Hard X-ray Imaging and Telescope options

Tadayasu Dotani (ISAS/JAXA)

Hideyo Kunieda (Nagoya Univ.)

Tadayuki Takahashi (ISAS/JAXA)

Contents

- 1. Astrophysics in hard X-ray band
- 2. Hard X-ray Telescopes for XEUS, Astro-H, and IXO
- 3. Hard X-ray Imaging Detector

Cosmic X-ray Background above 10 keV

Absorbed AGN are necessary to explain CXB(E>10 keV)

SWIFT BAT Survey Observations

Markwardt, Tueller et al. 2005

Suzaku follow-up Observations

Weak scattering Tall torus

Discovery of strongly absorbed AGN

Ueda et al. (2007)

Non-thermal components

Acceleration of charged particle

Characteristic	Value
Aperture annulus radii	0.67-2.1 m
Grazing reflection angles	0.27-0.86 degrees
Focal length	35 m

for XEUS

Goal: 1000 cm² at 40 keV

Characteristic	Value
Aperture annulus radii	0.06 - 0.225 m
Grazing reflection angles	0.07 - 0.27 degree
Focal length	12 m

for Astro-H

Multilayer

Hard X-ray Telescope for IXO

Grazing angle: 0.07 - 0.27 deg (Astro-H)

Hard X-ray Telescopes for IXO

Effective radii for hard X-ray option with multilayers

Characteristic	Value
Aperture annulus radii	0.10 - 0.375 m
Grazing reflection angles	0.07 - 0.27 degree
Focal length	20 m

for IXO

Multilayer

Characteristic	Value
Aperture annulus radii	0.12 - 0.45 m
Grazing reflection angles	0.07 - 0.27 degree
Focal length	24 m

for IXO

Multilayer

Hard X-ray Imaging Detector

Concept of the Hybrid Imaging Detector for XEUS

Hard X-ray imaging detector

A draft design

HXI new design

- Detailed design to be done.
- •Astro-H HXI EM design (2008-2009) will be incorporated.

Top-view of imager part

Cross-section-view of HXI-Sensor part

Status of the CdTe imager

Double-sided CdTe strip detector from ACRORAD

- relatively large leak and C

1.3 cm DS-CdTe

Design parameters of Hard X-ray Imager

Characteristics	Hard X-ray Imager
Detector Type	Si and CdTe Schottky Diode double sided strip
Strip pitch	220 μ m (for both side)
Number of strips	320 (for both side) total 1280 strips for CdTe
	Two layers of DSSD are placed in front of
	CdTe. There exits ~4000 strips in total
Array Size (mm ²)	70 ×70
Field of View	7 ×7 arcmin ²
Energy range	10-80 keV
Energy Resolution	dE < 1 keV(FWHM)
Non X-Ray detector Background	5×10^{-4} counts keV ⁻¹ cm ⁻² s ⁻¹ roughly flat
Count rate/pixel with 10% pile-up	20000 cts s ⁻¹ independent of the position
Count rate/source with 10% pile-up	20000 cts s ⁻¹ independent of the position
Timing accuracy	10 ms
Typical/ Max telemetry	10 kbs ⁻¹ (1 Mbs ⁻¹ max. for ground calibration)
Operating Temperature	Detector -20 ± 2 °C (Minimum temperature -
	40 °C) Electronics 20± 20 °C
Thermo control to maintain temperature	
and raise temperature to +5°C, if necessary	
Instrument Power, excluding thermal	31W
control	
Total Mass	24 kg

Defocus due to the off-focus plane of HXI

Defocus at HXI

$$D = 0.75m$$
 for $F = 20m$
 $D = 0.90m$ for $F = 24m$ $D/F = 0.0375$

$$d\theta = \tan^{-1} \left(\frac{dx}{F} \right) = 5 \text{ arcsec} \qquad \Rightarrow \begin{cases} dx = 0.58 \text{ mm}(F=24\text{m}) \\ dx = 0.48 \text{ mm}(F=20\text{m}) \end{cases}$$

$$dx = ---- dF$$

Strategy and plan

```
Hard X-ray telescopes

Multilayer for hard X-rays (>10keV)

(Multilayer for mid-energies : 5<E<10keV)

Deposition on Si substrate
```

Hard X-ray Imaging Detector

Double sided strip detectors

BKGD reduction

Developments of HXT/HXI for Astro-H ==> IXO