Среднее значение функции. 15 октября

Синий косяк. Косяк— синий.

- **1.** Вычислите a) $\int_0^{2\pi} \cos x \, dx$; b) $\int_0^{2\pi} |\cos x| \, dx$.
- **2.** На плоскости дан некоторый отрезок длины a. Обозначим через $\ell_a(\alpha)$ длину проекции отрезка a на прямую, образующую угол α с заданным направлением. Найдите $\int_0^{2\pi} \ell_a(\alpha) \ d\alpha$.
- **3.** На плоскости даны два выпуклых многоугольника Φ_1 и Φ_2 , причём Φ_2 лежит строго внутри Φ_1 . Пользуясь результатом задачи **2.** докажите, что периметр Φ_2 меньше периметра Φ_1 .
- **4.** а) Докажите, что если длины всех сторон и диагоналей выпуклого многоугольника не превосходят d, то его периметр не превосходит πd .
- b) Докажите, что константа π в пункте a) явялется точной.
- **5.** Докажите, что периметр выпуклой оболочки любой замкнутой ломанной не превосходит длины этой ломанной.
- **6.** На плоскости даны векторы \vec{a} , \vec{b} , \vec{c} , \vec{d} , сумма которых равна $\vec{0}$. Докажите, что $|\vec{a}| + |\vec{b}| + |\vec{c}| + |\vec{d}| \geqslant |\vec{a} + \vec{d}| + |\vec{b} + \vec{d}| + |\vec{c} + \vec{d}|$.
- 7. а) На плоскости даны векторы $\vec{a_1}, \vec{a_2}, \dots, \vec{a_n}$, сумма длин которых равна 1. Докажите, что среди них можно выбрать несколько векторов, длина суммы которых не меньше $1/\pi$.
- b) Докажите, что константа $1/\pi$ в пункте а) является точной.

Среднее значение функции. 15 октября

Синий косяк. Косяк — синий.

- **1.** Вычислите a) $\int_0^{2\pi} \cos x \, dx$; b) $\int_0^{2\pi} |\cos x| \, dx$.
- **2.** На плоскости дан некоторый отрезок длины a. Обозначим через $\ell_a(\alpha)$ длину проекции отрезка a на прямую, образующую угол α с заданным направлением. Найдите $\int_0^{2\pi} \ell_a(\alpha) \ \mathrm{d}\alpha$.
- **3.** На плоскости даны два выпуклых многоугольника Φ_1 и Φ_2 , причём Φ_2 лежит строго внутри Φ_1 . Пользуясь результатом задачи **2.** докажите, что периметр Φ_2 меньше периметра Φ_1 .
- **4.** а) Докажите, что если длины всех сторон и диагоналей выпуклого многоугольника не превосходят d, то его периметр не превосходит πd .
- b) Докажите, что константа π в пункте а) явялется точной.
- **5.** Докажите, что периметр выпуклой оболочки любой замкнутой ломанной не превосходит длины этой ломанной.
- **6.** На плоскости даны векторы $\vec{a}, \vec{b}, \vec{c}, \vec{d}$, сумма которых равна $\vec{0}$. Докажите, что $|\vec{a}| + |\vec{b}| + |\vec{c}| + |\vec{d}| \geqslant |\vec{a} + \vec{d}| + |\vec{b} + \vec{d}| + |\vec{c} + \vec{d}|$.
- 7. а) На плоскости даны векторы $\vec{a_1}, \vec{a_2}, \ldots, \vec{a_n}$, сумма длин которых равна 1. Докажите, что среди них можно выбрать несколько векторов, длина суммы которых не меньше $1/\pi$.
- b) Докажите, что константа $1/\pi$ в пункте а) является точной.