

Principi TERMICI per l'ingegneria nucleare

a.a. 2024/2025

Dott. Francesco Galleni
Prof. Sandro Paci
Corso preparatorio per il
«Master of Science in Nuclear Engineering»

Obiettivi di apprendimento

TERMODINAMICA APPLICATA ("FISICA TECNICA", Dott. Galleni)

- Si presentano le nozioni elementari, con un approccio ingegneristico, di **termodinamica e trasmissione del calore** necessarie per comprendere **le** tecnologie per la produzione di energia elettrica (convenzionali e nucleari).
- In aggiunta a questa parte, sono trattati gli elementi di meccanica dei fluidi utili per la soluzione di problemi di moto di un fluido all'interno di un circuito idraulico.

TECNOLOGIA NUCLEARE (Prof. Paci)

- Il corso introduce i concetti di base per comprendere il funzionamento degli impianti nucleari ad acqua leggera ed i loro principali componenti.
- ☐ Viene trattata la conversione di energia da fissione e fusione in energia elettrica.
- Cenni alle altre tipologie di reattori nucleari.

SEMINARI: impianti a fusione, LMFR.

Prerequisiti

Derivate totali e parziali, semplici equazioni differenziali Concetti di forza, lavoro e potenza, conservazione dell'energia meccanica

6 crediti, 48 ore, primo semestre

Materiale didattico reso disponibile durante il corso

Modalità d'esame: orale

Per ulteriori info sul corso

francesco.galleni@unipi.it sandro.paci@unipi.it

• Come si passa da energia termica ad energia elettrica?

"Principi Termici/Meccanici per l'Ingegneria Nucleare"

Piccolo spazio pubblicità

"Principi Termici/Meccanici per l'Ingegneria Nucleare"

Due corsi (6 CFU ciascuno) in lingua Italiana aggiunti a partire dall'anno accademico 2017-2018 al terzo anno del corso di Laurea in Fisica dell'Università di Pisa

Accesso dei laureati in Fisica (Bc in Physics) AL MASTER OF SCIENCE IN NUCLEAR ENGINEERING

Possono essere utilizzati in due modi:

- coloro che sono al terzo anno, possono seguire i corsi e sostenere i relativi esami
- coloro che si sono già laureati in Fisica, possono comunque iscriversi ad Ingegneria Nucleare sostituendo due corsi a scelta con i due suddetti corsi

Piccolo spazio pubblicità

Per info sulla Laurea Magistrale in Ingegneria Nucleare

UniPi Website http://www.unipi.it/index.php/lauree/corso/10621

Presidente del CdS in Ingegneria Nucleare nicola.forgione@unipi.it

YouNuclear Website http://younuclear.ing.unipi.it/

Parte I – Termodinamica applicata

Prima legge della termodinamica: proprietà termodinamiche delle sostanze pure, diagrammi di stato (acqua), modello di gas ideale e reale.

Analisi basata sul volume di controllo di un sistema termodinamico mediante l'uso delle equazioni di bilancio di massa ed energia: applicazione a differenti componenti di un impianto nucleare.

Seconda legge della termodinamica e cicli termodinamici: sistemi con turbine a gas e a vapore, cicli ideali vs. cicli reali, entropia, valutazione del rendimento termodinamico di un tipico impianto nucleare

Parte II - Meccanica dei fluidi (cenni)

Fondamenti di flusso monofase: flusso di fluido viscoso ed incomprimibile: flusso in tubazioni, turbolenza e numero di Reynolds, perdite di carico, equazione di Bernoulli generalizzata, fattore di attrito, diagramma di Moody.

Parte III – Concetti di trasmissione del calore e applicazioni

Richiami sui modi di scambio termico, concetto di resistenza termica

Modalità di trasmissione del calore: Convezione, conduzione e irraggiamento. Aspetti teorici e pratici.

Scambiatori di calore: definizione dei termini relativi, equazioni di bilancio ed equazione di scambio termico, analisi degli scambiatori a tubi e mantello. Esempi di condensatori e generatori di vapore impiegati negli impianti nucleari