

Measurement and Assessment of Bearing Degradation in Ester-Based Lubricant Systems

Darryl P. Butt Department of Materials Science and Engineering Boise State University, Boise, ID

Contributors:

Mike Hurley, Cole Smith, Brian Marx (now with CTC), Matt Luke (joining NR), Brandon Christoferson (now with URS), Kerry Allahar (now with NDSU), Bill Knowlton, Patrick Price

Herb Chin, Bill Ogden, Gene Danko (Pratt & Whitney) Balky Nair (Emisense Inc.)

Supported By: Pratt & Whitney, Emisense, Inc., Ceramatec, Inc., National Science Foundation (STTR)

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate rmation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE FEB 2009		2. REPORT TYPE		3. DATES COVERED 00-00-2009 to 00-00-2009			
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER		
	Assessment of Beari	Ester-Based	5b. GRANT NUMBER				
Lubricant Systems				5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)			5d. PROJECT NUMBER				
			5e. TASK NUMBER				
				5f. WORK UNIT NUMBER			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Boise State University, Department of Materials Science and Engineering, ,Boise,ID,83725 8. PERFORMING ORGANIZATION REPORT NUMBER							
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)			
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAII Approved for publ	ABILITY STATEMENT ic release; distributi	on unlimited					
13. SUPPLEMENTARY NO 2009 U.S. Army Co	orrosion Summit, 3-	5 Feb, Clearwater I	Beach, FL				
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	35	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

BOISE STATE

Boise State University Department of Materials Science and Engineering

Project Overview

Oil Issues

- Additive Effects
- Seawater Contamination
- Chloride Concentrations
- Oxidation/Degradation

Corrosion Issues in Oils

- Alloy Microstructure
- Seawater Content (Emulsions)
- Chloride Concentrations
- Effect of Temperature

Materials Issues

- Sensor Circuitry
- Sensor Body
- Sensor Substrate
- Joining Brazes

Oil/Water Electrochemical Properties

Corrosion Rates, Mechanisms, Pitting of Bearing Alloys

Sensor Optimization: Monitor Oil Quality/Corrosion

Sensor Construction

Sensor Testing

Deployment of Sensor to Application

Project Overview

Oil Issues

- Additive Effects
- Seawater Contamination
- Chloride Concentrations
- Oxidation/Degradation

Corrosion Issues in Oils

- Alloy Microstructure
- Seawater Content (Emulsions)
- Chloride Concentrations
- Effect of Temperature

Materials Issues

- Sensor Circuitry
- Sensor Body
- Sensor Substrate
- Joining Brazes

Oil/Water Electrochemical Properties Corrosion Rates, Mechanisms, Pitting of Bearing Alloys

Sensor Optimization: Monitor Oil Quality/Corrosion

Sensor Construction

Sensor Testing

Deployment of Sensor to Application

Bearing Materials and Oils BOISE STATE

Bearing Steels

Material	C (Case)	Cr	V	Мо	Si	Mn	С	Со	Ni	Fe
M50		4	1	4.25	0.3	0.3	0.8			Bal.
P675	~2%	13	0.6	1.8	0.4	0.65	0.07	5.4	2.6	Bal.

Compositions in wt%

Lubricant-Water Systems

Oil	Water, ppm	[Cl ⁻] (Moles)
BP 16360 Valvoline 520	200-8000	0.001-1

Oils
BP 2389
BP Alo 16360
BP Alo 16561
Chevron 10W 40 oil
Chevron 15 W 40
Chevron 5W-20 oil
Delo 400
GTX 520
Hatcol 3212
Hatcol 3214
Hatcol 4213
Jet oil 254
Mobiel 10W 40 oil
Mobile 5W 20 oil
Pennziol 10W 40 oil
Pennziol SW 20
Pennzoil 5 W 30
Turbo 1294
Turbo 2380
Turbo 2389
Valvoline 410
Valvoline 520

Polyol esters	Anti-oxidants	Anti-wear / Extreme Pressure	Corrosion Inhibitors	Rust Inhibitors	Anti-Foam Agents	
94-97%	2-4%	1-3%	<0.5%	<0.5%	ppm level	

EIS Necessary in High Impedance Solutions

Unlike DC, AC E-chem can discern individual circuit components

BSU Cell

- 1,000,000 Hz 0.001 Hz
- 10 mV AC
- 300s delay
- Polished to 1 µm
- 1 mm electrode spacing using Teflon sheet

Oil Sensor Structures

Deposited Sensors

Influence of Oil Degradation on Impedance: Sensor vs Bulk Electrode

Sensing Diesel Fuel Contamination of Oil

Impedance Decreases with Immersion Time

Conditions:

- Ambient aeration
- •2500 ppm 0.6 M NaCl
- Average of 3 runs

Filiform Corosion?

AFM

Optical

BOISE STATE

Microstructure, Emulsion Characteristics vs. Corrosion

Objective:

Link alloy microstructure with corrosion behavior

Carbide Distribution in P675

Differential Interference
Contrast

False topography resolves carbides from phase difference in reflected light

Pit Density and Area Fraction vs. Contamination Level

Below 3000 ppm Seawater content:

Pit density increases with water content

Surface fraction of attack increases but less rapidly than pit new pit formation

Propagation seems to occur by pit clustering adjacent to active corrosion sites and coalescence existing localized attack

M508000 ppm H_2O 1 M NaCl 24 hour series

M50 8000 ppm H₂O 1 M NaCl 24 hour series

M50 8000 ppm H₂O 1 M NaCl 24 hour series

M50 8000 ppm H₂O 1 M NaCl 24 hour series

Carbides observed under fixed droplets

M50 8000 ppm H₂O 1 M NaCl 24 hour series

Carbides observed under fixed droplets

Time Lapse Photography-ON

- •M50 is susceptible to general corrosion and pitting initiating around carbides and grain boundaries
- •P675 is much more resistant to general corrosion, but susceptible to localized attack due to larger surface carbides
- •Localized attack can have a "filiform" appearance
- Oxygen availability is a likely limiting factor, regardless of oil contamination level
- •Corrosion is possible over a wide range of salt and water contamination levels in oil, but severity (measured by pit depth) is greatest above the solubility limit for water
- •Pit density increases with [H₂O] with [Cl⁻] being a secondary effect
- •Robust sensors developed for monitoring corrosion and oil quality can detect at, low *f*, statistically significant changes in...

- •M50 is susceptible to general corrosion and pitting initiating around carbides and grain boundaries
- •P675 is much more resistant to general corrosion, but susceptible to localized attack due to larger surface carbides
- •Localized attack can have a "filiform" appearance
- Oxygen availability is a likely limiting factor, regardless of oil contamination level
- •Corrosion is possible over a wide range of salt and water contamination levels in oil, but severity (measured by pit depth) is greatest above the solubility limit for water
- •Pit density increases with [H₂O] with [Cl⁻] being a secondary effect
- •Robust sensors developed for monitoring corrosion and oil quality can detect at, low *f*, statistically significant changes in...

- •M50 is susceptible to general corrosion and pitting initiating around carbides and grain boundaries
- •P675 is much more resistant to general corrosion, but susceptible to localized attack due to larger surface carbides
- Localized attack can have a "filiform" appearance
- Oxygen availability is a likely limiting factor, regardless of oil contamination level
- •Corrosion is possible over a wide range of salt and water contamination levels in oil, but severity (measured by pit depth) is greatest above the solubility limit for water
- •Pit density increases with [H₂O] with [Cl⁻] being a secondary effect
- •Robust sensors developed for monitoring corrosion and oil quality can detect at, low *f*, statistically significant changes in...

- •M50 is susceptible to general corrosion and pitting initiating around carbides and grain boundaries
- •P675 is much more resistant to general corrosion, but susceptible to localized attack due to larger surface carbides
- •Localized attack can have a "filiform" appearance
- •Oxygen availability is a likely limiting factor, regardless of oil contamination level
- •Corrosion is possible over a wide range of salt and water contamination levels in oil, but severity (measured by pit depth) is greatest above the solubility limit for water
- •Pit density increases with [H₂O] with [Cl⁻] being a secondary effect
- •Robust sensors developed for monitoring corrosion and oil quality can detect at, low *f*, statistically significant changes in...

- •M50 is susceptible to general corrosion and pitting initiating around carbides and grain boundaries
- •P675 is much more resistant to general corrosion, but susceptible to localized attack due to larger surface carbides
- •Localized attack can have a "filiform" appearance
- Oxygen availability is a likely limiting factor, regardless of oil contamination level
- •Corrosion is possible over a wide range of salt and water contamination levels in oil, but severity (measured by pit depth) is greatest above the solubility limit for water
- •Pit density increases with [H₂O] with [Cl⁻] being a secondary effect
- •Robust sensors developed for monitoring corrosion and oil quality can detect at, low *f*, statistically significant changes in...

- •Pitting has been observed beneath immersion water droplets
- •Droplets may adhere or cluster around carbides--these droplets tend to grow at the expense of mobile emulsion droplets
- •"Free" droplets may migrate electrophoretically toward other droplets (i.e., droplet diffusion is not Brownian)
- •Near rapidly forming pits, nanometer scale emulsions appear, possibly by spinodal decomposition
- •Dissolved water may diffuse towards microgalvanic potential associated with corrosion beneath immersion droplet
- Some evidence that salt condenses out near corrosion pit
- Systems at rest likely to corrode more severely than systems in operation

- Pitting has been observed beneath immersion water droplets
- •Droplets may adhere or cluster around carbides--these droplets tend to grow at the expense of mobile emulsion droplets
- •"Free" droplets may migrate electrophoretically toward other droplets (i.e., droplet diffusion is not Brownian)
- •Near rapidly forming pits, nanometer scale emulsions appear, possibly by spinodal decomposition
- •Dissolved water may diffuse towards microgalvanic potential associated with corrosion beneath immersion droplet
- Some evidence that salt condenses out near corrosion pit
- •Systems at rest likely to corrode more severely than systems in operation

- Pitting has been observed beneath immersion water droplets
- •Droplets may adhere or cluster around carbides--these droplets tend to grow at the expense of mobile emulsion droplets
- •"Free" droplets may migrate electrophoretically toward other droplets (i.e., droplet diffusion is not Brownian)
- •Near rapidly forming pits, nanometer scale emulsions appear, possibly by spinodal decomposition
- •Dissolved water may diffuse towards microgalvanic potential associated with corrosion beneath immersion droplet
- Some evidence that salt condenses out near corrosion pit
- Systems at rest likely to corrode more severely than systems in operation

- •Pitting has been observed beneath immersion water droplets
- •Droplets may adhere or cluster around carbides--these droplets tend to grow at the expense of mobile emulsion droplets
- •"Free" droplets may migrate electrophoretically toward other droplets (i.e., droplet diffusion is not Brownian)
- •Near rapidly forming pits, nanometer scale emulsions appear, possibly by spinodal decomposition
- •Dissolved water may diffuse towards microgalvanic potential associated with corrosion beneath immersion droplet
- Some evidence that salt condenses out near corrosion pit
- •Systems at rest likely to corrode more severely than systems in operation

- •Pitting has been observed beneath immersion water droplets
- •Droplets may adhere or cluster around carbides--these droplets tend to grow at the expense of mobile emulsion droplets
- •"Free" droplets may migrate electrophoretically toward other droplets (i.e., droplet diffusion is not Brownian)
- •Near rapidly forming pits, nanometer scale emulsions appear, possibly by spinodal decomposition
- •Dissolved water may diffuse towards microgalvanic potential associated with corrosion beneath immersion droplet
- Some evidence that salt condenses out near corrosion pit
- •Systems at rest likely to corrode more severely than systems in operation

End

Boise State University Department of Materials Science and Engineering

Sensor Geometry Effects

Multiple "capacitor type" configurations tested in 16360 Oil

Maximize Area/Separation distance

Minimize real estate to allow for multiple sensors

Sensor Materials Selection

LTCC vs. Alumina

- 1. Air
- 2. Oi
- 3. Clean, air again
- 4. Oil again

Polymer Seals Comparison

