Kurs języka Python

Lista 1.

Zadanie 1. Zaprogramuj funkcję $rzut_kostka()$, która symuluje rzut sześcienną kością do gry, tzn. funkcja ma zwracać losową liczbę naturalną z przedziału $[1 \dots 6]$. Korzystając z tej funkcji zaprogramuj prostą grę (z dwoma zawodnikami), w której w każdej turze każdy zawodnik rzuca dwie kostki (tj. dwukrotnie wywołuje funkcję $rzut_kostka()$). Turę wygrywa ten, kto wyrzuci więcej kostek. Grę wygrywa ten, kto po n turach ma więcej zwycięstw. Jeśli po n turach jest remis, gra toczy się do pierwszego zwycięstwa. Komputer ma grać sam ze sobą, a dodatkowo po każdej turze wypisywać na wylosowaną liczbę oczek oraz aktualny bilans zwycięstw i porażek. Liczba n jest parametrem wywołania programu.

Zadanie 2. Napisz program który szyfruje tekst za pomocą następującego algorytmu opartego na algorytmie XOR: do zaszyfrowania jest potrzebny klucz k, tj. liczba z przedziału [0...255]. Kolejne litery tekstu zamieniamy na odpowiedni kod ASCII, obliczamy wynik operacji XOR z k i do szyfrogramu wstawiamy wynik operacji zamieniony na odpowiedni znak ASCII. Na przykład tekst Python za pomocą klucza 7 (binarnie: 0000 0111) szyfrujemy tak:

litery	P	y	t	h	О	n
ASCII	0101 0000	0111 1001	0111 0100	0110 1000	0110 1111	0110 1110
XOR	0101 0111	0111 1110	0111 0011	0110 1111	0110 1000	0110 1001
szyfr	W	~	S	О	h	i

Program ma mieć postać funkcji zaszyfruj(tekst, klucz), która dla podanego tekstu i klucza zwraca zaszyfrowany tekst. Zaprogramuj również funkcję odszyfruj(szyfr, klucz).

Zadanie 3. Zaprogramuj funkcję slownie(n), która zwraca string będący słownym zapisem liczby naturalnej n, zapisanej zgodnie z regułami języka polskiego. Można przyjąć, że argumentem jest liczba o co najwyżej 8 cyfrach.

Zadanie 4. Napisz jednoargumentową funkcję rozkład (n) która oblicza rozkład liczby n na czynniki pierwsze i zwraca jako wynik listę par $[(p_1, w_1), (p_2, w_2), \ldots, (p_k, w_k)]$ taka, że

 $n=p_1^{w_1}*p_2^{w_2}*\ldots*p_k^{w_k}$ oraz p_1,\ldots,p_k są różnymi liczbami pierwszymi. Na przykład

Zadanie 5. Zaprogramuj funkcję tabliczka(x1, x2, y1, y2), która wypisze na ekran tabliczkę mnożenia dla liczb $[x_1, \ldots, x_2] \times [y_1, \ldots, y_2]$; np.

```
>>> tabliczka(3,5, 2, 4)

3 4 5

2 6 8 10

3 9 12 15

4 12 16 20
```

Możesz zaniedbać formatowanie (wyrównywanie kolumn).

Każde zadanie jest warte 2 punkty. Na pracowni do oceny należy przedstawić dwa zadania.