DEEPACTION

CNN基本结构

CNN基本单元

- 卷积层
- 池化层
- 激活层
- BN层
- 全联接层

卷积

- 卷积的基本参数
 - 卷积核 滑动步长 padding
 - 输入通道 输出通道
- 卷积计算过程
 - 直接计算
 - · 将卷积转化为矩阵乘法 (im2col)

im2col

• 卷积的好处

• 权重共享

预先确定的基本概念:

Filter Kernel

Im2col Example

▶ 假设:

Tensor 1*4*4*2 Kernel 2*2 stride 2

➤ 存储Tensor时,先存储最后 一维,然后存储倒数第二维, 依此类推

 $Matrix(H_{out}W_{out}*K_HK_WC)$

Tensor $(N * H * W * C)$		1	17	2	18	5	21	6	22
$H_{out} \cdot W_{out}$ $K_H \cdot K_W \cdot C_{in}$		3	19	4	20	7	23	8	24
	Im2col	9	25	10	26	13	29	14	30
		11	27	12	28	15	31	16	32

新型卷积

- Group conv
- Depthwise conv

- Deconv
- Dilated conv

• Deformable conv

Group Convolution

- 1. 输入通道 c_1 可以分成 g 组, 每组有 c_1/g 个输入特征图
- 2. 对于每组有 c_2/g 个filter, 可以得到 c_2/g 个输出特征图
- 3. 最后将每组的输出特征图串联起来,得到 c2 个输出特征图

>Original Convolution

$$P_{conv} = c_1 \cdot c_2 \cdot h_l \cdot w_l$$

$$\#_{conv} = H \cdot W \cdot c_2 \cdot h_l \cdot w_l \cdot c_1$$

➤ Group Convolution

$$P_{conv} = (c_1/g) \cdot (c_2/g) \cdot K_H \cdot K_W \cdot g$$

$$\#_{conv} = H \cdot W \cdot (c_2/g) \cdot h_l \cdot w_l \cdot (c_1/g) \cdot g$$

Depthwise Conv

- Group conv的极限版
- MobileNet的基本结构

• 专职做空间维度的信息交流,与 Pointwise Conv配套使用

M 是输入通道数

Pointwise

conv

(c) 1×1 Convolutional Filters called Pointwise Convolution in the context of Depthwise Separable Convolution

Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications [J]. arXiv preprint arXiv:1704.04861, 2017.

Deconv

• 目的: 上采样

Stride=2

Stride=1

https://github.com/vdumoulin/conv_arithmeti

Dilated Conv

• 目的: 增大感受野

• 用途: 图像分割

Deformable Conv

普通卷积的位置偏移

$$\mathcal{R} = \{(-1, -1), (-1, 0), \dots, (0, 1), (1, 1)\}$$

$$\mathbf{y}(\mathbf{p}_0) = \sum_{\mathbf{p}_n \in \mathcal{R}} \mathbf{w}(\mathbf{p}_n) \cdot \mathbf{x}(\mathbf{p}_0 + \mathbf{p}_n).$$

可变卷积的位置偏移

$$\mathbf{y}(\mathbf{p}_0) = \sum_{\mathbf{p}_n \in \mathcal{R}} \mathbf{w}(\mathbf{p}_n) \cdot \mathbf{x}(\mathbf{p}_0 + \mathbf{p}_n + \Delta \mathbf{p}_n).$$

Batch Normalization

•作用: 归一化

$$\hat{x}^{(k)} = \frac{x^{(k)} - E[x^{(k)}]}{\sqrt{Var[x^{(k)}]}}$$
$$y^{(k)} = \gamma^{(k)} \hat{x}^{(k)} + \beta^{(k)}$$

激活函数

• Sigmoid

$$f(z) = \frac{1}{1 + e^{-z}}$$

• Tanh

$$f(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

- Relu
 - Leaky Relu
 - ELU

$$f(z) = \begin{cases} 0, & z < 0 \\ z, & z \ge 0 \end{cases}$$

$$f(z) = \begin{cases} az, & z < 0 \\ z, & z \ge 0 \end{cases}$$

$$f(z) = \begin{cases} a(e^z - 1), & z < 0 \\ z, & z \ge 0 \end{cases}$$

CNN基本单元

- 卷积层
- 池化层
- 激活层
- BN层
- 全联接层

CNN基本模块

