

Universidade Tecnológica Federal do Paraná – UTFPR Bacharelado em Ciência da Computação

BCC32B – Elementos de Lógica Digital Prof. Rodrigo Hübner

Aula 04 – Álgebra de Boole. Teoremas de DeMorgan.

Álgebra de Boole

- Álgebra proposta pelo matemático George Boole em 1854
- Usada para simplificar circuitos lógicos
 - Todas as variáveis têm valor 0 ou 1
 - Tem 3 operadores:

Lógica booleana Matemática (V, F)	Símbolo	Lógica Booleana Digital (0,1)	Símbolo
Conjunção	$A \vee B$	OR (OU)	A+B
Disjunção	$A \wedge B$	AND (E)	A.B
Negação	$\neg A$	NOT (NÃO)	\overline{A}

<u>Álgebra de Boole</u>

A **Álgebra de Boole** é baseada em um conjunto de regras que são derivadas de um pequeno número de **Axiomas.**

Assumimos que:

- → Álgebra Booleana envolve elementos com dois valores 0 e 1.
- → Os axiomas são verdade:

```
1 a. 0.0=0

1 b. 1+1=1

2 a. 1.1=1

2 b. 0+0=0

3 a. 0.1=1.0=0

3 b. 1+0=0+1=1

4 a. A=0 \Rightarrow \overline{A}=1

4 a. Se A=1, então \overline{A}=0
```

Teorema da dualidade

- 1) Substitui or por and, and por or, 1 por 0, e 0 por 1
- 2) Mantém os literais (variáveis)
- 3) A expressão dual de uma determinada expressão booleana é obtida.

$$A+0=A$$

$$(A+0)^D = A^D \Rightarrow A \cdot 1 = A$$

- O dual de um enunciado verdadeiro também é verdadeiro!
- Qualquer teorema provado → o seu dual também está provado.

Regras da Álgebra de Boole

Identidade (Zero e Um)

$$5a. A.0=0$$

5 *b*.
$$A+1=1$$

6 a.
$$A.1 = A$$

6 b.
$$A+0=A$$

Idempotência

$$7a. A.A = A$$

7*b*.
$$A + A = A$$

Complemento

$$8a. A.\overline{A}=0$$

$$8b. A + \overline{A} = 1$$

Involução

9.
$$\overline{\overline{A}} = A$$

Regras da Álgebra de Boole

Comutativa

10 a.
$$A \cdot B = B \cdot A$$

10 b. $A + B = B + A$

Associativa

11 a.
$$A \cdot (B \cdot C) = (A \cdot B) \cdot C = A \cdot B \cdot C$$

11 b. $A + (B + C) = (A + B) + C = A + B + C$

Distributiva

12 a.
$$A \cdot (B+C) = A \cdot B + A \cdot C$$

12 b. $A+(B \cdot C) = (A+B) \cdot (A+C)$
 $(A+B) \cdot (A+C) = A+(B \cdot C)$

Regras da Álgebra de Boole

Absorção

```
13 a. A+A.B=A
13 b. A.(A+B)=A
```

14 a.
$$A + \overline{A} \cdot B = A + B$$

14b.
$$A.(\overline{A}+B)=A.B$$

Adjacência lógica

15 a.
$$A \cdot B + A \cdot \overline{B} = A$$

15 b. $(A+B) \cdot (A+\overline{B}) = A$

Consenso

16 a.
$$A \cdot B + \overline{A} \cdot C + B \cdot C = A \cdot B + \overline{A} \cdot C$$

16 b. $(A+B) \cdot (\overline{A}+C) \cdot (B+C) = (A+B) \cdot (\overline{A}+C)$

Regras da Álgebra de Boole

Distributiva - Prova

```
12 b. A+B. C=(A+B). (A+C)

12 b. (A+B). (A+C)=A+B. C

12 b. A. A+A. C+A. B+B. C=A+B. C

12 b. A+A. C+A. B+B. C=A+B. C

12 b. A+A. (C+B)+B. C=A+B. C

12 b. A. (1+(C+B))+B. C=A+B. C

12 b. A. 1+B. C=A+B. C

12 b. A+B. C=A+B. C
```

Regras da Álgebra de Boole

Absorção - Prova

```
13 a. A+A. B=A

13 a. A.1+A. B=A

13 a. A.(1+B)=A

13 a. A.1=A

13 a. A=A

13 b. A.(A+B)=A

13 b. (A+0).(A+B)=A

13 b. A+A. B=A

13 b. A=A
```

Regras da Álgebra de Boole

Absorção - Prova

```
14 a. A+\overline{A}. B=A+B

14 a. (A+\overline{A}). (A+B)=A+B

14 a. 1. (A+B)=A+B

14 a. A+B=A+B

14 b. A. (\overline{A}+B)=A. B

14 b. A. \overline{A}+A. B=A. B

14 b. A. B=A. B

14 b. A. B=A. B
```

Regras da Álgebra de Boole

Adjacência lógica - Prova

```
15 a. A. B+A. \overline{B}=A

15 a. A \cdot (B+\overline{B})=A

15 a. A \cdot 1=A

15 a. A=A

15 b. (A+B) \cdot (A+\overline{B})=A

15 b. A+(B,\overline{B})=A

15 b. A+0=A

15 b. A=A
```

Regras da Álgebra de Boole

Consenso - Prova

```
16 a. A \cdot B + \overline{A} \cdot C + B \cdot C = A \cdot B + \overline{A} \cdot C

16 a. A \cdot B + \overline{A} \cdot C + B \cdot C \cdot (A + \overline{A}) = A \cdot B + \overline{A} \cdot C

16 a. A \cdot B + \overline{A} \cdot C + B \cdot C \cdot A + B \cdot C \cdot \overline{A} = A \cdot B + \overline{A} \cdot C

16 a. A \cdot B + A \cdot B \cdot C + \overline{A} \cdot C + \overline{A} \cdot C \cdot B = A \cdot B + \overline{A} \cdot C

16 a. A \cdot B \cdot (1 + C) + \overline{A} \cdot C \cdot (1 + B) = A \cdot B + \overline{A} \cdot C

16 a. A \cdot B \cdot 1 + \overline{A} \cdot C \cdot 1 = A \cdot B + \overline{A} \cdot C

16 a. A \cdot B + \overline{A} \cdot C = A \cdot B + \overline{A} \cdot C
```

Regras da Álgebra de Boole

Consenso - Prova

```
16 b. (A+B).(\overline{A}+C).(B+C)=(A+B).(\overline{A}+C)

16 b. (A+B).(\overline{A}+C).((B+C)+A.\overline{A})=(A+B).(\overline{A}+C)

16 b. (A+B).(\overline{A}+C).(B+C+A).(B+C+\overline{A})=(A+B).(\overline{A}+C)

16 b. (A+B).(A+B+C).(\overline{A}+C).(\overline{A}+C+B)=(A+B).(\overline{A}+C)

16 b. ((A+B)+(0.C)).(\overline{A}+C)+(0.B)=(A+B).(\overline{A}+C)

16 b. (A+B+0).(\overline{A}+C+0)=(A+B).(\overline{A}+C)

16 b. (A+B+0).(\overline{A}+C)=(A+B).(\overline{A}+C)
```

Regras da Álgebra de Boole

Teorema de DeMorgan

17 a.
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

17 b. $\overline{A + B} = \overline{A} \cdot \overline{B}$

Teoremas de De Morgan

Usados para simplificar expressões booleanas

1º Teorema: Complemento do Produto é igual à Soma dos Complementos

$$\overline{A.B} = \overline{A} + \overline{B}$$

Prova

A	В	$\overline{A.B}$	\overline{A}	\overline{B}	$\overline{A} + \overline{B}$
0	0	1	1	1	1
0	1	1	1	0	1
1	0	1	0	1	1
1	1	0	0	0	0

Teoremas de DeMorgan

Usados para simplificar expressões booleanas

2º Teorema: Complemento do Soma é igual ao Produto dos Complementos

$$\overline{A+B} = \overline{A}.\overline{B}$$

Exercício!

Solução

Prova do 2ºTeorema:

2º Teorema:

Complemento do Soma é igual ao Produto dos Complementos

$$\overline{A+B} = \overline{A}.\overline{B}$$

Prova

A	В	A+B	$\overline{A+B}$	\overline{A}	\overline{B}	$\overline{A}.\overline{B}$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Próxima Aula

- Obter circuito a partir da expressão;
- Obter expressão a partir de circuito.