Exercise 8.1. Let $K \subseteq L$ be a splitting field extension for some $f \in K[t] \setminus K$. Then the following are equivalent:

- (i) f has a repeated root over L;
- (ii) $\exists \alpha \in L \text{ s.t. } 0 = f(\alpha) = (\mathcal{D}f)(\alpha);$
- (iii) $\exists g \in K[t]$, $\deg g \ge 1$ s.t. g divides both f and $\mathcal{D}f$.

MA 45401-H01 – Galois Theory Honors Homework 8 (Apr 4)

Spring 2025 Page 2

Exercise 8.2. Let K be a field, $\operatorname{char}(K) = p > 0$ and $f \in K[t^p]$ is an irreducible polynomial over K. Prove that f is inseparable.

Josh Park MA 45 Prof. Shkredov

MA 45401-H01 – Galois Theory Honors Homework 8 (Apr 4)

Spring 2025 Page 3

Exercise 8.3. Let K be a field, $\operatorname{char}(K) = p > 0$ and $f \in K[t^p]$ is an irreducible polynomial over K. Prove that there is $g \in K[t]$ and a non-negative n such that $f(t) = g(t^{p^n})$ and g is an irreducible and separable polynomial.

 \Box

MA 45401-H01 – Galois Theory Honors Homework 8 (Apr 4)

Spring 2025 Page 4

Exercise 8.4. Prove that $\prod_{\alpha \in \mathbb{F}_q^*} \alpha = -1$

$\begin{array}{c} MA~45401\text{-}H01-Galois~Theory~Honors}\\ Homework~8~(Apr~4) \end{array}$

Spring 2025 Page 5

Exercise 8.5.1. Let $\alpha \in \mathbb{F}_q$ and $\alpha = \beta - \beta^p$ for some $\beta \in \mathbb{F}_q$. Prove that $\text{Tr}(\alpha) = 0$.

MA 45401-H01 – Galois Theory Honors Homework 8 (Apr 4)

Spring 2025 Page 6

Exercise 8.5.2. Let $\alpha \in \mathbb{F}_q$ and $\alpha = \gamma^{1-p}$ for some nonzero $\gamma \in \mathbb{F}_q$. Prove that $Norm(\alpha) = 1$.

$\begin{array}{c} MA~45401\text{-}H01-Galois~Theory~Honors} \\ Homework~8~(Apr~4) \end{array}$

Spring 2025 Page 7

Exercise 8.5.3. Let $\alpha \in \mathbb{F}_p \subseteq \mathbb{F}_{p^n}$. Prove that $\mathrm{Tr}(\alpha) = n\alpha$.

$\begin{array}{c} MA~45401\text{-}H01-Galois~Theory~Honors\\ Homework~8~(Apr~4) \end{array}$

Spring 2025 Page 8

Exercise 8.5.4. Let $\alpha \in \mathbb{F}_p \subseteq \mathbb{F}_{p^n}$. Prove that $\text{Norm}(\alpha) = \alpha^n$.