LUNDS TEKNISKA HÖGSKOLA MATEMATIK

SVAR LINJÄR ALGEBRA 2016-01-11

- 1. Då a=1 eller a=2 finns o
ändligt många lösningar. Då $a\neq 1$ och $a\neq 2$ finns en lösning.
- 2. a) Arean är $\frac{3\sqrt{6}}{2}$.
 - b) En ekvation är x 2y + z = 0.
 - c) Volymen är 3.
 - **d)** Punkten (3, 3, 3).
- 3. Koordinaterna med avseende på basen $\mathbf{e}_1', \mathbf{e}_2'$ för den vektor som i basen $\mathbf{e}_1, \mathbf{e}_2$ har koordinaterna (1,2) är $\left(-\frac{1}{3},\frac{5}{3}\right)$. Koordinaterna med avseende på basen $\mathbf{e}_1, \mathbf{e}_2$ för den vektor som i basen $\mathbf{e}_1', \mathbf{e}_2'$ har koordinaterna (1,2) är (4,1).
- 4. a) Sant.
 - b) Falskt.
 - c) Sant.
 - d) Falskt.
 - e) Sant.
- 5. Avbildningsmatriserna för projektionen och vridningen blir

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \text{respektive} \qquad V = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Matrisen för den sammansatta avbildningen F blir således

$$A = VP = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Här gäller det att rang A=2, nolldim A=1, och bas för nollrummet är vektorn (0,1,0). Värdemängden till F blir planet x=0, dvs. yz-planet.

6. a) a) Egenvektorer $X=t(1,1,1),\ t\neq 0$, till egenvärdet $\lambda=0$, och alla $X\neq \mathbf{0}$ i planet x+y+z=0, till egenvärdet $\lambda=3$.

b) Exempelvis
$$S = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \end{pmatrix}$$
 (ortogonal) och $D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.