Universidade Estadual de Campinas Faculdade de Engenharia Elétrica e de Computação

EA640 U - ELETRÔNICA BÁSICA II

Simulação de um Amplificador Diferencial com Carga Ativa e Espelho de Corrente

Aluno:

Breno Levi Correa - RA 145453 Karla Carmen Darlene Bautista Luna - RA 149457 Lídia Guimarães Gusmão - RA 172323 Pedro Luiz Paulucci Carnieto - RA 175869

Professor:

Leandro Tiago Manera

1 Projeto do circuito de dois estágios

Utilizando o RA de maior valor no grupo 175869, no qual temos, para o formato abcdef, $a=1,\,b=7,\,c=5,\,d=8,\,e=6,\,f=9$, foi projetado um circuito de dois estágios separado em três partes: **fonte de corrente**, **carga ativa** e **estágio de entrada**. O esquemático do circuito foi feito no *software* PSpice de acordo com a imagem mostrada na Figura 1.

Figura 1: Circuito de dois estágios analisado.

2 Identificação das partes do circuito

2.1 Cálculo da resistência R1

Primeiramente calculou-se a resistência do primeiro estágio considerando que a corrente de referência, I_{REF} fosse $I_{REF} = 10\mu A + ef \cdot 10^{-7} = 16,9\mu A$.

A expressão mostrada na Equação 1 diz respeito às relações entre a corrente de dreno (I_D) , tensão entre porta e fonte (V_{GS}) , tensão V_{th} com as dimensões do transistor (W e L) e a constante k_n .

$$I_D = \frac{1}{2}k_n' \frac{W}{L} (V_{GS} - V_T)^2 \tag{1}$$

Nela, consideraremos um W da ordem de 10 vezes a dimensão de L. Portanto, temos todos os valores para a equação anterior, restando apenas determinar V_{GS} ,

$$I_D = 16,9\mu A$$

$$kn' = 0.01\mu$$

$$\frac{W}{L} = 10$$

$$V_{th} = 0.5V$$

Com a substituição dos valores na Equação 1, obtemos o valor de V_{GS} a seguir.

$$V_{GS} = 1,08V$$

Como este V_{GS} é simétrico para os dois transistores do ramo esquerdo, podemos escrever a equação abaixo, que exprime a tensão no resistor R1.

$$U_{R1} = V_{CC} - V_{SS} - 2V_{GS}$$

$$U_{R1} = 7, 5 + 7, 5 - 2 \cdot 1, 08$$

$$U_{R1} = 12,84V$$

Desta forma, como já sabemos a corrente que passa pelo resistor (igual à I_{REF}), teremos o valor de R1 dado pela relação entre tensão e corrente mostrada a seguir.

$$R1 = \frac{U_{R1}}{I_{REF}} = 760k\Omega$$

2.2 Dimensionamento do primeiro estágio

O ganho desejado para o circuito, de acordo com os valores de RA pedido no enunciado é de:

$$A_v = 100 + cd = 100 + 58 = 158$$

Dado que o ganho deste amplificador pode ser escrito como a seguir, sendo g_m é a transcondutância e R_o é a resistência de saída, que é representada pelas resistências internas r_o , devido ao efeito Early, de M3 e M4.

$$A_v = g_m R_o$$

E supondo que M3 e M4 são iguais, temos que:

$$R_o = r_{o2} / / r_{o4} = r_o / 2$$

Sendo assim, calculamos o valor de r_o como a seguir.

$$r_o = \frac{1}{\lambda I_D} = \frac{1}{0.01 \cdot 16.9 \mu/2} = 11.83 M\Omega$$

Sendo assim, obtemos finalmente o valor da resistência de saída R_o , que é o paralelo de dois r_o iguais.

$$R_o = \frac{r_o}{2} = 5,92M\Omega$$

Portanto, basta agora determinar o valor de g_m para obtermos o A_v desejado.

$$g_m = \frac{A_v}{R_o} = \frac{158}{5,92M\Omega} = 2.669 \cdot 10^{-5} A/V$$

Note também que g_m equivale a:

$$g_m = \frac{2I_D}{V_{OV}} = \frac{I_{REF}}{V_{OV}}$$

Como já temos I_{REF} e o g_m desejado para obter o ganho de 158 V/V, agora precisamos apenas impor o valor de V_{OV} .

$$V_{OV} = \frac{I_{REF}}{g_m} = \frac{16,9\mu}{26,69\mu} = 0,633V$$

Finalmente, iremos ajustar este V_{OV} pela Equação 1. Como $V_{OV}=V_{GS}-V_{th}$, podemos reescrever a expressão de I_D da seguinte forma.

$$I_D = \frac{1}{2} k_n' \frac{W}{L} V_{OV}^2$$

Note que temos todos os valores acima (com $I_D = \frac{I_{REF}}{2}$). Sendo assim, calculamoo W dos quatro transistores que compõem a carga ativa e o espelho de corrente. Reescrevendo, temos a expressão a seguir com o respectivo valor de W.

$$W = \frac{2I_DL}{k_n'V_{OV}^2} = \frac{I_{REF}L}{k_n'V_{OV}^2} = \frac{16,9\mu \cdot 1\mu}{10\mu \cdot 0,633^2} = 4,22\mu m$$

Portanto, para impor o ganho desejado de $A_v = 158 \text{ V/V}$, basta escolher os 4 transistores MOS da carga ativa e do espelho de corrente com parâmetro $W = 4,22\mu m$.

3 Simulação no PSpice

A simulação em Pspice foi feita para o circuito estudado, com as dimensões dos componentes calculadas, como mostrado na Figura 2.

Figura 2: Circuito do exercício simulado em Pspice.

A simulação, com os parâmetros correntes, nos permitiu obter os seguintes valores de tensão e corrente mostrados na Figura 3.

Figura 3: Circuito simulado com os valores de corrente (em azul) e de tensão (em verde).

As mudanças dos parâmetros dos transistores foram feitas segundo mostrado na Figura 4, em "Edit Pspice Model".

Figura 4: Mudança dos parâmetros do transistor Mbreak segundo dados do enunciado.

Finalmente, os resultados obtidos para o ganho na simulação são mostrados na Figura 5 para o valor de $W=10\mu m$ estimado no início. Na Figura 6 é mostrada a simulação que nos fornece o ganho desejado (158V/V) através da mudança de W de M7 para $W=11,06\mu m$.

Figura 5: Mudança dos parâmetros do transistor Mbreak segundo dados do enunciado.

Figura 6: Mudança dos parâmetros do transistor Mbreak segundo dados do enunciado.