Privacy Evaluation and Accuracy for Different ML Secure Models Privacy Project

Anastasiya Merkushova Alessandro Stanghellini Yannick Martin

University Basel

April 2024

Introduction

- MI in medicine
- Sensitive data
- Privacy Preserving Training techniques
- Membership Inference Attacks

Low-Risk of Cancer

Medium Risk of Melanoma

High Risk of Melanoma cancer

Dataset

- Texas100
- Technical Dataset
- 67330 records
- 6169 binary features (information about the patient, the causes of injury, the diagnosis)
- 101 classes which represent the most frequent medical procedures

DP-Libraries for Machine Learning

PyVacy

- Privacy Algorithms for PyTorch (DPSGD)
- Not well maintained

Opacus

- Privacy Algorithms for PyTorch (DPSGD)
- User-Friendly

Algorithm 3 Setting up Opacus

- 1: define your components(network, optimizer) as usual
- 2: Initialize Privacy Engine:
- 3: privacy_engine = PrivacyEngine()
- 5: Make Network Private with Epsilon:
- 6: network, optimizer, trainloader =
- privacy_engine.make_private_with_epsilon(
- module=network,
- optimizer=optimizer, 9:
- data loader=trainloader. 10.
- 11. max grad norm=C.
- target_epsilon=epsilon, 12:
- 13: target_delta=Delta,
- 14: epochs=epochs
- 15:)
- 16: Now Start the training as usual

Hyper parameter finding & Results

Model	Accuracy	Epsilon	Epochs
NN	0.63	-	10
Opacus	0.55	20	20
Opacus	0.53	10	20
Opacus	0.45	1	20
PyVacy	0.37	28	20
PyVacy	0.38	12	20
PyVacy	0.26	1.3	20

Results

Federated Learning

Results from Federated Learning

Membership Inference

Was trained on the example

Why?

Curiosity!

Reconnaissance!

Data Extraction!

Auditing!

Attack via Population Overview

Models not trained on

Membership Inference

$$A = Pr(Loss_{(a)}) \mid L(\underline{b})$$
The distribution over **losses**

of models trained on

Membership Inference

Privacy Meter: Attack via Population Data

- Privacy Meter [1] library for auditing data privacy in ML algorithms.
- Population attack uses direct statistical analysis of the target model, avoiding shadow models.
- Attack thresholds are tailored to each target model, ensuring robustness across varied datasets.
- Empirically, attackers approximate distribution by sampling records from the population data pool.

Privacy Meter: Attack via Population Data

Metric Results Generate report

Metric Different attacks

Information Source (Dataset, Models, Signals)

Metric Results: save the attack performance Save TPR, FPR, ROC, AUC, etc.

Metric: launch membership inference attack Given the auditing dataset and auditing reference models, find the threshold for signals to determine the member for the target dataset

Information source: define the attack setting

- Target model
- 2. Target dataset
- 3. Auditing dataset
- 4. Auditing reference models
- 5. Membership inference attack signal (e.g., loss)

Privacy Meter: Attack via Population Data

Membership Inference Attack

- Why can they be effective?
- Black-box and white-box attack

Attacks

- Black-box attack using loss
- White-box attack using norm of the gradient of the loss function with respect to input point

Black-box attack

Black-box attack cont'd

White-box attack

White-box attack cont'd

Take-home messages

- We trained a model in private and non-private way
- Privacy-Meter investigation

Thank you for listening

References

Jiayuan Ye, Aadyaa Maddi, Sasi Kumar Murakonda, Vincent Bindschaedler, and Reza Shokri.

Enhanced membership inference attacks against machine learning models, 2022.

Privacy Meter: Attack via Population Dataset

The hypothesis test with model-dependent attack threshold:

If
$$\ell(\theta, x_z, y_z) \le c_{\alpha}(\theta)$$
, reject H_0

Out world:

$$P_{out}(D, \theta, z) : D = D_0, \theta = \theta_0, z \sim \pi$$

• Empirical distribution approximation:

$$p_{\theta_0} = \{(\theta_0, z_i)\}_{i=1,2,...}, \text{ and } z_1, z_2,... \sim \pi$$

Attack threshold for low false positive rate:

$$\frac{\left((\theta,z)\in p^{\theta)0}:\ell(\theta,x_z,y_z)\leq c_{\alpha}(\theta_0)\right)}{|p^{\theta_0}|}=\alpha$$