

Cours Modélisation et vérification des systèmes informatiques Exercices (avec les corrections) Modélisation TLA⁺ (2) par Dominique Méry 22 septembre 2021

Exercice 1 Soit le réseau de Petri de la figure ??.

Question 1.1 Déterminer les conditions initiales.

Question 1.2 Déterminer les relations modélisant les transitions.

Question 1.3 Valider les propriétés et les hypothèses que vous pourrez faire sur ce réseau de Petri.

\leftarrow Solution de l'exercice 1 $_$

- MODULE petri8 -----

EXTENDS Naturals, TLC VARIABLES M CONSTANT Places

condition de t1

$$\begin{array}{lll} t1 & \triangleq & \\ & \wedge M["\texttt{pll"}] \geq 1 \wedge M["\texttt{pl2"}] \geq 1 \\ & \wedge M' = [[[[M \ \texttt{EXCEPT!} \ ["\texttt{pll"}] = @-1] \\ & \quad \texttt{EXCEPT!} ["\texttt{pl2"}] = @-1] \\ & \quad \texttt{EXCEPT!} ["\texttt{p2l"}] = @+1] \\ & \quad \texttt{EXCEPT!} ["\texttt{p3l"}] = @+1] \\ t2 & \triangleq & \\ & \wedge M["\texttt{p2l"}] \geq 1 \\ & \wedge M' = [[[M \ \texttt{EXCEPT!} \ ["\texttt{p2l"}] = @-1] \\ \end{array}$$

EXCEPT!["p22"] = @+2]

$$\begin{aligned} \texttt{EXCEPT!}["\texttt{pll"}] &= @+1] \\ t3 &\triangleq \\ & \land M["\texttt{p3l"}] \geq 1 \\ & \land M' &= [[[M \ \texttt{EXCEPT!}\ ["\texttt{p3l"}] = @-1] \\ & \quad \texttt{EXCEPT!}["\texttt{p33"}] = @+1] \\ & \quad \texttt{EXCEPT!}["\texttt{p12"}] = @+1] \end{aligned}$$

$$\textit{Init} \triangleq M = [p \in \textit{Places} \mapsto \texttt{IF} \ p \in \{\texttt{"pll"}, \texttt{"pl2"}\} \ \texttt{THEN} \ 1 \ \texttt{ELSE} \ 0 \] \ \textit{Next} \triangleq t_1 \ \lor \ t_2 \ \lor \ t_3$$

$$Q1 \triangleq M["p22"] \neq 32$$

$$Q2 \triangleq M["p21"] = 1 \land M["p31"] = 1 \Rightarrow 2 \cdot M["p22"] = M["p33"]$$

Fin 1

Exercice 2

Question 2.1 Construire un module TLA⁺ modélisant les différents pas de calcul.

Question 2.2 Evaluer l'algorithme en posant des questions de sûreté suivantes :

- 1. l'algorithme est partiellement correct.
- 2. l'algorithme n'a pas d'erreurs à l'exécution.

Solution de l'exercice 2 ...

MODULE maccarthy91

EXTENDS Naturals, TLC, Integers CONSTANTS x, min, max VARIABLES y_1, y_2, z, c

```
a \; \triangleq \; c = \text{"START"} \; \land \; y_1' = x \; \land \; y_2' = 1 \land \; c' = \text{"LOOP"} \; \land \; \text{Unchanged} \; \langle z \rangle
b \triangleq
        \wedge \; c = \text{"LOOP"} \; \wedge \; y_1 \; \leq \; 100
       \land y_1' = y_1 + 11 \land y_2' = y_2 + 1
        \wedge UNCHANGED \langle z, c \rangle
          \land \ c = \text{"LOOP"} \ \land \ y_1 \ > \ 100 \ \land \ y_2 \neq 1
          \land y_1' = y_1 - 10 \land y_2' = y_2 - 1
          \land UNCHANGED \langle z, c \rangle
d \triangleq
        \begin{array}{ll} \land \ c = \text{"LOOP"} & \land \ y_1 > 100 \ \land \ y_2 = 1 \\ \land \ z' = y_1 {-} 10 & \land \ c' = \text{"HALT"} \end{array}
        \wedge UNCHANGED \langle y_1, y_2 \rangle
next \triangleq a \lor b \lor cc \lor d \lor UNCHANGED \langle y_1, y_2, z, c \rangle
\mathit{init}_1 \triangleq y_1 \in \mathit{Int} \land y_2 \in \mathit{Int} \land z \in \mathit{Int} \land c = \texttt{"START"}
init \triangleq y_1 = 0 \land y_2 = 0 \land z = 0 \land c = "START"
Q1 \triangleq c \neq \text{"HALT"} c prned la valeur HALT
Q2 \; \triangleq \; c = \text{"HALT"} \; \Rightarrow \; z = \text{IF} \; x > 100 \; \text{THEN} \; x - 10 \; \text{ELSE} \; 91
Qy_1 \triangleq min \leq y_1 \wedge y_1 \leq max
Question \triangleq Qy1
```

Fin 2

Exercice 3 Soit le schéma suivant définissant un calcul déterminant sir un nombre entier naturel est premier ou non.

FIGURE 1 – Réseau de Petri

Question 3.1 Ecrire un modèle TLA modélisant ce schéma de calcul.

Question 3.2 Ecrire un invariant à partir d'annotations que vous définirez après avoir défini des points de contrôle.

Question 3.3 Vérifier la correction partielle

Question 3.4 Vérifier l'absence d'erreurs à l'exécution.

A dummy module that defines the operators that are defined by the real Naturals module.

```
 \begin{array}{l} Nat \, \triangleq \, \{ \, \} \\ a+b \, \triangleq \, \{a, \, b\} \\ a-b \, \triangleq \, \{a, \, b\} \\ a\cdot b \, \triangleq \, \{a, \, b\} \\ a^b \, \triangleq \, \{a, \, b\} \\ a < b \, \triangleq \, a \, = \, b \\ a > b \, \triangleq \, a \, = \, b \\ a \, \leq \, b \, \triangleq \, a \, = \, b \\ a \, \geq \, b \, \triangleq \, a \, = \, b \\ a \, \% \, b \, \triangleq \, \{a, \, b\} \\ a \, ... \, b \, \triangleq \, \{a, \, b\} \\ a \, ... \, b \, \triangleq \, \{a, \, b\}
```

- MODULE $TLC\,-$

LOCAL INSTANCE Naturals LOCAL INSTANCE Sequences

```
Print(out, \, val) \triangleq val
PrintT(out) \triangleq TRUE
Assert(val, \, out) \triangleq \text{IF } val = TRUE \text{ THEN } TRUE
ELSE \text{ CHOOSE } v : TRUE
JavaTime \triangleq \text{ CHOOSE } n : n \in Nat
TLCGet(i) \triangleq \text{ CHOOSE } n : TRUE
TLCSet(i, \, v) \triangleq TRUE
d :> e \triangleq [x \in \{d\} \mapsto e]
f \otimes 0 = a \triangleq [m \in (POMAIN | f\} \mapsto (POMAIN | g) \mapsto a
```

```
\begin{array}{l} d \, :> \, e \, \triangleq \, [x \, \in \, \{d\} \, \mapsto \, e] \\ f \, @@ \, g \, \triangleq \, [x \, \in \, (\operatorname{DOMAIN} \, f) \cup (\operatorname{DOMAIN} \, g) \, \mapsto \\ & \quad \text{IF} \, x \, \in \, \operatorname{DOMAIN} \, f \, \text{THEN} \, f[x] \, \text{ELSE} \, g[x]] \\ \textit{Permutations}(S) \, \triangleq \\ & \quad \{ f \, \in \, [S \, \to \, S] \, : \, \forall \, w \, \in \, S \, : \, \exists \, v \, \in \, S \, : \, f[v] = w \} \end{array}
```

In the following definition, we use Op as the formal parameter rather than $\protect\operatorname{protect}$ because TLC Version 1 can't handle infix formal parameters.

```
\begin{array}{lll} \textit{SortSeq}(s,\textit{Op}(\_,\_)) &\triangleq \\ \textit{LET}\textit{Perm} &\triangleq \textit{CHOOSE} \; p \; \in \textit{Permutations}(1 \; ... \textit{Len}(s)) \; : \\ &\forall \; i, \; j \; \in \; 1 ... \textit{Len}(s) \; : \\ & (i \; < \; j) \; \Rightarrow \; \textit{Op}(s[p[i]], \; s[p[j]]) \; \lor \; (s[p[i]] \; = \; s[p[j]]) \\ \textit{IN} \quad [i \; \in \; 1 ... \textit{Len}(s) \; \mapsto \; s[\textit{Perm}[i]]] \end{array}
```

 $RandomElement(s) \triangleq CHOOSE x \in s : TRUE$

 $\begin{array}{l} \textit{Any} \; \triangleq \; \textit{CHOOSE} \; x \; : \; \textit{TRUE} \\ \\ \textit{ToString}(v) \; \triangleq \; (\textit{CHOOSE} \; x \; \in \; [a \; : \; v, \; b \; : \; \textit{STRING}] \; : \; \textit{TRUE}).b \\ \\ \textit{TLCEval}(v) \; \triangleq \; v \end{array}$

Exercice 4 Le module truc permet de résoudre un problème très classique en informatique : trouver un chemin entre un sommet input et des sommets output supposés être des sommets de sortie.

Question 4.1 Pour trouver un chemin de input à l'un des sommets de output, il faut poser une question de sûreté à notre système de vérification. Donner une question de sûreté à poser permettant de trouver un chemin de input vers un sommet de output.

Question 4.2 On désire utiliser cette technique pour trouver un chemin dans un labyrinthe. Un labyrinthe est représenté par une matrice carrée de taille n. On définit ensuite pour chaque élément << i, j>> de la matrice les voisins communiquant à l'aide de la fonction lab qui associe à << i, j>> les éléments qui peuvent être atteints en un coup. Par exemple, le mouvement possible à partir de << 1, 1>> est << 2, 1>>, ou le mouvement possible à partir de << 2, 2>> est << 2, 3>> ou << 3, 2>> ou << 2, 1>>, ...

Modifier le module truc pour traiter ce problème et donner la question à poser pour trouver une sortie.

```
- MODULE truc -
EXTENDS Integers, TLC
VARIABLES p
CONSTANTS input, output
n \triangleq 10
nodes \triangleq 1..n
l \triangleq [i \in 1..n \mapsto \text{IF } i = 1 \text{ THEN } \{4, 5\} \text{ ELSE }
                      IF i = 2 THEN \{6, 7, 10\} ELSE
                      IF i = 4 THEN \{7, 8\} ELSE
                      If i = 5 then \{\} else
                      If i=6 then \{4\} else
                      IF i = 7 THEN \{5\} ELSE
                      IF i = 8 THEN \{5, 2\} ELSE
                      {}
Init \triangleq p = 1
M(i) \triangleq \wedge i \in l[p]
          \wedge p' = i
Next \triangleq \exists i \in 1..n : M(i)
```

Solution de l'exercice 4 _____

---- MODULE $labyrinthe \,\,--$

FIGURE 3 – Labyrinthe

```
VARIABLES p
CONSTANTS input, output
n \triangleq 10
nodes \triangleq 1..n
l \triangleq [i \in 1..n \mapsto \text{IF } i = 1 \text{ THEN } \{4,5\} \text{ ELSE }
                          IF i = 2 THEN \{6, 7, 10\} ELSE
                          IF i = 4 THEN \{7, 8\} ELSE
                          IF i = 5 THEN \{\} ELSE
                          If i=6 then \{4\} else
                          If i = 7 then \{5\} else
                          IF i = 8 THEN \{5, 2\} ELSE
                          {}
lab \triangleq [\langle x, y \rangle \in (nodes \times nodes) \mapsto
                          If x = 1 \land y = 1 then \{\langle 1, 2 \rangle\} else
                          If x = 1 \land y = 2 then \{\langle 1, 3 \rangle, \langle 2, 2 \rangle\}
                          ELSE {}
                          ]
Init \triangleq p = 1
M(i) \triangleq \land i \in l[p]
           \wedge p' = i
Next \triangleq \exists i \in 1..n : M(i)
Initlab \triangleq p = \langle 1, 1 \rangle
\mathit{ML}(q) \triangleq \wedge q \in \mathit{lab}[p]
              \wedge p' = q
Nextlab \triangleq \exists q \in nodes \times nodes : ML(q)
Sortie \triangleq p \notin output
```

_Fin 4

Cours Modélisation et vérification des systèmes informatiques Exercices (avec les corrections) Utilisation d'un environnement de vérification Frama-c (I) par Dominique Méry 22 septembre 2021

Exercice 5 Soit le petit programme suivant dans un fichier ex1.c

```
void swap1(int a, int b) {
  int x = a;
  int y = b;
  //@ assert x == a && y == b;
  int tmp;
  tmp = x;
  x = y;
  y = tmp;
  //@ assert x == b && y == a;
}
```

Question 5.1 Utiliser l'outil frama-c-gui avec la commande \$frama-c-gui ex1.c et cliquer sur le lien ex1.c apparaissant sur la gauche. A partir du fichier source, une fenêtre est créée et vous découvrez le texte du fichier.

Question 5.2 Cliquer à droite sur le mot-clé assert et cliqur sur Prove annotation by WP. Les boutons deviennent vert.

Question 5.3 void swap2(int a, int b) { int x = a; int y = b; //@ assert x == a && y == b; int tmp; tmp = x; x = y; y = tmp;

 $//@ \ assert \ x == a \&\& y == a;$

Répétez les mêmes suites d'opérations mais avec le programme suivant dans ex2.c.

Question 5.4 Soit le nouvel algorithme avec un contrat qui établit ce que l'on attend de cet algorithme

Recommencer les opérations précédentes et observer ce qui a été utilisé comme outils de preuve.

Solution de l'exercice 5 ...

Les solutions aux questions sont dans l'énoncé lui-même et il est uniquement indispensable de faire vraiment l'exercice...

```
Listing 1 - schema de contrat

// returns the absolute value of x

int abs ( int x ) {
   if ( x >=0 ) return x ;
   return -x ; }

Listing 2 - schema decontrat

// returns the absolute value of x

int abs ( int x ) {
   if ( x >=0 ) return x ;
   return -x ; }
```

```
Listing 3 – schema de contrat
void swap1(int a, int b) {
  int x = a;
  int y = b;
  //@ \ assert \ x == a \&\& y == b;
  int tmp;
 tmp = x;
 x = y;
 y = tmp;
  //@ \ assert \ x == b \& y == a;
}
                           Listing 4 – schema de contrat
/*@ requires a == b;
*/
void swap1(int a, int b) {
  int x = a;
  int y = b;
  //@ \ assert \ x == a \&\& y == b;
  int tmp;
 tmp = x;
 x = y;
 y = tmp;
  //@ \ assert \ x == a \& y == a;
                           Listing 5 – schema de contrat
void swap2(int a, int b) {
  int x = a;
  int y = b;
  //@ \ assert \ x == a \&\& y == b;
  int tmp;
 tmp = x;
 x = y;
 y = tmp;
  //@ \ assert \ x == a \&\& y == a;
}
                           Listing 6 – schema de contrat
#include <limits.h>
/ *@
  requires INT\_MIN < a+b;
  requires INT\_MAX > a+b;
  requires INT\_MIN < a-b;
  requires INT\_MAX > a-b;
void swap3(int a, int b) {
  int x = a;
  int y = b;
  //@ \ assert \ x == a \&\& y == b;
```

```
int tmp;
  x = x+y;
 y = x-y;
 x = x-y;
 //@ \ assert \ x == b \&\& y == a;
                          Listing 7 – schema de contrat
#include <limits.h>
/ *@
  requires INT\_MIN < a+b;
  requires INT\_MAX > a+b;
  requires INT\_MIN < a-b;
  requires INT\_MAX > a-b;
void swap3(int a, int b) {
  int x = a;
  int y = b;
  int tmp;
 x = x+y;
 y = x-y;
 x = x-y;
                          Listing 8 – schema de contrat
/ *@
  requires \valid(a);
  requires \forall valid(b);
  ensures P: *a == \setminus old(*b);
 ensures Q: *b == \old(*a);
 */
void swap(int
          *a, int *b) {
  int tmp;
 tmp = *a;
  *a = *b;
  *b = tmp;
                                                                         Fin 5
Exercice 6
void test(int x1, int x2) {
  int y1, y2, z1, z2;
 y1 = x1;
  //@ ....;
 y2 = x2;
  //@ ....;
 y1 = y1 - (y1 - y2);
 y2 = x1 + x2 - y1;
 z1 = y1;
```

```
z2 = y2;
//@ \dots;
```

Annoter le petit algorithme et le vérifier ensuite avec l'outil.

Solution de l'exercice 6 .

La solution est fondée sur la redéfinition de la fonction de soustraction au sens de *on ne peut* pas enlevr des bonbons quand il ny en a plus.... On doit ajouter des lemmes en plus pour pouvoir prouver des propriétés invariantes. Il faut tester cet algorithme avec l'option -wp de frama-c.

```
Listing 9 – schema de contrat
```

```
//@ lemma exun: forall integer a,b; a \le b & a >= 0 & b >= 0 ==> b-a >= 0 & b-a >
//@ lemma \ ex: \ \ for all \ integer \ a,b,c; \ a <= b && a >= 0 && b >= 0 && c >= 0
&& c >= b ==> b-a >=0 && b-a <= b && b-a <= c;
#include <limits.h>
 /*@ requires x \le INT\_MAX; requires x \le INT\_MAX;
               requires y \le INT\_MAX; requires y \le INT\_MAX;
               requires x-y \le INT\_MAX; requires x-y \le INT\_MAX;
              assigns \nothing;
               ensures \ \ result <= x;
*/
int f(int x,int y) {
       if (x \le y) {return 0;}
       else {
              return x-y;}
}
 /*@ requires x1 >= 0 && x2 >= 0;
               requires x1 \ll x2;
               requires x1 <= INT_MAX; requires x1 <= INT_MAX;
              requires x2 <= INT_MAX; requires x2 <= INT_MAX;
void test(int x1, int x2) {
       int y1, y2, z1, z2;
       y1 = x1;
       y2 = x2;
       y1 = f(y1, f(y1, y2));
       //*@ y1 <= x1 & y1 <= x2;
       y2 = x1 + x2 - y1;
       z1 = y1;
       //* @ z1 <= x1 ;
       z2 = y2;
       }
```

Fin 6

Exercice 7 Etudier la correction des algorithmes suivants :

```
Question 7.1 /*@
  requires 0 \ll n;
  ensures \ \ result == n * n;
*/
int f(int n) {
  int i = 0;
/*@ assert i=0
  int s = 0;
  /*@ loop invariant i * i == s && i <= n;
    @ loop assigns i, s; */
  while (i < n) {
    i ++;
    s += 2 * i - 1;
  };<</pre>
  return s;

    Solution de l'exercice 7 
    ____

                          Listing 10 – schema de contrat
/ *@
  requires 0 \ll n;
  ensures \ \ result == n * n;
*/
int f(int n) {
  int i = 0;
  //@ assert i==0;
  int s = 0;
  /*@ loop invariant i * i == s && i <= n;
    @ loop assigns i, s; */
  while (i < n) {
    i++;
    s += 2 * i - 1;
  };
  return s;
}
                          Listing 11 – schema de contrat
/ *@
  requires 0 \ll n;
  ensures \setminus result == n * n;
*/
int f(int n) {
  int i = 0;
  int s = 0;
  /*@ loop invariant i <= n;
    @ loop assigns i, s; */
  while (i < n) {
    i++;
    s += 2 * i - 1;
  };
  return s;
```

Fin 7

```
Listing 12 – division
```

```
Exercice 8 Question 8.1 /*@ requires a >= 0 \&\& b >= 0;
          ensures 0 \leftarrow result;
          ensures \ \ result < b;
         ensures \ensuremath{\ } \ens
 int rem(int a, int b) {
          int r = a, q = 0;
          / *@
                   loop invariant
                  r >= 0;
                  loop \ assigns \ r,q;
              */
         while (r >= b) \{ r = r - b; q = q + 1; \};
         return r;
                                                                                                                                    Listing 13 – division
 Question 8.2 /*@ requires x >= 0;
         @*/
 int f(int x){
         return x+1;
                                                                                                                                    Listing 14 – division
 Question 8.3 /*@ requires *x == 10 \&\& *z == 2**x \&\& *y == *z +*x;
                   ensures *x == 1 & *x + 2 * 10;
 int f(int *x, int *y, int *z){
        y = *x + *z;
         return 0;
```