AER210 VECTOR CALCULUS and FLUID MECHANICS

Quiz 3

Duration: 70 minutes

10 November 2014

Closed Book, no aid sheets

Non-programmable calculators allowed

Instructor: Prof. Alis Ekmekci

Family Name:	Ekmeka	
Given Name:	Alis	
Student #:		
TA Name/Tutoria	1 #:	

FOR MARKER USE ONLY			
Question	Marks	Earned	
1	9		
2	10		
3	4		
4	10		
5	10		
6	10		
TOTAL	53	/50	

Hints:

$$\tau = -\frac{dP}{dV/L} \qquad \qquad \tau = \rho$$

$$-\nabla p + \rho \vec{g} = \rho \vec{a}$$

(Gravitational acceleration: $g = 10 \text{ m/s}^2$)

Name:	

1) The velocity field in a flow is given as $\vec{V} = ax\vec{i} + bx^2\vec{j}$, where the constants a and b are: a = 1 s^{-1} and $b = 1 \text{ m}^{-1} s^{-1}$.

(a) [1 mark] Is this a steady or unsteady flow? ⇒ Steady

(b) [1 mark] Is this a one-, two- or three-dimensional flow? \Rightarrow One -dimensional as $\hat{V} = \hat{V}(x)$

(c) [3 marks] Find an equation for the flow streamlines.

(d) [3 marks] The device shown below consists of a disk that is rotated by a shaft. The disk is positioned very close to a solid boundary. Between the disk and the boundary is viscous oil. If the rate of rotation is $\omega = 2 \text{ rad/s}$, what is the speed of oil in contact with the disk at r = 3 cm? If the oil viscosity is 0.01 N.s/m² and the spacing y is 2 mm, find the shear stress acting on the disk at r = 3 cm? (HINT: Assume linear velocity distribution between the disk and the boundary.)

(e) [1 marks] What pressure increase must be applied to water to reduce its volume by 1%. Modulus of elasticity for water is $E_v = 2.2 \times 10^9$ Pa.

$$E_{V} = -\frac{dP}{dV/V} \Rightarrow dP = -E_{V} \frac{dV}{V} = -(2.2 \times 10^{9}) \left(-\frac{1}{100}\right) = 2.2 \times 10^{7} Pa$$

$$dP = 2.2 \times 10^{7} Pa = 22 MPa \quad \text{must be applied.}$$

Name:			

- 2) (a) Circle the true statement in the following:
- [1 mark] Compressibility of a fluid is represented by a property called:
 - a. Kinematic viscosity
 - **b.** Density
 - **c.** Bulk modulus of elasticity
 - d. Change in pressure
- [1 mark] With an increase in temperature, the viscosity of gases
 - a. doesn't change
 - **b.** increases
 - **c.** decreases
- [1 mark] The reservoir in the figure contains two immiscible liquids of density ρ_A and ρ_B , respectively, one above the other. $\rho_A > \rho_B$. Which graph depicts the correct distribution of gage pressure along a vertical line through the liquids?

- [1 mark] Consider the smoke visualization of the flow over a sphere as shown in the picture below. We are seeing in this picture:

- **a.** streamlines
- **b.** streaklines
 - c. pathlines
- **d.** constant pressure lines
- [1 mark] Given: The liquid orientation in a tank as shown. The conditions could be caused by:

- a. constant acceleration of the tank to the right
- b) the tank being placed on a vehicle that travels at a constant speed about a circular track (center of the circle to the left of the vehicle)
- **c.** the tank being placed on a vehicle that travels at a constant speed about a circular track (center of the circle to the right of the vehicle)
- **d.** none of the above apply

Name:

2) (b) [5 marks] The figure below shows a metal part (object 2) hanging by a thin cord from a floating wood block (object 1). The wood block's density is $\rho_{wood} = 294 \text{ kg/m}^3$ and the dimensions of the entire wood block is $50 \times 50 \times 10$ mm. 7.5 mm height of the wood block is submerged as shown in the figure. The metal part (object 2) has a volume of 6600 mm³. Find the tension force T in the cord and the mass of the metal part (object 2). The density of water is ρ_{water}

= 1000 kg/m^3 and the gravitational acceleration is $g = 10 \text{ m/s}^2$.

wood:

$$W_{\text{metal}} = 0.18 N = S_{\text{metal}} g$$

 $S_{\text{metal}} = \frac{0.18}{10} = 0.018 \text{kg} = \frac{18 \text{gram}}{2000}$

Page 4 of 11

Name:		
-------	--	--

- 3) [4 marks] An airfoil with a chord length (which is the length from its nose to tail) of $L_{chord} = 1$ m will be used in a flight speed of 50 m/s in standard atmospheric conditions. The performance of this airfoil will be evaluated by using a $1/10^{th}$ scaled model of it.
 - (a) [2 marks] Find the air speed required in the experiment in order to maintain the same Reynolds number which is defined as $Re = (\rho V L_{chord})/\mu$.
- (b) [2 marks] What velocity would be required if the experiment were performed in water? Take the density and viscosity of air as $\rho_{air} = 1.2 \text{ kg/m}^3$ and $\mu_{air} = 1.8 \times 10^{-5} \text{ Ns/m}^2$ respectively, and the corresponding properties of water as $\rho_{water} = 10^3 \text{ kg/m}^3$ and $\mu_{water} = 10^{-3} \text{ Ns/m}^2$.

For the prototype:
$$(L_{chord})_{p} = 1m$$
, $V_{p} = 50m/s$
For the model: $(L_{chord})_{m} = 0.1m$
 $P_{Re} = \frac{P_{air}}{P_{air}} \frac{V_{p}(L_{chord})_{p}}{V_{m}} = \frac{P_{air}}{P_{air}} \frac{V_{m}(L_{chord})_{m}}{V_{m}} = \frac{P_{air}}{P_{air}} \frac{V_{m}(L_{chord})_{p}}{V_{m}} = \frac{P_{air}}{P_{air}} \frac{V_{p}(L_{chord})_{p}}{V_{m}} = \frac{P_{air}}{P_{air}} \frac{V_{p}(L_{chord})_{p}}{V_{m}} = \frac{P_{air}}{P_{air}} \frac{P_{air}}{V_{m}(L_{chord})_{p}} = \frac{P_{air}}{P_{air}} \frac{P_{air}}{V_{m}(L_{chord})_{m}} = \frac{P_{air}}{P_{air}} \frac{P_{air}}{P_{air}} = \frac{P_{$

4) [10 marks] The terminal velocity V_T of small bubbles rising in unconfined liquids depends on the balance between buoyancy and drag forces. For the case of air bubbles rising in water, we might expect V_T to depend on the radius of the bubble R_b , the density of air ρ_A , the density of water ρ_w , the viscosity of water μ_w , the gravitational acceleration g, and the surface tension σ for the gas-liquid interface:

$$V_T = f(R_b, \rho_A, \rho_w, \mu_w, g, \sigma)$$

Using ρ_w , R_b and g as the repeating variables, determine the dimensionless (π) groups for this problem and re-write the original dimensional relationship in dimensionless terms.

Hint: Note that surface tension is measured in force per unit length.

$$V_{T} = f(R_{b}, S_{A}, S_{W}) \not\vdash_{W}, g, \sigma)$$

$$[V_{T}] = \frac{L}{T}, [R_{b}] = L, [S_{A}] = \frac{M}{L^{3}}, [S_{W}] = \frac{M}{L^{3}}, [\mu_{W}] = \frac{M}{L^{7}}, [g] = \frac{L}{L^{2}}, [g] = \frac{M}{T^{2}}$$
of variables = 7
of reference dimensions = 3 (M₁L₁T)

Buckingham IT theorem:

$$(# \circ f \text{ T terms}) = (# \circ f \text{ variables}) - (# \circ f \text{ reference dimensions})$$

$$= 7 - 3$$

$$(# \circ f \text{ T terms}) = 4 \Rightarrow (4 \text{ T terms to be found})$$
Repeating variables: S_{W}, R_{b}, g

$$T_{1} = V_{T}, S_{W}, R_{b}, g$$

$$T_{2} = S_{A}, S_{W}, R_{b}, g$$

$$T_{3} = S_{A}, S_{W}, R_{b}, g$$

$$T_{4} = V_{T}, S_{W}, R_{b}, g$$

$$T_{5} = M_{4}, L_{5}, L_$$

Name:

EXTRA PAGE

$$\pi_{3} = \mu_{\omega} g_{\omega} R_{b} g^{c}$$

$$\pi_{4} = \sigma_{5} \alpha R_{b} g^{c}$$

$$\pi_{1} = \mu_{\omega} g_{\omega} R_{b} g^{c}$$

$$\pi_{2} = \mu_{\omega} g_{\omega} R_{b} g^{c}$$

$$\pi_{1} = \mu_{\omega} g_{\omega} R_{b} g^{c}$$

$$\pi_{2} = \mu_{\omega} g_{\omega} R_{b} g^{c}$$

$$\pi_{1} = \mu_{\omega} g_{\omega} R_{b} g^{c}$$

$$\pi_{2} = \mu_{\omega} g_{\omega} R_{b} g^{c}$$

$$\pi_{1} = \mu_{\omega} g_{\omega} R_{b} g^{c}$$

$$\pi_{2} = \mu_{\omega} g_{\omega} R_{b} g^{c}$$

$$\pi_{2} = \mu_{\omega} g_{\omega} R_{b} g^{c}$$

$$\pi_{3} = \mu_{\omega} g_{\omega} R_{b} g^{c}$$

$$\pi_{4} = \sigma_{5} \alpha R_{b} g^{c}$$

$$\pi_{2} = \mu_{3} R_{b} g^{c}$$

$$\pi_{3} = \mu_{\omega} g_{\omega} R_{b} g^{c}$$

$$\pi_{4} = \sigma_{5} \alpha R_{b} g^{c}$$

$$\pi_{4} = \mu_{2} g_{\omega} R_{b} g^{c}$$

$$\pi_{4} = \mu_{2} g_{\omega} R_{b} g^{c}$$

$$\pi_{5} = \mu_{5} R_{5} g^{c}$$

$$\pi_{$$

$$T_{4} = \int_{\beta \omega} R_{b} g^{c}$$

$$1^{\circ}L^{\circ}T^{\circ} = \underbrace{M}_{1}^{2} \underbrace{M}_{2}^{2} \underbrace{L}_{3}^{2} \underbrace{L}_{2}^{2} \underbrace{L}_{2}^{2} \underbrace{L}_{3}^{2} \underbrace{L}_{2}^{2} \underbrace{L}_{2}^{2} \underbrace{L}_{3}^{2} \underbrace{L}_{2}^{2} \underbrace{L}_{2$$

New relationship:

$$\Pi_1 = f_2(\Pi_2, \Pi_3, \Pi_4)$$

Name: _____

(5) [10 marks] The closed tank shown, which is full of liquid, is accelerated downward at (2/3)g and to the right at 1g, where g is the gravitational acceleration. Here, L = 2.5 m, H = 3 m, and the liquid has a density of $\rho = 1300$ kg/m³. Determine $(p_C - p_A)$ and $(p_B - p_A)$.

Liquid

$$\frac{\partial P}{\partial x} = g\vec{a}$$

$$- \left(\frac{\partial P}{\partial x} \hat{i} + \frac{\partial P}{\partial y} \vec{j} + \frac{\partial P}{\partial z} \vec{k}\right) - gg\vec{k} = g\left(a_x\vec{i} + a_z\vec{k}\right)$$

$$\frac{\partial P}{\partial x} = -ga_x$$

$$\frac{\partial P}{\partial y} = 0$$

$$\frac{\partial P}{\partial z} = -g\left(a_z + g\right)$$

Method 1:
$$p = p(x, z) \Rightarrow dp = \frac{\partial P}{\partial x} dx + \frac{\partial P}{\partial y} dy$$

$$dp = -ga_{x}dx - g(a_{z}+g)dy$$

$$p = -ga_{x}x - g(a_{z}+g)y + G$$

$$p = -ggx - g(\frac{1}{3}g)y + G$$

$$P_{C} - P_{A} = C - \left(-ggL - \frac{gg}{3}H + C\right) = ggL + \frac{gg}{3}H - gg\left(L + \frac{H}{3}\right)$$

$$= 1300 \times 10 \times \left(2.5 + \frac{3}{3}\right) = 45500 \text{ Pa}$$

$$P_{B} - P_{A} = \left(-ggL + G\right) - \left(-ggL - \frac{g}{3}H + G\right)$$

$$= \frac{gg}{3}H = \frac{1300 \times 10 \times 3}{3} = \boxed{13000 \text{ Pa}}$$

Method 2:

$$\frac{\partial p}{\partial x} = -ga_{x}$$

$$\frac{\partial p}{\partial z} = -g(a_{z}+g)$$

To find PB-PA:

$$\frac{\partial p}{\partial z} = -g(a_z + g)$$

$$\frac{P_B - P_A}{2_B - 2_A} = -9\left(-\frac{2}{3}g + g\right)$$

$$P_{B}-P_{A}=-S\left(\frac{1}{3}g\right)(-H)$$

To find Pc-PA, first let's find Pc-PB

$$\frac{P_C - P_B}{\times_C - \times_B} = -gg \Rightarrow P_C - P_B = ggL$$

$$= 1300 \times 10 \times 2.5$$

$$\frac{\partial P}{\partial x} = -Pa_{x} \Rightarrow \frac{P_{c} - P_{b}}{x_{c} - x_{b}} = -Pg \Rightarrow P_{c} - P_{b} = ggL$$

$$= 1300 \times 10 \times 2.5$$

$$P_{c} - P_{b} = 32500 \text{ N}$$

$$P_{c} - P_{b} = 32500 \text{ N}$$

Note to TAs: Both solution methods are valid.

(6) [10 marks] A semicircular plane gate AB of radius R is hinged along B and held closed by horizontal force F_A applied at point A. The liquid to the left of the gate rises to a height H above the gate hinge. Integrate the pressure force on the gate to determine the required force F_A .

Hint: $\int \cos^2\theta \ d\theta = \frac{1}{2}\theta + \frac{1}{4}\sin 2\theta + C; \qquad \int \sin^2\theta \ d\theta = \frac{1}{2}\theta - \frac{1}{4}\sin 2\theta + C; \qquad \sin 2\theta = 2\sin\theta\cos\theta$

Closing moment: Massing FA-R

dA=rdOdr

Name:

$$= \int_{-\infty}^{\infty} H g g^{2} dr \int_{-\infty}^{\infty} \sin\theta d\theta - \int_{-\infty}^{\infty} g g^{3} dr \int_{-\infty}^{\infty} \sin^{2}\theta d\theta$$

$$= \int_{-\infty}^{\infty} H g g^{2} dr \int_{-\infty}^{\infty} \sin\theta d\theta - \int_{-\infty}^{\infty} g g^{3} dr \int_{-\infty}^{\infty} \sin^{2}\theta d\theta$$

$$= \int_{-\infty}^{\infty} H g g^{2} dr \int_{-\infty}^{\infty} \sin\theta d\theta - \int_{-\infty}^{\infty} g g^{3} dr \int_{-\infty}^{\infty} \sin^{2}\theta d\theta$$

$$= \int_{-\infty}^{\infty} H g g^{2} dr \int_{-\infty}^{\infty} \sin\theta d\theta - \int_{-\infty}^{\infty} g g^{3} dr \int_{-\infty}^{\infty} \sin^{2}\theta d\theta$$

$$= \int_{-\infty}^{\infty} H g g^{2} dr \int_{-\infty}^{\infty} \sin\theta d\theta - \int_{-\infty}^{\infty} g g^{3} dr \int_{-\infty}^{\infty} \sin^{2}\theta d\theta$$

$$= \int_{-\infty}^{\infty} H g g^{2} dr \int_{-\infty}^{\infty} \sin\theta d\theta - \int_{-\infty}^{\infty} g g^{3} dr \int_{-\infty}^{\infty} \sin^{2}\theta d\theta$$

$$= \int_{-\infty}^{\infty} H g g^{2} dr \int_{-\infty}^{\infty} \sin^{2}\theta d\theta - \int_{-\infty}^{\infty} g g^{3} dr \int_{-\infty}^{\infty} \sin^{2}\theta d\theta$$

$$= \int_{-\infty}^{\infty} H g g^{2} dr \int_{-\infty}^{\infty} \sin^{2}\theta d\theta - \int_{-\infty}^{\infty} g g^{3} dr \int_{-\infty}^{\infty} \sin^{2}\theta d\theta$$

$$= \int_{-\infty}^{\infty} H g g^{2} dr \int_{-\infty}^{\infty} \sin^{2}\theta d\theta - \int_{-\infty}^{\infty} g g^{3} dr \int_{-\infty}^{\infty} \sin^{2}\theta d\theta$$

$$= \int_{-\infty}^{\infty} H g g^{2} dr \int_{-\infty}^{\infty} \sin^{2}\theta d\theta - \int_{-\infty}^{\infty} g g^{3} dr \int_{-\infty}^{\infty} \sin^{2}\theta d\theta$$

$$= \int_{-\infty}^{\infty} H g g^{2} dr \int_{-\infty}^{\infty} \sin^{2}\theta d\theta - \int_{-\infty}^{\infty} g g^{3} dr \int_{-\infty}^{\infty}$$

Mopening = Molosing
$$\int gR^3 \left(\frac{2}{3}H - \frac{\pi R}{8}\right) = f_A R \Rightarrow \int F_A = fgR^2 \left(\frac{2}{3}H - \frac{\pi R}{8}\right)$$