Adressage IPv6

Patrice Denis

Adressage IPv6

Problème :

- multiplication des besoins et services informatiques sur Internet

Conséquence :

- le nombre d'adresses publiques disponibles sous IPv4 a été atteint
- le système est saturé.
- utilisation d'IPv4 entraîne une explosion de la taille des tables de routage.

Solution :

maj. protocole vers version 6 → IPv6

Avantages

Plus grand espace d'adressage

 permet d'éviter la translation d'adresses (NAT) afin de réaliser des liaisons de bout en bout nécessaires à certains services (vidéoconférence, etc.)

• Un en-tête simplifié et efficace

- contrôle des paquets effectué uniquement au niveau des équipements terminaux
- augmentation les performances globales des réseaux
- les équipements intermédiaires (switchs, routeurs...) consomment ainsi moins de ressources

Nouvelles fonctionnalités

- Auto-configuration : découverte des machines d'un même réseau sans intervention de l'utilisateur (réseau « Plug'n Play »)
- Mobilité : connexions possibles en déplacement sans interruption de service

- ...

Règles d'écriture

(RFC 3513 et 3587)

- Adresses **128 bits réduites à 32 caractères** grâce à la notation hexadécimale
- → Ces caractères sont **regroupés par 4 (2 octets) séparés par deux points (« : »)**
- Les zéros placés en début de chaque bloc peuvent être omis
- → Une ou plusieurs séquences de 16 bits à zéro **peuvent être remplacées mais seulement une fois par adresse**

Exemples

Résumé: La représentation textuelle d'une adresse IPv6 se fait en découpant le mot de 128 bits de l'adresse en 8 mots de 16 bits séparés par le caractère «:», chacun d'eux étant représenté en hexadécimal.

Exemples:

fe80:0000:0000:0000:0010:4cff:fe50:0020 (forme expansée)

fe80::10:4cff:fe50:20 (forme contractée ou abrégée)

Vocabulaire

- Les 64 derniers bits sont l'identifiant de la machine (ou de l'interface).
- Les 64 premiers bits forment le préfixe.
- Une machine, la plupart du temps, a plusieurs préfixes (deux dans le cas d'une machine reliée à un routeur : un préfixe "lien local" et un préfixe "global").

Vocabulaire (suite)

- Le préfixe identifie le type d'adresse (local, global, multicast, etc.).
- Dans le cas d'une adresse globale, le préfixe détermine le réseau d'appartenance de la machine.
- Une machine multi-domiciliée (une passerelle) a plusieurs préfixes "globaux".
- La représentation des préfixes suit la notation CIDR : adresse IPV6/longueur du préfixe en bits.

Adressages réservés

Préfixe IPv6	Alloué	Référence	
0000::/8	Réservé pour la transition et loopback	RFC 3513	
0100::/8	Réservé	RFC 3513	
0200::/7	Réservé (ex <u>NSAP</u>)	RFC 4048	
0400::/6	Réservé (ex IPX)	RFC 3513	
0800::/5	Réservé	RFC 3513	
1000::/4	Réservé	RFC 3513	
2000::/3	<u>Unicast Global</u>	RFC 3513	
4000::/3	Réservé	RFC 3513	
6000::/3	Réservé	RFC 3513	
8000::/3	Réservé	RFC 3513	
A000::/3	Réservé	RFC 3513	
C000::/3	Réservé	RFC 3513	
E000::/4	Réservé	RFC 3513	
F000::/5	Réservé	RFC 3513	
F800::/6	Réservé	RFC 3513	
FC00::/7	<u>Unique Local Unicast</u>	RFC 4193	
FE00::/9	Réservé	RFC 3513	
FE80::/10	<u>Lien-local</u>	RFC 3513	е
FEC0::/10	Réservé	<u>RFC 3879</u>	eau-Por
FF00::/8	Multicast	RFC 3513	8

Les adresses globales

• publiques donc routables sur Internet

Unicast Global 2000::/3

LIR : registre Internet local (FAI)

Appréhension des tailles

Nb d'adresses IPv6

 2^{128} = 340 282 366 920 938 463 463 374 607 431 768 211 456 adresses IPv6 possibles soient environ 3,4 x 10^{38}

contre 4 294 967 296 d'IPv4 possibles soient environ 4 milliards

Calcul:

Diamètre terrestre = 12742 km

Combien d'IPv6 par mm²?

Combien d'IPv6 par mm³?

Appréhension des tailles

Nb d'adresses IPv6

 2^{128} = 340 282 366 920 938 463 463 374 607 431 768 211 456 adresses IPv6 possibles soient environ 3,4 x 10^{38}

contre 4 294 967 296 d'IPv4 possibles soient environ 4 milliards

Calcul:

Diamètre terrestre = 12742 km

Combien d'IPv6 par mm³?

réponse : environ 418 millions par mm³

Combien d'IPv6 par mm² ? réponse : $Nb_{IPv6}/mm^2 = \frac{2}{3} \times 10^{18}$

Appréhension des tailles

Exemples

- France Télécoms a obtenu du RIPE-NCC* un /19.
- OVH détient tout le bloc 2001:41d0::/32
- SFR détient le bloc 2001:4c18::/32

Adresses locales

Adressage local: adresses lien-local

Adressage local: adresses lien-local = link-local

la validité est restreinte à un lien, c'est-à-dire l'ensemble des interfaces directement connectées sans routeur intermédiaire comme par exemple

- des machines branchées sur un même réseau Ethernet,
- des machines reliées par une connexion PPP,
- ou des extrémités d'un tunnel.

Adressage local: adresses lien-local

Les adresses lien-local peuvent être **configurées automatiquement** à l'initialisation de l'interface permettant la communication entre nœuds voisins.

L'adresse est obtenue en concaténant le préfixe FE80::/64 aux 64 bits de l'identifiant d'interface.

non routables sur Internet

Adressage local: adresses lien-local

Adresses locales

Adressage local: adresses uniques locales

Adressage local: adresses uniques locales

(ULA: Unique Local Address)

Le RFC 4193 définit un nouveau format d'adresse unicast :

les adresses uniques locales (ULA : Unique Local Address).

Ces adresses sont destinées à une utilisation locale.

Elles sont

- non routables sur Internet
- routables sur un réseau local tel qu'un site ou entre un nombre limité de sites.

Adressage local: adresses uniques locales

Adressage local: adresses uniques locales

(ULA : Unique Local Address)

Adressage local: adresses uniques locales

- Prefix (7 bits): FC00::/7 préfixe identifiant les adresses IPv6 locales (ULA)
- L (8° bit): Positionné à 1, le préfixe est assigné localement. La valeur 0 est réservée pour une utilisation future.
- Global ID (40 bits): Identifiant global utilisé pour la création d'un préfixe unique (Globally Unique Prefix).
- Subnet ID (16 bits): Identifiant d'un sous réseau à l'intérieur du site.
- Interface ID (64 bits): L'identifiant d'interface tel que défini dans Identifiant d'interface.

Adressage local: adresses uniques locales

Structuration de l'identifiant de sous-réseau (SID)

Exemple:

Affectation des SID dans une université

Communauté	4bi	ts 8bits	4bits
Infrastructure	0	valeurs spécifiques	
Tests	1	valeurs spécifiques	
Tunnels	6	allocation de /60 aux utilisateurs	
Invités Wi-Fi	8	valeurs spécifiques	
Personnels	Α	Entité	Sous-Réseaux
Etudiants	Ε	Entité	Sous-Réseaux
Autres (Start up, e	tc.) F	valeurs spécifiques	

Adressage local: adresses uniques locales

Structuration de l'identifiant de sous-réseau (SID)

Exemple avec le préfixe 2001:DB8:1234::/48:

- 2001:DB8:1234::/52 servira pour la création de l'infrastructure, donc en particulier les adresses des interfaces des routeurs seront prises dans cet espace;
- **2001:DB8:1234:8000::/52** servira pour le **réseau Wi-Fi des invités**. La manière dont sont gérés les 12 bits restants du SID ne sont pas spécifiés;
- 2001:DB8:1234:E000::/52 servira pour le réseau des étudiants.
 L'entité représente la localisation géographique du campus.
 Dans chacun de ces campus, il sera possible d'avoir jusqu'à 16 sous-réseaux différents pour cette communauté.

Auto-configuration

Auto-configuration de l'interface à partir de l'adresse MAC

