Cognoms	Nom	DNI
Examen Final EDA	Duració: 3h	08/01/2024
 L'enunciat té 5 fulls, 9 cares, Poseu el vostre nom complet Contesteu tots els problemes Llevat que es digui el contrari en temps. Llevat que es digui el contrar 	i número de DNI a cada fu en el propi full de l'enuncia i, sempre que parlem de cost	at a l'espai reservat. E ens referim a cost asimptòtic
Problema 1		(2 pts.)
Responeu les preguntes següent	ts:	
$aT(n/4) + \Theta(n^2)$. Analitze natural $a \ge 1$.	and the second desired the second sec	Tancio dei paramette

(b) (1 pt.) El max-heap de la figura següent és el resultat d'una seqüència d'operacions d'inserció i esborrat-del-màxim. La darrera operació va ser una inserció.

Expliqueu per què el 38 no pot ser l'últim element afegit.

Escriviu la llista dels elements que **sí** poden haver estat l'últim en ser afegit; aquesta llista no cal justificar-la.

1	١
l	l
ı	
/	J

Cognoms	Nom	DNI	
Problema 2			(3 pts.)
Donat un voctor 71 d'u nomb	aros naturals, volom calcular	un voctor quo co	ntingui

Donat un vector v d'n nombres naturals, volem calcular un vector que contingui totes les parelles $\langle z, t \rangle$ tal que el nombre z apareix a v exactament t vegades, amb t > 0. L'ordre de les parelles en el vector no ens importa. Per exemple, donat el vector (4,1,5,1,3,4,5,1) un resultat correcte seria $(\langle 3,1\rangle,\langle 5,2\rangle,\langle 1,3\rangle,\langle 4,2\rangle)$.

(a) (1 pt.) Considereu el codi següent, que resol el problema plantejat:

```
vector < pair < int,int >> map_count (const vector < int >& v) {
    map < int,int > m; // Podeu assumir que m és un AVL
    for (int x : v) ++m[x];
    vector < pair < int,int >> res;
    for (pair < int,int > p : m) res .push_back({p. first ,p.second });
    return res;
}
```

Quin és el cost en cas pitjor de la funció anterior en funció d'n? *Nota*: en tot aquest problema assumiu que el cost d'un $push_back$ és $\Theta(1)$ i que recórrer els elements d'un map té cost lineal respecte el seu nombre d'elements. Us pot ser útil saber que $\log 1 + \log 2 + \cdots + \log n = \Theta(n \log n)$.

1	(1 pt.) Assumim (només en aquest apartat) que tots els nombres de v són menors estrictes que 100 (que és un nombre fixat que no depèn $\mathrm{d}'n$). Com aconseguiríeu resoldre el problema en temps $O(n)$ en cas pitjor? No cal que doneu codi, amb una explicació d'alt nivell n'hi ha prou. Tampoc cal que justifiqueu el cost.		
	(1 pt.) Ompliu el codi següent per tal de resoldre el problema que tenim entre mans.		
	$vector < pair < int, int \gg priority$ (const $vector < int > \& v$) { $priority_queue < int > q;$ for (int $x : v$) $q.push(x);$ $vector < pair < int, int \gg res;$		
	while (not q.empty()) {		
	}		
	return res; }		

Cognoms	Nom	DNI

Problema 3 (2 pts.)

Disposem de dues gerres A i B amb capacitat $cap_A > 0$ i $cap_B > 0$ litres, respectivament. Tenim també una font per poder omplir les gerres. L'objectiu és aconseguir tenir exactament k litres en una de les gerres amb les següents operacions:

- Omplir una de les gerres fins a dalt.
- Buidar completament una de les gerres.
- Buidar el contingut d'una gerra origen cap una gerra destí fins que, o bé la gerra origen quedi buida, o bé la gerra destí quedi plena.

Ens demanen que calculem el mínim nombre d'operacions per aconseguir k litres en una de les gerres si comencem amb les gerres buides, o que indiquem que no és possible obtenir k litres. Per exemple, si $cap_A = 10$, $cap_B = 7$ i k = 4, ho podem fer amb 4 operacions:

- 1. Omplim la gerra *B* fins a dalt (*A* tindrà 0 litres, i *B* en tindrà 7).
- 2. Buidem la gerra *B* cap a *A* (*A* tindrà 7 litres i *B* estarà buida).
- 3. Omplim la gerra *B* fins a dalt (tant *A* com *B* tenen 7 litres).
- 4. Buidem la gerra *B* cap a *A* (*A* tindrà 10 litres, i *B* en tindrà 4).

Ompliu el codi següent per tal de resoldre aquest problema. *Pista:* Fixeu-vos que hi ha $(cap_A + 1) \times (cap_B + 1)$ possibles estats. No esperem una solució per *backtracking*.

```
int cap_A, cap_B; // variables globals
int operacions (const pair < int,int > & ini, int k);
int main (){
  int k;
  cin \gg cap\_A \gg cap\_B \gg k;
  pair < int, int > ini = \{0,0\}; // un parell es (litres_dins_A, litres_dins_B)
  int res = operacions(ini,k);
  if (res == -1) cout \ll "No es poden aconseguir " \ll k \ll " litres ." \ll endl;
  else cout \ll "Necessitem" \ll res \ll " operacions." \ll endl; }
// Omplir A
pair < int,int> mov_1 (const pair < int,int>& p) {return {cap_A, p.second};}
// Omplir B
pair < int,int > mov_2 (const pair < int,int > & p) {return {p. first , cap_B};}
// Buidar A
pair < int,int> mov_3 (const pair < int,int>& p) {return {0, p.second};}
// Buidar B
pair < int,int > mov_4 (const pair < int,int > & p) {return {p. first , 0};}
```


Cognoms	Nom	DNI
Problema 4		(3 pts.)
Donat un graf $G = (V, E)$ no dirigit, el prosi existeix una funció $c : V \to \{1, 2, 3\}$ de es compleixi $c(u) \neq c(v)$.		
Donat un graf $G = (V, E)$ no dirigit amb consisteix en determinar si existeix una fi per a tota aresta $\{u, v\} \in E$ es compleixi conjunts $C_i = \{v \in V \mid c(v) = i\}$ sigui n p	funció $c: V \rightarrow \{1, c(u) \neq c(v) \text{ i tal qu}\}$,2,3} de manera que
(a) (0.5 pts.) Construiu una instància pos una instància negativa de 3-COL-EQU compleix el que es demana.		1 0
(b) (1.25 pts.) Demostreu que 3-COL-EQU	sse NP.	

- (c) (1.25 pts.) Donat G=(V,E) una instància de **3-COL** amb $V=\{v_1,v_2,\cdots,v_n\}$ podem generar una instància G'=(V',E') de 3-COL-EQUIL de la manera següent:
 - $V' = \{v_1^1, v_1^2, v_1^3, v_1^2, v_2^2, v_2^3, \cdots, v_n^1, v_n^2, v_n^3\}$ $E' = \{\{v_i^k, v_j^k\} \mid \{v_i, v_j\} \in E \text{ i } 1 \le k \le 3\}$

és a dir, creem 3 còpies de G.

Demostreu que la funció anterior és un reducció polinòmica de 3-COL cap a 3-COL-EQUIL.

Cognoms	Nom	DNI

Aquesta cara estaria en blanc intencionadament si no fos per aquesta nota.