

8

## Aldehydes, Ketones and Carboxylic Acids

## **REDUCTION**

| Group                | Product                          | LAH inEther | NaBH <sub>4</sub> in H <sub>2</sub> O | B <sub>2</sub> H <sub>6</sub> in THF | H <sub>2</sub> /Catalyst∆ |
|----------------------|----------------------------------|-------------|---------------------------------------|--------------------------------------|---------------------------|
| 1°RX                 | RH                               | +           | _                                     | _                                    | +                         |
| -C≡C-                | -СН=СН-                          | -           | -                                     | +                                    | +                         |
| >C=C<                | >CH-CH<                          | _           | _                                     | +                                    | +                         |
| -СНО                 | -CH <sub>2</sub> OH              | +           | +                                     | +                                    | +                         |
| >C=O                 | >CH-OH                           | +           | +                                     | +                                    | +                         |
| -CO <sub>2</sub> H   | –CH <sub>2</sub> OH              | +           | -                                     | +                                    | +                         |
| -CO <sub>2</sub> R   | –CH <sub>2</sub> OH              | +           | _                                     | +                                    | +                         |
| -COC1                | -CH <sub>2</sub> OH              | +           | +                                     | _                                    | +                         |
| -CONH <sub>2</sub>   | -CH <sub>2</sub> NH <sub>2</sub> | +           | _                                     | +                                    | +                         |
| (RCO) <sub>2</sub> O | RCH <sub>2</sub> OH              | +           | -                                     | +                                    | +                         |
| -CN                  | -CH <sub>2</sub> NH <sub>2</sub> | +           | -                                     | +                                    | +                         |
| >C=NOH               | -CH <sub>2</sub> NH <sub>2</sub> | +           | -                                     | _                                    | +                         |

## Note:

- 1. B<sub>2</sub>H<sub>6</sub> in THF not able to reduce cyclic ester.
- 2. NaBH<sub>4</sub> can also reduce imine group (C = NH).

3. Reactivity order towards 
$$H_2/Ni$$
,  $\Delta \Rightarrow -C \equiv N > -C - O - R$ 

| Name                   | Reagent                           | Function                        |
|------------------------|-----------------------------------|---------------------------------|
| Wolf Kishner Reduction | (i) $N_2H_4$ / (ii) KOH, $\Delta$ | $\rightarrow$ O $\rightarrow$ H |
| Clemmenson Reduction   | Zn-Hg/HCl                         | $\rightarrow$ O $\rightarrow$ H |
| Mozingo Reduction      | SH Dry HCl, followed by Raney Ni  | $\rightarrow$ H                 |

| Stephen's Reduction              | SnCl <sub>2</sub> /HCl followed by H <sub>3</sub> O <sup>+</sup>                                                       | R-C≡N → R-CH=O                                                                                                                                                                                                    |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rosenmund Reduction              | H <sub>2</sub> , Pd–BaSO <sub>4</sub>                                                                                  | $ \begin{array}{cccc} O & O \\ \parallel & \parallel \\ R-C-Cl \longrightarrow R-C-H \end{array} $                                                                                                                |
|                                  |                                                                                                                        | *—C≡C— —— —— —— —— —— —— —— —— —— —— —— —— —                                                                                                                                                                      |
| DIBAL-H (–78°C)                  | H—Al $\left(\begin{array}{c} -CH_2 - CH - CH_3 \\ CH_3 \\ \end{array}\right)_2$ followed by $H_3O^{\oplus}$            | $ \begin{array}{c} -\text{COOR} \\ -\text{C} \equiv \text{N} \\ -\text{COOCl} \\ \text{O}  \text{O} \\ \parallel  \parallel \\ -\text{C} = \text{O} = \text{C} \end{array} \right\} \longrightarrow -\text{CHO} $ |
| MPV Reduction                    | $AI \left( -O-CH \begin{pmatrix} CH_3 \\ CH_3 \end{pmatrix} \middle/ HO-CH \begin{pmatrix} CH_3 \\ CH_3 \end{pmatrix}$ | $\rightarrow$ OH                                                                                                                                                                                                  |
| Red phosphorus in presence of HI | Red P + HI                                                                                                             | $R-CO_{2}H \longrightarrow RCH_{3}$ $R-CH=O \longrightarrow RCH_{3}$ $R-C-R \longrightarrow RCH_{2}R$ $\parallel$ $O$ $R-OH \longrightarrow R-H$                                                                  |
| Hydroboration Reduction          | B <sub>2</sub> H <sub>6</sub> /AcOH, H <sub>2</sub> O                                                                  | $C=C \longrightarrow C-C$ $H H$ $H$                                                                                                                                                                               |
| Bouvoult Blank Reduction         | Na/EtOH                                                                                                                | R-COO-R → RCH <sub>2</sub> OH + ROH                                                                                                                                                                               |
| Transfer Hydrogenation           | $N_2H_4/H_2O_2$                                                                                                        | $C=C \longrightarrow C \longrightarrow C$                                                                                                                                                                         |