Vorkurs Mathematik Lösungen

FaRaFIN Vorkurs-Team

2010

Inhaltsverzeichnis

2	Basi	smathematik	
	2.1	Bruchrechnung Lösung	5
	2.2	Potenzen Lösung	6
	$^{2.3}$	Binomische Formeln Lösung	12
	2.4	Polynomdivision Lösungen	14
3	Qua	dratische Gleichungen Lösungen	19
4	Line	are Gleichungssysteme Lösungen	21
5	Betr	ag, Kreis, Ungleichungen	29
	5.1	Betrag	29
	5.2	Kreis	29
	5.3	Ungleichungen	31
		5.3.1 Ungleichungen mit einer Variablen	31
		5.3.2 Ungleichungen mit mehreren Variablen	40
6	Volls	ständige Induktion Lösung	51
	6.1	Gleichungen	51
	6.2	Ungleichung	57
	6.3	Teilbarkeitsprobleme	60
	6.4	Ableitungen	64
7	Funl	ctionen Loesungen	69
	7.1	Trigonometrische Funktionen	69
		7.1.1 Exponentialfunktionen und Logarithmus	71
	7.2	Kurvendiskusion	74
8	Vekt	oren Lösungen	77
g	Kom	oplexe Zahlen	85

2.1 Bruchrechnung Lösung

Autor: Katja Matthes

Aufgabe 1

- 1. $\frac{20}{6} = \frac{10}{3}$ 3. $\frac{360}{25} = \frac{72}{5}$
- 2. $\frac{92}{4} = 23$ 4. $\frac{1716}{308} = \frac{39}{7}$

Aufgabe 2

- 1. $\frac{56}{65} \cdot 12 \cdot \frac{5}{7} \cdot \frac{13}{16} = 6$
- 3. $\left(\frac{3}{5} \frac{1}{4}\right) : \frac{3}{4} = \frac{7}{15}$
- 2. $1: \left(\frac{2}{9} + \frac{1}{7}\right) = \frac{63}{23}$

Aufgabe 3

- 1. $\frac{\frac{8}{9}}{\frac{16}{27}} = \frac{3}{2}$ 3. $\frac{5\frac{1}{2}}{\frac{11}{12}} = 6$

- 2. $\frac{2\frac{1}{3}}{1\frac{1}{6}} = 2$ 4. $\frac{\frac{99}{100}}{\frac{9}{10}} = \frac{11}{10}$

Aufgabe 4

- 1. $\frac{5}{6} \cdot \frac{2}{3} \frac{2}{9} + \frac{3}{4} \cdot 1\frac{7}{9} = \frac{5}{3}$
- 2. $3\frac{5}{12} 2\frac{5}{6} + 1\frac{1}{3} : \frac{4}{9} 2\frac{1}{6} \cdot \frac{1}{2} = \frac{5}{2}$

1.
$$\left(\frac{2}{3} - \frac{1}{6}\right) \cdot \left(\frac{9}{11} - \frac{3}{7}\right) = \frac{15}{77}$$
 4. $\frac{4}{5} : \left[\left(\frac{5}{8} - \frac{1}{3}\right) \cdot 12\right] = \frac{8}{35}$

4.
$$\frac{4}{5}: \left[\left(\frac{5}{8} - \frac{1}{3} \right) \cdot 12 \right] = \frac{8}{35}$$

2.
$$\left(\frac{1}{8} + \frac{7}{12}\right) : \left(5 - \frac{3}{4}\right) = \frac{1}{6}$$

$$5. \quad \frac{3}{4} \cdot \left(2\frac{1}{2} : 1\frac{1}{4}\right) = \frac{3}{2}$$

3.
$$\frac{4}{7} \cdot \left(\left(1\frac{1}{2} - \frac{5}{9} \right) : 4\frac{1}{4} \right) = \frac{8}{63}$$

Aufgabe 6

1.
$$\frac{\frac{3}{8} \cdot \frac{2}{7}}{\frac{5}{14}} = \frac{3}{10}$$

$$3. \quad \frac{\frac{8}{9}}{3\frac{1}{3} + \frac{1}{6}} = \frac{16}{63}$$

$$2. \qquad \frac{\frac{1\frac{3}{4} + \frac{5}{6}}{\frac{1}{4}} = \frac{31}{3}$$

4.
$$\frac{\left(\frac{3}{5} - \frac{5}{10}\right) : \frac{2}{5}}{\frac{1}{4} + \frac{1}{2}} = \frac{1}{3}$$

2.2 Potenzen Lösung

Autor: Katja Matthes

1.
$$3x^4 - x^4 - x^3(x+2) = x^4 - 2x^3$$

2.
$$-12a^2 + 3a(a+1) = -9a^2 + 3a$$

3.
$$ax^n + 4x^n = (a+4)x^n$$

4.
$$(1-t)^2 - \frac{1}{2}(1-t)^2 = \frac{1}{2}(1-t)^2$$

5.
$$a(x+t)^k - b(x+t)^k = (a-b)(x+t)^k$$

6.
$$tx^3 - 3x^2 + 2tx^3 - 4x^2 = 3tx^3 - 7x^2$$

7.
$$t^3 \cdot t^4 - t^5(t^2 + 1) = -t^5$$

$$8. \qquad x^2 \cdot x^3 \cdot x^4 = x^9$$

$$9. \quad 3a^k \cdot a^{k-1} \cdot a = 3a^{2k}$$

$$10. \quad b^n \cdot b^{2n+1} = b^{3n+1}$$

11.
$$(x+1)^{n-1} \cdot (x+1)^{n+1} = (x+1)^{2n}$$

12.
$$\left(\frac{x}{3}\right)^4 \cdot \left(\frac{x}{3}\right)^2 = \left(\frac{x}{3}\right)^6$$

13.
$$t^2 \cdot x^2 \cdot t^n \cdot x^{n-1} = t^{2+n} x^{n+1}$$

14.
$$a \cdot b^k \cdot a^{2n} \cdot b^{k-3} = a^{2n+1} \cdot b^{2k-3}$$

15.
$$(x-2)^n \cdot (x-2)^{1-n} = x-2$$

16.
$$0, 3^6 \cdot \left(\frac{10}{3}\right)^6 = 1$$

17.
$$2^x \cdot \left(\frac{5}{2}\right)^x \cdot 5 = 5^{x+1}$$

18.
$$2^5 \cdot \left(\frac{1}{2}\right)^4 = 2$$

19.
$$\left(\frac{x}{4}\right)^4 \cdot 4^6 = 4^2 x^4$$

$$20. \qquad 2^n \cdot \left(\frac{x}{2}\right)^n \cdot x = x^{n+1}$$

21.
$$9 \cdot 3^{n+1} = 3^{n+3}$$

22.
$$(a-b)^9 \cdot (a-b) = (a-b)^{10}$$

23.
$$\left(\frac{a-b}{c}\right)^{2k} \cdot \left(\frac{c}{a-b}\right)^{2k} = 1$$

1.
$$\frac{a^6}{a^3} = a^3$$

2.
$$\frac{x^{2n+1}}{x^n} = x^{n+1}$$

$$3. \quad \frac{15e^{x+1}}{5e^x} = 3e$$

4.
$$\frac{x^4}{x^7} = x^{-3}$$

$$5. \qquad \frac{2a^{1-2n}}{4a^{n+1}} = \frac{1}{2}a^{-3n}$$

6.
$$\frac{a^4b^{4n+3}}{a^nb^{2n-1}} = a^{4-n}b^{2n+4}$$

7.
$$\frac{81}{2x+3} = 3^{1-x}$$

8.
$$\frac{(a-b)^3}{(a-b)^{n-1}} = (a-b)^{4-n}$$

9.
$$\frac{(ab)^3}{r^2y} \cdot \frac{(xy)^2}{a^4b^2} = \frac{by}{a}$$

$$10. \qquad \frac{a^{n+1}}{a^n} = a$$

11.
$$\frac{10^3}{2^3} = 5^3$$

12.
$$\frac{2.5^4}{0.5^4} = 5^4$$

$$13. \qquad \frac{(10ab)^k}{(4b)^k} = \left(\frac{5}{2}a\right)^k$$

23.
$$(x^2y^3z^2)^5 = x^{10}y^{15}z^{10}$$

14.
$$\left(\frac{a}{b}\right)^n \cdot \frac{a}{b} = \left(\frac{a}{b}\right)^{n+1}$$

24.
$$(0, 5e^{x+2})^2 = 0, 25e^{2x+4}$$

15.
$$\left(\frac{-1}{a-b}\right)^3 = -(a-b)^{-3}$$

25.
$$\left(\frac{2}{x^2}\right)^5 - \left(\frac{3}{x^5}\right)^2 = \frac{23}{x^{10}}$$

16.
$$\left(\frac{x}{2}\right)^3 : \left(\frac{x}{3}\right) = \frac{3}{8}x^2$$

26.
$$\left[\left(-\frac{3}{t} \right)^3 \right]^4 \cdot \frac{t^9}{81} = \frac{3^8}{t^3}$$

17.
$$(-5^2)^3 = -5^6$$

27.
$$\frac{(ab)^2}{x^3y} \cdot \frac{x^5y^2}{a^2b} = bx^2y$$

18.
$$3(c^4)^3 - 6c^{12} = -3c^{12}$$

28.
$$\left(\frac{(4-12x)^3}{64} = 1 - 3x\right)^3$$

19.
$$(3b^2c^{n-1})^4 = 81b^8c^{4n-4}$$

29.
$$\frac{(2x-4)^5}{(2-x)^3} = -32(2-x)^2$$

$$20. \qquad \left(\frac{7a^2}{49b^3}\right)^2 = \frac{a^4}{49b^6}$$

30.
$$\frac{(4ab)^4}{(6a^2)^4} \cdot \frac{5}{b^4} = \frac{80}{81}a^{-4}$$

$$21. \qquad \left(\frac{-1}{c^3}\right)^{2n} = \frac{1}{c^{6n}}$$

31.
$$(a-b^2) \cdot (a-b^2)^n = (a-b^2)^{n+1}$$

Aufgabe 3

1.
$$\left(\frac{1}{2}x^2\right)^5 + \frac{1}{8}(x^2)^5 + (2x^5)^2 = \frac{133}{32}x^{10}$$

22. $(3b^{n+1} \cdot c^{n-1})^2 = 9b^{2n+2}c^{2n-2}$

$$2. \quad \frac{1}{4} \cdot 2^4 (2^2)^3 = 2^8$$

$$3. \quad (3^{n+1})^2 = 3^{2n+2}$$

4.
$$(3x^2 - 5x)(1 - x^3) + (x^2 + 3x^4)x^3 = 3x^7 - 2x^5 + 5x^4 + 3x^2 - 5x$$

5.
$$a^{2r}b^r(a^{2r} - a^rb^{r+1} + b^{2r+2}) = a^{4r}b^r - a^{3r}b^{2r+1} + a^{2r}b^{3r+2}$$

1.
$$-3x^3 \cdot x^2 + 5x \cdot x^4 = 2x^5$$

$$3. \quad 2x^5y^3y - 4x^3y^2x^2y^2 = -2x^5y^4$$

$$2. 4t^{n-4}t^3 - t \cdot t^{n-2} = 3t^{n-1}$$

4.
$$\frac{4x^5 + 6x^4 - 12x^2}{2x^2} = 2x^3 + 3x^2 - 6$$

5.
$$(9 \cdot 3^n - 3^{n+1}) : 3^{n-1} = 18$$
 7. $\frac{5a-20}{4a-16} = \frac{5}{4}$

7.
$$\frac{5a-20}{4a-16} = \frac{5}{4}$$

6.
$$(2x+6)^2 + (x+3)^2 = 5(x+3)^2$$
 8. $(3t^2 - 3t^3)^2 = 9t^4(1-t)^2$

$$(3t^2 - 3t^3)^2 = 9t^4(1 - t)$$

Aufgabe 5

1.
$$3a^2 + 6a^3 = 3a^2(1+2a)$$
 5. $x^4 + 2x^3 = x^3(x+2)$

$$5. \quad x^4 + 2x^3 = x^3(x+2)$$

2.
$$\frac{1}{2}e^x - \frac{1}{4}e^{x+1} = \frac{1}{4}e^x(2-e)$$

2.
$$\frac{1}{2}e^x - \frac{1}{4}e^{x+1} = \frac{1}{4}e^x(2-e)$$
 6. $x^{n+3} - 4x^{n+2} = x^{n+2}(x-4)$

3.
$$a^{5b} + 3a^b = a^b(a^{4b} + 3)$$

7.
$$-6t^{n+2} + 18t^{2-n} = 6t^2(-t^n + 3t^{-n})$$

4.
$$2^x + 2^{x+1} = 3 \cdot 2^x$$

8.
$$e^x - e^{3x} = e^x(1 - e^{2x})$$

Aufgabe 6

1.
$$\frac{x^4 - x^3}{x^2 - x} = x^2$$

3.
$$\frac{a^7b^3 - ab^7}{a^5b - a^2b^4} = \frac{a^6b^2 - b^6}{a^4 - ab^3}$$

$$2. \qquad \frac{e^{3x} + e^{2x}}{e^{2x}} = e^x + 1$$

4.
$$\frac{32}{2^{n+5}} + \frac{2^{-n+3}}{8} = \frac{1}{2^{n-1}}$$

Aufgabe 7

1.
$$y = \frac{1}{4}x^4 - 2tx^3 + \frac{9}{2}t^2x^2$$
 mit $x = 3t \Rightarrow y = \frac{27}{4}t^4$

2.
$$y = e^{x^2 - t^2} + 3e^{5t - (t - x)}$$
 mit $x = -t \Rightarrow y = 1 + 3e^{3t}$

3.
$$y = \frac{3}{2t^2}x^4 - \frac{4}{t}x^3 + 3x^2 - 4$$
 mit $x = \frac{1}{3}t \Rightarrow y = \frac{11}{54}t^2 - 4$

4.
$$y = \frac{e^{3tx} + 4e^3}{tx - 4}$$
 mit $x = \frac{1}{t} \Rightarrow y = -\frac{5}{3}e^3$

5.
$$y = \frac{tx^3}{2(x+t)^2}$$
 mit $x = -3t \Rightarrow y = -\frac{27}{8}t^2$

1.
$$a^n + a^{4-n} + a^{2n} = a^{2n}(a^{-n} + a^{4-3n} + 1)$$

2.
$$a^3 + a^{1-n} + a^{n+4} = a^{n+3}(a^{-n} + a^{-2n-2} + a)$$

3.
$$\frac{3}{2}x^4 + \frac{3}{4}x^3 + \frac{1}{8}x^2 = \frac{1}{8}x^2(12x^2 + 6x + 1)$$

4.
$$e^{3x} - 2e^{-x} = e^{-x}(e^{4x} - 2)$$

5.
$$te^{2x} - 2e^{x+1} = e^x(te^x - 2e)$$

Aufgabe 9

1.
$$\frac{1}{4} \cdot 2^{-4} \cdot (2^2)^3 = 1$$

2.
$$(e^x - e^{-x} + 5)e^x = e^{2x} + 5e^x - 1$$

3.
$$2^{x}(2^{-1} + 2^{x}) = 2^{x-1} + 2^{2x}$$

4.
$$(x^4 + x^{-2})(x^3 - x^{-3}) = x^7 - x^{-5}$$

Aufgabe 10

1.
$$a^2 \cdot (a^2)^{-2} + 3a\left(\frac{1}{a}\right)^3 = 4a^{-2}$$
 5. $\left(\frac{2}{x}\right)^3 + \left(\frac{1}{x}\right)^3 = \frac{9}{x^3}$

2.
$$\frac{1}{18} \cdot (3^2)^2 + \frac{1}{2} \cdot 3^3 \cdot (\frac{1}{3})^2 = 6$$

3.
$$(x^2 \cdot x^{-3})^{-2} + (\frac{3}{x^2})^{-1} = \frac{4}{3}x^2$$

$$4. \quad a^5 \cdot a^{-2} + 4a^2 \cdot a = 5a^3$$

5.
$$\left(\frac{2}{r}\right)^3 + \left(\frac{1}{r}\right)^3 = \frac{9}{r^3}$$

6.
$$\frac{1}{e^{2x}} + 3(e^{-x})^2 - (\frac{2}{e^x})^2 = 0$$

7.
$$e^{-x} \cdot e^{-x+2} \cdot e^{2x-3} = e^{-1}$$

8.
$$6x^3 \cdot x^{-1} - 8x^4 \cdot x^{-2} = -2x^2$$

9.
$$(t^7 - t^4) \cdot t^{-3} = t^4 - t$$

$$1. \qquad \frac{-2^3 - 2 \cdot 4}{2 \cdot 2^3} = -1$$

$$2. \qquad \frac{(1-x)^2}{(x-1)} = x - 1$$

$$3. \quad \frac{e^{3x+1}}{e^{-x+2}} = e^{4x-1}$$

4.
$$\frac{1.5e^{3x} - e^x}{1.5e^{3x}} = 1 - \frac{2}{3}e^{-2x}$$

Aufgabe 12

1.
$$a^4 \cdot a^{-6} - 3a^3 \cdot a^{-5} + a^2 = -2a^{-2} + a^2$$

2.
$$(a^{n+2} - 4a^n - 2a^{2-n}) \cdot \frac{a^{-2}}{2} = \frac{1}{2}a^n - 2a^{n-2} - a^{-n}$$

3.
$$4x^{-4}x^7 - 0.5x^4x^{-1} + \left(\frac{1}{x^2}\right)^{1.5} = 3.5x^3 + \frac{1}{x^3}$$

4.
$$\frac{a^{n+1}}{a} + \frac{a^{2n-1}}{a^{n+2}} + (a^{n-1})^2 \cdot a^{2-n} = 2a^n + a^{n-3}$$

5.
$$\frac{2^{2k}}{8} \cdot 2^{3-k} + 2 \cdot 2^{k-1} = 2^{k+1}$$

Aufgabe 13

1. n gerade:

$$(a-b)^{n} + (b-a)^{n} = (a-b)^{n} + (-1)^{n} \cdot (a-b)^{n}$$
$$= (a-b)^{n} + (a-b)^{n}$$
$$= 2(a-b)^{n}$$

n ungerade:

$$(a-b)^{n} + (b-a)^{n} = (a-b)^{n} + (-1)^{n} \cdot (a-b)^{n}$$
$$= (a-b)^{n} - (a-b)^{n}$$
$$= 0$$

2. n gerade:

$$(x-2)^{n} + (2x-4)^{n} - (2-x)^{n}$$

$$= (x-2)^{n} + (2x-4)^{n} - (-1)^{n} \cdot (x-2)^{n}$$

$$= (x-2)^{n} + (2x-4)^{n} - (x-2)^{n}$$

$$= (2x-4)^{2}$$

n ungerade:

$$(x-2)^n + (2x-4)^n - (2-x)^n$$

$$= (x-2)^n + 2^n \cdot (x-2)^n - (-1)^n \cdot (x-2)^n$$

$$= (x-2)^n + 2^n \cdot (x-2)^n + (x-2)^n$$

$$= 2(x-2)^n + 2^n(x-2)$$

$$= (2+2^n)(x-2)^n$$

2.3 Binomische Formeln Lösung

Autor: Katja Matthes

Aufgabe 1

1.
$$(4x + 3y^3)^2 = 16x^2 + 24xy^3 + 9y^6$$

2.
$$-(x^4-2)^2 = -x^8 + 4x^4 - 4$$

3.
$$(x^2 - x^3)(x^2 + x^3) = x^4 - x^6$$

4.
$$(3x^2 + 2t)^2 = 9x^4 + 12x^2t + 4t^2$$

5.
$$-\frac{1}{2}(x^2-4)^2 = -\frac{1}{2}x^4 + 4x^2 - 8$$

6.
$$\left(-\frac{1}{2}(x^2-4)\right)^2 = \frac{1}{4}x^4 - 2x^2 + 4$$

7.
$$x^2y^2(x^4 + 2x^2y + y^2) = (x^3y + xy^2)^2$$

1.
$$(x-3)^n \cdot (x+3)^n = (x^2-9)^n$$

2.
$$\frac{(a^2 - b^2)^3}{(a - b)^3} = (a + b)^3$$

3.
$$\frac{(4-x^2)^n}{(2-x)^n} = (2+x)^n$$

4.
$$\frac{(c-1)^{n-1}}{(c^2-1)^{n-1}} = \frac{1}{(c+1)^{n-1}}$$

5.
$$\frac{(a^{2n}-b^{2n})^2}{(a^n-b^n)^2} = (a^n+b^n)^2$$

6.
$$(a^3 - ab^2)(a+b)^2 = a(a-b)(a+b)^3$$

7.
$$\frac{[(x-y)^2]^k}{(x^2-y^2)^k} = \left(\frac{x-y}{x+y}\right)^k$$

8.
$$(a+b)^4(a-b)^4(a^2-b^2)^5 = (a^2-b^2)^9$$

Aufgabe 3

1.
$$(3x-6)\left(\frac{1}{4}x^2-x+1\right) = \frac{3(x-2)^3}{4}$$

2.
$$a^2 - 2a^3 + a^4 = a^2(1-a)^2$$

3.
$$3a^3 - 12a^9 = 3a^2(1 - 2a^3)(1 + 2a^3)$$

4.
$$x^4 - a^2 = (x^2 - a)(x^2 + a)$$

5.
$$3 - x^2 = (\sqrt{3} - x)(\sqrt{3} + x)$$

6.
$$x^{2n} + 4x^n + 4 = (x^n + 2)^2$$

7.
$$x^{n+2} - 6x^{n+1} + 9x^n = x^n(x-3)^2$$

8.
$$e^{2x} - 1 = (e^x - 1)(e^x + 1)$$

9.
$$x^2e^x + 2xe^x + e^x = e^x(x+1)^2$$

1.
$$\frac{a^3 + 2a^2b + ab^2}{(a+b)^2} = a$$

$$2. \qquad \frac{a^4 - a^2 b^2}{ab - a^2} = -a(a+b)$$

3.
$$\frac{t^3 + 6t^2 + 9t}{t^2 - 9} = \frac{t(t+3)}{t-3}$$

4.
$$\frac{x^{2n} - 10x^n + 25}{x^{2n} - 25} = \frac{x^n - 5}{x^n + 5}$$

$$5. \qquad \frac{x^6 - t^2}{x^4 + tx} = \frac{x^3 - t}{x}$$

6.
$$\frac{x^{n+3} - x^{n+1}}{x^{n+1} + x^n} = x(x-1)$$

7.
$$\frac{(x^2 + 8xy + 16y^2)}{(2x - 3y)^{-2}} : \frac{x^2 - 16y^2}{2x - 3y} = \frac{(x + 4y)(2x - 3y)^3}{x - 4y}$$

$$8. \qquad \frac{4t^2 - 4}{t^2 + 2t + 1} = \frac{4(t - 1)}{t + 1}$$

9.
$$\frac{x^{n-1} - x^n}{x^n - x^{n+2}} = \frac{1}{x(1+x)}$$

10.
$$\frac{2(a^2+b^2)^2}{a^5-ab^4} = \frac{2(a^2+b^2)}{a(a^2-b^2)}$$

11.
$$\frac{x^4 - x^3}{x^4 - x^2} = \frac{x}{x+1}$$

12.
$$\frac{x^3y - xy^5}{x^3y^2 - x^2y^4} = \frac{x + y^2}{xy}$$

$$13. \quad \frac{am-an+bm-bn}{a^2-b^2} = \frac{m-n}{a-b}$$

Aufgabe 5

1.
$$(e^x + e^{-x})^2 = e^{2x} + e^{-2x} + 2$$

2.
$$(a^2 - a^{-2})^2 = a^4 - 2 + a^{-4}$$

3.
$$(x^{-2} - 3x)(x^{-2} + 3x) = x^{-4} - 9x^2$$

4.
$$(2^{-x} + 2^x)(2^{-x} - 2^x) = 2^{-2x} - 2^{2x}$$

Aufgabe 6

1.
$$\frac{e^{2x} - e^{-2x}}{e^x - e^{-x}} = e^x + e^{-x}$$

2.
$$\left(\frac{x-y}{a-b}\right)^5 \cdot \left(\frac{x-y}{5}\right)^{-2} \cdot \frac{(a-b)^2}{(x^2-y^2)} = \frac{25(x-y)^2}{(x+y)(a-b)^3}$$

2.4 Polynomdivision Lösungen

Autor: Marko Rak

1.
$$\left(\begin{array}{c} x^3 \\ -x^3 - x^2 \\ \hline -x^2 \\ x^2 + x \\ \hline x + 1 \\ -x - 1 \\ \hline 0 \end{array}\right)$$

2.
$$\left(\begin{array}{c} x^4 & -x+1 \\ -x^4 - x^3 - x^2 \\ \hline -x^3 - x^2 - x \\ \underline{x^3 + x^2 + x} \end{array}\right)$$

3.
$$\left(\begin{array}{c} x^2 \\ -x^2 - 3x \\ \hline -3x - 9 \\ \hline 3x + 9 \\ \hline 0 \end{array}\right)$$

4.
$$\left(\begin{array}{cc} 6x^3 & -5x^2 - 36x + 35 \\ -6x^3 + 14x^2 \\ \hline 9x^2 - 36x \\ -9x^2 + 21x \\ \hline -15x + 35 \\ \hline 15x - 35 \\ \end{array}\right)$$

5.
$$(x^{5} - x^{2} - 2x + 1) : (x^{4} - x^{3} + 2x^{2} - 3x + 1) = x + 1 + \frac{-x^{3}}{x^{4} - x^{3} + 2x^{2} - 3x + 1}$$

$$- x^{5} + x^{4} - 2x^{3} + 3x^{2} - x$$

$$- x^{4} - 2x^{3} + 2x^{2} - 3x + 1$$

$$- x^{4} + x^{3} - 2x^{2} + 3x - 1$$

$$- x^{3}$$

6.
$$\left(\begin{array}{c} x^5 - x^3 + x^2 + x - 2 \\ \underline{-x^5 + x^3} \\ x^2 + x - 2 \\ \underline{-x^2 + 1} \\ x - 1 \end{array}\right)$$

7.
$$(3x^{3} + 2x^{2} + 4x + 9) : (3x + 5) = x^{2} - x + 3 + \frac{-6}{3x + 5}$$

$$-3x^{3} - 5x^{2}$$

$$-3x^{2} + 4x$$

$$-3x^{2} + 5x$$

$$-9x + 9$$

$$-9x - 15$$

$$-6$$

8.
$$\left(\begin{array}{c} 2x^5 + 8x^4 + x^3 - x^2 + 12x + 3 \\ \underline{-2x^5 - 8x^4 - 2x^3} \\ \underline{-x^3 - x^2 + 12x} \\ \underline{-x^3 + 4x^2 + x} \\ \underline{3x^2 + 13x + 3} \\ \underline{-3x^2 - 12x - 3} \\ x \end{array}\right)$$

9.
$$(x^{6} - 2x^{5} + 9x^{4} - 8x^{3} + 15x^{2}) : (x^{2} - x + 5) = x^{4} - x^{3} + 3x^{2}$$

$$- x^{6} + x^{5} - 5x^{4}$$

$$- x^{5} + 4x^{4} - 8x^{3}$$

$$- x^{5} - x^{4} + 5x^{3}$$

$$- 3x^{4} - 3x^{3} + 15x^{2}$$

$$- 3x^{4} + 3x^{3} - 15x^{2}$$

$$0$$

10.
$$(\underbrace{2x^7 - x^6 + 3x^5 - \frac{1}{2}x^4 + x^3}_{-2x^7 + x^6 - 2x^5}) : (2x^3 - x^2 + 2x) = x^4 + \frac{1}{2}x^2$$

$$\underbrace{-2x^7 + x^6 - 2x^5}_{x^5 - \frac{1}{2}x^4 + x^3}_{-x^5 + \frac{1}{2}x^4 - x^3}_{0}$$

11.
$$\left(\begin{array}{c} x^7 - 6x^5 + x^4 - 11x^2 - 3x + 1 \\ \underline{-x^7} \quad -2x^4 \\ \underline{-6x^5} \quad -x^4 - 11x^2 \\ \underline{-6x^5} \quad +12x^2 \\ \underline{-x^4} \quad +x^2 - 3x \\ \underline{x^4} \quad +2x \\ \underline{x^2 - x} \end{array} \right)$$

12.
$$\left(\begin{array}{c} 3x^{5} + 6x^{4} + \frac{11}{3}x^{3} + 4x^{2} + \frac{20}{3}x\right) : \left(3x^{4} + x^{3} + 4x\right) = x + \frac{5}{3} + \frac{2x^{3}}{3x^{4} + x^{3} + 4x} \\ -\frac{3x^{5} - x^{4} - 4x^{2}}{5x^{4} + \frac{11}{3}x^{3} + \frac{20}{3}x} \\ -\frac{5x^{4} - \frac{5}{3}x^{3} - \frac{20}{3}x}{2x^{3}} \end{array}\right)$$

13.
$$\left(\begin{array}{c} \frac{1}{6}x^4 + \frac{11}{36}x^3 - \frac{23}{18}x^2 - \frac{1}{3}x + \frac{2}{3} \right) : \left(\frac{1}{2}x^2 - \frac{4}{3}x + \frac{2}{3} \right) = \frac{1}{3}x^2 + \frac{3}{2}x + 1$$

$$- \frac{1}{6}x^4 + \frac{4}{9}x^3 - \frac{23}{9}x^2 - \frac{1}{3}x - \frac{3}{4}x^3 - \frac{3}{2}x^2 - \frac{1}{3}x - \frac{3}{4}x^3 + 2x^2 - x - \frac{1}{2}x^2 - \frac{4}{3}x + \frac{2}{3} - \frac{1}{2}x^2 + \frac{4}{3}x - \frac{2}{3} - \frac{1}{2}x^2 + \frac{4}{3}x - \frac{2}{3} - \frac{1}{2}x^2 + \frac{4}{3}x - \frac{2}{3} - \frac{1}{2}x^2 - \frac{4}{3}x - \frac{2}{3} - \frac{1}{3}x - \frac{1}{$$

14.
$$\left(\frac{\frac{1}{2}x^5 + \frac{5}{4}x^4 + \frac{1}{2}x^3 - \frac{1}{4}x^2 - \frac{1}{2}x}{-\frac{1}{2}x^5 - x^4} \right) : \left(\frac{1}{2}x^2 + x \right) = x^3 + \frac{1}{2}x^2 - \frac{1}{2}$$

$$- \frac{1}{4}x^4 + \frac{1}{2}x^3 - \frac{1}{4}x^4 - \frac{1}{2}x^3 - \frac{1}{4}x^2 - \frac{1}{2}x - \frac{1}{4}x^2 - \frac{1}{2}x - \frac{1}{4}x^2 + \frac{1}{2}x - \frac{1}{4}x^2 - - \frac{1}{4}$$

15.
$$\left(\frac{\frac{1}{2}x^5 - \frac{3}{4}x^4 - \frac{1}{4}x^3 + \frac{3}{4}x^2 - \frac{15}{4}x + \frac{7}{4}}{\frac{-\frac{1}{2}x^5 + \frac{1}{4}x^4}{\frac{1}{4}x^3}} - \frac{\frac{1}{2}x^4 - \frac{1}{4}x^3}{\frac{\frac{1}{2}x^4 - \frac{1}{4}x^3}{\frac{1}{2}x^3 - \frac{1}{4}x^2}} - \frac{\frac{1}{2}x^3 + \frac{3}{4}x^2}{\frac{\frac{1}{2}x^2 - \frac{15}{4}x}{\frac{1}{2}x^2 - \frac{15}{4}x}} - \frac{\frac{1}{2}x^2 + \frac{1}{4}x}{\frac{\frac{1}{2}x^2 + \frac{1}{4}x}{\frac{\frac{1}{2}x^2 - \frac{1}{4}}{\frac{\frac{1}{2}x^2 - \frac{1}{4}}{\frac{1}{2}x^2 - \frac{1}{4}}} \right)$$

3 Quadratische Gleichungen Lösungen

Autor: Marko Rak

Es werden nur die Lösungsansätze und -hilfen aufgeführt.

1.
$$x^2 - x - 2 = 0$$

 $x_1 = -1, x_2 = 2$

2.
$$4x^2 + 16x - 84 = 0$$

 $x_1 = -7, x_2 = 3$

3.
$$\frac{1}{2}x^2 + 3x + 4 = 0$$

 $x_1 = -4, x_2 = -2$

4.
$$4x^2 + 48x + 144 = 0$$

 $x_{12} = -6$

5.
$$(x - \sqrt{157})^2 = 0$$

 $x_{12} = \sqrt{157}$

6.
$$\frac{7}{3}x^3 + \frac{49}{3}x^2 + 35x + 21 = 0$$

rate $x_1 = -1$,
dann Polynomdivision:
 $x^2 + 6x + 9 = 0$
 $x_{23} = -3$

7.
$$\frac{7}{4}x^2 + 7x = -7$$

 $x_{12} = -2$

8.
$$|x^2| = 4$$

 $x_1 = 2, x_2 = -2$

9.
$$|x|^2 = 4$$

 $x_1 = -2, x_2 = 2$

10.
$$|x^2 - 4| = 2$$
 gilt genau dann, wenn

$$x^2 - 4 = \pm 2$$

 $x_{12} = \pm \sqrt{2}, x_{34} = \pm \sqrt{6}$

11.
$$x^2 = x + 12$$

 $x_1 = -3, x_2 = 4$

12.
$$3x^2 + 4x + 1 = 0$$

 $x_1 = -\frac{1}{3}$
 $x_2 = -1$

13.
$$x^5 - 25x^3 + 144x = 0$$

klammere $x_1 = 0$ aus,
substituiere $u = x^2$ zu
 $u^2 - 25u + 144 = 0$
 $u_1 = 9, u_2 = 16$
nach Rücksubstitution:
 $x_{23} = \pm 3, x_{45} = \pm 4$

14.
$$(x - \pi)(x + \pi) = 0$$

 $x_{12} = \pm \pi$

15.
$$\frac{x^3-2x^2}{x-2} + \frac{2x^2+4x}{x+2} = -1$$
 Polynomdivision der Summanden:
$$x^2 - 2x = 1$$

$$x12 = 1 \pm \sqrt{2}$$

16.
$$x^4 - 14x^3 + 59x^2 - 70x = 0$$

klammere $x_1 = 0$ aus,
rate $x_2 = 2$
dann Polynomdivision:
 $x^2 - 12x + 35 = 0$
 $x_3 = 5, x_4 = 7$

3 Quadratische Gleichungen Lösungen

17.
$$3x^7 - 42x^5 + 147x^3 = 0$$
 klammere $x_{123} = 0$ aus, substituiere $u = x^2$ zu $u^2 - 14u + 49 = 0$ $u_{12} = \pm 7$ nach Rücksubstitution: $x_{45} = \sqrt{7}, x_{67} = -\sqrt{7}$

18.
$$x^{12} = 4096$$

 $x_i = 2$; $i \in \{1, 3, 5, 7, 9, 11\}$
 $x_j = -2$; $j \in \{2, 4, 6, 8, 10, 12\}$
Hinweis: 2er-Potenzen wichtig!

19.
$$x^4 + 4x^3 + 6x^2 + 4x + 1 = 0$$

rate $x_1 = -1$,
dann Polynomdivision:
 $x^3 + 3x^2 + 3x + 1 = 0$
rate $x_2 = -1$,
dann Polynomdivision:
 $x^2 + 2x + 1 = 0$
 $x_{34} = -1$

20.
$$(\sqrt{2}x + 2\sqrt{2})^2 = 0$$

klammere $\sqrt{2}$ aus:

$$x_{12} = -2$$

21.
$$2ax^2 - 12ax + 18a = 0$$

Fallunterscheidung:

a)
$$a = 0$$
,
dann ist für alle x die Gleichung
erfüllt

b)
$$a \neq 0$$
,
nach Division durch **2a**:
 $x^2 - 6x + 9 = 0$
 $x_{12} = 3$

22.
$$\frac{1}{x^2} + 1 = 2$$

Erweitern der Gleichung mit x^2 :
 $x^2 - 1 = 0$
 $x_{12} = \pm 1$

23.
$$\frac{4}{x} + x = 4$$

mit x erweitern und auf eine Seite
bringen:
 $x^2 - 4x + 4 = 0$
 $x_{12} = 2$

4 Lineare Gleichungssysteme Lösungen

Autor: Marko Rak

Aufgabe 1

Bestimmen Sie die Lösungen folgender Gleichungssysteme.

1.

x_1	x_2	x_3				
1	5	2	3	\leftarrow		
2	-2	4	5		\leftarrow	
1	1	2	1	$\cdot (-1)$	$\cdot (-2)$	
1	1	2	1			
0	4	0	2	$\cdot (1)$		
0	-4	0	3	\leftarrow		
1	1	2	1			
0	4	0	2			
0	0	0	5			

Widerspruch in der letzten Zeile \Rightarrow keine Lösung

x_1	x_2	x_3			
7	8	5	3	\leftarrow	
3	-3	2	1	$\cdot \left(-\frac{7}{3}\right)$	$\cdot (-6)$
18	21	13	8	. 0.	\leftarrow
3	-3	2	1		
0	15	$\frac{1}{3}$	$\frac{2}{3}$	\leftarrow	
0	39	ĭ	$ $ $\overset{\circ}{2}$	$\cdot \left(-\frac{15}{39} \right)$	
3	-3	2	1		
0	39	1	2		
0	0	$-\frac{2}{39}$	$-\frac{4}{39}$		

$$\begin{array}{rcl}
x_3 & = & 2 \\
x_2 & = & 0 \\
x_1 & = & -1
\end{array}$$

4 Lineare Gleichungssysteme Lösungen

3.

x_1	x_2	x_3	x_4				
1	1	3	4	-3	$\cdot (-2)$	$\cdot (-2)$	$\cdot (-1)$
2	3	11	5	2	\leftarrow		
2	1	3	2	-3		\leftarrow	
1	1	5	2	1			\leftarrow
1	1	3	4	-3			
0	1	5	-3	8	$\cdot (1)$		
0	-1	-3	-6	3	\leftarrow		
0	0	2	-2	4			
1	1	3	4	-3			
0	1	5	-3	8			
0	0	2	-2	4	$\cdot (-1)$		
0	0	2	-9	11	\leftarrow		
1	1	3	4	-3			
0	1	5	-3	8			
0	0	2	-2	4			
0	0	0	-7	7			

$$\begin{array}{rcl} x_4 & = & -1 \\ x_3 & = & 1 \\ x_2 & = & 0 \\ x_1 & = & 2 \end{array}$$

 x_1

x_1	x_2	x_3				
1	2	3	-4	$\cdot (-5)$	$\cdot (-7)$	$\cdot (-2)$
5	-1	1	0	\leftarrow		
7	3	7	-8		\leftarrow	
2	3	-1	11			\leftarrow
1	2	3	-4			
0	-11	-14	20		\leftarrow	
0	-11	-14	20	\leftarrow		
0	-1	-7	19	$\cdot (-11)$	$\cdot (-11)$	
1	2	3	-4			
0	-1	-7	19			
0	0	63	-189	$\cdot (-1)$		
0	0	63	-189	\leftarrow		
1	2	3	-4			
0	-1	-7	19			
0	0	63	-189			
0	0	0	0			

$$\begin{array}{rcl} x_3 & = & -3 \\ x_2 & = & 2 \\ x_1 & = & 1 \end{array}$$

x	x_2	x_3	x_4	x_5				
-1	. 1	1	0	- 1	0	$\cdot (1)$	$\cdot (3)$	
1	-1	-3	2	-1	2	\leftarrow		
0	3	-1	-5	-7	9			
3	-3	-5	2	5	2		\leftarrow	
-1	. 1	1	0	-1	0			
0	3	-1	-5	-7	9			
0	0	-2	2	-2	2	$\cdot (-1)$		
0	0	-2	2	2	2	\leftarrow		
-1	. 1	1	0	-1	0			
0	3	-1	-5	-7	9			
0	0	-2	2	-2	2			
0	0	0	0	4	0			

$$\begin{array}{rcl} x_5 & = & 0 \\ x_4 & = & & t \\ x_3 & = & -1 & + & t \\ x_2 & = & \frac{8}{3} & + & 2t \\ x_1 & = & \frac{5}{3} & + & 3t \end{array}$$

4 Lineare Gleichungssysteme Lösungen

6.

	x_1	x_2	x_3	x_4				
	1	-2	-3	0	-7	$\cdot (-2)$	·(2)	$\cdot (-1)$
	2	-1	2	7	-3	\leftarrow		
	-2	1	3	3	8		\leftarrow	
	1	4	5	-2	7			\leftarrow
Ī	1	-2	-3	0	-7			
	0	3	8	7	11	$\cdot (1)$	$\cdot (-2)$	
	0	-3	-3	3	-6	\leftarrow		
	0	6	8	-2	14		\leftarrow	
	1	-2	-3	0	-7			
	0	3	8	7	11			
	0	0	5	10	5	$\cdot \left(\frac{8}{5}\right)$		
	0	0	-8	-16	-8	\leftarrow		
Ī	1	-2	-3	0	-7			
	0	3	8	7	11			
	0	0	5	10	5			
	0	0	0	0	0			

x_1	x_2	x_3				
1	-1	1	4	$\cdot (-1)$	$\cdot (-4)$	$\cdot (-2)$
1	2	1	13	\leftarrow		
4	5	4	43		\leftarrow	
2	4	2	26			\leftarrow
1	-1	1	4			
0	3	0	9	$\cdot (-3)$	$\cdot (-2)$	
0	9	0	27	\leftarrow		
0	6	0	18		\leftarrow	
1	-1	1	4			
0	3	0	9			
0	0	0	0			
0	0	0	0			

$$\begin{array}{rcl}
x_3 & = & t \\
x_2 & = & 3 \\
x_1 & = & 7 & - & t
\end{array}$$

Aufgabe 2

Bestimmen Sie die Lösungen folgender Gleichungssysteme in Abhängigkeit von \boldsymbol{a} und $\boldsymbol{b}.$

1.

\boldsymbol{x}	1	x_2	x_3			
- :	2	-1	4	0	\leftarrow	
	1	3	-1	0	$\cdot (-2)$	$\cdot (-7)$
,	7	7	4- a	0		\leftarrow
	1	3	-1	0		
()	-7	6	0	$\cdot (-2)$	
()	-14	11-a	0	\leftarrow	
	1	3	-1	0		
()	-7	6	0		
()	0	-1-a	0		

Fall 1: a = -1

$$\begin{array}{rcl} x_3 & = & t \\ x_2 & = & \frac{6}{7}t \\ x_1 & = & -\frac{11}{7}t \end{array}$$

Fall 2: $a \neq -1$

$$\begin{array}{rcl}
x_3 & = & 0 \\
x_2 & = & 0 \\
x_1 & = & 0
\end{array}$$

2.

x_1	x_2	x_3			
1	1	1	0	$\cdot (-1)$	$\cdot (-a)$
1	\mathbf{a}	1	4	\leftarrow	
\mathbf{a}	3	\mathbf{a}	-2		\leftarrow
1	1	1	0		
0	a-1	0	4		
0	3-a	0	-2		

Fall 1: a = 1 oder a = 3 ergibt keine Lösung.

4 Lineare Gleichungssysteme Lösungen

Fall 2: $a \neq 1$ und $a \neq 3$

x_1	x_2	x_3		
1	1	1	0	
0	a-1	0	4	$\cdot \left(-\frac{3-a}{a-1}\right)$
0	3-a	0	-2	\leftarrow
1	1	1	0	
0	a-1	0	4	
0	0	0	$\frac{2a-10}{a-1}$	

Fall 2a: a=5

$$\begin{array}{rcl}
 x_3 & = & & t \\
 x_2 & = & 1 \\
 x_1 & = & -1 & - & t
 \end{array}$$

Fall 2
b: $a \neq 1, \; a \neq 3$ und $a \neq 5$ ergibt keine Lösung

3.

x_1	x_2	x_3			
1	-2	3	4	$\cdot (-2)$	$\cdot (-1)$
2	1	1	-2	\leftarrow	
1	\mathbf{a}	2	b		\leftarrow
1	-2	3	4		
0	5	-5	-10	$\cdot \left(-\frac{2+a}{5}\right)$	
0	$^{2+a}$	-1	b-4	←	
1	-2	3	4		
0	5	-5	-10		
0	0	1+a	$_{ m 2a+b}$		

Fall 1a: a = -1 und b = 2

$$\begin{array}{rcl}
x_3 & = & & t \\
x_2 & = & -2 & + & t \\
x_1 & = & - & t
\end{array}$$

Fall 1b: a = -1 und $b \neq 2$ ergibt keine Lösung

Fall 2: $a \neq -1$

 $\begin{array}{rcl} x_3 & = & \frac{2a+b}{1+a} \\ x_2 & = & \frac{b-2}{1+a} \\ x_1 & = & \frac{2a+b}{1+a} \end{array}$

5 Betrag, Kreis, Ungleichungen

5.1 Betrag

- 1. |x| = 7 $x_1 = 7, x_2 = -7$
- 2. |x+5| = 101. Fall: $(x+5) = 10 \rightarrow x = 5$ 2. Fall: $-(x+5) = 10 \rightarrow x = -15$
- 3. |2x 3| = 11. Fall: $(2x - 3) = 1 \rightarrow x = 2$ 2.Fall: $-(2x - 3) = 1 \rightarrow x = 1$
- 4. |2x-4|=6x+361. Fall: $(2x-4)=6x+36\to x=-10$, aber ungültig, da $|2\cdot(-10)-4)|=6\cdot(-10)+36\to 24=-24f.A.$ 2. Fall: $-(2x-4)=6x+36\to x=-4$

5.2 Kreis

- - b) M(-1|5); P(6|-4)einsetzen: $(6+1)^2 + (-4-5)^2 = r^2$

5 Betrag, Kreis, Ungleichungen

- c) M(-2|-1); P(4|3)einsetzen: $(4+2)^2 + (3+1)^2 = r^2$ $\rightarrow r = \sqrt{52}$ $\rightarrow (x+2)^2 + (y+1)^2 = 52$
- 2. a) $x^2 + y^2 4x 2y + 5 = 4$ nach binomischer Formel zu Kreisgleichung umstellen: $(x^2 4x) + (y^2 2y) = -1$ $(x 2)^2 4 + (y 1)^2 1 = -1$ $(x 2)^2 + (y 1)^2 = 4$

 \curvearrowright Kreis mit M(2|1) und r=2

b) $x^2 + y^2 + 6x + 2y + 10 = 1$ nach binomischer Formel zu Kreisgleichung umstellen: $(x^2 + 6x) + (y^2 + 2y) = -9$ $(x+3)^2 - 9 + (y+1)^2 - 1 = -9$ $(x+3)^2 + (y+1)^2 = 1$

 $\curvearrowright \text{Kreis mit } M(-3|-1) \text{ und } r=1$

3.
$$P_1(6|7); P_2(2|9); P_3(-1|0)$$

Aufstellen der Kreisgleichungen:

$$1.(6 - x_m)^2 + (7 - y_m)^2 = r^2$$

$$2.(2 - x_m)^2 + (9 - y_m)^2 = r^2$$

$$3.(-1 - x_m)^2 + (-y_m)^2 = r^2$$

Gleichsetzen von 1 und 2; 2 und 3:

$$(6 - x_m)^2 + (7 - y_m)^2 = (2 - x_m)^2 + (9 - y_m)^2$$

$$(2 - x_m)^2 + (9 - y_m)^2 = (-1 - x_m)^2 + (-y_m)^2$$

Auflösen und Zusammenfassen:

$$4y_m = 8x_m$$
$$84 - 6x_m = 18y_m$$

Umstellen nach x_m und Gleichsetzen:

$$\frac{1}{2}y_m = 14 - 3y_m$$

$$\Rightarrow y_m = 4$$

Einsetzen des Ergebnisses:

$$x_m = \frac{1}{2}y_m = \frac{1}{2} * 4 = 2$$

 $r = \sqrt{(6-2)^2 + (7-4)^2} = \sqrt{25} = 5$

5.3 Ungleichungen

5.3.1 Ungleichungen mit einer Variablen

1. Aufgabe:

$$f:(x + 1)(x - 1) \le 0$$

$$a:\sqrt{x}>1$$

Lösung:

$$-1 < x < 1$$

2. Aufgabe:

$$f: \sqrt{\frac{1}{2}x^3 \ + \ 2x^2 \ + \ \frac{21}{8}x \ + \ \frac{9}{8}} \ < \ \sqrt{\frac{1}{2}x^2 \ + \ \frac{3}{2}x \ + \ \frac{9}{8}}$$

Zwischenschritte:

$$\sqrt{(\frac{1}{\sqrt{2}}x \ + \ \frac{3}{\sqrt{2}})^2(x \ + \ 1)} \ < \ \frac{3}{2}\sqrt{(\frac{1}{\sqrt{2}}x \ + \ \frac{3}{\sqrt{2}})^2}$$

5 Betrag, Kreis, Ungleichungen

$$\sqrt{(x+1)} < \frac{3}{2}$$

Lösung:

$$-1 < x < \frac{5}{4}$$

3. Aufgabe:

$$f: \frac{1}{2}x^2 - 1 > 0$$

Lösung:

$$x < \sqrt{2} \cup x > \sqrt{2}$$

4. Aufgabe:

$$f: x^3 + 3x^2 - 4 > 0$$

Zwischenschritt:

$$(x - 1)(x + 2)^2 > 0$$

Lösung:

1 < x

5. Aufgabe:

$$f: x^3 + 3x^2 + 3x + 1 < 0$$

Tipp: Pascallsches Dreieck

Zwischenschritt:

$$(x + 1)^3 < 0$$

Lösung:

$$x < -1$$

6. Aufgabe:

$$f: x^6 - 6x^5 + 15x^4 - 20x^3 + 15x^2 - 6x + 1 \le 0$$

5 Betrag, Kreis, Ungleichungen

Nochmal: Pascallsches Dreieck Zwischenschritt:

$$(x - 1)^6 \le 0$$

Lösung:

$$x = 1$$

7. Aufgabe:

$$f: \frac{1}{2}x^2 \ - \ 8 \ > \ 0$$

$$g:-3(x-1)^2 + 12 > 0$$

Lösung: 1.Gl:
$$x^2 > 16 \rightarrow x > 4 \cup x < -4$$
 2.Gl: $-1 < x < 3$

$$2.Gl: -1 < x < 3$$

keine Lösung!

8. Aufgabe:

$$f:(x^2-2)(x+1) \ge 0$$

Lösung:

$$-\sqrt{2} < x < -1 \cup x > \sqrt{2}$$

9. Aufgabe:

$$f: ax^2 > 0$$

$$g: \frac{1}{2}x + 1 > 0$$

Lösung:

1.Gl:
$$x \in \mathbb{R} \setminus \{0\}$$

2.Gl:
$$x > -2$$

$$x \ > \ -2 \ und \ x \ \neq \ 0$$

5 Betrag, Kreis, Ungleichungen

10. Aufgabe:

$$f: x^2 + a > 0$$

$$g: \frac{1}{2}x + 1 > 0$$

Lösung:

$x \in \mathbb{R}$	a > 0
$x \in \mathbb{R} \setminus \{0\}$	a = 0
$x < -\sqrt{a} \cup x > \sqrt{a}$	a < 0

2.Gl: x > -2

x > -2	a > 0
$x > -2$ und $x \neq 0$	a = 0
$-2 < x < -\sqrt{a} \cup x > \sqrt{a}$	-4 < a < 0
$x > \sqrt{a}$	$a \leq -4$

11. Aufgabe:

$$f: -x^2 + a < 0$$

$$g:x \ + \ a \ < \ 0$$

Lösung:

1.Gl:

$x < -\sqrt{a} \cup x > \sqrt{a}$	a > 0
$x \in \mathbb{R} \setminus \{0\}$	a = 0
$x \in \mathbb{R}$	a < 0

2.Gl: x < -a

x < -a	a > 1
$x < -\sqrt{a}$	0 < a <= 1
x < 0	a = 0
x < -a	a < 0

12. Aufgabe:

$$f: 4x^2 \ - \ 2ax \ + \ \frac{1}{4}a^2 \ \geq \ 0$$

Zwischenschritt:

$$(x - \frac{1}{4}a)^2 \ge 0$$

$$x \in \mathbb{R} \setminus \{\frac{1}{4}a\}$$

5 Betrag, Kreis, Ungleichungen

13. Aufgabe:

$$f: x^3 + x^2 - 2x \ge 2$$

(siehe Aufgabe 8)

Lösung:

$$-\sqrt{2} < x < -1 \cup x > \sqrt{2}$$

14. Aufgabe:

$$f:(x-1)^2-4<0$$

$$g: -(x + 1)^2 + 4 > 0$$

$$1.Gl: -1 < x < 3$$

$$2.Gl: -3 < x < 1$$

$$-1 < x < 1$$

15. Aufgabe:

$$f: \sqrt{(x-1)} \ge 0$$

$$g: -\frac{1}{4}x + 4 < 0$$

Lösung:

1.Gl:
$$x \geq 1$$

2.Gl:
$$x > 16$$

16. Aufgabe:

$$f: x^4 - 16 \le 0$$

$$g: x^3 + 1 \ge 0$$

1.Gl:
$$-2 \le x \le 2$$

2.Gl: $x \ge -1$

2.Gl:
$$x \ge -1$$

$$-1 \le x \le 2$$

5 Betrag, Kreis, Ungleichungen

5.3.2 Ungleichungen mit mehreren Variablen

1. Aufgabe:

$$f: x^2 + y^2 < 25$$

$$g:\frac{1}{2}x\ +\ \frac{5}{2}\ >\ y$$

$$h: -x - 5 < y$$

Lösung:

2. Aufgabe:

$$f: -x^2 + 5 < y$$

$$g: x(x - 3)^2 > y$$

$$h: -x - 2 > y$$

3. Aufgabe:

$$f:3x^2 - 3x - 10 < -4 + y$$

$$g:y \ \leq \ \frac{1}{2}$$

Lösung:

4. Aufgabe:

$$f: y < \frac{2x^2 + 3x + 4}{-x^4 - 2x^3 - x^2 + 4x + (2x + x^2)^2}$$

$$g:-\frac{1}{x}\ <\ y$$

$$h:-(\frac{1}{\sqrt{2}}x)^2 < y - \frac{1}{2}x^2 + \frac{1}{2}x + 2$$

$$i: y + x - 2 < 0$$

5 Betrag, Kreis, Ungleichungen

Zwischenschritt:

$$f:y < \frac{1}{x}$$

$$h:y > -\frac{1}{2}x - 2$$

Lösung:

5. Aufgabe:

$$f: \frac{1}{2}x^2 - 3x \le y$$

$$g:y \leq -x$$

$$h:17x^3 - \frac{1}{2} = y$$

Lösung:

6. Aufgabe:

$$f: y \ + \ \sqrt{\frac{x^3 \ + \ x^2 \ - \ x \ - \ 1}{x \ - \ 1}} \ > \ 0$$

$$g:\frac{2}{20}x\ -\ \frac{1}{3}y\ +\ \frac{3}{12}\ <\ 0$$

Zwischenschritt:

$$f: y > -x - 1$$

$$g:y \ > \ \frac{10}{3}x \ + \ \frac{3}{4}$$

Lösung:

7. Aufgabe:

$$f: \frac{1}{2}x - 2 < y$$

$$g:\frac{1}{2}x\ +\ 2>y$$

$$h: 2x - 4 < y$$

$$i:2x + 4 > y$$

$$k: -\frac{1}{2}x \ - \ 2 < y$$

$$l: -\frac{1}{2}x + 2 > y$$

$$m: -2x - 4 < y$$

$$n:-2x + 4 > y$$

5 Betrag, Kreis, Ungleichungen

8. Aufgabe:

$$f: |(x^2 + (y - 1)^2)| = 4$$

$$g: x \geq y$$

Lösung:

9. Aufgabe:

$$f: ((\sin x) + \frac{1}{2})^2 - \frac{3}{4} - y - (\sin x)^2 < 0$$

$$g: \cos(x \ + \ \frac{\pi}{2}) + \ \frac{1}{2} \ < \ y$$

 ${\bf Zwischenschritt:}$

$$f: y < \sin x - \frac{1}{2}$$

5.3 Ungleichungen

10. Aufgabe:

$$\begin{split} &f:|\frac{1}{x}| \ > y \\ &g:-\frac{1 \ + \ 7x^2}{x^2y} > \ -\frac{y \ + \ 7}{y} \end{split}$$

h: |x| + y < 5 Zwischenschritt:

$$g:y \ > \ \frac{1}{x^2}$$

Lösung:

11. Aufgabe:

$$f:4x^2 + y^2 <= 16$$

$$g: x^2 + 4y^2 <= 16$$

5 Betrag, Kreis, Ungleichungen

12. Aufgabe:

$$f:(y-2)^2 < 4-(x-2)^2$$

$$g: y - 2 < 0$$

$$h: -|x - 2| + 2 < y$$

Lösung:

13. Berechnen Sie für die Ungleichung den Flächeninhalt der Lösungsmenge! Aufgabe:

$$f: (2y-3)^2 + (3y+2)^2 + y - 10 \ge \left| \frac{4x + 4(\frac{1}{2}x - \frac{3}{2})^2 - 9}{x} \right| + 13y^2$$

$$g:y \leq -1$$

Zwischenschritt:

$$f: y \ge |x-2| - 3$$

Lösung: Flächeninhalt = 4

 $14.\,$ Berechnen Sie für das Ungleichungssystem den Flächeninhalt der Lösungsmenge!

Aufgabe:

$$f: x^2 \ - \ 4x \ + 4 \ + \ y^2 \ - \ 2y \ + \ 1 \ \geq \ 1$$

$$g:(x-2)^2+(y-2)^2 \le 4$$

$$h: (x - 2)^2 + (y - 3)^2 \ge 1$$

Zwischenschritt:

$$f:(x-2)^2+(y-1)^2 \ge 1$$

Lösung: Flächeninhalt = $4\pi - 2\pi = 2\pi$

15. Für welches a ist der Flächeninhalt der Lösungsmenge =2? Aufgabe:

$$f:y \geq 2$$

$$g: -|x| + a \le y$$

Lösung: Flächeninhalt = 2 für a = 2

5 Betrag, Kreis, Ungleichungen

16. Bestimmen Sie ein a und ein b, für das der Flächeninhalt der Lösungsmenge 2π ergibt!

Aufgabe:

$$f:-\frac{1}{3}x\ \leq y\ -\ 2$$

$$g: (x + \frac{1}{4}b)^2 + (y - \frac{3}{2}a)^2 \le a^2$$

(einfachste) Lösung: a=2 , b=12

17. Beschreiben sie die Lösungsmenge des Ungleichungssystems! Aufgabe:

$$f: x^2 + y^2 + z(z + 2) < 8$$

$$g: x \leq 0$$

$$h:y \leq 0$$

Zwischenschritt:

$$f: x^2 + y^2 + (z + 1)^2 < 9$$

Lösung:

Die Lösungsmenge ist eine Halbkugel unter der x-y-Ebene im \mathbb{R}^3 , die um eine Einheit in z-Richtung verschoben ist.

18. Beschreiben sie die Lösungsmenge des Ungleichungssystems! Aufgabe:

$$f: (x - 2\sqrt{3})^2 + (x - 2\sqrt{3})^2 + (z - 2\sqrt{3})^2 \le 36$$

$$g:(x + 2\sqrt{3})^2 + (x + 2\sqrt{3})^2 + (z + 2\sqrt{3})^2 \le 36$$

Lösung:

Es ist schnell ersichtlich, dass es sich mit zwei Kugeln mit Radius r=6 handelt. Bei näherer Betrachtung ist zu erkennen, dass der Abstand des Mittelpunktes ebenfalls 6 beträgt. Da sich die Kugeln genau gegenüberliegen, haben sie nur den Ursprung als gemeinsame Lösung. Die Lösungsmenge ist somit nur der Punkt mit x=0,y=0,z=0.

6 Vollständige Induktion Lösung

Autor: Katja Matthes

6.1 Gleichungen

Aufgabe 1

Gesucht: Formeln für $1+3+5+\ldots+2n-1=\sum_{k=1}^n 2k-1$ Finden der Vermutung:

$$\sum_{k=1}^{1} 2k - 1 = 1$$

$$\sum_{k=1}^{3} 2k - 1 = 9$$

$$\sum_{k=1}^{4} 2k - 1 = 16$$

$$\sum_{k=1}^{4} 2k - 1 = 16$$

Zu Zeigen: $\sum_{k=1}^{n} 2k - 1 = n^2$ Ind anfang: $n_0 = 1$

Ind.voraussetzung: $\sum_{\substack{k=1\\k=1}}^n 2k-1=n^2$ Ind.behauptung: $\sum_{\substack{k=1\\k=1}}^n 2k-1=(n+1)^2$

Induktions beweis:

$$\sum_{k=1}^{n+1} 2k - 1 = \sum_{k=1}^{n} 2k - 1 + 2(n+1) - 1$$
 | nach Voraussetzung
$$= n^2 + 2n + 2 - 1$$
 | Zusammenfassen
$$= n^2 + 2n + 1$$
 | Binomische Formel
$$= (n+1)$$
 | qed

Gesucht: Formeln für $4 + 8 + 12 + ... + 4n = 2n(n+1) = \sum_{k=1}^{n} 4k$ Finden der Vermutung:

$$\sum_{k=1}^{1} 4k = 4 = 2 \cdot 1 \cdot 2$$

$$\sum_{k=1}^{3} 4k = 24 = 2 \cdot 3 \cdot 4$$

$$\sum_{k=1}^{2} 4k = 12 = 2 \cdot 2 \cdot 3$$

$$\sum_{k=1}^{4} 4k = 40 = 2 \cdot 4 \cdot 5$$

Zu Zeigen:
$$\sum_{k=1}^{n} 4k = 2n(n+1)$$
 I.anfang: $n_0 = 1$

I.voraussetzung: $\sum_{\substack{k=1\\k=1}}^n 4k = 2n(n+1)$ I.behauptung: $\sum_{\substack{k=1\\k=1}}^{n} 4k = 2(n+1)((n+1)+1)$

Induktionsbeweis:

$$\sum_{k=1}^{n+1} 4k = \sum_{k=1}^{n} 4k + 4(n+1)$$
 | Voraussetzung

$$= 2n(n+1) + 4(n+1)$$
 | 2 Ausklammern

$$= 2(n(n+1) + 2(n+1))$$
 | $(n+1)$ Ausklammern

$$= 2(n+1)(n+2)$$

$$= 2(n+1)((n+1) + 1)$$
 | qed

Aufgabe 3

I.anf.:
$$n_0 = 1 \Rightarrow \sum_{k=1}^{1} 2k = 2 \cdot 1 = 2 = 1^2 + 1$$

I.vor.: $\sum_{k=1}^{n} 2k = n^2 + n$
I.beh.: $\sum_{k=1}^{n+1} 2k = (n+1)^2 + (n+1)$

Induktionsbeweis

$$\begin{split} \sum_{k=1}^{n+1} 2k &= \sum_{k=1}^{n} 2k + 2(n+1) & | \text{Voraussetzung} \\ &= n^2 + n + 2(n+1) & | \text{Ausmultiplizieren} \\ &= n^2 + n + 2n + 2 & | \text{Umordnen} \\ &= n^2 + 2n + 1 + n + 1 & | \text{Binomische Formel} \\ &= (n+1)^2 + (n+1) & | \text{qed} \end{split}$$

$$\begin{array}{ll} \textbf{I.anf.:} & n_0=1 \Rightarrow \sum_{k=1}^1 \frac{1}{(2k-1)(2k+1)} = \frac{1}{3} = \frac{1}{2\cdot 1+1} \\ \textbf{I.vor.:} & \sum_{k=1}^n \frac{1}{(2k-1)(2k+1)} = \frac{n}{2n+1} \\ \textbf{I.beh.:} & \sum_{k=1}^{n+1} \frac{1}{(2k-1)(2k+1)} = \frac{n+1}{2(n+1)+1} \\ \textbf{Induktionsbeweis:} \end{array}$$

$$\sum_{k=1}^{n+1} \frac{1}{(2k-1)(2k+1)}$$

$$= \sum_{k=1}^{n} \frac{1}{(2k-1)(2k+1)} + \frac{1}{(2(n+1)-1)(2(n+1)+1)}$$
|Voraussetzung

$$\begin{split} &= \frac{n}{2n+1} + \frac{1}{(2n+1)(2n+3)} \\ &= \frac{n \cdot (2n+3)+1}{(2n+1)(2n+3)} & | \text{Ausmultiplizieren} \\ &= \frac{2n^2+3n+1}{(2n+1)(2n+3)} & | \text{Polynom division} \\ &= \frac{(2n+1)(n+1)}{(2n+1)(2n+3)} & | \text{K\"{u}} \text{rzen} \\ &= \frac{n+1}{2n+3} & | \text{Umformen} \\ &= \frac{n+1}{2(n+1)+1} & | \text{qed} \end{split}$$

Aufgabe 5

$$\begin{array}{ll} \textbf{I.anf.:} & n_0 = 1 \Rightarrow \sum_{k=1}^1 \frac{1}{k(k+1)} = \frac{1}{2} = \frac{1}{1+1} \\ \textbf{I.vor.:} & \sum_{k=1}^n \frac{1}{k(k+1)} = \frac{n}{n+1} \\ \textbf{I.beh.:} & \sum_{k=1}^{n+1} \frac{1}{k(k+1)} = \frac{n+1}{(n+1)+1} \end{array}$$

Induktionsbeweis:

$$\begin{split} &\sum_{k=1}^{n+1} \frac{1}{k(k+1)} \\ &= \sum_{k=1}^{n} \frac{1}{k(k+1)} + \frac{1}{(n+1)((n+1)+1)} \\ &= \frac{n}{n+1} + \frac{1}{(n+1)(n+2)} \\ &= \frac{n \cdot (n+2) + 1}{(n+1)(n+2)} & | \text{Ausmultiplizieren} \\ &= \frac{n^2 + 2n + 1}{(n+1)(n+2)} & | \text{Binomische Formel} \\ &= \frac{(n+1)^2}{(n+1)(n+2)} & | \text{Kürzen} \\ &= \frac{n+1}{n+2} & | \text{Umformen} \\ &= \frac{n+1}{(n+1)+1} & | \text{qed} \end{split}$$

Aufgabe 6

I.anf.:
$$n_0 = 1 \Rightarrow \sum_{k=1}^{1} k = 1 = \frac{2}{2} = \frac{1(1+1)}{2}$$

I.vor.: $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$
I.beh.: $\sum_{k=1}^{n+1} k = \frac{(n+1)((n+1)+1)}{2}$
Induktionsbeweis:

$$\begin{split} \sum_{k=1}^{n+1} k &= \sum_{k=1}^{n} k + (n+1) & | \text{Voraussetzung} \\ &= \frac{n(n+1)}{2} + (n+1) \\ &= \frac{n(n+1) + 2(n+1)}{2} & | (n+1) \text{ Ausklammern} \\ &= \frac{(n+1)(n+2)}{2} & | \text{Umformen} \\ &= \frac{(n+1)((n+1)+1)}{2} & | \text{qed} \end{split}$$

I.anf.:
$$n_0 = 1 \Rightarrow \sum_{k=1}^{1} k^2 = 1^2 = \frac{6}{6} = \frac{1(1+1)(2\cdot 1+1)}{6}$$

I.vor.: $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$
I.beh.: $\sum_{k=1}^{n+1} k^2 = \frac{(n+1)((n+1)+1)(2(n+1)+1)}{6}$

I.vor.:
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

I.beh.:
$$\sum_{k=1}^{n+1} k^2 = \frac{(n+1)((n+1)+1)(2(n+1)+1)}{6}$$

Induktions beweis:

$$\begin{split} \sum_{k=1}^{n+1} k^2 &= \sum_{k=1}^n k^2 + (n+1)^2 & | \text{Voraussetzung} \\ &= \frac{n(n+1)(2n+1)}{6} + (n+1)^2 \\ &= \frac{n(n+1)(2n+1) + 6(n+1)^2}{6} & | (n+1) \text{ Ausklammern} \\ &= \frac{(n+1)(n(2n+1) + 6(n+1))}{6} \\ &= \frac{(n+1)(2n^2 + 7n + 6)}{6} & | \text{Polynomdivision} \\ &= \frac{(n+1)(n+2)(2n+3)}{6} & | \text{Umformen} \\ &= \frac{(n+1)((n+1) + 1)(2(n+1) + 1)}{6} & | \text{qed} \end{split}$$

Aufgabe 8

$$\begin{array}{ll} \textbf{I.anf.:} & n_0 = 1 \Rightarrow \sum_{k=1}^1 \frac{k}{2^k} = \frac{1}{2^1} = 2 - \frac{3}{2} = 2 - \frac{1+2}{2^1} \\ \textbf{I.vor.:} & \sum_{k=1}^n \frac{k}{2^k} = 2 - \frac{n+2}{2^n} \\ \textbf{I.beh.:} & \sum_{k=1}^{n+1} \frac{k}{2^k} = 2 - \frac{(n+1)+2}{2^{n+1}} \end{array}$$

I.vor.:
$$\sum_{k=1}^{n} \frac{k}{2^k} = 2 - \frac{\tilde{n}+2}{2^n}$$

I.beh.:
$$\sum_{k=1}^{n+1} \frac{k}{2^k} = 2 - \frac{(n+1)+2}{2^{n+1}}$$

Induktionsbewei

$$\begin{split} \sum_{k=1}^{n+1} \frac{k}{2^k} &= \sum_{k=1}^n \frac{k}{2^k} + \frac{n+1}{2^{n+1}} & | \text{Voraussetzung} \\ &= 2 - \frac{n+2}{2^n} + \frac{n+1}{2^{n+1}} \\ &= 2 + \frac{-2(n+2) + (n+1)}{2^{n+1}} & | \text{Zusammenfassen} \\ &= 2 + \frac{-(n+3)}{2^{n+1}} & | (-) \text{ Vorziehen} \\ &= 2 - \frac{(n+1) + 2}{2^{n+1}} & | \text{qed} \end{split}$$

I.anf.:
$$n_0 = 0 \Rightarrow \sum_{k=0}^{0} \left(\frac{2}{3}\right)^k = \frac{2}{3} = 3 \cdot \frac{1}{3} = 3\left(1 - \frac{2}{3}^{0+1}\right)$$

I.vor.: $\sum_{k=0}^{n} \left(\frac{2}{3}\right)^k = 3 \cdot \left(1 - \left(\frac{2}{3}\right)^{n+1}\right)$
I.beh. $\sum_{k=0}^{n+1} \left(\frac{2}{3}\right)^k = 3 \cdot \left(1 - \left(\frac{2}{3}\right)^{(n+1)+1}\right)$

 ${f Induktions beweist}$

$$\begin{split} \sum_{k=0}^{n+1} \left(\frac{2}{3}\right)^k &= \sum_{k=0}^n \left(\frac{2}{3}\right)^k + \left(\frac{2}{3}\right)^{n+1} & | \text{Voraussetzung} \\ &= 3 \cdot \left(1 - \left(\frac{2}{3}\right)^{n+1}\right) + \left(\frac{2}{3}\right)^{n+1} & | \text{R. Br. mit 3 erweitern} \\ &= 3 \cdot \left(1 - \left(\frac{2}{3}\right)^{n+1}\right) + \frac{3 \cdot 2^{n+1}}{3^{n+2}} & | \text{3 Ausklammern} \\ &= 3 \cdot \left(1 - \left(\frac{2}{3}\right)^{n+1} + \frac{2^{n+1}}{3^{n+2}}\right) \\ &= 3 \cdot \left(1 + \frac{-3 \cdot 2^{n+1} + 2^{n+1}}{3^{n+2}}\right) \\ &= 3 \cdot \left(1 + \frac{-2 \cdot 2^{n+1}}{3^{n+2}}\right) & | \text{Potenzgesetze} \\ &= 3 \cdot \left(1 - \left(\frac{2}{3}\right)^{n+2}\right) & | \text{Umformen} \\ &= 3 \cdot \left(1 - \left(\frac{2}{3}\right)^{(n+1)+1}\right) & | \text{qed} \end{split}$$

Aufgabe 10

I.anf.:
$$n_0 = 1 \Rightarrow \sum_{k=0}^{1} q^k = 1 + q = \frac{(1+q)(1-q)}{(1-q)} = \frac{1-q^{1+1}}{1-q}$$

I.vor.: $\sum_{k=0}^{n} q^k = \frac{1-q^{n+1}}{1-q}$
I.beh.: $\sum_{k=0}^{n+1} q^k = \frac{1-q^{(n+1)+1}}{1-q}$

Induktions beweis:

$$\begin{split} \sum_{k=0}^{n+1} q^k &= \sum_{k=0}^n q^k + q^{n+1} & | \text{Voraussetzung} \\ &= \frac{1 - q^{n+1}}{1 - q} + q^{n+1} \\ &= \frac{(1 - q^{n+1}) + (1 - q)q^{n+1}}{1 - q} & | \text{Zusammenfassen} \\ &= \frac{1 - q^{n+2}}{1 - q} & | \text{Umformen} \\ &= \frac{1 - q^{(n+1)+1}}{1 - q} & | \text{qed} \end{split}$$

6.2 Ungleichung

Aufgabe 1 - Bernoulli-Ungleichung

I.anf.:
$$n_0 = 1 \Rightarrow (1+x)^1 = 1+x \ge 1+1 \cdot x$$

I.vor.: $(1+x)^n \ge 1+nx$
I.beh.: $(1+x)^{n+1} \ge 1+(n+1)x$
Induktionsbeweis:

$$(1+x)^{n+1} = (1+x)^n \cdot (1+x)$$
 | Voraussetzung

$$\geq (1+nx) \cdot (1+x)$$
 | Ausmultiplizieren

$$= 1+x+nx+nx^2$$
 | $x = 1+(n+1)x+nx^2$ | x

Aufgabe 2

I.anf.:
$$n_0 = 6$$

 $n = 5 \Rightarrow 5^2 + 10 = 35 < 32 = 2^5$ falsche Aussage
 $n = 6 \Rightarrow 6^2 + 10 = 46 < 64 = 2^6$ wahre Aussage
I.vor.: $n^2 + 10 < 2^n$
I.beh.: $(n+1)^2 + 10 < 2^{n+1}$

Induktions beweis:

Aufgabe 3

I.anf.:
$$n_0 = 3 \Rightarrow 3^2 = 9 > 7 = 2 \cdot 3 + 1$$

I.vor.: $n^2 > 2n + 1$
I.beh.: $(n+1)^2 > 2(n+1) + 1$
Induktionsbeweis:

$$(n+1)^2 = n^2 + 2n + 1 \qquad |Voraussetzung| > 2n + 1 + 2n + 1 \qquad |Ordnen| = 2n + 2 + 2n \qquad |da 2n > 1 \text{ mit } n \in \mathbb{N} > 2(n+1) + 1 \qquad |qed|$$

Aufgabe 4

I.vor.: $2^{n} > n^{2}$

I.anf.: $n_0 = 5 \Rightarrow 2^5 = 32 > 25 = 5^2$

I.beh.:
$$2^{n+1} > (n+1)^2$$

Induktionsbeweis:
 $2^{n+1} = 2^n \cdot 2$ | Voraussetzung
 $> n^2 \cdot 2$ | als Summe schreiben
 $= n^2 + n^2$ | $n^2 > 2n + 1$ Vgl. Aufg. 3
 $> n^2 + 2n + 1$ | Binomische Formel
 $= (n+1)^2$ | qed

I.anf.:
$$n_0 = 2 \Rightarrow \sum_{k=1}^2 \frac{1}{\sqrt{k}} = 1 + \frac{1}{\sqrt{2}} = \frac{\sqrt{2}+1}{\sqrt{2}} > \frac{2}{\sqrt{2}} = \sqrt{2}$$

I.vor.: $\sum_{k=1}^n \frac{1}{\sqrt{k}} > \sqrt{n}$
I.beh.: $\sum_{k=1}^{n+1} \frac{1}{\sqrt{k}} > \sqrt{n+1}$
Induktionsbeweis:

I.vor.:
$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} > \sqrt{n}$$

I.beh.:
$$\sum_{k=1}^{n+1} \frac{1}{\sqrt{k}} > \sqrt{n+1}$$

$$\sum_{k=1}^{n+1} \frac{1}{\sqrt{k}} = \sum_{k=1}^{n} \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{n+1}}$$

$$> \sqrt{n} + \frac{1}{\sqrt{n+1}}$$

$$\stackrel{?}{>} \sqrt{n+1}$$
|Voraussetzung

Noch zu zeigen:

$$\begin{array}{lll} \sqrt{n} + \frac{1}{\sqrt{n+1}} > \sqrt{n+1} & | \cdot \sqrt{n+1} \\ \\ \sqrt{n \cdot (n+1)} + 1 > n+1 & | -1 \\ \\ \sqrt{n^2 + n} > n & | n^2 \text{ Ausklammern} \\ \\ \sqrt{n^2 \left(1 + \frac{1}{n}\right)} > n & | \text{teilweise Wurzel ziehen} \\ \\ n\sqrt{1 + \frac{1}{n}} > n & | \div n, \text{ da } n > 0 \\ \\ \sqrt{1 + \frac{1}{n}} > 1 & | \text{wahre Aussage } \forall n \in \mathbb{N} \\ \\ | \text{qed} \end{array}$$

Aufgabe 6

I.anf.:
$$n_0 = 3 \Rightarrow \sum_{k=1}^3 \frac{1}{n+k} = \frac{1}{4} + \frac{1}{5} + \frac{1}{6} = \frac{86}{120} > \frac{65}{120} = \frac{13}{24}$$

I.vor.: $\sum_{k=1}^n \frac{1}{n+k} > \frac{13}{24}$
I.beh.: $\sum_{k=1}^{n+1} \frac{1}{(n+1)+k} > \frac{13}{24}$

I.vor.:
$$\sum_{k=1}^{n} \frac{1}{n+k} > \frac{13}{24}$$

I.beh.:
$$\sum_{k=1}^{n+1} \frac{1}{(n+1)+k} > \frac{13}{24}$$

Induktions beweis:

$$\begin{split} \sum_{k=1}^{n+1} \frac{1}{(n+1)+k} & | \text{Indexverschiebung} \\ &= \sum_{k=2}^{n+2} \frac{1}{n+k} & | \text{Summanden abspalten} \\ &= \sum_{k=2}^{n} \frac{1}{n+k} + \frac{1}{2n+1} + \frac{1}{2(n+1)} & | \text{0-Erweiterung} \\ &= \sum_{k=2}^{n} \frac{1}{n+k} + \frac{1}{n+1} - \frac{1}{n+1} + \frac{1}{2n+1} + \frac{1}{2(n+1)} \\ & | \text{Indexverschiebung} \\ &= \sum_{k=1}^{n} \frac{1}{n+k} - \frac{1}{n+1} + \frac{1}{2n+1} + \frac{1}{2(n+1)} \\ & | \text{Voraussetzung} \\ &> \frac{13}{24} - \frac{1}{n+1} + \frac{1}{2n+1} + \frac{1}{2(n+1)} \\ & | \text{Zusammenfassen} \\ &= \frac{13}{24} + \frac{-(2n+1) \cdot 2 + 2(n+1) + (2n+1)}{(2n+1) \cdot 2(n+1)} \\ & | \text{weiter Zusammenfassen} \\ &= \frac{13}{24} + \frac{1}{(2n+1) \cdot 2(n+1)} \\ & | \text{da} \quad \frac{1}{(2n+1) \cdot 2(n+1)} > 0 \\ &> \frac{13}{24} \quad | \text{qed} \end{split}$$

6.3 Teilbarkeitsprobleme

Aufgabe 1

I.anf.:
$$n_0 = 1 \Rightarrow 8|9^1 - 1 \Leftrightarrow 8|8$$

I.vor.: $8|9^n - 1$

I.beh.: $8|9^{n+1}-1$

Induktions beweis: $(m_x \in \mathbb{N})$

$$9^{n+1} - 1 = 9 \cdot 9^n - 1$$

$$= 9 \cdot 9^n - 9 + 9 - 1$$

$$= 9 \cdot (9^n - 1) + 8$$

$$= 9 \cdot 8 \cdot m_1 + 8$$

$$= 8 \cdot (9m_1 + 1)$$

$$= 8 \cdot m_2$$

0-Erweiterung

9 Ausklammern

Voraussetzung

8 Ausklammern

qed

Aufgabe 2

I.anf.: $n_0 = 1 \Rightarrow 6|7^1 - 1 \Leftrightarrow 6|6$

I.vor.: $6|7^n - 1$ **I.beh.**: $6|7^{n+1}-1$

Induktions beweis: $(m_x \in \mathbb{N})$

$$7^{n+1} - 1 = 7 \cdot 7^n - 1$$

$$= 7 \cdot 7^n - 7 + 7 - 1$$

$$= 7 \cdot (7^n - 1) + 6$$

$$= 7 \cdot 6 \cdot m_1 + 6$$

$$= 6 \cdot (7m_1 + 1)$$

$$= 6 \cdot m_2$$

0-Erweiterung

7 Ausklammern

Voraussetzung

6 Ausklammern

qed

Aufgabe 3

I.anf.: $n_0 = 1 \Rightarrow a - 1|a^1 - 1$

I.vor.: $a - 1|a^n - 1$ **I.beh.**: $a - 1|a^{n+1} - 1$

Induktions beweis: $(m_x \in \mathbb{N})$

uktionsbeweis:
$$(m_x \in \mathbb{N})$$

 $a^{n+1} - 1 = a \cdot a^n - 1$
 $= a \cdot a^n - a + a - 1$
 $= a \cdot (a^n - 1) + (a - 1)$
 $= a \cdot (a - 1) \cdot m_1 + (a - 1)$
 $= (a - 1) \cdot (am_1 + 1)$
 $= (a - 1) \cdot m_2$

0-Erweiterung

a Ausklammern

Voraussetzung

|(a-1) Ausklammern

qed

I.anf.: $n_0 = 1 \Rightarrow 3|1^3 + 6 \cdot 1^2 + 14 \cdot 1 \Leftrightarrow 3|21$

I.vor. $3|n^3 + 6n^2 + 14n$

I.beh. $3|(n+1)^3 + 6(n+1)^2 + 14(n+1)$

Induktions beweis: $(m_x \in \mathbb{N})$

$$(n+1)^3 + 6(n+1)^2 + 14(n+1)$$

$$= n^3 + 3n^2 + 3n + 1 + 6n^2 + 12n + 6 + 14n + 14$$
 |Sortieren
$$= (n^3 + 6n^2 + 14n) + 3n^2 + 15n + 21$$
 |Voraussetzung
$$= 3 \cdot m_1 + 3n^2 + 15n + 21$$
 |3 Ausklammern
$$= 3 \cdot (m_1 + n^2 + 5n + 7)$$

$$= 3 \cdot m_2$$
 |qed

Aufgabe 5

I.anf.: $n_0 = 1 \Rightarrow 3|2^{2\cdot 1} - 1 \Leftrightarrow 3|4 - 1 \Leftrightarrow 3|3$

I.vor.: $3|2^{2n} - 1$ I.beh.: $3|2^{2(n+1)} - 1$

Induktions beweis: $(m_x \in \mathbb{N})$

$$\begin{array}{lll} 2^{2(n+1)} - 1 = 4 \cdot 2^{2n} - 1 & | \text{0-Erweiterung} \\ &= 4 \cdot 2^{2n} - 4 + 4 - 1 & | \text{4 Ausklammern} \\ &= 4 \cdot (2^{2n} - 1) + 3 & | \text{Voraussetzung} \\ &= 4 \cdot 3 \cdot m_1 + 3 & | \text{3 Ausklammern} \\ &= 3 \cdot (4m_1 + 1) & | \text{ged} \end{array}$$

Aufgabe 6

I.anf.: $n_0 = 1 \Rightarrow 6|1^3 - 1 \Leftrightarrow 6|0$

I.vor.: $6|n^3 - n$

I.beh.: $6|(n+1)^3 - (n+1)$

Induktions beweis: $(m_x \in \mathbb{N} \cup 0)$

$$(n+1)^3 - (n+1)$$

 $= n^3 + 3n^2 + 3n + 1 - n - 1$ |Ordnen
 $= (n^3 - n) + 3n^2 + 3n$ |Voraussetzung
 $= 6 \cdot m_1 + 3n^2 + 3n$
 $\stackrel{?}{=} 6 \cdot m_1 + 6 \cdot m_2$
 $= 6 \cdot (m_1 + m_2)$
 $= 6 \cdot m_3$

Noch zu zeigen: $6|3n^2 + 3n$

I.anf.: $n_0 = 1 \Rightarrow 6|3 \cdot 1^2 + 3 \cdot 1 \Leftrightarrow 6|6$

I.vor.: $6|3n^2 + 3n$

I.beh.: $6|3(n+1)^2 + 3(n+1)$ Induktionsbeweis: $(m_x \in \mathbb{N})$

$$3(n+1)^2 + 3(n+1) = 3n^2 + 6n + 3 + 3n + 3$$
 | Ordnen
= $(3n^2 + 3n) + 6n + 6$ | Voraussetzung
= $6 \cdot m_1 + 6n + 6$ | 6 Ausklammern
= $6 \cdot (m_1 + n + 1)$
= $6 \cdot m_2$ | qed

Aufgabe 7

I.anf.:
$$n_0 = 1 \Rightarrow 6|3 \cdot 1^2 + 9 \cdot 1 \Leftrightarrow 6|12$$

I.vor.: $6|3n^2 + 9n$

I.beh.: $6|3(n+1)^2 + 9(n+1)$ Induktionsbeweis: $(m_x \in \mathbb{N})$

$$3(n+1)^2 + 9(n+1) = 3n^2 + 6n + 3 + 9n + 9$$
 | Ordnen
= $(3n^2 + 9n) + 6n + 12$ | Voraussetzung
= $6 \cdot m_1 + 6n + 12$ | 6 Ausklammern
= $6 \cdot (m_1 + n + 2)$ | ged

6.4 Ableitungen

Aufgabe 1

I.anf.:
$$n_0 = 1$$

$$f(x) = x + a \cdot \cos x$$

$$f'(x) = -a \sin x$$

$$f''(x) = -a \cos x = (-1)^1 \cdot a \cdot \cos x = f^{(2 \cdot 1)}(x)$$

I.vor.:
$$f^{(2n)}(x) = (-1)^n \cdot a \cdot \cos x$$

I.beh.: $f^{(2(n+1))}(x) = (-1)^{n+1} \cdot a \cdot \cos x$
Induktionsbeweis:

$$\begin{split} f^{(2(n+1))}(x) &= f^{(2n+2))}(x) \\ &= [f^{(2n)}(x)]'' & | \text{Voraussetzung} \\ &= [(-1)^n \cdot a \cdot \cos x]'' & | \text{Ableitung bilden} \\ &= [(-1)^{n+1} \cdot a \cdot \sin x]' & | \text{Ableitung bilden} \\ &= (-1)^{n+1} \cdot a \cdot \cos x & | \text{qed} \end{split}$$

Aufgabe 2

Gesucht: Formel für $f^{(2n+1)}(x)$ mit $f(x) = x + a \cos x$ Finden der Vermutung:

$$f(x) = x + a \cos x$$

$$f'(x) = -a \sin x \qquad (n = 0)$$

$$f''(x) = -a \cos x$$

$$f'''(x) = a \sin x \qquad (n = 1)$$

Zu zeigen:
$$f^{(2n+1)}(x) = (-1)^{n+1} \cdot a \cdot \sin x$$

I.anf.: $n_0 = 0$
I.vor.: $f^{(2n+1)}(x) = (-1)^{n+1} \cdot a \cdot \sin x$
I.beh.: $f^{(2(n+1)+1)}(x) = (-1)^{(n+1)+1} \cdot a \cdot \sin x$

Induktions beweis:

$$\begin{split} f^{(2(n+1)+1)}(x) &= f^{(2n+3)}(x) \\ &= [f^{(2n+1)}(x)]'' & | \text{Voraussetzung} \\ &= [(-1)^{n+1} \cdot a \cdot \sin x]'' & | \text{Ableitung bilden} \\ &= [(-1)^{n+1} \cdot a \cdot \cos x]' & | \text{Ableitung bilden} \\ &= (-1)^{n+1} \cdot (-1) \cdot a \cdot \sin x \\ &= (-1)^{(n+1)+1} \cdot a \cdot \sin x & | \text{qed} \end{split}$$

Aufgabe 3

Gesucht: Formel für $f^{(2n)}(x)$ mit $f(x) = x + \sin(a \cdot x)$, a > 0 Finden der Vermutung:

$$f(x) = x + \sin(a \cdot x)$$

$$f'(x) = a \cdot \cos(a \cdot x)$$

$$f''(x) = -a^{2} \sin(a \cdot x)$$

$$f'''(x) = -a^{3} \cos(a \cdot x)$$

$$f^{(4)}(x) = a^{4} \sin(a \cdot x)$$

$$(n = 1)$$

Zu zeigen:
$$f^{(2n)}(x) = (-1)^n \cdot a^{2n} \cdot \sin(a \cdot x)$$

I.anf.: $n_0 = 1$
I.vor.: $f^{(2n)}(x) = (-1)^n \cdot a^{2n} \cdot \sin(a \cdot x)$
I.beh.: $f^{(2(n+1))}(x) = (-1)^{n+1} \cdot a^{2(n+1)} \cdot \sin(a \cdot x)$
Induktionsbeweis:

$$\begin{split} f^{(2(n+1))}(x) &= f^{(2n+2)}(x) \\ &= [f^{(2n)}(x)]'' & | \text{Voraussetzung} \\ &= [(-1)^n \cdot a^{2n} \cdot \sin(a \cdot x)]'' & | \text{Ableitung bilden} \\ &= [(-1)^n \cdot a^{2n} \cdot a \cdot \cos(a \cdot x)]' & | \text{Ableitung bilden} \\ &= [(-1)^n \cdot a^{2n+1} \cdot \cos(a \cdot x)]' & | \text{Ableitung bilden} \\ &= (-1)^n \cdot (-1) \cdot a^{2n+1} \cdot a \cdot \sin(a \cdot x) & | \\ &= (-1)^{n+1} \cdot a^{2n+2} \cdot \sin(a \cdot x) & | \text{qed} \end{split}$$

I.anf.:
$$n_0 = 1$$

$$f(x) = \frac{x}{x+1}$$

$$f'(x) = (x+1)^{-1} + x \cdot (-1)(x+1)^{-2}$$

$$= \frac{1}{(x+1)^2} = (-1)^{1+1} \cdot \frac{1!}{(x+1)^{1+1}}$$

$$= f^{(1)}(x)$$

I.vor.:
$$f^{(n)}(x) = (-1)^{n+1} \cdot \frac{n!}{(x+1)^{n+1}}$$

I.beh.: $f^{(n+1)}(x) = (-1)^{(n+1)+1} \cdot \frac{(n+1)!}{(x+1)^{(n+1)+1}}$
Induktionsbeweis:

$$\begin{split} &f^{(n+1)}(x) \\ = &[f^{(n)}(x)]' & | \text{Voraussetzung} \\ = &[(-1)^{n+1} \cdot \frac{n!}{(x+1)^{n+1}}]' & | \text{Ableitung bilden} \\ = &(-1)^{n+1} \cdot (-1) \cdot (n+1) \frac{n!}{(x+1)^{(n+1)+1}} \\ = &(-1)^{(n+1)+1} \cdot \frac{(n+1)!}{(x+1)^{(n+1)+1}} & | \text{qed} \end{split}$$

Aufgabe 5

Gesucht: Formel für $f^{(n)}(x)$ mit $f(x) = \frac{x+1}{x-2}$, $x \neq -2$ Finden der Vermutung:

$$f(x) = (x+1)(x-2)^{-1}$$

$$f'(x) = (x-2)^{-1} + (x+1)(-1)(x-2)^{-2}$$

$$= -3(x-2)^{-2} = (-1)^{1} \cdot 3 \cdot (x-2)^{-(1+1)}$$

$$f''(x) = -3(-2)(x-2)^{-3} = 3 \cdot 2 \cdot (-1)^{2}(x-2)^{-(2+1)}$$

$$f^{(3)}(x) = 3 \cdot 2 \cdot (-3)(x-2)^{-4} = 3 \cdot 3! \cdot (-1)^{3}(x-2)^{-(3+1)}$$

Zu zeigen:
$$f^{(n)}(x) = \frac{3 \cdot (-1)^n n!}{(x-2)^{n+1}}$$

I.anf.: $n_0 = 1$
I.vor.: $f^{(n)}(x) = \frac{3 \cdot (-1)^n n!}{(x-2)^{n+1}}$

I.beh.:
$$f^{(n+1)}(x) = \frac{3 \cdot (-1)^{n+1} (n+1)!}{(x-2)^{(n+1)+1}}$$

Induktions beweis:

$$\begin{split} f^{(n+1)}(x) &= [f^{(n)}(x)]' & | \text{Voraussetzung} \\ &= \left[\frac{3 \cdot (-1)^n n!}{(x-2)^{n+1}} \right]' & | \text{Ableitung bilden} \\ &= \frac{3 \cdot (-1)^n \cdot n! \cdot (n+1) \cdot (-1)}{(x-2)^{n+2}} \\ &= \frac{3 \cdot (-1)^{n+1} (n+1)!}{(x-2)^{(n+1)+1}} & | \text{qed} \end{split}$$

Gesucht: n_0 und eine Formel für $f^{(n)}(x)$ mit $f(x) = x^3 + x^2 + x + 1 + \frac{1}{x-1}$ Finden der Vermutung:

$$f(x) = x^{3} + x^{2} + x + 1 + \frac{1}{x - 1}$$

$$f'(x) = 3x^{2} + 2x + 1 + (-1)(x - 1)^{-2}$$

$$f''(x) = 6x + 2 + (-1)^{2} \cdot 2(x - 1)^{-3}$$

$$f'''(x) = 6 + (-1)^{3} \cdot 3!(x - 1)^{-4}$$

$$f^{(4)} = (-1)^{4} \cdot 4!(x - 1)^{-5}$$

$$f^{(5)} = (-1)^{5} \cdot 5!(x - 1)^{-6}$$

Zu zeigen:
$$f^{(n)}(x) = (-1)^n \cdot \frac{n!}{(x-1)^{n+1}}$$

I.anf.: $n_0 = 4$

I.vor.:
$$f^{(n)}(x) = (-1)^n \cdot \frac{n!}{(x-1)^{n+1}}$$

I.beh.:
$$f^{(n+1)}(x) = (-1)^{n+1} \cdot \frac{(n+1)!}{(x-1)^{(n+1)+1}}$$

Induktions beweis:

$$\begin{split} &f^{(n+1)}(x) \\ = &[f^{(n)}(x)]' & | \text{Voraussetzung} \\ = &\left[(-1)^n \cdot \frac{n!}{(x-1)^{n+1}} \right]' & | \text{Ableitung bilden} \\ = &(-1)^n \cdot \frac{n!}{(x-1)^{(n+1)+1}} \cdot (-1) \cdot (n+1) \\ = &(-1)^{n+1} \cdot \frac{(n+1)!}{(x-1)^{(n+1)+1}} & | \text{qed} \end{split}$$

Gesucht: Formel für $f^{(2n)}(x)$ mit $f(x) = \sin \frac{x}{a}$ Finden der Vermutung:

$$f(x) = \sin\frac{x}{a}$$

$$f'(x) = \frac{1}{a}\cos\frac{x}{a}$$

$$f''(x) = -\frac{1}{a^2}\sin\frac{x}{a} \qquad (n=1)$$

$$f^{(3)} = -\frac{1}{a^3}\cos\frac{x}{a}$$

$$f^{(4)} = \frac{1}{a^4}\sin\frac{x}{a} \qquad (n=2)$$

Zu zeigen:
$$f^{(2n)}(x) = \frac{(-1)^n}{a^{2n}} \cdot \sin \frac{x}{a}$$

I.anf.: $n_0 = 1$
I.vor.: $f^{(2n)}(x) = \frac{(-1)^n}{a^{2n}} \cdot \sin \frac{x}{a}$
I.beh.: $f^{(2(n+1))}(x) = \frac{(-1)^{n+1}}{a^{2(n+1)}} \cdot \sin \frac{x}{a}$

Induktionsbeweis:

$$\begin{split} f^{(2(n+1))}(x) &= f^{(2n+2))}(x) \\ &= [f^{(2n)}(x)]'' & | \text{Voraussetzung} \\ &= \left[(-1)^n \cdot \frac{1}{a^{2n}} \cdot \sin \frac{x}{a} \right]'' & | \text{Ableitung bilden} \\ &= \left[(-1)^n \cdot \frac{1}{a^{2n+1}} \cdot \cos \frac{x}{a} \right]' & | \text{Ableitung bilden} \\ &= (-1)^{n+1} \cdot \frac{1}{a^{2n+2}} \cdot \sin \frac{x}{a} \\ &= (-1)^{n+1} \cdot \frac{1}{a^{2(n+1)}} \cdot \sin \frac{x}{a} & | \text{qed} \end{split}$$

7 Funktionen Loesungen

7.1 Trigonometrische Funktionen

1. a)
$$\sin \frac{2\pi}{3} = \sin(\pi - \frac{2\pi}{3}) = \sin(\frac{\pi}{3}) = \frac{1}{2}\sqrt{3}$$

b)
$$\sin \frac{5\pi}{6} = \sin(\pi - \frac{5\pi}{6}) = \sin(\frac{\pi}{6}) = \frac{1}{2}\sqrt{1}$$

c)
$$\sin \pi = \sin(\pi - \pi) = 0$$

d)
$$\sin \frac{3\pi}{2} = \sin(\pi - \frac{3\pi}{2}) = \sin(-\frac{\pi}{2}) = -\sin(\frac{\pi}{2}) = -\frac{1}{2}\sqrt{4}$$

e)
$$\sin \frac{11\pi}{6} = \sin(\pi - \frac{11\pi}{6}) = \sin(-\frac{5\pi}{6}) = -\sin(\pi - \frac{5\pi}{6}) = -\sin(\frac{\pi}{6}) = -\frac{1}{2}\sqrt{1}$$

f)
$$\sin \frac{7\pi}{3} = \sin(\pi - \frac{7\pi}{3}) = \sin(-\frac{4\pi}{3}) = -\sin(\pi - \frac{4\pi}{3}) = -\sin(-\frac{1\pi}{3}) = \sin(\frac{\pi}{3}) = -\sin(\frac{\pi}{3}) = -$$

g)
$$\sin \frac{29\pi}{6} = \sin(\pi - \frac{29\pi}{6}) = \sin(-\frac{23\pi}{6}) = -\sin(\pi - \frac{23\pi}{6}) = -\sin(-\frac{17\pi}{6}) = \sin(\pi - \frac{17\pi}{6}) = \sin(-\frac{11\pi}{6}) = \sin(\pi - \frac{11\pi}{6}) = -\sin(\pi - \frac{5\pi}{6}) = \sin(\pi - \frac{5\pi}{6}) = \sin(\frac{\pi}{6}) = \frac{1}{2}\sqrt{1}$$

h)
$$\sin(-\frac{3\pi}{4}) = -\sin(\frac{3\pi}{4}) = -\sin(\pi - \frac{3\pi}{4}) = -\sin(\frac{\pi}{4}) = -\frac{1}{2}\sqrt{2}$$

i)
$$\cos \frac{\pi}{6} = \frac{1}{2}\sqrt{3}$$

j)
$$\cos \frac{\pi}{4} = \frac{1}{2}\sqrt{2}$$

k)
$$\cos \frac{\pi}{3} = \frac{1}{2}\sqrt{1}$$

1)
$$\cos \frac{\pi}{2} = \frac{1}{2}\sqrt{0}$$

m)
$$\cos \frac{11\pi}{6} = -\cos(\pi - \frac{11\pi}{6}) = -\cos(\frac{5\pi}{6}) = \cos(\frac{1\pi}{6}) = \frac{1}{2}\sqrt{3}$$

n)
$$\cos \frac{3\pi}{4} = -\cos(\pi - \frac{3\pi}{4}) = -\cos(\frac{1\pi}{4}) = -\frac{1}{2}\sqrt{2}$$

o)
$$\cos \frac{2\pi}{3} = -\cos(\pi - \frac{2\pi}{3}) = -\cos(\frac{2\pi}{3}) = -\frac{1}{2}\sqrt{1}$$

p)
$$\cos \frac{4\pi}{6} = -\cos(\pi - \frac{2\pi}{3}) = -\cos(\frac{2\pi}{3}) = -\frac{1}{2}\sqrt{1}$$

q)
$$\cos \frac{7\pi}{3} = -\cos(\pi - \frac{7\pi}{3}) = \cos(\pi - \frac{4\pi}{3}) = \cos(\frac{1\pi}{3}) = \frac{1}{2}\sqrt{2}$$

r)
$$\cos -\frac{11\pi}{4} = \cos(\frac{11\pi}{4}) = -\cos(\pi - \frac{11\pi}{4}) = \cos(\pi - \frac{7\pi}{4}) = \cos(\frac{3\pi}{4}) = -\cos(-\frac{1\pi}{4}) = -\frac{1}{2}\sqrt{2}$$

s)
$$\tan \frac{\pi}{6} = \frac{\sin \frac{\pi}{6}}{\cos \frac{\pi}{6}} = \frac{\frac{1}{2}\sqrt{1}}{\frac{1}{2}\sqrt{3}} = \frac{1}{\sqrt{3}}$$
)

t)
$$\tan -\frac{\pi}{3} = \frac{\sin \frac{-\pi}{6}}{\cos \frac{-\pi}{6}} = \frac{-\sin \frac{\pi}{6}}{\cos \frac{\pi}{6}} = -\frac{\frac{1}{2}\sqrt{3}}{\frac{1}{2}\sqrt{1}} = -\sqrt{3}$$

 β a b

	$\frac{\pi}{4}$	$\frac{\pi}{4}$	1	1	$\sqrt{2}$
	$\frac{\pi}{6}$	$\frac{\pi}{3}$	2	$\sqrt{12}$	4
2.	kein Dreieck	Ü	$\frac{1}{2}\sqrt{3}$		$\frac{1}{2}$
	$53,13^{\circ}$	$26,87^{\circ}$	4	3	$\tilde{5}$
	$\frac{\pi}{6}$	$\frac{\pi}{3}$	1	$\sqrt{3}$	2
	$\frac{\frac{\sigma}{6}}{6}$	$\frac{\pi}{3}$	$\frac{2}{\sqrt{3}}$	2	$\frac{4}{\sqrt{3}}$

3.

$$\sin(4\alpha) = 2(\sin(2\alpha)\cos(2\alpha))$$

$$= 4\sin(\alpha)\cos(\alpha)\cos(2\alpha)$$

$$= 4\sin(\alpha)\cos(\alpha)\cos^{2}(\alpha) - \sin^{2}(\alpha)$$

$$= 4\sin(\alpha)\cos^{3}(\alpha) - 4\sin^{3}(\alpha)\cos(\alpha)$$

$$\sin(4\alpha) = 4(\sin(\alpha)\cos^{3}(\alpha) - \sin^{3}(\alpha)\cos(\alpha))$$

4. Ich löse die Aufgabe mal von hinten - muss auch andersrum gehen...

$$2\cos^{2}\alpha - 1 = 2\cos^{2}\alpha - (\sin^{2}\alpha + \cos^{2}\alpha)$$
$$= \cos^{2}\alpha - \sin^{2}\alpha$$
$$= \cos\alpha\cos\alpha - \sin\alpha\sin\alpha$$
$$= \cos(\alpha + \alpha)$$
$$= \cos(2\alpha)$$

5. Wenn die Seitenlänge des Würfels maximal sein soll, muss der Durchmesser der Kugel gleich der Diagnoalen des Würfels sein.

$$r = 1$$
 (Radius der Kugel)

$$a = (Kante des Wuerfels)$$

$$D = a\sqrt{3}$$
 (Diagonale des Wuerfels)

$$2r = a\sqrt{3}$$

$$a = \frac{2}{\sqrt{3}}$$

7.1.1 Exponentialfunktionen und Logarithmus

1. a)
$$1 = e^x \ x = 0$$

b)
$$8 = 2^x \ x = 3$$

c)
$$3 = 5e^x \ x = ln(\frac{3}{5})$$

d)
$$e = \frac{e^x}{e} x = 2$$

e)
$$9 = e^{cx} x = \frac{\ln(9)}{c}$$

f)
$$3 = log_2(x) \ x = 8$$

g)
$$0 = log_{42}(x) \ x = 1$$

h)
$$0 = 5log_5(x) \ x = 1$$

i)
$$9 = 3ln(e^x) \ x = 3$$

2. a)
$$lg2 + lg5 = lg10 = 1$$

b)
$$lg5 + lg6 - lg3 = lg10 = 1$$

c)
$$3lna + 5lnb - lnc = ln(\frac{a^3b^5}{c})$$
 für $c \neq 0$

d)
$$2lnv - lnv = ln(v^2) - lnv = ln(v)$$
 für $v \neq 0$

e)
$$\frac{1}{2}log_79 - \frac{1}{4}log_781 = log_7\sqrt{9} - log_7\sqrt[4]{81} = 0$$

f)
$$log_3(x-4) + log_3(x+4) = 3$$

$$log_3((x-4)(x+4)) = 3$$

$$log_3(x^2 - 16) = 3$$

$$x^2 - 16 = 3^3$$

$$x = \pm \sqrt{43}$$

g)
$$2log_2(4-x) + 4 = log_2(x+5) - 1$$

$$5 = log_2(x+5) - log_2(4-x)^2$$

$$5 = log_2(\frac{x+5}{(4-x)^2})$$

$$2^5 = \frac{x+5}{(4-x)^2}$$

$$32(4-x) = x+5$$

$$32(16-8x+x^2) = x+5$$

$$512-256x+32x^2 = x+5$$

$$32x^2-257x+507 = 0$$

$$x^2 - \frac{257}{32}x + \frac{507}{32} = 0$$

$$x_1 = \frac{1}{64}(257 + \sqrt{1157})$$

$$x_2 = \frac{1}{64}(257 - \sqrt{1157})$$

h)
$$log_5x = log_56 - 2log_53$$

$$0 = log_56 - log_5(3^2) - log_5x$$

$$0 = log_5(\frac{6}{9x})$$

$$1 = \frac{2}{3x}$$

$$x = \frac{2}{3}$$

$$\begin{aligned} 3. \ \ N(t) &= N_0 \cdot e^{kt} \\ \text{für} \ \ N_0 &= 100 \ und \ k = 2 \\ N(t) &= 100 \cdot e^{2t} \end{aligned}$$

b) A - Anzahl der Bakterien

$$\begin{split} A &= 100 \cdot e^{2t} \\ ln(\frac{A}{100} &= 2t) \\ t &= \frac{1}{2}(ln(A) - ln(100) \approx \frac{1}{2}(ln(A) - 4, 6) \end{split}$$

$$\begin{array}{ccccc} A & & t \\ 500 & & \frac{1}{2}ln(5) & \approx & 0,8 \\ 1000 & & \frac{1}{2}ln(10) & \approx & 1,15 \\ 5000 & & \frac{1}{2}ln(50) & \approx & 1,96 \\ 10000 & & \frac{1}{2}ln(100) & \approx & 2,3 \end{array}$$

4.
$$N(t) = N_0 \cdot e^{-\lambda t}$$

 $mit \ N_0 = 1000 \ , \ \lambda = 2$
 $N(t) = 1000 \cdot e^{-2t}$

b) M = noch vorhandenes Material
$$\begin{split} M &= N(t) = 1000 \cdot e^{-2t} \\ t &= -\frac{1}{2}ln(\frac{M}{1000}) \end{split}$$

7 Funktionen Loesungen

7.2 Kurvendiskusion

1. a)
$$f(x) = -x^3 + 3x - 2$$

 $f'(x) = -3x^2 + 3$
 $f''(x) = -6x$
 $f'''(x) = -6$

Definitions bereich: $D(f) = \mathbb{R}$ Wertebereich: $W(f) = \mathbb{R}$ Nullstellen:

Nullstellen

$$x_1 = 1$$
$$x_2 = -2$$

Extremstellen:

Minimum bei (-1;-4) Maximum bei (1;0)

Wendepunkte: (0;-2)Verhalten im Unendlichen:

$$\lim_{x \to +\infty} f(x) = -\infty$$
$$\lim_{x \to -\infty} f(x) = +\infty$$

b)
$$f(x) = x^3 - 4x^2 + 5x - 2$$

 $f'(x) = 3x^2 - 8x + 5$
 $f''(x) = 6x - 8$
 $f'''(x) = 6$

Definitions bereich: $D(f) = \mathbb{R}$ Wertebereich: $W(f) = \mathbb{R}$

 ${\bf Null stellen:}$

$$x_1 = 1$$
$$x_2 = 2$$

Extremstellen:

Minimum bei $(1\frac{2}{3}; -\frac{4}{27})$ Maximum bei (1;0)

Wendepunkte: $(1\frac{1}{3}; -\frac{3}{27})$ Verhalten im Unendlichen:

$$\lim_{x \to +\infty} f(x) = +\infty$$

$$\lim_{x \to -\infty} f(x) = -\infty$$

2.

$$g(x) = \frac{3x^4 - 12x^3 + 9x^2 + 12x - 12}{x^3 - 4x^2 + 5x - 2}$$

$$g(x) = 3x + \frac{-6x^2 + 18x - 12}{x^3 - 4x^2 + 5x - 2}$$
 Polynomdivision

Definitionslücken: $x^3 - 4x^2 + 5x - 2 \neq 0 \rightarrow x \neq 1; x \neq 2$

Definitionsbereich: $D(f) = \mathbb{R} \land x \neq 1 \land x \neq 2$

Wertebereich: $W(f) = \mathbb{R}$

Nullstellen:

$$3x^{4} - 12x^{3} + 9x^{2} + 12x - 12 = 0$$

$$x_{1} = 1$$

$$x_{2} = -1$$

$$x_{3} = 2$$

Verhalten im Unendlichen:

$$\lim_{x \to +\infty} g(x) = +\infty$$
$$\lim_{x \to -\infty} g(x) = -\infty$$

Extremstellen: TODO Wendepunkte: TODO

3.
$$f(x) = 2\sin(x\pi)$$

 $f'(x) = 2\pi\cos(x\pi)$
 $f''(x) = -2\pi^2\sin(x\pi)$
 $f'''(x) = -2\pi^3\cos(x\pi)$

Definitionsbereich: $D(f) = \mathbb{R}$

7 Funktionen Loesungen

Wertebereich: $W(f) = \mathbb{R} \land -2 \le f(x) \le 2$

Nullenstellen: $1 \cdot k$ mit $k \in \mathbb{Z}$

Extremstellen:

Maximum: (2k+0,5;2) mit $k \in \mathbb{Z}$ Minimum: (2k-0,5;-2) mit $k \in \mathbb{Z}$ Wendepunkte: (k;0) mit $k \in \mathbb{Z}$

Flächeninhalt vom Dreieck ABC: mit A(0;0) B(x;0) C(x; $2\sin(\pi x)$)

$$A = \frac{1}{2} \cdot g \cdot h$$

$$A = \frac{1}{2} \cdot x \cdot 2 \sin(\pi x)$$

$$A = x \cdot \sin(\pi x)$$

$$A' = \sin(\pi x) + x\pi \cos(\pi x)$$

$$A'' = 2\pi \cos(\pi x) - \pi^2 x \sin(\pi x)$$

$$A' = 0$$

$$x \approx 0,64577$$

Autor: Marko Rak

Aufgabe 1

Berechne die Vektoren, mit

$$a = \begin{pmatrix} 2\\3\\-1 \end{pmatrix}, b = \begin{pmatrix} -4\\1\\5 \end{pmatrix}, c = \begin{pmatrix} -2\\-2\\-2 \end{pmatrix}, d = \begin{pmatrix} 7\\9\\1 \end{pmatrix}$$

a)
$$a+b-c+d = \begin{pmatrix} 7\\15\\7 \end{pmatrix}$$

d)
$$a - \frac{1}{2}c + (-3)b + 2d = \begin{pmatrix} 29\\19\\-13 \end{pmatrix}$$

b)
$$d - c - b - a = \begin{pmatrix} 11 \\ 7 \\ -1 \end{pmatrix}$$

e)
$$2a - b + 5c - d = \begin{pmatrix} -9 \\ -14 \\ -18 \end{pmatrix}$$

c)
$$3a - 2b + c = \begin{pmatrix} 12\\5\\-15 \end{pmatrix}$$

f)
$$3a - 5b + 4c + 2d = \begin{pmatrix} 32\\14\\-34 \end{pmatrix}$$

Aufgabe 2

Berechne die Länge der Vektoren:

a)
$$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 1$$

b)
$$\begin{pmatrix} 2\\3\\2 \end{pmatrix} = \sqrt{17}$$

c)
$$\begin{pmatrix} 4\\3\\5 \end{pmatrix} = \sqrt{50}$$

e)
$$\begin{pmatrix} 3 \\ -3 \end{pmatrix} = \sqrt{18}$$

$$d) \begin{pmatrix} -2\\2\\1 \end{pmatrix} = 3$$

$$f) \begin{pmatrix} 2 \\ -2 \\ 2 \\ 2 \end{pmatrix} = 4$$

Aufgabe 3

Bestimme das Skalarprodukt der Vektoren:

$$a) \ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 0$$

b)
$$\begin{pmatrix} 2 \\ -1 \\ -3 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix} = -14$$

c)
$$\begin{pmatrix} 3\\4\\2 \end{pmatrix} \cdot \begin{pmatrix} 2\\-7\\5 \end{pmatrix} = -12$$

Aufgabe 4

Bestimme den eingeschlossenen Winkel:

a)
$$\begin{pmatrix} 1\\1\\0 \end{pmatrix}$$
, $\begin{pmatrix} 0\\\sqrt{2}\\0 \end{pmatrix} = \arccos\frac{\sqrt{2}}{2} = 45^{\circ}$

b)
$$\begin{pmatrix} 3\\2\\1 \end{pmatrix}$$
, $\begin{pmatrix} -5\\1\\13 \end{pmatrix}$ = $\arccos 0 = 90^{\circ}$

Aufgabe 5

Berechne das Kreuzprodukt:

a)
$$\begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix} \times \begin{pmatrix} -1 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 \\ -7 \\ 9 \end{pmatrix}$$

b)
$$\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \times \begin{pmatrix} 3 \\ 4 \\ 7 \end{pmatrix} = \begin{pmatrix} -8 \\ -1 \\ 4 \end{pmatrix}$$

c)
$$\begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix} \times \begin{pmatrix} -4 \\ -2 \\ -7 \end{pmatrix} = \begin{pmatrix} 19 \\ -10 \\ -8 \end{pmatrix}$$

Aufgabe 6

Überprüfe, ob die Vektoren linear abhängig sind. In diesem Fall stelle einen der Vektoren als Linearkombination der anderen dar. (Hinweis: Nutze den Gauss-Algorithmus)

a) ..
$$\begin{array}{c|cccc} c_1 & c_2 & & \\ \hline 1 & 1 & 0 \\ \hline 0 & 1 & 0 \\ \end{array}$$

$$c_2 = 0$$

b) ..

$$c_2 = 0$$
$$c_1 = 0$$

c) ..

c_1	c_2	c_3		
1	7	17	0	$\cdot (-2)$
2	3	5	0	\leftarrow
1	7	17	0	
0	-11	-29	0	

$$\begin{array}{rcl}
c_3 & = & t \\
c_2 & = & -\frac{29}{11}t \\
c_1 & = & \frac{16}{11}t
\end{array}$$

$$-\frac{16}{11} \begin{pmatrix} 1\\2 \end{pmatrix} + \frac{29}{11} \begin{pmatrix} 7\\3 \end{pmatrix} = \begin{pmatrix} 17\\5 \end{pmatrix}$$

d) ..

$$c_3 = 0$$

$$c_2 = 0$$

$$c_1 = 0$$

e) ..

$$c_3 = t$$

$$c_2 = -t$$

$$c_1 = -t$$

$$\begin{pmatrix} 7\\2\\5 \end{pmatrix} + \begin{pmatrix} 3\\-5\\8 \end{pmatrix} = \begin{pmatrix} 10\\-3\\13 \end{pmatrix}$$

f) ..

c_1	c_2	c_3			
-2	1	7	0	$\cdot (-\frac{3}{2})$	·(2)
-3	0	6	0	\leftarrow	
4	1	5	0		\leftarrow
-2	1	7	0		
0	$-\frac{3}{2}$	$-\frac{9}{2}$	0	\leftarrow	
0	3	$1\overline{9}$	0	$\cdot \left(\frac{1}{2}\right)$	
-2	1	7	0		
0	3	19	0		
0	0	5	0		

$$c_3 = 0$$

$$c_2 = 0$$
 $c_1 = 0$

g) ..

$$c_3 = t$$

$$c_2 = -2t$$

$$c_2 = -2$$
 $c_1 = t$

$$-\begin{pmatrix} 3\\7\\5 \end{pmatrix} + 2\begin{pmatrix} -2\\5\\1 \end{pmatrix} = \begin{pmatrix} -7\\3\\-3 \end{pmatrix}$$

h) ..

c_1	c_2	c_3	c_4			
1	0	0	1	0	$\cdot (-1)$	$\cdot (-1)$
0	1	1	1	0		
1	1	3	0	0	\leftarrow	
1	1	2	1	0		\leftarrow
1	0	0	1	0		
0	1	1	1	0		\leftarrow
0	1	3	-1	0	\leftarrow	
0	1	2	0	0	$\cdot (-1)$	$\cdot (-1)$
1	0	0	1	0		
0	1	2	0	0		
0	0	-1	1	0	\leftarrow	
0	0	1	-1	0	$\cdot (1)$	
1	0	0	1	0		
0	1	2	0	0		
0	0	1	-1	0		
0	0	0	0	0		

$$c_4 = t$$

$$c_3 = t$$

$$c_2 = -2t$$

$$c_3 = -t$$

$$\begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 1 \\ 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$

i) ..

 $c_4 = 0$

 $c_3 = 0$

 $c_2 = 0$

 $c_1 = 0$

9 Komplexe Zahlen

Autor: Julia Hempel

Aufgabe 1

- 1. $|z_1| = \sqrt{(-2)^2} = 2$
 - $\varphi_1 = \arctan \frac{-2}{0} = -\frac{\pi}{2}$ (siehe Tabelle)
 - Eulersche Form: $z_1 = 2e^{\frac{-\pi}{2}i}$
- 2. $|z_2| = \sqrt{3^2} = 3$
 - $\varphi_2 = \arctan \frac{0}{3} = 0$ (siehe Tabelle)
 - Eulersche Form: $z_2 = 3e^{0 \cdot i}$
- 3. $|z_3| = \sqrt{1^2 + 2^2} = \sqrt{5}$
 - $\varphi_3 = \arctan\frac{2}{1} \approx 63, 4^{\circ} \text{ (siehe TR)}$
 - Eulersche Form: $z_3 = \sqrt{5}e^{arctan(2)\cdot i}$
- 4. $|z_4| = \sqrt{4^2 + (-3)^2} = 5$
 - $\varphi_4 = \arctan\frac{-3}{4} \approx 323, 1^{\circ} \text{ (siehe TR)}$
 - Eulersche Form: $z_4 = 5e^{arctan(\frac{-3}{4}) \cdot i}$
- 5. $|z_5| = \sqrt{\left(e^{\frac{\pi}{4}}\right)^2 + 0} = e^{\frac{\pi}{4}}$
 - $\varphi_5 = \arctan \frac{0}{\frac{\pi}{e^{\frac{\pi}{4}}}} = 0$ (nur Realteil vorhanden)
 - Eulersche Form: $z_5 = e^{\frac{\pi}{4}} e^{0 \cdot i}$

9 Komplexe Zahlen

- 6. $|z_6| = 1$, denn allgemein gilt: $(|z| \cdot e^{(i\varphi)})$
 - $\varphi_6 = \arctan \frac{\pi}{4}$ (siehe eulersche Form)
 - kartesische Form:

$$x = |z| \cdot \cos\varphi = 1 \cdot \cos\left(\frac{\pi}{4}\right) = \frac{1}{2}\sqrt{2}$$
$$y = |z| \cdot \sin\varphi = 1 \cdot \cos\left(\frac{\pi}{4}\right) = \frac{1}{2}\sqrt{2}$$
$$z_6 = \frac{1}{2}\sqrt{2} + \frac{1}{2}\sqrt{2} \cdot i$$

- 7. $|z_7| = 2$, denn allgemein gilt: $(|z| \cdot e^{(i\varphi)})$
 - $\varphi_7 = -\frac{3}{4}\pi$ (siehe eulersche Form)
 - kartesische Form:

$$x = |z| \cdot \cos\varphi = 2 \cdot \cos(-\frac{3\pi}{4}) = -\frac{1}{2}\sqrt{2}$$

$$y = |z| \cdot \sin\varphi = 2 \cdot \cos(-\frac{3\pi}{4}) = -\frac{1}{2}\sqrt{2}$$

$$z_7 = -\frac{1}{2}\sqrt{2} - \frac{1}{2}\sqrt{2} \cdot i$$

- 8. $|z_8| = -\frac{1}{2}$, denn allgemein gilt: $(|z| \cdot e^{(i\varphi)})$
 - $\varphi_8 = \frac{3\pi}{4}$ (siehe eulersche Form)
 - kartesische Form:

$$\begin{array}{l} x = |z| \cdot \cos\varphi = 1 \cdot \cos(\frac{3\pi}{4}) = 0 \\ y = |z| \cdot \sin\varphi = 1 \cdot \cos(\frac{3\pi}{4}) = -1 \\ z_8 = -1i \end{array}$$

Aufgabe 2

$$(1+2i) + (4-3i) = (1+4) + i(2-3) = 5-i$$

$$(2+4i) + 3 = (2+3) + 4i = 5+4i$$

$$(4+2i) - 2i = 4+i(2-2) = 4$$

2. Multiplikation

$$\begin{array}{lll} (1+2i)*(4-3i) &= 1*4+1*(-3i)+2i*4+2i*(-3i) &= 10+5i\\ (3+2i)*(3-2i) &= 9+6i-6i-4i^2 &= 13\\ (1+3i)*((-1)*3i) &= 1+3i-3i+9i^2 &= -10 \end{array}$$

3. Division

$$\begin{array}{ll} \frac{(1+2i)*(4+3i)}{(4-3i)*(4+3i)} & = \frac{-2+11i}{25} \\ \frac{(3+2i)*(3+2i)}{(3-2i)*(3+2i)} & = \frac{5+12i}{13} \\ \frac{(1+3i)*(-1-3i)}{(-1+3i)*(-1-3i)} & = \frac{8-6i}{10} \end{array}$$

4. Potenzieren

$$\bullet \begin{array}{l} \bullet \ e^{1+2i} = e^1 * e^{2i} \\ r = e^1; \varphi = 2 \\ \text{Umwandlung in kartesische Koordinaten:} \\ x = r * cos\varphi = -0, 42e \\ y = r * sin\varphi = -0, 91e \\ z = -0, 43e + 0, 91e * i \end{array}$$

• ln(1+2i)Umwandlung in Eulersche Darstellung: $r = \sqrt{1^2 + 2^2} = \sqrt{5}$ $\varphi = arctan_1^2 = arctan(2)$ $ln(\sqrt{5}e^{i*arctan(2)})$ Anwenden der Logarithmengesetze: $z = \frac{1}{2}*ln(5) + arctan(2)*i$

Aufgabe 3

a) Quadratwurzeln

$$\sqrt{-i} = \sqrt{e^{-i*\frac{\pi}{2}}} = e^{-i*\frac{\pi}{4} + k\pi}; k \in \{0, 1\}$$

$$\sqrt{-1+i} = \sqrt{\sqrt{2*e^{i*\frac{3\pi}{4}}}} = \sqrt[4]{2*e^{i*\frac{3\pi}{8}+k*\pi}}; k \in \{0,1\}$$

b) 3.Wurzel

$$\sqrt[3]{8e^{\frac{2\pi}{3}*i}} = 2*e^{i*\frac{2}{9}*\pi + k*\frac{2}{3}\pi}; k \in \{0,1,2\}$$

c) Nullstelle der Polynome

9 Komplexe Zahlen

• $p_1(x) = x^5 - x^4 - 2x^2 - 4x = 0$ Klammere x aus $\to x_1 = 0$

Rate $x_2 = -1$

Polynomdivision ergibt $x^3 - 2x^2 + 2x - 4 = 0 = 0$

Rate $x_3 = 2$

Polynomdivision ergibt: $x^2 + 2 = 0$ $x_{4.5} = \sqrt{-2} = \pm \sqrt{2}i$

$$x_{4,5} - \sqrt{-2} - \pm \sqrt{2}i$$

• $p_2(y) = y^4 - 3y^3 + 2 = 0$

Substituiere
$$y^2 = x$$

 $x^2 + 3x + 2 = 0$

Mitternachtsformel:

$$x_{1,2} = -\frac{3}{2} \pm \sqrt{\frac{9}{4} - 2} = -\frac{3}{2} \pm \frac{1}{2}$$

$$x_1 - 1; x_2 = -2$$

Rücksubstitution:

$$y_1^2 = -1 \rightarrow y_{1,2} = \pm i$$

 $y_2^2 = -2 \rightarrow y_{3,4} = \pm \sqrt{2}i$