	BSNA AD			
	significant (fdr corrected) Seq3.0			ected)
	per		-	talpt
	SEQ_hyper	SEQ_hypo	SEQ_seeking	SEQ_totalpt
		O)	0)	U)
0				
CLi_RLi CnF_I CnF_r				
DR IC_I IC_r ION_I				
ION_r LC_I LC_r				
LDTg_CGPn_I LDTg_CGPn_r LPB_I				
LPB_r MPB_I MPB_r MiTg_PBG_I				
MiTg_PBG_r MnR PAG				
PCRtA_I PCRtA_r PMnR				
PTg_I PTg_r PnO_PnC_I				
PnO_PnC_r RMg RN1_I RN1_r				
RN2_I RN2_r RN_I				
RN_r ROb RPa				
SC_I SC_r SN1_I SN1_r				
SN2_I SN2_r SN I				
SN_r SOC_I SOC_r				
SubC_I SubC_r VSM_I				
VSM_r VTA_PBP_I VTA_PBP_r				
Ve_I Ve_r iMRt_I iMRt_r				
iMRtI_I iMRtI_r iMRtm_I				
iMRtm_r isRT_I isRT_r				
mRTA_I mRTA_r mRT_I mRT_r				
mRtd_l mRtd_r mRtl_l				
mRtl_r sMRt_l sMRt_r				
sMRtI_I sMRtI_r sMRtm_I				
sMRtm_r) >			

	BSNA FA			
	significant (fdr corrected) Seq3.0			
	gr 1			
	SEQ_hyper	hypo	SEQ_seeking	SEQ_totalpt
	SEQ	SEQ_hypo	SEQ	SEQ
		0,	0,	0,
0 CLi_RLi CnF_I				
CnF r				
DR IC_I IC_r ION_I				
ION_I ION_r LC_I LC_r				
LDTg_CGPn_I				
LDTg_CGPn_r LPB_I LPB_r				
MPB_I MPB_r				
MiTg_PBG_I MiTg_PBG_r				
MnR PAG PCRtA_I				
PCRtA_r PMnR				
PTg_l PTg_r				
PnO_PnČ_I PnO_PnC_r RMg				
RN1_Î RN1 r				
RN2_I RN2_r				
RN_I RN_r ROb				
RPa SC_I SC_r				
SC_r SN1_I SN1_r				
SN2_I SN2_r				
SN_I SN_r				
SOC_I SOC_r SubC_I				
SubC_r SubC_r VSM_I				
VSM_r VTA_PBP_I				
VTA_PBP_r Ve_I Ve_r				
iMRt_l iMRt_r				
iMRtl_l iMRtl_r iMDt				
iMRtm_I iMRtm_r isRT_I				
isRT_r mRTA_I				
mRTA_r mRT_l				
mRT_r mRtd_l mRtd_r				
mRtl_l mRtl_r				
sMRt_I sMRt_r sMRtI_I				
SMRti_I sMRtl_r sMRtm_I				
sMRtm_r) >			

	BSNA ICVF			
	significant (fdr corrected) Seq3.0			
	per po eking talpt			talpt
	SEQ_hyper	SEQ_hypo	SEQ_seeking	SEQ_totalpt
	σ 	Ø	Ø	Ø
0		,		
CLi_RLi CnF_I CnF_r				
DR IC_I IC_r ION_I				
ION_r LC_l _LC_r				
LDTg_CGPn_I LDTg_CGPn_r LPB_I				
LPB_r MPB_I MPB_r				
MiTg_PBG_I MiTg_PBG_r MnR PAG				
PCRtA_I PCRtA_r PMnR				
PTg_I PTg_r PnO PnC I				
PnO_PnC_r RMg RN1_I				
RN1_r RN2_l RN2_r				
RN_I RN_r ROb RPa				
SC_I SC_r SN1_I				
SN1_r SN2_l SN2_r				
SN_I SN_r SOC I				
SOC_r SubC_I SubC_r				
VSM_I VSM_r VTA_PBP_I VTA_PBP_r				
VIA_PBP_I Ve_I Ve_r iMRt I				
iMRt_r iMRtl_l iMRtl_r				
iMRtm_I iMRtm_r isRT_I				
isRT_r mRTA_I mRTA_r				
mRT_I mRT_r mRtd_I mPtd_r				
mRtd_r mRtl_l mRtl_r sMRt I				
sMRt_I sMRt_r sMRtI_I sMRtI_r				
sMRtm_I sMRtm_r				

	BSNA MD			
	signifi	cant (fo	dr corre	ected)
	— SEQ_hyper	SEQ_hypo	SEQ_seeking	SEQ_totalpt
CLI_RLI CNF_I CNF_I CNF_I CNF_I CNF_I CNF_I IC_I IC_I IC_I IC_I IC_I IC_I IC_I I				

	BSNA ODI			
	significant (fdr corrected) Seq3.0			
	 SEQ_hyper	SEQ_hypo	SEQ_seeking	SEQ_totalpt
CLI_RLI CNF_I CNF_I CNF_I CNF_I CNF_I CNF_I IC_I IC_I ION_I IC_I ION_I IC_I IC_I ION_I I				

Significant (fdr corrected) Seq3.0		BSNA R1			
CLI_RLi CAF_I CAF_		significant (fdr corrected)			ected)
CLI_RLI CnF_I CnF_I CnF_I CnF_I DR IC_I IC_I IC_I IC_I ION_I ION_I ION_I ION_I LC_I LC_I LC_I LC_I LDTg_CGPn_I LDTg_CGPn_I LDTg_CGPn_I LPB_I MPB_I MPB_I MPB_I MPB_I MPB_I MPB_I MIT_PBG_I MIT_PBG_I PCRIA_I P		— SEQ_hyper			SEQ_totalpt
•	LI_TELT_T				

	BSNA RD			
	signifi	cant (fo	dr corre	ected)
	— SEQ_hyper	SEQ_hypo	SEQ_seeking	SEQ_totalpt
CLI_RLI CnF_I_r DR IC_I_r IC_I_r IC_I_r IC_I_r IC_I_r IC_I_r IC_I_r IC_I_r IC_I_r IC_I_r IC_I_r IC_I_r IC_I_r IC_I_r IC_I_r IC_I_r IC_I_r IC_I_r IC_I_R IC_I				

	BSNA logjacs			
	significant (fdr corrected) Seq3.0			
	SEQ_hyper	SEQ_hypo	SEQ_seeking	SEQ_totalpt
CLI_RLi CnF_I CnN_I CnN_I CnN_I CnN_I Cnn Cnn Cnn Cnn Cnn Cnn Cnn Cnn Cnn Cn				