POM-2

$$m \times 0.5 \times 100 = 6400 + 50 \times 540$$
 $50m = 6400 + 27000$
 $m = 668$
 200°
 $m = 668$

(iv) amond of vapor for which find tup of system is I wich and all vapor gets Condeum

 $m \times 0.5 \times 100 + m \times 540 = 80 \times 1 \times (80)$ $m \times 90 = 6400$ m = 10.8 gran m = 10.8 gran

: Themal Expansion;

$$\begin{cases} \text{rang} = \frac{r_1 + r_2}{2} \\ \text{(ray)ned} \end{cases}$$

(ii)
$$A = Ao (1+ \beta 00)$$
 (selfint) Superfinal support $\beta = 1d$

$$\begin{cases}
d D O < (1) \\
d = 10^{-5}/-1-7
\end{cases}
A' = 11^2 = 10(1+00) 10(1+00)$$

$$S = 10^2 (1+00) 10(1+00)$$

$$S = 10^2 (1+00) 10(1+00)$$

$$S = 10 (1+00) 10(1+00)$$

(iii) v =

V = Vo (I+ VDe)

y "coefficient & voluntoic

Expansion"

Y = 3 2

16. A triangular plate has two cavities, one triangle and other rectangle. The plate is heated:

(A) x increases, wzy decreases xwzy all increase

(C) w, z, y increase, x decreases

(D) information is not sufficient

Thermal Expansion:

Photogenthic enlargement

To 12345678116

THOT

12345678116

Measured leight < Actual leight

Actual leight = meaned leight

Illustration - 10 A surveyor's 30 m steel tape is correct at a temperature of 20°C. The distance between two points, as measured by this tape on a day when the temperature is 35°C, is 26 m. What is the true distance between the points? $(\alpha_{steel} = 1.2 \times 10^{-5})$ °C)

SOLUTION:

Let temperature rise above the correct temperature be θ . $\Rightarrow \theta = 35 - 20 = 15^{\circ}C.$

 $\Rightarrow \qquad \theta = 35 - 20 = 15^{\circ}C$

Using the relation:

Correct length = measured length $(1 + \alpha\theta)$

True distance between the points

$$= 26 (1 + 1.2 \times 10^{-5} \times 15)$$

 \Rightarrow true distance = 26.00468 m.

bothood Heat by (D0)
$$l_1 = l_1 (1 + \alpha_1 D \bullet)$$

$$l_2 = l_2 (1 + \alpha_2 D \bullet)$$

"find Cordition for which charge in difference in rod is =0" fiel diff = 2! - 12! = 21 (1+ ×1 00) - 12/1+×10) $\frac{2(1+4,00)-2(1+4,00)=2,-32}{4,1,90-12}$ $\frac{|\alpha_1|_1 = \langle 2|_2|_2}{|\alpha_1|_2} \text{ Remulu this}$ $\frac{|\alpha_1|_1 = \langle 2|_2|_2}{|\alpha_1|_2} \text{ Remulu this}$

4) L= VO (1+ YLDO)

Illustration - 14 A glass flask whose volume is exactly 1000 cm^3 at $0^{\circ}C$ is filled level full of mercury at this temperature.

When the flask and mercury are heated to $100^{\circ}C$, 15.2 cm³ of mercury overflow. If the coefficient of cubical expansion of Hg is 1.82×10^{-4} /°C, compute the coefficient of linear expansion of glass.

SOLUTION:

As 15.2 cm^3 of Hg overflow at $100 \,^{\circ}C$,

final volume of Hg – final volume of glass flask

$$= 15.2 cm^3$$

$$\Rightarrow 1000 (1 + \gamma_{\ell}\theta) - 1000 (1 + \gamma_{\ell}\theta) = 15.2$$

where θ = rise in temperature = $100 - 0 = 100^{\circ}C$

$$\Rightarrow \qquad \gamma_g = \gamma_\ell - \frac{15.2}{1000 \ \theta} = 0.000182 - 0.000152$$

$$\Rightarrow$$
 $\gamma_g = 0.00003/^{\circ}C = 3 \times 10^{-5} (^{\circ}C)^{-1}$

$$\Rightarrow \qquad \alpha_g = \frac{\gamma_g}{3} = 1 \times 10^{-5} \, (^{\circ}C)^{-1}$$

$$(\Lambda^{\Gamma})^{-1} - (\Lambda^{\Gamma})^{C} = 12.5$$

Illustration - 15 / A 250 cm³ glass bottle is completely filled with water at 50°C. The bottle and water are heated to 60°C.

How much water runs over if:

the expansion of the bottle is neglected?

the expansion of the bottle is included? Given the coefficient of cubical expansion of glass $\gamma_g = 1.2 \times 10^{-5} / {^{\circ}C}$ and $\gamma_{\text{matter}} = 60 \times 10^{-5} / {^{\circ}C}$.

SOLUTION:

Water overflow = (final volume of water)

- (final volume of bottle)

(a) If the expansion of bottle is neglected:

Water overflow = $250 (1 + \gamma_{\ell} \theta) - 250$

$$= 250 \times 60 \times 10^{-5} \times 10$$

water overflow = $1.5 cm^3$.

(b) If the bottle (glass) expands:

Water overflow = (final volume of water)

- (final volume of glass) = 250 (1 + $\gamma_{\ell}\theta$) - 250 (1 + $\gamma_{\varrho}\theta$) = 250 ($\gamma_{\ell} - \gamma_{\varrho}$) θ

$$=250(58.8 \times 10^{-5}) \times (60-50)$$

water overflow = 1.47 cm^3 .

Pendulus:

$$T = 2\pi \int_{0}^{2} \int_{0}^$$

Per see los(=
$$(1000)$$
 2 2 1 1 10 is the period in (rene in the period is forday loss = (6400) 2019 to be lorday loss = (6400) 2019 to be

(1 + & Ag DO) Ling = (1+ Kai Do) Kay

