

Vegova ulica 4, 1000 Ljubljana

Poročila vaj pri predmetu fizika

Poročila maturitetnih vaj

Mentor: Tomo Omahna, prof. Avtor: Jaka Kovač, G 4. b

Povzetek

V tem delu bom predstavil kako sem izvedel maturitene vaje, njihove rezultate. Ob vsaki vaji sem preverjal veljavnost meritev s teoretično izračunaimi vrednostmi.

Ključe besede: poročila maturitetnih vaj - fizika, fizika za srednjo šolo

Abstract

This paper describes how to use LaTeX to write a paper.

Keywords: LaTeX, paper, LaTeX template

Kazalo

1	Last	no nihanje vzmetnega nihala	5	
2	Pros	ti pad	6	
3	Odb	ojnost	7	
4	Boyl	ov zakon	8	
5	Atwo	oodovo padalo	9	
6	Duše	eno nihanje v električnem krogu	10	
7	Gostota zemljinega električnega polja			
8	Mer	jenje goriščne razdalje leč	13	
9	Plinski emisijski spektri			
10	Viri	in literatura	17	
Sl	ike			
	1	Posnetek zaslona osciloskopa z meritvami časa pozameznega iznihaja	11	
	2	Zbiralna leča	13	
	3	Razpršilna leča	14	
	4	Sestavljena leča	14	

O zapisu meritev

Prikazane številčne vrednosti so zaokrožene na 3 od 0 različna decimalna mesta (znanstven zapis). V izračunih se uporablja dejanska vrednost. Kjer ni drugače navedeno je vrednost podana na ± 0.5 enot na zadnjem prikazanem mestu. Primer: s=10.0 m ± 0.05 m

1 Lastno nihanje vzmetnega nihala

Opis vaje in teoritična podlaga

Uporabljeni pripomočki

Grafi, ipd.

2 Prosti pad

Opis vaje in teoritična podlaga

Uporabljeni pripomočki

Grafi, ipd.

3 Odbojnost

Opis vaje in teoritična podlaga

Uporabljeni pripomočki

Grafi, ipd.

4 Boylov zakon

Opis vaje in teoritična podlaga

Uporabljeni pripomočki

Grafi, ipd.

5 Atwoodovo padalo

Opis vaje in teoritična podlaga

Uporabljeni pripomočki

Grafi, ipd.

6 Dušeno nihanje v električnem krogu

Opis vaje in teoritična podlaga

Cilj vaje je izračunati koeficient dušenja β v dušemen električnem nihajenm krogu. Začnimo z enačbo dušenega nihanja [4]

$$\frac{d^2x}{dt^2} + 2\beta \frac{dx}{dt} + \omega_0^2 x = 0. \tag{1}$$

V danem nihanjem krogu lahko z II. Kirchoffovim zakonom zapišemo

$$U - L\frac{dI}{dt} - RI = 0. (2)$$

Tok v vezju lahko izračunamo z

$$I = -\frac{de}{dt} = -\frac{d(CU)}{dt} = -C\frac{dU}{dt},\tag{3}$$

ko tok vstavimo v enačbo 2 dobimo

$$U + LC\frac{d^2U}{dt^2} + RC\frac{dU}{dt} = 0$$

$$LC\frac{d^2U}{dt^2} + RC\frac{dU}{dt} + U = 0,$$
(4)

če enačbo delimo z LC pri tem pa upoštevamo $LC=\frac{1}{\omega_0^2}$ lahko zapišemo

$$\frac{d^2U}{dt^2} + \frac{R}{L}\frac{dU}{dt} + \omega_0^2 U = 0 \tag{5}$$

iz česar sledi, da je x=U in $2\beta=\frac{R}{L}$ v enačbi dušenega nihanja. Zapišemo lahko [2]

$$U = e^{-\beta t} [Asin(\omega t) + Bcos(\omega t)]$$
 (6)

kjer je $\omega=\sqrt[2]{\omega_0^2-\beta^2}$ in $\beta=\frac{R}{2L}$. Ker poznamo začetne pogoje $(\frac{dU}{dt})_0=-\frac{I_0}{C}$ in $U_0=I_0R$ lahko zapišemo končno enačbo za napetost

$$U = U_0 \cdot e^{-\beta t} \sin(\omega t). \tag{7}$$

Uporabljeni pripomočki

Digitalni osciloskop, nihajni krog z elektrosnikim stikalom, ŠMI z žicami

Posnetek zaslona osciloskopa

Slika 1: Posnetek zaslona osciloskopa z meritvami časa pozameznega iznihaja

Analiza rezultatov

Za (maksimalno) napetost vsakega pulza lahko zapišemo enačbo

$$U_N = U_0 e^{-\beta((N-1)t_0 + t_z)},$$
(8)

ker govorimo o maksimalni napetosti upoštevamo, da je $sin(\omega t)=1.~\beta$ lahko izrazimo takole

$$ln(\frac{U_1}{U_N}) = \beta(N-1)t_0$$

$$\beta = \frac{ln(\frac{U_1}{U_N})}{(N-1)t_0}.$$
(9)

N	$U_n[V]$	$(N-1)t_0 [\mu s]$	$\beta [10^3 \mathrm{s}^{-1}]$
1	9,64	0	N/A
2	8,93	51,6	1,48
3	8,71	92,8	1,09

Z aritmetično sredino izračunamo $\overline{\beta}=1,29\cdot 10^3~{\rm s}^{-1}\pm 0,2\cdot 10^3~{\rm s}^{-1}$

 $^{^{1}}$ Za U_{1} zapišemo $U_{1}=U_{0}e^{-eta t_{z}}$

7 Gostota zemljinega električnega polja

Opis vaje in teoritična podlaga

Uporabljeni pripomočki

Grafi, ipd.

8 Merjenje goriščne razdalje leč

Opis vaje in teoritična podlaga

Vaja zajema merjenje goriščne razdalje konveksne (zbiralne), konkavne (razpršilne) in stavljene leče. Formula za izračun goriščne razdalje leče je f=2R, kjer je f goriščna razdalja, R pa polmer leče ali zrcala. Goriščna razdalja sestavljene leče (dve zaporedni leči) se izračuna z $\frac{1}{f}=\frac{1}{f_1}+\frac{1}{f_2}-\frac{d}{f_1\cdot f_2}$ [3], kjer sta f_1 in f_2 goriščni razdalji sestavnih leč, d pa razdalja med njima.

Uporabljeni pripomočki

Svetilka v ohišju z režami, ŠMI z žicami, milimeterski papir, svinčnik, geotrikotnik, konveksna in konkavna leča ($R=35~{\rm mm}$ za obe leči)

Skice

Slika 2: Zbiralna leča

Slika 3: Razpršilna leča

Slika 4: Sestavljena leča

Analiza rezultatov

Izmerjena goriščna razdalja konveksne leče je $f=77~\mathrm{mm}\pm0,5~\mathrm{mm},$ izračunana razdalja pa je

$$f = 2R = 2 \cdot 35 \text{ mm} = 70 \text{ mm}$$
 (10)

Za konkavno lečo pa sem izmeril goriščno razdaljo $f=72~\mathrm{mm}\pm0,5~\mathrm{mm}$, izračunana goriščna razdalja je

$$f = -2R = -2 \cdot 35 \text{ mm} = -70 \text{ mm} \tag{11}$$

Pri sestavljeni lečo sem izmeril goriščno razdaljo $f=157~\mathrm{mm}\pm0,5~\mathrm{mm},$ izračunal pa sem

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 \cdot f_2}$$

$$f = \left(\frac{1}{-70 \text{ mm}} + \frac{1}{70 \text{ mm}} - \frac{51 \text{ mm}}{-70 \text{ mm} \cdot 70 \text{ mm}}\right)^{-1}$$

$$f = 102 \text{ mm}$$
(12)

če za izračun uporabimo izmerjene vrednosti dobimo, da je goriščna razdalja f=120 mm. Kljub vsemu osnovne formule za izračun goriščne razdalje sestavljene leče sam ne morem potrditi.

9 Plinski emisijski spektri

Opis vaje in teoritična podlaga

Uporabljeni pripomočki

Grafi, ipd.

10 Viri in literatura

- [1] B. Murovec. *Napotki za piseanje diplomskih nalog in drugih tehničnih besedil*, (2014), spletni naslov: http://lie.fe.uni-lj.si/Napotki_TehnicnaBesedila.pdf (dostopano: 29. 10. 2022).
- [2] R. Snoj, *FIZIKA Eksperimentalne maturitene vaje djakov G4A*, *G4B*, Ljubljana: Vegova Ljubljana, 2023.
- [3] sodelavci Wikipedia-je. *Leča (optika) Sestavljene leče*, (2024), spletni naslov: https://sl.wikipedia.org/wiki/Le%C4%8Da_(optika)#Sestavljene_le%C4%8De (dostopano: 17. 2. 2024).
- [4] sodelavci Wikipedia-je. *Nihanje*, (2024), spletni naslov: https://sl.wikipedia.org/wiki/Nihanje (dostopano: 18. 2. 2024).

Izjava o avtorstvu

Izjavljam, da je seminarska naloga v celoti moje avtorsko delo, ki sem ga izdelal samostojno s pomočjo navedene literature in pod vodstvom mentorja.

19. februar 2024 Jaka Kovač