Risk based design of hydraulic structures Fault Tree Workshop

In cooperation with

Aalberts, Verheijen, Le Lanzafame, Jonkman, Breedveld, and Co.

System reliability – Fault trees

Graphical method for evaluating system failure probability

• CIE4130 Lecture notes Chapter 9

 $P_{f,system}$ (with n components):

system	gate	operator	components		
System	gate	operator	mutually exclusive	independent	fully dependent
series	OR	U	$\sum_{i=1}^{n} P_{i} \text{(upper bound)}$	$1 - \prod_{i=1}^{n} (1 - P_i)$	$\max\{P_i\}$ (lower bound)
parallel	AND	\cap	(lower bound)	$\prod_{i=1}^n P_i$	$\min\{P_i\}$ (upper bound)

Overview of fault tree workshop

- Introduction to case study
- Work on assignment in groups of 4-5
- Presentation by groups and discussion
- Wrap-up and conclusions

Afsluitdijk and IJsselmeer Kornuth overson WADDENZEE IJSSELMERIZ Leeuwarden Waddenzee DON DEVON Texel Bolsward Gorredijk Den Helder Heerenveen Julianadorp Wolvega Anna Paulowna Noord-Holland Schoorl Heerhugowaard Alkmaar Hasselt Castricum Dronten Heemskerk Zwolle-Monnickendam Almere Amsterdam Harderwijk Epe **T**UDelft Amstelveen Vaassen Uithoorn Nijkerk Apeldoorn

Afsluitdijk inlet/outlet culverts

Culverts close to limit IJsselmeer level

Normal operation:

prevent water from Waddenzee entering IJsselmeer

Failure:

- Culvert does not close when asked, and
- Water flow into IJsselmeer exceeds critical amount

$$P_{f,system} = P(nc) \cdot P(Q > Q_{\text{max}} | nc)$$

Derivation of norm for the Afsluitdijk

- Maximum allowable failure probability = 1/3000 = 0.00033
- Non-closure failure mechanism portion = 0.04
- Norm = 0.04 * 0.0033 = 1.3e-5

$$P_{f,system}$$
 < 1.3 e^{-5}

System failure (critical hydraulic conditions)

Governed by:

- Critical hydraulic conditions in Ijsselmeer and Waddenzee
- Number of open culverts, *i* (non-closure, *nc*)

1. Critical hydraulic conditions

1. Critical hydraulic conditions

- 3 cases of non-closure
- Sum all scenarios (OR case)

Number of open culverts, i	$P(Q>Q_{\max})$
1	6.39 E-3
2	3.27 E-2
3	1.89 E-1

$$P_{f,system} = \sum_{i=1,2,3} P_{nc,i} \cdot P(Q < Q_{\max,i}) < 1.3e^{-5}$$

1. Critical hydraulic conditions

$$P_{f,system} = \sum_{i=1,2,3} P_{nc,i} \cdot P(Q < Q_{\max,i}) < 1.3e^{-5}$$

Probability of 1, 2 or 3 non-closures, $P_{nc,i}$

- All 3 culverts are always asked to close together (n=3)
- Bernoulli: probability of i failures in n trials
- Need probability of single culvert non-closure, P_{nc}

$$P_i = \frac{n!}{i!(n-i)!} *p^i *(1-p)^{(n-i)}$$

Single culvert non-closure, P_{nc}

- System contains: 3 culverts, each with 2 gates
- Failure modes:
 - Gates can jam
 - Culvert fails due to a construction problem
 - Electrical and control system between components
 - Human error (causes all 3 culverts to stay open)

Electricity and control system

Failure modes and probability for fault tree

Symbol	Component	Consequence	Probability
C_p	Primary control system	All culverts open	3.5E-05
E_{p}	Primary electrical supply	All culverts open	7.3E-05
C_c	Culvert control system	Culvert open	3.8E-04
E_c	Culvert electrical supply	Culvert open	9.6E-06
C_g	Gate control system	Gate open	8.7E-06
E_g	Gate electrical supply	Gate open	1.5E-04
СС	Construction failure of culvert	Culvert open	2.0E-09
HE	Human error	All culverts open	2.5E-06
J_g	Jammed gate	Gate open	2.4E-03

Assignment – 1. System failure

- Find probability of culvert system failure $P_{f,system}$
 - Fault tree for single culvert non-closure, P_{nc}
 - Evaluate $P_{nc,i}$ for i non-closure cases using Bernoulli
 - Fault tree for $P_{f,system}$ that includes 3 non-closure cases

Evaluate: does the system meet the requirement?

Remember to use all events from the table

Assignment – 2. Design optimization (if time)

What part of the fault tree influences system failure the most?

- Get as close to norm as possible (but still below) while minimizing the expected projects costs
- "Investment points" = proxy for costs

Design option	Points
At gate level	1
At culvert level	3
At central level	5
Extra gate construction	5
Removing second gate	-5

Rules for optimization:

- Don't introduce new components
- Add or remove redundancy within the existing system
- Keep the numbers of culvert at 3

Assignment

- 1. Find probability of culvert system failure $P_{f,system}$
- Optimize design (if time allows)

Form groups of 4-5, prepare fault tree and results for discussion

Documents (see course website Workshop 4):

- Fault tree workshop introduction (these slides)
- Fault tree workshop handout
- Calculation template (online Google sheet or Python code)
- Fault tree diagram template (optional, also online Google sheet)

Case study results

TUDelft

25

C_c	3.8E-04
E_c	9.6E-06
СС	2.0E-09

C_g	8.7E-06
E_g	1.5E-04
J	2.4E-03

1b. Bernoulli

i non-closures out of *n* trials

i	P _{nc,i}
1	1.2E-03
2	4.7E-07
3	6.2E-11

$$P_i = \frac{n!}{i!(n-i)!} *p^i *(1-p)^{(n-i)}$$

1c. System failure

1 non-closure out of 3 trials

i	$P(Q>Q_{\max})$
1	6.39E-03
2	3.7E-02
3	1.89E-01

1c. System failure

3 non-closures out of 3 trials

C_{ρ}	3.5E-05	
E_{ρ}	7.3E-05	
HE	2.5E-06	
	Σ = 1.1E-04	

2.9e-5

Flooding

3 culverts

Culvert system

failure

 $P_{f,system}$

Flooding

2 culverts

All 3 non-closures

i	P _{nc,i}	$P(Q>Q_{max,i})$	P_f (flood i)
1	1.2e-3	6.4e-3	7.6e-6
2	4.7e-7	3.3e-2	1.5e-8
3	1.1e-4 *	1.9e-1	2.1e-5
			Σ = 2.9e-5

^{*}includes other failure modes for i=3

1a. Single non-closure – 2 approaches

1a. Single non-closure – approach 1

1a. Single non-closure – approach 2

1a. Single non-closure – 2 approaches

$$P = (P_1 + P_2 + P_3)^2$$

$$P = P_1^2 + P_2^2 + P_3^2 + 2(P_1 + P_2 + P_3)$$

$$P = 6.6e-06$$

$$P = P_1^2 + P_2^2 + P_3^2$$

$$P = 5.8e-6$$

1a. Single non-closure – 2 approaches

$$P = P_1(P_1+P_2+P_3)+P_2(P_1+P_2+P_3)+P_3(P_1+P_2+P_3)$$

$$P = 6.6e-06$$

$$P = P_1^2 + P_2^2 + P_3^2$$

$$P = 5.8e-6$$

Design optimizations

Project in reality

Influence 1 or 2 gates on:

- safety;
- initial and life time costs;
- maintenance ease;
- safety during maintenance;
- monumental significance of the Afsluitdijk.

Project in reality – optimize safety

Possible steps

- Start small (like we did)
- Scale up to the reality (15 culverts)
- Check out sensitivity (see screenshot for 3 culverts)
- Check conservatism in POF sensitive components
- For (in)sensitive components find alternatives (cheaper/safer) or add/remove redundancy (light weight cost optimization)

```
increasing Cp with factor 2 increases pof with 23 % increasing Ep with factor 2 increases pof with 48 % increasing Cc with factor 2 increases pof with 26 % increasing Ec with factor 2 increases pof with 1 % increasing Cg with factor 2 increases pof with 0 % increasing Eg with factor 2 increases pof with 0 % increasing CC with factor 2 increases pof with 0 % increasing HE with factor 2 increases pof with 2 % increasing J with factor 2 increases pof with 1 %
```

