Sequía en Chile

CC5212-1 Procesamiento masivo de datos

Profesor: Aidan Hogan

Integrantes: Cristian Ahumada

Felipe Flores

Francisco Munoz

Grupo: 17

Motivación

- Extensa sequía en chile (casi 10 años)
- valles centrales fuertemente afectados
- numerosos estudios realizados
- registros históricos disponibles

Santa Cruz

Cada punto es una estación de medición de seguia. El color indica la intensidad: las más rojzas registran mayores indices de seguia.

Fuente: Dirección General de Aguas de Chile.

años 1981-2010

*Comparación con el promedio histórico a la misma fecha entre los

70% a 100%

101% a 200%

Objetivos

- Analizar cambios en lluvias registradas a lo largo del país durante los últimos
 100 años y relacionar su comportamiento con la actual sequía.
- Preguntas del proyecto:
 - ¿Cómo varía la precipitación a lo largo de los años y a lo largo del país?
 - ¿Cuales son las zonas con mayor reducción en sus precipitaciones?
 - ¿Han ocurrido sequías de esta magnitud en el pasado?
 - ¿Cuando empezaron a disminuir las precipitaciones?

Datos

- Dataset creado por CR2 (Center for Climate and Resilience Research).
- Agrupa registros de lluvias de tres instituciones: DGA, DMC y GHCN.
- Contiene registros de precipitación acumulada diaria para 1249 estaciones de chile, la Antartica y otros paises de latinoamerica.
- Los registros inician en Enero de 1900 y cubren hasta Marzo de 2018.
- Contiene **53.794.430 de registros**.

Datos

El dataset contiene:

- Información correspondiente a cada estación como: código, institución,
 latitud, longitud, fecha de inicio de funcionamiento, etc
- registros diarios de precipitación acumulada medida en milímetros.
- días no registrados son identificados como -9999

Metodología

Las tareas realizadas fueron:

- 1. Preprocesar los datos: reordenar tabla y filtrar datos.
- 2. Definición de zonas geográficas.
- 3. Cálculo de precipitación acumulada anual.
- 4. Cálculo de índice de precipitación estándar (SPI) anual por zonas.
- 5. Calculo de precipitacion anual promedio para cada estación.

Tareas 1, 4 y 5 fueron realizadas con Apache Spark Tareas 2 y 3 fueron realizadas con Apache Pig

Preprocesamiento

- Rotación de tabla
- reducir número de columnas
- filtrar datos fuera de chile continental
- eliminar registros malo (-9999)

estación	12123	53535	24244	3334
latitud	-31.23	-27.0	-34.5	-23.3
1900-01-01	0.0	0.7	5.0	-9999
1900-01-02	30.0	-9999	3.0	-9999

Estación	Año	Mes	Dia	Precip
12123	1900	01	01	0.0
12123	1900	01	02	30.0
53535	1900	01	01	0.7
24244	1900	01	01	5.0
24244	1900	01	02	3.0

Zonas Geográficas

- división por regiones administrativas
- división por regiones naturales

Índice de precipitación estándar (SPI)

- Se procesan los datos para obtener un valor normalizado.
- Normalización en base una distribución normal.
- La distancia del promedio define sequía o no sequía.

Resultados

Resultados

Conclusiones

- Preprocesamiento complejo de datos crudos
 - no es directo rotar una tabla y luego colapsar sus columnas
- Definición de zonas geográficas desafiante
 - elegir los límites correctos y construir la tabla correspondiente
 - Los límites políticos no necesariamente se condicen con los límites geográficos o naturales.

Conclusiones

- Precipitación acumulada anual fácil de calcular
- Cálculo de SPI difícil de realizar
 - o requirió un procesamiento de varios pasos
- Apache Pig y Apache Spark fáciles de manejar