MACHINE LEARNING ASSIGNMENT -06

Name: Thandarupalli Naveen Goud UCM ID: nxt46830, 700#:700734683

Video Link:

https://drive.google.com/file/d/1hMFfBpYE7_Zj5Do6Vs-d9qFKgBDHaU4c/view?usp=share_link

Github Link: https://github.com/nxt46830/ML-Assignment-1

Question	Question :- 1 Naveen Good thandsonpalli NXTU6830,700734683.							
	P,	Pz	P3	Pu	Ps	P6		
P).	0	0.2357	0-2218	0.3698	0.342)	0.2347		
P2	02357	0	0.1483	0.2042	0-1388	0.2540		
Pz	0-2218	0.1413	0	0.1513	0.2843	0-1100		
Py	0-3688	0,2042	0.1513	0	0-2932	0.22/6		
P5	0.342	0.1388	0-2843	0.2932	0	0-3921		
P6	0-2347	0.2540	(0-1100)	0.2216	0-3921	0	1	
Chu	In single linkage the distance between two Clusters is the minimum distance between the members of two choters. So, here Page Po forms the first cluster.							
	PI	P2	P3 P6	Pu	7	35		
Pi	0	0.2357	0.2218	0.368	8 0.3	3427		
Pz	0.2357	0	0-1483	0-2042	2 0-1	388		
P3P6	0.2218	0.1483	0	0-1513	0:	2843		
Py (0.368	0.2042	0,1573	0.	0-2	932		
PS	0.342	(0.1388)	0.2843	0-2932	0			

so, here Pz & Ps forms the second Chistes.

4				1
	Pi	Pz Ps	P3 P6	Py
PI	0	0-2357	0.2218	0.3688
P2P5	0.2357	0	0.1483	0.2042
P3P6	0-2218	6.1483	0	0-1513
Ry	0-3688	0.2042	0.1513	0

So, here BPS & BP6 forms the third chuster.

PI	P2 P5 BP6	Py
- 0	0.22/8	0-3688
0-2218.	0	0-1573
0.3688		0
	0-2218.	-0 0.22/8

So, here P2P5 P3P6 Gp Py forms the fourth Chytes.

		,
	PI	P2P5P3P6Py
Pi	% O	0.2218
P28P3P6P4	0.2218	0

	Pi	P2	P3	Pu	PS	P6
Pi	O	0-2357	0-2218	0-3688	0-3421	0.2347
P2	0.2357	0	0-1483	0-2043	0.1388	0.254
P3	0.248	0.1483	0	0.1513	0.2843	0-11
Pa	0.3688	0.2042	0.1513	0	0.2932	0.22/6
P5	0.342)	0.1388	0.2843	0.2932	0	0-3925
P6	0-2347	0.254	(0-11)	0-2216	0-3921	0

Complete Linkage is the maximum distance between the members of two clusters. Here P3 & P6 from the first clusters.

	_				
	PI	PZ	P3P6	Py	P5
P1	0	0.2357	0.2347	0-3633	0-342/
P2	0.2359	0	0.254	0.2042	0.1388
P3P6	0.2347		0	0.22/6	0.342)
Py	0.3688	0.2042	0.2216	0	0.2932
P	0-342)	0.1388	0-3921	0.2932	0

Hose P23P5 from the Second Chastes.

	Pr	P275	P3P6	Py
PI	0		R	
Pz Ps	0.342)	0	0.3921	0.2932
P3P6	0.2347	0-3921	0	
Py	0.3688	0-2932	0.226	0

Here P3 P6 & Py forms thord Christer.

R	Pr	PaR	P3 P6 Py
120	0	0-342	0-3688
PzP5	0.342	0	0.3921
P3 P6 P4	0-3688	0-3921	. O

Here Pi & P2P5 forms fourth Chates

	PIPZPS	P3P6P4	
PiP2P5	O	0-3928	
PzP6 Py	0.392	0	
-			ļ

In Average Lant Proximity we use the average of the distance between members of two clusters.

	P ₁	Pz	Pz	Py	Ps	P6
Pr	0	0-2357	0.248	0-3688	0-3421	0.23%
P2	0.2357	0	p.1483	0.2042	0.1388	0.254
Pz	0.22/8	6.1483	O	0,1573	10-1843	0.1)
Py	0.3688	0.2042	6.1513	0	0-2932	0-2246
P5	0.342)	0-1388	0.2843	0.2932	0	0-392)
P6	0.2347	0-254	(0.11)	0-22/6	0-3921	0
			1	,	,	^

Hege B & P6 forms the first Chastes.

1	ħ	P	P3 %	Pr.	PE
	1	12	1316	14	13
PI	0				
72	0.2359	0	0-2015	0.2042	
P6 -	0.72875	0.2015	0	0.18645	0.338,5
· · · · · · · · · · · · · · · · · · ·	0.3688	0-2042	0.18645	0	
1	0.342	(0.1388)	0.3382		0

Hese P26 P5 forms the second Chisters.

•	PI	P275	P376	Py
PI	0			
P275	0.2889	0	0-269675	0-2487
P3P6	0,282	0-26965	Ð	0-18645
Py	0-341	0.2487	0.18645	D

Hase P3 P6 & P4 will form a cluster.

	PI.	P275	P376 P4
Pr	0		0-2815
P2 P5	0-2889	0	0-41895
P376 P4	0.2813	0.759188	0

Here Pz P5 & P3 P6 Py forms a cluster

	7,	P275737674
PI	Ø	0.285
7275R3P6P4	0-285	0

2) Use CC_GENERAL.csv given in the folder and apply:
a) Preprocess the data by removing the categorical column and filling the missi
b) Apply StandardScaler() and normalize() functions to scale and normalize raw
c) Use PCA with K=2 to reduce the input dimensions to two features.
d) Apply Agglomerative Clustering with k=2,3,4 and 5 on reduced features and vi
result for each k value using scatter plot.
e) Evaluate different variations using Silhouette Scores and Visualize results

```
#importing all libraries here for assignment
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing, metrics
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.decomposition import PCA
from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics import silhouette_score
import warnings
warnings.filterwarnings("ignore")
```

```
dataframe = pd.read_csv('CC GENERAL.csv')
dataframe.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8950 entries, 0 to 8949
Data columns (total 18 columns):
```

```
8950 non-null
                                                                   object
                                              8950 non-null float64
    BALANCE
                                            8950 non-null float64
     BALANCE_FREQUENCY
     PURCHASES
 4 ONEOFF_PURCHASES
     INSTALLMENTS_PURCHASES
 6 CASH ADVANCE
    PURCHASES_FREQUENCY 8950 non-null
ONEOFF_PURCHASES_FREQUENCY 8950 non-null
                                                                   float64
                                                                    float64
 9 PURCHASES_INSTALLMENTS_FREQUENCY 8950 non-null float64
 10 CASH_ADVANCE_FREQUENCY 8950 non-null floate
11 CASH_ADVANCE_TRX 8950 non-null int64
                                             8950 non-null int64
8949 non-null float64
8950 non-null float64
 12 PURCHASES TRX
 13 CREDIT LIMIT
 14 PAYMENTS
                                              8637 non-null float64
8950 non-null float64
 15 MINIMUM_PAYMENTS
16 PRC_FULL_PAYMENT
17 TENURE
                                               8950 non-null int64
dtypes: float64(14), int64(3), object(1)
memory usage: 1.2+ MB
```

	CUST_ID object □	BALANCE float64 ▼	BALANCE_FREQ □	PURCHASES floa♥	∠ Visualize ONEOFF_PO
0	C10001	40.900749	0.818182	95.4	
1	C10002	3202.467416	0.909091	0.0	
2	C10003	2495.148862	1.0	773.17	
3	C10004	1666.670542	0.636364	1499.0	
4	C10005	817.714335	1.0	16.0	
4					

•	BALANCE float64 ☑	BALANCE_FREQ ☑	PURCHASES floa ☑	ONEOFF_PURC	∠ Visualize INSTALLMENT
count	8950.0	8950.0	8950.0	8950.0	8
mean	1564.474827678 1006	0.877270725586 5921	1003.204833519 5531	592.4373709497 207	411.067644
std	2081.531879456 5546	0.236904002684 76855	2136.634781872 8887	1659.887917437 811	904.338115
min	0.0	0.0	0.0	0.0	
25%	128.2819155	0.888889	39.635	0.0	
50%	873.385231	1.0	361.28	38.0	
75%	2054.1400355	1.0	1110.13	577.405	468

:: df = dataframe.drop(['CUST_ID'], axis=1) df.head() Visualize BALANCE float64 ☑ BALANCE_FREQ... ☑ PURCHASES floa... ☑ ONEOFF_PURC... ☑ INSTALLMENT: 0 40.900749 0.818182 95.4 0.0 3202.467416 0.909091 0.0 1 0.0 2 2495.148862 773.17 1.0 773.17 3 1666.670542 0.636364 1499.0 1499.0 4 817.714335 1.0 16.0 16.0

df.isnull().any() BALANCE False BALANCE_FREQUENCY False **PURCHASES** False ONEOFF_PURCHASES False INSTALLMENTS_PURCHASES False CASH_ADVANCE False PURCHASES_FREQUENCY False ONEOFF_PURCHASES_FREQUENCY False PURCHASES_INSTALLMENTS_FREQUENCY False CASH_ADVANCE_FREQUENCY False CASH_ADVANCE_TRX False PURCHASES_TRX False CREDIT_LIMIT True **PAYMENTS** False MINIMUM_PAYMENTS True PRC_FULL_PAYMENT False **TENURE** False dtunat haal

```
10
     df.fillna(dataframe.mean(), inplace=True)
     df.isnull().any()
    BALANCE
                                        False
     BALANCE_FREQUENCY
                                        False
     PURCHASES
                                        False
     ONEOFF_PURCHASES
                                        False
     INSTALLMENTS_PURCHASES
                                        False
     CASH_ADVANCE
                                        False
     PURCHASES_FREQUENCY
                                        False
     ONEOFF_PURCHASES_FREQUENCY
                                        False
     PURCHASES_INSTALLMENTS_FREQUENCY
                                        False
     CASH_ADVANCE_FREQUENCY
                                        False
     CASH_ADVANCE_TRX
                                        False
     PURCHASES_TRX
                                        False
     CREDIT_LIMIT
                                        False
     PAYMENTS
                                        False
     MINIMUM_PAYMENTS
                                        False
     PRC_FULL_PAYMENT
                                        False
    TENURE
                                        False
```

	BALANCE	BALANCE_FREQUENCY	PURCHASES
BALANCE	1.000000	0.322412	0.181261
BALANCE_FREQUENCY	0.322412	1.000000	0.133674
PURCHASES	0.181261	0.133674	1.000000
ONEOFF_PURCHASES	0.164350	0.104323	0.916845
INSTALLMENTS_PURCHASES	0.126469	0.124292	0.679896
CASH_ADVANCE	0.496692	0.099388	-0.051474
PURCHASES_FREQUENCY	-0.077944	0.229715	0.393017
ONEOFF_PURCHASES_FREQUENCY	0.073166	0.202415	0.498430
PURCHASES_INSTALLMENTS_FREQUENCY	-0.063186	0.176079	0.315567
CASH_ADVANCE_FREQUENCY	0.449218	0.191873	-0.120143
CASH_ADVANCE_TRX	0.385152	0.141555	-0.067175

```
x = df.iloc[:,0:-1]
y = df.iloc[:,-1]

scaler = preprocessing.StandardScaler()
scaler.fit(x)
X_scaled_array = scaler.transform(x)
X_scaled_df = pd.DataFrame(X_scaled_array, columns = x.columns)
#Normalization is the process of scaling individual samples to have unit norm.
```

#Normalization is the process of scaling individual samples to have unit norm.
#This process can be useful if you plan to use a quadratic form such as the dot-p
X_normalized = preprocessing.normalize(X_scaled_df)
Converting the numpy array into a pandas DataFrame
X_normalized = pd.DataFrame(X_normalized)

```
:::
     pca2 = PCA(n_components=2)
     principalComponents = pca2.fit_transform(X_normalized)
     principalDf = pd.DataFrame(data = principalComponents, columns = ['P1', 'P2'])
     finalDf = pd.concat([principalDf, df[['TENURE']]], axis = 1)
     finalDf.head()
      \bigcirc
                                                                              Visualize
            P1 float64
                         P2 float64
                                         ▼ TENURE int64
                                                          ~
            -0.488186090869 -0.677233170168
                                                          12
                      80813
         1 -0.517294327261 0.556074096962
                                                          12
                      2286
                                       8902
         2 0.334384227017 0.287312793590
                                                          12
                      1463
                                      66886
         3 -0.486616378255 -0.080781968743
                                                          12
                      0769
                                  24063
```

```
plt.figure(figsize=(7,7))
plt.scatter(finalDf['P1'],finalDf['P2'],c=finalDf['TENURE'],cmap='prism', s =5)
plt.xlabel('pc1')
plt.ylabel('pc2')
Text(0, 0.5, 'pc2')
```



```
• •
```

```
k = [2, 3, 4, 5]
# Appending the silhouette scores of the different models to the list
silhouette_scores = []
silhouette_scores.append(
        silhouette_score(principalDf, ac2.fit_predict(principalDf)))
silhouette_scores.append(
        silhouette_score(principalDf, ac3.fit_predict(principalDf)))
silhouette_scores.append(
        silhouette_score(principalDf, ac4.fit_predict(principalDf)))
silhouette_scores.append(
        silhouette_score(principalDf, ac5.fit_predict(principalDf)))
# Plotting a bar graph to compare the results
plt.bar(k, silhouette_scores)
plt.xlabel('Number of clusters', fontsize = 20)
plt.ylabel('S(i)', fontsize = 20)
plt.show()
```

