§ 3.2 相干点光源的干涉

• 讨论干涉项: $\delta = (Kr_2 - Kr_1) - (\varphi_2 - \varphi_1)$ 设介质折射率为n, $k = 2\pi/\lambda = 2\pi n/\lambda_0$ $2\sqrt{I_1I_2}\cos\delta$ 简化起见,设两光源初相位相同,即: $\varphi_2 - \varphi_1 = 0$ $\delta = (r_2 - r_4) 2\pi n/\lambda_0 = \Delta L 2\pi/\lambda_0$

$$\delta = (r_2 - r_1) 2\pi n/\lambda_0 = \Delta L 2\pi/\lambda_0$$

$$(\lambda_0 \ \text{以下简称}\lambda)$$

ΔL为两光源至P点的光程差。所以,光程差一定, δ
 就一定,光强分布也就确定了。

 $2\sqrt{I_1I_2}\cos\delta$

分析:

i° 当 $\delta=2k\pi$, 即: $\Delta L = k\lambda$, $k=0,\pm 1,\pm 2...$

l有极大值,称为干涉极大。这里的光强相互加强。

ii° 当 $\delta = (2k+1)\pi$, 即: $\Delta L = (2k+1)\lambda/2$

 $I = (A_1 - A_2)^2$,这时光强达到极小,称干涉极小。这里的光强相互抵消。

总结:

当 Δ L 为 λ /2的奇数倍时,为干涉极小; 当 Δ L 为 λ /2的偶数倍时,为干涉极大。

- 各干涉极大(或极小)通常用k值标记:
 - k=0 (ΔL=0)的极大, 称为零级极大;
 - k=1 ($\Delta L=\lambda$)的极大,称为一级极大,依此类推。
- 由于 Δ L=常数的方程所描述的是具有相同光强的点,而方程的曲线在空间中是以 S_1 、 S_2 为焦点的旋转双曲面。
- 屏幕观察,将屏幕置于S₁、S₂连线上,干涉条纹为同心园; 将屏幕置于S₁、S₂中垂线上,干涉条纹为直条纹。

- 由于两个普通光源,即使频率相同也不会产生干涉, 其原因在于它们没有固定的相位差。
 - ◆ 普通光源 获得相干光的方法:

"将光源上同一原子同一次发的光分成两部分,再使它们叠加"。

一系列平行的明暗相间的条纹; θ 不太大时条纹等间距;

