- 1. Let $f(x) = \frac{4}{4+x^2}$.
 - (a) Find a power series representation of f(x). What is its radius of convergence?
 - (b) Find a power series representation of f'(x). What is its *interval* of convergence?

2. If $\sum c_n(x-1)^n$ converges at x=-1 and diverges at x=5, what can you say about the convergence of the power series when:

(a)
$$x = 6$$
?

(b)
$$x = 2$$
?

(c)
$$x = 4$$
?

3. Find the 3rd-degree Taylor polynomial centered at x=2 for the function $g(x)=\sin{(x-2)}+\ln{x}$.

4. Determine whether the following series converge conditionally, converge absolutely, or diverge. Explain.

(a)
$$\sum_{k=1}^{\infty} \frac{\sin(k) + 2}{k^3}$$

(b)
$$\sum_{n=1}^{\infty} ne^{-n^2}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \cdot 7^{n+1}}{(n+3)!}$$

5. True or false?

(a) If
$$\sum_{n=0}^{\infty} a_n x^n$$
 converges for $x=2$, then it also converges for $x=-1$.

(b) If
$$\sum_{n=1}^{\infty} \left(a_n + \frac{1}{n^2} \right)$$
 diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.

(c) If $\sum (a_n - b_n)$ is convergent, then $\sum a_n$ and $\sum b_n$ both converge.