3D-KORN Software Engineering Unicorns

CONTENT

- Introduction
- Project Management
- High level design
- Acquisition
- 3D Registration
- Point Cloud Operations
- Graphical User Interface
- Demo

- Main Objective
 - Build a home-made acquisition and processing software that does not depend on proprietary softwares
 - Other goals
 - •Improve the level of programming of all the students in the group
 - Robust design
 - User friendly system

Project Management

Project Management

- 11 members, different nationalities and languages
 - Collaboration platform
 - •Trello https://trello.com/b/inpECRpD/unicorns-main
 - •Github repository https://github.com/umaatgithub/3D-KORN
 - Google docs
 - Facebook group
- Divided into 4 teams after initial research
 - Acquisition team
 - •3D Registration team
 - Point cloud operations team
 - Graphical User Interface (GUI) team

- Skill set analysis chart
- Built group with a mix of skill set
- Task allocation chart
- Project specific coding standards
- 3 months
 - •1 month -> Requirement analysis & Proof of Concept
 - Output High level design
 - 2 months -> Coding and Testing
 - Output Final code, report, presentation

Acquisition

Tdk_sensor

Abstract class:

```
virtual bool mf_IsAvailable() = 0;
virtual bool mf_SetupSensor() = 0;
virtual bool mf_StartSensor() = 0;
virtual bool mf_StopSensor() = 0;
```

- Core functionalities:
 - Get pcl<pointXYZRGB> pointcloud from the sensor
 - Register a callback that uses a separate <boost>thread
 - Updates the Pointcloud every time a new valid Pointcloud is available
 - Get/set parameters from/of the sensor
 - Filter box
 - Sensor status

Creates a grabber object (kinect2grabber: public pcl grabber)
Registers the callback

callback

Acquisition with R200: tdk_intelr200sensor

Drawbacks:

- -Noisy data (Low resolution depth image)
- -Shorter working range than kinect

Advantages:

- -Portable, small and cheap
- -Good sdk (documentation)

3D Registration

General Algorithm Overview.

Registration chartflow. Rough and precise correction alignments (yellow and light-blue blocks respectively).

Turntable Rotation Compensation.

Registration chartflow. Rough and precise correction alignments (yellow and light-blue blocks respectively).

Turntable Rotation Compensation.

Rotation * Translation = Transformation

Pairwise Rough Alignment.

Registration chartflow. Rough and precise correction alignments (yellow and light-blue blocks respectively).

CODE & UNICORNS

Loop Closing Correction.

Registration chartflow. Rough and precise correction alignments (yellow and light-blue blocks respectively).

Loop Closing Correction.

a) Pairwise Alignment.

b) Alignment post ELCH.

Second ICP layer and denoising.

Registration chartflow. Rough and precise correction alignments (yellow and light-blue blocks respectively).

Registration Results.

Conclusions

- Fast and easy prior knowledge pre-aligning strategy.
- Registration algorithm able to work with few amount of clouds (12 frames, 30 °).
- Rough registration allows real-time alignment preview.
- Cascade alignment steps provides extra robustness of the method to noise or poor parameter estimation.
- The developed class is modular and flexible for ease of future development.

Point Cloud Operations

Point Cloud Operations

- Cropping Process
- Creating Mesh
- Saving & Loading & Converting

Point Cloud Operations: Cropping Process

Point Cloud Operations: Creating Mesh

Prepare the point cloud

Voxel Filtering

MLS Smoothing

Three methods to create the mesh

Poisson Algorithm

Greedy Algorithm

Marching Cube Algorithm

Postprocessing Algorithm Laplacian

Point Cloud Operations:

Mesh from Greedy

Point Cloud Operations: Saving & Loading

The point cloud and mesh can be saved in different formats:

• PCD, PLY (Mainly for point clouds)

VTK, STL (For mesh)

• The final model can also be converted from VTK to STL which is readable for 3D printers.

Graphical User Interface

Scan Window

Hardware interface

- Qserialport & Microcontroller
- Physical Turntable

CODE & UNICORNS

QSerialPort & Microcontroller

- Bidirectional serial communication
- Minimal serial communication Very low risk of serial overloading
- Core functionalities:
 - Start acquisition
 - Stop acquisition
 - Set step angle and number of rotations*
- Acquisition modes:
 - Manual acquisition
 - EncodScan

EncodScan[™]

Physical turntable

The Best is yet to come

