Листок 1

Вещественные числа:

Задача 1:

- а) Обязательно ли сумма рационального и иррационального числа быть иррациональной?
- б) Обязательно ли произведение рационального и иррационального числа быть иррациональным?
- с) Обязательно ли сумма двух иррациональных чисел будет иррациональной?

Решение:

а) По определению мы знаем, что рациональное число это число, котрое можно представить в виде несократимой дроби $\frac{m}{n}$ где $m\in\mathbb{Z}$ и $n\in\mathbb{N}$

Пусть a+b - сумма рациональных чисел $(a\in\mathbb{Q})$ and $b\in\mathbb{Q}$, тогда эту сумму можно представить в

виде: $\frac{m_1}{n_1}+\frac{m_2}{n_2}$, где $m_1,m_2\in\mathbb{Z}$ и $n_1,n_2\in\mathbb{N}$ Приведем к общему знаменателю $\frac{m_1n_2+m_2n_1}{n_1n_2}$, нетрудно увидеть, что эта дробь так же удовлетворяет определению рационального числа выше. Из вышесказанного можно сделать вывод, что сумма двух рациональных чисел, рациональна.

Рассмотрим сумму q+p где $q\in\mathbb{Q}$, а $p\notin\mathbb{Q}$ (как раз то, что нам нужно по условию)

Пусть q+p=c, Предположим, что $c\in\mathbb{Q}$, тогда выразим $p,p=c-q=c+(-q)\Rightarrow p$ сумма некоторых рациональных чисел, тогда $p \in \mathbb{Q}$.

Ответ: не обязательно.

б) Пусть $q \in \mathbb{Q}$ (рациональное число), а $p \notin \mathbb{Q}$ (иррациональное число). Рассмотрим их произведение: $q \cdot p = r$

Предположим, что $r \in \mathbb{Q}$. Тогда, если $q \neq 0$, можно выразить p: $p = \frac{r}{q}$

Так как r и q — рациональные числа, их частное $\frac{r}{q}$ также рационально (поскольку рациональные числа замкнуты относительно деления на ненулевое рациональное число). Но это противоречит тому, что p иррационально.

Вывод: Если $q \neq 0$, то произведение $q \cdot p$ обязательно иррационально. Однако если q = 0, то $q \cdot p = 0$ $0 \in \mathbb{Q}$.

Ответ: Не обязательно, если рациональное число равно нулю. В остальных случаях —

- с) Рассмотрим два иррациональных числа:
- 1. $\sqrt{2}$ и $-\sqrt{2}$. Их сумма:

$$\sqrt{2}+\left(-\sqrt{2}\right)=0\in\mathbb{Q}$$
 2. $\sqrt{2}$ и $\sqrt{2}$. Их сумма:

$$\sqrt{2} + \sqrt{2} = 2\sqrt{2} \notin \mathbb{Q}$$

Вывод: Сумма двух иррациональных чисел может быть как рациональной (если они противоположны), так и иррациональной.

Ответ: Не обязательно.

Задача 2: Покажите, что $\sqrt{2}$ иррациональное число.

Решение:

От противного, предположим что $\sqrt{2} \in \mathbb{Q}$, тогда его можно представить в виде:

$$\sqrt{2}=\frac{m}{n}, m\in\mathbb{Z}, n\in\mathbb{N}$$

Важно учесть, что дробь несократима, по определению рационального числа $\Rightarrow \gcd(m,n) = 1$

$$\sqrt{2} = \frac{m}{n} \Rightarrow 2 = \frac{m^2}{n^2},$$
$$2n^2 = m^2$$

Тогда m^2 четное число $\Rightarrow m$ тоже четное число. Получим:

$$m = 2m'$$
$$2n^2 = 4(m')^2$$

поделим обе части на 2:

$$n^2 = 2(m')^2$$

Аналогично рассуждениям выше, n^2 четное, а значит n четное. $\Rightarrow \gcd(n,m) \neq 1$, так как оба числа четные.

Противоречие $\Rightarrow \sqrt{2} \notin \mathbb{Q}$

Задача 3:

Пусть $[a_1,b_1]\supset [a_2,b_2]\supset \dots$ - последовательность вложеных отрезков. Покажите, что $\bigcap_{n\in\mathbb{N}}[a_n,b_n]\neq\emptyset$.

Решение:

От противного, пусть $\bigcap_{n\in\mathbb{N}}[a_n,b_n]=\emptyset$.

Пусть
$$L=\{a_1,a_2,...\}$$
 и $R=$

 $\{b_1, b_2, ...\}$ множества левых и правых концов отрезков в последовательности, соответственно.

Тогда $\forall n \in \mathbb{N}~$ таких, что $a_n \leq b_n : a_n \leq c \leq b_n~$ (Аксиома полноты)

Легко заметить, что c будет лежать в пересечении, **Противоречие!**

Задача 4: Докажите, что последовательность Коши ограничена.

Решение:

Напомним, что последовательность a_n называют последовательность Коши, если

$$\forall \varepsilon > 0: \exists N \in \mathbb{N}$$
 такое, что $|a_n - a_m| < \varepsilon \ \forall n, m \geq N$

Идея, такая мы хотим ограничить все, что выше N, а затем все остальное.

По определению последовательности Коши мы знаем что для всех номеров > N выполняется:

$$|a_n - a_m| < \varepsilon \qquad \text{(можем раскрыть)}$$

$$-\varepsilon < a_n - a_m < \varepsilon$$

$$-\varepsilon + a_m < a_n < \varepsilon + a_m$$

(поздравляю мы ограничили номера выше N)

Заметим, что оставшаяся часть последовательности - это конечное количество членов от a_1 до a_{N-1} А у конечного количества элементов можно взять максимум и минимум. Сопоставив 2 этих факта мы получим, что последовательность Коши ограничена

Задача 5: Докажите, что если последовательность сходится, то она последовательность Коши.

Решение

Пусть a_n — сходящаяся последовательность:

$$l \operatorname{im}_{n \to \infty} a_n = A$$

•

Это значит:

$$\forall \varepsilon > 0$$

$$\exists N \in \mathbb{N} \ \forall n \geq N : |a_n - A| < \frac{\varepsilon}{2}$$

.

Тогда для любых $m, n \geq N$:

$$|a_n-a_m| \ = |a_n-A+A-a_m|, \leq |a_n-A|+|a_m-A|, <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$$

Следовательно, последовательность a_n — последовательность Коши:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall m, n \ge N : |a_n - a_m| < \varepsilon.$$

Задача 6:

- **а)** Докажите, что ограниченная монотонно возрастающая последовательность сходится и покажите, что предел равен ее точной верхней грани.
- б) Приведите пример последовательности, чей предел не равен ее точной верхней/нижней грани.

Решение:

а) Поскольку множество значений $\{x_n\}$ непусто и ограничено сверху, существует точная верхняя грань:

$$a = \sup x_n$$

По определению супремума:

- $x_n \leq a$ для всех $n \in \mathbb{N}$
- Для любого $\varepsilon>0$ существует $N\in\mathbb{N}$ такое, что:

$$a - \varepsilon < x_N \le a$$

В силу монотонного возрастания для всех $n \geq N$:

$$x_N \le x_n \le a$$

Следовательно, для $n \ge N$:

$$a - \varepsilon < x_n < a + \varepsilon \Rightarrow |x_n - a| < \varepsilon$$

Это означает, что $\lim(n \to \infty)x_n = a$.

б) Очевидно кажется:

$$x_n = (-1)^n$$

Решения задач на сходимость последовательностей(упд)

Задача 7(а)

Рассмотрим последовательность: $x_n = \frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \cdots + \frac{1}{n(n+1)}$

Решение:

Заметим, что каждый член можно разложить: $\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$

Тогда сумма становится телескопической:

$$x_n = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1}$$

Предел при $n \to \infty$:

$$\lim_{n \to \infty} x_n = 1 - 0 = 1$$

Ответ: Последовательность сходится к 1.

Задача 7(б)

Рассмотрим последовательность:

$$x_n = 1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2}$$

Решение:

Это частичная сумма ряда

$$\sum_{k=1}^{\infty} \frac{1}{k^2}$$

, который сходится (р-ряд с р=2>1).

Можно сравнить с интегралом:

$$\int_{1}^{\infty} x^{-2} dx = \left[-x^{-1} \right]_{1}^{\infty} = 1$$

По интегральному признаку Коши ряд сходится.

Ответ: Последовательность сходится.

Задача 7(с)

Рассмотрим последовательность:

$$x_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$

(гармонический ряд)

Решение:

Гармонический ряд

$$\sum_{k=1}^{\infty} \frac{1}{k}$$

расходится:

1. По интегральному признаку:

$$\int_{1}^{\infty} x^{-1}$$

$$dx = [\ln x]_{1}^{\infty} = \infty$$

2. Группировкой членов:

$$1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \dots + \frac{1}{8}\right) + \dots > 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots$$

Каждая группа больше 1/2, поэтому сумма неограниченно растёт.

Ответ: Последовательность расходится.

Задача 8:

Найдём предел:

$$\lim_{n \to \infty} \frac{1 + \frac{1}{2} + \dots + \frac{1}{n}}{\ln n} \tag{1}$$

Решение:

Тогда:

$$\frac{x_{n+1} - x_n}{y_{n+1} - y_n} = \frac{\frac{1}{n+1}}{\ln(n+1) - \ln n} = \frac{\frac{1}{n+1}}{\ln\left(1 + \frac{1}{n}\right)} \tag{2}$$

Используем асимптотическое равенство:

$$\ln\left(1+\frac{1}{n}\right)\approx\frac{1}{n}\quad\text{при}\quad n\to\infty \tag{3}$$

Получаем:

$$\frac{\frac{1}{n+1}}{\frac{1}{n}} = \frac{n}{n+1} \to 1 \quad \text{при} \quad n \to \infty \tag{4}$$

По теореме Штольца:

$$\lim_{n\to\infty}\frac{x_n}{y_n}=\lim_{n\to\infty}\frac{x_{n+1}-x_n}{y_{n+1}-y_n}=1 \tag{5}$$

Ответ: 1

Задача 9: Пусть $a_n \to a$ при $n \to \infty$, покажите, что $\frac{a_1 + a_2 + \ldots + a_n}{n} \to a$ при $n \to \infty$

Обозначим числитель как $A_n = a_1 + a_2 + c... + a_n$, знаменатель — $B_n = n$.

Применим теорему Штольца:

- Последовательность $B_n=n$ строго возрастает и $B_n o \inf$.
- Разность $A_{\{n+1\}} A_n = a_{\{n+1\}}.$
- Разность $B_{\{n+1\}} B_n = 1$.

Тогда:

$$\frac{A_{\{n+1\}} - A_n}{B_{\{n+1\}} - B_n} = a_{n+1}. \tag{6}$$

Следовательно, по теореме Штольца:

$$\frac{A_n}{B_n} = \frac{a_1 + a_2 + \dots + a_n}{n} \to a. \tag{7}$$

Задача 10 Решение(мне уже лень писать тут условие)

Исследуем сходимость последовательности:

$$\frac{a^n}{n} \tag{8}$$

Пусть:

•
$$A_n = a^n$$
, $B_n = n$.

•
$$A_n=a^n, B_n=n.$$
• Тогда $A_{n+1}-A_n=a^{n+1}-a^n=a^n(a-1)$ и $B_{n+1}-B_n=1.$

Следовательно:

$$\frac{A_{n+1}-A_n}{1}=a^n(a-1)\to\infty \eqno(9)$$

Значит, по теореме Штольца:

$$\frac{a^n}{n} \to \infty \tag{10}$$

Ответ: последовательность расходится.