Key Parameters' Posterior Sampling Time Analysis

Yifan CHENG y.cheng@u.nus.edu

Portions of Recorded Gibbs Sampler Time for 10 Key Parameters

We first display the first 50 kept post-burn-in MCMC iterations' posterior sampling time (in milliseconds) for 10 key Gibbs sampler steps corresponding to our 4 methods, i.e., fullGPfixedL, NNGPsequenFixedL, and NNGPsequenVaryLj.

```
wd <- paste(projDirec, "simu/mainScalabilityVerificationSimu/m400T50K5", sep = "/")
setwd(wd)
load("GibbsStepTimeFixedLfullGP.RData"); load("GibbsStepTimeFixedLblock.RData")
load("GibbsStepTimeFixedLsequen.RData"); load("GibbsStepTimeVaryLjSequen.RData")
head(GibbsStepTimeFixedLfullGP, 50)</pre>
```

##		z	хi	theta	delta	alpha	kappa	rho	eta	upsilon	psi
##	[1,]	216	36	19	0	67	17	47	19	0	0
##	[2,]	219	36	19	0	68	17	47	18	0	0
##	[3,]	220	36	19	0	67	17	47	18	0	0
##	[4,]	217	36	18	0	68	17	48	18	0	0
##	[5,]	217	36	19	0	69	17	49	18	0	0
##	[6,]	215	36	19	0	67	17	48	18	0	0
##	[7,]	217	36	18	0	71	17	46	18	0	0
##	[8,]	224	36	18	0	66	17	47	19	0	0
##	[9,]	218	36	20	0	69	17	50	19	0	0
##	[10,]	223	36	19	0	66	17	45	19	0	0
##	[11,]	218	36	19	0	68	17	48	19	0	0
##	[12,]	217	36	19	0	69	17	52	18	0	0
##	[13,]	217	36	18	0	68	17	48	18	0	0
##	[14,]	206	36	20	0	66	17	48	18	0	0
##	[15,]	208	36	19	0	68	17	49	18	0	0
##	[16,]	207	36	19	0	68	17	52	18	0	0
##	[17,]	218	36	19	0	67	17	46	18	0	0
##	[18,]	224	36	19	0	70	17	47	19	0	0
##	[19,]	218	36	19	0	68	17	47	19	0	0
##	[20,]	220	36	18	0	69	17	49	18	0	0
##	[21,]	222	38	20	0	69	17	47	19	0	0
##	[22,]	221	36	18	0	66	17	46	19	0	0
##	[23,]	226	36	18	0	71	17	47	18	0	0
##	[24,]	221	36	19	0	69	18	51	18	0	0
##	[25,]	225	36	19	0	67	17	48	18	0	0
##	[26,]	220	36	18	0	67	17	46	18	0	0
##	[27,]	223	36	19	0	67	17	51	18	0	0
##	[28,]	227	36	19	0	68	17	47	18	0	0
##	[29,]	217	36	18	0	68	17	50	18	0	0
##	[30,]	221	36	19	0	67	17	46	18	0	0
##	[31,]	224	36	19	0	66	17	46	19	0	0

##	[32,]	219	36	18	0	66	17	47	19	0	0
##	[33,]	221	36	18	0	66	17	47	18	0	0
##	[34,]	212	36	19	0	66	17	47	19	0	0
##	[35,]	210	36	19	0	69	17	47	19	0	0
##	[36,]	211	37	18	0	68	17	47	18	0	0
##	[37,]	230	36	18	0	67	17	49	19	0	0
##	[38,]	224	36	19	0	66	17	47	19	0	0
##	[39,]	216	35	18	0	68	17	52	17	0	0
##	[40,]	219	36	18	0	71	17	51	18	0	0
##	[41,]	224	36	19	0	67	17	47	19	0	0
##	[42,]	222	36	19	0	68	17	48	18	0	0
##	[43,]	225	36	19	0	69	17	46	18	0	0
##	[44,]	220	36	19	0	70	17	47	18	0	0
##	[45,]	225	36	18	0	68	17	47	18	0	0
##	[46,]	235	36	18	0	72	17	46	18	0	0
##	[47,]	230	36	19	0	67	17	48	18	0	0
##	[48,]	226	36	19	0	69	17	48	18	0	0
##	[49,]	226	36	19	0	69	17	48	18	0	0
##	[50,]	223	36	18	0	71	17	48	18	0	0

head(GibbsStepTimeFixedLblock, 50)

##		z	хi	theta	${\tt delta}$	alpha	kappa	rho	eta	${\tt upsilon}$	psi
##	[1,]	191	37	20	0	64	3	7	19	0	0
##	[2,]	187	37	20	0	66	3	9	19	0	0
##	[3,]	186	37	20	0	64	3	7	19	0	0
##	[4,]	186	36	19	0	64	3	7	18	0	0
##	[5,]	186	37	19	0	64	3	7	19	0	0
##	[6,]	190	37	20	0	65	3	8	19	0	0
##	[7,]	188	41	20	0	63	3	7	19	0	0
##	[8,]	180	36	19	0	63	3	7	19	0	0
##	[9,]	174	37	19	0	65	3	8	19	0	0
##	[10,]	175	37	19	0	66	3	7	19	0	0
##	[11,]	180	37	19	0	63	3	7	19	0	0
##	[12,]	184	37	19	0	64	3	7	19	0	0
##	[13,]	183	36	19	0	66	3	7	19	0	0
##	[14,]	183	37	20	0	67	3	7	19	0	0
##	[15,]	187	36	19	0	64	3	7	19	0	0
##	[16,]	186	37	20	0	66	3	7	19	0	0
##	[17,]	186	37	19	0	65	3	7	19	0	0
##	[18,]	184	36	19	0	65	3	7	19	0	0
##	[19,]	183	37	20	0	65	3	7	19	0	0
##	[20,]	183	36	20	0	67	3	7	19	0	0
##	[21,]	183	36	20	0	66	3	7	19	0	0
##	[22,]	186	37	19	0	64	3	7	19	0	0
##	[23,]	189	37	19	0	65	3	7	19	0	0
##	[24,]		36	20	0	69	3	8	21	0	0
##	[25,]	184	36	19	0	65	3	7	19	0	0
##	[26,]		37	20	0	66	3	7	19	0	0
##	[27,]	190	37	19	0	65	3	7	19	0	0
##	[28,]		37	20	0	63	3	7	19	0	0
##	[29,]	186	36	19	0	64	3	7	19	0	0
##	[30,]	192	38	20	0	64	3	7	19	0	0
##	[31,]	182	36	19	0	64	3	7	19	0	0
##	[32,]	175	36	19	0	63	3	7	19	0	0

##	[33,]	174	36	19	0	66	3	7	19	0	0
##	[34,]	175	37	19	0	63	3	7	19	0	0
##	[35,]	176	37	19	0	64	3	7	19	0	0
##	[36,]	189	40	19	0	67	3	9	19	0	0
##	[37,]	186	37	20	0	65	3	7	19	0	0
##	[38,]	187	36	19	0	65	3	7	18	0	0
##	[39,]	183	36	19	0	64	3	7	18	0	0
##	[40,]	185	37	19	0	65	3	7	19	0	0
##	[41,]	184	37	20	0	64	3	8	19	0	0
##	[42,]	184	37	19	0	64	3	7	19	0	0
##	[43,]	184	36	19	0	64	3	7	19	0	0
##	[44,]	191	36	19	0	64	3	7	19	0	0
##	[45,]	186	37	19	0	65	3	7	19	0	0
##	[46,]	184	37	19	0	65	3	7	19	0	0
##	[47,]	185	36	19	0	65	3	7	18	0	0
##	[48,]	182	39	19	0	65	3	7	19	0	0
##	[49,]	186	36	19	0	64	3	7	19	0	0
##	[50,]	186	36	19	0	64	3	7	19	0	0

head(GibbsStepTimeFixedLsequen, 50)

##		z	хi	theta	${\tt delta}$	alpha	kappa	rho	eta	upsilon	psi
##	[1,]	193	39	20	0	86	3	7	19	0	0
##	[2,]	189	36	19	0	86	3	7	19	0	0
##	[3,]	193	37	19	0	87	3	7	19	0	0
##	[4,]	189	36	19	0	87	3	7	19	0	0
##	[5,]	193	37	20	0	87	3	7	19	0	0
##	[6,]	198	36	20	0	87	3	7	19	0	0
##	[7,]	188	36	20	0	87	3	8	19	0	0
##	[8,]	192	36	19	0	87	3	7	19	0	0
##	[9,]	192	36	20	0	87	3	7	19	0	0
##	[10,]	191	36	19	0	87	3	7	19	0	0
##	[11,]	196	36	20	0	87	3	7	19	0	0
##	[12,]	196	40	19	0	87	3	7	19	0	0
##	[13,]	197	37	20	0	86	3	8	19	0	0
##	[14,]	196	36	19	0	87	3	8	20	0	0
##	[15,]	189	36	19	0	87	3	7	19	0	0
##	[16,]	193	36	20	0	87	3	7	19	0	0
##	[17,]	194	36	19	0	92	3	8	21	0	0
##	[18,]	319	36	19	0	85	3	7	19	0	0
##	[19,]	182	36	20	0	87	3	7	19	0	0
##	[20,]	180	36	20	0	87	3	7	19	0	0
##	[21,]	183	36	19	0	87	3	7	19	0	0
##	[22,]	197	36	20	0	87	3	7	19	0	0
##	[23,]	193	36	19	0	87	3	7	19	0	0
##	[24,]	195	37	19	0	87	3	7	19	0	0
##	[25,]	194	36	20	0	88	3	7	19	0	0
##	[26,]	197	37	20	0	87	3	7	20	0	0
##	[27,]	191	36	19	0	87	3	7	18	0	0
##	[28,]	197	36	19	0	87	3	7	18	0	0
##	[29,]	201	37	21	0	87	3	8	19	0	0
##	[30,]	191	36	19	0	87	3	8	19	0	0
##	[31,]	192	36	19	0	87	3	9	19	0	0
##	[32,]	191	37	20	0	87	3	8	19	0	0
##	[33,]	191	36	19	0	92	3	8	19	0	0

##	[34,]	202	39	21	0	87	3	9	20	0	0
##	[35,]	191	37	20	0	87	3	8	19	0	0
##	[36,]	194	36	19	0	87	3	7	19	0	0
##	[37,]	193	37	20	0	87	3	9	20	0	0
##	[38,]	189	36	19	0	87	3	8	19	0	0
##	[39,]	196	37	19	0	87	3	7	20	0	0
##	[40,]	192	37	19	0	86	3	7	19	0	0
##	[41,]	190	36	19	0	87	3	8	19	0	0
##	[42,]	181	36	19	0	87	3	8	19	0	0
##	[43,]	182	37	19	0	87	3	8	19	0	0
##	[44,]	184	36	19	0	87	3	8	19	0	0
##	[45,]	190	37	20	0	87	3	7	19	0	0
##	[46,]	191	36	19	0	87	3	8	19	0	0
##	[47,]	193	36	19	0	87	3	8	19	0	0
##	[48,]	195	36	20	0	86	3	8	19	0	0
##	[49,]	192	36	19	0	85	3	8	19	0	0
##	[50,]	192	36	19	0	87	3	8	19	0	0

head(GibbsStepTimeVaryLjSequen, 50)

##		u	хi	theta	delta	alpha	kappa	rho	eta	upsilon	psi
##	[1,]	0	6	19	0	206	1	6	19	0	0
##	[2,]	0	6	18	0	206	1	6	19	0	0
##	[3,]	0	6	19	0	208	1	6	19	0	0
##	[4,]	0	6	20	0	206	1	5	19	0	0
##	[5,]	0	6	19	0	205	1	5	19	0	0
##	[6,]	0	6	19	0	209	1	5	19	0	0
##	[7,]	0	8	19	0	203	1	5	19	0	0
##	[8,]	0	6	19	0	207	1	5	19	0	0
##	[9,]	0	6	18	0	208	1	5	19	0	0
##	[10,]	0	6	19	0	210	1	6	20	0	0
##	[11,]	0	6	18	0	207	1	6	19	0	0
##	[12,]	0	6	19	0	213	1	6	20	0	0
##	[13,]	0	6	19	0	206	1	6	19	0	0
##	[14,]	0	6	19	0	207	1	5	20	0	0
##	[15,]	0	6	18	0	337	1	6	19	0	0
##	[16,]	0	6	18	0	194	1	5	19	0	0
##	[17,]	0	6	18	0	192	1	5	19	0	0
##	[18,]	0	6	18	0	194	1	5	19	0	0
##	[19,]	0	6	19	0	220	1	6	19	0	0
##	[20,]	0	6	18	0	206	1	6	19	0	0
##	[21,]	0	6	18	0	206	1	6	19	0	0
##	[22,]	0	6	19	0	204	1	6	18	0	0
##	[23,]	0	6	18	0	206	1	6	19	0	0
##	[24,]	0	6	18	0	210	1	6	19	0	0
##	[25,]	0	6	19	0	208	1	6	19	0	0
##	[26,]	0	6	18	0	207	1	7	19	0	0
##	[27,]	0	6	18	0	207	1	7	19	0	0
##	[28,]	0	6	19	0	207	1	7	19	0	0
##	[29,]	0	6	18	0	205	1	7	19	0	0
##	[30,]	0	6	18	0	203	1	7	19	0	0
##	[31,]	0	6	18	0	207	1	6	19	0	0
##	[32,]	0	6	18	0	207	1	7	20	0	0
##	[33,]	0	6	18	0	212	1	6	19	0	0
##	[34,]	0	6	18	0	213	1	8	20	0	0

```
## [35,] 0
                                                  7
                                                     20
              6
                     19
                                   214
                                             1
                                                                0
##
   [36,] 0
                                                  7
              6
                     19
                                   207
                                             1
                                                     19
                                                                0
                                                                      0
                              0
   [37,] 0
              6
                     18
                                   207
                                             1
                                                  6
                                                     19
   [38,] 0
                                   206
                                                 7
                                                                      0
               6
                     19
                              0
                                             1
                                                     20
                                                                0
##
   [39,] 0
               6
                     17
                              0
                                   195
                                             1
                                                  6
                                                     19
                                                                0
                                                                      0
   [40,] 0
              6
                              0
                                   193
                                                  6
                                                     19
                                                                0
                                                                      0
##
                     17
                                             1
## [41.] 0
               6
                     19
                              0
                                   198
                                             1
                                                  6
                                                     19
                                                                0
                                                                      0
## [42,] 0
               6
                     19
                              0
                                   208
                                             1
                                                  7
                                                     19
                                                                0
                                                                      0
## [43,] 0
              6
                     18
                              0
                                   204
                                             1
                                                  6
                                                     18
                                                                0
                                                                      0
   [44,] 0
              6
                     17
                              0
                                   206
                                             1
                                                  6
                                                     18
                                                                0
                                                                      0
## [45,] 0
                     18
                              0
                                   205
                                             1
                                                  5
                                                     18
                                                                0
                                                                      0
              6
## [46,] 0
                                                  5
               6
                     19
                              0
                                   209
                                             1
                                                     19
                                                                0
                                                                      0
## [47,] 0
              6
                     18
                                   205
                                                  5
                                                     19
                                                                0
                                                                      0
                              0
                                             1
## [48,] 0
                     18
                              0
                                   208
                                                  5
                                                      19
                                                                 0
                                                                      0
## [49,] 0
                                                                      0
              6
                     18
                              0
                                   206
                                             1
                                                  5
                                                     19
                                                                0
## [50,] 0
                     18
                                   207
                                             1
                                                  5
                                                      19
```

As expected, there aren't any significant differences between our 4 methods regarding posterior sampling time for the 3 temporal parameters ψ , Υ , and η_t 's.

Posterior Sampling Time Summary Statistics

We then present vital posterior sampling time summary statistics for the 7 spatial-related parameters $(z_{jl_j}^o(s_i)$'s or $u_j^o(s_i)$'s, $\xi_j^o(s_i)$'s, θ_{jl_j} 's, $\delta_{1:k}$, ρ , κ , and $\alpha_{jl_j}^o(s_i)$'s) to showcase the manifest scalability improvements brought about by our 3 novelties, i.e., slice sampling, spatial NNGP, and sequential updates.

```
apply(GibbsStepTimeFixedLfullGP[,1:7], 2, summary)
##
                          хi
                             theta delta alpha
                                                    kappa
                                                               rho
## Min.
           168.0000
                     35.0000 15.000 0e+00 62.000 16.0000 44.0000
                     36.0000 18.000 0e+00 67.000 17.0000 48.0000
## 1st Qu. 198.0000
## Median
           212.0000
                     36.0000 19.000 0e+00 68.000 17.0000 50.0000
           211.5018
                     35.9726 18.431 6e-04 67.723 17.0162 49.7274
## 3rd Qu. 219.0000
                     36.0000 19.000 0e+00 69.000 17.0000 52.0000
           381.0000 167.0000 23.000 1e+00 77.000 21.0000 60.0000
## Max.
apply(GibbsStepTimeFixedLblock[,1:7], 2, summary)
##
                                                               rho
                          хi
                                theta delta
                                              alpha kappa
## Min.
           160.0000
                     35.0000 16.0000 0e+00 60.0000 2.0000
                                                            6.0000
                     36.0000 18.0000 0e+00 63.0000 3.0000
## 1st Qu. 175.0000
                                                            7.0000
## Median
           178.0000
                     36.0000 19.0000 0e+00 64.0000 3.0000
                                                            7.0000
                     36.1242 18.7772 2e-04 63.7966 2.9856
## Mean
           180.8608
                                                            7.1076
## 3rd Qu. 182.0000
                     36.0000 19.0000 0e+00 65.0000 3.0000
           347.0000 176.0000 23.0000 1e+00 73.0000 6.0000 11.0000
## Max.
apply(GibbsStepTimeFixedLsequen[,1:7], 2, summary)
##
                          хi
                               theta delta
                                              alpha kappa
                                                             rho
                  z
           158.0000
                     34.0000 16.0000
                                                            7.00
## Min.
                                          0 82.0000 2.0000
## 1st Qu. 176.0000
                     35.0000 18.0000
                                          0 85.0000 3.0000
## Median
           181.0000
                     35.0000 19.0000
                                          0 85.0000 3.0000
                                                            7.00
## Mean
           183.3338
                     35.6472 18.6408
                                          0 85.1594 3.0002
                                                            7.53
## 3rd Qu. 185.0000
                    36.0000 19.0000
                                          0 85.0000 3.0000 8.00
## Max.
           343.0000 171.0000 23.0000
                                          0 95.0000 4.0000 11.00
```

apply(GibbsStepTimeVaryLjSequen[,1:7], 2, summary)

```
##
                    xi theta delta
                                        alpha kappa
                                                         rho
## Min.
           0
                                   0 185.0000
                5.0000 16.000
                                                   1 5.0000
## 1st Qu.
           0
                6.0000 18.000
                                   0 202.0000
                                                   1 5.0000
## Median
           0
                6.0000 18.000
                                   0 205.0000
                                                   1 6.0000
## Mean
           0
                6.1232 18.242
                                   0 207.3494
                                                   1 5.7782
## 3rd Qu.
           0
                6.0000 19.000
                                   0 208.0000
                                                   1 6.0000
           0 141.0000 21.000
                                   0 373.0000
                                                   1 8.0000
## Max.
```

The results correspond well to what we have deduced in Appendix H of our manuscript.

- Compared to their fullGPfixedL counterparts, NNGPblockFixedL's Gibbs sampler steps corresponding to ρ and κ are evidently accelerated by our spatial NNGP prior;
- The only Gibbs sampler step time that should clearly differ between NNGPblockFixedL and NNGPsequenFixedL is the step updating all $\alpha^o_{jl_j}(s_i)$'s, which result from whether we adopt our sequential updating method or not. Since m=400 is quite small here, NNGPblockFixedL is slightly faster than NNGPsequenFixedL for the posterior sampling step corresponding to $\alpha^o_{jl_j}(s_i)$'s. As m gets larger, NNGPsequenFixedL will be much faster than NNGPblockFixedL for the same step;
- Thanks to our slice sampling approach, NNGPsequenVaryLj's Gibbs sampler steps for $u_j^o(s_i)$'s and $\xi_j^o(s_i)$'s are significantly faster than NNGPsequenFixedL's Gibbs sampler steps for $z_{jl_j}^o(s_i)$'s and $\xi_j^o(s_i)$'s. It turns out that NNGPsequenVaryLj's Gibbs sampler step for $\alpha_{jl_j}^o(s_i)$'s is slower than its NNGPsequenFixedL counterpart, indicating that inefficiencies caused by case discussion, calculating all required upper or lower bounds, and rejection sampling outweigh acceleration brought about by slice sampling's ensured non-increasing posterior samples for L_j 's through the MCMC iterations.

We finally calculate standard deviations for the 7 spatial-related parameters' posterior sampling time across all kept post-burn-in MCMC iterations.

```
round(apply(GibbsStepTimeFixedLfullGP[,1:7], 2, sd), 5)
##
          z
                  хi
                         theta
                                  delta
                                           alpha
                                                                rho
                                                     kappa
## 24.41466 2.01769
                     0.81128
                               0.02449
                                        1.72188
                                                  0.40196
                                                            2.38617
round(apply(GibbsStepTimeFixedLblock[,1:7], 2, sd), 5)
                                                                rho
                         theta
                                  delta
                                           alpha
                                                     kappa
## 19.27167
             3.34446
                      0.63596
                               0.01414
                                         1.45686
                                                  0.13927
                                                            0.34705
round(apply(GibbsStepTimeFixedLsequen[,1:7], 2, sd), 5)
##
                         theta
                                  delta
                                           alpha
                                                                rho
          z
                  хi
                                                     kappa
## 19.84517
             2.81530
                      0.63926
                                0.00000
                                         1.08325
                                                            0.64279
                                                  0.04243
round(apply(GibbsStepTimeVaryLjSequen[,1:7], 2, sd), 5)
                                  delta
                                           alpha
                                                                rho
                  хi
                                                     kappa
    0.00000
            3.28588
                      0.63554
                                0.00000 19.83958
                                                   0.00000
                                                            0.69333
```