

For the Change Makers

Advanced Programming for Data Science

Week 9: Model Building and Tuning Information Systems and Management Warwick Business School

Model Improvement

Improving the model

- Sources of errors.
 - Noise

Irreducible error caused by unobserved factors.

Variance

Variability of model prediction.

Bias

Difference between the expected prediction and the actual value.

Trade-off between bias and variance

An Introduction to Statistical Learning by Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani

Bias and Variance Trade-off

Assume the true relationship between input X and output Y is:

$$Y = f(X) + \varepsilon$$

- The estimated model from the sample data is $f^*(X)$.
- The expected squared prediction error for a given x is:

$$Error(x) = E[(f^*(x) - f(x))^2]$$

This can be decomposed into bias and variance components:

$$Error(x) = (E[f^*(x)] - f(x))^2 + E[(f^*(x) - E[f^*(x)])^2]$$

Bias²

Variance

Underfitting

- You model cannot even fit the training dataset well.
 - has high bias
 - often due to oversimplified model, too many assumptions.
- To improve:
 - More features
 - More complex

overfitting

- You model fit training dataset too well, but poorly on testing dataset.
 - Probably high variance.
 - Overcomplicated model, too flexible.
- To improve:
 - More data
 - Less complex <- Regularization

Underfitting vs. Overfitting

https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html

Improving Model

- Data
- Feature
- Assumption

Improving Decision Tree

DecisionTreeClassifier

class sklearn.tree.DecisionTreeClassifier(*, criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class weight=None, ccp_alpha=0.0)

Entropy in Information Theory

Information theory

"Mathematical Theory of Communication"

- 1. Shannon Limit
- 2. Architecture of Communication Systems
- 3. Digital Representation (bit: binary digit)
- 4. Entropy

Claude Shannon https://en.wikipedia.org/wiki/Claude_Shannon

Splitting method 1: Entropy

- Quantifying information
 - how much **surprise** there is in an event
 - Rare event: low probability and high information
 - Common event: high probability and low information
 - information(x) = -log(p(x))
 - Entropy
 - measure of uncertainty
 - how much information there is in a random variable

 $H(X) = -\sum_{i=1}^{n} p(x_i) \log p(x_i)$

Warwick Business School

Splitting method 1: Entropy

- Information gain
- Entropy at a given node t:

$$Entropy(t) = -\sum_{j=1}^{n} p_{j} \cdot log_{2}p_{j}$$

- p_i is the relative frequency of class j at node t
- Entropy_{max} = $\log_2 n$
 - Records are equally distributed among all classes
 - Impure
- Entropy_{min} = 0
 - All records belong to one class
 - Pure
- Also known as
 - Information Gain
 - Uncertainty
 - Level of randomness

Splitting method 1: Entropy

• Quality of split at node p into k partitions (children) is

$$GAINsplit = Entropy(p) - (\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i))$$

- n_i = # of records in child i
- n = # of records at parent node p
- Choose the split that maximises gain
- Disadvantage
 - Tends to prefer splits that result in large number of partitions, each pure but small.

Splitting method 2: Gini

- Gini impurity
- how often a randomly chosen element from the set would be incorrectly labelled if it was randomly labelled according to the distribution of labels in the subset.

$$G = \sum_{i=1}^{n} p(i) \cdot (1 - p(i))$$

Gini coefficient (https://en.wikipedia.org/wiki/Gini coefficient)

Gini: Iris example

Gini: Iris example

Gini impurity

- how often a randomly chosen element from the set would be incorrectly labelled if it was randomly labelled according to the distribution of labels in the subset.
- Original dataset: 5 5

A perfect split

OSubset 1: 5 Impurity: 0

oSubset 2: 5 Impurity: 0

A imperfect split

oSubset 1: 4 Impurity: 0

oSubset 2: 1 5 Impurity: 0.278

Quality of Splitting

- Weighted sum of impurity of each branch by the size of subset.
- A perfect split
 - Weighted impurity: 0.5*0 + 0.5*0 = 0
 - Reduction: 0.5 0 = 0.5
- An imperfect split
 - Weighted impurity: 0.4*0 + 0.6*0.278 = 0.167
 - Reduction: 0.5 0.167 = 0.333

Maximize the reduction: Gini Gain

Entropy vs. Gini

- They will give you almost the same results in most cases.
 - Gini focuses more on misclassification.
 - Entropy works better with highly skewed data.
- Gini is normally preferred, also the default for Sklearn's DecisionTreeClassifier, due to computational intensity.

$$E = -\sum_{j=1}^{n} p_j \cdot \log_2 p_j$$

$$G = \sum_{i=1}^{n} p(i) \cdot (1 - p(i))$$

Splitter

• Best vs. random

Assumption and Model Complexity: Tree Pruning

- max_depth & max_features
- min_samples_leaf & min_samples_split
- min_impurity_decrease

