

Funciones de Varias Variables Campos escalares y campos vectoriales

Dr. Juan Luis Palacios Soto

- $f: \mathbb{R}^3 \to \mathbb{R}$ con $f(x, y, z) = \ln(x^2 3yz) + \sqrt{x z}$ campo escalar
- ② $f: \mathbb{R} \to \mathbb{R}^2$ con $f(x) = (x^3 6x, \cos(x) + 3)$ campo vectorial
- $\bullet \ f: \mathbb{R}^2 \to \mathbb{R}^2 \ \text{con} \ f(x,y) = (x+2y, 1-\frac{x-2}{3+y}) \quad \text{campo vectorial} \quad \longleftarrow$

Ejemplo (Magnitudes escalares)

Veamos algunos ejemplos de magnitudes escalares que pueden ser modelados por medio de un campo escalar:

- Supongamos que $T(x,y,z)=x^2-y+z$ es la temperatura en un punto en nuestro espacio tridimensional; $T(x,y)=x^3+y^2$ la temperatura en un punto de una placa metálica, etc.
- ① Distancia f(x,y,z), área A(x,y), el volumen V(x,y,z), altura sobre el nivel del mar H(x,y,z), etc.
- P(x,y,z) = 7x 3y + 4z la presión atmosférica, la presión sanguínea, la presión en un recipiente, etc.
- **1** Densidad $\delta(x, y, z)$, masa, porosidad, etc.
- Momento de inercia, tiempo, frecuencia, trabajo, rapidez, etc.

$$0 f(2,1,1) = ln(2^{2}3(1)(1)) + \sqrt{2-1} = ln(1) + \sqrt{1} = 1.CR$$

$$(3) f(0) = (0^{3}-6.0, a)(0)^{1} + 3 = (0,4)$$

Ejemplo (Magnitudes vectoriales)

Recordemos que un vector es un objeto que posee magnitud, dirección y sentido. Veamos algunos ejemplos de magnitudes vectoriales que pueden ser modelados por medio de un campo vectorial:

- ullet F(x,y,z) Fuerza aplicada a objeto, fuerza de sustentación, etc.
- lacktriangledown r(x,y,z) Posición, velocidad, aceleración, etc.
- Momento de fuerza, Torsión, etc.
- Tensión eléctrica
- Campo magnético, campo eléctrico, campo gravitacional.

Peso.		χ,	<u> </u>	· · ×m-1	,J
1 d	varl	yar2	Var3	Varm f	19
1	Q.u	9.2	Ten entre marine et	Jaim 6	Ch M
2	921	012	nul(.	··azm	4K
;	,				
<u></u>	1				
in	oin.	0,1		- anm	4
		У.	$y = f(x_1, x_2, \dots, x_{m-1}) \leftarrow Campo es$		

 $\left\{\begin{array}{ll} f:\mathbb{R}^n\to\mathbb{R}, n\geq 2 & \text{Campos escalares (dominio }\mathbb{R}^n \text{ y contradominio }\mathbb{R}) \\ f:\mathbb{R}^n\to\mathbb{R}^m, n\geq 1, m\geq 2 & \text{Campos vectoriales (dominio }\mathbb{R}^n \text{ y contradominio }\mathbb{R}^m). \end{array}\right.$

Definición (Campo escalar)

Un campo escalar es toda función f que a cada elemento $x \in \mathbb{R}^n$ le asocia un valor escalar, $f : \mathbb{R}^n \to \mathbb{R}$.

 $f(\alpha, y) = \alpha + y + Temperatura$. D'iagrama $f(x,y) = e^{2t} + \cos(y)$ $fiR^3 \rightarrow R$ f(x11) Z) = x2-3y+xz ER

$$f(1,1,1) = 1^{2} - 3(1) + (1)(1) = -1$$

$$f(x,y) = x^2y - 5xy^3 + 2x - 3y + 1$$

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$f(x,y) = x^2 - y^2$$

Forma de silla (de monter caballo)

$$f(x,y) = x^2 + y^2$$

Paraboloide circular

cidata máticas para encia de datos

$$f(x,y) = 2x^2 + 3y^2$$

Paraboloide eliptico-abre hacia arriba.

$$f(x,y) = e^{x^2 - y^2} \qquad (f(x) = e^{-x^2})$$

X

Definición (Campo vectorial)

Un campo vectorial es toda función f que a cada elemento $x \in \mathbb{R}^n$ le asocia un vector en \mathbb{R}^m , $f: \mathbb{R}^n \to \mathbb{R}^m$. Por ejemplo,

$$f(x_1, x_2, ..., x_n) = (f_1(x_1, ..., x_n) f_2(x_1, ..., x_n) f_m(x_1, ..., x_n))$$

es un campo vectorial de m componentes, $f_1, f_2, ..., f_m$, que dependen de n variables independientes, donde las funciones $f_i: \mathbb{R}^n \to \mathbb{R}$ son campos escalares para toda i=1,...,m.

$$\exists y : f(x) = (x - y^2 + y \ln(x))$$

 $f: \mathbb{R}^2 \to \mathbb{R}^2$

Tey.
$$f(t) = (2t, t^2-1)$$

f:R > R²
Porrame trización
n=m-1

$$E_{ij}$$
. $f(x_{ij}) = (x_{ij})$

1 den fidad

 $f: \mathbb{R}^2 \to \mathbb{R}^2$

> 1 (111) -> (111) becker

$$f(x,y) = (-y,x)$$

 $f:\mathbb{R}^2 \to \mathbb{R}^2$

vector field (-y,x) ∫π MATH INPUT A NATURAL LANGUAGE Input interpretation vector field plot (-y, x)Plot

$$f(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right)$$

 $f: \mathbb{R}^2 \to \mathbb{R}^2$

vector field (-v,x)

A NATURAL LANGUAGE

 $\int_{\Sigma \partial}^{\pi} MATH INPUT$

vortice

violento

f(x,y) = -(x,y)

identidad.

Definición (Dominio de un campo escalar)

Sea $f:\mathbb{R}^n o \mathbb{R}$ un campo escalar. El dominio de f, denotado por $\mathsf{Dom}(f)$ es

$$Dom(f) = \{x \in \mathbb{R}^n : f(x) \in \mathbb{R}\}.$$

Definición (Dominio de un campo vectorial)

Sea $f:\mathbb{R}^n o \mathbb{R}^m$ un campo vectorial. El dominio de f , denotado por $\mathsf{Dom}(f)$ es

$$Dom(f) = \{ x \in \mathbb{R}^n : f(x) \in \mathbb{R}^m \}.$$

$$f(x,y) = (\ln(x), \sqrt{1-x-y'})$$
 $(-1,5) \notin Dom(f)$
 $f(-1,5) = (\ln(-1), \sqrt{1-(-1)-5}) = (\ln(-1), \sqrt{-3}) \notin \mathbb{R}^2$

Definición (Imagen de un campo escalar)

Sea $f:\mathbb{R}^n o \mathbb{R}$ un campo escalar. La imagen de f, denotado por Ima(f) es

$$\mathit{Ima}(f) = \{ y \in \mathbb{R} : \exists x \in \mathbb{R}^n, y = f(x) \}.$$

Definición (Imagen de un campo vectorial)

Sea $f:\mathbb{R}^n o \mathbb{R}^m$ un campo vectorial. La imagen de f, denotado por Ima(f) es

$$\mathit{Ima}(f) = \{y \in \mathbb{R}^m : \exists x \in \mathbb{R}^n, y = f(x)\}.$$

Definición (Gráfica de un campo escalar)

Dado un campo escalar $f: \mathbb{R}^n \to \mathbb{R}$, definimos la gráfica de f, denotada por Graf(f), como

$$\mathit{Graf}(f) = \{(x, f(x)) : x \in Dom(f)\} \tag{1}$$

Definición (Gráfica de un campo vectorial)

Dado un campo vectorial $f: \mathbb{R}^n \to \mathbb{R}^m$, definimos la gráfica de f, denotada por Graf(f), como

$$\mathit{Graf}(f) = \{(x, f(x)) : x \in Dom(f)\} \tag{2}$$

f: Rn > R Graf(f) CIPnt/

Definición (Límite de un campo escalar)

La función $f:\mathbb{R}^n\to\mathbb{R}$ tiende a el límite $L\in\mathbb{R}$ cuando $x\in\mathbb{R}^n$ tiende a $c\in\mathbb{R}^n$, significa que para todo $\epsilon>0$ existe $\delta>0$ tal que, para todo x que satisface $0<||x-c||<\delta$ se cumple $|f(x)-L|<\epsilon$

El símbolo $||\cdot||$ significa la norma usual en \mathbb{R}^n , esto es, si $x=(x_1,...,x_n)\in\mathbb{R}^n$, entonces $||x||=\sqrt{x_1^2+\cdots+x_n^2}$.

Definición (Límite de un campo vectorial)

La función $f:\mathbb{R}^n \to \mathbb{R}^m$ tiende al límite $L \in \mathbb{R}^m$ cuando $x \in \mathbb{R}^n$ tiende a $c \in \mathbb{R}^n$, significa que para todo $\epsilon > 0$ existe $\delta > 0$ tal que, para todo x que satisface $0 < ||x-c|| < \delta$ se cumple $||f(x) - L|| < \epsilon$

Básicamente el concepto de límite nos dice que si una función tiene un límite L cuando x tiende a c, significa que cada vez que x esté en un entorno de a, entonces f(x) se encontrará en un entorno de L

722

A CONTRACTOR OF THE PARTY OF TH

٥٤٦

Definición (Continuidad en un campo escalar)

Decimos que la función $f:\mathbb{R}^n \to \mathbb{R}$ es continua en $a \in \mathbb{R}^n$, si para todo $\epsilon>0$ existe $\delta>0$ tal que, para todo x que satisface $||x-a||<\delta$ entonces $|f(x)-f(a)|<\epsilon$

Definición (Continuidad en un campo vectorial)

Decimos que la función $f:\mathbb{R}^n \to \mathbb{R}^m$ es continua en $a \in \mathbb{R}^n$, si para todo $\epsilon > 0$ existe $\delta > 0$ tal que, para todo x que satisface $||x-a|| < \delta$ entonces $||f(x)-f(a)|| < \epsilon$

Ej.
$$f(x,y) = e^{x+y} - sen(x^2 - 3y)$$

Dom(f) = \mathbb{R}^2
Y es continua en \mathbb{R}^2

$$f'(\alpha) = \lim_{x \to u} \frac{f(\alpha) - f(\alpha)}{x - a}$$
 derivada.

