Quantitative Methods 2

Tutorial 9 Nhan La

Last week

Simple linear regression

$$E(Y) = \beta_0 + \beta_1 X$$

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

Multiple linear regression

$$E(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + \varepsilon$$

Last week

$$SST = SSR + SSE \Leftrightarrow \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Coefficient of determination (model fit):

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

$$\bar{R}^2 = 1 - \frac{SSE/(n-k-1)}{SST/(n-1)} = 1 - \frac{n-1}{n-k-1} (1-R)^2$$

• Standard error of regression: $s_{\varepsilon} = \sqrt{\frac{SSE}{n-k-1}}$

Last week

- Hypothesis test statistic:
 - Single coefficient: $t = \frac{\hat{\beta}_i \beta_{0,i}}{s_{\hat{\beta}_i}}$
 - Overall model significance/utility: $F = \frac{MSR}{MSE} = \frac{SSR/k}{SSE/(n-k-1)} = \frac{R^2/k}{(1-R^2)/(n-k-1)}$
 - $O(H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0)$
 - \circ H_A : At least one slope is not 0
- Interpretation of coefficients:
 - Positive or negative?
 - How much?
 - Significant (at what level)?
 - Multiple linear regression: "Holding other variables constant..."
- Confidence interval estimation: $\hat{\beta}_i \pm t_{\alpha/2,n-k-1} \times s_{\hat{\beta}_i}$

Tutorial 9

General F test

- Compare unrestricted against restricted model
- Test general linear restriction of parameters
- General expression: $F = \frac{n-k-1}{m} \frac{SSE_r SSE}{SSE}$
- Same dependent variable: $F = \frac{n-k-1}{m} \frac{R^2 R_r^2}{1 R^2} = \frac{(R^2 R_r^2)/m}{(1 R^2)/(n k 1)}$

• Proof:
$$\frac{SSE_r - SSE}{SSE} = \frac{(SST_r - SSR_r) - (SST - SSR)}{SST - SSR}$$

For models with the same dependent variable: $SST_r = SST$

Hence:
$$\frac{SST_r - SSR_r - (SST - SSR)}{SST - SSE} = \frac{SSR - SSR_r}{SST - SSR} = \frac{(SSR - SSR_r)/SST}{(SST - SSR)/SST} = \frac{R^2 - R_r^2}{1 - R^2}$$

Tutorial 9

General F test

Tutorial 9

General F test

Multiple restrictions of coefficients

$$\beta_1 = 0, \beta_2 = 0$$

Restriction of multiple coefficients

$$\beta_1 = 2\beta_2$$

Both

$$\beta_1 = 3, \beta_2 = 1.5\beta_3$$

Exercise 2c

• Model (restricted) $time = \beta_0 + \beta_1 depart + 2reds + \beta_3 trains + \varepsilon$

Estimation

$$time - 2reds = \beta_0 + \beta_1 depart + \beta_3 trains + \varepsilon$$

EViews: (time - 2*reds) c depart trains

Can't do:

```
EViews: time c depart 2*reds trains

time = \beta_0 + \beta_1 depart + \beta_2 2reds + \beta_3 trains + \varepsilon
```

Exercise 2d

Unrestricted model

$$time = \beta_0 + \beta_1 depart + \beta_2 reds + \beta_3 trains + \varepsilon$$

$$C(1) C(2) \qquad C(3) \qquad C(4)$$

- Linear restriction test
 - $H_0: \beta_3 = 3\beta_2 ; H_A: \beta_3 \neq 3\beta_2$
 - Using Eviews on the unrestricted model: C(4) = 3*C(3)
 - Using general F test: Estimate the restricted model $time = \beta_0 + \beta_1 depart + \beta_2 (reds + 3trains) + \varepsilon$

Exercise 2e

Unrestricted model

$$time = \beta_0 + \beta_1 depart + \beta_2 reds + \beta_3 trains + \varepsilon$$

Restricted model

$$time - 1.8reds - 3.2trains = \beta_0 + \beta_1 depart + \varepsilon$$

•
$$F = \frac{n - k - 1}{m} \frac{SSE_r - SSE}{SSE} = 6.76$$

EViews p-values

Parameter	Population	Test	EViews default
			reported p-values
Variance	One population	χ^2 test	One-sided, smaller
			value (see Week 4
			lecture slides)
			Note: it's more
			straightforward to rely
			on the comparison
			between the test
			statistic χ^2_{obs} and the
			critical value χ^2_{cr}
	Two populations	F-test	Two-sided (see Week
			4 lecture slides,
			especially for one-
			sided test hypotheses
			and statistic
			formation)
Proportion	One population	Z-test	Two-sided
	Two populations	t-test (to produce	Two-sided
		approximated results)	

EViews p-values

Parameter	Population	Test	EViews default reported p-values
Correlation and regression	Pearson correlation coefficient	t-test	Two-sided
	Coefficient (slopes or intercept)	t-test	Two-sided
	Model significance/utility	F-test	One-sided
	Linear restriction of coefficient	One conjecture (<, > or =): t-test or F-test Note: the conjecture can involve more than one parameter	t-test: Two-sided F-test: One-sided
		More than one conjecture: F-test	One-sided
	Heteroskedasticity White test	F-test	One-sided