

SUSQUEHANNA RIVER BASIN

LAKE SHERIDAN OUTLET, WYOMING COUNTY

0

E us

· (2)

ET!

PENNSYLVANIA

LAKE SHERIDAN DAM

NDS ID NO. PA-744 **DER ID NO. 66-45**

LAKE SHERIDAN COTTAGERS ASSOCIATION

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

DACW31-80-C-0020

L. ROBERT KIMBALL & ASSOCIATES **CONSULTING ENGINEERS & ARCHITECTS**

EBENSBURG, PENNSYLVANIA 15931

FOR

DEPARTMENT OF THE ARMY BALTIMORE DISTRICT CORPS OF ENGINEERS BALTIMORE, MARYLAND

21203

JULY, 1980

ORIGINAL CONTAINS COLOR PLATES: ALL DOC REPRODUCTIONS WILL BE IN BLACK AND WHITE,

SUSQUEHANNA RIVER BASIN > LAKE SHERIDAN OUTLET, WYOMING COUNTY,

PENNSYLVANIA. LAKE SHERIDAN DAM

NDS-ID-MD. PA-744 DER-ID-10. 66-45)

LAKE SHERIDAN COTTAGERS ASSOCIATION

PHASE I INSPECTION REPORT -NATIONAL DAM INSPECTION PROGRAM

1 50

Prepared By

L. ROBERT KIMBALL & ASSOCIATES

CONSULTING ENGINEERS & ARCHITECTS EBENSBURG, PENNSYLVANIA

FOR

DEPARTMENT OF THE ARMY BALTIMORE DISTRICT CORPS OF ENGINEERS BALTIMORE, MARYLAND 21203

JULY, 1980

This dixtument has been on

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway design flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. The spillway design flood provides a measure of relative spillway capacity and serves as an aid in detemining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

A	ction bug	
MILS	CHARL	
DDC T/	B	17
Unanno		
Justif	'ication_	
Ву		
Distri	bution/	
Avail	ability	Codes
	Avai' am	l/or
Dist.	вресів	1 '
1	l i	
H		•
•		

PHASE I REPORT NATIONAL DAM INSPECTION REPORT

NAME OF DAM STATE LOCATED COUNTY LOCATED Lake Sheridan Dam Pennsylvania Wyoming

STREAM

Lake Sheridan outlet (unnamed tributary

to the south branch of the

Tunkhannock Creek)

DATE OF INSPECTION

April 10,1980

ASSESSMENT

The assessment of Lake Sheridan Dam is based upon visual obsermade at the time of inspection, review of available data, hydraulic and hydrologic analysis.

In general, the dam appears to be in good condition. Lake Sheridan Dam is a high hazard-small size dam. The spillway design flood for this dam is the 1/2 PMF to PMF. The spillway design flood was selected as the PMF (probable maximum flood) based on the downstream potential for loss of life and property damage. The spillway is capable of controlling only 2% of the PMF. Based on criteria established by the Corps of Engineers, the spillway is termed inadequate. Since Lake Sheridan Dam's non-overflow section consists of a concrete section over rubble masonry, the non-overflow section should be capable of safely controlling a partial overflow. However, the amount of overtopping that can be safely controlled is unknown. In this case the amount of overtopping is directly related to the structural stability of the dam. No visible seepage or other obvious deficiencies affecting the stability of the dam were noted during the inspection.

The following recommendations and remedial measures should be instituted immediately.

- l. A structural stability analysis should be conducted to determine the amount of overtopping that can be safely controlled by the dam. In the event that the dam cannot safely control the SDF a hydrologic and hydraulic study in conjunction with structure stability analysis should be conducted to increase the spillway capacity. The studies should be conducted by a professional engineer knowledgeable in dam design.
- 2. It should be determined if the drainline and valves are operable and in good condition. The valve mechanism for the dam should be operated and lubricated on a regular basis.
- 3. An investigation should be conducted to determine if a warning system for this dam is in operation and if not one should be implemented.

LAKE SHERIDAN DAM PA 744

4. Regular safety inspections should be conducted in accordance with provisions stipulated by the Commonwealth of Pennsylvania regarding the inspection of dams.

L. ROBERT KIMBALL & ASSOCIATES
CONSULTING ENGINEERS AND ARCHITECTS

Date

R. Jeffrey Kimball, P.E.

APPROVED BY:

15 August 80

Date

JAMES W. PECK

Colonel, Corps of Engineers

District Engineer

Overview of Lake Sheridan Dam

TABLE OF CONTENTS

	PAGE
SECTION 1 - PROJECT INFORMATION	1
1.1 General	1
1.2 Description of Project	ī
1.3 Pertinent Data	3
SECTION 2 - ENGINEERING DATA	6
2.1 Design	6
2.2 Construction	6
2.3 Operation	6
2.4 Evaluation	6
SECTION 3 - VISUAL INSPECTION	7
3.1 Findings	7
3.2 Evaluation	8
SECTION 4 - OPERATIONAL PROCEDURES	9
4.1 Procedures	9
4.2 Maintenance of Dam	9
4.3 Maintenance of Operating Facilities 4.4 Warning System in Effect	9
4.4 Warning System in Effect	9
4.5 Evaluation	9
SECTION 5 - HYDRAULICS AND HYDROLOGY	10
5.1 Evaluation of Features	10
5.2 Evaluation Assumptions	10
5.3 Summary of Overtopping analysis	10
5.4 Summary of Dam Breach Analysis	11
SECTION 6 - STRUCTURAL STABILITY	12
6.1 Evaluation of Structural Stability	12
SECTION 7 - ASSESSMENT AND RECOMMENDATIONS/REMEDIA MEASURES	L 13
7.1 Dam Assessment	13
7 2 Pacommendations/Pomodial Managers	12

APPENDICES

APPENDIX A - CHECKLIST, VISUAL INSPECTION, PHASE I
APPENDIX B - CHECKLIST, ENGINEERING DATA, DESIGN, CONSTRUCTION,
OPERATION, PHASE I

APPENDIX C - PHOTOGRAPHS

APPENDIX D - HYDROLOGY AND HYDRAULICS

APPENDIX E - DRAWINGS APPENDIX F - GEOLOGY

PHASE I
NATIONAL DAM INSPECTION PROGRAM
LAKE SHERIDAN DAM
NDI. I.D. NO. PA 744
DER I.D. NO. 66-45

SECTION 1 PROJECT INFORMATION

1.1 General.

- a. Authority. The National Dam Inspection Act, Public Law 92-367, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a program of inspection of dams throughout the United States.
- b. <u>Purpose</u>. The purpose of the inspection is to determine if the dam constitutes a hazard to human life or property.

1.2 Description of Project.

a. Dam and Appurtenances. Lake Sheridan Dam is a rubble masonry and concrete gravity dam. The dam is 89 feet long and 9 feet high. The intercore of the dam consists of the original rubble masonry construction. The concrete portion of the dam was added during the 1966 modifications. The dam consists of an overflow and a non-overflow section. The downstream slope of the non-overflow section is less than .5H:1V. The majority of the downstream face of the non-overflow section is buttressed by the stream banks. The upstream slope of the concrete cap section (non overflow) of the dam is less than .5H:1V. The upstream slope of the original rubble masonry construction could not be determined. The non-overflow section of the dam is enclosed by a steel chain linked fence.

The overflow section of the dam serves as the normal spillway for the reservoir. The crest length of the spillway is 40 feet. A reservoir drain valve is located on the upstream end of the right non-overflow section. The valve controls the drainline which extends through the overflow section of the dam and outlets on the downstream face of the spillway. The type, length and diameter of the pipe could not be determined.

- b. Location. The dam is located on the Lake Sheridan outlet, approximately 2 miles northeast of the village of Factoryville, Wyoming County, Pennsylvania. Lake Sheridan Dam can be located on the Factoryville, U.S.G.S. 7.5 minute quadrangle.
- c. <u>Size Classification</u>. Lake Sheridan Dam is a small size (9 feet high, 834 ac-ft).

- d. <u>Hazard Classification</u>. Lake Sheridan Dam is a high hazard dam. Downstream conditions indicate that loss of more than a few lives is probable should the structure fail. One home is located approximately 1/2 mile downstream of the dam. The stream which serves as the outlet for the Lake Sheridan Dam passes through the village of Factoryville where it discharges into the South Branch of the Tunkhannock Creek.
- e. Ownership. Lake Sheridan Dam is owned by the Lake Sheridan Cottagers Association. Correspondence should be addressed to:

Wayne Clark, President Lake Sheridan Cottagers Association Box 124 R.D. 2 Nicholson, Pennsylvania 18416 (717) 945-5379

- f. Purpose of Dam. Lake Sheridan Dam is used for recreation.
- g. Design and Construction History. Lake Sheridan Dam has a very long and complicated history. Information obtained from the PennDER files suggest that the dam was originally constructed around 1872. Other correspondence suggest that the dam was built by subscription of the Lake Sheridan Property Owners and the Nokomis Water Company. The original owner appears to be Mr. C.A. Sisk who was listed as an administrator of the estate of S.C. Mathewson. The original construction of the dam appears to have been completed for the purpose of serving as a sawmill flow pond.

Prior to 1965 when the lake was purchased by the Lake Sheridan Cottagers Association, there appears to have been an on-going struggle between several parties as per the operation and maintenance of the dam. The owner, Mr. Sisk was somewhat reluctant to maintain the structure since it had no apparent value to him. The property owners which surround Lake Sheridan were interested in the upkeep of the dam since it affected their individual properties. The Nokomis Water Company's interest in the lake appears to have been to supply water to the residents of Factoryville. Several attempts were made to repair the dam, but in all cases it appears as though the work was minimal.

The Cottagers Association obtained ownership of Lake Sheridan in 1965. Northeastern Engineering Company Inc., Clarks Summit, Pennsylvania was retained as the engineer for the modifications to the Lake Sheridan Dam. The firm was contacted for the purposes of obtaining information for this report but a

representative of the firm was unable to supply any design information.

Review of correspondence supplied by the Pennsylvania Department of Environmental Resources indicate that the dam had a history of seepage and that the dam apparently experienced a breach in 1928. Pictures supplied by PennDER suggest that the breach was not extensive. Limited drawings which were obviously prepared by the Northeastern Engineering Company were of little value in the preparation of this report. Several notes on the drawings suggest that the original dam was to be rebuilt as per original construction and covered with a concrete cap to increase the stability of the structure. Inspection of the existing dam indicates that modifications were made to the drainline and valve control system. No information was available regarding the type of pipe, length or diameter of pipe used in the modifications, or whether the existing pipe was replaced.

h. Normal Operating Procedures. In addition to the direct runoff from the approximate two square mile drainage area of Lake Sheridan Dam, inflow to Lake Sheridan is affected by two upstream dams. Baylor's Pond appears to be a natural lake which would not affect storage or inflow to Lake Sheridan and therefore was disregarded in the analysis. Needles Lake is located below Baylor's Pond and upstream of Lake Sheridan. Its affect on Lake Sheridan is discussed in Section 5.

The association was notified of the inspection but did not send a representative. Since no personal interviews, were conducted no determination as to the operations at the dam could be made.

1.3 Pertinent Data.

a. Drainage Area.

2.0 mi² Uncontrolled 3.97 mi² Controlled 5.97 mi² Total

b. Discharge at Dam Site (cfs).

Maximum known flood at dam site
Drainline capacity at normal pool
Spillway capacity at top of dam

Unknown Unknown 309 cfs

c. Elevation (U.S.G.S. Datum) (feet). - Field survey based on pool elevation 998, from U.S.G.S. 7.5 minute quadrangle.

Top of dam (non-overflow section)
Top of dam - design height
Maximum pool - design surcharge

999.8 Unknown Unknown

	Normal pool Spillway crest Upstream invert - drainline Downstream invert - drainline Maximum tailwater Toe of dam	998.0 998.0 Unknown Unknown Unknown 990.6
d.	Reservoir (feet).	
	Length of maximum pool Length of normal pool	6000 feet 5800 feet
e.	Storage (acre-feet).	
	Normal pool Top of dam	621 834
f.	Reservoir Surface (acres).	
	Top of dam Normal pool Spillway crest	80 63 63
g.	Dam.	
	Туре	Rubble masonry with concrete cap
	Length	89 feet
	Height	9 feet
	Top width	7 feet
	Side slopes - upstream	Less than .5H: 1V
	- downstream	Less than .5H: 1V
	Zoning	None
	Impervious core	None

h. Reservoir Drain.

Grout curtain

Cutoff

Type Length Closure Access

Regulating facilities

Unknown
Unknown
Gate valve
Upstream (right nonoverflow section)
Valve on upstream
end of non-overflow section

Unknown

None

i. Spillway.

Type
Length
Crest elevation
Upstream channel
Downstream channel

Broad crested weir
40 feet
998.0
Lake (unrestricted)
Lake Sheridan outlet

SECTION 2 ENGINEERING DATA

- 2.1 <u>Design</u>. No information exists concerning the original structure at Lake Sheridan. The dam experienced several attempts at repair although all work appears to have been minimal. In 1966 modifications were made to the dam by the Northeastern Engineering Company Inc., Clarks Summit, Pennsylvania. The firm was contacted for the purposes of obtaining information relative to the 1966 modifications but representatives of the firm advised that no information was available. Several drawings of the existing dam were made available by the Pennsylvania Department of Environmental Resources and these drawings contained remarks relative to the modifications by Northeastern Engineering Company.
- 2.2 Construction. No information exists on the construction of the dam.
- 2.3 Operation. No operations are known to be conducted at the dam.

2.4 Evaluation.

- a. Availability. No engineering data is available for this dam. Various representatives of the Lake Sheridan Cottagers Association were contacted by mail but no response was received. Phone calls to various members failed to lead to any discussion with any present official of the association. No representatives of the association accompanied the inspection team on the inspection.
- b. Adequacy. Detailed analyses cannot be made because of the lack of detailed design information. This Phase I Report is based on available data, visual observation and hydrologic and hydraulic analysis. Sufficient information exists to complete a Phase I Report.

SECTION 3 VISUAL INSPECTION

3.1 Findings.

- a. <u>General</u>. The onsite inspection of Lake Sheridan Dam was conducted by personnel of L. Robert Kimball and Associates on April 10, 1980. The inspection consisted of:
 - 1. Visual inspection of the retaining structure, abutments and toe.
 - Examination of the spillway facilities, exposed portion of any outlet works and other appurtenant works.
 - 3. Observations affecting the runoff potential of the drainage basin.
 - 4. Evaluation of the downstream area hazard potential.
- b. Dam. The dam appears to be in fair condition. From a brief survey conducted during the inspection, it was noted that the crest of the spillway and non-overflow section appeared to be level. No major problems were noted in the non-overflow section. No cracking or leaching of the concrete was observed. The observable rubble masonry section of the dam appears to be in good condition as well as the mortared joints. Only a small portion of the masonry on the downstream slope was observable. Regulating facilities for the drain valve appeared to be in fair condition. No determination as to the condition of the drainlines could be made due to spillway discharges obstructing the downstream view of the pipe. The pipe appeared to be about 24" in diameter.
- c. Appurtenant Structures. The exposed portions of the regulating facilities were observed during the inspection. The facilities appeared to be in fair condition. The reservoir drain and outlet pipes are located through the structure and close observations could not be made. These pipes or valves were not observed during the inspection and were not operated.
- d. Reservoir Area. The watershed area is covered mostly with woodland. Two upstream dams exist in the Lake Sheridan watershed. The uppermost lake, Baylor's Pond appears to be a natural lake. Approximately 1/2 mile upstream of Lake Sheridan is Needles Lake dam which was constructed around 1973. The watershed and reservoir slopes are moderate to steep but do not appear to be susceptible to landslides which would affect the storage volume of the reservoir or overtopping at the dams by displacing water. The hydrologic and hyraulic consequences pertaining to the upstream dams are discussed in Section 5.

- e. <u>Downstream Channel</u>. Approximately 2 miles downstream of Lake Sheridan, the outlet stream of Lake Sheridan joins the South Branch of the Tunkhannock Creek. The outlet for Lake Sheridan Dam joins the south branch of the Tunkhannock Creek at the village of Factoryville. One home is located approximately 1/2 mile downstream of the dam.
- 3.2 Evaluation. In general, the dam and appurtenant structures appear to be in fair condition.

SECTION 4 OPERATIONAL PROCEDURES

- 4.1 <u>Procedures</u>. The reservoir is maintained at the spillway crest elevation 998.0. The drain valve is located on the upstream end of the dam and could be used to drain the dam. The type, length and size of the pipe could not be determined during the inspection.
- 4.2 <u>Maintenance of the Dam.</u> No information was available as per the maintenance of the dam. Attempts to locate and discuss the operation and maintenance of the dam with an officer of the Lake Sheridan Cottagers Association have been futile.
- 4.3 <u>Maintenance of Operating Facilities</u>. No information is available as per the maintenance of the spillway or outlet works. The condition of the spillway and is considered fair.
- 4.4 Warning System in Effect. No determination could be made as to the existance of the warning system.
- 4.5 Evaluation. Evaluation of the maintenance of the dam and operating facilities could not be made. Visual observations made during the inspection indicate that maintenance at the dam is fair.

SECTION 5 HYDRAULICS AND HYDROLOGY

5.1 Evaluation of Features.

- a. Design Data. No calculations or design data pertaining to the hydrology and hydraulics of the dam were available.
- b. Experience Data. No rainfall, runoff or reservoir level data were available. The spillway was rebuilt as part of the 1966 modifications.
- c. <u>Visual Observations</u>. The overflow section of the spillway appears to be in fair condition.
- d. Overtopping Potential. Overtopping potential was investigated through the development of the probable maximum flood (PMF) for the watershed and the subsequent routing of the PMF and fractions of the PMF through the reservoir and spillway.

The Corps of Engineers, Baltimore District, has directed that the HEC-1 Dam Safety Version systemized computer program be utilized. The program was prepared by the Hydrologic Engineering Center (HEC), U.S. Army Corps of Engineers, Davis, California, July, 1978. The major methodologies or key input data for this program are discussed briefly in Appendix D.

- 5.2 Evaluation Assumptions. To enable us to complete the hydraulic and hydrologic analysis for this structure, it was necessary to make the following assumptions.
- 1. Pool elevation prior to the storm is at spillway crest elevation 998.0.
- 2. The top of the non-overflow sections were considered as the top of dam.
- 3. Baylor's Pond, the furthermost upstream dam of the two dams, was not considered as having an effect on the inflow to Lake Sheridan.
- 4. Needles Lake, located approximately 1/2 mile upstream of Lake Sheridan, was considered as having failed as part of this analysis.
- 5.3 <u>Summary of Overtopping Analysis</u>. Complete summary sheets for the computer output are presented in Appendix D.

Peak inflow (PMF) 14755 cfs Spillway capacity (Lake Sheridan) 309 cfs a. Spillway Adequacy Rating. The Spillway Design Flood (SDF) for this dam is the 1/2 PMF to PMF. Based on the downstream potential for loss of life and property damage, the spillway design flood for this dam was selected as the PMF. The SDF is based on the hazard and size classification of the dam and the downstream potential for loss of life. Based on the following definition provided by the Corps of Engineers, the spillway is rated as inadequate as a result of our hydrologic analysis.

Inadequate - All high hazard dams not capable of passing 50% of the spillway design flood.

The spillway and reservoir are capable of controlling approximately 2% of the PMF without overtopping the non-overflow section. A computer printout of the analysis is included in Appendix D.

Since Lake Sheridan Dam's non-overflow section consists of a concrete section over rubble masonry, the non-overflow section should be capable of safely controlling a partial overflow. However, the amount of overtopping that can be safely controlled is unknown. In this case the amount of overtopping is directly related to the structural stability of the dam.

5.4 <u>Summary of Dam Breach Analysis</u>. As the subject dam cannot satisfactorily pass 50% of the PMF without failure (based on our analysis) it was necessary to perform a dam breach analysis and downstream routing of the flood wave. This analysis determined the degree of increased flooding due to dam failure.

A reservoir pool elevation of 1001.0 was considered as sufficient to cause failure of Lake Sheridan Dam. This elevation represents an overtopping of 2.1 feet and it was assumed that failure would be caused by erosion at the abutments.

The flood wave was routed downstream with and without dam failure considered. The downstream potential for loss of life and property damage is not significantly increased by dam failure. Lake Sheridan's spillway is rated as inadequate, not seriously inadequate.

SECTION 6 STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability.

a. <u>Visual Observations</u>. No visible signs of instability were observed during the inspection. The observable rubble masonry section of the dam appeared to be in fair condition. No seepage was noted at the time of inspection, however water was discharging over the spillway. The concrete cap which was added as part of the 1966 modification appeared to be in good condition and no cracks were noted. Due to the lack of any structural details, no calculated stability could be determined.

The effects of overtopping of the structure on the stability are unknown since no information exists on the construction of the dam.

- b. <u>Design and Construction Data</u>. No design data are available for this dam. No stability analysis is known to have been performed for the dam.
- c. Operating Records. No operating records are known to exist.
- d. Post Construction Changes. The original dam was constructed in the late 1800's. Since then and prior to 1966 several attempts had been made to upgrade the structure. It appears that the work conducted at the dam was completed to upgrade the appearance of the structure rather than improving the stability. In 1966 modifications were completed by the Northeastern Engineering Company, Clarks Summit, Pennsylvania, the construction work was completed by the M.J. Spott Construction Company, Inc. The work was initiated by the present owners, the Lake Sheridan Cottagers Association.
- e. Seismic Stability. The dam is located in seismic zone l. No seismic stability analyses has been performed. Normally, it can be considered that if a dam in this zone is stable under static loading conditions, it can be assumed safe for any expected earthquake loading. However, since the stability is questionable, the seismic stability should be assessed during the investigation recommended in Section 7.

SECTION 7 ASSESSMENT AND RECOMMENDATIONS/REMEDIAL MEASURES

7.1 Dam Assessment.

- a. <u>Safety</u>. The dam appears to be in fair condition. The visual observations and hydrologic and hydraulic calculations indicate that the Lake Sheridan spillway is inadequate. The spillway is capable of controlling less than 2% of the PMF without overtopping the non-overflow section of the dam. Since Lake Sheridan Dam's non-overflow section consists of a concrete section over rubble masonry, the non-overflow section should be capable of safely controlling a partial overflow. However, the amount of overtopping that can be safely controlled is unknown. In this case the amount of overtoping is directly related to the structural stability of the dam. No data are available on the design or construction of the dam. No stability analysis are known to have been performed on the dam. No visible signs of instability were noted during the inspection.
- b. Adeqacy of Information. A detailed analysis of the structure cannot be made because of the lack of any design, construction information or drawings. This Phase I Report is based upon the visual observations made at the time of inspection. Sufficient information exists to complete a Phase I Report.
- c. <u>Urgency</u>. The recommendations suggested below should be implemented immediately.
- d. <u>Necessity for Further Investigation</u>. In order to accomplish some of the recommendations/remedial measures outlined below, further investigations will be required.

7.2 Recommendations/Remedial Measures.

- l. A structural stability analysis should be conducted to determine the amount of overtopping that can be safely controlled by the dam. In the event that the dam cannot safely control the SDF a hydrologic and hydraulic study in conjunction with structure stability analysis should be conducted to increase the spillway capacity. The studies should be conducted by a professional engineer knowledgeable in dam design.
- 2. It should be determined if the drainline and valves are operable and in good condition. The valve mechanism for the dam should be operated and lubricated on a regular basis.
- 3. An investigation should be conducted to determine if a warning system for this dam is in operation; and, if not, one should be implemented.
- 4. Regular safety inspections should be conducted in accordance with provisions stipulated by the Commonwealth of Pennsylvania regarding the inspection of dams.

APPENDIX A CHECKLIST, VISUAL INSPECTION, PHASE I

CHECK LIST VISUAL INSPECTION PHASE I

NAME OF DAM Lake Sheridan Dam Rubble masonry	COUNTY Wyoming	STATE Pennsylvania ID# PA 744
TYPE OF DAM Concrete gravity	1	HAZARD CATEGORY H1gh
DATE(s) INSPECTION Pril 10, 1980	WEATHER lear and warm	TEMPERATURE 60°
POOL ELEVATION AT TIME OF INSPECTION 998.2	M.S.L.	TAILWATER AT TIME OF INSPECTION 990.7 M.S.L.

INSPECTION PERSONNEL:

James T. Hockensmith

RECORDER

EMBANKMENT - Not Applicable

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SURFACE CRACKS		
UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE		•
SLOUGHING OR EROSION OF EMBANKMENT AND ABUTMENT SLOPES		
VERTICAL AND HORIZONTAL ALIGNMENT OF THE CREST		
RIPRAP FAILURES		

EMBANKMENT - Not applicable

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
VEGETATION		
JUNCTION OF EMBANKMENT AND ABUTMENT, SPILLWAY AND DAM		
ANY NOTICEABLE SEEPAGE		
STAFF GAUCE AND RECORDER		
DRAÍNS		

CONCRETE/MASONRY DAMS

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
ANY NOTICEABLE SEEPAGE	None.	
STRUCTURE TO ABUTMENT/EMBANKMENT JUNCTIONS	Appears to be in good condition.	
DRAINS	None.	
WATER PASSACES	40 foot overflow section, appears to be in good condition.	
FOUNDATION	Unknown.	

CONCRETE/MASONRY DAMS

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SURFACE CRACKS CONCRETE SURFACES	None.	
STRUCTURAL, CRACKING	None noted.	
VERTICAL AND HORIZONTAL ALIGNMENT	Good.	
MONOLITH JOINTS	Good.	
CONSTRUCTION JOINTS	No visible deficiencies.	
STAFF CAUCE OR RECORDER	None.	

OUTLET WORKS

VISUAL EXAMINATION OF	OBSERVATIONS RECOMMENDATIONS	MENDATIONS
CRACKING AND SPALLING OF CONCRETE SURFACES IN OUTLET CONDUIT	The outlet strucure was unobserved during the inspection. The outlet pipe for the reservoir drain is located on the downstream face of the overflow section and was hidden from view by discharging water. It appears as though the outlet pipe is approximately 24 inches in	
INTAKE STRUCTURE	Unobserved.	
OUTLET STRUCTURE	Not visible.	
OUTLET CHANNEL	Lake Sheridan outlet - unnamed tributary to the Sbuth Branch of the Tunkhannock Creek.	
EMERGENCY GATE	Unobserved.	

UNGATED SPILLWAY

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE WEIR	40 foot overflow section. Appears to be in good condition.	
APPROACH CHANNEL	Lake - unrestricted.	
DISCHARGE CHANNEL	Lake Sheridan outlet.	
BRIDGE AND PIERS	None.	

CATED SPILLWAY - Not applicable

REMARKS OR RECOMMENDATIONS					
OBSERVATIONS					
VISUAL EXAMINATION OF	CONCRETE SILL	APPROACH CHANNEL	DISCHARGE CHANNEL	BRIDGE AND PIERS	GATES AND OPERATION EQUIPMENT

DOWNSTREAM CHANNEL

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONDITION (OBSTRUCTIONS, DEBRIS, ETC.)	Debris beginning to collect immediately below the overflow section of the dam.	
SLOPES	Moderate. Appear to be stable.	
APPROXIMATE NO. OF HOMES AND POPULATION	One home located approximately 1/2 mile downstream, approximately 4 people. Village of Factoryville located 2 miles downstream. Other homes located between dam and village of Factoryville.	

RESERVOIR

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
	Moderate appear to be stable.	
SLOPES		
	Unknown.	
SEDIMENTATION		

INSTRUMENTATION

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SASIGITS / INVITE VENEZULINON	None.	
MONORENIAL LON/ SURVEIS		
OBSERVATION WELLS	None.	
WEIRS	None.	
PIEZOMETERS	None.	
OTHER	None.	

APPENDIX B
CHECKLIST, ENGINEERING DATA, DESIGN, CONSTRUCTION, OPERATION,
PHASE I

CHECK LIST
ENGINEERING DATA
DESIGN, CONSTRUCTION, OPERATION
PHASE I

NAME OF DAM Lake Sheridan Dam

1D# PA 744

REMARKS	None.	U.S.G.S. 7.5 minute quadrangle.	None.	None.	None. None. None. None.
ITEM	AS-BUILT DRAWINGS	REGIONAL VICINITY MAP	CONSTRUCTION HISTORY	TYPICAL SECTIONS OF DAM	OUTLETS - PLAN - DETAILS - CONSTRAINTS - DISCHARGE RATINGS RAINFALL/RESERVOIR RECORDS

ITEM	REMARKS
DESIGN REPORTS	None.
GEOLOGY REPORTS	None.
DESIGN COMPUTATIONS HYDROLOGY & HYDRAULICS DAM STABILITY SEEPAGE STUDIES	None.
MATERIALS INVESTIGATIONS BORING RECORDS LABORATORY FIELD	Unknown.
POST-CONSTRUCTION SURVEYS OF DAM	Several undocumented prior to 1966. 1966 modifications by Northeastern Engineering Company Inc., Clarks Summit, Pennsylvania. No information available as per the 1966 modification.
BORROW SOURCES	Not applicable.

ITEM	REMARKS
MONITORING SYSTEMS	None.
MODIFICATIONS	Several minor modifications prior to 1966. 1966 modifications by Northeastern Engineering Company, Inc. Modifications appears to have included reconstruction of thr rubble masonry section of the dam and a concrete cap.
HIGH POOL RECORDS	None.
POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS	1966 by Northeastern Engineering Company Inc.
PRIOR ACCIDENTS OR FAILURE OF DAM DESCRIPTION REPORTS	Minor breach in 1928, photos available in DER files.
MAINTENANCE OPERATION RECORDS	Unknown.

APPENDIX C PHOTOGRAPHS

LAKE SHERIDAN DAM PA 744

Photograph Description

Sheet 1. Front

- (1) Upper left View of structure from left abutment.
- (2) Upper right Upstream view towards right abutment.
 (3) Lower left Downstream exposure.
 (4) Lower right Middle Lake, upstream of Lake Sheridan.

TOP OF	PAGE
1	2
3	4

APPENDIX D
HYDROLOGY AND HYDRAULICS

APPENDIX D HYDROLOGY AND HYDRAULICS

Methodology. The dam overtopping and breach analyses were accomplished using the systemized computer program HEC-1 (Dam Safety Investigation), September, 1978, prepared by the Hydrologic Engineering Center, U.S. Army Corps of Engineers, Davis, California. A brief description of the methodology used in the analysis is presented below.

l. <u>Precipitation</u>. The Probable Maximum Precipitation (PMP) is derived and determined from regional charts prepared from past rainfall records including "Hydrometeorological Report No. 40" prepared by the U.S. Weather Bureau.

The index rainfall is reduced from 10% to 20% depending on watershed size by utilization of what is termed the HOP Brook adjustment factor. Distribution of the total rainfall is made by the computer program using distribution methods developed by the Corps.

2. <u>Inflow Hydrograph</u>. The hydrologic analysis used in development of the overtopping potential is based on applying a hypothetical storm to a unit hydrograph to obtain the inflow hydrograph for reservoir routing.

The unit hydrograph is developed using the Snyder method. This method requires calculation of several key parameters. The following list gives these parameters their definition and how they were obtained for these analysis.

Parameter	Definition	Where Obtained
Ct	Coefficient representing variations of watershed	From Corps of Engineers*
L	Length of main stream channel miles	From U.S.G.S. 7.5 minute topgraphic
Lca	Length on main stream to centroid of watershed	From U.S.G.S. 7.5 minute topographic
Ср	Peaking coefficient	From Corps of Engineers*
A	Watershed size	From U.S.G.S. 7.5 minute topographic

^{*}Developed by the Corps of Engineers on a regional basis for Pennsylvania.

3. Routing. Reservoir routing is accomplished by using Modified Plus routing techniques where the flood hydrograph is routed through reservoir storage. Hydraulic capacities of the outlet works, spillways and the crest of the dam are used as outlet controls in the routing.

The hydraulic capacity of the outlet works can either be calculated and input or sufficient dimensions input and the program will calculate an elevation discharge relationship.

Storage in the pool area is defined by an area - elevation relationship from which the computer calculates storage. Surface areas are either planimetered from available mapping or U.S.G.S. 7.5 minute series topographic maps or taken from reasonably accurate design data.

- 4. <u>Dam Overtopping</u>. Using given percentages of the PMF the computer program will calculate the percentage of the PMF which can be controlled by the reservoir and spillway without the dam overtopping.
- 5. Dam Breach and Downstream Routing. The computer program is equipped to determine the increase in downstream flooding due to failure of the dam caused by overtopping. This is accomplished by routing both the pre-failure peak flow and the peak flow through the breach (calculated by the computer with given input assumptions) at a given point in time and determining the water depth in the downstream channel. Channel cross-sections taken from U.S.G.S. 7.5 minute topographic maps were used in the downstream flood wave routing. Pre and post failure water depths are calculated at locations where cross-sections are input.

HYDROLOGY AND HYDRAULICS ANALYSIS DATA BASE

NAME OF DAM: Lake Sheridan Dam

PROBABLE MAXIMUM PRECIPITATION (PMP) = 22.2 (0.96) = 21.31

STATION	1	2	3
Station Description	Baylors Pond	Needles Lake A B	Lake Sheridan
Drainage Area			
(square miles)	2.32	0.32 1.33	2.0
Cumulative Drainage Area			
(square miles)	2.32	2.64 3.97	5.97
Adjustment of PMF for			
Drainage Area $(\%)^{(1)}$			
6 hours	117	117	117
12 hours	127	127	127
24 hours	136	136	136
48 hours	142	142	142
72 hours	145	145	145
Snyder Hydrograph			
Paramețers			
Zone (2) Cp (3)	11	11	11
Cp (3)	0.62	0.62	0.62
Ct (3)	1.50	0.76 2.40	1.50
L (miles) (4) Lca (miles) (4)	2.60 1.10	0.76 2.40 0.43 1.20	2.50 1.20
tp = $Ct(LxLca)$ 0.3 hrs.	2.06	1.07 2.06	2.09
Spillway Data			
Crest Length (ft)	5	42	40
Freeboard (ft)	2	3.0	1.8
Discharge Coefficient	C'=0.95	C'=0.95	C'=0.95
Exponent	N/A	N/A	N/A

⁽¹⁾ Hydrometeorological Report 40 (Figure 1), U.S. Army Corps of Engineers, 1965.

⁽²⁾ Hydrological zone defined by Corps of Engineers, Baltimore District, for determining Snyder's coefficients (C_p and C_t).

⁽³⁾Snyder's Coefficients.

⁽⁴⁾L=Length of longest water course from outlet to basin divide.

Lca=Length of water course from outlet to point opposite the centroid of drainage area.

CHECK LIST HYDROLOGIC AND HYDRAULIC ENGINEERING DATA

DRAINAGE	E AREA CHARACTERISTICS:	5.97 mi ² wooded, moderate slopes					
ELEVATIO	ELEVATION TOP NORMAL POOL (STORAGE CAPACITY): 621 ac-ft						
ELEVATIO	ON TOP FLOOD CONTROL POOL	(STORAGE CAPACITY): 834 ac-ft					
ELEVATIO	ON MAXIMUM DESIGN POOL:	Unknown					
ELEVATIO	ON TOP DAM: 999.8 - 1	ow spot					
SPILLWAY	Y CREST:						
		998 0					
a.	Elevation	Rectangular - broad crest					
ь.	Type	Rectangular - broad crest 40 feet - weir length Unknown					
c.	Width	Unknown					
	20.00.						
e.	Location Spillover	None					
f.	Number and Type of Gates						
OUTLET W	orks:						
9							
	Tyne	Unknown					
h	Type	Through structure					
h	Location	Through structure					
h	Location	Through structure					
b. с. d.	Location Entrance inverts	Unknown Through structure Unknown Undeterminable lities Unknown					
b. c. d. e.	Location Entrance inverts	Through structure Unknown Undeterminable					
b. c. d. e.	Location Entrance inverts Exit inverts Emergency draindown faci TEOROLOGICAL GAUGES:	Through structure Unknown Undeterminable lities Unknown					
b. c. d. e. HYDROMET	Location Entrance inverts Exit inverts Emergency draindown faci TEOROLOGICAL GAUGES: Type Location	Through structure Unknown Undeterminable lities Unknown None					
b. c. d. e. HYDROMET	Location Entrance inverts Exit inverts Emergency draindown faci TEOROLOGICAL GAUGES: Type Location	Through structure Unknown Undeterminable lities Unknown					

DAM NAME.

I.D. NUMBER

L. ROBERT KIMBALL & ASSOCIATES

CONSULTING ENGINEERS & ARCHITECTS

EBENSBURG PENNSYLVANIA

DAM NAME LAKE SHERIDAU

I.D. NUMBER 744

SHEET NO. / OF 3

BY CAB DATE 5-8-80

LOSS RATE AND BASE FLOW PARAMETERS

RECOMMENDED BY THE CORPS OF ENGINEERS BALTIMORE DISTRICT.

STATL = linen

CNSTL = .05 IN/HR

STRTQ = 1.5CFS/MI

QRCSN = .05 (5% OF PEAK FLOW)

RTIOR = 20

ELEVATION - AREA - CAPACITY RELATIONSHIPS

FROM U.S.G.S. 75 MIN. QUAD., DER FILES AND FIELD INSPECTION DATA.

BAYLORS POND

NATURAL CREST ELEV. = 1135 PONO SURFACE AREA = 84.5 AC PONO BOTTOM AREA = 6.4 AC.

FROM THE FORMULA FOR THE VOLUME OF A FRUSTUM OF A CONE.

$$V = \frac{1}{3} \left(A_1 + A_2 + \sqrt{A_1 A_2} \right)$$

ELEV. WHERE STORAGE EQUALS ZERO = 1100 STORAGE AT ELEV. 1135 = 1331 ACFT STORAGE AT ELEV. 1140 = 1780 ACFT STORAGE AT ELEV. 1160 = 5235 ACFT

M		DAM NAME LAKE SHER DAU
L. ROBERT KI	MBALL & ASSOCIATES IGINEERS & ARCHITECTS PENNSYLVANIA	SHEET NO. 2 OF 9 BY CA3 DATE 5-8-80

\$ S	O	1135	1140	1160
 ₹ E	1100	1331	1980	5235

NEEDLES LAKE (MIDDLE LAKE)

SPILLWAY CREST ELEV. = 1075

POND SURFACE AREA = ZZ AC.

ELEU WHERE STORAGE EQUALS ZERO = 1065

FROM THE CONIC METHOD OF RESERVOIR STURAGE

$$V = (h)/A)/3$$

INITIAL STORAGE CAPACITY = 73 AC FT.
STORAGE AT ELEV 1030 = 225 AC FT.
STORAGE AT ELEV 1030 = 225 AC FT.

\$5	0	73	140	225
& E	1065	1075	1078	1080

LAKE SHERIDAN

SPILLWAY CREST ELEV. = 978

POND SURFACE AREA

UPPER PORTION = 63 AC.

POND BOTTOM AREA

LOWER PORTION = 7 AC.

LOWER PORTION = 0 AC.

POND AREA AT 1000'

UPPER PORTION = 80 AC

LOWER PORTION = 36 AC

POND AREA AT 990

UPPER PORTION = 29 AC

LOWER PORTION = 0

ZZ/

L. ROBERT KIMBALL & ASSOCIATES
CONSULTING ENGINEERS & ARCHITECTS
EBENSBURG PENNSYLVANIA

DAM NAME LAKE SHERIDAN

SHEET NO. 3 OF 7 BY CA 3 DATE 5-8-80

FROM THE FORMULA FOR THE VOLUME OF A FRUSTUM OF A CONE.

ELEV. WHERE STORAGE EQUALS ZERO = 950
STORAGE AT ELEV. 998 = 546 AC FT
STORAGE AT ELEV. 1000 = 735 AC. FT
STORAGE AT ELEV. 990 = 167 AC. FT
STORAGE AT ELEV. 1020 = 1974 AC. FT

FROM THE COULL METHOD OF RESERVOIR STORAGE

$$V = (h)(A)/3$$

ELEV. WHERE STORAGE EDUALS ZERO = 910 STORAGE AT ELEV. 918 = 75 AC, FT STORAGE AT ELEV. 1000 = 120 AC, FT STORAGE AT ELEV. 1020 = 510 AC, FT

VTOTAL = V4 + VL

\$ 5	0	167	621	858	2484
8 E	980	990	998	1000	1020

DAM NAME <u>FACE SAERIOAN</u>
I.D. NUMBER <u>244</u>

L. ROBERT KIMBALL & ASSOCIATES
CONSULTING ENGINEERS & ARCHITECTS
EBENSBURG PENNSYLVANIA

SHEET NO. 4 OF 9 BY 43 DATE 5 4 80

DISCHARGE RATING CURVE

BAYLORS POND

	TRAPEZO	PIDAL	w		
ELEV.	ηφ ((t)	Q* (cfs)	(ft) \range b	Q* (c+s)	CFS)
//35.0 //35.5 //36.0 //36.5 //37.0 //38.0 //40.0 //45.0 //50.0	05050	0 5 20 40 65	1.0 3.0 8.0 15.0	30 150 650 1350	0 5 20 40 65 95 215 715 1415

* VALUES ROUNDED TO NEAREST 5 CFS.

TRADEZOIDAL FLOW FROM:

DAM NAME -AKE SHEY. CAN

I.D. NUMBER 7-4

L. ROBERT KIMBALL & ASSOCIATES

CONSULTING ENGINEERS & ARCHITECTS
EBENSBURG

DAM NAME -AKE SHEY. CAN

I.D. NUMBER 7-4

SHEET NO. S OF 9

EBENSBURG

BY (A) DATE S B- 60

BY (A) DATE S B- 60

WEIR FLOW FROM:

C= 3,2 L= 9.0

SOURCE: WATER & WASTEWATER ENGINEERING by FAIR, GEYER & ORUM 1966 NEEDLES LAKE (MIDDLE LAKE)

TRAPEZOIDAL SPILLWAY

	TRAPEZ	DIDAL	WEIR		
ELEV.	(FT)	Q* (CFS)	(FT)	(CFS)	CFS)
1075.0 1075.5 1076.0 1076.5 1077.0 1077.5 1078.0 1079.0 1080.0	0 .5 .0 .5 2.0 2.5 3.0	0 45 125 240 376 525 700	1.0 2.0 7.0	70 490 3200	0 45 125 240 370 525 700 270 1190 5900

L. ROBERT KIMBALL & ASSOCIATES CONSULTING ENGINEERS & ARCHITECTS

EBENSBURG

I.D. NUMBER 744

SHEET NO. 6 OF 9

BY 12 DATE 5 86

*VALUES ROUNDED TO NEAREST SCAS

PENNSYLVANIA

TRAPEZOIDAL FLOW FROM;

B= 42' Z=2 C'=.95 (ENTERNICE COSTE.)

WEIR FLOW FROM;

$$Q = CLh_{p}^{"S}$$
 $C = 3.2 L = 54$

Source: WATER & WASTEWATER ENGINEERING by FAIR, GETER & OKUM 1166

LAKE SHERIDAN

DISCHARGE RATING CURVE CETERMINED BY THE HEC-1 COMPUTER PROGRAM.

SPILLWAY CREST = 998.0 SPILLWAY LENGTH = 40' COEFFICIENT OF DISCHARGE = 3.2

NZ/1	DAM NAME LAKE SHERIDAN
L. ROBERT KIMBALL & ASSOCIATES CONSULTING ENGINEERS & ARCHITECTS EBENSBURG PENNSYLVANIA	SHEET NO. 7 OF 9 BY CA & DATE 5-8-80

OVERTOPPING PARAMETERS

BAYLORS POND

THE NATURAL LAKE WILL BE CONSIDERED A DAM FOR THIS ANALYSIS

TOP OF DAM ELEV. = 1/37
LENGTH OF DAM (EXCLUDING EXIT CHANUEL) = 10'
COEFFICIENT OF DISCHARGE = 3.0

<u>B</u> L	10	46	134	174	208	242
₹ ∨	//37	1138	1140	1142	1144	1146

NEEDLES LAKE (MIDDLE LAKE)

TOP OF DAM ELEU. = 1078

LENGTH OF DAM = 100'

COEFFICIENT OF UNCHARGE = 5.0

\$L	100	158	216	246	286
\$V	1078	1079	1030	1082	1085

DAM NAME LAKE SHER OAD

I.D. NUMBER 744

L. ROBERT KIMBALL & ASSOCIATES

CONSULTING ENGINEERS & ARCHITECTS
EBENSBURG

DAM NAME LAKE SHER OAD

I.D. NUMBER 744

SHEET NO. 3 OF 9

BY CA 3 DATE 5-6-80

LAKE SHERIDAN

TOP OF DAM ELEV. = 9998
LENGTH OF DAM (EXCLUDING SPILLWAY) = 89'
COEFFICIENT OF DISCHARGE = 3.1

\$L	2_	37	89	127	13.	و ن ٪
₫ V	999.8	779.9	1000.0	1201.0	1002.0	⁄ ూ}ెట

DAN BREACH PARAMETERS

BAYLORS POND

WILL NOT BREACH

NEEDLES LAKE (MIDDLE LAKE)

FAILURE TIME (TFAIL) = 20 HE FAILURE ELEV. (FAILEL) = 10780 DAM NAME LAKE SHERIDAN

I.D. NUMBER 774

L. ROBERT KIMBALL & ASSOCIATES

CONSULTING ENGINEERS & ARCHITECTS
EBENSBURG

DAM NAME LAKE SHERIDAN

BY CAR DATE 5-14-60

LAKE SHERIDAN

FAILURE TIME (TFAIL) = 5.0 HR FAILURE ELEV. (FAILEL) = 1001

CHANNEL ROUTING

CHANNEL POUTING CROSS SECTIONS OBTAINED FROM USES. 7.5-MIN. QUAD.

CHRNNEL MANNING'S TO (QN-Z) + 0.05 OVERBANK MANNING'S TO (QN-1) = 0.06

A	
9515 OF DAM OVERTOPPING USING RATIOS OF DUGSIC-HTDRAULIC ANALYSIS UF SAFETY OF OS OF PHE ROUTED THROUGH THE RESERVOIR OF 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15	
A3 RATIOS OF PHE ROUTED THROUGH THE RESERVOIR B1 200 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
# 2.06	ТВАК ВАК
1	. 0 0
2.06 .62 2.0 1.07 1.27 1.36 1.4. 1. 1.0 2.05 .62 2.0 1.36.0 1.140.0 1.	-
INFLOW TO BAYLORS POND 1	
2.06 .62 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	
2.06 .62 1.505 2.0 ROUTE THROUGH BAYLONS POND AND DOWNSTREAM 1	
1135-0 1136-5 1136-0 1136-5 1137-0 1138-0 1140-0 1135-0 1136-5 1136-0 1136-5 1137-0 1138-0 1140-0 0 1135 136-5 1136-0 1136-5 1137-0 1138-0 1140-0 1135 3-0 11-5 1160 5235 1137 3-0 11-5 110 235 1137 3-0 11-5 110 208 242 1137 3-0 11-5 1140 1144 1146 1145 1137 3-0 11-5 1140 1147 1146 1145 115-0 3 117 127 136 142 1145 11-0 45 2.0 11-0 46 11-0 11-0 11-0 11-0 11-0 11-0 11-0 11-	
1135.0 1136.5 1136.0 1136.5 1137.0 1138.0 1140.0 0 1135 1140 1160 65 95 215 1100 1331 1960 5235 1137 3.0 1.5 10 208 242 1137 8.0 1.5 10 1142 1144 1146 0 3 1137 1140 1142 1144 1146 0 3 2 20 117 127 136 142 1145 1 1 32 2.0 10 127 136 142 1145 1 1 1 32 2.0 10 1143 1140 1145 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1135-0 1136-5 1136-0 1136-5 1137-0 1138-0 1140-0 0 1135 1140 1160 65 95 215 1130 1331 1360 5235 1135 3.0 1.5 10 208 242 1137 3.0 1.5 10 208 242 1137 3.0 1140 1142 1144 1146 1137 21.31 117 127 136 142 1145 1.0 -67 -62 2.0 1	2
1100 1331 1940 1350 155 95 215 1100 1331 1940 5235 1137 3.0 1.5 10 208 242 1137 2138 1140 1142 1144 1146 0 3 142 1140 1142 1144 1146 1 21.31 117 127 136 142 1145 -2.505 2.0 4 1.33	2150.0
1135 3.0 1.5 10 208 242 1137 3.0 1.5 10 208 242 1137 2136 1140 1142 1144 1146 0 3 1140 1142 1144 1146 1 21.31 117 127 136 142 1145 -1.505 2.0 1 117 004 10 HIDDLE LAKE FROM SUBAREA B	9111
1137 3.0 1.5 10 208 242 10 46 134 174 208 242 1137 2136 1140 1142 1144 1146 0 3 1NFLOW TO MIDDLE LAKE FROM SUBAREA A 1 21.31 117 127 136 142 ,145 -1.505 2.0 1NFLOW TO WIDDLE LAKE FROM SUBAREA B	
1137 2136 1140 1142 1144 1146 1 1	
INFLOW TO MIDDLE LAKE FROM SUBAREA A 21.31 117 127 136 142 145 -1.505 2.0 INFLOW TO WIDDLE LAKE FROM SUBAREA B	
21.31 137 127 136 142 1145 -17 .652 2.0 -1.505 2.0 INFLOW TO WIDDLE LAKE FROM SUBAREA B	
-1.505 2.0 0 -4 TO WIDDLE LAKE FROM SUBAREA'B	
I INFLOW TO HIDDLE LAK	
21.31 117 127 136 142 145	
W 2.06 .62 .05 X -1.505 2.0	
3 THREE	

1045 1075 1078 1080 1075 1075 1078 1080 1078 1079 1078 1080 1078 1079 1080 1081 1078 1079 1080 1081 1078 1079 1080 1080 1075 1078.0 1078 1079 1080 1080 1075 1078.0 1078 1079 1080 1080 1080 1078 1079 1075 1078 1078.0 1078 1079 1079 1079 1079 1079 1079 1079 1078 1078 1078 1078 1078 1078 1078 1078	1075.	1075.5	1076.0	1076.5	1077-01	1077.5	-1075 1078-0 700	1079.0 870	1080. 1190	1085.0 3900	-	i 1
1075 1075 1076 1078 1078 1078 1078 1078 1078 1078 1078	\$5 0 \$E 1065	1075	<u> </u>	1080	,							
1075 3+0 1+5 100 286 1078 1078 1078 1078 10.5 1068 10.5 1075 1078 10.5 1078 10.5		. !					ý.			-	-	; ;
1075 1075 1076 1076 1076 1076 1076 1076 1076 1076			· !				·				-	
1075 1075 1075 1075 1076 100 158 216 246 246 286 1078 1078 1082 1082 1082 1082 1082 1082 1082 108												
1075 1075 1076 13.0 10.5 10.7 10.0 15.0 10.6 10.0 10.0 10.0 10.0 10.0 10.0 10												
1078 1079 1080 1082 1085 12 -5 1068 2.0 1075 1076.0 1 1 21.031 117 127 136 14.2 14.5 2.09 -6.2 2.0 2.09 -6.2 2.0 2.09 -6.2 2.0 2.09 -6.2 2.0 2.09 -6.2 2.0 2.09 -6.2 2.0 3.00 10.00 10.00 10.00 9.90 9.90 9.90 10.00 10.20 9.90 9.90 9.90 10.00 10.20 9.90 9.90 10.00.0 10.00 10.20 9.90 9.90 10.00.0 10.00 10.20 9.90 9.90 10.00.0 10.00 10.20 9.90 9.90 9.90 10.00.0 10.00.0 10.00.0 9.90 9.90 10.00.0 10.00.0 10.00.0 10.00.0 9.90 9.90 9.90 10.00.0 10.00.0 10.00.0 10.00.0	! -		165	100	286			-				
INFLOW TO LAKE SHERIDAN 1	1	2010	1068	1082	1085	1078.0	-					
2.09 .62 1.00 .05 2.09 .62 2.0 COMBINING TWU HYDROGRAPHS 1 9 1000 500 1020 990.8 999.9 1000.0 1001.0 1002.0 1003.0 999	-		1	ERIDAN								
2.09 .62 -1.505 2.0 2 B		~	112	.	136	797	145			- 1		
COMBINING TWU HYDROGRAPHS 1 ROUTE THROUGH LAKE SHERIDAN 1 ROUTE THROUGH LAKE SHERIDAN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	- 62	2•0	,			0•1	60.				
ROUTE THROUGH LAKE SHERIDAN 1	7	DMB IN ING	1	ROGRAPHS								
1 167 621 856 2484 940 940 998 1000 1020 998 40 3.2 1.5 999.8 3.1 1.5 89 127 131 169 2 37 89 127 100.0 1001.0 1002.0 1003.0		OUTE THREE	JUCH LAKE	13	N		•			•		
980 990 998 1000 1020 998 40 3-2 1-5 999.8 3-1 1-5 89 2 37 89 127 131 999.8 999.9 1000.0 1001.0 1002.0				-	ا		966-	0		· 		
999.8 3.1 1.5 89 2 37 89 127 131 999.8 999.9 1000.0 1001.0 1002.0		167 990 40	621 998 3.2	858 1000 1.5	10701							
999.8 999.9 1000.0 1001.0 1002.0	,	3.1	1.5	127	131	169			•			
	 666	6.666	3	1001.0	1007.0	1003.0						
			•	:	!		;	!	1			

The state of the s	145.00
--	--------

APPRUXIMATE CLARK COEFFICIENTS FROM	DEFFICIENTS FROM	STRIU1.50 GIVEN SNYDER CI		RECESSION DATA ORCSN= AND IP ARE IC=	9.29	RT 10R= 2.00 AND R= 7.60	INTERVALS	S			
· ၁ •	UNIT HYDROGRAPH	46 END-OF	-PER10D	46 END-OF-PERIOD ORDINATES. 138. 216. 299.	LAG* 2.	2.05 HOÚRS. C	CP# .62	VOL- 1.00	. 432		
382	335.	i 1	257.	225.	198.	173.	152.	133.	117.		1
,								-			
			Ł.	•		;	!	1		; ;	
·				•							
1020	90.	78.	69.	60. 16.	53.	46.	•1•	36.	31.		
2	9.	• •	.5.	•	•						
********	.].	****			2.5	********		*********	**		
			H	- HYDROGRAPH ROUTING	UT ING				-	-	
·	ROUTE THRO	UGH BAYLO	ORS POND	ROUTE THROUGH BAYLORS POND AND DOWNSTREAM	EAM			·			
		ISTAG TCOMP		TECON ITAPE	1 JdC	JPRT	TNAME IS	TSTAGE TAUTO	00		
		CL055 0.000 0	AV6 1	TRES TSAME	10PT 10PT	TPMP 0		LSTR			
		NSTPS NS	NSTOL 0	LAG AMSKK 0 0.000	× 00000	1- 0000 0	STORA 15F	ISPRAT			
STAGE 1135.00	1135.50	1136.00		1136.50	1137.00	1138.00	1140.00		1145.00 Tis	1150.00	
FLOW 0.00	00*6 01	20.00		00.04	00•59	95.00	215.00		715.00 141	1415.00	
CAPACITY.	0. 1135	1140	•	1160.	-						
ELEVATION.	1100. 1331.	1980	:	5235.							
	CREL	SPWID	COUN	EXPW	ELEVL C	COUL CAREA	EXPL				
			1137.0	TOPEL 7605 3.0	M DATA EXPD 1.5	DAMWID					
CREST LENGTH	,10.	1	134.	174.	20B.	242.		-			
AT OR BELOW											

: :

1

:

N N	0000	21.31 117.00 127.00 136.00 142.00 145.00	PRECIP DATA	0 0 0 00 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0	HYDROGRAPH DATA SNAP TRSDA TRSPC RATIO ISNOW ISAME	ICUMP IECON ITAPE JPLT JPRT INAME ISTAGE	INFLOW TO MIDDLE LAKE FROM SUBAREA A		157AQ 1CUMP 1ECON 17APE JPLT JPRT 1NAME 157AGE 46 TAREA SNAP TRSDA TRSPC RATIO 15NOW 15AME LOCAL 1 .32 0.00 .32 0.00 0.000 0.000 21.31 117.00 127.00 136.00 142.00 145.00 0.00 800 LOSS DATA
•17 CP= •62	STHKR DLTKH RTIOL ERAIN STHKS RTIOK STRTL CNSTL ALSMX	0.800 LOSS DATA DLTKH RTIOL ERAIN STRKS RTIOK STRTL CNSTL ALSMX 0.00 1.00 0.00 0.00 1.00 0.05 0.00	E PMS R6 R12 R24 R48 R72 R96 0 21.31 117.00 127.00 136.00 142.00 145.00 0.00 6000 LOSS DATA DLIKH RIIOL ERAIN SIRKS RIIOK SIRIL CNSIL ALSMX 0.00 1.00 0.00 0.00 1.00 1.00 0.05 0.00	PRECIP DATA E PMS	1 .32 0.00 .32 0.00 0.000 0 0 0 PRECIP DATA E PMS	HYDROGRAPH DATA HYDROGRAPH DATA I .31	ISTAQ ICUMP IECON ITAPE JPLT JPRT INAME ISTAGE IAUT JPRT INAME ISTAGE IAUT JPRT INAME ISTAGE IAUT JPRT INAME ISTAGE IAUT JPRT IASDA TRSDA TR	TO MIDDLE LAKE FROM SUBAREA A 15140 1CUMP 1ECON 1TAPE JPLT JPRT INAME 151AGE 3 0 0 0 0 1 1 0 0 HYDROGRAPH DATA 1 .32 0.00 332 0.00 0.000 0.000 E PMS RES RIZ RAB RZ4 RAB RZ2 R96 0 21.31 117.00 127.00 136.00 142.00 145.00 0.00 LOSS DATA LOSS DATA DITK RIIOL ERAIN STRS RIOK STRIL CNSTL ALSMX R1 0.00 1.000 0.00 0.00 0.00 0.00 0.00	UNIT HYDRUGRAPH DATA TP= .77 CP= .627 NTA= 0
UNIT HYDRUGRAPH DA		0000	PMS R6 RIZ R24 R48 R72 D 21.31 117.00 127.00 136.00 142.00 145.00 •800	PRECIP DATA PRECIP DATA 10 21.31 117.00 127.00 136.00 142.00 145.00	1 .32 0.00 .32 0.00 0.000 0 0 0 PRECIP DATA PAS RIZ RZ4 R4B R72 R96 2 21.31 117.00 127.00 136.00 142.00 145.00 0.00	HYDROGRAPH DATA HYDROGRAPH DATA TRSDA TRSPC RATIO ISNOW ISAME TRSDA TRSPC RATIO ISNOW ISAME D. 312 D.00 .32 0.00 U.000 0 0 PRECIP DATA RAB RTZ R96 D. 21.31 117.00 127.00 136.00 142.00 145.00 0.00	15TAQ 1CUMP 1ECON 1TAPE	TO MIDDLE LAKE FROM SUBAREA A 15140 1CUMP 1ECON 1TAPE JPLT JPRT INAME 151AGE 3 0 0 0 0 1 1 0 HYDROGRAPH DATA 1 .32 0.00 .000 0.000 0 0 0 PRECIP DATA 2 PMS RE RIZ RAB 5 21.31 117.00 127.00 136.00 142.00 145.00 0.000	STRKR DLTKH RIJOL ERAIN STRKS RIJOK STRTL CNSTL ALSMX 0.00 0.00 1.00 0.00 0.00 1.00 1.00 .05 0.00

........

INFLOW TO MIDDLE LAKE ISTAG TCOMP THYDG THES S	_	FROM SUBAREA B	JACT JARY	INAME (STAGE TAUTO	
	100	LTAB			0
•	TAREA SNAP	U HYGROGRAPH DATA P TRSDA TRSPC	RATIO ISNOW	1 SA	•
j		Agen a mar dile a majendari par digunari dile a sancia da a	derfen einer ist eine de einer de eine eine eine eine eine eine eine e		
	•				
			-		
					7
	•	-			
	1.33 0.0	.00 1.33 0.00	0 0000 0	* 0 0 0	
TRSPC COMPUTED BY THE PROGRAM 15 .8	21.31 117.00	77	R48 R72	R96 0.00	
ROPT STHKR DL	RTIOL	LOSS DATA ERAIN STRKS R	STRIL	CN51L ALSMX RTIMP	
00.0 00.0	1.00	00.0		ĺ	
	a	UNIT HYDROGRAPH DATA	SATA 0		
ABBOOKTAATE CIARK COFFETCTENTS FROM GIVEN SAVER		CESSION D GRCSN#	AIA -05 RIIOR- 2.00 TC- 9.29 AND R- 7.60 INTERVALS	10 10 INTERVALS	
UNIT HYDROGRAPH 4			5- 2-05 HOURS.	링!	
	79. 124. 168. 147. 45. 39.		• • • •	263• 265• 81• 76• 23• 20•	67°
14.	11211	•			5
• 4	3.	•,	• 7		

### ### ### ### ### ### ### ### ### ##	1	-	•	,								•			
SOUTE THROUGH HIDDLE LAKE AND DOWNSIREAM SOUTH STAGE S		***			•	*	* * * * * * *		****	***	*	****			
15740 1504P 1504P 174F JPRI 114ME 151AGE 1AUTO 157AG 1504P					-	HYDROGR	TAPH ROU	FING							
15140 15COM 11APE JPL1 JPR1 INAME 15TAGE 1AUTO		č	SUTE THR	OUGH MI	- 1	E AND DO	WNSTREA	Σ			•	•	•		
O+00 O+00 O+00 O+00 O+00 O+00 O+00 O+000 O+0000 O+000 O+				15740	I COMP	JEÇON U	ITAPE		JPRT	INAME	ISTAGE 0	IAUTO		-	
1075-00 1075-50 1076-50 1077-00 1077-50 1077-50 1077-50 1077-50 1077-50 1077-50 1077-50 1077-50 1077-50 1077-50 1077-50 1077-50 1077-50 1077-50 1190-00 1190-00		-		00000	9 A & O	ROUT IRES I	ING DAT ISAMÉ I		dwd!	-	LSTR				
1075-00 1075-50 1076-00 1076-50 1077-50 1077-50 1078-00 1090-00 1090-00 0.00 45-00 125-00 240-00 370-00 525-00 700-00 0700-00 1190-00 CCRE SPWID CODW EXPW ELEVE CODE CAREA EXPL CRE SPWID CODW EXPW ELEVE CODE U.O	·		_	NSTPS 1	NSTUL O	LAG	AMSKK U.000	× 0000	1.5K 0.000	STORA-1075.	I SPRAT	-	<u>.</u> .		
CITY= 0.			1075.50.	101	00.9	1076.50		•	1077.50		78.00	1079.0	•	90.08	i
0. 73. 140. 225. 1065. 1075. 1078. 1080. CREL SPWID COGW EXPW ELEVL COGL CAREA EXPL 1075.0 0.0 0.0 0.0 0.0 0.0 0.0 DAM DATA 1075.0 0.0 0.0 0.0 0.0 0.0 1075.0 0.0 0.0 0.0 1075.0 0.0 0.0 0.0 1075.0 0.		òo•	45.00	12	2.00	240.00		70.00	525.00		00*00	9.07 8		00.06	-
1065. 1075. 1078. 1080. CREL SPWID COOM EXPW ELEVL COOL CAREA 1075.0 U.0 U.0 U.0 U.0 U.0 U.0 U.0 TOPEL COOD EXPU DAMWID 1078.0 1078.0 1080.0 1082.0 1085.0 DAM DRIA 100. 158. 216. 246. 286. DAM BREACH DATA	CAPACITY.	ò	13		140.	225.					e*				
CREL SPWID COOM EXPW ELEVL COOL CAREA 1075-0 U-0 U-0 U-0 U-0 U-0 U-0 DAM DATA TOPEL COOD EXPD DAMWID 1078-0 1078-0 1080-0 145 100- 1078-0 1079-0 1080-0 1082-0 1085-0 DAM BREACH DATA STATION A DATE FAILER STATION A DATE OF TAILER STA	ELEVATTON.	1065.	1075		078.	1080.									
1078-0 1079-0 1080-0 1082-0 1088-0 1078-0 1078-0 1088-0 1088-0 1088-0 1088-0 1088-0 1088-0 1088-0 1088-0 1088-0 1078-0 1078-0 1078-0 1078-0 1078-0 1078-0 1078-0 1078-0 1078-0 1078-0 1078-0 1088-0 1088-0 1078-0 10			CRE	- 1	-	1			l		XPL	_		-	
1078.0 3.0 1078.0 1080.0 1082.0 3.0 1078.0 1080.0 1082.0 1085. DAM BREACH BRWID LEIBM L	-						A A				2			1	
1078.0 1079.0 1080.0 1082.0 1085. DAM BREACH BRWID				-		1078.U	3.0	145	DAMWID 100.						
1078.0 1079.0 1080.0 1082.0 1085. DAM BREACH BRWID 2 ELBM 12. 50 1058.00	CREST LENGTH	100		.86	216.	246.		96.			-		-		
LAM BREACH LELBM STATION A. B.	ELEVATION	1078.(İ		1080.0	1082.0	4	2.0							_
				į	BRWID	a 7	AM BREAC	CH DATA TFAIL	WSEL	FAILEL					
					ł .	1.05.	06850	2.00	1075.00	078.00					

SUB-AREA RUNOFF COMPUTATION 1DAN OMP IECON 17APE JPLT JPRT IN OMP IECON 17APE JPLT JPRT IN COUNTY HYDROGRAPH DATA THSDA TRSPC RATIO ISNOW THSDA TRSPC RATIO THE
ERIDAN ICOMP IECON 17A O
INFLOW TO LAKE SHERIDAN 151AO 1COMP 1ECON 1TAP 151AO 1COMP 1ECON 1TAP 1

DAM DATA CO3D EXPD DAMWID	1.5 89.	1910 1690	00.5.0	STATION 9. PLAN 1. RATIO I
TOPEL COOL	B. 666		0.5001 0.1001 0.0001	STATION
		37. 89	0001 6-000	
		2.	300 8*000	
		CREST LENGTH	AT OR BELOW	

PEAK FLOW AND STORAGE TEND OF PERIODT SUMMARY FOR WULTIPLE PEAN-RATIO ECONOMIC COMPUTATIONS
FLOWS IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND)
AREA IN SQUARE MILES (SQUARE KILOMETERS)

	,	.4				RATIOS APF	RATIOS APPLIED TO FLOWS	OWS		-
OPERATION	STATION	AREA	PLAN	RATIO I	RAT TO 2	RATTO 3	RATIO 4	RATIO 5 1.00		
HYDROGRAPH AT	-	2.32		582. 16.47)!	1163.	1745.	2326.	58164		-
ROUTED TO	2 -	2.32 6.01)	1	580.	1162.	1745.	2327. 65.881(5818.		
HYDROGRAPH AT	3	.32	-	131.	261.	392.	523.	1306.	j.	-
C HYDROGRAPH AT	3	1633	~~	333.	667.	1000.	1334. 37.761	3334. 94.41)(
3 COMBINED	· -	3.97	-	978.	1960.	2941.	3921.	9804.		~
ROUTED TO	۰	3.97		1341.	2461.	2904.	3849. 108.991	9766.		
HYDROGRAPH AT		2.00	-	499.	28.261	1497.	1996.	4989.		
2 COMBINED	ec -	5.97	-	1748.	3459.	4399.	5816. 164.7011	14755.		
ROUTED TO	6	5.97		1290. 36.5311	2828° 80°0734	4157.	5565• 157 _• 59)(14356.	•	

RATI OF PMF 20 20 20	STORAGE		172	1135,00		1137.00		
¥ 1	OUTFUD		9	172.		182.		
				•	•	•69		***
1	0	MAXIMUR	MAXIMUM	MAXIMIL	MINISTALL			
	œ	OLPTH	STUKAGE		DURAL TOR	TIME OF	ĺ	
	#•3•cce	OVER DAM	AC-F		HOURS	MAX OUTFLOW HOLDS	<u>.</u>	
	1139.17	2.17	197		+		CHOCK	
		3.08	197.		10.25	41.75	00.00	
		3.69	200	1765	13.50	41.75	00.0	
		4.21	202	2327	10.50	41-75	00.0	L
	8406411	84.9	2140	5818	25.50	41.13	00.0	
	-					61115	00•0	
	.	\$	UMMARY OF D	SUMMARY OF DAM SAFETY ANALYSIS	VALYSTS			
						•		
						•		
	ELEVALION		TIME VALUE	SPILLWAY CREST	10	OF DAM		,
	STORAGE		300	1075.00		1078.00		
	DUTFLOY			73.		140.		
•		:	.	•0		. 7001		
					•			
RATIC		HAXTHUR	MAXIMUM	MAYTUIL	N. P. S.			
TO O	z		STURAGE	OUTFLOW	NOT AND O	I IME OF	TIME OF	
	Wesellev	OVER DAM	AC-FT	CFS	HOURS	MOTELOM HOURS	FAILURE	
01.	1078.21	10.	•			1	CRUCH	
• 20		20	170-	1361.	1.38	43.25	41.25	
QE.		. 93	179.	7007	7.50	41.75	,	
	~ .	1.64	210.	38494	60.4	42.00	39.00	
	3082028	402B	322.	9766	9,00	00.24	38.50	
	٠.					410/2	37.25	
		05	MMARY OF DA	SUMMARY OF DAM SAFETY ANALYSIS	(LYS1S			
PLAN T		į						
	ELEVATION	JAITIMI	במב	SPILEWAY CREST		TOP OF DAM		
1	STORAGE	00.8%		00.866		999.80		j -
	OUTFLOW		10	621.		834.		-
					,			
RATIO	•	MAXIMUM	MAXIMUM	WAY IMIG.				
5 3	RE SERVOIR	UEPIH	STUKAGE		DUKATION	TIME OF	TIME OF	•
Jim's	W.S.ELEV	OVER DAM	AC-FI.	CFS	OVER TOP HOURS	MAX OUTFLOW HOURS	FAILURE	
01.	1001-29	1.49	26.43				24001	
•20	1002.58	2.18	1067	1290.	30.8	43.75	00.0	
0.30	1003.43	3.63	1137.	•8787	11.25	42.50	0000	
04.	1004.20	04.4	1199.	5565	13.25	42.50	00.0	1
00•1	1007.94	8 - 1 4	1504	16356.	06.91	42.50	00.0	

1	ROUTED 10N DUE EACH, PL 127 127	THROUGH THE RESERVOIR TAND DOWNSTREAM TO OVERTOPPING OF THE LAKE SHERIDAN DAM (744) AN 2 ASSUMES NO BREACH 1	JAN DAM (744) 0 0
## 1135.0 ## 1135.0 ## 1135.0 ## 1135.0 ## 1135.0 ## 1137.0 ## 1137.0	POND 127 1		9
KI INFLOW TO KI	POND 127 13 CORS POND AND	145 1.00 1.00 1.130 1.140	
X -1.5 X -1.5 X -1.5 X -1.5 X -1.5 1.15 X 1.15 X 1.15 X 1.13 X 1.13	127 13 LORS POND AND	145 1.0 1 -1139 114050	
X -1.5 X 1.5 X 1.00 Y 1.1 Y 1.1 Y 1.1 Y 2.0 Y 3.0 Y 3.0 Y 3.0 Y 3.0 Y 1.1 Y 1.1 Y 1.1 Y 1.1 Y 1.1 Y 1.1 Y 1.1 Y 0 0	CORS POND AND	-1135	
### ##################################	CORS POND AND	-1135	A displaying the same of the state of the st
YS 0 1139 5 11		1140.0 114	
\$\$ 1135 \$\$ 1135 \$\$ 1135 \$\$ 1137 \$\$ 1137 \$\$ 1137 \$\$ 1137 \$\$ 1136 \$\$ 1137 \$\$ 113	1136.5 1137.0 1136 40 65 1160	215	1150.0
SV 1137 1136 1 KI 10 46 137 1136 1 KI 10 10 110 110 110 110 110 110 110 110			
M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 9	
K -1.5 -62 K -1.5 -65 K 1 INFLOW TO MI	LAKE FROM SUBAREA A		
K1 INFLOW TO MI	2.0	1.0 .05	
	LAKE FROM SU		
7 21.31 1 2.06 .62	121 136	1.0 .05	
X, -1.5505 K 3 5 5 K1 COMBINING THR	Z+D EE HYDROGRAPHS	1	and the state of t
44 K1 ROUTE THROUGH H	B THROUGH MIDDLE LAKE AND DOWNSTREAM 1 1	ı	
46 Y1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.0 1076.5 1077.0 1077.5 125 246 376 525 140 225 078 1080	-1075 -1 5 1078.0 1079.0 5 750 870	1080.0 1089.0 1190 3900

•	-									- •		
	\$ 9	1075	3.0	1.5	100							
	138	1078	1079	1080 1080 1068	1082	286 1085 1075	1078					
	ZZE	N ~	INFLOW TO	TO LAKE SHERID	RIDAN		-	•		1		
	A - 3	2.09	215312	-111	121	1361		1.0	•00			
	K 7 2	- 115 - 2 - 2 - 2 - 2	MBINING	COMBINING TWO HYDROGRAPHS	OGRAPHS			1				
		26	UTE THR	ROUTE THROUGH LAKE	SHERIDAN	AN		-		-		
	F 2 3	096	167	621 998	1000	2484	-	866-	0			
	203	866 866 866	3.1	3.2 1.5 89	123	131	169					and the state of t
	288	130	9999	066	1001 -0 5 -0 5 -0	100Z.0 966 986	1003-0 1001 1010		-			
	± <u>₹</u> ≻	28	ROUTE THR	THROUGH STREAM	AM	-		•				
	1%2	- %0		.06 125	938	980 200	1750 940	.03	938	508	938	-
	K .	66 66	046	007	096	413	086		,		-	

SOF THE PHF ROUTED THROUGH THE RESERVOIR AND DOWNSTR TREAM CONDITION DUE TO OVERTOPPING OF THE LAKE SHERID 1 ASSUMES BREACH, PLAN 2 ASSUMES NO BREACH 3 JOPER NOT 2 ASSUMES NO BREACH 3 JOPER NWT LROPT TRACE 4 O D D D D D D D D D D D D D D D D D D		
1 ASSUMES BREACH. PLAN 2 ASSUMES NO BREACH 1 S. 100	KKAG	
RATIOS OF THE PMF ROUTED THROUGH THE RESERVOIR AND DOWNSTREAM DOWNSTREAM CONDITION DUE TO OVERTOPPING OF THE LAKE SHERIDAN DAM (7 PLAM 1 ASSUMES BREACH, PLAN 2 ASSUMES NO BREACH NO NWE MAIN JOAY INR ININ NETRC IPLT IPRT NST 288 JOPER NWT LROPT TRACE 5 0 0 0 0 RTIOS .20 RTIOS .20 RTIOS .20 RTIOS INPLUM TO BAYLORS POND THROUGH	7	
RATIOS OF THE PMF ROUTED THROUGH THE RESERVOIR AND DOWNSTREAM DOWNSTREAM CONDITION DUE TO OVERTOPPING OF THE LAKE SHERIDAN DAM (7 PLAN 1 ASSUMES BREACH, PLAN 2 ASSUMES NO BREACH NO NAM NAM 1, 100 TO SPECIFICATION NO NAM NAM 1, 100 TO THE THROUGH TRACE SUB-AREA RUNOFF COMPUTATION 1 2 432 0.00 2.32 0.00 10.00 10.00 10.00 0.00 0.00 0.00	RUN DATE* 80/05/19. TIME* 12:09:10.	-
### RATIOS OF THE PMF ROUTED THROUGH THE RESERVOIR AND DOWNSTREAM DOWNSTREAM CONDITION DUE TO OVERTOPPING OF THE LAKE SHERIDAN DAM (7 PLAN 1 ASSUMES BREACH. PLAN 2 ASSUMES NO BREACH 288		
### MMIN :IDAY INR ININ METRC IPLT IPRT NST 288	DOWNSTREAM CONDITION DUE TO OVEI PART SASUMES BREACH. PLAN 2 AS	AND DOWNSTREAM LAKE SHERIDAN DAM
######################################	SOU JOAN IN JOAN	METRC IPLT IPRT
RTIOS - 20 RTIOS - 20 RTIOS - 20 RTIOS TERTION TERTION TERTION TO BATLONS POND INFLOW TO BATLONS POND INFLOW TO BATLONS POND INFLOW TO BATLONS POND INTO TAREA SNAP TRSDA TRSPE HATIO ISNOW ISANE L ANDROGRAPH DATA HYDROGRAPH DATA HYDROGRAPH DATA RYDROGRAPH DATA RYDROGRAPH DATA HYDROGRAPH DATA RYDROGRAPH R	JOPER S	TRACE
SUB-AREA RUNOFF COMPUTATION SUB-AREA RUNOFF COMPUTATION ISTAQ ICOMP IECON ITAPE JPLT JPRT INAME ISTAG ISTAQ ICOMP IECON ITAPE JPLT JPRT INAME ISTAG ISTAQ ICOMP IECON ITAPE JPLT JPRT INAME ISTAG I I 2.32 0.00 2.32 0.00 0.000 0 1 SPFE PMS R6 R12 R96 SPFE PMS R6 R12 R96 O.00 21.31 112.00 137.00 134.00 145.00 0.000		
SUB-AREA RUNOFF COMPUTATION INFLOR TO BAYLURS POND ISTAQ ICOMP IECON ITAPE JPLT JPRT INAME ISTAG I 1 0 0 0 0 0 0 0 0 0 0 1 I 1 2.32 0.00 2.32 0.00 0.000 0 1 SPFE PMS R6 R12 R96 0.00 21.31 117.00 137.00 134.00 145.00 0.00	•20	
SUB-AREA RUNOFF COMPUTATION SUB-AREA RUNOFF COMPUTATION	***	
STAG ICOMP IECON ITAPE JPLT JPRT INAME ISTAGE I	SUB-AREA RUNOI	F COMPUTATION
15fag 1COMP 1ECON 1TAPE JPLT JPRT INAME 18TAGE 1	INFLOW TO BAYLORS POND	
HYDROGRAPH DATA	ISTAG ICOMP IECON	JPLT JPRT INAME ISTAGE
10HG TAREA SNAP TRSDA TRSPC RATIO ISNOG ISAME LOCA		
PMS R6 R12 R24 R48 R72	1 2.32 0.00	0.000 0 1 SAME LOCA 0.000 0 1
	PMS R6 21.31 117.00 12	4 R48 R72 0 142.00 145.00 C
008	200	

|--|

0.055 CLOSS AVE 0.058 CLOSS AVE 0.000 0.000 0.000 1139.90 1136.00 0.000 20.00 0.1135. 1140. 1100. 1331. 1980. 10. 46. 134. 1137.0 1138.0 1140.		1		}	-	HYDROG	HYDROGRAPH ROUTING	1116					
151AQ 1COMP 1ECOM 17AE 17AE 17AG			VIE THR	OUGH BA	_	OND AND	DOWNS TRE	7		-	D T. In an alasta de depuesario .		-
1139-00 1139-00 1140-0				151AQ 2	TCOMP.	- IECOM -	1TAPE 0	JPL1	JPRT	INAME TSTAGE	1		
95.00 1139-50 1136-50 1136-50 1135-00 1150-0 1150-0				0.0000	AV6 0.00	ACE PLAI ROUI IRES	HAVE NG DA ISAME		I PAP	1,518			
0. 1135.0 1136.00 1136.50 1137.00 1138.00 1140.00 1140.00 1145.00 0. 1135. 1140. 1160. 1. CREL SPUID COOM EXPU ELEV. COOL CAREA EMPL U.O. U.O. U.O. U.O. U.O. U.O. U.O. U.O				1	NSTOL	LAG	AMSKK	_ 00020_	3	=			
0. 1135. 1140. 1160. 1. CRE SPUID COOM EXPU ELEV. COOL CAREA EML. 1. CRE SPUID COOM EXPU ELEV. COOL CAREA EML. 1. CRE SPUID COOM EXPU ELEV. COOL CAREA EML. 1. CRE SPUID COOM EXPU DAMIND 1. COOL CAREA EMPL 1. COOL COOL CAREA EMPL 1. C			135.50	113	00.9	1136.5(00.00	- - - - - - - - - -	40.00	1145.00	1150.00	
0. 1135. 1140. 1160. 1100. 1331. 1980. E259. ELEV. COOL CAREA EXPL. 1355. UANHID 1175.0 2.0 1.5 100. 110. 46. 134. 174. 208. 242.		9	3. 00	Ñ	00.00	0000		90.65	95.00	215.00	715.00	1415.00	
0. 1135. 1140. 1160. 1100. 1331. 1980. 2235. 1 CREL SPWID COON EXPW ELEV. COOL CAREA EXPL 1135.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1135.0 0.0 0.0 0.0 0.0 0.0 1135.0 134. 174. 208. 242.	1		-		1							- :	
0. 1195. 1140. 1160. 1100. 1391. 1980. 5295. 1100. 1391. 1980. COON EXPY ELEVE COOL CAREA EXPE LIST OF U.O. U.O. U.O. U.O. U.O. U.O. U.O. U	- `	•											
0- 1135- 1140- 1160- 1100- 1331- 1340- 1160- 1100- 1331- 1980- 8235- 1135-0 0.0 0.0 0.0 0.0 0.0 0.0 DAM DATA DAM DATA 100- 46- 134- 174- 208- 242- 1137-0 1140-0 1142-0 1144-0 1144-0	}		, ,	-									
0. 1135. 1140. 1160. 1100. 1331. 1980. 5235. CREL SPWID COOM EXPW ELEVL COOL CAREA EXPL DAM DATA DAM DATA 1135.U 0.0 0.0 0.0 0.0 1135.U 134. 174. 208. 242.			í										
0. 1135. 1140. 1160. 1100. 1331. 1980. 5235. CREL SPWID COOM EXPW ELEVL COOL CAREA EXPL. 1135.U 0.0 0.0 0.0 0.0 0.0 0.0 100. 46. 134. 174. 208. 242. 1137.0 1138.0 1140.0 1142.0 1144.0 1146.0													-
1100. 1331. 1980. 5235. CREL SPWID COOM EXPW ELEVL COOL CAREA EXPL 1135.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 DAM DATA DAM DATA 1135.0 135.0 137.0 3.0 1.5 10. 110. 46. 134. 174. 208. 242. 1137.0 1138.0 1140.0 1142.0 1144.0 1146.0	CAPACITY.	•	1135.		•0•	1160.							
1135-0 GAGE EXPW ELEVL COOL CAREA EXPL 1135-0 G.O	EL EVAT I UN'S	1100.	1331.	1	.080	5235.					2		
10. 46. 134. 174. 208.		~	CREL	. {			- [•
10° 46° 134° 174° 208° 1197°0 1138°0 1140°0 1142°0 1144°0 11				1		TOPEL 1137.0	COOD 3.0	2.5	200 10.				
10. 46. 134. 174. 208. 1137.0 1138.0 1140.0 1142.0 1144.0 11				-									;
1137.0 1138.0 1140.0 1142.0 1144.0 11					:	•	; ;	:	1		A A W. THE SALE OF THE PARTY OF		. !
1137.0 1138.0 1140.0 1142.0 1144.0 11	CREST LENGTH	10.		•	134.	174.			.42.				
	ELEVATION	1137.0			140.0	1142.0	=		0.0			-	

	SUB-AREA RUNOFF COMPUTATION	18,
	INFLOW TO MIDDLE LAKE FROM SUBAREA A	
	امما	
	HYDROGRAPH DATA	
	1 0 0000 0010 ZE* 0000 ZE* 1	
D -30		
	SWd	
TRSPC COM	142.00 145.00	
	LROPT STRKR DLIKR RTIOL ERAIN STRKS RTIOK STRTL CNSTL ALSMY RTIMP 0 0.00 0.00 1.00 0.00 0.00 1.00 1.00 .05 0.00 0.00	-
	UNIT HYDROGRAPH DATA 1P* .77 CP* .62 NTA* 0	+
- APPROXIMA	RECESSION DATA STRTQ= -1.50 GRCSN=05 RTIOR= 2.00 APPROXIMATE CLARK COEFFICIENTS FROM GIVEN SNYDER CP AND TP ARE TC= 3:78 AND R# 2.62 INTERVALS	
	10D ORDINATES+ LAG* 128. 87	•
4		

COMBINE HYDROGRAPHS

				00:0801			
COMBINIE HYDROGRAPHS	157AG TCOMP TECON TTAPE JPLT JPRT THANE TSTAGE TAUTO 5 3 0 0 0 0 1 0 0 6 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ROUTE THROUGH HIDDLE LAKE AND DOWNSTREAM 18740 160MP 1ECON 17APE JPLT JPRT INAME 1874GE 1AUTO	ALL PLANS HAVE SAME ROUTING DATA 0.00 1 1 0 0 0 WSTDL LAG AMSKR	-1075.	ELEVATION 1065 1075 160, 225. ELEVATION 1065 1075 1076 1080. CREL SPWIO COOM EXPW ELEVL COOL CARER EXPL	TOPEL COOD EXPUDISHINGTH TOU. 158. 216. 246. 286. 100. ELEVATION 1070.0 1080.0 1082.0 1085.0	BRWID Z ELBM TFAIL WSEL FAILEL 1250 1068.00 2.00 1075.00

***************************************												≯ 2
•	***************************************	********		**		•	***			****		
			\$UB-AR	-AREA RUNOFF	F COMPUTATION	A710N	:	: !			!	!
	TNFLOW	TNFLOW TO LAKE SHERIDAN	RIDAN	1					-			-
-	-	15740	I COMP I	IECON J	JTAPE	JPLT	JPRT	INAME	ISTAGE	IAUTO		
	-			O 0000	9 4	•	•	•	>	•		•
	UT 1HYDG 1	TURG TAREA 1 2.00	SNAP 0.00	1RSDA 2.00	TRSPC 00.00	RAT10 0.000	MONSI	T SAME	LOCAL	0		
	SPFE 0•00	1	R6 117.00	PRECIP DATA R12 R2 127+00 136+0	10	R48 142:00	R72 145.00	R96 0.00				
TRSPC_COMPUTED_BT_THE "PROGRAH_IS"	THE PROGRAM IS	0081	-					!				
D-3	LROPI STRKR	DLTKR RT 0.00	RTIGE ERASN 1.00 0.00	HAIN STRKS	2	S	Z,		ALSMXR 0.00	КТІМР 0.00		
.			TP= 2.	UNIT HYDROGRAPH DAIA 2.09 CP= .62 N	ROGRAPH DA	NTA. 0			-			:
APPROXIMATE CLARK (COEFICIENTS FROM	STRT O.	SNYDER CP	RECESS ORCSI AND 1P		15 RTIOR**	OR= 2.00 R= 7.65	INTERVAL	ALS			;
	UNIT HY	9	JF-PERIOD	10D ORDINATES,	ES, LAG-	2.07	RS.	CP62	VOL.	8	-	
150	292:	256.	225.	197	71	73.	361.	388	395.	7 102.		•
900		19.	61.	53.	4 =	47.		36.				
		•6	•	•							: ! !	,
PLAN 2 SAME AS PLAN	1 2		:	1		ļ !						
1000		****			***	-			***			; ; ; ;
		•	3	18 I NE	HYDROGRAPHS							
	COMBINI	COMBINING TWO HYDROGRAPHS					i :		!			!
:		ISTAG	I GMD I	JECON 11	ITAPE .	JPLT	JPRT 1	INAME 1:	ISTAGE	IAUTO		
		,		>	>	>	>		>	>		

		-											
	-	ROOTE	ROOTE THROUGH STREAM	TREAM									.
			. ISTAO	ICOMP	JECON	ITAPE	JPLT	JPRT	INAME IS	ISTAGE	IAUTO		•
			9	-	0	0	0		ĺ	P	O		
					ALL PLANS	PLANS HAVE SA	SAME						
		0.0 0.0	CL055 0.000	9AV 0*00	IRES 1	ISAME	1001	I PMP 0		LSTR			
	.		NSTPS	NSTDL 0	0 FY 0	AMSKK 0.000	× 0000*0	15K 0.000	STORA 1S	1 SPRAT 0			
						ļ, .						-	
mental neo										(m) (m)		-	
5.	ON(1) ON(2)	ON(3)	ELNVT	ELMAX F	RLNTH =0	SEL							
	•										-		
D	CRUSS SECTION COUNDINATES - STATELEVISTATELEV FTC 0.00 980.00 125.00 960.00 200.00 940.00 213.00 940.00 400.00 960.00 475.00 980.00	COUNDINATE: 00 125,00 00 400,00	ES##STA:E 0 960.00 0 960.00	ELEV.5TA. 0 200.00 0 475.00	940400 940400 980400	204.00	936.00	209.00	938.00			-	
\$TORAGE	00.0	40.		3.53	9.79	91	16.62	27.02	39.99	66	55.53	73.65	
••••17.73	117.59	143.09		170.55	160661	231	731,36	7/ * 907	300.00	20	821/88	376.53	
OUTFLOW	00.00	139.73			2322.50	5113.82		9451456	15605-64		73826.67	34350.60	
358999.55	19006769	26.67620	105689691		131611.05	160780,63		193299.22	229272.03		268806.86	312012.81	
STAGE	930.00	940.21		942.42	944.63	946	946.84	949.05	951.26	•	953.47	935.68	
00.086	960-11	962,32		964.53	966.74	896	968.95	971.16	973.37	37	975.58	91.179	
FLOW 347401.68	0000	139.73		779.87	2322.50	5113.82	.82	9451.56	15605.64		23026.67	34350.60	
358999.55	63238.87	26.42628	109689.91		131611 .05	160780 _• 63	:	. 193299.22	229272.03	i	268806.86	312012581	!

							-	
					* · · · · · · · · · · · · · · · · · · ·			
PEAK F	PEAK FLOW AND STORAGE	FLOWS IN CUBIC FEET	7 7 5	HMARY FOR MULTIPLE PLAN-RATIO ECONOM PER SECOND (CUBIC METERS PER SECOND) (E MILES ISQUARE KILOMETERS)	PLAN-RATIO ECONOMIC RETERS PER SECOND) OMETERS)	HIC COMPUTATIONS	\$1	
				2m2-15,241-491-1908-341119		-		
OPERATION STATION	AREA	PLAN RATIU 1		ios arreieu	200			
HYDROGRAPH AT	1 2.32	1 1163.	-		·		•	
	11019	2 1163. (32.94)!						
ROUTED TO	2 2.32 (6.01)	1 1162.					-	
		11626						
нуркоскари ат	3 .32	1 7,40) (2 2610	-			-		
HYDROGRAPH AT	1.33	-						
	36441	2 667. (18.86)!			AND AND THE PARTY AND	effectualities entreprise particular and selections of the community of th	megadinente e cara challachamina cara communication	
COMBINED	5 3.97 (10.28)	1 1960. (55.4916 2 1960.						
KOUTED TO	1 10,28)	1 2461. (69.69)(2 2461.		-				
HYDROGRAPH AT	7 2.00	1 998. 2 998. (28.26)(
COMBINED	6 5.97	1 3459.	!	!	•			

-		2 3459.	7.
ROUTED TO 9	5.97	1 42424 (120-12)(
ROUTED TO 10	15.46)	1 4242.	
		2 '2827 ₆ i 80.051 '	
D-			
-37			
			-
			-
			-
-			-

1	
	vs
	YS I
	SUMMARY OF DAM SAFETY ANALYSIS
İ	<
!	E٦٠
1	SAF
i	3
	۵
İ	P
	IRY
	Ì
1	3

.

:

:

|.

110N . 1135.00 1135.00 1137.00 TE	MAXIMUM MAXIMUM DURATION TIME OF TI DEPTH STORAGE OUTFLOW OVER TOP MAX OUTFLOW FA OVER DAM AC-FT CFS HOURS HOURS	8 3.08 197. 1162. 13.50 41.75 0.00 INITIAL VALUE SPILLWAY CREST TOP OF DAM TTOM 1135.00 1135.00 GE 172. 172. 162.	MAXIMUM MAXIMUM MAXIMUM DURATION DEPIH STORAGE DUTFLOW OVER TOP M OVER DAM , AC-FI CFS HOURS	SUMMARY OF DAM SAFETY ANALYSIS	TION 1075.00 1079.00 1078.00 1078.00 1078.00 00 1079.00 00 100.	M MAXIMUM MAXIMUM MAXIMUM DURATION TIME OF TIME OF INE OF INE OF STORNE OF STORNE OF THE OF STORNE OF STORNES HOURS HOURS HOURS HOURS O 41.75 39.75	TION 1075.00 SPILLWAY CREST TOP OF DAM 1075.00 1075.00 1075.00 0F 73. 140. 0W 0.	M MAXIMUM MAXIMUM MAXIMUM DURATION TIME OF TIME OF
ELEVATION STORAGE OUTFLOW	MAXIMUM RESERVOIR W.S.ELEV	1140.08 ELEVATION STORAGE OUTFLOW	MAXIMUM RESERVOIR W.S.ELEV	80°0*11	ELEVATION STORAGE OUTFLOW	MAXIMUM RESERVOIR W.S.ELEV 1078.70	ELEVATION STORAGE OUTFLOW	MAXIMUM RESERVOIR
	RATIO OF PMF	-20	RATIO OF PMF	0 7		RATIO OF PMF	7	RATIO

1	Ľ	í
	ï	
ì		i
ì	Š	1
1	•	
٠	۰	
	9	į
i		Ę
٠	1	١
	١	
i		
ì		
:		
•	١	
١	۲	١
ì	2	
4	1	١
i		
Ī		
ı	ı	
ì	į	١
ľ	۰	
1	1	
١	1	ļ
4	۹	į
	2	Į
3	i	ĺ
•		÷

RESERVOIR DEPTH STORAGE OUTFLOW OVER TOP HAX OUTFLOW FAILURE W.S.ELEV OVER DAM
PLAN Z RATIO OF PHF .20

APPENDIX E DRAWINGS

APPENDIX F GEOLOGY

General Geology

Lake Sheridan lies within the (Glaciated) Low Plateaus Section of the Appalachian Plateau Physiographic Province. This area is characterized by broad anticlines and synclines and little, if any, faulting. There are no known faults in the vicinity of the dam.

The rocks underlying the lake and dam consist of the Devonian aged Susquehanna Group. This is a complex unit of conglomerate, sandstone, siltstone and shale. The usually well developed bedding ranges in thickness from less than one to over fifteen feet. The well developed joints are regular and closely spaced in the shales and siltstones. They are vertical or steeply dipping and usually form a blocky or platy pattern. The shales disintegrate rapidly, but the siltstone, sandstone and conglomerate are fairly resistant to weathering. The rocks of the Susquehanna Group form a good foundation for heavy structures if excavated to sound material and the shales and siltstones are kept waterfree. The interstitial porosity of the coarser rocks is low, but joint development has created a medium level of total effective porosity.

Geologic Map of The Area Around Stevens Lake And Lake Sheridan Dams

CENTRAL AND EASTERN PENNSYLVANIA

Oswayo Formation

Province and greenish gray, fine and medium grained sandalanes with some shales and sentered colorarous lenses, includes red shales which become more numerous ensities. Relation to type Ossowo not proved.

Catakill Formation

CALAKIII F OFMALION
Chiefly red to brownish shales and sandslones, includes gray and greenish sandslone tongues named lilk Mountain,
Honesdale, Shohola, and Delaware River
in the east

Marine beda

Marine treus Gray to alive brown shales, graywackes, and mindstones, contassa "Chemang" beds and Tortage" beds including Burket, Hralkes, Harvell, and Trimmers Rock; Tulig Limestone at base.

Scale: 1:250,000

Susquehanna Group

Barbed line is "Chemung-Criskill" con-tact of Second Franspicania Survey County reports; barbs on "Chemung" side of line.