

Outline □ Sequencing □ Sequencing Element Design □ Max and Min-Delay □ Clock Skew □ Time Borrowing □ Two-Phase Clocking 11: Sequential Circuits CMOS VLSI Design 4th Ed. 2

Sequencing □ Combinational logic - output depends on current inputs □ Sequential logic - output depends on current and previous inputs - Requires separating previous, current, future - Called state or tokens - Ex: FSM, pipeline Finite State Machine Pipeline 11: Sequential Circuits CMOS VLSI Design 4th Ed. 3

Sequencing Cont. ☐ If tokens moved through pipeline at constant speed, no sequencing elements would be necessary ☐ Ex: fiber-optic cable ☐ Light pulses (tokens) are sent down cable ☐ Next pulse sent before first reaches end of cable ☐ No need for hardware to separate pulses ☐ But dispersion sets min time between pulses ☐ This is called wave pipelining in circuits ☐ In most circuits, dispersion is high ☐ Delay fast tokens so they don't catch slow ones

Sequencing Overhead

- ☐ Use flip-flops to delay fast tokens so they move through exactly one stage each cycle.
- ☐ Inevitably adds some delay to the slow tokens
- ☐ Makes circuit slower than just the logic delay
 - Called sequencing overhead
- ☐ Some people call this clocking overhead
 - But it applies to asynchronous circuits too
 - Inevitable side effect of maintaining sequence

11: Sequential Circuits

CMOS VLSI Design 4th Ed.

5

Sequencing Elements

- □ Latch: Level sensitive
 - a.k.a. transparent latch, D latch
- ☐ Flip-flop: edge triggered
 - A.k.a. master-slave flip-flop, D flip-flop, D register
- Timing Diagrams
 - Transparent
 - Opaque
 - Edge-trigger

11: Sequential Circuits

CMOS VLSI Design 4th Ed.

Latch Design Buffered input + + 11: Sequential Circuits CMOS VLSI Design 4th Ed. 11

Enable: ignore clock when en = 0 - Mux: increase latch D-Q delay - Clock Gating: increase en setup time, skew Symbol Multiplexer Design Clock Gating Design of en of

Set / Reset Set forces output high when enabled Flip-flop with asynchronous set and reset Figure 11: Sequential Circuits CMOS VLSI Design 4th Ed. 17

Time Borrowing

- ☐ In a flop-based system:
 - Data launches on one rising edge
 - Must setup before next rising edge
 - If it arrives late, system fails
 - If it arrives early, time is wasted
 - Flops have hard edges
- ☐ In a latch-based system
 - Data can pass through latch while transparent
 - Long cycle of logic can borrow time into next
 - As long as each loop completes in one cycle

11: Sequential Circuits

CMOS VLSI Design 4th Ed.

Clock Skew

- We have assumed zero clock skew
- ☐ Clocks really have uncertainty in arrival time
 - Decreases maximum propagation delay
 - Increases minimum contamination delay
 - Decreases time borrowing

11: Sequential Circuits

CMOS VLSI Design 4th Ed.

Skew: Latches

2-Phase Latches

$$t_{pd} \leq T_c - (t_{setup} + t_{peq})$$
 sequencing overhead
$$t_{cd1,t_{cd2}} \geq t_{hold} - t_{ccq} - t_{nonoverlap} + t_{skew})$$

$$t_{borrow} \leq \frac{T_c}{2} - (t_{setup} + t_{nonoverlap} + t_{skew})$$

Pulsed Latches

$$\begin{split} t_{pd} &\leq T_c - \max(t_{pdq}, t_{pcq} + t_{setup} - t_{pw} + t_{skew}) \\ & \text{sequencing overhead} \\ t_{cd} &\geq t_{hold} + t_{pw} - t_{ccq} + t_{skew} \\ t_{borrow} &\leq t_{pw} - (t_{setup} + t_{skew}) \end{split}$$

11: Sequential Circuits

CMOS VLSI Design 4th Ed.

31

Two-Phase Clocking

- ☐ If setup times are violated, reduce clock speed
- ☐ If hold times are violated, chip fails at any speed
- ☐ In this class, working chips are most important
 - No tools to analyze clock skew
- ☐ An easy way to guarantee hold times is to use 2phase latches with big nonoverlap times
- \Box Call these clocks ϕ_1 , ϕ_2 (ph1, ph2)

11: Sequential Circuits

CMOS VLSI Design 4th Ed.

Safe Flip-Flop

- ☐ Past years used flip-flop with nonoverlapping clocks
 - Slow nonoverlap adds to setup time
 - But no hold times
- ☐ In industry, use a better timing analyzer
 - Add buffers to slow signals if hold time is at risk

11: Sequential Circuits

CMOS VLSI Design 4th Ed.

33

Adaptive Sequencing

- ☐ Designers include timing margin
 - Voltage
 - Temperature
 - Process variation
 - Data dependency
 - Tool inaccuracies
- X X ERR
- ☐ Alternative: run faster and check for near failures
 - Idea introduced as "Razor"
 - Increase frequency until at the verge of error
 - Can reduce cycle time by ~30%

11: Sequential Circuits

CMOS VLSI Design 4th Ed.

Summary

- ☐ Flip-Flops:
 - Very easy to use, supported by all tools
- ☐ 2-Phase Transparent Latches:
 - Lots of skew tolerance and time borrowing
- Pulsed Latches:
 - Fast, some skew tol & borrow, hold time risk

	Sequencing overhead $(T_c - t_{pd})$	Minimum logic delay t_{cd}	Time borrowing t_{borrow}
Flip-Flops	$t_{peq} + t_{\rm setup} + t_{\rm skew}$	$t_{\rm hold} - t_{ceq} + t_{\rm skew}$	0
Two-Phase Transparent Latches	$2t_{pdq}$	$t_{\text{hold}} - t_{ccq} - t_{\text{nonoverlap}} + t_{\text{skew}}$ in each half-cycle	$\frac{T_c}{2} - \left(t_{\text{setup}} + t_{\text{nonoverlap}} + t_{\text{skew}}\right)$
Pulsed Latches	$\max \Big(t_{pdq}, t_{peq} + t_{\rm setup} - t_{pw} + t_{\rm skew}\Big)$	$t_{\rm hold} - t_{ccq} + t_{pw} + t_{\rm skew}$	$t_{pw} - \left(t_{\text{setup}} + t_{\text{skew}}\right)$

11: Sequential Circuits

CMOS VLSI Design 4th Ed.