Fall 2016, MATH-566

Semidefinite Programming - Quick Intro

Source: Matoušek semidefinite programming

Recall: Let $A = \mathbb{R}^{n \times n}$. The trace of A is $Tr(A) = \sum_{i=1}^{n} a_{i,i}$.

Let SYM_n be symmetric matrices in $\mathbb{R}^{n \times n}$.

For $X, Y \in \mathbb{R}^{n \times n}$, let the dot product of X and Y be $X \bullet Y = Tr(X^TY)$.

 $X \in SYM_n$ is positive semidefinite if $v^T X v \geq 0$ for all $v \in \mathbb{R}^n$, denoted by $X \succeq 0$.

$$(LP) \left\{ \begin{array}{lll} \text{maximize} & \mathbf{c} \cdot \mathbf{x} \\ \text{subject to} & A\mathbf{x} & = \mathbf{b} \\ & \mathbf{x} & \geq 0 \end{array} \right. \quad \text{is equivalent to } (LP) \left\{ \begin{array}{ll} \text{maximize} & \mathbf{c} \cdot \mathbf{x} \\ \text{subject to} & \mathbf{a}_1 \cdot \mathbf{x} & = b_1 \\ & \mathbf{a}_2 \cdot \mathbf{x} & = b_2 \\ & & \vdots \\ & \mathbf{a}_m \cdot \mathbf{x} & = b_m \\ & \mathbf{x} & \geq 0 \end{array} \right.$$

where $\mathbf{c}, \mathbf{x} \in \mathbb{R}^n$, $\mathbf{b}, \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \cdot n}$, and \mathbf{a}_i is the *i*th row of A.

One can view semidefinite programming (SDP) as a linear program with matrices instead of vectors.

$$(SDP) \begin{cases} \text{maximize} & C \bullet X \\ \text{subject to} & A_1 \bullet X = b_1 \\ & A_2 \bullet X = b_1 \\ & \vdots \\ & A_m \bullet X = b_m \\ & X \succ 0 \end{cases}$$

Where $C, X, A_i \in SYM_n$ and $b_i \in \mathbb{R}$.

1: Compute

$$Tr\left(\begin{pmatrix}c_{11} & c_{12} \\ c_{12} & c_{22}\end{pmatrix}^T \begin{pmatrix}x_{11} & x_{12} \\ x_{12} & x_{22}\end{pmatrix}\right) = \begin{pmatrix}c_{11} & c_{12} \\ c_{12} & c_{22}\end{pmatrix} \bullet \begin{pmatrix}x_{11} & x_{12} \\ x_{12} & x_{22}\end{pmatrix} =$$

Solution: $= c_{11}x_{11} + 2c_{12}x_{12} + 2c_{22}x_{22}$

2: Show that the following is an equivalent form of (SDP) up to some scaling.

$$(SDP) \begin{cases} \text{minimize} & \sum_{i \leq j} c_{i,j} x_{i,j} \\ \text{subject to} & \sum_{i \leq j} a_{i,j,k} x_{i,j} = b_k & \text{for } k = 1 \dots m \\ & X \succeq 0 \end{cases}$$

Solution: If we look at the original problem, diagonal elements would have half the coefficient.

3: Write the following linear program as a semidefinite program

$$(LP) \begin{cases} \text{maximize} & 2x_1 + 3x_2 \\ \text{subject to} & x_1 + 2x_2 = 1 \\ & x_1 - x_2 \ge 2 \\ & x_1, x_2 \ge 0 \end{cases}$$

Solution: One needs to add one slack variable for equality.

$$(SDP) \begin{cases} \text{maximize} & \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix} \bullet X \\ \text{subject to} & \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \bullet X = 1 \\ \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \bullet X = 2 \\ X \succeq 0 \end{cases}$$

4: Write the following general linear program as a semidefinite program

$$(LP) \begin{cases} \text{maximize} & \mathbf{c}^T \mathbf{x} \\ \text{subject to} & A\mathbf{x} = \mathbf{b} \\ & \mathbf{x} \geq 0 \end{cases}$$

Solution:

Dual form of (SDP) is

$$(DSDP)$$
 $\begin{cases} \text{minimize} & \mathbf{b}^T \mathbf{y} \\ \text{subject to} & y_1 A_1 + y_2 A_2 + \dots + y_m A_n - C \succeq 0 \end{cases}$

(SDP) is strictly feasible if exists feasible X which is positive definite $(X \succ 0)$.

(DSDP) is strictly feasible if exists feasible y such that $(\sum_{i} yA_{i}) - C \succ 0$.

Theorem: Strong duality of (SDP)

If (SDP) is strictly feasible and has an optimal solution of value γ , then (DSDP) is feasible and has an optimal solution of value γ .

If (DSDP) is strictly feasible and has an optimal solution of value γ , then (DSDP) is feasible and has an optimal solution of value γ .

Theorem: Solvability of (SDP) in polynomial time

Let (SDP) be feasible, set of feasible solutions F bounded. Let $R \in \mathbb{N}$ be such that $R \geq \sqrt{Tr(X^TX)}$ for all $X \in F$ and $\varepsilon > 0$ be constants. Let n be the size of binary encoding of (SDP). Then in polynomial time in n we can compute $X' \in F$ of value $optimum - \varepsilon$.

In other words, if no solution is not too big (R) and we are happy with ε precision, we have a polynomial time algorithm.

Solution is using interior point methods. There exist free and efficient implementations CSDP and SDPA.

5: Write the following program (P) as (DSDP)

$$(P) \begin{cases} \text{minimize} & \frac{(\mathbf{c}^T \mathbf{x})^2}{\mathbf{d}^T \mathbf{x}} \\ \text{subject to} & A\mathbf{x} + \mathbf{b} \geq 0 \end{cases}$$

where $\mathbf{d}^T \mathbf{x} \geq 0$ whenever $A\mathbf{x} + \mathbf{b} \geq 0$. (So the objective function is always ≥ 0 and we do not have to worry about division by zero.)

Solution: First we introduce dummy variable t to make the objective function linear:

$$(P') \begin{cases} \text{minimize} & t \\ \text{subject to} & A\mathbf{x} + \mathbf{b} \geq 0 \\ & \frac{(\mathbf{c}^T \mathbf{x})^2}{\mathbf{d}^T \mathbf{x}} \leq t \end{cases}$$

Now $\frac{(\mathbf{c}^T \mathbf{x})^2}{\mathbf{d}^T \mathbf{x}} \le t$ is same as $(\mathbf{c}^T \mathbf{x})^2 \le t \cdot \mathbf{d}^T \mathbf{x}$ and hence $0 \le t \cdot \mathbf{d}^T \mathbf{x} - (\mathbf{c}^T \mathbf{x})^2$. Notice this corresponds to

$$\begin{vmatrix} t & \mathbf{c}^T \mathbf{x} \\ \mathbf{c}^T \mathbf{x} & \mathbf{d}^T \mathbf{x} \end{vmatrix} \ge 0$$

This gives a program

$$(DSDP) \begin{cases} \text{minimize} & t \\ & \begin{pmatrix} \mathbf{a}_1 \cdot \mathbf{x} + b_1 & & 0 \\ & \ddots & & \\ & & \mathbf{a}_m \cdot \mathbf{x} + b_m & \\ & & & \mathbf{c}^T \mathbf{x} \\ 0 & & & \mathbf{c}^T \mathbf{x} & \mathbf{d}^T \mathbf{x} \end{pmatrix} \succeq 0$$

It is indeed (DSDP) since it can be written as

6: Now we show that the requirement of R for polynomial time solvability is indeed necessary. Consider the following constraint for (DSDP). Show that x_n is HUGE in any feasible solution.

$$\begin{pmatrix} 1 & 2 \\ 2 & x_1 \\ & 1 & x_1 \\ & x_1 & x_2 \\ & & 1 & x_2 \\ & & & 1 & x_2 \\ & & & x_2 & x_3 \\ & & & & \ddots \\ & & & & 1 & x_{n-1} \\ & & & & x_{n-1} & x_n \end{pmatrix} \succeq 0$$

Use that the matrix is positive semidefinite if each block is positive semidefinite.

Solution: So we see that

$$\begin{pmatrix} 1 & 2 \\ 2 & x_1 \end{pmatrix} \succeq 0 \Rightarrow \begin{vmatrix} 1 & 2 \\ 2 & x_1 \end{vmatrix} \ge 0 \Rightarrow x_1 - 4 \ge 0$$

and

$$\begin{pmatrix} 1 & x_i \\ x_i & x_{i+1} \end{pmatrix} \succeq 0 \Rightarrow \begin{vmatrix} 1 & x_i \\ x_i & x_{i+1} \end{vmatrix} \ge 0 \Rightarrow x_{i+1} - x_i^2 \ge 0$$

So we get $x_1 \ge 2^2$, $x_2 \ge (2^2)^2 = 2^4$, $x_3 \ge ((2^2)^2)^2 = 2^8$. By induction, $x_n \ge 2^{2^n}$. Therefore, just writing x_n will take time at least $O(\log 2^{2^n}) = O(2^n)$.