Analog Electronic Circuits (EC2.103): Midsem exam Analog Electronic Circuits (103): Midsem exam Instructor: Prof. Abhishek Srivastava, CVEST, IIIT Hyderabad Instructor: Prof. Abhishek Stil Hour 30 minutes, Max. Marks: 15

Instructions:

- Clearly write your assumptions (if any)
 You can use one A4 sheet of own handwritten short notes in the exam hall
- You can use one A4 sheet of own handwritten over the exam
 Use of mobile phone and computers are not allowed during this exam
- 1. True/False with reason

(a) For BJT based voltage amplifiers, it is preferred to have EB junction reverse biased and CB junction forward biased. (Te give reason)

Junction forward biased. (Ally give to active mode depends on the base-collector junction voltage. (T/F) give reason)

Consider the full wave rectifiers shown in Fig. 1(a) and Fig. 1(b). All diodes have same cut-in voltage (v_{γ}) and negligible on resistance.

Figure 1

- (a) Plot v_{out} vs v_{in} for Fig. 1(a) and find peak inverse voltage in the circuit. [2 Mark]
- (b) Plot v_{out} vs v_{in} for Fig. 1(b) and find peak inverse voltage in the circuit.

 \mathcal{J} . In the AC equivalents shown in Fig. 2, BJTs Q_1 and Q_2 are biased in the forward active mode having transconductance g_{m1} and g_{m2} , respectively. Also consider Q_1 and Q_2 have finite output impedances r_{o1} and r_{o2} , respectively due to the Early effect.

Figure 2

(a) Draw the small signal equivalent of the circuit in Fig. 2(a) and find the small signal equivalent [2 Mark] resistance R_{in} . Is it high or low impedance, comment.

(b) Draw the small signal equivalent and the small signal voltage gain $(\frac{v_{out}}{v_{in}})$ for Fig. 2(b) if R_{in} from Fig. 2(a) is used. Also derive the expression for small signal output resistance R_{out} as shown in the figure. Is it high or low the tance, comment. [3 Mark] shown in the figure. Is it high or low impedance, comment.

4. For the circuit shown in Fig. 3, assume that BJT is in forward active mode.

Figure 3

- (a) Draw the small signal model and derive expression for the voltage gain $A_v = \frac{v_{out}}{v_s}$.
- (b) Derive the expression for the small signal input resistance defined as $R_{in} = \frac{v_{in}}{i_{in}}$. Is it high or low, briefly explain. [1 Mark] (Hint: Ground V_{CC} , remove v_s , R_s , apply test source v_{in} , measure i_{in} .)
- (c) In your small signal model make $v_s=0$ and derive the expression for the small signal output resistance $R_{out} = \frac{v_x}{i_x}$, where v_x is an incremental voltage applied at the 'out' node and i_x is the corresponding incremental current drawn. Is R_{out} high or low, briefly explain. [1 Mark]
- (d) Based on the gain, input-output resistances derived in above parts, comment on the utility of this circuit. [1 Mark]

Good luck!!