Devoir surveillé n° 5 – v1

Durée : 4 heures, calculatrices et documents interdits

CCINP 2007 - MP - Mathématiques 1

PARTIE PRÉLIMINAIRE

Les résultats de cette partie seront utilisés plusieurs fois dans le problème.

1) Fonction Gamma d'Euler

- a) Soit $x \in]0, +\infty[$, montrer que la fonction $t \mapsto e^{-t}t^{x-1}$ est integrable sur $]0, +\infty[$. On pose, pour $x \in]0, +\infty[$, $\Gamma(x) = \int_0^{+\infty} e^{-t}t^{x-1} dt$
- b) Determiner, pour $x \in]0, +\infty[$, une relation entre $\Gamma(x+1)$ et $\Gamma(x)$ et en déduire $\Gamma(n)$ pour tout entier naturel non nul n.

2) Fonction zêta de Riemann

On définit la fonction zêta sur]1, $+\infty$ [par $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$.

On connait $\zeta(2) = \frac{\pi^2}{6}$, $\zeta(4) = \frac{\pi^4}{90}$, on sait que pour p entier pair, $\zeta(p)$ est de la forme $q\pi^p$ où q est un rationnel; il a été démontré que certains $\zeta(p)$ pour p entiers impairs sont irrationnels mais on ne sait pas s'ils le sont tous. On se propose de rechercher des valeurs approchées de ces réels $\zeta(p)$.

- a) On note, pour n entier naturel non nul et x réel x > 1, $R_n(x) = \sum_{k=n+1}^{+\infty} \frac{1}{k^x} = \zeta(x) \sum_{k=1}^{n} \frac{1}{k^x}$ Prouver que, pour n entier naturel non nul et x réel x > 1, $R_n(x) \le \frac{1}{(x-1)n^{x-1}}$
- b) On fixe l'entier $p \ge 2$ et un reel $\varepsilon > 0$. Indiquer une valeur de n pour laquelle on a $\left| \sum_{k=1}^{n} \frac{1}{k^p} \zeta(p) \right| \le \varepsilon$

PREMIÈRE PARTIE : SUITES DE FONCTIONS

<u>Préliminaire</u>: Dans les questions 3 et 4 suivantes, on n'utilisera pas pour les démonstrations le théorème de convergence dominée.

3) Exemples et contre-exemples

a) Déterminer une suite (f_n) de fonctions continues et affines par morceaux sur le segment [0,1] qui converge simplement mais non uniformément vers une fonction

f sur [0,1] et telle que la suite de réels $\left(\int_0^1 f_n(x) dx\right)$ ne converge pas vers le réel $\int_0^1 f(x) \, \mathrm{d}x$

Remarque: on peut se contenter d'une vision graphique et, dans ce cas, il est inutile d'exprimer $f_n(x)$, mais on attend une justification des deux propriétés demandées

- b) Si (f_n) est une suite de fonctions continues sur le segment [0,1], démontrer qu'il est possible que la suite de réels $\left(\int_0^1 f_n(x) dx\right)$ converge vers le réel $\int_0^1 f(x) dx$ sans que la convergence de la suite de fonctions (f_n) ne soit uniforme sur [0,1].
- 4) Cas d'un intervalle quelconque
 - a) Montrer que la suite de fonctions $(f_n)_{n\geqslant 1}$ définies sur $I=[0,+\infty[$ par

$$f_n(x) = \frac{x^n e^{-x}}{n!}$$

converge uniformément sur
$$[0, +\infty[$$
.
A-t-on $\lim_{n\to +\infty} \int_0^{+\infty} f_n(x) dx = \int_0^{+\infty} \lim_{n\to +\infty} (f_n(x)) dx$?

Remarque : on pourra utiliser la formule de Stirling sans la démontrer.

- b) On considère (f_n) une suite de fonctions continues et intégrables sur I intervalle borné, qui converge uniformément vers une fonction f sur I.
 - i) Justifier l'existence d'un entier naturel p tel que, pour tout réel $x \in I$, $|f(x)| \le$ $1+|f_n(x)|$ et en déduire que f est intégrable sur I.
 - ii) Montrer que la suite de réels $\left(\int_I f_n(x) dx\right)$ converge vers le réel $\int_I f(x) dx$. On notera $\ell(I)$ la longueur de l'intervalle
- 5) Théorème de convergence dominée pour les suites de fonctions
 - a) Rappeler pourquoi il est inutile de vérifier, lorsqu'on utilise le théorème de convergence dominée, que les fonctions f_n sont intégrables sur I et justifier que f est intégrable sur I.
 - b) Exemples
 - i) Montrer à l'aide d'un exemple simple que ce théorème peut être pratique sur un segment I sur lequel la suite de fonctions (f_n) ne converge pas uniformément vers la fonction f.
 - ii) Calculer $\lim_{n\to+\infty} \int_0^{+\infty} \frac{e^{\sin(\frac{x}{n})}}{1+x^2} dx$

DEUXIÈME PARTIE : SÉRIES DE FONCTIONS

6) Théorème de convergence uniforme pour les séries de fonctions Rappeler le théorème d'intégration terme à terme sur un segment pour une série de fonctions.

7) Application

Démontrer que
$$\int_0^{\frac{1}{2}} \left(\sum_{n=0}^{+\infty} x^n\right) dx = \sum_{n=1}^{+\infty} \frac{1}{n2^n}$$
.
En déduire la valeur de $\sum_{n=1}^{+\infty} \frac{1}{n2^n}$.

8) Intégration terme à terme d'une série de fonctions

a) Rappeler le théorème d'intégration terme à terme sur un intervalle quelconque pour une série de fonctions.

Application : théorème de Hardy

On suppose que $\sum a_n$ est une série de réels absolument convergente.

- **b)** Montrer que la série de fonctions $\left(\sum \frac{a_n x^n}{n!}\right)_{n\geqslant 0}$ converge simplement vers une fonction f continue sur \mathbb{R} .
- c) Montrer que la fonction $x \mapsto f(x)e^{-x}$ est intégrable sur $[0, +\infty[$ et exprimer $\int_0^{+\infty} f(x)e^{-x} dx$ comme la somme d'une série numérique.

9) Cas où les théorèmes d'intégration terme à terme ne s'appliquent pas

- a) Montrer que, la série de fonctions $(\sum (-1)^n x^n)_{n\geqslant 0}$ ne converge pas uniformément sur l'intervalle borné I=[0,1[
- b) Montrer que, pour la série de fonctions $(\sum (-1)^n x^n)_{n\geqslant 0}$ sur I=[0,1[, les hypothèses du théorème d'intégration terme à terme sur un intervalle quelconque ne sont pas toutes vérifiées.
- c) Montrer que, néanmoins, $(\sum \int_0^1 (-1)^n x^n dx)_{n \ge 0}$ converge et :

$$\sum_{n=0}^{+\infty} \int_0^1 (-1)^n x^n \, \mathrm{d}x = \int_0^1 \left(\sum_{n=0}^{+\infty} (-1)^n x^n \right) \, \mathrm{d}x$$

10) Théorème de convergence monotone

Soit $\sum f_n$ une série de fonctions continues par morceaux et intégrables sur un intervalle I qui converge simplement vers une fonction f continue par morceaux sur I.

On suppose que toutes les fonctions f_n sont positives sur I et que la fonction f est intégrable sur I.

On pose, pour tout entier naturel n non nul et tout $x \in I$, $S_n(x) = \sum_{k=0}^n f_k(x)$.

Montrer que la suite de fonctions (S_n) vérifie les hypothèses du théorème de convergence dominée, et en déduire que : la série $(\sum \int_I f_n(x) dx)_{n\geqslant 0}$ converge et $\sum_{n=0}^{+\infty} \int_I f_n(x) dx =$

$$\int_{I} \left(\sum_{n=0}^{+\infty} f_n(x) \right) \, \mathrm{d}x$$

11) Application à la physique

a) Calculer, après avoir justifié son existence, l'intégrale $\int_0^{+\infty} \frac{t^3}{e^t - 1} dt$

On détaillera toutes les étapes et on pourra remarquer que, pour $t\in]0,+\infty[$, on a $\frac{1}{\mathrm{e}^{\,t}-1}=\frac{\mathrm{e}^{\,-t}}{1-\mathrm{e}^{\,-t}}.$

Cette intégrale intervient notamment dans la théorie du rayonnement du corps noir.

La loi de Planck donne l'expression de la densité spectrale d'énergie électromagnétique u_{λ} rayonnée par le corps noir, en fonction de la longueur d'onde par la formule :

$$u_{\lambda} = \frac{8\pi hc}{\lambda^5} \frac{1}{\exp\left(\frac{hc}{k_B\lambda T}\right) - 1}$$

où h et k_B sont les constantes de Planck et de Boltzmann, c la célérité de la lumière dans le vide, λ la longueur d'onde et T la température.

Ainsi, la densité volumique totale d'énergie électromagnétique u (rayonnée sur tout le spectre des longueurs d'onde) s'écrit : $u = \int_0^{+\infty} u_{\lambda} d\lambda$.

Si on note M l'exitance totale d'un corps noir on sait que M et u sont liés par la relation $M = \frac{c}{4}u$.

b) Démontrer la loi de Stefan : $M = \sigma T^4$ où $\sigma = \frac{2\pi^5 (k_B)^4}{15h^3c^2}$

12) Généralisation

- a) Exprimer de même pour x réel x > 1, l'intégrale $\int_0^{+\infty} \frac{t^{x-1}}{e^t 1} dt$ en fonction de $\Gamma(x)$ et $\zeta(x)$
- **b)** En déduire la valeur de $\int_0^{+\infty} \frac{t}{e^t 1} dt$ et exprimer $\int_0^{+\infty} \frac{t^6}{e^t 1} dt$ en fonction de $\zeta(7)$.

— FIN —