Minimal Surface and Its Application to 3-manifolds II

Xiaolong Hans Han

Toronto Geometric Analysis Seminar

Some remark for last time

Stability operator and stable minimal surface

Assume $\Sigma^{n-1} \subset M^n$ is minimal. Let F be a normal variation, $F_t^T \equiv 0$. The second variation of Σ is defined by

$$\left. \frac{d^2}{dt^2} \right|_{t=0} Vol(F(\Sigma, t)) = -\int_{\Sigma} \langle F_t, \mathcal{L}F_t \rangle,$$
 (1)

where \mathcal{L} is called stability or Jacobi operator.

Assume Σ has trivial normal bundle, then for a normal vector field $X = \nu N$,

$$\mathcal{L}\nu := \Delta_{\Sigma}\nu + |A|^2\nu + Ric_M(N, N)\nu \tag{2}$$

A minimal surface Σ is called **stable** if

$$\left. \frac{d^2}{dt^2} \right|_{t=0} Vol(F(\Sigma, t)) = -\int_{\Sigma} \langle F_t, \mathcal{L}F_t \rangle \ge 0$$
 (3)

Morse index

We call λ an eigenvalue of $\mathcal L$ if

$$\mathcal{L}X + \lambda X = 0 \tag{4}$$

The **Morse index** is defined to be the number of negative eigenvalues of \mathcal{L} .

An index 1 minimal surface and an index 5 minimal surface:

Theorem, Urbano '90

Let S be a compact orientable nontotally geodesic minimal surface in S^3 . Then $\operatorname{ind}(M) \geq 5$, and the equality holds iff M is a Clifford torus.

Examples of stable minimal surfaces

2-torus and hyperbolic helicoid (Biao Wang '19)

Area minimizing surfaces in a homotopy class or homology class are stable.

Complete stable surface in Euclidean space

Existence of minimal surface with boundary, non-compact minimal surface like helicoid and catenoid. Stable non-compact min surfaces in \mathbb{H}^3 .

Carmo-Peng '79, Schoen-Colbrie '80 (Bernstein 1917)

A stable complete minimal surface in \mathbb{R}^3 is a plane.

From ambient to submanifold and vice versa

Suppose $\Sigma^{n-1} \subset M^n$ is a closed stable minimal hypersurface with trivial normal bundle.

- Simons '68 : If $\mathrm{Ric}_M \geq 0$, then Σ is totally geodesic and $\mathrm{Ric}_M(N,N) = 0$ on Σ
- ② Schoen-Yau '79: If $\operatorname{Scal}_M > 0$ and n = 3, then Σ is an S^2 or an \mathbb{RP}^2 and

$$\int_{\Sigma} \mathsf{Scal}_M + |A|^2 \le 8\pi \tag{5}$$

Proof:

Gao-Yau '86: Every closed M^3 admits a metric with negative Ricci.

Classical and geometric Dehn's Lemma

Dehn's lemma: If a Jordan curve on ∂M^3 compact is homotopically trivial, then it bounds an **embedded** disk.

Announced by Dehn 1910, a gap found Kneser '29, fixed by Papakyriakopoulos '57, simplified by Whitehead and Shapiro '57.

Classical and geometric Dehn's Lemma

Dehn's lemma: If a Jordan curve on ∂M^3 compact is homotopically trivial, then it bounds an **embedded** disk.

Announced by Dehn 1910, a gap found Kneser '29, fixed by Papakyriakopoulos '57, simplified by Whitehead and Shapiro '57.

Geometric Dehn's Lemma, GDL (Meeks-Yau, '82): M^3 compact with ∂M convex. If Γ is a scc in ∂M homotopically trivial in M, then:

- **1** $\exists f: D \to M$ of least-energy such that $f|_{\partial D}$ parameterizes Γ .
- ② f above is 1-1 and smooth immersion in D° .
- **1** If is as regular as Γ along ∂D . Γ $C^2 \implies f$ an immersion.
- **③** If f_1 and f_2 are two such solutions and $f_1(D^{\rm o}) \cap f_2(D^{\rm o}) \neq \emptyset$, then $f_2 = f_1$ up to conformal diffeomorphism reparameterization.

Cut and paste for Statement 4

Suppose that D_1 , D_2 are two least-area embedded disks in M with $\partial D_1 = \partial D_2 = \Gamma$, which intersect transversely at some interior point of the disks.

Outline for Statement 1 and 3

1 Extend M to a homogeneously regular \widetilde{M} without boundary.

- Use Morrey '48 to get a least-energy map f.
- **1** Use Osserman '70 and Gulliver '73 to conclude $f|_{int(D)}$ is an immersion. Use Lewy '51 and Hildebrandt '69 to conclude the boundary regularity.

Proof of Statement 2

Let M^3 be compact analytic. Suppose D is the closed unit disk in the plane and γ is an analytic curve on ∂M and $f:D\to M$ is a least-area (energy) map with $f(\partial D)=f(D)\cap\partial M=\gamma$. Then f is 1-1.

- f is an analytic immersion (Last slide + Morrey '48 for analyticity)
- ② f is simplicial w.r.t. fixed triangulations of D and M (by Lojasiewicz '64).
- two distinct analytic embedded disks (least-area w.r.t. boundary) have no interior intersections.

1 by barycentric subdivision, can assume the simplicial nbhd of f(D) is a regular nbhd.

Refined tower construction using minimal surface

Construction of a tower for $f:D\to M$ to simplify the self-intersection for f:

 N_1 a simplicial regular nbhd of f(D). Restrict the range to get $f_1:D\to N_1$. If N_1 is not simply connected, take universal cover and lift to get f_2 .

A combinatorial upper bound on complexity

T is the collection of open simplices and vertices. Let $c = \#T \times T$. Terminates $\leq c$ steps.

Lemma

If $S(f_i) = \{(\sigma, \tau) \in T \times T | \sigma \neq \tau, f(\sigma) = f(\tau)\}$, then $S(f_{i+1})$ is a proper subset of $S(f_i)$. Hence the tower construction terminates at finite steps.

Background and Motivation

Mostow Rigidity and Effective Geometrization

When M is finite-volume hyperbolic manifold with dim \geq 3, its geometry is determined by its topology.

Norms on the Cohomology

Measuring $H^1(M) \cong H_2(M)$ Thurston norm, L^2 -norm, least area norm, L^1 -norm, L^{∞} -norm.

Thurston Norm

For a compact irreducible 3-manifold M, the Thurston norm of $\phi \in H^1(M; \mathbb{Z}) \cong H_2(M; \mathbb{Z})$ is defined by

$$\chi_{-}(S) = \max\{0, -\chi(S)\}$$
 $\|\phi\|_{Th} = \min\{\chi_{-}(S)|S \text{ is a properly embedded surface dual to } \phi\}$

When M is closed hyperbolic, it is non-degenerate and a genuine norm.

L^2 and L^1 Norm

$$|\alpha|_{L^2}^2 := \int_M |\alpha(x)|^2 d\text{vol}_g(x) = \int_M \alpha \wedge *\alpha$$

For $\phi \in H^1$, we have $\|\phi\|_{L^2} = \inf\{|\alpha|_{L^2} | \alpha \text{ represents } \phi\}$

$$|\alpha|_{L^1} := \int_M |\alpha(x)| d\text{vol}_g(x)$$

Least Area Norm

For $\phi \in H^1$, let \mathcal{F}_{ϕ} be the collection of smooth maps $f: S \to M$ where S is a closed oriented surface with $f_*([S])$ dual to ϕ . The least area norm of ϕ is

$$\|\phi\|_{LA} = \inf \left\{ \operatorname{Area}(f(S)) | f \in \mathcal{F}_{\phi} \right\}$$

Theorem (Bergeron-Sengün-Venkatesh 2015)

If M is a finite of a fixed closed orientable hyperbolic 3-manifold M_0 , then we have

$$\frac{C_1}{\operatorname{vol}(M)}\|\cdot\|_{\mathit{Th}} \leq \|\cdot\|_{\mathit{L}^2} \leq C_2\|\cdot\|_{\mathit{Th}} \text{ on } \mathit{H}^1(M;\mathbb{R})$$

where C_1 and C_2 depend only on M_0 . It generalizes Kronheimer-Mrowka.

Theorem (Bergeron-Sengün-Venkatesh 2015)

If M is a finite of a fixed closed orientable hyperbolic 3-manifold M_0 , then we have

$$\frac{C_1}{\operatorname{vol}(M)}\|\cdot\|_{Th} \leq \|\cdot\|_{L^2} \leq C_2\|\cdot\|_{Th} \text{ on } H^1(M;\mathbb{R})$$

where C_1 and C_2 depend only on M_0 . It generalizes Kronheimer-Mrowka.

Theorem (Brock-Dunfield 2017), (Lin 2017)

For all closed orientable hyperbolic 3-manifolds M one has :

$$\frac{\pi}{\sqrt{\operatorname{vol}(M)}} \|\cdot\|_{Th} \leq \|\cdot\|_{L^2} \leq \frac{10\pi}{\sqrt{\operatorname{inj}}} \|\cdot\|_{Th}, \text{ on } H^1(M;\mathbb{R})$$

(Lin 2017) uses the technique of Kronheimer-Mrowka to prove the LHS.

Theorem (Stern 2019, Bray-Stern 2019)

Generalize the LHS to 3-manifolds with boundary and reducible cases.

A Glance at the Noncompact Case

Finite-volume case also shares the rigidity and it is natural to wonder.

inj = 0

One immediate challenge: injectivity radius of M is zero. We have to modify the inequality so that it can produce useful bounds on the 1-form.

Thurston norm degenerate $H_2(M)$

The boundary-parallel torus has Thurston norm 0 and area goes to 0.

Solution is Surprisingly Simple!

Only need to ask for L^2

The L^2 condition works extraordinarily well with Thurston norm and minimal surface theory. Denote \mathcal{H}^1 the space of L^2 harmonic 1-form. [Zucker, 1982 and Mazzeo-Phillips 1990] showed that $\mathcal{H}^1 \cong \operatorname{Im}(H_0^1(M) \to H^1(M)) \cong \operatorname{Im}(H_2(M) \to H_2(M, \partial M))$.

Lemma (H. '20):

- **1** The Thurston norm is a genuine norm on \mathcal{H}^1 .
- 2 The following estimates hold on \mathcal{H}^1 :

$$\pi \|\cdot\|_{\mathit{Th}} \leq \|\cdot\|_{\mathit{LA}} \leq 2\pi \|\cdot\|_{\mathit{Th}}$$

Existence of LA surface established by Huang-Wang, Collin-Hauswirth-Mazet-Rosenberg is crucial. Apply arguments in Hass or Collin-Hauswirth-Mazet-Rosenberg for the estimates.

Compact Subdomain Suffices for the Inequality

Theorem (H. '20):

For all finite-volume orientable hyperbolic 3-manifolds M one has

$$\frac{\pi}{\sqrt{\text{vol}(M)}} \| \cdot \|_{Th} \le \| \cdot \|_{L^2} \le \max\{\frac{10\pi}{\sqrt{\text{inj}(M_\tau)}}, \frac{8\pi}{\text{inj}(M_\tau)}\} \| \cdot \|_{Th} \text{ on } \mathcal{H}^1$$
 (6)

au is a constant explicitly computatble from M.

Proof of Upper Bound

Counting duplicates when M is lifted:

Poincaré duality in closed vs. non-compact

Proof of Upper Bound

For the closed case: Fix a surface S dual to α , and α is the harmonic representative of ϕ . Thus we have

$$\|\alpha\|_{L^{2}}^{2} = \int_{M} *\alpha \wedge \alpha = \int_{S} *\alpha$$

$$\leq \int_{S} |*\alpha| dA \leq \int_{S} \|\alpha\|_{L^{\infty}} dA$$

$$\leq \|\alpha\|_{L^{\infty}} Area(S) \leq 2\pi \|\alpha\|_{L^{\infty}} \|\alpha\|_{Th}$$

Figure 1: Data from Dunfield-Hirani

Sharpness for *M* closed

Can it achieve 1?

Proposition (H. '20):

The LHS of the inequality in Brock-Dunfield will never be realized:

$$\frac{\pi}{\sqrt{\operatorname{vol}(M)}} \| \cdot \|_{Th} < \| \cdot \|_{L^2} \tag{7}$$

Proof of non-sharpness for Brock-Dunfield

First Proof by Bochner technique (Inspired by Stern)

Let α be a harmonic 1-form with constant length c, By Bochner formula,

$$|\nabla \alpha|^2 = 2|\alpha|^2 = 2c^2$$

The second fundamental form on S is

$$\sigma_{\mathcal{S}} = \frac{\nabla \alpha}{|\alpha|} \Big|_{\mathcal{S}}$$

which implies that

$$|\sigma_{\mathcal{S}}|^2 = 2$$

Contradicts the property of holomorphic quadratic differential.

Second proof based on Wolf-Wu

Wolf-Wu: Geometric folitation

Locally geometric 1-parameter family of closed minimal surface: if \exists a closed surface S, $\epsilon > 0$, an embedding:

$$h: (-\epsilon, \epsilon) \times S \to M$$
 (8)

 $\forall p \in S$, $f(t,p) := \langle (h_t)_*(\partial_t), \nu \rangle|_{t=0}$ only depends on the principal curvature of S at p.

Geometric foliation and harmonic forms of constant length

- **1** Harmonic form with constant length gives a foliation by minimal surface (fibered over S^1) with orthogonal geodesic flow. Particular case of Wolf-Wu.
- 2 Theorem (Zeghib, '83): There is no smooth vector fields on a closed hyperbolic 3-manifold where all flow lines are geodesic.

Non-sharpness in the non-compact case is easier to prove, thanks to Mazzeo-Phillips, on asymptotic of harmonic forms near infinity.

A conjecture from Brock-Dunfield

Let M_j be a sequence of orientable closed hyperbolic 3-manifolds, converging geometrically to M. Then the

$$\sup_{H^1(M_i)} \frac{\|\cdot\|_{L^2}}{\|\cdot\|_{Th}} \sim \mathcal{O}\left(\sqrt{-\log(\operatorname{inj}(M_j))}\right)$$
(9)

Figure 2: L14n21792

 M_i is obtained from M by particular Dehn fillings.

Natural questions: one cusp? More than two cusps?

Theorem, H' 21

Let M_j be a sequence of orientable closed hyperbolic 3-manifolds, converging geometrically to M with one cusp. Then for j large enough,

$$\sup_{H^1(M_i)} \frac{\|\cdot\|_{L^2}}{\|\cdot\|_{Th}} < C \tag{10}$$

where C depends on M.

For *n* cusps, this is generic. Geometric convergence vs. Dehn fillings:

Outline of proof (for large j)

• Use Hatcher '82 to conclude $H_2(M_j)$ all come from the closed non-peripheral surfaces from M, Im. Use Agol '01 to control the topological complexity;

② Use barrier surface arguments to argue no deep disk, as in Wang '12, Huang-Wang '18, Hass '15, Mazet-Rosenberg '20. Use k-bi-Lipshitz diffeomorphism between thick part of M_j and M to argue no deep annulus, by the work of Futer-Purcell-Schleimer '19 (based on Bromberg-Brock 04, Hodgson-Kerckhoff '02) and Huang-Wang '17;

1 Modify Brock-Dunfield, replace $inj(M_j)$ by $\epsilon(M)$.

Thanks to the organizers and the audiences!