Client-side Web Technologies

LBAW . Databases and Web Applications MIEIC, 2017/18 Edition

Sérgio Nunes DEI, FEUP, U.Porto

The Big Picture

 Web browsers issue requests to web servers, which produce and return HTML documents for browsers to parse and display.

Client

Server

Client-side Web Technologies

HTML

HyperText Markup Language

- HTML is an acronym for HyperText Markup Language and is a format for providing linked structured information.
- HTML documents are simply text files containing marked-up text using tags.
- An HTML document is an hypertext node within an hypertext network.

Hypertext

- Concept defined by Ted Nelson in the 1950s.
- A way to organize text (and information) in a non-linear fashion.
- "Hypertext: Human-readable information linked together in an unconstrained way."
- From the original WorldWideWeb: Proposal for a HyperText Project (1990)
 - "HyperText is a way to link and access information of various kinds as a web of nodes in which the user can browse at will.

It provides a single user-interface to large classes of information (reports, notes, data-bases, computer documentation and on-line help)."

Basic HTML Document

View Source

Why learn HTML?

- There are many editors available.
 So why learn to code in HTML directly?
 - "HTML Editor X expert" is a narrower expertise.
 - Editors get in the way of coding.
 - Editors aren't always up to date.
 - Need to master HTML details to fully explore all possibilities.
 - In dynamic web sites, HTML is generated.

Brief History of HTML

Origins of HTML

- Created by Tim Berners-Lee and Robert Cailliau at CERN in the late 1980s.
- · Main goal was to facilitate document sharing between researchers.
- CERN released it as royalty free in 1993.
- First official version published by IETF in 1993.
- World Wide Web Consortium (W3C) was created to define common standards for browsers and developers to adhere to.

HTML Proposal

- Information Management: A Proposal https://www.w3.org/History/1989/proposal.html
 - · "This proposal concerns the management of general information about experiments at CERN."
 - "It discusses the problems of loss of information about complex evolving systems and derives a solution based on a distributed hypertext system."
 - Some practical requirements: remote access, heterogeneity, non-centralization, text-based, "live links".
- Problems being addressed:
 - Information loss "Often, the information has been recorded, it just cannot be found."
 - Constantly changing information. Keeping a "book-like" organization of all information at CERN is impractical. Changes are distributed.
 - Tree-like organizations and keyword-based organization are also not feasible. Too strict and inflexible.

HTML Timeline

- During its first years (1990-1995), HTML revisions and extensions where first hosted at CERN and then IETF.
- Development was moved to the W3C after its creation in 1994.
- HTML development stopped in 1998 with the publication of HTML4.
- · W3C decided to migrate to a XML-based equivalent, named XHTML.
- XHTML was not widely adopted by web authors.
- HTML development continued outside W3C, with the WHATWG, whose work is now the basis for HTML5.
 - WHATWG Web Hypertext Application Technology Working Group

The Early Days (1989 - 1993)

- From proposal (1989) to Mosaic release (1993).
- Web users were mostly from academia and research institutions.
- Few browsers, most of them text-based.
- HTML documents were simple and usually written by hand.

Growth Years (1994 - 2002)

- Wide adoption of the web to the dot.com bubble (1995-2000).
- · Companies dispute the web browser market (aka "browser wars").
- · Browser development focused on new features, less on standards support.
- Wide differences between rendering engines.
 Many web pages "designed for browser version x.x".
- Extensive use of tables and sliced graphics to achieve "pixel perfect" layouts - "print-like design". Resulted in ugly and complex HTML code.

Modern Era (2003 -)

- Wide adoption of modern web browsers.
- Separation of content and structure from layout and presentation.
- HTML controls content and structure.
- CSS controls layout and presentation.
- Clean and simple code (again!).
- CSS (2003), AJAX (2005), mobile (2007).
- A platform for (web) applications.

HTML5 HTML

XHTML

- In 1998, the W3C decided to abandon HTML development and focus on a XML-based equivalent, named XHTML.
- XHTML 1.0 was completed in 2000.
- W3C then moved to XHTML 2.0, introducing several new features and less backward compatibility.
- Real world adoption of XHTML was small.
- In 2004, a proposal to refocus on HTML was discarded by the W3C, leading to outside development of HTML.

WHATWG

- Members of the W3C formed a new group: the Web Hypertext Application Technology Working Group (WHATWG).
- WHATWG didn't follow a consensus-based approach, so it was able to move much faster.
- In 2006, the W3C acknowledged that XHTML wasn't being adopted and work on HTML was resumed.
- Instead of starting from scratch, the W3C decided to use the work from WHATWG.
- Work on XHTML 2.0 ended in 2009.

W3C and WHATWG

- WHATWG continues working on HTML as a "living standard" (no versions).
 https://html.spec.whatwg.org/
- Latest published W3C version of HTML is 5.2 (2019).
 https://www.w3.org/TR/html52/
- Ongoing discussions on how to manage the work and collaboration between WHATWG and W3C, e.g. stop publishing two separate specifications.
- More details: https://wiki.whatwg.org/wiki/W3C

HTML5 Technologies

- HTML5 is a collection of features and technologies.
 - Language / Markup features
 - Document Model Definition (DOM)
 - APIs for supporting JavaScript interaction with the DOM

From: http://en.wikipedia.org/wiki/HTML5

Browser Support

- Support for these technologies has different levels of support in browsers.
- "Can I Use" provides up-to-date information about browser support of frontend technologies. https://caniuse.com

HTML Microdata

HTML Microdata

- An HTML extension to define new attributes and embed simple machine-readable data in HTML documents.
- Goal: annotate content with machine-readable labels.
- Common use case: search engines can better 'understand' and index information that has been annotated using schema.org vocabulary.
- Microdata provides a mechanism to identify items and define their properties.
 - The itemscope attribute creates an item.
 - The itemprop attribute descends of itemscope and defines an item property.
 - With itemtype is possible to associate a vocabulary to an item.
 - · An itemid can be used to define a global unique identifier for the item.

Microdata Example

Defines an item with two properties.

```
<div itemscope>
  Flavors in my favorite ice cream:

    itemprop="flavor">Lemon sorbet
    itemprop="flavor">Apricot sorbet

  </div>
```

Schema.org

- Vocabularies define concepts and relationships used to describe and represent areas of concern. Can be very simple (one or two concepts) or very complex (thousands of terms).
- A shared vocabulary makes it possible to have a common understanding of defined concepts and relationships.
- Schema.org is a collaborative, community driven initiative to create, maintain, and promote the use of schemas for structured data on the web.
 Founded by Google, Microsoft, Yahoo, and Yandex.
- Schema.org defines more than 600 types and >900 properties. Such as CreativeWork, Book, Movie, Event, Organization, Person, Place, Restaurant, etc.

Microdata Example using Vocabulary

- Example using Schema.org vocabulary.
- Defines an item of the type LocalBusiness, as defined by the Schema.org vocabulary, containing three properties, one of which is a item of the type PostalAddress, containing four properties.

```
<div itemscope itemtype="http://schema.org/LocalBusiness">
    <h1 itemprop="name">Beachwalk Beachwear & Giftware</h1>
    <span itemprop="description"> A superb collection [...].</span>
    <div itemprop="address" itemscope itemtype="http://schema.org/PostalAddress">
        <span itemprop="streetAddress">3102 Highway 98</span>
        <span itemprop="addressLocality">Mexico Beach</span>,
        <span itemprop="addressRegion">FL</span>
        </div>
        Phone: <span itemprop="telephone">850-648-4200</span>
</div></ri>
```

HTML Microdata References

- W3C Editor's Draft Microdata (January 2019)
 https://w3c.github.io/microdata/
- W3C Working Draft Microdata (April 2018)
 https://www.w3.org/TR/microdata/
- WHATWG Microdata Specification <u>https://html.spec.whatwg.org/#microdata</u>
- Schema.orghttps://schema.org/
- Semantic Web (aka Web of Data)
 https://www.w3.org/standards/semanticweb/

HTML5 APIs

Web APIs

- In addition to the language specification, HTML5 introduced several Web APIs that can be used with JavaScript. There is a large number of APIs in different stages of development.
 - Documents manipulation APIs (e.g. DOM, Drag and Drop)
 - Fetch remote data APIs (e.g. Fetch, Web Sockets)
 - Drawing and graphics manipulation APIs (e.g. Canvas, WebGL)
 - Audio and Video APIs (e.g. Web Audio, WebRTC)
 - Device APIs (e.g. Notification, Vibration, Fullscreen)
 - Client-side storage APIs (e.g. Web Storage, IndexedDB)

Geolocation API

Geolocation API

- The Geolocation API provides scripted access to geographical location information associated with the device.
- Common sources of location information include Global Positioning System (GPS) and location inferred from network signals such as IP address, RFID, WiFi and Bluetooth MAC addresses, and GSM/CDMA cell IDs, as well as user input.
- · Available both as single-shot request or continuous tracking.
 - navigator.geolocation.getCurrentPosition(callback)
 - navigator.geolocation.watchPosition(callback)
- Geolocation API Specification <u>https://www.w3.org/TR/geolocation-API/</u>

Web Storage API

Web Storage API

- Local storage is an important feature for web applications.
- Cookies can be used for persistent local storage but are limited in size and are included in every HTTP request, slowing down the communication and exposing data.
- The Web Storage API specifies a mechanism to persistently store data in web clients, as key-value pairs. Unlike cookies, this data is never shared with the server and can only be accessed by the client.
- Data can be kept during page sessions, using sessionStorage, or persisted even when the browser is closed, using localStorage.
- Web Storage API Specification <u>https://www.w3.org/TR/webstorage/</u>

Web Storage API

- Data can be stored and retrieved using keys.
 - localStorage.setItem("key", data)
 - localStorage.getItem("key")
- It is possible to keep track of changes trapping the storage event.

- For structured data, the IndexedDB API can be used. This API specified a low-level API for storing and indexing large volumes of data in the client.
- Indexed Database API Specification <u>https://www.w3.org/TR/IndexedDB/</u>

Web Sockets API

Web Sockets API

- Web applications are not restricted to request-response interaction.
- A particularly important use case is the need for server initiated communication (aka "server push").
- Common scenarios include notifications on long running tasks, chat systems, multi-user collaboration systems (e.g. live collaborative text editors).
- How to push information from the server to the client?

Polling

Make periodic requests to the server to check for new data.

- The smaller the interval between request the more up to date the data is.
- Drawbacks: resource and bandwidth consumption even when no new data is available. Does not scale well and doesn't guarantees low-latency.

Comet

 Requests are initiated by clients and kept alive for long periods, until a timeout occurs or a response is sent.

On the server, the request is suspended or paused until a response is ready.

Web Sockets

 Web Sockets enables bidirectional communications between the web browser and the web server. No polling is needed to get messages from the server.

Web Socket Example

```
// Create WebSocket connection.
const socket = new WebSocket('ws://localhost:8080');

// Connection opened
socket.onopen = function (event) {
    socket.send('Hello Server!');
});

// Listen for messages
socket.onmessage = function (event) {
    console.log('Message from server', event.data);
};
```

Adapted from: https://developer.mozilla.org/en-US/docs/Web/API/WebSocket

Web Sockets References

- The CometD Reference Book <u>https://docs.cometd.org/current/reference/</u>
- The WebSocket API | MDN web docs
 https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
- The WebSocket API | W3C
 https://www.w3.org/TR/websockets/

WebRTC API

WebRTC API

- WebRTC (Web Real-Time Communications) is a technology which enables communication between browsers without requiring an intermediary.
- It includes the building blocks for high-quality communications on the web, such as network, audio and video components used in voice and video chat.
- Example file sharing P2P web application: https://www.sharedrop.io/

- WebRTC Home <u>https://webrtc.org/</u>
- WebRTC API Specification <u>https://www.w3.org/TR/webrtc/</u>

Web Workers API

Web Workers API

- Web Workers provide support for background execution of scripts.
- JavaScript execution is single-threaded. Web Workers are designed to bring concurrency to web applications through the execution of scripts in background threads, independently of any user interface scripts.
- Example use cases:
 - Perform background computationally expensive task.
 - Periodically prefetch data.
 - Share state between multiple clients using a shared worker.
 - Split computationally expensive tasks between clients.

Web Workers API

- Generally, workers are expected to be long-lived, have a high start-up performance cost, and a high per-instance memory cost.
- There are two kinds of workers: dedicated workers, which are used by a single script, and shared workers, that can be used by multiple scripts.
- Data is shared between the main thread and workers using messages.

 Web Workers Specification https://www.w3.org/TR/workers/

Web Workers Example

```
The highest prime number discovered so far is: <output id="out"></output>
<script>
    var worker = new Worker('worker.js');
    worker.onmessage = function (event) {
        document.getElementById('out').textContent = event.data;
    };
    </script>
```

```
var n = 1;
search: while (true) {
    n += 1;
    for (var i = 2; i <= Math.sqrt(n); i += 1)
        if (n % i == 0)
           continue search;
    // found a prime!
    postMessage(n);
}</pre>
```

worker.js

Progressive Web Applications

- Progressive Web Applications (or PWAs) represent a new type of web applications, that combine multiple technologies and design patterns to improve user experience.
- Characteristics of progressive web apps: discoverable, installable, linkable, network independent, progressive, responsive, safe.
- Key technology: web workers, which intercept page requests and can use the local storage to provide an answer or make server requests.
- Other relevant technologies: web app manifest, web storage, notifications, etc.
- Progressive Web Apps
 https://developers.google.com/web/progressive-web-apps/

HTML References

- HTML: HyperText Markup Language | MDN https://developer.mozilla.org/en-US/docs/Web/HTML
- Latest version of HTML
 https://www.w3.org/TR/html/
- WHATWG HTML Specification
 https://html.spec.whatwg.org/multipage/
- Dive Into HTML5
 https://diveintohtml5.info/
- HTML Dog: HTML, CSS and JavaScript tutorials https://htmldog.com/
- Chapter 2 A history of HTML
 https://www.w3.org/People/Raggett/book4/ch02.html