Analyse Numerique

David Wiedemann

Table des matières

1	Representation de nombres en arithmetique finie		2
	1.1	Representation des nombres dans les ordinateurs	2
	1.2	Approximation de \mathbb{R} dans $\mathcal{F}(2,53,-1021,1024)$	2
	1.3	Operations dans \mathcal{F}	3
	1.4	Parenthese sur le concept de stabilite	3
\mathbf{L}	ist	of Theorems	
	2	Proposition	3
	1	Definition	3

Lecture 1: Representation de nombres en arithmetique finie

Thu 03 Mar

1 Representation de nombres en arithmetique finie

Notons $\mathcal{F}(\beta,t,L,U)$ l'ensemble des nombres representables sous la forme $(-1)^s(0,\alpha_1\ldots\alpha_t)_\beta\beta^e$ ou e est l'exposant, $L\leq e\leq U, 0\leq \alpha_i<\beta,\,\alpha_1,\ldots,\alpha_t$ est la mantisse et s le signe.

Cette representation est la representation floating point.

1.1 Representation des nombres dans les ordinateurs

On appelle les nombres en double precision l'ensemble

$$\mathcal{F}(2,53,-1021,1024)$$

Bien que les valeurs maximales et minimales sont tres grandes ($2 \cdot 10^{-308}$ et $2 \cdot 10^{308}$), mais on en saute beaucoup.

Tous les nombres dans \mathcal{F} sont de la forme $\frac{p}{2^n}, p \in \mathbb{N}$.

On regarde la distance entre deux nombres consecutifs de \mathcal{F} .

Pour un exposant fixe, $[2^p, 2^{p+1}]$, le premier nombre apres 2^p est

$$(0.10...01)2^{p+1} = 2^p + 2^{p+1-t}$$

Donc dans ce cas, on a que le spacing est donne par 2^{p-52} .

Remarque

Si on a que des entiers dans un intervalle $[\beta^p, \beta^{p+1}]$, alors $\beta^{p+1-t} = 1$.

1.2 Approximation de \mathbb{R} dans $\mathcal{F}(2, 53, -1021, 1024)$

Soit $x \in \mathbb{R}$, on appelle $fl(x) \in \mathcal{F}(2, 53, -1021, 1024)$.

Notons $x = (-1)^s (0, \alpha_1 \dots \alpha_{t-1} \alpha_t \alpha_{t+1} \dots) \beta^e$, on definit alors

$$fl(x) = (-1)^s (0, \alpha_1 \dots \alpha_{t-1} \tilde{\alpha_t}) \beta^e$$

on fait l'hypothese ici que au moins un des α_i est non nul.

On veut borner $|x - fl(x)| \le \frac{1}{2} \operatorname{spacing} = \frac{1}{2} \beta^{e-t}$.

Bien que l'erreur absolue est, en principe, grande, l'erreur relative sera bornee, on a en effet

$$\frac{|x - fl(x)|}{|x|} \le \frac{1}{2}\beta^{e-t} \frac{1}{|x|} \le \frac{1}{2}\beta^{1-t} (\simeq 10^{-16} \text{ dans notre systeme })$$

On appelle cette erreur la "machine precision" et on la note u

Proposition 2

On peut egalement ecrire que

$$x \in \mathbb{R}$$
 $fl(x) = x(1+\epsilon), |\epsilon| \le u$

1.3 Operations dans \mathcal{F}

Soit $x, y \in \mathbb{R}$, $x+y \mapsto fl[fl(x)+fl(y)]$, qu'elle est l'erreur relative commise?

$$\frac{|fl[fl(x) + fl(y) - (x+y)|}{|x+y|}$$

En utilisant la proposition ci-dessus, notons $fl(x) = x(1+\epsilon_1), fl(y) = y(1+\epsilon_2),$ on a alors

$$|(x(1+\epsilon_1)+y(1+\epsilon_2))(1+\epsilon_3)-(x+y)| \cdot \frac{1}{|x+y|} \le \frac{x\epsilon_1 + y\epsilon_2 + \epsilon_3(x+y) - (x+y)}{|x+y|} + \text{petit}$$

$$\leq (\frac{|x|}{|x+y|}+\frac{|y|}{|x+y|}+1)u$$

On remarque que si x > 0, y < 0, il est possible de commettre une erreur tres grande.

On dit que la soustraction est une operation instable.

1.4 Parenthese sur le concept de stabilite

On veut resoudre y = G(x).

Definition 1

La resolution de y = G(x) est stable si une petite perturbation de x correspond a une petite perturbation de y, ie.

$$y + \delta y = G(x + \delta x)$$

On appelle alors le conditionnement absolu du probleme

$$\kappa_{abs} = \sup_{\delta x} \frac{\|\delta y\|}{\|\delta x\|}$$

Et on appelle perturbation relative du probleme

$$\kappa_{rel} = \sup_{\delta x} \frac{\|\delta y\| / \|y\|}{\|\delta x\| / \delta x}$$