MATRICI

Una matrice $A \in Mat(m,n)$ è una tabella ordinata di numeri disposti in m righe ed n colonne. Indichiamo con a_{ij} l'elemento di posto ij che può essere reale o complesso.

Operazioni di matrici:

1)
$$(\alpha A)_{ij} = \alpha a_{ij} \quad \alpha \in C$$

2)
$$(A + B)_{ij} = a_{ij} + b_{ij}$$

Proprietà della somma: associativa e simmetrica. Con 1) e 2), Mat(m,n) è uno spazio vettoriale.

Siano $A \in Mat(m,p)$, $B \in Mat(p,n)$, $C \in Mat(m,n)$.

Si definisce prodotto di A e B la matrice data da: $c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$

Proprietà del prodotto: associativa, distributiva rispetto alla somma, non sempre vale la proprietà commutativa.

 $\textit{Matrice trasposta} \ \text{di } A \in \text{Mat}(m,n) \ \text{\'e} \ C \in \text{Mat}(n,m) \text{: } C = A^T, \ c_{ij} = a_{ji}$

Matrice trasposta coniugata: $C = A^*$, $\overline{c_{ij}} = \overline{a_{ji}}$

Una $matrice quadrata A \in Mat(n,n)$ si dice hermitiana (o simmetrica)

se
$$A = A^* (A = A^T)$$

Matrice identita' I: $IA = AI = A \quad \forall A \in Mat(m,n)$

Matrice diagonale: $a_{ii} = 0 i \neq j$

Matrice triangolare superiore: $a_{ij} = 0$ i > j

Matrice triangolare inferiore: $a_{ij} = 0$ i < j

Matrice tridiagonale: $a_{ij} = 0 |i - j| > 1$

Matrice di Hessemberg: $a_{ij} = 0 \ j > i + 1 \ oppure \ i > j + 1$

Data $A \in Mat(n,n)$ simmetrica, si dice *definita positiva* se per $\forall x \in R^n, x \neq 0$ si ha:

$$x^TAx > 0$$
.

Se $x^TAx \ge 0$ allora A è semidefinita positiva.

 $\textit{Matrice strettamente diagonalmente dominante:} \qquad |a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| \qquad \qquad i=1,...,n$

Matrice debolmente diagonalmente dominante: $|a_{ii}| \ge \sum_{\substack{j=1 \ j \ne i}}^{n} |a_{ij}|$ i = 1,...,n

Determinante

Sia $A \in Mat(n,n)$. Il determinante di A, che indicheremo con det(A), e' un numero definito dalla regola di Laplace. Poiche' tale regola e' ricorsiva, definiamo prima i determinanti per n = 1,2,3.

•
$$n=1$$
 $det(A) = a_{11}$

•
$$n=2$$
 $det(A) = a_{11} a_{22} - a_{12} a_{21}$

• n=3
$$\det(A) = a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31} - a_{23} a_{32} a_{11}$$

- $a_{33} a_{12} a_{21}$

Per il generico n si ha la seguente regola.

Regola di Laplace. Sia A_{ij} la matrice ottenuta cancellando da A la i-esima riga e la j-esima colonna. Si definisce *complemento algebrico* dell'elemento a_{ij} di A il numero A_{ij} definito da: $A_{ij} = (-1)^{i+j} (\det A_{ji})$

Si definisce il determinante di A sviluppato rispetto alla i-esima riga:

$$|A| = \det(A) = \sum_{j=1}^{n} a_{ij} A_{ij}$$

Teorema di Binet. Date due matrici A e B si ha:

$$det(AB) = det(A) \cdot det(B)$$
.

Teorema di Sylvester. Condizione necessaria e sufficiente affinchè una matrice A simmetrica sia definita positiva è che $det(A_k)>0$ k=1,...,n dove A_k è la matrice formata dalle prime k righe e k colonne.

Conseguenze del teorema di Sylvester.

Sia $A \in Mat(n,n)$ simmetrica, definita positiva. Allora:

- 1) gli elementi diagonali sono tutti positivi.
- 2) $|a_{ij}| < a_{ii}a_{jj}$ $i \neq j$.

Proprietà.

Sia A una matrice simmetrica, diagonalmente dominante a diagonale positiva ⇒ definita positiva.

Matrice trasposta dei complementi algebrici:

$$\hat{A} = \begin{bmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ \dots & & & & \\ A_{1n} & & & A_{nn} \end{bmatrix}$$

Tale matrice gode della seguente proprietà:

$$A \hat{A} = \hat{A} A = det(A) I_n$$

Si ha, inoltre, che se $det(A) \neq 0$ allora:

$$\left(\frac{\hat{A}}{\det(A)}\right)A = I_n$$

ovvero:

$$\frac{\hat{A}}{\det(A)} = A^{-1} \text{ inversa di A}$$
$$AA^{-1} = A^{-1}A = I_n$$

Pertanto, ponendo $B = A^{-1}$ si ha:

$$b_{ij} = \left(-1\right)^{i+j} \frac{\left|A_{ji}\right|}{\left|A\right|}$$

Proprietà. La matrice inversa quando esiste è unica.

Dimostrazione per assurdo.

Supponiamo che esista una matrice B tale che BA = I

$$BAA^{-1} = IA^{-1}$$

$$BI = IA^{-1} \Rightarrow B = A^{-1}$$

Matrice non degenere: $A \in Mat(n,n) det(A) \neq 0$.

Siano A, B non degeneri e sia C = AB (che e' non degenere per il teorema del Binet) \Rightarrow C⁻¹=B⁻¹A⁻¹

Dimostrazione.

$$CC^{-1} = I$$
, $(AB)C^{-1} = I$, $A^{-1}ABC^{-1} = A^{-1}$, $BC^{-1} = A^{-1}$, $B^{-1}BC^{-1} = B^{-1}A^{-1}$, $C^{-1} = B^{-1}A^{-1}$

Prodotto scalare

Siano a, $b \in C^{nx1}$. Il prodotto scalare < a,b> è dato dal numero:

$$\langle a,b \rangle = \overline{a}^T b = \sum_{i=1}^n \overline{a}_i b_i$$

Sia: $\alpha \in C$

Proprietà

I)
$$< a,a > \ge 0$$

II)
$$\langle a,a \rangle = 0 \Leftrightarrow a = \underline{0}$$

III)
$$\langle a, \alpha b \rangle = \alpha \langle a, b \rangle$$

IV)
$$\langle \alpha a, b \rangle = \overline{\alpha} \langle a, b \rangle$$

$$V$$
) $<$ a+b,c> = $<$ a,c> + $<$ b,c>

VI)
$$= +$$

VII)
$$\langle b,a \rangle = \langle \overline{a},\overline{b} \rangle = \sum \overline{b}_i a_i$$

VIII)
$$| < a,b > | 2 \le < a,a > < b,b >$$

Modulo di a: $|a| = \langle a,a \rangle^{1/2}$

Si ha:

$$|a| \ge 0$$

$$|a| = 0 \Leftrightarrow a = \underline{0}$$

$$|ka| = |k| |a|$$

$$|a+b| \le |a|+|b|$$

Norme vettoriali

La norma si indica con $\|\ \|$. È una funzione definita su uno spazio vettoriale a valori reali positivi. $\|\ \|: C^n \to R^+$

Gode delle proprietà:

1)
$$||x|| \ge 0$$
, $||x|| = 0 \iff x = 0 \ \forall \ x \in \mathbb{C}^n$

2)
$$\|\alpha x\| = \|\alpha\| \|x\| \ \forall \ \alpha \in \mathbb{C}, \ \forall x \in \mathbb{C}^n$$

3)
$$||x + y|| \le ||x|| + ||y|| \forall x, y \in C^n$$

Distanza:
$$d(x,y) = ||x - y||$$

Si ha:

I)
$$||x - y|| \le ||x - z|| + ||z - y||$$

II)
$$\| \|x\| - \|y\| \| \le \|x - y\| \le \|x\| + \|y\|$$

La norma è una funzione continua delle componenti del vettore x:

$$\lim_{\delta \to 0} \|x + \delta\| = \|x\|$$

Norma p o norma Hölderiana: $1 \le p \le \infty$

$$\|\mathbf{x}\|_{p} = \left|\sum_{i} |\mathbf{x}_{i}|^{p}\right|^{1/p}$$

Si ha:
$$\|x\|_1 = \sum_i |x_i|$$

$$\|x\|_2 = (\sum_i |x_i|^2)^{1/2} \quad \text{euclidea}$$

$$\|x\|_\infty = \max_i |x_i| \quad \text{del massimo}$$

Se $x \in R^2$ i cerchi unitari: $||x||_p \le 1$ $p = 1, 2, \infty$ sono:

Teorema. In R^n le norme $1,2,\infty$ sono equivalenti cioè $\exists \alpha, \beta \in \Re$, $0 < \alpha \le \beta$

$$\alpha \|x\|' \leq \|x\|'' \leq \beta \|x\|'$$

Norme matriciali

La norma matriciale e' una funzione: $C^{nxn} \rightarrow R^+$

1)
$$||A|| \ge 0$$
; $||A|| = 0 \Leftrightarrow A = 0$

$$2) \|\alpha A\| = |\alpha| \|A\|$$

3)
$$||A+B|| \le ||A|| + ||B||$$

4)
$$||AB|| \le ||A||||B||$$

$$5) \|Ax\|_p \le \|A\| \|x\|_p$$

Una norma matriciale si dice indotta se \forall $A \in Mat(n,n) \exists x \in R^n$

$$\|Ax\| \leq \|A\| \|x\|$$

Si definisce norma naturale di A:

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||}$$

Tale definizione è equivalente a:

$$\|\mathbf{A}\| = \max_{\|\mathbf{x}\|=1} \|\mathbf{A}\mathbf{x}\|$$

Pertanto:

$$\frac{\|Ax\|}{\|x\|} \le \|A\| \quad \forall x \ne 0$$

che equivale a:

$$||Ax|| \le ||A||||x||$$

N.B. una norma naturale non è detto che sia indotta.

La norma matriciale è funzione continua del suo argomento.

Vediamo le norme naturali indotte dalle norme vettoriali 1, 2, ∞.

$$\|x\|_{1} = \sum_{i} |x_{i}| \rightarrow \|A\|_{1} = \max_{1 \le j \le n} \sum_{i} |a_{ij}|$$

$$\|x\|_{2} = (\sum_{i} |x_{i}|^{2})^{1/2} \rightarrow \|A\|_{2} = (\rho(A^{*}A))^{1/2}$$

$$\|x\|_{\infty} = \max_{i} |x_{i}| \rightarrow \|A\|_{\infty} = \max_{1 \le i \le n} \sum_{j} |a_{ij}|$$

Autovalori e autovettori

 $A \in \Re^{n \times n}$, $\lambda \in C$ è autovalore di A se:

$$\exists \ \underline{x} \in \mathbb{C}^n, \ \underline{x} \neq 0 : (A - \lambda I)\underline{x} = 0$$

Il vettore \underline{x} si dice *autovettore* associato a λ .

Spettro di A: insieme degli autovalori $\sigma(A)$.

Un autovettore è sempre $\neq 0$. Un autovalore = 0 sse A è singolare.

Raggio spettrale: $\rho = \max_{1 \le j \le n} |\lambda_j|$

Se $det(A - \lambda I) = 0$ il sistema lineare di n equazioni in n incognite $(A - \lambda I)\underline{x} = 0$ ammette soluzioni non nulle.

Polinomio caratteristico: $det(A - \lambda I)$ di grado n in λ .

Equazione caratteristica: $det(A - \lambda I) = 0$.

Gli autovalori di una matrice sono tutte e sole le radici dell'equazione caratteristica.

Proprietà

- I) A ed A^T hanno gli stessi autovalori infatti $det(A^T \lambda I) = det(A \lambda I)^T$
- II) $det(A) = 0 \iff \lambda = 0$
- III) Se det(A) \neq 0 \Rightarrow \exists A-1 e se μ è autovalore di A \Rightarrow μ -1 autovalore di A-1

Infatti:
$$Ax = \mu x$$
, $A^{-1}Ax = \mu A^{-1}x$, $A^{-1}x = \frac{1}{\mu}x$

- IV) Sia μ autovalore di A cui è associato $\underline{x} \Rightarrow \forall s \in N$, μ^s è autovalore di As cui è associato \underline{x} , cioè: $Ax = \mu x \Rightarrow A^s x = \mu^s x$
- V) Se μ è autovalore di A, μ s è autovalore di As \forall s \in Z

Siano A, B \in Mat(n,n), \exists B-1 e sia C = B-1AB. C si dice trasformata per contragradienza di A mediante B.

Due matrici trasformate per contragradienza l'una dall'altra si dicono simili.

Teorema Due matrici simili hanno lo stesso polinomio caratteristico e quindi gli stessi autovalori.

Dimostrazione.

Sia
$$C = B^{-1}AB$$

$$\det (C - \lambda I) = \det(B^{-1}AB - \lambda B^{-1}IB) = \det(B^{-1}(A - \lambda I)B) = \det(B^{-1})\det(A - \lambda I)\det(B - \lambda I)$$

$$\bullet$$

Teorema Se A e C sono simili, allora A^s e C^s sono ancora simili \forall $s \in N$. Dimostrazione.

Sia $C = B^{-1}AB$.

$$C^{s} = C ... C = (B^{-1}AB) ... (B^{-1}AB) = B^{-1}A(BB^{-1})AB ... B^{-1}AB = B^{-1}A^{s}B$$

Teorema Se A e C sono simili e $det(A) \neq 0$ allora anche $det(C) \neq 0$ e inoltre A-1, C-1 sono simili.

Dimostrazione.

Sia:
$$C = B^{-1}AB \implies \det(C) = \det(B^{-1})\det(A)\det(B) = \det(A)$$

 $C^{-1}=(B^{-1}AB)^{-1}=B^{-1}A^{-1}(B^{-1})^{-1}=B^{-1}A^{-1}B.$

Poiché il polinomio caratteristico è di grado *n*, A ha *n* autovalori non necessariamente distinti. A ha almeno una coppia autovalore-autovettore e poiché:

 $Ax = \lambda x \Leftrightarrow A\alpha x = \lambda \alpha x$, ovvero A ha infiniti autovettori. (Infatti, posto: $y=\alpha x$ si ha: $Ay=\lambda y$). Il problema è quindi quello di determinare il numero di autovettori linearmente indipendenti.

Indicheremo con *molteplicità algebrica* di un autovalore la sua molteplicità come radice del polinomio caratteristico.

Indicheremo con *molteplicità geometrica* di un autovalore il numero di vettori linearmente indipendenti associati ad esso.

Teorema di Gerschgorin

Sia $A \in Mat(n,n)$ e siano:

$$\rho_i = \sum_{j=1 \atop j \neq i}^n \left| a_{ij} \right| \qquad \qquad i = 1, ..., n$$

$$\gamma_i = \{z \in C : |z - a_{ii}| \le \rho_i \} \quad i = 1, ..., n$$

$$\gamma = \bigcup_{i=1}^{n} \gamma_i$$

Allora, se
$$\lambda \in \sigma(A)$$
 $\Rightarrow \lambda \in \gamma$

Dimostrazione.

Sia λ autovalore di A ed \underline{x} autovettore associato ad esso:

$$A\underline{x} = \lambda \underline{x}$$

$$\sum_{j=1}^{n} a_{ij} x_{j} = \lambda x_{i} \quad i = 1, ..., n$$

Supponiamo che l'r-esima riga contenga la x_r che sia di modulo massimo:

$$a_{rr}x_{r} + \sum_{\substack{j=1\\j\neq r}}^{n} a_{rj}x_{j} = \lambda x_{r}$$

$$(a_{rr} - \lambda) x_{r} = -\sum_{\substack{j=1\\j\neq r}}^{n} a_{rj}x_{j}$$

$$|(a_{rr} - \lambda)| = |\sum_{\substack{j=1\\j\neq r}}^{n} a_{rj}(x_{j}/x_{r})|$$

$$|a_{rr} - \lambda| \leq \sum_{\substack{j=1\\j\neq r}}^{n} |a_{rj}| x_{j}/x_{r}| \leq \sum_{\substack{j=1\\j\neq r}}^{n} |a_{rj}|$$

$$\Rightarrow |a_{rr} - \lambda| \leq \rho_{r} \Rightarrow \lambda \in \gamma_{r}$$

Poiché A ed A^T hanno gli stessi autovalori si ha:

$$\begin{split} \gamma' &= \bigcup_{i=1}^n \ \big\{z \in C : \ \big| \ z - a_{ii} \ \big| \le \rho_i' \ \big\} \\ \\ \rho_i' &= \sum_{\substack{j=1 \\ j \neq i}}^n \big| a_{ji} \big| \\ \\ \lambda \in \gamma \implies \lambda \in \gamma \cap \gamma' \end{split}$$

Conseguenze del teorema di Gerschgorin.

Teorema

Ogni matrice $A \in Mat(n,n)$ strettamente diagonalmente dominante è non degenere.

Ip.
$$|a_{ii}| > \sum_{\substack{j=1 \ j \neq i}}^{n} |a_{ij}|$$

Ts. $det(A) \neq 0$.

Dimostrazione per assurdo.

Supponiamo che $det(A) = 0 \Rightarrow 0$ è autovalore di $A \Rightarrow 0 \in \gamma$ per Gerschgorin e poiché $\gamma = \bigcup_{i=1}^{n} \gamma_i \; \exists \; i \; tale \; che \; 0 \in \gamma_i \; cioè:$

$$|0 - a_{ii}| \le \rho_i \implies |a_{ii}| \le \sum_{j=1 \atop j \ne i}^n |a_{ij}|$$

che è assurdo.

Teorema di Hermite

Se $A \in Mat(n,n)$, $A = \overline{A}^T$ (matrice hermitiana) allora gli autovalori di A sono tutti reali.

Dimostrazione.

Sia μ autovalore di A e \underline{x} un autovettore associato ad esso

$$A\underline{x} = \mu\underline{x}$$

$$\overline{x}^{T} Ax = \mu \overline{x}^{T} x = \mu \langle x, x \rangle$$

Poiché $\langle x, x \rangle \in R^+$ dobbiamo mostrare che $\bar{x}^T A x \in R$

$$\overline{\overline{x}^T A x} = x^T \overline{A} \overline{x} = (x^T \overline{A} \overline{x})^T = \overline{x}^T \overline{A}^T x = \overline{x}^T A x.$$

Teorema

Se A è simmetrica definita positiva gli autovalori sono tutti reali positivi.

Definizione Una matrice si dice *diagonalizzabile* se e' simile ad una matrice diagonale.

Teorema

Una matrice $A \in Mat(n,n)$ è diagonalizzabile se e solo se ha n autovettori linearmente indipendenti.

Definizioni

Matrice *unitaria*: $\overline{U}^TU = U\overline{U}^T = I$ da cui: $U^{-1} = \overline{U}^T$

Matrice *ortogonale*: $U^TU = UU^T = I$ da cui: $U^{-1} = U^T$

Matrice *normale*: $U^TU = UU^T$

Teorema di Schur

 $A \in Mat(n,n) \Rightarrow \exists U \text{ unitaria} : T = \overline{U}^T AU, \text{ dove } T \text{ è triangolare superiore.}$ \circ NB: Se A è reale allora U è ortogonale.

Definizione $A \in Mat(n,n)$ è convergente se $\lim_{m\to\infty} A^m = 0$ (matrice zero)

Teorema Se A è hermitiana essa è diagonalizzabile.

Teorema Condizione necessaria e sufficiente perché $A \in Mat(n,n)$ sia convergente è che $\rho(A) < 1$.

Teorema $\rho(A) \leq |A|$

Teorema Condizione necessaria e sufficiente perché A sia convergente è che sia infinitesima: $\|A^k\| \to 0$.

0

0