STAT610 Assignment 4 due Friday, 26 September 2025

Please Note. This assignment involves a lot of calculus, so plan accordingly.

1. Let Y have the $Poisson(\lambda)$ distribution with pmf

$$f_Y(y) = \frac{\lambda^y e^{-\lambda}}{y!}$$
 $y = 0, 1, 2, \dots$

Find $\mathsf{E}(Y)$ and $\mathsf{E}(Y(Y-1))$, and use these to get $\mathsf{Var}(Y)$. (Recall the binomial example in class.)

- 2. Find $\mathsf{E}(X)$ for the random variable in Problem 8 of Assignment 2.
- 3. Chapter 2 Exercise 4. (Laplace distribution.) Also, add
 - (d) Find E(X), Var(X) and the standard deviation of X.
- 4. Let $f(x) = 4xe^{-2x}$ for x > 0, and f(x) = 0 otherwise. (Recall Problem 8 of Assignment 3.) Now find $\mathsf{E}(X)$ and $\mathsf{Var}(X)$. Hint: Theorem 2.16 in the notes.
- 5. Let T have pdf $f_T(v) = 60v^3(1-v)^2$, 0 < v < 1.
 - (a) Verify that f_T is indeed a pdf.
 - (b) Find the mean of T.
 - (c) Find the pdf for R = T/(1-T).
 - (d) Use the pdf for T to find $\mathsf{E}(R)$ (recalling what Theorem 2.17 in the notes says).
 - (e) What does Jensen's inequality say about the relationship between $\mathsf{E}(R)$ and $\mathsf{E}(T)/(1-\mathsf{E}(T))$? Confirm by evaluating both.
- 6. Prove Theorem 2.21 in the notes.
- 7. Let W be a positive random variable with finite mean μ_W .
 - (a) Suppose $\alpha > 1$. Use Jensen's inequality to show that $\mathsf{E}(W^{\alpha}) > \mu_W^{\alpha}$. (Note: this is valid even if the left-hand side is infinite.)
 - (b) Suppose $\alpha < 0$ and show that $\mathsf{E}(W^{\alpha}) > \mu_W^{\alpha}$.
 - (c) Now suppose $0 < \alpha < 1$. What is true in this case? Hint: if g(x) is concave then -g(x) is convex.
- 8. Let $f(y) = \frac{\lambda^y e^{-\lambda}}{y!}$ for y = 0, 1, 2, ... be the Poisson(λ) pmf, where $\lambda > 0$. (Recall Problem 1 above.) Now show that the mgf is $M(t) = e^{\lambda(e^t 1)}$, and use the mgf to get the mean and variance.
- 9. Let X_m have pdf $\frac{x^{m-1}e^{-x/\beta}}{\beta^m(m-1)!}$ for $m=1,2\ldots$ and $x>0,\ \beta>0$.
 - (a) Show that the mgf for X_m is $M_{X_m}(t) = (1 \beta t)^{-m}$ for $t < 1/\beta$. Hint: use a linear change of variables.
 - (b) Use the mgf to derive the mean and variance.
 - (c) Show that for any m, n, $M_{X_m}(t)M_{X_n}(t) = M_{X_{n+m}}(t)$. As we shall see, this has a probability interpretation in terms of sums of independent random variables.