Engineering Analysis I, Fall 2015 Midterm 2

Name		
ļ		

Section number	Lecture time
20	8:00 a.m.
21	10:00 a.m.
22	11:00 a.m.
23	12:00 noon

Answer the questions in the spaces provided on the question sheets. There are 7 problems worth 100 points total. This exam is closed-book and closed-notes. You will not need, and you are not allowed to use calculators, computers, phones, or other computing/communication devices.

Students should skip this page—it is only for graders.

Question	Points	Score
1	12	
2	10	
3	26	
4	15	
5	13	
6	12	
7	12	
Total:	100	

Consider the following network flow diagram and flow balance equations:

(a) [2 points] Write down the above flow balance equations in the form Ax = b, with x as above.

(b) [3 points] Find the reduced row echelon form of the augmented matrix $[A \ b]$.

(c) [3 points] Write the solution set for your system of equations in parametric vector form.

(d) [2 points] Draw the solution you get when you set all free parameters equal to zero.

(e) [2 points] Draw a solution which has $x_{12} = 0$.

Let

$$A = \begin{bmatrix} 2 & 2 \\ -2 & -2 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & -3 & 1 & 4 \\ 2 & 1 & -2 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} -2 & 2 & 1 & 0 \\ 0 & 1 & 4 & 2 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Find each of the following quantities or write "not defined" if the operation is not defined.

(a) [2 points] A^{-1}

(b) [2 points] A^{10}

(c) [2 points] AB

(d) [2 points] $((B^TB)C)A$

(e) [2 points] det(C)

(a) i. [3 points] Suppose T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 that maps the vector $\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ to $T(\mathbf{x}) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and the vector $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ to $T(\mathbf{x}) = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$. What is $T(\begin{bmatrix} 0 \\ 1 \end{bmatrix})$?

- ii. [3 points] Suppose T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^3 that maps the vector $\mathbf{x} = \begin{bmatrix} 0.5 \\ 1.5 \end{bmatrix}$ to $T(\mathbf{x}) = \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}$. What is $T(\begin{bmatrix} 1 \\ 3 \end{bmatrix})$?
- (b) Suppose T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 such that $T(\mathbf{x}) = A\mathbf{x}$. Write the standard matrix A for each of the following transformations.
 - i. [3 points] T reflects around the axis $x_2 = -x_1$.

- ii. [3 points] T first rotates by 90 degrees clockwise, then projects onto the x_1 axis.
- iii. [3 points] T first reflects around the x_2 axis, and then scales vertically by a factor of 4.

(c) $[1\frac{1}{2} \text{ points}]$ Select all transformations from part (b) that are **onto**. Put a check mark \checkmark in the box next to **EACH** correct answer.

ii.

i.

iii.

(d) $[1\frac{1}{2}]$ points] Select all transformations from part (b) that are **one-to-one**. Put a check mark \checkmark in the box next to **EACH** correct answer.

ii.

____ i

iii.

(e) Now consider T to be a linear transformation from \mathbb{R}^4 to \mathbb{R}^3 such that $T(\mathbf{x}) = A\mathbf{x}$,

where $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$ and $T(\mathbf{x}) = \begin{bmatrix} x_1 + x_2 + 2x_3 \\ 2x_1 + 2x_2 + 4x_3 + x_4 \\ 2x_1 + ax_2 + 4x_3 \end{bmatrix}$ where a is a constant.

i. [2 points] Write the standard matrix A of this transformation.

ii. [2 points] For what values of a (if any) is T NOT **onto**?

ii. _____

iii. [2 points] For what values of a (if any) is T one-to-one?

iii. _____

iv. [2 points] For what values of a (if any) is T invertible?

iv. _____

(a) Consider the following matrix:

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & c & d \end{bmatrix}$$

Here a, b, c, and d represent constants. If this matrix is in reduced row echelon form, and there are $three\ pivots$, then what must be the values of these four parameters? For each parameter, either write a specific number or write "any number" if the parameter can have any value.

i. [1 point] What must be the value of a?

i.

ii. [1 point] What must be the value of b?

;

iii. [1 point] What must be the value of c?

;;

iv. [1 point] What must be the value of d?

iv. _____

(b) [2 points] What is the reduced row echelon form of the following matrix?

$$\begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 0 & 4 \end{bmatrix}$$

(c) Consider a system of linear equations of the form Ax = b, where the matrix A is 3-by-6 and the column vector x consists of the five unknown variables x_1, x_2, \ldots, x_6 . Suppose the reduced row echelon form of the augmented matrix is given by

$$\begin{bmatrix} A & b \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 2 & 0 & -1 & 0 & 2 \\ 0 & 0 & 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 0 & 1 & 6 \end{bmatrix}$$

- i. [2 points] Which of the unknown variables are basic?
- ii. [4 points] Write the solution set in parametric vector form.

iii. [3 points] Write the solution set to the corresponding homogeneous system of equations Ax = 0 as the span of a set of vectors.

Answer each question in the space provided.

(a) [2 points] Consider a matrix A with the form: $A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & a & b \\ 3 & -1 & 4 \end{bmatrix}$. Give one choice of a and b for which this matrix is singular. Note: you can answer by inspection.

(b) [2 points] Let $B = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Using A from part (a) with a and b chosen such that A is singular, what is the inverse of $B \cdot A$? If it does not exist, state that.

(c) [2 points] Using A from part (a), where a and b are chosen such that A is singular, what is the inverse of A^{T} ? If it does not exist, state that.

(d) [3 points] Let $A = \begin{bmatrix} 0 & -4 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ be the standard matrix of a transformation. Find a matrix B such that whenever $A\boldsymbol{x} = \boldsymbol{y}$ for vectors \boldsymbol{x} and \boldsymbol{y} , then $B\boldsymbol{y} = \boldsymbol{x}$

(e) [1 point] Is the matrix B from part (d) invertible?

(f) [3 points] Let $D=\begin{bmatrix} 1 & -3 & 1 \\ -2 & 7 & -3 \\ 2 & -4 & 1 \end{bmatrix}$. Find the inverse of D.

EA1 Midterm #2 Fall 2015

Problem	6	[12]	points	
---------	---	------	--------	--

Answer TRUE or FALSE for each of the following statements. You do not have to explain your answer. (1 point each)

ot contain
duced row T must be
luced row T must be
e identity
to.
e-to-one.

EA1 Midterm #2 Fall 2015

(k)	If a matrix product AB exists and has all zero entries, then either A or B must have all zero entries.
	(k)
(1)	Suppose the matrix products AB and BA both exist. If $AB = BA$, then A and B must be square and of the same size.
	(1)
Ans	m 7 [12 points] wer TRUE or FALSE for each of the following statements. You do not have to ain your answer. (2 points each)
(a)	If a matrix is in reduced row echelon form, then the entry in its upper left-hand corner must be 1 .
	(a)
(b)	If a matrix A has a column of all zeros, then the system of linear equations $Ax = b$ must have infinitely many solutions.
	(b)
(c)	If a matrix A has a row of all zeros, then the system of linear equations $Ax = b$ must be inconsistent.
	(c)
(d)	Suppose the matrix product AB exists, and suppose the rows of A are not linearly independent. Then the rows of AB cannot be linearly independent.
	(d)
(e)	Suppose the matrix product AB exists, and suppose the columns of B are not linearly independent. Then the columns of AB cannot be linearly independent.
	(e)
(f)	If a matrix product AB exists and is invertible, then both A and B must be invertible with $(AB)^{-1} = B^{-1}A^{-1}$.
	(f)