Machine Learning

Dr.Hajialiasgari

Tehran University Of Medical Science

February 4, 2025

- 1 Decision Tree
- 2 Overfitting in Decision Tree

- Decision Tree
- 2 Overfitting in Decision Tree

Overview of Decision Trees

- Decision Trees are used for both classification and regression.
- They split data into branches based on feature values.
- The tree consists of **nodes** (decisions) and **leaves** (predictions).

Decision Tree (Cont.)

Is a Person Fit?

How Decision Trees Work

- Starts with the entire dataset at the root.
- Splits the dataset based on a selected feature using a splitting criterion (e.g., Gini Impurity, Entropy, or Mean Squared Error).
- Repeats the process recursively until stopping criteria are met (e.g., max depth, minimum samples per leaf).
- Outputs a final prediction based on leaf nodes.

Decision Tree Structure

Splitting Criteria (1)

1. Gini Impurity:

$$Gini = 1 - \sum_{i=1}^{C} p_i^2 \tag{1}$$

2. Entropy:

$$Entropy = -\sum_{i=1}^{C} p_i \log_2 p_i \tag{2}$$

Splitting Criteria (Cont.)

3. Information Gain:

$$IG = Entropy(parent) - \sum_{i} \frac{|subset_{i}|}{|parent|} \times Entropy(subset_{i})$$
 (3)

4. Mean Squared Error (for Regression):

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$
 (4)

Example

Example: Medical Diagnosis

- Features: Age, Cholesterol, Blood Pressure, Smoking Status.
- Example Rule:
 - If Cholesterol > 240 and Blood Pressure > 140, classify as High Risk.
 - Else, classify as Low Risk.

Example: Insurance Risk Prediction

- Features: Age, Driving History, Number of Accidents, Type of Car.
- Example Rule:
 - If Age < 25 and Accidents > 2, classify as High Risk.
 - If Age >= 25 and No Accidents, classify as Low Risk.

Advantages of Decision Trees

- Easy to interpret and visualize.
- Handles both numerical and categorical data.
- Requires little data preprocessing.
- Works well with large datasets.

Disadvantages of Decision Trees

- Can overfit the data (prone to high variance).
- Sensitive to noisy data.
- Can create biased results if dataset is imbalanced.

Improving Decision Trees

- **Pruning:** Reducing tree size to avoid overfitting.
- **Ensemble Methods:** Combining multiple trees (Random Forest, Gradient Boosting).
- Feature Selection: Choosing relevant features improves accuracy.

- Decision Tree
- 2 Overfitting in Decision Tree

Overview

Definition: Overfitting occurs when a decision tree learns patterns specific to the training data but fails to generalize to unseen data.

- The tree becomes too complex and captures noise instead of the true pattern.
- Leads to high accuracy on training data but poor performance on test data.

Causes of Overfitting:

- Deep trees with too many splits.
- Small leaf nodes capturing noise.
- High variance in data leading to unstable decision boundaries.

Preventing Overfitting in Decision Trees

1. Pruning

- **Pre-pruning (Early Stopping):** Stop tree growth based on depth or information gain threshold.
- **Post-pruning:** Grow the full tree, then remove branches that do not improve validation accuracy.

2. Restricting Tree Growth

- Limit maximum depth of the tree.
- Require a minimum number of samples per leaf node.
- Set a minimum number of samples needed to split a node.

A Pruned Tree

An Unpruned Decision Tree

A Pruned Decision Tree

February 4, 2025

Advanced Techniques to Control Overfitting

3. Ensemble Methods

- Random Forests: Combine multiple trees and average predictions to reduce variance.
- Boosting (e.g., AdaBoost, Gradient Boosting): Train sequential trees that correct previous errors.

4. Regularization Techniques

• **Cost Complexity Pruning (CCP):** Penalizes complex trees by adding a cost term for additional nodes.

For more information and code check the related notebook

End of Classification

22 / 22