

SEQUENCE LISTING

<110> Gish, Kurt C. Mack, David H. Wilson, Keith E. Methods of diagnosis of colorectal cancer, compositions, and <120> methods of screening for colorectal cancer modulators <130> 05882.0168.CPUS01 <140> US 09/930,020 <141> 2001-08-14 <150> US 09/663,733 <151> 2000-09-15 <160> 3 <170> PatentIn version 3.2 <210> 1 3375 <211> <212> DNA <213> Homo sapiens <400> 1 60 gacagtgttc gcggctgcac cgctcggagg ctgggtgacc cgcgtagaag tgaagtactt 120 ttttatttgc agacctgggc cgatgccgct ttaaaaaacg cgaggggctc tatgcacctc cctggcggta gttcctccga cctcagccgg gtcgggtcgt gccgccctct cccaggagag 180 acaaacaggt gtcccacgtg gcagccgcgc cccgggcgcc cctcctgtga tcccgtagcg 240 300 ccccctggcc cgagccgcgc ccgggtctgt gagtagagcc gcccgggcac cgagcgctgg tcgccgctct ccttccgtta tatcaacatg ccccctttcc tgttgctgga ggccgtctgt 360 gttttcctgt tttccagagt gcccccatct ctccctctcc aggaagtcca tgtaagcaaa 420 gaaaccatcg ggaagatttc agctgccagc aaaatgatgt ggtgctcggc tgcagtggac 480 atcatgtttc tgttagatgg gtctaacagc gtcgggaaag ggagctttga aaggtccaag 540 600 cactttgcca tcacagtctg tgacggtctg gacatcagcc ccgagagggt cagagtggga qcattccaqt tcaqttccac tcctcatctg gaattcccct tggattcatt ttcaacccaa 660 caggaagtga aggcaagaat caagaggatg gttttcaaag gagggcgcac ggagacggaa 720 cttgctctga aataccttct gcacagaggg ttgcctggag gcagaaatgc ttctgtgccc 780 840 cagatectea teategteae tgatgggaag teecaggggg atgtggeaet gecatecaag cagctgaagg aaaggggtgt cactgtgttt gctgtggggg tcaggtttcc caggtgggag 900

gagctgcatg	cactggccag	cgagcctaga	gggcagcacg	tgctgttggc	tgagcaggtg	960
gaggatgcca	ccaacggcct	cttcagcacc	ctcagcagct	cggccatctg	ctccagcgcc	1020
acgccagact	gcagggtcga	ggctcacccc	tgtgagcaca	ggacgctgga	gatggtccgg	1080
gagttcgctg	gcaatgcccc	atgctggaga	ggatcgcggc	ggacccttgc	ggtgctggct	1140
gcacactgtc	ccttctacag	ctggaagaga	gtgttcctaa	cccaccctgc	cacctgctac	1200
aggaccacct	gcccaggccc	ctgtgactcg	cagccctgcc	agaatggagg	cacatgtgtt	1260
ccagaaggac	tggacggcta	ccagtgcctc	tgcccgctgg	cctttggagg	ggaggctaac	1320
tgtgccctga	agctgagcct	ggaatgcagg	gtcgacctcc	tcttcctgct	ggacagctct	1380
gcgggcacca	ctctggacgg	cttcctgcgg	gccaaagtct	tcgtgaagcg	gtttgtgcgg	1440
gccgtgctga	gcgaggactc	tcgggcccga	gtgggtgtgg	ccacatacag	cagggagctg	1500
ctggtggcgg	tgcctgtggg	ggagtaccag	gatgtgcctg	acctggtctg	gagcctcgat	1560
ggcattccct	tccgtggtgg	ccccaccctg	acgggcagtg	ccttgcggca	ggcggcagag	1620
cgtggcttcg	ggagcgccac	caggacaggc	caggaccggc	cacgtagagt	ggtggttttg	1680
ctcactgagt	cacactccga	ggatgaggtt	gcgggcccag	cgcgtcacgc	aagggcgcga	1740
gagctgctcc	tgctgggtgt	aggcagtgag	gccgtgcggg	cagagctgga	ggagatcaca	1800
ggcagcccaa	agcatgtgat	ggtctactcg	gatcctcagg	atctgttcaa	ccaaatccct	1860
gagctgcagg	ggaagctgtg	cagccggcag	cggccagggt	gccggacaca	agccctggac	1920
ctcgtcttca	tgttggacac	ctctgcctca	gtagggcccg	agaattttgc	tcagatgcag	1980
agctttgtga	gaagctgtgc	cctccagttt	gaggtgaacc	ctgacgtgac	acaggtcggc	2040
ctggtggtgt	atggcagcca	ggtgcagact	gccttcgggc	tggacaccaa	acccacccgg	2100
gctgcgatgc	tgcgggccat	tagccaggcc	ccctacctag	gtggggtggg	ctcagccggc	2160
accgccctgc	tgcacatcta	tgacaaagtg	atgaccgtcc	agaggggtgc	ccggcctggt	2220
gtccccaaag	ctgtggtggt	gctcacaggc	gggagaggcg	cagaggatgc	agccgttcct	2280
gcccagaagc	tgaggaacaa	tggcatctct	gtcttggtcg	tgggcgtggg	gcctgtccta	2340
agtgagggtc	tgcggaggct	tgcaggtccc	cgggattccc	tgatccacgt	ggcagcttac	2400
gccgacctgc	ggtaccacca	ggacgtgctc	attgagtggc	tgtgtggaga	agccaagcag	2460
ccagtcaacc	tctgcaaacc	cagcccgtgc	atgaatgagg	gcagctgcgt	cctgcagaat	2520
gggagctacc	gctgcaagtg	tcgggatggc	tgggagggcc	cccactgcga	gaaccgtgag	2580
tggagctctt	gctctgtatg	tgtgagccag	ggatggattc	ttgagacgcc	cctgaggcac	2640

atggctcccg tgcaggaggg cagcagccgt acccctccca gcaactacag agaaggcctg 2700 ggcactgaaa tggtgcctac cttctggaat gtctgtgccc caggtcctta gaatgtctgc 2760 ttcccgccgt ggccaqqacc actattctca ctgagggagg aggatqtccc aactgcagcc 2820 atgctgctta qaqacaaqaa aqcaqctgat qtcacccaca aacqatqttq ttgaaaagtt 2880 ttgatgtgta agtaaatacc cactttctgt acctgctgtg ccttgttgag gctatgtcat 2940 ctgccacctt tcccttgagg ataaacaagg ggtcctgaag acttaaattt agcggcctga 3000 cgttcctttg cacacaatca atgctcgcca gaatgttgtt gacacagtaa tgcccagcag 3060 aggcctttac tagagcatcc tttggacggc gaaggccacg gcctttcaag atggaaagca 3120 gcagcttttc cacttcccca gagacattct ggatgcattt gcattgagtc tgaaaggggg 3180 cttgagggac gtttgtgact tcttggcgac tgccttttgt gtgtggaaga gacttggaaa 3240 ggtctcagac tgaatgtgac caattaacca gcttggttga tgatggggga ggggctgagt 3300 tgtgcatggg cccaggtctg gagggccacg taaaatcgtt ctgagtcgtg agcagtgtcc 3360 accttgaagg tcttc 3375

<210> 2

<211> 807

<212> PRT

<213> Homo sapiens

<400> 2

Met Pro Pro Phe Leu Leu Glu Ala Val Cys Val Phe Leu Phe Ser 1 5 10 15

Arg Val Pro Pro Ser Leu Pro Leu Gln Glu Val His Val Ser Lys Glu 20 25 30

Thr Ile Gly Lys Ile Ser Ala Ala Ser Lys Met Met Trp Cys Ser Ala 35 40 45

Ala Val Asp Ile Met Phe Leu Leu Asp Gly Ser Asn Ser Val Gly Lys 50 55 60

Gly Ser Phe Glu Arg Ser Lys His Phe Ala Ile Thr Val Cys Asp Gly 65 70 75 80

Leu Asp Ile Ser Pro Glu Arg Val Arg Val Gly Ala Phe Gln Phe Ser 85 90 95

Ser	Thr	Pro	His 100	Leu	Glu	Phe	Pro	Leu 105	Asp	Ser	Phe	Ser	Thr 110	Gln	Gln
Glu	Val	Lys 115	Ala	Arg	Ile	Lys	Arg 120	Met	Val	Phe	Lys	Gly 125	_	Arg	Thr
Glu	Thr 130	Glu	Leu	Ala	Leu	Lys 135	Tyr	Leu	Leu	His	Arg 140	Gly	Leu	Pro	Gly
Gly 145	Arg	Asn	Ala	Ser	Val 150	Pro	Gln	Ile	Leu	Ile 155	Ile	Val	Thr	Asp	Gly 160
Lys	Ser	Gln	Gly	Asp 165	Val	Ala	Leu	Pro	Ser 170	Lys	Gln	Leu	Lys	Glu 175	Arg
Gly	Val	Thr	Val 180	Phe	Ala	Val	Gly	Val 185	Arg	Phe	Pro	Arg	Trp 190	Glu	Glu
Leu	His	Ala 195	Leu	Ala	Ser	Glu	Pro 200	Arg	Gly	Gln	His	Val 205	Leu	Leu	Ala
Glu	Gln 210	Val	Glu	Asp	Ala	Thr 215	Asn	Gly	Leu	Phe	Ser 220	Thr	Leu	Ser	Ser
Ser 225	Ala	Ile	Cys	Ser	Ser 230	Ala	Thr	Pro	Asp	Cys 235	Arg	Val	Glu	Ala	His 240
Pro	Cys	Glu	His	Arg 245	Thr	Leu	Glu	Met	Val 250	Arg	Glu	Phe	Ala	Gly 255	Asn
Ala	Pro	Cys	Trp 260	Arg	Gly	Ser	Arg	Arg 265	Thr	Leu	Ala	Val	Leu 270	Ala	Ala
His	Cys	Pro 275	Phe	Tyr	Ser	Trp	Lys 280	Arg	Val	Phe	Leu	Thr 285	His	Pro	Ala
Thr	Cys 290	Tyr	Arg	Thr	Thr	Cys 295	Pro	Gly	Pro	Сув	Asp 300	Ser	Gln	Pro	Cys
Gln 305	Asn	Gly	Gly	Thr	Cys 310	Val	Pro	Glu	Gly	Leu 315	Asp	Gly	Tyr	Gln	Cys 320

Leu	Cys	Pro	Leu	A1a 325	Phe	GIY	GIY	Glu	330	Asn	Cys	Ala	Leu	Lys 335	Leu
Ser	Leu	Glu	Cys 340	Arg	Val	Asp	Leu	Leu 345	Phe	Leu	Leu	Asp	Ser 350	Ser	Ala
Gly	Thr	Thr 355	Leu	Asp	Gly	Phe	Leu 360	Arg	Ala	Lys	Val	Phe 365	Val	Lys	Arg
Phe	Val 370	Arg	Ala	Val	Leu	Ser 375	Glu	Asp	Ser	Arg	Ala 380	Arg	Val	Gly	Val
Ala 385	Thr	Tyr	Ser	Arg	Glu 390	Leu	Leu	Val	Ala	Val 395	Pro	Val	Gly	Glu	Tyr 400
Gln	Asp	Val	Pro	Asp 405	Leu	Val	Trp	Ser	Leu 410	Asp	Gly	Ile	Pro	Phe 415	Arg
Gly	Gly	Pro	Thr 420	Leu	Thr	Gly	Ser	Ala 425	Leu	Arg	Gln	Ala	Ala 430	Glu	Arg
Gly	Phe	Gly 435	Ser	Ala	Thr	Arg	Thr 440	Gly	Gln	Asp	Arg	Pro 445	Arg	Arg	Val
Val	Val 450	Leu	Leu	Thr	Glu	Ser 455	His	Ser	Glu	Asp	Glu 460	Val	Ala	Gly	Pro
Ala 465	Arg	His	Ala	Arg	Ala 470	Arg	Glu	Leu	Leu	Leu 475	Leu	Gly	Val	Gly	Ser 480
Glu	Ala	Val	Arg	Ala 485	Glu	Leu	Glu	Glu	Ile 490	Thr	Gly	Ser	Pro	Lys 495	His
Val	Met	Val	Tyr 500	Ser	Asp	Pro	Gln	Asp 505	Leu	Phe	Asn	Gln	Ile 510	Pro	Glu
Leu	Gln	Gly 515	Lys	Leu	Сув	Ser	Arg 520	Gln	Arg	Pro	Gly	Cys 525	Arg	Thr	Gln
Ala	Leu 530	Asp	Leu	Val	Phe	Met 535	Leu	Asp	Thr	Ser	Ala 540	Ser	Val	Gly	Pro

Glu Asn Phe Ala Gln Met Gln Ser Phe Val Arg Ser Cys Ala Leu Gln Phe Glu Val Asn Pro Asp Val Thr Gln Val Gly Leu Val Val Tyr Gly Ser Gln Val Gln Thr Ala Phe Gly Leu Asp Thr Lys Pro Thr Arg Ala Ala Met Leu Arg Ala Ile Ser Gln Ala Pro Tyr Leu Gly Gly Val Gly Ser Ala Gly Thr Ala Leu Leu His Ile Tyr Asp Lys Val Met Thr Val Gln Arg Gly Ala Arg Pro Gly Val Pro Lys Ala Val Val Leu Thr Gly Gly Arg Gly Ala Glu Asp Ala Ala Val Pro Ala Gln Lys Leu Arg Asn Asn Gly Ile Ser Val Leu Val Val Gly Val Gly Pro Val Leu Ser Glu Gly Leu Arg Arg Leu Ala Gly Pro Arg Asp Ser Leu Ile His Val Ala Ala Tyr Ala Asp Leu Arg Tyr His Gln Asp Val Leu Ile Glu Trp .700 Leu Cys Gly Glu Ala Lys Gln Pro Val Asn Leu Cys Lys Pro Ser Pro Cys Met Asn Glu Gly Ser Cys Val Leu Gln Asn Gly Ser Tyr Arg Cys Lys Cys Arg Asp Gly Trp Glu Gly Pro His Cys Glu Asn Arg Glu Trp Ser Ser Cys Ser Val Cys Val Ser Gln Gly Trp Ile Leu Glu Thr Pro Leu Arg His Met Ala Pro Val Gln Glu Gly Ser Ser Arg Thr Pro Pro 770 775 780

Ser Asn Tyr Arg Glu Gly Leu Gly Thr Glu Met Val Pro Thr Phe Trp 785 790 795 800

Asn Val Cys Ala Pro Gly Pro 805

<210> 3 <211> 5

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<222> (3)..(3)

<223> Xaa can be any naturally occurring amino acid

<400> 3

Trp Ser Xaa Trp Ser