Homework 3: Mathematical Statistics (MATH-UA 234)

Due 10/06 at the beginning of class on Gradescope

Problem 1. Let

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \qquad \vec{A} = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{bmatrix}$$

where $a_{i,j}$ are constants and $x_i \sim N(0,1)$, $i=1,2,\ldots,n$ are independent and identically distributed standard normal random variables.

- (a) What is the covariance matrix $\vec{\Sigma}$ for \vec{x} ? (Recall the (i, j)-entry of $\vec{\Sigma}$ is $CoV[x_i, x_i]$.
- (b) Show that $\mathbb{E}[\vec{x}^{\mathsf{T}} \vec{A} \vec{x}] = \operatorname{tr}(\vec{A}) := a_{1,1} + a_{2,2} + \dots + a_{n,n}$. (hint: write out the expression for $\vec{x}^{\mathsf{T}} \vec{A} \vec{x}$ as a sum over the entires of \vec{A})
- (c) Suppose \vec{A} is diagonal; i.e. $a_{i,j} = 0$ for all $i \neq j$. Compute the variance of $\vec{x}^T \vec{A} \vec{x}$. You may use the fact that x_i^2 is a Chi-square random variable with one degree of freedom so that $\mathbb{V}[x_i^2] = 2$.

This is an example of "stochastic trace estimation" which is an important algorithmic tool in a number of recent algorithms.

Problem 2 (Wasserstein 5.5). Let $X_1, X_2, \dots, X_n \sim \text{Ber}(p)$. Let $Z_n = (X_1^2 + X_2^2 + \dots + X_n^2)/n$. Prove that

- (a) Z_n converges in probability to the constant random variable p.
- (b) Z_n converges in quadratic mean to the constant random variable p.

Problem 3 (Wasserstein 6.1). Let $X_1, X_2, \ldots, X_n \sim \operatorname{Poisson}(\lambda)$ and let $\hat{\lambda} = n^{-1} \sum_{i=1}^n X_i$ be our point estimator for λ . Find the bias $\operatorname{Bias} = \mathbb{E}[\hat{\lambda}] - \lambda$, standard error $\operatorname{se}_n = \sqrt{\mathbb{V}[\hat{\lambda}]}$, and mean squared error $\operatorname{MSE}_n = \mathbb{E}[(\hat{\lambda} - \lambda)^2]$ of $\hat{\lambda}$.

Problem 4 (Wasserstein 6.2). Let $X_1, X_2, ..., X_n \sim \text{Unif}(0, \theta)$ and let $\hat{\theta} = \max\{X_1, X_2, ..., X_n\}$ be our point estimator for θ .

- (a) Write down the distribution for $\hat{\theta}$ (hint: we've already don't a similar problem)
- (b) Find the bias $\operatorname{Bias} = \mathbb{E}[\hat{\theta}] \theta$, standard error $\operatorname{se}_n = \sqrt{\mathbb{V}[\hat{\theta}]}$, and mean squared error $\operatorname{MSE}_n = \mathbb{E}[(\hat{\theta} \theta)^2]$ of $\hat{\theta}$.

Problem 5 (Wasserstein 6.3). Let $X_1, X_2, ..., X_n \sim \text{Unif}(0, \theta)$ and let $\hat{\theta} = 2\overline{X}_n$ be our point estimator for θ .

(a) Find the bias $\operatorname{Bias} = \mathbb{E}[\hat{\theta}] - \theta$, standard error $\operatorname{se}_n = \sqrt{\mathbb{V}[\hat{\theta}]}$, and mean squared error $\operatorname{MSE}_n = \mathbb{E}[(\hat{\theta} - \theta)^2]$ of $\hat{\theta}$.

problems with a textbook reference are based on, but not identical to, the given reference

Problem 6. Suppose $X_1, X_2, ..., X_n \sim F_{\mu, \sigma^2}$ are independent and identically distributed samples from some distribution F_{μ, σ^2} with mean μ and variance σ^2 .

Recall that

$$\hat{S}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2, \qquad \hat{T}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$

are both point estimators for the parameter σ^2 .

- (a) Compute $\mathbb{E}[\hat{S}_n^2]$ and $\mathbb{E}[\hat{T}_n^2]$.
- (b) Which point estimator has smaller bias?
- (c) Which point estimator has smaller standard error?

Problem 7. Describe of point estimation of a parameter which you noticed in a different part of **your life** (e.g. in other classes, on the subway, at the park, in the dorm, etc.).