System Driven Hardware Design

 Schematic / Layout / Breadboard-LabExcesize 1

International Master of Science

Prof. Dr.-Ing. Stephan Bannwarth SS25

- **Amplifier Schematic**
- PCB Constraints
- o Tasks
- Scoring Scheme
- Breadboard

Schematic Capture: Amplifier: 4th order Bandpass

- **Amplifier Schematic**
- o PCB Constraints
- o Tasks
- o Scoring Scheme
- Breadboard

PCB and Electronic Constraints

Amplifier

- Think about which signals should get a testpoint and write them down
- Used Device: OPA340
- Use the Operational Amplifier in a DIL8 Package
- Use an DIL8 Socket for the OpAmp

Power Supply

- Derive the Power Supply form the FreeSoc2
- Use a red LED as a control for the power supply

Hardware-Constraints

 Use a 3 pin 90° connector (i.e. connector is parallel to your board) to connect the PCB with the radar sensor

Digital Part

- Insert a Push-Button
- Use 3 LEDs (red yellow green) as digital control LEDs

Technology

- Use through hole technology (THT) all components.
- Use E24 series for the resistors in THT.

PCB

- Use the Arduino UNO Shield Template from KiCad. See the HowTo in Moodle.
- Separate Analog and Digital Ground as good as possible
- Stay inside the market area of the Arduino shield with your components
- Work with a 4 layer PCB: Signal GND Power -Signal
- Fill out the PCB Specification (<u>Link</u> / Elekonta Webpage)
- Only use PTH Vias: vias size 0.8mm with via drill 0.4mm
- Minimum track width: 0.20 mm
- Do not use buried vias or blind vias

KiCad

• Use the design constraints and settings from the ELEKONTA preclass presentation.

w		Pin Mapping	
Lfd.Nr	Adruino - Cape / Function	Adruino	FreeSoc2
1	1 '	D0	P[2]0
2		D1	P[2]1
3		D2	P[2]2
4		D3	P[2]3
5	LED1 (green)	D4	P[2]4
	LED2 (ornage)	D5	P[2]5
7	LEDe (redd)	D6	P[2]6
8	Push Button	D7	P[2]7
9		D8	P[12]4
10		D9	P[12]5
11		D10	P[6]4
12		D11	P[6]5
13		D12	P[6]6
14		D13	P6[7] & Red Use
15		GND	GND
16		AREF	NC
17		SDA	P[6]1
18		SCL	P[6]0
19		NC	NC
20		IOREF	VDDIO_Arduino/
21		Reset	nReset/2 &P[12]
22		3.3V	3.3V
23		5V	5V
24		GND	GND
25		GND	GND
26		Vin	Vin/2
27	Vout (Ampliffier out)	A0	P15[5]
28		Δ1	P[15]4

See Moodle for Full Table

- o Amplifier Schematic
- o PCB Constraints
- o Tasks
- o Scoring Scheme
- o Breadboard

Moodle

Use the Project template

Tasks

- Requirement Specification for the Bandpass Design
- Design the Bandpass based on the expected input frequencies and amplitude range
- Calculate the resistors for the Amplifier based on the gain and bandwidth, use the E24 series
- Design the PCB in KiCad

Deliverables

- KiCad-Project
- Gerberfiles
- BOM

... in a zip-archive as done in the KiCad Training and descirbed in the project template

Upload – Deadline

→ See Moodle ←

- o Amplifier Schematic
- o PCB Constraints
- o Tasks
- o Scoring Scheme
- o Breadboard

No Copy and Paste From Others: 0%. All similar boards are dismissed.

40%: Schematic correct and Working Layout, For example and not limited to:

Mechanical: Board Size correct, Mounting holes in position

ERC free DRC free

Project Info on Silk layer (term/Group/Name)

All components used and correct footprints used

Mounting and Integration possible

Using the right grid and staying in one for components placing

Project can be opened

60%: Well grouped schematic and layout, for example and not limited to:

All Constraints are fulfilled Board filling is correct Clean connection, no extra edges and turns in the tracks Schematic

- Grouped by sub functions
- Test- and ground pins defined

Layout

- Grouped subcomponents
- Tracks as short as possible

70%: Clean design with minor issues, for example and not limited to:

No Minimum tracks width
Layers used as declared
Silk layer: more than minimum Spacing
No fragile connections to solder points
Good ground connection to IC
Short distance to stabilizing caps

80%-100%: Your ideas beyond the said and further considerations.

- o Amplifier Schematic
- o PCB Constraints
- o Tasks
- o Scoring Scheme
- o Breadboard

Testbench with FreeSoc 2: Use a Breadboard before you PCB is ready

Testing the Testbench

Testing your Bread Board Design

FreeSoc2 Testbench

