

Communication Theory (5ETB0) Module 3.1

Alex Alvarado
a.alvarado@tue.nl

Information and Communication Theory Lab Signal Processing Systems Group Department of Electrical Engineering Eindhoven University of Technology, The Netherlands

www.tue.nl/ictlab/

Module 3.1

Presentation Outline

Part I Model and Motivation

Part II Error Probability

Part III A Better Detector

Definitions (1/2)

Definitions

- Source: Produces a message $m \in \mathcal{M} \stackrel{\Delta}{=} \{1, 2, \dots, |\mathcal{M}|\}$ with probability $\Pr\{M = m\}$ for $m \in \mathcal{M}$. The r.v. is M
- lacksquare Transmitter: Sends a $signal\ s_m \in \mathcal{S}$ if message m is to be transmitted. The r.v. is S
- Channel: Produces output $r \in \mathcal{R}$ (r.v. is R) with conditional probability $\Pr\{R = r | S = s\}$
- Receiver: Forms an estimate \hat{m} by observing the received channel output $r \in \mathcal{R}$ using a mapping $\hat{m} = f(r) \in \mathcal{M}$. The r.v. is \hat{M}

Definitions (2/2)

Motivation for DIDO Channels: SRAM-PUF

Module 3.1

Presentation Outline

Part I Model and Motivation

Part II Error Probability

Part III A Better Detector

Error Probability Definitions

The Detection Problem

- \blacksquare For a given channel, find the best decision rule f(r)
- Best in what sense? Error probability...

Average Error Probability

The probability of error is defined as

$$P_{\mathsf{e}} \stackrel{\Delta}{=} \Pr{\{\hat{M} \neq M\}}.$$

(1)

The probability of correct decision is defined as

$$P_{\mathsf{c}} \stackrel{\Delta}{=} \Pr{\{\hat{M} = M\}} = 1 - P_{\mathsf{e}}.$$

(2)

Optimum Receiver

A receiver is optimum if it minimizes the error probability $P_{\mathrm{e}}.$

Correct Probability via Joint PMF (1/2)

 $P_c = \Pr\{M = \hat{M}\}$

Average Error Probability

The correct probability can be expressed as

$$= \Pr\{M = f(R)\}$$

$$= \sum_{r \in \mathcal{R}} \Pr\{R = r, M = f(r)\}$$

$$= \sum_{r \in \mathcal{R}} \sum_{m \in \mathcal{M}} \Pr\{R = r, m = f(r) | M = m\} \Pr\{M = m\}$$

$$= \sum_{m \in \mathcal{M}} \sum_{r \in \mathcal{R}} \Pr\{R = r, m = f(r) | M = m\} \Pr\{M = m\}$$

$$= \sum_{m \in \mathcal{M}} \sum_{r \in \mathcal{R}: f(r) = m} \Pr\{R = r | M = m\} \Pr\{M = m\}$$

$$= \sum_{m \in \mathcal{M}} \sum_{r \in \mathcal{R}: f(r) = m} \Pr\{M = m, R = r\}$$

Correct Probability via Joint PMF (2/2)

Error Probability Computation: A Recipe

■ We showed that:

$$P_{c} = \sum_{m \in \mathcal{M}} \sum_{r \in \mathcal{R}: f(r) = m} \Pr\{M = m, R = r\}$$

- lacksquare Make a table with $\Pr\{M=m,R=r\}$ for all possible combinations of m and r
- For each M=m, find all columns where f(r)=m, and sum them up
- \blacksquare Alternatively, for each R=r, identify the entry in the table that the detection rule f(r) will choose

Example 3.1 (1/4)

Applying the Recipe

- Tx signals: $s \in \mathcal{S} = \{s_1, s_2\}$ ($|\mathcal{M}| = 2$). Rx signals: $r \in \mathcal{R} = \{a, b, c\}$
- A-priori probabilities:

$$\begin{array}{c|c|c} m & \Pr\{M = m\} \\ \hline 1 & 0.4 \\ 2 & 0.6 \end{array}$$

Conditional probabilities:

m	$ \Pr\{R = a S = s_m\}$	$\Pr\{R = b S = s_m\}$	$\Pr\{R = c S = s_m\}$
1	0.5	0.4	0.1
2	0.1	0.3	0.6

- Decision rule: f(r) = 1 if $r \in \{a, b\}$ and f(r) = 2 if r = c
- Joint probabilities:

• Correct probability is $P_c = 0.2 + 0.16 + 0.36 = 0.72 \Rightarrow P_e = 0.28$

Example 3.1 (2/4): A different view

Module 3.1

Presentation Outline

Part I Model and Motivation

Part II Error Probability

Part III A Better Detector

Example 3.1 (3/4)

Maximum Likelihood Detection

■ Can we increase P_c by improving f(r)?

$$P_{\mathsf{c}} = \sum_{m \in \mathcal{M}} \sum_{r \in \mathcal{R}: f(r) = m} \Pr\{M = m, R = r\}$$

- For each column, the decision rule picks one row
- The example:

■ A higher correct probability is $P_c = 0.2 + 0.18 + 0.36 = 0.74 \Rightarrow P_e = 0.26$

Example 3.1 (4/4): A different view

Summary Module 3.1

Take Home Messages

- DIDO Channels and problem definition
- Error probability definition and calculations
- Detection can be improved

Communication Theory (5ETB0) Module 3.1

Alex Alvarado
a.alvarado@tue.nl

Information and Communication Theory Lab Signal Processing Systems Group Department of Electrical Engineering Eindhoven University of Technology, The Netherlands

www.tue.nl/ictlab/