# Surrey Missions: GEMINI A GEOSTATIONARY MINISATELLITE

SURREY SATELLITE TECHNOLOGY LTD

The first implementation of SSTL's Geostationary minisatellite, the GEMINI mission, will result in the in-orbit service demonstration of a low cost, commercial Geostationary communications minisatellite. The GEMINI spacecraft carries four digital transponders and is designed to provide reliable and accessible communications services for Nigeria and West African Countries, for a contract cost less than £26 Million.

### **GEMINI Mission**



The GEMINI mission, funded by the Nigerian Federal Ministry of Science and Technology, a consortium of private investors in Nigeria, and the British National Space Centre will be undertaken in a programme of international collaboration with Nigeria. GEMINI carries four digital transponders with antenna beam providing coverage of Nigeria and West Africa with services ranging from:

- 8 digital MPEG2 TV channels
- 400 digital radio channels
- 400 VSAT Internet terminals
- 2000 ISDN phone lines
- 18 000 voice channels

providing these regions with reliable communications services for commercial business, the financial banking system, government, entertainment and public use.

## **GEMINI Spacecraft**

GEMINI is based on SSTL's 400 kg class minisatellite platform: the structure is a 9-sided prism measuring 1 x 1 x 1 m. A 550 m/s (approx.) delta-V monopropellant propulsion system meets orbital slot acquisition and station keeping requirements, over a nominal 7 year lifetime. On-board computers and in-orbit reprogrammable operating system software allow a high level of autonomous operation and flexibility.

The on-board ADCS can support high pointing knowledge and capability requirements for accurate antenna pointing. S-band communications provide up to 8 Mbps downlink for telemetry functions and uplinks for spacecraft commanding. A good power margin is achievable up until end-of-life (EOL) using high performance, deployable panels. Nigeria has a geostationary orbital slot and Ku-band frequency allocation for this nominal 7 year mission. At EOL the propulsion system will provide safe satellite disposal from GEO, manoeuvring into a graveyard orbit.



### **SSTL Geostationary Minisatellite Features**

- Rapid Development ready-to-launch 36 months from contract signing
- Low Cost SSTL commercial approach & pioneering experience in small satellites
- Mission & Payload Flexibility can be tailored to meet user-requirements
- Launcher Compatibility enables launch on a wide variety of launch vehicles
- Heritage SSTL's first minisatellite platform was launched early 1999 and has been operating successfully since. Based on SSTL's management & engineering design approach, the platform benefits from over 100 years of in-orbit experience
- Turn Key System SSTL can offer mission design, spacecraft and fully compatible ground station and mission control centre, as well as training

## Mission & Spacecraft

- Shared Proton launch to GEO
- · 400kg class satellite
- Ku-band transponder payload providing broadcast services
- S-band TTC
- Monopropellant orbit control
- 3-axis high performance ADCS
- Autonomous control & operations
- Reprogrammable on-board software
- 9 deployable solar panels
- · Active thermal control
- Radiation design -7 yr lifetime

## Heritage/Experience

- Over 100 years in-orbit experience
- Verifies SSTL's low cost management & engineering approach
- 16 microsatellites to date
- 400 kg advanced minisatellite
- 7 kg advanced nanosatellite

# **SSTL Beyond LEO**

- Flight hardware on STRV-1a,b,c,d GTO missions
- In-house mission studies: Lunar; Venus; Mars; L1
- LunarSat mission study (ESA)
- MMS mission study (NASA)
- Momentum wheel for the Rosetta comet mission (ESA)

# Issue Number & Notice

SSTL-5019-01. 01-09-2000. This mission data sheet is not contractual and can be changed without any notice. Please contact SSTL for further information.

# Surrey Missions: GEMINI A GEOSTATIONARY MINISATELLITE



# **GEMINI Mission & Spacecraft Specifications**

| Mission               | Launch Date                 | 2003 (est.)                                               |
|-----------------------|-----------------------------|-----------------------------------------------------------|
|                       | Launch                      | Direct injection into Geostationary parking orbit         |
|                       | Launch Vehicle              | Proton, secondary passenger                               |
|                       | Lifetime                    | 7 year nominal; 10 year propellant-limited                |
|                       | EOL Disposal                | Geostationary + 300 km graveyard orbit                    |
| Payload               | Transponder                 | Ku-band (12-17 GHz)                                       |
|                       | Antenna                     | 1 m deployable parabolic dish                             |
|                       | Orbital Slot                | 25° West                                                  |
|                       | Frequency Allocation        | Frequencies allocated - 5 channels                        |
|                       | Channel Bandwidth           | 27 MHz                                                    |
| Physical              | Dimensions (stowed)         | 1 x 1 x 1 m (approx.), excluding external equipment       |
|                       | Mass                        | < 400 kg                                                  |
| Power                 | Solar Panels                | 9 deployable, high performance panels                     |
| Thermal               | Thermal                     | Active control                                            |
| ADCS                  | Sensors                     | Complement of Earth, Sun and gyroscopic sensors           |
|                       | Actuators                   | Reaction wheels, thrusters                                |
|                       | Attitude                    | 3-axis stabilised zero momentum bias                      |
|                       | Pointing Knowledge          | $\pm0.02^{\circ}(3\sigma)$                                |
|                       | Pointing Capability         | Control $\pm 0.1^{\circ}$ (3 $\sigma$ )                   |
| Orbit Determination   | Orbit Determination         | Ranging                                                   |
| Orbit Control         | Delta-V                     | 550 m/s (est.)                                            |
|                       | Pro <mark>pulsion</mark>    | Monopropellant thruster, propellant storage in 3 tanks    |
| Command & Data        | Processor                   | Dual redundant: 80386EX, 25MHz with co-processor          |
| Handling              |                             |                                                           |
|                       | Payload Data Interface      | Triple redundant CAN 1Mbps packet (ISO-11898);            |
|                       | Memory                      | 8 MB RAM per processor                                    |
|                       | Operating System            | In-house design operating system. In-orbit reprogrammable |
| Communications        | TTC Uplink                  | Hot redundant S-band receiver                             |
|                       | TTC Downlink                | Cold redundant S-band transmitter. Up to 8 Mbit/s         |
| Redundancy            | Space <mark>cr</mark> aft . | Dual & functionally redundant systems                     |
| Receiving Stations    | Anten <mark>na</mark>       | Existing ground network                                   |
| Operations Scheduling | On board clock              | Updated daily via groundstation, ±0.1s                    |
|                       | On board Data Surveys       | 1 s sampling programmable                                 |
| Contract Value        | GEMINI Mission              | £26 Million (FY2000)                                      |
|                       |                             |                                                           |
| *                     |                             |                                                           |

## **Geostationary Minisatellites, Other Products and Services**

- SSTL can provide low cost geostationary minisatellites for a range of user-driven applications
- The transponder payload beam may be tailored to provide user-specified regional coverage, supporting a variety of broadcast voice, TV and Internet services
- The low cost of the SSTL geostationary minisatellite and high launch vehicle packing density makes it ideal for rapid in constellation implementation
- Geostationary minisatellite constellation will directly benefit from SSTL's in-orbit experience of autonomous orbit determination & control and formation flying
- With over 100 years of in-orbit experience, SSTL is currently designing and building constellations employing our low cost nano-, micro-, and mini- satellite platforms
- SSTL also provides: Mission & Constellation Design; Systems Engineering; Payload Design; Ground & Launch Support; In-Orbit Commissioning & Operations
- Please contact SSTL for further details and a quotation on any product

## **Contact**



### **Surrey Space Centre**

University of Surrey Guildford, Surrey GU2 7XH United Kingdom

Tel: (44) 1483 259278
Fax: (44) 1483 259503
E-mail: sstl@sstl.co.uk
www: www.sstl.co.uk