import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

#importing dataset
df=pd.read_csv('/content/advertising.csv')

df.head(10)

→		TV	Radio	Newspaper	Sales
	0	230.1	37.8	69.2	22.1
	1	44.5	39.3	45.1	10.4
	2	17.2	45.9	69.3	12.0
	3	151.5	41.3	58.5	16.5
	4	180.8	10.8	58.4	17.9
	5	8.7	48.9	75.0	7.2
	6	57.5	32.8	23.5	11.8
	7	120.2	19.6	11.6	13.2
	8	8.6	2.1	1.0	4.8
	9	199.8	2.6	21.2	15.6

df.shape

→ (200, 4)

df.describe()

	TV	Radio	Newspaper	Sales
count	200.000000	200.000000	200.000000	200.000000
mean	147.042500	23.264000	30.554000	15.130500
std	85.854236	14.846809	21.778621	5.283892
min	0.700000	0.000000	0.300000	1.600000
25%	74.375000	9.975000	12.750000	11.000000
50%	149.750000	22.900000	25.750000	16.000000
75%	218.825000	36.525000	45.100000	19.050000
max	296.400000	49.600000	114.000000	27.000000

```
fig, axs = plt.subplots(3, figsize = (5,5))
plt1=sns.boxplot(df['TV'],ax=axs[0])
plt2=sns.boxplot(df['Radio'],ax=axs[1])
plt3=sns.boxplot(df['Newspaper'],ax=axs[2])
plt.tight_layout()
```



```
x=df['TV']
y=df['Sales']
plt.scatter(x,y)
plt.xlabel('TV')
plt.ylabel('Sales')
```

→ Text(0, 0.5, 'Sales')

df.info()

plt.show()

plt.xlabel('TV')

```
<class 'pandas.core.frame.DataFrame'>
     RangeIndex: 200 entries, 0 to 199
     Data columns (total 4 columns):
          Column
                     Non-Null Count
                                      Dtype
      0
          TV
                     200 non-null
                                      float64
      1
          Radio
                     200 non-null
                                      float64
                     200 non-null
      2
          Newspaper
                                      float64
      3
          Sales
                     200 non-null
                                      float64
     dtypes: float64(4)
     memory usage: 6.4 KB
x=df['TV']
y=df['Sales']
plt.scatter(x,y,color='blue',label='scater plot')
plt.legend()
```

plt.ylabel('Sales')


```
print(x.shape)
print(y.shape)
→ (200,)
     (200,)
X=x.values.reshape(-1,1)
Y=y.values.reshape(-1,1)
print(X)
print(Y)
     [[230.1]
      [ 44.5]
      [ 17.2]
      [151.5]
      [180.8]
      [ 8.7]
      [ 57.5]
      [120.2]
      [ 8.6]
      [199.8]
      [ 66.1]
      [214.7]
      [ 23.8]
      [ 97.5]
      [204.1]
      [195.4]
      [ 67.8]
      [281.4]
      [ 69.2]
      [147.3]
      [218.4]
      [237.4]
      [ 13.2]
      [228.3]
      [ 62.3]
      [262.9]
      [142.9]
      [240.1]
      [248.8]
      [ 70.6]
      [292.9]
      [112.9]
      [ 97.2]
      [265.6]
      [ 95.7]
      [290.7]
      [266.9]
      [ 74.7]
      [ 43.1]
      [228.]
      [202.5]
      [177.]
      [293.6]
```

[206.9]

```
[ 25.1]
      [175.1]
      [ 89.7]
      [239.9]
      [227.2]
      [66.9]
      [199.8]
      [100.4]
      [216.4]
      [182.6]
      [262.7]
      [198.9]
      [ 7.3]
      [136.2]
from sklearn.model selection import train test split
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.30,random_state=42)
print(X train.shape)
print(Y_train.shape)
print(X_test.shape)
print(Y_test.shape)
\rightarrow (140, 1)
     (140, 1)
     (60, 1)
     (60, 1)
from sklearn.linear_model import LinearRegression
lm=LinearRegression()
lm.fit(X_train,Y_train)
y_pred=lm.predict(X_test)
plt.scatter(X_train,Y_train,color='lightblue')
plt.plot(X_train,lm.predict(X_train),color='red')
plt.title('Relationship between TV and Sales')
plt.xlabel('TV')
plt.ylabel('Sales')
plt.show()
```


Relationship between TV and Sales


```
plt.scatter(X_test,Y_test,color='lightblue')
plt.plot(X_test,lm.predict(X_test),color='red')
plt.title('Test set results')
plt.xlabel('TV')
plt.ylabel('Sales')
plt.show()
```

