

Blockchains – A Valuable Commercial Contribution or a Romanticized Technology Playground?

Prof. Dr. Burkhard Stiller

*Communication Systems Group CSG, Department of Informatics IfI
University of Zürich UZH
stiller@ifi.uzh.ch*

Many thanks are addressed to Dr. T. Bocek, B. Rodrigues, and S. Rafati

**Universität
Zürich^{UZH}**

Technology and Terms
Applications
Perceptions and Findings

Introduction

□ Databases

- Data organized in schemata
- Access control for users and the “SysAdmin” (trusted root)
 - Centralized, physical, and **trusted servers** are maintained
- Potentially **central point** of failure, loss, or misuse
- SQL-based systems
 - MySQL, MariaDB, PostgreSQL,
Oracle DB, MSSQL, ...
- NoSQL-based systems
 - Hadoop/HBase, Cassandra,
MongoDB, Redis, ...

Decentralization

□ Decentralized databases

- Available and used in production
- Every copy runs on a **trusted node**
- But, users (stakeholders) are known/registered

□ Can data be **stored fully decentralized** and handled reliably between **non-trusted stakeholders**?

- Unstructured or structured data
- Access control by “all” without a central root
- Storage “across the world” by anyone
- **No central point** of failure, redundant copies in place, non-trusted participants, detectable misuse

→ **Distributed Ledger**

Blockchain Definition and Basics

- **Distributed Ledgers or Blockchains** (technology)
 - Digital record of **who-owns-what** w/o a central storage
 - Ledger is replicated among nodes in a distributed network
 - **Consensus algorithm** ensures that each node's copy of the ledger is identical to every other node's copy
 - Access to ledgers from **asset owners** for transactions via cryptographic signatures and by **miners** with large compute power (PoW) to
 - persist “incoming” data (token=assets) on a (private or) public ledger
 - read/offer “outgoing” data to any other stakeholder (non-private)
 - **Advantages** of distributed ledgers:
 - Unforgeable, traceable, and preventing “double spending”
-
-
-
-
-

Blockchain Operations

- Transactions collected in blocks
 - New blocks created regularly
- A **block** contains a pointer to the previous block → Blockchain!
- **Consensus** mechanism required to determine the block to be integrated into the blockchain
 - Public blocks typically contain **solved crypto puzzles**
 - *E.g.*, a form of partial hash collisions (SHA256)
- Creation of valid blocks is called **mining** (reward)
 - Computational expensive → Avoids double spending
 - Mining ≡ confirmation of blocks ≡ solving crypto puzzles

Smart Contracts

- A Smart Contract (SC) resides inside transactions
 - Executed and validated on every node
 - In Bitcoin (a blockchain-based crypto-currency), SCs specify how to withdraw, escrow, refund, or transfer BTC from A to B
- SCs first mentioned in 1994

A smart contract is a **computerized transaction protocol** that **executes** the terms of a contract. The general objectives of [a] smart contract['s] design are to satisfy common contractual conditions (such as payment terms, liens, confidentiality, and even enforcement), minimize exceptions both malicious and accidental, and **minimize the need for trusted intermediaries**. Related economic goals include **lowering fraud loss, arbitrations and enforcement costs, and other transaction costs**.

- Smart contracts **alone** are not “smart”
 - They need an **infrastructure** (technology)
 - A **blockchain** is **the** ideal technology for SCs
- The **legal relevance** of “coded”, more general contracts?

First Practical and General Smart Contracts

- SCs for a **crypto-currency**, e.g., the Bitcoin scripts
 - Are not Turing-complete
 - Show slow developments and slow feature integration
 - Are characterized by slow consensus finding in its community
- **General purpose SCs** are needed
 - Ethereum enables **Turing-complete SCs**
 - Beta Frontier July 2015, Homestead Release March 14, 2016,
 - Hard fork July 20, 2016 after DAO (investor-directed venture capital fund)
 - **Permissioned blockchains** based on Ethereum
 - Monax (Eris:db) with an additional permission layer
 - Other non-Ethereum-based (target on fast clearing, settlement)
 - Originally R3 Corda: fintech members, “quieter” since mid 2017

Applications

Application Example 1 – Bitcoin

- Bitcoin is an **experimental** cryptographic currency
 - Bitcoin is fully peer-to-peer (no central entity, trustless)
 - **Blockchains** applied to reach this goal (sic!)
 - 1st Bitcoin issued on January 3, 2009
- Key **characteristics** (for a maximum of 21 million BTC)
 - Every transaction broadcast to all peers
 - Every peers knows all transactions (~160 GByte as of Nov 2017)
 - Maximum of 7, real life 3-4 transactions per second (1 MB block size)
 - Validation by Proof-of-Work (PoW) consensus mechanism
 - Partial hash collisions, thus, very difficult to fake this type of PoW
- 2nd Hard fork on Oct 25, 2017 into “Bitcoin gold”
 - To be “mineable” by more people with less powerful hardware

Application Domains – Examples

	Assets dig.	Assets tang.	Domain fin.	Domain other
Governmental services – Registry of deeds, eVoting, ...	X	X	(X)	X
Trading/banking services – Diamonds, cash-heavy, ...	X	X	X	(X)
Copyright – Authorship, ownership, ...	X	(X)		X
Data and identity management – Records, processes, compliance	X	(X)		X
“Chain” support/IoT services – Supply, food, energy, ...	(X)	X	X	X
Entertainment	X			X
Cryptocurrencies	X		X	

Application Example 2 – Coldchains

□ Pharmaceutical sector (supply chain)

- More than 200 million yearly shipments of medical drugs inside of the EU and associated countries
- 100% monitoring of transport required due to EU regulation
 - “Good Distribution Practice of medicinal products for human use” (GDP 2013/C 343/01) since January 2016
 - Package: Post 6 CHF, cooled transport 35 CHF → cost saving's factor 6
 - 60% of medical drugs are not even temperature-sensitive!

□ Solution (incl. vendors, logistic, wholesale, authorities)

- Blockchain-based Coldchains (BC4CC) to store temperature data monitored, execute smart contracts on those upon arrival
 - Direct authority access, unknown stakeholders can participate

Blockchains for Coldchains Architecture

BACK END

FRONT END

Developed by CSG@IfI, serves as foundation for modum.io UZH start-up

Perceptions and Findings

(preliminary – as of today)

General Perception of Blockchains

- Stakeholders involved in (public) blockchains are
 - everyone on the globe (potentially) with Internet access
 - unknown to each other, without any central authority

- First “appearance” of blockchains
 - In the context of Bitcoin in 2009
 - First real and experimental crypto-currency
 - Transactions determine data of payments to be persisted, while solving the double spending of electronic “coins”

- Generalization of non-trusted stakeholder interactions for unforgeable data persistence
 - Considered to be a disruptive technology?

Very limited view

More general view

Concerns and Risks (1)

□ General

- Handling of **tangible (non-digital) assets**: proof of asset's ownership? Secure mapping of tangible to digital asset?
- **Societal and governmental acceptance?**
 - Cryptocurrency bans, ICO as “illegal activity”, asset mapping fraud

□ Technology

- **Breaking of applied security algorithms** (long-term storage, if signing algorithms will be broken?)
 - Security impacts due to alternative consensus mechanisms?
- **Unknown attack vectors and programming errors**
 - Privacy: persisted data at stake?
- **Efficiency** of consensus mechanisms
 - Energy consumption for Bitcoin alone required in 2015 ≈ Mühleberg's energy production

Concerns and Risks (2)

❑ Operations

- **Scalability**: Throughput as number of transactions per sec?
Volume of data persisted, not bytes but MB?
Chain sizes grow faster than density of HDDs/SSDs!
- **Delay**: Latency of persisting steps, block sizes?
- Implications on **privacy**: access rights and management?
- Lacking Internet **connectivity** for a “longer” period of time?
- **Standardized APIs** for switching applications on top of blockchains at minimal costs (“lock-in” effects?)

❑ Economics

- **Stability** of coin/token value against fiat currency: volatility?
- No prevention of making **fraudulent profitability projections**
- **Role, interrelationships** of more than 1000 crypto-currencies?

Observations

- Distributed apps show a **larger coordination effort**
- Blockchain's **cost/benefit perspective (incentives)**
 - Costs: known in advance (e.g., HW, VM, network, setup, or fees)
 - Benefits: less "central" infrastructure plus "unknown" soft factors
- Once risks are mitigated and **legal/regulatory constraints** are known, apps *may* benefit from blockchains, but
 - How to address value destruction problems?
 - ICO vs. traditional emission rules may harm?
 - Country-specific rules will become "international" obstacles?
- Dedicated **apps maintaining inherently digital assets** do show a much larger (disruption) potential
 - Solving the "media break" may increase this potential

Important to Remember

- Blockchain (technology) is potentially able to
 - change existing legal contracts including a or multiple trusted third party(ies), e.g., by “replacing”
 - Banks as transaction mediator for fund/Fintech transfers
 - Notaries as mediation of two or more stakeholders, incl. enforcement
 - Trusted communications (incl. documents) are persisted, but no counseling is stored
 - persist digital assets, but not limited to (?) including, e.g.,
 - Property, driving licenses, art, diamonds, meat, objects, ...
 - Trusted communications & persisted storage of assets could offer automated operations of ownership and validity checks, but lack the proof-of-ownership due to secure mapping problems of tangible assets to digital tokens

Thank you for your attention.

