Fiche d'exercices nº 1

Rappels et compléments d'algèbre linéaire

Solution 5

Soit $A = (a_{i,j})_{1 \le i,j \le n}$ dans le centre de $\mathcal{M}_n(\mathbb{K})$. A commute en particulier avec toutes les matrices $E_{i,j}$ de la base canonique. Fixons $i, j \in [1, n]$, avec $i \ne j$. Alors :

- Toutes les lignes de $E_{i,j}A$ sont nulles, sauf la *i*-ème qui est égale à la *j*-ème ligne de A.
- Toutes les colonnes de $AE_{i,j}$ sont nulles, sauf la j-ème qui est égale à la i-ème colonne de A.

Dès lors, en examinant les coefficients de la *i*-ème ligne de $E_{i,j}A = AE_{i,j}$, on observe que

- pour tout $k \in [1, n], k \neq j$, on a $a_{j,k} = 0$
- $a_{i,j} = a_{i,i}$.

Ces observations étant vérifiées pour tout $i, j \in [1, n]$, avec $i \neq j$, il en résulte que tous les coefficients extra-diagonaux de A sont nuls et que tous ses coefficients diagonaux sont égaux. A est donc de la forme $A = \lambda I_n$ pour un certain $\lambda \in \mathbb{K}$ (on dit que A est une matrice scalaire, elle représente une homothétie de rapport λ).

Réciproquement, il est clair que toute matrice λI_n , avec $\lambda \in \mathbb{K}$ commute avec n'importe quelle matrice de $\mathcal{M}_n(\mathbb{K})$.

En conclusion, le centre de $\mathcal{M}_n(\mathbb{K})$ est $\mathbb{K}I_n$. Il s'agit d'une sous-algèbre de $\mathcal{M}_n(\mathbb{K})$, isomorphe à \mathbb{K} .

Solution 8

— Supposons que (P_1, P_2, P_3) n'est pas une base. Alors c'est une famille liée (si cette famille était libre, elle serait une base car dim $(\mathbb{R}_2[X]) = 3$). Comme (P_1, P_2) est libre (degrés echelonnés), P_3 peut donc s'écrire comme une combinaison linéaire de (P_1, P_2) et il existe donc $\alpha, \beta \in \mathbb{R}$ tels que

$$X^{2} + X + m = \alpha P_{1} + \beta P_{2} = \beta X^{2} + \alpha X + \alpha - 3\beta$$

Par identification des coefficients, $\alpha = \beta = 1$ et donc m = -2.

— Réciproquement, supposons m = -2. Alors $P_3 = P_1 + P_2$ et la famille (P_1, P_2, P_3) est liée, donc ce n'est pas une base.

On a montré que (P_1, P_2, P_3) n'est pas une base ssi m = -2. C'est donc une base ssi $m \neq -2$.

Solution 12

Récurrence sur n, avec intialisation à n=1, et raisonnement par l'absurde pour l'hérédité.

Solution 13

L'égalité se réécrit $f \circ (f+g) = Id_E$. Comme E est de dimension finie, on en déduit que f et f+g sont inversibles et inverse l'une de l'autre. En particulier, f et f+g commutent et donc f et g commutent.

Solution 14

Pour $x \in E$, on a $(f+g)(x) = f(x) + g(x) \in \text{Im}(f) + \text{Im}(g)$ et donc $\text{Im}(f+g) \subset \text{Im}(f) + \text{Im}(g)$ et $\text{rg}(f+g) \leq \dim (\text{Im}(f) + \text{Im}(g)) \leq \text{rg}(f) + \text{rg}(g)$.

On peut alors écrire $\operatorname{rg}(f) = \operatorname{rg}(f-g+g) \leqslant \operatorname{rg}(f-g) + \operatorname{rg}(g)$ et donc $\operatorname{rg}(f) - \operatorname{rg}(g) \leqslant \operatorname{rg}(f-g)$. En échangeant le rôle de f et g on a de même $\operatorname{rg}(g) - \operatorname{rg}(f) \leqslant \operatorname{rg}(g-f) = \operatorname{rg}(f-g)$, d'où la seconde inégalité.

Solution 15

On a toujours $(i) \Leftrightarrow (iv)$ et $(ii) \Leftrightarrow (iii)$ mais on a besoin de la dimension finie pour raccorder.

Solution 16

On a $\text{Im}(u^2) \subset \text{Ker}(u)$ donc $\text{rg}(u^2) \leqslant \dim(\text{Ker}(u))$. Dès lors, $\text{rg}(u) + \text{rg}(u^2) \leqslant \dim(E) = n$ par théorème du rang.

Solution 19

- $(i) \Rightarrow (ii)$: Supposons (i). On a $p^2 = pqp = pq = p$, de même $q^2 = q$. Les inclusions des noyaux sont claires.
- $(ii) \Rightarrow (i)$: Supposons (ii). Notons K = Ker(p) = Ker(q), F = Im(p), G = Im(q). Pour $x \in E$, on peut écrire $x = x_K + x_F$, avec $x_K \in K$ et $x_F \in F$. On a donc $x_F = p(x)$ et donc $q(x) = q(x_K) + qp(x) = qp(x)$. D'où q = qp. On montre de même p = pq.

Solution 20

 $(pq)(pq) = p^2q^2 = pq$ donc pq est un projecteur.

- On a clairement $\operatorname{Ker}(p) \subset \operatorname{Ker}(qp) = \operatorname{Ker}(pq)$ et $\operatorname{Ker}(q) \subset \operatorname{Ker}(pq)$, d'où $\operatorname{Ker}(p) + \operatorname{Ker}(q) \subset$ $\operatorname{Ker}(pq)$. Réciproquement, si $x \in \operatorname{Ker}(pq)$, on peut écrire x = p(x) + x - p(x) et $p(x) \in \operatorname{Ker}(q)$ tandis que $x - p(x) \in \text{Ker}(q)$. On a donc finalement Ker(pq) = Ker(p) + Ker(q).
- On a clairement $\operatorname{Im}(pq) = \operatorname{Im}(qp) \subset \operatorname{Im}(q)$ et $\operatorname{Im}(pq) \subset \operatorname{Im}(p)$, d'où $\operatorname{Im}(pq) \subset \operatorname{Im}(p) \cap \operatorname{Im}(q)$. Réciproquement, si $y \in \text{Im}(p) \cap \text{Im}(q)$, $y = p(y) = p(q(y)) \in \text{Im}(pq)$. D'où finalement Im(pq) = $\operatorname{Im}(p) \cap \operatorname{Im}(q)$.

Solution 23

a) Le rang de A est clairement ≥ 2 . On trouve $\ker(A) = \mathbb{K} \begin{pmatrix} 4 \\ 7 \\ -11 \end{pmatrix}$. Pour l'image, n'importe quel couple de deux colonnes de A convient, mais on peut montrer aussi que $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$ est dans l'image,

donc $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$, $\begin{pmatrix} 1\\0\\1 \end{pmatrix}$ est une base possible. **b)** Un pivot de Gauss montre que B est équivalente par ligne à $\begin{pmatrix} 1 & 2 & 3 & 1\\0 & 0 & 1 & 1\\0 & 0 & 0 & 0 \end{pmatrix}$. On conclut facilement.

Solution 27

On raisonne par l'absurde et on suppose A non inversible. On a donc $Ker(A) \neq \{0\}$ et il existe donc $X \in \mathcal{M}_{n,1}(\mathbb{C}), X \neq 0$, tel que AX = 0. Notons x_1, \ldots, x_p les composantes de X et soit $i_0 \in [1, p]$ tel que $|x_{i_0}| = \max_{1 \le i \le n} |x_i|$. On a $x_{i_0} \ne 0$ sinon tous les x_i sont nuls. La relation AX = 0 signifie en particulier (pour la ligne i_0) $\sum_{i=1}^p a_{i_0,j}x_j = 0$ et on a alors :

$$|a_{i_0,i_0}x_{i_0}| = \left| -\sum_{\substack{j=1\\j\neq i_0}}^p a_{i_0,j}x_j \right| \leqslant \sum_{\substack{j=1\\j\neq i_0}}^p |a_{i_0,j}x_j| \leqslant \left(\sum_{\substack{j=1\\j\neq i_0}}^p |a_{i_0,j}| \right) |x_{i_0}|$$

On obtient une contradiction en simpliant par $|x_{i_0}|$.

Solution 29

Soit $\varphi: E \to \mathbb{K}$ une forme linéaire non nulle de noyau H, et v un vecteur directeur de D. Si $v \in H$, alors $E = H \oplus D = H \oplus \mathrm{vect}(v) \subset H$, absurde, donc $D \not\subset H$. Réciproquement supposons $D \not\subset H$ et donc $v \not\in H$ (quitte à changer de vecteur .. de toute façon si un vecteur non nul n'est pas dans H, aucun vecteur colinéaire ne peut être dans H). On a donc $\varphi(v) \neq 0$.

- Si $x \in H \cap D$, $x = \lambda v$ pour un certain $\lambda \in \mathbb{K}$ et $0 = \varphi(x) = \lambda \varphi(v)$, d'où $\lambda = 0$ et $x = 0_E$. Ainsi $H \cap D = \{0_E\}$.
- Soit $x \in E$. Une analyse peut montrer qu'il est judicieux de poser $\lambda = \varphi(x)/\varphi(v)$ car alors $\varphi(x \lambda v) = 0$ et l'écriture $x = x \lambda v + \lambda v$ donne une décomposition de x suivant H + D. On a ainsi montré que E = H + D.

H et D sont donc supplémentaires.

Remarquons qu'une analyse montre justement que la décomposition ci-dessus $x=x-\lambda v+\lambda v$ est unique, ce qui permet en fait de montrer en même temps que la somme H+D est directe et donc que $E=H\oplus D$.

Solution 30

Pour D_n , l'idée est d'écrire la dernière colonne $\begin{pmatrix} 1 \\ \vdots \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ \vdots \\ 0 \\ n \end{pmatrix}$, ce qui permet d'écrire D_n comme

somme de deux déterminants. Pour le premier, on soustrait la dernière colonne à toutes les autres et on trouve (n-1)!. Pour le second, on a immédiatement nD_{n-1} . On trouve donc la relation de récurrence $D_n = (n-1)! + nD_{n-1}$ d'où l'on tire facilement $D_n = (1 + H_n)n!$.

Solution 32

Ajouter la première colonne à toutes les autres.

Solution 33

En particulier, on doit avoir $\det(2A) = \det(A+A) = 2\det(A)$, sauf qu'on a aussi $\det(2A) = 2^n \det(A)$ (le déterminant est *n*-linéaire vis à vis des colonnes). Il en résulte $(2^{n-1} - 1)\det(A) = 0$, et donc $\det(A) = 0$.

La suite est plus délicate. Raisonnons par l'absurde et supposons A non nulle. Son rang r vérifie donc $1 \le r \le n-1$. On peut alors invoquer le fait que A est équivalente à la matrice J_r définie par $[J_r]_{i,j} = 1$ si $i = j \le r$ et $[J_r]_{i,j} = 0$ sinon. Il existe donc $P, Q \in GL_n(\mathbb{K})$ tels que $A = PJ_rQ^{-1}$ et on

peut voir alors que J_r vérifie la même propriété que A: pour tout $X \in \mathcal{M}_n(\mathbb{K})$, on a

$$\det(J_r + X) = \det(P^{-1}AQ + X)$$

$$= \det(P^{-1}) \det(A + PXQ^{-1}) \det(Q)$$

$$= \det(P^{-1}) \det(PXQ^{-1}) \det(Q)$$

$$= \det(X)$$

.

En particulier, prenons $X = I_n - J_r$. On a $\operatorname{rg}(I_n - J_r) = n - r \le n - 1$, de sorte que $I_n - J_r$ n'est pas inversible, et donc $0 = \det(I_n - J_r) = \det(J_r + I_n - J_r) = \det(I_n) = 1$: contradiction.

Solution 45

http://ddmaths.free.fr/section375.html

Solution 46

On écrit $M^{-1} = \begin{pmatrix} A' & B' \\ C' & D' \end{pmatrix}$, ce qui donne les relations

$$\begin{cases} (A - BD^{-1}C)A' = I_n \\ C' = -D^{-1}CA' \\ B' = -A^{-1}BD' \\ (D - CA^{-1}B)D' = I_n \end{cases}$$

et permet au final d'exprimer A', B', C', D'.

Solution 47

http://ddmaths.free.fr/section375.html ou dans répertoire DuPuyDeLome (calcul matriciel)

Solution 48

A et B équivalentes à J_r et J_s respectivement avec r = rg(A) et s = rg(B). En écrivant $PAQ = J_r$ et $RBS = J_s$, on a

$$\begin{pmatrix} P & (0) \\ (0) & R \end{pmatrix} \begin{pmatrix} A & (0) \\ (0) & B \end{pmatrix} \begin{pmatrix} Q & (0) \\ (0) & S \end{pmatrix} = \begin{pmatrix} J_r & (0) \\ (0) & J_s \end{pmatrix}$$

de rang r + s.