# Erfahrung & Expertise: Ein Blick auf meinen Werdegang



#### **Beruflicher Werdegang:**

- Team Lead Offensive Security & Awareness, SAP SE, Walldorf
- **Team Lead** IT-Security, oculavis GmbH, Aachen
- IT-Security Administrator, NATO, Brüssel

#### **Akademischer Werdegang:**

- Promotion an der Universidad Católica San Antonio de Murcia (UCAM) in Kooperation mit der FOM
- **B.Sc. / M.Sc.**, RWTH Aachen Informatik

#### Nebenberufliche Tätigkeit

- **Dozent**, FOM Hochschule, Aachen
- ISO/IEC 27001 Lead Auditor

# Integritätsprüfung in verteilten Systemen mit Merkle Trees

Dr. Thorsten Weber Juli 16, 2025



# Was sollten Sie nach dieser Vorlesung wissen und können?





#### **Strukturverständnis**

Die Studierenden können den **Aufbau und die Funktionsweise** eines Merkle Trees **beschreiben und erklären**.



### **Anwendungskompetenz**

Die Studierenden können Anwendungsfälle von Merkle Trees identifizieren und deren Nutzen zur Integritätsprüfung begründet darstellen.



1

Einleitung: Wir organisieren ein Konzert

## Der Sommer ist da, wir möchten ein Konzert organisieren! - Phase 1

Ein Konzert – 1 Ticketstelle, 1 Einlass, 200 Tickets, Internet vorhanden



## Der Sommer ist da, wir möchten ein Konzert organisieren! - Phase 1

Ein Konzert – 1 Ticketstelle, 1 Einlass, 200 Tickets, Internet vorhanden



# Das Konzert war ein MEGA Erfolg! - Phase 2

Ein Konzert – 200 Ticketstellen, 20 Einlässe, 50.000 Tickets, kein Internet



## Das Konzert war ein MEGA Erfolg! - Phase 2

Ein Konzert – 200 Ticketstellen, 20 Einlässe, 50.000 Tickets, kein Internet



Naive Idee: Wir laden die 50.000 Namen auf alle Ticketscanner (z. B. als CSV oder JSON)

## Das Konzert war ein MEGA Erfolg! - Phase 2

Ein Konzert – 200 Ticketstellen, 20 Einlässe, 50.000 Tickets, kein Internet









Frage: Ist das eine gute Idee?

- Herausforderung 1: Liste ist groß
   ⇒Datenschutz
- Herausforderung 2: Was, wenn jemand die Liste nachträglich manipuliert? ⇒ Wie weiß der Scanner, ob er die richtige, originale Liste hat (verteilte, dezentrale Systeme)?

15.07.2025

#### Wie können wir unser Konzert hier absichern?

## Ziel ist ein Ansatz, der folgende Anforderungen erfüllt:

- Speichereffizienz: Die Liste enthält rund 50.000 Einträge.
- Verteilbarkeit: Die Liste muss auf allen Geräten identisch und aktuell gehalten werden.
- Offline-Fähigkeit und Dezentralität: Ein Abgleich über das Internet ist nicht möglich.
- Manipulationssicherheit:
  - > Es dürfen keine Tickets unbemerkt hinzugefügt werden.
  - Kein Eintrag darf gelöscht oder verändert werden.
- Datenschutzkonformität: Es muss sichergestellt werden, dass kein Risiko für DSGVO-Verstöße besteht.



15.07.2025 Dr. Thorsten Weber

2

**Merkle Trees - Grundlagen** 

# Ralph Merkle - Pionier der asymmetrischen Kryptographie

- Veröffentlichte Merkle Trees 1979 in seiner Dissertation [1]
  - Merkle Tree Struktur zur effizienten Integritätsprüfung

|              |                   | tates Patent [19]                                                                                                                                                                    | [11]                                                                                                                                                                                                                 | 4,309,569           |              |
|--------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|
| Mei          | rkle              | ENGRG #A5                                                                                                                                                                            | ilable Copy                                                                                                                                                                                                          | [45]                | Jan. 5, 1982 |
| [54]         | METHOD<br>SIGNATU | OF PROVIDING DIGITAL<br>RES                                                                                                                                                          | [56]<br>U.S                                                                                                                                                                                                          | References Cited    |              |
| [75]         | Inventor:         | Ralph C. Merkle, Mountain View,<br>Calif.                                                                                                                                            | 4,200,770 4/1980 Hellman et al 375/2                                                                                                                                                                                 |                     |              |
| [73]         | Assignee:         | Signee: The Board of Trustees of the Leland Stanford Junior University, Stanford, Calif.  Primary Examiner—Howard A. Birmic Attorney, Agent, or Firm—Flehr, Hohb Albritton & Herbert |                                                                                                                                                                                                                      |                     |              |
| [21]         | Appl. No.:        | 72,363                                                                                                                                                                               | [57]                                                                                                                                                                                                                 | ABSTRACT            |              |
| [22]         | Filed:            | Sep. 5, 1979                                                                                                                                                                         | The invention comprises a method of providing a digi-<br>tal signature for purposes of authentication of a mes-<br>sage, which utilizes an authentication tree function of a<br>one-way function of a secret number. |                     |              |
| [51]<br>[52] |                   |                                                                                                                                                                                      |                                                                                                                                                                                                                      |                     |              |
| [58]         | Field of Sea      | arch 178/22; 340/149 R, 149 A, 340/152 R; 235/379, 380, 382; 375/2                                                                                                                   | 4                                                                                                                                                                                                                    | Claims, 1 Drawing 1 | Figure       |



**Bildquelle:** david.orban, CC BY 2.0, via Wikimedia Commons

# Merkle Tree Beispiel

#### **Definition: Merkle Tree [1]**

Ein Merkle-Tree über einer endlichen Liste von Einträgen  $E = (e_1, e_2, ..., e_n)$  ist ein vollständiger binärer Baum T, bei dem gilt:

- Die Blätter  $L_i$  entsprechen den Hashes der Einträge:  $L_i = H(e_i)$ ,  $i \in \{1, ..., n\}$
- Jeder innere Knoten v mit linken Kind  $v_l$  und rechtem Kind  $v_r$  enthält:  $v = H(v_l || v_r)$  wobei H eine kryptografische Hashfunktion ist und || die Byteweise-Konkatenation bezeichnet.
- Die Wurzel R des Baums heißt Merkle Root.



# Merkle Proof mit Beispiel für Bob

#### **Definition: Merkle Proof [1]**

- Ein Merkle Proof für einen Eintrag  $e_i$  ist **eine Folge von Hashes**, die beweist, dass  $e_i$  Teil eines Merkle Trees mit der Wurzel **R** ist ohne dass der gesamte Baum bekannt sein muss.
- Aufbau **Merkle Proof** für den Eintrag  $e_i$ :
  - Eintrag  $e_i$ ,
  - einer Liste  $P = [p_1, ..., p_k]$  von Hashwerten der Geschwisterknoten auf dem Pfad zur Wurzel,
  - einer Liste  $D = [d_1, ..., d_k]$  mit Richtungshinweisen:
    - $d_i = 0$ : der Geschwister-Hash  $p_i$  steht **links**,
    - $d_i = 1$ : der Geschwister-Hash  $p_i$  steht **rechts**.
- $e_i = Bob$
- $p_1 = 6874$ ecd...,  $d_0 = 0$
- $p_2 = d401c1f...$ ,  $d_1 = 1$
- P = [6874ecd..., d401c1f...]
- D = [0, 1]



# Beispiel Merkle Proof für Bob

#### **Definition: Merkle Proof [1]**

#### **Verifikation:**

• 
$$v_0 = H(e_i), v_j = \begin{cases} H(p_j || v_{\{j-1\}}) & \text{falls } d_j = 0 \\ H(v_{\{j-1\}} || p_j) & \text{falls } d_j = 1 \end{cases}$$

• Der Beweis gilt als korrekt, wenn:  $v_k = R$ 

**Gegeben:**  $e_i = Bob$ , P = [6874ecd..., d401c1f...], D = [0, 1], R = cb63aeab...

Frage: Ist Bob auf der List?

cb63aeab96c312ddee83f3f3736f6e8b 324dd0290da4fce3bf52ae6a

c8392d0...

d401c1f...

6874ecd...

279f0ab...

Bob

• 
$$v_0 = 279 \text{ f0ab...}$$

• 
$$v_1 = H(p_0 || v_0) = H(6874 \text{ecd...} || 279 \text{f0ab...}) = \mathbf{c8392d0} ...$$

• 
$$v_2 = H(v_1 || p_1) = H(c8392d0...||d401c1f...) = cb63aea... = R$$

## Was können wir nun mit dem Merkle Tree machen?

#### Merkle Proof ist effizient und offline fähig

Bei n = 50.000 Einträgen genügen  $\lceil \log_2(n) \rceil = 16$  Hashwerte plus der Hash des Blatts, um die Merkle Root **offline** zu verifizieren – ganz **ohne Zugriff auf die Liste** oder **den restlichen Baum**.

Zur **Verifikation** genügt das **Speichern von 17 Hashwerten**, was beispielsweise **544 Byte** bei SHA-256 entspricht und problemlos in einen QR-Code passt (max. 2.953 Byte) [2].



15.07.2025



# **Merkle Trees - Praxiseinsatz**

#### Wie können wir Merkle Trees nun für unser Konzert nutzen?

### Erinnerung: Wir suchen nach einem Ansatz,

- 1. der **speichereffizient** ist (≈50.000 Einträge),
- 2. sich offline und dezentral verifizieren lässt,
- auf allen Geräten synchron bleibt ohne Online-Abgleich,
- 4. der manipulationssicher ist (kein unbemerktes Ändern, Hinzufügen oder Löschen),
- 5. und **DSGVO-konform** arbeitet.



Erstelle Merkle Tree mit R= 92bb49f46d6360c4552ced1f0738dd85402d cbdcf52c10f1cea78f40

#### <u>Idee:</u>



Erzeuge digitale Tickets (etwa QR Code) mit:  $e_i$ , P, D des Besuchenden



Speichere Merkle Root manipulationssicher auf den Scannern und auf der Website.

# Beispiel Merkle Proof: Ist Eve auf der List?

Ticketkontrolle 7

- $e_i = Eve$ , P = [7042062..., ..., cb63aea...]
- D = [1, ..., 0]



#### **Merkle Root**

#### 92bb49f46d6360c4552ced1f0738dd85402dcbdcf52c10f1cea78f40

$$v_0 = H(e_i),$$
  $v_j = \begin{cases} H(p_j || v_{\{j-1\}}) & falls d_j = 0 \\ H(v_{\{j-1\}} || p_j) & falls d_j = 1 \end{cases}$ 

Der Beweis gilt als korrekt, wenn:  $v_k = R$ 

- $v_0 = H(e_i) = f59b9c7...$
- $v_1 = H(v_0 || 7042062...) = H(f59b9c7...|| 7042062...) = 0858160...$
- $v_{16} = H(cb63aea...||v_2) = H(cb63aea...||d70d013...) =$ 92bb49f46d6360c4552ced1f0738dd85402dcbdcf52c10f1cea78f40 = R

# Übung: Ist dieses Szenario damit auch verhindert?







| ID     | Name     |
|--------|----------|
| 1      | Alice    |
| 2      | Bob      |
| 3      | Charly   |
| 4      | Dave     |
| •••    | ••••     |
| 50.000 | Zulu     |
| 50.001 | Thorston |

4

**Zusammenfassung und Ausblick** 

# Was wir gesehen haben

## **Speichereffizient**

Die Merkle Root fasst **beliebig viele Einträge** zu einem **einzigen kompakten Hashwert** zusammen.

#### Offline verifizierbar

Die Korrektheit eines Eintrags kann **lokal** mit einem **Merkle Proof** überprüft werden [ $log\ 2\ (n)$ ] Hashwerte notwendig.

## Manipulationssicher

Bereits eine **kleine Änderung** an einem Eintrag verändert die Merkle Root – **Manipulationen** werden **zuverlässig erkannt**.

#### **Verteilbar und robust**

Merkle Trees funktionieren auch dann, wenn Einträge auf verschiedene Geräte oder Knoten verteilt sind.



# Wo Merkle Trees heute verwendet werden und wieso [2]

## **Blockchains & Kryptowährungen**

Merkle-Proof belegt, dass Transaktion in einem Block steckt

## **Paketmanager & Softwareverteilung**

Einzel-Paket per Hash verifizieren statt System-Download

## **Verteilte Dateisysteme (z. B. IPFS, Git)**

Merkle Tree prüft Dateien & beschleunigt Sync



## **Zero-Knowledge-Proofs**

Datengüte zeigen, ohne Inhalte preiszugeben



#### Limitationen

#### Kein Schutz der Vertraulichkeit

Merkle Trees sichern Integrität, aber nicht Vertraulichkeit.

### Abhängigkeit von der Hashfunktion

Die gesamte Sicherheit hängt von Hashfunktion ab (MD5 ist daher keine gute Wahl)

#### **Proof-Größe wächst mit** $log_2(n)$

Merkle Proofs sind effizient, aber nicht konstant klein (IoT ggf. ein Problem). Um einen Eintrag zu prüfen, benötigt man die gültige Merkle Root und  $\lceil log2 \ (n) \rceil$  Hashes.

## Keine inkrementellen Updates

Jede Änderung am Baum (z.B. neues Blatt) ändert die Merkle Root ggf. Overhead



## Vielen Dank!

Live Demo: https://tinyurl.com/MerkleTree

Gibt es Fragen?





thorsten.weber88@web.de

## Quellen

#### [1] Merkle, R. C. (1988).

A digital signature based on a conventional encryption function. In G. Brassard (Ed.), Advances in Cryptology — CRYPTO '87 (pp. 369–378). Springer. <a href="https://doi.org/10.1007/3-540-48184-2">https://doi.org/10.1007/3-540-48184-2</a> 32

[2] Katz, J., & Lindell, Y. (2020). Introduction to modern cryptography (3rd ed.). CRC Press.