

ANÁLISE DE RISCOS COMPETITIVOS DA SOBREVIVÊNCIA - ESPECÍFICA DE PACIENTES DIAGNOSTICADOS COM CÂNCER DE PRÓSTATA NO ESPÍRITO SANTO: estudo de coorte retrospectivo

Prof. Wesley Rocha Grippa
Departamento de Matemática Aplicada - DMA
Grupo de Pesquisa e Estudos em Oncologia - GEPONC

Sumário

- Introdução;
- Funções e modelos para análise de sobrevivência
- Projeto de doutorado
 - Objetivos
 - Material e Métodos
 - Resultados
- Referências

INTRODUÇÃO

Análise de sobrevida é uma coleção de métodos estatísticos que trata o tempo como variável dependente (ou variável resposta), tendo como objetivo, estimar os efeitos provocados pelas covariáveis (variáveis independentes) ao longo do tempo.

Assim, dados de sobrevida representam, em geral, o resultado do acompanhamento de indivíduos ao longo do tempo, até que ocorra um determinado evento de interesse, por exemplo, a morte de um paciente por alguma doença ou mesmo a recidiva de uma doença.

Esse tipo análise é essencial em estudos clínicos e epidemiológicos, onde o objetivo é entender e modelar o tempo de sobrevida, levando em conta a presença de censura nos dados.

A principal característica da técnica de análise de sobrevida é a presença de censura nos dados que está relacionada a observação parcial da resposta, e, tal fato pode ser atribuído a uma interrupção de evento antes do final do estudo.

Analisar dados censurados é importante, pois, mesmo que as informações sejam incompletas, são informações relevantes sobre o tempo de vida do paciente e a omissão dos dados censurados podem levar a conclusões viciadas no cálculo das estatísticas.

Colosimo & Giolo, 2006; Kleinbaum, 2012.

Exemplo 1

Tabela 2.1: Tempo de sobrevivência (em meses) de 10 pacientes em diálise

Paciente (i)	Tempo (T_i)
1	22
2	6
3	12
4	43
5	23
6	10
7	35
8	18
9	36
10	29

Figura 2.1: Tempo de sobrevivência de 10 pacientes em diálise (Tabela 2.1). Cada linha representa a trajetória de um paciente e o símbolo × indica a ocorrência do evento ou falha

Carvalho et al., 2011;

Exemplo 2

Tabela 2.2: Tempo de observação (em meses) de 10 pacientes em diálise e a ocorrência de censura à direita

Paciente (i)	Tempo (T_i)	Status (δ_i)
1	22	1
2	6	0
3	12	1
4	43	0
5	23	1
6	10	1
7	35	1
8	18	0
9	36	1
10	29	1

Figura 2.2: Trajetórias individuais dos 10 pacientes em diálise (Tabela 2.2). A marca × indica ocorrência do evento, e o símbolo o corresponde à presença de censura

Carvalho et al., 2011;

Exemplo de um banco de dados completo.

1 P	A	В	C	D	E	F	G	Н	- 1	J	K	L	М	N	0	Р	Q	R	S	Т
PACI	ENTE	UM_HOSP	SEXC	IDADE	RACACOR	INSTRUC	ESTCONJ	OCUPACAO	PROCEDEN	UF	DIAGANT	BASMAIMP	LOCTUPRI	GDGRUPO	TIPOHIST	TIPOHIST_CAT	TNM	ESTADIAM	PTNM	LOCMTDIST
1	ı	ST_RITA	1	67	4	2	2	985	3205002	ES	3	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	999	4	888	C41
2	2	ST_RITA	1	71	4	3	2	639	3203353	ES	3	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	999	2	888	0
3	3	ST_RITA	1	77	4	1	2	649	3205309	ES	2	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	999	99	888	0
4	1	ST_RITA	1	79	4	9	2	9999	3203205	ES	2	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	999	99	888	0
5	5	ST_RITA	1	73	4	1	2	451	3205200	ES	2	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	999	99	888	0
6	6	ST_RITA	1	76	1	2	3	589	3205309	ES	3	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	100	1	888	0
7	7	ST_RITA	1	68	4	3	2	999	3205200	ES	2	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	301	4	888	C41
8	3	ST_RITA	1	66	9	1	2	552	3205002	ES	2	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	200	2	888	0
9	9	ST_RITA	1	61	4	2	2	34	3205200	ES	2	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	300	3	888	0
1	0	ST_RITA	1	62	4	2	2	570	3205002	ES	2	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	200	2	888	0
1	1	ST_RITA	1	63	4	4	3	859	3205002	ES	2	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	301	4	999	C41
1:	2	ST_RITA	1	78	4	6	2	29	3205309	ES	2	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	999	99	888	0
1	3	ST_RITA	1	58	1	4	2	999	3205309	ES	3	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	200	2	999	0
1	4	ST_RITA	1	69	5	9	2	999	3205309	ES	2	9	C61.9	C61	8140/3	Adenocarcinoma, SOE	999	99	888	0
1	5	ST_RITA	1	72	4	2	2	989	3203205	ES	2	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	999	99	888	0
1	6	ST_RITA	1	75	4	3	1	582	3205309	ES	3	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	999	2	200	0
1	7	ST_RITA	1	72	1	2	2	410	3205200	ES	2	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	200	2	888	0
1	8	ST_RITA	1	74	1	2	3	621	3202702	ES	2	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	999	2	888	0
1	9	ST_RITA	1	72	1	3	2	999	3200300	ES	2	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	200	2	888	0
2	0	ST_RITA	1	69	4	2	2	951	3200607	ES	2	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	200	2	888	0
2	1	ST_RITA	1	79	4	3	2	999	2921104	BA	2	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	999	2	888	0
2	2	ST_RITA	1	65	4	3	2	951	3203908	ES	3	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	200	2	888	0
2	3	ST_RITA	1	71	1	1	2	999	3204708	ES	1	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	999	4	888	C41
2	4	ST_RITA	1	58	4	2	2	951	3205002	ES	3	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	100	2	888	0
2	5	ST_RITA	1	72	2	2	2	196	3201308	ES	2	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	200	2	999	0
2	6	ST_RITA	1	56	4	2	2	540	3200805	ES	2	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	100	1	100	0
2	7	ST_RITA	1	66	4	9	3	999	3201902	ES	2	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	200	2	888	0
2	8	ST_RITA	1	77	4	1	9	621	3204104	ES	1	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	999	4	888	C41 C77
2	9	ST_RITA	1	68	4	1	2	989	3205002	ES	3	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	999	99	888	0
3	0	ST_RITA	1	52	1	3	2	859	3201209	ES	2	7	C61.9	C61	8140/3	Adenocarcinoma, SOE	100	1	310	0

Função de sobrevivência

Defindo T como o tempo de sobrevivência, T é uma variável aleatória contínua e positiva e a função de sobrevivência é denida como a probabilidade de uma observação não falhar até um certo tempo t, ou seja, a probabilidade de uma observação sobreviver ao tempo t. Em termos probabilísticos, isto é escrito como

$$S(t) = Pr(T > t)$$

A função de distribuíção acumulada, é definida como a probabilidade do evento ocorrer até o tempo t

$$F(t) = Pr(T \le t)$$

e então, a função S(t), é simplismente o complemento da função de distribuíção acumulada F(t):

$$S(t) = Pr(T > t) = 1 - Pr(T \le t) = 1 - F(t)$$

Carvalho et al., 2011; Colosimo, Giolo, 2006

Função de Taxa de Falha ou de Risco

A função de taxa de falha $\lambda(t)$ é definida como o risco instantâneo de ocorrência do evento entre o tempo t e $t+\subseteq$, dados que ele sobrevivel até o tempo t. É bastante util para descrever a distribuição do tempo de vida de pacientes.

A função de taxa de falha é denida como

$$\lambda(t) = \lim_{\epsilon \to 0} \frac{Pr[(t \le T < t + \epsilon)|T \ge t]}{\epsilon}$$

Além disso, defini-se a função de risco acumulado como

$$\Lambda(t) = \int_0^t \lambda(u) d(u)$$

que mede o risco de ocorrência do evento até um determinado tempo t.

Em termos das funções denidas anteriormente, tem-se algumas relações matematicas importantes entre elas, a saber:

$$S(t) = 1 - F(t)$$

$$\lambda(t) = -\frac{d \ln(S(t))}{dt}$$

$$\lambda(t) = \frac{f(t)}{S(t)} \text{ onde, } f(t) = \lim_{\epsilon \to 0^+} \frac{Pr(t \le T < t + \epsilon)}{\epsilon}$$

$$\lambda(t) = \frac{f(t)}{1 - F(t)}$$

$$\Lambda(t) = -\ln(S(t))$$

$$S(t) = \exp(-\Lambda(t))$$

Carvalho et al., 2011; Colosimo, Giolo, 2006

Estimador Kaplan-Meier

Estimador não-paramétrico proposto por Kaplan e Meier (1958) e é o estimador mais utilizado em estudos clínicos. Nessa análise, os intervalos de tempos não são fixos, e determinados pela ocorrência de uma falha.

Suponha que existam \mathbf{n} pacientes no estudo e $\mathbf{k} \leq \mathbf{n}$ falhas distintas nos tempos $\mathbf{t}_1 < \mathbf{t}_2 < \mathbf{t}_3 \cdot \cdot \cdot < \mathbf{t}_k$. Seja \mathbf{d}_j o número de falhas no tempo \mathbf{t}_j , $\mathbf{j} = 1, \ldots, \mathbf{k}$ e \mathbf{n}_j o número de indivíduos sob risco no tempo \mathbf{t}_j .

O estimador Kaplan-Meier é definido da seguinte forma:

$$\hat{S}(t) = \prod_{j:t_j < t} \left(\frac{n_j - d_j}{n_j} \right) = \prod_{j:t_j < t} \left(1 - \frac{d_j}{n_j} \right)$$

Figura 4.1: Função de sobrevivência dos pacientes com Aids

Figura 4.6: Curvas de sobrevivência por sexo (Kaplan-Meier)

Carvalho et al., 2011

Modelo de Regressão de Cox

O modelo de regressão de Cox, é um modelo semi-paramétrico que permite avaliar desfechos provenientes de estudos de tempo de vida em que a variável principal é definida como sendo o tempo até a ocorrência de um evento de interesse, ajustando por covariáveis.

De forma geral, consideremos $p \in \mathbb{N}$ e \mathbf{x} um vetor de p covariáveis, então $\mathbf{x} = (x_1, x_2, \dots, x_p)'$. A expressão geral do modelo de regressão de Cox considera que a função de risco fica:

$$\lambda(t|\mathbf{x}) = \lambda_0(t) \exp\{x_1\beta_1 + x_2\beta_2 + \dots + x_p\beta_p\}$$
$$= \lambda_0(t) \exp\{\mathbf{x}'\beta\}$$

Este modelo também é conhecido como *modelo de riscos proporcionais*, pois a razão dos riscos para os indivíduos *i* e *j* no tempo é:

$$\frac{\lambda(t|\mathbf{x}_i)}{\lambda(t|\mathbf{x}_i)} = \frac{\lambda_0(t) \exp\{\mathbf{x}_i'\beta\}}{\lambda_0(t) \exp\{\mathbf{x}_i'\beta\}} = \exp\{\mathbf{x}_i'\beta - \mathbf{x}_j'\beta\}$$

Carvalho et al., 2011; Colosimo, Giolo, 2006

Modelo de Risco Competitivo de Fine e Gray

De acordo com Gooley et al. (1999), o uso do método clássico para análises de sobrevida torna-se inadequado quando estão presentes, em algumas situações, o que chamamos de riscos competitivos.

Para solução deste problema, Fine e Gray (1999) desenvolveram um modelo regressão o qual estima os efeitos das covariáveis diretamente sobre a FIA (*função de incidência acumulada*), tendo em conta a presença de riscos competitivos. Este método é baseado nas suposições do modelo de riscos proporcionais de Cox.

O conceito fundamental em modelos de riscos competitivos é a função de risco da causa-específica, dada por

$$\lambda_k(t) = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t, C = k | T \ge t)}{\Delta t}$$

que corresponde a taxa instantânea da ocorrência da k-ésima falha no tempo \mathbf{t} , condicionada a sobrevida até o tempo \mathbf{t} , na presença de todas as outras causas de falha possíveis.

Gooley et al., 1999; Kalbfleisch e Prentice, 2002, Fine, Gray, 1999

Projeto de doutorado

Objetivo Geral

Analisar a probabilidade de sobrevida específica de pacientes com câncer de próstata e os fatores associados ao risco de morte específica em pacientes diagnosticados com neoplasia prostática que iniciaram tratamento na Rede de Atenção Oncológica (RAO) do estado do Espírito Santo (ES).

Objetivos Específicos

- Analisar a completude das variáveis epidemiológicas dos Registros Hospitalares de Câncer (RHC) sobre os casos de neoplasias prostáticas malignas da Rede de Atenção Oncológica do estado do Espírito Santo;
- Descrever o **perfil epidemiológico** de pacientes com câncer de próstata da Rede de Atenção Oncológica de um estado brasileiro;
- Determinar a **sobrevida** e identificar seus **fatores associados** em uma coorte de homens com câncer de próstata atendidos por hospitais da RAO de um estado brasileiro;
- Analisar os **fatores de riscos da mortalidade específica** de pacientes diagnosticados com câncer de próstata, em um estado do sudeste brasileiro.

MATERIAL E MÉTODOS

Delineamento do estudo

Trata-se de um estudo observacional de coorte retrospectivo (Gordis et al., 2017).

Local, População do estudo e Fonte de dados

Foram utilizados dados secundários do RHC da RAO do Espírito Santo;

Incluídos todos os homens cadastrados entre os anos 2000 e 2020, ≥ 18 anos, diagnosticado com câncer de próstata (CID 10 - C61: Neoplasia Maligna da Próstata) e comprovação por exame anátomo-patológico, que tiveram encaminhamento via SUS (público) e não-SUS (rede privada), totalizadado uma amostra com **n** = **11398** casos.

Os dados de mortalidade, vieram SIM/ES via SESA/ES

Obs.: Integração dos dados do RHC com o SIM/ES se deu por meio da técnica de linkage determinístico, de modo a identificar possíveis óbitos presentes no banco do SIM, mas ainda não registrados no banco do RHC.

Na análise de sobrevida, a variável dependente foi o tempo de observação contado em dias, a partir da data do diagnóstico até a ocorrência do desfecho (óbito) ou final do tempo de observação (31/12/2021).

As covariáveis foram as listadas na ficha do tumor do SisRHC (Brasil, 2010).

(1) sexo, (2) data de nascimento, (3) idade, (4) local de nascimento, (4) raça/cor da pele, (5) escolaridade, (6) ocupação, (7) procedência, (8) estado conjugal, (9) história de câncer, (10) data primeira consulta no hospital, (11) data primeiro diagnóstico do tumor, (12) diagnóstico e tratamento anteriores, (13) base mais importante para o diagnóstico do tumor, (14) localização do tumor primário, (15) tipo histológico do tumor primário, (16) TNM clínico inicial, (17) estadiamento clínico do tumor, (18) TNM patológico, (19) localização de matástase a distância, (20) clínica do início de tratamento do hospital, (21) data do início do primeiro tratamento específico para o tumor no hospital, (22) razão para não realização do tratamento antineoplásico no hospital, (23) primeiro tratamento recebido no hospital, (24) estado da doença ao final do primeiro tratamento no hospital, (25) data do óbito do paciente, (26) óbito por câncer, (27) histórico de consumo de bebida alcoólica, (28) histórico de consumo de tabaco.

Análise de dados

As curvas de sobrevida foram estimadas pelo método de Kaplan-Meier, e o teste de Log-rank utilizado para verificar diferenças entre as curvas de sobrevida dos grupos.

Para estimar a razão de perigo (*hazad ratio*) de óbito por câncer de próstata, foram ajustados modelos multivariados, a regressão de **Cox** para causa específica e a regressão de **Fine & Gray** que considera a presença de risco competitivo.

Em todas as etapas do estudo, os procedimentos estatísticos foram executados nos softwares livres RStudio e R, ambos para Windows, utilizando diversas bibliotecas disponíveis.

Resultados

Análise de sobrevida

Estudo observacional de coorte retrospectiva, abrangendo banco de dados extraídos dos RHC e do SIM do estado do Espírito Santo, composto por n = 10.556 pacientes com câncer de próstata, diagnosticados entre 2000 e 2016. Os casos foram divididos entre óbito por câncer de próstata, óbito por outras causas e vivos, e acompanhamos por pelo menos 5 anos. A análise multivariada foi realizada pelo modelo de risco proporcional de Cox para causa específica.

Resultados

Tabela 1: Características da linha de base de todos os pacientes com câncer de próstata incluídos.

Variable	N	%
Age at diagnosis (in years)		
Mean (Standard Deviation)	69,2 (9,10)	-
Median (Interquartile Range)	70 (63 – 76)	-
Age range at diagnosis		
18 – 64 years	3126	29,61
65 years or older	7430	70,39
Race/Skin color		
White	3010	28,51
No-White	6694	63,41
Missing data	852	8,07
Marital Status		
Married	6959	65,92
Unmarried	3065	29,04
Missing data	532	5,04
Education Level		
No education	1213	11,49
Basic Education	5505	52,15
Middle or High Education	1238	11,73
Missing data	2600	24,63
State of residence		
Espírito Santo	10279	97,38
Other state	277	2,62
Forwarding source		
SUS	7047	66,76
No SUS	1835	17,38
Missing data	1674	15,86
Previous diagnosis and treatment		
No Diag/ No Treat	2174	20,59
With Diag/ No Treat	6555	62,10
With Diag/ WithTreat	1673	15,85
Missing data	154	1,46
Most important basis for tumor diagnosis		
Histology of the primary tumor	10321	97,77
Other	175	1,66
Missing data	60	0,57
Histological type of primary tumor		
Adenocarcinoma	10400	98,52
Other	156	1,48

Variable	N	9
Occurrence of more than 1 primary tumor		
No	10049	95,2
Yes	320	3,0
Uncertain	28	0,2
Missing data	159	1,5
Clinical tumor staging by group (TNM)		
Stage I	735	6,9
Stage II	2545	24,1
Stage III	1017	9,6
Stage IV	1095	10,3
Missing data	5164	48,9
Distant Metastasis		
No	9675	91,6
Yes	881	8,3
Surgery		
No	8053	76,2
Yes	2503	23,7
Radiotherapy		
No	8501	80,5
Yes	2055	19,4
Hormone Therapy		
No	8237	78,0
Yes	2319	21,9
Raditherapy e Hormone Therapy Combined		
No	8957	84,8
Yes	1599	15,1
Disease status at the end of the first hospital		
treatment		
No evidence of disease (complete remission)	1880	17,8
Partial remission	243	2,3
Stable disease	1576	14,9
Disease progression	355	3,3
Oncologic supportive care	258	2,4
Death	785	7,4
Missing data	5459	51,7
Outcomes		
Survived at the end of the follow-up period	6388	60,5
Died of Prostate Cancer	1936	18,3
Died of very causes	2232	21,1

Figura 1: Curvas de sobrevida específica estimadas por Kaplan-Meier para (a) toda a população, (b) faixa etária (c) raça/cor da pele, (d) estado civil, (e) nível de educação, (f) origem de encaminhamento.

Figura 2: Curvas de sobrevida específica estimadas por Kaplan-Meier para (g) diagnóstico e tratamento prévio, (h) estadiamento clínico do tumor por grupo (TNM), (i) metástase à distância, primeiro tratamento: (j) cirurgia, (k) radioterapia, (l) terapia hormonal e (m) radioterapia e hormonioterapia combinados.

Tabela 2: Análise multivariada dos fatores de risco da mortalidade específica em pacientes com câncer de próstata (n = 7572).

Variables	HR	95% CI	p-value	
Age at diagnosis				
every 10 year increment	1,162	1,091 – 1,238	<0,001	16,2%
Race/Skin color				₹2
White	1	100 0	-	
No-White	1,040	0,927 - 1,166	0,502	
Marital Status	V-12	100 9%	985	_
Married	1	_		
No-married	1,041	0,931 - 1,164	0,477	
Education Level				₹2
No education	1	100 0	_	
Basic Education	0,882	0,770 - 1,010	0,069	_
Middle or High Education	0,748	0,616 - 0,908	0,003	24,8%
Distant Metastasis	50-	48 00		
No	1	<u>22</u>		
Yes	5,452	4,856 – 6,122	<0,001	445,2%
Surgery				
No	1	= 8	=	
Yes	0,363	0,295 - 0,447	<0,001	63,7%
Radiotherapy	.50-	125		-
No	1	<u>22</u> 0	_	
Yes	0,445	0,370 - 0,536	<0,001	55,5%
Hormone Therapy				
No	1	= 8	-	
Yes	1,282	1,141 – 1,441	<0,001	28,2%

Análise de risco competitivo

Estudo observacional de coorte retrospectiva, abrangendo banco de dados extraídos dos RHC e do SIM do estado do Espírito Santo, composto por **n** = **10.556** pacientes com câncer de próstata, diagnosticados entre **2000 e 2016**. Os casos foram divididos entre **óbito por câncer de próstata, óbito por outras causas** e **vivos**, e acompanhamos por pelo menos 5 anos. A análise multivariada na presença de risco competitivo foi realizada pelo **modelo proporcional de Fine-Gray**.

Figura 3: Função de Incidência Acumuada (*Cumulative Incidence Function - CIF*) para o risco de morte por câncer de próstata.

p-value

95% CI

HR

	Age at diagnosis			
	every 10 year increment	1,34	1,27-1,42	< 0,001
	Age range at diagnosis			
	18 - 64 years	1		-
Tabela 3 : Análise univariada dos fatores de risco	65 years or older	1,56	1,40-1,74	< 0,001
1	Race/Skin color (n=9704)			
da mortalidade específica em pacientes com	White	1	-	(-)
- Annon do muladado no manago do misso	No-White	1,11	1,01-1,23	0,036
câncer de próstata na presença de risco	Marital Status (n=10024)			78
aomnatitivo	Married	1	-	0.00
competitivo.	Unmarried	1,1	1-1,22	0,050
	Education Level (n=7956)			30
	No education	1	-	-
	Basic Education	0,77	0,68-0,88	< 0,001
	Middle or High Education	0,62	0,52-0,74	< 0,001
	Forwarding source (n=8882)			
Os resultados da análise univariada pela	SUS	1	(-)	(-)
*	No SUS	1,15	1,03-1,29	0,017
Regressão de Fine-Gray, na presença de risco	Clinical tumor staging by group (TNM) (n=5392))S
compatitivo que que todas es verióveis	Stage I	1	1-1	: - :
competitivo, sugere que todas as variáveis	Stage II	2,13	1,53-2,97	< 0,001
selecionadas, afetaram significativamente a	Stage III	2,51	1,76-3,56	< 0,001
selectonadas, aletaram significativamente a	Stage IV	14,39	10,42-19,88	< 0,001
mortalidade específica do câncer de próstata (p <	Distant Metastasis	**	50000	
mortandade especifica do cancer de prostata (p	No	1	-	-
0,05).	Yes	7,1	6,4-7,89	< 0,001
0,00).	Surgery			
	No	1	3 = 3	
	Yes	0,35	0,30-0,40	< 0,001
	Radiotherapy			
	No	1	15	-
	Yes	0,38	0,33-0,44	< 0,001
	Hormone Therapy			
	No	1	-	()= (
	Yes	2,43	2,22-2,66	<0,001
	HR: Hazard ratio, CI: Confidence interval			20

Variables

Tabela 4: Análise multivariada dos fatores de risco de mortalidade específica em pacientes com câncer de próstata (n = 7572).

Variables	HR	95% CI	p-value	_
Age at diagnosis				=6H
every 10 year increment	1,098	1,024 - 1,176	0,008	9,8%
Race/Skin color				
White	1	-	-	
No-White	1,073	0,952 - 1,209	0,250	<u></u>
Marital Status				
Married	1	2	12	
No-married	1,021	0,907 - 1,149	0,730	<u></u>
Education Level				
No education	1	=	-	
Basic Education	0,874	0,755 - 1,011	0,070	
Middle or High Education	0,767	0,629 - 0,935	0,009	23,3%
Distant Metastasis				
No	1	-	-	_
Yes	5,315	4,676 - 6,041	< 0,001	431,59
Surgery	0.000			
No	1	=	-	
Yes	0,382	0,309 - 0,471	< 0,001	61,8%
Radiotherapy	0.0		34.5	
No	1	-	10 -0 0	
Yes	0,477	0,396 - 0,575	< 0,001	52,3%
Hormone Therapy				
No	1			
Yes	1,318	1,166 - 1,490	< 0,001	31,8%

CONSIDERAÇÕES FINAIS

- Este é um estudo pioneiro no Brasil a analisar a sobrevida de pacientes com câncer de próstata de uma coorte recente e que investigou tal desfecho para além da sobrevida global em determinado intervalo de tempo, mas também a partir das taxas de perigo dos fatores de risco de mortalidade específica, na presença de riscos competitivos.
- As estimativas de Kaplan-Meier indicaram uma sobrevida específica global foi de 87,7% em 5 anos.
- As análise multivariadas a partir dos modelos de regressão de Cox e de risco competitivo de Fine-Gray indicaram a idade, nível educacional, presença de metástase a distância, cirurgia, radioterapia e hormonioterapia foram associados ao risco de mortalidade específica de pacientes com câncer de próstata.
- ❖ Vale ressaltar, que os valores de *harzad ratio* (HR) estimados pela regressão de Cox foram, em geral, maiores dos que os estimados pelo modelo de risco competitivo de Fine-Gray, que é o esperado, visto que, considerar a presença de riscos competitivos em um estudo de sobrevida garante resultados sem viés em suas estimativas (Schuster et al. 2020; Wu et al., 2021) e método clássico podem superestimar o risco de ocorrência do evento de interesse (Pretince et al., 1978, Kalbfleisch; Pretince, 2002).

REFERÊNCIAS

- 1. CARVALHO, M.S. et al. Análise de Sobrevivência: Teoria e Aplicações em Saúde. 2 ed. Rio de Janeiro: Editora Fiocruz, 2011.
- 2. COLOSIMO, E.A.; GIOLO, S. R.Análise de sobrevivência aplicada. 1 ed. São Paulo: Editora Edgard Blücher, 2006.
- 3. COX, D.R.; HINKLEY, D. V. Theoretical Statistics. 1 ed. London: CRC Press, 1974.
- 4. FINE, J.P.; GRAY, R.J. A Proportional Hazards Model for the Subdistribution of a Competing Risk. Journal of the American Statistical Association, v. 94, n. 446, p. 496–509, 1999.
- 5. GOOLEY, T.A. et al. Estimation of failure probabilities in the presence of competing risks: new representations of old estimators. Statistics in Medicine, v. 18, n. 6, p. 695-706, 1999.
- 6. GORDIS, L. Epidemiologia. 5 ed. Rio De Janeiro: Livraria e Editora Revinter Ltda, 2017.
- 7. GRAY, R.J. A Class of K-Sample Tests for Comparing the Cumulative Incidence of a Competing Risk. The Annals of Statistics, v. 16, n. 3, p. 1141–1154, set. 1988.
- 8. KALBFLEISCH, J.D.; PRENTICE, R. L. The Statistical Analysis of Failure Time Data. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2002.
- 9. KAPLAN, E.L.; MEIER, P. Nonparametric estimation from incomplete observations, Journal of the American Statistical Association, v. 53, n. 282, p. 457-481, 1958.
- 10. KENDALL, M.G. Rank correlation methods. London: Griffin; 1975.
- 11. KLEINBAUM, D.G.; KLEIN, M. Survival Analysis. New York, NY: Springer New York, 2012.
- 12. MANN, H.B. "Nonparametric Tests Against Trend". Econometrica 13, n. 3 (1945), 245–59.
- 13. PRENTICE, R.L. et al. The Analysis of Failure Times in the Presence of Competing Risks. Biometrics, v. 34, n. 4, p. 541, 1978.
- 14. SCHUSTER, N.A. et al. Ignoring competing events in the analysis of survival data may lead to biased results: a nonmathematical illustration of competing risk analysis. Journal of Clinical Epidemiology, v. 122, p. 42–48, 2020.