# Learning Parameters of Multi-layer Perceptrons with Backpropagation

COMP90049 Introduction to Machine Learning

Semester 1, 2020

Lea Frermann, CIS



#### Roadmap

#### Last lecture

- From perceptrons to neural networks
- multilayer perceptron
- some examples
- · features and limitations

#### **Today**

- Learning parameters of neural networks
- The Backpropagation algorithm



# Recap: Multi-layer perceptrons



- Linearly separable data
- Perceptron learning rule



# Recap: Multi-layer perceptrons



- Linearly separable data
- Perceptron learning rule



# Recap: Multi-layer perceptrons











- 1. Forward propagate an input x from the **training set**
- 2. Compute the output  $\hat{y}$  with the MLP





- 1. Forward propagate an input *x* from the **training set**
- 2. Compute the output  $\hat{y}$  with the MLP
- 3. Compare predicted output  $\hat{y}$  against true output y; compute the **error**





- 1. Forward propagate an input x from the **training set**
- 2. Compute the output  $\hat{y}$  with the MLP
- 3. Compare predicted output  $\hat{y}$  against true output y; compute the **error**
- 4. **Modify each weight** such that the error decreases in future predictions (e.g., by applying **gradient descent**)





- 1. Forward propagate an input *x* from the **training set**
- 2. Compute the output  $\hat{y}$  with the MLP
- 3. Compare predicted output  $\hat{y}$  against true output y; compute the **error**
- Modify each weight such that the error decreases in future predictions (e.g., by applying gradient descent)
- 5. Repeat.



#### **Recall: Optimization with Gradient Descent**



#### We want to

- 1. Find the best parameters, which lead to the smallest error E
- 2. Optimize each model parameter  $\theta_{ik}^{I}$
- 3. We will use gradient descent to achieve that

4. 
$$\theta_{ij}^{l,(t+1)} \leftarrow \theta_{ij}^{l,(t)} + \Delta \theta_{ij}^{i}$$



#### **Towards Backpropagation**

#### **Recall Perceptron learning:**

- Pass an input through and compute ŷ
- Compare ŷ against y
- Weight update  $\theta_i \leftarrow \theta_i + \eta (y \hat{y}) x_i$





#### **Towards Backpropagation**

#### Recall Perceptron learning:

- Pass an input through and compute ŷ
- Compare ŷ against y
- Weight update  $\theta_i \leftarrow \theta_i + \eta(y \hat{y})x_i$





#### **Towards Backpropagation**

#### **Recall Perceptron learning:**

- Pass an input through and compute ŷ
- Compare ŷ against y
- Weight update  $\theta_i \leftarrow \theta_i + \eta(y \hat{y})x_i$



#### **Problems**

- This update rule depends on true target outputs y
- We only have access to true outputs for the final layer
- We do not know the **true activations** for the **hidden layers**. Can we **generalize** the above rule to also update the hidden layers?

Backpropagation provides us with an efficient way of computing partial derivatives of the error of an MLP wrt. each individual weight.









• Receive input





- Receive input
- Forward pass: propagate activations through the network





- Receive input
- Forward pass: propagate activations through the network





- Receive input
- Forward pass: propagate activations through the network
- Compute Error : compare output  $\hat{y}$  against true y





- Receive input
- Forward pass: propagate activations through the network
- Compute Error : compare output  $\hat{y}$  against true y
- Backward pass: propagate error terms through the network





- Receive input
- Forward pass: propagate activations through the network
- Compute Error : compare output  $\hat{y}$  against true y
- Backward pass: propagate error terms through the network
- Calculate  $\Delta \theta_{ii}^I$  for all  $\theta_{ii}^I$
- Update weights  $\theta_{ij}^l \leftarrow \theta_{ij}^l + \Delta \theta_{ij}^l$



#### **Interim Summary**

- We recall what a MLP is
- We recall that we want to learn its parameters such that our prediction error is minimized
- We recall that gradient descent gives us a rule for updating the weights

$$\theta_i \leftarrow \theta_i + \triangle \theta_i \text{ with } \triangle \theta_i = -\eta \frac{\partial E}{\partial \theta_i}$$

- But how do we compute  $\frac{\partial E}{\partial \theta_i}$ ?
- Backpropagation provides us with an efficient way of computing partial derivatives of the error of an MLP wrt. each individual weight.



The (Generalized) Delta Rule

#### **Backpropagation 1: Model definition**



Assuming a sigmoid activation function, the output of neuron i (or its activation a<sub>i</sub>) is

$$a_i = g(z_i) = \frac{1}{1 + e^{-z_i}}$$

And z<sub>i</sub> is the input of all incoming activations into neuron i

$$z_i = \sum_j \theta_{ij} a_j$$

• And Mean Squared Error (MSE) as error function E

$$E = \frac{1}{2N} \sum_{i=1}^{N} (y^{i} - \hat{y}^{i})^{2}$$



#### Backpropagation 2: Error of the final layer



• Apply gradient descend for input p and weight  $\theta_{ij}^2$  connecting node j with node i

$$\triangle \theta_{ij}^2 = -\eta \frac{\partial E}{\partial \theta_{ii}^2} = \eta (y^{\rho} - \hat{y^{\rho}}) g'(z_i) a_j$$



#### Backpropagation 2: Error of the final layer



• Apply gradient descend for input p and weight  $\theta_{ij}^2$  connecting node j with node i

$$\triangle \theta_{ij}^2 = -\eta \frac{\partial E}{\partial \theta_{ij}^2} = \eta (\mathbf{y}^{p} - \hat{\mathbf{y}^{p}}) \mathbf{g}'(\mathbf{z}_i) \mathbf{a}_j$$



#### Backpropagation 2: Error of the final layer



• Apply gradient descend for input p and weight  $\theta_{ij}^2$  connecting node j with node i

$$\Delta \theta_{ij}^{2} = -\eta \frac{\partial E}{\partial \theta_{ij}^{2}} = \eta (\mathbf{y}^{\rho} - \hat{\mathbf{y}^{\rho}}) \mathbf{g}'(\mathbf{z}_{i}) \mathbf{a}_{j}$$
$$= \eta \ \delta_{i} \ \mathbf{a}_{j}$$

- The weight update corresponds to an error term  $(\delta_i)$  scaled by the incoming activation
- We attach a  $\delta$  to **node** i



#### **Backpropagation: The Generalized Delta Rule**



The Generalized Delta Rule

$$\triangle \theta_{ij}^2 = -\eta \frac{\partial E}{\partial \theta_{ij}^2} = \eta (\mathbf{y}^{\rho} - \hat{\mathbf{y}^{\rho}}) \mathbf{g}'(\mathbf{z}_i) \mathbf{a}_j = \eta \, \delta_i \, \mathbf{a}_j$$
$$\delta_i = (\mathbf{y}^{\rho} - \hat{\mathbf{y}^{\rho}}) \mathbf{g}'(\mathbf{z}_i)$$

- The above  $\delta_i$  can only be applied to output units, because it relies on the **target outputs**  $y^p$ .
- We do not have target outputs y for the intermediate layers



#### **Backpropagation: The Generalized Delta Rule**



• Instead, we **backpropagate** the errors ( $\delta$ s) from right to left through the network

$$riangle heta_{jk}^1 = \eta \; \delta_j \; a_k \ \delta_j = \sum_i heta_{ij}^1 \; \delta_i \; g'(z_j)$$









• Receive input





- · Receive input
- Forward pass: propagate activations through the network





- Receive input
- Forward pass: propagate activations through the network





- Receive input
- Forward pass: propagate activations through the network
- $\bullet$  Compute Error : compare output  $\hat{y}$  against true y





- · Receive input
- Forward pass: propagate activations through the network
- Compute Error : compare output  $\hat{y}$  against true y
- Backward pass: propagate error terms through the network





- Receive input
- Forward pass: propagate activations through the network
- Compute Error : compare output  $\hat{y}$  against true y
- Backward pass: propagate error terms through the network
- Calculate  $\frac{\partial E}{\partial \theta_{ii}^{I}}$  for all  $\theta_{ij}^{I}$
- Update weights  $\theta_{ij}^{\prime} \leftarrow \theta_{ij}^{\prime} + \Delta \theta_{ij}^{\prime}$



## **Backpropagation Algorithm**

Design your neural network Initialize parameters  $\theta$ 

#### repeat

for training instance  $x_i$  do

- 1. **Forward pass** the instance through the network, compute activations, determine output
- 2. Compute the error
- 3. Propagate error **back** through the network, and compute for all weights between nodes *ij* in all layers *I*

$$\Delta \theta_{ij}^I = -\eta \frac{\partial E}{\partial \theta_{ij}^I} = \eta \delta_i \mathbf{a}_j$$

4. Update all parameters at once

$$\theta_{ij}^{l} \leftarrow \theta_{ij}^{l} + \Delta \theta_{ij}^{l}$$



until stopping criteria reached.

#### Derivation of the update rules

... optional slides after the next (summary) slide, for those who are interested!



#### **Summary**

#### After this lecture, you be able to understand

- Why estimation of the MLP parameters is difficult
- How and why we use Gradient Descent to optimize the parameters
- How Backpropagation is a special instance of gradient descent, which allows us to efficiently compute the gradients of all weights wrt. the error
- The mechanism behind gradient descent
- The mathematical justification of gradient descent

#### Good job, everyone!

- You now know what (feed forward) neural networks are
- You now know what to consider when designing neural networks
- You now know how to estimate their parameters
- That's more than the average 'data scientist' out there!









Chain of reactions in the forward pass, focussing on the output layer

- varying  $a^2$  causes a change in  $z^3$
- varying  $z^3$  causes a change in  $a_1^3 = g(z^3)$
- varying  $a_1^3 = \hat{y}$  causes a change in  $E(y, \hat{y})$





We can use the **chain rule** to capture the behavior of  $\theta_{11}^2$  wrt E

$$\Delta\theta^2 = -\eta \frac{\partial E}{\partial \theta^2} = -\eta \Big( \frac{\partial E}{\partial a_1^3} \Big) \Big( \frac{\partial a_1^3}{\partial z^3} \Big) \Big( \frac{\partial z^3}{\partial \theta^2} \Big) \ =$$





We can use the **chain rule** to capture the behavior of  $\theta_{11}^2$  wrt E

$$\Delta\theta^2 = -\eta \frac{\partial E}{\partial \theta^2} = -\eta \Big(\frac{\partial E}{\partial \textbf{a}_1^3}\Big) \Big(\frac{\partial \textbf{a}_1^3}{\partial \textbf{z}^3}\Big) \Big(\frac{\partial \textbf{z}^3}{\partial \theta^2}\Big) \ =$$

$$\frac{\partial E}{\partial a_i} = -(y_i - a_i)$$
 recall that  $E = \sum_{i=1}^{N} \frac{1}{2} (y_i - a_i)^2$ 





We can use the **chain rule** to capture the behavior of  $\theta_{11}^2$  wrt E

$$\Delta\theta^2 = -\eta \frac{\partial E}{\partial \theta^2} = -\eta \Big(\frac{\partial E}{\partial \textbf{\textit{a}}_1^3}\Big) \Big(\frac{\partial \textbf{\textit{a}}_1^3}{\partial \textbf{\textit{z}}^3}\Big) \Big(\frac{\partial \textbf{\textit{z}}^3}{\partial \theta^2}\Big) \ =$$

$$\frac{\partial E}{\partial a_i} = -(y_i - a_i) \qquad \text{recall that } E = \sum_{i=1}^{N} \frac{1}{2} (y_i - a_i)^2$$

$$\frac{\partial a}{\partial z} = \frac{\partial g(z)}{\partial z} = g'(z)$$





We can use the **chain rule** to capture the behavior of  $\theta_{11}^2$  wrt E

$$\Delta\theta^2 = -\eta \frac{\partial E}{\partial \theta^2} = -\eta \Big(\frac{\partial E}{\partial \textbf{a}_1^3}\Big) \Big(\frac{\partial \textbf{a}_1^3}{\partial \textbf{z}^3}\Big) \Big(\frac{\partial \textbf{z}^3}{\partial \theta^2}\Big) \ =$$

$$\frac{\partial E}{\partial a_i} = -(y_i - a_i) \qquad \text{recall that } E = \sum_{i=1}^{N} \frac{1}{2} (y_i - a_i)^2$$

$$\frac{\partial a}{\partial z} = \frac{\partial g(z)}{\partial z} = g'(z)$$

$$\frac{\partial z}{\partial \theta_{ij}} = \frac{\partial}{\partial \theta_{ij}} \sum_{i'} \theta_{i'j} a_{i'} = \sum_{i'} \frac{\partial}{\partial \theta_{ij}} \theta_{i'j} a_{i'} = a_i$$





We can use the **chain rule** to capture the behavior of  $\theta_{11}^2$  wrt E

$$\Delta\theta^{2} = -\eta \frac{\partial E}{\partial \theta^{2}} = -\eta \left(\frac{\partial E}{\partial a_{1}^{3}}\right) \left(\frac{\partial a_{1}^{3}}{\partial z^{3}}\right) \left(\frac{\partial z^{3}}{\partial \theta^{2}}\right) = \eta \underbrace{\left(y - a_{1}^{3}\right) \left(g'(z^{3})\right)}_{= \delta_{1}^{3}} \left(a_{1}^{2}\right) = \eta \delta_{1}^{3} a_{1}^{2}$$

$$\frac{\partial E}{\partial a_i} = -(y_i - a_i) \qquad \text{recall that } E = \sum_{i=1}^{N} \frac{1}{2} (y_i - a_i)^2$$

$$\frac{\partial a}{\partial z} = \frac{\partial g(z)}{\partial z} = g'(z)$$

$$\frac{\partial z}{\partial \theta_{ij}} = \frac{\partial}{\partial \theta_{ij}} \sum_{i'} \theta_{i'j} a_{i'} = \sum_{i'} \frac{\partial}{\partial \theta_{ij}} \theta_{i'j} a_{i'} = a_i$$





We have another chain reaction. Let's consider layer 2

- varying any  $\theta_{k1}^1$  causes a change in  $z^2$
- varying  $z^2$  causes a change in  $a_1^2 = g(z^2)$
- varying  $a_1^2$  causes a change in  $z^3$  (we consider  $\theta^2$  fixed for the moment)
- varying  $z^3$  causes a change in  $a_1^3 = g(z^3)$
- varying  $a_1^3 = \hat{y}$  causes a change in  $E(y, \hat{y})$





Formulating this again as the chain rule

$$\Delta\theta_{k1}^{1} = -\eta \frac{\partial E}{\partial \theta_{k1}^{1}} = -\eta \left( \left( \frac{\partial E}{\partial a_{1}^{3}} \right) \left( \frac{\partial a_{1}^{3}}{\partial z^{3}} \right) \left( \frac{\partial z^{3}}{\partial a_{1}^{2}} \right) \right) \left( \frac{\partial a_{1}^{2}}{\partial z^{2}} \right) \left( \frac{\partial z^{2}}{\partial \theta_{k1}^{1}} \right)$$





Formulating this again as the chain rule

$$\Delta\theta_{k1}^{1} = -\eta \frac{\partial E}{\partial \theta_{k1}^{1}} = -\eta \left( \left( \frac{\partial E}{\partial \mathbf{a}_{1}^{3}} \right) \left( \frac{\partial \mathbf{a}_{1}^{3}}{\partial z^{3}} \right) \left( \frac{\partial z^{3}}{\partial \mathbf{a}_{1}^{2}} \right) \right) \left( \frac{\partial \mathbf{a}_{1}^{2}}{\partial z^{2}} \right) \left( \frac{\partial z^{2}}{\partial \theta_{k1}^{1}} \right)$$

We already know that

$$\frac{\partial E}{\partial a_1^3} = -(y - a_1^3)$$
$$\frac{\partial a_1^3}{\partial z^3} = g'(z^3)$$





Formulating this again as the chain rule

$$\Delta\theta_{k1}^{1} = -\eta \frac{\partial E}{\partial \theta_{k1}^{1}} = -\eta \left( \left( \frac{\partial E}{\partial \mathbf{a}_{1}^{3}} \right) \left( \frac{\partial \mathbf{a}_{1}^{3}}{\partial z^{3}} \right) \left( \frac{\partial z^{3}}{\partial \mathbf{a}_{1}^{2}} \right) \right) \left( \frac{\partial \mathbf{a}_{1}^{2}}{\partial z^{2}} \right) \left( \frac{\partial z^{2}}{\partial \theta_{k1}^{1}} \right)$$

And following the previous logic, we can calculate that

$$\frac{\partial z^3}{\partial a_1^2} = \frac{\partial \theta^2 a_1^2}{\partial a_1^2} = \theta^2$$

$$\frac{\partial a_1^2}{\partial z^2} = \frac{\partial g(z^2)}{\partial z^2} = g'(z^2) \qquad \qquad \frac{\partial z^2}{\partial \theta_{k1}^1} = a_k$$





Formulating this again as the chain rule

$$\Delta\theta_{k1}^{1} = -\eta \frac{\partial E}{\partial \theta_{k1}^{1}} = -\eta \left( \left( \frac{\partial E}{\partial a_{1}^{3}} \right) \left( \frac{\partial a_{1}^{3}}{\partial z^{3}} \right) \left( \frac{\partial z^{3}}{\partial a_{1}^{2}} \right) \right) \left( \frac{\partial a_{1}^{2}}{\partial z^{2}} \right) \left( \frac{\partial z^{2}}{\partial \theta_{k1}^{1}} \right)$$

$$-\eta \frac{\partial E}{\partial \theta_{k1}^1} = -\eta \Big( -(y - a_1^3)g'(z^3)\theta^2 \Big)g'(z^2)a_k$$





Formulating this again as the chain rule

$$\Delta\theta_{k1}^{1} = -\eta \frac{\partial E}{\partial \theta_{k1}^{1}} = -\eta \left( \left( \frac{\partial E}{\partial a_{1}^{3}} \right) \left( \frac{\partial a_{1}^{3}}{\partial z^{3}} \right) \left( \frac{\partial z^{3}}{\partial a_{1}^{2}} \right) \right) \left( \frac{\partial a_{1}^{2}}{\partial z^{2}} \right) \left( \frac{\partial z^{2}}{\partial \theta_{k1}^{1}} \right)$$

$$-\eta \frac{\partial E}{\partial \theta_{k1}^{1}} = -\eta \Big( -(y - a_{1}^{3})g'(z^{3})\theta^{2} \Big) g'(z^{2}) a_{k}$$
$$= \eta \Big( (y - a_{1}^{3})g'(z^{3})\theta^{2} \Big) g'(z^{2}) a_{k}$$





Formulating this again as the chain rule

$$\Delta\theta_{k1}^{1} = -\eta \frac{\partial E}{\partial \theta_{k1}^{1}} = -\eta \left( \left( \frac{\partial E}{\partial a_{1}^{3}} \right) \left( \frac{\partial a_{1}^{3}}{\partial z^{3}} \right) \left( \frac{\partial z^{3}}{\partial a_{1}^{2}} \right) \right) \left( \frac{\partial a_{1}^{2}}{\partial z^{2}} \right) \left( \frac{\partial z^{2}}{\partial \theta_{k1}^{1}} \right)$$

$$-\eta \frac{\partial E}{\partial \theta_{k1}^1} = -\eta \Big( -(y - a_1^3) g'(z^3) \theta^2 \Big) g'(z^2) a_k$$
$$= \eta \Big( \underbrace{(y - a_1^3) g'(z^3)}_{= \delta_1^3} \theta^2 \Big) g'(z^2) a_k$$





Formulating this again as the chain rule

$$\Delta\theta_{k1}^{1} = -\eta \frac{\partial E}{\partial \theta_{k1}^{1}} = -\eta \left( \left( \frac{\partial E}{\partial a_{1}^{3}} \right) \left( \frac{\partial a_{1}^{3}}{\partial z^{3}} \right) \left( \frac{\partial z^{3}}{\partial a_{1}^{2}} \right) \right) \left( \frac{\partial a_{1}^{2}}{\partial z^{2}} \right) \left( \frac{\partial z^{2}}{\partial \theta_{k1}^{1}} \right)$$

$$-\eta \frac{\partial E}{\partial \theta_{k1}^{1}} = -\eta \Big( -(y - a_{1}^{3})g'(z^{3})\theta^{2} \Big) g'(z^{2}) a_{k}$$

$$= \eta \Big( \underbrace{(y - a_{1}^{3})g'(z^{3})}_{= \delta_{1}^{3}} \theta^{2} \Big) g'(z^{2}) a_{k} = \eta \Big( \delta_{1}^{3}\theta^{2} \Big) g'(z^{2}) a_{k}$$





Formulating this again as the chain rule

$$\Delta\theta_{k1}^{1} = -\eta \frac{\partial E}{\partial \theta_{k1}^{1}} = -\eta \left( \left( \frac{\partial E}{\partial a_{1}^{3}} \right) \left( \frac{\partial a_{1}^{3}}{\partial z^{3}} \right) \left( \frac{\partial z^{3}}{\partial a_{1}^{2}} \right) \right) \left( \frac{\partial a_{1}^{2}}{\partial z^{2}} \right) \left( \frac{\partial z^{2}}{\partial \theta_{k1}^{1}} \right)$$

$$-\eta \frac{\partial E}{\partial \theta_{k1}^{1}} = -\eta \left( -(y - a_{1}^{3})g'(z^{3})\theta^{2} \right) g'(z^{2}) a_{k}$$

$$= \eta \left( \underbrace{(y - a_{1}^{3})g'(z^{3})}_{= \delta_{1}^{3}} \theta^{2} \right) g'(z^{2}) a_{k} = \eta \left( \underbrace{\delta_{1}^{3}\theta^{2}}_{= \delta_{1}^{2}} g'(z^{2}) a_{k} \right)$$

$$= \delta_{1}^{3}$$





Formulating this again as the chain rule

$$\Delta\theta_{k1}^{1} = -\eta \frac{\partial E}{\partial \theta_{k1}^{1}} = -\eta \left( \left( \frac{\partial E}{\partial \mathbf{a}_{1}^{3}} \right) \left( \frac{\partial \mathbf{a}_{1}^{3}}{\partial z^{3}} \right) \left( \frac{\partial z^{3}}{\partial \mathbf{a}_{1}^{2}} \right) \right) \left( \frac{\partial \mathbf{a}_{1}^{2}}{\partial z^{2}} \right) \left( \frac{\partial z^{2}}{\partial \theta_{k1}^{1}} \right)$$

$$-\eta \frac{\partial E}{\partial \theta_{k1}^{1}} = -\eta \left( -(y - a_{1}^{3})g'(z^{3})\theta^{2} \right) g'(z^{2}) a_{k}$$

$$= \eta \left( \underbrace{(y - a_{1}^{3})g'(z^{3})}_{= \delta_{1}^{3}} \theta^{2} \right) g'(z^{2}) a_{k} = \eta \left( \underbrace{\delta_{1}^{3}\theta^{2}}_{= \delta_{1}^{2}} \right) g'(z^{2}) a_{k} = \eta \delta_{1}^{2} a_{k}$$

$$= \delta_{1}^{3}$$





Formulating this again as the chain rule

$$-\eta \frac{\partial E}{\partial \theta_{k1}^1} = -\eta \left( \left( \frac{\partial E}{\partial a_1^3} \right) \left( \frac{\partial a_1^3}{\partial z^3} \right) \left( \frac{\partial z^3}{\partial a_1^2} \right) \right) \left( \frac{\partial a_1^2}{\partial z^2} \right) \left( \frac{\partial z^2}{\partial \theta_{k1}^1} \right)$$

If we had more than one weight  $\theta^2$ 

$$-\eta \frac{\partial E}{\partial \theta_{k1}^{1}} = \eta \Big( \sum_{j} \underbrace{(y_{j} - a_{1}^{3})g'(z_{j}^{3})}_{= \delta_{j}^{3}} \theta_{1j}^{2} \Big) g'(z^{2}) a_{k}$$

$$= \eta \Big( \sum_{j} \delta_{j}^{3} \theta_{1j}^{2} \Big) g'(z^{2}) a_{k} = \eta \delta_{1}^{2} a_{k}$$

$$- \delta_{2}^{2}$$

