Exp.No:04	
07-04-23	Multivariate Analysis

Aim: To Perform Multivariate analysis on the given data sets.

Algorithm:

STEP 1: Import the built libraries required to perform EDA and outlier removal.

STEP 2: Read the given csv file

STEP 3: Convert the file into a dataframe and get information of the data.

STEP 4: Return the objects containing counts of unique values using (value_counts()).

STEP 5: Plot the counts in the form of Histogram or Bar Graph.

STEP 6: Use seaborn the bar graph comparison of data can be viewed.

STEP 7: Find the pairwise correlation of all columns in the dataframe.corr()

STEP 8: Save the final data set into the file

Program & Output:

1.SuperStore dataset

Code:

SuperStore Dataset

import pandas as pd import seaborn as sns import numpy as np import matplotlib.pyplot as plt df=pd.read_csv("/content/SuperStore.csv") df.head()																
	Row	Order ID	Order Date		Ship Mode	Customer ID	Customer Name	Segment	Country	City	State	Postal Code	Region	Product ID	Category	Sub- Category
0	1	CA- 2017- 152156	08- 11- 2017	11- 11- 2017	Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderson	Kentucky	42420.0	South	FUR-BO- 10001798	Furniture	Bookcase
1	2	CA- 2017- 152156	08- 11- 2017	11- 11- 2017	Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderson	Kentucky	42420.0	South	FUR-CH- 10000454	Furniture	Chair
2	3	CA- 2017- 138688	12- 06- 2017	16- 06- 2017	Second Class	DV- 13045	Darrin Van Huff	Corporate	United States	Los Angeles	California	90036.0	West	OFF-LA- 10000240	Office Supplies	Label

%

df.describe()

	Row ID	Postal Code	Sales
count	9800.000000	9789.000000	9800.000000
mean	4900.500000	55273.322403	230.769059
std	2829.160653	32041.223413	626.651875
min	1.000000	1040.000000	0.444000
25%	2450.750000	23223.000000	17.248000
50%	4900.500000	58103.000000	54.490000
75%	7350.250000	90008.000000	210.605000
max	9800.000000	99301.000000	22638.480000

```
df.isnull().sum()
   Row ID
                     0
   Order ID
                     0
   Order Date
                     0
   Ship Date
   Ship Mode
                     0
   Customer ID
                     0
   Customer Name
   Segment
                     0
   Country
   City
                     a
   State
   Postal Code
                   11
   Region
   Product ID
   Category
   Sub-Category
                     0
   Product Name
                     0
   Sales
   dtype: int64
```

```
0
```

Row ID

```
df['Postal Code']=df["Postal Code"].fillna(df['Postal Code'].mode()[0])
df.isnull().sum()
```

Order ID Order Date Ship Date Ship Mode Customer ID 0 Customer Name 0 Segment Country City 0 State Postal Code 0 0 Region Product ID 0 Category 0 Sub-Category 0 Product Name 0 Sales dtype: int64

0

0

df.dtypes

Row ID int64 Order ID object Order Date object Ship Date object Ship Mode object Customer ID object Customer Name object Segment object Country object City object State object Postal Code float64 Region object object Product ID Category object Sub-Category object Product Name object Sales float64 dtype: object


```
[10] states=df.loc[:,["State","Postal Code"]]
    states=states.groupby(by=["State"]).sum().sort_values(by="Postal Code")
    plt.figure(figsize=(8,3))
    sns.barplot(x=states.index,y="Postal Code",data=states)
    plt.xticks(rotation = 90)
    plt.xlabel=("STATES")
    plt.ylabel("Postal code")
    plt.show()
```



```
states=df.loc[:,["Segment","Sales"]]
states=states.groupby(by=["Segment"]).sum().sort_values(by="Sales")
#plt.figure(figsize=(10,7))
sns.barplot(x=states.index,y="Sales",data=states)
plt.xticks(rotation = 90)
plt.xlabel=("SEGMENT")
plt.ylabel=("SALES")
plt.show()
```


