Package 'rwt'

April 19, 2009

Version 0.9.2

Date 2009-04-03

Title Rice Wavelet Toolbox wrapper
Author P. Roebuck, Rice University's DSP group
Maintainer P. Roebuck <roebuck@mdanderson.org></roebuck@mdanderson.org>
Description Provides a set of functions for performing digital signal processing
Depends R (>= 1.9), matlab
License file LICENSE
URL http://odin.mdacc.tmc.edu/~roebuck/R/index.html#rwt
Repository CRAN
Date/Publication 2009-04-04 20:41:20
R topics documented:
daubcqf 2 denoise 3 makesig 4 mdwt 6 midwt 7 mirdwt 8 mrdwt 9 plotSignalTransformation 10 threshold 10
Index 12

2 daubcqf

daubcqf

Daubechies Filter Creation

Description

Computes the Daubechies' scaling and wavelet filters (normalized to sqrt(2)).

Usage

```
daubcqf(N, type = PHASE.MINIMUM)
```

Arguments

N Length of filter (must be even)

type Distinguishes the minimum phase, maximum phase and mid-phase solutions.

Valid values are:

PHASE.MINIMUM PHASE.MID PHASE.MAXIMUM

Value

Returns a list with components:

h.0 Minimal phase Daubechies' scaling filter

h.1 Minimal phase Daubechies' wavelet filter

Author(s)

P. Roebuck, (roebuck@mdanderson.org)

References

"Orthonormal Bases of Compactly Supported Wavelets", CPAM, Oct.89

```
h <- daubcqf(6)
```

denoise 3

denoise

Wavelet-based Denoising

Description

Denoise the signal x using the 2-band wavelet system described by the filter h using either the traditional discrete wavelet transform (DWT) or the linear shift invariant discrete wavelet transform (also known as the undecimated DWT (UDWT)).

Usage

```
denoise(x, h, type, option)
denoise.dwt(x, h, option = default.dwt.option)
denoise.udwt(x, h, option = default.udwt.option)
```

Arguments

x 1D or 2D signal to be denoisedh Scaling filter to be applied

type Type of transform. Valid values are:

DWT.TRANSFORM.TYPE UDWT.TRANSFORM.TYPE

option List containing desired transformation settings

Details

The transformation settings in the option list are:

threshold.low.pass.part: Logical flag. If TRUE, threshold the low-pass component.

threshold.multiplier: thld = c*MAD(noise_estimate)

variance.estimator: Valid values are:

MAD.VARIANCE.ESTIMATOR Mean absolute deviation STD.VARIANCE.ESTIMATOR Classical numerical std estimate

threshold.type: Valid values are:

SOFT.THRESHOLD.TYPE Soft thresholding HARD.THRESHOLD.TYPE Hard thresholding

num.decompression.levels: Number of levels in wavelet decomposition. Setting this to MAX.DECOMPOSITION will allow maximal decomposition.

threshold: Actual threshold to use. Setting this to anything but CALC. THRESHOLD. TO. USE

4 makesig

will disable the variance.estimator setting.

Value

Returns a list with components:

Estimate of noise free signal xn Estimated noise signal (x-xd)

option List of actual parameters used. It is configured the same way as the input option

list with an additional element - option[[7]] = type.

Note

Both denoise.dwt and denoise.udwt are convenience routines that call the denoise routine with appropriate default arguments.

Author(s)

P. Roebuck, (roebuck@mdanderson.org)

References

~put references to the literature/web site here ~

Examples

```
sig <- makesig(SIGNAL.DOPPLER)
h <- daubcqf(6)
ret.dwt <- denoise.dwt(sig$x, h$h.0)</pre>
```

makesig

Make Signal

Description

Creates artificial test signal identical to the standard test signals proposed and used by D. Donoho and I. Johnstone in WaveLab (a MATLAB toolbox developed by Donoho et al. the statistics department at Stanford University).

Usage

```
makesig(sigName, N)
```

makesig 5

Arguments

Name of desired signal. Valid values are: sigName

> SIGNAL.ALL SIGNAL.HEAVI.SINE SIGNAL.BUMPS SIGNAL.BLOCKS SIGNAL.DOPPLER SIGNAL.RAMP SIGNAL.CUSP SIGNAL.SING SIGNAL.HI.SINE SIGNAL.LO.SINE SIGNAL.LIN.CHIRP

SIGNAL.TWO.CHIRP SIGNAL.QUAD.CHIRP

SIGNAL.MISH.MASH

SIGNAL.WERNER.SORROWS (Heisenburg)

SIGNAL.LEOPOLD (Kronecker)

Ν Length in samples of desired signal (512 by default)

Value

Returns a list with components:

vector (or matrix) of test signals Х

Ν length of signal returned

Note

Using the value SIGNAL.ALL.SIG for sigName returns a matrix containing the vectors of all the other signals.

Author(s)

P. Roebuck, (roebuck@mdanderson.org)

References

~put references to the literature/web site here ~

```
ret.sig <- makesig(SIGNAL.DOPPLER, 32)</pre>
```

6 mdwt

mdwt

Discrete Wavelet Transform

Description

Computes the discrete wavelet transform y for input signal x using the scaling filter h.

Usage

```
mdwt(x, h, L)
```

Arguments

x Finite 1D or 2D signal (implicitly periodized)

h Scaling filter to be applied

Number of levels in wavelet decomposition. In the case of a 1D signal, length(x) must be divisible by 2^L ; in the case of a 2D signal, the row and the column dimension must be divisible by 2^L . If no argument is specified, a full DWT is

returned for maximal possible L.

Value

Returns a list with components:

y Wavelet transform of the signal

L Number of levels in wavelet decomposition

Author(s)

P. Roebuck, (roebuck@mdanderson.org)

References

~put references to the literature/web site here ~

```
sig <- makesig(SIGNAL.LIN.CHIRP, 8)
h <- daubcqf(4)
L <- 2
ret.mdwt <- mdwt(sig$x, h$h.0, L)</pre>
```

midwt 7

midwt

Inverse Discrete Wavelet Transform

Description

Computes the inverse discrete wavelet transform x for input signal y using the scaling filter h.

Usage

```
midwt(y, h, L)
```

Arguments

j	У	Finite 1D or 2D	signal (impli	citly periodized)
---	---	-----------------	---------------	-------------------

h Scaling filter to be applied

Number of levels in wavelet decomposition. In the case of a 1D signal, length(x) must be divisible by 2^L ; in the case of a 2D signal, the row and the column

must be divisible by 2^L ; in the case of a 2D signal, the row and the column dimension must be divisible by 2^L . If no argument is specified, a full DWT is

returned for maximal possible L.

Value

Returns a list with components:

x Periodic reconstructed signal

L Number of levels in wavelet decomposition

Author(s)

P. Roebuck, (roebuck@mdanderson.org)

References

~put references to the literature/web site here ~

```
sig <- makesig(SIGNAL.LIN.CHIRP, 8)
h <- daubcqf(4)
L <- 1
ret.mdwt <- mdwt(sig$x, h$h.0, L)
ret.midwt <- midwt(ret.mdwt$y, h$h.0, ret.mdwt$L)</pre>
```

8 mirdwt

mirdwt

Inverse Redundant Discrete Wavelet Transform

Description

Computes the inverse redundant discrete wavelet transform \times for input signal y using the scaling filter h. (Redundant means here that the sub-sampling after each stage of the forward transform has been omitted.)

Usage

```
mirdwt(yl, yh, h, L)
```

Arguments

уl	Lowpass component
yh	Highpass components
h	Scaling filter to be applied
L	Number of levels in wavelet decomposition. In the case of a 1D signal, length(yl) must be divisible by 2^L ; in the case of a 2D signal, the row and the column dimension must be divisible by 2^L . If no argument is specified, a full DWT is returned for maximal possible L.

Value

Returns a list with components:

```
x Finite length 1D or 2D signal
```

L Number of levels in wavelet decomposition

Author(s)

P. Roebuck, (roebuck@mdanderson.org)

References

~put references to the literature/web site here ~

```
sig <- makesig(SIGNAL.LEOPOLD, 8)
h <- daubcqf(4)
L <- 1
ret.mrdwt <- mrdwt(sig$x, h$h.0, L)
ret.mirdwt <- mirdwt(ret.mrdwt$y1, ret.mrdwt$yh, h$h.0, ret.mrdwt$L)</pre>
```

mrdwt 9

mrdwt

Redundant Discrete Wavelet Transform

Description

Computes the redundant discrete wavelet transform y for input signal x using the scaling filter h. Redundant means here that the sub-sampling after each stage is omitted.

Usage

```
mrdwt(x, h, L)
```

Arguments

x Finite 1D or 2D signal (implicitly periodized)

h Scaling filter to be applied

Number of levels in wavelet decomposition. In the case of a 1D signal, length(x) must be divisible by 2^L ; in the case of a 2D signal, the row and the column dimension must be divisible by 2^L . If no argument is specified, a full DWT is

returned for maximal possible L.

Value

Returns a list with components:

yl Lowpass component yh Highpass components

L Number of levels in wavelet decomposition

Author(s)

P. Roebuck, (roebuck@mdanderson.org)

References

~put references to the literature/web site here ~

```
sig <- makesig(SIGNAL.LEOPOLD, 8)
h <- daubcqf(4)
L <- 1
ret.mrdwt <- mrdwt(sig$x, h$h.0, L)</pre>
```

10 threshold

Description

Plots the signal s and its transform x on graphics device.

Usage

```
plotSignalTransformation(x, s, title, col.x = 'blue', col.s = 'red')
```

Arguments

Х	Wavelet transformed signal to be plotted
S	Original signal to be plotted
title	Overall title for the plot
col.x	Color to be used for plotting x values as lines
col.s	Color to be used for plotting s values as lines

Details

Used by demo code to display the results of a transformation.

Author(s)

P. Roebuck, (roebuck@mdanderson.org)

threshold

Threshold Input Signal

Description

Thresholds the input signal y with the threshold value thld.

Usage

```
hardTh(y, thld)
softTh(y, thld)
```

Arguments

y 1D or 2D signal to be thresholded thld Threshold value to be applied

threshold 11

Value

x Thresholded output

Author(s)

P. Roebuck, $\langle roebuck@mdanderson.org \rangle$

References

"De-noising via Soft-Thresholding" Tech. Rept. Statistics, Stanford, 1992. D.L. Donoho.

```
sig <- makesig(SIGNAL.WERNER.SORROWS, 8) thld <- 1 \times <- rwt:::hardTh(sigx, thld)
```

Index

```
*Topic interface
                                           SIGNAL.BLOCKS (makesig), 4
    daubcqf, 1
                                           SIGNAL.BUMPS (makesig), 4
    denoise, 2
                                           SIGNAL.CUSP (makesig), 4
   makesiq, 4
                                           SIGNAL.DOPPLER (makesig), 4
   mdwt, 5
                                           SIGNAL. HEAVI. SINE (makesig), 4
   midwt.6
                                           SIGNAL.HI.SINE (makesig), 4
   mirdwt, 7
                                           SIGNAL.LEOPOLD (makesig), 4
   mrdwt, 8
                                           SIGNAL.LIN.CHIRP (makesig), 4
   plotSignalTransformation, 9
                                           SIGNAL.LO.SINE (makesig), 4
   threshold, 10
                                           SIGNAL.MISH.MASH (makesig), 4
                                           SIGNAL.QUAD.CHIRP (makesig), 4
CALC. THRESHOLD. TO. USE (denoise), 2
                                           SIGNAL.RAMP (makesig), 4
                                           SIGNAL.SING (makesig), 4
daubcqf, 1
                                           SIGNAL.TWO.CHIRP (makesig), 4
default.dwt.option(denoise), 2
                                           SIGNAL. WERNER. SORROWS (makesig), 4
DEFAULT.DWT.THRESHOLD.MULTIPLIER
                                           SOFT. THRESHOLD. TYPE (denoise), 2
       (denoise), 2
                                           softTh (threshold), 10
default.udwt.option(denoise), 2
                                           STD. VARIANCE. ESTIMATOR (denoise),
DEFAULT.UDWT.THRESHOLD.MULTIPLIER
       (denoise), 2
denoise, 2
                                          threshold, 10
DWT.TRANSFORM.TYPE (denoise), 2
                                          UDWT.TRANSFORM.TYPE (denoise), 2
HARD. THRESHOLD. TYPE (denoise), 2
hardTh (threshold), 10
MAD. VARIANCE. ESTIMATOR (denoise),
       2
makesiq, 4
MAX.DECOMPOSITION (denoise), 2
mdwt, 5
midwt, 6
mirdwt, 7
mrdwt, 8
PHASE.MAXIMUM (daubcqf), 1
PHASE.MID (daubcqf), 1
PHASE.MINIMUM (daubcqf), 1
plotSignalTransformation, 9
SIGNAL.ALL (makesig), 4
```