STANISLAS Exercices

Suites numériques, Fonctions de la variables réelle

PSI2019-2020

Chapitre I

I. Suites numériques

Indications pour l'exercice 1.

- **1.** Se rappeler que $a_n \sim b_n$ si et seulement si $a_n b_n = o(b_n)$. Revenir aux ε et utiliser que, à p.c.r., $(1-\varepsilon)b_n \leqslant a_n \leqslant (1+\varepsilon)b_n$. Sommer ensuite cette relation puis utiliser la divergence de la série.
- 2. C'est un cas particulier de la question précédente.
- 3. Montrer que $\ln(u_n) \to 3$ puis utiliser la continuité de la fonction exponentielle.

Indications pour l'exercice 2.

- **1. a)** Étudier les variations de $f: x \mapsto (x+m)^{\alpha} x^{\alpha} m^{\alpha}$.
 - **b)** (w_n) est une suite arithmétique.
- 2. Penser au théorème de la limite monotone.
- 3. Récurrence.
- 4. a) Revenir à la définition de la notion de limite.
- **b)** Décomposer n = mq + r, où l a été choisi précédemment et r ne prend qu'un nombre fini de valeurs.

Indications pour l'exercice 4. Passer à la forme exponentielle puis factoriser par p^n .

II. Suites définies implicitement

Indications pour l'exercice 5.

- **1.** Étudier les variations de $f_n: x \mapsto x^5 + nx 1$.
- 2. En étudiant le signe $f_{n+1}(u_n)$, montrer que (u_n) est décroissante et minorée.

3. Étudier dans un premier temps la limite de la suite (nu_n) . En notant $\varepsilon_n = nu_n - 1$, en déduire la limite de $(n\varepsilon_n)$.

Indications pour l'exercice 6.

Conclure.

1. Étudier les variations de f_n pour montrer que $a_n \in \left[0, \sqrt[n]{\frac{2}{n+1}}\right]$. En étudiant le signe de $f_{n+1}(a_n)$, montrer ensuite que (a_n) est décroissante et minorée.

Après avoir montrer que (u_n^{n+1}) converge, en déduire que $\ell=1/2$.

2. En notant $u_n = a_n - \frac{1}{2}$, montrer que $2^n u_n \to 1$.

III. Fonctions de la variable réelle

Indications pour l'exercice 7. Étudier les limites à droite et à gauche en distinguant les points entiers.

Indications pour l'exercice 8.

- 1. Faire un dessin puis utiliser des caractérisations séquentielles.
- 2. Utiliser la question précédente.

Indications pour l'exercice 9. Montrer que $u_n \to \sup |f| = M$.

Pour cela, montrer que $u_n \leq M$.

Ensuite, montrer que, pour tout $\varepsilon > 0$, il existe $\eta > 0$ tel que $u_n^n \geqslant$ $\eta(M-\varepsilon)^n$.

Indications pour l'exercice 10. En justifiant, dériver puis vérifier l'ensemble des solutions.

Indications pour l'exercice 11.

- 1. Utiliser la définition des racines multiples, puis utiliser le théorème de Rolle entre les racines.
- 2. Remarquer que $P^2 + a^2$ est à racines complexes alors que Q' est à racines réelles.

Indications pour l'exercice 12. Étudier de manière pédestre la régularité de f en 0: continuité, dérivabilité (théorème de prolongement dérivable), limite du taux d'accroissement de la dérivée.

Chapitre 1 PSI

4

IV. Relations de comparaison

Indications pour l'exercice 14. Penser à la formule de Taylor-Young. Choisir comme contre-exemple une fonction paire non dérivable. **Indications pour l'exercice 15.** Effectuer une intégration par parties puis

Indications pour l'exercice 16. Pour x > 0, relier $\arctan(x)$ et $\arctan(1/x)$. Utiliser ensuite le développement limité de la fonction arctangente.

Indications pour l'exercice 17.

majorer l'intégrale restante.

- 1. Étudier le signe de la dérivée.
- 2. a) Utiliser les développements limités classiques.
 - **b)** Déterminer un équivalent de f-t où t est l'équation de la tangente.
- **3. a)** Effectuer un développement asymptotique de f en $+\infty$ en considérant $u \mapsto f(1/u)$.
- b) Pousser, si ce n'est déjà fait, le développement précédent à l'ordre suivant.

V. Suites récurrentes

Indications pour l'exercice 18. Étudier les points fixes de f.

Montrer que f est décroissante et dresser le tableau de variations de $f \circ f$.

Distinguer enfin les cas $u_0 \in [0, 1/\sqrt{2}]$ et $u_0 \in [1/\sqrt{2}, +\infty[$.

Indications pour l'exercice 19. Étudier les variations de $t \mapsto \sqrt{2+2t}$ et chercher les points fixes.

Comparer $f_2 - f_1$ puis conclure.

VI. Avec Python

Indications pour l'exercice 20.

1. Étudier les variations de f_n .

- 2. a) On peut utiliser le module numpy.polynomial.
- **b)** En étudiant le signe de $f_{n+1}(u_n)$, on montre que (u_n) est décroissante et minorée.

En montrant que $u_n^n \to 0$, montrer que (u_n) converge vers 0.

c) gb