DL Tutorial 01

Deep Learning Aram Davtyan 21 02 2023

DL Tutorials

- Focused on programming, practical skills
- Implementing machine learning algorithms in Python and PyTorch (deep learning library)
- Bring your laptop and download the materials from ILIAS before the tutorial

Why Python for ML?

Lots of powerful C or Fortran backend libraries:

- Numpy (numerical computation with multi-dimensional arrays)
- Scipy (efficient numerical routines for integration, optimization)
- Matplotlib (2D plotting library)
- Pandas (high-performance data structures and analysis tools)
- Tensorflow
- PyTorch

Getting started with Python

- You will need to have Python on your machine with some common scientific libraries
 - Needed for the assignments
 - We recommend you install Anaconda: <u>https://docs.anaconda.com/anaconda/install/</u>
 - A Python distribution with all the required libraries pre-installed

Installing Python packages

- You can use either conda or pip to install packages
- e.g. conda install pytorch
- Possible to create virtual environments with different packages
 - conda create --name dl python=3.8
 - o conda activate dl
 - o conda install numpy matplotlib Pillow jupyterlab

Jupyter notebook

- We'll use a jupyter notebook
 - Interactive output
 - Writing code in cells
 - Good for learning / writing interactive code
- python-tutorial.ipynb on ILIAS
- Download and run in the command line / terminal
 - jupyter notebook or jupyter lab

Google Colab

- Jupyter notebook online
- Free access to GPUs (necessary for fast training of deep learning models)
- One session limit 12 hours
- Will be needed for the assignments!
- Requires google account
- https://colab.research.google.com/
- Python tutorial: <u>https://colab.research.google.com/drive/1cUJds-plbUmOzhfsVL8</u> <u>KhTlfY8-jyHre</u>
 - Click Open in playground

Google Colab / ML Application examples

Sample projects running with GPU (just running the models, no training)

- Image Colorization DeOldify https://github.com/jantic/DeOldify
 - https://colab.research.google.com/github/jantic/DeOldify/blob/master/ImageColorizerColab .ipynb
- Object Detection YOLOv3 https://github.com/ayooshkathuria/pytorch-yolo-v3
 - https://colab.research.google.com/github/tugstugi/dl-colab-notebooks/blob/master/notebooks/YOLOv3_PyTorch.ipynb
- Image generation BigGAN https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/biggan_generation_with_tf hub.ipynb
- Other examples: https://github.com/tugstugi/dl-colab-notebooks

Cats vs Dogs nearest neighbors example

Download and open cats_dogs_template.ipynb