Seet 3.3: Craner's Rule, Volume, and Linear Transformations

Goal: Continue exploring uses & interpretations of the determinant.

Notation

For an non matrix A and a vector $b \in \mathbb{R}^n$, let Ai(b) be the non matrix formed by replacing the ith column of A with b

$$A = |\underline{\alpha}_{1} \underline{\alpha}_{2} \cdots \underline{\alpha}_{n}| \longrightarrow A_{i}(\underline{b}) = |\underline{\alpha}_{1} \cdots \underline{\alpha}_{i+1} \cdots \underline{\alpha}_{n}|$$
replace

ith col. with \underline{b}

$$A = \begin{vmatrix} 1 & -4 & 1 \\ 2 & 0 & -2 \\ 3 & 1 & -2 \end{vmatrix} = \begin{vmatrix} 5 \\ 6 \\ 7 \end{vmatrix} \longrightarrow A_{2}(b) = \begin{vmatrix} 1 & 5 & 1 \\ 2 & 6 & -2 \\ 3 & 7 & -2 \end{vmatrix}$$

Theoren (Gabriel Cramer)

het A be an invertible nxn matrix, then for any $b \in \mathbb{R}^n$, the unique solution x of Ax = b has entries $x_i = 1 \dots n$ given by

$$x_i = \frac{\det A_i(b)}{\det A}$$
 for $i = 1 - n$

allows us to compute a single, specific entry in the solution X.

in practice, its usually too expusive to use for the complete system.

Ex Find the 3rd entry of the solution Ax=b where $A=\begin{vmatrix} 1-2 & 4 \\ 3 & 0-1 \\ 0 & 1 & 2 \end{vmatrix}$ $b=\begin{vmatrix} 0 \\ 1 \\ 2 \end{vmatrix}$

Let's find det A to see if A is invertible

$$\det A = (-1)^{1+1} (1) \det \begin{vmatrix} 0 & -1 \\ 1 & z \end{vmatrix} + (-1)^{1+2} (-2) \det \begin{vmatrix} 3 & -1 \\ 0 & 2 \end{vmatrix} + (-1)^{1+3} (4) \det \begin{vmatrix} 3 & 0 \\ 0 & 1 \end{vmatrix}$$

= 1.1.(0.5-(1.6.1)) + (-1).(-2).(3.5-0.(-1))+1.4.(3.1-0.0)

$$= 1 \cdot (2) + 2(6) + 4(3) = 26 \pm 0$$

=> A is invertible, so compute det Az(b)

$$A_3(b) = \begin{vmatrix} 1 & -2 & 0 \\ 3 & 0 & 1 \\ 0 & 1 & 2 \end{vmatrix}$$

det $A_3(b) = (-1)^{1+1} \cdot | \cdot det | 0 | + (-1)^{1+2} \cdot (-2) det | 3 | 0 | 2 |$

So by Cramer's Rule
$$X_3 = \frac{\det A_3(\underline{b})}{\det A} = \frac{11}{26}$$

L> effective, but lots of work.

We can also use Cramer's Rule to compute a formula for A-1

more expusive than row-reducing on the augmented matrix $|A|I|\sim |I|A^{-1}$

Crower's Rule for finding A^{-1} First, we note the jth column of A^{-1} is

the vector \underline{X} such that $A\underline{X} = \underline{e}_j \quad \text{where} \quad \underline{e}_j = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ $X = \underline{e}_j \quad \text{where} \quad \underline{e}_j = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

X is jth column of A^{-1} because $X = A^{-1}e_j = jth col$ Craver's Rule gives the ith entry in X, so it gives us $[A^{-1}]_{ij}$ by

$$\left[A^{-1}_{ij}\right] = \frac{\det A_i(e_j)}{\det A}$$

If we do this for all rows i=1... n and for all columns ej for j=1... n, we can find all the entries of A-1

hugely expusive, it requires computing no determinants

Looking closer,

Cofactor exposion along the ith column of Ailej) we get

det $A_i(e_j) = (-1)^{i+j} det A_{ij} = c_{ij}$

we call cij the ijth cofactor of A. The netrix A-1 computed using Cramer's Rule for every entry is

$$A^{-1} = \frac{1}{\det A} \begin{vmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & \cdots & C_{2n} \\ \vdots & \vdots & & \vdots \\ C_{n_1} & C_{n_2} & \cdots & C_{n_n} \end{vmatrix} = \frac{1}{\det A} \quad \omega_{ij} A$$

where adj A is the transpose of matrix of cofactors, called the adjoint.

We've seen this for 2x2 matrices

$$A^{-1} = \frac{1}{ad-bc} \begin{vmatrix} a & -b \\ -c & d \end{vmatrix}$$

Our formela cane from this rule!

 $\frac{\text{Theorem}}{\text{Let } A} \text{ be now and invertible then } A^{-1} = \frac{1}{\det A} \text{ adj } A$

$$\frac{E_X}{E_X}$$
 Compute A^{-1} for $A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & -1 & 1 \\ 1 & 4 & -2 \end{bmatrix}$ using the adjoint formula.

First, check
$$A^{-1}$$
 exists using $\det A$

$$\det A = (-1)^{1+1} \cdot 2 \cdot \det \begin{vmatrix} -1 & 1 \\ 4 & -2 \end{vmatrix} + (-1)^{1+2} \cdot 1 \det \begin{vmatrix} 1 & 1 \\ 1 & -2 \end{vmatrix}$$

$$+ (-1)^{1+3} \cdot 3 \cdot \det \begin{vmatrix} 1 & -1 \\ 1 & 4 \end{vmatrix}$$

$$= 1 \cdot 2 \cdot \left(-1 \cdot -2 - 4 \cdot 1 \right) - 1 \cdot 1 \cdot \left(1 \cdot -2 - 1 \right) + 1 \cdot 3 \cdot \left(1 \cdot 4 - 1 \cdot -1 \right)$$

$$= -4 + 3 + 13 = 14 + 0 \Rightarrow A^{-1}$$
 exists

Now, we compare all the cofactors
$$C_{11} = (-1)^{1+1} \det \begin{vmatrix} -1 & 1 \\ -1 & 1 \end{vmatrix} = -2$$

$$C_{12} = (-1)^{1+2} \det \begin{vmatrix} 1 & 1 \\ 1 & -2 \end{vmatrix} = 3$$

$$C_{13} = (-1)^{1+2} \det \begin{vmatrix} 1 & -1 \\ 1 & 4 \end{vmatrix} = 5$$

$$C_{21} = (-1)^{2+1} \det \begin{vmatrix} 1 & 3 \\ 4 & -2 \end{vmatrix} = 14$$

$$C_{22} = (-1)^{2+2} \det \begin{vmatrix} 2 & 3 \\ 1 & -2 \end{vmatrix} = -7$$

$$C_{22} = (-1)^{2+2} \det \begin{vmatrix} 2 & 3 \\ 1 & -2 \end{vmatrix} = -7$$

$$C_{23} = (-1)^{2+3} \text{ det } \begin{vmatrix} 2 & 1 \\ 1 & 4 \end{vmatrix} = -7$$

$$C_{31} = (-1)^{3+1} det \begin{vmatrix} 1 & 3 \\ -1 & 1 \end{vmatrix} = 4$$

$$C_{37} = (-1)^{3+2}$$
 Jet $\begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} = 1$
 $C_{33} = (-1)^{3+3}$ Jet $\begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} = -3$

Putting all these into the adjoint matrix, we get

$$A^{-1} = \frac{1}{900 + A} \omega_j A = \frac{1}{14} \begin{vmatrix} -2 & 14 & 4\\ 3 & -7 & 1\\ 5 & -7 & 3 \end{vmatrix}$$

Confirm A-1 A = I to check

=> our inverse is correct.

moral of the story: the formula works, but it is way more work than row-reduction so do $|A|I| \sim |I|A^{-1}|$