

FUNDAMENTALS OF WELDING

- 1. Overview of Welding Technology
- 2. The Weld Joint
- 3. Physics of Welding
- 4. Features of a Fusion Welded Joint

©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Joining and Assembly Distinguished

Joining - welding, brazing, soldering, and adhesive bonding

 These processes form a permanent joint between parts

Assembly - mechanical methods (usually) of fastening parts together

 Some of these methods allow for easy disassembly, while others do not

Welding

Joining process in which two (or more) parts are coalesced at their contacting surfaces by application of heat and/or pressure

- Many welding processes are accomplished by heat alone, with no pressure applied
- Others by a combination of heat and pressure
- Still others by pressure alone with no external heat
- In some welding processes a filler material is added to facilitate coalescence

©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Why Welding is Important

- Provides a permanent joint
 - Welded components become a single entity
- Usually the most economical way to join parts in terms of material usage and fabrication costs
 - Mechanical fastening usually requires additional hardware components (e.g., screws and nuts) and geometric alterations of the parts being assembled (e.g., holes)
- Not restricted to a factory environment
 - Welding can be accomplished "in the field"

Limitations and Drawbacks of Welding

- Most welding operations are performed manually and are expensive in terms of labor cost
- Most welding processes utilize high energy and are inherently dangerous
- Welded joints do not allow for convenient disassembly
- Welded joints can have quality defects that are difficult to detect

©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Faying Surfaces in Welding

The part surfaces in contact or close proximity that are being joined

- Welding involves localized coalescence of the two metallic parts at their faying surfaces
- Welding is usually performed on parts made of the same metal
 - However, some welding operations can be used to join dissimilar metals

Types of Welding Processes

- Some 50 different types of welding processes have been catalogued by the American Welding Society (AWS)
- Welding processes can be divided into two major categories:
 - Fusion welding
 - Solid state welding

©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Fusion Welding

Joining processes that melt the base metals

- In many fusion welding operations, a filler metal is added to the molten pool to facilitate the process and provide bulk and added strength to the welded joint
- A fusion welding operation in which no filler metal is added is called an autogenous weld

Some Fusion Welding Processes

- Arc welding (AW) melting of the metals is accomplished by electric arc
- Resistance welding (RW) melting is accomplished by heat from resistance to an electrical current between faying surfaces held together under pressure
- Oxyfuel gas welding (OFW) melting is accomplished by an oxyfuel gas such as acetylene

©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Arc Welding

Solid State Welding

Joining processes in which coalescence results from application of pressure alone or a combination of heat and pressure

- If heat is used, temperature is below melting point of metals being welded
- No filler metal is added in solid state welding

©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Some Solid State Welding Processes

- Diffusion welding (DFW) –coalescence is by solid state fusion between two surfaces held together under pressure at elevated temperature
- Friction welding (FRW) coalescence by heat of friction between two surfaces
- Ultrasonic welding (USW) coalescence by ultrasonic oscillating motion in a direction parallel to contacting surfaces of two parts held together under pressure

Principal Applications of Welding

- Construction buildings and bridges
- Piping, pressure vessels, boilers, and storage tanks
- Shipbuilding
- Aircraft and aerospace
- Automotive
- Railroad

©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Welder and Fitter

- Welder manually controls path or placement of welding gun
- Often assisted by second worker, called a fitter, who arranges the parts prior to welding
 - Welding fixtures and positioners are used to assist in this function

The Safety Issue

- Welding is inherently dangerous to human workers
 - High temperatures of molten metals
 - In gas welding, fuels (e.g., acetylene) are a fire hazard
 - Many welding processes use electrical power, so electrical shock is a hazard

©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Special Hazards in Arc Welding

- Ultraviolet radiation emitted in arc welding is injurious to human vision
 - Welder must wear a special helmet with a dark viewing window
 - Filters out dangerous radiation but welder is blind except when arc is struck
- Sparks, spatters of molten metal, smoke, and fumes add to the risks
 - Ventilation needed to exhaust dangerous fumes from fluxes and molten metals

Automation in Welding

- Because of the hazards of manual welding, and to increase productivity and improve quality, various forms of mechanization and automation are used
 - Machine welding mechanized welding under supervision and control of human operator
 - Automatic welding equipment performs welding without operator control
 - Robotic welding automatic welding implemented by industrial robot

©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

The Weld Joint

The junction of the edges or surfaces of parts that have been joined by welding

- Two issues about weld joints:
 - Types of joints
 - Types of welds used to join the pieces that form the joints

Five Types of Joints

- 1. Butt joint
- 2. Corner joint
- 3. Lap joint
- 4. Tee joint
- 5. Edge joint

Types of Welds

- Each of the preceding joints can be made by welding
- Other joining processes can also be used for some of the joint types
- There is a difference between joint type and the way it is welded - the weld type

©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Fillet Weld

- Used to fill in the edges of plates created by corner, lap, and tee joints
- Filler metal used to provide cross section in approximate shape of a right triangle
- Most common weld type in arc and oxyfuel welding
- Requires minimum edge preparation

Groove Welds

- Usually requires part edges to be shaped into a groove to facilitate weld penetration
- Edge preparation increases cost of parts fabrication
- Grooved shapes include square, bevel, V, U, and J, in single or double sides
- Most closely associated with butt joints

Physics of Welding

- Fusion is most common means of achieving coalescence in welding
- To accomplish fusion, a source of high density heat energy must be supplied to the faying surfaces, so the resulting temperatures cause localized melting of base metals (and filler metal, if used)
- For metallurgical reasons, it is desirable to melt the metal with minimum energy but high heat densities

©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Power Density

Power transferred to work per unit surface area, W/mm² (Btu/sec-in²)

- If power density is too low, heat is conducted into work, so melting never occurs
- If power density too high, localized temperatures vaporize metal in affected region
- There is a practical range of values for heat density within which welding can be performed

Comparisons Among Welding Processes

- Oxyfuel gas welding (OFW) develops large amounts of heat, but heat density is relatively low because heat is spread over a large area
 - Oxyacetylene gas, the hottest of the OFW fuels, burns at a top temperature of around 3500°C (6300°F)
- Arc welding produces high energy over a smaller area, resulting in local temperatures of 5500° to 6600°C (10,000° to 12,000°F)

©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Power Densities for Welding Processes

Welding process	W/mm ²	(Btu/sec-in2)
Oxyfuel	10	(6)
Arc	50	(30)
Resistance	1,000	(600)
Laser beam	9,000	(5,000)
Electron beam	10,000	(6,000)

Power Density

Power entering surface divided by corresponding surface area:

$$PD = \frac{P}{A}$$

where *PD* = power density, W/mm² (Btu/sec-in²); *P* = power entering surface, W (Btu/sec); and *A*= surface area over which energy is entering,

mm² (in²)

©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Unit Energy for Melting

Quantity of heat required to melt a unit volume of metal

- Symbolized U_m
- It is the sum of:
 - Heat to raise temperature of solid metal to melting point
 - Depends on volumetric specific heat
 - Heat to transform metal from solid to liquid phase at melting point
 - Depends on heat of fusion

Heat Transfer Mechanisms in Welding

- Not all of the input energy is used to melt the weld metal
 - Heat transfer efficiency f₁ actual heat received by workpiece divided by total heat generated at source
 - 2. Melting efficiency f_2 proportion of heat received at work surface used for melting; the rest is conducted into work metal

©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Heat Available for Welding

$$H_w = f_1 f_2 H$$

where H_w = net heat available for welding; f_1 = heat transfer efficiency; f_2 = melting efficiency; and H = total heat generated by welding process

Heat Transfer Efficiency f_1

Proportion of heat received at work surface relative to total heat generated at source

- Depends on welding process and capacity to convert power source (e.g., electrical energy) into usable heat at work surface
 - Oxyfuel gas welding processes are relatively inefficient
 - Arc welding processes are relatively efficient

©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Melting Efficiency f_2

Proportion of heat received at work surface used for melting; the rest is conducted into the work

- Depends on welding process but also influenced by thermal properties of metal, joint configuration, and work thickness
 - Metals with high thermal conductivity, such as aluminum and copper, present a problem in welding because of the rapid dissipation of heat away from the heat contact area

Energy Balance Equation

Net heat energy into welding operation equals heat energy required to melt the volume of metal welded

$$H_w = U_m V$$

where H_w = net heat energy delivered to operation, J (Btu); U_m = unit energy required to melt the metal, J/mm³ (Btu/in³); and V = volume of metal melted, mm³ (in³)

©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Typical Fusion Welded Joint

Figure 30.8 Cross section of a typical fusion welded joint: (a) principal zones in the joint, and (b) typical grain structure.

Features of Fusion Welded Joint

Typical fusion weld joint in which filler metal has been added consists of:

- Fusion zone
- Weld interface
- Heat affected zone (HAZ)
- Unaffected base metal zone

©2007 John Wiley & Sons, Inc. M P Groover, Fundamentals of Modern Manufacturing 3/e

Heat Affected Zone

Metal has experienced temperatures below melting point, but high enough to cause microstructural changes in the solid metal

- Chemical composition same as base metal, but this region has been heat treated so that its properties and structure have been altered
 - Effect on mechanical properties in HAZ is usually negative, and it is here that welding failures often occur