

T700(E)(A1)T

NATIONAL CERTIFICATE FITTING AND MACHINING THEORY N2

(11022032)

1 August 2019 (X-Paper) 09:00–12:00

Calculators may be used.

This question paper consists of 11 pages and 1 formula sheet.

(11022032) -2-

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE
FITTING AND MACHINING THEORY N2
TIME: 3 HOURS
MARKS: 100

NOTE: If you answer more than the required number of questions only the required number will be marked. ALL work you do NOT want to be marked must be clearly crossed out.

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions in SECTION A, except for QUESTION 1 where either QUESTION 1.1 or QUESTION 1.2 must be answered.
- 2. Answer any TWO questions in SECTION B.
- 3. Read ALL the questions carefully.
- 4. Number the answers according to the numbering system used in this question paper.
- 5. Write neatly and legibly.

(11022032) -3-

SECTION A

QUESTION 1: OCCUPATIONAL SAFETY (Answer only QUESTION 1.1 or QUESTION 1.2.)

1.1 Choose a term from COLUMN B that matches a description in COLUMN A. Write only the letter (A–F) next to the question number (1.1.1–1.1.5) in the ANSWER BOOK.

	COLUMN A	COLUMN B		
1.1.1	Fixed in position and adjusted to within 3 mm of the surface of the grinding	Α	metal flange	
	wheel	В	ventilated area	
1.1.2	Machine guard used for shafts, pulleys and gears	С	point-of-operation guard	
	ana goaro		gaara 🕞	
1.1.3	Outside diameter not less than one third of grinding wheel diameter	D	work rest	
		Е	transmission guard	
1.1.4	Where to store compressed gas cylinders	F	concrete store	
1.1.5	Machine guard covering circular saw blades, guillotine knives and punch press dies			

 (5×1)

OR

1.2 Choose a word from COLUMN B that matches a description in COLUMN A. Write only the letter (A–F) next to the question number (1.2.1–1.2.5) in the ANSWER BOOK.

	COLUMN A	COLUMN B
1.2.1	Term used to describe a mine that has flammable gases	A first aid certificates
1,00		B calcium carbide
1.2.2	Person of authority who appoints drivers of self-propelled mobile machines	C regional director
1.2.3	Never to be stored or left in the underground workings of a mine	D manager
		E boilers
1.2.4	Must be renewed every 3 years	F fiery
1.2.5	Person of authority who consents to disturbing place of accident	· · · · · · · · · · · · · · · · · · ·

 (5×1) [5]

(11022032) -4-

QUESTION 2: COUPLINGS

- 2.1 Name the group of the coupling that would be used in the following cases:
 - 2.1.1 Where accurate alignment of the connecting shafts is guaranteed.
 - 2.1.2 Where there is a small degree of misalignment of the connecting shafts. (2 × 1)

(2)

2.2 FIGURE 1 shows a diagram of a coupling.

FIGURE 1

- 2.2.1 Name the coupling shown in FIGURE 1. (1)
- 2.2.2 Name the group to which this coupling belongs. (1)
- 2.2.3 Name parts A and B by writing the answer next to the letter (A–B) in the ANSWER BOOK. (2)

(11022032) -5-

QUESTION 3: LIMITS AND FITS

A shaft and bush have to be machined according to the dimensions in FIGURE 2 below.

Determine each of the following:

(A)

3.1 (1) High limit of shaft High limit of bush 3.2 (1) (1) 3.3 Low limit of shaft 3.4 Maximum allowance of fitted parts (2) 3.5 Minimum allowance of fitted parts (2) [7]

(11022032) -6-

QUESTION 4: BEARINGS

4.1	State the t	function of	a bearing.	((1)
4.2	Name FO bearings.	UR differe	nt types of n	naterials th	at are use	d to manufa	acture <i>plain</i>	(4) [5]
QUEST	ION 5 : LUI	BRICATIO	N AND VAL	VES				
5.1	Name THI	REE lubrica	ating devices	associated	l with gravi	ty feed lubri	cation.	(3)
5.2	Explain th	e working p	orinciple of a	foot valve.				(3) [6]
QUEST		ACKING, YSTEMS	STUFFING	BOXES,	JOINTS	AND WA	TER PIPE	
6.1	List FOUR	R factors to	consider wh	en choosin	g jointing m	aterials.		(4)
6.2	Why do the gunmetal rings in a steam assembly have a wedge design?							(1)
6.3	State FOU	JR advanta	ges of using	plastic pipi	ng.			(4) [9]
QUEST	ION 7: PUN	MPS						
7.1	Name the	type of rec	iprocating pu	ımp that ar	e described	d below:		
	7.1.1	Has only o	one inlet and	one delive	y valve.			
	7.1.2	Liquid is d	rawn in and	delivered d	uring the sa	ame stroke.		
	7.1.3	The high-p	oressure sea	l reciprocat	es with the	piston.	(3 × 1)	(3)
7.2	Name THI	REE types	of pumps the	at are class	ified as <i>rot</i> o	ary pumps.		(3) [6]

QUESTION 9:

QUESTION 8: COMPRESSORS

Name the marked components of the single-stage centrifugal compressor shown in FIGURE 3 by writing the answer next to the letter (A–D) in the ANSWER BOOK.

V-BELTS, GEAR DRIVES, CHAIN DRIVES AND REDUCTION GEARBOXES

9.1 Name TWO methods that are used to couple two shafts that are parallel with each other.

9.2 What should the deflection be if a belt of a V-belt drive is to have the correct tension?

(1)

9.3 State THREE uses of gear drives.

(3)

9.4 When maintaining chain drives, state the action that should be taken when inspecting the following:

9.4.1 The sprocket bearings. (1)

9.4.2 The sag of the chain. (1)

9.5 Give TWO reasons why it is not possible to drive the rollers of a rolling mill directly from a motor. (2)

9.6 Name the TWO types of reduction gearboxes used in industry. (2) [12]

TOTAL SECTION A: 60

[4]

SECTION B

Answer any TWO of the following questions in SECTION B.

QUESTION 10: HYDRAULICS AND PNEUMATICS

10.1 State THREE main functions of oil in a hydraulic system.

- 10.2 Make neat, freehand sketches of the ISO symbols representing each of the following hydraulic components:
 - 10.2.1 Hydraulic pump

- 10.2.2 Pressure relief valve
- 10.2.3 Reservoir

$$(3 \times 1) \qquad (3)$$

- 10.3 State the function of the following hydraulic components:
 - 10.3.1 Hydraulic pump

10.3.2 Pressure relief valve

10.3.3 Reservoir

- (1)
- 10.4 Name the component that is used to generate signals for the purpose of sensing, processing and controlling in a hydraulic circuit. (1)

€}

10.5 Identify each of the following ISO pneumatic symbols:

10.5.2

10.5.3

10.5.4

10.5.5

 (5×1) (5)

10.6	Indicate whether the following statements are TRUE or FALSE. Choose the							
	answer and write only 'True' or 'false' next to the question number							
	(10.6.1–10.6.4) in the ANSWER BOOK.							

- 10.6.1 Hydraulic systems are cheaper to set up than pneumatic systems.
- 10.6.2 It is important to document all checks and inspections of compressors in a log book.
- 10.6.3 Power losses occurring over long distances are a disadvantage in pneumatic systems.

 $(3 \times 1) \qquad (3)$

10.7 Give TWO reasons for using pneumatic systems in the manufacturing of chemicals and explosives.

(2) **[20]**

AND/OR

(11022032) -10-

QUESTION 11: CENTRE LATHES

11.1	State TWO uses of lathe steadies.						
11.2	Name the	steady that you would use in each of the following applications:					
	11.2.1	To turn a long, small diameter shaft					
	11.2.2	To support a square bar that must be bored (2×1)	(2)				
11.3	Define the	e term <i>helix angle</i> .	(1)				
11.4	A three-start square thread with a 10 mm pitch is to be cut on a centre lathe with a 5 mm pitch lead screw.						
	Calculate 155 mm:	the following if the pitch diameter (mean diameter) of the thread is					
	NOTE: As	ssume the clearance angle to be 3°.					
	11.4.1	Helix angle of the thread	(3)				
	11.4.2	Leading angle of the screw cutting tool used	(2)				
	11.4.3	Following angle of the screw cutting tool used	(2)				
11.5	A steel pin with a diameter of 20 mm is machined on the lathe at a spindle speed of 24 r/sec.						
	Calculate	the cutting speed of the specific metal in metres per minute.	(3)				
11.6	The time taken to complete a longitudinal cut along a workpiece 700 mm long and rotating at a speed of 130 r/min is 15 minutes.						
	Calculate	the feed of the cutting tool in mm per revolution.	(3)				
11.7	Name the command types for each of the following CNC functions:						
	11.7.1	Code commands for the machine to prepare for a specific machine cycle					
	11.7.2	On-off function of the CNC lathe motor (2 × 1)	(2) [20]				

AND/OR

(11022032)-11-

QUESTION 12: MILLING MACHINES AND SURFACE GRINDERS

12 1 (1) State the function of the *sector-arms* on the index plate of the dividing head.

12.2 Distinguish between the Cincinnati index plate and the Brown and Sharp index plate.

(2)

12.3 Name the milling cutter used to produce wide flat surfaces. (1)

12.4 Calculate the required indexing for an angular groove of 42°45' using a Brown and Sharp dividing head.

THE BROWN AND SHARP DIVIDING HEAD						
NUMBER OF HOLES						
Plate 1	15	16	17	18	19	20
Plate 2	21	23	27	29	31	33
Plate 3	37	39	41	43	47	49

(7)

12.5 List FOUR reasons for using nicked helical milling cutters.

- 12.6 Explain the following terms which apply to grinding wheels:
 - 12.6.1 Grit size
 - 12.6.2 Grade of the grinding wheel
 - 12.6.3 Structure of the grinding wheel
 - 12.6.4 Structure number

 (4×1) (4) **€**}

12.7 State the reason for surface grinding.

(1) [20]

TOTAL SECTION B: 40 **GRAND TOTAL:** 100

FITTING AND MACHING THEORY N2

FORMULA SHEET

$$f = ft \times T \times N$$

$$S = \frac{\pi DN}{60}$$

$$S = \pi DN$$

$$\frac{40}{N}$$

$$Set-over = \frac{D-d}{2} \times \frac{length \ of \ workpiece}{length \ of \ taper}$$

$$\tan \frac{\theta}{2} = \frac{X}{L}$$

Leading angle = 90° – (Helix angle + clearance angle)

Following angle = 90° + (Helix angle – clearance angle)

 $Lead = No of starts \times pitch$