1. Wie lautet das Wohlordnungsprinzip?

Answer: Any nonempty subset of the natural numbers has a unique smallest element, that is: $\forall M \subset \mathbb{N} \ (\emptyset \neq M) \exists ! m \in M : \forall n \in M : m \leq n$

2. Was ist Vollständige Induktion?

Answer: Consider a subset $A \subset \mathbb{N}$. If $1 \in A$ and $(n \in A) \Rightarrow (n+1) \in A \ (\forall n \in \mathbb{N}, n > 0)$, then $A = \mathbb{N}$. This is the same theorem as in the lecture, applied to the truth set of a prediate.

3. Zeige mittels Vollständiger Induktion, dass für alle natürlichen Zahlen n gilt:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Answer:

• n = 1: $\sum_{k=1}^{k} k = 1 = \frac{1(1+1)}{2}$

• $n \Rightarrow n+1$: $\sum_{k=1}^{n+1} k = \sum_{k=1}^{n} k + (n+1) = \frac{n(n+1)}{2} + (n+1) = \frac{(n+1)(n+2)}{2}$

4. Was ist die Zifferndarstellung einer natürlichen Zahl n zur Basis b?

Answer: Let $n \in \mathbb{N}$ and $b \geq 2$. Then there are some unique numbers $k \in \mathbb{N}$ and $a_0, a_1, \ldots, a_k \in \{0, \ldots, b-1\}$ with $a_k \neq 0$ such that $\sum_{i=0}^k a_i b^i = n$

5. Seien A und B Mengen. Wann nennt man eine Funktion $f:A\to B$ injektiv, wann surjektiv, wann bijektiv?

Answer:

• injective: $\forall a, b \in A$: $f(a) = f(b) \Rightarrow a = b$

• surjective: $\forall b \in B : \exists a \in A : f(a) = b$

• bijective: whenever f is injective and surjective

6. Was sind die *Binomialkoeffizienten* $\binom{n}{k}$, und welche Rekursionsformel erfüllen sie? Wie lässt sich die Rekursionsformel kombinatorisch (d.h. als Abzählung von Teilmengen) interpretieren?

Answer: The binomial coefficients of n are the coefficients that occur when raising two numbers $x, y \in \mathbb{R}$ to the n^{th} $(n \in \mathbb{N})$ power:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Combinatorically $\binom{n}{k}$ is the number of different subsets of size k of a set of size n.

For $n \ge 0$, $0 \le k \le n$ holds $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$, where $\binom{n}{0} = 1$ and $\binom{n}{n} = 1$. The binomial coefficient furthermore fulfills the following: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$

7. Wie lautet der *Binomische Lehrsatz*? Wie folgt daraus, dass

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n ?$$

Answer: $\forall x, y \in \mathbb{R}, n \in \mathbb{N} : (x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$ where $x^0 = 1, 0^0 = 1, 0! = 1$ With $x = y = 1 : 2^n = \sum_{k=0}^n \binom{n}{k} 1^k 1^{n-k} = \sum_{k=0}^n \binom{n}{k}$

8. Was ist eine rekursiv definierte Folge? Gib Beispiele an.

Answer: A sequence $(x_n) \in \mathbb{R}$ is defined recursively if there is a $k \in \mathbb{N}$, a function $f : \mathbb{R}^k \to \mathbb{R}$ and initial elements x_1, x_2, \ldots, x_k such that $x_{n+1} = f(x_n, x_{n-1}, \ldots, x_{n-k+1})$ $(\forall n > k)$. A recursively defined sequence is well defined. This definition is equivalent to the one given in the lecture with k = 1.

With k = 2, $x_1 = 1$, $x_2 = 2$ and $f: \mathbb{R}^2 \to \mathbb{R}$ with f(a, b) = a + b consider the $x_{n+1} = f(x_n, x_{n-1})$ sequence, known as the Fibonacci-sequence.

9. Was sind endliche, abzählbare bzw. überabzählbare Mengen? Gib Beispiele an.

Answer:

10. Zeige, dass $\mathbb{N} \times \mathbb{N}$ abzählbar ist.

Answer:

11. Sei $A \subseteq \mathbb{R}$. Was ist eine obere Schranke für A? Wann heißt A nach oben beschränkt?

Answer:

12. Sei $A \subseteq \mathbb{R}$. Wie sind *Supremum* und *Infimum* von A definiert? Wann besitzt A ein Supremum, wann ein Maximum?

Answer:

13. Sei $B = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$. Bestimme inf B und sup B.

Answer:

14. Gib ein Beispiel einer Menge reeller Zahlen an, die ein Supremum aber kein Maximum besitzt.

Answer.

15. Was ist ein Dedekindscher Schnitt?

Answer:

16. Wie lautet das Vollständigkeitsaxiom der reellen Zahlen?

Answer:

17. Definiere die komplexen Zahlen als Paare reeller Zahlen mit geeigneten Additions- und Multiplikationsregeln.

Answer:

18. Was ist der Betrag einer komplexen Zahl $z \in \mathbb{C}$?

Answer:

19. Was ist die zu z komplex konjugierte Zahl \overline{z} ?

Answer:

20. Wie hängen z und \overline{z} mit |z| zusammen?

Answer:

 $21. \ \ Wie \ lautet \ der \ \textit{Fundamentalsatz} \ der \ \textit{Algebra}?$

Answer:

22. Wie hängen komplexe Zahlen $z=x+iy\in\mathbb{C}$ mit Drehstreckungen in \mathbb{R} zusammen? Answer:

23. Was sind Quaternionen?

Answer: