Capítulo 1

Introducción

El presente informe busca dar a conocer al lector las tareas y actividades desarrolladas por el autor, en el marco del Trabajo Final de la carrera Ingeniería Electrónica, dictada en la Facultad de Ingeniería de la Universidad Nacional de San Juan. El objetivo del trabajo es diseñar e implementar una interfaz para la transmisión de datos hacia una computadora personal (PC), adquiridos por sistemas desarrollados en arreglos de compuertas de campo programables (FPGA) para aplicaciones científicas, a través del Bus Serial Universal (USB). A lo largo de este documento, se comprenderá la problemática que se resuelve y la configuración, fundamentos y modo de uso del sistema propuesto.

En la sección 1.1 se presentan las motivaciones de este trabajo y se detalla la problemática a resolver. Luego, se detallan los objetivos que persigue este trabajo. Seguido a esto, se otorga un esquema que describe la solución planteada y se justifica el protocolo elegido. Finalmente, se repasan algunos conceptos importantes de la norma USB que luego se utilizan en el trabajo desarrollado.

1.1. Motivación

El grado de avance que han experimentado la electrónica y la tecnología en general, gracias a la industria de los semiconductores, permite que la producción científica pueda adquirir una gran cantidad de datos. Para llevar a cabo la producción del conocimiento, es necesario el relevamiento y registro de diferentes tipos de magnitudes físicas y/o químicas sobre el objeto o proceso a investigar. En muchas ocasiones, estas magnitudes resultan difíciles de observar y cuantificar, por lo que es conveniente transformar las variables a conocer en otras más sencillas de medir. Para este propósito, se utilizan transductores.

Se conoce como transductor a cualquier dispositivo que recibe estímulos energéticos de una condición, situación o fenómeno físico y/o químico y los convierte en una señal asociada y definida de otra forma de energía[1, 2]. En otras palabras, los transductores son conversores de energías[1, 2, 3]. Se denomina sensor a una clase particular de transductor que genera, como variable de salida, una señal eléctrica que está especialmente adaptada para ser ingresada en un circuito electrónico, o adecuada al sistema de medida que se utilice [4, 5, 6].

Figura 1.1: Esquema físico de un APS[8]

Las altas escalas de integración de circuitos alcanzadas en la actualidad posibilitan el diseño de sistemas sensoriales cada vez más complejos, en los cuales se logra agrupar miles de sensores en áreas reducidas, obteniendo medidas simultáneas y flujos crecientes de datos. Este trabajo se centrará en la transmisión de datos provenientes de sensores de imagen, uno de los desarrollos que se encuentra en boga.

Una imagen, desde un punto de vista digital, es un arreglo bidimensional de números, los cuales pueden ser exhibidos en una pantalla en forma de intensidad y colores de luz. Cada punto del arreglo que se muestra en pantalla se denomina pixel, acrónimo del ingles *PIcture ELement*, o elemento de imágen. Por esto, un sensor de imagen puede estar compuesto, bien por un arreglo bidimensional de sensores lumínicos (cómo la cámara de un teléfono celular), como por un transductor que es simultáneamente desplazado y medido, (método utilizado, entre otras, para la microscopía de fuerza atómica [7]), o por una combinación de ambos métodos. Por ejemplo, un scanner posee un arreglo lineal de transductores que son desplazados a través de la hoja para generar una imagen digital. En cualquiera de los casos, es de suma utilidad que la lectura de imágenes sea realizada en el menor tiempo posible, ya que cada imagen conlleva una cantidad no menor de datos.

Uno de los trabajos que más aportó al desarrollo de sensores de imágenes modernos, fue la introducción de los APS (Active Pixel Sensor, o sensor de pixeles activos) [9]. Este sensor integra en un proceso CMOS (acrónimo ingles de Metal-Óxido-Semiconductor Complementario, que es el método actualmente más económico para integrar transistores en una única pastilla de silicio), un fotodiodo, un transistor de reset (utilizado para controlar el tiempo de integración, es decir, de exposición a la luz) transistores de selección (utilizados para conectar un pixel determinado dentro del arreglo) y un amplificador seguidor de fuente en cada pixel[8]. El fotodiodo, previamente cargado, transduce la luz en una descarga eléctrica y el amplificador convierte la carga remanente en tensión para facilitar su lectura. La Figura 1.1 muestra el dibujo de un APS. Se observa el área sensible a la luz y los diferentes transistores que intervienen en su funcionamiento. Además se incorpora una micro-lente cuya función es la de enfocar los fotones sobre el área sensible y un filtro utilizado para identificar colores. En el caso de sensores

monocromáticos, se omite la colocación del filtro de color durante la fabricación.

A partir del desarrollo de los APS, se fue perfeccionando el método hasta obtener circuitos integrados con mayor cantidad de pixeles y que pueden tener diversas aplicaciones. Por ejemplo, en los trabajos [10] y [11] se presentan sensores CMOS basados en la arquitectura MIMOSA (de *Minimum Ionizing particule MOS Active pixel Sensor*). Estos sensores se desarrollaron con el objetivo específico de detección de radiación ionizante.

También existen desarrollos de sensores de radiación a través de APS comerciales. Perez et al. identificaron eventos producidos por partículas alfa en campos de radiación mixtos mediante el procesamiento de imágenes adquiridas con sensores comerciales CMOS[12] y desarrollaron detectores de neutrones térmicos con sensores APS cubiertos con una capa de $\mathrm{Gd}_2\mathrm{O}_3[13]$. Galimberti et al. utilizaron un sensor de imágenes comercial para realizar un detector de gas Rn en el ambiente[14]. En otro trabajo, Hizawa, et al. fabricaron un sensor que adquiere imágenes midiendo el pH con cada uno de los pixeles[15], pudiendo observar de fenómenos químicos en tiempo real.

Como se mencionó antes, una imagen digital es un arreglo de datos. Esto quiere decir que un sensor de imágenes con n pixeles de largo y m de ancho, captura $n \times m$ datos en cada lectura. A su vez, para digitalizar valores, un circuito debe poseer, al menos, un conversor analógico-digital (ADC) de x cantidad de bits, lo que implica que cada dato estará compuesto por x dígitos binarios, es decir, un volumen importante de datos por cada lectura. Como ejemplo, un sensor comercial VGA, en su configuración más básica, posee 640 líneas horizontales y 480 verticales, con una resolución de 8 bits por cada pixel, lo que otorga 2.457.600 bits por cada lectura del sensor.[16] Si además se incorpora la cantidad de imágenes que se toman en función del tiempo (cuadros por segundo o fps), nos otorga un flujo de datos para nada despreciable.

Desde el punto de vista de la electrónica digital, para poder adquirir y transmitir grandes volúmenes de datos, se requiere de circuitos que sean capaces de operar a altas frecuencias de conmutación. El diseño de dichos circuitos no es trivial, ya que cuando las longitudes de onda de las señales presentes son comparables con las dimensiones físicas de dichos circuitos, debe considerarse el uso de líneas de transmisión[17]. Esto implica que no se puede diseñar utilizando un criterio de uniformidad en los parámetros y exige un análisis mas detallado y preciso.

Otro problema que presentan los circuitos electrónicos digitales tiene que ver con los tiempos de propagación de las corrientes y tensiones que circulan a través de ellos. Cuando se aplica un impulso en un conductor, debido a las capacidades propias de los materiales utilizados, las tensiones pueden demorar unos instantes en establecerse. Puede suceder que varias señales lleguen a los puertos de un dispositivo por conductores con distintas longitudes y generen retardos diferentes. Esto puede ocasionar un comportamiento indeseado si no se toman los recaudos adecuados.

Aún suponiendo un perfecto diseño, los circuitos digitales de alta velocidad se encuentran limitados en la frecuencia de conmutación por la temperatura que se necesita disipar. La potencia consumida por estos dispositivos es proporcional a la frecuencia de funcionamiento[18]. Parte de esta potencia se transforma en calor y produce un aumento en la temperatura. Si el incremento

es indiscriminado, puede destruir los circuitos.

Una posible solución para disminuir la frecuencia de las señales sin perjudicar la tasa de transferencia es la incorporación de varios conductores para enviar datos en paralelo. La cantidad de conductores a través de los cuales circula la información, se denomina ancho de bus. Idealmente, para lograr una tasa de transferencia determinada, se podría disminuir la frecuencia tantas veces cómo conductores se agreguen. Por ejemplo, transmitiendo por cuatro filamentos, se podría enviar la misma información a un cuarto de la frecuencia que se necesitaría con uno solo de iguales características.

Existen distintas tecnologías para efectuar la lectura de los datos generados por los sensores y su posterior transmisión. La incorporación y evolución de microcontroladores permite capturar y procesar volúmenes crecientes de datos. Sin embargo, este tipo de dispositivos posee una estructura rígida: su capacidad de procesamiento se encuentra limitada a una instrucción por ciclo de reloj y a un ancho de bus definido. Para aumentar los volúmenes de datos que circulan a través de ellos, no es posible aumentar el ancho de bus, sino que se torna necesario incrementar la frecuencia de funcionamiento, generando los problemas anteriormente detallados.

Una solución óptima, sin considerar los costos asociados a esto, sería el desarrollo de un circuito integrado de aplicación específica (ASIC del inglés Application Specific Integrated Circuit). En este tipo de circuitos, el diseñador elabora un circuito que puede operar a altas velocidades y, a su vez, obtener un ancho de bus sin restricciones, más que las dimensiones físicas del área donde será realizado el circuito. Sin embargo, cuando sí se considera el costo asociado a este enfoque, se vuelve una solución ineficiente en bajas cantidades. La manufactura de este tipo de dispositivos puede tener un costo de miles hasta cientos de miles de dólares, dependiendo del proceso de fabricación utilizado. Gran parte de estos costos son no recurrentes, es decir, solo se pagan una vez por proyecto. En grandes cantidades de dispositivos, este tipo de soluciones se vuelven más convenientes.

Otro enfoque, es la utilización de Arreglos de Compuertas Programables por Campo (FPGA, acrónimo del inglés Field-Programmable Gate Array). Un FPGA es un dispositivo electrónico que posee la capacidad de sintetizar casi cualquier circuito digital. En esencia, es una matriz de bloques lógicos (también llamadas slices o celdas lógicas, dependiendo del fabricante), que contienen Tablas de Verdad(LUTs o Look-Up-Table) y flip-flops (ff), entre otras cosas, y pueden ser interconectadas entre sí, según el criterio del usuario. Así, permite implementar una solución digital en un circuito físico, a diferencia de los microcontroladores, lo realiza a través de un algoritmo almacenado en una memoria, incorporando la ventaja de definir el ancho de bus necesario para relevar una gran cantidad de datos y transmitirlos a frecuencias de trabajo menores, además de ejecutar tareas en paralelo, disminuyendo los tiempos de procesamiento. A su vez, al ser implementado en un área muy pequeña, debido a la integración del sistema, este tipo de sistemas puede trabajar a frecuencias muy elevadas, lo que implica una mayor tasa de datos aún. A pesar de la gran diversidad de precios existentes en el mercado, una FPGA de costos menores a la centena de dólares suele tener muy buenas prestaciones para la mayor parte de las aplicaciones.

Existen diversas publicaciones en donde se observa el uso de FPGAs para la implementación de sistemas que producen imágenes. Por ejemplo, el desarrollo de un detector de radiación

ionizante utilizando una sensor de imagen CMOS comercial. Para ello, los autores utilizaron una FPGA para configurar diversos parámetros del sensor con el fin de generar estrategias para la identificación de partículas alfa en campos de radiación mixtos y transmitir imágenes a una computadora personal (PC) a través de un puerto UART[19]. Se denomina ultrasonografía a la técnica de adquirir imágenes basandose en reflexiones de ultrasonido. Sus aplicaciones son múltiples, en las que se destaca el diagnóstico médico debido. Un trabajo reciente desarrolló un sistema que mejora la obtención de ecografías médicas con bajo costo utilizando una FPGA[20]. El autor presentó un algoritmo para la supresión de ruido de impulso en tiempo real para imágenes codificadas como JPEG 2000 realizado y probado en Matlab e implementado en una FPGA. Yanagisawa et al, desarrollaron un sistema con telescopios pequeños para explorar objetos de campo cercano con la finalidad de monitorear cuerpos celestes que puedan colisionar con el planeta[21]. En este trabajo, se aprovechó la velocidad de los circuitos implementados en FPGA para minimizar el tiempo de adquisición.

El desarrollo de nuevos sensores brinda a los investigadores un gran volumen de datos. En muchos casos, la obtención de datos por si misma no otorga información, sino que es necesario procesar y analizar los mismos. La invención y evolución de las computadoras, como así también el desarrollo de nuevos algoritmos, dan lugar a procesamiento de datos cada vez más complejos en tiempos mucho menores. Las primeras ENIAC, computadoras de propósito general desarrollada en el año 1946 para el cálculo de tablas balísticas de las fuerzas armadas estadounidenses, podía ejecutar 20 operaciones cada 10 µs [22], es decir, ejecutaba instrucciones con una frecuencia máxima de 200 kHz. A su vez, tuvo un costo aproximado de U\$S 500.000, pesaba 5 t y consumía 175 kW. En contraste con aquello, es posible conseguir en el mercado actual, computadoras con tamaño y peso reducido, que ejecutan instrucciones en cuenstión de nanosegundos, (5 ordenes de magnitud menos), consumen menos de 1 kW y cuestan algunos cientos de U\$S. A tal punto ha evolucionado esta tecnología, que se cuenta con computadoras muy potentes en casi cualquier laboratorio, oficina u hogar. La capacidad de cálculo que exhiben estos dispositivos, sumada al desarrollo de nuevos métodos y algoritmos de cálculo, permite a los investigadores procesar datos en tiempo reducido, facilitando el análisis y la generación de nueva información.

En todos los casos que se consideran en este trabajo, la generación de datos y el procesamiento de lo mismos se da en sistemas diferentes. Es decir, los datos son relevados por los sensores y adquiridos luego por los FPGAs. Finalmente llegan a una PC para su posterior procesamiento y análisis. Se requiere, por tanto, de una conexión a través de la cual los datos puedan ser transferidos del sistema de adquisición, la FPGA, a la PC y viceversa. Se torna de suma utilidad, entonces, proveer una comunicación efectiva y robusta que permita transmitir grandes volúmenes de datos en poco tiempo, y de esta forma facilitar los tiempos de desarrollo, pruebas, depuración, procesamiento y análisis.

La implementación de un sistema de comunicación en una FPGA puede ser resuelta de muchas maneras, quedando a criterio del desarrollador utilizar algún protocolo estándar, o bien diseñar uno propio. Sin embargo, en una computadora, las formas de comunicar datos se vuelven un poco más restrictivas y acotadas a los puertos y señales que puede manejar el equipo, conforme el fabricante haya establecido. Este trabajo busca implementar una comunicación entre una computadora personal y una FPGA, utilizando un protocolo estándar, que esté disponible

Figura 1.2: Par Trenzado y un dibujo de su ficha de conexión.

en cualquier computadora comercial y que posea una tasa de bit suficiente para poder transmitir imágenes.

1.2. Protocolos disponibles para la transmisión de datos entre PC y FPGA

El estándar más exigente de la norma americana de la SCTE (Sociedad de Ingenieros de Comunicación por Cable) utilizada Televisión Digital, posee una tasa de $38.8\,\mathrm{Mbit\,s^{-1}}[23]$. Por su parte, la serie de sensores para adquirir imágenes monocromáticas MT9M001, comercializado por ON Semiconductors posee $1280\mathrm{x}1024$ pixeles, con profundidad de 10 bits y puede operar hasta a 30 cuadros por segundo[24]. La tasa de transmisión necesaria es, por tanto, de $393.2\,\mathrm{Mbit\,s^{-1}}$.

Un requerimiento que posee cualquier periférico informático es el de compatibilidad. No es conveniente utilizar puertos que requieran acceso a la placa madre, como el caso de tarjetas de tipo PCI o PCI express, debido a que no todos los equipos los tienen accesible, como ser computadoras portátiles, y en algunos casos estos pueden estar todos ocupados. Se opta, entonces, por alguno de los tres puertos de moda: Ethernet, dedicado principalmente a conexión de redes mediante cables; Wi-Fi, utilizado para el accesos a la red de forma inalámbrica; y USB, dirigido a la comunicación de periféricos con la PC.

Al hablar de Ethernet o Wi-Fi, se hace referencia a dos formas diferentes de conectarse a una red de computadoras. En otras palabras, se habla de dos o más nodos, compuestos por PCs o cualquier dispositivo electrónico con capacidad de realizar cálculo binario, que pueden intercambiar datos a través de una trama bastante compleja de componentes diferentes. Ambos protocolos hacen referencia solo a la conexión física de los dispositivos y el control de acceso de cada uno de ellos a la conexión. Quedando a cargo de otros sistemas, con sus protocolos, que los datos enviados puedan ser correctamente recibidos por el usuario de la PC. La gran diferencia entre ellos radica en el medio físico que utilizan: Wi-Fi emplea ondas electromagnéticas emitidas mediante radiofrecuencia, mientras que en Ethernet, estas ondas son acarreadas por uno o más conductores, como ser cable coaxial, cables de par trenzado o fibra óptica.

Ethernet, también conocido como IEEE 802.3, es una norma que define cómo se deben

Referencias

PA:Preámbulo

IP: Inicio de PaqueteDD: Dirección de DestinoDE: Direcció de Emisión

LM: Longitud del Mensaje

SCP: Secuencia de chequeo del paquete

Figura 1.3: Estructura de un paquete Ethernet

conectar nodos a través de conductores para conformar redes de área local (LAN o Local Area Network), es decir, redes pequeñas, como ser domésticas, de oficinas o de pequeñas empresas, de forma que puedan transmitir información a velocidades seleccionables entre 1 Mbit/s y 400 Gbit/s [25]. Utiliza una tecnología denominada Acceso Múltiple Sensando la Portadora con Detección de Colisiones (CSMA/CD del inglés Carrier Sense Multiple Access with Collision Detection). En una red con CSMA/CD, cada dispositivo debe sensar en forma permanente la conexión a la red, es decir, no existe un dispositivo que dirija el uso del bus, sino que cada uno debe identificar el estado de la red. Los mensajes se envían modulados. Cuando una señal portadora es detectada, todos chequean la dirección del paquete de información que viaja y el mensaje es recibido solamente por el dispositivo que se corresponda con esa dirección. Siempre que exista una señal portadora en el bus, los dispositivos que deseen transmitir información deberán esperar a fin de evitar colisiones, o sea, que dos dispositivos envíen mensajes a la vez y estos se interfieran.

Dependiendo de la frecuencia de la portadora y la tasa de transferencia a la que transporta el mensaje, la norma especifica el conector y la distancia máxima a la que debe conectarse una repetidora, es decir, un dispositivo que reciba, reconstruya y emita la señal recibida. Estos conectores pueden ser cable coaxial, fibra optica o cable de par trenzado. Este último es el más usual en las PCs comerciales y se muestra, junto a su ficha característica en la Figura 1.2.

La información se estructura en paquetes para permitir la comunicación entre muchos nodos de la red. Un paquete, como se observa en la Figura 1.3, se compone de un preámbulo con 7B que sirve para sincronizar los dispositivos en cada extremo de la conexión, 1B de inicio, 12B de direcciones, que corresponden 6 al nodo destinatario y 6 al emisor respectivamente, 2B que indican la longitud del mensaje, entre 46 y 1500B de datos y 4B para la verificación de la transmisión. Otra definición importante de la norma, son las características eléctricas de las señales, pero no se detallan en este trabajo porque varían en función de la velocidad del puerto.

Por su parte Wi-Fi, perteneciente a la asociación de compañías denominada Wi-Fi Alliance, se rige por la norma que estableció esta última. Existe una norma equivalente, encuadrada en la especificación IEEE 802.11, referida a las redes de area local inalámbrica, o WLAN (siglas del

Referencias

CP: Control de Paquete

Dur/CID: Duración del paquete/Identificación de conexión

DED*: Dirección de Enrutador de Destino

DD*: Dirección de Destino DE: Dirección de Emisión CS*: Control de Secuecia

DEE*: Dirección de Enrutador de Emisión **SCP:** Secuencia de chequeo del paquete *Pueden no estar dependiendo del tipo de mensaje

Figura 1.4: Estructura de un paquete Wi-Fi

ingles Wireless Local Area Network). Wi-Fi se enfoca en las que se refieren a las comunicaciones de radiofrecuencia con portadora de 2.4 GHz, que se incorporan en las revisiones b, g y n de la norma IEEE. IEEE 802.11 está pensado especialmente para dispositivos portátiles y móviles. La norma define a los dispositivos portátiles como aquellos que pueden ser trasladados con facilidad pero operan estáticos y los móviles se identifican por poder trabajar en movimiento [26]. La principal característica que posee este tipo de comunicación es la falta de conductores para la elaboración de la red, sin contar las conexiones entre los transceptores que emiten y reciben las señales de radiofrecuencias y los nodos, en donde la información es producida y/o consumida. En cuanto al formato del paquete de datos, el cuál se muestra en la Figura 1.4, es bastante similar al de Ethernet. En primer lugar, se envían dos bytes de control que indican el tipo de paquete a enviar. Luego siguen dos bytes que, dependiendo de la etapa de la comunicación puede indicar la duración del mensaje a transmitir o un identificador de una conexión establecida previamente. Siguen entre 6 y 18 bytes de direcciones del enrutador que recibe los datos, el nodo emisor y el destinatario. Continúan, dos bytes de control de secuencia se utilizan para fragmentar transmisiones largas. Continua un campo más para dirección que corresponde a la red emisora de 6 bytes. Todos los campos de dirección pueden variar en función del tipo de mensaje que se envía. Los últimos dos campos de la trama corresponden a la información que se quiere comunicar (hasta 2312 bytes) y un código de chequeo por redundancia cíclica de 32 bits (4 bytes).

Existen múltiples ventajas de utilizar radiofrecuencias para conectarse a la red, tales como la libertad de mover el punto de trabajo y la economía a la hora de armar redes con muchos nodos. Sin embargo, posee algunas desventajas notorias, propias del medio de propagación, que lo hacen no tan óptimo para los fines del presente trabajo. Las redes inalámbricas tiene la característica de que no son del todo confiables: posee múltiples fuentes de interferencia, ya que varias tecnologías que utilizan la misma frecuencia (Bluetooth, Zig-Bee, WUSB, microondas). A su vez, suele presentar variaciones temporales y asimetrías en las propiedades de propagación, lo que puede provocar interrupciones en la comunicación.

Ambos protocolos proporcionan una solución de conexión de redes de nivel físico y ejecutan

Figura 1.5: Esquema propuesto para implementar la comunicación

tareas de control de acceso al medio (MAC) a fin de evitar colisión en los datos, es decir, que dos dispositivos transmitan en forma simultánea e interfieran la comunicación. Sin embargo, para establecer una red, faltan componentes físicos y lógicos tales como un sistema de control enlace lógico (Logic Link Control), un sistema de direccionamiento, como el Protocolo de Internet (IP), una capa de transporte de datos, (como el protocolo TCP) y las capas de software que permiten acceder a los protocolo anteriormente mencionados.

A pesar de lo anterior, es posible establecer comunicaciones punto a punto con ambos protocolos, simplificando mucho el sistema de transmisión de datos. Sin embargo esta solución presenta un inconveniente no menor: se le quita a la PC un acceso a la red, que en la mayoría de los casos es el único. Esto no es deseable ya que la conectividad es un requisito fundamental en cualquier hogar u organización, ya sea empresarial, gubernamental, científica o de cualquier tipo.

Por su parte el protocolo USB (acrónimo de *Universal Serial Bus*), es una norma desarrollada por seis de las empresas más grandes de la industria informática, pensada y desarrollada para la conexión de teléfonos y periféricos a PCs [27]. En la versión original, USB posee conectores cableados de 4 conductores y presenta una topología de bus, es decir todos los dispositivos se conectan a un mismo circuito conductor. La conexión es manejada por una PC y solo transmite o recibe un dispositivo a la vez. Tal fue la penetración de USB en el mercado, que se transformó en una norma de facto. Actualmente es incorporada casi por defecto en casi todas las computadoras disponibles en el mercado y es necesaria a la hora de comprar e instalar periféricos.

USB presenta diferentes versiones de su norma, cada cual con una o más tasas de transmisión y señalización. La versión 1 posee dos revisiones, 1.0 fue lanzada al mercado en el año 1996 y 1.1 que se presentó en Agosto de 1998. La primera alcanza una tasa máxima de 1.5 Mbit s $^{-1}$ y la segunda hasta 12 Mbit s $^{-1}$. USB 2.0 fue presentado en Septiembre del 2000 y es capaz de transmitir a 480 Mbit s $^{-1}$. La tercera versión, USB 3.0, fue lanzada al mercado en 2011 y transmite a una tasa de 5 Gbit s $^{-1}$. Esta última versión fue revisada en julio de 2013 y en septiembre de 2017, ofreciendo 10 Gbit s $^{-1}$ y 20 Gbit s $^{-1}$ respectivamente.

Se elige para el desarrollo de este trabajo la norma ya que USB 2.0 presenta una tasa de transferencia de datos suficiente para la transmisión de imágenes. A su vez, resulta ideal para los objetivos buscados debido a encontrarse presente en la mayoría de las computadoras y no interferir en la conexión a internet de las mismas. En el Capítulo 2 se profundizarán en conceptos específicos de la norma USB.

Es posible implementar una comunicación USB completa a través de una FPGA. Sin embargo, esto sería demasiado oneroso en términos de tiempos de desarrollo y de recursos de FPGA disponibles para la implementación de otros sistemas, los cuales son el objetivo de la comunicación. Se plantea, entonces, un esquema como el que se observa en la Figura 1.5 en la cual se utiliza una interfaz externa al FPGA. La comunicación USB propiamente dicha será efectuada entre la interfaz y la PC, mientras que se plantea una comunicación diferente entre la interfaz y el FPGA. Este último, por su parte, tendrá la tarea de realizar el control de esta comunicación.

1.3. Objetivos

1.3.1. Objetivo Principal

El objetivo del presente trabajo es obtener una comunicación USB 2.0 de alta velocidad entre una PC y un FPGA.

Esta comunicación debe realizarse y documentarse de forma tal que pueda ser usado posteriormente en aplicaciones científicas desarrolladas con FPGA's.

1.3.2. Objetivos Particulares

Para la consecución del objetivo general, se deben cumplir los siguientes objetivos particulares:

- Comprender el funcionamiento del protocolo USB.
- Seleccionar los componentes a utilizar.
- Configurar los componentes seleccionados.
- Desarrollar un núcleo en VHDL que sirva de interfaz.
- Diseñar e implementar la interconexión de los componentes seleccionados.
- Verificar el sistema desarrollado.
- Desarrollar un documento que explique el modo de uso del código VHDL utilizado.

1.4. Estructura del Informe

El presente informe se divide en 2 bloques principales: uno referido al desarrollo del sistema y el siguiente a su forma de uso y verificación.

Dentro del bloque referido al desarrollo del sistema, se encuentran los primeros 5 capítulos:

- 1. **Introducción:** En este capítulo se intenta exponer lo que motiva el presente trabajo, la propuesta que da solución a la motivación, el objetivo y alcance que el trabajo busca y la estructura del mismo. Se brindan, además, conceptos importantes de la norma USB que son significativos para los objetivos de este trabajo.
- 2. Elección de las herramientas para la realización de la interfaz: Se describe aquí todas las herramientas de las que se vale este trabajo para cumplir con os objetivos propuestos.
- 3. Programación y configuración de la interfaz PC-FPGA: Se presenta la arquitectura, configuración y código desarrollado para el presente trabajo, como así también las herramientas específicas provistas por el fabricante, que facilitan el desarrollo.
- 4. ??: Este capítulo detalla lo desarrollado para implementar la comunicación entre la FPGA y la interfaz. Se expone una maquina de estados descrita en VHDL y sintetizada en FPGA. También se describe un circuito impreso realizado para conectar ambas partes.
- 5. ??: Se desarrolla las tareas desarrolladas a fin de realizar las depuraciones del sistema y la verificación del cumplimiento de las especificaciones.

1.5. Sumario del capítulo

En el presente capítulo se expuso la necesidad de la elaboración de un sistema de comunicación que permita la transferencia de datos entre una PC y un FPGA para ser utilizados por sistemas implementados con este último dispositivo. Se planteó una solución utilizando una interfaz comercial que sirve de intermediario entre estas herramientas y se brindó una justificación del empleo del protocolo USB 2.0 de alta velocidad como la implementación óptima del sistema. Se presentó también la estructura del presente informe y se dieron algunos detalles relevantes para este trabajo de la norma USB.

1. Introducción

Bibliografía

- [1] R. Pallàs-Areny and J. G. Webster, Sensors and signal conditioning. Wiley-Interscience, 2001.
- [2] D. M. Considine, Encyclopedia of instrumentation and control. McGraw-Hill, Inc., 1971.
- [3] A. Perez Garcia, "Curso de instrumentación," p. 261, 2008.
- [4] J. Fraden, Handbook of modern sensors: physics, designs, and applications. New York, NY: Springer New York, 2010.
- [5] E. Slawiñski and V. Mut, Humanos y máquinas inteligentes: conocimiento educativo sobre el comportamiento interno de robots que actúan juno y para el hombre. Saarbrücken, Alemania: Editorial Académica Española, 2011.
- [6] K. Ogata, Modern control engineering. Aeeizh, 2002.
- [7] G. Binnig and H. Rohrer, "Scanning tunneling microscopy," *Surface Science*, vol. 126, pp. 236–244, mar 1983.
- [8] R. Turchetta, K. R. Spring, and M. W. Davidson, "Digital Imaging in Optical Microscopy Introduction to CMOS Image Sensors," (accessed in July 2019).
- [9] S. Mendis, S. Kemeny, and E. Fossum, "CMOS active pixel image sensor," *IEEE Transactions on Electron Devices*, vol. 41, pp. 452–453, mar 1994.
- [10] C. Hu-Guo, J. Baudot, G. Bertolone, A. Besson, A. S. Brogna, C. Colledani, G. Claus, R. D. Masi, Y. Degerli, A. Dorokhov, G. Doziere, W. Dulinski, X. Fang, M. Gelin, M. Goffe, F. Guilloux, A. Himmi, K. Jaaskelainen, M. Koziel, F. Morel, F. Orsini, M. Specht, Q. Sun, I. Valin, and M. Winter, "CMOS pixel sensor development: a fast read-out architecture with integrated zero suppression," *Journal of Instrumentation*, vol. 4, pp. P04012–P04012, apr 2009.
- [11] J. Baudot, G. Bertolone, A. Brogna, G. Claus, C. Colledani, Y. Değerli, R. De Masi, A. Dorokhov, G. Dozière, W. Dulinski, M. Gelin, M. Goffe, A. Himmi, F. Guilloux, C. Hu-Guo, K. Jaaskelainen, M. Koziel, F. Morel, F. Orsini, M. Specht, I. Valin, G. Voutsinas, and M. Winter, "First test results of MIMOSA-26, a fast CMOS sensor with integrated zero suppression and digitized output," *IEEE Nuclear Science Symposium Conference Record*, pp. 1169–1173, 2009.

- [12] M. Pérez, J. Lipovetzky, M. Sofo Haro, I. Sidelnik, J. J. Blostein, F. Alcalde Bessia, and M. G. Berisso, "Particle detection and classification using commercial off the shelf CMOS image sensors," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 827, pp. 171–180, aug 2016.
- [13] M. Pérez, J. J. Blostein, F. A. Bessia, A. Tartaglione, I. Sidelnik, M. S. Haro, S. Suárez, M. L. Gimenez, M. G. Berisso, and J. Lipovetzky, "Thermal neutron detector based on COTS CMOS imagers and a conversion layer containing Gadolinium," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 893, pp. 157–163, jun 2018.
- [14] C. L. Galimberti, F. Alcalde Bessia, M. Perez, M. G. Berisso, M. Sofo Haro, I. Sidelnik, J. Blostein, H. Asorey, and J. Lipovetzky, "A Low Cost Environmental Ionizing Radiation Detector Based on COTS CMOS Image Sensors," in 2018 IEEE Biennial Congress of Argentina (ARGENCON), pp. 1–6, IEEE, jun 2018.
- [15] T. Hizawa, J. Matsuo, T. Ishida, H. Takao, H. Abe, K. Sawada, and M. Ishida, "32 × 32 pH image sensors for real time observation of biochemical phenomena," *TRANSDUCERS* and *EUROSENSORS* '07 4th International Conference on Solid-State Sensors, Actuators and Microsystems, pp. 1311–1312, 2007.
- [16] ON Semiconductor, "NOIP1SN0300A Global Shutter CMOS Image Sensors," 2014.
- [17] N. Ida, Engineering Electromagnetics. Cham: Springer International Publishing, 3th ed., 2015.
- [18] J. F. Wakerly, Digital Design: principles and practices, vol. 1. Pearson, 1999.
- [19] M. Perez, F. Alcalde, M. S. Haro, I. Sidelnik, J. J. Blostein, M. G. Berisso, and J. Lipovetzky, "Implementation of an ionizing radiation detector based on a FPGA-controlled COTS CMOS image sensor," in 2017 XVII Workshop on Information Processing and Control (RPIC), pp. 1–6, IEEE, sep 2017.
- [20] R. Biswas, An Embedded Solution for JPEG 2000 Image Compression Based Back-end for Ultrasonography System. PhD thesis, IIT, Kharagpur, 2018.
- [21] T. Yanagisawa, T. Ikenaga, Y. Sugimoto, K. Kawatsu, M. Yoshikawa, S.-i. Okumura, and T. Ito, "New NEO search technology using small telescopes and FPGA," in *2018 IEEE Aerospace Conference*, vol. 2018-March, pp. 1–7, IEEE, mar 2018.
- [22] H. H. Goldstine and A. Goldstine, "The Electronic Numerical Integrator and Computer (ENIAC)," *Mathematical Tables and Other Aids to Computation*, vol. 2, p. 97, jul 1946.
- [23] S. of Cable Telecommunications Engineers, American National Standard ANSI/SCTE 07 2006. Digital Tansmission Standard for Cable Television. Society of Cable Telecommunications Engineers, Inc., 2006.
- [24] I. Micron Technology, "1 / 2-Inch Megapixel CMOS Digital Image Sensor MT9M001C12STM (Monochrome)," pp. 1–35, 2004.

- [25] IEEE Computer Society, IEEE Standard for Ethernet, vol. 2018. 2018.
- [26] IEEE Computer Society, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications IEEE Computer Society Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, vol. 2012. 2016.
- [27] Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC, and Philips, *Universal Serial Bus Specification*, vol. Revision 2.0. 2000.
- [28] "Usb hardware." https://en.wikipedia.org/wiki/USB_hardware. Ingreso: 8 de agosto del 2019.
- [29] T. Riihonen, Desing and analysis of duplexing Modes and Forwarding Protocols for OFDM(A) Relay Links. PhD thesis, 2015.
- [30] Cypress Semiconductor, "EZ-USB ® Technical Reference Manual," tech. rep., 2014.
- [31] Cypress Semiconductor, "CY3684/CY3684 EZ-USB Development Kit User Guide," tech. rep., 2014.
- [32] libusb, "libusb 1.0 https://libusb.info/ acceso: 04/11/2019."