IN 303 – Structure de données

Exercices et Résumés de Cours

Sandrine Vial

Avant-Propos

Dans ce document vous trouverez 3 parties :

- une partie qui contient les exercices que vous ferez en TD. Chaque exercice fait en présentiel sera noté \mathcal{P} , chaque exercice qui sera fait en distanciel sera noté \mathcal{D} ;
- une partie qui contient quelques conseils sur la rédaction des preuves et des algorithmes ainsi que quelques rappels mathématiques utiles pour le cours.
- une partie qui contient les résumés des cours ;

Chapitre 1

Exercices

1.1 Complexité

Exercice $1 - \mathcal{P}$ Un simple calcul

- 1. Donner un algorithme qui calcule la somme des multiples de 3 ou 5 inférieur à n. Par exemple, si n vaut 17, alors l'algorithme doit retourner 60.
- 2. Calculer le nombre d'opérations arithmétiques de votre algorithme en fonction de n. Pouvezvous le modifier afin de réduire sa complexité?

Exercice $2 - \mathcal{P}$ Calcul du coût d'un algorithme

1. Déterminer le nombre d'affectations, en fonction de n et m, dans les algorithmes suivants.

```
fin tant que
Algorithme 1.1 A(n : entier) : entier
     Debut
                                                             Fin
        tant que (i \le n) faire
                                                        Algorithme 1.4 D(n : entier) : entier
            i \leftarrow i + 2
                                                             Debut
        fin tant que
                                                                 tant que (i \le n) faire
     Fin
                                                                      tant que (j \le n) faire
Algorithme 1.2 B(n : entier) : entier
                                                                         j \leftarrow j+1
     Debut
                                                                     fin tant que
       i \leftarrow 1
        j \leftarrow n
                                                                 fin tant que
        tant que (i \leq j) faire
            i \leftarrow i + 1
                                                             Fin
            j \leftarrow j-1
                                                        Algorithme 1.5 E(m, n : entiers) : entier
        fin tant que
                                                             Debut
                                                                i \leftarrow 1
Algorithme 1.3 C(n : entier) : entier
                                                                 tant que (i \le m \text{ et } i \le n) faire
     Debut
                                                                     I \leftarrow i+1
                                                                 fin tant que
        tant que (i \le n) faire
            j \leftarrow 1
                                                             Fin
             tant que (j \le n) faire
                j \leftarrow j + 1
                                                         Algorithme 1.6 F(m, n : entiers) : entier
            fin tant que
```

```
Debut
         i \leftarrow 1
                                                                      Fin
          tant que (i \le m \text{ ou } i \le n) faire
              i \leftarrow i + 1
                                                                 Algorithme 1.8 H(m, n : entiers) : entier
          fin tant que
                                                                      Debut
                                                                          i \leftarrow 1
     Fin
                                                                          j \leftarrow 1
Algorithme 1.7 G(m, n : entiers) : entier
                                                                           tant que (j \le n) faire
                                                                                \mathbf{si} \ (i \leq m)
         i \leftarrow 1
                                                                                   i \leftarrow i+1
         j \leftarrow 1
          tant que (j \le n) faire
                                                                                sinon
               \mathbf{si} \ (i \leq m)
                                                                                   j \leftarrow j + 1
                  i \leftarrow i + 1
                                                                                   i \leftarrow 1
               sinon
                                                                                fin si
                  j \leftarrow j + 1
               fin si
                                                                           fin tant que
          fin tant que
                                                                      Fin
```

2. Quels sont les algorithmes ayant un coût linéaire, et quels sont ceux ayant un coût quadratique?

Exercice $3 - \mathcal{P}$ Algorithme mystère

1. Que calcule l'algorithme suivant? Donner une preuve de votre réponse.

```
Algorithme 1.9 f(n: entier): entier

Debut
r \leftarrow 0

pour i de 1 à n faire
r \leftarrow 2r + 1

fin pour
retourner r
```

2. Que calcule l'algorithme suivant et quelle est sa complexité? Environ quel temps faut-il pour calculer g(100) en supposant que l'on fait 10^{10} additions par secondes.

```
Algorithme 1.10 g(n: entier): entier

Debut si\ (n=0) retourner 0 sinon retourner (g(n-1)+g(n-1)+1) fin si
```

Exercice $4 - \mathcal{P}$ Minimum d'un tableau

Pour un tableau t, on note t.n sa taille et t[i] l'élément d'indice i qui doit être compris entre 0 et t.n-1.

1. Écrire un algorithme qui retourne la valeur minimale d'un tableau.

- 2. Combien de comparaisons effectue cet algorithme (on ne compte que les comparaisons avec des valeurs du tableau) en fonction de t.n?
- 3. Comment modifier l'algorithme précédent afin de calculer la valeur maximale du tableau? On suppose qu'on dispose de l'opération -t qui change le signe des valeurs du tableau.
- 4. Écrire alors un algorithme qui retourne les valeurs à la fois du minimum et du maximum dans ce tableau. Combien de comparaisons fait-il?
- 5. Trouver un algorithme qui n'effectue que $\frac{3n}{2}$ comparaisons.
- 6. Écrire un algorithme qui retourne les 2 plus grandes valeurs du tableau, et donner son coût.
- 7. Sur un tableau de 8 entiers, trouver une méthode qui permet de calculer les 2 plus grandes valeurs en ne faisant que 9 comparaisons.
- 8. Écrire l'algorithme correspondant dans le cas général.

Exercice 5 – $|\mathcal{D}|$ Sous-sommes d'un tableau

On considère un tableau t de n entiers signés (positifs et négatifs). On veut trouver un sous-tableau de t (c'est- $\tilde{\mathbf{A}}$ -dire un ensemble d'éléments consécutifs de t) ayant la somme maximale.

1. Quel est le sous-tableau ayant la somme maximale dans le tableau suivant :

$$1, 4, -5, 5, -1, 1, 4, -1$$

- 2. Écrire un algorithme qui prend en entrée deux indices g et d avec $0 \le g \le d \le n-1$ et qui retourne la somme des éléments du sous tableau compris entre les indices g et d.
- 3. Écrire un algorithme qui retourne la somme maximale parmi tous les couples (g, d) possibles. Vous pouvez utilisez l'algorithme précédent.

Exercice $6 - \mathcal{D}$ Polynôme

Un polynôme s'écrit $P(X) = a_0 + a_1X + a_2X^2 + \cdots + a_nX^n$. On stocke le polynôme dans un tableau qui contient ses coefficients (a_0, \ldots, a_n) à l'indice correspondant.

- 1. Écrire un algorithme qui retourne la somme de deux polynômes.
- 2. Écrire un algorithme qui retourne la dérivée d'un polynôme.
- 3. Écrire un algorithme qui retourne le produit de deux polynômes.

Exercice $7 - \mathcal{D}$ Taille d'un entier]

- 1. Écrire un algorithme itératif et un algorithme récursif qui prend en entrée un entier n et renvoie sa taille en base 10. La taille d'un entier est le nombre de chiffres qu'il faut pour l'écrire dans sa représentation en base 10.
- 2. Quelle est la complexité de l'algorithme d'addition de deux nombres entiers que l'on apprend à l'école ?

Exercice $8 - \mathcal{D}$ Tableau unimodal

Un tableau t de n entiers est unimodal s'il est d'abord croissant puis décroissant. Dit autrement, il existe un indice m, avec $0 \le m \le n-1$ tel que

- $t[i] \le t[i+1]$ pour tous $0 \le i \le m-1$ et
- $t[i] \ge t[i+1]$ pour tous $m \le i < n-1$

En particulier, t[m] est l'élément maximal. Notez qu'un tableau trié est un tableau unimodal (m = n - 1 si il est trié en ordre croissant).

Dans cet exercice, on suppose que toutes les valeurs du tableau sont distinctes.

- 1. Écrire un algorithme qui teste si un tableau est unimodal : votre algorithme doit retourner vrai s'il l'est, et faux sinon.
- 2. Écrire un algorithme qui calcule l'élément maximal du tableau unimodal t de complexité $O(\log n)$.
- 3. Pour la classe des tableaux triés, des tableaux unimodaux et des tableaux quelconques, comparer la complexité des algorithmes de la recherche du maximum et de la recherche d'une valeur.

1. Exercices

Exercice 9 - \mathcal{D} Doublons

- 1. Dans un tableau de n entiers, proposer un algorithme qui retourne un tableau dans lequel les doublons ont été supprimés.
- 2. Même question si le tableau est trié.
- 3. Pour la première question, est-il intéressant de le trier et d'appliquer ensuite l'algorithme sur les tableaux triés (la complexité du tri est $O(n \log n)$)?

Chapitre 2

Conseils

Vous trouverez dans ce document quelques conseils pour écrire correctement des algorithmes en pseudo-code, quelques rappels de mathématiques élémentaires (utiles pour les calculs de complexité) et enfin quelques techniques usuelles de preuves. J'espère que vous ferez bon usage de ce mémento!

2.1 Pseudo-Code

Le pseudo-code est un mélange de langage naturel et de concepts de programmation de hautniveau qui décrit les idées générales d'un algorithme. Le but du pseudo-code est de s'abstraire des contingences d'un langage de programmation particulier. Chacun écrit le pseudo-code un peu à sa manière, ce n'est en rien un langage avec des règles claires (une grammaire) que l'on peut appliquer de manière automatique. Néanmoins, il reste que la plupart des gens s'accorde sur un certain nombre de règles de présentation. Ce sont celles-ci sur lesquelles je veux insister ici.

2.1.1 Quelques règles générales

Types élémentaires Généralement, les types élémentaires de données sont les suivants : Entier, Réel, Caractère.

Variables Les variables sont typées et portent un nom facilement identifiable.

Affectation Il y a plusieurs façons de la noter soit \leftarrow soit = (à la manière du langage C) soit := (à la manière de Pascal).

Ēgalité Là encore deux façons de l'écrire soit =, soit == (pour la différencier de l'affectation comme en C). On notera la différence (non égalité) <> ou bien ≠.

Instructions Ce que j'appellerai Instructions de manière générale regroupe 2 réalités : Soit une instruction simple terminée par un «;» soit un bloc d'instructions (suite d'instructions généralement identifiable par l'indentation du programme).

Conditionnelle Si condition alors Instructions si la condition est vraie sinon Instructions si la condition est fausse Fin Si

Boucles Plusieurs types de boucles sont possibles :

- Tant Que condition faire Instructions Fin Tant Que
- Répéter Instructions tant que condition Fin Répéter
- -- Pour variable de initialisation à $valeur\ finale$ faire Instructions Fin Pour

Retour de valeur Retourner valeur. Cette instruction stoppe l'exécution de la fonction en cours et retourne la valeur spécifiée.

- Tableaux Un tableau A de type tableau type1[n] est une suite contiguë d n éléments (ou cases) notés $A[1], A[2], \ldots, A[n]$. Chaque élément A[i] est une variable de type type1. Les tableaux à deux ou plusieurs dimensions sont définis de la même façon, c'est-à-dire tableau type1[n1,n2, ..., n3]. Par exemple pour un tableau bi-dimensionnel, A[i,j] donne accès au jème élément de la ième ligne du tableau A et est du même type que A.
- **Enregistrements** Ils permettent de définir des types structurés. On les représentera généralement de la façon suivante : enregistrement nom { champ1 : type1 ; champ2 : type 2 ; ... champn : typen} L'accès au champ d'une variable structurée se fait par l'opérateur . (point).
- Pointeurs Généralement, on ne descend pas au niveau des pointeurs pour les descriptions d'algorithmes, cela peut cependant se produire dans certains cas. Pour déclarer une variable de type pointeur on utilise le symbole \(^{\)} NIL représente un pointeur qui ne pointe sur rien.
- Entête d'une fonction Nom_de_la_fonction (liste de paramètres avec leurs types) : type renvoyé. Il faut préciser ensuite quelles sont les variables modifiées et les variables non modifiées.
- Corps d'une fonction Après l'entête de la fonction, on précise quelles sont les variables locales puis les Instructions de la fonction.

2.1.2 Quelques exemples

Voici quelques exemples d'algorithmes vus en cours et repris ici.

Algorithme 2.1 Somme des carrés des entiers entre m et n (version itérative)

```
SommeCarrés(m : entier, n : entier) : entier

▷ Entrées : m et n

▷ Sortie : somme des carrés des entiers entre m inclus et n inclus, si m ≤ n, et 0 sinon.

Debut

▷ Variables locales

i : entier;

som : entier;

som ← 0;

pour i de m à n faire

som ← som + i * i;

fin pour

retourner som
```

Fin

Algorithme 2.2 Somme des carrés des entiers entre m inclus et n inclus (version récursive)

```
SommeCarrés(m : entier, n : entier) : entier \triangleright Entrées : m et n \triangleright Sortie : somme des carrés des entiers entre m et n. \triangleright Pré-condition : m \le n

Debut si (m <> n) retourner (m^*m + SommeCarrés(m+1,n)); sinon retourner (m^*m); fin si
```

Il y a plusieurs choses à remarquer dans les algorithmes 1 et 2:

- Tout d'abord, dans l'algorithme 2, on remarque que l'on a précisé les pré-conditions. Autrement dit, les conditions qui doivent être remplies avant l'utilisation de cet algorithme. En effet, si ces conditions ne sont pas remplies alors l'algorithme rend un résultat erroné.
- Dans l'algorithme 1, aucune pré-condition n'est précisée, toutefois la boucle Pour, ne s'exécutera que si la variable i n'a pas une valeur plus grande que n. Donc les conditions de validité de l'algorithme seront ici encore bien remplies.

Algorithme 2.3 Recherche dans une liste chaînée

```
Recherche(L: \uparrow Element, x: entier): booléen
▷ Entrées : x (élément recherché), L (tête de liste)
\triangleright Sortie : vrai si l'élément x a été trouvé dans la liste L, faux sinon.
\triangleright Pré-condition : La liste L est triée par ordre croissant
 Debut
▷ Variable Locale
    p:\uparrow Element
    \mathbf{p} \leftarrow \mathbf{L};
     tant que (p <> NIL) faire
         si (p.val < x)
            p \leftarrow p.suiv
         sinon si (p.val = x)
             retourner vrai
             retourner faux
         fin si
     fin tant que
```

Dans ce dernier algorithme, il faut noter que j'ai fait appel à un type structuré **Element** défini de la manière suivante :

Enregistrement Element { val : entier; suiv : ↑ Element}. Attention ici, j'ai explicitement fait apparaître une boucle tant que avec une seule condition qui est que la liste ne soit pas vide. On aurait pu écrire une boucle qui intègre les 2 conditions et donc avoir une boucle du type tant que p <> NIL et p.val < x), toutefois cette écriture ne fonctionne que si le et est paresseux, à savoir si la première condition est fausse la seconde condition n'est pas évaluée. Ceci est vrai dans un certain nombre de langages de programmation mais pas dans tous. Si le et est passif alors la seconde condition est évaluée et dans ce cas, votre programme écrit à l'aide de l'algorithme ne pourra pas s'exécuter correctement. Il faut donc être très prudent lorsque l'on écrit de tels algorithmes. C'est pourquoi j'ai choisi de présenter ici un algorithme sans le et comme cela j'évite le piège du et actif ou passif. Cela n'a ici de fait, plus aucune importance.

Algorithme 2.4 Recherche dichotomique

```
Dicho(x : entier, S : tableau d'entiers, g : entier, d : entier) : booléen

ightharpoonup Entrées : x (élément recherché), S (espace de recherche), g (indice de gauche), d (indice de
droite)
▷ Sortie : vrai si l'élément x a été trouvé dans le tableau S entre les indices g et d, faux sinon.
\triangleright Pré-condition : g et d sont des indices valides du tableau S.
 Debut
   Variable Locale
    m: entier;
     si (g < d)
        \mathbf{m} \leftarrow \lfloor (\mathbf{g} + \mathbf{d})/2 \rfloor;
         si(x = S[m])
             retourner vrai;
         sinon si (x < S[m])
             retourner (Dicho(x,S,g,m-1));
         sinon
             retourner (Dicho(x,S,m+1,d));
         fin si
     sinon
         retourner faux;
     fin si
```

2.2 Mathématiques élémentaires

Voici quelques rappels de mathématiques élémentaires.

logarithmes

Fin

```
\begin{split} & - \log_b(xy) = \log_b x + \log_b y \\ & - \log_b(x/y) = \log_b x - \log_b y \\ & - \log_b x^{\alpha} = \alpha \log_b x \\ & - \log_b x = \frac{\ln x}{\ln b} = \frac{\log_{10} x}{\log_{10} b} \end{split} exposants \begin{aligned} & - a^{(b+c)} = a^b a^c \\ & - a^{bc} = (a^b)^c \\ & - \frac{a^b}{a^c} = a^{(b-c)} \\ & - b = a^{\log_a b} \end{aligned}
```

 $- \sqrt[n]{x} = x^{\frac{1}{n}}$

Parties entières

- Partie entière inférieure : |x| = le plus grand entier inférieur ou égal à x.
- Partie entière supérieure : [x] = le plus petit entier supérieur ou égal à x.
- $-x-1 \le |x| \le x \le \lceil x \rceil \le x+1$

Par exemple, |3.8| = 3 et |-3.8| = -4. De même [3.8] = 4 et [-3.8] = -3.

Somme

$$\sum_{i=1}^{n} i = 1 + 2 + \ldots + (n-1) + n = \frac{n(n+1)}{2}$$

2.3 Techniques de preuves

2.3.1 Les techniques efficaces

Exemple

- Pour montrer qu'une propriété est fausse, il suffit de trouver un contre-exemple qui ne vérifie pas la propriété. Par exemple si la question est Montrer que l'algorithme de coloration séquentielle est optimal ce qui revient à dire que pour tout graphe, cet algorithme permet de trouver une coloration optimale, il suffit d'en trouver un pur lequel ça ne marche pas pour montrer que l'affirmation est fausse. Le contre-exemple du cours (un graphe biparti) montrer que dans une famille de cas, l'algorithme est non optimal.
- On peut montrer qu'une propriété d'existence est vraie à l'aide d'un exemple. Par exemple, si la question est existe-t-il des graphes tels que leur indice chromatique est strictement supérieur au degré du graphe. Vous pouvez répondre en exhibant un exemple de graphe : le cycle à 5 sommets qui est de degré 2 et qui nécessite 3 couleurs pour colorier ses arêtes.

Absurde

Il s'agit de montrer que la négation de l'énoncé aboutit à une absurdité. Le schéma de la démonstration est donc le suivant : on prend comme hypothèse la négation de l'énoncé (pour éviter tout risque d'erreur, on écrit cette hypothèse). En l'utilisant, on arrive à un résultat que l'on sait faux. On en conclut que l'hypothèse était fausse et donc que sa négation, l'énoncé est juste.

Par exemple dans la démonstration du théorème suivant

Théorème 1 Un graphe orienté G est acyclique si et seulement si un parcours en profondeur de G ne rencontre jamais un arc (u, v) tel que u est un descendant de v dans une arborescence en profondeur.

Preuve.

- 1. On va d'abord prouver que si on a un DAG alors il n'existe pas d'arc (u,v) tel que u est un descendant de v dans une arborescence en profondeur. Pour cela, on va supposer le contraire : il existe un arc (u,v) tel que u est un descendant de v dans une arborescence en profondeur. Dans ce cas là, le sommet v est un ancêtre du sommet u dans la forêt en profondeur. Ce qui implique qu'il existe un chemin de v à u dans G, donc avec l'arc (u,v) on a un circuit! ce qui est absurde, donc il n'existe pas d'arc (u,v) tel que u est un descendant de v dans une arborescence en profondeur.
- 2. On va maintenant partir du fait qu'il n'existe pas d'arc (u,v) tel que u est un descendant de v dans une arborescence en profondeur pour montrer que le graphe G est sans circuit. De la même façon que dans la première partie de la preuve, on va partir de la supposition contraire, c'est-à-dire qu'il existe un circuit C dans le graphe. Soit v le premier sommet découvert par un parcours en profondeur dans le circuit C et soit (u,v) l'arc précédent v dans C. A la date d[v], il existe un chemin composé de sommets blancs (non encore découverts) de v à u. D'après le théorème du chemin blanc, le sommet u devient un descendant de v dans la forêt en profondeur. L'arc (u,v) est donc un arc tel que u

est un descendant de v dans l'arborescence en profondeur. C'est une absurdité puisque c'est contraire à notre hypothèse de départ, donc il ne peut pas exister de circuit dans le graphe G.

Induction (récurrence)

La preuve se fait en 2 temps :

- 1. Prouver le cas de base
- 2. En considérant que la propriété est vérifiée pour n, il faut montrer que la propriété est aussi vraie pour n+1.

Par exemple, pour montrer la propriété des arbres binaires suivante :

Lemme 1 Un arbre binaire localement complet 1 ayant n næuds internes a (n+1) næuds externes.

Preuve. La preuve va se faire par récurrence sur le nombre de nœuds internes de l'arbre.

Cas de base Le plus petit arbre localement complet est l'arbre réduit à un seul nœud. Cet arbre a 0 nœud interne et 1 nœud externe. La propriété est donc vérifiée.

Récurrence Supposons cette propriété vraie pour tous les arbres ayant moins de n nœuds internes c'est-à-dire $\forall k \leq n$, tout arbre binaire localement complet ayant k nœuds internes a k+1 nœuds externe.

Soit B un arbre constitué d'une racine o et de deux sous-arbres l'un gauche B_1 et l'autre droit B_2 . B a n nœuds internes. Soit n_1 le nombre de nœuds internes de l'arbre B_1 et n_2 , le nombre de nœuds internes de l'arbre B_2 . On a donc $n = n_1 + n_2 + 1$.

Par hypothèse de récurrence, B_1 (resp. B_2) a n_1+1 (resp. n_2+1) nœuds externes. Or les nœuds externes de B sont les nœuds externes de B_1 et de B_2 , donc le nombre de nœuds externes de B est $n_1+1+n_2+1=n+1$. Ce qui termine la preuve puisque nous avons montré que si la propriété était vraie pour tous les arbres ayant moins de n nœuds internes alors elle était vraie pour tous les arbres ayant n nœuds internes. De plus, la propriété est vraie pour les arbres les plus petits (avec un seul nœud). Donc la propriété est vraie pour tous les arbres.

2.3.2 Les techniques absolument inefficaces :-)

- Donner un exemple pour une propriété générale. Exemple : montrer que tous les entiers impairs sont premiers. Réponse : C'est vrai pour 3 donc c'est vrai pour tous!!!!
- Preuve par excès d'agitations des mains (cela peut éventuellement être utile pour un oral, mais généralement c'est très peu convaincant).
- Preuve par diagramme incompréhensible (très en vogue lors des examens écrits mais est tout aussi inefficace que le précédent).
- Preuve par intimidation : "Cette preuve est tellement évidente que seul un idiot serait incapable de la comprendre." La notation en général est tout aussi évidente :-)

10

^{1.} Un arbre binaire est localement complet s'il est binaire non vide et chaque nœud a 0 ou 2 fils. On appelle nœud externe un nœud ayant 0 fils et nœud interne un nœud ayant 2 fils.

Chapitre 3

Résumés de cours

3.1 Introduction à la complexité des algorithmes

- Mesure intrinsèque de la complexité de l'algorithme indépendamment de l'implémentation.
- Permet la comparaison entre différents algorithmes pour un même problème.

Définition 1. Différentes Mesures

- Complexité en temps
- Complexité en espace

But : « Sur toute machine, et quel que soit le langage utilisé, l'algorithme α est meilleur que l'algorithme β pour des données de grande taille. »

3.1.1 Quelques règles

cout(x) : n
bre d'op. élémentaires de l'ens. d'instructions x.

— Séquence d'instructions : $x_1; x_2;$

$$cout(x_1; x_2;) = cout(x_1;) + cout(x_2;)$$

— Les boucles simples : $tant que condition faire x_i$;

$$cout(boucle) = \sum_{i=1}^{n} (cout(x_i) + cout(condition))$$

— Conditionnelle : $Si\ condition\ alors\ x_{vrai};\ sinon\ x_{faux};$

$$cout(conditionnelle) \le cout(condition) + \max(cout(x_{vrai}); cout(x_{faux}))$$

3.1.2 Grandeurs

- Caractérisation du comportement d'un algorithme \mathcal{A} sur l'ensemble des données D_n de taille n.
- $Cout_{\mathcal{A}}(d)$: coût de l'algorithme \mathcal{A} sur la donnée d.

— Complexité dans le meilleur cas :

$$Min_{\mathcal{A}}(n) = \min\{Cout_{\mathcal{A}}(d), d \in D_n\}$$

— Complexité dans le pire cas :

$$Max_{\mathcal{A}}(n) = \max\{Cout_{\mathcal{A}}(d), d \in D_n\}$$

— Complexité en moyenne :

$$Moy_{\mathcal{A}}(n) = \sum_{d \in D_n} p(d) \times Cout_{\mathcal{A}}(d)$$

FIGURE 3.1 – Représentation des différentes fonctions $\log_2 n, n, n^2, n^3, 2^n, n!, n^n$ en échelle logarithmique

Définition 2. O « Borne Supérieure »

Soient f et $g:\mathbb{N}\to\mathbb{R}_+:f=O(g)$ ssi $\exists c\in\mathbb{R}_+,\exists n_0\in\mathbb{N}$ tels que :

$$\forall n > n_0, f(n) \le c \times g(n)$$

Figure 3.2 – f(n) = O(g(n))

Définition 3. Ω « Borne Inférieure »

Soient f et $g: \mathbb{N} \to \mathbb{R}_+: f = \Omega(g)$ ssi $\exists c \in \mathbb{R}_+, \exists n_0 \in \mathbb{N}$ tels que :

$$\forall n > n_0, 0 \le c \times g(n) \le f(n)$$

FIGURE 3.3 – $f(n) = \Omega(g(n))$

Définition 4. Θ

$$f = \Theta(g)$$
 ssi $f = O(g)$ et $f = \Omega(g)$

 $\exists c, d \in \mathbb{R}_+, \exists n_0 \in \mathbb{N} \text{ tels que}:$

$$\forall n > n_0, d \times g(n) \le f(n) \le c \times g(n)$$

Figure 3.4 – $f(n) = \Theta(g(n))$