

Cheetah

Lean and Fast Secure Two-Party Deep Neural Network Inference

Zhicong (Zico) Huang, **Wen-jie Lu**, Cheng Hong, and Jiansheng Ding *Alibaba Group*

Background

Linear Primitives

Non-Linear Primitives

Performance and Summary

Secure Neural Network Inference

阿里安全 ALIBABA SECURITY

- Simple images and models
 - ➤ MNIST (28x28 black/white): 3~5 layers
- Complex images and models
 - > CIFAR-10 (32x32 rgb): 10+ layers
 - IMAGENET (224x224 rgb): ResNet50
- ResNet50: one of the most popular DNN models
- Secure two-party ResNet50 inference
 - Prior best work: CryptFLOW2
 - 10 mins for one image inference (LAN, 3Gbps)
 - 20 mins for one image inference (WAN, 300Mbps)

airplane automobile bird cat deer

Design Challenges in 2PC Frameworks

- Optimize trade-offs among different primitives
- Adapt to concrete application cases

Framework Type	Computation Cost	Communication Amount	Communication Round	Existing Works
GC (Y)	☆	***	☆	EMP
SS (A, B)	☆	**	☆☆☆	SPDZ、CryptFlow2
FHE	***	☆	☆	Pegasus
A + B + Y	☆	***	**	ABY、SecureML
SS (A, B)	☆	☆	**	Cheetah

☆ Low ☆☆ Medium ☆ ☆ ☆ High

Cheetah Protocol Architecture

Additive Secret Sharing

- Integer $a \in [0, P)$ is split into shares a_1, a_2
 - Computation party P_i has share a_i
 - Satisfy $a_1 + a_2 \mod P = a$
- Local Add/Sub computation
- Two types of sharings depending on modulus P
 - $P = 2 \rightarrow Boolean Share$
 - P > 2 \rightarrow Arithmetic Share \circ P is usually a prime or a power of 2 (e.g., 2^64)

02

Linear Primitives

Linear layers: CONV, FC

- CONV/FC: Matrix Mult → Inner Product
- Input:
 - \triangleright Alice (model owner): vector \vec{a}
 - \triangleright Bob (data owner): vector \vec{b}
- Output:
 - \triangleright Alice: r
 - \triangleright Bob: $\vec{a} \cdot \vec{b} r \mod k$

Computation based on Polynomials

- Plaintext space for BFV: Polynomial Ring
 - \triangleright Polynomial $Z_t(x)/X^N+1$
 - ➤ Degree of N-1. Each integer coeff in [0, t-1]
 - Ciphertext add/mult <-> Polynomial add/mult
 - ➤ E.g.: N = 2, $t = 7 \rightarrow \text{mod } x^2 + 1$ Enc(x+2) * Enc(x+3) = Enc(x^2+5x+6)
 - = Enc(5x+5)

Packing: CRT Batching

2PC Computation SystemsGazelle Delphi CryptFlow2

- How to encode data into polynomials?
 - > $x^n + 1$ can be broken into the product of n polynomials: $x^n + 1 = (x+a_1)(x+a_2)....(x+a_n)$
 - E.g.: $t=17, n=2 \rightarrow x^2+1 = (x-4)(x-13)$ // $x^2-17x+52 \mod 17$
 - $ightharpoonup f(x) \mod (x^n + 1)$ can represent n integers: $x_i = f(x) \mod (x + a_i)$
 - E.g.: x mod (x²+1) → x mod (x-4) 和 x mod (x-13) → x mod (x²+1) "pack" 4 and 13
- Given n integers, find corresponding f(x) to encode them by CRT

```
- \text{E.g.}: 2x-7 "pack" 1 and 2: // 2x-7 mod (x-4) = 1, 2x-7 mod (x-13) = 2 mod 17
```

- Packing keeps homomorphism modulo t
 - Add: x+(2x-7) packs 5 and 15: // 3x-7 mod (x-4) = 5, 3x-7 mod (x-13) = 15 mod 17
 - Mult: x*(2x-7) packs 4 and 9 :

```
// 2x^2-7x \mod (x^2+1) = -7x-2; -7x-2 \mod (x-4) = 4, -7x-2 \mod (x-13) = 9 \mod 17
```

• **SIMD**: One polynomial calculation completes n integer calculations

Precondition of SIMD Packing in BFV

- Almost all efficient BFV applications use SIMD Packing
 - \rightarrow One poly mult \rightarrow 1000+ plain integer mults
- SIMD requires plain modulus t to be a prime ->
 Secret sharing has to work in prime field in a mixed protocol
 - Performance degrades significantly (60% more overhead [CrypTFlow2])

Inner Product 1st Try: SIMD Packing + Ciphertext Rotation

- A has a vector $a=(a_0,a_1,...a_n)$, B has a vector $b=(b_0,b_1,...b_n)$
- A SIMD packs a as a polynomial $A(x)/X^N+1$; B SIMD packs b as a polynomial $B(x)/X^N+1$
- B uses its public key to encrypt B(x), and send to A
- A performs homomorhic mult on Enc(B(x)) and A(x) → Obtains Enc(C(x)) /X^N+1
 - C(x) packs (a₀b₀, a₁b₁, ... a_nb_n)
 - ! One step away from inner product: BIG SUM
- A rotates the ciphertext Enc(C(x)), obtaining

$$(a_1b_1, ... a_{n-1}b_{n-1}, a_nb_n, a_0b_0)$$
 $(a_2b_2, ... a_nb_n, a_0b_0, a_1b_1)$
 $...$
 $(a_nb_n, a_0b_0, a_1b_1, ... a_{n-1}b_{n-1})$

- A performs homomorphic add to get (a·b, ... a·b) , sends to B , and B decrypts to get a·b
- ! Needs log(n) rotates and n adds. Performance not better than Paillier.

Inner Product 2nd Try: Polynomial Coefficient Encoding

- A has a vector $a=(a_0,a_1, ... a_n)$, B has a vector $b=(b_0,b_1, ... b_n)$
 - A encodes a into a polynomial

$$P_a = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n$$

B encodes b into a polynomial

$$P_b = b_0 - b_1 X^{N-1} - b_2 X^{N-2} - \dots - b_n X^{N-n}$$

• where $X^N = -1 \mod (X^N + 1)$

- Hence the constant term of P_a*P_b is the inner product a·b
- **V** Only one homomorphic mult.
 - N=4096 costs only 1 millisecond

Encoding for Tensor

$$a(X) = a_0 + a_1 X + a_2 X^2 + a_3 X^3 + a_4 X^4 + a_5 X^5 + a_6 X^6 + a_7 X^7 + a_8 X^8 + a_9 X^9 + a_{10} X^{10} + a_{11} X^{11}$$

a0	a1	a2	a3
a4	a5	a6	a7
a8	a9	a10	a11

Encoding for Kernel

$$a(X) = a_0 + a_1 X + a_2 X^2 + a_3 X^3 + a_4 X^4 + a_5 X^5 + a_6 X^6 + a_7 X^7 + a_8 X^8 + a_9 X^9 + a_{10} X^{10} + a_{11} X^{11}$$

$$b(X) = b_3 + b_2 X + 0X^2 + 0X^3 + b_1 X^4 + b_0 X^5$$

b 0	b1
b2	b 3

$$a(X) \cdot b(X) = \sum_{i=0}^{15} c_i X^i$$

Multiplication between a long polynomial and a short polynomial → Convolution

$$a(X) = a_0 + a_1 X + a_2 X^2 + a_3 X^3 + a_4 X^4 + a_5 X^5 + a_6 X^6 + a_7 X^7 + a_8 X^8 + a_9 X^9 + a_{10} X^{10} + a_{11} X^{11}$$

$$b(X) = b_3 + b_2 X + 0X^2 + 0X^3 + b_1 X^4 + b_0 X^5$$

$$a(X) \cdot b(X) = \sum_{i=0}^{15} c_i X^i$$

a0	a1	a2	a3
a4	a 5	a6	a7
a8	a9	a10	a11

$$c_5 = a_0b_0 + a_1b_1 + a_4b_2 + a_5b_3$$

$$c_7 = a_2b_0 + a_3b_1 + a_6b_2 + a_7b_3$$

$$c_{10} = a_5b_0 + a_6b_1 + a_9b_2 + a_{10}b_3$$

$$c_6 = a_1b_0 + a_2b_1 + a_5b_2 + a_6b_3$$

$$c_9 = a_4b_0 + a_5b_1 + a_8b_2 + a_9b_3$$

$$c_{11} = a_6b_0 + a_7b_1 + a_9b_2 + a_{11}b_3$$

High flexibility: stride >= 1 & Same/Valid Padding & 3D Convolution

$$a(X) = a_0 X^6 + a_1 X^7 + \dots + a_{11} X^{19}$$

$$b(X) = b_3 + b_2 X + 0X^2 + 0X^3 + 0X^4 + b_1 X^5 + b_0 X^6$$

$$a(X) \cdot b(X) = \sum_{i=0}^{25} c_i X^i$$

с6	с7	с8	с9
c11	c12	c13	c14
c16	c17	c18	c19

Big Tensor

- The whole Tensor needs to be Encoded into a polynomial of degree N
 - *HWC* ≤ *N* (valid padding)
 - $(H-h+1)(W-h+1)C \le N$ (same padding)
 - (rare case) when stride s >= h, we can skip some computation

Big Tensor

Split along Channels

- The whole Tensor needs to be Encoded into a polynomial of degree N
 - *HWC* ≤ *N* (valid padding)
 - $(H-h+1)(W-h+1)C \le N$ (same padding)
 - (rare case) when stride s >= h, we can skip some computation
- Big Tensor (e.g., HWC > N) can be split into small tensors
 - Along Channels: Just a simple addition in the end

Big Tensor

Split along Height/Width

aO	a1	a2	
a4	a5	a6	

|a9

a10

H'=3. W'=3. C=1

a2	a3
a 6	a7
a10	a11

- The whole Tensor needs to be Encoded into a polynomial of degree N
 - *HWC* ≤ *N* (valid padding)
 - $(H-h+1)(W-h+1)C \le N$ (same padding)
 - (rare case) when stride s >= h, we can skip some computation
- Big Tensor (e.g., HWC > N) can be split into small tensors
 - Along Channels: Just a simple addition in the end
 - Along Height/Width: Might contain overlaps

Multiple Kernels

Compute independently for each kernel

03

Non-Linear Primitives

Oblivious Transfer (Primitive)

- Sender has ℓ -bit integers a_0 , a_1
- Receiver chooses one of them with a choice bit $b \in \{0, 1\}$
- OT result:
 - Receiver gets a_b , but does not know a_{1-b}
 - Sender does not know b
- Other variants:
 - 1-of-m OT: Sender has m >= 2 messages
 - Random OT: Sender obtains random messages a_0 , a_1
 - Correlated OT: Sender's inputs a_0 , a_1 satisfy some correlation (e.g., $a_1 = \Delta \oplus a_0$)

Non-linear layers (ReLU, MaxPool)

- ReLU: ReLU(x) := max(x, 0)
- Input:
 - \triangleright Alice, Bob: Secret-shared x
- Output:
 - \triangleright Alice Bob: Secret-shared Compare(x, 0) * x
- Compare (x, 0)
 - ≥ 0 , if x < 0
 - > = 1, if x > = 0

Compare

• Compare (b, a) solution 1: execute boolean adder to obtain MSB(b - a)

Compare

Solution 2: comparison tree [CrypTFlow2]

Compare

Solution 2: comparison tree [CryptFlow2]

• Minimize comm. rounds and AND gates

4 bit block comparison

Primitives in Compare

- 1-of-2^m OT
- AND Gate
 - Beaver triple
 - > 1-of-2 Random OT
- CryptFlow2 uses classic IKNP-OT
- Recent years, we have seen a series of Silent OT schemes based on VOLE
 - >[CCS19], [Crypto21], [Ferret]
 - Generate massive amount of Random Correlated OT with little communication:

$$c_i = b_i + a_i \cdot x$$

where $(b_i, b_i + x)$ are Sender's random correlated messages, $a_i \in \{0,1\}$ is Receiver's choice bit

➤ Random Correlated OT → Any other OT variant

Primitives in Compare

Receiver

 \rightarrow $x_c = y_c \oplus p_{c[0]}^0 \oplus p_{c[1]}^1 \oplus \cdots \oplus p_{c[m-1]}^{m-1}$

- 1-of-2^m OT
 - IKNP-OT scheme: [KKOT 2013]

Sender

 $y_k = x_k \oplus p_{k[0]}^0 \oplus p_{k[1]}^1 \oplus \cdots \oplus p_{k[m-1]}^{m-1}$

• Silent OT scheme: *m* instances of 1-of-2 Random OT [NaorPinkas1999]

Drimitivos	Communication (bits)		
Primitives	IKNP (CF2)	Silent (Cheetah)	
$\binom{2}{1}$ – ROT _{ℓ}	λ	0 or 1	
$\binom{2}{1} - \operatorname{COT}_{\ell}$	$\ell + \lambda$	$\ell + 1$	
$\binom{2}{1}$ – OT_{ℓ}	$2\ell + \lambda$	$2\ell + 1$	
$\binom{n}{1} - \mathrm{OT}_{\ell} \ (\mathrm{n} \ge 3)$	$n\ell + 2\lambda$	$n\ell + \log_2 n$	

E.g.:
$$\ell = 64$$
, $\lambda = 128$

Truncation

- Fixed point (FP) numbers for MPC
 - > Value is 0.5, scale is $2^{15} \rightarrow$ FP representation: $0.5 \times 2^{15} = 16384$
- Problem: multiplication increases the scale
 - $\triangleright 0.5 \times 0.5 \rightarrow 16384 \times 16384 = 268435456 = 0.25 \times 2^{30}$
 - > Several mults would lead to an overflow
- Need a method to truncate secret-shared values to maintain the scale
 - ➤ Plain truncation: x >> 15
 - > but local truncation leads to BIG error on secret sharings [SecureML]:

$$x = x1 + x2 \mod 2^k$$

$$(x >> 15) != (x1 >> 15) + (x2 >> 15)$$

➤ Cheetah: Efficient silent OT-based truncation protocol (1/2 probability with tiny one-bit LSB error)

04

mary

Performance and Summary

Benchmark	System	End2Er LAN	nd Time WAN	Commu.
	SCI _{HE} [50]	41.1s	147.2s	5.9GB
SqNet	SecureQ8 [<mark>16</mark>]	4.4s	134.1s	0.8GB
	Cheetah	16.0s	39.1s	0.5GB
	SCI _{HE} [50]	295.7s	759.1s	29.2GB
RN50	Secure Q 8 [<mark>16</mark>]	32.6s	379.2s	3.8GB
	Cheetah	80.3s	134.7s	2.3GB
	<i>SCI</i> _{HE} [50]	296.2s	929.0s	35.4GB
DNet	Secure Q 8 [<mark>16</mark>]	22.5s	342.6s	4.6GB
	Cheetah	79.3s	177.7s	2.4GB

Computation: 3x

Communication: 10x

SqNet = SqueezeNet; RN50 = ResNet50; DNet = DenseNet121

SCI_{HE}: CryptFlow2

SecureQ8: State-of-the-Art 3PC framework

Takeaways

Framework Type	Computation cost	Communication Amount	Communication Round	Work
SS (A, B)	☆	☆	$\Rightarrow \Rightarrow$	Cheetah

- With RLWE and Silent OT, 2PC systems can be implemented in very efficient ways
- The most optimized design need to consider computation tasks, primitives and parameters
 - Mod 2^k OR Mod p
 - Data encoding: SIMD OR Coefficient Encoding
 - Comparison: Adder circuit \ Pure AND triple OR 1-of-N OT
 - ...
- Available:
 - https://github.com/Alibaba-Gemini-Lab/OpenCheetah

THANKS

