ЛАБОРАТОРНАЯ РАБОТА №6

торсионный осциллятор.

СОБСТВЕННЫЕ И ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ ЛИНЕЙНОГО ОСЦИЛЛЯТОРА

Поляков Даниил, Б07-Ф3

Цель работы: экспериментальное изучение закономерностей собственных колебаний в линейной системе, установившихся вынужденных колебаний при синусоидальном внешнем воздействии и переходных процессов установления вынужденных колебаний путём измерения количественных характеристик таких колебаний.

Оборудование:

- Торсионный осциллятор с электромагнитом и электродвигателем;
- Источник тока;
- Амперметр;
- Mobile-CASSY.

Расчётные формулы:

• Линейное дифференциальное уравнение осциллятора:

$$\ddot{\varphi} + 2\gamma\dot{\varphi} + \omega_0^2\varphi = 0$$

 φ – угол отклонения осциллятора от начального положения;

 ω_0 — собственная циклическая частота колебаний осциллятора;

 γ — постоянная затухания.

• Период собственных колебаний осциллятора:

$$T_0 = \frac{t_n - t_0}{n}$$

- t_0 момент прохождения осциллятором начального максимума;
- t_n момент прохождения осциллятором n-го максимума;
- n количество полных колебаний между максимумами.
- Собственная частота осциллятора:

$$\omega_0 = \frac{2\pi}{T_0}$$

 T_0 — период собственных колебаний осциллятора.

• Добротность осциллятора:

$$Q = \frac{n\pi}{\ln(\varphi_0/\varphi_n)}$$

n – количество полных колебаний между максимумами;

 $arphi_0$ — максимальное отклонение осциллятора в начальный момент времени;

 φ_n – максимальное отклонение осциллятора спустя n колебаний.

• Постоянная затухания:

$$\gamma = \frac{\omega_0}{2Q}$$

 ω_0 — собственная частота осциллятора; Q — добротность осциллятора.

• Зависимость амплитуды вынужденных колебаний осциллятора от их частоты:

$$a = \frac{\omega_0^2 \theta_0}{\sqrt{(\omega_0^2 - \omega^2)^2 + 4\gamma^2 \omega^2}}$$

 $heta_0$ — размах колебаний шатуна (амплитуда возбуждения);

 ω — частота вынужденных колебаний; ω_0 — собственная частота осциллятора; γ — постоянная затухания.

 Амплитуда вынужденных колебаний осциллятора (приближенная формула для частоты колебаний, сильно отличающейся от резонансной):

$$a \approx \frac{\theta_0}{|1 - \omega^2/\omega_0^2|}$$

 $heta_0$ — размах колебаний шатуна (амплитуда возбуждения);

 ω — частота вынужденных колебаний; ω_0 — собственная частота осциллятора.

- Формулы для вычисления погрешностей:
 - о Абсолютная погрешность косвенных измерений:

$$\Delta f(x_1, x_2, \dots) = \sqrt{\left(\frac{\partial f}{\partial x_1} \cdot \Delta x_1\right)^2 + \left(\frac{\partial f}{\partial x_2} \cdot \Delta x_2\right)^2 + \dots}$$

Метод проведения измерений

- 1. Исследуем свободные колебания осциллятора. Отклоним осциллятор на некоторый угол φ_0 , отпустим и запустим измерение зависимости отклонения осциллятора от времени до тех пор, пока осциллятор не остановится. По графику определим собственный период колебаний осциллятора T_0 , а по предельным отклонениям найдём добротность Q. Проведём такие же измерения для других φ_0 .
- 2. Исследуем затухающие колебания осциллятора. Будем отклонять осциллятор на некоторый примерно одинаковый угол φ_0 при протекающем через электромагнит токе. Проведём те же измерения при различных значениях силы тока I.
- 3. Исследуем критическое затухание колебаний осциллятора. Выберем высокое значение силы тока и измерим динамику отклонения осциллятора.
- 4. Перейдём к исследованию вынужденных колебаний. Выберем такую силу тока, чтобы добротность находилась в интервале от 15 до 25. Найдём её аналогично п.1.
- 5. Найдём амплитуду колебаний шатуна. Для этого установим низкую частоту оборота электродвигателя. По максимуму и минимуму полученного графика определим предельные отклонения осциллятора влево (θ_1) и вправо (θ_2).
- 6. Исследуем вынужденные колебания на высокой частоте. Установим высокую частоту оборота электродвигателя. По времени совершения 10 колебаний найдём период и частоту колебаний осциллятора.
- 7. Исследуем явление резонанса. Подберём такую частоту оборота электродвигателя, при которой амплитуда колебаний осциллятора максимальна. Из графика найдём максимальное значение амплитуды.
- 8. Составим амплитудно-частотную характеристику осциллятора. Будем изменять частоту вращения электродвигателя и снимать соответствующий период колебаний осциллятора из графика. Соберём достаточное количество точек. Затем изменим силу тока в электромагните и найдём новое значение добротности Q. Повторим такие же измерения при новом затухании.

Таблицы и обработка данных

Погрешность нахождения моментов времени равна половине цены деления: $\Delta t = 0.025~\mathrm{c}$. Погрешность нахождения углов отклонения осциллятора равна половине цены деления: $\Delta \phi = 0.05^\circ$.

Колебания осциллятора при минимальном затухании (при отсутствии тока).

φ_0 , °	φ_n , $^{\circ}$	n	t_0 , c	t_n , c	T_0 , c	$\langle T_0 \rangle$, c	$\langle \omega_0 \rangle$, c ⁻¹	Q	$\langle Q \rangle$
45.3	7.9	10	0.80	20.00	1.920±0.004			17.99±0.07	
54.9	12.6	10	0.90	20.25	1.935±0.004	1 0244	2 240	21.35±0.06	24 24
65.2	6.6	15	0.60	29.55	1.930±0.002	1.9344 ±0.0013	3.248 ±0.002	20.57±0.07	21.24
74.9	8.8	15	0.75	29.80	1.937±0.002	±0.0013	±0.002	22.01±0.06	±0.06
87.7	12.6	15	0.50	29.75	1.950±0.002			24.29±0.05	

$$\Delta T_0(t_0, t_n) = \sqrt{\left(\frac{\partial T_0}{\partial t_0} \cdot \Delta t_0\right)^2 + \left(\frac{\partial T_0}{\partial t_n} \cdot \Delta t_n\right)^2} = \frac{\sqrt{(\Delta t_0)^2 + (\Delta t_n)^2}}{n}$$

$$\Delta \langle T_0 \rangle = \sqrt{\sum_{i=1}^{N} \left(\frac{\partial \langle T_0 \rangle}{\partial T_{0i}} \cdot \Delta T_{0i} \right)^2} = \frac{\sqrt{\sum_{i=1}^{N} \left(\Delta T_{0i} \right)^2}}{N} \approx 0.0013 \text{ c}$$

$$\Delta\omega_0(T_0) = \left| \frac{\partial\omega_0}{\partial T_0} \cdot \Delta T_0 \right| = \frac{2\pi}{{T_0}^2} \cdot \Delta T_0 \approx 0.002 \text{ c}^{-1}$$

$$\begin{split} \Delta Q(\varphi_0,\varphi_n) &= \sqrt{\left(\frac{\partial Q}{\partial \varphi_0} \cdot \Delta \varphi_0\right)^2 + \left(\frac{\partial Q}{\partial \varphi_n} \cdot \Delta \varphi_n\right)^2} = \\ &= \sqrt{\left(\frac{\pi n}{\varphi_0 \cdot \ln^2\left(\frac{\varphi_0}{\varphi_n}\right)} \cdot \Delta \varphi_0\right)^2 + \left(\frac{\pi n}{\varphi_n \cdot \ln^2\left(\frac{\varphi_0}{\varphi_n}\right)} \cdot \Delta \varphi_n\right)^2} = \\ &= \frac{\pi n}{\ln^2\left(\frac{\varphi_0}{\varphi_n}\right)} \sqrt{\left(\frac{\Delta \varphi_0}{\varphi_0}\right)^2 + \left(\frac{\Delta \varphi_n}{\varphi_n}\right)^2} \end{split}$$

$$\Delta \langle Q \rangle = \sqrt{\sum_{i=1}^{N} \left(\frac{\partial \langle Q \rangle}{\partial Q_i} \cdot \Delta Q_i \right)^2} = \frac{\sqrt{\sum_{i=1}^{N} (\Delta Q_i)^2}}{N} \approx 0.06$$

Разница между полученными периодами колебаний при разной амплитуде незначительная. Можно сделать заключение о линейности осциллятора.

Затухающие колебания осциллятора (при протекающем токе).

График колебаний осциллятора при силе тока, равной 0.3 А:

I, A	$arphi_0$, $^\circ$	φ_n , $^{\circ}$	n	t_0 , c	t_n , c	T_1 , c	$\langle T_1 \rangle$, c	Q
0.1	87.9	25.2	10	0.60	20.15	1.955±0.004		25.15±0.04
0.2	79.2	9.5	10	0.75	20.15	1.940±0.004	1 0/1	14.81±0.04
0.3	74.5	11.0	7	0.75	14.30	1.936±0.005	1.941 ±0.003	11.50±0.03
0.4	70.2	11.0	5	0.70	10.40	1.940±0.007	±0.003	8.47±0.02
0.5	73.0	8.8	4	0.75	8.50	1.938±0.009		5.94±0.02

Все погрешности вычислялись по тем же формулам. Полученный период затухающих колебаний T_1 практически не отличается от периода собственных колебаний T_0 .

Сравнение максимальных отклонений осциллятора при токе 0.1 А:

φ_n , $^{\circ}$	87.9	80.6	73.4	66.3	59.5	52.8	46.9	41.3	35.6	30.3
φ_n/φ_{n-1}	-	0.917	0.911	0.903	0.897	0.887	0.888	0.881	0.862	0.851

Видно, что разница между последовательными максимумами увеличивается при уменьшении амплитуды. Можно предположить, что это связано с наличием сил трения, которые постоянны и не зависят от скорости движения осциллятора, а значит проявляют себя более значительно при уменьшении амплитуды.

Критическое затухание колебаний осциллятора.

Наблюдаем, что осциллятор по инерции перескочил положение равновесия, а затем асимптотически стремился к положению равновесия.

Вынужденные колебания.

Нахождение добротности (в интервале 15-25), используемой при последующих измерениях:

$arphi_0$, $^\circ$	$arphi_n$, $^\circ$	n	Q
92.2	50.2	4	20.67±0.04

Нахождение амплитуды возбуждения:

Здесь θ_1 — максимальное отклонение шатуна влево, θ_2 — максимальное отклонение шатуна вправо, $\theta_0=\frac{\theta_1+\theta_2}{2}$.

 θ_2 , $^{\circ}$

3.7

 θ_0 , °

3.8

 θ_1 , °

3.9

При низкой частоте вращения якоря колебания ротора происходят практически в одинаковой фазе с колебаниями шатуна, а их амплитуда почти совпадает с размахом колебаний шатуна.

Вынужденные колебания на высокой частоте:

n	$\langle \varphi angle$, $^{\circ}$	t_n , c	T_2 , c	ω , c ⁻¹
10	0.59	6.90	0.690±0.004	9.11±0.05

Вычислим теоретическое значение амплитуды вынужденных колебаний и сравним его с полученным экспериментально:

$$a \approx \frac{\theta_0}{\left|1 - \frac{\omega^2}{\omega_0^2}\right|} \approx 0.55^\circ$$

Теоретическое значение амплитуды близко к экспериментальному.

Теперь добьёмся резонанса, подбирая различные значения частоты вращения якоря, добиваясь максимальной амплитуды колебания осциллятора. Наблюдаем отклонение колебаний ротора на четверть периода от колебаний шатуна. Экспериментально достигнутая амплитуда колебаний равна 77.7°. Сравним это значение с теоретическим, рассчитываемым по приближенной формуле $a_{max} = Q \cdot \theta_0 \approx 78.55 \pm 0.15.$ Экспериментально и теоретически полученные значения близки друг к другу.

Нахождение амплитудно-частотной характеристики.

Добротность $Q_1=20.67\pm0.04$; постоянная затухания $\gamma_1=\frac{\omega_0}{2Q}=0.0786\pm0.0002$ с $^{-1}$.

a_1 , $^{\circ}$	T_1 , c	ω_1 , c^{-1}
4.1	5.89	1.07
5.3	4.06	1.55
7.2	2.92	2.15
8.6	2.55	2.46
14.4	2.31	2.72
47.5	2.03	3.10
58.0	2.01	3.13
62.4	2.00	3.14
70.8	1.99	3.16
78.4	1.98	3.17
83.3	1.97	3.19
76.5	1.95	3.22
50.2	1.90	3.31
14.4	1.73	3.63
6.2	1.51	4.16
4.2	1.37	4.59

Теоретическая зависимость $a_1(\omega_1)$ выражается следующим образом:

$$a_1(\omega_1) = \frac{\omega_0^2 \theta_0}{\sqrt{(\omega_0^2 - \omega_1^2)^2 + 4\gamma_1^2 \omega_1^2}} = \frac{40.09}{\sqrt{(10.55 - \omega_1^2)^2 + 0.0247\omega_1^2}}$$

Изобразим график теоретической зависимости $a_1(\omega_1)$ и экспериментальные точки:

Добротность $Q_2=12.53\pm0.06$; постоянная затухания $\gamma_2=\frac{\omega_0}{2Q}=0.1296\pm0.0006$ с $^{-1}$.

a_2 , °	T_2 , c	ω_2 , c^{-1}
4.0	5.10	1.23
4.9	4.57	1.37
6.5	2.99	2.10
11.0	2.42	2.60
20.7	2.17	2.90
25.8	2.10	3.00
29.1	2.02	3.11
33.1	2.01	3.13
37.0	2.00	3.14
41.4	1.99	3.16
47.7	1.97	3.19
49.6	1.95	3.22
25.7	1.89	3.32
18.3	1.71	3.67
9.5	1.57	4.00
5.2	1.35	4.65

Теоретическая зависимость $a_2(\omega_2)$ выражается следующим образом:

$$a_2(\omega_2) = \frac{\omega_0^2 \theta_0}{\sqrt{(\omega_0^2 - \omega_2^2)^2 + 4\gamma_2^2 \omega_2^2}} = \frac{40.09}{\sqrt{(10.55 - \omega_2^2)^2 + 0.0672\omega_2^2}}$$

Изобразим график теоретической зависимости $a_2(\omega_2)$ и экспериментальные точки:

Изобразим графики теоретических зависимостей $a_1(\omega_1)$ и $a_2(\omega_2)$ вместе с экспериментальными точками на общей плоскости:

Из графиков видно, что при увеличении постоянной затухания максимальная амплитуда колебаний уменьшается. Полученные экспериментальные точки примерно соответствуют теоретическим графикам.

Выводы

- Колебания осциллятора затухают по геометрическому закону.
- Амплитуда колебаний осциллятора максимальна при совпадении частоты возбуждения с собственной частотой осциллятора.
- При увеличении тормозящей силы (и, соответственно, постоянной затухания) уменьшается максимальная амплитуда колебаний осциллятора.