

Operating Systems (Honor Track)

Lecture 2: Introduction to OS

Yao Guo (郭耀)

Peking University Fall 2024

Buzz Words

Allocation

Protection

Reclamation

Virtualization

A Typical Computer from a Hardware Point of View

Why Do We Need an OS?

A modern computer consists of:

- One or more processors
- Main memory
- Disks
- Screen
- Printers
- Various input/output devices

Managing all these components requires a layer of software – the operating system

What is an OS? : Your opinions


```
D) An abstraction provided for human to manipulate the computer.
```

```
1. It's a thing helps people to use computer more effence, with hiddening some detail that it acculally does.
```

```
1- OS is a software (a program) that which helps the user to use the computer better.
```

```
1. An operating system is a series of basic systems that text us to do composed of kinds of operation.
```

What is an OS? : Your opinions

- 1. A bunch of code that helps people to operate data easily and clearly
- 1. A system to compute basic algorithms, manage files and run tasks
- 1. The machine to store, schedule and swith tapes of programs.

1. A a pattern that controls the using of hardware and cuftware sources.

What is an OS? : Your opinions

1. A link between software and hardware

1. OS i's a computer program, which can manage computer hardware and software resource.

1. A connection between the hardware and software.

Using the interfaces provided by the hardware, manage them and let the software run on it without errors and efficiently.

OS Is...

The operating system is the software layer between user applications and the hardware

The OS is "all the code that you didn't have to write" to implement your applications

Some (somewhat) official definitions

- Wikipedia: An operating system (OS) is system software that manages computer hardware and software resources, and provides common services for computer programs.
 - Time-sharing operating systems schedule tasks for efficient use of the system and may also include accounting software for cost allocation of processor time, mass storage, peripherals, and other resources.
- □ Tanenbaum (OS Concept textbook): operating system, whose job is to provide user programs with a better, simpler, cleaner, model of the computer and to handle managing all the resources just mentioned.

A somewhat official definition

□操作系统是管理系统资源、 控制程序执行、改善人机交 互,为其它软件系统提供支 持的一种系统软件,是软件 系统的核心。

计算机科学技术百科全书(第 3版)

What Is an OS?

"Code" that:

- Sits between programs & hardware
- Sits between different programs
- Sits between different users

But what does it do?

Role 1: as a resource manager

 Provides an orderly and controlled allocation of the processors, memories and I/O devices among the various programs competing for them

Real life analogy:

Government?

Resources

- □ Allocation
- □ Protection
- □ Reclamation
- □ Virtualization

Government

Resources

- Allocation
- Protection
- □ Reclamation
- Virtualization

Finite resources

Competing demands

Examples:

- □ CPU
- □ Memory
- □ Disk
- Network

Limited budget,

Land,

Oil,

Gas,

•••

Government

Resources

- Allocation
- Protection <</p>
- □ Reclamation
- □ Virtualization

You can't hurt me I can't hurt you

Implies some degree of safety & security

Law and order

Government

Resources

- Allocation
- Protection
- □ Reclamation
- Virtualization

The OS giveth

The OS taketh away

Voluntary at run time
Implied at termination
Involuntary
Cooperative

Income Tax

Resources

- Allocation
- Protection
- □ Reclamation
- □ Virtualization

Illusion of infinite, private resources

Memory

Timeshared CPU

Government

Social security

And Role 2: as an Extended Machine

Figure 1-2. Operating systems turn ugly hardware into beautiful abstractions.

The OS and Hardware

- The OS abstracts/controls/mediates access to hardware resources (what resources?)
 - Computation (CPUs)
 - Volatile storage (memory) and persistent storage (disk, etc.)
 - Communication (network, modem, etc.)
 - Input/output devices (keyboard, display, printer, camera, etc.)
- The OS defines a set of logical resources (objects) and a set of well-defined operations on those objects (interfaces)
 - Physical resources (CPU and memory)
 - Logical resources (files, programs, names)

The OS and Hardware

- Benefits to Applications
 - Simpler
 - □ No tweaking device registers
 - Device independent
 - □ All network cards look the same
 - Portable
 - Across Windows95/98/ME/NT/2000/XP/Vista/ Windows 7/Windows 8/Windows 10
 - Transportable
 - same program across different OSes(Java)

The OS and Applications

- The OS defines a logical, well-defined environment...
 - Virtual machine (each program thinks it owns the computer)
- ...for users and programs to safely coexist, cooperate, share resources
 - Concurrent execution of multiple programs (timeslicing)
 - Communication among multiple programs (pipes, cut & paste)
 - Shared implementations of common facilities
 - No need to implement the file system more than once
 - Mechanisms and policies to manage/share/protect resources
 - File permissions (mechanism) and groups (policies)

What Does an OS Do?

□ Standardization

Resources Services □ Allocation □ Abstraction □ Protection □ Simplification □ Reclamation □ Convenience □ Virtualization

An OS makes computers simpler!

Fundamental OS Issues

- ☐ The fundamental issues/questions in this course are:
 - Structure: how is an operating system organized?
 - Sharing: how are resources shared among users?
 - Naming: how are resources named (by users and programs)?
 - Protection: how are users/programs protected from each other?
 - Security: how can information access/flow be restricted?
 - Communication: how to exchange data?

Fundamental OS Issues (2)

- Reliability and fault tolerance: how to mask failures?
- Extensibility: how to add new features?
- Concurrency: how to control parallel activities?
- Performance: how to make efficient use of resources, reduce OS overhead?
- Scalability: how to handle increased demand?
- Compatibility: can we ever do anything new?
- Distribution: how to coordinate remote operations?
- Accountability: how to charge for/restrict use of resources?

Some Questions to Ponder

- What is part of an OS? What is not?
 - Is the window system part of an OS?
 - Is the Web browser part of an OS?
- Popular OSes include Windows, Linux, MacOS, and Android, etc.
 - How different/similar do you think these OSs are?
 - What do you need to do to answer the question?
- OSes change and evolve all the time
 - Consider the series of releases of Windows, Linux, OS X...
 - What is driving the OS evolution?
- What are the most compelling issues for OSes today?

More Questions to Ponder

- How many lines of code are in one OS?
 - Windows 7: 40M => Windows 11: 60~100M
 - OS X Tiger: >80M
 - Linux 5.11: 30M => Debian trixie: 1530M
 - What is the largest kernel component?
- What does this mean (for you)?
 - OS is useful for learning issues related to software complexity
 - OS is just one example of many complex software systems
 - Chromium: 35M
 - □ Apache HTTP Server: 1.7M
 - □ OpenJDK: 12.2M
 - □ High-end car: >100M
 - As a software engineer, you will need to deal with complexity.

Summary

- What is an OS
 - As a resource manager
 - As an extended machine
 - Resources: allocation, protection, reclamation, virtualization
 - Services: abstraction, simplification, convenience, standardization

- □ Next Lecture
 - OS History