This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

What is claimed is:

20

25

- An electrophotographic developer used in steps where it is fed from a developer carrier to develop an electrostatic latent image on an electrostatically charged-image holder and where the above developed image 5 is transferred onto a transferring material, wherein it is used for the electrostatically charged-image holder described above having a radius of curvature of 18 mm or less in a development effective range and is a two-10 component developer comprising a toner comprising at least a binder and a colorant and a carrier which is coated with a resin and has a weight average particle diameter of 40 to 100 μ m; the above toner has a volume average particle diameter of 8 to 11.5 μ m; and the toner 15 particles having a diameter of 6.35 μ m or less account for 20 number % or less.
 - 2. The electrophotographic developer as described in claim 1, wherein a variation coefficient in toner particle size distribution in terms of number in the toner described above is 35 or less.
 - 3. The electrophotographic developer as described in claim 1, wherein the toner described above comprises toner particles having a diameter falling in a range of

4.00 to 5.04 μ m in a range of 2 to 6 number % and toner particles having a diameter falling in a range of 5.04 to 6.35 μ m in a range of 2 to 10 number %.

- 4. The electrophotographic developer as described in any of claims 1 to 3, wherein a charging series of the toner described above has a negative charging property.
- 5. The electrophotographic developer as described in any of claims 1 to 3, wherein the binder contained in the toner described above is a styrene base resin.
 - 6. The electrophotographic developer as described in any of claims 1 to 3, wherein the carrier described above is an iron powder carrier.
 - 7. The electrophotographic developer as described in any of claims 1 to 3, wherein the resin coating the carrier described above is a silicon resin.

8. The electrophotographic developer as described in any of claims 1 to 3, wherein it is used for the electrostatically charged-image holder and the developer carrier which rotate in directions reverse to each other in the development effective range described above.

20

25

15

- 9. An image-forming method comprising a step where an electrostatic latent image on an electrostatically charged-image holder is developed with a developer fed from a developer carrier and a step where the above 5 developed image is transferred onto a transferring material, wherein the above electrostatically chargedimage holder has a radius of curvature of 18 mm or less in a development effective range; the above developer is a two-component developer comprising a toner comprising 10 at least a binder and a colorant and a carrier which is coated with a resin and has a weight average particle diameter of 40 to 100 μ m; the above toner has a volume average particle diameter of 8 to 11.5 μ m; and the toner particles having a diameter of 6.35 $\mu \mathrm{m}$ or less account for 20 number % or less.
 - 10. The image-forming method as described in claim 9, wherein the developing step described above satisfies the following equation:

20

0.12≦{(Rm + Dsd) × k}/Rd × T≦0.35

wherein Rm represents a radius (mm) of curvature of the developer carrier; Rd represents a radius (mm) of curvature of the electrostatically charged-image holder in the development effective range; k represents a ratio

of a peripheral speed (mm/sec) of the developer carrier to a peripheral speed (mm/sec) of the electrostatically charged-image holder; Dsd represents a minimum proximity distance (mm) between the electrostatically charged-image holder and the developer carrier; and T represents a number % of the toner particles having a diameter of 6.35 μ m or less.

11. The image-forming method as described in claim 9,

wherein the electrostatically charged-image holder and
the developer carrier rotate in directions reverse to
each other in the development effective range described
above.

5

- 12. The image-forming method as described in any of claims 9 to 11, wherein a variation coefficient in toner particle size distribution in terms of number is 35 or less.
- 13. The image-forming method as described in any of claims 9 to 11, wherein used is the toner described above comprising toner particles having a diameter falling in a range of 4.00 to 5.04 μ m in a range of 2 to 6 number % and toner particles having a diameter falling in a range of 5.04 to 6.35 μ m in a range of 2 to 10 number %.

- 14. The image-forming method as described in any of claims 9 to 11, wherein used is the developer in which a charging series of the toner described above has a negative charging property.
- 15. The image-forming method as described in any of claims 9 to 11, wherein the binder contained in the toner described above is a styrene base resin.
- 16. The image-forming method as described in any of claims 9 to 11, wherein the carrier described above is an

10

17. The image-forming method as described in any of claims 9 to 11, wherein the resin coating the carrier described above is a silicon resin.

iron powder carrier.