

Dipartimento di

Scienze Economiche, Aziendali, Matematiche e Statistiche "Bruno de Finetti"

Modelli statistici per la previsione di risultati calcistici Implementazione in R del modello Dixon-Coles ed applicazioni al campionato di Serie A 2021-2022

Relatore:

Egidi Leonardo

Laureando:

Fantuzzi Giulio

Università degli studi di Trieste

5 settembre 2023

Una distribuzione di probabilità per il numero di goal

- In una partita, ogni volta che una squadra è in possesso di palla ha l'opportunità di costruire un'azione in attacco e di segnare un goal.
- Indichiamo con *p* la probabilità che un'azione si traduca in goal e con *n* il numero di azioni costruite in una partita.
- Assumendo che *p* sia costante e che le azioni siano indipendenti tra loro, il numero (aleatorio) di goal segnati nella partita (*X*) segue:

$$X \sim Bin(n, p)$$
.

- L'approssimazione della distribuzione binomiale con la distribuzione di Poisson, in questo contesto, è particolarmente adatta:
 - ① il numero di prove (azioni offensive) è molto grande
 - 2 la probabilità di successo (segnare un goal) è molto piccola

$$X \sim Pois(\lambda)$$
.

Una distribuzione di probabilità per il numero di goal

- In una partita, ogni volta che una squadra è in possesso di palla ha l'opportunità di costruire un'azione in attacco e di segnare un goal.
- Indichiamo con *p* la probabilità che un'azione si traduca in goal e con *n* il numero di azioni costruite in una partita.
- Assumendo che *p* sia costante e che le azioni siano indipendenti tra loro, il numero (aleatorio) di goal segnati nella partita (*X*) segue:

$$X \sim Bin(n, p)$$
.

- L'approssimazione della distribuzione binomiale con la distribuzione di Poisson, in questo contesto, è particolarmente adatta:
 - 1 il numero di prove (azioni offensive) è molto grande ;
 - 2 la probabilità di successo (segnare un goal) è molto piccola.

$$X \sim Pois(\lambda)$$
.

Una distribuzione di probabilità per il numero di goal

- Inizialmente l'idea di approssimare il numero di goal tramite una distribuzione di Poisson è stata più volte messa in discussione.
- Nonostante alcuni limiti della distribuzione di Poisson, l'adattamento ai dati empirici si è rivelato, in realtà, più che soddisfacente.

- Consideriamo la partita tra le squadre i e j.
- I punteggi delle due squadre vengono descritti mediante due distribuzioni di Poisson tra loro indipendenti:

$$X_{ij} \sim Pois(\lambda_{ij})$$
 , $Y_{ij} \sim Pois(\mu_{ij})$

• Il risultato della partita (x; y) è dunque una determinazione della coppia aleatoria $(X_{ii}; Y_{ii})$. Per l'ipotesi di indipendenza riesce:

$$Pr(X_{ij} = x; Y_{ij} = y) = Pr(X_{ij} = x) \cdot Pr(Y_{ij} = y) = \frac{(\lambda_{ij})^x}{x!} e^{-\lambda_{ij}} \cdot \frac{(\mu_{ij})^y}{y!} e^{-\mu_{ij}}.$$

- Consideriamo la partita tra le squadre i e j.
- I punteggi delle due squadre vengono descritti mediante due distribuzioni di Poisson tra loro indipendenti:

$$X_{ij} \sim Pois(\lambda_{ij})$$
 , $Y_{ij} \sim Pois(\mu_{ij})$.

• Il risultato della partita (x; y) è dunque una determinazione della coppia aleatoria $(X_{ii}; Y_{ii})$. Per l'ipotesi di indipendenza riesce:

$$Pr(X_{ij} = x; Y_{ij} = y) = Pr(X_{ij} = x) \cdot Pr(Y_{ij} = y) = \frac{(\lambda_{ij})^x}{x!} e^{-\lambda_{ij}} \cdot \frac{(\mu_{ij})^y}{y!} e^{-\mu_{ij}}.$$

- Consideriamo la partita tra le squadre i e j.
- I punteggi delle due squadre vengono descritti mediante due distribuzioni di Poisson tra loro indipendenti:

$$X_{ij} \sim Pois(\lambda_{ij})$$
 , $Y_{ij} \sim Pois(\mu_{ij})$.

• Il risultato della partita (x; y) è dunque una determinazione della coppia aleatoria $(X_{ij}; Y_{ij})$. Per l'ipotesi di indipendenza riesce:

$$Pr(X_{ij} = x; Y_{ij} = y) = Pr(X_{ij} = x) \cdot Pr(Y_{ij} = y) = \frac{(\lambda_{ij})^x}{x!} e^{-\lambda_{ij}} \cdot \frac{(\mu_{ij})^y}{y!} e^{-\mu_{ij}}.$$

- La media dei goal segnati da una squadra non è una misura caratteristica della singola squadra, ma è influenzata dalle caratteristiche di entrambe le squadre coinvolte nella partita.
- λ_{ij} e μ_{ij} vengono espressi in funzione di alcuni coefficienti di attacco e di difesa che riassumono le abilità delle squadre. In particolare:

$$\lambda_{ij} = \alpha_i \cdot \beta_j \quad ; \quad \mu_{ij} = \alpha_j \cdot \beta_i \quad ,$$

in cui:

- α : coefficienti di forza d'attacco:
- \bullet β : coefficienti di debolezza difensiva

- La media dei goal segnati da una squadra non è una misura caratteristica della singola squadra, ma è influenzata dalle caratteristiche di entrambe le squadre coinvolte nella partita.
- λ_{ij} e μ_{ij} vengono espressi in funzione di alcuni coefficienti di attacco e di difesa che riassumono le abilità delle squadre. In particolare:

$$\lambda_{ij} = \alpha_i \cdot \beta_j$$
 ; $\mu_{ij} = \alpha_j \cdot \beta_i$,

in cui:

- \bullet α : coefficienti di forza d'attacco:
- \bullet β : coefficienti di debolezza difensiva.

Il modello di Maher: verosimiglianza

• Dopo aver osservato un sufficiente numero di partite (N) è possibile ricavare i coefficienti di attacco (α) e di difesa (β) di tutte le squadre (n), attraverso metodi di stima di massima verosimiglianza.

$$L(\alpha_{i}, \beta_{i}, i = 1, ...n) = \prod_{k=1}^{N} \frac{(\lambda_{k})^{x_{k}}}{x_{k}!} e^{-\lambda_{k}} \cdot \frac{(\mu_{k})^{y_{k}}}{y_{k}!} e^{-\mu_{k}} ;$$

$$I(\alpha_{i}, \beta_{i}, i = 1, ...n) = \sum_{k=1}^{N} \log \left(\frac{(\lambda_{k})^{x_{k}}}{x_{k}!} e^{-\lambda_{k}} \right) + \log \left(\frac{(\mu_{k})^{y_{k}}}{y_{k}!} e^{-\mu_{k}} \right) ;$$

con $\lambda_k = \alpha_{i(k)}\beta_{j(k)}$ e $\mu_k = \alpha_{j(k)}\beta_{i(k)}$, in cui i(k) e j(k) denotano gli indici della squadra di casa e trasferta nella k-esima partita.

Il modello di Maher: limiti

- Il modello tende a sottostimare i risultati di pareggio tra le squadre ed in generale i risultati con pochi goal (0-0, 1-0, 0-1, 1-1).
- L'ipotesi di indipendenza tra i goal segnati dalle due squadre non appare così ragionevole: spesso le squadre aumentano la propria intensità in attacco se sono in svantaggio, mentre si richiudono in fase difensiva per proteggere il proprio vantaggio.
- ③ Il modello considera indifferentemente la squadra che gioca in casa con quella che gioca in trasferta: assenza di *home effect*.

Il modello di Maher: limiti

- Il modello tende a sottostimare i risultati di pareggio tra le squadre ed in generale i risultati con pochi goal (0-0, 1-0, 0-1, 1-1).
- L'ipotesi di indipendenza tra i goal segnati dalle due squadre non appare così ragionevole: spesso le squadre aumentano la propria intensità in attacco se sono in svantaggio, mentre si richiudono in fase difensiva per proteggere il proprio vantaggio.
- 3 Il modello considera indifferentemente la squadra che gioca in casa con quella che gioca in trasferta: assenza di *home effect*.

Il modello di Maher: limiti

- Il modello tende a sottostimare i risultati di pareggio tra le squadre ed in generale i risultati con pochi goal (0-0, 1-0, 0-1, 1-1).
- L'ipotesi di indipendenza tra i goal segnati dalle due squadre non appare così ragionevole: spesso le squadre aumentano la propria intensità in attacco se sono in svantaggio, mentre si richiudono in fase difensiva per proteggere il proprio vantaggio.
- Il modello considera indifferentemente la squadra che gioca in casa con quella che gioca in trasferta: assenza di home effect.

Home effect

- Home effect: beneficio associato al proprio stadio di casa.
- Le squadre, quando giocano nel proprio stadio, vincono più partite e segnano più goal rispetto a quando sono in trasferta.
- Numerosi fattori: maggior supporto dei propri tifosi, assenza di fatica dovuta al viaggio, familiarità con il proprio campo, ...

Home effect

Home effect

- Si parte ancora dalle variabili $X_{ij} \sim Pois(\lambda_{ij})$ e $Y_{ij} \sim Pois(\mu_{ij})$.
- Tenendo conto dell'home effect, si specificano i parametri come:

$$\lambda_{ij} = \exp{\{\alpha_i + \beta_i + \gamma\}}$$
 ; $\mu_{ij} = \exp{\{\alpha_i + \beta_i\}}$

• Per tenere conto dell'interdipendenza tra goals:

$$T_{\lambda_{ij},\mu_{ij}}(x,y) = egin{cases} 1-\lambda_{ij}\cdot\mu_{ij}\cdot
ho & x=y=0\ 1+\lambda_{ij}\cdot
ho & x=0,y=1\ 1+\mu_{ij}\cdot
ho & x=1,y=0\ 1-
ho & x=y=1\ 1 & ext{altrimenti} \end{cases}$$

in cui ρ è un parametro di dipendenza tale che:

$$\max\left\{-\frac{1}{\lambda_{ij}}, -\frac{1}{\mu_{ij}}\right\} \leq \rho \leq \min\left\{\frac{1}{\lambda_{ij}\mu_{ij}}, 1\right\}$$

- Si parte ancora dalle variabili $X_{ij} \sim Pois(\lambda_{ij})$ e $Y_{ij} \sim Pois(\mu_{ij})$.
- Tenendo conto dell'home effect, si specificano i parametri come:

$$\lambda_{ij} = \exp\{\alpha_i + \beta_j + \gamma\}$$
 ; $\mu_{ij} = \exp\{\alpha_j + \beta_i\}$.

• Per tenere conto dell'interdipendenza tra goals:

$$au_{\lambda_{ij},\mu_{ij}}(x,y) = egin{cases} 1-\lambda_{ij}\cdot\mu_{ij}\cdot
ho & x=y=0\ 1+\lambda_{ij}\cdot
ho & x=0,y=1\ 1+\mu_{ij}\cdot
ho & x=1,y=0\ 1-
ho & x=y=1\ 1 & ext{altrimenti} \end{cases}$$

in cui ρ è un parametro di dipendenza tale che:

$$\max\left\{-\frac{1}{\lambda_{ii}}, -\frac{1}{\mu_{ii}}\right\} \le \rho \le \min\left\{\frac{1}{\lambda_{ii}\mu_{ii}}, 1\right\}$$

- Si parte ancora dalle variabili $X_{ij} \sim Pois(\lambda_{ij})$ e $Y_{ij} \sim Pois(\mu_{ij})$.
- Tenendo conto dell'home effect, si specificano i parametri come:

$$\lambda_{ii} = \exp{\{\alpha_i + \beta_i + \gamma\}}$$
 ; $\mu_{ii} = \exp{\{\alpha_i + \beta_i\}}$.

• Per tenere conto dell'interdipendenza tra goals:

$$\tau_{\lambda_{ij},\mu_{ij}}(x,y) = \begin{cases} 1 - \lambda_{ij} \cdot \mu_{ij} \cdot \rho & x = y = 0 \\ 1 + \lambda_{ij} \cdot \rho & x = 0, y = 1 \\ 1 + \mu_{ij} \cdot \rho & x = 1, y = 0 \\ 1 - \rho & x = y = 1 \\ 1 & \text{altrimenti} \end{cases}$$

in cui ρ è un parametro di dipendenza tale che:

$$\max\left\{-\frac{1}{\lambda_{ii}}, -\frac{1}{\mu_{ii}}\right\} \leq \rho \leq \min\left\{\frac{1}{\lambda_{ii}\mu_{ii}}, 1\right\}.$$

 Dopo aver osservato un sufficiente numero di partite, è possibile stimare a massima verosimiglianza i parametri del modello.

$$L(\alpha_{i}, \beta_{i}, \gamma, \rho) = \prod_{k=1}^{N} \tau_{\lambda_{k}, \mu_{k}}(x_{k}, y_{k}) \frac{(\lambda_{k})^{x_{k}}}{x_{k}!} e^{-\lambda_{k}} \cdot \frac{(\mu_{k})^{y_{k}}}{y_{k}!} e^{-\mu_{k}} ;$$

$$I(\alpha_{i}, \beta_{i}, \gamma, \rho) = \sum_{k=1}^{N} \log[\tau_{\lambda_{k}, \mu_{k}}(x_{k}, y_{k})] + \log\left[\frac{(\lambda_{k})^{x_{k}}}{x_{k}!} e^{-\lambda_{k}}\right] + \log\left[\frac{(\mu_{k})^{y_{k}}}{y_{k}!} e^{-\mu_{k}}\right].$$

Per garantire l'identificabilità del modello si introducono i vincoli:

$$\frac{1}{n}\sum_{i=1}^{n}\alpha_{i}=1$$
 ; $\frac{1}{n}\sum_{i=1}^{n}\beta_{i}=1$

• o equivalentemente (utile per l'implementazione):

$$\sum_{i=1}^{n-1} \alpha_i = -\alpha_n \quad ; \quad \sum_{i=1}^{n-1} \beta_i = -\beta_n \quad .$$

• Dopo aver osservato un sufficiente numero di partite, è possibile stimare a massima verosimiglianza i parametri del modello.

$$L(\alpha_{i}, \beta_{i}, \gamma, \rho) = \prod_{k=1}^{N} \tau_{\lambda_{k}, \mu_{k}}(x_{k}, y_{k}) \frac{(\lambda_{k})^{x_{k}}}{x_{k}!} e^{-\lambda_{k}} \cdot \frac{(\mu_{k})^{y_{k}}}{y_{k}!} e^{-\mu_{k}} ;$$

$$I(\alpha_{i}, \beta_{i}, \gamma, \rho) = \sum_{k=1}^{N} \log[\tau_{\lambda_{k}, \mu_{k}}(x_{k}, y_{k})] + \log\left[\frac{(\lambda_{k})^{x_{k}}}{x_{k}!} e^{-\lambda_{k}}\right] + \log\left[\frac{(\mu_{k})^{y_{k}}}{y_{k}!} e^{-\mu_{k}}\right].$$

• Per garantire l'identificabilità del modello si introducono i vincoli:

$$\frac{1}{n}\sum_{i=1}^{n}\alpha_{i}=1$$
 ; $\frac{1}{n}\sum_{i=1}^{n}\beta_{i}=1$,

• o equivalentemente (utile per l'implementazione):

$$\sum_{i=1}^{n-1} \alpha_i = -\alpha_n \; \; ; \; \; \sum_{i=1}^{n-1} \beta_i = -\beta_n$$

• Dopo aver osservato un sufficiente numero di partite, è possibile stimare a massima verosimiglianza i parametri del modello.

$$L(\alpha_{i}, \beta_{i}, \gamma, \rho) = \prod_{k=1}^{N} \tau_{\lambda_{k}, \mu_{k}}(x_{k}, y_{k}) \frac{(\lambda_{k})^{x_{k}}}{x_{k}!} e^{-\lambda_{k}} \cdot \frac{(\mu_{k})^{y_{k}}}{y_{k}!} e^{-\mu_{k}} ;$$

$$I(\alpha_{i}, \beta_{i}, \gamma, \rho) = \sum_{k=1}^{N} \log[\tau_{\lambda_{k}, \mu_{k}}(x_{k}, y_{k})] + \log\left[\frac{(\lambda_{k})^{x_{k}}}{x_{k}!} e^{-\lambda_{k}}\right] + \log\left[\frac{(\mu_{k})^{y_{k}}}{y_{k}!} e^{-\mu_{k}}\right].$$

• Per garantire l'identificabilità del modello si introducono i vincoli:

$$\frac{1}{n}\sum_{i=1}^{n}\alpha_{i}=1$$
 ; $\frac{1}{n}\sum_{i=1}^{n}\beta_{i}=1$,

• o equivalentemente (utile per l'implementazione):

$$\sum_{i=1}^{n-1} \alpha_i = -\alpha_n \; \; ; \; \; \sum_{i=1}^{n-1} \beta_i = -\beta_n \; \; .$$

Lo stato di forma delle squadre

- La staticità dei parametri costituisce un limite strutturale del modello: le squadre non hanno un rendimento costante nel tempo, ma vivono momenti più o meno prolifici in fase offensiva e difensiva.
- <u>Idea generale</u>: le prestazioni di una squadra sono correlate maggiormente ai risultati delle partite più recenti rispetto a quelli delle partite più distanti nel tempo.
- Si assume che i parametri siano localmente costanti nel tempo e che le informazioni passate abbiano meno valore di quelle più recenti.
 Inoltre, i parametri ad ogni istante di tempo t sono stimati sulla base delle partite giocate fino a quel momento.

• Dixon e Coles apportarono una modifica sostanziale al modello

$$L(\alpha_{i}, \beta_{i}, \gamma, \rho) = \prod_{k \in A_{t}} \left[\tau_{\lambda_{k}, \mu_{k}}(x_{k}, y_{k}) \frac{(\lambda_{k})^{x_{k}}}{x_{k}!} e^{-\lambda_{k}} \cdot \frac{(\mu_{k})^{y_{k}}}{y_{k}!} e^{-\mu_{k}} \right]^{\phi(t - t_{k})} ;$$

$$I(\alpha_{i}, \beta_{i}, \gamma, \rho) = \sum_{k \in A_{t}} \phi(t - t_{k}) \left[\log[\tau_{\lambda_{k}, \mu_{k}}(x_{k}, y_{k})] + \log\left(\frac{(\lambda_{k})^{x_{k}}}{x_{k}!} e^{-\lambda_{k}}\right) + \log\left(\frac{(\mu_{k})^{y_{k}}}{y_{k}!} e^{-\mu_{k}}\right) \right]$$

in cui:

- t_k è la data della k-esima partita;
- $A_t \doteq \{k : t_k \leq t\};$
- $\phi(\cdot)$ è una funzione non-crescente che serve a pesare i dati in base alla loro collocazione temporale.
- Massimizzare la (log-)verosimiglianza alla data t consente ancora di ricavare le stime dei parametri, con l'accortezza che adesso le stime saranno riferite solamente a quella precisa data.

• Dixon e Coles apportarono una modifica sostanziale al modello

$$L(\alpha_{i}, \beta_{i}, \gamma, \rho) = \prod_{k \in A_{t}} \left[\tau_{\lambda_{k}, \mu_{k}}(x_{k}, y_{k}) \frac{(\lambda_{k})^{x_{k}}}{x_{k}!} e^{-\lambda_{k}} \cdot \frac{(\mu_{k})^{y_{k}}}{y_{k}!} e^{-\mu_{k}} \right]^{\phi(t-t_{k})} ;$$

$$I(\alpha_{i}, \beta_{i}, \gamma, \rho) = \sum_{k \in A_{t}} \phi(t - t_{k}) \left[\log[\tau_{\lambda_{k}, \mu_{k}}(x_{k}, y_{k})] + \log\left(\frac{(\lambda_{k})^{x_{k}}}{x_{k}!} e^{-\lambda_{k}}\right) + \log\left(\frac{(\mu_{k})^{y_{k}}}{y_{k}!} e^{-\mu_{k}}\right) \right]$$

in cui:

- t_k è la data della k-esima partita;
- $A_t \doteq \{k : t_k \leq t\};$
- $\phi(\cdot)$ è una funzione non-crescente che serve a pesare i dati in base alla loro collocazione temporale.
- Massimizzare la (log-)verosimiglianza alla data t consente ancora di ricavare le stime dei parametri, con l'accortezza che adesso le stime saranno riferite solamente a quella precisa data.

Modello dinamico di Dixon e Coles: la funzione $\phi(t)$

• La prima soluzione proposta da Dixon e Coles:

$$\phi(t) = egin{cases} 1 & t \leq t_0 \ 0 & t > t_0 \end{cases}$$

in cui t_0 è una soglia fissata a priori.

• La seconda soluzione proposta da Dixon e Coles:

$$\phi(t) = e^{-\xi t}$$

in cui ξ rappresenta un fattore di lisciamento.

Modello dinamico di Dixon e Coles: la funzione $\phi(t)$

• La prima soluzione proposta da Dixon e Coles:

$$\phi(t) = \begin{cases} 1 & t \le t_0 \\ 0 & t > t_0 \end{cases}$$

in cui t_0 è una soglia fissata a priori.

• La seconda soluzione proposta da Dixon e Coles:

$$\phi(t) = e^{-\xi t}$$

in cui ξ rappresenta un fattore di lisciamento.

La stima dei parametri (modello di Maher)

Squadra	α	s.e.	IC (95%)
Udinese	0.641	0.082	[0.633 ; 0.650]
Napoli	0.628	0.073	[0.621 ; 0.635]
Inter	0.594	0.065	0.588 ; 0.601
Lazio	0.582	0.066	0.576 ; 0.589
Sampdoria	0.576	0.085	0.567; 0.584]
Milan	0.571	0.069	0.564 ; 0.578
Verona	0.540	0.067	0.533 ; 0.547
Atalanta	0.532	0.066	0.525 ; 0.539
Sassuolo	0.525	0.066	[0.518 ; 0.531]
Juventus	0.523	0.069	0.516 ; 0.530
Empoli	0.516	0.073	0.509 ; 0.524
Bologna	0.494	0.075	0.487 ; 0.502
Torino	0.487	0.072	[0.480 ; 0.495]
Roma	0.485	0.063	[0.478 ; 0.491]
Spezia	0.481	0.075	[0.473 ; 0.488]
Fiorentina	0.469	0.061	[0.463 ; 0.475]
Cagliari	0.457	0.078	[0.449 ; 0.465]
Salernitana	0.451	0.079	[0.443 ; 0.459]
Genoa	0.448	0.086	[0.439 ; 0.457]
Venezia	0.421	0.072	[0.413 ; 0.428]

Tabella: Stime dei coefficienti d'attacco

Squadra	β	s.e.	IC (95%)
Milan	0.363	0.065	[0.357 ; 0.370]
Atalanta	0.395	0.057	[0.390 ; 0.401]
Spezia	0.405	0.048	[0.400 ; 0.410]
Inter	0.446	0.079	[0.438 ; 0.454]
Juventus	0.469	0.077	[0.461 ; 0.477]
Verona	0.481	0.063	[0.475 ; 0.488]
Torino	0.490	0.077	[0.482 ; 0.498]
Roma	0.491	0.075	[0.484 ; 0.499]
Cagliari	0.493	0.060	[0.487 ; 0.499]
Fiorentina	0.506	0.071	0.499 ; 0.513
Sampdoria	0.516	0.065	0.510; 0.523
Genoa	0.517	0.067	0.511; 0.524
Bologna	0.523	0.071	0.516; 0.530
Napoli	0.528	0.095	0.518 ; 0.537
Sassuolo	0.547	0.067	[0.540 ; 0.554]
Lazio	0.567	0.075	[0.559 ; 0.574]
Venezia	0.573	0.069	[0.566 ; 0.580]
Empoli	0.576	0.069	[0.569 ; 0.583]
Udinese	0.580	0.076	[0.572 ; 0.587]
Salernitana	0.585	0.066	[0.579 ; 0.592]

Tabella: Stime dei coefficienti di difesa

La stima dei parametri (modello Dixon-Coles statico)

Squadra	α	s.e.	IC (95%)
Inter	0.504	0.112	[0.493 ; 0.515]
Lazio	0.440	0.117	[0.428 ; 0.451]
Napoli	0.358	0.119	[0.346 ; 0.370]
Milan	0.291	0.123	0.279 ; 0.304
Verona	0.253	0.127	[0.240 ; 0.266]
Atalanta	0.246	/	/ /
Sassuolo	0.245	0.128	[0.232 ; 0.258]
Udinese	0.181	0.131	[0.167 ; 0.194]
Fiorentina	0.135	0.133	[0.122 ; 0.149]
Roma	0.133	0.133	[0.120 ; 0.147]
Juventus	0.083	0.136	[0.069 ; 0.097]
Empoli	-0.017	0.145	[-0.031 ; -0.002]
Sampdoria	-0.124	0.152	[-0.139 ; -0.109]
Torino	-0.153	0.152	[-0.168 ; -0.138]
Bologna	-0.177	0.155	[-0.192 ; -0.161]
Spezia	-0.247	0.161	[-0.263 ; -0.231]
Cagliari	-0.460	0.179	[-0.478 ; -0.442]
Venezia	-0.463	0.179	[-0.481 ; -0.445]
Salernitana	-0.494	0.182	[-0.512 ; -0.475]
Genoa	-0.736	0.204	[-0.756 ; -0.715]

Squadra	β	s.e.	IC (95%)
Milan	-0.584	0.188	[-0.603 ; -0.565]
Napoli	-0.579	0.188	[-0.598 ; -0.560]
Inter	-0.522	0.185	[-0.540 ; -0.503]
Juventus	-0.388	0.171	[-0.406 ; -0.371]
Torino	-0.283	0.161	[-0.300 ; -0.267]
Roma	-0.214	0.157	[-0.230 ; -0.198]
Atalanta	-0.074	/	/
Fiorentina	-0.028	0.144	[-0.042 ; -0.013]
Bologna	0.050	0.138	[0.036 ; 0.064]
Udinese	0.126	0.135	[0.113 ; 0.140]
Genoa	0.133	0.132	[0.120 ; 0.146]
Lazio	0.144	0.135	[0.130 ; 0.157]
Verona	0.150	0.133	[0.136 ; 0.163]
Sampdoria	0.201	0.129	[0.188 ; 0.214]
Cagliari	0.270	0.124	[0.258 ; 0.283]
Sassuolo	0.271	0.126	[0.259 ; 0.284]
Venezia	0.283	0.123	[0.271 ; 0.296]
Empoli	0.313	0.122	[0.301 ; 0.326]
Spezia	0.317	0.121	[0.305 ; 0.329]
Salernitana	0.412	0.116	[0.401 ; 0.424]

Tabella: Stime dei coefficienti d'attacco

Tabella: Stime dei coefficienti di difesa

Parametro	Stima	s.e.	IC(95 %)
$\gamma \\ \rho$	0.305 -0.071		[0.301 ; 0.309] [-0.079 ; -0.063]

Tabella: Stime dei coefficienti γ e ρ

La stima dei parametri (modello Dixon-Coles dinamico)

• Assumendo $\phi(t) = e^{-\xi t}$, la log-verosimiglianza del modello risultava:

$$I(\alpha_i,\beta_i,\gamma,\rho) = \sum_{k \in A_t} e^{-\xi(t-t_k)} \left[\log[\tau_{\lambda_k,\mu_k}(\mathbf{x}_k,y_k)] + \log\left(\frac{(\lambda_k)^{\mathbf{x}_k}}{\mathbf{x}_k!}e^{-\lambda_k}\right) + \log\left(\frac{(\mu_k)^{\mathbf{y}_k}}{y_k!}e^{-\mu_k}\right) \right]$$

• Non ci si può più limitare ad inserire la funzione nell'algoritmo di ottimizzazione (funzione optim() di R). Infatti:

$$\begin{split} &\frac{(\lambda_k)^{x_k}}{x_k!} \, e^{-\lambda_k} \in [0,1] \implies \log \left[\frac{(\lambda_k)^{x_k}}{x_k!} e^{-\lambda_k} \right] \leq 0 \quad , \\ &\frac{(\mu_k)^{y_k}}{y_k!} \, e^{-\mu_k} \in [0,1] \implies \log \left[\frac{(\mu_k)^{y_k}}{y_k!} e^{-\mu_k} \right] \leq 0 \quad . \end{split}$$

• Se ρ è molto piccolo, inoltre, si ha $\tau_{\lambda_k,\mu_k}(x_k,y_k)\approx 1$, per cui:

$$\log[\tau_{\lambda_k,\mu_k}(x_k,y_k)] \approx 0$$
.

La stima dei parametri (modello Dixon-Coles dinamico)

Definiamo ora la quantità:

$$P_{k} = \underbrace{\log\left[\tau_{\lambda_{k},\mu_{k}}(x_{k},y_{k})\right]}_{\approx 0} + \underbrace{\log\left(\frac{(\lambda_{k})^{x_{k}}}{x_{k}!}e^{-\lambda_{k}}\right)}_{\leq 0} + \underbrace{\log\left(\frac{(\mu_{k})^{y_{k}}}{y_{k}!}e^{-\mu_{k}}\right)}_{\leq 0} \leq 0 \quad \forall k$$

• Possiamo così riscrivere la log-verosimiglianza nella forma:

$$I(\alpha_i, \beta_i, \gamma, \rho) = \sum_{k \in A_t} e^{-\xi(t-t_k)} \cdot P_k$$

• La log-verosimiglianza è allora una funzione crescente di ξ :

$$\frac{\partial I}{\partial \xi} = \frac{\partial}{\partial \xi} \left(\sum_{k \in A_t} e^{-\xi(t - t_k)} \cdot P_k \right)$$

$$= \sum_{k \in A_t} \frac{\partial}{\partial \xi} \left(e^{-\xi(t - t_k)} \cdot P_k \right)$$

$$= \sum_{k \in A_t} \underbrace{e^{-\xi(t - t_k)}}_{>0} \cdot \underbrace{P_k}_{<0} \cdot \underbrace{(t_k - t)}_{<0} \ge 0 \quad \forall \xi$$

- **①** Si fissa un valore di ξ ;
- 2 si parte da una giornata di campionato (i);
- **3** si stimano (a max verosimiglianza) gli altri parametri del modello, usando come training-set tutte le giornate fino alla (i-1);
- si valuta poi l'accuratezza delle previsioni del modello in relazione alla i-esima giornata (test-set);
- **3** si passa alla giornata i + 1 e si ri-stimano i parametri, questa volta usando come training-set tutte le giornate fino alla i-esima;
- 6 si continua allo stesso modo fino all'ultima giornata di campionato;
- $oldsymbol{0}$ si cambia il valore di ξ e si ripete la procedura.

- **①** Si fissa un valore di ξ ;
- 2 si parte da una giornata di campionato (i);
- 3 si stimano (a max verosimiglianza) gli altri parametri del modello, usando come training-set tutte le giornate fino alla (i-1);
- si valuta poi l'accuratezza delle previsioni del modello in relazione alla i-esima giornata (test-set);
- **3** si passa alla giornata i + 1 e si ri-stimano i parametri, questa volta usando come training-set tutte le giornate fino alla i-esima;
- 6 si continua allo stesso modo fino all'ultima giornata di campionato;
- $oldsymbol{0}$ si cambia il valore di ξ e si ripete la procedura.

- **①** Si fissa un valore di ξ ;
- 2 si parte da una giornata di campionato (i);
- \odot si stimano (a max verosimiglianza) gli altri parametri del modello, usando come training-set tutte le giornate fino alla (i-1);
- si valuta poi l'accuratezza delle previsioni del modello in relazione alla i-esima giornata (test-set);
- **3** si passa alla giornata i + 1 e si ri-stimano i parametri, questa volta usando come training-set tutte le giornate fino alla i-esima:
- 6 si continua allo stesso modo fino all'ultima giornata di campionato;

- **①** Si fissa un valore di ξ ;
- 2 si parte da una giornata di campionato (i);
- \odot si stimano (a max verosimiglianza) gli altri parametri del modello, usando come training-set tutte le giornate fino alla (i-1);
- si valuta poi l'accuratezza delle previsioni del modello in relazione alla i-esima giornata (test-set);
- **3** si passa alla giornata i + 1 e si ri-stimano i parametri, questa volta usando come training-set tutte le giornate fino alla i-esima:
- o si continua allo stesso modo fino all'ultima giornata di campionato;
- $oldsymbol{0}$ si cambia il valore di ξ e si ripete la procedura.

- **①** Si fissa un valore di ξ ;
- 2 si parte da una giornata di campionato (i);
- \odot si stimano (a max verosimiglianza) gli altri parametri del modello, usando come training-set tutte le giornate fino alla (i-1);
- si valuta poi l'accuratezza delle previsioni del modello in relazione alla i-esima giornata (test-set);
- **5** si passa alla giornata i + 1 e si ri-stimano i parametri, questa volta usando come training-set tutte le giornate fino alla i-esima;
- 6 si continua allo stesso modo fino all'ultima giornata di campionato;
- $oldsymbol{0}$ si cambia il valore di ξ e si ripete la procedura.

- **1** Si fissa un valore di ξ ;
- si parte da una giornata di campionato (i);
- \odot si stimano (a max verosimiglianza) gli altri parametri del modello, usando come training-set tutte le giornate fino alla (i-1);
- si valuta poi l'accuratezza delle previsioni del modello in relazione alla *i*-esima giornata (test-set);
- **5** si passa alla giornata i + 1 e si ri-stimano i parametri, questa volta usando come training-set tutte le giornate fino alla i-esima;
- 6 si continua allo stesso modo fino all'ultima giornata di campionato;
- \bigcirc si cambia il valore di ξ e si ripete la procedura.

- **1** Si fissa un valore di ξ ;
- 2 si parte da una giornata di campionato (i);
- \odot si stimano (a max verosimiglianza) gli altri parametri del modello, usando come training-set tutte le giornate fino alla (i-1);
- si valuta poi l'accuratezza delle previsioni del modello in relazione alla i-esima giornata (test-set);
- **5** si passa alla giornata i + 1 e si ri-stimano i parametri, questa volta usando come training-set tutte le giornate fino alla i-esima;
- o si continua allo stesso modo fino all'ultima giornata di campionato;
- \odot si cambia il valore di ξ e si ripete la procedura.

ullet Il valore di ξ associato alla migliore capacità predittiva al modello è:

$$\xi^* = \operatorname*{argmax}_{\xi \in \mathbb{R}^+} S(\xi) \;, \operatorname{con} \; S(\xi) = \sum_{k=1}^N \left(\delta_k^H \log p_k^H + \delta_k^D \log p_k^D + \delta_k^A \log p_k^A \right).$$

ullet Il valore di ξ associato alla migliore capacità predittiva al modello è:

$$\xi^* = \operatorname*{argmax}_{\xi \in \mathbb{R}^+} S(\xi) \ , \operatorname{con} \ S(\xi) = \sum_{k=1}^N \left(\delta_k^H \log p_k^H + \delta_k^D \log p_k^D + \delta_k^A \log p_k^A \right).$$

• Date due squadre i e j, è possibile associare a ciascun risultato (x; y) una misura di probabilità, data da:

$$Pr(X_{ij} = x; Y_{ij} = y) = \tau_{\lambda_{ij}, \mu_{ij}}(x, y) \cdot \frac{(\alpha_i \cdot \beta_j \cdot \gamma)^x}{x!} e^{-\alpha_i \cdot \beta_j \cdot \gamma} \cdot \frac{(\alpha_j \cdot \beta_i)^y}{y!} e^{-\alpha_j \cdot \beta_i}$$

$$A_{ij} = \begin{bmatrix} a_{00} & a_{01} & \cdots & a_{0g} \\ a_{10} & a_{11} & \cdots & a_{1g} \\ \vdots & \vdots & \ddots & \vdots \\ a_{g0} & a_{g2} & \cdots & a_{gg} \end{bmatrix}$$

 Date due squadre i e j, è possibile associare a ciascun risultato (x; y) una misura di probabilità, data da:

$$Pr(X_{ij} = x; Y_{ij} = y) = \tau_{\lambda_{ij}, \mu_{ij}}(x, y) \cdot \frac{(\alpha_i \cdot \beta_j \cdot \gamma)^x}{x!} e^{-\alpha_i \cdot \beta_j \cdot \gamma} \cdot \frac{(\alpha_j \cdot \beta_i)^y}{y!} e^{-\alpha_j \cdot \beta_i}$$

$$A_{ij} = \begin{bmatrix} a_{00} & a_{01} & \cdots & a_{0g} \\ a_{10} & a_{11} & \cdots & a_{1g} \\ \vdots & \vdots & \ddots & \vdots \\ a_{g0} & a_{g2} & \cdots & a_{gg} \end{bmatrix}$$

 Date due squadre i e j, è possibile associare a ciascun risultato (x; y) una misura di probabilità, data da:

$$Pr(X_{ij} = x; Y_{ij} = y) = \tau_{\lambda_{ij}, \mu_{ij}}(x, y) \cdot \frac{(\alpha_i \cdot \beta_j \cdot \gamma)^x}{x!} e^{-\alpha_i \cdot \beta_j \cdot \gamma} \cdot \frac{(\alpha_j \cdot \beta_i)^y}{y!} e^{-\alpha_j \cdot \beta_i}$$

$$A_{ij} = \begin{bmatrix} a_{00} & a_{01} & \cdots & a_{0g} \\ a_{10} & a_{11} & \cdots & a_{1g} \\ \vdots & \vdots & \ddots & \vdots \\ a_{g0} & a_{g2} & \cdots & a_{gg} \end{bmatrix}$$

$$Pr(H) = \sum_{i>j} a_{ij}$$

• Date due squadre i e j, è possibile associare a ciascun risultato (x; y) una misura di probabilità, data da:

$$Pr(X_{ij} = x; Y_{ij} = y) = \tau_{\lambda_{ij}, \mu_{ij}}(x, y) \cdot \frac{(\alpha_i \cdot \beta_j \cdot \gamma)^x}{x!} e^{-\alpha_i \cdot \beta_j \cdot \gamma} \cdot \frac{(\alpha_j \cdot \beta_i)^y}{y!} e^{-\alpha_j \cdot \beta_i}$$

$$A_{ij} = \begin{bmatrix} a_{00} & a_{01} & \cdots & a_{0g} \\ a_{10} & a_{11} & \cdots & a_{1g} \\ \vdots & \vdots & \ddots & \vdots \\ a_{g0} & a_{g2} & \cdots & a_{gg} \end{bmatrix}$$

$$Pr(H) = \sum_{i>j} a_{ij}$$

$$Pr(D) = \sum_{i=j} a_{ij} = tr(A_{ij})$$

• Date due squadre i e j, è possibile associare a ciascun risultato (x; y) una misura di probabilità, data da:

$$Pr(X_{ij} = x; Y_{ij} = y) = \tau_{\lambda_{ij}, \mu_{ij}}(x, y) \cdot \frac{(\alpha_i \cdot \beta_j \cdot \gamma)^x}{x!} e^{-\alpha_i \cdot \beta_j \cdot \gamma} \cdot \frac{(\alpha_j \cdot \beta_i)^y}{y!} e^{-\alpha_j \cdot \beta_i}$$

$$A_{ij} = \begin{bmatrix} a_{00} & a_{01} & \cdots & a_{0g} \\ a_{10} & a_{11} & \cdots & a_{1g} \\ \vdots & \vdots & \ddots & \vdots \\ a_{g0} & a_{g2} & \cdots & a_{gg} \end{bmatrix}$$

$$Pr(H) = \sum_{i>j} a_{ij}$$

$$Pr(D) = \sum_{i=j} a_{ij} = tr(A_{ij})$$

$$Pr(A) = \sum_{i < j} a_{ij}$$

Evoluzione delle abilità delle squadre

Evoluzione dell'home effect

- ullet Il parametro γ è dinamico e può cambiare nel corso del tempo;
- anche se la serie storia suggerisce stazionarietà (in media e varianza).

Valutazione e confronto tra modelli: il Brier Score

$$BS = \frac{1}{M} \sum_{m=1}^{M} \sum_{i} (p_{mi} - d_{mi})^2$$
 con $i \in \{H, D, A\}$

Model	Maher model	Static Dixon-Coles	Dinamic Dixon-Coles ($\xi=0.005$)
Brier Score	0.67686	0.61288	0.61234

Valutazione e confronto tra modelli: lo Pseudo-R²

Pseudo-
$$R^2 = \left(\prod_{m=1}^M p_m\right)^{\frac{1}{M}}$$

Model	Maher model	Static Dixon-Coles	Dinamic Dixon-Coles ($\xi = 0.005$)
Pseudo-R ²	0.24385	0.33465	0.33604

Matrici di confusione: H-D-A

Dixon-Coles model (static)

Dixon-Coles model (dinamic)

Model metrics	Static Dixon-Coles	Dinamic Dixon-Coles
Precision(PPV)	0.514	0.493
NPV	0.769	0.765
Sensitivity	0.482	0.478
Overall accuracy	0.516	0.511
Balanced accuracy	0.615	0.612
F1-score	0.428	0.432

Matrici di confusione: 1X - 2

Dixon-Coles model (static)

FALSE TRUE
Actual values

Dixon-Coles model (static)

Actual values

Model metrics	Static Dixon-Coles	Dinamic Dixon-Coles
Precision(PPV)	0.719	0.726
NPV	0.667	0.667
Sensitivity	0.920	0.912
Accuracy	0.711	0.716
F1-score	0.807	0.809

- Il modello D-C presenta svariati ambiti di applicazione ed è piuttosto semplice, sia dal punto di vista teorico che implementativo.
- Nell'ambito dei modelli goal-based è un prezioso riferimento, a partire da cui vengono spesso sviluppate nuove proposte.
- La verosimiglianza profilo è stata molto onerosa in termini di tempo.
 - Parallelizzazione del codice?
 - Altre strutture dati?
 - Altri linguaggi di programmazione?
- Chiaro il confronto del modello Dixon-Coles rispetto a quello di Maher; meno quello tra le sue versioni statica e dinamica.

- Il modello D-C presenta svariati ambiti di applicazione ed è piuttosto semplice, sia dal punto di vista teorico che implementativo.
- Nell'ambito dei modelli goal-based è un prezioso riferimento, a partire da cui vengono spesso sviluppate nuove proposte.
- La verosimiglianza profilo è stata molto onerosa in termini di tempo.
 - Parallelizzazione del codice?
 - Altre strutture dati?
 - Altri linguaggi di programmazione?
- Chiaro il confronto del modello Dixon-Coles rispetto a quello di Maher; meno quello tra le sue versioni statica e dinamica.

- Il modello D-C presenta svariati ambiti di applicazione ed è piuttosto semplice, sia dal punto di vista teorico che implementativo.
- Nell'ambito dei modelli goal-based è un prezioso riferimento, a partire da cui vengono spesso sviluppate nuove proposte.
- La verosimiglianza profilo è stata molto onerosa in termini di tempo.
 - Parallelizzazione del codice?
 - Altre strutture dati?
 - Altri linguaggi di programmazione?
- Chiaro il confronto del modello Dixon-Coles rispetto a quello di Maher; meno quello tra le sue versioni statica e dinamica.

- Il modello D-C presenta svariati ambiti di applicazione ed è piuttosto semplice, sia dal punto di vista teorico che implementativo.
- Nell'ambito dei modelli goal-based è un prezioso riferimento, a partire da cui vengono spesso sviluppate nuove proposte.
- La verosimiglianza profilo è stata molto onerosa in termini di tempo.
 - Parallelizzazione del codice?
 - Altre strutture dati?
 - Altri linguaggi di programmazione?
- Chiaro il confronto del modello Dixon-Coles rispetto a quello di Maher; meno quello tra le sue versioni statica e dinamica.

Grazie per l'attenzione!