Probability-3 Lecture-17

04 October 2024 11:19

if
$$F_n(x) \longrightarrow F(x)$$
 $\forall x \in C_F \leftarrow \left(\text{set of all continuity points} \right)$

recall, Theorem:

$$X_n \xrightarrow{d} X$$
 iff $E(f(X_n)) \longrightarrow Ef(X)$, $\forall f \in C_0(R)$
for complete proof, refer prev. Lec. $(L-16)$ [set of all bounded, continuous f^ns .

Corollary: (Continuous Mapping Theorem)

$$\times_n \xrightarrow{} \times \Rightarrow g(X_n) \xrightarrow{d} g(X) \neq g \notin C(R)$$

to show: $E(f(g(X_n))) \xrightarrow{} E(f(g(X)))$

Set of all continuous frs over R .

Let $g \in C(R)$,

then $f \circ g \in C_b(R) = 0$, $\times_n \xrightarrow{d} \times 0$

then, just simply apply

the above characterization of conv. $g = 0$ distribution.

If $f \in C_b(R)$,

 $f = 0$ onv. $g = 0$ distribution.

 $\Leftrightarrow f(g(x)) \xrightarrow{d} f(g(x)).$

Corollary:

Suppose K is a compact interval If Xn, n>1 and X are r.vs, all taking values in K, then

 (\Rightarrow) (\Rightarrow)

 (\Leftarrow) for any polynomial p, $E(p(X_n)) \longrightarrow E(p(X))$

Exercise: This thm. can be made "Springer".

Show: $(1) \times (n) \times (f(x)) \longrightarrow E(f(x))$

onlinears ("

with compact

Support.