Ryan Lehmkuhl

https://github.com/ryanleh ryanleh@berkeley.edu

I am interested in using cryptography to build decentralized and privacy-preserving systems.

EDUCATION

UC BERKELEY | B.S. Electrical Engineering and Computer Science

Class of 2021 • GPA 3.9/4.0

RELEVANT COURSEWORK

CS294-153	Foundations of Probablistic Proofs
CS294-163	Decentralized Security: Theory and Systems
CS261	Systems Security
CS161	Computer Security
CS171	Cryptography
CS170	Efficient Algorithms & Intractable Problems
CS162	Operating Systems
CS188	Artificial Intelligence
EECS126	Probability and Random Processes
Math 113 & 114	Abstract Algebra I & II

AWARDS AND HONORS

2021: NSF Graduate Fellowship Honorable Mention

2020: CRA Outstanding Undergraduate Researcher Finalist Top 32 undergraduate CS researchers in the nation

2020: UC Berkeley EECS Outstanding GSI Award Top 10% of student instructors

2019: UC Berkeley Summer Undergraduate Research Fellowship 21 students selected (I was the only EECS major chosen)

2017: UC Berkeley Regents' and Chancellor's Scholarship Top < 1% of incoming students

PUBLICATIONS

- [1] **Ryan Lehmkuhl**, Pratyush Mishra, Akshayaram Srinivasan, and Raluca Ada Popa. "Muse: Secure CNN inference for malicious clients". USENIX Security '21.
- [2] Pratyush Mishra, **Ryan Lehmkuhl**, Akshayaram Srinivasan, Wenting Zheng, and Raluca Ada Popa. "Delphi: A cryptographic inference service for neural networks". USENIX Security '20.

TEACHING

Summer 2020	Co-instructor for CS161 (Computer Security)
Spring 2020	Teaching Assistant for CS161 (Computer Security)
Summer 2019	Teaching Assistant for CS161 (Computer Security)

RESEARCH

PRIVATE DELEGATION OF ZKSNARK PROVERS | RISELab, UC Berkeley

September 2020 - Present

Working under Professor Alessandro Chiesa on efficient delegation of zero-knowledge, succinct, non-interactive arguments of knowledge (zkSNARKs). Our delegation scheme reduces a prover's computational overhead by up to $26 \times$ and memory cost by upwards of $256 \times$. In submission USENIX Security 2022.

MUSE | RISELab, UC Berkeley

September 2019 - Present

Worked under Professor Raluca Ada Popa on malicious-client secure inference. We demonstrate a devastating attack against many prior semi-honest secure inference protocols which allows a malicious client to perfectly extract the server's model upwards of $312\times$ faster than prior attacks. Motivated by this, we design Muse, an efficient secure inference protocol secure against malicious clients. Muse outperforms existing works by up to $21\times$ and uses up to $3.6\times$ less communication.

Worked under Professor Raluca Ada Popa and Pratyush Mishra on semi-honest secure inference. Through a careful co-design of cryptography, machine learning, and systems, Delphi is up to 100x faster, uses 40x less bandwidth, and scales to networks 10x larger than prior work.

PROJECTS

DELEGATED PROVING | Efficient Delegation of SNARK Provers — Rust

September 2020 - Present

- Designed an asynchronous MPC system for handling computation on secret-shared polynomials
- Extending the poly-commit and Marlin libraries to support delegation
- Building a delegation framework for constructing zkSNARKS through a distributed network of workers

POLY-COMMIT | Multivariate Polynomial Commitment Scheme — Rust

August 2020 - Present

Designed and implemented a multivariate polynomial commitment scheme for the poly-commit library

MUSE | Client-Malicious Secure Inference — Rust, C++

September 2019 - Present

- Implemented an efficient modular reduction algorithm for garbled circuits
- Building a multi-threaded, asynchronous, two-party computation framework secure against malicious clients

DELPHI | Semi-Honest Secure Inference — Rust, C++, Python

September 2018 - September 2019

- Developed new approaches for training convolutional neural networks that are performant with cryptographic techniques using Keras and RayTune
- Built a secure two-party protocol for convolution and matrix multiplication using fully homomorphic encryption with Microsoft's SEAL library
- Implemented a novel cryptographic protocol and inference engine (Source Code)

GENETIC SCHEDULE | Genetic Algorithm for Scheduling — Python

Winter 2019

• Finds an optimal auditioning schedule for DeCadence A Cappella (Source Code)

SCRYPTO | Secure File Encryptor/Decryptor — Rust, Python

Summer 2018

Password-protected authenticated file encryption using AES-GCM and PBKDF2 (Source Code)

SECURE FILE STORE (CS161) | Maliciously-Secure Shared File Store — Python, Go

Spring 2018

Fully encrypted database with hierarchical sharing/revocation and efficient updates using a Merkle Tree

SCADA NETWORK TCP SESSION HIJACKER | MITM exploit — Python

Summer 2016

• Concurrently executes ARP cache poisoning and TCP session hijacking to hack a Navy SCADA controller

EXPERIENCE

OPAQUE | Software Engineer

Spring 2021 - Present

Constructing efficient systems for private data analytics utilizing hardware enclaves.

CIRCADENCE | Research and Development Intern

Summers 2017, 2018

• Researched and developed cellular network attacks utilizing software-defined radios

NAVWAR | Research and Development Intern

Summers 2015, 2016

• Performed vulnerability analysis that helped earn over \$200,000 in lab funding

WORKSHOPS

DELPHI | A Cryptographic Inference Service for Neural Networks

CCS Privacy-Preserving Machine Learning in Practice (PPMLP)

November 2020

Theory and Practice of Multi-Party Computation (TPMPC)

May 2020

MUSE | Secure Inference Resilient to Malicious Clients

• CCS Privacy-Preserving Machine Learning in Practice (PPMLP)

August 2021