## NMRlipids online meeting: Dabank and polarizable force fields

Date: 26.2.2021

9.00-10.00 Samuli Ollila: Welcome and current status of the NMRlipids databank

10.00-11.00 Batuhan Kav: Current status of the NMRlipics VI on the polarizable force fields

11.00-12.00 Break

12.00-13.00 Discussion on NMRlipids databank

13.00-14.00 Discussion on NMRlipids VI project

14.00-14.30 General discussion and closing of the meeting.

# Quality evaluated atomistic resolution MD simulations of biologically relevant lipid mixtures in NMRlipids databank

|      | PC | PE | PG | PS | chol | CL | GM1 | PIP | PA | DAG |
|------|----|----|----|----|------|----|-----|-----|----|-----|
| PC   | X  | X  | X  | X  | X    |    |     |     |    |     |
| PE   |    | X  |    |    |      |    |     |     |    |     |
| PG   |    |    | X  |    |      |    |     |     |    |     |
| PS   |    |    |    | X  |      |    |     |     |    |     |
| chol |    |    |    |    |      |    |     |     |    |     |
| CL   |    |    |    |    |      |    |     |     |    |     |
| GM1  |    |    |    |    |      |    |     |     |    |     |
| PIP  |    |    |    |    |      |    |     |     |    |     |
| PA   |    |    |    |    |      |    |     |     |    |     |
| DAG  |    |    |    |    |      |    |     |     |    |     |

## NMRlipids databank general properties

- Overlay databank: NMRlipids databank contains indexed links to the data. The actual MD simulation data is currently in Zenodo, but could be in any stable location.
- Analysis of the data: NMRlipids databank enables flexible analysis of the content.

 Quality evaluation: NMRlipids databank contains a quality evaluation protocol that is applied to all contributed datasets. Also the quality evaluation results are also stored in the databank.

## NMRlipids databank expected applications

- Force field evaluation: What is the best force field for my application?
- Reference simulations: For example, reference pure bilayer simulations for membrane-protein interaction studies.
- Analysis of bilayer properties from large datasets: For example, calculate P-N vector angle from all available PC and PG simulations.
- Exercise and example for sharing simulation data: "PDB" for simulations?

## NMRlipids databank structure

#### **Databank builder**

(Python code: **AddData.py**)

Indexes publicly available simulation data based on information given by contributor

## **NMRlipids Databank**

(git repository with yaml files)

Indexed information on simulation data and results

#### Databank analyzer

(Jupyter notebook, Python code)

Pulls the data from databank for analysis

#### **Analysis code library**

(Python code)

Contains codes for the analysis

## Databank builder: AddData.py

https://github.com/NMRLipids/NMRlipidsIVPEandPG/blob/master/scripts/DataBankINFO/AddData.py

- Compulsory input required from the contributor
  - **DOI** (currently works only for Zenodo)
  - Name of mapping located in

https://github.com/NMRLipids/NMRlipidsIVPEandPG/tree/master/scripts/mapping files

- Software (AMBER, CHARMM, OPENMM, but works currently only for GROMACS)
- Name of trajectory file
- Name of topology file
- Pre-equlibration time = time simulated before uploaded trajectory
- **Discarded equilibration time** = time that should be discarded from the beginning of the trajectory
- United atom information (empty string for all atom simulations)
- Molecule names = Molecule names in the simulation corresponding standard names in Databank, e.g., POPC, SOL
- **Working directory** = Directory in local computer which is used to build the databank information.
- Optional input from the contributor
  - **System description** = Free text description of the system
  - **Force field** = Name of the force field used in simulation
  - Force field source = Origin of force field parameters, e.g., CHARMM-GUI
  - Force field date = Date when force field was obtained
  - Names of force fields for individual molecule names. For example, FFNA = ECCNa

## Databank builder: AddData.py

https://github.com/NMRLipids/NMRlipidsIVPEandPG/blob/master/scripts/DataBankINFO/AddData.py

- Automatically extracted information by AddData.py
  - **Number of molecules:** Number of molecules (e.g., NPOPC, NSOL, NSOD, etc), lipids separately for leaflets.
  - Temperature
  - Length of the trajectory
- Automatic analysis by AddData.py
  - Order parameters of all C-H bonds
- Output of AddData.py
  - All information stored in README.yaml files
  - Order parameters stored in files
  - These are stored in the folders based hash IDs. Beta version:

https://github.com/NMRLipids/NMRlipidsIVPEandPG/tree/master/Data/Simulations

- Usage of AddData.py
  - python3 AddData.py SimulationInfoFile.py
- SimulationInfoFile.py currently available at:
   https://github.com/NMRLipids/NMRlipidsIVPEandPG/tree/master/scripts/DataBankINFO

## NMRlipids Databank

Beta version:

https://github.com/NMRLipids/NMRlipidsIVPEandPG/tree/master/Data/Simulations

- Each folder corresponds one simulation
- Folders are named according to the hash of trajectory and tpr file
- Folders contain README.yaml which should contain all the relevant information on the simulation! Is something missing?
- Currently folders contain also automatically calculated order parameters (maybe quality evaluation in the future)

## NMRlipids databank structure

#### **Databank builder**

(Python code: **AddData.py**)

Indexes publicly available simulation data based on information given by contributor

## **NMRlipids Databank**

(git repository with yaml files)

Indexed information on simulation data and results

#### Databank analyzer

(Jupyter notebook, Python code)

Pulls the data from databank for analysis

#### **Analysis code library**

(Python code)

Contains codes for the analysis

## Databank analyzer

- Goes through the README.yaml files in the databank
- Performs wanted analysis for selected simulations
- Results can be saved in separate results databank with the same indexing
- Result databanks can be browsed in similar manner for plotting

## Databank Analyzer Examples

1) Calculate the P-N vector angles of POPS, POPE, POPG and POPC lipids from each simulation

Code: https://github.com/NMRLipids/NMRlipidsIVPEandPG/blob/master/scripts/calcPNvectors.py

Results: https://github.com/NMRLipids/NMRlipidsIVPEandPG/tree/master/Data/HGorientation



## Databank Analyzer Examples

2) Find data for order parameter changes upon addition of CaCl\_2 from all available POPC:POPG mixtures

Code: https://github.com/NMRLipids/NMRlipidsIVPEandPG/blob/master/scripts/plotOPsWITHsalt.ipynb

**Results:** 





## Databank Analyzer Examples

3) How area per lipid changes in PC:PG lipid mixtures as a function of PG concentration

**Code:** https://github.com/NMRLipids/NMRlipidsIVPEandPG/blob/master/scripts/calcAPL.py https://github.com/NMRLipids/NMRlipidsIVPEandPG/blob/master/scripts/plotAPLs.ipynb

#### **Results:**



## NMRlipids databank structure

#### **Databank builder**

(Python code: **AddData.py**)

Indexes publicly available simulation data based on information given by contributor

## **NMRlipids Databank**

(git repository with yaml files)

Indexed information on simulation data and results

#### Databank analyzer

(Jupyter notebook, Python code)

Pulls the data from databank for analysis

#### **Analysis code library**

(Python code)

Contains codes for the analysis

## NMRlipids databank publication plan

- Article describing the databank and highlight applications will be prepared.
- At least all trajectories contributed to the NMRlipids will be included (approximately 300-400 trajectories currently).
- Possible highlight applications:
  - Quality ranking of all simulation
  - Analysis of rare phenomena using large datasets, such as water permeation through bilayers or lipid flipflops
    - Example of analysis useful for community who are typically not using MD simulations, such as T<sub>1</sub> spin relaxation times of water near membranes that are used in MRI imaging
- Databank will be located in a GitHub repository. Under which kind of licence?
- NMRlipids authorship rules will be applied in the first publication of the databank (authorship will be
  offered to all contributors and order is alphabetical) with two exceptions: Samuli Ollila will the last author
  and Anne Kiirikki will be the first.
- The authorship policy in the future publications regarding NMRlipids databank have to be carefully discussed in the near future.

## NMRlipids databank publication plan

- Needs to be done for publication:
  - Experimental data to the databank and automatic quality ranking of all simulations (in progress by Anne Kiirikki)
  - Incorporation of all data into the databank. To be done when content of REAME.yaml files agreed.
  - Analysis of highlight applications.

### Issues to be discussed

- What should we store in README.yaml files? Is there something that should be added?
- What should be analyzed automatically? Currently only order parameters.
- Should we extend to other than Gromacs simulations before first publication?
- License of the databank GitHub repo?
- Authorship in future NMRlipids databank publications.