Homework 4

1. Let X be a nonempty topological space and let μ be a measure on X. Prove that if the functions $f_n: X \to [-\infty, +\infty]$ are μ -measurable for $n \in \mathbb{N}$, then the set

$$A = \{x \in X : \lim_{n \to \infty} f_n(x) \text{ exists}\}\$$

is μ -measurable.

Proof To simplify notation, denote $f^*(x) = \limsup_{n \to \infty} f_n(x)$ and $f_*(x) = \liminf_{n \to \infty} f_n(x)$. Let $F : \mathbb{R} \to \mathbb{R}$ be

$$F(x) = f^*(x) - f_*(x)$$

Actually, F is only defined on a subset of \mathbb{R} , that when the limsup and the liminf are not both infinite. Observe that F is μ -measurable, since it is a sum of two μ -measurable functions, and

$$F^{-1}(\{0\}) \cup \{x \in \mathbb{R} : F(x) \text{ is undefined}\} = A,$$

since F(x) is undefined exactly when $\lim_{n\to\infty} f_n(x) = \pm \infty$ and F(x) = 0 exactly when $\lim_{n\to\infty} f_n(x)$ exists and is finite. Thus,

$$A = F^{-1}\{0\} \cup \left(f_*^{-1}\{+\infty\} \cap f^{*-1}\{+\infty\}\right) \cup \left(f_*^{-1}\{-\infty\} \cap f^{*-1}\{-\infty\}\right).$$

Now we show that each of the above sets is μ -measurable, which means that A consists of unions and intersections of μ -measurable sets, and thus A is μ -measurable.

- F is always positive since $f^* \ge f_*$ everywhere. So $F^{-1}\{0\} = F^{-1}[-\infty, 0]$ and thus is μ -measurable.
- For any μ -measurable f (including f^* and f_*), we have that

$$f^{-1}\{\infty\} = \left(\bigcup_{n=1}^{\infty} f^{-1}[-\infty, n)\right)^{\complement}$$
$$f^{-1}\{-\infty\} = \left(\bigcup_{n=1}^{\infty} f^{-1}[n, \infty]\right)^{\complement}$$

and thus is measurable.

2. Prove that any Lebesgue-measurable function $f: \mathbb{R} \to \mathbb{R}$ that satisfies the relation

$$f(x+y) = f(x) + f(y)$$
 for all $x, y \in \mathbb{R}$

must be linear.

Proof We need to show that for all $\lambda \in \mathbb{R}$,

$$f(\lambda x) = \lambda f(x). \tag{\dagger}$$

First, observe that for any $n \in \mathbb{N}$,

$$f(nx) = f(\overbrace{x + \dots + x}^{n}) = \overbrace{f(x) + \dots + f(x)}^{n} = nf(x),$$

so (†) holds for $\lambda \in \mathbb{N}$. Next, observe that

$$f(x) = f\left(\underbrace{\frac{x}{n} + \dots + \frac{x}{n}}\right) = \underbrace{f\left(\frac{x}{n}\right) + \dots + f\left(\frac{x}{n}\right)}_{n} = nf\left(\frac{x}{n}\right),$$

so $\frac{1}{n}f(x) = f\left(\frac{x}{n}\right)$, which together with the previous result means that for every $\frac{p}{q} \in \mathbb{Q}$,

$$f\left(\frac{p}{q}x\right) = pf\left(\frac{x}{q}\right) = \frac{p}{q}f\left(x\right),$$

so (†) holds for $\lambda \in \mathbb{Q}$. To prove the final result, we will need the following lemma.

Lemma. f is continuous at x = 0.

Let $\varepsilon > 0$. Since \mathbb{Q} is dense in \mathbb{R} (thought of as the codomain of f), then $\bigcup_{i=1}^{\infty} B_{\frac{\varepsilon}{2}}(q_i) = \mathbb{R}$, where $\{q_i\}_{i=1}^{\infty}$ is an enumeration of the rationals. Since f is measurable, then every $f^{-1}\left(B_{\frac{\varepsilon}{2}}(q_i)\right)$ is measurable. Since $f^{-1}\left(\mathbb{R}\right) = \mathbb{R}$ and

$$f^{-1}\left(\mathbb{R}\right) = f^{-1}\left(\bigcup_{i=1}^{\infty} B_{\frac{\varepsilon}{2}}(q_i)\right) = \bigcup_{i=1}^{\infty} f^{-1}\left(B_{\frac{\varepsilon}{2}}(q_i)\right),$$

then $\bigcup_{i=1}^{\infty} f^{-1}\left(B_{\frac{\varepsilon}{2}}(q_i)\right)$ covers \mathbb{R} so at least one of them has positive measure, by sub-additivity. Say $f^{-1}\left(B_{\frac{\varepsilon}{2}}(q_k)\right)$ does and call it A. Since $\mu(A) > 0$ then A - A contains a neighborhood of zero, call it $B_{\delta}(0)$. Any element x of $B_{\delta}(0) \subset A - A$ can be written in the form $x = a_1 - a_2$, so $f(x) = f(a_1 - a_2) = f(a_1) - f(a_2)$. That is,

$$f(B_{\delta}(0)) \subseteq f(A) - f(A) \subset B_{\frac{\varepsilon}{2}}(q_k) - B_{\frac{\varepsilon}{2}}(q_k) \subset B_{\varepsilon}(0),$$

so f is continuous at 0.

We can use this to show that f is continuous everywhere. For any $x \in \mathbb{R}$,

$$\lim_{h \to 0} [f(x+h)] = \lim_{h \to 0} [f(x) + f(h)]$$

$$= \lim_{h \to 0} f(x) + \lim_{h \to 0} f(h)$$

$$= f(x) + f(0)$$

$$= f(x) + 0$$

Let $\lambda \in \mathbb{R}$, and let $\{q_n\}_{n=1}^{\infty}$ be a sequence of rational numbers that converges to λ . Then,

$$f(\lambda x) = f\left(\lim_{n \to \infty} q_n x\right)$$
 and since f is continuous,
 $= \lim_{n \to \infty} f\left(q_n x\right)$
 $= \lim_{n \to \infty} q_n f\left(x\right)$
 $= \lambda f(x)$

so (†) holds for $\lambda \in \mathbb{R}$, and we are done.

3. Let $f:(0,1) \to \mathbb{R}$ be such that for every $x \in (0,1)$ there exists $\delta_x > 0$ and a Borel-measurable function $g_x: \mathbb{R} \to \mathbb{R}$ (both dependent on x), such that $f(y) = g_x(y)$ for all $y \in D_x$, where $D_x = B_{\delta_x}(x) \cap (0,1)$. Prove that f is Borel-measurable.

Proof Observe that $\{D_x\}_{x\in(0,1)}$ is an open cover of (0,1). Since we know that any open set is a countable union of open balls with rational radii and centers, we can produce a countable subcover. Let $\{B_i\}_{i=1}^{\infty}$ be an enumeration of the rational balls in \mathbb{R} , and let

$$\Gamma = \{i \in \mathbb{N} \mid B_i \subset D_x \text{ for some } x \in (0,1)\}.$$

Then $\{B_i\}_{i\in\Gamma}$ covers (0,1) and for each $i\in\Gamma$, we can choose a corresponding x_i such that $B_i\subset D_{x_i}$. Then $\{D_{x_i}\}_{i\in\Gamma}$ is a countable subcover of $\{D_x\}_{x\in(0,1)}$.

Let $I \in \mathbb{R}$ be any open interval. Then

$$\begin{split} f^{-1}\left(I\right) &= \bigcup_{i \in \Gamma} \left(f\big|_{D_{x_i}}\right)^{-1}\left(I\right) \\ &= \bigcup_{i \in \Gamma} \left(g_{x_i}\big|_{D_{x_i}}\right)^{-1}\left(I\right) \\ &= \bigcup_{i \in \Gamma} \left\{y \in \left(B_{\delta_{x_i}}(x_i) \cap (0,1)\right) \mid g_{x_i}(y) \in I\right\} \\ &= \bigcup_{i \in \Gamma} B_{\delta_{x_i}}(x_i) \cap (0,1) \cap g_{x_i}^{-1}(I) \end{split}$$

which is a Borel set since g_x is Borel-measurable for all x, so it is a countable union of Borel sets. Thus f is Borel-measurable.

4. Give an example of a collection of Lebesgue-measurable functions $\{f_{\alpha}\}_{{\alpha}\in A}$ where each $f_{\alpha}:\mathbb{R}\to\mathbb{R}$ and the function

$$g(x) = \sup_{\alpha \in A} f_{\alpha}(x), \qquad x \in \mathbb{R}$$

is finite for all $x \in \mathbb{R}$ but g is not Lebesgue-measurable. Here A is a nonempty index set. **Answer:** Let $V \subset [0,1]$ be a Vitali set, and for each $\alpha \in V$, let $f_{\alpha} = \chi_{\{\alpha\}}$. Then

$$g(x) = \sup_{\alpha \in V} f_{\alpha}(x) = \chi_{V}$$

which is not Lebesgue-measurable, as we know.