# Import necessary libraries

```
In [1]: import pandas as pd
    from sklearn.model_selection import train_test_split
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.metrics import accuracy_score, classification_report, confus
    import matplotlib.pyplot as plt
    from sklearn.tree import plot_tree
```

### Load the Titanic dataset

```
In [2]: df = pd.read_csv('/kaggle/input/test-file/tested.csv')
```

## Explore the dataset

Display the first few rows of the DataFrame

| In [3]: | df.head(    | )   |          |        |                                                          |        |      |       |       |         |        |
|---------|-------------|-----|----------|--------|----------------------------------------------------------|--------|------|-------|-------|---------|--------|
| Out[3]: | Passengerld |     | Survived | Pclass | Name                                                     | Sex    | Age  | SibSp | Parch | Ticket  | Far    |
|         | 0           | 892 | 0        | 3      | Kelly, Mr.<br>James                                      | male   | 34.5 | 0     | 0     | 330911  | 7.829  |
|         | 1           | 893 | 1        | 3      | Wilkes,<br>Mrs.<br>James<br>(Ellen<br>Needs)             | female | 47.0 | 1     | 0     | 363272  | 7.000  |
|         | 2           | 894 | 0        | 2      | Myles,<br>Mr.<br>Thomas<br>Francis                       | male   | 62.0 | 0     | 0     | 240276  | 9.687  |
|         | 3           | 895 | 0        | 3      | Wirz, Mr.<br>Albert                                      | male   | 27.0 | 0     | 0     | 315154  | 8.662  |
|         | 4           | 896 | 1        | 3      | Hirvonen,<br>Mrs.<br>Alexander<br>(Helga E<br>Lindqvist) | female | 22.0 | 1     | 1     | 3101298 | 12.287 |

Display descriptive statistics of numerical columns

In [4]: df.describe()

Out[4]:

|      | Passengerld         | Survived   | Pclass     | Age        | SibSp      | Parch      |       |
|------|---------------------|------------|------------|------------|------------|------------|-------|
| cour | 1t 418.000000       | 418.000000 | 418.000000 | 332.000000 | 418.000000 | 418.000000 | 417.0 |
| mea  | n 1100.500000       | 0.363636   | 2.265550   | 30.272590  | 0.447368   | 0.392344   | 35.6  |
| st   | <b>d</b> 120.810458 | 0.481622   | 0.841838   | 14.181209  | 0.896760   | 0.981429   | 55.9  |
| mi   | n 892.000000        | 0.000000   | 1.000000   | 0.170000   | 0.000000   | 0.000000   | 0.0   |
| 259  | % 996.250000        | 0.000000   | 1.000000   | 21.000000  | 0.000000   | 0.000000   | 7.8   |
| 509  | % 1100.500000       | 0.000000   | 3.000000   | 27.000000  | 0.000000   | 0.000000   | 14.4  |
| 75°  | % 1204.750000       | 1.000000   | 3.000000   | 39.000000  | 1.000000   | 0.000000   | 31.5  |
| ma   | x 1309.000000       | 1.000000   | 3.000000   | 76.000000  | 8.000000   | 9.000000   | 512.3 |

Display descriptive statistics of all columns, including categorical ones

In [5]: print(df.describe(include='all'))

|        | PassengerId | Survived      | Pclass     |          | Name      | Sex  | \ |
|--------|-------------|---------------|------------|----------|-----------|------|---|
| count  | 418.000000  | 418.000000    | 418.000000 |          | 418       | 418  |   |
| unique | NaN         | NaN           | NaN        |          | 418       | 2    |   |
| top    | NaN         | NaN           | NaN        | Kelly,   | Mr. James | male |   |
| freq   | NaN         | NaN           | NaN        |          | 1         | 266  |   |
| mean   | 1100.500000 | 0.363636      | 2.265550   |          | NaN       | NaN  |   |
| std    | 120.810458  | 0.481622      | 0.841838   |          | NaN       | NaN  |   |
| min    | 892.000000  | 0.000000      | 1.000000   |          | NaN       | NaN  |   |
| 25%    | 996.250000  | 0.000000      | 1.000000   |          | NaN       | NaN  |   |
| 50%    | 1100.500000 | 0.000000      | 3.000000   |          | NaN       | NaN  |   |
| 75%    | 1204.750000 | 1.000000      | 3.000000   |          | NaN       | NaN  |   |
| max    | 1309.000000 | 1.000000      | 3.000000   |          | NaN       | NaN  |   |
|        |             |               |            |          |           |      |   |
|        | Age         | SibSp         | Parch      | Ticket   | Fa        | re \ |   |
| count  | 332.000000  | 418.000000    | 418.000000 | 418      | 417.0000  | 00   |   |
| unique | NaN         | NaN           | NaN        | 363      | N         | IaN  |   |
| top    | NaN         | NaN           | NaN        | PC 17608 | N         | IaN  |   |
| freq   | NaN         | NaN           | NaN        | 5        | N         | IaN  |   |
| mean   | 30.272590   | 0.447368      | 0.392344   | NaN      | 35.6271   | .88  |   |
| std    | 14.181209   | 0.896760      | 0.981429   | NaN      | 55.9075   | 76   |   |
| min    | 0.170000    | 0.000000      | 0.000000   | NaN      | 0.0000    | 00   |   |
| 25%    | 21.000000   | 0.000000      | 0.000000   | NaN      | 7.8958    | 00   |   |
| 50%    | 27.000000   | 0.000000      | 0.000000   | NaN      | 14.4542   | 00   |   |
| 75%    | 39.000000   | 1.000000      | 0.000000   | NaN      | 31.5000   | 00   |   |
| max    | 76.000000   | 8.000000      | 9.000000   | NaN      | 512.3292  | 00   |   |
|        |             |               |            |          |           |      |   |
|        | Ca          | abin Embarked | d          |          |           |      |   |
| count  |             | 91 418        | 8          |          |           |      |   |
| unique |             | 76            | 3          |          |           |      |   |
| top    | B57 B59 B63 | B66 \$        | S          |          |           |      |   |
| freq   |             | 3 270         | 0          |          |           |      |   |
| mean   |             | NaN Nai       | N          |          |           |      |   |
| std    |             | NaN Nai       | N          |          |           |      |   |
| min    |             | NaN Nai       | N          |          |           |      |   |
| 25%    |             | NaN Nai       | N          |          |           |      |   |
| 50%    |             | NaN Nai       |            |          |           |      |   |
| 75%    |             | NaN Nai       |            |          |           |      |   |
| max    |             | NaN Nai       |            |          |           |      |   |
|        |             |               |            |          |           |      |   |

Display information about the DataFrame

In [6]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 418 entries, 0 to 417 Data columns (total 12 columns): Column Non-Null Count Dtype -----0 PassengerId 418 non-null int64 1 Survived 418 non-null int64 418 non-null int64 418 non-null object 418 non-null object 2 Pclass Name 4 Sex float64 332 non-null Age 6 int64 SibSp 418 non-null 418 non-null int64 Parch Ticket 418 non-null object 9 417 non-null float64 Fare 10 Cabin 91 non-null object 11 Embarked 418 non-null object dtypes: float64(2), int64(5), object(5) memory usage: 39.3+ KB

missing values

Display the count of missing values for each column

```
In [7]: df.isna().sum()
                            0
         PassengerId
Out[7]:
         Survived
                            0
         Pclass
                            0
         Name
         Sex
                            0
         Age
                           86
         SibSp
                            0
         Parch
                            0
         Ticket
                            0
         Fare
                            1
         Cabin
                         327
         Embarked
                            0
         dtype: int64
```

Calculate the percentage of missing values for each column

```
In [8]: df.isna().sum() / len(df) * 100
```

```
PassengerId
                         0.00000
Out[8]:
        Survived
                         0.00000
        Pclass
                         0.00000
        Name
                         0.00000
        Sex
                         0.00000
        Age
                        20.574163
        SibSp
                         0.00000
                         0.00000
        Parch
        Ticket
                         0.00000
        Fare
                         0.239234
                        78.229665
        Cabin
                         0.00000
        Embarked
        dtype: float64
```

```
In [9]: import seaborn as sns
import matplotlib.pyplot as plt
```

Display a heatmap of missing values

```
In [10]: sns.heatmap(df.isnull(), cmap='viridis', cbar=False)
```





```
In [11]: import numpy as np
```

Replace missing values in the 'Age' column with the mean

```
In [12]: df['Age'].replace(np.nan, df['Age'].mean(), inplace=True)
```

Replace missing values in the 'Fare' column with the mean

Drop the 'Cabin' column

In [14]: df.head()

| Out[14]: |   | PassengerId | Survived | Pclass | Name                                                     | Sex    | Age  | SibSp | Parch | Ticket  | Far    |
|----------|---|-------------|----------|--------|----------------------------------------------------------|--------|------|-------|-------|---------|--------|
|          | 0 | 892         | 0        | 3      | Kelly, Mr.<br>James                                      | male   | 34.5 | 0     | 0     | 330911  | 7.829  |
|          | 1 | 893         | 1        | 3      | Wilkes,<br>Mrs.<br>James<br>(Ellen<br>Needs)             | female | 47.0 | 1     | 0     | 363272  | 7.000  |
|          | 2 | 894         | 0        | 2      | Myles,<br>Mr.<br>Thomas<br>Francis                       | male   | 62.0 | 0     | 0     | 240276  | 9.687  |
|          | 3 | 895         | 0        | 3      | Wirz, Mr.<br>Albert                                      | male   | 27.0 | 0     | 0     | 315154  | 8.662  |
|          | 4 | 896         | 1        | 3      | Hirvonen,<br>Mrs.<br>Alexander<br>(Helga E<br>Lindqvist) | female | 22.0 | 1     | 1     | 3101298 | 12.287 |

```
In [15]: df.drop('Cabin', axis=1,inplace=True)
In [16]: df.head()
```

In [18]: df.nunique()

| Out[16]: |   | PassengerId | Survived | Pclass | Name                                                     | Sex    | Age  | SibSp | Parch | Ticket  | Far    |
|----------|---|-------------|----------|--------|----------------------------------------------------------|--------|------|-------|-------|---------|--------|
|          | 0 | 892         | 0        | 3      | Kelly, Mr.<br>James                                      | male   | 34.5 | 0     | 0     | 330911  | 7.829  |
|          | 1 | 893         | 1        | 3      | Wilkes,<br>Mrs.<br>James<br>(Ellen<br>Needs)             | female | 47.0 | 1     | 0     | 363272  | 7.000  |
|          | 2 | 894         | 0        | 2      | Myles,<br>Mr.<br>Thomas<br>Francis                       | male   | 62.0 | 0     | 0     | 240276  | 9.687  |
|          | 3 | 895         | 0        | 3      | Wirz, Mr.<br>Albert                                      | male   | 27.0 | 0     | 0     | 315154  | 8.662  |
|          | 4 | 896         | 1        | 3      | Hirvonen,<br>Mrs.<br>Alexander<br>(Helga E<br>Lindqvist) | female | 22.0 | 1     | 1     | 3101298 | 12.287 |

Display the count of missing values after handling missing data

```
In [17]: df.isna().sum()
          PassengerId
Out[17]:
          Survived
                          0
          Pclass
                          0
          Name
          Sex
          Age
          SibSp
                          0
          Parch
                          0
          Ticket
          Fare
                          0
          Embarked
          dtype: int64
          Display the number of unique values for each column
```

```
418
         PassengerId
Out[18]:
          Survived
                           2
          Pclass
                           3
          Name
                         418
          Sex
                          80
          Age
          SibSp
                           7
          Parch
                           8
          Ticket
                         363
                         170
          Fare
         Embarked
                           3
          dtype: int64
```

seperate list of categorical and numerical variables

```
In [19]: cat_var = ['Pclass', 'Sex', 'SibSp', 'Parch', 'Embarked']
   num_var = ['Age', 'Fare']
```

Calculate the percentage distribution of 'Survived' variable and round to 2 decimal places

The dataset exhibits a slight imbalance, with 36.36% of passengers having survived the Titanic disaster and 63.64% of passengers not surviving.

## Create a countplot for 'Survived'

```
In [21]: ax = sns.countplot(x=df['Survived'], palette='RdBu')
   ax.bar_label(ax.containers[0])
   plt.show()
```



```
In [22]: # Loop through categorical variables
for column in cat_var:
    plt.figure(figsize=(12,5))

# Plot count for each category
    plt.subplot(1,2,1)
    ax = sns.countplot(x=column, data=df, palette='Accent')
    ax.bar_label(ax.containers[0])

# Plot count for each category with 'Survived' as hue
    plt.subplot(1,2,2)
    ax = sns.countplot(x=column, data=df, hue='Survived', palette='Accent
    ax.bar_label(ax.containers[0])
    ax.bar_label(ax.containers[1])
    plt.show()
```





Display summary statistics for numerical variables

| In [23]: | <pre>df[num_var].describe()</pre> |  |
|----------|-----------------------------------|--|
|----------|-----------------------------------|--|

| Out[23]: |       | Age        | Fare       |
|----------|-------|------------|------------|
|          | count | 418.000000 | 418.000000 |
|          | mean  | 30.272590  | 35.627188  |
|          | std   | 12.634534  | 55.840500  |
|          | min   | 0.170000   | 0.000000   |
|          | 25%   | 23.000000  | 7.895800   |
|          | 50%   | 30.272590  | 14.454200  |
|          | 75%   | 35.750000  | 31.500000  |
|          | max   | 76.000000  | 512.329200 |

# In [24]: for column in num\_var: plt.figure(figsize=(14,5)) # Boxplot plt.subplot(1,2,1) ax = sns.boxplot(df[column]) # Distribution plot plt.subplot(1,2,2) ax = sns.distplot(df[column]) plt.show()

/tmp/ipykernel\_88/860440053.py:10: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.

Please adapt your code to use either `displot` (a figure-level function w ith

similar flexibility) or `histplot` (an axes-level function for histogram
s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751





/tmp/ipykernel 88/860440053.py:10: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function w ith

similar flexibility) or `histplot` (an axes-level function for histogram s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

ax = sns.distplot(df[column])



Scatter plot with 'Age' on the x-axis, 'Fare' on the y-axis, and colored by 'Survived'



Scatter plot with 'Age' on the x-axis, 'Fare' on the y-axis, and colored by 'Pclass'

```
In [27]: sns.scatterplot(data=df, x='Age', y='Fare', hue='Pclass')
plt.show()
```



#### Drop specified features from the DataFrame

```
In [28]: df_update = df.drop(['PassengerId','Name', 'Ticket'], axis=1)
    df_update.head()
```

| Out[28]: |   | Survived | Pclass | Sex    | Age  | SibSp | Parch | Fare    | Embarked |
|----------|---|----------|--------|--------|------|-------|-------|---------|----------|
|          | 0 | 0        | 3      | male   | 34.5 | 0     | 0     | 7.8292  | Q        |
|          | 1 | 1        | 3      | female | 47.0 | 1     | 0     | 7.0000  | S        |
|          | 2 | 0        | 2      | male   | 62.0 | 0     | 0     | 9.6875  | Q        |
|          | 3 | 0        | 3      | male   | 27.0 | 0     | 0     | 8.6625  | S        |
|          | 4 | 1        | 3      | female | 22.0 | 1     | 1     | 12.2875 | S        |

```
In [29]: # Replace 'male' with 1 and 'female' with 0 in the 'Sex' column

df_update['Sex'].replace({'male':1, 'female':0}, inplace=True)
# Replace 'Q' with 0, 'S' with 1, and 'C' with 2 in the 'Embarked' column

df_update['Embarked'].replace({'Q':0, 'S':1, 'C':2}, inplace=True)
    df_update.head()
```

| Out[29]: |   | Survived | Pclass | Sex | Age  | SibSp | Parch | Fare    | Embarked |
|----------|---|----------|--------|-----|------|-------|-------|---------|----------|
|          | 0 | 0        | 3      | 1   | 34.5 | 0     | 0     | 7.8292  | 0        |
|          | 1 | 1        | 3      | 0   | 47.0 | 1     | 0     | 7.0000  | 1        |
|          | 2 | 0        | 2      | 1   | 62.0 | 0     | 0     | 9.6875  | 0        |
|          | 3 | 0        | 3      | 1   | 27.0 | 0     | 0     | 8.6625  | 1        |
|          | 4 | 1        | 3      | 0   | 22.0 | 1     | 1     | 12.2875 | 1        |

Create a heatmap of the correlation matrix

```
In [30]: sns.heatmap(df_update.corr(), annot=True, cmap='viridis')
    plt.title('Correlation')
    plt.show()
```



## **Construct and Evaluate Models**

Logistic regression model

```
In [31]: from sklearn.linear_model import LogisticRegression
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import accuracy_score, precision_score, recall_score
    confusion_matrix, ConfusionMatrixDisplay, RocCurveDisplay
```

```
In [32]: X = df_update.drop('Survived', axis=1)
y = df_update['Survived']
X.head()
```

| Out[32]: |   | Pclass | Sex | Age  | SibSp | Parch | Fare    | Embarked |
|----------|---|--------|-----|------|-------|-------|---------|----------|
|          | 0 | 3      | 1   | 34.5 | 0     | 0     | 7.8292  | 0        |
|          | 1 | 3      | 0   | 47.0 | 1     | 0     | 7.0000  | 1        |
|          | 2 | 2      | 1   | 62.0 | 0     | 0     | 9.6875  | 0        |
|          | 3 | 3      | 1   | 27.0 | 0     | 0     | 8.6625  | 1        |
|          | 4 | 3      | 0   | 22.0 | 1     | 1     | 12.2875 | 1        |

Split data into training and testing sets

```
In [33]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
In [34]: LR = LogisticRegression(random_state=42)
    LR.fit(X_train, y_train)

/opt/conda/lib/python3.10/site-packages/sklearn/linear_model/_logistic.p
    y:458: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown i
    n:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-re
    gression
        n_iter_i = _check_optimize_result(
Out[34]: LogisticRegression(random_state=42)
```

Print the coefficients

Print the intercept

```
In [37]: LR.intercept
Out[37]: array([2.8408376])
         save predictions
In [40]: y_pred_train = LR.predict(X_train)
In [41]: print('Accuracy: ', accuracy_score(y_train, y_pred_train))
         print('Precision: ', precision_score(y_train, y_pred_train))
         print('Recall: ', recall_score(y_train, y_pred_train))
         print('F1 Score: ', f1_score(y_train, y_pred_train))
         Accuracy: 1.0
         Precision: 1.0
         Recall: 1.0
         F1 Score: 1.0
         Save predictions
In [42]: y pred LR = LR.predict(X test)
         LR.predict(X_test)
         Print out the predicted labels
In [43]: LR.predict(X test)
Out[43]: array([0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0,
                1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0,
                0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0,
                0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1]
In [44]:
         print('Accuracy: ', accuracy_score(y_test, y_pred_LR))
         print('Precision: ', precision_score(y_test, y_pred_LR))
         print('Recall: ', recall_score(y_test, y_pred_LR))
         print('F1 Score: ', f1_score(y_test, y_pred_LR))
         Accuracy: 1.0
         Precision: 1.0
         Recall: 1.0
         F1 Score: 1.0
         Create confusion matrix
In [45]:
         cm = confusion_matrix(y_test, y_pred_LR, labels=LR.classes_)
         disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=LR.clas
         disp.plot();
```



#### K-Nearest Neighbour

```
In [46]: from sklearn.neighbors import KNeighborsClassifier
         knn = KNeighborsClassifier()
         knn.fit(X_train,y_train)
         y_pred_knn = knn.predict(X_test)
         print('Accuracy: ', accuracy_score(y_test, y_pred_knn))
In [47]:
         print('Precision: ', precision_score(y_test, y_pred_knn))
         print('Recall: ', recall_score(y_test, y_pred_knn))
         print('F1 Score: ', f1_score(y_test, y_pred_knn))
         Accuracy: 0.6190476190476191
         Precision: 0.55555555555556
         Recall: 0.29411764705882354
         F1 Score: 0.3846153846153846
In [48]: cm = confusion_matrix(y_test, y_pred_knn, labels=knn.classes_)
         disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=knn.cla
         disp.plot();
```



#### **Decision Tree**



In [52]: from sklearn.tree import plot\_tree
 plot\_tree(tree, filled=True, feature\_names=list(X.columns))
 plt.show()



## summary

In the Titanic dataset, 36.36% of passengers survived, while 63.64% did not survive. All females survived, whereas none of the males survived. A significant number of passengers in classes 3 and 2 did not survive. Passengers without siblings/spouses or parents/children aboard had lower chances of survival. Those embarking from Queenstown had a higher likelihood of survival, while those embarking from Southampton had lower chances.

Both the Logistic Regression and Decision Tree models achieved 100% accuracy.