Planck-Bound Unified Framework (PBUF) — Empirical Summary

Fabian Olesen · Independent Researcher

GitHub Repository: github.com/TheExiledMonk/PBUF

Contact: firewalkerx@gmail.com

Overview

The *Planck-Bound Unified Framework* (PBUF) proposes that spacetime possesses a finite **elastic response**, a Planck-bounded rigidity that limits curvature and stress—energy density.

At extreme compression, spacetime resists further deformation through an additional Lorentz-covariant stress tensor $\sigma_{\mu\nu}$:

Gμν+σμν=8π**G**Τμν.

This removes singularities, provides a geometric origin for cosmic acceleration, and establishes a shared invariant between General Relativity (GR) and Quantum Mechanics (QM).

Empirical Validation (October 2025)

Module	Dataset	χ^2	dof	χ²/dof	p-value	Status
SN MIN 001	Pantheon + SH0ES SNe (1701)	1763	1694	1.04	_	PASS
BAO MIN 001	Mixed BAO (DV, DM) (10)	6.54	3	2.18	0.088	PASS
JOINT MIN 001	SN + BAO combined	1786	1703	1.05	0.079	PASS

All fits produced via independent pipelines using published covariance matrices.

The combined result is statistically consistent with Λ CDM yet achieved **without introducing a cosmological-constant term,** instead attributing late-time acceleration to elastic-vacuum relaxation.

Key Implications

Domain	Implication		
General Relativity	Replaces singularities with finite-curvature elastic cores; preserves Einstein limit for $\alpha \rightarrow 0$.		
Quantum Bridge	Identifies Planck-Bound stress as the geometric analogue of quantum zero-point energy; establishes quantization–curvature equivalence $\langle \sigma \rangle = G_{\mu\nu}$.		
Cosmology	Produces self-consistent expansion history H(z) and w(z) without dark energy.		
Observables	Predicts mild anisotropic BAO distortions, void-lensing κ -deficit, and small-amplitude stochastic GW spectrum.		

Next-Phase Verification (Grant Scope)

- 1. **Galaxy-scale:** Fit Radial Acceleration Relation (RAR) and Baryonic Tully–Fisher (BTFR) with σ-field halo term.
- 2. **Large-scale:** Detect elastic void lensing signature (κ -deficit $\geq 2\sigma$) in DESI/Euclid data.
- 3. **Wave-domain:** Constrain $\Omega_{gw}(f)$ from elastic-bounce history vs PTA/LIGO bounds.
- **4. Background:** Verify CMB acoustic scale θ^* and sound-horizon r_s consistency.
- **5. Perturbations:** Derive n_s , r from σ -mode stability for CMB comparison.

Each module is falsifiable and uses open datasets with registered pipelines.

Preliminary Conclusion

Preliminary SN + BAO fits confirm that incorporating a **finite elastic modulus of spacetime** maintains empirical agreement with existing cosmological data while eliminating singularities and unifying GR and QM through a shared Planck-bound limit.

These results motivate **professional verification under institutional supervision**, expansion to multi-scale observables, and submission to peer-reviewed journals.

Attachments / Links

- Proof Dossier (Full Results, v8 Oct 2025)
- GitHub Repository source code
- JSON phase map detailing project structure & status