Proposta per l'elaborato di matematica e fisica

Per lo studente

Condensatori e correnti di spostamento, limiti e derivate

Rifletti sulla teoria

- Enuncia la definizione di limite nel caso $\lim_{x\to +\infty} f(x) = l$, con $l \in \mathbb{R}$ e fornisci un'interpretazione grafica del risultato.
- Come si ricava l'equazione dell'asintoto obliquo di una funzione? È possibile che la funzione f(x) ammetta, per $x \to +\infty$, un asintoto orizzontale e uno obliquo? Perché?
- Studia la concavità della funzione $f(x) = 1 e^{kx}$, al variare di $k \in \mathbb{R}$.
- Descrivi il processo di carica di un condensatore, specificando il ruolo della costante di tempo τ del circuito.
- Spiega il concetto di circuitazione per il campo elettrico. Che cosa significa l'affermazione che il campo elettrico indotto ha circuitazione non nulla?

Mettiti alla prova

- **1.** Considera la famiglia di funzioni $f_k:[0;+\infty[\to\mathbb{R},$ definita ponendo $f_k(x)=1-e^{-\frac{x}{k}},$ con k parametro reale positivo. Verifica che si tratta di funzioni crescenti, indipendentemente dal valore di k, e dotate di un asintoto orizzontale. Traccia un grafico qualitativo di una funzione della famiglia, deducendolo da quello di funzioni elementari.
- **2.** Poni $\lim_{x \to +\infty} f_k(x) = L$ e risolvi la disequazione $|f_k(x) L| < \varepsilon$, dove ε è un parametro positivo arbitrario.

Un condensatore piano ideale, con armature circolari di raggio R, viene collegato a un generatore di corrente continua.

3. Dimostra che il campo magnetico indotto a distanza r < R dall'asse del condensatore può essere espresso dalla formula

$$B = \mu_0 \varepsilon_0 \frac{r}{2} \cdot \frac{dE}{dt},$$

dove il termine $\frac{dE}{dt}$ rappresenta la variazione istantanea del campo elettrico tra le armature.

4. Dimostra che, durante la fase di carica, la corrente di spostamento tra le armature è espressa da

$$i_s = \frac{Q_0}{\tau} \cdot e^{-\frac{t}{\tau}},$$

dove Q_0 rappresenta la carica depositata sull'armatura positiva del condensatore al termine del processo.

5. Le armature del condensatore hanno raggio R=10 cm. Sapendo che il condensatore può dirsi completamente carico dopo $\Delta t=5\tau=1,5$ s e che $Q_0=5,6\cdot 10^{-7}$ C, calcola il campo magnetico indotto a distanza $r=\frac{R}{5}$ dall'asse del condensatore dopo $\Delta t'=1,0$ s.

Possibili integrazioni multidisciplinari

 Scrivi l'equazione differenziale che descrive il processo di carica di un condensatore in un circuito RC con condizione iniziale

$$i(0) = \frac{V}{R},$$

dove V è la forza elettromotrice fornita dal generatore e R il valore della resistenza. Assegna ai parametri del sistema dei valori opportuni. Scrivi un **programma** che risolva numericamente l'equazione differenziale trovata.

• Il concetto di *crescenza* ricorre anche nelle analisi economiche. Uno degli obiettivi dell'**Agenda 2030** per lo sviluppo sostenibile è, per esempio, il seguente:

Obiettivo 8: Incentivare una crescita economica duratura, inclusiva e sostenibile,

un'occupazione piena e produttiva e un lavoro dignitoso per tutti.

Commenta questo obiettivo. Puoi considerare i traguardi che si pone l'Agenda 2030.

Per l'insegnante

Possibili domande da fare durante il colloquio

In sede d'esame, per verificare l'effettiva comprensione della parte teorica, si possono fare allo studente le seguenti domande.

- Enuncia e dimostra il corollario del teorema di Lagrange utile allo studio della crescenza di una
- Sai dare un esempio di funzione che ammetta due distinti asintoti orizzontali?
- Enuncia il teorema della circuitazione di Ampère e spiega il significato dell'ipotesi di Maxwell sulle correnti di spostamento.
- Illustra il significato fisico del teorema di Gauss per il magnetismo.
- Determina, sulla base del teorema di Gauss, l'espressione del campo elettrico all'interno di un condensatore carico.

Traccia di svolgimento del Mettiti alla prova

1. Studio della crescenza e ricerca dell'asintoto.

Osserviamo che il grafico della funzione $f_k(x)$ al variare di k > 0 passa per il punto (0,0). Calcoliamo la derivata prima della funzione $f_k(x)$:

$$f'_k(x) = -e^{-\frac{x}{k}} \left(-\frac{1}{k} \right) \to f'_k(x) = \frac{e^{-\frac{x}{k}}}{k}.$$

La derivata è positiva $\forall x \in [0; +\infty[$. Quindi la funzione $f_k(x)$ è crescente, indipendentemente dal valore di k.

Calcoliamo il valore del limite per $x \to +\infty$:

$$\lim_{x \to +\infty} f_k(x) = \lim_{x \to +\infty} \left(1 - e^{-\frac{x}{k}} \right) = 1,$$

 $\lim_{x\to +\infty} f_k(x) = \lim_{x\to +\infty} \left(1-e^{-\frac{x}{k}}\right) = 1,$ quindi il grafico della funzione ammette l'asintoto orizzontale y=1, indipendentemente dal

Il grafico della funzione $y = e^{-\frac{x}{k}}$ è il seguente.

Otteniamo il grafico della funzione $f_k(x)$ con le opportune trasformazioni geometriche.

Proseque >>

2. Verifica di limite.

Abbiamo calcolato che $\lim_{x\to +\infty} f_k(x)=1$. Per la definizione di limite, fissato arbitrariamente $\epsilon>0$, esiste un intorno di $+\infty$ per ogni x del quale risulta: $|f_k(x) - 1| < \varepsilon$.

Risolviamo la disequazione:

$$|f_k(x) - 1| < \varepsilon \to \left|1 - e^{-\frac{x}{k}} - 1\right| < \varepsilon \to \left|-e^{-\frac{x}{k}}\right| < \varepsilon \to e^{-\frac{x}{k}} < \varepsilon \to -\frac{x}{k} < \ln \varepsilon \to x > -k \ln \varepsilon.$$

3. Dimostrazione della formula del campo magnetico indotto.

Nelle condizioni esposte dal testo, il campo magnetico indotto è generato dalla corrente di spostamento, definita da

$$i_s = \varepsilon_0 \cdot \frac{d\Phi(\vec{E})}{dt}.$$

Calcoliamo il flusso del campo elettrico attraverso un cerchio di raggio r centrato nell'asse del condensatore e a esso perpendicolare. In condizioni ideali, il campo elettrico all'interno del condensatore è uniforme e si possono trascurare gli effetti di bordo.

Quindi
$$\Phi(\vec{E}) = \vec{E} \cdot \vec{S} = E \cdot \pi r^2$$
.

Possiamo ricavare

$$i_s = \epsilon_0 \cdot \frac{d\Phi(\vec{E})}{dt} = \epsilon_0 \pi r^2 \cdot \frac{dE}{dt}.$$
 Dal teorema di Ampère-Maxwell otteniamo:

$$C(\vec{B}) = \mu_0 i_s = \mu_0 \varepsilon_0 \pi r^2 \cdot \frac{dE}{dt}.$$

D'altra parte, il campo magnetico indotto ha intensità costante sulla circonferenza di raggio r centrata sull'asse del condensatore, che ne costituisce una linea di forza. Pertanto:

$$C(\vec{B}) = \oint \vec{B} \cdot \vec{dl} = B \cdot 2\pi r.$$

Possiamo concludere, quindi, che:
$$B \cdot 2\pi r = \mu_0 \varepsilon_0 \pi r^2 \cdot \frac{dE}{dt} \rightarrow B = \mu_0 \varepsilon_0 \frac{r}{2} \cdot \frac{dE}{dt}.$$
 4. Variazione istantanea del campo elettrico tra le armature del condensatore.

L'intensità del campo elettrico all'interno del condensatore è $E = \frac{\sigma}{\epsilon_0}$, dove σ rappresenta la densità superficiale di carica. Durante la fase di carica, quindi

$$\sigma = \frac{Q(t)}{\pi R^2} = \frac{Q_0}{\pi R^2} \left(1 - e^{-\frac{t}{\tau}} \right),$$

$$E = \frac{\sigma}{\varepsilon_0} = \frac{Q_0}{\pi \varepsilon_0 R^2} \left(1 - e^{-\frac{t}{\tau}} \right).$$

$$\frac{dE}{dt} = \frac{Q_0}{\pi \varepsilon_0 R^2} \left(-e^{-\frac{t}{\tau}} \right) \left(-\frac{1}{\tau} \right) = \frac{Q_0}{\pi \varepsilon_0 \tau R^2} e^{-\frac{t}{\tau}}.$$

$$i_s = \varepsilon_0 \cdot \frac{d\Phi(\vec{E})}{dt} = \varepsilon_0 \pi R^2 \cdot \frac{dE}{dt} = \varepsilon_0 \pi R^2 \frac{Q_0}{\pi \varepsilon_0 \tau R^2} e^{-\frac{t}{\tau}} = \frac{Q_0}{\tau} e^{-\frac{t}{\tau}}.$$

5. Determinazione del campo magnetico indotto

Dall'espressione di $B = \mu_0 \varepsilon_0 \frac{r}{2} \cdot \frac{dE}{dt}$ otteniamo, con le ipotesi del problema:

$$B = \mu_0 \varepsilon_0 \frac{R}{10} \cdot \frac{dE}{dt}.$$

Il condensatore è completamente carico dopo un intervallo di tempo $\Delta t = 5\tau$, quindi $\tau = 0.30$ s.

Proseque >>

Per quanto dimostrato in precedenza:

$$B = \mu_0 \varepsilon_0 \frac{R}{10} \cdot \frac{dE}{dt} = \mu_0 \varepsilon_0 \frac{R}{10} \cdot \frac{Q_0}{\pi \varepsilon_0 \tau R^2} e^{-\frac{t}{\tau}} = \frac{\mu_0}{10} \frac{Q_0}{\pi \tau R} e^{-\frac{t}{\tau}} \rightarrow B = \frac{4\pi \cdot 10^{-7}}{10} \cdot \frac{5.6 \cdot 10^{-7}}{\pi \cdot 0.30 \cdot 10^{-1}} e^{-\frac{1.0}{0.30}} \approx 2.7 \cdot 10^{-14} \text{ T}$$