QQ-Plot Parameterschätzung

Peter Büchel

HSLU TA

Stat: Block 05

Beispieldatensatz Betondruckfestigkeit

k	$x_{(k)}$
1	24.4
2	27.6
3	27.8
4	27.9
5	28.5
6	30.1
7	30.3
8	31.7
9	32.2
10	32.8
11	33.3
12	33.5
13	34.1
14	34.6
15	35.8
16	35.9
17	36.8
18	37.1
19	39.2
20	39.7

• Messung: Betondruckfestigkeit von n = 20verschiedenen Proben

• Wie gut können die Daten mit einer Normalverteilung beschrieben werden?

Beispieldatensatz Betondruckfestigkeit

k	$x_{(k)}$	$\alpha_k = (k - 0.5)/n$	$\Phi^{-1}(lpha_k)$	q_{lpha_k} (für $\mathcal{N}(32.54, \sigma^2)$)
1	24.4	0.025	-1.9600	24.53167
2	27.6	0.075	-1.4395	26.69133
3	27.8	0.125	-1.1503	27.89136
4	27.9	0.175	-0.9346	28.78670
5	28.5	0.225	-0.7554	29.53023
6	30.1	0.275	-0.5978	30.18445
7	30.3	0.325	-0.4538	30.78201
8	31.7	0.375	-0.3186	31.34273
9	32.2	0.425	-0.1891	31.88021
10	32.8	0.475	-0.0627	32.40478
11	33.3	0.525	0.0627	32.92522
12	33.5	0.575	0.1891	33.44979
13	34.1	0.625	0.3186	33.98727
14	34.6	0.675	0.4538	34.54799
15	35.8	0.725	0.5978	35.14555
16	35.9	0.775	0.7554	35.79977
17	36.8	0.825	0.9346	36.54330
18	37.1	0.875	1.1503	37.43864
19	39.2	0.925	1.4395	38.63867
20	39.7	0.975	1.9600	40.79833

QQ-Plot Betondruckfestigkeit

Normal-Plot

• Plotten theoretischen Quantile $q(\alpha_k) = \Phi^{-1}(\alpha_k)$ der Standardnormaverteilung gegen die empirischen Quantile $x_{(k)}$

- ① Datensatz: x_1, x_2, \ldots, x_n
- $\alpha_{(k)} = \frac{k-0.5}{n}, \ k = 1, 2, \dots, n$
- $exttt{ texttt{ exttt{ exttt{ exttt{ exttt{ exttt{ texttt{ texttt{ texttt{ exttt{ extt}}}}}}}} \expt{ exttt{ extt{ exttt{ extt{ exttt{ exttt{ exttt{ exttt{ exttt{ exttt{ exttt{ exttt{ exttt{$
- **©** Empirische Quantile: $x_{(1)}, x_{(2)}, \dots, x_{(n)}$

Normal-Plot mit Python

```
import numpy as np
import scipy.stats as st
import matplotlib.pyplot as plt

x = np.array([24.4, 27.6, 27.8, 27.9, 28.5, 30.1, 30.1, 30.3,
31.7, 32.2, 32.8, 33.3, 33.5, 34.1, 34.6, 35.8, 35.9, 36.8, 37.1,
39.2, 39.7])
```

st.probplot(x, plot=plt)

Beispiele Normalplots für 3 Datensätze mit n = 500

Normalplots von simulierten Standardnormalverteilungen

Parameterschätzung - Maximum-Likelihood

- $X \sim \operatorname{Pois}(\lambda)$ mit unbekanntem Parameter λ , welchen wir mit der Maximum-Likelihood Methode schätzen wollen.
- Datensatz : x_1, \ldots, x_n
- **Likelihood-Funktion**: Wahrscheinlichkeit, dass $X_1 = x_1$ **und** $X_2 = x_2$ etc. **und** $X_3 = x_3$ beobachtet werden, falls $X_i \sim \text{Pois}(\lambda)$ und alle Beobachtungen x_i unabhängig voneinander sind:

$$P(X_1 = x_1 \cap ... \cap X = x_n) = P(X_1 = x_1) \cdot P(X_2 = x_2) \cdots P(X = x_n)$$

$$= e^{-\lambda} \frac{\lambda^{x_1}}{x_1!} \cdot e^{-\lambda} \frac{\lambda^{x_2}}{x_2!} \cdots e^{-\lambda} \frac{\lambda^{x_n}}{x_n!}$$

$$= \prod_{i=1}^n e^{-\lambda} \frac{\lambda^{x_i}}{x_i!}$$

$$= L(\lambda)$$

• log-Likelihood-Funktion ist:

$$I(\lambda) = \log(L(\lambda))$$

$$= \log\left(\prod_{i=1}^{n} e^{-\lambda} \frac{\lambda^{x_i}}{x_i!}\right)$$

$$= \sum_{i=1}^{n} \log\left(e^{-\lambda} \frac{\lambda^{x_i}}{x_i!}\right)$$

• Leitet man $I(\lambda)$ nach λ ab und setzt $I'(\lambda)=0$, so erhält man die Gleichung

$$\frac{1}{\lambda}\sum_{i=1}^n x_i - n = 0.$$

• Maximum-Likelihood Schätzer : $\hat{\lambda} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$.

Maximum-Likelihood-Schätzer für Poisson-Verteilung

Maximum-Likelihood Schätzer

Sind die Datenpunkte x_i unabhängige Realisierungen der Zufallsvariablen $X_i \sim \text{Poisson}(\lambda)$, so ergibt der Maximum-Likelihood-Schätzer:

$$\hat{\lambda} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

• **Beispiel:** Hersteller für Isolationsmaterialen misst die Anzahl kanzerogener Fasern pro mm² in 5 Proben. Gemessenen Werte x_1, \ldots, x_5 seien:

• Anzahl kanzerogener Fasern folgt Poisson-Verteilung: Beobachtungen sind x_1, \ldots, x_5 Realisierungen von $X_1, \ldots, X_5 \sim \text{Poisson}(\lambda)$ sind. Maximum-Likelihood-Schätzer: $\hat{\lambda} = \bar{x} = 3.2$

Likelihood-Funktion für Datensatz kanzerogener Fasern

Log-Likelihood Funktion für Datensatz kanzerogener Fasern

Momentenmethode

Maximum-Likelihood Schätzer bei Poisson-Verteilung:

$$\hat{\lambda} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \,,$$

d.h. $\hat{\lambda} = \widehat{E(X)} = \bar{x}$. Geschätzter Erwartungswert ist arithmetisches Mittel.

• Maximum-Likelihood Schätzer bei Binomial-Verteilung, z.B. x_1 Gewinne von n_1 Losen beim 1. Versuch, etc. (siehe Serie 5):

$$\hat{\pi} = \frac{x_1 + \ldots + x_n}{n_1 + \ldots + n_2} = \frac{x}{n}.$$

Da $\mathrm{E}(X) = n\pi$ und $\hat{\pi} = \frac{\widehat{E(X)}}{n}$, ist der geschätzte Erwartungswert die beobachtete Anzahl Gewinne $\widehat{E(X)} = x$

Momentenmethode

- X Binomial-verteilt: $E(X) = n\pi$
- Also $\pi = \mathrm{E}(X)/n$
- n (Anzahl unabhängiger Versuche) wird als bekannt vorausgesetzt
- Pragmatisch motivierte Schätzung ist dann:

$$\widehat{\mathrm{E}(X)} = x =$$
 beobachtete Anzahl Gewinne

Man schätzt den Erwartungswert also durch die Beobachtung.

Momentenmethode

Somit ergibt sich aufgrund der **Momentenmethode** die relative Häufigkeit

$$\hat{\pi} = x/n$$

Zusammenfassung Parameterschätzer

- Für unsere beobachteten Daten nehmen wir ein Modell an (z.B. Binomialverteilung)
- Das Modell enthält unbekannte Parameter (z.B. π)
- Basierend auf den beobachteten Daten versuchen wir, die Parameter zu schätzen (z.B. mit Momentenmethode, Maximum-Likelihood Methode).
- Das heisst, dass wir basierend auf den beobachteten Daten versuchen, Rückschlüsse über den datengenerierenden Mechanismus zu ziehen!