Integrated Modeling for Sustainable Development Jack Reid

Integrated Modeling Project

Goal: Develop a 4-part model to inform sustainable development policy-making and valuation of remote observation data

Steps

1. Understand the situation

Where are the mangroves and what pressures are they under?

What impacts do the mangroves have on the city?

What decisions are being made and how are they being made?

2. Develop model components

Remote observation simulation

Mangrove growth/decay

Societal impact

Human decision-making

3. Run workshops using integrated model with policymakers

Direct Benefits

- Improve decision-making
- Facilitate quantification of remote sensing value
- Assist design of satellites

Indirect Benefits

- Reduce burden-of-entry
- Allow end-users to specify and vocalize "gaps"
- Raise awareness of value of remote sensing data

Email: jackreid@mit.edu

Project Webpage: https://www.media.mit.edu/people/jackreid/overview/

IRS-P2

"National Natural Resources Management system - an integrated resource management system aimed at optimal utilisation of country's natural resources by a proper and systematic inventory of the resource availability using remote sensing data in conjunction with conventional techniques"

NigeriaSat-2

"Nigeria Sat-2 is designed with some key Nigerian objectives in mind:

- To support food supply security, agricultural and geology applications
- To support mapping and security applications
- To provide continuity and compatibility with the existing NigeriaSat-1 system"

Kasturirangan, K. (1995). Remote Sensing in India-Present Scenario and Future Thrusts. Photonirvachak Journal of the Indian Society of Remote Sensing (Vol. 23).

Da, A., Curiel, S., Carrel, A., Cawthorne, A., Gomes, L., Sweeting, M., & Chizea, F. (2012). Commissioning of the NigeriaSat-2 High Resolution Imaging Mission. In Small Satellite Conference.

Logan, UT: AIAA/Utah State University.

Landsat 8

- Pixel Size: 15m/30m/100m (panchromatic/multispectral/thermal)
- Scenes/Day: 700
- Scene Width: 185 km (pushbroom)
- Overpass Frequency: Every 16 Days (8 with Landsat 7)
- Spectral Frequencies: Visual and Infrared (Both Short and Long)

Emergency	Phase	Spatial Resolution	Time Resolution
Floods	Monitoring	30-100 m	12 h
	Management	10-100 m	3-12 h
Landslides	Monitoring	30-250 m	1 d
	Management	10-100 m	3-12 h
Earthquakes	Management	1-100 m	3-12 h
Volcanoes	Monitoring	30 m	1 d
	Management	10-30 m	6 h-1 d
Fires	Monitoring	100 m	1-3h
	Management	30 m	0.25 h
Sea pollution	Monitoring	1 km	1 d
	Management	100 m	6-12 h
Border monitoring	Monitoring	1-10 m	3 h
Humanitarian Emergencies	Management	1-10 m	1-3h

#	User requirements	Sensor requirements		
		Spatial resolution	Spectral resolution	Temporal resolution
1	Agriculture, climate, environ.	3–5 m	Multi-spectral	Montly, summer/winter
2	Environmental Impact Assessment, Farmer Settlement,			
	housing, planning and urban planning, Border Monitoring	0.6–1 m	PAN, RGB	p.a., every 1-2 yr
3	Disaster monitoring	1-250 m	Pan, VIS, NIR, MIR, TIR	2 per day (night and day)
4	Land use/cover mapping	0.5 - 5 m	Pan	1 per 2 days
5	Water management, Land use and Land care	10 m	Multi-spectral	bi-annual, quarterly
6	Managed Agriculture	< 3 m / < 40 m	VIS, NIR/-SWIR	1 day-2 weeks/1 weeks-6 months
7	Map food vulnerability	10 m	VIS, NIR	1 month
8	Water quality monitoring	Unsure	Hyperspedctra	Bi-annual, summer/winter
9	Water resources assessment	$1-10\mathrm{m}$	VIS, NIR	1 per week
10	Drought status, disaster, global	250 m-1 km	Multi-spectral, IR	1 h daily
11	Land use and land care, water management, food security	20-30 m	Multi-spectral, IR	Quarterly, summer/winter
12	Mineral, oil and gas exploration	1-30 m/60 m	Pan, VIS, NIR, SWIR, TIR	1 per 6 month
13	Fishing	10 m/60 m	VIS, NIR, MIR/TIR	1-3 days/1-3 days
14	Peace keeping missions	< 1 m	Pan, VIS, NIR, TIR	1 per day

Santilli, G., Gessini, P., & Vendittozzi, C. (2018). Remote Sensing based on CubeSats: is there any added value? In *United Nations/Brazil Symposium on Basic Space Technology: "Creating Novel Opportunities with Small Satellite Space Missions"*. United National Office of Outer Space Affairs.

Santilli, G., Vendittozzi, C., Cappelletti, C., Battistini, S., & Gessini, P. (2018). CubeSat constellations for disaster management in remote areas. *Acta Astronautica*, 145, 11–17. https://doi.org/10.1016/J.ACTAASTRO.2017.12.050

Mostert, S., & Jacobs, M. (2008). ARM constellation—Establishing a regional remote sensing asset. Acta Astronautica, 63, 221–227. https://doi.org/10.1016/j.actaastro.2007.12.030

Observing System Simulation Experiment

S. V. Kumar et al., "Land information system: An interoperable framework for high resolution land surface modeling," Environ. Model. Softw., vol. 21, no. 10, pp. 1402–1415, 2006.

Water Hyacinth Vulnerability in April, November, December of 2018

Scale	Water Hyacinth Presence	Population Density	Land Use	Waterways
1	0-3 pixels/900 π m ²	0-23 people/100m ²	All other categories	Everything else
2	$3-15$ pixels/ 900π m ²	23-102 people/100m ²	Settlements, Swamp Forest	
3 (High Vulnerability)	$15-29$ pixels/ 900π m ²	102-405 people/100m ²	Irrigated Agriculture, Wetland	Inland Waterways

Jack Reid

Friedman 1984

Hendrick 1966

Jack Reid

Longer term...

We would like there to be a standard and a library of submodels

- Develop a few case study models
- Develop a standard set of APIs
- Develop a library of submodels
- Expand to other technologies

Google Earth Engine

Google Earth Engine

Pros

Free

Fast

Plenty of pre-loaded data

Cons

Some data caps
Cumbersome/buggy

Mangrove Classification

Training Data

Sentinel or Landsat Imagery

Classified Mangroves

Mangrove Classification

Global Mangrove Watch - 2016

Classification - Sentinel 2018

Mangrove Classification

Google Maps - Satellite View

Classification - Sentinel 2018

Aside on NDVI

$$NDVI = \frac{NIR - Red}{NIR + Red}$$

Chart from MidOpt

Mangrove Health Change Tracking

Median NDVI - Reference Period

Reference Period: August 1999 - August 2001 Observation Period: September 2001 - September 2018

$$Mean Anomaly = \frac{\sum_{i=0}^{n} (NDVI_i - NDVI_{Ref})}{n}$$

Mangrove Health Change Tracking

NDVI Mean Anomaly

NDVI Mean Anomaly < -0.1

Full maps available at: https://jackreid.users.earthengine.app/view/jackreidrio

Earth Observation Data Application Levels

