Supervised learning for Neural Network

In supervised learning, we are given a data set and already know what our correct output should look like, having the idea that there is a relationship between the input and the output.

Supervised learning problems are categorized into "regression" and "classification" problems. In a regression problem, we are trying to predict results within a continuous output, meaning that we are trying to map input variables to some continuous function. In a classification problem, we are instead trying to predict results in a discrete output. In other words, we are trying to map input variables into discrete categories.

Here are some examples of supervised learning

	Input(x)	Output (y)	Application
standard NN	Home features	Price	Real Estate
	Ad, user info	Click on ad? (0/1)	Online Advertising
CNN	Image	Object (1,,1000)	Photo tagging
	Audio	Text transcript	Speech recognition
RNN	English	Chinese	Machine translation
Custom hybrid	Image, Radar info	Position of other cars	Autonomous driving

cleverly selecting what should be x and what should be y for your problems and then fitting this supervised learning component into often a bigger system such as an autonomous vehicle

There are different types of neural network, for example Convolution Neural Network (CNN) used often for image application and Recurrent Neural Network (RNN) used for one-dimensional sequence data such as translating English to Chinses or a temporal component such as text transcript. As for the autonomous driving, it is a hybrid neural network architecture. Recurrent neural networks are very good for this type of

Structured vs unstructured data

Recurrent neural networks are very good for this type of one-dimensional sequence data that maybe a temporal component

Structured data refers to things that has a defined meaning such as price, age whereas unstructured data refers to thing like pixel, raw audio, text.

Structured Data

Size	#bedrooms	•••	Price (1000\$s)
2104	3		400
1600	3		330
2400	3		369
:	:		:
3000	4		540

User Age	Ad Id	 Click
41	93242	1
80	93287	0
18	87312	1
:	:	:
27	71244	1

Unstructured Data

Audio

Image

Four scores and seven years ago...

Text

Each of features, such as size of house, the number of bedrooms or the age of a user, has a very well defined meaning.