Wildfire and Ozone

Siyi Zhang, Kent Toshima

Wildfire

- Smoke detected by HMS(Hazard Mapping System), Aug.19-Aug.23
- Smoke is transported to the east
- The pollutants are also transported?
- Ozone

https://satepsanone.nesdis.noaa.gov/FIRE/fire.html

Worse?

- Denver: the 10th most-polluted city by ozone¹.
- Yes, worse indeed. Ozone level is elevated when the smoke permeated.

Does the ozone come from California rather than local events?

1. Cities in California take up 8 of the top 10. https://www.stateoftheair.org/city-rankings/most-polluted-cities.html

HYSPLIT trajectories

- The Hybrid Single-Particle Lagrangian Integrated Trajectory model
- Backward model
- Trace back to California

https://www.ready.noaa.gov/hypub-bin/trajtype.pl?runtype=archive

HYSPLIT trajectories

- Aug.19 Aug.24
- Ozone spread along the trajectories from California to the east

Coincident Peaks in Different Counties

Daily Maximum 1-hour Ozone Concentration Daily Maximum 8-hour Average Ozone Concentration

- Along the trajectories
- Exceed the standard
 - o 1-hour
 - 8-hour average

Coincident Peaks in Different Counties

——quantitative analysis

- Get CI from bootstrap
- Ozone and precursors were diluted
- Upswing

Even the ozone comes from California, how do you know for sure it comes from wildfires rather than other pollution sources?

We don't know.¹ But we can speculate.² (And doubt!)

- 1. Physically and chemically.
- 2. Statistically.

Detrending & t-test

- Numbers of days when ozone exceeds the standard in Carson City, NV ~ carbon emissions from fires in California
- Coincident trend
- Compare the p-value of t-test

Detrending & t-test

- Aim: analyze the correlation of O3 and CO
- Obstacle: doomed to be negative correlation because of seasonal trend
- Solution: use loess to detrend the data, then do the regression using residuals

Detrending & t-test

- Aim: analyze the correlation of O3 and CO
- Obstacle: doomed to be negative correlation because of seasonal trend
- Solution: use loess to detrend the data, then do the regression using residuals

2020 California Wildfire - Carbon emission

GFED4s

- Monthly carbon emission from wildfires
- -0.625x0.625 grid
- High correlation with HMS (Brey et al.)

Compare carbon emission from GFED and contaminant level from OpenAQ

- Does contaminant level follow the amount of emission?
- Grid of 2.5x2.5, aggregate emission and contaminant level in that grid
- Focus on long fire events
- Use CCF to analyze

Does GFED follow OpenAQ dataset?

- Comparison between carbon emission and PM2.5
- Have a significant ACF at lag =
 0-3 → carbon emission is likely to
 have direct and immediate effects
 on the PM2.5 levels in the
 adjacent areas

Ozone does not seem to correlate well with the emission

- Have different behavior from PM2.5?

Based on the HYSPLIT trajectory, analyze the emission and the ozone level from different regions

- 2.5x2.5 grids in California vs.

Denver-aurora

- Areas shown in the HYSPLIT affected ozone level in Denver-Aurora
- Carbon emission seem to affect ozone level with 0-5-days lag

Conclusion from time series analysis

- While PM2.5 seem to be directly affected by carbon emission from wildfire, the effect on the ozone levels is more obscure and delayed
- Unlike PM2.5, ozone is not directly produced from the smoke plume → transportation might be a key

Q&A