Monlinear regression abolysis

$$(x_{1}, y_{1}), (x_{1}, y_{2}) - (x_{m}, y_{m})$$
Let, $y = f(x) = a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3} + \cdots + a_{m}x^{m}$ [polynomial f must degree]

$$S = e[x^{2} + e^{2}x + \cdots + e^{m}]$$

$$= [y_{1} - (a_{0} + a_{1}x_{1} + a_{2}x^{2}x^{2} + \cdots + a_{m}x^{n}_{1})] + [y_{2} - (a_{0} + a_{1}x_{2} + a_{2}x^{2}x^{2} + \cdots + a_{m}x^{n}_{n})]^{2}$$

$$+ \cdots + [f_{m} - (a_{0} + a_{1}x_{m} + a_{2}x^{m} + \cdots + a_{m}x^{n}_{m})]^{2}$$

$$\frac{\partial S}{\partial a_{0}} = -2[y_{1} - (a_{0} + a_{1}x_{1} + a_{2}x^{2}x^{2} + \cdots + a_{m}x^{n}_{m})] - 2[y_{2} - (a_{0} + a_{1}x_{2} + a_{2}x^{2}x^{2} + \cdots + a_{m}x^{n}_{m})] = 0$$

$$\Rightarrow m \land a_{1} = \sum_{i=1}^{m} x_{i} + a_{2} \sum_{i=1}^{m} x_{i}^{2} + \cdots + a_{m}x^{n}_{m}) - 2x_{2}[y_{2} - (a_{0} + a_{1}x_{2} + a_{2}x^{2}x^{2} + \cdots + a_{m}x^{n}_{m})] - 2x_{2}[y_{2} - (a_{0} + a_{1}x_{2} + a_{2}x^{2}x^{2} + \cdots + a_{m}x^{n}_{m})]$$

$$-2x_{m} [y_{m} - (a_{0} + a_{1}x_{1} + a_{2}x^{2}x^{2} + \cdots + a_{m}x^{m}_{m})] - 2x_{2}[y_{2} - (a_{0} + a_{1}x_{2} + a_{2}x^{2}x^{2} + \cdots + a_{m}x^{m}_{m})]$$

$$-2x_{m} [y_{m} - (a_{0} + a_{1}x_{1} + a_{2}x^{2}x^{2} + \cdots + a_{m}x^{m}_{m})] - 2x_{2}[y_{2} - (a_{0} + a_{1}x_{2} + a_{2}x^{2}x^{2} + \cdots + a_{m}x^{m}_{m})]$$

$$-2x_{m} [y_{m} - (a_{0} + a_{1}x_{1} + a_{2}x^{2}x^{2} + \cdots + a_{m}x^{m}_{m})] - 2x_{2}[y_{2} - (a_{0} + a_{1}x_{2} + a_{2}x^{2} + \cdots + a_{m}x^{m}_{m})]$$

$$-2x_{m} [y_{m} - (a_{0} + a_{1}x_{1} + a_{2}x^{2}x^{2} + \cdots + a_{m}x^{m}_{m})] - 2x_{2}[y_{2} - (a_{0} + a_{1}x_{2} + a_{2}x^{2} + \cdots + a_{m}x^{m}_{m})]$$

$$-2x_{m} [y_{m} - (a_{0} + a_{1}x_{1} + a_{2}x^{2}x^{2} + \cdots + a_{m}x^{m}_{m})] - 2x_{2}[y_{2} - (a_{0} + a_{1}x_{2} + a_{2}x^{2} + \cdots + a_{m}x^{m}_{m})]$$

$$-2x_{m} [y_{m} - (a_{0} + a_{1}x_{1} + a_{2}x^{2}x^{2} + \cdots + a_{m}x^{m}_{m})] - x_{m}[y_{m} + a_{2}x^{2}x^{2} + \cdots + a_{m}x^{m}_{m}]$$

$$-2x_{m} [y_{m} - (a_{0} + a_{1}x_{1} + a_{2}x^{2}x^{2} + \cdots + a_{m}x^{m}_{m}] - x_{m}[y_{m} + a_{2}x^{2}x^{2} + \cdots + a_{m}x^{m}_{m}]$$

$$-2x_{m} [y_{m} + a_{2}x^{2} + \cdots + a_{m}x^{2} + \cdots + a_{m}x^{2}] - x_{m}[y_{m} + a_{2}x^{2} + \cdots + a_{m}x^{2}]$$

$$-2x_{m} [y_{m} + a_{2}x^{2} + \cdots + a_{m}x^{2} + \cdots + a_{m}x^{2}]$$

Power function fitting.

let, y=ax c where, a & c are to be obtained.

ortene, 4 = 1097, ao = 10ga, a, = c, and x=1000

X = logx.

Problem: 10 Fit a polynomial of the second degree to the data points given in the following table:

Determine the worstout a and b by the method of least sgranes such that y= a ebx Problem-E fit the following data

or Republican All - 11 -

Prob: Fit a second order polynomial to the go following data:

	- 1	2	3	4	-5	6.	and the last
+ x	0	0.5	1.0	. 1.5	2.0	6,25	
3	D	0.25	1.0	2.25	4.0	6.25	

Ang:
$$a_0=0$$
, $a_1=0$, $a_2=1$
Hence, $f=x^2$

3) a) An experiment - on the life of a cutting tools at different - speeds has given the values: Speed v (st/min.): 350 | 400 | 500 | 600 | Life, t (min): 61 | 26 | 7 | 2.6 | Find the best values of 'a' and 'b' in the Lond $V = a e^{bt}$ by the method of least squares. Givon eg ! V= aebt =) Inv= Ina + bt =) 19 = K+bt majtazzi = Zyi a, 2x; + a, 221 = 2x; 350 | 400 | 500 | 600 | 5.858 5.991 6.215 6.397 24-24.461 357.33 155.766 43.505 16.6322 2015 = 573.2412 Hence, the egg. 44 + 96.66 = 24.461 -0. $=) K = 6.3145 \quad b = -8.25 \text{ M}^{3}$ $=) \log \log \ln a = 6.2145$ $=) \quad a = 6.3145$ $=) \quad a = e^{6.3145} = 552.5257$