

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

AGH University of Science and Technology

AGH

Macierzy

Macierzy

Wykład III. Macierz, co to jest?

Wykład III. Macierz, co to jest?

Definicja

Macierzą rzeczywistą (zespoloną) wymiaru $m \cdot n$, gdzie $m, n \in \mathbb{N}$ nazywamy prostokątną tablicę złożoną z $m \cdot n$ liczb rzeczywistych (zespolonych) ustawionych w m wierszach i n kolumnach

$$A = A_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} = [a_{ij}]_{m \times n} = [a_{ij}].$$

$$A = A_{2 \times 2} = \begin{bmatrix} 2 & 3 \\ -5 & 8 \end{bmatrix}, \quad B = B_{4 \times 1} = \begin{bmatrix} -5 \\ 0 \\ -1, 5 \\ 8 \end{bmatrix}$$

Macierzy

Wykład III. Macierzy

Wykład III. Rodzaje macierzy

Macierz zerowa

$$0_{m \times n} = [a_{ij}]_{m \times n}, \quad a_{ij} = 0, \qquad 0_{2 \times 2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Macierz kwadratowa

- gdy m=n, macierz $A_{n\times n}$, nazywamy macierzą kwadratową, n nazywamy stopniem macierzy kwadratowej i piszemy $A_n\equiv A_{n\times n}$;
- ullet Elementy macierzy kwadratowej $a_{ii},\ 1\leqslant i\leqslant n$ tworzą główną przekątną macierzy

$$A_{4 imes 3} = \left[egin{array}{cccc} -5 & 0 & 1 \ 0 & 4 & 2 \ -10 & 1, 5 & 4 \ 3 & 6 & 1 \end{array}
ight], \qquad B_{4 imes 4} = \left[egin{array}{cccc} -5 & 0 & 1 & 6 \ 0 & 4 & 2 & 7 \ -10 & 1, 5 & 4 & 9 \ 3 & 6 & 1 & 1 \end{array}
ight]$$

4□▶4Ē▶4Ē▶ Ē 9Q@

5 / 26

Macierzy 26.10.2020

Wykład III. Macierz kwadratowa

Macierz kwadratowa

• A_n – macierz diagonalna \iff $a_{ij} = 0$, gdy $i \neq j$

$$A_n = \left[\begin{array}{cccc} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{array} \right].$$

• A_n – macierz jednostkowa \iff $a_{ij}=0$, gdy $i \neq j$ oraz $a_{ii}=1$

$$I_n = A_n = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{bmatrix}.$$

6 / 26

Macierzy 26.10.2020

Macierz transponowana

Macierz wymiaru $m \times n$

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

Macierz transponowana A^T wymiaru $n \times m$

$$A^{T} = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{bmatrix}$$

Macierzy 26.10.2020 7 / 26

Macierzy

Suma macierzy

Macierzy $A = [a_{ij}]$ i $B = [b_{ij}]$ wymiaru $m \times n$. Sumą macierzy A i B nazywamy macierz C = A + B wymiaru $m \times n$, której elementy c_{ij} są określone wzorem

$$c_{ij} = a_{ij} + b_{ij}, \qquad i = 1, \ldots, m \quad j = 1, \ldots, n.$$

Przykład

$$\begin{bmatrix} 2 & 4 & 3 & -1 \\ 3 & 1 & 5 & 2 \\ -1 & 0 & 7 & 6 \end{bmatrix} + \begin{bmatrix} 1 & 2 & -2 & 7 \\ 0 & 2 & 4 & -1 \\ -2 & 1 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 2+1 & 4+2 & 3-2 & -1+7 \\ 3+0 & 1+2 & 5+4 & 2-1 \\ -1-2 & 0+1 & 7+3 & 6+3 \end{bmatrix} = \begin{bmatrix} 2+1 & 4+2 & 3-2 & -1+7 \\ 3+0 & 1+2 & 5+4 & 2-1 \\ -1-2 & 0+1 & 7+3 & 6+3 \end{bmatrix} = \begin{bmatrix} 2+1 & 4+2 & 3-2 & -1+7 \\ 3+0 & 1+2 & 5+4 & 2-1 \\ -1-2 & 0+1 & 7+3 & 6+3 \end{bmatrix} = \begin{bmatrix} 2+1 & 4+2 & 3-2 & -1+7 \\ 3+0 & 1+2 & 5+4 & 2-1 \\ -1-2 & 0+1 & 7+3 & 6+3 \end{bmatrix} = \begin{bmatrix} 2+1 & 4+2 & 3-2 & -1+7 \\ 3+0 & 1+2 & 5+4 & 2-1 \\ -1-2 & 0+1 & 7+3 & 6+3 \end{bmatrix} = \begin{bmatrix} 2+1 & 4+2 & 3-2 & -1+7 \\ 3+0 & 1+2 & 5+4 & 2-1 \\ -1-2 & 0+1 & 7+3 & 6+3 \end{bmatrix} = \begin{bmatrix} 2+1 & 4+2 & 3-2 & -1+7 \\ 3+0 & 1+2 & 5+4 & 2-1 \\ -1-2 & 0+1 & 7+3 & 6+3 \end{bmatrix} = \begin{bmatrix} 2+1 & 4+2 & 3-2 & -1+7 \\ 3+0 & 1+2 & 5+4 & 2-1 \\ -1-2 & 0+1 & 7+3 & 6+3 \end{bmatrix} = \begin{bmatrix} 2+1 & 4+2 & 3-2 & -1+7 \\ 3+0 & 1+2 & 5+4 & 2-1 \\ -1-2 & 0+1 & 7+3 & 6+3 \end{bmatrix} = \begin{bmatrix} 2+1 & 4+2 & 3-2 & -1+7 \\ 3+0 & 1+2 & 5+4 & 2-1 \\ -1-2 & 0+1 & 7+3 & 6+3 \end{bmatrix} = \begin{bmatrix} 2+1 & 4+2 & 3-2 & -1+7 \\ 3+0 & 1+2 & 5+4 & 2-1 \\ -1-2 & 0+1 & 7+3 & 6+3 \end{bmatrix} = \begin{bmatrix} 2+1 & 4+2 & 3-2 & -1+7 \\ 3+0 & 1+2 & 5+4 & 2-1 \\ -1-2 & 0+1 & 7+3 & 6+3 \end{bmatrix} = \begin{bmatrix} 2+1 & 4+2 & 3-2 & -1+7 \\ 3+0 & 1+2 & 5+4 & 2-1 \\ -1-2 & 0+1 & 7+3 & 6+3 \end{bmatrix} = \begin{bmatrix} 2+1 & 4+2 & 3-2 & -1+7 \\ 3+0 & 1+2 & 5+4 & 2-1 \\ -1-2 & 0+1 & 7+3 & 6+3 \end{bmatrix} = \begin{bmatrix} 2+1 & 4+2 & 3-2 & -1+7 \\ 3+0 & 1+2 & 5+4 & 2-1 \\ -1-2 & 0+1 & 7+3 & 6+3 \end{bmatrix} = \begin{bmatrix} 2+1 & 4+2 & 3-2 & -1+7 \\ 3+0 & 1+2 & 5+4 & 2-1 \\ -1-2 & 0+1 & 7+3 & 6+3 \end{bmatrix} = \begin{bmatrix} 2+1 & 4+2 & 3-2 & -1+7 \\ 3+0 & 1+2 & 5+4 & 2-1 \\ -1-2 & 0+1 & 7+3 & 6+3 \end{bmatrix} = \begin{bmatrix} 2+1 & 4+2 & 3-2 & -1+7 \\ 3+0 & 1+2 & 5+4 & 2-1 \\ -1-2 & 0+1 & 7+3 & 6+3 \end{bmatrix} = \begin{bmatrix} 2+1 & 4+2 & 3-2 & -1+7 \\ 3+0 & 1+2 & 5+4 & 2-1 \\ -1-2 & 0+1 & 7+3 & 6+3 \end{bmatrix} = \begin{bmatrix} 2+1 & 4+2 & 3-2 & -1+7 \\ 3+0 & 1+2 & 5+4 & 2-1 \\ -1-2 & 0+1 & 7+3 & 6+3 \end{bmatrix} = \begin{bmatrix} 2+1 & 4+2 & 3-2 & -1+7 \\ 3+0 & 1+2 & 5+4 & 2-1 \\ -1-2 & 1+2 & 3+2 & 2-1 \\ -1-2 & 1+2 & 3+2 & 2-1 \\ -1-2 & 1+2 & 3+2 & 2-1 \\ -1-2 & 1+2 & 3+2 & 2-1 \\ -1-2 & 1+2 & 3+2 & 2-1 \\ -1-2 & 1+2 & 3+2 & 2-1 \\ -1-2 & 1+2 & 3+2 & 2-1 \\ -1-2 & 1+2 & 3+2 & 2-1 \\ -1-2 & 1+2 & 3+2 & 2-1 \\ -1-2 & 1+2 & 3+2 & 2-1 \\ -1-2 & 1+2 & 3+2 & 2-1 \\ -1-2 & 1+2 & 3+2 & 2-1 \\ -1-2 & 1+2 & 3+2 & 2-1 \\$$

Macierzy

Iloczyn macierzy przez liczbę

Macierz $A=[a_{ij}]$ wymiaru $m\times n$ i liczbę $c\in\mathbb{C}$. Iloczynem macierzy A przez liczbę c nazywamy macierz D=cA wymiaru $m\times n$ której elementy d_{ij} są określone wzorem

$$D = cA := \begin{bmatrix} ca_{11} & ca_{12} & \dots & ca_{1n} \\ ca_{21} & ca_{22} & \dots & ca_{2n} \\ \dots & \dots & \dots & \dots \\ ca_{m1} & ca_{m2} & \dots & ca_{mn} \end{bmatrix}.$$

Przykład Niech
$$A = \begin{bmatrix} 1 & 0 & 7 \\ 0 & 1 & 13 \end{bmatrix}$$
 i $c = 2$. Wówczas

$$D = 2A = 2 \begin{bmatrix} 1 & 0 & 7 \\ 0 & 1 & 13 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 14 \\ 0 & 2 & 26 \end{bmatrix}.$$

Macierzy 26.10.2020 10 / 26

Własności

- A + B = B + A;
- A + (B + C) = (A + B) + C;
- (cd)A = c(dA);
- $1 \cdot A = A$;
- c(A + B) = cA + cB;
- $(cA)^T = cA^T$;
- $(A+B)^T = A^T + B^T$.

11 / 26

Macierzy 26.10.2020

Iloczyn macierzy

Macierz $A = [a_{ij}]$ wymiaru $m \times n$ i macierz $b = [b_{ij}]$ wymiaru $n \times p$. Iloczynem macierzy $A \in B$ nazywamy macierz

$$C = A \cdot B = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1p} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \dots & \dots & \dots & \dots \\ c_{m1} & c_{m2} & \dots & c_{mp} \end{bmatrix}$$

wymiaru $m \times p$, której elementy c_{ij} są określone wzorem

$$c_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{in}b_{nj}, \quad i = 1, \ldots, m, \quad j = 1, \ldots, p.$$

Macierzy 26.10.2020 12 / 26

Wykład III. Iloczyn macierzy

UWAGA!

Iloczyn macierzy A i B nie zawsze istnieje!

Wykład III. Iloczyn macierzy

$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}.$$

$$B \cdot A$$
 nie istnieje, ale $A \cdot B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 9 & 12 \end{bmatrix}$.

Macierzy

Wykład III. Iloczyn macierzy.

Własności

- $\bullet \quad A(BC) = (AB)C;$
- $\bullet \quad A(B+C) = AB + AC;$
- $\bullet (A+B)C = AC + BC;$
- c(AB) = (cA)B = A(cB);
- $AB \neq BA$;
- $\bullet \ (AB)^T = B^T A^T.$

Macierzy

15 / 26

Wykład III. Wyznaczniki.

Wyznaczniki

Każdej macierzy KWADRATOWEJ $A=[a_{ij}]$ odpowiada pewna liczba (rzecywista/zespolona) którą nazywamy wyznacznikiem macierzy A i oznaczamy przez det A, |A|, $\det[a_{ij}]$ lub

Macierzy

16 / 26

Wykład III. Wyznaczniki.

Definicja wyznaczników

Wyznacznik macierzy A może być określony w sposób indukcyjny, tzn:

- macierz A stopnia 1, \implies det A = det[a] = a;
- macierz A stopnia 2 \Longrightarrow

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}.$$

• macierz A stopnia $3 \implies$

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

 $a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$.

26.10.2020 17 / 26

Ψ) Q (Ψ

Wykład III. Wyznacznik macierzy stopnia 3.

Reguła trójkąta obliczania wyznaczników

Reguła Sarrusa obliczania wyznaczników

$$a_{11}$$
 a_{12} a_{13} a_{11} a_{12}
 a_{21} a_{22} a_{13} a_{21} a_{22}
 a_{31} a_{32} a_{33} a_{31} a_{32}

کر 20 18 / 26

Wykład III. Dopełnienie algebraiczne

Niech

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

jest macierzą kwadratową stopnia $n \ge 2$.

Dopełnienie algebraiczne

Dopełnieniem algebraicznym elementu a_{ij} macierzy $A = [a_{ij}]$ nazywamy liczbe

$$D_{ij} = (-1)^{i+j} \det A_{ij},$$

gdzie A_{ij} oznacza macierz stopnia n -1 otrzymaną przez skreślenie i-tego wiersza i j-tej kolumny macierzy A.

Macierzy 26.10.2020 19 / 26

Dopełnienie algebraiczne

Przykład. Obliczenie D_{23} .

$$A = \begin{bmatrix} 0 & 1 & -2 \\ 2 & 3 & -1 \\ 5 & 4 & -3 \end{bmatrix}, \implies A_{23} = \begin{bmatrix} 0 & 1 \\ 5 & 4 \end{bmatrix} \implies$$

$$D_{23} = (-1)^{2+3} \det A_{23} = -\det \begin{vmatrix} 0 & 1 \\ 5 & 4 \end{vmatrix} = -(-5) = 5.$$

Macierzy

20 / 26

Niech

$$A = [a_{ij}] = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

Rozwinięcie Laplace'a wyznacznika det A względem i-tego wiersza.

$$\det A = a_{i1}D_{i1} + a_{i2}D_{i2} + \ldots + a_{in}D_{in} = \sum_{k=1}^{n} a_{ik}D_{ik}$$

Rozwinięcie Laplace'a wyznacznika det A względem j-tej kolumny.

$$\det A = a_{1j}D_{1j} + a_{2j}D_{2j} + \ldots + a_{nj}D_{nj} = \sum_{k=1}^{n} a_{kj}D_{kj}$$

Macierzy 26.10.2020 21 / 26

Przykład 1.

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

5.10.2020 22 / 26

Przykład 2.

$$\det A = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \bigcirc$$

2020 23 / 26

Przykład 3. Macierz trójkątna górna

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & a_{22} & a_{23} & \dots & a_{2n} \\ 0 & 0 & a_{33} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & a_{nn} \end{vmatrix} = \mathcal{A}_{11} \mathcal{A}_{22} \mathcal{A}_{33} \dots \mathcal{A}_{nn}$$

Macierzy

24 / 26

Przykład 4. Wyznacznik macierzy D = cA

$$\det D = \det cA = \begin{vmatrix} ca_{11} & ca_{12} & \dots & ca_{1n} \\ ca_{21} & ca_{22} & \dots & ca_{2n} \\ \dots & \dots & \dots & \dots \\ ca_{m1} & ca_{m2} & \dots & ca_{mn} \end{vmatrix} = C^n \det A$$

Macierzy

25 / 26

Dziękuję za Uwagę!