Forelesning B Logikk og Bevisteknikk

Pensum

• Pensumhefte, appendiks A

To nivåer

Sitater fra «Roads to Infinity» av John Stillwell.

Setningslogikk:

«The logic of 'and', 'or' and 'not'.»

• Predikatslogikk:

«The logic of relations between individuals x, y, z, ... and the quantifiers 'for all x' and 'there exists and x'.»

Inferensregler

- Introduksjon og eliminasjon
- Basert på formelle systemer ...
- ... men noe uformelt presentert

(Merk: Ikke en sannhetstabell)

 $P \to Q \ vs \ P \Rightarrow Q$

$$P \qquad H$$

$$\vdots$$

$$Q$$

$$P \Rightarrow Q$$

 $I \Rightarrow$

 $E \Rightarrow$

$$P \qquad H$$

$$\vdots$$

$$Q$$

$$P \Rightarrow Q$$

$$P \Rightarrow Q, P$$

$$Q$$

Modus Ponens

$$\begin{array}{ccc}
P & \mathbf{H} \\
\vdots & & \\
Q & \mathbf{H} \\
\hline
P \Rightarrow Q
\end{array}$$

$$P \Rightarrow Q, P$$

$$Q$$

$$P \Rightarrow Q \equiv \neg Q \Rightarrow \neg P$$

$$\begin{array}{ccc} \neg Q & \mathbf{H} \\ \vdots & & \\ \hline - \neg P & \mathbf{H} \\ \hline P \Rightarrow Q & \end{array}$$

$$P \Rightarrow Q, \neg Q$$

$$\neg P$$

Modus Tollens

$$P \Rightarrow Q, \neg Q$$

$$\neg P$$

$$P \Rightarrow Q, \ Q \Rightarrow P$$

$$P \Leftrightarrow Q$$

$$P \Rightarrow Q, \ Q \Rightarrow P$$

$$P \Leftrightarrow Q$$

$$P \Leftrightarrow Q$$

$$P \Rightarrow Q, Q \Rightarrow P$$

$$P \Leftrightarrow Q \Leftrightarrow R$$

$$P \Rightarrow Q \Rightarrow R \Rightarrow P$$

Negasjon

• Omform til ekvivalent positivt utsagn?

 $I \neg$

 $E \neg$

Reductio ad Absurdum

$$P$$
 H
$$\vdots$$

$$\neg P$$
 H

Reductio ad Absurdum

$$P$$
 \vdots
 P
 H

$$Q, \neg Q$$
 \bot

 $\frac{P, \ Q}{P \wedge Q}$

 $I \wedge$

 $\mathrm{E} \wedge$

 $\frac{P,\ Q}{P\,\wedge\,Q}$

$$\frac{P \wedge Q}{P, Q}$$

 $P \vee Q$ $I \vee$

 $\frac{P}{P \vee Q}$

 $I \vee$

 $\mathrm{E}\,ee$

Proof by Cases

$$\frac{P}{P \vee Q}$$

 $P \lor Q \equiv \neg P \Rightarrow Q$

$\operatorname{I} \forall$	$\mathrm{E}orall$

 $I \, \forall$ $\operatorname{E} \forall$

 $\frac{P(a)}{\forall x P(x)}$

$$\frac{\forall x P(x)}{P(a)}$$

 $I \, \forall$

 $\operatorname{E} \forall$

т¬	
I∃	Ε∃

 $I \exists$

 $E \exists$

 $I \exists$

 $E \exists$

$$\frac{\exists x P(x)}{P(y)}$$

 $I \exists$

 $E \exists$

$$\frac{\exists x P(x)}{P(y)}$$

$$\uparrow_{\text{dummy}}$$

 $\exists x P(x) \equiv \neg \forall x \neg P(x)$

 $\exists !xP(x)$

 $\exists x P(x) \land \forall x \forall y \big(P(x) \land P(y) \Rightarrow x = y \big)$

