エンディアンの話

プログラマのためのC言語 第8回

概要

があるのか

なんでメモリの内容が変わる?

Hey, look at this.

エンディアンとは?

● エンディアンとは?

່ √ データの並び順を表す言葉(バイトオーダー)

● エンディアンとは?

◇ ✔ データの並び順を表す言葉(バイトオーダー)

2バイト以上で構成されるデータを記録、伝送する時にバイトをどんな順番で記 録、伝送するか

エンディアンとは?

✔ データの並び順を表す言葉(バイトオーダー) 2バイト以上で構成されるデータを記録、伝送する時にバイトをどんな順番で記録、伝送するか

● エンディアンとは?

✔ データの並び順を表す言葉(バイトオーダー) 2バイト以上で構成されるデータを記録、伝送する時にバイトをどんな順番で記録、伝送するか

● エンディアンとは?

✔ データの並び順を表す言葉(バイトオーダー) 2バイト以上で構成されるデータを記録、伝送する時にバイトをどんな順番で記録、伝送するか

78	56			
 0x1000	0x1001	0x1002	0x1003	

■ エンディアンとは?

✔ データの並び順を表す言葉(バイトオーダー) 2バイト以上で構成されるデータを記録、伝送する時にバイトをどんな順番で記録、伝送するか

	78	56	34		
•••	0x1000	0x1001	0x1002	0x1003	•

● エンディアンとは?

✔ データの並び順を表す言葉(バイトオーダー) 2バイト以上で構成されるデータを記録、伝送する時にバイトをどんな順番で記録、伝送するか

78	56	34	12	
 0x1000	0x1001	0x1002	0x1003	

エンディアンとは?

✔ データの並び順を表す言葉(バイトオーダー) 2バイト以上で構成されるデータを記録、伝送する時にバイトをどんな順番で記録、伝送するか

0x12345678

78	56	43	12	
 0x1000	0x1001	0x1002	0x1003	

リトル・エンディアン

数値の **小さい方** から アドレスの **小さい方** に格納する方式

エンディアンとは?

✔ データの並び順を表す言葉(バイトオーダー) 2バイト以上で構成されるデータを記録、伝送する時にバイトをどんな順番で記録、伝送するか

0x12345678

78	56	43	12	
 0x1000	0x1001	0x1002	0x1003	

リトル・エンディアン

数値の **小さい方** から アドレスの **小さい方** に格納する方式

12	34	56	78	
 0x1000	0x1001	0x1002	0x1003	•••

ビッグ・エンディアン

数値の **大きい方** から アドレスの **小さい方** に格納する方式 " エンディアンはCPUによって決まる

MicroBlaze PowerPC ARM Intel

ビッグ・エンディアン

リトル・エンディアン

MicroBlaze

組み込み?

Power Macintosh

PowerPC

PS3, Wii, Xbox360

ARM

Switch, M1 Mac

Intel

PS4, PS5, Xbox One

バイ・エンディアン

" なぜ異なるエンディアンのCPUがあるのか

● なぜ異なるエンディアンのCPUがあるのか

- ✔ Intel社とMotorola社の対立の名残らしい
 - **✓** リトルエンディアン、ビッグエンディアンのどっちが上?
 - ・性能の差というのは基本的にない
 - ✔ エンディアンはCPUの設計者が決める

● なぜ異なるエンディアンのCPUがあるのか

- ✔ Intel社とMotorola社の対立の名残らしい
- ✓ リトルエンディアン、ビッグエンディアンのどっちが上?
 - ・性能の差というのは基本的にない
- ✓ エンディアンはCPUの設計者が決める

Motorola王国

Motorola王国

小さい数をアドレスの小さい方に書 くべきじゃ

Motorola王国

小さい数をアドレスの小さい方に書 くべきじゃ

78	56	34	12	
 0x1000	0x1001	0x1002	0x1003	

Motorola王国

いいえ、数字の大きい方を左に書く べきだわ

78	56	34	12
 0x1000	0x1001	0x1002	0x1003

Motorola王国

いいえ、数字の大きい方を左に書く べきだわ

78	56	34	12
 0x1000	0x1001	0x1002	0x1003

12 34 56 78 ... 0x1000 0x1001 0x1002 0x1003

0x12345678

Motorola王国

	78	56	34	12
•••	0x1000	0x1001	0x1002	0x1003

12	34	56	78	
0x1000	0x1001	0x1002	0x1003	

0x12345678

78	56	34	12
 0x1000	0x1001	0x1002	0x1003

VS

Motorola王国

Motorola形式

12	34	56	78	
 0x1000	0x1001	0x1002	0x1003	

0x12345678

	-0.9
Intel#%ī	T

	78	56	34	12
•••	0x1000	0x1001	0x1002	0x1003

VS

Motorola王国

Motorola形式

	12	34	56	78	
•••	0x1000	0x1001	0x1002	0x1003	

0x12345678

		_		
100	tel	ш	6	
		ш	4	T 1
		71		

78	56	34	12
 0x1000	0x1001	0x1002	0x1003

VS

Motorola王国

Motorola形式

12	34	56	78	
 0x1000	0x1001	0x1002	0x1003	•

0x12345678

Intel形式

78	56	34	12
 0x1000	0x1001	0x1002	0x1003

VS

Motorola王国

Motorola形式

12	34	56	78	
0x1000	0x1001	0x1002	0x1003	

0x12345678

リトルエンディアン

78	56	34	12
 0x1000	0x1001	0x1002	0x1003

VS

Big-End

Motorola王国

ビッグエンディアン

12	34	56	78	
0x1000	0x1001	0x1002	0x1003	

0x12345678

(66)

なぜCPUのエンディアンが異なると メモリの内容が変わるのか

CPU、レジスタ、メモリについて補足

リトル・エンディアン

	78	56	34	12
•••	0x1000	0x1001	0x1002	0x1003

リトル・エンディアン

ビッグ・エンディアン

(*) 余談:バイトオーダーがらみの話

バイトオーダーがらみの話

- ✓ UTF-8 とかの BOM(Byte Order Mark)
 - ✔ 異なるエンディアン機器同士のやりとり

BOM?

```
≡ utf-8.txt U ×
≡ utf-8.txt
        AAAAA

■ utf-16 little.txt U ×
≡ utf-16_little.txt
        AAAAA
≡ utf-16_big.txt U ×
≡ utf-16 big.txt
        AAAAA
```

```
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
0 EF BB BF 41 41 41 41 41-
          UTF-8、エンディアンは関係ない
   BOM
          A = 0x41
 +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
0 FF FE 41 00 41 00 41 00-41 00 41 00 ▮
          UTF-16 リトルエンディアン
  BOM
          A = 0x4100 と表現
 +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
0 FE FF 00 41 00 41 00 41-00 41 00 41
          UTF-16 ビッグエンディアン
  BOM
           A = 0x0041 と表現
```

● 異なるエンディアン機器同士のやりとり

- ✔ バイトオーダーが異なる機器同士ではデータの扱いが異なるのでそのままじゃやりとりできない
- ✔ USBとかは基本的にリトルエンディアンと決めて通信をしている
- ✔ ネットワークも通信プロトコルでバイトオーダーを予め決めて整合性をとっている
- ✓ ネットワーク通信する際のバイトの並びとして「ネットワークバイトオーダー」という言葉がある。
- ✓ TCP/IPではIPやポートなどの情報をビックエンディアンと決めている
- **✓** どこかのタイミングで適切なバイトオーダーに変換が必要、これを **バイトスワップ** という

おしまい