

Session IV Variables instrumentales

Christel M. J. Vermeersch

janvier 2008

Un exemple pour commencer...

- Disons que nous voulons évaluer un programme volontaire de formation professionnelle
 - Toute personne sans emploi est éligible
 - Certaines personnes choisissent de s'inscrire (« Traitements »)
 - D'autres choisissent de ne pas le faire (« Comparaisons »)
- Quelques moyens simples (mais pas très bons) d'évaluer le programme :
 - Comparez la situation avant et après dans le groupe traitement
 - Comparez la situation des traitements et des comparaisons après l'intervention
 - Comparez la situation des traitements et des comparaisons avant et après

Programme volontaire de formation professionnelle

Assumons que nous decidons de comparer les resultats des participants aux non-participants: au moyen du modèle simple suivant:

$$y = \alpha + \beta_1 T + \beta_2 x + \varepsilon$$

Ou T = 1 si la personne participe à la formation T = 0 si la personne ne participe pas à la formation x =variables de contrôle (exogènes & observables)

Pourquoi est-ce que ce modèle ne fonctionne pas bien?

Programme volontaire de formation professionnelle

Assumons que nous decidons de comparer les resultats des participants aux non-participants: au moyen du modèle simple suivant:

$$y = \alpha + \beta_1 T + \beta_2 x + \varepsilon$$

Ou T = 1 si la personne participe à la formation

T = 0 si la personne ne participe pas à la formation

x = variables de contrôle (exogènes & observables)

Pourquoi est-ce que ce modèle ne fonctionne pas bien? 2 raisons:

- ∨ Variables omises mais importantes
- ▶ La décision des personnes à participer est endogène/dépend d'elles-mêmes.

Problème #1: Variables omises

Même dans un modèle bien étudié, il manquera:

Exemples:

- ▶ Le talent et la motivation des personnes
- ▶ Le niveau d'information des personnes
- ▶ Les coûts d'opportunité à participer des personnes
- ▶ Le niveau d'accès aux services de formation et autres

Le modèle complet "correct" est: $y = \alpha + \gamma_1 T + \gamma_2 x + \gamma_3 D + \eta$

Le modèle que nous utilisons est: $y = \alpha + \beta_1 T + \beta_2 x + \varepsilon$

Problème #2 : La décision à participer est endogène

Comme la formation est volontaire, la participation est une variable de decision. Donc: une variable endogène. (C'est à dire: la participation T elle-même dépend des personnes.)

$$y = \alpha + \beta_1 T + \beta_2 x + \varepsilon$$
$$T = \pi + \pi_2 D + \xi$$

Problème #2: La décision à participer est endogèn

La participation T est une variable endogène:

$$y = \alpha + \beta_1 T + \beta_2 x + \varepsilon$$

$$T = \pi + \pi_2 D + \xi$$

$$\Rightarrow y = \alpha + \beta_1 (\pi + \pi_2 D + \xi) + \beta_2 x + \varepsilon$$

$$\Rightarrow y = \alpha + \beta_1 \pi + \beta_2 x + \beta_1 \pi_2 D + \beta_1 \xi + \varepsilon$$

Ici aussi, nous voyons que le modèle complet "correct" peut contenir une variable D que nous ne connaissons pas.

□ Le modèle « correct »est :

IMPACT EVALUATION

- Modèle simplifié:
 - Disons que nous estimons l'effet de traitem en t γ † a vel β_{1,OLS}
 - Si D est corrélé avec T, et que nous nous partie de l'effet de D. Ceci se passera dans la mesure où D et T sont corrélés.
 - Ainsi : notre estimateur OLS $β_{1,OLS}$ de l'effet de traitement $γ_1$ saisit l'effet d'autres caractéristiques (D) en plus de l'effet traitement.
 - Ceci signifie qu'il y a une différence entre $E(\beta_{1,OLS})$ y γ_1
 - \rightarrow la valeur attendue de l'estimateur OLS β_1 n'est pas $\gamma 1$, le véritable effet traitement
 - \rightarrow $\beta_{1,OLS}$ est un estimateur biaisé de l'effet traitement γ_1 .

corr (T,ε) =corr $(T, \gamma 3*D+\eta) = \gamma 3*corr <math>(T, D)$ wb226893, 05/23/2006 ■ Le modèle « correct » est :

IMPACT EVALUATION

- Modèle simplifié:
 - Ceci signifie qu'il y a une différence Entre $\mathbb{E}(\beta_{1,OLS}^x) \mathcal{P}_{1} \gamma_1^+ \eta$
 - \rightarrow la valeur espérée de l'estimateur $OLS \beta_1 R^2 est$ pas $\gamma 1$, l'effet traitement véritable
 - \rightarrow $\beta_{1,OLS}$ est un estimateur biaisé de l'effet traitement γ_1 .
 - Pourquoi cela s'est-il passé?
 - Une des conditions de base pour que l'OLS soit BLUE a été violée :
 - En d'autres mots $E(β_{1.OLS}) \neq γ_1$ (estimateur biaisé)
 - Pire encore....plim($β_{1.OLS}$) ≠ $γ_1$ (estimateur inconsistant)

corr $(T,\varepsilon)=corr (T, \gamma 3*D+\eta) = \gamma 3*corr (T, D)$ wb226893, 05/23/2006

Que pouvons-nous faire pour résoudre ce problème ?

$$y = \alpha + \gamma_1 T + \gamma_2 x + \gamma_3 D + \eta$$
$$y = \alpha + \beta_1 T + \beta_2 x + \varepsilon$$

- \blacksquare Essayer de nettoyer la corrélation entre T et ε :
- □ Isoler la variation dans T qui n'est pas corrélée avec ε à travers la variable D omise
- Nous pouvons faire ceci en utilisant une variable instrumentale (VI)

Idée de base derrière l'estimation par

$$y = \alpha + \gamma_1 T + \gamma_2 x + \gamma_3 D + \eta$$

- Trouver une variable Z qui satisfasse deux conditions :
 - Z est corrélée avec T: corr $(Z, T) \neq 0$
 - ---- Z et T sont corrélées, ou Z prédit une part de T
 - 2. Z n'est pas corrélée avec ε : corr $(Z, \varepsilon) = 0$
 - ----En soi, Z n'a pas d'influence sur y. La seule façon qu'elle peut influencer y est parce qu'elle influence T. Tout l'effet de Z sur y passe à travers T.
- Exemples de Z dans le cas du programme volontaire de formation professionnelle?

Doubles moindres carrés (DMC - 2SL)

Rappelez-vous le modèle original avec T endogène:

$$y = \alpha + \beta_1 T + \beta_2 x + \varepsilon$$

Première étape: Faire une régression de T sur la variable instrumentale Z et les autres variables exogènes

$$T = \delta_0 + \delta_1 x + \theta_1 Z + \tau$$

- \triangleright Calculer la valeur prédite de T pour chaque observation: \hat{T}
- ightharpoonup Vu que Z et x ne sont pas correlés avec ε , \hat{T} ne sera pas non plus correlé avec ε .
- ➤ Attention: vous aurez besoin d'au moins une variable instrumentale par regresseur endogène.

Doubles moindres carrés (DMC - 2SLS)

Deuxième étape: Faire une régression de y sur la valeur prédite T et les autres variables exogènes:

$$y = \alpha + \beta_1 \hat{T} + \beta_2 x + \varepsilon$$

- \triangleright Attention: les erreurs-type de la seconde étape doivent être corrigées, parce que \hat{T} n'est pas un régresseur fixe
- ➤ En pratique: nous utilisons la commande STATA ivreg, laquelle calcule les deux étapes et les erreurs-type correctes.
- \triangleright Intuition: en utilisant \hat{T} au lieu de T, nous éliminons la correlation de T avec ε .
- \triangleright Il peut être démontré que, sous certaines conditions, l'estimation par variables instrumentales donne un estimateur consistent de γ_1 (théorie des grands échantillons).

Usages des variables instrumentales

- Simultanéité : X et Y s'occasionnent l'une l'autre instrument X
- Variables omises : X prend l'effet des autres variables qui sont omises
 - □ instrument X avec une variable qui n'est pas corrélée avec la/les variable(s) omises(s)
- Erreur de mesure : X n'est pas mesurés avec précision
 - □ instrument X

Exemples

- Hoxby (2000) et Angrist (1999)
 - L'effet de la taille de la classe sur les résultats scolaires
- □ Chaudhury, Gertler, Vermeersch (travail en cours)
 - Estimer l'effet de l'autonomie de l'école sur les apprentissages au Népal

Autonomie de l'école au Népal

- □ Le but est d'évaluer
 - A. La gestion scolaire autonome par les communautés
 - B. Bulletins scolaires
 - C. Réseaux d'information scolaire

Données

- Nous pourrions intégrer environ 1500 écoles dans l'évaluation
- Chaque communauté choisit librement de participer ou non.
- Bulletins scolaires et réseaux scolaires faits par les ONG
 - □ Le réseau scolaire ne peut être fait que dans des écoles autonomes
 - □ Les bulletins scolaires peuvent être faits dans n'importe quelle école.

Autonomie de l'école au Népal

- Le but est d'évaluer
 - A. La gestion scolaire autonome par les communautés
 - B. Bulletins scolaires
 - C. Réseaux d'information scolaire
- Données
 - Nous pourrions intégrer environ 1500 écoles dans l'évaluation
 - Chaque communauté choisit librement de participer ou non.
 - Bulletins scolaires et réseaux scolaires faits par les ONG
 - □ Le réseau scolaire ne peut être fait que dans des écoles autonomes
 - □ Les bulletins scolaires peuvent être faits dans n'importe quelle école.
 - Assumer que chaque communauté a exactement une école
- □ Tâche: concevoir l'exécution du programme pour qu'il puisse être évalué proposer une méthode d'évaluation.

Autonomie de l'école au Népal

Interventions: A. La gestion scolaire autonome par les communautés

B. Bulletins scolaires

C. Réseaux d'information scolaire

	Creation of demand for devolution to the community (A)	Feedback of performance indicators (B)	Network support after devolution to the community (C)	Number of schools in the group
Group O (Control)	No	No	No	200
Group A	Yes	No	No	300
Group B	No	Yes	No	100
Group AB	Yes	Yes	No	300
Group AC	Yes	No	Yes	300
Group ABC	Yes	Yes	Yes	300
Total				1500

Rappel et avertissement....

- \Box corr $(Z,\varepsilon)=0$
 - si corr $(Z, \varepsilon) \neq 0$ « mauvais instrument » Problème!
 - Il est difficile de trouver un bon instrument!
 - Utiliser la théorie et le bon sens pour en trouver un !
 - Nous pouvons penser à des conceptions qui produisent de bons instruments.
- \Box corr(Z,T) \neq 0
 - « Instruments faibles » : la corrélation entre Z et T doit être suffisamment solide.
 - Sinon, le biais reste grand, même pour de grandes tailles d'échantillons.