Elektrotehnički fakultet u Beogradu

OPTIMALNO UPRAVLJANJE SISTEMIMA 13M051OUS

Upravljanje dvostrukim inverznim klatnom

Projektni zadatak broj 2

Studenti: Nikita Jokić 3279/2023 Ivona Dučić —-/—-

Mentor: doc. dr Aleksandra Krstić Februar 2024

Sadržaj

1	Mo	deliranje sistema i analiza modela	2
	1.1	Uvod	2
	1.2	Modeliranje sistema	3
		1.2.1 Matlab model	3
	1.3	Ponašanje sistema u otvorenoj sprezi	4
	1.4	Linearizacija sistema	5
	1.5	Poremećaji u sistemu	6
	1.6	Upravljački signali i skaliranje signala	7
2	\mathbf{Pro}	ojektovanje sistema upravljanja	8
	2.1	Generisanje trajektorije	9
	2.2	Projektovanje kontrolera	10
3	Kor	mparativna analiza projektovanih sistema upravljanja	11
	3.1	Poređenje odziva sistema	11
		3.1.1 Stabilizacija u gornjem položaju	11
		3.1.2 Robustnost na greške u modelovanju	11
		3.1.3 Uticaj šuma	11
	3.2	Potiskivanje poremećaja	11
4	Zak	diučak	11

- 1 Modeliranje sistema i analiza modela
- 1.1 Uvod

- 1.2 Modeliranje sistema
- 1.2.1 Matlab model

1.3	Ponašanje sistema u otvorenoj sprezi				

1.4	Line	ariza	cija	sistema
			,	2220

1.5 Poremećaji u sistemu

1.6 Upravljački signali i skaliranje signala

2 Projektovanje sistema upravljanja

2.1 Generisanje trajektorije

2.2	Projektova	nje	kontrolera
-----	------------	-----	------------

3 Komparativna analiza projektovanih sistema upravljanja

- 3.1 Poređenje odziva sistema
- 3.1.1 Stabilizacija u gornjem položaju
- 3.1.2 Robustnost na greške u modelovanju
- 3.1.3 Uticaj šuma
- 3.2 Potiskivanje poremećaja

Poređenje kontrolera							
	složenost	praćenje ref.	potiskivanje porem.	multivarijabilnost	prosek		
K_{dec}	1	5	3	5	2.8		
K_{dek0}	2	4	2	4	2.4		
$K_{dek\omega_0}$	3	3	1	3	2		
K_{invF}	4	2	5	1	2.4		
$K_{H_{\infty}}$	5	1	4	2	2.4		

Tabela 1

4 Zaključak

Literatura

- [1] Robust Stable Nonlinear Control and Design of a CSTR in a Large Operating Range , Johannes Gerhard, Martin M"onnigmann, Wolfgang Marquardt
- [2] Nonlinear pH Control in a CSTR RaynxId A. Wright al Costas Kravais
- [3] https://automatika.etf.bg.ac.rs/sr/13e054msu, beleške sa predavanja
- [4] Dynamics of pH in Controlled Stirred Tank Reactor, Thomas J. McAvoy,l Elmer HSU, and Stuart Lowenthal
- [5] Hybrid simulation of a pH stirred tank control system Thomas J. McAvoy