

Coordination in Distributed Multi-User High-Performance Dense Networks (5G Synchronization: October Update)

Outline

- > Recap
 - □ Proposed phase noise estimation and cancellation methods: compleixty analysis
- > Initial Implementation results of the algorithm
 - Key function blocks
 - Synthesis results and comparision
- System-hardware co-design
 - Phase noise in distributed massiv MIMO
- > Discussion on post-silicon verification and future plan

Recap

Background: System Model with Phase Noise (PN)

5G NR with Phase Noise

Takeaway

PN Cancellation OH: $\frac{3N_{\rm p}-1}{2N}$: 0.1 - 0.17 % (approx.) (Np = 3 ~ 5, FFT size: 4096)

Resource Allocation

Main steps in the algorithm

- > 1st step: Estimation of Phase-Noise (PN)-Affected Channel
 - Estimation by using PN-dedicated pilot
- > 2nd step: Separation of CH and PN components
 - Deconvolution
- ➤ 3rd step: Estimation of Intercarrier Interference(ICI)-Free Channel
 - Estimation by using ICI-dedicated pilot

Complexity Comparison

Method	Parameter	Parameter Multiplication	
Lease Squares (LS) / No constraint on PN [I]	PN+CH	PN+CH iter × $(64N^3 + 32N^2 + 4LN)$	
LS / Non-iteration method/ Relaxed constraint on PN (Taylor Approx.) [2]	PN	$((N_p-1)/2+2)^3$	
	СН	$2N(N_p-1) + 8(2N+NL+L)$	
LS / State-of-the-art method / MM technique / No relaxed constraint [3]	PN+CH	$\mathrm{iter} \times N^2$	
Proposed	PN-Affected	NN_p	
	ICI-Free	M	

iter:# of iteration

₩ N: FFT size

★ L:# of channel taps for time-domain CH est.

***** N_p: # of dominant PN component in frequency domain

★ M: # of coherence block in the frequency domain within N

Initial Implementation

Overall Architecture

1st Step: Estimation of PN-Affected Channel

1st Step: Estimation of PN-Affected Channel

Example

 $*N_P$ (# of dominant PN) = 3, N_{cb} (# of successive subcarriers within coherence BW) = 4

$$\begin{bmatrix} Y_0 \\ Y_1 \\ Y_2 \end{bmatrix} = \underbrace{\begin{bmatrix} X_{r_{1,0}} & X_{r_{0,0}} & 0 \\ X_{r_{2,0}} & X_{r_{1,0}} & X_{r_{0,0}} \\ X_{r_{3,0}} & X_{r_{2,0}} & X_{r_{1,0}} \end{bmatrix}}_{\mathbf{X}_{f,p}} \underbrace{\begin{bmatrix} F_{0,-1} \\ F_{0,0} \\ F_{0,1} \end{bmatrix}}_{\mathbf{f}_p}$$

PN-dedicated pilot matrix (including 4-pilot)

PN-affected channel vector.

ullet Pilot design: $\mathrm{rank}(\mathbf{X}_{\mathrm{f,p}}) = 3$ $\hat{\mathbf{f}}_{\mathrm{p}} = \mathbf{X}_{\mathrm{f,p}}^{-1} \mathbf{y}_{\mathrm{f}}^{\mathrm{p}}$

Estimation complexity:

If
$$\mathbf{X}_{\mathrm{f,p}} = \mathbf{I}_{N_{\mathrm{p}}}$$

don't need any computation

2nd Step: Separation of CH and PN components

Input sequences (2nd Step)

 $y_{\rm f}\,$: Rx signal in the frequency domain

$$\mathbf{y}_{\mathrm{f}} = [Y_0, Y_1, \cdots, Y_{N-1}]^{\mathrm{T}} \in \mathbb{C}^{N \times 1}$$

 $\hat{\mathbf{f}}_{\mathrm{p}}:$ PN-affected channel estimates

$$\hat{\mathbf{f}}_{\mathrm{p}} = [F_0, F_1, F_2]^{\mathrm{T}} \in \mathbb{C}^{N_{\mathrm{p}} \times 1}$$
 (Np = 3)

$$\mathbf{H}_{\mathrm{If}} = egin{bmatrix} \mathbf{I}_{N_{\mathrm{cb}}} & \mathbf{0} & \cdots & \mathbf{0} \ \mathbf{0} & \mathbf{H}_{\mathrm{If}}^{1} & \ddots & dots \ dots & \ddots & \ddots & \mathbf{0} \ \mathbf{0} & \cdots & \mathbf{0} & \mathbf{H}_{\mathrm{If}}^{M-1} \end{bmatrix} \ \mathbf{H}_{\mathrm{If}}^{m} = H_{\mathrm{If}}^{m} \mathbf{I}_{N_{\mathrm{cb}}} \ \mathbf{Diagonal\ matrix} \ (\mathbf{ICI-free\ channel\ matrix})$$

Time-domain compensation

- Very long feedback path
 - Long processing latency
 - + phase noise estimation per OFDM symbol
 - Large memory consumption
 - Low throughput

Polynomial division/deconvolution

Deconvolution

channel estimates

* If u and v are vectors of polynomial coefficients, <u>deconvolution</u> of u and v is equivalent to the <u>division</u> of two polynomials (vectors)

Original long division method:

Rx signal in the frequency domain

Block diagram (3-tap ICI)

Limited throughput due to the data dependency (better than feeding back to time domain)

Equivalent model of deconvolution

<u>Linear combination of c_k and Y_k </u>

$$Y_{\mathrm{If},k} = \sum_{\ell=0}^{k} c_{k-\ell} Y_{\ell}$$

 $Y_{\mathrm{If},k}$: Output of deconvolution

: Quotient of polynomial division of $~\mathbf{y}_f~$ and $~\hat{\mathbf{f}}_p$

 Y_k : Rx signal in the frequency domain

Parallel polynomial division

***** Generation of coefficient vector **c**

```
: (Input) PN-affected channel estimates \hat{\mathbf{f}}_{\mathrm{p}} = [F_0, F_1, F_2]^{\mathrm{T}} \in \mathbb{C}^{N_{\mathrm{p}} \times 1}
: (Output) Coefficient vector \mathbf{c} = [c_0, c_1, \dots, c_{N-1}]^{\mathrm{T}} \in \mathbb{C}^{N \times 1}
```

***** Multiplication of Rx signal (Freq.) Y_k and coefficient C_k

```
: (Input I) Rx signal vector \mathbf{y}_{\mathrm{f}} = [Y_0, Y_1, \cdots, Y_{N-1}]^{\mathrm{T}} \in \mathbb{C}^{N \times 1}: (Input 2) Coefficient vector \mathbf{c}
```

: (Output)
$$\mathbf{y}_{\mathrm{If}} = [Y_{\mathrm{If},0}, Y_{\mathrm{If},1}, \dots, Y_{\mathrm{If},N-1}]^{\mathrm{T}} \in \mathbb{C}^{N \times 1}$$

Block diagram (2-way parallell)

$$Y_{IF,i} = c_0(Y_i - Y_{IF,i-2}F_2 - Y_{IF,i-1}F_1)$$

$$Y_{IF,i+1} = \frac{c_1(Y_i - Y_{IF,i-2}F_2 - Y_{IF,i-1}F_1)}{-c_0(Y_{i+1} - Y_{IF,i-1}F_2)}$$

Throughput-complexity trade-off

> Synthesis results using 28nm technology

Parallelism	Clock frequency	Throughput	Gate count	Area efficiency
1	500MHz	250MS/s	18.8k	13.3MS/s/kG
2	500MHz	500MS/s	44.7k	11.2MS/s/kG
4	500MHz	1GS/s	104.2k	9.6MS/s/kG
8	500MHz	2GS/s	211k	9.4MS/s/kG

Timing diagram

Ist step
Phase-noise-affected

channel estimation

3rd step

ICI-free

channel estimation $\hat{\mathbf{h}}_{If}$

System-level consideration

Correlated/un-correlated phase noise in distributed massive MIMO systems

> Three levels of cooperation:

- Group: share both receive symbols and CSI, but phase noise can be correlated
- the total # nodes is128, K=2, chang the # nodes within each group
- Phase noise uniformly distributed between [-phi/2,phi/2]

uplink phase

----- downlink phase

Correlated/un-correlated phase noise in distributed massive MIMO systems

With matched filtering processing, 12dB SNR

Uncorrelated phase noise can be averaged out by distributed array processing

Correlated/un-correlated phase noise in distributed massive MIMO systems

- With zero-forcing processing, 12dB SNR
 - Trade-off between phase noise mitigation and inter-UE inteference cancellation

Discussion on tape-out

