CERTAMEN Nº1 COMPUTACIÓN CIENTÍFICA I SCT - Lu.29.11.14

Nombre: Rol:

1. [25 puntos] Sea A una matriz real $n \times n$ tal que para cada fila, se tiene que sus elementos suman μ :

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}, \sum_{j=1}^{n} a_{ij} = \mu \forall i = 1, \dots, n$$

(a) [5 puntos] Pruebe que μ es un valor propio, al cual podemos asociar un vector propio v_1 muy fácil de encontrar. Respuesta:

El vector $v = (1, 1, ..., 1)^T$ es un vector propio con valor propio μ , puesto que se tiene:

$$Av = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} + a_{12} + \dots + a_{1n} \\ a_{21} + a_{22} + \dots + a_{2n} \\ \vdots \\ a_{n1} + a_{n2} + \dots + a_{nn} \end{bmatrix} = \begin{bmatrix} \mu \\ \mu \\ \vdots \\ \mu \end{bmatrix} = \mu v$$

(b) [10 puntos] ¿Qué matriz podríamos estudiar para averiguar si asociado al valor propio μ existe(n) otro(s) vector(es) propio(s) distinto(s) a v_1 ? ¿Qué valor y vector propio obtenemos si aplicamos Power Iteration a esa matriz? (Hint: Recuerde el laboratorio).

Respuesta:

Hay 2 opciones "fáciles" para tranformar la matriz A: $A - \mu I$ y $A - \mu v_1 v_1^T$.

La primera opción, $A - \mu I$ no permite averiguar mucho, puesto que si A tiene 2 vectores propios v_1 y v_2 con el mismo valor propio μ , en la matrix $A - \mu I$ los vectores v_1 y v_2 tendrán valores propios 0 y 0, y seguirán siendo indistinguibles. La segunda opción, $A - \mu v_1 v_1^T$ resulta mejor, puesto que el valor propio asociado a v_1 ahora es 0. Sin embargo, ello conlleva a que la matriz tenga determinante nulo.

Si aplicamos Power Iteration a la matriz $B = A - \mu v_1 v_1^T$ inicializando con un vector aleatorio, llegamos al valor y vector propio dominante de B, que distinto de v_1 puesto que éste tiene valor propio 0 en la matriz B. Lamentablemente, este valor y vector propio dominante no están necesariamente relacionados a μ , por lo cual realizar el Power Iteration no permite dilucidar la multiplicidad geométrica asociada a μ .

(c) [10 puntos] La matriz en (b) puede utilizarse en los algoritmos de vectores propios estudiados en clase. En particular, resulta tentador utilizar Rayleight Quotient Iteration, puesto que deseamos saber si existe otro vector propio asociado a μ es posible inicializar el algoritmo con μ y un vector aleatorio. Describa los pasos de Rayleight Quotient Iteration y explique si es posible aplicarlo en este caso.

Respuesta:

El algoritmo de Rayleight Quotient Iteration es el siguiente:

- 1: k=Número de iteraciones, \vec{x}_0 =Vector inicial, λ_0 =Estimación inicial de Valor Propio
- 2: **for** j = 1 to k **do**
- 3:
- $$\begin{split} \vec{u}_{j-1} &= \vec{x}_{j-1} / \|\vec{x}_{j-1}\|_2 \\ \lambda_{j-1} &= \vec{u}_{j-1}^T \, A \, \vec{u}_{j-1} \\ \text{Solve} \, \left(A \lambda_{j-1} \, I \right) \vec{x}_j &= \vec{u}_{j-1} \end{split}$$
- 6: end for
- 7: $\vec{u}_j = \vec{x}_j / \|\vec{x}_j\|_2$

En nuestro caso, la estimación inicial del valor propio es μ .

Supongamos que asociado a mu existen 2 vectores v_1 y v_2 , ortogonales entre sí, además de n-2 valores y vectores propios, no necesariamente ortogonales entre ellos, pero sí respecto a v_1 y v_2 . Se tiene entonces:

$$A = \mu v_1 v_1^T + \mu v_2 v_2^T + \lambda_3 v_3 v_3^T + \lambda_4 v_4 v_4^T + \dots + \lambda_n v_n v_n^T$$

Y por tanto

$$B = A - \mu v_1 v_1^T = \mu v_2 v_2^T + \lambda_3 v_3 v_3^T + \lambda_4 v_4 v_4^T + \dots + \lambda_n v_n v_n^T$$

Se tiene por tanto que

$$Bv_1 = (A - \mu v_1 v_1^T)v_1 = \mu v_1 - \mu v_1 = 0$$

$$Bv_2 = (A - \mu v_1 v_1^T)v_2 = \mu v_2 - \mu v_1 \underbrace{v_1^T v_2}_{0} = \mu v_2$$

Esto significa que μ y v_2 son valor y vector propio de B sólo si son ortogonales a v_1 , condición que no se cumple siempre. Por tanto, Rayleight Quotient Iteration funcionaría sólo en algunos casos.

2. [25 puntos] Producto de su amplio conocimiento en valores y vectores propios, lo contratan en una gran empresa del Silicon Valley. En esta empresa, es necesario calcular los valores y vectores propios de una gran matriz Φ de tamaño $2n \times 2n$, que no cabe en la memoria de los computadores actuales. Sin embargo, usted propone particionar las matrices y estudiar sus propiedades de manera recursiva (divide and conquer, you say).

$$\Phi = \begin{bmatrix} A & B \\ C & D \end{bmatrix}, \text{ donde } A, B, C, D \text{ son matrices de } n \times n$$

(a) [5 Puntos] Si B y C son matrices nulas. ¿Cuáles son los valores y vectores propios de Φ, en función de los valores y vectores propios de A y D?

Respuesta:

Si A tiene valor y vector propio λ_i y u_i , entonces λ_i y $\begin{bmatrix} u_i \\ 0 \end{bmatrix}$ es valor propio de Φ . En efecto, se tiene:

$$\Phi \begin{bmatrix} u_i \\ 0 \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} u_i \\ 0 \end{bmatrix} = \begin{bmatrix} Au_i \\ 0 \end{bmatrix} = \begin{bmatrix} \lambda_i u_i \\ 0 \end{bmatrix} = \lambda_i \begin{bmatrix} u_i \\ 0 \end{bmatrix}$$

Similarmente, si D tiene valor y vector propio μ_i y v_i , entonces μ_i y $\begin{vmatrix} 0 \\ v_i \end{vmatrix}$ es valor propio de Φ , pues:

$$\Phi \begin{bmatrix} 0 \\ v_i \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} 0 \\ v_i \end{bmatrix} = \begin{bmatrix} 0 \\ Dv_i \end{bmatrix} = \begin{bmatrix} 0 \\ \mu_i v_i \end{bmatrix} = \mu_i \begin{bmatrix} 0 \\ v_i \end{bmatrix}$$

Es decir, conociendo los valores propios de A y D podemos calcular completamente y de manera simple los valores propios de Φ .

(b) [10 Puntos] Si A, B, C y D tienen el mismo vector propio u. ¿Que relación debe existir entre los valores propios de $A, B, C y D (\lambda_A, \lambda_B, \lambda_C y \lambda_D)$ y el valor propio de $\Phi \lambda_{\Phi}$, para que $w = \begin{bmatrix} u \\ u \end{bmatrix}$ sea un vector propio de Φ ? ¿Se cumple esta relacion siempre?

Respuesta:

$$\lambda_{\Phi} \Phi \begin{bmatrix} u \\ u \end{bmatrix} = \Phi \begin{bmatrix} u \\ u \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} u \\ u \end{bmatrix} = \begin{bmatrix} Au + Bu \\ Cu + Du \end{bmatrix} = \begin{bmatrix} \lambda_A u + \lambda_B u \\ \lambda_C u + \lambda_D u \end{bmatrix} = \begin{bmatrix} (\lambda_A + \lambda_B) u \\ (\lambda_C + \lambda_D) u \end{bmatrix}$$

Para que se cumpla la relación requerida necesitamos que

$$\lambda_C u = (\lambda_A + \lambda_B)u \tag{1}$$

$$\lambda_C u = (\lambda_C + \lambda_D) u \tag{2}$$

(3)

Como u no puede ser el vector completamente nulo, eso implica necesariamente que debe cumplirse

$$\lambda_C u = (\lambda_A + \lambda_B) = (\lambda_C + \lambda_D)$$

La condición anterior no se cumple necesariamente para matrices A, B, C y D arbitrarias, y por tanto la relación no puede utilizarse para subdividir el computo de los valores propios.

- (c) [10 Puntos] La persona que anteriormente trabajaba en su puesto alcanzó a completar la función fastAv(v), que para cada v entrega el resultado de Av sin cargar A en memoria (por ejemplo, con cálculo distribuído por filas en distintos computadores, a través de un cluster, o utilizando tarjetas GPU).
 - Utilizando llamadas a la función fastAv(v), escriba en detalle cómo resultaría el algoritmo de Power Iteration Distribuído. ¿Qué cambios son necesarios respecto al algoritmo tradicional?

Respuesta:

^{1:} \vec{x}_0 (Vector inicial), k (número de iteraciones).

^{2:} **for** j = 1 to k **do**

 $ec{u}_{j-1} = ec{x}_{j-1} / \| ec{x}_{j-1} \|_2$ $ec{x}_j = \mathbf{fastAv}(ec{u}_{j-1})$ $\lambda_j = ec{u}_{j-1}^T ec{x}_j$

^{6:} end for

^{7:} $\vec{u}_j = \vec{x}_j / ||\vec{x}_j||_2$

3. [25 puntos] [Aplicación de Integración Numérica] Tony Stark anda en la búsqueda de estudiantes de Computación Científica II que le ayuden a calcular derivadas fraccionarias. Tony se ha dado cuenta que su traje de Ironman podría ser aún más poderoso si en vez de calcular derivadas tradicionales se usan derivadas fraccionarias en la modelación de sus propulsores. Una forma de obtener derivadas fraccionarias es a través de la llamada Caputo's fractional derivative que se define como:

$$\frac{d^{\alpha}u(t)}{dt^{\alpha}} = \frac{1}{\Gamma(1-\alpha)} \int_{0}^{t} \frac{u'(y)}{(t-y)^{\alpha}} dy$$

para $0 < \alpha < 1$, con $\Gamma(\cdot)$ la muy conocida función gamma.

(a) [5 puntos] Realice un cambio de variable de tal forma que la integral sea entre -1 y 1. Simplifique lo más posible la integral obtenida. Respuesta Cambio de variable: $y = \frac{1}{2} \cdot t \cdot (x+1)$. Por lo tanto:

$$\frac{d^{\alpha}u(t)}{dt^{\alpha}} = \frac{1}{\Gamma(1-\alpha)} \cdot \left(\frac{t}{2}\right)^{1-\alpha} \cdot \int_{-1}^{1} \frac{u'((x+1)\frac{t}{2})}{(1-x)^{\alpha}} dx \tag{4}$$

(b) [10 puntos] Considere $u(t) = \sin(t)$ y que usted tiene los nodos y pesos de la cuadratura Gaussiana. Proponga un pseudo-código en donde se pueda obtener la función $g(t) = \frac{d^{0.5}u(t)}{dt^{0.5}}$. Justifique que para cada t, $0 < t < 2\pi$, se ha obtenido g(t) por lo menos con 5 dígitos de precisión. **Respuesta** $u(t) = \sin(t) \implies u'(t) = \cos(t)$. Lo que da origen a:

$$g(t) = \frac{d^{0.5}u(t)}{dt^{0.5}} = \frac{1}{\sqrt{\pi}} \cdot \left(\frac{t}{2}\right)^{0.5} \cdot \int_{-1}^{1} \frac{\cos((x+1)\frac{t}{2})}{(1-x)^{0.5}} dx \tag{5}$$

Se aproximará $w_N(t)$ como:

$$W_N(t) = \int_{-1}^1 \underbrace{\frac{\cos((x+1)\frac{t}{2})}{(1-x)^{0.5}} dx}_{f(x,t)} \approx \underbrace{\sum_{i=1}^N w_i \cdot f(x_i, t)}_{W_N(t)}$$
(6)

Donde, para un "t" fijo, se procederá a evaluar la aproximación de la integral por cuadratura gaussiana y se elegirá "N" para cada "t", de tal forma que se obtengan 5 dígitos de precisión, i.e "N" crecerá hasta que se observe que los primeros dígitos no varíen.

(c) [10 puntos] En la Figura 1 se observa las gráficas de $\sin(t)$, $\cos(t)$ y parcialmente g(t). Sin embargo, Tony Stark está interesado en saber si g(1) < 0.9, el cual no está incluído en la figura. Obtenga g(1) utilizando cuadratura Gaussiana con 5 puntos o 20 puntos de un método que utilice data equiespaciada.

Hint1: Utilice las Tablas 1 y 2 para la cuadratura Gaussiana, pero fijese que es solo parte de la información necesaria. Hint2: $\Gamma(0.5) = \sqrt{\pi}$ Respuesta

$$g(1) = \frac{1}{\sqrt{\pi}} \cdot \left(\frac{1}{2}\right)^{0.5} \cdot \int_{-1}^{1} \frac{\cos(\frac{(x+1)}{2})}{(1-x)^{0.5}} dx \tag{7}$$

$$\approx \frac{1}{\pi} \cdot \frac{1}{\sqrt{2}} \cdot \sum_{i=1}^{5} w_i \cdot \underbrace{\frac{\cos(\frac{(x_i+1)}{2})}{(1-x_i)^{0.5}}}_{(8)}$$

=0.7981 (9)

g(1) sí es menor a 0.9.

Figura 1: Figura de apoyo para pregunta 3.

		1
i	x_i	$\frac{1}{(1-x_i)^{0.5}}$
1	-0.997284342427938	0.707587335596064
2	-0.993818604885070	0.708202047294415
3	-0.982169887493326	0.710279962200758
4	-0.979645088956446	0.710732756086593
5	-0.971813849621953	0.712142727640283
6	-0.954402658718133	0.715307827713611
7	-0.928818873239705	0.720036109316754
8	-0.906179845938664	0.724299296341400
9	-0.865233372782187	0.732206215842642
10	-0.862403657792567	0.732762257620837
11	-0.833004876421338	0.738615113359548
12	-0.828895535181886	0.739444444079018
13	-0.825062367362497	0.740220562194942
14	-0.809106952900799	0.743477583379283
15	-0.723759193899827	0.761660971276241
16	-0.720621442904999	0.762355143113709
17	-0.651689511131937	0.778100679491962
18	-0.632943608944320	0.782554163365939
19	-0.541062450503966	0.805545137962062
20	-0.538469310105683	0.806223738485128
21	-0.537809273777730	0.806396737789444
22	-0.533664628660680	0.807485624250593
23	-0.511654212985950	0.813343069901929
24	-0.506117269885007	0.814836746052924
25	-0.493871424497175	0.818169696565987
26	-0.478545297591361	0.822399206873380
27	-0.440342159999575	0.833234346343784
28	-0.403001105881521	0.844249852292815
29	-0.402369179785956	0.844440045942652
30	-0.323830412297436	0.869128163274683
31	-0.319043378469135	0.870703842281077
32	-0.317870062181542	0.871091355337946
33	-0.236778248022235	0.899195408828345
34	-0.231372764234773	0.901166892918066
35	-0.212199710297993	0.908265696609887
36	-0.151830362388241	0.931763596514895
37	-0.149006343994747	0.932907934283287
38	-0.142079292443985	0.935732839722813
39	-0.133130319933884	0.939420579351295
40	-0.125163048596559	0.942740727367197
41	-0.105985381330591	0.950879110603474
42	-0.099223691296149	0.953799213480308
43	-0.066975975237025	0.968105482668396
44	-0.064179068384508	0.969376849564304
45	-0.061798959541962	0.970462709971802
46	-0.052764115802231 -0.035539189126403	0.974618079325053 0.982690438612736
48	-0.035339189120403	0.987662779346065
49	-0.025158091109109	0.98109859606300
50	0.0000000000000000000000000000000000000	1.0000000000000000
	0.0000000000000000000000000000000000000	1.0000000000000000000000000000000000000

i	x_i	$\frac{1}{(1-x_i)^{0.5}}$
51	0.003806838307487	1.001908870958321
52	0.015597910705206	1.007891393228804
53	0.047184089422321	1.024461164465312
54	0.054867925553268	1.028617121815634
55	0.068582099882058	1.036162116865031
56	0.082707866615409	1.044109784156898
57	0.135369995602973	1.075436689699203
58	0.175142527990627	1.101058879361603
59	0.176732891590501	1.102121863105076
60	0.214831582289871	1.128544240779296
61	0.217642898088720	1.130570073466131
62	0.222474261548603	1.134077183090643
63	0.245760688869591	1.151450884970522
64	0.255808355581097	1.159197952092757
65	0.289588051970752	1.186437517543554
66	0.341594217960446	1.232404234670168
67	0.391381853657539	1.281821499333593
68	0.393429705299443	1.283983465108743
69	0.407938157302389	1.299620232273278
70	0.423470186015838	1.317010127499408
71	0.449983922714478	1.348380017533652
72	0.457221321132620	1.357339882847603
73	0.474145309173178	1.379009073827777
74	0.492369879949691	1.403544893842440
75	0.516389059430832	1.437977005644316
76	0.538469310105683	1.471972537390792
77	0.553985811412057	1.497358053069137
78	0.630870311877495	1.645926782488919
79	0.685898577990577	1.784288386284842
80	0.711543782723473	1.861915845752787
81	0.713312953783380	1.867652033225242
82	0.718960214413579	1.886323161279351
83	0.721654702115750	1.895431332362841
84	0.723191519968734	1.900685688740337
85	0.745625986085708	1.982730231421010
86	0.755268276829044	2.021412122922712
87	0.772470222651503	2.096432477492443
88	0.774061464456026	2.103801910959187
89	0.775721910622455	2.111575314214413
90	0.776781869609156	2.116582820759128
91	$\begin{array}{c} 0.792819558907868 \\ 0.797597111664380 \end{array}$	$\begin{array}{c} 2.196977571513762 \\ \hline 2.222755262588595 \end{array}$
93	0.834113496571170	2.455242954225169
93	0.852338165166146	2.455242954225109
95	0.876004013839261	2.839855134196120
96	0.878006182893110	2.863064221751054
97	0.899412707007065	3.153032445114205
98	0.906179845938664	3.264765024008576
99	0.915950376394716	3.449309095039496
100	0.961125659430108	5.071874310268988
100	0.001120000400100	5.011014010200000

4. [25 puntos] [Convergencia de Integración Numérica] El método de Monte Carlo es otra forma de estimar el valor numérico de integrales. El método se basa en el cálculo de probabilidades, por ejemplo, si graficamos $f(x) = \sqrt{1-x^2}$ en el primer cuadrante obtenemos:

Figura 2: Línea sólida: $f(x) = \sqrt{1-x^2}$, × puntos bajo f(x) y o para puntos sobre f(x)

Donde las \times y \circ fueron generados aleatoriamente en $[0,1]^2$ con una Distribución Uniforme. En este caso sabemos que tenemos una probabilidad de $\pi/4$ (área bajo la curva sobre el área total) de acertar bajo la línea sólida. En la Figura 2, se observa que hay 8 \times s bajo la línea sólida de un total de 10, por lo que $\frac{\pi}{4}$ es aproximadamente $\frac{8}{10} = 0.8$ (i.e. $\pi \approx 3.2$).

(a) [15 puntos] Considere ahora que se obtuvo la siguiente data en función del número de evaluaciones.

Número de evaluaciones	Valor estimado
10^{1}	3.2
10^2	3.112
10^{3}	3.1192
10^{4}	3.14568
10^{5}	3.140104

Determine el órden del método. Respuesta Error_i: Tomando el primer y último punto para estimar la pendiente

$ \hat{\pi} - \pi $		$\log_{10}(Error_i)$
$ \hat{\pi} - 3.2 $	= 0.0584	-1.2335
$ \hat{\pi} - 3.112 $	= 0.0296	-1.5288
$ \hat{\pi} - 3.1192 $	= 0.0224	-1.6499
$ \hat{\pi} - 3.14568 $	= 0.0041	-2.3886
$ \hat{\pi} - 3.140104 $	= 0.0015	-2.8272

en escala log log, obtenemos:

$$\alpha = \frac{\Delta y}{\Delta x} \approx -0.39\tag{10}$$

o tomando todos los puntos $\hat{\alpha} = -0.4047$. \therefore El orden del método es ≈ 0.4 , *i.e* es menor que lineal.

(b) [10 puntos] Estime el valor de π por medio de integración numérica utilizando 10 puntos equiespaciados (usted elige el método) y calcule el error asociado. **Respuesta**

$$\pi = 4 \cdot \int_0^1 \sqrt{1 - x^2} dx \approx 4 \cdot \left(\sqrt{1 - x_1^2} + 2 \cdot \sum_{i=2}^9 \sqrt{1 - x_i^2} + \sqrt{1 - x_0^2} \right) \cdot \frac{1}{9^2}$$
 (11)

 $x_i = 0 + \frac{1}{9} \cdot i$, i = 0:9, $\hat{\pi} = 3.0982$, $error = |\pi - \hat{\pi}| = 0.0434$.