Seminar 6 Spații euclidiene

1 Produs scalar

Spațiile euclidiene lărgesc definițiile spațiilor vectoriale generale, adăugînd construcții foarte utile în perspectiva aplicațiilor în geometrie.

Prima definiție importantă este:

Definiție 1.1: Fie V un spațiu vectorial real. Se numește *produs scalar* pe V o aplicație $\langle \cdot, \text{cdot} \rangle$: $V \times V \to \mathbb{R}$, care, pentru orice vectori $x, y, z \in V$ și orice scalar $\alpha \in \mathbb{R}$ are proprietățile:

- *comutativitate*: $\langle x, y \rangle = \langle y, x \rangle$;
- *aditivitate*: $\langle x + z, y \rangle = \langle x, y \rangle + \langle z, y \rangle$;
- balansare: $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$;
- *pozitivitate*: $\langle x, x \rangle = 0 \Leftrightarrow x = 0$.

Cu această construcție, avem:

Definiție 1.2: Un spațiu vectorial real pe care s-a definit un produs scalar se numește *spațiu prehilber-tian (real).* ¹

Dacă spațiul este finit dimensional, el se numește euclidian.

În continuare, vom presupune că spațiul V pe care îl folosim este un spațiu euclidian.

Ca în geometrie, numim doi vectori $x,y \in V$ ortogonali dacă $\langle x,y \rangle = 0$. Vom mai nota aceasta și prin $x \perp y$.

Folosind noțiunea de produs scalar, putem defini, pentru orice vectori $x \in V$, aplicația *normă*, definită prin:

$$||\mathbf{x}|| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}.$$

Această aplicație generalizează noțiunea de modul al unui vector.

Exemplele pe care le vom întîlni cel mai des sînt:

• Pentru spațiul euclidian \mathbb{R}^n , produsul scalar standard este:

$$\langle x,y\rangle = \sum_{i=1}^{n} x_i \cdot y_i,$$

unde
$$x = (x_1, ..., x_n)$$
, iar $y = (y_1, ..., y_n)$;

• Pentru spațiul de matrice $M_{m,n}(\mathbb{R})$, putem defini produsul scalar:

$$\langle A, B \rangle = tr(A^t \cdot B).$$

• Pentru $V = C^0([a,b])$, spațiul vectorial al tuturor funcțiilor continue de forma $f : [a,b] \to \mathbb{R}$, definim:

$$\langle f, g \rangle = \int_{0}^{b} f(x) \cdot g(x) dx,$$

structură cu care obținem un spațiu prehilbertian infinit dimensional.

¹Denumirea provine de la matematicianul german David Hilbert (1862—1943), iar particular *pre*- arată că aceste spații sînt utilizate pentru a obține *spațiile Hilbert*, extrem de importante în fizica teoretică. Ele adaugă și proprietăți de analiză vectorilor, studiind, de fapt, *spații vectoriale de funcții*.

În contextul unui spațiu euclidian, au loc relațiile cunoscute din cazul geometriei plane:

- $\forall x, y \in V, |\langle x, y \rangle| \leq ||x|| \cdot ||y||$ (inegalitatea lui Cauchy-Buniakowski-Schwartz);
- $\forall x, y \in V, ||x + y||^2 + ||x y||^2 = 2(||x||^2 + ||y||^2)$ (regula paralelogramului);
- Dacă $x \perp y$, atunci $||x + y||^2 = ||x||^2 + ||y||^2$ (teorema lui Pitagora).

În cazul spațiilor complexe, se impun modificări la definiții.

Definiție 1.3: Fie V un spațiu vectorial complex. Se numește *produs scalar* pe V o aplicație $\langle \cdot, \cdot \rangle$: $V \times V \to \mathbb{C}$, care, pentru orice vectori $x, y, z \in V$ și orice scalar $\alpha \in \mathbb{C}$, are proprietățile:

- $\langle x, y \rangle = \overline{\langle y, x \rangle}$, unde prin $\overline{()}$ am notat conjugata complexă;
- $\langle x + z, y \rangle = \langle x, y \rangle + \langle z, y \rangle$;
- $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$;
- $\langle x, x \rangle \ge 0$, cu egalitate dacă și numai dacă x = 0.

Observație 1.1: Remarcați că, folosind prima și a treia proprietate, obținem:

$$\langle x, \alpha y \rangle = \overline{\alpha} \langle x, y \rangle.$$

Cu aceasta, avem:

Definiție 1.4: Un spațiu vectorial complex, pe care s-a definit un produs scalar se numește *spațiu prehilbertian complex*.

Spațiile prehilbertiene complexe cu dimensiune finită se numesc spații unitare.

Exemplele din cazul real pot fi adaptate:

• Fie $V = \mathbb{C}^n$. Atunci, cu notațiile de mai sus, produsul scalar se poate defini prin:

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i \cdot \overline{y_i}.$$

• În spațiul vectorial complex al funcțiilor continue $f : [a,b] \to \mathbb{C}$, putem defini produsul scalar complex prin:

$$\langle f, g \rangle = \int_{a}^{b} f(x) \overline{g(x)} dx.$$

2 Ortonormare

Date aceste noțiuni, pornind cu conceptul de produs scalar, utilizările pe care le vom studia sînt în următoarea direcție:

Definiție 2.1: Fie V un spațiu prehilbertian (real sau complex).

- Un sistem finit sau numărabil $\{e_i\}$ de vectori din V se numește *sistem ortogonal* dacă toți vectorii sînt nenuli și ortogonali doi cîte doi.
- Sistemul se numește *ortonormat* dacă este ortogonal, iar norma ("lungimea") fiecărui vector este 1.

Cazul care ne interesează este acela în care sistemul de vectori de mai sus este o *bază* pentru V, situație în care se numeste *bază ortonormată*. ²

Dată o bază "obișnuită" a unui spațiu vectorial (euclidian sau unitar), din ea se poate obține una ortonormată, folosind **procedeul Gram-Schmidt**.

Fie $B = \{u_1, \dots, u_n\}$ o bază oarecare în V. Construim din ea o bază *ortogonală* $B_1 = \{v_1, \dots, v_n\}$, apoi o normăm, înmulțind fiecare vector cu inversul normei sale, obținînd baza *ortonormată* $B_2 = \{\frac{v_i}{||v_i||}\}$.

Procedeul pornește astfel:

- Luăm $v_1 = u_1$;
- Mai departe, definim $v_2 = u_2 + \alpha v_1$, cu α ales astfel încît $v_2 \perp v_1$. Din această condiție, găsim:

$$\alpha = -\frac{\langle \mathfrak{u}_2, \mathfrak{v}_1 \rangle}{\langle \mathfrak{v}_1, \mathfrak{v}_1 \rangle}.$$

• În continuare, luăm $v_3 = u_3 + \alpha_1 v_1 + \alpha_2 v_2$, cu $\alpha_{1,2}$ astfel încît $v_3 \perp v_1$ și $v_3 \perp v_2$. Se obțin:

$$\alpha_1 = -\frac{\langle u_3, v_1 \rangle}{\langle v_1, v_1 \rangle}, \quad \alpha_2 = -\frac{\langle u_3, v_2 \rangle}{\langle v_2, v_2 \rangle}.$$

Procedeul continuă similar pînă obținem baza B₁, pe care apoi o normăm.

3 Complement ortogonal

Extindem noțiunea de ortogonalitate la spații.

Definiție 3.1: Fie E un spațiu euclidian (sau unitar) cu dim $E = n < \infty$ și V un subspațiu vectorial al lui E, cu dim V = p, astfel încît $1 \le p \le n - 1$.

Se numește *complementul ortogonal* al lui V, notat V^{\perp} , un subspațiu $V^{\perp} \subseteq E$, astfel încît $V \oplus V^{\perp} = E$ și $V \perp V^{\perp}$, adică $\forall x \in V$, $\forall y \in V^{\perp}$, $x \perp y$.

În calcule, ne vom baza pe următoarea:

Teoremă 3.1: Fie E un spațiu euclidian (unitar). Pentru orice subspațiu vectorial nenul $V \subseteq E$, există și este unic complementul ortogonal V^{\perp} al lui V.

Așadar, următoarele proprietăți vor fi fundamentale în exercițiile de determinare a complementului ortogonal al unui spațiu. Fie $S \hookrightarrow V$. Atunci:

• $S \oplus S^{\perp} \simeq V$, deci (cf. Grassmann):

$$\dim S + \dim S^{\perp} = \dim V.$$

- $(S^{\perp})^{\perp} \simeq S$;
- Putem scrie matricea formată din vectorii bazei lui S și căutăm vectorii bazei lui S^{\perp} (tot matriceal), astfel încît produsul celor două matrice să fie nul. Problema se reduce, astfel, la un sistem de ecuații omogene.

Avem nevoie și de:

Definiție 3.2: Fie E un spațiu euclidian (unitar). Un endomorfism $f : E \to E$ se numește *ortogonal* (*unitar*) dacă duce baze ortonormate în baze ortonormate.

²Acesta este, de fapt, cazul din geometria tridimensională, "clasică". Baza este dată de versorii $\vec{i}, \vec{j}, \vec{k}$, care sînt ortonormați.

Pentru ele, avem următoarea:

Teoremă 3.2: Dacă E este un spațiu euclidian (unitar), iar $f: E \to E$ este un endomorfism, următoarele afirmații sînt echivalente:

- (a) f este ortogonal (unitar);
- (b) $\forall x, y \in E, \langle x, y \rangle = \langle f(x), f(y) \rangle$;
- (c) matricea lui f, scrisă în orice bază ortonormată, este inversabilă, iar $(M_f^B)^{-1} = (M_f^B)^t$ (respectiv $\overline{(M_f^B)^t}$ pentru cazul complex).

De fapt, putem defini în general:

Definiție 3.3: O matrice $A \in M_n(\mathbb{R})$ se numește *simetrică* atunci cînd $A = A^t$ și *ortogonală* cînd $A^{-1} = A^t$.

Pentru cazul complex, o matrice $A \in M_n(\mathbb{C})$ se numește hermitică 3 atunci cînd $A = \overline{A^t}$ și unitară dacă este inversabilă și $A^{-1} = \overline{A^t}$.

Se poate demonstra simplu că:

- Matricea asociată unui endomorfism ortogonal într-o bază ortonormată este ortogonală;
- Dacă A este ortogonală, atunci det $A = \pm 1$;
- Matricea asociată unui endomorfism unitar într-o bază ortonormată este unitară;
- Dacă A este unitară, atunci $|\det A| = 1$.

4 Exercitii

- 1. Aplicați algoritmul Gram-Schmidt pentru:
- (a) Baza $\mathcal{B} = \{(1, 1, -1), (3, -1, -1), (0, -1, 1)\}$ a spațiului \mathbb{R}^3 ;
- (b) Baza $\mathcal{B} = \{(0, 1, -1), (2, 0, 1), (-1, 1, -1)\}$ a spațiului \mathbb{R}^3 .
 - 2. Fie $V = \mathbb{R}_3[X]$. Definim aplicația $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ prin:

$$\langle \mathbf{p}, \mathbf{q} \rangle = \sum_{k=0}^{3} (k!)^2 a_k b_k,$$

unde $p = \sum a_i X^i$ și $q = \sum b_j X^j$.

- (a) Arătati că aplicatia este un produs scalar;
- (b) Calculati ||h||, unde $h = 1 + 5x 4x^2 + 5x^3$.
 - 3. Fie $C = \mathcal{C}^{\infty}([1, e])$ și aplicația definită prin:

$$\langle f, g \rangle = \int_{1}^{e} f(x)g(x) \ln x dx.$$

³Charles Hermite (1822–1901) [wiki].

- (a) Arătați că aplicația este un produs scalar;
- (b) Calculați ||h||, pentru h : $[1, e] \rightarrow \mathbb{R}$, h(x) = \sqrt{x} ;
- (c) Aflați o funcție de gradul întîi g care să fie perpendiculară pe funcția constantă f(x) = 5 (în raport cu produsul scalar de mai sus).
 - 4. Fie $S = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0\}.$
- (a) Determinați S[⊥];
- (b) Fie vectorul v = (1, 4, 5). Găsiți coordonatele lui v în S, respectiv în S^{\perp} .
 - 5. Calculați complementul ortogonal al subspațiului al \mathbb{R}^4 , generat peste \mathbb{R} de vectorii

$$(1,3,0,2), (3,7,-1,2), (2,4,-1,0).$$

6. În spațiul $\mathbb{R}_2[X]$ se consideră vectorii:

$$p_1 = 3x^2 + 2x + 1$$

$$p_2 = 3x^2 + 2x + 5$$

$$p_3 = -x^2 + 2x + 1$$

$$p_4 = 3x^2 + 5x + 2$$

Să se determine un polinom p echidistant de vectorii p_1 , p_2 , p_3 , p_4 , în raport cu distanța euclidiană.

7. În spațiul \mathbb{R}^4 , se consideră vectorii:

$$x = (1,0,1,3), y = (-1,1,1,0).$$

Să se completeze acești vectori pînă la o bază ortogonală, apoi să se normeze baza rezultată.

8. Se consideră subspațiul $S = \operatorname{Sp}(x_1, x_2, x_3) \hookrightarrow \mathbb{R}^4$, unde:

$$x_1 = (1, 1, 2, 1), x_2 = (-1, 0, 2, 3), x_3 = (1, 2, -1, -3).$$

- (a) Găsiți un vector $v \in \mathbb{R}^4$, astfel încît $v \perp S$;
- (b) Găsiți S^{\perp} .
 - 9. Să se determine o bază ortonormată a subspațiului:

$$S = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 - x_2 + 2x_3 - x_4 = 0\} \hookrightarrow \mathbb{R}^4.$$