ENPM 808Y: Neural Networks, Spring 2020

Assignment 3: Self Organizing Maps

The aim of this assignment is to give you a better understanding of Self Organizing Maps. There are 3 problems in the assignment that will focus on different aspects of SOM. For this assignment **do not use inbuilt functions or frameworks.** The algorithm has to be developed **from scratch** by you.

Problem 1:

Solve a 10-city TSP problem with their (x, y) positions shown below:

Apply 1D SOM and show the resulting tours – initial, fair, good, and best tours.

Problem 2:

The data for Problem 2 is provided in wine data.zip.

- 1. Divide the 13D wine data (with 3 class outputs) into training and test data.
- 2. Project the training data onto a 2D discrete space of size n x n using a Kohonen's SOM.
- 3. Label each cluster (Kohonen Neuron) with the wine class.
- 4. Comment on how well each class is separated.

Note: Choose a proper value for your n.

Problem 3:

Design a SOM that maps the inside of the following structure onto 1D Kohonen neurons. Show the effect of $\eta(t)$ and $\sigma(t)$ on the resulting input pdf approximation performance. What is the reason behind allowing the initial neighborhood to be large, then gradually contracting it over time?

Report

The report should include details on:

- What you learned through this assignment.
- Implementation of your Self Organizing Map.
- Your results for each question and their analysis.

Submission Guidelines

The submission should include the following:

- Code
- Report (in PDF format).
- Readme.txt with instructions to run your code.

The file should be named DirectoryID_HW3.zip and submitted to ELMS/Canvas.