MATHEMATICS 2, preparatory problems for the test T1

Summer Semester, 2011/12

Structure of the test: 5 problems on the definite integrals and their applications, and solution of systems of linear equations by various methods.

1. Evaluate the definite integrals:

2. Find the area A(O) of the plane region O determined by graphs of the following curves (draw the region):

a)
$$y = 6x - x^2$$
, $y = 0$:

b)
$$y = -x$$
, $y = x + 2$ for $1 \le x \le 3$;

c)
$$y = 2x^2 + 10$$
, $y = 4x + 16$;

d)
$$y = x^2, y = \sqrt{x};$$

(e)
$$x = y^2 + 2$$
, $y = x - 8$;

c)
$$y = 2x^2 + 10$$
, $y = 4x + 16$; d) $y = x^2$, $y = \sqrt{x}$; e) $x = y^2 + 2$, $y = x - 8$; f) $y = 2x^2 + 10$, $y = 4x + 16$, $x = -2$, $x = 5$; g) $y = 0$, $y = \sin x$ for $0 \le x \le \pi$; h) $y = \ln x$, $y = 0$ for $1 \le x \le e$;

g)
$$y = 0$$
, $y = \sin x$ for $0 \le x \le \pi$;

h)
$$y = \ln x, \ y = 0 \text{ for } 1 \le x \le e;$$

i)
$$y = x^2 - 2x$$
, $y = x$;
k) $y = x^2$ $y^2 = x$

j)
$$y = x^2$$
, $y = x^2/4$, $y = 1$;

k)
$$y = x^2, \ y^2 = x;$$

m)
$$y = x^3, \ y = 4x;$$

n)
$$y = 2x^3$$
, $y^2 = 4x$;

o)
$$xy = 10$$
, $x + y = 7$:

p)
$$y = x^2$$
, $y = x^3$:

r)
$$y = x^n$$
, $y = 0$, $x = 1$

$$\begin{array}{lll} \text{ o) } xy=10, \ x+y=7; & \text{ p) } y=x^2, \ y=x^3; \\ \text{ r) } y=x^n, \ y=0, \ x=1; & \text{ s) } y=x^2-3x+2 \text{ and } o_x \text{ for } x \in \langle 0, \, 3 \rangle; \\ \text{ t) } y=x^3, \ y=-x, \ y=1; & \text{ u) } y=\sqrt{x}, \ y=1, \ x=4; \\ \text{ v) } x=y^2+2y, \ y=x-8; & \text{ w) } y=x^2-x, \ y=x-x^2; \\ \text{ x) } f(x)=\sqrt{x}, \ g(x)=\sqrt{4-x}, \ o_x; & \text{ y) } y=x^2-x, \ y=3x-x^2. \end{array}$$

t)
$$y = x^3$$
, $y = -x$, $y = 1$;

u)
$$y = \sqrt{x}, \ y = 1, \ x = 4$$

v)
$$x = y^2 + 2y$$
, $y = x - 8$

w)
$$y = x^2 - x$$
, $y = x - x^2$

v)
$$x = y^2 + 2y$$
, $y = x - 8$

w)
$$y = x^2 - x$$
, $y = x - x^2$;

x)
$$f(x) = \sqrt{x}, \ g(x) = \sqrt{4-x}, \ o_x$$

y)
$$y = x^2 - x$$
, $y = 3x - x^2$.

3. Evaluate the Average Value AV of a function on the interval $\langle a, b \rangle$, sketch the function, the interval and AV:

a)
$$f(x) = 1 + x, (0, 1)$$
:

b)
$$f(x) = 1 + x, \langle -1, 1 \rangle;$$

c)
$$f(x) = 1 - x^2, \langle -1, 1 \rangle$$
;

d)
$$f(x) = x(1 - x^2), \langle -2, 2 \rangle;$$

e)
$$f(x) = x \cdot \sqrt{1 - x^2}, (0, 1);$$

$$f(x) = x \cdot \sqrt{4 - x^2},$$

a)
$$f(x) = 1 + x$$
, $\langle 0, 1 \rangle$; b) $f(x) = 1 + x$, $\langle -1, 1 \rangle$; c) $f(x) = 1 - x^2$, $\langle -1, 1 \rangle$; d) $f(x) = x(1 - x^2)$, $\langle -2, 2 \rangle$; e) $f(x) = x \cdot \sqrt{1 - x^2}$, $\langle 0, 1 \rangle$; f) $f(x) = x \cdot \sqrt{4 - x^2}$, $\langle -2, 2 \rangle$; g) $f(x) = x(2 - x)$, $\langle 0, 2 \rangle$; h) $f(x) = |x(2 - x)|$, $\langle 0, 4 \rangle$; i) $f(x) = e^x$, $\langle 0, 1 \rangle$; j) $f(x) = e^x + e^{-2x}$, $\langle -1, 1 \rangle$; k) $f(x) = \sin x$, $\langle 0, \pi \rangle$; l) $f(x) = \sin x$, $\langle 0, 2\pi \rangle$;

h)
$$f(x) = |x(2-x)|, \langle 0, 1 \rangle$$

1)
$$f(x) = e^{-x}$$
, $(0, 1/2)$
1) $f(x) = \sin x / (0.2\pi)$

$$f(n)$$
 | $\sin n$ | $(0, 2-)$

n)
$$f(x) = \cos x$$
, $\langle 0, \frac{\pi}{2} \rangle$

m)
$$f(x) = |\sin x|$$
, $(0, 2\pi)$; n) $f(x) = \cos x$, $(0, \frac{\pi}{2})$; o) $f(x) = x^3 + x^2$, $(-1, 1)$;

p)
$$f(x) = \ln x$$
, $\langle 1, e \rangle$.

4. The velocity of an object v(x) in meter per minute varies during the first 20 minutes of its motion as follows:

- from the start of the motion (x = 0) to 4th minute it was v(x) = 0, 5x m/min,
- from the 4th minute to the 10th minute it was constant v(x) = 2 m/min, and then
- from 10th to 20th minute it was v(x) = 0.8x 6 m/min.

Find the Average Value AV of the object velocity within 20 minutes.

- **5.** Find the average value AV of the function $f(x) = \left(x \frac{1}{x}\right)^2$ on the interval $\langle 1, 3 \rangle$.
- **6.** Find all solutions of the system of linear equations, write the solution in a structured form::

$$x_1 + 2x_2$$
 $-6x_4 = 0$ $3x_1 + 2x_2 + x_3 = 10$

$$3x_1 + 2x_2 + x_3 = 10$$

$$3x_1 + 2x_2 + x_3 = 0$$

a)
$$2x_1 + x_2 + 3x_3 = 0$$
 b) $2x_1 + 3x_2 + x_3 = 2$ c) $2x_1 + 3x_2 + x_3 = 0$

$$2x_1 + 3x_2 + x_3 = 2$$

c)
$$2x_1+3x_2+x_3=0$$

$$7x_1 + 8x_2 + 6x_3 - 18x_4 = 0$$

$$2x_1 + x_2 + 3x_3 = 22$$

$$2x_1 + x_2 + 3x_3 = 0$$

7. Find all solutions of the homogeneous system of linear equations with the matrix A of the system, write the solution in a structured form:

a)
$$A = \begin{pmatrix} 3 & 4 & 6 & -10 \\ 2 & 3 & 4 & 0 \\ 4 & 5 & 8 & -20 \end{pmatrix}$$
 b) $A = \begin{pmatrix} 3 & 0 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 2 & 1 & 0 & 1 \end{pmatrix}$ c) $A = \begin{pmatrix} -5 & 10 & 20 & 13 \\ -15 & -20 & 1 & 11 \\ 1 & 0 & 9 & 0 \\ 12 & 30 & 37 & 2 \end{pmatrix}$

8. Solve the linear systems, using Cramer's rule; the system is written in the form of the table:

9. Evaluate determinants $det(A \cdot A^T)$, $det(A^T \cdot A)$ for the matrix $A = \begin{pmatrix} 2 & -3 & 1 & 0 \\ 0 & 1 & 0 & -2 \end{pmatrix}$ $(A^T \text{ is the matrix transposed to the matrix } A)$.

10. Evaluate the determinant
$$det\left(A\cdot A^T\right)$$
 for the matrix $A=\left(\begin{array}{ccc}2&-3&0\\3&-1&2\\1&1&0\end{array}\right)$.

Hradec Králové, March 2012