UNCLASSIFIED

AD NUMBER

AD-844 934

CLASSIFICATION CHANGES

TO UNCLASSIFIED

FROM **NEVER CLASSIFIED**

AUTHORITY

U.S. Army Materiel Command, Washington, DC; October 1968.

19990301073

THIS PAGE IS UNCLASSIFIED

UNCLASSIFIED

AD NUMBER

AD-844 934

NEW LIMITATION CHANGE

TO

DISTRIBUTION STATEMENT - A

Approved for Public Release; Distribution Unlimited.

LIMITATION CODE - 1

FROM

DISTRIBUTION STATEMENT - NONE

No Prior DoD Distribution Security Control Statement.

AUTHORITY

USAARDCOM ltr., dtd March 16, 1981.

THIS PAGE IS UNCLASSIFIED

REPRODUCTION QUALITY NOTICE

This document is the best quality available. The copy furnished to DTIC contained pages that may have the following quality problems:

- Pages smaller or larger than normal.
- Pages with background color or light colored printing.
- Pages with small type or poor printing; and or
- Pages with continuous tone material or color photographs.

Due to various output media available these conditions may or may not cause poor legibility in the microfiche or hardcopy output you receive.

If this block is checked, the copy furnished to DTIC contained pages with color printing, that when reproduced in Black and White, may change detail of the original copy.

AD

MEMORANDUM REPORT NO. 1943

COMPARISON OF THE EXTERIOR BALLISTICS OF THE M-193 PROJECTILE WHEN LAUNCHED FROM 1:12 IN. AND 1:14 IN. TWIST M16A1 RIFLES

Maynard J. Piddington

October 1968

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of Commanding Officer, U.S. Army Aberdeen Research and Development Center, Aberdeen Proving Ground, Maryland.

U.S. ARMY ABERDEEN RESEARCH AND DEVELOPMENT CENTER BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MARYLAND

BALLISTIC RESEARCH LABORATORIES

MEMORANDUM REPORT NO. 1943

OCTOBER 1968

COMPARISON OF THE EXTERIOR BALLISTICS OF THE M-193 PROJECTILE WHEN LAUNCHED FROM 1:12 in. AND 1:14 in. TWIST MIGAL RIFLES

Maynard J. Piddington

Exterior Ballistics Laboratory

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of Commanding Officer, U.S. Army Aberdeen Research and Development Center, Aberdeen Proving Ground, Maryland.

RDT&E Project No. 1T650212D620

ABERDEEN PROVING GROUND, MARYLAND

BALLISTIC RESEARCH LABORATORIES

MEMORANDUM REPORT NO. 1943

MJPiddington/pp Aberdeen Proving Ground, Md. October 1968

COMPARISON OF THE EXTERIOR BALLISTICS OF THE M-193 PROJECTILE WHEN LAUNCHED FROM 1:12 in. AND 1:14 in. TWIST M16A1 RIFLES

ABSTRACT

The results of an exterior ballistics test of the M-193 ball projectile when launched from the MloAl rifle are presented and discussed. Rifles with twists of 1 turn in 12 inches and 1 turn in 14 inches were used in the tests. Data were gathered from test firings at the small Aerodynamics Range and the Transonic Range of the Ballistic Research Laboratories and from a temporary range set up in the Climatic Hangar at the Eglin Air Force Base, Florida. Tests at Eglin were conducted at air temperatures ranging from +125 deg. F to -65 deg. F.

TABLE OF CONTENTS

•		Page
ABSTRA	ACT	3
TABLE	OF SYMBOLS	7
INTRO	DUCTION	9
EXPERI	IMENTAL PROCEDURL	12
1.	Eglin Test	12
2.	Limit Cycle Test	14
LIMITA	ATIONS OF THE DATA	14
1.	Ammunition	14
2.	Rifles	16
3.	Aerodynamic Characteristics	16
DETERM	INATION OF RESULTS	17
1.	Velocity and Drag Force Coefficient	17
2.	Maximum Yaws	17
3.	Stability Factor	19
4.	Dispersion	22
5.	Limit Cycle Yaw	22
6.	Physical Properties	23
DISCUS	SSION OF LESULTS	24
1.	Velocity	25
2.	Yaw	25
3.	Stability Factor	28
4.	Dispersion	28
5.	Limit Cycle	31
6.	Physical Properties	35
7.	Twist Determinations	45
CONCLU	JSIONS	46

TABLE OF CONTENTS (Continued)

	Page
REFERENCES	50
APPENDIX	51
DISTRIBUTION LIST	89

TABLE OF SYMBOLS

$$C_{D} = \frac{\text{Drag Force}}{(1/2) \rho V^{2} S}$$

$$*C_{M_{Q}} = \frac{\text{Static Moment}}{(1/2) \rho V^{2} S \ell}$$

$$*C_{M_{Q}} + C_{M_{Q}} = \frac{\text{Damping Moment}}{(1/2) \rho V^{2} S \ell} \frac{q \ell}{V}$$

$$C_{N_{Q}} = \frac{\text{Normal Force}}{(1/2) \rho V^{2} S \ell}$$

$$C_{M_{DQ}} = \frac{\text{Magnus Moment}}{(1/2) \rho V^{2} S \ell} \frac{q \ell}{V} \alpha$$

$$\sigma = \text{standard deviation} = \sqrt{\frac{\Gamma(\text{Resid.})^{2}}{\text{No. of Observations}} - 1}$$

$$\delta = \text{Magnitude of yaw}$$

$$\delta^{2} = \text{Mean squared yaw over the range of observations}$$

$$S = \pi d^{2}/4$$

$$\alpha = \text{air density}$$

$$\alpha = \text{angle of attack}$$

$$\phi^{3}_{1,2} = \text{damping rates}$$

$$\lambda_{L} = \text{damping rates}$$

^{*}Negative values of C_M and C_M + C_M indicate moments which oppose a and a respectively and are therefore stabilizing. A positive value of C_M indicates a side moment which tries to rotate the missile's nose about its trajectory in the direction of spin.

TABLE OF SYMBOLS (Continued)

cg	= center of gravity
c.I.	= Center of Impact
d	= body diameter of projectile
I _x	= axial moment of inertia
I _y	= transverse moment of inertia
K 1,2	= yawing vectors
t.	<pre>= reference length (for this report L = d = .223 inch)</pre>
L	= length of projectile
М .	= Mach number
N	= Twist rate
0	= subscript denoting initial conditions
P	= rolling velocity
q .	= angular velocity
Rd	= round number
5	$= \frac{2I_x^2p_0^2}{\pi I_y V_0^2 d^3\rho C_{M_{\alpha}}} = \text{gyroscopic stability factor}$
SN	= Serial Number
SL	= radius of swerve
V	= velocity of missile
WT	= Weight

INTRODUCTION

The program reported is the Exterior Ballistics portion of a larger effort involving several divisions of the Ballistic Research Laboratories (BRL). The program was carried out in response to a request from the Project Manager-Rifles to evaluate the relative effectiveness of the M-16 rifles with barrels of two different twist rates; one turn in 14 inches of travel and one turn in 12 inches of travel.

The amount of spin required to stabilize a bullet depends on various parameters, such as: bullet shape, muzzle velocity, air density and physical properties (including center of mass location, moments of inertia, etc.) A relationship of these various parameters, including spin, yields the gyroscopic stability factor, s, and for a projectile to be gyroscopically stable this relationship must be equal to or greater than one.

Most earlier small arms projectile designs have had values of s considerably greater than one, usually greater than two, and hence they were not appreciably affected by small variations in the properties which influence the value of s. One might expect that variations in the physical parameters, whether incurred during manufacture or launch, could cause a ± 10 percent variation in s. In addition, flight environment, particularly air density, can cause a 25 percent decrease in s when going from 70°F to -65°F. A projectile having a stability factor of 2 at 70°F will not be seriously effected in its flight behavior when s drops to 1.35 for -65°F.

The M-16 rifle system, however, launches a projectile which has s values considerably below 2 and hence is much

more susceptible to changes in air density and to other variations in the parameters which determine s. For example, the gyroscopic stability factor of the M-193 when launched from the M-16Al rifle with a twist of one turn in 12 inches (1:12 in.) is about 1.45 at 70° F and decreases to a value of about 1.09 at -65° F. For the same bullet launched from a 1:14 in. twist barrel, s has a value of about 1.14 at 70° F and about .85 (theoretical) at -65° F.* As the gyroscopic stability factor approaches unstable values, the flight characteristics of the bullet will deteriorate and could drastically change. The main objective of the Exterior Ballistics Laboratory (LBL) study was to determine precisely how serious an effect reduced values of gyroscopic stability would have on the flight characteristics of the projectile.

In order to perform this task, it was necessary for members of the EBL to travel to the Air Proving Ground Center at Eglin, Fla. to conduct a test of the M-16Al in the Climatic Hangar where test temperatures ranging from $125^{\circ}F$ to $-65^{\circ}F$ over a range of 70 meters were available. Two rifles with 1:12 in. twist barrels and two with 1:14 in. twists were tested at five temperatures: 125, 70, 0, -30, and $-65^{\circ}F$.

It was desirable to use rifles which were currently being produced by Colt Manufacturing Company, but this was possible only for the 1:14 in. twist guns which were part of the "1000 barrel" tests.*** The 1:14 in. twist barrels had been prerated, on the basis of Colt tests, one as having "average" dispersion (7.5 in. maximum spread at 100 yds) and one as having good dispersion (4.0 in. maximum spread at 100 yds). The 1:12 in. twist rifles were selected from the

^{*}Temperature effect on stability factor assumes standard sea level pressure.

^{**}References are found on page 50.

^{***}A special test to compare dispersion of the two twist rifles.

stock pile at $\Lambda\Gamma G$ and were assumed to be typical of current production rifles.

Since it was not practical in the time allotted for this investigation to conduct separate studies on the causes of the variations in the parameters in s, it was necessary to fire a sufficient number of rounds from each barrel at each temperature so that the results would depict these variations. Fifteen rounds per condition were selected as a compromise between statistical desirabilities and available time. Fewer than fifteen rounds were tested at 125°F because of other test commitments of the Eglin installation. The selection of the 125°F test cases for any necessary curtailment was because of the probable lower relevance of the higher stability data.

The individual photographic equipment used in the tests were the same as utilized in the Aerodynamics Range at the BRL. Ten shadowgraph stations using two orthogonal 28 x 36 cm plates were positioned over the 70 meters and yaw cards were placed at the maximum range (70 meters) to record the dispersion.

Measurements obtained from the shadowgraph and yaw cards were used to determine the following as functions of temperature and twist:

- 1. Dispersion (at approximately 70 meters).
- 2. Muzzle velocity.
- 3. First maximum yaw.
- 4. Gyroscopic stability factor near the muzzle.
- 5. Maximum yaw at about 70 meters.
- 6. Velocity at about 70 meters.
- 7. Variations in 2, 3, 4, 5, and 6.

One month's test time (August '67) was required to complete the firings with considerable assistance furnished

by the personnel of the Climatic Hangar. After some measurements had been made and preliminary evaluations conducted, it became apparent that additional data were urgently required to permit the WSL to conduct properly their phase of the evaluation. The magnitude of yaw at impact often plays an important role in the analysis of a small arms weapon system. WSL requested that flight yaw at ranges greater than 70 meters be obtained.

To obtain such data, five Aerodynamics Range shadowgraph stations were hastily assembled in the Transonic Range of BRL. 30 rounds were then fired from each of two weapons (one 1:12 in. and one 1:14 in. twist) at ranges of about 175, 250, 340, and 450 meters. At these ranges, it was assumed that the initial yaw transients had damped out and that the yaw remaining was due to some phenomena characteristic of the bullet. The data obtained from these firings, as a function of range and twist (at approximately 70°F), were terminal yaw (commonly referred to as limit cycle yaw) and velocity.

For purposes of the exterior ballistics portion of this report, these two tasks mentioned previously will be referred to as:

- . 1. Eglin Test.
 - 2. Limit Cycle Test.

EXPERIMENTAL PROCEDURE

1. Eglin Test

Six stations observing about 5.79 meters of trajectory were positioned near the muzzle of the gun (Figure 1). Four stations covering about 3.35 meters of trajectory were located near the target (70 meters). All stations were carefully surveyed into position and then resurveyed at

Figure 1. Station Setup at Eglin

various temperatures to insure that the range had not moved significantly because of a change in temperature. If changes did occur, then necessary corrections to the data were made.

The time of flight was recorded at eight of the stations (six in the first group and two in the last). In addition to yielding velocity near the muzzle and near the target, these were used to obtain a fair evaluation of the drag force coefficient.

The guns were separately mounted in a Frankford rest (Figure 2). The rounds were fired into a bullet catcher located behind the target. To protect the equipment at the target from being hit by stray rounds, a protective barricade with about a 38 cm hole was placed directly in front of this group. All guns and ammunition were allowed to temperature soak sufficiently before firing commenced.

2. Limit Cycle Test

Five stations were used in this test located to observe the yawing motion over a period of either 2.74 meters (early phases), or 3.05 meters (later phases). Times of flight were recorded on three of the stations to yield velocity data.

The guns were mounted in a Frankford rest. To obtain data at the various ranges, the gun position was moved relative to the stations and a barricade was used to protect the stations from damage.

LIMITATIONS OF THE DATA

1. Ammunition

Only one lot of ammunition was used in all of the EBL tests. As a result, lot-to-lot variations are not

.NOT_REPRODUCIBLE

Figure 2. Frankford Rest with Rifle

indicated in the results. The ammunition used does not have a specific production lot number but is designated as LC-SP-412. The rounds were obtained from the production line at Lake City Arsenal in June 1967. EBL was assured by the office of the project manager that the ammunition would meet the necessary acceptance requirements.

LC-SP-412 is ball ammunition using ball propellant. It has not been determined how this lot of ammunition compares to the other lots currently being used in the M-16Al rifle system.

2. Rifles

The 1:14 in. twist rifles were new and had very few rounds fired from them (estimated as less than 100). The 1:12 in. twist rifles used in the tests were in good condition but much older, and no record was available on how many rounds had previously been fired from them.

The number of rifles tested, of course, was extremely small and can not be confidently compared to an "average" 1:12 in. or 1:14 in. production rifle.

3. Aerodynamic Characteristics

In order for the Computing Laboratory of BRL to obtain the necessary velocity and yawing histories of the projectile, a knowledge of the aerodynamic characteristics of the bullet is required. Because of the time frame of the program, however, only a limited new determination was made with a basic reliance on earlier tests. The new data obtained resulted from rounds launched in the range at BRL from four rifles. Two of these rifles had a 1:12 in. twist and two had a 1:14 in. twist. Two rounds were test fired from each weapon at standard muzzle velocity; the data were reduced in the normal manner. The results are

listed in Table 1 and can be compared to the results of a previously tested round which can be found in Reference 5. At standard muzzle velocity, the data agree quite well with the data in BRL MR 1758 with only one apparent exception. The overturning moment coefficient, $C_{M_{\alpha}}$, for the LC-SP-412 round is about 8 percent larger than previously determined. This causes a decrease in the stability factor and is an indication of the variability from lot-to-lot in the ammunition.

DETERMINATION OF RESULTS

1. Velocity and Drag Force Coefficient (Lglin Test)

The velocity, I, and drag force coefficient, C_D, were obtained for each round from a least squares fit of time as a cubic in distance. These values were computed at a point approximately 4.6 meters in front of the rifle. The velocities were then extrapolated to yield muzzle velocities.

For various reasons, time measurements were not always recorded in the second group of stations. Without this longer-base-line data, drag computations were not very accurate. Such rounds, as a rule, produced no drag or downrange velocity data.

2. Maximum yaws (Eglin Test)

The first maximum yaw, $\delta_{\rm o\ max}$, and the maximum yaw, $\delta_{\rm max}$, at about 70 meters were obtained from faired curves of the total yaw as a function of range. A typical example of such curves is shown in Figure 3. The measured values are represented by the circles which could include a point at the rifle muzzle. Although no shadowgraphs were taken at this position, it is reasonably safe to assume that the yaw at this point was very nearly zero.

Figure 3 indicates the magnitude and location of the first maximum yaw and the period of yaw near the muzzle. Also indicated is the magnitude of the minimum yaw near the muzzle which is very nearly zero for this round and for nearly all other rounds tested, regardless of the magnitude of the first maximum yaw.

At 70 meters, the maximum, minimum, and sometimes the period of yaw are indicated. At this range, the minimum yaw is most likely not zero. Because of the aerodynamic and dynamic characteristics, the nutational mode of yaw is damping much more rapidly than the precessional mode. It is probable that only the precessional yaw remains and this mode may be slowly damping, remaining constant, or even slowly growing. An insufficient number of observations were made at this location for a complete determination of the yaw characteristics. Only an average approximate position of the maximum yaws can be given both at the gun and at 70 meters since these positions vary by as much as several feet from round to round.

3. Stability Factor (Eglin Test)

The stability factor, s, was determined from the yawing motion of each projectile using only the yaw observed in the first group of stations together with an assumed value of zero yaw at the muzzle. Since only the epicyclic turning rates are required to determine s, the yaw equation was slightly modified so that these values could be easily obtained.

In addition to s, values of the overturning moment coefficient, $C_{M_{\alpha}}$, and the twist rate, N, imparted to the bullet were determined for each round. In determining $C_{M_{\alpha}}$ and the twist rate, average values of the moments of inertia

were used since it would have been impossible to obtain these values for each round tested. Consequently, $C_{N_{\alpha}}$ and N_{α} reflect the variation in moments of inertia. s on the other hand, is a true indication of the stability factor as determined from the yawing motion of each round. All three values were determined at a point located about 4.6 meters in front of the gun.

This method of analysis can be used with confidence only when the stability factor is greater than 1. When so is less than 1, the projectile is initially unstable. The yaw history becomes abnormally high but otherwise often appears similar to that of a stable bullet because high yaw phenomena control the instability. The linearized yaw equation used does not recognize these effects and, in fitting, ascribes to the motion a pseudo value of s slightly larger than 1. Since the linearized assumptions used in the fit are obviously violated, no reductions were performed on those rounds which had theoretical s values less than unity. Careful consideration must be given to those determinations yielding s values which lie between 1 and about 1.1 to make sure that these rounds were not, in fact, initially unstable.

An example of such a round is shown in Figure 4. Even though the period of yaw is apparently quite large, the general yawing motion is such as to indicate that the hullet is gyroscopically stable, which for all practical purposes, it is, out not initially. The bullet emerged from the barrel with insufficient spin to stabilize it and soon thereafter started to "tumble". It never completed this motion for as the yaw began to grow it became less unstable until finally s was larger than 1. With s > 1, the yawing motion went into an apparently normal epicyclic motion. The result of this initial instability was an increased yaw and a probable increase in dispersion.

4. Dispersion (Eglin Test)

Dispersion calculations were performed on data in two ways. The first was to use only those data observed from the photographic station located at about 69 meters. This determination was made on 15 rounds for each condition. The second was to perform the calculation on measurements obtained from yaw cards at about 70 meters which, in general, was for about 10 additional rounds fired with no photographic coverage for each condition. Then both sets of data were combined to yield a value for 25 rounds. It seemed important to handle the data in this manner since the 10 round groups were obtained in a period of about 5 minutes whereas the 15 round groups covered a period of time of several hours. llowever, it was concluded that the differences observed from these methods were insignificant and that the value which was obtained for all 25 rounds was most representative of that rifle.

It should be noted that although some rounds hit, the protective barricade, these misses were not excluded; hits were marked and by extrapolation were included in the dispersion calculations.

5. Limit Cycle Yaw (Limit Cycle Test)

The yaw was determined at each of the 5 photographic stations and then averaged to represent the value of the limit cycle yaw. It was assumed that all initial transient yaws had damped before the round had reached the stations, even for the closest distance used in this test series (175 meters). Data were obtained at three additional ranges: 253, 339, and 450 meters. Thirty rounds were fired from each of two rifles (one 1:12 in. twist and one 1:14 in. twist) at each range.

Velocity measurements were also recorded for each round. These values were adjusted since the guns were fired at different temperatures. The photographic stations were positioned in the Transonic Range, which is heated to about 70°F, but the guns were located outside the range except for the 175 meter range. The temperature at the time of firing varied from 35 to about 70°F. Corrections were made based on the muzzle velocity vs temperature data obtained at Eglin.

6. Physical Properties

When values of the physical properties are required to compute certain aerodynamic characteristics, it is highly desirable to use those properties which pertain to each round. Normally, for large shell, measurements are performed on the rounds before they are launched. In the case of deformable bullets, the characteristics are liable to change when the round is fired so that if prefiring measurement values are used, at least slightly incorrect results will be obtained. As a precaution, it was decided to obtain sample values of these physical measurements on projectiles which had sustained changes due to normal firing.

The EBL has undertaken the task to determine the changes in the bullet (particularly LC-SP-412) due to launch, but all of the results are not available for this report.

Past experience has indicated that in order to recover the bullet without damage with current recovery systems the bullet should have a velocity not much greater than about 365 m/s. Since measurements should be made on rounds which have been launched at standard muzzle velocity, " the recovery system had to be placed about 600 meters from the gun.

A recovery system composed of foam rubber which was saturated with water was used. A depth of about 1.83 meters was required to stop the bullet. Ten rounds were fired from a 1:12 in. twist rifle, recovered, and measured. In addition, ten rounds were measured before launch and then recased and fired from the same gun, recovered and then remeasured. This procedure compares before and after measurements on the same round. These measurements involve moments of inertia, center of mass, length, and diameter. These data are available for this report but results of measurements made on the contour of the projectile before and after launch are not available at this time. There are two observations on shape changes that can be stated. First, the boattail appears to open up slightly, resembling a square base. Second, the ogive appears to cave in just ahead of the shoulder with a slight bulging of the ogive just ahead of the depression.

DISCUSSION OF RESULTS

The data resulting from the various tests are presented in tabulated form in the appendix in the following manner:

^{*}Alternate methods of firing at reduced velocity may not produce full deformation, although the method is certainly an improvement over using unfired projectiles. In fact, all these differences may usually be irrelevant but it was felt necessary to conauct the test to be sure.

Table 1 Results of the Eglin Test

Table 2 Results of the Limit Cycle Yaw Test

Table 3 Dispersion (Eglin Test)

Table 4 Summary of Aerodynamic Coefficients

Table 5 Physical Properties

Table 6 Average Results

The remaining portion of this section will deal primarily with the average results presented in the tables. If differences between weapons are of interest, then the tables should be examined.

1. Velocity (Table 6)

The average muzzle velocity is plotted in Figure 5 as a function of temperature. The curves indicate that at 125°F the muzzle velocities of the 1:12 in. twist and 1:14 in. twist weapons are the same. As the temperature decreases, however, V_0 for the 1:14 in. twist rifles decreases at a more rapid rate than does V for the 1:12 in. twist rifles until at -65°F they differ by about 21 m/s. In general, V_0 decreases by about 84 m/s over the temperature range tested. Also included in Figure 5 are the velocities determined at 70 meters for the same conditions for which V_{o} was determined. These curves indicate that at the warm temperatures the loss in velocity for each weapon is about the same. At -65°F, however, rounds fired from the 1:14 in. twist rifles lose about 61 m/s more than those fired from 1:12 in. twist rifles. The reason for the increase in velocity loss is the considerable increase in yaw which adds to the drag.

2. Yaw (Table 6)

The average first maximum yaws for each rifle are plotted in Figure 6 as a function of temperature. It can be seen that the initial yaws for the two rifles are about

Figure 5. Average Velocity at the Muzzle and at 70 Meters vs Temperature

Figure 6. Average Maximum Yaw Near the Muzzle and at 70 Meters vs Temperature

i C the same at 125° F but differ considerably at -65° F. δ_{0} for the 1:12 in. twist rifle changes very little over the temperature range test while δ_{0} for the 1:14 in. twist rifle increases from about 6 degrees at 125° F to about 36 degrees at -65° F. Also included in Figure 6 are the maximum yaw values determined at about 70 meters for each rifle. These values have about the same magnitude at the warmer temperatures but still differ significantly at -65° F -- about 3 degrees for the 1:12 in. twist rifles and about 9 degrees for the 1:14 in. twist rifles.

3. Stability Factor (Table 6)

The average stability factor, s, for each weapon is plotted in Figure 7 as a function of temperature. Stability factors were determined at all temperatures for the 1:12 in. twist rifles whereas s was determined at only 70 and 0 degrees for the 1:14 in. twist rifles. It would have been possible to obtain s at 125°F but insufficient test data at this temperature negated this determination. At 0°F and below, however, it is impossible to determine s accurately using linearized assumptions, but it can be adequately computed using data obtained at another temperature or by data obtained from another twist. Those portions of the curves shown as dotted lines were computed in this manner. The value of s determined at 125°F for the 1:12 in. twist rifle is slightly higher than is predicted. The reason for this difference is not apparent.

4. Dispersion (Table 6)

The dispersion, σ , is plotted as a function of temperature in Figure 8. Each point represents a weighted average combining the results of two 25 round groups (one group from each rifle). The value for each 25 round group was obtained using one center of impact. All rounds within

a 25 round group were fired from a single gun location but 10 rounds were fired over a short period of time (approximately 5 minutes) while 15 rounds using photographic coverage required four hours or longer to fire. Hence, it is possible that differences in dispersion exist because of the time involved to complete each phase of the test. Figure 8 treats the data as though these differences are negligible. Individual results can be examined in Table 4.

Basically, the dispersion of both rifles is about the same for the warmer temperatures. At colder temperatures, σ begins to worsen for the 1:14 in. twist rifle until at -65° F it has become about 4 times greater than σ for the 1:12 in. twist rifle, which is relatively unchanged. The increase in dispersion begins when the stability factor nears 1. This occurs at about 40° F with the 1:14 in. twist rifle and at about -45° F with the 1:12 in. twist rifle.

5. Limit Cycle (Table 2)

The distribution of the limit cycle yaw is shown as a function of range in Figure 9 for the 1:12 in. twist rifle and Figure 10 for the 1:14 in. twist rifle. It was intended that the data be obtained at 70°F but the temperature could not be controlled for the three longer ranges since the guns were outside the Transonic Range building. The temperatures outside of the building varied from 35 to 70°F. At the 175 meter range, the guns were mounted inside the building which is normally temperature-controlled to about 70°F. The effect of colder temperatures is a slight decrease in muzzle velocity from both rifles and in the case of the 1:14 in. twist rifle, a slight increase in initial yaw (not measured in this test). It is felt that the magnitude of the observed yaw at the photographic stations was not significantly changed by the

NOT REPRODUCIBLE

200 300 EEERS) 300 FEIRERS) 300

NOT_REPRODUCIBLE

increased initial yaw, because all rounds, regardless of distance fired, traveled through about 200 meters of 70° F air in the Transonic Range before being photographed. Recordings obtained for the 1:14 in. twist rifle and for some of the 1:12 in. twist rifle rounds are for velocities which are slightly lower than if the rounds had been launched at 70° F.

It should be noted that at 450 meters, only about 50 percent of the rounds launched from the 1:14 in. twist rifle negotiated the protective barricade. There are three equally important reasons for this inaccuracy. First, the 1:14 in. twist rifle normally has slightly poorer dispersion than the 1:12 in. twist rifle under the same conditions. Second, the dispersion of the 1:14 in. twist rifle increases slightly because of higher initial yaws which the 1:12 in. twist rifle did not experience. Third, the rounds launched from both twist rifles experienced a strong cross wind (about 150 meters before entering still air) which appeared to have a significant bearing on the rifles' accuracy.

The curves in Figures 9 and 10 indicate the same approximate trends. The major difference occurs at 175 meters where the yaw from the 1:12 in. twist rifle is considerably less than from the 1:14 in. twist weapon. Two reasons are apparent for this difference. First, larger initial yaws from the 1:14 in. twist rifle will cause slightly higher yaws at this range. Second, because of these higher initial yaws, slightly more velocity will be lost, with the same effect as obtaining 1:14 in. twist data further downrange. This is apparent upon examination of the data as a function of velocity instead or range. Since the limit cycle yaw is increasing quite rapidly between 175 and 250 meters, a decrease of about 23 m/s in

the velocity of the projectile should significantly increase the magnitude of the limit cycle.

After about 175 meters of travel, little additional difference in velocity should be expected. The magnitude of yaw beyond 175 meters appears to be slightly higher for the 1:14 in. twist rifle with a slight upward trend occurring at 450 meters. If the data are examined as a function of velocity, this upward trend occurs for both twist rifles but is slightly more apparent with the 1:14 in. twist weapon, mainly because the projectile has slightly less velocity at 450 meters.

The probable reason why the upward trend occurs from either weapon is the fact that the projectile is rapidly approaching the transonic region. Although no data on this projectile are available to substantiate this conclusion, other data do obist on a prototype model (unpublished) and on the M-80 ball projectile which strongly suggest that limit cycles larger than two or three degrees will exist below Mach 1. Therefore, it is quite conceivable that the M-193 bullet will begin to respond to this effect by 450 meters.

Figure 11 is a plot of the velocity of the projectile as a function of range and twist. All velocity values have been adjusted to the expected value at 70°F . The curves are a compilation of data obtained at Eglin and at the Aerodynamics and Transonic Ranges.

6. Physical Properties (Table 5)

Only a limited amount of work has currently been performed on determining the physical changes in a bullet caused by forces at launch. Bullets have been measured prior to and after launch; the results of these measurements can be compared in Table-5.

C DESTIN CHAPACH LANTE

The measurements that have been conducted indicate the variations in the physical parameters and the changes in these parameters due to launch. While nost of the changes or variations are small (on the order of 2 or 3 per cent or less), the resultant error of combinations of these parameters, such as used for spin calculations, can be considerably larger.

Some of the more subtle changes which occur during launch are those which physically change the shape of bullets and are much more difficult to measure: such changes as loss of copper, damage to the jacket, distortion of the boattail section, etc. It is sometimes difficult to observe these changes with the naked eye but they can often be seen in the shadowgraphs of the projectile in flight.

Several enlarged shadowgraphs are presented (Figures 12 through 18). The pictures encompass firings at various conditions. If the reader will note that any sudden change in the contour of the projectile will produce a shock wave, it will become immediately obvious that the projectile has changed considerably during launch. A brief description of each figure is given below. While it is left to the reader to decide as to the degree of damage which may be observed in the figures, his attention is invited to the flow about the projectile as a function of yaw. It should be noted that as the yaw increases the prediction of certain aerodynamic characteristics becomes more difficult.

Figure 12: Λ round fired at -65°F from a 1:14 in. twist rifle. The angle of yaw is about 30 degrees. Note that the flow has leeward separation at the nose.

Figure 13: A round fired at -65°F from a 1:14 in. twist rifle. The angle of yaw is about 25 degrees. Note that the flow separation point has moved rearward to about the position of the shoulder.

Figure 12. M-193 at - 65° F V = 870 m/s δ = 30°

Figure 13. M-193 at $-65^{\circ}F$ V = 925 m/s δ = 25°

Figure 14. M-193 at $-65^{\circ}F$ V = 910 m/s $\delta = 10^{\circ}$

Figure 15. M-193 at 125° F V = 965 m/s δ = 10°

Figure 16. M-193 at $125^{\circ}F$ V = 995 m/s δ = 1°

Figure 17. M-193 at 70° F V = 472 m/s δ = 2.5°

Figure 18. M-193 at 70° F V = 455 m/s δ = 2.5°

Figure 14: A round fired at -65° F from a 1:12 in. twist rifle. The angle of yaw is about 10 degrees and the flow now separates at about the position of the crimping groove.

Figure 15: A round fired at 125°F from a 1:14 in. twist rifle. The yaw angle and flow separation position are about the same as in Figure 14.

Figure 16: A round fired at 125°F from a 1:14 in. twist rifle. The angle of yaw is less than one degree. The flow has turned the corner of the boattail.

Figure 17 and 18: Pounds photographed at about 70° F at a velocity of about 457 m/s. Both rounds were fired from a 1:14 in. twist rifle. The rounds have limit cycle yaws of about 2.5 degrees.

7. Twist Determinations (Table 1)

Computations of the rifle twists have been made for each round fired at Eglin. A knowledge of the yawing motion and the moments of inertia are required to compute these values. Since it was not possible to obtain moments of inertia for each round fired, the average value obtained from recovered rounds was used for all rounds; hence, the variations in the twist values given in Table 1 are only true if the values of the average moments of inertia are precisely those ascribed to the bullet, which is not the case. On the other hand, averaging several twist values should yield a representative value of the spin imparted to the bullet. The nature of the yawing motion of this projectile is such that the spin will become less well determined as the stability factor approaches one.

The average values of twist computed in this manner are 1:11.9 in. for the 1:12 in. twist rifle and 1:13.5 for the 1:14 in. twist rifle. These numbers are evaluated at a

point 4.57 meters in front of the muzzle and should be increased by about .08 in. to give muzzle values. Agreement is quite good for the 1:12 in. twist computations whereas computations for the 1:14 in. twist rifle indicate that the rifle imparted more spin to the bullet than the rifling had. The difference is on the order of 2 or 3% and could easily be accounted for by the reasons previously mentioned.

In order to determine conclusively the spin imparted to the bullet, measurements of the spin of the bullet in flight should be made and extrapolated to the muzzle. This can be done to an accuracy of less than .1% by fitting the projectile with pins in the base before launch and measuring the orientation of these pins as a function of range. Five rounds have been tested from one rifle in this manner but the results are not available at this time.

The DGPS at Aberdeen measured the twist of rifling of 120 rifles (60 1:12 in. twist and 60 1:14 in. twist rifles). Measurements were recorded at 1 inch intervals along the tube. The method and results of these measurements are given in Reference 7. In addition, the four prime rifles used in the BRL tests were measured; the results are presented in Figures 19 and 20. It is noted that the measured values do not form a snooth curve so it is difficult to determine the precise twist at the time the bullet becomes disengaged from the rifling.

CONCLUSIONS

1. The M-193 projectile when launched from a 1 in 12 inch twist tube is gyroscopically stable at the atmospheric densities consistent with military test temperatures ranging from 125°F to -65°F.

- 2. The M-193 projectile when launched from a 1 in 14 inch twist tube is gyroscopically unstable at the atmospheric densities consistent with military test temperatures of below about 0°F.
- 3. Both twist weapons produce about the same initial maximum yaw at normal air density and below (yaw from the 1:14 in. twist tube is slightly larger). At the high density condition (-65°F) the 1:14 in. twist weapon produces about 36° of yaw as compared to about 8° yaw from the 1:12 in. twist rifle.
 - 4. The dispersion is about the same for each twist at normal air densities (the 1:14 in. twist being slightly larger) with the dispersion of the 1:14 in. twist weapon being considerably worse at the high density cold temperatures. At the -65°F test point, these values are about 2.4 mils for the 1:14 in. twist as compared to about .6 mils for the 1:12 in. twist rifle.
 - 5. Terminal yaw of the M-193 projectile when launched from either weapon varies from nearly zero yaw to about 3.5 degrees. Generally, the yaw obtained from the 1:14 in. twist rifle tested was slightly larger than that from the 1:12 in. twist rifle for the same range.
 - 6. The sample of the current M-193 projectile production used in the test receives a certain amount of damage during launch. The boattail and ogive sections appear to be the areas most affected.
 - 7. In-bore and aerodynamic spin measurements indicated that the rifles with the 1:14 in. twist had twists which were faster than 1:14 (on the order of 1:13.8 inches) while no significant difference was observed in 1:12 in. twist rifles.

REFERENCES

- 1. Brochure, Climatic Laboratory Facilities Air Force Systems Command, Eglin Air Force Base, Florida.
- W. F. Braun, "The Free Flight Aerodynamics Range", Ballistic Research Laboratories Report No. 1048, July 1958, AD 202249.
- 3. W. K. Rogers, Jr., "The Transonic Free Flight Range", Ballistic Research Laboratories Report No. 1044, June 1958, AD 200177.
- 4. C. H. Murphy, "Free Flight Motion of Symmetric Missiles", Ballistic Research Laboratories Report No. 1216, July 1963, AD 442757.
- 5. M. J. Piddington, "The Aerodynamic Properties of a Caliber .223 Remington Bullet Used in M16 (AR-15) Rifle", Ballistic Research Laboratories Memorandum Report No. 1758, June 1966, AD 489960.
- 6. M. J. Piddington, "Aerodynamic Characteristics of the 7.62mm NATO Ammunition M-59, M-80, M-61, M-62", Ballistic Research Laboratories Memorandum Report No. 1833, March 1967, AD 815788.
- 7. II. N. Jamison, "Test of 120 Rifles 5.56mm M16A1. 60 Rifles with a Basic Twist of 1:12.0 in. and 60 Rifles with a Basic Twist of 1:14.0 in.", Physical Test Laboratory Report No. 68-8-15.

APPENDIX

TABLES

BLANK PAGE

			TABLE 1A SN 023294	EGLIN TEST 04 (1:12 in.	TEST RESULTS: in. Twist)				
Rd.	Temp. (deg.)	ν _ο (ft/sec)	V (228') (ft/sec)	(18).	lst Max. 6 (deg.)	11ax . 6 (228') (deg.)	Twist (in.)	C _M	Ŋ
C	- 65	89	S	.401	14.4	٠	12.1	1.51	.1
0	:	90	68	, J		•	•	2	c.
210	:	2893	2500	.431	18.7	5.0	7	1.57	1.10
_	:	66	61	7	•	•	Ξ.		0.
-	=	00	09	-	•	•	•	• 2	1.13
$\overline{}$	=	96	61	3	•	. •	2.		0.
_	=	99	62	9	•	•		9	٦.
_	:	20	83	3	5.5		•	•	0
-	:	96	59	O	•	ં •	_;	•	٥.
_	:	81	46	8	7.2	2.7	•		
_	:	93	56	7	•	•	_;	•	۰.
_	:	95	57	9	14.7	•	_;		0
~	=	95	56	0		•		Š	c.
7	:	03	67	$\overline{}$	5.4	2.1	•	•	
7	:	07	69	S	•	•	•		
			,	,					
Avg	- 65	2983	2606	.378	10.7	3,3	11.9	1.60	1.09

			TABLE 1A SN 02329	E 1A EGLIN TEST 023294 (1:12 in.	TEST RESULTS ! in. Twist)				
				(Continued)	led)				
Rd.	Temp. (deg.)	V _o (ft/sec)	V (228') (ft/sec)	C _D (8.)	lst Max, 6 (deg.)	!lax. 6 (228') (deg.)	Twist (in.)	C _M	N
	o	3078	12		ı.			٥	~
262	:	3073	2745	. 338	8.1	3.4		1.58	1.25
9	=	2963	09	43	•	•		4.	٣.
9	=	2995	65	7	ъ.	•	•	•	• 2
9	:	2987	99	4	•	•	•	9.	~
9	:	2981	99	7	•	∞.	•	S	• 2
9	:	3031	1	:	•	!	•	•	~
9	:	3066	. !	:	•	•	•		. 2
S	=	3076	2	S	•	•	•	s.	. 2
1	=	3043	2726	.325	8.5	2.5	•	9.	. 2
1	=	3101	9	4	•	•	•	9.	. 2
7	:	3075	7	S	•	•	٠.	9.	٣.
7	=	3044	7	S	•	2.7	•	5	٣.
7	:	3065	;	;	•	;	•	s	.2
7	:	2992		;	12.9	5.1	11.8	s	٣.
AVE	0	3039	2700	.351	8.7	3.1	11.9	1.58	1.27

	v	410014	• • • • • • • • • •	
	δ	9 9 9 1 9		•
	Twist (in.)	1	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1
	!lax. 5 (228') (deg.)			•
TEST RESULTS in. Twist)	lst Max. 6 (deg.)			•
EGLIN TEST 94 (1:12 in. (Continued)	C _D (18)	333	25.00 20.00	7
TABLE 1A SN 023294	V (228') (ft/sec)	0 × 0 0 0	2916 2900 2900 2940 2937 2911 2966 2905	7
	γ _ο (ft/sec)	18 18 19 20 20 20	32209 3222 3222 3222 3223 3224 3195	4
	Temp.	70	::::::::	2
	Rd. No.		120 122 123 123 124 126 129 130	ม V

			TABLE 1A EGLIN TEST SN 023294 (1:12 in. (Continued)	E 1A EGLIN TEST 023294 (1:12 in. (Continued)	TEST RESULTS ! in. Twist) .ed)				
Rd.	Temp. (deg.)	V _o (ft/sec)	V (228') (ft/sec)	C _D (8,1)	lst Max. 6 (deg.)	Max. 6 (228') (deg.)	Twist (in.)	C _M	w
r &	125	3280 3207	10	345	3.8	1.6	11.4	1.74	
∞ ∞	: :	3215	. O O	365	• •	3.1	11.8	1.60	1.63
283	::	3205	2913	379	9.0	• • •	: : :	1.60	• • •
00	:	3227	C.	;	•	1	!	I ,	:
∞	= =	3180	00	1 1	7.4	1.6	1 1	1 1	1 1
000	:	3232	, O	1	10.4		;	;	;
Avg	125	3219	2922	.357	7.0	2.0	11.7	1.66	1.60

,			TABLE 1B SR 02319	66	EGLIN TEST RESULTS (1:12 in. Twist)				
Rd.	Temp.	V _o (ft/scc)	v (228') (ft/sec)	с _р	lst Max. 6 (deg.)	Max. 6 (228') (deg.)	Twist (in.)	C _M	v
77	- 65	N 0	2704 2573	.328		3,3	11.6	1.58	1.
4	: : :	N 2 1		.327	7.7. 7.8	• •	1 .	1 20 0	1.10
1 10 10	: :	3 47 1/3	69 69	3 2			• • •	. 6 2	00
230 231 232	:::	2828 2956	2480 2618 2674	.337	4 4 L 8 K 4	1.8	11.84	1.61	1.09
10 to 10		- 00 -	7470	. O. R.				15	0.4
50 50	Z	M M	69 63 71	O 00 60	1.5 11.5 7.6	, n c	12.1	1.52	1.10
Avg	- 65	3031	2667	.331	6.	2.1	11.9	1.57	1.10

			TABLE 16 5E 023199	E 16 EGLIX TEST 023199 (1.12 in.	TEST RESULTS ? in. Twist)	·			
				(Continued)	nod)				
Rd. No.	Temp. (deg.)	V _o (ft/sec)	V (228') (ft/sec)	C _D (8.1)	lst Max. 6 (deg.))!ax. 5 (228') (deg.)	Twist (in.)	CM	v
10 10	- 30	3038	69	+ -	} •	•	2.0	2.	7.7
o w	: :	3060	7.1	- 17		• •	; ;	. s	. 7
139	: :	3146	2812	315	4 4	1.1	11.9	1.55	1.20
4	:	3075	69	-	16.0	• •		~	. 2
7 7	: :	3094	74	M M	8.0	1.8	٠.	S, n	• 5
14	:	3052	72	2	3.1	• •		. 9	1.13
4	: ':	3013	83	32	8	1.7	<u>.</u> ;	9.	,
4 4		2965 3116	6.1 76	∞ 4	13.9	• 1	Ni	1.56	- :
4	:	3080	72	S	11.3	3.6	~	5	-
4	:	3104	76	4	7.9	2.4	•	•	1.15
S	=	3191	∞	3	10.4	, ; ;		1.56	Ç
Avg	- 30	3078	2732	.343	8.2	2.5	12.0	1.58	1.18

			TABLE 18 EGLIN TEST SN 023199 (1:12 in.	E 18 EGLIE T 023199 (1:12	TEST RESULTS 2 in. Twist)				
				(Continued)	lued)				
Rd. No.	Temp.	ν _ο (ft/sec)	V (228') (ft/sec)	(8°)	lst 'lax. 6 (deg.)	Max. 6 (228') (deg.)	Twist (in.)	c, y	v.
291	0:	3201	2875	.317	3.1	1.3	12.2 11.9		1.28
293	=	12	2803	34	ري. د	•	•	s.	ω, (
294	= =	17	2834	ຊ ວ		• •	• •	v .v	7 F
290	=	7 7	2802		9	•	•	• •	• 2
297	=	11	2799	.312	•	•	C1 (4	K.
298		13	2818		•	4.6	•	٠, د	7.0
300	: :	90 7	76	. 0		• •	:	· ∞	•
301	=	17	2848	.329	•	i i	•	.5	٠,
302	-	16	1	9	•	5.6	•	9.	٠, ۱
303	*	17	2853	\sim	•		•	. 7	7.
304	=	17	84	2	٠	1.4	•	9	.1
305	:	3086	72	_	•	S.0	• .	s.	٣.
Avg	c	3144	2815	.336	6.5	2.1	11.9	1.58	1.26

			SH 02319	023199 (1:12 in.	in. Twist)	,			
	:	· .		(Continued)	(pa)		,		
Rd.	Temp. (deg.)	γ _ο (ft/sec)	V (228°) (ft/sec)	(8°)	lst Max. 6 (deg.)	'fax. 6 (228') (def.)	Twist (in.)	ي و	v. ·
-	7.0	3228	2925	.351			-		1.51
7	=	5216	2918	.345	•	•	•	•	1.45
<u>ب</u>	= :	3277	2967	.350	•	•	<u>.</u> ,	•	1.48
4 r.	: :	5278	2934	37.9	12.5	 	C1 -	42.1	1.49
. s	=	3260	2962	329		• •		• •	1.55
7	:	3222	1	1	•	•	_	•	7
∞	:	3272	2978	.326	•	•	•	•	7
s.	=	3261	:	:	٠	1	L1	•	7
10	= ;	3238	2942	.329	•	1.7		•	1.45
	: :	3252	2959	. 324	٠ ٠ ٠	1.3	•	•	. 50
7 .	: :	3230	5676	0.46.		- 1	∹.	•	1.31
1.5	:	2533	6767	onc.	6.7	,		•	00.1
14	2 ,	3228	1	1	7.6	2.3	12.0	٠	1.46
15	:	5263	2976	.316	3.6.	1.0	•	•	7
						,			
γνε	. 70	3253	2953	.541	6.3	٠. د.	11.8	1.50	1.48

Temp. Vo (ft/sec) (f) 1st Max, 6 (228°) (deg.) (deg				TAGLE 16 SK 02519	E 16 LGLES TLS 025199 (1:12 in (Continued)	TAGLE 16 LGLEN TEST RESULTS SK 025199 (1:12 in, Twist) (Continued)				
69 125 3273 7.2 2.5 70 " 5299 7.2 2.5 71 " 5299 3097 .364 6.4 2.8 72 " 5287 2997 .359 6.8 2.4 73 " 5265 2989 .337 4.4 1.2 74 " 3283 2973 0.5 75 " 3283 2941 0.5 76 " 5299 7.9 77 " 5275 2969 7.3 78 " 5278 2876 1.0 78 " 2965 78 " 2555 6.5 2.1	Rd.	Temp.	V ₀ (ft/sec)	(ft/sec)	C _D		'lax, f (228') (deg.)	Twist (in.)	و ا	v
72 " 3287 2997 .559 6.8 2.4 73 " 5205 2989 .337 4.4 1.2 74 " 3283 2973 11.4 75 " 3259 779 77 " 5275 2969 7.3 78 " 5278 2876 1.0 79 " 2878 2876 1.0	1 2 ~ ~		3273 3299 3293		1 1 2	6.7 7.2 6.4	1.7 2.5		1.65 1.62 1.53	1.66
75 " 3259 2941 6.5 7.9 7.9 7.8 -	, r r r	:::	3287 3287 3265 3283	2997	2000	; 9 4 - 4 4	10 M 2	, ;	1.66	1.65
78 " 3278 2876 1.0 Vg 125 3281 2965 .355 6.5 2.1	·		3259 3259 3299 3275	2941 2969	1 1 1 1		1 1 1	: ; ;	1 1 1	1 1 1
	·	125	3278	2876	100	1.0		11.6	1.61	1.68

			TAUL 1C SN 78907	LGLI.:	TAELL 1C EGLIA TEST RESULTS SN 789076 (1:14 in. Twist)	; * ;			
nd. No.	Temp. (deg.)	V 0 (ft/scc)	V (228') (ft/sec)	(8°)	lst Max. 8 (deg.)	чах. б (228°) (dep.)	Twist (in.)	Cy	* S
23.9 23.9 24.0 24.4 24.4 24.4 24.4 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0		2893 2928 2747 3096 2948 2019 3023 2768 2993 2993 2998 2998 2998	2373 2400 2168 2568 2429 2300 2390 2350	. 714 . 700 . 896 . 641 	31.4 35.7 35.7 36.7 36.7 36.7 39.7 33.4 35.0	7.6 8.0 8.0 9.7 9.1 10.6 10.8 8.6			:::::::::::::::::::::::::::::::::::::::
*Eff	Effective sta	stability factor	1						

	S.	1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1	·
	ະນິ	1 1 1 1 1			
	Twist (in.)	11111		1111	
	lax. 5 (228) (deg.)	7.7 9.6 10.7 9.2	12.0	2.0 α γ α α α α α α α α α α α α α α α α α	
Ther Results in. Twist)	lst Max. 6 (deg.)	22 29 32 30 30 44 4	25.0 33.5 31.0 4.0 11.0	27.1 27.8 26.9 28.8	
L 1C EGLIN TEST 789076 (1:14 in. (Continued)	C _D	.514 .632 .658 .658	. 653 . 761 . 743 . 570	.701	
TABLE 10 St. 78907	V (228') (ft/sec)	2453 2564 2378 2550 2550	22222 22222 22446 22446 2252 2252 2252	2582 2522 2567 2562 2522	
	V _o (ft/sec)	2882 3062 2846 3048 3094	2002 2002 2004 2009 2011 2011	30.27 30.43 30.29 30.07	
	Temp. (deg.)	0:::::	:::::::	30	
	кd. хо.	ファファフ	172 173 179 179 180	ထားသတ္သော >	

			TALLE 1C	EGLIN	ALLE 1C EGLIN TLST PLSULTS	·			
				(Continued)	led)				
Rd.	Temp.	ν ₀ (ft/sec)	V (228') (ft/sec)	C _p (81)	lst Tax. 6 (deg.)	1ax. 5 (2281) (deg.)	Twist (in.)	ن ک	* 5
27c	o	3061	2688	.411	13.8	6.1		1.49	1.05
277	: :	3003	2656	414	26.0	د د د د	13,53	1:49	1.08
279	:	3085			13.5		•		
280	= :	3036	2607	.510	25.0	S. S	F	1	1
281	::	5028	2611	523	22.2	α α ι, ι	•	1.50	1.08
283	:	3102	2734	400	15.0		13.5	1.45	1.07
284	:	2944	2554	.505	21.4	6.3	•	1.46	1.07
285	=	3042	2610	.557	20.4	0.0	•	1.53	1.09
286	:	3048	2693	.423	14.6	8.4	•	1.47	1.08
287	:	2982	2545	5000	20.8	٠. ج	•	1.46	1.07
288	:	2994	2623	.435	17.6	.5.7	•	1.48	1.06
289	:	3011	2606	.504	22.52	•	•	1.43	1.06
290	=	3156	2764	.451	•	7.0	13.0	1.55	1.08
3,5		8702	2642	0 3 7	. C			7.6	-
** *	>		1		•	•	•	¢ .	٠. ١
*Lff.	Lffective stab	ability factor	tor						

	,		TABLE 10	E 1C EGLIN T	TEST RESULTS				i
	•				• · · · · · · · · · · · · · · · · · · ·				
		:		(Continued)	(pa)		•		
Rd.	Temp	۸	(2	C	1st Max. 6	Max. 6 (2001)*	Twist	ئ ق	ĸ
	(deg.)	(ft/sec)	Se	(81)	deg.)	(deg.)	(in		
8291	7.0	29	3	4	•	٠	•	1.62	
8292	:	3185	2902	.340	6.4	2.4	13.4	1.62	1.14
8293	:	24	98	_	•	•	•	•	~
8294	•	22	9.5	7	•	•	•	1.70	1,11
8295	:	22	93	S	•	٠	•	9	
8296	;	21	91	Ó	•	.•	•	. 5	1,17
8297	:	24	97	7	•	•	•	•	1.09
8298	:	15	91	2	S.	•	1	•	
8299	=	25	93	3	7	•	•	1.48	
8300	=	18	၁	c.	3.	•	13.5	1.60	
8301	:	24	90	9	•	•	. •	•	ÇÎ.
8302	=	21	32	4	•	•	13.4	3	1.18
8303	:	13	5.	L)	œ	3.4	•	.5	1.14
8304	:	21	80	7	•	•	13,3	1.56	1.20
8305	=	23	94	L/3	•	نة. غ. ف	13.4	1.50	1.17
									•
AVR	70	3223	2929	.362	۳° ۵	3.7	13.4	1.59	1.15
								٠	
*Acro	*Acrodynamics	Range test						÷	
					***************************************		***************************************		

3249 3241
<u> </u>

	v.	-	;	:	1	-	:	-	1	-	:	:	-	;	-	;		-1	1
	<u>-</u> "	;	:	;	1	;	:	; _	;	;	;	;	-	:	•	:		. (;
	Twist (in.)	;	;	!	!	1	;	1	!	;	;	;	;	;	;	;			:
	'fax. 6 (228') (deg.)	7.2	:	6. 6.	7.3	8.0	9.6	9.3	8.9	8.5	8.8	10.0	11.2	10.8		10.7	•	6 6	•
ABLE 1D LGLIN TIST RESULTS SN 791707 (1:14 in Twist) (Continued)	lst :lax. 6 (deg.)	21.6	31.1	20.8	;	25.3	31.6	27.8	29.5	29.8	23.0	28.4	55.5	55.2	28.5	53,4	-	0.000	•
	c _p	.522	1	029.	.508	1	.757	050.	.675	899.	050.	070.	. 885	.742	.682	808.	'	009	
TABLE 10 SR 791707	V (228') (ft/scc)	2571	;	2501	2601	1 1	2471	2534	2461	2499	2402	2509	2278	2495	2435	2445		2482	1 2 4
	Vo (ft/sec)	3009	3051	3001	3051	3090	2997	3023	2946	2985	2938	3010	2340	3028	2947	3010		2094	r 3
	Temp.	- 30	=	:	:	:	=	=	=	=	:	=	:	=	÷	:		200	
	% & c.	1.86	187	188	185	190	191	192	193	194	195	196	197	361	199	200		۷۸	: :

			TABLE 10 LGLIS TEST SS 791707 (1:14 in. (Continued)	LGLI: TLST 07 (1:14 in. (Continued)	TLST RESULTS t in. Twist) aed)			;	
nd.	Temp.	ν (ft/sec)	v (228') (ft/scc)	c _p	1st Max. 6 (deg.)	31ax. 6 (228') (deg.)	Twist (in.)	, s	* 0
100 100 100 110 1111 1112 1113 1110 1110	o:::::::::: o	3074 3006 2994 3054 3054 3070 3089 3133 3084 3084 3084	2564 2457 2621 2621 2731 2607 2794 2644 2690 2600 2622	. 533	26.5 18.8 17.8 24.0 24.0 23.5 20.1 20.1 17.9 27.7 21.7	80 0 8 1 9 8 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C	13.8 13.8 13.8 13.6 13.6 13.6 13.7	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	1.05 1.05 1.06 1.06 1.06 1.06 1.06 1.06
J:1.	liffective stab	ability factor	tor						

									Ī
		. •	TALLE 19	1.611:	TEST RESULTS				
			SN 79170	791707 (1:14 in.	in. Twist)				
			C	(Continued)	led)		•		
nd. No.	Tenp. (deg.)	V _o (ft/scc)	V (228') (ft/sec)	C _D	lst Max. 6 (deg.)	Nax. 6 (228') (deg.)	Twist (in.)	ر. _ا ر	w .
46	7.0	1 (92	~	4.4	2.1	w.	•	7.
47	=	_	85	=	13.9	•		•	Τ.
48	=	5213	2898	.379		4.4	13.9	1.57	1.09
4.9	=	_	88	:3	7.9	3.8	4.	•	0.
20	=	4	9	4		•	4	1.57	0.
51	=	_	88	マ	•	•	5	•	۳.
25	=	_	84	Ç.	2.	•	₽,	1.58	٦.
53	=	_	84	S	•	•	5	1.66	Ξ.
54	=		8.3	S	÷.	•	₽.	1.60	٦.
25	:	5193	85	\blacksquare	4.	•	₩.	1.49	7
20	=	_	83	4	•	•	8	1.68	c.
5.7	:	~	89	L)		•	۲,	1.63	٦.
28	=	_	84	1	•	•	5	1.63	٦.
5.9	=	_	87	3		•	.,	1.64	1.10
09	:	()	C)	.338	7.1	•	۵.	1.60	7
									,
VVg	. 70	3185	2877	.302	9.6	4.0	13.6	1.60	1.11
			٠						

			TABLE 1D EGLIN TEST SN 791707 (1:14 in. (Continued)		EGLIN TEST RESULTS (1:14 in. Twist) ontinued)				
Rd.	Temp.	V _o (ft/sec)	V (228') (ft/sec)	C _D	lst Max. 6 (deg.)	"ax. 6 (228') (der.)	Twist (in.)	C _M	v
289 290 291 292 293 294 295 296 297	125	5259 3252 3178 3275 3236 3242 3215 3215 3226	2976 2966 2930 2938 2953 2951 2955 2925 2925	. 329 . 319 . 325 . 340	11.3 11.3 11.3 11.3 5.6 5.6	2.1	13.0	1.79	1.21
γνg	125	3252	2954	.350	5.8	2.4	13.4	1.69	1.20

TABLE 2A RESULTS OF THE LIMIT CYCLE TEST Rifle SN 023199 (1:12 in. Twist)

,		leters			leters
Rd.	L.C.	V	Rd.	L.C.	V
No.	(deg.)	(ft/sec)	No.	(deg.)	(ft/sec)
40	2.1	2559	. 86	2.8	2162
.41	.5	2557	87	.4	2193
42	1.6	2546	88	.6	2148
43	. 2	2521	89	1.3	2163
44	.6	2525	90	. 2	2216
47	. 2	2495	92	1.3	2178
48	. 3	2571	93	. 3	2175
49	. 3	2596	94	2.2	2206
50	. 3	2512	95	1.5	2198
51	.4	2556	96	2.0	2166
8316	. 5	2515	8353	2.4	1986
8317	. 2	2500	8354	.4	2145
8319	.2	2510	8355	. 2	2182
8320	.7	2520	8356	2.4	2212
8321	. 3	2560	8357	.4	2163
8323	.4	2530	8358	. 3	2166
8324	1.3	2565	8359	1.9	2138
8326	. 4	2531	8360	2.0	2153
8327	2.2	2455	8361	2.2	2094
8483	. 3	2543	8362	. 3	2176
8484	. 2	2569	8386	2.3	2192
8485	3	2621	8387	2.3	2193
8486	.1	2540	8388	1.4	
8487	1.3	2562	8389	2.4	2148
8488	. 8	2547	8390	2.3	2176
8489	2.1	2506	8391	. 2	2203
8490	1.8	2517	8392	.3 2.2	2175
8491	. 2	2534	8393	2.2	2119
8492	.2	2513	8494	2.0	2147
8493	. 8	2573	8395	.5	2177
Avg.	.69	2538	Avg.	1.37	2164

TABLE 2A RESULTS OF THE LIMIT CYCLE TEST Rifle SN 023199 (1:12 in. Twist)

		leters			leters
Rd.	L.C.	· · V	Rd.	L.C.	V
No.	(deg.)	(ft/sec)	No.	(deg.)	(ft/sec)
2	2.0	1929	7.2	2.5	1551
3	. 2	1938	74	1.4	
4	2.0	1927	- 75	2.9	1518
5	. 3	1943	. 76	2.4	1560
6	2.2	1900	77	3.1	1452
8	2.7	1918	78	2.3	1507
. 9	2.3	1956	81	2.5	1549
10	. 3		82	3.1	1463
11	2.0	1909	83	. 8	1574
12	2.6	1905	84	2.7	1508
8420	2.3	1872	85	.6	1578
8421	.3	1884	8397	2.0	1517
8422	1.6	1887	8398	2.7	1617
8423	2.2	1865	8399	2.6	1599
8424	2.1	1909	8400	2.9	1525
8425 .	2.3	1877	8401	2.5	1531
8426	. 3	1917	8402	2.5	1534
8427	1.6	1891	8403	1.9	1570
8428	2.2	1879	8404	2.2	1472
8429	2.2	1871	8405	2.2	1444
8430	2.4	1896	8407	2.5	1455
8431	2.4	1912	8408	2.8	1595
8432	. 2	1925	8409	2.5	1527
8433	2.2	1858	8411	. 2	1578
8434	2.4	1900	8412	2.5	1587
8435	1.2	1867	8413	2.9	1543
8436	.2	1901	8414	2.4	1529
8437	2.1	1903	8415	2.9	1518
8438	.2	1923	8416	2.4	1515
8439	2.4	1909	8417	1.8	1589
			8418	2.3	1575
•			8419	2.4	1502
Avg.	1.65	1902	Avg.	2.29	1535

TABLE 2B RESULTS OF THE LIMIT CYCLE TEST Rifle SN 789076 (1:14 in. Twist)

	175 N	leters		253 N	ieters
Rd.	L.C.	V	Rd.	L.C.	V
No.	(deg.)	(ft/sec)	No.	(deg.)	(ft/sec)
8330	1.8	2483	103	3.6	2128
8331	2.1	2520	105	2.9	1997
8332	2.4	2485	106	2.2	2032
8333	2.2	2447	107	2.7	2141
8334	2.4	2341	108	2.5	2103
8335	2.4	2466	109	2.1	2133
8336	3.4	2408	110	1.8	2182
8338	2.3	2360	111	2.2	2128
8339	2.4	2474	112	2.2	2185
8340	. 2	2468	113	2.5	2116
8341	3.1	2384	114	3.1	2017
8342	2.9	2415	8363	2.6	2141
8343	2.1	2465	8364	2.6	2140
8344	. 4	2490	8365	1.8	2138
8345	1.4	2496	8366	1.5	2150
8346	2.2	2407	8367	2.6	2067
8347	.6	2490	8368	2.4	2051
8348	2.4	2455	8370	2.4	2026
8349	2.2	2487	8371	2.6	1994
8350	2.2	2417	8372	2.2	2037
8351	. 4	2473	8373	2.1	2051
8352	2.1	2501	8375	2.1	2125
8473	2.4	2455	8376	2.9	2126
8474	1.9	2520	8377	2.4	2086
8475	1.5	2504	8378	1.2	2124
8476	2.3	2495	8379	2.5	2186
8477	.6	2501	8380	2.6	2195
8478	. 8	2470	8382	2.3	2205
8479	2.4	2496	8383	1.7	2115
8480	3.0	2496	8384	2.6	2055
8481	2.1	2485	8385	2.0	2194
8482	2.1	2444			
Avg.	1.96	2462	Avg.	2.35	2109

TABLE 2B RESULTS OF THE LIMIT CYCLE TEST Rifle SN 789076 (1:14 in. Twist)

	339 N	leters	_1 1		leters
Rd.	L.C.	V	Rd.	L.C.	V
No.	(deg.)	(ft/sec)	No.	(deg.)	(ft/sec)
33	2.4	1839	8466	3.3	1449
35	2.5	1785	8467	1.5	1464
37	2.8	1858	8468	3.1	1392
38	3.3	1900	8469	2.8	1418
39	2.1	1846	8470	3.2	1478
8440	2.7	1828	8471	2.6	1435
8441	2.3	1902	8472	3.1	1457
8442	2.3	1805	8494	3.2	1425
8443	2.4	1906	8495	. 2	1540
8444	2.3	1764	8496	3.0	1488
8445	2.4	1819	8497	.4	1521
8446	2.4	1815	8498	2.7	. 1490
8447	2.2	1844	8499	3.0	1465
8448	2.9	1748	8500	3.0	1525
8449	2.9	1792	8501	2.8	1407
8450	1.6	1839	8503	3.0	1459
8451	2.5	1831	8504	2.7	1520
8452	2.6	1758	8505	3.4	1499
8453	2.6	1821	8506	2.8	1494
8454	1.9	1858	8507	2.8	1465
8455	2.4	1806	8508	3.5	1463
8456	2.2	1750	8509	3.3	1521
8457	3.0	1788	8510	2.9	1507
8458	2.4	1812	8511	3.5	1454
8459	2.4	1797	8512	2.6	.1480
8460	2.6	1792	8513	3.4	1494
8461	2.8	1813	8514	2.0	1483
8463	2.6	1813	8515	2.4	1569
8464	2.5	1748	8516		1509
8465		1834	8517	3.3	1491
	1		8518	2.1	1532
			8519	3.3	1526
Avg.	2.48	1817	Avg.	2,74	1482

TABLE 2C RESULTS OF THE LIMIT CYCLE TEST

Velocities Corrected to 70°F

Rifle SN 023199 (1:12 in. Twist)

Rd. No.	175 Meters V (ft/sec)	Rd. No.	253 Meters V (ft/sec)
40	2559	86	2162
41	2557	87	2193
42	2546	88	2148
• 43	2521	89	2148
44	2525	90	2216
47	2495	92	2178
48	2571	93	2175
49	2596	94	2206
50	2512	95	2198
51	2556	96	2166
8316	2515	8353	2021
8317	2500	8354	2182
8319	2510	8355	2220
8320	2520	8356	2251
8321	2560	8357	2201
8323	2530	8358	2204
8324	2565	8359	2175
8326	2531	8360	2191
8327	2455	8361	2131
8483	2543	8362	2214
8484	2569	8386	2230
8485	2621	8387	2231
8486	2540	8389	2186
8487	2562	8390	2214
8488	2547	8391	2241
8489	2506	8392	2213
8490	2517	8393	2156
8491	2534	8394	2184
8492	2513	8395	2215
8493	2573		
Avg.	2538	Avg.	2188

TABLE 2C RESULTS OF THE LIMIT CYCLE TEST Velocities Corrected to 70°F Rifle SN 023199 (1:12 in. Twist)

Rd. No.	339 Meters V (ft/sec)	Rd. No.	450 Meters V (ft/sec)
2	1929	72	1551
3	1938	75	1518
4	1927	76	1560
2 3 4 5 6	1943	77	1452
6	1900	78	1507
8	1918	81	1549
9	1956	82	1463
11	1909	83	1574
12	1905	84	1508
8420	1900	85	1578
8421	1913	8397	1540
8422	1916	8398	1642
8423	1894	8399	1624
8424	1938	8400	1548
8425	1906	8401	1554
8426	1946	8402	1558
8427	1920	8403	1594
8428	1908	8404	1495
8429	1900	8405	1466
8430	1925	8407	1477
8431	1941	8408	1620
8432	1955	8409	1550
8433	1887	8411	1602
8434	1929	8412	1611
8435	1896	8413	1567
8436	1923	8414	1552
8437	1930	8415	1541
8438	1949	8416	1538
8439	1935	8417	1613
1 3 3 3]	8418	1599
J		8419	1525
Avg.	1922	Avg.	1551

TABLE 2D RESULTS OF THE LIMIT CYCLE TEST

Velocities Corrected to 70°F

Rifle SN 789076 (1:14 in. Twist)

Rd.	175 Meters V	Rd.	253 Meters V
No.	(ft/sec)	No.	(ft/sec)
8330	2483	103	2128
8331	2520	105	1997
8332	2485	106	2032
8333	2447	107	2141
8334	2341	108	2103
8335	2466	109	2133
8336	2408	110	2182
8338	2360	111	2128
8339	2474	112	2185
8340	2468	113	2116
8341	2384	114	2017
8342	2415	8363	2185
8343	2465	8364	2184
8344	2490	8365	2183
8345	2496	8366	2195
8346	2407	8367	2110
8347	2490	8368	2094
8348	2455	8370	2068
8349	2487	8371	2035
8350	2417	8372	2080
8351	2473	8373	2094
8352	2501	8375	2170
8473	2455	8376	2170
8474	2520	8377	2130
8475	2504	8378	2169
8476	2495	8379	2232
8477	2501	8380	2241
8478	2470	8382	2251
8479	2496	8383	2159
8480	2496	8384	2098
8481	2485	8385	2240
8482	2444		
Avg.	2462	Avg.	2137

TABLE 2D RESULTS OF THE LIMIT CYCLE TEST Velocities Corrected to 70°F Rifle SN 789076 (1:14 in. Twist)

	339 Meters V	p.1	450 Neters
ld.	v (ft/sec)	Rd. No.	(ft/sec)
No.	(ft/sec)	NO.	(10/500)
33	1839	8466	1474
35	1785	8467	1490
37	1858	8468	. 1416
38	1900	8469	1443
39	1846	8470	1503
3440	1840	8471	1460
3441	1914	8472	1482
3442	1817	8494	1450
3443	1946	8495	1567
3444	1801	8496	1514
3445	1857	8497	1548
3446	1853	8498	1516
3447	1883	8499	1491
3448	1784	8500	. 1550
3449	1830	8501	1432
6450	1878	8503	1484
8451	1869	8504	1546
8452	1795	8505	1525
8453	1821	8506	1520
8454	1897	8507	1490
8455	1844	8508	1489
8456	1787	8509	1547
8457	1826	8510	1533
8458	1850	8511	1479
8459	1835	8512	1506
8460	1830	8513	1520
8461	1851	8514	1509
8463	1851	8515	. 1596
8464	1784	8516	1535
8465	1872	8517	1517
•	•	8518	1559
	'	8519	1553
Avg.	1845	Avg.	1508

Serial No.	σ (10 rds) mils	d (15 rds) mils	σ (25 rds) mils
	12	25°F	·
023199	.859	1.223	1.154
023294	.981	.779	.882
78907ს	.947	1.345	1.466
791707	, 1.114	1.254	1.205
790787			3,067
Hall			3.638
	7	70°F	,
023199	.847	1.030	1.071
023294	1.016	.768	.954
789076	1.853	1.652	1.891
791707	1.016	1.307	1.203
790787	1.942	1.581	1.752
	. ()°F	
023199	1.095	.860	1.117
023294	1.110	.980	1.048
789076	3.021	2.599	2.806
791707	.867	1.598	1.334
	-:	30° F	
023199	1.077	1.207	1.233
023294	1.187	1.025	1.127
789076	2.436	3.832	3.388
791707	3.030	3.403	3.396
	-(65 [°] F	•
023199	1.746	1.074	1.391
023294	2,099	1.588	1.810
789076	6.833	6.771	6.672
791707	5.497	6.837	6.567
llall			2.391

TABLE 3 DISPERSION RESULTS (Continued) C.I.* C.I.* C.I.* (10 rds) (15 rds) (25 rds) Serial No. in. in. in. 125°F .15 1.52/-.08 023199 2.04/-1.18/-.11 .70 .89 .81 - .11/ .08/ 023294 .33/ 2.10/- 2.89 -1.68/- 4.58 1.84/- 3.90 789076 .24/ 1.00 .74 791707 .56/ .43/ .57 790787 1.70/- 1.90 .08/llall .15 70° F -9.87/ 9.92 - 9.99/ 9.32 -10.18/ 8.96 023199 7.95 - 5.51/ 8.38 023294 -5.69/ 8.67 - 5.25/ 789076 .22/- 2.17 .05/-.52 .06/-1.18- 9.15/ 6.22 791707 **- 9.13/ 6.52** -9.17/ 6.02 -6.62/ 9.45 - 6.77/ 9.13 790787 - 7.00/ 8.64 0°F -10.31/ 11.55 -9.54/ 10.62 - 9.85/ 10.99 023199 - 3.84/ 8.03 - 8.49/ 10.47 -3.80/ 023294 8.58 - 3.82/ 8.36 789076 -7.18/ 9.63 - 7.67/ 9.45 -8.81/ 791707 - 8.67/ 9.76 9.85 - 8.75/ 9.81 -30°F - 7.14/ 10.84 -7.14/ 9.87 - 7.14/ 10.26 023199 7.98 - 8.98/ 7.74 023294 - 8.74/ 7.38 -9.14/ - 8.41/ 10.38 -9.20/ 8.93 - 8.88/ 9.51 789076 -9.46/ 9.47 - 8.54/ 9.54 791707 - 7.16/ 9.64 -65°F - 9.31/ 8.98 023199 - 8.92/ 9.12 -9.57/ 8.88 7.67 7.61 -10.03/023294 -10.49/ 7.77 -9.72/ -1.38/ 3.70 3.40 - 1.11/ 789076 .70/ 4.16 .14 2,20/ 791707 .16/- .80 3.68/ .74 1.87/ 2.58 Hall *Centers of impact at the same range

TABLE 3 DISPERSION RESULTS (Continued) σ, σ 3 Weighted Average Serial mils mils mils mils No. 125°F .31 .44 023199 .37 .35 .32 023294 .28 789076 .34 .52 .48 .47 .43 791707 .40 .44 790787 1.09 70°F .30 .37 023199 .38 .36 .36 .27 .34 023294 .51 .53 .46 789076 .47 .36 .46 .42 791707 .69 790787 .56 .62 0°F .40 .39 .30 023199 .38 .39 .35 .37 023294 .99 1.07 .92 789076 .76 .57 . 47 791707 .31 -30°F .43 .44) 023199 .38 .41 .42 .36 .40 023294 789076 .86 1.36 1.20 1.19 791707 1.20 1.20 1.07 -65°F .38 .62 .49 023199 .56 .74 .56 . 64 023294 2.42 2.39 2.36 789076 2.32 1.94 2.42 2.32 791707 .85 Hall

		TABLE 4	SUMMARY	0 F	YNAMIC P	AERODYNAMIC PROPERTIES			
Rd.	N E	×	√8 ^Z (deg.)	a _D	S N) + b _N	C _M å	c _M	C _N
-816	: ::	1 •	5.4	10 2	58	4 9		90	. 8
-810 -819	<u> </u>	«	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	361		-2.04		.03	2.98
-820	•			- 2	.65	8.		.15	. 8
1-8208	• •• ••	2.780			64	. დ		.15	8 m
			,						
Rd.	γ (103)	λ ₂ (10 ³)	s (,	Ж	*		S _L		
• 0 2	(1/ft.)	(1/ft.)	(rad	.) (rad	d.) (in	n.)		
-816	•	∞.	1.1	· -	•	081	042		
-816		+2.72					042		
-819	•	2.3			• :		.031		
-820	~ 8	• •	1 T				020	٠	
1-8222	+8.85	+3.22	1.50	0.015		23 14	020		
		1					4		
NOTE: A1	l values	are determined	at	a point	S reet in	rronc	2 2	21770	

No.	Wt. (grams)	L	d (in.)	cg (inches from base)	^I x (gm-in ²)	Iy (gm-in ²)
	(grams)	(111.)			(gm-111)	(8,111
				ired		
1	3.549	.745	.224	.303	.0184	.1145
2	3.529	.742	.224	.300	.0182	.1140
3	3.540	.746	.224	.303	.0182	.1148
4	3.538	.748	.224	.301	.0181	.1154
5	3.547	.735	.224	.299	.0182	.1147
6	3.564	.727	.224	.296	.0185	.1151
7	3.532	.740	.224	.300	.0183	.1139
8	3.559	.746	.224	.304	.0185	.1159
9	3.564	.749	.224	.303	.0185	.1152
10	3.528	.741	.224	.302	.0181	.1145
Avg	3.546	. 741	.224	.301	.0183	.1148
•			Reco	vered	•	
1A*	3.532	.745	.224	.303	.0182	.1141
2 A	3.514	.742	.223	.301	.0182	.1130
3 A	Not rec		-			-
4 A	3.522	.749	.223	.302	.0180	.1152
5 A	3.530	.735	.223	.300	.0181	.1144
6 A	3.564	.727	.224	.296	.0185	.1151
7 A	3.517	.740	.223	.303	.0181	.1133
8 A	3.544	.747	.223	.305	.0181	.1160
9 A	3.546	.750	.223	.303	.0182	.1152
10A	3.512	.741	.224	.303	.0179	.1139
Avg	3.531	.742	.223	.302	.0181	.1145
			Reco	vered		•
11	3.534	.750	.223	.306	.0182	.1161
12	3.531	.743	.226	.302	.0183	.1174
13	3.520	.735	.224	.300	.0182	.1128
14	3.545	.751	.223	.306	.0180	.1182
15	3.534	.734	.223	.299	.0182	.1145
16	3.521	.741	.223	.303	.0182	.1139
17	3.561		.223	.298	.0184	.1162
18	3.567		.223	.309	.0183	.1186
19	3.520	.741	.223		.0182	.1132
20	3.524	.732		.303	.0183	.1133
Avg		.743		.303	.0182	.1154
Avg** * The	3.534	.742	.223	.303	.0182	.1150

^{**}Average for 19 recovered rounds.

Serial No.	V _o (ft/sec)	σ(V _o) (ft/sec)	ômax (deg.)	σ(δ _{max}) (deg.)	S	a(s)	σ(25 rds) (mils)	N (in.)
,				-65°F				
023199	03	73	•	3.1	۳.	.04	.49	11.9
023294	2983	16	10.7	4.1	1.09	.03	. 64	11.9
Total	00	85	∞	•	7.	$\overline{}$	ŝ	•
789076	91	92	S	•	:	!	٦.	
791707	94	84	•	2.2		1	M	:
Total	93	88	• 9	٠	:	i i	, M	:
•				-30°F				
23	07	54	•	•	۲.	0.04	.44	•
023294	01	62		•	1.18	• 04		12.0
Total	04	99	∞	•	7	.04		7
83	00	89	&	•	1	;		:
791707	2994	29	29.6	3.4	;		1.20	;
Total	00	63	о С	•	:			•
				0°F				;
2319	3146	41	•	4.0	.2	.05	. 40	11.9
023294	3038	44	8.7		1.27	.05	.37	11.9
ta	3092	69		•	.2	.05	.38*	11.9
07	3048	53	•	4.9	0.	.01	66*	٠
9170	3036	58	•	•	٥.	.02		•
ta	3041	55	7	•	0	.02	. 16*	13.5

					,			
			TABLE 6	AVERAGE RESULTS	SULTS	i		
			0)	(Continued)		•		
Serial No.	V _o (ft/sec)	σ(V _o) (ft/sec)	6 max (deg.)	σ(δ _{max}) (deg.)	w.	α(s)	σ(25 rds) (mils)	N (in.)
				70°F				
2319	25	. 23	6.2	2.5	1.48	.04	.38	11.8
023294	3205	24	5.6	•	1.43	• 05	.34	•
C.	22	. 33	5.9	2.7	1.45	.05	.36*	11.9
\sim	22	3.0	9.3	•	٦.	.05	.53	13.4
9170	18	25	9.6	3.1	1.11	.04	.42	•
œ	20	34	9.4	3.7	1.13	• 05	.47*	13.5
•				125°F	•			
2319	~	. 14	6.5	•	1.68	.08	.41	11.6
329	7	28	7.0	•	1.60	.03	.32	11.7
Total	3250	38	8.9	2.6	1.64	. 07	.37*	11.7
907	24	6	8.3	. •			.52	!
9170	2	26	2° 2°	•	1.20	90.	.43	13.4
ota	2	22	9.9	4.1	,		.47*	:
							•	
							•	
*Weighted	d average		•					
9						·		1

Security Classification	· · · · · · · · · · · · · · · · · · ·			
DOCUMENT CONT				
(Security classification of title, body of abstract and indexing a	ennotation must be e	nfered when the	overali report la cl	essiliedy
U.S. Army Aberdeen Research and Developmen Ballistic Research Laboratories		20. REPORT SE Uncl	assified	
Aberdeen Proving Ground, Maryland	•	25. GROUP		
COMPARISON OF THE EYMURIOR BALLIST LAUNCHED FROM 1:12 IN. AND 1:14 IN				WHEN
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)		· · · · · · · · · · · · · · · · · · ·		
			•	
5. AUTHOR(5) (First name, middle initial, last name)	· · · · · · · · · · · · · · · · · · ·			
Maynard J. Piddington	•			•
A. REPORT DATE	74. TOTAL NO. O	PAGES	74. NO. OF REFS	·
October 1968	92.	•	7	
Me. CONTRACT OR GRANT NO.	SE ORIGINATOR	REPORT NUM	EN(3) .	
A. PROJECT NO. 1T650212D620	Memorand	um Report	No. 1943	
c.	SO. OTHER REPOR	T NO(S) (Any of	her numbers that m	ay be accigned
4	this report)			
This document is subject to special expor governments or foreign nationals may be mofficer. U.S. Army Aberdeen Research and Maryland.	t controls a ade only wit Development	nd each tr n prior ap Center, Ab	ansmittal to proval of Co erdeen Prov	foreign mmanding ing Ground,
11 SUPPLEMENTARY NOTES	12. SPONSORING	ALITARY ACTI	VITY	
	U.S. Army Washingto		l Command	
18. ABSTRACT				

The results of an exterior ballistics test of the 4193 ball projectile when launched from the M16Al rifle are presented and discussed. Rifles with twists of 1 turn in 12 inches and 1 turn in 14 inches were used in the tests. Data were gathered from test firings at the small Aerodynamics Range and the Transonic Range of the Ballistic Research Laboratories and from a temporary range set up in the Climatic Hangar at the Eglin Air Force Base, Florida. Tests at Eglin were conducted at air temperatures ranging from +125 deg. F to -65 deg. F.

Unclassified Security Classification Unclassified

Security Classification	LIN	K A	LIN	K B	LIN	
KEY WORDS	ROLE		ROLE		ROLE	
Acrodynamic characteristics M16Al rifle Small arms M193 projectile Temperature variations					·	·
			,			
		·		·		
		·				,
						·
					•	
					,	·
						·

Unc	lass	ified	1	
	accord by	Classifi	ication	