Eigenvalues and Eigenvectors (2) Ch.23

econMath.namun+2016su@gmail.com

July 26, 2016

Table of Contents

Markov Processes

Symmetric Matrices

3 Definiteness of Quadratic Forms

Terms

State

In each period t, the system is in one and only one of k states S_1, \dots, S_k .

Definition (Stochastic Process)

A <u>stochastic process</u> is a rule which gives the probability of the state i at the period t=n+1 given the probabilities of all previous states $(t=1,2,\cdots,n)$

Note: $\mathbf{x}_t = (x_{1,t}, \cdots, x_{k,t})$ is the probabilities of all k possible states at time t

Definition (Markov Process)

A stochastic process that the probability of state i at t=n+1 depends only on what state the system was in at t=n is a Markov process.

Note: Markov processes are memoryless.

Markov Processes

Definition (Transition Matrix)

M is a <u>transition matrix</u> for stochastic process \mathbf{x}_t if:

$$\mathbf{x}_{t+1} = M\mathbf{x}_t$$

If $\sum_i M_{ij} = 1 \quad \forall j$ (i.e., all column sums are 1), this process is a Markov process. Here, nonnegative scalar M_{ij} is <u>transition probabilities</u> that the process will be in state i at t=n+1 if it is in state j at t=n If M_{ij} , transition probabilities are fixed and independent of time indices t, this process is time-homogeneous or that M_{ij} are stationary.

Regular Markov Matrix

Definition (Regular Markov Matrix)

M is a <u>regular Markov matrix</u> if:

- $M_{ij} \ge 0 \quad \forall i, j$
- $\exists r \in \mathbb{N} \ s.t. \ M^r > 0 \quad \forall i, j$
- Condition 3 hold when r=1

Th23.15

Theorem (23.15)

Let M be a regular Markov matrix. Then,

- lacktriangledown 1 is an eigenvalue of M of multiplicity 1 (i.e., 1 is not a repeated root)
- ② For every other eigenvalue r of M, |r| < 1
- $oldsymbol{0}$ \mathbf{w}_1 , Eigenvector for eigenvalue 1 has strict positive components
- If $\mathbf{v}_1 = \mathbf{w}_1/||\mathbf{w}_1||$, \mathbf{v}_1 is a probability vector and if $\mathbf{x}_{t+1} = M\mathbf{x}_t$,

$$\lim_{n\to\infty}\mathbf{x}_n=\mathbf{v}_1$$

Note: example of non-regular Markov process. If $\exists i$ s.t. $M_{ii}=1$, This state i is absorbing state. I.e., once process reach state i, this state does not change forever. Therefore, this process will eventually reach one of these states i and then stay there forever.

Symmetric Matrices

Example of Symmetric Matrices in Economics

- (Bordered) Hessians in optimization problem
- Variance-covariance matrices in statistics

Fortunately, symmetric matrices do not have repeated or complex eigenvalues.

Definition (Orthogonal Matrix)

A matrix P satisfies the condition $P^{-1} = P^T$, (i.e., $P^TP = I$) is orghogonal matrix.

We can find uncoupled system when A is symmetric.

Properties of Symmetric Matrices

Theorem (23.16)

Let $A \in M_k$ and $A^T = A$. Then,

- All k roots of $\det A rI = 0$ are real numbers.
- ullet All corresponding eigenvectors \mathbf{w}_i are orthogonal
- $\exists P$ staisfying:
 - \mathbf{w}_i s are normalized eigenvectors for each eigenvalues r_i : $||\mathbf{w}_i|| = 1 \quad \forall i$
 - Matrix $[\mathbf{w}_1 \cdots \mathbf{w}_k]$ is nonsingular
 - $\mathbf{w}_i \mathbf{w}_j = 0 \quad \forall i \neq j$ (orthogonal to each other)
 - $P^{-1} = P^T$

•

$$P^{-1}AP = P^{T}AP = \begin{pmatrix} r_1 & 0 & \cdots & 0 \\ 0 & r_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & r_k \end{pmatrix}$$

Quadratic Forms

Quadratic Forms

Every quadratic form $Q(\mathbf{x})$ can be represented by symmetric matrix A:

$$Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} \quad \land \quad A^T = A$$

Always, we can find uncoupled system by taking $P^T\mathbf{x} = \begin{bmatrix} \mathbf{w}_1 & \cdots & \mathbf{w}_k \end{bmatrix}^T\mathbf{x}$ when \mathbf{w}_i are corresponding normalized eigenvalues r_1, \cdots, r_k . Let the transformed uncoupled system be $\mathbf{y} = P^T\mathbf{x}$. Then,

$$Q(\mathbf{x}) = Q(P\mathbf{y}) = (P\mathbf{y})^T A(P\mathbf{y}) = \mathbf{y}^T (P^T A P) \mathbf{y}$$

Note: y is a linear chage of coordinates from x.

Definiteness and Eigenvalues

Theorem (23.17)

Let $A^T = A \in M_k$ and r_1, \dots, r_k are eigenvalues of A. Then,

- **3** A is PSD \iff $r_i \ge 0 \quad \forall i$

Theorem (23.18)

Let $A^T = A \in M_k$. Then the below statements are equivalent:

- \bullet A is PD
- $\exists B \quad s.t. \quad A = B^T B \wedge \exists B^{-1}$
- $\exists Q \quad s.t. \quad Q^T A Q = I \wedge \exists Q^{-1}$