- **2.3.** Przypadek 0 < x < 1 jest oczywisty. Dla x > 1 sprowadzić logarytmy do wspólnej podstawy 3 i przyjąć $\log_3 x = t$.
- **2.4.** Warunek geometryczny zapisać w języku nierówności kwadratowej z parametrem.
- **2.5.** Podstawić x+5=t i badać równanie ||t|-1|=m. Przypadki m<0 i m=0 rozpatrzeć bezpośrednio, a dla m>0 korzystać z tożsamości $(|a|=b)\Leftrightarrow (a=b)$ lub a=-b) prawdziwej dla $b\geq 0$.
- **2.6.** Pomnożyć drugie równanie przez 2 i następnie odjąć oba równania stronami. Podstawienie x-y=t prowadzi do równania kwadratowego z niewiadomą t.
- **2.7.** Uzasadnić, że szukane punkty A i B leżą na osi Ox w odległości $5\sqrt{2}$ od środka danego okręgu. Przy obliczaniu pola figury (którą jest deltoid), najprościej jest korzystać z podobieństwa odpowiednich trzech trójkątów prostokątnych.
- **2.8.** Dziedzinę równania określają warunek istnienia tangensa i warunek istnienia sumy nieskończonego ciągu geometrycznego. Korzystając ze wzoru $1+ \operatorname{tg}^2 \gamma = \frac{1}{\cos^2 \gamma}$ oraz ze wzorów podanych we wskazówkach do zad. 3.8 i 4.3, przekształcić obie strony do równości dwóch cosinusów lub sinusów i przejść od razu do porównywania kątów.
- **3.1.** Podstawić $\sqrt{x}=t$ i korzystać z własności funkcji kw
dratowej oraz z monotoniczności pierwiastka kwadratowego.
- **3.2.** Wyznaczyć środek S rombu korzystając z relacji $S \in l$ oraz $AS \perp l$ tzn. $\overrightarrow{AS} = a\overrightarrow{n}$, gdzie $\overrightarrow{n} = [2,1]$ jest wektorem prostopadłym do prostej l. Z warunku $\overrightarrow{AS} \perp \overrightarrow{SB}$ wynika, że $\overrightarrow{SB} = -\overrightarrow{SD} = c[1,-2]$. Dane pole rombu pozwala wyznaczyć skalar c i stąd od razu otrzymujemy współrzędne wierzchołków B i D.
- **3.3.** W dowodzie kroku indukcyjnego przekształcając lewą stronę doprowadzić do równości z prawą. Unikać dowodu metodą redukcji.