Εφαρμοσμένα Μαθηματικά

Κώστας Λέτρος - Γιάννης Μανουσαρίδης

Για τυχόν λάθη στείλτε $mail: giannismanu 97@gmail.com \\ konsletr@ece.auth.gr$

16 Οκτωβρίου 2018

Περιεχόμενα

Ι	$\mathbf{E} \mathfrak{q}$	ραρμοσ	շ µ։	ένο	x ľ	ΛI	χθ	η	μ	χτ	にン	ιά		₽	εβ	6	οι	ζ	9	o	ς	2	0	1′	7	6
1	1.1	ιατα Κε Άσκηση Άσκηση Άσκηση Άσκηση	1 2 3																							7 8
2	2.1 2.2	ιατα Α τ Άσκηση Άσκηση Άσκηση	1 2																							11
II	E 16	φαρμο	σμ	ιέν	α	\mathbf{N}	Íα	Θ	ηι	ıα	τι	×	ά	Σ	Σε	π	τέ	μ	β) l	00	5	2	0	16	5
3	3.1 3.2 3.3	ιατα Α τ Άσκηση Άσκηση Άσκηση Άσκηση	1 2 3																							17 18
4	4.1 4.2 4.3 4.4	ιατα Κε Άσκηση Άσκηση Άσκηση Άσκηση Άσκηση	1 2 3 4								 					•										20 21 21
III 2	[F 23	Ξφαρμο	၁σ	μέ	να	ιΝ	Λo	κϑ	η	μο	χτ	い	ဇဝ	ζ	Þε	:β	P	ou	ά	ρι	o	ς	2	0	1(3

5	Θέ	ιατα Ατρέα															24
	5.1	Άσκηση 1															24
	5.2	Άσκηση 2															24
	5.3	Άσκηση 3															27
	5.4	Άσκηση 4										•					27
6	Θέι	ιατα Κεχαγιά															29
	6.1	Άσκηση 1															29
	6.2	Άσκηση 2															29
	6.3	Άσκηση 3															30
	6.4	Άσκηση 4															31
	6.5	Άσχηση 5										٠					32
**	· •	,		0						,	•			_	0 -		
IV	/ 1 33	Ξφαρμοσμένα	M	αϑ	ημ	ατι	жó	ιΣ	επ	τέ	μβ	Pu))	2	O]	L5	
7	•	ιατα Ατρέα															34
	7.1	Άσκηση 1															
	7.2	Άσκηση 2															35
	7.3	Άσχηση 3															36
	7.4	Άσκηση 4															
	7.5	Άσκηση 5															40
	7.6	Άσκηση 6															40
	7.7	Άσκηση 7										٠		•		•	41
V	E		N /I a				4.	ж	- Q				~ -	ก	Ω1	1 5	
	43^{L}	φαρμοσμένα	IVIC	X U I	ημο	X ().	κα	Ψ	ႄၣ႞	٥٠			ر	4	O I	LJ	
8	Θέι	ιατα Ατρέα															44
	•	Άσκηση 1															44
	8.2	Άσκηση 2															45
	8.3	Άσκηση 3															46
	8.4	Άσκηση 4															47
	8.5	Άσκηση 5															49
	8.6	Άσκηση 6															50
	8.7	Άσκηση 7															50

	8.8	Άσκηση 8	51
	I E 53	Εφαρμοσμένα Μαθηματικά Σεπτέμβριος 2014	
9	Θέμ	ιατα Ατρέα ξ	54
		Άσκηση 1	54
	9.2	Άσκηση 2	55
	9.3	Άσκηση 3	57
	9.4	Άσκηση 4	59
	9.5		60
	9.6	Άσκηση 6	62
	9.7	Άσκηση 7	63
	9.8	Άσκηση 8	64
	9.9	'Ασκηση 9	65
			57
			ൗറ
Τ(·	
1(10.1	΄Ασκηση 1	68
1(10.1 10.2	Άσκηση 1	68 68
10	10.1 10.2 10.3	΄Ασκηση 1	68 68 69
10	10.1 10.2 10.3 10.4	Άσκηση 1	68 68 69 70
10	10.1 10.2 10.3 10.4 10.5	΄Ασκηση 1	68 68 69 70 71
10	10.1 10.2 10.3 10.4 10.5 10.6	Άσκηση 1	68 68 69 70 71
10	10.1 10.2 10.3 10.4 10.5 10.6 10.7	Άσκηση 1	68 69 70
\mathbf{V}	10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8	Άσκηση 1	68 68 69 70 71 71 72 73
V	10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8	Άσκηση 1 Άσκηση 2 Άσκηση 3 Άσκηση 4 Άσκηση 5 Άσκηση 6 Άσκηση 7 Άσκηση 8	68 68 69 70 71 71 72
V	10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8	Άσκηση 1 Άσκηση 2 Άσκηση 3 Άσκηση 4 Άσκηση 5 Άσκηση 6 Άσκηση 7 Άσκηση 8 Εφαρμοσμένα Μαθηματικά Φεβρουάριος 2014	68 68 69 70 71 72 73
V	10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 III 74	Άσκηση 1 Άσκηση 2 Άσκηση 3 Άσκηση 4 Άσκηση 5 Άσκηση 6 Άσκηση 7 Άσκηση 8 Εφαρμοσμένα Μαθηματικά Φεβρουάριος 2014 ατα Ατρέα Άσκηση 1	68 68 69 70 71 71 72 73
V	10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 III 74 Θέν 11.1 11.2	Άσκηση 1 Άσκηση 2 Άσκηση 3 Άσκηση 4 Άσκηση 5 Άσκηση 6 Άσκηση 7 Άσκηση 8 Εφαρμοσμένα Μαθηματικά Φεβρουάριος 2014 ατα Ατρέα Άσκηση 1 Άσκηση 2	68 68 69 70 71 71 72 73
V	10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 III 74 $\Theta \in \mathcal{V}$ 11.1 11.2 11.3	Άσκηση 1 Άσκηση 2 Άσκηση 3 Άσκηση 4 Άσκηση 5 Άσκηση 6 Άσκηση 7 Άσκηση 8 Εφαρμοσμένα Μαθηματικά Φεβρουάριος 2014 ατα Ατρέα Άσκηση 1 Άσκηση 2	68 68 69 70 71 72 73 4 75 76 77

11.5 Άσκηση 5		. 81
ΙΧ Εφαρμοσμένα Μαθηματικά Σεπτέμβριος 2 84	201	.3
12 Θέματα Ατρέα 12.1 Άσκηση 1		. 87 . 89
Χ Εφαρμοσμένα Μαθηματικά Φεβρουάριος 2 94	201	.3
Χ Εφαρμοσμένα Μαθηματικά Φεβρουάριος 2 94 13 Θέματα Ατρέα	201	.3 95
94		95
94 13 Θέματα Ατρέα		95 . 95
94 13 Θέματα Ατρέα 13.1 Άσκηση 1		95 . 95 . 95
94 13 Θέματα Ατρέα 13.1 Άσκηση 1		95 . 95 . 95
94 13 Θέματα Ατρέα 13.1 Άσκηση 1		95 . 95 . 95 . 96
94 13 Θέματα Ατρέα 13.1 Άσκηση 1		95 . 95 . 95 . 96 . 97 . 98

Μέρος Ι Εφαρμοσμένα Μαθηματικά Φεβρουάριος 2017

1 Θέματα Κεχαγιά

1.1 Άσκηση 1

Έχουμε ότι

$$z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_3 z_2 + z_1 z_3$$

 $\Lambda \Upsilon \Sigma H$

$$z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_3 z_2 + z_1 z_3$$

$$z_1^2 - 2z_1 z_2 + z_2^2 = -z_1 z_2 + z_2 z_3 + z_1 z_3 - z_3^2$$

$$(z_1 - z_2)^2 = -z_2 (z_1 - z_3) + z_3 (z_1 - z_3)$$

$$(z_1 - z_2)^3 = (z_1 - z_2)(z_1 - z_3)(z_3 - z_2) = A^3, A \in \mathbb{C}$$

Βάζοντας στην πάνω σχέση μέτρα παίρνουμε

$$|z_1 - z_2| = |A|$$

Ομοίως αποδειχνύεται ότι

$$|z_1 - z_3| = |z_2 - z_3| = |A|$$

Άρα το τρίγωνο είναι ισόπλευρο.

1.2 Άσκηση 2

Θέλουμε να βρουμε όλες τις τιμές που παίρνει :

$$2^{\frac{1}{9} + \frac{i}{50}} = 2^{\frac{1}{9}} 2^{\frac{i}{50}}$$

Έχουμε ότι :

$$2^{\frac{1}{9}} = \sqrt[9]{2}e^{\frac{2\kappa\pi i}{9}}$$

με $\kappa = 0,1,2,3,4,5,6,7,8$

Επίσης:

$$2^{\frac{i}{50}} = e^{\frac{i}{50}(\log(2))} e^{\frac{i}{50}(\ln(2) + 2\lambda\pi i)} e^{\frac{i}{50}\ln 2 - \frac{2\lambda\pi}{50}}$$

 $με λ ∈ <math>\mathbb{Z}$

Επομένως

$$2^{\frac{1}{9} + \frac{i}{50}} = \sqrt[9]{2}e^{\frac{2\kappa\pi i}{9}}e^{\frac{i}{50}ln2 - \frac{2\lambda\pi}{50}}$$

με $\lambda \in \mathbb{Z}$ και $\kappa = 0,1,2,3,4,5,6,7,8$

1.3 Άσκηση 3

Έχουμε ότι:

1.4 Άσκηση 4

$$f(z) = \frac{z}{z^2 - 3z + 2} = \frac{2}{z - 2} - \frac{1}{z - 1}$$

$$\bullet \quad -\frac{2}{2 - z} + \frac{1}{1 - z} = -\frac{1}{1 - \frac{z}{2}} + \frac{1}{1 - z} = -\sum_{n=0}^{\infty} \frac{z^n}{2^n} + \sum_{n=0}^{\infty} z^n = \sum_{n=0}^{\infty} (1 - 2^{-n}) z^n =$$

$$= \quad 1 + \frac{1}{2}z + \frac{3}{4}z^2 + \frac{8}{9}z^3 + \dots \quad , \quad |z| < 1$$

$$\bullet \quad -\frac{2}{2 - z} + \frac{1}{1 - z} = -\frac{1}{1 - \frac{z}{2}} - \frac{1}{z} \left(\frac{1}{1 - \frac{1}{z}}\right) = -\sum_{n=0}^{\infty} \frac{z^n}{2^n} - \sum_{n=0}^{\infty} \frac{1}{z^{n+1}} =$$

$$= \dots - \frac{1}{z^3} - \frac{1}{z^2} - \frac{1}{z} - 2 - \frac{z}{2} - \frac{z^2}{4} - \frac{z^3}{8} - \dots \quad , \quad 1 < |z| < 2$$

$$\bullet \quad \frac{2}{z - 2} + \frac{1}{1 - z} = \frac{2}{z} \left(\frac{1}{1 - \frac{2}{z}}\right) - \frac{1}{z} \left(\frac{1}{1 - \frac{1}{z}}\right) = \sum_{n=0}^{\infty} \frac{2^{n+1}}{z^{n+1}} - \sum_{n=0}^{\infty} \frac{1}{z^{n+1}} =$$

$$= \frac{1}{z} + \frac{3}{z^2} + \frac{7}{z^3} + \dots \quad , \quad |z| > 2$$

2 Θέματα Ατρέα

2.1 Άσκηση 1

$$f(z) = Re(z)\cosh(z), z = x + yi, x, y \in \mathbb{R}$$

$$f(z) = f(x+yi) = Re(x+yi)\cosh(x+yi) = x\frac{e^x e^{yi} + e^{-x}e^{-yi}}{2} = x\frac{e^x(\cos(y) + i\sin(y)) + e^{-x}(\cos(y) - i\sin(y))}{2} = x\cos(y)\frac{e^x + e^{-x}}{2} + ix\sin(y)\frac{e^x - e^{-x}}{2} = x\cos(y)\cosh(x) + ix\sin(y)\sinh(x)$$

Θέτουμε:

$$u(x,y) = x\cos(y)\cosh(x) \qquad v(x,y) = x\sin(y)\sinh(x)$$

$$u_x = \cos(y)(\cosh(x) + x\sinh(x))$$

$$v_x = \sin(y)(\sinh(x) + x\cosh(x))$$

$$u_y = -x\sin(y)\cosh(x)$$

$$v_y = x\cos(y)\sinh(x)$$

Από τις εξισώσεις Cauchy – Riemann έχουμε

$$\begin{cases} u_x = v_y \\ u_y = -v_x \end{cases} \Rightarrow \begin{cases} \cos(y)\cosh(x) + x\cos(y)\sinh(x) = x\cos(y)\sinh(x) \\ -x\sin(y)\cosh(x) = -\sin(y)\sinh(x) - x\sin(y)\cosh(x) \end{cases} \Rightarrow \\ \Rightarrow \begin{cases} \cos(y)\cosh(x) = 0 \\ \sin(y)\sinh(x) = 0 \end{cases} \Rightarrow \begin{cases} \cos(y) = 0 \quad (1) \\ \sin(y)\sinh(x) = 0 \quad (2) \end{cases}$$

Aν $\cos(y)=0$, τότε $\sin(y)\neq 0$ (λόγω της γνωστής τριγωνομετρικής ταυτότητας $\sin^2(\alpha)+\cos^2(\alpha)=1, \forall \alpha\in\mathbb{R}$) Άρα η (2) γίνεται:

$$\sinh(x) = 0 \Rightarrow x = 0$$

και η (1) :

$$cos(y) = 0 \Rightarrow y = \kappa \pi + \frac{\pi}{2}, \kappa \in \mathbb{Z}$$

Άρα η f είναι παραγωγίσιμη στα σημεία $z_{\kappa}=i\left(\kappa\pi+\frac{\pi}{2}\right), \kappa\in\mathbb{Z}$

- (β) $f'(x,y) = f_x = u_x(x,y) + iv_x(x,y) \Rightarrow$ $f'(x,y) = \cos(y)\cosh(x) + x\cos(y)\sinh(x) + \sin(y)\sinh(x) + x\sin(y)\cosh(x)$
- (γ) Η f δεν είναι αναλυτική , αφού δεν υπάρχουν σημεία που είναι παραγωγίσιμη σε αυτά αλλά και σε όλα τα σημεία σε έναν ανοικτό δίσκο γύρω τους για οσοδήποτε μικρή ακτίνα (είναι παραγωγίσιμη σε διακριτά σημεία).

2.2 Άσκηση 2

$$I = \oint_{C_R} \frac{\sin^2(z-1)}{(z-1)^3} \, dz$$

Θεωρούμε την $f(z)=\frac{\sin^2(z-1)}{(z-1)^3}, z\in\mathbb{C}-\{1\}$.

• Όταν έχουμε R < 1 :

Η f είναι αναλυτική στο εσωτερικό και πάνω στην απλή κλειστή τμηματικά λεία καμπύλη C_R . Άρα I=0.

• Όταν έχουμε R=1 :

Η f είναι αναλυτική στο εσωτερικό και πάνω στην απλή κλειστή τμηματικά λεία καμπύλη C_R με εξαίρεση το σημείο z=1 το οποίο βρίσκεται πάνω στη καμπύλη. Άρα $I=\pi i Res(f,1)=\pi i$.

'Οπου :

$$Res(f,1) = \lim_{z \to 1} \left[(z-1)f(z) \right] = \lim_{z \to 1} \left[\frac{(z-1)\sin^2(z-1)}{(z-1)^3} \right] =$$

$$= \lim_{z \to 1} \left[\frac{\sin^2(z-1)}{(z-1)^2} \right] = \lim_{z \to 1} \left[\frac{\sin(z-1)}{z-1} \right]^2 = 1$$

Αφού

$$\lim_{z \to 1} \left[\frac{\sin(z-1)}{z-1} \right] \xrightarrow{\text{DeL'Hospital}} \lim_{z \to 1} \left[\frac{\cos(z-1)}{1} \right] = 1$$

• Όταν έχουμε R>1 :

Η f είναι αναλυτική στο εσωτερικό και πάνω στην απλή κλειστή τμηματικά λεία καμπύλη C_R με εξαίρεση το σημείο z=1 το οποίο βρίσκεται στο εσωτερικό της καμπύλης. Άρα $I=2\pi i Res(f,1)=2\pi i$.

Όπου:

$$Res(f,1) = \lim_{z \to 1} \left[(z-1)f(z) \right] = \lim_{z \to 1} \left[\frac{(z-1)\sin^2(z-1)}{(z-1)^3} \right] =$$

$$= \lim_{z \to 1} \left[\frac{\sin^2(z-1)}{(z-1)^2} \right] = \lim_{z \to 1} \left[\frac{\sin(z-1)}{z-1} \right]^2 = 1$$

Αφού

$$\lim_{z \to 1} \left[\frac{\sin(z-1)}{z-1} \right] \xrightarrow{\text{DeL'Hospital}} \lim_{z \to 1} \left[\frac{\cos(z-1)}{1} \right] = 1$$

2.3 Άσκηση 3

$$I = \int_{-\infty}^{+\infty} \frac{dx}{(x+2)(x^2+1)^2}$$

Λύνουμε

$$(z+2)(z^2+1)^2 = 0 \Rightarrow$$

$$z + 2 = 0 \Rightarrow z = -2 \quad \acute{\eta}$$

$$z^2 + 1 = 0 \Rightarrow (z + i)(z - i) = 0 \Rightarrow z = i \quad \acute{\eta} \quad z = -i$$

Θέτουμε
$$f(z) = \frac{1}{(z+2)(z^2+1)^2}, z \in \mathbb{C} - \{-i, i, -2\}$$

Άρα έχουμε δύο πόλους δεύτερης τάξης, έναν στο άνω και έναν στο κάτω ημιεπίπεδο και έναν πόλο πρώτης τάξης πάνω στον πραγματικό άξονα.

$$\lim_{z \to \infty} z f(z) = \lim_{z \to \infty} \frac{z}{(z+2)(z^2+1)^2} = \lim_{z \to \infty} \frac{z}{z\left(1+\frac{2}{z}\right)(z^2+1)^2} = \lim_{z \to \infty} \frac{1}{\left(1+\frac{2}{z}\right)(z^2+1)^2} = 0$$

Επομένως

$$I = 2\pi i Res(f,i) + \pi i Res(f,-2) \quad (1)$$

$$Res(f, -2) = \lim_{z \to -2} \frac{z+2}{(z+2)(z^2+1)^2} = \lim_{z \to -2} \frac{1}{(z^2+1)^2} = \frac{1}{25}$$

$$Res(f,i) = \lim_{z \to i} \left[\frac{(z-i)^2}{(z+2)(z+i)^2(z-i)^2} \right]' = \lim_{z \to i} \left[-\frac{(z+i)^2 + 2(z+2)(z+i)}{(z+2)^2(z+i)^4} \right] = \lim_{z \to i} \left[-\frac{(z+i)^2 + 2(z+2)(z+i)}{(z+2)^2(z+i)^4} \right] = \lim_{z \to i} \left[-\frac{(z+i)^2 + 2(z+2)(z+i)}{(z+2)^2(z+i)^4} \right] = \lim_{z \to i} \left[-\frac{(z+i)^2 + 2(z+2)(z+i)}{(z+2)^2(z+i)^4} \right] = \lim_{z \to i} \left[-\frac{(z+i)^2 + 2(z+2)(z+i)}{(z+2)^2(z+i)^4} \right] = \lim_{z \to i} \left[-\frac{(z+i)^2 + 2(z+2)(z+i)}{(z+2)^2(z+i)^4} \right] = \lim_{z \to i} \left[-\frac{(z+i)^2 + 2(z+2)(z+i)}{(z+2)^2(z+i)^4} \right] = \lim_{z \to i} \left[-\frac{(z+i)^2 + 2(z+2)(z+i)}{(z+2)^2(z+i)^4} \right] = \lim_{z \to i} \left[-\frac{(z+i)^2 + 2(z+2)(z+i)}{(z+2)^2(z+i)^4} \right] = \lim_{z \to i} \left[-\frac{(z+i)^2 + 2(z+2)(z+i)}{(z+2)^2(z+i)^4} \right] = \lim_{z \to i} \left[-\frac{(z+i)^2 + 2(z+2)(z+i)}{(z+2)^2(z+i)^4} \right] = \lim_{z \to i} \left[-\frac{(z+i)^2 + 2(z+2)(z+i)}{(z+2)^2(z+i)^4} \right] = \lim_{z \to i} \left[-\frac{(z+i)^2 + 2(z+2)(z+i)}{(z+2)^2(z+i)^4} \right] = \lim_{z \to i} \left[-\frac{(z+i)^2 + 2(z+2)(z+i)}{(z+2)^2(z+i)^4} \right] = \lim_{z \to i} \left[-\frac{(z+i)^2 + 2(z+2)(z+i)}{(z+2)^2(z+i)^4} \right] = \lim_{z \to i} \left[-\frac{(z+i)^2 + 2(z+2)(z+i)}{(z+2)^2(z+i)^4} \right] = \lim_{z \to i} \left[-\frac{(z+i)^2 + 2(z+2)(z+i)}{(z+2)^2(z+i)^4} \right] = \lim_{z \to i} \left[-\frac{(z+i)^2 + 2(z+2)(z+i)}{(z+2)^2(z+i)^4} \right] = \lim_{z \to i} \left[-\frac{(z+i)^2 + 2(z+2)(z+i)}{(z+2)^2(z+i)^4} \right] = \lim_{z \to i} \left[-\frac{(z+i)^2 + 2(z+2)(z+i)}{(z+2)^2(z+i)^4} \right] = \lim_{z \to i} \left[-\frac{(z+i)^2 + 2(z+2)(z+i)}{(z+2)^2(z+i)^4} \right] = \lim_{z \to i} \left[-\frac{(z+i)^2 + 2(z+2)(z+i)}{(z+2)^2(z+i)^4} \right] = \lim_{z \to i} \left[-\frac{(z+i)^2 + 2(z+2)(z+i)}{(z+2)^2(z+i)^4} \right] = \lim_{z \to i} \left[-\frac{(z+i)^2 + 2(z+2)(z+i)}{(z+2)^2(z+i)^4} \right]$$

$$= -\frac{(2i)^2 + 2(2+i)(2i)}{(2+i)^2(2i)^4} = -\frac{-4+4i(2+i)}{(3+4i)(2i)^4} = \frac{8-8i}{(3+4i)(2i)(-8i)} = \frac{i(1-i)(3-4i)}{(9+16)(2i)} = \frac{(1+i)(3-4i)}{(2i)25} = \frac{7-i}{(2i)25}$$

Άρα η (1) γίνεται:

$$I = 2\pi i \left[\frac{7-i}{(2i)25} \right] + \pi i \left[\frac{1}{25} \right] = \frac{7\pi - \pi i}{25} + \frac{\pi i}{25} = \frac{7\pi}{25}$$

$$'\!A\rho\alpha$$

$$\int_{-\infty}^{+\infty} \frac{dx}{(x+2)(x^2+1)^2} = \frac{7\pi}{25}$$

Μέρος ΙΙ Εφαρμοσμένα Μαθηματικά Σεπτέμβριος 2016

3 Θέματα Ατρέα

3.1 Άσκηση 1

Η g είναι αναλυτική στο $D\subseteq\mathbb{C}$

$$g(z) = g(x+yi) = u(x,y) + iv(x,y)$$

Από τις εξισώσεις Cauchy – Riemann έχουμε

$$\begin{cases} u_x = v_y \\ u_y = -v_x \end{cases} \Rightarrow \begin{cases} u_{xx} = v_{yx} & (1) \\ u_{yy} = -v_{xy} & (2) \end{cases}$$

 $(1), (2) \stackrel{(+)}{\Rightarrow} u_{xx} + u_{yy} = v_{yx} - v_{xy} \Rightarrow u_{xx} + u_{yy} = v_{xy} - v_{xy} \Rightarrow u_{xx} + u_{yy} = 0$ αφού η v(x,y) έχει συνεχείς μερικές παραγώγους, $v_{xy} = v_{yx}$

Άρα η f αρμονική στο D

3.2 Άσκηση 2

$$P(z) = ae^z + b\sin(z), \quad a, b \in \mathbb{C}$$

$$P'(z) = ae^{z} + b\cos(z)$$

$$P''(z) = ae^{z} - b\sin(z), \quad P''(0) = a$$

$$P^{(3)}(z) = ae^{z} - b\cos(z), \quad P^{(3)}(0) = a - b$$

Θεωρούμε την $g(z)=(z+1)P(z),z\in\mathbb{C}$

$$g'(z) = P(z) + (z+1)P'(z), \quad g(0) = a$$

$$g''(z) = 2P'(z) + (z+1)P''(z)$$

$$g^{(3)}(z) = 3P''(z) + (z+1)P^{(3)}(z), \quad g^{(3)}(0) = 4a - b$$

Το σημείο z=0 βρίσκεται εντός της καμπύλης $\gamma:|z|=2$ Επομένως, από τον ολοκληρωτικό τύπο του Cauchy για παραγώγους έχουμε:

$$g(0) = \frac{1}{2\pi i} \int_{\gamma} \frac{g(z)}{z} = \frac{1}{2\pi i} \int_{\gamma} \frac{(z+1)P(z)}{z} = \frac{2}{2\pi i} = -\frac{i}{\pi}$$

$$g^{(3)}(0) = \frac{3!}{2\pi i} \int_{\gamma} \frac{g(z)}{z^4} = \frac{6}{2\pi i} \int_{\gamma} \frac{(z+1)P(z)}{z^4} = \frac{9i}{\pi i} = \frac{9}{\pi}$$

$$\begin{cases} a = -\frac{i}{\pi} \\ 4a - b = \frac{9}{\pi} \end{cases} \Rightarrow \begin{cases} a = -\frac{i}{\pi} \\ -4i - b\pi = 9 \end{cases} \Rightarrow \begin{cases} a = -\frac{i}{\pi} \\ b = -\frac{9+4i}{\pi} \end{cases}$$

3.3 Άσκηση 3

$$I = \oint_{\gamma} \overline{z}^6(z^5 + 2z)dz, \quad \gamma : |z| = 2$$

Θεωρούμε την $f(z)=\overline{z}^{^{6}}(z^{5}+2z),\quad z\in\mathbb{C}$

Παραμετροποίση κύκλου γ:

$$\gamma(t) = 2e^{it}, \quad t \in [0, 2\pi]$$

$$\gamma'(t) = 2ie^{it}$$

$$I = \oint_{\gamma} f(z)dz = \oint_{\gamma} f(\gamma(t))\gamma'(t)dt = \int_{0}^{2\pi} (2^{6}e^{-6it})(2^{5}e^{5it} + 4e^{it})(2ie^{it})dt = \int_{0}^{2\pi} f(z)dz = \int_{0}^{2\pi} f(z)dz$$

$$= \int_0^{2\pi} (2^1 2 + 2^9 e^{-4it}) dt = 2^9 \int_0^{2\pi} (8 + e^{-4it}) dt = 2^9 \left[8t - \frac{e^{-4it}}{4i} \right]_0^{2\pi} = 2^9 \cdot 16\pi = 8192\pi$$

3.4 Άσκηση 4

$$I = \int_{-\infty}^{+\infty} \frac{dx}{(x-1)(x^2+1)^2}$$

Λύνουμε

$$(z-1)(z^2+1)^2 = 0 \Rightarrow$$

$$\begin{array}{lll} z-1=0\Rightarrow z=1 & \upgamma\\ (z^2+1)^2=0\Rightarrow (z+i)^2(z-i)^2=0\Rightarrow z=i & \upgamma & z=-i \end{array}$$

Θέτουμε
$$f(z) = \frac{1}{(z-1)(z^2+1)^2}, z \in \mathbb{C} - \{-i, i, 1\}$$

Άρα έχουμε δύο πόλους δεύτερης τάξης, έναν στο άνω, έναν στο κάτω ημιεπίπεδο και έναν πόλο πρώτης τάξης πάνω στον πραγματικό άξονα.

$$\lim_{z \to \infty} z f(z) = \lim_{z \to \infty} \frac{z}{(z-1)(z^2+1)^2} = \lim_{z \to \infty} \frac{z}{z\left(1-\frac{1}{z}\right)(z^2+1)^2} = \lim_{z \to \infty} \frac{1}{\left(1-\frac{1}{z}\right)(z^2+1)^2} = 0$$

Επομένως

$$I = 2\pi i Res(f,i) + \pi i Res(f,1) \quad (1)$$

$$Res(f,1) = \lim_{z \to 1} \frac{z-1}{(z-1)(z^2+1)^2} = \lim_{z \to 1} \frac{1}{(z^2+1)^2} = \frac{1}{4}$$

$$Res(f,i) = \lim_{z \to i} \left[\frac{(z-i)^2}{(z-1)(z+i)^2(z-i)^2} \right]' = \lim_{z \to i} \left[-\frac{(z+i)^2 + 2(z-1)(z+i)}{(z-1)^2(z+i)^4} \right] =$$

$$= -\frac{(2i)^2 + 2(-1+i)(2i)}{(-1+i)^2(2i)^4} = \frac{4(-1-i-1)}{16(2i)} = -\frac{2+i}{4(2i)}$$

Άρα η (1) γίνεται:

$$I = 2\pi i \left[-\frac{2+i}{4(2i)} \right] + \pi i \left(\frac{1}{4} \right) = \frac{-2\pi - \pi i}{4} + \frac{\pi i}{4} = -\frac{\pi}{2}$$

Άρα

$$\int_{-\infty}^{+\infty} \frac{dx}{(x-1)(x^2+1)^2} = -\frac{\pi}{2}$$

4 Θέματα Κεχαγιά

4.1 Άσκηση 1

Θέτουμε $w=z+\frac{100}{z}$

$$|z| + \frac{100}{|z|} = 20 \Rightarrow |z|^2 - 20|z| + 100 = 0 \Rightarrow (|z| - 10)^2 = 0 \Rightarrow |z| = 10$$
$$|z| = 10 \Rightarrow |z|^2 = 100 \Rightarrow z\overline{z} = 100 \Rightarrow \overline{z} = \frac{100}{z} \quad (1)$$

Λόγω της (1) έχουμε: $w=z+\overline{z}=2Re(z)\in\mathbb{R}$

Άρα $Im\left(z + \frac{100}{z}\right) = 0$

4.2 Άσκηση 2

$$(z+2)^3=z^3 \stackrel{z\neq 0}{\Longrightarrow} \left(\frac{z+2}{z}\right)^3=1 \Rightarrow \left(1+\frac{2}{z}\right)=\sqrt[3]{|1|}e^{i\frac{2\kappa\pi}{3}}, \quad \kappa=0,1,2$$
 'Apa:

- $1 + \frac{2}{z} = 1 \Rightarrow 2 = 0$, αδύνατο
 - $1 + \frac{2}{z} = e^{i\frac{2\pi}{3}} \Rightarrow \frac{2}{z} = -\frac{1}{2} + \frac{\sqrt{3}}{2} 1 \Rightarrow z = \frac{4}{-3 + i\sqrt{3}} \Rightarrow$ $\Rightarrow z = \frac{4(-3 i\sqrt{3})}{12} \Rightarrow z = -\left(1 + i\frac{\sqrt{3}}{3}\right)$

•
$$1 + \frac{2}{z} = e^{i\frac{4\pi}{3}} \Rightarrow \frac{2}{z} = -\frac{1}{2} - \frac{\sqrt{3}}{2} - 1 \Rightarrow z = -\frac{4}{3 + i\sqrt{3}} \Rightarrow$$

$$\Rightarrow z = -\frac{4(3 - i\sqrt{3})}{12} \Rightarrow z = -\left(1 - i\frac{\sqrt{3}}{3}\right)$$

4.3 Άσκηση 3

$$i^i = e^{i\log(i)} = e^{i(\ln|i| + i(\pi + 2\kappa\pi))} = e^{-\pi(2\kappa + 1)}, \quad \kappa \in \mathbb{Z}$$

4.4 Άσκηση 4

$$\sum_{n=0}^{\infty} r^n \sin(an) = \sum_{n=0}^{\infty} r^n \frac{e^{i(an)} - e^{-i(an)}}{2i} =$$

$$=\frac{1}{2i}\sum_{n=0}^{\infty}(re^{ia})^n-\frac{1}{2i}\sum_{n=0}^{\infty}(re^{-ia})^n\xrightarrow{0<\mathrm{r}<1}\frac{1}{2i}\left(\frac{1}{1-re^{ia}}-\frac{1}{1-re^{-ia}}\right)=$$

$$=\frac{1}{2i}\left[\frac{1-re^{-ia}-(1-re^{ia})}{(1-re^{ia})(1-re^{-ia})}\right]=\frac{1}{2i}\left[\frac{re^{ia}-re^{-ia}}{1-re^{ia}-re^{-ia}+r^2}\right]=$$

$$= \frac{e^{ia} - e^{-ia}}{2i} \left[\frac{r}{1 + r^2 - 2r\left(\frac{e^{ia} - e^{-ia}}{2}\right)} \right] = \frac{r\sin(a)}{1 + r^2 - 2r\cos(a)}$$

4.5 Άσκηση 5

$$f(z) = \frac{1}{z^2 + 4} = \frac{1}{(z - 2i)(z + 2i)}, z \in \mathbb{C} - \{-2i, 2i\}$$

Laurent γύρω από το $z_0 = 1$

Έστω $A, B \in \mathbb{C}$ τέτοια ώστε:

$$\frac{1}{(z-2i)(z+2i)} = \frac{A}{z-2i} + \frac{B}{z+2i} \Rightarrow A(z+2i) + B(z-2i) = 1 \Rightarrow (A+B)z + 2i(A-B) = 1 \Rightarrow A(z+2i) + B(z-2i) = 1 \Rightarrow A(z+2i) + B(z+2i) + B(z+2i) = 1 \Rightarrow A(z+2i) + B(z+2i) + B(z+2i) = 1 \Rightarrow A(z+2i) + B(z+2i) + B(z+2i) = 1 \Rightarrow$$

$$\Rightarrow \begin{cases} A+B=0 \\ 2i(A-B)=1 \end{cases} \Rightarrow \begin{cases} B=-A \\ 2A=\frac{1}{2i} \end{cases} \Rightarrow \begin{cases} B=-A \\ A=\frac{1}{4i} \end{cases} \Rightarrow \begin{cases} B=-\frac{1}{4i} \\ A=\frac{1}{4i} \end{cases}$$

Άρα

$$\begin{split} f(z) &= \frac{1}{z^2 + 4} = \frac{1}{4i} \left(\frac{1}{z - 2i} - \frac{1}{z + 2i} \right) = \frac{1}{4i} \left[\frac{1}{(z - 1) + (1 - 2i)} - \frac{1}{(z - 1) + (1 + 2i)} \right] = \\ &= \frac{1}{4i} \left[\frac{1}{1 - 2i} \left(\frac{1}{1 + \frac{z - 1}{1 - 2i}} \right) - \frac{1}{1 + 2i} \left(\frac{1}{1 + \frac{z - 1}{1 + 2i}} \right) \right] = \\ &= \frac{1}{4i} \sum_{n = 0}^{\infty} (-1)^n \frac{(z - 1)^n}{(1 - 2i)^{n + 1}} - \frac{1}{4i} \sum_{n = 0}^{\infty} (-1)^n \frac{(z - 1)^n}{(1 + 2i)^{n + 1}} = \frac{1}{5} - \frac{2(z - 1)}{25} - \frac{1(z - 1)^2}{125} + \frac{12(z - 1)^3}{625} - \dots \\ \gamma &\text{if } |z - 2i| < |1 \pm 2i| = \sqrt{5} \end{split}$$

$$\begin{split} f(z) &= \frac{1}{z^2 + 4} = \frac{1}{4i} \left(\frac{1}{z - 2i} - \frac{1}{z + 2i} \right) = \frac{1}{4i} \left[\frac{1}{(z - 1) + (1 - 2i)} - \frac{1}{(z - 1) + (1 + 2i)} \right] = \\ &= \frac{1}{4i} \left[\frac{1}{z - 1} \left(\frac{1}{1 + \frac{1 - 2i}{z - 1}} \right) - \frac{1}{z - 1} \left(\frac{1}{1 + \frac{1 + 2i}{z - 1}} \right) \right] = \\ &= \frac{1}{4i} \sum_{n = 0}^{\infty} (-1)^n \frac{(1 - 2i)^n}{(z - 1)^{n + 1}} - \frac{1}{4i} \sum_{n = 0}^{\infty} (-1)^n \frac{(1 + 2i)^n}{(z - 1)^{n + 1}} = \frac{1}{(z - 1)^2} - \frac{2}{(z - 1)^3} + \dots \\ &\gamma \text{Im} \ |z - 2i| > |1 \pm 2i| = \sqrt{5} \end{split}$$

Μέρος ΙΙΙ Εφαρμοσμένα Μαθηματικά Φεβρουάριος 2016

5 Θέματα Ατρέα

5.1 Άσκηση 1

Η g είναι αναλυτική στο $A\subseteq\mathbb{C}$ και $Im\left(g(z)\right)=d,\quad d\in\mathbb{R}$

$$g(z) = g(x + yi) = u(x, y) + iv(x, y) = u(x, y) + id$$

Από τις εξισώσεις Cauchy-Riemann έχουμε

$$\begin{cases} u_x = v_y \\ u_y = -v_x \end{cases} \Rightarrow \begin{cases} u_x = 0 = v_y \\ u_y = 0 = v_x \end{cases}$$

Άρα $f'(z) = f_x = u_x + iv_x = 0$ δηλαδή

$$f(z) = c$$
 , $c \in \mathbb{C}$

5.2 Άσκηση 2

$$I = \oint_{C_R} \frac{dz}{z^2(z+4i)}, \quad C_R : |z-3i| = R$$

Θεωρούμε την $f(z) = \frac{1}{z^2(z+4i)}, z \in \mathbb{C} - \{0, -4i\}$.

• Όταν έχουμε R < 3 :

Η f είναι αναλυτική στο εσωτερικό και πάνω στην απλή κλειστή τμηματικά λεία καμπύλη C_R . Άρα I=0.

• Όταν έχουμε 3 < R < 7 :

Η f είναι αναλυτική στο εσωτερικό και πάνω στην απλή κλειστή τμηματικά λεία καμπύλη C_R με εξαίρεση το σημείο z=0 το οποίο βρίσκεται στο εσωτερικό της. Άρα $I=2\pi i Res(f,0)=\frac{\pi i}{8}$. Όπου :

$$Res(f,0) = \lim_{z \to 0} \left[\frac{z^2}{z^2(z+4i)} \right]' = \lim_{z \to 0} \left(\frac{1}{z+4i} \right)' = \lim_{z \to 0} -\frac{1}{(z+4i)^2} = \frac{1}{16}$$

• Όταν έχουμε R > 7:

Η f είναι αναλυτική στο εσωτερικό και πάνω στην απλή κλειστή τμηματικά λεία καμπύλη C_R με εξαίρεση τα σημεία z=0 και z=-4i τα οποία βρίσκονται στο εσωτερικό της. Άρα $I=2\pi i \left(Res(f,0)+Res(f,-4i)\right)=0$.

Όπου:

$$Res(f,0) = \lim_{z \to 0} \left[\frac{z^2}{z^2(z+4i)} \right]' = \lim_{z \to 0} \left(\frac{1}{z+4i} \right)' = \lim_{z \to 0} -\frac{1}{(z+4i)^2} = \frac{1}{16}$$

$$Res(f,-4i) = \lim_{z \to -4i} \frac{z+4i}{z^2(z+4i)} = \lim_{z \to -4i} \frac{1}{z^2} = -\frac{1}{16}$$

5.3 Άσκηση 3

$$f(z)=(3z-1)\sin\left(\frac{3}{z-1}\right)=[3(z-1)+2]\sin\left(\frac{3}{z-1}\right)$$
όμως

$$\sin\left(\frac{3}{z-1}\right) = \sum_{n=1}^{\infty} \left[\frac{(-1)^{n+1}}{(2n-1)!} \left(\frac{3}{z-1}\right)^{n+1} \right]$$

άρα

$$\begin{split} f(z) &= [3(z-1)+2] \left[\frac{3}{z-1} - \left(\frac{3}{z-1}\right)^3 \frac{1}{3!} + \left(\frac{3}{z-1}\right)^5 \frac{1}{5!} - \ldots \right] \Rightarrow \\ \Rightarrow f(z) &= 3 \cdot 3 - \frac{3 \cdot 3^3}{(z-1)^2 3!} + \frac{3 \cdot 3^5}{(z-1)^4 5!} - \ldots + \frac{6}{z-1} - \frac{2 \cdot 3^3}{(z-1)^3 3!} + \frac{2 \cdot 3^5}{(z-1)^5 5!} - \ldots \right] \Rightarrow \end{split}$$

 ${\rm K}$ ι αφού ο συντελεστής του όρου $\frac{1}{z-1}$ είναι το 6 θα έχουμε:

$$Res(f,1) = 6$$

5.4 Άσκηση 4

$$I = \int_{-\infty}^{+\infty} \frac{dx}{(x-2)(x^2+4)}$$

Λύνουμε

$$(z-2)(z^2+4) = 0 \Rightarrow$$

$$z-2=0 \Rightarrow z=2 \quad \acute{\eta}$$

$$z^2+4=0 \Rightarrow (z+2i)(z-2i)=0 \Rightarrow z=2i \quad \acute{\eta} \quad z=-2i$$

Θέτουμε $f(z) = \frac{1}{(z-2)(z^2+4)}, z \in \mathbb{C} - \{-2i, 2i, 2\}$ Άρα έχουμε τρεις πόλους πρώτης τάξης, έναν στο άνω, έναν στο κάτω ημιεπίπεδο και έναν πάνω στον πραγματικό άξονα.

$$\lim_{z \to \infty} z f(z) = \lim_{z \to \infty} \frac{z}{(z - 2)(z^2 + 4)} = \lim_{z \to \infty} \frac{z}{z \left(1 - \frac{2}{z}\right)(z^2 + 4)} = \lim_{z \to \infty} \frac{1}{\left(1 - \frac{2}{z}\right)(z^2 + 4)} = 0$$

Επομένως

$$I = 2\pi i Res(f, 2i) + \pi i Res(f, 2) \quad (1)$$

$$Res(f,2) = \lim_{z \to 2} \frac{z-2}{(z-2)(z^2+4)} = \lim_{z \to 2} \frac{1}{(z^2+4)} = \frac{1}{8}$$

$$Res(f,2i) = \lim_{z \to 2i} \left[\frac{(z-2i)}{(z-2)(z+2i)(z-2i)} \right] = \lim_{z \to 2i} \left[\frac{1}{(z-2)(z+2i)} \right] = \frac{1}{(2i-2)(4i)} = \frac{1}{-(4-4i)(2i)} = \frac{(4+4i)}{-(16+16)(2i)} = \frac{-(1+i)}{8(2i)}$$

Άρα η (1) γίνεται:

$$I = 2\pi i \left[\frac{-1-i}{(2i)8} \right] + \pi i \left(\frac{1}{8} \right) = \frac{-\pi - \pi i}{8} + \frac{\pi i}{8} = -\frac{\pi}{8}$$

Άρα

$$\int_{-\infty}^{+\infty} \frac{dx}{(x-2)(x^2+4)} = -\frac{\pi}{8}$$

6 Θέματα Κεχαγιά

6.1 Άσκηση 1

$$\begin{cases} z = \overline{z}|z| \\ \overline{z} = z|z| \end{cases} \Rightarrow z = (z|z|)|z| \Rightarrow z = z|z|^2 \Rightarrow z(1 - |z|^2) = 0 \Rightarrow$$

$$\Rightarrow z = 0$$
 ή $|z| = 1$
 Αν $|z| = 1$ τότε:

$$z = \overline{z}|z| \Rightarrow z = \overline{z} \Rightarrow z \in \mathbb{R}$$

και αφού $|z|=1,\,z=-1$ ή z=1 Επομένως οι λύσεις της εξίσωσης είναι:

$$z=-1$$
 , $z=0$, $z=1$

6.2 Άσκηση 2

Θέτουμε $w=z+\frac{100}{z}$

$$|z| + \frac{100}{|z|} = 20 \Rightarrow |z|^2 - 20|z| + 100 = 0 \Rightarrow (|z| - 10)^2 = 0 \Rightarrow |z| = 10$$

$$|z| = 10 \Rightarrow |z|^2 = 100 \Rightarrow z\overline{z} = 100 \Rightarrow \overline{z} = \frac{100}{z}$$
 (1)

Λόγω της (1) έχουμε: $w=z+\overline{z}=2Re(z)\in\mathbb{R}$

6.3 Άσκηση 3

$$\cos\left(\frac{\pi}{6}\right) + \cos\left(\frac{3\pi}{6}\right) + \dots + \cos\left(\frac{9\pi}{6}\right) = \sum_{n=0}^{4} \cos\left(\frac{(2n+1)\pi}{6}\right) = \sum_{n=0}^{4} \frac{e^{i\frac{(2n+1)\pi}{6}} + e^{-i\frac{(2n+1)\pi}{6}}}{2} =$$

$$= \frac{e^{i\frac{\pi}{6}}}{2} \sum_{n=0}^{4} e^{i\frac{n\pi}{3}} + \frac{e^{-i\frac{\pi}{6}}}{2} \sum_{n=0}^{4} e^{-i\frac{n\pi}{3}} = \frac{e^{i\frac{\pi}{6}}}{2} \left[\frac{(e^{i\frac{\pi}{3}})^4 - 1}{e^{i\frac{\pi}{3}} - 1}\right] + \frac{e^{-i\frac{\pi}{6}}}{2} \left[\frac{(e^{-i\frac{\pi}{3}})^4 - 1}{e^{-i\frac{\pi}{3}} - 1}\right] =$$

$$= \frac{1}{2} \left(\frac{\sqrt{3} + i}{2}\right) \left(\frac{-\frac{1 + i\sqrt{3}}{2} - 1}{\frac{1 + i\sqrt{3}}{2} - 1}\right) + \frac{1}{2} \left(\frac{\sqrt{3} - i}{2}\right) \left(\frac{-\frac{1 + i\sqrt{3}}{2} - 1}{\frac{1 - i\sqrt{3}}{2} - 1}\right) =$$

$$= -\left(\frac{\sqrt{3} + i}{4}\right) \left(\frac{1 + i\sqrt{3} + 2}{1 + i\sqrt{3} - 2}\right) + \left(\frac{\sqrt{3} - i}{4}\right) \left(\frac{-1 + i\sqrt{3} - 2}{1 - i\sqrt{3} - 2}\right) =$$

$$= \left(\frac{\sqrt{3} + i}{4}\right) \left(\frac{3 + i\sqrt{3}}{1 - i\sqrt{3}}\right) + \left(\frac{\sqrt{3} - i}{4}\right) \left(\frac{-3 + i\sqrt{3}}{-1 - i\sqrt{3}}\right) =$$

$$= i \left(\frac{1 - i\sqrt{3}}{4}\right) \left(\frac{3 + i\sqrt{3}}{1 - i\sqrt{3}}\right) + i \left(\frac{-1 - i\sqrt{3}}{4}\right) \left(\frac{-3 + i\sqrt{3}}{-1 - i\sqrt{3}}\right) =$$

$$= \left(\frac{3i - \sqrt{3}}{4}\right) + \left(\frac{-\sqrt{3} - 3i}{4}\right) = -\frac{\sqrt{3}}{2}$$

6.4 Άσκηση 4

$$f(z) = \frac{1}{z^2 - 1} = \frac{1}{(z+1)(z-1)} = \frac{1}{2} \left(\frac{1}{z-1} \right) - \frac{1}{2} \left(\frac{1}{z+1} \right) = \frac{1}{2} \left(\frac{1}{z-1} \right) - \frac{1}{2} \left[\frac{1}{(z-1)+2} \right]$$

•
$$f(z) = \frac{1}{2} \left(\frac{1}{z-1} \right) - \frac{1}{4} \left(\frac{1}{1+\frac{z-1}{2}} \right) = \frac{1}{2} \left(\frac{1}{z-1} \right) - \frac{1}{4} \sum_{n=0}^{\infty} (-1)^n \frac{(z-1)^n}{2^n} = \frac{1}{2(z-1)} - \frac{1}{4} + \frac{z-1}{8} - \frac{(z-1)^2}{16} + \frac{(z-1)^3}{32} - \dots , \quad |z-1| < 2$$

•
$$f(z) = \frac{1}{2} \left(\frac{1}{z-1} \right) - \frac{1}{2(z-1)} \left(\frac{1}{1+\frac{2}{z-1}} \right) = \frac{1}{2} \left(\frac{1}{z-1} \right) - \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n \frac{2^n}{(z-1)^n} =$$

$$= -\frac{1}{2} + \frac{3}{2(z-1)} - \frac{2}{(z-1)^2} + \frac{4}{(z-1)^3} - \dots , \quad |z-1| > 2$$

6.5 Άσκηση 5

$$u(x,y) = \frac{\cos(x)\cosh(y)x}{x^2 + y^2} - \frac{\sin(x)\sinh(y)y}{x^2 + y^2}$$

με
$$f(z) = f(x + yi) = u(x, y) + iv(x, y)$$

Έστω $g:\mathbb{C}\to\mathbb{C}$ και $h:\mathbb{C}-\{0\}\to\mathbb{C}$ τέτοιες ώστε $f(z)=g(z)h(z)\Leftrightarrow$

$$\Leftrightarrow f(z) = [Re(g(z)) + i Im(g(z))][Re(h(z)) + i Im(h(z))] \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} Re(f(z)) = Re(g(z))Re(h(z)) - Im(g(z))Im(h(z)) & (1) \\ Im(f(z)) = Re(g(z))Im(h(z)) + Re(h(z))Im(g(z)) & (2) \end{cases}$$

Παρατηρούμε ότι:

$$u(x,y) = Re(\cos(z))Re\left(\frac{1}{z}\right) - Im(\cos(z))Im\left(\frac{1}{z}\right)$$

Οπότε από την (1) έχουμε $g(z)=\cos(z), h(z)=\frac{1}{z}$,δηλαδή $f(z)=\frac{\cos(z)}{z}$ Από την (2)

$$v(x,y) = Re(\cos(z))Im\left(\frac{1}{z}\right) + Re\left(\frac{1}{z}\right)Im(\cos(z))$$

Άρα

$$v(x,y) = -\frac{\cos(x)\cosh(y)y}{x^2 + y^2} + \frac{\sin(x)\sinh(y)x}{x^2 + y^2}$$

Μέρος IV Εφαρμοσμένα Μαθηματικά Σεπτέμβριος 2015

7 Θέματα Ατρέα

7.1 Άσκηση 1

(α) Θέτουμε
$$w=e^{-z}$$
 και $z=x+yi,\quad x,y\in\mathbb{R}$

Οπότε
$$w = e^{-x-yi} = e^{-x}e - yi \Rightarrow |w| = e^{-x}, \quad Arg(w) = -y$$

Ισχύει
$$\log(w) = \ln|w| + i(Arg(w) + 2\pi n), n \in \mathbb{Z}$$

Άρα

$$\log(e^{-z}) = \log(w) = \ln(e^{-x}) + i(-y + 2\pi n) = -x - yi + 2\pi ni = -z + 2\pi ni, n \in \mathbb{Z}$$

(β)

$$\sin(z) = \frac{e^{iz} - e^{-iz}}{2i} = \frac{e^{ix - y} - e^{-ix + y}}{2i} = \frac{e^{-y}[\cos(x) + i\sin(x)] - e^{y}[\cos(x) - i\sin(x)]}{2i} = \frac{e^{-iz} - e^{-iz}}{2i} = \frac{e^{-ix} - e^{-ix}}{2i} = \frac{e^{-ix}}{2i} = \frac{e^{-ix} - e^{-ix$$

$$= \frac{i \sin(x)(e^y + e^{-y}) - \cos(x)(e^y - e^{-y})}{2i} = \sin(x) \left(\frac{e^y + e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y + e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y + e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y + e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y + e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y - e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y - e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y - e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y - e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y - e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y - e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y - e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y - e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y - e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y - e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y - e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y - e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y - e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y - e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y - e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y - e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y - e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y - e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y - e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y - e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y - e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y - e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y - e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y - e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y - e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = \sin(x) \left(\frac{e^y - e^{-y}}{2}\right) + i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = i \cos(x) \left(\frac{e^y - e^{-y}}{2}\right) = i \cos(x$$

$$= \sin(x)\cosh(y) + i\cos(x)\sinh(y)$$

Άρα

$$|\sin(z)|^2 = \sin^2(x)\cosh^2(y) + \cos^2(x)\sinh^2(y) = \sin^2(x)(1+\sinh^2(y)) + \cos^2(x)\sinh^2(y) \Rightarrow$$

$$\Rightarrow |\sin(z)|^2 = \sin^2(x) + \sinh^2(y)$$

7.2 Άσκηση 2

$$f(z) = 1 + \frac{1}{z - 1}, \quad z \in \mathbb{C} - \{1\}$$

Θέτουμε z = x + yi και y = -x έχουμε:

$$f(x+yi) = 1 + \frac{1}{(x-1)+yi} = 1 + \frac{(x-1)-yi}{(x-1)^2+y^2} = \frac{x^2+y^2-x}{(x-1)^2+y^2} - i\frac{y}{(x-1)^2+y^2} = \frac{2x^2-x}{(x-1)^2+x^2} + i\frac{x}{(x-1)^2+x^2}$$

Θέτουμε

$$u(x,y) = \frac{2x^2 - x}{(x-1)^2 + x^2}$$
 (1)
$$v(x,y) = \frac{x}{(x-1)^2 + x^2}$$
 (2)
$$(1), (2) \xrightarrow{\text{(:)}} \frac{u}{v} = \frac{2x^2 - x}{x} \Rightarrow \frac{u}{v} = 2x - 1 \Rightarrow x = \frac{u}{2v} + \frac{1}{2}$$

Αντικαθιστόντας την παραπάνω σχέση στη (2) έχουμε:

$$v = \frac{\frac{u}{2v} + \frac{1}{2}}{\left(\frac{u}{2v} + \frac{1}{2} - 1\right)^2 + \left(\frac{u}{2v} + \frac{1}{2}\right)^2} \Rightarrow v = \frac{\frac{1}{2}\left(\frac{u}{v} + 1\right)}{\frac{1}{4}\left(\frac{u^2}{v^2} - \frac{2u}{v} + 1 + \frac{u^2}{v^2} + \frac{2u}{v} + 1\right)}$$

$$\Rightarrow v\left(\frac{u^2}{v^2} + 1\right) = \frac{u}{v} + 1 \Rightarrow u^2 + v^2 = u + v \Rightarrow u^2 - 2\left(\frac{1}{2}\right)u + \frac{1}{4} + v^2 - 2\left(\frac{1}{2}\right)v + \frac{1}{4} = \frac{1}{4} + \frac{1}{4} \Rightarrow v + \left(\frac{1}{2}\right)^2 + \left(v - \frac{1}{2}\right)^2 = \left(\frac{\sqrt{2}}{2}\right)^2$$

Κύκλος με κέντρο το $K\left(\frac{1}{2},\frac{1}{2}\right)$ και ακτίνα $r=\frac{\sqrt{2}}{2}$

Το παραπάνω ισχύει όταν $v \neq 0$. Αν v = 0, $(1) \Rightarrow x = 0$, $(2) \Rightarrow u = 0$, δηλαδή το σημείο A = (0,0) το οποίο ανήκει στον παραπάνω κύκλο, άρα ισχύει σε κάθε περίπτωση.

7.3 Άσκηση 3

$$u(x,y) = 3x^3 - 9xy^2 - x$$

Από τις εξισώσεις Cauchy-Riemann έχουμε:

$$\begin{cases} u_x = v_y \\ u_y = -v_x \end{cases} \Rightarrow \begin{cases} v_y = 9x^2 - 9y^2 - 1 \\ v_x = 18xy \end{cases} \Rightarrow \begin{cases} v = \int (9x^2 - 9y^2 - 1)dy + h(x) \\ v_x = 18xy \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} v = 9x^2y - \frac{9y^3}{3} - y + h(x) \\ 18xy + h'(x) = 18xy \end{cases} \Rightarrow \begin{cases} v = 9x^2y - \frac{9y^3}{3} - y + h(x) \\ h'(x) = 0 \end{cases} \Rightarrow \begin{cases} v = 9x^2y - \frac{9y^3}{3} - y + h(x) \\ h'(x) = 0 \end{cases} \Rightarrow \begin{cases} v = 9x^2y - 3y^3 - y + h(x) \\ h(x) = c_1, c_1 \in \mathbb{R} \end{cases} \Rightarrow v(x, y) = -3y^3 + 9x^2y - y + c_1, c_1 \in \mathbb{R} \end{cases}$$

Άρα

$$f(z) = u(z,0) + iv(z,0) = 3z^3 - z + ic_1 \Rightarrow f(z) = 3z^3 - z + c, c \in \mathbb{C}$$

7.4 Άσχηση 4

$$I = \oint_{C_R} \frac{dz}{(z-2i)(z+3)^2}, \quad C_R : |z| = R$$

Θεωρούμε την $f(z)=\frac{1}{(z-2i)(z+3)^2}, z\in\mathbb{C}-\{2i,-3\}$.

• Όταν έχουμε R < 2 :

Η f είναι αναλυτική στο εσωτερικό και πάνω στην απλή κλειστή τμηματικά λεία καμπύλη C_R . Άρα I=0.

• Όταν έχουμε 2 < R < 3 :

Η f είναι αναλυτική στο εσωτερικό και πάνω στην απλή κλειστή τμηματικά λεία καμπύλη C_R με εξαίρεση το σημείο z=-2i το οποίο βρίσκεται στο εσωτερικό της. Άρα

$$I = 2\pi i Res(f, 2i) = \frac{(24+10i)\pi}{169}$$

. Όπου :

$$Res(f,2i) = \lim_{z \to 2i} \frac{(z-2i)}{(z-2i)(z+3)^2} = \lim_{z \to 2i} \frac{1}{(z+3)^2} = \frac{1}{(3+2i)^2} = \frac{1}{(3+2i)^2} = \frac{1}{5+12i} = \frac{5-12i}{25+144} = \frac{5-12i}{169}$$

• Όταν έχουμε R>3 :

Η f είναι αναλυτική στο εσωτερικό και πάνω στην απλή κλειστή τμηματικά λεία καμπύλη C_R με εξαίρεση τα σημεία z=2i και z=-3 τα οποία βρίσκονται στο εσωτερικό της. Άρα

$$I=2\pi i\left(Res(f,2i)+Res(f,-3)\right)=0$$

Οπου :

$$Res(f,2i) = \lim_{z \to 2i} \frac{(z-2i)}{(z-2i)(z+3)^2} = \lim_{z \to 2i} \frac{1}{(z+3)^2} = \frac{1}{(3+2i)^2} =$$

$$= \frac{1}{5+12i} = \frac{5-12i}{25+144} = \frac{5-12i}{169}$$

$$Res(f,-3) = \lim_{z \to -3} \left[\frac{(z+3)^2}{(z-2i)(z+3)^2} \right]' = \lim_{z \to -3} \left(\frac{1}{z-2i} \right)' =$$

$$= \lim_{z \to -3} -\frac{1}{(z-2i)^2} = -\frac{1}{(3+2i)^2} = -\frac{1}{5+12i} = -\frac{5-12i}{25+144} = -\frac{5-12i}{169}$$

7.5 Άσκηση 5

Θεωρούμε την $g(z)=\frac{f(z)}{z^2}, z\in D$ η οποία είναι αναλυτική στο D και συνεχής στο σύνορο ∂D αφού είναι και η f. Τότε

$$|g(z)| = \frac{|f(z)|}{|z|^2}$$
 (1)

$$\begin{array}{ll} \text{ Γ id $z:|z|=1$, } & (1)\Rightarrow |g(z)|=|f(z)|\leq 1 \\ \text{ Γ id $z:|z|=3$, } & (1)\Rightarrow |g(z)|=\frac{|f(z)|}{9}\leq \frac{9}{9}\Rightarrow |g(z)|\leq 1 \end{array}$$

Από το Θεώρημα Μεγίστου, αφού η g είναι αναλυτική στο D και συνεχής στο σύνορο ∂D , η |g(z)| παίρνει μέγιστο πάνω στο ∂D , δηλαδή $|g(z)| \leq 1, \forall z \in D \Rightarrow |f(z)| \leq |z|^2, \forall z \in D$

7.6 Άσκηση 6

$$f(z) = \frac{iz+1}{z^3 - z^2 + z - 1}$$

Έχουμε:

$$z^{3} - z^{2} + z - 1 = z(z^{2} + 1) - (z^{2} + 1) = (z - 1)(z + i)(z - i)$$

Άρα

$$f(z) = \frac{i(z-i)}{(z-1)(z+i)(z-i)} \Rightarrow f(z) = \frac{i}{(z-1)(z+i)}, \quad z \in \mathbb{C} - \{-i, i, 1\}$$

Έστω $A, B \in \mathbb{C}$ τέτοια ώστε:

$$\frac{A}{z-1} + \frac{B}{z-i} = \frac{i}{(z-1)(z+i)} \Rightarrow A(z-i) + B(z-1) = i \Rightarrow$$

$$\begin{cases} A+B=0 \\ -iA-B=i \end{cases} \Rightarrow \begin{cases} A=-B \\ -iA+A=i \end{cases} \Rightarrow \begin{cases} -A=B \\ A=\frac{i}{1-i} \end{cases} \Rightarrow \begin{cases} B=\frac{1-i}{2} \\ A=\frac{-1+i}{2} \end{cases}$$

$$f(z) = \frac{-1+i}{2} \left(\frac{1}{z-1}\right) + \frac{1-i}{2} \left(\frac{1}{z+i}\right) \Rightarrow f(z) = \frac{1-i}{2} \left(\frac{1}{1-z}\right) + \frac{1-i}{2i} \left(\frac{1}{1-iz}\right) + \frac{1-i}{2i} \left(\frac{1}{1-iz}\right) \Rightarrow f(z) = \frac{1-i}{2} \left(\frac{1}{1-z}\right) + \frac{1-i}{2} \left(\frac{1-i}{2}\right) + \frac{1-i}{2} \left(\frac{1-i}{2$$

$$\Rightarrow f(z) = \left(\frac{1-i}{2}\right) \sum_{n=0}^{\infty} z^n + \left(\frac{1-i}{2i}\right) \sum_{n=0}^{\infty} (iz)^n, |z| < 1$$

7.7 Άσκηση 7

$$I = \int_{-\infty}^{+\infty} \frac{dx}{x^3 + 8}$$

Λύνουμε

$$z^{3} + 8 = 0 \Rightarrow z^{3} = -8 \Rightarrow z = \sqrt[3]{|-8|}e^{i(\frac{\pi+2\kappa\pi}{3})}, \kappa = \{0, 1, 2\} \Rightarrow$$

$$z = 2e^{i\frac{\pi}{3}} = 1 + i\sqrt{3}$$
 $\acute{\eta}$ $z = -2$ $\acute{\eta}$ $z = 2e^{i\frac{5\pi}{3}} = 1 - i\sqrt{3}$

Θέτουμε
$$f(z) = \frac{1}{z^3+8}, z \in \mathbb{C} - \{-2, 1 + i\sqrt{3}, 1 - i\sqrt{3}\}$$

Άρα έχουμε τρείς πόλους πρώτης τάξης, έναν στο άνω, έναν στο κάτω ημιεπίπεδο και έναν πάνω στον πραγματικό άξονα.

$$\lim_{z \to \infty} z f(z) = \lim_{z \to \infty} \frac{z}{z^3 + 8} = \lim_{z \to \infty} \frac{z}{z^3 \left(1 + \frac{8}{z^3}\right)} = \lim_{z \to \infty} \frac{1}{z^2 \left(1 + \frac{8}{z^3}\right)} = 0$$

Επομένως

$$I = 2\pi i Res(f, 1 + i\sqrt{3}) + \pi i Res(f, -2) \quad (1)$$

$$Res(f, -2) = \lim_{z \to -2} \frac{z + 2}{(z + 2)(z - (1 + i\sqrt{3}))(z - (1 - i\sqrt{3}))} =$$

$$= \frac{1}{(-3 - i\sqrt{3})(-3 + i\sqrt{3})} = \frac{1}{9 + 3} = \frac{1}{12}$$

$$Res(f, 1 + i\sqrt{3}) = \lim_{z \to (1 + i\sqrt{3})} \left[\frac{z - (1 + i\sqrt{3})}{(z + 2)(z - (1 + i\sqrt{3}))(z - (1 - i\sqrt{3}))} \right] =$$

$$= \frac{1}{2i\sqrt{3}(3 + i\sqrt{3})} = \frac{3 - i\sqrt{3}}{2i\sqrt{3}(9 + 3)} = \frac{\sqrt{3} - i}{12(2i)}$$

Άρα η (1) γίνεται:

$$I = 2\pi i \left[\frac{\sqrt{3} - i}{12(2i)} \right] + \pi i \left(\frac{1}{12} \right) = \frac{\pi \sqrt{3} - i\pi + i\pi}{12} = \frac{\pi \sqrt{3}}{12}$$

$$\int_{-\infty}^{+\infty} \frac{dx}{x^3 + 8} = \frac{\pi\sqrt{3}}{12}$$

Μέρος V Εφαρμοσμένα Μαθηματικά Φεβρουάριος 2015

8 Θέματα Ατρέα

8.1 Άσκηση 1

$$z^{4} = (-i)^{2i} = e^{2ilog(-i)} = e^{2i[ln(|-i|) + i(-\frac{\pi}{2} + 2\kappa\pi)]} = e^{\pi - 4\kappa\pi} = e^{\pi(1 - 4\kappa)} \Rightarrow$$

$$\Rightarrow z = \sqrt[4]{|e^{\pi(1 - 4\kappa)}|} e^{\frac{2\lambda\pi i}{4}} = \sqrt[4]{e^{\pi(1 - 4\kappa)}} e^{\frac{\lambda\pi i}{2}}$$

$$z \in \mathbb{Z} \ \lambda = 0, 1, 2, 3$$

με $\kappa \in \mathbb{Z}, \lambda = 0, 1, 2, 3$ Άρα

$$z = \begin{cases} \sqrt[4]{e^{\pi(1-4\kappa)}} \\ i\sqrt[4]{e^{\pi(1-4\kappa)}} \\ -\sqrt[4]{e^{\pi(1-4\kappa)}} \\ -i\sqrt[4]{e^{\pi(1-4\kappa)}} \end{cases}, \kappa \in \mathbb{Z}$$

8.2 Άσκηση 2

$$\alpha)~\Omega=\{z\in\mathbb{C}:|z|<2,\pi/3< Arg(z)<5\pi/4\}$$

$$\begin{cases} f(z) = 2\sqrt{z} = 2z^{1/2} \\ z = |z|e^{iArg(z)} \end{cases}$$

$$f(z) = (|z|e^{iArg(z)})^{1/2} = 2|z|^{1/2}e^{i\frac{Arg(z)}{2}}$$

$$f(z) = 2(|z|e^{iArg(z)})^{1/2} = \underbrace{2|z|^{1/2}}_{|f(z)|} e^{i\underbrace{Arg(f(z))}_{2}} 2$$

- $\begin{array}{ll} \bullet & Arg(f(z)) = \frac{Arg(z)}{2} \Rightarrow \frac{\pi}{6} \leqslant Arg(f(z)) \leqslant \frac{5\pi}{6} \\ \bullet & |f(z)| = 2|z|^{1/2}, |f(z)| \leqslant 2\sqrt{2} \end{array}$

'Αρα
$$f(\Omega) = \{|f(z)| \leqslant 2\sqrt{2}, \quad \frac{\pi}{6} \leqslant Arg(f(z)) \leqslant \frac{5\pi}{8}\}$$

$$\gamma (t) = e^{it}, \quad t \in (-\pi, \pi]
\gamma'(t) = ie^{it}$$

$$\oint_{|z|=1} f(z) dz = \int_{-\pi}^{\pi} 2e^{it/2} i e^{it} dt =$$

$$= \int_{-\pi}^{\pi} 2i e^{i\frac{3t}{2}} dt = \left[\frac{2i e^{i\frac{3t}{2}}}{\frac{3i}{2}} \right]_{-\pi}^{\pi} = \frac{3i}{4i} (e^{i\frac{3\pi}{2}} - e^{-i\frac{3\pi}{2}}) = \frac{8i}{3} sin\left(\frac{3\pi}{2}\right) = -\frac{8i}{3} sin\left(\frac{3\pi}{2}\right) = -\frac{8i}{3}$$

8.3 Άσκηση 3

H f(z) = f(x+yi) = u(x,y) + iv(x,y) είναι αναλυτική στο E.

Από τις εξισώσεις Cauchy – Riemann έχουμε

$$\begin{cases} u_x = v_y \\ u_y = -v_x \end{cases}$$

Άρα:

$$au + bv = c \Rightarrow \begin{cases} au_x + bv_x = 0 \\ au_y + bv_y = 0 \end{cases} \Rightarrow$$
$$\Rightarrow \begin{bmatrix} u_x & v_x \\ u_y & v_y \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} u_x & -u_y \\ u_y & u_x \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Έχουμε ότι $a,b\in\mathbb{C}$ με $|a|^2+|b|^2\neq 0\Rightarrow a,b\neq 0$. Επομένως για το παραπάνω σύστημα έχουμε ότι

$$\begin{vmatrix} u_x & -u_y \\ u_y & u_x \end{vmatrix} = u_x^2 + u_y^2 \quad (1)$$

Έστω ότι η (1) είναι 0. Τότε το παραπάνω σύστημα θα είχε μοναδική λύση, τη μηδενική (αφού το σύστημα είναι ομογενές) το οποίο είναι άτοπο καθώς $a, b \neq 0$.

Έτσι από την (1) έχουμε ότι $u_x^2+u_y^2=0\Rightarrow u_x=u_y=v_y=v_x=0$ λόγω των εξισώσεων Cauchy-Riemann και $f_x=u_x+iv_x=0\Rightarrow \quad f(z)=c,c\in\mathbb{C}$ στο E

8.4 Άσκηση 4

$$I=\oint_C \frac{e^z-\cos(z)}{(z-i)(z-2)^4sin^2(z)}\,dz$$
 Θεωρούμε την $f(z)=\frac{e^z-\cos(z)}{(z-i)(z-2)^4sin^2(z)},z\in\mathbb{C}-\{0,2,i\}.$

To $z_1=0$ και το $z_2=i$ είναι απλοί πόλοι, ενώ το $z_3=2\notin C$ (οπότε δεν μας αφορά). Άρα:

$$I = 2\pi i Res(f,0) + \pi i Res(f,i) = -\frac{\pi}{8} + \frac{\pi i (e^i - \cos(i))}{(2-i)^4 \sin^2(i)}$$

Όπου

$$Res(f,i) = \lim_{z \to i} \frac{(z - i)(e^z - \cos(z))}{(z - i)(z - 2)^4 sin^2(z)} = \frac{(e^i - \cos(i))}{(i - 2)^4 sin^2(i)}$$

$$Res(f,0) = \lim_{z \to 0} \frac{z(e^z - \cos(z))}{(z - i)(z - 2)^4 sin^2(z)} = \frac{i}{16}$$

Αφού

$$\lim_{z \to 0} \frac{e^z - \cos(z)}{\sin(z)} \xrightarrow{\frac{\text{DeL'Hospital}}{z}} \lim_{z \to 0} \frac{e^z - \sin(z)}{\cos(z)} = 1$$

$$\lim_{z \to 0} \frac{z}{\sin(z)} \xrightarrow{\frac{\text{DLH}}{z}} \lim_{z \to 0} \frac{1}{\cos(z)} = 1$$

$$\lim_{z \to 0} \frac{1}{(z-i)(z-2)^4} = \frac{1}{(-i)16} = \frac{i}{16}$$

8.5 Άσκηση 5

$$f(z) = (2z^2 - z)e^{\frac{2}{z-2}}$$

Γενικά έχουμε ότι:

•
$$(2z^2 - z) = 2(z - 2)^2 + 7(z - 2) + 6$$

•
$$e^{\frac{2}{z-2}} = \sum_{n=0}^{\infty} \frac{1}{n!} \left[\frac{2}{z-2} \right]^n$$

Άρα:

$$f(z) = \left(\sum_{n=0}^{\infty} \frac{1}{n!} \left[\frac{2}{z-2} \right]^n \right) \left(2(z-2)^2 + 7(z-2) + 6 \right) =$$

$$= \frac{1}{0!} \left[2(z-2)^2 + 7(z-2) + 6 \right] + \frac{1}{1!} \frac{2}{z-2} \left[2(z-2)^2 + 7(z-2) + 6 \right] +$$

$$+ \frac{1}{2!} \frac{2^2}{(z-2)^2} \left[2(z-2)^2 + 7(z-2) + 6 \right] + \frac{1}{3!} \frac{2^3}{(z-3)^3} \left[2(z-2)^2 + 7(z-2) + 6 \right] + \dots$$

Συνεπώς:

$$Res(f,2) = \frac{2 \cdot 6}{1!} + \frac{2^2 \cdot 7}{2!} + \frac{2^3 \cdot 2}{3!} = \frac{86}{3}$$

8.6 Άσκηση 6

Θέλουμε να βρούμε τη σειρά Laurent με κέντρο το $z_0=i \quad \forall z: 2<|z-z_0|<3$

$$f(z) = \frac{2iz + 3 - i}{iz^2 + z + 6i} = \frac{2z - 3i - 1}{z^2 - iz + 6} = \frac{2z - (1+3i)}{(z+2i)(z-3i)} = \frac{z - i}{5(z+2i)} + \frac{3+i}{5(z-3i)} \Rightarrow$$

$$\Rightarrow f(z) = \frac{(7-i)}{15i} \sum_{n=0}^{\infty} \left(\frac{z - i}{3i}\right)^n + \frac{(3+i)}{5(z-i)} \sum_{n=0}^{\infty} \left(\frac{2i}{z-i}\right)^n \Rightarrow$$

$$\Rightarrow f(z) = \frac{(1-7i)}{15} \sum_{n=0}^{\infty} \left(\frac{z - i}{3i}\right)^n + \frac{(3+i)}{5} \sum_{n=0}^{\infty} \frac{(2i)^n}{(z-i)^{n+1}} \quad , \quad 2 < |z-i| < 3$$

8.7 Άσκηση 7

$$A, B, C > 0$$
 $|f(z)| \le A|z|^2 + B|z| + C$

Αν f πολυώνυμο το πολύ 2ου βαθμού $f(z)=az^2+bz+c,\quad a,b,c\in\mathbb{C}$ τότε $f'(z)=2az+b,\quad f''(z)=2a,\quad f^{(3)}(z)=0$

Έχουμε ότι : $|f^{(n)}(z)| \leqslant \frac{n!M_r}{R^n}$ και

$$M_r = \max\{|f(z)| : \underbrace{|z - z_o| = R}_{z = z_o + Re^{i\theta}}\}$$

Αρκεί να δείξουμε ότι $f^{(3)}(z)=0, \forall z\in\mathbb{C}$

$$|f(z)| \leqslant A|z|^2 + B|z| + C = A|z_o + Re^{i\theta}|^2 + B|z_o + Re^{i\theta}| + C \leqslant$$

$$\leqslant A(|z_o| + R|e^{i\theta}|)^2 + B|z_o| + BR|e^{i\theta}| + C = A|z_o|^2 + 2AR|z_o| + AR^2 + B|z_o| + BR + C \Rightarrow$$

$$\Rightarrow |f^{(3)}(z)| \leqslant \frac{3!(A|z_o|^2 + 2AR|z_o| + AR^2 + B|z_o| + BR + C)}{R^3} \xrightarrow{\mathbb{R}^3}$$

$$\Rightarrow |f^{(3)}(z)| \leqslant 0 \Rightarrow f^{(3)}(z) = 0$$

8.8 Άσκηση 8

$$I = \int_{-\infty}^{+\infty} \frac{dx}{(x^2 + a^2)^2 (x - 1)}, \quad a > 0$$

Θεωρούμε την $f(z)=\frac{1}{(z^2+a^2)^2(z-1)}, z\in\mathbb{C}-\{-ai,ai,1\}$

Η f έχει τρείς πόλους.

- ullet $z_0=1$,απλός πόλος πάνω στον πραγματικό άξονα
- ullet $z_1 = ai$,διπλός πόλος στο άνω ημιεπίπεδο (αφού a>0)
- $z_2 = -ai$,διπλός πόλος στο κάτω ημιεπίπεδο (αφού a>0)

Έχουμε:

$$\lim_{z \to \infty} z f(z) = \lim_{z \to \infty} \frac{z}{(z^2 + a^2)^2 (z - 1)} = \lim_{z \to \infty} \frac{z}{z(z^2 + a^2)^2 (1 - \frac{1}{z})} = \lim_{z \to \infty} \frac{1}{(z^2 + a^2)^2 (1 - \frac{1}{z})} = 0$$

'Aρα
$$I = 2\pi i Res(f, ai) + \pi i Res(f, 1) = -\frac{(3a^2+1)\pi}{2a^3(a^2+1)^2}$$

• $Res(f, 1) = \lim_{z \to 1} \left[\frac{(z-1)}{(z-1)(z^2+a^2)^2} \right] = \frac{1}{(1+a^2)^2}$ (1)

• $Res(f, ai) = \lim_{z \to ai} \left[\frac{(z-ai)^2}{(z-ai)^2(z+ai)^2(z-1)} \right]' =$

$$= \lim_{z \to ai} -\frac{2(z+ai)(z-1)+(z+ai)^2}{(z+ai)^4(z-1)^2} = \frac{4ai(ai-1)+(2ai)^2}{-(2ai)^4(ai-1)^2} =$$

$$= -\frac{2}{(2ai)^3(ai-1)} - \frac{1}{(2ai)^2(ai-1)^2} = \frac{2(-ai-1)}{8a^3i(a^2+1)} + \frac{(-ai-1)^2}{4a^2(a^2+1)^2}$$
 (2)

(1), (2) ⇒ $I = \frac{\pi i}{(1+a^2)^2} + \frac{\pi(-ai-1)}{2a^3(a^2+1)} + \frac{\pi i(-ai-1)^2}{2a^2(a^2+1)^2} =$

⇒ $I = \frac{\pi i(2a^3) + \pi(-1-ai)(a^2+1) + \pi i(1+ai)^2a}{2a^3(1+a^2)^2}$

$$\Rightarrow I = \frac{\pi(-a^2 - 1 - a^3i - ai) + \pi(ia - 2a^2 - a^3i) + \pi(i2a^3)}{2a^3(1 + a^2)^2} = -\frac{(3a^2 + 1)\pi}{2a^3(a^2 + 1)^2}$$

$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2 + a^2)^2 (x - 1)} = -\frac{(3a^2 + 1)\pi}{2a^3 (a^2 + 1)^2} \quad , a > 0$$

Μέρος VI Εφαρμοσμένα Μαθηματικά Σεπτέμβριος 2014

9 Θέματα Ατρέα

9.1 Άσκηση 1

Θέτουμε $c=a+bi, \quad d=m+ni, \quad a,b,m,n\in\mathbb{R}$ και $a^2+b^2\neq 0, \quad m^2+n^2\neq 0$

$$\frac{c}{d} = \frac{a+bi}{m+ni} = \frac{(a+bi)(m-ni)}{m^2+n^2} = \frac{am+bn}{m^2+n^2} + i\frac{bm-an}{m^2+n^2}$$
(1)

$$\frac{d}{c} = \frac{m+ni}{a+bi} = \frac{(m+ni)(a-bi)}{a^2+b^2} = \frac{am+bn}{a^2+b^2} + i\frac{an-bm}{a^2+b^2}$$
(2)

Από τις (1), (2) έχουμε:

$$Im\left(\frac{c}{d}\right) < 0 \Leftrightarrow \frac{bm - an}{m^2 + n^2} < 0 \Leftrightarrow bm - an < 0 \Leftrightarrow an - bm > 0 \Leftrightarrow \frac{an - bm}{a^2 + b^2} > 0 \Leftrightarrow Im\left(\frac{d}{c}\right) > 0$$

9.2 Άσκηση 2

$$\sin(iz) + i\sinh(z) = i \quad (1)$$

Θέτουμε $z=x+yi,\quad x,y\in\mathbb{R}$ κι έχουμε:

$$\sin(iz) = \frac{e^{i[i(x+yi)]} - e^{-i[i(x+yi)]}}{2i} = -i\frac{e^{-(x+yi)} - e^{x+yi}}{2} = i\sinh(z)$$

Άρα η (1) γίνεται:

$$\begin{split} i\sinh(z) + i\sinh(z) &= i \Rightarrow \sinh(z) = \frac{1}{2} \Rightarrow \frac{e^{x+yi} - e^{-(x+yi)}}{2} = \frac{1}{2} \Rightarrow \\ &\Rightarrow \frac{e^x}{2}(\cos(y) + i\sin(y)) - \frac{e^{-x}}{2}(\cos(y) - i\sin(y)) = \frac{1}{2} \Rightarrow \\ &\cos(y) \left[\frac{e^x - e^{-x}}{2}\right] + i\sin(y) \left[\frac{e^x + e^{-x}}{2}\right] = \frac{1}{2} \Rightarrow \\ &\Rightarrow \cos(y)\sinh(x) + i\sin(y)\cosh(x) = \frac{1}{2} \Rightarrow \end{split}$$

$$\Rightarrow \begin{cases} \cos(y)\sinh(x) = \frac{1}{2} \\ \sin(y)\cosh(x) = 0 \end{cases} \Rightarrow \begin{cases} \cos(y)\sinh(x) = \frac{1}{2} \\ \sin(y) = 0 \end{cases} \begin{cases} \sinh(x) = \pm \frac{1}{2} \\ y = \kappa\pi, \quad \kappa \in \mathbb{Z} \end{cases}$$

(*) $\text{An }\sin(y)=0$, τότε $\cos(y)=\pm 1$ (λόγω της γνωστής τριγωνομετρικής ταυτότητας $\sin^2(\alpha)+\cos^2(\alpha)=1$, $\forall \alpha\in\mathbb{R}$)

•
$$\sinh(x) = \frac{1}{2} \Rightarrow \frac{e^x - e^{-x}}{2} = \frac{1}{2} \Rightarrow e^{2x} - 1 = e^x \Rightarrow e^{2x} - e^x - 1 = 0$$
 (2)

Θέτουμε $w=e^x, \quad w>0$ και (2) γίνεται:

$$w^2 - w - 1 = 0$$

$$\Delta = 1 + 4 = 5 > 0, \qquad w = \frac{1 \pm \sqrt{5}}{2}$$

Όμως w>0, άρα $w=\frac{1+\sqrt{5}}{2}$

$$e^x = \frac{1+\sqrt{5}}{2} \Rightarrow x = \ln\left(\frac{1+\sqrt{5}}{2}\right)$$

•
$$\sinh(x) = -\frac{1}{2} \Rightarrow \frac{e^x - e^{-x}}{2} = -\frac{1}{2} \Rightarrow e^{2x} - 1 = -e^x \Rightarrow e^{2x} + e^x - 1 = 0$$
 (3)
 Θέτουμε $u = e^x$, $w > 0$ και (3) γίνεται:

$$u^2 + u - u = 0$$

$$\Delta = 1 + 4 = 5 > 0, \qquad u = \frac{-1 \pm \sqrt{5}}{2}$$

Όμως u>0, άρα $u=\frac{-1+\sqrt{5}}{2}$

$$e^x = \frac{-1 + \sqrt{5}}{2} \Rightarrow x = \ln\left(\frac{-1 + \sqrt{5}}{2}\right)$$

$$z_1 = \ln\left(\frac{1+\sqrt{5}}{2}\right) + i\kappa\pi$$
 , $z_2 = \ln\left(\frac{-1+\sqrt{5}}{2}\right) + i\lambda\pi$, $\kappa, \lambda \in \mathbb{Z}$

9.3 Άσκηση 3

 (α)

$$f(z) = w = \frac{iz - i}{2z - 1 + i} \Leftrightarrow 2zw - (1 - i)w = iz - i \Leftrightarrow 2zw - iz = (1 - i)w - i \Leftrightarrow$$
$$\Leftrightarrow z(2w - i) = (1 - i)w - i \Leftrightarrow z = \frac{(1 - i)w - i}{2w - i} = f^{-1}(w)$$

(β)

$$\lim_{z \to \infty} f(z) = \lim_{z \to \infty} \frac{iz - i}{2z - 1 + i} = \lim_{z \to \infty} \frac{z\left(i - \frac{i}{z}\right)}{z\left(2 - \frac{1 - i}{z}\right)} = \lim_{z \to \infty} \frac{i - \frac{i}{z}}{2 - \frac{1 - i}{z}} = \frac{i}{2}$$

 (γ) Θέτουμε $w=x+yi, x,y\in\mathbb{R}$ και $f^{-1}(w)=u+iv$

$$Im(w) = 1 \Rightarrow y = 1$$

Άρα w = x + i

$$f^{-1}(w) = \frac{(1-i)w - i}{2w - i} \Rightarrow u + iv = \frac{(1-i)(x+i) - i}{2(x+i) - i} \Rightarrow u + iv = \frac{x - ix + 1}{2x + i} \Rightarrow u + iv = \frac{(x+1-ix)(2x-i)}{4x^2 + 1} \Rightarrow u + iv = \frac{(2x^2 + x) - i(2x^2 + x + 1)}{4x^2 + 1}$$

$$u = \frac{2x^2 + x}{4x^2 + 1} \quad (1) \qquad v = -\frac{2x^2 + x + 1}{4x^2 + 1} \quad (2)$$

$$(1), (2) \Rightarrow u + v = -\frac{1}{4x^2 + 1} \Rightarrow 4x^2 + 1 = -\frac{1}{u + v} \Rightarrow 4x^2 = -\frac{u + v}{u + v} - \frac{1}{u + v} \Rightarrow x^2 = -\frac{1 + u + v}{4(u + v)}$$
(3)

$$(1) \Rightarrow u(4x^2 + 1) - 2x^2 = x \Rightarrow x^2 = [u(4x^2 + 1) - 2x^2]^2 \stackrel{(3)}{\Longrightarrow}$$

$$\Rightarrow -\frac{1+u+v}{4(u+v)} = \left[-\frac{u}{u+v} + \frac{1+u+v}{2(u+v)}\right]^2 \Rightarrow -\frac{1+u+v}{4(u+v)} = \left[-\frac{2u}{2(u+v)} + \frac{1+u+v}{2(u+v)}\right]^2 \Rightarrow -\frac{1+u+v}{2(u+v)} = -\frac{2u}{2(u+v)} + \frac{1+u+v}{2(u+v)} = -\frac{2u}{2(u+v)} + \frac{1+u+v}{2(u+v)} = -\frac{2u}{2(u+v)} + -\frac{2u}{2(u+v)} + -\frac{2u}{2(u+v)} = -\frac{2u}{2(u+v)} + -\frac{2u}{2(u+v)} = -\frac{2u}{2(u+v)} + -\frac{2u}{2(u+v)} + -\frac{2u}{2(u+v)} = -\frac{2u}{2(u+v)} + -\frac{2u}{2(u+v)} + -\frac{2u}{2(u+v)} = -\frac{2u}{2(u+v)} + -\frac{2u}{$$

$$\Rightarrow -\frac{1+u+v}{4(u+v)} = \frac{(v-u+1)^2}{4(u+v)^2} \Rightarrow -(1+u+v) = \frac{v^2+u^2+1-2uv+2v-2u}{u+v} \Rightarrow$$

$$\Rightarrow -(1+u+v)(u+v) = v^2+u^2+1-2uv+2v-2u \Rightarrow$$

$$\Rightarrow -u-v-u^2-uv-uv-v^2 = v^2+u^2+1-2uv+2v-2u \Rightarrow$$

$$\Rightarrow 2v^2+2u^2+3v-u+1=0 \Rightarrow u^2+v^2-\frac{1}{2}u+\frac{3}{2}v=-\frac{1}{2} \Rightarrow$$

$$\Rightarrow u^2-2\left(\frac{1}{4}\right)u+\frac{1}{16}+v^2+2\left(\frac{3}{4}\right)v+\frac{9}{16} = -\frac{1}{2}+\frac{1}{16}+\frac{9}{16} \Rightarrow$$

$$\Rightarrow \left(u-\frac{1}{4}\right)^2+\left(v+\frac{3}{4}\right)^2 = \frac{1}{8} \Rightarrow$$

$$\Rightarrow \left(u-\frac{1}{4}\right)^2+\left(v+\frac{3}{4}\right)^2 = \left(\frac{\sqrt{2}}{4}\right)^2$$

9.4 Άσκηση 4

$$u(x, y) = \sin(x)\sinh(y)$$

$$u_x = \cos(x)\sinh(y) \qquad u_{xx} = -\sin(x)\sinh(y)$$

$$u_y = \sin(x)\cosh(y) \qquad u_{yy} = \sin(x)\sinh(y)$$

$$u_{xx} + u_{yy} = -\sin(x)\sinh(y) + \sin(x)\sinh(y) = 0$$

Άρα η f είναι αρμονική.

Από τις εξισώσεις Cauchy – Riemann έχουμε

$$\begin{cases} u_x = v_y \\ u_y = -v_x \end{cases} \Rightarrow \begin{cases} v_y = \cos(x)\sinh(y) \\ v_x = -\sin(x)\cosh(y) \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} v = \int \cos(x)\sinh(y)dy + h(x) \\ v_x = -\sin(x)\cosh(y) \end{cases} \Rightarrow \begin{cases} v = \cos(x)\cosh(y) + h(x) \\ -\sin(x)\cosh(y) + h'(x) = -\sin(x)\cosh(y) \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} v = \cos(x)\cosh(y) + h(x) \\ -\sin(x)\cosh(y) + h'(x) = -\sin(x)\cosh(y) \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} v = \cos(x)\cosh(y) + h(x) \\ h'(x) = 0 \end{cases} \Rightarrow \begin{cases} v = \cos(x)\cosh(y) + c_1 \\ c_1 \end{cases}, \quad c_1 \in \mathbb{R}$$

'Aρα
$$v(x,y) = \cos(x)\cosh(y) + c_1, \quad c_1 \in \mathbb{R}$$

και

$$f(z) = u(z,0) + iv(z,0) = i\cos(z) + ic_1 \Rightarrow$$

$$\Rightarrow f(z) = i\cos(z) + c, \quad c \in \mathbb{C}$$

9.5 Άσκηση 5

$$I=\oint_C\frac{e^z-z-1}{z^2(z-i)^2(z+1)},dz$$
 Θεωρούμε την $f(z)=\frac{e^z-z-1}{z^2(z-i)^2(z+1)},\quad z\in\mathbb{C}-\{-1,0,i\}.$

Έχουμε μία απαλείψιμη ανωμαλία, την $z_0=0$, έναν διπλό πόλο στο εσωτερικό της καμπύλης, τον $z_1=i$ κι έναν απλό πόλο πάνω στο σύνορο, τον $z_2=-1$, άρα:

$$\begin{split} I &= 2\pi i Res(f,i) + \pi i Res(f,-1) = 2\pi i \left[\frac{e^i(3+2i)-4i}{8(2i)} \right] + \pi i \left(\frac{1}{2ie} \right) = \\ &= \frac{\pi [e^i(3+2i)-4i]}{8} + \frac{\pi}{2e} = \frac{\pi e [e^i(3+2i)-4i]+4\pi}{8e} = \\ &= \frac{\pi [e^{1+i}(3+2i)+4(\pi-ie)]}{8e} \end{split}$$

διότι:

•
$$\lim_{z \to 0} \frac{e^z - z - 1}{z^2} = \frac{1}{2} \in \mathbb{C} - \{0\}$$

απαλείψιμη ανωμαλία

Αφού

$$\lim_{z \to 0} \frac{e^z - z - 1}{z^2} \frac{\text{DeL/Hospital}}{z} \lim_{z \to 0} \frac{e^z - 1}{2z} = \frac{\text{DeL/Hospital}}{z} \lim_{z \to 0} \frac{e^z}{2} = \frac{1}{2}$$

$$\bullet \quad Res(f, i) = \lim_{z \to i} \left[\frac{(z - i)^2 (e^z - z - 1)}{(z - i)^2 z^2 (z + 1)} \right]' =$$

$$= \lim_{z \to i} \left[\frac{(e^z - 1)z^2 (z + 1) - (e^z - z - 1)[2z(z + 1) + z^2]}{[z^2 (z + 1)]^4} \right] =$$

$$= \frac{-(e^i - 1)(1 + i) - (e^i - i - 1)[2i(1 + i) - 1]}{[-(1 + i)]^4} = \frac{(1 - e^i)(1 + i) + (e^i - 1 - i)(3 - 2i)}{16} =$$

$$= \frac{1 + i - e^i - ie^i + 3e^i - 3 - 3i - 2ie^i + 2i - 2}{16} = \frac{2e^i - 3ie^i - 4}{16} = \frac{e^i(3 + 2i) - 4i}{8(2i)}$$

$$\bullet \quad Res(f,-1) = \lim_{z \to -1} \left[\frac{(z+1)(e^z-z-1)}{(z+1)z^2(z-i)^2} \right] = \frac{e^{-1}}{(1+i)^2} = \frac{1}{2ie}$$

9.6 Άσκηση 6

$$f(z) = (z^2 - 2z)e^{\frac{1}{z+1}}, \quad z \in \mathbb{C} - \{-1\}$$

•
$$z^2 - 2z = z^2 + 2z + 1 - 4z - 4 + 3 = (z+1)^2 - 4(z+1) + 3$$

•
$$e^{\frac{1}{z+1}} = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{1}{(z+1)^n}$$

Άρα

$$f(z) = [(z+1)^2 - 4(z+1) + 3] \sum_{n=0}^{\infty} \frac{1}{n!(z+1)^n} =$$

$$= \left[(z+1)^2 - 4(z+1) + 3 \right] \left[1 + \frac{1}{z+1} + \frac{1}{2!(z+1)^2} + \frac{1}{3!(z+1)^3} + \dots \right] =$$

$$= (z+1)^2 - 4(z+1) + 3 + (z+1) - 4 + \frac{3}{z+1} + \frac{1}{2!} - \frac{4}{2!(z+1)} +$$

$$\frac{3}{2!(z+1)^2} + \frac{1}{3!(z+1)} - \frac{4}{3!(z+1)^2} + \frac{3}{3!(z+1)^3} + \dots$$

$$Res(f,-1) = 3 - \frac{4}{2!} + \frac{1}{3!} = \frac{7}{6}$$

9.7 Άσκηση 7

Laurent γύρω από το $z_0 = 4i$, 0 < |z - 4i| < 9

$$f(z) = \frac{z+i}{z^2+iz+20} = \frac{z+i}{(z-4i)(z+5i)}, \quad z \in \mathbb{C} - \{-5i, 4i\}$$

Έστω $A, B \in \mathbb{C}$ τέτοια ώστε:

$$\frac{z+i}{(z-4i)(z+5i)} = \frac{A}{z-4i} + \frac{B}{z+5i} \Rightarrow z+i = A(z+5i) + B(z-4i) \Rightarrow$$
$$\Rightarrow z+i = (A+B)z + i(5A-4B) \Rightarrow$$

$$\begin{cases} A+B=1 \\ 5A-4B=1 \end{cases} \Rightarrow \begin{cases} A+B=1 \\ 5(A+B)-9B=1 \end{cases} \Rightarrow \begin{cases} A=1-B \\ 5-9B=1 \end{cases} \Rightarrow \begin{cases} A=1-B \\ B=\frac{4}{9} \end{cases} \Rightarrow \begin{cases} A=\frac{5}{9} \\ B=\frac{4}{9} \end{cases}$$

$$f(z) = \frac{5}{9(z-4i)} + \frac{4}{9(z+5i)} = \frac{5}{9} \frac{1}{(z-4i)} + \frac{4}{9} \frac{1}{[(z-4i)+9i]} = \frac{5}{9} \frac{1}{(z-4i)} + \frac{4}{81i} \frac{1}{\left[1 + \frac{z-4i}{9i}\right]} \Rightarrow$$

$$\Rightarrow f(z) = \frac{5}{9} \frac{1}{(z-4i)} - \frac{4i}{81} \sum_{n=0}^{\infty} (-1)^n \left[\frac{z-4i}{9i} \right]^n, \quad 0 < |z-4i| < 9$$

9.8 Άσκηση 8

$$|f(z)|\leqslant C, \quad \forall z\in \mathbb{C}$$
 Έχουμε ότι : $|f^{(n)}(z)|\leqslant rac{n!M_r}{R^n}$ και
$$M_r=max\{|f(z)|:|z-z_o|=R\}$$

Αρχεί να δείξουμε ότι:
$$f'(z)=0, \quad \forall z\in\mathbb{C}$$

$$|f'(z)|\leqslant \frac{1!C}{R}\stackrel{\mathrm{R}\to +\infty}{\Longrightarrow}$$

$$\Rightarrow |f'(z)|\leqslant 0 \Rightarrow f'(z)=0$$

9.9 Άσκηση 9

$$I = \int_{-\infty}^{+\infty} \frac{dx}{x^3 - 27}$$

Λύνουμε

$$z^{3} - 27 = 0 \Rightarrow z^{3} = 27 \Rightarrow z = \sqrt[3]{|27|}e^{i\left(\frac{2\kappa\pi}{3}\right)}, \kappa = \{0, 1, 2\}$$

 Δ ηλαδή:

$$z=3 \quad \text{\'{\eta}} \quad z=3e^{i\frac{2\pi}{3}}=\tfrac{-3+3\sqrt{3}i}{2} \quad \text{\'{\eta}} \quad z=3e^{i\frac{4\pi}{3}}=-\tfrac{3+3\sqrt{3}i}{2}$$

Θέτουμε
$$f(z) = \frac{1}{z^3-27}, z \in \mathbb{C} - \left\{3, \frac{-3+3\sqrt{3}i}{2}, -\frac{3+3\sqrt{3}i}{2}\right\}$$

Άρα έχουμε τρείς πόλους πρώτης τάξης, έναν στο άνω, έναν στο κάτω ημιεπίπεδο και έναν πάνω στον πραγματικό άξονα.

$$\lim_{z \to \infty} z f(z) = \lim_{z \to \infty} \frac{z}{z^3 - 27} = \lim_{z \to \infty} \frac{z}{z^3 \left(1 - \frac{27}{z^3}\right)} = \lim_{z \to \infty} \frac{1}{z^2 \left(1 - \frac{27}{z^3}\right)} = 0$$

Επομένως

$$I = 2\pi i Res \left(f, \frac{-3 + 3\sqrt{3}i}{2} \right) + \pi i Res(f, 3) \quad (1)$$

$$Res(f,3) = \lim_{z \to 3} \frac{z - 3}{(z - 3)\left(z - \frac{-3 + 3\sqrt{3}i}{2}\right)\left(z + \frac{3 + 3\sqrt{3}i}{2}\right)} = \frac{1}{\left(3 + \frac{3 - 3\sqrt{3}i}{2}\right)\left(3 + \frac{3 + 3\sqrt{3}i}{2}\right)} = \frac{1}{\frac{1}{4}\left[9^2 + \left(3\sqrt{3}\right)^2\right]} = \frac{1}{27}$$

$$Res\left(f, \frac{-3+3\sqrt{3}i}{2}\right) = \lim_{z \to \left(\frac{-3+3\sqrt{3}i}{2}\right)} \left[\frac{z - \left(\frac{-3+3\sqrt{3}i}{2}\right)}{(z-3)\left[z - \left(\frac{-3+3\sqrt{3}i}{2}\right)\right]\left[z - \left(-\frac{3+3\sqrt{3}i}{2}\right)\right]}\right] = 0$$

$$=\frac{1}{\left(\frac{-3+3\sqrt{3}i}{2}-3\right)\left(\frac{-3+3\sqrt{3}i}{2}+\frac{3+3\sqrt{3}i}{2}\right)}=\frac{1}{3\sqrt{3}i\left(\frac{-9+3\sqrt{3}i}{2}\right)}=-\frac{2\left(9+3\sqrt{3}i\right)}{3\sqrt{3}i\left(9^2+(3\sqrt{3})^2\right)}=$$

$$= -\frac{6(3+\sqrt{3}i)}{12\sqrt{3}i \cdot 27} = -\frac{3+\sqrt{3}i}{27\sqrt{3}(2i)} = -\frac{\sqrt{3}+i}{27(2i)}$$

Άρα η (1) γίνεται:

$$I = 2\pi i \left[-\frac{\sqrt{3} + i}{27(2i)} \right] + \pi i \left(\frac{1}{27} \right) = \frac{\pi(-\sqrt{3}) - i\pi + i\pi}{27} = -\frac{\pi\sqrt{3}}{27}$$

$$\int_{-\infty}^{+\infty} \frac{dx}{x^3 - 27} = -\frac{\pi\sqrt{3}}{27}$$

Μέρος VII Εφαρμοσμένα Μαθηματικά Ιούνιος 2014

10 Θέματα Ατρέα

10.1 Άσκηση 1

$$\overline{log(e^z)} = \overline{ln(e^x) + i(y + 2\pi n)} = x - i(y + 2\pi n) = \overline{z} - 2\pi ni, n \in \mathbb{Z}$$

10.2 Άσκηση 2

$$\begin{split} D = \{z \in \mathbb{C} : |z| \leqslant 2, \quad 0 \leqslant Arg(z) \leqslant \pi/3\} \text{ fon } f(z) = (1-i)\overline{z^2} \\ z = |z|e^{iArg(z)} \Rightarrow z^2 = (|z|e^{iArg(z)})^2 = |z|^2e^{2iArg(z)} \Rightarrow \\ \Rightarrow \overline{z^2} = |z|^2e^{-i2Arg(z)} \end{split}$$

Επομένως

$$f(z) = (1 - i)\overline{z^2} = (1 - i)|z|^2 e^{-i2Arg(z)} \Rightarrow$$
$$\Rightarrow f(z) = \sqrt{2}|z|^2 e^{i(-2Arg(z) - \frac{\pi}{4})}$$

$$Arg(f(z)) = -2Arg(z) - \frac{\pi}{4}$$

$$0\leqslant -2Arg(z)\leqslant -2\pi/3 \Rightarrow -\pi/4\leqslant -2Arg(z)\leqslant -2\pi/3 -\pi/4 \Rightarrow \boxed{-\frac{11\pi}{12}\leqslant Arg(f(z))\leqslant -\frac{\pi}{4}}$$

$$|f(z)| = \sqrt{2}|z|^2 \Rightarrow \boxed{|f(z)| \leqslant 4\sqrt{2}}$$

10.3 Άσκηση 3

$$I = \oint_{C_R} \frac{z - 2i}{(2z + 1 + i)(z^2 - 3z + 2)} dz \Rightarrow$$

$$\Rightarrow I = \oint_{C_R} \frac{z - 2i}{2\left(z + \frac{1+i}{2}\right)(z - 2)(z - 1)} dz$$

Θεωρούμε την $f(z) = \frac{z-2i}{2\left(z+\frac{1+i}{2}\right)(z-2)(z-1)}, \quad z \in \mathbb{C} - \left\{1,2,-\frac{1+i}{2}\right\}$

$$I = 2\pi i Res\left(f, -\frac{1+i}{2}\right) + \frac{\pi i}{2} Res(f, 1)$$

Γενικά έχουμε ότι :

$$Res\left(f, -\frac{1+i}{2}\right) = \lim_{z \to -\frac{1+i}{2}} \frac{z - 2i}{2(z-2)(z-1)} = \frac{-\frac{1+i}{2} - 2i}{2(-\frac{1+i}{2} - 2)(-\frac{1+i}{2} - 1)}$$

$$\frac{-1 - i - 4i}{(-1 - i - 4)(-1 - i - 2)} = \frac{-(1+5i)}{(5+i)(3+i)} = \frac{-(1+5i)}{14+8i} = \frac{-(1+5i)(14-8i)}{14^2+8^2} = \frac{-54-62i}{250}$$

$$Res(f, 1) = \lim_{z \to 1} \frac{z - 2i}{(2z+1+i)(z-2)} = \frac{1-2i}{(2+1+i)(1-2)} = \frac{-(1-2i)(3-i)}{10} = \frac{-1+7i}{10}$$

$$I = 2\pi i \frac{-54 - 62i}{250} + \frac{\pi i}{2} \frac{-1 + 7i}{10} = \frac{\pi}{500} (73 - 241i)$$

10.4 Άσχηση 4

$$f(z) = \sinh(\overline{z}), z = x + yi, x, y \in \mathbb{R}$$

$$f(z) = \sinh(\overline{z}) = \frac{e^{\overline{z}} - e^{-\overline{z}}}{2} = \frac{e^{x-yi} - e^{-(x-yi)}}{2} = \frac{e^x e^{-yi} - e^{-x} e^{yi}}{2} =$$

$$= \frac{e^x (\cos(y) - i\sin(y)) - e^{-x} (\cos(y) + i\sin(y))}{2} = \frac{\cos(y)(e^x - e^{-x}) - i\sin(y)(e^x + e^{-x})}{2} =$$

$$= \underbrace{\cos(y) \sinh(x)}_{u(x,y)} - \underbrace{\sin(y) \cosh(x)}_{v(x,y)} i$$

$$u_x = \cos(y) \cosh(x)$$

$$u_y = -\sin(y) \sinh(y)$$

$$v_x = -\sin(y) \sinh(x)$$

$$v_y = -\cos(y) \cosh(x)$$

$$\begin{cases} u_x = v_y \\ u_y = -v_x \end{cases} \Rightarrow \begin{cases} \cos(y)\cosh(x) = -\cos(y)\cosh(x) \\ -\sin(y)\sinh(y) = \sin(y)\sinh(x) \end{cases} \Rightarrow \begin{cases} \cos(y)\cosh(x) = 0 \\ \sin(y)\sinh(y) = 0 \end{cases} \Rightarrow \\ \Rightarrow \begin{cases} \cos(y)\cosh(x) = -\cos(y)\cosh(x) \\ \sin(y)\sinh(y) = 0 \end{cases} \Rightarrow \begin{cases} \sin(y)\sinh(y) = -\cos(y)\cosh(x) \\ \sin(y)\sinh(y) = 0 \end{cases} \Rightarrow \begin{cases} \cos(y)\cosh(x) = -\cos(y)\cosh(x) \\ \sin(y)\sinh(y) = 0 \end{cases} \Rightarrow \begin{cases} \cos(y)\cosh(x) = -\cos(y)\cosh(x) \\ \sin(y)\sinh(y) = 0 \end{cases} \Rightarrow \begin{cases} \cos(y)\cosh(x) = -\cos(y)\cosh(x) \\ \sin(y)\sinh(y) = 0 \end{cases} \Rightarrow \begin{cases} \cos(y)\cosh(x) = -\cos(y)\cosh(x) \\ \sin(y)\sinh(y) = 0 \end{cases} \Rightarrow \begin{cases} \cos(y)\cosh(x) = -\cos(y)\cosh(x) \\ \sin(y)\sinh(y) = 0 \end{cases} \Rightarrow \begin{cases} \cos(y)\cosh(x) = -\cos(y)\cosh(x) \\ \sin(y)\sinh(y) = 0 \end{cases} \Rightarrow \begin{cases} \cos(y)\cosh(x) = -\cos(y)\cosh(x) \\ \sin(y)\sinh(y) = 0 \end{cases} \Rightarrow \begin{cases} \cos(y)\cosh(x) = -\cos(y)\cosh(x) \\ \sin(y)\sinh(y) = 0 \end{cases} \Rightarrow \begin{cases} \cos(y)\cosh(x) = -\cos(y)\cosh(x) \\ \sin(y)\sinh(y) = 0 \end{cases} \Rightarrow \begin{cases} \cos(y)\cosh(x) = -\cos(y)\cosh(x) \\ \sin(y)\sinh(y) = 0 \end{cases} \Rightarrow \begin{cases} \cos(y)\cosh(x) = -\cos(y)\cosh(x) \\ \sin(y)\sinh(y) = 0 \end{cases} \Rightarrow \begin{cases} \cos(y)\cosh(x) = -\cos(y)\cosh(x) \\ \sin(y)\sinh(x) = -\cos(y)\cosh(x) \\ \sin(y)\sinh(x) = 0 \end{cases} \Rightarrow \begin{cases} \cos(y)\cosh(x) = -\cos(y)\cosh(x) \\ \sin(y)\sinh(x) = 0 \end{cases} \Rightarrow \begin{cases} \cos(y)\cosh(x) = -\cos(y)\cosh(x) \\ \sin(y)\sinh(x) = -\cos(y)\cosh(x) \\ \sin(y)\sinh(x) = 0 \end{cases} \Rightarrow \begin{cases} \cos(y)\cosh(x) = -\cos(y)\cosh(x) \\ \sin(y)\sinh(x) = -\cos(y)\cosh(x) \\ \sin(y)\sinh(x) = -\cos(y)\cosh(x) \\ \sin(y)\sinh(x) = -\cos(y)\cosh(x) \\ \sin(y)\cosh(x) \\ \cos(y)\cosh(x) \\ \sin(y)\cosh(x) \\ \sin(y)\cosh(x) \\ \sin(y)\cosh(x) \\ \sin(y)\cosh(x) \\ \sin(y)\cosh(x) \\$$

$$\begin{cases} y = \kappa \pi + \frac{\pi}{2}, & \kappa \in \mathbb{Z} \\ \frac{e^x - e^{-x}}{2} = 0 \end{cases} \Rightarrow \begin{cases} y = \kappa \pi + \frac{\pi}{2}, & \kappa \in \mathbb{Z} \\ e^{2x} = 1 \end{cases} \Rightarrow \begin{cases} y = \kappa \pi + \frac{\pi}{2}, & \kappa \in \mathbb{Z} \\ x = 0 \end{cases}$$

Άρα η f είναι παραγωγίσιμη στα σημεία $z_{\kappa}=i\left(\kappa\pi+\frac{\pi}{2}\right), \kappa\in\mathbb{Z}$ αλλά δεν είναι αναλυτική , αφού δεν υπάρχουν σημεία που είναι παραγωγίσιμη σε αυτά αλλά και σε όλα τα σημεία σε έναν ανοικτό δίσκο γύρω τους για οσοδήποτε μικρή ακτίνα (είναι παραγωγίσιμη σε διακριτά σημεία).

10.5 Άσκηση 5

$$f(z) = \frac{\cos(\pi z)(e^{-2z} - (z+1)^2 + 4z)}{z^3(2z+1)^2}$$

- πόλος στο $z_0 = 0$ πρώτης τάξης.
- πόλος στο $z_1 = -\frac{1}{2}$ πρώτης τάξης.

$$\bullet \quad \lim_{z \to 0} \frac{e^{-2z} - (z+1)^2 + 4z}{z^2} \stackrel{(\frac{0}{0})\text{DLH}}{=} \lim_{z \to 0} \frac{-2e^{-2z} - 2(z+1) + 4}{2z} \stackrel{(\frac{0}{0})\text{DLH}}{=} \lim_{z \to 0} \frac{4e^{-2z} - 2}{2} = 1$$

$$\bullet \quad \lim_{z \to 0} \frac{\cos(\pi z)}{(2z+1)^2} = -1$$

Άρα

$$\lim_{z \to 0} z f(z) = 1 = Res(f, 0)$$

$$\bullet \quad \lim_{z \to -\frac{1}{2}} \frac{\cos(\pi z)(e^{-2z} - (z+1)^2 + 4z)(z+\frac{1}{2})}{4z^3(z+\frac{1}{2})^{\frac{2}{3}}} = (2e-6)\pi = Res(f, -\frac{1}{2})$$

•
$$\lim_{z \to 0} \frac{\cos(\pi z)}{(z + \frac{1}{2})} \stackrel{\text{DLH}}{=} \lim_{z \to 0} -\pi \sin(\pi z) = -\pi$$

•
$$\lim_{z \to -\frac{1}{2}} \frac{(e^{-2z} - (z+1)^2 + 4z)}{4z^3} = \frac{e - 1/4 - 2}{-1/2} = 6 - 2e$$

10.6 Άσκηση 6

Lauren γύρω από το $z_0=0, 1<|z|<3$

$$f(z) = \frac{z - 5i}{z^2 - 2iz + 3} = \frac{z - 5i}{(z - 3i)(z + i)} = \frac{3}{2(z + i)} - \frac{1}{2(z - 3i)}$$

$$= \frac{3/2}{z(1+\frac{i}{z})} + \frac{1/2}{3i(1-\frac{z}{3i})} = \frac{3}{2z} \sum_{n=0}^{+\infty} \left(\frac{-i}{z}\right)^n - \frac{1}{6i} \sum_{n=0}^{+\infty} \left(\frac{z}{3i}\right)^n, \quad 1 < |z| < 3$$

10.7 Άσκηση 7

Η f είναι αναλυτική στο D και σταθερή πάνω στον κύκλο |z|=r< R, $D=\{z\in\mathbb{C}:|z|< R\}.$

Η f είναι συνεχής στο σύνορο του κύκλου |z|=r. Από το θεώρημα μεγίστου η |f(z)| θα έχει μέγιστο στο ∂E , $|f(z)|\leq M$. Από το θεώρημα Liouville (αφού είναι φραγμένη και αναλυτική) θα είναι σταθερή στο E.

Όμοια η f θα έχει μέγιστο στο D-E ,πάνω στο σύνορο ∂E και άρα είναι σταθερή στο D-E.

Συνεπώς, η f είναι σταθερή στο D.

10.8 Άσκηση 8

$$I = \int_{-\infty}^{+\infty} \frac{dx}{(x-1)(x^2+4)^2}$$

Θέτουμε $f(z)=\frac{1}{(z-1)(z^2+4)^2}, z\in\mathbb{C}-\{-2i,2i,1\}$. Έχουμε τρεις πόλους, έναν πρώτης τάξης, πάνω στον πραγματικό άξονα $(z_3=1)$ και δύο δεύτερης τάξης, έναν στο άνω $(z_1=2i)$ και έναν στο κάτω ημιεπίπεδο $(z_2=-2i)$.

$$\lim_{z \to \infty} z f(z) = \lim_{z \to \infty} \frac{z}{(z-1)(z^2+4)^2} = \lim_{z \to \infty} \frac{z}{z\left(1-\frac{1}{z}\right)(z^2+4)^2} = \lim_{z \to \infty} \frac{1}{\left(1-\frac{1}{z}\right)(z^2+4)^2} = 0$$

Επομένως

$$I = 2\pi i Res(f, 2i) + \pi i Res(f, 1) \quad (1)$$

•
$$Res(f,1) = \lim_{z \to 1} \frac{z}{(z-1)(z^2+4)^2} = \lim_{z \to 1} \frac{1}{(z^2+4)^2} = \frac{1}{25} = \frac{16}{400}$$

•
$$Res(f, 2i) = \lim_{z \to 2i} \left[\frac{(z - 2i)^2}{(z - 1)(z + 2i)^2(z - 2i)^2} \right]' = \lim_{z \to 2i} \frac{-(z + 2i)^2 - 2(z - 1)(z + 2i)}{(z - 1)^2(z + 2i)^4} = \frac{-(4i)^2 + (1 - 2i)(4i)}{(1 - 2i)^2(4i)^2} = \frac{-13 - 16i}{(2i)400}$$

Άρα η (1) γίνεται:

$$I = \pi \left[\frac{-13 - 16i}{400} \right] + \pi i \left(\frac{16}{400} \right) = -\frac{13\pi}{400}$$

Άρα

$$\int_{-\infty}^{+\infty} \frac{dx}{(x-1)(x^2+4)} = -\frac{13\pi}{400}$$

Μέρος VIII Εφαρμοσμένα Μαθηματικά Φεβρουάριος 2014

11 Θέματα Ατρέα

11.1 Άσκηση 1

 $z^{6}=(-i)^{-i}=e^{-ilog(-i)}=e^{-i[ln(|-i|)+i(-\frac{\pi}{2}+2\kappa\pi)]}=e^{\pi\left(2\kappa-\frac{1}{2}\right)}\Rightarrow$ $\Rightarrow z=\sqrt[6]{|e^{\pi\left(2\kappa-\frac{1}{2}\right)}|}e^{\frac{2\lambda\pi i}{6}}=\sqrt[6]{e^{\pi\left(2\kappa-\frac{1}{2}\right)}}e^{\frac{\lambda\pi i}{3}}$ $\text{ if }\kappa\in\mathbb{Z},\lambda=0,1,2,3,4,5$ Arg

$$z = \begin{cases} \sqrt[6]{e^{\pi(2\kappa - \frac{1}{2})}} \\ \sqrt[6]{e^{\pi(2\kappa - \frac{1}{2})}} (\frac{\sqrt{3} + i}{2}) \\ \sqrt[6]{e^{\pi(2\kappa - \frac{1}{2})}} (\frac{-\sqrt{3} + i}{2}) \\ -\sqrt[6]{e^{\pi(2\kappa - \frac{1}{2})}} (\frac{-\sqrt{3} - i}{2}) \\ \sqrt[6]{e^{\pi(2\kappa - \frac{1}{2})}} (\frac{-\sqrt{3} - i}{2}) \\ \sqrt[6]{e^{\pi(2\kappa - \frac{1}{2})}} (\frac{\sqrt{3} - i}{2}) \end{cases}$$

(β) Παραμετροποίηση

$$\gamma_1(t) = z_1 + t(z_1 - z_2)$$
 , $t \in [0, 1]$

$$\gamma_2(t) = z_3 + t(z_3 - z_4)$$
 , $t \in [0, 1]$

Για να είναι παράλληλες οι $\gamma_1(t), \gamma_2(t)$ πρέπει:

$$(z_1 - z_2) = (z_3 - z_4) \Leftrightarrow \frac{z_1 - z_2}{z_3 - z_4} = 1 \in \mathbb{R} \Leftrightarrow Im\left(\frac{z_1 - z_2}{z_3 - z_4}\right) = 0$$

11.2 Άσκηση 2

Ο γεωμετρικός τόπος των σημείων z του επιπέδου, η διανυσματική ακτίνα των οποίων, σχηματίζει γωνία $-\frac{\pi}{4}$ ή $\frac{3\pi}{4}$ με τον ημιάξονα Ox. Δηλαδή η ευθεία y=x

$$f(z) = 1 - \frac{2}{z - i}, \quad z \in \mathbb{C} - \{i\}$$

Θέτουμε z = x + yi και y = -x έχουμε:

$$f(x+yi) = 1 - \frac{2}{x - i(x+1)} = 1 - \frac{2[x + i(x+1)]}{x^2 + (x+1)^2} = 1 - \frac{2x}{x^2 + (x+1)^2} - i\frac{2(x+1)}{x^2 + (x+1)^2}$$

Θέτουμε

$$\begin{cases} u(x,y) = 1 - \frac{2x}{x^2 + (x+1)^2} \\ v(x,y) = -\frac{2(x+1)}{x^2 + (x+1)^2} \end{cases} \Rightarrow \begin{cases} \frac{1-u}{2} = \frac{x}{x^2 + (x+1)^2} \\ v = -\frac{2(x+1)}{x^2 + (x+1)^2} \end{cases} (1)$$

$$(2), (1) \stackrel{\text{(:)}}{\Longrightarrow} \frac{2v}{1-u} = -\frac{2(x+1)}{x} \Rightarrow \frac{v}{u-1} = 1 + \frac{1}{x} \Rightarrow x = \frac{u-1}{v-u+1}$$

Αντικαθιστόντας την παραπάνω σχέση στη (2) έχουμε:

$$v = -\frac{2\left(\frac{u-1}{v-u+1} + 1\right)}{\left(\frac{u-1}{v-u+1}\right)^2 + \left(\frac{u-1}{v-u+1} + 1\right)^2} \Rightarrow v = -\frac{2\left(\frac{v}{v-u+1}\right)}{\frac{(u-1)^2 + v^2}{(v-u+1)^2}} \Rightarrow (u-1)^2 + v^2 = -2(v-u+1) \Rightarrow u^2 - 2u + 1 + v^2 + 2v - 2u + 4 = -2 + 4 \Rightarrow u^2 - 4u + 4 + v^2 + 2v + 1 = 2 \Rightarrow u^2 - 2u + 1 + v^2 + 2v + 1 = 2 \Rightarrow$$

Κύκλος με κέντρο το K(2,-1) και ακτίνα $r=\sqrt{2}$

Το παραπάνω ισχύει όταν $u\neq 1$. Αν u=1, $(1)\Rightarrow x=0,$ $(2)\Rightarrow v=-2,$ δηλαδή το σημείο A=(1,-2) το οποίο ανήκει στον παραπάνω κύκλο, άρα ισχύει σε κάθε περίπτωση.

11.3 Άσκηση 3

$$f(z) = \frac{2\sinh^2(z) - 4z^2}{z(z^3 - 2z^2 - 3z)} = \frac{2\sinh^2(z) - 4z^2}{z^2(z - 3)(z + 1)}, z \in \mathbb{C} - \{-1, 0, 3\}$$

1.

$$\lim_{z \to 0} f(z) = \frac{2}{3} \in \mathbb{C}$$

απαλείψιμη ανωμαλία, δηλαδή

$$Res(f,0) = 0$$

αφού

•
$$\lim_{z \to 0} \frac{2\sinh^2(z) - 4z^2}{z^2} \frac{\text{DeL'Hospital}}{z^2} \lim_{z \to 0} \frac{4\sinh(z)\cosh(z) - 8z}{2z} \frac{\text{DeL'Hospital}}{2z}$$

$$= \lim_{z \to 0} \frac{4\cosh^2(z) + 4\sinh^2(z) - 8}{2} = -2$$
• $\lim_{z \to 0} \frac{1}{(z-3)(z+1)} = -\frac{1}{3}$

2.

$$Res(f,-1) = \lim_{z \to -1} f(z) = \lim_{z \to -1} \frac{(z+1)(2\sinh^2(z) - 4z^2)}{z^2(z-3)(z+1)} = \lim_{z \to -1} \frac{2\sinh^2(z) - 4z^2}{z^2(z-3)} = \frac{2\sinh^2(-1) - 4}{(-4)}$$

πόλος πρώτης τάξης

3.

$$Res(f,3) = \lim_{z \to 3} f(z) = \lim_{z \to 3} \frac{(z-3)(2\sinh^2(z) - 4z^2)}{z^2(z-3)(z+1)} = \lim_{z \to 3} \frac{2\sinh^2(z) - 4z^2}{z^2(z+1)} = \frac{2\sinh^2(-1) - 4}{36}$$

πόλος πρώτης τάξης

11.4 Άσκηση 4

(α) Η f(z)=f(x+yi)=u(x,y)+iv(x,y) είναι απέραια (δηλαδή αναλυτιπή στο $\mathbb C$) με $u(x,y)=(x^3+y^3)\quad,\quad v(x,y)=(x^2-y^2)$

Από τις εξισώσεις Cauchy – Riemann έχουμε

$$\begin{cases} u_x = v_y \\ u_y = -v_x \end{cases} \Rightarrow \begin{cases} 3x^2 + 2y = 0 \\ 3y^2 - 2x = 0 \end{cases} \Rightarrow \begin{cases} 3\left(\frac{3y^2}{2}\right)^2 + 2y = 0 \\ x = \frac{3y^2}{2} \end{cases} \Rightarrow \begin{cases} 27y^4 + 8y = 0 \\ x = \frac{3y^2}{2} \end{cases} \Rightarrow \\ \Rightarrow \begin{cases} y(27y^3 + 8) = 0 \\ x = \frac{3y^2}{2} \end{cases} \begin{cases} y = 0 & \text{if } y = -\frac{2}{3} \\ x = \frac{3y^2}{2} \end{cases} (1)$$

$$\Gamma \text{ia } y=0, \quad (1) \Rightarrow x=0 \\ \Gamma \text{ia } y=-\frac{2}{3}, \quad (1) \Rightarrow x=\frac{2}{3}$$

Άρα η f είναι παραγωγίσιμη στα σημεία z=0 και $z=\frac{2}{3}(1-i)$.

(β) Η f δεν είναι αναλυτική , αφού δεν υπάρχουν σημεία που να είναι παραγωγίσιμη σε αυτά αλλά και σε όλα τα σημεία σε έναν ανοικτό δίσκο γύρω τους για οσοδήποτε μικρή ακτίνα.

$$I = \int_{\gamma} f(z)dz, \quad \gamma: y = 2x^2, x \in [1, 2]$$

Παραμετροποίηση:

$$z(t) = x(t) + iy(t) = t + 2it^{2}, t \in [1, 2]$$

$$I = \int_{\gamma} f(z)dz = \int_{1}^{2} f(x(t) + iy(t)) \frac{d(x(t) + iy(t))}{dt} dt =$$

$$= \int_{1}^{2} [(x^{3}(t) + y^{3}(t)) + i(x^{2}(t) - y^{2}(t))] \frac{d(x(t) + iy(t))}{dt} dt =$$

$$= \int_{1}^{2} [(t^{3} + 8t^{6}) + i(t^{2} - 4t^{4})](1 + 4it) dt =$$

$$= \int_{1}^{2} (t^{3} + 8t^{6} + it^{2} - 4it^{4} + 4it^{4} + 32it^{7} - 4t^{3} + 16t^{5})dt =$$

$$= \left[\frac{t^{4}}{4} + \frac{8t^{7}}{7} - t^{4} + \frac{8t^{6}}{3} \right]_{1}^{2} + i \left[\frac{t^{3}}{3} + 4t^{8} \right]_{1}^{2} = \frac{8453}{28} + i \frac{3067}{3}$$

11.5 Άσκηση 5

$$I = \oint_C \frac{z^2 - 1}{z} \cos\left(\frac{2}{z}\right) dz, \quad C: |z| = 3$$

Θεωρούμε την $f(z) = \frac{z^2-1}{z}\cos\left(\frac{2}{z}\right), z \in \mathbb{C}-\{0\}.$

Γενικά έχουμε ότι :

'Αρα:

$$f(z) = \left(z - \frac{1}{z}\right) \left[\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \left(\frac{2}{z}\right)^{2n}\right] =$$

$$= \left(z - \frac{1}{z}\right) \left(1 - \frac{2^2}{2!z^2} + \frac{2^4}{4!z^4} - \frac{2^6}{6!z^6} + \dots\right) = \left(z - \frac{1}{z} - \frac{2^2}{2!z} + \frac{2^4}{4!z^3} + \frac{2^4}{4!z^5} - \dots\right)$$

Συνεπώς:

$$Res(f,0) = -1 + \frac{2^2}{2!} = -3$$

Άρα:

$$I = 2\pi i Res(f, 0) = -6\pi i$$

11.6 Άσκηση 6

$$A, B > 0$$
 $|f(z)| \leq A|z| + B, \forall z \in \mathbb{C}$

Αν f πολυώνυμο το πολύ 1ου βαθμού $f(z)=az+b,\quad a,b\in\mathbb{C}$ τότε $f'(z)=a,\quad f''(z)=0$

Έχουμε ότι : $|f^{(n)}(z)| \leqslant \frac{n!M_r}{R^n}$ και

$$M_r = \max\{|f(z)| : \underbrace{|z - z_o| = R}_{z = z_o + Re^{i\theta}}\}$$

Αρκεί να δείξουμε ότι: $f''(z) = 0, \forall z \in \mathbb{C}$

$$|f(z)| \leqslant A|z| + B = A|z_o + Re^{i\theta}| + B \leqslant A|z_o| + AR|e^{i\theta}| + B = AR + A|z_o| + B \Rightarrow$$

$$\Rightarrow |f''(z)| \leqslant \frac{2!(AR + A|z_o| + B)}{R^2} \stackrel{R \to +\infty}{\Rightarrow}$$
$$\Rightarrow |f''(z)| \leqslant 0 \Rightarrow f''(z) = 0$$

11.7 Άσκηση 7

$$I = \int_0^{2\pi} \frac{\cos(2\theta)}{\sqrt{5} + \sin(\theta)} d\theta = \int_0^{2\pi} \frac{2\cos^2(\theta) - 1}{\sqrt{5} + \sin(\theta)} d\theta$$

Θέτουμε $z=e^{i\theta}\Rightarrow dz=ie^{i\theta}d\theta\Rightarrow \frac{dz}{iz}=d\theta$ και ολοκληρώνουμε πάνω στην καμπύλη |z|=1

$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{1}{2} \left(z + \frac{1}{z} \right)$$

$$\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i} = \frac{1}{2i} \left(z - \frac{1}{z} \right)$$

Άρα

$$I = \oint_{|z|=1} \frac{\frac{1}{2} \left(z + \frac{1}{z}\right)^2 - 1}{\sqrt{5} + \frac{1}{2i} \left(z - \frac{1}{z}\right)} \frac{dz}{iz} = \oint_{|z|=1} \frac{\left(z + \frac{1}{z}\right)^2 - 2}{2\sqrt{5}iz + z\left(z - \frac{1}{z}\right)} dz = \oint_{|z|=1} \frac{z^2 + \frac{1}{z^2}}{2\sqrt{5}iz + z^2 - 1} dz = \oint_{|z|=1} \frac{z^4 + 1}{z^2(z^2 + 2\sqrt{5}iz - 1)} dz$$

Λύνουμε $z^2(z^2 + 2\sqrt{5}iz - 1) = 0 \Rightarrow z = 0$ ή

$$z^2 + 2\sqrt{5}iz - 1 = 0$$

$$\Delta = -20 + 4 = -16$$
 $z_{1,2} = \frac{-2\sqrt{5}i \pm 4i}{2} \Rightarrow \begin{cases} z_1 = (2 - \sqrt{5})i \\ z_2 = (-2 - \sqrt{5})i \end{cases}$

Άρα

$$I = \oint_{|z|=1} \frac{z^4 + 1}{z^2(z - (2 - \sqrt{5})i)(z + (2 + \sqrt{5})i)} dz$$

Θέτουμε
$$f(z) = \frac{z^4+1}{z^2(z-(2-\sqrt{5})i)(z+(2+\sqrt{5})i)}, \quad z \in \mathbb{C} - \{0, (2-\sqrt{5})i, (-2-\sqrt{5})i\}$$

Η f έχει τρείς πόλους.

- \bullet $z_0=0$,διπλός πόλος
- $z_1 = (2 \sqrt{5})i$,απλός πόλος
- $z_2=(-2-\sqrt{5})i$,απλός πόλος (δεν ανήκει στον κύκλο |z|=1)

'Aρα
$$I = 2\pi i \left[Res(f, z_0) + Res(f, z_1)\right]$$
 (1)

• $Res(f, z_0) = \lim_{z \to 0} \left[\frac{\cancel{z}(z^4 + 1)}{\cancel{z}(z - z_1)(z - z_2)}\right]' =$

$$= \lim_{z \to 0} \left[\frac{4z^3(z - z_1)(z - z_2) - (z^4 + 1)((z - z_2) + (z - z_1))}{(z - z_1)^2(z - z_2)^2}\right] = \frac{z_1 + z_2}{z_1^2 z_2^2} =$$

$$= \frac{-2\sqrt{5}i}{(2 - \sqrt{5})^2(2 + \sqrt{5})^2} = -2\sqrt{5}i = \frac{4\sqrt{5}}{2i}$$

• $Res(f, z_1) = \lim_{z \to z_1} \left[\frac{\cancel{z}(z_1)}(z^4 + 1)}{z^2(\cancel{z}(z_2))(z - z_2)}\right] = \frac{z_1^4 + 1}{z_1^2(z_1 - z_2)} =$

$$= \frac{(2 - \sqrt{5})^4 + 1}{(2 - \sqrt{5})^2(-4i)} = -\frac{(2 - \sqrt{5})^2}{2(2i)} - \frac{1}{2(2 - \sqrt{5})^2(2i)} =$$

$$= -\frac{(2 - \sqrt{5})^2}{2(2i)} - \frac{(2 + \sqrt{5})^2}{2(4 - 5)^2(2i)} = -\frac{(2 - \sqrt{5})^2 + (2 + \sqrt{5})^2}{2(2i)} =$$

$$= -\frac{4 - 2\sqrt{5} + 5 + 4 + 2\sqrt{5} + 5}{2(2i)} = -\frac{9}{2i}$$

Έτσι η (1) γίνεται:

$$I = 2\pi i \left[\frac{4\sqrt{5}}{2i} - \frac{9}{2i} \right] = (4\sqrt{5} - 9)\pi$$

Άρα

$$I = \int_0^{2\pi} \frac{\cos(2\theta)}{\sqrt{5} + \sin(\theta)} d\theta = (4\sqrt{5} - 9)\pi$$

Μέρος ΙΧ Εφαρμοσμένα Μαθηματικά Σεπτέμβριος 2013

12 Θέματα Ατρέα

12.1 Άσκηση 1

(a)
$$\gamma : \left\{ z = x + yi, \quad Im \overline{\left(\frac{z}{(1-i)^5}\right)} = 2 \right\}$$

$$\overline{\left(\frac{z}{(1-i)^5}\right)} = \frac{\overline{z}}{(1+i)^5} = \frac{\overline{z}}{(1+i)^2(1+i)^2(1+i)} = \frac{x-yi}{(2i)^2(1+i)} =$$

$$= \frac{(x-yi)(1-i)}{(-8)} = \frac{(y-x) + (x+y)i}{8}$$

Άρα

$$Im\overline{\left(\frac{z}{(1-i)^5}\right)} = 2 \Rightarrow \frac{x+y}{8} = 2 \Rightarrow y = -x+16$$

$$w = -\frac{32}{z} \Rightarrow w = -\frac{32\overline{z}}{|z|^2} \Rightarrow w = -\frac{32x}{x^2+y^2} + i\frac{32y}{x^2+y^2}$$

Θέτουμε w=u(x,y)+iv(x,y), άρα $u(x,y)=-\frac{32x}{x^2+y^2}$ και $v(x,y)=\frac{32y}{x^2+y^2}$

$$\begin{cases} u = -\frac{32x}{x^2 + y^2} & u = -\frac{32x}{x^2 + (x - 16)^2} \\ v = \frac{32y}{x^2 + y^2} & v = -\frac{32(x - 16)}{x^2 + (x - 16)^2} \end{cases} (1)$$

$$(1), (2) \Rightarrow \frac{v}{u} = \frac{x - 16}{x} \Rightarrow \frac{v}{u} = 1 - \frac{16}{x} \Rightarrow 1 - \frac{v}{u} = \frac{16}{x} \Rightarrow x = \frac{16u}{u - v}$$

Άρα

$$(1) \Rightarrow u = \frac{\left(-\frac{32 \cdot 16u}{u - v}\right)}{\left(\frac{16u}{u - v}\right)^2 + \left(\frac{16u}{u - v} - 16\right)^2} \Rightarrow u = \frac{\left(-\frac{32 \cdot 16u}{u - v}\right)}{\frac{(16u)^2 + (16u - 16(u - v))^2}{(u - v)^2}} \Rightarrow$$

$$\Rightarrow u = \frac{(u-v)(-32 \cdot 16u)}{(16u)^2 + (16v)^2} \Rightarrow 16^2 u(u^2 + v^2) = 2 \cdot 16^2 u(v-u) \Rightarrow u^2 + v^2 = 2(v-u) \Rightarrow u^2 +$$

$$\Rightarrow u^2 + 2u + v^2 - 2v + 2 = 2 \Rightarrow (u+1)^2 + (v-1)^2 = \sqrt{2}^2$$

Κύκλος με κέντρο το K(-1,1) και ακτίνα $r=\sqrt{2}$

Το παραπάνω ισχύει όταν $u\neq 0$. Αν $u=0, \quad (1)\Rightarrow x=0, \quad (2)\Rightarrow v=2,$ δηλαδή το σημείο A=(0,2) το οποίο ανήκει στον παραπάνω κύκλο, άρα ισχύει σε κάθε περίπτωση.

(β) Αφού $a \in \mathbb{C} - \{0\}$ έχουμε:

$$a^{-N} = (|a|e^{i\theta})^{-N} = |a^{-N}|e^{i(-N\theta)}$$

Θέτοντας
$$s=a^{-N},\quad s\in\mathbb{C}-\{0\}$$
 έχουμε $|s|=|a^{-N}|=|a|^{-N}$ και $Arq(s)=-N\theta$

Άρα:

$$\sqrt[N]{a^{-N}} = \sqrt[N]{s} = \sqrt[N]{|s|} e^{i\left(\frac{Arg(s) + 2\kappa\pi}{N}\right)} = \sqrt[N]{|a|^{-N}} e^{i\left(\frac{-N\theta + 2\kappa\pi}{N}\right)}, \quad \kappa = 0, 1, 2, ..., N-1$$

Άρα:

$$\sqrt[N]{a^{-N}} = |a|^{-1} e^{-i\theta} e^{i\left(\frac{2\kappa\pi}{N}\right)} = \left(|a|e^{i\theta}\right)^{-1} e^{i\left(\frac{2\kappa\pi}{N}\right)} = a^{-1} e^{\frac{2\kappa\pi i}{N}}, \quad \kappa = 0, 1, 2, ..., N-1$$

12.2 Άσκηση 2

(α) Θέτουμε
$$f(x+yi)=u(x,y)+iv(x,y)$$
 , άρα $\overline{f(x+yi)}=u(x,y)-iv(x,y)$

Από τις εξισώσεις Cauchy-Riemann για την f έχουμε:

$$\begin{cases} u_x = v_y & (1) \\ u_y = -v_x & (2) \end{cases}$$

Από τις εξισώσεις Cauchy-Riemann για την \overline{f} έχουμε:

$$\begin{cases} u_x = -v_y & (3) \\ u_y = v_x & (4) \end{cases}$$

$$(1), (3) \stackrel{(+)}{\Longrightarrow} 2u_x = 0 \Rightarrow u_x = 0 = v_y$$

$$(2), (4) \stackrel{(+)}{\Longrightarrow} 2u_y = 0 \Rightarrow u_y = 0 = v_x$$

'Aρα
$$f'(z) = f_x = u_x + iv_x = 0 \Rightarrow f(z) = c, \quad c \in \mathbb{C}$$

$$(\beta)$$

$$P(z) = e^{Az+B}, \quad A, B \in \mathbb{C}$$

$$P'(z) = Ae^{Az+B}$$

$$0 < Im(B) < 2\pi \quad (5)$$

Το σημείο z=-i βρίσκεται εντός της καμπύλης $\gamma:|z-1|=3$ Επομένως, από τον ολοκληρωτικό τύπο του Cauchy για παραγώγους έχουμε:

$$P(-i) = \frac{1}{2\pi i} \int_{\gamma} \frac{P(z)}{z+i} = \frac{2\pi^2 i}{2\pi i} = \pi$$

$$P'(-i) = \frac{1}{2\pi i} \int_{\gamma} \frac{P(z)}{(z+i)^2} = \frac{2\pi^3 i}{2\pi i} = \pi^2$$

$$\begin{cases} e^{-Ai+B} = \pi \\ Ae^{-Ai+B} = \pi^2 \end{cases} \Rightarrow \begin{cases} e^{-Ai+B} = \pi \\ A = \pi \end{cases} \Rightarrow \begin{cases} e^{-i\pi+B} = \pi \\ A = \pi \end{cases} \Rightarrow \begin{cases} e^{B} = -\pi \\ A = \pi \end{cases} \Rightarrow \begin{cases} e^{B} = -\pi \\ A = \pi \end{cases} \Rightarrow \begin{cases} e^{Ai+B} = \pi \\ A = \pi \end{cases} \Rightarrow \begin{cases} e^{Ai+B$$

$$\Rightarrow \begin{cases} B = \log(-\pi) \\ A = \pi \end{cases} \Rightarrow \begin{cases} B = \ln|-\pi| + i(\pi + 2\kappa\pi), \kappa \in \mathbb{Z} & \xrightarrow{(5)} \begin{cases} A = \pi \\ B = \ln(\pi) + i\pi \end{cases} \end{cases}$$

$$(\gamma)$$

$$I = \int_{c} |P(z)| dz = \int_{c} |e^{\pi z + \ln(\pi) + i\pi}| dz = \pi \int_{c} |e^{\pi Re(z) + i\pi(Im(z) + 1)}| dz = \pi \int_{c} e^{\pi Re(z)} dz$$

Παραμετροποίση ευθυγράμμου τμήματος c:

$$\gamma(t) = (1-i) + t[(2+4i) - (1-i)] = (1+t) + i(5t-1), \quad t \in [0,1]$$
$$\gamma'(t) = 1 + 5i$$

Aν $g(z) = e^{\pi Re(z)}, z \in \mathbb{C}$ τότε:

$$I = \int_{c} g(z)dz = \int_{c} g(\gamma(t))\gamma'(t)dt = \int_{0}^{1} \pi e^{\pi(t+1)} (1+5i)dt = (1+5i) \left[e^{\pi(t+1)}\right]_{0}^{1} \Rightarrow$$

$$\Rightarrow I = (1+5i)(e^{2\pi} - e^{\pi})$$

12.3 Άσκηση 3

(α) Έστω ότι η f δεν έχει ρίζα στο εσωτερικό του $D, \quad f(z) \neq 0, \forall z \in D.$

Αφού η f είναι αναλυτική σε όλο το D, άρα είναι και συνεχής στο σύνορο ∂D και $|f(z)| \neq 0$, θα ισχύει το Θεώρημα Ελαχίστου.

Επομένως η |f(z)| παίρνει ελάχιστο πάνω στο σύνορο ∂D .

Όμως $|f(z_0)|=2<3$ το οποίο είναι ΑΤΟΠΟ αφού $|f(z)|\geq 3, \forall z\in\partial D.$

Άρα $|f(z)|=0 \Rightarrow f(z)=0$ για ένα τουλάχιστον z στο εσωτερικό του D

(β)

$$f(z) = (2z - 1)\cos\left(\frac{1}{z+1}\right), z \in \mathbb{C} - \{-1\}$$

Γενικά έχουμε ότι:

•
$$(2z-1) = 2(z+1) - 3$$

•
$$\cos\left(\frac{1}{z+1}\right) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \left(\frac{1}{z+1}\right)^{2n}$$

Άρα:

$$f(z) = [2(z+1) - 3] \left[\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \left(\frac{1}{z+1} \right)^{2n} \right] =$$

$$= [2(z+1) - 3] \left(1 - \frac{1}{2!(z+1)^2} + \frac{1}{4!(z+1)^4} - \frac{1}{6!(z+1)^6} + \dots \right) =$$

$$= 2(z+1) - \frac{2}{2!(z+1)} + \frac{2}{4!(z+1)^3} - \frac{2}{6!(z+1)^5} + \dots - 3 + \frac{3}{2!(z+1)^2} - \frac{3}{4!(z+1)^4} + \frac{3}{6!(z+1)^6} + \dots$$

Συνεπώς:

$$Res(f, -1) = -\frac{2}{2!} = -1$$

12.4 Άσκηση 4

$$I = \oint_{\gamma} \frac{e^z(\cos(z) - 1)}{\sin^2(z)(3z + i)} dz$$

Λύνουμε

$$\sin^2(z)(3z+i) = 0 \Rightarrow \sin(z) = 0 \Rightarrow$$

$$\begin{cases} z = 2\kappa\pi \\ z = 2\kappa\pi + \pi \end{cases}, \kappa \in \mathbb{Z} \quad \Rightarrow z_1 = 0, \quad z_1 \in \gamma$$

ή

$$3z + i = 0 \Rightarrow z_2 = -\frac{i}{3}, \quad z_2 \in \gamma$$

Θέτουμε

$$f(z) = \frac{e^z(\cos(z) - 1)}{\sin^2(z)(3z + i)}, \quad z \in \mathbb{C} - \left\{0, -\frac{i}{3}\right\}$$

1.

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \frac{e^z(\cos(z) - 1)}{\sin^2(z)(3z + i)} = \lim_{z \to 0} \frac{e^z\left(\frac{\cos(z) - 1}{z^2}\right)}{\left(\frac{\sin(z)}{z}\right)^2(3z + i)} = -\frac{1}{2i} = \frac{i}{2} \in \mathbb{C}$$

απαλείψιμη ανωμαλία

αφού

$$\bullet \quad \lim_{z \to 0} = \frac{\cos(z) - 1}{z^2} \xrightarrow{\text{DeL'Hospital}} \lim_{z \to 0} - \frac{\sin(z)}{2z} \xrightarrow{\text{DeL'Hospital}} \lim_{z \to 0} - \frac{\cos(z)}{2} = -\frac{1}{2}$$

•
$$\lim_{z \to 0} \left(\frac{\sin(z)}{z} \right)^2 = \left(\lim_{z \to 0} \frac{\sin(z)}{z} \right)^2 = 1$$

διότι

•
$$\lim_{z \to 0} \frac{\sin(z)}{z} \xrightarrow{\text{DeL'Hospital}} \lim_{z \to 0} \frac{\cos(z)}{1} = 1$$

2.

$$Res\left(f, -\frac{i}{3}\right) = \lim_{z \to -\frac{i}{3}} \left(z + \frac{i}{3}\right) f(z) = \lim_{z \to -\frac{i}{3}} \frac{e^{z}(\cos(z) - 1) \left(z + \frac{i}{3}\right)}{3\sin^{2}(z) \left(z + \frac{i}{3}\right)} =$$

$$= \lim_{z \to -\frac{i}{3}} \frac{e^{z}(\cos(z) - 1)}{3\sin^{2}(z)} = \frac{e^{-\frac{i}{3}} \left(\cos\left(\frac{i}{3}\right) - 1\right)}{3\sin^{2}\left(\frac{i}{3}\right)}$$

πόλος πρώτης τάξης

Άρα:

$$I = 2\pi i Res \left(f, -\frac{i}{3} \right) = \frac{2\pi i e^{-\frac{i}{3}} \left(\cos \left(\frac{i}{3} \right) - 1 \right)}{3 \sin^2 \left(\frac{i}{3} \right)}$$

(
$$\beta$$
)
$$I = \int_{-\infty}^{+\infty} \frac{dx}{(x+3)(x^2+9)^2}$$

Λύνουμε

$$(z+3)(z^2+9)^2=0 \Rightarrow \\ z+3=0 \Rightarrow z=-3 \quad \text{h} \\ z^2+9=0 \Rightarrow (z+3i)(z-3i)=0 \Rightarrow z=3i \quad \text{h} \quad z=-3i \\ \Theta \text{étoure } f(z)=\frac{1}{(z+3)(z^2+9)^2}, z \in \mathbb{C}-\{-3i,3i,-3\}$$

Άρα έχουμε δύο πόλους δεύτερης τάξης, έναν στο άνω και έναν στο κάτω ημιεπίπεδο και έναν πόλο πρώτης τάξης πάνω στον πραγματικό άξονα.

$$\lim_{z \to \infty} z f(z) = \lim_{z \to \infty} \frac{z}{(z+3)(z^2+9)^2} = \lim_{z \to \infty} \frac{z}{z\left(1+\frac{3}{z}\right)(z^2+9)^2} = \lim_{z \to \infty} \frac{1}{\left(1+\frac{3}{z}\right)(z^2+9)^2} = 0$$

Επομένως

$$I = 2\pi i Res(f, 3i) + \pi i Res(f, -3)$$
 (1)

$$Res(f, -3) = \lim_{z \to -3} \frac{z+3}{(z+3)(z^2+9)^2} = \lim_{z \to -3} \frac{1}{(z^2+9)^2} = \frac{1}{324}$$

$$Res(f,3i) = \lim_{z \to 3i} \left[\frac{(z-3i)^2}{(z+3)(z+3i)^2(z-3i)^2} \right]' = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3)(z+3i)}{(z+3)^2(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3)(z+3i)}{(z+3)^2(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3)(z+3i)}{(z+3)^2(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3)(z+3i)}{(z+3)^2(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3)(z+3i)}{(z+3)^2(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3)(z+3i)}{(z+3)^2(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3)(z+3i)}{(z+3)^2(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3)(z+3i)}{(z+3)^2(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3)(z+3i)}{(z+3)^2(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3)(z+3i)}{(z+3)^2(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3i)(z+3i)}{(z+3)^2(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3i)(z+3i)}{(z+3)^2(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3i)(z+3i)}{(z+3)^2(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3i)(z+3i)}{(z+3)^2(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3i)(z+3i)}{(z+3)^2(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3i)(z+3i)}{(z+3)^2(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3i)(z+3i)}{(z+3)^2(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3i)(z+3i)}{(z+3)^2(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3i)(z+3i)}{(z+3)^2(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3i)(z+3i)}{(z+3)^2(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3i)(z+3i)}{(z+3)^2(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3i)(z+3i)}{(z+3)^2(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3i)(z+3i)}{(z+3)^2(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3i)(z+3i)}{(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3i)(z+3i)}{(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3i)(z+3i)}{(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3i)(z+3i)}{(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3i)(z+3i)}{(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3i)(z+3i)}{(z+3i)^4} \right] = \lim_{z \to 3i} \left[-\frac{(z+3i)^2 + 2(z+3i)(z+3i)}{(z+3i)^4} \right]$$

$$= -\frac{(6i)^2 + 2(3+3i)(6i)}{(3+3i)^2(6i)^4} = -\frac{36(-1+i-1)}{6^49(2i)} = \frac{2-i}{36\cdot 9(2i)} = \frac{2-i}{324(2i)}$$

Άρα η (1) γίνεται:

$$I = 2\pi i \left[\frac{2-i}{324(2i)} \right] + \pi i \left[\frac{1}{324} \right] = \frac{2\pi - \pi i}{324} + \frac{\pi i}{324} = \frac{\pi}{162}$$

Άρα

$$\int_{-\infty}^{+\infty} \frac{dx}{(x+3)(x^2+9)^2} = \frac{\pi}{162}$$

Μέρος Χ Εφαρμοσμένα Μαθηματικά Φεβρουάριος 2013

13 Θέματα Ατρέα

13.1 Άσκηση 1

$$\begin{split} isin(-iz) + cosh(z) &= -i \Leftrightarrow i \left(\frac{e^z - e^{-z}}{2i} \right) + cosh(z) = -i \Leftrightarrow \frac{e^z - e^{-z} + e^z + e^{-z}}{2} = -i \Leftrightarrow \\ \Leftrightarrow e^z &= -i \Leftrightarrow z = \log(-i) \Leftrightarrow z = \ln(-i) + i \left(\frac{\pi}{2} + 2\kappa\pi \right) \Leftrightarrow z = i \left(2\kappa\pi - \frac{\pi}{2} \right), \quad \kappa \in \mathbb{Z} \end{split}$$

13.2 Άσκηση 2

 α)

$$f(z) = |z| + \overline{z(i - \overline{z})} = z\overline{z} + \overline{z}(-i - z) = z\overline{z} - i\overline{z} - z\overline{z} \Leftrightarrow f(z) = -i\overline{z}$$

$$w = -i\overline{z} \Leftrightarrow -\frac{w}{i} = \overline{z} \Leftrightarrow iw = \overline{z} \Leftrightarrow z = -i\overline{w} \Leftrightarrow f^{-1}(w) = -i\overline{w} \Leftrightarrow f^{-1}(z) = -i\overline{z}$$

$$\beta)$$

$$E = \{z = x + yi : x \in [0, 1], 0 \leqslant y\}$$

$$f(z) = -i(x - yi) \Leftrightarrow f(z) = -ix - y = \underbrace{(-y)}_{u} + i\underbrace{(-x)}_{v}$$

$$0 \leqslant x \leqslant 1 \Rightarrow -1 \leqslant -x \leqslant 0 \Rightarrow -1 \leqslant v \leqslant 0$$

$$y \geqslant 0 \Rightarrow -y \leqslant 0 \Rightarrow u \leqslant 0$$

$$E' = \{f(z) = u + vi : v \in [-1, 0], y \leqslant 0\}$$

13.3 Άσκηση 3

$$f(z) = \frac{|z|}{z} = \frac{|z|\overline{z}}{z\overline{z}} = \frac{\overline{z}|z|}{|z|^2} = \frac{\overline{z}}{|z|} \Rightarrow [z = x + yi]$$

$$\Rightarrow f(x+yi) = \underbrace{\frac{x}{\sqrt{x^2 + y^2}}}_{u(x,y)} + i \underbrace{\frac{-y}{\sqrt{x^2 + y^2}}}_{v(x,y)}$$

$$u_x = \frac{\sqrt{x^2 + y^2} - \frac{x^2}{\sqrt{x^2 + y^2}}}{x^2 + y^2} = \frac{y^2}{(x^2 + y^2)^{3/2}}$$

$$u_y = \frac{-\frac{xy}{\sqrt{x^2 + y^2}}}{x^2 + y^2} = \frac{-xy}{(x^2 + y^2)^{3/2}}$$

$$v_x = \frac{-x^2}{(x^2 + y^2)^{3/2}}$$

$$v_y = \frac{xy}{(x^2 + y^2)^{3/2}}$$

$$\begin{cases} u_x = v_y \\ u_y = -v_x \end{cases} \Rightarrow \Rightarrow \begin{cases} y^2 = xy \\ x^2 - xy \end{cases} \Rightarrow x^2 + y^2 = 0 \Rightarrow x = y = 0$$

Άρα η f δεν είναι παραγωγίσιμη αφού δεν ισχύουν πουθενά οι Cauchy-Riemann (ούτε στο μηδέν αφού δεν ορίζεται).

Έχουμε πως :

$$\gamma(t) = e^{it}, t \in [0, 2\pi)$$
$$\gamma'(t) = ie^{it}$$
$$|\gamma(t)| = 1$$

$$I = \oint_{C_R} f(z)dz = \int_0^{2\pi} \frac{|\gamma(t)|}{\gamma(t)} \gamma'(t)dt = \int_0^{2\pi} i \frac{e^{it}}{e^{it}} = 2\pi i$$

13.4 Άσκηση 4

$$I = \oint_{C_R} \frac{dz}{1 - z^3}$$

$$|z - (5 + i)| = \sqrt{2}$$

$$1 - z^3 = 0 \Leftrightarrow z = \sqrt[3]{|1|} e^{i\frac{2\kappa\pi}{3}}, \kappa = 0, 1, 2$$

$$z_0 = 1z_1 = \frac{-1 + i\sqrt{3}}{2} z_2 = \frac{-1 - i\sqrt{3}}{2}$$

$$|z_0 - 5 - i| = |-4 - i| = \sqrt{17} > \sqrt{16} = 4 > 2$$

$$|z_1 - 5 - i| = \left| \frac{-11}{2} + i(\frac{\sqrt{3}}{2} - 1) \right| = \sqrt{\frac{121}{4} + \left(\frac{7}{4} - \sqrt{3}\right)} = \sqrt{32 - \sqrt{3}} > \sqrt{25} > 2$$

$$|z_2 - 5 - i| = \left| \frac{-11}{2} - i(\frac{\sqrt{3}}{2} - 1) \right| = \sqrt{\frac{121}{4} + \left(\frac{7}{4} - \sqrt{3}\right)} = \sqrt{32 - \sqrt{3}} > \sqrt{25} > 2$$

Άρα I=0 αφού τα z_0,z_1,z_2 δεν ανήκουν στο εσωτερικό της γ

13.5 Άσκηση 5

Αρχεί νδο
$$h^{(3)}(z) = 0 \Rightarrow h''(z) = a \Rightarrow h'(z) = az + b \Longrightarrow h(z) = \frac{az^2}{2} + bz + d$$
, $a, b, d \in \mathbb{C}$ Έχουμε ότι : $|h^{(n)}(z)| \leqslant \frac{3!M_r}{R^3}$ και
$$M_r = \max\{|h(z)| : \underbrace{|z-z_o| = R}_{z=z_o+Re^{i\theta}}\}$$

$$|h(z)| \leqslant C|z|^2 = C|z_o+Re^{i\theta}|^2 \leqslant$$

$$\leqslant C(|z_o|+R|e^{i\theta}|)^2C = C|z_o|^2 + 2CR|z_o|+CR^2 \Rightarrow$$

$$\Rightarrow |h^{(3)}(z)| \leqslant \frac{3!(C|z_o|^2 + 2CR|z_o| + CR^2 + B|z_o|)}{R^3} \xrightarrow{R\to\infty}$$

13.6 Άσκηση 6

 α)

$$f(z) = \frac{\cos^2\left(\frac{\pi z}{4}\right)}{4e^{z-2} - z^2}$$

$$Res(f, 2) = ?$$

 $\Rightarrow |h^{(3)}(z)| \le 0 \Rightarrow h^{(3)}(z) = 0$

•
$$\lim_{z \to 2} \frac{\cos^2\left(\frac{\pi z}{4}\right)}{4e^{z-2} - z^2} \stackrel{\left(\frac{0}{0}\right)\text{DLH}}{=} \lim_{z \to 2} \frac{1 + \cos\left(2\frac{\pi z}{4}\right)}{2(4e^{z-2} - z^2)} \stackrel{\left(\frac{0}{0}\right)\text{DLH}}{=} \lim_{z \to 2} \frac{-\sin\left(\frac{\pi z}{4}\right)\left(\frac{\pi}{2}\right)}{8e^{z-2} - 4z} = \lim_{z \to 2} \frac{-\cos\frac{(\pi z)}{2}\left(\frac{\pi}{2}\right)^2}{8e^{z-2} - 4} = \frac{\pi^2}{16} \in \mathbb{C}$$

Άρα $\boxed{Res(f,2)=0}$ απαλείψιμη ανωμαλία. β)

$$g(z) = (z-1)\cos\left(\frac{1}{z+2}\right) = [(z+2)-3]\cos\left(\frac{1}{z+2}\right) \quad Res(g,-2) = ?$$

$$g(z) = [(z+2)-3] \left[1 - \frac{1}{2!(z+2)^2} + \frac{1}{4!(z+2)^4} + \ldots \right] \Rightarrow g(z) = (z+2) - \underbrace{\frac{1}{2!(z+2)}}_{Res(g,-2)} + \underbrace{\frac{1}{4!(z+2)^3}}_{+} + \ldots$$

'Αρα
$$Res(g,-2) = -\frac{1}{2}$$

13.7 Άσκηση 7

$$I = \int_{-\infty}^{+\infty} \frac{dx}{(x-1)(x^2+1)^2}$$

Λύνουμε

$$(z-1)(z^2+1)^2 = 0 \Rightarrow$$

$$\begin{array}{lll} z-1=0\Rightarrow z=1 & \not \eta \\ (z^2+1)^2=0\Rightarrow (z+i)^2(z-i)^2=0\Rightarrow z=i & \not \eta & z=-i \end{array}$$

Θέτουμε $f(z)=\frac{1}{(z-1)(z^2+1)^2}, z\in\mathbb{C}-\{-i,i,1\}$ Άρα έχουμε δύο πόλους δεύτερης τάξης, έναν στο άνω, έναν στο κάτω ημιεπίπεδο και έναν πόλο πρώτης τάξης πάνω στον πραγματικό άξονα.

$$\lim_{z \to \infty} z f(z) = \lim_{z \to \infty} \frac{z}{(z-1)(z^2+1)^2} = \lim_{z \to \infty} \frac{z}{z\left(1-\frac{1}{z}\right)(z^2+1)^2} = \lim_{z \to \infty} \frac{1}{\left(1-\frac{1}{z}\right)(z^2+1)^2} = 0$$

Επομένως

$$I = 2\pi i Res(f, i) + \pi i Res(f, 1) \quad (1)$$

$$Res(f,1) = \lim_{z \to 1} \frac{z-1}{(z-1)(z^2+1)^2} = \lim_{z \to 1} \frac{1}{(z^2+1)^2} = \frac{1}{4}$$

$$\begin{split} Res(f,i) &= \lim_{z \to i} \left[\frac{(z-i)^2}{(z-1)(z+i)^2(z-i)^2} \right]' = \lim_{z \to i} \left[-\frac{(z+i)^2 + 2(z-1)(z+i)}{(z-1)^2(z+i)^4} \right] = \\ &= -\frac{(2i)^2 + 2(-1+i)(2i)}{(-1+i)^2(2i)^4} = \frac{4(-1-i-1)}{16(2i)} = -\frac{2+i}{4(2i)} \end{split}$$

Άρα η (1) γίνεται:

$$I = 2\pi i \left[-\frac{2+i}{4(2i)} \right] + \pi i \left(\frac{1}{4} \right) = \frac{-2\pi - \pi i}{4} + \frac{\pi i}{4} = -\frac{\pi}{2}$$

Άρα

$$\int_{-\infty}^{+\infty} \frac{dx}{(x-1)(x^2+1)^2} = -\frac{\pi}{2}$$

13.8 Άσκηση 8

$$u(x,y) = x^{2} + 2y - y^{2} \quad v(0,0) = 0$$

$$u_{x} = 2x$$

$$u_{y} = 2 - 2y$$

$$u_{xx} = 2$$

$$u_{yy} = -2$$

$$u_{xx} + u_{yy} = 0$$

$$\begin{cases} u_x = v_y \\ u_y = -v_x \end{cases} \Rightarrow \begin{cases} v_y = 2x \\ v_x = 2y - 2 \end{cases} \Rightarrow \begin{cases} v_y = 2x \\ v = x(2y - 2) + h(y) \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} 2x + h'(y) = 2x \\ v = x(2y - 2) + h(y) \end{cases} \Rightarrow \begin{cases} h(y) = c \\ v = 2x(y - 1) + c \end{cases}$$

$$v(0,0) = 0 \Rightarrow c = 0, v(x,y) = 2x(y - 1)$$

$$f(z) = u(z,0) + iv(z,0) \Rightarrow z^2 - 2iz$$

$$I = \oint_C \frac{f(z) + 2iz}{z^{40}} dz = \oint_C \frac{1}{z^{38}} dz \quad , g(z) = 1 \Rightarrow I = \frac{2\pi i g^{(37)}(0)}{37!} = 0$$