Supplement 2

Pain characteristics

Peter Kamerman

Last updated: 31 August 2019

Contents

reliminaries										
Import data										
Check for missingness	 	٠	 •	 •		٠	•	 ٠		
nalyses										
Pain as the reason for coming for testing	 									
Point estimates	 									
95% confidence intervals for the point estimates	 									
95% confidence interval of the difference in proportions	 									
Body sites affected by pain	 									
Point estimates	 									
95% confidence intervals for the point estimates	 									
95% confidence interval of the difference in proportions	 									
Number of body sites affected by pain										
Point estimates										
95% confidence intervals for the point estimates	 									
95% confidence interval for the difference in medians .	 									
Body site with the worst pain	 									
Point estimates	 									
95% confidence intervals for the point estimates	 									
95% confidence interval of the difference in proportions	 									
Pain intensity										
Point estimates										
95% confidence intervals for the point estimates										
95% confidence interval of the difference in means	 									
Did you receive treatment for your pain?	 									
Point estimates	 									
95% confidence intervals for the point estimates	 									
95% confidence interval of the difference in proportions	 									
Medications/substances used for pain management										
Process data										
Point estimates										
95% confidence intervals for the point estimates										
95% confidence interval of the difference in proportions										

Note: only includes participants with pain

This script generates summaries of key descriptors of the pain phenotype for the subgroup of the cohort with pain, with and without conditioning on HIV status.

We present the data in tabular and graphical format, and calculate the precision of the estimates using bootstrap 95% confidence intervals.

To describe any differences between the HIV+ and HIV- groups, we have calculated 95% confidence intervals of the difference in mean/proportion.

Preliminaries

Import data

```
# Import test result data and select columns
test <- read_rds('data-cleaned/hiv_test.rds') %>%
   select(PID,
           test_result) %>%
   rename(HIV_positive = test_result) %>%
   mutate(HIV_positive = ifelse(HIV_positive == 'HIV positive',
                                 yes = 'yes',
                                 no = 'no')
# Import pain data and filter for those with pain
pain <- read_rds('data-cleaned/wbpq.rds') %>%
    filter(pain_in_last_month == 'yes') %>%
    filter(pain_worst > 0)
# Join datasets
data <- pain %>%
   left_join(test) %>%
   select(-starts_with('pain_cause'))
```

Check for missingness

feature	num_missing	pct_missing
pain_in_last_month	0	0
pain_worst	0	0

feature	num_missing	pct_missing
pain_treatment	0	0
head	0	0
shoulders	0	0
arms	0	0
hands	0	0
chest	0	0
abdomen	0	0
low_back	0	0
genitals	0	0
legs	1	0
feet	1	0
$_{ m joints}$	0	0
HIV_positive	2	1
pain_reason_for_visit	3	1
muscles	7	2
$medication_1$	172	54
$substance_1$	264	83
$medication_2$	282	89
$medication_3$	314	99
$medication_4$	316	99
substance_2	317	100

```
## By HIV status
### HIV-
tmp %>%
    filter(HIV_positive == 'no') %>%
    profile_missing() %>%
    mutate(pct_missing = round(100 * pct_missing)) %>%
    arrange(pct_missing) %>%
    kable(., caption = 'Missingness (HIV-negative)')
```

feature	$num_missing$	$pct_missing$
HIV_positive	0	0
pain_in_last_month	0	0
$pain_worst$	0	0
$pain_treatment$	0	0
head	0	0
shoulders	0	0
arms	0	0
hands	0	0
chest	0	0
abdomen	0	0
low_back	0	0
genitals	0	0
legs	1	0
feet	1	0
${ m joints}$	0	0
pain_reason_for_visit	3	1
muscles	5	2
$medication_1$	152	54
$substance_1$	234	83
$medication_2$	247	88

feature	num_missing	pct_missing
medication_3	277	99
$medication_4$	279	99
$substance_2$	280	100

```
### HIV+
tmp %>%
  filter(HIV_positive == 'yes') %>%
  profile_missing() %>%
  mutate(pct_missing = round(100 * pct_missing)) %>%
  arrange(pct_missing) %>%
  kable(., caption = 'Missingness (HIV-positive)')
```

feature	$num_missing$	$pct_missing$
HIV_positive	0	0
pain_in_last_month	0	0
pain_reason_for_visit	0	0
$pain_worst$	0	0
$pain_treatment$	0	0
head	0	0
shoulders	0	0
arms	0	0
hands	0	0
chest	0	0
abdomen	0	0
low_back	0	0
genitals	0	0
legs	0	0
feet	0	0
$_{ m joints}$	0	0
muscles	2	6
$medication_1$	18	51
$substance_1$	29	83
$medication_2$	33	94
$medication_3$	35	100
$medication_4$	35	100
$substance_2$	35	100

```
# Remove rows with missing HIV test results (n = 4)
data %<>%
    filter(!is.na(HIV_positive))
```

Analyses

Pain as the reason for coming for testing

Point estimates

```
# Total cohort
data %>%
   filter(!is.na(pain_reason_for_visit)) %>%
   group_by(pain_reason_for_visit) %>%
   summarise(count = n()) %>%
   ungroup() %>%
   mutate(total = sum(count)) %>%
   mutate(proportion = round(count/total, 2)) %>%
   kable(caption = 'Pain was the reason for getting tested - total cohort (point estimates)')
                       pain reason for visit
                                             count
                                                    total
                                                          proportion
                                              283
                                                     313
                                                              0.9
                                no
                                              30
                                                     313
                                                              0.1
                                yes
## Plot
ggplot(data = data) +
   aes(x = 'ID',
       fill = pain_reason_for_visit) +
   geom_bar(position = position_fill()) +
   scale_fill_manual(values = pal,
                      na.value = '#000000') +
   labs(title = 'Pain was the reason for getting tested',
         subtitle = 'Whole cohort',
         y = 'Proportion') +
   theme(legend.title = element_blank(),
          axis.title.x = element_blank())
```

Pain was the reason for getting tested Whole cohort


```
# Count and proportion by HIV status
data %>%
    filter(!is.na(pain_reason_for_visit)) %>%
    group_by(HIV_positive, pain_reason_for_visit) %>%
    summarise(count = n()) %>%
    group_by(HIV_positive) %>%
    mutate(total = sum(count)) %>%
    mutate(proportion = round(count/total, 2)) %>%
    kable(caption = 'Pain was the reason for getting tested - by HIV status (point estimates)')
```

HIV_positive	pain_reason_for_visit	count	total	proportion
no	no	254	278	0.91
no	yes	24	278	0.09
yes	no	29	35	0.83
yes	yes	6	35	0.17

```
## Plot
ggplot(data = data) +
```

Pain was the reason for getting tested By HIV status

95% confidence intervals for the point estimates

```
# Boot functions
func_tmp <- function(d, i){
   data <- d[i, ]
   data <- data %>%
      filter(!is.na(pain_reason_for_visit))
```

```
prop <- mean(data$pain_reason_for_visit == 'yes')</pre>
    prop
}
# Whole cohort
set.seed(2019)
boot_tmp <- boot(data = data,</pre>
                 statistic = func_tmp,
                 R = 999,
                 stype = 'i')
bootci_tmp <- boot.ci(boot_tmp,</pre>
                       type = 'perc')
tibble(pain_reason_for_visit = 'yes',
       proportion = round(boot_tmp$t0, 2),
       `lower 95% CI` = round(bootci_tmp$percent[[4]], 2),
       `upper 95% CI` = round(bootci_tmp$percent[[5]], 2)) %>%
    kable(caption = 'Pain was the reason for getting tested - total cohort (95% CI)')
                                                  lower 95\% CI
                                                                 upper 95% CI
                pain reason for visit
                                       proportion
                                          0.1
                                                       0.06
                                                                     0.13
                         yes
# By HIV status (HIV- reported first)
set.seed(2019)
boot_tmp <- data %>%
    group_by(HIV_positive) %>%
    nest() %>%
    mutate(boot = map(.x = data,
                       ~ boot(data = .x,
                              statistic = func_tmp,
                              R = 999,
                              stype = 'i'))) %>%
    mutate(boot_ci = map(.x = boot,
                          ~ boot.ci(.x,
                                    type = 'perc')))
tibble(`HIV positive` = c('no', 'yes'),
       pain reason for visit = c('yes', 'yes'),
       proportion = c(round(boot_tmp$boot[[1]]$t0, 2),
                       round(boot_tmp$boot[[2]]$t0, 2)),
       `lower 95% CI` = c(round(boot_tmp$boot_ci[[1]]$percent[[4]], 2),
                           round(boot_tmp$boot_ci[[2]]$percent[[4]], 2)),
       `upper 95% CI` = c(round(boot_tmp$boot_ci[[1]]$percent[[5]],2),
                           round(boot_tmp$boot_ci[[2]]$percent[[5]], 2))) %>%
    kable(caption = 'Pain was the reason for getting tested - by HIV status (95% CI)')
         HIV positive
                                                         lower 95% CI
                                                                       upper 95% CI
                       pain reason for visit
                                              proportion
                                                0.09
                                                              0.05
                                                                            0.12
              no
                                yes
                                                                            0.29
              yes
                                yes
                                                0.17
                                                             0.06
```

95% confidence interval of the difference in proportions

The difference in the proportion of HIV-positive participants who got tested because of pain vs participants who were HIV-negative (HIV+ minus HIV-).

```
# Boot function
func_tmp <- function(d, i){</pre>
    data <- d[i, ]
    data <- data %>%
        filter(!is.na(pain_reason_for_visit)) %>%
        filter(!is.na(HIV_positive))
    data_hiv <- filter(data, HIV_positive == 'yes')</pre>
    data_nohiv <- filter(data, HIV_positive == 'no')</pre>
    prop_yes <- mean(data_hiv$pain_reason_for_visit == 'yes')</pre>
    prop_no <- mean(data_nohiv$pain_reason_for_visit == 'yes')</pre>
    prop_yes - prop_no
}
# Confidence interval of the difference in proportions (HIV+ minus HIV-)
set.seed(2019)
boot_tmp <- boot(data = data,</pre>
                 statistic = func_tmp,
                 R = 999,
                 stype = 'i')
bootci_tmp <- boot.ci(boot_tmp,</pre>
                       type = 'perc')
tibble_tmp <- tibble(`difference in proportion` = round(boot_tmp$t0, 2),
                      `lower 95% CI` = round(bootci_tmp$percent[[4]], 2),
                      `upper 95% CI` = round(bootci_tmp$percent[[5]], 2))
tibble_tmp %>%
    kable(caption = 'Pain as the reason for getting tested - 95% CI of the difference (HIV+ minus HIV-)
                                           lower 95% CI
                      difference in proportion
                                                           upper 95% CI
                                                 -0.03
                              0.09
                                                                0.21
# Plot
ggplot(data = tibble_tmp) +
    aes(x = 'ID',
        y = `difference in proportion`,
        ymin = `lower 95% CI`,
        ymax = `upper 95% CI`) +
    geom_point(size = 8) +
    geom_errorbar(size = 1,
                  width = 0.3) +
    geom_hline(yintercept = 0,
               linetype = 2) +
    labs(title = 'Pain was the reason for getting tested',
         subtitle = '95% CI of the difference in proportion (HIV+ minus HIV-)',
         y = 'Difference in proportion') +
    theme(axis.title.x = element_blank())
```

Pain was the reason for getting tested 95% CI of the difference in proportion (HIV+ minus HIV-)

Body sites affected by pain

Point estimates

```
select(-total) %>%
filter(pain_present == 'yes') %>%
arrange(desc(proportion)) %>%
kable(caption = 'Body sites affected by pain - total cohort')
```

site	pain_present	count	proportion
head	yes	211	0.67
low_back	yes	143	0.45
abdomen	yes	104	0.33
chest	yes	99	0.31
shoulders	yes	91	0.29
feet	yes	87	0.28
legs	yes	86	0.27
joints	yes	79	0.25
arms	yes	60	0.19
hands	yes	55	0.17
muscles	yes	51	0.16
genitals	yes	43	0.14

```
## Plot
data %>%
    gather(key = site,
           value = pain_present,
           head, shoulders, arms, hands, chest, abdomen, low_back,
           genitals, legs, feet, joints, muscles) %>%
    ggplot(data = .) +
    aes(x = site,
       fill = pain_present) +
    geom_bar(position = position_fill()) +
    scale_fill_manual(values = pal,
                      na.value = '#000000') +
    labs(title = 'Body sites affected by pain',
         subtitle = 'Whole cohort',
         y = 'Proportion',
         x = 'Pain site') +
    theme(legend.title = element_blank(),
          axis.text.x = element_text(angle = 30,
                                     hjust = 1))
```

Body sites affected by pain

Whole cohort

Pain site

```
# By HIV status
data %>%
   gather(key = site,
           value = pain_present,
           head, shoulders, arms, hands, chest, abdomen, low_back,
           genitals, legs, feet, joints, muscles) %>%
   group_by(HIV_positive, site, pain_present) %>%
   summarise(count = n()) %>%
   group_by(HIV_positive, site) %>%
   mutate(total = sum(count)) %>%
   group_by(HIV_positive, site, pain_present) %>%
   mutate(proportion = round(count/total, 2)) %>%
    select(-total) %>%
   filter(pain_present == 'yes' & !is.na(HIV_positive)) %>%
   arrange(site, HIV_positive, desc(proportion)) %>%
   kable(caption = 'Body sites affected by pain - by HIV status')
```

HIV_positive	site	pain_present	count	proportion
no	abdomen	yes	94	0.33

$HIV_positive$	site	pain_present	count	proportion
yes	abdomen	yes	10	0.29
no	arms	yes	54	0.19
yes	arms	yes	6	0.17
no	chest	yes	87	0.31
yes	chest	yes	12	0.34
no	feet	yes	77	0.27
yes	feet	yes	10	0.29
no	genitals	yes	38	0.14
yes	genitals	yes	5	0.14
no	hands	yes	52	0.19
yes	hands	yes	3	0.09
no	head	yes	189	0.67
yes	head	yes	22	0.63
no	joints	yes	71	0.25
yes	joints	yes	8	0.23
no	legs	yes	78	0.28
yes	legs	yes	8	0.23
no	low_back	yes	127	0.45
yes	low_back	yes	16	0.46
no	muscles	yes	45	0.16
yes	muscles	yes	6	0.17
no	shoulders	yes	81	0.29
yes	shoulders	yes	10	0.29

```
## Plot
data %>%
    gather(key = site,
           value = pain_present,
           head, shoulders, arms, hands, chest, abdomen, low_back,
           genitals, legs, feet, joints, muscles) %>%
    ggplot(data = .) +
    aes(x = site,
        fill = pain_present) +
    geom_bar(position = position_fill()) +
    scale_fill_manual(values = pal,
                      na.value = '#000000') +
    labs(title = 'Body sites affected by pain',
         subtitle = 'By HIV status',
         y = 'Proportion',
         x = 'Pain site') +
    facet_wrap(~ HIV_positive,
               ncol = 2) +
    theme(legend.title = element_blank(),
          axis.text.x = element_text(angle = 30,
                                     hjust = 1)
```

Body sites affected by pain By HIV status

95% confidence intervals for the point estimates

```
group_by(site) %>%
   nest() %>%
   mutate(boot = map(.x = data,
                      ~ boot(data = .x,
                             statistic = func tmp,
                             R = 999,
                             stype = 'i',
                             parallel = 'multicore',
                             ncpus = 7))) %>%
   mutate(boot_ci = map(.x = boot,
                          boot.ci(.x,
                                   type = 'perc')))
tibble(`body site` = c('head', 'shoulders', 'arms', 'hands', 'chest', 'abdomen',
                       'low_back', 'genitals', 'legs', 'feet', 'joints', 'muscles'),
       `pain present` = rep('yes', 12),
       proportion = c(round(boot_tmp$boot[[1]]$t0, 2),
                      round(boot tmp$boot[[2]]$t0, 2),
                      round(boot_tmp$boot[[3]]$t0, 2),
                      round(boot tmp$boot[[4]]$t0, 2),
                      round(boot_tmp$boot[[5]]$t0, 2),
                      round(boot_tmp$boot[[6]]$t0, 2),
                      round(boot_tmp$boot[[7]]$t0, 2),
                      round(boot tmp$boot[[8]]$t0, 2),
                      round(boot tmp$boot[[9]]$t0, 2),
                      round(boot tmp$boot[[10]]$t0, 2),
                      round(boot_tmp$boot[[11]]$t0, 2),
                      round(boot_tmp$boot[[12]]$t0, 2)),
       `lower 95% CI` = c(round(boot_tmp$boot_ci[[1]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[2]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[3]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[4]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[5]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[6]]$percent[[4]], 2),
                          round(boot tmp$boot ci[[7]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[8]]$percent[[4]], 2),
                          round(boot tmp$boot ci[[9]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[10]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[11]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[12]]$percent[[4]], 2)),
       `upper 95% CI` = c(round(boot tmp$boot ci[[1]]$percent[[5]], 2),
                          round(boot tmp$boot ci[[2]]$percent[[5]], 2),
                          round(boot_tmp$boot_ci[[3]]$percent[[5]], 2),
                          round(boot_tmp$boot_ci[[4]]$percent[[5]], 2),
                          round(boot_tmp$boot_ci[[5]]$percent[[5]], 2),
                          round(boot_tmp$boot_ci[[6]]$percent[[5]], 2),
                          round(boot_tmp$boot_ci[[7]]$percent[[5]], 2),
                          round(boot_tmp$boot_ci[[8]]$percent[[5]], 2),
                          round(boot_tmp$boot_ci[[9]]$percent[[5]], 2),
                          round(boot_tmp$boot_ci[[10]]$percent[[5]], 2),
                          round(boot_tmp$boot_ci[[11]]$percent[[5]], 2),
                          round(boot tmp$boot ci[[12]]$percent[[5]], 2))) %>%
   kable(caption = 'Body sites affected by pain - whole cohort (95% CI)')
```

body site	pain present	proportion	lower 95% CI	upper 95% CI
head	yes	0.67	0.61	0.72
shoulders	yes	0.29	0.24	0.34
arms	yes	0.19	0.15	0.23
hands	yes	0.17	0.13	0.22
chest	yes	0.31	0.27	0.36
abdomen	yes	0.33	0.28	0.38
low_back	yes	0.45	0.40	0.51
genitals	yes	0.14	0.10	0.17
legs	yes	0.27	0.22	0.33
feet	yes	0.28	0.23	0.33
joints	yes	0.25	0.21	0.30
muscles	yes	0.17	0.12	0.21

```
# By HIV status (HIV- reported first)
set.seed(2019)
boot_tmp <- data %>%
   gather(key = site,
           value = pain_present,
           head, shoulders, arms, hands, chest, abdomen, low_back,
           genitals, legs, feet, joints, muscles) %>%
    group_by(HIV_positive, site) %>%
   nest() %>%
   mutate(boot = map(.x = data,
                      \sim boot(data = .x,
                             statistic = func_tmp,
                             R = 999,
                             stype = 'i',
                             parallel = 'multicore',
                             ncpus = 7))) %>%
   mutate(boot_ci = map(.x = boot,
                         ~ boot.ci(.x,
                                   type = 'perc')))
tibble(`HIV positive` = rep(c('no', 'yes'), 12),
       `body site` = rep(c('head', 'shoulders', 'arms', 'hands', 'chest', 'abdomen',
                           'low_back', 'genitals', 'legs', 'feet', 'joints', 'muscles'),
                         each = 2),
       `pain present` = rep('yes', 24),
       proportion = c(round(boot_tmp$boot[[1]]$t0, 2),
                      round(boot_tmp$boot[[2]]$t0, 2),
                      round(boot_tmp$boot[[3]]$t0, 2),
                      round(boot_tmp$boot[[4]]$t0, 2),
                      round(boot_tmp$boot[[5]]$t0, 2),
                      round(boot_tmp$boot[[6]]$t0, 2),
                      round(boot_tmp$boot[[7]]$t0, 2),
                      round(boot_tmp$boot[[8]]$t0, 2),
                      round(boot_tmp$boot[[9]]$t0, 2),
                      round(boot_tmp$boot[[10]]$t0, 2),
                      round(boot tmp$boot[[11]]$t0, 2),
                      round(boot_tmp$boot[[12]]$t0, 2),
                      round(boot_tmp$boot[[13]]$t0, 2),
                      round(boot_tmp$boot[[14]]$t0, 2),
```

```
round(boot tmp$boot[[15]]$t0, 2),
              round(boot_tmp$boot[[16]]$t0, 2),
              round(boot tmp$boot[[17]]$t0, 2),
              round(boot_tmp$boot[[18]]$t0, 2),
               round(boot_tmp$boot[[19]]$t0, 2),
               round(boot tmp$boot[[20]]$t0, 2),
               round(boot tmp$boot[[21]]$t0, 2),
               round(boot tmp$boot[[22]]$t0, 2),
               round(boot tmp$boot[[23]]$t0, 2),
               round(boot_tmp$boot[[24]]$t0, 2)),
`lower 95% CI` = c(round(boot_tmp$boot_ci[[1]]$percent[[4]], 2),
                   round(boot_tmp$boot_ci[[2]]$percent[[4]], 2),
                   round(boot_tmp$boot_ci[[3]]$percent[[4]], 2),
                   round(boot_tmp$boot_ci[[4]]$percent[[4]], 2),
                   round(boot_tmp$boot_ci[[5]]$percent[[4]], 2),
                   round(boot_tmp$boot_ci[[6]]$percent[[4]], 2),
                   round(boot_tmp$boot_ci[[7]]$percent[[4]], 2),
                   round(boot tmp$boot ci[[8]]$percent[[4]], 2),
                   round(boot_tmp$boot_ci[[9]]$percent[[4]], 2),
                   round(boot_tmp$boot_ci[[10]]$percent[[4]], 2),
                   round(boot_tmp$boot_ci[[11]]$percent[[4]], 2),
                   round(boot_tmp$boot_ci[[12]]$percent[[4]], 2),
                   round(boot_tmp$boot_ci[[13]]$percent[[4]], 2),
                   round(boot tmp$boot ci[[14]]$percent[[4]], 2),
                   round(boot_tmp$boot_ci[[15]]$percent[[4]], 2),
                   round(boot_tmp$boot_ci[[16]]$percent[[4]], 2),
                   round(boot_tmp$boot_ci[[17]]$percent[[4]], 2),
                   round(boot_tmp$boot_ci[[18]]$percent[[4]], 2),
                   round(boot_tmp$boot_ci[[19]]$percent[[4]], 2),
                   round(boot_tmp$boot_ci[[20]]$percent[[4]], 2),
                   round(boot_tmp$boot_ci[[21]]$percent[[4]], 2),
                   round(boot_tmp$boot_ci[[22]]$percent[[4]], 2),
                   round(boot_tmp$boot_ci[[23]]$percent[[4]], 2),
                   round(boot_tmp$boot_ci[[24]]$percent[[4]], 2)),
`upper 95% CI` = c(round(boot tmp$boot ci[[1]]$percent[[5]], 2),
                   round(boot_tmp$boot_ci[[2]]$percent[[5]], 2),
                   round(boot_tmp$boot_ci[[3]]$percent[[5]], 2),
                   round(boot_tmp$boot_ci[[4]]$percent[[5]], 2),
                   round(boot_tmp$boot_ci[[5]]$percent[[5]], 2),
                   round(boot_tmp$boot_ci[[6]]$percent[[5]], 2),
                   round(boot tmp$boot ci[[7]]$percent[[5]], 2),
                   round(boot_tmp$boot_ci[[8]]$percent[[5]], 2),
                   round(boot_tmp$boot_ci[[9]]$percent[[5]], 2),
                   round(boot_tmp$boot_ci[[10]]$percent[[5]], 2),
                   round(boot_tmp$boot_ci[[11]]$percent[[5]], 2),
                   round(boot_tmp$boot_ci[[12]]$percent[[5]], 2),
                   round(boot_tmp$boot_ci[[13]]$percent[[5]], 2),
                   round(boot_tmp$boot_ci[[14]]$percent[[5]], 2),
                   round(boot_tmp$boot_ci[[15]]$percent[[5]], 2),
                   round(boot_tmp$boot_ci[[16]]$percent[[5]], 2),
                   round(boot_tmp$boot_ci[[17]]$percent[[5]], 2),
                   round(boot_tmp$boot_ci[[18]]$percent[[5]], 2),
                   round(boot_tmp$boot_ci[[19]]$percent[[5]], 2),
                   round(boot tmp$boot ci[[20]]$percent[[5]], 2),
```

```
round(boot_tmp$boot_ci[[21]]$percent[[5]], 2),
round(boot_tmp$boot_ci[[22]]$percent[[5]], 2),
round(boot_tmp$boot_ci[[23]]$percent[[5]], 2),
round(boot_tmp$boot_ci[[24]]$percent[[5]], 2))) %>%
kable(caption = 'Body sites affected by pain - by HIV status (95% CI)')
```

HIV positive	body site	pain present	proportion	lower 95% CI	upper 95% CI
no	head	yes	0.67	0.62	0.72
yes	head	yes	0.63	0.46	0.80
no	shoulders	yes	0.29	0.23	0.34
yes	shoulders	yes	0.29	0.14	0.43
no	arms	yes	0.19	0.15	0.24
yes	arms	yes	0.17	0.06	0.29
no	hands	yes	0.19	0.14	0.23
yes	hands	yes	0.09	0.00	0.20
no	chest	yes	0.31	0.26	0.36
yes	chest	yes	0.34	0.20	0.51
no	abdomen	yes	0.33	0.28	0.39
yes	abdomen	yes	0.29	0.14	0.46
no	low_back	yes	0.45	0.39	0.51
yes	low_back	yes	0.46	0.29	0.63
no	genitals	yes	0.14	0.10	0.18
yes	genitals	yes	0.14	0.03	0.26
no	legs	yes	0.28	0.23	0.33
yes	legs	yes	0.23	0.11	0.37
no	feet	yes	0.28	0.22	0.32
yes	feet	yes	0.29	0.14	0.46
no	joints	yes	0.25	0.20	0.30
yes	joints	yes	0.23	0.11	0.37
no	muscles	yes	0.16	0.12	0.21
yes	muscles	yes	0.18	0.06	0.30

95% confidence interval of the difference in proportions

The difference in the proportion of HIV-positive participants with pain at a body site vs participants who were HIV-negative (HIV+ minus HIV-).

```
# Boot function
func_tmp <- function(d, i){
    data <- d[i, ]
    data <- data %>%
        filter(!is.na(pain_present)) %>%
        filter(!is.na(HIV_positive))
    data_hiv <- filter(data, HIV_positive == 'yes')
    data_nohiv <- filter(data, HIV_positive == 'no')
    prop_yes <- mean(data_hiv$pain_present == 'yes')
    prop_no <- mean(data_nohiv$pain_present == 'yes')
    prop_yes - prop_no
}

# Confidence interval of the difference in proportions (HIV+ minus HIV-)
set.seed(2019)
boot_tmp <- data %>%
```

```
gather(key = site,
           value = pain_present,
           head, shoulders, arms, hands, chest, abdomen, low back,
           genitals, legs, feet, joints, muscles) %>%
    group_by(site) %>%
   nest() %>%
   mutate(boot = map(.x = data,
                      ~ boot(data = .x,
                             statistic = func tmp,
                             R = 999,
                             stype = 'i',
                             parallel = 'multicore',
                             ncpus = 7))) %>%
   mutate(boot_ci = map(.x = boot,
                         ~ boot.ci(.x,
                                   type = 'perc')))
tibble_tmp <- tibble(`body site` = factor(c('head', 'shoulders', 'arms', 'hands', 'chest', 'abdomen',
                       'low_back', 'genitals', 'legs', 'feet', 'joints', 'muscles'),
                       levels = c('head', 'shoulders', 'arms', 'hands', 'chest', 'abdomen',
                       'low_back', 'genitals', 'legs', 'feet', 'joints', 'muscles'),
                       ordered = TRUE),
       `pain present` = rep('yes', 12),
       `difference in proportion` = c(round(boot_tmp$boot[[1]]$t0, 2),
                                      round(boot tmp$boot[[2]]$t0, 2),
                                      round(boot_tmp$boot[[3]]$t0, 2),
                                      round(boot_tmp$boot[[4]]$t0, 2),
                                      round(boot_tmp$boot[[5]]$t0, 2),
                                      round(boot_tmp$boot[[6]]$t0, 2),
                                      round(boot_tmp$boot[[7]]$t0, 2),
                                      round(boot_tmp$boot[[8]]$t0, 2),
                                      round(boot_tmp$boot[[9]]$t0, 2),
                                      round(boot_tmp$boot[[10]]$t0, 2),
                                      round(boot_tmp$boot[[11]]$t0, 2),
                                      round(boot_tmp$boot[[12]]$t0, 2)),
       `lower 95% CI` = c(round(boot_tmp$boot_ci[[1]]$percent[[4]], 2),
                          round(boot tmp$boot ci[[2]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[3]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[4]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[5]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[6]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[7]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[8]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[9]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[10]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[11]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[12]]$percent[[4]], 2)),
       `upper 95% CI` = c(round(boot_tmp$boot_ci[[1]]$percent[[5]], 2),
                          round(boot_tmp$boot_ci[[2]]$percent[[5]], 2),
                          round(boot_tmp$boot_ci[[3]]$percent[[5]], 2),
                          round(boot_tmp$boot_ci[[4]]$percent[[5]], 2),
                          round(boot_tmp$boot_ci[[5]]$percent[[5]], 2),
                          round(boot_tmp$boot_ci[[6]]$percent[[5]], 2),
                          round(boot_tmp$boot_ci[[7]]$percent[[5]], 2),
```

```
round(boot_tmp$boot_ci[[8]]$percent[[5]], 2),
round(boot_tmp$boot_ci[[9]]$percent[[5]], 2),
round(boot_tmp$boot_ci[[10]]$percent[[5]], 2),
round(boot_tmp$boot_ci[[11]]$percent[[5]], 2),
round(boot_tmp$boot_ci[[12]]$percent[[5]], 2)))
```

tibble_tmp %>%

kable(caption = 'Body sites affected by pain - 95% CI of the difference (HIV+ minus HIV-)')

body site	pain present	difference in proportion	lower 95% CI	upper 95% CI
head	yes	-0.04	-0.23	0.12
shoulders	yes	0.00	-0.15	0.17
arms	yes	-0.02	-0.15	0.11
hands	yes	-0.10	-0.20	0.01
chest	yes	0.03	-0.14	0.21
abdomen	yes	-0.05	-0.20	0.12
low_back	yes	0.01	-0.17	0.17
genitals	yes	0.01	-0.11	0.14
legs	yes	-0.05	-0.20	0.11
feet	yes	0.01	-0.15	0.19
joints	yes	-0.02	-0.16	0.13
muscles	yes	0.02	-0.11	0.18

Plot

```
ggplot(data = tibble_tmp) +
   aes(x = `body site`,
       y = `difference in proportion`,
       ymin = `lower 95% CI`,
       ymax = upper 95\% CI) +
   geom_point(size = 8) +
   geom_errorbar(size = 1,
                 width = 0.3) +
   geom_hline(yintercept = 0,
              linetype = 2) +
   labs(title = 'Body sites affected by pain',
        subtitle = '95% CI of the difference in proportion (HIV+ minus HIV-)',
        y = 'Difference in proportion',
        x = 'Body site') +
   theme(axis.text.x = element_text(angle = 30,
                                     hjust = 1)
```

Body sites affected by pain

95% CI of the difference in proportion (HIV+ minus HIV-)

Number of body sites affected by pain

Point estimates

```
min = min(count),
    max = max(count)) %>%
kable(caption = 'Number of body sites with pain - total cohort')
```

 mean
 SD
 min
 max

 3.51
 2.18
 1
 12

```
## Plot
data %>%
   gather(key = site,
           value = pain_present,
           head, shoulders, arms, hands, chest, abdomen, low_back,
           genitals, legs, feet, joints, muscles) %>%
   filter(pain_present == 'yes') %>%
    group_by(PID, pain_present) %>%
   summarise(count = n()) %>%
   ungroup() %>%
   ggplot(data = .) +
   aes(x = 'ID',
       y = count) +
   geom_boxplot(alpha = 0.7,
                 colour = '#000000',
                 fill = '#999999') +
   geom_point(position = position_jitter(),
               fill = '#FFFFFF',
               alpha = 0.7,
               stroke = 0.8,
               size = 2,
               shape = 21) +
   scale_fill_manual(values = pal,
                      na.value = '#000000') +
   labs(title = 'Number of body sites with pain',
         subtitle = 'Whole cohort',
         y = 'Number of pain sites') +
   theme(legend.title = element_blank(),
          axis.title.x = element_blank())
```

Number of body sites with pain

Whole cohort


```
# By HIV status
data %>%
   gather(key = site,
           value = pain_present,
           head, shoulders, arms, hands, chest, abdomen, low_back,
           genitals, legs, feet, joints, muscles) %>%
   filter(pain_present == 'yes') %>%
    group_by(PID, HIV_positive, pain_present) %>%
    summarise(count = n()) %>%
   group_by(HIV_positive) %>%
    summarise(mean = round(mean(count), 2),
              SD = round(sd(count), 2),
              min = min(count),
              max = max(count)) %>%
   kable(caption = 'Number of body sites with pain - by HIV status')
                           HIV positive
                                         mean
                                                SD
                                                      \min
                                                           max
```

no

3.53

2.18

1

12

HIV_positive	mean	SD	min	max
yes	3.31	2.18	1	10

```
## Plot
data %>%
    gather(key = site,
           value = pain_present,
           head, shoulders, arms, hands, chest, abdomen, low_back,
           genitals, legs, feet, joints, muscles) %>%
    filter(pain_present == 'yes') %>%
    group_by(PID, HIV_positive, pain_present) \%>\%
    summarise(count = n()) %>%
    ungroup() %>%
    ggplot(data = .) +
    aes(x = HIV_positive,
       y = count,
       fill = HIV_positive) +
    geom_boxplot() + geom_boxplot(alpha = 0.7,
                 colour = '#000000',
                 fill = '#999999') +
    geom_point(position = position_jitter(),
               fill = '#FFFFFF',
               alpha = 0.7,
               stroke = 0.8,
               size = 2,
               shape = 21) +
    scale_fill_manual(values = pal,
                     na.value = '#000000') +
    labs(title = 'Number of body sites with pain',
         subtitle = 'By HIV status',
         y = 'Number of pain sites',
         x = 'HIV-positive') +
    theme(legend.position = 'none')
```

Number of body sites with pain By HIV status

95% confidence intervals for the point estimates

```
groupwiseMean(count ~ 1,
              data = tmp,
              bca = TRUE,
              R = 999) \% > \%
    select(Mean, Bca.lower, Bca.upper) %>%
    rename(mean = Mean,
            `lower 95% CI` = Bca.lower,
            `upper 95% CI` = Bca.upper) %>%
    kable(caption = 'Number of body sites with pain - total cohort (95% CI')
                                    lower 95% CI
                                                  upper 95% CI
                             mean
                              3.51
                                         3.28
                                                       3.76
# By HIV status (HIV- reported first)
## Data
tmp <- data %>%
    gather(key = site,
           value = pain present,
           head, shoulders, arms, hands, chest, abdomen, low_back,
           genitals, legs, feet, joints, muscles) %>%
    filter(pain_present == 'yes') %>%
    group_by(PID, HIV_positive, pain_present) %>%
    summarise(count = n()) %>%
    ungroup()
## Calculation
set.seed(2019)
groupwiseMean(count ~ HIV_positive,
              data = tmp,
              bca = TRUE,
              R = 999) \% \%
    select(HIV_positive, Mean, Bca.lower, Bca.upper) %>%
    rename(mean = Mean,
            `lower 95% CI` = Bca.lower,
            `upper 95% CI` = Bca.upper) %>%
    kable(caption = 'Number of body sites with pain - by HIV status (95% CI')
                      HIV_positive
                                           lower 95% CI upper 95% CI
                                    mean
                           no
                                     3.53
                                                3.30
                                                              3.82
                                     3.31
                                                2.71
                                                              4.11
                           yes
```

95% confidence interval for the difference in medians

```
filter(pain_present == 'yes')
    hiv_p <- tmp %>%
        filter(HIV_positive == 'yes') %>%
        group_by(PID, pain_present) %>%
        summarise(count = n()) %>%
        ungroup() %>%
        summarise(median = median(count))
    hiv n <- tmp %>%
        filter(HIV_positive == 'no') %>%
        group_by(PID, pain_present) %>%
        summarise(count = n()) %>%
        ungroup() %>%
        summarise(median = median(count))
    hiv_p$median - hiv_n$median
}
# Difference in medians
set.seed(2019)
boot_tmp <- boot(data = data,</pre>
                 R = 999,
                 statistic = func_tmp,
                 stype = 'i')
bootci tmp <- boot.ci(boot tmp,</pre>
                      type = 'perc') # BCa gives extreme order statistics warning
tibble_tmp <- tibble(`difference in medians` = bootci_tmp$t0,</pre>
                      `lower 95% CI` = bootci_tmp$percent[[4]],
                     `upper 95% CI` = bootci_tmp$percent[[5]])
tibble_tmp %>%
    kable(caption = 'Number of body sites with pain - 95% CI of the difference (HIV+ minus HIV-)')
                       difference in medians
                                           lower 95% CI
                                                         upper 95% CI
                               -1
                                               -1.5
                                                              1.5
# Plot
ggplot(data = tibble_tmp) +
    aes(x = 'ID',
        y = `difference in medians`,
        ymin = `lower 95% CI`,
        ymax = `upper 95% CI`) +
    geom_point(size = 8) +
    geom_errorbar(size = 1,
                  width = 0.3) +
    geom_hline(yintercept = 0,
               linetype = 2) +
    labs(title = 'Number of painful sites',
         subtitle = '95% CI of the difference in median (HIV+ minus HIV-)',
         y = 'Difference in median') +
    theme(axis.title.x = element_blank())
```

Number of painful sites

95% CI of the difference in median (HIV+ minus HIV-)

Body site with the worst pain

Point estimates

pain site	count	total count	proportion
head	78	307	0.25
low back	53	307	0.17
abdomen	44	307	0.14
chest	33	307	0.11
feet	22	307	0.07
legs	19	307	0.06
shoulders	19	307	0.06
joints	14	307	0.05
arms	8	307	0.03
genitals	8	307	0.03
muscles	4	307	0.01
hands	3	307	0.01
arms,hands	1	307	0.00
head, chest	1	307	0.00

```
## Plot
data %>%
    select(PID, HIV_positive, site_of_worst_pain_1) %>%
    rename(`pain site` = site_of_worst_pain_1) %>%
    filter(!is.na(`pain site`)) %>%
    group_by(`pain site`) %>%
    summarise(count = n()) %>%
    ungroup() %>%
    mutate(`total count` = sum(count),
           proportion = round(count / `total count`, 2)) %>%
    mutate(`pain site` = factor(`pain site`),
           `pain site` = fct_reorder(`pain site`, proportion)) %>%
ggplot(data = .) +
    aes(x = 'ID',
       y = proportion,
       fill = `pain site`) +
    geom col() +
    scale_fill_grey() +
    labs(title = 'Site of the worst pain',
         subtitle = 'Whole cohort',
         y = 'Proportion') +
    theme(legend.title = element_blank(),
          axis.title.x = element_blank())
```

Site of the worst pain

Whole cohort

HIV_positive	pain site	count	total count	proportion
no	abdomen	42	238	0.18
yes	abdomen	2	30	0.07

HIV_positive	pain site	count	total count	proportion
no	chest	30	238	0.13
yes	chest	3	30	0.10
no	feet	19	238	0.08
yes	feet	3	30	0.10
no	head	65	238	0.27
yes	head	13	30	0.43
no	legs	18	238	0.08
yes	legs	1	30	0.03
no	low back	48	238	0.20
yes	low back	5	30	0.17
no	shoulders	16	238	0.07
yes	shoulders	3	30	0.10

```
## Plot
data %>%
    select(PID, HIV_positive, site_of_worst_pain_1) %>%
    rename(`pain site` = site_of_worst_pain_1) %>%
    filter(!is.na(`pain site`)) %>%
    filter(`pain site` %in% sites) %>%
    group_by(HIV_positive, `pain site`) %>%
    summarise(count = n()) %>%
    mutate(`total count` = sum(count),
           proportion = round(count / `total count`, 2)) %>%
    mutate(`pain site` = factor(`pain site`),
           `pain site` = fct_reorder(`pain site`, proportion)) %>%
    ungroup() %>%
    ggplot(data = .) +
    aes(x = HIV_positive,
       y = proportion,
       fill = `pain site`) +
    geom_col() +
    scale_fill_grey() +
    labs(title = 'Site of the worst pain',
        subtitle = 'By HIV status',
         y = 'Proportion',
         x = 'HIV-positive') +
    theme(legend.title = element_blank())
```

Site of the worst pain By HIV status

95% confidence intervals for the point estimates

```
stype = 'i'))
map tmp \leftarrow map(.x = map tmp,
               ~ boot.ci(.x,
                         type = 'perc'))
## Tabulate
tibble_tmp <- tibble(site = unique(data$site_of_worst_pain_1[!is.na(data$site_of_worst_pain_1)]),
                     proportion = c(round(map_tmp[[1]]$t0, 2),
                                     round(map_tmp[[2]]$t0, 2),
                                     round(map_tmp[[3]]$t0, 2),
                                     round(map_tmp[[4]]$t0, 2),
                                     round(map_tmp[[5]]$t0, 2),
                                     round(map_tmp[[6]]$t0, 2),
                                    round(map_tmp[[7]]$t0, 2),
                                     round(map_tmp[[8]]$t0, 2),
                                     round(map_tmp[[9]]$t0, 2),
                                     round(map tmp[[10]]$t0, 2),
                                    round(map_tmp[[11]]$t0, 2),
                                     round(map_tmp[[12]]$t0, 2),
                                    round(map_tmp[[13]]$t0, 2),
                                    round(map_tmp[[14]]$t0, 2)),
                     `lower 95% CI` = c(round(map_tmp[[1]]$percent[4], 2),
                                         round(map_tmp[[2]]$percent[4], 2),
                                         round(map_tmp[[3]]$percent[4], 2),
                                         round(map_tmp[[4]]$percent[4], 2),
                                         round(map_tmp[[5]]$percent[4], 2),
                                         round(map_tmp[[6]]$percent[4], 2),
                                         round(map_tmp[[7]]$percent[4], 2),
                                         round(map_tmp[[8]]$percent[4], 2),
                                         round(map_tmp[[9]] percent[4], 2),
                                         round(map_tmp[[10]]$percent[4], 2),
                                         round(map_tmp[[11]] $percent[4], 2),
                                         round(map_tmp[[12]]$percent[4], 2),
                                         round(map_tmp[[13]]$percent[4], 2),
                                         round(map_tmp[[14]]$percent[4], 2)),
                      'upper 95\% CI' = c(round(map_tmp[[1]]$percent[5], 2),
                                         round(map_tmp[[2]]$percent[5], 2),
                                         round(map_tmp[[3]]$percent[5], 2),
                                         round(map_tmp[[4]]$percent[5], 2),
                                         round(map_tmp[[5]]$percent[5], 2),
                                         round(map_tmp[[6]]$percent[5], 2),
                                         round(map_tmp[[7]]$percent[5], 2),
                                         round(map_tmp[[8]]$percent[5], 2),
                                         round(map_tmp[[9]]$percent[5], 2),
                                         round(map_tmp[[10]] $percent[5], 2),
                                         round(map_tmp[[11]] $percent[5], 2),
                                         round(map_tmp[[12]] percent[5], 2),
                                         round(map_tmp[[13]]$percent[5], 2),
                                         round(map_tmp[[14]]$percent[5], 2))) %>%
    arrange(desc(proportion))
tibble_tmp %>%
   kable(caption = 'Site of the worst pain - whole cohort (95% CI)')
```

site	proportion	lower 95% CI	upper 95% CI
head	0.25	0.21	0.30
low back	0.17	0.13	0.21
abdomen	0.14	0.11	0.18
chest	0.11	0.07	0.15
feet	0.07	0.05	0.10
shoulders	0.06	0.04	0.09
legs	0.06	0.04	0.09
joints	0.05	0.03	0.07
genitals	0.03	0.01	0.05
arms	0.03	0.01	0.05
hands	0.01	0.00	0.02
muscles	0.01	0.00	0.03
head, chest	0.00	0.00	0.01
arms,hands	0.00	0.00	0.01

```
# By HIV status (>= 5%)
sites <- c('head', 'low back', 'abdomen', 'chest', 'feet', 'legs', 'shoulders')</pre>
## Extract HIV+ data and bootstrap CI
hiv_p <- data %>%
    filter(HIV_positive == 'yes')
set.seed(2019)
map_hiv_p \leftarrow map(.x = sites,
                   ~ boot(data = hiv_p,
                          site = .x,
                          R = 999,
                          statistic = func_tmp,
                          stype = 'i'))
map_hiv_p \leftarrow map(.x = map_hiv_p,
                   ~ boot.ci(.x,
                             type = 'perc'))
## Extract HIV- data and bootstrap CI
hiv_n \leftarrow data \%>\%
    filter(HIV_positive == 'no')
set.seed(2019)
map_hiv_n \leftarrow map(.x = sites,
                  ~ boot(data = hiv_n,
                          site = .x,
                          R = 999,
                          statistic = func_tmp,
                          stype = 'i'))
map_hiv_n \leftarrow map(.x = map_hiv_n,
                  ~ boot.ci(.x,
                             type = 'perc'))
## Tabulate
tibble_tmp <- tibble(`HIV positive` = rep(c('no', 'yes'),</pre>
```

```
site = rep(sites, each = 2),
                     proportion = c(round(map hiv n[[1]] t0, 2),
                                    round(map_hiv_p[[1]]$t0, 2),
                                    round(map_hiv_n[[2]]$t0, 2),
                                    round(map hiv p[[2]]$t0, 2),
                                    round(map hiv n[[3]]$t0, 2),
                                    round(map_hiv_p[[3]]$t0, 2),
                                    round(map_hiv_n[[4]]$t0, 2),
                                    round(map_hiv_p[[4]]$t0, 2),
                                    round(map_hiv_n[[5]]$t0, 2),
                                    round(map_hiv_p[[5]]$t0, 2),
                                    round(map_hiv_n[[6]]$t0, 2),
                                    round(map_hiv_p[[6]]$t0, 2),
                                    round(map_hiv_n[[7]]$t0, 2),
                                    round(map_hiv_p[[7]]$t0, 2)),
                     `lower 95% CI` = c(round(map_hiv_n[[1]]$percent[4], 2),
                                        round(map_hiv_p[[1]]$percent[4], 2),
                                        round(map_hiv_n[[2]]$percent[4], 2),
                                        round(map_hiv_p[[2]]$percent[4], 2),
                                        round(map_hiv_n[[3]]$percent[4], 2),
                                        round(map_hiv_p[[3]]$percent[4], 2),
                                        round(map_hiv_n[[4]]$percent[4], 2),
                                        round(map_hiv_p[[4]]$percent[4], 2),
                                        round(map_hiv_n[[5]]$percent[4], 2),
                                        round(map_hiv_p[[5]]$percent[4], 2),
                                        round(map_hiv_n[[6]]$percent[4], 2),
                                        round(map_hiv_p[[6]]$percent[4], 2),
                                        round(map_hiv_n[[7]]$percent[4], 2),
                                        round(map_hiv_p[[7]]$percent[4], 2)),
                     'upper 95\% CI' = c(round(map_hiv_n[[1]]$percent[5], 2),
                                         round(map_hiv_p[[1]]$percent[5], 2),
                                         round(map_hiv_n[[2]]$percent[5], 2),
                                        round(map_hiv_p[[2]]$percent[5], 2),
                                         round(map hiv n[3]) $percent[5], 2),
                                        round(map_hiv_p[[3]]$percent[5], 2),
                                        round(map_hiv_n[[4]]$percent[5], 2),
                                        round(map_hiv_p[[4]]$percent[5], 2),
                                         round(map_hiv_n[[5]]$percent[5], 2),
                                        round(map_hiv_p[[5]]$percent[5], 2),
                                        round(map_hiv_n[[6]]$percent[5], 2),
                                        round(map_hiv_p[[6]]$percent[5], 2),
                                         round(map_hiv_n[[7]]$percent[5], 2),
                                         round(map_hiv_p[[7]]$percent[5], 2)))
tibble_tmp %>%
    kable(caption = 'Site of the worst pain - by HIV status (95% CI)')
```

times = 7),

HIV positive	site	proportion	lower 95% CI	upper 95% CI
no	head	0.24	0.19	0.29
yes	head	0.38	0.23	0.56
no	low back	0.18	0.13	0.22
yes	low back	0.15	0.03	0.29
no	abdomen	0.15	0.11	0.20

HIV positive	site	proportion	lower 95% CI	upper 95% CI
yes	abdomen	0.06	0.00	0.15
no	chest	0.11	0.08	0.15
yes	chest	0.09	0.00	0.20
no	feet	0.07	0.04	0.10
yes	feet	0.09	0.00	0.20
no	legs	0.07	0.04	0.10
yes	legs	0.03	0.00	0.09
no	shoulders	0.06	0.03	0.09
yes	shoulders	0.09	0.00	0.19

95% confidence interval of the difference in proportions

```
# Boot function
func_tmp <- function(d, i, site){</pre>
    data <- d[i, ]
    hiv_p <- filter(data, HIV_positive == 'yes')</pre>
    hiv_p <- mean(hiv_p$site_of_worst_pain_1 == site,</pre>
                  na.rm = TRUE)
    hiv_n <- filter(data, HIV_positive == 'no')</pre>
    hiv_n <- mean(hiv_n$site_of_worst_pain_1 == site,</pre>
                  na.rm = TRUE)
    hiv_p - hiv_n
}
# Bootstrap CI of the difference in proportions for all sites with estimate >= 5%
set.seed(2019)
map_tmp <- map(.x = sites,
                ~ boot(data = data,
                       site = .x,
                       R = 999,
                       statistic = func_tmp,
                       stype = 'i'))
map_tmp <- map(.x = map_tmp,
                ~ boot.ci(.x,
                          type = 'perc'))
# Tabulate
tibble_tmp <- tibble(site = sites,</pre>
                      `difference in proportion` = c(round(map_tmp[[1]]$t0, 2),
                                      round(map_tmp[[2]]$t0, 2),
                                      round(map_tmp[[3]]$t0, 2),
                                      round(map_tmp[[4]]$t0, 2),
                                      round(map_tmp[[5]]$t0, 2),
                                      round(map_tmp[[6]]$t0, 2),
                                      round(map_tmp[[7]]$t0, 2)),
                      `lower 95% CI` = c(round(map_tmp[[1]]$percent[4], 2),
                                          round(map_tmp[[2]]$percent[4], 2),
                                          round(map_tmp[[3]]$percent[4], 2),
                                          round(map_tmp[[4]]$percent[4], 2),
                                          round(map_tmp[[5]]$percent[4], 2),
```

tibble_tmp %>%

kable(caption = 'Site of the worst pain - 95% CI of the difference (HIV+ minus HIV-)')

site	difference in proportion	lower 95% CI	upper 95% CI
head	0.14	-0.01	0.31
low back	-0.03	-0.15	0.11
abdomen	-0.10	-0.18	0.00
chest	-0.02	-0.11	0.09
feet	0.02	-0.07	0.13
legs	-0.04	-0.09	0.04
shoulders	0.03	-0.07	0.14

Plot

Site of the worst pain

Pain intensity

Worst pain in the last week.

Point estimates

mean	SD	min	max
6.78	2.41	1	10

```
## Plot
data %>%
    select(pain_worst) %>%
    ggplot(data = .) +
    aes(x = 'ID',
       y = pain_worst) +
    geom_boxplot(alpha = 0.7,
                colour = '#000000',
                fill = '#999999') +
    geom_point(position = position_jitter(),
               fill = '#FFFFFF',
               alpha = 0.7,
               stroke = 0.8,
               size = 2,
               shape = 21) +
    scale_y_continuous(limits = c(0, 10)) +
    labs(title = 'Worst pain in the past week',
         subtitle = 'Full cohort',
         y = 'Pain intensity') +
    theme(axis.text.x = element_blank())
```

Worst pain in the past week Full cohort

HIV_positive	mean	SD	min	max
no	6.73	2.42	1	10
yes	7.17	2.38	2	10

```
## Plot
data %>%
    select(HIV_positive, pain_worst) %>%
    ggplot(data = .) +
    aes(x = HIV_positive,
```

Worst pain in the past week By HIV status

95% confidence intervals for the point estimates

```
# Use the Rcompanion groupwiseMean for numeric data
# Data
tmp <- data %>%
    select(HIV_positive, pain_worst)
# Whole cohort
set.seed(2019)
groupwiseMean(pain_worst ~ 1,
              data = tmp,
              bca = TRUE,
              R = 999) \% \%
    select(Mean, Bca.lower, Bca.upper) %>%
    rename(mean = Mean,
           lower 95% CI = Bca.lower,
           upper 95% CI = Bca.upper) %>%
    kable(caption = 'Pain at its worst in the past week - total cohort (95% CI)')
                                     lower 95% CI
                                                  upper 95% CI
                              mean
                              6.78
                                         6.49
                                                       7.05
# By HIV status (HIV- reported first)
set.seed(2019)
groupwiseMean(pain_worst ~ HIV_positive,
              data = tmp,
              bca = TRUE,
              R = 999) \% \%
    select(HIV_positive, Mean, Bca.lower, Bca.upper) %>%
    rename(mean = Mean,
            `lower 95% CI` = Bca.lower,
            `upper 95% CI` = Bca.upper) %>%
    kable(caption = 'Pain at its worst in the past week - by HIV status (95% CI)')
                      HIV positive
                                     mean
                                           lower 95% CI
                                                          upper 95% CI
                                     6.73
                                                              7.03
                           no
                                                6.46
                                     7.17
                                                6.29
                                                              7.89
                           yes
```

95% confidence interval of the difference in means

The difference in the mean intensity of the worst pain in the past week of HIV-positive participants vs participants who were HIV-negative (HIV+ minus HIV-).

```
# Boot function
func_tmp <- function(d, i){
   data <- d[i, ]
   data <- data %>%
        filter(!is.na(HIV_positive))
   data_hiv <- filter(data, HIV_positive == 'yes')
   data_nohiv <- filter(data, HIV_positive == 'no')</pre>
```

```
mean_yes <- mean(data_hiv$pain_worst)</pre>
    mean_no <- mean(data_nohiv$pain_worst)</pre>
    mean_yes - mean_no
}
\# Confidence interval of the difference in proportions (HIV+ minus HIV-)
set.seed(2019)
boot_tmp <- boot(data = data,</pre>
                 statistic = func_tmp,
                 R = 999,
                 stype = 'i')
bootci_tmp <- boot.ci(boot_tmp,</pre>
                      type = 'perc') # BCa gave extreme order statistics
tibble_tmp <- tibble(`difference in mean` = round(boot_tmp$t0, 2),</pre>
                      `lower 95% CI` = round(bootci_tmp$percent[[4]], 2),
                      `upper 95% CI` = round(bootci_tmp$percent[[5]], 2))
tibble_tmp %>%
    kable(caption = 'Pain at its worst in the past week - 95% CI of the difference (HIV+ minus HIV-)')
                                          lower 95\% CI
                        difference in mean
                                                        upper 95% CI
                              0.44
                                              -0.45
                                                             1.27
# Plot
ggplot(data = tibble_tmp) +
    aes(x = 'ID',
        y = `difference in mean`,
        ymin = `lower 95% CI`,
        ymax = `upper 95% CI`) +
    geom_point(size = 8) +
    geom_errorbar(size = 1,
                  width = 0.3) +
    geom_hline(yintercept = 0,
               linetype = 2) +
    labs(title = 'Pain at its worst in the past week',
         subtitle = '95% CI of the difference in proportion (HIV+ minus HIV-)',
         y = 'Difference in mean') +
    theme(axis.title.x = element_blank())
```

Pain at its worst in the past week 95% CI of the difference in proportion (HIV+ minus HIV-)

Did you receive treatment for your pain?

Receiving treatment includes self-medication.

Point estimates

```
# Whole cohort
data %>%
    select(pain_treatment) %>%
    group_by(pain_treatment) %>%
    summarise(count = n()) %>%
    ungroup() %>%
    mutate(total = sum(count)) %>%
    mutate(proportion = round(count / total, 2)) %>%
    kable(caption = 'Receiving pain treatment - total cohort (point estimates)')
```

pain_treatment	count	total	proportion
no	170	316	0.54
yes	146	316	0.46

Receiving treatment for pain

Whole cohort

Count and proportion by HIV status

```
data %>%
    filter(!is.na(pain_treatment)) %>%
    filter(!is.na(HIV_positive)) %>%
    group_by(HIV_positive, pain_treatment) %>%
    summarise(count = n()) %>%
    group_by(HIV_positive) %>%
    mutate(total = sum(count)) %>%
    mutate(proportion = round(count/total, 2)) %>%
    kable(caption = 'Receiving pain treatment - by HIV status (point estimates)')
```

HIV_positive	pain_treatment	count	total	proportion
no	no	152	281	0.54
no	yes	129	281	0.46
yes	no	18	35	0.51
yes	yes	17	35	0.49

Receiving treatment for pain By HIV status

95% confidence intervals for the point estimates

```
bootci_tmp <- boot.ci(boot_tmp,</pre>
                       type = 'perc')
tibble(`Receiving treatment` = 'yes',
       proportion = round(boot tmp$t0, 2),
       `lower 95% CI` = round(bootci tmp$percent[[4]], 2),
       `upper 95% CI` = round(bootci_tmp$percent[[5]], 2)) %>%
    kable(caption = 'Receiving pain treatment - total cohort (95% CI)')
                                                 lower 95% CI
                  Receiving treatment
                                     proportion
                                                               upper 95% CI
                                        0.46
                                                     0.41
                                                                    0.52
                         yes
# By HIV status (HIV- reported first)
set.seed(2019)
boot tmp <- data %>%
    group_by(HIV_positive) %>%
    nest() %>%
    mutate(boot = map(.x = data,
                       ~ boot(data = .x,
                              statistic = func tmp,
                              R = 999.
                              stype = 'i'))) %>%
    mutate(boot_ci = map(.x = boot,
                          ~ boot.ci(.x,
                                    type = 'perc')))
tibble(`HIV positive` = c('no', 'yes'),
       `Receiving treatment` = c('yes', 'yes'),
       proportion = c(round(boot_tmp$boot[[1]]$t0, 2),
                       round(boot_tmp$boot[[2]]$t0, 2)),
       `lower 95% CI` = c(round(boot_tmp$boot_ci[[1]]$percent[[4]], 2),
                           round(boot tmp$boot ci[[2]]$percent[[4]], 2)),
       `upper 95% CI` = c(round(boot_tmp$boot_ci[[1]]$percent[[5]],2 ),
                           round(boot tmp$boot ci[[2]]$percent[[5]], 2))) %>%
    kable(caption = 'Receiving pain treatment - by HIV status (95% CI)')
           HIV positive
                        Receiving treatment
                                            proportion
                                                        lower 95% CI
                                                                      upper 95% CI
               no
                                yes
                                               0.46
                                                            0.40
                                                                          0.52
                                               0.49
                                                            0.31
                                                                          0.66
               yes
                                yes
```

95% confidence interval of the difference in proportions

The difference in the proportion of HIV-positive participants receiving treatment for their pain vs participants who were HIV-negative (HIV+ minus HIV-).

```
# Boot function
func_tmp <- function(d, i){
   data <- d[i, ]
   data <- data %>%
      filter(!is.na(pain_treatment)) %>%
```

```
filter(!is.na(HIV_positive))
    data_hiv <- filter(data, HIV_positive == 'yes')</pre>
    data_nohiv <- filter(data, HIV_positive == 'no')</pre>
    prop_yes <- mean(data_hiv$pain_treatment == 'yes')</pre>
    prop_no <- mean(data_nohiv$pain_treatment == 'yes')</pre>
    prop_yes - prop_no
# Confidence interval of the difference in proportions (HIV+ minus HIV-)
set.seed(2019)
boot_tmp <- boot(data = data,</pre>
                  statistic = func_tmp,
                 R = 999.
                 stype = 'i')
bootci_tmp <- boot.ci(boot_tmp,</pre>
                      type = 'perc')
tibble_tmp <- tibble(`difference in proportion` = round(boot_tmp$t0, 2),
                      `lower 95% CI` = round(bootci_tmp$percent[[4]], 2),
                      `upper 95% CI` = round(bootci_tmp$percent[[5]], 2))
tibble_tmp %>%
    kable(caption = 'Receiving pain treatment - 95% CI of the difference (HIV+ minus HIV-)')
                                             lower 95% CI
                                                           upper 95% CI
                      difference in proportion
                              0.03
                                                 -0.15
                                                                0.2
# Plot
ggplot(data = tibble_tmp) +
    aes(x = 'ID',
        y = `difference in proportion`,
        ymin = `lower 95% CI`,
        ymax = `upper 95% CI`) +
    geom_point(size = 8) +
    geom_errorbar(size = 1,
                  width = 0.3) +
    geom_hline(yintercept = 0,
               linetype = 2) +
    labs(title = 'Receiving pain treatment',
         subtitle = '95% CI of the difference in proportion (HIV+ minus HIV-)',
         y = 'Difference in proportion') +
    theme(axis.title.x = element_blank())
```

Receiving pain treatment

95% CI of the difference in proportion (HIV+ minus HIV-)

Medications/substances used for pain management

Process data

```
str_detect(drugs, 'ibuprofen') |
        str_detect(drugs, 'diclofenac') ~ 'yes',
    TRUE ~ 'no'
)) %>%
mutate(weak_opioids = case_when(
    str_detect(drugs, 'tramadol') |
        str_detect(drugs, 'codeine') ~ 'yes',
    TRUE ~ 'no'
)) %>%
mutate(marijuana = case_when(
    str_detect(drugs, 'marijuana') ~ 'yes',
    TRUE ~ 'no'
)) %>%
mutate(alcohol = case_when(
    str_detect(drugs, 'alcohol') ~ 'yes',
    TRUE ~ 'no'
)) %>%
select(-drugs) %>%
gather(key = drug,
       value = drug_used,
       -PID, -HIV_positive)
```

Point estimates

```
# Total cohort
drugs %>%
    group_by(drug, drug_used) %>%
    summarise(count = n()) %>%
    group_by(drug) %>%
    mutate(total = sum(count)) %>%
    filter(drug_used == 'yes') %>%
    mutate(proportion = round(count/total, 2)) %>%
    select(-total) %>%
    kable(caption = 'Drugs used for pain - total cohort')
```

drug	${\rm drug_used}$	count	proportion
alcohol	yes	13	0.04
marijuana	yes	11	0.03
$nsaids_aspirin$	yes	101	0.32
paracetamol	yes	79	0.25
weak_opioids	yes	16	0.05

Drugs used to manage pain

Whole cohort

By HIV status

```
drugs %>%
  group_by(HIV_positive, drug, drug_used) %>%
  summarise(count = n()) %>%
  group_by(drug) %>%
  mutate(total = sum(count)) %>%
  filter(drug_used == 'yes') %>%
  mutate(proportion = round(count/total, 2)) %>%
  select(-total) %>%
  kable(caption = 'Drugs used for pain - total cohort')
```

HIV_positive	drug	drug_used	count	proportion
no	alcohol	yes	11	0.03
no	marijuana	yes	10	0.03

HIV_positive	drug	drug_used	count	proportion
no	nsaids_aspirin	yes	88	0.28
no	paracetamol	yes	72	0.23
no	$weak_opioids$	yes	16	0.05
yes	alcohol	yes	2	0.01
yes	marijuana	yes	1	0.00
yes	$nsaids_aspirin$	yes	13	0.04
yes	paracetamol	yes	7	0.02

```
## Plot
ggplot(data = drugs) +
    aes(x = drug,
       fill = drug_used) +
    geom_bar(position = position_fill()) +
    scale_fill_manual(values = pal,
                     na.value = '#000000') +
    labs(title = 'Drugs used to manage pain',
        subtitle = 'By HIV status',
         y = 'Proportion',
         x = 'Drug class') +
    facet_wrap(~ HIV_positive,
               ncol = 2) +
    theme(legend.title = element_blank(),
         axis.text.x = element_text(angle = 30,
                                     hjust = 1))
```

Drugs used to manage pain By HIV status

95% confidence intervals for the point estimates

```
# Boot functions
func_tmp <- function(d, i){
    data <- d[i, ]
    data <- data %>%
        filter(!is.na(drug_used))
    prop <- mean(data$drug_used == 'yes')
    prop
}

# Whole cohort
set.seed(2019)
boot_tmp <- drugs %>%
    group_by(drug) %>%
    nest() %>%
    mutate(boot = map(.x = data,
```

```
\sim boot(data = .x,
                             statistic = func tmp,
                             R = 999,
                             stype = 'i',
                             parallel = 'multicore',
                             ncpus = 4))) %>%
   mutate(boot ci = map(.x = boot,
                         ~ boot.ci(.x,
                                   type = 'perc')))
tibble(`drug class` = boot_tmp$drug,
       proportion = c(round(boot_tmp$boot[[1]]$t0, 2),
                      round(boot_tmp$boot[[2]]$t0, 2),
                      round(boot_tmp$boot[[3]]$t0, 2),
                      round(boot_tmp$boot[[4]]$t0, 2),
                      round(boot_tmp$boot[[5]]$t0, 2)),
       `lower 95% CI` = c(round(boot_tmp$boot_ci[[1]]$percent[[4]], 2),
                          round(boot tmp$boot ci[[2]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[3]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[4]]$percent[[4]], 2),
                          round(boot_tmp$boot_ci[[5]]$percent[[4]], 2)),
       `upper 95% CI` = c(round(boot_tmp$boot_ci[[1]]$percent[[5]], 2),
                          round(boot_tmp$boot_ci[[2]]$percent[[5]], 2),
                          round(boot_tmp$boot_ci[[3]]$percent[[5]], 2),
                          round(boot_tmp$boot_ci[[4]]$percent[[5]], 2),
                          round(boot_tmp$boot_ci[[5]]$percent[[5]], 2))) %>%
   kable(caption = 'Drug classes used to manage pain - whole cohort (95% CI)')
```

drug class	proportion	lower 95% CI	upper 95% CI
paracetamol	0.25	0.21	0.30
$nsaids_aspirin$	0.32	0.27	0.37
weak_opioids	0.05	0.03	0.07
marijuana	0.03	0.02	0.06
alcohol	0.04	0.02	0.06

```
# By HIV status (HIV- reported first)
set.seed(2019)
boot tmp <- drugs %>%
   group_by(HIV_positive, drug) %>%
   nest() %>%
   mutate(boot = map(.x = data,
                      ~ boot(data = .x,
                             statistic = func_tmp,
                             R = 999,
                             stype = 'i',
                             parallel = 'multicore',
                             ncpus = 4))) %>%
   mutate(boot_ci = map(.x = boot,
                         ~ boot.ci(.x,
                                   type = 'perc')))
tibble(`HIV positive` = rep(c('no', 'yes'), 5),
       `drug class` = boot_tmp$drug,
```

```
proportion = c(round(boot_tmp$boot[[1]]$t0, 2),
                  round(boot_tmp$boot[[2]]$t0, 2),
                  round(boot tmp$boot[[3]]$t0, 2),
                  round(boot_tmp$boot[[4]]$t0, 2),
                  round(boot_tmp$boot[[5]]$t0, 2),
                  round(boot tmp$boot[[6]]$t0, 2),
                  round(boot tmp$boot[[7]]$t0, 2),
                  round(boot_tmp$boot[[8]]$t0, 2),
                  round(boot tmp$boot[[9]]$t0, 2),
                  round(boot_tmp$boot[[10]]$t0, 2)),
   `lower 95% CI` = c(round(boot_tmp$boot_ci[[1]]$percent[[4]], 2),
                      round(boot_tmp$boot_ci[[2]]$percent[[4]], 2),
                      round(boot_tmp$boot_ci[[3]]$percent[[4]], 2),
                      round(boot_tmp$boot_ci[[4]]$percent[[4]], 2),
                      round(boot_tmp$boot_ci[[5]]$percent[[4]], 2),
                      round(boot_tmp$boot_ci[[6]]$percent[[4]], 2),
                      round(boot_tmp$boot_ci[[7]]$percent[[4]], 2),
                      round(boot tmp$boot ci[[8]]$percent[[4]], 2),
                      round(boot_tmp$boot_ci[[9]]$percent[[4]], 2),
                      round(boot tmp$boot ci[[10]]$percent[[4]], 2)),
   `upper 95% CI` = c(round(boot_tmp$boot_ci[[1]]$percent[[5]], 2),
                      round(boot_tmp$boot_ci[[2]]$percent[[5]], 2),
                      round(boot_tmp$boot_ci[[3]]$percent[[5]], 2),
                      round(boot tmp$boot ci[[4]]$percent[[5]], 2),
                      round(boot_tmp$boot_ci[[5]]$percent[[5]], 2),
                      round(boot_tmp$boot_ci[[6]]$percent[[5]], 2),
                      round(boot_tmp$boot_ci[[7]]$percent[[5]], 2),
                      round(boot_tmp$boot_ci[[8]]$percent[[5]], 2),
                      round(boot_tmp$boot_ci[[9]]$percent[[5]], 2),
                      round(boot_tmp$boot_ci[[10]]$percent[[5]], 2))) %>%
kable(caption = 'Body sites affected by pain - by HIV status (95% CI)')
```

HIV positive	drug class	proportion	lower 95% CI	upper 95% CI
no	paracetamol	0.26	0.21	0.31
yes	paracetamol	0.20	0.09	0.34
no	nsaids_aspirin	0.31	0.26	0.37
yes	nsaids_aspirin	0.37	0.23	0.54
no	weak_opioids	0.06	0.03	0.09
yes	weak_opioids	0.00	0.00	0.00
no	marijuana	0.04	0.02	0.06
yes	marijuana	0.03	0.00	0.09
no	alcohol	0.04	0.02	0.06
yes	alcohol	0.06	0.00	0.14

95% confidence interval of the difference in proportions

The difference in the proportion of HIV-positive participants using a drug vs participants who were HIV-negative (HIV+ minus HIV-).

```
# Boot function
func_tmp <- function(d, i){
   data <- d[i, ]
   data <- data %>%
```

```
filter(!is.na(drug_used)) %>%
        filter(!is.na(HIV_positive))
    data hiv <- filter(data, HIV positive == 'yes')</pre>
    data_nohiv <- filter(data, HIV_positive == 'no')</pre>
    prop yes <- mean(data hiv$drug used == 'yes')</pre>
    prop no <- mean(data nohiv$drug used == 'yes')</pre>
    prop_yes - prop_no
}
# Confidence interval of the difference in proportions (HIV+ minus HIV-)
set.seed(2019)
boot_tmp <- drugs %>%
    group_by(drug) %>%
    nest() %>%
    mutate(boot = map(.x = data,
                       ~ boot(data = .x,
                              statistic = func_tmp,
                              R = 999.
                              stype = 'i',
                              parallel = 'multicore',
                              ncpus = 4))) %>%
    mutate(boot_ci = map(.x = boot,
                          ~ boot.ci(.x,
                                     type = 'perc')))
tibble_tmp <- tibble(`drug class` = boot_tmp$drug,</pre>
       `difference in proportion` = c(round(boot_tmp$boot[[1]]$t0, 2),
                                        round(boot_tmp$boot[[2]]$t0, 2),
                                        round(boot_tmp$boot[[3]]$t0, 2),
                                        round(boot_tmp$boot[[4]]$t0, 2),
                                        round(boot_tmp$boot[[5]]$t0, 2)),
       `lower 95% CI` = c(round(boot_tmp$boot_ci[[1]]$percent[[4]], 2),
                           round(boot_tmp$boot_ci[[2]]$percent[[4]], 2),
                           round(boot_tmp$boot_ci[[3]]$percent[[4]], 2),
                           round(boot tmp$boot ci[[4]]$percent[[4]], 2),
                           round(boot_tmp$boot_ci[[5]]$percent[[4]], 2)),
       `upper 95% CI` = c(round(boot tmp$boot ci[[1]]$percent[[5]], 2),
                           round(boot_tmp$boot_ci[[2]]$percent[[5]], 2),
                           round(boot_tmp$boot_ci[[3]]$percent[[5]], 2),
                           round(boot_tmp$boot_ci[[4]]$percent[[5]], 2),
                           round(boot tmp$boot ci[[5]]$percent[[5]], 2)))
tibble tmp %>%
    kable(caption = 'Drugs used to manage pain - 95% CI of the difference (HIV+ minus HIV-)')
                                                     lower 95% CI
                 drug class
                              difference in proportion
                                                                   upper 95% CI
               paracetamol
                                      -0.06
                                                         -0.20
                                                                       0.10
              nsaids_aspirin
                                      0.06
                                                         -0.12
                                                                       0.24
               weak opioids
                                      -0.06
                                                         -0.08
                                                                       -0.03
                marijuana
                                      -0.01
                                                         -0.05
                                                                       0.06
                  alcohol
                                      0.02
                                                         -0.05
                                                                       0.11
```

```
ggplot(data = tibble_tmp) +
   aes(x = `drug class`,
       y = `difference in proportion`,
        ymin = `lower 95% CI`,
        ymax = `upper 95% CI`) +
   geom_point(size = 8) +
   geom_errorbar(size = 1,
                  width = 0.3) +
   geom_hline(yintercept = 0,
               linetype = 2) +
   labs(title = 'Drugs used to manage pain',
         subtitle = '95% CI of the difference in proportion (HIV+ minus HIV-)',
         y = 'Difference in proportion',
         x = 'Drug class') +
   theme(axis.text.x = element_text(angle = 30,
                                     hjust = 1))
```

Drugs used to manage pain

95% CI of the difference in proportion (HIV+ minus HIV-)

Session information

R version 3.6.0 (2019-04-26) ## Platform: x86_64-apple-darwin15.6.0 (64-bit) ## Running under: macOS Mojave 10.14.6 ## ## Matrix products: default ## BLAS: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib

LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
##
locale:
[1] en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
attached base packages:
[1] stats graphics grDevices utils datasets methods base
##

other attached packages:
[1] DataExplorer_0.8.0 rcompanion_2.2.2 boot_1.3-23
[4] skimr_1.0.7 magrittr_1.5 forcats_0.4.0
[7] stringr_1.4.0 dplyr_0.8.3 purrr_0.3.2
[10] readr_1.3.1 tidyr_0.8.99.9000 tibble_2.1.3
[13] ggplot2_3.2.1 tidyverse_1.2.1

##

loaded via a namespace (and not attached):

[79] ellipsis_0.2.0.1

```
## [1] nlme 3.1-141
                           matrixStats 0.54.0 lubridate 1.7.4
## [4] httr_1.4.1
                           tools_3.6.0
                                               backports_1.1.4
## [7] R6 2.4.0
                           nortest_1.0-4
                                               lazyeval 0.2.2
## [10] colorspace_1.4-1
                           withr_2.1.2.9000
                                               tidyselect_0.2.5
## [13] gridExtra 2.3
                           compiler 3.6.0
                                               cli 1.1.0
                                               xml2 1.2.2
## [16] rvest 0.3.4
                           expm_0.999-4
## [19] sandwich_2.5-1
                           labeling_0.3
                                               scales_1.0.0
## [22] lmtest_0.9-37
                           mvtnorm_1.0-11
                                               multcompView_0.1-7
## [25] digest_0.6.20
                           foreign_0.8-72
                                               rmarkdown_1.14
## [28] pkgconfig_2.0.2
                           htmltools_0.3.6
                                               manipulate_1.0.1
## [31] highr_0.8
                           htmlwidgets_1.3
                                               rlang_0.4.0
## [34] readxl_1.3.1
                           rstudioapi_0.10
                                               generics_0.0.2
                                               modeltools_0.2-22
## [37] zoo_1.8-6
                           jsonlite_1.6
## [40] Matrix_1.2-17
                           Rcpp_1.0.2
                                               DescTools_0.99.28
## [43] munsell_0.5.0
                           lifecycle_0.1.0
                                               stringi_1.4.3
                           yaml_2.2.0
## [46] multcomp_1.4-10
                                               MASS_7.3-51.4
## [49] plyr_1.8.4
                           grid_3.6.0
                                               parallel_3.6.0
## [52] crayon 1.3.4
                           lattice 0.20-38
                                               haven 2.1.1
## [55] splines_3.6.0
                           hms_0.5.0
                                               zeallot_0.1.0
## [58] knitr 1.24
                           pillar_1.4.2
                                               igraph 1.2.4.1
                                               stats4_3.6.0
## [61] EMT_1.1
                           codetools_0.2-16
## [64] glue_1.3.1
                           evaluate_0.14
                                               data.table_1.12.2
## [67] modelr_0.1.5
                           vctrs_0.2.0
                                               networkD3_0.4
## [70] cellranger_1.1.0
                           gtable_0.3.0
                                               assertthat_0.2.1
## [73] xfun_0.8
                           coin_1.3-0
                                               libcoin_1.0-4
## [76] broom_0.5.2
                           survival_2.44-1.1 TH.data_1.0-10
```