R Notebook

Analysis of equilibrium resonse to power law scaling behaviors, single-consumer resource case.

```
library(tidyverse)
dat <- read_csv('socio-eco-nw equilibrium-pop-table.csv', skip = 6) %>%
  select(alpha, beta, h = 3, Population = 12) %>%
  full_join((read_csv('socio-eco-nw equilibrium-bio-table.csv', skip = 6) %>%
  select(alpha, beta, Biomass = 12))) %>%
  mutate(Welfare = Biomass * h * Population^(beta-1)) %>%
  select(-h)
Find equilibrium values
dat %>% filter(alpha == 1 & beta == 1) %>% select(3:5)
## # A tibble: 1 × 3
##
    Population Biomass Welfare
##
          <dbl>
                 <dbl>
                          <dbl>
## 1
          60000
                    0.4
                          4e-07
Normalize data using equilibrium values
dat.norm <- dat %>%
  mutate(Population = Population / 60000, Biomass = Biomass / .4, Welfare = Welfare / 4e-07)
dat.norm %>% gather(variable, value, Population:Welfare) %>%
  ggplot(aes(alpha, beta, fill = value)) +
    facet_wrap(~variable) +
   geom_raster(interpolate = T) +
   labs(title = 'Equilibrium sensitivity to power law scaling', subtitle = expression('All values norm
   scale_fill_distiller(name = 'Value at \nequilibrium', palette = 'Spectral', guide = 'legend', break
   scale_x_continuous(breaks = c(.9, 1, 1.1)) +
   coord_equal() +
   theme minimal()
```

Equilibrium sensitivity to power law scaling

All values normalized to $\alpha = \beta = 1$

natural language, resource biomass is highest when higher population leads to declining marignal returns to harvest

alpha beta plots

plots of how different exponents effect population size

Impact of power law scaling

network plots

```
simple plots of networks
library(ggraph)
library(igraph)
##
## Attaching package: 'igraph'
## The following objects are masked from 'package:dplyr':
##
       %>%, as_data_frame, groups, union
##
## The following objects are masked from 'package:purrr':
##
##
       %>%, compose, simplify
## The following objects are masked from 'package:tidyr':
##
##
       %>%, crossing
##
  The following object is masked from 'package:tibble':
##
##
       as_data_frame
## The following objects are masked from 'package:stats':
##
##
       decompose, spectrum
```

```
## The following object is masked from 'package:base':
##
##
vert.dat <- data_frame(names = 1:6, Type = c('City', 'City', 'City', 'Resource', 'Resource', 'Resource'</pre>
\text{net} \leftarrow \text{data\_frame}(\text{from} = \text{c}(1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 3, 2, 1, 1, 2, 3, 1),
           to = c(4, 5, 5, 6, 4, 5, 5, 6, 2, 4, 5, 5, 6, 3, 4, 5, 5, 6, 3),
           structure = c(1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4),
           Link = c('City-Resource', 'City-Resource', 'City-Resource', 'City-Resource', 'City-Resource')
ggraph(net, 'kk') +
  geom_edge_fan(aes(color = Link)) +
  geom_node_point(aes(color = Type), size = 5) +
  facet_edges(~structure) +
  labs(title = 'Potential social-ecological connectivity structures', subtitle = expression('Under diff
  coord_equal() +
  theme_void() +
  theme(panel.spacing = unit(3, "lines"), strip.text = element_blank())
```

Potential social-ecological connectivity structures

Under different parameterizations of ξ


```
Link = c('City-Resource', 'City-Resource', 'City-Resource', 'City-Resource')) %>% graph_from
orig.layout <- create_layout(net, 'kk') %>%
    select(x:y)
n1.layout <- create_layout(n1, 'kk')</pre>
n1.layout[,1] <- orig.layout[,1]</pre>
n1.layout[,2] <- orig.layout[,2]</pre>
n1.plt <- ggraph(n1.layout, layout = my.layout) +</pre>
    geom_edge_fan(colour = '#00BFC4') +
    geom_node_point(aes(color = Type, size = pop)) +
    scale_size_area() +
    coord_equal() +
    theme_void() +
    theme(legend.position = 'none')
n2.vert <- data_frame(names = 1:6,
                                                Type = c('City', 'City', 'City', 'Resource', 'Resource'),
                                                pop = c(c(14409, 565, 14401)/14400.75, c(.0219, .0119, .0226)/.0226227))
n2 \leftarrow data_frame(from = c(1, 1, 2, 3, 1),
                        to = c(4, 5, 5, 6, 2),
                        Link = c('City-Resource', 'City-Resource', 'City-Res
n2.layout <- create_layout(n2, 'kk')</pre>
n2.layout[,1] <- orig.layout[,1]</pre>
n2.layout[,2] <- orig.layout[,2]</pre>
n2.plt <- ggraph(n2.layout) +
    geom_edge_fan(aes(color = Link)) +
    geom_node_point(aes(color = Type, size = pop)) +
    scale_size_area() +
    coord_equal() +
    theme_void() +
    theme(legend.position = 'none')
n3.vert <- data frame(names = 1:6,
                                                Type = c('City', 'City', 'City', 'Resource', 'Resource'),
                                                pop = c(c(14423, 540, 14387)/14400.75, c(.0208, .0018, .0238)/.0226227))
n3 \leftarrow data_frame(from = c(1, 1, 2, 3, 2),
                        to = c(4, 5, 5, 6, 3),
                        Link = c('City-Resource', 'City-Resource', 'City-Resource', 'City-Resource', 'City-Resource', 'City-City')) %
n3.layout <- create_layout(n3, 'kk')</pre>
n3.layout[,1] <- orig.layout[,1]</pre>
n3.layout[,2] <- orig.layout[,2]
n3.plt <- ggraph(n3.layout) +
    geom_edge_fan(aes(color = Link)) +
    geom_node_point(aes(color = Type, size = pop)) +
    scale_size_area() +
    coord_equal() +
    theme_void() +
```

```
theme(legend.position = 'none')
n4.vert <- data_frame(names = 1:6,
                                                                          Type = c('City', 'City', 'City', 'Resource', 'Resource'),
                                                                          pop = c(c(14539, 0, 14402)/14400.75, c(.0113, .0113, .0225)/.0226227))
n4 \leftarrow data_frame(from = c(1, 1, 2, 3, 1),
                                     to = c(4, 5, 5, 6, 3),
                                     Link = c('City-Resource', 'City-Resource', 'City-Res
n4.layout <- create_layout(n4, 'kk')</pre>
n4.layout[,1] <- orig.layout[,1]</pre>
n4.layout[,2] <- orig.layout[,2]
n4.plt <- ggraph(n4.layout) +
       geom_edge_fan(aes(color = Link)) +
       geom_node_point(aes(color = Type, size = pop)) +
       scale_size_area() +
      coord_equal() +
      theme_void() +
      theme(legend.position = 'none')
library(gridExtra)
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
##
                        combine
grid.arrange(n1.plt, n2.plt, n3.plt, n4.plt)
```

