วิชา Internetworking Standards and Technology Laboratory ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ สถาบันแทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

การทดลองที่ 11 EIGRP

วัตถุประสงค์

- 1. เพื่อให้นักศึกษาสามารถใช้คำสั่งกำหนดให้ระบบเครือข่ายทำงานได้ด้วย EIGRP
- 2. เพื่อให้นักศึกษาสามารถสร้าง และเข้าใจลักษณะของ Loopback Interface
- 3. เพื่อให้นักศึกษาสามารถเปลี่ยนค่า cost ของ EIGRP ได้
- 4. เพื่อให้นักศึกษาสามารถใช้คำสั่งกำหนดให้ระบบเครือข่ายทำงานด้วย EIGRP ร่วมกับ Static Routing ได้

ขั้นตอนการทดลอง

1.2 ทำการกำหนดค่าเน็ตเวิร์กแอดเดรส ของเครื่องคอมพิวเตอร์ Pc X, Pc Y และ Pc Z ตามตาราง

Host	IP address	Subnet Mask	Default Gateway
Pc X	172.[x].0.2	255.255.254.0	172.[x].0.1
Pc Y	172.[x].2.2	255.255.255.128	172.[x].2.1
Pc Z	192.168.[z].2	255.255.255.0	192.168.[z].1

1.3 ตรวจสอบว่ามี startup-config หรือ ไม่ หากมี startup-config ให้เคลียร์ค่าในเราเตอร์ โดยใช้คำสั่งดังนี้

Router > enable
Router # erase startup - config
Router # reload

୬ ୬ ସ	
รหัสนักศึกษา	

1.4 ตรวจสอบ Interface type ของ Serial ต่างๆ โดยใช้กำสั่ง ดังนี้ แล้วบันทึกไว้ในตารางข้อ 1.5

Router#show controllers Serial 0/0 | Serial 0 | Serial 0/0/0 Router#show controllers Serial 0/1 | Serial 1 | Serial 0/0/1

1.5 ทำการกำหนดรูปแบบการเชื่อมต่อ และ ชื่อเราเตอร์ ดังนี้

Router name	Interface	Interface Type	Network ID	IP address
	S0/1		192.168.[y].8/30	192.168.[y].10
Udon	Fa0/0	-	172.[x].0.0/23	172.[x].0.1
	S0/0		172.[x].2.128/30	172.[x].2.129
	S0/1		172.[x].2.128/30	172.[x].2.130
Bangkok	Fa0/0	-	172.[x].2.0/25	172.[x].2.1
	S0/0		192.168.[y].4/30	192.168.[y].5
	S0/1		192.168.[y].4/30	192.168.[y].6
Phuket	Loopback0	-	10.[x].[x].0/30	10.[x].[x].1
Filuket	Fa0/0	_	192.168.[z].0/24	192.168.[z].1
	S0/0		192.168.[y].8/30	192.168.[y].9

คำสั่งที่ใช้ได้แก

intertace loupback 0 ip address 10.8.8.1 255.255.255,252

1.6 ทคลองทำการ ping จาก Pc Z ไป 10.[x].[x].1 และทคลองใช้คำสั่ง show interface loopback 0 บันทึกผล

40

1.7 ตรวจสอบการทำงานของการเชื่อมต่อ Serial โดยทดลอง ping ไปที่อินเตอร์เฟส Serial ของเราเตอร์ที่ เชื่อมต่อกับเราเตอร์ที่ทดลอง หากอินเตอร์เฟสใดไม่สามารถติดต่อได้ ให้หาสาเหตุ พร้อมแก้ไขให้ ติดต่อกันได้

	FastEthernet0/0	Serial0/0	Serial0/1
Udon	/		/
Bangkok	/	/	
Phuket	/	/	

อาราศฐานายุลาส

(Or Interface of Javams

1.8 กำหนด Routing protocol ที่เราเตอร์ Udon ดังนี้

```
Udon(config) # router eigrp xyz

Udon(config-router) # network 172.[x].0.0

Udon(config-router) # network 192.168.[y].0

Udon(config-router) # no auto-summary

Udon(config-router) # exit

Udon(config) # exit
```

1.9 กำหนด Routing protocol ที่เราเตอร์ Bangkok ดังนี้

```
Bangkok(config) # router eigrp xyz

Bangkok(config-router) # network 172.[x].0.0

Bangkok(config-router) # network 192.168.[y].0

Bangkok(config-router) # no auto-summary

Bangkok(config-router) # exit
```

1.10 กำหนด Routing protocol ที่เราเตอร์ Phuket ดังนี้

Bangkok (config) # exit

```
Phuket(config-router) # network 192.168.[y].0 199.1(%.6.0 Phuket(config-router) # network 192.168.[z].0 Phuket(config-router) # no auto-summary Phuket(config-router) # exit Phuket(config) # exit
```

1.11 ตรวจสอบการเชื่อมต่อ โดยใช้กำสั่ง show ip route บนเราเตอร์ทั้งสามตัว จากนั้นทำการบันทึกผลโดย ตรวจดูว่าเราเตอร์ได้ทำการเชื่อมต่ออย่างไร IP address เป็นอะไร และทำการเชื่อมต่อโดยผ่านเน็ตเวิร์ก

```
อะไร ออกที่ Interface ใด
```

```
172.7.0.0/16 is variably subnetted, 5 subnets, 4 masks

172.7.0.0/23 is directly connected, GigabitEthernet0/2

172.7.0.1/32 is directly connected, GigabitEthernet0/2

172.7.2.0/25 [90/5376] via 172.7.2.130, 00:05:30, GigabitEthernet0/1

172.7.2.128/30 is directly connected, GigabitEthernet0/1

172.7.2.129/32 is directly connected, GigabitEthernet0/1

192.168.8.0/24 is variably subnetted, 3 subnets, 2 masks

192.168.8.4/30 [90/3072] via 172.7.2.130, 00:05:30, GigabitEthernet0/1

[90/3072] via 172.7.2.130, 00:05:30, GigabitEthernet0/0

192.168.8.8/30 is directly connected, GigabitEthernet0/0

192.168.8.10/32 is directly connected, GigabitEthernet0/0

192.168.8.10/32 is directly connected, GigabitEthernet0/0

Router$
```

```
| Cateway of last resort is not set | 10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks | 10.9.9.0/30 is directly connected, Loopback0 | 10.9.9.1/32 is directly connected, Loopback0 | 172.7.0.0/16 is variably subnetted, 3 subnets, 3 masks | 172.7.0.0/23 [90/537€] via 192.168.8.10, 00:02:45, GigabitEthern D | 172.7.2.0/25 [90/5376] via 192.168.8.5, 00:30:33, GigabitEthern D | 172.7.2.128/30 [90/3072] via 192.168.8.5, 00:04:57, GigabitEthern [90/3072] via 192.168.8.10, 00:03:07, GigabitEthern [90/3072] via 192.168.8.10, 00:03:07, GigabitEthern 192.168.8.0/24 is variably subnetted, 4 subnets, 2 masks | 192.168.8.4/30 is directly connected, GigabitEthernet0/1 | 192.168.8.6/32 is directly connected, GigabitEthernet0/0 | 192.168.8.8/30 is directly connected, GigabitEthernet0/0 | 192.168.8.9/32 is directly connected, GigabitEthernet0/0 | 192.168.9.0/24 is variably subnetted, 2 subnets, 2 masks | 192.168.9.0/24 is directly connected, GigabitEthernet0/2 | 192.168.9.1/32 is d
```

```
ateway or last resort is not set
    172.7.0.0/16 is variably subnetted, 5 subnets, 4 masks
       172.7.0.0/23 [90/5376] via 172.7.2.129, 00:03:42, GigabitEthernet0/1
       172.7.2.0/25 is directly connected, GigabitEthernet0/2
       172.7.2.1/32 is directly connected, GigabitEthernet0/2
       172.7.2.128/30 is directly connected, GigabitEthernet0/1
       172.7.2.130/32 is directly connected, GigabitEthernet0/1
     192.168.8.0/24 is variably subnetted, 3 subnets, 2 masks
        192.168.8.4/30 is directly connected, GigabitEthernet0/0
C
        192.168.8.5/32 is directly connected, GigabitEthernet0/0
        192.168.8.8/30 [90/3072] via 172.7.2.129, 00:04:05, GigabitEthernet0/1
D
                       [90/3072] via 192.168.8.6, 00:04:05, GigabitEthernet0/0
     192.168.9.0/24 [90/5376] via 192.168.8.6, 00:31:28, GigabitEthernet0/0
Router#
```

ہ ہ	~	
รหัสนัก	เศกมา	
9 11 61 161		

1.12 ทคลองทำการ ping จาก Pc ที่ทคลองอยู่ไปยัง Pc อื่นทุกตัว มี Pc ใคที่ ไม่สามารถ ping ได้ เพราะเหตุใค นาคาดขาดการาสาราโดยนาคด

1.13 ทุกลองใช้กำสั่ง show ip eigrp interface คำสั่งนี้แสคงอะไร พร้อมบันทึกผลการทุคลองที่ได้

Router#sh ip IP-EIGRP inte	rfaces for	process 789				
Interface	Peers	Xmit Queue Un/Reliable	Mean SRTT	Pacing Time Un/Reliable	Multicast Flow Timer	Pending Routes
Gig0/1	1	0/0	1236	0/10	0	0
Gig0/0	1	0/0	1236	0/10	0	0
Gig0/2	0	0/0	1236	0/10	0	0

1.14 ทดลองใช้คำสั่ง show ip eigrp neighbor คำสั่งนี้แสดงอะไร พร้อมบันทึกผลการทดลองที่ได้

amasneighbor จังรเดือง

1.15 ทดลองใช้กำสั่ง show ip eigrp topology กำสั่งนี้แสดงอะไร พร้อมบันทึกผลการทดลองที่ได้

| โลกรโบ | บัน (
| P 172.7.0.0/23, 1 successors, FD is 5376
| via 192.168.8.10 (5376/5120), GigabitEthernet0/0
| P 172.7.2.0/25, 1 successors, FD is 5376
| via 192.168.8.5 (5376/5120), GigabitEthernet0/1
| P 172.7.2.128/30, 2 successors, FD is 3072
| via 192.168.8.5 (3072/2816), GigabitEthernet0/1
| via 192.168.8.10 (3072/2816), GigabitEthernet0/0
| P 192.168.8.4/30, 1 successors, FD is 2816
| via Connected, GigabitEthernet0/1
| P 192.168.8.8/30, 1 successors, FD is 2816
| via Connected, GigabitEthernet0/0 via Connected, GigabitEthernet0/0 p 192.168.9.0/24, 1 successors, FD is 5120 via Connected, GigabitEthernet0/2

Ctrl+F6 to exit CLI focus

9 9 4	
รห์สนักศักษา	

ตอนที่ 2 การเปลี่ยนค่า Bandwidth ในการใช้ EIGRP

- 2.1 จากการทดลองที่ 1
- 2.2 กำหนดค่า Bandwidth ที่เราเตอร์ Udon ดังนี้

Udon(config) # interface serial 0/0
Udon(config-if) # bandwidth 64
Udon(config-if) # exit
Udon(config) # exit

2.3 กำหนดค่า Bandwidth ที่เราเตอร์ Bangkok ดังนี้

Bangkok(config) # interface serial 0/0 Bangkok(config-if) # bandwidth 1024 Bangkok(config-if) # exit Bangkok(config) # interface serial 0/1 Bangkok(config-if) # bandwidth 64 Bangkok(config-if) # exit Bangkok(config) # exit

2.4 กำหนดค่า Bandwidth ที่เราเตอร์ Phuket ดังนี้

Phuket(config) # interface serial 0/1 Phuket(config-if) # bandwidth 1024 Phuket(config-if) # exit Phuket(config) # exit

2.5 ตรวจสอบการเชื่อมต่อ โดยใช้กำสั่ง show ip route บนเราเตอร์ทั้งสามตัว จากนั้นทำการบันทึกผลโดย ตรวจดูว่าเราเตอร์ได้ทำการเชื่อมต่ออย่างไร IP address เป็นอะไร และทำการเชื่อมต่อโดยผ่านเน็ตเวิร์ก

- 2.6 ผลที่ได้จากข้อ 2.5 และข้อ 1.11 เหมือนหรือต่างกันอย่างไร เพราะเหตุใด
- 2.7 ทดลองทำการ ping จาก Pc ที่ทดลองอยู่ไปยัง Pc อื่นทุกตัว มี Pc ใดที่ ไม่สามารถ ping ได้ เพราะเหตุใด

ตอนที่ 3 การเปลี่ยน Routing Table เมื่อระบบเครือข่ายมีการเปลี่ยนแปลง ในการใช้ EIGRP

3.1 จากการทดลองที่ 2 การเชื่อมต่อจาก Pc X ไปยัง Pc Y ใช้เส้นทางใด ทราบได้อย่างไร

of lopolus, hunt, smiller

3.2 ที่ เราเตอร์ Bangkok ให้ทำการสั่ง shutdown ที่ Interface ที่เชื่อมต่อ ไปยัง Pc X (คูจากข้อ 3.1) แล้วรีบ ทคลองข้อ 3.3 และ 3.4 ในทันที

3.3 ตรวจสอบการเชื่อมต่อที่ เราเตอร์ Udon ทันที โดยใช้คำสั่ง show ip route

3.4 ทดลองทำการ ping จาก Pc X ไปยัง Pc Y อีกครั้ง สามารถ ping ได้หรือไม่ (หากไม่สามารถ ping ได้ให้ ทดสอบจนกว่าจะได้ แล้วสังเกตว่าใช้เวลาประมาณเท่าใด)

- 3.5 ทคลองทำการ ping จาก Pc ที่ทคลองอยู่ไปยัง Pc อื่นทุกตัว มี Pc ใคที่ ไม่สามารถ ping ได้ เพราะเหตุใด
- 3.6 ทดลองทำการ ping จาก Pc ที่ทดลองอยู่ไปยัง Interface Loopback 0 (10.[x].[x].1) ได้หรือไม่ หากไม่ได้ ต้องทำอย่างไรบ้าง

3.7 เชิญอาจารย์ตรวจการทดลอง

ลายเซ็นอาจารย์ผู้ตรวจการทดลอง

ตอนที่ 4 การกำหนดค่าการทำงาน EIGRP ร่วมกับ Static Routing

- 4.1 ยกเลิกคำสั่ง shutdown ที่ Interface ในการทดลองตอนที่ 3
- 4.2 ให้นักศึกษาทำการเชื่อมต่อเครือข่ายตามในรูป 2 (หรือ shutdown ที่ Interface serial 0/1 ของเราเตอร์ Udon และ shutdown ที่ Interface serial 0/0 ของเราเตอร์ Phuket)

4.4.1 กำหนด Routing protocol ที่เราเตอร์ Udon อย่างไร

4.4.2 กำหนด Routing protocol ที่เราเตอร์ Bangkok อย่างไร

enian network 192.168.8.4 redistribute static

ip route 0.0.0.0 0.0.0.0 g ulo

9 9	4	
รหัสนัก	เศกมา	
9 LI PI PA LI	_ו פווווו	

กำหนด Routing protocol ที่เราเตอร์ Phuket อย่างไร รถเลก ยุโรงค โลงก่องกุโบบ p back 0 delaw laviore guli an 1727.00 er. 01.00

1230

ตรวจสอบการเชื่อมต่อ โดยใช้คำสั่ง show ip route บนเราเตอร์ทั้งสามตัว จากนั้นทำการบันทึกผลโดย 4.5 ตรวจดูว่าเราเตอร์ได้ทำการเชื่อมต่ออย่างไร IP address เป็นอะไร และทำการเชื่อมต่อโดยผ่านเน็ตเวิร์ก อะไร ออกที่ Interface ใด

91

- ทดลองทำการ ping จาก Pc ที่ทดลองอยู่ไปยัง Pc อื่นทุกตัว มี Pc ใดที่ ไม่สามารถ ping ได้ เพราะเหตุใด 4.6 122
- เชิญอาจารย์ตรวจการทคลอง 4.7

