* Surface tension = force due to the cohesive forces
* Surface tension = force due to the cohesive forces between similar molecules in the liquid
/
surface tension coefficient = F, in units N
surface tension coefficient $\gamma = \frac{F}{\ell}$, in unit $\frac{N}{m}$
l'is circumference of the disturbance is surface
E JF l= 2TR
R = 1.5 x p-1 m = 0.15mm F = x l = x (2 TR)
$m = 2 \times 10^{-5} \text{ ha}$
$m = 2 \times 10^{-5} \text{kg}$ $\gamma = 0.0728 \frac{N}{m}$ $F_y = F \cos \theta = \gamma (2\pi R) \cos \theta$
o m
Fret = 6Fy - (mg) = 0 -> 6x (2TR) cos 0 - mg = 0
$0? \cos 0 = \frac{mg}{12 \sqrt{n}R} = 0.47$ $0 = 62^{\circ}$
1 12 × n R
() = 62°
cos 0 > 1? lug sink, surface tension not large enough
lane en ande
and the state of the

Surfackents: substance that is added to the liquid to reduces surface tension & e.g. devergent to ching better to grease
to reduces surface tension
a dekande to chia latta to casse
e.g. desergent 10 day venus 10 great
Example: pulmonary alvedi: liquid/musus covered try sacs of air
is a last to the said and the travel to
1) invalation: muscles expand ener carry, results in
i) inhalation: muscles expand éhest casity, results in under pressure ~3 mm Hg - au rewhesin
Surfactant: long lipopoleum
when alveoli extend - contentration goes down
-> surface tension increase
nevert you from inhaling too much
merel alvedi Inom Prustina
surfactant: long lipoproteins when alveoli extend - contentration goes down - surface tension increase prevent your from inhaling too much prevent alveoli from Crusting
2) exhalation: let surface on the alreali contract and
 Then our the
Concernation in reases, singula jension
decreases
concentration increases, surface tension decreases prevents alvedi from collapsing
Water in lungs -> concentration is lower -> surface tension
is higher
Water in lungs -> concentration is lower -> surface tension is higher Co drowning, new borns infants, hyaline membrane dis.
Emphysma: concentration increases due to combining alreoli -> difficulty exhaling
-> difficulty exhaling

How does the water from the soil get to top of a redwood tree? Can capillary effect explain this? What's Rrequired to get h = 100 m? $h = \frac{2 \times \cos 0}{9 \times 9} = 100 \text{ m}$ $\int_{0}^{2} \int_{0}^{2} \frac{1000 \text{ kg/m}}{1000 \text{ m}} = \frac{1000 \text{ kg/m}}{1000 \text{ m}}$ $\int_{0}^{2} \int_{0}^{2} \frac{1000 \text{ kg/m}}{1000 \text{ m}} = \frac{1000 \text{ kg/m}}{1000 \text{ m}}$ $R = \frac{2 \times \cos \theta}{9 + 9} = \frac{2(0.0728 \frac{N}{m})(1)}{(1000 \text{ kg/s}^2)(1000 \text{ m})(9.8 \frac{M}{s^2})}$ R = 1.41 × 10-7 m = 0.141 jum > not found, R = 2.5 × 10 - 5 m = 25 pm $h = \frac{2(0.0728 \frac{N}{m})(1)}{(1000 \frac{kg}{m^3})(2.5 \times 10^{-5})(9.8 \frac{N}{s^2})} = 0.6 m$

