Théories & Preuves

1. LE PROBLÈME

- \diamond **Données :** une théorie τ et une formule ϕ
- \diamond Question : est ce que ϕ est une conséquence logique de τ ?

?
$$\tau \models \phi \\ \swarrow \qquad \searrow \\ \tau \models \phi \qquad \tau \models \phi \\ \text{MOD} \qquad \text{FIN}$$

Conséquence déductive Conséquence inductive

Michel Rueher Preuves – 6 octobre 2015

Deux approches:

- \diamond Enumérer les modèles de τ et vérifier la validité de ϕ dans chaque modèle (approche sémantique)
- Appliquer une méthode de preuve syntaxique Déduction (e.g., résolution,...), Induction

2. APPROCHE SÉMANTIQUE

- \diamond Enumérer les modèles de au
- \diamond Vérifier la validité de ϕ dans chaque modèle

Contraintes : le nombre de modèles de τ doit être fini !

Exemple 1.

Monsieur X, professeur d'informatique, rentre chez lui et découvre sa femme dans les bras d'un beau brun ténébreux. Surpris, celui-ci s'enfuit en s'envolant par la fenètre. On sait que :

- ⋄ Marc, Batman ou Olivier plaisent à la femme de Monsieur X
- A chaque fois qu'Olivier fait quelque chose, son copain Marc l'imite
- Batman ne sait pas voler

Marc est-il l'amant de Madame X?

Formalisation : ce problème peut se formaliser dans la théorie τ suivante :

- ♦ Langage :
 - pas de variables
 - pas de fonctions
 - propositions : m, b et o

- Axiomes:
 - A1 : $m \lor b \lor o$
 - A2 : $o \Rightarrow m$
 - A3 : ¬ b
- $\diamond \phi : m$

On veut montrer : $\tau \models \phi$

c'est à dire : $\models \tau \Rightarrow \phi$

c'est à dire : $I \models \tau \Rightarrow \phi$ pour toute interprétation I

Vérification de la validité : énumérer toutes les interprétations τ

- \diamond Pour le langage de τ (sans variables ni fonctions), une interprétation est une affectation des valeurs "**vrai**" ou "**faux**" aux propositions.
- Enumérer toutes les interprétations revient à construire tous les triplets (m, b, o) à valeur dans {0,1}
- \diamond Montrer que $I \models \tau \Rightarrow \phi$ pour toute interprétation I revient à construire la table de vérité de $\tau \Rightarrow \phi$ et montrer que $\tau \Rightarrow \phi$ vaut 1 dans tous les cas.

Table d vérité de τ :

m	b	0	$ \mid ((m \lor b \lor o) \land (o \Rightarrow m) \land \neg b) \Rightarrow m \mid $
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

... et donc Marc est bien l'amant de Madame X!

LIMITES DE L'APPROCHE SÉMANTIQUE

- \diamond Énumérer toutes les interprétations c'est coûteux : pour un langage sans variables ni fonctions et **avec n propositions il y a** 2^n **interprétations** possibles
- Ocument énumérer tous les modèles quand on a un langage du premier ordre (avec variables)?

langage: prédicat E (binaire)

fonction: f (unaire)

Exemple axiomes: $E(x,y) \Leftrightarrow E(y,x)$

 $E(x,y) \wedge E(y,z) \Rightarrow E(x,z)$

E(x,x)

Comment prouver E(f(x),f(x))?

3. APPROCHES SYNTAXIQUES

Appliquer une **méthode syntaxique m** telle que :

$$\tau \models_{\mathbf{m}} \phi \equiv \tau \models \phi$$

Système de règles d'inférence :

système de Hilbert système de Gentzen système de résolution

 $\sqsubseteq_{\overline{M}OD}$

Preuve déductive

&

complet

correct

système d'induction

 $|_{\overline{F}IN}$

Preuve inductive

correct

4. PREUVES DÉDUCTIVES

Une théorie τ , une formule ϕ , une méthode g

$$\tau \vdash \phi$$

La formule ϕ est **prouvable (dérivable)** à partir de τ en appliquant la méthode g

OU

 ϕ est un **g-théorème** de au

NOTATIONS (RAPPEL)

x, y, z : variables

a,b,c : constantes

p,q,r : symboles de prédicat

f,g : symboles de function

 $A,B,C,D,F\;\phi$, ψ : formules

4.1. Equivalences de base

(Herbrand 1931, Robinson 1965)

$$\begin{array}{c} \tau \models \phi \\ \text{MOD} \\ \downarrow \\ \tau \models \forall \phi \\ \text{MOD} \\ \downarrow \\ \alpha \not\models \tau \land \neg \forall (\phi) \\ \text{(}\forall \text{ structure } \alpha\text{)} \\ \downarrow \\ \alpha \not\models \mathbf{FP}[\tau \land \neg \forall (\phi)] \\ \text{(}\forall \text{ structure } \alpha\text{)} \\ \downarrow \\ \downarrow \end{array}$$

 ϕ est une conséquence de au

La cloture universelle de ϕ est une conséquence de τ

La conjonction $\tau \wedge \neg \forall (\phi)$ est insatisfiable

La forme prénexe de $\tau \land \neg \forall (\phi)$ est insatisfiable \uparrow

EQUIVALENCES DE BASE (suite)

$$\alpha \not\models \mathsf{SK[FP[}\tau \land \neg \forall (\phi)]]$$

$$(\forall \, \mathsf{structure} \, \alpha)$$

$$\updownarrow$$

$$\alpha \not\models \mathsf{FNC[SK[FP[}\tau \land \neg \forall (\phi)]]]$$

$$\overline{\alpha} \not\models \mathsf{FNC}[\mathsf{SK}[\mathsf{FP}[\tau \land \neg \forall (\phi)]]]$$
 (\$\overline{\alpha}\$ structure de Herbrand)

La forme de Skolem de FP[...] est insatisfiable

La forme normale conjonctive de SK[...] est insatisfiable

La forme normale conjonctive n'a pas de modèle de Herbrand

FNC[SK[FP[$\tau \land \neg \forall (\phi)$]]] $\vdash \Box$ La clause vide est déductible par résolution

4.2. Une procédure de preuve

Pour prouver que $\tau \models_{\overline{M}OD} \phi$:

- 1. Mettre la formule ϕ sous forme $\forall \phi$ (cloture universelle)
- 2. Ajouter $\neg \forall \phi \ \text{à} \ \tau$. On obtient $F_0 = \{\tau \land \neg \forall (\phi)\}$
- 3. Mettre F_0 sous forme prénexe On obtient F_1
- 4. Mettre les formules de F_1 sous forme de Skolem On obtient F_2
- 5. Mettre les formules de F_2 sous forme de clauses On obtient F_3
- 6. Appliquer la résolution pour dériver la clause vide de F_3

5. Une procédure de preuve pour le calcul propositionnel

Pour prouver que $\tau \models_{\overline{M}OD} \phi$:

- 1. Ajouter $\neg \phi$ à τ . On obtient $\tau \wedge \neg \phi$
- 2. Mettre les formules de $\tau \wedge \neg \phi$ sous forme de clauses. On obtient C
- 3. Appliquer à C la 0- résolution pour dériver la clause vide de F_1 :

$$\frac{\neg \mathbf{A} \lor \mathbf{F_1} \land \mathbf{A} \lor \mathbf{F_2}}{\mathbf{F_1} \lor \mathbf{F_2}}$$

où A est un atome, F_1 et F_2 des clauses

4. Si on infère la clause vide, alors ϕ est valide dans MOD

5.1. 0- RÉSOLUTION : INTUITION

- ⇒ Principe de la démonstration : preuve par l'absurde Si $\tau \land \neg \phi \vdash \neg$ alors ϕ est vrai (car $\neg \phi$ introduit une contradiction)

Pour les langages sans variables ni symboles fonctionnels la 0-résolution est complète et correcte

5.2 FORME CLAUSALE

Définition 1.

Soit ϕ une formule. On dit que ϕ est sous forme clausale si ϕ est une formule $F_1 \wedge F_2 \wedge \ldots \wedge F_m$ où chaque F_i est de la forme :

$$p_{l1} \lor p_{l2} \lor \dots p_{li} \lor \neg p_{m1} \lor \neg p_{m2} \lor \dots \lor \neg p_{mj}$$

Définition 2.

Une disjonction de littéraux $p_{l1} \lor p_{l2} \lor \dots p_{li} \lor \neg p_{m1} \lor \neg p_{m2} \lor \dots \lor \neg p_{mj}$ est appelée clause

Théorème 1.

Pour toute formule ϕ il existe une formule équivalente ϕ ' qui est sous forme de clauses

5.3. MISE SOUS FORME CLAUSALE

L'utilisation des équivalences suivantes de gauche à droite permet de mettre une formule sous forme de clauses :

 $\mathbf{c}_1: \neg (A \vee B) \equiv \neg A \wedge \neg B$

 \mathbf{c}_2 : $\neg (A \wedge B) \equiv \neg A \vee \neg B$

 $\mathbf{c}_3: A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$

 $\mathbf{c}_4: (A \wedge B) \vee C \equiv (A \vee C) \wedge (B \vee C)$

5.4 REPRISE DE L'EXEMPLE (1)— MARC?

O-résolution :
$$(\neg A \lor F_1) \land (A \lor F_2) \vdash F_1 \lor F_2$$

Axiomes: A1: $m \lor b \lor o$ A2: $o \Rightarrow m$ A3: $\neg b$

On veut prouver $\phi : m$

- 1. Négation de ϕ : $\neg m$
- 2. Mise sous forme clausale

$$\diamond$$
 A1: $m \lor b \lor o$

$$\diamond$$
 A2': $\neg o \lor m$

$$\diamond$$
 A3: $\neg b$

$$\diamond \neg \phi : \neg m$$

3. Résolution

$$\diamond \neg m$$
, $\neg o \lor m \vdash \neg o$

$$\diamond \neg o$$
, $m \lor b \lor o \vdash m \lor b$

$$\diamond m \vee b$$
 , $\neg b \vdash m$

$$\diamond \neg m$$
 , $m \vdash \Box$

Donc $\tau \models_{\overline{MOD}} \phi$, c'est à dire ϕ est valide dans tous les modèles de τ .

5.5 REPRISE DE L'EXEMPLE (1)— Olivier?

O-résolution : $(\neg A \lor F_1) \land (A \lor F_2) \vdash F_1 \lor F_2$

Axiomes: A1: $m \lor b \lor o$ A2: $o \Rightarrow m$ A3: $\neg b$

On veut prouver $\phi : o$

- 1. Négation de ϕ : $\neg o$
- 2. Mise sous forme clausale:

$$\diamond$$
 A1: $m \lor b \lor o$

$$\diamond$$
 A2': $\neg o \lor m$

$$\diamond \neg \phi : \neg o$$

3. Résolution

$$\diamond \neg \phi, A1 \vdash m \lor b$$

$$\diamond \ m \lor b, A3 \vdash m$$

On ne peut inférer la clause vide. Comme la 0-résolution est complète, o n'est pas une conséquence logique de {A1,A2,A3}

5.6 REPRISE DE L'EXEMPLE (1), PREUVE SÉMANTIQUE

m	b	0	$ \mid ((m \lor b \lor o) \land (o \Rightarrow m) \land \neg b) \Rightarrow o \mid $
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

... et donc o n'est pas une conséquence logique de {A1,A2,A3}

6. Une procédure de preuve pour le calcul des prédicats du premier ordre (rappel)

Pour prouver que $\tau \models_{MOD} \phi$:

- 1. Mettre la formule ϕ sous forme $\forall \phi$ (cloture universelle)
- 2. Ajouter $\neg \forall \phi \ \text{à} \ \tau$. On obtient $F_0 = \{\tau \land \neg \forall (\phi)\}$
- 3. Mettre F_0 sous forme prénexe On obtient F_1
- 4. Mettre les formules de F_1 sous forme de Skolem On obtient F_2
- 5. Mettre les formules de F_2 sous forme de clauses On obtient F_3
- 6. Appliquer la résolution pour dériver la clause vide de F_3

Exemple 2.

♦ Sémantique

Si x est pair, alors x+1 est impair
Il existe un nombre pair

Montrez qu'il existe y tel que y est impair

♦ Syntaxe

Symboles

prédicats : p(x) : x pair

i(x): x impair

• fonctionnel: f(x): x+1

 $\tau: (A_1) \ \forall x (p(x) \Rightarrow i(f(x)))$ $(A_2) \ \exists x \ p(x)$

 ϕ : $\exists y i(y)$

Preuve

- \diamond Appliquer Cloture universelle de ϕ
- \diamond Ajouter $\neg \forall \phi \grave{\mathbf{a}} \tau$

$$(A_1) \ \forall x(p(x) \Rightarrow i(f(x))$$

 $(A_2) \ \exists x \ p(x) \ (\neg \phi) \ \neg \exists y \ i(y)$

Mettre sous forme prénexe

$$(A_1) \ \forall x(\neg p(x) \lor i(f(x))$$

 $(A_2) \ \exists x \ p(x) \ (\neg \phi) \ \forall y \neg i(y)$

Mettre sous forme de Skolem

Mettre sous forme de clauses

Appliquer la résolution pour dériver la clause vide

Résolution entre A1 et A2 :

(unification $x \leftarrow a$)

$$\frac{\neg \mathbf{p}(\mathbf{x}) \lor \mathbf{i}(\mathbf{f}(\mathbf{x})) \quad \mathbf{p}(\mathbf{a})}{\mathbf{i}(\mathbf{f}(\mathbf{a}))}$$

Résolution entre i(f(a)) et A3

(unification $y \leftarrow f(a)$)

$$\frac{\mathbf{i}(\mathbf{f}(\mathbf{a})) \quad \neg \mathbf{i}(\mathbf{y})}{\sqcap}$$

contradiction

... donc ϕ est vraie (dans MOD), c'est à dire qu'il existe un nombre impair (les unifications nous donne sa valeur : a + 1)

6.1. FORME PRÉNEXE

Définition 3.

Une formule ϕ est sous forme prénexe si elle est de la forme :

$$\mathbf{Q_1} x_1 \mathbf{Q_2} x_2 \dots \mathbf{Q_n} x_n \psi$$

où chaque Q_i est \forall ou \exists et où ψ ne contient aucun quantificateur

Exemple 3.

 $\forall x \exists y \ p(x,y)$ est sous forme prénexe $\forall x \ q(x) \exists y \ p(x,y)$ n'est pas sous forme prénexe

Théorème 2.

Pour toute formule ϕ il existe une formule ϕ' sous forme prénexe équivalente à ϕ

a) Elimination des \Rightarrow et des \Leftrightarrow en utilisant les équivalences suivantes de gauche à droite :

 $p_1: (A \Rightarrow B) \equiv (\neg A \lor B)$

 $p_2: (A \Leftrightarrow B) \equiv ((\neg A \land \neg B) \lor (A \land B))$

b) Renommer certaines variables liées de manière à n'avoir plus de variable quantifiée deux fois en utilisant les équivalences :

 $p_3: \forall x A(x) \equiv \forall y A(y)$

 $\mathsf{p}_4:\,\exists x\,A(x)\equiv\exists y\,A(y)$

c) Faire remonter les quantificateurs en utilisant les équivalences suivantes de gauche à droite (x ∉ varlib(C)) :

```
\begin{array}{l} \mathbf{p}_{5}: \neg \exists x \, A(x) \equiv \forall x \neg A(x) \\ \mathbf{p}_{6}: \neg \forall x \, A(x) \equiv \exists x \neg A(x) \\ \mathbf{p}_{7}: \neg \neg A(x) \equiv A(x) \\ \mathbf{p}_{8}: (C \vee \forall x \, A(x)) \equiv \forall x (C \vee A(x)) \\ \mathbf{p}_{9}: (C \vee \exists x \, A(x)) \equiv \exists x (C \vee A(x)) \\ \mathbf{p}_{10}: (\forall x \, A(x) \vee C) \equiv \forall x (A(x) \vee C) \\ \mathbf{p}_{11}: (\exists x \, A(x) \vee C) \equiv \exists x (A(x) \vee C) \\ \mathbf{p}_{12}: (C \wedge \forall x \, A(x)) \equiv \forall x (C \wedge A(x)) \\ \mathbf{p}_{13}: (C \wedge \exists x \, A(x)) \equiv \exists x (C \wedge A(x)) \\ \mathbf{p}_{14}: (\forall x \, A(x) \wedge C) \equiv \forall x (A(x) \wedge C) \\ \mathbf{p}_{15}: (\exists x \, A(x) \wedge C) \equiv \exists x (A(x) \wedge C) \end{array}
```

Remarque 1.

Pour limiter le nombre de quantificateurs de la formule finale il peut être intéressant d'utiliser les équivalences suivantes :

```
q_1: (\forall x A(x) \Rightarrow C) \equiv \exists x (A(x) \Rightarrow C)
```

$$q_2: (\exists x \, A(x) \Rightarrow C) \equiv \forall x \, (A(x) \Rightarrow C)$$

$$q_3: (\forall x \, A(x) \land \forall x \, B(x)) \equiv \forall x \, (A(x) \land B(x))$$

$$q_4: (\exists x \, A(x) \vee \exists x \, B(x)) \equiv \exists x \, (A(x) \vee B(x))$$

Remarque 2.

Une forme prénexe peut aussi être obtenue en éliminant les ⇔ et les ⇒ avant de faire remonter les quantificateurs en tête de la formule.

6.2. FORME DE SKOLEM

Définition 4.

Soit $\phi \equiv Q_1x_1Q_2x_2\dots Q_nx_n \psi(x_1x_2\dots x_n)$ une formule mise sous forme prénexe

On appelle forme de Skolem de ϕ la formule ϕ S obtenue en enlevant tous les quantificateurs $\exists x_i$ et en remplaçant chacune des variables x_i quantifiée avec \exists par $f_i(x_{j1}, x_{j2}, \ldots x_{jn})$ où $x_{j1}, x_{j2}, \ldots x_{jn}$ sont les variables quantifiées par des \forall placés devant le $\exists x_i$

Remarque 3.

Les symboles fonctionnels introduits doivent être tous différents et être différents de ceux qui sont utilisés dans ϕ

Remarque 4.

Lorsqu'il n'y a pas de quantificateur \forall devant le $\exists x_i$ on introduit un symbole de constante (fonction 0-aire)

6.2. FORME DE SKOLEM - PROPRIÉTÉS

Théorème 3.

Soit $\{\phi_1, \phi_2, \dots, \phi_n\}$ un ensemble de formules sous forme prénexe et $\{\phi_1^S, \phi_2^S, \dots, \phi_n^S\}$ l'ensemble des formes de Skolem de ces formules, alors $\phi_1, \phi_2, \dots, \phi_n$ admet un modèle ssi $\{\phi_1^S, \phi_2^S, \dots, \phi_n^S\}$ admet un modèle

Intuition de la démonstration :

Considérons $\phi = \forall \mathbf{x}, \exists \mathbf{y} \ \mathbf{p}(\mathbf{x}, \mathbf{y})$. On a $\phi^{\mathbf{s}} = \forall \mathbf{x} \ \mathbf{p}(\mathbf{x}, \mathbf{f}(\mathbf{x}))$ Soit $\mathbf{i} = (\mathbf{E}, \overline{\mathbf{p}})$ avec $\overline{\mathbf{p}} : \mathbf{E} \times \mathbf{E} \to \{\mathbf{V}, \mathbf{F}\}$ un modèle de ϕ dans la base \mathbf{E} . Si i est un modèle, alors pour tout $\alpha \in E$, il existe $\beta \in E$ tel que $\overline{\mathbf{p}}(\alpha, \beta)$ soit vrai. Soit $\overline{\mathbf{f}} : \mathbf{E} \to \mathbf{E}$ la fonction tel que $\overline{\mathbf{f}}(\alpha) = \beta$, alors $\mathbf{i}' = (\mathbf{E}, \overline{\mathbf{p}}, \overline{\mathbf{f}})$ est un modèle de $\phi^{\mathbf{S}}$ dans la base \mathbf{E} .

Réciproquement si $\mathbf{i}' = (\mathbf{E}, \overline{\mathbf{p}}, \overline{\mathbf{f}})$ est un modèle de $\phi^{\mathbf{S}}$ dans la base E, alors on vérifie aisément que $\mathbf{i} = (\mathbf{E}, \overline{\mathbf{p}})$ est un modèle ϕ

6.2. FORME DE SKOLEM — REMARQUE

Remarque 5.

La forme de skolem ϕ ' n'est pas nécessairement équivalente à la formule

 ϕ à partir de laquelle elle a été générée : certaines transformations peuvent créer des dépendances parasites dans la forme de skolem

Exemple : $P(x) \vee Q(f(x))$ \nearrow $\forall x \, P(x) \vee \exists y \, Q(y)$ $Q(a) \vee P(x)$

6.3. Règle d'inférence de la résolution

$$\frac{A \vee F_1 \qquad \neg B \vee F_2}{\sigma(\Phi(F_1) \vee F_2)}$$

où

- A et B sont deux atomes avec le même symbole de prédicat et la même arité
- Φ est une substitution telle que $\Phi(A \vee F_1)$ et $\neg B \vee F_2$ n'aient aucune variable commune ; F_1 et F_2 sont des clauses
- σ est un plus grand unificateur de $\Phi(A)$ et B

Exemple 4.

$$\frac{p(x,c) \vee r(x)}{r(c) \vee q(x)}$$

$$A = p(x, c) F_1 = r(x)$$

$$\Phi = (x|y) \qquad \Phi(A \vee F_1) = p(y,c) \vee r(y)$$

$$B = p(c, c)$$
 $\sigma = (y|c)$

6.4 Règle d'inférence de diminution

$$\frac{A \lor B \lor F_1}{\sigma(A) \lor \sigma(F_1)}$$

οù

- A et B sont deux atomes avec le même symbole de prédicat et la même arité
- σ est un plus grand unificateur de A et B

Exemple 5.

$$\frac{p(x,g(y)) \ \lor \ p(f(c),z) \ \lor \ r(x,y,z)}{p(f(c),g(y)) \ \lor \ r(f(c),y,g(y))}$$

$$\textit{avec} \ \sigma = [(x|f(c))(z|g(y))]$$

7. UNIFICATION

→ Trouver un représentant commun à deux atomes

Substitution

Définition 5.

Si A est une formule du calcul des prédicats, on note (x|t)A la formule obtenue en remplaçant toutes les occurrences libres de x dans A par t

Exemple 6.

$$(x|f(y,g(a)) (p(z) \Rightarrow r(x)) = (p(z) \Rightarrow r(f(y,g(a))))$$

Remarque 6.

En général $[c_1c_2] \neq [c_2c_1]$

Exemple 7.

$$\sigma_1 = [(x|f(a)) (y|f(x))] \quad \sigma_2 = [(y|f(x)) (x|f(a)))]$$

$$\sigma_1(p(x,y)) = (x|f(a))(p(x,f(x)))$$

$$= p(f(a), f(f(a)))$$

$$\sigma_2(p(x,y)) = (y|f(x))(p(f(a),y))$$

$$= (p(f(a), f(x)))$$

7.1 UNIFICATEUR

Définition 6.

Soit $S = \{A_1, A_2, \dots, A_n\}$ un ensemble fini de formules atomiques du calcul des prédicats, on appelle unificateur de S toute substitution σ telle que :

$$\sigma A_1 = \sigma A_2 = \ldots = \sigma A_n$$

Exemple 8.

$$S = \{A_1, A_2, A_3\}$$
 $A_1 = p(x, z)$ $A_2 = p(f(y), g(a))$ $A_3 = p(f(u), z)$

$$\sigma_1 = [(x|f(u)) (y|u) (z|g(a))] \quad \sigma_1 A_1 = \sigma_1 A_2 = \sigma_1 A_3 = p(f(u), g(a))$$

$$\sigma_2 = [(u|f(a))]\sigma_1 \qquad \sigma_2 A_1 = \sigma_2 A_2 = \sigma_2 A_3 = p(f(f(a)), g(a))$$

7.2 Unificateur le plus général

Définition 7.

Soit U_S l'ensemble des unificateurs de S, on dit que σ est un plus grand unificateur de S (ou unificateur le plus général de S) si σ est une substitution de U_S telle que :

$$\forall \alpha \in U_S \,\exists \beta \in U_S : \alpha = \beta \sigma$$

Exemple 9.

$$S = \{A_1, A_2, A_3\}$$
 $A_1 = p(x, z)$ $A_2 = p(f(y), g(a))$ $A_3 = p(f(u), z)$

Quelques plus grands unificateurs :

$$\sigma_1 = [(x|f(u)) \ (y|u) \ (z|g(a))]$$
 $\sigma_3 = [(x|f(v)) \ (y|v) \ (z|g(a)) \ (u|v)]$
et on a $\sigma_1 = (v|u)\sigma_3$ et $\sigma_3 = (u|v)\sigma_1$

7.3 ALGORITHME D'UNIFICATION DE DEUX ATOMES A ET B

- $\Phi \leftarrow []$ % Φ est un PGU de A et B tant que $\Phi A \neq \Phi B$ faire
- - déterminer le symbole le plus à gauche ΦA qui soit différent du symbole de même rang de ΦB
 - déterminer les sous-termes t_1 et t_2 de ΦA et ΦB qui commencent à ce symbole
 - si "aucun des deux n'est une variable" ou "l'un des deux est une variable contenue dans l'autre"
 - alors imprimer "A et B ne sont pas unifiables "; arrêt
 - **sinon** faire
 - $x \leftarrow$ une variable parmi t_1 et t_2 ; $t \leftarrow$ l'autre terme
 - $\bullet \ \Phi \leftarrow (x|t)\Phi$
- **imprimer** Φ est un plus grand unificateur de A et B

8. STRATÉGIES DE RÉSOLUTION

Techniques de gestion d'ensembles de clauses

Enrichissement par résolution & simplication jusqu'à détection de la clause vide ou saturation

♦ Techniques d'exploration de l'arbre des déductions

Parcours en largeur ou en profondeur d'abord de l'arbre de déduction pour trouver la clause vide

8.1 STRATÉGIES DE SATURATION

Algorithme :

 S_0 : ensemble initial de clauses

$$i \leftarrow 1$$

Faire

- $S_i \leftarrow \cup \{$ clauses obtenues en effectuant toutes les résolutions et diminutions possibles sur $S_{i-1}\}$
- $i \leftarrow i+1$ jusqu'à ce que $\square \in S_i$ ou $S_i = S_{i-1}$
- \diamond Problème: Les ensembles S_i augmentent de manière exponentielle

8.2 STRATÉGIE DE SATURATION AVEC SIMPLIFICATION

Elimination des tautologies

 $(A \lor \neg A \lor C)$ où A est un atome et C une clause

Elimination des clauses subsumées

la clause D est subsumée par la clause C s'il existe une substitution σ telle que $D = \sigma C \vee F$ avec F une clause e.g. $p(f(a)) \vee q(a)$ est subsumée par p(x)

8.3 STRATÉGIES LINÉAIRES

Définition 8. On appelle déduction linéaire de racine C_0 à partir de l'ensemble de clauses $\mathcal C$ toute déduction $F_0F_1\dots F_n$ telle que : $\diamond F_0$ est obtenue par résolution ou diminution à partir de clauses dont l'une

est C_0

 $\diamond F_i, i > 0$ est obtenue par résolution ou diminution à partir de clauses dont l'une est F_{i-1}

Exemple 10.

$$\mathcal{C} = \{ \neg A \lor \neg B, A \lor \neg C, C, B \lor \neg D, D \lor B \}$$

$$C_0 = \neg A \lor \neg B$$

Déduction:

 $F_0: \neg B \lor \neg C$ (résolution entre C_0 et $A \lor \neg C$)

 $F_1: \neg B$ (résolution entre F_0 et C)

 $F_2: \neg D$ (résolution entre F_1 et $B \vee \neg D$)

 $F_3: B$ (résolution entre F_2 et $D \vee B$) $F_4: \square$ (résolution entre F_3 et F_1)

Théorème 4.

S'il existe une déduction de la clause vide, alors il existe une déduction linéaire de la clause vide

Remarque 7.

Une stratégie d'exploration en profondeur d'abord ne permet pas nécessairement de trouver la clause vide

Exemple 11.

8.4 STRATÉGIES "INPUT" ORDONNÉES

Définition 9.

On appelle déduction "input" de racine C_0 à partir de l'ensemble de clauses $\mathcal C$ toute déduction CF_0F_1 for telle que : F_0 est obtenue par résolution ou diminution à partir de clauses dont l'une

- $\diamond F_i, \ i > 0$ est obtenue par résolution ou diminution à partir de clauses dont l'une est dans \mathcal{C}

La stratégie "input" ordonnée n'est pas complète dans le cas général

8.5 STRATÉGIES "INPUT" ORDONNÉES AVEC DES CLAUSES DE HORN (SLD)

Une clause de Horn est une clause comportant en ensemble de littéraux négatifs et au plus un littéral positif

Définition 10.

La résolution ordonnée entre deux clauses ordonnées sans variables communes

```
C = \mathbf{l_1} \lor \mathbf{l_2} \lor \ldots \lor \mathbf{l_n} avec \mathbf{l_1}: littéral positif C' = \mathbf{l'_1} \lor \mathbf{l'_2} \lor \ldots \lor \mathbf{l'_n} avec \mathbf{l'_1}: littéral négatif
```

a pour résultat (quand elle est possible) la clause ordonnée

$$\Phi(\mathbf{l_2} \vee \ldots \vee \mathbf{l_n} \vee \mathbf{l'_2} \vee \ldots \vee \mathbf{l'_n})$$

 $où \Phi$ est le plus grand unificateur entre l_1 et l'_1

8.5 SLD (suite)

Exemple de résolution avec des clauses de Horn

$$C = \mathbf{p_1}(\mathbf{a}) \vee \neg \mathbf{q_1}(\mathbf{y}) \vee \neg \mathbf{r_1}(\mathbf{z})$$

$$C' = \neg \mathbf{p_1}(\mathbf{x}) \lor \neg \mathbf{q_2}(\mathbf{x}) \lor \neg \mathbf{r_2}(\mathbf{z})$$

$$\frac{p_1(a) \vee \neg q_1(y) \vee \neg r_1(z)}{\neg q_1(y) \vee \neg r_1(z) \vee \neg q_2(a) \vee \neg r_2(z)}$$

8.5 SLD (suite)

Si $C = C' \cup \{C_0\}$ est insatisfiable, que C_0 est une clause ne comportant que des littéraux négatifs, et que C' ne contient que des clauses de Horn ordonnées dont le littéral positif est en tête,

alors il existe une déduction linéaire "input" ordonnée de racine C_0 , n'utilisant que la résolution, conduisant à la clause vide

Limites des stratégies "input" ordonnées avec des clauses de Horn :

⋄ Toute formule n'est pas transformable en clause de Horn, e.g., $A \Rightarrow B \lor D$

Exemple: $riche(x) \Rightarrow gagnant_lotto(x) \lor héritier(x)$

 \diamond Impossible de déduire des connaissances négatives, e.g., $\forall \mathbf{x} \neg (\mathbf{premier}(\mathbf{double}(\mathbf{succ}(\mathbf{x})))$

8.6 SLD: EXTRACTION DE RÉSULTATS

Théorème 5.

Si un ensemble de clauses de Horn $C = C' \cup \{C_i\}$ est insatisfiable, **et que** C_0 est un littéral négatif tel que $C_0 = \neg p_1(x_1, \dots, x_n) \lor \dots \lor \neg p_m(x_1, \dots, x_n)$

et que C' ne contient que des clauses de Horn ordonnées en plaçant le littéral positif en tête,

alors chaque déduction "input" ordonnée de racine C_0 conduisant à la clause vide et dont les substitutions sont $(x_1|t_1), \ldots, (x_n|t_n)$

définit des objets t_i de l'univers de Herbrandt tel que

$$p_1(t_1,\ldots,t_n)\wedge\ldots\wedge p_m(t_1,\ldots,t_n)$$
 est conséquence de \mathcal{C}'

Exemple 12.

$$C' = \{ p(a), \ p(b), \ r(f(x)) \lor \neg p(x), \ q(y) \lor \neg r(y), \ q(c) \}$$

$$C_0 = \neg q(z)$$

9. SLD & Prolog

- ♦ Langage : clauses de Horn
- Sémantique opérationnelle : exploration en profondeur d'abord avec retour arrière de l'arbre des déductions input ordonnées

stratégie incomplète (ordre des clauses est important)

Exemple 13.

```
P: \texttt{masculin(leon)}.
\texttt{pere(leon,lucie)}.
\texttt{mere(lucie,paul)}.
\texttt{parent(P,E)} := \texttt{pere(P,E)}.
\texttt{parent(M,E)} := \texttt{mere(M,E)}.
\texttt{grand\_pere(G,E)} := \texttt{pere(G,P)}, \texttt{parent(P,E)}.
Q: := \texttt{grand\_pere(G,paul)}
\mathcal{C}' : \texttt{masculin(leon)} \land \texttt{pere(leon,lucie)} \land \texttt{mere(lucie,paul)} \land \{\forall P \ \forall E \ pere(P,E) \Rightarrow parent(P,E)\} \land \{\forall M \ \forall E \ mere(M,E) \Rightarrow parent(M,E)\} \land \{\forall G \ \forall P \ \forall E \ pere(G,P) \land parent(P,E) \Rightarrow grand\_pere(G,E))\}
C_0 : \neg (\exists G \ grand\_pere(G,paul))
```