Introduction to Statistics (MAT 283)

Dipti Dubey

Department of Mathematics Shiv Nadar University

January 31, 2022

Table of Contents

SOME SPECIAL CONTINUOUS DISTRIBUTIONS

SOME SPECIAL CONTINUOUS DISTRIBUTIONS

1. Uniform Distribution

A random variable X is said to be uniform on the interval [a,b] if its probability density function is of the form

$$f(x) = \frac{1}{b-a}, \ a \le x \le b$$

where a and b are constants.

We denote a random variable X with the uniform distribution on the interval [a, b] as $X \sim \text{UNIF}(a, b)$.

APPLICATION: Random number generation.

THEOREM: If X is a uniform random variable on the interval [a, b], then the mean, variance and moment generating functions are respectively given by

$$E(X) = \mu_X = rac{b+a}{2}$$
 $ext{Var}(X) = \sigma_X^2 = rac{(b-a)^2}{12}$ $M_X(t) = egin{cases} 1 & ext{if} & x=0 \ rac{e^{tb}-e^{ta}}{t(b-a)} & ext{otherwise}. \end{cases}$

EXERCISE: Suppose $Y \sim \text{UNIF}(0,1)$ and $Y = \frac{1}{4}X^2$. What is the probability density function of X?

2. Exponential Distribution: A continuous random variable is said to be an exponential random variable with parameter θ if it's probability density function is of the form

$$f(x; \theta) = egin{cases} rac{1}{ heta} e^{-rac{x}{ heta}} & ext{if} \quad x > 0 \\ 0 & ext{otherwise}. \end{cases}$$

where $\theta > 0$.

If a random variable X has an exponential density function with parameter θ , then we denote it by writing $X \sim \mathsf{EXP}(\theta)$.

APPLICATION: To model lifetime of electronic components.

Theorem: If $X \sim EXP(\theta)$, then $E(X) = \frac{1}{\theta}$ and $Var(X) = \frac{1}{\theta^2}$.

Theorem: If $X \sim EXP(\theta)$, then $E(X) = \frac{1}{\theta}$ and $Var(X) = \frac{1}{\theta^2}$.

Alternate Definition of Exponential Distribution: A continuous random variable is said to be an exponential random variable with parameter $\lambda=\frac{1}{\theta}$ if it's probability density function is of the form

$$f(x;\theta) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x > 0 \\ 0 & \text{otherwise.} \end{cases}$$

where $\lambda > 0$.

EXERCISE: What is the cumulative distribution function of a random variable which has an exponential distribution with variance 25?