Data Science for Speech Therapy 3 Natural Language Processing for Oct 2021 ST Benjamin Chow For details Sample. Contact me Conversation Analysis

Content

- 2. Conversation sample as a form of data for details
 3. DS theory

 Usage in received.
- 4. Usage in research papers

Data Science for ST Part 1

	Stats	ML
Goal	Inference	Prediction
Model complexity	Simple models	Simple- complex models
# of models	1 specific	As many as you like
Dota 1	Tabular	More than just tabular

Data Science for ST Part 2

Content

- 2. Conversation sample as a form of data or

 3. DS theory

 4. Usage in research papers

 Sample as a form of data or

 Sample as a form of data or

 Act more details

Content

- What is Data Science (recap)?
- 2. Conversation sample as a form of data
- 3. DS theory (NLP)
- e for details 1. Linguistic features (frequency/ measurements)
 - 2. Distributional Semantic Models (DSM)
- 4. Usage in research papers

Linguistic features (cont)

- Disadvantage ample. Contact me for details

 Doesn't revor sentence
 - Provide little insight regarding semantic similarity between words
 - "Car", "vehicle" and "automobile" are treated as distinct nouns but are semantically similar

Content

- What is Data Science (recap)?
- for details 2. What type of data is a conversation sample
- 3. DS theory (NLP)
 - Linguistic features (frequency/ measureme
 - 2. Distributional Semantic Wodels (DSM)
- 4. Usage in research papers

Model= NLP model to convert text to numbers.
Output of NLP model/DSM is input of ML model.

A Review of Automated Speech and Language Features for Assessment of Cognitive and Thought Disorders (2019)

How do DSM assign numbers to text?

DSM								
Vocab list	Vector							
Word 1	1, 2, 3							
Word 2	45, 69, 1							
Word 3	araple							
Word ###	•••••							

Transcript to convert to numbers								
Word 3	Word 1							
 act me	for de	tails						

Words embedded in vector of numbers

(1, 0, 0), (45, 69, 1), (1, 2, 3)

Distributional Semantic Models

DSN	√ I
Vocab list	Vector
Word 1	1, 2, 3
Word 2	45, 69, 1
Word 3 Sa	MADIC.
Word ###	•••••

- Words are embedded as a vector of numbers
- How are the vector of numbers determined?

 - 1. Count-based models2. Prediction-based models
 - 3. Deep contextualized models

Problems with count-based DSM

		Transcript								
		Can	You	Tell	Ме	How	То	Get	То	Sesame Street
Vocab	Can	1	0	0	0	0	0	0	0	0
List	You	0	1	0	0	0	0	0	0	0
	Tell	0	0	1	0	0	0	0	0	0
	Me	0	0	0	1	0	0	0	0	0
	How	0	0	0	0	1	0	0	0	0
	То	0	0	0	0	0	1	0	1	0
	Get	0	0	0	0	0	0	0	1	0
	Drive	0	0	0	0	0	0	0	0	0
	Sesame street	0	0	0	0	0	0	16	20	1
	Big Blue House	0	0	0	0	0	1	0	9	0

Way too many zeros

- models prefer dense vector of numbers
- Slower for computation

Semantic similarity

- Still not capture
- 1/0 if "car", "vehicle", "automobile" present

Distributional Semantic Models 2: Prediction-based

- > Behind the scene, some form of predictive modelling is done by DSM
 - Prediction-based DSMi
- > Semantic similarity is captured in vector of numbers
 - More related the words are, the closer the values of the vector of numbers

Problems with prediction-based DSM

<u>General</u>

- Mistake words with opposite meanings as their meanings are very similar and used in similar contexts
- Polysemy words have the same vector of numbers
- Unable to specific type of semantic relationship (what are the clinical implications?)

Distributional Semantic Models 3: Deep Contextualized

Deep Contextualized DSM learn word AND context meanings

- Compress context into the vectors
- Vector representation of word is informed by surrounding words.
- Takes into account other words so the vector representation is aware of context

Vectors of Deep Contextualized DSM

Word2Vec, GloVe, etc:

The bark on the tree is red →

The dog will bark at you \rightarrow

BERT, GPT2, etc:

The dog will bark at you

Solves the uniform representation of polysemy words by prediction-based DSM

State Of The Art (SoTA) Models

Explain how BERT learns

Why the need to explain?

ML researcher

- Create better models

SLP

- Closer to our theoretical understanding, the easier for us to trust and adopt the models adopt the models

BERT (<u>Bidirectional Encoder Representations from Transformers</u>)

Explaining how BERT learns semantics

11

10

9

8

5

4

3

- Semantics is spread across the entire model
- Some word senses Tearned at earlier layers may be dropped.
- Some word senses are learned at later layers.
- Some cases, more context specific representation develop in later layers

Context Atlas (storage.googleapis.com)

Explaining how BERT learns syntax

What is a syntax dependency tree?

 Main verb is the root node which the tree grows

- Distance allows depth to be formed
- Depth represents the hierarchical nature of sentences
 - Parent-child relationship
 - Subtrees with the tree

Too good to be true?

Words without dependency relation but positions were closer than expected (dotted orange lines)

Comments about BERT learning grammar

- BERT "naturally" learns syntactic information
- But there are differences compared to human linguistic
 - Computational language models are just different VS undiscovered findings/
- ⇒ Is it still appropriate to use such models with utterances from aphasic/cog com speeches?

Content

- What is Data Science (recap)?
- 4. Usage in research papers

 Sample.

 Sample.

NLP in research of acquired communication disorders

Frequency

- Limited
- + Across demographic: Aphasia, AD, PPA

- Linguistic features -> NLP >> linguistic features

 ta: Sample.

- Assessment battery
- Conversation sample
- Assessment battery + conversation sample

NLP in research of acquired communication disorders

Results

- Multi level biasness
- Powerful model OR easy data
 Lack of standardization hinders its translation into clinical practice
- >AD researchers acknowledged the current limitations
- >Created a balanced dataset and established as a benchmark challenge:

<u>Alzheimer's Dementia Recognition through Spontaneous Speech (ADReSS)</u>

ADReSS has a balanced dataset

- 1. "Training Set" is used to train the model
- 2. "Test set" is used to test the model
- Dataset is balanced for both training and test set
 Ratio of M.S.

 - Ratio of pt w AD and without AD
 - Age groups

Table 1: ADReSS Training Set: Basic characteristics of the patients in each group (M=male and F=female).

		1	AD	non-AD		
Age	M	F	MMSE (sd)	M	F	MMSE (sd)
[50, 55)	1	0	30.0 (n/a)	1	0	299 (n/a)
[55, 60)	5	4	16.3 (4.9)	5	42	29.0 (1.3)
[60, 65)	3	6	(6.1)	10	6	29.3 (1.3)
[65, 70)	6	10	16.9 (5.8)	6	10	29.1 (0.9)
[70, 75)	6	(B)	15.8 (4.5)	6	8	29.1 (0.8)
[75, 80)	13	2	17.2 (5.4)	3	2	28.8 (0.4)
Total	24	30	17.0 (5.5)	24	30	29.1 (1.0)

Table 2: *Characteristics of the ADReSS test set.*

			AD	non-AD		
Age	M	F	MMSE (sd)	M	F	MMSE (sd)
[50, 55)	1	0	23.0 (n.a)	1	0	28.0 (n.a)
[55, 60)	2	2	18.7 (1.0)	2	2	28.5 (1.2)
[60, 65)	1	3	14.7 (3.7)	1	3	28.7 (0.9)
[65, 70)	3	4	23.2 (4.0)	3	4	29.4 (0.7)
[70, 75)	3	3	17.3 (6.9)	3	3	28.0 (2.4)
[75, 80)	1	1	21.5 (6.3)	1	1	30.0 (0.0)
Total	11	13	19.5 (5.3)	11	13	28.8 (1.5)

To BERT or Not To BERT: Comparing Speech and Languagebased Approaches for Alzheimer's Disease Detection (2020)

NLP Technique: # 1

NLP Technique: # 2

Results

Table 5: AD detection results on unseen, held-out ADRess test set presented in same format as the baseline paper [1]. Bold indicates the best result.

Model	#Features	Class	Accuracy	Precision	Recall	Specificity	F1
Baseline [1]	-	non-AD AD	0.750	0.70 0.83	0.87 0.62		0.78 0.71
SVM	10	non-AD AD	0.813	0.83 0.80	0.79 0.83	0.83	0.81 0.82
NN	10	non-AD AD	0.771	0.78 0.76	0.75 0.79	0.78	0.77
RF	50	non-AD AD	0.750	0.71 0.80	0.83 0.67	0.71	0.77 0.73
NB	80	non-AD AD	0.729	0.69 0.79	0.83 0.63	0.69	0.75 0.70
BERT	-	non-AD AD	0.833	0.86 0.81	0.79 0.88	0.86	0.83 0.84

- BERT is (slightly) superior than machine learning models with linguistic features
 - → BERT captures a range of linguistic phenomena
 - → Encapsulation of many important lexico-syntactic and semantic features.

Using state of the art speaker recognition and natural language processing technologies to detect Alzheimer's disease and assess its severity (2020)

Approach 2b

characterize

presence of

silence

Results

Table 2: ADReSS challenge evaluation results for the and prediction tasks. Best results are marked in bold.

Results	6				details
Table 2: ADRe and prediction				esults for ti rked in bol	
Models	Class	Detection Prec./Rec.	of the	Accuracy (%)	Tree
Baseline	CC	8.67/0.50 0.60/0.75	0.57 0.67	62.50	
Acoustic	CC AD	0.61/0.45 0.57/0.71	0.52 0.63	58.00	
Acoustic + silence	CC AD	0.64/ 0.75 0.70/0.58	0.69 0.63	66.70	
Transcript	CC AD	0.79/0.63 0.69/0.83	0.7 0.75	72.92	
Acoustic &	CC	0.83 /0.63	0.71	75.00	→ Two modalities contain
Transcript	AD	0.70/0.88	0.78		
Acoustic + silence &	CC	0.79/0.62	0.70	72.92	complementary information → More data ≠ better prediction
Transcript	AD	0.69/0.83	0.75		

- → Two modalities contain complementary information
- → More data ≠ better prediction

Final thoughts

- SoTA NLP models are the new kids on the block for NLP
 - Spilling over to acquired communication disorders research
- SoTA NLP models ≠ best performance
 - Mix and match approaches and techniques (including traditional NLP strategies)
- Considerations when using SoTA NLP models for acquired communication disorders
 - Rubbish in, rubbish out