Medical Imaging: Data Sheet 2011-2012

Robert Eckersley and Chris Dunsby

Mass attenuation coefficient of Aluminium:

DI 4	Mass attenuation
Photon energy	coefficient of
(keV)	Aluminium (cm ² .g ⁻¹)
5	192.4
10	26.05
20	3.423
30	1.131
40	0.5675
50	0.3684
60	0.2778
70	0.2302
80	0.2018
90	0.1832
100	0.1705
110	0.1607
120	0.1533
130	0.1474
140	0.1421
150	0.1378
160	0.1339
170	0.1306
180	0.1275
190	0.1247
200	0.1219

Density of Al: 2.7 g.cm⁻³

Characteristic radiation lines:

	$K_{\alpha 1}$	$K_{\alpha 2}$	$K_{\beta 1}$	$K_{\beta 2}$
Molybdenum	17.44	17.34	19.73	19.95
(Z = 42)				
Tungsten	59.48	58.12	67.87	69.65
(Z = 74)				

Production of radionuclides:

$$^{14}N (p, \alpha) \, ^{11}C \, or \, ^{10}B \, (d, n) \, ^{11}C$$

$$^{16}O (p, \alpha) \, ^{13}N \, or \, ^{12}C \, (d, n) \, ^{13}N$$

$$^{14}N (d, n) \, ^{15}O \, or \, ^{15}N \, (p, n) \, ^{15}O$$

$$^{18}O (p, n) \, ^{18}F$$

$$^{50}Cr (n, \gamma) \, ^{51}Cr$$

$$^{56}Fe \, (d, n) \, ^{57}Co$$

$$^{68}Zn \, (p, 2n) \, ^{67}Ga$$

$$^{99}Mo \xrightarrow{\beta^{-}} \, ^{99m}Tc$$

$$^{109}Ag(\alpha, 2n)^{111}In \, or \, ^{111}Cd(p, n)^{111}In$$

$$^{127}I \, (p, 5n) \, ^{123}Xe \xrightarrow{EC} \, ^{123}I$$

$$^{124}Xe \, (p, 2n) \, ^{123}Cs \xrightarrow{EC \, or \, \beta^{+}} \, ^{123}Xe \xrightarrow{EC} \, ^{123}I$$

$$^{124}Xe \, (n, \gamma) \, ^{125}Xe \xrightarrow{EC \, or \, \beta^{+}} \, ^{125}I$$

$$^{235}U \, fission \, products: \, ^{99}Mo, \, ^{131}I, \, ^{133}Xe$$

Detection of radiation:

²⁰³Tl (p, 3n) ²⁰¹Pb $\xrightarrow{EC \text{ or } \beta^+}$ ²⁰¹Tl

Scintillator	Photon yield (per keV)	μ (cm ⁻¹) (511 keV)	Decay time (ns)
NaI(Tl)	38	0.34	230
BGO	8	0.95	300
LSO	20-30	0.88	40
GSO	12-15	0.70	60

Radionuclide data:

Nuclide	Half-	Decay	E _{\beta} (MeV)	γ-rays (keV)	char. x-	β ⁺ range	β ⁺ fraction
	life	mode	max.		rays	in water	
			(average)		(keV)	(mm)	
¹¹ C	20.3 m	β^{+}	0.961 (0.386)	511		1.0	0.99
¹³ N	10.0 m	β^+	1.19 (0.492)	511		1.3	1.00
¹⁵ O	2.07 m	β^+	1.72 (0.735)	511		2.0	1.00
¹⁸ F	110 m	β^+	0.635 (0.250)	511		0.6	0.97
⁵¹ Cr	27 d	(ΕC, γ)		320			
⁵⁷ Co	270 d	(ΕC, γ).		122,136			
⁶⁷ Ga	78.3 h	(ΕC, γ)		93, 185, 300			
^{99m} Tc	6.0 h	IT		140.2			
¹¹¹ In	2.83 d	(EC, γ)		171, 245			
^{123}I	13.2 h	(EC, γ)		159			
^{125}I	60.1 d	EC			~30		
^{131}I	8.04 d	(β^{-}, γ)	(0.192)	364			
¹³³ Xe	5.24 d	(β^{-}, γ)	(0.101)	81			
²⁰¹ Tl	3.04 d	EC			~70		

Mathematics:

Gaussian distribution: The integral of the Gaussian probability distribution function, P_G , over the range $x = (\mu - n\sigma)..(\mu + n\sigma)$ is tabulated below:

n	P_G
1	0.683
2	0.954
3	0.997

Density and Speed of sound in Materials

	Density	Speed
Material	kg/m^3	m/s
Air	1.3	330
Water	1000	1500
Blood	1060	1570
Fat	925	1450
Muscle	1075	1590
Bone	1908	4000
Quartz	2650	5750
PZT	7750	4350
PVDF	1750	1943

<u>Useful constants in Ultrasound Imaging:</u>

Speed of sound in Tissue: $c = 1540 \text{ m.s}^{-1}$

Adiabatic gas constant: $\gamma = 1.4$

Density of water: $\rho_0 = 1000 \text{ kg.m}^{-3}$

Atomospheric pressure: P₀= 100 kPa

<u>Useful constants in MRI:</u>

Gyromagnetic ratio of ¹H:

$$\gamma = 267.513 \times 10^6 \text{ rad.s}^{-1}.\text{T}^{-1} \text{ or;}$$

 $\gamma = 42.58 \text{ MHz.T}^{-1}$