Trabajo Práctico 1

Hopfield '82

- 1. Implemente una red de Hopfield '82 que aprenda tres imágenes binarias a elección. Pruebe el funcionamiento de la red utilizando distintos patrones de entrada como, por ejemplo, las mismas imágenes con ruido o con elementos borrados o agregados.
- 2. Comprobar estadísticamente la capacidad de la red de Hopfield '82 calculando la cantidad máxima de patrones pseudo-aleatorios aprendidos en función del tamaño de la red. Obtener experimentalmente los resultados de la siguiente tabla

Perror	p_{max}/N
0,001	0,105
0,0036	0,138
0,01	0,185
0,05	0,37
0,1	0,61

(Tabla 2.1, sección 2.2, Hertz, Krogh & Palmer, pág. 19)

- 3. Implemente una red de Hopfield '82 que aprenda patrones pseudo-aleatorios y muestre qué sucede con los patrones aprendidos cuando algunas interconexiones son eliminadas al azar. Estime cuánto disminuye la capacidad en función de la eliminación de interconexiones.
- 4. Verifique la existencia de estados espurios en la red del ejercicio 1. En particular, verifique si los patrones inversos y la mezcla de los tres patrones son estados espurios (Ver *Spurious States*, en la sección 2.2, Hertz, Krogh & Palmer, pág. 24).
- 5. Simular un modelo de Ising en una y dos dimensiones. Encontrar la temperatura crítica para ambos casos.