EECS16A Lab: Touchscreen 3

Capacitive Touchscreens

Electronic Systems

Most systems perform 3 tasks:

- Sense (Physical to Electrical)
- Process (Signal Conditioning)
- Actuate (Electrical to Physical)

Goals: Touch 3

- Understand charge-sharing circuit for a capacitive touch sensor
- Understand comparators
- ✗ Build a functioning Touch Pixel

New Tools

Introducing: EECS16A Lab Boosterpack

Capacitive Touchscreen

- Exploits capacitive properties of finger/body
- Touching the screen changes the capacitance
- No moving parts
- Multi-touch is possible
- **X** More sensitive

How to measure capacitance?

Capacitance and the touchpad

What is a capacitor and how does it work?

Capacitive Touch Sensor

Capacitive touch sensor consists of two parts:

C_pixel: Screen + finger = unknown
capacitance

x C_ref: In parallel with known capacitance

Let's try to figure out a way to detect this increase in capacitance!

Measuring Capacitance

C_pixel is a variable value – may contain our finger or not

Model finger as another capacitor in parallel with our capacitive touch sensor

* How does the capacitance of what we're charging change?

Poll Time!

When you touch the screen, what will happen to C_pixel?

- (A) Increase
- (B) Decrease

Poll Time! (Continued...)

When you touch the screen, what will happen to C_pixel?

(A) Increase

(B) Decrease

Measuring Capacitance

Start by charging our capacitor touch sensor

Measuring Capacitance

Charge-sharing invariant: Q = CV

X Q remains constantX What happens to

What happer capacitors in parallel?

Poll Time!

When the charge is shared across C_pixel and C_ref, what will happen to the voltage at the positive plate of C_pixel?

- (A) Increase
- (B) Decrease

Poll Time! (cont.)

When the charge is shared across C_pixel and C_ref, what will happen to the voltage at the positive plate of C_pixel?

Voltage = V_DD

$$Q = C_{pixel} * V_{DD}$$

Voltage = C_ref/V+

$$Q = (C_{ref}/V +)(C_{pixel}) + (C_{ref}/V +)(C_{ref})$$

Increase

Decrease

Charge is conserved:

$$C_{pixel} * V_{DD} = (C_{pixel} + C_{ref}) * (C_{ref}/V +)$$

$$(C_{ref}/V+) = \frac{C_{pixel} * V_{DD}}{(C_{pixel} + C_{ref})}$$

 $(C_{ref}/V+) < V_{DD}$

1. Connect capacitors to ground to discharge fully v_{DD}

2. Disconnect clean switch from ground to enable charge storing

3. Charge touchscreen (+ finger?)

4. Share charge between **C_pixel** and C ref

Charge is conserved between phases

$$Q_{Phase3} = Q_{Phase4} = C_{pixel} * V_{DD}$$

$$Q_{Phase4} = (C_{ref}/V +) * (C_{pixel} + C_{ref})$$

$$(C_{ref}/V +) * (C_{pixel} + C_{ref}) = C_{pixel} * V_{DD}$$

$$(C_{ref}/V+) = \frac{C_{pixel} * V_{DD}}{(C_{pixel} + C_{ref})}$$

Process Comparator

Compares input voltage at positive terminal to a reference voltage at negative terminal (think)

">" symbol)

Essentially does:

if V_in > V_ref:

return V_dd

else:

return GND = 0V

Process Comparator

Voltage we are measuring: $(C_{ref}/V+) = \frac{C_{pixel} * V_{DD}}{(C_{pixel} + C_{ref})}$

- In touch and no-touch cases, the voltage at Cref/V+ will be different
- Want to use the process comparator to distinguish between touch and no-touch voltages
- Desired comparator output:
 - Touch: V_DD
 - No-touch: 0V

Full Circuit - Sense Process Actuate

Notes

- W Unplug MSP before moving circuit components
- Op Amp goes across middle of breadboard
- **X** Read op-amp pin diagram carefully
- Make sure your circuit is grounded and has a common ground
- Initial charge sharing diagrams are theoretical--don't start building right away

