T3: Reliable measurements with BGP and RPKI Part II - RPKI

Mattijs Jonker, m.jonker@utwente.nl Nils Rodday, nils.rodday@unibw.de

UNIVERSITY OF TWENTE.

Timeline

- 1. Introduction to RPKI (20min)
- 2. Which address space is covered by RPKI?

```
Exercise 1 – Hands On (15min)
```

Exercise 1 – Solution (5min)

- 3. Controlled vs. uncontrolled experiments (15min)
- 4. Which Autonomous Systems are performing ROV?

```
Exercise 2 – Hands On (20min)
```

Exercise 2 – Solution (5min)

5. Wrap-Up (10min)

Introduction to RPKI – BGP Routing

Regular scenario:

Introduction to RPKI – The Problem

BGP Hijacking

Hacker Redirects Traffic From 19 Internet Providers to Steal Bitcoins

Introduction to RPKI – The Problem

Exact Prefix Hijack:

- would choose the hijacked route as it is shorter towards the destination.
- S AT&T would still choose the correct route as it is shorter towards the destination.

Introduction to RPKI – The Problem

More-Specific Prefix Hijack:

Everyone chooses the hijacked route as it is more specific (/24 instead of /23)!

Introduction to RPKI – Origin Validation

Problem: No proof of address ownership

Solution: Resource Public Key Infrastructure

→ Each owner of an address space holds an end-entity certificate from the RIR (e.g. RIPE NCC). This will be used to sign Route Origin Authorization objects. ROAs will be used by ASes to validate announcements.

The RPKI has two sides:

- 1) ROAs need to be created by resource owners
 - → Exercise 1
- 2) ASes on the Internet need to perform Origin Validation and filter invalid announcements
 - → Exercise 2

Introduction to RPKI – Origin Validation

RPKI – Resource Public Key Infrastructure

The Resource Public Key Infrastructure (RPKI) describes an approach to build a formally verifiable database of IP addresses and AS numbers as resources. [RFC6811]

The RPKI allows an AS to prove whether the origin AS of that announcement is indeed allowed to announce this prefix.

Introduction to RPKI – Route Origin Authorization

What is a ROA?

A ROA is an attestation that the holder of a set of prefixes has authorized an autonomous system to originate routes for those prefixes [RFC6480]. According to RFC6482, it contains:

- 1) Prefix
- 2) Max-Length
- 3) ASN

ROA	EE Cert			
General Information				Prefixes
Filename	eQh1l8EPvypzxzpyzU7ShUOtv1l.roa		Prefix	Max. Length
ASN	31463		Trenx	Plax Eenger
Signing Time	Mon, 24 Feb 2020 16:50:32 GMT		195.246.200.0/22	24
Location	rsync://rpki.ripe.net/repository/DEFAULT/28/5d5cc	5-9d98-415a-ab0e-aa1481f0c13a/1/	2a0d:12c0::/32	48
Validity Period Start	Mon, 24 Feb 2020 16:50:32 GMT			
Validity Period End	Thu, 01 Jul 2021 00:00:00 GMT			
Validation Status	PASSED			
Validation Errors	None			
Validation Warnings	None		http://rpki-brow	/ser2.realmv6.org/

Nice tutorial to play around: https://www.securerouting.net/tutorial/

Introduction to RPKI – Exercise 1

How much of the address space is covered by RPKI?

Input:

- BGP Collector dump from 14th April
- Validated ROAs from 14th April 2020

Output:

Distribution of valid / invalid / not found BGP announcements:

https://rpki-monitor.antd.nist.gov/

Methodology:

 Correlate the BGP data with the RPKI data to observe how many of the BGP announcements are protected. Simplification: Only look for exact prefix/ROA matches (do not look for covering ROAs)

Time: 15min

Introduction to RPKI – Exercise 1 – 15min

Ö

15:00

Questions: WebEx chat

Introduction to RPKI – ROV-enforcing ASes

- The first part was about identifying which share of address space is covered by RPKI.
- The second part will be about how many ASes actually use the information to drop invalid announcements.

Experiment types:

Uncontrolled

(passive)

- Uses preexisting data
- No control over ROAs
- No control over BGP announcements
- → Draw conclusions from observations that might change due to limited control

Controlled

(active)

- Generates data
- Controlling own ROAs
- Advertising own address space in BGP
- → Draw conclusions from observations we can influence

Introduction to RPKI – Controlled Experiments

BGP

Announce prefixes P_A (Anchor) and P_E (Experiment)

- √ Same RIR DB route object
- ✓ Same prefix length
- ✓ Announced at the same time
- ✓ Announced to same peers
- ✓ Announced from same origin AS

RPKI

Issue ROAs for both prefixes

 P_{Δ} announcement is always *valid*.

Periodically change ROA for P_E:

Flips announcement from valid to invalid to valid daily.

Credit for slide content: Matthias Wählisch

Reuter, A., Bush, R., Cunha, I., Katz-Bassett, E., Schmidt, T.C. and Wählisch, M., 2018. Towards a rigorous methodology for measuring adoption of RPKI route validation and filtering. *ACM SIGCOMM Computer Communication Review*, 48(1), pp.19-27.

Introduction to RPKI – Controlled Experiments

Requirements:

- 1) Connectivity requirement: Each tested AS must be directly peering with PEERING*.
- 2) Visibility requirement: Each tested AS must be a Vantage Point (VP), e.g. export routes to RIS/Routeviews**.

Observation:

- (O1) VP has the same route for both prefixes P_A and $P_F \rightarrow$ no ROV.
- (O2) VP has a different route for prefix $P_F \rightarrow ROV @ AS$ on path.
- (O3) VP has no route to $P_F \rightarrow ROV @ VP$.

Reuter, A., Bush, R., Cunha, I., Katz-Bassett, E., Schmidt, T.C. and Wählisch, M., 2018. Towards a rigorous methodology for measuring adoption of RPKI route validation and filtering. *ACM SIGCOMM Computer Communication Review*, *48*(1), pp.19-27.

^{*} https://peering.ee.columbia.edu/peers/

^{**} http://routeviews.org/

Introduction to RPKI – Exercise 2

Which ASes perform Route-Origin-Validation?

Input:

- BGP Collector dump from 14th April (filtered for $P_{\Delta} + P_{F}$)
- Knowledge that the ROA for P_F is swapped while for P_A it is not

Output:

```
'<mark>34224'</mark>, '94.156.252.18', '147.28.240.0/24', '147.28.241.0/24')
                                                                                ('2020-04-14', <mark>'31019'</mark>, '91.228.151.1', '147.28.240.0/24', '147.28.241.0/24')
List of Route-Origin-Validation enforcing Ases: ('2020-04-14', '37100', '105.16.0.247', '147.28.240.0/24', '147.28.241.0/24')
                                                                                ('2020-04-14', <mark>'8492'</mark>, '85.114.0.217', '147.28.240.0/24', '147.28.241.0/24')
                                                                                ('2020-04-14', <mark>'6939'</mark>, '64.71.137.241', '147.28.240.0/24', '147.28.241.0/24')
```

Methodology:

- Work through the dataset and determine when a Vantage Point
 - (1) while P_A was present and had a direct route
 - (2) had a different route (or none at all) for P_F

Time: 20min

Introduction to RPKI – Exercise 2 – 20min

20:00

Questions: WebEx chat

Reliable measurements with BGP and RPKI – RECAP

Introduction to BGP

- What BGP is
- How the protocol works

Working with BGP data

- What can you do with control plane data?
- How can you collect data
- Where to get readily available data
- Data types
- How to process and analyze data

Introduction to RPKI

- Origin Validation
- RPKI aims at solving BGP Hijacking
- RPKI hierarchy + ROA creation

Measurements with RPKI data

- How much prefix space is covered by RPKI?
- Controlled vs. Uncontrolled Measurements
- How many ASes are using the RPKI?

Mattijs Jonker, m.jonker@utwente.nl Nils Rodday, nils.rodday@unibw.de