

Vidyalankar Institute of Technology Department of Computer Engineering Exp. No.3

Semester	T.E. Semester VI – Computer Engineering
Subject	Data Warehousing and Mining
Subject Professor In-charge	Prof. Kavita Shirsat
Assisting Teachers	Prof. Kavita Shirsat
Laboratory	Lab 312 A

Student Name	Deep Salunkhe	
Roll Number	21102A0014	
Grade and Subject Teacher's Signature		

Experiment Number	03		
Experiment	To perform the calculation of ID3 Algorithm		
Title			
Resources	Hardware:	Software:	
/	Computer system	Python	
Apparatus			
Required	4. Badda Tara Alaadhaa 1823		
Description	 Decision Tree Algorithm: ID3 is a popular decision tree algorithm used for classification tasks. Objective: It aims to build a decision tree that can be used to make 		
	decisions or predictions based of	on input features.	
	3. Entropy-Based Approach: ID3 ს	ses an entropy-based approach to select	
	the best attributes for splitting	the data. It calculates the Information Gain	
	for each attribute to determine	the most informative one.	
	4. Information Gain: Information	Gain measures the reduction in entropy	
	(uncertainty) achieved by splitti	ng the data on a particular attribute. The	
		mation Gain is chosen as the splitting	
	criterion.	, ,	
		of the impurity or randomness of data.	
		ordered and predictable data, while higher	
		nuereu anu predictable data, willie nighei	
	entropy indicates randomness.		
	, ,	vely splits the dataset into subsets based on	
		opping criterion is met. The splitting	
		pints in a subset belong to the same class	
	or a predefined depth limit is re	ached.	
	7. Categorical Attributes: ID3 is de	esigned primarily for categorical (discrete)	
	attributes, not continuous ones	. It handles discrete attribute values well.	

Department of Computer Engineering Exp. No.3

Program

```
import pandas as pd
import math
data=pd.read_csv('Book1.csv')
                 income student credit_rating buys_computer
 0
          youth
                     high
                                             fair
          youth
                     high
                                        excellent
                                no
                                                              no
2 middel_aged
                     high
                                             fair
                                                              yes
                                no
3
          senior medium
                                             fair
                                                              yes
 4
          senior
                                             fair
                     low
                               yes
                                                              yes
 5
          senior
                     low
                                        excellent
                               yes
                                                              no
6 middle aged
                                        excellent
                     low
                               yes
                                                              yes
7
          youth medium
                                             fair
                                no
                                                              no
8
          youth
                     low
                                             fair
                               yes
                                                              yes
9
          senior medium
                                             fair
                                                              yes
                               yes
10
          youth medium
                                        excellent
                               yes
                                                              yes
11 middle_aged medium
                                        excellent
                                no
                                                              yes
```

```
# Define a function called calculate_entropy that takes a pandas Series
def calculate_entropy(data):
    # Count the occurrences of each unique value in the 'data' Series
    class_counts = data.value_counts()
    print(class_counts)
    # Get the total number of examples in the dataset
    total_examples = len(data)
    # Initialize the entropy variable to 0
    entropy = 0
    # Iterate through each count of unique values in 'class counts'
    for count in class counts:
        # Calculate the probability of a particular class occurrence
        p = count / total_examples
        # Calculate the entropy contribution of this class and subtract
        # The entropy formula: entropy = -p * log2(p)
        entropy -= p * math.log2(p)
    # Return the calculated entropy
    return entropy
```


Department of Computer Engineering Exp. No.3

```
initial_entropy = calculate_entropy(data["buys_computer"])
print(initial_entropy)
buys_computer
ves
Name: count, dtype: int64
0.9402859586706311
def calculate information gain(data, attribute, target attribute):
    # Initialize 'info_gain' with the initial entropy of the entire dataset
    info gain = initial entropy
    # Initialize 'info divergence' to 0, which will be used to calculate the weig
    info_divergence = 0
    # Get the total number of examples in the dataset
    total examples = len(data)
    # Iterate through each unique value of the specified 'attribute' in the datas
    for value in data[attribute].unique():
        # Create a subset of the dataset where the 'attribute' has the current 'vi
        subset = data[data[attribute] == value]
        # Get the size of the subset (number of examples with the current 'value'
        subset size = len(subset)
        # Calculate the entropy of the subset based on the 'target_attribute'
        subset_entropy = calculate_entropy(subset[target_attribute])
        # Calculate the weighted average of subset entropies (info_divergence)
        info_divergence += (subset_size / total_examples) * subset_entropy
    # Subtract the weighted average entropy (info_divergence) from the initial en
    info_gain -= info_divergence
    # Return the calculated Information Gain
    return info_gain
# Calculate Information Gain and Information Divergence for each attribut
target_attribute = "buys_computer"
attributes = data.columns.drop(target attribute)
ig values = {}
for attribute in attributes:
    ig = calculate_information_gain(data, attribute, target_attribute)
    ig_values[attribute] = ig
```


Vidyalankar Institute of Technology Department of Computer Engineering Exp. No.3			
Output	<pre>: # Print Information Gain print("Information Gain:") for x in ig_values: print(x,":",ig_values[x])</pre>		
	Information Gain: age: 0.24674981977443933 income: 0.02922256565895487 student: 0.15183550136234159 credit_rating: 0.04812703040826949		
Conclusion:	ID3 employs an entropy-based approach to select the most informative attributes for splitting the dataset. It calculates Information Gain, which measures the reduction in uncertainty achieved by splitting the data based on a particular attribute.		