Inference and Simulation

EC 607, Set 04

Edward Rubin

Prologue

Schedule

Last time

The CEF and least-squares regression

Today

Inference

Read MHE 3.1

Upcoming

Lab: TBD

Problem set 002 coming soon.

Project 1, step 1 due on May 9.

Why?

Q What's the big deal with inference?

Why?

Q What's the big deal with inference?

A We rarely know the CEF or the population (and its regression vector).

We can draw statistical inferences about the population using samples.

Why?

Q What's the big deal with inference?

A We rarely know the CEF or the population (and its regression vector).

We can draw statistical inferences about the population using samples.

Important The issue/topic of statistical inference is separate from causality.

Separate questions

- 1. How do we interpret the estimated coefficient $\hat{\beta}$?
- 2. What is the sampling distribution of $\hat{\beta}$?

Moving from population to sample

Recall The population-regression function gives us the best linear approximation to the CEF.

Moving from population to sample

Recall The population-regression function gives us the best linear approximation to the CEF.

We're interested in the (unknown) population-regression vector

$$eta = E \left[\mathrm{X}_i \mathrm{X}_i'
ight]^{-1} E[\mathrm{X}_i \mathrm{Y}_i]$$

Moving from population to sample

Recall The population-regression function gives us the best linear approximation to the CEF.

We're interested in the (unknown) population-regression vector

$$eta = E \left[\mathrm{X}_i \mathrm{X}_i'
ight]^{-1} E[\mathrm{X}_i \mathrm{Y}_i]$$

which we estimate via the ordinary least squares (OLS) estimator[†]

$$\hat{eta} = \left(\sum_i \mathrm{X}_i \mathrm{X}_i'
ight)^{-1} \left(\sum_i \mathrm{X}_i \mathrm{Y}_i
ight)^{-1}$$

† MHE presents a method-of-moments motivation for this derivation, where $\frac{1}{n}\sum_i \mathbf{X}_i \mathbf{X}_i'$ is our sample-based estimated for $E[\mathbf{X}_i \mathbf{X}_i']$. You've also seen others, e.g., minimizing MSE of \mathbf{Y}_i given \mathbf{X}_i .

A classic

However you write it, this OLS estimator

$$egin{aligned} \hat{eta} &= \left(\mathbf{X}'\mathbf{X}
ight)^{-1}\mathbf{X}'\mathbf{y} \ &= \left(\sum_{i}\mathbf{X}_{i}\mathbf{X}_{i}'
ight)^{-1}\left(\sum_{i}\mathbf{X}_{i}\mathbf{Y}_{i}
ight) \ &= eta + \left[\sum_{i}\mathbf{X}_{i}\mathbf{X}_{i}'
ight]^{-1}\sum_{i}\mathbf{X}_{i}e_{i} \end{aligned}$$

is the same estimator you've been using since undergrad.

A classic

However you write it, this OLS estimator

$$egin{aligned} \hat{eta} &= \left(\mathbf{X}'\mathbf{X}
ight)^{-1}\mathbf{X}'\mathbf{y} \ &= \left(\sum_{i}\mathbf{X}_{i}\mathbf{X}_{i}'
ight)^{-1}\left(\sum_{i}\mathbf{X}_{i}\mathbf{Y}_{i}
ight) \ &= eta + \left[\sum_{i}\mathbf{X}_{i}\mathbf{X}_{i}'
ight]^{-1}\sum_{i}\mathbf{X}_{i}e_{i} \end{aligned}$$

is the same estimator you've been using since undergrad.

Note I'm following MHE in defining $e_i = \mathrm{Y}_i - \mathrm{X}_i' \beta$.

A classic

As you've learned, the OLS estimator

$$\hat{eta} = \left(\sum_i \mathrm{X}_i \mathrm{X}_i'
ight)^{-1} \left(\sum_i \mathrm{X}_i \mathrm{Y}_i
ight) = eta + \left[\sum_i \mathrm{X}_i \mathrm{X}_i'
ight]^{-1} \sum_i \mathrm{X}_i e_i$$

has asymptotic covariance

$$E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1}E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}e_{i}^{2}
ight]E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1}$$

A classic

As you've learned, the OLS estimator

$$\hat{eta} = \left(\sum_i \mathrm{X}_i \mathrm{X}_i'
ight)^{-1} \left(\sum_i \mathrm{X}_i \mathrm{Y}_i
ight) = eta + \left[\sum_i \mathrm{X}_i \mathrm{X}_i'
ight]^{-1} \sum_i \mathrm{X}_i e_i$$

has asymptotic covariance

$$E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1}E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}e_{i}^{2}
ight]E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1}$$

which we estimate by (1) replacing e_i with $\hat{e}_i = Y_i - X_i'\hat{\beta}$ and (2) replacing expectations with sample means, e.g., $E\left[X_iX_i'e_i^2\right]$ becomes $\frac{1}{n}\sum\left[X_iX_i'\hat{e}_i^2\right]$.

A classic

As you've learned, the OLS estimator

$$\hat{eta} = \left(\sum_i \mathrm{X}_i \mathrm{X}_i'
ight)^{-1} \left(\sum_i \mathrm{X}_i \mathrm{Y}_i
ight) = eta + \left[\sum_i \mathrm{X}_i \mathrm{X}_i'
ight]^{-1} \sum_i \mathrm{X}_i e_i$$

has asymptotic covariance

$$E\left[\mathbf{X}_{i}\mathbf{X}_{i}^{\prime}
ight]^{-1}E\left[\mathbf{X}_{i}\mathbf{X}_{i}^{\prime}e_{i}^{2}
ight]E\left[\mathbf{X}_{i}\mathbf{X}_{i}^{\prime}
ight]^{-1}$$

which we estimate by (1) replacing e_i with $\hat{e}_i = Y_i - X_i'\hat{\beta}$ and (2) replacing expectations with sample means, e.g., $E\left[X_iX_i'e_i^2\right]$ becomes $\frac{1}{n}\sum\left[X_iX_i'\hat{e}_i^2\right]$.

Standard errors of this flavor are known as heteroskedasticity-consistent (or -robust) standard errors (or Eicker-Huber-White).

Defaults

Statistical packages default to assuming homoskedasticity, *i.e.*, $Eig[e_i^2\mid \mathbf{X}_iig]=\sigma^2$ for all i.

Defaults

Statistical packages default to assuming homoskedasticity, i.e.,

$$Eig[e_i^2\mid \mathbf{X}_iig]=\sigma^2$$
 for all i . With homoskedasticity,

$$Eig[\mathrm{X}_i\mathrm{X}_i'e_i^2ig] = Eig[Eig[\mathrm{X}_i\mathrm{X}_i'e_i^2\mid \mathrm{X}_iig]ig] = Eig[\mathrm{X}_i\mathrm{X}_i'Eig[e_i^2\mid \mathrm{X}_iig]ig] = \sigma^2\,Eig[\mathrm{X}_i\mathrm{X}_i'ig]$$

Defaults

Statistical packages default to assuming homoskedasticity, i.e.,

$$Eig[e_i^2\mid \mathbf{X}_iig] = \sigma^2$$
 for all i . With homoskedasticity,

$$Eig[\mathrm{X}_i\mathrm{X}_i'e_i^2ig] = Eig[Eig[\mathrm{X}_i\mathrm{X}_i'e_i^2\mid \mathrm{X}_iig]ig] = Eig[\mathrm{X}_i\mathrm{X}_i'Eig[e_i^2\mid \mathrm{X}_iig]ig] = \sigma^2\,Eig[\mathrm{X}_i\mathrm{X}_i'ig]$$

Now, returning to to the asym. covariance matrix of $\hat{\beta}$,

$$egin{aligned} E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1}E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}e_{i}^{2}
ight]E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1} &=E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1}\sigma^{2}E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1} \ &=\sigma^{2}E\left[\mathrm{X}_{i}\mathrm{X}_{i}^{\prime}
ight]^{-1} \end{aligned}$$

Defaults

Angrist and Pischke argue we should probably change our default to heteroskedasticity.

Defaults

Angrist and Pischke argue we should probably change our default to heteroskedasticity.

$$E\Big[ig(\mathrm{Y}_i - \mathrm{X}_i'etaig)^2 \mid \mathrm{X}_i\Big]$$

Defaults

Angrist and Pischke argue we should probably change our default to heteroskedasticity.

$$egin{aligned} E\Big[ig(\mathbf{Y}_i - \mathbf{X}_i'etaig)^2 \mid \mathbf{X}_i\Big] \ &= Eigg[ig(ig\{\mathbf{Y}_i - E[\mathbf{Y}_i \mid \mathbf{X}_i]ig\} + ig\{E[\mathbf{Y}_i \mid \mathbf{X}_i] - \mathbf{X}_i'etaig\}ig)^2igg|\mathbf{X}_iigg] \end{aligned}$$

Defaults

Angrist and Pischke argue we should probably change our default to heteroskedasticity.

$$egin{aligned} E\Big[ig(\mathbf{Y}_i - \mathbf{X}_i'etaig)^2 \mid \mathbf{X}_i\Big] \ &= E\Big[ig(ig\{\mathbf{Y}_i - E[\mathbf{Y}_i \mid \mathbf{X}_i]ig\} + ig\{E[\mathbf{Y}_i \mid \mathbf{X}_i] - \mathbf{X}_i'etaig\}ig)^2\Big|\mathbf{X}_i\Big] \ &= \mathrm{Var}(\mathbf{Y}_i \mid \mathbf{X}_i) + ig(E[\mathbf{Y}_i \mid \mathbf{X}_i] - \mathbf{X}_i'etaig)^2 \end{aligned}$$

Defaults

Angrist and Pischke argue we should probably change our default to heteroskedasticity.

If the CEF is nonlinear, then our linear approximation (linear regression) generates heteroskedasticity.

$$egin{aligned} E\Big[ig(\mathbf{Y}_i - \mathbf{X}_i'etaig)^2 \mid \mathbf{X}_i\Big] \ &= E\Big[ig(ig\{\mathbf{Y}_i - E[\mathbf{Y}_i \mid \mathbf{X}_i]ig\} + ig\{E[\mathbf{Y}_i \mid \mathbf{X}_i] - \mathbf{X}_i'etaig\}\Big)^2\Big|\mathbf{X}_i\Big] \ &= \mathrm{Var}(\mathbf{Y}_i \mid \mathbf{X}_i) + ig(E[\mathbf{Y}_i \mid \mathbf{X}_i] - \mathbf{X}_i'etaig)^2 \end{aligned}$$

Thus, even if $Y_i \mid X_i$ has contant variance, $e_i \mid X_i$ is heteroskedastic.

Defaults

Angrist and Pischke argue we should probably change our default to heteroskedasticity.

If the CEF is nonlinear, then our linear approximation (linear regression) generates heteroskedasticity.

$$egin{aligned} E\Big[ig(\mathbf{Y}_i - \mathbf{X}_i'etaig)^2 \mid \mathbf{X}_i\Big] \ &= E\Big[ig(ig\{\mathbf{Y}_i - E[\mathbf{Y}_i \mid \mathbf{X}_i]\} + ig\{E[\mathbf{Y}_i \mid \mathbf{X}_i] - \mathbf{X}_i'eta\}\Big)^2\Big|\mathbf{X}_i\Big] \ &= \mathrm{Var}(\mathbf{Y}_i \mid \mathbf{X}_i) + ig(E[\mathbf{Y}_i \mid \mathbf{X}_i] - \mathbf{X}_i'eta\Big)^2 \end{aligned}$$

Thus, even if $\mathbf{Y}_i \mid \mathbf{X}_i$ has contant variance, $e_i \mid \mathbf{X}_i$ is heteroskedastic. Unless you want to assume the CEF is *linear*.

Two notes

1. Heteroskedasticity is **not our biggest concern** in inference.

...as an empirical matter, heteroskedasticity may matter very little... If heteroskedasticity matters a lot, say, more than a 30 percent increase or any marked decrease in standard errors, you should worry about possible programming errors or other problems. (MHE, p.47)

2. Notice that we've **avoided "standard" stronger assumptions**, e.g., normality, fixed regressors, linear CEF, homoskedasticity.

Two notes

1. Heteroskedasticity is **not our biggest concern** in inference.

...as an empirical matter, heteroskedasticity may matter very little... If heteroskedasticity matters a lot, say, more than a 30 percent increase or any marked decrease in standard errors, you should worry about possible programming errors or other problems. (MHE, p.47)

2. Notice that we've **avoided "standard" stronger assumptions**, *e.g.*, normality, fixed regressors, linear CEF, homoskedasticity.

Following (2): We only have large-sample, asymptotic results (consistency) rather than finite-sample results (unbiasedness).

Warning

Because many of properties we care about for the inference are **large-sample** properties, they may not always apply to **small samples**.

Warning

Because many of properties we care about for the inference are **large-sample** properties, they may not always apply to **small samples**.

One practical way we can study the behavior of an estimator: simulation.

Warning

Because many of properties we care about for the inference are **large-sample** properties, they may not always apply to **small samples**.

One practical way we can study the behavior of an estimator: **simulation**.

Note You need to make sure your simulation can actually test/respond to the question you are asking (e.g., bias vs. consistency).

Simulation

Let's compare false- and true-positive rates[†] for

- 1. Homoskedasticity-assuming standard errors $\left(\operatorname{Var}[e_i | \mathrm{X}_i] = \sigma^2 \right)$
- 2. Heteroskedasticity-robust standard errors

[†] The false-positive rate goes by many names; another common name: type-I error rate.

Simulation

Let's compare false- and true-positive rates[†] for

- 1. Homoskedasticity-assuming standard errors $\left(\operatorname{Var}[e_i | \mathrm{X}_i] = \sigma^2 \right)$
- 2. Heteroskedasticity-robust standard errors

Simulation outline

- 1. Define data-generating process (DGP).
- 2. Choose sample size n.
- 3. Set seed.
- 4. Run 10,000 iterations of
 - a. Draw sample of size n from DGP.
 - b. Conduct inference.
 - c. Record inferences' outcomes.

[†] The false-positive rate goes by many names; another common name: type-I error rate.

Data-generating process

First, we'll define our DGP.

Data-generating process

First, we'll define our DGP.

We've been talking a lot about nonlinear CEFs, so let's use one.

Let's keep the disturbances well behaved.

Data-generating process

First, we'll define our DGP.

We've been talking a lot about nonlinear CEFs, so let's use one.

Let's keep the disturbances well behaved.

$$\mathrm{Y}_i = 1 + e^{0.5 \mathrm{X}_i} + arepsilon_i$$

where $\mathrm{X}_i \sim \mathrm{Uniform}(0,10)$ and $arepsilon_i \sim N(0,1)$.

Data-generating process

$$\mathrm{Y}_i = 1 + e^{0.5\mathrm{X}_i} + arepsilon_i$$

where $\mathrm{X}_i \sim \mathrm{Uniform}(0,10)$ and $arepsilon_i \sim N(0,15^2)$.

Data-generating process

$$\mathbf{Y}_i = 1 + e^{0.5\mathbf{X}_i} + arepsilon_i$$

where $\mathrm{X}_i \sim \mathrm{Uniform}(0,10)$ and $arepsilon_i \sim N(0,15^2)$.

Data-generating process

$$\mathbf{Y}_i = 1 + e^{0.5\mathbf{X}_i} + arepsilon_i$$

where $\mathrm{X}_i \sim \mathrm{Uniform}(0,10)$ and $arepsilon_i \sim N(0,15^2)$.

Our CEF

Our population

The population least-squares regression line

Iterating

To make iterating easier, let's wrap our DGP in a function.

We still need to run a regression and draw some inferences.

Note We're defaulting to size-30 samples.

We will use Im_robust() from the estimatr package for OLS and inference.

- se_type = "classical" provides homoskedasticity-assuming SEs
- se_type = "HC2" provides heteroskedasticity-robust SEs

† lm() works for "spherical" standard errors but cannot calculate het.-robust standard errors.

Inference

Now add these estimators to our iteration function...

```
fun iter = function(iter, n = 30) {
  # Generate data
  iter df = tibble(
    \epsilon = rnorm(n, sd = 15),
    x = runif(n, min = 0, max = 10),
    v = 1 + \exp(0.5 * x) + \epsilon
  # Estimate models
  lm1 = lm robust(y ~ x, data = iter df, se type = "classical")
  lm2 = lm_robust(y ~ x, data = iter df, se type = "HC2")
  # Stack and return results
  bind rows(tidy(lm1), tidy(lm2)) %>%
    select(1:5) \%>\% filter(term = "x") \%>\%
    mutate(se_type = c("classical", "HC2"), i = iter)
```

Run it

Now we need to actually run our fun_iter() function 10,000 times.

Run it

Now we need to actually run our fun_iter() function 10,000 times.

There are a lot of ways to run a single function over a list/vector of values.

- lapply(), e.g., lapply(X = 1:3, FUN = sqrt)
- for(), e.g., for (x in 1:3) sqrt(x)
- map() from purrr, e.g., map(1:3, sqrt)

Run it

Now we need to actually run our fun_iter() function 10,000 times.

There are a lot of ways to run a single function over a list/vector of values.

- lapply(), e.g., lapply(X = 1:3, FUN = sqrt)
- for(), e.g., for (x in 1:3) sqrt(x)
- map() from purrr, *e.g.*, map(1:3, sqrt)

We're going to go with map() from the purrr package because it easily parallelizes across platforms using the furrr package.

Run it!

Run our function 10,000 times

```
# Packages
p_load(purrr)
# Set seed
set.seed(12345)
# Run 10,000 iterations
sim_list = map(1:1e4, fun_iter)
```

Run it!

Run our function 10,000 times

```
# Packages
p_load(purrr)
# Set seed
set.seed(12345)
# Run 10,000 iterations
sim_list = map(1:1e4, fun_iter)
```

Parallelized 10,000 iterations

```
# Packages
p_load(purrr, furrr)
# Set options
set.seed(123)
# Tell R to parallelize
plan(multisession)
# Run 10,000 iterations
sim_list = future_map(
    1:1e4, fun_iter,
    .options = furrr_options(seed = T)
)
```

Run it!

Run our function 10,000 times

```
# Packages
p_load(purrr)
# Set seed
set.seed(12345)
# Run 10,000 iterations
sim_list = map(1:1e4, fun_iter)
```

Parallelized 10,000 iterations

```
# Packages
p_load(purrr, furrr)
# Set options
set.seed(123)
# Tell R to parallelize
plan(multisession)
# Run 10,000 iterations
sim_list = future_map(
    1:1e4, fun_iter,
    .options = furrr_options(seed = T)
)
```

The furrr package (future + purrr) makes parallelization easy and fun!

Run it!

Run our function 10,000 times

```
# Packages
p_load(purrr)
# Set seed
set.seed(12345)
# Run 10,000 iterations
sim_list = map(1:1e4, fun_iter)
```

Parallelized 10,000 iterations

```
# Packages
p_load(purrr, furrr)
# Set options
set.seed(123)
# Tell R to parallelize
plan(multisession)
# Run 10,000 iterations
sim_list = future_map(
    1:1e4, fun_iter,
    .options = furrr_options(seed = T)
)
```

The furrr package (future + purrr) makes parallelization easy and fun!

Note Use multisession or multicore instead of multiprocess.

Run it!!

Our fun_iter() function returns a data.frame, and future_map() returns a list (of the returned objects).

So sim_list is going to be a list of data.frame objects. We can bind them into one data.frame with bind_rows().

```
# Bind list together
sim_df = bind_rows(sim_list)
```

Run it!!

Our fun_iter() function returns a data.frame, and future_map() returns a list (of the returned objects).

So sim_list is going to be a list of data.frame objects. We can bind them into one data.frame with bind_rows().

```
# Bind list together
sim_df = bind_rows(sim_list)
```

So what are the results?

Comparing the distributions of standard errors for the coefficient on \boldsymbol{x}

Comparing distributions of t stats for the coefficient on x $(H_o: \beta_1 = 0)$

Comparing distributions of t stats for the coefficient on x $(H_o: \beta_1 = \beta)$

Comparing the confidence intervals for the coefficient on \boldsymbol{x}

How did it go?

For a 5% test the **classical** SEs

- reject the **true value** in 11.38% of samples
- reject zero in 99.98% of samples

For a 5% test the **het.-robust** SEs

- reject the **true value** in 6.97% of samples
- reject **zero** in 99.93% of samples

All of these test are for a false H_0 .

Q How would the simulation change to enforce a *true* null hypothesis?

Updating to enforce the null

Let's update our simulation function to take arguments γ and δ such that

$$\mathrm{Y}_i = 1 + e^{\gamma \mathrm{X}_i} + arepsilon_i$$

where $arepsilon_i \sim \mathrm{N}(0, \sigma^2 \mathrm{X}_i^\delta)$.

Updating to enforce the null

Let's update our simulation function to take arguments γ and δ such that

$$\mathbf{Y}_i = 1 + e^{\gamma \mathbf{X}_i} + arepsilon_i$$

where $arepsilon_i \sim \mathrm{N}(0, \sigma^2 \mathrm{X}_i^\delta)$.

In other words,

- $\gamma=0$ implies no relationship between Y_i and X_i .
- $\delta = 0$ implies homoskedasticity.

Updating to enforce the null

Updating the function...

```
flex iter = function(iter, y = 0, \delta = 1, n = 30) {
  # Generate data
  iter df = tibble(
    x = runif(n, min = 0, max = 10),
    \varepsilon = \text{rnorm}(n, \text{sd} = 15 * x^{\delta}),
    v = 1 + exp(v * x) + \varepsilon
  # Estimate models
  lm1 = lm robust(y ~ x, data = iter df, se type = "classical")
  lm2 = lm_robust(y ~ x, data = iter df, se type = "HC2")
  # Stack and return results
  bind rows(tidy(lm1), tidy(lm2)) %>%
    select(1:5) \%>\% filter(term = "x") \%>\%
    mutate(se_type = c("classical", "HC2"), i = iter)
```

Run again!

Now we run our new function flex_iter() 10,000 times

```
# Packages
p_load(purrr, furrr)
# Set options
set.seed(123)
# Tell R to parallelize
plan(multisession)
# Run 10,000 iterations
null_df = future_map(
  1:1e4, flex iter,
  # Enforce the null hypothesis
  y = 0,
  # Specify heteroskedasticity
  \delta = 1.
  .options = furrr_options(seed = T)
) %>% bind_rows()
```

Comparing the distributions of standard errors for the coefficient on \boldsymbol{x}

Comparing the distributions of t statistics for the coefficient on x

Distributions of p-values: both methods slightly over-reject the (true) null

How did it go? (The sequel)

For a 5% test

- the classical SEs reject the true value (zero) in 7.73% of samples;
- the het.-robust SEs reject the true value (zero) in 6.68% of samples.

In this setting,

- over-rejection of the true null is a bit worse with IID SE estimator;
- false precision is much worse.

Summary

Wrapping up

While research often ignores it, inference is just as important as identification.

Without understanding our **uncertainty** and the **population** onto which we draw inference, how can we learn anything from point estimates?

Summary

Wrapping up

While research often ignores it, inference is just as important as identification.

Without understanding our **uncertainty** and the **population** onto which we draw inference, how can we learn anything from point estimates?

(Enter simulation)

Simulation is a fantastic tool for understanding estimators' behaviors.

Keep in mind: Simulation results impose (more) assumptions.

Table of contents

Admin

1. Schedule

Inference

- 1. Why?
- 2. OLS
- 3. Heteroskedasticity
- 4. Small-sample warning
- 5. Simulation
 - Outline
 - DGP
 - Iterating
 - Parallelization
 - Results
 - Under the null