Anti-money laundering on Bitcoin Data Analysis & Experiment on Various Models

CHUN-YEN LEE 李俊諺; ZHAO-QIAN YUAN 袁肇謙; CHENG-FU WENG 翁丞甫 109-1 Network & Multimedia Lab Final Project

Introduction

Anti-money laundering (AML) regulations play a critical role in safeguarding financial systems, but bear high costs for institutions and drive financial exclusion for those on the socioeconomic and international margins. We contribute the analysis on Elliptic Data Set, to see if any feature highly correlated to illicit transaction.

Data Structure

Highly Correlated Featurescorrelation matrix

Feature Correlation with Output

Highly Correlated Features-VIF

Experiment Replication

Method	Paper Self-produced		
	F ₁	F ₁	
Logistic Regression	0.481	0.529	
RandomForest	0.788	0.784	
MLP	0.653	0.665	
degree_2 Logistic Regression		0.540	
degree_2 Polynomial Regression		0.447	
Linear Regression		0.257	
Logistic RegressionCV		0.676	
SVM		0.682	

PCA

F ₁
0.477
0.637
0.689
0.590
0.489
0.265
0.673
0.714

Feature selection

Mathad	PCA	correlation
Method	F ₁	F ₁
Logistic Regression	0.502	0.492
RandomForest	0.613	0.779
MLP	0.667	0.283
degree_2 Logistic Regression	0.616	nan
degree_2 Polynomial Regression	0.533	0.640
Linear Regression	0.267	0.156
Logistic RegressionCV	0.660	0.496
SVM	0.714	0.672