

(https://databricks.com)

SF crime data analysis and modeling

Import package

```
from csv import reader
from pyspark.sql import Row
from\ pyspark.sql\ import\ SparkSession
from pyspark.sql.types import *
import pandas as pd
import numpy as np
import seaborn as sb
import matplotlib.pyplot as plt
import warnings
import os
os.environ["PYSPARK_PYTHON"] = "python3"
# 从SF gov 官网读取下载数据
import urllib.request
urllib.request.urlretrieve("https://data.sfgov.org/api/views/tmnf-yvry/rows.csv?accessType=DOWNLOAD", "/tmp/myxxxx.csv")
dbutils.fs.mv("file:/tmp/myxxxx.csv", "dbfs:/data/sf_03_18.csv")
display(dbutils.fs.ls("dbfs:/data/"))
## 自己下载
# https://data.sfgov.org/api/views/tmnf-yvry/rows.csv?accessType=DOWNLOAD
                                                                        modificationTime
```

```
data_path = "dbfs:/data/sf_03_18.csv"
# use this file name later
Get dataframe and sql
```

```
from pyspark.sql import SparkSession
spark = SparkSession \
    .builder \
    .appName("crime analysis") \
    .config("spark.some.config.option", "some-value") \
    .getOrCreate()

df_opt1 = spark.read.format("csv").option("header", "true").load(data_path)
display(df_opt1)
df_opt1.createOrReplaceTempView("sf_crime")
```

ı	PdId	IncidntNum _	Incident Code	Category	Descript
1 4	4133422003074	041334220	03074	ROBBERY	ROBBERY, BODILY FORCE
2 {	5118535807021	051185358	07021	VEHICLE THEFT	STOLEN AUTOMOBILE
3 4	4018830907021	040188309	07021	VEHICLE THEFT	STOLEN AUTOMOBILE
4	11014543126030	110145431	26030	ARSON	ARSON
5 ′	10108108004134	101081080	04134	ASSAULT	BATTERY
6	13027069804134	130270698	04134	ASSAULT	BATTERY

df_opt2 = df_opt1[['IncidntNum', 'Category', 'Descript', 'DayOfWeek', 'Date', 'Time', 'PdDistrict', 'Resolution', 'Address', 'X', 'Y', 'Locati
display(df_opt2)

	IncidntNum -	Category	Descript	DayOfWeek -	Date _
ı	041334220	ROBBERY	ROBBERY, BODILY FORCE	Monday	11/22/2004
	051185358	VEHICLE THEFT	STOLEN AUTOMOBILE	Tuesday	10/18/2005
	040188309	VEHICLE THEFT	STOLEN AUTOMOBILE	Sunday	02/15/2004
	110145431	ARSON	ARSON	Friday	02/18/2011
	101081080	ASSAULT	BATTERY	Sunday	11/21/2010
	130270698	ASSAULT	BATTERY	Tuesday	04/02/2013

The number of crimes for different category

 $spark_sql_q1 = spark_sql("SELECT category, COUNT(*) AS Count FROM sf_crime GROUP BY category ORDER BY Count DESC") \\ display(spark_sql_q1)$

panda dataframe

crimes_pd_df = crimeCategory.toPandas()

#number of crimes for different district
spark_sql_q2 = spark.sql("SELECT PdDistrict, COUNT(*) AS Count FROM sf_crime GROUP BY 1 ORDER BY 2")
display(spark_sql_q2)

Table	Visualization	1
	PdDistrict _	Count
1	NA	1
2	RICHMOND	112804
3	PARK	119698
4	TARAVAL	155461
5	INGLESIDE	181092
6	TENDERLOIN	186954

The number of crimes each "Sunday" at "SF downtown".

```
from pyspark.sql.functions import to_date, to_timestamp
df_opt2_new = df_opt2.withColumn('Date_o', to_date(df_opt2.Date, "M/d/y"))
display(df_opt2_new)
df_opt2_new.createOrReplaceTempView("sf_crime")
```

	IncidntNum 🔺	Category	Descript	DayOfWeek 🔺	Date 4	.
1	041334220	ROBBERY	ROBBERY, BODILY FORCE	Monday	11/22/2004	
2	051185358	VEHICLE THEFT	STOLEN AUTOMOBILE	Tuesday	10/18/2005	
3	040188309	VEHICLE THEFT	STOLEN AUTOMOBILE	Sunday	02/15/2004	
ı	110145431	ARSON	ARSON	Friday	02/18/2011	
5	101081080	ASSAULT	BATTERY	Sunday	11/21/2010	
3	130270698	ASSAULT	BATTERY	Tuesday	04/02/2013	

```
display(spark_sql_q3)
        Visualization 1
Table
      Date_o
                count(1)
      2003-01-05
     2003-01-12
 2
                    20
     2003-01-19
 3
                    17
      2003-01-26
                    13
 4
      2003-02-02
                    14
 6
     2003-02-09
                    22
801 rows
```

The number of crime in each month of 2015, 2016, 2017, 2018.

```
from pyspark.sql.functions import to_date, month, year
df_opt2_new = df_opt2_new.withColumn('Month',month(df_opt2_new['Date_o']))
df_opt2_new = df_opt2_new.withColumn('Year', year(df_opt2_new['Date_o']))
display(df_opt2_new)
```

df_opt2_new.createOrReplaceTempView("sf_crime")
Table

Table

	IncidntNum -	Category	Descript	DayOfWeek -	Date _	Ti
1	041334220	ROBBERY	ROBBERY, BODILY FORCE	Monday	11/22/2004	17
2	051185358	VEHICLE THEFT	STOLEN AUTOMOBILE	Tuesday	10/18/2005	20
3	040188309	VEHICLE THEFT	STOLEN AUTOMOBILE	Sunday	02/15/2004	02
4	110145431	ARSON	ARSON	Friday	02/18/2011	05
5	101081080	ASSAULT	BATTERY	Sunday	11/21/2010	17
6	130270698	ASSAULT	BATTERY	Tuesday	04/02/2013	15

1,000 rows | Truncated data

disp Table	lay(spark_sq Visualizatio		
	Year	Month	count(1)
1	2015	1	13181
2	2015	2	11882
3	2015	3	13463
4	2015	4	12526
5	2015	5	13318
6	2015	6	12853

	Year	Month _	count(1)
1	2015	1	13181
2	2015	2	11882
3	2015	3	13463
4	2015	4	12526
5	2015	5	13318
6	2015	6	12853

insight

- 1. from visualization 1, the crome data might not be collected completely in May of 2018.
- 2. from visualization 1, although we only have 5-month crime data for 2018, we can observe that the number of crime decreases suddently.
- 3. from visualization 1, crime rate seems to be high in January
- 4. from visualization 2, overall, through the year, the crime number in 2016 is less than the ones in 2015 and 2017.

```
display(spark_sql_q4)
Table
      Year
                avg(cnt)
 1
      2015
                   12621.583333333334
 2
      2016
                   12166.16666666666
 3
      2017
                   12457.25
 4
      2018
                   9011.8
4 rows
```

```
display(spark_sql_q4)
Table
      Month
                avg(cnt)
                   12800
     2
                   11801.66666666666
 2
 3
     3
                   12887.666666666666
     4
                   12294.333333333334
 4
 5
     5
                   12796.333333333334
 6
     6
                   12255.333333333334
12 rows
```

The means of years and the means of months proved the observation

The number of crime with respsect to the hour in certian day like 2015/12/15, 2016/12/15, 2017/12/15.

```
from pyspark.sql.functions import to_timestamp, hour
df_opt2_new = df_opt2_new.withColumn('Time', to_timestamp(df_opt2_new.Time, "HH:mm"))
df_opt2_new = df_opt2_new.withColumn('Hour', hour(df_opt2_new['Time']))
display(df_opt2_new)
df_opt2_new.createOrReplaceTempView("sf_crime")
```

	IncidntNum -	Category	Descript	DayOfWeek A	Date _	⊾ T
1	041334220	ROBBERY	ROBBERY, BODILY FORCE	Monday	11/22/2004	1
2	051185358	VEHICLE THEFT	STOLEN AUTOMOBILE	Tuesday	10/18/2005	1
3	040188309	VEHICLE THEFT	STOLEN AUTOMOBILE	Sunday	02/15/2004	1
4	110145431	ARSON	ARSON	Friday	02/18/2011	1
5	101081080	ASSAULT	BATTERY	Sunday	11/21/2010	1
6	130270698	ASSAULT	BATTERY	Tuesday	04/02/2013	1

Table	olay(spark_sq • Visualizatio	n 1
	Hour	count(1)
1	0	312
2	1	131
3	2	143
4	3	71
5	4	74
6	5	60
row		60

We can observe that there is less crime occur from 1 am to 7 am. And there is crime peak around 12 pm; meanwhile, there is a increasing crime trend toward 18 pm, which are lunch and dinner time. Therefore, i would suggest travellers keep alert when they are having food.

- (1) The top-3 danger disrict
- (2) The crime event w.r.t category and time (hour) from the result of 1

```
    display(spark_sql_q61)

    Table

    PdDistrict  count(1)

    1 SOUTHERN 390692

    2 MISSION 288985

    3 NORTHERN 266435

    3 rows
```

```
display(spark_sql_q62)
 Table
         Visualization 1
      PdDistrict   Category
                                                 Hour
                                                              count(1)
      MISSION
                                                    0
 1
                    ARSON
                                                                  35
      MISSION
                    ARSON
 2
                                                                  23
                                                    1
 3
      MISSION
                    ARSON
                                                    2
                                                                  28
      MISSION
                    ARSON
                                                    3
 4
                                                                  36
                    ARSON
                                                    4
                                                                  27
      MISSION
 5
                                                    5
                                                                  26
 6
      MISSION
                    ARSON
1,000 rows | Truncated data
```

""")

	PdDistrict _	Category	Hour	count(1)
1	MISSION	ARSON	0	35
2	MISSION	ARSON	1	23
3	MISSION	ARSON	2	28
4	MISSION	ARSON	3	36
5	MISSION	ARSON	4	27
6	MISSION	ARSON	5	26

From step1, top-3 danger districts are SOUTHERN, MISSION and NORTHERN. From step2, assault is more possible to happen around 12 am and most of burglary might happen in the ealry morning. There is more possibility of theft happen at night. The police should focus on different type of crime during different time. At the same time, we can also notice that the crime number from 1 to 7 are much lesser, so we can reduce police power during these time and focus on the other time

the percentage of resolution for different category of crime.

```
spark_sql_q7 = spark.sql("""
select a.category,resolution, (a.cnt_a*100)/b.cnt_b percentage
from (
select category, resolution, count(*) cnt_a
from sf_crime
group by 1,2)a
left join (select category, count(*) cnt_b
from sf_crime
group by 1) b
on a.category =b.category
order by 2 desc
```

	category	resolution	percentage
1	BAD CHECKS	UNFOUNDED	1.2987012987012987
2	DISORDERLY CONDUCT	UNFOUNDED	0.6041079339508659
3	VANDALISM	UNFOUNDED	0.3783190083509127
4	BURGLARY	UNFOUNDED	0.5984604741563904
5	DRUG/NARCOTIC	UNFOUNDED	0.18587518354113444
6	PROSTITUTION	UNFOUNDED	0.1515059693351918

```
spark_sql_q72 = spark.sql("""
select a.category, (a.cnt_a*100)/b.cnt_b percentage
from (
select category, count(*) cnt_a
from sf_crime
where resolution != 'NONE'
group by 1)a
left join (select category, count(*) cnt_b
from sf_crime
group by 1) b
on a.category =b.category
order by 2 desc
```

disp Table	play(spark_sql_q72)		
	category	percentage	
1	PROSTITUTION	94.84879704260348	3
2	WARRANTS	94.50816962362629	9
3	DRIVING UNDER THE INFLUENCE	94.39136588818117	7
4	DRUG/NARCOTIC	91.2952699433887	
5	LIQUOR LAWS	88.97887323943662	2
6	LOITERING	87.55203996669442	2
37 row	/S		

Most of the crime are unresolved. The policy should increase police system. Observing the percentage of the cases solved, the police are good at dealing with crime like prostitution, warrant, driving under the influence, which have harsh penalty by law, however, theft cases and recovered vehicle are the crime that is hard for the police to handle.

Analysis the new columns of the data

df_opt1.createOrReplaceTempView("sf_crime_1")

P	PdId	IncidntNum 🔺	Incident Code A	Category	Descript
1 4	1133422003074	041334220	03074	ROBBERY	ROBBERY, BODILY FORCE
2 5	118535807021	051185358	07021	VEHICLE THEFT	STOLEN AUTOMOBILE
3 4	018830907021	040188309	07021	VEHICLE THEFT	STOLEN AUTOMOBILE
4 1	1014543126030	110145431	26030	ARSON	ARSON
5 1	0108108004134	101081080	04134	ASSAULT	BATTERY
6 1	3027069804134	130270698	04134	ASSAULT	BATTERY

```
spark_sql_q72 = spark.sql("""
select `Current Police Districts 2 2`, count(*) cnt
from sf_crime_1
where `Current Police Districts 2 2` is not Null
group by 1
order by 2 desc
""")
```

display(spark_sql_q72)

Table	Table			
	Current Police Districts 2 2	cnt _		
1	7	103800		
2	8	106412		
3	10	156045		
4	9	180294		
5	2	195479		
6	4	260521		

Higher current police district number tend to have less crime cases

Conclusion.

There are more and more crime happened these day. And safety is one of the most important issue citizens care so much. SF is one of the famous cities in USA, but there are countless crime happened in SF every month; therefore, I hope this research is to analyze the present crime data so that police and policy maker can improve the society by making changes. Through the reasearch the crime numbers hold steady until 2018, I believe that there is a huge improvement in 2018. The series districts are southern mission and northern. And the cime peak are around 12 pm and 18 pm, which are the lunch and dinner time. We also find out that most of the cases are unsolved, which should be brought to the mind. We must impove our police system so that citizen can live in a better environment.

Time series analysis

```
process:
1.visualize time series
2.plot ACF and find optimal parameter
3.Train ARIMA
4.Prediction
```

```
# Importing libraries
from statsmodels.tsa.stattools import adfuller
import os
import warnings
warnings.filterwarnings('ignore')
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.style.use('fivethirtyeight')
from pylab import rcParams
import statsmodels.api as sm
from numpy.random import normal, seed
from scipy.stats import norm
from statsmodels.tsa.arima_model import ARMA
from statsmodels.tsa.stattools import adfuller
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
from statsmodels.tsa.arima_process import ArmaProcess
from statsmodels.tsa.arima_model import ARIMA
import math
from sklearn.metrics import mean_squared_error
from plotly import tools
from plotly.offline import init_notebook_mode, iplot
init_notebook_mode(connected=True)
import plotly.graph_objs as go
import plotly.figure_factory as ff
spark_sql_ts = spark.sql("""
                         SELECT Date_o, COUNT(*) num_crime
                         FROM \ sf\_crime
                         where Date_o < '2018-01-01'
                         Group by 1
                         order by 1
                         .....)
```

```
display(spark_sql_ts)
Table
        Visualization 1
      Date_o
                 ▲ num_crime ▲
      2003-01-01
                     582
 2
      2003-01-02
                     384
 3
      2003-01-03
                     418
                     328
 4
      2003-01-04
      2003-01-05
                     367
 5
      2003-01-06
1,000 rows | Truncated data
```

```
crimes_df = spark_sql_ts.toPandas()
crimes_df.Date_o=pd.to_datetime(crimes_df.Date_o)
crimes_df=crimes_df.set_index(['Date_o'])
```

crimes_df num_crime

Date_o	
2003-01-01	582
2003-01-02	384
2003-01-03	418
2003-01-04	328
2003-01-05	367
2017-12-27	374
2017-12-28	408
2017-12-29	401
2017-12-30	418
2017-12-31	413

5478 rows × 1 columns

```
y = crimes_df['num_crime'].resample('M').mean()
 y.plot(figsize=(18, 6))
 nlt.show()
440
420
400
380
360
340
                                                                           2011
 2003
                    2005
                                      2007
                                                         2009
                                                                                              2013
                                                                                                                2015
                                                                                                                                   2017
                                                                     Date o
```

oux[dascribaht 180.000000 380.517255 mean 26.156167 std min 329.709677 358.457731 25% 50% 381.817742 75% 400.395161 444.166667 max Name: num_crime, dtype: float64

```
rollingmean = y.rolling(window=12).mean()
rollingstd = y.rolling(window=12).std()

orig = plt.plot(y, color='blue', label='Original')
mean = plt.plot(rollingmean , color='red', label='Rolling Mean')
#std = plt.plot(rollingstd, color='black', label='Rolling Std')
plt.rcParams["figure.figsize"] = (30,9)

plt.legend(loc='best')
plt.title('Rolling Mean ')
nlt.show(block=False)

Rolling Mean

440
```



```
std = plt.plot(rollingstd, color='black', label='Rolling Std')
plt.title('Rolling Std')
plt.show(block=False)
```



```
deco = sm.tsa.seasonal_decompose(y, model='additive')
fig = deco.plot()
plt.rcParams["figure.figsize"] = (30,10)
plt.show()
```


Oudq59jresidndescribs(000000

mean 0.055538
std 10.458618
min -23.333856
25% -6.564380
50% -0.580532
75% 7.068715
max 29.683243
Name: resid, dtype: float64

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
plot_acf(y,lags=50,title="crime number")


```
pred = TSresults.get_prediction(start=pd.to_datetime('2015-01-31'), dynamic=False)
pred_ci = pred.conf_int()
#Returns the confidence interval of the fitted parameters.

ax = y['2003':].plot(label='observed')
pred.predicted_mean.plot(ax=ax, label='Forecast', alpha=.6)

ax.fill_between(pred_ci.index, pred_ci.iloc[:, 0], pred_ci.iloc[:, 1], color='k', alpha=.2)
ax.set_xlabel('Date')
ax.set_ylabel(' crime number')
plt.legend()

plt.show()
```


pred_ci

lower num_crime	upper num	_crime

Date_o		
2015-01-31	356.240993	419.564597
2015-02-28	380.851757	444.175362
2015-03-31	382.349508	445.673112
2015-04-30	389.511475	452.835080
2015-05-31	382.168684	445.492289
2015-06-30	389.501804	452.825409
2015-07-31	390.151661	453.475266
2015-08-31	385.177551	448.501155
2015-09-30	391.954827	455.278432
2015-10-31	385.205818	448.529423
2015-11-30	381.533324	444.856929
2015-12-31	369.848843	433.172448
2016-01-31	350.424651	413.748256
2016-02-29	372.469688	435.793293
2016-03-31	372.865868	436.189473
2016-04-30	362.046820	425.370425
2016-05-31	367.122296	430.445901
2016-06-30	367.021429	430.345034
2016-07-31	363.268956	426.592561
2016-08-31	357.483617	420.807222
2016-09-30	361.235430	424.559034
2016-10-31	367.914991	431.238596
2016-11-30	375.999662	439.323267
2016-12-31	372.855293	436.178898
2017-01-31	372.863520	436.187125
2017-02-28	374.354068	437.677673
2017-03-31	381.266982	444.590587
2017-04-30	386.225750	449.549354
2017-05-31	380.791553	444.115158
2017-06-30	379.228051	442.551656
2017-07-31	376.337474	439.661079
2017-08-31	378.311159	441.634764
2017-09-30	373.133945	436.457550
2017-10-31	375.830010	439.153615
2017-11-30	382.206272	445.529877
2017-12-31	371.499332	434.822937

```
y_forecasted = pred.predicted_mean
y_truth = y['2015-01-31':]

# Compute the mean square error
mse = ((y_forecasted - y_truth) ** 2).mean()
print('The Mean Squared Error of our forecasts is {}'.format(round(mse, 2)))
```

The Mean Squared Error of our forecasts is 210.32

