

Department of Computer Science and Engineering

COURSE DESIGN, DELIVERY AND ASSESMENT

Semester: I

Course Code: MCSE133

Course Name: Virtual Reality

Course Faculty: Dr. Rajarajeswari S

SI#	Section Course Faculty Name		Section Course Faculty Name Signat		Signature	Date
1.	CSE	Dr. Rajarajeswari S		10/01/2024		

Course Coordinator	Signature	Date
Dr. Rajarajeswari S		10/01/2024

Program Coordinator	Signature	Date
Dr.D.S.Jayalakshmi		10/01/2024

Head of Department (Sign & Date)

COURSE DESIGN, DELIVERY AND ASSESMENT

Course code and Title: MCSE133	Course Credits :3:0:0:0
Virtual Reality	
CIE: 50 Marks	SEE : 50 Marks
Total No of Theory /Tutorial / Lab Hours: 56:0:0	
Prepared by : DrRajarajeswari S	Date: 10/01/2024
Reviewed by : Dr.D.S.Jayalakshmi	Date: 10/01/2024

Prerequisites: Machine Learning

UNIT - I

Definition of VR, modern experiences, historical perspective. Hardware, sensors, displays, software, virtual world generator, game engines, human senses, perceptual psychology, psychophysics. Geometric modeling, transforming rigid bodies, yaw, pitch, roll, axis-angle representation, quaternions, 3D rotation inverses and conversions, homogeneous transforms, transforms to displays, look-at and eye transforms, canonical view and perspective transforms, viewport transforms.

UNIT – II

Light propagation, lenses and images, diopters, spherical aberrations, optical distortion; more lens aberrations; spectral properties; the eye as an optical system; cameras; visual displays. Parts of the human eye, photoreceptors and densities, scotopic and photopic vision, display resolution requiments, eye movements, neural vision structures, sufficient display resolution, other implications of physiology on VR. Depth perception, motion perception, vection, stroboscopic apparent motion, color perception, combining information from multiple cues and senses, implications of perception on VR.

UNIT III

Graphical rendering, ray tracing, shading, BRDFs, rasterization, barycentric coordinates, VR rendering problems, anti-aliasing, distortion shading, image warping (time warp), panoramic rendering. Velocities, acceleration, vestibular system, virtual world physics, simulation, collision detection, avatar motion, vection.

UNIT - IV

Tracking systems, estimating rotation, IMU integration, drift errors, tilt and yaw correction, estimating position, camera-feature detection model, perspective n-point problem, sensor fusion, lighthouse approach, attached bodies, eye tracking, inverse kinematics, map building, SLAM. Remapping, locomotion, manipulation, social interaction, specialized interaction mechanisms.

UNIT – V

Sound propagation, ear physiology, auditory perception, auditory localization; Fourier analysis; acoustic modeling, HRTFs, rendering, auralization. Perceptual training, recommendations for developers, best practices, VR sickness, experimental methods that involve human subjects Touch, haptics, taste, smell, robotic interfaces, telepresence, brainmachine interfaces.

Textbooks:

1. Steven M. LaValle. 'Virtual Reality' Steven M. LaValle. Cambridge University Press 2016

References:

- 1. Ralf Doerner, Wolfgang Broll, Paul Grimm, Bernhard Jung, Virtual and Augmented Reality (VR/AR), Springer Cham, 2022. 2.
- 2. Jesse Glover, Jonathan Linowes, Complete Virtual Reality and Augmented Reality Development with Unity, Packt Publishing Limited, 2019.

Concept Map:

Course Contents and Lecture Schedule

Lesson No. /Session No.	Торіс	No. of Hours
	UNIT –I	8
1.	Virtual Reality, Introduction, What Is Virtual Reality	
2.	Modern VR experiences	01
3.	Birds Eye View :Hardware	01
4.	Software	01
5.	Human Physiology and Perception	01
6.	Geometric Models, Changing Position and Orientation	01
7.	Axis-Angle Representations of Rotation	01
8.	Viewing Transformations, Chaining the	01
	Transformations	
	UNIT – II	7
9.	Light and Optics, Lenses	01
10.	Optical Aberrations, The Human Eye	01
11.	Cameras, Displays	
12.	Visual Perception, Perception of Depth	01
13.	Perception of Motion	01
14.	Perception of Color	01
15.	Combining Sources of Information	
	UNIT – III	9
16.	Visual Rendering, Ray Tracing and Shading Models	01
17.	Rasterization, Correcting Optical Distortions	01
18.	Improving Latency and Frame Rates	01
19.	Immersive Photos and Videos	01
20.	Motion in Real and Virtual Worlds	01
21.	Velocities and Accelerations	01
22.	The Vestibular System	01
23.	Physics in the Virtual World	01
24.	Mismatched Motion and Vection	01
	UNIT – IV	9
25.	Tracking: Tracking 2D Orientation	01
26.	Tracking 3D Orientation	01
27.	Tracking Position and Orientation	01
28.	Tracking Attached Bodies : 3D Scanning of Environments	01
29.	Interaction: Motor Programs and Remapping	01
30.	Locomotion	01
31.	Manipulation	01
32.	Social Interaction	01
33.	Additional Interaction Mechanisms	01
	UNIT – V	9
34.	Audio: The Physics of Sound the Physiology of Human Hearing	01

	Auditory Perception, Auditory Rendering				
36.	Evaluating VR Systems and Experiences, Perceptual Training	01			
37.	Recommendations for Developers	01			
38.	Comfort and VR Sickness				
39.	Experiments on Human Subjects				
40.	Frontiers ,Touch and Proprioception ,Smell and Taste				
41.	Robotic Interfaces				
42.	Brain–Machine Interfaces	01			

Course Outcomes:

At the end of the course, the student will be able to:

- 1. Describe fundamental concepts of virtual reality systems including geometric modeling and transformations. (PO 1, 3, 4)
- 2. Appraise the role of optics and human vision on perception in VR. (PO 1, 3, 4)
- 3. Identify the various virtual world physics issues related to graphical rendering. (PO 1, 3, 4)
- 4. Recognize the issues related to tracking VR systems. (PO 1, 3, 4)
- 5. Describe the role of human auditory system and other human interfaces in creating an experiential VR system. (PO 1, 3, 4, 5)

Mapping Course Outcomes with Program Outcomes:

Course Outcomes	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	2	3
CO2	3	2	2	2	3
CO3	3	2	2	2	3
CO4	3	2	2	2	3
CO5	3	2	2	2	3

Course Assessment and Evaluation:

	What	t	When/ Where (Frequency in the course)	Max Marks	Evidence Collected	Contribution to Course Outcomes
Assessment s	CIE	Internal Assessment Test	Twice (Average of the two will be computed)	30	Blue Books	1, 2, 3, 4 & 5
t Asse		AR/VR Tools Study & Demo	Presentation	10+10	Reports	1, 2, 3, 4 & 5
Direct A Methods	SE E	Standard Examination	End of Course (Answering	100	Answer scripts	1, 2, 3 ,4 & 5

_				
		5 C1O .: \		
- 1		5 of 10 anestions)		
- 1		5 of to questions,		

20 Marks Component / Other CIE Component

- VR/AR Tools Topics Submission Jan30th 2024
- 1st Review Feb13th First review
- 2nd Review March ,2024
- Report April 26th ,2024

CIE and SEE Evaluation:

CIE will be evaluated for 30 marks and SEE for 100 marks. (Each category mark varies and question paper for CIE is set for 45 marks and SEE for 200 marks with choice). Questions for CIE and SEE will be designed to evaluate the various educational components (Bloom's taxonomy) such as:

Sl. No	Bloom's Category	Test 1	Test 2	Implementation of Deep Learning Algorithm (20 marks)	Semester-End Examination
1	Remember	0	0	0	10
2	Understand	10	10	0	30
3	Apply	25	25	15	100
4	Analyze	10	10	05	60
5	Evaluate	0	0	0	0
6	Create	0	0	0	0

	Name	Signature with Date
Prepared by	Dr.S.Rajarajeswari	
Reviewed by	Dr.D.S.Jayalakshmi	

COURSE ARTICULATION MATRIX

Batch: Oct 2021 – March 2022 Course Code: MCSE322

Course: Deep Learning

Course Outcomes:

1. Describe fundamental concepts of virtual reality systems including geometric modeling and transformations. (PO 1, 3, 4)

- 2. Appraise the role of optics and human vision on perception in VR. (PO 1, 3, 4)
- 3. Identify the various virtual world physics issues related to graphical rendering. (PO 1, 3, 4)
- 4. Recognize the issues related to tracking VR systems. (PO 1, 3, 4)
- 5. Describe the role of human auditory system and other human interfaces in creating an experiential VR system. (PO 1, 3, 4, 5)

Course Out	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	2	3
CO2	3	2	2	2	3
CO3	3	2	2	2	3
CO4	3	2	2	2	3
CO5	3	2	2	2	3

Justification for mapping:

- 1. Describe fundamental concepts of virtual reality systems including geometric modeling and transformations. (PO 1, 3, 4)
- 2. Appraise the role of optics and human vision on perception in VR. (PO 1, 3, 4)
- 3. Identify the various virtual world physics issues related to graphical rendering. (PO 1, 3, 4)
- 4. Recognize the issues related to tracking VR systems. (PO 1, 3, 4)
- 5. Describe the role of human auditory system and other human interfaces in creating an experiential VR system. (PO 1, 3, 4, 5)

COURSE ASSESSMENT

Course Code	MCSE133	Program	M.Tech.
Course Name	Virtual Reality	Semester	Ι
Credits	3:0:0		

INTERNAL ASSESSMENT Question Paper and RESULTS ANALYSIS

Figure 1. Continuous Internal Evaluation Proposed Question Paper Analysis

Figure 2. Continuous Internal Evaluation Conducted Question Paper Analysis

Blooms taxonomy weightage for CIE conducted

Figure 3. Blooms Taxonomy weightage for CIE

Result Analysis

In this section, result analysis has been done w.r.t CIE and SEE for the academic year 2017-2018. 28 students had registered for the course. 1 discontinued. 27 has appeared for exam. Statistics are shown below.

Table 1. Statistics of CIETheory + non CIE components

		No. of students	
		IA Tests	Non CIE
CIE		30	20
Marks Range	0-5	1	1
	6-10	1	0
	11-15	0	9
	16-20	1	16
	21-25	9	-
	26-30	15	-
	Total	27	27

Table 2. Statistics of CIE Average

		No. of students	
CIE Total out of 50 marks		IA Tests + Non CIE	
Marks Range		50	
	0-10	1	
	11-20	1	
	21-30	0	
	31-40	8	
	41-50	17	
	Total	27	

Figure 3. Statistics of CIE Theory and non CIE components

Figure 4. Overall CIE Analysis