

Probabilistic Graphical Models in Bioinformatics

Lecture 12: Variable elimination; Gibbs sampling for motif finding

Variable elimination

Two runs of variable eliminations for the query P(J)

Step	Variable	Factors	Variables	New
	eliminated	used	involved	factor
1	C	$\phi_C(C)$, $\phi_D(D,C)$	C, D	$\tau_1(D)$
2	D	$\phi_G(G,I,D)$, $ au_1(D)$	G, I, D	$ au_2(G,I)$
3	I	$\phi_I(I)$, $\phi_S(S,I)$, $\tau_2(G,I)$	G, S, I	$ au_3(G,S)$
4	H	$\phi_H(H,G,J)$	H,G,J	$ au_4(G,J)$
5	G	$\tau_4(G, J), \tau_3(G, S), \phi_L(L, G)$	G, J, L, S	$ au_5(J,L,S)$
6	S	$\tau_5(J,L,S)$, $\phi_J(J,L,S)$	J, L, S	$ au_6(J,L)$
7	L	$ au_6(J,L)$	J, L	$ au_7(J)$

Step	Variable	Factors	Variables	New
	eliminated	used	involved	factor
1	G	$\phi_G(G,I,D), \phi_L(L,G), \phi_H(H,G,J)$	G, I, D, L, J, H	$\tau_1(I,D,L,J,H)$
2	I	$\phi_{I}(I), \phi_{S}(S, I), \tau_{1}(I, D, L, S, J, H)$	S, I, D, L, J, H	$\tau_2(D, L, S, J, H)$
3	S	$\phi_J(J,L,S)$, $\tau_2(D,L,S,J,H)$	D, L, S, J, H	$ au_3(D,L,J,H)$
4	L	$ au_3(D,L,J,H)$	D, L, J, H	$ au_4(D,J,H)$
5	H	$ au_4(D,J,H)$	D, J, H	$ au_5(D,J)$
6	C	$\phi_C(C)$, $\phi_D(D,C)$	D, J, C	$ au_6(D)$
7	D	$\tau_5(D, J), \tau_6(D)$	D, J	$ au_7(J)$

This elimination ordering introduces factors with much larger scope.

How to deal with evidence?

• Goal: to compute $P(J | i^1, h^0)$. We can use

$$P(J \mid i^{1}, h^{0}) = \frac{P(J, i^{1}, h^{0})}{P(i^{1}, h^{0})}$$

• we first compute unnormalized distribution $P(J, i^1, h^0)$. By renormalization (to the probability of the evidence) we obtain the conditional probability.

Algorithm 9.2 Using Sum-Product-VE for computing conditional probabilities

```
Procedure Cond-Prob-VE (

\mathcal{K}, // A network over \mathcal{X}
\mathbf{Y}, // Set of query variables
\mathbf{E} = \mathbf{e} // Evidence
)

\Phi \leftarrow \text{Factors parameterizing } \mathcal{K}
Replace each \phi \in \Phi by \phi[\mathbf{E} = \mathbf{e}]
Select an elimination ordering \prec
\mathbf{Z} \leftarrow = \mathcal{X} - \mathbf{Y} - \mathbf{E}
\phi^* \leftarrow \text{Sum-Product-VE}(\Phi, \prec, \mathbf{Z})
\alpha \leftarrow \sum_{\mathbf{y} \in Val(\mathbf{Y})} \phi^*(\mathbf{y})
\mathbf{return } \alpha, \phi^*
```

Computing $P(J, i^1, h^0)$:

Step	Variable	Factors	Variables	New	
	eliminated	used	involved	factor	
1'	C	$\phi_C(C), \phi_D(D,C)$	C, D	$\tau_1'(D)$	
2'	D	$\phi_G[I=i^1](G,D), \phi_I[I=i^1](), \tau_1'(D)$	G,D	$ au_2'(G)$	
5'	G	$\tau_2'(G), \phi_L(L,G), \phi_H[H=h^0](G,J)$	G, L, J	$ au_5'(L,J)$	
6'	S	$\phi_S[I = i^1](S), \phi_J(J, L, S)$	J, L, S	$\tau_6'(J,L)$	
7'	L	$\tau'_{6}(J,L), \tau'_{5}(J,L)$	J, L	$ au_7'(J)$	

Compare with computing P(J):

Step	Variable	Factors	Variables	New	
	eliminated	used	involved	factor	
1	C	$\phi_C(C)$, $\phi_D(D,C)$	C, D	$\tau_1(D)$	
2	D	$\phi_G(G,I,D)$, $\tau_1(D)$	G, I, D	$ au_2(G,I)$	
3	I	$\phi_I(I)$, $\phi_S(S,I)$, $\tau_2(G,I)$	G, S, I	$ au_3(G,S)$	
4	H	$\phi_H(H,G,J)$	H,G,J	$ au_4(G,J)$	
5	G	$\tau_4(G,J)$, $\tau_3(G,S)$, $\phi_L(L,G)$	G, J, L, S	$ au_5(J,L,S)$	
6	S	$ au_5(J,L,S)$, $\phi_J(J,L,S)$	J, L, S	$\tau_6(J,L)$	
7	L	$ au_6(J,L)$	J, L	$ au_7(J)$	

- Steps 3 & 4 disappear since I and H do not need to be eliminated
- By not eliminating I, we avoid the step that correlates G and S.
- $\phi_I(I=i^1)()=P(i^1)$ is simply a number and can be multiplied to any factor.

Graph-theoretic analysis

- The VE algorithm does not care whether the graph that generated factors is directed, undirected or partly directed.
- The algorithm's input is a set of factors Φ , and the only relevant aspect of the computation is the scope of the factors.
- Hence, it can be viewed the algorithm is operating on an undirected graph.
- For a Bayesian network g, in the case without evidence, the undirected graph is precisely the moralized graph of g.

From Bayesian networks to Markov networks 😁 TEH

- The moral graph M[g] of a Bayesian network structure g is the undirected graph that contains an edge between X and Y if
 - a) There is a directed edge between them (in either direction)
 - b) X and Y are both parents of the same node (the name morality originated from marrying the parents of a node).

Elimination as graph transformation

Original graph

•		New		
used	involved	factor		
$\phi_C(C)$, $\phi_D(D,C)$	C, D	$\tau_1(D)$		
$\phi_G(G,I,D)$, $\tau_1(D)$	G, I, D	$ au_2(G,I)$		
$\phi_I(I)$, $\phi_S(S,I)$, $\tau_2(G,I)$	G, S, I	$\tau_3(G,S)$		
$\phi_H(H,G,J)$	H, G, J	$ au_4(G,J)$		
$_{4}(G,J)$, $\tau_{3}(G,S)$, $\phi_{L}(L,G)$	G, J, L, S	$ au_5(J,L,S)$		
$\tau_5(J,L,S)$, $\phi_J(J,L,S)$	J, L, S	$ au_6(J,L)$		
$ au_6(J,L)$	J, L	$ au_7(J)$		
	$ \phi_{C}(C), \phi_{D}(D, C) \phi_{G}(G, I, D), \tau_{1}(D) \phi_{I}(I), \phi_{S}(S, I), \tau_{2}(G, I) \phi_{H}(H, G, J) (G, J), \tau_{3}(G, S), \phi_{L}(L, G) \tau_{5}(J, L, S), \phi_{J}(J, L, S) $	$\begin{array}{c cccc} \phi_{C}(C), \phi_{D}(D,C) & C, D \\ \phi_{G}(G,I,D), \tau_{1}(D) & G, I, D \\ \phi_{I}(I), \phi_{S}(S,I), \tau_{2}(G,I) & G, S, I \\ \phi_{H}(H,G,J) & H, G, J \\ (G,J), \tau_{3}(G,S), \phi_{L}(L,G) & G, J, L, S \\ \tau_{5}(J,L,S), \phi_{J}(J,L,S) & J, L, S \end{array}$		

Eliminating C

Eliminating D

Eliminating I

Finding elimination orderings

- Finding an optimal eliminating orderings is NP-complete.
- Alternative approach: greedy search using heuristic cost function
- Possible cost functions:
 - Min-neighbors, min-fill, min-weight, etc.

```
Algorithm 9.4 Greedy search for constructing an elimination ordering Procedure Greedy-Ordering (

\mathcal{H} // An undirected graph over \mathcal{X} ,

s // An evaluation metric
)

Initialize all nodes in \mathcal{X} as unmarked

for k = 1 \dots |\mathcal{X}|

Select an unmarked variable X \in \mathcal{X} that minimizes s(\mathcal{H}, X)

\pi(X) \leftarrow k

Introduce edges in \mathcal{H} between all neighbors of X

Mark X

return \pi
```


Project 3: Gibbs Sampling for motif finding

From Compeau, P. and Pevzner, P., 2015. Bioinformatics algorithms: an active learning approach, chapter 2.

How to score motifs?

- Idea: the goal is to select k-mers resulting in the most conserved motif matrix.
- We indicate the most frequent nucleotide in each column of the motif matrix by upper case letters.
- One simple definition for Score(Motifs) is the number of lower case letters in the motif matrix Motifs.

```
T C G G G G G T T T t t t

C C G G t G A C T T A C

A C G G G A T T T t C

T t G G G A C T T C C

T t G G G A C T T C C

T C G G G A C T T C C

T C G G G A T T C C

T C G G G A T T C C

T C G G G A T T C C

SCORE(Motifs)

3 + 4 + 0 + 0 + 1 + 1 + 1 + 5 + 2 + 3 + 6 + 4 = 30
```

Scoring motifs

An improved method of scoring motif matrices: the sum of the entropies of its columns.

$$H(p_1,\ldots,p_N) = -\sum_{i=1}^{N} p_i \cdot \log_2(p_i)$$

For example, the entropy of the second column

$$-(0.2\log_2 0.2 + 0.6\log_2 0.6 + 0.0\log_2 0.0 + 0.2\log_2 0.2) \approx 1.371$$

Laplace's rule of succession

• Consider the following *Profile:*

```
Profile

A: .2 .2 .0 .0 .0 .0 .9 .1 .1 .1 .3 .0

C: .1 .6 .0 .0 .0 .0 .0 .4 .1 .2 .4 .6

G: .0 .0 1 1 .9 .9 .1 .0 .0 .0 .0 .0 .0

T: .7 .2 .0 .0 .1 .1 .0 .5 .8 .7 .3 .4
```

The probability of some DNA strings might be zero.

```
Pr(TCGTGGATTTCC|Profile) = .7 \cdot .6 \cdot 1 \cdot .0 \cdot .9 \cdot .9 \cdot .9 \cdot .5 \cdot .8 \cdot .7 \cdot .4 \cdot .6 = 0
```

due to fourth symbol

• **Solution:** adding psuedocounts

Laplace's rule of succession

Laplace's Rule of Succession adds 1 to each element of COUNT(Motifs)

Gibbs Sampling

 Gibbs Sampler is a randomized algorithm that search for the minimum scoring motif in the space of all motifs

```
GIBBSSAMPLER(Dna, k, t, N)

randomly select k-mers Motifs = (Motif_1, ..., Motif_t) in each string from Dna

BestMotifs \leftarrow Motifs

for j \leftarrow 1 to N

i \leftarrow RANDOM(t)

Profile \leftarrow profile matrix formed from all strings in Motifs except for Motif_i

Motif_i \leftarrow Profile-randomly generated k-mer in the i-th sequence

if SCORE(Motifs) < SCORE(BestMotifs)

BestMotifs \leftarrow Motifs

return BestMotifs
```

```
ttaccttaac ttaccttaac
gatatctgtc gatatctgtc
acggcgttcg → acggcgttcg
ccctaaagag ccctaaagag
cgtcagaggt cgtcagaggt
```

• Example: Suppose five DNA strings with implanted motif ACGT are given:


```
ttACCTtaac
gATGTctgtc
acgGCGTtag
ccctaACGAg
cgtcagAGGT
```

• At the initial step, the algorithm has chosen the following 4-mers (in red) and has selected the third string for removal $\frac{1}{2}$

	ttACCT taac		ttACCT taac	Motifs	(T	c t		
Dna	gAT GTct gtc	\longrightarrow	gAT GTct gtc		ć	a C	t a		
	ccgG CGTtag				7	A G	G T		
	c acta ACGAg		c acta ACGAg		A:	3/8	2/8	2/8	2/8
	cgtcag AGGT		cgtcag AGGT	PROFILE (N/Lotate)			2/8		
				r KOFILE (Willigs)	G:	2/8	2/8	2/8	1/8
					T:	2/8	2/8	2/8	3/8

The 4-mer probabilities in the deleted string

ccgG
 cgGC
 gGCG
 GCGT
 CGTt
 GTta
 Ttag

$$4/8^4$$
 $8/8^4$
 $8/8^4$
 $24/8^4$
 $12/8^4$
 $16/8^4$
 $8/8^4$

$$\operatorname{RANDOM}\left(\frac{4/8^4}{80/8^4}, \frac{8/8^4}{80/8^4}, \frac{8/8^4}{80/8^4}, \frac{24/8^4}{80/8^4}, \frac{12/8^4}{80/8^4}, \frac{16/8^4}{80/8^4}, \frac{8/8^4}{80/8^4}\right)$$

Assume the fourth 4-mer is chosen

It results in: ttACCTtaac

gAT**GTct**gtc

ccg**GCGT**tag

cactaACGAg

cqtcaqAGGT

ttACCTtaac gATGTctgtc ccgGCGTtag cactaACGAg cgtcagAGGT

We can see it is slowly converging to the implanted motif!