

Sequence

1. Definition

A sequence is a set of images of a mapping from the set N (or subset of N) onto \mathbb{R} : $n \mapsto U_n$

- U₀, U₁, U₂ ...: are terms of the sequence (U₁).
- U_n is the general term of the sequence (U_n).
- n is called the index.

Remark:

- ➤ If U_n is expressed in terms of n, this sequence is said to be expressed explicitly.
- If a sequence is defined by its first term (or firsts terms) and a relation between two general terms (or several general terms), this sequence is said to be expressed recursively.

2. Sense of Variations

Let (U_n) be a given sequence defined for all $n \in E$, where $E \subset N$.

(Un) is said to be strictly increasing if and only if:

1.
$$U_{n+1} > U_n$$
 (or $U_{n+1} - U_n > 0$)

2.
$$n \le m$$
 then $U \le U$

3.
$$\frac{U_{n+1}}{U_n} > 1$$
 (if $U_n > 0$)

(Un) is said to be strictly decreasing if and only if:

1.
$$U_{n+1} < U_n \text{ (or } U_{n+1} - U_n < 0)$$

2.
$$n < m$$
 then $U_n > U_m$

3.
$$\frac{U_{n+1}}{U_n} < 1$$
 (if $U_n > 0$)

 (U_n) is said to be constant when $U_{n+1} = U_n$ (or $U_{n+1} - U_n = 0$) for all n.

Remark: To study the variations of a sequence, we can also study:

- For a sequence defined explicitly, of the type $U_n = f(n)$: the sense of variation of f, so if f is increasing then (U_n) is increasing, and if f is decreasing then (U_n) is decreasing.
- ➤ For a sequence defined implicitly, of the type U_{n+1}= f (U_n), U₀ being given: the sense of variation of f, compare the first two terms and by induction two consecutive general terms.

3. Arithmetic sequence

3. A. Definition

A sequence (U_n) is said to be arithmetic if $U_{n+1} - U_n = d$, where d is a constant.

d is called the common difference of (U₁).

Remark:

In order to prove that a sequence (U_n) is arithmetic, it is **not enough** to show that $U_2 - U_1 = U_3 - U_2 = U_4 - U_3$. In fact, **we must show** that $U_n - U_{n-1} = d$ or $U_{n+1} - U_n = d$.

B. Property

For all natural numbers n and p, let (U) be an arithmetic sequence.

The general term of (U) is:

$$U_{n} = U_{p} + (n-p)d$$

3. C. Sum of terms of an Arithmetic Sequence:

let (U_p) be an arithmetic sequence. The sum of the terms of (U_p)

$$\sum_{i=m}^{n} u_i = u_m + \dots + u_n = (n-m+1) \frac{u_m + u_n}{2}$$

That is to say: sum of consecutive terms of an arithmetic sequence

Quality Education

 $S = (number of terms) \frac{(first term + last term)}{2}$

Remark:

What is the funny Σ symbol? It is called Sigma notation.

 Σ (called sigma) means "sum up", and below and above it are shown the starting and ending values.

Start at this value

It says "Sum up" n where n goes from 1 to 4. Answer = 10.

4. Geometric sequence

4.A. Definition:

A sequence (U_n) is said to be geometric if $U_{n+1} = U_n \times r$ that is $\frac{U_{n+1}}{U_n} = r$, where r is a constant. r is called the common ratio of (U_n) .

Remark:

In order to prove that a sequence (U_n) is **geometric**, it is **not enough** to show that $\frac{U_1}{U_0} = \frac{U_2}{U_1} = \frac{U_3}{U_2}$. In fact, **we must show** that $\frac{U_{n+1}}{U_n} = r$ or $\frac{U_n}{U_{n-1}} = r$.

4.B. Property

For all natural numbers n and p, let (U_n) be a geometric sequence.

The general term of (U_n) is:

$$U_{n} = U_{p} \times r^{n-p}$$

4.C. Sum of terms of a Geometric Sequence

Let (U_n) be a geometric sequence. The sum of the terms of (U_n) is:

$$\sum_{i=m}^{n} u_i = u_m + \dots + u_n = u_m \frac{1 - r^{n-m+1}}{1 - r}$$

That is to say: sum of consecutive terms of a geometric sequence:

$$S = \frac{\text{first term } (1 - r^{\text{nb of terms}})}{1 - r}$$

5. Limit of a Numerical sequence

5.A. Definition

Let (U_n) be a given sequence with general term U_n defined explicitly for all $n \in \mathbb{N}$. We say that the limit of (U_n) exists when $\lim_{n \to +\infty} U_n$ leads to a unique real number L.

5.B. Property

Let a be a real number.

$$\lim_{n \to +\infty} (a)^n = \begin{cases} +\infty & \text{if } a > 1 \\ 1 & \text{if } a = 1 \\ 0 & \text{if } -1 < a < 1 \end{cases}$$

6. Convergent sequence VS Divergent sequence

A sequence (U_n) is said to be convergent if and only if $\lim_{n\to+\infty} U_n$ exists (unique $\in \mathbb{R}$).

A sequence that is not convergent is called a divergent sequence.

7. Sequences and Inequalities

- If (U_n) and (V_n) have limits and $U_n \le V_n$ for every n, then $\lim_{n \to +\infty} U_n \le \lim_{n \to +\infty} V_n$.

 If $\lim_{n \to +\infty} U_n = +\infty$, then $\lim_{n \to +\infty} V_n = +\infty$ If $\lim_{n \to +\infty} V_n = -\infty$, then $\lim_{n \to +\infty} U_n = -\infty$
- $\begin{array}{ll} \bullet & \text{If } (U_n), \, (V_n) \text{ and } (W_n) \text{ have limits and } U_n \leq V_n \leq W_n \text{ for every } n, \\ & \text{then } \lim_{n \to +\infty} U_n \leq \lim_{n \to +\infty} V_n \leq \lim_{n \to +\infty} W_n \text{ .} \\ & \text{If } \lim_{n \to +\infty} U_n = \lim_{n \to +\infty} W_n, \text{ then } \lim_{n \to +\infty} U_n = \lim_{n \to +\infty} V_n = \lim_{n \to +\infty} W_n \text{ (Sandwich Theorem).} \\ \end{array}$

8. Bounded Sequences

- A sequence (U_n) is said to be <u>bounded above</u> if there exists a <u>real number k such that</u> U_n ≤ k for every n ∈ N.
- A sequence (U_n) is said to be <u>bounded below</u> if there exists a real number m such that m ≤ U_n for every n ∈ N.
- A sequence (U_n) is said to be <u>bounded</u> if it is <u>bounded</u> above and bounded below; i.e. m ≤ U_n ≤ k for every n ∈ N.

9. Mathematical Induction

Definition: Mathematical Induction is a mathematical technique which is used to prove a statement is true for every natural number.

Steps:

If P(n) is a statement that depends on a natural number n. To show that P(n) is true, for any natural number $n \ge n_0$, it suffices to:

Step 1: verify if a statement is true for n = initial value, i.e. $P(n_0)$ is true.

Step 2: assume the statement is true for any value of n = k, i.e. P(k) is true.

1 ducation

Step 3: prove the statement is true for n = k+1, i.e. P(k + 1) is true.

10. Theorems of Monotonic Sequences

Property 1:

- · An increasing sequence that is bounded from above is convergent.
- A decreasing sequence that is bounded from below is convergent.

Property 2:

Let (U_n) be a convergent sequence that is defined recursively, for every $n \in E$, with $E \subset \mathbb{N}$, and by the given of U_0 and the relation $U_{n+1} = f(U_n)$. If $x \to f(x)$ is continuous, then the limit $L = \lim_{n \to +\infty} U_n$ is a root of the equation L = f(L)

