Matematika Diskrit [KOMS119602] - 2022/2023

6.1 - Inferensi (penarikan kesimpulan)

Dewi Sintiari

Prodi D4 Teknologi Rekayasa Perangkat Lunak Universitas Pendidikan Ganesha

Week 6 (Oktober 2022)

Bagian 1: Tautologi

Tautologi

Tautologi adalah proposisi majemuk yang selalu bernilai benar, terlepas dari nilai kebenaran dari variabel-variabel yang terlibat di dalamnya.

Proposisi majemuk yang selalu bernilai salah disebut kontradiksi.

Contoh

Diberikan proposisi p. Buatlah tabel kebenaran dari

$$p \lor \neg p \ dan \ p \land \neg p$$

Tautologi

Tautologi adalah proposisi majemuk yang selalu bernilai benar, terlepas dari nilai kebenaran dari variabel-variabel yang terlibat di dalamnya.

Proposisi majemuk yang selalu bernilai salah disebut kontradiksi.

Contoh

Diberikan proposisi p. Buatlah tabel kebenaran dari

$$p \lor \neg p \ dan \ p \land \neg p$$

TABLE 1 Examples of a Tautology and a Contradiction.							
p	$\neg p$	$p \wedge \neg p$					
Т	F	T	F				
F	T T F						

Sifat-sifat terkait Tautologi

TABLE 6 Logical Equivalences.					
Equivalence	Name				
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws				
$p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Domination laws				

Bagian 2: Inferensi (Penarikan Kesimpulan)

Argumen

Definisi

Argumen dalam logika proporsional adalah barisan proposisi. Pada argumen, proposisi yang bukan merupakan proposisi akhir disebut premis dan proposisi akhir disebut kesimpulan.

$$p_1$$
 p_2
 \vdots
 p_n

Dalam hal ini, $p_1, p_2, ..., p_n$ disebut hipotesis (premis) dan q disebut kesimpulan (konklusi).

Inferensi (penarikan kesimpulan)

Diberikan beberapa proposisi. Dari rangkaian proposisi tersebut dapat ditarik sebuah kesimpulan. Proses ini disebut inferensi.

Metode penarikan kesimpulan

- 1. Modus ponen
- 2. Modis tollen
- 3. Silogisme

Bagian 2.1: Modus ponen

Modus ponen

Dasar dari aturan ini adalah tautologi:

$$(p \land (p \Rightarrow q)) \Rightarrow q$$

Buktikan dengan tabel kebenaran apakah:

$$[p \land (p \Rightarrow q)] \Rightarrow q$$

adalah tautologi.

p	q	$p \Rightarrow q$	$p \wedge (p \Rightarrow q)$	$p \land (p \Rightarrow q) \Rightarrow q$
Т	Т	Т	Т	Т
Т	F	F	F	Т
F	Т	Т	F	Т
F	F	Т	F	Т

Modus ponen

Ini berarti, diberikan proposisi $p \Rightarrow q$ dan p. Maka dapat ditarik kesimpulan q.

$$\begin{array}{c}
p \Rightarrow q \\
\hline
p \\
\hline
q
\end{array}$$

Apakah argumen berikut sahih?

Hipotesis 1: Jika saya sedang sakit, maka saya diam di rumah

Hipotesis 2: Saya sedang sakit

Kesimpulan: Saya diam di rumah

Solusi Latihan 1

Misalkan:

- p: proposisi "Saya sedang sakit."
- proposisi "Saya diam di rumah."

Maka argumen tersebut dapat ditulis sebagai:

$$\begin{array}{c} p \Rightarrow q \\ \hline p \\ \hline \end{array}$$

Hal ini sesuai dengan modus ponen.

Diberikan argumen:

"Jika air laut surut setelah gempa di laut, maka tsunami datang.

Air laut surut setelah gempa di laut."

Kesimpulan: Tsunami datang.

Apakah argumen tersebut sahih?

Diberikan argumen:

"Jika air laut surut setelah gempa di laut, maka tsunami datang.

Air laut surut setelah gempa di laut."

Kesimpulan: Tsunami datang.

Apakah argumen tersebut sahih?

Solusi:

Misalkan:

- p: proposisi "Air laut surut setelah gempa di laut."
- q: proposisi "Tsunami datang."

Maka argumen tersebut dapat ditulis sebagai:

$$\begin{array}{c} p \Rightarrow q \\ \hline p \\ \hline q \end{array}$$

Bagian 2.2: Modus tollen

Modus tollen

Dasar dari aturan ini adalah tautologi:

$$((p \Rightarrow q) \land \neg q) \Rightarrow \neg p$$

Buktikan dengan tabel kebenaran apakah:

$$[((p \Rightarrow q) \land \neg q) \Rightarrow \neg p]$$

adalah tautologi.

p	q	$\neg q$	$p \Rightarrow q$	$(p \Rightarrow q) \land \neg q$	$p \land (p \Rightarrow q) \Rightarrow \neg q$
		F		F	T
Т	F	T	F T	F	Т
F	Т	F	Т	F	Т
F	F	Т	T	F	Т

Apakah argumen berikut sahih?

- Jika saya sedang sakit, maka saya diam di rumah
- Saya tidak diam di rumah

Kesimpulan: Saya tidak sedang sakit.

Apakah argumen berikut sahih?

- ▶ Jika saya sedang sakit, maka saya diam di rumah
- Saya tidak diam di rumah

Kesimpulan: Saya tidak sedang sakit.

Solusi:

Misalkan:

- p: proposisi "Saya sedang sakit."
- q: proposisi "Saya diam di rumah."

Maka argumen tersebut dapat ditulis sebagai:

$$\begin{array}{c} p \Rightarrow q \\ \neg q \end{array}$$

Argumen tersebut sahih memenuhi modus tollen.

Apakah argumen berikut sahih?

Jika 13 adalah bilangan prima, maka 3 tidak habis membagi 17 3 habis membagi 17

13 bukan bilangan prima

Solusi Latihan 2

- ▶ p: 13 adalah bilangan prima;
- ▶ q: 3 habis membagi 17

Argumen tersebut memenuhi modus tollen.

Pembuktian validitas modus tollen

Modus tollen juga dapat dibuktikan dengan memanfaatkan modus ponen dan sifat kontrapositif.

Kontraposisi :
$$(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p)$$

Perhatikan bahwa:

$$((p \Rightarrow q) \land \neg q)$$

equivalen dengan:

$$((\neg q \Rightarrow \neg p) \land \neg q)$$

Proposisi majemuk terakhir ini sesuai dengan **modus ponen**. Maka:

$$((\neg q \Rightarrow \neg p) \land \neg q) \Rightarrow \neg p$$

Bagian 2.3: Silogisme

Silogisme

Dasar dari aturan ini adalah tautologi:

$$((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)$$

Buktikan dengan tabel kebenaran apakah:

$$[((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)]$$

adalah tautologi.

р	q	r	$p \Rightarrow q$	$(q \Rightarrow r)$	$t = (p \Rightarrow r)$	$s = ((p \Rightarrow q) \land (q \Rightarrow r))$	$s \Rightarrow t$
Т	Т	Т	Т	Т	Т	Т	Т
Т	T	F	Т	F	F	F	Т
Т	F	Т	F	Т	Т	F	Т
Т	F	F	F	Т	F	F	Т
F	Т	Т	Т	Т	Т	Т	Т
F	T	F	Т	F	Т	F	Т
F	F	Т	F	Т	Т	F	Т
F	F	F	F	Т Т	Т Т	F	Т

Apakah argumen berikut sahih?

Jika saya menyukai Informatika, maka saya belajar sungguh-sungguh Jika saya belajar sungguh-sungguh maka saya lulus

Jika saya menyukai Informatika, maka saya lulus

Solusi Latihan 1

Misal:

- p: Saya menyukai Informatika
- ▶ *q*: Saya belajar sungguh-sungguh
- r: Saya lulus

$$\frac{p \Rightarrow q}{q \Rightarrow r}$$

$$\frac{p \Rightarrow r}{p \Rightarrow r}$$

Berdasarkan aturan silogisme, argumen tersebut valid.

Apakah argumen berikut sahih?

Jika saya kuliah di TRPL, maka saya tidak bermalas-malasan Saya bermalas-malasan atau saya ingin lulus

Jika saya kuliah di TRPL maka saya ingin lulus

Petunjuk (hint):

Perhatikan bahwa $(p \Rightarrow q)$ ekuivalen dengan $(\neg p \lor q)$

Bukti:

p	q	$\neg p$	$p \Rightarrow q$	$\neg p \lor q$
Т	Т	F	T	Т
Т	F	Т	F	F
F	Т	F	Т	Т
F	F	Т	Т	Т

Dengan kata lain, $(p \lor q)$ ekuivalen dengan $(\neg p \Rightarrow q)$

Solusi Latihan 2

Jika saya kuliah di TRPL, maka saya tidak bermalas-malasan Saya bermalas-malasan atau saya ingin lulus

Jika saya kuliah di TRPL maka saya ingin lulus

Misal:

- p: Saya kuliah di TRPL;
- q: Saya bermalas-malasan;
- r: Saya ingin lulus

Argumen tersebut dapat dituliskan sebagai:

$$\begin{array}{c}
p \Rightarrow \neg q \\
q \lor r \\
\hline
???
\end{array}$$

Bisakah ditarik kesimpulan? Jika iya, apa kesimpulannya?

Solusi Latihan 2

Kita tuliskan dengan menggunakan notasi logika.

$$p \Rightarrow \neg q$$
 $q \lor r$

$$\begin{array}{c} p \Rightarrow \neg q \\ \neg q \Rightarrow r \end{array}$$

$$\Rightarrow r$$

Apakah argumen berikut sahih?

Jika saya kuliah di TRPL, maka saya tidak bermalas-malasan Saya bermalas-malasan atau saya ingin lulus

Jika saya tidak ingin lulus maka saya tidak kuliah di TRPL

Kerjakan latihan tersebut seperti pada Latihan 2.

Bagian 3: Validitas argumen

Argumen

Definisi

Sebuah argumen dikatakan sahih (valid) jika:

konklusi benar jika dan hanya jika semua hipotesisnya benar

Sebuah argumen yang tidak valid, disebut (invalid).

Argumen yang sahih berarti bahwa implikasi berikut bernilai benar:

$$(p_1 \wedge p_2 \wedge \cdots \wedge p_n) \Rightarrow q$$

Catatan:

Valid tidak sama dengan benar (true).

Validitas modus ponen

$$p \land (p \Rightarrow q) \Rightarrow q$$

p	q	$p \Rightarrow q$	$p \wedge (p \Rightarrow q)$	$p \wedge (p \Rightarrow q) \Rightarrow q$
Т	T	Т	Т	Т
Τ	F	F	F	Т
F	Т	Т	F	Т
F	F	Т	F	Т

Validitas modus tollen

$$p \land (p \Rightarrow q) \Rightarrow \neg q$$

p	q	$\neg q$	$p \Rightarrow q$	$(p \Rightarrow q) \land \neg q$	$p \wedge (p \Rightarrow q) \Rightarrow \neg q$
			T	F	Т
Т	F	Т	F	F	Т
F	Т	F	T	F	Т
F	F	Т	Т	F	Т

Silogisme menyatakan bahwa proposisi:

$$(p \Rightarrow q)$$
 dan $(q \Rightarrow r)$

menghasilkan kesimpulan $(p \Rightarrow r)$.

$$((p \Rightarrow q) \land (q \lor r)) \Rightarrow (p \Rightarrow r)$$

Silogisme menyatakan bahwa proposisi:

$$(p \Rightarrow q)$$
 dan $(q \Rightarrow r)$

menghasilkan kesimpulan $(p \Rightarrow r)$.

$$((p \Rightarrow q) \land (q \lor r)) \Rightarrow (p \Rightarrow r)$$

p	q	r	$x = p \Rightarrow q$	$y=q\Rightarrow r$	$z = p \Rightarrow r$	$x \wedge y$	$(x \wedge y) \Rightarrow z$
Т	T	Т	Т	T	Т	Т	T
Т	T	F	Т	F	F	F	T
Т	F	Т	F	Т	Т	F	T
Т	F	F	F	Т	F	F	T
F	Т	Т	Т	Т	Т	Т	T
F	Т	F	Т	F	Т	F	T
F	F	Т	Т	Т	Т	Т	Т
F	F	F	Т	Т	Т	Т	Т

Pada Latihan 2 di Sub-bab 2.3, kita sudah membuktikan bahwa proposisi

$$(p \Rightarrow q)$$
 dan $(\neg q \lor r)$

menghasilkan kesimpulan $(p \Rightarrow r)$.

$$((p \Rightarrow q) \land (\neg q \lor r)) \Rightarrow (p \Rightarrow r)$$

Pada Latihan 2 di Sub-bab 2.3, kita sudah membuktikan bahwa proposisi

$$(p \Rightarrow q)$$
 dan $(\neg q \lor r)$

menghasilkan kesimpulan $(p \Rightarrow r)$.

$$((p \Rightarrow q) \land (\neg q \lor r)) \Rightarrow (p \Rightarrow r)$$

р	q	r	$\neg q$	$x = p \Rightarrow q$	$y = \neg q \lor r$	$z = p \Rightarrow r$	$x \wedge y$	$(x \wedge y) \Rightarrow z$
Т	Т	Т	F	Т	Т	Т	Т	Т
Т	Т	F	F	Т	F	F	F	T
Т	F	Т	Т	F	Т	Т	F	T
Т	F	F	Т	F	Т	F	F	Т
F	Т	Т	F	Т	Т	Т	Т	T
F	Т	F	F	Т	F	Т	F	T
F	F	Т	Т	Т	Т	Т	Т	T
F	F	F	Т	Т	Т	Т	Т	Т

Latihan soal

Soal nomor 15, 21, dan 22 dari Buku Referensi "Matematika Diskrit Ed 3 (oleh Rinaldi Munir)"