

JPL Horizons Overview and Future Plans

Jon Giorgini

Plan

- 1. Solar system dynamics: what's the problem?
- 2. Overview of SSD activity & Horizons
- 3. What Horizons provides
 - Object look-up & small-body parameter searches
 - List objects in field-of-view
 - Small-body close-approach tables
 - Observer tables
 - Vector tables
 - Osculating element tables
 - Small-body SPK file generation
- 4. Horizons interfaces
 - Command-line
 - Browser
 - E-mail
 - Automation: CGI and scripting
- 5. Future developments & LSST
- 6. DASTCOM
- 7. Resource list

Kepler (16th century) vs. Now

(general relativity & perturbations)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 b^2 = a^2(1 - e^2)$$

$$E - e \sin(E) = (t - T)n$$

$$n = \frac{2\pi}{P}$$

$$r = a(1 - e \cos E)$$

$$\tan(\frac{v}{2}) = \sqrt{\frac{1 + e}{1 - e}} \tan(\frac{E}{2})$$

Acceleration @ point

Actual: *n*-body Equations of Motion

Newtonian
$$\frac{\mathrm{d}^{2}\mathbf{r}_{i}}{dt^{2}} = \sum_{j\neq i} \frac{\mu_{j}(\mathbf{r}_{j} - \mathbf{r}_{i})}{r_{ij}^{3}} \left\{ 1 - 2(\beta + \gamma)/c^{2} \sum_{k\neq i} \frac{\mu_{k}}{r_{ik}} - (2\beta - 1)/c^{2} \sum_{k\neq j} \frac{\mu_{k}}{r_{jk}} + \gamma(v_{i}/c)^{2} + (1 + \gamma)(v_{j}/c)^{2} - 2(1 + \gamma)/c^{2} \frac{\mathrm{d}\mathbf{r}_{i}}{\mathrm{d}t} \cdot \frac{\mathrm{d}\mathbf{r}_{j}}{\mathrm{d}t} - (3/2c^{2})(\mathbf{r}_{i} - \mathbf{r}_{j})^{2}(\mathrm{d}\mathbf{r}_{j}/\mathrm{d}t)^{2} + 1/2c^{2}(\mathbf{r}_{j} - \mathbf{r}_{i})\frac{\mathrm{d}\mathbf{r}_{j}}{\mathrm{d}t^{2}} \right\}$$

$$+ c^{-2} \sum_{j\neq i} \frac{\mu_{j}}{r_{ij}^{3}} \left\{ (\mathbf{r}_{i} - \mathbf{r}_{j}) \left[(2 + 2\gamma) \frac{\mathrm{d}\mathbf{r}_{i}}{\mathrm{d}t} - (1 + 2\gamma) \frac{\mathrm{d}\mathbf{r}_{j}}{\mathrm{d}t} \right] \right\} \left(\frac{\mathrm{d}\mathbf{r}_{i}}{\mathrm{d}t} - \frac{\mathrm{d}\mathbf{r}_{j}}{\mathrm{d}t} \right)$$

$$+ (3 + 4\gamma)/2c^{2} \sum_{j\neq i} \frac{\mu_{j}}{r_{ij}} \cdot \frac{\mathrm{d}^{2}\mathbf{r}_{j}}{\mathrm{d}t^{2}} + \sum_{n} \mathbf{a}_{in} \qquad \text{Other accelerations: Yarkovsky, solar pressure, outgassing A1, A2, A3}$$

- Parameterized post-Newtonian (PPN) form
 - β ... non-linearity in gravity superposition (G.R.= 1.0)
 - γ ... space curvature produced by unit rest mass (G.R.= 1.0)
- Numerically integrated 2nd order vector differential equations describing acceleration at an instant

Small-body Orbit Solutions

Current optical telescopes

- ~2 million RA/DEC angular measurements per month
- 1000 5000 new objects per month
- Reported measurements <u>filtered</u>, <u>linked</u>, <u>published</u> at Minor Planet Center

JPL filters, debiases, and fits MPC astrometry (+ radar + IOTA occultation + spacecraft)

- Nominal weights from observing report, or history & catalog (Veres et al., 2017)
- Least-squares estimate of state, dynamics & square-root covariance to database
- Hazard assessment (Scout and Sentry systems)
- 100,000-250,000+ orbit updates/month (NEOs: 3000-4000). Automated, except
 (1) spacecraft targets, (2) radar cases, (3) research cases, (4) some comets
- Hourly export from MySQL SBDB to DASTCOM database (portable flat file)
 DASTCOM: data & <u>initial conditions</u> for Horizons

Organization & Data Flow

What is Horizons?

- Publishes JPL orbit solutions (and other's) since 1996 ... when there were 20,000 known asteroids (47x growth since start)
- Derives customized trajectory-related data of solar system objects:

Any planet (8), natural satellite (209+), asteroid (958,698+), comet (3646+), spacecraft (167+), E-M-S Lagrange point, barycenter, user-defined heliocentric object - OR - surface coordinates on remote body (crater)

- For observers, observatories, dynamicists, researchers, public: planning, data-reduction, data-acquisition system "back-end", mission-design and operations (tracking for space-based observatories around solar system)
- No account, password, or registration to access
 ~9500 unique users per month, 10 million products per month
- Network-accessible engine handles requests from multiple interfaces ...
 - 1. Command-line ... interactive with terminal prompting
 - 2. Web browser interface (A. Chamberlin)
 - 3. E-mail command files
 - 4. CGI & script (automation)

What Horizons Provides

(dynamically generated on request)

A) ASCII tables

- 1. Parameter search (small-body database, 44+ match parameters)
- 2. Objects in field-of-view (currently e-mail only, more soon)
- 3. Closest-approach tables
 Small-body encounters with planets & 16 largest asteroids

Ephemerides ...

- 4. Observer tables:
 - Plane-of-sky tracking, visibility, disc, orbit, uncertainties, more
- 5. Vector tables (dynamics, uncertainties)
- 6. Osculating orbital element tables (geometry)

B) BINARY Files

7. SPK files (asteroids and comets only)
Time-continuous trajectory integrator states (machine-precision)

4. Observer Tables

(w/perspective & aberrations as a function of time)

Pick target ("get ephemeris of...")

Any planet (8), natural satellite (209+), asteroid (958,698+), comet (3646+), spacecraft (167+), E-M-S Lagrange point, barycenter, user-defined heliocentric object - OR - surface coordinates on remote body (crater)

Pick observing location (" ... as seen from ...")

Any point on/in planet, natural satellite, spacecraft, dynamical point, some asteroids

Set output time-span and interval:

- 1. Uniform time-step (time or calendar)
- 2. Target moved X arcseconds since last output
- 3. List of discrete times (browser, email, cgi)
- 4. Rise-transit-set-only
- UT or TT time-scales: calendar, Julian Day Number
- Solar presence: twilight and dawn markers
- Lunar presence marker
- Rise-set-transit marker

```
Date (UT)
                     R.A. (ICRF)
            HR:MN
                                    DEC
2020-Jun-17 06:00
                     28.24565 -12.00217 ...
2020-Jun-17 06:30 r 28.25289 -12.00123 ..
2020-Jun-17 07:00
                     28.26012 -12.00030 ..
                     28.26734 -11.99938
2020-Jun-17 07:30
2020-Jun-17 08:00 m 28.27454 -11.99845
2020-Jun-17 09:30 m 28.29605 -11.99566
2020-Jun-17 10:00 m 28.30320 -11.99473
2020-Jun-17 10:30 Am 28.31034 -11.99379
2020-Jun-17 10:40 Nm 28.31271 -11.99348
2020-Jun-17 11:00 Cm 28.31746 -11.99286
2020-Jun-17 11:30 *m 28.32459 -11.99192 ..
2020-Jun-17 12:00 *m 28.33170 -11.99099
2020-Jun-17 12:30 *m 28.33881 -11.99005 ...
2020-Jun-17 13:00 *t 28.34592 -11.98910
2020-Jun-17 18:30 *m 28.42453 -11.97863
2020-Jun-17 19:00 *m 28.43174 -11.97767 ...
2020-Jun-17 19:30 *s 28.43897 -11.97671 ..
```

(all w/perspective & aberrations as a function of time)

1.	Astrometric RA & DEC	17.	N. Pole Pos. Ang & Dis	33.	Galactic long. & lat.
*2.	Apparent RA & DEC	18.	Helio eclip. lon & lat	34.	Local app. SOLAR time
3.	Rates: RA & DEC	19.	Sun range & range rate	35.	Earth -> site lt-time
*4.	Apparent AZ & EL	20.	Obsrv range & rng rate	>36.	RA & DEC uncertainty
5.	Rates: AZ & EL	21.	Down-leg light-time	>37.	POS error ellipse
6.	Sat. X & Y, pos. ang	22.	Speed wrt Sun & obsrvr	>38.	POS uncertainty (RSS)
7.	Local app. sid. time	23.	Sun-Obs-Targ ELONG ang	>39.	Range & rng-rate sig.
8.	Airmass & Extinction	24.	Sun-Targ-Obs~PHASE ang	>40.	Doppler/delay sigmas
9.	App vis mag & Surf brt	25.	Targ-Obsrv-Moon/Illum%	41.	True anomaly angle
10.	Illuminated fraction	26.	Obs-Primary-Targ angle	*42.	Local app. hour angle
11.	Defect of illumin.	27.	Radial & -vel posn.ang	43.	PHASE angle & bisector
12.	Sat. angle separ/vis	28.	Orbit plane angle	44.	Apprnt long Sun (L_s)
13.	Target angular diam.	29.	Constellation name	*45.	Inertial app RA & DEC
14.	Obsrvr sub-lon & lat	30.	Delta_T (TDB - UT)	46.	Rate: Inertl RA & DEC
15.	Sun sub-lon & lat	*31.	Obsrv eclip lon & lat		

16. Sub-Sun Pos Ang & Dis 32. North pole RA & DEC

... pointing and tracking ...

1. Astrometric RA & DEC 17. N. Pole Pos. Ang & Dis 33. Galactic long. & lat. *2. Apparent RA & DEC 18. Helio eclip. lon & lat 34. Local app. SOLAR time Rates: RA & DEC 19. Sun range & range rate 35. Earth -> site lt-time *4. Apparent AZ & EL 20. Obsrv range & rng rate >36. RA & DEC uncertainty Rates: AZ & EL 21. Down-leg light-time >37. POS error ellipse 6. Sat. X & Y, pos. ang 22. Speed wrt Sun & obsrvr >38. POS uncertainty (RSS) 7. Local app. sid. time >39. Range & rng-rate sig. 23. Sun-Obs-Targ ELONG ang 8. Airmass & Extinction 24. Sun-Targ-Obs~PHASE ang >40. Doppler/delay sigmas 9. App vis mag & Surf brt 25. Tarq-Obsrv-Moon/Illum% 41. True anomaly angle 10. Illuminated fraction 26. Obs-Primary-Targ angle *42. Local app. hour angle 11. Defect of illumin. 27. Radial & -vel posn.ang 43. PHASE angle & bisector 12. Sat. angle separ/vis 28. Orbit plane angle 44. Apprnt long Sun (L s) 29. Constellation name 13. Target angular diam. *45. Inertial app RA & DEC 14. Obsrvr sub-lon & lat 30. Delta T (TDB - UT) 46. Rate: Inertl RA & DEC 15. Sun sub-lon & lat *31. Obsrv eclip lon & lat 32. North pole RA & DEC 16. Sub-Sun Pos Ang & Dis

... visibility ...

1. Astrometric RA & DEC 17. N. Pole Pos. Ang & Dis 33. Galactic long. & lat. *2. Apparent RA & DEC 18. Helio eclip. lon & lat 34. Local app. SOLAR time 3. Rates: RA & DEC 19. Sun range & range rate 35. Earth -> site lt-time *4. Apparent AZ & EL 20. Obsrv range & rng rate >36. RA & DEC uncertainty Rates: AZ & EL 21. Down-leg light-time 5. >37. POS error ellipse 6. Sat. X & Y, pos. ang 22. Speed wrt Sun & obsrvr >38. POS uncertainty (RSS) 7. Local app. sid. time 23. Sun-Obs-Targ ELONG ang >39. Range & rng-rate sig. 8. Airmass & Extinction 24. Sun-Targ-Obs~PHASE ang >40. Doppler/delay sigmas 25. Targ-Obsrv-Moon/Illum% 9. App vis mag & Surf brt 41. True anomaly angle 10. Illuminated fraction 26. Obs-Primary-Targ angle *42. Local app. hour angle 11. Defect of illumin. 27. Radial & -vel posn.ang 43. PHASE angle & bisector 12. Sat. angle separ/vis 28. Orbit plane angle 44. Apprnt long Sun (L_s) 13. Target angular diam. 29. Constellation name *45. Inertial app RA & DEC 14. Obsrvr sub-lon & lat 30. Delta T (TDB - UT) 46. Rate: Inertl RA & DEC 15. Sun sub-lon & lat *31. Obsrv eclip lon & lat 32. North pole RA & DEC 16. Sub-Sun Pos Ang & Dis

... target disc ...

1. Astrometric RA & DEC 17. N. Pole Pos. Ang & Dis 33. Galactic long. & lat. 18. Helio eclip. lon & lat *2. Apparent RA & DEC 34. Local app. SOLAR time 3. Rates: RA & DEC 19. Sun range & range rate 35. Earth -> site lt-time *4. Apparent AZ & EL 20. Obsrv range & rng rate >36. RA & DEC uncertainty Rates: AZ & EL 21. Down-leg light-time 5. >37. POS error ellipse 6. Sat. X & Y, pos. ang 22. Speed wrt Sun & obsrvr >38. POS uncertainty (RSS) 7. Local app. sid. time >39. Range & rng-rate sig. 23. Sun-Obs-Targ ELONG ang 8. Airmass & Extinction 24. Sun-Targ-Obs~PHASE ang >40. Doppler/delay sigmas 9. App vis mag & Surf brt 25. Tarq-Obsrv-Moon/Illum% 41. True anomaly angle 10. Illuminated fraction 26. Obs-Primary-Targ angle *42. Local app. hour angle 11. Defect of illumination 27. Radial & -vel posn.ang 43. PHASE angle & bisector 12. Sat. angle separ/vis 28. Orbit plane angle 44. Apprnt long Sun (L s) 13. Target angular diam. 29. Constellation name *45. Inertial app RA & DEC 14. Obsrvr sub-lon & lat 30. Delta T (TDB - UT) Rate: Inertl RA & DEC *31. Obsrv eclip lon & lat 15. Sun sub-lon & lat 32. North pole RA & DEC 16. Sub-Sun Pos Ang & Dis

... small-body statistical uncertainties ...

1. Astrometric RA & DEC 17. N. Pole Pos. Ang & Dis 33. Galactic long. & lat. 18. Helio eclip. lon & lat *2. Apparent RA & DEC 34. Local app. SOLAR time 3. Rates: RA & DEC 19. Sun range & range rate 35. Earth -> site lt-time *4. Apparent AZ & EL 20. Obsrv range & rng rate >36. RA & DEC uncertainty Rates: AZ & EL 21. Down-leg light-time >37. POS error ellipse 5. 6. Sat. X & Y, pos. ang 22. Speed wrt Sun & obsrvr >38. POS uncertainty (RSS) 7. Local app. sid. time >39. Range & rng-rate sig. 23. Sun-Obs-Targ ELONG ang 8. Airmass & Extinction 24. Sun-Targ-Obs~PHASE ang >40. Doppler/delay sigmas 9. App vis mag & Surf brt 25. Tarq-Obsrv-Moon/Illum% 41. True anomaly angle 10. Illuminated fraction 26. Obs-Primary-Targ angle *42. Local app. hour angle 11. Defect of illumin. 27. Radial & -vel posn.ang 43. PHASE angle & bisector 12. Sat. angle separ/vis 28. Orbit plane angle 44. Apprnt long Sun (L s) 13. Target angular diam. 29. Constellation name *45. Inertial app RA & DEC 14. Obsrvr sub-lon & lat 30. Delta T (TDB - UT) 46. Rate: Inertl RA & DEC 15. Sun sub-lon & lat *31. Obsrv eclip lon & lat 32. North pole RA & DEC 16. Sub-Sun Pos Ang & Dis

... orbit ...

1.	Astrometric RA & DEC	17.	N. Pole Pos. Ang & Dis	33.	Galactic long. & lat.
*2.	Apparent RA & DEC	18.	Helio eclip. lon & lat	34.	Local app. SOLAR time
3.	Rates: RA & DEC	19.	Sun range & range rate	35.	Earth -> site lt-time
*4.	Apparent AZ & EL	20.	Obsrv range & rng rate	>36.	RA & DEC uncertainty
5.	Rates: AZ & EL	21.	Down-leg light-time	>37.	POS error ellipse
6.	Sat. X & Y, pos. ang	22.	Speed wrt Sun & obsrvr	>38.	POS uncertainty (RSS)
7.	Local app. sid. time	23.	Sun-Obs-Targ ELONG ang	>39.	Range & rng-rate sig.
8.	Airmass & Extinction	24.	Sun-Targ-Obs~PHASE ang	>40.	Doppler/delay sigmas
9.	App vis mag & Surf brt	25.	Targ-Obsrv-Moon/Illum%	41.	True anomaly angle
10.	Illuminated fraction	26.	Obs-Primary-Targ angle	*42.	Local app. hour angle
11.	Defect of illumin.	27.	Radial & -vel posn.ang	43.	PHASE angle & bisector
12.	Sat. angle separ/vis	28.	Orbit plane angle	44.	Apprnt long Sun (L_s)
13.	Target angular diam.	29.	Constellation name	*45.	Inertial app RA & DEC
14.	Obsrvr sub-lon & lat	30.	Delta_T (TDB - UT)	46.	Rate: Inertl RA & DEC
15.	Sun sub-lon & lat	*31.	Obsrv eclip lon & lat		
16.	Sub-Sun Pos Ang & Dis	32.	North pole RA & DEC		

... miscellaneous ...

1. Astrometric RA & DEC 17. N. Pole Pos. Ang & Dis 33. Galactic long. & lat. 18. Helio eclip. lon & lat *2. Apparent RA & DEC 34. Local app. SOLAR time 3. Rates: RA & DEC 19. Sun range & range rate 35. Earth -> site lt-time *4. Apparent AZ & EL 20. Obsrv range & rng rate >36. RA & DEC uncertainty Rates: AZ & EL 21. Down-leg light-time >37. POS error ellipse 5. 6. Sat. X & Y, pos. ang 22. Speed wrt Sun & obsrvr >38. POS uncertainty (RSS) 7. Local app. sid. time >39. Range & rng-rate sig. 23. Sun-Obs-Targ ELONG ang 8. Airmass & Extinction 24. Sun-Targ-Obs~PHASE ang >40. Doppler/delay sigmas 9. App vis mag & Surf brt 25. Tarq-Obsrv-Moon/Illum% 41. True anomaly angle 10. Illuminated fraction 26. Obs-Primary-Targ angle *42. Local app. hour angle 11. Defect of illumin. 27. Radial & -vel posn.ang 43. PHASE angle & bisector 12. Sat. angle separ/vis 28. Orbit plane angle 44. Apprnt long Sun (L s) 13. Target angular diam. 29. Constellation name *45. Inertial app RA & DEC 14. Obsrvr sub-lon & lat 30. Delta T (TDB - UT) 46. Rate: Inertl RA & DEC 15. Sun sub-lon & lat *31. Obsrv eclip lon & lat 32. North pole RA & DEC 16. Sub-Sun Pos Ang & Dis

4. Observer Table Options

```
Current output table defaults --
  Reference frame
                        = ICRF \{FK4/B1950\}
  Time zone correction = UT+00:00
  Time format
                        = CAL {JD, BOTH}
  Time digits output
                        = MIN {SEC, FRACSEC}
  R.A. format
                        = HMS {DEG}
  RA/DEC extra precision = NO {YES}
  Apparent coord. type
                        = AIRLESS {REFRACTED}
  Range units
                        = AU
                                 {KM}
  Suppress range-rate
                        = NO \{YES\}
  Minimum elevation
                        = -90.0
  Maximum airmass
                        = 38.0000
  Rise-Transit-Set only = NO {YES}
  Skip daylight
                     = NO {YES}
  Solar elong. cut-off = 0.180
  Hour angle cut-off
                        = 0.000000000
  RA/DEC rate cut-off = 0.0
  CSV spreadsheet output = NO {YES}
                        = A \{1-46\}
  Table quantities
```

5. Vector Tables

(Geometric with *optional* aberrations as a function of time)

Pick target

Any planet (8), natural satellite (209+), asteroid (958,698+), comet (3646+), spacecraft (167+), E-M-S Lagrange, barycenter, user-defined object - OR - surface coordinates on remote body (crater)

Pick coordinate origin

Any point on/in any planet, natural satellite, spacecraft, some asteroids

Set output time-span and interval (TDB time-scale only):

- 1. Uniform time-step
- 2. List of discrete times (browser, email, cgi)

Pick reference plane

- 1. Earth equatorial ("frame"; ICRF or FK4/B1950)
- 2. Earth ecliptic (J2000 or B1950)
- 3. Center body equator-of-date ("Europa equator and node of date", etc.)

5. Vector Table Options

```
Current output table defaults --
  Ref. Frame
                       = ICRF \{FK4/B1950\}
  Corrections
                       = NONE \{1=\text{None}, 2=\text{LT}, 3=\text{LT}+S\}
  Units
                       = AU-D \{1 = km-s, 2 = au-d, 3 = km-d\}
  CSV format
                      = NO
                               {YES}
  Output Delta-T = NO {YES}
  Table type
                  = 3  { 1(xarp), 2(xarp), 3, 4, 5, 6}
  Vector label = YES {NO}
Example (2xarp):
    2458849.500000000 = A.D. 2020-Jan-01 00:00:00.0000 TDB [del T= 69.183900 s]
    XYZ : 3.466512233788765E+08 -2.327918342415277E+08 -2.750224533737063E+08
    sigmas:
                  5.05745925E+01
                                       6.65962585E+01
                                                            6.14365482E+01
     ACN(1-sigma): 6.12761548E+01
                                     3.52167067E+01
                                                            7.59757654E+01
                                    6.82774272E+01
     RTN(1-sigma): 1.82531235E+01
                                                            7.59757654E+01
     POS(1-sigma): 6.87198061E+01
                                       7.55758708E+01
                                                            1.82531235E+01
    2458850.500000000 = A.D. 2020-Jan-02 00:00:00.0000 TDB [del T=
                                                               69.183930 sl
    XYZ : 3.497023294388138E+08 -2.315907093090873E+08 -2.746494905277434E+08
    sigmas:
                 5.04294307E+01
                                   6.66043789E+01
                                                            6.14138953E+01
     ACN(1-sigma): 6.15131027E+01
                                     3.45844890E+01
                                                            7.59670232E+01
     RTN(1-sigma): 1.81902037E+01
                                    6.81840537E+01
                                                            7.59670232E+01
     POS(1-sigma): 6.86804526E+01
                                       7.55185356E+01
                                                            1.81902037E+01
```

6. Osculating Orbital Element Tables

(Geometric, time-varying)

Pick target

Any planet (8), natural satellite (209+), asteroid (958,698+), comet (3646+), spacecraft (167+), E-M-S Lagrange, barycenter, user-defined object heliocentric - OR - surface coordinates on remote body (crater)

Pick coordinate origin

Any planet, planetary system barycenter, solar system barycenter, Moon, or Sun

Set output time-span and interval

Uniform time-step TDB time-scale only

Pick reference plane

- 1. Earth equatorial ("frame"; ICRF or FK4/B1950)
- 2. Earth ecliptic (J2000 or B1950)
- 3. Center body equator-of-date ("Europa equator and node of date", etc.)

6. Osculating Orbital Element Table Options

```
Current output table defaults --
Ref. Frame = ICRF {FK4/B1950}
Units = AU-D {1=KM-S, 2=AU-D, 3=KM-D}
CSV format = NO {YES}
Element label = YES {NO}
Periapse time = ABSOLUTE {RELATIVE}
```

Example:

```
2459014.500000000 = A.D. 2020-Jun-14 00:00:00.0000 TDB

EC= 8.415311637326658E-02 QR= 2.490458027898331E+00 IN= 1.819010878986299E+01

OM= 1.138786381520010E+01 W = 2.247385872455426E+02 Tp= 2458424.286606758367

N = 2.197958769909447E-01 MA= 1.297264703793583E+02 TA= 1.366580595834340E+02

A = 2.719295192703143E+00 AD= 2.948132357507955E+00 PR= 1.637883316686743E+03

2459014.541666667 = A.D. 2020-Jun-14 01:00:00.0000 TDB

EC= 8.415307934596211E-02 QR= 2.490458204285878E+00 IN= 1.819010889306454E+01

OM= 1.138786382328381E+01 W = 2.247385946752549E+02 Tp= 2458424.286603313405

N = 2.197958669696501E-01 MA= 1.297356233829657E+02 TA= 1.366662100482069E+02

A = 2.719295275358196E+00 AD= 2.948132346430513E+00 PR= 1.637883391363813E+03
```

7. SPK Files

(asteroids & comets, or user-input heliocentric only)

Time-continuous binary-file recording of integrator's internal state, to machine-precision. SPICE Toolkit software reads the files: https://naif.jpl.nasa.gov/naif/toolkit.html

Pros:

- ✓ Retrieve position and velocity at any instant within file time-span (continuous)
- ✓ No need to reproduce physics & equations of motion; 3-lines of code to read file
- ✓ Input to SPICE-enabled visualization and mission design programs

Cons:

- ✓ All other calculations (ephemeris) must be derived and implemented by user
- ✓ No statistical uncertainty information nominal trajectory only
- ✓ Usually must load planetary ephemeris SPK along with Horizons small-body SPK
- ✓ Bulkier than creating trajectory on-the-fly (numerically integrating initial conditions)

7. SPK Files

(asteroids & comets, or user-input heliocentric only)

Pick small-body target

Any asteroid (958698+) or comet (3646+), or user-defined heliocentric object

Specify contact e-mail

Specify format (type of binary)

- -1 Pre-2015 format (Type 1 SPK)
- -B Current default (Type 21 SPK)

Set output time-span and interval (TDB time-scale only):

< 200 years total length


```
workstation(1)% telnet horizons.jpl.nasa.gov 6775
JPL Horizons, version 4.70
Type '?' for brief help, '?!' for details,
'-' for previous prompt, 'x' to exit
System news updated June 08, 2020
Horizons> apophis
>EXACT< name search [SPACE sensitive]:
NAME = APOPHIS;
Continue [ <cr>=yes, n=no, ? ]:
JPL/HORIZONS
                     99942 Apophis (2004 MN4) 2020-Jun-17 17:57:42
Rec #: 99942 (+COV) Soln.date: 2017-Aug-09 01:08:15 # obs: 4481 (2004-2015)
IAU76/J2000 helio. ecliptic osc. elements (au, days, deq., period=Julian yrs):
 EPOCH= 2454733.5 ! 2008-Sep-24.00 (TDB) Residual RMS= .17383
  EC= .1911953048308701 QR= .7460724295867941 TP= 2454894.9125195034
  OM= 204.4460289189818 W= 126.401879524849 IN= 3.331369520013644
  A= .9224383019077086 MA= 180.4293730454418 ADIST= 1.098804174228623
  PER= .88596
                     N= 1.112495007
                                            ANGMOM= .016216735
  DAN= 1.00246 DDN= .79816
                                            L= 330.8942057
                     MOID= .00031568
  B = 2.6808012
                                            TP= 2009-Mar-04.4125195034
Asteroid physical parameters (km, seconds, rotational period in hours):
                       RAD = .170
                                            ROTPER = 30.4
  GM = n.a.
                        G = .250
  H = 19.7
                                            B-V= n.a.
                        ALBEDO= .230 STYP= Sq
Asteroid non-gravitational force model (AMRAT= m^2/kg; A1, A2, A3=au/d^2; R0=au):
  AMRAT = 0.
  A1 = 0.
                       A2 = -5.592839897872E - 14 A3 = 0.
Non-standard or simulated/proxy model:
                    NK = 0. NM = 2. NN = 5.093 R0 = 1.
  AT_1N = 1
ASTEROID comments:
1: soln ref.= JPL#199, PHA OCC=0 radar(17 delay,29 Dop.)
2: source=ORB
************************
Select ... [A]pproaches, [E]phemeris, [F]tp,[M]ail,[R]edisplay, [S]PK,?,<cr>:e
```


HORIZONS Web-Interface

This tool provides a web-based *limited* interface to JPL's HORIZONS system which can be used to generate ephemerides for solar-system bodies. Full access to HORIZONS features is available via the primary telnet interface. HORIZONS system news shows recent changes and improvements. A web-interface tutorial is available to assist new users.

Current Settings

Ephemeris Type [change] : **OBSERVER**Target Body [change] : **Mars** [499]

Observer Location [change] : Geocentric [500]

Time Span [change]: Start=2020-06-14, Stop=2020-07-14, Step=1 d

Table Settings [change] : defaults

Display/Output [change] : default (formatted HTML)

Generate Ephemeris

Special Options:

- set default ephemeris settings (preserves only the selected target body and ephemeris type)
- reset all settings to their defaults (caution: all previously stored/selected settings will be lost)
- show "batch-file" data (for use by the E-mail interface)


```
To: horizons@ssd.jpl.nasa.gov
Subject: JOB
!$$SOF
! Example e-mail command file. If mailed to "horizons@ssd.jpl.nasa.gov"
! with subject "JOB", results will be mailed back.
! This example demonstrates a subset of functions. See main doc for
! fully explanation.
! Fully annotated example:
   ftp://ssd.jpl.nasa.gov/pub/ssd/horizons batch example.long
EMAIL ADDR = ' '
                                 ! Send output to this address
COMMAND
            = 'DES= 1950 DA;', ! Target body
OBJ DATA = 'NO'
                                 ! Summarize target body
MAKE EPHEM = 'YES'
                                 ! Make an ephemeris
                                ! Set ephemeris type to "OBSERVER" table
TABLE TYPE = 'OBSERVER'
CENTER
         = '@hubble'
                                ! Set observer (coordinate center)
TLIST
            = '2454101.5'
                                 ! List of discrete times (JD or MJD)
              '2454101.5787343'
              '2454103.4782334'
              '2454112.4389832'
QUANTITIES = '19,20,24,23'
                             ! Compute these quantities (see doc)
CSV FORMAT = 'NO'
                                 ! Set comma-separated-value table
!$$EOF
```

Observer table example CGI call

wget --secure-protocol=auto --no-check-certificate "https://ssd.jpl.nasa.gov/horizons_batch.cgi?batch=1&COMMAND='DES=1999%20KW4%3B'&MAKE_EPHEM='YES'&TABLE_TYPE='OBSERVER'&START_TIME='2019"-"Jun-10'&STOP_TIME='2020"-"Jan-01'&CENTER='H21'&STEP_SIZE='10%20m'&QUANTITIES='2,3,9,37,29'&CAL_FORMAT='BOTH'&ANG_FORMAT='DEG'&CSV_FORMAT='NO'&OBJ_DATA='YES'&ELEV_CUT='20.0'&SKIP_DAYLT='YES'&AIRMASS='38.0'&LHA_CUTOFF='0.0'" -O 1999kw4_eph.txt

... with discrete time list:

wget --secure-protocol=auto --no-check-certificate "https://ssd.jpl.nasa.gov/horizons_batch.cgi?batch=1&COMMAND='DES=2009%20MS9%3B'&MAKE_EPHEM='YES'&TABLE_TYPE='OBSERVER'&TLIST='2455339.95748,2455354.92142,2455381.87202,2455382.50000,2455387.88886'&CENTER='500@'&QUANTITIES='19,20,24,41'&CAL_FORMAT='BOTH'&CSV FORMAT='YES'&OBJ DATA='NO'" -O 2009ms9.txt

Vector table example CGI call

wget --secure-protocol=auto --no-check-certificate "https://ssd.jpl.nasa.gov/horizons_batch.cgi?batch=1&COMMAND=%2750%27&MAKE_EPHEM=%27YES%27&TABLE_TYPE=%27VECTOR%27&START_TIME=%272000-01-01%27&STOP_TIME=%272000-12-31%27&STEP_SIZE=%2715%20d%27&CSV_FORMAT=%27YES%27&VEC_TABLE=%272xarp%27" -Oa50.txt

Osculating elements table example CGI call

wget --secure-protocol=auto --no-check-certificate "https://ssd.jpl.nasa.gov/horizons_batch.cgi?batch=1&COMMAND='633'&MAKE_EPHEM='YES'&TABLE_TYPE='ELEMENT'&REF_PLANE='FRAME'&START_TIME='2019-Jan-01'&STOP TIME='2019-Jan-02'&CENTER='@6'&STEP SIZE='1d'&CSV FORMAT='YES'" -O 633.txt

SPK file example GI call (asteroids and comets only)

wget --content-disposition --secure-protocol=auto --no-check-certificate "https://ssd.jpl.nasa.gov/x/smb_spk.cgi?OPTION=Make+SPK&OBJECT=2099942&START=2010-Jan-1&STOP=2050-jan-1&EMAIL=Jon.D.Giorgini@jpl.nasa.gov&TYPE=-B" -O a2099942.bsp

- Automation scripts available at ftp://ssd.jpl.nasa.gov/pub/ssd/SCRIPTS/
- Requires
 - Expect/Tcl automation languages (Linux, Unix, Mac OSX, others)
 - anonymous ftp & telnet (easily restored to Mac OSX)
 - Some scripts have a separate input file (define it once, execute multiple times)
- Programs mostly use CGI calls, but scripts ...
 - Easier to formulate for people typing
 - Can reduce connection/rate limits on CGI (provides "backdoor")
- Examples of usage once set-up:

```
Observer table (uses input file):

work(2)% obs_tbl 'DES= 2015 HM10;' 2015hm10.txt

SPK file:

work(3)% smb_spk -b 'DES=1990 MU;' 2000-jan-1 2040-jan-1 you@your.email.address a4593.bsp

Vector table (uses input file)

work(4)% vec_tbl "Apophis;" 1950da_vec.txt

Osculating orbital elements table (uses input file):

work(5)% osc_tbl "DES=2014 EZ51;" 2014ez51_elems.txt

Close-approach table

work(6)% close_approach_tbl "DES=1950 DA;" 1950da_encounters.txt
```

Future Developments

Not specifically LSST-driven ... ~ continuous updates and new functions from feedback

JPL orbit determination

- Query MPC database for ADES format astrometry (no MPEC)
- Package & submit historical radar astrometry to MPC in ADES

Horizons

- ➤ Web interface redesign in progress (~1 year?)
- > REST API (done, to be released with new web-site interface, so ~1 year?)
- Output of orbital element uncertainties over time
- > Equinox-based apparent coordinate systems for other planets/satellites
- Other issues ... future 8+ million objects, given LSST catalog:

How to disseminate ephemerides and SPKs of entire population?

- Create standing library of pre-computed SPKs?
 - One SPK covering 50 years : ~750 KB
 - Current catalog (963K objects): ~ 0.7 TB
 - 8 million SPKs (w/LSST) : ~ 5.6 TB
- DASTCOM with remote-user numerical integration?

DASTCOM

- Portable, fast, direct-access binary database of JPL asteroid and comet solutions
- Stores up to 142 dynamical, physical, and covariance parameters

Size ... currently: 768.2 MB (+66 MB ASCII index) for 962K objects

+LSST: ~6.7 GB for 8+ million objects

- Directly used by Horizons to search, initialize dynamics & numerically integrate
- Updated hourly @ 32 minutes past hour (export from 54 GB MySQL-based SBDB)

```
wget ftp://ssd.jpl.nasa.gov/pub/xfr/dastcom5.zip unzip -ao dastcom5.zip
```

- Zip archive includes ...
 - ✓ Binary database files
 - ✓ ASCII index linking object name and designation(s) to database records
 - ✓ Reader software library (FORTRAN provided, but perl, python, etc., also work)
 - ✓ Documentation
 - ✓ Example code & programs ('dxlook')

DASTCOM

- Binary database and ASCII index .. matched set!
 Must use the simultaneously-downloaded index and database
- Basic usage (... see documentation and examples)
 Initialize database: call dxini(...)
 Read single record: call dxread(iobj, ...)
- IAU-numbered asteroids: dxread() "iobj" record number is IAU number
- Other objects: use ASCII index to look-up integer record number.
 One simple and fast approach under UNIX/Linux/Mac OSX (among others):

```
character*8 obj
integer iobj
call dxini(...)
call system( "unsetenv DX_REC; setenv DX_REC `grep ',2004 MN4,' dastcom.idx | awk '{print $1}' `")
call getenv( "DX_REC", obj ) ! load grep matching result to program memory
read( obj, * ) iobj ! store record in integer variable
call dxread( iobs, ...) ! retrieve record from database
```

- DASTCOM is -NOT- FORTRAN specific
 - ✓ Readable by any language that can read byte-pattern into properly typed variable
 - ✓ See documentation for database structure and byte-map

Horizons Access and Resources

Browser interface

```
https://ssd.jpl.nasa.gov/?horizons (ASCII tables) https://ssd.jpl.nasa.gov/x/spk.html (SPK files)
```

- Command-line terminal interface (type '?' at any prompt for help) telnet ssd.jpl.nasa.gov 6775
- Automation scripts (turn Horizons into local command-line tool) ftp://ssd.jpl.nasa.gov/pub/ssd/SCRIPTS/
- CGI interface usage https://ssd.jpl.nasa.gov/horizons_batch.cgi
- E-mail interface (plain-text only)
 - 1. Send e-mail to "horizons@ssd.jpl.nasa.gov", subject "BATCH-LONG" (an example ephemeris set-up file will be returned for customization)
 - 2. ftp://ssd.jpl.nasa.gov/pub/ssd/ispy_mail_example.long (an example field-of-view search set-up file will be returned for customization)
- DASTCOM small-body database & readers (updates @32 min after hour)
 wget ftp://ssd.jpl.nasa.gov/pub/xfr/dastcom5.zip; unzip -ao dastcom5.zip
- Documentation (also Jon.D.Giorgini@jpl.nasa.gov for problems, questions, suggestions)
 https://ssd.jpl.nasa.gov/?horizons_doc
- System news

Routine announcements : https://ssd.jpl.nasa.gov/?horizons news

Major-notice mailing list sign-up: https://ssd.jpl.nasa.gov/?email_list

Back-up Slides

1. Parameter search

(email and command-line; web/cgi has separate search functionality)

Find a small-body or group of small-bodies using keyword searches. Examples:

```
A < 2.5; IN > 7.8; STYP = S; GM <> 0; (Uniquely matches & displays 433 Eros)
```

```
Horizons> OR < 1.; EC > 0.7; EC < 0.8; A < 0.8;
************************
JPL/DASTCOM
                          Small-body Search Results
                                                        2020-Jun-17 21:33:18
Comet AND asteroid parameter search:
   QR < 1.; EC > 0.7; EC < 0.8; A < 0.8;
Matching small-bodies:
           Epoch-yr Primary Desig
  Record #
                                   Name
                                                   OR
                                                               EC
                                   [...unnamed...] 0.219321170 0.703108511 .73872501485023
    85953
             2012
                     1999 FK21
                                   [...unnamed...] 0.130097397 0.796803048 .64025269935175
   289227
             2007
                     2004 XY60
                                   [...unnamed...]
   302169
             2016
                     2001 TD45
                                                    0.177324576 0.777443538 .79676219937674
             2015
                                   [...unnamed...]
   364136
                     2006 CJ
                                                    0.165767995 0.754957568 .67648689854991
    527977
             2016
                     2008 EY68
                                   [...unnamed...]
                                                    0.178834675 0.759999153 .74514184830500
  50209296
             2013
                     2013 RG74
                                   [...unnamed...]
                                                   0.206618699 0.701859132 .69302373981948
  50248876
             2014
                     2014 RE11
                                   [...unnamed...] 0.209357990 0.711723984 .72624144459618
             2016
  50292818
                     2015 KJ122
                                   [...unnamed...] 0.196115005 0.750284662 .78535426130667
                                   [...unnamed...] 0.153731725 0.734748455 .57956957491845
  50362103
             2016
                     2016 XK24
 (9 matches. To SELECT, enter record # (integer), followed by semi-colon.)
```

2. Objects in Field-of-View

- Examines field-of-view (FOV) from defined point in solar system (spacecraft, planet)
- Lists known asteroids or comets present in the field:
 predicted positions, rates, apparent magnitudes, plane-of-sky error ellipse
- Currently semi-private function; being parallelized for general use on new web-site

Example command-file (e-mail):

```
SPKID = 399 ! Earth center
FOV_DATE = '2010-Oct-04 08:48:10.585'
TYPE = 2 ! (circular field)
RA = '6h 40m 42.251s'
DEC = '24d 03m 49.509s'
RADIUS = 180.0
```

Results sent back:

```
Trajectory
                         : DE431mx (SPKID = 399)
Observation time (UTC): 2010-Oct-04 08:48:10.585
FOV specification type : Circle
FOV center RA/DEC (ICRF): 06:40:42.25 +24 03 49.5 (DEG: 100.17605, 24.06375)
FOV radius from center (arcsec): 180.0
                 (arcmin^2):
                                28.27
Number of objects found
Number of objects checked : 958701
Comets checked
                                      DEC dRA*cosD d(DEC)/dt Cnt.Dst PsAng Data Arc
    JPL IAU
                           RA
 SPK-ID Number Name HH MM SS.ff DG MN SC.f Amag "/hr "/hr arcsec DEG span/#day Nobs SMAA 3sig SMIA 3sig Theta
2027119 27119 (1998 WH8) 06:40:52.43 +24 04 11.7 19.3 34.79 1.73 141.1 81.0 1992-2020 1278 .08740399 .05940998
                                                                                                                0.2
2115000 115000 (2003 QD75) 06:40:42.05 +24 03 50.8 19.8 27.35 -3.24 3.0 294.7 1998-2020 600 .08978428 .06468171
                                                                                                               -8.6
```

3. Closest-Approach Tables

(asteroids & comets, or user-input heliocentric only)

- Pre-computed encounter tables are also on web-site (separate from Horizons)
- Horizons supports customization and user-input objects
- Identifies: body, nominal distance, 3-sigma uncertainties, linearized impact probability
- Reports encounters with perturbers during numerical integration:
 - ✓ 8 planets
 - ✓ Pluto
 - ✓ Moon
 - √ 16 largest asteroids

Pick small-body target

Any asteroid (958698+), comet (3646+), or user-input heliocentric object

Specify start and stop times

Accept or change defaults

- > Extended output: additional encounter-plane uncertainty ellipse parameters
- ➤ Encounter threshold for each planet and Pluto
- Encounter threshold for 16 largest asteroid perturbers

3. Closest-Approach Tables

(asteroids & comets, or user-input heliocentric only)

Changing default output:

Example (standard):

Date (TDB)	Body	CA Dist	MinDist	MaxDist	Vrel	TCA3Sg	Nsigs	P_i/p
A.D. 2004 Dec 21.39224	Earth	.096384	.096384	.096384	8.226	0.01	5.53E6	.000000
A.D. 2013 Jan 09.48801	Earth	.096661	.096661	.096661	4.087	0.00	8.39E7	.000000
A.D. 2016 Apr 24.11798	Venus	.078242	.078241	.078242	6.089	0.02	5.53E6	.000000
A.D. 2029 Apr 13.90703	Earth	.000252	.000248	.000257	7.433	0.26	151.26	.000000
A.D. 2029 Apr 14.60478	Moon	.000646	.000635	.000658	6.398	3.48	9608.1	.000000
A.D. 2044 Sep 15.84410	Earth	.072419	.023405	.356646	7.848	27596.	5519.0	.000000