

Fondamenti di Elettronica

16
La giunzione pn in polarizzazione inversa

Enrico Zanoni enrico.zanoni@unipd.it

La giunzione pn all'equilibrio (= con tensione applicata tra p e n nulla)

La figura mostra la barriera di energia che confina elettroni e lacune rispettivamente nelle regioni n e p, impedendo la diffusione

Potenziale e campo elettrico alla giunzione sono l'equivalente della valvola che separa due recipienti con gas in pressione

Potenziale e campo elettrico alla giunzione sono l'equivalente della valvola che separa due recipienti con gas in pressione

Se applico una differenza di potenziale tra p e n potrò modulare il potenziale che blocca la diffusione, contrastandola ulteriormente o favorendola

In polarizzazione
INVERSA (potenziale
della parte p più
negativo di quello su n)
Il potenziale di barriera
si alza

Giunzione pn *polarizzata*: applichiamo una differenza di potenziale V_A . Per convenzione la parte n è a massa e la parte p si trova a V_A

Nel nostro modello, la giunzione pn è composta dalla regione di carica spaziale (dove non ci sono portatori liberi, ma solo accettori (-) e donatori (+) ionizzati, fissi) e dalle «regioni neutre», dove ci sono lacune (nella parte p) ed elettroni (nella parte n) che compensano – in media – la carica di accettori e donatori – quindi la carica netta è nulla.

Niente carica → campo elettrico nullo → nessuna caduta di potenziale

La tensione applicata V_A cade tutta alla giunzione. La tensione sulla giunzione diventa V_0 - V_A .

La giunzione *PN*

NOTA BENE:

= accettori ionizzati negativi fissi

+ = donatori ionizzati positvi fissi

NOTA BENE:

= elettroni

liberi

libere

+ = lacune

Si-p

Si-n

Cosa frena la diffusione?

La diffusione di portatori mobili lascia atomi ionizzati che danno luogo ad un **CAMPO ELETTRICO**, **E**

Ipotesi di svuotamento completo "a gradino":

l'interfaccia della giunzione risulta completamente svuotata di portatori mobili.

$$W_{dep} = x_p + x_n = \sqrt{\frac{2\varepsilon_s}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) (V_0 - V_A)}$$

Se V_A aumenta:

- W_{dep} cala
- E(0) cala
- potenziale alla giunzione cala

e viceversa

La giunz. polarizzata in inversa ($V_A < 0$)

La giunz. polarizzata in inversa ($V_A < 0$)

La giunz. *polarizzata in inversa* (V_A<0) movimento dei portatori liberi

La giunzione *PN*

NOTA BENE:

= accettori ionizzati negativi fissi

+ = donatori ionizzati positvi fissi

Si-p

Si-n

NOTA BENE:

= elettroni liberi

+ = lacune libere

Il campo elettrico alla giunzione blocca la diffusione dei portatori maggioritari delle due regioni (elettroni in N; lacune in P)

Promuove l'iniezione attraverso la giunzione di portatori minoritari (elettroni in P; lacune in N)

Anche i portatori generati entro la regione di carica spaziale vengono iniettati dal campo elettrico attraverso la giunzione (le lacune verso la regione P, gli elettroni verso la regione N)

Giunzione p-n polarizzata in inversa

In polarizzazione inversa la corrente che attraversa la giunzione è identicamente ZERO ?

No, perchè il campo elettrico alla giunzione BLOCCA LA DIFFUSIONE dei portatori MAGGIORITARI,

ma

ha il verso FAVOREVOLE per l'iniezione di portatori MINORITARI = passa una corrente «inversa» ma è estremamente piccola

La corrente inversa si mantiene piccola per qualsiasi valore di tensione inversa ?

No, perchè intervengono altri fenomeni innescati dall'elevato campo elettrico di giunzione

1) Breakdown ZENER

In giunzioni pesantemente drogate, la RCS risulta sottile ed il campo elettrico alla giunzione così elevato da riuscire a rompere legami covalenti e a creare coppie elettrone-lacuna con conseguente aumento della corrente inversa.

2) Breakdown a valanga o per ionizzazione da impatto

I portatori minoritari possono entrare nella regione di carica spaziale ed essere accelerati dal campo elettrico

L'energia cinetica acquisita può essere ceduta al reticolo cristallino durante un urto e può causare l'apertura di un legame covalente.

Quindi un portatore (minoritario) genera una coppia elettrone-lacuna, che, a sua volta può essere accelerata, rompere legami covalenti, creare altre coppie. Ad ogni passo il numero di portatori si moltiplica per 2.

E' una reazione a catena o una moltiplicazione «a valanga» dei portatori. Tutti questi possono attraversare la giunzione

Dipendenza del Breakdown dalla temperatura

Nella Rottura per effetto a **Valanga**, la tensione di breakdown **V**_{BR} **cresce al crescere della temperatura**. Al crescere della temperatura cala la mobilità dei portatori, quindi serve un campo elettrico maggiore (= tensione maggiore, v=μE) per far raggiungere agli elettroni energie sufficienti (½mv²) per rompere i legami covalenti.

Nella Rottura per effetto **Zener**, la tensione di breakdown **V**_{BR} cala al crescere della temperatura

Al crescere della temperatura aumenta l'energia media degli elettroni, che quindi richiedono meno "sforzo" dal campo elettrico (tensione minore) per liberarsi dal legame covalente