Linguagens Formais e Autómatos

Vasco Pedro

Departamento de Informática Universidade de Évora

2012/2013

Alfabeto, palavra

Alfabeto – conjunto finito de símbolos (Σ, T) (elementos representados por a, b, c, d)

Exemplos

- ► $\{a, b, c, ..., x, y, z\}$
- **▶** {0, 1}
- ▶ $\{0, 1, ..., 9\}$
- $\{0,1,\ldots,9\} \cup \{+,-,\div,\times,(,)\}$
- ► {InsereCartão, 0, 1, ..., 9, Confirmar, Corrigir, Anular, ...}

Palavra sobre o alfabeto Σ – sequência finita de símbolos de Σ (representadas por p, q, u, v, w, x, y, z)

 λ – palavra vazia (também ϵ e ε)

Construção de palavras, comprimento

Se w é uma palavra sobre Σ e $a \in \Sigma$, então wa é uma palavra sobre Σ

- |w| comprimento da palavra w (número de símbolos que a constituem):
 - 1. $|\lambda| = 0$
 - 2. |va|=|v|+1 (v é uma palavra sobre Σ e $a\in\Sigma$)

Todas as palavras

 Σ^* – conjunto de **todas** as palavras sobre Σ

Definição recursiva:

(base) $\lambda \in \Sigma^*$

(passo recursivo) se $w \in \Sigma^*$ e $a \in \Sigma$, então $wa \in \Sigma^*$

(fecho) $w \in \Sigma^*$ somente se pode ser gerada por um número finito de aplicações do passo recursivo a partir de λ

Operações sobre palavras (1)

Concatenação, potência

A concatenação de duas palavras $u, v \in \Sigma^*$, escrita u.v ou uv, é uma operação binária em Σ^* definida como:

- 1. se |v| = 0, então $v = \lambda$ e u.v = u
- 2. se |v|=n>0, então v=wa, para alguma palavra w com |w|=n-1 e algum $a\in \Sigma$, e u.v=(u.w)a

Potências de uma palavra

Seja u uma palavra sobre Σ^*

$$u^0 = \lambda$$

 $u^1 = u$
 $uu = u^2$
 $u^3 = u^2u = uuu$
 $u^n = u^{n-1}u = u \dots u$ (u concatenada n vezes)

Operações sobre palavras (2)

A inversão de $u \in \Sigma^*$, escrita u^R ou u^{-1} , é uma operação unária em Σ^* definida como:

- 1. se |u|=0, então $u=\lambda$ e $u^R=\lambda$
- 2. se |u|=n>0, então u=wa, para alguma palavra w com |w|=n-1 e algum $a\in \Sigma$, e $u^R=a.w^R$

Subpalavra, prefixo e sufixo

u é subpalavra de v se existem x, y t.q.

$$v = xuy$$

• se $x = \lambda$ então u é prefixo de v

• se $y = \lambda$ então u é sufixo de v

$$(u, v, x, y \in \Sigma^*)$$

Linguagem

Uma linguagem sobre o alfabeto Σ é um conjunto de palavras sobre Σ ($L\subseteq \Sigma^*$)

Propriedades das operações sobre palavras

Concatenação

```
elemento neutro \lambda.w=w.\lambda=w associatividade (uv)w=u(vw) não comutatividade e.g., aa.bb \neq bb.aa comprimento |uv|=|u|+|v|
```

Inversão

da concatenação $(uv)^R = v^R u^R$

Ordens

Sejam $\Sigma = \{a_1, a_2, \ldots, a_n\}$ um alfabeto com $a_1 < a_2 < \ldots < a_n$ e $u, v, x, y \in \Sigma^*$

Ordem lexicográfica ou do dicionário (<)

- u < v se u é um prefixo próprio de v ou
 - $\qquad \qquad u = xa_iy, v = xa_jz \ \text{e} \ a_i < a_j$

Ordem mista $(<_M)$

$$u <_M v$$
 se $|u| < |v|$ ou $|u| = |v|$ e $u < v$

Com igualdade: $u \le v$ se u < v ou u = v, e o mesmo para \le_M

Caracterização finita de linguagens

- Através de uma definição recursiva
- Recorrendo a operações sobre conjuntos
 - união, intersecção, complemento, . . .
 - ► concatenação de conjuntos:

se X e Y forem conjuntos de palavras (i.e., linguagens)

$$XY = X \cdot Y = \{xy \mid x \in X \text{ e } y \in Y\}$$

Exemplo

$$\{1, 2, 3\} \cdot \{1, 00, \lambda\} = \{ 11, 21, 31, 100, 200, 300, 1, 2, 3 \}$$

Estrela de Kleene

▶ Seja *X* um conjunto

$$X^* = \bigcup_{n \ge 0} X^n \qquad X^+ = \bigcup_{n > 0} X^n$$

em alternativa, $X^+ = XX^*$

► Também conhecida como operador de fecho ou de iteração

Exemplo

Linguagem dos números naturais sem zeros à esquerda

$$\{0\} \cup \{1,2,\dots,9\} \{0,1,\dots,9\}^*$$

Vasco Pedro, LFA, UE, 2012/2013

Propriedades do fecho

Sejam X e Y conjuntos

- $X \subseteq X^*$
- $\blacktriangleright \emptyset^* = \{\lambda\}$
- se $X \subseteq Y$, então $X^* \subseteq Y^*$
- ▶ se $X \neq \emptyset$, então X^* é infinito

Conjuntos regulares

Os conjuntos regulares sobre o alfabeto Σ são definidos como

(base) $\emptyset, \{\lambda\}$ e $\{a\}$, para todo $a \in \Sigma$, são conjuntos regulares sobre Σ

 $_{(passo\ recursivo)}$ sejam X e Y conjuntos regulares sobre Σ ; os conjuntos

$$X \cup Y$$
 XY
 X^*

são conjuntos regulares sobre Σ

 $_{(fecho)}$ X é um conjunto regular sobre Σ somente se puder ser construído através de um número finito de aplicações do passo recursivo a partir dos elementos da base

Expressões regulares

As expressões regulares sobre o alfabeto Σ são definidas como (base) \emptyset , λ e a, para todo $a \in \Sigma$, são expressões regulares sobre Σ (passo recursivo) sejam u e v expressões regulares sobre Σ ; as expressões

$$(u \cup v)$$
$$(uv)$$
$$(u^*)$$

são expressões regulares sobre Σ

 $({\sf fecho})$ u é uma expressão regular sobre Σ somente se puder ser construída através de um número finito de aplicações do passo recursivo a partir dos elementos base

Linguagem regular

A linguagem representada por uma expressão regular é:

$$L(\emptyset) = \emptyset$$

$$L(\lambda) = \{\lambda\}$$

$$L(a) = \{a\} \quad (a \in \Sigma)$$

$$L(u \cup v) = L(u) \cup L(v)$$

$$L(uv) = L(u)L(v)$$

$$L(u^*) = L(u)^*$$

Duas expressões regulares são equivalentes se representam a mesma linguagem

Uma linguagem representada por uma expressão regular é uma linguagem regular

Propriedades das expressões regulares (1)

$$\emptyset u = u\emptyset = \emptyset$$

$$(uv)w = u(vw)$$

$$u \cup v = v \cup u$$

$$(u \cup v) \cup w = u \cup (v \cup w)$$

$$u(v \cup w) = uv \cup uw$$

$$(u \cup v)w = uw \cup vw$$

$$\emptyset^* = \lambda$$

$$u^* = (u^*)^*$$

$$(uv)^* u = u(vu)^*$$

Propriedades das expressões regulares (2)

$$(u \cup v)^* = (u^* \cup v)^*$$

$$= u^*(u \cup v)^*$$

$$= (u \cup vu^*)^*$$

$$= (u^*v^*)^*$$

$$= (u^*v)^*u^*$$

$$= u^*(vu^*)^*$$

Simplificação de expressões regulares (1)

Exemplo

$$0^*(1 \cup (0^*1^*)^*)00^*(10^*)^*0$$

$$= 0^*(1 \cup (0 \cup 1)^*)00^*(10^*)^*0$$

$$= 0^*(0 \cup 1)^*00^*(10^*)^*0$$

$$= (0 \cup 1)^*00^*(10^*)^*0$$

$$= (0 \cup 1)^*00^*(10^*)^*0$$

$$= (0 \cup 1)^*0(0 \cup 1)^*0$$

$$u^*(vu^*)^* = (u \cup v)^*$$

$$u^*(vu^*)^* = (u \cup v)^*$$

Já está numa forma aceitável, mas pode-se continuar

Simplificação de expressões regulares (2)

 $= 1*0(1 \cup 0)*0$

$$= (0 \cup 1)^*0(0 \cup 1)^*0$$

$$= (1 \cup 0)^*0(0 \cup 1)^*0$$

$$= 1^*(01^*)^*0(0 \cup 1)^*0$$

$$= 1^*0(1^*0)^*(0 \cup 1)^*0$$

$$= 1^*0(1^*0)^*(1 \cup 0)^*0$$

$$= 1^*0(1^*0)^*(1^*0)^*1^*0$$

$$= 1^*0(1^*0)^*1^*0$$

$$= 1^*0(1^*0)^*1^*0$$

$$(u \cup v)^* = (u^*v)^*u^*$$

$$u^*u^* = u^* \text{ (porquê?)}$$

$$u^*v^*u^* = (u \cup v)^*$$

Justificação

Vasco Pedro, LFA, UE, 2012/2013

Autómatos finitos deterministas

Um autómato finito determinista (AFD) é um tuplo $M = (Q, \Sigma, \delta, q_0, F)$ onde

Q é um conjunto finito de estados

Σ é um conjunto finito de símbolos (alfabeto)

 δ é a **função de transição**, uma função total de $Q \times \Sigma$ em Q

 $q_0 \in Q$ é o **estado inicial** do autómato

 $F \subseteq Q$ é o conjunto dos **estados de aceitação**

Configuração e computação

Seja
$$M=(Q,\Sigma,\delta,q_0,F)$$
 um AFD

A configuração de um AF é um par $[q,w]\in Q\times \Sigma^*$, onde q é o estado corrente do autómato e w é a parte da palavra ainda por processar

A computação de um AFD M para a palavra $w=a_1a_2\dots a_n\in \Sigma^*$ é a sequência de configurações

$$[s_0, a_1 a_2 \dots a_n] \vdash_{\mathcal{M}} [s_1, a_2 \dots a_n] \vdash_{\mathcal{M}} \dots \vdash_{\mathcal{M}} [s_n, \lambda]$$

com

$$s_0 = q_0$$
 e $s_i = \delta(s_{i-1}, a_i)$

para i > 0

Função de transição estendida

A função de transição estendida $\hat{\delta}:Q\times \Sigma^*\to Q$ de um AFD é definida por

$$\hat{\delta}(q,\lambda) = q$$
 $\hat{\delta}(q,a) = \delta(q,a)$
 $\hat{\delta}(q,wa) = \delta(\hat{\delta}(q,w),a)$

Para um AFD,

$$\hat{\delta}(q_0, w) = q$$
 sse $[q_0, w] \vdash_{\!\scriptscriptstyle M}^* [q, \lambda]$

Linguagem reconhecida

Uma palavra w é aceite pelo AFD sse

$$\hat{\delta}(q_0, w) \in F$$

A linguagem reconhecida (ou aceite) por M é o conjunto das palavras aceites por M

$$L(M) = \{ w \mid \hat{\delta}(q_0, w) \in F \}$$

Dois autómatos finitos são equivalentes se reconhecem a mesma linguagem

Autómatos finitos não deterministas (1)

Um autómato finito não determinista é um tuplo $M = (Q, \Sigma, \delta, q_0, F)$ onde

Q é um conjunto finito de **estados**

Σ é um conjunto finito de símbolos (alfabeto)

 δ é a **função de transição**, uma função total de $Q \times \Sigma$ em $\mathcal{P}(Q)$

 $q_0 \in Q$ é o **estado inicial** do autómato

 $F \subseteq Q$ é o conjunto dos **estados de aceitação**

Qualquer autómato finito determinista é um autómato finito não determinista

Autómatos finitos não deterministas (2)

Seja $M=(Q,\Sigma,\delta,q_0,F)$ um autómato finito não determinista

Uma palavra w é aceite por M se existe uma computação que termina num estado de aceitação depois de terem sido processados todos os símbolos de w

$$[q_0, w] \vdash_{\scriptscriptstyle{M}}^* [q_i, \lambda]$$
, onde $q_i \in F$

A linguagem reconhecida por M é o conjunto das palavras aceites por M

$$L(M) = \left\{ w \; \left| egin{array}{l} \mathsf{existe} \; \mathsf{uma} \; \mathsf{computa}$$
ção $[q_0,w] dash_{\!\scriptscriptstyle M}^* [q_i,\lambda] \; \mathsf{em} \; \mathsf{que} \; q_i \in \mathit{F} \end{array}
ight\}$

Autómatos finitos não deterministas com transições λ

Um autómato finito não determinista com transições λ (AFND) é um tuplo $M=(Q,\Sigma,\delta,q_0,F)$ onde

- Q é um conjunto finito de estados
- Σ é um conjunto finito de símbolos (alfabeto)
- δ é a **função de transição**, uma função de $Q \times (\Sigma \cup \{\lambda\})$ em $\mathcal{P}(Q)$
- $q_0 \in Q$ é o **estado inicial** do autómato
- $F \subseteq Q$ é o conjunto dos **estados de aceitação**

Eliminação do não determinismo

O λ -fecho de um estado q_i é o conjunto de todos os estados alcançáveis através de zero ou mais transições λ a partir de q_i

- ▶ $q_i \in \lambda$ -fecho (q_i)
- ▶ se $q_j \in \lambda$ -fecho (q_i) e $q_k \in \delta(q_j, \lambda)$, então $q_k \in \lambda$ -fecho (q_i)
- mais nenhum estado está em λ -fecho (q_i)

A função de transição de entrada t de um AFND M é uma função de $Q \times \Sigma$ em $\mathcal{P}(Q)$ definida por

$$t(q_i, a) = \bigcup_{q_j \in \lambda ext{-fecho}(q_i)} \lambda ext{-fecho}(\delta(q_j, a))$$

Autómato finito determinista equivalente

O AFD equivalente ao AFND $M=(Q,\Sigma,\delta,q_0,F)$ é o autómato

$$M'=(Q',\Sigma,\delta',q_0',F')$$

tal que

$$q_0' = \lambda$$
-fecho (q_0)

$$\delta'(q,a) = \bigcup_{s \in q} t(s,a)$$

- $ightharpoonup q_0' \in Q'$
- ▶ se $q \in Q'$ então $\delta'(q, a) \in Q'$, para todo o $a \in \Sigma$
- mais nenhum estado está em Q'

$$F' = \{ q \in Q' \mid q \cap F \neq \emptyset \}$$

Minimização de autómatos finitos deterministas

Seja $M = (Q, \Sigma, \delta, q_0, F)$ um autómato finito determinista

Dois estados q_i e q_j de M são equivalentes sse

$$\hat{\delta}(q_i, u) \in F \equiv \hat{\delta}(q_j, u) \in F$$

para qualquer $u \in \Sigma^*$

Dois estados equivalentes dizem-se indistinguíveis

Observação

Se $q_i \in F$ e $q_j \in Q \setminus F$ então q_i e q_j não são equivalentes (porquê?)

Cálculo dos estados equivalentes

- ① Seja $P = \{Q \setminus F, F\}$ uma partição de Q
- 2 Enquanto existirem

$$p, p' \in P$$
 $a \in \Sigma$ $q_i, q_j \in p$

tais que $\delta(q_i,a) \in p'$ e $\delta(q_j,a) \not\in p'$, fazer

$$P \leftarrow P \setminus \{p\} \cup \{q \in p \mid \delta(q, a) \in p'\} \\ \cup \{q \in p \mid \delta(q, a) \notin p'\}$$

Este algoritmo calcula a partição P de Q tal que, para quaisquer estados q_i e q_j

- ▶ se q_i e q_j pertencem ao mesmo subconjunto, q_i e q_j são equivalentes
- ▶ se q_i e q_j pertencem a subconjuntos distintos, q_i e q_j não são equivalentes

Construção do AFD mínimo

- Calcular os estados equivalentes; seja P a partição determinada
- 2 Para todos os $p \in P$ e todos os $a \in \Sigma$, seja q um estado em p e seja p' o elemento de P a que $\delta(q,a)$ pertence; então

$$\delta'(p,a)=p'$$

3 O AFD mínimo (ou reduzido) equivalente a M é

$$M' = (P, \Sigma, \delta', q'_0, F')$$

onde

- q_0' é o elemento de P que contém q_0
- $F' = \{ p \in P \mid p \subseteq F \}$

Composição de autómatos (1)

Seja $M = (Q, \Sigma, \delta, q_0, F)$ um AFND. Existe um AFND

$$M' = (Q \cup \{q'_0, q_f\}, \Sigma, \delta', q'_0, \{q_f\})$$

equivalente a M em que

- não há transições para o estado q₀'
- o único estado de aceitação é q_f
- não há transições a partir do estado q_f

A função de transição de M' é obtida acrescentando a δ

- $(q'_0, \lambda, \{q_0\})$
- uma transição λ de cada $q \in F$ para q_f

NB: $\{q_0', q_f\} \cap Q = \emptyset$, $q_0' \neq q_f$

Composição de autómatos (2)

Sejam M_A e M_B dois autómatos finitos nas condições anteriores

$$M_A = (Q_A, \Sigma, \delta_A, q_{0_A}, \{q_{f_A}\})$$
 $M_B = (Q_B, \Sigma, \delta_B, q_{0_B}, \{q_{f_B}\})$

Definem-se os autómatos finitos seguintes

1.

$$M_{\cdot} = (Q_A \cup Q_B, \Sigma, \delta_{\cdot}, q_{0_A}, \{q_{f_B}\})$$

onde

$$\delta_{\cdot} = \delta_{A} \cup \delta_{B} \cup \{(q_{f_{A}}, \lambda, \{q_{0_{B}}\})\}$$

com

$$L(M_{\bullet}) = L(M_A)L(M_B)$$

NB: $Q_A \cap Q_B = \emptyset$, $\{q_0, q_f\} \cap (Q_A \cup Q_B) = \emptyset$, $q_0 \neq q_f$

Composição de autómatos (3)

2.

$$M_{\cup} = (Q_A \cup Q_B \cup \{q_0, q_f\}, \Sigma, \delta_{\cup}, q_0, \{q_f\})$$

onde

$$\delta_{\cup} = \delta_{A} \cup \delta_{B} \cup \left\{ (q_{0}, \lambda, \{q_{0_{A}}, q_{0_{B}}), (q_{f_{A}}, \lambda, \{q_{f}\}), (q_{f_{B}}, \lambda, \{q_{f}\}) \right\}$$

com

$$L(M_{\cup}) = L(M_A) \cup L(M_B)$$

3.

$$M_* = (Q_A \cup \{q_0, q_f\}, \Sigma, \delta_*, q_0, \{q_f\})$$

onde

$$\delta_* = \delta_A \cup \left\{ \left(q_0, \lambda, \left\{q_{0_A}, q_f\right\}\right), \left(q_{f_A}, \lambda, \left\{q_{0_A}, q_f\right\}\right) \right\}$$

com

$$L(M_*) = L(M_A)^*$$

Pumping Lemma

Teorema (Pumping Lemma para linguagens regulares)

Seja L uma linguagem regular e seja k o número de estados de um AFD que a reconhece. Então qualquer palavra p de L, tal que $|p| \geq k$, pode ser escrita como

$$uvw$$
, com $|uv| \le k$ e $|v| > 0$

e

$$uv^iw \in L$$
, para todo o $i \ge 0$

Aplicação do *Pumping Lemma* para linguagens regulares Exemplo

$$L = \{a^n b^n \mid n \ge 0\}$$

Se L for uma linguagem regular, existe um AFD que a reconhece Sejam k o número de estados desse autómato e $p = a^k b^k$

Qualquer decomposição de *p* nas condições do *Pumping Lemma* será da forma

$$u \quad v \quad w$$
 $a^j \quad a^m \quad a^{k-j-m}b^k$

 $com j + m \le k e m > 0$

Para i = 0 temos

$$uv^{0}w = a^{j}(a^{m})^{0}a^{k-j-m}b^{k} = a^{k-m}b^{k}$$

Sendo m>0, então $k-m\neq k$. Como todas as palavras de L têm igual número de as e de bs, $a^{k-m}b^k\not\in L$ e L não é uma linguagem regular

Gramáticas (1)

```
1. \langle frase \rangle \rightarrow \langle sujeito \rangle \langle frase-verbal \rangle
 2. \langle frase \rangle \rightarrow \langle sujeito \rangle \langle verbo \rangle \langle compl-directo \rangle
 3. \langle \text{sujeito} \rangle \rightarrow \langle \text{subst-próprio} \rangle
 4. \rightarrow \langle artigo \rangle \langle subst-comum \rangle
 5. ⟨subst-próprio⟩ → John

ightarrow Jill
 6.
 7. \langle \text{subst-comum} \rangle \rightarrow \text{car}

ightarrow hamburger
 8.
  9. \langle \operatorname{artigo} \rangle \rightarrow \operatorname{a}
10. \rightarrow the
11. \langle frase-verbal \rangle \rightarrow \langle verbo \rangle \langle advérbio \rangle
         \rightarrow \langle \mathsf{verbo} \rangle
12.
13. \langle \text{verbo} \rangle \rightarrow \text{drives}
14. \rightarrow eats
15. \langle advérbio \rangle \rightarrow slowly
16. \rightarrow frequently
```

Gramáticas (2)

Geração por reescrita

```
⟨frase⟩
                                                                        \langle frase \rangle \rightarrow \langle sujeito \rangle \langle frase-verbal \rangle
    ⇒ ⟨sujeito⟩ ⟨frase-verbal⟩
                                                                    \langle sujeito \rangle \rightarrow \langle artigo \rangle \langle subst-comum \rangle
    ⇒ ⟨artigo⟩ ⟨subst-comum⟩ ⟨frase-verbal⟩
                                                                            \langle \mathsf{subst\text{-}comum} \rangle \to \mathsf{hamburger}
    \Rightarrow \langle artigo\rangle hamburger \langle frase-verbal\rangle
                                                                    ⟨frase-verbal⟩ → ⟨verbo⟩ ⟨advérbio⟩
    ⇒ ⟨artigo⟩ hamburger ⟨verbo⟩ ⟨advérbio⟩
                                                                                                \langle artigo \rangle \rightarrow the
    ⇒ the hamburger ⟨verbo⟩ ⟨advérbio⟩
                                                                                        ⟨advérbio⟩ → slowly
    \Rightarrow the hamburger \langle \text{verbo} \rangle slowly
                                                                                            \langle \mathsf{verbo} \rangle \to \mathsf{drives}
    ⇒ the hamburger drives slowly
   Símbolos terminais: John, Jill, hamburger, car, a, the, drives, eats,
      slowly, frequently
   Símbolos não terminais: (frase), (frase-verbal), (sujeito), (verbo), ...
```

Gramáticas (3)

```
1. \langle frase \rangle \rightarrow \langle sujeito \rangle \langle frase-verbal \rangle
  2. \rightarrow \langle \text{sujeito} \rangle \langle \text{verbo} \rangle \langle \text{compl-directo} \rangle
17. \langle adjectivos \rangle \rightarrow \langle adjectivo \rangle \langle adjectivos \rangle
18.
19. \langle adjectivo \rangle \rightarrow big
        \rightarrow juicy
20.
21.
                               \rightarrow brown
22. \langle compl-directo \rangle \rightarrow \langle adjectivos \rangle \langle subst-próprio \rangle
23.
                                         \rightarrow \langle artigo \rangle \langle adjectivos \rangle
                                               (subst-comum)
```

Gramáticas independentes do contexto Definição

Uma gramática independente do contexto (GIC) é um tuplo
$$G = (V, \Sigma, P, S)$$
 onde

V é o conjunto finito dos símbolos **não terminais** (A, B, C, ...)

Σ é o conjunto finito dos símbolos **terminais** (alfabeto)

 $P \subseteq V \times (V \cup \Sigma)^*$ é um conjunto finito de **produções**

 $S \in V$ é o **símbolo inicial** da gramática

NB: $V \cap \Sigma = \emptyset$

Derivação

Seja $G = (V, \Sigma, P, S)$ uma gramática independente do contexto

Se $u, v \in (V \cup \Sigma)^*$, $A \in V$ e existe uma produção $A \to w$ em P, então uAv deriva directamente uwv

$$uAv \Rightarrow_G uwv$$

Se existem $u_0, u_1, \ldots, u_n \in (V \cup \Sigma)^*, n \geq 0$, tais que

$$u = u_0 \Rightarrow_{\scriptscriptstyle G} u_1 \Rightarrow_{\scriptscriptstyle G} \ldots \Rightarrow_{\scriptscriptstyle G} u_n = v$$

então u deriva v em n passos

$$u \Rightarrow_{G}^{n} v$$

Se $u \Rightarrow_{G}^{n} v$ para algum $n \ge 0$, u deriva v

$$u \Rightarrow_{G}^{*} v$$

Linguagem gerada

Seja $G = (V, \Sigma, P, S)$ uma gramática independente do contexto

O conjunto das palavras deriváveis a partir de $v \in (V \cup \Sigma)^*$, D(v), define-se como

$$D(v) = \{ w \mid v \Rightarrow^* w \}$$

A linguagem gerada por G, L(G), é o conjunto das palavras sobre Σ^* deriváveis a partir de S

$$L(G) = \{ w \mid w \in \Sigma^* \in S \Rightarrow^* w \}$$

L(G) é uma linguagem independente do contexto

Duas gramáticas são equivalentes se geram a mesma linguagem

Recursividade

Uma produção (directamente) recursiva tem a forma

$$A \rightarrow uAv$$

O símbolo não-terminal A é recursivo se

$$A \Rightarrow^+ uAv$$

Uma derivação com a forma

$$A \Rightarrow w \Rightarrow^+ uAv$$

em que A não ocorre em w, diz-se indirectamente recursiva

$$(u, v, w \in (V \cup \Sigma)^*)$$

Independência das sub-derivações

Lema

Sejam $G = (V, \Sigma, P, S)$ uma GIC e $v \Rightarrow^n w$ uma derivação em G em que v tem a forma

$$v = w_1 A_1 w_2 A_2 \dots w_k A_k w_{k+1}$$

com $w_i \in \Sigma^*$. Então existem palavras $p_i \in (V \cup \Sigma)^*$ que satisfazem

- 1. $A_i \Rightarrow^{t_i} p_i$
- 2. $w = w_1 p_1 w_2 p_2 \dots w_k p_k w_{k+1}$
- $3. \sum_{i=1}^k t_i = n$

Derivação esquerda e direita

Existência

Numa derivação esquerda (\Rightarrow_L) , em todos os passos é reescrito o símbolo não terminal mais à esquerda

Numa derivação direita (\Rightarrow_R) , em todos os passos é reescrito o símbolo não terminal mais à direita

Teorema (existência de derivação esquerda)

Seja $G=(V,\Sigma,P,S)$ uma GIC. Uma palavra $w\in\Sigma^*$ pertence a L(G) sse

$$S \Rightarrow_{\mathsf{L}}^* w$$

É, igualmente, garantida a existência de derivação direita

Árvore de derivação

Seja
$$G = (V, \Sigma, P, S)$$
 uma GIC

A árvore de derivação correspondente à derivação $S \Rightarrow^* w$ é formada de acordo com as seguintes regras:

- 1. A raiz da árvore é o símbolo inicial S
- 2. Se $A \to x_1 x_2 \dots x_n$, com $x_i \in V \cup \Sigma$, foi a produção usada para reescrever o símbolo A, então o nó A correspondente tem filhos x_1, x_2, \dots, x_n , por esta ordem
- 3. Se $A \to \lambda$ foi a produção usada para reescrever o símbolo A, então o nó A correspondente tem λ como único filho

Uma palavra w tem árvore de derivação T (e T é uma árvore de derivação de w) se w for a concatenação das folhas de T

Ambiguidade

Uma gramática G diz-se ambígua se alguma palavra de L(G) tem pelo menos:

- duas árvores de derivação distintas ou
- duas derivações esquerdas distintas ou
- duas derivações direitas distintas

Uma linguagem é inerentemente ambígua se não existir uma gramática não ambígua que a gere

$$\{a^i b^j c^k \mid i = j \text{ ou } j = k\}$$

Expressões aritméticas e ambiguidade

$$G_{\mathsf{EA}} = (\{E\}, \{n, +, -, \times, \div\}, P_{\mathsf{EA}}, E)$$
 com produções P_{EA} :

1ª versão (ambígua)

$$E \rightarrow E + E \mid E - E \mid E \times E \mid E \div E \mid n$$

2ª versão — Prioridades (ambígua)

$$E \rightarrow E + E \mid E - E \mid T$$

$$T \to T \times T \mid T \div T \mid F$$

$$F \rightarrow n$$

3ª versão — Associatividade (à esquerda)

$$E \rightarrow E + T \mid E - T \mid T$$

$$T \rightarrow T \times F \mid T \div F \mid F$$

$$F \rightarrow n$$

Gramáticas regulares

Uma gramática regular é uma GIC (V, Σ, P, S) em que todas as produções têm uma das formas

$$A \rightarrow a$$

$$A \rightarrow aB$$

$$A \rightarrow \lambda$$

onde $A, B \in V$ e $a \in \Sigma$

A linguagem gerada por uma gramática regular é uma linguagem regular

Uma gramática não regular pode gerar uma linguagem regular

Autómatos de pilha (1)

Autómato de pilha = autómato finito + pilha

Um autómato de pilha (AP) é um tuplo $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ onde

- Q, Σ , q_0 e F são como nos autómatos finitos
- Γ é o **alfabeto da pilha**, um conjunto finito de símbolos (A, B, C, ...)
- δ é a **função de transição** do autómato, uma função de $Q \times (\Sigma \cup \{\lambda\}) \times (\Gamma \cup \{\lambda\})$ em $\mathcal{P}(Q \times (\Gamma \cup \{\lambda\}))$

 α , β , γ , ... denotam palavras sobre Γ

Autómatos de pilha (2)

Uma configuração de um AP é um triplo $[q,w,\alpha]\in Q\times \Sigma^*\times \Gamma^*$

Transições (com símbolo)

$$[q',\lambda] \in \delta(q,a,\lambda)$$

$$[q,aw,\alpha] \vdash [q',w,\alpha]$$

$$[q', \lambda] \in \delta(q, a, A)$$

$$[q, aw, A\alpha] \vdash [q', w, \alpha]$$

$$[q', B] \in \delta(q, a, \lambda)$$

$$[q, aw, \alpha] \vdash [q', w, B\alpha]$$

$$[q', B] \in \delta(q, a, A)$$

$$[q, aw, A\alpha] \vdash [q', w, B\alpha]$$

Configuração inicial: $[q_0, w, \lambda]$

Autómatos de pilha (3)

Uma palavra $w \in \Sigma^*$ é aceite pelo autómato de pilha M se existe uma computação

$$[q_0, w, \lambda] \vdash_{\scriptscriptstyle{M}}^* [q_f, \lambda, \lambda]$$

com $q_f \in F$ (critério de aceitação por estado de aceitação e pilha vazia)

A linguagem reconhecida pelo autómato de pilha M é o conjunto de todas as palavras aceites por M

Um autómato de pilha é determinista se, qualquer que seja a combinação de estado, símbolo de entrada e topo da pilha, existe no máximo uma transição aplicável

Variantes

Um autómato de pilha atómico é um autómato de pilha que só tem transições das formas

$$[q_j, \lambda] \in \delta(q_i, a, \lambda)$$

 $[q_j, \lambda] \in \delta(q_i, \lambda, A)$
 $[q_i, A] \in \delta(q_i, \lambda, \lambda)$

Um autómato de pilha estendido pode conter transições em que são empilhados mais do que um símbolo, como

$$[q_i, BCD] \in \delta(q_i, u, A)$$

Propriedades

Qualquer linguagem reconhecida por um AP é também reconhecida por um AP atómico

Qualquer linguagem reconhecida por um AP estendido é também reconhecida por um AP

Outro Pumping Lemma

Teorema (*Pumping Lemma* para linguagens independentes do contexto)

Seja L uma linguagem independente do contexto. Então existe um k tal que para qualquer palavra p de L, com $|p| \ge k$, existe uma decomposição da forma

$$u v w x y$$
, com $|vwx| \le k e |v| + |x| > 0$

tal que

$$u v^i w x^i y \in L$$
, para todo o $i \ge 0$

Hierarquia de Chomsky

Uma gramática $G = (V, \Sigma, P, S)$ é de um dos seguintes tipos

sem restrições (ou tipo 0) se todas as suas produções tiverem a forma

$$u \rightarrow v$$

com
$$u \in (V \cup \Sigma)^+$$
 e $v \in (V \cup \Sigma)^*$

dependente do contexto (ou tipo 1) se todas as suas produções tiverem a forma

$$u \rightarrow v$$

com
$$u, v \in (V \cup \Sigma)^+$$
 e $|u| \leq |v|$

- independente do contexto (ou tipo 2)
- ► regular (ou tipo 3)

Análise sintáctica

Sentido

- Descendente (parte do símbolo inicial)
- Ascendente (parte da palavra)

Estratégia

- ► Em largura
- ► Em profundidade

Se w = uAv, $u \in \Sigma^*$ e $A \in V$, u é o prefixo terminal de w

Grafo de uma gramática

O grafo (esquerdo) da GIC $G = (V, \Sigma, P, S)$ é o grafo orientado etiquetado g(G) = (N, P, A) onde

$$N = \{ w \in (V \cup \Sigma)^* \mid S \Rightarrow_{\mathsf{L}}^* w \}$$

е

$$A = \{[v, w, r] \in N \times N \times P \mid v \Rightarrow_{\mathsf{L}} w \text{ por aplicação}$$

da produção $r\}$

O grafo direito de G define-se de modo análogo

Um grafo (esquerdo ou direito) de uma gramática não ambígua é uma árvore

Grafo (esquerdo) de uma gramática

Grafo direito de uma gramática

Algoritmo de análise sintáctica descendente em largura

```
entrada: GIC G = (V, \Sigma, P, S) e p \in \Sigma^*
cria T com raiz S % árvore de pesquisa
                        % fila
Q \leftarrow \{S\}
repete
  q \leftarrow \text{remove}(Q) % q = uAv, u \in \Sigma^*. A \in V
  i \leftarrow 0
  done ← false
  repete
     se não há uma produção para A com número maior que i então
        done ← true
     senão
        seja A \rightarrow w a primeira produção para A com número i > i
        se uwv \notin \Sigma^* e o prefixo terminal de uwv é um prefixo de p então
           insere(uwv, Q)
           acrescenta o nó uvw a T como filho de q
        i \leftarrow i
  até done ou p = uwv
até vazia(Q) ou p = uwv
se p = uwv então ACEITA senão REJEITA
```

Análise sintáctica descendente em largura para b-a

Algoritmo de análise sintáctica descendente em profundidade

```
entrada: GIC G = (V, \Sigma, P, S) e p \in \Sigma^*
S \leftarrow \{[S, 0]\}
                          % pilha
repete
   [q, i] \leftarrow \mathsf{desempilha}(\mathsf{S})
   inviável ← false
   repete
      seja g = uAv, com u \in \Sigma^* e A \in V
      se u não é prefixo de p então
         inviável ← true
      se não há uma produção para A com número maior que i então
         inviável ← true
      se não inviável então
         seja A \rightarrow w a primeira produção para A com número i > i
         empilha([q, i], S)
         q \leftarrow uwv
         i \leftarrow 0
   até inviável ou q \in \Sigma^*
até q = p ou vazia(S)
se q = p então ACEITA senão REJEITA
```

Análise sintáctica descendente em profundidade para b-a

Algoritmo de análise sintáctica ascendente em largura

```
entrada: GIC G = (V, \Sigma, P, S) e p \in \Sigma^*
cria T com raiz p
                           % árvore de pesquisa
Q \leftarrow \{p\}
                           % fila
repete
  q \leftarrow \text{remove}(Q)
  para cada produção A \rightarrow w \in P
     % TRANSFERÊNCIA(S)
     para cada decomposição uwv de q, com v \in \Sigma^*
        insere(uAv, Q) % REDUÇÃO
        acrescenta o nó uAv aos filhos
           de q em T
até q = S ou vazia(Q)
se q = S então ACEITA senão REJEITA
```

Análise sintáctica ascendente em largura para b-a

Algoritmo de análise sintáctica ascendente em profundidade

```
entrada: GIC G = (V, \Sigma, P, S), com S não recursivo, e p \in \Sigma^*
S \leftarrow \{[\lambda, 0, p]\}
                                 % pilha
repete
   [u, i, v] \leftarrow \text{desempilha}(S)
   inviável ← false
   repete
      seja j > i o nº da 1ª produção da forma
         A \rightarrow w \text{ com } u = qw \text{ e } A \neq S, ou
         \cdot S \rightarrow w \text{ com } u = w \text{ e } v = \lambda
      se existe tal j então
          empilha([u, j, v], S)
         u \leftarrow gA % REDUÇÃO
         i \leftarrow 0
      se não existe tal j e v \neq \lambda então
          TRANSFERÊNCIA(u, v)
          i \leftarrow 0
      se não existe tal j e v = \lambda então inviável \leftarrow true
   até u = S ou inviável
até u = S ou vazia(S)
se vazia(S) então REJEITA senão ACEITA
```

Análise sintáctica ascendente em profundidade para b-a

b-a