Common Machine Learning Algorithms

CONTENTS

1 Linear Models

LINEAR MODELS

LINEAR MODELS – FUNCTIONALITY

SUPERVISED

PARAMETRIC

WHITE-BOX

General idea Represent target as function of linear predictor $\boldsymbol{\theta}^{\mathsf{T}} \mathbf{x}$

Hypothesis space

$$\mathcal{H} = \{ f : \mathcal{X} \to \mathbb{R} \mid f(\mathbf{x}) = \phi(\boldsymbol{\theta}^{\top}\mathbf{x}) \}, \text{ with suitable transformation } \phi(\cdot), \text{ e.g.,}$$

- Identity $\phi(\theta^{\top} \mathbf{x}) = \theta^{\top} \mathbf{x} \Rightarrow \text{linear regression}$
- Logistic sigmoid function $\phi(\theta^T \mathbf{x}) = \frac{1}{1 + \exp(-\theta^T \mathbf{x})} =: \pi(\mathbf{x} \mid \theta) \Rightarrow$ (binary) logistic regression
 - ullet Probability $\pi(\mathbf{x} \mid oldsymbol{ heta}) = \mathbb{P}(y = 1 \mid \mathbf{x})$ of belonging to one of two classes
 - Separating hyperplane via decision rule (e.g., $\hat{y} = 1 \Leftrightarrow \pi(\mathbf{x}) > 0.5$)

Linear regression hyperplane

Logistic function for bivariate input

Separating hyperplane for bivariate logistic regression

LINEAR MODELS - FUNCTIONALITY

Empirical risk

- Linear regression
 - Typically, based on **quadratic** loss: $\mathcal{R}_{emp}(\theta) = \sum_{i=1}^{n} \left(y^{(i)} f\left(\mathbf{x}^{(i)} \mid \theta \right) \right)^2$ \Rightarrow corresponding to ordinary-least-squares (OLS) estimation
 - Alternatives: e.g., absolute or Huber loss (both more robust)
- Logistic regression: based on Bernoulli/log/cross-entropy loss

$$\Rightarrow \mathcal{R}_{emp}(\boldsymbol{\theta}) = \sum_{i=1}^{n} -y^{(i)} \log \left(\pi \left(\mathbf{x}^{(i)} \right) \right) - (1 - y^{(i)}) \log \left(1 - \pi \left(\mathbf{x}^{(i)} \right) \right)$$

Optimization

- For **OLS**: analytically with $\hat{\theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ (with $\mathbf{X} \in \mathbb{R}^{n \times p}$: matrix of feature vectors)
- For other loss functions: numerical optimization

Hyperparameters None

LINEAR MODELS - PRO'S & CON'S

Advantages

- + **simple and fast** implementation; cheap computational costs
- intuitive interpretability: mean influence of features on the output and feature importance
- + fits **linearly** separable data sets very well
- + works well independent of data size
- + basis for many machine learning algorithms

Disadvantages

- not suitable for data based on a non-linear data generating process → strong simplification of real-world problems
- strong assumptions: data is independent (multi-collinearity must be removed)
- tend to overfit (can be reduced by regularization)
- sensitive to outliers and noisy data

Simple method with good interpretability for linear problems, but strong assumptions and simplification of real-world problems

LINEAR MODELS – PRACTICAL HINTS

Check assumptions??

This model is very effective if the following assumptions are fulfilled:

- **linearity**: The expected response is a linear combination of the features.
- homoscedasticity: The variance of residuals is equal for all features.
- independence: All observations are independent of each other.
- normality: Y is normally distributed for any fixed value of the features

Implementation

- R: mlr3 learner LearnerRegrLM, calling stats::lm()
- Python: LinearRegression from package sklearn.linear_model, package for advanced statistical parameters statsmodels.api

Regularization

In practice, we often use regularized models in order to **prevent overfitting** or perform feature selection. More details will follow in the subsequent chapter.