Welcome to Chem Lab at the UT Regional. Best of luck!

7. (0.50 pts)

Ascorbic acid

Per Texas Science Olympiad rules, you must have printed notes for this event. If you are communicating with your partner through a voice or video call, please start it before you begin the test itself.

Significant time spent outside of the browser window is grounds for a penalty or disqualification per TSO policies.

For questions 1-7, match the acids to an industrial / commercial / environmental detail according to the table below. In the provided blank, put only the single letter representing your answer choice (ex. "A"). (3.5 points total)

Acids Industrial / Commercial / Environmental Detail 1.1. HCI A. Disrupts shell formation in the ocean. Its concentration is 1.2. HNO₃ tied to dissolved CO2. B. Dilute form produced from fermentation then oxidation of 1.3. H₂SO₄ 1.4. H₃PO₄ ethanol can be used for cooking and cleaning. C. Can be bought over-the-counter as Vitamin C. 1.5. H₂CO₃ 1.6. Acetic acid D. Primarily used in fertilizers (90% of production). 1.7. Ascorbic acid E. Used in manufacturing of PVC (Poly Vinyl Chloride). F. Often neutralized with ammonia to yield ammonium nitrate. G. Often used as a catalyst in the production of nylon. Also used in the oil and gas industry to raise octane rating. 1. (0.50 pts) HCI Ε 2. (0.50 pts) HNO_3 3. (0.50 pts) H₂SO₄ G 4. (0.50 pts) H₃PO₄ D 5. (0.50 pts) H₂CO₃ Α 6. (0.50 pts) Acetic acid В

Bases 2.1. NaOH 2.2. KOH 2.3. Ca(OH) ₂ 2.4. Mg(OH) ₂ 2.5. NH ₃ Dindustrial / Commercial / Environmental Detail A. The product produced by the Haber process. B. A strong base with a molar mass around 40 g/mol. C. The saturated version of this compound is called limewater. D. A common component of antacids. Splitting this compound through electrolysis is part of making Air Krete, a recent insulation innovation. E. Also known as lye.
8. (0.50 pts) NaOH
9. (0.50 pts) KOH
10. (0.50 pts) Ca(OH) ₂
C C
11. (0.50 pts) Mg(OH) ₂
12. (0.50 pts) NH ₃
A
These images may be useful for the next set of questions.

For questions 8-12, match the bases to an industrial / commercial / environmental detail according to the table below. In the provided blank, put only the single letter representing your

Litmus paper: See below.

Red: acidic Blue: alkaline

Universal indicator / phenolphthalein / bromocresol green: See below.

Calmagite: Specialty indicator which forms a ligand complex. See below.

For questions 13-17, match each scenario to an indicator according to the table below. In the provided blank, put only the single letter representing your answer choice (ex. "A"). (2.5 points total)

Scenario

- 3.1. Standardizing NaOH (titrant) using a known mass of KHP dissolved in a volumetric flask (titrate).
- 3.2. Using the Kjeldahl method to find the ammonium salt content. A brief summary of this method: NH₃ + H₃BO₃ → NH₄ + H₂BO₃ H₂BO₃ + HCl → H₃BO₃ + Cl

dihydrogen borate, (pKb = 4.76) 3.3. Titrating MgO with standard EDTA.

- 3.4. Quickly identifying a beaker of HCl and a beaker of NaOH which are missing labels.
- 3.5. Measuring the pH as an indicator of water quality in the field.

Indicator

- A. Litmus paper
- Universal indicator
- C. Phenolphthalein
- Bromocresol green D.
- E. Calmagite indicator

13. (0.50 pts) Standardizing NaOH (titrant) using a known mass of KHP dissolved in a volumetric flask (titrate).

С

Using the Kjeldahl method to find the ammonium salt content. A brief summary of this method: 14. (0.50 pts)

> $NH_3 + H_3BO_3 \rightarrow NH_4^{+} + H_2BO_3^{-} + HCI \rightarrow H_3BO_3 + CI^{-}$ dihydrogen borate, (pKb = 4.76)

D

15. (0.50 pts) Titrating MgO with standard EDTA.
E
16. (0.50 pts) Quickly identifying a beaker of HCl and a beaker of NaOH which are missing labels.
A
17. (0.50 pts) Measuring the pH as an indicator of water quality in the field.
В
This section will cover acid-base reactions. Reactions include metals, carbonates, bicarbonates, sulfites, bisulfites, oxides, and neutralizations.
18. (2.00 pts) Is CaCl ₂ an acidic, neutral, or basic salt? Justify your answer with a chemical equation showing the formation of the salt.
Expected Answer: neutral, Ca(OH)2 + 2HCl ==> CaCl2 + H2O
19. (2.00 pts) Is KCN an acidic, neutral, or basic salt? Justify your answer with a chemical equation showing the formation of the salt.
19. (2.00 pts) Is KCN an acidic, neutral, or basic salt? Justify your answer with a chemical equation showing the formation of the salt. Expected Answer: basic, KOH + HCN ==> KCN + H2O
Expected Answer: basic, KOH + HCN ==> KCN + H2O
Expected Answer: basic, KOH + HCN ==> KCN + H2O 20. (2.00 pts) Is NH ₄ Cl an acidic, neutral, or basic salt? Justify your answer with a chemical equation showing the formation of the salt.
Expected Answer: basic, KOH + HCN ==> KCN + H2O 20. (2.00 pts) Is NH ₄ Cl an acidic, neutral, or basic salt? Justify your answer with a chemical equation showing the formation of the salt.
Expected Answer: basic, KOH + HCN ==> KCN + H2O 20. (2.00 pts) Is NH ₄ Cl an acidic, neutral, or basic salt? Justify your answer with a chemical equation showing the formation of the salt. Expected Answer: acidic, NH3 + HCl ==> NH4Cl
Expected Answer: basic, KOH + HCN ==> KCN + H2O 20. (2.00 pts) Is NH ₄ Cl an acidic, neutral, or basic salt? Justify your answer with a chemical equation showing the formation of the salt. Expected Answer: acidic, NH3 + HCl ==> NH4Cl 21. (1.00 pts) Give a net ionic equation for a neutralization reaction.

Expected Answer: "H3PO4 + OH- ==> H2PO - + H2O H2PO4 - + OH- ==> HPO4 2- + H2O HPO4 2- + OH- ==> PO4 3- + H2O"

This section consists of a multi-part titration problem to answer a series of questions. This section might be more time-intensive.

Use the following information to answer questions 23-29:

A new solid, monoprotic weak acid, HY, is synthesized. A titration of 0.4206 g of HY dissolved in 50.00 mL of water requires 30.00 mL of 0.10 M KOH solution to reach the equivalence point.

23. (1.00 pts) Write the dissociation equation for HY in water and its equilibrium expression (Ka).

Expected Answer: "HY + H2O+ <==> H3O+ + Y- Ka=[H3O+][Y-]/[HY]"

24. (1.00 pts) Write the net ionic equation for the titration reaction.

Expected Answer: HY + OH- ==> H2O + Y-

25. (3.00 pts) Calculate the molar mass of HY in g/mol. Report your answer to the ones place and do not write units in the blank.

140

26. (3.00 pts) After 6.00 mL of the base is added, the pH of solution is 5.00. What is the value for the Ka of HY?

Expected Answer: 2.50E-06

00 pts) At the	e equivalence point of th	e reaction, will the soluti	ion be acidic, basic, or ne	tral? Use an equation to support	your conclusion.
cted Answer: ba	asic, Y- + H2O ==> HY +	- OH-			
	, 				
00 mts) Calar	ulata tha al Laftha agusti	on at the arrivalance no	oint. Report your answer t	O desimal places	
00 pts) Calcu	ulate the ph of the soluti	on at the equivalence po	omi. Report your answer	2 decimai piaces.	
	\neg				
ction consists o	of calculations based on	supplied data and analy	sis of an observed trend.	his section might be more time-i	ntensive.
	Ell in the felle 11	ata in the table and a	L "A NOWED OA" "	maniaal vales-	
			I "ANSWER 3#" with a r	mericai value.	
e 6. Temperatur Celsius)	re Dependence of the p Kw (mol2 dm-6)	pH	рОН		
	0.114e-14	7.47	7.47		
	0.293e-14				
	0.2000 14				
	0.2000 14	ANSWER #30	ANSWER #31		
	ANSWER #32	7.08	7.08		
		7.08	7.08		
	ANSWER #32	7.08 ANSWER #33	7.08 ANSWER #34		
	ANSWER #32 1.008e-14 1.471e-14	7.08	7.08		
	1.008e-14 1.471e-14 ANSWER #35	7.08 ANSWER #33 6.92 6.63	7.08 ANSWER #34 6.92 6.63		
	ANSWER #32 1.008e-14 1.471e-14	7.08 ANSWER #33 6.92	7.08 ANSWER #34 6.92		
	1.008e-14 1.471e-14 ANSWER #35	7.08 ANSWER #33 6.92 6.63	7.08 ANSWER #34 6.92 6.63		
50 pts) Repo	1.008e-14 1.471e-14 ANSWER #35	7.08 ANSWER #33 6.92 6.63 6.14	7.08 ANSWER #34 6.92 6.63		
0 pts) Repo	ANSWER #32 1.008e-14 1.471e-14 ANSWER #35 51.3e-14	7.08 ANSWER #33 6.92 6.63 6.14	7.08 ANSWER #34 6.92 6.63		
5 0 pts) Repo	ANSWER #32 1.008e-14 1.471e-14 ANSWER #35 51.3e-14	7.08 ANSWER #33 6.92 6.63 6.14	7.08 ANSWER #34 6.92 6.63		
0 pts) Repo	ANSWER #32 1.008e-14 1.471e-14 ANSWER #35 51.3e-14	7.08 ANSWER #33 6.92 6.63 6.14	7.08 ANSWER #34 6.92 6.63		
. 50 pts) Repo	ANSWER #32 1.008e-14 1.471e-14 ANSWER #35 51.3e-14	7.08 ANSWER #33 6.92 6.63 6.14 Dlaces.	7.08 ANSWER #34 6.92 6.63		
).50 pts) Repo	1.008e-14 1.471e-14 ANSWER #35 51.3e-14 ort answer to 2 decimal p	7.08 ANSWER #33 6.92 6.63 6.14 Dlaces.	7.08 ANSWER #34 6.92 6.63		
0.50 pts) Repo	1.008e-14 1.471e-14 ANSWER #35 51.3e-14 ort answer to 2 decimal p	7.08 ANSWER #33 6.92 6.63 6.14 Dlaces.	7.08 ANSWER #34 6.92 6.63		
0.50 pts) Repo	1.008e-14 1.471e-14 ANSWER #35 51.3e-14 ort answer to 2 decimal p	7.08 ANSWER #33 6.92 6.63 6.14 Dlaces.	7.08 ANSWER #34 6.92 6.63		
0	ANSWER #32 1.008e-14 1.471e-14 ANSWER #35 51.3e-14 ort answer to 2 decimal properties of the same and th	7.08 ANSWER #33 6.92 6.63 6.14 blaces.	7.08 ANSWER #34 6.92 6.63 6.14		
7 0.50 pts) Repo	ANSWER #32 1.008e-14 1.471e-14 ANSWER #35 51.3e-14 ort answer to 2 decimal properties of the same and th	7.08 ANSWER #33 6.92 6.63 6.14 Dlaces.	7.08 ANSWER #34 6.92 6.63 6.14		
0.50 pts) Repo 7 0.50 pts) Repo 7	ANSWER #32 1.008e-14 1.471e-14 ANSWER #35 51.3e-14 ort answer to 2 decimal properties of the color of th	7.08 ANSWER #33 6.92 6.63 6.14 blaces.	7.08 ANSWER #34 6.92 6.63 6.14		
0	ANSWER #32 1.008e-14 1.471e-14 ANSWER #35 51.3e-14 ort answer to 2 decimal properties of the color of th	7.08 ANSWER #33 6.92 6.63 6.14 blaces.	7.08 ANSWER #34 6.92 6.63 6.14		
0 0.50 pts) Repo 7 0.50 pts) Repo 7	ANSWER #32 1.008e-14 1.471e-14 ANSWER #35 51.3e-14 ort answer to 2 decimal properties of the color of th	7.08 ANSWER #33 6.92 6.63 6.14 blaces.	7.08 ANSWER #34 6.92 6.63 6.14		
.50 pts) Repo .50 pts) Repo .00 pts) Provi	ANSWER #32 1.008e-14 1.471e-14 ANSWER #35 51.3e-14 ort answer to 2 decimal properties of the color of th	7.08 ANSWER #33 6.92 6.63 6.14 blaces.	7.08 ANSWER #34 6.92 6.63 6.14		

33. (0.50 pts) Report answer to 2 decimal places.

7.00
34. (0.50 pts) Report answer to 2 decimal places.
7.00
35. (1.00 pts) Provide the answer for the corresponding blank in the table.
Expected Answer: 5.48E-14
36. (1.00 pts) Given pH + pOH = 14 at STP, which value on the chart corresponds to standard temperature (C)?
25
37. (1.00 pts) Is the formation of hydrogen ions and hydroxide ions from liquid water (H2O(I)⇌H+(aq)+OH−(aq)) endothermic or exothermic?
A) endothermic
O B) exothermic
38. (1.00 pts) TRUE or FALSE. Water is becoming more acidic at higher temperatures.
○ True ● False
This section consists of multiple choice questions that cover concepts and less involved calculations.
39. (0.50 pts) The pH of 0.0001 M HNO3 solution is
● A) 4
○ B) 3 ○ C) 2
O D) 1
40. (0.50 pts) Which property is not typically associated with basic solutions?
○ A) Feel slippery
B) React with metals to produce hydrogen gas O N House and above 7.0
 C) Have a pH above 7.0 D) React with solutions containing HCO₃⁻
41. (0.50 pts) The pH of a 1.0 M solution of HI
● A) 0.0
О в) 1.0
O C) 2.0
O D) 12

42. (0.50 pts) The pH of a 0.01 M solution of KOH
\circ \circ \circ
O A) 0.0
O B) 1.0
O C) 2.0
● D) 12
43. (0.50 pts) TRUE or FALSE. It is acceptable to use a weak acid or base as a titrant.
○ True ● False
This section (44-53) requires you to sort definitions using three acid-base models. Some questions will have more than one correct answer. All must be correct for credit. Mark these definitions as:
A. Arrhenius
B. Bronsted-Lowry
C. Lewis
Put only the letter for your answer choice in the blank (ex. "A"). If there are multiple answers, put your answers in alphabetical order separated by a comma (ex. "A,B").
44. (0.50 pts) Acids are an electron pair acceptor.
С
45. (0.50 pts) Acids release H+ ions in aqueous solutions.
45. (0.50 pts) Acids release Fit ions in aqueous solutions.
A
46. (0.50 pts) Acids are described as proton donors
В
47. (0.50 pts) Water seen as neither an acid nor base.
A
48. (0.50 pts) Water is seen as amphoteric.
Tractic is seen as uniproteins.
B.C.
B,C
49. (0.50 pts) KOH is a base.
A,B,C
50. (0.50 pts) Neutralization is the reaction of an acid and a base to form a conjugate acid and a conjugate base.
В

51. (0.50 pts) Neutralization is the reaction of an acid and a base to produce salt and water.
A
52. (0.50 pts) Neutralization is the reaction of an acid and a base to produce a new substance with a new covalent bond.
С
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
С
Uh ohbuffers! This section will help you get some practice with a State/Nationals topic. (4 pts total).
54. (2.00 pts) Calculate the pH of a solution that's 0.65M in NaF and 0.75M in HF. (HF, Ka=7.2e-4). Report answer to 2 decimal places.
3.08
55. (2.00 pts) Calculate the pH of a solution that's 0.65M in NaNO ₂ and 0.40M in HNO ₂ . (HNO ₂ , Ka=4e-4). Report answer to 2 decimal places.
3.61
Aqueous Solutions Question types vary and are listed in order of increasing difficulty. These sections will test basic concepts and calculations.
A student adds 32.2 g of table salt (MM = 58.44 g/mol) to 2 L of water while cooking pasta.
56. (0.50 pts) What effect will the salt have on the vapor pressure of the water?
Expected Answer: It will lower it.
57. (1.00 pts) What is the molarity of the Na ⁺ ion in the solution? Report answer to 3 decimal places.
0.275

Expected Answer: pH = 7, the dissolved ions do not react with the water molecules and as a result do not affect the ph
59. (0.50 pts) How many moles of Nitric Acid must be added to the 2L of water in order to give a solution with a pH = 4.00? Assume that the Nitric Acid does not react with the dissolved NaCl ions.
Expected Answer: 2.00E-04
Urea, H ₂ NC(O)NH ₂ (MM = 60.0) is very soluble in water (up to 27 g in 25 mL of solution) but methoxyethane, CH ₃ CH ₂ OCH ₃ , (MM = 60.1) is only sparingly soluble.
60. (0.50 pts) Calculate the molarity of urea in a 25.0 mL solution that contains 27.0 g of Urea. Report answer as a whole number.
18
61. (0.50 pts) Account for the differences in solubility of urea and methoxyethane in terms of the forces between the solute and solvent molecules.
Expected Answer: Methoxyethane is a non-polar solute that does not interact well with polar molecules such as water. Urea, is a polar molecule that interacts well with water molecules through hydrogen bonding.
This section will test your knowledge of experimental procedures.
-
A student is asked to determine the molarity of H ₂ SO ₄ by titrating it with a NaOH solution of known molarity.
62. (2.00 pts) List the pieces of equipment needed to determine the H2SO4 molarity and describe briefly the purpose of each item.
Expected Answer: Pipet or buret to measure a specified quantity of H2SO4, beaker or conical flask to mix the NaOH and H2SO4, indicator or ph meter to show equivalence point.
63. (0.50 pts) List the measurements that must be made to determine the molarity.
Expected Answer: Volume of the H2SO4 solution, volume of the NaOH solution needed to reach the equivalence point.

58. (1.00 pts) What is the pH of the resulting solution, explain your answer.

64. (1.00 pts)	Describe briefly how the student can tell when the reaction is complete.	
(,,	
Expected Ans	wer: The reaction is complete when an indicator reaches the appropriate color or by rapid change in pH if a meter is being used	
65. (1.00 pts) Four successive	e titrations of the same volume of H ₂ SO ₄ require 23.55, 22.66, 23.46, and 23.48 ml. State the average volume that should be reported. Explain your reasoning.	
Expected Ansi	wer: 23.50 based on the first, third, and fourth values. The second value is omitted because it is too far from the other three.	
This section as	ware identifying and belonging regations	
	vers identifying and balancing reactions.	
Consider th	e following unbalanced equations that occur in aqueous solutions.	
	(A) $Na_3PO_4 + Ca(NO_3)^2 \rightarrow Ca_3(PO_4)^2 + NaNO_3$ (B) $H_2SO_4 + Ba(OH)_2 \rightarrow BaSO_4 + H_2O$	
	(C) $K_2Cr_2O_7 + SnCl_2 + HCI \rightarrow SnCl_4 + H_2O + KCI$	
66. (3.00 pts)	Identify each equation as an acid-base, oxidation-reduction, and/or precipitation reaction.	
Expected Ans	wer: (A) is a precipitation reaction, (B) is both a precipitation and acid-base reaction, (C) is an oxidation-reduction reaction	
67. (0.50 pts)	Balance each equation.	
Expected Ans	wer: 2 Na3PO4 + 3 Ca(NO3)2 → Ca3(PO4)2 + 6 NaNO3; H2SO4 + Ba(OH)2 → BaSO4 + 2 H2O; K2Cr2O7 + 3 SnCl2 + 14 HCl → 2 SnCl4 + 7 H2O + 2 KCl	
68. (3.00 pts)	For each	
66. (3.00 pts)	For each (i) acid-base reaction, give the formula of the base.	
	(ii) oxidation-reduction reaction, identify the oxidizer, and state the number of electrons gained by one unit of the oxidizer	
	(iii) precipitation reaction, give the formula of the insoluble substance	
Expected Ansi	wer: (i) Ba(OH)2; (ii) K2Cr2O7, 6 electrons gained; (iii) A. Ca3(PO4)2, B BaSO4	

We hope you enjoyed this exam! If you have any feedback about any of the exams at this tournament, please let us know through this form: https://tinyurl.com/utreg21feedback (https://tinyurl.com/utreg21feedback)	

© 2021 - powered by Scilympiad (https://scilympiad.com) | Tournaments (/Tours.html)

Terms of Use (/ToS.html) | Privacy (/Privacy.html) | Cookie Policy (/CookiePolicy.html) | Support (/tx/Support) | Contact (/tx/Home/Contact)