Connection of MLE and Optimization

(Boyd 357-357)

MLE: let us consider a Counity of probability distribution on R with densities by(.)

Let y be an observed sample from Px()

when consider $f_{X}(y)$ as a function of n for fined $y \in \mathbb{R}^{n}$, $f_{X}(y)$ is called likelihood.

Define log-likelihood function (x) = log (Px(x))

Consider the problem of estimating the parameter n based on observed y.

MLE estimation of n = n = argmax Px(v)

Suppose me have come constraints on ne (ER

ML estimator of the parameter x will be

mand (x) = max log fx(y)

subject to nec

This is an optimization problem with variable a.

The MI Problem (1) is a convex optimization problem if

(1) the log likelihood function I is convex for each value of y.

(11) the constraint set C described by liver convolities and convex

(1) the log likelihood function I is convex for each value of y.

(1) the constraint set C described by linear equality and convex

Then the ML estimate and be computed by convex optimization.

ML estimator is any optimal point of the problem max $\prod_{i=1}^{m} \ell(y_i - \alpha_i^T \pi)$

Specific example suppose the the error is exponentially dist with the Pdf.

$$\rho(z) = \begin{cases} \frac{1}{a} e^{-\frac{z}{a}} \\ 0 & z < 0 \end{cases}$$

Now solve ML estimator of n from the previous discussion of constraint optimization

$$\hat{\pi}_{m_1} = \max_{x} \sum_{i=1}^{m} \log P(y_i - \alpha_i^T x_i)$$
 Subject to $y_i - \alpha_i^T x \ge 0$ where $z_1 = y_1 - \alpha_i^T x$

$$\hat{\lambda}_{ml} = \max_{i \ge 1} \sum_{l \ge 0}^{m} \left(\frac{1}{\lambda} e^{-\left(\frac{y_i}{\lambda} - q_i^T X\right)} \right)$$
 subject to $y_i \ge a^T x + i$

=
$$\underset{X}{\text{Min}} \sum_{i \ge 1}^{n} (y_i - q_i^T x)$$
 Subject to $y_i \ge q^T k$,

$$\equiv \min_{X} 1^{T}(y - Ax)$$
 subject to $A_{X} \leq y \rightarrow This$ is a U