6CS012 – Artificial Intelligence and Machine Learning. Lecture – 07

Representation Learning:

From Supervised (CNN) to Unsupervised (Autoencoder).

Siman Giri {Module Leader – 6CS012}

1. What is Representation Learning? Deep Learning is a Representation Learning.}

1. Introduction.

- In any Learning Task, we need to learn:
 - A good set of features to represent your data,
 - A classifier on those features,
- If you design the features manually,
 - it is called Feature Engineering, very important for Machine Learning Algorithms.
- If you do it automatically,
 - it is called Feature learning or Representation Learning, which is a big part of any Deep Learning algorithms for example Convolutional Neural Network.

1.1 How to Represent Image?

• A Classical Computer Vision Perspective:

Challenges:

- Easy to extract low level representations but
- Becomes extremely difficult to design and extract high level representations.

1.2 How to Represent Images with Deep Learning?

- Build a general modules instead of specialized features:
 - Compose simple modules into complex functions:

- Build multiple levels of abstractions.
- Learn from data.
- Reduce domain knowledge and feature engineering.

1.3 Multiple Levels of Representations.

Deeper layers have "higher – level" features.

"visualizing and Understanding Convolutional Networks", Zeiler & Fergus, ECCV 2014.

1.4 Deep Representations are Transferrable: Transfer Learning.

- Pre train on Large Scale Model:
 - To learn general representations.
 - Train for a long time with large models on Large scale data.

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

1.4.1 Deep Representations are Transferrable: Transfer Learning.

- Fine Tuning:
 - Transfer weights to specific task on small scale data
 - Train for a short time, lower learning rate.

1.4.1 Deep Representations are Transferrable: Transfer Learning.

- Fine Tuning:
 - Transfer weights to specific task on small scale data
 - Train for a short time, lower learning rate.

How did we train the Model to learn those Representations?

1.5 How did we Train a CNN?

- In a typical Convolutional Neural Network (CNN),
 - features are learned by minimizing a loss function computed from the difference between the predicted and actual class labels.
- But can we learn meaningful features from data without any labels?

1.6 Learning Objective

- Can we build a deep learning models
 - which enable us to extract useful representations purely from the structure of the input data itself.
- We will discuss
 - the underlying principles of representation learning without supervision and
 - will implement and evaluate an **autoencoder** for extracting compressed features from raw input data.

2. Background. {Types of Learning!!!}

2.1 Recap: Supervised Learning.

- Data: {X, Y} where X is data (feature) and Y is label (target)
- Goal: Learn a Function to map $X \rightarrow Y$
- **How** : Minimizing a **loss function**:
 - Loss function : divergence {difference} between \mathbf{Y} and $\widehat{\mathbf{Y}}$.
- Example: Classification.

2.2 Recap: Unsupervised Learning.

- Data: {X} where X is data (feature) and {Y is label (target) which is not available.}
- Goal: Learn an underlying hidden structure {Representation} of the data. Why?
- **Example Task**: Such that we can re create it self.
 - $X \to \widetilde{X}$

2.2.2 Unsupervised to Generative Model.

- We want to learn an approximation of the identity function such that
 - the reconstructed output closely resembles the original input i.e. $\hat{\mathbf{x}} \approx \mathbf{x}$,
- However, to ensure meaningful feature extraction rather than a trivial replication of the input,
 - the model must **learn a representation** that captures the **most salient features** of the **data**.
- This **learned representation** should **preserve essential structural and semantic information**, enabling the generation of an output that closely resembles the input while avoiding mere duplication.
 - Idea of Generative Models.

2.3 Generative Models: Idea.

- Given training data, generate new samples from same distribution.
 - Addresses density estimation, a core problem in unsupervised learning.
- Density Estimation:
 - Density estimation is the problem of **reconstructing** the **probability density function** using a set of **given data points**.
 - Namely, we observe $\{x_1, ..., x_n\}$ as our datapoints and
 - we want to recover the underlying **probability density function** generating our **dataset**.
 - A classical approach of density estimation is the "histogram".

This is what we call a Generative Models!!!!

2.3.1 Generative Models: A basic Intuition.

- Given training data, generate new samples from same distribution.
 - Addresses density estimation, a core problem in unsupervised learning.

Training Data $\{ \sim p_{data}(X) \}$

Generated Samples $\{ \sim p_{model}(X) \}$

- Want to learn $\mathbf{p_{model}}(\mathbf{X})$ similar to $\mathbf{p_{data}}(\mathbf{X})$ {density estimation problem.}
- How?

Disclaimer:

This should not be understood as copy pasting or duplicating the input.

2.3.2 Generative Models.

- Given training data, generate new samples from same distribution.
 - Addresses density estimation, a core problem in unsupervised learning.

Training Data $\{ \sim p_{data}(X) \}$

Generated Samples $\{ \sim p_{model}(X) \}$

- Want to learn p_{model}(X) similar to p_{data}(X){density estimation problem.}
- How?
 - Explicit density estimation:
 - explicitly define and solve for p_{model}(X)
 - Normalizing Flows
 - Autoregressive Models ChatGpt
 - Diffusion Models Dall . E
 - Implicit density estimation:
 - learn model that can sample from p_{model}(X) without explicitly defining it.
 - Autoencoder {Topics of our Interest}

2.4 Why Generative Models?

• Realistic samples for artwork, super-resolution, colorization, chatbot {Q n A}etc.

- Generative models of time-series data can be used for simulation and planning (reinforcement learning applications!)
- Training generative models can also
 - enable inference of latent representations that can be useful as general features.
 - This is what AutoEncoder does.{ This is what we will learn to do this week.}

3. Introduction to Auto – Encoder.

3.1 Before we start:

- Are Autoencoder a Generative Model?
 - Yes, autoencoders learn to reconstruct their input, making them a form of generative model.
 - However, their generative capability is limited,
 - as they primarily reproduce the variations of the input rather than generating entirely new samples.
 - Despite this limitation, autoencoders remain widely useful in applications such as
 - dimensionality reduction, anomaly detection, and denoising,
 - where precise feature learning and reconstruction are more important than generating novel samples.

Expectation

3.2 Autoencoders: Introduction.

- An autoencoder is a type of neural network architecture designed to efficiently compress (encode) input data down to its essential features,
 - then reconstruct (decode) the original input from this compressed representation.
- An autoencoder typically consists of three blocks:
 - **Encoder Layer**: to the compress the input data into a compressed representations.
 - Bottleneck layer: or code or latent representations: to represent the compressed input.
 - Decoder Layer: to reconstruct the encoded image back to the original dimension.

3.3 Encoder – Decoder Architecture: Why?

- Convolutional Neural Networks (CNNs) traditionally follow a canonical architecture,
 - where the spatial dimensions of feature maps progressively decrease as depth increases.
 - This design is well-suited for supervised learning, where the primary goal is to extract hierarchical features and
 - map them to class probabilities.
- However, in Unsupervised learning, where class labels are unavailable
 - our objective shifts from classification to learning meaningful representations
 - that preserve essential features of the input.
 - Thus, instead of assigning class we seek to reconstruct the input itself, **necessitating a different architectural approach**.
 - This leads to Encoder Decoder framework where:
 - Encoder compress the input into a latent representation,
 - Decoder reconstructs it, enabling the model to capture the underlying structure of the data without explicit supervision.

3.3.1 Introduction to Encoder - Decoder Architecture.

Encoder

- This process allows the encoder to capture the most relevant information {feature} from the inputs and produce a fixed-size representation of it.
- Encodes the important feature information in some latent dimension {generally smaller than input}
- Input can be image or text or others.

Decoder

- The decoder, on the other hand, takes the encoded representation produced by the encoder and generates an output.
- Generated output can be image or text or other.

3.3.2 Encoder – Decoder Architecture.

- Training Encoder Decoder Architecture:
 - The encoder-decoder architecture can be trained end-to-end using backpropagation and (stochastic) gradient descent to minimize a loss function that compares the predicted output to the ground truth.
 - In many applications, the {loss function} is designed to penalize differences in the {pixel values} between the predicted and ground truth images.

3.3.3 Encoder – Decoder Architecture Application.

- Encoder Decoder Architecture → Examples.
 - Sequence to Sequence Model {Neural Machine Translation}
 - Encoder:
 - The encoder turns each item into a corresponding hidden vector containing the item and its context.
 - extract and compress the semantics from the input sequence
 - In RNN in some variants like {LSTM or GRU is Used}
 - Decoder:
 - The decoder reverses the process, turning the vector into an output item, using the previous output as the input context.
 - generate a sequence based on the input semantics
 - In RNN in some variants like {LSTM or GRU is Used}
 - { Week 9's Discussion}

3.3.4 Encoder – Decoder Architecture Application.

- Encoder Decoder Architecture → Examples.
 - Image Captioning
 - Encoder:
 - The encoder turns each image into a corresponding hidden vector containing the discriminative features.
 - extract and compress the features from the input images
 - An CNN in some variants and with transfer learning is used.

• Decoder:

- The decoder reverses the process, turning the vector into an output item, using the previous output as the input context.
 - generate a sequence based on the input features.
- An RNN in some variants like {LSTM or GRU is Used}

3.4 Getting back to Autoencoder!!!

- Autoencoders form a very specific subset of encoder decoder architectures that are trained via unsupervised learning to reconstruct their own input data.
 - Input and output dimensions are the same.
- Using unsupervised machine learning, autoencoders are trained to discover the **latent variables** of the input data.
- Learning g(f(x)) = x (identity function) everywhere is not very useful,
 - Thus, autoencoders are designed to be unable to copy perfectly.
- Autoencoders learn useful properties of data and can prioritize which aspects of input should be copied.

Terminology Alert!!!

- Latent Variable(Origin-Latin): "lie hidden":
 - In statistics:
 - latent variables are variables that can only be inferred indirectly through a mathematical model from another observable variable which can be measured directly.
- Latent Representation or Space or embeddings or code:
 - It is a vector space spanned by the latent variables.

3.5 AutoEncoder in Practice.

- Idea
 - Given data \mathbf{x} (no labels) we would like to learn the functions \mathbf{f} (encoder) and \mathbf{g} (decoder) where:
 - f(x) = act(wx + b) = z
 - Here:
 - Act activation functions.
 - **Z** latent representation or code.
 - Here:
 - \hat{x} is x's reconstructions.
 - $h(x) = g(f(x)) \rightarrow approximation of identity function.$

3.6 Training an Autoencoder.

3.6.1 Training Auto – Encoders: Hyper – parameters.

- There are **four hyperparameters** that need to be set when training an autoencoder:
 - Code Size (Dimension of Latent Representations):
 - This refers to the number of nodes in the middle or bottleneck layer. By choosing a smaller size than the input dimension, we force the model to learn the most important feature representations of the data.
 - Number of Layers:
 - This typically refers to the number of fully connected (dense) or convolutional layers used to build the encoder and decoder.
 - The autoencoder can be made as deep as necessary, depending on the complexity of the data.

3.6.1 Training Auto – Encoders: Hyper – parameters.

- Number of Nodes per Layer:
 - In a standard (stacked) autoencoder, the number of nodes decreases in successive layers of the encoder and increases back in the decoder.
 - The decoder is usually **symmetric** to the encoder in terms of layer structure.
- Loss Function:
 - Common choices include Mean Squared Error (MSE) for continuous data and Binary Cross Entropy (BCE) for binary or normalized data.
- Autoencoders are typically trained using **backpropagation**, combined with **mini-batch gradient descent**.

4. Designing an Auto –Encoder.

{ Putting Neural Network in Encoder and Decoder}

4.1 Vanilla Autoencoder.

- A Vanilla Autoencoder is the simplest form of autoencoder, composed of:
 - An Encoder composed of Fully Connected Neural Network (Dense) layer that maps the input x to a lower dimensional latent representations z.
 - A Decoder also composed of Fully Connected Neural Network that reconstructs the input from the latent code z to produce \hat{x} .
- Objective:
 - To learn a **compressed representation of the data** by mining the reconstruction loss:

•
$$\mathcal{L} = \|\mathbf{x} - \hat{\mathbf{x}}\|^2$$

- Symmetric Architecture:
 - The **decoder usually mirrors the encoder** in terms of layers and nodes.
- Use case:
 - Dimensionality Reduction.
 - Feature Extraction.

4.2 Vanilla Autoencoder: Dimensionality Reduction.

- Using an autoencoder with a 2-dimensional latent space,
 - we reduce the original 784-dimensional image representation to just 2 dimensions.
 - Each image is now encoded as a 2D point, capturing its most salient features.

4.3 Vanilla Autoencoder: Feature Extraction.

- How it works as a Feature Extractor?
 - Training the autoencoder:
 - The model is trained to minimize the difference between the input and its reconstruction.
 - During this process, the **encoder** learns to capture the most informative features about the data in its latent space (i.e., the most important factors that explain the variability in the data).
 - Using the Latent Representations:
 - Once the model is trained, the encoder part is used to **extract features** from new data.
 - The latent space (encoded representation) becomes a **compressed version** of the input data,
 - containing the relevant features for further tasks.

4.3.1 Vanilla Autoencoder: Feature Extraction.

- Feature Extraction for Downstream Tasks:
 - Classification:
 - You can use the encoded features as inputs to another classifier (e.g., SVM, logistic regression).
 - Clustering:
 - The features can be clustered (e.g., using k-means) to identify groups within the data.
 - Anomaly Detection:
 - The reconstructed error can be used for anomaly detection, where a high error indicates that the input is an outlier.

4.4 Denoising Autoencoder.

- A Denoising Autoencoder (DAE) is a variant of the vanilla autoencoder designed to learn robust feature representations by reconstructing clean inputs from noisy versions.
- Motivation:
 - While vanilla autoencoders can learn compressed representations, they may **simply memorize** the input.
 - To encourage generalization and robustness,
 - denoising autoencoders are trained to recover the original input from a corrupted version.
- How it works?
 - Add noise or corruption to Input:
 - A stochastic corruption process (e.g. Gaussian noise)
 - is applied to the input \mathbf{x} , producing noise free $\hat{\mathbf{x}}$.
 - The original paper by Y. Bengio et. Al. (Learning Deep Architectures 2009) also suggest to use
 - random masking similar to Dropout:
 - During training, the **input data x** is corrupted by applying **dropout** to the input layer,
 - meaning some parts of the input are randomly set to zero (dropped out).
 - This was done to simulate the presence of missing or noisy data.
 - {DropOut was introduced by Alex et. al in AlexNet Paper in 2012}

4.4.1 Denoising Autoencoder: Working.

- Encode the Noisy Input:
 - $z = Encoder(\tilde{x}) \{ \tilde{x} \rightarrow Noisy Input \}$
- Decode to Reconstruct the Clean Input:
 - $\hat{\mathbf{x}} = \mathbf{Decoder}(\mathbf{z})$
- Train to minimize Reconstruction Loss:

•
$$\mathcal{L} = \|\mathbf{x} - \hat{\mathbf{x}}\|^2$$

- Use Cases:
 - Image Denoising.
 - Robust Feature Extraction.

Image from Internet Subject to Copyright.

4.4.3 Denoising Autoencoder: Application.

Image from Internet: Subject to copyright.

4.4.4 A Real-world application

• Water Mark Removal:

5. Convolutional Autoencoder.

5.1 Convolutional Autoencoder.

- Encoder-
 - 1 or more convolutional layers.
- Decoder-
 - 1 or more Transposed convolutional layers.

Fig. 3. General architecture of a convolutional autoencoder (CAE).

5.2 Transposed Convolutions.

- Allows us to increase the size of the output feature map compared to the input feature map.
- The output size of a transposed convolutional layer can be computed using the following formula:
 - output_size = (input_size 1) * stride + kernel_size 2 * padding
 - where:
 - **input_size**: the size of the input tensor along the spatial dimensions (width and height)
 - **stride**: the stride of the transposed convolution operation
 - kernel_size: the size of the transposed convolution kernel along the spatial dimensions
 - padding: the amount of zero padding added to the input tensor along the spatial dimensions
- Synonyms:
 - often also (incorrectly) called "deconvolution" (mathematically, deconvolution is defined as the inverse of convolution, which is different from transposed convolutions)
 - the term "unconv" is sometimes also used
 - aka "upsampling" layer.

5.3 Transposed Convolutions – In Practice.

- Implementing a transposed convolutional layer can be better explained as a 4-step process:
 - Step 1: Calculate new {hyper} parameters z and p'
 - Step 2: Between each row and columns of the input, insert z number of zeros. This increases the size of the input to (2*i-1)x(2*i-1)
 - **Step 3:** Pad the modified input image with **p' number of zeros**
 - Step 4: Carry out standard convolution on the image generated from step 3 with a stride length of 1

5.4 Transposed Convolutions-Demo.

How Transposed Convolution Works?

5. Some Codes.

Vanilla Autoencoder.

```
# This is the dimension of the original space
input_dim = 10

# This is the dimension of the Latent space (encoding space)
latent_dim = 2

encoder = Sequential([
    Dense(128, activation='relu', input_shape=(input_dim,)),
    Dense(64, activation='relu'),
    Dense(32, activation='relu'),
    Dense(latent_dim, activation='relu')
])

decoder = Sequential([
    Dense(64, activation='relu', input_shape=(latent_dim,)),
    Dense(128, activation='relu'),
    Dense(256, activation='relu'),
    Dense(input_dim, activation=None)
])
```

```
autoencoder = Model(inputs=encoder.input, outputs=decoder(encoder.output))
autoencoder.compile(loss='mse', optimizer='adam')
```


CAE.

```
input = layers.Input(shape=(28, 28, 1))
# Encoder
x = layers.Conv2D(32, (3, 3), activation="relu", padding="same")(input)
x = layers.MaxPooling2D((2, 2), padding="same")(x)
x = layers.Conv2D(32, (3, 3), activation="relu", padding="same")(x)
x = layers.MaxPooling2D((2, 2), padding="same")(x)
# Decoder
x = layers.Conv2DTranspose(32, (3, 3), strides=2, activation="relu", padding="same")(x)
x = layers.Conv2DTranspose(32, (3, 3), strides=2, activation="relu", padding="same")(x)
x = layers.Conv2D(1, (3, 3), activation="sigmoid", padding="same")(x)
# Autoencoder
autoencoder = Model(input, x)
autoencoder.compile(optimizer="adam", loss="binary_crossentropy")
autoencoder.summary()
```

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 28, 28, 1)]	0
conv2d (Conv2D)	(None, 28, 28, 32)	320
max_pooling2d (MaxPooling2D)	(None, 14, 14, 32)	0
conv2d_1 (Conv2D)	(None, 14, 14, 32)	9248
max_pooling2d_1 (MaxPooling2	(None, 7, 7, 32)	0
conv2d_transpose (Conv2DTran	(None, 14, 14, 32)	9248
conv2d_transpose_1 (Conv2DTr	(None, 28, 28, 32)	9248
_ ` '	(None, 28, 28, 1)	289
Total params: 28,353 Trainable params: 28,353 Non-trainable params: 0		

At the end!!!!

- Autoencoders learn data representation in an unsupervised/ self-supervised way.
 - Learned features are able to capture salient properties of data
- Different with vanilla autoencoder, in sparse autoencoder, the number of hidden units can be greater than the number of input variables.
 - Under complete and Over complete Architectures.
- Can also be stacked to create \rightarrow deep autoencoders.
- "You will implement Autoencoders in Tutorial > Please come with laptop."

Thank You