Demonstração por Exaustão

$$\underbrace{p \lor q \Rightarrow r} \quad \equiv \quad \underbrace{(p \Rightarrow r)} \land \underbrace{(q \Rightarrow r)} \\
\bigvee$$

Ou mais geralmente

$$p_1 \lor p_2 \lor \cdots \lor p_n \Rightarrow r \equiv (p_1 \Rightarrow r) \land (p_2 \Rightarrow r) \land \cdots \land (p_n \Rightarrow r)$$

Função Módulo |7|=7

$$|x|^2 \le x$$

$$|x| = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$$
Ou equivalentemente,

$$|x| = \sqrt[2]{x^2} \implies \max\{x, -x\} = dist(x, \mathbf{0})$$

$$\sqrt{32} = \sqrt{9} = 3$$

$$\sqrt{(-5)^2} = \sqrt{25} = 5$$

OBS: das identidades acima segue que $\forall x \in \mathbb{R}$

$$m \approx 2 \{5, -5\} = 5$$
 $= |5| = |-5|$

•
$$x \le |x|$$
, $-x \le |x|$

$$\bullet \ x^2 = |x|^2$$

Exemplos:

Propriedades: $\forall a > 0$,

1)
$$|x| = a \Leftrightarrow x = a \text{ ou } x = -a$$

2)
$$|x - x_0| \le a \Leftrightarrow x_0 - a \le x \le x_0 + a$$

$$|x| = 3 \iff x = 3 \text{ ov } x = -3$$
 $|x| = 3 \iff x = 3 \text{ ov } x = -3$
 $|x| = 3 \iff x = -2$
 $|x| = 43$
 $|x| = -2$
 $|x| = 5$
 $|x| = 5$

1,5t(x,x0) <q

$$|x-y| = |-2-5| = |-7| = 7$$

$$|x-x_0| < S = \int |f(x)^{-2}| < \varepsilon$$

| 1y-21 < \varepsilon

Exemplo (Desigualdade Triangular): Mostre que para quaisquer inteiros x, y

$$|x+y| \le |x| + |y|$$

OBS: Em dimensões maiores, usamos o conceito de norma, a qual mede o comprimento de um vetor v, e é denotada por ||v||. Neste contexto, também vale a desigualdade triangular:

" Para quaisquer vetores v, w tem-se $||v + w|| \le ||v|| + ||w||$ "

Consideremos 2 casas

1: Casa:
$$x+y \ge 0$$
 | $x \le |x|$

Neste case; $(y \ge |y|) = 0$ a + c $\ge b+d$
 $|x+y| = x+y \le |x|+|y|$
 $\Rightarrow |x+y| \le |x|+|y|$
 $|x+y| = -(x+y) = (-x)+(-y) \le |x|+|y|$
 $\Rightarrow |x+y| \le |x|+|y|$

$$\frac{1}{b^{2}-a^{2}}$$
 $\frac{1}{2}$ $\frac{1}$

$$|x+y| \le |x|+|y| \iff |x+y|^2 \le (|x|+|y|)^2$$
 $(x+y)^2 \le (|x|+|y|)^2$

Exemplo: Mostre que para quaisquer $x, y \in \mathbb{R}$ $\max\{x,y\} + \min\{x,y\} = x + y$

Exemplo: Mostre que para quaisquer $a, b, c \in \mathbb{R}$

- a) $\min\{a, \min\{b, c\}\} = \min\{\min\{a, b\}, c\}$
- b) $\max\{a, \max\{b, c\}\} = \max\{\max\{a, b\}, c\}$

$$x^3 + x + 1 = 0$$

não admite solução nos racionais.

Assuma por absurdo que exista um racia nel xi digamos da forma fai 4 + 0, que é solução da equação acima Então irredutivel

$$\left(\frac{p}{q}\right)^3 + \frac{p}{q} + 1 = 0$$

$$(-)$$
 $\frac{p^{3}}{4^{3}} + \frac{p}{4} + 1 = 0$

$$=) \frac{3}{4^3} \cdot 4 + \frac{3}{4} \cdot 4 + 1 \cdot 4^3 = 0$$

$$=$$
 $p + p \cdot q^{2} + q^{2} = 0$

2º CASO: p é par e q é impor 3: CASO: Péímpur e qépor 4-CASO: pé impor e q é impar Perceba que o 1º casa não pade acontecer, propria têm fatores em comum. 2: C Asa: $\Rightarrow p + p \cdot q^2 + q^3 = 0$ P-par J P V I I = Lmpch Coma pépor, temos que pépor pé por l temos que p q² é par (2) q é impar, temos que q³ é impar (3) Por (1) e (2) abtemos que

 $p^3 + pq^2 \in par$ (4) par (3) e (4) obternos então que $(p^3 + pq^2) + q^3 \in (mpar)$

Absurda, pais p+pq+q=0 que é um número par.

$$5x^3 - 7x^2 + 4x - 9 = 0$$

não admite solução nos racionais.

$$x^2 + 3y^2 = 8$$

não admite soluções inteiras

$$x^2 + 3y^2 = 5$$

não admite soluções inteiras

$$2x^2 + 5y^2 = 14$$

não admite soluções inteiras

Exemplo: Mostre que não existem soluções inteiras e positivas x, y tais que $x^4 + y^4 = 625$

$$x^3 + y^3 = z^3$$

não admite soluções inteiras não triviais no caso em que x=y

Exemplo: Mostre que se 0 < r < 1 então para quaisquer $x, y \in \mathbb{R}$ tem-se $(x+y)^r < x^r + y^r$

Exemplo: Mostre que a equação $x^2 + y^2 = 6$ não admite soluções inteiras

Exemplo : Mostr	re que se $1 = a \cdot b$ pa	ara certos intei	ros a,b então $a=$	1 e $b = 1$ ou $a =$	-1 e b = -1.

Exemplo: Mostre que se $2=a\cdot b$ para certos inteiros a,b então a=2 e b=1 ou a = 1 e b = 2 ou a = -2 e b = -1 ou a = -1 e b = -2.

Exemplo: Mostre que se $3=a\cdot b$ para certos inteiros a,b então a=3 e b=1 ou a = 1 e b = 3 ou a = -3 e b = -1 ou a = -1 e b = -3.