2. (7 pts.) Consider the permutation group S_7 , and let $\sigma = (123)(13)(25)(146)(57)(752)$. Give in disjoint cycle notation the element $\sigma^{100} = [(123)(13)(25)(146)(57)(752)]^{100}$

3. (7 pts.) Suppose G is a cyclic group of order $141,582,168=2^3\cdot 3^4\cdot 7^5\cdot 13$. How many elements of order 49 does G contain? Briefly justify your answer.

G contains a unique surgroup H with 141=49
H has
$$\varphi(49)=7.6=42$$
 generators

4. (10 pts.) Use the Fundamental Theorem of Finite Abelian Groups to list, up to isomorphism, all Abelian groups of order $756 = 2^2 \cdot 3^3 \cdot 7$. You do not need to justify your answer here; simply give a complete list without repetitions.

$$Z_{4} \oplus Z_{27} \oplus Z_{7}$$

$$Z_{2} \oplus Z_{2} \oplus Z_{3} \oplus Z_{7}$$

$$Z_{4} \oplus Z_{4} \oplus Z_{3} \oplus Z_{7}$$

$$Z_{4} \oplus Z_{2} \oplus Z_{3} \oplus Z_{7}$$

$$Z_{4} \oplus Z_{2} \oplus Z_{3} \oplus Z_{3} \oplus Z_{7}$$

$$Z_{2} \oplus Z_{2} \oplus Z_{3} \oplus Z_{3} \oplus Z_{3} \oplus Z_{7}$$

$$Z_{2} \oplus Z_{2} \oplus Z_{3} \oplus Z_{3} \oplus Z_{3} \oplus Z_{7}$$

Six total

- 5. (16 pts.) Suppose G is a cyclic group of order $n, G \cong \mathbb{Z}_n$.
 - (a) Part of the Fundamental Theorem for Cyclic Groups characterizes all subgroups of a finite cyclic group G. (There are both existence and uniqueness statements.). State this part of the theorem.

5pts

(b) Now assume that n=36 and so $G\cong\mathbb{Z}_{36}$. Draw a subgroup lattice for \mathbb{Z}_{36} . Clearly, indicate generators for each subgroup.

6 sts.

The group order is shown next to the cubg roup.

1, 2, 3, 4, 6, 9, 12, 17, 36

(c) List all generators of \mathbb{Z}_{36} , and explain why these elements are generators.

Spts.

Generators = k S.t.
$$g(d(k,36)=1)$$
 There are $\varphi(36)=\varphi(4)\varphi(9)$
= $\{1,5,7,11,13,17,19,23,25,29,31,35\}$ of them

Part II.

- 6. (10 pts.) Fix $n \in \mathbb{Z}^+$ with $n \ge 2$.
 - (a) Prove that for any $\sigma \in S_n$, $\sigma A_n = A_n \sigma$. (Thus, A_n is a normal subgroup of S_n , $A_n \triangleleft S_n$.)

We will show o'An & And and And & o'An.

Suppose first $x \in \sigma An$. Then $x = \sigma t$ for t an even permutation. If σ is even

(b) Now explicitly list all the cosets of A_n in S_n and give $(S_n : A_n)$.

An, (12) An

7. (10 pts.) Let G be a group and fix an element $a \in G$. Define $C_a = \{x \in G \mid xa = ax\}$. Prove that C_a is a subgroup of G. (This subgroup is called the *centralizer of a in G*.)

Proof: Since ea= ae, e & Ca and Ca * ø.

Suppose now that x,y & Ca. Then xa=ax and ya=ay Consider xya. Then

xya = x(ye) = x(ay) since y ∈ Ca

= (xa) y by associativity

= (ax)y since x & Ca

Thus, Ca is closed under products.

8. (10 pts.) Let $\phi: G \to G'$ be a group homomorphism. Prove that if |G| is finite, then $|\phi[G]|$ is finite and is a divisor of |G|.

Now suppose $x \in Ca$ so that xa = ax. Then multiplying on the left and right by x^{-1} yields

xa = ax

=)
$$x^{-1}(xa)x^{-1} = x^{-1}(ax)x^{-1}$$

Thus, Ca is closed under inverses. By Iz. 2-step surgroup test, Ca & G.