# Experimentell Metodik

Zacharias Brohn\* Elis Bergdahl<sup>†</sup> Mikael Baer<sup>‡</sup>

Luleå tekniska universitet 971 87 Luleå, Sverige

11 december 2024

#### Sammanfattning

Denna rapport presenterar en undersökning av volymflödet genom smala horisontella rör. Genom dimensionsanalys och experimentella metoder studeras sambandet mellan volymflöde och olika fysikaliska parametrar.

## 1 Inledning

Vi kommer undersöka volymflödet av materia genom smala, horisontella rör. Experimenten utförs med vatten  $(H_2O)$ , men de framtagna matematiska modellerna är generellt tillämpbara för andra fluider.

#### 2 Teori

### 2.1 Dimensionsanalys

Dimensionsanalys är en metod för att verifiera matematiska samband genom att kontrollera dimensionell konsekvens hos ingående variabler. Metoden är särskilt användbar för att validera fysikaliska ekvationer.

\*email: zacbro-8@student.ltu.se †email: elieba-4@student.ltu.se

<sup>‡</sup>email: DinMejl

#### 2.2 Linjärisering

För en potensfunktion av formen:

$$Y = C \cdot x^a \tag{1}$$

kan exponenten a bestämmas genom logaritmering:

$$\ln Y = \ln C + a \cdot \ln x \equiv Y' = m + k \cdot X \tag{2}$$

där:

$$Y' = \ln y, \quad k = a, \quad X = \ln x, \quad m = \ln C \tag{3}$$

### 3 Grafer och Resultat

Vi har fått fram 3 exponenter genom att linjärisera data från experimenten, vi börjar med hur volymflödet beror på höjden:

| $H\ddot{o}jd(m)$ | $Fl\ddot{o}de(m^3/s)$ | $\ln(\text{h\"{o}jd})$ | ln(Q)     |
|------------------|-----------------------|------------------------|-----------|
| 0.15             | 8.8750e - 7           | -1.897120              | -13.93486 |
| 0.25             | 1.3546e - 6           | -1.386294              | -13.51205 |
| 0.35             | 1.7158e - 6           | -1.049822              | -13.27561 |
| 0.45             | 2.1096e - 6           | -0.798508              | -13.06903 |
| 0.55             | 2.4738e - 6           | -0.597837              | -12.90978 |

Och om vi linjäriserar detta hittar vi exponenten



Sedan undersöker vi hur radien påverkar volymflödet, samt linjärisera

| Radie(m) | $Fl\"{o}de(m^3/s)$ | $\ln(r)$  | ln(Q)     |
|----------|--------------------|-----------|-----------|
| 0.000875 | 1.2342e - 6        | -7.041287 | -13.60511 |
| 0.000770 | 7.3917e - 7        | -7.169120 | -14.11774 |
| 0.000685 | 4.9792e - 7        | -7.286092 | -14.51283 |
| 0.000535 | 1.8667e - 7        | -7.533244 | -15.49394 |
| 0.000440 | 8.9583e - 8        | -7.728736 | -16.22810 |



Slutligen undersöker vi hur längden påverkar volymflödet, samt linjärisera

| $L\ddot{a}ngd(m)$ | $Fl\ddot{o}de(m^3/s)$ | $\ln(r)$  | ln(Q)       |
|-------------------|-----------------------|-----------|-------------|
| 0.347             | 2.4738e - 6           | -1.058430 | 1.5853e + 1 |
| 0.302             | 1.7658e - 6           | -1.197328 | 1.6027e + 1 |
| 0.277             | 1.3025e - 6           | -1.283738 | 1.6191e + 1 |
| 0.212             | 5.6167e - 7           | -1.551169 | 1.6338e + 1 |
| 0.150             | 3.8375e - 7           | -1.897120 | 1.6740e + 1 |



hitta konstant



# 4 Dimensionsanalys av Volymflöde

Det generella sambandet för volymflödet ges av:

$$Q = C \cdot d^{\alpha} \cdot h^{\beta} \cdot l^{\gamma} \cdot \rho^{\delta} \cdot g^{\epsilon} \cdot \mu^{\epsilon}$$

$$\tag{4}$$

där variablerna har följande dimensioner:

- $\bullet~Q$ är volymflödet  $[\mathrm{L^3T^{-1}}]$
- d är rörets diameter [L]
- $\bullet \ h$ är höjdskillnaden [L]
- l är rörets längd [L]
- $\bullet~\rho$ är vätskans densitet [ML $^{-3}]$
- $\bullet~g$ är tyngdaccelerationen [LT $^{-2}]$
- $\mu$  är vätskans viskositet [ML<sup>-1</sup>T<sup>-1</sup>]

Från dimensionsanalysen vet vi att:

$$[Q] = L^{3}T^{-1}M^{0}$$
 (5)

Dimensionell analys ger:

$$[Q] = [C] \cdot [d^{\alpha}] \cdot [h^{\beta}] \cdot [l^{\gamma}] \cdot [\rho^{\delta}] \cdot [g^{\epsilon}] \cdot [\mu^{\epsilon}]$$
(6)

Från tidigare beräkningar har vi fått:

$$\alpha = 4 \tag{7}$$

$$\beta = 1 \tag{8}$$

$$\gamma = -1 \tag{9}$$

Det resulterande ekvationssystemet blir:

$$L^{3}T^{-1} = L^{\alpha+\beta+\gamma} \cdot (ML^{-3})^{\delta} \cdot (LT^{-2})^{\epsilon} \cdot (ML^{-1}T^{-1})^{\epsilon}$$
(10)

$$L^{3}T^{-1} = M^{\delta + \varepsilon} \cdot L^{\alpha + \beta + \gamma - 3\delta + \epsilon - \varepsilon} \cdot T^{-2\epsilon - \varepsilon}$$
(11)

Genom att jämföra exponenter får vi:

$$M: \delta + \varepsilon = 0 \tag{12}$$

$$L: \alpha + \beta + \gamma - 3\delta + \epsilon - \varepsilon = 3 \tag{13}$$

$$T: -2\epsilon - \varepsilon = -1 \tag{14}$$

Ur ekv. (12) får vi:

$$\epsilon = -\delta \tag{15}$$

Substitution i ekv. (13) ger:

$$4 + 1 - 1 - 3\delta - \delta + \varepsilon = 3 \tag{16}$$

$$4 - 4\delta + \varepsilon = 3 \tag{17}$$

$$\varepsilon = 2\delta - 1 \tag{18}$$

från ekv. (14):

$$-1 = -(-\delta) - 2(2\delta - 1) \tag{19}$$

$$-1 = \delta - 4\delta + 2 \tag{20}$$

$$-3 = -3\delta \tag{21}$$

$$\delta = 1 \tag{22}$$

från det kan vi lösa ekv. (15)

$$\epsilon = -\delta = -1 \tag{23}$$

alltså får vi att ekponenterna är

$$\delta = 1 \tag{24}$$

$$\epsilon = -1 \tag{25}$$

$$\varepsilon = 2(1) - 1 = 1 \tag{26}$$