# Network QoS 371-2-0213

Lecture 4

Gabriel Scalosub

#### Outline

- Recap
  - DiffServ Fundamentals
  - Competitive Analysis
- 2 Competitive Buffer Management with Commitments
  - Model and Preliminary Observations
  - A Competitive Algorithm
    - Upper Bound Preliminaries
    - Algorithm ON
    - Competitive Analysis of ON
  - Simulation and Conclusions

## DiffServ - Key Components

- Main motivation: IntServ handicaps
  - per-flow state
  - complex reservation mechanisms
  - requires large-scale deployment
- Main concern: being "better than best-effort"
- Main design concept: locality of decision
- Key components:
  - middle ground between IntServ and best-effort
  - divide traffic into small number of forwarding classes
    - E.g., Gold, Silver, Bronze, Best-Effort
    - class encoded in packet IP header
    - resources allocated per-class (aggregate)
  - based on Service Level Agreements (SLAs)
  - mechanisms
    - marking
    - scheduling (priority queuing, WFQ)
    - buffer management (AQM/RED)

# SLAs and Marking

- Specification of expected traffic per-class
  - token-bucket envelope
    - Committed/Peak Information Rate (CIR/PIR)
    - Committed/Peak Burst Size (CBS/PBS)
- Three color marking
  - Done using a dual token bucket
  - E.g., two-rate three color marking



# DiffServ Codepoint (DSCP)



- Default PHB:
  - DSCP: <000000> (best-effort)
- Assured Forwarding (AF) PHBs:
  - DSCP: <001xx0>, <010xx0>, <011xx0>, <100xx0>
  - at least two different forwarding classes
  - per class bandwidth allocation
    - implemented using scheduling (e.g., WFQ)
    - each link can determine its own allocation
  - 3 drop priorities per class (e.g., via RED)
- Expedited Forwarding (EF) PHB:
  - DSCP: <101110>
  - high-priority queue (10-30% of link capacity)

## Competitive Analysis - Definition

- Given an instance I of an optimization problem  $\mathcal{P}$ , denote by  $\mathsf{OPT}(I)$  the value of an optimal feasible solution for I.
- In the online setting, the input to the problem is made available in parts.
- An online algorithm A is said to be c-competitive for problem  $\mathcal{P}$  if for every instance I of  $\mathcal{P}$ , A(I) satisfies:
  - $A(I) \le c \cdot \mathsf{OPT}(I) + \alpha$  (minimization problem  $\mathcal{P}$ )
  - $A(I) \ge \frac{1}{c} \cdot \mathsf{OPT}(I) \alpha$  (maximization problem  $\mathcal{P}$ )

where  $\alpha \geq 0$  is some additive term independent of I.

- Common to assume that I is generated by an adversary
- The online problem is then viewed as a game:
  - Adversary (produces I and an optimal solution to I), vs.
  - Algorithm

#### Model

- Provider's viewpoint: fulfill its end of the SLA
- Focus on a single AF PHB class
- Traffic model
  - committed traffic (green): (r, B) token envelope
  - excess traffic (yellow): arbitrary
  - interleaved
- Queue model
  - single FIFO queue Q
    - buffer of size  $B_Q \geq B$
    - service rate  $r_Q \ge r$
    - preemptive: may drop enqueued packets

#### Feasibility

Never drop committed packets

#### Goal

Maximize number of excess packets forwarded

# Time Model and Simplifying Assumptions

- Slotted time
  - delivery/forwarding substep:  $\leq r_Q$  forwarded
  - arrival substep: packets may be dropped/accepted



- Simplifying assumption:
  - Uniform size packets (WLOG, unit size)
  - Unit rates (i.e.,  $r_Q = r = 1$ )

# Resource Augmentation is Required

#### **Theorem**

Any online algorithm ALG using  $B_Q \leq B$  cannot be competitive

#### Proof.

- Assume  $B_Q = B$ .
- t = 0 arrival: Y, G
- t = 1 forwarding: two cases
  - Y dropped: ALG cannot be competitive
    - since no more yellow packets may arrive
  - ullet Y forwarded, and ullet enqueued
    - t = 2 arrival: burst of B G s
    - ALG has to drop G

Infeasible!!

## Preliminaries and Basic Concepts

- Use a buffer of size  $(1+\varepsilon)B$ 
  - OPT will use a buffer of size B
- Notation
  - $B_A(t)$ : set of packets in the buffer at time t under algorithm A
  - $d_t^A(p)$ : buffer position of packet p at time t under algorithm A
- Lower bound on OPT buffer occupancy
  - use a *simulator* SIM
  - SIM has the same resources as OPT (rate, buffer)
  - SIM ignores all yellow packets
  - properties of SIM:
    - $\forall t$  and  $\forall$  green p that arrived by t,  $d_t^{\text{SIM}}(p) \leq d_t^{\text{OPT}}(p)$
    - $\forall t |B_{\text{SIM}}(t)| = k \text{ implies } |B_{\text{OPT}}(t)| \ge k$
- A naïve approach:
  - maintain two queues
    - green (size B) and yellow (size  $\varepsilon B$ )
  - always give priority to green queue
    - green queue is equivalent to SIM
  - but...

## Concept of Lag

Lag of a green packet at time t under algorithm A:

$$\mathsf{lag}_t^A(p) = d_t^A(p) - d_t^{\mathrm{SIM}}(p)$$

- for green  $p, p' \in B_A(t)$ , lag is monotone non-dec. in arrival
- Context: after forwarding substep or arrival substep?
  - Depends

## $\delta$ -lag property

Algorithm A satisfies the  $\delta$ -lag property if  $\forall t, p, \, \log_t^A(p) \leq \delta$ 

#### Lag of an algorithm

The lag of algorithm A at time t is  $\phi_A(t) = \max_{p \in B_A(t)} \log_t^A(p)$ 

- $\phi_A(t)$  determined by last green packet in  $B_A(t)$ 
  - FIFO + monotonicity of lag
- For now: consider lag at end of forwarding substep

## Algorithm ON

#### **Algorithm 1** ON: upon the arrival of a new packet p

- 1: **if** *p* is yellow **then**
- 2: accept if there's room
- 3: **else**

 $\triangleright p$  is green

- 4: Drop as few yellow packets from the tail of the queue such that the new packet will have lag at most  $\varepsilon B$
- 5: Accept *p*
- 6: end if
  - omit ON sub/super-scripts: use  $lag_t(p)$ ,  $\phi(t)$

# Feasibility of ON

## Theorem (Feasibility and lag)

At any time t algorithm ON

- accepts all green packets
- always holds  $\leq (1+\varepsilon)B$  packets
- satisfies the  $\varepsilon B$ -lag property

"Proof by Picture" (formally, by induction)



## Competitive Ratio of ON

#### Theorem (Competitive ratio)

Algorithm ON is  $\frac{\varepsilon}{1+\varepsilon}$ -competitive

- Analysis in a nutshell
  - identify "reset" events
  - overflow (yellow dropped) occurs only between resets
    - overflow intervals
  - at least  $\varepsilon B$  yellow are "safe" since last reset
  - ullet many green accepted by  $\operatorname{SIM}$ 
    - OPT must deal with them too
    - has little room for many yellow

## Notation and Definitions

- From now on: consider lag at end of delivery substep
- Some additional notation and definitions
  - $A_t^G$ : the set of green packets arriving at t
  - $A_t^Y$ : the set of yellow packets arriving at t
  - for simplicity: assume each such set is handled as a batch
    - first green, then yellow
- Safe packets
  - Yellow  $p \in B_{ON}(t)$  turns safe at t + 1
    - t is minimal s.t.  $A_t^G \neq \emptyset$ , and p is not dropped at t
  - $S_t$ : set of packets turning safe at t
  - for every time interval I,  $S(I) = \bigcup_{t \in I} S_t$
- Reset
  - ON is *reset at t* if  $\phi(t) = 0$ 
    - queue idle at t implies reset at t
    - no green in buffer at t implies reset at t

## Overload Intervals: Following the Lag Process



- Between overload intervals, ON does at least as good as OPT
- Suffices to analyze performance in overload intervals
- Any two overload intervals are independent
- Focus on a single overload interval, I

# Understanding Changes in Lag

#### Lemma

For any non-reset  $t \in I$  s.t.  $\phi(t) > 0$ ,  $\phi(t) = \phi(t-1) + |S_t| - (1 - \mathbb{1}_{\text{SIM}}(t))$ 

#### Proof.

- Case 1:  $A_{t-1}^G = \emptyset$ 
  - necessarily  $S_t = \emptyset$  (by definition of turning safe)
  - $\phi(t) > 0$ :
    - last green  $p \in B_{ON}(t-1)$  still in buffer at the end of t
  - p advances
    - $\mathbb{1}_{\mathrm{SIM}}(t)$  places in SIM
    - one place in ON

• 
$$\log_t(p) = \log_{t-1}(p) - (1 - \mathbb{1}_{SIM})$$

$$\Rightarrow \phi(t) = \phi(t-1) - (1 - \mathbb{1}_{SIM}(t)) = \phi(t-1) + |S_t| - (1 - \mathbb{1}_{SIM}(t))$$

# Understanding Changes in Lag

#### Lemma

For any non-reset  $t \in I$  s.t.  $\phi(t) > 0$ ,  $\phi(t) = \phi(t-1) + |S_t| - (1 - \mathbb{1}_{Sim}(t))$ 

#### Proof.

- Case 2:  $A_{t-1}^G \neq \emptyset$ 
  - consider
    - last green  $p \in B_{ON}(t-1)$  (end of t-1), and
    - last green  $p' \in B_{\mathrm{ON}}(t-1)$  (end of delivery substep of t-1)
    - p' exists since otherwise reset at t-1, and hence in t
  - relative position of p and p' at end of t-1
    - p is exactly  $|A_{t-1}^G| + |S_t|$  positions behind p' in ON
    - p is exactly  $|A_{t-1}^G|$  positions behind p' in SIM
  - $ullet \ \mathsf{lag}_t(p) = \mathsf{lag}_{t-1}(p') + |S_t| (1 \mathbb{1}_{\mathrm{SIM}}(t))$ 
    - p not sent at t since  $\phi(t) > 0$
  - $\Rightarrow \phi(t) = \phi(t-1) + |S_t| (1 \mathbb{1}_{SIM}(t))$

## Understanding Load on OPT During Overload

#### Lemma

SIM delivers |I| - |S(I)| green packets during I

#### Proof.

- $R_I$ : set of green packets delivered by SIM during I
- $\Delta(t) = \phi(t) \phi(t-1) = |S_t| (1 \mathbb{1}_{Sim}(t))$
- On one hand

$$\begin{array}{rcl} \sum_{t \in I} \Delta(t) & = & \sum_{t \in I} \left[ |S_t| - (1 - \mathbb{1}_{SIM}(t)) \right] \\ & = & \sum_{t \in I} |S_t| - \sum_{t \in I} 1 + \sum_{t \in I} \mathbb{1}_{SIM}(t) \\ & = & |S(I)| - |I| + |R_I| \end{array}$$

- On the other hand,  $\sum_{t \in I} \Delta(t) = 0$ 
  - telescopic sum

$$\Rightarrow |R_I| = |I| - |S(I)|$$

# Proof of Competitive Ratio

## Theorem (Competitive ratio)

Algorithm ON is  $\frac{\varepsilon}{1+\varepsilon}$ -competitive

## Proof (focus on single overload interval 1).

- Recall: OPT has rate r = 1 and a buffer of size B
  - OPT deals with at most r|I| + B = |I| + B packets altogether
  - ullet has to deal with at least  $|R_I|$  green handled by  $\mathrm{SIM}$
- $\Rightarrow$  # yellow packets handled by OPT during I is at most  $(|I| + B) |R_I| = (|I| + B) (|I| |S(I)|) = |S(I)| + B$ 
  - $|S(I)| \geq \varepsilon B$ 
    - definition of overflow interval
    - ullet  $\phi(t)$  unit-increase implies a yellow packet turning safe
  - Competitive ratio is at least

$$\frac{|S(I)|}{|S(I)|+B} \ge \frac{\varepsilon B}{\varepsilon B+B} = \frac{\varepsilon}{1+\varepsilon}$$

- Traffic
  - bursty MMPP traffic
    - (two) color marked using dual token bucket
  - best-effort Poisson traffic (cross-traffic)
    - zero-rate committed
  - interleaved
- Contending protocols
  - Threshold
    - accept yellow only if buffer occupancy is below threshold T
    - feasibility implies  $T = \varepsilon B$  (should be  $\leq$ )
    - commonly used policy (single-step RED)
  - Naïve protocol
    - 2-queues priority queuing
    - not FIFO, but
    - upper bound on OPT
    - serves for normalization

ullet Single MMPP aggregate, yellow  $\sim\!30\%$ 



• MMPP+Poisson, yellow also during OFF, yellow  $\sim$ 40%



 $\bullet$  MMPP+Poisson, yellow also during OFF, yellow  ${\sim}50\%$ 



# Open Questions and Extensions

- Lower bounds
  - for  $\varepsilon < 1$ 
    - still with resource augmentation
    - ullet CR is at least arepsilon
- What's the right answer
  - lower bounds for  $\varepsilon > 1$ ?
  - if we double the buffer ( $\varepsilon = 1$ ), do we obtain OPT?
  - closing gap for  $\varepsilon \in (0,1]$
- Models that allow dropping "some" committed packets
- Network perspective
  - end-to-end throughput
  - simple topologies (line, tree, ...)

- References
  - Patt-Shamir, Scalosub and Shavitt, Competitive Analysis of Buffer Policies with SLA Commitments, ICNP 2008

## A Couple of Lessons Learnt

- FIFO
  - might delay the delivery of "important" packets
  - might have a delayed effect
  - one has to be careful with that
- Competitive approach
  - main focus: find an upper bound on OPT!!!
  - in this analysis: an averaging argument
    - long enough intervals
    - $\bullet$  compare  $\operatorname{ALG}$  and  $\operatorname{OPT}$  over such intervals
  - later in the course: we'll see other techniques
- Simulation results may be misleading
  - must understand the traffic
  - if it's too good to be true, there's probably a bug...
  - must look at the logs to verify soundness
  - simulations do not "prove" anything
    - traffic might be too "easy" / "hard"
    - difficult to represent real life
    - usually serves to further validate analytic results