LEARNING STRIDES IN CONVOLUTIONAL NEURAL NETWORKS

Authors: Rachid Riad, Olivier Teboul, David Grangier & Neil Zeghidour

LIGHTWEIGHT CONVOLUTIONAL NEURAL NETWORKS BY HYPERCOMPLEX PARAMETERIZATION

Authors: Eleonora Grassucci, Aston Zhang, Danilo Comminiello

Professor: Aurelio Uncini

Tutor: Danilo Comminiello

Students: Cocci Federica - 1802435

Santilli Sofia - 1813509

Problem statement

Fixed Spectral pooling

Having the input x and the strides S

$$x \in R^{H \times W}$$
 $S = (S_h, S_w) \in [1, H) \times [1, W)$

- the Discrete Fourier Transform of x is computed

$$y = F(x) \in C^{H \times W}$$

- the bounding box crops the input in the frequency domain

$$\overline{y} \in C^{\left[\frac{H}{S_h}\right] \times \left[\frac{W}{S_w}\right]}$$

- the output is brought back to the spatial domain, through the inverse DFT

$$\overline{x} = F^{-1}(\overline{y}) \in R^{\lfloor \frac{H}{S_h} \rfloor \times \lfloor \frac{W}{S_w} \rfloor}$$

Fixed Spectral pooling

• Truncation in the frequency domain.

Flexibility:

non-integer strides — more fine-grained downsizing

- Preservation of more information: it is a type of denoising.
- Strides still an hyperparameter, not learnable

Diffstride (learnable strides)

$$mask_w=min[max[rac{1}{R}(R+rac{W}{2S_w}-n),0],1]$$
 , $n\in[0,rac{W}{2}+1]$ $mask_h=min[max[rac{1}{R}(R+rac{H}{2S_h}-|rac{H}{2}-m|),0],1]$, $m\in[0,H]$

Network: ResNet-18

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer	
conv1	112×112		7×7, 64, stride 2				
		de 2					
conv2_x	56×56	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	
conv3_x	28×28	$\left[\begin{array}{c} 3 \times 3, 128 \\ 3 \times 3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$	
conv4_x	14×14	$\left[\begin{array}{c} 3 \times 3, 256 \\ 3 \times 3, 256 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$	
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	
	1×1		average pool, 1000-d fc, softmax				

Identity and Residual blocks

Identity block

Residual block with a strided convolution

Residual block with a Fixed Spectral pooling layer

Residual block with a Diffstride layer

Dataset: CIFAR-10

- 60.000 coloured images 32x32
- 10 classes (6.000 images per class): airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck

• 50.000 training images, 5.000 validation images, 5.000 test images

Preprocessing

normalization

mean=[0.4914, 0.4822, 0.4465] std=[0.2470, 0.2435, 0.2616]

- random cropping
- random flipping left-to-right
- mix up

Experiments

Strides initialization for the 3 residual layers = (2, 2, 2)

	Strided convolution	Fixed Spectral pooling	Diffstride
mixup + batch 128	0,658	0,6698	0,817
mixup + batch 256	0,6766	0,6834	0,7854
no mixup + batch 128	0,7334	0,7575	0,8692
no mixup + batch 256	0,7464	0,7544	0,8172

We have used 150 epochs for strided convolution and fixed spectral pooling

We have used 40 epochs with early stopping for diffstride

Other experiments and Conclusions

Running these experiments without mixup and batch of 128

	Strided convolution	Fixed Spectral pooling	Diffstride
(2, 2, 3)	0,7368	0,7486	0,8672
(3, 1, 3)	0,7214	0,7378	0,8672
(3, 1, 2)	0,7458	0,7642	0,8712

- pro: Diffstride outperforms the standard downsampling layers
- contro: higher computational cost

Additional implementation with PHC layer

- PHC = parametrized hypercomplex convolution
- Reduce the overall number of parameters by a factor N
- From Pytorch to Tensorflow
- Generalizes the hypercomplex multiplication as sum of Kronecker products between two learnable matrices:

$$H \in \mathbb{R}^{s \times d \times k \times k}$$

s = input dimension

d = output dimension

k = filter size

$$y = PHC(x) = H * x + b$$

Experiments

- PHC layer used instead of 2D convolutions
- $N = 3 \rightarrow \frac{1}{3}$ parameters of the previous experiments
- Strides initialization for the 3 residual layers = (2, 2, 2)
- Dataset CIFAR 10

Strided convolution	Fixed Spectral pooling	
0,4748	0,501	

• Also with PHC layers, downsampling the image in the frequency domain brings improvements in the accuracy