

Listrik Bolak-Balik

PENDAHULUAN

- 🔪 **Listrik bolak-balik (AC)** dihasilkan dari induksi elektromagnetik.
- Narus AC dan tegangan AC adalah arus dan tegangan yang nilainya berubah terhadap waktu secara sinusoidal.

🔌 **Grafik** arus dan tegangan AC dapat dilihat menggunakan osiloskop, dan besarnya dapat diukur menggunakan amperemeter, voltmeter dan avometer.

B. ARUS AC DAN TEGANGAN AC

- 🔪 Arus AC dan tegangan AC terdiri dari tiga istilah, yaitu nilai sesaat, nilai maksimum, nilai efektif, dan nilai rata-rata.
- Nilai sesaat adalah besar AC pada suatu waktu tertentu.
- Nilai maks adalah besar AC maksimum yang dapat terjadi. Nilai maks terbaca pada osiloskop.
- Nilai efektif adalah besar AC yang setara dengan besar DC yang menghasilkan jumlah kalor yang sama pada waktu yang sama. Nilai efektif terbaca pada alat ukur listrik.
- 🔪 Hubungan nilai maks dan nilai efektif:

$$V_m = V_{\text{eff-}} \sqrt{2}$$

$$I_{\rm m} = I_{\rm eff}.\sqrt{2}$$

- 🔪 Nilai rata-rata adalah besar AC yang setara dengan besar DC yang memindahkan muatan yang sama pada waktu yang sama.
- Nilai rata-rata dapat dihitung:

$$V_{rata} = \frac{2.V_m}{\pi}$$
 $I_{rata} = \frac{2.I_m}{\pi}$

$$I_{\text{rata}} = \frac{2.I_{\text{m}}}{\pi}$$

- 🔦 **Grafik** arus dan tegangan AC berbentuk grafik sinus, dan digambarkan dalam diagram fasor.
- Niagram fasor menggambarkan vektor fase arus dan tegangan AC dengan sudut putar berupa sudut fase gelombang sinus.

RANGKAIAN LISTRIK BOLAK-BALIK

🔪 Rangkaian listrik bolak-balik (AC) dapat dibuat menjadi rangkaian resistif murni, induktif murni, kapasitif murni dan rangkaian RLC.

Persamaan arus dan tegangan AC secara umum:

$$V = V_{m}.sin(\omega t)$$

$$I = I_m.sin(\omega t)$$

V = tegangan AC (V) I = kuat arus AC (A) Vm = tegangan maks (V) Im = kuat arus maks (A) ω = frekuensi sudut (rad/s) T = waktu (/s)

🔪 Rangkaian kapasitif murni adalah rangkaian AC yang hanya mengandung kapasitor saja.

Rangkaian

Diagram fasor

Grafik sinusoidal

Arus dan tegangan pada rangkaian resistor adalah sefase.

Nersamaan arus dan tegangan pada rangkaian resistif murni:

$$V_R = V_m.sin(\omega t)$$

$$I_R = I_m.sin(\omega t)$$

Nukum Ohm pada rangkaian resistif:

$$V_m = I_m.R$$

$$V_{eff} = I_{eff}.R$$

$$R = hambatan$$
 resistor (Ω)

🔪 Rangkaian induktif murni adalah rangkaian AC yang hanya mengandung induktor saja.

Rangkaian

Diagram fasor

Grafik sinusoidal

Sudut fase arus terlambat 90° dari sudut fase tegangan.

Persamaan arus dan tegangan pada rangkaian induktif murni:

$$V_L = V_m.sin(\omega t)$$

$$I_L = I_m.sin(\omega t - 90^\circ)$$

Reaktansi induktif adalah nilai hambatan yang terdapat pada induktor, dapat dirumuskan:

$$X_L = \omega . L = 2\pi f . L$$

 X_L = reaktansi induktif (Ω)

 ω = frekuensi sudut (rad/s)

f = frekuensi (Hz)

L = induktansi diri (H)

Nukum Ohm pada rangkaian induktif:

$$V_m = I_m.X_L$$

$$V_{eff} = I_{eff}.X_{L}$$

$$X_L$$
 = reaktansi induktif (Ω)

🦠 Rangkaian kapasitif murni adalah rangkaian AC yang hanya mengandung kapasitor saja.

Rangkaian

Diagram fasor

Grafik sinusoidal

Sudut fase arus mendahului 90° dari sudut fase tegangan.

Persamaan arus dan tegangan pada rangkaian kapasitif murni:

$$V_C = V_m.sin(\omega t)$$

$$I_C = I_m.sin(\omega t + 90^\circ)$$

🔪 Reaktansi kapasitif adalah nilai hambatan yang terdapat pada kapasitor, dapat dirumuskan:

$$X_C = \frac{1}{\omega.C} = \frac{1}{2\pi f.C}$$

 X_C = reaktansi kapasitif (Ω)

 ω = frekuensi sudut (rad/s)

f = frekuensi (Hz)

C = kapasitansi (F)

Nukum Ohm pada rangkaian kapasitif.

$$V_m = I_m X_C$$

$$V_m = I_m.X_C$$
 $V_{eff} = I_{eff}.X_C$ $X_C = reaktansi$ kapasitif (Ω)

🔪 **Rangkaian RLC** adalah rangkaian AC yang mengandung resistor, induktor dan kapasitor seri.

Rangkaian

Diagram fasor

🥄 **Tegangan total (V)** adalah tegangan gabung total rangkain RLC.

$$V = \sqrt{V_R^2 + (V_L - V_C)^2}$$

🔪 Impedansi total (Z) adalah hambatan gabungan total rangkaian RLC.

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

🔪 Kuat arus listrik yang mengalir pada rangkaian dapat dirumuskan:

$$I = \frac{V}{Z} = \frac{V_R}{R} = \frac{V_L}{X_L} = \frac{V_C}{X_C}$$

🔌 Beda sudut fase yang terjadi antara kuat arus listrik (I) dengan tegangan total (V) dapat dihitung:

$$tan\phi = \frac{V_L - V_C}{V_R} = \frac{X_L - X_C}{R}$$

- 🔪 Sifat-sifat rangkaian RLC:
 - 1) Induktif
 - Fase arus terlambat dari fase tegangan sebesar $0^{\circ} \le \phi \le 90^{\circ}$.
 - Nilai X_L > X_C.
 - 2) Kapasitif
 - Fase arus medahului fase tegangan sebesar $0^{\circ} \le \phi \le 90^{\circ}$.
 - Nilai X_C > X_L.
 - 3) Resistif (resonansi)
 - Arus dan tegangan adalah sefase.
 - Nilai X_L = X_C.

Impedansi total rangkaian bernilai minimum (Z = R), sedangkan kuat arus listrik bernilai maksimum (I = $\frac{V}{D}$).

Frekuensi sudut yang dihasilkan rangkaian RLC yang bersifat resistif:

$$\omega = \frac{1}{\sqrt{LC}}$$

Frekuensi resonansi yang rangkaian RLC yang bersifat resistif:

$$f = \frac{1}{2\pi\sqrt{LC}}$$

D. DAYA RANGKAIAN LISTRIK BOLAK-BALIK

- Daya pada rangkaian AC terjadi pada rangkaian resistif. Pada rangkaian induktif dan kapasitif, daya rata-rata adalah nol.
- Naya rangkaian AC dapat dihitung:

Hubungan dengan tegangan

$$P = V_{eff}.I_{eff}.cos\phi$$

Hubungan dengan impedansi

$$P = I_{eff}^2.Z.cos\phi$$

$$P = I_{eff}^2.R$$

dengan nilai cosφ,

$$cos\phi = \frac{R}{Z} = \frac{V_R}{V}$$