

SEQUENCE LISTING

<110> The Scripps Research Institute
Schultz, Peter
Wang, Lei
Zhang, Zhiwen

<120> GLYCOPROTEIN SYNTHESIS

<130> 54A-000610US

<140> US 10/686,944

<141> 2003-10-15

<160> 10

<170> PatentIn version 3.1

<210> 1

<211> 306

<212> PRT

<213> Artificial

<220>

<223> mutant synthetase derived from Methanococcus jannaschii tyrosyl-t
RNA synthetase

<400> 1

Met Asp Glu Phe Glu Met Ile Lys Arg Asn Thr Ser Glu Ile Ile Ser
1 5 10 15

Glu Glu Glu Leu Arg Glu Val Leu Lys Lys Asp Glu Lys Ser Ala Leu
20 25 30

Ile Gly Phe Glu Pro Ser Gly Lys Ile His Leu Gly His Tyr Leu Gln
35 40 45

Ile Lys Lys Met Ile Asp Leu Gln Asn Ala Gly Phe Asp Ile Ile Ile
50 55 60

Leu Leu Ala Asp Leu His Ala Tyr Leu Asn Gln Lys Gly Glu Leu Asp
65 70 75 80

Glu Ile Arg Lys Ile Gly Asp Tyr Asn Lys Lys Val Phe Glu Ala Met
85 90 95

Gly Leu Lys Ala Lys Tyr Val Tyr Gly Ser Glu Phe Gln Leu Asp Lys
100 105 110

Asp Tyr Thr Leu Asn Val Tyr Arg Leu Ala Leu Lys Thr Thr Leu Lys
115 120 125

Arg Ala Arg Arg Ser Met Glu Leu Ile Ala Arg Glu Asp Glu Asn Pro
130 135 140

Lys Val Ala Glu Val Ile Tyr Pro Ile Met Gln Val Asn Gly Cys His
145 150 155 160

Tyr Arg Gly Val Asp Val Ala Val Gly Gly Met Glu Gln Arg Lys Ile
165 170 175

His Met Leu Ala Arg Glu Leu Leu Pro Lys Lys Val Val Cys Ile His
180 185 190

Asn Pro Val Leu Thr Gly Leu Asp Gly Glu Gly Lys Met Ser Ser Ser
195 200 205

Lys Gly Asn Phe Ile Ala Val Asp Asp Ser Pro Glu Glu Ile Arg Ala
210 215 220

Lys Ile Lys Lys Ala Tyr Cys Pro Ala Gly Val Val Glu Gly Asn Pro
225 230 235 240

Ile Met Glu Ile Ala Lys Tyr Phe Leu Glu Tyr Pro Leu Thr Ile Lys
245 250 255

Arg Pro Glu Lys Phe Gly Gly Asp Leu Thr Val Asn Ser Tyr Glu Glu
260 265 270

Leu Glu Ser Leu Phe Lys Asn Lys Glu Leu His Pro Met Asp Leu Lys
275 280 285

Asn Ala Val Ala Glu Glu Leu Ile Lys Ile Leu Glu Pro Ile Arg Lys
290 295 300

Arg Leu
305

<210> 2
<211> 306
<212> PRT
<213> Artificial

<220>
<223> mutant synthetase derived from Methanococcus jannaschii tyrosyl-t
RNA synthetase

<400> 2

Met Asp Glu Phe Glu Met Ile Lys Arg Asn Thr Ser Glu Ile Ile Ser
1 5 10 15

Glu Glu Glu Leu Arg Glu Val Leu Lys Lys Asp Glu Lys Ser Ala Leu
20 25 30

Ile Gly Phe Glu Pro Ser Gly Lys Ile His Leu Gly His Tyr Leu Gln
35 40 45

Ile Lys Lys Met Ile Asp Leu Gln Asn Ala Gly Phe Asp Ile Ile Ile
50 55 60

Leu Leu Ala Asp Leu His Ala Tyr Leu Asn Gln Lys Gly Glu Leu Asp
65 70 75 80

Glu Ile Arg Lys Ile Gly Asp Tyr Asn Lys Lys Val Phe Glu Ala Met
85 90 95

Gly Leu Lys Ala Lys Tyr Val Tyr Gly Ser Glu Phe Gln Leu Asp Lys
100 105 110

Asp Tyr Thr Leu Asn Val Tyr Arg Leu Ala Leu Lys Thr Thr Leu Lys
115 120 125

Arg Ala Arg Arg Ser Met Glu Leu Ile Ala Arg Glu Asp Glu Asn Pro
130 135 140

Lys Val Ala Glu Val Ile Tyr Pro Ile Met Gln Val Asn Gly Thr His
145 150 155 160

Tyr Arg Gly Val Asp Val Ala Val Gly Gly Met Glu Gln Arg Lys Ile
165 170 175

His Met Leu Ala Arg Glu Leu Leu Pro Lys Lys Val Val Cys Ile His
180 185 190

Asn Pro Val Leu Thr Gly Leu Asp Gly Glu Gly Lys Met Ser Ser Ser
195 200 205

Lys Gly Asn Phe Ile Ala Val Asp Asp Ser Pro Glu Glu Ile Arg Ala
210 215 220

Lys Ile Lys Lys Ala Tyr Cys Pro Ala Gly Val Val Glu Gly Asn Pro
225 230 235 240

Ile Met Glu Ile Ala Lys Tyr Phe Leu Glu Tyr Pro Leu Thr Ile Lys
245 250 255

Arg Pro Glu Lys Phe Gly Gly Asp Leu Thr Val Asn Ser Tyr Glu Glu
260 265 270

Leu Glu Ser Leu Phe Lys Asn Lys Glu Leu His Pro Met Asp Leu Lys
275 280 285

Asn Ala Val Ala Glu Glu Leu Ile Lys Ile Leu Glu Pro Ile Arg Lys
290 295 300

Arg Leu
305

<210> 3
<211> 306
<212> PRT
<213> Artificial

<220>
<223> mutant synthetase derived from Methanococcus jannaschii tyrosyl-t
RNA synthetase

<400> 3

Met Asp Glu Phe Glu Met Ile Lys Arg Asn Thr Ser Glu Ile Ile Ser
1 5 10 15

Glu Glu Glu Leu Arg Glu Val Leu Lys Lys Asp Glu Lys Ser Ala Ala
20 25 30

Ile Gly Phe Glu Pro Ser Gly Lys Ile His Leu Gly His Tyr Leu Gln
35 40 45

Ile Lys Lys Met Ile Asp Leu Gln Asn Ala Gly Phe Asp Ile Ile Ile
50 55 60

Leu Leu Ala Asp Leu His Ala Tyr Leu Asn Gln Lys Gly Glu Leu Asp
65 70 75 80

Glu Ile Arg Lys Ile Gly Asp Tyr Asn Lys Lys Val Phe Glu Ala Met
85 90 95

Gly Leu Lys Ala Lys Tyr Val Tyr Gly Ser Glu Phe Gln Leu Asp Lys
100 105 110

Asp Tyr Thr Leu Asn Val Tyr Arg Leu Ala Leu Lys Thr Thr Leu Lys

115

120

125

Arg Ala Arg Arg Ser Met Glu Leu Ile Ala Arg Glu Asp Glu Asn Pro
130 135 140

Lys Val Ala Glu Val Ile Tyr Pro Ile Met Gln Val Asn Gly Gly His
145 150 155 160

Tyr Leu Gly Val Asp Val Ile Val Gly Gly Met Glu Gln Arg Lys Ile
165 170 175

His Met Leu Ala Arg Glu Leu Leu Pro Lys Lys Val Val Cys Ile His
180 185 190

Asn Pro Val Leu Thr Gly Leu Asp Gly Glu Gly Lys Met Ser Ser Ser
195 200 205

Lys Gly Asn Phe Ile Ala Val Asp Asp Ser Pro Glu Glu Ile Arg Ala
210 215 220

Lys Ile Lys Lys Ala Tyr Cys Pro Ala Gly Val Val Glu Gly Asn Pro
225 230 235 240

Ile Met Glu Ile Ala Lys Tyr Phe Leu Glu Tyr Pro Leu Thr Ile Lys
245 250 255

Arg Pro Glu Lys Phe Gly Gly Asp Leu Thr Val Asn Ser Tyr Glu Glu
260 265 270

Leu Glu Ser Leu Phe Lys Asn Lys Glu Leu His Pro Met Asp Leu Lys
275 280 285

Asn Ala Val Ala Glu Glu Leu Ile Lys Ile Leu Glu Pro Ile Arg Lys
290 295 300

Arg Leu
305

<210> 4
<211> 306
<212> PRT
<213> Artificial

<220>
<223> mutant synthetase derived from Methanococcus jannaschii tyrosyl-t
RNA synthetase

<400> 4

Met Asp Glu Phe Glu Met Ile Lys Arg Asn Thr Ser Glu Ile Ile Ser
1 5 10 15

Glu Glu Glu Leu Arg Glu Val Leu Lys Lys Asp Glu Lys Ser Ala Tyr
20 25 30

Ile Gly Phe Glu Pro Ser Gly Lys Ile His Leu Gly His Tyr Leu Gln
35 40 45

Ile Lys Lys Met Ile Asp Leu Gln Asn Ala Gly Phe Asp Ile Ile Ile
50 55 60

Leu Leu Ala Asp Leu His Ala Tyr Leu Asn Gln Lys Gly Glu Leu Asp
65 70 75 80

Glu Ile Arg Lys Ile Gly Asp Tyr Asn Lys Lys Val Phe Glu Ala Met
85 90 95

Gly Leu Lys Ala Lys Tyr Val Tyr Gly Ser Pro Phe Gln Leu Asp Lys
100 105 110

Asp Tyr Thr Leu Asn Val Tyr Arg Leu Ala Leu Lys Thr Thr Leu Lys
115 120 125

Arg Ala Arg Arg Ser Met Glu Leu Ile Ala Arg Glu Asp Glu Asn Pro
130 135 140

Lys Val Ala Glu Val Ile Tyr Pro Ile Met Gln Val Asn Cys Tyr His
145 150 155 160

Tyr Arg Gly Val Asp Val Ala Val Gly Gly Met Glu Gln Arg Lys Ile
165 170 175

His Met Leu Ala Arg Glu Leu Leu Pro Lys Lys Val Val Cys Ile His
180 185 190

Asn Pro Val Leu Thr Gly Leu Asp Gly Glu Lys Met Ser Ser Ser
195 200 205

Lys Gly Asn Phe Ile Ala Val Asp Asp Ser Pro Glu Glu Ile Arg Ala
210 215 220

Lys Ile Lys Lys Ala Tyr Cys Pro Ala Gly Val Val Glu Gly Asn Pro
225 230 235 240

Ile Met Glu Ile Ala Lys Tyr Phe Leu Glu Tyr Pro Leu Thr Ile Lys
245 250 255

Arg Pro Glu Lys Phe Gly Gly Asp Leu Thr Val Asn Ser Tyr Glu Glu
260 265 270

Leu Glu Ser Leu Phe Lys Asn Lys Glu Leu His Pro Met Asp Leu Lys
275 280 285

Asn Ala Val Ala Glu Glu Leu Ile Lys Ile Leu Glu Pro Ile Arg Lys
290 295 300

Arg Leu
305

<210> 5
<211> 306
<212> PRT
<213> Artificial

<220>
<223> mutant synthetase derived from Methanococcus jannaschii tyrosyl-t
RNA synthetase

<400> 5

Met Asp Glu Phe Glu Met Ile Lys Arg Asn Thr Ser Glu Ile Ile Ser
1 5 10 15

Glu Glu Glu Leu Arg Glu Val Leu Lys Lys Asp Glu Lys Ser Ala Gly
20 25 30

Ile Gly Phe Glu Pro Ser Gly Lys Ile His Leu Gly His Tyr Leu Gln
35 40 45

Ile Lys Lys Met Ile Asp Leu Gln Asn Ala Gly Phe Asp Ile Ile Ile
50 55 60

Leu Leu Ala Asp Leu His Ala Tyr Leu Asn Gln Lys Gly Glu Leu Asp
65 70 75 80

Glu Ile Arg Lys Ile Gly Asp Tyr Asn Lys Lys Val Phe Glu Ala Met
85 90 95

Gly Leu Lys Ala Lys Tyr Val Tyr Gly Ser Gly Phe Gln Leu Asp Lys
100 105 110

Asp Tyr Thr Leu Asn Val Tyr Arg Leu Ala Leu Lys Thr Thr Leu Lys
115 120 125

Arg Ala Arg Arg Ser Met Glu Leu Ile Ala Arg Glu Asp Glu Asn Pro
130 135 140

Lys Val Ala Glu Val Ile Tyr Pro Ile Met Gln Val Asn Cys Met His
145 150 155 160

Tyr His Gly Val Asp Val Ala Val Gly Gly Met Glu Gln Arg Lys Ile
165 170 175

His Met Leu Ala Arg Glu Leu Leu Pro Lys Lys Val Val Cys Ile His
180 185 190

Asn Pro Val Leu Thr Gly Leu Asp Gly Glu Gly Lys Met Ser Ser Ser
195 200 205

Lys Gly Asn Phe Ile Ala Val Asp Asp Ser Pro Glu Glu Ile Arg Ala
210 215 220

Lys Ile Lys Lys Ala Tyr Cys Pro Ala Gly Val Val Glu Gly Asn Pro
225 230 235 240

Ile Met Glu Ile Ala Lys Tyr Phe Leu Glu Tyr Pro Leu Thr Ile Lys
245 250 255

Arg Pro Glu Lys Phe Gly Gly Asp Leu Thr Val Asn Ser Tyr Glu Glu
260 265 270

Leu Glu Ser Leu Phe Lys Asn Lys Glu Leu His Pro Met Asp Leu Lys
275 280 285

Asn Ala Val Ala Glu Glu Leu Ile Lys Ile Leu Glu Pro Ile Arg Lys
290 295 300

Arg Leu
305

<210> 6
<211> 306
<212> PRT
<213> Artificial

<220>
<223> mutant synthetase derived from Methanococcus jannaschii tyrosyl-t

RNA synthetase

<220>
<221> MISC_FEATURE
<222> (107)..(107)
<223> X can be either C or S

<400> 6

Met Asp Glu Phe Glu Met Ile Lys Arg Asn Thr Ser Glu Ile Ile Ser
1 5 10 15

Glu Glu Glu Leu Arg Glu Val Leu Lys Lys Asp Glu Lys Ser Ala Tyr
20 25 30

Ile Gly Phe Glu Pro Ser Gly Lys Ile His Leu Gly His Tyr Leu Gln
35 40 45

Ile Lys Lys Met Ile Asp Leu Gln Asn Ala Gly Phe Asp Ile Ile Ile
50 55 60

Leu Leu Ala Asp Leu His Ala Tyr Leu Asn Gln Lys Gly Glu Leu Asp
65 70 75 80

Glu Ile Arg Lys Ile Gly Asp Tyr Asn Lys Lys Val Phe Glu Ala Met
85 90 95

Gly Leu Lys Ala Lys Tyr Val Tyr Gly Ser Xaa Phe Gln Leu Asp Lys
100 105 110

Asp Tyr Thr Leu Asn Val Tyr Arg Leu Ala Leu Lys Thr Thr Leu Lys
115 120 125

Arg Ala Arg Arg Ser Met Glu Leu Ile Ala Arg Glu Asp Glu Asn Pro
130 135 140

Lys Val Ala Glu Val Ile Tyr Pro Ile Met Gln Val Asn His Asp His
145 150 155 160

Tyr Met Gly Val Asp Val Ala Val Gly Gly Met Glu Gln Arg Lys Ile
165 170 175

His Met Leu Ala Arg Glu Leu Leu Pro Lys Lys Val Val Cys Ile His
180 185 190

Asn Pro Val Leu Thr Gly Leu Asp Gly Glu Gly Lys Met Ser Ser Ser
195 200 205

Lys Gly Asn Phe Ile Ala Val Asp Asp Ser Pro Glu Glu Ile Arg Ala
210 215 220

Lys Ile Lys Lys Ala Tyr Cys Pro Ala Gly Val Val Glu Gly Asn Pro
225 230 235 240

Ile Met Glu Ile Ala Lys Tyr Phe Leu Glu Tyr Pro Leu Thr Ile Lys
245 250 255

Arg Pro Glu Lys Phe Gly Gly Asp Leu Thr Val Asn Ser Tyr Glu Glu
260 265 270

Leu Glu Ser Leu Phe Lys Asn Lys Glu Leu His Pro Met Asp Leu Lys
275 280 285

Asn Ala Val Ala Glu Glu Leu Ile Lys Ile Leu Glu Pro Ile Arg Lys
290 295 300

Arg Leu
305

<210> 7
<211> 77
<212> RNA
<213> Artificial

<220>
<223> mutant tyrosine amber suppressor tRNA

<400> 7
ccggcgguag uucagcaggg cagaacggcg gacucuaau ccgcauggcg cugguucaa 60
uccggccccgc cggacca 77

<210> 8
<211> 921
<212> DNA
<213> Artificial

<220>
<223> mutant synthetase derived from Methanococcus jannaschii tyrosyl-t
RNA synthetase

<400> 8
atggacgaat ttgaaatgat aaagagaaac acatctgaaa ttatcagcga ggaagagtta 60
agagaggttt taaaaaaaaaaga tgaaaaatct gcttacatag gtttgaaacc aagtggtaaa 120
atacatttag ggcatttatct ccaaataaaa aagatgattt atttacaaaa tgctggattt 180

gatataatta tattgttggc tgatttacac gcctattaa accagaaagg agagttggat	240
gagattagaa aaataggaga ttataacaaa aaagtttg aagcaatggg gttaaaggca	300
aatatatgtt atggaagtcc attccagctt gataaggatt atacactgaa tgtctataga	360
ttggctttaa aaactacctt aaaaagagca agaaggagta tggaacttat agcaagagag	420
gatgaaaatc caaagggtgc tgaagttatc tatccaataa tgcatggtaa ttgctatcat	480
tatagggcg ttgatgtgc agttggaggg atggagcaga gaaaaataca catgttagca	540
agggagctt taccaaaaaa ggttgttgt attcacaacc ctgtcttaac gggtttggat	600
ggagaaggaa agatgagttc ttcaaaaggg aattttatag ctgttgatga ctctccagaa	660
gagattaggg ctaagataaa gaaagcatac tgcccagctg gagttgtga aggaaatcca	720
ataatggaga tagctaaata cttccctgaa tatcctttaa ccataaaaag gccagaaaaa	780
tttgggtggag atttgacagt taatagctat gaggagttag agagtttatt taaaataag	840
gaattgcatc caatggattt aaaaaatgct gtagctgaag aacttataaa gatttttagag	900
ccaatttagaa agagattata a	921

<210> 9
 <211> 921
 <212> DNA
 <213> Artificial

<220>
 <223> mutant synthetase derived from Methanococcus jannaschii tyrosyl-t
 RNA synthetase

<400> 9	
atggacgaat ttgaaatgat aaagagaaac acatctgaaa ttatcagcga ggaagaggta	60
agagaggttt taaaaaaaaa tgaaaaatct gctggaatag gtttgaacc aagtggtaaa	120
atacatttag ggcattatct ccaaataaaa aagatgattt atttacaaaa tgctggattt	180
gatataatta tattgttggc tgatttacac gcctattaa accagaaagg agagttggat	240
gagattagaa aaataggaga ttataacaaa aaagtttg aagcaatggg gttaaaggca	300
aatatatgtt atggaagtgg attccagctt gataaggatt atacactgaa tgtctataga	360
ttggctttaa aaactacctt aaaaagagca agaaggagta tggaacttat agcaagagag	420
gatgaaaatc caaagggtgc tgaagttatc tatccaataa tgcatggtaa ttgtatgcat	480
tatcacggcg ttgatgtgc agttggaggg atggagcaga gaaaaataca catgttagca	540
agggagctt taccaaaaaa ggttgttgt attcacaacc ctgtcttaac gggtttggat	600
ggagaaggaa agatgagttc ttcaaaaggg aattttatag ctgttgatga ctctccagaa	660
gagattaggg ctaagataaa gaaagcatac tgcccagctg gagttgtga aggaaatcca	720

ataatggaga tagctaaata cttccttgaa tatkctttaa ccataaaaag gccagaaaaa 780
tttgggtggag atttgacagt taatagctat gaggagttag agagtttatt taaaataag 840
gaattgcac caatggattt aaaaaatgct gtagctgaag aacttataaa gattttagag 900
ccaattagaa agagattata a 921

<210> 10
<211> 921
<212> DNA
<213> Artificial

<220>
<223> mutant synthetase derived from Methanococcus jannaschii tyrosyl-t RNA synthetase; S1-5 with S at position 107

<400> 10
atggacgaat ttgaaatgat aaagagaaac acatctgaaa ttatcagcga ggaagagttt 60
agagaggttt taaaaaaaaa tgaaaaatct gcttacatag gtttgaacc aagtggtaaa 120
atacatttag ggcatttatct ccaaataaaa aagatgattt atttacaaaa tgctggattt 180
gatataatta tattgttggc tgatttacac gcctattaa accagaaagg agagttggat 240
gagattagaa aaataggaga ttataacaaa aaagttttt aagcaatggg gttaaaggca 300
aaatatgttt atggaagttc attccagctt gataaggatt atacactgaa tgtctataga 360
ttggctttaa aaactacctt aaaaagagca agaaggagta tggaacttat agcaagagag 420
gatgaaaatc caaagggttgc tgaagttatc tatccaataa tgcaggttaa tcattatcat 480
tatatggcg ttgatgttgc agttggaggg atggagcaga gaaaaataca catgttagca 540
agggagctt tacaaaaaaa gttgtttgt attcacaacc ctgtcttaac gggtttggat 600
ggagaaggaa agatgagttc ttcaaaaggg aattttatag ctgttgatga ctctccagaa 660
gagattaggg ctaagataaa gaaagcatac tgcccagctg gagttgtga aggaaatcca 720
ataatggaga tagctaaata cttccttgaa tatkctttaa ccataaaaag gccagaaaaa 780
tttgggtggag atttgacagt taatagctat gaggagttag agagtttatt taaaataag 840
gaattgcac caatggattt aaaaaatgct gtagctgaag aacttataaa gattttagag 900
ccaattagaa agagattata a 921