MULTIVARIATE HORMAL

Univariate Mormal (distribution of a random variable)

- . Each data point is a scalar
- o Formally, given some data decibi=1 € IR

random variable (2) ~ N (w), (02)

$$M = E(x)$$

$$= \int \frac{1}{n} \sum_{i=1}^{n} zx_{i} \quad (discrete)$$

$$\int x_{i} \cdot p(x_{i}) dx \quad (continuous)$$

Mean
$$= E(x)$$

$$= \int \frac{1}{n} \sum_{i=1}^{n} z_{i} \quad (discrete)$$

$$= \int \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \mu)^{2} \quad (dir crete)$$

$$= \int \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \mu)^{2} \quad (dir crete)$$

$$= \int \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \mu)^{2} \quad (dir crete)$$

$$= \int \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \mu)^{2} \quad (dir crete)$$

$$= \int \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \mu)^{2} \quad (dir crete)$$

Multivariate Mormal (joint distribution of many random variables)

- . Each data point is a rector
- « Formally, given some data dexision E IRd

random variables (x) ~ N (u), (Z))

$$M = E(x) = \begin{bmatrix} E(x_{i}) \\ E(x_{d}) \end{bmatrix} = \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{i} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{i} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{i} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{i} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{i} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{i} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{i} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{i} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{i} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{i} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{i} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{d} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{d} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{d} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{d} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{d} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{d} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{d} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{d} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{d} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{d} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{d} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{d} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{d} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{d} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{d} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{d} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{d} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} x_{d} \\ \frac{1}{m} \sum_{i=1}^{m} x_{d} \end{bmatrix}$$

$$\sum = \mathbb{E}\left(\left(x_{-}, x_{0}\right)^{T}\right) = \begin{bmatrix} x_{0} & \dots & x_{d} \\ x_{1} & \dots & x_{d} \end{bmatrix} = \begin{bmatrix} x_{1} & \dots & x_{d} \\ x_{2} & \dots & x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} x_{1} & \dots & x_{d} \\ x_{1} & \dots & x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} x_{1} & \dots & x_{d} \\ x_{1} & \dots & x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} x_{1} & \dots & x_{d} \\ x_{1} & \dots & x_{d} \end{bmatrix}$$

$$= \begin{bmatrix} x_{1} & \dots & x_{d} \\ x_{1} & \dots & x_{d} \end{bmatrix}$$

PROPERTIES OF MULTIVARIATE MORMAL

1. Independent Mormal Distributions

- . The covariance matrix is diagonal
- . Formally, given some data $\{x_i\}_{i=1}^n \in \mathbb{R}^d$, where $x_i \perp x_i \quad \forall i \neq j$ (independent)

 $x \sim M(\mu, \Xi)$

Proof
$$Cov(X,Y) = 0$$

if X independent $Y = Cov(X,Y) = E(XY) - E(X)E(Y)$
 $= E(X)E(Y) - E(X)E(Y)$

Diagonal Covariance Matrix
$$\sum_{x} = \mathbb{E} \left[(x - \mu)(x - \mu)^T \right]$$

$$= \left[\lambda_{11} \quad 0 \right]$$

$$= \lambda_{11} \quad \lambda_{12} \quad \lambda_{13} \quad \lambda_{14} \quad \lambda_{15} \quad \lambda_{15}$$

2. Marginal Distributions

- . The marginal distributions that are components of multivariate normal distribution is also normal.
- · Formally, we can partition rector and matrix of:

$$\sum_{x_{i}} x_{i} = also Craussian - \sum_{x_{i}} x_{i} \sim M(M_{i}, \sum_{x_{i}})$$

3. Conditional Distributions

- The conditional distributions of any components of multivariate normal distribution is also normal
- . Formally, conditional on first component of vector $x \sim M(\mu, Z)$:

$$x_1 \quad x_2 = a \quad \sim \quad N(\mu_{1/2}) \quad \sum_{1/2}$$

Conditional Mean $x_1 = E(x_1 | x_2 = a)$ $= \mu_1 + \sum_{12} \sum_{22}^{-1} (\alpha - \mu_2)$

Conditional Covariana matrix $\sum_{1/2} = \text{cov}(x, | x_2 = a)$ $= \sum_{1/2} - \sum_{1/2} \sum_{2/2} \sum_{2/2} a$

 $\leq_{1/2}$ is Schur complement of \geq_{22} in \geq

4. Linear Transform

- . Linear transform multivariate normal distribution give a another multivariate
- o Formally, given some data $\{x_i\}_{i=1}^n \in \mathbb{R}^d$: $x \sim N(x, \Sigma)$

and:
$$z = Ax + b$$

Transformed Mean

$$M_{Z} = E(Z)$$

$$= E(Axx + b)$$

$$= A \cdot E(x) + b$$

$$= A \cdot A \cdot A + b$$

- Transformed Covariance Matrix

$$\sum_{z} = E[(z - \mu_{z})(z - \mu_{z})^{T}]$$

$$= E[A(x - \mu_{z})[A(x - \mu_{z})]^{T}]$$

$$= E[A(x - \mu_{z})(x - \mu_{z})^{T}A^{T}]$$

$$= A \ge A^{T}$$

5. PCA under the lense of multivariate normal distributions

- o Recall in PCA, we try to find principal components with maximum variance.
 - i) Given some data $\{x_i\}_{i=1}^n \in \mathbb{R}^d$, assume the data is normally distributed and centralized: $x \sim N(0, \Sigma)$
 - ii) Eigendecompose covariance matrix Z:

$$\geq$$
 = Q D Q^T

iii) Let say
$$A = Q^T$$
 and $Z = Ax + b$, then:

$(2) \sim N(0, D)$

new coordinate system

MULTIVARIATE MORMAL (MATURAL FORM)

Standard form:
$$x \sim N(M, Z)$$

$$p(x) = \frac{1}{2} \exp\left(-\frac{1}{2}(x-u)^{T} \sum_{i=1}^{N}(x-u)\right)$$
Matural form: $x \sim N(b, Q)$ $\Rightarrow Q_{\pi}$ $\det(\sum_{i=1}^{N} det(\sum_{i=1}^{N} det(\sum_{i=1}^{N}$

$$p(x) = \frac{1}{C} \exp\left(-\frac{1}{2} sC^{T}Qx + b^{T}sC\right)$$

$$\alpha \exp\left(-\frac{1}{2}x^{\dagger}Qx + 6Tx\right)$$

 $b = \sum_{i=1}^{n} u_i$

$$C = \exp\left(-\frac{1}{2}b^{T}Q^{-1}b\right)/2$$

(normalization constant)

Proof Standard form equals Matural form

$$p(x) = \frac{1}{Z} \exp\left(-\frac{1}{2}(x-\mu)^{T} \sum_{i=1}^{T}(x-\mu)\right)$$

$$\propto \exp\left(-\frac{1}{2}(x^{T} \sum_{i=1}^{T} x - \lambda_{i} x^{T} \sum_{i=1}^{T} \mu)\right)$$

$$\propto \exp\left(-\frac{1}{2}x^{T} \sum_{i=1}^{T} x + x^{T} \sum_{i=1}^{T} \mu\right)$$

Why use natural form?

- Easier to derive conditional distributions
- For example, given some data $\{x_i\}_{i=1}^N \sim M(\mu, \leq)$.

Then the marginal distribution is given by:

i) In Standard form:

$$x_{1} \sim N(x_{1} \mid \sum_{11})$$

$$Con(x_{1})$$

the conditional distribution is given by:

In Standard Form: *(i*

$$x_{1|2=a} \sim N(u_{1|2})$$

$$_{\circ}$$
 $\geq_{1/2}$ = \geq_{11} - \geq_{12} \geq_{21} \geq_{21}

$$\sum_{1/2} = \sum_{1/2} - \sum_{1/2} \sum_{2/2} \sum_{2/2} \sum_{1/2} \sum_{1/2}$$

ii) In Natural Form:

$$x_{1|2=\alpha} \sim \overline{N} \left(b_{1} - (Q_{12} x_{2}), Q_{11} \right)$$

Proof that
$$x_1 \mid x_2 = a \sim \overline{H}(b_1 - \overline{Q}_{12} x_2 \mid \overline{Q}_{M})$$

Let $x = [sc_1]$

Let
$$x = \begin{bmatrix} SC_1 \\ X_2 \end{bmatrix}$$

Then in Natural Form:

Conditioned on x_2 (remove x_2 out of the equation)

o
$$p(x_1|x_2)$$
 $\propto \exp\left[-\frac{1}{2}(x_1^TQ_{11}x_1 + 2x_1^TQ_{12}x_1) + b_1^Tx_1\right]$
 $\propto \exp\left[-\frac{1}{2}x_1^TQ_{11}x_1 + x_1^T(b_1 - Q_{12}x_1)\right]$
Therefore, $x_1|x_2 = a \sim \overline{N}(b_1 - \overline{Q}_{12}x_1, \overline{Q}_{11})$

What do Standard Form and Matural Form tell us about the relation ship

between different features

. Covariance motrix
$$\sum = [\sigma_{ij}]_{ij}$$
 measures marginal independence $\sigma_{ij} = 0$ if $x_i \perp x_j$

• Precision matrix
$$Q = \sum_{i=1}^{n-1} = [q_{ij}]_{ij}$$
 measures conditional independence $q_{ij} = 0$ if $x_i \perp x_j \mid x_i \mid x$

what this means in term of probability?

- Marginal Independence: $x_1 \perp x_2 \Leftrightarrow P(x_1, x_2) = P(x_1), P(x_2)$
- . Conditional Independence: $x, \perp x_2 \mid x_3 \Leftrightarrow P(x_1, x_2 \mid x_3)$

$$= P(x_1 \mid x_3) \cdot P(x_2 \mid x_3)$$

Proof
$$x, \perp x_2 \mid x_3 \in P([x_1, x_2] \mid x_3) = P(x_1 \mid x_3). P(x_2 \mid x_3)$$

o Partition
$$Q = \begin{bmatrix} Q_{11} & Q_{12} & Q_{13} \\ \vdots & \ddots & \vdots \\ Q_{31} & \cdots & Q_{33} \end{bmatrix}$$
 $b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$

So x, $\perp x_2$ $\mid x_3 \mid$