HDS 5230: Week 10 Application Assignment's Instructions

Name: John Reddy Peasari

After going through the documentation, please summarize your findings via a table whose structure matches the one shown below:

Module/framework/n	Name and a brief description of the algorithm	Example Description
ackage	ivame and a brief description of the algorithm	Example Description
Stats	supports non-normal distributions and can be implemented in R using glm() function. This model works well with a variable which depicts a non-constant variance with three important components namely random, systematic, and a	In glm() function family types includes binomial, poisson, gaussian, gamma, quasi. Each distribution performs a different usage and can be used in wither classification and prediction.
H20	It is used to estimate regression models for outcomes following exponential distributions. It includes various regression implementations such as Gaussian, Poisson, Binomial, and Gamma. GLM fits models based on the maximum likelihood estimation via iteratively reweighted least squares. The elastic net penalty can be used for parameter regularization.	H2O can process large datasets because it relies on parallel processes. GLM here can be used for all types of regressions. In GLM data are split by rows but not by columns. Here, the model fitting computation is distributed, extremely fast, and scales extremely well for models with a limited number of predictors with non-zero coefficients (near low thousands). H2O returns the optimal amount of regularization for the given problem.
	Optimization algorithm for solving minimization problems. Implements distributed generalized linear model family for regularized and unregularized problems. This has convex optimization algorithms for Ibfgs, gradient descent, newton, ADMM, proximal gradient. All the algorithms for regularized problems in dask-glm use the framework of proximal operators.	Generalized linear models built for parallel and distributed machine learning. Dask-glm tries to solve for large scale learning challenges within SciPy ecosystem. Generalized linear model implementations scale well towards larger datasets either using a single CPU or distributed cluster. Sklearn uses single core whereas dask-glm uses full core machine
		machine

SparkR	spark-glm()	Spark.glm fits generalized
1	Sparks's generalized linear regression interface	linear model against a spark
	allows for specifications of GLMs which can be	data frame similar R's glm()
	used for various types of prediction problems	function. Spark only
	including linear regression, poisson regression,	supports up to 4096 features
	logistic regression, and others. A GLM is	through its generalized
	specified by a distribution of the response and a	linear regression interface
	link function which in turn minimizes the sum of	
	log-likelihoods. Spark.glm is a simple swapper	
	over an ML pipeline that consists of RFormula for	r
	preprocessing and encoding and an estimator	
	(GLR)	
L-BFGS	The L-BFGS method approximates the objective	It solves a few
	function locally as a quadratic without evaluating	optimization problems
	the second partial derivative of the objective	iteratively by linearizing
	function. L-BFGS is used as a solver for linear	objective at current solution,
	regression, logistic regression, multilayer	solve a weighted least
	perceptron classifier. Spark MLlib library	square and repeat above
	implements iteratively reweighted least squares	steps until convergence. It
	(IRLS). It can be used to find the maximum	also requires the number of
	likelihood estimates of a generalized linear model	, features to be no more than
	find M-estimator in robust regression and other	4096. Currently IRLS is
	optimization problems.	used as a default solver of
		generalized linear regression
Scikit-learn		It can be implemented in
	Generalized Linear Regression	weather modelling, risk
	GLM extend linear models in two important ways	
	Predicted Y values are linked to a linear	maintenance. The choice of
	combination of the input X variables via an	distribution depends on the
	inverse link function h. Then, squared loss	type of target values y.
	function is relaced. Minimization of the problem	
	will be achieved using L2 regularization.	