Planche 1.

Exercice 1. Soit (u_1, \ldots, u_p) une famille de vecteurs de \mathbb{R}^n vérifiant $\langle u_i, u_j \rangle < 0$ pour $i \neq j$.

- 1. Montrer que p-1 vecteurs parmi eux forment toujours une famille libre de \mathbb{R}^n .
- 2. Montrer que l'on ne peut trouver plus de n+1 vecteurs réunissant ces conditions.
- **3.** Montrer que l'on peut en trouver n+1.

Planche 2.

Exercice 1. Soit $A \in M_n(\mathbb{R})$. On pose $f(M) = \sum_{1 \leq i,j \leq n} (a_{i,j} - m_{i,j})^2$ sur $S_n(\mathbb{R})$. Trouver le minimum de f.

Planche 3.

Exercice 1. Soit C un convexe fermé non vide d'un espace euclidien. Soit $a \notin C$.

- 1. Montrer que la distance de a à C est atteinte en un unique point.
- **2.** Soit h ce point. Montrer que pour tout $x \in C$, on a $\langle h a, h x \rangle \leq 0$.
- 3. Montrer qu'il existe un demi-espace contenant C mais qui ne contient pas a.

Hints

Planche 1. Montrons que u_1, \ldots, u_{p-1} est libre. Supposons $\sum_{i=1}^{p-1} \alpha_i u_i = 0$. On sépare suivant que α_i est positif ou non. I c'est les indices positifs J les négatifs. Alors on montre que $||\sum_I \alpha_i u_i||^2$ est négatif. On en déduit que c'est nul tout comme la somme sur J. On conclut en utilisant u_p quand même. On regarde le produit scalaire entre u_p est $\sum_I \alpha_i u_i$ pour conclure que tous les α_i sont nuls.

Une famille libre à p-1 élements est telle que $p-1 \le n$.

On prend un base orthonorme e_1, \ldots, e_n . On pose $u = -\sum e_i$. On a presque ce qu'on veut. On perturbe donc les $e_k : u_k = e_k + \lambda u$. On montre en calculant les produit scalaire qu'un λ tel que $\lambda < 1/n$ convient.

Planche 2. On interprète f comme la distance de A à M pour la norme canonique sur $M_n(\mathbb{R})$. Reste à projeter A sur $A_n(\mathbb{R})$ qui est l'orthogonal pour $S_n(\mathbb{R})$ pour le produit scalaire $\operatorname{tr}({}^tAB)$.

Planche 3. On montre qu'il existe un tel point en utilisant une suite minimisante. Pour l'unicité : soit h et h' deux points possibles. On pose $u = \frac{h+h'}{2}$ et on montre qu'il est plus proche de a que les deux autres points en bidouillant sur la formule $||x+y||^2 = ||x||^2 + ||y||^2 + 2\langle x,y\rangle$.

Soit $x \in C$. Utilisons la convexité : pour tout $t \in [0,1]$ le point th + (1-t)x doit être plus loin de a que h. On traduit ça en équation en développant avec la même formule qu'avant et puis ça va bugé pour un t.

Faire un dessin dans le plan. Le demi-espace sera déterminé par la direction h-a.