#### UNCLASSIFIED

## AD NUMBER AD012310 CLASSIFICATION CHANGES TO: unclassified FROM: confidential LIMITATION CHANGES TO:

Approved for public release; distribution is unlimited.

### FROM:

Distribution authorized to U.S. Gov't. agencies only; Administrative/Operational Use; MAY 1953. Other requests shall be referred to Office of Naval Research, One Liberty Center, 875 North Randolph St., Arlington, VA 22203.

#### **AUTHORITY**

31 May 1965, DoDD 5200.10.

## UNCLASSIFIED

| A | N |   |  |  |
|---|---|---|--|--|
| Л | V | - |  |  |

## DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION ALEXANDRIA, VIRGINIA

DOWNGRADED AT 3 YEAR INTERVALS: DECLASSIFIED AFTER 12 YEARS DOD DIR 5200 10



UNCLASSIFIED

## THIS REPORT HAS BEEN DECLASSIFIED AND CLEARED FOR PUBLIC RELEASE.

# DISTRIBUTION A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.





MODEL: 309A-309C-319A REPORT NO. 6

APPLICATION OF CIRCULATION CONTROL TO AN AIRPLANE OF MILITARY LIAISON TYPE

NONE CONTRACTS 234(00) 856(00)

## Cessna Aircraft Company Wichita, Kansas

MARCH 1 TO MAY 1, 1953

MODEL 309A-309C: REPORT NO. 6
319A
APPLICATION OF CIRCULATION CONTROL TO
AN AIRPLANE OF MILITARY LIAISON TYPE
HOUR CONTRACTS 234(00) 856(00)

PREPARED BY: Alex Petroff

Jack W. Fisher

Earl G. Blosser

A. OWEN HOLLIDAY

17-4

CESSNA AIRCRAFT CO

PACE 1
REPORT NO 6
MODEL 309A-309C-319A

PREPARED BY EGB-JFN DATE 5-1-53
CHECKED BY ANP DATE 5-1-53

CESSNA MODEL 309A-309C - NONR CONTRACT NC. 234(00)

#### Analysis

The report No. 1309-4 "Design and Construction Project - Model 309A" is now complete. It will be printed, assembled and released in the near future.

#### Manufacturing

The battery electrical system has been designed and checked. Subsequent flight tests have shown that the batteries will quite adequately operate the fans for the time required either for take-off or landings.

#### Flight Test

TAL

To correct for the violent left roll exidition that existed when the airplane was stalled it was decided to check and re-rig the aileron droop system. A three degree differential was found to exist between the right and left aileron in the drooped position. A slight modification of the droop mechanism corrected this condition.

Flight tests indicated the change in alleron droop improved the stall.

To further improve the situation the horizontal incidence was changed from

-3° to-1.25°. Flight tests after this change indicated the stall of the airplane is now normal.

Pamiliarization flights have been performed by Pilot Fritz Feutz in preparation for take-off and landing measurements with battery operated axial

fans. Several minor changes were made to reduce stall abruptness and lateral
unbalance with the BLC system operating. Re-rigging and careful adjustement of
the alleron droop system definitely improved the lateral problem. A reduction
of negative horizontal tail incidence improved the stall so that the most severe
pitch and roll are not now objectionable.

PREPARED BY BGR-JWF DATE 5-1-53

CONTIDENTIAL
CESSNA AIRCRAFT CO

PAGE 2 REPORT NO 5 MODEL 309A - 309C - 319A

CHECKED BY AUF DATE 5-1-53

Further flights have beer performed in preparation for take-off and landing distance measurements. Specifically these tests establish breakground, climb, and approach speeds for conditions of BLC on and off. During these flights it became apparent that there was insufficient elevator power for a three-point landing with flaps down. This was caused by a previous change in tail incidence. Elevator area was increased by the addition of a 3 inch strip of aluminum to the trailing edge. The increased area was found to provide sufficient control for a flaps-down landing with BLC system off.

Photographs of take-off and landing performance were made on April 23, 1953. They included measurements of:

1. 5 take-offs BLC system off

2. 5 take-offs BLC system on

3. 9 landings BLC system off

4. 7 landings BLC system on

Visual observation indicated definite take-off distance improvements, but it appeared that only marginal changes in landings were obtained. Photographic data is now in the process of analysis.

With the completion of these tests the simplane will now be disassembled, the electric fan system and all of its components will be removed, and the airplane will be readied for the installation of the H<sub>2</sub>O<sub>2</sub> jet pump system.

#### Installation

Work on the 309C wings has now progressed as far as it can go pending the arrival of hydrogen peroxide gas generator and jet pumps from Reaction Motors, Inc.

CONFIDENTIAL

CESSNA AIRCRAFT CO

PAGE 3

CHECKED BY EAST 5-1-53

CHECKED BY DATE 5-1-53

の過程のは、間間の問題をはないのは、おはないないのは、 ちゅうしん

WICH TAL KANSAS

MODEL 309A-309C-319A

#### CESSNA MODEL 319 and 319A - NONR CONTRACT 856(00)

Since the concept and, therefore, the purpose of the research airplane has not been clearly delineated in the contract, it led to a variety of interpretations, resulting in several possible design requirements.

The following table presents summary of salient parameters of each design variant which was under the consideration since the beginning of the project.

TITLE PERIODIC PROGRESS REPORT

EPARLO BY DOB-JWP DATE 5-1-53

THEURED BY AND

DATE 5-1-53

CONFIDENTIAL

CESSNA AIRCRAFT CO

WICHITA. KANSAS

PAGE

REPORT NO. 6

MODEL 309A-309C-319A

| PARAMETER |
|-----------|
| DESTON    |
| H         |
| Ĉ         |
| STIMMARY  |

いるないないないから はなる 動のなるなるべんなんとう

छ।

| HODEL   St.   H/St.   AR   Climet   Q   AP   HPs.   HPs. | 1             |            |        |     |        |            |        |              |         |        |                    | t |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|--------|-----|--------|------------|--------|--------------|---------|--------|--------------------|---|
| t. #/rt. <sup>2</sup> Power: Rt. <sup>3</sup> /Sec. #/Ft. <sup>2</sup> Penel Total Total  25 6.5 4.5 51.5 185 17.3 34.6 53.2  15 6.5 4.5 42.5 126 9.8 19.6 30.2  13.5 7.5 4.5 57.5 123 12.8 25.6 39.4  13.5 7.5 3.5 44.0 76 6.1 12.2 18.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ω <b>&gt;</b> |            | AS/A   | Æ   | CLIME  | ď          |        | *            | El<br>B | #<br>암 | REMARKS            |   |
| 25       6.5       4.5       51.5       185       17.3       34.6       53.2         15       6.5       4.5       42.5       126       9.8       19.6       30.2         13.5       7.5       4.5       57.5       123       12.8       25.6       39.4         13.5       7.5       3.5       44.0       76       6.1       12.2       18.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 59.           | نړ         | #/kr.2 |     | Power: | Pt. 3/3ec. | #/Ft.2 | Per<br>Panel | Total   | Total  |                    |   |
| 15     6.5     4.5     42.5     126     9.8     19.6     30.2       13.5     7.5     4.5     57.5     123     12.8     25.6     39.4       13.5     7.5     3.5     44.0     76     6.1     12.2     18.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23            | ر <u>ن</u> | 25     | 6.5 | 4.5    | 51.5       | 185    | 17.3         | 34.6    | 53.2   | Original concept   |   |
| 13.5 7.5 4.5 57.5 123 12.8 25.6 39.4 13.5 7.5 3.5 44.0 76 6.1 12.2 18.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2             | ζ.         | 15     | 6.5 | 4.5    | 12.5       | . 921  | 9.8          | 19.6    | 30.2   | of 319 wing.       |   |
| 13.5 7.5 3.5 44.0 76 6.1 12.2 18.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ä             | 5          | 13.5   | 7.5 | 4.5    | 57.5       | 123    | 12.8         | 25.6    | 39.4   | Modified L-19 wing |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H             | 22         | 13.5   | 7.5 | 3.5    | o. 1       | 16     | 6.1          | 12.2    | 18,8   | Molified L-19 will |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |            |        |     |        |            |        |              |         |        |                    |   |

on the busie graph at the end of this report. Work done on air to overcome losses in alots and ducts for a given C<sub>limax</sub>. It was computed of wind tunnel tests at the University of Wichita and presented on the graph at the end of

Total horsepower required to operate the system. It was computed assuming 90% efficiency for the hydraulic pump and motor and 80% efficiency for the axial fan. ‡

TITLE PERIODIC PROGRESS REPORT

CONFIDENTIAL
CESSINA AIRCRAFT CO.
WICHITAL KANSAS

REPORT NO 6

CHECKED BY AND DATE 5-1-53

MODEL 309A-309C-319A

Examination of the table reveals that horsepower required to operate the system for the research airplane is roughly double of that required for the demonstrator. The only way this power requirement could be met is by inetallation of an auxiliary power unit such as a two-cycle gasoline engine. This was feasible for a research type airplane, but was objectionable for the case of practical demonstrator due to unreliability of starting the system. Moreover, it was expected that design of tail surfaces for the research version necessary to overcome high moment associated with  $C_{lower} = 4.5$ , might present difficulties which would tend to delay delivery of the airplane.

Therefore a meeting was arranged on March 30 and 31, 1953 between representatives of ONR, University of Wichita and Cessma personnel to delineate the objective of the project more precisely and to map out a more or less definite course of action.

The following personnel was present at the meeting:

Major J. Willcox, Office of Maval Research

Mr. R. Putnem, Office, Chief of Transportation Dept. of the Army

Mr. J. Beech, Office, Chief of Transportation Dept. of the Army

Mr. K. Rasak, University of Wichita

Mr. Tom Salter, Cessna Aircraft Company

Mr. Jack Fisher, Cessna Aircraft Company

Mr. Alex Petroff, Cessna Aircraft Company

The concensus of the opinion was to abandon, temporarily, the original concept of the research airplane and concentrate immediate efforts on the design and manufacturing of the demonstrator airplane, so that it could be flight tested \_ next August. The airplane, designated as Model 319A, will consist of L-19 fuselage, a new, thicker, wing to accomposate the fans, a 225 HP Continental engine and Hartsell constant speed propeller.

THE PERIODIC PROCRESS REPORT

## CONFIDENTIAL

CESSNA AIRCRAFT CO.

PAGE REPORT NO MODEL 309A-309C-319A

PREPARED BY ECB-JWF DATE 5-1-53 DATE 5-1-53

#### Axial Fan

The air pumping system will consist of two axial fans (one in each wing panel) designed to the following specifications:

Q = 46 cu.ft./sec. at sea level

 $\Delta P = 82 \text{ lb./sq.ft.}$  (Total static pressure rise)

 $HP_n = 6.9$ 

D = 8 in.

RPM = 12,000 - 14,000

#### Search for the Power Plant

The search for a suitable motive power to drive the fans presented a difficult problem of compromise between the conflicting requirements of good engineering design such as mechanical efficiency, light weight and compactness and the requirements of service in the field such as maintenance, reliability and safety.

The 18 motive power systems that were under careful study and consideration for some time were narrowed down to four, which will be bench tested and selected to satisfy the requirements mentioned above.

|    | Motive Power Systems                                             | Duration   | Approximate Power Taken Cff Main Engine | Approx. Wt. (1bs.) |
|----|------------------------------------------------------------------|------------|-----------------------------------------|--------------------|
| 1. | Hydraulic motors driven by a hydraulic pump belted to the engine | Continuous | 20                                      | 110                |
| 2. | Air turbines driven by compressed air stored in spherical tanks  | 2 Min.     | 0                                       | 160                |
| 3. | Sas turbines driven by solid or liquid propellant gas generators | 2-one Min. | 0                                       | 70                 |
| 4. | Electric motors driven by generator and storage hattery          | 2 Min.     | 12                                      | 230                |

CONTIDENTIAL
CESSNA AIRCRAFT CO

1466

EPORT NO 6

MODE 309A-309C-319A

EREPARED BY EGB-JWF DATE 5-1-53
CHECKED BY AND DATE 5-1-53

1

#### Selection of Power Plant -

At the present time the most promising source of power from the standpoint of mechanical efficiency and the availability is the engine driven
variable displacement Vicker's hydraulic pump actuating two Vicker's hydraulic motors geared to the fans. Negetiations with Vicker's Company of Detroit
and Joy Manufacturing Company of New Philadelphia, Ohio has been started to
procure the pump-motor-fan combination. The names of other firms and establishments contacted with the intention of obtaining design information or procuring a suitable motor-fan unit are listed at the end of this report.

#### Performance of the Airplane with BLC

Calculations indicate that with the hydraulic system which draws approximately 20 HP off the main engine, it is possible to achieve 20% decrease in take-off distance over a 50 foot obstacle as compared with the distance required by the present Model L-19 airplane.

Results of the detail calculations correlated with recent flight tests of take-off and landings on Model 309 equipped with electrical-generator-storage battery system will be presented in the next periodic report.

COMPIDENTIAL

T.

#### CONFIDENTIAL

CESSNA AIRCRAFT CO.

PAGE \_\_ 9

REPORT NO. 6

MODEL 309A-309C-319A

| PREPARED BY. | exe-jwp | DATE | 5-1-53 |
|--------------|---------|------|--------|
| CHECKED BY   | ANP     | DATE | 5-1-53 |

TITLE PERIODIC PROGRESS REPORT

|                                                                 |                   |                                                             |                                       |                                                                                          |                                                                                                            | WICHIA                                                              |                                                    | •                                                               |                                                                | OD L 309A.                                                           |
|-----------------------------------------------------------------|-------------------|-------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|
| CHECKED BY                                                      | ,<br>             | ANP                                                         | DAT                                   |                                                                                          |                                                                                                            |                                                                     |                                                    |                                                                 | •                                                              | ODEL JOYN                                                            |
|                                                                 | Subject Discussed | Application of small gas<br>turbline as an air pump for BCC | Discussion of pneumatic system of Mic | Evaluation of efficiency and practicability of various pumping systems applicable to ELC | Nvaluation of efficiency and veight of several mass propellant gas generators as a source of power for ECC | Discussion of hydrogen peroxide turkine and compressed air systems. | Selection of suitable hydraulic<br>pump and motor. | Specification for the far and invitation to bid to manufacture. | Specification for the fan and invitation to bid to manufacture | Insenssion of 2-cycle internal combustion engines as a Mil           |
| List of Pacilities Visited in Search of Suiteble Pumping System | Persons Contacted | Mr. Lisbarth, Equip. Lab.                                   | Mr. Conrad, Power Plant Lab.          | Mr. J. Flatt and Mr. R.<br>Kosin, Aircraft Leb.                                          | D.G. Mloomberg, H.L. Muttall<br>D.C. Frince, Jr., Accessories<br>Turbine Division                          | I.G. Hassefll, M.E. Zack,<br>W.A. Orsini                            | Wm. Main, K. Postel                                | R. Krouse, R. Dalton,<br>F. Laskowitz                           | C.P. Jenkins, L.J. Herrig                                      | fer Acro- Mr. Kickhaefer, C.B. Strang<br>Motors, Inc. and Edgar Rose |
| list of Pacilitic                                               | Pacility Visited  | WADC                                                        | NADC.                                 | WAIC                                                                                     | General Electric                                                                                           | Walter Kidde Co.                                                    | Vickers Inc.                                       | Fredric Flader                                                  | .Jo, MB. Co.                                                   | Kickhaefer Asro-<br>marine Motors, Inc                               |
| •                                                               | Place             | Dayton, Ohio                                                | Dayton, Onto                          | Dayton, Ohio                                                                             | West Lynn, Mass. General<br>Company                                                                        | Belleville, N.J. Walter                                             | Detroit, Mich.                                     | Buffalo, N.Y.                                                   | New Philadelphia, Joy Mg.<br>Ohio                              | Oshkosh, Wis.                                                        |
|                                                                 | 25                | 2-11-53                                                     | 2-11-53                               | 2-12-53                                                                                  | 3-6-53                                                                                                     | 3-9-53                                                              | 4-6-53                                             | 4-7-53                                                          | 1, -8-53                                                       | 3-13-53                                                              |