

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CAMPUS VII - UNIDADE TIMÓTEO

Curso: Técnico em Informática

Disciplina: Linguagem de Programação I

Professor: Odilon Corrêa

Lista de Exercícios - Estrutura de Dados Homogênea Multidimensional (Matriz) - Exercícios (Parte IV)

- 1. Crie um algoritmo que preencha os elementos de uma matriz inteira 4 x 4 e exiba a soma de todos os elementos, exceto os elementos da diagonal principal.
- 2. Elabore um algoritmo que preencha os elementos de uma matriz inteira 5 x 5 e imprima a soma dos elementos acima da diagonal principal.
- 3. Faça um algoritmo que preencha os elementos de uma matriz inteira 6 x 6 e imprima o produto dos elementos que estão abaixo da diagonal principal.
- 4. Elabore um algoritmo que preencha os elementos de uma matriz inteira 4 x 4 e exiba a soma de todos os elementos, exceto os elementos da diagonal secundária.
- 5. Faça um algoritmo que preencha os elementos de uma matriz inteira 5 x 5 e escreva somente os elementos acima da diagonal secundária.
- 6. Faça um algoritmo que preencha com valores inteiros para uma matriz m 3 x 3 e imprima a matriz final, conforme mostrado a seguir:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
 a matriz gira 180°
$$\begin{bmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

7. Crie um algoritmo que preencha com valores inteiros para uma matriz m 3 x 3 e imprima a matriz final, conforme mostrado a seguir:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
 a matriz gira 270°
$$\begin{bmatrix} 3 & 6 & 9 \\ 2 & 5 & 8 \\ 1 & 4 & 7 \end{bmatrix}$$

8. Uma fábrica produz dois tipos de produtos: P1 e P2. A produção anual desta fábrica é registrada, mês a mês, numa tabela como:

	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ
P1												
P2												

O setor de controle de vendas tem uma tabela de preços de custo e de venda por produto, mês a mês, como a seguintes:

CUSTO	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ
P1												
P2												
'						•		•		•		
VENDA	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ
P1												
P2												

Crie um algoritmo que calcule e exiba: o lucro anual relativo a cada tipo de produto e o lucro anual total da fábrica. Considere que os dados de venda são gerados aleatoriamente. Para os valores de custo e venda, o usuário deve fornecer um valor médio, e o algoritmo deve atribuir variações de +/- 10% a estes de forma aleatória mês a mês.

- 9. Elabore um algoritmo que preencha uma matriz 12 x 4 com os valores das vendas de uma loja, em que cada linha represente um mês do ano, e cada coluna, uma semana do mês. Para fins de simplificação considere que cada mês possui somente 4 semanas. Calcule e imprima:
 - Total vendido em cada mês do ano;
 - Total vendido em cada semana durante todo o ano;
 - Total vendido no ano.
- 10. A produção diária de uma fábrica é armazenada, semana a semana, em uma tabela da forma:

	Dia 1	Dia 2	Dia 3	Dia 4	Dia 5	Dia 6	Dia 7
Semana 1							
Semana 2							
Semana 3							
Semana N							

Elabore um algoritmo que, a partir de uma tabela como esta, produza a seguinte saída:

RELATÓRIO DE PRODUÇÃO RELATIVO A XX SEMANAS.

PRODUÇÃO DIARIA MÉDIA = xxx.x NÚMERO DE DIAS COM PRODUÇÃO ACIMA DA MÉDIA = xx

INDICAÇÃO DOS DIAS DE MÍNIMA PRODUÇÃO

SEMANA 1 DIA x SEMANA 1 DIA x SEMANA 1 DIA x

...

11. Considere que a matriz a seguir armazena a distância entre as cidades de um estado em Km.

	Cidade 1	Cidade 2	Cidade 3	Cidade 4	Cidade 5
Cidade 1	0	15	30	5	12
Cidade 2	15	0	10	17	28
Cidade 3	30	10	0	3	11
Cidade 4	5	17	3	0	80
Cidade 5	12	28	11	80	0

Implemente um algoritmo para:

- Dadas duas cidades definir qual é a distância entre elas;
- Generalize este cálculo de percurso para qualquer trajeto com até 6 cidades.