VITMO

Генеративный дизайн физических объектов и где он обитает

Аспирант

Соловьев Глеб Витальевич

UITMO

Генеративный дизайн и подходы к нему.

В чем заключается генеративный дизайн физических объектов?

VITMO

- Создание структур, которые предполагается использовать в той или иной области.
- Оценка способности созданных объектов выполнять требуемые условия (Прочность, теплопроводность, химические свойств и

Какие существуют подходы для различных задач?

Генерация объектов (сэмплирование):

VAE/GAN на основе сверточных нейронных сетей.

Плюсы:

- Генерация изначально более эффективных примеров.
- Архитектура GAN/VAE проще, чем комплекс валидации и исправления некорректных структур.

Минусы:

• Требуются данные для обучения под каждый пример.

Случайная <u>генерация точек. GEFEST-</u>like.

Плюсы:

- Не требуется обучение.
- Возможность настройки размера, числа точек и локализации объектов.

Минусы:

- Случайная генерация, независимая от качества объектов.
- Сложный алгоритм валидации генерируемых объектов.

Какие существуют подходы для различных задач?

Attention

VİTMO

Синтез молекул и материалов:

- Графовые нейронные сети (GNN).
- Реккурентные НС.
- Transformers.

Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks.

https://doi.org/10.1021/acscentsci.7b00512

GNOME or Google DeepMind

https://www.nature.com/articles/s41586-023-06735-9?ref=maginative.com/articles/s41586-00735-9?ref=maginative.com/articles/s41586-00735-9?ref=maginative.com/articles/s41586-00735-9?ref=maginative.com/articles/s41586-00735-9?ref=maginative.com/articles/s41586-00735-9?ref=maginative.com/articles/s41586-0075-9?ref=maginative.com/articles/s41586-0075-9?ref=maginative.com/articles/s41586-0075-9?ref=maginative.com/articles/s41586-0075-9?ref=maginative.com/articles/s41586-0075-9?ref=maginative.com/articles/s41586-0075-9?ref=maginative.com/articles/s41586-0075-9?ref=maginative.com/articles/s41586-0075-9?ref=maginative.com/articles/s41586-0075-9?ref=maginative.com/articles/s41586-0075-9?ref=maginative.com/articles/s41586-0075-9?ref=maginative.com/articles/s41586-0075-9?ref=maginative.com/articles/s41586-0075-9?ref=magina

Generative Chemical Transformer: Neural Machine Learning of Molecular Geometric Structures from Chemical Language via

Какие существуют подходы для различных задач?

ИІТМО

Суррогатное моделирование физ процессов:

- Физически обоснованные модели PINNs.
- VAE и GAN на основе сверточных нейронных сетей.
- Их комбинации.

https://link.springer.com/article/10.1186/s40323-022-00221-

GAN without timeseries info

(Laser metal deposition. Prediction of next thermal map layer)

Применяемые нами методы сегодня:

Основа генерации и оптимизации структур - полигоны с переводом в графы и их эволюция.

В одной из задач также применялись и суррогатные модели.

Основной метод валидации физических свойств применение ПО для инженерного анализа и численного моделирования

Этап шага оптимизации

Координаты объекта

VİTMO

Примеры решенных задач.

GEFEST. Восстановление формы объектов, окруженных сплошной средой.

Задача поиска формы объекта, вляющего на окружение.

Проектирование микрофлюидных устройств.

Основная постановка задачи, решаемая с помощью

эволюционных подходов.

Задача поиска геометрической структуры лабиринта.

Применение одноэтапной эволюции для генерации семейства синтетических объектов.

Генерация труднодоступных данных на основе нескольких имеющихся альбомных примерах, с учетом их принадлежности к конкретным классам.

Задача генерации синтетических данных, на основе существующих структур.

НАИМЕНОВА НИЕ	причина	НАИМЕНОВАНИЕ	ПРИЧИНА
кратеры	- Обрыв дуги - Неправильное выполнение конечного участка шва	подрезы	Большой сварочный ток Длинная дуга При сварке угловых швов - смещение влоктрода в сто- рону вертикальной стенки
поры	Быстрое оклаждение швя Загражение кромох мас- лов, риквичной и лл. Непросущенные электроды Высокая скорость сварки	непровар	Малый угол скосе верти- кальных кромок Малый эзор нежду ними Загразнения кромок Недостаточный сварочный ток Завышениея скорость сварки
ВКЛЮЧЕНИЯ ШЛАКА	- Грязь на кромках - Малый свярочный ток - Большая окорость свярки	пожог	- Большой ток при малой скорости сварки с вориме с вориме с том
несплавления	Пложев зачнотка кромок Большая длина дуги Надостаточный свярочный ток Большая скорость свярки	НЕРАВНОМЕРНАЯ ФОРМА ШВА	- Неустойчивый режим сварки - Негочное направление электроде
наплыв	- Большой сварочный ток - Неправильный неклон электрода - Излишне длинная дуга	ТРЕЩИНЫ	- Резжое оклаждение конструкция - Высокие напряжения в жестко закрепленных конструкция; - Повышенное содержание серы или фосфора
СВИЩИ	Низкая пластичность металла шва Образование заквлочных структур Напряжение от неравномерного негрева	ПЕРЕГРЕВ (ПЕРЕЖОГ) МЕТАЛЛА	- Чрезмерный нагрев около шовной зоны - Неправильный выбор теп- ловой мощности - Завышенные значения мощности пламени или сварочного тока

Генерация последовательностей молекул. Применение трансформера на основе схемы CVAE

VİTMO

Задача генерации структур формул химических веществ.

Train scheme

Применение генеративного дизайна в области дизайна экспериментов.

- A) Классический подход проведения эксперимента.
- В) Подход с применением ГД.

VİTMO

Цели дальнейших исследований.

Применение существующих методов в более эффективной постановке.

Существующие проблемы.

Применение ЭО позволяет разрешать любые, в особенности многокритериальные задачи.

Проблемы:

- Долгое время сходимости.
- Требуется Солвер или Суррогат.

Наличие солвера позволяет точно валидировать сгенерированные объекты.

Проблемы:

- Нет гарантии наличия солвера под задачу.
- Длительное время вычисления одной итерации симулятором.

Разработка суррогатных моделей.

Возможность применения различных

архитектур и их комбинаций для: Sampling

- Суррогатного сэмплера для генерации начальной популяции структур (Diffusion models, Transformers) и для замены симулятора.
- Применение SOTA генеративных моделей и их кросс-ансамблей для генерации различных объектов.

Total valid, novel and condition required molecules from 100k generated

Разработка суррогатных моделей, дообучаемых под

схожие задачи.

Основные этапы.

- Генерация данных для обучения.
- Обучение нейронной сети для решения поставленной задачи.
- Постановка новой задачи в рассматриваемой области.
- Генерация меньшего числа примеров для дообучения существующей сети.

Оптимизация эволюционной оптимизации.

ЭО эффективный метод поиска решения. Но медленный.

Существующие методы ее ускорения - алгоритмы направленной оптимизации не внедрены в GEFEST (вероятно, и в GOLEM).

Предложение:

- Применить современные методы предсказания временных рядов/структур со временной зависимостью.
- Использование графовых нейронных сетей для кодирования графовых структур.

Предсказание последующих этапов эволюции графовых структур.

Итог

- Уже имеющиеся подходы построения суррогатных симуляторов и генераторов необходимо улучшить, применяя SOTA решения, и (кросс) ансамблирование.
- Оптимизация эволюции подходами направленной эволюции и предсказаний.
- Применение Transfer-learning и метаоптимизации для оптимального использования имеющихся данных и применимости решения к множеству задач.
- Альтернативно, существует возможность применять PINNs.
 Однако, применение их осложнено составлением диффуров, требуемых для каждой задачи.

ITSMOre than a UNIVERSITY