Ch 5 多维随机变量及其分布

正态分布 $X \sim N(\mu, \sigma^2)$ $E(X) = \mu$, $Var(X) = \sigma^2$ $X \sim N(0,1)$ 的分布函数

$$P(X \ge \epsilon) \le \frac{1}{2}e^{-\frac{\epsilon^2}{2}} \qquad P(|X| \ge \epsilon) \le \min\left(1, \sqrt{\frac{2}{\pi}\frac{e^{-\frac{\epsilon^2}{2}}}{\epsilon}}\right)$$

已知连续随机变量X的概率密度为 $f_X(x)$,求随机变量 Y = g(X)的概率密度 $f_Y(y)$?

- 求解Y=g(X)的分布函数 $F_Y(y) = P(Y \le y) = P(g(X) \le y) =$ $\int_{g(x) \le y} f_X(x) dx$
- 利用分布函数和概率密度关系求解密度函数 $f_Y(y) = F_Y'(y)$

随机变量X的概率密度为 $f_X(x)$, 其中 $x \in (-\infty, +\infty)$. 函数 y = g(x) 处处可导且严格单调(即 g'(x) > 0 或 g'(x) < 0),令其反函数 $x = g^{-1}(y) = h(y)$,则随机变量Y = g(X) 的概率密度为

$$f_Y(y) = \begin{cases} f_X(h(y))|h'(y)| & y \in (\alpha, \beta) \\ 0 & \text{!!} \\ \vdots & \end{cases}$$

 $\alpha = \min\{g(-\infty), g(+\infty)\}, \ \beta = \max\{g(-\infty), g(+\infty)\}$

二维随机变量

很多随机现象往往由两个或多个随机因素造成的,需用多个随机变量描述.如导弹攻击点的坐标(经度、纬度),学生的高考成绩(语文、数学、英语等).

设 $X = X(\omega)$ 和 $Y = Y(\omega)$ 为定义在样本空间 Ω 上的随机变量,由它们构成的向量(X,Y)称为二维随机向量

二维随机向量又称二维随机变量,需将(X,Y)看作一个整体,不能分开,在几何上(X,Y)可看作平面上的随机点

二维随机变量的分布函数

设(X,Y)为二维随机变量,对任意实数 $x \in (-\infty, +\infty)$ 和 $y \in (-\infty, +\infty)$,称

$$F(x,y) = P(X \le x, Y \le y)$$

为二维随机变量(X,Y)的分布函数,或称为随机变量X和Y的联合分布函数

分布函数F(x,y)几何意义:随机点(X,Y)落入以(x,y)为右上定点无穷矩形的概率

二维随机变量分布函数性质

- □ 分布函数F(x,y)对每个变量单调不减
 - 固定y, 当 $x_1 > x_2$ 时有 $F(x_1, y) \ge F(x_2, y)$
 - 固定x, 当 $y_1 > y_2$ 时有 $F(x, y_1) \ge F(x, y_2)$
- □ 对任意 $x \in (-\infty, +\infty)$ 和 $y \in (-\infty, +\infty)$,分布函数 $F(x,y) \in [0,1]$,且

$$F(+\infty, +\infty) = 1$$

$$F(-\infty, y) = F(x, -\infty) = F(-\infty, -\infty) = 0$$

□ 分布函数*F*(*x*, *y*)关于每个变量右连续

根据分布函数可推导概率:

$$P(x_1 < X \le x_2, y_1 < Y \le y_2)$$

= $F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1)$

随机变量(X,Y)的联合分布函数为F(x,y),如果将随机变量X和Y分别看,依然为随机变量

如何从联合分布函数F(x,y)研究随机变量X和Y的分布函数 $F_X(x)$ 和 $F_Y(y)$

设二维随机变量(X,Y)的联合分布函数为F(x,y),称

$$F_X(x) = P(X \le x) = P(X \le x, y < +\infty) = \lim_{y \to +\infty} F(x, y)$$

为随机变量X的边缘分布函数.

同理定义随机变量Y的边缘分布函数为:

$$F_Y(y) = P(Y \le y) = P(Y \le y, x < +\infty) = \lim_{x \to +\infty} F(x, y)$$

设二维随机变量(X,Y)的联合分布函数为

$$F(x,y) = A\left(B + \arctan\frac{x}{2}\right)(C + \arctan\frac{y}{3})$$

求随机变量X与Y的边缘分布函数和概率P(Y > 3)

随机事件的独立性: P(AB) = P(A)P(B)

设X,Y为二维随机变量,对任意x,y ∈ $(-\infty,+\infty)$,若事件 $X \le x$ 和 $Y \le y$ 相互独立,即

$$P(X \le x, Y \le y) = P(X \le x)P(Y \le y)$$

等价于
$$F(x,y) = F_X(x) F_Y(y)$$

则称随机变量X与Y相互独立

定理: 设随机变量X与Y相互独立,则f(X)与g(Y)相互独立(其中f(x)和g(y)是连续或分段连续函数)

二维离散型随机变量

若二维随机变量 (X,Y) 的取值是有限个或无限可列的, 称 (X,Y) 为二维离散型随机变量

设离散型随机变量(X,Y)的取值分别为(x_i,y_j), $i,j=1,2,\cdots$,则称

$$p_{ij} = P(X = x_i, Y = y_j)$$

为(X,Y)的联合分布列

性质: $p_{ij} \geq 0$ 和 $\sum_{i,j} p_{ij} = 1$

, ,					
Y X	y_1	y_2		y_j	
x_1	p_{11}	p_{12}	• • •	p_{1j}	
x_2	p_{21}	p_{22}		p_{2j}	• • •
:	:	÷		:	
$ x_i $	p_{i1}	p_{i2}		p_{ij}	• • •
:	:	:		÷	٠

根据二维随机变量(X,Y)的联合分布列 p_{ij}

随机变量X的边缘分布列

$$P(X = x_i) = \sum_{j=1}^{+\infty} P(X = x_i, Y = y_j) = \sum_{j=1}^{+\infty} p_{ij} = p_i.$$

随机变量Y的边缘分布列

$$P(Y = y_i) = \sum_{i=1}^{+\infty} P(X = x_i, Y = y_j) = \sum_{i=1}^{+\infty} p_{ij} = p_{.j}$$

二维随机变量联合和边缘分布表示在同一个表格

X	y_1	y_2	•••	y_j	• • •	$p_{i\cdot}$
x_1	p_{11}	p_{12}	• • •	p_{1j}	• • •	$\mid p_{1}. \mid$
x_2	p_{21}	p_{22}		p_{2j}	• • •	$\mid p_{2}.\mid$
:	:	÷		÷		
$ x_i $	p_{i1}	p_{i2}		p_{ij}		$\mid p_{i\cdot} \mid$
:	:	÷		÷	٠.	:
$p_{\cdot j}$	$p_{\cdot 1}$	$p_{\cdot 2}$	• • •	$p_{\cdot j}$	• • •	1

有三个数1,2,3,随机变量X表示从这三个数中随机地抽取一个数,随机变量Y表示从1到X中随机抽取一个数.求(X,Y)的联合分布列和边缘分布列

对离散型随机变量(X,Y),若对所有 (x_i,y_j) 有

$$P(X = x_i, Y = y_j) = P(X = x_i)P(Y = y_j)$$

即 $p_{ij} = p_i. p_{.j}$,称离散随机变量X与Y相互独立

定理:对离散型随机变量(X,Y),以下两种定义等价

$$p_{ij} = p_{i.} p_{.j} \leftrightarrow F(x_i, y_j) = F_X(x_i) F_Y(y_j)$$

离散随机变量的独立性

定理: 设离散随机变量X和Y独立,则对任意集合 $A \in \mathbb{R}$, $B \in \mathbb{R}$,有事件 $X \in A$ 和 $Y \in B$ 独立

例题: 设离散型随机变量X,Y独立, 求解(X,Y)的联合

分布列

X	y_1	y_2	y_3	p_{i} .
x_1		1/8		
x_2	1/8			
$p_{\cdot j}$	1/6			

将两个球A,B放入编号为1,2,3的三个盒子中,用随机变量X放入1号盒的球数,用随机变量Y表示放入2号盒的球数,判断X和Y是否独立

二维连续型随机变量

设二维随机变量的分布函数为F(x,y),如果存在二元非负可积函数f(x,y)使得对任意实数对(x,y)有

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv$$

则称(X,Y)为二维连续型随机变量,称f(x,y)称为二维随机变量(X,Y)的概率密度,或称为随机变量X和Y的联合概率密度

概率密度函数的性质

- 非负性: $f(x,y) \ge 0$;
- 规范性: $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(u,v) du dv$
- 若f(x,y) 在(x,y) 连续, 则 $f(x,y) = \partial^2 F(x,y)/\partial x \partial y$
- 若G为平面上的一个区域,则点(X,Y)落入G的概率为

$$P((X,Y) \in G) = \iint_{(x,y)\in G} f(x,y) dx dy$$

设二维随机变量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} ce^{-(3x+4y)} & x > 0, y > 0 \\ 0 & \text{#} \\ \vdots \end{cases}$$

求P(0 < X < 1, 0 < Y < 2)

设二维随机变量(X,Y)的概率密度

$$f(x,y) = \begin{cases} x^2 + axy & 0 \le x \le 1, 0 \le y \le 2\\ 0 & \text{!!} \end{aligned}$$

求 $P(X + Y \ge 1)$

将随机变量X和Y分别看,依然为随机变量,根据随机变量X的边缘分布函数为

$$F_X(x) = P(X \le x) = P(X \le x, Y < +\infty) = F(x, +\infty)$$

$$= \int_{-\infty}^{x} \int_{-\infty}^{+\infty} f(t, y) dt dy = \int_{-\infty}^{x} \left(\int_{-\infty}^{+\infty} f(t, y) dy \right) dt$$

由此可得随机变量X的边缘概率密度为

$$f_X(x) = F_X'(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

设二维随机变量(X,Y)的概率密度为f(x,y),则随机变量X和Y的边缘概率密度为

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx$$

设二维随机变量(X,Y)的概率密度

$$f(x,y) = \begin{cases} cxy & 0 \le x \le y \le 1 \\ 0 & \sharp \boxdot$$

求 $P(X \leq 1/2)$