

Геодезия и картография

Методы и средства измерения и изображения земной поверхности. История и современность

Форма Земли

- Рельеф земной поверхности
- Эллипсоид вращения
- Геоид поверхность, нормальная силе тяжести
- Сила тяжести g = 9.82 м/с2, центробежная сила 0.035 м/с2
- Градиент силы тяжести 0.3086Н мГал/м

Определение координат

- Астрономическое
- Геоцентрическое
- Геодезическое

Earth's Gravity Field Anomalies (milligals)

Форма Земли

• Эллипсоид вращения WGS84

Обозначения,	Параметры	Примечания
размерность		
а, м	6 378 137	Большая полуось
α	1/298,257 223 563	Сжатие
GM, км ³ /с ²	3 986 00,5 ´	Гравитационная постоянная
C ₂₀	-484 166,855 10 ⁻⁹	Гармонический коэффициент
ω, рад/с	7292 115 10 ⁻¹¹	Угловая скорость Земли
c, m/c	299 792 458	Скорость электромагнитных волн в вакууме
γ _e , m/c ²	9,780 326 7715	Нормальная сила тяжести на экваторе
γ _p , м/с 2	9,832 186 3685	Нормальная сила тяжести на полюсе

Б.Б. Серапинас ГЕОДЕЗИЧЕСКИЕ ОСНОВЫ КАРТ. М.: МГУ, 2001

Опорные геодезические сети

Плановые: триангуляционные, трилатерационные

Технические методы и средства в

- Высотные: нивелирные, гравиметрические
- В России СК-42, СК-95 (действующая) 4733 пункта, 8. полигонов, протяженность около 60 тысяч км
- Закрепление на местности (реперы, нивелирные марки)
- Угловая точность 0.7', плановая 7-10 cм / 20 км
- Балтийская система нормальных высот 1977 г.,
- Точность определения высот пунктов 6 10 см.

Современные оптические приборы

- Теодолиты, тахеометры
- Нивелиры
- Лазерные и ИК дальномеры

Геодезия и картография

Задача: найти положение объекта относительно точек с известными координатами

Технические методы и средства в

• Измерение расстояния с помощью времени

Факультет географии и

геоинформационных технологий

• Измерение расстояния с помощью времени

• Скорость распространения звука

Факультет географии и

геоинформационных технологий

• При увеличении количества целей задача не решается

• Сигнал испускает не цель, а станция

Технические методы и средства в

географических исследованиях

Несинхронность отсчетов по времени

• Отклонение только в часах приемника, т.к. остальные синхронизированы между собой — можно оценить

• Количество целей теперь не имеет значение

Постановка задачи в трехмерном пространстве

Технические методы и средства в

географических исследованиях

15

• Необходимость четвертого источника

$$\sqrt{(x - x_2)^2 + (y - y_2)^2 + (z - z_2)^2} = v \times (t_2 - b)$$

$$\sqrt{(x - x_3)^2 + (y - y_3)^2 + (z - z_3)^2} = v \times (t_3 - b)$$

$$\sqrt{(x - x_4)^2 + (y - y_4)^2 + (z - z_4)^2} = v \times (t_4 - b)$$

• Размещение источников сигнала

10 satellites

Геодезия и картография

Системы глобального спутникового позиционирования GNSS и GPS

Размещение источников сигнала

Факультет географии и

геоинформационных технологий

Технические методы и средства в

географических исследованиях

Системы глобального спутникового позиционирования GNSS и GPS

Размещение источников сигнала

- Компенсация релятивистских эффектов замедление времени на спутнике и ускорение времени в связи с высокими скоростями движения
- Компенсация атмосферных искажений на низких углах атаки

• Вид передаваемой информации – номер спутника, эфемериды (координаты и скорость спутника), точное время на спутнике

TLM	HOW	Clock corrections, health
TLM	HOW	Ephemeris
TLM	HOW	Ephemeris
TLM	HOW	Almanac/other – page 1
TLM	HOW	Almanac – page 1
TLM	HOW	Clock corrections, health
TLM	HOW	Ephemeris
TLM	HOW	Ephemeris
TLM	HOW	Almanac/other – page 2
TLM	HOW	Almanac – page 2
•••		
TLM	HOW	Clock corrections, health
TLM	HOW	Ephemeris
TLM	HOW	Ephemeris
TLM	HOW	Almanac/other – page 25
TLM	HOW	Almanac – page 25

• RTK (real-time kinematics, кинематика реального времени) — высокоточное позиционирование с передачей поправок от базовой станции

Технические методы и средства в

Аэрофотосъемка и ортофотопланы

- Стереокомпаратор
- АФС с БПЛА structure-from-motion (орторектификация)
- Построение ЦММ

Разреженное (а) и плотное (б) облака точек, модель местности (в) и ортофотоплан (г)

тестового участка

(B)

Дистанционные методы измерения земной поверхности

Радарная съемка

Лидарная съемка

Гравиметрическая съемка

- А акустические волны (16 Гц 20 кГц)
- В радиоволны
- C микроволны
- D инфракрасные волны
- E, I видимый свет
- F ультрафиолетовое излучение
- G рентгеновское излучение
- Н гамма-излучение

Технические методы и средства в

географических исследованиях

RADAR – RAdio Detection And Ranging – радиочастотное обнаружение и измерение расстояния

- обнаружение целей и вычисление расстояния до них
- Ограничения Lmin и Lmax
- Нет ограничений по времени работы (день/ночь)
- Активный способ измерения характеристик поверхности
- Может проникать сквозь облачность, растительность и почву, отражать характеристики поверхности

SIR - Spaceborne Imaging Radar

- Синтезированная апертура
- Длина волны $\lambda = v/_f$, v- скорость, f- частота
- X-band (~3 cm), C-band (~6 cm), L-band (~23 cm)

GLACIER ICE

C-BAND ~6 cm

L-BAND ~23 cm

Strong return: Rough surface, diffuse scattering

Технические методы и средства в

- 1997 GTOPO30 (5' 30", 10 1 км)
- 2004 SRTM (3", 90 м)
- 2009 ALOS (1', 30 M)
- 2016 ALOS World 3D (5 м)*
- 2016 TanDEM-X DEM (12 м)*
- Продукты: SRTM (1,2,3), MERIT DEM, TanDEM-X, FABDEM

SRTM – Shuttle Radar Topography Mission (2000 – 2004, NASA)

Технические методы и средства в

- 56°ю.ш. 60°с.ш.
- 90 метров (3")
- 3 версии с уточнениями до 30 м (1") 2014
- Высота орбиты = 225 км
- Ширина полосы сканирования 15-90 км, угол +/- 23°
- Частота 10, 20, 40 гГц
- 1395-1736 импульсов/сек

ALOS (Advanced Land Observing Satellite)

- Высота орбиты 692 км
- Разрешение 2.5 м
- Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM)

Технические методы и средства в

- Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2),
- Phased Array type L-band Synthetic Aperture Radar (PALSAR)

TerraSAR-X and TanDEM-X

- Высота орбиты 514 км
- Разрешение 2х1 м
- 5 (10) x 10 км

MERIT DEM

Multi-Error-Removed Improved-Terrain DEM

FABDEM

Forest And Buildings removed DEM

Elevation (m)

LiDAR – Light Detection And Ranging –обнаружение и измерение расстояния с помощью света

Технические методы и средства в

- Импульсы когерентного света 500 1000 нм
- Более точное сканирование, чем радар
- Больше ограничений (погода)

Normalized Spectral Sensitivity(Photodiodes)/Emission(Emitters) for components

LiDAR – Light Detection And Ranging –обнаружение и измерение расстояния с помощью света

- GPS
- IMU Inertial measurement unit (инерционное измеряющее устройство)
- Источник и приемник излучения (+зеркало)
- Вычислительное устройство (микро)компьютер

LiDAR – Light Detection And Ranging –обнаружение и измерение расстояния с помощью света

• Облака точек местности высокой плотности (разрешения)

Гравиметрическая съемка

- 1985 1995 ГЕОИК (MO СССР РФ), Геофизический Центр РАН
- ESA GOCE
- NASA GRACE (Gravity Recovery And Climate Experiment)

ch: 17-Mar-2002 altitude: 500 km

ation: 89.5° ntricity: < 0.002 nce: 220 km

GRACE (Gravity Recovery And Climate Experiment)

2002 - 2017

- Два спутника, измеряющие расстояние между ними
- Точные системы позиционирования GPS, IMU, астрокамеры
- Точность измерения 0.01 Гал (0.0001 м/с²)
- Интерпретация данных гравитационное поле, движение литосферы, вариация поверхности моря
- Водные ресурсы

Домашнее задание

Тест! Ссылка на почту в ближайшее время...

