

Blockchain, Criptomoedas & Tecnologias Descentralizadas

Criptografia assimétrica: Assinaturas digitais & distribuição de chaves

Prof. Dr. Marcos A. Simplicio Jr. – mjunior@larc.usp.br Escola Politécnica, Universidade de São Paulo

Objetivos

- Visão geral sobre mecanismos criptográficos assimétricos
 - Confidencialidade: cifras assimétricas
 - Integridade + Autenticidade + Irretratabilidade:
 assinaturas digitais

- Duas chaves distintas
 - Chave pública K_U: divulgada abertamente
 - Analogia com o mundo real: um cadeado
 - Chave privada K_R: conhecida apenas pelo seu dono
 - Analogia com o mundo real: a chave do cadeado
 - Transformações feitas usando uma chave somente podem ser invertidas com a outra chave.
- Ambas as chaves são geradas pelo seu dono
 - Em um algoritmo seguro, deve ser inviável calcular a chave privada a partir da chave pública.
 - Para que Alice possa se comunicar com Bob, ambos devem obter, de alguma forma, a chave pública do outro.

Usar chave pública do destinatário: qual serviço?

Cifração: confidencialidade

Cifração: confidencialidade

Remetente usa sua chave privada: qual serviço?

Cifração: confidencialidade

 Assinatura digital: integridade, autenticidade e irretratabilidade

Envelope criptográfico assimétrico

• É possível obter confidencialidade, integridade, autenticidade e irretratabilidade aplicando-se apenas criptografia assimétrica sobre o conteúdo completo da mensagem.

Criptografia assimétrica + simétrica

- Algoritmos assimétricos costumam ser combinados com simétricos por razões de desempenho:
 - Algoritmos simétricos costumam ser ~1000 vezes mais rápidos do que assimétricos
- Exemplos comuns:
 - Estabelecimento de chaves simétricas: usadas por cifras simétricas e algoritmos de MAC
 - Assinatura digital do hash da mensagem ao invés da mensagem em si: menor quantidade de dados processados pelo algoritmo assimétrico

Transmissão de chave simétrica

- Transmissão de chave simétrica K
 - R: número aleatório (fonte de entropia) gera chave K

Transmissão de chave simétrica

- Transmissão de chave simétrica K
 - R: número aleatório (fonte de entropia) gera chave K
 - L: chave K protegida por chave pública do destinatário (K_U)
 - Enviado pela rede para o destinatário

Transmissão de chave simétrica

- Transmissão de chave simétrica K
 - R: número aleatório (fonte de entropia) gera chave K
 - L: chave K protegida por chave pública do destinatário (K_U)
 - Enviado pela rede para o destinatário
 - Apenas dono da chave K_R pode recuperar K
- Utilidade: cifras simétricas são mais eficientes

- Mensagem confidencial (C) e assinada (S)
 - Serviços: confidencialidade (cifra simétrica), integridade, autenticidade e irretratabilidade (assinatura digital)
- Utilidade: mais eficiente assinar hash das mensagens

- Mensagem confidencial (C) e assinada (S)
 - Serviços: confidencialidade (cifra simétrica), integridade, autenticidade e irretratabilidade (assinatura digital)
- Utilidade: mais eficiente assinar hash das mensagens

- Mensagem confidencial (C) e assinada (S)
 - Serviços: confidencialidade (cifra simétrica), integridade, autenticidade e irretratabilidade (assinatura digital)
- Utilidade: mais eficiente assinar hash das mensagens

- Mensagem confidencial (C) e assinada (S)
 - Serviços: confidencialidade (cifra simétrica), integridade, autenticidade e irretratabilidade (assinatura digital)
- Utilidade: mais eficiente assinar hash das mensagens

- Mensagem confidencial (C) e assinada (S)
 - Serviços: confidencialidade (cifra simétrica), integridade, autenticidade e irretratabilidade (assinatura digital)
- Utilidade: mais eficiente assinar hash das mensagens

- Mensagem confidencial (C) e assinada (S)
 - Serviços: confidencialidade (cifra simétrica), integridade, autenticidade e irretratabilidade (assinatura digital)
- Utilidade: mais eficiente assinar hash das mensagens

Funções de hash e assinaturas

Assinaturas físicas: baixa segurança...

 Assume que folhas de cheque sejam guardadas em local seguro...

Funções de hash e assinaturas

Assinaturas físicas: baixa segurança...

- Ou assinatura pode ser copiada
 - E cópia é muito fácil no mundo digital!

Ex: Adobe Acrobat Reader

Funções de hash e assinaturas

Assinatura digital: depende do documento completo!

Esquemas Assimétricos: Exemplos

- Encapsulamento de chaves simétricas (KEM) / cifração assimétrica
 - Tradicionais: Diffie-Hellman clássico (DH) ou com curvas elípticas (ECDH), baseados em fatoração (RSA), ou logaritmos discreto elíptico (ECIES)
 - Pós-quânticos: baseados em reticulados (CRYSTALS-KYBER)
- Assinatura digital
 - Tradicionais: baseados em fatoração (RSA), ou logaritmo discreto (DSA) elíptico (ECDSA, EdDSA)
 - Pós-quânticos: baseados em reticulados (FALCON, CRYSTALS-Dilithium), ou hash (SPHINCS+)

Esquemas Assimétricos: Exemplos

Nome	Uso	Chaves (128 bits)	Tamanhos
RSA	Assinatura ou KEM	3072	3072 (assinaturas ou dados cifrados*)
DH	KEM	3072	3072 (mensagens trocadas)
DSA	Assinatura	3072	512 (assinaturas)
ECDSA	Assinatura	256	512 (assinaturas)
EdDSA	Assinatura	256	512 (assinaturas)
ECIES	KEM	256	256 + 64** (dados cifrados*)

^{*} Tamanho adicional ao da mensagem cifrada em si, usando cifra simétrica

^{**} ECIES usa MAC para calcular um tag de autenticação (64 bits ou maior)

Esquemas Assimétricos: Exemplos

Visão geral: assinaturas clássicas vs. propostas pós-quânticas

Blockchain, Criptomoedas & Tecnologias Descentralizadas

Criptografia assimétrica: Assinaturas digitais & distribuição de chaves

Prof. Dr. Marcos A. Simplicio Jr. – mjunior@larc.usp.br Escola Politécnica, Universidade de São Paulo

Referências

- W. Stallings, L. Brown "Computer Security Principles and Practice 2nd/3rd/4th edition". Prentice-Hall, ISBN: 0-13-277506-9. 2011/2015/2018.
 - Em português: W. Stallings, L. Brown. "Segurança de Computadores Princípios e Práticas"
 (2ª Ed), Elsevier, 2014
- W. Stallings: "Cryptography and Network Security" (6th/7th Ed.), Prentice-Hall 2013/2016.
 - Em português: W. Stallings: "Criptografia e Segurança de Redes" (6ª Ed.), Pearson-Prentice-Hall (2014).
- S. Wykes. Criptografia Essencial: A Jornada do Criptógrafo, 1a ed. Elsevier, 2016.
- A. Narayanan, J. Bonneau, E. Felten. "Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction". Princeton University Press, 2016. ISBN: 0691171696. Available:
 - https://d28rh4a8wq0iu5.cloudfront.net/bitcointech/readings/princeton_bitcoin_book.pdf ?a=1
- C. Adams, P. Cain, D. Pinkas, R. Zuccherato. RFC 3161: Internet X.509 Public Key Infrastructure - Time-Stamp Protocol (TSP). Internet Engineering Task Force, August 2001. URL: https://datatracker.ietf.org/doc/html/rfc3161

