AI - FOUNDATION AND APPLICATION

Instructor: Assoc. Prof. Dr. Truong Ngoc Son

Chapter 4
Convolution Neural Network

Outline

Motivation – Convolution operation

Convolution is a function derived from two given functions by integration which expresses how the shape of one is modified by the other

$$y(t) = x(t)(*)h(t) = \int_{\tau=-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau$$

Discrete convolution

$$y(t) = x(t)(*)h(t) = \sum_{\tau = -\infty}^{+\infty} x(\tau)h(t - \tau)$$

Motivation – Convolution operation

Convolution in 2-D space

$$y(n_1, n_2) = \sum_{k_2=0}^{N-1} \sum_{k_1=0}^{M-1} x(k_1, k_2) h(n_1 - k_1, n_2 - k_2)$$

$$0 \le n_1 \le N - 1, 0 \le n_2 \le M - 1.$$

Computer Vision Problem

Vertical edge detection

3	O	1	2-10	7	4-1
1	5	8-10	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8 ⁻¹
4	2	1	6	2	8
2	4	5	2	3	9

1	0	-1
1	0	-1
1	0	-1

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
	1		

Vertical edge detection

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

1	0	-1
1	0	-1
1	0	-1

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

*

Vertical edge detection examples

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

*

0	-30	-30	0
0	-30	-30	0
0	-30	-30	0
0	-30	-30	0

Convolution Neural Network

(a) Fully connecter layer

(b) Convolution layer

Convolution Neural Network

Convolution Neural Network

- Input layer
- Convolution layer
- Activation function
- Pooling layer
- Fully connected layers

Convolution layer

Padding

Valid and Same convolutions

"Valid": No padding is required

"Same": Pad so that output size is the same as the input size.

Strided convolution

2 3	3 4	7 3	4 4	6 3	2 4	9 4
6 ¹	6 ⁰	9 1	8 0	7 2	4 0	3 ²
3 -3	4 4	8-3	3 4	8-3	9 4	7 4
7 1	8 0	3 1	6 ⁰	6 1	3 0	4 2
4 -3	2 4	1-3	8 4	3-3	4 4	6 4
3 1	2 0	4 1	1 0	91	8 0	3 2
0 -1	1 ⁰	3 -3	9 0	2-3	1 0	4 3

3	4	4
1	0	2
-1	0	3

Summary of convolutions

$$n \times n$$
 image $f \times f$ filter padding p stride s

$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \times \left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor$$

Technical note on cross-correlation vs. convolution

Convolution in math textbook:

2	3	7	4	6	2
6	6	9	8	7	4
3	4	8	3	8	9
7	8	3	6	6	3
4	2	1	8	3	4
3	2	4	1	9	8

3	4	5
1	0	2
-1	9	7

7	2	5
9	0	4
-1	1	3

Pooling layer: Max pooling

1	3	2	1
2	9	1	1
1	3	2	3
5	6	1	2

Pooling layer: Max pooling

1	3	2	1	3
2				5
1				
8				0
5	6		2	9

Pooling layer: Average pooling

1	3	2	1
2	9	1	1
1	4	2	3
5	6	1	2

Fully-connected layer (FC)

Flatten

			1
1	1	0	0
_			4
4	2	1	
0	2	1	2
U		1	1
			0
			2
			1

Summary of pooling

Hyperparameters:

f: filter size

s:stride

Max or average pooling

CNN

- 1. Lenet-5
- 2. Alex-net
- 3. VGG
- 4. ResNet
- 5. Inception
- 6. MobileNet
- 7. Data Augmentation
- 8. Object detection: R-CNN
- 9. Object detection: Yolo
- Transfer Learning ()

PYTHON CODE

