



# 面向多源异构空间大数据的城市用地识别与监测:一种多模态深度学习框架

答辩人: 王成龙

指导老师: 焦利民教授、宫兆亚助理教授



目 录 CONTENTS

- 01 研究意义与挑战
- 02 研究现状与问题
- 03 研究框架与路线
- 04 实验模型与数据
- 05 结果与未来展望

# 01 研究意义与挑战

# **Segment Anything?**





SAM-图片实例分割[1]



SAM-影像实例分割(湖泊/农田/建筑物/...)

#### 挑战:城市土地利用

- 土地覆盖(√,自然属性): 耕地/林地/草地/...
- 城市土地利用(x,自然-人文属性耦合): 工业/商业/住宅/...















#### 意义:城市规划/交通地理

• 动态监测:原始规划 ≠ 使用现状

规划建设:混合土地利用 ∝ 城市活力、低交通压力





死气沉沉 - 交通拥堵

# 02 研究现状与问题

#### • 研究现状

- 基于社会感知数据(街景/兴趣点)的方法
- 融合遥感影像数据的方法



基于街景影像的城市用地识别[2-3]

#### 当前问题

• 社会感知数据的不完备性 (空间依赖性)



• A: 珞狮路 (预测: 商业主导)

B: 八一路隧道 (预测:交通主导)

• C: 星湖二路 (预测:教育主导)

# 02 研究现状与问题

#### • 研究现状

- 基于社会感知数据(街景/兴趣点)的方法
- 融合遥感影像数据的方法



基于兴趣点的城市用地识别[4-5]

#### 当前问题

- 社会感知数据的不完备性(空间依赖性)
- 社会感知数据的非代表性(空间交互性)
- 区域的"自然-人文"二元耦合属性









• A: 绿地为主的区域兴趣点全为商业 (自然-人文耦合)

• B: 居住为主的区域缺少必要兴趣点 (空间交互)

# 02 研究现状与问题

#### • 研究现状

- 基于社会感知数据(街景/兴趣点)的方法
- 融合遥感影像数据的方法



融合遥感影像的城市用地识别[6]

#### 当前问题

- 社会感知数据的不完备性(空间依赖性)
- 社会感知数据的非代表性 (空间交互性)
- 区域的"自然-人文"二元耦合属性
- 区域的"空间-属性"二元耦合特征
- 研究范式的转移与视觉模型的训练难度(数据规模)



自监督预训练基础模型兴起[7]

## 03 研究框架与路线



#### • 当前问题

- 社会感知数据的不完备性(空间依赖性)
- 社会感知数据的非代表性(空间交互性)
- 区域的"自然-人文"二元耦合属性
- 区域的"空间-属性"二元耦合特征
- 研究范式的转移与视觉模型的训练难度(数据规模)



#### • 创新点

- 区域的多模态表征
  - 属性(自然[遥感影像] 人文[兴趣点])
  - 空间 (地理[经纬度] 网络[节点嵌入])
- 人文属性的鲁棒更新
  - 创新性提出用于土地利用推理的异质图卷积神经网络
- 自然属性的任务无关抽取
  - 创新性运用遥感预训练大模型抽取影像特征



研究框架与技术路线图

## 03 研究框架与路线



#### • 当前问题

- 社会感知数据的不完备性 (空间依赖性)
- 社会感知数据的非代表性(空间交互性)
- 区域的"自然-人文"二元耦合属性
- 区域的"空间-属性"二元耦合特征
- 研究范式的转移与视觉模型的训练难度(数据规模)



#### • 创新点

- 区域的多模态表征
  - 属性(自然[遥感影像] 人文[兴趣点])
  - 空间 (地理[经纬度] 网络[节点嵌入])
- 人文属性的鲁棒更新
  - 创新性提出用于土地利用推理的异质图卷积神经网络
- 自然属性的任务无关抽取
  - 创新性运用遥感预训练大模型抽取影像特征



研究框架与技术路线图

## 03 研究框架与路线



#### • 当前问题

- 社会感知数据的不完备性(空间依赖性)
- 社会感知数据的非代表性(空间交互性)
- 区域的"自然-人文"二元耦合属性
- 区域的"空间-属性"二元耦合特征
- 研究范式的转移与视觉模型的训练难度(数据规模)



#### • 创新点

- 区域的多模态表征
  - 属性(自然[遥感影像] 人文[兴趣点])
  - 空间 (地理[经纬度] 网络[节点嵌入])
- 人文属性的鲁棒更新
  - 创新性提出用于土地利用推理的异质图卷积神经网络
- 自然属性的任务无关抽取
  - 创新性运用遥感预训练大模型抽取影像特征



研究框架与技术路线图



#### • 区域表征

- · 地理位置编码
- ・ 节点嵌入表征
- 影像特征抽取
- POI 语义挖掘
- 多维向量编码
- 异质图卷积神经网络 (理论依据)
- 城市土地利用信息推理







模型框架图



#### · 区域表征

- 地理位置编码
- 节点嵌入表征
- · 影像特征抽取
- POI 语义挖掘
- 多维向量编码
- 异质图卷积神经网络(理论依据)
- 城市土地利用信息推理



 $H_{img} = Enc\_img(X_{img}) = Pooling(Overlay(SatMAE(X_{img})))$ 



模型框架图



#### • 区域表征

- 地理位置编码
- 节点嵌入表征
- 影像特征抽取
- ・ POI 语义挖掘
- · 多维向量编码
- 异质图卷积神经网络(理论依据)
- 城市土地利用信息推理



 $H_{poi} = Enc\_poi(X_{poi}) = Doc2Vec(Generate\_seq(X_{poi}))$ 



模型框架图



- 区域表征
- · 异质图卷积神经网络 (理论依据)
- · 城市土地利用信息推理





$$\begin{split} H^t &= HGCN(H^{t-1},A,I) = Concat(head_{adj}^t,head_{in}^t,head_{out}^t) \\ & head_{adj}^t = GCN(H^{t-1}W_{adj}^t,A) \\ & head_{in}^t = GCN(H^{t-1}W_{in}^t,I^T) \end{split}$$







模型框架图

#### · 研究区域与数据

• 区域: 伦敦/深圳

• 数据:流/兴趣点/遥感影像/土地利用

• 特点:不同空间单元划分/流类型/兴趣点分级





研究区域示意图

| 数据内容   | 深圳来源         | 伦敦来源                |
|--------|--------------|---------------------|
| 流数据    | 联通智慧足迹手机信令数据 | 共享单车租赁数据            |
| 兴趣点数据  | 高德地图数据       | 英国军械测量局数据           |
| 遥感影像数据 | Landsat8 OLI | Landsat8 OLI        |
| 土地利用数据 | 第三次全国国土调查数据  | Geomni UKMap 土地利用数据 |

研究数据来源



| 그. 나는 소리 때 계속 구역  |       | 深圳         |      | 伦敦           |
|-------------------|-------|------------|------|--------------|
| 土地利用类型            | 分类编码  | 土地利用类型     | 分类编码 | 土地利用类型       |
|                   | 05H1  | 商业和服务设施    | 18   | 办公区域         |
| 商业用地              |       |            | 20   | 零售分销和服务      |
| 工业用地              | 0508  | 仓储         | 21   | 仓储           |
|                   | 0601  | 制造业        | 16   | 制造业          |
| 上业用地              | 0602  | <b>页"业</b> | 17   | 位, 不下        |
| At the III like   | 0701  | 城市住宅       | 10   | De else      |
| 住宅用地              | 0702  | 农村居民点      | 19   | 住宅           |
|                   | 08H1  | 新闻出版       | 12   | 社区和卫生服务      |
| <b> 丁政和公共服务用地</b> | 08H2  | 教育医疗       | 13   | 军事           |
|                   | 08H2A | 高等教育       | 14   | 教育           |
| 市政公用设施用地          | 0809  | 市政公用设施     | 24   | 市政公用设施       |
| 绿地公园用地            | 0810  | 公园绿地       |      | 40 5 4 50    |
|                   | 0810A | 广场         | 1501 | 娱乐休闲         |
|                   | 1001  | 铁路         |      |              |
|                   | 1002  | 轨道交通       |      |              |
|                   | 1003  | 公路         |      |              |
| 4- ※ fo-b-2 田山    | 1004  | 乡道         | 22   | 1=: AA       |
| 街道和交通用地           | 1005  | 交通服务场      | 22   | 运输           |
|                   | 1007  | 机场         |      |              |
|                   | 1008  | 港口和码头      |      |              |
|                   | 1009  | 管道运输       |      |              |
|                   | 00    | 湿地         |      |              |
| disability of the | 01    | 耕地         | 11   | 农业和渔业        |
|                   | 02    | 种植园        |      |              |
| 非建设用地             | 03    | 森林         |      |              |
|                   | 04    | 草地         | 23   | 未使用的土地、水和建筑物 |
|                   | 11    | 水域         |      |              |

#### 土地利用类型映射表



#### • 异质图卷积有效性测试

- 异质图卷积泛化性测试
- 多模态表征效果测试



| 선단 단네 | ? 方法 空间依赖                 |      |      | 空间交互 |     | 依赖与交互 |    |      |
|-------|---------------------------|------|------|------|-----|-------|----|------|
| 组别    | : 万法                      | 自身属性 | 拓扑邻接 | 距离衰减 | 无向流 | 入流    | 出流 | 特征处理 |
|       | None                      | √    |      |      |     |       |    | ~    |
| A     | GCN <sub>adj</sub>        |      | √    |      |     |       |    | ~    |
|       | GCN <sub>dd</sub>         |      |      | √    |     |       |    | ~    |
|       | GCN <sub>avg</sub>        | √    |      |      | √   |       |    | +    |
| В     | GCN <sub>in</sub>         | √    |      |      |     | √     |    | +    |
|       | GCN <sub>out</sub>        | √    |      |      |     |       | √  | +    |
|       | Bi-GCN <sub>avg</sub>     | √    |      |      | √   |       |    | •    |
| C     | Bi-GCN <sub>in</sub>      | √    |      |      |     | √     |    | 0    |
|       | Bi-GCN <sub>out</sub>     | √    |      |      |     |       | √  | 0    |
| D     | Tri-GCN                   | √    |      |      |     | √     | √  | 0    |
|       | Adj-Bi-GCN <sub>avg</sub> |      | √    |      | √   |       |    | 0    |
| E     | Adj-Bi-GCN <sub>in</sub>  |      | √    |      |     | √     |    | 0    |
|       | Adj-Bi-GCN <sub>out</sub> |      | √    |      |     |       | √  | 0    |
|       | Adj-Tri-GCN(HGCN)         |      | √    |      |     | √     | √  | 0    |

| <del>左</del> 56442回 | シーチンスレンユ |  |
|---------------------|----------|--|
| 有效性测                | ᅜᅜᅜᅜ     |  |
|                     |          |  |

| Art rul |                               | 评价指标                      |                                   |                                    |    |
|---------|-------------------------------|---------------------------|-----------------------------------|------------------------------------|----|
| 组别      | 方法                            | KL 散度↓                    | 绝对误差↓                             | 余弦相似↑                              | 排名 |
|         | None                          | 0.5434 <sub>±0.0057</sub> | $0.0926_{\pm 0.0006}$             | $0.7985_{\pm 0.0024}$              | 10 |
| A       | $\mathrm{GCN}_{\mathrm{adj}}$ | $0.5259_{\pm 0.0042}$     | $0.0912 \scriptstyle{\pm 0.0005}$ | $0.7987_{\pm 0.0020}$              | 9  |
|         | $GCN_{dd}$                    | $0.7075_{\pm0.0065}$      | $0.1139 _{\pm 0.0006}$            | $0.7106 _{\pm 0.0028}$             | 14 |
|         | $\mathrm{GCN}_{\mathrm{avg}}$ | $0.6714_{\pm 0.0067}$     | $0.1074 _{\pm 0.0006}$            | $0.7331_{\pm 0.0028}$              | 11 |
| В       | $GCN_{in}$                    | $0.6820_{\pm 0.0073}$     | $0.1087_{\pm 0.0007}$             | $0.7278_{\pm 0.0029}$              | 13 |
|         | $GCN_{out}$                   | $0.6795_{\pm 0.0072}$     | $0.1086_{\pm0.0006}$              | $0.7287_{\pm 0.0029}$              | 12 |
|         | Bi-GCN <sub>avg</sub>         | $0.5203_{\pm 0.0061}$     | $0.0895_{\pm 0.0006}$             | $0.8082 _{\pm 0.0025}$             | 6  |
| C       | $Bi$ - $GCN_{in}$             | $0.5241_{\pm0.0063}$      | $0.0900_{\pm 0.0006}$             | $0.8065_{\pm 0.0027}$              | 8  |
|         | Bi-GCN <sub>out</sub>         | $0.5208_{\pm0.0060}$      | $0.0896_{\pm0.0006}$              | $0.8080 {\scriptstyle \pm 0.0024}$ | 7  |
| D       | Tri-GCN                       | $0.5144_{\pm 0.0057}$     | $0.0890 _{\pm 0.0005}$            | $0.8103_{\pm 0.0024}$              | 5  |
|         | Adj-Bi-GCN <sub>avg</sub>     | $0.5005_{\pm0.0053}$      | $0.0877_{\pm 0.0006}$             | $0.8112 \scriptstyle{\pm 0.0022}$  | 2  |
|         | Adj-Bi-GCN <sub>in</sub>      | $0.5025_{\pm 0.0052}$     | $0.0880_{\pm 0.0005}$             | $0.8103_{\pm 0.0022}$              | 4  |
| Е       | Adj-Bi-GCN <sub>out</sub>     | $0.5012_{\pm 0.0053}$     | $0.0878 \scriptstyle{\pm 0.0005}$ | $0.8108 \scriptstyle{\pm 0.0021}$  | 3  |
|         | Adj-Tri-GCN(HGCN)             | $0.4974_{\pm 0.0053}$     | $0.0876 _{\pm 0.0005}$            | $0.8119_{\pm 0.0023}$              | 1  |

深圳有效性测试结果 (伦敦见论文)

- 异质图卷积有效性测试
- 异质图卷积泛化性测试
- 多模态表征效果测试



|           | 评价指标  |        |                    |        |             |        |  |
|-----------|-------|--------|--------------------|--------|-------------|--------|--|
| 土地利用      | None  |        | GCN <sub>adj</sub> |        | Adj-Tri-GCN |        |  |
|           | 绝对误差  | 相对误差   | 绝对误差               | 相对误差   | 绝对误差        | 相对误差   |  |
| 行政和公共服务用地 | 0.060 | 136.1% | 0.062              | 137.2% | 0.060       | 133.2% |  |
| 市政公用设施用地  | 0.021 | 169.2% | 0.021              | 170.4% | 0.021       | 168.2% |  |
| 商业用地      | 0.088 | 125.5% | 0.087              | 122.6% | 0.084       | 122.3% |  |
| 住宅用地      | 0.145 | 81.0%  | 0.149              | 82.5%  | 0.138       | 80.7%  |  |
| 工业用地      | 0.141 | 117.3% | 0.130              | 109.7% | 0.122       | 108.3% |  |
| 绿地公园用地    | 0.062 | 163.8% | 0.058              | 153.0% | 0.058       | 160.7% |  |
| 街道与交通用地   | 0.107 | 59.6%  | 0.110              | 60.8%  | 0.106       | 55.9%  |  |
| 非建筑用地     | 0.109 | 128.9% | 0.105              | 126.5% | 0.100       | 119.3% |  |



绝对误差分析







#### 相对误差分析: (a)GCNadj-None; (b)HGCN-GCNadj

|    | 土地利用类型 |      |       |       |       |      |       |     |  |
|----|--------|------|-------|-------|-------|------|-------|-----|--|
| ID | 行政公共   | 市政公用 | 商业    | 住宅    | 工业    | 绿地公园 | 街道与   | 非建筑 |  |
|    | 服务用地   | 设施用地 | 用地    | 用地    | 用地    | 用地   | 交通用地  | 用地  |  |
| 1  | 0      | 0    | 0.694 | 0     | 0     | 0    | 0.306 | 0   |  |
| 2  | 0      | 0    | 0.559 | 0.054 | 0.022 | 0    | 0.364 | 0   |  |
| 3  | 0      | 0    | 0.718 | 0     | 0     | 0    | 0.282 | 0   |  |
| 4  | 0      | 0    | 0.579 | 0     | 0     | 0    | 0.421 | 0   |  |
| 5  | 0      | 0    | 0.770 | 0     | 0     | 0    | 0.230 | 0   |  |
| 6  | 0      | 0    | 0.695 | 0     | 0     | 0    | 0.305 | 0   |  |

#### 图(a)区域特征

|    |              |          |       | 上抽到   | 用类型   |            |             |       |
|----|--------------|----------|-------|-------|-------|------------|-------------|-------|
| ID | 行政公共<br>服务用地 | 市政公用设施用地 | 商业用地  | 住宅用地  | 工业用地  | 绿地公园<br>用地 | 街道与<br>交通用地 | 非建筑用地 |
| 1  | 0            | 0.255    | 0.005 | 0.446 | 0.201 | 0.024      | 0.049       | 0.020 |
| 2  | 0.082        | 0.029    | 0.132 | 0.702 | 0.020 | 0          | 0.035       | 0     |
| 3  | 0            | 0        | 0.643 | 0.221 | 0.033 | 0          | 0.102       | 0.001 |
| 4  | 0            | 0.120    | 0.018 | 0.099 | 0.383 | 0.072      | 0.145       | 0.163 |
| 5  | 0            | 0        | 0.019 | 0.590 | 0.310 | 0          | 0.045       | 0.036 |
| 6  | 0.158        | 0        | 0.041 | 0.130 | 0.482 | 0          | 0.132       | 0.057 |
| 7  | 0.046        | 0        | 0.330 | 0.147 | 0.264 | 0          | 0.213       | 0     |
| 8  | 0.036        | 0        | 0.050 | 0.295 | 0.565 | 0          | 0.040       | 0.014 |

图(b)区域特征

- 异质图卷积有效性测试
- · 异质图卷积泛化性测试
- 多模态表征效果测试

| 训练集大小 | KL 散   | 友度↓    |
|-------|--------|--------|
| 则绿朱人小 | 迁移微调模型 | 从头训练模型 |
| 10%   | 0.2714 | 0.2747 |
| 20%   | 0.2544 | 0.2576 |
| 30%   | 0.2416 | 0.2515 |
| 40%   | 0.2332 | 0.2463 |
| 50%   | 0.2298 | 0.2418 |
| 60%   | 0.2238 | 0.2392 |
| 70%   | 0.2135 | 0.2374 |
| 80%   | 0.2143 | 0.2364 |
| 90%   | 0.2114 | 0.2343 |

#### 不同地区的迁移效应





相同地区的规模效应



| <b>→</b> >+                  | 评价指标                      |                           |                       |      |  |  |
|------------------------------|---------------------------|---------------------------|-----------------------|------|--|--|
| 方法                           | KL 散度↓                    | 绝对误差↓                     | 余弦相似↑                 | - 排名 |  |  |
| $M_P$                        | 0.4974 <sub>±0.0053</sub> | 0.0876 <sub>±0.0005</sub> | $0.8119_{\pm 0.0023}$ | 4    |  |  |
| $M_{\mathrm{PI}}$            | $0.4631_{\pm 0.0067}$     | $0.0847_{\pm 0.0008}$     | $0.8187_{\pm 0.0031}$ | 3    |  |  |
| $M_{PIG}$                    | $0.4619_{\pm 0.0065}$     | $0.0845_{\pm 0.0007}$     | $0.8187_{\pm 0.0028}$ | 2    |  |  |
| $\mathbf{M}_{\mathbf{PIGF}}$ | $0.4607_{\pm 0.0058}$     | $0.0839 _{\pm 0.0006}$    | $0.8193_{\pm 0.0027}$ | 1    |  |  |

多模态表征消融实验



- · 通用人工智能的应用
- · 地理空间多模态大模型

[Instruction] There are six land use types: (1) residential, (2) commercial, (3) industrial, (4) education, health care, civic, governmental

→ and cultural, (5) transportation facilities, and (6) outdoors and natural.

Paragraph: In this urban region, there are 128 points of interest, including 2 Chinese restaurant, 1 food restaurant, 2 hotel, 2 apartment

- 🖴 hotel, 1 daily life service, 1 mobile communication shop, 24 company, 1 logistics company, 1 real estate agency, 1 lottery retailer,
- → 3 beauty shop, 1 manicure, 2 barber shop, 4 Internet cafe, 3 bath massage, 2 stadium, 4 training institutions, 1 pharmacy, 4

  → automative sale, 6 car service, 2 car repair, 1 Car rental, 1 Automobile parts, 3 shopping, 5 shop, 5 parking lot, 5 Parking lot
- entrance, 2 transportation facility, 1 port harbor, 1 road intersection, 1 atm machine, 2 office building, 2 residential area, 7
- → building, 1 real estate, 1 park, 1 factory, 7 administrative agency, 1 entrance and exit, 3 gate door, 6 convenience store, 4 home
  → building materials.
- Q: What is the primary land use category of this urban region?
- A: outdoors and natural

Paragraph: In this urban region, there are 17 points of interest, including 1 food restaurant, 3 public toilet, 3 funeral service, 2 road station for walking and cycling,

- ← 1 beach, 2 parking lot, 2 road intersection, 1 corporate company enterprise, 2 administrative agency.
- Q: What is the primary land use category of this urban region?
- A: outdoors and natural

#### 模型 提

- CLIP 我们首先视觉编码器编码遥感影像,文本编码器端编码构建的8种提示"这是一个以[土地利用类型]为主导的地区",然后计算视觉特征与文本特征相似性并取最大值作为目标类型。
- BLIP 视觉编码器编码遥感影像,我们使用提示"在这个地区中有17个POI,其中1个是餐厅,...,那么这个区域的土地利用类型是什么?是住宅区、...还是工业区?"让模型生成答案。



通用人工智能的应用[8]





地理空间多模态大模型[9]

# 报告中的参考文献



- [1] Kirillov A, Mintun E, Ravi N, et al. Segment anything[J]. arXiv preprint arXiv:2304.02643, 2023.
- [2] Li X, Zhang C, Li W. Building block level urban land-use information retrieval based on Google Street View images[J]. GIScience & Remote Sensing, 2017, 54(6): 819-835.
- [3] Zhu D, Zhang F, Wang S, et al. Understanding place characteristics in geographic contexts through graph convolutional neural networks[J]. Annals of the American Association of Geographers, 2020, 110(2): 408-420.
- [4] Huang W, Cui L, Chen M, et al. Estimating urban functional distributions with semantics preserved POI embedding[J]. International Journal of Geographical Information Science, 2022, 36(10): 1905-1930.
- [5] Huang W, Zhang D, Mai G, et al. Learning urban region representations with POIs and hierarchical graph infomax[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 196: 134-145.
- [6] Cao R, Tu W, Yang C, et al. Deep learning-based remote and social sensing data fusion for urban region function recognition[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163: 82-97.
- [7] Mai G, Cundy C, Choi K, et al. Towards a foundation model for geospatial artificial intelligence (vision paper)[C]//Proceedings of the 30th International Conference on Advances in Geographic Information Systems. 2022: 1-4.
- [8] Mai G, Huang W, Sun J, et al. On the opportunities and challenges of foundation models for geospatial artificial intelligence[J]. arXiv preprint arXiv:2304.06798, 2023.
- [9] Mai G, Lao N, He Y, et al. CSP: Self-Supervised Contrastive Spatial Pre-Training for Geospatial-Visual Representations[J]. arXiv preprint arXiv:2305.01118, 2023.





# 面向多源异构空间大数据的城市用地识别与监测:一种多模态深度学习框架

答辩人: 王成龙

指导老师: 焦利民教授、宫兆亚助理教授