Gegebene Werte:

$$A_{0_1} \coloneqq 1 \hspace{1cm} A_{0_2} \coloneqq 1 \hspace{1cm} a_D \coloneqq 1 \hspace{1cm} \mathsf{dB} \hspace{1cm} a_s \coloneqq 40 \hspace{1cm} \mathsf{dB}$$

$$f_{pb} \coloneqq 10000$$
 $n \coloneqq 4$ $R \coloneqq 10000$ $C \coloneqq 1 \cdot 10^{-9}$

Berechnung Polfrequenzen, Nullfrequenzen und Polgüte:

$$\varepsilon \coloneqq \frac{1}{\sqrt{10^{0.1 \cdot a_s} - 1}} = 0.0100005 \qquad \dots \text{ Welligkeit im Sperrbereich}$$

$$s_{P}(k) \coloneqq \frac{1}{-\sin\left(\frac{1+2\cdot k}{2\cdot n}\cdot \pi\right)\cdot \sinh\left(\frac{1}{n}\cdot \operatorname{asinh}\left(\frac{1}{\varepsilon}\right)\right) + 1i\cdot \cos\left(\frac{1+2\cdot k}{2\cdot n}\cdot \pi\right)\cdot \cosh\left(\frac{1}{n}\cdot \operatorname{asinh}\left(\frac{1}{\varepsilon}\right)\right)}$$

$$s_Z(k) \coloneqq \frac{1\mathrm{i}}{\cos\left(\frac{1+2\cdot k}{2\cdot n}\cdot\pi\right)}$$
 ... Nullfrequenzen

$$Q_P(k) \coloneqq rac{-ig|s_P(k)ig|}{2 \cdot \operatorname{Re} \left(s_P(k)
ight)}$$
 ... Polgüten

$$s_P(0) = -0.171 - 0.476i$$
 $s_P(1) = -0.505 - 0.241i$

$$s_P(2) = -0.505 + 0.241i$$
 $s_P(3) = -0.171 + 0.476i$

$$s_Z(0) = 1.082i$$
 $s_Z(1) = 2.613i$

$$s_Z(2) = -2.613i$$
 $s_Z(3) = -1.082i$

$$Q_P(0) = 1.478$$
 $Q_P(1) = 0.554$

$$Q_P(2) = 0.554$$
 $Q_P(3) = 1.478$

$$\Omega_{P1} \coloneqq |s_P(0)| = 0.506$$
 $\Omega_{P2} \coloneqq |s_P(1)| = 0.559$

$$\Omega_{Z1} \coloneqq \left| s_Z \left(0 \right) \right| = 1.082$$
 $\Omega_{Z2} \coloneqq \left| s_Z \left(1 \right) \right| = 2.613$

$$Q_{P1} := Q_P(0) = 1.478$$
 $Q_{P2} := Q_P(1) = 0.554$

Wählbare Werte zuordnen:

$$C_{5_1} \coloneqq C = 1 \cdot 10^{-9}$$

$$C_{5_2} \coloneqq C = 1 \cdot 10^{-9}$$

$$R_{B_1} \coloneqq R = 1 \cdot 10^{4}$$

$$R_{B_2} \coloneqq R = 1 \cdot 10^{4}$$

$$C_{5/2} = C = 1 \cdot 10^{-9}$$

$$R_{R,1} \coloneqq R = 1 \cdot 10^4$$

$$R_{R} := R = 1 \cdot 10^4$$

$$k \coloneqq \cosh\left(\frac{\sqrt{\frac{10^{-0.1 \cdot a_D}}{1 - 10^{-0.1 \cdot a_D}}}}{\varepsilon}\right) = 2.339$$

Entnormierte Pol-/ Nullstellenkreisfrequenzen bestimmen:

$$\omega_{P1} \coloneqq 2 \cdot \boldsymbol{\pi} \cdot f_{pb} \cdot \Omega_{P1} \cdot k = 74339.6 \qquad \omega_{P2} \coloneqq 2 \cdot \boldsymbol{\pi} \cdot f_{pb} \cdot \Omega_{P2} \cdot k = 82144.333$$

$$\omega_{P2} \coloneqq 2 \cdot \boldsymbol{\pi} \cdot f_{pb} \cdot \Omega_{P2} \cdot k = 82144.333$$

$$\omega_{Z1} := 2 \cdot \pi \cdot f_{vb} \cdot \Omega_{Z1} \cdot k = 159041.723$$
 $\omega_{Z2} := 2 \cdot \pi \cdot f_{vb} \cdot \Omega_{Z2} \cdot k = 383960.684$

$$\omega_{Z2} := 2 \cdot \boldsymbol{\pi} \cdot f_{pb} \cdot \Omega_{Z2} \cdot k = 383960.684$$

C_1 berechnen:

$$C_{1_1min} \coloneqq \frac{C_{5_1} \cdot A_{0_1}^{\ 2} \cdot \left(Q_{P1}^{\ 2} \cdot \left(\omega_{Z1}^{\ 2} - \omega_{P1}^{\ 2}\right) + \omega_{P1}^{\ 2}\right)^2}{\omega_{Z1}^{\ 4} \cdot Q_{P1}^{\ 2} \cdot \left(A_{0_1} - 1\right) + \omega_{Z1}^{\ 2} \cdot \omega_{P1}^{\ 2} \cdot Q_{P1}^{\ 2} \cdot A_{0_1} \cdot \left(A_{0_1} - 1\right) + \omega_{P1}^{\ 2} \cdot A_{0_1} \cdot \left(\omega_{Z1}^{\ 2} - A_{0_1} \cdot \omega_{P1}^{\ 2}\right)} = 2.172 \cdot 10^{-8}$$

$$C_{1_2min} \coloneqq \frac{C_{5_2} \cdot A_{0_2}^{\ 2} \cdot \left(Q_{P2}^{\ 2} \cdot \left(\omega_{Z2}^{\ 2} - \omega_{P2}^{\ 2}\right) + \omega_{P2}^{\ 2}\right)^2}{\omega_{Z2}^{\ 4} \cdot Q_{P2}^{\ 2} \cdot \left(A_{0_2} - 1\right) + \omega_{Z2}^{\ 2} \cdot \omega_{P2}^{\ 2} \cdot Q_{P2}^{\ 2} \cdot A_{0_2} \cdot \left(A_{0_2} - 1\right) + \omega_{P2}^{\ 2} \cdot A_{0_2} \cdot \left(\omega_{Z2}^{\ 2} - A_{0_2} \cdot \omega_{P2}^{\ 2}\right)} = 2.626 \cdot 10^{-9}$$

$$C_{1_1} \coloneqq 22 \cdot 10^{-9}$$
 $C_{1_2} \coloneqq 2.7 \cdot 10^{-9}$

$$C_{1_2} = 2.7 \cdot 10^{-1}$$

R_A berechnen:

$$R_{A_1} \coloneqq \frac{R_{B_1} \cdot \left(\omega_{Z1}^{\ 2} - A_{0_1} \cdot \omega_{P1}^{\ 2}\right)}{\omega_{P1}^{\ 2} \cdot A_{0_1}} = 35770.083$$

$$R_{A_1} \coloneqq 36 \cdot 10^3$$

$$R_{A_2} \coloneqq \frac{R_{B_2} \cdot \left(\omega_{Z2}^2 - A_{0_1} \cdot \omega_{P2}^2\right)}{\omega_{P2}^2 \cdot A_{0_1}} = 208483.325$$

$$R_{A_2} \coloneqq 200 \cdot 10^3$$

$$R_{A_2} \coloneqq 200 \cdot 10^3$$

