UIT2504 Artificial Intelligence Propositional Logic

C. Aravindan <AravindanC@ssn.edu.in>

Professor of Information Technology SSN College of Engineering

September 24, 2024

Knowledge-Based Agents

- Knowledge base = set of sentences in a formal language
- Knowledge-based agent comprises of domain specific knowledge base and domain independent inference mechanism to process knowledge
- Knowledge is in declarative form
- Suitable for partially observable environments where hidden information can be inferred

2/19

C. Aravindan (SSN) AI September 24, 2024

Interpretations, Models, and Entailment

- Sentences written in logic must be well-formed formula and follow a grammar
- There are several possible interpretations for a set of sentences KB
- Interpretations in which KB evaluates to true are called as models of KB
- Given a new sentence α , KB logically entails α (written as $KB \models \alpha$) iff every model of KB is also a model of α
- We write $KB \vdash \alpha$ if α can be derived from KB using syntactic derivation rules
- Sentences in logic are usually written in a normal form
- There may be several strategies for effective application of the derivation rules

• Proposition, represented by a symbol, is a statement that can be "True" or "False"

- Proposition, represented by a symbol, is a statement that can be "True" or "False"
 - P: Student passes the exam
 - W: Student works hard
 - *H*: Student is healthy

- Proposition, represented by a symbol, is a statement that can be "True" or "False"
 - P: Student passes the exam
 - W: Student works hard
 - H: Student is healthy
- A proposition by itself, (referred to as an atom), is a sentence (or) formula

- Proposition, represented by a symbol, is a statement that can be "True" or "False"
 - P: Student passes the exam
 - W: Student works hard
 - H: Student is healthy
- A proposition by itself, (referred to as an atom), is a sentence (or) formula
- Complex sentences can be formed using connectives
 - Negation (\neg) : $\neg W$
 - Disjunction (\vee) : $\neg W \vee H$
 - Conjunction (\land) : $(\neg W \lor H) \land W$
 - Implication $(\Rightarrow): P \Rightarrow W$
 - Bi-conditional $(\Leftrightarrow): P \Leftrightarrow W$

- Proposition, represented by a symbol, is a statement that can be "True" or "False"
 - P: Student passes the exam
 - W: Student works hard
 - H: Student is healthy
- A proposition by itself, (referred to as an atom), is a sentence (or) formula
- Complex sentences can be formed using connectives
 - Negation (\neg) : $\neg W$
 - Disjunction (\vee) : $\neg W \vee H$
 - Conjunction (\land) : $(\neg W \lor H) \land W$
 - Implication $(\Rightarrow): P \Rightarrow W$
 - Bi-conditional $(\Leftrightarrow): P \Leftrightarrow W$
- An atom or negation of an atom is referred to as a literal examples include p_1 , $\neg p_2$, $\neg p_3$, p_4 , p_5

- Proposition, represented by a symbol, is a statement that can be "True" or "False"
 - P: Student passes the exam
 - W: Student works hard
 - H: Student is healthy
- A proposition by itself, (referred to as an atom), is a sentence (or) formula
- Complex sentences can be formed using connectives
 - Negation (\neg) : $\neg W$
 - Disjunction (\vee) : $\neg W \vee H$
 - Conjunction (\wedge) : ($\neg W \lor H$) $\wedge W$
 - Implication $(\Rightarrow): P \Rightarrow W$
 - Bi-conditional $(\Leftrightarrow): P \Leftrightarrow W$
- An atom or negation of an atom is referred to as a literal examples include p_1 , $\neg p_2$, $\neg p_3$, p_4 , p_5
- Sometimes, we write $\neg p_2$ as $\overline{p_2}$

Truth Tables

• The meanings of the connectives are given by their respective truth tables

Truth Tables

• The meanings of the connectives are given by their respective truth tables

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
F	F	Т	F	F	Т	Т
F	Т	Т	F	Т	T	F
T	F	F	F	Т	F	F
T	Т	F	Т	Т	Т	Т

Well-Formed Formula

- An atom by itself is a well-formed formula (WFF)
- If F is a WFF, then $\neg F$ is a WFF
- If F is a WFF, then (F) is a WFF
- If F_1 and F_2 are WFF, then
 - $F_1 \vee F_2$ is a WFF
 - $F_1 \wedge F_2$ is a WFF
 - $F_1 \Rightarrow F_2$ is a WFF
 - $F_1 \Leftrightarrow F_2$ is a WFF
- Nothing else if a WFF

Well-formed Formula

• Is this a well-formed formula?

$$\neg P \lor Q \land R \Rightarrow S$$

Well-formed Formula

• Is this a well-formed formula?

$$\neg P \lor Q \land R \Rightarrow S$$

• Order of precedence is used to avoid parentheses:

$$\neg, \land, \lor, \Rightarrow, \Leftrightarrow$$

Well-formed Formula

• Is this a well-formed formula?

$$\neg P \lor Q \land R \Rightarrow S$$

• Order of precedence is used to avoid parentheses:

$$\neg, \land, \lor, \Rightarrow, \Leftrightarrow$$

• The above sentence is same as

$$(((\neg P) \lor (Q \land R)) \Rightarrow S)$$

Grammar of sentences in propositional logic

OPERATOR PRECEDENCE : $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$

$$Sentence
ightarrow AtomicSentence \mid ComplexSentence$$
 $AtomicSentence
ightarrow True \mid False \mid P \mid Q \mid R \mid \dots$
 $ComplexSentence
ightarrow (Sentence)$
 $\mid \neg Sentence$
 $\mid Sentence \land Sentence$
 $\mid Sentence \lor Sentence$
 $\mid Sentence \Leftrightarrow Sentence$
 $\mid Sentence \Leftrightarrow Sentence$

Example

• Represent the following in propositional logic

Example

- Represent the following in propositional logic
- Student can not pass the exam unless she works hard. Student can not work hard unless she is healthy. Student works hard.

• Let S be $(P \Rightarrow Q) \land P \Rightarrow Q$. Is it a WFF?

- Let S be $(P \Rightarrow Q) \land P \Rightarrow Q$. Is it a WFF?
- ullet An interpretation I of a formula S is an assignment of truth values to propositional symbols in S

- Let S be $(P \Rightarrow Q) \land P \Rightarrow Q$. Is it a WFF?
- ullet An interpretation I of a formula S is an assignment of truth values to propositional symbols in S
- Examples: $I_1 = \{\}; I_2 = \{P\}; I_3 = \{Q\}; I_4 = \{P, Q\}$

- Let S be $(P \Rightarrow Q) \land P \Rightarrow Q$. Is it a WFF?
- ullet An interpretation I of a formula S is an assignment of truth values to propositional symbols in S
- Examples: $I_1 = \{\}; I_2 = \{P\}; I_3 = \{Q\}; I_4 = \{P, Q\}$
- Consider a formula with *n* propositions. How many possible interpretations are there?

- Let S be $(P \Rightarrow Q) \land P \Rightarrow Q$. Is it a WFF?
- An interpretation I of a formula S is an assignment of truth values to propositional symbols in S
- Examples: $I_1 = \{\}; I_2 = \{P\}; I_3 = \{Q\}; I_4 = \{P, Q\}$
- Consider a formula with *n* propositions. How many possible interpretations are there?
- ullet A model of a formula S is an interpretation in which F evaluates to true

- Let S be $(P \Rightarrow Q) \land P \Rightarrow Q$. Is it a WFF?
- \bullet An interpretation I of a formula S is an assignment of truth values to propositional symbols in S
- Examples: $I_1 = \{\}; I_2 = \{P\}; I_3 = \{Q\}; I_4 = \{P, Q\}$
- Consider a formula with *n* propositions. How many possible interpretations are there?
- ullet A model of a formula S is an interpretation in which F evaluates to true
- Example: Is I_1 a model of S?

Semantics and Truth Tables

- Each row in the truth table corresponds to an interpretation (the first two columns)
- Rows in which the formula S evaluates to "True" (last column is "True") corresponds to a model
- In this example, all the four interpretations are models!

P	Q	$P \Rightarrow Q$	$(P \Rightarrow Q) \wedge P$	$(P \Rightarrow Q) \land P \Rightarrow Q$
F	F	Т	F	Т
F	Т	T	F	T
Т	F	F	F	T
Т	Т	Т	Т	Т

Another Example

ullet Consider the following formula S

$$(P_{13} \vee P_{22}) \wedge \neg P_{22} \wedge \neg P_{31}$$

Another Example

Consider the following formula S

$$(P_{13} \vee P_{22}) \wedge \neg P_{22} \wedge \neg P_{31}$$

 \bullet Interpretations and models of S can be captured through a truth table

P ₁₃	P_{22}	P_{31}	$\neg P_{22}$	$\neg P_{31}$	$P_{13} \vee P_{22}$	S
F	F	F	Т	Т	F	F
F	F	Т	Т	F	F	F
F	Т	F	F	Т	Т	F
F	Т	Т	F	F	Т	F
T	F	F	Т	Т	Т	Т
T	F	Т	Т	F	T	F
T	Т	F	F	T	т	F
Т	Т	Т	F	F	Т	F

• A sentence KB entails α iff α is true in all the interpretations where KB is true — we write $KB \models \alpha$ when KB entails α

- A sentence KB entails α iff α is true in all the interpretations where KB is true we write $KB \models \alpha$ when KB entails α
- Check in the last example:
 - Is there a pit in cell (2,2)? (Is P_{22} true?)
 - Is there a pit in cell (1,3)?

- A sentence KB entails α iff α is true in all the interpretations where KB is true we write $KB \models \alpha$ when KB entails α
- Check in the last example:
 - Is there a pit in cell (2,2)? (Is P_{22} true?)
 - Is there a pit in cell (1,3)?
- Check in the previous example:
 - Is the student healthy?
 - Does the student pass the exam?

- A sentence KB entails α iff α is true in all the interpretations where KB is true we write $KB \models \alpha$ when KB entails α
- Check in the last example:
 - Is there a pit in cell (2,2)? (Is P_{22} true?)
 - Is there a pit in cell (1,3)?
- Check in the previous example:
 - Is the student healthy?
 - Does the student pass the exam?
- Given KB and α , we need to answer the question: Does KB entail α ? $(KB \models^{?} \alpha)$

Properties of Sentences

• A sentence S is satisfiable if it has a model (unsatisfiable if it has no model)

Properties of Sentences

- A sentence S is satisfiable if it has a model (unsatisfiable if it has no model)
- *S* is a valid sentence (tautology) if it is true in all the interpretations (invalid if it is false in at least one interpretation)

Properties of Sentences

- A sentence S is satisfiable if it has a model (unsatisfiable if it has no model)
- *S* is a valid sentence (tautology) if it is true in all the interpretations (invalid if it is false in at least one interpretation)
- Two sentences S_1 and S_2 are equivalent if they have same set of models

$$(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$$
 commutativity of \wedge $(\alpha \vee \beta) \equiv (\beta \vee \alpha)$ commutativity of \vee

$$\begin{array}{cccc} (\alpha \wedge \beta) & \equiv & (\beta \wedge \alpha) & \text{commutativity of } \wedge \\ (\alpha \vee \beta) & \equiv & (\beta \vee \alpha) & \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) & \equiv & (\alpha \wedge (\beta \wedge \gamma)) & \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) & \equiv & (\alpha \vee (\beta \vee \gamma)) & \text{associativity of } \vee \end{array}$$

$$\begin{array}{cccc} (\alpha \wedge \beta) & \equiv & (\beta \wedge \alpha) & \text{commutativity of } \wedge \\ (\alpha \vee \beta) & \equiv & (\beta \vee \alpha) & \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) & \equiv & (\alpha \wedge (\beta \wedge \gamma)) & \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) & \equiv & (\alpha \vee (\beta \vee \gamma)) & \text{associativity of } \vee \\ \neg (\neg \alpha) & \equiv & \alpha & \text{double-negation elimination} \end{array}$$

$$\begin{array}{cccc} (\alpha \wedge \beta) & \equiv & (\beta \wedge \alpha) & \text{commutativity of } \wedge \\ (\alpha \vee \beta) & \equiv & (\beta \vee \alpha) & \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) & \equiv & (\alpha \wedge (\beta \wedge \gamma)) & \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) & \equiv & (\alpha \vee (\beta \vee \gamma)) & \text{associativity of } \vee \\ \neg (\neg \alpha) & \equiv & \alpha & \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) & \equiv & (\neg \beta \Rightarrow \neg \alpha) & \text{contraposition} \end{array}$$

```
\begin{array}{lll} (\alpha \wedge \beta) & \equiv & (\beta \wedge \alpha) & \text{commutativity of } \wedge \\ (\alpha \vee \beta) & \equiv & (\beta \vee \alpha) & \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) & \equiv & (\alpha \wedge (\beta \wedge \gamma)) & \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) & \equiv & (\alpha \vee (\beta \vee \gamma)) & \text{associativity of } \vee \\ \neg (\neg \alpha) & \equiv & \alpha & \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) & \equiv & (\neg \beta \Rightarrow \neg \alpha) & \text{contraposition} \\ (\alpha \Rightarrow \beta) & \equiv & (\neg \alpha \vee \beta) & \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) & \equiv & ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) & \text{biconditional elimination} \\ \end{array}
```


$$\begin{array}{lll} (\alpha \wedge \beta) & \equiv & (\beta \wedge \alpha) & \text{commutativity of } \wedge \\ (\alpha \vee \beta) & \equiv & (\beta \vee \alpha) & \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) & \equiv & (\alpha \wedge (\beta \wedge \gamma)) & \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) & \equiv & (\alpha \vee (\beta \vee \gamma)) & \text{associativity of } \vee \\ \neg (\neg \alpha) & \equiv & \alpha & \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) & \equiv & (\neg \beta \Rightarrow \neg \alpha) & \text{contraposition} \\ (\alpha \Rightarrow \beta) & \equiv & (\neg \alpha \vee \beta) & \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) & \equiv & ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) & \text{biconditional elimination} \\ \neg (\alpha \wedge \beta) & \equiv & (\neg \alpha \vee \neg \beta) & \text{De Morgan} \\ \neg (\alpha \vee \beta) & \equiv & (\neg \alpha \wedge \neg \beta) & \text{De Morgan} \\ \end{array}$$

$$\begin{array}{lll} (\alpha \wedge \beta) & \equiv & (\beta \wedge \alpha) & \text{commutativity of } \wedge \\ (\alpha \vee \beta) & \equiv & (\beta \vee \alpha) & \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) & \equiv & (\alpha \wedge (\beta \wedge \gamma)) & \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) & \equiv & (\alpha \vee (\beta \vee \gamma)) & \text{associativity of } \vee \\ \neg (\neg \alpha) & \equiv & \alpha & \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) & \equiv & (\neg \beta \Rightarrow \neg \alpha) & \text{contraposition} \\ (\alpha \Rightarrow \beta) & \equiv & (\neg \alpha \vee \beta) & \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) & \equiv & ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) & \text{biconditional elimination} \\ \neg (\alpha \wedge \beta) & \equiv & (\neg \alpha \vee \neg \beta) & \text{De Morgan} \\ \neg (\alpha \vee \beta) & \equiv & (\neg \alpha \wedge \neg \beta) & \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) & \equiv & ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) & \text{distributivity of } \wedge & \text{over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) & \equiv & ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) & \text{distributivity of } \vee & \text{over } \wedge \\ \end{array}$$

Deduction Theorems

Deduction Theorem I

 α is a logical consequence of KB if and only if KB $\Rightarrow \alpha$ is valid

Deduction Theorems

Deduction Theorem I

 α is a logical consequence of KB if and only if KB $\Rightarrow \alpha$ is valid

Deduction Theorem II

 α is a logical consequence of KB if and only if $KB \wedge \neg \alpha$ is unsatisfiable

The Satisfiability Problem

SAT

Given a well formed formula S over a set of propositions $X = \{x_1, \dots, x_n\}$, decide whether S is satisfiable (that is, decide if there exists an assignment of truth values to the propositions such that S evaluates to true)

Derivations

- SAT is a NP-Complete problem and algorithms based on model checking do not scale up
- Alternatively, we can check if α can be derived from KB, using some syntactic inference rules
- ullet Inference procedure is sound if every lpha derivable is entailed by KB
- Inference procedure is complete if every α that is entailed by KB can be derived from KB
- When we have a sound and complete inference procedure, $KB \models^? \alpha$ can be reduced to $KB \vdash^? \alpha$

Questions?

