Feuille d'exercices nº 4 Divisibilité et division euclidienne dans Z

Les questions ou exercices précédés d'une étoile (*) sont plus difficiles.

Vous ne les traiterez qu'avec l'accord de votre enseignant(e) de TD.

Exercice 1: Déterminer la division euclidienne de a par b dans les cas ci-dessous :

- 1. a = 2013; b = 7
- 3. a = -2013; b = 7
- 2. a = 7; b = 2013
- 4. a = -7; b = 2013

Exercice 2: On considère la relation de divisibilité dans \mathbb{Z} , notée |. On rappelle que : Pour tout couple (x,y) d'entiers : $x\mid y$ s'il existe un entier k tel que y=kx.

- 1. Donner deux couples vérifiant la relation de divisibilité et deux couples ne la vérifiant pas.
- 2. (a) Donner la représentation **cartésienne** de la relation de divisibilité restreinte à l'ensemble $E = \{1, 2, 3, 5, 6, 10, 15, 30\}.$
 - (b) Comment se traduit dans ce tableau la réflexivité de cette relation? Son antisymétrie?
- 3. On souhaite étudier si la relation de divisibilité est transitive dans E. En vous appuyant sur sa représentation cartésienne, complétez le tableau ci-dessous en 2 parties, en ne reportant dans les trois colonnes à gauche, que les triplets (x, y, z) tels que $x \mid y$ et $y \mid z$, avec $x \neq 1$. Ecrire alors Vrai ou Faux en-dessous de $x \mid z$, puis en-dessous du connecteur \rightarrow .

x		~	(x y	ET	$u \mid z$	_	$x \mid x \mid$	r	1 21	~	(x y	ET	$u \mid z$	_	$x \mid z \mid$
	y		x + y		$g \mid \sim)$			J.	g	~	x y	ĽI	$g \mid \sim)$	\rightarrow	1 2
2	2	2		V		V	V								
2	2	6		V		V	V								
2	2	10		V		V	V								
2	2	30		V		V	V								
2	6	6		V		V	V								
								-							
								<u> </u>							

4. D'après les questions 2. et 3., que peut-on dire de la relation de divisibilité dans E?

Exercice 3:

- 1. Dresser la liste des diviseurs positifs des entiers 36, 49 et 126 sans outil de calcul.
- 2. Combien d'entiers compris entre -50 et 75 le nombre 17 divise-t-il?
- 3. Soit n un entier. On pose a = 2n + 7 et b = n + 1.
 - (a) Calculer a 2b
 - (b) Soit d un entier divisant a et divisant b. Quelles sont les valeurs possibles de d?

Exercice 4: Décomposer en produit de facteurs premiers les nombres suivants :

Exercice 5: Donner le nombre de diviseurs positifs de chacun des entiers

$$a = 3^2 \times 5^7$$
, $b = 2 \times 11^3$, et $c = 2^3 \times 5^5 \times 11 \times 17^{10} \times 21^5$.

Exercice 6:

- 1. Déterminer le nombre de diviseurs positifs de 210 et 910 puis tous leurs diviseurs positifs.
- 2. Calculer le PGCD de 210 et 910.

Exercice 7: (*) Déterminer un entier n de 4 chiffres tel que les restes des divisions euclidiennes de 21 685 et 33 509 par n soient respectivement 37 et 53.

Exercice 8: (*) Déterminer le plus petit nombre entier naturel qui admet 15 diviseurs positifs.

Exercice 9: (*) Déterminer le plus grand entier de deux chiffres qui admet 6 diviseurs positifs.