Методическая комиссия по физике при центральном оргкомитете Всероссийских олимпиад школьников

XLIV Всероссийская олимпиада школьников по физике

Региональный этап

Экспериментальный тур

9, 10 и 11 классы

Методическое пособие

МФТИ, 2009/2010 уч.г.

Комплект задач подготовлен методической комиссией по физике при центральном оргкомитете Всероссийских олимпиад школьников Телефоны: (495) 408-80-77, 408-86-95.

E-mail: physolymp@gmail.com

Авторы задач

9 класс	10 класс	11 класс
1. Кузьмичёв С.,	1. Кузьмичёв С.,	1. Матвеев Х.
Кудряшова Н.	Кудряшова Н.	2. Чивилёв В.,
2. Дорошенко А.	2. Чивилёв В.,	Проскурин М.
	Проскурин М.	

Общая редакция — Слободянин В.

Оформление и вёрстка — Ерофеев И., Кудряшова Н., Матвеев Х., Сметнёв Д., Старков Г.

При подготовке оригинал-макета использовалась издательская система ${
m L}^{A}{
m T}_{
m E}{
m X}\,2_{
m \mathcal E}.$ © Авторский коллектив Подписано в печать 13 декабря 2009 г. в 19:05.

141700, Московская область, г. Долгопрудный Московский физико-технический институт

Региональный этап. Экспериментальный тур

Задача 2. Избыточное давление

Решение задачи смотрите в решении задачи 2 для 10 класса.

11 класс

Задача 1. Вязкость масла

Для того, чтобы поддерживать постоянную разность давлений, предлагается следующий способ. Шприц заполняется воздухом на $V_{\rm возд.}=20\,$ мл (разметка на шприце может быть на меньшие объёмы, но с помощью миллиметровой бумаги вы можете сделать шкалу с большим пределом измерения). Со шприца снимается игла, набирается $V_{\rm масла}=4\,$ мл масла и игла надевается обратно, при этом шприц всё время должен находиться в вертикальном положении (чтобы масло не растеклось по стенкам, и потом не пришлось бы долго ждать, пока оно стечёт обратно).

При сжатии воздуха внутри шприца на $\Delta V_{\text{возд.}}$ воздух слегка нагревается, и давление масла увеличивается от p_0 до p, где p_0 — атмосферное давление. Можно считать, что время установления комнатной температуры воздуха в шприце намного меньше времени процесса измерений, и поэтому выполняется закон Бойля—Мариотта:

$$p_0V_{ exttt{возд.}} = p(V_{ exttt{возд.}} - \Delta V_{ exttt{возд.}}),$$
 откуда $p = \frac{p_0V_{ exttt{возд.}}}{(V_{ exttt{возд.}} - \Delta V_{ exttt{возд.}})}.$

Масло вытекает медленно (около 2–4 минут). Всё это время необходимо пододвигать поршень, чтобы объём воздуха, находящегося в шприце, не изменялся. При этом разность давлений на концах иглы:

$$\Delta p = p - p_0 = \frac{p_0 \Delta V_{\text{возд.}}}{(V_{\text{возд.}} - \Delta V_{\text{возд.}})}$$

Продолжительность вытекания подобрана большой, что позволяет уменьшить ошибку, связанную с определением времени (около 5 с). При временах вытекания масла 200 с эта ошибка несущественна. Данный метод позволяет определить время вытекания масла при давлениях порядка 1 атм в широком диапазоне $0.2p_0-4p_0$.

Расход рассчитывается по формуле $Q=\Delta V_{\rm Macлa}/\tau$, где τ — время вытекания масла.

Из графика $Q(\Delta p)$ видно, что экспериментальные точки ложатся на прямую, а коэффициент наклона $k=\frac{\Delta Q}{\Delta p}$. Тогда вязкость высчитывается по итоговой формуле:

$$\eta = \frac{\pi r^4}{8 \, kL} \approx 0.3 \,\, \mathrm{\Pia \cdot c.}$$

Для данной ситуации ${\rm Re} < 1 \ll {\rm Re}_{\rm kp}$ и $l_{\rm yct.} = 0.2r~{\rm Re} \ll L$. Таким образом, наше предположение о ламинарности течения было верным.

9 класс

Задача 1. «Чёрный ящик»

Известно, что внутри «чёрного ящика» находятся несколько вставок с вертикальными вырезами квадратного сечения (рис. 1). Найдите длину стороны выреза a_i и высоту b_i каждой вставки, начиная с уровня, на котором в коробку вставлена трубочка.

Проделайте ваши измерения повторно. Оцените погрешности измерений.

Рис. 1

Оборудование. «Чёрный ящик» (коробка из-под сока со вставленной трубочкой от коктейля), шприц на 20 мл, миллиметровая бумага, скотч, вода.

Рекомендации организаторам.

Для эксперимента необходимо взять коробки из-под сока или молока квадратного или прямоугольного сечения. В нижнюю часть коробки вклейте (например, термоклеем) трубочку для коктейля с гофрированным изгибом (рис. 2).

Перед экспериментом ОБЯЗАТЕЛЬНО нужно добавить в трубочку каплю моющего средства (вроде Fairy), чтобы исключить капиллярные эффекты.

Миллиметровой бумаги достаточно небольшой полоски (1 см \times 20 см), чтобы школьники могли использовать её в качестве шкалы.

Из пенопласта вырезаются вставки (рис. 3), плотно входящие в коробку. Трубочка от коктейля вставляется на высоте 2-3 см от дна коробки, герметизируется клеем. В вертикальном положении трубочка должна немного не доходить до верха коробки.

Рис. 4

не всплывал. Для того, чтобы вставить пенопласт, проще всего вскрыть верх коробки. Дно коробки вскрывать не следует, так как потом сложно закрепить его герметично. После установки вставок в коробку не следует их вынимать, потому что пенопласт крошится. Чтобы школьники не могли видеть ничего внутри коробки, рекомендуется оставлять отверстие (крышечку) над пенопластом, а не над вырезами (рис. 4). Оставьте около 1 см под крышкой, а верхнюю вставку расположите под отверстием (крышечкой) коробки. В углах плотно расположите кусочки пе-

Важно, чтобы при заполнении коробки водой пенопласт

нопласта, чтобы вставки не всплывали. Тогда школьники не будут видеть внутренностей «чёрного ящика», а вставки будут хорошо зафиксированы. Желательно приклеить вставки к стенкам коробки.

Вполне возможно, что длины сторон квадратов a_i , определённые предложенным в задаче методом, будут несколько превосходить реальные размеры. Это связано с неплотным прилеганием вставок к коробке, а также с тем, что вода попадает в полости в пенопласте. Тем не менее, погрешность определения a_i порядка 5%. Это несложно проверить, проведя эксперимент несколько раз.

Рекомендуется выбирать значения a_1 , a_2 и a_3 много больше радиуса трубочки, но меньше длины стороны коробки. Например, $a_1=2$ см, $a_2=4$ см и $a_3=5$ см при ширине коробки 7 см.

Шприц выдавайте без иглы!

Описан метод измерения избыточного давления
Выведена формула для Δp
Описан верный метод учёта конденсата2
Получено верное значение Δp
Произведено усреднение полученных результатов

10 класс

Задача 1. «Чёрный ящик»

Решение задачи смотрите в решении задачи 1 для 9 класса.

Задача 2. Избыточное давление

Надуем шарик до диаметра $d\approx 25$ см. Его можно определить, обернув нитку вокруг шарика и измерив длину окружности $L=\pi d$. Заметим, что для разных сечений значения будут незначительно различаться, так как форма шарика неидеальна. Для большей точности измерим диаметр шарика в трёх перпендикулярных плоскостях и подставим в формулу $V=\pi d^3/6$ усреднённое значение $d_{\rm cp}$. Погрешность определения диаметра можно оценить из проведённых измерений. Для объёма верно соотношение $\Delta V/V=3\Delta d/d_{\rm cp}$.

Подвесим соломинку за её центр масс, сделав таким образом рычажные весы. В качестве гирек будем использовать кусочки бумаги, масса которых определяется их площадью (поверхностная плотность бумаги известна). Из бумаги делается чашечка для гирек. Чашечка и шарик крепятся нитками.

Измерения проведём в два этапа. Сначала уравновесим гирьками надутый шарик. Для большей точности плечи весов стоит выбирать максимально возможными. Замерим длину l_1 плеча, на которое подвешен шарик.

На втором этапе будем уравновешивать сдутый шарик, оставив массу гирек такой же, подвешивая грузик известной массы m_0 на плечо с шариком. Пусть в равновесии его плечо равно l_2 . Тогда момент, создаваемый этим новым грузиком, компенсирует момент, создававшийся весом воздуха в шарике: $Pl_1 = m_0 l_2$.

Заметим, что первым делается измерение с надутым шариком, так как при надувании на оболочке конденсируются пары воды, выдыхаемые с воздухом, что приводит к изменению массы шарика. При сдувании конденсат остаётся в шарике.

Вес воздуха в шарике равен разности силы тяжести, действующей на него, и архимеловой силы:

$$P = mg - V\rho_{\text{atm}}g = V\rho_{\text{внутр}}g - V\rho_{\text{atm}}g = m_0l_2/l_1,$$

где $\rho_{\text{внутр}}$ — плотность воздуха внутри шарика, а $\rho_{\text{атм}}$ — плотность атмосферного воздуха.

Избыточное давление в шарике:

$$\Delta p = \frac{1}{V} \frac{m_{\text{\tiny B}}}{\mu} RT - p_{\text{\tiny ATM}} = \frac{RT}{\mu} (\rho_{\text{\tiny BHYTP}} - \rho_{\text{\tiny ATM}}) = \frac{\Delta m_0 l_2}{\mu V l_1} RT = (2.5 \pm 0.5) \text{ кПа.}$$

Примерные критерии оценивания

Описан метод нахождения	объёма V	и приведена	верная	формула	2
Найдено значение $V \dots$					2

Задача 2. Тур маслом не испортишь

Предложите способ, благодаря которому с помощью предложенного оборудования можно определить плотность ρ растительного масла. Соберите экспериментальную установку. Схематично изобразите её в отчёте. Выполните необходимые измерения. Для получения большей точности повторите эксперимент не менее 5 раз.

Таблица 1 , [ед.]₁ | x_2 , [

№ опыта	$x_1, [eд.]_1$	x_2 , [ед.] ₂	 ρ , kr/m ³
1			
2			
3			
4			
5			
Среднее значение			

Начертите в отчёте таблицу по аналогии с таблицей 1, где x_1, x_2, \ldots — измеряемые величины, а [ед.]₁, [ед.]₂, ... — условные обозначения размерностей этих величин. Результаты экспериментов занесите в таблицу и усредните. Приведите полученное значение ρ .

Примечание. Плотность воды $\rho_0 = 1000 \text{ кг/м}^3$.

Оборудование. Прозрачный цилиндрический сосуд, ёмкость с водой, прозрачная пластиковая трубочка, пластиковая линейка, скотч, ёмкость с растительным маслом, шприц, бумажные салфетки для поддержания в чистоте рабочего места.

Рекомендации организаторам.

- 1. Растительное масло (20 мл) налить в небольшую ёмкость, например, в пластиковый стакан объёма 100 мл.
- 2. Трубочка (соломинка для коктейлей) диаметра ≈ 5 мм и длины $\geqslant 12$ см должна быть прозрачной, чтобы сквозь неё можно было видеть границу раздела масла и воды.
- 3. Целесообразно выдавать участникам олимпиады инсулиновый шприц (с предварительно удалённой иглой).
- 4. В качестве цилиндрического сосуда желательно выдать стеклянную поллитровую банку или пол-литровую пластмассовую бутылку. У пластмассовой бутылки следует обрезать верхнюю коническую часть.

10 класс

Задача 1. «Чёрный ящик»

Задача полностью совпадает с задачей 1 для 9 класса.

Задача 2. Избыточное давление

Используя имеющееся оборудование, измерьте избыточное давление воздуха в шарике (разность давления внутри него с атмосферным давлением), когда диаметр шарика в надутом состоянии равен примерно 25 см.

- 1. Найдите объём надутого шарика и оцените погрешность измерения этой величины.
- 2. Опишите метод измерения разности давлений Δp и изобразите схематически установку. Выведите формулу для определения Δp .
- 3. При надувании шарика вместе с воздухом человек вдувает в шарик пары воды, которые конденсируются на оболочке. Этот конденсат влияет на точность измерений. Как исключить из рассчётов это влияние?
 - 4. Рассчитайте Δp , проведя придуманный вами эксперимент.
- 5. Для улучшения точности повторите эксперимент и усредните полученные результаты.

Примечание. Молярная масса воздуха $\mu=29$ г/моль, комнатную температуру сообщат организаторы.

Оборудование. Воздушный шарик, нитки, ножницы, неоднородный стержень (соломинка для коктейлей с пластилином внутри), линейка, штатив с лапкой, 2 листа офисной бумаги формата A4 (поверхностная плотность бумаги $\rho' = 80 \text{ г/м}^2$).

Рекомендации организаторам.

В качестве неоднородного стержня выдайте участникам пластиковую соломинку, в которую вставьте кусочки пластилина (не более 1/10 длины трубки).

Необходимо в начале тура объявить участникам комнатную температуру.

Задача 2. Тур маслом не испортишь

С помощью скотча прикрепим трубочку к линейке рядом со шкалой(рис. 9). Скотчем же прикрепим к стенке цилиндра с водой систему линейка—трубочка так, чтобы трубочка была вертикальной. Нальём в ёмкость воды почти до уровня, где вертикальные стенки начинают сужаться. Наберём в шприц масла, и будем его понемногу наливать в верхнее отверстие трубочки. Масло станет вытеснять воду. Добьёмся того, чтобы масло вытеснило из трубочки всю воду, но не вытекало из нижнего отверстия. По линейке определим расстояние h_1 от нижнего края трубочки до границы раздела воздух—вода. Измерим расстояние h_2

Рис. 9

от нижнего края трубочки до верхней границы масла. Из равенства давления на уровне нижней границы трубочки определим плотность масла:

$$ho_0 g h_1 =
ho g h_2,$$
 откуда $ho =
ho_0 rac{h_1}{h_2}.$

Плотность масла должна получаться в пределах:

$$\rho = (0.85 - 0.93) \, \, \text{г/см}^3.$$

Πp имерные критерии оценивания

Приведён рисунок установки с её описанием	. 2
Записаны формулы для давления масла и воды у нижнего края трубочки.	. 3
Получена формула для плотности масла	. 2
Проведена серия из 5 измерений	. 4
Если серия состоит из 4 измерений	3
Если серия состоит из 3 измерений	2
Если серия состоит из 2 измерений	. 1
Если серия состоит из 1 измерения	0
Приведены средние значения плотностей	. 2
Результат попал в границы от 0.85 г/см^3 до $0.93 \text{ г/см}^3 \dots$. 2
Если полученное значение $ ho$ не попало в указанные границы	

Возможные решения

9 класс

Задача 1. «Чёрный ящик»

Для определения площади сечения будем снимать зависимость уровня воды в «чёрном ящике» от объёма налитой жидкости. Чтобы измерить уровень воды в «чёрном ящике», приклеим трубочку вертикально к стенке коробки скотчем. Из миллиметровой бумаги изготовим шкалу и приклеим рядом.

Наливаем воду в «чёрный ящик» до тех пор, пока не станет заметен подъём воды в трубочке. Добавляем воду шприцем порциями, к примеру, по 10 мл. Снимаем зависимость уровня h воды в трубочке от залитого объёма V (рис. 7).

График имеет два излома и состоит из трёх линейных участков. По наклону этих участков определяем площадь:

$$S=rac{\Delta V}{\Delta h},$$
 и сторону квадрата: $a=\sqrt{S}=\sqrt{rac{\Delta V}{\Delta h}}.$

Для определения погрешности результата проведём через экспериментальные точки прямые с максимальным и минимальным наклоном и вычислим их угловые коэффициенты.

В качестве ответа удобно привести вертикальный разрез «чёрного ящика» (рис. 8).

Π римерные критерии оценивания

Описание установки и идеи измерений
Снятие зависимости $h(V)$
Построение графика $V(h)$
Определение числа интервалов с постоянным сечением
Проведение касательных для определения $S\dots 2$
Определение размеров сечений $a\dots 1$
Определение уровней, на которых сечение меняется1
Оценка погрешностей

11 класс

Задача 1. Вязкость масла

Рассмотрим вязкую несжимаемую жидкость, текущую вдоль длинной узкой цилиндрической трубки. Если при движении слои жидкости не перемешиваются (рис. 5), а малые выделенные объемы жидкости движутся прямолинейно, то данное течение жидкости называют *паминарным*.

Рис. 5

Для ламинарного течения известны уравнения, достаточно точно описывающие движение жидкости. При превышении скоростью некоторой критической величины течение становится неустойчивым. В среде образуются вихри, а линии тока становятся нестационарными (рис. 6). Такое движение называют турбулентным. Его удаётся описывать только приближённо.

Рис. 6

В данном эксперименте вам предлагается исследовать течение жидкости под действием различных давлений, обработать результаты эксперимента в предположении, что течение ламинарно, и в конце выяснить, верно ли данное предположение.

1. Предложите способ, с помощью которого можно снять зависимость расхода Q масла (объём жидкости, протекающему через сечение трубки в единицу времени) через иглу шприца от разности давлений $\Delta p = p_2 - p_1$ на концах иглы.

Подсказка. При заполнении шприца маслом оставьте внутри него некоторое количество воздуха.

2. Используя предложенный вами способ, снимите зависимость $Q(\Delta p)$ при нескольких значениях разности давлений (не менее 4 точек). Старайтесь при

этом выбирать давления так, чтобы диапазон разности давлений был максимальным из доступных, а точки в этом диапазоне были распределены достаточно равномерно.

Если течение окажется ламинарным, то его можно будет описать с помощью формулы Пуазейля:

$$Q = \frac{\pi r^4}{8 \, \eta L} \Delta p,\tag{1}$$

где η — вязкость жидкости, L — длина иглы шприца, r — внутренний радиус иглы.

3. По полученным в предыдущем пункте данным постройте график зависимости расхода от разности давлений. Используя (1), найдите вязкость масла.

Для выяснения, является ли течение жидкости ламинарным, используют так называемое число Рейнольдса Re. По определению:

$$Re = \frac{\rho \, vr}{\eta},\tag{2}$$

где ρ — плотность жидкости, v — средняя скорость её течения.

В случае движения жидкости по цилиндрической трубе критическое значение числа Рейнольдса, при котором течение уже нельзя считать ламинарным, равно $\mathrm{Re}_{\mathrm{\kappa p}}=1200.$

4. Вычислите число Рейнольдса для вашего эксперимента. Сравнив его с $Re_{\kappa p}$, определите характер течения жидкости в игле шприца.

На концах трубки (там, где жидкость только входит в цилиндрическую полость иглы) течение весьма неоднородно. Расстояние от края иглы, на котором оно устанавливается и становится ламинарным, называется $l_{\rm ycr}$.

Формула (1) выведена для ламинарного течения по длинной трубе. Если оказывается, что $l_{\rm уст} \ll L$, где L — длина иглы шприца, то краевыми неоднородностями можно принебречь, и использование соотношения (1) оправдано.

- 5. Для иглы $l_{\rm ycr}=0.2r$ Re. Определите $l_{\rm ycr}$ для вашего эксперимента и сравните его с L.
- 6. Теперь, используя все полученные результаты, сделайте вывод о том, верно ли предположение, что течение масла ламинарно.

Оборудование. Шприц (внутренний диаметр иглы d=0.6 мм), сосуд с маслом, секундомер, бумажные салфетки (для поддержания рабочего места в чистоте), лист миллиметровой бумаги, пластиковая бутылка.

ВНИМАНИЕ! Аккуратно обращайтесь со шприцем, чтобы не пораниться острой иглой.

Рекомендации организаторам.

- $1.\ B$ данном эксперименте необходимо внимательно подойти к выбору шприца и иглы. Рекомендуется использовать шприц объёмом $20-25\ \mathrm{mn}$ с ценой деления не более $1\ \mathrm{mn}$.
 - 2. Внутренний диаметр иглы должен быть 0,6 мм, длина иглы > 30 мм.

- 3. Перед экспериментом желательно смазать поршень шприца маслом, чтобы минимизировать трение (иначе устают руки экспериментатора).
 - 4. Пластиковая бутылка объёма 0,5 л со стандартным горлышком.
- 5. Масло удобно выдавать в одноразовом пластиковом стаканчике ёмкостью 0,1 л.
- 6. Перед началом тура напомните участникам о соблюдении правил техники безопасности при работе с колющими предметами.

Задача 2. Избыточное давление

Задача полностью совпадает с задачей 2 для 10 класса.