Reinforcement Learning

Markov Decision Processes

Non-Deterministic Search

- Recall search problems in which the goal was to find the least cost path from the starting state to a goal state.
- In a stochastic (or non-deterministic) search problem, there is more than one possible next state when a particular action is taken.
- T(s, a, s') is the probability that the state s' is reached when action a is taken in state s'.

Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there) If there is a wall in the direction the agent would have been taken, the agent stays put with prob = 0.8
 - 10% of the time, North takes the agent West; 10% East
- The agent receives rewards each time step
 - Small "living" reward each step (usually negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World

Stochastic Grid World

Markov Decision Processes

- An MDP is defined by:
 - \circ A set of states $s \in S$
 - \circ A set of actions $a \in A$
 - A transition function T(s, a, s')
 - \circ Probability that a from s leads to s', i.e., $P(s' \mid s, a)$
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state
 - One or more terminal states

The significance of the name MDP

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

• This is just like search, where the successor function could only depend on the current state (not the history)

Andrey Markov (1856-1922)

Policies

 In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal

For MDPs, we want an optimal

policy
$$\pi^*: S \to A$$

- \circ A policy π gives an action for each state
- An optimal policy is one that maximizes if followed
- An explicit policy defines a reflex agent

 policy is what we needed in a two-player game as well (since a fixed path can't be predicted in advance.)

Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

Optimal Policies

R(s) = -2.0

Utilities of Sequences

Utilities of Sequences

What preferences should an agent have over reward sequences?

More or less?[1, 2, 2] or [2, 3, 4]

[0, 0, 1] or [1, 0, 0]

• Now or later?

Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Discounting

Output How to discount?

 Each time we descend a level, we multiply in the discount once

• Why discount?

- Think of it as a gamma chance of ending the process at every step
- Also helps our algorithms converge

• Example: discount of 0.5

$$\circ$$
 U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3

$$\circ$$
 U([1,2,3]) < U([3,2,1])

Quiz: Discounting

• Given:

- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic

• Quiz 1: For $\gamma = 1$, what is the optimal policy?

• Quiz 2: For $\gamma = 0.1$, what is the optimal policy?

Quiz 3: For which γ are West and East equally good when in state d?

$$1\gamma = 10 \gamma^3$$

Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)
 - Discounting: use $0 < \gamma < 1$

$$\operatorname{Sm} U([r_0, \dots r_\infty]) = \sum_{t=0}^\infty \gamma^t r_t \le R_{\max}/(1-\gamma)$$

 Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

Example: Racing

Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: *Slow*, *Fast*
- Going faster gets double reward

MDP Search Trees

• Each MDP state projects an expectimax-like search tree

Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - o Start state s₀
 - Set of actions A
 - \circ Transitions P(s' | s,a) (or T(s,a,s'))
 - \circ Rewards R(s,a,s') (and discount γ)

- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards

Solving MDPs

- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if $\gamma < 1$

Optimal Quantities

- The value (utility) of a state s:
 - $V^*(s)$ = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 - Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy: $\pi^*(s) = \text{optimal action from state } s$

Gridworld v Values after 100 iterations

Snapshot of Demo – Gridworld Q Values

Values of States

• Recursive definition of value:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$
s,a,s'

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

Time-Limited Values

- Key idea: time-limited values
- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from

k = 100

Computing Time-Limited Values

Value Iteration

- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- o Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do

Assume no discount!

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Assume no discount!

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

$$V_2$$

S: 1+2=3

F: .5*(2+2)+.5*(2+1)=3.5

2

1

0

Assume no discount!

$$V_0 = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

 $V_0 \left[\begin{array}{ccc} 0 & 0 & 0 \end{array} \right]$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

Convergence*

- \circ How do we know the V_k vectors are going to converge?
- \circ Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - o Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - \circ The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - \circ That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by γ^k that far out
 - o So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different
 - So as k increases, the values converge

