Ансамбли. Градиентный бустинг

Recap: Bias-Variance Decomposition

Решение задач классического машинного обучения почти всегда сводится к минимизации некоторого эмпирического риска некоторыми итеративными процедурами. Обычно ML-ученый при обучении модели наблюдает кривую обучения (learning curve), подобную следующей:

Эмпирический риск, посчитанный на обучающей выборке (training), может уменьшаться без конца, в то время как риск, посчитанный на отложенной выборке (validation), не может. Грамотный ML-ученый в качестве результата обучения будет предоставит ту версию модели, которая находится посередине между переобучением (overfitting) и недообучением (underfitting), в "зеленой" зоне.

Похожий эффект можно наблюдать не только во время обучения одной модели, но и во время обучения множества моделей с различной *сложностью* (complexity, capacity). Знаменитый пример Рунге:

На графике изображен эмпирический риск регрессионной модели (интерполяционного полинома), обученного аппроксимировать функцию $y(x)=1/(1+25x^2)$. По горизонтали отмечена степень интерполяционного полинома. Мы можем говорить, что это разные модели, причем чем больше степень, тем модель *сложнее*.

Такой график отражает более глобальную проблему машинного обучения, нежели проблему останова оптимизации, — проблему выбора сложности модели. Одна из известных формализаций этой проблемы — понятие о bias-variance decomposition (BVD).

Рассмотрим пример. Пусть целевая функция моделируется как $y(x)=\mathbb{E}[y\mid x]+arepsilon$, где arepsilon случайный шум. Введем среднеквадратический риск (MSE) алгоритма b(x) по всем возможным обучающим выборкам $X=(x_i,y_i)_{i=1}^\ell$:

$$L(b) = \mathbb{E}_X[\mathbb{E}_{(x,y)\sim X}[(y-b(x))^2]].$$

Для такой задачи известен BVD:

$$L(X,a) = \underbrace{\mathbb{E}_{x,y}[\varepsilon^2]}_{\text{noise}} + \underbrace{\mathbb{E}_x[(\mathbb{E}_X[a(x)] - \mathbb{E}[y \mid x])^2]}_{\text{bias}} + \underbrace{\mathbb{E}_x[(\mathbb{E}_X[a(x)] - a(x))^2]}_{\text{variance}}.$$

BVD переводит абстрактные понятия о недообучении и переобучении на язык эмпирических ошибок. Рассмотрим четыре случая, изображенных на рисунке ниже:

Рисунок является визуальной аналогией: точность предсказания на тестовом объекте изображена как точность попадания стрелка в мишень. Разные точки соответствуют разным обучающим выборкам X.

- 1. Левая верхняя мишень соответствует алгоритму, который находится в "зеленой" зоне кривой сложности (график 2 в выше). Этот алгоритм способен сойтись к какому-то плюс-минус одинаковому предсказанию вблизи $\mathbb{E}[y\mid x]$, и при этом с изменением обучающей выборки его предсказаник не сильно меняется.
- 2. Правая верхняя мишень соответствует алгоритму, который склонен к переобучению. Даже при малых изменениях обучающей выборки, он выдает сильно меняющиеся предсказания.
- 3. Левая нижняя мишень соответствует алгоритму, который склонен к недообучению. Для любой выборки он способен сойтись к какому-то плюс-минус одинаковому предсказанию, но это предсказание не соответствует истинному $\mathbb{E}[y\mid x]$.
- 4. Правая нижняя мишень очевидно соответствует алгоритму, неудачному в обоих смыслах.

Ансамблирование независимых алгоритмов

Глядя, на эти мишени, легко придумать способ решения каждой проблемы.

- Результаты обучения правого верхнего алгоритма на разных выборках достаточно усреднить получится уменьшение дисперсии. На этом основаны bagging (bootsrap aggregating) и pasting.
- Если взять много разных алгоритмов из левого нижнего угла и над их выходами обучить еще один мета-алгоритм, то получится предсказать истинную метку без смещения. На этом основаны blending и stacking.

Подробнее про bagging и pasting. Если просто взять и обучить один алгоритм, склонный к переобучению, на одной и той же выборке, то мы получим набор сильно скоррелированных моделей. Дисперсия в таком случае не уменьшается (доказано на занятии про BVD). Чтобы снизить корреляцию между разными моделями, их получают из разных выборок. В случае bagging, эти выборки получаются как выборки с возвращением. В случае pasting просто берут непересекающиеся подвыборки.

Подробнее про blending. Обучающую выборку делят на две части. На первой обучают базовые алгоритмы. Затем получают их ответы на второй части и на тестовой выборке. Понятно, что ответ каждого алгоритма можно рассматривать как новый признак (т.н. «мета-признак»). На метапризнаках второй части обучения настраивают мета-алгоритм. Затем запускают его на метапризнаках теста и получают ответ.

Подробнее про stacking. Выборку разбивают на части (фолды), затем последовательно перебирая фолды обучают базовые алгоритмы на всех фолдах, кроме одного, а на оставшемся получают ответы базовых алгоритмов и трактуют их как значения соответствующих признаков на этом фолде. Для получения метапризнаков объектов тестовой выборки базовые алгоритмы обучают на всей обучающей выборке и берут их ответы на тестовой.

Градиентный бустинг

Общая идея

Это тоже метод ансамблирования, но не такой простой как предыдущие. Все предыдущие методы обучали базовые алгоритмы независимо друг от друга и даже старались сделать их некоррелированными. Идея бустинга в том, чтобы обучать алгоритмы последовательно, чтобы каждый следующий базовый алгоритм немного уменьшал ошибку ансамбля из всех прыдыдущих базовых алгоритмов.

Опишем процесс градиентного бустинга для задачи регрессии.

- 1. Обучим первый базовый алгоритм b_1 предсказывать целевую переменную $Y=(y_1,\dots,y_\ell)$. Его предсказания на объектах обучающей выборки $x_i\in X$ не идеальны и имеют ошибку $s_i^1=y_i-b_1(x_i).$
- 2. Возьмем второй алгоритм b_2 и обучим его не на Y (как это было бы в методах из предыдущего раздела), а на $S^1=(s_1^1,\dots,s_\ell^1)$. Зачем это нужно? Затем, что теперь для любого объекта x можно сделать предсказание сначала с помощью алгоритма b_1 , а затем скорректировать ошибку этого предсказания с помощью алгоритма b_2 . Реализуется это так: $y(x)\approx a_2(x):=b_1(x)+b_2(x)$.

- 3. Возьмем третий алгоритм b_3 и обучим его предсказывать ошибки $s_i^2=y_i-a_2(x_i)$. Тогда для приозвольного объекта x можно сделать еще более точное предсказание $y(x)\approx a_3(x):=a_2(x)+b_3(x)$
- 4. И так далее пока ошибка не перестанет значимо уменьшаться.

В итоге получается ансамбль $a_N(x) = \sum_{j=1}^N b_j(x).$

Интерпретация. Почему он градиентный?

Квадратичная ошибка предсказания z:

$$L(y_i,z)=rac{1}{2}(y_i-z)^2.$$

Заметим, что поскольку мы решаем задачу регрессии, то в конечном счете, мы хотим решить задачу оптимизации MSE ошибки:

$$L(y_i,a(x_i))=rac{1}{2}(y_i-a(x_i))^2.$$

Если бы имели в качестве a параметрическую модель a_w (например, $a_w(x)=w^Tx$), то мы бы взяли градиент этого функционала по весам модели:

$$rac{\partial}{\partial w}L(y_i,a_w(x_i)) = \left(y_i - a_w(x_i)
ight) \left(-rac{\partial a_w(x_i)}{\partial w}
ight).$$

Но в случае бустинга $a_n(x) = \sum_j^n b_j(x)$ мы пытаемся менять не веса модели, а сами предсказания модели:

$$\left.rac{\partial}{\partial z}L(y_i,z)
ight|_{z=a_n(x_i)}=y_i-a_n(x_i)=:s_i^n.$$

Полученное равенство показывает связь между ошибкой ансамбля из n алгоритмов s_i^n и градиентом функции потерь — оказывается, это одно и то же.

Согласно описанной процедуре бустинга, базовый алгоритм b_{n+1} обучается предсказывать ошибку $S^n=(s_1^n,\ldots,s_\ell^n)$. А эта ошибка, есть ни что иное как градиент $\frac{\partial}{\partial z}L$ (градиент в пространстве предсказаний z). Поэтому каждый шаг бустинга есть шаг градиентого спуска.

Простейшие техники регуляризации градиентного бустинга

Открывшаяся интерпретация градиентного бустинга объясняет следующие два приема, которые используют при реализации ванильного градиентного бустинга.

Во-первых, чтобы градиентный спуск был плавным и равномерным, необходимо выставить шаг обучения (learning rate). Для этого каждый новый базовый алгоритм b_{n+1} так же обучают на ошибку $S_n=(y_i-a_n(x_i))_{i=1}^\ell$, но в ансамбль добавляют по следующему правилу:

$$a_{n+1}(x):=a_n(x)+\eta\cdot b_{n+1}(x),$$

где η — learning rate.

Во-вторых, для равномерности спуска в качестве первого алгоритма b_1 выбирают опимальное константное предсказание. Дело в том, что в нашем градиентом спуске всегда выбирается нулевое начальное приближение, а затем делаются градиентные шаги b_1 , b_2 и так далее. Чтобы как-то улучшить первое приближение, в качестве алгоритма b_1 используют, например, среднее значение целевой переменной.

Существует и другое объяснение второму приему: если не взять $b_1={\rm const}$, то скорее всего b_1 выудит из выборки так много информации, что последующие алгоритмы b_2,b_3,\ldots будут обучаться на остаточный шум и эффекта бустинга не получится.

Это были простейшие техники регуляризации. Однако даже вместе с ними градиентный бустинг долгие годы был очень слабым алгоритмом и непопулярным решением. Однако в 2010-ых годах он стал SOTA-алгоритмом всего классического машинного обучения. Произошло это благодаря изобретению более сложных и продуманных техник регуляризации и различных оптимизаций вычислений. Речь о современных имплементациях бустинга пойдет в следующих занятиях.

Источники

- Лекция К. Воронцова, вводная в машинное обучение: https://github.com/MSU-ML-COURSE/M
 L-COURSE-23-24/blob/main/slides/2 stream/msu23-intro.pdf
- Лекция E. Соколова про BVD: https://github.com/esokolov/ml-course-hse/blob/master/2020-f all/lecture-notes/lecture08-ensembles.pdf
- Лекция К. Воронцова про ансамбли (часть 1): <a href="https://github.com/MSU-ML-COURSE/ML-COU
- Лекция К. Воронцова про ансамбли (часть 2): <a href="https://github.com/MSU-ML-COURSE/ML-COUR
- Блог А. Дьяконова "Стекинг и блендинг": https://alexanderdyakonov.wordpress.com/2017/0/3/10/c%d1%82%d0%b5%d0%ba%d0%b8%d0%bd%d0%b3-stacking-%d0%b8-%d0%b1%d0%b
- Рукописный конспект Р. Авдеева: https://github.com/mmp-mmro-team/mmp-mmro-fall-202
 3/blob/main/%D0%A0%D1%83%D0%BA%D0%BE%D0%BF%D0%BF%D0%B8%D1%81%D0%BD%D1%8
 B%D0%B9 %D0%BA%D0%BE%D0%BD%D1%81%D0%BF%D0%B5%D0%BA%D1%82 grad boosting.pdf