What is claimed is:

scanning means for repeatedly scanning a cross section of an examining human body implanted bubbles as ultrasonic shadowing agent with an ultrasound to collect an echo signal;

image data obtaining means for repeatedly obtaining image data based on said echo signal;

displaying means for displaying said obtained image data as a motion image; and

changing means for changing power of said ultrasound from first power to second power stronger than said first power.

- 2. The apparatus according to claim 1, wherein said power is sound pressure.
 - 3. The apparatus according to claim 1, wherein said scanning means includes a piezoelectric element group and voltage generating means for variably generating a voltage for driving said piezoelectric element group, and said changing means changes the voltage generated by said voltage generating means from a first voltage corresponding to said first power to a second voltage corresponding to said second power and being higher than said first voltage.
- 4. The apparatus according to claim 1, wherein said image data obtain means includes means for storing image data first obtained after said power of the

35

10

15

- 35 -

ultrasound is changed from said first power to said second power.

- 5. The apparatus according to claim 1, wherein said displaying means includes means for displaying image data first obtained after said power of the ultrasound is changed from said first power to said second power as a static image.
- 6. The apparatus according to claim 1, further comprising inputting means for manually designating a change of power from said first power to said second power.
- 7. The apparatus according to claim 1, wherein said changing means includes means for returning power of said ultrasound to said first power after the scanning is continued for a predetermined period of time by said second power.
- 8. The apparatus according to claim 1, wherein said image data obtaining means includes means for subtracting image data, first obtained after said power of the ultrasound is changed from said first power to said second power, and image data, nth obtained after said power of the ultrasound is changed from said first power to said second power, from each other between frames.

25 (3)9. The apparatus according to claim 1, wherein said scanning means includes means for repeating a receiving and transmitting operation twice in

30

5

10

15

connection with each of said ultrasonic scanning lines, and means for subtracting the echo signal obtained by the first receiving and transmitting operation and the echo signal obtained by the second receiving and transmitting operation from each other, and said image data obtaining means obtains image data based on said subtracted echo signal.

- 10. The apparatus according to claim 1, wherein said scanning means includes means for extracting a high frequency component from said echo signal, and said image data obtaining means obtains image data based on said high frequency component.
- 11. The apparatus according to claim 1, wherein said displaying means includes means for displaying a power state of said ultrasound.
- 12. The apparatus according to claim 1, wherein said image obtaining means includes means for obtaining a time density curve of a pixel value of said image data.
- 20 13. The apparatus according to claim 1, wherein said scanning means includes first means for generating the ultrasound by said first power, and second means for generating the ultrasound by said second power.

An ultrasound diagnostic apparatus comprising:
scanning means for repeatedly scanning a cross
section of an examining human body implanted bubbles as
ultrasonic shadowing agent with an ultrasound to repeat

2

5

10

an echo\signal;

5

10

15

20

25

image obtaining means for repeatedly obtaining image data based on said echo signal;

displaying means for displaying said generated image data as a motion image; and

changing means for changing a frequency of said ultrasound from a first frequency to a second frequency.

- 15. The apparatus according to claim 14, wherein said image obtaining means includes means for storing image data first obtained after said frequency of the ultrasound is changed from said first frequency to said second frequency.
- 16. The apparatus according to claim 14, wherein said displaying means includes means for displaying image data first obtained after said frequency of the ultrasound is changed from said first frequency to said second frequency as a static image.
 - 17. The apparatus according to claim 14, further comprising inputting means for manually designating a change of the frequency from said first frequency to said second frequency.
 - 18. The apparatus according to claim 14, wherein said changing means includes means for returning the frequency of said ultrasound to said first frequency after the scanning is continued for a predetermined period of time by said second frequency.

- 38 -

19. The apparatus according to claim 14, wherein said image obtaining means includes means for subtracting image data, first obtained after said frequency of the ultrasound is changed from said first frequency to said second frequency, and image data, atthematical obtained after said frequency of the ultrasound is changed from said first frequency to said second frequency, from each other between frames.

said scanning means includes means for repeating a receiving and transmitting operation twice in connection with each of said ultrasonic scanning lines, and means for subtracting the echo signal obtained by the first receiving and transmitting operation and the echo signal obtained by the second receiving and transmitting operation from each other, and said image generating means generates image data based on said subtracted echo signal.

- 21. The apparatus according to claim 14, wherein 20 said scanning means includes means for extracting a high frequency component from said echo signal, and said image data obtaining means obtains image data based on said high frequency component.
 - 22. The apparatus according to claim 14, wherein said displaying means includes means for displaying a frequency state of said ultrasound.
 - 23. The apparatus according to claim 14, wherein

29

25

said image obtaining means includes means for obtaining a time density curve of a pixel value of said image data.

scans a cross section of an examining human body implanted bubbles as ultrasonic shadowing agent with an ultrasound to obtain an echo signal, repeatedly obtains image data based on said echo signal, and displays said image data as a motion image, comprising:

a first step of scanning said ultrasound by first power; and

a second step of scanning said ultrasound by second power stronger than said first power after scanning said ultrasound by said first power.

25. The method according to claim 24, wherein said power is sound pressure.

26. The method according to claim 25, further comprising a third step of returning power of said ultrasound to said first power after the scanning is continued for a predetermined period of time by said second power.

An ultrasound imaging method, which repeatedly transmits an ultrasound to an examining human body implanted bubbles as ultrasonic shadowing agent,

receives a reflected wave from said examining human body to repeatedly obtain an echo signal of a cross section of said examining human body, repeatedly

40

10

15

obtains image data based on said echo signal, and displays said image data as a motion image, comprising:

a first\step of scanning said ultrasound by a first frequency; and

a second step of scanning said ultrasound by a second frequency after scanning said ultrasound by said first frequency.

28. The method according to claim 27, further comprising a third step of returning the frequency of said ultrasound to said first frequency after the scanning is continued for a predetermined period of time by said second frequency.

5