Lista 4 de CM300

1. Em cada item, calcule quando possível o valor da função nos pontos x dados.

(a)
$$f(x) = 3x^2 - 4x + 1$$
, $x = 2$, $x = -\frac{1}{2}$, $x = \sqrt{3}$.

(b)
$$g(x) = \sqrt{x^2 - 4}$$
, $x = 0, x = 2, x = -3$.

(c)
$$h(x) = \frac{1}{x+1}$$
, $x = -\frac{4}{3}$, $x = 0$, $x = -1$.

- 2. Suponha que o valor de mercado de uma determinada empresa entre os anos de 2010 e 2015 é razoavelmente bem modelado pela função $\ell(t) = t^2/10 + 3$, onde ℓ é o preço que a empresa vale em milhões de reais e $t \in [0, 5]$ é o tempo, onde t = 0 representa 1° de janeiro de 2010, t = 1 representa 1° de janeiro de 2011 e assim por diante. Calcule de acordo com o modelo:
 - (a) o valor aproximado da empresa em 1º de janeiro de 2010.
 - (b) o valor aproximado da empresa em 1º de janeiro de 2014.
 - (c) o valor aproximado da empresa em 1^o de julho de 2012. (dica: como em julho estamos na metade do ano, faça t=2,5, sendo 2 para chegar em 2012 e 0,5 pra chegar em julho.)
- 3. Após uma muda ser plantada em uma horta, seu peso (massa) variou aproximadamente de acordo com a função $p(t) = 100 + 3 \cdot 4^t$, onde p é o peso da planta em gramas e $t \in [0,3]$ é o tempo decorrido, onde t=0 representa o momento onde a muda foi plantada (início da primeira semana da planta na horta), t=1 representa o início da segunda semana após o plantio e assim por diante. Com base nesse modelo, calcule qual era aproximadamente o peso da planta:
 - (a) no início da primeira semana, ou seja, assim que foi plantada na horta.
 - (b) no início da terceira semana.
 - (c) no meio da segunda semana.
 - (d) um terço de semana após o plantio (use uma calculadora e expresse a resposta com 2 casas decimais).
- **4.** Uma construtora usa a função p(d) = 6000 200d para definir o preço de seus imóveis, onde p é o preço do metro quadrado do imóvel e $d \in [0, 10]$ é sua distância ao centro da cidade.
 - (a) Quanto custa um imóvel dessa construtora no centro da cidade?
 - (b) E de um imóvel a 5Km do centro?
 - (c) Esboce o gráfico da função p (atenção para não extrapolar o domínio [0, 10]).
 - (d) De acordo com o gráfico, o preço do imóvel aumenta ou diminui conforme este está mais longe do centro da cidade? Qual propriedade matemática da função p(d) nos diz isso?
- 5. Encontre o domínio de cada uma das funções abaixo. Dica: lembre-se que só existe raiz quadrada real de números maiores ou iguais a zero e que não existe divisão por zero. Por exemplo, o domínio da função $f(x) = 1/x + \sqrt{1-x}$ é o conjunto dos x que são simultaneamente diferentes de zero (pra existir 1/x) e menores ou iguais a 1 (para que tenhamos $1-x \ge 0$ e com isso a raiz $\sqrt{1-x}$ exista). Nesse caso, o domínio pode ser representado por $]-\infty,0[\cup]0,1]$, ou então por $]-\infty,1]-\{0\}$, ou ainda $\{x\in\mathbb{R} \text{ tal que } x\le 1 \text{ e } x\ne 0\}$, dentre outras formas.

(a)
$$f(x) = \sqrt{2x+5}$$

(b)
$$g(x) = \frac{1}{2x+5}$$

(c)
$$h(x) = \frac{1}{2x+5}$$

(d)
$$a(t) = \sqrt{-3t}$$

(e)
$$\phi(z) = \sqrt{-z^2 + 3z - 2}$$

(f)
$$\alpha(x) = \sqrt{x^2 - 9}$$

(g)
$$\beta(x) = \frac{13}{x^2 - 2x - 8}$$

(h)
$$f(y) = \sqrt{y^2}$$

(i)
$$y(x) = -\frac{1}{x^2}$$

$$(j) \ j(x) = \sqrt{x} - 1$$

$$(k) k(x) = \frac{1}{\sqrt{x} - 1}$$

(1)
$$f(x) = \sqrt{3x+1} - \sqrt{-3x+1}$$

(m)
$$g(t) = \frac{\sqrt{t} - \sqrt{7}}{t - 7}$$

(m)
$$g(t) = \frac{\sqrt{t} - \sqrt{7}}{t - 7}$$
 (n) $\theta(z) = \frac{1}{\sqrt{z}(z - 2)}$

(o)
$$\lambda(z) = \frac{1}{\sqrt{z}(z+2)}$$

(p)
$$p(x) = \sqrt{-x^2 - 1}$$

(q)
$$q(x) = \sqrt{-x^2}$$

(r)
$$r(x) = \sqrt{1 - x^2}$$

6. Considere o gráfico da função $f: [-4, 6] \to \mathbb{R}$ abaixo.

- (a) Quais são os pontos de descontinuidade da função? (b) Encontre o valor da função para x = -4, x = -3, x = -2, x = -1, 5, x = -1, x = 0, x = 0, 5, x = 1, x = 2, x = 2, 5, x = 3, x = 4, x = 5, ex = 6? Nos pontos onde não for possível dizer o valor exato, apresente um aproximado.
- 7. Para o gráfico de f(x) dado em cada item, diga o valor dos limites solicitados (suponha que para $x \to -\infty$ e $x \to \infty$ a função continua com o comportamento representado no gráfico).

$$(\mathbf{a})\lim_{x\to -\infty}f(x), \lim_{x\to -2}f(x), \lim_{x\to -2^-}f(x), \lim_{x\to -2^+}f(x), \lim_{x\to \infty}f(x).$$

(b) $\lim_{x \to -\infty} f(x)$, $\lim_{x \to 0^-} f(x)$, $\lim_{x \to 0^+} f(x)$, $\lim_{x \to \infty} f(x)$.

 $(\mathbf{c}) \lim_{x \to -\infty} f(x), \lim_{x \to 2^-} f(x), \lim_{x \to 2^+} f(x), \lim_{x \to 4} f(x), \lim_{x \to \infty} f(x).$

 $(\mathrm{d}) \lim_{x \to -\infty} f(x), \lim_{x \to 0^-} f(x), \lim_{x \to 0^+} f(x), \lim_{x \to 0} f(x), \lim_{x \to 1} f(x), \lim_{x \to \infty} f(x).$

(e) $\lim_{x \to -\infty} f(x)$, $\lim_{x \to 1} f(x)$, $\lim_{x \to \infty} f(x)$.

- 8. Em cada item, apresente uma função f(x) que respeite o que é indicado.
 - (a) $\lim_{x \to -\infty} f(x) = \infty$, $\lim_{x \to 2} f(x) = -\infty$, f(2) = 3, $\lim_{x \to \infty} f(x) = \infty$.
 - (b) $\lim_{x \to -\infty} f(x) = -\infty$, $\lim_{x \to 1^-} f(x) = 1$, $\lim_{x \to 1^+} f(x) = 4$, f(1) = 3, $\lim_{x \to \infty} f(x) = -\infty$.
 - (c) $\lim_{x \to -\infty} f(x) = -\infty$, $\lim_{x \to 0} f(x) = -\infty$, $\lim_{x \to \infty} f(x) = \infty$.
 - (d) $\lim_{x \to -\infty} f(x) = -\infty$, $\lim_{x \to 0} f(x) = 3$, f(0) = 0, $\lim_{x \to \infty} f(x) = 0$.
 - (e) $\lim_{x \to -\infty} f(x) = -\infty$, $\lim_{x \to -2} f(x) = \infty$, $\lim_{x \to \infty} f(x) = 2$.
 - (f) $\lim_{x \to -\infty} f(x) = \infty$, f(1) = -1, $\lim_{x \to \infty} f(x) = \infty$.
 - (g) f(z) = 0 se z é impar e $\lim_{x \to z} f(x) = \infty$ se z é par.

Respostas:

- **1.** (a) f(2) = 5, $f\left(-\frac{1}{2}\right) = \frac{15}{4} e f(\sqrt{3}) = 10 4\sqrt{3}$.
 - (b) Não existe $g(0), g(2) = 0, g(-3) = \sqrt{5}$.
 - (c) $h\left(-\frac{4}{3}\right) = -3$, h(0) = 1, não existe h(-1).
- 2. (a) 3 milhões de reais.
 - (b) 4,6 milhões de reais.
 - (c) 3,625 milhões de reais.
- **3.** (a) 103g.

(b) 148g.

(c) 124g.

(d) 104,76g

- **4.** (a) R6000, 00/m^2$.
 - (b) R5000, 00/m^2$.
 - (c)

(d) O preço diminui, uma vez que a função p(d) é decrescente para $d \in [0, 10]$, ou seja, quanto maior a distância d, menor o valor do preço p.

- **5.** (a) $dom(f) = \left[-\frac{5}{2}, \infty \right[$
 - (b) $dom(g) = \mathbb{R} \left\{ -\frac{5}{2} \right\}$
 - (c) $dom(h) = \left] -\frac{5}{2}, \infty \right[$
 - (d) $dom(a) = \{t \in \mathbb{R} \text{ tal que } t \leq 0\}$
 - (e) $dom(\phi) = \{z \in \mathbb{R} \text{ tal que } -1 \le z \le 2\}$
 - (f) $dom(\alpha) = \{x \in \mathbb{R} \text{ tal que } x \le -3 \text{ ou } x \ge 3\}$
 - (g) $dom(\beta) = \mathbb{R} \{-2, 4\}$
 - (h) dom(f) = IR

- (i) $dom(y) = IR \{0\}$
- (j) $dom(j) = [0, \infty[$
- (k) $dom(k) = [0, 1[\cup]1, \infty[$
- (l) $dom(f) = \left[-\frac{1}{3}, \frac{1}{3} \right]$
- (m) $dom(g) = [0, 7[\cup]7, \infty[$
- (n) $dom(\theta) =]0, 2[\cup]2, \infty[$
- (o) $dom(\lambda) =]0, \infty[$
- (p) $dom(p) = \emptyset$
- $(q) \ dom(q) = \{0\}$
- (r) dom(r) = [0, 1]

- **6.** (a) x = -2, x = -1, x = 4.
 - (b) f(-4) = 4, f(-3) = 3, Não existe f(-2), f(-1,5) = -0.5 f(-1) = -1 f(0) = 0 f(0,5) = 1 f(1) = 3 f(2) = 3 f(2,5) = 3, f(3) = 3 f(4) = 1 f(5) = -1 e f(6) = -2.
- 7. (a) $\lim_{x \to -\infty} f(x) = -\infty$, não existe $\lim_{x \to -2} f(x)$, $\lim_{x \to -2^-} f(x) = \infty$, $\lim_{x \to -2^+} f(x) = -\infty$, $\lim_{x \to \infty} f(x) = 3$.
 - (b) $\lim_{x \to -\infty} f(x) = \infty$, $\lim_{x \to 0^-} f(x) = -\infty$, $\lim_{x \to 0^+} f(x) = 3$, $\lim_{x \to \infty} f(x) = -\infty$.
 - (c) $\lim_{x \to -\infty} f(x) = -\infty$, $\lim_{x \to 2^-} f(x) = 1$, $\lim_{x \to 2^+} f(x) = 3$, $\lim_{x \to 4} f(x) = 3$, $\lim_{x \to \infty} f(x) = 3$.
 - (d) $\lim_{x \to -\infty} f(x) = 0$, $\lim_{x \to 0^-} f(x) = 0$, $\lim_{x \to 0^+} f(x) = 0$, $\lim_{x \to 0} f(x) = 0$, $\lim_{x \to 1} f(x) = -\infty$, não existe $\lim_{x \to \infty} f(x)$.
 - (e) $\lim_{x \to -\infty} f(x) = 3$, $\lim_{x \to 1} f(x) = 4$, não existe $\lim_{x \to \infty} f(x)$.
- **8.** (a)

(c) (f)

(d) (g)

