

OFFICE OF NAVAL RESEARCH Contract Nonr 3395(00) Task No. NR 356-431 3/11/2

TECHNICAL REPORT NO. 28

Special Report on the Current Status of the Tensile Strength of SiB-2 Elastomers at Elevated Temperatures

19951109 063

Compiled by

H. A. Schroeder

Approved for public released

Distribution Unbinded

Olin Mathieson Chemical Corporation

Chemicals Division

New Haven, Connecticut

May 1965 DTIC QUALITY INSPECTED 5

Reproduction in whole or in part is permitted for any purpose of the United States Government

DEPARTMENT OF DEFENSE
PLASTICS TECHNICAL EVALUATION CENTER
PICATINNY ARSENAL, DOVER, N. J.

3 HDX 3 Alt-Z FOR HELP3 ANSI

3 LOG CLOSED 3 PRINT OFF 3 PARITY

*MSG DI4 DROLS PROCESSING-LAST INPUT IGNORED

```
***DTIC DOES NOT HAVE THIS ITEM***
       AD NUMBER: D432003
       CORPORATE AUTHOR: OLIN MATHIESON CHEMICAL CORP NEW HAVEN CONN
       UNCLASSIFIED TITLE: SPECIAL REPORT ON THE CURRENT STATUS OF THE
       TENSILE STRENGTH OF SIB-2 ELASTOMERS AT ELEVATED TEMPERATURES,
       PERSONAL AUTHORS: SCHROEDER, H. A.;
       REPORT DATE:
                      MAY , 1965
       PAGINATION:
--14 - REPORT NUMBER: TR-28
       CONTRACT NUMBER: NONR339500
       REPORT CLASSIFICATION: UNCLASSIFIED
       SUPPLEMENTARY NOTE: SEE ALSO PL-36263 - PL-36269.
--22 - LIMITATIONS (ALPHA): APPROVED FOR PUBLIC RELEASE; DISTRIBUTION
       UNLIMITED. AVAILABILITY: OLIN CHEMICALS, 120 LONG RIDGE RD,
       STAMFORD, CT. 06904.
--33 - LIMITATION CODES: 1 24
```

Alt-Z FOR HELP3 ANSI 3 HDX 3 3 LOG CLOSED 3 PRINT OFF 3 PARITY

-- END

Y FOR NEXT ACCESSION

Special Report on the Current Status of the Tensile Strength of SiB-2 Elastomers at Elevated Temperatures

Accesion For

NTIS CRA&I VI
DTIC TAB [
Unannounced [
Justification]

ByADD 432003
Distribution/

Availability Code

Compiled by H. A. Schroeder

Availability Code

Dist Avail and for Special

Summary

Modified SiB-2 rubbers can now be routinely compounded and pressure molded to provide an elastomer having a tensile strength of 450 psi. at ambient temperatures. On testing at 600°F, these specimens retain a tensile strength of 30-35%, or up to 45% by the addition of Fe₂O₃ as an antioxidant. At 800°F, 10% (and in certain instances 15%) retention was observed. These retention data surpass those reported for silicones and also are better than the corresponding values for Viton Boundary Company of the correspondence of th

The advent of the missile age and the development of supersonic jet aircraft has produced an increasing demand for nonmetallic materials which can be used at high temperatures. Of special importance is the synthesis of thermally stable elastomers superior to those presently available. Various requirements for them exist and more are projected for use in Mach 3 airplanes. Typical examples for their application are pneumatic seals for doors and windows, interlaminar layers for glass windshields, and integral fuel tank sealants, among many others. Each of these requires outstanding thermal stability beside individual properties which are specifically suited to the desired function.

During the past year we have discovered under this contract a new family of boron-containing elastomers which show promise of satisfactory performance under extreme conditions. From among these, we have selected as the most attractive candidate for elevated temperature capability "SiB-2", a polydimethylsiloxane containing m-carborane nuclei in regular intervals in the skeleton.

Olin Mathieson Chemical Corporation, various Monthly Progress Reports for Contract Nonr 3395(00).

In this polymer, the ratio of thermostabilizing carboranylene and flexibility producing dimethylsiloxy groups appears to be in the right balance as to assure maximum advantage of both properties.

Since "plain" SiB-2 requires up to 5% of peroxide for effective curing, we subsequently synthesized so-called "modified" SiB-2 rubbers by introduction of a minimal amount of unsaturated groups by introduction of a minimal amount of unsaturated groups as additional curing sites. In the example as illustrated, part of the methyl groups are replaced by vinyl groups. Other modifications investigated in place of vinyl are allyl and vinyl-ocarboranyl, which all permit a peroxide decrease to 2%.

The present program³ concerns the development of this and other elastomeric systems. Since we are only at the outset of this study and our previous work has given us only indications of what that rubber may do, an extensive although exploratory testing at elevated temperatures seemed necessary to gain enough data which would allow us to pursue our work along specific guide lines.

Test Material Preparation

To obtain a set of lucid data, a number of parameters involved in the sample preparation were kept constant. The use of various fillers had been scanned previously and we had found finely divided silica to be most suitable in regard to tensile strength and elongation; the commercial product selected was "Cab-O-Sil". As the free radical type curing agent, "Di-Cup 40", in 2 parts concentration, was used in almost every instance. The process of pressure molding as well as the curing cycle were identical for all samples. The proportion of unsaturated groups in modified SiB-2 rubbers always corresponded to the formula of vinyl modified SiB-2 illustrated in the introduction.

The cured SiB-2 test specimens were all prepared as follows: Purified and dried SiB-2 (plain or modified) rubber was milled to a crepe on a cold, 5 in. mill; the desired amounts of solid filler (Cab-O-Sil), curing agent (Di-Cup 40) and, in some cases Fe₂O₃ or Al(OH)₃ as an antioxidant, were thoroughly blended and then milled into the crepe. Enough compounded rubber was placed in a 2" x 5" mold to give a final specimen of $\sim 1/8$ " thickness; these specimens

Olin Mathieson Chemical Corporation, Technical Report No. 26 for Contract Nonr 3395(00) by S Papetti, B. B. Schaeffer, A. P. Gray and T. L. Heying, in preparation.

³ Contract NObs-92143, Project Serial No. SR007-03-03, Task 1000

were cured at 311°F at either 375 or 500 psig. After cooling, the specimens were removed and post-cured in air at 212°F for 24 hours, 302°F for 24 hours and finally 392°F for 48 hours.

Test Procedure

Ambient temperature tensile testing is done in the normal manner on an Instron Testing Apparatus, Model TT-CMl using a crosshead speed of 2"/min. For elevated temperature testing, the sample and holders are suspended in a Missimers Inc., Temperature Test Chamber, Model TFU 3.2_100x 1000; the chamber is brought to the selected temperature equilibrium, the box is opened and the dogbone is positioned and the door closed. The box is allowed to return to temperature, allowed to remain for 5 minutes (total time ~15 min.) and then pulled.

Results and Discussion

Since the SiB elastomers are basically polydimethylsiloxanes, it seems appropriate to compare them first of all with the silicones, and also to apply as much as possible the latter's established technology for improving the SiB polymers. The room temperature tensile strengths of commercial silicone rubbers generally fall in the 300 - 700 psi. range although some specialty types may be as high as 1000-1200 psi.

Our first objective was to try to improve the ambient temperature tensile strengths while maintaining adequate elongation. In this respect, modified SiB-2 polymers were found to be definitely superior to plain SiB-2.

Table 1^a reflects the effect of the various modifications (as compared to our standard unmodified SiB-2) on room temperature tensile strength at low loading.

TABLE I

Tensile Strength and Elongation:

Effect of Modification at Low Filler Content

Modification	SiO ₂ parts	Shore <u>Hardness (A)</u>	Elongation	Tensile psi.
None Vinyl OCH=CH2 OCH=CH2 OCH=CH2 Allyl Allyl Allyl	250 5 055555	68 58 57 57 64 72 72 73	55 61 125 87 92 115 136 140	201 192 277 215 279 384 446 375

Tables I-VI which appear in this discussion are organizations of properly selected data which serve to illustrate certain points or establish trends. A complete tabulation of all meaningful evaluation data obtained in two tables in the Appendix.

It should be pointed out that at present we are not so much concerned with absolute numerical values as we are in establishing trends and effects on these values. Simple vinyl modification was ineffective. Vincylcarboranyl modification showed measurable improvement while allyl modification, as expected, gave the highest tensile and elongation values. (This is typical of llyl modified silicones in general.) The effect of variation of parts of silica in the 25-25 ranges seems negligible; when 50 or more parts of silica are used the effect becomes pronouned as can be seen in Table II.

TABLE II

Tensile Strength and Elongation:

Effect of Modification at High Filler Content

Modification	SiO ₂ parts	Shore <u>Hardness</u>	Elongation	Tensile psi.
Vinyl Vinyl Vinyl Vinyl Vinyl Vinyl OCH=CH2 OCH-CH2 Allyl Allyl Allyl	50 50 50 50 50 50 50 50 50 75	71 67 80 78 85 70 72 74 66 75 78	72 88 53 49 18 54 67 70 78 102 37.5 39	333 372 495 495 3341 452 413 419 3191

Note here that at room temperature additional filler markedly raised the tensile strengths of both the vinyl and vinylcarboranyl modifications while there is no effect on the allyl modified polymer. Sixty parts of silica appears to be the maximum which can be tolerated without causing a sharp decline in elongation.

A real test of an elastomer for use at high temperature is the measurement of the percentage of retention of a given physical property at these temperatures. Table III therefore summarizes the performance of certain samples (low loading) discussed above at 600 and 800°F.

TABLE III

Tensile Strength and Elongation:

Effect of Modification at High Temperatures (Low Filler Content)

			ient		600°F			800°F	
Modification	SiO ₂ parts	Elong. $\frac{\%}{2}$	Tensile psi.	Elong. 3	Tensile psi.	Retention % psi.	Elong. 3	Tensile psi.	Retention % psi.
none	25	55	201	40	62	30.8	11	33	16.4
өсн - сн ₂	25	109	239	72.6	73.4	30.7	22	18.2	7.6
о сн=сн ₂	25	125	277	90	89	32.1			
о сн=сн ₂	35	92	279	7 0 .	86.6	31	-		
allyl	25	115	384	92	96.5	18.1			
allyl	25	136	446	66	33.3	7.5		13.1	2.9
allyl	35	140	375	156	69.5	18.5	33	10.9	2.9

Although at 25 parts silica the allyl modified SiB-2 showed by far the highest room temperature tensile strength, at 600 and 800°F it is considerably inferior to both vinylcarboranyl modified and unmodified SiB-2. Note the retention of $\sim 30\%$ of tensile strength of the latter two at 600°F .

Table IV illustrates a similar treatment of the more highly filled specimens.

TABLE IV

Tensile Strength and Elongation:

Effect of Modification at High Temperatures (High Filler Content)

	640		bient		600°F			800°F	
Modification	SiO ₂ parts	$\frac{2}{3}$	Tensile psi.	Elong.	Tensile psi.	Retention % psi.	Elong.	Tensile psi.	Retention % psi.
vinyl	50	72	333	45	122	36.6	15	26.5	8
vinyl	50	53	430	67.5	123.5	29	11	21.5	5
vinyl	60	49	495	54.6	158	32			
vinyl	75	18	503					26.8	5.3
ech=ch ₂	50	67	341	77. 5	120.9	35.4	19.2	22	6.4
ech=ch ₂	50	70	459	50	187.5	40.8	25	43.4	9.4
allyl	50	102	413	58	91.5	22.3	22	25.6	6.2

These results shows that again the allyl modification is inferior to either the vinyl or vinylcarboranyl types. Samples of each of the latter two retained more than 30 percent of their tensile strength at 600°F and 5-8% and 6-9% respectively at 800°F. We also point out that visual observance of the specimens during test made it obvious that the allyl materials was softening and deforming while the others generally retained their structural identity.

These results have led us to drop from further consideration the use of allyl modified SiB-2 for high temperature evaluation. This also points out the principal that the variation which shows the best room temperature properties need not necessarily perform as well at elevated temperature as another very similar material; it is the old story of the 'weakest link in the chain'.

During these and earlier studies it had become apparent to us that initial deterioration of an elastomer sample at elevated temperatures could be observed as a surface hardening and/or cracking while the interior of the sample was quite unchanged. Such a happening could be the start of a failure in a tensile test. We have every reason to suspect oxidative attack and have begun to scan potential antioxidants and determine whether they are beneficial. Table V points out the effect of Fe₂O₃, a potential antioxidant on one formulation system, namely the vinylcarboranyl variety with 50 parts Cab-O-Sil. The additive of one part of the Fe₂O₃ produced no significant difference in tensile strength retention at either 600 or 800°F; on the other hand the addition of three parts Fe₂O₃ gave the highest retention yet observed at 600°F, specifically 45.7% and the retention at 800°F was above 10°. We believe this effect to be real and important and this is an important point for further study.

TABLE V

Tensile Strength and Elongation:

Effect of Fe₂O₃ at Various Temperatures

Modifi- cation	SiO ₂	Anti- oxidant (parts)		Tensile psi.	Elong.	600°F Tensile psi.	Retention % psi.	Elong.	800°F Tensile psi.	Retention % psi.
өсн=сн ₂	50		67	341	77. 5	120.9	35.4	19.2	22	6.4
о сн=сн ₂	50		70	459	50	187.5	40.8	25	43.4	9.4
о сн=сн ₂	50	Fe ₂ O ₃ (1)	100	428	61	128	27.5	8	32.8	7.6
ech=ch ₂	50	Fe ₂ 0 ₃ (3)	69	357	7 5	163	45.7		38.4	10.7

Other spurious results regarding the trials of the antioxidants are summarized in Table VI; we remind the reader that these studies have only recently begun and are still in progress.

TABLE VI

Tensile Strength and Elongation:

Effect of Various Antioxidants at Various Temperatures

Modifi-	SiO	Anti- oxidant		bient Tensile	P1	600°F			800°F	
cation	par		<u>%</u>	psi.	Elong.	psi.	Retention % psi.	Elong.	Tensile psi.	Retention % psi.
none	2 5		55	201	40	62	30.8	11	33	16.4
none	25	Fe ₂ 0 ₃ (0.5)	43	202	37.5	93.3	46.4		· · · · · · · · · · · · · · · · · · ·	
өсн=сн ₂	25	-	109	239	72.6	73.4	30.7	22	18.2	7.6
ecH=cH ₂	25	Fe ₂ 0 ₃ (1)	158	244	90	103	42.2		28.8	11.8
о сн=сн ₂	25	Fe ₂ 0 ₃ (3)	182	271	81	100	36.9	11	25.9	9.6
⊖CH=CH ₂	25	A1 (OH) ₃ (3)	190	226	68	58.5	25.9		22.1	10.0
vinyl	25	A1 (OH) ₃ (3)	160	232	83	77.4	33.3		15.2	6.5

These data point out that in general Fe_2O_3 aids in retention of strength in general; the effect of hydrous alumina is questionable. The second example using 0.5 parts Fe_2O_3 with unmodified SiB-2 showed exceptionally high retention at $600^{\circ}F$; check of the records showed that this sample of Fe_2O_3 was from a different source than all others reported and this point is being looked into. Also this particular sample of unmodified SiB-2 in the various formulations in which it was used showed generally better results that we had become accustomed to note. Again careful check of the history of the sample has given us a clue as to why this may have occurred; this is to be examined in more detail.

Conclusions

Appropriate studies indicate that vinylcarboranyl (and possibly vinyl) modification (to speed curing) of SiB-2 is preferred over allyl modification for high temperature use.

Increasing the amount of silica, as expected, increases the tensile strength of the elastomers; at loadings > 60 parts the elongation drops off markedly.

Retention of $30_45\%$ of tensile strength at $600^{\circ}F$ and >10% at $800^{\circ}F$ in air has been achieved. The use of iron oxide as an antioxidant assists in this regard.

Further improvements from the study of the effects of such variables as the curing cycle, filter contents, addition of selected antioxidants, etc can be expected.

Comparison of SiB-2 rubber with other elastomers such as Viton and fluorosilicones on aging at \sim 700°F in air will be stressed during the forthcoming period.

Studies elsewhere (Mare Island Naval Shipyard, Rubber Laboratory, Report No. 1-14, 9 November 1964) have shown that hydrous alumina in conjunction with a chloro polymer may be useful. Also the use of antimony oxide (U.S. Rubber Co., Final Report for Contract NObs 84025, March 9, 1962) is suggested elsewhere. We intend to evaluate these as well as many other compounds we suspect could be useful.

Appendix I Tensile Strength Determinations at Ambient Temperatures

Number of Samples <u>Tested</u>	m	4	4	4	4	4	S	2	m	9	4	4	4	4	4	2	м	4	4	4	m	ю	4	2	7	4	4	4	4
Test Variation (minmax.)	179-230	173-218	301-360	382-454	353-398	489-507	490-516	232-232	281-368	410-492	248-308	186-242	260-317	325-368	338-371	423-432	218–289	234-263	213-298	180-221	214-240	427-468	357-426	368-381	400-425	146-218	290-323	297-334	320-364
Tensile <u>psi.</u>	202	192	333	430	372	495	503	232	331	459	277	215	279	341	357	428	254	244	271	203	226	446	384	375	413	183	312	319	351
Elongation <u>%</u>	43	61	72	53	88	49	18	160	54	70	125	87	92	67	69	100	179	158	182	120	190	136	115	140	102	130	78	37.5	39
Shore A	65	58	7.1	80	67	78	85	. 95	70	74	57	57	64	72	70	99	55	55	55	28	99	72	72	73	75	20	99	74	78
Peroxide ¹ (<u>parts</u>)	BP(2)	BP(1.5)	DC (2)	DC (2)	DC (2)	DC (2)	DC (2)	DC (2)	DC (2)	DC (2)	DC (2)	DC (2)	DC (2)	DC (2)	DC (2)	DC (2)	DC (2)	DC (2)	DC (2)	DC (2)	DC (2)	DC (2)	DC (2)	DC (2)					
Antioxidant (parts)	Pe ₂ 0 ₃ (0.5)							A1 (OH) 3 (3)							Fe ₂ O ₃ (3)	$Pe_2O_3(1)$	$Fe_2^{O_3}(3)$	$Pe_2O_3(1)$	Fe ₂ 0 ₃ (3)	A1 (OH) 3 (3)	A1 (OH) 3 (3)					A1 (OH) 3 (3)	1	1	
SiO ₂	25	20	20	20	20	9	75	25	20	20	25	30	35	20	20	20	25	25	25	34	25	25	25	35	20	34	20	09	75
Modification	none	vinyl	OCH=CH2	ecH=cH ₂	ecr=ch ₂	ecH=cH ₂	ech=cH ₂	өсн-сн ₂	өсн=сн ₂	eCH=CH ₂	ecH=CH ₂	ech=cH ₂	ech=ch ₂	ecr=cH ₂	өсн=сн ₂	allyl	allyl	allyl	allyl	allyl	allyl	allyl	allyl						
Sample No.	92	98	94-95	122-123	143	144	145	147	93	66-86	102	103	104	126-127	128-129	130-131	132-133	134-135	136-137	138	146	105	106	108	110-111	139	140	141	142

1. See Appendix II for definition.

Appendix II

Tensile Strength Determinations at Ambient and Elevated Temperatures

70	Modification	Sio 1	Antioxidant	Peroxide ²	Shore A	-40°F	idni.	ent	. 6u	600°F Tensile	Retention	Elong.	800°F Tensile	Retention
		o l	(parts)	(parts)	Hardness	psi.	સ્થ	P81.	% !	pai.	% psi.	ઋા	ps1.	% psi.
25	25			BP(2)	89	1	55	201	40	62	30.8	11	33	16.4
none 25	25		Pe ₂ 0 ₃ (0.5)	BP(2)	65	1.	43	202	37.5	93.9	46.4			
vinyl 25	25		A1 (OH) 3 (3)	DC (2)	26		160	232	83	77.4	33.4	1	15.2	6.5
20	20			DC (2)	11	1370	72	333	45	122	36.6	15	26.5	80
. 50	20			DC (2)	80	1948	53	430	67.5	123,5	29.0	11	21.5	2
vinyl 60	9			DC (2)	78	1	49	495	54.6	158	32			
vinyl 75	75			DC (2)	85	1	18	503				I	26.8	5,3
1, 25	25			Va (1)	ł	l	109	239	72.6	73.4	30.7	22	18.2	7.6
12 25	25			DC (2)	57		125	277	06	89	32.1			
өсн=сн ₂ 25	25		$Fe_2^{O_3}(1)$	DC (2)	55		158	244	06	103	42.2	1	28.8	11.8
ecr⊨ch ₂ 25	25		Fe ₂ O ₃ (3)	DC (2)	55		179	254	83	79	31.1			
өсн=сн₂ 25	25		Fe ₂ 0 ₃ (3)	DC (2)	55		182	172	81	100	36.9	11	25.9	9.6
12 25	25		A1 (OH) 3 (3)	DC (2)	58	1	190	226	68	58.5	25.9	1	22.1	10
12 35	35			DC (2)	64	1	92	279	70	96.6	31			
¹ 2 50	20			DC (2)	74	1394	02	459	20	187.5	40.8	25	43.4	9.4
eCH=CH ₂ 50	20			DC (2)	72	1288	67	341	77.5	120.9	35.4	19.2	22	6.4
өсн=сн₂ 50	20		$Fe_2O_3(1)$	DC (2)	99	1	100	428	61.5	128	27.5	8	32.8	7.6
өсн−сн₂ 50	20		Pe ₂ 0 ₃ (3)	DC (2)	0/	1	69	357	75	163	45.7	1	38.4	10.7
allyl 25	25			DC (2)	72	-	136	446	99	33.3	7.5	1	13.1	2.9
allyl 25	25			DC (2)	72	1	115	384	93	69.5	18.1			1
1 35	35			DC (2)	73	-	140	375	156	69.5	18.5	33	10.9	2.9
allyl 50	20			DC (2)	75	2151	102	413	28	91.5	22.3	22	25.6	6.2

¹ SiO₂ : Cab-O-Sil M5 (Cabot Corp.)

² Peroxides:

Va - Varox (2,5-bis(tert.-butylperoxy0-2,5-dimethyl hexane, BP - Benzoyl Peroxide. DC - DI CUP 40 (40% dicumyl peroxide supported on calcium carbonate).

DISTRIBUTION LIST FOR SPECIAL TECHNICAL REPORTS

Department of the Army		Dr. Albert Lightbody	
Supply & Maintenance Command		Naval Ordnance Laboratory	
Maintenance Readiness Division		White Oak, Maryland	(1)
Washington, D.C.		,	` '
Attn: Technical Director	(1)	Commanding Officer and Director	
U.S. Army Natick Laboratories		U.S. Naval Civil Engineering Lab.	
Clothing & Organic Materials Divisio	n		
Natick, Massachusetts	11	Port Hueneme, California	(1)
	/ 1 \	Attn: Chemistry Division	(1)
Attn: Associate Director	(1)	A /: 1 G / - D: : : -	
Clif D CCli		Aeronautical System Division	
Chief, Bureau of Ships		ASRCNP	(1)
Department of the Navy		Wright-Patterson AFB, Ohio	(1)
Washington, D.C.	(1)		
Attn: Code 342A	(1)	Plastics Technical Evaluation Cent	er
Code 634C	(1)	Picatinny Arsenal	1 - 1
		Dover, New Jersey	(1)
Chief, Bureau of Naval Weapons			
Department of the Navy		Commander	
Washington, D.C.		Ordnance Corps	
Attn: Code RRMA-1	(1)	Rock Island Arsenal	
		Rock Island, Illinois	
Commanding Officer		Attn: ORDEC 9320-ZTO	(1)
U.S. Army Electronics Research			
and Development Laboratory		New York Naval Shipyard	
Fort Monmouth, New Jersey 07703		Materials Laboratory	
Attn: SELRA/DR	(1)	Brooklyn, New York	
	, ,	Attn: Mr. B. Simms	(1)
Naval Radiological Defense Laborator	ry		` ,
San Francisco, California 94135	(1)	Director	
,	` _ /	Naval Research Laboratory	
Naval Ordnance Test Station		Washing, D. C.	
China Lake, California		Attn: Mr. J. A. Kies, Code 6210	(1)
Attn: Head, Chemistry Division	(1)	Mr. E. J. Kohn, Code 6110	(1)
Code 40	(1)	Mr. R. B. Fox, Code 6120	(1)
Code 50	(1)	Wir. R. D. Tox, Code orac	(+)
	(- /	Naval Ordnance Test Station	
Commanding Officer		China Lake, California	
U.S. Army Chemical Research and		Attn: Dr. Kaufman, Code 4544	(1)
Development Laboratories		Mr. S. H. Herzog, Code 557	
-	(1)		
Edgewood Arsenal, Maryland	(1)	Mr. R. J. Landry	(1)
Dr. C. Haber			
Naval Ordnance Laboratory	(1)		
Corona, California	(1)		
D. Douten W. Enishman			
Dr. Porter W. Erickson			
Chemistry Research Department			
Non-Metallic Materials Division			
Naval Ordnance Laboratory	(1)		
White Oak, Silver Spring, Maryland	(1)		