Theorem 1 (Closure Properties for Regular languages)

Let L, L_1 , and L_2 be regular languages over the same alphabet Σ . Then the following eleven languages are regular as well.

- 1. $\overline{L} = \{ w \in \Sigma^* \mid w \notin L \}$
- 4. L_1L_2

2. $L_1 \cup L_2$

5. L^*

3. $L_1 \cap L_2$

6. L^{+}

- 7. $L \setminus \{\lambda\}$
- 8. $L^{R} = \{ w \in \Sigma^* \mid w^R \in L \}$
- 9. $\operatorname{prefix}(L) = \{ u \in \Sigma^* \mid \exists v \in \Sigma^* \text{ such that } uv \in L \}$
- 10. $\operatorname{suffix}(L) = \{ v \in \Sigma^* \mid \exists u \in \Sigma^* \text{ such that } uv \in L \}$
- 11. h(L), where $h: \Sigma \to \Gamma^*$ is a homomorphism and Γ is an alphabet.

Theorem 2 (Pumping Lemma for Regular Languages)

Let L be a regular language. Then there

exists an integer $m \in \mathbb{Z}$ such that for all $w \in L$ with $|w| \geq m$,

there exist strings x, y, and z, such that $w = x \cdot y \cdot z$ and

- $1. |x \cdot y| \le m,$
- 2. $|y| \ge 1$, and
- 3. for all i > 0, $x \cdot y^i \cdot z \in L$.

Theorem 3 (Canonical counting languages) The following holds

- 1. $L_0 = \{a^i \mid i \ge 0\}$ is regular.
- 2. $L_{\text{cnt}} = \{a^i b^i \mid i \geq 0\}$ is context-free but not regular.
- 3. $L_{2\text{cnt}} = \{a^i b^i c^i \mid i \geq 0\}$ is not context-free.