

هندسة البرمجيات

الدكتورة غيداء ربداوي

Books

هندسة البرمجيات

الدكتورة غيداء ربداوي

من منشورات الجامعة الافتراضية السورية

الجمهورية العربية السورية 2018

هذا الكتاب منشور تحت رخصة المشاع المبدع – النسب للمؤلف – حظر الاشتقاق (CC-BY-ND 4.0)

https://creativecommons.org/licenses/by-nd/4.0/legalcode.ar

يحق للمستخدم بموجب هذه الرخصة نسخ هذا الكتاب ومشاركته وإعادة نشره أو توزيعه بأية صيغة وبأية وسيلة للنشر ولأية غاية تجارية أو غير تجارية، وذلك شريطة عدم التعديل على الكتاب وعدم الاشتقاق منه وعلى أن ينسب للمؤلف الأصلي على الشكل الآتي حصراً:

غيداء ربداوي، هندسة البرمجيات، من منشورات الجامعة الافتراضية السورية، الجمهورية العربية السورية، 2018

متوفر للتحميل من موسوعة الجامعة /https://pedia.svuonline.org

Software Engineering

Ghaidaa Ribdawi

Publications of the Syrian Virtual University (SVU)

Syrian Arab Republic, 2018

Published under the license:

Creative Commons Attributions- NoDerivatives 4.0

International (CC-BY-ND 4.0)

https://creativecommons.org/licenses/by-nd/4.0/legalcode

Available for download at: https://pedia.svuonline.org/

الفهرس

1	
1	مقدمة
2	أسس هندسة البرمجيات
3	الأسئلة الأكثر انتشاراً في هندسة البرمجيات
9	المسؤولية المهنية والأخلاقية
10	الإجرائية البرمجية
10	النماذج العمومية للإجرائية البرمجية
13	التكرار في الإجرائية
14	أنشطة الاجرائية
18	الفصل الثاني إدارة المشاريع البرمجية
19	أنشطة إدارة المشروع
20	التخطيط للمشروع
21	إجرائية تخطيط الشاريع
22	خطة المشروع
23	نقاط العلام والنواتج
23	وضع جدول زمني للمشروع
24	صعوبات تقدير الجدزل الزمني
24	المخططات الشريطية وشبكات الأنشطة
27	إسناد المهام للأفراد
27	إدارة المخاطرة
29	تحديد المخاطرة
30	تحليل المخاطرة
31	التخطيط للمخاطرة
22	مراقبة المخاطرة

34	الفصل الثالث تحليل وتصميم المتطلبات Requirement Analysis and Design
34	هندسة المتطلبات
35	المتطلبات الوظيفية والمتطلبات الغير وظيفية ومتطلبات نطاق العمل
35	المتطلبات الوظيفية
36	المتطلبات الغير وظيفية
39	متطلبات نطاق العمل
39	متطلبات المستخدم
39	توجيهات كتابة المتطلبات
40	متطلبات النظام
41	كتابة المتطلبات بلغة بنيوية
42	النماذج البيانية
42	نماذج السياق
44	النماذج السلوكية
45	نماذج المعطيات
47	نماذج الوراثة
47	نماذج التجميع
48	نماذج السلوك
49	توصيف الواجهات
49	وثيقة المتطلبات البرمجية
49	مقدمة
50	وصف عام
50	متطلبات تفصيلية
52	الفصل الرابع المواصفات الصورية للبرمجات Formal Software Specification
52	مقدمة
52	الطرائق الصورية

التوص	وصيف الصوري في الإجرائية البرمجية
تقنياد	يات التوصيف الصوري
توص	صيف الواجهات
بنية ا	ة التوصيف الجبري
إجرا	رائية التوصيف الجبري
عمليا	لميات التوصيف
التوص	رصيف الصوري في الإجرائية البرمجية
توص	صيف الواجهة في النظم الحرجة
التوص	وصيف السلوكي Behavioral specification
الفص	صل الخامس جودة البرمجيات Software Quality
إدارة	رة جودة البرمجيات
ماهي	هي الجودة
مجالا	الات إدارة الجودة ونشاطاتها
جود	ودة المنتجات والإجرائيات
ضما	مان الجودة ومعابيرها
أهميا	مية المعايير في النطور البرمجي
مشاك	ىاكل المعايير
المعاب	عابير 1SO 9000 عابير
معايي	ايير التوثيق
معايي	ايير اجرائية التوثيق
معايي	ابيير الوثائق
معايي	ايير تبادل الوثائق
التذد	خطيط للجودة
بنية ،	ة خطة الجودة
مر اقد	اقية الجودة

	قياس البرمجيات ومقاييس البرامج
73	اجرائية القياس
74	مقاييس المنتج
75	تحليل القياسات
76Software Maintenance, Evolution and M	الفصل السادس صيانة البرمجيات وارتقائها وادارتها lanagement
76	التغيير في البرمجيات
77	ديناميكية ارتقاء البرامج
78	صيانة البرمجيات
81	إجرائيات الارتقاء
82	إعادة هندسة الأنظمة
85	إدارة التغيير
87Configuration, Version and F	إدارة التشكيلات والإصدارات والسحوب Release management
89	تقنيات تحديد المكونات
89	ترقيم الاصدارات
89	التحديد بالاعتماد على الواصفات
90	التحديد الموجه بالتغييرات
91 Computer-Aided Software Enginee	الفصل السابع هندسة البرمجيات بمعونة الحاسوب (CASE)
	هنسة البرمجيات بمعونة الحاسوب CASE
91	تصنيف أدوات هندسة البرمجيات بمعونة الحاسوب
91	التصنيف الوظيفي
93	التصنيف التكاملي
93	أهم المنتجات المتوفرة في هندسة البرمجيات بمعونة الحاسوب

القصل الأول

						.1	
•			:				
				.1900		1992	-1
						! 10	4
	. 1988	29			\$1000		-2
198	38						
						1990	-3
						1000	
	•			1			-4
	21756	1990	252	¹ CERT			
				.2001	40000		2000
							-5
						1995	;
		16					
						3.2	
							-6
	200						18
	60			İ			

-7 500 C-17 80 19 ļ .2 ²modeling -2 problem solving)

2

knowledge acquisition

. rationale driven

	7	
	-5	

	soft	ware	-1
	Software Engineering		-2
computer science	Software Engineering		-3
System Engineering	Software Engineering		-4
	software process		-5
	software process model		-6
		costs	-7
	software engineering methods		-8
CASE (Comput	er-Aided Software		-9
			Engineering)
	attributes of good software		-10
			11
	-		

models

software 1 -1 3 -2 . WordExcel (Configure) **Software Engineering** 2 computer science **Software Engineering** 3

development

System engineering

software engineering

-4

computer-based

systems

Software process

-5

-1

- :Specification
 - :Development -2
- :Validation -3
 - :Evolution 4

Software process model

6

	:() Workflow	perspective	-1
		نشاط خدل Data-flow po	erspective	-2
		نشاط :Role/action	Data2 perspective /	-3
	٠	Action action action		
•			4	
•				
·		: W	laterfall approach	-1
requirements		: w :	/aterfall approach	-1
requirements .testing		: W : implementation		-1 specification
		: implementation		
	(: implementation	design	specification
	(: implementation :Itera	design	specification
.testing	(: implementation :Itera	design ative development	specification
		: implementation :Itera)	design ative development	specification
.testing		: implementation :Itera)	design ative development	specification -2
.testing	softwar	: implementation :Itera)	design ative development	specification -2
.testing	softwar	: implementation :Itera) re engineering	design ative development	specification -2

costs -7

%40 %60

(

software engineering method function oriented methods Jackson JSD DeMarco **Structured Analysis** Booch .Rumbaugh -9 **CASE (Computer-Aided Software** (Engineering Computer-Aided Software Engineering CASE debugging CASE :(Upper-CASE) CASE -1 :(Lower-CASE) -2 CASE attributes of good software -10

software engineering methods

-8

: Maintainability -

:Dependability -2

:Efficiency -3

:Acceptability -4

-11

.

-3

.4

-1

: -2

•

-2 -3 .(IEEE ACM .www.acm.org/about/se-code .5 -1 .3.6 waterfall model -1 -2 -3 -5

.Exploratory development

throw-away prototyping

-1

-2

Outline description Outline description Validation Concurrent activities Initial Version Intermediate Versions Final version

evolutionary model

.(Visual Basic)

components based software Engineering

5

reuse "

COTS (Commercial-off-the-shelf)

-2

incremental delivery

increments

prototype

Spiral development

(

: -1

-2

-3

: -4

-3

.3.5

.requirement engineering "

. -1

-2

-3

Feasibility study

Requirements elicitation & analysis

Requirements specification

Requirements valdiation

User & system requirements

Requirements valdiation

Requirements valdiation

1 -2 -3 -4 -5 -6 ()

-1

2

-3

-4

-5

.debugging

:() -1

-2

-3

الفصل الثاني إدارة المشاريع البرمجية

.1

.intangible -1

-2

. -3

-<u>-</u>--

.2

· :

-1

3.3)

. : -3

. -4

.

-5 .

•

19

.3

(3.2)

.()

·	quality plan
	validation plan
	configuration management plan
	maintenance plan
·	staff development plan

```
-1
(
  )
                                                                  -1
                                                                  -2
                                                                  -3
                                                                  -4
                                                           -1-4
                                                           -2-4
                                                 ( )
                                                           -3-4
                                                           -4-4
                                                           -5-4
                                                           -6-4
                                                           -7-4
                                            (
                                                       ) __ -8-4
                                                   -1-8-4
```


-2

-2 -3 -4 -5 -6

milestones

. () deliverables

concurrent

-1

.

-1

-2

-3 -4

-2

activity networks .()

bar charts

	()	()
	8	T1
	15	T2
T1 (M1)	15	T3
	10	T4
T2, T4 (M2)	10	T5
T1, T2 (M3)	5	T6
T1 (M1)	20	T7
T4 (M5)	25	Т8
T3, T6 (M4)	15	Т9
T5, T7 (M7)	15	T10
T9 (M6)	7	T11
T11 (M8)	10	T12

T1 T1 T3 T1 T3 T1 T3

T6

T3

النشاط (المهمة) المدة الزمنية (الايام) T1 15 T2 T1 (M1) 15 T3 10 T4 T2, T4 (M2) 10 T5 T1, T2 (M3) 5 T6 14/7/03 15 days T1 (M1) 20 T7 M1 15 days 25 Т8 T4 (M5) 8 days 15 Т9 T3, T6 (M4) 4/8/03 25/8/03 5 days T5, T7 (M7) 15 T10 25/7/03 M4 M6 T9 (M6) 7 T11 M3 4/7/03 10 T12 T11 (M8) start 20 days 15 days 5/9/03 25/7/03 11/8/03 10 days 10 days M8 M2 M7 T4 15 days T10 10 days 18/7/03 T12 M5 25 days finish 19/9/03

.T9

55 11 .critical path

Start-T1-M1-T3-M4-T9-M6-T11-M8-T12-Finish

bar chart

-3

.5

:

	<u>'</u>
CASE	
	CASE

: -1

-2

-3

: -4

-1

: -1

: -2

: -3

CASE : -4

: -5

.

: -<mark>-6</mark>

·

	-1	
	-2	
	-1	
	-2	
	-3	
	-1	
	-2	
. CASE	-1	
.CASE	-2	
	-1	
·	-2	
	-1	
	-2	
	-3	

-2

.

(25-50%) (10-25%) (<10%) (>75%) (50-75%)

.

CASE		
CASE		CASE
CASE		
O/ICE		CASE
		O/ IOL

-3

.

: -3

:

().			
		()	
	().		
	·			

-4

CASE

.1

(1)

(2)

-2 .2 -1

-1 -2 -3

.

-1

-2

-3

(2)

-2

CASE

HTML

: -2

: .

XYZCo-SP-STAN-95

-3

: interoperability

37

. (2)

-1 -2 -3 -1 ROM -2 -1 -2 -1 -2 -3 -1 -2 -3 -1 -2

.

-3

. **Z39.50** -1 -2

.3

п

.

.

-2

. .4

. : -1 : -2

: -3

.sequence diagrams use case diagrams

-1

.

	:	
	. 7 - 3	
.(r0 and r1)	(<mark>r2</mark>)	
.CompE	Dose	
	CompDose	
	CompDose	
	. 4	
	CompDose	
	.r2 r1 r1 r0	
		•

	:	
		-1
.()	-2
.()	-3
		-4
		-5
()	-6

.() -7

CompDose = 0 (r2 < r1)CompDose = 0 (r2 = r1)CompDose = 0 ((r2-r1)/4)If rounded result = 0 then

CompDose = MinimumDose $((r2-r1) \ge (r1-r0))$

-1 -2

. -3

:

-1 -2

. -3

. -4

Context Models

.architecture diagram

Process Models

(2)

Data Flow Diagrams DFD

() وسائط الدم حساس دم خليل مستوى سكر الدم سكر الدم سكر الدم الأنسولين الطلوب الأنسولين التحكم بتوصيل مضخة أنسولين التحكم بتوصيل الأنسولين الأنسو

.UML State charts
...

п п •	
п п	
·	
•	

Entity Relationship Model

UML

.(

	•	<u> </u>
2002/12/30		
2002/12/30		
2002/12/30		
2002/12/29	1:1	
2002/12/31		

.()

UML

-1

class diagram

-2

-3

sequence UML . . (collaboration diagrams) diagrams

.5

-1

-2

-3

Java

```
interface PrintServer {
// defines an abstract printer server
interface Printer, interface PrintDoc // requires:
// provides: initialize, print, displayPrintQueue, cancelPrintJob, switchPrinter
void initialize ( Printer p ) ;
void print ( Printer p, PrintDoc d ) ;
void displayPrintQueue ( Printer p ) ;
void cancelPrintJob (Printer p, PrintDoc d) ;
void switchPrinter (Printer p1, Printer p2, PrintDoc d) ;
}//PrintServer
```

.6

IEEE

-1

1

-2

·		-3
		-4
		-5
		-2
		-1
		-2
		-3
		-4
		-5
		-3
:		
		-1
		-2
		-3
		-4
		-5
		-6
		-7
	IEEE	
:)		
	.(

·	
•••	

الفصل الرابع Formal Software Specification

.1) .(.2 formal specification formal methods .formal specification 1 -1 .specification analysis and proof -2 .transformational development -3 .program verification -4

52

mathematics

discrete

-2

-3

. -4

critical systems
.security reliability safety

.(5.1.1)

. ambiguities

incomplete

inconsistent

:Algebraic specification

:Model-based specification -2

.

Lotos	Larch OBJ	
CSP	Z	
Petri Nets	VDM B	

-1

-1

() abstract data type

axiom


```
LIST
         list
Elem
           .Elem
           List
                    )
                                                           Create:
                                                                                   -1
                             Tail
                                                                            Cons
                                                             Head:
         Length
                                                                                   -2
                       Elem
                                     Elem
                                                   Elem
                                                         Length Head
               Length
                         Head
        .(
                                                     Head)
                          Length
                                   Elem
            Elem
                                                               List
    imports
  Create, Cons, Tail,
                                                       INTEGER
                                                                           .Head, Length
      )
                                                                                        )
                                                          (Cons
     recursive
                                                                   Create
                                                                                Tail
                      Tail (Cons (L, v)) = if L = Create then Create
                                           else Cons (Tail (L), v).
Cons ([5, 7], 9) = [5, 7, 9]
Tail ([5, 7, 9]) = Tail (Cons ( [5, 7], 9))
              = Cons (Tail ([5, 7]), 9)
              = Cons (Tail (Cons ([5], 7)), 9)
              = Cons (Cons (Tail ([5]), 7), 9)
```

```
= Cons (Cons (Tail (Cons ([], 5)), 7), 9)
```

- = Cons (Cons ([Create], 7), 9)
- = Cons ([7], 9)
- = [7, 9]

:List

-LIST (Elem) -

sort List

imports INTEGER

Defines a list where elements are added at the end and removed from the front. The operations are Create, which brings an empty list into existence, Cons, which creates a new list with an added member, Length, whiche valuates the list size, Head, whiche valuates the front element of the list, and Tail, which creates a list by removing the head from its input list. Undefined represents an undefined value of type Elem.

Create \rightarrow List Cons (List , Elem) \rightarrow List Head (List) \rightarrow Elem Length (List) \rightarrow Integer Tail (List) \rightarrow List

Head (Create) = Undefined **exception** (empty list)
Head (Cons (L, v)) = **if** L = Create **then** v else **Head** (L)
Length (Create) = 0
Length (Cons (L, v)) = Leng th (L) + 1
Tail (Create) = Create
Tail (Cons (L, v)) = **if** L = Create **then** Create **else** Cons (Tail (L), v)

.Tail Head

sectors

. 300

sector :sector

:Enter -1

:Leave -2

:Move -3

. :Lookup -4

: . :Create -1

. :Put -2

:In-space -3

:Occupied -4

. 300

Put Create -1

Put Create In-space Occupied -2

-3

SECTOR -

sort Sector import INTEGER, BOOLEAN

Enter - adds an aircraft to the sector if safety conditions are satisfied Leave - removes an aircraft from the sector Move - moves an aircraft from one height to another if safe to do so Lookup - Finds the height of an aircraft in the sector

Create - creates an empty sector
Put - adds an aircraft to a sector with no constraint checks
In-space - checks if an aircraft is already in a sector
Occupied - checks if a specified height is available

Enter (Sector , Call-sign, Height) \rightarrow Sector Leave (Sector , Call-sign) \rightarrow Sector Move (Sector , Call-sign, Height) \rightarrow Sector Lookup (Sector , Call-sign) \rightarrow Height Create \rightarrow Sector Put (Sector , Call-sign, Height) \rightarrow Sector In-space (Sector , Call-sign) \rightarrow Boolean Occupied (Sector , Height) \rightarrow Boolean

```
Enter (S, CS, H) =
 if In-space (S, CS) then S exception (Aircraft already in sector)
elsif Occupied (S, H) then S exception (Height conflict)
 else Put (S, CS, H)
Leave (Create, CS) = Create exception (Aircraft not in sector)
Leave (Put (S, CS1, H1), CS) =
 if CS = CS1 then S else Put (Leave (S, CS), CS1, H1)
Move (S. CS, H) =
       S = Create then Create exception (No aircraft in sector)
 elsif not In-space (S, CS) then S exception (Aircraft not in sector)
 elsif Occupied (S, H) then S exception (Height conflict)
 else Put (Leave (S, CS), CS, H)
--NO - EIGHT is a constant indicating that a valid height cannot be returned
Lookup (Create, CS) = NO - EIGHT exception (Aircraft not in sector)
Lookup (Put (S, CS1, H1), CS) =
 if CS = CS1 then H1 else Lookup (S, CS)
Occupied (Create, H) = false
Occupied (Put (S, CS1, H1), H) = if (H1 > H and H1 - H \leq 300) or (H > H1 and H - H1 \leq 300) then true
 else Occupied (S, H)
In-space (Create, CS) = false
In-space (Put (S, CS1, H1), CS ) =
 if CS = CS1 then true else In-space (S, CS)
```

Behavioral specification

-2

model-based specification

VDM

		Z		.Z	В
	Behavioral specifica	tion	Z	.3	-2
		Z	_		
	(schemas)	
	. Z	Z			
	اسم الخطط Container Contents: N Capacity: N				
	إسنادية الخطط } contents ≤ capacity				
	-1-4:		-4"		
state	variables)			predic	cates

state variables

```
Ζ
                                ()
                                                              Ζ
     switch?
                                                                                                    -1
                                     ) InsulinReservoir?
                                                                  (switch
                                                  .(
                                                                       ) Reading?
(
            ) alarm!
                              (!)
                                                             Ζ
                                                                                                    -2
          ) dose! (
                                                                      ) display2!
                                                                                       display1!
                                                                     .(
    r0
                        ) status
                                                                                                    -3
                                                                                        ) r2
                                                                                              r1
                                                                                  predicates
                                                                          Ζ
                                                invariants
                                                                                                    -1
                                                          4
                                                                                                    -2
                                                                  25
                                                                                                    -3
                                                                          display2!
                                                                                                    -4
                                                                                       Ζ
    INSULIN_PUMP_STATE
    //Input device definition
    switch?: (off, manual, auto)
    ManualDeliveryButton?: N
    Reading?: N
    HardwareTest?: (OK, batterylow, pumpfail, sensorfail, deliveryfail)
    InsulinReservoir?: (present, notpresent)
    Needle?: (present, notpresent)
    clock?: TIME
    //Output device definition
    alarm! = (on, off)
    display1!, string
    display2!: string
    clock!: TIME
    \mathsf{dose!:}\ \mathbb{N}
```

```
// State variables used for dose computation
    status: (running, warning, error)
    r0, r1, r2: ℕ
    capacity, insulin available : N
    max daily dose, max single dose, minimum dose: N
    safemin, safemax: N
    CompDose, cumulative_dose: №
    r2 = Reading?
    dose! \leq insulin\_available
    insulin available ≤ capacity
    // The cumulative dose of insulin delivered is set to zero once every 24 hours
    clock? = 000000 \Rightarrow cumulative dose = 0
    // If the cumulative dose exceeds the limit then operation is suspended
    cumulative dose \geq max daily dose \wedge status = error \wedge
    display1! = "Daily dose exceeded"
    // Pump configuration parameters
    capacity = 100 \land safemin = 6 \land safemax = 14
    max_daily_dose = 25 \land max_single_dose = 4 \land minimum_dose = 1
    display2! = nat to string (dose!)
    clock! = clock?
                                                         10
                                                          RUN
                                      (\Delta)
RUN
    \DeltaINSULIN_PUMP_STATE
    switch? = auto
    status = running \to status = warning
    insulin available ≥ max single dose
    cumulative dose < max daily dose
    // The dose of insulin is computed depending on the blood sugar level
    (SUGAR_LOW > SUGAR_OK > SUGAR_HIGH)
    // 1. If the computed insulin dose is zero, don't deliver any insulin
    CompDose = 0 \Rightarrow dose! = 0
    // 2. The maximum daily dose would be exceeded if the computed dose was delivered so the insulin dose is
    set to the difference between the maximum allowed daily dose and the cumulative dose delivered so far
```

```
CompDose + cumulative_dose > max_daily_dose ⇒ alarm! = on ∧ status' = warning ∧ dose! = max_daily_dose - cumulative_dose

// 3. The normal situation. If maximum single dose is not exceeded then deliver the computed dose. If the single dose computed is too high, restrict the dose delivered to the maximum single dose

CompDose + cumulative_dose < max_daily_dose ⇒

( CompDose ≤ max_single_dose ⇒ dose! = CompDose

CompDose > max_single_dose ⇒ dose! = max_single_dose)

insulin_available' = insulin_available - dose!

cumulative_dose' = cumulative_dose + dose!

insulin_available ≤ max_single_dose * 4 ⇒ status' = warning ∧

display1! = "Insulin low"

r1' = r2
r0' = r1
```

RUN

.INSULIN_PUMP_STATE

•

```
SUGAR_OK

r2 \ge safemin \land r2 \le safemax

// sugar level stable or falling

r2 \le r1 \Rightarrow CompDose = 0

/

// sugar level increasing but rate of increase falling

r2 > r1 \land (r2-r1) < (r1-r0) \Rightarrow CompDose = 0

/

// sugar level increasing and rate of increase increasing compute dose
// a minimum dose must be delivered if rounded to zero

r2 > r1 \land (r2-r1) \ge (r1-r0) \land (round ((r2-r1)/4) = 0) \Rightarrow CompDose = minimum_dose

/

r2 > r1 \land (r2-r1) \ge (r1-r0) \land (round ((r2-r1)/4) > 0) \Rightarrow CompDose = minimum_dose
```

الفصل الخامس Software Quality

.1

.1 -1

•

.

-2

1

-2

3

-1

-2

-3

.3

:

			:	-2
				-1
		:		
				-1
		•		
				-2
				-3
			•	
•				
	US DoD, AN	SI, BSI, NATO, IEEE		
		C++	JAVA	
			JAVA	
		·		
				:1
			JAVA	

		-2
		-1
·		-2
	٠	

-1 -2

-3

ISO 9000 -3

ISO 9001 .

ISO 9000-3

-1

-2

-3

.4
-1
:
:
:
:
:
-1
:
:
-2
:
:
-3
:
-4

.5 -2 :(-2 :(-3 (**3**)

.6

.(/)

-1

-1

				•		-3
						-4
						-5
				:		
				•		-1
						-3
						•
					•	-2
:						
:						-1
		.()		
:						-2
			·			
	•					

	fan-in/fan-out
•	

IF	
·	fog

:

.Overriding operations	

الفصل السادس

Software Maintenance, Evolution and Management

.1

-1

-2

-3

-4

	Belady	Lehman
.(Lehman	:)

·	
·	
•	

-1

.(...)

-3

.**3** %65

. %17 %18

.3

: -1

: -2

; -3

-4

.3 -1

-2

-3

-2

-1

-2

-3

-1

-2

-2

-3

-4

•

.4

.(

تعديل الرماز ← خليل الرماز ← خليل الرماز ← التغييرات المطلوبة

-1

.()

.()

.5

.

: -1

-2

.()

: -1

. : -2

-3

-4

.() إعادة بناء آلية للبرنامج إعادة بناء للمعطيات و البرنامج إعادة بناء آلية مع تغييرات يدوية إعادة بناء مع خويل آلي للرماز المصدر تغييرات بنيوية : -1 -2 -3 .6 -1 -2 -3 -4 10 4 .(3 2 1) -1 -2 .(10 9) -3

.(5 4)

: .(8 7 6)

-1

. -2

-3

-4

-5

;

. : -1

. -2

. -3

.7

•

.(

.(

```
// BANKSEC project (IST 6087)
// BANKSEC-TOOLS/AUTH/RBAC/USER_ROLE
// Object: currentRole
// Author: N. Perwaiz
// Creation date: 10th November 2002
// © Lancaster University 2002
// Modification history
// Version
                Modifier Date
                                                           Reason
                                          Change
                    1/12/2002
// 1.0
                                         Add header
                                                           Submitted to CM
      J. Jones
// 1.1
        N. Perw aiz
                         9/4/2003New field
                                                  Change req. R07/02
```

Configuration, Version and Release

management

-1

8.

-2

-1 -2 -3

-4 -5

-6

CASE tools

-1

-2

-3

-4

variant

-2

-3

-1

V1, V1.1, V1.2, V2.1, ...

-2

.

AC3D (language =Java, platform = XP, date = Jan 2003)

•

·
.

. (CD, DVD)

:

()

الفصل السابع Computer-Aided Software Engineering (CASE)

:	CASE		.1
	. debuggers		
	CASE		
:			-1
			2
			3
			4
			5
	CASE		
CASE			
		•	1
CASE			2
	CASE		
			.2
			.2
:			
•		:	-1
		:	
		:	-3
	•		

PERT	

$\sqrt{}$	V	√	V	
√	√	√	V	
√	√	√	V	
	√	√		
√			√	
		√		
	√	√		
√	√			
	√			
	√ √			

:

-1

-2

-3

.3

CASE

(Visio)

(BPWin)

.(Visible Analyst Workbench)

SQL

ERwin

Visible Analyst

Oracle Workbench

. Designer

Visible Analyst

Workbench

.