设计题目: 自动位置测量控制系统数学仿真设计和校正分析 设计控制器,使闭环系统满足如下性能指标:

- 2. 相角裕度大于等于 45°
- 3. 剪切频率大于等于 4.5 rad/s
- 一、系统分析
- 1.1 系统工作原理

其位置漢控装置如图所示。

输入信号为期望电压信号 r(t),输出信号为电机负荷旋转角度 $\theta(t)$ 。

由于伺服电动机产生的转矩与偏差信号 e(t)成正比,如果将负荷的构成分为惯性负荷和摩 擦负荷, 可列写如下关系:

$$\begin{cases} J \frac{d^2 \theta(t)}{dt} + \beta \frac{d \theta(t)}{dt} = k_0 e(t) \\ r(t) - b(t) = e(t) \\ b(t) = k_m \theta(t) \end{cases}$$

其中,J 为负荷的惯性矩, β 为摩擦因素, k_0 为放大系数, k_2 为反馈系数。输油马。当浮元

1.请分析该自动位置测控装置的工作原理

被控对象: 伺服电动机的负荷旋转角度

被控参量: 位置电位差 被控量: 输入电压

工作原理: 当电位器电刷 B 位于中点位置 A 处时, 电动机停止, 控制电压输 出保持不变,从而使负载保持在希望位置上。当负载位置发生发生 变化,例如负载下降,通过位置检测装置检测出来,使电位器电刷 从中点位置 A 处上移, 从而给电动机提供一定的控制电压, 驱动 电动机通过增大负荷旋转角, 使负载上升, 回到希望高度, 直到电 位器电刷 B 回到中点位置 A 处, 电动机停止。反之, 若液面上升,

系统则会通过电机减小旋转角度,使负载下降到透謀的高庸写習浮云

1.2 系统数学模型 (写出传函的推导过程和画出方框图)

1.3 系统性能指标分析与计算(设置系统的参数,确保系统稳定且为欠阻尼状态,用根轨迹或者劳斯判据验证系统稳定。以系统为单位阶跃信号输入时,来分析指标,用 matlab 仿真得到系统阶跃响应并读出各个性能指标,再画出 BODE 图)

	校正前	校正后
超调量	60.4417	22.0759
调节时间	7.2985	1.2343
上升时间	0.3808	0.2761
相位裕量	17.9642	50.1314
幅值裕量	Inf	Inf
穿越频率	3.0842	4.4185

三、系统分析

2.1 加入超前校正(理论计算控制器的参数,再用 matlab 仿真,看性能指标如何)

2.2 加入超前校正(理论计算控制器的参数,再用 matlab 仿真,看性能指标如何)

2.3 综合对比分析

Figure 1		-	
	插入(I) 工具(T) 桌面(D) 窗口(W) 帮助(H)	3	
	Bode Diagram Gm = Inf, Pm = 79.9 deg (at 5.26 rad/s		
40	on mi, in role deg (at elle radio		
G 00			•
(g) 20			
Magnitude (dB)			
ugay -20			
≥ -20			
-40 -90			
(G-95) -100 -105			10
9 -100			
면 -105			
-110 L	10 ⁰ 10 ¹	10 ²	0%
	Frequency (rad/s)		
2.3 综合对比分析			
性能指标	校正前	采用超前校正后	采用 PD 校正后
超调量 θ	60.62%	6.437%	6.437%
调节时间 ts	6s	2.010s	2.010s
峰值时间 tp	1.001s	0.603s	0.704s
上升时间 tr	0.554s	1	/
相角裕度 r	17.966°	54.3°	79.9°
剪切频率 wc	3.084 rad/s	4.74 rad/s	5.26rad/s

三总结与收获

一开始用 simulink, 直接得到闭环传函的性能指标, 但是后续校正都是用开环研究较为方便, 所以放弃了这种方法。