<Discrete Mathematics>

작성자_2018320161_송대선 작성일_05_14

a closed semiring

(1)

+	0	1
0	0	1
1	1	1

(2)

- 1. monoids-> (S, +, 0), (S, •, 1)
 - a. closed: $a + b \in S$ ($a \in S$, $b \in S$)
 - b. associative: (a + b) + c = a + (b + c)
 - c. identity: a + 0 = 0 + a = a
 - a. closed: a b \in S (a \in S, b \in S)
 - b. associative: (a b) c = a (b c)
 - c. identity: a 1 = 1 a = a
- 2. + is commutative & idempotent

commutative: x + y = y + x

idempotent: a + a = a

- 3. distribution: $a \cdot (b + c) = a \cdot b + a \cdot c$
- 4. countably infinite: $a_1 + a_2 + \cdots + a_i + \cdots$ exists and unique
- -> associative, commutative, idempotent도 잘 적용된다.
- 5. •는 infinite한 sum에도 잘 distribute된다.
- $-> 0+0+0+0+\cdots=0, 1 \cdot 1 \cdot 1 \cdot \cdots=1$
- -Warchall algorithm-
- 1. Euler cycle problem
- 2. Hamiltonian cycle problem
- 3. Traveling salesman problem
- -> undirected graph만 다룬다.

Def) a cycle: a finite sequence of nodes such that

- 1. $x_1 = x_n$
- 2. $x_2, x_3, \cdots x_{n-1}$ are distinct
- -> a finite sequence of sequence로도 정의 가능

(1) Euler cycle problem

input: an undirected graph

output:

yes, if the graph has Euler cycle such that every edges of G are used only once no, otherwise

(2) Hamiltonian cycle problem

input: an undirected problem

output:

yes, if the graph has Euler cycle such that every nodes of G are used only once except only strating node

no, otherwise

(1)과 (2)중 뭐가 더 harder해 보이는가?

- -> (2)가 더 harder해 보인다.
- -> (1)은 이것을 해결하는 알고리즘이 있다.
 - -> edge가 홀수개인 node가 존재하지 않아야 Euler cycle이 존재한다.
 - -> edge가 홀수개인 node가 존재하지 않거나, 2개 존재해야 Euler path가 존재한다.

(3) Traveling salesman problem graph에 weight가 있다.

- a. 모든 node들을 거쳐야 하고,
- b. cost의 합이 최소가 되어야 한다.