Facultatea de Electronică, Telecomunicații și Tehnologia Informației Ungurașu Ioan-Andrei 435E

Referat

Proiect 1 - Dispozitive și circuite electronice Stabilizator de tensiune cu element de reglaj serie

> Ungurașu Ioan-Andrei Grupa 435E

Facultatea de Electronică, Telecomunicații și Tehnologia Informației Ungurașu Ioan-Andrei 435E

Cuprins

Tema proiectului și datele	3
Date stabilizator:	3
Cerințe privind realizarea:	3
Cerințe privind traseele de interconectare	4
Cerințe privind fisierele Gerber standard 274X	4
Schema bloc	5
Schema electrică	6
Schema electrică de trecere în PCB editor:	6
Referința de tensiune:	6
Amplificatorul diferențial:	6
Element de reglaj serie:	7
Rețeaua de reacție:	7
Circuitul de protecție în temperatură:	7
Circuitul de protecție în curent:	7
Calcule	8
Componente	12
Simulări	13
Layout	16
TOP	17
BOT	18
Silk Screen Top	19
Solder Mask Top	20
Solder Paste Top	21
Fab	22
Foaie de catalog	23
Caracteristici:	23
Mod de utilizare:	23

Facultatea de Electronică, Telecomunicații și Tehnologia Informației Ungurașu Ioan-Andrei 435E

Tema proiectului și datele

Date stabilizator:

- N = 21
- Tensiunea de ieşire reglabilă în intervalul 10.5 21 V.
- Sarcina la ieşire de 1.05 kOhm.
- Deriva termică 1.06 < 2 mV/°C.
- Protecție la suprasarcină la 100 °C și la curent maxim 0.4 A.
- Tensiunea de intrare în intervalul 37.8 42 V.
- Domeniul temperaturilor 0° 70°C.
- Amplificarea în tensiune minimă (în buclă deschisă) a amplificatorului de eroare:
- minim 200.
- Semnalizarea prezenței tensiunilor de intrare/ieșire cu diodă de tip LED.

Cerințe privind realizarea:

Circuitul va fi realizat sub forma unui modul electronic a carui structura de interconectare (PCB) va respecta urmatoarele **cerinte de proiectare**:

- Dimensiunile PCB: 40mm x 40mm;
- Material FR4, dublu strat/ grosimea foliei de cupru 18 μm, grosimea plăcii 1,5 mm;
- Originea (punctul de coordonate (0,0)) va fi plasat în colţul din stânga-jos al plăcii de cablaj imprimat, astfel toate elementele proiectului vor avea coordonate pozitive;
- Dimensiunea traseelor și spațierea lor în concordanță cu specificațiile menționate.
- Toate componentele se vor plasa pe faţă superioară a plăcii, TOP;
- Componente pasive SMD chip 0805;
- Se pot folosi numai tranzistoare bipolare şi TEC-MOS în capsule SMD (SOT 23, DPAK).
 Tranzistoarele TEC-J pot fi utilizate numai dacă se justifică necesitatea acestora.
- Puncte de test: pătrate, maxim 5 justificate de planul de testare;
- Originea (punctul de coordonate (0,0)) va fi plasat în colţul din stânga-jos al plăcii de cablaj imprimat, astfel toate elementele proiectului vor avea coordonate pozitive;
- Faţă de marginea plăcii, se va păstra o gardare ("clearance") de 1,2 mm; aici nu vor fi plasate componente, trasee, texte, etc.;
- Placa va fi prevăzută cu 2 markeri fiduciali globali pe layerul TOP, la distanța de 200 mil fată de marginea plăcii, plasati convenabil; acesti markeri vor exista si pe layerul
- Solder Paste Top (suprapuşi peste cei de pe TOP); vor fi utilizaţi în momentul alinierii sablonului cu placa. Marcajul fiducial va fi un cerc de diametru minim 1mm pe layerul respectiv, aflat într-un spaţiu circular de diametru minim dublu faţă de cercul interior, în care nu se va afla nimic pe nici un layer;
- Se va acorda o atenție sporită layer-ului Mască de inscripționare (Silk Screen); acesta nu trebuie să se regăsească pe pad-urile componentelor;
- Se va genera un nou layer neelectric, MECANIC. Acesta va conţine: conturul plăcii, desenul de găurire ("drill drawing") şi tabelul de găurire ("drill chart/table", "drill

Facultatea de Electronică, Telecomunicații și Tehnologia Informației Ungurașu Ioan-Andrei 435E

legend"), o secţiune transversală prin circuitul imprimat proiectat ("layer stack-up") şi informaţiile mecanice necesare pentru fabricaţia PCB;

- Cotele de gabarit/dimensiunile plăcii nu trebuie să se regăsească pe layer-ul electric
 TOP; acestea, dacă există, se vor plasa pe un layer neelectric mecanic;
- Placa va fi prevăzută cu elementele de identificare ale proiectantului (nume, prenume, grupă, PDCE I 2020-2021).

Cerințe privind traseele de interconectare

- Curent de sute de 1A 30 mil;
- Curent de sute de mA 22 mil;
- Semnal 16 mil;
- Spaţierea, în toate cazurile, va fi de 12 mil.
- Găurile de trecere pentru semnale (vias-uri) vor avea diametrul de 0,4 mm.

Cerințe privind fisierele Gerber standard 274X

- Conturul plăcii (board outline);
- Layer electric TOP;
- Layer electric BOTTOM;
- Layer neelectric Mască de inscripționare (Silk Screen Top);
- Layer neelectric Mască de protecție (Solder Mask Top);
- Layer neelectric Şablon (Solder Paste Top);
- Lista de aperturi şi fişierul de găurire.

Facultatea de Electronică, Telecomunicații și Tehnologia Informației Ungurașu Ioan-Andrei 435E

Schema bloc

Facultatea de Electronică, Telecomunicații și Tehnologia Informației Ungurașu Ioan-Andrei 435E

Schema electrică

Schema electrică de trecere în PCB editor:

Referința de tensiune:

Dz1, Dz2

Două diode zenner în serie pe care tensiunea va fi de 12.7V. Acestea au drift termic foarte mic.

Amplificatorul diferențial:

R1, R2, R4, Q2, Q3, Q4, Q5

Amplificator diferential cu emitori degenerați și cu oglindă de curent (Q5, Q6). Tensiunea de referință pe baza lui Q2, reacția negativă închisă prin baza lui Q4.

Facultatea de Electronică, Telecomunicații și Tehnologia Informației Ungurașu Ioan-Andrei 435E

Amplificarea în buclă deschisă:

$$a_v = gm_4 \times Ro = gm_4 \times (R\pi_1 + (1+\beta) \times [(R_5 + R_{P1})||R_{LOAD}]).$$

Element de reglaj serie:

Q1

De tip MJD31C pentru a face față curentuluide ordinul sutelor de miliamperi care poate apărea înainte de activarea protecției în curent.

Rețeaua de reacție:

P1(R12),R5

Tensiunea eșantionată $V_{e\S} = V_{OUT} imes rac{R_5}{R_5 + R_{12}}$

Circuitul de protecție în temperatură:

Q8, Q7, R6, R7, R8

Deriva termică fiind de 2mV/degC, și observând că tranzistorul are nevoie de Vbe aproximativ 800mV în viața reală pentru a se deschide complet, am pus la baza lui un divizor de tensiune care să îl ţină la 600mV.

Circuitul de protecție în curent:

Q9, R9, R10, R11

Am ales rezistențele în așa fel încât atunci când pe la colectorul lui Q1 avem un curent de 400mA, să avem V_{be9}= 800mV, ca să se deschide Q9, protecția.

Facultatea de Electronică, Telecomunicații și Tehnologia Informației Ungurașu Ioan-Andrei 435E

Calcule

Facultatea de Electronică, Telecomunicații și Tehnologia Informației Ungurașu Ioan-Andrei 435E

Facultatea de Electronică, Telecomunicații și Tehnologia Informației Ungurașu Ioan-Andrei 435E

Palend 1 2 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 2 3 2 2 1 1 2 3 2 2 3 3 2 3 2	TH	Pated 12, 2, 2, 5, 5, 7, 8, 63, 7 0, 08 W		
PAROS = 0,000 W PAROS = 0,000 W PAS = 0,00 W PAS = 0,00 W PAS = 0,000 W PAI = 0,000 W PAI = 0,000 W PAI = 0,000 W VCEI = 22 W JEI = WARMANA VCEI = 22 W JES = 3,2 MA VCEI = 25,1 W JES = 3,2 MA VCEI = 25,1 W JES = 3,2 MA VCEI = 25,1 W VCEI = 25,1 W				
Pais = 0.01 W Pas = 0.08 W Pas = 0.08 W Pas = 0.0006 W Pas = 0.012 W Pas = 0.0006 W Pas = 0.0005 W Pal = 0.0005 W Pal = 0.0005 W Pal = 0.005 W Sez = 3,2 mA Jes = 6,4 mA Jes = 3,2 mA Jes = 3,3 V Jes = 3,3 V				
PRA = 0,08W PRA = 0,013W PRG = 0,08W PRG = 2,67:10 W PRA = 0,0006W PRA = 0,0006W PRA = 0,0003W PRH = 0,0003W PRH = 0,0003W PRH = 0,0003W JEL = 1430 MA VCEL = 22V JEZ = 3,2 MA VCEZ = 29,1V JES = 6,4 MA VCEZ = 3,5 V VCEZ = 3,5 V JES = 3,2 MA VCEZ = 3,5 V	团口			1
Pas = 0,08 W Pas = 0,013 W Pas = 0,0006 W Pas = 0,0006 W Pas = 0,0003 W Pall = 0,0003 W Pall = 0,0003 W Pall = 0,0003 W Vel = 22 U Jel = 44 m A Jes = 3,2 m A Ves = 3,3 V Jes = 3,2 m A Ves = 3,3 V Jes = 3,2 m A Ves = 3,3 V Jes = 3,2 m A Ves = 3,3 V Jes = 3,2 m A Ves = 3,3 V Jes = 3,2 m A Ves = 3,3 V Jes = 3,2 m A Ves = 3,3 V Jes = 3,3 V				1
PRS = 0,08 W PRS = 0,0006 W PRS = 0,0003 W PRI = 0,0003 W PRI = 0,0003 W PRI = 0,05 W DEI = WAND MA JES = 3,2 MA VCES = 25,1 V JES = 6,4 MA JES = 3,2 MA VCES = 25,1 V JES = 3,2 MA VCES = 25,1 V JES = 3,2 MA VCES = 21,1 V JES = 3,2 MA VESS = 21,1 V JES = 3,2 MA VESS = 21,1 V				
PRI = 0,0006 W PRI = 0,0006 W PRI = 0,0003 W PRI = 0,0003 W PRI = 0,0003 W VCEI = 22V JEI = WARMANA VCEI = 25,1V JES = 3,2 mA VCEI = 25,1V JES = 3,2 mA VCEI = 3,5V JES = 3,2 mA VCEI = 25,1V JES = 3,2 mA VCEI = 25,1V VCEI = 21,1V		PR4= 0,013W		
PR3 = 0,0006 W PR3 = 0,0003 W PR10 = 0,0003 W PR1 = 0,0003 W PR1 = 0,05 W VCE1 = 22 U JE2 = 3,2 mA VCE2 = 23,1 V JE3 = 6,4 mA VCE3 = 3,5 V JE4 = 3,2 mA VCE4 = 8,6 U JE5 = 3,2 mA VEE5 = 21,1 V JE5 = 3,2 mA VEE5 = 21,1 V JE6 = WWWMMA 3,2 mA VEE6 = 0,5 V		PR5 = 0,08 W		
PRS = 0,012 W PRS = 0,0006 W RR10 = 0,0003 W PRI = 0,0003 W PPI = 0,05 W JEL = WILLIAM MA VCEL = 22 U VCEZ = 25,1 V JES = 6,4 mA VCES = 3,5 V JES = 3,2 mA VCES = 3,5 V JES = 3,2 mA VCES = 21,1 V		PRG=2,67.10 W		
PRS = 0,012 W PRS = 0,0006 W RR10 = 0,0003 W PRI = 0,0003 W PPI = 0,05 W JEL = WILLIAM MA VCEL = 22 U VCEZ = 25,1 V JES = 6,4 mA VCES = 3,5 V JES = 3,2 mA VCES = 3,5 V JES = 3,2 mA VCES = 21,1 V		Poz = 0,0006 W		1
PR3 = 0,0006 W RR10 = 0,0003 W PR1 = 0,0003 W PP1 = 0,05 W JE1 = 11/18 mA VCE1 = 22 U JE2 = 3,2 mA VCE2 = 25,1 V JE3 = 6,4 mA VCE3 = 3,3 V JE4 = 3,2 mA VCE4 = 8,6 V JE5 = 3,2 mA VEE5 = 21,1 V JE5 = 3,2 mA VEE6 = 0,5 V JE6 = WWWMANA 3,2 mA VEC6 = 0,5 V				
Pall = 0,0003 W Pall = 0,0003 W Pall = 0,005 W Sel = 11/2 ma A VCE1 = 22 U VCE2 = 29,1 V JE3 = 6,4 m A VCE3 = 9,3 V JE4 = 3,2 m A VCE4 = 8,6 U JE5 = 3,2 m A VEC5 = 21,1 V JE6 = WHAMAM 3,2 m A VEC6 = 0,5 V				
PRI = 0,0003 W PPI = 0.05 W JEI = 11/10 mA VCEI = 22U JE2 = 3,2 mA VCE2 = 29,1V JE3 = 6,4 mA VCE3 = 3,3V JE4 = 3,2 mA VCE4 = 8,6U JE5 = 3,2 mA VEE6 = 21,1V JE6 = 41/14/11/11/11/11/11/11/11/11/11/11/11/1				
PPI = 0.05 W JE1 = 1/9 mA VCE1 = 22 U JE2 = 3,2 mA VCE2 = 25,1 V JE3 = 6,4 mA VCE3 = 3,3 V JE4 = 3,2 mA VCE4 = 8,6 U JE5 = 3,2 mA VEC5 = 21,1 V JE6 = 6,4 mA VEC5 = 21,1 V JE6 = 6,4 mA VEC5 = 21,1 V				
JE1 = 149 mA VCE1 = 22U JE2 = 3,2 mA VCE2 = 25,1V JE3 = 6,4 mA VCE3 = 3,3V JE4 = 3,2 mA VCE4 = 8,6V JE5 = 3,2 mA VEC5 = 21,1V JE5 = 3,2 mA VEC5 = 21,1V JE6 = MMMMA 3,2 mA VEC6 = 0,5V				
JE2 = 3,2 mA VCE2 = 25,1V JE3 = 6,4 mA VCE3 = 3,3V JE4 = 3,2 mA VCE4 = 8,6V JE5 = 3,2 mA VEC5 = 21,1V JE5 = 3,2 mA VEC5 = 21,1V JE6 = WMMMA 3,2 mA VEC6 = 0,5V				
JES = 6, 4 m A VCES = 3,3V JEL = 3,2 m A VCEL = 8,6V JES = 3,2 m A VECS = 21,1V JES = 3,2 m A VECS = 0,5V JEG = WWMMA 3,2 m A VECS = 0,5V		DE = William A		
JES = 6, 4 mA VCES = 3,3V JEH = 3,2 mA VCES = 8,6V JES = 3,2 mA VECS = 21,1V JEG = WANTALA 3,2 mA VECS = 0,5V		JE2 = 3,2 mA	VCE2 = 24,1V	
JEG = 3,2 mA VCEG = 8,6V JEG = 3,2 mA VEG = 21,1V JEG = WMMMA 3,2 mA VEG = 0,5V			VCEB = 9,9V	
JEG = WHAMAIA 3,2 mA VECS = 21,1V			VCE4 = 8,6V	
JEG = WHOLMAIA 3,2 mA VECG = 0,5 V				
JEG = BYING MAIN 2,2 MILLS				
1/ 29.50		JEG = WINNIAMA 3,2 mA		
			VCE9 = 23,5V	

Facultatea de Electronică, Telecomunicații și Tehnologia Informației Ungurașu Ioan-Andrei 435E

Componente

Item	Quantity	Reference	Part	Valori standard	Tip constructiv
1	1	Dz1	BZX84-C10		
2	1	Dz2	BZX84-C2V7		
3	1	D1	OF-SMD2012B		
4	1	Q1	QMJD31C		
5	6	Q2, Q3, Q4, Q7, Q8, Q9	BC846BL		
6	2	Q5, Q6	BC856BL		
7	9	Rled1, Rled2, Rled3, Rled4, R4, Rled5, Rled6, Rled7, Rled8	0805S8J0331T5E	330 [Ohm]	Thick Film
8	4	Rload1, Rload2, Rload3, Rload4	0805S8J0221T5E	220 [Ohm]	Thick Film
9	1	Rload5	0805S8F1500T5E	150 [Ohm]	Thick Film
10	2	Rload6, R6	0805S8F220JT5E	22 [Ohm]	Thick Film
11	2	R1, R2	0805S8J0101T5E	100 [Ohm]	Thick Film
12	2	R3, R8	0805S8J0103T5E	10 [kOhm]	Thick Film
13	1	R5	0805S8J0104T5E	100 [kOhm]	Thick Film
14	1	R7	0805S8J0511T5E	510 [Ohm]	Thick Film
15	1	R9	0805S8J010JT5E	1 [Ohm]	Thick Film
16	2	R10, R11	0805S8J047KT5E	0.47 [Ohm]	Thick Film
17	1	R12	TS53YL104MR10	100 [kOhm]	Single Turn Cermet Sealed
18	5	masa, Vref, Vout, Vin, V0	CON1		

Facultatea de Electronică, Telecomunicații și Tehnologia Informației Ungurașu Ioan-Andrei 435E

Simulări

Vref(Vin)

Vref(t)

 $Vref(0^{\circ}) = 12.63 V$

Vref(70°) = 12.61 V

Deriva termica: 0.29 mV/°C

Facultatea de Electronică, Telecomunicații și Tehnologia Informației Ungurașu Ioan-Andrei 435E

Vout(Vin)

Vout(t)

Vout(0°) = 20.01 V

Vout(70°) = 19.94 V

Deriva termica: 1.06 mV/°C

Facultatea de Electronică, Telecomunicații și Tehnologia Informației Ungurașu Ioan-Andrei 435E

Vout(Iout)

Punctul static de funcționare:

I_R1[9,2]	-3.08mA
I R10[24,26]	-19.67mA
I_R11[Vout,24]	-19.67mA
I_R2[11,2]	-3mA
I_R3[10,2]	-2.94mA
I_R4[0,1]	-5.83mA
I_R5[0,4]	-126.3uA
I_R6[0,7]	-1.14mA
I_R7[7,5]	-1.14mA
	-1.14mA
I_R8[5,17]	
I_R9[26,20]	-19.67mA
I_Rled1[8,18]	-14.73mA
I_Rled2[18,25]	-14.73mA
I_Rled3[25,29]	-14.73mA
I_Rled4[29,30]	-14.73mA
I_Rled5[30,27]	-14.73mA
I_Rled6[27,21]	-14.73mA
I_Rled7[21,13]	-14.73mA
I_Rled8[13,2]	-14.73mA
I_Rload1[0,3]	-19.54mA
I_Rload2[3,14]	-19.54mA
I_Rload3[14,22]	-19.54mA
I_Rload4[22,28]	-19.54mA
I_Rload5[28,23]	-19.54mA
I_Rload6[23,Vout]	-19.54mA
I_Vin[2,0]	-44.4mA
V_R1[9,2]	-307.74mV
V_R10[24,26]	-9.25mV
V_R11[Vout,24]	-9.25mV
V_R2[11,2]	-300.32mV
V_R3[10,2]	-29.37V
V_R4[0,1]	-1.92V
V_R5[0,4]	-12.63V
V_R6[0,7]	-24.98mV
V_R7[7,5]	-579.09mV
V_R8[5,17]	-11.36V
V_R9[26,20]	-19.67mV
V_Rled1[8,18]	-4.86V
V_Rled2[18,25]	-4.86V
V_Rled3[25,29]	-4.86V
V_Rled4[29,30]	-4.86V
V_Rled5[30,27]	-4.86V
V_Rled6[27,21]	-4.86V
V_Rled7[21,13]	-4.86V
V_Rled8[13,2]	-4.86V
V_Rload1[0,3]	-4.3V
V_Rload2[3,14]	-4.3V
V_Rload3[14,22]	-4.3V
V_Rload4[22,28]	-4.3V
	-4.3V -2.93V
V_Rload5[28,23]	-2.93V -429.77mV
V_Rload6[23,Vout]	
V_Vin[2,0]	42V
V_Z1[6,10]	-9.98V
V_Z2[0,6]	-2.65V
V_Z3[0,8]	-3.12V
Vout	20.55V

Vout	20.55V	
VP_1	1.92V	
VP_10	12.63V	
VP_11	41.7V	
VP_12	21.17V	
VP_13	37.14V	
VP_14	8.6V	
VP_15	11.94V	
VP_17	11.97V	
VP_18	7.98V	
VP_19	41.02V	
VP_2	42V	
VP_20	20.59V	
VP_21	32.28V	
VP_22	12.89V	
VP_23	20.12V	
VP_24	20.56V	
VP_25	12.84V	
VP_26	20.57V	
VP_27	27.42V	
VP_28	17.19V	
VP_29	17.7V	
VP_3	4.3V	
VP_30	22.56V	
VP_4	12.63V	
VP_5	604.07mV	
VP_6	2.65V	
VP_7	24.98mV	
VP_8	3.12V	
VP_9	41.69V	
VP Vout	20.55V	

Facultatea de Electronică, Telecomunicații și Tehnologia Informației Ungurașu Ioan-Andrei 435E

Layout

UNIVERSITATEA POLITEHNICA din BUCURESTI Facultatea de Electronică, Telecomunicații și Tehnologia Informației Ungurașu Ioan-Andrei 435E

TOP

Facultatea de Electronică, Telecomunicații și Tehnologia Informației Ungurașu Ioan-Andrei 435E

BOT

Facultatea de Electronică, Telecomunicații și Tehnologia Informației Ungurașu Ioan-Andrei 435E

Silk Screen Top

Facultatea de Electronică, Telecomunicații și Tehnologia Informației Ungurașu Ioan-Andrei 435E

Solder Mask Top

Facultatea de Electronică, Telecomunicații și Tehnologia Informației Ungurașu Ioan-Andrei 435E

Solder Paste Top

Facultatea de Electronică, Telecomunicații și Tehnologia Informației Ungurașu Ioan-Andrei 435E

Fab

Facultatea de Electronică, Telecomunicații și Tehnologia Informației Ungurașu Ioan-Andrei 435E

Foaie de catalog

Caracteristici:

Tensiunea de ieșire reglabilă în intervalul 10.5 – 21 V.

Sarcina la ieșire de 1.05 kOhm.

Deriva termică 1.06 mV/°C.

Protecție la suprasarcină la 100 oC și la curent maxim 0.4 A.

Tensiunea de intrare în intervalul 37.8 – 42 V.

Domeniul temperaturilor 0° – 70°C.

Amplificarea în tensiune minimă (în buclă deschisă) a amplificatorului de eroare 4500.

Dimensiunile PCB: 40mm x 40mm.

Material PCB: FR4, dublu strat/grosimea foliei de cupru 18 μm, grosimea plăcii 1,5 mm.

Conectori: masa, Vref, Vout, Vin, V0.

Mod de utilizare:

Bornele +/- ale sursei de curent continuu se vor regla la conectorii Vin/masa.

Tensiunea de ieșire se va regla din potențiometrul P1.

Tensiunea de ieșire se va măsura cu ajutorul conectorilor Vout și masa/V0.

Tensiunea de referință se va măsura cu ajutorul Vref și masa/V0.