MCR3U - Unit 1 Project

Name:		

Mark: / 20

K/U	A	Т	С
/6	/6	/4	/4

Introduction:

The transformed city is a city designed based on the concept of transformation. Every building is a transformation of the main building City Hall (building #1). You are given a rule of transformation to:

- 1) identify the transformation for building #2 #6 in comparison with the city hall;
- 2) based on the coordinates of the city hall, determine the coordinates for buildings #2 #6;
- 3) graph each building in the city on the given coordinate plane, based on the coordinates determined in the last step.
- Building 1 (main building) City Hall
 - its location is represented by the relation $\underline{f(x)}$.
- Building 2 Police station
 - its location is represented by the relation g(x) = f(x + 12).
- Building 3 Hospital
 - its location is represented by the relation h(x) = f(x) 13.
- Building 4: Local TV station
 - its location is represented by the relation k(x) = f(3x).
- Building 5: Public library
 - its location is represented by the relation $\underline{m(x)} = 2f(x) 3$.
- Building 6: Airport
 - its location is represented by the relation $\underline{n}(x) = -f(x+10) + 4$.

Submission Checklist:

- Completed worksheet that includes all elements:
 - Filled table 1 (transformations)
 - Filled table 2 (coordinate points)
 - Completed table 3 (coordinate plane with 6 drawn buildings)
- You may submit your final work in a scanned pdf (preferred) / photos in one document.

Hint:

	Transformation Rules		
Function Notation	Type of Transformation	Change to Coordinate Point	
f(x) + c	Vertical translation up c units	$(x,y) \rightarrow (x,y+\mathbf{c})$	
f(x) - c	Vertical translation down & units	$(x,y) \rightarrow (x,y-\mathbf{c})$	
f(x + d)	Horizontal translation left dunits	$(x,y) \rightarrow (x-\mathbf{d},y)$	
f(x - d)	Horizontal translation right d units	$(x,y) \rightarrow (x+d,y)$	
-f(x)	Reflection over x-axis	$(x,y) \rightarrow (x,-y)$	
f(-x)	Reflection over y-axis	$(x,y) \rightarrow (-x,y)$	
af(x)	Vertical stretch for a >0	$(x,y) \rightarrow (x,ay)$	
af(x)	Vertical compression for 0< a <1	$(x,y) \rightarrow (x,ay)$	
f(k x)	Horizontal compression for k >0	$(x,y) \to \left(\frac{x}{\mathbf{k}},y\right)$	
f(k x)	Horizontal stretch for $0 < \mathbf{k} < 1$	$(x,y) \rightarrow \left(\frac{x}{\mathbf{\ell}},y\right)$	

Table 1 [K+C]: <u>Identify</u> and <u>describe</u> transformations of each of the following relations compared to f(x).

g(x) = f(x+12)	
h(x) = f(x) - 13	
k(x) = f(2x)	
m(x) = 3f(x) - 3	
n(x) = -f(x+10) + 4	

Table 2 [T]: Complete the coordinate points for each function transformed from f(x).

Show your work below. (e.g. which formula did you choose? how did you apply it?)

f(x)	g(x)	h(x)	k(x)	m(x)	n(x)
(2,2)					
(5,2)					
(5,6)					
(4,6)					
(4,5)					
(2,5)					

Table 3 [A]: According to the coordinates, <u>draw</u> buildings #2 - #6 and <u>label</u> them with the building names.

