Sexto Relatório de Lab de Circuitos

Henrique da Silva hpsilva@proton.me

18 de outubro de 2022

Sumário

	Intro	ducão
		1111 40
_	TITUI O	auçuo

2 Analise do circuito

3 Medições no laboratório

0.1	valores reals das partes
3.2	Imagem da onda
3.3	Medicoes para o regime permanente
3.4	Resposta natural
3.5	Tempo de subida e descida
3.6	Overshoot

4 Atividades pós laboratoriais

1 Introdução

Neste relatório vamos discutir um circuito com um AmpOp e dois capacitores que se comportara como um circuito RLC.

Todos arquivos utilizados para criar este relatório, é o relatorio em si estão em: https://github.com/Shapis/ufpe_ee/tree/main/4thsemester/labcircuitos

2 Analise do circuito

Podemos fazer a seguinte análise no nosso circuito:

$$\begin{split} &\frac{V_a - V_i}{R_1} + \frac{V_a - V_0}{R_2} + \frac{V_a}{R_3} + C1 \frac{\mathrm{d}V_a}{\mathrm{d}t} = 0 \\ &\frac{-V_a}{R_3} - C_2 \frac{V_0}{t} = 0 \\ &V_a = -R_3 C_2 \frac{\mathrm{d}V_0}{\mathrm{d}t} \\ &V_a \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\right) + C_1 \frac{\mathrm{d}V_a}{\mathrm{d}t} - \frac{V_0}{R_2} = \frac{V_i}{R_1} \\ &R_3 C_2 \frac{\mathrm{d}V_0}{\mathrm{d}t} K_1 + C_1 C_2 R_3 \frac{\mathrm{d}\frac{\mathrm{d}V_0}{\mathrm{d}t}}{\mathrm{d}t} + \frac{V_0}{R_2} = \frac{-V_i}{R_i} \end{split}$$

Que segue:

$$V_0(0) = -V_{C20}$$

$$\frac{dV_0}{dt} = -\frac{V_{C10}}{R_3 C_2}$$

$$V_a(t) = V_{C_1}(t) \to V_a(0) = V_{C10} = -R_3 C_2 \frac{dV_0}{dt}(0)$$

$$V_{C_2}(t) = -V_0(t) \to V_0(0) = -V_{C20}$$

3 Medições no laboratório

3.1 Valores reais das partes.

Abaixo estao os valores medidos das partes utilizadas no experimento:

$$\begin{array}{cccc} R_1 & \rightarrow & 46.34K\Omega \\ R_2 & \rightarrow & 32.21K\Omega \\ R_3 & \rightarrow & 67.1K\Omega \\ C_1 & \rightarrow & 1.05nF \\ C_2 & \rightarrow & 101.56nF \end{array}$$

3.2 Imagem da onda

3.5 Tempo de subida e descida

Utilizarei a frequencia $f = \frac{1}{8}\alpha = 41.4$ para todos experimentos a seguir. Isto nos dara tempo suficiente para a tensao estabilizar.

%V	t_{subida}	$t_{descida}$
$t_{10\%}$	$200 \mu s$	$720\mu s$
$t_{90\%}$	$200 \mu s$	$900 \mu s$

3.6 Overshoot

	Tempo	Tensao
$T_{overshootN}$	1.45ms	2.15V
$T_{overshootF}$	1.4ms	-2.0625V

3.3 Medicoes para o regime permanente

Inicialmente medimos as tensoes nos capacitores para tempos longos, ou seja. Quando estao em regime permanente, e obtivemos o seguinte:

$$V_{C10} = -3.5V V_{C20} = 0V$$

3.4 Resposta natural

Obtivemos que em resposta natural, o capacitor C_1 em t_0 tem uma tensao de -3.5V, ele oscila de maneira subamortecida ate tender a 0V em $t=\infty$.

Ja o mesmo capacitor C_1 em resposta forcada, inicia em 0V e oscila de maneira subamortecida ate tender a -3.5V em $t=\infty$.

4 Atividades pós laboratoriais