Classification of DFT

• An N-point DFT X[k] is said to be a circular conjugate-symmetric sequence if

$$X[k] = X * [\langle -k \rangle_N] = X * [\langle N - k \rangle_N]$$

• An N-point DFT X[k] is said to be a circular conjugate-antisymmetric sequence if

$$X[k] = -X * [\langle -k \rangle_N] = -X * [\langle N - k \rangle_N]$$

Classification Based on Conjugate Symmetry

• A complex DFT X[k] can be expressed as a sum of a circular conjugate symmetric part $X_{cs}[k]$ and a circular conjugate antisymmetric part $X_{ca}[k]$

$$X[k] = X_{cs}[k] + X_{ca}[k], \quad 0 \le k \le N-1$$

where

$$X_{cs}[k] = \frac{1}{2}(X[k] + X * [\langle -k \rangle_N]), \quad 0 \le k \le N - 1$$

 $X_{ca}[k] = \frac{1}{2}(X[k] - X * [\langle -k \rangle_N]), \quad 0 \le k \le N - 1$

Classification Based on Geometric Symmetry

• A length-*N* symmetric sequence x[n] satisfies the condition

$$x[n] = x[N-1-n]$$

• A length-N antisymmetric sequence x[n] satisfies the condition

$$x[n] = -x[N-1-n]$$

Classification Based on Geometric Symmetry

Four types of geometric symmetry

Type 1 – Symmetric Sequence with Odd Length

Type 2 – Symmetric Sequence with Even Length

Classification Based on Geometric Symmetry

Type 3 – Antisymmetric Sequence Type 4 – Antisymmetric Sequence with Odd Length with Even Length

Type 1: Symmetric Sequence with Odd Length

• The DTFT of a length-N symmetric sequence x[n] with N odd is of the form

$$X(e^{j\omega}) = e^{j(N-1)\omega/2} \left\{ x \left[\frac{N-1}{2} \right] + 2 \sum_{n=1}^{(N-1)/2} x \left[\frac{N-1}{2} - n \right] \cos(\omega n) \right\}$$

• The phase $\theta(\omega)$ is given by $\theta(\omega) = -(\frac{N-1}{2})\omega + \beta$ where β is either 0 or π

• The *N*-point DFT X[k] of the Type 1 linear-phase length-*N* sequence x[n] is obtained by uniformly sampling its DTFT $X(e^{j\omega})$ given in the previous slide at $\omega = 2\pi k/N$, $0 \le k \le N-1$

$$X[k] = e^{j(N-1)\pi k/N} \times \left\{ x \left[\frac{N-1}{2} \right] + 2 \sum_{n=1}^{(N-1)/2} x \left[\frac{N-1}{2} - n \right] \cos(\frac{2\pi kn}{N}) \right\}$$

$$0 \le k \le N - 1$$

Type 2: Symmetric Sequence with Even Length

• The DTFT of a length-N symmetric sequence x[n] with N even is of the form

$$X(e^{j\omega}) = e^{j(N-1)\omega/2} \left\{ 2\sum_{n=1}^{N/2} x \left[\frac{N}{2} - n \right] \cos(\omega(n - \frac{1}{2})) \right\}$$

• The phase $\theta(\omega)$ is given by $\theta(\omega) = -(\frac{N-1}{2})\omega + \beta$ where β is either 0 or π

• The *N*-point DFT X[k] of the Type 2 linear-phase length-*N* sequence x[n] is obtained by uniformly sampling its DTFT $X(e^{j\omega})$ given in the previous slide at $\omega = 2\pi k/N$, $0 \le k \le N-1$

$$X[k] = e^{j(N-1)\pi k/N} \left\{ 2\sum_{n=1}^{N/2} x \left[\frac{N}{2} - n \right] \cos\left(\frac{\pi k(2n-1)}{N}\right) \right\}$$

$$0 \le k \le N-1$$

Type 3: Antisymmetric Sequence with Odd Length

• The DTFT of a length-N antisymmetric sequence x[n] with N odd is of the form

$$X(e^{j\omega}) = je^{j(N-1)\omega/2} \left\{ 2\sum_{n=1}^{(N-1)/2} x \left[\frac{N-1}{2} - n \right] \sin(\omega n) \right\}$$

• The phase $\theta(\omega)$ is given by $\theta(\omega) = -(\frac{N-1}{2})\omega + \frac{\pi}{2} + \beta$ where β is either 0 or π

• The *N*-point DFT X[k] of the Type 1 linear-phase length-*N* sequence x[n] is obtained by uniformly sampling its DTFT $X(e^{j\omega})$ given in the previous slide at $\omega = 2\pi k/N$, $0 \le k \le N-1$

$$X[k] = e^{j(N-1)\pi k/N} \times \left\{ x \left[\frac{N-1}{2} \right] + 2 \sum_{n=1}^{(N-1)/2} x \left[\frac{N-1}{2} - n \right] \cos(\frac{2\pi kn}{N}) \right\}$$

$$0 \le k \le N - 1$$

Type 4: Antisymmetric Sequence with Even Length

• The DTFT of a length-N antisymmetric sequence x[n] with N even is of the form

$$X(e^{j\omega}) = je^{j(N-1)\omega/2} \left\{ 2\sum_{n=1}^{N/2} x \left[\frac{N}{2} - n \right] \sin(\omega(n - \frac{1}{2})) \right\}$$

• The phase $\theta(\omega)$ is given by $\theta(\omega) = -(\frac{N-1}{2})\omega + \frac{\pi}{2} + \beta$ where β is either 0 or π

• The *N*-point DFT X[k] of the Type 1 linear-phase length-*N* sequence x[n] is obtained by uniformly sampling its DTFT $X(e^{j\omega})$ given in the previous slide at $\omega = 2\pi k/N$, $0 \le k \le N-1$

$$X[k] = e^{j(N-1)\pi k/N} \times \left\{ x \left[\frac{N-1}{2} \right] + 2 \sum_{n=1}^{(N-1)/2} x \left[\frac{N-1}{2} - n \right] \cos\left(\frac{2\pi kn}{N}\right) \right\}$$

$$0 \le k \le N - 1$$

DFT Properties

- Like the DTFT, the DFT also satisfies a number of properties that are useful in signal processing applications
- Some of these properties are essentially identical to those of the DTFT, while some others are somewhat different
- A summary of the DFT properties are given in tables in the following slides

Table 5.1: DFT Properties: Symmetry Relations

N-point DFT		
X[k]		
$X^*[\langle -k \rangle_N]$		
$X^*[k]$		
$X_{\text{pcs}}[k] = \frac{1}{2} \{ X[\langle k \rangle_N] + X^*[\langle -k \rangle_N] \}$		
$X_{\text{pca}}[k] = \frac{1}{2} \{ X[\langle k \rangle_N] - X^*[\langle -k \rangle_N] \}$		
$Re\{X[k]\}$		
$j \operatorname{Im}\{X[k]\}$		

Note: $x_{pcs}[n]$ and $x_{pca}[n]$ are the periodic conjugate-symmetric and periodic conjugate-antisymmetric parts of x[n], respectively. Likewise, $X_{pcs}[k]$ and $X_{pca}[k]$ are the periodic conjugate-symmetric and periodic conjugate-antisymmetric parts of X[k], respectively.

Table 5.2: DFT Properties: Symmetry Relations

Length-N Sequence	N-point DFT		
x[n]	$X[k] = \text{Re}\{X[k]\} + j \text{ Im}\{X[k]\}$		
$x_{pe}[n]$	$Re\{X[k]\}$		
$x_{po}[n]$	$j \operatorname{Im}\{X[k]\}$		
	$X[k] = X^*[\langle -k \rangle_N]$		
	$\operatorname{Re} X[k] = \operatorname{Re} X[\langle -k \rangle_N]$		
Symmetry relations	$\operatorname{Im} X[k] = -\operatorname{Im} X[\langle -k \rangle_N]$		
	$ X[k] = X[\langle -k \rangle_N] $		
	$\arg X[k] = -\arg X[\langle -k \rangle_N]$		

Note: $x_{pe}[n]$ and $x_{po}[n]$ are the periodic even and periodic odd parts of x[n], respectively.

Table 5.3: DFT Theorems

Theorems	Length-N Sequence	N-point DFT
	g[n] $h[n]$	G[k] $H[k]$
Linearity	$\alpha g[n] + \beta h[n]$	$\alpha G[k] + \beta H[k]$
Circular time-shifting	$g[\langle n-n_o\rangle_N]$	$W_N^{kn_o}G[k]$
Circular frequency-shifting	$W_N^{-k_o n}g[n]$	$G[\langle k-k_o\rangle_N]$
Duality	G[n]	$Ng[\langle -k \rangle_N]$
N-point circular convolution	$\sum_{m=0}^{N-1} g[m]h[\langle n-m\rangle_N]$	G[k]H[k]
Modulation	g[n]h[n]	$\frac{1}{N} \sum_{m=0}^{N-1} G[m] H[\langle k - m \rangle_N]$
Parseval's relation	$\sum_{n=0}^{N-1} x[n] ^2 =$	$\frac{1}{N} \sum_{k=0}^{N-1} X[k] ^2$

- This operation is analogous to linear convolution, but with a subtle difference
- Consider two length-N sequences, g[n] and h[n], respectively
- Their linear convolution results in a length-(2N-1) sequence $y_L[n]$ given by

$$y_L[n] = \sum_{m=0}^{N-1} g[m]h[n-m], \quad 0 \le n \le 2N-2$$

- In computing $y_L[n]$ we have assumed that both length-N sequences have been zero-padded to extend their lengths to 2N-1
- The longer form of $y_L[n]$ results from the time-reversal of the sequence h[n] and its linear shift to the right
- The first nonzero value of $y_L[n]$ is $y_L[0] = g[0]h[0]$, and the last nonzero value is $y_L[2N-2] = g[N-1]h[N-1]$

- To develop a convolution-like operation resulting in a length-N sequence $y_C[n]$, we need to define a circular time-reversal, and then apply a circular time-shift
- Resulting operation, called a circular convolution, is defined by

$$y_C[n] = \sum_{m=0}^{N-1} g[m]h[\langle n-m\rangle_N], \quad 0 \le n \le N-1$$

• Since the operation defined involves two length-*N* sequences, it is often referred to as an *N*-point circular convolution, denoted as

$$y[n] = g[n] \otimes h[n]$$

• The circular convolution is commutative, i.e.

$$g[n] \otimes h[n] = h[n] \otimes g[n]$$

• Example - Determine the 4-point circular convolution of the two length-4 sequences:

$$\{g[n]\} = \{1 \quad 2 \quad 0 \quad 1\}, \ \{h[n]\} = \{2 \quad 2 \quad 1 \quad 1\}$$

as sketched below

• The result is a length-4 sequence $y_C[n]$ given by

$$y_C[n] = g[n] \oplus h[n] = \sum_{m=0}^{3} g[m] h[\langle n - m \rangle_4],$$

From the above we observe

$$y_{C}[0] = \sum_{m=0}^{3} g[m]h[\langle -m \rangle_{4}]$$

$$= g[0]h[0] + g[1]h[3] + g[2]h[2] + g[3]h[1]$$

$$= (1 \times 2) + (2 \times 1) + (0 \times 1) + (1 \times 2) = 6$$

• Likewise
$$y_C[1] = \sum_{m=0}^{3} g[m]h[\langle 1-m\rangle_4]$$

 $= g[0]h[1] + g[1]h[0] + g[2]h[3] + g[3]h[2]$
 $= (1 \times 2) + (2 \times 2) + (0 \times 1) + (1 \times 1) = 7$
 $y_C[2] = \sum_{m=0}^{3} g[m]h[\langle 2-m\rangle_4]$
 $= g[0]h[2] + g[1]h[1] + g[2]h[0] + g[3]h[3]$
 $= (1 \times 1) + (2 \times 2) + (0 \times 2) + (1 \times 1) = 6$

and
$$y_{C}[3] = \sum_{m=0}^{3} g[m]h[\langle 3-m \rangle_{4}]$$

$$= g[0]h[3] + g[1]h[2] + g[2]h[1] + g[3]h[0]$$

$$= (1 \times 1) + (2 \times 1) + (0 \times 2) + (1 \times 2) = 5$$

• The circular convolution can also be computed using a DFT-based approach as indicated in Table 5.3

• <u>Example</u> - Consider the two length-4 sequences repeated below for convenience:

• The 4-point DFT G[k] of g[n] is given by

$$G[k] = g[0] + g[1]e^{-j2\pi k/4}$$

$$+ g[2]e^{-j4\pi k/4} + g[3]e^{-j6\pi k/4}$$

$$= 1 + 2e^{-j\pi k/2} + e^{-j3\pi k/2}, \quad 0 \le k \le 3$$

• Therefore G[0] = 1 + 2 + 1 = 4, G[1] = 1 - j2 + j = 1 - j, G[2] = 1 - 2 - 1 = -2, G[3] = 1 + j2 - j = 1 + j

Likewise,

$$H[k] = h[0] + h[1]e^{-j2\pi k/4}$$

$$+ h[2]e^{-j4\pi k/4} + h[3]e^{-j6\pi k/4}$$

$$= 2 + 2e^{-j\pi k/2} + e^{-j\pi k} + e^{-j3\pi k/2}, \quad 0 \le k \le 3$$

• Hence,
$$H[0] = 2 + 2 + 1 + 1 = 6$$
,
 $H[1] = 2 - j2 - 1 + j = 1 - j$,
 $H[2] = 2 - 2 + 1 - 1 = 0$,
 $H[3] = 2 + j2 - 1 - j = 1 + j$

• The two 4-point DFTs can also be computed using the matrix relation given earlier

$$\begin{bmatrix} G[0] \\ G[1] \\ G[2] \\ G[3] \end{bmatrix} = \mathbf{D}_{4} \begin{bmatrix} g[0] \\ g[1] \\ g[2] \\ g[3] \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 1-j \\ -2 \\ 1+j \end{bmatrix}$$

$$\begin{bmatrix} H[0] \\ H[1] \\ H[2] \\ H[3] \end{bmatrix} = \mathbf{D}_{4} \begin{bmatrix} h[0] \\ h[1] \\ h[2] \\ h[3] \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 1-j \\ 0 \\ 1+j \end{bmatrix}$$

 D_4 is the 4-point DFT matrix

• If $Y_C[k]$ denotes the 4-point DFT of $y_C[n]$ then from Table 3.5 we observe

$$Y_C[k] = G[k]H[k], 0 \le k \le 3$$

Thus

$$\begin{bmatrix} Y_C[0] \\ Y_C[1] \\ Y_C[2] \\ Y_C[2] \end{bmatrix} = \begin{bmatrix} G[0]H[0] \\ G[1]H[1] \\ G[2]H[2] \\ G[3]H[3] \end{bmatrix} = \begin{bmatrix} 24 \\ -j2 \\ 0 \\ j2 \end{bmatrix}$$

• A 4-point IDFT of $Y_C[k]$ yields

$$\begin{bmatrix} y_C[0] \\ y_C[1] \\ y_C[2] \\ y_C[3] \end{bmatrix} = \frac{1}{4} \mathbf{D}_4^* \begin{bmatrix} Y_C[0] \\ Y_C[1] \\ Y_C[2] \\ Y_C[3] \end{bmatrix}$$

$$= \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & -1 & j \end{bmatrix} \begin{bmatrix} 24 \\ -j2 \\ 0 \\ j2 \end{bmatrix} = \begin{bmatrix} 6 \\ 7 \\ 6 \\ 5 \end{bmatrix}$$

• Example - Now let us extended the two length-4 sequences to length 7 by appending each with three zero-valued samples, i.e.

$$g_e[n] = \begin{cases} g[n], & 0 \le n \le 3 \\ 0, & 4 \le n \le 6 \end{cases}$$
$$h_e[n] = \begin{cases} h[n], & 0 \le n \le 3 \\ 0, & 4 \le n \le 6 \end{cases}$$

• We next determine the 7-point circular convolution of $g_e[n]$ and $h_e[n]$:

$$y[n] = \sum_{m=0}^{6} g_e[m] h_e[\langle n-m \rangle_7], \quad 0 \le n \le 6$$

• From the above $y[0] = g_e[0]h_e[0] + g_e[1]h_e[6]$

$$+ g_e[3]h_e[4] + g_e[4]h_e[3] + g_e[5]h_e[2] + g_e[6]h_e[1]$$

$$= g[0]h[0] = 1 \times 2 = 2$$

• Continuing the process we arrive at

$$y[1] = g[0]h[1] + g[1]h[0] = (1 \times 2) + (2 \times 2) = 6,$$

$$y[2] = g[0]h[2] + g[1]h[1] + g[2]h[0]$$

$$= (1 \times 1) + (2 \times 2) + (0 \times 2) = 5,$$

$$y[3] = g[0]h[3] + g[1]h[2] + g[2]h[1] + g[3]h[0]$$

$$= (1 \times 1) + (2 \times 1) + (0 \times 2) + (1 \times 2) = 5,$$

$$y[4] = g[1]h[3] + g[2]h[2] + g[3]h[1]$$

$$= (2 \times 1) + (0 \times 1) + (1 \times 2) = 4,$$

$$y[5] = g[2]h[3] + g[3]h[2] = (0 \times 1) + (1 \times 1) = 1,$$

 $y[6] = g[3]h[3] = (1 \times 1) = 1$

• As can be seen from the above that y[n] is precisely the sequence $y_L[n]$ obtained by a linear convolution of g[n] and h[n]

• The *N*-point circular convolution can be written in matrix form as

$$\begin{bmatrix} y_C[0] \\ y_C[1] \\ y_C[2] \\ \vdots \\ y_C[N-1] \end{bmatrix} = \begin{bmatrix} h[0] & h[N-1] & h[N-2] & \cdots & h[1] \\ h[1] & h[0] & h[N-1] & \cdots & h[2] \\ h[2] & h[1] & h[0] & \cdots & h[3] \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ h[N-1] & h[N-2] & h[N-3] & \cdots & h[0] \end{bmatrix} \begin{bmatrix} g[0] \\ g[1] \\ g[2] \\ \vdots \\ g[N-1] \end{bmatrix}$$

- Note: The elements of each diagonal of the $N \times N$ matrix are equal
- Such a matrix is called a circulant matrix

- Tabular Method
- We illustrate the method by an example
- Consider the evaluation of $y[n] = h[n] \circledast g[n]$ where $\{g[n]\}$ and $\{h[n]\}$ are length-4 sequences
- First, the samples of the two sequences are multiplied using the conventional multiplication method as shown on the next slide

The partial products generated in the 2nd, 3rd, and 4th rows are circularly shifted to the left as indicated above

• The modified table after circular shifting is shown below

	0	1	2	3
g[n]:	g[0]	g[1]	g[2]	g[3]
h[n]:	h[0]	h[1]	h[2]	h[3]
	g[0]h[0]	g[1]h[0]	g[2]h[0]	g[3]h[0]
	g[3]h[1]	g[0]h[1]	g[1]h[1]	g[2]h[1]
	g[2]h[2]	g[3]h[2]	g[0]h[2]	g[1]h[2]
	g[1]h[3]	g[2]h[3]	g[3]h[3]	g[0]h[3]
$y_{\mathcal{C}}[n]$:	$y_{\mathcal{C}}[0]$	$y_c[1]$	$y_{c}[2]$	$y_c[3]$

• The samples of the sequence $\{y_c[n]\}$ are obtained by adding the 4 partial products in the column above of each sample

Thus

$$y_c[0] = g[0]h[0] + g[3]h[1] + g[2]h[2] + g[1]h[3]$$

$$y_c[1] = g[1]h[0] + g[0]h[1] + g[3]h[2] + g[2]h[3]$$

$$y_c[2] = g[2]h[0] + g[1]h[1] + g[0]h[2] + g[3]h[3]$$

$$y_c[3] = g[3]h[0] + g[2]h[1] + g[1]h[2] + g[0]h[3]$$

- **Example** Let $\{g[n]\} = \{1, 2, 0, 1\}$ and $\{g[n]\} = \{1, 2, 0, 1\}$
 - We determine $\{y_c[n]\} = \{g[n]\} \oplus \{h[n]\}$ using the tabular method
- We first multiply the samples of the two sequences using the conventional multiplication method

• Since $\langle 4 \rangle_4 = 0$, the number 2 in line 2 at position $n = \langle 4 \rangle_4$ is next moved to position n = 0

• Next, the number 0 in line 3 at position $n = \langle 4 \rangle_4$ is next moved to position n = 0 and the number 1 is moved to position $n = \langle 5 \rangle_4 = 1$

• Next, the number 2 in line 4 at position $n = \langle 4 \rangle_4$ is next moved to position n = 0, the number 0 is moved to position $n = \langle 5 \rangle_4 = 1$ and the number 1 is moved to position $n = \langle 6 \rangle_4 = 2$

n:	0	1	2	3	$\langle 4 \rangle_4$	$\langle 5 \rangle_4$	$\langle 6 \rangle_4$
$\overline{g[n]}$:	1	2	0	1			
h[n]:	2	2	1	1			
	2	4	0	2			
	2	2	4	0			
	0	1	1	2			
	2	0	1	1			
$\overline{y_c[n]}$:	6	7	6	5			