Sequence alignments (1)

Why create them?
How are they stored?
How can they be manipulated?

This presentation

- *o* is intended to:
 - ogive a brief overview of types of sequence alignment file formats
 - provide brief background useful for the SAMTOOLs tutorial run in the practical sessions
 - O Course notes for tutorial: http://biobits.org/samtools_primer.html
- There will be more detailed presentations / sessions on both the above topics

Sequence alignment data

- What is the purpose of creating and storing a sequence alignment?
- O There are multiple purposes
- O Different aims
- These aims are associated with different ways of representing the alignment
- And thus different <u>alignment file formats</u>

- Related but different aims, meanings and file formats
- Sequence read alignment ("assembly")

 Each nucleotide position (column) represents multiple copies of the same base of an original sequence (e.g. genome sequence) Multiple protein or nucleotide sequence alignment

- Each position (column) represents a homologous nucleotide (or amino acid).
- Sequences are evolutionarily related (homologous) sequences, typically from different organisms, and/or multiple members of a gene family
- Gaps represent insertions/ deletions

"Traditional" alignment of 2 or more sequences

- O Pairwise alignment and multiple alignment
- From an algorithmic point of view:
- There are some significant differences between methods used to:
 - compare and align only 2 sequences (pairwise alignment)
 - compare and align 3 or more sequences (multiple alignment)
- Some pairwise alignment tools produce their own particular alignment formats
 - E.g. some programs in the versatile EMBOSS software package

- Example pairwise alignment
 - of from EMBOSS needle
 - o a global alignment, i.e. complete lengths of both sequences are aligned

```
# Aligned sequences: 2
# 1: POA1L1
# 2: QOPBF7 CAMJE
# Matrix: EBLOSUM62
# Gap penalty: 10.0
# Extend penalty: 0.5
# Length: 265
# Identity:
               27/265 (10.2%)
# Similarity:
              49/265 (18.5%)
# Gaps:
       140/265 (52.8%)
# Score: 32.0
POA1L1
Q0PBF7 CAMJE
                1 MRLLVLFFLILPLYSVELISYNIYDRNDRVDLMLSFDNAYNGKISQKKEK
                                                                   50
POA1L1
Q0PBF7 CAMJE
                51 NLTLLTFSDLTYSKDELKELNSQLVDKISISSKNNNTYIMLQNKQNINLE
                                                                  100
POA1L1
                1 -----QVSGALIG---
                              :.:.::
Q0PBF7 CAMJE
               101 LSSINDKFGVRIRAIEQGKANIESAPTTTANNSQELMPKPKSTSLEGYDY
                                                                  150
POA1L1
                29 -----IIALILAAAWVIKRMGFAPKGNSVRGLKVSASASLGPRERVV
                                                                   70
                         T:.::|...|..|:.....|..|..|..|..|..|..|
Q0PBF7 CAMJE
               151 TNYILVMLILVILLIVLWWFKKTMVYKNNNVSRDFTMIFQRFLDKNNQLV
                                                                  200
POA1L1
               71 IVEVENARLVLGVTASQINLLHTLPPAENDTEAPVAPPADFQNMMKSLLK
                                                                  120
                  Q0PBF7 CAMJE
                                                                  250
               201 VFDHANKRYTMIIGNSNVLLESIEIPEEQTIKHTEKTEKNFDSFFEENKK
POA1L1
               121 RSGRS-----
               251 RIQNLIEQRQKGKKS _____
Q0PBF7 CAMJE
```

"Traditional" alignment of 2 or more sequences

- Typically, DNA sequences representing (complete) genes
- Or protein sequences
- A principle purpose is to identify the parts of the sequence which are the same and which are different
- I.e. identify conservation and divergence
- This can highlight regions of potential functional importance
- O Can be especially informative if you are dealing with several/many sequences (i.e. a multiple alignment)

>MATK_ROSCA/1-330

MEEFQGYLELYRSQQHDFLYPLIFREYIYALAHDRGLNR.....SVLLDNVGYDK.KSSL LIIKRLIS....RMYQQNHFLISVNDSNQNKFF....GYNKNLYS..Q..IISEGFAVIV EIPFSLRLVSSL...KE.TETVKSYN..LRSIHSIFPFFEDKFPHLNYASDVLIPYPIHL EILVQTLRYCVKDPPSLHLLRLFLHEYYNWNTLIT..PKKSIF...AKSNQR..LFLLLY NSYVCEYESILLFLRNQSNHLRLTSSGILFERIRFYEKIKYPVEEVFANDFPATLWFFKD PFIQYVRYQGKSILASKDTPLLMNKWKYYLVHFWQCHFYVWSQPGRIHINQLSKHSFDFL

>MATK_HORVD/1-336

MEKFEGYSEKOKSROOYFVYPLLFOEYIYAFAHDYGLNG....SEPVEIVSWNNKKFSS LLVKRLII....RMYOONFLDNSVNHPNODRLLDYKIFFYSEFYS..O..ILSEGFAIVV EIPFSLRELSCP...KE.KEIPKFQN..LRSIHSIFPFLEDKFLHLDYLSHIEIPYPIHL EILVOLLQYRIODVPSLHLLRFFLNYYSNWNSFIT..SMKSILFF.OKENKR..LVKFLY NSYVSEYEFFLLFLRKQSSCLPLAYSGTFLERIHFSRKMEHFG.IMYPGFSRKTLWFFMD PLIHYVRYQGKAILASKGSFFLKKKWKCYLINFWQYYFFFWTQPRRIHINQLANSCFDFM

>O46990_9MAGN/1-323

MEKSQGYLELDKSWRHDFLYPLIFQEYIYALAHEQGLNR....SILLENTDHDN.KYSS LIVKRLIT....RMHQQNHFLIFDNDSNQNPFW....KHNNNLYS..Q..TISEGFVIIV EIPFSPRFVDSL...EEKKKIVKSNN..LRSIHSIFPFLEDQFLHLNFVSNILIPYPIHL EIVVOSLRYRVKDASSLHLLRFFLFT.....LNKSISSF.SKRNRR..FFLFLY NSHVYEYESTFLFLRNKTSHLRSTSSGAFLERIFFYGKIKHLI.EVFANDFQAILWLFKD PFMHYVRYQGKSILASKRTSLRMNKWKYYLVNFWQCOFYVWSQPGRVSINQLSNHSLDFL

>MATK_SAXIN/1-335

MEEYQGYLELNKFRQNDFLYPLIFQEYIYALAHDQILKK.....CILSDNLSYDN.KSSS LIVKRLIT....QMSQLNHLIISDNDSNQNTFL....GHTKNLDY..QNKMISEGFAVVV EIQFSLRLVFSL...ER.REIVKSQN..LRSIHSIFPFLEDNFLHLNYVSDILIPHPIHL EILVQTLRYWVKDASSLHLLRFFLYEYQNRTSLITSTPKKAISIV.SKGNHR..LFLILY NSYLCEYESIFIFICNQSSHLRSISSGTLFERIYFYGKIKNLV.EVFYTDFPTVLWLFKA PFMYYVRYQGKSILASNGAPLLLNKWKYYLVNFWQCNFYLWSQPGRIHINQLSKNSLNFL

>MATK SULSU/1-333

MGEFOGYLELDKFROHHFLYPLIFOEYIYALAHDHVLNR....SILLDNFGYDN.KSSS IIVKRLIT....RMGQQNHLLISANYSNKNKFL....GHNKNFDS..Q..MISEGFAVIV EIPFSLRLVSSL...ER.KEIVKSHN..LRSIHSIFPFLEDNFLHLNYVSDILIPHPIHL EILVQTLRYWVKDASSLHLLRFFLYEYQSWNSLITPTPKKSISIV.SQRNQR..LFLFLY NSYVCEYESTFIFLWNQSSHLQSTSYGTLFERIYFYGKIKHLV.EVFSNDFPTAPWLFKD PFMHYIRYQGKSILASKGTPLLLNKWKYYLVNFWQCHYYVWSQSGRIHINQLSNHSLDFL

>MATK SINAL/1-329

MEKFQGYLEFDGARQQSFLYPLFFREYIYVLSYDHGLNRLNRNRSIFLENADYDK.KYSS LIVKRLIL....RMYEQNRLIIPTKDLNTNL......GHTNLFYY..Q..MISVLFAVIV EIPFSLRLGSSF...EG.KNLKKSYN..LQSIHSIFPFLEDKFSHFNYVLDVLIPYPIHL EILVQTLRYRVKDASSLHFFRFCLYEYCNWKNFDS..KKK.....SILNPR..FFLFLY NSHVCEYESIFFFLRKQSSHLRSTSYEVFFERILFYGKIQHFL.KVFVNNFPAILGLLKD PFLHYVRYHGKYILATKDTPLMMNKWKYYFVNLWQCYFSVWFQSQKININQLSKDNFEFL

MEEFKRYLELDRSQQHDFVYTLLFQEYIYVLAHDHGLNR....SILLENADYDN.KFSL LIVKRLIT....QMDQQNHLIFSPNDSNQNPFL....GHNTNLYS..Q..MILEGFAVVV EIPFSLRLISSL...EG.KETVKSHK..LRSIHSIFPFLEAKFSRLNYVLDILIPHSIHL

FASTA

#=GS MATK SULSU/1-333

#=GS MATK ACTCH/1-331

=GS 078408_9ERIC/1-333 AC 078408.

#=GS O62994 ELLPA/1-333 AC O62994.3

MSF

```
# STOCKHOLM 1.0
         PF01824.13
         MatK/TrnK amino terminal region
#=GF SE
         Pfam-B 30 (release 4.2)
#=GF GA
#=GF TC
         21.70 21.70:
#=GF RM
         humbuild HMM.ann SEED.ann
         hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
#=GF TP Family
#=GF RM
         8255751
         Evolutionary relationships among group II intron-encoded
         proteins and identification of a conserved domain that may be
          related to maturase function.
#=GF RA
         Mohr G, Perlman PS, Lambowitz AM;
Nucleic Acids Res 1993;21:4991-4997.
#=GF DR
#=GF CC
         INTERPRO; IPR024942;
         The function of this region is unknown
                         AC 078252.1
#=GS MATK_ROSCA/1-330
=GS MATK_HORVD/1-336
                         AC Q76LMO.
#=GS O46990 9MAGN/1-323 AC O46990.
=GS MATK_SAXIN/1-335
                         AC P36435.
```

AC P36436.1

AC 047141.1

```
Name: MATK_ROSCA/1-330 Len: 361 Check: 6381 Weight: 1.00
  Name: MATK_HORVD/1-336 Len: 361 Check: 534 Weight: 1.00
  Name: O46990_9MAGN/1-323 Len: 361 Check: 5814 Weight: 1.00
  Name: MATK_SAXIN/1-335 Len: 361 Check: 4324 Weight: 1.00
  Name: MATK_SINAL/1-329 Len: 361 Check: 2893 Weight: 1.00
  Name: MATK_ACTCH/1-331 Len: 361 Check: 7535 Weight: 1.00
  Name: O78408_9ERIC/1-333 Len: 361 Check: 4909 Weight: 1.00
  Name: O62994_ELLPA/1-333 Len: 361 Check: 4516 Weight: 1.00
  Name: O47144_BEFRA/1-333 Len: 361 Check: 3986 Weight: 1.00
  Name: O78246_9ASTR/1-333 Len: 361 Check: 9032 Weight: 1.00
  Name: MATK_SOLTU/1-336 Len: 361 Check: 97 Weight: 1.00
  Name: O03561_9GENT/1-332 Len: 361 Check: 7541 Weight: 1.00
  Name: O63139_9GENT/1-338 Len: 361 Check: 3336 Weight: 1.00
  Name: O20105_9GENT/1-334 Len: 361 Check: 3862 Weight: 1.00
//
MATK_ROSCA/1-330 MEEFQGYLELYRSQQHDFLYPLIFREYIYALAHDRGLNR.....SVLLDN
MATK_HORVD/1-336 MEKFEGYSEKQKSRQQYFVYPLLFQEYIYAFAHDYGLNG....SEPVEI
O46990_9MAGN/1-323 MEKSQGYLELDKSWRHDFLYPLIFQEYIYALAHEQGLNR.....SILLEN
MATK_SAXIN/1-335 MEEYQGYLELNKFRQNDFLYPLIFQEYIYALAHDQILKK.....CILSDN
MATK_SULSU/1-333
                 MGEFQGYLELDKFRQHHFLYPLIFQEYIYALAHDHVLNR.....SILLDN
MATK_SINAL/1-329 MEKFQGYLEFDGARQQSFLYPLFFREYIYVLSYDHGLNRLNRNRSIFLEN
MATK_ACTCH/1-331 MEEFKRYLELDRSQQHDFVYTLLFQEYIYVLAHDHGLNR.....SILLEN
O78408_9ERIC/1-333 MEEFKRYLELDRSQQHDFIYPLIFQEYIYALAHDRDLNR.....SFFFQS
O62994_ELLPA/1-333 MEEFKRYLELDRSQQHDFIYPLIFQEYIYALAHDRGLNK.....SIFLEN
O47144_BEFRA/1-333 MEELKRYLELDSSQQHDFIYTLIFQEYIYALAHDRGLNR.....SIFSEN
O78246_9ASTR/1-333 MEKFQSYLGLDRSQQHYFLYPLIFQEYIYVLAHDHGLNR.....SILLEN
MATK_SOLTU/1-336 MEEIHRYLQPDSSQQHNFLYPLIFQEYIYALAQDHGLNRN...RSILLEN
O03561_9GENT/1-332 MEEIQRYLQLDRSQQHGFLYPLIFQEYIYALAHDHSLNR.....SILLEN
O63139_9GENT/1-338 MEEIQRYLQLDRSQQHGFLYPLLFREYIYVLAHDHSLNR.....FILLEN
O20105_9GENT/1-334 MEEIPRYLQLDRSQQLSFLYPLIFQEYIYALAHDHSLNR.....AILLEN
MATK_ROSCA/1-330 VGYDK.KSSLLIIKRLIS....RMYQQNHFLISVNDSNQNKFF....GYN
MATK_HORVD/1-336 VSWNNKKFSSLLVKRLII....RMYQQNFLDNSVNHPNQDRLLDYKIFFY
O46990_9MAGN/1-323 TDHDN.KYSSLIVKRLIT....RMHQQNHFLIFDNDSNQNPFW....KHN
MATK_SAXIN/1-335 LSYDN.KSSSLIVKRLIT....QMSQLNHLIISDNDSNQNTFL....GHT
MATK SULSU/1-333
                 FGYDN.KSSSIIVKRLIT....RMGQQNHLLISANYSNKNKFL....GHN
MATK SINAL/1-329
                 ADYDK.KYSSLIVKRLIL....RMYEONRLIIPTKDLNTNL.....GHT
```

stdout MSF: 361 Type: P 28/05/14 CompCheck: 7924 ...

Some multiple

("flatfiles")

sequence alignment formats - these are all **plain text files**

Numerous other formats exist

CLUSTAL format is widely used

Stockholm

!!AA_MULTIPLE_ALIGNMENT 1.0

Viewing multiple alignments

Example display from a program (Jalview) which reads the flatfiles and creates a formatted/annotated view

- Example BLAST output
 - A list of pairwise alignments
 - One sequence (the Query) is always the same
 - In each case, the other sequence is the 'hit' (Subject)
 - N.B. these are local alignments (i.e. only of matching segments, not necessarily the whole sequence)
- More compact BLAST output formats are available
- These are flatfiles (plain text)
- Again, when interpreted and displayed by other software they may appear very different
- E.g. on a website which provides a BLAST service

```
> tr|A0A031GPC8|A0A031GPC8_9BURK Flagellar biosynthesis protein
Fli0 OS=Janthinobacterium lividum GN=fli0 PE=4 SV=1
Length=196

Score = 45.8 bits (107), Expect = 0.009, Method: Composition-based stats.
Identities = 16/114 (14%), Positives = 40/114 (35%), Gaps = 5/114 (4%)
```

- Query 143 TSLEGYDYTNYILVMLILVILLIVLWWFKKTMVYKNNNVSRDFTMIFQRFLDKNNQLVVF 202
 + I ++ ++ LLI L WF K K + ++ L ++V+
 Sbjct 79 PASSAGSLLQTIFALMFVLALLIGLAWFMKRYGPKVMGGNNKMRVVSSLNLGGRERIVLV 138
- Query 203 DHANKRYTMIIGNSNV-LLESIEIPEEQTIKHTE---KTEKNFDSFFEENKKR 251
 + A++ + L ++ E + NF + ++ ++
 Sbjct 139 EVADQWIVVGASPGRINALATMPRQEGDLPQLATAQNGPAAANFSEWLKQTIEK 192
- > tr|A0A0B1REZ0|A0A0B1REZ0_9ENTR Flagellar assembly protein Fli0
 OS=Pantoea rodasii GN=QU24_01715 PE=4 SV=1
 Length=131

```
Score = 44.6 bits (104), Expect = 0.009, Method: Composition-based stats. Identities = 15/98 (15%), Positives = 40/98 (41%), Gaps = 2/98 (2%)
```

- Query 156 VMLILVILLIVL-WWFKKTMVYKNNNVSRDFTMIFQRFLDKNNQLVVFDHANKRYTMIIG 214 V+ ++V+L++ W K+ ++ + + ++V+ D A+ R + +
- Sbjct 29 VLAVIVLLILACGWLAKRLGFAPKTVNTQALKISASVQVGRQERVVIVDTADARLVLGVT 88
- Query 215 NSNVL-LESIEIPEEQTIKHTEKTEKNFDSFFEENKKR 251
- Sbjct 89 AQQITHLHSLPPVPPEELASNSVAPQDFRQLFQNLVKR 126
- > tr|A0A090U6M1|A0A090U6M1_9ENTR Flagellar biosynthesis protein Flio OS=Citrobacter farmeri GTC 1319 GN=flio PE=4 SV=1 Length=124

```
Score = 44.2 bits (103), Expect = 0.010, Method: Composition-based stats. Identities = 14/84 (17%), Positives = 30/84 (36%), Gaps = 0/84 (0%)
```

Query 168 WWFKKTMVYKNNNVSRDFTMIFQRFLDKNNQLVVFDHANKRYTMIIGNSNVLLESIEIPE 227

W K+ + +R + L ++V+ D + R + + SN+ + P

"Traditional" alignment of 2 or more sequences

- O Strictly speaking, an alignment is only meaningful if the sequences are homologous (related by descent from a common ancestor)
- This common descent applies to the individual nucleotide (or amino acid) positions –
 - o i.e., equivalent bases/ amino acids are lined up
- O This also enables inferences of evolutionary events:
 - Substitutions
 - Insertions
 - Deletions

"Traditional" alignment of 2 or more sequences

- O But the process of alignment can help to determine whether the sequences are homologous or not
- This principle applies to sequence similarity search methodsE.g. BLAST
- in which a single query sequence is compared, to many sequences in a database, one at a time
- i.e. many pairwise alignments (all involving the query sequence)
- Each alignment has a score
- The rest are ignored

- One way of very briefly summarising an alignment is to quote a single metric such as:
 - 'percentage identity'
 - 'percentage similarity'
- O However, these are not absolutes, and depend on how the sequences are aligned
 - I.e., which method and scoring parameters are used
- These, and other aspects of alignment will be described further in a future session

Principles of sequence alignment

Other reasons for pairwise alignment

- Ocomparing 2 DNA sequences (or 1 RNA sequence and 1 DNA sequence) -
- where one is expected to be a (often very small) fragment of the other
- 0 E.g.:
- OGenome <u>re</u>sequencing
 - - and de novo genome sequencing
- RNASeq mapping

?

Genome resequencing

- You already have a reference genome sequence of organism X
- The new project is to sequence the genome of organism Y
 - Might be a closely related species
 - Or a different strain of the same species
- Assumption is that the 2 genome sequences are the same or very similar along most of their length
- Each sequence read from genome sequence Y can be "mapped" to the equivalent position in sequence X

Genome resequencing

- N.B. depending on the circumstances, it may be just as good (or preferable) to do de novo assembly of genome Y
 - And then compare the whole of Y to X
 - This "comparative genomics" can be rather more complex than just a pairwise alignment of X and Y
- Resequencing of many genomes or particular parts of genomes helps to identify variations between strains in a species
- And variation among individuals in a population
- E.g. identification of SNPs
 - *o* → variant calling

RNASeq

- mRNA transcripts are sampled and sequenced
- The object is to map each "read" to a reference genome sequence
- Some reads won't match perfectly, due to sequencing errors
 - and even some biological errors
- This is more complicated in eukaryotes than prokaryotes
 - Due to the presence of introns (present in reference genome, absent from reads) and splice variants
- One approach to "community RNASeq" (metatranscriptomics) involves mapping reads to several/many reference genomes
 - O Some reads will originate from genomes which are absent from the reference set

Storing information on mapped reads - economically

• Is there any point in explicitly recording all the bases which are the same as the reference?

- Each read can be recorded by specifying:
- Its start position relative to the reference genome sequence
- Its length
- All the differences between the read and the reference

De novo genome sequence assembly

 Again, it should be necessary to record only positions and differences of each read, relative to the consensus

- Similar principles
- But no reference genome sequence to compare the reads with
- Various algorithms, which in essence compare the reads with each other
- Produces "contigs"
- A consensus sequence can be produced from each contig

How can mapping locations and differences be encoded?

- Various approaches
- Some have 'evolved' beyond their original purpose
- OCIGAR format ("Compact Idiosyncratic Gapped Alignment Report")
 - (and it is idiosyncratic)
- OCIGAR is used in **SAM** format ("Sequence Alignment/Map") files
- O SAM, has a "binary" (compressed) equivalent, BAM
 - SAM and BAM are still very widely used
- A more recent development is CRAM format
 - Stores only differences compared to reference minimal storage space
 - CRAM files are not plain text; you need utilities (in the CRAMTOOLS software) to view them – displayed in e.g. FASTQ or SAM format

What do you need to know?

So how much do you need to know about these formats?

- A little awareness of the concepts will be useful.
- O Do not be concerned with understanding all the details.
 - (Probably not many people do understand them all...
 - the full SAM specification has many details, some more documented than others)
- There have been many approaches to compressing this kind of sequence data, due to the ever-increasing sizes of data sets
 - Compression of SAM/BAM in particular
 - Compression of FASTQ data in general
 - Beyond the scope of this topic

CIGAR and SAM in brief

A quick overview for now.

There are some more details in another presentation

CIGAR format

- One CIGAR 'string' per alignment (read ↔ reference):
 - Example: '6=1X7=2X6='
- Original CIGAR specification was designed to specify for each alignment:
 - O How long the alignment is
 - Where the insertions and deletions (indels) are
 - And some other attributes like 'clipping', 'padding' (ignore this now)
- Later additions to CIGAR also permitted specification of:
 - Where mismatching bases occur
 - O But **NOT** what those mismatches actually are
 - o -it was simply not the original purpose of the tools which used CIGAR

SAM format

- Each read is represented on one line (1 line = 1 'record')
- Each line has a field specifying the position on the reference sequence
- And a field in CIGAR format
- O Then it gets complicated...
- *O Also additional optional fields* these can be used to state:
 - o explicit base differences (the optional MD field)
 - (and many other things)
- SAM format can explicitly state the sequence of each read
 - And often does
 - O But does **not** have to

That all seems a bit messy....?

So why is it like this?

Evolution of bioinformatics formats

- O This is an example of bioinformatics format specifications which have become revised over the years
- The original design may have been to achieve something very specific
- Additional functionality has been enabled by additional information included in the data files
- New fields "bolted on" to a simpler, earlier spec
- Complete revisions are generally uncommon because of the need to retain backward compatibility

Some context

Example: You want to know how many reads are aligned to each part of the genome

11

1

Some context

- Example: You want to know how many reads are aligned to each part of the genome
- O E.g. transcriptomics (RNAseq) thus, gene expression levels
 - Which genes are most represented?
 - You don't care if there are a small number of mismatches due to sequence errors
 - You don't even care what the sequences of the alignments in each region actually are
 - All you want to know is where the alignment/mapping program (whatever that may be) mapped the reads
 - Only minimal CIGAR/SAM information is required for this
 - (N.B. SAM format can optionally store scores produced by the alignment program)

Summary (1)

- There are many different file formats to store alignment data
- These can be read and created by many different software tools
- Nearly all of these formats are plain text ("flatfile")
 - BAM is not, but is a compressed version of SAM
 - Various other compressed, "binary" formats exist, e.g. CRAM
- These file formats are used for a variety of purposes
 - Which data types are stored in any one file can depend on the purpose
- It is *not* necessary to understand the detailed specifications of these data file formats
- But it is important to know:
 - what kind of data can/cannot be contained in these files

Summary (2)

- SAM and BAM data files are principally manipulated with the SAMTOOLS software package
- Various other software can read SAM/BAM files
 - O E.g. visual browsers, like the Integrated Genome Viewer
- External link to SAMTOOLS tutorial at BIOBITS:
 - 0 http://biobits.org/samtools_primer.html
- If you are interested in learning more details of SAM, CIGAR etc., these are provided in a further presentation

SAM, pileup and related formats

