Vorlesungsmitschrift

Algorithmen und Berechenbarkeit

Vorlesung 19

Letztes Update: 2018/01/27 - 11:06 Uhr

\mathcal{P} vs. $\mathcal{N}\mathcal{P}$

Eine der bekanntesten, wichtigsten und offenen Fragen der theoretischen Informatik beschäftigt sich ebenfalls mit \mathcal{P} und \mathcal{NP} :

$$\mathcal{NP} = \mathcal{P}$$
?

Wie der Grafik entnommen werden kann, gilt offensichtlich $\mathcal{P} \subseteq \mathcal{NP}$ und außerdem $\mathcal{NP} \subseteq \text{EXPTIME}$.

Idee: Man zeigt äquivalente Schwere einiger Probleme in $\mathcal{NP} \to \mathcal{NP}$ -vollständige Probleme". Dies hätte zur Folge, dass wenn man von einem dieser Probleme zeigen könnte

$$\in \mathcal{P}$$
, dann gilt $\Rightarrow \mathcal{NP} = \mathcal{P}$

$$\notin \mathcal{P}$$
, dann gilt $\Rightarrow \mathcal{NP} \neq \mathcal{P}$

Zunächst wird eine weitere Form der Reduktion eingeführt.

Definition polynomieller Reduktion: L_1 und L_2 seien zwei Sprachen über Σ_1 bzw. Σ_2 . L_1 ist polynomiell reduzierbar auf L_2 , wenn es ein

$$f: \Sigma_1^* \to \Sigma_2^*$$

gibt, das in polynomieller Zeit berechnet werden kann mit $x \in L_1 \Leftrightarrow f(x) \in L_2$.

Geschrieben $L_1 \leq_p L_2$.

Lemma: $L_1 \leq_p L_2, L_2 \in \mathcal{P} \Rightarrow L_1 \in \mathcal{P}$

Beweis: Klar.

Beispiel polynomieller Reduktion: Coloring \leq_p SAT

Definition: Coloring

Gegeben sei G(V, E) (ungerichtet) und $k \in \{1, ..., |V|\}$.

Frage: Gibt es eine Färbung

$$c: V \to \{1, \dots, K\}$$

der Knoten in G mit k-Farben, sodass benachbarte Knoten nie dieselben Farben haben?

Definition: SAT (Satisfiability)

Gegeben sei eine aussagenlogische Formel ϕ in KNF.

Frage: Ist ϕ erfüllbar?

Satz: Coloring \leq_p SAT.

Beweis: Man beschreibt eine Reduktionsfunktion $f(G, K) = \phi$, sodass gilt:

G hat k-Färbung $\Leftrightarrow \phi$ erfüllbar

Für jeden Knoten $v \in V$ und jede Farbe $i \in \{1, ..., K\}$ führt man eine Variable x_v^i ein $(x_v^i = \texttt{true} \Rightarrow v \text{ bekommt die Farbe } i)$.

$$\phi = \underbrace{\bigwedge_{v \in V} (x_v^1 \vee x_v^2 \vee \dots \vee x_v^k)}_{\text{Knotenbedingung}} \quad \underbrace{\bigwedge_{\{u,v\} \in E} \quad \bigwedge_{i \in \{1,\dots,k\}} (\overline{x_u^i} \vee \overline{x_v^i})}_{\text{Kantenbedingung}}$$

 ϕ hat die Größe $\mathcal{O}(k \cdot n + k \cdot n) \Rightarrow \mathcal{O}(n^3)$.

Nun muss noch gezeigt werden, dass die Reduktionsfunktion gültig ist.

- \Rightarrow Sei c eine k-Farbe für G: Nun setzt man x_v^i =true für v mit c(v)=i, sonst x_v^i =false. Die Knotenbedingung ist offensichtlich erfüllt. Auch die Kantenbedingung ist erfüllt, da immer $\overline{x}_u^i \vee \overline{x}_v^i$ gilt, weil sonst v und u dieselbe Farbe haben müssten.
- \Leftarrow Angenommen, man hat eine erfüllende Belegung für ϕ . Für jeden Knoten gibt es also mindestens ein $x_v^i = \texttt{true}$. Nun wählt man für jeden dadurch eine Farbe aus. Sei $\{u, v\} \in E$: Angenommen, c(u) = c(v) = i. Dann wäre jedoch $x_v^i = x_u^i = \texttt{true}$ und $\overline{x}_v^i \vee \overline{x}_u^i = \texttt{false}$. Daraus folgt, ϕ ist nicht erfüllt, woraus gilt $c(u) \neq c(v)$.

Korollar:

a) Wenn SAT in Polynomzeit deterministisch lösbar ist, ist Coloring auch in Polynomzeit lösbar.

b) Wenn SAT nicht in Polynomzeit deterministisch lösbar ist, ist Coloring auch nicht in Polynomzeit lösbar.

Definition \mathcal{NP} -hart/ \mathcal{NP} -schwer: Ein Problem L heißt \mathcal{NP} -hart falls gilt:

$$\forall L' \in \mathcal{NP} : L' \leq_p L$$

Satz: L ist \mathcal{NP} -hart und $L \in \mathcal{P}$, dann gilt $\mathcal{P} = \mathcal{NP}$.

Definition \mathcal{NP} -vollständig: Ein Problem heißt \mathcal{NP} vollständig, falls

- 1. $L \in \mathcal{NP}$ (meistens einfacher zu zeigen)
- 2. L ist \mathcal{NP} hart (meistens schwieriger zu zeigen)

NPC ist die Klasse der \mathcal{NP} -vollständigen Probleme.

Satz: SAT ist \mathcal{NP} -vollständig.

Beweisidee:

- a) SAT $\in \mathcal{NP}$ ist einfach.
- b) $\forall L' \in \mathcal{NP} : L' \leq_p L$ $L' \in \mathcal{NP}$ heißt, es gibt eine NTM \mathcal{M} , die L' in polynomieller Zeit erkennt. Nun kodiert man das Verhalten von \mathcal{M} in eine aussagenlogische Formel, die genau dann erfüllbar ist, falls \mathcal{M} die Eingabe in polynomieller Zeit akzeptiert (mehr Informationen im Skript).

Lemma: $SAT \leq_p 3SAT$

Satz: 3SAT ist \mathcal{NP} -vollständig.