Homework #5

Sam Fleischer

February 21, 2016

Hunter and Nachtergaele 8.2	2
Hunter and Nachtergaele 8.3	2
Hunter and Nachtergaele 8.4	3
Hunter and Nachtergaele 8.6	3
Hunter and Nachtergaele 8.7	4
Hunter and Nachtergaele 8.8	5
Hunter and Nachtergaele 8.9	5
Hunter and Nachtergaele 8.11	6
Hunter and Nachtergaele 8.12	7

Hunter and Nachtergaele 8.2

If $\mathcal{H} = \mathcal{M} \oplus \mathcal{N}$ is an orthogonal direct sum, show that $\mathcal{M}^{\perp} = \mathcal{N}$ and $\mathcal{N}^{\perp} = \mathcal{M}$.

Proof. Suppose $x \in \mathcal{M}^{\perp}$. Then $x \in \mathcal{H} \Longrightarrow \exists ! y, z \text{ such that } x = y + z \text{ where } y \in \mathcal{M} \text{ and } z \in \mathcal{N}$. Then

$$\langle x,x\rangle = \left\langle x,y\right\rangle^{-0} + \left\langle x,z\right\rangle = \left\langle x,z\right\rangle \implies \left\langle x,x-z\right\rangle = 0 \implies x=z$$

which shows $x \in \mathcal{N}$, i.e. $\mathcal{M}^{\perp} \subset \mathcal{N}$.

Now suppose $x \notin \mathcal{M}^{\perp}$. Then $x \in \mathcal{M}$ and $x \neq 0$. Thus $x \notin \mathcal{N}$ since a direct sum implies $\mathcal{N} \cap \mathcal{M} = \{0\}$. Thus $\mathcal{N} \subset \mathcal{M}^{\perp} \subset \mathcal{N} \implies \mathcal{N} = \mathcal{M}^{\perp}$.

Switching \mathcal{N} and \mathcal{M} shows $\mathcal{M} = \mathcal{N}^{\perp}$.

Hunter and Nachtergaele 8.3

Let \mathcal{M} , \mathcal{N} be closed subspaces of a Hilbert space \mathcal{H} and P, Q the orthogonal projections with ran $P = \mathcal{M}$, ran $Q = \mathcal{N}$. Prove that the following conditions are equivalent: (a) $\mathcal{M} \subset \mathcal{N}$; (b) QP = P; (c) PQ = P; (d) $\|Px\| \le \|Qx\|$ for all $x \in \mathcal{H}$; (e) $\langle x, Px \rangle \le \langle x, Qx \rangle$ for all $x \in \mathcal{H}$.

Proof. We will show $(a) \to (b) \to (c) \to (d) \to (e) \to (a)$, which proves the statements' equivalence.

- $(a) \to (b)$. Let $\mathcal{M} \subset \mathcal{N}$ and let $x \in \mathcal{H}$. Then $Px \in \mathcal{M} \subset \mathcal{N} \implies Q(Px) = Px \implies QP = P$.
- $(b) \rightarrow (c)$. Let QP = P. Then

$$\langle x, Py \rangle = \langle Px, y \rangle = \langle QPx, y \rangle = \langle Px, Qy \rangle = \langle x, PQy \rangle \Longrightarrow \langle x, Py - PQy \rangle = 0 \quad \forall x, y \in \mathcal{H}.$$

Thus Py - PQy = 0 for all $y \in \mathcal{H}$, i.e. PQ = P.

 $(c) \rightarrow (d)$. Let PQ = P. First note $||Px|| \le ||x||$ for all $x \in \mathcal{H}$ because

$$\|Px\| = \frac{\|Px\|^2}{\|Px\|} = \frac{\langle Px, Px \rangle}{\|Px\|} = \frac{\left\langle x, P^2x \right\rangle}{\|Px\|} = \frac{\langle x, Px \rangle}{\|Px\|} \leq \|x\|$$

by the Cauchy-Schwarz inequality. Thus,

$$||Px|| = ||PQx|| = ||P(Qx)|| \le ||Qx|| \quad \forall x \in \mathcal{H}$$

 $(d) \to (e)$. Let $||Px|| \le ||Qx||$.

$$||Px||^2 \le ||Qx||^2 \implies \langle Px, Px \rangle \le \langle Qx, Qx \rangle \implies \langle x, P^2x \rangle \le \langle x, Q^2x \rangle \implies \langle x, Px \rangle \le \langle x, Qx \rangle \qquad \forall x \in \mathcal{H}$$

(e) \rightarrow (a). Let $\langle x, Px \rangle \leq \langle x, Qx \rangle$ and suppose $x \in M$. Then Px = x. Then $\|x\|^2 = \langle x, x \rangle = \langle x, Px \rangle \leq \langle x, Qx \rangle$. However, since $\|Qx\| \leq \|x\|$ for all x, then $\langle x, Qx \rangle \leq \|x\| \|Qx\| \leq \|x\|^2$, which shows $\langle x, Qx \rangle = \|x\|^2$. Thus Qx = x, which shows $x \in \mathcal{N}$, proving $\mathcal{M} \subset \mathcal{N}$.

Hunter and Nachtergaele 8.4

Suppose that (P_n) is a sequence of orthogonal projections on a Hilbert space \mathcal{H} such that

$$\operatorname{ran} P_{n+1} \supset \operatorname{ran} P_n, \qquad \bigcup_{n=1}^{\infty} \operatorname{ran} P_n = \mathcal{H}.$$

Prove that (P_n) converges strongly to the identity operator I as $n \to \infty$. Show that (P_n) does not converge to the identity operator with respect to the operator norm unless $P_n = I$ for all sufficiently large n.

Proof. Let $x \in \mathcal{H}$. Then $\exists N$ such that $x \in \operatorname{ran} P_N$. Thus $x \in \operatorname{ran} P_n$ for all $n \ge N$. Since each P_n is an orthogonal projection, then $x = P_n x$ for all $n \ge N$. Thus

$$\lim_{n\to\infty} P_n x = \lim_{n\to\infty} x = x = Ix$$

where I is the identity operator. Thus (P_n) converges strongly to I. If $P_n = I$ for all sufficiently large n, then obviously

$$\lim_{n\to\infty}\|P_n-I\|=\lim_{n\to\infty}\|I-I\|=\|0\|=0$$

Thus P_n converges to I with respect to the operator norm. If it is not true that $P_n = I$ for all sufficiently large n, then ran $P_n \subset P_{n+1} \ \forall n \implies P_n \not\equiv I$ for any n. Then $\forall n$, $\ker P_n \not= \{0\}$, i.e. $\dim \ker P_n > 0$, and so $\exists e_n \in \ker P_n$ with $\|e_n\| = 1$. Then $P_n e_n = 0$ and $\forall n$,

$$\|P_n-I\|\geq \|(P_n-I)e_n\|=\|e_n\|=1 \implies \lim_{n\to\infty}\|P_n-I\|\geq 1$$

which shows P_n does not converge to the identity operator with respect to the operator norm.

Hunter and Nachtergaele 8.6

Show that a linear operator $U: \mathcal{H}_1 \to \mathcal{H}_2$ is unitary if and only if it is an isometric isomorphism of normed linear spaces. Show that an invertible linear map is unitary if and only if its inverse is.

Proof. Let $U: \mathcal{H}_1 \to \mathcal{H}_2$ be unitary. Then U is invertible and $\langle Ux, Uy \rangle_{\mathcal{H}_2} = \langle x, y \rangle_{\mathcal{H}_1}$ for all $x, y \in \mathcal{H}_1$. Thus

$$\|Ux\|_{\mathcal{H}_2}^2 = \langle Ux, Ux \rangle_{\mathcal{H}_2} = \langle x, x \rangle_{\mathcal{H}_1} = \|x\|_{\mathcal{H}_1}^2$$

Thus U preserves norms and is thus an isometric isomorphism.

Now suppose $U: \mathcal{H}_1 \to \mathcal{H}_2$ is an isometric isomorphism. By the definition of isomorphism, U^{-1} exists and $||Ux||_{\mathcal{H}_2} = ||x||_{\mathcal{H}_1}$ (or $\langle Ux, Ux \rangle = \langle x, x \rangle$) for all $x \in \mathcal{H}_1$. Also,

$$\begin{split} \langle x,y \rangle &= \frac{1}{4} \Big(\big\| x + y \big\|^2 - \big\| x - y \big\|^2 - i \big\| x + i y \big\|^2 + i \big\| x - i y \big\|^2 \Big) \\ &= \frac{1}{4} \Big(\langle x + y, x + y \rangle - \langle x - y, x - y \rangle - i \langle x + i y, x + i y \rangle + i \langle x - i y, x - i y \rangle \Big) \\ &= \frac{1}{4} \Big(\langle Ux + Uy, Ux + Uy \rangle - \langle Ux - Uy, Ux - Uy \rangle - i \langle Ux + i Uy, Ux + i Uy \rangle + i \langle Ux - i Uy, Ux - i Uy \rangle \Big) \\ &= \frac{1}{4} \Big(\Big[\underbrace{\|Ux\|^2}_{2} + \langle Ux, Uy \rangle + \underbrace{\langle Uy, Ux \rangle}_{2} + \underbrace{\|Uy\|^2}_{2} \Big] - \Big[\underbrace{\|Ux\|^2}_{2} - \langle Ux, Uy \rangle - \underbrace{\langle Uy, Ux \rangle}_{2} + \underbrace{\|Uy\|^2}_{2} \Big] \\ &- i \Big[\underbrace{\|Ux\|^2}_{2} + i \langle Ux, Uy \rangle - i \underbrace{\langle Uy, Ux \rangle}_{2} - \underbrace{\|Uy\|^2}_{2} \Big] + i \Big[\underbrace{\|Ux\|^2}_{2} - i \langle Ux, Uy \rangle + i \underbrace{\langle Uy, Ux \rangle}_{2} - \underbrace{\|Uy\|^2}_{2} \Big] \Big) \\ &= \frac{1}{4} \Big(4 \langle Ux, Uy \rangle \Big) \\ &= \langle Ux, Uy \rangle \end{split}$$

Thus U is unitary.

Suppose U is an invertible, unitary map. Then $\langle Ux, Uy \rangle = \langle x, y \rangle \ \forall x, y \in \mathcal{H}$. The invertibility of U implies $\langle x, y \rangle = \langle U(U^{-1}(x)), U(U^{-1}(y)) \rangle = \langle U^{-1}(x), U^{-1}(y) \rangle \ \forall x, y \in \mathcal{H}$. Thus U^{-1} is unitary. Similarly, suppose U is invertible and U^{-1} is unitary. Then $\langle x, y \rangle = \langle U^{-1}(U(x)), U^{-1}(U(y)) \rangle = \langle Ux, Uy \rangle$. Then U is unitary. Thus, an invertible linear map is unitary if and only if its inverse is.

Hunter and Nachtergaele 8.7

If ϕ_{V} is the bounded linear functional defined in (8.5),

$$\phi_{\mathcal{V}}(x) = \langle y, x \rangle \tag{8.5}$$

prove that $\|\phi_{y}\| = \|y\|$.

Proof. First we prove $\|\phi_v\|$ is bounded above by $\|y\|$.

$$\|\phi_y\| = \sup_{\|x\|=1} \|\phi_y(x)\| = \sup_{\|x\|=1} |\langle y, x \rangle| \le \sup_{\|x\|=1} \|y\| \|x\| = \|y\|$$

Next, consider $x = \frac{y}{\|y\|}$ (note $\|x\| = 1$):

$$\|\phi_{y}(x)\| = \|\langle y, x \rangle\| = \left\|\frac{\langle y, y \rangle}{\|y\|}\right\| = \left\|\frac{\|y\|^{2}}{\|y\|}\right\| = \|y\|$$

and thus $\|\phi_y\| \ge \|y\|$, which proves $\|\phi_y\| = \|y\|$.

Hunter and Nachtergaele 8.8

Prove that \mathcal{H}^* is a Hilbert space with the inner product defined by

$$\langle \phi_x, \phi_y \rangle_{\mathscr{H}^*} = \langle y, x \rangle_{\mathscr{H}}.$$

Proof. First note that for ϕ_{y_1} , $\phi_{y_2} \in \mathcal{H}^*$, $\|\phi_{y_1} + \phi_{y_2}\|_{\mathcal{H}^*} = \|y_1 + y_2\|_{\mathcal{H}}$ where y_1 and y_2 are the associated vectors in \mathcal{H} guaranteed in the Riesz Representation Theorem. This is true because $\phi_{y_1}(x) = \langle y_1, x \rangle_{\mathcal{H}}$ and $\phi_{y_2}(x) = \langle y_2, x \rangle_{\mathcal{H}}$ imply

$$\phi_{y_1+y_2}(x) = \langle y_1 + y_2, x \rangle_{\mathscr{H}} = \langle y_1, x \rangle_{\mathscr{H}} + \langle y_2, x \rangle_{\mathscr{H}} = \phi_{y_1}(x) + \phi_{y_2}(x)$$

and since $\|\phi_{y_1+y_2}\|_{\mathscr{H}^*} = \|y_1+y_2\|_{\mathscr{H}}$ by (Hunter and Nachtergaele 8.7), then $\|\phi_{y_1}+\phi_{y_2}\|_{\mathscr{H}^*} = \|y_1+y_2\|_{\mathscr{H}}$. Let (ϕ_n) be a Cauchy sequence in \mathscr{H}^* . Then $\forall \varepsilon > 0$, $\exists N$ such that $\|\phi_m-\phi_n\|_{\mathscr{H}^*} < \varepsilon$ for $m,n \geq N$. By the Riesz Representation Theorem, $\exists (y_n)_n \in \mathscr{H}$ such that for every n, $\phi_n(x) = \langle y_n, x \rangle \ \forall x \in \mathscr{H}$. $(y_n)_n$ is Cauchy since given $\varepsilon > 0$ we can find N such that $\|y_n-y_m\|_{\mathscr{H}} = \|\phi_n-\phi_m\|_{\mathscr{H}^*} < \varepsilon$ for $m,n \geq N$. Since \mathscr{H} is a Hilbert space, then $(y_n)_n$ is convergent to some $y \in \mathscr{H}$. By the Riesz Representation Theorem, $\exists \phi \in \mathscr{H}^*$ such that $\phi(x) = \langle y, x \rangle \ \forall x \in \mathscr{H}$. Then $(\phi_n)_n$ converges to ϕ because $\|\phi_n-\phi\|_{\mathscr{H}^*} = \|y_n-y\|_{\mathscr{H}^*}$, which can be made arbitrary small by the definition of convergence. Thus \mathscr{H}^* is complete. Also, $\langle \cdot, \cdot \rangle_{\mathscr{H}^*}$ is a well-defined inner product (i.e. the properties of inner product hold). Thus \mathscr{H}^* is a Hilbert space.

Hunter and Nachtergaele 8.9

Let $A \subset \mathcal{H}$ be such that

 $\mathcal{M} = \{x \in \mathcal{H} \mid x \text{ is a finite linear combination of elements in } A\}$

is a dense linear subspace of \mathcal{H} . Prove that any bounded linear functional on \mathcal{H} is uniquely determined by its values on A. If $\{u_{\alpha}\}$ is an orthonormal basis, find a necessary and sufficient condition on a family of complex numbers c_{α} for there to be a bounded linear functional ϕ such that $\phi(u_{\alpha}) = c_{\alpha}$.

Proof. Suppose ϕ_1 and ϕ_2 are two bounded linear functionals such that $\phi_1(a) = \phi_2(a)$ for all $a \in A$. Let $x \in \mathcal{H}$. By denisty of \mathcal{M} , $\exists m_i \in \mathcal{M}$ such that $m_i \to x$. By linearity of ϕ_1 and ϕ_2 , $\phi_1(m_i) = \phi_2(m_i)$ for all $i = 1, 2, \ldots$ By the Riesz Representation Theorem, $\exists y_1, y_2$ such that $\phi_1(x) = \langle y_1, x \rangle$ and $\phi_2(x) = \langle y_2, x \rangle$ for all $x \in \mathcal{H}$. Thus by continuity of inner products,

$$\phi_1(x) = \left\langle y_1, x \right\rangle = \lim_{i \to \infty} \left\langle y_1, m_i \right\rangle = \lim_{i \to \infty} \phi_1(m_i) = \lim_{i \to \infty} \phi_2(m_i) = \lim_{i \to \infty} \left\langle y_2, m_i \right\rangle = \left\langle y_2, x \right\rangle = \phi_2(x) \qquad \forall x \in \mathcal{H}.$$

Thus $\phi_1 \equiv \phi_2$, i.e. bounded linear functionals are uniquely determined by their values on A. Let $\{u_\alpha\}$ is an orthonormal basis on \mathscr{H} . Then if $\exists \phi \in \mathscr{H}^*$ such that $\phi(u_\alpha) = c_\alpha$ then by the Riesz Representation Theorem, $\exists y \in \mathscr{H}$ such that $\langle y, u_\alpha \rangle = c_\alpha$. Then $y = \sum_\alpha c_\alpha u_\alpha$. Thus the necessary condition $\sum_\alpha |c_\alpha|^2 < \infty$.

Suppose $\sum_{\alpha} |c_{\alpha}|^2 < \infty$. Then define $y = \sum_{\alpha} c_{\alpha} u_{\alpha}$. Since $\{u_{\alpha}\}$ is an orthonormal basis, then $c_{\alpha} = \langle y, u_{\alpha} \rangle$. Then by the Riesz Representation Theorem, $\exists \phi \in \mathcal{H}^*$ such that $\phi(x) = \langle y, x \rangle \ \forall x \in \mathcal{H}$. In particular, $\phi(u_{\alpha}) = c_{\alpha}$.

Thus, given a family of complex numbers $\{c_{\alpha}\}$,

$$\sum_{\alpha} |c_{\alpha}|^{2} < \infty \iff \exists \phi \in \mathcal{H}^{*} \text{ such that } \phi(u_{\alpha}) = c_{\alpha}$$

Hunter and Nachtergaele 8.11

Prove that if $A: \mathcal{H} \to \mathcal{H}$ *is a linear map and* dim $\mathcal{H} < \infty$, then

 $\dim \ker A + \dim \operatorname{ran} A = \dim \mathcal{H}$.

Prove that if dim $\mathcal{H} < \infty$, then dim ker $A = \dim \ker A^*$. In particular, ker $A = \{0\}$ if and only if ker $A^* = \{0\}$.

Proof. Let dim $\mathcal{H} < \infty$ (say dim $\mathcal{H} = n$). Then dim ker $A < \infty$ and dim ran $A < \infty$ since ker A and ran A are subspaces of \mathcal{H} . Let dim ker $A = m \le n$ and let $\{u_1, u_2, \ldots, u_m\}$ be a basis of ker A. Since ker A is a subspace of \mathcal{H} , this basis can be extended to a basis \mathcal{U} of \mathcal{H} : $\mathcal{U} = \{u_1, u_2, \ldots, u_m, v_{m+1}, v_{m+2}, \ldots, v_n\}$. Let $x \in \mathcal{H}$. Then

$$x = a_1 u_1 + a_2 u_2 + \dots + a_m u_m + a_{m+1} v_{m+1} + a_{m+2} v_{m+2} + \dots + a_n v_n$$

$$\implies Ax = a_1 A u_1^{-0} + a_2 A u_2^{-0} + \dots + a_m A u_m^{-0} + a_{m+1} A v_{m+1} + a_{m+2} A v_{m+2} + \dots + a_n A v_n$$

$$= a_{m+1} A v_{m+1} + a_{m+2} A v_{m+2} + \dots + a_n A v_n$$

since $u_i \in \ker A$ for i = 1, 2, ..., m. Thus, $\{Av_{m+1}, Av_{m+2}, ..., Av_n\}$ spans ran A. However it is also linearly independent since

$$\begin{split} c_{m+1}Av_{m+1} + c_{m+2}Av_{m+2} + \cdots + c_nAv_n &= 0 \\ \Longrightarrow A(c_{m+1}v_{m+1} + c_{m+2}v_{m+2} + \cdots + c_nv_n) &= 0 \\ \Longrightarrow c_{m+1}v_{m+1} + c_{m+2}v_{m+2} + \cdots + c_nv_n &\in \ker A \\ \Longrightarrow c_{m+1}v_{m+1} + c_{m+2}v_{m+2} + \cdots + c_nv_n &= d_1u_1 + d_2u_2 + \cdots + d_mu_m \quad \text{ for some } d_i \in \mathbb{C} \\ \Longrightarrow d_1 &= d_2 = \cdots = d_m = c_{m+1} = c_{m+2} = \cdots = c_n = 0 \quad \text{ since } \mathscr{U} \text{ is a basis} \end{split}$$

Thus $\{Av_{m+1}, Av_{m+2}, \dots, Av_n\}$ is linearly independent. Since it also spans ran A then it is a basis of ran A. Thus dim ran A = n - m. Thus, since m + (n - m) = n, then

 $\dim \ker A + \dim \operatorname{ran} A = \dim \mathcal{H}$.

Let $x \in \mathcal{H}$. Then

$$x \in \ker A^* \iff A^* x = 0$$

 $\iff \langle y, A^* x \rangle = 0 \qquad \forall y \in \mathcal{H}$
 $\iff \langle Ay, x \rangle = 0 \qquad \forall y \in \mathcal{H}$

Sam Fleischer

UC Davis Analysis (MAT201B)

Winter 2016

$$\iff x \perp Ay \qquad \forall y \in \mathcal{H}$$

$$\iff x \perp (\operatorname{ran} A)$$

$$\iff x \in (\operatorname{ran} A)^{\perp}$$

Thus $\ker A^* = (\operatorname{ran} A)^{\perp}$ and $\dim \ker A^* = \dim(\operatorname{ran} A)^{\perp}$. However since $\dim \ker A + \dim \operatorname{ran} A = \dim \mathcal{H}$ and $\dim \operatorname{ran} A + \dim(\operatorname{ran} A)^{\perp} = \dim \mathcal{H}$, then $\dim(\operatorname{ran} A)^{\perp} = \dim \ker A$. Thus,

 $\dim \ker A = \dim \ker A^*$.

Hunter and Nachtergaele 8.12

Suppose that $A: \mathcal{H} \to \mathcal{H}$ is a bounded, self-adjoint linear operator such that there is a constant c > 0 with

$$c||x|| \le ||Ax||$$
 for all $x \in \mathcal{H}$.

Prove that there is a unique solution x of the equation Ax = y for every $y \in \mathcal{H}$.

Proof. Let $x \neq 0$. Then ||x|| > 0. Then $\frac{||Ax||}{c} \ge ||x|| > 0 \implies ||Ax|| > 0$, which shows $Ax \neq 0$, and thus $\ker A = \{0\}$. Since A is self-adjoint, then $A = A^*$ and thus $\ker A^* = \{0\}$. Since $\langle y, 0 \rangle = 0 \ \forall y \in \mathcal{H}$, then $y \perp \ker A^*$. Then by Theorem 8.18 in Hunter Nachtergaele, $\exists x \in \mathcal{H}$ such that y = Ax. Suppose $y = Ax_1 = Ax_2$. Then $A(x_1 - x_2) = 0$, which implies $x_1 - x_2 \in \ker A = \{0\}$, thus $x_1 = x_2$, i.e. the solution to y = Ax is unique.