

R5.A.12 Modélisations mathématiques

Thibault Godin, Lucie Naert

IUT de Vannes 28 novembre 2023

Plan

Valeurs et vecteurs propres

Mesure d'importance et marche aléatoire dans les graphes

Page-rank

 $M\in\mathbb{R}^{n\times n}$, ${m v}\in\mathbb{R}^n$, ${m u}\in\mathbb{R}^n$, ${m u},\lambda\in\mathbb{R}$ tels que $M{m v}=\lambda{m v}$ et ${m u}M=\mu{m u}$:

ightharpoonup u est un *vecteur propre* (à gauche) de M

 $M\in\mathbb{R}^{n\times n}$, ${m v}\in\mathbb{R}^n$, ${m u}\in\mathbb{R}^n$, ${m u},\lambda\in\mathbb{R}$ tels que $M{m v}=\lambda{m v}$ et ${m u}M=\mu{m u}$:

- ▶ **u** est un *vecteur propre* (à gauche) de *M*
- $ightharpoonup \mu$ est une *valeur propre* (à gauche) de M

 $M\in\mathbb{R}^{n imes n}$, ${m v}\in\mathbb{R}^n$, ${m u}\in\mathbb{R}^n$, ${m \mu},\lambda\in\mathbb{R}$ tels que $M{m v}=\lambda{m v}$ et ${m u}M=\mu{m u}$:

- ▶ **u** est un *vecteur propre* (à gauche) de *M* ▶ **v** est un *vecteur propre* (à droite) de *M*
- $ightharpoonup \mu$ est une *valeur propre* (à gauche) de M

 $M \in \mathbb{R}^{n \times n}$, $\mathbf{v} \in \mathbb{R}^n$, $\mathbf{u} \in \mathbb{R}^n$, $\mu, \lambda \in \mathbb{R}$ tels que $M\mathbf{v} = \lambda \mathbf{v}$ et $\mathbf{u}M = \mu \mathbf{u}$:

- ightharpoonup est un vecteur propre (à gauche) de M ightharpoonup v est un vecteur propre (à droite) de M
- ightharpoonup est une $\emph{valeur propre}$ (à gauche) de \emph{M} ightharpoonup λ est une $\emph{valeur propre}$ (à droite) de \emph{M}

 $M \in \mathbb{R}^{n \times n}$, $\mathbf{v} \in \mathbb{R}^n$, $\mathbf{u} \in \mathbb{R}^n$, $\mu, \lambda \in \mathbb{R}$ tels que $M\mathbf{v} = \lambda \mathbf{v}$ et $\mathbf{u}M = \mu \mathbf{u}$:

- ightharpoonup est un vecteur propre (à gauche) de M ightharpoonup v est un vecteur propre (à droite) de M
- ightharpoonup est une $\emph{valeur propre}$ (à gauche) de \emph{M} ightharpoonup λ est une $\emph{valeur propre}$ (à droite) de \emph{M}

$$M\in\mathbb{R}^{n\times n}$$
, ${m v}\in\mathbb{R}^n$, ${m u}\in\mathbb{R}^n$, ${m \mu},\lambda\in\mathbb{R}$ tels que $M{m v}=\lambda{m v}$ et ${m u}M=\mu{m u}$:

- ightharpoonup u est un vecteur propre (à gauche) de M ightharpoonup v est un vecteur propre (à droite) de M
- ightharpoonup est une $valeur\ propre\ (a)\ gauche)\ de\ M$ ightharpoonup λ est une $valeur\ propre\ (a)\ droite)\ de\ M$
- $oldsymbol{\mathscr{C}}$ Vérifier que (-6,-1,4) est un vecteur propre à gauche et donner la valeur propre associée

Même chose pour
$$(3,2,5)$$
 (à droite). $M = \begin{pmatrix} 0 & 1 & 2 \\ 2 & 1 & 0 \\ 2 & 2 & 2 \end{pmatrix}$

Vérifier que 0 et 4 sont des valeurs propres et donner les vecteurs propres (à gauche) associés

Soit M une matrice. α est une valeur propre de M ($\exists v \ M = \alpha v$)

- ▶ **Multiplicité** de $\alpha \leadsto$ nombre de vecteurs 2-à-2 linéairement indépendants tq α valeur propre
- ▶ spectre → l'ensemble des valeurs propres (comptées avec multiplicité)

Soit M une matrice. α est une valeur propre de M ($\exists v \ M = \alpha v$)

- ▶ Multiplicité de $\alpha \leadsto$ nombre de vecteurs 2-à-2 linéairement indépendants tq α valeur propre
 - > spectre → l'ensemble des valeurs propres (comptées avec multiplicité)

rmq : même spectre à gauche et à droite

Soit M une matrice. α est une valeur propre de M ($\exists v \ M = \alpha v$)

- ▶ Multiplicité de $\alpha \leadsto$ nombre de vecteurs 2-à-2 linéairement indépendants tq α valeur propre
- ▶ spectre → l'ensemble des valeurs propres (comptées avec multiplicité)

rmq : même spectre à gauche et à droite

Attention : une matrice a au maximum de n mais peu être plus petit.

Soit M une matrice. α est une valeur propre de M ($\exists v \ M = \alpha v$)

- ▶ Multiplicité de $\alpha \leadsto$ nombre de vecteurs 2-à-2 linéairement indépendants tq α valeur propre
- > spectre → l'ensemble des valeurs propres (comptées avec multiplicité)

rmq : même spectre à gauche et à droite

Attention : une matrice a au maximum de n mais peu être plus petit.

Théorème Spectral

Soit M une matrice symétrique réelle de taille n. Alors M possède n-valeurs propres, toutes réelles.

Méthode algébrique :

ightharpoonup calcul des valeurs propres λ_i

- \triangleright calcul des valeurs propres λ_i
 - Calcul de $P_M(X) = \text{Det}(X.I M)$ algorithme exact (définition) efficace $(O(n^3))$

- ightharpoonup calcul des valeurs propres λ_i
 - Calcul de $P_M(X) = \text{Det}(X.I M)$ algorithme exact (définition) efficace $(O(n^3))$
 - ► Calcul des racines de $P_M(X) \rightsquigarrow$ valeurs propres de M algorithme approximé efficace $(O(n^2))$

- \triangleright calcul des valeurs propres λ_i
 - Calcul de $P_M(X) = \text{Det}(X.I M)$ algorithme exact (définition) efficace $(O(n^3))$
 - Calcul des racines de $P_M(X) \rightsquigarrow$ valeurs propres de M algorithme approximé efficace $(O(n^2))$
- résolution du système $M\mathbf{v}_i = \lambda_i \mathbf{v}_i$ algorithme exact efficace (pivot de Gauss) $(O(n^3))$

- \triangleright calcul des valeurs propres λ_i
 - Calcul de $P_M(X) = \text{Det}(X.I M)$ algorithme exact (définition) efficace $(O(n^3))$
 - Calcul des racines de $P_M(X) \rightsquigarrow$ valeurs propres de M algorithme approximé efficace $(O(n^2))$
- résolution du système $M\mathbf{v}_i = \lambda_i \mathbf{v}_i$ algorithme exact efficace (pivot de Gauss) $(O(n^3))$

Méthode algébrique :

- \triangleright calcul des valeurs propres λ_i
 - Calcul de $P_M(X) = \text{Det}(X.I M)$ algorithme exact (définition) efficace $(O(n^3))$
 - Calcul des racines de $P_M(X) \rightsquigarrow$ valeurs propres de M algorithme approximé efficace $(O(n^2))$
- résolution du système $M\mathbf{v}_i = \lambda_i \mathbf{v}_i$ algorithme exact efficace (pivot de Gauss) $(O(n^3))$

Méthodes itératives (Puissances itérées) :

Algorithm 6: Eigenvalue Data: matrice M, précision ε $\pi^{(0)} = random_{\mathbb{R}^n}(vector)$ $\pi^{(1)} = \pi^{(0)}M$ while $||\pi^{(k-1)} - \pi^{(k)}|| > \varepsilon$ do $\downarrow \pi^{(k+1)} = \pi^{(k)}M$ $v_0 = \pi^{(k)}$ return v_0

Méthode algébrique :

- \triangleright calcul des valeurs propres λ_i
 - ► Calcul de $P_M(X) = \text{Det}(X.I M)$ algorithme exact (définition) efficace $(O(n^3))$
 - Calcul des racines de $P_M(X) \rightsquigarrow \text{valeurs propres de } M$ algorithme approximé efficace $(O(n^2))$
- résolution du système $M\mathbf{v}_i = \lambda_i \mathbf{v}_i$ algorithme exact efficace (pivot de Gauss) $(O(n^3))$

Méthodes itératives (Puissances itérées) :

Pour le calculs des autres valeurs propres, on adapte cet algo (puissances inverse / deflation) ou on utilise des algo plus puissants (méthode QR)

Plan

Valeurs et vecteurs propres

Mesure d'importance et marche aléatoire dans les graphes

Page-rank

Rappel: chemins

$$M = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Rappel: chemins

$$M = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Proposition

Soit M la matrice d'adjacence d'un graphe \mathcal{G} . Alors le coefficient $M_{i,j}^h$ représente le nombre de chemins/chaînes de longueur exactement h allant de i à j

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \\ 2 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \\ 0 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \\ 0 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \\ 3 \\ 3 \\ 3 \\ 5 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \\ 3 \\ 3 \\ 3 \\ 5 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \\ 0 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \\ 0 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \\ 3 \\ 3 \\ 3 \\ 5 \end{pmatrix}$$

Parcours du graphe depuis un sommet

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \\ 3 \\ 3 \\ 3 \\ 5 \\ 5 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \\ 0 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \\ 0 \\ 2 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 2 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 2 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 2 & 1 & 0 & 0 & 1 \\ 2 & 1 & 0 & 0 & 1 \\ 3 & 3 & 3 & 3 \\ 5 & 5 & 0 & 0 \end{pmatrix}$$

Parcours du graphe depuis un sommet

Problème: "création d'énergie/matière"

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \\ 3 \\ 3 \\ 3 \\ 5 \end{pmatrix}$$

Promenade aléatoire sur les graphes

$$\begin{pmatrix} 0 & \frac{1}{4} & 0 & 0 & 0 & \frac{1}{3} \\ \frac{1}{2} & 0 & \frac{1}{3} & 0 & \frac{1}{4} & \frac{1}{3} \\ 0 & \frac{1}{4} & 0 & \frac{1}{2} & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{3} & 0 & \frac{1}{4} & 0 \\ 0 & \frac{1}{4} & \frac{1}{3} & \frac{1}{2} & 0 & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{4} & 0 & 0 & \frac{1}{4} & 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ 0 \\ 0 \\ 0 \\ \frac{1}{2} \end{pmatrix}$$

Promenade aléatoire sur les graphes

$$\begin{pmatrix} 0 & \frac{1}{4} & 0 & 0 & 0 & \frac{1}{3} \\ \frac{1}{2} & 0 & \frac{1}{3} & 0 & \frac{1}{4} & \frac{1}{3} \\ 0 & \frac{1}{4} & 0 & \frac{1}{2} & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{3} & 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 & \frac{1}{3} & 0 & \frac{1}{4} & 0 \\ \frac{1}{2} & \frac{1}{4} & 0 & 0 & \frac{1}{4} & 0 \\ \frac{1}{2} & \frac{1}{4} & 0 & 0 & \frac{1}{4} & 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ \frac{1}{24} \\ 0 \\ 0 \\ 0 \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{7}{24} \\ \frac{1}{6} \\ \frac{1}{4} \\ 0 \\ 0 \\ 0 \\ \frac{7}{24} \\ \frac{3}{24} \\ \frac{3}{24} \end{pmatrix}$$

$$\begin{pmatrix} 0 & \frac{1}{4} & 0 & 0 & 0 & \frac{1}{3} \\ \frac{1}{2} & 0 & \frac{1}{3} & 0 & \frac{1}{4} & \frac{1}{3} \\ 0 & \frac{1}{4} & 0 & \frac{1}{2} & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{3} & 0 & \frac{1}{4} & 0 \\ 0 & \frac{1}{4} & \frac{1}{3} & \frac{1}{2} & 0 & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{4} & 0 & 0 & \frac{1}{4} & 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \\ 0 \\ 0 \\ 0 \\ \frac{1}{2} \end{pmatrix}$$

Promenade aléatoire sur les graphes

$$\begin{pmatrix} 0 & \frac{1}{4} & 0 & 0 & 0 & \frac{1}{3} \\ \frac{1}{2} & 0 & \frac{1}{3} & 0 & \frac{1}{4} & \frac{1}{3} \\ 0 & \frac{1}{4} & 0 & \frac{1}{2} & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{3} & 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{3} & 0 & \frac{1}{4} & 0 \\ 0 & \frac{1}{4} & \frac{1}{3} & \frac{1}{2} & 0 & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{4} & 0 & 0 & \frac{1}{4} & 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ \frac{1}{2} \\ 0 \\ 0 \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{7}{24} \\ \frac{1}{4} \\ 0 \\ 0 \\ \frac{7}{24} \\ \frac{1}{4} \end{pmatrix} = \begin{pmatrix} \frac{7}{24} \\ \frac{4}{34} \\ 0 \\ 0 \\ \frac{7}{24} \\ \frac{3}{24} \end{pmatrix}$$

 $M \in \mathcal{M}_n(\mathbb{R})$ est stochastique si $\forall i,j,M_{i,j} \geq 0$ et $\sum_{i=1}^n M_{i,j} = 1$

bistochastique $\rightsquigarrow M$ et M^T sont stochastiques.

Lien forts avec les proba \leadsto chaînes de Markov

 $\mathsf{www} \leadsto \mathsf{gros}^{\,1} \mathsf{\ r\acute{e}seau\ (graphe)}$

www \leadsto gros 1 réseau (graphe) \leadsto impossible de trier "à la main" des résultats de recherche par mot-clef

www \leadsto gros 1 réseau (graphe) \leadsto impossible de trier "à la main" des résultats de recherche par mot-clef

→ Google's PageRank

www \leadsto gros 1 réseau (graphe) \leadsto impossible de trier "à la main" des résultats de recherche par mot-clef

→ Google's PageRank

hypothèses:

▶ Si le site 1 renvoie vers le site 2, le site 1 considère le site 2 comme intéressant

www \leadsto gros 1 réseau (graphe) \leadsto impossible de trier "à la main" des résultats de recherche par mot-clef

→ Google's PageRank

hypothèses:

- ▶ Si le site 1 renvoie vers le site 2, le site 1 considère le site 2 comme intéressant
- ▶ Si un site important renvoie vers un site 2, le site 2 est sûrement important aussi

www \leadsto gros 1 réseau (graphe) \leadsto impossible de trier "à la main" des résultats de recherche par mot-clef

→ Google's PageRank

hypothèses :

- ➤ Si le site 1 renvoie vers le site 2, le site 1 considère le site 2 comme intéressant
- ▶ Si un site important renvoie vers un site 2, le site 2 est sûrement important aussi
- Si le site 1 renvoie vers beaucoup d'autres sites, il faut répartir l'importance entre ces sites.

L'importance (HITS) $\pi_j \geq 0$ de la page $j \in \{1,...,n\}$ serait donnée par $\pi_j = \sum_{i \in \mathit{Pred}(j)} \frac{\pi_i}{d_+ i}$

L'importance (HITS) $\pi_j \geq 0$ de la page $j \in \{1,...,n\}$ serait donnée par $\pi_j = \sum_{i \in Pred(j)} \frac{\pi_i}{d+i}$ formule récursive, on ne dispose pas a priori de méthode assurant :

► l'existence.

- l'existence,
- l'unicité,

- l'existence,
- l'unicité,
- le calcul efficace

- l'existence,
- l'unicité,
- le calcul efficace

L'importance (HITS) $\pi_j \geq 0$ de la page $j \in \{1,...,n\}$ serait donnée par $\pi_j = \sum_{i \in Pred(j)} \frac{\pi_i}{d+i}$ formule récursive, on ne dispose pas a priori de méthode assurant :

- l'existence,
- l'unicité,
- le calcul efficace

d'une solution $\pi = (\pi_1, \dots, \pi_n)$ non triviale.

L'importance (HITS) $\pi_j \geq 0$ de la page $j \in \{1, ..., n\}$ serait donnée par $\pi_j = \sum_{i \in Pred(j)} \frac{\pi_i}{d_+ i}$ formule récursive, on ne dispose pas a priori de méthode assurant :

- l'existence,
- l'unicité,
- le calcul efficace

d'une solution $\pi = (\pi_1, \dots, \pi_n)$ non triviale.

(On peut supposer que les scores recherchés sont normalisés, $\sum |\pi_i| = 1$)

$$\pi_j = \sum_{i \in Pred(j)} \frac{\pi_i}{d_+ i}$$

$$\pi_j = \sum_{i \in \mathit{Pred}(j)} rac{\pi_i}{d_+ i}$$
 $H_{ij} = egin{cases} rac{1}{d_+(i)} & \mathsf{si} \ (i,j) \in A \ 0 & \mathsf{sinon}. \end{cases}$

$$\pi_j = \sum_{i \in \mathit{Pred}(j)} rac{\pi_i}{d_+ i}$$
 $H_{ij} = egin{cases} rac{1}{d_+(i)} \; \mathrm{si} \; (i,j) \in A \ 0 \; \mathrm{sinon}. \end{cases}$
 $\pi = \pi H \leadsto \mathrm{vp} \; 1$

$$\pi_j = \sum_{i \in \mathit{Pred}(j)} \frac{\pi_i}{d_+^{i}}$$
 $H_{ij} = \begin{cases} \frac{1}{d_+(i)} \; \mathsf{si} \; (i,j) \in A \\ 0 \; \mathsf{sinon}. \end{cases}$
 $\pi = \pi H \leadsto \mathsf{vp} \; 1$

$$\pi_j = \sum_{i \in Pred(j)} rac{\pi_i}{d_+ i}$$
 $H_{ij} = egin{cases} rac{1}{d_+(i)} & ext{si } (i,j) \in A \ 0 & ext{sinon}. \end{cases}$
 $\pi = \pi H
ightharpoonup ext{tp } 1$

$$A = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 2 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$H = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ \frac{2}{3} & 0 & \frac{1}{3} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ \frac{2}{3} & 0 & \frac{1}{3} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \end{pmatrix}$$

$$H_{ij} = egin{cases} rac{1}{d+(i)} & ext{si } (i,j) \in A \ 0 & ext{sinon}. \end{cases}$$
 $oldsymbol{\pi} = oldsymbol{\pi} H$

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ \frac{2}{3} & 0 & \frac{1}{3} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \end{pmatrix}$$

$$H_{ij} = egin{cases} rac{1}{d+(i)} & ext{si } (i,j) \in A \ 0 & ext{sinon}. \end{cases}$$
 $oldsymbol{\pi} = oldsymbol{\pi} H$

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ \frac{2}{3} & 0 & \frac{1}{3} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \end{pmatrix}$$

$$H_{ij} = egin{cases} rac{1}{d_+(i)} \; \mathsf{si} \; (i,j) \in A \ 0 \; \mathsf{sinon}. \end{cases}$$
 $\pi = \pi H$

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ \frac{2}{3} & 0 & \frac{1}{3} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \end{pmatrix}$$

$$H_{ij} = \begin{cases} rac{1}{d_+(i)} & \text{si } (i,j) \in A \\ 0 & \text{sinon.} \end{cases}$$

$$\pi = \pi H$$
 $v_1 = (\frac{1}{3}, 0, 0, 0, \frac{2}{3})$

$\begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 \end{bmatrix}$	$\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ \frac{1}{4} \end{pmatrix}$	1 0 0 0 1 4	0 0 0 1 1 4	0 0 1 0 1 4	0 0 0 0
--	---	----------------------------	----------------------------	----------------------------	---------

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 \end{pmatrix}$$

$$v_1 = \left(\frac{1}{2}, \frac{1}{2}, 0, 0, 0\right)$$

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 \end{pmatrix} \\ v_1 = \left(\frac{1}{2}, \frac{1}{2}, 0, 0, 0\right) \ v_2 = \left(0, 0, \frac{1}{2}, \frac{1}{2}, 0\right)$$

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 \\ \end{pmatrix} \\ v_1 = \left(\frac{1}{2}, \frac{1}{2}, 0, 0, 0\right) \ v_2 = \left(0, 0, \frac{1}{2}, \frac{1}{2}, 0\right) \\ \rightsquigarrow \text{ non-unique (et contradictoire)}$$

puits
$$\rightsquigarrow S_{ij} = \begin{cases} \frac{1}{d+(i)} & \text{si } (i,j) \in A \\ \frac{1}{n} & \text{si } d_+(i) = 0 \\ 0 & \text{sinon.} \end{cases}$$

pas fortement connexe/période \leadsto $G = \alpha S + \frac{(1-\alpha)}{n}J$

puits
$$\leadsto S_{ij} = \begin{cases} \frac{1}{d_+(i)} & \text{si } (i,j) \in A \\ \frac{1}{n} & \text{si } d_+(i) = 0 \\ 0 & \text{sinon.} \end{cases}$$

pas fortement connexe/période \leadsto $G = \alpha S + \frac{(1-\alpha)}{n}J$

Solution : Perturber légèrement le modèle initial pour obtenir un système "proche" mais avec de "bonnes" propriétés \leadsto pouvoir appliquer le thm. de Perron.

puits
$$\rightsquigarrow S_{ij} = \begin{cases} \frac{1}{d_+(i)} & \text{si } (i,j) \in A \\ \frac{1}{n} & \text{si } d_+(i) = 0 \\ 0 & \text{sinon.} \end{cases}$$

pas fortement connexe/période \leadsto $G = \alpha S + \frac{(1-\alpha)}{n}J$

Solution : Perturber légèrement le modèle initial pour obtenir un système "proche" mais avec de "bonnes" propriétés \leadsto pouvoir appliquer le thm. de Perron.

(La matrice $\frac{J}{n}$ est parfois appelée matrice de téléportation)

$\pi = \pi G$: Solutions

$\pi = \pi G$: Solutions

$$G = \begin{pmatrix} 0.03 & 0.455 & 0.455 & 0.03 & 0.03 \\ 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0.03 & 0.03 & 0.03 & 0.455 & 0.455 \\ 0.455 & 0.03 & 0.455 & 0.03 & 0.03 \\ 0.03 & 0.313 & 0.313 & 0.313 & 0.03 \end{pmatrix}$$

$\pi = \pi G$: Solutions

$$G = \begin{pmatrix} 0.03 & 0.455 & 0.455 & 0.03 & 0.03 \\ 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0.03 & 0.03 & 0.03 & 0.455 & 0.455 \\ 0.455 & 0.03 & 0.455 & 0.03 & 0.03 \\ 0.03 & 0.313 & 0.313 & 0.313 & 0.03 \end{pmatrix}$$

$$v_1 = \big(0.16, 0.18, 0.27, 0.22, 0.17\big)$$

Algorithm 8: Eigenvalue

```
\begin{array}{l} \textbf{Data: matrice M, précision } \varepsilon \\ \pi^{(0)} = \text{random(vector)} \\ \pi^{(1)} = \pi^{(0)} M \\ \textbf{while } ||\pi^{(k-1)} - \pi^{(k)}|| > \varepsilon \ \textbf{do} \\ \pi^{(k+1)} = \pi^{(k)} M \\ \textbf{return } \pi^{(k)} \end{array}
```

Algorithm 9: Eigenvalue

```
\begin{array}{l} \textbf{Data: matrice M, précision } \varepsilon \\ \pi^{(0)} = \texttt{random(vector)} \\ \pi^{(1)} = \pi^{(0)} M \\ \textbf{while } ||\pi^{(k-1)} - \pi^{(k)}|| > \varepsilon \ \textbf{do} \\ &|\pi^{(k+1)} = \pi^{(k)} M \\ \textbf{return } \pi^{(k)} \end{array}
```

- Converge (sous réserves sur M vérifiées pour G)
- lacksquare On demande généralement que $\sum_i \pi_i^{(k)} = 1$

Algorithm 10: Eigenvalue

```
\begin{array}{ll} \textbf{Data:} \ \text{matrice M, précision } \varepsilon \\ \pi^{(0)} = \text{random(vector)} \\ \pi^{(1)} = \pi^{(0)} M \\ \text{while } ||\pi^{(k-1)} - \pi^{(k)}|| > \varepsilon \ \text{do} \\ & \quad \quad \mid \pi^{(k+1)} = \pi^{(k)} M \\ \textbf{return } \pi^{(k)} \end{array}
```

- Converge (sous réserves sur M vérifiées pour G)
- lacksquare On demande généralement que $\sum_i \pi_i^{(k)} = 1$

- Une centaine d'itérations suffisent pour obtenir une approximation utilisable
- Le calcul peut être réalisé hors ligne, par exemple, une fois par mois, pour mettre à jour le vecteur des scores.

Algorithm 11: Eigenvalue

 $\begin{array}{l} \textbf{Data:} \ \text{matrice M, précision } \varepsilon \\ \pi^{(0)} = \text{random(vector)} \\ \pi^{(1)} = \pi^{(0)} M \\ \text{while } ||\pi^{(k-1)} - \pi^{(k)}|| > \varepsilon \text{ do} \\ & \perp \pi^{(k+1)} = \pi^{(k)} M \\ \textbf{return } \pi^{(k)} \end{array}$

- Converge (sous réserves sur M vérifiées pour G)
- On demande généralement que $\sum_i \pi_i^{(k)} = 1$

 Une centaine d'itérations suffisent pour obtenir une approximation utilisable

Le calcul peut être réalisé hors ligne, par exemple, une fois par mois, pour mettre à jour le vecteur des scores.

Sur notre exemple de
$$G$$
; $k=11$ et $\pi^{(k)}-\pi^{(k)}G=\begin{pmatrix} -1.5e-07, & -5.2e-07, & -8.9e-07, & 3.1e-07, & 1.3e-06 \end{pmatrix}$