Lecture 5 – Gradient Descent

ME494 – Data Science and Machine Learning for Mech Engg

Instructor – Subramanian Sankaranarayanan

Teaching Assistants
Aditya Koneru (akoner3@uic.edu)
Suvo Banik (sbanik2@uic.edu)

Learning objectives for this class

- Introduction to gradient descent for finding optimal solution
- Loss function and gradient descent
- Concept of learning rate
- Types of gradient descent Stochastic vs. batch vs. mini batch
- Python implementation of the gradient descent approach

Loss Function – Mean Square Error

Mean Square Error

Mean square error
$$\frac{1}{N}\sum_{i=1}^{N}(e_i)^2$$

For any ML model, MSE = $\frac{1}{n}\sum_{i=1}^{n}(y_i-y_{predicted})^2$

Loss Function MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i))^2$$

Loss Function MSE = $\frac{1}{N} \sum_{i=1}^{N} (y_i - \beta_0 - \beta_1 x_{i1})^2$

Gradient descent aims to find the best fit line for a given training dataset

What is gradient descent?

Reference: https://am207.github.io/2017/wiki/gradientdescent.html

Example of a Gradient based search

Example of a Gradient based search

Basic Math – Let us revisit the derivatives

Basic Math – Let us revisit the derivatives

As
$$\Delta x$$
 tends to zero, Δx dx

$$\frac{dy}{dx} = \frac{f(x + dx) - f(x)}{dx}$$

Basic Math – Let us revisit the derivatives

$$f(x) = x^2$$

$$\frac{dy}{dx} = \frac{f(x + dx) - f(x)}{dx}$$

$$= \frac{(x + dx)^2 - x^2}{dx} \qquad f(x) = x^2$$

$$= \frac{x^2 + 2x(dx) + (dx)^2 - x^2}{dx} \qquad Expand (x+dx)^2$$

$$= \frac{2x(dx) + (dx)^2}{dx} \qquad x^2 - x^2 = 0$$

$$= 2x + dx \qquad Simplify fraction$$

$$= 2x \qquad dx goes towards 0$$

Recap - Partial derivatives

$$f(x,y) = x^3 + y^2$$

$$\frac{\partial f}{\partial x} = 3x^2 + 0 = 3x^2$$

$$\frac{\partial f}{\partial y} = 0 + 2y = 2y$$

Now let us calculate the slope

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - (mx_i + b))^2$$

$$\frac{\partial}{\partial m} = \frac{2}{n} \sum_{i=1}^{n} -x_i \left(y_i - (mx_i + b) \right)$$

$$\frac{\partial}{\partial b} = \frac{2}{n} \sum_{i=1}^{n} -\left(y_i - (mx_i + b)\right)$$

1. Partial derivative with respect to m

Let

$$u = y - (mx + b).$$

Then

$$f(m,b)=u^2.$$

Step-by-step

1. Use the chain rule:

$$rac{\partial f}{\partial m} = rac{\partial}{\partial m}ig[u^2ig] = 2\,u\cdotrac{\partial u}{\partial m}.$$

2. Compute $\frac{\partial u}{\partial m}$:

$$u=y-(mx+b) \quad \Longrightarrow \quad rac{\partial u}{\partial m}=rac{\partial}{\partial m}[y-(mx+b)]=-x.$$

3. Combine the results:

$$rac{\partial f}{\partial m} = 2\left(y - (mx + b)
ight)\cdot (-x) = -2x\left(y - (mx + b)
ight).$$

2. Partial derivative with respect to $oldsymbol{b}$

Again using u = y - (mx + b):

$$rac{\partial f}{\partial b} = rac{\partial}{\partial b}ig[u^2ig] = 2\,u\cdotrac{\partial u}{\partial b}.$$

1. Compute $\frac{\partial u}{\partial b}$:

$$u=y-(mx+b) \implies rac{\partial u}{\partial b}=rac{\partial}{\partial b}[y-(mx+b)]=-1.$$

2. Combine the results:

$$\frac{\partial f}{\partial b} = 2\left(y - (mx + b)\right) \cdot (-1) = -2\left(y - (mx + b)\right).$$

Final Answers

$$rac{\partial}{\partial m}ig(y-(mx+b)ig)^2=-2x\,ig(y-(mx+b)ig),$$

$$\frac{\partial}{\partial b} (y - (mx + b))^2 = -2 (y - (mx + b)).$$

Concept of Learning Rate

$$m = m - learning rate * \frac{\partial}{\partial m}$$

$$b = b - learning rate * \frac{\partial}{\partial b}$$

How does Gradient Descent work?

How does Gradient Descent work?

How does Gradient Descent work?


```
In [109]: import numpy as np
          import matplotlib.pyplot as plt
In [117]: %matplotlib inline
          def gradient_descent(x,y):
              m curr = b curr = 0
              rate = 0.008
              iter=1000
              n = len(x)
              plt.scatter(x,y,color='red',marker='+',linewidths=5)
              for i in range(iter):
                  y predicted = m curr * x + b curr
                  #print (m_curr,b_curr, i)
                  plt.plot(x,y predicted,color='green')
                  md = -(2/n)*sum(x*(y-y predicted))
                  yd = -(2/n)*sum(y-y predicted)
                  m_curr = m_curr - rate * md
                  b curr = b curr - rate * yd
  In [ ]:
In [118]: #Create an array of independent variable x and dependent variable y based on a known linear model (y=m*x+c)
          x = np.array([1,2,3,4,5])
          y = np.array([5,7,9,11,13])
           y.shape
           #Solution for this (y=m*x+b) are m=2.0 b=3.0
Out[118]: (5,)
In [119]: gradient descent(x,y)
```


Gradient descent is a <u>first-order iterative</u> <u>optimization</u> <u>algorithm</u> for finding the minimum of a function

Most problems in practice

Need ways to implement gradient descent more efficiently

Stochastic vs. Batch vs. Mini batch Gradient Descent

HV	C.al	C.co
170	0.056604	0.000000
380	0.200000	0.266667
775	0.400000	0.200000
486	0.208333	0.000000
118	0.024390	0.243902

Hardness = w1*C.al+w2*C.co+bias

Gradient Descent

Initialize $w_1=1$, $w_2=1$, bias=1

Gradient Descent

Initialize $w_1=1$, $w_2=1$, bias=1

Gradient Descent

Initialize $w_1=1$, $w_2=1$, bias=1

Error_5=(Hv_true-HV_predicted)²

End of First Epoch

Mean Squared Error (MSE) =
$$\frac{Total\ Error}{5}$$

$$w1 = w1 - learning \ rate * \frac{\partial (MSE)}{\partial w1}$$

$$w2 = w2 - learning \ rate_{R} * \frac{\partial (MSE)}{\partial w2} / \frac{\partial w2}{\partial w2}$$
 W2 = 23

$$b = b - learning \ rate * \frac{\partial (MSE)}{\partial b}$$
 $b = 34$

End of Second Epoch

Error_5=(Hv_true-HV_predicted)²

Total Error = Error_1+Error_2+Error_3+Error_4+Error_5

This is Batch Gradient Descent where we go through all the samples and compute total error. This is back propagated and weights are adjusted till convergence is achieved i.e. error is the minimum

Now the challenging part with Batch Mode

Think about neural networks and large ML models

HV	C.al	C.co
170	0.056604	0.000000
380	0.200000	0.266667
775	0.400000	0.200000
486	0.208333	0.000000
118	0.024390	0.243902

First Epoch would essentially require a forward pass for million samples

If we have 2 features or attributes, we have 2 million derivatives to compute

Say if you have a million samples

Remember the dataset last time, where we had 22 features

Too much computations required to converge

Stochastic Gradient Descent

First, randomly pick a single data training sample

Initialize $w_1=1$, $w_2=1$, bias=1

HV	C.al	C.co
170	0.056604	0.000000
380	0.200000	0.266667
775	0.4000 3 0	0.200000
486	0.208333	0.000000
118	0.024390	0.243902

Hardness = w_1 *C.al+ w_2 *C.co+bias

Sample 3

HV_predicted = 1.6

HV_true = 775

Error=(Hv_true-HV_predicted)²

Stochastic Gradient Descent

Next, adjust the weights by computing the derivatives

$$w1 = w1 - learning \ rate * \frac{\partial (MSE)}{\partial w1}$$

$$w2 = w2 - learning \ rate * \frac{\partial (MSE)}{\partial w2}$$

$$b = b - learning \ rate * \frac{\partial (MSE)}{\partial b}$$

Stochastic Gradient Descent – iteration 2

Again, randomly pick a single data training sample

Weights from previous forward pass

HV	C.al	C.co
170	0.056604	0.000000
380	0.200000	0.266667
775	0.400000	0.200000
486	0.208333	0.000000
118	0.024390	0.243902

Machine Learning Model

Hardness = w_1 *C.al+ w_2 *C.co+bias

Sample 4

HV_predicted = XXX

HV_true = 486

Error=(Hv_true-HV_predicted)²

Stochastic Gradient Descent – iteration 2

Again, adjust the weights by computing the derivatives

$$w1 = w1 - learning \ rate * \frac{\partial (MSE)}{\partial w1}$$

$$w2 = w2 - learning \ rate * \frac{\partial (MSE)}{\partial w2}$$

$$b = b - learning \ rate * \frac{\partial (MSE)}{\partial b}$$

Continue this till convergence

Stochastic vs. Batch Gradient Descent

Batch Gradient Descent	Stochastic Gradient Descent
All the samples are used for one forward pass	One sample is picked randomly for one forward pass
Good for smaller training data set	Good for large training data set. Saves compute time
Great for convex, or relatively smooth error manifolds or surfaces	SGD works well for error manifolds that have lots of local maxima/minima
Struggles when lot of local minima are present — eventually converges provided large enough compute times	Noisier gradients tend to avoid sub-optimal local minima

Stochastic vs. Batch Gradient Descent

Mini Batch Gradient Descent

Mini Batch is similar to a stochastic gradient descent. However, instead on one randomly chosen sample, we pick (randomly) a small batch of samples.

- 1. If the total samples are around 200
- 2. Let us pick 10 random samples for one forward pass to compute the cummulative error
- 3. Adjust the weights
- 4. Choose again 10 random samples
- 5. Adjust weights

:

Convergence is achieved

Summary

Batch	gradient
Desce	nt

Stochastic Gradient Descent

Mini Batch Gradient Descent

Use <u>all</u> the training data or samples for one forward pass and adjust weights

Use <u>one</u> <u>randomly picked</u> training data or samples for one forward pass and adjust weights

Use <u>a batch of</u>
randomly picked
training data or
samples for one
forward pass and
adjust weights

Next lecture

Python implementation of stochastic and batch gradient descent