CORRIGÉ DES NOTES ET DES EXERCICES – OPTIMISATION

Pages 3 à 5

2.
$$y = -\frac{2}{5}x - 2$$

4.
$$4y + x = 20$$

$$5. \quad y = \frac{4}{3}x + \frac{3}{2}$$

Pages 7 à 13

Exercice 1:

a)
$$\frac{a^2}{t^2}$$
 ou $\left(\frac{a}{t}\right)^2$ b) m^2

c)
$$n - 3$$

e)
$$\frac{7x}{4}$$
 f) $\frac{x}{28}$ g) $\frac{3}{2}$

f)
$$\frac{x}{28}$$

g)
$$\frac{3}{2}$$

h)
$$\frac{n}{n+1}$$

i)
$$\sqrt{f^2 + 1}$$
 j) $\frac{10}{a^2}$

j)
$$\frac{10}{a^2}$$

$$k) - 4n - 5$$

Exercice 2:

a)
$$\frac{1}{0}$$
 est impossible

b)
$$\frac{0}{1}$$
 vaut 0

a)
$$\frac{1}{0}$$
 est impossible b) $\frac{0}{1}$ vaut 0 c) $\frac{0}{0}$ est indéterminé

Exercice 3:

a)
$$\frac{27}{h}$$

b)
$$\frac{41}{21}$$

a)
$$\frac{27}{b}$$
 b) $\frac{41}{21}$ c) $\frac{2(x+1)+3x}{x(x+1)}$ ou $\frac{5x+2}{x^2+x}$ d) $\frac{bd}{ad-bc}$ e) $\frac{a+4}{a+1}$

d)
$$\frac{bd}{ad - bc}$$

e)
$$\frac{a+4}{a+1}$$

Exercice 4:

a)
$$a + 6 + \frac{9}{a}$$

b)
$$40b^2c$$

Exercice 5:

$$P = -\frac{21}{2}a + \frac{3}{2}$$

Exercice 6:

a) x-5 b) $\frac{a}{b}$ c) $\frac{a+5}{2}$ d) -21p+6 e) a^2 f) $a-\sqrt{7}$

Exercice 7:

a)
$$\frac{cde + d^2 + e^2}{cde}$$
 b) $3x + 5$

b)
$$3x + 5$$

Exercice 8:

a)
$$5(x-\frac{1}{20})$$

b)
$$\frac{1}{2}(x-4)$$

a)
$$5\left(x - \frac{1}{20}\right)$$
 b) $\frac{1}{2}(x - 4)$ c) $-3\left(x - \frac{4}{3}\right)$ d) $\frac{5}{3}\left(x + \frac{3}{5}\right)$

d)
$$\frac{5}{3} \left(x + \frac{3}{5} \right)$$

e)
$$1,5\left(x+\frac{2}{3}\right)$$
 f) $\frac{1}{2}(x+1)$ g) $-(x-1)$ h) $\frac{1}{3}(x+6)$

f)
$$\frac{1}{2}(x+1)$$

$$g) - (x-1)$$

$$h) \frac{1}{3}(x+6)$$

Exercice 9:

a)
$$m = -\frac{16}{11}$$
 b) $x = 10$ c) $x = \frac{29}{33}$ d) $b = 1$

b)
$$x = 10$$

c)
$$x = \frac{29}{33}$$

d)
$$b = 1$$

Exercice 10:

a)
$$a = \frac{7}{5}$$
 b) $x = -5$ c) $t = 6$ d) $b = 1$ e) $c = 2$ f) $v = -99$

b)
$$x = -5$$

c)
$$t = 6$$

d)
$$b = 1$$

e)
$$c = 2$$

f)
$$v = -99$$

g)
$$r = -9$$

h)
$$p = \frac{13}{10}$$

i)
$$x = 32$$

$$j) x = \frac{18}{7}$$

g)
$$r = -9$$
 h) $p = \frac{13}{10}$ i) $x = 32$ j) $x = \frac{18}{7}$ k) $x = \frac{154}{157}$ l) $x = \frac{41}{12}$

1)
$$x = \frac{41}{12}$$

DÉFI : m) $t = 3(\sqrt{10} - \sqrt{5})$

a) (4,5)

b) (-6, 3)

c) (-1, 4)

d) $\left(0,\frac{3}{2}\right)$

Page 16

a) (4,-18)

b) $\left(-\frac{19}{2}, \frac{19}{2}\right)$

c) (-5, 16)

d) (3, -1)

e) (16, -31)

f) $\left(-\frac{9}{2}, -\frac{5}{2}\right)$

g) (-21, -13)

h) (9, 11)

i) (4, 0)

 $j)\left(\frac{9}{7},16\right)$

k) (-10, 15)

1)(-3,9)

m) (-19, 33)

n) $\left(\frac{37}{2}, \frac{33}{4}\right)$

o) (8, 1)

p) (24, 6)

q) (4, 0)

r) $\left(\frac{2}{3}, \frac{1}{3}\right)$ s) $\left(\frac{27}{2}, 20\right)$

t) (0, 6)

Page 19

Exercice 1:

Intervalles: $y \in \left[-\frac{33}{2}, \infty \right]$ Graphiquement: a)

IR, **—** 16.5

Intervalles: $x \in \left[-\infty, -\frac{1}{10} \right]$ Graphiquement: b)

IR, -0.1

Exercice 2:

a) *n*: premier des 4 nombres impairs

$$n + (n+2) + (n+4) + (n+6) < 105$$

$$4n+12 < 105$$

On déduit que n = 23 et on obtient les

nombres: 23, 25, 27 et 29

c) n: premier des 3 nombres pairs

$$n + (n+2) + (n+4) < 61$$

$$3n + 6 < 61$$

$$n < 18, \overline{3}$$

On déduit que n = 18 et on obtient les

nombres: 18, 20 et 22

e) *n:* nombre entier positif

$$4n - 5 > 8$$

Le plus petit nombre n est donc 4.

b) x: largeur du rectangle (cm)

$$2x + x + 2x + x \le 1200$$

$$6x \le 1200$$

$$x \le 200$$

On détermine que x = 200.

La largeur est 200 cm.

(La longueur serait donc 400 cm.)

d) n: nombre entier

$$n \times \frac{-3}{7} < 22$$

$$n > -51.\overline{3}$$

Le plus petit nombre n est donc -51.

<u>Page 21</u>

Exercice 3:

a)
$$p \le 250$$

b)
$$x + y \le 5$$

c)
$$2x - y > -3$$

d)
$$0.75x + 4y \ge 15$$

e)
$$t \ge u + 9$$

f)
$$x + y \le 250$$

g)
$$200x + 300y \ge 10000$$

h)
$$x \ge 4y$$

i)
$$3x + 9y \le 1800$$

j)
$$22x + 5y \le 300$$

k)
$$100x + 70y \le 9000$$

1)
$$x \ge 2y$$

$$m) \ y \le 3x$$

n)
$$2x + 6y \le 480$$

o)
$$y \ge 2x$$

a)
$$y \ge 2x + 1$$

$$b) \quad y \le -\frac{1}{6}x - 2$$

Pages 24

Exercice:

a)
$$x < 5$$

b)
$$y > -\frac{2}{7}x + 3$$

c) y < -x

Pages 27 et 28

Exercice 2: $y \in \{44, 45, 46, ..., 67, 68\}$

Exercice 3:

a) Le système est : 1.
$$x \ge 1$$
 2. $y \ge \frac{1}{4}x$ 3. $y \le -\frac{1}{2}x + 4$

b) A
$$(1, \frac{7}{2})$$
 B $(1, \frac{1}{4})$ C $(\frac{16}{3}, \frac{4}{3})$

c) Le sommet (4, 1) maximise la fonction Z.

Page 29

Sa commission maximale est de 19\$

Pages 30 à 33

<u>Problème 1</u>: (voir le **corrigé complet** sur le site internet)

- a) 45 contenants de 1L et 15 contenants de 3L
- b) 660\$ 440\$ = 220\$
- c) 1100\$

<u>Problème 2</u>: (voir le **corrigé complet** sur le site internet)

- a) 60 lavages partiels et 30 complets
- b) Son profit augmente de 10\$

LES JEUNES ENTREPRENEURS

a) : Nombre de vases à peindre y : Nombre de sucriers à peindre

b) $1. x \ge 0$

2. $y \ge 0$

 $3.2x + 3y \le 120$

4. $x + y \le 50$

5. $y \ge 10$

c) Règle de l'objectif : P = 14x + 10y

d) Polygone de contraintes :

e) Tableau des sommets

Coordonnées des sommets	Fonction : $P = 14x + 10y$	Valeur de la fonction
(0, 10)	P = 10 (10)	100
(0, 40)	P = 10 (40)	400
(30, 20)	P = 14 (30) + 10 (20)	620
(40, 10)	P = 14 (40) + 10(10)	660

f) Cynthia doit peindre 40 vases et 10 sucriers si elle désire maximiser ses profits.

Exercice 1:

a)
$$\frac{-4}{5}$$

a)
$$\frac{-4}{5}$$
 b) $\frac{T+24}{5}$

c) Le maximum de la fonction T est 1156 et 9 couples maximisent T: (45, 200), (50, 196), (55, 192), (60, 188), (65, 184), (70, 180), (75, 176), (80, 172),(85, 168)

Exercice 2:

Soit *x* : nombre de vélos vendus y : nombre de trottinettes vendues

$$P = 350x + 110y - (200x + 60y + 500 + 1071)$$

P = 150x + 50y - 1571 (réponse finale simplifiée)

Exercice 3:

33 couples maximisent la fonction : $\left| \frac{264 - 40}{7} \right| + 1 = 33$ couples

comme par exemple: (40, 210), (47, 204), (54, 198), (61, 192)... (264, 18)

Exercice 4: Z = 5x + y

Exercice 5:36 couples

Page 40

Exercice 6: r = 2 et t = 3

Exercice 7:

a)
$$P = 700x + 400y - (300x + 200y + 35x + 35y)$$

ou
 $P = 365x + 165y$ (une fois réduit)

b)
$$P = 150x + 90y - (60x + 42,3y) - 0.05(150x + 90y)$$

ou
 $P = 82,5x + 43,2y$ (une fois réduit)

Pages 41 et 42

Vrai ou faux?

a) Faux

b) Faux

c) Faux

<u>SAÉ # 1</u>:

Voici un début de résolution...

SOMMETS	VALEURS DES FONCTIONS		
$A\left(4,\frac{4}{3}\right)$	R = 2,93 V = 9,33		
B (4; 8,2)	R = 9.8 V = 16.2		
C (11,52; 6,7)	R = 11,3 V = 29,74		
D (12,53; 4,18)	R = 9,19 V = 29,24		

Réponses finales : ???

(Détails en classe...)

<u>SAÉ#2</u>:

L'usine devrait recevoir 210 appareils réparables et 140 appareils défectueux pour maximiser ses bénéfices hebdomadaires.

(Détails en classe...)

Page 43 (Solutionnaire détaillé)

1. Déterminer la pente de la droite baladeuse associée à R = ax + 3y:

$$y = \frac{R - ax}{3}$$
 donc la pente est de $\frac{-a}{3}$

(suite...)

a) Pour que la situation soit optimisée au point B seulement, la pente de la droite baladeuse doit être plus « forte » que celle associée au segment AB.

La pente associée au segment AB est de :

$$\frac{30-48}{60-24} = \frac{-18}{36} = \frac{-1}{2}$$

Donc on veut que

$$\frac{-a}{3} < \frac{-1}{2} \iff \frac{-2a}{6} < \frac{-3}{6} \iff -2a < -3 \iff a > \frac{3}{2}$$

b) Pour que la situation soit optimisée au point A seulement, la pente de la droite baladeuse doit être plus « douce » que celle associée au segment AB.

De plus, on sait que a > 0.

Donc on veut que

$$\frac{-1}{2} < \frac{-a}{3} < 0 \iff \frac{-3}{6} < \frac{-2a}{6} < \frac{0}{6} \iff -3 < -2a < 0 \iff 0 < a < \frac{3}{2}$$

c) La fonction à optimiser devient R = 1.5x + 3y et la droite baladeuse est parallèle au segment AB, car les pentes sont donc égales :

pente
$$\overline{AB} = \frac{\Delta y}{\Delta x} = \frac{30 - 48}{60 - 24} = \frac{-18}{36} = \frac{-1}{2}$$

pente
$$d_{bal} = \frac{-1.5}{3} = \frac{-1}{2}$$

Grâce à la formule vue en classe, on obtient R_{max} en 19 points du graphique.

Page 44 (Solutionnaire détaillé)

Exercice 2:

Isolons y dans la 4^e inéquation : $x - 2y \le k \iff x - k \le 2y \iff y \ge \frac{x - k}{2}$

Pente de la droite $e: \frac{\Delta y}{\Delta x} = \frac{1}{2}$

Si la droite e passe par D(5, 0), alors l'ensemble solution est entièrement dans le 1^{er} quadrant.

Donc
$$y = \frac{x-k}{2} \iff 0 = \frac{5-k}{2} \iff k = 5$$

3. a) La constante *b* est l'ordonnée à l'origine de la 4^e contrainte. Si A(7, 3) est une solution du système d'inéquations, il est situé soit sur un côté du polygone, soit à l'intérieur du polygone. On cherche donc la valeur de *b* tel que la droite frontière associée à la 4^e contrainte passe par A(7, 3).

$$y = -3x + b \implies 3 = -3 \times 7 + b$$

$$\Rightarrow b = 24$$

Et si la valeur de b augmente, le point A(7, 3) sera à l'intérieur du polygone, donc les valeurs possible de b sont :

$$b \ge 24$$
 ou $b \in [24, +\infty]$

3. b) On cherche à résoudre un système d'équations :

$$\begin{cases} y = \frac{3}{4}x + 3\\ y = -3x + b \end{cases}$$

mais on impose x = 4.

On a donc:

$$\begin{cases} y = \frac{3}{4} \times 4 + 3 \\ y = -3 \times 4 + b \end{cases}$$

Méthode de comparaison :

 $\frac{3}{4} \times 4 + 3 = -3 \times 4 + b \iff b = \frac{3}{4} \times 4 + 3 + 3 \times 4 \iff b = 18$

4. Déterminer le point d'intersection des droites y = 5x + 3 et x + y = 2:

$$\begin{cases} y = 5x + 3 \\ x + y = 2 \end{cases} \Rightarrow x + (5x + 3) = 2 \Rightarrow 6x + 3 = 2 \Rightarrow x = \frac{-1}{6} \Rightarrow y = \frac{13}{6}$$

Déterminer l'équation de la droite passant par B et C :

$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 4}{3 - (-3)} = \frac{1}{6} \qquad y = \frac{1}{6}x + b \qquad 5 = \frac{1}{6} \times 3 + b \qquad b = \frac{9}{2} \quad \text{donc}$$
$$y = \frac{1}{6}x + \frac{9}{2}$$

Déterminer l'équation de la droite passant par C et D :

$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - 1}{3 - 2} = \frac{4}{1} \qquad y = 4x + b \qquad 5 = 4 \times 3 + b \qquad b = -7 \quad \text{donc} \quad y = 4x - 7$$

Déterminer l'équation de la droite passant par B et D :

$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 1}{-3 - 2} = \frac{3}{-5} \qquad y = \frac{-3}{5}x + b \qquad 1 = \frac{-3}{5} \times 2 + b \qquad b = \frac{11}{5} \text{ donc}$$
$$y = \frac{-3}{5}x + \frac{11}{5}$$

Systèmes d'inéquations :

$$y \le \frac{1}{6}x + \frac{9}{2} \tag{1}$$

$$\begin{cases} y \ge 4x - 7 \tag{2} \end{cases}$$

$$y \ge \frac{-3}{5}x + \frac{11}{5} \tag{3}$$

L'inéquation (3) est fausse avec le couple $\left(\frac{-1}{6}, \frac{13}{6}\right)$.

Graphiquement et algébriquement, on constate que le point d'intersection des droites n'est pas à l'intérieur du polygone de contraintes.

5. Déterminer le point d'intersection des droites 2y = ax + b et y = 2x + 1:

$$\begin{cases} 2y = ax + b \\ y = 2x + 1 \end{cases} \Rightarrow \begin{cases} y = \frac{ax + b}{2} \\ y = 2x + 1 \end{cases} \Rightarrow \frac{ax + b}{2} = 2x + 1$$

$$ax + b = 4x + 2$$

$$b - 2 = 4x - ax$$

$$b - 2 = x(4 - a)$$

$$\frac{b - 2}{4 - a} = x$$

$$y = 2\left(\frac{b-2}{4-a}\right) + 1 = \frac{2b-4}{4-a} + 1 = \frac{2b-4+4-a}{4-a} = \frac{2b-a}{4-a}$$

Déterminer la valeur de la fonction à optimiser en ce point d'intersection :

$$R = 3x + 2y = 3\left(\frac{b-2}{4-a}\right) + 2\left(\frac{2b-a}{4-a}\right) = \frac{3b-6}{4-a} + \frac{4b-2a}{4-a} = \frac{-2a+7b-6}{4-a}$$

Pages 46 à 51

Exercice 1:

a)
$$3p < 4$$

b)
$$3p > 4$$

c)
$$4p > 5$$

a)
$$3p < 4$$
 b) $3p \ge 4$ c) $4p > 5$ d) $4p \le 5$

Exercice 2:

a)
$$x > 10$$

b)
$$x \le 10$$

c)
$$\frac{x}{2} < 5$$

a)
$$x > 10$$
 b) $x \le 10$ c) $\frac{x}{2} < 5$ d) $\frac{x}{2} \ge 5$

Exercice 3:

a)
$$2(w + 500) \ge 7000$$

a)
$$2(w + 500) \ge 7000$$
 b) $2(w + 500) < 7000$

c)
$$3(w + 600) > 9000$$
 d) $3(w + 600) \le 9000$

d)
$$3(w + 600) \le 9000$$

Exercice 4:

a)
$$y \in \{0, 1, 2, 3, 4, 5, 6\}$$
 ou $\{y \in IN \mid y \le 6\}$ ou

b)
$$\{x \in IR \mid x \ge 2,5\}$$
 ou $x \in [2,5; +\infty]$ ou

$$\frac{1}{0} \quad 0.5 \quad 1 \quad 1.5 \quad 2 \quad 2.5 \quad 3 \quad 3.5 \quad 4 \quad 4.5 \quad 5 \quad 5.5$$

Exercice 5:

- a) équivalentes b) non équivalentes c) non équivalentes
 - d) non équivalentes

Exercice 6:

b)
$$\geq$$
 c) 1. \geq et 2. \leq d) 1. \geq et 2. \leq

Exercice 7:

- a) dans $IN : x \in \{0, 1, 2, 3\}$ et dans $IR : x \in -\infty, 3$]
- b) dans $IN : x \in \emptyset$ et dans $IR : x \in -\infty, -2[$
- c) dans IN: $x \in IN$ et dans IR: $x \in [-3, +\infty]$
- d) dans IN: $x \in \{4, 5, 6, ...\}$ et dans IR: $x \in [3, +\infty]$

Exercice 8:

a)
$$x \in [-1, \infty]$$

b)
$$x \in \left[\frac{1}{3}, \infty\right]$$

a)
$$x \in [-1, \infty$$
 b) $x \in [\frac{1}{3}, \infty$ c) $x \in -\infty, \frac{18}{11}]$ d) $x \in -\infty, \frac{9}{4}[$

$$d) x \in -\infty, \frac{9}{4}$$

Exercice 9

$$x \in \{1, 2, 3, 4...\}$$

Exercice 10:

a)
$$x > \frac{5}{2}$$

b)
$$x \ge 1$$

c)
$$x < -4$$

d)
$$x \le \frac{7}{2}$$

e)
$$x < -36$$

f)
$$x \ge 4$$

Pages 52 et 53

Exercice 1:

a) i)
$$x - y < 3$$

ii)
$$x - y > 3$$

iii)
$$x - y \le 3$$

iv)
$$x - y \ge 3$$

b) i)
$$2r + 3c > 10$$

ii)
$$2r + 3c < 10$$

iii)
$$2r + 3c \le 10$$

iii)
$$2r + 3c \le 10$$
 iv) $2r + 3c \ge 10$

c) i)
$$mn \le 1200$$

iv)
$$mn < 1200$$

Exercice 2:

a)
$$x < 10$$

b)
$$y \le 20$$

c)
$$z \le 25$$

d)
$$x \ge 30$$

e)
$$z \le y/2$$

f)
$$9.5y \ge 120$$

g)
$$11z > 130$$

h)
$$12x \le 224$$

i)
$$12x > 19y$$

j)
$$9.5y + 11z < 425$$

Pages 54 et 55

Exercice 1:

$$a) y = \frac{5x}{3} + 2$$

b)
$$y = \frac{-3x}{4} + 10$$

c)
$$y = 2 + x$$

d)
$$y = -3$$

- ightharpoonup L'équation de l'axe des ordonnées est : x = 0
- ightharpoonup L'équation de l'axe des abscisses est : y = 0

Exercice 2:

a)
$$2x + 3y = 24$$

b)
$$25x-15y=1500$$

Pages 55 et 56

Exercice 1:

b)
$$2y > 2 + x$$

c)
$$y < x - 2$$

d)
$$y \ge x$$

e)
$$x + y > 0$$

f)
$$x \ge 2$$

g)
$$3x - 2y - 6 \le 0$$

h) y < 2

Pages 57 à 59

Exercice 1:

a)
$$\begin{cases} 2x + 3y \le 9 \\ 3y + 3 > 2x \end{cases}$$

b)

e)

d)

f)

 $E.S. = \emptyset$

Exercice 2:

Soit *x* : largeur du rectangle (cm) y : longueur du rectangle (cm)

On a donc
$$\begin{cases} x \ge 0 \\ y \ge 0 \\ y > x \\ 2x + 2y < 24 \end{cases}$$

b)

On a donc
$$\begin{cases} x \ge 0 \\ y \ge 0 \\ x \ge 2y \\ x + y \le 1000 \end{cases}$$

Exercice 3:

- a) IR* car ce sont des mesures.
- b) IN car ce sont des individus.

Page 60

Exercice 1:

a) Soit x : nombre de pages de texte

y : nombre de pages de texte et de graphiques

Objectif poursuivi : Marc-Antoine désire maximiser son revenu.

 $\underline{\text{Règle}}: R = 2,50x + 4y$

b) Soit x : nombre de jours de vacances au Québec

y : nombre de jours de vacances aux États-Unis

Objectif poursuivi : Ils désirent minimiser le cout de leurs vacances.

<u>Règle</u> : C = 80x + 150y + 160

Page 61

Exercice:

a)
$$B = x + y$$

$$B_{max}=12 \quad et \quad B_{min}=5$$

b)
$$C = x + 4y$$

$$C_{max} = 37$$
 et $C_{min} = 7$

c)
$$Z = 12x + 3y$$

 $Z_{max} = 99 \quad et \quad Z_{min} = 36$

d)
$$M = x + 5y$$

$$M_{max} = 45$$
 et $M_{min} = 17$

Pages 62 à 65

Problème 1:

x : nombre d'hélices

y: nombre de systèmes d'engrenages

$$\begin{cases} x \ge 0, \ y \ge 0 \\ 2x + 3y \le 98 \\ x + 3y \le 200 \\ x \ge 2y \end{cases}$$

R = 800x + 3000y à maximiser

Le sommet B(28, 14) engendre le revenu maximal.

► L'atelier doit vendre 28 hélices et 14 systèmes d'engrenages pour un revenu de 64 400\$.

Problème 2:

x : nombre d'heures en catamarany : nombre d'heures en voilier

$$\begin{cases} x \ge 0, \ y \ge 0 \\ x > y \\ x \le y + 40 \\ y \ge 20 \\ y \le 40 \\ x + y \ge 60 \\ x + y \le 100 \end{cases}$$

$$R = 4x + 7y$$
 à maximiser

Le sommet B(60, 40) engendre le revenu maximal.

▶ À chaque mois, Monsieur Arvizet doit travailler 60 heures en catamaran et 40 heures en voilier pour un revenu maximal de 520\$.

Problème 3:

x : nombre de cases noiresy : nombre de cases rouges

$$\begin{cases} x \ge 0, \ y \ge 0 \\ y - \frac{x}{2} \le 4 \\ x - \frac{y}{6} \le 3 \\ x + y > 1 \end{cases}$$

$$S = 10x + 5y$$
 à maximiser

Le sommet B(4, 6) engendre la somme d'argent pariée maximale.

► Alain a parié un maximum de 70\$ en plaçant 4 jetons sur des cases noires et 6 jetons sur des cases rouges.

Problème 4:

x : nombre d'autobus du modèle A y : nombre d'autobus du modèle B

$$\begin{cases} x \ge 0, \ y \ge 0 \\ 20x + 12y \ge 240 \\ x \le 5 \\ y \le 10 \end{cases}$$

$$C = 200x + 100y$$
 à minimiser

L'ensemble solution du système est l'ensemble vide (E.S. = \emptyset).

▶ Il est impossible de transporter les 240 personnes selon les restrictions données.

Pages 66 à 73

Exercice 1:

- a) 6
- b) 8
- d) 5
- e) 1
- f) 9

g) 3

- h) 10
- c) 4i) 7
- j) 2

Exercice 2:

Le système d'inéquations est :

$$y \ge 0$$

$$y \le \frac{3x}{2} + 1$$

$$y \ge -x + 1$$

$$y \le \frac{3x}{2} + 1$$
 $y \ge -x + 1$ $y \le \frac{-x}{2} + 5$ $y < -3x + 15$

$$y < -3x + 15$$

Exercice 3:

a)
$$\begin{cases} x \le -\frac{y}{3} + 1 \\ y > \frac{2x}{3} + 2 \end{cases}$$

b)
$$\begin{cases} 2x + y \ge 2\\ 2x + 7 > 5 \end{cases}$$

c)
$$\begin{cases} y \le -x + 10 \\ y \le -2x + 16 \\ y \le -\frac{x}{2} + 8 \end{cases}$$

Exercice 4: $x \le 4$ ou $x \in]-\infty, 4]$

Exercice 5:

Situation 1:

- a) Variables:
 - x : Nombre de mètres cubes du produit A
 - y : Nombre de mètres cubes du produit B
- b) Contraintes:

$$x \ge 0$$

$$y \ge 0$$
 $y \ge 0$

$$x \le 150$$

$$y \le 150$$

$$3x \ge 500$$

$$2y \ge 500$$

$$2y \ge 500$$
 $x + y \le 450$

c) Fonction à optimiser : C = 6x + 5y

Note : la situation 1 ne peut être optimisée, car son ensemble-solution est vide!

Situation 2:

- a) Variables:
 - *x* : Nombre de jupes
 - y: Nombre de robes
- b) Contraintes:

$$x \ge 0$$

$$y \ge 0$$

$$x + 3y < 100$$

$$x+3y \le 100$$
 $x+1,5y \le 60$

c) Fonction à optimiser : P = 17x + 50y

Exercice 6:

a) Les coordonnées des sommets sont :

A(0,5)

B(1,5)

C(3,4)

D(7,0)

E(0,0)

b) Le couple maximisant la fonction Z est (3,4). Le maximum est de 25 unités.

Exercice 7:

Variables:

x : Nombre de litres de jus de citron.y : Nombre de litres de jus d'orange.

Contraintes:

 $x \ge 0$

 $y \ge 0$

 $x + y \le 100$

 $6x + 3y \le 480$

Polygone de contraintes :

Règle de l'objectif:

P = 0.75x + 0.5y

Réponse : Léo doit produire 60 litres de jus de citron et 40 litres de jus d'orange pour un profit maximal de 65\$.

Exercice 8:

La pente de la droite baladeuse est -3. Il faut utiliser d₁.

Le point B minimise P.

Le point C maximise P.

Exercice 9:

La pente de la droite baladeuse est de $\frac{-3}{2}$.

Le sommet qui maximise la fonction C est A(0, 15) avec C = 30\$.

Exercice 10:

Variables:

x : Nombre de pastilles rouges.

y: Nombre de pastilles vertes.

Contraintes:

$$x \ge 0$$

$$y \ge 0$$

$$0.5x + 0.8y \le 4800$$

$$10x + 8y \le 80\ 000$$

Polygone de contraintes :

Règle de l'objectif:

$$P = 0.1x + 0.08y$$

Le segment BC a le même taux de variation que la droite baladeuse : -5 / 4

Tous les couples à coordonnées entières sur le segment BC sont des solutions du problème.

X	6400	6404	6408	6412	•••	8000
y	2000	1995	1990	1985	•••	0

À chacun de ces couples, la fonction P vaut 800\$.