Handout: Causal Directed Acyclic Graphs

Joseph A Bulbulia

2024-02-28

	e of contents
List	of Figures
List	of Tables
1	Our variable naming conventions
2	Undirected Graphs
3	Undirected Graphs
4	Directed Graphs
5	Common causal interests
6	Elementary confounding scenarios
7	Common confounding scenarios with timing

Elements

Table 1: Our variable naming conventions

Variable naming conventions

Symbol	
X	Any variable.
A	The treatment or, equivalently, the exposure.
Y	The outcome.
L	Measured confounder(s): typically comprises a set of variables.
U	Unmeasured confounder.
Z	Effect-modifier (or 'moderator') of <i>A</i> on <i>Y</i> .
M	Mediator of A on Y .
$ar{X}$	Sequential variables, e.g. $\bar{A} = \{A_1, A_2, A_3\}; \bar{L} = \{L_0, L_1, L_2\}.$
${\mathscr R}$	Denotes randomisation into treatment event.

Table 2: Undirected Graphs

Undirected Graphs Describe Conditional Dependence/Independence of Probability Distributions

Graph	Feature
X	Node.
	Edge/path.
X X'	Disconnected nodes are not associated.
XX'	Nodes connected by a path are associated.
X— X' — X''	All nodes connected by a path are symmetrically associated.
X—X' X''	These nodes are symmetrically associated.
X—X' X'' X'''	$X^{\prime\prime\prime}$ is not associated with other nodes.

Table 3: Undirected Graphs

Elements of a Causal Directed Acyclic Graph: D-separation Rules

Туре	Graph	Explanation	d-Separation Rule		
Two variables					
Causality Absent	A B	A and B have no causal effect on each other.	$A \coprod B$ (independent)		
Causality	$A \longrightarrow B$	A causally affects B, and they are associated.	$A \coprod B$ (dependent)		
	Three variables				
Fork	$A \longrightarrow B$ C	A causally affects both B and C; B and C are conditionally independent given A.	$B\coprod C A$		
Chain	$A \longrightarrow B \longrightarrow C$	<i>C</i> is affected by <i>B</i> which is, in turn, affected by <i>A</i> ; <i>A</i> and <i>C</i> are conditionally independent given <i>B</i> .	$A \coprod C B$		
Collider	$A \longrightarrow C$	C is affected by both A and B, which are independent; conditioning on C induces association between A and B.	AMB C.		

Nodes are indexed by temporal order, e.g., X_t precedes X_{t+1} . A boxed node, X_t indicates conditioning on that variable. \longrightarrow denotes a directed causal path. The symbol \coprod signifies conditional independence, assessed with the conditioning bar '|'. According to the rules of d-separation, in the fork graph, conditioning on A blocks the association between the non-adjacent nodes B and C; in a chain graph, conditioning on B blocks the association between the non-adjacent nodes A and C. In a collider graph, conditioning on C or its descendant D introduces an association between the non-adjacent nodes C in a collider graph, and rules help to clarify strategies for causal identification from the assumptions encoded in graphs.

Table 4: Directed Graphs

Causal Diagram Graphical Conventions

Symbol	Meaning	Example			
Statistical Machinery					
$A\coprod B$	Statistical independence (unconditional)	$A\coprod Y(a)$			
AMB	Statistical dependence (unconditional)	AMY(a)			
$A\coprod B C$	Conditional statistical independence	$A\coprod Y(a) L$			
AMB C	Conditional statistical dependence	$A \coprod Y(a) L$			
Graphical Machinery					
X	Node: variable, denoted by a letter	A			
X_t	Time-indexed node: denotes relative chronology	$A_1 \qquad Y_2$			
$X_{oldsymbol{\phi}_t}$	Time-indexed node assumed but not known: relative chronology asserted.	A_{ϕ_1} Y_{ϕ_2}			
→	Path with an arrow causal association	$A_1 \longrightarrow Y_2$			
\rightarrow	Red arrow: pathway of bias	L_0 A_1 Y_2			
▶	Dashed arrow: causal effect not through a mediator (direct effect).	$A_0 \xrightarrow{M_1} Y_2$			
►	Dashed red arrow: pathway of biased causal association.	attenuated total effect A_0 L_1 Y_2			
<u> </u>	Effect-modification path We assume $A \longrightarrow Y$ and focus on the modification within levels of another variable. Blue path is not evaluated for causality and need have a causal interpretation.	$Z \xrightarrow{A_1 \longrightarrow Y_2} Y_2$			
X	Boxed variable: conditioning/adjustment	$L_0 \longrightarrow A_1 \qquad Y_2$			
X	Red boxed variable variable that when conditioned upon induces bias.	Y_2 L_3			
		unbiased total effect			
$\langle \widehat{X} \rangle$	Dashed circle: no adjustment for variable	$A_0 \longrightarrow (L_1) \longrightarrow Y_2$			
$\mathscr{R} \longrightarrow A$	Randomisation into treatment: such that $A \coprod Y(a) \mathcal{R}$	$\mathscr{R} \longrightarrow A_1 \qquad Y_2$			

Table 5: Common causal interests

Examples of Common Causal Questions Presented as Causal DAGs

Causal Directed Acyclic Graph Interest Treatment effect: after controlling for all common causes, what is the causal effect of $A \longrightarrow Y$? **Effect Modification (Moderation)**: does the effect of $A \longrightarrow Y$ vary across levels of Z? Interaction (joint-intervention): after controlling for all common causes of $A \longrightarrow Y$ and $B \longrightarrow Y$, is the combined effect of A and B on Y different from their individual effects? Mediation: assuming unbiased direct effect confounding control, what are the separable effects of $A \longrightarrow Y$ (a): indirectly through M and (b) directly not through M? Time-varying exposures: What are the causal effects of clearly specified sequential treatments? $\bar{A} \longrightarrow Y$?

Key:

A denotes the treatment;

B denotes a second treatment (as in interaction analysis).

Y denotes the outcome;

L denotes a confounder;

Z denotes a modifier of for the effect of $A \longrightarrow Y$

X indicates conditioning on variable X.

→ asserts causality

—o indicates an interest in effect-modification (causality need not be asserted);

Note 1: when analysing effect-modification, our focus is on the $A \longrightarrow Y$ pathway, and whether this effect varies within levels of Z; we do not estimate Z's causal effect (if any) on Y. We use the agnostic arrow — o to denote this specific interest in Z in relation to $A \longrightarrow Y$.

Note 2: interaction analysis requires identifying two causal effects $(A \longrightarrow Y \text{ and } B \longrightarrow Y)$ and controlling for their common causes. Mediation analysis, not interaction analysis, is needed if A and B influence each other $(B \longrightarrow A \text{ or } A \longrightarrow B)$.

Table 6: Elementary confounding scenarios

Elementary Confounding

	Bias	Problem	Sequential data solution
1	Paradigmatic confounding : <i>A</i> and <i>Y</i> share both measured and unmeasured common causes; we condition to block the open backdoor path.	$U L_0 A_1 Y_2$	$U_L \longrightarrow L_0 \longrightarrow A_1 \qquad Y_2$
2	Mediator bias : inaccurate timing: L blocks true causal association $A \rightarrow Y$.	attenuated total effect $A_0 \longrightarrow L_1 \longrightarrow Y_2$	$U_L \longrightarrow L_0 \longrightarrow A_1 \qquad Y_2$
3	Collider : inaccurate timing: L creates path from A - $\rightarrow Y$.	A_1 Y_2 L_3	$U_L \longrightarrow A_1 \qquad Y_2$
4	Collider by descent : inaccurate timing: confounder proxy L' creates path from $A \rightarrow Y$.	A_1 Y_2 L_3 L_4	$U_L \xrightarrow{L'_0} A_1 Y_2$

Key:

- A denotes the treatment;
- *Y* denotes the outcome;
- ${\cal U}$ denotes an unmeasured confounder;
- $L\ {\bf denotes\ a\ confounder};$
- → asserts causality

asserts causanty X indicates a pathway for bias linking X to Y absent causation. X indicates that conditioning on X introduces bias. Where ϕt denotes assumed confounding, examples 2-4 illustrate how errors in $L_{\phi t} \neq L_t$ lead to confounding.

Table 7: Common confounding scenarios with timing

Examples of Confounding Focussing on the Timing of Measured Confounders

Simple scenarios Address with variable Bias Confounding timing Common cause: common cause creates association absent causation. attenuated total effect Mediator bias: conditioning on a 2 mediator biases total effect. Collider: conditioning on a common 3 effect creates association absent causation. Collider by descent: conditioning on child of collider induces Y_2 confounding-by-proxy. More complex scenarios Bias Confounding Use DAG to find strategy M-bias: over-conditioning bias: do not 5 condition on L. Unmeasured common cause: conditioning on a measured proxy of 6 unmeasured common cause enables creative confounding control. Unmeasured common cause: condition on baseline treatment and outcome to reduce unmeasured confounding and assess incident effect.

- A denotes the treatment:
- Y denotes the outcome;
- U denotes an unmeasured confounder;
- L denotes a confounder;
- L' denotes a proxy for an unmeasured confounder;
- \longrightarrow indicates a pathway for bias linking A to Y absent causation. For example where $L_0 \longrightarrow A_1 \longrightarrow Y_2$, the biasing pathway flows from $A_1 \longrightarrow L_0 \longrightarrow Y_2$.
- |L| indicates conditioning on variable L eliminates or reduces;
- \overline{L} indicates that conditioning on L introduces bias.
- To denote relative timing we place subscripts on nodes (e.g., L_0 , A_1 , Y_2)
- To denote assumed relative timing we add ϕ to these subscripts (e.g. $L_{\phi 0}, A_{\phi 1}, Y_{\phi 2}$)
- **Examples 1-4** demonstrate how incorrect assumptions about variably timing ϕt leads to bias.
- **Examples 5-7** demonstrate possibilities for confounding that are not solved by longitudinal data collection.