curs 8

Logică Matematică și Computațională

FMI · Denisa Diaconescu · An universitar 2018/2019

RECAP. - TEOREMA DE COMPACITATE

Teorema de compacitate - versiunea 1

Pentru orice mulțime Γ de formule, Γ este satisfiabilă ddacă Γ este finit satisfiabilă.

Teorema de compacitate - versiunea 2

Pentru orice mulţime Γ de formule, Γ este nesatisfiabilă ddacă Γ nu este finit satisfiabilă.

Teorema de compacitate - versiunea 3

Pentru orice mulţime Γ de formule şi pentru orice formulă φ , $\Gamma \vDash \varphi$ ddacă există o submulţime finită Δ a lui Γ a.î. $\Delta \vDash \varphi$.

Propoziţia 7.13

Cele trei versiuni sunt echivalente.

Demonstrație. Exercițiu.

TEOREMA DE COMPACITATE

Lema 8.1

Fie Γ finit satisfiabilă. Atunci există un şir (ε_n) în $\{0,1\}$ care satisface, pentru orice $n \in \mathbb{N}$:

 P_n Orice submultime finită Δ a lui Γ are un model $e: V \to \{0,1\}$ care satisface $e(v_i) = ε_i$ pentru orice $i ∈ \{0,1,...n\}$.

Demonstrație. Definim șirul (ε_n) prin inducție după $n \in \mathbb{N}$.

n = 0. Avem următoarele cazuri:

- (1₀) Pentru orice submulţime finită Δ a lui Γ , există un model e al lui Δ a.î. $e(v_0)=0$. Definim $\varepsilon_0:=0$.
- (2₀) Există o submulțime finită Δ_0 a lui Γ a.î. pentru orice model e al lui Δ_0 , avem $e(v_0) = 1$. Definim $\varepsilon_0 := 1$.

Demonstrăm că P_0 este satisfăcută. În cazul (1₀) este evident. Să considerăm cazul (2₀). Fie Δ o submulţime finită a lui Γ . Atunci $\Delta \cup \Delta_0$ este o submulţime finită a lui Γ . Deoarece Γ este finit satisfiabilă, $\Delta \cup \Delta_0$ are un model e. Rezultă că $e \models \Delta$ şi, din faptul că $e \models \Delta_0$, obţinem că $e(v_0) = 1 = \varepsilon_0$.

TEOREMA DE COMPACITATE

Demonstrație. (continuare)

Pasul de inducție. Fie $n \in \mathbb{N}$. Presupunem că am definit $\varepsilon_0, \dots, \varepsilon_n$ a.î. P_n este satisfăcută. Avem următoarele cazuri:

(1_{n+1}) Pentru orice submulţime finită Δ a lui Γ , există un model e al lui Δ a.î. $e(v_i) = \varepsilon_i$ pentru orice $i \in \{0, 1, \dots, n\}$ şi $e(v_{n+1}) = 0$.

Definim $\varepsilon_{n+1} := 0$.

(2 $_{n+1}$) Există o submulțime finită Δ_{n+1} a lui Γ a.î. pentru orice model e al lui Δ_{n+1} , avem

$$e(v_i) = \varepsilon_i$$
 pentru orice $i \in \{0, 1, ..., n\}$ implică $e(v_{n+1}) = 1$.
Definim $\varepsilon_{n+1} := 1$.

Demonstrăm că P_{n+1} este satisfăcută. În cazul (1_{n+1}) este evident. Să considerăm cazul (2_{n+1}) . Fie Δ o submulțime finită a lui Γ . Atunci $\Delta \cup \Delta_{n+1}$ este o submulțime finită a lui Γ . Prin urmare, conform P_n , există un model e al lui $\Delta \cup \Delta_{n+1}$ a.î. $e(v_i) = \varepsilon_i$ pentru orice $i \in \{0, 1, \dots n\}$. Din (2_{n+1}) , obținem şi $e(v_{n+1}) = 1 = \varepsilon_{n+1}$.

TEOREMA DE COMPACITATE

Teorema 8.2 (Teorema de compacitate)

Pentru orice mulţime Γ de formule,

 Γ este satisfiabilă ddacă Γ este finit satisfiabilă.

Demonstrație.

"⇒" Evident.

"⇐" Presupunem că Γ este finit satisfiabilă. Definim

$$\overline{e}: V \to \{0,1\}, \quad \overline{e}(v_n) = \varepsilon_n,$$

unde (ε_n) este şirul construit în lema precedentă. Demonstrăm că \overline{e} este model al lui Γ . Fie $\varphi \in \Gamma$ arbitrară şi fie $k \in \mathbb{N}$ a.î. $Var(\varphi) \subseteq \{v_0, v_1, \ldots, v_k\}$. Deoarece $\{\varphi\} \subseteq \Gamma$ este o submulţime finită a lui Γ , putem aplica Proprietatea P_k pentru a obţine un model e al lui φ a.î. $e(v_i) = \varepsilon_i$ pentru orice $i \in \{0, 1, \ldots, k\}$. Atunci $\overline{e}(v) = e(v)$ pentru orice variabilă $v \in Var(\varphi)$. Aplicând Propoziția 6.1, rezultă că $\overline{e}^+(\varphi) = e^+(\varphi) = 1$, deci $\overline{e} \models \varphi$.

Prin urmare, \overline{e} este model al lui Γ , deci Γ este satisfiabilă.

SISTEMUL DEDUCTIV DE TIP HILBERT

Axiomele logice.

Mulțimea Axm a axiomelor lui LP constă din toate formulele de forma:

(A1)
$$\varphi \to (\psi \to \varphi)$$

(A2)
$$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

(A3)
$$(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$$

unde φ , ψ și χ sunt formule.

Regula de deducție.

Pentru orice formule φ, ψ ,

 $\dim \varphi$ şi $\varphi \to \psi$ se inferă ψ (modus ponens sau (MP)):

$$\frac{\varphi,\ \varphi\to\psi}{\psi}$$

Fie Γ o mulţime de formule.

Definiția Γ-teoremelor este un nou exemplu de definiție inductivă.

Definiția 8.3

T-teoremele sunt formulele lui *LP* definite astfel:

- (T0) Orice axiomă este Γ-teoremă.
- (T1) Orice formulă din Γ este Γ -teoremă.
- (T2) Dacă φ şi $\varphi \to \psi$ sunt Γ-teoreme, atunci ψ este Γ-teoremă.
- (T3) Numai formulele obţinute aplicând regulile (T0), (T1), (T2) sunt Γ-teoreme.

Dacă φ este Γ -teoremă, atunci spunem și că φ este dedusă din ipotezele Γ .

Notaţii.

```
\begin{array}{lll} Thm(\Gamma) & := & \text{multimea } \Gamma\text{-teoremelor} \\ Thm & := & Thm(\emptyset) \\ \Gamma \vdash \varphi & \Leftrightarrow & \varphi \text{ este } \Gamma\text{-teoremă} \\ \vdash \varphi & \Leftrightarrow & \emptyset \vdash \varphi \\ \Gamma \vdash \Delta & \Leftrightarrow & \Gamma \vdash \varphi \text{ pentru orice } \varphi \in \Delta. \end{array}
```

Definiția 8.4

O formulă φ se numește teoremă a lui LP dacă $\vdash \varphi$.

Reformulând condițiile (T0), (T1), (T2) folosind notația ⊢, obținem

Propoziția 8.5

- (i) dacă φ este axiomă, atunci $\Gamma \vdash \varphi$;
- (ii) dacă $\varphi \in \Gamma$, atunci $\Gamma \vdash \varphi$;
- (iii) dacă $\Gamma \vdash \varphi$ şi $\Gamma \vdash \varphi \rightarrow \psi$, atunci $\Gamma \vdash \psi$.

O definiție alternativă a Γ -teoremelor:

Definiția 8.6

Mulţimea $Thm(\Gamma)$ este intersecţia tuturor mulţimilor de formule Σ care satisfac următoarele proprietăţi:

- (i) $Axm \subseteq \Sigma$;
- (ii) $\Gamma \subseteq \Sigma$;
- (iii) Σ este închisă la modus ponens:

dacă
$$\varphi, \varphi \to \psi \in \Sigma$$
, atunci $\psi \in \Sigma$.

Definiția Γ -teoremelor dă naștere la metoda de demonstrație prin inducție după Γ -teoreme.

Versiunea 1.

Fie P o proprietate a formulelor. Demonstrăm că orice Γ -teoremă satisface P astfel:

- (i) demonstrăm că orice axiomă are proprietatea P;
- (ii) demonstrăm că orice formulă din Γ are proprietatea P;
- (iii) demonstrăm că dacă φ și $\varphi \to \psi$ au proprietatea **P**, atunci ψ are proprietatea **P**.

Versiunea 2.

Fie Σ o mulţime de formule. Demonstrăm că $Thm(\Gamma) \subseteq \Sigma$ astfel:

- (i) demonstrăm că orice axiomă este în Σ ;
- (ii) demonstrăm că orice formulă din Γ este în Σ ;
- (iii) demonstrăm că dacă $\varphi \in \Sigma$ și $\varphi \to \psi \in \Sigma$, atunci $\psi \in \Sigma$.

Propoziţia 8.7

Fie Γ , Δ mulţimi de formule.

- (i) Dacă $\Gamma \subseteq \Delta$, atunci $Thm(\Gamma) \subseteq Thm(\Delta)$, adică, pentru orice formulă φ , $\Gamma \vdash \varphi$ implică $\Delta \vdash \varphi$.
- (ii) Thm ⊆ Thm(Γ), adică, pentru orice formulă φ,
 ⊢ φ implică Γ ⊢ φ.
- (iii) Dacă $\Gamma \vdash \Delta$, atunci $Thm(\Delta) \subseteq Thm(\Gamma)$, adică, pentru orice formulă φ , $\Delta \vdash \varphi$ implică $\Gamma \vdash \varphi$.
- (iv) $Thm(Thm(\Gamma)) = Thm(\Gamma)$, adică, pentru orice formulă φ , $Thm(\Gamma) \vdash \varphi$ ddacă $\Gamma \vdash \varphi$.

Demonstrație. Exercițiu ușor.

Γ-DEMONSTRAŢII

Definiția 8.8

O Γ -demonstrație (demonstrație din ipotezele Γ) este o secvență de formule $\theta_1, \ldots, \theta_n$ a.î. pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele condiții este satisfăcută:

- (i) θ_i este axiomă;
- (ii) $\theta_i \in \Gamma$;
- (iii) există k, j < i a.î. $\theta_k = \theta_j \rightarrow \theta_i$.

O ∅-demonstrație se va numi simplu demonstrație.

Lema 8.9

Dacă $\theta_1, \ldots, \theta_n$ este o Γ-demonstrație, atunci

 $\Gamma \vdash \theta_i$ pentru orice $i \in \{1, \ldots, n\}$.

Demonstrație. Exercițiu.

Γ-DEMONSTRAŢII

Definiția 8.10

Fie φ o formulă. O Γ -demonstrație a lui φ sau demonstrație a lui φ din ipotezele Γ este o Γ -demonstrație $\theta_1, \ldots, \theta_n$ a.î. $\theta_n = \varphi$. În acest caz, n se numește lungimea Γ -demonstrației.

Propoziția 8.11

Fie Γ o mulţime de formule şi φ o formulă. Atunci $\Gamma \vdash \varphi$ ddacă există o Γ -demonstrație a lui φ .

Demonstrație. Exercițiu suplimentar.

PROPRIETĂŢI SINTACTICE

Propoziţia 8.12

Pentru orice mulţime de formule Γ şi orice formulă φ , $\Gamma \vdash \varphi$ ddacă există o submulţime finită Σ a lui Γ a.î. $\Sigma \vdash \varphi$.

Demonstrație. " \Leftarrow " Fie $\Sigma \subseteq \Gamma$, Σ finită a.î. $\Sigma \vdash \varphi$. Aplicând Propoziția 8.7 (i) obţinem că $\Gamma \vdash \varphi$.

"⇒" Presupunem că $\Gamma \vdash \varphi$. Conform Propoziției 8.11, φ are o Γ -demonstrație $\theta_1, \ldots, \theta_n = \varphi$. Fie

$$\Sigma := \Gamma \cap \{\theta_1, \ldots, \theta_n\}.$$

Atunci Σ este finită, $\Sigma \subseteq \Gamma$ şi $\theta_1, ..., \theta_n = \varphi$ este o Σ-demonstraţie a lui φ , deci $\Sigma \vdash \varphi$.

$$\vdash \varphi \rightarrow \varphi$$

Propoziția 8.13

Pentru orice formulă φ , $\vdash \varphi \rightarrow \varphi$.

Demonstrație.

- (1) $\vdash (\varphi \rightarrow ((\varphi \rightarrow \varphi) \rightarrow \varphi)) \rightarrow ((\varphi \rightarrow (\varphi \rightarrow \varphi)) \rightarrow (\varphi \rightarrow \varphi))$ (A2) (cu φ , $\psi := \varphi \rightarrow \varphi$, $\chi := \varphi$) şi Propoziţia 8.5.(i)
- (2) $\vdash \varphi \rightarrow ((\varphi \rightarrow \varphi) \rightarrow \varphi)$ (A1) (cu φ , $\psi := \varphi \rightarrow \varphi$) şi Propoziţia 8.5.(i)
- (3) $\vdash (\varphi \rightarrow (\varphi \rightarrow \varphi)) \rightarrow (\varphi \rightarrow \varphi)$ (1), (2) şi Propoziţia 8.5.(iii). Scriem de obicei (MP): (1), (2)
- (4) $\vdash \varphi \rightarrow (\varphi \rightarrow \varphi)$ (A1) (cu $\varphi, \ \psi := \varphi$) şi Propoziţia 8.5.(i)
- (5) $\vdash \varphi \rightarrow \varphi$ (MP): (3), (4)

TEOREMA DEDUCŢIEI

Teorema deducției este unul din cele mai utile instrumente pentru a arăta că o formulă e teoremă.

Teorema deducției 8.14

Fie $\Gamma \subseteq \mathit{Form}\ \mbox{si}\ \varphi, \psi\ \in \mathit{Form}.$ Atunci

$$\Gamma \cup \{\varphi\} \vdash \psi \ ddacă \ \Gamma \vdash \varphi \rightarrow \psi.$$

CÂTEVA CONSECINȚE

Propoziția 8.15

Pentru orice formule φ, ψ, χ ,

$$\vdash (\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi)).$$
 (1)

Demonstrație. Folosind teorema deducției observăm că

$$\vdash \frac{(\varphi \to \psi)}{(\varphi \to \psi)} \to ((\psi \to \chi) \to (\varphi \to \chi))$$

$$\updownarrow$$

$$\{\varphi \to \psi\} \vdash \frac{(\psi \to \chi)}{(\psi \to \chi)} \to (\varphi \to \chi)$$

$$\updownarrow$$

$$\{\varphi \to \psi, \psi \to \chi\} \vdash \varphi \to \chi$$

$$\updownarrow$$

$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi.$$

CÂTEVA CONSECINȚE

În acest fel am reformulat ceea ce aveam de demonstrat. A demonstra teorema inițială este echivalent cu a demonstra

$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi.$$

(1)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi$$
 Propoziţia 8.5.(ii)

(2)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi \to \psi$$
 Propoziţia 8.5.(ii)

(3)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi$$
 (MP): (1), (2)

(4)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi \to \chi$$
 Propoziţia 8.5.(ii)

(5)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi$$
 (MP): (3), (4).

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

Pe data viitoare!

Conținutul tehnic al acestui curs se regăsește în cursul de *Logică Matematică și Computațională* al prof. Laurențiu Leuștean din anul universitar 2017/2018.

Comic-ul aparţine xkcd.