Learning to rank

Содержание

- Задача ранжирования
- Метрики
- Подходы и алгоритмы
- Существующие проблемы

Задача ранжирования

Какими качествами должен обладать хороший поиск?

- Релевантные документы
- Быстро ищет
- Не показывает бред и мусор
- Хочется пользоваться
- Легко найти «мой» сайт
- Приносит деньги

Релевантность – мера того, на сколько документ подходит запросу

Качество ранжирования

Итоговое качество поиска зависит от:

• Оценки качества поиска

«Если вы не можете что-то измерить, то вы не можете это улучшить»

- Способа построения датасета
- Фичей
- Алгоритма

Задача ранжирования

Множество запросов $Q = \{q_1, q_2, ..., q_n\}$

Множество документов соответствующих каждому запросу $q \in Q$

$$q \rightarrow d_1, d_2,...$$

Для каждой пары (q, d) сопоставляется оценка релевантности y(q,d), чем выше оценка, тем релевантнее документ d по запросу q.

Оценки релевантности сравнимы, только в рамках одного запроса:

$$(q, d_1) < (q, d_2) \Leftrightarrow y(q, d_1) < y(q, d_2)$$

Задача ранжирования

- Как оценить ранжирование?
- Сопоставим нашим парам запрос-документы некоторые последовательности чисел:
 - оценка релевантности
 - вероятность, что документ релевантен
 - релевантен/не релевантен
- Оценим последовательности
- Усредним по запросам

Метрики. Начнем с простого

- Начнем с простого: случай бинарных ответов $y_{(i)} \in \{0,1\}$
- Любые стандартные метрики классификации:
- точность
- полнота
- *F-мера*
- ROC-AUC

Метрики. Начнем с простого

- Начнем с простого: случай бинарных ответов $y_{(i)} \in \{0,1\}$
- Любые стандартные метрики классификации:
- точность
- полнота
- *F-мера*
- ROC-AUC
- precision@k(q) точность для первых k предсказаний модели
- Недостаток: не учитывает порядок элементов

• Average Precision - равна сумме p@i по индексам i от 1 до k только для релевантных элементов, деленому на k.

$$AP@k(q) = \frac{1}{k} \sum_{i=1}^{k} y_{(i)} precision@i(q)$$

- $y_{(i)} \in \{0,1\}$ бинарная релевантность документа на позиции i
- Учитывает порядок элементов

• Average Precision - равна сумме p@i по индексам i от 1 до k только для релевантных элементов, деленому на k.

$$AP@k(q) = \frac{1}{k} \sum_{i=1}^{k} y_{(i)} precision@i(q)$$

- $y_{(i)} \in \{0,1\}$ бинарная релевантность документа на позиции i
- Учитывает порядок элементов

Пример:

Три элемента, релевантен последний: $ap@3(q) = \frac{1}{3} (0 + 0 + 1/3) \approx 0,11$.

• Average Precision - равна сумме p@i по индексам i от 1 до k только для релевантных элементов, деленому на k.

$$AP@k(q) = \frac{1}{k} \sum_{i=1}^{k} y_{(i)} precision@i(q)$$

- $y_{(i)} \in \{0,1\}$ бинарная релевантность документа на позиции i
- Учитывает порядок элементов

Пример:

Три элемента, релевантен последний: $ap@3(q) = \frac{1}{3} (0 + 0 + 1/3) \approx 0,11$. Три элемента, релевантен первый: $ap@3(q) = \frac{1}{3} (1/1 + 0 + 0) \approx 0,33$.

• Average Precision - равна сумме p@i по индексам i от 1 до k только для релевантных элементов, деленому на k.

$$AP@k(q) = \frac{1}{k} \sum_{i=1}^{k} y_{(i)} precision@i(q)$$

- $y_{(i)} \in \{0,1\}$ бинарная релевантность документа на позиции i
- Учитывает порядок элементов

Пример:

Три элемента, релевантен последний: $ap@3(q) = \frac{1}{3} \ (0+0+1/3) \approx 0,11.$ Три элемента, релевантен первый: $ap@3(q) = \frac{1}{3} \ (1/1+0+0) \approx 0,33.$ Три элемента, все релевантны: $ap@3(q) = \frac{1}{3} \ (1/1+2/2+3/3) = 1.$

• Average Precision - равна сумме p@i по индексам i от 1 до k только для релевантных элементов, деленому на k.

$$AP@k(q) = \frac{1}{k} \sum_{i=1}^{k} y_{(i)} precision@i(q)$$

• $y_{(i)} \in \{0,1\}$ – бинарная релевантность документа на позиции i

• Average Precision - равна сумме p@i по индексам i от 1 до k только для релевантных элементов, деленому на k.

$$AP@k(q) = \frac{1}{k} \sum_{i=1}^{k} y_{(i)} precision@i(q)$$

- $y_{(i)} \in \{0,1\}$ бинарная релевантность документа на позиции i
- Mean Average Precision усредняем по всем запросам.

$$MAP@k = \frac{1}{N} \sum_{i=1}^{N} ap@k(q)$$

Метрики. Совсем advanced

- DCG (discounted cumulative gain)
- Ответы являются вещественными

DCG@
$$k(q) = \sum_{i=1}^{k} g(y_{(i)})d(i)$$

Метрики. Совсем advanced

- DCG (discounted cumulative gain)
- Ответы являются вещественными

DCG@
$$k(q) = \sum_{i=1}^{k} g(y_{(i)})d(i)$$

• Популярные функции:

$$g(y) = 2^{y} - 1$$
 $d(i) = \frac{1}{\log(i+1)}$

DCG@
$$k(q) = \sum_{i=1}^{k} \frac{2^{y_{(i)}} - 1}{\log(i+1)}$$

Метрики. Совсем advanced

- DCG (discounted cumulative gain)
- Ответы являются вещественными

$$DCG@k(q) = \sum_{i=1}^{k} \frac{2^{y_{(i)}} - 1}{\log(i+1)}$$

• **nDCG** (normalized discounted cumulative gain) – нормируем на идеально ранжирование

$$nDCG@k(q) = \frac{DCG@k(q)}{maxDCG@k(q)}$$

Этапы ранжирования

Learning to rank

Факторы ранжирования

- Текстовые
- Ссылочные
- Поведенческие
- Социальные
- Временные

Типы признаков

- Запросные:
 - популярность
 - ТИП
 - ЧИСЛО СЛОВ И Т. П.

Типы признаков

- Запросные:
 - популярность
 - ТИП
 - ЧИСЛО СЛОВ И Т. П.
- Статические (документные) могут быть посчитаны заранее
 - популярность
 - количество ссылок
 - средний word2vec вектор и т. п.

Типы признаков

- Запросные:
 - популярность
 - ТИП
 - ЧИСЛО СЛОВ И Т. П.
- Статические (документные) могут быть посчитаны заранее
 - популярность
 - количество ссылок
 - средний word2vec вектор и т. п.
- Динамические (документ запросные)
 - расстояние между запросом и документом
 - близость тем и т. п.

Алгоритмы ранжирования

Discounted Cumulative Gain

$$DCG@k(q) = \sum_{i=1}^{k} \frac{2^{y_{(i)}} - 1}{\log(i+1)}$$

Как оптимизировать?

Проблемы с дифференцируемостью....

Алгоритмы ранжирования

Discounted Cumulative Gain

DCG@
$$k(q) = \sum_{i=1}^{k} \frac{2^{y_{(i)}} - 1}{\log(i+1)}$$

Как оптимизировать?

Три подхода:

- *pointwise* (другая целевая функция), обучение на отдельных примерах
- *pairwise* (другая целевая функция), обучение на документах в рамках запроса
- *listwise* (выучиваем распределение), обучение на отранжированных списках

Будем пытаться решить задачу ранжирования как задачу регрессии (или классификации)

$$L(h) = \sum_{q} \sum_{(q,d_i)} (y(q,d_i) - h(q,d_i))^2$$

- Работает приемлемо
- Отделяет простые запросы от сложных

Pointwise

Недостатки

- Нет непосредственной оптимизации порядка документов
- Теряем информацию об упорядоченности
- Нет привязки к запросу
- Количество документов для запроса сильно влияет
- Нельзя влиять на конкретные результаты (YouTube по запросу)

Будем пытаться решить задачу ранжирования как задачу попарной классификации. Переходим к гладкому функционалу ранжирования.

$$L(h) = \sum_{q} \sum_{(q,d_i) < (q,d_j)} [h(x_j) - h(x_i) < 0]$$

$$\leq \sum_{q} \sum_{(q,d_i) < (q,d_j)} L(h(x_j) - h(x_i)) \to min$$

h(x) — функция ранжирования

Будем пытаться решить задачу ранжирования как задачу попарной классификации. Переходим к гладкому функционалу ранжирования.

$$L(h) = \sum_{q} \sum_{(q,d_i) < (q,d_j)} [h(x_j) - h(x_i) < 0]$$

$$\leq \sum_{q} \sum_{(q,d_i) < (q,d_j)} L(h(x_j) - h(x_i)) \to min$$

h(x) — функция ранжирования

- $L(m) = (1 m)_{+}$ RankSVM
- $L(m) = \log(1 + e^{-m})$ RankNet
- $L(m) = e^{-m}$ RankBoost

Transformed Pairwise Classification Problem

Проблемы

Переобучение

- запросы
- документы
- эксперты

Положительный фидбек

- факторы
- документы

Шумные данные

• эксперты

Переобучение (запросы)

Равномерная выборка из логов

- Несвежие данные
- Шумные по времени
- Скачки при смене набора запросов
- Устаревшие оценки
- Неактуальные запросы

Переобучение (документы)

Равномерная выборка из логов

- Учимся на том, что показываем
- Индекс меняется, часто перестраиваем модель
- Вне топа другое распределение данных
- Могут встречаться аномальные значения

Переобучение (эксперты)

- Пользователи != эксперты
- Асессоры не создают запросы (действуют в вакууме)
- Асессоры не эксперты в некоторых областях, могут читить
- Оценивается по большой сложной инструкции

Позитивный фидбек

- Поведенческие факторы (может быть случайным для редкого запроса)
- SEO оптимизация
- Добавляем документы, которые есть у конкурентов, но нет у нас

Шумные данные

- Асессоры тоже люди
- Пытаться учесть ошибки в модели

Listwise

- Оптимизировать целевую метрику качества вряд ли получится из-за дискретности
- But we will try to do our best!
- Введем некоторое вероятностное распределений
- Свели задачу к задаче восстановления распределения
- ListNet списочный метод, учитывает порядок документов

- Вместо максимизации NDCG будем минимизировать расстояние между истинным ранжированием и ранжированием, порождаемым ранжирующей функцией
- Метки релевантности или значения ранжирующей функции на документах будут порождать вероятностное распределение на перестановках
- Максимизируем близость распределения, порождаемого значениями функции и истинными метками

- Как это работает?
- Для каждой перестановки документов π вводим вероятность этой перестановки при ранжировании нашим алгоритмом f:

$$P_f(\pi)$$

• Получаем два вероятностных распределения: для алгоритма (*p*) и истинное (*q*) для оценок асессоров

- Как будем оптимизировать?
- Дивергенция Кульбаха-Лейблера!

$$\mathrm{KL}(p||q) = \int p(x) \log \frac{p(x)}{q(x)} dx.$$

• Функционал имеет смысл «расстояния между распределениями»

$$KL(p||q) \ge 0, \ \forall p, q;$$

 $KL(p||q) = 0 \iff p = q.$

Является ли он метрикой?

- Используем нейронки
- Обучаем градиентным спуском
- Функция потерь КL дифиргенция между распределениями

$$D_{\mathrm{KL}}(P \parallel Q) = \int_X \log rac{\mathrm{d}P}{\mathrm{d}Q} \, \mathrm{d}P,$$

$$L(h) = -\sum_{q \in Q} \sum_{G(j_1, \dots, j_n)} \left(\prod_{t=1}^n \frac{e^{rel_{j_t}}}{\sum_{u=t}^n e^{rel_{j_u}}} \right) log \left(\prod_{t=1}^n \frac{e^{h(x_{j_t})}}{\sum_{u=t}^n e^{h(x_{j_u})}} \right)$$

Training Performance on TREC Dataset

Список литературы

- Статья на хабр про метрики ранжирования: https://habr.com/ru/company/econtenta/blog/303458/
- Конспект лекции Соколова ВШЭ: https://github.com/esokolov/ml-course-hse/blob/master/2019-spring/lecture-notes/lecture24-ranking.pdf
- Видео лекции Соколова: https://youtu.be/cql3bVrFEOQ
- Лекция Воронцова
 http://www.machinelearning.ru/wiki/images/8/89/Voron-ML-Ranking-slides.pdf
- Статья про RankNet https://medium.com/@nikhilbd/intuitive-explanation-of-learning-to-rank-and-ranknet-lambdarank-and-lambdamart-fe1e17fac418

Спасибо за внимание!

Bonus: Метрики. От Яндекса

- pFound
- Ответы на отрезке [0, 1], выражают вероятность найти ответ в документе

$$p_{i+1} = p_i(1 - y_{(i)})(1 - p_{out})$$

- $p_1 = 1$
- p_{out} вероятность того, что пользователь уйдет, не найдя ответ

pFound@
$$k(q) = \sum_{i=1}^{k} p_i y_{(i)}$$

• Является каскадной метрикой

$$L(h) = \sum_{q} \sum_{(q,d_i) < (q,d_j)} [h(x_j) - h(x_i) < 0]$$

$$\leq \sum_{q} \sum_{(q,d_i) < (q,d_j)} L(h(x_j) - h(x_i)) \to min$$

Берем в качестве оценки сверху

$$L(m) = (1 - m)_+$$

Отступ

$$m_{i,j} = w^T (x_j - x_i)$$

В итоге получили следующую задачу минимизации:

$$L(h) = \sum_{q} \sum_{(q,d_i) < (q,d_i)} (1 - m_{i,j})_+ + \frac{1}{2C} ||w||^2 \to \min_{w}$$

ListNet: пример функции вероятности

• Probability of permutation π is defined as

$$P_{s}(\pi) = \prod_{j=1}^{n} \frac{\varphi(s_{\pi(j)})}{\sum_{k=j}^{n} \varphi(s_{\pi(k)})}$$

Example:

P(C ranked No.3 | A ranked No.1, B ranked No.2)

- Two queries in total
- Same error in terms of pairwise classification 780/790 = 98.73%.
- Different errors in terms of query level evaluation 99% vs. 50%.

		Case 1	Case 2
Document pairs of q_1	correctly ranked	770	780
	wrongly ranked	10	0
	Accuracy	98.72%	100%
Document pairs of q_2	correctly ranked	10	0
	wrongly ranked	0	10
	Accuracy	100%	0%
overall accuracy	document level	98.73%	98.73%
	query level	99.36%	50%
	· A		