

Белорусская республиканская физическая олимпиада Мозырь, 2002 год

11 класс

1. Вам необходимо осуществить известный трюк: выдернуть платок из-под стоящего на нем стакана. Платок лежит на краю стола, так, что длина лежащей на столе его части равна l, стакан стоит на платке на расстоянии x от края стола, стакан можно считать материальной точкой. Масса платка

пренебрежимо мала, коэффициент трения между платком и дном стакана равен μ . Коэффициент трения между стаканом и столом велик настолько, что можно пренебречь движением стакана по столу. Считая, что платок выдергивается с постоянной скоростью, определите при какой минимальной скорости платка этот трюк осуществим.

2. В высоком вертикальном цилиндрическом сосуде под поршнем находится углекислый газ и газированная вода (раствор углекислого газа в воде). Поршень плотно пригнан к стенкам сосуда и может скользить вертикально без трения. При массе поршня m_0 он находится в равновесии на расстоянии h_0 от поверхности воды, при увеличении массы поршня до величины m_1 он опускается до расстояния h_1 .

Какова должна быть масса поршня, чтобы он достиг поверхности воды? Все процессы считать изотермическими. Изменением объема жидкости при растворении газа, испарением воды и атмосферным давлением можно пренебречь. <u>Примечание</u>. Растворимость газов пропорциональна внешнему парциальному давлению этого газа над поверхностью жидкости (закон Генри).

3. Простейший модулированный радиосигнал может быть описан функцией $E=E_0\cos\omega_0t(1+a\cos\omega_1t)$, где ω_0 - несущая частота, ω_1 - частота модуляции (частота полезного сигнала), причем $\omega_0>>\omega_1$, a,E_0 - постоянные величины, определяющие амплитуду и глубину модуляции сигнала. Скорость распространения электромагнитной волны c зависит от ее частоты (из-за дисперсии) по приближенному закону $c(\omega)=c_0-\gamma(\omega-\omega_0)$, где c_0 - скорость распространения волны c частотой ω_0 , γ - известная малая постоянная c0 c0 c0 c0 c0. Определите скорость распространения полезного сигнала (скорость распространения огибающей) в данных условиях.

Подсказки

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2};$$

$$2\cos A\cos B = \cos(A+B) + \cos(A-B).$$