STAT 500

Randomization Based Inference

Scenario

- Randomized Experiment
 - One Factor with 2 Levels
 - Two Treatments
- Randomly assign experimental units to one of two treatment groups.

Research Question

- Is there a difference in the value of the response variable between the two treatments?
- Source of inference
 - Random assignment of experimental units to treatments

Notation

- Parameters
 - Treatment 1
 - * μ_1 = mean response for Treatment 1
 - * $\sigma_1^2=$ variance of response for Treatment 1
 - * $\sigma_1=$ std. dev. of response for Treatment 1
 - Treatment 2
 - * μ_2 = mean response for Treatment 2
 - * $\sigma_2^2 =$ variance of response for Treatment 2
 - * $\sigma_2=$ std. dev. of response for Treatment 2

Notation

Data

$$-Y_{11}, Y_{12}, \ldots, Y_{1n_1}$$

value of response variable for n_1 experimental units receiving treatment 1.

$$-Y_{21}, Y_{22}, \ldots, Y_{2n_2}$$

value of response variable for n_2 experimental units receiving treatment 2.

Notation

- Summary Statistics
 - Treatment 1

$$\overline{Y}_1 = rac{1}{n_1} \sum_{j=1}^{n_1} Y_{1j}$$

$$S_1^2 = rac{1}{n_1 - 1} \sum_{j=1}^{n_1} (Y_{1j} - \overline{Y}_1)^2$$

$$S_1^2 = rac{1}{n_1-1} \, \Sigma_{j=1}^{n_1} (Y_{1j} - \overline{Y}_1)^2 \qquad \qquad S_1 = \sqrt{rac{1}{n_1-1} \, \Sigma_{j=1}^{n_1} (Y_{1j} - \overline{Y}_1)^2}$$

- Treatment 2

$$\overline{Y}_2 = rac{1}{n_2} \sum_{j=1}^{n_2} Y_{2j}$$

$$S_2^2 = rac{1}{n_2 - 1} \sum_{j=1}^{n_2} (Y_{2j} - \overline{Y}_2)^2$$

$$S_2^2 = rac{1}{n_2-1} \, \Sigma_{j=1}^{n_2} (Y_{2j} - \overline{Y}_2)^2 \qquad \qquad S_2 = \sqrt{rac{1}{n_2-1} \, \Sigma_{j=1}^{n_2} (Y_{2j} - \overline{Y}_2)^2}$$

Methods of Analysis

- Reach conclusions and make recommendations using:
 - Visual displays
 - Point estimation: estimates for $\mu_1,~\mu_2,~\sigma_1,\sigma_2,~\mu_1-\mu_2,~$ etc.
 - Interval estimation: confidence intervals for $\mu_1 \mu_2$ and other quantities
 - Tests of hypotheses ($\mu_1 = \mu_2$?)
- Types of inference
 - Randomization (design-based)
 - Model-based (relies on the specification of a model)

Randomization as a Basis for Inference

- Used for randomized experiments
- Use the probability distribution imposed by the random assignment of units to treatment groups
 - Under the null hypothesis
 - H_0 : treatments have the same effect the response provided by any particular unit does not depend on the assigned treatment $(\Rightarrow \mu_1 = \mu_2)$
 - Is the observed difference $\bar{y}_1 \bar{y}_2$ inconsistent with H_0 ?
 - Compare $\bar{y}_1 \bar{y}_2$ with differences in sample means for all other possible random assignments of units to treatment groups (What if H_0 is true?)

Randomization Test, An Example

- Suppose we want to test whether a drug affects the running ability of rats.
- We randomly divide a group of eight rats into two groups of four.
 - Each rat in one group is injected with the drug.
 - Each rat in the other group is injected with a control substance.
- Then the running time before rest (in minutes) is measured for each rat.

Rats Running Study

Running Time in minutes (Hypothetical Data)

Control: 9 12 14 17

Drug: 18 21 23 26

• The average running time is 13 for the control group, and 22 for the drug group.

• Is this difference caused by the drug?

Rats Running Study

- Clearly there is some natural variation in the response variable (not due to treatment) because the running times differ among rats within each treatment group.
- Maybe the observed difference (22-13=9) showed up simply because it happened that the rats with better endurance were chosen for injection with the drug.
- What is the chance of seeing such a large difference in treatment means if the drug has no effect?

Random Assignment		Control				Dr	ug		Difference in Averages	
1	9	12	14	17	18	21	23	26	9.0	_
2	9	12	14	18	17	21	23	26	8.5	
3	9	12	14	21	17	18	23	26	7.0	
4	9	12	14	23	17	18	21	26	6.0	
5	9	12	14	26	17	18	21	23	4.5	
6	9	12	17	18	14	21	23	26	7.0	
7	9	12	17	21	14	18	23	26	5.5	
8	9	12	17	23	14	18	21	26	4.5	
9	9	12	17	26	14	18	21	23	3.0	
10	9	12	18	21	14	17	23	26	5.0	
11	9	12	18	23	14	17	21	26	4.0	
12	9	12	18	26	14	17	21	23	2.5	
13	9	12	21	23	14	17	18	26	2.5	
14	9	12	21	26	14	17	18	23	1.0	
15	9	12	23	26	14	17	18	21	0.0	
:	•	:	•	•	•	:	•	•	•	
69	18	21	23	26	9	12	14	17	-8.5	49
70	18	21	23	26	9	12	14	17	-9.0	-

Distribution of Difference between Treatment Means Assuming No Treatment Effect

Rats Running Study

- Only 2 of the 70 possible random assignments would have led to a difference between treatment means as large as 9.
- Thus, under the assumption of no drug effect, the chance of seeing a difference as large as we observed was 2/70 = 0.0286.
- Because 0.0286 is a small probability, we have reason to attribute the observed difference to the effect of the drug rather than a coincidence due to the way we assigned our experimental units to treatment groups.

Motivation and Creativity

The Statistical Sleuth, Section 1.1

- T. Amabile, J. Per. and Soc. I Psych., 48(2), 1985, 393-99
 - Experimental units: experienced creative writers
 - Treatments: questionnaires on motivation for writing given at the beginning of the study (SS, page 3)
 - intrinsic motivation (enjoyment, satisfaction, etc...)
 - extrinsic motivation (jobs, financial rewards, etc.)
 - Random assignment: (24 intrinsic, 23 extrinsic)
 - Response: Creativity displayed in writing a Haiku style poem on laughter ⇒ average of evaluations by 12 poets on a 40 point scale

Creative Writing Study

Observed data

```
16.6
intrinsic:
        12.0 12.0 12.9 13.6
                                   17.2
         17.5
              18.2 19.1
                        19.3 19.8
                                   20.3
         20.5 20.6 21.3 21.6
                              22.1
                                   22.2
         22.6
              23.1
                   24.0
                        24.3
                              26.7
                                    29.7
extrinsic:
         5.0 5.4
                   6.1
                        10.9
                              11.8
                                   12.0
         12.3
              14.8 15.0
                        16.8
                              17.2
                                   17.2
              17.5 18.5 18.7 18.7
                                   19.2
         17.4
         19.5 20.7 21.2 22.1 24.0
```

Creative Writing Study

• Data display (histograms, boxplots, stem-leaf plots)

Creative Writing Study

• Five summary statistics:

Treatment 1: min=12.0 Q1=17.35 median(Q2)=20.40
$$Q3=22.45 \text{ max}=29.70$$

Treatment 2: min=
$$5.0 Q1=12.00 median(Q2)=17.20$$

Q3= $19.20 max=24.00$

Sample means and standard deviations

$$\bar{y}_1 = 19.8875, \qquad s_1 = 4.4418$$

$$\bar{y}_2 = 15.7391, \qquad s_2 = 5.2526$$

Observed difference in sample means is 4.1484

Randomization Test

- ullet H_o : Treatments 1 and 2 have the same effect on creativity
- ullet H_a : Treatments 1 and 2 do not have the same effect on creativity
- 1.6×10^{13} possible random assignments
- Sample of 10000 randomization assignments of subjects to treatments (assume the null hypothesis is true)
 - 50 of 10000 randomizations have values as large as 4.1484 or as small as -4.1484)
 - extremely unlikely to see a difference this big
 by chance (two-tailed p-value = .0050)

Randomization Test

- Conclusions
 - questionnaire on intrinsic rewards leads to more creative writing in these students
 - not a random sample ... can't necessarily infer that this is true in a larger population
- The randomization test is also called the permutation test

General Comments

• The randomization test (permutation test) depends on identifying units to permute, which should be the units in the experiment that are **exchangeable under the null hypothesis**, determined by the design of the experiment and the factor(s) being tested.

Randomization Confidence Intervals

- A confidence interval can be constructed from the set of null hypotheses that are not rejected by the randomization test.
- ullet Consider a possible value for $\delta=\mu_1-\mu_2$
- ullet Subtract δ from every value in sample 1
- ullet Perform a randomization test to determine if $Y_{1j}-\delta$'s have a different mean than Y_{2j} 's
- ullet If H_o is not rejected at the lpha level, put δ in the (1-lpha) imes 100% confidence interval