^{n-2}z + \dots + z^{n-1}) = \sum_{n=1}^{\infty} \lim_{w \to z} a_n (w^{n-1} + w^{n-2}z + \dots + z^{n-1}) = \sum_{n=1}^{\infty} n a_n z^{n-1}$$

Если применить эту форму m раз, то получим искомую формулу.

### 3.31. Билет 70: Формула для коэффициентов разложения в ряд аналитической функции. Несовпадение классов бесконечно дифференцируемых и аналитических функций.

**Теорема 3.5** (единственность разложения функции в степенной ряд). Пусть 
$$f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$$
 при  $|z-z_0| < R$  – радиус сходимости.

Тогда ряд раскладывается единственным образом, причем коэффициенты в этом ряду будут выглядеть так:  $a_n = \frac{f^{(n)}(z_0)}{n!}$ 

По предыдущей теореме:

$$f^{(m)}(z) = \sum_{n=m}^{\infty} n(n-1)\dots(n-m+1)a_n(z-z_0)^{n-m}$$

Подставим  $z=z_0$ . Тогда все слагаемые кроме первого занулятся и получим:

$$f^{(m)}(z_0) = m(m-1) \dots 1 \cdot a_m = m! a_m$$

. Отсюда 
$$a_m = \frac{f^{(n)}(z_0)}{n!}$$
.

#### Определение 3.2.

$$\mathbf P$$
яд  $\mathbf T$ ейлора функции  $f$  в точке  $z_0$  называется ряд  $\sum\limits_{n=0}^{\infty} rac{f^{(n)}(z_0)}{n!}(z-z_0)^n$ 

#### Определение 3.3.

Функция называется аналитической в точке  $z_0$ , если она является суммой своего ряда Тейлора для точки  $z_0$  в окрестности точки  $z_0$ .

Ряд Тейлора мы можем писать только, если функция бесконечно дифферинцируема. Но бывают бесконечно дифференцируемые функции, которые не являются аналитическими, например:

#### Пример.

$$f(x) = \begin{cases} e^{-1/x^2} & \text{при } x \neq 0 \\ 0 & \text{при } x = 0 \end{cases}$$

Рассмотрим точки  $x \neq 0$ :

$$f^{(n)}(x) = \frac{P_n(x)}{r^{3n}}e^{-1/x^2}$$

Идем по индукции  $(n \to n+1)$ , проверяем есть ли формула для разных производных:

**База:** Для f:  $f = P_0 e^{-1/x^2}$ , то есть  $P_0 \equiv 1$ 

#### Переход:

$$f^{(n+1)}(x) = (f^{(n)}(x))' = (P_n(x)x^{-3n}e^{-1/x^2})' =$$

$$= P_n(x)x^{-3n}e^{-1/x^2}\frac{1}{x^3} + P'_n(x)x^{-3n}e^{-1/x^2} + P_n(x)(-3n)x^{-3n-1}e^{-1/x^2} = \frac{e^{-1/x^2}}{x^{3n+3}}P_{n+1}(x)$$

Найдем  $f^{(n)}(0)=\lim_{x\to 0} \frac{f^{(n-1)}(x)-f^{(n-1)}(0)}{x}$  Докажем по индукции  $(n-1\to n),$  что  $f^{(n)}(0)=0.$ 

#### Переход:

$$f^{(n)}(0) = \lim_{x \to 0} \frac{f^{(n-1)}(x) - f^{(n-1)}(0)}{x} = \lim_{x \to 0} \frac{f^{(n-1)}}{x} = \lim_{x \to 0} e^{-1/x^2} \frac{P_n(x)}{x^{3n+1}} = \lim_{y \to 1/x} e^{-y^2} y^{3n+1} P_n\left(\frac{1}{y}\right) = 0$$

$$P_n\left(\frac{1}{y}\right) \xrightarrow[y \to \infty]{} P_n(0) - \text{ константа}$$

$$e^{-y^2} y^{3n+1} \xrightarrow[y \to \infty]{} 0, \text{ так как } e^{-y^2} \text{ убывает быстрее.}$$

Значит ряд Тейлора равен 0, но функция не 0 в точках  $x \neq 0$ . Значит функция не аналитическая.

3.32. Билет 71: NAME

**3.33.** Билет **72:** NAME

### 4. Функции нескольких переменных

- 4.1. Билет 73: NAME
- 4.2. Билет 74: NAME
- **4.3.** Билет **75**: NAME
- 4.4. Билет 76: NAME
- 4.5. Билет 77: NAME
- 4.6. Билет 78: NAME
- 4.7. Билет 79: NAME
- 4.8. Билет 80: NAME
- 4.9. Билет 81: NAME
- 4.10. Билет 82: NAME
- 4.11. Билет 83: NAME
- 4.12. Билет 84: NAME
- 4.13. Билет 85: NAME
- 4.14. Билет 86: NAME
- 4.15. Билет 87: NAME
- 4.16. Билет 88: NAME
- 4.17. Билет 89: NAME
- 4.18. Билет 90: NAME
- 4.19. Билет 91: NAME
- 4.20. Билет 92: NAME
- 4.21. Билет 93: NAME
- 4.22. Билет 94: NAME
- 4.23. Билет 95: NAME
- 4.24. Билет 96: NAME
- 4.25. Билет 97: NAME

Билеты по матану Теория меры

### 5. Теория меры

**5.1.** Билет 99: NAME

**5.2.** Билет 100: NAME

**5.3.** Билет 101: NAME

**5.4.** Билет 102: NAME