سيستم كنترل زاويه حمله هواپيما

شهاب مقدادی نیشابوری

فهرست

1- مقدمه

2- خطی سازی مدل

3-ماتريس انتقال حالت

4-کنترل پذیری و رویت پذیری

5- فرم *ج*ردن

6-بررسی انواع پایداری

7- طراحی کنترلر فیدبک

مقدمه

سییستم کنترل زاویه هواپیما، برای داشتن یک پرواز پایدار و امن، یکی از ضروری ترین سیستم های یک هواپیما است، تنظیم زاویه پرواز، به خلبان اجازه میدهد نیروی بالابری و سرعت خود را تنظیم کند.

زاویه حمله خیلی زیاد سبب از دست رفتن سرعت، و زاویه حمله خیلی کم سبب از بین رفتن نیروی بالابری هواپیما میشود.

خطی سازی مدل

مدل غیر خطی

$$\dot{V} = \frac{\bar{q}S\bar{c}q}{2mV} \left[C_{xq}(\alpha) \cos \alpha + C_{zq}(\alpha) \sin \alpha \right]
+ \frac{\bar{q}S}{m} \left[C_x(\alpha, \delta_e) \cos \alpha + C_z(\alpha, \delta_e) \sin \alpha \right]
- g \sin (\theta - \alpha) + \frac{T}{m} \cos (\alpha)
\dot{\alpha} = q \left[1 + \frac{\bar{q}S\bar{c}}{2mV^2} (C_{zq}(\alpha) \cos \alpha - C_{xq} \sin \alpha) \right]
+ \frac{\bar{q}S}{mV} \left[C_z(\alpha, \delta_e) \cos \alpha - C_x(\alpha, \delta_e) \sin \alpha \right]
+ \frac{g}{V} \cos (\theta - \alpha) - \frac{T}{mV} \sin (\alpha)
\dot{\theta} = q
\dot{q} = \frac{\bar{q}S\bar{c}q}{2I_yV} \left[\bar{c}C_{mq}(\alpha) + \Delta C_{zq}(\alpha) \right]
+ \frac{\bar{q}S\bar{c}}{I_y} \left[C_m(\alpha, \delta_e) + \frac{\Delta}{\bar{c}} C_z(\alpha, \delta_e) \right]$$

فرم فضای حالت خطی سازی شده

$$\circ x = \begin{bmatrix} v & \alpha & q & \theta \end{bmatrix}^{T}$$

$$\circ A = \begin{bmatrix} -0.6009 & 251.7510 & 0 & -9.8150 \\ -0.0240 & -11.9318 & 0.4549 & 0 \\ 0.0025 & -0.6165 & -0.7095 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\circ B = \begin{bmatrix} 0 \\ -0.6951 \\ -1.9374 \\ 0 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

خطی سازی مدل

ماتريس انتقال حالت

ماتریس انتقال حالت که حاوی تمام مشخصات سیستم است را به کمک فرمول زیر به دست می آوریم: (با اجرای برنامه متلب قابل مشاهده است)

$$e^{At} = I + At + \frac{A^2t^2}{2!} + \cdots$$

ماتريس انتقال حالت

به کمک فرمول :

$$x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-T)Bu(T)dT}$$

شرایط اولیه زیر را بررسی میکنیم:

$$x_1 = \begin{bmatrix} 100 \\ 0 \\ 0 \\ 0 \end{bmatrix} u = 0 , x_2 = \begin{bmatrix} 100 \\ 1 \\ 0 \\ 0 \end{bmatrix} u = 1$$

ماتريس انتقال حالت

مشاهده میشود وجود زاویه حمله مخالف با 0، موجب کاهش سرعت کمتری میشود.

>> y1			
y1 =			
100.0000 99.3719 98.6944 97.9741 97.2170 96.4284 95.6130 94.7750	0 -0.0226 -0.0425 -0.0599 -0.0753 -0.0887 -0.1004 -0.1106	0 0.0025 0.0051 0.0078 0.0105 0.0133 0.0162 0.0190	0 0.0000 0.0001 0.0001 0.0002 0.0003 0.0005 0.0006
93.9181 93.0457 92.1606 91.2656 90.3629 89.4545 88.5423 87.6279 86.7128 85.7980 84.8849	-0.1195 -0.1271 -0.1337 -0.1393 -0.1441 -0.1481 -0.1514 -0.1542 -0.1564 -0.1582 -0.1595	0.0219 0.0248 0.0277 0.0306 0.0334 0.0363 0.0391 0.0420 0.0447 0.0475	0.0009 0.0011 0.0013 0.0016 0.0020 0.0023 0.0027 0.0031 0.0035 0.0040 0.0045

y2 =			
100.0000	1.0000	0	0
101.7291	0.8581	-0.0225	-0.0001
103.1115	0.7316	-0.0441	-0.0004
104.1861	0.6191	-0.0647	-0.0010
104.9875	0.5189	-0.0844	-0.0017
105.5469	0.4297	-0.1035	-0.0027
105.8918	0.3504	-0.1219	-0.0038
106.0469	0.2798	-0.1396	-0.0051
106.0342	0.2171	-0.1569	-0.0066
105.8733	0.1614	-0.1737	-0.0082
105.5817	0.1120	-0.1900	-0.0101
105.1752	0.0681	-0.2059	-0.0120
104.6674	0.0292	-0.2215	-0.0142
104.0710	-0.0053	-0.2368	-0.0165
103.3969	-0.0358	-0.2517	-0.0189
102.6551	-0.0628	-0.2664	-0.0215
101.8542	-0.0866	-0.2809	-0.0242
101.0022	-0.1076	-0.2951	-0.0271
100.1060	-0.1262	-0.3092	-0.0302
99.1718	-0.1424	-0.3231	-0.0333

کنترل پذیری و رویت پذیری

```
0 =
  1.0e+04 *
   0.0001
                 0
                           0
            0.0001
        0
                           0
                                    0
        0
                 0
                      0.0001
                                    0
                 0
                      0
                               0.0001
                      0
  -0.0001
            0.0252
                              -0.0010
  -0.0000
           -0.0012
                      0.0000
                                    0
   0.0000
           -0.0001
                     -0.0001
                                    0
    0
            0
                     0.0001
                                    0
  -0.0006
           -0.3155
                     0.0105
                               0.0006
   0.0000
            0.0136
                     -0.0006
                               0.0000
   0.0000
            0.0008
                     0.0000
                              -0.0000
            -0.0001
                     -0.0001
                              0
   0.0000
   0.0080
            3.6149
                     -0.1504
                               0.0056
  -0.0003
            -0.1543
                     0.0066
                              -0.0003
            -0.0098
  -0.0000
                      0.0004
                              -0.0000
   0.0000
            0.0008
                      0.0000
                              -0.0000
```

```
Con =
  1.0e+04 *
       0
           -0.0175
                   0.1990
                             -2.2214
  -0.0001
          0.0007
                    -0.0083
                            0.0945
  -0.0002
          0.0002
                    -0.0006
                            0.0061
           -0.0002
                    0.0002
                             -0.0006
```

کنترل پذیری و رویت پذیری

فرم جردن فضای حالت:

```
JB =

0.0036 - 0.0000i
0.2018 + 0.0000i
3.2863 - 0.0000i
-3.4917 + 0.0000i
```

کنترل پذیری و رویت پذیری

شرط تحریک نشدن مود خاصی از سیستم:

بررسی انواع پایداری

توابع تبدیل متناظر با خروجی های متفاوت:

```
ans =
  From input to output...
                    -175 \text{ s}^2 - 327 \text{ s} + 222.7
        s^4 + 13.24 s^3 + 22.39 s^2 + 9.293 s + 0.4326
         -0.6951 \text{ s}^3 - 1.792 \text{ s}^2 - 0.8259 \text{ s} - 0.4738
        s^4 + 13.24 s^3 + 22.39 s^2 + 9.293 s + 0.4326
                -1.937 \text{ s}^3 - 23.85 \text{ s}^2 - 25.79 \text{ s}
        s^4 + 13.24 s^3 + 22.39 s^2 + 9.293 s + 0.4326
                   -1.937 \text{ s}^2 - 23.85 \text{ s} - 25.79
        s^4 + 13.24 s^3 + 22.39 s^2 + 9.293 s + 0.4326
Continuous-time transfer function.
```

Ac = 0 1.0000 0 0 0 0 1.0000 0 0 0 1.0000 -0.4326 -9.2930 -22.3900 -13.2400

بررسی انواع پایداری

تحقق کانونی کنترل کننده:

بررسی انواع پایداری داخلی، ورودی-خروجی و لیاپانوف

```
>> eig(A)
ans =
  -11.3393
   -1.2958
   -0.5539
   -0.0532
```

```
>> eig(P)
ans =
   1.0e+03 *
    0.0000
    0.0307
    0.2294
    2.7298
```

```
P =
  1.0e+03 *
   0.0005
            0.0092
                     0.0060
                             0.0001
   0.0092
          0.1920
                    0.0327
                              -0.0719
   0.0060
          0.0327
                    1.8071
                              1.2668
   0.0001
           -0.0719
                     1.2668
                               0.9905
```

ورودی به خروجی برای متغیر سرعت (فراجهش کم و زمان نشست کم اهمیت)

ورودی به خروجی برای متغیر زاویه حمله (فراجهش کم و زمان نشست کم اهمیت)

ورودی به خروجی برای متغیر سرعت زاویه ای (فراجهش و زمان نشست هردو دارای اهمیت)

ورودی به خروجی برای متغیر زاویه تاب(فراجهش و زمان نشست هردو دارای اهمیت)

جایابی دو قطب روی -0.5 و دو قطب روی -5

جایابی دو قطب روی -0.5 و دو قطب روی -2.5

جایابی به جهت سرعت بیشتر

$$Q \equiv R$$
 , $Q \equiv 100R$

$$Q \equiv R$$
 , $Q \equiv 100R$

