TD4: Méthodes itératives

Exercice 1. Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique définie positive. On décompose A sous la forme A = M - N avec M inversible. Dans cette exercice on se propose de démontrer une condition suffisante $(M^t + N)$ est symétrique définie positive pour que la méthode itérative associée à la décomposition A = M - N converge.

- 1. Montrer que $\|\cdot\|_*: x \in \mathbb{R}^n \mapsto \|x\|_* = \sqrt{x^t A x}$ définit bien une norme sur \mathbb{R}^n . On note $\|\cdot\|_*$ la norme matricielle subordonnée associée.
- 2. Montrer que $||M^{-1}N||_* = \sup_{\|v\|_*=1} \|v M^{-1}Av\|_*$.
- 3. Soit $v \in \mathbb{R}^n$. On pose $w = M^{-1}Av$
 - a) Montrer que $v^t A w = w^t M^t w$ et que $w^t A v = w^t M w$.
 - b) En déduire que $||v w||_*^2 = ||v||_*^2 w^t (M^t + N) w$.
- 4. On suppose désormais que M^t+N est symétrique définie positive. Montrer que pour tout $v\in\mathbb{R}^n$ tel que $\|v\|_*=1$, on a $\|v-M^{-1}Av\|_*<1$. En déduire que $\|M^{-1}N\|_*<1$.
- 5. Montrer que si $M^t + N$ est symétrique définie positive alors la méthode itérative

$$\begin{cases} x^0 \in \mathbb{R}^n \\ Mx^{k+1} = Nx^k + b, \ \forall k \ge 0. \end{cases}$$

est convergente vers la solution x de Ax = b.

6. [Matlab] Étant données deux matrices M et N, ecrire la condition sous Matlab pour vérifier si $M^t + N$ est symétrique.

Exercice 2. Soit $n \geq 3$ et $A \in \mathcal{M}_n(\mathbb{R})$ la matrice de discrétisation du laplacien 1D :

$$A = \begin{pmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & -1 \\ 0 & \cdots & 0 & -1 & 2 \end{pmatrix}$$

On admet (cela a été démontré dans un TD précédent) que les valeurs propres de cette matrice sont :

$$\lambda_k = 4 \left(\sin \left(\frac{k \pi}{2(n+1)} \right) \right)^2, \quad 1 \le k \le n.$$

1. Exprimer J la matrice de Jacobi associée à la matrice A.

- 2. Montrer que μ est une valeur propre de J si et seulement si $2(1-\mu)$ est une valeur propre de A.
- 3. En déduire les valeurs propres de J, que l'on notera $(\mu_k)_{1 \le k \le n}$.
- 4. Montrer que la méthode de Jacobi est convergente pour résoudre un système linéaire de matrice A.
- 5. Pouvait-on déterminer la convergence de la méthode de Jacobi sans le calcul des valeurs propres? Et la convergence de la méthode de Gauss-Seidel?
- 6. Que peut-on dire du rayon spectral de J quand n tend vers l'infini? Conclure.
- 7. [Matlab] Étant donnée une matrice A, écrire une commande Matlab pour construire la matrice de Jacobi J.

Exercice 3. Soit un entier $n \geq 3$. Pour $\alpha, \beta \in \mathbb{R}$, on définit

$$A(\alpha,\beta) = \begin{pmatrix} \beta & \alpha & \cdots & \alpha \\ \alpha & \beta & \ddots & \vdots \\ \vdots & \ddots & \ddots & \alpha \\ \alpha & \cdots & \alpha & \beta \end{pmatrix}.$$

- 1. Montrer que $\det(A(\alpha, \beta)) = (\beta + (n-1)\alpha)(\beta \alpha)^{n-1}$. A quelle condition la matrice $A(\alpha, \beta)$ est-elle inversible?
- 2. Déterminer les valeurs propres de $A(\alpha, \beta)$.
- 3. A quelle condition la matrice $A(\alpha, \beta)$ est-elle symétrique définie positive?
- 4. Comparer $|||A(\alpha,\beta)|||_{\infty}$, $|||A(\alpha,\beta)|||_{1}$ et $\rho(A(\alpha,\beta))$.
- 5. On suppose maintenant que $\beta \neq 0$. On souhaite déterminer à quelle condition la méthode de Jacobi appliquée à la résolution d'un système linéaire de matrice $A(\alpha, \beta)$ est convergente.
 - a) Calculer la matrice de Jacobi $J(\alpha, \beta)$ puis déterminer son rayon spectral.
 - b) En déduire que la méthode de Jacobi est convergente si et seulement si la matrice $A(\alpha, \beta)$ est inversible à diagonale strictement dominante.
- 6. Montrer que pour certaines valeurs de α et β la méthode de Gauss-Seidel converge alors que la méthode de Jacobi ne converge pas.
- 7. [Matlab] Étant données les paramètres n, a et b, écrire une commande Matlab pour construire la matrice A(a,b) définie plus haut.

Exercice 4. Soient

- A une matrice de $\mathcal{M}_n(\mathbb{R})$ symétrique définie positive et b un vecteur de \mathbb{R}^n ,
- R et S deux matrices symétriques positives ($x^tRx \ge 0$ et $x^tSx \ge 0$ pour tout $x \in \mathbb{R}^n$) telles que A = R + S,
- $-\alpha$ un réel strictement positif.

On note I la matrice identité de $\mathcal{M}_n(\mathbb{R})$. Pour résoudre le système linéaire Ax = b, on considère la méthode itérative suivante :

$$\begin{cases} x^0 \in \mathbb{R}^n \\ (R+\alpha I) \, x^{k+1/2} &= (\alpha I - S) \, x^k + b \\ (S+\alpha I) \, x^{k+1} &= (\alpha I - R) \, x^{k+1/2} + b \end{cases} \quad \forall k \in \mathbb{N}.$$

- 1. Montrer que les matrices $R + \alpha I$ et $S + \alpha I$ sont symétriques définies positives.
- 2. Montrer que les formules itératives définissent bien une suite $(x^k)_{k\geq 0}$ (pour tout x^0 et b).
- 3. Vérifier que les matrices $R+\alpha I$ et $\alpha I-R$ commutent.
- 4. En déduire l'écriture de l'itération k sous la forme :

$$M x^{k+1} = N x^k + b.$$

avec
$$M = (R + \alpha I)(S + \alpha I)/(2\alpha)$$
 et $N = (\alpha I - R)(\alpha I - S)/(2\alpha)$.

- 5. Montrer que si la suite $(x^k)_{k\geq 0}$ converge, sa limite x vérifie Ax=b.
- 6. Montrer que si la matrice symétrique SR + RS est semi-définie positive, alors la méthode itérative définie dans cette exercice est convergente (*Indication*: on pourra calculer $M^t + N$).
- 7. [Matlab] Commenter tous les lignes du code suivant :

Exercice 5. Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice dont les coefficients diagonaux sont non-nuls et la décomposition classique A = D - E - F.

On note J la matrice de Jacobi et \mathcal{L}_1 la matrice de Gauss-Seidel associées.

- 1. Redonner les expressions (vues en cours) de J et \mathcal{L}_1 en fonctions des matrices D, E et F.
- 2. Pour $\lambda \in \mathbb{R}$, on définit la matrice $B(\lambda) = \lambda D (E + F)$. Montrer que λ est une valeur propre de J si et seulement si $\det(B(\lambda)) = 0$.
- 3. Pour $\mu \in \mathbb{R}$, on définit la matrice $C(\mu) = \mu(D E) F$. Montrer que μ est une valeur propre de \mathcal{L}_1 si et seulement si $\det(C(\mu)) = 0$.

On suppose désormais que A est une matrice tridiagonale. Soient $a=(a_2,\ldots,a_n)\in\mathbb{R}^{n-1}$, $b=(b_1,\ldots,b_n)\in\mathbb{R}^n$ $(b_i\neq 0 \text{ pour tout } 1\leq i\leq n)$ et $c=(c_1,\ldots,c_{n-1})\in\mathbb{R}^{n-1}$, A s'écrit :

$$A = \begin{pmatrix} b_1 & c_1 & 0 & \dots & 0 \\ a_2 & b_2 & c_2 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & a_{n-1} & b_{n-1} & c_{n-1} \\ 0 & \dots & 0 & a_n & b_n \end{pmatrix}.$$

- 4. Soit $Q(\lambda) = \operatorname{diag}(\lambda, \lambda^2, \dots, \lambda^n)$. Montrer que $Q(\lambda)^{-1}C(\lambda^2)Q(\lambda) = \lambda B(\lambda)$, pour tout $\lambda \neq 0$.
- 5. En déduire une relation entre det $C(\lambda^2)$ et det $B(\lambda)$, puis une relation entre $\rho(J)$ et $\rho(\mathcal{L}_1)$.