Espaces vectoriels de dimension finie

Solution 1

- 1. C'est faux en général! Par exemple pour a = b = 0, on a $1 \cdot a + 1 \cdot b = 0$ mais $(1, 1) \neq (0, 0)$!
- 2. C'est faux en général! Par exemple si $a = 0, \forall b \in E, (a, b)$ est liée! L'implication est vraie si on a de plus l'hypothèse $a \neq 0$.
- 3. C'est faux en général! Par exemple si $a = b = 0, \forall c \in E, (a, b, c)$ est liée!

Solution 2

Notons respectivement u, v et w les vecteurs suivants,

$$(m,1,1)$$
, $(2m,-1,m)$, $(1,5,2)$.

Appliquons le critère usuel en recherchant les solutions réelles x, y, z du système suivant

$$yu + zv + xw = 0,$$

ie, sous forme matricielle,

$$\left[\begin{array}{ccc} 1 & m & 2m \\ 5 & 1 & -1 \\ 2 & 1 & m \end{array}\right]$$

$$\left[\begin{array}{ccc} 5 & 1 & -1 \\ 2 & 1 & m \\ 1 & m & 2m \end{array}\right] \ L_1 \leftarrow L_2 \leftarrow L_3 \leftarrow L_1$$

puis par les opérations $L_2 \leftarrow 5L_2 - 2L_1$ et $L_3 \leftarrow -5L_3 + L_1$,

$$\begin{bmatrix} 5 & 1 & -1 \\ 0 & 3 & 5m+2 \\ 0 & 1-5m & -1-10m \end{bmatrix}$$

et par l' opération $L_3 + \frac{1}{3}(5m-1)L_2$,

$$\begin{bmatrix}
5 & 1 & -1 \\
0 & 3 & 5m+2 \\
0 & 0 & \frac{5}{3}(5m^2 - 5m - 1)
\end{bmatrix}$$

Le système est donc libre si et seulement si

$$5m^2 - 5m - 1 \neq 0$$

c'est-à-dire,

$$m \neq \frac{5 \pm 3\sqrt{5}}{10}.$$

Solution 3

Appliquons le critère usuel : soient a, b et $c \in \mathbb{R}$ tels que

$$\forall x > 0, \ ae^x + bx^2 + c \ln(x) = 0.$$

On a pour tout x strictement positif,

$$a + bx^2e^{-x} + c\ln(x)e^{-x} = 0$$
,

et faisant tendre x vers $+\infty$, d'après les croissances comparées,

$$a = 0$$
.

On a pour tout x strictement positif,

$$b + c \frac{\ln(x)}{x^2} = 0,$$

et faisant tendre x vers $+\infty$, d'après les croissances comparées,

$$b = 0$$
.

On a alors c = 0 car la fonction logarithme est non nulle.

Solution 4

Appliquons la méthode du pivot de Gauss de détermination du rang.

$$\begin{bmatrix} 1 & 1 & a \\ 1 & a & 1 \\ a & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & a \\ 0 & a-1 & 1-a \\ 0 & 1-a & 1-a^2 \end{bmatrix}$$

par $L_2 \leftarrow L_2 - L_1$ et $L_3 \leftarrow L_3 - \alpha L_1.$ Puis, par $L_3 \leftarrow L_3 + L_2,$ on aboutit à

$$\begin{bmatrix} 1 & 1 & a \\ 0 & a-1 & 1-a \\ 0 & 0 & 2-a^2-a \end{bmatrix}, \text{ où } 2-a-a^2=(2+a)(1-a).$$

► Si a = 1 ou a = -2, le rang de la famille n'est pas égal à trois donc la famille est liée.

Si $a \neq 1$ et $a \neq -2$, le rang vaut trois et la famille est donc libre.

La famille est donc libre si et seulement si $a \notin \{-2, 1\}$.

Solution 5

1. Le système

$$\begin{cases} \lambda_1 + 2\lambda_2 = a \\ 2\lambda_1 + \lambda_2 = b \\ 3\lambda_1 = c \end{cases}$$

a une solution si, et seulement si, a-2b+c=0. Le couple (u_1,u_2) n'engendre donc pas \mathbb{R}^3 .

Remarque. On démontrera, en étudiant la théorie de la dimension, qu'une famille génératrice de \mathbb{R}^n compte *au moins n* vecteurs, ce qui permet de répondre à cette question sans calcul.

2. Le système

$$\begin{cases} \lambda_1 & + 3\lambda_3 = a \\ \lambda_1 + \lambda_2 + 2\lambda_3 = b \\ \lambda_1 + 2\lambda_2 - \lambda_3 = c \end{cases}$$

possède une unique solution, quel que soit le second membre (a, b, c). (Il suffit de réduire le système sous forme triangulaire pour le constater.)

Par conséquent, la famille (u_1, u_2, u_3) est une famille génératrice (et même une base) de \mathbb{R}^3 .

- **3.** Famille génératrice (et même base) de \mathbb{R}^3 .
- 4. Le système

$$\lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3 = (a, b, c)$$

possède une solution si, et seulement si, a + b = 0, donc la famille (u_1, u_2, u_3) n'engendre pas \mathbb{R}^3 .

5. Le système

$$\lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3 = (a, b, c)$$

possède une solution si, et seulement si, -a + b + c = 0, donc la famille (u_1, u_2, u_3) n'engendre pas \mathbb{R}^3 .

6. Le système

$$\sum_{k=1}^{4} \lambda_k u_k = (a, b, c)$$

possède une infinité de solutions, quel que soit le second membre, donc la famille (u_1, u_2, u_3, u_4) engendre \mathbb{R}^3 .

Solution 6

1. Comme (e_1, e_2) est libre, $u \in \text{vect}(e_1, e_2)$ si et seulement si (e_1, e_2, u) est liée. Pivotons...

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & -2 & 3 & -4 \\ x & 1 & y & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & 0 & -4 \\ 0 & 1 - 2x & y - 3x & 1 - 4x \end{bmatrix}$$

par $L_2 \leftarrow L_2 - L_1$ et $L_3 \leftarrow L_3 - xL_1$. Puis

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & 0 & -4 \\ 0 & 0 & y - 3x & -3 + 4x \end{bmatrix}$$

par $L_3 \leftarrow (L_3 + (1 - 2x)L_2)/4$. Ainsi

$$(x, 1, y, 1) \in \text{vect}(e_1, e_2)$$

si et seulement si

$$y - 3x = 0$$
, $-3 + 4x = 0$,

ie

$$(x,y) = \left(\frac{3}{4}, \frac{9}{4}\right).$$

2. Comme (e_1, e_2) est libre, $u \in \text{vect}(e_1, e_2)$ si et seulement si (e_1, e_2, u) est liée. Pivotons...

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & -2 & 3 & -4 \\ x & 1 & 1 & y \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & 0 & -4 \\ 0 & 1 - 2x & 1 - 3x & y - 4x \end{bmatrix}$$

par $L_2 \leftarrow (L_2 - L_1)/4$ et $L_3 \leftarrow L_3 - xL_1$. Puis

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & 0 & -4 \\ 0 & 0 & 1 - 3x & y + 4x - 4 \end{bmatrix}$$

par $L_3 \leftarrow (L_3 + (1 - 2x)L_2)/4$. Ainsi

$$(x, 1, 1, y) \in \text{vect}(e_1, e_2)$$

si et seulement si

$$1 - 3x = 0$$
, $y + 4x - 4 = 0$,

ie

$$(x,y) = \left(\frac{1}{3}, \frac{8}{3}\right).$$

Solution 7

Soient $(f_{a_1}, f_{a_2}, \dots, f_{a_n})$ une sous-famille finie de $(f_a)_{a \in \mathbb{R}}$ (les a_i sont donc distincts deux à deux) et $(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$ tels que $\sum_{i=1}^n \lambda_i f_{a_i} = 0$. On peut supposer $a_1 < a_2 < \dots < a_n$ sans perte de généralité. Supposons qu'il existe $i \in [1, n]$ tel que $\lambda_i \neq 0$ et posons alors $j = \max\{i \in [1, \lambda_i \neq 0]\}$. Alors $\sum_{i=1}^n \lambda_i f_{a_i} \sim \lambda_j f_{a_j}$. D'où $\lambda_j f_{a_j} \sim 0$, ce qui est absurde. C'est donc que pour tout $i \in [1, n]$, $\lambda_i = 0$. La famille $(f_{a_1}, \dots, f_{a_n})$ est donc libre.

On en déduit que la famille $(f_a)_{a \in \mathbb{R}}$ est libre.

On en déduit que la famille $(f_a)_{a \in \mathbb{R}}$ est libre.

Solution 8

Soient $(f_{a_1}, f_{a_2}, \dots, f_{a_n})$ une sous-famille finie de $(f_a)_{a \in \mathbb{R}}$ (les a_i sont donc distincts deux à deux) et $(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$ tels que $\sum_{i=1}^n \lambda_i f_{a_i} = 0$. Supposons qu'il existe $j \in [1, n]$ tel que $\lambda_i \neq 0$. Alors $\sum_{\substack{1 \leq i \leq n \\ i \neq j}} \lambda_i f_{a_i} = -\lambda_j f_{a_j}$. Le membre de gauche est dérivable en a_i alors que le membre de droite ne l'est pas d'où une contradiction. C'est donc que pour tout $i \in [1, n]$, $\lambda_i = 0$. La famille $(f_{a_1}, \dots, f_{a_n})$ est donc libre.

1. Soit $(m, n) \in (\mathbb{N}^*)^2$. Si m = n, alors

$$\int_0^{2\pi} f_m(t) f_n(t) dt = \int_0^{2\pi} \sin^2(mt) dt = \int_0^{2\pi} \frac{1}{2} (1 - \cos(2mt)) dt = \pi$$

Si $m \neq n$

$$\int_0^{2\pi} f_m(t) f_n(t) dt = \int_0^{2\pi} \sin(mt) \sin(nt) dt = \int_0^{2\pi} \frac{1}{2} (\cos((m-n)t) - \cos((m+n)t)) dt = 0$$

2. Soit $(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$ tel que $\sum_{i=1}^n \lambda_i f_i = 0$. Alors pour tout $j \in [1, n]$

$$\sum_{i=1}^{n} \int_{0}^{2\pi} \lambda_i f_i(t) f_j(t) dt = 0$$

et donc $\lambda_j = 0$ d'après la première question. La famille (f_1, \dots, f_n) est donc libre. On en déduit que la famille $(f_n)_{n \in \mathbb{N}^*}$ est libre.

Solution 10

Soit $(a, b, c) \in \mathbb{Q}^3$ tel que $a + b\sqrt{2} + c\sqrt{3} = 0$.

Alors $(a + b\sqrt{2})^2 = (-c\sqrt{3})^2$ et donc $a^2 + 2b^2 + 2ab\sqrt{2} = 3c^2$. On en déduit que $ab\sqrt{2}$ est rationnel et donc que ab = 0 car $\sqrt{2}$ est irrationnel.

Si b=0, alors $a+c\sqrt{3}=0$ et donc $c\sqrt{3}$ est rationnel puis que c=0 car $\sqrt{3}$ est irrationnel. Finalement, on a également a=0. Ainsi a=b=c=0 dans ce cas.

Si a = 0, alors $b\sqrt{2} + c\sqrt{3} = 0$ et donc b = c = 0 car $\sqrt{\frac{3}{2}}$ et $\frac{2}{3}$ sont irrationnels. On a également a = b = c = 0 dans ce cas.

On a donc a = b = c = 0 dans tous les cas, ce qui prouve que $(1, \sqrt{2}, \sqrt{3})$ est une famille libre du \mathbb{Q} -espace vectoriel \mathbb{R} .

Solution 11

On remarque que $f = \cos(a)\sin + \sin(a)\cos$, $g = \cos(b)\sin + \sin(b)\cos$ et $h = \cos(c)\sin + \sin(c)\cos$. Ainsi $\operatorname{vect}(f,g,h) \subset \operatorname{vect}(\sin,\cos)$. Puisque la famille (\sin,\cos) est libre, dim $\operatorname{vect}(\sin,\cos) = 2$ puis $\operatorname{rg}(f,g,h) \leq 2$. De plus, $\operatorname{rg}(f,g,h) \geq 1$ car f est non nulle. Ainsi $\operatorname{rg}(f,g,h)$ vaut 1 ou 2.

Supposons que $\operatorname{rg}(f,g,h)=1$. Alors $\operatorname{vect}(f)$ et $\operatorname{vect}(f,g,h)$ ont même dimension et $\operatorname{vect}(f)\subset\operatorname{vect}(f,g,h)$ donc $\operatorname{vect}(f,g,h)=\operatorname{vect}(f)$. On en déduit qu'il existe $(\lambda,\mu)\in\mathbb{R}^2$ tel que $g=\lambda f$ et $h=\mu f$ ou encore

$$\cos(b)\sin + \sin(b)\cos = \lambda\cos(a)\sin + \lambda\sin(b)\cos$$
$$\cos(c)\sin + \sin(c)\cos = \mu\cos(a)\sin + \mu\sin(b)\cos$$

Puisque la famille (sin, cos) est libre, $\cos(b) = \lambda \cos(a)$ et $\sin(b) = \lambda \sin(a)$. Ainsi, $\cos(b) \sin(a) - \sin(b) \cos(a) = 0$ i.e. $\sin(a - b) = 0$ ou encore $a \equiv b[\pi]$. On montre de même que $a \equiv c[\pi]$.

Réciproquement, si $a \equiv b[\pi]$ et $a \equiv c[\pi]$, alors $g = \pm f$ et $h = \pm f$ donc vect(f, g, h) = vect(f) puis rg(f, g, h) = 1. Finalement, rg(f, g, h) = 1 si $a \equiv b \equiv c[\pi]$ et rg(f, g, h) = 2 sinon.

Solution 12

- 1. La somme des vecteurs de la famille est nulle : cette famille est donc liée.
- 2. Posons $u_k = v_k + v_{k+1}$ pour $n \in [1, n]$ en convenant que $v_{n+1} = v_1$. Alors, si n est pair

$$\sum_{k=1}^{n} (-1)^{k} u_{k} = \sum_{k=1}^{n} (-1)^{k} v_{k} - (-1)^{k+1} v_{k+1} = (-1)^{n} v_{n+1} - v_{1} = 0_{E}$$

Supposons maintenant n impair. Soit alors $(\lambda_1, \dots, \lambda_n)$ tel que $\sum_{k=1}^n \lambda_k u_k = 0_E$. Alors, en convenant que $\lambda_0 = \lambda_n$

$$\sum_{k=1}^{n} (\lambda_k + \lambda_{k-1}) v_k = 0_{\mathbf{E}}$$

Par liberté de la famille (v_1, \dots, v_n) , $\lambda_k = -\lambda_{k-1}$ pour tout $k \in [1, n]$. On en déduit notamment que $\lambda_n = (-1)^n \lambda_0$ et donc $\lambda_n = 0$ puisque n est impair et $\lambda_0 = 0$. Comme $\lambda_k = -\lambda_{k-1}$ pour tout $k \in [1, n]$, $(\lambda_1, \dots, \lambda_n) = (0, \dots, 0)$ de sorte que la famille (u_1, \dots, u_n) est libre.

3. Soit $(\lambda_1,\ldots,\lambda_n)$ tel que $\sum_{k=1}^n \lambda_k w_k = 0_E$. Par inversion de l'ordre de sommation,

$$\sum_{k=1}^{n} \lambda_{k} w_{k} = \sum_{k=1}^{n} \sum_{j=1}^{k} \lambda_{k} w_{j} = \sum_{j=1}^{n} \sum_{k=j}^{n} \lambda_{k} w_{j}$$

En posant $\mu_j = \sum_{k=j}^n \lambda_k$, on a donc $\sum_{j=1}^n \mu_j w_j = 0_E$ et donc $(\mu_1, \dots, \mu_n) = (0, \dots, 0)$ par liberté de la famille (u_1, \dots, u_n) . On montre alors successivement que $\lambda_n, \dots, \lambda_1$ sont nuls. La famille (w_1, \dots, w_n) est donc libre.

Solution 13

Soit $(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$ tel que

$$\sum_{k=1}^{n} \lambda_k(y + x_k) = 0_{\mathbf{E}}$$

En posant $\Lambda = \sum_{k=1}^{n} \lambda_k$, l'égalité s'écrit

$$\sum_{k=1}^{n} (\Lambda \alpha_k + \lambda_k) x_k = 0_{\rm E}$$

Puisque la famille $(x_k)_{1 \le k \le n}$ est libre, $\Lambda \alpha_k + \lambda_k = 0$ pour tout $k \in [1, n]$. Posons $A = \sum_{k=1}^n \alpha_k$. En additionnant les n égalités précédentes , on aboutit à $(A + 1)\Lambda = 0$.

Si A $\neq -1$, on a $\Lambda = 0$ et donc, d'après les calculs précédents, $\lambda_k = -\Lambda \alpha_k = 0$ pour tout $k \in [1, n]$. La condition A $\neq -1$ est donc une condition *suffisante* pour que la famille $(y + x_k)_{1 \leq k \leq n}$ soit libre.

Réciproquement, montrons que $A \neq -1$ est une condition *nécessaire* pour que la famille $(y+x_k)_{1\leq k\leq n}$ soit libre. Raisonnons par contraposition en supposant A=-1. Alors $\sum_{k=1}^n \alpha_k(y+x_k)=Ay-y=0_E$. De plus, les α_k ne sont pas tous nuls puisque leur somme vaut -1. La famille $(y+x_k)_{1\leq k\leq n}$ est donc liée.

Solution 14

- **1.** On a F = $\{(x, y, z, x y + z) \mid x, y, z \in \mathbb{R}\}$, et donc F = vect (u_1, u_2, u_3) où $u_1 = (1, 0, 0, 1)$, $u_2 = (0, 1, 0, -1)$ et $u_3 = (0, 0, 1, 1)$.
 - Cette famille étant libre, F est sous-espace vectoriel de E de dimension 3.
 - ▶ $a \in F$ donc il existe un unique triplet (α, β, γ) de réels tel que

$$a = \alpha u_1 + \beta u_2 + \gamma u_3,$$

ce qui est équivalent au système suivant,

$$\begin{cases} \alpha & = 3 \\ \beta & = 1 \\ \gamma & = 2 \\ \alpha & -\beta + \gamma & = 4 \end{cases}$$

Les coordonnées de a dans la base (u_1, u_2, u_3) sont donc (3, 1, 2).

- **2.** On a G = $\{(x, y, x y, -y) \mid x, y \in \mathbb{R}\}$, et donc F = vect (v_1, v_2) où $v_1 = (1, 0, 1, 0)$ et $v_2 = (0, 1, -1, -1)$.
 - Cette famille étant libre, G est sous-espace vectoriel de E de dimension 2.
 - ▶ $b \in F$ donc il existe un unique couple (α, β) de réels tel que

$$a = \alpha v_1 + \beta v_2$$

ce qui est équivalent au système suivant,

$$\begin{cases} \alpha & = 4 \\ & \beta = 1 \\ \alpha - \beta = 3 \\ & - \beta = -1 \end{cases}$$

Les coordonnées de b dans la base (v_1, v_2) sont donc (4, 1).

3. Un vecteur (x, y, z, t) appartient à $F \cap G$ si et seulement si ,

$$\begin{cases} x - y + z - t = 0 \\ x - y - z = 0 \\ y + t = 0 \end{cases}$$

et par l'opération $L_2 \leftarrow L_2 - L_1$,

ainsi,

$$x = -z$$
, $y = -2z$, $t = 2z$

et

$$F \cap G = \{(-z, -2z, z, 2z) , z \in \mathbb{R}\},\$$

soit en posant w = (-1, -2, 1, 2),

$$F \cap G = \text{vect}(w)$$
.

 $F \cap G$ est donc de dimension 1 et de base (w).

Solution 15

1. Puisque les solutions de l'équation caractéristique $z^2 + z + 1 = 0$ sont j et j^2 , S est un espace vectoriel sur $\mathbb C$ de dimension deux et de base

$$(x \mapsto e^{jx}, x \mapsto e^{j^2x}).$$

2. Les quatre fonctions suivantes forment une base du \mathbb{R} -ev \mathcal{S} ,

$$x \mapsto e^{jx}, x \mapsto ie^{jx}$$

et

$$x \mapsto e^{j^2x}, \ x \mapsto ie^{j^2x}.$$

 \mathcal{S} est donc de dimension quatre en tant que \mathbb{R} -espace vectoriel.

3. Puisque $j = \frac{-1+i\sqrt{3}}{2}$, les deux fonctions suivantes forment une base du \mathbb{R} -ev \mathcal{S}' ,

$$x \mapsto e^{\frac{-x}{2}} \cos\left(\frac{\sqrt{3}x}{2}\right), \ x \mapsto e^{\frac{-x}{2}} \sin\left(\frac{\sqrt{3}x}{2}\right)$$

4. Les solutions sur \mathbb{R} de y'' + 4y = 0 sont les fonctions de la forme ,

$$x \mapsto \lambda \cos(2x) + \mu \sin(2x), \ \lambda, \mu \in \mathbb{R}.$$

La condition $y(\pi) = 0$ impose $\lambda = 0$. S' est donc une droite vectorielle engendrée par

$$x \mapsto \sin(2x)$$
.

Solution 16

On a

$$\mathrm{E} = \big\{ (2y-z,y,z,3y) \mid y,z \in \mathbb{R} \big\},$$

donc en posant u = (2, 1, 0, 3) et v = (-1, 0, 1, 0), on a E = vect(u, v) donc E est un sous-espace vectoriel de \mathbb{R}^4 . La famille (u, v) étant clairement libre, E est de dimension 2 et de base $\mathcal{B} = (u, v)$.

Solution 17

1. La famille (a, b) est manisfestement libre donc vect(a, b) est de dimension 2.

2. Utilisons la présentation matricielle.

$$\begin{bmatrix} -1 & 4 & 2 & c \\ 3 & 0 & -2 & a \\ 0 & 3 & 1 & b \end{bmatrix}$$

$$\begin{bmatrix} -1 & 4 & 2 & c \\ 0 & 12 & 4 & a+3c \\ 0 & 3 & 1 & b \end{bmatrix} L_2 \leftarrow L_2 + 3L_1$$

$$\begin{bmatrix} -1 & 4 & 2 & c \\ 0 & 12 & 4 & a+3c \\ 0 & 0 & 0 & 4b-a-3c \end{bmatrix} L_3 \leftarrow 4L_3 - L_2$$

La famille est donc de rang 2 et 4b - a - 3c = 0.

3. Utilisons la présentation matricielle.

$$\begin{bmatrix} 1 & 1 & -2 & a \\ 1 & 3 & 1 & b \\ -2 & 1 & 2 & c \\ 1 & -1 & 1 & d \\ 0 & 1 & 2 & e \\ -3 & 1 & 0 & f \\ 4 & 5 & 1 & g \end{bmatrix}$$

et par les opérations $L_2 \leftarrow L_2 - L_1$, $L_3 \leftarrow L_3 + 2L_1$, $L_4 \leftarrow L_4 - L_1$, $L_6 \leftarrow L_6 + 3L_1$, $L_7 \leftarrow L_7 - 4L_1$,

$$\begin{bmatrix} 1 & 1 & -2 & a \\ 0 & 2 & 3 & b-a \\ 0 & 3 & -2 & c+2a \\ 0 & -2 & 3 & d-a \\ 0 & 1 & 2 & e \\ 0 & 4 & -6 & f+3a \\ 0 & 1 & 9 & g-4a \end{bmatrix}$$

 $puis \ par \ les \ opérations \ L_{2} \leftarrow L_{5} \ , \ L_{3} \leftarrow -L_{2} + 2L_{5} \ , \ L_{4} \leftarrow 3L_{5} - L_{3} \ , \ L_{5} \leftarrow L_{4} + 2L_{5} \ , \ L_{6} \leftarrow L_{6} + 2L_{4} \ , \ L_{7} \leftarrow L_{7} - L_{5} \ , \ L_{8} \leftarrow L_{8} + 2L_{8} \ , \ L_{8} \leftarrow L_{8} + 2L_{$

$$\begin{bmatrix} 1 & 1 & -2 & a \\ 0 & 1 & 2 & e \\ 0 & 0 & 1 & -b+a+2e \\ 0 & 0 & 8 & -c-2a+3e \\ 0 & 0 & 7 & d-a+2e \\ 0 & 0 & 0 & a+2d+f \\ 0 & 0 & 7 & g-4a-e \end{bmatrix}$$

par les opérations $L_4 \leftarrow L_4 - 8L_3$, $L_5 \leftarrow L_5 - 7L_3$, $L_7 \leftarrow L_7 - 7L_3$,

$$\left[\begin{array}{ccc|c} 1 & 1 & -2 & & a & \\ 0 & 1 & 2 & & e \\ 0 & 0 & 1 & & -b+a+2e \\ 0 & 0 & 0 & & -10a+8b-c-13e \\ 0 & 0 & 0 & & -8a+7b+d-12e \\ 0 & 0 & 0 & & a+2d+f \\ 0 & 0 & 0 & & -11a+7b-15e+g \end{array} \right]$$

Le système est donc de rang 3 et vérifie les relations suivantes,

$$-b + a + 2e = 0,$$

 $-10a + 8b - c - 13e = 0,$
 $a + 2d + f = 0$

et

$$-11a + 7b - 15e + g = 0$$
.

Solution 18

- 1. Il est clair que (1) est une base du \mathbb{C} -espace vectoriel \mathbb{C} qui est donc de dimension 1. Ses sous-espaces vectoriels sont donc de dimension 0 ou 1, il n'y en a donc que deux : $\{0\}$ et \mathbb{C} .
- 2. La famille (1, i) est une base du ℝ-espace vectoriel ℂ puisque tout nombre complexe s'écrit de manière unique sous la forme

$$a+ib$$
, $a,b \in \mathbb{R}$.

Le \mathbb{R} -espace vectoriel \mathbb{C} est donc de dimension 2. Ses sous-espaces vectoriels sont donc de dimension 0 , 1 ou 2 , il s'agit donc de $\{0\}$, \mathbb{C} et des droites vectorielles $\mathbb{R}z$ pour tout $z \neq 0$.

Solution 19

Toute suite arithmétique u est de la forme

$$(an + b)_{n \geqslant 0} = a(n)_{n \geqslant 0} + b(1)_{n \geqslant 0}$$
,

où $a, b \in \mathbb{R}$. Les vecteurs $u = (n)_{n \ge 0}$ et $v = (1)_{n \ge 0}$ engendrent donc l'espace vectoriel des suites arithmétiques. Puisque (u, v) est clairement libre, cet espace est de dimension 2 et de base $\mathcal{B} = (u, v)$.

Solution 20

- 1. $F = {\lambda(1, 2, 3, 0) + \mu(1, -1, 4, 2) \mid (\lambda, \mu) \in \mathbb{K}^2}$. Ainsi, F est le sous-espace vectoriel de \mathbb{K}^4 engendré par les vecteurs (1, 2, 3, 0) et (1, -1, 4, 2).
- 2. Les deux vecteurs ci-dessus n'étant pas colinéaires, ils forment une base de F. Par conséquent, dim F = 2.

Solution 21

- 1. Par définition, E est le sous-espace vectoriel de \mathbb{R}^3 engendré par les vecteurs u=(1,2,3), v=(3,2,1), et w=(1,1,1). Il est clair que les vecteurs (u,v) sont linéairement indépendants, d'où dim $F\geqslant 2$. D'autre part, $w=\frac{u+v}{2}$, ce qui implique $E=\mathrm{vect}(u,v).$ Par conséquent, $\dim(E)=2$.
- 2. L'ensemble F est un sous-espace vectoriel de \mathbb{R}^3 en tant qu'espace des solutions du système homogène

$$x - y = 0$$

à trois inconnues x, y et z. Une base de F est ((0,0,1),(1,1,0)). Donc dim(F) = 2.

3. L'ensemble G est un sous-espace vectoriel de \mathbb{R}^3 en tant qu'espace des solutions du système homogène suivant :

$$\begin{cases} x + 3y = 0 \\ y + z = 0 \\ 2x - z = 0. \end{cases}$$

Le vecteur nul en est l'unique solution. Donc G est l'espace nul, $\dim(G) = 0$ (sa base est la famille vide).

4. L'ensemble H est un sous-espace vectoriel de \mathbb{R}^3 en tant qu'espace des solutions du système homogène suivant :

$$\begin{cases} x + 3y = 0 \\ y + z = 0 \\ x + 2y - z = 0. \end{cases}$$

On résout ce système (la première équation est superflue car elle est la somme des deux autres) et on trouve que $H = \mathbb{K}(3, -1, 1)$, donc $\dim(H) = 1$.

5. L'ensemble L est un sous-espace vectoriel de \mathbb{R}^3 en tant qu'espace des solutions du système homogène suivant :

$$\begin{cases} -x + 3y + z = 0 \\ -2x + y + 2z = 0. \end{cases}$$

On trouve que les solutions sont de la forme $(\lambda, 0, \lambda)$ avec $\lambda \in \mathbb{R}$. Donc (1, 0, 1) est une base de L et dim(L) = 1.

Solution 22

Appliquons la méthode du pivot de Gauss...

$$S \sim \begin{bmatrix} 1 & 2 & -1 & 3 & u_1 \\ 0 & 1 & 1 & 4 & u_3 \\ 2 & 3 & -3 & 2 & u_2 \\ 1 & 0 & -3 & -5 & u_4 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 2 & -1 & 3 & u_1 \\ 0 & 1 & 1 & 4 & u_3 \\ 0 & -1 & -1 & -4 & u_2 - u_1 \\ 0 & -2 & -2 & -8 & u_4 - u_1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 2 & -1 & 3 & u_1 \\ 0 & 1 & 1 & 4 & u_3 \\ 0 & 0 & 0 & 0 & u_2 - u_1 + u_3 \\ 0 & 0 & 0 & 0 & u_4 - u_1 + 2u_3 \end{bmatrix}$$

Le rang de la famille vaut donc 2 et les vecteurs sont reliés par les deux relations

$$u_2 = u_1 - u_3$$
 et $u_4 = u_1 - 2u_3$.

On a donc $F = \text{vect}(u_1, u_2, u_3, u_4) = \text{vect}(u_1, u_3)$ et puisque u_1 et u_3 ne sont pas colinéaires, (u_1, u_3) est une base de F.

Solution 23

Raisonnons en deux temps.

➤ Supposons l'existence d'un supplémentaire commun S de F et G dans E. Comme

$$dim(S) = dim(E) - dim(F) = dim(E) - dim(G),$$

on a $\dim(F) = \dim(G)$.

- Raisonnons par récurrence (descendante) sur la dimension commune de F et G. Pour tout $0 \le k \le n$, notons HR(k) la propriété suivante : deux sev F et G de même dimension k admettent un supplémentaire dans E commun S.
- ★ HR(n) est banale car $S = \{0\}$ convient clairement.
- ★ Soit $1 \le k \le n$. Supposons HR(k) vraie. Soient F et G deux sev de E de même dimension k-1. Si F=G, F et G admettent clairement un supplémentaire dans E commun S (c'est du cours!) Sinon, *on sait que* $F \cup G$ n'est pas un sev de E et en particulier que $F \cup G \ne E$: il existe donc $u \in E \setminus (F \cup G)$. On sait qu'alors $F \oplus \mathbb{K}u$ et $G \oplus \mathbb{K}u$ sont deux sev de dimension k-1+1=k. D'après HR(k), ils admettent donc un supplémentaire dans E commun noté S. Il est alors clair que $S \oplus \mathbb{K}u$ est supllémentaire commun de F et G dans E, d'où HR(k-1).
- ★ La propriété HR(k) est vraie pour tout $0 \le k \le n$ d'après le principe de récurrence.

Remarque. On a utilisé la propriété classique suivante : si F et G sont deux sev de E, $F \cup G$ est un sev de E si et seulement si $F \subset G$ ou $G \subset F$. Si dim(F) = dim(G), on peut remplacer cette dernière condition par F = G.

Appliquons la méthode du pivot de Gauss. On a

$$\begin{split} \mathcal{S} \sim \begin{bmatrix} 1 & \alpha & 1 & \beta \\ \alpha & 1 & \beta & 1 \\ \alpha & \beta & \alpha & 1 \\ 1 & \alpha & \beta & \alpha \\ \alpha & \beta & \alpha & \beta \end{bmatrix} \\ \sim \begin{bmatrix} 1 & \alpha & 1 & \beta \\ \alpha & 1 & \beta & 1 \\ \alpha & \beta & \alpha & 1 \\ 1 & \alpha & \beta & \alpha \\ 0 & 0 & 0 & \beta - 1 \end{bmatrix}, L_5 \leftarrow L_5 - L_3 \\ \sim \begin{bmatrix} 1 & \alpha & 1 & \beta \\ \alpha & 1 & \beta & \alpha \\ 0 & 0 & 0 & \beta - 1 \end{bmatrix}, L_3 \leftarrow L_3 - L_2 \\ \sim \begin{bmatrix} 1 & \alpha & 1 & \beta \\ \alpha & 1 & \beta & 1 \\ 0 & \beta - 1 & \alpha - \beta & 0 \\ 1 & \alpha & \beta & \alpha \\ 0 & 0 & 0 & \beta - 1 \end{bmatrix}, L_3 \leftarrow L_3 - L_2 \\ \sim \begin{bmatrix} 1 & \alpha & 1 & \beta \\ 0 & 1 - \alpha^2 & \beta - \alpha & 1 - \alpha\beta \\ 0 & \beta - 1 & \alpha - \beta & 0 \\ 0 & 0 & \beta - 1 & \alpha - \beta \\ 0 & 0 & 0 & \beta - 1 \end{bmatrix} \end{split}$$

par $L_2 \leftarrow L_2 - \alpha L_1$, $L_4 \leftarrow L_4 - L_1$.

 $ightharpoonup Cas 1: \beta \neq 1$. Le rang vaut 4.

 $ightharpoonup Cas\ 2: \beta = 1\ et\ \alpha = 1.$ On a alors

et donc le rang vaut 1.

 $ightharpoonup Cas 3: \beta = 1 \ et \alpha = -1.$ On a alors

$$S \sim \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$

et donc le rang vaut 2.

 $ightharpoonup Cas 4: \beta = 1 \ et \ \alpha \neq \pm 1$. On a alors

$$\mathcal{S} \sim \begin{bmatrix} 1 & \alpha & 1 & 1 \\ 0 & 1 - \alpha^2 & 1 - \alpha & 1 - \alpha \\ 0 & 0 & \alpha - 1 & 0 \\ 0 & 0 & 0 & \alpha - 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

et le rang vaut alors 4.

- 1. Puisqu'en dimension 1, le seul hyperplan est l'espace nul, on a $n \ge 2$.
- 2. Puisque les deux hyperplans sont distincts, il existe $u \in H_1 \setminus H_2$. On a donc

$$E = H_2 \oplus \mathbb{K}u \subset H_2 + H_1 \subset E$$

ainsi $E = H_1 + H_2$ et d'après la formule de Grassmann,

$$\dim(H_1 \cap H_2) = n - 1 + n - 1 - n = n - 2.$$

Solution 26

Intuitivement, une fonction de F est uniquement déterminée par ses valeurs en les x_i . Considérons donc l'application

$$\phi: \left\{ \begin{array}{ll} \mathbf{F} & \longrightarrow & \mathbb{R}^{n+1} \\ f & \longmapsto & (f(x_0), f(x_1), \dots, f(x_n)) \end{array} \right.$$

L'application ϕ est clairement linéaire.

Soit $f \in \text{Ker } \phi$. Il existe (a_0, a_1, \dots, a_n) et (b_0, b_1, \dots, b_n) dans \mathbb{R}^{n+1} tels que $f_{|[x_i; x_{i+1}]} : x \mapsto a_i x + b_i$. Pour tout $i \in [0; n-1]$

$$\begin{cases} a_i x_i + b_i = 0 \\ a_i x_{i+1} + b_i = 0 \end{cases} \iff \begin{cases} a_i (x_{i+1} - x_i) = 0 \\ a_i x_i + b_i = 0 \end{cases} \iff \begin{cases} a_i = 0 \\ b_i = 0 \end{cases}$$

Ainsi f = 0 et ϕ est surjective.

Soit $y = (y_0, y_1, ..., y_n) \in \mathbb{R}^{n+1}$. Cherchons $f \in F$ telle que $\phi(f) = y$. En prenant les mêmes notations que précédemment, on cherche donc $(a_0, a_1, ..., a_n)$ et $(b_0, b_1, ..., b_n)$ dans \mathbb{R}^{n+1} tels que

$$\begin{cases} a_i x_i + b_i = y_i \\ a_i x_{i+1} + b_i = y_{i+1} \end{cases} \iff \begin{cases} a_i = \frac{y_{i+1} - y_i}{x_{i+1} - x_i} \\ b_i = y_i - a_i x_i \end{cases}$$

Ce qui montre que ϕ est surjective.

Donc ϕ est un isomorphisme et dim $F = \dim \mathbb{R}^{n+1} = n+1$.

On obtient facilement une base $(e_i)_{0 \le i \le n}$ de F en considérant l'image réciproque de la base canonique de \mathbb{R}^{n+1} . Il s'agit de la base antéduale de la base $(e_i^*)_{0 \le i \le n}$ de F* avec $e_i^*(f) = f(x_i)$ pour $0 \le i \le n$. Pour $0 \le i \le n$, e_i est la fonction affine par morceaux valant 1 en x_i et 0 en les x_j avec $j \ne i$.

Solution 27

- 1. Soit $k \in \mathbb{N}$. Soient $\lambda_0, \dots, \lambda_k \in \mathbb{R}$ tels que $\sum_{i=0}^k \lambda_i u_i = (0)$. La suite $\sum_{i=0}^k \lambda_i u_i = (\lambda_0, \dots, \lambda_k, 0, \dots)$ est nulle donc $\lambda_0 = \lambda_1 = \dots = \lambda_k = 0$. Ainsi la famille (u_0, \dots, u_k) est libre. Ceci étant vrai pour tout $k \in \mathbb{N}$, $\mathbb{R}^{\mathbb{N}}$ ne peut être de dimension finie.
- 2. Les f_i sont bien de classe \mathcal{C}^{∞} . Soit $k \in \mathbb{N}$. Soient $\lambda_0, \dots, \lambda_k \in \mathbb{R}$ tels que $\sum_{i=0}^n \lambda_i f_i = 0$. En dérivant j fois où $0 \le j \le k$ et en évaluant en 0, on trouve $\lambda_j = 0$. Ainsi la famille (f_0, \dots, f_k) est libre. Ceci étant vrai pour tout $k \in \mathbb{N}$, $\mathcal{C}^{\infty}(\mathbb{R})$ ne peut être de dimension finie. Comme $\mathcal{C}^{\infty}(\mathbb{R})$ est un sous-espace vectoriel de $\mathcal{C}^n(\mathbb{R})$ pour tout $n \in \mathbb{N}$ et de $\mathbb{R}^{\mathbb{R}}$, ces espaces vectoriels sont également de dimension infinie.

Solution 28

1. La suite nulle est évidemment périodique. Soient $u, v \in E_p$ et $\lambda, \mu \in \mathbb{R}$. Alors pour tout $n \in \mathbb{N}$,

$$\lambda u_{n+p} + \mu u_{n+p} = \lambda u_n + \mu u_n$$

car u et v sont p-périodiques. Ainsi $\lambda u + \mu v$ est également p-périodique, ce qui prouve que E_p est un \mathbb{R} -espace vectoriel.

2. Tout d'abord, les suites u^0, \ldots, u^{p-1} sont bien p-périodiques puisque pour tout $n \in \mathbb{N}$, $n+p \equiv n[p]$. Soient $\lambda_0, \ldots, \lambda_{p-1} \in \mathbb{R}$ tels que $\lambda_0 u^0 + \cdots + \lambda_{p-1} u^{p-1} = 0_{\mathbb{R}^N}$. En considérant les termes de rang $0, \ldots, p-1$ dans cette égalité de deux suites, on trouve $\lambda_0 = \cdots = \lambda_{p-1} = 0$, ce qui prouve que (u^0, \ldots, u^{p-1}) est libre. Soit $v \in E_p$. Alors $v = v_0 u^0 + \cdots + v_{p-1} u^{p-1}$, ce qui prouve que (u^0, \ldots, u^{p-1}) engendre E_p . Ainsi (u^0, \ldots, u^{p-1}) est une base de E_p .

- 3. Comme $(u^0, ..., u^{p-1})$ est une base de E_p et comporte p éléments, dim $E_p = p$.
- **4.** E_2 et E_4 sont tous deux des sous-espaces vectoriels de $\mathbb{R}^{\mathbb{N}}$. De plus, une suite 2-périodique est évidemment 4-périodique donc $E_2 \subset E_4$. Ainsi E_2 est un sous-espace vectoriel de E_4 .
- 5. Soit $u \in F$. Alors pour tout $n \in \mathbb{N}$, $u_{n+4} = -u_{n+2} = u_n$ donc $u \in E_4$. Ainsi $F \subset E_4$. De plus, F contient la suite nulle et est stable par combinaison linéaire. C'est donc un sous-espace vectoriel de E_4 .
- **6.** En posant $x_n = \cos\left(n\frac{\pi}{2}\right)$ et $y_n = \sin\left(n\frac{\pi}{2}\right)$ pour $n \in \mathbb{N}$, F = vect(x, y). Pusique $F \subset E_4$, on peut alors affirmer que F est un sous-espace vectoriel de E_4 .
- 7. On montre d'abord que (x, y) est libre. Soit alors $(\lambda, \mu) \in \mathbb{R}^2$ tel que $\lambda x + \mu y = 0$. Notamment $\lambda x_0 + \mu y_0 = 0$ et $\lambda x_1 + \mu y_1 = 0$. On en déduit que $\lambda = \mu = 0$. La famille (x, y) est donc libre. Puisque F = vect(x, y), (x, y) est une base de F. Par conséquent, dim F = 2. On en déduit que dim $E_4 = \dim F + \dim E_2$.

Il ne reste plus qu'à montrer que $F \cap E_2 = \{0\}$ pour affirmer que F est un supplémentaire de E_2 dans E_4 . Soit alors $u \in F \cap E_2$. Ainsi, pour tout $n \in \mathbb{N}$, $u_n = -u_{n+2} = -u_n$ i.e. $u_n = 0$. On a donc bien $F \cap E_2 = \{0\}$ puis $E_4 = F \oplus E_2$.

Solution 29

Si l'équation $X^2 + aX + b = 0$ admet deux solutions complexes distinctes r_1 et r_2 , l'ensemble des solutions est $\text{vect}_{\mathbb{C}}(x \mapsto e^{r_1 x}, x \mapsto e^{r_2 x})$. C'est donc un \mathbb{C} -espace vectoriel de dimension 2 car la famille $(x \mapsto e^{r_1 x}, x \mapsto e^{r_2 x})$ est libre.

Si l'équation $X^2 + aX + b = 0$ admet une solution double r, l'ensemble des solutions est $\text{vect}_{\mathbb{C}}(x \mapsto e^{rx}, x \mapsto xe^{rx})$. C'est donc un \mathbb{C} -espace vectoriel de dimension 2 car la famille $(x \mapsto e^{rx}, x \mapsto xe^{rx})$ est libre.

Solution 30

D'après la formule de Grassmann, $\dim(F+G) = \dim F + \dim G - \dim(F\cap G) = 4 - \dim(F\cap G)$. Puisque $F+G \subset \mathbb{R}^3$, $\dim(F+G) \leq 3$ et donc $\dim(F\cap G) \geq 1$. En particulier, $F\cap G \neq \{0_E\}$. On peut déjà affirmer que F et G ne sont pas en somme directe.

Puisque $F \subset F + G$, $\dim(F + G) \ge 2$. Supposons que $\dim(F + G) = 2$, alors $\dim(F \cap G) = 2 = \dim F = \dim G$. Puisque $F \cap G \subset F$ et $F \cap G \subset G$, on en déduit que $F \cap G = F = G$, ce qui contredit le fait que F et G sont distincts. On a donc $\dim(F + G) = 3 = \dim \mathbb{R}^3$. Puisque $F + G \subset \mathbb{R}^3$, $F + G = \mathbb{R}^3$.

Solution 31

- 1. Clairement $S = \text{vect}_{\mathbb{C}}(f,g)$ avec $f : x \in \mathbb{R} \mapsto e^{jx}$ et $g : x \in \mathbb{R} \mapsto e^{jx}$. Soit $(\lambda, \mu) \in \mathbb{C}^2$ tel que $\lambda f + \mu g = 0$. En particulier, $\lambda f(0) + \mu g(0) = 0$ et $\lambda f'(0) + \mu g'(0) = 0$. On a donc $\lambda + \mu = 0$ et $j\lambda + \bar{j}\mu = 0$. Puisque $j \neq \bar{j}$, on en déduit sans peine que $\lambda = \mu = 0$. Ainsi (f,g) est une famille libre du \mathbb{C} -espace vectoriel. C'est donc une base de S en tant que \mathbb{C} -espace vectoriel de sorte que $\dim_{\mathbb{C}} S = 2$.
- 2. Maintenant, $\mathcal{S} = \operatorname{vect}_{\mathbb{R}}(f, if, g, ig)$. Soit $(a, b, c, d) \in \mathbb{R}^4$ tel que af + bif + cg + dig = 0. On a donc (a + ib)f + (c + id)g = 0. Or (f, g) est une famille libre du \mathbb{C} -espace vectoriel \mathcal{S} donc a + ib = 0 et c + id = 0. Puisque a, b, c, d sont réels, a = b = c = d = 0. Ainsi (f, if, g, ig) est une famille libre du \mathbb{R} -espace vectoriel. C'est donc une base de \mathcal{S} en tant que \mathbb{R} -espace vectoriel de sorte que $\dim_{\mathbb{R}} \mathcal{S} = 4$.

Solution 32

1. Clairement $F \subset E$. Soient $(y_1, y_2) \in F^2$ et $(\lambda, \mu) \in \mathbb{R}^2$. Alors pour tout $x \in \mathbb{R}$,

$$(\lambda y_1 + \mu y_2)''(x) = \lambda y_1''(x) + \mu y_2''(x) = \lambda (1 + x^2) y_1(x) + \mu (1 + x^2) y_2(x) = (1 + x^2)(\lambda y_1 + \mu y_2)(x)$$

Donc $\lambda y_1 + \mu y_2$ est solution de (\mathcal{E}) et appartient donc à F. Ainsi F est un sous-espace vectoriel de E.

2. f est clairement de classe \mathcal{C}^2 sur \mathbb{R} et

$$\forall x \in \mathbb{R}, f'(x) = xe^{\frac{x^2}{2}} = xf(x)$$

puis

$$\forall x \in \mathbb{R}, f''(x) = f(x) + xf'(x) = f(x) + x^2 f(x) = (1 + x^2) f(x)$$

Ainsi $f \in F$.

Puisque la fonction φ : $t \mapsto e^{-t^2}$ est continue sur \mathbb{R} , le théorème fondamental de l'analyse permet d'affirmer que ψ : $x \mapsto \int_0^x e^{-t^2} dt$ est une primitive de φ sur \mathbb{R} . Puisque $g = f\psi$, g est de classe \mathcal{C}^1 et

$$g' = f'\psi + f\psi' = f'\psi + f\varphi$$

On en déduit que g' est elle-même de classe \mathcal{C}^1 (donc g est de classe \mathcal{C}^2) et que

$$g'' = f''\psi + f'\psi' + f'\phi + f\phi' = f''\psi + 2f'\phi + f\phi'$$

Alors pour tout $x \in \mathbb{R}$,

$$g''(x) = f''(x)\psi(x) + 2f'(x)\varphi(x) + f(x)\varphi'(x) = (1 + x^2)f(x)\psi(x) + 2xf(x)\varphi(x) - 2xf(x)\varphi(x) = (1 + x^2)g(x)$$

g appartient donc bien à F.

3. Soit $(v, w) \in \mathbb{F}^2$. Alors pour tout $x \in \mathbb{R}$,

$$(v'w - vw')'(x) = v''(x)w(x) - v(x)w''(x) = (1 + x^2)v(x)w(x) - (1 + x^2)v(x)w(x) = 0$$

La fonction v'w - vw' est donc constante sur \mathbb{R} .

4. Conformément à l'indication de l'énoncé, on calcule la dérivée de h/f.

$$(h/f)' = \frac{h'f - hf'}{f^2}$$

Puisque h et f appartiennent à F, la question précédente montre que h'f - hf' est constante. Notons β cette constante réelle. Ainsi $(h/f)' = \frac{\beta}{f^2}$. Autrement dit, pour tout $x \in \mathbb{R}$,

$$(h/f)'(x) = \beta e^{-x^2} = \beta \varphi(x) = \beta \psi'(x)$$

Il existe donc une constante réelle α telle que

$$h/f = \beta \psi + \alpha$$

On en déduit que

$$h = \beta f \psi + \alpha f = \alpha f + \beta g$$

- **5.** Puisque f et g appartient au sous-espace vectoriel F, $\text{vect}(f,g) \subset F$. La question précédente montre l'inclusion réciproque. Ainsi F = vect(f,g).
- **6.** La famille (f,g) engendre F. Montrons que cette famille est libre. Soit donc $(\alpha,\beta) \in \mathbb{R}^2$ tel que $\alpha f + \beta g = 0$. En évaluant en 0, on obtient $\alpha = 0$. On a donc $\beta g = 0$. En dérivant et en évaluant en 0, on obtient $\beta g'(0) = 0$. Or

$$g'(0) = f'(0)\psi(0) + f(0)\varphi(0) = 1$$

de sorte que $\beta = 0$. La famille (f, g) est donc également libre : c'est donc une base de F de sorte que dim F = 2.

Solution 33

- **1.** F est un sous-espace vectoriel en tant que noyau de ϕ : $\begin{cases} E \longrightarrow \mathbb{R}^{10} \\ f \longmapsto \left(f\left(\frac{1}{k}\right)\right)_{1 < k < 10} \end{cases}$
- 2. Notons G l'ensemble des fonctions polynomiales de [0,1] dans $\mathbb R$ de degré inférieur ou égal à 9. G est clairement un sous-espace vectoriel de E.

Soit $f \in F \cap G$. Alors f est une fonction polynomiale de degré inférieur ou égal à 9 admettant 10 racines : elle est nulle. Alnsi $F \cap G = \{0\}$.

Soit $f \in E$. On montre classiquement que $\phi_{|G}$ est un isomorphisme (interpolation de Lagrange). Il existe donc $P \in G$ telle que $P\left(\frac{1}{k}\right) = f\left(\frac{1}{k}\right)$ pour $k \in [1, 10]$. Mais alors $g = f - P \in F$. On a donc f = P + g avec $P \in G$ et $g \in F$. Ceci prouve que E = F + G. Par conséquent $E = F \oplus G$.

Solution 34

- 1. a. Puisque le vecteur (1, 1, 1) est non nul et engendre G, dim G = 1.
 - b. On applique la méthode habituelle.

$$F = \{(x_1, x_2, x_3) \mid x_1 + x_2 + x_3 = 0\}$$

$$= \{(x_1, x_2, -x_1 - x_2) \mid (x_1, x_2) \in \mathbb{R}^2\}$$

$$= \{x_1(1, 0, -1) + x_2(0, 1, -1) \mid (x_1, x_2) \in \mathbb{R}^2\}$$

$$= \text{vect}((1, 0, -1), (0, 1, -1))$$

La famille ((1,0,-1),(0,1,-1)) engendre F et est libre car elle est échelonnée et ne comporte pas le vecteur nul : c'est donc une base de F.

On a donc dim F = 2.

c. $(0,0,0) \in F \cap G$ car F et G sont des sous-espaces vectoriels de E.

Soit $(x_1, x_2, x_3) \in F \cap G$. Puisque $(x_1, x_2, x_3) \in G$, il existe $\lambda \in \mathbb{R}$ tel que $x_1 = x_2 = x_3 = \lambda$. Puisque $(x_1, x_2, x_3) \in F$, $x_1 + x_2 + x_3 = 0$ et donc $3\lambda = 0$ puis $\lambda = 0$. On a donc $(x_1, x_2, x_3) = (0, 0, 0)$. Ainsi $F \cap G = \{(0, 0, 0)\}$.

De plus, dim F + dim G = 3 = dim E, ce qui permet de conclure que E = F \oplus G.

- **d.** On remarque que a = (-1,0,1) + (2,2,2) avec $(-1,0,1) \in F$ et $(2,2,2) \in G$. La projection de a sur F parallélement à G est donc (-1,0,1) et la projection de a sur G parallélement à G est G
- **2. a.** A nouveau, le vecteur (1, ..., 1) est non nul et engendre G donc dim G = 1.
 - **b.** On applique toujours la même méthode.

$$\begin{split} \mathbf{F} &= \left\{ (x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1 + \dots + x_n = 0 \right\} \\ &= \left\{ (x_1, \dots, x_{n-1}, -x_1 - \dots - x_{n-1}) \mid (x_1, \dots, x_{n-1}) \in \mathbb{R}^{n-1} \right\} \\ &= \left\{ x_1 u_1 + \dots + x_{n-1} u_{n-1} \mid (x_1, \dots, x_{n-1}) \in \mathbb{R}^{n-1} \right\} \\ &= \mathrm{vect} \left(u_1, \dots, u_{n-1} \right) \end{split}$$

où pour $i \in [1, n-1]$, u_i est le vecteur de E dont la $i^{\text{ème}}$ composante vaut 1, dont la $n^{\text{ème}}$ composante vaut -1 et dont toutes les autres composantes sont nulles.

La famille $(u_1, ..., u_{n-1})$ engendre F et est libre car elle est échelonnée et ne comporte pas le vecteur nul : c'est donc une base de F.

On a donc dim F = n - 1.

c. $0_E \in F \cap G$ car F et G sont des sous-espaces vectoriels de E.

Soit $(x_1, \dots, x_n) \in F \cap G$. Puisque $(x_1, \dots, x_n) \in G$, il existe $\lambda \in \mathbb{R}$ tel que $x_1 = \dots = x_n = \lambda$. Puisque $(x_1, \dots, x_n) \in F$, $x_1 + \dots + x_n = 0$ et donc $n\lambda = 0$ puis $\lambda = 0$ car $n \ge 0$. On a donc $(x_1, \dots, x_n) = 0_E$. Ainsi $F \cap G = \{0_E\}$.

De plus, dim F + dim G = n = dim E, ce qui permet de conclure que E = F \oplus G.

3. Comme F est un hyperplan de E, dim F = n - 1. Comme F est un sous-espace vectoriel de E, $0_E \in F$. Puisque $u \notin F$, $u \neq 0_E$ et donc dim G = 1.

Supposons que $F \cap G \neq \{0_E\}$. Puisque $F \cap G$ est un sous-espace vectoriel de E, $0_E \in F \cap G$. Or $F \cap G \neq \{0_E\}$ donc il existe $x \in F \cap G$ tel que $x \neq 0_E$. Puisque $x \in G$, il existe $\lambda \in \mathbb{K}$ tel que $x = \lambda u$. Or $x \neq 0_E$ donc $\lambda \neq 0$. D'où $u = \frac{1}{\lambda}x$. Or $x \in F$ et F est un sous-espace vectoriel de E donc $u = \frac{1}{\lambda}x \in F$, ce qui contredit l'énoncé.

Ainsi $F \cap G = \{0_E\}$ et dim $F + \dim G = (n-1) + 1 = n = \dim E$, ce qui permet d'affirmer que $E = F \oplus G$.

Solution 35

1. On a clairement $G = \{(x, y, 0, 0) \mid x, y \in \mathbb{R}\}$, ainsi $G = \text{vect}(u_1, u_2)$ où

$$u_1 = (1, 0, 0, 0)$$
 et $u_2 = (0, 1, 0, 0)$.

G est donc un sous-espace vectoriel de E de dimension 2 puisque (u_1, u_2) est manifestement libre.

Un vecteur (x, y, z, t) appartient à F si et seulement si

$$\begin{cases} x - y + z - t = 0 \\ 2x - y + 3z - 4t = 0 \end{cases}$$

c'est-à-dire, par l'opération $L_2 \leftarrow L_2 - 2L_1$,

$$\begin{cases} x - y + z - t = 0 \\ y + z - 2t = 0 \end{cases}$$

d'où,

$$\begin{cases} y = -z + 2t \\ x = -2z + 3t \end{cases}$$

Ainsi,

$$F = \{ (-2z + 3t, -z + 2t, z, t) , z, t \in \mathbb{R} \},\$$

ainsi $G = \text{vect}(u_1, u_2)$ où

$$v_1 = (-2, -1, 1, 0)$$
 et $v_2 = (3, 2, 0, 1)$.

F est donc un sous-espace vectoriel de E de dimension 2 puisque (v_1, v_2) est clairement libre.

2. Puisque dim(F) + dim(G) = dim(E), pour établir que F et G sont supplémentaires dans E, il suffit de vérifier que F \cap G = {0}. Soit $(x, y, z, t) \in F \cap G$, on a alors z = t = 0 et donc (x, y, z, t) = 0 d'après les calculs menés à la question précédente. On sait alors que la famille

$$\mathcal{B} = (u_1, u_2, v_1, v_2)$$

est une base de E adaptée à la décomposition en somme directe $F \oplus G = E$.

3. Soit $(x, y, z, t) \in E$. D'après la question précédente, il existe un unique quadruplet de nombres $(\alpha, \beta, \gamma, \delta)$ tel que

$$(x, y, z, t) = \alpha u_1 + \beta u_2 + \gamma v_1 + \delta v_2,$$

c'est-à-dire,

$$\begin{cases} \alpha & -2\gamma + 3\delta = x \\ \beta - \gamma + 2\delta = y \\ \gamma & = z \\ \delta = t \end{cases}$$

d'où

$$\begin{cases} \alpha = x & + 2z - 3t \\ \beta = y + z - 2t \\ \gamma = z \\ \delta = t \end{cases}$$

La projection de (x, y, z, t) sur F parallèlement à G vaut donc,

$$\alpha u_1 + \beta u_2 = (x + 2z - 3t, y + z - 2t, 0, 0),$$

et celle de (x, y, z, t) sur G parallèlement à F,

$$\gamma v_1 + \delta v_2 = (-2z + 3t, -z + 2t, z, t).$$

1. On a $X \in F$ si et seulement si $\exists x, y \in \mathbb{R}$ tels que

$$X = (x, y, -x) = x(1, 0, -1) + y(0, 1, 0).$$

Ainsi F = vect((1, 0, -1), (0, 1, 0)) et F est un sous-espace vectoriel de E. Comme les deux vecteurs engendrant F ne sont pas colinéaires, $\dim(F) = 2$. De même, $X \in G$ si et seulement si $\exists y \in \mathbb{R}$ tels que

$$X = (2y, y, 2y) = y(2, 1, 2).$$

Ainsi G = vect((2, 1, 2)) et G est un sous-espace vectoriel de E. Comme G est engendré par un vecteur non nul, $\dim(G) = 1$. Puisque $\dim(E) = 3 = \dim(F) + \dim(G)$, F et G sont supplémentaires dans E si et seulement si

$$F \cap G = \{0\}.$$

Un vecteur X appartient à $F \cap G$ si et seulement si il existe $y \in \mathbb{R}$ tel que

$$X = (2y, y, 2y)$$
 et $2y + 2y = 0$,

ie X = (0, 0, 0). Ainsi $F \cap G = \{0\}$, d'où le résultat.

2. Soit $X = (x, y, z) \in E$. On recherche l'unique vecteur g de G tel que $X - g \in F$. Puisque g est de la forme $g = (2\lambda, \lambda, 2\lambda)$ avec $\lambda \in \mathbb{R}$, on recherche $\lambda \in \mathbb{R}$ tel que $X - (2\lambda, \lambda, 2\lambda) = (x - 2\lambda, y - \lambda, z - 2\lambda) \in F$. Cette condition équivaut à $x - 2\lambda + z - 2\lambda = 0$, c'est-à-dire $\lambda = \frac{x+z}{4}$. La projection du vecteur X = (x, y, z) sur F parallémement à G vaut donc

$$X - \lambda(2, 1, 2) = \left(\frac{x - z}{2}, \frac{4y - x - z}{4}, \frac{z - x}{2}\right).$$

Solution 37

1. Notons $\mathcal{B}=(e_1,\ldots,e_n)$ la base canonique de \mathbb{R}^n et posons $\forall k\leqslant n-1$,

$$f_k = e_k - e_n$$
.

Les vecteurs f_i ainsi définis appartiennent à H et la famille (f_1, \dots, f_{n-1}) est libre car si un vecteur $e_i - e_n$ était combinaison linéaire des autres , le vecteur e_k s'exprimerait en fonction des e_i , $i \neq k$, ce qui est absurde car \mathcal{B} est libre. La dimension de H est donc au moins égale à n-1; elle ne peut valoir n car $H \neq E$ (en effet , $u \notin H$) , donc H est de dimension n-1. Le vecteur u étant non nul , $\mathbb{R}u$ est de dimension 1. Ainsi ,

$$\dim(E) = \dim(H) + \dim(\mathbb{R}u);$$

pour montrer que H et $\mathbb{R}u$ sont supplémentaires dans E , il suffit donc de prouver que $F \cap H = \{0\}$. Soit $(x_1, \dots, x_n) \in H \cap \mathbb{R}u$. On a donc

$$x_1 = \dots = x_n \text{ et } x_1 + \dots + x_n = 0,$$

d'où $(x_1, \dots, x_n) = 0$ et $H \oplus \mathbb{R}u = E$.

2. Prouvons que $H \oplus \mathbb{R}v = E$. Puisque $v \notin H$, $v \neq 0$ et $\mathbb{R}v$ est de dimension 1. En reprenant les justifications avancées à la question 1. , 1 suffit de prouver que $F \cap H = \{0\}$. Soit (x_1, \dots, x_n) appartenant à $H \cap \mathbb{R}v$. Il existe donc $\lambda \in \mathbb{R}$ tel que

$$\forall k \leq n, \ x_k = \lambda v_k$$

et

$$x_1 + \dots + x_n = \lambda(v_1 + \dots + v_n) = 0,$$

or $v \notin H$, donc $v_1 + \ldots + v_n \neq 0$, et ainsi $\lambda = 0$ puis $(x_1, \ldots, x_n) = 0$. On a bien $H \oplus \mathbb{R}v = E$.