

Solución arquitectónica de tecnologías de virtualización basada en contenedores para el grupo de investigación en redes, información y distribución (GRID)

Tesis de pregrado

Autores:

José Alejandro Arias Pinzón Cc: 1002652342

Anubis Haxard Correa Urbano Cc: 1004871385

Universidad del Quindío Facultad de ingeniería Programa de Ingeniería de Sistemas

Revisor: Dra. Diana Marcela Rivera Valencia

Asesor: Ph.D. Luis Eduardo Sepúlveda Rodríguez

A mi madre, por sus esfuerzos y sacrificios para brindarme una educación, además de enseñarme el valor del trabajo duro y la perseverancia.

A mi padre, por enseñarme casi todo lo que sé y por ser un ejemplo de esfuerzo. A mi hermano, por su apoyo constante y por ser una fuente de inspiración.

A mi esposa, por su amor, paciencia y comprensión, y por apoyarme de todas las maneras posibles en esta etapa de mi vida.

A mis compañeros, por su colaboración y apoyo durante este proceso, y por hacer de esta experiencia algo más enriquecedor, sin ustedes no habría sido posible.

— José Alejandro Arias Pinzón

A mi familia, por creer siempre en mí y motivarme a alcanzar mis metas.

— Anubis Haxard Correa Urbano

Índice general

Dedicatoria	1
Glosario	9
Siglas y Abreviaturas	11
1.4 Misión del GRID	23
1.5 Visión del GRID	24
1.6 Impacto del proyecto en el GRID	24
A. Anexo A	27

Resumen

Este es un breve resumen del contenido de la tesis.

Abstract

This is a brief summary of the thesis content in English.

Índice de figuras

1.	Análisis de stakeholders del proyecto	21
2.	Priorización de stakeholders del proyecto	22

Índice de cuadros

Introducción

La computación en la nube (Cloud Computing) es uno de los conceptos con más crecimiento en la industria de la tecnología(Jayaweera et al., 2024). Las organizaciones han identificado en esta forma de computación una manera de aprovisionamiento de recursos informáticos rápida y según la demanda. Entre sus principales beneficios se incluyen la flexibilidad, la escalabilidad y la eficiencia en costos(Ahmadi, 2024). La adopción de estos recursos ha transformado el desarrollo de soluciones tecnológicas, lo cual ha posibilitado que la planificación, el análisis, el diseño, el desarrollo, las pruebas y el mantenimiento se realicen completamente en la nube. Esto ha dado origen a aplicaciones nativas de este entorno, conocidas como cloud native apps.

Las cloud native apps permiten a las organizaciones implementar soluciones complejas con un rendimiento mejorado, distribuyendo sus cargas de trabajo en múltiples entornos de nube y optimizando el retorno de inversión(Alonso et al., 2023). Con el aumento en el uso de estas aplicaciones nativas, ha surgido también la necesidad de consolidar los recursos de TI. La virtualización es útil debido a que permite una consolidación de recursos según las necesidades organizacionales. Anteriormente el despliegue de aplicaciones se realizaba directamente sobre el sistema de la máquina física; actualmente, la gran mayoría se ejecuta sobre sistemas virtualizados(Jain and Choudhary, 2016). Las máquinas virtuales, o de sistema completo, han sido hasta ahora el estándar de facto para la segmentación de infraestructura de TI; sin embargo, la virtualización ligera, también conocida como virtualización basada en contenedores (VBC)¹, se ha ido posicionando como una alternativa moderna a las máquinas virtuales.

En este contexto, desde la aparición de Docker en 2013, la virtualización ligera ha transformado el desarrollo de software, fortaleciendo prácticas como DevOps, donde la escalabilidad y la replicabilidad son fundamentales(Docker, 2021). Docker ha experimentado un notable crecimiento en su adopción, debido a su capacidad para ejecutar aplicaciones en el mismo entorno en el que fueron construidas, sin importar el lugar donde se implementen. El crecimiento de Docker se ve evidenciado

¹Las siglas utilizadas en este documento se explican en el capítulo Siglas y Abreviaturas.

en el uso de Docker images por parte de los desarrolladores. En 2023 se registraron 130 mil millones de descargas, cifra que aumentó a 242 mil millones en 2024(Docker, 2024). A partir del auge de Docker, surgieron nuevas tecnologías de contenerización, la aparición de estas puede percibirse inicialmente como una ventaja para organizaciones, desarrolladores y demás actores de TI; sin embargo, la proliferación de estas herramientas puede representar un reto al momento de elegir la idónea en una arquitectura de solución.

Este trabajo aborda la situación ya expuesta, cuyo objetivo principal es proponer una arquitectura de solución basada en contenedores para el Grupo de Investigación en Redes, Información y Distribución (GRID) de la Universidad del Quindío. Inicialmente, se realiza una valoración de necesidades de la organización cliente, destacando sus objetivos misionales enfocados en el apoyo a la docencia, la investigación y la extensión. El desafío consiste en el aprovechamiento de la infraestructura actual del GRID aportando al cumplimiento de sus objetivos misionales. Lo anterior, haciendo uso de los aportes del presente trabajo. Posteriormente, se profundiza en una revisión del estado del arte mediante un estudio de mapeo sistemático (Systematic Mapping Study — SMS), con el objetivo de comprender las tecnologías de virtualización basada en contenedores (VBC) y los dominios de TI en los que se desarrollan. Paso seguido, se realiza un análisis DAR (Decision Analysis and Resolution) basado en el modelo de CMMI, el cual permite definir la tecnología de contenedores adecuada en la implementación de una solución. A partir de este análisis, se desarrolla la arquitectura de solución con base en las necesidades del grupo de investigación

Glosario

En este apartado se encuentran términos clave y conceptos relevantes utilizados a lo largo de este proyecto.

\mathbf{B}

Benchmarking: Mide el rendimiento o el grado de éxito alcanzado en comparación con otras empresas para una actividad, flujo de valor u otros factores de interés determinados. Estas medidas se convierten en la base para el análisis y el rediseño (Peter Wootton, 2024).

\mathbf{C}

Cloud Computing: La computación en la nube es un modelo que permite el acceso a la red, ubicuo, práctico y bajo demanda, a un conjunto compartido de recursos informáticos configurables que pueden aprovisionarse y liberarse rápidamente con un mínimo esfuerzo de gestión o interacción con el proveedor de servicios (Mell, 2011).

${f E}$

Escalabilidad: El escalado automático en computación se refiere al ajuste automático de los recursos informáticos a medida que aumenta la carga de trabajo. Los servicios en la nube aumentan automáticamente sus recursos informáticos en respuesta al aumento de la carga de trabajo, las solicitudes y las actividades. Como parte de este proceso, se asignan servidores adicionales, se asignan recursos de memoria y se gestionan los requisitos de red (Tari et al., 2024).

\mathbf{H}

Hypervisor: Es responsable de crear, administrar y programar máquinas virtuales, que representan máquinas reales para los sistemas operativos que se ejecutan en ellas (Cinque et al., 2024).

P

Private Cloud: Una nube privada virtual se refiere a una nube privada alojada en un entorno de nube pública o compartida. Permite la conexión entre la infraestructura heredada y los servicios en la nube mediante una conexión de red virtual segura (Collins, 2016).

Producto mínimo viable (PMV): El producto mínimo viable es aquella versión de un nuevo producto que permite a un equipo recopilar la máxima cantidad de aprendizaje validado sobre los clientes con el menor esfuerzo (Ries, 2020).

\mathbf{V}

Virtualización: Virtualización significa máquina virtual, que no existe pero proporciona todas las facilidades del mundo real, que se utilizan para mejorar la eficiencia de la computación en la nube (Meena and Kumar Banyal, 2021).

Siglas y Abreviaturas

API Interfaz de Programación de Aplicaciones

CMMI Capability Maturity Model Integration

CPU Unidad Central de Procesamiento

DAR Decision Analysis and Resolution

GRID Grupo de Investigación en Redes, Información y Distribución

IT Tecnologías de la Información

SMS Systematic Mapping Study

VBC Virtualización Basada en Contenedores

Objetivos

1.1 Objetivo general

Especificar una arquitectura de tecnologías de virtualización basadas en contenedores (VBC), evaluando sus características a través de un benchmarking, seleccionando la que mejor se adapte a la necesidad, problema y oportunidad del GRID (Grupo de Investigación en Redes, Información y Distribución), haciendo un análisis DAR e implementando un producto mínimo viable (PMV).

1.2 Objetivos específicos

- Reconocer necesidades del GRID (Grupo de Investigación en Redes, Información y Distribución) con relación a las tecnologías de virtualización basadas en contenedores.
- Identificar las tecnologías de virtualización basadas en contenedores.
- Caracterizar tecnologías de virtualización basadas en contenedores.
- Seleccionar un conjunto de tecnologías de contenedores para realizar pruebas de concepto.
- Diseñar una especificación arquitectónica para las herramientas seleccionadas.
- Implementar el prototipo funcional.
- Validar casos con relación a la necesidad del cliente.

Justificación

Actualmente el Grupo de Investigación en Redes, Información y Distribución (GRID) presenta diversas necesidades y oportunidades con relación a los servicios tecnológicos que ofrece a la Universidad del Quindío, en apoyo a sus objetivos misionales de docencia, investigación y extensión. En este contexto, el GRID busca identificar tecnologías emergentes que permitan potenciar su capacidad de brindar servicios tecnológicos avanzados para su propio beneficio y de la comunidad académica de su influencia. Con relación a lo anterior, la virtualización basada en procesos se presenta como una oportunidad para potenciar la gestión de recursos y servicios de tecnología informática (TI). Aunque el GRID cuenta con una infraestructura basada en máquinas virtuales y gestionadas mediante un hipervisor tipo I, aún se requiere de instancias computacionales más livianas para ser usadas en su oferta de servicios computacionales hacia la comunidad académica, representada por los estudiantes de Ingeniería de Sistemas y Computación de la Universidad del Quindío. Como menciona Sepúlveda-Rodríguez, Chavarro-Porras, Sanabria-Ordoñez, Castro y Matthews (2022), las tecnologías de virtualización han proliferado en los últimos años y constituyen la base subyacente de infraestructuras modernas como el cloud computing. La VBC representan una opción de virtualización que requieren menos recursos computacionales para su operación (Xavier et al., 2013) y que en paralelo con las máquinas virtuales existentes en el GRID podrían constituir una oferta de servicios de TI con mayor diversificación, escalabilidad, flexibilidad y mantenibilidad para satisfacer los requerimientos del contexto académico del grupo de investigación.

Metodología

Texto de la metodología.

Marco Conceptual

Texto del marco conceptual.

Marco Teórico

En el contexto de la gestión de proyectos y el desarrollo de software, contar con marcos de referencia sólidos es esencial para enfrentar los desafíos actuales con una estructura clara y metodologías bien definidas. Estos marcos permiten ubicar el proyecto dentro de una corriente de pensamiento ampliamente aceptada, al tiempo que proporcionan herramientas prácticas que facilitan su aplicación en contextos reales. Uno de los referentes más reconocidos en la gestión de proyectos es el PMBOK (Project Management Body of Knowledge), establecido por el Project Management Institute. Este estándar reúne un conjunto amplio de buenas prácticas aplicables a la mayoría de los proyectos, organizando el trabajo en áreas clave como el alcance, tiempo, costos, calidad, riesgos y recursos(Institute, 2017). La utilización del PM-BOK no solo mejora la gestión y control de los proyectos, sino que también permite alinearlos con los objetivos estratégicos de la organización, propendiendo la entrega de valor y la reducción de riesgos durante su ejecución(Monday, 2022). Complementariamente, la norma ISO 9000 aporta una perspectiva centrada en la calidad, promoviendo la estandarización de procesos y la mejora continua (Porfert, 1986). Esta serie de normas internacionales busca garantizar que las organizaciones respondan de manera consistente a las expectativas de los clientes, mediante la implementación de principios que abarcan desde el liderazgo hasta la gestión de la información y el conocimiento. Aplicar este marco no solo mejora la operación, sino que también fortalece la confianza del cliente y asegura la calidad en los productos y servicios ofrecidos (Gray et al., 2022). Así, se establece una conexión directa entre la gestión de proyectos y los sistemas de calidad, lo que resulta especialmente útil cuando se busca garantizar la sostenibilidad de los resultados. Para abordar la complejidad técnica de los sistemas desarrollados, se recurre al modelo por capas, una arquitectura que permite dividir el sistema en distintos niveles con funciones específicas y autónomas. Esta forma de organización contribuye a una mayor claridad y modularidad, permitiendo que los componentes de una capa puedan ser modificados sin afectar el resto del sistema (Spray, 2023). De este modo, se facilita el mantenimiento, la escalabilidad y la gestión de cambios, cualidades esenciales en el desarrollo de software moderno. La interoperabilidad también se ve fortalecida, dado que esta arquitectura permite una integración más fluida entre distintos módulos y servicios. En ese mismo sentido, la Cloud Native Computing Foundation (CNCF) introduce un enfoque moderno para el desarrollo de aplicaciones, orientado a tecnologías nativas de la nube. Este marco promueve prácticas como el uso de contenedores, microservicios y la automatización continua, con el objetivo de construir soluciones más eficientes, escalables y resilientes(?). La CNCF también proporciona herramientas que buscan la portabilidad y la interoperabilidad entre diferentes entornos de nube, lo que permite a las organizaciones adaptarse con mayor agilidad a un entorno cambiante y competitivo. Su enfoque abierto e interoperable lo convierte en un aliado clave para iniciativas que busquen aprovechar al máximo las capacidades de la nube. Junto a estas herramientas técnicas y de gestión, el Design Thinking aporta una perspectiva centrada en las personas, enfocándose en comprender profundamente las necesidades del usuario para proponer soluciones innovadoras(?). Esta metodología fomenta la empatía, la experimentación y la colaboración interdisciplinaria, promoviendo la creación de productos y servicios que se ajusten con mayor precisión a las demandas reales del contexto. Su inclusión en proyectos tecnológicos no solo impulsa la innovación, sino que también fortalece la toma de decisiones ágiles y adaptativas, favoreciendo entornos flexibles en constante evolución. Por su parte, TOGAF (The Open Group Architecture Framework) complementa este conjunto de marcos al enfocarse en la alineación entre la estrategia del negocio y los procesos de tecnología de la información. Mediante su enfoque estructurado por fases —que abarca desde la planificación hasta la implementación y el monitoreo— TOGAF permite gestionar arquitecturas empresariales de forma coherente y flexible. Su aplicación ayuda en el uso recursos, integración de sistemas y toma de decisiones estratégicas con una visión holística de la organización(Mumtaza et al., 2025). Finalmente, la norma ISO/IEC 25010 establece un modelo integral para la evaluación de la calidad del software, considerando atributos como la funcionalidad, usabilidad, seguridad, mantenibilidad y portabilidad(?). Este marco teórico es fundamental para asegurar que los sistemas desarrollados cumplan con los requisitos tanto del negocio como del usuario final, proporcionando un enfoque riguroso que permite identificar áreas de mejora en las distintas etapas del ciclo de vida del software. Su adopción permite fortalecer la confianza en los productos desarrollados y garantizar su robustez en contextos dinámicos. Todos estos marcos, aunque distintos en su enfoque, se complementan entre sí y permiten establecer una base para la formulación y ejecución de proyectos tecnológicos. Su integración permite abordar los retos desde múltiples dimensiones —estratégica, técnica, organizacional y humana—, ayudando al diseño \mbox{de} soluciones innovadoras y sostenibles.

Desarrollo Metodológico

1. Caracterización del GRID

El Grupo de Investigación en Redes, Información y Distribución (GRID) de la Universidad del Quindío se dedica a la educación, investigación y extensión, siendo los objetivos misionales de la Universidad del Quindío. Desde el grupo de investigación se busca ofrecer servicios tecnológicos avanzados a la comunidad académica, especialmente a los estudiantes de Ingeniería de Sistemas y Computación. Es por esto que en este apartado se caracterizó el GRID, identificando sus necesidades y oportunidades con relación a las tecnologías de virtualización basadas en contenedores (VBC).

2. Mapeo SMS

El mapeo sistemático de estudios (SMS) se realizó para identificar y analizar las tecnologías de virtualización basadas en contenedores (VBC) más relevantes y utilizadas en la actualidad. Este proceso incluyó la revisión de literatura académica, artículos técnicos y estudios de caso, con el fin de establecer un panorama claro sobre las opciones disponibles y sus características principales.

3. Identificación y caracterización de las tecnologías VBC

En esta sección se llevó a cabo un análisis detallado de las tecnologías de virtualización basadas en contenedores (VBC) identificadas en el mapeo SMS. Se examinaron sus características, ventajas y desventajas, así como su aplicabilidad en el contexto del GRID.

4. Benchmarking de tecnologías VBC

El benchmarking se realizó para comparar las tecnologías VBC en función de criterios como uso de CPU, throughput de red, I/O. Esta evaluación permitió identificar las soluciones más adecuadas para las necesidades del GRID.

5. Análisis DAR

El análisis de riesgos y oportunidades (DAR) se llevó a cabo para evaluar el impacto potencial de la implementación de tecnologías VBC en el GRID. Se identificaron los principales riesgos asociados y se propusieron estrategias para mitigarlos.

- 6. Diseño de la solución arquitectónica
- 7. Implementación de la solución
- 8. Validación de la solución

1. Caracterización del GRID

El Grupo de Investigación en Redes, Información y Distribución (GRID) de la Universidad del Quindío se dedica a la educación, investigación y extensión, siendo los objetivos misionales de la Universidad del Quindío. Desde el grupo de investigación se busca ofrecer servicios tecnológicos a la comunidad académica, especialmente a los estudiantes de Ingeniería de Sistemas y Computación.

1.1 Análisis de stakeholders del grupo GRID

Para comprender mejor las necesidades y expectativas del GRID, se realizó un análisis de los stakeholders involucrados. Este análisis incluyó a los miembros del grupo de investigación, estudiantes, docentes, entre otros, identificando sus roles, impacto y poder de influencia por una solución basada en las tecnologías de virtualización basadas en contenedores (VBC).

Stakeholder ∨	Rol v	Involucramiento ∨	Impacto ~	Poder de influencia V	Interés ∨	Compromiso V
Grupo de Investigación GRID	Beneficiario principal	Provee infraestructura, evalúa la solución y su impacto	Alto	Alto, decide la adopción de la tecnología	Alto, busca mejorar sus servicios	Alto, ya que su infraestructura será potenciada
Docentes de Ingeniería de Sistemas	Usuarios clave	Harán uso de los entregables para proyectos y enseñanza	Medio-Alto	Medio, pueden sugerir mejoras pero no decidir implementación	Medio-Alto, esperan decisiones sobre tecnología para enseñanza e investigación	Medio, dependerá de la utilidad de la solución
Estudiantes de Ingeniería de Sistemas	Usuarios finales	Usarán los servicios en sus cursos y proyectos. Podrán informarse sobre el estudio.	Medio	Bajo, no tienen poder de decisión, pero su uso validará la solución	Alto, necesitan un entorno estable y eficiente	Medio-Alto, dependiendo de la accesibilidad y usabilidad
Programa de ingeniería de sistemas y computación	Facilitador	Puede apoyar con recursos y normativas para la adopción	Alto	Alto, puede aprobar recursos	Medio, su interés es institucional y estratégico	Bajo-Medio, si la solución no afecta directamente a su gestión
Proveedores de tecnología (Docker, Kubernetes, etc.)	Proveedores de herramientas	Proveen la tecnología de virtualización a utilizar	Bajo	Bajo, la decisión de uso recae en el GRID y la universidad	Bajo aunque buscan ampliar su base de usuarios	Bajo, su involucramiento es indirecto
Investigadores y otros grupos de investigación	Potenciales beneficiarios	Pueden usar los resultados en busqueda de mejoras para sus proyectos	Medio	Medio, pueden influir con solicitudes de mejora	Medio, dependiendo de su relación con GRID	Bajo, solo si ven beneficios concretos
Sector empresarial	Potencial inversor o usuario	Podría apoyar la solución si ve ventajas en la adopción de TVBC	Bajo-Medio	Bajo, no decide en la universidad, pero puede ofrecer incentivos	Bajo-Medio, si la tecnología ofrece valor comercial	Bajo, depende de la alineación con sus intereses

Figura 1: Análisis de stakeholders del proyecto

1.2 Priorización de stakeholders

A partir del análisis de stakeholders, se priorizaron aquellos que tienen mayor impacto y poder de influencia en el proyecto. Esta priorización permite enfocar

los esfuerzos de comunicación y gestión de expectativas hacia los stakeholders más relevantes, asegurando que sus necesidades sean atendidas de manera especial.

Priorización de stakeholders

Figura 2: Priorización de stakeholders del proyecto

1.3 Integrantes y áreas de trabajo del GRID

El GRID está compuesto por un equipo multidisciplinario de investigadores y profesionales, cada uno con áreas de especialización diferentes. A continuación se presentan los diferentes integrantes y sus respectivas áreas de trabajo:

- Christian Andrés Candela Uribe: Microservicios, desarrollo de software, minería de datos, infraestructura TI
- Luis Eduardo Sepúlveda Rodríguez: Infraestructura de TI, HPC, computación paralela
- Carlos Andrés Flórez Villarraga: Programación y algoritmia, Activa, inteligencia artificial
- Carlos Eduardo Gómez Montoya: Networking, ingeniería de software, cloud computing

- Sergio Augusto Cardona Torres: Big data y análisis de datos, ingeniería de software, educación asistida por computador - sistemas adaptativos, informática educativa
- Sonia Jaramillo Valbuena: Big data, electroquímica, inteligencia artificial
- Julián Esteban Gutiérrez Posada: Microservicios, desarrollo de software, minería de datos, infraestructura TI, HPC, computación paralela, networking, ingeniería de software

1.4 Misión del GRID

La misión del GRID es heredada de la Universidad del Quindío. A continuación se presenta la misión del GRID:

La Universidad del Quindío contribuye a la transformación de la sociedad, mediante la formación integral desde el ser, el saber y el hacer, de líderes reflexivos y gestores del cambio; con estándares de calidad, a través de una oferta de formación en diferentes metodologías, que responda a una sociedad basada en el conocimiento; una investigación pertinente, que aporte a la solución de las problemáticas del desarrollo e integrada con la extensión y proyección social; educando en tiempos del posconflicto y de la consolidación de la paz, apoyada en una gestión creativa y con estándares de calidad.

A partir de esta misión, se identifican los siguientes pilares fundamentales:

- **Docencia:** La Universidad del Quindío contribuye a la transformación de la sociedad, mediante la formación integral desde el ser, el saber y el hacer, de líderes reflexivos y gestores del cambio; con estándares de calidad, a través de una oferta de formación en diferentes metodologías, que responda a una sociedad basada en el conocimiento.
- Investigación: Una investigación pertinente, que aporte a la solución de las problemáticas del desarrollo e integrada con la extensión y proyección social.
- Extensión y Desarrollo Social: Apoyada en una gestión creativa y con estándares de calidad.
- Responsabilidad Social: Educando en tiempos del posconflicto y de la consolidación de la paz.

1.5 Visión del GRID

En el año 2025, la Universidad del Quindío estará consolidada como una institución *Pertinente - Creativa - Integradora*, acreditada de alta calidad, con reconocimiento nacional e internacional en sus procesos de formación a través de diferentes metodologías, de investigación, extensión, proyección y responsabilidad social.

A partir de esta visión, se destacan los siguientes enfoques estratégicos:

- Gestión: La Universidad del Quindío estará consolidada como una institución Pertinente - Creativa - Integradora.
- Docencia: Acreditada de alta calidad en sus procesos de formación a través de diferentes metodologías.
- Investigación: Consolidada como pertinente y de alta calidad en sus procesos de investigación.
- Extensión y Desarrollo Social: Procesos creativos e integradores en proyección social.
- Responsabilidad Social: Reconocimientos en sus procesos de responsabilidad social.

1.6 Impacto del proyecto en el GRID

El proyecto tiene como objetivo apoyar los procesos de **docencia**, **investigación** y **extensión** mediante la especificación de una arquitectura de tecnologías de virtualización basada en contenedores (VBC).

Este trabajo se enfoca en la identificación de una tecnología de contenerización que **agregue valor a los procesos del GRID**, beneficiando a **docentes**, **estudiantes** y cualquier parte interesada que participe en los proyectos y actividades desarrolladas por este grupo de investigación.

1.7 Caracterización de la infraestructura tecnológica del GRID

En el siguiente formato se van a especificar las características técnicas de la infraestructura tecnológica del GRID disponible para temas de virtualización. Macro de la ficha técnica

Bibliografía

- Ahmadi, S. (2024). Systematic Literature Review on Cloud Computing Security: Threats and Mitigation Strategies. *Journal of Information Security*, 15(02):148–167.
- Alonso, J., Orue-Echevarria, L., Casola, V., Torre, A. I., Huarte, M., Osaba, E., and Lobo, J. L. (2023). Understanding the challenges and novel architectural models of multi-cloud native applications a systematic literature review. Springer Berlin Heidelberg.
- Cinque, M., De Simone, L., and Ottaviano, D. (2024). Temporal isolation assessment in virtualized safety-critical mixed-criticality systems: A case study on Xen hypervisor. *Journal of Systems and Software*, 216:112147.
- Collins, L. (2016). Virtual Private Cloud.
- Docker (2021). Developers Bring Their Ideas to Life with Docker.
- Docker (2024). Docker Index: Dramatic Growth in Docker Usage Affirms the Continued Rising Power of Developers.
- Gray, J., Ross, J., and Badrick, T. (2022). The path to continual improvement and business excellence: compliance to ISO standards versus a business excellence approach. *Accreditation and Quality Assurance*, 27(4):195–203.
- Institute, P. M. (2017). Guia de los Fundamentos Para la Direccion de Proyectos: Guia del Pmbok. Project Management Institute.
- Jain, N. and Choudhary, S. (2016). Overview of virtualization in cloud computing. 2016 Symposium on Colossal Data Analysis and Networking, CDAN 2016.
- Jayaweera, M., Kithulwatta, W., and Rathnayaka, R. (2024). An Approach to Examine and Recognize Anomalies on Cloud Computing Platforms with Machine. *International Journal of Research in Cloud Computing*.

- Meena, J. K. and Kumar Banyal, R. (2021). Efficient Virtualization in Cloud Computing. In *Proceedings 5th International Conference on Computing Methodologies and Communication, ICCMC 2021*, pages 227–232.
- Mell, P. G. (2011). The NIST Definition of Cloud Computing. *National institute of standart and technology*.
- Monday (2022). The PMBOK and How It's Used in Project Management.
- Mumtaza, F. F., Mulyana, R., and Mukti, I. Y. (2025). Utilizing TOGAF 10 to Design an Enterprise Architecture for BPRBCo SME Digital Transformation.
- Peter Wootton (2024). Benchmarking.
- Porfert, J. (1986). Quality Management Systems. Standard, International Organization for Standardization, Ginebra, Suiza.
- Ries, E. (2020). Minimum Viable Product: a guide. August 3, 2009. Retrieved July, 29.
- Spray, J. R. (2023). Abstraction Layered Architecture.
- Tari, M., Ghobaei-Arani, M., Pouramini, J., and Ghorbian, M. (2024). Auto-scaling mechanisms in serverless computing: A comprehensive review. *Computer Science Review*, 53:100650.

Apéndice A

Anexo A

Contenido adicional.