Model Checking Regular Safety Properties

Lecture #8 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

November 12, 2008

Overview Lecture #8

- ⇒ Regular Safety Properties
 - Verifying Regular Safety Properties
 - Reduction to Invariant Checking
 - Proof of Correctness
 - The Algorithm

Safety properties

- LT property P_{safe} over AP is a safety property if
 - for all $\sigma \not\in P_{safe}$ there exists a finite prefix $\widehat{\sigma}$ of σ such that:

$$P_{safe} \cap \left\{ \sigma' \in \left(2^{AP}\right)^{\omega} \mid \widehat{\sigma} \in \mathit{pref}(\sigma) \right\} = \varnothing$$

• The set *bp* of *bad prefixes* for P_{safe} :

$$bp(P_{safe}) = (2^{AP})^* \setminus pref(P_{safe})$$

• The set *mbp* of *minimal bad prefixes* for P_{safe} :

$$\textit{mbp}(P_{\textit{safe}}) \ = \ \{\ \sigma \in \left(2^{\textit{AP}}\right)^* \mid \textit{pref}(\sigma) \ \cap \ \textit{bp}(P_{\textit{safe}}) = \{\ \sigma\ \}\ \}$$

Regular safety properties

• Definition:

Safety property P_{safe} is regular if $bp(P_{safe})$ is a regular language

• Or, equivalently:

Safety property P_{safe} is regular if there exists a finite automaton over the alphabet 2^{AP} recognizing $bp(P_{safe})$

Refresh your memory: Finite automata

A nondeterministic finite automaton (NFA) \mathcal{A} is a tuple $(Q, \Sigma, \delta, Q_0, F)$ where:

- Q is a finite set of states
- Σ is an alphabet
- $\delta: Q \times \Sigma \to 2^Q$ is a transition function

- $Q_0 \subseteq Q$ a set of initial states
- $F \subseteq Q$ is a set of accept (or: final) states

Language of an automaton

- NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ and word $\mathbf{w} = \mathbf{A}_1 \dots \mathbf{A}_n \in \Sigma^*$
- A *run* for w in A is a finite sequence $q_0 q_1 \ldots q_n$ such that:
 - $q_0 \in Q_0$ and $q_i \xrightarrow{A_{i+1}} q_{i+1}$ for all $0 \leqslant i < n$
- Run $q_0 q_1 \dots q_n$ is accepting if $q_n \in F$
- $w \in \Sigma^*$ is *accepted* by A if there exists an accepting run for w
- The accepted language of A:

 $\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \text{ there exists an accepting run for } w \text{ in } \mathcal{A} \}$

• NFA \mathcal{A} and \mathcal{A}' are equivalent if $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$

Facts about finite automata

- They are as expressive as regular languages
- They are closed under ∩ and complementation
 - NFA $\mathcal{A} \otimes B$ (= cross product) accepts $\mathcal{L}(A) \cap \mathcal{L}(B)$
 - Total DFA $\overline{\mathcal{A}}$ (= swap all accept and normal states) accepts $\overline{\mathcal{L}(A)} = \Sigma^* \setminus \mathcal{L}(\mathcal{A})$
- They are closed under determinization (= removal of choice)
 - although at an exponential cost.....
- $\mathcal{L}(A) = \emptyset$? = check for a reachable accept state in A
 - this can be done using a simple depth-first search
- ullet For regular language ${\mathcal L}$ there is a unique minimal DFA accepting ${\mathcal L}$

Regular safety properties

• Definition:

Safety property P_{safe} is regular if $bp(P_{safe})$ is a regular language

• Or, equivalently:

Safety property P_{safe} is regular if there exists an NFA \mathcal{A} over the alphabet 2^{AP} with $\mathcal{L}(\mathcal{A}) = bp(P_{safe})$

Example regular safety properties

- Every invariant (over AP) is a regular safety property
 - traces of bad prefixes are of the form $\Phi^*(\neg \Phi)$ true*
 - where Φ is the invariant condition
 - symbol Φ stands for any $A \subseteq AP$ with $A \models \Phi$
- An example regular property which is not an invariant:

"a red light is immediately preceded by a yellow light"

An example non-regular safety property:

"The number of inserted coins is at least the number of dispensed drinks"

9

Details

Property

Safety property P_{safe} is regular if and only if $\mathit{mbp}(P_{safe})$ is a regular language

Property

Safety property P_{safe} is regular if and only if $\mathit{mbp}(P_{safe})$ is a regular language

How to check whether a finite transition system satisfies a regular safety property?

Peterson's banking system

Person Left behaves as follows:

Person Right behaves as follows:

```
egin{aligned} 	extbf{while} 	ext{ true } \{ & \dots & \\ & \dots & \\ 	extbf{true } \} \\ 	extbf{wt}: & b_1, x = \text{true}, 2; \\ 	extbf{wt}: & \text{wait until}(x == 1 \mid \mid \neg b_2) \{ \\ 	extbf{cs}: & \dots & \text{@account}_L \dots \} \\ 	extbf{b}_1 = \text{false}; & \dots & \\ 	extbf{h}_1 = \text{false}; & \dots & \\ 	extbf{h}_2 = \text{false}; & \dots & \\ 	extbf{h}_3 = \text{false}; & \dots & \\ 	extbf{h}_4 = \text{false}; & \dots & \\ 	extbf{h}_5 = \text{false}; & \dots & \\ 	extbf{h}_6 = \text{f
```

```
egin{array}{lll} 	extbf{while} & 	ext{true} & \{ & & & & \\ & & & & & \\ & & & & \\ 	ext{} & & \\ 	ext{}
```

Is the banking system safe?

Can we guarantee that only one person at a time has access to the bank account?

"always \neg (@account_L \land @account_R)"

Is the banking system safe?

- Safe = at most one person may have access to the account
- Unsafe: two have access to the account simultaneously
 - unsafe behaviour can be characterized by bad prefix
 - alternatively (in this case) by the finite automaton:

- Checking safety: $Traces(TS_{Pet}) \cap BadPref(P_{safe}) = \varnothing$?
 - intersection, complementation and emptiness of languages . . .

Problem statement

Let

- P_{safe} be a *regular* safety property over AP
- \mathcal{A} be an NFA recognizing the bad prefixes of P_{safe}
 - assume that $\varepsilon \notin \mathcal{L}(\mathcal{A})$
 - \Rightarrow otherwise all finite words over 2^{AP} are bad prefixes and $P_{safe}=\varnothing$
- TS be a *finite* transition system (over AP) without terminal states

How to establish whether $TS \models P_{safe}$?

Basic idea of the algorithm

$$TS \models P_{safe}$$
 if and only if $Traces_{fin}(TS) \cap bp(P_{safe}) = \varnothing$ if and only if $Traces_{fin}(TS) \cap \mathcal{L}(\mathcal{A}) = \varnothing$ if and only if $TS \otimes \mathcal{A} \models$ "always" Φ

But this amounts to invariant checking on $TS \otimes \mathcal{A}$

⇒ checking regular safety properties can be done by depth-first search!

Synchronous product (revisited)

For transition system $TS = (S, Act, \rightarrow, I, AP, L)$ without terminal states and $A = (Q, \Sigma, \delta, Q_0, F)$ an NFA with $\Sigma = 2^{AP}$ and $Q_0 \cap F = \emptyset$, let:

$$TS \otimes A = (S', Act, \rightarrow', I', AP', L')$$
 where

- $S' = S \times Q$, AP' = Q and $L'(\langle s, q \rangle) = \{q\}$
- \rightarrow ' is the smallest relation defined by: $\frac{s \xrightarrow{\alpha} t \land q \xrightarrow{L(t)} p}{\langle s, q \rangle \xrightarrow{\alpha}' \langle t, p \rangle}$
- $I' = \{ \langle s_0, q \rangle \mid s_0 \in I \land \exists q_0 \in Q_0. \ q_0 \xrightarrow{L(s_0)} q \}$

without loss of generality it may be assumed that $TS \otimes A$ has no terminal states

Example product

A note on terminal states

- Although TS has no terminal state $TS \otimes A$ may have one
- This can only occur if $\delta(q,A)=\varnothing$ for some $A\subseteq AP$
- Let NFA \mathcal{A} with some reachable state q with $\delta(q,A)=\varnothing$
- Obtain an equivalent NFA A' as follows:
 - introduce new state $q_{trap} \not \in Q$
 - if $\delta(q, A) = \emptyset$ let $\delta'(q, A) = \{ q_{trap} \}$
 - set $\delta'(q_{trap}, A) = \{ q_{trap} \}$ for all $A \subseteq AP$
 - keep all other transitions that are present in ${\cal A}$
- \Rightarrow Assume that $TS \otimes A$ has no terminal states

Verification of regular safety properties

Let TS over AP, NFA \mathcal{A} , and P a regular safety property with $\mathcal{L}(\mathcal{A}) = bp(P)$

The following statements are equivalent:

(a)
$$TS \models P$$

(b)
$$\mathit{Traces}_{\mathit{fin}}(\mathit{TS}) \cap \mathcal{L}(\mathcal{A}) = \varnothing$$

(c)
$$TS \otimes A \models P_{inv(A)} = \bigwedge_{q \in F} \neg q$$

Proof

Counterexamples

For each initial path fragment
$$\langle s_0, q_1 \rangle \ldots \langle s_n, q_{n+1} \rangle$$
 of $\mathit{TS} \otimes \mathcal{A}$: $q_1, \ldots, q_n \not \in \mathit{F} \text{ and } q_{n+1} \in \mathit{F} \quad \Rightarrow \quad \underbrace{\mathit{trace}(s_0 \, s_1 \ldots s_n)}_{\text{bad prefix for } \mathit{P_{safe}}} \in \mathcal{L}(\mathcal{A})$

Verification algorithm

Input: finite transition system TS and regular safety property P_{safe} Output: true if $TS \models P_{safe}$. Otherwise false plus a counterexample for P_{safe} .

```
Let NFA \mathcal{A} (with accept states F) be such that \mathcal{L}(\mathcal{A}) = bp(P_{safe}); Construct the product transition system TS \otimes \mathcal{A}; Check the invariant P_{inv(\mathcal{A})} with proposition \neg F = \bigwedge_{q \in F} \neg q on TS \otimes \mathcal{A} if TS \otimes \mathcal{A} \models P_{inv(\mathcal{A})} then return true else Determine initial path fragment \langle s_0, q_1 \rangle \ldots \langle s_n, q_{n+1} \rangle of TS \otimes \mathcal{A} with q_{n+1} \in F return (false, s_0 s_1 \ldots s_n) fi
```

24

Example

Time complexity

The time and space complexity of checking $TS \models P_{safe}$ is in:

$$\mathcal{O}(|TS|\cdot |\mathcal{A}|)$$

where \mathcal{A} is an NFA with $\mathcal{L}(\mathcal{A}) = \textit{mbp}(P_{\textit{safe}})$

The size of NFA \mathcal{A} , denoted $|\mathcal{A}|$, is the number of states and transitions in \mathcal{A} :

$$|\mathcal{A}| = |Q| + \sum_{q \in Q} \sum_{A \in \Sigma} |\delta(q, A)|$$