1 Pacman with Feature-Based Q-Learning

We would like to use a Q-learning agent for Pacman, but the size of the state space for a large grid is too massive to hold in memory. To solve this, we will switch to feature-based representation of Pacman's state.

(a) We will have two features, F_q and F_p , defined as follows:

$$F_g(s, a) = A(s) + B(s, a) + C(s, a)$$

 $F_p(s, a) = D(s) + 2E(s, a)$

where

A(s) = number of ghosts within 1 step of state s

B(s,a) = number of ghosts Pacman touches after taking action a from state s

C(s,a) = number of ghosts within 1 step of the state Pacman ends up in after taking action a

D(s) = number of food pellets within 1 step of state s

E(s,a) = number of food pellets eaten after taking action a from state s

For this pacman board, the ghosts will always be stationary, and the action space is $\{left, right, up, down, stay\}$.

calculate the features for the actions $\in \{left, right, up, stay\}$

- (b) After a few episodes of Q-learning, the weights are $w_g = -10$ and $w_p = 100$. Calculate the Q value for each action $\in \{left, right, up, stay\}$ from the current state shown in the figure.
- (c) We observe a transition that starts from the state above, s, takes action up, ends in state s' (the state with the food pellet above) and receives a reward R(s, a, s') = 250. The available actions from state s' are down and stay. Assuming a discount of $\gamma = 0.5$, calculate the new estimate of the Q value for s based on this episode.
- (d) With this new estimate and a learning rate (α) of 0.5, update the weights for each feature.

2 Q-learning

Consider the following gridworld (rewards shown on left, state names shown on right).

Rew	ards
. 40	
+10	 +1

State	names
A	В
G1	G2

From state A, the possible actions are right(\rightarrow) and down(\downarrow). From state B, the possible actions are left(\leftarrow) and down(\downarrow). For a numbered state (G1, G2), the only action is to exit. Upon exiting from a numbered square we collect the reward specified by the number on the square and enter the end-of-game absorbing state X. We also know that the discount factor $\gamma = 1$, and in this MDP all actions are **deterministic** and always succeed.

Consider the following episodes:

Episode 1 $(E1)$		$\mathbf{E}\mathbf{p}$	isode	2 (E2	2)		
s	a	s'	r	s	a	s'	r
A	\downarrow	G1	0	B	\downarrow	G2	0
G1	exit	X	10	G2	exit	X	1

$\mathbf{E}\mathbf{p}$	isode	3 (E3	3)
s	a	s'	r
A	\rightarrow	B	0
B	\downarrow	G2	0
G2	exit	X	1

$\mathbf{E}\mathbf{p}$	isode	4 (E	4)
s	a	s'	r
B	\leftarrow	\overline{A}	0
A	\downarrow	G1	0
G1	exit	X	10

(a) Consider using temporal-difference learning to learn V(s). When running TD-learning, all values are initialized to zero.

For which sequences of episodes, if repeated infinitely often, does V(s) converge to $V^*(s)$ for all states s?

(Assume appropriate learning rates such that all values converge.)

Write the correct sequence under "Other" if no correct sequences of episodes are listed.

- $\square E1, E2, E3, E4$ $\square E4, E3, E2, E1$
- \Box E1, E2, E1, E2 \Box E3, E4, E3, E4
- $\square E1, E2, E3, E1 \\ \square E1, E2, E4, E1$
- \square E4, E4, E4, E4

Other

(b)	Consider using Q-learning to learn $Q(s, a)$. When running Q-learning, all values are initialized to zero. For which sequences of episodes, if repeated infinitely often, does $Q(s, a)$ converge to $Q^*(s, a)$ for all state action pairs (s, a)
	(Assume appropriate learning rates such that all Q-values converge.) Write the correct sequence under "Other" if no correct sequences of episodes are listed.
	Other