25 Balkan Olympiad in Informatics 2025 - Day 1

popswap • SQ

PopSwap (popswap)

Për një numër të plotë të dhënë N, S_N është bashkësia e të gjitha kombinimeve të (0, ..., N-1). Gjithashtu, E_N është bashkësia e të gjitha çifteve të renditura (p,q) ku:

- p dhe q janë elementë të S_N ;
- p dhe q mund të merren nga njëri-tjetri duke shkëmbyer dy elementë fqinjë.

Vini re se, nëse $(p,q) \in E_N$, atëherë $(q,p) \in E_N$.

Udine, 27 September 2025

Qëllimi juaj është të etiketoni çdo element të S_N me një numër natyror unik në $[0, 2^{60})$, d.m.th. të prodhoni një funksion injektiv \mathcal{L} (i quajtur një etiketim) nga S_N në bashkësinë e numrave natyrorë më të vegjël se 2^{60} .

Cilësia e një etiketimi matet nga dy parametra që duhen minimizuar:

- madhësia $M(\mathcal{L})$, e përcaktuar si numri më i vogël natyror k i tillë që $2^k > \mathcal{L}(p)$ për të gjithë elementët p të S_N .
- *afërsia*, e përcaktuar si:

$$C(\mathcal{L}) = \sum_{(u,v) \in E_N} \operatorname{popcount}(\mathcal{L}(u) \oplus \mathcal{L}(v)).$$

ku \oplus është operacioni bitwise ekskluziv ose dhe popcount(x) është numri i biteve të vendosura në paraqitjen binare të x.

Detyra juaj është të gjeni një etiketim \mathcal{L} që arrin vlera të ulëta si për $M(\mathcal{L})$ ashtu edhe për $C(\mathcal{L})$. Vini re se nuk kërkohet një zgjidhje optimale.

Implementimi

Kjo është një detyrë vetëm me dalje. Duhet të dorëzoni një skedar daljeje të veçantë për çdo skedar hyrjeje. Skedarët e hyrjes dhe daljes duhet të ndjekin formatin e mëposhtëm.

Formati i hyrjes

Skedarët e hyrjes përbëhen nga një rresht i vetëm që përmban një numër të plotë N dhe indeksin G të hyrjes.

Formati i daljes

Skedarët e daljes duhet të përbëhen nga N! rreshta, ku i i-ti prej tyre përmban etiketën e permutacionit të i-të në rendin leksikografik.¹

Pikëzimi

Kjo detyrë ka saktësisht 2 raste testimi: input000.txt dhe input001.txt, në të dyja prej të cilave N = 10.

Pikët për zgjidhjen tuaj në çdo rast testimi përcaktohen si $S_M(\mathcal{L}) \times S_C(\mathcal{L})$, ku $S_C(\mathcal{L})$ dhe $S_M(\mathcal{L})$ janë funksione të etiketimit tuaj të daljes \mathcal{L} .

- $S_C(\mathcal{L}) = \left(\min(1, 36 \cdot 10^6/C(\mathcal{L}))\right)^2$ për çdo hyrje.

popswap Faqja 1 nga 2

¹Formalisht, duke pasur dy permutacione $p \neq q$, themi se p është leksikografikisht më i vogël se q nëse dhe vetëm nëse $p_k < q_k$ ku k është indeksi më i vogël i tillë që $p_k \neq q_k$.

• $S_M(\mathcal{L})$ është ndryshe për çdo hyrje, sipas tabelave të më
poshtme. Midis vlerave të specifikuara në tabela, S_M ndryshon linearisht.

Një dalje e gabuar gjithmonë shënon zero pikë.

input000.txt		_	input001.txt	
$M(\mathcal{L})$	$S_M(\mathcal{L})$		$M(\mathcal{L})$	$S_M(\mathcal{L})$
> 60	0		> 25	0
60	6		25	0
≤ 25	60	•	≤ 22	40

Pikët për detyrën janë shuma e pikëve në çdo rast testimi.

Shembuj të hyrjes/daljes

input	output
3 -1	32
	16
	8
	4
	2
	1

Shpjegim

Vini re se **rasti i parë i shembullit** nuk është një rast testimi zyrtar, pasi $N \neq 10$ dhe $G \notin \{0, 1\}$. Dalja e shembullit përfaqëson etiketimin e mëposhtëm:

$$\mathcal{L}(p) = \begin{cases} 32 \text{ n\"ese } p = (0,1,2) \\ 16 \text{ n\"ese } p = (0,2,1) \\ 8 \text{ n\"ese } p = (1,0,2) \\ 4 \text{ n\"ese } p = (1,2,0) \\ 2 \text{ n\'ese } p = (2,0,1) \\ 1 \text{ n\'ese } p = (2,1,0) \end{cases}$$

Meqenëse $2^5 \not > 32$ por $2^6 > 32$, madhësia e etiketimit është $M(\mathcal{L}) = 6$. Meqenëse ka $3! \cdot (3-1) = 12$ elementë në E_3 dhe meqenëse popcount $(\mathcal{L}(p), \mathcal{L}(q)) = 2$ për të gjithë $p,q \in S_N$, afërsia e etiketimit është $C(\mathcal{L}) = 12 \cdot 2 = 24$.

popswap Faqja 2 nga 2