5

10

15

20

25

30

CLAIMS

1. A process for preparing a compound of formula (I):

 $(Q^2)_{n} = \begin{pmatrix} R^5 \\ S \\ S \\ Q^1 \end{pmatrix}$

wherein:

R¹ is selected from the group consisting of H, alkyl, alkenyl, alkynyl,

-C(O)R⁷, -CO₂R⁷, -C(O)NR⁷R⁸, -C(O)N(R⁷)OR⁸,

 $-C(O)N(R^7)-R^2-OR^8$, $-C(O)N(R^7)-Ph$, $-C(O)N(R^7)-R^2-Ph$,

-C(O)N(R⁷)C(O)R⁸, -C(O)N(R⁷)CO₂R⁸, -C(O)N(R⁷)C(O)NR⁷R⁸,

 $-C(O)N(R^7)S(O)_2R^8$, $-R^2-OR^7$. $-R^2-O-C(O)R^7$, $-C(S)R^7$.

-C(S)NR⁷R⁸, -C(S)N(R⁷)-Ph, -C(S)N(R⁷)-R²-Ph, -R²-SR⁷,

 $-C(=NR^{7})NR^{7}R^{8}$, $-C(=NR^{7})N(R^{8})-Ph$, $-C(=NR^{7})N(R^{8})-R^{2}-Ph$,

-R²-NR⁷R⁸. -CN. -OR⁷. -S(O)₆R⁷. -S(O)₉NR⁷R⁸. -S(O)₉N(R⁷)-Ph.

-S(O)₂N(R⁷)-R²-Ph, -NR⁷R⁸, N(R⁷)-Ph, -N(R⁷)-R²-Ph, -N(R⁷)-

SO₂R⁸ and Het:

Ph is phenyl optionally substituted from 1 to 3 times with a substituent selected from the group consisting of halo, alkyl, -OH, -R²-OH, -O-alkyl, -R²-O-alkyl, -N(H)alkyl, -N(alkyl)₂, -CN and -N₃;

Het is a 5-7 membered heterocycle having 1, 2, 3 or 4 heteroatoms selected from N, O and S, or a 5-6 membered heteroaryl having 1, 2, 3 or 4 heteroatoms selected from N, O and S, each optionally substituted from 1 to 2 times with a substituent selected from the group consisting of halo, alkyl, oxo, -OH, -R²-OH, -O-alkyl, -R²-O-alkyl, -NH₂, -N(H)alkyl, -N(alkyl)₂, -CN and -N₃;

 Q^1 is a group of formula: $-(R^2)_a-(Y^1)_b-(R^2)_c-R^3$

a, b and c are the same or different and are each independently 0 or 1 and at least one of a or b is 1;

n is 0, 1, 2, 3 or 4;

5

10

15

20

25

30

 Q^2 is a group of formula: $-(R^2)_{aa^-}(Y^2)_{bb^-}(R^2)_{cc}-R^4$ or two adjacent Q^2 groups are selected from the group consisting of alkyl, alkenyl, $-OR^7$, $-S(O)_fR^7$ and $-NR^7R^8$ and together with the carbon atoms to which they are bound, they form a C_{5-6} cycloalkyl, C_{5-6} cycloalkenyl, phenyl, 5-7 membered heterocycle having 1 or 2 heteroatoms selected from N, O and S, or 5-6 membered heteroaryl having 1 or 2 heteroatoms selected from N, O and S;

aa, bb and cc are the same or different and are each independently 0or 1;

each Y¹ and Y² is the same or different and is independently selected from the group consisting of -O-, -S(O)_f-, -N(R⁷)-, -C(O)-, -OC(O)-, -CO₂-, -C(O)N(R⁷)-, -C(O)N(R⁷)S(O)₂-, -OC(O)N(R⁷)-, -OS(O)₂-, -S(O)₂N(R⁷)-, -S(O)₂N(R⁷)C(O)-, -N(R⁷)S(O)₂-, -N(R⁷)C(O)-, -N(R⁷)CO₂- and -N(R⁷)C(O)N(R⁷)-;

each R² is the same or different and is independently selected from the group consisting of alkylene, alkenylene and alkynylene;

each R^3 and R^4 is the same or different and is each independently selected from the group consisting of H, halo, alkyl, alkenyl, alkynyl, $-C(O)R^7$, $-C(O)NR^7R^8$, $-CO_2R^7$, $-C(S)R^7$, $-C(S)NR^7R^8$, $-C(=NR^7)R^8$, $-C(=NR^7)NR^7R^8$, $-CR^7=N-OR^7$, $-OR^7$, $-S(O)_fR^7$, $-S(O)_2NR^7R^8$, $-NR^7R^8$, $-N(R^7)C(O)R^8$, $-N(R^7)S(O)_2R^8$, $-NO_2$, -CN, $-N_3$ and a group of formula (ii):

$$((R^2)_d - R^6)_e$$

wherein:

Ring A is selected from the group consisting of C_{5-10} cycloalkyl, C_{5-10} cycloalkenyl, aryl, 5-10 membered heterocycle having 1, 2 or 3 heteroatoms selected from N, O and S and 5-10 membered heteroaryl having 1, 2 or 3 heteroatoms selected from N, O and S

```
each d is 0 or 1;
                                   e is 0, 1, 2, 3 or 4:
                                  each R<sup>6</sup> is the same or different and is independently selected
                                               from the group consisting of H, halo, alkyl, alkenyl,
  5
                                               alkynyl, cycloalkyl, cycloalkenyl, Ph, Het,
                                               -CH(OH)-R<sup>2</sup>-OH, -C(O)R<sup>7</sup>, -CO<sub>2</sub>R<sup>7</sup>, -CO<sub>2</sub>-R<sub>2</sub>-Ph,
                                               -CO<sub>2</sub>-R<sup>2</sup>-Het, -C(O)NR<sup>7</sup>R<sup>8</sup>, -C(O)N(R<sup>7</sup>)C(O)R<sup>7</sup>,
                                               -C(O)N(R<sup>7</sup>)CO<sub>2</sub>R<sup>7</sup>, -C(O)N(R<sup>7</sup>)C(O)NR<sup>7</sup>R<sup>8</sup>.
                                               -C(O)N(R<sup>7</sup>)S(O)<sub>2</sub>R<sup>7</sup>, -C(S)R<sup>7</sup>, -C(S)NR<sup>7</sup>R<sup>8</sup>, -C(=NR<sup>7</sup>)R<sup>8</sup>,
                                               -C(=NR^{7})NR^{7}R^{8}, -CR^{7}=N-OR^{8}, =O, -OR^{7}, -OC(O)R^{7}.
10
                                               -OC(O)Ph, -OC(O)Het, -OC(O)NR<sup>7</sup>R<sup>8</sup>, -O-R<sup>2</sup>-S(O)<sub>2</sub>R<sup>7</sup>.
                                               -S(O)<sub>f</sub>R<sup>7</sup>, -S(O)<sub>2</sub>NR<sup>7</sup>R<sup>8</sup>, -S(O)<sub>2</sub>Ph, -S(O)<sub>2</sub>Het, -NR<sup>7</sup>R<sup>8</sup>,
                                               -N(R<sup>7</sup>)C(O)R<sup>8</sup>, -N(R<sup>7</sup>)CO<sub>2</sub>R<sup>8</sup>, -N(R<sup>7</sup>)-R<sup>2</sup>-CO<sub>2</sub>R<sup>8</sup>,
                                               -N(R^7)C(O)NR^7R^8, -N(R^7)-R^2-C(O)NR^7R^8. -N(R^7)C(O)Ph.
                                               -N(R<sup>7</sup>)C(O)Het, -N(R<sup>7</sup>)Ph, -N(R<sup>7</sup>)Het,
15
                                               -N(R<sup>7</sup>)C(O)NR<sup>7</sup>-R<sup>2</sup>-NR<sup>7</sup>R<sup>8</sup>, -N(R<sup>7</sup>)C(O)N(R<sup>7</sup>)Ph.
                                               -N(R<sup>7</sup>)C(O)N(R<sup>7</sup>)Het. -N(R<sup>7</sup>)C(O)N(R<sup>7</sup>)-R<sup>2</sup>-Het.
                                               -N(R^7)S(O)_2R^8, -N(R^7)-R^2-S(O)_2R^8, -NO_2, -CN and -N_3;
                      wherein when Q<sup>1</sup> is defined where b is 1 and c is 0. R<sup>3</sup> is not halo.
                                  -C(O)R<sup>7</sup>, -C(O)NR<sup>7</sup>R<sup>8</sup>, -CO<sub>2</sub>R<sup>7</sup>, -C(S)R<sup>7</sup>, -C(S)NR<sup>7</sup>R<sup>8</sup>.
20
                                  -C(=NR^{7})R^{8}. -C(=NR^{7})NR^{7}R^{8}. -CR^{7}=N-OR^{7}. -OR^{7}. -S(O)_{6}R^{7}.
                                  -S(O)<sub>2</sub>NR<sup>7</sup>R<sup>8</sup>, -NR<sup>7</sup>R<sup>8</sup>, -N(R<sup>7</sup>)C(O)R<sup>8</sup>, -N(R<sup>7</sup>)S(O)<sub>2</sub>R<sup>8</sup>, -NO<sub>2</sub>, -CN
                                  or -N<sub>3</sub>:
                     wherein when Q<sup>2</sup> is defined where bb is 1 and cc is 0. R<sup>4</sup> is not halo.
                                  -C(O)R<sup>7</sup>, -C(O)NR<sup>7</sup>R<sup>8</sup>, -CO<sub>2</sub>R<sup>7</sup>, -C(S)R<sup>7</sup>, -C(S)NR<sup>7</sup>R<sup>8</sup>,
25
                                  -C(=NR^{7})R^{8}, -C(=NR^{7})NR^{7}R^{8}, -CR^{7}=N-OR^{7}, -OR^{7}, -S(O)_{6}R^{7}.
                                  -S(O)<sub>2</sub>NR<sup>7</sup>R<sup>8</sup>, -NR<sup>7</sup>R<sup>8</sup>, -N(R<sup>7</sup>)C(O)R<sup>8</sup>, -N(R<sup>7</sup>)S(O)<sub>2</sub>R<sup>8</sup>, -NO<sub>2</sub>, -CN
                                  or -N<sub>3</sub>;
                     R<sup>5</sup> is selected from the group consisting of H, halo, alkyl, cycloalkyl,
                                  -OR^7, -S(O)_tR^7, -NR^7R^8, -NHC(O)R^7, -NHC(O)NR^7R^8 and
30
                                  -NHS(O)<sub>2</sub>R<sup>7</sup>:
                     f is 0, 1 or 2; and
```

each R⁷ and each R⁸ are the same or different and are each independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, cycloalkyl and cycloalkenyl;

or a pharmaceutically acceptable salt, solvate or physiologically functional derivative thereof;

said process comprising the steps of reacting one equivalent of a compound of formula (III):

$$(Q^2)_n$$
 \mathbb{R}^5 III

or an acid addition salt thereof,
with one equivalent of a compound of formula (IV):

5

15

20

25

wherein R¹⁰ is selected from alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl and suitable carboxylic acid protecting groups; in the presence of a base additive.

- 2. The process according to claim 1, wherein said base additive is selected from the group consisting of sodium bicarbonate, triethylamine, sodium acetate, *N*-methylimidazole, pyridine and *N*-methylbenzimidazole.
- 3. The process according to claim 1, wherein said base additive is sodium bicarbonate.
- 4. The process according to claim 1, wherein said base additive is *N*-methylimidazole.
- 5. The process according to claim 1, wherein said reaction is carried out in an inert solvent.