Assignment 10 Christopher Chapline

Problem 1

	p	$\neg p$	$(p \to \neg p)$	$(\neg p \to p)$	$((p \to \neg p) \lor (\neg p \to p)$
ſ	T	F	F	T	T
ſ	F	T	T	F	T

Problem 2

A tautology is a proposition which is true for any combination of truth values. An example from modal logic would be the following:

Let $w_1 = \{p\}$ and $w_2 = \{p\}$. Thus, $\square p$ is tautology in this model.

Problem 3

Yes. For all entities in the model, $\{a,b,c\}$, G(x,x) is true.

Problem 4

 $G(a,a) \wedge G(b,b) \wedge G(c,c)$.