Problem 1:

Prove that

$$\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/d\mathbb{Z}$$

where $d = \gcd(m, n)$ with $d \neq 1$. If d = 1, then $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} = 0$.

Note: We discussed this, and I read Example 3 on page 369 of Dummit & Foote.

Take $a \in \mathbb{Z}/m\mathbb{Z}$ and $b \in \mathbb{Z}/n\mathbb{Z}$. By the relations of simple tensors, we have

$$a \otimes b = a \otimes (b \cdot 1) = (ab) \otimes 1 = ab(1 \otimes 1),$$

which means $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z}$ is a cyclic group and $1 \otimes 1$ is its generator. By the operations on tensors, we see that

$$m(1 \otimes 1) = m \otimes 1 = 0 \otimes 1 = 0$$

$$n(1 \otimes 1) = 1 \otimes n = 1 \otimes 0 = 0,$$

which means for $d(1 \otimes 1) = 0$, it must be that $d \in m\mathbb{Z} \cup n\mathbb{Z}$, so $d = \gcd(m,n)$. This shows that the order of $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z}$ divides d.

We now consider $\varphi : \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/d\mathbb{Z}$ defined by $\varphi(a \mod m, b \mod n) = ab \mod d$. This map is well-defined because d divides both m and n. This map is also \mathbb{Z} -bilinear, which we just verify the first factor because the second factor is essentially the same:

$$\varphi(r_1a_1 \bmod m + r_2a_2 \bmod m, b \bmod n) = \varphi(r_1a_1 + r_2a_2 \bmod m, b \bmod n)$$

$$= (r_1a_1 + r_2a_2)b \bmod d$$

$$= r_1a_1b \bmod d + r_2a_2b \bmod d$$

$$= r_1\varphi(a_1 \bmod m, b \bmod n) + r_2\varphi(a_2 \bmod m, b \bmod n).$$

Name: James Wang

By Corollary 12 on page 368, we get an R-module homomorphism $\psi: \mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/d\mathbb{Z}$ that maps $1 \otimes 1$ to $1 \in \mathbb{Z}/d\mathbb{Z}$, which has order d. This shows that the order of $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z}$ must be at least d.

We have thus obtained the isomorphism $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/d\mathbb{Z}$.

QED

Problem 2:

a) Prove that $\mathbb{Q} \otimes_{\mathbb{Q}} \mathbb{Q}$ and $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ are isomorphic as left \mathbb{Q} -modules. (Show that they are both 1-dimensional vector spaces over \mathbb{Q} .)

By Corollary 19 on page 374, we know $R^s \otimes_R R^t \cong R^{st}$, which tells us that $\mathbb{Q} \otimes_{\mathbb{Q}} \mathbb{Q} \cong \mathbb{Q}$. This means $\mathbb{Q} \otimes_{\mathbb{Q}} \mathbb{Q}$ is a 1-dimensional vector space over \mathbb{Q} . Furthermore, by the defined relation we see that any simple tensor $q_1 \otimes q_2 = 1 \otimes q_1 q_2 = 1 \otimes q$ for some $q \in \mathbb{Q}$, which means $1 \otimes 1$ generates the vector space, so it is the only basis element.

We then show that $1 \otimes 1$ is also the only basis element for the vector space $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ over \mathbb{Q} . We claim that it generates all elements in $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$. Consider arbitrary $\frac{a_1}{b_1} \otimes \frac{a_2}{b_2}$:

$$\frac{a_1}{b_1} \otimes \frac{a_2}{b_2} = \frac{a_1}{b_1} \otimes \frac{b_1 a_2}{b_1 b_2} = \frac{a_1 b_1}{b_1} \otimes \frac{a_2}{b_1 b_2} = a_1 \otimes \frac{a_2}{b_1 b_2} = 1 \otimes \frac{a_1 a_2}{b_1 b_2},$$

and $\frac{a_1a_2}{b_1b_2} \in \mathbb{Q}$. This means every simple tensor has the form $1 \otimes q$, so every simple tensor is generated by $1 \otimes 1$. Furthermore, since this is only 1 element, it must be linearly independent. Hence $1 \otimes 1$ is a basis for $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$, and $\mathbb{Q} \otimes_{\mathbb{Q}} \mathbb{Q}$ and $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ are isomorphic as left \mathbb{Q} -modules.

QED

b) Prove that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ and $\mathbb{C} \otimes_{\mathbb{C}} \mathbb{C}$ are both left \mathbb{R} -modules but are not isomorphic as \mathbb{R} -modules.

By Corollary 19 on page 374, we know $R^s \otimes_R R^t \cong R^{st}$, which tells us that $\mathbb{C} \otimes_{\mathbb{C}} \mathbb{C} \cong \mathbb{C}$. This means $\mathbb{C} \otimes_{\mathbb{C}} \mathbb{C}$ is a 1-dimensional vector space over \mathbb{C} , so a 2-dimensional vector space over \mathbb{R} .

We claim $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ is a 4-dimensional vector space over \mathbb{R} . Consider an arbitrary element $a_1 + b_1 i \otimes a_2 + b_2 i$...I want to show $\{1 \otimes 1, 1 \otimes i, i \otimes 1, i \otimes i\}$ is a basis for this vector space, which I know is true because of the discussions I had with Hongyi, Dalena, and Ellie during problem session, but I do not know how to prove this rigorously, so I'm leaving this blank.

Problem 3:

Let I be a two-sided ideal of R and let N be a left R-module. Recall that R/I is an (R/I, R)-bimodule. Define

$$IN = \left\{ \sum_{\text{finite}} a_i n_i : a_i \in I, n_i \in N \right\}.$$

Prove that

a) IN is a left R-submodule of N.

We use the Submodule Criterion.

First, since $0_R \in I$ and $0_N \in N$, we have $0_R \cdot 0_N = 0_N \in IN$, which means, $IN \neq \emptyset$.

Next, let
$$\sum a_i n_i$$
, $\sum b_i m_i \in IN$ and $r \in R$, then $r \sum a_i n_i + \sum b_i m_i = \sum r a_i n_i + \sum b_i m_i \in IN$ because the sum of two finite sums must be finite. Moreover, since I is an ideal, by its black hole property we know $ra_i \in I$ for all $r \in R$ and $a_i \in I$.

We have therefore proved IN is a left R-submodule of N.

b) $(R/I) \otimes_R N \cong N/IN$.

Note: I read Example 8 on page 370 of Dummit & Foote.

By observation, $(R/I) \otimes_R N$ is an abelian group generated by $(r \mod I) \otimes n = r(1 \otimes n)$ for $r \in R$ and $n \in N$, so $1 \otimes n$ for $n \in N$ generate $(R/I) \otimes_R N$ as an R/I module. Hence the R-module homomorphism $\varphi : N \to (R/I) \otimes_R N$ defined by $\varphi(n) = 1 \otimes n$ is surjective.

Going back to part a) and consider IN, we see that φ maps each $a_i n_i$, where $a_i \in I$ and $n_i \in N$, to $1 \otimes a_i n_i = a_i \otimes n_i = 0$, which means $IN \subseteq \ker(\varphi)$. By the Isomorphism Theorems, we have a homomorphism $f: N/IN \to (R/I) \otimes_R N$ defined by $f(n \mod I) = 1 \otimes n$.

We finally claim f is an isomorphism. Notice that $\lambda:(R/I)\times N\to N/IN$ defined by $\lambda(r \mod I,n)=rn \mod IN$ is well-defined: Suppose $r_1 \mod I=r_2 \mod I$ such that $r_1-r_2\in I$, then

$$\lambda(r_1 \mod I, n) = r_1 n \mod IN$$
 and $\lambda(r_2 \mod I, n) = r_2 n \mod IN$

Consider $r_1 n - r_2 n = (r_1 - r_2)n$, since $r_1 - r_2 \in I$ and $n \in N$, it must be that $(r_1 - r_2)n \in IN$, so $r_1 n \mod IN = r_2 n \mod IN$.

 λ is also *R*-balanced:

$$\lambda(r_1 \bmod I + r_2 \bmod I, n) = \lambda((r_1 + r_2) \bmod I, n)$$

$$= (r_1 + r_2)n \bmod IN$$

$$= r_1 n \bmod IN + r_2 n \bmod IN$$

$$= \lambda(r_1 \bmod I, n) + \lambda(r_2 \bmod I, n)$$

$$(2)$$

$$\lambda(r \mod I, n_1 + n_2) = r(n_1 + n_2) \mod IN$$

$$= rn_1 \mod IN + rn_2 \mod IN$$

$$= \lambda(r \mod I, n_1) + \lambda(r \mod I, n_2)$$
(3)

$$\lambda(r \bmod I, r'n) = rr'n \bmod IN$$

$$= \lambda(rr' \bmod I, n)$$
(4)

By Theorem 10 on page 365, we then have a group homomorphism $g:(R/I)\otimes N\to N/IN$ defined by $g((r \mod I)\otimes n)=rn \mod IN$. We can see that $g\circ f$ and $f\circ g$ are both the identity. Hence we have proved $(R/I)\otimes_R N\cong N/IN$.

Problem 4:

Suppose R is a commutative ring and M, N are left R-modules considered with the standard R-module structures. Prove that there is a unique R-module isomorphism

$$M \otimes_R N \cong N \otimes_R M$$

mapping $m \otimes n$ to $n \otimes m$.

Note: This does not mean $a \otimes b = b \otimes a$ when M = N.

Note: I read Proposition 20 on page 374 of Dummit & Foote.

We consider the map $\varphi_1: M \times N \to N \otimes M$ defined by $(m, n) \mapsto n \otimes m$. We see that this map is R-balanced because

$$\varphi_1(m_1 + m_2, n) = n \otimes (m_1 + m_2) = n \otimes m_1 + n \otimes m_2 = \varphi_1(m_1, n) + \varphi_1(m_2, n)$$

$$\varphi_1(m, n_1 + n_2) = (n_1 + n_2) \otimes m = n_1 \otimes m + n_2 \otimes m = \varphi_1(m, n_1) + \varphi_1(m, n_2)$$

$$\varphi_1(m, rn) = rn \otimes m = nr \otimes m = n \otimes rm = n \otimes mr = \varphi_1(mr, n)$$

for all $m, m_1, m_2 \in M$, $n, n_1, n_2 \in N$, and $r \in R$.

By Theorem 10 on page 365, we then have a unique group homomorphism $\psi_1: M \otimes N \to N \otimes M$ defined by $m \otimes n \mapsto n \otimes m$. We claim ψ_1 is the unique R-module isomorphism. Since $M \otimes N$ and $N \otimes M$ are abelian groups, ψ_1 as a group homomorphism takes care of the addition operation needed in an R-module homomorphism. To show ψ respects scalar multiplication by $r \in R$:

$$\psi(r(m\otimes n))=\varphi(rm\otimes n)=n\otimes rm=nr\otimes m=rn\otimes m=r(n\otimes m)=r\psi(m\otimes n).$$

By the exact same process, we can construct a map $\varphi_2: N \otimes M \to M \otimes N$ and get a unique R-module homomorphism ψ_2 . It is easy to see that $\psi_2 \circ \psi_1$ and $\psi_1 \circ \psi_2$ both give the identity. Hence they are bijetive and we have constructed the isomorphism.

QED

Problem 5:

Let R be a commutative ring and A, B be R-algebras. Show that the multiplication

$$(a \otimes b)(a' \otimes b') = aa' \otimes bb'$$

makes $A \otimes_R B$ into an R-algebra.

Note: I was very confused about showing this multiplication is well-defined until I read Dummit & Foote and found out it provided a sketch, which I just moved to here. Furthermore, I used Corollary 16 on page 372, which I believe is something we didn't talk about in class but did mention briefly during problem session.

We first show the multiplication is well-defined. Observe that the map $\varphi: A \times B \times A \times B \to A \otimes B$ is multilinear over R. This is easy to see so we only check one case:

$$f(a, r_1b_1 + r_2b_2, a', b') = aa' \otimes (r_1b_1 + r_2b_2)b'$$

$$= aa' \otimes r_1b_1b' + aa' \otimes r_2b_2b'$$

$$= r_1f(a, b_1, a', b') + r_2f(a, b_2, a', b').$$
(5)

By Corollary 16, we get a R-module homomorphism $\psi: A \otimes B \otimes A \otimes B \to A \otimes B$ defined by $\psi(a \otimes b \otimes a \otimes b) = aa' \otimes bb'$. We can also see $A \otimes B \otimes A \otimes B = (A \otimes B) \otimes (A \otimes B)$, and use Corollary 16 again to get another R-bilinear map $\varphi': (A \otimes B) \otimes (A \otimes B) \to A \otimes B$ defined by $\varphi'(a \otimes b, a' \otimes b') = aa' \otimes bb'$. We have thus shown the multiplication is well-defined.

We then show the multiplication makes $A \otimes_R B$ into an R-algebra. Recall that $A \otimes_R B$ is an abelian group, and that that the multiplication being well-defined means it is bilinear, so we get the distributivity between addition and multiplication. Hence to show $A \otimes_R B$ is a ring, we just need to show the multiplication is associative: Take $a_1 \otimes b_1, a_2 \otimes b_2, a_3 \otimes b_3 \in A \otimes_R B$

and use the assumption A, B are rings

$$((a_{1} \otimes b_{1})(a_{2} \otimes b_{2}))(a_{3} \otimes b_{3}) = (a_{1}a_{2} \otimes b_{2}b_{2})(a_{3} \otimes b_{3})$$

$$= (a_{1}a_{2})a_{3} \otimes (b_{1}b_{2})b_{3}$$

$$= a_{1}(a_{2}a_{3}) \otimes b_{1}(b_{2}b_{3})$$

$$= (a_{1} \otimes b_{1}) \otimes (a_{2}a_{3} \otimes b_{2}b_{3})$$

$$= (a_{1} \otimes b_{1})((a_{2} \otimes b_{2})(a_{3} \otimes b_{3})).$$
(6)

We claim that $A \otimes_R B$ is a ring with $1_A \otimes 1_B$, because

$$(a \otimes b)(1_A \otimes 1_B) = a \otimes b = (1_A \otimes 1_B)(a \otimes b).$$

We then proceed to consider the map $\lambda: R \to A \otimes_R B$ defined by $\lambda(r) = i(r) \otimes 1_B$, where i is the ring homomorphism making A into an R-algebra (we use this fact multiple times in the following proof). We claim λ makes $A \otimes_R B$ into an R-algebra.

We check that λ is a ring homomorphism:

$$\lambda(r_1 + r_2) = i(r_1 + r_2) \otimes 1_B$$

$$= (i(r_1) + i(r_2)) \otimes 1_B$$

$$= i(r_1) \otimes 1_B + i(r_2) \otimes 1_B$$

$$= \lambda(r_1) + \lambda(r_2)$$

$$(7)$$

$$\lambda(r_1 r_2) = i(r_1 r_2) \otimes 1_B$$

$$= (i(r_1)i(r_2)) \otimes 1_B$$

$$= (i(r_1) \otimes 1_B)(i(r_2) \otimes 1_B)$$

$$= \lambda(r_1)\lambda(r_2).$$
(8)

 λ also maps 1_R to $1_A \otimes 1_B$:

$$\lambda(1_R) = i(1_R) \otimes 1_B = 1_A \otimes 1_B.$$

We finally show $\lambda(R)$ is contained in the center of $A \otimes_R B$: Take $r \in R$ and $a \otimes b \in A \otimes_R B$,

$$(\lambda(r))(a \otimes b) = (i(r) \otimes 1_B)(a \otimes b)$$

$$= i(r)a \otimes 1_B b$$

$$= ai(r) \otimes b1_B$$

$$= (a \otimes b)(i(r) \otimes 1_B)$$

$$= (a \otimes b)(\lambda(r)).$$

$$QED$$

$$(9)$$

Problem 6:

Show that $\mathbb{Z}[i] \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{C}$ as rings.

Note: I was told that we should use Problem 5 for this.

We see $\mathbb{Z}[i], \mathbb{R}$, and \mathbb{C} as left \mathbb{Z} -modules. Consider the map $\varphi : \mathbb{Z}[i] \times \mathbb{R} \to \mathbb{C}$ defined by $\varphi(z,r) = zr$. Since φ is clearly \mathbb{Z} -bilinear:

$$\varphi(m_1z_1 + m_2z_2, r) = (m_1z_1 + m_2z_2)r = m_1z_1r + m_2z_2r = m_1\varphi(z_1, r) + m_2\varphi(z_2, r)$$
$$\varphi(z, m_1r_1 + m_2r_2) = z(m_1r_1 + m_2r_2) = zm_1r_1 + zm_2r_2 = m_1\varphi(z, r_1) + m_2\varphi(z, r_2)$$

we get a \mathbb{Z} -module homomorphism $\psi : \mathbb{Z}[i] \otimes_{\mathbb{Z}} \mathbb{R} \to \mathbb{C}$ defined by $\psi(z \otimes r) = zr$.

We first show that ψ is a ring homomorphism, and we only need to show that multiplication preserves the structure, as ψ being a \mathbb{Z} -module homomorphism already takes care of addition and the additive inverse. We define multiplication the same way we did in Problem 5:

$$\psi((z_1 \otimes r_1)(z_2 \otimes r_2)) = \psi((z_1 z_2) \otimes (r_1 r_2))
= (z_1 z_2)(r_1 r_2)
= (z_1 r_1)(z_2 r_2)
= \psi(z_1 \otimes r_1)\psi(z_2 \otimes r_2).$$
(10)

We then show that ψ is surjective. Consider an element $a+bi \in \mathbb{C}$, where $a,b \in \mathbb{R}$. By our construction of ψ , we see that

$$\psi((1 \otimes a) + (i \otimes b)) = \psi(1 \otimes a) + \psi(i \otimes b) = a + bi.$$

Since $1, i \in \mathbb{Z}[i]$ and $a, b \in \mathbb{R}$, we know $1 \otimes a, i \otimes b \in \mathbb{Z}[i] \otimes_{\mathbb{Z}} \mathbb{R}$. And since $\mathbb{Z}[i] \otimes_{\mathbb{Z}} \mathbb{R}$ is an abelian group, $(1 \otimes a) + (i \otimes b) \in \mathbb{Z}[i] \otimes_{\mathbb{Z}} \mathbb{R}$.

We finally show that ψ is injective. Consider $\psi(z \otimes r) = zr = 0$. It follows immediately that $z \otimes r = 0$.

QED