A1.1 भूमिका

मान लीजिए आपके परिवार के पास एक भूखंड है, परन्तु उसके चारों ओर कोई बाड़ (fence) नहीं बनी है। एक दिन आपके पड़ोसी ने अपने भूखंड के चारों ओर बाड़ (fence) बनाने का निर्णय लिया। जब पड़ोसी ने बाड़ बना ली, तब आपको पता चला कि बाड़ के अंदर आपके परिवार के भूखंड का कुछ भाग चला गया है। आप अपने पड़ोसी को कैसे सिद्ध करेंगे कि उसने आपके भूखंड के कुछ भाग पर

कब्जा करने की कोशिश की है। इस संबंध में आपका पहला काम परिसीमा वाले विवाद को सुलझाने के लिए गाँव के बुजर्गों से सहायता लेना हो सकता है। परन्तु, मान लीजिए कि इस मामले में बुजुर्गों के अलग-अलग मत हैं। कुछ बुजुर्ग आपके दावे को सही मानते हैं और कुछ आपके पड़ोसी के दावे को सही मानते हैं। तब, ऐसी स्थिति में आप क्या करेंगे? इस संबंध में आपके सामने केवल यही विकल्प रह जाता है कि अपने भूखंड की परिसीमाओं पर अपने दावे को स्थापित करने के लिए आप एक ऐसी विधि निकालें जो कि सभी को स्वीकार्य हो। उदाहरण के लिए, अपने दावे को सही सिद्ध करने और अपने पड़ोसी के दावे को गलत सिद्ध करने के लिए, आप यदि आवश्यक हुआ तो न्यायालय में, सरकार द्वारा अनुमोदित अपने गाँव के सर्वेक्षण मानचित्र का प्रयोग कर सकते हैं।

आइए अब हम एक अन्य स्थिति पर विचार करें। मान लीजिए आपकी माँ ने अगस्त महीने, 2005 का घर की बिजली के बिल का भुगतान कर दिया है। परन्तु सितंबर, 2005 के बिल में यह दर्शाया गया है कि अगस्त के बिल का भुगतान नहीं किया गया है। बिजली विभाग द्वारा किए गए इए दावे को आप किस प्रकार गलत सिद्ध करेंगे? इसके लिए आपको भुगतान बिल रसीद प्रस्तुत करनी होगी, जो यह सिद्ध कर देगी कि अगस्त महीने के बिल का भुगतान किया जा चुका है।

ऊपर के उदाहरणों से यह पता चलता है कि हमें अपने दैनिक जीवन में प्राय: यह सिद्ध करना होता है कि अमुक कथन या दावा सत्य है या असत्य। फिर भी, ऐसे अनेक कथन होते हैं जिन्हें सिद्ध किए बिना ही हम स्वीकार कर लेते हैं। परन्तु, गणित में हम किसी कथन को सत्य या असत्य केवल तभी स्वीकार करते हैं (कुछ अभिगृहीतों को छोड़कर) जब गणित के तर्क के अनुसार इस कथन को सिद्ध कर दिया गया हो।

वस्तुत:, गणित में उपपत्तियों का अस्तित्व हजारों वर्षों से रहा है और ये गणित की किसी भी शाखा के केंद्र होती हैं। ऐसा विश्वास किया जाता है कि पहली ज्ञात उपपत्ति (proof) एक यूनानी दार्शनिक और गणितज्ञ थेल्स ने प्रस्तुत की थी। यूँ तो मेसोपोटामिया, मिस्र, चीन और भारत जैसी अनेक प्राचीन सभ्यताओं में गणित केंद्रित है, फिर भी इस बात का कोई स्पष्ट प्रमाण नहीं मिलता है कि उन्होंने उपपत्तियों का प्रयोग उस प्रकार किया था जिस प्रकार आज हम करते हैं।

इस अध्याय में, हम देखेंगे कि कथन क्या होते हैं, गणित में किस प्रकार तर्क दिया जाता है और एक गणितीय उपपत्ति में क्या-क्या अवयव निहत होते हैं।

A1.2 गणितीय रूप से स्वीकार्य कथन

इस अनुच्छेद में, हम गणितीय रूप से स्वीकार्य कथन (mathematically acceptable statement) के अर्थ की व्याख्या करने का प्रयास करेंगे। 'कथन' वह वाक्य है जो न तो आदेश सूचक वाक्य होता है और न ही विस्मयादि बोधक (exclamatry) वाक्य। नि:संदेह, कथन एक प्रश्न भी नहीं है! उदाहरण के लिए,

- "आपके बालों का रंग क्या है?" यह एक कथन नहीं है। यह एक प्रश्न है।
- "कृपया जाइए और मेरे लिए पानी लाइए" एक अनुरोध या एक आदेश है। यह एक कथन नहीं है।
- "कितना मनमोहक सूर्यास्त है!" एक विस्मयादि बोधक टिप्पणी है। यह एक कथन नहीं है। फिर भी, "आपके बालों का रंग काला है" एक कथन है।

सामान्यत:, कथन निम्नलिखित प्रकारों में से एक हो सकता है:

- सदैव सत्य (always true)
- सदैव असत्य (always false)
- संदिग्ध (ambiguous)

यहाँ शब्द "संदिग्ध" की कुछ व्याख्या कर देना आवश्यक है। ऐसी दो स्थितियाँ होती हैं जिनसे कथन संदिग्ध बन जाता है। पहली स्थिति तो वह होती है जबिक हम यह निर्णय नहीं ले पाते िक कथन सदैव सत्य है या सदैव असत्य है। उदाहरण के लिए, "कल गुरुवार है" संदिग्ध है, क्योंकि संदर्भ में इतना कुछ नहीं बताया गया है, जिससे हम यह निर्णय ले सकें िक कथन सत्य है या असत्य।

संदिग्धता की दूसरी स्थिति तब उत्पन्न होती है जब कथन व्यक्तिपरक (subjective) होता है। अर्थात् कुछ व्यक्तियों के लिए यह सत्य होता है और अन्य व्यक्तियों के लिए असत्य होता है। उदाहरण के लिए, "कुत्ते बुद्धिमान होते हैं" संदिग्ध कथन है, क्योंकि कुछ लोग इसे सत्य मानते हैं और कुछ इसे सत्य नहीं मानते हैं।

उदाहरण 1: बताइए कि निम्न कथनों में कौन-कौन से कथन सदैव सत्य हैं, सदैव असत्य हैं या संदिग्ध हैं। अपने उत्तर की कारण सहित पुष्टि कीजिए।

- (i) एक सप्ताह में आठ दिन होते हैं।
- (ii) यहाँ वर्षा हो रही है।
- (iii) पश्चिम में सूर्यास्त होता है।
- (iv) गौरी एक दयालु लड़की है।
- (v) दो विषम पूर्णांकों का गुणनफल सम होता है।
- (vi) दो सम प्राकृत संख्याओं का गुणनफल सम होता है।

हल:

- (i) कथन सदैव असत्य है, क्योंकि एक सप्ताह में 7 दिन होते हैं।
- (ii) यह कथन संदिग्ध है, क्योंकि यह स्पष्ट नहीं है कि यहाँ कहाँ है।
- (iii) कथन सदैव सत्य है। हम कहीं भी रहते हों, सूर्यास्त पश्चिम में ही होता है।
- (iv) कथन संदिग्ध है, क्योंिक यह व्यक्तिपरक है। कुछ लोगों के लिए गौरी दयालु हो सकती है और अन्य लोगों के लिए नहीं।
- (v) कथन सदैव असत्य है। दो विषम पूर्णांकों का गुणनफल सदैव विषम होता है।
- (vi) यह कथन सदैव सत्य है। फिर भी इस बात की पुष्टि करने के लिए कि यह सत्य है, हमें कुछ और करने की आवश्यकता होगी। इसे अनुच्छेद A1.4 में सिद्ध किया जाएगा।

जैसा कि पहले बताया जा चुका है कि अपने दैनिक जीवन में हम कथनों की मान्यता के प्रति अधिक सावधान नहीं रहते। उदाहरण के लिए, मान लीजिए आपकी सहेली आपको यह बताती है कि केरल के मनंतावड़ी में जुलाई के महीने में प्रतिदिन वर्षा होती है। पूर्ण विश्वास के साथ आप उसके इस कथन को सत्य मान लेंगी, यद्यपि यह संभव है कि जुलाई के महीने में एक या दो दिन वर्षा न भी हुई हो और, यदि आप वकील नहीं हैं, तो आप उससे बहस नहीं करेंगी।

एक अन्य उदाहरण के रूप में कुछ ऐसे कथन लीजिए, जिन्हें हम प्राय: एक दूसरे से कहते रहते हैं जैसे "आज बहुत गर्मी है।" हम ऐसे कथनों को सरलता से स्वीकार कर लेते हैं, क्योंकि हम संदर्भ जानते हैं, यद्यपि ये कथन संदिग्ध हैं। "आज बहुत गर्मी है" का अर्थ अलग–अलग लोगों के लिए अलग–अलग हो सकता है, क्योंकि कुमायूँ के व्यक्ति के लिए जो मौसम बहुत गर्म होगा, वह चैन्नई के व्यक्ति के लिए गर्म नहीं भी हो सकता है।

परन्तु गणितीय कथन संदिग्ध नहीं हो सकता है। गणित में कथन केवल स्वीकार्य या मान्य (valid) होता है, जबिक वह या तो सत्य हो या असत्य हो। जब यह सदैव सत्य होता है, तब हम कहते हैं कि यह एक सत्य कथन (true statement) है अन्यथा कथन असत्य होता है।

उदाहरण के लिए, 5+2=7 सदैव सत्य है। अत: '5+2=7' एक सत्य कथन है। 5+3=7 असत्य है। अत: '5+3=7' एक असत्य कथन है।

उदाहरण 2: बताइए कि नीचे दिए गए कथन सत्य हैं या असत्य:

- (i) एक त्रिभुज के अंत:कोणों का योग 180° होता है।
- (ii) 1 से बड़ी प्रत्येक विषम संख्या अभाज्य होती है।
- (iii) किसी भी वास्तविक संख्या x के लिए 4x + x = 5x होता है।
- (iv) प्रत्येक वास्तविक संख्या x के लिए 2x > x होगा।
- (v) प्रत्येक वास्तविक संख्या x के लिए $x^2 \ge x$ होगा।
- (vi) यदि एक चतुर्भुज की सभी भुजाएँ बराबर हों, तो वह एक वर्ग होता है।

हल:

- (i) यह कथन सत्य है। आप इसे अध्याय 6 में सिद्ध कर चुके हैं।
- (ii) यह कथन असत्य है। उदाहरण के लिए 9 एक अभाज्य संख्या नहीं है।
- (iii) यह कथन सत्य है।
- (iv) यह कथन असत्य है। उदाहरण के लिए, $2 \times (-1) = -2$, और -2, -1 से बड़ा नहीं है।
- (v) यह कथन असत्य है। उदाहरण के लिए, $\left(\frac{1}{2}\right)^2 = \frac{1}{4}$, और $\frac{1}{4}$, $\frac{1}{2}$ से बड़ा नहीं है।
- (vi) यह कथन असत्य है; क्योंकि समचतुर्भुज की बराबर भुजाएँ तो होती हैं, परन्तु यह आवश्यक नहीं है कि वह एक वर्ग है।

इस बात की ओर आपने अवश्य ध्यान दिया होगा कि यह स्थापित करने के लिए कि गणित के अनुसार कथन सत्य नहीं है, हमें एक ऐसा उदाहरण या ऐसी स्थिति देनी होगी, जहाँ यह लागू नहीं होता। अत: (ii) में, क्योंकि 9 अभाज्य संख्या नहीं है, यह एक उदाहरण है जो यह दर्शाता है कि कथन "1 से बड़ी प्रत्येक विषम संख्या अभाज्य होती है", सत्य नहीं है। इस प्रकार का उदाहरण, जो कथन के अनुकूल न हो, प्रत्युदाहरण (counter example) कहलाता है। हम अनुच्छेद A1.5 में प्रत्युदाहरणों पर विस्तार से चर्चा करेंगे।

इस बात की ओर भी आपने अवश्य ध्यान दिया होगा कि यद्यपि कथन (iv), (v) और (vi) असत्य हैं, फिर भी इन पर कुछ प्रतिबंध लगाकर आप इन्हें सत्य बना सकते हैं।

उदाहरण 3 : उपयुक्त प्रतिबंध लगाकर निम्नलिखित कथनों को पुन: इस प्रकार लिखिए कि वे सत्य कथन हो जाएँ।

- (i) प्रत्येक वास्तविक संख्या x के लिए 2x > x होगा।
- (ii) प्रत्येक वास्तविक संख्या x के लिए $x^2 > x$ होगा।
- (iii) यदि आप एक संख्या को स्वयं उसी संख्या से भाग दें, तो आपको सदैव ही 1 प्राप्त होगा।
- (iv) वृत्त के एक बिंदु पर उसकी जीवा द्वारा अंतरित कोण 90° का होता है।
- (v) यदि एक चतुर्भुज की सभी भुजाएँ बराबर हों, तो वह एक वर्ग होता है।

हल:

- (i) यदि x > 0 हो, तो 2x > x होगा।
- (ii) यदि $x \le 0$ हो या $x \ge 1$ हो, तो $x^2 \ge x$ होगा।
- (iii) यदि शून्य के अतिरिक्त किसी अन्य संख्या को स्वयं उसी संख्या से भाग दें, तो आपको सदैव 1 प्राप्त होगा।
- (iv) वृत्त के एक बिंदु पर वृत्त के एक व्यास द्वारा अंतरित कोण 90° का होता है।
- (v) यदि एक चतुर्भुज की सभी भुजाएँ और सभी अंत:कोण बराबर हों, तो वह एक वर्ग होता है।

प्रश्नावली A 1.1

- बताइए कि निम्निलिखित कथन सदैव सत्य हैं, सदैव असत्य हैं या संदिग्ध हैं। कारण सिंहत अपने उत्तर की पुष्टि कीजिए।
 - (i) एक वर्ष में 13 महीने होते हैं।
 - (ii) दीवाली शुक्रवार को पड़ रही है।
 - (iii) मगादी में तापमान 26° C है।
 - (iv) पृथ्वी का एक चन्द्रमा है।
 - (v) कुत्ते उड़ सकते हैं।
 - (vi) फरवरी में केवल 28 दिन होते हैं।
- 2. बताइए कि निम्नलिखित कथन सत्य हैं या असत्य। कारण सहित उत्तर दीजिए।
 - (i) एक चतुर्भुज के अंत:कोणों का योग 350° होता है।
 - (ii) किसी भी वास्तविक संख्या x के लिए $x^2 \ge 0$ है।
 - (iii) समचतुर्भुज एक समांतर चतुर्भुज होता है।
 - (iv) दो सम संख्याओं का योग सम होता है।
 - (v) दो विषम संख्याओं का योग विषम होता है।

3. उपयुक्त प्रतिबंध लगाकर, निम्नलिखित कथनों को इस प्रकार लिखिए कि वे सत्य कथन बन जाएँ:

- (i) सभी अभाज्य संख्याएँ विषम होती हैं।
- (ii) एक वास्तविक संख्या का दुगुना सदा एक सम संख्या होती है।
- (iii) किसी भी x के लिए, 3x + 1 > 4 होता है।
- (iv) किसी भी x के लिए, $x^3 \ge 0$ होता है।
- (v) प्रत्येक त्रिभुज में माध्यिका एक कोण समद्विभाजक भी होती है।

A1.3 निगमनिक तर्कण

एक **असंदिग्ध** (unambiguous) कथन की सत्यता स्थापित करने में प्रयुक्त मुख्य तर्कसंगत साधन निगमनिक तर्कण (deductive reasoning) है।

निगमनिक तर्कण को समझने के लिए, आइए हम एक पहेली से प्रारंभ करें जिसे आपको हल करना है।

मान लीजिए आपको चार कार्ड दिए गए हैं। प्रत्येक कार्ड की एक ओर एक संख्या छपी है और दूसरी ओर एक अक्षर छपा है।

मान लीजिए आपको यह बताया जाता है कि ये कार्ड निम्नलिखित नियम का पालन करते हैं: "यदि कार्ड की एक ओर एक सम संख्या हो, तो दूसरी ओर एक स्वर (vowel) होता है।"

नियम की सत्यता की जाँच करने के लिए, कम से कम कितने कार्डों को उलटने की आवश्यकता होगी।

हाँ, यह विकल्प तो आपके पास है ही कि आप सभी कार्डों को उलट सकते हैं और जाँच कर सकते हैं। परन्तु क्या आप कम संख्या में कार्डों को उलट कर, दिए हुए कथन की जाँच कर सकते हैं?

ध्यान दीजिए कि कथन में यह बताया गया है कि वह कार्ड जिसकी एक ओर सम संख्या है उसकी दूसरी ओर एक स्वर होता है। इस कथन में यह नहीं बताया गया है कि जिस कार्ड की एक ओर स्वर है उसकी दूसरी ओर एक सम संख्या अवश्य होनी चाहिए। ऐसा हो भी सकता है या नहीं भी हो सकता है। नियम में यह भी नहीं बताया गया है कि वह कार्ड जिसके एक ओर एक विषम संख्या है, उसके दूसरी ओर व्यंजन (consonant) होना ही चाहिए। यह हो भी सकता है या नहीं भी हो सकता है।

अत: क्या हमें 'A' को उलटने की आवश्यकता होगी? उत्तर है: नहीं। दूसरी ओर चाहें एक सम संख्या हो या एक विषम संख्या हो, नियम तब भी लागू होता है।

"5" के संबंध में आप क्या कहेंगे? यहाँ भी हमें कार्ड उलटने की आवश्यकता नहीं है, क्योंकि दूसरी ओर चाहे स्वर हो या व्यंजन, नियम तब भी लागू होता है।

परन्तु V और 6 वाले कार्डों को उलटने की आवश्यकता है। यदि V की दूसरी ओर एक सम संख्या हो, तो नियम भंग हो जाता है। इसी प्रकार, यदि 6 की दूसरी ओर एक व्यंजन हो, तो भी नियम भंग हो जाता है।

इस पहेली को हल करने के लिए हमने जिस प्रकार के तर्कण का प्रयोग किया है, उसे **निगमनिक** तर्कण (deductive reasoning) कहा जाता है। इसे 'निगमनिक' इसलिए कहा जाता है, क्योंकि तर्क का प्रयोग करके पहले स्थापित किए गए कथन से हम एक परिणाम या कथन प्राप्त (अर्थात् निगमित) कर सकते हैं। उदाहरण के लिए ऊपर की पहेली में, निगमित किए गए अनेक तर्कों से हमने यह निगमित (प्राप्त) किया कि केवल V और 6 को ही उलटने की आवश्यकता है।

निगमनिक तर्कण की सहायता से, हम यह भी निष्कर्ष निकाल सकते हैं कि अमुक कथन सत्य है, क्योंकि यह एक अति व्यापक कथन की, जिसे सत्य माना गया है, एक विशिष्ट स्थिति है। उदाहरण के लिए, एक बार जब हम यह सिद्ध कर लेते हैं कि दो विषम संख्याओं का गुणनफल सदैव ही विषम होता है, तब (बिना अभिकलन के) हम तुरंत यह निष्कर्ष निकाल सकते हैं कि 70001 × 134563 विषम होगा. क्योंकि 70001 और 134563 दोनों संख्याएँ ही विषम हैं।

शताब्दियों से निगमनिक तर्कण मानव चिंतन का एक अंग रहा है और इसका प्रयोग हमारे दैनिक जीवन में सदा होता रहता है। उदाहरण के लिए, मान लीजिए ये कथन कि "पुष्प सोलारिस केवल तब खिलता है, जबिक पिछले दिन का अधिकतम तापमान 28°C से अधिक होता है "और" 15 सितंबर, 2005 को काल्पनिक घाटी (imaginary valley) में सोलारिस खिला था, सत्य है। तब निगमनिक तर्कण का प्रयोग करके, हम यह निष्कर्ष निकाल सकते हैं कि काल्पनिक घाटी में 14 सितंबर, 2005 को अधिकतम तापमान 28°C से अधिक था।

हमारा दुर्भाग्य यह है कि हम अपने दैनिक जीवन में सही तर्कण का प्रयोग सदा नहीं करते। हम प्राय: सदोष (गलत) तर्कण के आधार पर अनेक निष्कर्ष निकाल लेते हैं। उदाहरण के लिए, यिद आपकी सहेली एक दिन आपको देखकर मुस्कराती नहीं है, तब आप यह निष्कर्ष निकाल लेते हैं कि वह आपसे नाराज है। यद्यपि यह सत्य भी हो सकता है कि "यदि वह मुझसे नाराज है, तो मुझे देखकर वह नहीं मुस्कराएगी"; परन्तु यह भी सत्य हो सकता है कि "यदि उसके सिर में बहुत दर्द हो, तो वह मुझे देखकर नहीं मुस्कराएगी"। आप कुछ निष्कर्षों की जाँच क्यों नहीं कर लेते जो कि आप प्रतिदिन निकालते रहते हैं और देखें कि ये निष्कर्ष मान्य तर्कण पर आधारित हैं या सदोष तर्कण पर आधारित हैं?

प्रश्नावली A 1.2

- 1. निगमनिक तर्कण द्वारा निम्नलिखित प्रश्नों के उत्तर दीजिए :
 - (i) मानव स्तनधारी होते हैं। सभी स्तनधारी कशेरुकों (vertebrates) होते हैं। इन दो कथनों के आधार पर आप मानव के संबंध में क्या निष्कर्ष निकाल सकते हैं?
 - (ii) एंथनी एक नाई है। दिनेश ने अपने बाल कटवाए हैं। क्या आप यह निष्कर्ष निकाल सकते हैं कि एंथनी ने दिनेश के बाल काटे हैं?
 - (iii) मार्टियन (Martians) की जीभ लाल होती हैं। गुलग एक मार्टियन है। इन दो कथनों के आधार पर आप गुलग के बारे में क्या निष्कर्ष निकाल सकते हैं?
 - (iv) यदि किसी दिन चार घंटे से अधिक समय तक वर्षा होती है, तो अगले दिन गटरों की सफाई करनी पड़ती है। आज 6 घंटे तक वर्षा हुई है। कल गटर की अवस्था क्या होगी, इसके बारे में आप क्या निष्कर्ष निकाल सकते हैं?
 - (v) नीचे के कार्टून में दिए गए गाय के तर्क में क्या विरोधाभास (fallacy) है?

- 2. आपको फिर से चार कार्ड दिए गए हैं। प्रत्येक कार्ड के एक ओर एक संख्या और दूसरी ओर एक अक्षर छपा है। नीचे दिया गया नियम लागू होता है या नहीं, इसकी जाँच करने के लिए, वे कौन-से दो कार्ड होंगे जिन्हें उलटने की आवश्यकता होगी?
 - "यदि एक कार्ड की एक ओर एक व्यंजन हो, तो उसकी दूसरी ओर एक विषम संख्या होती है।"

8

A1.4 प्रमेय, कंजेक्चर और अभिगृहीत

अभी तक हमने कुछ कथनों पर चर्चा की है और देखा है कि इन कथनों की मान्यता की जाँच किस प्रकार की जाती है। इस अनुच्छेद में, आप उन तीन अलग-अलग प्रकार के कथनों में भेद करने के बारे में अध्ययन करेंगे जिनसे गणित का निर्माण हुआ है। ये हैं: प्रमेय, कंजेक्चर (conjecture) और अभिगृहीत।

आप पहले भी अनेक प्रमेयों को देख चुके हैं। अत: प्रमेय क्या है? उस गणितीय कथन को जिसकी सत्यता स्थापित (सिद्ध) कर दी गई है, प्रमेय (theorem) कहा जाता है। उदाहरण के लिए, नीचे दिए गए कथन प्रमेय हैं, जैसा कि आप अनुच्छेद A1.5 में देखेंगे।

प्रमेय A 1.1: एक त्रिभुज के अंत:कोण का योग 180° होता है।

प्रमेय A 1.2 : दो प्राकृत संख्याओं का गुणनफल सम होता है।

प्रमेय A 1.3 : किन्हीं भी तीन क्रमागत सम प्राकृत संख्याओं का गुणनफल 16 से भाज्य होता है।

कंजेक्चर वह कथन है, जिसे हम अपने गणितीय ज्ञान और अनुभव अर्थात् गणितीय अंत्ज्ञान (intuition) के आधार पर सत्य मानते हैं। कंजेक्चर सत्य या असत्य हो सकता है। साथ ही, यदि हम इसे सिद्ध भी कर सकें, तो यह एक प्रमेय हो जाता है। प्रतिरूपों को देखने और बुद्धिमतापूर्ण गणितीय अनुमान लगाने के लिए, गणितज्ञ प्राय: कंजेक्चर का प्रयोग करते हैं। आइए हम कुछ प्रतिरूप लें और देखें कि हम किस प्रकार का बुद्धितापूर्ण अनुमान लगा सकते हैं।

उदाहरण 4: कोई भी तीन क्रमागत सम संख्याएँ लीजिए और उन्हें जोड़िए, जैसे— 2+4+6=12, 4+6+8=18, 6+8+10=24, 8+10+12=30, 20+22+24=66 आदि। क्या आप इन योगफलों से किसी प्रतिरूप का अनुमान लगा सकते हैं? इनके बारे में आप क्या कजेक्चर दे सकते हैं?

हल: एक कंजेक्चर यह हो सकता है:

- (i) तीन क्रमागत सम संख्याओं का योग सम होता है। अन्य कंजेक्चर यह हो सकता है:
- (ii) तीन क्रमागत सम संख्याओं का योग 6 से विभाज्य होता है।

उदाहरण 5 : संख्याओं का निम्न प्रतिरूप लीजिए जिसे पास्कल-त्रिभुज कहा जाता है :

पंक्ति											संख्याओं का योग
1						1					1
2					1		1				2
3				1		2		1			4
4			1		3		3		1		8
5		1		4		6	۷	1	1		16
6	1		5		10		10		5	1	32
7			:						:		0
8			:						:		

पंक्तियों 7 और 8 की संख्याओं के योगफलों के लिए कंजेक्चर आप क्या दे सकते हैं? पंक्ति 21 की संख्याओं के बारे में आप क्या कहेंगे? क्या आप एक प्रतिरूप देख रहे हैं? पंक्ति n की संख्याओं के योग के एक सूत्र के बारे में अनुमान लगाइए।

हल: पंक्ति 7 की संख्याओं का योग = $2 \times 32 = 64 = 2^6$ है। पंक्ति 8 की संख्याओं का योग = $2 \times 64 = 128 = 2^7$ है। पंक्ति 21 की संख्याओं का योग = 2^{20} है। पंक्ति n की संख्याओं का योग = 2^{n-1} है।

उदाहरण 6 : तथाकथित त्रिभुजीय संख्याएँ T लीजिए:

बिंदुओं का विन्यास इस प्रकार किया गया है कि इनसे एक त्रिभुज बनता है। यहाँ $T_1=1$, $T_2=3$, $T_3=6$, $T_4=10$, आदि–आदि। क्या आप अनुमान लगा सकते हैं कि T_5 क्या है? T_6 के बारे में आप क्या कह सकते हैं? T_n के बारे में आप क्या कह सकते हैं? T_n का एक कंजेक्चर दीजिए।

n

यदि आप इन्हें नीचे दी गई विधि से पुन: खींचें, तो इससे आपको सहायता मिल सकती है:

$$T_5 = 1 + 2 + 3 + 4 + 5 = 15 = \frac{5 \times 6}{2}$$

$$T_6 = 1 + 2 + 3 + 4 + 5 + 6 = 21 = \frac{6 \times 7}{2}$$

$$T_n = \frac{n \times (n+1)}{2}$$

कंजेक्चर का एक अनुकूल उदाहरण जो कि अभी भी खुला हुआ है (अर्थात् अभी तक सिद्ध नहीं किया गया है कि यह सत्य है या असत्य), गणितज्ञ क्रिश्चियन गोल्डबाक (1690–1764) के नाम पर रखा गया गोल्डबाक कंजेक्चर है। इस कंजेक्चर का कथन यह है: "4 से बड़े प्रत्येक सम पूर्णांक को दो विषम अभाज्य संख्याओं के योग के रूप में व्यक्त किया जा सकता है।" यदि आप यह सिद्ध कर लेंगे कि यह परिणाम सत्य है या असत्य तो आप प्रसिद्ध हो जाएँगे।

यह देखकर आपको अवश्य आश्चर्य हुआ होगा कि गणित में हमारे सामने जो कुछ भी आता है, क्या उसे सिद्ध करना आवश्यक है, और यदि नहीं, तो क्यों नहीं?

वास्तविकता तो यह है कि गणित का प्रत्येक क्षेत्र कुछ कथनों पर आधारित होता है' जिन्हें हम सत्य मान लेते हैं और उन्हें सिद्ध नहीं करते। ये "स्व-प्रमाणित सत्य" हैं जिन्हें हम बिना उपपत्ति के 352

सत्य मान लेते हैं। इन कथनों को अभिगृहीत (axioms) कहा जाता है। अध्याय 5 में आप यूक्लिड के अभिगृहीतों और अभिधारणाओं (postulates) का अध्ययन कर चुके हैं (आजकल अभिगृहीतों और अभिधारणाओं के बीच कोई भेद नहीं रखा जाता है)।

उदाहरण के लिए युक्लिड की पहली अभिधारणा है:

किसी एक बिंदु से किसी अन्य बिंदु तक एक सरल रेखा खींची जा सकती है। और उनकी तीसरी अभिधारणा है:

कोई भी केंद्र और कोई भी त्रिज्या लेकर एक वृत्त खींचा जा सकता है। ये कथन पूर्णत: सत्य दिखाई पड़ते हैं और यूक्लिड ने इन्हें सत्य मान लिया था। क्यों?

उन्होंने इसे सत्य इसिलए मान लिया था, क्योंकि हम प्रत्येक तथ्य को सिद्ध नहीं कर सकते और हमें कहीं न कहीं से प्रारंभ तो करना ही पड़ता है। इसके लिए, हमें कुछ कथनों की आवश्यकता होती है, जिन्हें हम सत्य मान लेते हैं और फिर इन अभिगृहीतों पर आधारित तर्क के नियमों का प्रयोग करके हम अपने ज्ञान का निर्माण कर सकते हैं।

आपको यह जानकर आश्चर्य हो सकता है कि तब हम उन सभी कथनों को स्वीकार क्यों नहीं कर लेते जो स्व-प्रमाणित प्रतीत होते हैं। इसके अनेक कारण हैं। प्राय: हमारा अंर्तज्ञान गलत सिद्ध हो सकता है; चित्र या प्रतिरूप हमें धोखा दे सकते हैं और फिर हमारे सामने केवल एक ही विकल्प बच जाता है कि दिए हुए तथ्य को सिद्ध करें। उदाहरण के लिए, हममें से अनेक व्यक्ति यह विश्वास करते हैं कि यदि एक संख्या को एक अन्य संख्या से गुणा करें, तो प्राप्त परिणाम दोनों संख्याओं से बड़ा होगा। परन्तु हम यह जानते हैं कि यह सदैव सत्य नहीं होता है। उदाहरण के लिए, $5 \times 0.2 = 1$ है, जो कि 5 से कम है।

अब आप नीचे दी गई आकृति देखिए। कौन सा रेखाखंड अधिक लंबा है, AB या CD?

दोनों ही रेखाखंड ठीक-ठीक समान लंबाई के हैं, यद्यपि AB छोटा दिखाई पड़ता है।

तब आप अभिगृहीतों की मान्यता के संबंध में आश्चर्य कर सकते हैं। आपने अंर्तज्ञान के आधार पर वे अभिगृहीत लिए गए हैं जो स्व-प्रमाणित दिखाई पड़ते हैं। फिर भी संभव है कि बाद में चलकर हमें पता चल सकता है कि अमुक अभिगृहीत सत्य नहीं है। इस संभावना से किस प्रकार बचाव किया जाए? इसके लिए हम निम्नलिखित चरण अपनाते हैं?

(i) अभिगृहीतों की संख्या कम से कम रखिए। उदाहरण के लिए, यूक्लिड के केवल अभिगृहीतों और 5 अभिधारणाओं के आधार पर हम सैकड़ों परिणाम व्युत्पन्न कर सकते हैं।

(ii) सुनिश्चित हो जाइए कि अभिगृहीत संगत (अविरोधी) (consistent) है। हम अभिगृहीतों के संग्रह को असंगत (inconsistent) तब कहते हैं जबिक हम इनका प्रयोग करते हुए, यह सिद्ध कर लें कि इनमें से एक अभिगृहीत सत्य नहीं है। उदाहरण के लिए, निम्नलिखित दो कथन लीजिए। यहाँ हम यह दिखाएँगे कि ये कथन असंगत हैं।

कथन 1 : कोई भी पूर्ण संख्या अपनी परवर्ती संख्या के बराबर नहीं होती।

कथन 2 : एक पूर्ण संख्या को शून्य से भाग देने पर एक पूर्ण संख्या प्राप्त होती है।

(स्मरण रहे कि **शून्य से दिया गया भाग परिभाषित नहीं है।**) परन्तु, एक क्षण के लिए यह मान लीजिए कि ऐसा संभव है और फिर देखते हैं कि क्या होता है।)

कथन 2 से हमें $\frac{1}{0} = a$ प्राप्त होता है, जहाँ a एक पूर्ण संख्या है। इससे यह पता चलता है कि 1 = 0 है। परन्तु कथन 1 को, जो कहता है कि कोई भी पूर्ण संख्या अपनी परवर्ती पूर्ण संख्या के बराबर नहीं होती, यह असत्य सिद्ध कर देता है।

(iii) कभी न कभी एक असत्य अभिगृहीत के कारण अंतर्विरोध अवश्य होगा। हम अंतर्विरोध तब मानते हैं जबिक हमें एक ऐसा कथन प्राप्त होता है, जिससे कि कथन और उसका निषेध (negation) दोनों ही सत्य हो जाएँ। उदाहरण के लिए, ऊपर दिए गए कथन 1 और कथन 2 को पुन: लीजिए।

कथन 1 से हम यह परिणाम व्युत्पन्न कर सकते हैं कि $2 \neq 1$ है। अब आप $x^2 - x^2$ लीजिए। इसका गुणनखंडन हम दो विधियों से कर सकते हैं :

(i)
$$x^2 - x^2 = x(x - x)$$
 और

(ii)
$$x^2 - x^2 = (x + x)(x - x)$$

अत:, x(x-x) = (x+x)(x-x) हुआ।

कथन 2 के अनुसार, हम दोनों पक्षों से (x-x) काट सकते हैं।

तब हमें x = 2x प्राप्त होता है, जिससे यह पता चलता है कि 2 = 1 है।

अत: कथन $2 \neq 1$ और इसका निषेध 2 = 1 दोनों ही सत्य हैं। यह एक अंतर्विरोध है। यह अंतर्विरोध असत्य अभिगृहीत के कारण है, जोिक यह है कि एक पूर्ण संख्या को 0 से भाग देने पर एक पूर्ण संख्या प्राप्त होती है।

अत:, हम जिन कथनों को अभिगृहीत मानते हैं, उसके लिए बहुत सोच-विचार और अंतर्दृष्टि की आवश्यकता होती है। इस संबंध में हमें यह अवश्य सुनिश्चित कर लेना चाहिए कि इनसे कोई असंगतता या तर्कसंगत अंतर्विरोध न हो, फिर भी, कभी-कभी अभिगृहीतों या अभिधारणों के चयन से कुछ नए तथ्यों का पता लगता है। अध्याय 5 से आप यूक्लिड के पाँचवीं अभिधारणा और अयूक्लिडीय ज्यामितियों के आविष्कार से आप परिचित हैं। वहाँ आपने यह देखा है कि गणितज्ञों का यह विश्वास था कि पाँचवीं अभिधारणा को एक अभिधारणा लेने की आवश्यकता नहीं है और वास्तव में यह एक प्रमेय है, जिसे पहली चार अभिधारणाओं की सहायता से सिद्ध किया जा सकता है। आश्चर्य है कि इन कार्यों से अयूक्लिडीय ज्यामितियों का आविष्कार हो गया।

अभिगृहीत, प्रमेय और कंजेक्चर के बीच के अंतरों को बताते हुए, हम इस अनुच्छेद को यहीं समाप्त करते हैं। **अभिगृहीत** एक गणितीय कथन है जिसे बिना उपपत्ति के सत्य मान लिया जाता है। कंजेक्चर एक गणितीय कथन है जिसकी सत्यता या असत्यता को अभी स्थापित करना शेष है, और प्रमेय एक गणितीय कथन है जिसकी सत्यता तार्किक रूप से स्थापित की गई है।

प्रश्नावली A 1.3

1. कोई भी तीन क्रमागत सम संख्याएँ लीजिए और उनका गुणनफल ज्ञात कीजिए : उदाहरण के लिए, $2 \times 4 \times 6 = 48, 4 \times 6 \times 8 = 192$, आदि आदि। इन गुणनफलों के तीन कंजेक्चर बनाइए।

2. पास्कल-त्रिभुज पर आ जाइए।

पंकित $1:1=11^{\circ}$

पंकित $2:11=11^1$

पंक्ति $3:1\ 2\ 1=11^2$

पंक्ति 4 और पंक्ति 5 के लिए एक-एक कंजेक्चर बनाइए। क्या आपका कंजेक्चर सत्य है? क्या आपका कंजेक्चर पंक्ति 6 पर भी लागू होता है?

3. आइए हम त्रिभुजीय संख्याओं को पुन: देखें (आकृति A1.2) दो क्रमागत संख्याओं को जोड़िए। उदाहरण के लिए, $T_1+T_2=4$, $T_2+T_3=9$, $T_3+T_4=16$ है।

 $T_{_4}+T_{_5}$ के बारे में आपका क्या कहना है? $T_{_{n-1}}+T_{_n}$ का एक कंजेक्चर बनाइए।

4. निम्नलिखित प्रतिरूप देखिए:

 $1^2 = 1$

 $11^2 = 121$

 $111^2 = 12321$

 $1111^2 = 1234321$

 $111111^2 = 123454321$

निम्नलिखित में से प्रत्येक का एक कंजेक्चर बनाइए:

11111112=

111111112 =

जाँच कीजिए कि आपका कंजेक्चर सत्य है या नहीं।

5. इस पुस्तक में प्रयुक्त पाँच अभिगृहीत (अभिधारणाएँ) बताइए।

A1.5 गणितीय उपपत्ति क्या है?

आइए हम उपपत्तियों के विभिन्न पहलुओं पर विचार करें। सबसे पहले हम सत्यापन (verification) और उपपत्ति (proof) के बीच के अंतर को समझेंगे। गणित में उपपत्तियों का अध्ययन करने से पहले, आपसे कथनों को सत्यापित करने के लिए कहा जाता है।

उदाहरण के लिए, उदाहरणों के साथ यह सत्यापित करने के लिए कहा जा सकता है कि "दो सम संख्याओं का गुणनफल सम होता है"। अत: इसके लिए आप यदृच्छया दो सम संख्या ले सकते हैं। मान लीजिए वे संख्याएँ 24 और 2006 ली जा सकती हैं और जाँच की जा सकती हैं कि $24 \times 2006 = 48144$ एक सम संख्या है। इस तरह के और उदाहरण लेकर भी आप यह क्रिया कर सकते हैं।

आपको कक्षा में अनेक त्रिभुज खींचने और इनके अंत:कोणों का योग अभिकलित करने के लिए कहा जा सकता है। मापन में त्रुटियाँ न होने पर त्रिभुज के अंत:कोणों का योग 180° होता है।

इस विधि में त्रुटि (flaw) क्या है? ऐसी अनेक समस्याएँ हैं, जिनका सत्यापन करना है। इसकी सहायता से आप यह तो कह सकते हैं कि जिस कथन को आप सही मानते हैं वह सत्य है, परन्तु आप इस बात से सुनिश्चित नहीं हो सकते कि यह सभी स्थितियों के लिए सत्य है। उदाहरण के लिए, सम संख्याओं के अनेक युग्मों के गुणन से आप यह अनुमान तो लगा सकते हैं कि दो सम संख्याओं का गुणनफल सम होता है। फिर भी, आप सुनिश्चित नहीं हो पाते कि सम संख्याओं के सभी युग्मों का गुणनफल सम है। आप व्यक्तिगत रूप से सम संख्याओं के सभी युग्मों के गुणनफलों की जाँच नहीं कर सकते। यदि ऐसा आप कर पाते तो कार्टून में दिखाई गई लड़की की भाँति अपने शेष जीवन में सम संख्याओं के गुणनफलों का परिकलन करते ही रहते। इसी प्रकार, कुछ ऐसे भी त्रिभुज हो सकते हैं जिन्हें अभी तक आपने नहीं बनाया है और जिनके अंत:कोणों का योग 180° नहीं है। हम सभी संभव त्रिभुजों के अंत:कोणों को नहीं माप सकते।

र्गणित

प्राय: सत्यापन भी भ्रामक हो सकते हैं। उदाहरण के लिए, पहले किए गए सत्यापनों के आधार पर पास्कल-त्रिभुज (प्रश्नावली A1.3 का प्रश्न 2) से हम यह निष्कर्ष निकाल सकते हैं कि $11^5 = 15101051$ है। परन्तु वास्तव में $11^5 = 161051$ है।

अत: आपको एक अन्य विधि से सोचना होगा जो कि केवल कुछ स्थितियों के सत्यापन पर ही निर्भर न हो। एक अन्य विधि है जिसमें कथन को सिद्ध करके दिखाया जाता है। वह प्रक्रम, जो केवल तर्कसंगत तर्कों के आधार पर गणितीय कथन की सत्यता स्थापित कर सकता है उसे गणितीय उपपत्ति (mathematical proof) कहा जाता है।

अनुच्छेद A1.2 के उदाहरण 2 में, आपने यह देखा है कि गणितीय कथन को असत्य स्थापित करने के लिए एक प्रत्युदाहरण प्राप्त कर लेना ही पर्याप्त है। अत:, यद्यपि हजारों स्थितियाँ लेकर एक गणितीय कथन की जाँच करके अथवा सत्यापन करके इसकी मान्यता स्थापित करना पर्याप्त नहीं होता। फिर भी, इसके लिए एक ऐसा प्रत्युदाहरण प्राप्त कर देना ही पर्याप्त होता है जो कथन को असत्य सिद्ध कर देता है (अर्थात् यह दिखाना कि कुछ असत्य है)। इस बात पर विशेष ध्यान देने की आवश्यकता है।

गणितीय कथन को असत्य दर्शाने के लिए एक प्रत्युदाहरण ज्ञात कर लेना ही पर्याप्त होता है। अत:,7 + 5 = 12 कथन दो विषम संख्याओं का योग विषम होता है, का एक प्रत्युदाहरण है। आइए अब हम एक उपपत्ति के आधारभूत अवयवों की सूची देखें:

- (i) एक प्रमेय को सिद्ध करने के लिए, हमें इस बात का एक स्थूल विचार (rough idea) होना चाहिए कि यह प्रक्रिया किस प्रकार की जाती है।
- (ii) प्रमेय में पहले से दी गई सूचनाओं (अर्थात् परिकल्पना) को अच्छी तरह से समझ लेना चाहिए और प्रयोग करना चाहिए।

उदाहरण के लिए, प्रमेय A1.2 में, जो यह है कि दो सम संख्याओं का गुणनफल सम होता है, हमें दो सम प्राकृत संख्याएँ दी हुई हैं। अत: हमें इनके गुणों का प्रयोग करना चाहिए। (अध्याय 2 के) गुणनखंड प्रमेय में एक बहुपद p(x) दिया गया है और बताया गया है कि p(a)=0 का यह दर्शाने के लिए आपको प्रयोग करना है कि (x-a), p(x) का एक गुणनखंड है। इसी प्रकार, गुणनखंड प्रमेय के विलोम (converse) के लिए यह दिया गया है कि (x-a), p(x) का एक गुणनखंड है और इसका प्रयोग आपको इस परिकल्पना (hypothesis) को सिद्ध करने के लिए करना है कि p(a)=0 है।

एक प्रमेय को सिद्ध करने के प्रक्रम में, आप रचनाओं का भी प्रयोग कर सकते हैं। उदाहरण के लिए, यह सिद्ध करने के लिए कि एक त्रिभुज के कोणों का योग 180° होता है, हम किसी एक भुजा के समांतर और उस भुजा के सम्मुख शीर्ष से होकर जाने वाली एक रेखा खींचते हैं और समांतर रेखाओं के गुणों का प्रयोग करते हैं।

- (iii) उपपत्ति में गणितीय कथनों का एक उत्तरोत्तर (successive) अनुक्रम होता है। उपपत्ति का प्रत्येक कथन उपपत्ति के पिछले कथन से, पहले सिद्ध किए गए प्रमेय से, एक अभिगृहीत से या अपनी परिकल्पनाओं से तार्किक रूप से निगमित हो जाता है।
- (iv) एक तार्किक रूप से सही क्रम में विन्यासित गणितीय रूप से सत्य कथनों के अनुक्रम का निष्कर्ष वही होना चाहिए जिसे हम सिद्ध करना चाहते हैं, अर्थात् यह वह होना चाहिए जिसका प्रमेय में दावा किया गया है।

इन अवयवों को समझने के लिए, हम प्रमेय A1.1 और उसकी उपपित्त का विश्लेषण करेंगे। आप अध्याय 6 में इस प्रमेय को पढ़ चुके हैं। परन्तु पहले हम ज्यामिति की उपपित्तयों के संबंध में कुछ टिप्पणी देंगे। प्राय: हम प्रमेयों को सिद्ध करने के लिए आकृतियों या आरेखों की सहायता लेते हैं और यह एक अति महत्वपूर्ण बात है। फिर भी, उपपित्त के प्रत्येक कथन को केवल तर्क की सहायता से स्थापित करना होता है। प्राय: हमने विद्यार्थियों को यह कहते सुना है कि "वे दो कोण बराबर हैं, क्योंकि आकृति में वे बराबर दिखाई पड़ते हैं" या "वह कोण 90° का होगा, क्योंकि दो रेखाएँ ऐसी दिखाई पड़ती हैं जैसे वे एक-दूसरे पर लंब हैं।" अत:, जो कुछ भी आप देखते हैं, उससे धोखा न खा जाइए। आकृति A1.4 को पुन: ध्यान से देखिए।

अत: आइए अब हम प्रमेय A1.1 लें।

प्रमेय A1.1: एक त्रिभुज के अंत:कोणों का योगफल 180° होता है।

उपपत्ति: त्रिभुज ABC लीजिए (देखिए आकृति A1.4)

हमें यह सिद्ध करना है कि \angle ABC + \angle BCA + \angle CAB = 180°

उ58

BC के समांतर एक रेखा DE खींचिए जो A से होकर जाती है। (2)
DE, BC के समांतर है और AB एक तिर्यक रेखा (transversal) है।

अत:, \angle DAB और \angle ABC एकांतर कोण हैं। इसिलए अध्याय 6 के प्रमेय 6.2 के अनुसार, ये कोण बराबर हैं। अर्थात् \angle DAB = \angle ABC है। (3)

इसी प्रकार,
$$\angle CAE = \angle ACB$$
 (4)

इसलिए,
$$\angle ABC + \angle BAC + \angle ACB = \angle DAB + \angle BAC + \angle CAE$$
 (5)

परन्तु \angle DAB + \angle BAC + \angle CAE = 180° है, क्योंकि इनसे एक ऋजु कोण (straight angle) बनता है। (6)

अत:,
$$\angle ABC + \angle BAC + \angle ACB = 180^{\circ}$$
 (7)

अब हम उपपत्ति में प्रयुक्त प्रत्येक चरण पर टिप्पणी देंगे।

चरण 1: क्योंकि हमारे प्रमेय का संबंध त्रिभुज के एक गुण से है, इसलिए सबसे पहले हम एक त्रिभुज लेंगे।

चरण 2: यह एक मुख्य विचार है-अंर्तज्ञानात्म्क प्रारंभिक कदम या यह समझ लेना कि कौन सी प्रक्रिया अपनाई जाए जिससे हम प्रमेय सिद्ध कर सकें। प्राय: ज्यामितीय उपपित्तयों में रचना करने की आवश्यकता होती है।

चरण 3 और 4: इस तथ्य का प्रयोग करके कि DE, BC के समांतर है (अपनी रचना से) और पहले सिद्ध किए गए प्रमेय 6.2 से, जो यह है कि यदि दो समांतर रेखाओं को एक तिर्यक रेखा काटती हो, तो एकांतर कोण बराबर होते हैं, यहाँ हम यह निष्कर्ष निकाल लेते हैं कि \angle DAE = \angle ABC और \angle CAE = \angle ACB है।

चरण 5: यहाँ हम निम्नलिखित निगमित करने के लिए यूक्लिड के अभिग्रहीत (देखिए अध्याय 5) का प्रयोग करते हैं, जो यह है "यदि बराबरों को बराबरों में जोडा जाए, तो पूरे बराबर होते हैं।"

 \angle ABC + \angle BAC+ \angle ACB = \angle DAB + \angle BAC + \angle CAE

अर्थात् त्रिभुज के अंत:कोणों का योग एक ऋजु रेखा पर के कोणों के योग के बराबर होता है।

चरण 6: यह दिखाने के लिए कि \angle DAB + \angle BAC + \angle CAE = 180° है, हम अध्याय 6 के रैखिक युग्म अभिगृहीत का प्रयोग करते हैं, जिसका कथन यह है कि एक ऋजु रेखा पर के कोणों का योग 180° होता है।

चरण 7: यह निष्कर्ष निकालने के लिए कि \angle ABC + \angle BAC + \angle ACB = \angle DAB + \angle BAC + \angle CAE = 180° है, हम यूक्लिड के अभिगृहीत का प्रयोग करते हैं, जो यह है "वे वस्तुएँ जो समान वस्तु के बराबर हैं, एक-दूसरे के बराबर होती हैं। ध्यान दीजिए कि चरण 7 उस प्रमेय द्वारा किया गया दावा है, जिसे हमें सिद्ध करना है।

अब हम विश्लेषण किए बिना ही प्रमेयों A1.2 और A1.3 को सिद्ध करेंगे।

प्रमेय A1.2: दो सम प्राकृत संख्याओं का गुणनफल सम होता है।

उपपत्ति : मान लीजिए x और y कोई दो सम प्राकृत संख्याएँ हैं।

हम यह सिद्ध करना चाहते हैं कि xy सम है।

क्योंकि x और y सम हैं, इसलिए ये 2 से भाज्य हैं। इसीलिए, x=2m के रूप में, जहाँ m कोई प्राकृत संख्या है और y=2n के रूप में, जहाँ n कोई प्राकृत संख्या है, व्यक्त किया जा सकता है। तब $xy=4\ mn$ है और क्योंकि $4\ mn$, 2 से भाज्य है, इसलिए xy भी दो से भाज्य होगा। अत:, xy सम है।

प्रमेय A1.3: किन्हीं भी तीन क्रमागत सम प्राकृत संख्याओं का गुणनफल 16 से भाज्य होता है। उपपत्ति: कोई भी तीन क्रमागत सम प्राकृत संख्या 2n, 2n + 2 और 2n + 4 के रूप की होगी, जहाँ n कोई प्राकृत संख्या है। हमें यह सिद्ध करना है कि इनका गुणनफल 2n(2n + 2)(2n + 4) 16 से भाज्य है।

সৰ,
$$2n(2n+2)(2n+4) = 2n \times 2(n+1) \times 2(n+2)$$

= $2 \times 2 \times 2n(n+1)(n+2) = 8n(n+1)(n+2)$

अब हमारे सामने दो स्थितियाँ हैं: या तो n सम है या विषम है। आइए हम प्रत्येक स्थिति की जाँच करें।

मान लीजिए n सम है। तब हम n=2m लिख सकते हैं, जहाँ m कोई प्राकृत संख्या है। साथ ही, तब 2n(2n+2)(2n+4)=8n(n+1)(n+2)=16m(2m+1)(2m+2)

अत:, 2n(2n+2)(2n+4), 16 से भाज्य है।

अब, मान लीजिए n विषम है। तब n+1 सम होगा और हम n+1=2r लिख सकते हैं, जहाँ r कोई प्राकृत संख्या है।

বৰ
$$2n(2n+2)(2n+4) = 8n(n+1)(n+2)$$
$$= 8(2r-1) \times 2r \times (2r+1)$$
$$= 16r(2r-1)(2r+1)$$

अत:, 2n(2n+2)(2n+4), 16 से भाज्य है।

अत:, दोनों स्थितियों में, हमने यह दर्शा दिया है कि किन्ही भी तीन क्रमागत सम संख्याओं का गुणनफल 16 से भाज्य होता है।

गणितज्ञों ने किस प्रकार परिणामों की खोज की है और किस प्रकार औपचारिक दृढ़ उपपत्तियाँ लिखी गई हैं इनके अंतर पर कुछ टिप्पणी देते हुए, हम इस अध्याय को यहीं समाप्त करते हैं। जैसा कि ऊपर बताया गया है, प्रत्येक उपपत्ति का एक मुख्य अंतर्ज्ञानात्मक विचार (कभी-कभी एक से अधिक) होता है। गणितज्ञों की चिंतन-विधि और परिणामों का पता लगाने में अंतर्ज्ञान केंद्र बिंदु काम करता है। प्राय: प्रमेय की उपपत्ति गणितज्ञों के मस्तिष्क में अपने आप आने लगती है। सही हल या उपपत्ति प्राप्त करने से पहले विभिन्न चिंतन-विधियों और तर्क और उदाहरणों के साथ गणितज्ञ प्राय: प्रयोग करता रहता है। सर्जनात्मक प्रावस्था के दब जाने के बाद ही सभी तर्कों को एक साथ लेकर उचित उपपत्ति प्रस्तुत की जाती है।

यहाँ यह उल्लेख कर देना आवश्यक है कि अपने कथनों तक पहुँचने के लिए, भारत के महान गणितज्ञ श्रीनिवास रामानुजन ने उच्च स्तर के अंतर्ज्ञान का प्रयोग किया था, जिनके संबंध में उनका यह दावा था कि वे सत्य हैं। इनमें से अनेक जो सत्य सिद्ध हो गए हैं वे सुपरिचित प्रमेय हो गए हैं। जो अभी तक सिद्ध नहीं हो पाए हैं उनमें से कुछ दावों (कंजेक्चर) को सिद्ध करने (या असत्य सिद्ध करने) में आज भी पूरे विश्व के गणितज्ञ लगे हए हैं।

श्रीनिवास रामानुजन (1887–1920) आकृति A1.5

प्रश्नावली A1.4

- 1. निम्नलिखित कथनों को असत्य सिद्ध करने के लिए प्रत्युदाहरण ज्ञात कीजिए।
 - (i) यदि दो त्रिभुजों के संगत कोण बराबर हों, तो त्रिभुज सर्वांगसम होते हैं।
 - (ii) वह चतुर्भुज, जिसकी सभी भुजाएँ बराबर हैं एक वर्ग होता है।
 - (iii) वह चतुर्भुज, जिसके सभी कोण बराबर हैं, एक वर्ग होता है।
 - (iv) यदि a और b पूर्णांक हैं, तो $\sqrt{a^2+b^2}=a+b$ है।
 - (v) $2n^2 + 11$ एक अभाज्य संख्या है, जहाँ n पूर्ण संख्या है।
 - (vi) सभी धनात्मक पूर्णांकों n के लिए $n^2 n + 41$ एक अभाज्य संख्या है।
- 2. आप अपने पसंद की उपपत्ति लीजिए और ऊपर चर्चित की गई विधियों, (अंर्तज्ञानात्मक प्रारम्भिक कदम क्या है, क्या दिया हुआ है, क्या निगमित किया गया है, किन प्रमेयों और अभिगृहीतों का प्रयोग किया गया है, आदि आदि) के अनुसार इसका चरणश: विश्लेषण कीजिए।

- 3. सिद्ध कीजिए कि दो विषम संख्याओं का योग सम होता है।
- सिद्ध कीजिए कि दो विषम संख्याओं का गुणनफल विषम होता है।
- सिद्ध कीजिए कि तीन क्रमागत सम संख्याओं का योग 6 से भाज्य होता है।
- 6. सिद्ध कीजिए कि उस रेखा पर अपिरिमत रूप से अनेक बिंदु होते हैं जिसका समीकरण y = 2x है।

(संकेत: बिंदु (n, 2n) लीजिए, जहाँ n कोई पूर्णांक है।)

- 7. आपके मित्र ने कभी आपको कहा होगा कि आप अपने मन में एक संख्या सोच लीजिए और उसके साथ विभिन्न क्रियाएँ कीजिए, और तब आपकी मूल संख्या जाने बिना ही उसने बता दिया होगा कि वह वास्तविक संख्या कौन-सी थी। आपके पास कौन-सी संख्या बची है। यहाँ दो उदाहरण दिए गए हैं। सिद्ध कीजिए कि ये दोनों उदाहरण सत्य क्यों हैं?
 - (i) एक संख्या लीजिए, उसका दो गुना कीजिए, उसमें नौ जोड़िए, अपनी मूल संख्या जोड़िए। इसे तीन से भाग दीजिए। अपनी मूल संख्या को इसमें से घटाइए। आपका परिणाम 7 है।
 - (ii) कोई भी तीन अंकों वाली एक संख्या लीजिए (उदाहरण के लिए 425 लीजिए) इन अंकों को उसी क्रम में दोबारा लिखकर एक छ अंक वाली संख्या बनाइए (425425)। आपकी नई संख्या 7,11 और 13 से भाज्य है।

A1.6 सारांश

इस परिशिष्ट में, आपने निम्नलिखित बिंदुओं का अध्ययन किया है:

- 1. गणित में कोई कथन तब स्वीकार्य होता है जबिक यह कथन सदैव सत्य हो या असत्य हो।
- 2. यह दर्शाने के लिए कि गणितीय कथन असत्य है एक प्रत्युदाहरण ज्ञात कर लेना ही पर्याप्त होता है।
- 3. अभिगृहीत वे कथन हैं जिन्हें उपपत्ति बिना सत्य मान लिया गया है।
- 4. एक कंजेक्चर वह कथन है जिसे हम अपने गणितीय अंतर्ज्ञान के आधार पर सत्य मान लेते हैं, परन्तु जिन्हें हमें अभी सिद्ध करना है।
- 5. उस गणितीय कथन को, जिसकी सत्यता स्थापित (या सिद्ध) कर दी गई है, प्रमेय कहा जाता है।
- 6. गणितीय कथनों को सिद्ध करने का एक मुख्य तार्किक साधन निगमनिक तर्कण है।
- 7. उपपत्ति गणितीय कथनों का एक उत्तरोत्तर अनुक्रम होती है। उपपत्ति का प्रत्येक कथन पहले से ज्ञात कथन से, या पहले सिद्ध किए गए प्रमेय से, या एक अभिगृहीत से, या परिकल्पनाओं से तार्किक रूप से निगमित किया जाता है।