

Fundamentals of Optimization

Exercise Set 0 – Solutions

Numerical Problems

1 Simple Optimization Problems

For each of the following three optimization problems, identify the feasible region and the objective function. Determine whether the given optimization problem is *infeasible*, *unbounded*, or *has a finite optimal value*. Find the optimal value using the convention in the lectures and determine the set of all optimal solutions.

- $(1.1) \max\{(x-1)^2 : x^2 \le -1, \quad x \in \mathbb{R}\}.$
- $(1.2) \min\{1/(x+1)^2 : x \ge 0, \quad x \in \mathbb{R}\}.$
- $(1.3) \min\{x^2 4x + 6 : |x 2| \ge 1, \quad x \in \mathbb{R}\}.$
- $(1.4) \max\{x^2 3x + 6 : x^2 \ge 1, \quad x \in \mathbb{R}\}.$

Solution

- (1.1) The feasible region is given by $S = \emptyset$ since $x^2 \ge 0$ for each $x \in \mathbb{R}$. The objective function is given by $f(x) = (x-1)^2$. Since the feasible region is empty, the problem is clearly infeasible. By our convention, we define the optimal value $z^* = -\infty$ since this is an infeasible maximization problem. Since there is no feasible solution, clearly there is no optimal solution (recall that the set of optimal solutions is a subset of the feasible region), i.e., $S^* = \emptyset$.
- (1.2) The feasible region is given by $S = [0, \infty)$. The objective function is given by $f(x) = 1/(x+1)^2$. The problem is obviously feasible since, for example, $0 \in S$. Note that $(x+1)^2$ is an increasing function whenever $x \geq 0$. Therefore, the function $f(x) = 1/(x+1)^2$ is a decreasing function for $x \geq 0$. If you consider the sequence of feasible solutions given by $x^k = k$, where $k = 1, 2, \ldots$, it is easy to see that the objective function value given by $f(x^k)$ tends to 0 as $k \to \infty$. Therefore, the optimal value is finite and is given by $z^* = 0$ since $f(x) \geq 0$ for each feasible solution and $f(x^k) \to 0$ as $k \to \infty$ (i.e., 0 is the largest lower bound on the objective function values of all feasible solutions). There is no optimal solution, i.e., $S^* = \emptyset$, since no feasible solution actually attains the optimal value. Recall that $+\infty$ or $-\infty$ are **not** real numbers! Note also that the optimal value in this example is finite (i.e., a real number) even though the feasible region itself is not bounded.
- (1.3) The feasible region is given by S = (-∞,1]∪[3,∞) since |x-2| ≥ 1 if and only if x ∈ S (you may think about the complement of the feasible region given by |x-2| < 1 and then take the complement of that set again). The objective function is given by f(x) = x² 4x + 6. The problem is feasible, as, for example, 3 ∈ S. You can easily verify that the function f(x) = x² 4x + 6 is increasing on [3,∞) and decreasing on (-∞,1]. Therefore, we simply need to consider the endpoints of these half lines given by 1 and 3. We see that f(1) = f(3) = 3. Therefore, the optimal value is finite and is given by z* = 3, and there are two optimal solutions, i.e., S* = {1,3}.</p>

(1.4) The feasible region is given by $S = (-\infty, -1] \cup [1, \infty)$ since $x^2 \ge 1$ if and only if $|x| \ge 1$. The objective function is given by $f(x) = x^2 - 3x + 6$. The problem is feasible, as, for example, $1 \in S$. You can easily verify that the function $f(x) = x^2 - 3x + 6$ is decreasing on $(-\infty, 3/2]$ and increasing on $[3/2, \infty)$. Therefore, if you consider the sequence of feasible solutions given by $x^k = k + 1$, where $k = 1, 2, \ldots$, it is easy to see that the objective function value given by $f(x^k)$ tends to $+\infty$ as $k \to \infty$. It follows that the problem is unbounded and we define the optimal value as $z^* = +\infty$. Note that there are no optimal solutions, i.e., $S^* = \emptyset$, since no feasible solution attains an objective function value of $+\infty$.

2 Convex Sets and Convex Functions

- (2.1) Decide for each of the following sets whether they are *convex* or not.
 - (a) $C = \{x \in \mathbb{R} : x^2 > 3\}.$
 - (b) $C = \{x \in \mathbb{R}^2 : (x_1 + 1)^2 + (x_2 1)^2 \le -3\}.$
 - (c) $C = \{x \in \mathbb{R}^2 : |x_1| + |x_2| \le 7\}.$

Solution

- (a) The set is not convex. To prove this claim, we just need to find one counterexample to the definition of a convex set. Let x = -2, y = 2, and $\lambda = 1/2$. Note that $x \in \mathcal{C}$ and $y \in \mathcal{C}$, however, $\lambda x + (1 \lambda)y = 0 \notin \mathcal{C}$, proving our claim.
- (b) The set is convex. In fact, C is empty and, thus, by definition convex (see Remark 1 in Section 3.2 in the lecture notes).
- (c) The set is convex. To see that, let $x^1 = [x_1^1, x_2^1]^T$, $x^2 = [x_1^2, x_2^2]^T \in \mathcal{C}$ and $\lambda \in [0, 1]$. For $\lambda x^1 + (1 \lambda)x^2$ we obtain

$$\begin{split} \left| \lambda x_1^1 + (1 - \lambda) x_1^2 \right| + \left| \lambda x_2^1 + (1 - \lambda) x_2^2 \right| & \leq & \lambda |x_1^1| + (1 - \lambda) |x_1^2| + \lambda |x_2^1| + (1 - \lambda) |x_1^2| \\ & = & \lambda \left(|x_1^1| + |x_2^1| \right) + (1 - \lambda) \left(|x_1^2| + |x_2^2| \right) \\ & \leq & \lambda \cdot 7 + (1 - \lambda) \cdot 7 \, = \, 7 \, , \end{split}$$

where the first inequality follows from the triangle inequality and from $\lambda \in [0,1]$.

- (2.2) Decide for each of the following three functions whether they are *convex*, *concave*, *both*, or *neither*.
 - (a) $f: \mathbb{R}^2 \to \mathbb{R}, f(x) = 3x_1 2x_2$
 - (b) $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x|.
 - (c) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 4x$.

Solution

(a) This function is linear in $x \in \mathbb{R}^2$. Let $x \in \mathbb{R}^2$ and $y \in \mathbb{R}^2$ be two arbitrary vectors. Then, for any $\lambda \in [0,1]$,

$$f(\lambda x + (1 - \lambda)y) = 3(\lambda x_1 + (1 - \lambda)y_1) - 2(\lambda x_2 + (1 - \lambda)y_2)$$

= $\lambda (3x_1 - 2x_2) + (1 - \lambda)(3y_1 - 2y_2),$

which implies that f is both convex and concave due to the equality above.

(b) This function is convex, as the triangle inequality gives us

$$|\lambda x + (1 - \lambda)y| \le \lambda |x| + (1 - \lambda)|y|$$

for any $x, y \in \mathbb{R}$.

It is not concave since for x = -1, y = 1, and $\lambda = 1/2$, we have

$$|\lambda x + (1 - \lambda)y| = 0 \geqslant \lambda |x| + (1 - \lambda)|y| = 1.$$

(c) This function is neither concave nor convex. We can see that this function factorizes into

$$f(x) = x(x-2)(x+2)$$

Picking the two zeros x=-2 and y=2, we have $\lambda f(x)+(1-\lambda)f(y)=0, \forall \lambda \in [0,1]$. But for $\lambda_1=\frac{1}{4}$ and $\lambda_2=\frac{3}{4}$ we get

$$f(\lambda_1 x + (1 - \lambda_1)y) = -3 < 0$$
 and $f(\lambda_2 x + (1 - \lambda_2)y) = 3 > 0$

Open Ended Problems

3 Epigraphs and Convex Functions

Let $f_1: \mathbb{R}^n \to \mathbb{R}$ and $f_2: \mathbb{R}^n \to \mathbb{R}$ be two functions. Let $h: \mathbb{R}^n \to \mathbb{R}$ be a function given by $h(x) = \max\{f_1(x), f_2(x)\}.$

(3.1) Prove the following proposition:

$$\operatorname{epi}(h) = \operatorname{epi}(f_1) \cap \operatorname{epi}(f_2).$$

(Hint: One way of proving that two sets A and B are equal to one another is to show that $A \subseteq B$ and $B \subseteq A$.)

Solution

Using the given hint, we will establish the claim by showing that $epi(h) \subseteq epi(f_1) \cap epi(f_2)$ and $epi(f_1) \cap epi(f_2) \subseteq epi(h)$.

 $\operatorname{epi}(h) \subseteq \operatorname{epi}(f_1) \cap \operatorname{epi}(f_2)$: Let $(x,z) \in \operatorname{epi}(h)$, where $x \in \mathbb{R}^n$ and $z \in \mathbb{R}$. Then, $z \ge h(x)$. Since $h(x) = \max\{f_1(x), f_2(x)\}$, it follows that $h(x) \ge f_1(x)$ and $h(x) \ge f_2(x)$. Combining each of these inequalities with $z \ge h(x)$, we obtain $z \ge f_1(x)$ and $z \ge f_2(x)$. Therefore, $(x,z) \in \operatorname{epi}(f_1)$ and $(x,z) \in \operatorname{epi}(f_2)$, and we conclude that $(x,z) \in \operatorname{epi}(f_1) \cap \operatorname{epi}(f_2)$. Therefore, we obtain $\operatorname{epi}(h) \subseteq \operatorname{epi}(f_1) \cap \operatorname{epi}(f_2)$.

 $\operatorname{epi}(f_1) \cap \operatorname{epi}(f_2) \subseteq \operatorname{epi}(h)$: Let $(x, z) \in \operatorname{epi}(f_1) \cap \operatorname{epi}(f_2)$, where $x \in \mathbb{R}^n$ and $z \in \mathbb{R}$. Therefore, $(x, z) \in \operatorname{epi}(f_1)$ and $(x, z) \in \operatorname{epi}(f_2)$. It follows that $z \geq f_1(x)$ and $z \geq f_2(x)$. Therefore, we obtain $z \geq \max\{f_1(x), f_2(x)\} = h(x)$. We conclude that $(x, z) \in \operatorname{epi}(h)$, i.e., $\operatorname{epi}(f_1) \cap \operatorname{epi}(f_2) \subseteq \operatorname{epi}(h)$.

(3.2) Suppose that f_1 and f_2 are convex functions. Show, by using (3.1), that h is a convex function.

Solution

Since f_1 and f_2 are convex functions, we obtain that each of $\operatorname{epi}(f_1)$ and $\operatorname{epi}(f_2)$ is a convex set by Proposition 3.1. Since convexity is preserved under taking intersections (see Remark 3 in Section 3.2 in the lecture notes), it follows that $\operatorname{epi}(f_1) \cap \operatorname{epi}(f_2)$ is a convex set. By (3.1), we have $\operatorname{epi}(h) = \operatorname{epi}(f_1) \cap \operatorname{epi}(f_2)$, where $h(x) = \max\{f_1(x), f_2(x)\}$. Using Proposition 3.1 once more again (in the other direction), we obtain that h is a convex function.