MFPTP 传输协议

V1.0	Released on January 23 th , 2015, by Wangshiyou
V1.1	Add 3 and 4 April 20 th, 2015, by Wangshiyou

制订:	
审核:	
^	
标准化:	
批准:	

数据组织协议	3
命名:	3
定义:	3
1、数据帧头	3
1、1、表示方法	:3
1、2、表示内容	:3
1、3、实例	4
2、数据包、帧实体	4
2、1、表示方法	:4
2、2、表示内容	:4
	5
3、握手认证	5
3、1、表示方法	:5
3、2、实例:	5
	6
	:6
4、2、实例:	6
	X Y
	Y
_	
	7
• • •	
>	

数据组织协议

命名:

Multi Frame Package Transfer Protocol 多帧封包传输协议

定义:

1 个 byte = 1 个长方格 1 个 bit = 1 个小方格

1、数据帧头

1、1、表示方法:

明文

1、2、表示内容:

1、协议开始符号: # --》

--》 1 个字节

2、协议名称: MFPTP

--》5 个字节

3、协议版本: 0x10

--》1个字节(高4位大版本、低4位小版本)

4、压缩格式、加密格式

0x11--》1个字节(高4位压缩、低4位加密)

4、1、压缩格式

0x00:无压缩

0x01: ZIP

0x02: GZIP

4、2、加密格式

0x00:无加密

0x01: IDEA 0x02: AES

数据组织: 先加密、再压缩

5、socket 工作方式: 0x01 --》一个字节

PAIR = 0x00PUB = 0x01SUB = 0x02**REQ** = 0x03= 0x04REP **DEALER** = 0x05ROUTER = 0x06PULL = 0x07**PUSH** = 0x08= 0x09**HEART**

6、包数: 0x02 --》1

1、3、实例

			-	-	-)	001	0.00	0.00	0.00
Ħ	ļ.	M	F	Р	1	P	0x01	0x00	0x03	0x02

2、数据包、帧实体

2、1、表示方法:

二进制字节流

2、2、表示内容:

FP_control	F_size	数据实体	数据实体	数据实体	数据实体	•••••

FP_control:当前帧控制 --》1 个字节

1、低 4 位的低 2 位控制 F_size 将占用几个字节

0x0 : F_size = 1 0x1 : F_size = 2 0x2 : F_size = 3 $0x3 : F_size = 4$

2、低 4 位的高两位控制当前包的帧是否结束

0x0:结束

0x1: 当前包还有帧

F_size: 当前帧的数据长度

1 到 4 个 字节不定

2、3、实例

0x03	0xFF	数据实体	数据实体	数据实体	数据实体	·····
0x00	0xFF	数据实体	数据实体	数据实体	数据实体	•••••
0x03	0xFF	数据实体	数据实体	数据实体	数据实体	•••••
0x00	0xFF	数据实体	数据实体	数据实体	数据实体	•••••

3、握手认证

3、1、表示方法:

二进制字节流

- A:客户端 帧头 socket_type = PAIR ,携带一帧:第一个字节(0或1),表示是否需要更新秘钥,后面跟随唯一串号给服务器
- B:服务器收到请求后,那么下发给客户单 socket_type = PAIR,携带 一帧 数字"1" 代表合法,否则 ,携带一帧 数字 "0"代表不合法
- C:合法标示后面紧跟4位上次发送接收到的数据长度和16位公钥(无则全部为0), (单位:字节)

3、2、实例:

A:客户端请求:

#	М	F	Р	Т	Р	0x01	0x00	0x00	0x01
0x00	0x10	1	0123456	789ABCD	E				

B:服务器返回:

_	-/4/-/4 Int									
#	М		F	Р	Т	Р	0x01	0x00	0x00	0x01
0x00	0x05	1	2048				0	00000000	00000000	00000000

4、断点续传

4、1、表示方法:

二进制字节流

网络信号好:

- A:客户端 帧头 socket type = REQ ,携带一帧 唯一串号给服务器
- B:服务器收到请求后,那么下发给客户单 socket_type = REP,携带一帧:当前接收到的长度(单位:字节)

网络信号差:

- A:客户端 帧头 socket type = REQ ,携带一帧 唯一串号给服务器
- B:没有接收到服务器的回执,那么进入重连状态。
- C:重连成功后,握手认证也成功了,如果接收长度不为 0,用数据本身长度 减去 返回的 接收长度,直接发送下面的数据(不需要任何控制信息)。
- D: 重连成功后,握手认证也成功了,返回的数据长度等于 0,那么采用正常方式 从新传送当前的 REQ 数据。

4、2、实例:

A:客户端请求:

#	М		F	P	Т	Р	0x01	0x00	0x03	0x01
0x00		0xFF	Y	01324567	89ABCDES	DFSDFSF•	••••			

B:服务器返回:

#	М	F	F	Р	T	Р	0x01	0x00	0x04	0x01
0x00		0x05	;	1	2048					