Comparative Analysis of Firearm Ownership and Crime Rates Across U.S. States

Ching Sze, Fung – 2313 7788

Introduction

Firearm ownership is always a controversial topic in the United States, where the right to bear arms is protected by the Constitution. However, individual states vary greatly in the regulations they impose on firearm ownership.

This project analyzes the correlation between firearm ownership, regulation strictness, and crime rates across various U.S. states. States like California, Massachusetts and New York have strict regulations, while Texas, Alaska and Wyoming are more lenient. By comparing data from both types of states, we aim to identify patterns and assess how regulation differences impact crime rates, offering insights into the relationship between gun ownership and crime.

Question

How does the level of firearm ownership and the stringency of restrictions correlate with crime rates across different states in the United States, and what differences can be observed between states with stricter vs. more lenient gun laws?

Data Sources

Data Source 1: FBI NICS Firearm	Data Source 2: Firearm Mortality by	Data Source 3: FBI Crime Data			
Background Checks	<u>State</u>				
Description: The dataset is	Description: The dataset is sourced	Description: The dataset is sourced			
sourced from Kaggle and	from the Centers for Disease Control	from the FBI's Centers for Disease			
originally provided by the National	and Prevention (CDC). It provides	Control and Prevention (CDC). It			
Instant Criminal Background	firearm mortality statistics at the state	contains crime statistics across the			
Check System (NICS). It contains	level across the United States,	United States, including detailed			
the number of FBI NICS firearm	including annual data on deaths	factors associated with the crimes,			
background checks by month,	resulting from firearm-related	such as "Type of Weapon Involved by			
state, and type from November	incidents. The data includes	Offense", "Offense Linked to			
1998 to 2023. This dataset	information such as the number of	Another Offense", and others. This			
provides insights into the	firearm-related deaths, categorized by	dataset provides valuable insights into			
stringency of firearm restrictions	state and year. This dataset is a crucial	crime rates across different U.S. states			
across different states, as it	source for understanding trends in	and helps to identify the factors			
includes mandatory background	firearm-related mortality. contributing to various t				
checks for citizens wishing to		offenses.			
purchase firearms.					
Structure and Quality: The data	Structure and Quality: The data is	Structure and Quality: The data is			
is organized in a fixed tabular	organized in a fixed tabular format	divided across 13 separate CSV files			
format, with columns representing	with five columns: year, state, rate,	in a fixed tabular format. The quality			
different permit types and	deaths, and url. The quality of the data	of the data is incomplete and			
activities, collected monthly by	is straightforward but includes all the	inconsistent, particularly in the			
state. The quality of the data is	necessary information for analysis.	"Weapon Involved by Offense"			
generally consistent and suitable		category, as it is not recorded on a			
for analyzing firearm background		monthly or yearly basis, unlike the			
checks.		estimated crime CSV file.			

Licenses: Licensed under the MIT Licenses: Licensed under Section Licenses: Available under the FBI's License. Data is from the FBI's 308(d) of the Public Health Service FOIA Library. Data is used for FOIA Library. Appropriate credit Act and CIPSEA. Data is used for transparency and academic purposes. and a link to the license will be statistical purposes. Credit to the Appropriate credit and link to the provided. CDC and a <u>link</u> to the license will be privacy policy and terms of use will be provided. provided. Metadata URL: Kaggle - FBI Metadata URL: CDC - Firearm Metadata URL: FBI Crime Data NICS Firearm Background Checks Mortality by State Explorer Data URL: FBI NICS Firearm Background Checks Raw Data

Data Pipeline

The ETL(Extract, Transform, Load) pipeline is implemented using python to handle both data sources, each downloaded as a CSV directory within a zip archieve. This process involves extracting the right CSV file, transforming, and saving it as CSV format and SQLite databases. **Extraction:** The dataset source 1 is downloaded using the Kaggle API. For the dataset source 2, Selenium is used to automate the download of the CSV file from the CDC website. Then, multiple CSV files are downloaded directly for the dataset source 3. After extraction, the loaded data is processed using pandas for further transformation.

Transformation: The transformation process varies based on the specific data sources:

Transformation. The trans	formation process varies based on the spe	offic data sources.		
Data Source 1: FBI NICS Firearm	Data Source 2: Firearm Mortality by	Data Source 3: FBI Crime Data		
Background Checks	<u>State</u>			
Filter Data: The rows are filtered	by 6 specific states, California, Massachu	usetts, New York, Texas, Alaska and		
Wyoming.				
Date Conversion: The "month"	Dropping Irrelevant Columns: The	Combined Dataset: The "Offense		
column was converted to extract	"URL" column was dropped as it was	Linked to Another Offense Data"		
only the year using	deemed irrelevant to the analysis.	and "Weapon Type Involved by		
<pre>pd.to_datetime().</pre>	Data Type Conversion: The	Offense Data" datasets both contain		
Grouping and Summarizing	"DEATHS" column was initially in a	columns named "Key" and "Value."		
Data: After extracting the year, the	string format that included commas,	First, data from both datasets is		
data was grouped by "year" and	which made it unsuitable for numerical	filtered to include only six specific		
"state" and aggregated	operations. To address this, commas	states, "Weapon Law Violations,"		
using .sum(), which helps in	were removed using .replace() and	and specific weapon types such as		
summarizing the data to observe	the column was converted to integer	"Handgun," "Rifle," "Shotgun," etc.		
yearly trends.	type using .astype(int).	After filtering, the relevant CSV		
		files are combined, and the number		
		of cases is summed.		

Loading: The cleaned datasets are saved as CSV files and into an SQL database for future analysis.

Problems Encountered, Solutions, Meta-Quality Measures and Error Handling:

<u>File Download Automating:</u> Since Selenium is adopted for downloading CSV files from the CDC website, there are instances where the download takes longer, and no direct link to the CSV file can be fetched. To handle this, a timeout mechanism (time.sleep()) was implemented to allow sufficient time for the download to complete.

However, for dataset source 3, there are multiple download buttons (more than 5 to 6), and the CSV files are separated based on different crime characteristics. Using Selenium to automate these downloads was not feasible. Therefore, the CSV files were downloaded manually for data processing. Irregular Data Formatting: Some columns, such as the "value" column in Dataset Source 3, contained non-numeric entries, which were problematic for analysis. To address this, the entries were converted to numeric using pd.to numeric(). Any non-convertible entries were coerced to NaN and subsequently replaced with 0 to avoid errors.

Result and Limitations

Output Data: The final output includes four transformed and cleaned CSV files, as well as an SOLite database. All datasets are focused specific California. states: Massachusetts, and New York (representing states with strict firearm regulations), and Texas, Alaska, and Wyoming (representing states with more lenient restrictions). These datasets capture firearm background checks on permits and various types of firearms by state and year. Besides, two other datasets provide information on the firearm mortality rate, the number of deaths, and categorized crime rates by state and year, including the number of weapon types involved in the crimes. (See Tables 1-4)

Data Structure, Quality and Format: All cleaned datasets are organized in a tabular schema with defined data types for each attribute, such as Year, State, and specific features related to background checks, mortality rates, crime, and weapon types. After going through the transformation pipeline, the datasets were cleaned and consistent by removing irrelevant columns, normalizing data formats, and converting non-numeric values. Therefore, the dataset fulfills the criteria of completeness, consistency, timeliness, and relevance, as it contains the required information for further analysis and captures over 20 years of data. CSV files and an SQLite database were chosen for storage because they are easily accessible and allow for efficient querying and further analysis.

Reflection and Potential Issues: Although the datasets have been cleaned and transformed, the granularity might not fully capture a comprehensive comparison between states with strict and lenient firearm regulations. For Dataset 3, the weapon types involved in other offenses are not captured by year, making them inconsistent with the yearly totals of estimated crimes. This inconsistency could affect the accuracy and reliability of the analysis. Furthermore, social crime rates can be influenced by various factors, such as current social issues, the economic situation of the state, and more. As a result, the stringency of firearm regulations and the level of firearm ownership may be just one of the factors relevant to crime rates.

Table 1: FirearmBackgroundCheck cleaned dataset.csv

Table 1: 1 Hearth Background eneck_electrica_dataset.esv									
Year	State	Permit	Permit_recheck	handgun	Long_gun		totals		
2023	Wyoming	4495	122	18945	17979		47238		
2023	Texas	239276	0	495329	262526		1153813		
2023	New York	45951	24893	94475	100566		286031		
2023	Massachusetts	81549	4	44781	24282		165835		
2023	California	240772	128351	312780	197309		1064943		
2023	Alaska	1994	210	25414	21142		55684		
2022	Wyoming	5142	257	29273	27529		70276		

Table 2: FirearmMortalitybyState cleaned dataset.csv

Year State Rate Death	S
2022 CA 8.6 3484	
2022 NY 5.3 1044	
2022 WY 20.4 124	
2022 TX 15.3 4630	
2022 AK 22.4 164	
2022 MA 3.7 263	
2021 CA 9 3576	

Table 3: EstimateCrimes cleaned dataset.csv

Year	State_abbr	State_name	Population	Violent_crime	Homicide		Totals
2023	AK	Alaska	733,406	5,327	62		9218
2023	CA	California	38,965,193	198,036	1,929		331905
2023	MA	Massachusetts	7,001,399	21,998	146		39526
2023	NY	New York	19,571,216	76,298	595		127118
2023	TX	Texas	30,503,301	123,856	1,845		211615
2023	WY	Wyoming	584,057	1,116	18	:	1851
2022	AK	Alaska	733,583	5,627	70		9684

Table 4: CombinedData_weapon_cleaned_dataset.csv								
Key	AK	CA	MA	NY	TX	WY		
Weapon Law Violations	294	6122	11635	11836	9025	36		
Violation of National	0	0	0	0	0	0		
Firearm Act of 1934								
Handgun	520	17073	24346	6084	156970	285		
Shotgun	114	403	865	263	6958	23		