Formulae

uniformly accelerated motion,
$$s = ut + \frac{1}{2}at^2$$
$$v^2 = u^2 + 2as$$

work done on/by a gas,
$$W = p \Delta V$$

gravitational potential,
$$\phi = -\frac{Gm}{r}$$

simple harmonic motion,
$$a = -\omega^2 X$$

velocity of particle in s.h.m.,
$$v = v_0 \cos \omega t$$

$$v = \pm \omega \sqrt{(x_0^2 - x^2)}$$

resistors in series,
$$R = R_1 + R_2 + \dots$$

resistors in parallel,
$$1/R = 1/R_1 + 1/R_2 + \dots$$

electric potential,
$$V = \frac{Q}{4\pi \,\varepsilon_0 r}$$

capacitors in series,
$$1/C = 1/C_1 + 1/C_2 + \dots$$

capacitors in parallel,
$$C = C_1 + C_2 + \dots$$

energy of charged capacitor,
$$W = \frac{1}{2}QV$$

alternating current/voltage,
$$x = x_0 \sin \omega t$$

hydrostatic pressure,
$$p = \rho gh$$

pressure of an ideal gas,
$$p = \frac{1}{3} \frac{Nm}{V} < c^2 >$$

radioactive decay,
$$x = x_0 \exp(-\lambda t)$$

decay constant,
$$\lambda = \frac{0.693}{t_{\frac{1}{2}}}$$

critical density matter of the Universe,
$$\rho_0 = \frac{3H_0^2}{8\pi G}$$

equation of continuity,
$$Av = constant$$

Bernoulli equation (simplified)
$$p_1 + \frac{1}{2}\rho v_1^2 = p_2 + \frac{1}{2}\rho v_2^2$$

Stokes' law,
$$F = Ar \eta v$$

Reynolds' number,
$$R_{\rm e} = \frac{\rho vr}{n}$$

drag force in turbulent flow,
$$F = Br^2 \rho v^2$$