Prova sem consulta. Duração: 2h30m.

Prova de Reavaliação Global

- * Não são consideradas as folhas sem identificação. Justifique convenientemente todos os cálculos que efetuar;
- *A desistência só é possível após 1 hora do início da prova;
- * Não é permitida a utilização de máquinas de calcular gráficas nem de microcomputadores.
- 1. [3,0] Seja a linha, C, de interseção da superfície $x^2 + 2y^2 = z^2 + 1$ com o plano z = y.
 - a) Parametrize a linha C e calcule o seu versor da tangente no ponto $Q = \left(1/\sqrt{2}, 1/\sqrt{2}, 1/\sqrt{2}\right)$.
 - **b**) Calcule o trabalho do campo vetorial F(x, y, z) = (y+1, -x+y, -z) ao longo da linha C descrita no sentido direto visto da parte positiva do eixo dos zz.
- **2.** [3,0] Determine a derivada direcional da função de campo escalar $f(x, y, z) = x^2 + xy + z + \cos(z)$ no ponto $P = (-1, 0, \pi)$, na direção da curva parametrizada por $\mathbf{r}(t) = (\cos(t), \sin(t), t)$, $t \ge 0$.
- **3.** [3,0] Seja a equação $\cos(xyz) + \ln(x^2 + y^2 + z^2) = 0$. Assumindo que z é função de x e de y, derivável, obtenha, por derivação implícita, $\frac{\partial z}{\partial x}$ e $\frac{\partial z}{\partial y}$.
- **4.** [3,0] Seja a superfície 2x+2y+z=6, com $x \ge 0$, $y \ge 0$, $z \ge 0$. Faça o seu esboço, parametrize-a e calcule a sua área.
- 5. [3,0] Seja $\int_C (1-y^2)dx + (x+x^2)dy$, em que C é a fronteira da região limitada por y=2x, y=-x e $0 \le x \le 2$ percorrida no sentido retrógrado. Esboce a linha C e determine o valor do integral.
- **6.** [3,0] Considere o integral $\int_0^1 \int_{-x}^x \int_0^2 y \, dz \, dy \, dx + \int_1^2 \int_{-\sqrt{2x-x^2}}^{\sqrt{2x-x^2}} \int_0^2 y \, dz \, dy \, dx$.
 - a) Esboce o domínio de integração.
 - **b**) Reescreva-o em coordenadas cilíndricas e calcule o seu valor.
- 7. [2,0] Considere um campo escalar $f: \mathbb{R}^2 \to \mathbb{R}$. Usando o teorema de Green, mostre que se tem

$$\iint_{D} \left(\frac{\partial^{2} f}{\partial x^{2}} + \frac{\partial^{2} f}{\partial y^{2}} \right) dx dy = \oint_{C} \frac{\partial f}{\partial n} ds$$

onde D é uma região do plano limitada pela curva C e $\frac{\partial f}{\partial n}$ é a derivada direcional de f na direção normal exterior a C.