

Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

Foreign Animal Disease Report

United States
Department of Agriculture
Animal and Plant
Health Inspection Service
Veterinary Services
FEB 17 1989

Emergency
Programs

Number 16-4

Winter 1988

In This Issue

Emergency Field Investigations
Vesicular Stomatitis on Ossabaw Island
Avian Salmonellosis
Foreign Animal Disease Update
Bovine Spongiform Encephalopathy
African Horse Sickness Review
Subject Index

Emergency Field Investigations

During the period from October 1, 1987, through September 30, 1988, 260 emergency investigations of suspected exotic diseases were conducted in the United States and Puerto Rico. Of the total, 157 investigations were for suspected vesicular diseases, 38 for septicemic conditions in swine, 3 for mucosal diseases, 50 for Newcastle disease and other poultry diseases, and 12 for suspected screwworm myiasis and other conditions.

A total of 6 cases of exotic Newcastle disease was confirmed in young pet birds: 2 in California, and 1 in Illinois, Michigan, Nevada, and Texas. Available information indicates that these birds may have entered the United States without meeting import health requirements. The infected birds were destroyed. Intensive surveillance and epidemiology indicated there was no spread to other birds.

Seven investigations were conducted for suspected avian influenza (AI). There were no cases of highly pathogenic AI in chickens. However, AI virus was isolated from chickens from two premises in Florida. The viruses isolated were not pathogenic to susceptible chickens in the laboratory, nor were symptoms or lesions observed in the chickens from which the isolates were made.

(Dr. M. A. Mixson, (301) 436-8073)

In July 1988, New Jersey vesicular stomatitis virus (VSV) was isolated from a sand fly and from swine on Osabaw Island, a small island located off the coast of Georgia.

Ossabaw Island has been studied more than any enzootic focus of VSV in the United States. Serological data shows occurrence of the virus annually since monitoring began in 1980. VSV has been isolated from animals on the island on 5 occasions during 3 years (1983, 1987, and 1988). Although cattle, horses, donkeys, white-tailed deer, raccoons, and wild swine living there have had antibodies to VSV, swine have been the only animals in which lesions have been observed, and these have been few in number. Vesicles have been found only on the snout.

On June 20, 1988, 20 female *Lutzomyia shannoni* sand flies were taken from a trap on Ossabaw Island. VSV was subsequently isolated from a pool (pulverized suspension) of the flies at the National Veterinary Services Laboratory (NVSL), Ames, Iowa. The site where the flies were collected was seven-tenths of a mile from the location where clinical vesicular stomatitis was first observed in three wild swine on June 26, 1988. A second

245
Vesicular Stomatitis on Ossabaw Island

isolation was made from affected swine on July 7, 1988. By July 22, 1988, nine swine had been observed with lesions. Subsequently, VSV was isolated from a second pool of sand flies. All isolates have been New Jersey-type VSV.

Insect trapping was initiated on Ossabaw Island on April 6, 1988, and, contrary to previous years, *Lutzomyia* were immediately found. Their first appearances in 1987 were on April 11, 14, and 30. This year, trapped flies were frozen in the field and kept frozen during sorting. It is suspected that virus was being lost in handling in earlier years due to freezing, thawing, sorting, and refreezing. By July 22, 1988, 221 pools of *Lutzomyia* had been submitted to NVSL for virus isolation.

As in past years, both wild and domestic sentinel swine were used to monitor for seroconversions. This year, domestic sentinels are being kept in pens on the ground and will be used to determine site specificity of VSV activity. In the past, domestic swine were kept in elevated pens so that their only potential exposure to VSV was through flying insects. Serologic data for 1988 was not available at the time this article was written.

A colony of *Lutzomyia* from Ossabaw Island has been started in the insectary at the University of Georgia College of Veterinary Medicine. Study of possible transovarial transmission of the Ossabaw Island strain of VSV is planned. An updated report, which will include an evaluation of this year's serologic and virus isolation results, will be submitted after the laboratory tests have been completed.

(Dr. Victor Nettles, Director, Southeastern Cooperative Wildlife Disease Study, Athens, GA 30602)

(*Vesicular stomatitis has not been identified in the continental United States since May 1986. Editor*)

✓ **Avian Salmonellosis** // Salmonellosis caused by phage type 4 *Salmonella enteritidis* has not been detected in the United States, although it has become a major infection in chickens in some areas of Europe, including the Balkan countries, the Iberian Peninsula, and the United Kingdom. It has become the major salmonellosis in humans in England and Wales.

Clinical signs are largely confined to young birds. The disease may cause mortality ranging to 20 percent of an affected flock in the first 1 to 4 weeks of life. Marked stunting may occur in 5 percent or more of infected flocks, but mortality may occur without obvious premonitory signs. Clinical disease is not common in affected semimature or mature chickens. The bacterium has been isolated from the ovaries of hens.

Prominent signs in chicks include pericarditis, perihepatitis, airsacculitis, and retained inspissated yolk sacs. This range of lesions resembles the lesions of colibacillosis. Pericarditis in survivors may persist up to the time of slaughter.

Horizontal transmission occurs readily within an affected flock, but transmission from flock to flock is uncertain. Vertical transmission appears to be the major means of dissemination, probably by both true transovarial transmission and by egg-shell penetration. As with other paratyphoid salmonelloses, infection can be expected to persist in a flock throughout life.

The characteristics of infection in other avian species and in domestic and wild mammals have not been established. One might expect that a range of birds and mammals would be susceptible to infection with or without clinical disease.

The bacterium is present in large numbers in lesions and can be isolated from those sites, usually in pure culture. Several swab samples from lesions may be placed in transport medium for later isolation attempts, or intact birds can be submitted directly to a diagnostic laboratory. Infected adult chickens may develop antibodies that cross-react with *S. pullorum* antigens, but diagnostic dependability has not been established. Isolation and phage typing is necessary to establish a diagnosis of salmonellosis caused by phage type 4 *Salmonella enteritidis*.

(Dr. Glenn H. Snoyenbos, Box 50, Jardine Route, Gardner, MT 59030, (406) 848-7158)

✓ Foreign Animal Disease Update

In South America, during April, May, and June 1988, Brazil reported 96 herds affected with vesicular disease (**foot-and-mouth disease (FMD)** types O₁ and C₃), Argentina reported 82 herds affected, Bolivia reported 22 herds (FMD type A₂₄ and C₃), Ecuador reported 22 herds (FMD type O), Paraguay reported 1 herd (FMD type not specified), and Colombia reported 177 herds (FMD types O₁, and A₂₄, and **vesicular stomatitis**). In Colombia, 11 herds were affected with New Jersey strain VS and 36 with Indiana strain. According to the Office International des Epizooties (OIE), Chile is considered free of FMD. However, the United States does not recognize that country as free of FMD. The last slaughtering of diseased animals there was on August 20, 1987. On September 30, 1987, a group of Chilean animals that had reacted to the VIA (virus infection-associated antigen) test for FMD was also slaughtered.

Italy reported a second outbreak of FMD type C, July 11, 1988 (see 16-3:3). The outbreak was located 5 km from the site of an outbreak on June 24, 1988, in the Tuscany Region. To stamp out the disease, 34 cattle and 1,500 swine were destroyed.

According to OIE, the Federal Republic of Germany is again free of FMD, as 6 months have elapsed since the last case was eliminated. No outbreaks have been reported there since January 12, 1988. However, the United States does not recognize that country as free of FMD.

Israel reported three outbreaks of FMD type O, Manissa strain, during June and July 1988, in the northern districts of Tsefat and Golan. Type O FMD virus was also isolated in June from Jordanian samples sent to the World Reference Laboratory, Pirbright, England.

Kuwait continues to report outbreaks of FMD virus type O. By June 20, 1988, 27 farms had been affected, involving cattle, swine, sheep, and goats. Samples submitted to Pirbright for subtyping were found to be antigenically related to O, BFS and O, Manissa. Susceptible livestock were being vaccinated with O, Manissa monovalent vaccine in an effort to halt spread of the disease.

The World Reference Laboratory also reported the following for the months of April, May, and June 1988: Type O - Bahrain, Turkey, Pakistan, Niger, and Hong Kong; Type A - Turkey; Type C - Philippines; and, Type SAT₁ - Zambia.

Sri Lanka, an island country off the southern tip of India, reported cases of **rinderpest (RP)** during the first 4 months of 1988. The first cases of RP were reported in Sri Lanka in December 1987. Uganda, in Eastern Africa, reported outbreaks of RP in April and May 1988.

Senegal, in Western Africa, and Oman, in the Arabian Peninsula, reported outbreaks of **peste des petits ruminants** during March and April, respectively.

During the first 6 months of 1988, **contagious bovine pleuropneumonia** was reported in the African countries of Burkina Faso, Angola, Mali, and Namibia; and in Kuwait, on the Arabian Peninsula.

Lumpy skin disease was reported in Kuwait, Senegal, Mali, Angola, Namibia, Zaire, Republic of South Africa, and Madagascar during the first 6 months of 1988.

Also, during the first 6 months of 1988, outbreaks of **sheep and goat pox** were reported in Greece, Turkey, Morocco, Senegal, Mali, Tunisia, Kuwait, Oman, and Pakistan.

African horse sickness (AHS) was reported in Namibia and Republic of South Africa during the first 6 months of 1988. AHS was reported in Spain during the fall of 1988.

In June 1988, Italy reported an outbreak of **African swine fever (ASF)** in the Sardinia Region. As a result of the outbreak, 83 pigs were slaughtered and buried. In April and May 1988, Portugal reported 28 outbreaks of ASF. A total of 1,463 swine was destroyed in Portugal during these 2 months. In March and April 1988, Spain reported 14,264 swine destroyed in 76 outbreaks of ASF. Angola and South Africa also reported ASF during the first 6 months of 1988.

Hog cholera was reported by the following countries during the first 6 months of 1988: Federal Republic of Germany, Italy, Czechoslovakia, Yugoslavia, Mexico, Colombia, Ecuador, Peru, Chile, Brazil, Argentina, Uruguay, Paraguay, Sri Lanka, Taiwan, Korea, Malaysia, and Madagascar.

Teschen disease was reported in Madagascar in January 1988, and in the Ukraine, USSR, in March 1988.

South Africa, Namibia, and Senegal reported cases of **Rift Valley fever** March through June 1988.

Switzerland reported its first cases of **contagious equine metritis (CEM)** on April 11, 1988. The outbreak affected five cross-bred stallions on two stud farms, as well as the mares covered by these stallions since March 1, 1988. To prevent further spread of the disease, the 120 horses involved in the outbreak have been excluded from breeding.

The Netherlands reported an outbreak of CEM during June 1988. The disease first appeared there in July 1987. An infected stallion covered 42 mares in the Netherlands and 53 in Belgium, and they are suspected to be infected with the causal bacteria. To prevent further spread of the disease, these mares will be bred only by artificial insemination. As of July 27, 1988, 12 of the mares in the Netherlands had been shown to have CEM.

(Dr. Percy W. Hawkes, (301) 436-8285)

245 **Bovine Spongiform Encephalopathy //**

Bovine spongiform encephalopathy (BSE) of domestic cattle was first diagnosed in November 1986, by workers at the Central Veterinary Laboratory, Weybridge, England. The disease is characterized by grey matter spongiosis and neuronal vacuolation. The associated neurological syndrome that was observed by Veterinary Investigation Officers had an insidious onset, slow progress, and fatal outcome. A preliminary report of initial cases of the disorder suggested that it had a close similarity to

scrapie of sheep and proposed the name bovine spongiform encephalopathy (Wells, G. A. H.; Scott, A. C.; Johnson, C. T.; Gunning, R. F.; Hancock, R. D.; Jeffrey, M.; Dawson, M.; and Bradley, R., 1987. *Vet. Rec.*, 121: 419-420).

Sporadic cases continued to be reported in 1987, and by June of that year, an epidemiological investigation was initiated. By the end of the year, over 100 cases had been confirmed from most parts of Great Britain, although the incidence remained greatest in the southern counties of England. By mid-1988, the incidence of BSE had risen to 500 confirmed cases among a total adult cattle population of 4 million. In June 1988, BSE was legislated a notifiable disease. There have been no reports of a similar natural disorder of cattle elsewhere in the world.

BSE Epidemiology

Epidemiological studies (Wilesmith, J.; Wells, G. A. H.; Cranwell, M. D.; and Ryan, J. B. M. *Vet. Rec.*, in press) suggest that BSE is new and that the first clinically suspected case occurred in April 1985. While some domestic cattle herds have experienced multiple cases of BSE, incidence within herds is generally low. Single cases were recorded in 75 percent of the affected herds. Within-herd incidence is significantly higher in dairy herds than in beef cow-calf herds. The disease was confined to adult cattle, and no associations with breed, sex, or stage of lactation or pregnancy were observed. Epidemiologically, BSE is an extended common-source epidemic with no evidence of cattle-to-cattle transmission, so that each affected animal represents an index case. The inquiry eliminated a number of epidemiological factors, namely introduction of disease by imported animals or semen, common management practices, and exclusive causation by simple autosomal modes of inheritance.

A computer-based simulation model of the data suggests that BSE is a new disease of cattle of food-borne origin and that British cattle were first exposed in 1981 or 1982. Analysis of age-specific incidences indicates an incubation period from 2 to 8 years and a risk of exposure for calves of 30 times that for adults.

Given the nature of the disorder, it seems probable that such exposure may emanate from scrapie-infected material in the diet. There is evidence of a food-borne source, and brain extracts from affected cows have fibrils structurally and chemically common with Scrapie Associated Fibrils (SAF) of scrapie. (Wells, G. A. H.; Scott, A. C.; Johnson, C. T.; Gunning, R. F.; Hancock, R. D.; Jeffrey, M.; Dawson, M.; and Bradley, R., 1987. *Vet Rec.*, 121: 419-420. Wells, G. A. H.; and Scott, A. C., 1988. *Neuropath. Appl. Neurobiol.*, 14: 247. Hope, J.; Reekie, L. J. D.; Hunter, N.; Multhaup, G.; Beyreuther, K.; White, H.; Scott, A. C.; Stack, M. J.; Dawson, M.; and Wells, G. A. H., *Nature*, in press).

The recent preliminary report of production of scrapie-like disease in mice inoculated with brain homogenates from BSE cases provides the first direct evidence that BSE is a transmissible disease (Fraser, H.; McConnel, I.; Wells, G. A. H.; and Dawson, M. 1988 *Vet. Rec.*, 123: 472).

Because animal proteins were judged the most likely vehicle for the agent of BSE, withdrawal of animal proteins from ruminant rations was temporarily imposed by the British Government. Further investigations are in progress to more adequately identify the disease by its characteristics, its cause, and its transmission. The British Government also ordered destruction of affected cattle to prevent contamination of the human food chain and to avoid recycling of ruminant animal protein.

The BSE epidemic is being monitored by required reporting of clinically suspect cases. Monitoring the disease status of the progeny of affected cows is of vital interest to deter-

British Regulatory Actions

mine possible occurrence of maternal BSE transmission and to devise control strategies.

Clinical Signs

The clinical signs of BSE are mainly neurological. Changes are noted in behavior, posture, movement, and sensory perception, all of which indicate a diffuse disorder of the central nervous system. The earliest signs are commonly behavioral, resembling those of hypomagnesemia or nervous ketosis, but may also include persistent kicking during milking, gait ataxia, reduced milk yield, and loss of body weight. Apprehensive behavior, gait ataxia, and loss of general bodily condition are the most frequently reported signs throughout the course of the disease. Apprehension may progress to displays of overt frenzy.

There are certain similarities between clinical features of BSE and rabies, especially the furious form of rabies, and, furthermore, only a very small proportion of BSE cases die early in the disease course. Together, these findings presage difficulty in clinically differentiating these two diseases, if BSE were to occur where rabies is endemic.

Other frequent signs are exaggerated ear movements and aggression to or avoidance of other cows.

Abnormal gait accompanies the onset of behavioral changes and sometimes becomes the dominant sign later in the course of the disease. Ataxia, usually mild at first and confined to the pelvic limbs, is evident as swaying of the hind quarters and exaggerated forward motions of the lower limbs. Similar motions of the forelimbs may follow, with occasional falling of some affected cattle as the disease progresses. Later, generalized paresis results in more frequent falling and, ultimately, inability to stand. Tremors and twitching of muscle groups of mainly the head and shoulders are also seen. Increased sensitivity to stimulation by touch and sound is evident in most cases. Handling of the head is vigorously resisted, and handling of the udder at milking time may evoke violent kicking. Excessive grooming, rubbing, or scratching activity occurs in some instances, but pruritus, as observed in scrapie of sheep, is not a prominent feature. Sudden loud noise may in some cases induce immediate falling. As the disease progresses, animals that are unmanageable, paretic, or cachetic are ordinarily humanely destroyed.

Location and Cause

There have been no reports of a similar natural disease of cattle in the United States. However, the notion that such a disorder may exist has been raised by a report that transmissible spongiform encephalopathy in ranch-reared mink (TME) may be attributable to the feeding of cattle carcasses, and not to the feeding of scrapie-contaminated sheep or goat tissues previously considered the most probable source of TME. (Marsh, R. F.; and Hartsough, G. R., 1986. Proceedings of the Seventh Annual Western Conference for Food Animal Veterinary Medicine, page 20, University of Arizona, Tucson. Marsh, R. F., and Hartsough, G. R., 1988. Proceedings of the Fourth International Scientific Congress in Fur Animal Production, pages 204-207. Canadian Mink Breeders Association, Toronto.) Prior to these reports, the feeding of scrapie-contaminated sheep or goat tissues was considered the probable cause of TME.

(*By personal communication, Dr. R. F. Marsh reports that the possibility that the mink were also fed bone meal and other meat byproducts other than bovine byproducts was not excluded. It would be premature to conclude that TME was transmitted from cattle. Editor*)

Pathological and epidemiological observations suggest that BSE is a new member of

that group of disease caused by unconventional viral agents or "prions" which comprises scrapie of sheep and goats, chronic wasting disease of mule deer, TME of ranch-reared mink, and Kuru and Creutzfeldt- Jakob disease of humans. A substantial research program on BSE, including transmissibility studies, has been established in England.

(G. A. H. Wells, Central Veterinary Laboratory, New Haw, Weybridge, Surrey KT153NB, England)

2-16 Focus on African Horse Sickness

African horse sickness (AHS) is a disease of equines caused by an arthropod-borne virus. This virus is classified as an orbivirus in the Reoviridae family with the viruses of blue-tongue, Ibaraki disease, epizootic hemorrhagic disease of deer, and a number of other related viruses. In horses, the disease is usually characterized by fever, edema of subcutaneous tissues and lungs, hemorrhages of the heart and digestive system, and high mortality. In mules and donkeys, the disease is less severe than in horses; in zebras, it may occur as an inapparent infection.

History

A devastating new disease of horses reported in the records of the Cape Colony of South Africa in 1719 was later considered to be the first report of AHS. About 1,700 horses imported by the Dutch East Indies Company died. Thereafter, the disease recurred annually. It appeared after the spring rains and continued until the first frost.

Epizootics with substantial losses occurred at about 20-year intervals in the Cape Colony. The epizootic of 1854-55 was particularly damaging. Nearly 70,000, or more than 40 percent of the total horse population of the Cape of Good Hope, died of the disease.

AHS was soon found to be enzootic in most of Africa south of the Sahara; it has had a profound impact on the history of the continent. Because mortality among horses was close to 90 percent, early explorers rode oxen, navigated rivers, or walked; military expeditions were conducted without mounted cavalry, and early settlers were often obliged to use animals other than horses to till their fields.

AHS has occasionally spread beyond its usual confines. In 1928, it spread up the Nile valley from Sudan to Egypt. The number of animals involved was not large, but 89 percent of the horses and 70 percent of the mules that contracted the disease died. Some donkeys with AHS also died. No new cases occurred after the onset of winter, and the region remained free of this disease during the next 15 years. AHS reappeared in Sudan in the summer of 1943, and spread north to the Nile delta. It disappeared during the winter, recurred in 1944, and spread to Palestine, Syria, and Jordan. Although losses were not large, these occurrences demonstrate that AHS is capable of spreading rapidly and extensively.

A major epizootic occurred in 1959-60, first in Iran, and then in West Pakistan and Afghanistan during the summer of 1959. In the spring of 1960, the disease spread rapidly to India, Turkey, Cyprus, Iraq, Syria, Lebanon, and Jordan. An estimated total 300,000 equines died of the disease.

The last widespread epizootic occurred in 1966-1967. Algeria, Morocco, Tunisia, and Spain were affected. However, vaccines were available by that time, and control methods were fairly well established. Even though losses were undoubtedly reduced, the epizootic was very costly.

The most recent excursion of AHS outside the continent of Africa began in Spain during the summer of 1987. At that time (See 15-4:4), 300 horses either died or were destroyed due to AHS. The virus apparently came from Africa in zebras imported from the Republic of South Africa. The zebras were brought via Portugal to Spain, where they were placed in zoos and a wild animal park. Equines in the area of the outbreak were vaccinated. (See article on page 4 in this issue: *Foreign Animal Disease Update*.)

AHS Virus

The viruses of AHS (AHSV) and bluetongue virus (BTV) are almost indistinguishable by physical-chemical means. Both AHSV and BTV are orbiviruses, and consist of 10 segments of double-stranded RNA surrounded by a double-layered protein shell. They are 70-80 nm in diameter, have large doughnut-shaped capsomeres, and are ether-resistant and acid-labile. Some hybridization between the nucleic acids of AHSV and BTV has been demonstrated. Both are transmitted mainly by biting midges (*Culicoides*). However, the host ranges of AHS and bluetongue are different, and they are serologically distinct.

Isolates of AHSV can be identified by the complement fixation (CF) test. However, marked differences in the efficacy of the vaccines that were produced from different isolates indicated that there might be several serological types of the virus. So far, nine serological types have been identified by neutralization tests.

AHSV Hosts

Natural infections with AHSV have been found in equines, dogs, and camels. Among the equines, susceptibility is highest in horses, somewhat lower in mules, and lowest in donkeys. Mortality rates are ranked in the same order, with rates as high as 95 percent for horses and about 80 percent for mules. African donkeys are quite resistant to AHS, and few deaths have occurred among them. Mortality rates have varied considerably from one epizootic to another, but they have always followed the same general pattern of host susceptibility. However, in the 1960 epizootic in the Middle East, substantial losses occurred among donkeys. Zebras are normally highly resistant, but some deaths from AHS have been reported.

The susceptibility of dogs to AHS was observed over the years by a number of investigators. They generally believed that the disease could be acquired by dogs only by eating infected meat or by being experimentally injected with AHSV. In a search for animals other than equines that might harbor the virus over the winter, Egyptian workers examined 111 blood samples collected during the winter from street dogs in an enzootic area in Aswan Province. Isolations of AHSV were made from three of the samples, thus proving that some dogs, at least in that area, were naturally infected and carried the virus during the winter. Two AHSV isolations were also made from camels in the Aswan Province of Egypt.

In the search for reservoir hosts in Africa, sera of wild and domesticated animals were tested in limited surveys for the presence of AHSV-specific antibodies. Significant antibody levels were found in elephants and zebra. The virus was isolated from zebra but not from elephants. In Egypt, antibodies to AHS were found in sheep (23.5 percent of total animals tested), goats (14 percent), dogs (7 percent), camels (5 percent), and buffalo (4 percent). Antibodies were not found in cattle. Judging from the relatively high levels of antibody found in sheep and goats, they too may be naturally infected.

A wide variety of animals have been experimentally infected with AHSV. White mice were found to be susceptible to intracerebral inoculation of AHSV. Serial passage by that route produced neurotropic AHSV. With the exception of rabbits, most common laboratory animals (guinea pigs, hamsters, and rats) may be infected with mouse-adapted

neurotropic strains of AHSV. Infections with AHSV have not been reported in humans.

AHSV Transmission

Because of its seasonal occurrence and the fact that it did not spread by contact, AHSV was assumed to be transmitted by biting insects. The successful protection of horses against the disease by confining them in mosquito-proof stables during the night led to a suspicion that the vector was a nocturnal bloodsucking arthropod. Although a wide variety of arthropods have been suggested as possible vectors of AHS, species of Culicoides are generally accepted as the natural vector. This conclusion is based on studies conducted in South Africa, where wild-caught Culicoides were allowed to feed on a susceptible horse that died of AHS 12 days later.

All major and sporadic outbreaks in Egypt have begun in the Aswan and Qena Provinces and in the border lands between Egypt and Sudan. Some sporadic cases may be attributed to illegal entry of infected equines from Sudan and failure to vaccinate all susceptible equines. The disease periodically recurs during hot weather following heavy rains. Mosquitoes and Culicoides abound under these conditions, but they have not been shown to harbor AHSV during cool, dry seasons.

AHSV Reservoir

Egyptian workers have tried to identify an animal reservoir for AHSV during the off-seasons. Their attention focused especially on dogs and camels. Dogs were known to be susceptible to AHS and were numerous in the area. Camels were often brought in from Sudan, where AHS control measures were far less stringent. The 23 percent incidence of AHSV-specific CF antibodies in Sudanese camel blood was significantly higher than that found in Egyptian camels (5 percent). The search yielded six AHSV isolations from dogs and four from camels. The camel isolations were particularly significant because two were obtained from engorged *Hyalomma dromedarii* ticks removed from camels imported from Sudan. The infected camels appeared normal. *Hyalomma dromedarii* larvae and nymphs that were fed on infected animals later transmitted the disease to susceptible animals. Nymphs continued to transmit the disease when they became adults.

AHS Pathogenesis

Four forms of AHS have been distinguished in horses:

The peracute or pulmonary form. This form of AHS is the most common of the four. It is usually seen in severe epizootics where mortality rates are high. An incubation period lasting 3 to 5 days precedes an acute febrile reaction that may last only 1 or 2 days, with temperatures as high as 40° to 40.5°C (104° to 105°F). This is followed by progressive respiratory disease, usually including severe dyspnea and spasmotic coughing. The animal stands with legs spread apart, head extended, and nostrils dilated.

Moribund animals are unable to stand, and, at the time of death, a frothy liquid may flow from their mouths and they drown in their own fluids. The mortality rate is over 90 percent.

The most characteristic changes seen at necropsy are edema of the lungs and serous fluid in the pleural cavity. The lymph nodes, especially those in the thoracic and abdominal cavities, are enlarged and edematous. Periaortic and peritracheal edematous infiltration, hyperemia of the glandular fundus of the stomach, congestion of the renal cortex, hyperemia and petechial hemorrhages in the mucosa and serosa of the large and small intestines, and subcapsular hemorrhages in the spleen are also commonly seen. Petechial hemorrhages occur in the pericardium, and the pericardial sac may contain fluid. Epicardial and endocardial petechial hemorrhages are occasionally seen, but cardiac lesions are usually not outstanding.

Cardiac or subacute edematous form. Caused by AHSV strains of lower virulence, this form of AHS may occur in immune animals infected with heterologous strains of the virus. The incubation period is about 7 to 14 days, and the first clinical sign is a febrile reaction that lasts from 3 to 6 days.

As the fever begins to subside, characteristic edematous swellings develop. These first appear in the supraorbital fossae and eyelids and then extend to the lips, cheeks, and tongue. Subcutaneous edema may extend down the neck and involve the shoulders, brisket, and thorax. In animals that recover, the edema subsides within 3 to 8 days. The mortality rate is about 50 percent. Death usually occurs within 4 to 8 days after the onset of fever. Before death, petechial hemorrhages appear in the conjunctvae and in the ventral surface of the tongue. Colic may precede death from cardiac failure.

Hydropericardium is the most prominent and constant change seen at necropsy. The pericardial sac may contain more than 2 liters of fluid. Petechiae and ecchymoses are usually present on the epicardium and endocardium. These hemorrhages are often most prominent along the course of the coronary vessels and beneath the bicuspid and tricuspid valves. The lungs may be normal or only slightly congested. There rarely is an excess of fluid in the thoracic cavity. The gastrointestinal tract usually has lesions similar to those seen in the pulmonary form of AHS. Submucosal edema is usually much greater in the cardiac form of AHS than in the pulmonary form.

Mixed form. The mixed form of AHS is a combination of the cardiac and pulmonary forms. The majority of fatal cases of AHS may be classified as the mixed form, with lesions of either the pulmonary or cardiac form predominating.

African horse sickness fever. In its mildest form, AHS may appear as no more than a thermal response of 1 to 5 days duration. The temperature may go as high as 40.5°C (105°F), but usually after 2 days, the fever subsides, and the animal recovers. This is the usual form of AHS in experimentally infected goats or donkeys. Naturally occurring AHS fever may escape detection.

AHS in Wildlife

AHSV was clearly present in South Africa before horses were introduced. This conclusion is based upon the absence of any prior report of the disease outside the continent of Africa, and the fact that AHS appeared only after horses were taken into certain areas of that continent. Therefore, a reservoir for the disease agent was sought among indigenous animals. A wildlife reservoir for AHSV has not been definitely established. The zebra was a prime suspect, and some observers reported deaths that they attributed to AHS. Clinically recognizable AHS has been seen in zebra, and AHSV has been isolated from zebra. However, horses also contracted AHS in areas where zebra and other game animals did not exist. In these areas, injection of blood from locally caught small mammals, birds, reptiles, and amphibians into susceptible horses also failed to produce the disease.

Much later, AHSV neutralizing and CF antibodies were found to be quite common in the blood of zebra and elephants in Kenya and South Africa. The presence of antibodies in the elephant has not been explained. AHS has never been observed in elephants, nor has AHSV been isolated from them.

AHS Immunity

Animals that have survived AHS have a solid immunity to the particular virus type involved, but remain susceptible to the other serological types. Foals from immune dams acquire a natural immunity that protects them from the disease for approximately

8 months after birth.

In some enzootic areas, mass vaccination of equines is practiced. Vaccination is seldom done in other animals such as camels, goats, sheep, and dogs that may be infected but seldom display clinical signs.

AHS Diagnosis

In enzootic areas where veterinarians and horse owners are familiar with the disease, clinical signs and gross lesions are usually characteristic enough to permit a presumptive diagnosis. For example, edema of the supraorbital fossae is pathognomonic for the cardiac form of AHS.

Some of the clinical signs and post-mortem findings of the disease may be confused with other equine diseases such as equine infectious anemia, equine piroplasmosis, purpura hemorrhagica, and rhinopneumonitis. Therefore, a definitive diagnosis of AHS requires isolation and identification of the virus.

AHSV isolation is usually achieved by intracerebral inoculation of unweaned mice with defibrinated blood taken at the peak of fever. Spleen suspensions have also been used for viral isolation. A litter of 8 to 10 mice is used for this purpose. Each mouse is given 0.025 ml of blood, diluted in 10 parts sterile distilled water or phosphate buffered saline. The mice are observed for 2 weeks, and the brains of those that show nervous signs and prostration are removed and inoculated intracerebrally as a 10 percent suspension into another litter of suckling mice. After 3 to 5 serial passages, mouse mortality is usually 100 percent. Viruses isolated in this manner remain antigenic, even though they are neurotropic and may no longer produce clinical disease in horses.

Antigens for the CF test, Outcherlony agar gel immunodiffusion test (AGID), and virus neutralization test (VN) have been prepared from laboratory-infected mouse brains. Stocks of reference viruses, also prepared in mice, have been used to produce type-specific antisera in rabbits. These procedures, reagents, and tests can be used to isolate, identify, and type AHS viruses. They also can be used to survey animal populations for AHS antibodies. The CF test is useful for rapid diagnosis. It is group specific, but limited by the short period during which CF antibodies are present in the serum of infected animals. For typing, the VN test must be used. Virus-neutralizing antibodies are present for a much longer time than CF antibodies.

Cell cultures were eventually used to isolate AHSV directly from naturally infected animals and to type viruses by VN. This improves upon the slow and tedious procedures of propagating AHSV by mouse inoculation. Of the numerous cell cultures tested, stable monkey kidney cell lines, MS and VERO, and baby hamster kidney cell line, BHK21, proved to be most useful.

Coexistence of virus and antibody in the blood of the infected animal accounts for some of the difficulty in isolating the virus. However, most of the virus in the blood appears to be firmly associated with erythrocytes. These may be washed comparatively free of antibody. Virus isolation is facilitated by using an inoculum of washed erythrocytes, hemolyzed either by sonication or addition of distilled water. The use of roller-tube cultures also appears to favor virus isolation.

Fluorescent antibody (FA) techniques also have been applied to AHSV detection. Although the FA techniques do not identify AHSV types, they are more convenient and rapid than CF in identifying AHSV group antigens. Indirect immunofluorescence has been used successfully in a survey for AHS antibodies in wild zebra in Kenya.

A number of new tests are being developed. Promising preliminary trials have been conducted with some of them. Much more testing will be required before they are likely to be accepted as standard procedures. Among them are microadaptations of the CF and AGID tests, hemagglutination tests with erythrocytes coupled to type-specific AHS antibodies for the typing of AHSV isolates, and an indirect enzyme-linked immunosorbent assay (ELISA).

AHS Control

Because AHSV is arthropod-borne, both its vectors and its vertebrate hosts are considered in prevention, control, and eradication. Repellents and insecticides apparently have reduced the incidence of the disease substantially, although controlled studies were not made. Some countries spray the interiors of airliners with an insecticide aerosol before passengers disembark from flights originating in regions where AHS exists.

In the United States, horses from Africa, Asia, and the Mediterranean countries are quarantined on arrival in insect-proof stables. They remain for at least 60 days before being allowed to proceed to their destination.

A number of satisfactory vaccines are now available. However, vaccine supplies may not be sufficient to quickly arrest a fast-spreading major epizootic. When AHS is first diagnosed in an area, affected horses should be quickly and humanely eliminated, and the uninfected equines should be vaccinated with a polyvalent vaccine. After the diagnosis of AHS has been confirmed and the virus type identified, a homologous vaccine may be substituted for the polyvalent vaccine to reduce cost and improve efficiency.

Conclusion

African horse sickness continues to be enzootic in most of Africa, but losses are generally kept at a minimum through the use of vaccines. Although no major epizootics had been reported outside of Africa in 20 years, a 1987 outbreak in Spain served as a reminder that it is still too early to relegate the disease to history.

In most of the world, the horse is no longer used as a beast of burden and is no longer of military importance. However, it has become of great importance for sport and recreation. Valuable horses are often transported by air from one country to another, despite the fact that there is still much to be learned about some of the diseases that may be travelling with them.

The reservoirs and vectors of AHSV are not well established. AHS is a disease that deserves more attention than it may now be receiving, especially from countries outside the African continent.

(Dr. William R. Hess, Research Microbiologist, Retired, Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 1944)

Subject Index

This subject index covers FAD Report volumes 10 through 16. It provides quick access to articles that contain information related to the index words. Subjects are cited by volume number, (issue number), page number or span of pages, and year of publication. Readers who desire to maintain a complete file of the indexed articles can obtain copies of prior issues by sending a request to the editor. A subject index will be published each year in the winter issue.

Advisory committee	11(2):6-7	1983
Africa, foot-and-mouth disease	13(1):6	1985
African horse sickness:		
Africa	16(1):3	1988
Africa	16(3):4	1988
Africa & Spain	16(4):4	1988
Review	16(4):7-12	1988
Spain	15(4):4	1987
Spain	16(1):2	1988
Spain	16(4):4	
African swine fever:		
Africa	16(1):3	1988
Angola	16(4):4	1988
Belgium	13(2):11	1985
Belgium	13(3):6-8	1985
Belgium free of	15(1):4	1987
Belgium free of	15(3):2	1987
Cameroon	13(1):6	1985
Dominican Republic	10(1):2	1982
Haiti	10(2):3	1982
Haiti	10(3):2	1982
Haiti	11(1):3	1983
Haiti	11(2):2-3	1983
Haiti	11(3):2	1983
Haiti	11(4):2-3	1983
Haiti	12(4):1-2	1984
Italy	15(2):12	1987
Malawi	13(1):6	1985
Netherlands	14(2):2	1986
Netherlands	14(3):4	1986
Netherlands	15(1):4	1987
Netherlands free of	15(4):3	1987
Portugal	16(3):4	1988
Portugal	16(4):4	1988
Potential impact,		
Canada	11(4):7-8	1983
Review	14(2):7-11	1986
Sardinia	10(2):9	1982
Sardinia	11(1):4	1983
Sardinia	16(4):4	1988
South Africa	15(2):12	1987
Spain	16(3):4	1988
Spain	16(4):4	1988
African wild buffalo	13(2):12	1985
Alcelaphine herpesvirus-1	12(4):4	1984
Alcelaphine herpesvirus-2	12(4):4	1984

Alpacas imported from Chile	12(3):2	1984
<u>Amblyomma hebraeum</u>	12(3):2-3	1984
<u>Amblyomma species</u>	13(2):13	1985
<u>Amblyomma variegatum</u>	13(1):7	1985
<u>Amblyomma variegatum</u> in the Caribbean	15(1):14-15	1987
Animal and Plant Health Inspection Service:		
Test exercise	10(2):1-2	1982
Test exercise	11(2):6	1983
Foreign Service	10(3):5-6	1982
Animal disease eradicated from the United States	10(1):5-6	1982
Animal health information systems, OIE	16(2):5-6	1988
Animal products, port inspections	11(1):9-11	1983
Animal products, exotic disease agents in	13(4):1-2	1985
Approved disinfectants	14(3):7-9	1986
Arthrogryposis, sheep	15(2):2-3	1987
Asia, foot-and-mouth disease	13(1):6	1985
Asiatic hemorrhagic septicemia:		
Pennsylvania, Texas	13(3):13	1985
review	13(2):6-11	1985
Audiovisuals, foreign animal diseases	13(3):9	1985
Avian imports studied	14(3):7	1986
Avian influenza:		
California	12(2):2	1984
economic assessment	13(1):1-3	1985
Ireland	15(3):3	1987
Maryland	13(2):3	1985
Pennsylvania	14(1):1	1986
Pennsylvania chickens	13(3):2	1985
Pennsylvania, Virginia	12(3):1	1984
Pennsylvania, Virginia	12(4):1	1984
Pennsylvania, Virginia	12(1):1-2	1984
New Jersey, Maryland		
Pennsylvania, Virginia		
New Jersey, Maryland	12(2):1	1984
Review	12(2):5-11	1984
Seminar in Mexico	14(1):3	1986
Surveillance completed	13(2):2	1985
Survey	15(1):1	1987
Survey	16(1):2	1988
Survey	16(2):2-3	1988
Update	13(1):1	1985
Update	13(3):2	1985
Update	14(3):1-4	1986
Virginia turkeys	13(3):3	1985
Washington, DC	13(3):3	1985
Avian influenza virus:		
A/chicken/Pennsylvania/83	13(3):3	1985
in chicken eggs	13(1):3	1985
highly pathogenic	13(3):5	1985
H5N2	13(1):1	1985
H5N2	15(1):1	1987
H5N2 research	13(3):2-5	1985

Avian influenza virus (continued)

H7N3	13(1):1	1985
H10N8	13(1):1	1985
genetics	14(2):6-7	1986
in wildlife	12(2):2-4	1984
Avian salmonellosis	16(4):2-3	1988
Babesiosis, cattle, Puerto Rico	13(3):1	1985
Babesiosis, horses, Puerto Rico	11(4):5	1983
Babesiosis review	13(4):8-14	1985
Belgium, African swine fever	13(2):11	1985
Benign African theileriosis	13(2):13	1985
Bird imports	10(1):1	1982
Bluetongue:		
Caribbean	16(3):6-7	1988
Florida	11(4):3	1983
Malaysia	16(2):5	1988
Bluetongue virus type 2	11(3):3	1983
Bongo embryo exchange	15(4):7-8	1987
Bovine spongiform encephalopathy	16(4):4-7	1988
Bovine theileriosis review	13(2):12-17	1985
Bureau of Animal Industry centennial	12(1):3	1984
Bureau of Animal Industry centennial	12(2):13	1984
Bureau of Animal Industry centennial	12(3):7	1984
B.S.E.	16(4):4-7	1988
Cache Valley virus	15(2):2-3	1987
Caliciviral disease review	11(3):8-16	1983
Caliciviral disease update	14(3):5-6	1986
Cattle importation	12(1):4	1984
Cattle tick fever, Puerto Rico	13(3):1	1985
Central America and Panama		
veterinary services	11(3):3-7	1983
Central American animal diseases	11(3):6-7	1983
China, swine exported to	14(2):5-6	1986
Contagious bovine pleuropneumonia:		
Burkina Faso	16(1):4	1988
Far East	15(1):3	1987
Kuwait	15(2):12	1987
Namibia	15(2):12	1987
Portugal, Kuwait, & Africa	15(3):3	1987
Review	12(1):6-8	1984
Contagious equine metritis	10(1):3	1982
Contagious equine metritis	10(2):4-5	1982
Contagious equine metritis	11(1):4	1983
Netherlands	15(3):3	1987
Netherlands	15(4):4	1987
Switzerland	16(4):4	1988
Corridor disease	13(2):13-14	1985
Cosmopolitan theileriosis	13(2):13	1985
Dermatophilosis and heartwater,		
Caribbean	13(1):6-9	1985
Detector dog program	14(2):1-2	1986
Diptera, exotic	11(1):4-5	1983
Diptera, exotic	11(4):3-4	1983
Diseases eradicated from the		
United States	10(1):5-6	1982
Diseases present, Central America	11(3):6-7	1983
Disinfectants, approved by USDA	14(3):7-9	1986

Duck plague review	15(3):4-11	1987
East Coast fever	13(2):13	1985
Economic assessment of avian influenza	13(1):1-3	1985
Editorial committee membership	12(1):8	1984
Editorial committee membership	12(4):15	1984
Editorial committee membership	14(3):10	1986
Embryo importation	11(2):4-5	1983
Emergency disease information	10(1):3	1982
Emergency disease investigations:		
	13(1):5	1985
	14(1):1	1986
	14(4):1	1986
	15(1):1-2	1987
	15(2):1	1987
	15(3):1	1987
	15(4):1-2	1987
	16(1):1	1988
	16(2):1	1988
	16(3):1	1988
	16(4):1	1988
Ephemeral fever	15(1):3	1987
Epizootic hemorrhagic disease, Canada	16(3):5	1988
Equine piroplasmosis, Puerto Rico	11(4):5	1983
Eradicated diseases, United States	10(1):5-6	1982
Exotic diptera	11(1):4-5	1983
Exotic diptera	11(4):3-4	1983
Exotic disease agents in animal products	13(4):1-2	1985
Exotic Newcastle disease (see Velogenic viscerotropic Newcastle disease: VVND)		
Exotic ticks in Texas	12(3):2-3	1984
Far East animal health notes	15(1):2-4	1987
Fiji free of VVND, HC, and SVD	15(3):3	1987
Food and Agriculture Organization	11(3):7-8	1983
Food Safety and Inspection Service	13(2):5	1985
Foot-and-mouth disease:		
geographic distribution:		
	13(3):8	1985
	15(1):4	1987
	15(2):12	1987
	15(3):2	1987
	16(1):3	1988
	16(2):3-5	1988
	16(3):3-4	1988
	16(4):3	1988
in Africa	13(1):6	1985
in Asia	13(1):6	1985
in Asia	15(2):5-11	1987
in Chile	12(2):12	1984
in Chile	15(1):4	1987
in Chile	15(2):11	1987
in Colombia	11(1):5-9	1983
in Colombia	16(2):7-12	1988
in Denmark	10(1):1	1982
in Denmark	10(2):2	1982

Foot-and-mouth disease geographic distribution (cont'd)		
in Denmark	11(2):2	1983
in Elephants	12(4):6-7	1984
in Far East	15(1):2-4	1987
in German Federal Republic	16(2):4	1988
in Israel	15(2):12	1987
in Italy	13(1):6	1985
in Italy	13(2):11	1985
in Italy	13(3):7-8	1985
in Italy	15(1):4	1987
in Italy	15(2):11-12	1987
in Italy	15(4):3	1987
in the Netherlands	12(1):3-4	1987
in South America	13(1):6	1985
in Mexico	13(1):10	1985
Foot-and-mouth disease vaccine bank	10(2):7-8	1982
Foot-and-mouth disease subunit		
vaccine	10(3):3	1982
Foot-and-mouth disease surveillance:		
Mexico	13(1):10	1985
Mexico	16(1):5-8	1988
Foot-and-mouth disease virus:		
effects of drying	13(2):5-6	1985
in animal products	13(4):1-2	1985
type Asia ¹	13(3):8	1985
survival, drying	13(2):5-6	1985
Foreign Animal Disease Advisory Committee:		
	10(3):6-7	1982
	16(3):2-3	1988
Foreign animal disease awareness	16(2):1-2	1988
Foreign Animal Disease Report:		
Editorial Committee	12(1):8	1984
Editorial Committee	12(4):15	1984
Editorial Committee	14(3):10	1986
purpose	10(1):1	1982
Foreign animal disease research	14(4):11-12	1986
Foreign animal disease teachers seminar	10(3):7	1982
Foreign animal disease training:		
	14(1):3	1986
	15(4):2	1987
	16(3):2	1988
Foreign animal disease update:		
	14(4):7	1986
	15(1):4	1987
	15(2):11-12	1987
	15(3):2-3	1987
	15(4):3-5	1987
	16(1):3-4	1988
	16(2):3-5	1988
	16(3):3-6	1988
	16(4):3-5	1988
(also see World animal disease update and World animal disease roundup)		
Foreign Service employment	10(2):8	1982
Foreign Service employment	10(3):5-6	1982
Gammaherpesvirinae	12(4):4	1984

Genetically engineered FMD vaccine	10(3):3	1982
Glanders, Turkey (see errata in 12-2, page 12)	11(4):5	1983
Guarding America's agriculture	11(1):9-11	1983
Haemaphysalis	13(2):13	1985
Harry S. Truman Animal Import Center Florida	10(3):4	1982
Haiti:		
African swine fever emergency	11(1):3	1983
African swine fever program	10(1):2	1982
African swine fever program	10(2):3	1982
African swine fever program	10(3):2	1982
African swine fever program	11(1):2-3	1983
African swine fever program	11(2):2-3	1983
African swine fever program	11(3):2-3	1983
African swine fever program	11(4):2-3	1983
African swine fever program	12(4):1-2	1984
Emergency declared	11(1):3	1983
No wild swine	10(1):2	1982
Heartwater:		
and dermatophilosis,		
Caribbean	13(1):6-9	1985
investigation	10(2):4	1982
review	10(1):6-10	1982
update	16(1):11-13	1988
Hemorrhagic septicemia, Asiatic:		
review	13(2):6-11	1985
in bison	13(3):13	1985
in the Far East	15(1):3	1987
Hides and trophies, imported	14(2):3-4	1986
<u>Hippobosca longipennis</u>	11(4):3-4	1983
Hog Cholera:		
diagnosis	15(3):3-4	1987
geographic distribution:		
(see errata in 11-3, page 16)	11(1):4	1983
	16(2):5	1988
	16(3):4	1988
in Austria	11(3):16	1983
in Belgium	15(3):2	1987
in England	15(4):3	1987
in Europe	15(4):3-4	1987
in FR Germany	15(3):3	1987
in Italy	15(3):2	1987
in Japan	15(1):4	1987
in the Far East	15(1):3-4	1987
in the Netherlands	15(3):3	1987

Hog Cholera geographic distribution (continued)		
in Yugoslavia investigation,	15(3):3	1987
New Hampshire	15(1):1-2	1987
review	12(4):7-15	1984
surveillance	16(1):5	1988
suspected in Texas	16(1):1	1988
How Foreign Animal Disease Report is produced	12(1):8	1984
<u>Hyalomma species</u>	13(2):13	1985
Hydranencephaly, sheep	15(2):2-3	1987
Importation of animals	12(3):2	1984
Imported cattle, Europe	12(1):4	1984
Imported pork	13(2):5	1985
Italy, foot-and-mouth disease	13(1):6	1985
Italy, foot-and-mouth disease	13(2):11	1985
Ivermectin	12(1):5	1984
Japanese encephalitis:		
Asia	15(1):3	1987
India	16(3):4-5	1988
Jembrana disease:		
review	13(3):10-13	1985
in Bali, Indonesia	15(1):3	1987
Laboratories, international reference	14(2):4	1986
Llamas imported from Chile	12(3):2	1984
Llama imports	15(2):4	1987
Los Angeles animal import center	12(3):2	1984
Lumpy skin disease:		
	16(2):5	1988
	16(3):4	1988
	16(4):4	1988
Maedi review	14(1):4-10	1986
Malawi African swine fever	13(1):6	1985
Mali and Togo rinderpest	13(2):11-12	1985
Mali project	12(3):5	1984
Malignant catarrhal fever review	12(4):3-6	1984
Manila Office, Animal and Plant Health Inspection Service	12(4):3	1984
Maryland avian influenza	13(1):1	1985
Maryland avian influenza	13(2):3	1985
Mediterranean and tropical theileriosis	13(2):13	1985
Mexican border security	14(2):5	1986
Mexico foot-and-mouth disease survey	13(1):10	1985
Mexico foot-and-mouth disease survey	14(1):2	1986
Mexico screwworm program	12(4):2	1984
Mexico vesicular stomatitis	12(1):5	1984
Mexico vesicular stomatitis	12(3):4	1984
Model regulation on zoological animals	14(4):6	1986
<u>Musca vitripennis</u>	10(2):2	1982
<u>Musca vitripennis</u>	11(1):5	1983
<u>Musca vitripennis</u>	11(4):3	1983
NADDs: National Animal Disease Detection System	13(2):3	1985
Nematodiriasis	13(4):4-6	1985

Newcastle disease:			
in pet birds	13(1):5	1985	
in pet birds	16(3):1-2	1988	
in pigeons	13(1):5-6	1985	
in the Far East	15(1):3	1987	
New animal import center in Los Angeles	12(3):2	1984	
No wild swine in Haiti	10(1):2	1982	
O.I.E.:			
Office International des Epizooties	10(2):6-7	1988	
Animal health information systems	16(2):5-6	1988	
One hundred years of animal health	12(2):13-14	1984	
Oriental theileriosis	13(2):13	1985	
Ossabaw Island, vesicular stomatitis	11(4):1-2	1983	
Panama and Central America	11(3):3-7	1983	
Parafilarilasis in cattle, review	11(1):11-15	1983	
Parafilarilasis, seasonal testing (see errata in 11-2, page 12)	11(1):15	1983	
Parafilarilasis, therapy for	12(1):5	1984	
Parafilarilia vector	10(2):2	1982	
Parent Committee: Import pathogens and vectors	13(1):9-10	1985	
Penguin eggs imported	12(1):4-5	1984	
Pennsylvania, avian influenza	13(1):1	1985	
Peste des petits ruminants	16(4):3	1988	
Pet birds, Newcastle disease	13(1):5	1985	
Piroplasmosis (see Babesiosis) Philippine scientific and technical exchange	11(2):5-6	1983	
Plant Protection and Quarantine	11(1):9-11	1983	
Plant Protection and Quarantine	13(4):6	1985	
Plum Island Research	14(4):11-12	1986	
Pork imported	13(2):5	1985	
Port inspections of animal products	11(1):9-11	1983	
Port inspections of animal products	13(4):6	1985	
Puerto Rico tick program	11(4):5-7	1983	
Puerto Rico tick program	12(2):11-12	1984	
Puerto Rico tick program	13(3):1	1985	
Puerto Rico tick program	13(4):1	1985	
Puerto Rico tick program	14(1):2	1986	
Rama Dewa disease: Jembrana	13(3):10	1985	
READI system revised	14(4):3	1986	
READI system update	15(3):1-2	1987	
READI test exercise	15(4):2	1987	
READI test exercise	16(3):2	1988	
Reference laboratories, international	14(2):4	1986	
Research at Plum Island	14(4):11-12	1986	
Research at Plum Island	15(1):12-14	1987	
Research at Plum Island	15(2):12-15	1987	
Rhinoceros, ticks in Texas	12(3):2-3	1984	
Rift Valley fever:			
Africa	16(4):4	1988	
review	10(2):9-14	1982	
update	16(2):3-4	1988	
update	16(3):7-11	1988	

<u>Rhipicephalus species</u>	13(2):13	1985
<u>Rhipicephaline theileriosis</u>	13(2):13	1985
<u>Rinderpest:</u>		
control in Africa	12(3):5-7	1984
geographic distribution	13(3):9	1985
geographic distribution	15(1):4	1987
in Africa:		
	13(1):6	1985
	15(1):4	1987
	16(1):3	1988
	16(2):5	1988
in Far East	15(1):3	1987
in Sri Lanka:		
	16(1):3	1988
	16(3):4	1988
	16(4):3	1988
Togo and Mali	13(2):11-12	1985
review	11(4):8-12	1983
review	16(3):11-20	1988
<u>Rome office operations, Animal and Plant Health Inspection Service</u>	12(4):3	1984
<u>Salmonellosis, avian</u>	16(4):2-3	1988
<u>Salmonella enteritidis</u> phage type 4	16(4):2-3	1988
<u>Sardinia, African swine fever</u>	13(1):6	1985
<u>Screwworm eradication in Mexico</u>	12(4):2	1984
<u>Screwworm program update</u>	13(2):1-2	1985
<u>Screwworm program update</u>	14(4):10	1986
<u>Screwworm program review</u>	11(2):7-11	1983
<u>Screwworms in Florida dog</u>	15(4):1	1987
<u>Screwworms in Texas dog</u>	15(3):1	1987
<u>Sheep arthrogryposis and hydranencephaly</u>	15(2):2-3	1987
<u>Sheep associated malignant catarrhal fever</u>	12(4):4	1984
<u>Sheep pox and goat pox:</u>		
geographic distribution	13(3):9	1985
geographic distribution	16(3):4	1988
geographic distribution	16(4):4	1988
in Greece	16(2):5	1988
<u>SNOVET: Systematized Nomenclature of Veterinary Medicine</u>	12(4):7	1984
<u>Soft ticks on Hispanola Island</u>	10(1):2	1982
<u>South America foot-and-mouth disease</u>	13(1):6	1985
<u>Spanish language Foreign Animal Disease Report</u>	12(4):7	1984
<u>Spider lamb syndrome</u>	15(1):7-12	1987
<u>Survival of disease agents in animal products</u>	13(4):2-3	1985
<u>Suspected foreign animal diseases</u>	10(2):4	1982
<u>Suspected foreign animal diseases</u>	11(1):4	1983
<u>Suspected foreign animal diseases</u>	11(2):4	1983
<u>Suspected foreign animal diseases</u>	11(3):3	1983
<u>Swine parvoviral disease</u>	15(1):5	1987
<u>Swine vesicular disease:</u>		
in Hong Kong	15(4):9	1987
in Hong Kong	16(2):5	1988
review	15(4):8-12	1987

Swollen head syndrome	15(4):6-7	1987
Tabanan disease: Jembrana	13(3):10	1985
Teschen disease	16(4):4	1988
Test exercise, Animal and Plant Health Inspection Service	10(2):1	1982
Test exercise, Animal and Plant Health Inspection Service	11(2):6	1983
Texas, exotic ticks	12(3):2-3	1984
Theileriosis, bovine, review	13(2):12-17	1985
Tick-borne protozoa	13(2):12	1985
Tick program in Puerto Rico	11(4):5-7	1983
Tick program in Puerto Rico	12(2):11-12	1984
Tick program in Puerto Rico	13(3):1	1985
Tick program in Puerto Rico	13(4):1	1985
Tick program in Puerto Rico	14(1):2	1986
Tick program feasibility for Caribbean	15(1):14-15	1987
	16(1):4-5	1988
Togo and Mali, rinderpest in	13(2):11-12	1985
Trophies and hides, imported	14(2):3-4	1986
Tropical bont ticks	15(1):14-15	1987
Tropical bont ticks	13(1):7	1985
Tropical theileriosis	13(2):13	1985
Truman, Harry S., Animal Import Center	10(3):4	1982
Trypanosomiasis, W. Hemisphere	16(1):13-16	1988
Turkey rhinotracheitis	15(4):5-7	1987
Velogenic Viscerotropic Newcastle disease: in exotic birds	10(3):4-5	1982
geographic distribution:		
in United States:		
10(2):4	1982	
11(2):1	1983	
11(3):1-2	1983	
11(4):2	1983	
12(3):1-2	1984	
13(3):1	1985	
15(2):1	1987	
16(3):1-2	1988	
16(4):1	1988	
Venezuelan equine encephalomyelitis review	14(4):13-18	1986
Vesicular stomatitis conference	13(1):3-4	1985
Vesicular stomatitis in Missouri (see errata in 11-2, page 12)	11(1):1	1983
Vesicular stomatitis:		
field studies	14(4):3	1986
fingerprinting virus	16(1):8-10	1988
geographic distribution:		
in Central and South America	16(2):5	1988
in Colombia	16(3):3	1988
in Mexico	12(1):5	1984
in Mexico	12(3):4	1984
in Mexico	16(2):5	1988

Vesicular stomatitis:		
in United States	10(3):1-2 11(1):1 11(2):1-2 11(3):1 12(2):11 13(1):3 13(3):2 13(4):1	1982 1983 1983 1983 1984 1985 1985 1985
historical review on Ossabaw Island, Georgia:	10(3):11-14	1982
review vaccine	11(4):1 15(3):1 16(4):1-2 10(3):8-11 11(4):2	1983 1987 1988 1982 1983
Veterinary Services, Central America and Panama	11(3):3-7	1983
Viral turkey rhinotracheitis	15(4):5-7	1987
Visna-Maedi review	14(1):4-10	1986
VVND: see velogenic viscerotropic Newcastle disease		
Wildebeest-associated malignant catarrhal fever	12(4):4	1984
Wildlife avian influenza	12(2):2-4	1984
Wildlife disease studies	10(2):5-6	1982
World animal disease roundup	10(1):3-5	1982
World animal disease roundup	10(2):8-9	1982
World animal disease roundup	10(3):7	1982
World animal disease roundup	11(1):3	1983
World animal disease roundup	11(2):3-4	1983
World animal disease roundup	11(3):1-2	1983
World animal disease roundup	11(4):4-5	1983
World animal disease roundup	12(1):3-4	1984
World animal disease roundup	12(2):12	1984
World animal disease roundup	12(3):4	1984
World animal disease roundup	12(4):2-3	1984
World animal disease roundup	13(1):6	1985
World animal disease roundup	13(2):11-12	1985
World animal disease roundup	13(3):8-9	1985
World animal disease roundup	13(4):7-8	1985
World animal disease roundup	14(1):4	1986
World animal disease roundup	14(2):2-3	1986
World animal disease roundup	14(3):4-5	1986
World animal disease roundup	15(1):4	1987
(also see foreign animal disease update)		
Zimbabwean malignant catarrhal fever	13(2):13	1985
Zoological animal regulation	14(4):6	1986

Questions about the FAD Report may be sent to:

Dr. Edwin I. Pilchard, Editor
USDA, APHIS, VS
Room 741, Federal Building
6505 Belcrest Road
Hyattsville, MD 20782

Thirty days before moving, send address change and, if possible, mailing label from latest issue to:

Information Management Branch
APHIS-USDA
Room G-110, Federal Building
6505 Belcrest Road
Hyattsville, MD 20782