Aufgabenblatt 2, Mathematik für Physiker 1

Florian Adamczyk, Finn Wagner 28.10.2021

A 2.1

(i)

Zeigen Sie, dass die Abbildung aus Bsp. 1.15 (b) $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, (n, m) \mapsto 2^{n-1}(2m-1)$ eine Bijektion ist.

Hierzu sei die Umkehrfunktion (Inverse) g definiert als:

Verfahren für $x \in \mathbb{N}$ beliebig: Man suche für x die größte Zweierpotenz die es restlos teilt. Nun nehme man den Logarithmus zur Basis 2 dieser Potenz. Hierzu addiere man 1. Dieser Wert ist n. Für m teile man x durch n, addiere 1 hinzu und teile durch 2.

Es folgt das f, auf Grund der Existenz der Umkehrfunktion, bijektiv ist.

(ii)

Zeigen Sie für M_1, M_2 abzählbar, dass auch $M_1 \times M_2$ abzählbar ist.

In (i) ist f eine bijektive Abbildung $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$.

Für M_1, M_2 existieren, da beide Menge abzählbar sind, die injektiven Abbildungen $\phi_1(n): M_1 \to \mathbb{N}$ und $\phi_2(n): M_2 \to \mathbb{N}$

Sei $g:(M_1,M_2)\to (\mathbb{N},\mathbb{N})$ $(a,b)\mapsto (\phi_1(a),\phi_2(b))$. g ist, da ϕ_1,ϕ_2 beide injektiv waren, auch injektiv. Nun verknüpft man f mit g. Die resultierende Funktion $f\circ g$ ist, da f bijektiv ist, injektiv. Somit existiert mit $f\circ g$ eine Funktion die injektiv von $M_1\times M_2\to\mathbb{N}$ abbildet. Daraus folgt das $M_1\times M_2$ eine abzählbare Menge ist.

A 2.2

(i) Es seien $f:A\to B$ und $g:B\to C$ injektiv. Zeigen Sie, dass dann auch $g\circ f$ injektiv ist.

f injektiv: $\forall a_1, a_2 \in A \ f(a_1) = f(a_2) \Leftrightarrow a_1 = a_2$

g injektiv: $\forall b_1, b_2 \in B \ g(b_1) = g(b_2) \Leftrightarrow b_1 = b_2$

Zu zeigen ist: $\forall a_1, a_2 \in A \ g(f(a_1)) = g(f(a_2)) \Leftrightarrow a_1 = a_2$

 $\forall a_1, a_2 \in A \ g(f(a_1)) = g(f(a_2)), \text{ da g injektiv ist, folgt } f(a_1) = f(a_2).$ Da aber auch f injektiv ist, folgt $a_1 = a_2$

Die linke Richtung gilt auch, da f und g Funktionen sind.

Damit ist $q \circ f$ injektiv

(ii) Zeigen Sie dass die Umkehrung falsch ist, indem Sie eine injektive Funktion $g \circ f$ angeben, bei der f oder g nicht injektiv ist.

 $f: \mathbb{R}_+ \to \mathbb{R}: a \mapsto a$

 $g: \mathbb{R} \to \mathbb{R}: a \mapsto a^2$

 $g \circ f : \mathbb{R}_+ \to \mathbb{R} : a^2$

f ist injektiv, g ist nicht injektiv, aber $g \circ f$ ist wieder injektiv.

A 2.3

1. Annahme: $(0,1)\subset\mathbb{R}$ ist abzählbar. Es folgt die Existenz einer surjektiven Abbildung $\phi:\mathbb{N}\to(0,1)$

Sei $\phi(n)$ mit $n \in \mathbb{N}$

$$\phi(n) = 0, a_1^n a_2^n a_3^n a_4^n \dots \text{ mit } a_i^n \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

2. Sei nun $z = 0, d_1 d_2 d_3 d_4 \dots$ mit

$$d_i = \begin{cases} 1 & \text{für } a_n^n \neq 1\\ 2 & \text{alle anderen Fälle} \end{cases}$$

Diese Zahl weicht an der n-ten Nachkommastelle von allen $\phi(n)$ ab. Sie ist somit anders als alle $\phi(n)$, weil sie sich immer and der n-ten Nachkommastelle unterscheidet.

3. Es gilt $z \in (0,1)$ aber $z \notin Bild(\phi)$ was ein Wiederspruch zur Surjektivität von ϕ ist. Also war die Annahme falsch. q.e.d

A 2.4

(i) Es sei K ein Körper. Zeigen sie, dass $a \cdot 0 = 0$ für alle $a \in K$ Zu zeigen ist das das neutrale Element der Addition bei der Multiplikation mit einem anderen Element des Körpers sich selbst ergibt.

$$0 = ^{\text{Erweitert mit } 0 \cdot a} 0 \cdot a - 0 \cdot a = (0 + 0) \cdot a - 0 \cdot a = ^{\text{mit Distributivgesetz}} 0 \cdot a + 0 \cdot a - 0 \cdot a = 0 \cdot a + 0 = 0 \cdot a + 0 \cdot a = 0 \cdot a = 0 \cdot a + 0 \cdot a = 0 \cdot a = 0 \cdot a + 0 \cdot a = 0 \cdot a =$$

(ii) Zeigen sie das \mathbb{F}_n kein Körper ist falls $n \in \mathbb{N}$ keine Primzahl ist.

mit $\mathbb{F}_n:(\mathbb{Z}_n,+,\cdot)$

und
$$\mathbb{Z}_m : (\{0, ..., m-1\}, +, \cdot)$$

wobei für \mathbb{Z}_m +, · definiert sind als:

$$+ := \mathbb{Z}_m \times \mathbb{Z}_m \to \mathbb{Z}_m (z_1 + z_2) \mod z_m$$

$$\cdot := \mathbb{Z}_m \times \mathbb{Z}_m \to \mathbb{Z}_m (z_1 \cdot z_2) \mod z_m$$

Ist n keine Primzahl, so lässt sie sich in ihre Primfaktoren zerlegen. Ein Primfaktor von n ist immer kleiener als n. Nun teilt man die Menge der Primfaktoren in zwei P_1, P_2 mit $P_1, P_2 \neq \emptyset$. Seien q_1, q_2 das Produkt aller Zahlen der Mengen P_1 und P_2 . Setzt man nun q_1 und q_2 in \cdot ein. So ergibt $q_1 \cdot q_2$ wieder n. $n \mod n = 0$. Da in diesem Ausdruch aber weder q_1 noch q_2 die Null waren ist die Multiplikation nicht nullteilerfrei. Somit ist \mathbb{F}_n kein Körper.

(iii) Für $m \in \mathbb{N}$ definieren wir

$$m\mathbb{Z} := \{m \cdot z | z \in \mathbb{Z}\}$$

Zeigen Sie dass $(m\mathbb{Z}, +)$ mit der von \mathbb{Z} induzierten Addition eine abelsche Gruppe ist.

Wir überprüfen die Gruppen Axiome:

- (a) Assoziativgesetz \rightarrow Assoziativ mit + aus \mathbb{Z}
- (b) Existenz eines neutralen Elements: Die 0 ist immer in $m\mathbb{Z}$, weil $0 \in \mathbb{Z}$ und m * 0 = 0
- (c) Existenz eines inversen Elements: $\forall x \in m\mathbb{Z} \exists z \in \mathbb{Z} : x = m * z \Rightarrow (-x) = m * (-z) \text{ Mit } (-x) \in m\mathbb{Z}, \text{ da}(-z) \in \mathbb{Z}$
- (d) Abgeschlossenheit von + auf \mathbb{Z} : + : $m\mathbb{Z} \times m\mathbb{Z} \to {}^!m\mathbb{Z}$ $\forall a, b \in m\mathbb{Z} \exists x, y\mathbb{Z} \ a := mx, b := my) \Rightarrow a + b = mx + my = m(x + y)$ Weil $(x + y) \in \mathbb{Z}$ ist + auf $m\mathbb{Z}$ abgeschlossen.
- (e) Abelsche Gruppe: a+b=mx+my=m(x+y)=m(y+x)=my+mx=b+a

Zeigen Sie weiter, dass für alle $z \in \mathbb{Z}$ und $a \in I(I \text{ ist die Menge der Vielfachen von m) gilt, dass <math>az \in m\mathbb{Z}$:

Für beliebige $a \in I$ und $z \in \mathbb{Z}$

 $a:=m*b \text{ mit } b\in\mathbb{N} \Rightarrow a*z=m*b*z \Rightarrow az\in m\mathbb{Z} \text{ weil } b*z\in\mathbb{Z}$