MATH 347 Gibbs sampler for Gamma-Gamma-Poisson (Exercise)

In class, we have demonstrated Gibbs sampling for a two-parameter Normal model, where both μ and σ are unknown. In fact, the Gibbs sampling algorithm works for any two-parameter model, or multi-parameter model when the number of parameters is more than 2.

Recall the Gamma-Poisson conjugate model we have discussed before, where the sampling model is a $Y_1, \dots, Y_n \overset{i.i.d.}{\sim} \text{Poisson}(\lambda)$, and the conjugate prior for proportion λ is a Gamma, where $\lambda \sim \text{Gamma}(a, b)$. We know that the posterior distribution of λ is also a Gamma, where $\lambda \mid Y_1 = y_1, \dots, Y_n = y_n \sim \text{Gamma}(a + \sum_{i=1}^n y_i, b + n)$.

Note that the Poisson sampling model has the following density function:

$$P(Y = y \mid \lambda) = \lambda^y \exp(-\lambda)/y!, \text{ for } y \in \{0, 1, 2, \dots\}.$$
(1)

And the Gamma prior distribution has the following density function:

$$\pi(\lambda) = \frac{b^a}{\Gamma(a)} \lambda^{a-1} \exp(-b\lambda), \text{ for } \lambda, a, b > 0.$$
 (2)

Now consider that a=1 and b is unknown, and we give a Gamma prior for b, as in $b \sim \text{Gamma}(1,1)$.

We come to the following model:

$$Y_1, \cdots, Y_n \mid \lambda, b \sim \operatorname{Poisson}(\lambda),$$
 (3)

$$\lambda \mid b \sim \text{Gamma}(1, b),$$
 (4)

$$b \sim \text{Gamma}(1,1).$$
 (5)

How to sample the joint posterior distribution of (λ, b) ? Gibbs sampler!

- Step 1: Write out the likelihood function $L(\lambda, b)$.
- Step 2: Write out the joint prior distribution $\pi(\lambda, b)$.
- Step 3: Write out the joint posterior distribution $\pi(\lambda, b \mid y_1, \dots, y_n)$.

- Step 4: Derive the full conditional posterior distribution for each parameter: (λ, b)
 - Full conditional posterior distribution for λ : $\pi(\lambda \mid y_1, \dots, y_n, b)$

which means
$$\lambda \mid y_1, \cdots, y_n, b$$
 follows

– Full conditional posterior distribution for b: $\pi(b \mid y_1, \dots, y_n, \lambda)$

```
which means b \mid y_1, \dots, y_n, \lambda follows
```

• Step 5: Code your Gibbs sampler.