Analisi Funzionale

Operatori lineari limitati fra spazi normati

Prof. Alessio Martini

Politecnico di Torino a.a. 2023/2024

Operatori lineari limitati

Def. Siano X e Y spazi vettoriali su \mathbb{F} . Diciamo operatore lineare da X a Y ogni applicazione lineare $T:X\to Y$. Se X=Y, chiamiamo T un operatore lineare su X.

Oss. L'insieme $\mathcal{L}(X,Y)$ degli operatori lineari da X a Y è un sottospazio vettoriale di $\mathcal{F}(X,Y)$. Scriviamo $\mathcal{L}(X) = \mathcal{L}(X,X)$.

Def. Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ spazi normati su \mathbb{F} .

- (a) Se $T \in \mathcal{L}(X, Y)$, la norma operatoriale di T è definita da $||T||_{\mathsf{op}} = ||T||_{X \to Y} = \inf\{C \in [0, \infty) : ||Tx||_Y \le C||x||_X \ \forall x \in X\}.$
- (b) Un operatore $T \in \mathcal{L}(X,Y)$ si dice *limitato* se $||T||_{op} < \infty$, cioè se esiste $C \in [0,\infty)$ tale che

$$||Tx||_Y \leq C||x||_X \quad \forall x \in X.$$

Se $T \in \mathcal{L}(X, Y)$ non è limitato, si dice *illimitato*.

(c) L'insieme degli operatori lineari limitati da X a Y si denota con $\mathcal{B}(X,Y)$. Scriviamo anche $\mathcal{B}(X)$ al posto di $\mathcal{B}(X,X)$.

Caratterizzazioni degli operatori lineari

Se X e Y sono spazi normati, per ogni $T \in \mathcal{L}(X,Y)$,

$$||T||_{op} = \inf\{C \in [0,\infty) : ||Tx||_Y \le C||x||_X \ \forall x \in X\}.$$

Lemma Siano X e Y spazi normati e $T \in \mathcal{L}(X, Y)$. Allora

$$\|\,T\|_{\mathsf{op}} = \sup\{\|\,Tx\|_{\,Y} : x \in X, \; \|x\|_{X} \le 1\}.$$

Se poi $X \neq \{0\}$, si ha anche

$$||T||_{\text{op}} = \sup\{||Tx||_{Y} : x \in X, ||x||_{X} = 1\} = \sup\left\{\frac{||Tx||_{Y}}{||x||_{X}} : x \in X \setminus \{0\}\right\}.$$

Prop. Siano X, Y spazi normati e $T \in \mathcal{L}(X, Y)$. Sono fatti equivalenti:

- (i) T è un operatore limitato;
- (ii) T è lipschitziano;
- (iii) T è uniformemente continuo;
- (iv) T è continuo;
- (v) T è continuo in 0.

Inoltre, se T è limitato, allora T è $||T||_{op}$ -lipschitziano e $||Tx||_Y \le ||T||_{op}||x||_X \quad \forall x \in X.$

Esempi e non-esempi di operatori limitati

$$\|\mathrm{id}_X\|_{\mathrm{op}} = egin{cases} 1 & \mathrm{se}\ X
eq \{0\}, \ 0 & \mathrm{se}\ X = \{0\}. \end{cases}$$

2. Sia M uno spazio metrico compatto e C(M) dotato della norma $\|\cdot\|_{\infty}$. Per ogni $p \in M$, l'operatore di valutazione $V_p : C(M) \to \mathbb{F}$ dato da $V_p f = f(p) \quad \forall f \in C(M)$

soddisfa
$$V_n \in \mathcal{B}(C(M), \mathbb{F})$$
 e $||V_n||_{op} = 1$.

3. Sia $[a, b] \subseteq \mathbb{R}$. Dotiamo $C^1[a, b]$ della norma indotta da C[a, b]. Per $p \in [a, b]$, se $S_p : C^1[a, b] \to \mathbb{F}$ è definito da $S_p f = V_p(f') = f'(p) \quad \forall f \in C^1[a, b]$.

allora
$$S_p \in \mathcal{L}(C^1[a,b],\mathbb{F})$$
, ma $\|S_p\|_{op} = \infty$, quindi S_p è illimitato.

4. Sia $(H, \langle \cdot, \cdot \rangle)$ uno spazio pre-hilbertiano. Per ogni $y \in H$, la mappa $\langle \cdot, y \rangle : x \mapsto \langle x, y \rangle$ soddisfa $\langle \cdot, y \rangle \in \mathcal{B}(H, \mathbb{F})$ e $\|\langle \cdot, y \rangle\|_{op} = \|y\|$.

Esempi e non-esempi di operatori limitati - 2

5. Siano $[a,b],[c,d]\subseteq\mathbb{R}$. Sia $K\in C([a,b]\times[c,d])$. L'operatore integrale $T_K:C[c,d]\to C[a,b]$ con nucleo integrale K è dato da

$$T_K f(x) = \int_c^d K(x,y) f(y) \, dy \tag{\dagger}$$
 per ogni $f \in C[c,d]$ e $x \in [a,b]$. Allora $T_K \in \mathcal{B}(C[c,d],C[a,b])$ e

$$||T_K||_{\mathrm{op}} \leq \sup_{x \in [a,b]} \int_c^d |K(x,y)| \, dy \leq (d-c)||K||_{\infty}.$$

6. Con la notazione dell'esempio precedente, se $K \in L^2((a,b) \times (c,d))$, allora (†) definisce un operatore integrale $T_K \in \mathcal{B}(L^2(c,d),L^2(a,b))$ e $\|T_K\|_{\operatorname{op}} \leq \|K\|_{L^2((a,b) \times (c,d))}.$

7. Più in generale, se
$$(M_1, \mathcal{M}_1, \mu_1)$$
 e $(M_2, \mathcal{M}_2, \mu_2)$ sono spazi di misura σ -finiti e (M, \mathcal{M}, μ) è lo spazio di misura prodotto, allora, per ogni $K \in L^2(M, \mu)$, l'operatore integrale T_K dato da

$$T_K f(x) = \int_{M_2} K(x,y) f(y) \, d\mu_2(y)$$
 soddisfa $T_K \in \mathcal{B}(L^2(M_2,\mu_2),L^2(M_1,\mu_1))$ e $\|T_K\|_{\mathsf{op}} \leq \|K\|_{L^2(M,\mu)}.$

Esempi e non-esempi di operatori limitati - 3

- 8. Sia $\underline{w} \in \ell^{\infty}$. Allora l'operatore $D_{\underline{w}}$ di moltiplicazione per \underline{w} dato da $D_{\underline{w}}\underline{x} = \underline{w} \cdot \underline{x} := (w_k x_k)_{k \in \mathbb{N}} \qquad \forall \underline{x} \in \ell^2$ (qui $\underline{w} \cdot \underline{x}$ denota il prodotto componente per componente) soddisfa $D_{\underline{w}} \in \mathcal{B}(\ell^2)$ e $\|D_{\underline{w}}\|_{\mathrm{op}} = \|\underline{w}\|_{\infty}$.
- 9. Siano $(X, \|\cdot\|_X)$ e $(Y, \|\cdot\|_Y)$ spazi normati, e sia $(X \times Y, \|\cdot\|_{X \times Y})$ il loro prodotto.

Allora le *proiezioni* $\pi_X: X \times Y \to X$ e $\pi_Y: X \times Y \to Y$ sui due fattori, definite da

$$\pi_X(x,y) = x, \qquad \pi_Y(x,y) = y \qquad \forall (x,y) \in X \times Y,$$
 soddisfano $\pi_X \in \mathcal{B}(X \times Y,X), \ \pi_Y \in \mathcal{B}(X \times Y,Y) \quad \text{e}$
$$\|\pi_X\|_{\text{op}} = \begin{cases} 1 & \text{se } X \neq \{0\}, \\ 0 & \text{se } X = \{0\}, \end{cases} \qquad \|\pi_Y\|_{\text{op}} = \begin{cases} 1 & \text{se } Y \neq \{0\}, \\ 0 & \text{se } Y = \{0\}. \end{cases}$$

Proprietà degli operatori limitati

Prop. Siano X e Y spazi normati.

Se dim $X < \infty$, allora $\mathcal{B}(X, Y) = \mathcal{L}(X, Y)$, cioè tutti gli operatori lineari da X a Y sono limitati.

Prop. Siano X, Y, Z spazi normati.

è continua.

- **Prop.** Siano X, Y, Z spazi normati
- (i) $\mathcal{B}(X, Y)$ è un sottospazio vettoriale di $\mathcal{L}(X, Y)$ e $\|\cdot\|_{op}$ è una norma su $\mathcal{B}(X, Y)$.
- (ii) Se $T \in \mathcal{B}(X,Y)$ e $S \in \mathcal{B}(Y,Z)$, allora $ST \in \mathcal{B}(X,Z)$ e

 $\|ST\|_{\sf op} \leq \|S\|_{\sf op} \|T\|_{\sf op}$ (submoltiplicatività della norma operatoriale). Inoltre la mappa $\mathcal{B}(Y,Z) \times \mathcal{B}(X,Y) \ni (S,T) \mapsto ST \in \mathcal{B}(X,Z)$

- Ciana V a V annai namnati Cia T a $\mathcal{P}(V,V)$

- **Prop.** Siano X e Y spazi normati. Sia $T \in \mathcal{B}(X, Y)$.
 - (i) Il nucleo Ker T di T è un sottospazio vettoriale chiuso di X.
 (ii) Il grafico Γ(T) := {(x, Tx) : x ∈ X} di T è un sottospazio vettoriale chiuso dello spazio prodotto X × Y.

Teor. Siano X uno spazio normato e Y uno spazio di Banach. Allora $\mathcal{B}(X,Y)$ con la norma operatoriale è uno spazio di Banach.

Isometrie lineari

Def. Siano X e Y spazi normati. Una isometria lineare da X a Y è un operatore $T \in \mathcal{L}(X,Y)$ che preserva la norma, cioè

$$||Tx||_Y = ||x||_X \quad \forall x \in X.$$

Prop. Siano X e Y spazi normati e $T \in \mathcal{L}(X, Y)$. Sono equivalenti:

- (i) $T: X \to Y$ è un'isometria lineare;
- (ii) T preserva la distanza, cioè

$$||Tx - Tx'||_Y = ||x - x'||_X \quad \forall x, x' \in X.$$

Inoltre, se $T \in \mathcal{L}(X, Y)$ è un'isometria lineare, allora:

- (a) T è un operatore limitato, con $||T||_{op} = \begin{cases} 1 & \text{se } X \neq \{0\}, \\ 0 & \text{se } X = \{0\} \end{cases}$;
- (b) T è iniettivo;
- (c) se T è suriettivo, allora $T^{-1}: Y \to X$ è un'isometria lineare;
- (d) se Z è uno spazio normato e $S:Y\to Z$ è un'isometria lineare, allora $ST:X\to Z$ è un'isometria lineare.

Isometrie lineari e isomorfismi isometrici

Def. Siano X e Y spazi normati.

- (a) Un isomorfismo isometrico da X a Y è un'isometria lineare biiettiva.
- (b) Gli spazi X e Y si dicono *isometricamente isomorfi* se esiste un isomorfismo isometrico da X a Y. In tal caso, scriviamo $X \cong Y$.
- **Oss.** Siano X, Y, Z spazi normati. Allora:
 - ightharpoonup id $_X: X \to X$ è un isomorfismo isometrico;
 - ▶ se $T: X \to Y$ è un isomorfismo isometrico, anche $T^{-1}: Y \to X$ lo è;
 - ▶ se $T: X \to Y$ e $S: Y \to Z$ sono isomorfismi isometrici, anche $ST: X \to Z$ lo è.
- Dunque la relazione \cong tra spazi normati è una relazione di equivalenza. **Oss.** Se $X \cong Y$ e X è completo, anche Y è completo.
- isom.
- **Prop.** Siano $(H_1, \langle \cdot, \cdot \rangle_1)$ e $(H_2, \langle \cdot, \cdot \rangle_2)$ spazi pre-hilbertiani e $T \in \mathcal{L}(H_1, H_2)$. Sono equivalenti:
- (i) $T: H_1 \rightarrow H_2$ è un'isometria lineare;
- (ii) T preserva il prodotto scalare, cioè

$$\langle Tx, Tx' \rangle_2 = \langle x, x' \rangle_1 \qquad \forall x, x' \in X.$$

Estensione di operatori lineari

Teor. (di estensione) Siano X spazio normato e Y spazio di Banach. Sia D un sottospazio vettoriale denso di X; dotiamo D della norma indotta.

Per ogni $T \in \mathcal{B}(D,Y)$, esiste un unico $\widetilde{T} \in \mathcal{B}(X,Y)$ tale che $\widetilde{T}|_{D} = T$, e si ha $\|\widetilde{T}\|_{op} = \|T\|_{op}$; tale operatore \widetilde{T} è detto estensione per continuità di T a X.

Oss. Per dimostrare l'unicità dell'estensione la completezza di Y non serve (bastano la densità di D in X e la continuità dell'estensione).

La completezza di Y è invece essenziale per garantire l'esistenza.

Coroll. Siano X uno spazio normato e Y uno spazio di Banach. Siano D ed E sottospazi vettoriali di X ed Y rispettivamente; dotiamo D ed E delle norme indotte. Supponiamo D denso in X. Per ogni $T \in \mathcal{B}(D,E)$, esiste un unico $\widetilde{T} \in \mathcal{B}(X,Y)$ tale che $\widetilde{T}|_{D} = T$, e si ha $\|\widetilde{T}\|_{op} = \|T\|_{op}$.

Oss. Vedremo in seguito (teorema di Hahn–Banach) che nel caso $Y = \mathbb{F}$ per l'<u>esistenza</u> di un'estensione non serve che D sia denso in X (ma l'estensione non è necessariamente unica in tal caso).

Il principio di uniforme limitatezza

Teor. (Banach–Steinhaus) Siano X uno spazio di Banach e Y uno spazio normato. Sia $\mathcal{F}\subseteq\mathcal{B}(X,Y)$ tale che

$$\sup_{T\in\mathcal{F}}\|Tx\|_Y<\infty\qquad\forall x\in X. \tag{\dagger}$$
 Allora

 $\sup_{T\in\mathcal{F}}\|T\|_{\mathsf{op}}<\infty.$

 (\ddagger)

Teor. (lemma di Baire) Sia (M, d) uno spazio metrico completo.

- (i) Sia $\{A_n\}_{n\in\mathbb{N}}$ una famiglia numerabile di sottoinsiemi aperti densi di M. Allora $\bigcap_{n\in\mathbb{N}}A_n=M$, cioè anche la loro intersezione è densa.
- (ii) Supponiamo che $M \neq \emptyset$. Sia $\{C_n\}_{n \in \mathbb{N}}$ una famiglia di sottoinsiemi chiusi di M tali che $\bigcup_{n \in \mathbb{N}} C_n = M$. Allora esiste $n \in \mathbb{N}$ tale che $\mathring{C}_n \neq \emptyset$.

Coroll. Siano X uno spazio di Banach e Y uno spazio normato. Sia $(T_n)_{n\in\mathbb{N}}$ una successione a valori in $\mathcal{B}(X,Y)$ tale che, per ogni $x\in X$, esiste il limite $\lim_{n\to\infty} T_n x$ in Y. Allora $\sup_{n\in\mathbb{N}} \|T_n\|_{\operatorname{op}} < \infty$.

Inoltre, se definiamo $T: X \to Y$ ponendo $Tx = \lim_{n \to \infty} T_n x \quad \forall x \in X$, allora $T \in \mathcal{B}(X,Y)$ e $||T||_{op} \le \liminf_{n \to \infty} ||T_n||_{op} \le \sup_{n \to \infty} ||T_n||_{op}$.

Operatori limitati invertibili

Def. Siano X, Y spazi normati. Un operatore $T \in \mathcal{B}(X, Y)$ si dice invertibile con inverso limitato, oppure un isomorfismo, se $T: X \to Y$ è biiettivo e $T^{-1} \in \mathcal{B}(Y, X)$.

Oss. Siano X, Y, Z spazi normati.

- 1. $id_X \in \mathcal{B}(X)$ è un isomorfismo, con $id_X^{-1} = id_X$.
- 2. Se $T \in \mathcal{B}(X, Y)$ è un isomorfismo, allora anche $T^{-1} \in \mathcal{B}(Y, X)$ lo è, e $(T^{-1})^{-1} = T$.
- 3. Se $T \in \mathcal{B}(X,Y)$ e $S \in \mathcal{B}(Y,Z)$ sono isomorfismi, allora anche $ST \in \mathcal{B}(X,Z)$ è un isomorfismo e $(ST)^{-1} = T^{-1}S^{-1}$.
- 4. Se $T \in \mathcal{B}(X,Y)$ è un isomorfismo e $X \neq \{0\}$, allora

$$||T^{-1}||_{op}||T||_{op} \ge 1.$$

Teor. (dell'isomorfismo di Banach) Siano X e Y spazi di Banach e $T \in \mathcal{B}(X,Y)$. Se $T:X \to Y$ è biiettivo, allora $T^{-1} \in \mathcal{B}(Y,X)$, cioè T è un isomorfismo.

Teor. (del grafico chiuso) Siano X e Y spazi di Banach, e sia $T \in \mathcal{L}(X,Y)$. Allora $T \in \mathcal{B}(X,Y)$ se e solo se il grafico $\Gamma(T) := \{(x,Tx) : x \in X\}$ di T è un sottoinsieme chiuso di $X \times Y$.

Coercività in norma e invertibilità

Teor. Siano X uno spazio di Banach e Y uno spazio normato. Sia $T \in \mathcal{B}(X,Y)$. Allora T è un isomorfismo se e solo se valgono entrambe le seguenti proprietà:

- (a) $\overline{\text{Im } T} = Y$ (T ha immagine densa);
- (b) esiste $C \in (0, \infty)$ tale che $||x||_X \le C||Tx||_Y$ per ogni $x \in X$ (T è coercivo in norma).

Lemma Siano X uno spazio di Banach e Y uno spazio normato. Sia $T \in \mathcal{B}(X,Y)$. Se T è *coercivo in norma*, cioè esiste $C \in (0,\infty)$ tale che

$$||x||_X \le C||Tx||_Y \quad \forall x \in X,$$

allora $\operatorname{Im} T$ è chiusa in Y.

Criterio di invertibilità di Neumann

Teor. (criterio di Neumann) Sia X uno spazio di Banach. Sia $T \in \mathcal{B}(X)$ tale che $||T||_{op} < 1$. Allora id $_X - T$ è un isomorfismo e

$$(id_X - T)^{-1} = \sum_{n=0}^{\infty} T^n,$$

dove la serie converge in $\mathcal{B}(X)$. Inoltre

$$\|(\mathsf{id}_X - T)^{-1}\|_{\mathsf{op}} \le \frac{1}{1 - \|T\|_{\mathsf{op}}}.$$

Coroll. Sia X uno spazio di Banach.

(i) Se
$$R \in \mathcal{B}(X)$$
 è un isomorfismo, $T \in \mathcal{B}(X)$ e $||R - T||_{op} < 1/||R^{-1}||_{op}$.

allora T è un isomorfismo.

$$\mathcal{I}(X) := \{ T \in \mathcal{B}(X) : T \text{ è un isomorfismo} \}$$
 è un sottoinsieme aperto di $\mathcal{B}(X)$.

Oss. Nel caso dim $X < \infty$, si ha

$$\mathcal{I}(X) = \{ T \in \mathcal{B}(X) : \det T \neq 0 \}.$$