Х20 — Магнитная сборка Халбаха

Магнитная сборка Халбаха - особая конфигурация постоянных магнитов, характеризующаяся тем, что магнитное поле с одной из её сторон практически полностью отсутствует благодаря особому расположению элементов сборки. В этой задаче мы исследуем это явление.

Магнитные диполи

Диполем называется точечный магнитный элемент (например, маленькая петля с током. Ее дипольный момент $I\vec{S}$, где I - это ток, бегущий по петле, а \vec{S} - ориентированная площадь). Поле, создаваемое магнитным диполем, описывается следующей формулой:

$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \left(\frac{3\vec{r}(\vec{m} \cdot \vec{r})}{r^5} - \frac{\vec{m}}{r^3} \right),$$

где m - дипольный момент, \vec{r} - радиус-вектор точки в пространстве относительно диполя. $\mu_0 = 4\pi \cdot 10^{-7} \Gamma_{\rm H/M}$. На рисунке изображены диполь, вектор и угол между ними.

Рис. 1:

 $\mathbf{A1^{0.50}}$ Магнитное поле ослабляется с увеличением расстояния, для заданного угла θ найдите зависимость магнитного поля B на расстоянии r от диполя.

Магнитная шайба

Рассмотрим лёгкий магнит, представляющий собой плоский цилиндр радиуса R и толщиной $h \ll R$ с поверхностной плотностью магнитного момента $\vec{\sigma}$. Вектор поверхностной плотности ориентирован вдоль оси диска.

Рис. 2:

 ${f B1^{1.50}}$ Выразите магнитное поле B(y) вдоль оси, перпендикулярной магниту, на расстоянии y от центра.

Если приблизить маленький круглый магнит к металлической двери холодильника, магнит притягивается к ней с силой, зависящей от размеров и типа материала магнита, а также толщины двери. В этом пункте считайте толщину двери много большей линейных размеров магнита.

Рассмотрим цилиндрический магнит с объемной плотностью дипольного момента $\rho=1.05\cdot 10^6 \frac{{
m T.h.m.}}{{
m Гн}}$ толщиной $t=2{
m mm}$ и диаметром $D=20{
m mm}$.

B2^{0.50} Оцените величину магнитного поля вблизи поверхности магнита. Ответ выразите через величины t, D, ρ, μ_0 .

Рис. 3:

Чтобы определить силу взаимодействия магнита и двери холодильника, необходимо воспользоваться законом сохранения энергии. Когда магнит отрывают от двери, между ними возникает поле, приблизительно равное полю с другой стороны магнита. Остальная часть поля (включая и то, что внутри двери) почти не меняется. Выражение для объёмной плотности энергии магнитного поля в воздухе: $w = \frac{B^2}{2u_0}$.

B3^{0.50} Получите выражение и численное значение силы взаимодействия F_0 между дверью и прижатым к ней магнитом, также вычислите давление P_0 магнита на дверь.

Магнитная сборка Халбаха

Для того чтобы получить выражение магнитного поля в сборке Халбаха, найдем поле длинного ряда магнитов, как показано на рисунке. Линейная плотность дипольного момента ряда ρ_L , направление вдоль оси y.

Рис. 4:

С1^{2.00} Запишите выражение для поля $\vec{B}(\vec{r}_0, y)$ которое создает ряд магнитов. (Для удобства поле выражается и через \vec{r}_0 , и через y, хотя технически $y = (\vec{r}_0)_y$.)

В плоской магнитной сборке Халбаха направление поляризации маленького элемента площади непрерывно вращается. Его положение меняется в соответствии с формулой:

$$\beta(x,z) = \beta_0 + k \cdot x, k = 2\pi/\lambda, t \ll \lambda$$

Здесь β - это угол между направлением диполя и перпендикуляром к плоскости, этот угол вращается в плоскости xy. Длина λ - это шаг сборки, а t - толщина сборки.

Рис. 5:

C2^{1.00} Найдите магнитного поля с двух сторон от сборки. Ответ дать в виде некоторого интеграла.

Один из этих интегралов нужен для решения этого пункта:

$$\int_{-\pi/2}^{\pi/2} dx \cdot \cos(2x) \cdot \cos(c \cdot \tan x) = \frac{c \cdot \pi}{e^c} = \int_{-\pi/2}^{\pi/2} dx \cdot \sin(2x) \cdot \sin(c \cdot \tan x)$$
$$\frac{\pi}{e^d} = \int_{-\infty}^{\infty} dx \cdot \frac{\cos x}{d^2 + x^2}$$
$$\frac{\pi}{a \cdot e^a} = \int_{-\infty}^{\infty} dx \cdot \frac{2x \cdot \sin(2x)}{(a^2 + x^2)^2}$$

$$\frac{(b+1)\pi}{e^b} = \int_{-\infty}^{\infty} dx \cdot \frac{2b^3x \cdot \cos(x)}{(b^2 + x^2)^2}$$

C3^{1.00} Покажите, что с одной стороны идеальной сборки магнитное поле стремится к нулю.

C4^{1.00} Запишите выражение для поля с другой стороны.

С5^{1.50} На основании выражения поля найдите среднее давление P такого магнита на дверь холодильника. Возьмите следующие параметры: толщина t=0.5мм, объемная плотность магнитного диполя $\rho=2\cdot 10^5 \frac{{\rm Ta}\cdot {\rm M}}{\Gamma_{\rm H}}$, шаг сборки $\lambda=5$ мм.

C6^{0.50} Найдите соотношение между давлением, которое создает магнитная сборка Халбаха и давлением, которое создает обычный магнит из того же материала, с теми же радиусом и толщиной. Здесь тоже следует пренебречь эффектами на периметре кружка и и толщиной магнита.

Вы могли подумать, что ни в чем более инновационном, чем магнитики для холодильника, сборка Халбаха не применяется. Однако компания Hendo разработала на ее основе разработала целый ховерборд (тот самый, что был в фильме "Назад в будущее"). Используя кольцевую сборку Халбаха из электромагнитов, Hendo добились подъемной силы достаточной, чтобы заставить человека средней массы подняться над землей! Но только над медью.

Страница 3 из 4

Рис. 6: