P/ NT COOPERATION TREAT

From the INTERNATIONAL BUREAU

PCT	To:
NOTIFICATION OF ELECTION (PCT Rule 61.2) Date of mailing: 03 August 2000 (03.08.00)	Assistant Commissioner for Patents United States Patent and Trademark Office Box PCT Washington, D.C.20231 ETATS-UNIS D'AMERIQUE in its capacity as elected Office
International application No.: PCT/JP00/00444	Applicant's or agent's file reference: YCT-442
International filing date: 28 January 2000 (28.01.00)	Priority date: 28 January 1999 (28.01.99)
Applicant: MATSUOKA, Hiroharu et al	
The designated Office is hereby notified of its election made in the demand filed with the International preliminary 28 January 206 in a notice effecting later election filed with the Intern	Examining Authority on:
was not made before the expiration of 19 months from the priority of Rule 32.2(b).	late or, where Rule 32 applies, within the time limit under
The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Facsimile No.: (41-22) 740.14.35	Authorized officer: J. Zahra Telephone No.: (41-22) 338.83.38

EP

PCT

国際調査報告

(法8条、法施行規則第40、41条) [PCT18条、PCT規則43、44]

出願人又は代理人 の書類記号 YCT-442	今後の手続きし		報告の送付通知様式 5を参照すること。 	T(PCT/ISA/220)
国際出願番号 PCT/JP00/00444	国際出願日	28.01.00	優先日 (日.月.年)	28.01.99
出願人 (氏名又は名称) 中外製薬株	式会社	-		
国際調査機関が作成したこの国際調査 この写しは国際事務局にも送付される			8条)の規定に従い	・出願人に送付する。
この国際調査報告は、全部で 5	_ページである	5.		
この調査報告に引用された先行技	術文献の写し	6添付されている。		•
1. 国際調査報告の基礎 a. 言語は、下記に示す場合を除くほか、この国際出願がされたものに基づき国際調査を行った。 「この国際調査機関に提出された国際出願の翻訳文に基づき国際調査を行った。				
b. この国際出願は、ヌクレオチド この国際出願に含まれる書面			の配列表に基づき国	際調査を行った。
□ この国際出願と共に提出され	ιたフレキシブ	ルディスクによる配列	表	-
出願後に、この国際調査機関				
	□ 出願後に、この国際調査機関に提出されたフレキシブルディスクによる配列表 □ 出願後に提出した書面による配列表が出願時における国際出願の開示の範囲を超える事項を含まない旨の陳述			
●の従血があった。 ■ 書面による配列表に記載した配列とフレキシブルディスクによる配列表に記録した配列が同一である旨の陳述書の提出があった。				
2. 請求の範囲の一部の調査ができない(第1欄参照)。				
3. ※ 発明の単一性が欠如してい	る(第Ⅱ欄参照	g) .		·
4.発明の名称は ※ 出願	人が提出したも	っのを承認する。		.)
□次に	示すように国際	祭調査機関が作成した。	•	
5. 要約は	人が提出した。	っのを承認する。		
国際	調査機関が作品		の国際調査報告の発	!則38.2(b)) の規定により 送の日から1カ月以内にこ
6. 要約書とともに公表される図は、 第図とする。	人が示したとお	らりである。	× な	L
□出願	人は図を示され	よかった。		
本図	は発明の特徴を	と一層よく表している。		·

第1欄 請求の範囲の一部の調査ができないときの意見 (第1ページの2の続き)	
法第8条第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について成しなかった。	て作
1. 請求の範囲は、この国際調査機関が調査をすることを要しない対象に係るものである つまり、	o .
2. 請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしてない国際出願の部分に係るものである。つまり、	い
3. 請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定 従って記載されていない。	ات ا
Mes Change Canada	
第Ⅱ欄 発明の単一性が欠如しているときの意見 (第1ページの3の続き)	
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。	
請求項30-34に記載されている化合物は、請求項1に記載された化合物の中間体であると認められるが、請求項30-34に記載されている化合物は、いずれも新規ではない化合物を含むものであるから、中間体及び最終生成物に共通する主要な構造部分が新規であるとはいえない。	í
したがって、請求の範囲1-29、30、31、32、33及び34の全てに共通の事項はなく、請求の範囲1-29、30、31、32、33及び34に記載された発明が単一の一般的発明概念を形成するように連関している一群の発明であるとは認められない。	Į)
1. × 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な認めの範囲について作成した。	青求
2. □ 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、 加調査手数料の納付を求めなかった。	追
3.	つ納
4.	己載
THE TENED WITH THE PROPERTY OF	٠
	•
追加調査手数料の異議の申立てに関する注意	
□ 追加調査手数料の納付と共に出願人から異議申立てがあった。○ 追加調査手数料の納付と共に出願人から異議申立てがなかった。	

第Ⅲ欄 要約(第1ページの5の続き)

本発明の目的は、モチリンレセプターアンタゴニスト作用を有し、医薬として 有用な、置換フェネチルアミン誘導体を提供することである。

本発明により、 一般式(1)

(式中、Суは一般式(2)

$$\begin{array}{c}
R_2 \\
R_3 \\
R_4
\end{array}$$

$$\begin{array}{c}
R_2 \\
R_5
\end{array}$$
(2)

で示される基、置換基を有していてもよい複素環、炭素数 $3\sim7$ のシクロアルキル基、またはフェニル基を表す。 R_1 、 R_2 、 R_3 、 R_4 、 R_5 は水素原子、ハロゲン原子、水酸基、アミノ基、トリフルオロメチル基、または、ニトリル基を表し、 R_1 、 R_2 、 R_3 、 R_4 、 R_5 のうち少なくとも一つは、ハロゲン原子、トリフルオロメチル基、ニトリル基のうちのいずれかである。)

で示される化合物、その水和物、またはその薬学的に許容しうる塩が提供される。

国際調査報告

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C17 C07K 5/087, A61K 38/06, A61P 1/00, A61P 5/00, C07K 5/062, C07K 5/065, C07C 229/06, C07C 229/36

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' CO7K 5/087, A61K 38/06, CO7K 5/062, CO7K 5/065, CO7C 229/06, CO7C 229/36

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

REGISTRY (STN), CA (STN), CAPLUS (STN)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Е, Х	WO,00/17231,A1 (中外製薬株式会社) 30.3月.2000(30.03.00) (ファミリーなし)	1-34
P, X	WO, 99/09053, A1 (中外製薬株式会社) 25.2月.1999(25.02.99) & AU, 9886490, A1 & JP, 2000-044595, A2	1-34
X	JP,7-188282,A1(末綱陽子)25.7月.1995(25.07.95) (ファミリーなし)	1, 13–18, 20, 24, 28–29
	1	

⋉ C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

27.04.00

国際調査報告の発送日

1 6.05.00

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP)

郵便番号100-8915 東京都千代田区霞が関三丁目4番3号 特許庁審査官(権限のある職員) 高堀 栄二

B 9281

電話番号 03-3581-1101 内線 3448

C(続き).	関連すると認められる文献		88 Nets 12
引用文献の. カテゴリー*	引用文献名 及び一部の箇所が関連するときは	、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP,6-220088,A1(旭化成株式会社)9.8月. (ファミリーなし)	1994 (09. 08. 94)	1, 13-18, 20, 24, 28-29
X	EP, 532466, A2 (CIBA GEIGY AG) 17.3月.199	7948, A & FI, 9204035, A 54, A & CZ, 9202802, A3 802, A3 & CN, 1089269, A	1-5, 13-18, 24, 28-29, 32-34
X	EP, 111266, A (CIBA GEIGY AG) 20.6月.1984 & AU, 8321937, A & NO, 8304441, A & DK, 8308 & JP, 59-110661, A & HU, 32550, T & PT, 7776 & ZA, 8308986, A & US, 4595677, A & ES, 8606	5559, A & FI, 8304345, A 61, A & DD, 217807, A	30, 34
х	WO, 97/19908, A1 (日本農薬株式会社) 5.6月 & AU, 9677105, A1 & JP, 9-208541, A2	1. 1997 (05. 06. 97)	31, 33-34
Х	BUDAVARI, S. et al. "The Merck Index", (199 p. 1677	96) MERCK & CO., Inc.,	32
X	BUDAVARI, S. et al. "The Merck Index", (199 p. 1253	96) MERCK & CO., Inc.,	33
Х	BUDAVARI, S. et al. "The Merck Index", (199 p. 1690	96) MERCK & CO., Inc.,	34
	*		
	·		
-			
	,		

Translation

PCT

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

Applicant's or agent's file reference			
YCT-442	FOR FURTHER ACTION	SeeNotificat Examination	ionofTransmittalofInternational Preliminary Report (Form PCT/IPEA/416)
International application No.	International filing date (day/m	onth/year)	Priority date (day/month/year)
PCT/JP00/00444	28 January 2000 (28.0	01.00)	28 January 1999 (28.01.99)
International Patent Classification (IPC) or n C07K 5/087, A61K 38/06, A61P	ational classification and IPC 1/00, 5/00, C07K 5/062, 5/06	55, C07C 22	9/06, 229/36
Applicant			
СН	JGAI SEIYAKU KABUSI	IIKI KAIS	HA
This international preliminary exami and is transmitted to the applicant ac	nation report has been prepared becording to Article 36.	by this Interna	ational Preliminary Examining Authority
2. This REPORT consists of a total of	6 sheets, including	this cover sh	eet.
amended and are the basis for	ed by ANNEXES, i.e., sheets of t this report and/or sheets containi Administrative Instructions under	ng rectificati	n, claims and/or drawings which have been ons made before this Authority (see Rule
These annexes consist of a tot	al of sheets.		
3. This report contains indications relati	ng to the following items:		
J Basis of the report			
II Priority			
III Non-establishment of	III Non-establishment of opinion with regard to novelty, inventive step and industrial applicability		
IV Lack of unity of inver	Lack of unity of invention		
V Reasoned statement u citations and explanat	V Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement		
VI Certain documents cit	VI Certain documents cited		
VII Certain defects in the	Certain defects in the international application		
VIII Certain observations on the international application			
Date of submission of the demand	Date of co	ompletion of t	his report
28 January 2000 (28.01.			gust 2000 (02.08.2000)
Name and mailing address of the IPEA/JP	Authorize	d officer	
Facsimile No.	Telephone	: No.	

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

ational application No.

PCT/JP00/00444

. Basis o	of the rep	ort
. With r	regard to t	he elements of the international application:*
\boxtimes	the interr	national application as originally filed
\Box	the descr	
	pages _	, filed with the demand
	pages _	, filed with the letter of
	pages _	, 1100 11111 1111
	the clain	
	pages	, as amended (together with any statement under Article 19, filed with the demand
	pages	, as allicited (together with any), filed with the demand
	pages	, as allicitode (together, filed with the demand, filed with the letter of
	pages	, fried with the lotter of
	the drav	vings: , as originally filed
	pages	, filed with the demand
	pages	
	pages	, filed with the letter of
	the seque	ence listing part of the description:
ب	•	, as originary med
	pages	
	nages	, filed with the letter of
2. Withe The	internation ese element the lan	to the language, all the elements marked above were available or furnished to this Authority in the language in which anal application was filed, unless otherwise indicated under this item. Into were available or furnished to this Authority in the following language Into were available or furnished for the purposes of international search (under Rule 23.1(b)). Inguage of publication of the international application (under Rule 48.3(b)). Inguage of the translation furnished for the purposes of international preliminary examination (under Rule 55.2 and/
3. W	or 55.	
pro		tined in the international application in written form.
│	- Conta	together with the international application in computer readable form.
│	d inted	shed subsequently to this Authority in written form.
 -	_	A set a situation computer readable form.
	The	statement that the subsequently furnished written sequence listing does not go beyond and
	The	national application as filed has been furnished. statement that the information recorded in computer readable form is identical to the written sequence listing has furnished.
1, -	¬ ".	amendments have resulted in the cancellation of:
4. L	The	
	뭐	the description, pages
	님	the claims, Nos
5.	لــا This	report has been established as if (some of) the amendments had not been made, since they have been considered to go and the disclosure as filed, as indicated in the Supplemental Box (Rule 70.2(c)).**
* F	beyo Replaceme n this rep	and the disclosure as filed, as indicated in the suppression of the disclosure as filed, as indicated in the seceiving Office in response to an invitation under Article 14 are referred the superior of the second
**,	and 70.17) Any replac). Cement sheet containing such amendments must be referred to under item 1 and annexed to this report.

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

lational application No.
PCT/JP00/00444

IV. Lack of unity of invention
1. In response to the invitation to restrict or pay additional fees the applicant has:
restricted the claims.
paid additional fees.
paid additional fees under protest.
neither restricted nor paid additional fees.
2. This Authority found that the requirement of unity of invention is not complied with and chose, according to Rule 68.1, not to invite the applicant to restrict or pay additional fees.
3. This Authority considers that the requirement of unity of invention in accordance with Rules 13.1, 13.2 and 13.3 is complied with.
not complied with for the following reasons:
This examination finds that the compounds set forth in Claims 30-34 are intermediates of the compound set forth in Claim 1, and because the compounds set forth in Claims 30-34 are each compounds that are not novel, it cannot be stated that the main structural members shared by the intermediates and the final product are novel.
Therefore, the subject matter of Claims 1-29, 30, 31, 32, 33, and 34 do not all share the same technical matters, and the inventions of Claims 1-29, 30, 31, 32, 33 and 34 do not constitute a group of inventions so linked as to form a single general inventive concept.
Consequently, the following parts of the international application were the subject of international preliminary examination in establishing this report:
all parts.
the parts relating to claims Nos.

tatement			
Novelty (N)	Claims	6-12,19,21-23,25-27	YES
	Claims	1-5,13-18,20,24,28-34	NO
Inventive step (IS)	Claims	6-12,19,21-23,25-27	YES
	Claims	1-5,13-18,20,24,28-34	NO
Industrial applicability (IA)	Claims	1-34	YES
	Claims		NO

2. Citations and explanations

The inventions set forth in Claims 1, 13-18, 20, 24, and 28-29 are described in document 1 [JP, 7-188282, A1 (Yoko Suetsuna) 25 July 1995 (25.07.95)] and document 2 [JP, 6-220088, A1 (Asahi Chemical Industry Co., Ltd.) 9 August 1994 (09.08.94)] cited in the international search report, and therefore do not appear to be novel and do not appear to involve an inventive step. Documents 1 and 2 describe compounds corresponding to General Formulas (1), (4), and (5) of this application.

The inventions set forth in Claims 1-5, 13-18, 24, and 28-29 are described in document 3 [EP, 532466, A2 (Ciba-Geigy AG) 17 March 1993 (17.03.93] cited in the international search report, and therefore do not appear to be novel and do not appear to involve an inventive step. Document 3 describes compounds corresponding to General Formulas (1), (4), and (5) of this application.

The invention set forth in Claim 30 is described in document 4 [EP, 111266, A (Ciba-Geigy AG) 20 June 1984 (20.06.84] cited in the international search report, and therefore does not appear to be novel and does not appear to involve an inventive step. Document 4 describes a compound corresponding to General Formula (6) of this application.

The invention set forth in Claim 31 is described in document 5 [WO, 97/19908, A1 (Nihon Noyaku Co., Ltd.) 5 June 1997 (05.06.97)] cited in the international search report, and therefore does not appear to be novel and does not appear to involve an inventive step. Document 5 describes a compound corresponding to General Formula (7) of this application.

The invention set forth in Claim 32 is described in document 3 and document 6 [Budavari S. et al., "The Merck Index," (1996) Merck & Co., Inc., p. 1677] cited in the international search report, and therefore does not appear to be novel and does not appear to involve an inventive step. Documents 3 and 6 describe a compound corresponding to General Formula (8) of this application.

The invention set forth in Claim 33 is described in documents 3, 5 and 7 [Budavari S. et al., "The Merck Index," (1996) Merck & Co., Inc., p. 1253] cited in the international search report, and therefore does not appear to be novel and does not appear to involve an inventive step. Documents 3, 5 and 7 describe a compound corresponding to General Formula (9) of this application.

The invention set forth in Claim 34 is described in documents 3-5 and 8 [Budavari S. et al., "The Merck Index," (1996) Merck & Co., Inc., p. 1690] cited in the international search report, and therefore does not appear to be novel and does not appear to involve an inventive step. Documents 3-5 and 8 describe a compound corresponding to General Formula (10) of this application.

PCT/JP00/00444 VI. Certain documents cited 1. Certain published documents (Rule 70.10) Application No. Publication date Filing date Priority date (valid claim) Patent No. (day/month/year) (day/month/year) (day/month/year) WO,00/17231,A1 30 March 2000 (30.03.2000) 24 September 1999 (24.09.1999) 24 September 1998 (24.09.1998) [E,X] WO,99/09053,A1 25 February 1999 (25.02.1999) 14 August 1998 (14.08.1998) 15 August 1997 (15.08.1997) 2. Non-written disclosures (Rule 70.9) Date of written disclosure Kind of non-written disclosure Date of non-written disclosure referring to non-written disclosure (day/month/year) (day/month/year)

VIII. Certain observations on the international application

The following observations on the clarity of the claims, description, and drawings or on the question whether the claims are fully supported by the description, are made:

The inventions of Claims 1-22 and 24-34 are not sufficiently supported in the Specification.

The compounds described in Claims 1-22 and 28-34 are described as a Markush type claim that includes an extremely large number of compounds. However, based on the description in the Specification, this examination finds that not all of these compounds have the desired activity.

Furthermore, it should be noted that the compounds described in Claims 30-34 are present in an extremely large number of prior art documents in addition to the documents cited in the international search report.

77

PCT

国際予備審査報告

REC'D 1 8 AUG 2000

(法第12条、法施行規則第56条) [PCT36条及びPCT規則70]

出願人又は代理人 の書類記号 YCT-442	今後の手続きについては、国際予備審査報告の送付通知(様式PCT/ IPEA/416)を参照すること。	
国際出願番号 PCT/JP00/00444	国際出願日 (日.月.年) 28.01.00	優先日 (日.月.年) 28.01.99
国際特許分類 (IPC) Int.Cl' C07K 5/087, A61K 38/00	6, A61P 1/00, A61P 5/00, C07K 5/062, C07	7K 5/065, C07C 229/06, C07C 229/36
出願人(氏名又は名称) 中外製薬株式会社	±	
2. この国際予備審査報告は、この表記 この国際予備審査報告には、F 査機関に対してした訂正を含認 (PCT規則70.16及びPCT この附属書類は、全部で 3. この国際予備審査報告は、次の内記 I × 国際予備審査報告の基礎 II	紙を含めて全部で 6 ペ 附属書類、つまり補正されて、この報告 む明細書、請求の範囲及び/又は図面も 実施細則第607号参照) ページである。 容を含む。 を を を を を と を と と と と と と と と と の の の の の の の の の の の の の	の基礎とされた及び/又はこの国際予備審 添付されている。

国際予備審査の請求書を受理した日 28.01.00	国際予備審査報告を作成した日 02.08.00
名称及びあて先	特許庁審査官(権限のある職員) 4B 9281
日本国特許庁 (IPEA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	高堀 栄二
ANALY I TALES OF THE STATE OF	電話番号 03-3581-1101 内線 3448

4		
国際予備審査報告	国際出願番号	PCT/JP00/004

I.	国際予備審査報	報告の基礎			
1. この国際予備審査報告は下記の出願書類に基づいて作成された。(法第6条(PCT14条)の規定に基づく命令に 応答するために提出された差し替え用紙は、この報告書において「出願時」とし、本報告書には添付しない。 PCT規則70.16,70.17)					
Σ	く 出願時の国際	祭出願書類			
	明細書 明細書 明細書	第 第 	ページ、 ページ、 ページ、	出願時に提出されたもの 国際予備審査の請求書と 	
	請求の範囲 請求の範囲 請求の範囲 請求の範囲	第	項、 項、 項、	出願時に提出されたもの PCT19条の規定に基 国際予備審査の請求書と	らづき補正されたもの
	図面 図面 図面	第 第 	ページ/図、 ページ/図、 ページ/図、	出願時に提出されたもの国際予備審査の請求書と	
	明細書の配列	列表の部分 第 列表の部分 第 列表の部分 第	ページ、 ページ、 ページ、	出願時に提出されたもの 国際予備審査の請求書と	
 2. 上記の出願書類の言語は、下記に示す場合を除くほか、この国際出願の言語である。 上記の書類は、下記の言語である 語である。 国際調査のために提出されたPCT規則23.1(b)にいう翻訳文の言語 					
□ この国際出願に含まれる書面による配列表 □ この国際出願と共に提出されたフレキシブルディスクによる配列表 □ 出願後に、この国際予備審査(または調査)機関に提出された書面による配列表 □ 出願後に、この国際予備審査(または調査)機関に提出されたフレキシブルディスクによる配列表 □ 出願後に提出した書面による配列表が出願時における国際出願の開示の範囲を超える事項を含まない旨の陳述書の提出があった □ 書面による配列表に記載した配列とフレキシブルディスクによる配列表に記録した配列が同一である旨の陳述書の提出があった。					
4. [[補正により、] 明細書] 請求の範囲] 図面	下記の書類が削除された。 第 第 図面の第	ページ 項 ペー	ジ/図	
5. この国際予備審査報告は、補充欄に示したように、補正が出願時における開示の範囲を越えてされたものと認められるので、その補正がされなかったものとして作成した。(PCT規則70.2(c) この補正を含む差し替え用紙は上記1. における判断の際に考慮しなければならず、本報告に添付する。)					

国際出願番号 PCT/JP00/00444

IV.	乳	明の単一性の欠如
1.	a	対の範囲の減縮又は追加手数料の納付の求めに対して、出願人は、
		請求の範囲を減縮した。
	×	追加手数料を納付した。
٠		追加手数料の納付と共に異議を申立てた。
		請求の範囲の減縮も、追加手数料の納付もしなかった。
2		国際予備審査機関は、次の理由により発明の単一性の要件を満たしていないと判断したが、PCT規則68.1の規定 に従い、請求の範囲の減縮及び追加手数料の納付を出願人に求めないこととした。
3.	(3	国際予備審査機関は、PCT規則13.1、13.2及び13.3に規定する発明の単一性を次のように判断する。
		満足する。
	\boxtimes	以下の理由により満足しない。
		請求項30-34に記載されている化合物は、請求項1に記載された化合物の中間体であると認められるが、請求項30-34に記載されている化合物は、いずれも新規ではない化合物を含むものであるから、中間体及び最終生成物に共通する主要な構造部分が新規であるとはいえない。 したがって、請求の範囲1-29、30、31、32、33及び34の全てに共通の事項はなく、請求の範囲1-29、30、31、32、33及び34に記載された発明が単一の一般的発明概念を形成するように連関している一群の発明であるとは認められない。
	,	したがって、この国際予備審査報告書を作成するに際して、国際出願の次の部分を、国際予備審査の対象にした。
4.	[<u>자</u>]	すべての部分
		請求の範囲 に関する部分
l		

国際予備審査報告

国際出願番号 PCT/JP00/00444

V.	新規性、進歩性又は産業上の利用で 文献及び説明	可能性についての法第12条	(PCT35条(2)) に定める見解、	それを裏付ける
1.	見解			
	新規性(N)	請求の範囲 _ 請求の範囲 _	6-12, 19, 21-23, 25-27 1-5, 13-18, 20, 24, 28-34	
	進歩性 (IS)	請求の範囲 _ 請求の範囲 _	6-12, 19, 21-23, 25-27 1-5, 13-18, 20, 24, 28-34	有 無
	産業上の利用可能性(IA)	請求の範囲 _ 請求の範囲 _	1-34	有 無
		·		

2. 文献及び説明 (PCT規則70.7)

請求の範囲1、13-18、20、24、28-29は、国際調査で引用された文献1 (JP,7-188282,A1 (末綱陽子) 25.7月.1995(25.07.95))、文献2 (JP,6-22008 8,A1 (旭化成株式会社) 9.8月.1994(09.08.94)) に記載されているので新規性及び進歩性を有しない。文献1、2には、本願の一般式(1)、(4)、(5)に該当する化合物が記載されている。

化合物が記載されている。 請求の範囲1-5、13-18、24、28-29は、国際調査で引用された文献 3 (EP,532466,A2 (CIBA GEIGY AG) 17.3月.1993(17.03.93)) に記載されているので 新規性及び進歩性を有しない。文献3には、本願の一般式(1)、(4)、(5)に 該当する化合物が記載されている。

請求の範囲30は、国際調査で引用された文献4 (EP,111266,A (CIBA GEIGY AG) 20.6月.1984(20.06.84)) に記載されているので新規性及び進歩性を有しない。文献4には、本願の一般式(6)に該当する化合物が記載されている。 請求の範囲31は、国際調査で引用された文献5 (WO,97/19908,A1 (日本農薬株式

請求の範囲31は、国際調査で引用された文献5 (WO,97/19908,A1 (日本農薬株式会社)5.6月.1997(05.06.97)) に記載されているので新規性及び進歩性を有しない。文献5には、本願の一般式 (7) に該当する化合物が記載されている。

請求の範囲32は、文献3、国際調査で引用された文献6 (BUDAVARI, S. et al. "Th e Merck Index", (1996) MERCK & CO., Inc., p. 1677) に記載されているので新規性及び進歩性を有しない。文献3、6には、本願の一般式(8) に該当する化合物が記載されている。

請求の範囲33は、文献3、文献5、国際調査で引用された文献7 (BUDAVARI, S. et al. "The Merck Index", (1996) MERCK & CO., Inc., p. 1253) に記載されているので新規性及び進歩性を有しない。文献3、5、7には、本願の一般式(9)に該当する化合物が記載されている。

請求の範囲34は、文献3-5、国際調査で引用された文献8 (BUDAVARI, S. et a 1. "The Merck Index", (1996) MERCK & CO., Inc., p. 1690) に記載されているので新規性及び進歩性を有しない。文献3-5、8には、本願の一般式(10)に該当する化合物が記載されている。

国際出願番号 PCT/JP00/00444

VI. ある種の引用文献

1. ある種の公表された文書 (PCT規則70.10)

出願番号 特許番号	公知日 (日.月.年)	出願日 (日.月.年)	優先日(有効な優先権の主張) (日.月.年)
WO, 00/17231, A1 「E, X」	30. 03. 00	24. 09. 99	24. 09. 98
WO, 99/09053, A1 「P, X」	25. 02. 99	14. 08. 98	15. 08. 97

2. 書面による開示以外の開示 (PCT規則70.9)

書面による開示以外の開示の種類	書面による開示以外の開示の日付	書面による開示以外の開示に言及している
-	(日.月.年)	書面の日付(日.月.年)

国際出願番号 PCT/JP00/00444

国际 1. 湘县 五 秋 1

WE. 国際出願に対する意見

請求の範囲、明細審及び図面の明瞭性又は請求の範囲の明細書による十分な裏付についての意見を次に示す。

請求の範囲1-22、24-34は、明細書によって十分に裏付けられていない。 請求の範囲1-22、28-34に記載されている化合物は、マーカッシュ形式で 記載されており、当該化合物には極めて多数の化合物が含まれることになるが、明細 書の記載からではその化合物のすべてが所望の活性を有するとは認められない。 また、請求の範囲30-34に記載されている化合物は、国際調査で引用した文献 以外にも極めて多数の先行技術が存在することに留意されたい。

Translation

PATENT COOPERATION TREATY

PCT

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

Applicant's or agent's file reference YCT-442	FOR FURTHER ACTION	SeeNotificat Examination	ionofTransmittalofInternational Preliminary Report (Form PCT/IPEA/416)
International application No.	International filing date (day/n	nonth/year)	Priority date (day/month/year)
PCT/JP00/00444	28 January 2000 (28	01.00)	28 January 1999 (28.01.99)
International Patent Classification (IPC) or n C07K 5/087, A61K 38/06, A61P	national classification and IPC P 1/00, 5/00, C07K 5/062, 5/0	965, C07C 22	29/06, 229/36
Applicant CH	UGAI SEIYAKU KABUS	HIKI KAI	SHA
This international preliminary exam and is transmitted to the applicant a	nination report has been prepared according to Article 36.	by this Interr	national Preliminary Examining Authority
2. This REPORT consists of a total of	sheets, includi	ng this cover :	sheet.
This report is also accompan amended and are the basis for 70.16 and Section 607 of the	nied by ANNEXES, i.e., sheets or or this report and/or sheets conta e Administrative Instructions und	f the descripti	ion, claims and/or drawings which have been ations made before this Authority (see Rule
	otal of sheets.		
3. This report contains indications rela	ating to the following items:		
1 Basis of the report			•
Il Priority			
III Non-establishment	of opinion with regard to novel	y, inventive s	tep and industrial applicability
IV Lack of unity of in	vention		
Descend statemen	nt under Article 35(2) with regar- mations supporting such stateme	d to novelty, i nt	nventive step or industrial applicability;
VI Certain documents	cited		
	the international application	,	
	ns on the international application	n	
			8:
Date of submission of the demand	Date	of completion	of this report
28 January 2000 (28.			August 2000 (02.08.2000)
Name and mailing address of the IPEA/JP	Auth	orized officer	
Facsimile No.	Telep	hone No.	

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No. PCT/JP00/00444

	of the rep	
1. With	regard to	the elements of the international application:*
\boxtimes	the inter	national application as originally filed
\sqcap	the desc	ription: , as originally filed
	pages	, filed with the demand
	pages	filed with the letter of
	pages _	, filed with the letter of
	the clair	ns: , as originally filed
	pages	, as originary and statement under Article 19
	pages .	, as amended (together with any statement under Article 19
	pages .	, filed with the demand , filed with the demand
	pages	, filed with the fexes of
	the drav	vings:
	pages	, as originally filed , filed with the demand
	pages	, filed with the letter of
	pages	·
	the seque	nce listing part of the description:
	pages	filed with the demand
	pages	, filed with the letter of
	pages	to the language, all the elements marked above were available or furnished to this Authority in the language in which
the The	internationse elements the land	nat application was filed, unless otherwise must wish application was filed, unless otherwise must were available or furnished to this Authority in the following language nguage of a translation furnished for the purposes of international search (under Rule 23.1(b)). nguage of publication of the international application (under Rule 48.3(b)). nguage of the translation furnished for the purposes of international preliminary examination (under Rule 55.2 and/
3. Wi		I to any nucleotide and/or amino acid sequence disclosed in the international application, the international examination was carried out on the basis of the sequence listing:
		ined in the international application in written form.
	filed t	ogether with the international application in computer readable form.
	furnis	hed subsequently to this Authority in written form.
	٦	Let a become the to this Authority in computer readable form.
	The :	statement that the subsequently furnished written sequence listing does not go beyond the disclosure in the
] The s	statement that the information recorded in computer readable form is identical to the written sequence listing has furnished.
4.	The a	amendments have resulted in the cancellation of:
_		the description, pages
	Ħ	the claims. Nos.
	H	the drawings, sheets/fig
5.	This r	report has been established as if (some of) the amendments had not been made, since they have been considered to go and the disclosure as filed, as indicated in the Supplemental Box (Rule 70.2(c)).**
in	placemen this repo	at sheets which have been furnished to the receiving Office in response to an invitation under Article 14 are referred to Ort as "originally filed" and are not annexed to this report since they do not contain amendments (Rule 70.16
** An	y replace	ment sheet containing such amendments must be referred to under item 1 and annexed to this report.

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.

PCT/JP00/00444

IV. Lack of unity of invention 1. In response to the invitation to restrict or pay additional fees the applicant has: restricted the claims. paid additional fees. paid additional fees under protest. neither restricted nor paid additional fees. This Authority found that the requirement of unity of invention is not complied with and chose, according to Rule 68.1, not to invite the applicant to restrict or pay additional fees. 3. This Authority considers that the requirement of unity of invention in accordance with Rules 13.1, 13.2 and 13.3 is complied with. not complied with for the following reasons: This examination finds that the compounds set forth in Claims 30-34 are intermediates of the compound set forth in Claim 1, and because the compounds set forth in Claims 30-34 are each compounds that are not novel, it cannot be stated that the main structural members shared by the intermediates and the final product are novel. Therefore, the subject matter of Claims 1-29, 30, 31, 32, 33, and 34 do not all share the same technical matters, and the inventions of Claims 1-29, 30, 31, 32, 33 and 34 do not constitute a group of inventions so linked as to form a single general inventive concept. 4. Consequently, the following parts of the international application were the subject of international preliminary examination in establishing this report: all parts. the parts relating to claims Nos.

International application No.

PCT/JP00/00444

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

Statement			
Novelty (N)	Claims	6-12,19,21-23,25-27	YES
	Claims	1-5,13-18,20,24,28-34	NO
Inventive step (IS)	Claims	6-12,19,21-23,25-27	YES
	Claims	1-5,13-18,20,24,28-34	NO
Industrial applicability (IA)	Claims	1-34	YES
	Claims		NO

2. Citations and explanations

The inventions set forth in Claims 1, 13-18, 20, 24, and 28-29 are described in document 1 [JP, 7-188282, A1 (Yoko Suetsuna) 25 July 1995 (25.07.95)] and document 2 [JP, 6-220088, A1 (Asahi Chemical Industry Co., Ltd.) 9 August 1994 (09.08.94)] cited in the international search report, and therefore do not appear to be novel and do not appear to involve an inventive step. Documents 1 and 2 describe compounds corresponding to General Formulas (1), (4), and (5) of this application.

The inventions set forth in Claims 1-5, 13-18, 24, and 28-29 are described in document 3 [EP, 532466, A2 (Ciba-Geigy AG) 17 March 1993 (17.03.93] cited in the international search report, and therefore do not appear to be novel and do not appear to involve an inventive step. Document 3 describes compounds corresponding to General Formulas (1), (4), and (5) of this application.

The invention set forth in Claim 30 is described in document 4 [EP, 111266, A (Ciba-Geigy AG) 20 June 1984 (20.06.84] cited in the international search report, and therefore does not appear to be novel and does not appear to involve an inventive step. Document 4 describes a compound corresponding to General Formula (6) of this application.

The invention set forth in Claim 31 is described in document 5 [WO, 97/19908, A1 (Nihon Noyaku Co., Ltd.) 5 June 1997 (05.06.97)] cited in the international search report, and therefore does not appear to be novel and does not appear to involve an inventive step. Document 5 describes a compound corresponding to General Formula (7) of this application.

The invention set forth in Claim 32 is described in document 3 and document 6 [Budavari S. et al., "The Merck Index," (1996) Merck & Co., Inc., p. 1677] cited in the international search report, and therefore does not appear to be novel and does not appear to involve an inventive step. Documents 3 and 6 describe a compound corresponding to General Formula (8) of this application.

The invention set forth in Claim 33 is described in documents 3, 5 and 7 [Budavari S. et al., "The Merck Index," (1996) Merck & Co., Inc., p. 1253] cited in the international search report, and therefore does not appear to be novel and does not appear to involve an inventive step. Documents 3, 5 and 7 describe a compound corresponding to General Formula (9) of this application.

The invention set forth in Claim 34 is described in documents 3-5 and 8 [Budavari S. et al., "The Merck Index," (1996) Merck & Co., Inc., p. 1690] cited in the international search report, and therefore does not appear to be novel and does not appear to involve an inventive step. Documents 3-5 and 8 describe a compound corresponding to General Formula (10) of this application.

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No.

PCT/JP00/00444

in published documents	(Rule 70.10)		السنماء المناسب والمسام
Application No. Patent No.	Publication date (day/month/year)	Filing date (day/month/year)	Priority date (valid claim) (day/month/year)
WO,00/17231,A1	30 March 2000 (30.03.2000)	24 September 1999 (24.09.1999)	24 September 1998 (24.09.
[E,X] WO,99/09053,A1	25 February 1999 (25.02.1999)	14 August 1998 (14.08.1998)	15 August 1997 (15.08.19

2.	Non-written	disclosures	(Rule	70.9)

Kind of non-written disclosure

Date of non-written disclosure (day/month/year)

Date of written disclosure referring to non-written disclosure (day/month/year)

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

PCT/JP00/00444

VIII. Certain observations on the international application

The following observations on the clarity of the claims, description, and drawings or on the question whether the claims are fully supported by the description, are made:

The inventions of Claims 1-22 and 24-34 are not sufficiently supported in the Specification.

The compounds described in Claims 1-22 and 28-34 are described as a Markush type claim that includes an extremely large number of compounds. However, based on the description in the Specification, this examination finds that not all of these compounds have the desired activity.

Furthermore, it should be noted that the compounds described in Claims 30-34 are present in an extremely large number of prior art documents in addition to the documents cited in the international search report.

国 際 事 務 局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類7 C07K 5/087, A61K 38/06, A61P 1/00, 5/00, C07K 5/062, 5/065, C07C 229/06, 229/36

A1

WO00/44770

(43) 国際公開日

2000年8月3日(03.08.00)

(21) 国際出願番号

PCT/JP00/00444

(22) 国際出願日

2000年1月28日(28.01.00)

(30) 優先権データ

特願平11/20523

1999年1月28日(28.01.99)

特願平11/283163

1999年10月4日(04.10.99)

(71) 出願人(米国を除くすべての指定国について) 中外製薬株式会社 (CHUGAI SEIYAKU KABUSHIKI KAISHA)[JP/JP] 〒115-8543 東京都北区浮間5丁目5番1号 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

松岡宏治(MATSUOKA, Hiroharu)[JP/JP]

佐藤 勉(SATO, Tsutomu)[JP/JP]

高橋忠勝(TAKAHASHI, Tadakatsu)[JP/JP]

〒412-8513 静岡県御殿場市駒門1丁目135番地

中外製薬株式会社内 Shizuoka, (JP)

ウォンヒョアパート103-902 Kyunggi-do, (KR)

キム ドンイク(KIM, Dong Ick)[KR/KR] 437-020 キョンギド ウィワンシ ワンゴクドン 599 ジョン キョンユン(JUNG, Kyung Yun)[KR/KR] 442-372 キョンギド スウォンシ バルタルク

メタン2ドン 50 ククドンアパート103-1004 Kyunggi-do, (KR)

パク チャンヒ(PARK, Chan Hee)[KR/KR]

442-470 キョンギド スウォンシ パルタルク ョントンドン 955-1 ファンコルマウル

ジュコンアパート129-1201 Kyunggi-do, (KR)

(74) 代理人

社本一夫,外(SHAMOTO, Ichio et al.)

〒100-0004 東京都千代田区大手町二丁目2番1号

新大手町ビル206区 ユアサハラ法律特許事務所 Tokyo, (JP)

(81) 指定国 AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), ARIPO特許 (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM)

添付公開書類

国際調査報告書

SUBSTITUTED PHENETHYLAMINE DERIVATIVES (54)Title:

置換フェネチルアミン誘導体 (54)発明の名称

Substituted phenethylamine derivatives exhibiting motilin receptor antagonism and being useful as drugs, which are compounds represented by general formula (1), hydrates of the same, or pharmaceutically acceptable salts thereof, wherein Cy is a group represented by (57) Abstract general formula (2): an optionally substituted heterocyclic group, C₃-C₇ cycloalkyl or phenyl; R₁, R₂, R₃, R₄ and R₅ are each hydrogen, halogeno, hydroxyl, amino, trifluoromethyl or cyano, at least one of R₁, R₂, R₃, R₄ and R₅ being halogeno, trifluoromethyl or cyano.

	_		
	INTERNATIONAL SEARCH REPORT	International appl	ication No.
		PCT/J	P00/00444
	SIFICATION OF SUBJECT MATTER .Cl ⁷	/00, C07K 5/	062, C07K 5/065,
According	to International Patent Classification (IPC) or to both national classification and	nd IPC	
	S SEARCHED		
	ocumentation searched (classification system followed by classification symbol C1 C07K 5/087, A61K 38/06, C07K 5/062, C07 229/36		7C 229/06, C07C
	tion searched other than minimum documentation to the extent that such docu		٠
	ata base consulted during the international search (name of data base and, whi ISTRY (STN), CA (STN), CAPLUS (STN)	ere practicable, sea	rch terms used)
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant	int passages	Relevant to claim No.
E,X	WO, 00/17231, A1 (Chugai Pharmaceutical Co. 30 March, 2000 (30.03.00) (Family: none)	Àlita.),	1-34
P,X	WO, 99/09053, Al (Chugai Pharmaceutical Co., 25 February, 1999 (25.02.99) & AU, 9886490, Al & JP, 2000-044595, A2	Ltd.),	1-34
х	JP, 7-188282, A1 (Yoko Suetsuna), 25 July, 1995 (25.07.95) (Family: none)		1,13-18,20, 24,28-29
х	JP, 6-220088, Al (Asahi Chemical Industry Co 09 August, 1994 (09.08.94) (Family: none)	o., Ltd.),	1,13-18,20, 24,28-29
х	EP, 532466, A2 (CIBA GEIGY AG),		1-5,13-18,

1	11/ March, 1993 (17.03.93)		24,28-29,
1	& AU, 9222889, A & NO, 920	3533, A	32-34
ł	& CA, 2077948, A & FI, 920	4035. A	ĺ
1	& JP, 5-230095, A & HU, 636		
1	& TW, 213454, A & CZ, 920	· / · · · ·	
1	& ZA, 9206938, A & NZ, 244	·	
冈			
	Further documents are listed in the continuation of Box C.	See patent family annex.	
•	Special categories of cited documents:	"T" later document published after the	nternational filing date or
"A"	document defining the general state of the art which is not	priority date and not in conflict wit	
"E"	considered to be of particular relevance	understand the principle or theory	
F .	earlier document but published on or after the international filing date	"X" document of particular relevance; to considered novel or cannot be cons	
"L"	document which may throw doubts on priority claim(s) or which is		
	cited to establish the publication date of another citation or other	"Y" document of particular relevance; t	he claimed invention cannot be
"O"	special reason (as specified)	considered to involve an inventive	
١٧	document referring to an oral disclosure, use, exhibition or other means	combined with one or more other so combination being obvious to a per	
"P"	document published prior to the international filing date but later	"&" document member of the same pate	
	than the priority date claimed		
Date	of the actual completion of the international search	Date of mailing of the international s	earch report
	27 April, 2000 (27.04.00)	16 May, 2000 (16.0	
	•		

Authorized officer

Telephone No.

24,28-29,

Japanese Patent Office

Name and mailing address of the ISA/

Facsimile No.

17 March, 1993 (17.03.93)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/00444

ategory*	tion). DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
ategory	& SK, 9202802, A3 & CN, 1089269, A & RU, 2067585, C1 & US, 5643878, A & IL, 103126, A	
x	EP, 111266, A (CIBA GEIGY AG), 20 June, 1984 (20.06.84) & AU, 8321937, A & NO, 8304441, A & DK, 8305559, A & FI, 8304345, A & JP, 59-110661, A & HU, 32550, T & PT, 77761, A & DD, 217807, A & ZA, 8308986, A & US, 4595677, A & ES, 8606394, A & ES, 8702437, A	30,34
x	WO, 97/19908, A1 (NIHON NOHYAKU CO., LTD.), 05 June, 1997 (05.06.97) & AU, 9677105, A1 & JP, 9-208541, A2	31,33-34
x	BUDAVARI, S. et al. "The Merck Index", (1996) MERCK & CO., Inc., p.1677	32
x	BUDAVARI, S. et al. "The Merck Index", (1996) MERCK & CO., Inc., p.1253	
x	BUDAVARI, S. et al. "The Merck Index", (1996) MERCK & CO., Inc., p.1690	34
		/
		-

PCT

世界知的所有権機関 国際事務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類7

C07K 5/087, A61K 38/06, A61P 1/00, 5/00, C07K 5/062, 5/065, C07C 229/06, 229/36

A1

(11) 国際公開番号

WO00/44770

(43) 国際公開日

2000年8月3日(03.08.00)

(21) 国際出願番号

PCT/JP00/00444

(22) 国際出願日

2000年1月28日(28.01.00)

(30) 優先権データ

特願平11/20523 特願平11/283163 1999年1月28日(28.01.99)

1999年10月4日(04.10.99)

(71) 出願人(米国を除くすべての指定国について)

中外製薬株式会社 (CHUGAI SEIYAKU KABUSHIKI KAISHA)[JP/JP] 〒115-8543 東京都北区浮問5丁目5番1号 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

松岡宏治(MATSUOKA, Hiroharu)[JP/JP]

佐藤 勉(SATO, Tsutomu)[JP/JP]

高橋忠勝(TAKAHASHI, Tadakatsu)[JP/JP]

〒412-8513 静岡県御殿場市駒門1丁目135番地

中外製薬株式会社内 Shizuoka, (JP)

キム ドンイク(KIM, Dong lck)[KR/KR]

437-020 キョンギド ウィワンシ ワンゴクドン 599

ウォンヒョアパート103-902 Kyunggi-do, (KR)

ジョン キョンユン(JUNG, Kyung Yun)[KR/KR] 442-372 キョンギド スウォンシ パルタルク

メタン2ドン 50 ククドンアパート103-1004 Kyunggi-do, (KR)

パク チャンヒ(PARK, Chan Hee)[KR/KR]

442-470 キョンギド スウォンシ パルタルク

ョントンドン 955-1 ファンコルマウル

ジュコンアパート129-1201 Kyunggi-do, (KR)

(74) 代理人

JP

社本一夫,外(SHAMOTO, Ichio et al.)

〒100-0004 東京都千代田区大手町二丁目2番1号 新大手町ビル206区 ユアサハラ法律特許事務所 Tokyo, (JP)

(81) 指定国 AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), ARIPO特許 (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM)

添付公開書類

国際調査報告書

(54) Title: SUBSTITUTED PHENETHYLAMINE DERIVATIVES

(54)発明の名称 置換フェネチルアミン誘導体

$$\begin{array}{c}
R_3 \\
R_4
\end{array}$$

$$\begin{array}{c}
R_2 \\
R_5
\end{array}$$
(2)

(57) Abstract

Substituted phenethylamine derivatives exhibiting motilin receptor antagonism and being useful as drugs, which are compounds represented by general formula (1), hydrates of the same, or pharmaceutically acceptable salts thereof, wherein Cy is a group represented by general formula (2): an optionally substituted heterocyclic group, C₃-C₇ cycloalkyl or phenyl; R₁, R₂, R₃, R₄ and R₅ are each hydrogen, halogeno, hydroxyl, amino, trifluoromethyl or cyano, at least one of R₁, R₂, R₃, R₄ and R₅ being halogeno, trifluoromethyl or cyano.

(37)35/11

本発明の目的は、モチリンレセプターアンタゴニスト作用を有し、医薬として 有用な、置換フェネチルアミン誘導体を提供することである。

本発明により、 一般式(1)

(式中、Суは一般式(2)

で示される基、置換基を有していてもよい複素環、炭素数 $3\sim7$ のシクロアルキル基、またはフェニル基を表す。 R_1 、 R_2 、 R_3 、 R_4 、 R_5 は水素原子、ハロゲン原子、水酸基、アミノ基、トリフルオロメチル基、または、ニトリル基を表し、 R_1 、 R_2 、 R_3 、 R_4 、 R_5 のうち少なくとも一つは、ハロゲン原子、トリフルオロメチル基、ニトリル基のうちのいずれかである。)

で示される化合物、その水和物、またはその薬学的に許容しうる塩が提供される。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

アラブ首長国連邦 アンティグー アルバニア アルメニア オーストリア オーストリア オーストリリア オースト・ファ オースバイへ ボズニアン ボズニアン ボバルバドス カザフスタン セントルシア リヒテンシュタイン スリ・ランカ リベリア ドミニカ アルジェリア エストニア スペイン スーダン スウェーデン シンガポール スロヴェニアスロヴァキアシエラ・レオネ AM AT フィンランドフランス セネガルスワジランド チャー BE ベルギー ブルギナ・ファソ ブルガリア MC モナコ MD モルドヴァ GM GN トルクメニスタン ВG マダガスカル マケドニア旧ユーゴスラヴィア ベナン ブラジル ベラルーシ ΒJ ギリシャ ギニア・ビサオ BRY CFG ΜK 共和国 キニア・ピサ クロガリー ハンドネンド M L M N カナダ 中央アフリカ コンゴー モンゴル モーリタニア マラウイ 米国 ウズベキスタン ヴェトナム ユーゴースラヴィア MW マメザンエンド ヘイへ コートジボアール カメルーン 中国 コスタ・リカ MZE NE NO NO -- ア アイスランド イタリア 南アフリカ共和国ジンバブエ ノールウェー ニュー・ジーランド ポーランド キューバキプロス _ ... 14 ケニア キルギスタン チェッコドイツデンマーク ŔŎ

明細書

置換フェネチルアミン誘導体

5 技術分野

本発明は、モチリンレセプターアンタゴニスト作用等を示し、医薬として有用な、置換フェネチルアミン誘導体に関するものである。

背景技術

- 消化管ホルモンの1つであるモチリンは、22個のアミノ酸からなる直鎖のペ 10 プチドであり、ヒトを含む哺乳動物の消化管運動を調節していることはよく知ら れている。外因性に与えたモチリンは、ヒトおよびイヌにおいて空腹期伝播性収 縮 (Interdigestive Migrating Contracti ons, IMC) と同様な収縮を引き起こし、胃排出を促進することが報告され ている (Itoh et al., Scand. J. Gastroentero 15 l., 11, 93-110 (1976); Peeters et al., Ga stroenterology 102, 97-101 (1992))。そのた め、モチリンアゴニストであるエリスロマイシン誘導体が消化管運動機能促進剤 として開発が進められている(Satoh et al., J. Pharmac ol. Exp. Therap., 271, 574-579 (1994); Lar 20 tey et al., J. Med. Chem., 38, 1793-1798(1995); Drug of the Future, 19, 910-912(1994))
- 一方、モチリンレセプターアンタゴニストとしてペプチドおよびポリペプチド
 25 の誘導体が報告されている(Depoortere et al., Eur. J. Pharmacol., 286, 241-247 (1995); Poitras et al., Biochem. Biophys. Res. Commun., 205, 449-454 (1994); Takanashi et al., J. Pharmacol. Exp. Ther., 273, 624-628 (199

5))。これらは、モチリンの消化管運動に対する作用の研究や、本分野における医薬品の開発研究において薬理学的なツールとして使用されている。

モチリンレセプターは、十二指腸に主に存在することが知られていたが、最近、下部消化管の大腸にも存在することが認められ(William et al., Am. J. Physiol., 262, G50-G55 (1992))、上部消化管運動ばかりでなく、下部消化管運動にもモチリンが関与する可能性が示されている。

また、下痢症状を示す過敏性腸症候群患者やストレス下の過敏性腸症候群患者が高モチリン血症を示すことが報告されており(Preston et al., Gut, 26, 1059-1064(1985);Fukudo et al., Tohoku J. Exp. Med., 151, 373-385(1987))、本病態に血中モチリンの上昇が関与する可能性が示唆されている。その他にも高モチリン血症が報告されている病態として、クローン病、潰瘍性大腸炎、膵炎、糖尿病、肥満、吸収不良症候群、細菌性下痢症、萎縮性胃炎、胃腸切除術後などがある。よって、モチリンレセプターアンタゴニストは、過敏性腸症候群などの血中モチリンが上昇している病態を改善し得る可能性がある。

発明の開示

5

10

15

本発明の目的は、モチリンレセプターアンタゴニスト作用を有し、医薬として 20 有用な、置換フェネチルアミン誘導体を提供することである。

本発明者らは、優れたモチリンレセプターアンタゴニスト作用を有する化合物の開発を目的として鋭意研究を重ねた結果、一般式(1)で表される置換フェネチルアミン誘導体が、優れたモチリンレセプターアンタゴニストであることを見いだし、この知見に基づいて本発明を完成させた。

25 すなわち、本発明は、一般式 (1)

(式中、Суは一般式(2)

$$\begin{array}{cccc}
R_3 & R_1 \\
R_4 & R_5
\end{array}$$
(2)

で示される基、置換基を有していてもよい複素環、炭素数 $3\sim7$ のシクロアルキル基、またはフェニル基を表す。 R_1 、 R_2 、 R_3 、 R_4 、 R_5 は水素原子、ハロゲン原子、水酸基、アミノ基、トリフルオロメチル基、ニトリル基を表し、 R_1 、 R_2 、 R_3 、 R_4 、 R_5 のうち少なくとも一つは、ハロゲン原子、トリフルオロメチル基、ニトリル基のうちのいずれかである。

 R_6 は、水素原子、置換基を有していてもよい炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基、アミノ基、または、水酸基を表す。

 R_7 は、水素原子、置換基を有していてもよい炭素数 $1 \sim 3$ の直鎖もしくは分枝鎖状のアルキル基、置換基を有していてもよいアミノ基、または、水酸基を表す。

R₈は、水素原子、メチル基、または、エチル基を表す。

R₉は、置換基を有していてもよい炭素数 1 ~ 6 の直鎖もしくは分枝鎖状のアルキル基、置換基を有していてもよい炭素数 2 ~ 6 の直鎖もしくは分枝鎖状のアルケニル基、置換基を有していてもよい炭素数 2 ~ 6 の直鎖もしくは分枝鎖状のアルキニル基、炭素数 3 ~ 7 のシクロアルキル基、または、置換基を有していてもよいフェニル基を表す。

 R_{20} は、水素原子、または、炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキ 20 ル基を表す。また、 R_9 と R_{20} は一緒になって炭素数 $3\sim7$ のシクロアルキル基 を形成してもよい。

 R_{10} は、水素原子、または、炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基を表す。

 R_{11} は、水素原子、置換基を有していてもよい炭素数 $1 \sim 3$ の直鎖もしくは 25 分枝鎖状のアルキル基、 $-CO-N(R_{14})R_{15}$ 、カルボキシル基、または、 置換基を有していてもよい複素環を表す。

 R_{12} は、水酸基、または、 $-OR_{16}$ を表す。

 R_{13} は、水素原子、炭素数 $1\sim6$ の直鎖もしくは分枝鎖状のアルキル基、炭素数 $2\sim6$ の直鎖もしくは分枝鎖状のアルケニル基、炭素数 $2\sim6$ の直鎖もしくは分枝鎖状のアルキニル基、または一般式 (3)

$$R_{17}$$
 R_{18}
 R_{19}
 R_{19}

5 で示される基を表す。

 R_{14} および R_{15} は、同一または異なって、水素原子、置換基を有していてもよい炭素数 $1\sim 4$ の直鎖もしくは分枝鎖状のアルキル基、炭素数 $3\sim 7$ のシクロアルキル基、炭素数 $1\sim 4$ の直鎖もしくは分枝鎖状のアルキルオキシ基、炭素数 $1\sim 4$ の直鎖もしくは分枝鎖状のアルキルスルホニル基、または複素環を表し、

10 または $-N(R_{14})R_{15}$ として、置換基を有していてもよい $3\sim7$ 負環のアミンを表す。

 R_{16} は、炭素数 $1 \sim 4$ の直鎖状のアルキル基を表す。

R₁₇は、水素原子またはメチル基を表す。

 R_{18} および R_{19} は、一緒になって、炭素数 $3 \sim 7$ のシクロアルキル基もしく 15 はシクロアルケニル基を表す。

Xは、カルボニル基、または、メチレン基を表す。

Yは、カルボニル基、または、メチレン基を表す。

但し、C yが3 - インドリル基のときは、(i) R_{11} は置換基を有していてもよい複素環であるか、または、(i i) R_6 は水素原子であり; R_7 はアミノ 20 基であり; R_8 はメチル基であり; R_9 はイソプロピル基であり; R_{20} は水素原子であり; R_{10} はメチル基であり; R_{11} はカルバモイル基であり; R_{12} はヒドロキシル基であり; R_{13} は t e r t - ブチル基であり;X はカルボニル基であり;Yはカルボニル基である。C yがシクロヘキシル基またはフェニル基のときは、 R_{11} は置換基を有していてもよい複素環である。)で示される化合物、その水和物、またはその薬学的に許容しうる塩を提供するものである。

また、本発明は、一般式(1)で示される化合物を有効成分として含有する 医薬を提供する。さらに、本発明は、上記化合物を含有するモチリンレセプター 5

10

15

アンタゴニストを提供する。また、上記化合物を有効成分として含有する消化管 運動抑制剤も提供する。さらに、上記化合物を有効成分として含有する高モチリン血症治療剤も提供する。

また、本発明は、一般式 (4)

(式中、Cy、 R_6 、 R_8 、 R_9 、 R_{20} 、 R_{10} 、 R_{12} 、 R_{13} 、XおよびYは、請求項1におけると同じ意味を表す。

 R_7 、は、水素原子、保護された置換基を有していてもよい炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基、保護された置換基を有していてもよいアミノ基、または、保護された水酸基を表す。

 R_{11} "は、水素原子、置換基を有していてもよい炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基、-CO-N(R_{14}) R_{15} (ここで、 R_{14} 、 R_{15} は請求項 1 におけると同じ意味を表す。)、カルボキシル基、保護されたアミノ基を有している炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基、または、置換基を有していてもよい複素環を表す。)

で示される化合物、その水和物、またはその薬学的に許容しうる塩も提供する。 また、本発明は、一般式 (5)

$$\begin{array}{c|c}
Cy & R_6 \\
R_7 & & R_8 \\
\hline
 & N & Y \\
R_{20} & R_9 & R_{10}
\end{array}$$
(5)

(式中、C y、 R_6 、 R_8 、 R_9 、 R_{20} 、 R_{10} 、 R_{12} 、 R_{13} 、XおよびYは、請20 求項1におけると同じ意味を表す。

 R_7 "は、水素原子、保護されていてもよい置換基を有していてもよい炭素数 $1\sim 3$ の直鎖もしくは分枝鎖状のアルキル基、保護されていてもよい置換基を有していてもよいアミノ基、または、保護されていてもよい水酸基を表す。

 R_{11} 、は、水素原子、保護された置換基を有していてもよい炭素数 $1\sim3$ の 25 直鎖もしくは分枝鎖状のアルキル基、-CO-N(R_{14}) R_{15} (ここで、 R_{14} 、

 R_{15} は請求項1におけると同じ意味を表す。)、カルボキシル基、または、置換基を有していてもよい複素環を表す。)

で示される化合物、その水和物、またはその薬学的に許容しうる塩を提供する。 また、本発明は、一般式 (6)

5

(式中、 R_8 、 R_9 、 R_{20} 、 R_{10} 、 R_{12} 、 R_{13} 、およびYは、請求項1におけると同じ意味を表す。

P₁は、水素原子、またはアミンの保護基を表す。

15 また、本発明は、一般式 (7)

$$\begin{array}{c|c}
Cy & R_6 \\
R_7 & N & P_2 \\
R_{20} & R_9
\end{array}$$
(7)

(式中、 Cy、 R_6 、 R_8 、 R_9 、 R_{20} 、およびXは、請求項1におけると同じ意味を表す。

R₇"は、水素原子、保護されていてもよい置換基を有していてもよい炭素数 20-1~3の直鎖もしくは分枝鎖状のアルキル基、保護されていてもよい置換基を有 していてもよいアミノ基、または、保護されていてもよい水酸基を表す。

 P_2 は、保護されていてもよいカルボキシル基、ホルミル基、または、脱離基のついたメチル基を表す。)で示される化合物、その水和物、またはその薬学的に許容しうる塩を提供する。

25 また、本発明は、一般式 (8)

(式中、 R_{10} 、 R_{13} は請求項1におけると同じ意味を表す。

P₃は、水素原子、またはアミンの保護基を表す。

 R_{11} / / / / は、水素原子、置換基を有していてもよい炭素数 $1 \sim 3$ の直鎖 もしくは分枝鎖状のアルキル基、-CO-N (R_{14}) R_{15} (ここで、 R_{14} 、 R_{15} は請求項 1 におけると同じ意味を表す。)、カルボキシル基、保護されたアミノ基を有している炭素数 $1 \sim 3$ の直鎖もしくは分枝鎖状のアルキル基、または、置換基を有していてもよい複素環を表す。

 R_{12} $^{\prime}$ は、水酸基、または、 $-OR_{16}$ (ここで、 R_{16} は請求項1 におけると 10 同じ意味を表す。)を表す。)で示される化合物、その水和物、またはその薬学的に許容しうる塩を提供する。

また、本発明は、一般式 (9)

5

20

$$\begin{array}{c}
Cy & R_6 \\
R_7'' & P_4
\end{array} (9)$$

(式中、Су、 R 6は請求項1におけると同じ意味を表す。

 R_7 "は、水素原子、保護されていてもよい置換基を有していてもよい炭素数 $1\sim 3$ の直鎖もしくは分枝鎖状のアルキル基、保護されていてもよい置換基を有していてもよいアミノ基、または、保護されていてもよい水酸基を表す。

P₄は、保護されていてもよいカルボキシル基、ホルミル基、または、脱離基のついたメチル基を表す。)で示される化合物、その水和物、またはその薬学的に許容しうる塩も提供する。

さらに、本発明は、一般式(10)

$$P_5 \stackrel{R_8}{\sim} P_6 \qquad (10)$$

(式中、 R_8 、 R_9 、 R_2 のは請求項1におけると同じ意味を表す。

 P_5 は、水素原子、または、アミンの保護基を表す。

25 P₆は、保護されていてもよいカルボキシル基、ホルミル基、または、脱離基

のついたメチル基を表す。) で示される化合物、その水和物、またはその薬学的 に許容しうる塩も提供する。

一般式(1)で示される化合物の定義において、C yにおける一般式(2)の R_1 、 R_2 、 R_3 、 R_4 、 R_5 における、ハロゲン原子としては、フッ素原子、塩素原子が好ましく、フッ素原子が特に好ましい。また、 $R_1 \sim R_5$ のうち、2つ以上がハロゲン原子である場合には、それらのハロゲン原子は同一でも異なっていてもよいが、同一であることが好ましい。ハロゲン原子の数は $1\sim3$ 個であることが好ましく、1個または2個であることがさらに好ましい。

Cyにおける一般式(2)で示される基の R_1 、 R_2 、 R_3 、 R_4 、 R_5 としては、これらのうち、少なくとも1つがハロゲン原子、トリフルオロメチル基、ニトリル基のいずれかであり、その他は、それぞれ独立して、水素原子または水酸基であることが好ましい。また、 R_3 がハロゲン原子、トリフルオロメチル基、ニトリル基のいずれかであること、あるいは R_2 および R_3 が同一のハロゲン原子であることが好ましい。また、 R_3 がハロゲン原子であって、 R_1 、 R_2 、 R_4 、 R_5 がいずれも水素原子である化合物; R_2 、 R_3 が同一のハロゲン原子であって、 R_1 、 R_4 、 R_5 がいずれも水素原子である化合物; R_1 、 R_2 、 R_3 、 R_4 、 R_5 のうち、少なくとも1つがトリフルオロメチル基またはニトリル基のいずれかであって、他が水素原子、ハロゲン原子または水酸基である化合物、はいずれも好ましい。

Cyにおける置換基を有していてもよい複素環の複素環としては、窒素原子、 硫黄原子、酸素原子から選択されるヘテロ原子を少なくとも1つ含む脂肪族また は芳香族の5~7員の単環または縮合環が挙げられ、具体的には、ピリジル基、

ピラジニル基、フリル基、チエニル基、ピロリル基、イミダゾリル基、インドリル基、キノリニル基、ベンゾイミダゾリル基、ベンゾジアゼピニル基、ベンゾフリル基、ピロリジニル基、ピペラジニル基、ピペリジニル基、テトラヒドロイソキノリニル基などが挙げられ、インドリル基が好ましい。

5 Cyにおける置換基を有していてもよい複素環の置換基としては、水酸基、メトキシ基、アミノ基、メチル基、エチル基、トリフルオロメチル基、カルボキシ基、メトキシカルボニル基、オキソ基などが挙げられ、上記複素環は、1つもしくはそれ以上の同一もしくは異なった上記置換基を有していてもよい。

Cyにおける置換基を有していてもよい複素環としては、3-インドリル基が 10 好ましい。

Cyにおける炭素数3~7のシクロアルキル基としては、シクロペンチル基、シクロヘキシル基が好ましい。

Cyは以上のような定義を有するが、Cyとしては一般式(2)、置換基を有していてもよい複素環が好ましく、4-フルオロフェニル基、3-フルオロフェニル基、3,4-ジフルオロフェニル基、4-クロロフェニル基、3-クロロフェニル基、3,4-ジクロロフェニル基、2-フロオロ-4-ヒドロキシフェニル基、3-フロオロ-4-ヒドロキシフェニル基、3-フロオロ-4-ヒドロキシフェニル基、4-トリフルオロメチルフェニル基、4-シアノフェニル基、3-インドリル基がさらに好ましく、4-フルオロフェニル基が特に好ましい。

20 R_6 における、置換基を有していてもよい炭素数 $1 \sim 3$ の直鎖もしくは分枝鎖 状のアルキル基のアルキル基としては、メチル基、エチル基が好ましい。

25

 R_6 における、置換基を有していてもよい炭素数 $1\sim3$ の直鎖もしくは分枝鎖 状のアルキル基の置換基としては、例えば、ハロゲン原子などが挙げられ、フッ素原子が好ましい。また、上記アルキル基は、1もしくはそれ以上の同一もしく は異なった上記の置換基を有していてもよい。

 R_6 における、置換基を有していてもよい炭素数 $1 \sim 3$ の直鎖もしくは分枝鎖 状のアルキル基としては、メチル基、エチル基、フルオロメチル基、トリフルオ ロメチル基が好ましく、メチル基が特に好ましい。

 R_6 は、以上のような定義を有するが、 R_6 としては、水素原子、メチル基が

好ましい。

10

 R_7 における、置換基を有していてもよい炭素数 $1 \sim 3$ の直鎖もしくは分枝鎖状のアルキル基のアルキル基としては、メチル基が好ましい。

R₇における、置換基を有していてもよい炭素数 1 ~ 3 の直鎖もしくは分枝鎖 状のアルキル基の置換基としては、例えば、ハロゲン原子、水酸基、アミノ基な どが挙げられ、水酸基が好ましい。また、上記アルキル基は、1 もしくはそれ以 上の同一もしくは異なった上記の置換基を有していてもよい。

R₇における、置換基を有していてもよい炭素数 1~3の直鎖もしくは分枝鎖 状のアルキル基としては、メチル基、トリフルオロメチル基が好ましく、メチル 基が特に好ましい。

 R_7 における、置換基を有していてもよいアミノ基の置換基としては、例えば、 炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基などが挙げられ、メチル基、 エチル基が好ましい。また、上記アミノ基は、1もしくはそれ以上の同一もしく は異なった上記の置換基を有していてもよい。

 R_7 における、置換基を有していてもよいアミノ基としては、1もしくはそれ以上の同一もしくは異なった炭素数 $1\sim 3$ の直鎖もしくは分枝鎖状のアルキル基によって置換されていてもよいアミノ基、例えば、アミノ基、メチルアミノ基、ジメチルアミノ基、エチルアミノ基などが好ましく、アミノ基、メチルアミノ基がさらに好ましい。

20 R₇は、以上のような定義を有するが、R₇としては、水素原子、置換基を有 していてもよいアミノ基が好ましく、なかでも水素原子、アミノ基、メチルアミ ノ基が好ましい。

R。としては、水素原子、メチル基が好ましい。

R₉における、置換基を有していてもよい炭素数 1 ~ 6 の直鎖もしくは分枝鎖 25 状のアルキル基のアルキル基としては、炭素数 1 ~ 5 の直鎖もしくは分枝鎖状の アルキル基、例えば、メチル基、エチル基、イソプロピル基、イソブチル基、 s e c - ブチル基、 t e r t - ブチル基、 3 - ペンチル基、ネオペンチル基などが 好ましい。

R。における、置換基を有していてもよい炭素数1~6の直鎖もしくは分枝鎖

状のアルキル基の置換基としては、例えば、フェニル基、トリル基、パラーヒドロキシフェニル基、パラーフルオロフェニル基などの置換もしくは非置換のフェニル基、炭素数3~7のシクロアルキル基、ピラジル基、フリル基、チエニル基、ピロリル基、イミダジリル基、キノリニル基などの複素環、ハロゲン原子、などが挙げられ、フェニル基、シクロヘキシル基、チエニル基が好ましい。

5

10

15

25

 R_{9} における、置換基を有していてもよい炭素数 $1\sim6$ の直鎖もしくは分枝鎖 状のアルキル基としては、メチル基、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、3-ペンチル基、ネオペンチル基、パラーフル オロベンジル基、2-チエニルメチル基、3-インドリルメチル基、ベンジル基、パラーヒドロキシベンジル基、フェネチル基、シクロヘキシルメチル基が好ましい。

 R_9 における、置換基を有していてもよい炭素数 $2 \sim 6$ の直鎖もしくは分枝鎖 状のアルケニル基のアルケニル基としては、ビニル基、 2 - プロペニル基、 2 - プロペン-1 - イル基、 2 - プロペン-1 - イル基などが挙げられ、 2 - プロペン-1 - イル基が好ましい。

R₉における、置換基を有していてもよい炭素数2~6の直鎖もしくは分枝鎖 状のアルケニル基の置換基としては、例えば、フェニル基、トリル基、パラーヒ ドロキシフェニル基、パラーフルオロフェニル基などが挙げられる。

 R_9 における、置換基を有していてもよい炭素数 $2 \sim 6$ の直鎖もしくは分枝鎖 20 状のアルケニル基としては、 2 - プロペン - 1 - イル基が好ましい。

R₉における、置換基を有していてもよい炭素数2~6の直鎖もしくは分枝鎖 状のアルキニル基のアルキニル基としては、例えば、エチニル基、プロパギル基、 2-ブチン-1-イル基などが挙げられ、2-ブチン-1-イル基が好ましい。

R₉における、置換基を有していてもよい炭素数<u>2</u>~6の直鎖もしくは分枝鎖 状のアルキニル基の置換基としては、例えば、ハロゲン原子、フェニル基、トリ ル基、パラーヒドロキシフェニル基、パラーフルオロフェニル基などが挙げられ る。

R₉における、置換基を有していてもよい炭素数2~6の直鎖もしくは分枝鎖 状のアルキニル基としては、2-ブチン-1-イル基が好ましい。

 R_9 における、炭素数 $3\sim7$ のシクロアルキル基としては、シクロペンチル基、シクロヘキシル基が好ましい。

R₉における、置換基を有していてもよいフェニル基の置換基としては、例えば、水酸基、アミノ基、メチル基、エチル基、ハロゲン原子、などが挙げられる。また、上記フェニル基は、1もしくはそれ以上の同一もしくは異なった上記の置換基を有していてもよい。

 $R_{\mathfrak{g}}$ における、置換基を有していてもよいフェニル基としては、フェニル基が好ましい。

 R_9 が R_{20} といっしょになって形成する炭素数 $3\sim7$ のシクロアルキル基とし 10 ては、シクロペンチル基、シクロヘキシル基が好ましい。

 R_9 は、以上のような定義を有するが、 R_9 としては、イソプロピル基、イソブチル基、Sec-ブチル基、tert-ブチル基、3-ペンチル基、ネオペンチル基、シクロヘキシル基、2-チエニルメチル基、3-インドリルメチル基、フェニル基、ベンジル基、パラーヒドロキシベンジル基、パラーフルオロベンジル基、シクロヘキシルメチル基が好ましく、イソプロピル基が特に好ましい。

 R_{20} における、炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基としては、メチル基が好ましい。

R20としては、水素原子が好ましい。

5

15

R₁₀としては、水素原子、メチル基が好ましい。

20 R₁₁における、置換基を有していてもよい炭素数 1 ~ 3 の直鎖もしくは分枝 鎖状のアルキル基のアルキル基としては、メチル基が好ましい。

R11における、置換基を有していてもよい炭素数1~3の直鎖もしくは分枝鎖状のアルキル基の置換基としては、例えば、アミノ基、メチルアミノ基、ジメチルアミノ基、エチルアミノ基などの1もしくは2以上の同一もしくは異なった炭素数1~3の直鎖もしくは分枝鎖状のアルキル基によって置換されていてもよいアミノ基、置換していてもよい3~7員環のアミノ基(ここで、置換基としては、水酸基、アミノ基、カルボキシル基、カルバモイル基、メチル基などが挙げられる)、水酸基、メトキシ基、ハロゲン原子、カルバモイル基、メタンスルホニル基、ウレイド基、グアニジル基、N'ーシアノーN"ーメチルグアニジル基、

スルファモイルアミノ基、カルバモイルメチルアミノ基、メタンスルホニルアミノ基などが挙げられ、アミノ基、水酸基、カルバモイル基、メタンスルホニル基、ウレイド基、スルファモイルアミノ基、メタンスルホニルアミノ基、カルバモイルメチルアミノ基が好ましい。また、上記アルキル基は、1もしくはそれ以上の同一の上記の置換基を有していてもよい。

5

10

15

20

R₁₁における、置換基を有していてもよい炭素数 1~3の直鎖もしくは分枝 鎖状のアルキル基としては、メチル基、アミノメチル基、ヒドロキシメチル基、 カルバモイルメチル基、メタンスルホニルメチル基、ウレイドメチル基、グアニ ジルメチル基、スルファモイルアミノメチル基、メタンスルホニルアミノメチル 基が好ましく、メチル基、ヒドロキシメチル基、メタンスルホニルメチル基がさ らに好ましい。

 R_{11} における、-CO-N(R_{14}) R_{15} の R_{14} および R_{15} における、置換基を有していてもよい炭素数 $1\sim4$ の直鎖もしくは分枝鎖状のアルキル基のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、イソブチル基、sec-ブチル基、tertブチル基が好ましく、メチル基、エチル基がさらに好ましい。

 R_{11} における、-CO-N(R_{14}) R_{15} の R_{14} および R_{15} における、置換基を有していてもよい炭素数 $1\sim4$ の直鎖もしくは分枝鎖状のアルキル基の置換基としては、例えば、置換されていてもよい炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルコキシ基(ここで、置換基としては、水酸基、アミノ基、カルボキシル基、カルバモイル基などが挙げられる)、水酸基、アミノ基、メチルアミノ基、ジメチルアミノ基、カルバモイル基、メタンスルホニル基、などが挙げられ、水酸基、メトキシ基、メタンスルホニル基が好ましい。

 R_{11} における、-CO-N(R_{14}) R_{15} の R_{14} および R_{15} における、置換基 25 を有していてもよい炭素数 $1\sim 4$ の直鎖もしくは分枝鎖状のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、 tertブチル基、ヒドロキシメチル基、メトキシメチル基、2-ヒドロキシエチル基、2-rミノエチル基、2-Lドロキシー2-xチルプロピル基、2-Lドロキシー2-xチルプロピル基、2-Lドロキシー2-xチルプロピル基、2-Lドロキシー2-xチルプロピル基、2-Lドロキシー2-xチルプロピル基、2-Lドロキシー2-xチルプロピル基、2-Lドロキシー2-xチルプロピル基、2-Lドロキシー2-xチルプロピル基、2-Lドロキシー2-xチルプロピル基、2-Lドロキシー2-xチルプロピル基、2-Lドロキシー2-xチルプロピル基、2-Lドロキシー2-xチルプロピル基、2-Lドロキシー2-xチルプロピル基、2-L日本・2-x

が挙げられ、メチル基、エチル基、プロピル基、イソプロピル基、tertブチル基、ヒドロキシメチル基、メトキシメチル基、メタンスルホニルメチル基が好ましい。

 R_{11} における、 $-CO-N(R_{14})R_{15}$ の R_{14} および R_{15} における、炭素数 $3\sim7$ のシクロアルキル基としては、シクロプロピル基が好ましい。

5

15

 R_{11} における、-CO-N(R_{14}) R_{15} の R_{14} および R_{15} における、炭素数 $1\sim 4$ の直鎖もしくは分枝鎖状のアルキルオキシ基としては、メトキシ基が好ましい。

 R_{11} における、-CO-N(R_{14}) R_{15} の R_{14} および R_{15} における、炭素数 $1\sim 4$ の直鎖もしくは分枝鎖状のアルキルスルホニル基としては、メタンスルホニル基が好ましい。

 R_{11} における、-CO-N(R_{14}) R_{15} の R_{14} および R_{15} における、複素環としては、窒素原子、酸素原子、硫黄原子から選択されるヘテロ原子を少なくとも 1 つ含む脂肪族または芳香族の 5 または 6 員環が挙げられ、具体的には、例えば、 2-ピリジル基、 3-ピリジル基、 4-ピリジル基、 ピラジニル基、 フリル基、 チエニル基、 ピロリル基、 オキサゾリル基、 チアゾリル基、 オキサジアゾリル基、 チアジアゾリル基、 トリアゾリル基などが挙げられ、 2-ピリジル基が好ましい。

 R_{11} における、-CO-N(R_{14}) R_{15} における、-N(R_{14}) R_{15} として、20 置換基を有していてもよい $3\sim7$ 員環アミンの $3\sim7$ 員環アミンとしては、例えば、アジリジン、アゼチジン、ピロリジン、ピペリジン、ピペラジン、モルホリンなどが挙げられ、ピペラジン、モルホリンが好ましい。ここで、置換基としては、水酸基、アミノ基、カルボキシル基、アルコキシカルボニル基、カルバモイル基、メチル基、カルボキシメチル基、アルコキシカルボニルメチル基、メチル 25 スルホニル基などが挙げられる。

 R_{11} における、-CO-N(R_{14}) R_{15} における、-N(R_{14}) R_{15} として、置換基を有していてもよい $3\sim7$ 員環アミンとしては、4-カルボキシメチルピペラジン、4-エトキシカルボニルピペラジン、4-メチルスルホニルピペラジン、モルホリンが好ましい。

 R_{11} における、-CO-N(R_{14}) R_{15} としては、カルバモイル基、メチルカルバモイル基、エチルカルバモイル基、プロピルカルバモイル基、イソプロピルカルバモイル基、シクロプロピルカルバモイル基、t e r t ブチルカルバモイル基、2-ピリジルカルバモイル基、メタンスルホニルメチルカルバモイル基、4-エトキシカルボニルメチルー1-ピペラジンカルボニル基、メトキシメチルカルバモイル基、メトキシカルバモイル基、1-モルホリニルカルボニル基、4-カルボキシメチルー1-ピペラジンカルボニル基、4-メチルスルホニルー1-ピペラジンカルボニル基が好ましく、カルバモイル基、エチルカルバモイル基がさらに好ましい。

5

- R₁₁における、置換基を有していてもよい複素環の複素環としては、窒素原 10 子、酸素原子、硫黄原子から選択されるヘテロ原子を少なくとも1つ含む脂肪族 または芳香族の5または6員環が挙げられる。ここで、置換基としては、オキソ 基、水酸基、メチル基、エチル基、トリフルオロメチル基などが挙げられ、これ ら置換基を1つまたは2つ有していてもよい。置換基を有していてもよい複素環 としては、具体的には、例えば、フリル基、チエニル基、ピロリル基、オキサゾ 15 リル基、2-チアゾリル基、1,3,4-オキサジアゾール-2-イル基、1, 2, 4-オキサジアゾール-5-イル基、1,3,4-チアジアゾール-2-イ ル基、1、3、4-トリアゾール-2-イル基、テトラゾリル基、ピリジル基、 ピリミジニル基、ピリダジニル基、ピラジニル基、4-ピリミジノン-2-イル 基、6-メチルー4-ピリミジノン-2-イル基、イミダゾリジン-2,4-ジ 20 オン-5-イル基などが挙げられ、2-チアゾリル基、1,3,4-オキサジア ゾールー2ーイル基、1,2,4-オキサジアゾールー5-イル基、1,3,4 ートリアゾールー2-イル基、6-メチルー4-ピリミジノン-2-イル基が好 ましい。
- 25 R₁₁は、以上のような定義を有するが、R₁₁としては、メチル基、ヒドロキシメチル基、カルバモイルメチル基、メタンスルホニルメチル基、ウレイドメチル基、スルファモイルアミノメチル基、メタンスルホニルアミノメチル基、カルバモイル基、メチルカルバモイル基、エチルカルバモイル基、プロピルカルバモイル基、イソプロピルカルバモイル基、シクロプロピルカルバモイル基、ter

t ブチルカルバモイル基、2 - ピリジルカルバモイル基、メタンスルホニルメチルカルバモイル基、4 - エトキシカルボニルメチル-1 - ピペラジンカルボニル基、メトキシメチルカルバモイル基、メトキシカルバモイル基、1 - モルホリニルカルボニル基、4 - カルボキシメチル-1 - ピペラジンカルボニル基、4 - メチルスルホニル-1 - ピペラジンカルボニル基、2 - チアゾリル基、1,3,4 - オキサジアゾール-2 - イル基、1,2,4 - オキサジアゾール-5 - イル基、1,3,4 - トリアゾール-2 - イル基、6 - メチル-4 - ピリミジノン-2 - イル基が好ましく、カルバモイル基、エチルカルバモイル基がさらに好ましい。

 R_{12} における、 $-OR_{16}$ の R_{16} における、炭素数 $1\sim4$ の直鎖状のアルキル 10 基としては、メチル基が好ましい。

R12としては、水酸基が好ましい。

5

20

 R_{13} における、炭素数 $1\sim 6$ の直鎖もしくは分枝鎖状のアルキル基としては、炭素数 $2\sim 5$ の直鎖もしくは分枝鎖状のアルキル基が好ましく、炭素数 $3\sim 5$ の分枝鎖状のアルキル基がさらに好ましく、tert-ブチル基が特に好ましい。

15 R_{13} における、炭素数 $2\sim6$ の直鎖もしくは分枝鎖状のアルケニル基としては、炭素数 $3\sim5$ の直鎖もしくは分枝鎖状のアルケニル基が好ましく、炭素数 $3\sim5$ の分枝鎖状のアルケニル基がさらに好ましい。

 R_{13} における、炭素数 $2\sim6$ の直鎖もしくは分枝鎖状のアルキニル基としては、炭素数 $3\sim5$ の直鎖もしくは分枝鎖状のアルキニル基が好ましく、炭素数 $3\sim5$ の分枝鎖状のアルキニル基がさらに好ましい。

 R_{13} における、一般式(3)における R_{17} としては、メチル基が好ましい。

 R_{13} における、一般式(3)における R_{18} および R_{19} が一緒になって形成する炭素数 $3\sim7$ のシクロアルキル基しては、炭素数 $3\sim5$ のシクロアルキル基が好ましい。

25 R_{13} における、一般式(3)における R_{18} および R_{19} が一緒になって形成する炭素数 $3\sim7$ のシクロアルケニル基しては、炭素数 $3\sim5$ のシクロアルケニル基が好ましい。

 R_{13} は、以上のような定義を有するが、 R_{13} としては、イソプロピル基、 t e r t ーブチル基、 1 , 1 – ジメチルプロピル基、 1 , 1 – ジメチルー 2 – プロ

ペニル基が好ましく、 t e r t ープチル基が特に好ましい。 X は、カルボニル基、メチレン基のいずれも好ましい。 Y は、カルボニル基、メチレン基のいずれも好ましい。 一般式 (1)

5

10

15

20

25

(式中、C y、 R_6 、 R_7 、 R_8 、 R_9 、 R_{20} 、 R_{10} 、 R_{11} 、 R_{12} 、 R_{13} 、Xお よびYは、前記と同じ意味を表す。)で示される化合物としては、Cyが一般式 (2)で示される基であり、ここで、 R_1 、 R_2 、 R_3 、 R_4 、 R_5 は、これらのう ち少なくとも一つがハロゲン原子であって、かつ、その他が水素原子または水酸 基であり; R_6 が、水素原子またはメチル基であり; R_7 が、水素原子または置 換基を有していてもよいアミノ基であり; R_s が、水素原子またはメチル基であ り; R_s が、メチル基、イソプロピル基、イソブチル基、 s e c -ブチル基、 tertーブチル基、3ーペンチル基、ネオペンチル基、シクロヘキシル基、フェ ニル基、ベンジル基、パラーヒドロキシベンジル基、パラーフルオロベンジル基、 または、シクロヘキシルメチル基であり; R_{20} が、水素原子であり; R_{10} が、 水素原子またはメチル基であり; R_{11} が、メチル基、ヒドロキシメチル基、カ ルバモイルメチル基、メタンスルホニルメチル基、ウレイドメチル基、スルファ モイルアミノメチル基、メタンスルホニルアミノメチル基、カルバモイル基、メ チルカルバモイル基、エチルカルバモイル基、n-プロピルカルバモイル基、イ ソプロピルカルバモイル基、シクロプロピルカルバモイル基、tert-ブチル カルバモイル基、2-ピリジルカルバモイル基、メタンスルホニルメチルカルバ モイル基、メトキシメチルカルバモイル基、メトキシカルバモイル基、1-モル ホリニルカルボニル基、4-カルボキシメチル-1-ピペラジンカルボニル基、 4-エトキシカルボニルメチル-1-ピペラジンカルボニル基、4-メチルスル ホニル-1-ピペラジンカルボニル基、2-チアゾリル基、1,3,4-オキサ ジアゾールー2-イル基、1,2,4-オキサジアゾールー5-イル基、1,3, 4-トリアゾール-2-イル基、6-メチル-4-ピリミジノン-2-イル基で

あり; R_{12} が、水酸基であり; R_{13} が、イソプロピル基、 tertーブチル基 (t B u)、1,1-ジメチルプロピル基、または、1,1-ジメチル-2-プ ロペニル基、である化合物が好ましく、また、Phe(4-F)-N-Me-V $al-N-Me-Tyr (3-tBu) - NH_2$, Phe (4-C1) -N-Me-Val-N-Me-Tyr (3-tBu) $-NH_2$, Phe (3, 4-F $_{2}$) -N-Me-Val-N-Me-Tyr (3-tBu) -NH₂. Phe(3-F) - N - Me - Val - N - Me - Tyr (3-tBu) - NH₂, Phe (4-F) - N - Me - Val - N - Me - Tyr (3 - tBu) - NHOMe、2 - ((2-アミノ-3- (4-フルオロフェニル) プロピオニル) -N-メチルアミノ) -3-メチル酪酸 2-(3-tertブチル-4-ヒドロキ 10 シフェニル) -1-(2-ピリジルカルバモイル) エチルアミド、N-(2-(2-((2-アミノ-3-(4-フルオロフェニル) プロピオニル)-N-メチルアミノ) -3-メチルーブチリルアミノ) -3-(3-tBu-4-ヒドロ キシフェニル) プロピル) 尿素、N-(2-(2-(2-アミノ-3-(4-フ ルオロフェニルプロパノイル-N-メチルアミノ)-3-メチル)ブチリルアミ 15 ノ) -3- (3-tertブチル-4-ヒドロキシフェニル) プロピル) スルフ ァミド、N-[2-(3-tertブチル-4-ヒドロキシフェニル)-1-(メタンスルホニルアミノメチル) エチル] -2- [N-(4-フルオロフェニ ルアラニノイル)メチルアミノ]-3-メチルブタナミド、2-((2-アミノ -3-(4-フルオロフェニル)プロピオニル)-N-メチルアミノ)-3-メ 20 チル酪酸 2-(3-t-ブチル-4-ヒドロキシフェニル)-1-カルバミド メチルエチルアミド、2-((2-アミノ-3-(4-フルオロフェニル)プロ ピオニル) -N-メチルアミノ) -3-メチル酪酸 2-(3-t-ブチル-4 ーヒドロキシフェニル) -1-メタンスルホニルメチルエチルアミド、2-(2 - ((2-アミノ-3-(4-フルオロフェニル)プロピオニル)-N-メチル 25 アミノ) -3-メチループチリルアミノ) -3-(3-tBu-4-ヒドロキシ フェニル) プロパノール、2-(1-(2-((2-アミノ-3-(4-フルオロフェニル) プロピオニル) -N-メチルアミノ) -3-メチル-ブチリルアミ ノ) -2-(3-tertプチル-4-ヒドロキシフェニル) エチル) <math>-6-メ

チルー4ーピリミジノン、2-((2-アミノ-3-(4-フルオロフェニル) プロピオニル) - N - メチルアミノ) - 3 - メチル酪酸 2 - (3 - t - ブチル-4-ヒドロキシフェニル) -1-(1, 3, 4-オキサジアゾール-2-イ ル) エチルアミド、2-((2-アミノ-3-(4-フルオロフェニル) プロピ オニル) - N - メチルアミノ) - 3 - メチル酪酸 2 - (3 - t - ブチル-4 -5 ヒドロキシフェニル) -1-(1,2,4-オキサジアゾール-5-イル) エチ ルアミド、2-((2-アミノ-3-(4-フルオロフェニル)プロピオニル) -N-メチルアミノ) -3-メチル酪酸 2-(3-tertブチル-4-ヒドロキシフェニル) -1- (チアゾール-2-イル) エチルアミド、2-((2-10 アミノー3-(4-フルオロフェニル)プロピオニル)-N-メチルアミノ)-3 -メチル酪酸 2 - (3 - t -ブチル- 4 -ヒドロキシフェニル) - 1 - (1, $e-Val-N-Me-Tyr(3-tBu)-NH_2$, Tyr(3-F)-N-Me-Val-N-Me-Tyr (3-tBu) -NH₂, Phe (4-F) -N-Me-Val-Tyr $(3-tBu) -NH_{2}$, N-Me-Phe15 $(4-F) - N - Me - Val - Tyr (3-tBu) - NH_2, N-Et-P$ he (4-F) -N-Me-Val-Tyr (3-tBu) - NH₂. Phe (4-F) -N-Me-Val-Tyr (3-tBu) -NHMe, N-Me-Phe (4-F) -N-Me-Val-Tyr (3-tBu) -NHMe, N-Et-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHMe, 20 N-Me-Phe (4-F) -N-Me-Val-N-Me-Tyr (3-tB u) $-NH_2$, N-Et-Phe(4-F)-N-Me-Val-N-Me-T $yr (3-tBu) - NH_2$, Phe (4-F) - N-Me-Val-N-Me-Tyr (3-tBu) -NHMe, N-Me-Phe (4-F) -N-Me 25 -Val-N-Me-Tyr (3-tBu) -NHMe, N-Et-Phe (4 -F) -N-Me-Val-N-Me-Tyr (3-tBu) -NHMe, Ph $e(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NH_2$ N-Me-Phe (4-F) -N-Me-Val-N-Et-Tyr (3-t Bu) $-NH_2$, N-Et-Phe(4-F)-N-Me-Val-N-Et

 $-Tyr(3-tBu)-NH_2$, Phe (4-F)-N-Me-Val-N-Et-Tyr (3-tBu) -NHMe, N-Me-Phe (4-F) -N-Me-Val-N-Et-Tyr (3-tBu) -NHMe, N-Et-Phe (4-F) -N-Me-Val-N-Et-Tyr (3-tBu) -NHMe. Phe (4-F) -N-Me-Val-Tyr (3-tBu) -NHtBu, 5 Phe (4-F) - N-Me-Val-N-Me-Tyr (3-tBu) - NH $CH_2SO_2CH_3$. Phe (4-F) -N-Me-Val-Tyr (3-tB u) -NHEt, N-Me-Phe(4-F)-N-Me-Val-Tyr (3 - t B u) - NHE t, N-E t-Phe (4-F) -N-Me-Val-T yr (3-tBu) - NHEt, Phe (4-F) -N-Me-Val-Ty 10 r (3-tBu) -NHCH $_2$ OH, N-Me-Phe (4-F) -N-Me-Val-Tyr (3-tBu) - NHCH₂OH, N-Et-Phe (4-F) -N-Me-Val-Tyr (3-tBu) $-NHCH_2OH$, Phe (4-F) -N-Me-Val-N-Me-Tyr (3-tBu) -NHEt, N-Me-Phe (4-F) -N-Me-Val-N-Me-Tyr (3-tB 15 u) - NHE t. N-E t-Phe (4-F) -N-Me-Val-N-Me -Tyr (3-tBu) - NHEt, Phe (4-F) -N-Me-Val-N-Me-Tyr (3-tBu) -NHCH₂OH, N-Me-Phe (4-F) -N-Me-Val-N-Me-Tyr (3-tBu) - NHCH₂OH, $N-E \ t-P \ h \ e \ (4-F) \ -N-M \ e-V \ a \ l-N-M \ e-T \ y \ r \ (3-t \ B$ 20 u) - NHCH₂OH, Phe (4-F) -N-Me-Val-N-Et-T yr (3-tBu) -NHEt, N-Me-Phe (4-F) -N-Me-Va1 - N-Et-Tyr (3-tBu) - NHEt, N-Et-Phe (4-F) -N-Me-Val-N-Et-Tyr(3-tBu) - NHEt, Phe (4-F) -N-Me-Val-N-Et-Tyr (3-tBu) -NHCH25 $_2$ OH, N-Me-Phe (4-F) -N-Me-Val- N-Et-Tyr (3 - t Bu) - NHCH₂OH, N-Et-Phe (4-F) - N-Me-Val-N-Et-Tyr (3-tBu) - NHCH₂OH, Phe (4-F) -N-Me-Val-N-Me-Tyr (3-tBu) -NHcPr, Ph

e (4-F) -N-Me-Val-Tyr (3-tBu) -NHnPr Phe (4-F) -N-Me-Val-Tyr (3-tBu) -NHiPrがさらに好 $\sharp U \le .$ Phe (4-F) -N-Me-Val-N-Me-Tyr (3-tB)u) $-NH_2$. Phe (4-Cl) -N-Me-Val-N-Me-Tyr (3 $- t B u) - NH_2$, Phe (3, 4- F_2) - N - M e - V a l - N - M e -5 Tyr (3-tBu) $-NH_2$, N-Me-Phe (4-F) -N-Me-Val - Tyr (3-tBu) -NHEt、2-((2-アミノ-3-(4-フル オロフェニル)プロピオニル) - N-メチルアミノ) - 3-メチル酪酸 2-(3-tertブチル-4-ヒドロキシフェニル)-1-(2-ピリジルカルバモイル) エチルアミド、2-((2-アミノ-3-(4-フルオロフェニル) プ 10 ロピオニル) -N-メチルアミノ) -3-メチル酪酸 2-(3-t-ブチル-4-ヒドロキシフェニル)-1-メタンスルホニルメチルエチルアミド、2-(2-((2-アミノ-3-(4-フルオロフェニル)プロピオニル)-N-メ チルアミノ) -3-メチルーブチリルアミノ) -3- (3-tBu-4-ヒドロ キシフェニル)プロパノールが特に好ましい。 15

一般式(4)~(10)で示される化合物は、一般式(1)で示される化合物を製造するための中間体として有用な化合物である。これら一般式(4)~(10)においては、保護された種々の官能基が定義されているが、ここで保護基としては、以下のようなものが挙げられる。

20 R₇′における保護された置換基を有していてもよい炭素数1~3の直鎖もしくは分枝鎖状のアルキル基の保護基としては、ベンジルオキシカルボニル基、tーブトキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基、ベンゾイル基、アセチル基、トリフルオロアセチル基、ベンゼンスルホニル基、p-トルエンスルホニル基、トリメチルシリル基、tーブチルンスルホニルを、ベンジルをは、ベンジルを表しては水酸基の保護基として有用なことが知られている官能基が挙げられ、保護された置換基を有していてもよいアミノ基の保護基としては、ベンジルオキシカルボニル基、tーブトキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基、

ベンゾイル基、アセチル基、トリフルオロアセチル基、ベンゼンスルホニル基、 pートルエンスルホニル基、トリメチルシリル基、tーブチルジメチルシリル基、 ベンジル基、ベンジルオキシメチル基などのアミノ基の保護基として有用なことが知られている官能基が挙げられ、保護された水酸基の保護基としては、ベンジルオキシカルボニル基、tーブトキシカルボニル基、9ーフルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基、アセチル基、トリフルオロアセチル基、トリメチルシリル基、ベンゾイル基、アセチル基、トリフルオロアセチル基、トリメチルシリル基、tーブチルジメチルシリル基、ベンジル基、ベンジルオキシメチル基、tーブチル基、テトラヒドロピラニル基などの水酸基の保護基として有用なことが知られている官能基が挙げられる。

5

10 R₁₁、における保護されたアミノ基を有している炭素数 1~3の直鎖もしくは分枝鎖状のアルキル基の保護基としては、ベンジルオキシカルボニル基、 t ープトキシカルボニル基、 9 ーフルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基、ベンゾイル基、アセチル基、トリフルオロアセチル基、ベンゼンスルホニル基、 pートルエンスルホニル基、トリメチルシリル基、 t ーブ チルジメチルシリル基、ベンジル基、ベンジルオキシメチル基などのアミノ基の保護基として有用なことが知られている官能基が挙げられる。

R₇、における保護されていてもよい置換基を有していてもよい炭素数1~3の直鎖もしくは分枝鎖状のアルキル基の保護基としては、ベンジルオキシカルボニル基、tープトキシカルボニル基、9ーフルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基、ベンゾイル基、アセチル基、トリフルオロアセチル基、ベンゼンスルホニル基、pートルエンスルホニル基、トリメチルシリル基、tープチルジメチルシリル基、ベンジルオキシメチル基、tープチル基、テトラヒドロピラニル基などのアミノ基もしくは水酸基の保護基として有用なことが知られている官能基が挙げられ、保護されていてもよい置換基を有していてもよいアミノ基の保護基としては、ベンジルオキシカルボニル基、アリルオキシカルボニル基、9ーフルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基、ベンゾイル基、アセチル基、トリフルオロアセチル基、ベンゼンスルホニル基、pートルエンスルホニル基、トリメチルシリル基、tープチルジメチルシリル基、ベンジル基、ベンジルオキシメチル基などのアミノ基

の保護基として有用なことが知られている官能基が挙げられ、保護されていてもよい水酸基の保護基としては、ベンジルオキシカルボニル基、 t ーブトキシカルボニル基、 9 ーフルオレニルメチルオキシカルボニル基、 アリルオキシカルボニル基、 アリルオキシカルボニル基、 アリルオーショルボニル基、 ベンゾイル基、 アセチル基、 トリフルオロアセチル基、 トリメチルシリル基、 t ーブチルジメチルシリル基、 ベンジル基、 ベンジルオキシメチル基、 t ーブチル基、 テトラヒドロピラニル基などの水酸基の保護基として有用なことが知られている官能基が挙げられる。

5

20

 R_{11} 、における保護された置換基を有していてもよい炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基の保護基としては、ベンジルオキシカルボニル基、

10 t - ブトキシカルボニル基、9 - フルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基、ベンゾイル基、アセチル基、トリフルオロアセチル基、ベンゼンスルホニル基、p - トルエンスルホニル基、トリメチルシリル基、t - ブチルジメチルシリル基、ベンジル基、ベンジルオキシメチル基、t - ブチルジメチルシリル基などのアミノ基もしくは水酸基の保護基として有用なことが知られている官能基が挙げられる。

 P_1 におけるアミンの保護基としては、ベンジルオキシカルボニル基、t-ブトキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基、ベンゾイル基、アセチル基、トリフルオロアセチル基、ベンゼンスルホニル基、p-トルエンスルホニル基、トリメチルシリル基、t-ブチルジメチルシリル基、ベンジル基、ベンジルオキシメチル基などのアミノ基の保護基として有用なことが知られている官能基が挙げられる。

R₁₁、、、における保護されたアミノ基を有している炭素数 1~3の直鎖もしくは分枝鎖状のアルキル基の保護基としては、ベンジルオキシカルボニル基、 t ープトキシカルボニル基、9 - フルオレニルメチルオキシカルボニル基、アリ ルオキシカルボニル基、ベンゾイル基、アセチル基、トリフルオロアセチル基、ベンゼンスルホニル基、p - トルエンスルホニル基、トリメチルシリル基、 t - ブチルジメチルシリル基、ベンジル基、ベンジルオキシメチル基などのアミノ基の保護基として有用なことが知られている官能基が挙げられる。

P₂における保護されていてもよいカルボキシル基の保護基としては、メチル

基、エチル基、 t ーブチル基、アリル基、ベンジル基、 2, 2, 2 ートリクロロエチル基、トリメチルシリル基、 t ーブチルジメチルシリル基などのカルボキシル基の保護基として有用なことが知られている官能基が挙げられる。

 P_3 におけるアミンの保護基としては、ベンジルオキシカルボニル基、t-ブトキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基、ベンゾイル基、アセチル基、トリフルオロアセチル基、ベンゼンスルホニル基、p-トルエンスルホニル基、トリメチルシリル基、t-ブチルジメチルシリル基、ベンジル基、ベンジルオキシメチル基などのアミノ基の保護基として有用なことが知られている官能基が挙げられる。

5

20

25

10 R₁₁'''' における保護されたアミノ基を有している炭素数 1 ~ 3 の直鎖 もしくは分枝鎖状のアルキル基の保護基としては、ベンジルオキシカルボニル基、 t ーブトキシカルボニル基、 9 - フルオレニルメチルオキシカルボニル基、 アリ ルオキシカルボニル基、 ベンゾイル基、 アセチル基、 トリフルオロアセチル基、 ベンゼンスルホニル基、 p - トルエンスルホニル基、 トリメチルシリル基、 t - ブチルジメチルシリル基、 ベンジル基、 ベンジルオキシメチル基などのアミノ基 の保護基として有用なことが知られている官能基が挙げられる。

 P_4 における保護されていてもよいカルボキシル基の保護基としては、メチル基、エチル基、t-ブチル基、アリル基、ベンジル基、2, 2, 2-トリクロロエチル基、トリメチルシリル基、t-ブチルジメチルシリル基などのカルボキシル基の保護基として有用なことが知られている官能基が挙げられる。

 P_5 におけるアミンの保護基としては、ベンジルオキシカルボニル基、t-ブトキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基、ベンゾイル基、アセチル基、トリフルオロアセチル基、ベンゼンスルホニル基、p-トルエンスルホニル基、トリメチルシリル基、t-ブチルジメチルシリル基、ベンジル基、ベンジルオキシメチル基などのアミノ基の保護基として有用なことが知られている官能基が挙げられる。

P₆における保護されていてもよいカルボキシル基の保護基としては、メチル基、エチル基、 t ープチル基、アリル基、ベンジル基、2, 2, 2-トリクロロエチル基、トリメチルシリル基、 t ープチルジメチルシリル基などのカルボキシ

ル基の保護基として有用なことが知られている官能基が挙げられる。

塩を形成する酸としては、塩酸、臭化水素酸、ヨウ化水素酸、硫酸、燐酸などの無機酸、および酢酸、シュウ酸、マレイン酸、フマル酸、クエン酸、コハク酸、酒石酸、メタンスルホン酸、トリフルオロ酢酸などの有機酸が挙げられる。

5 また、本発明の化合物には光学異性体が存在するが、それぞれの光学異性体、 およびそれらの混合物は全て本発明に含まれる。

本発明の化合物は、水和物として得ることもできる。

10

なお、本出願が有する優先権主張の基礎となる出願である日本特許出願平成11-20523号および平成11-283163号の明細書に記載の内容は全て引用により本明細書に取り込まれるものとする。

以下、本発明を具体的に説明するが、ペプチドを構成するアミノ酸、保護基により保護されたアミノ酸、保護基、試薬および溶媒を下記の略号で表記することがある。

Val:バリン、Phe:フェニルアラニン、Tyr:チロシン、Z:ベンジルオキシカルボニル、Boc:tertープトキシカルボニル、CMPI:2ークロロー1ーメチルピリジニウム ヨージド、PyCIU:クロローN,N,N',N'ービス(テトラメチレン)ホルムアミジニウム ヘキサフルオロフォスフェート、DIC:N,N'ージイソプロピルカルボジイミド、HOBT:1ーヒドロキシベンゾトリアゾール・1水和物、NMM:Nーメチルモルホリン、TEA:トリフルオロ酢酸、THF:テトラヒドロフラン、DMF:N,Nージメチルホルムアミド、CH:クロロホルム、MC:塩化メチレン、M:メタノール、N:濃アンモニア水、EA:酢酸エチル、HおよびnHx:nーヘキサン、ACT:アセトン

<u>発明を実施するための</u>好ましい形態

一般式(1)

(式中、Cy、 R_6 、 R_7 、 R_8 、 R_9 、 R_{20} 、 R_{10} 、 R_{11} 、 R_{12} 、 R_{13} 、 X および Y は、それぞれ、前記と同じ意味を表わす。)で示される化合物は、基本的に、結合形成反応に関与する官能基以外の官能基が必要に応じ保護された、下式で示される化合物(II)、化合物(II)、化合物(III)

$$R_7$$
 R_6 (I)

$$H$$
, N B B B

10

15

20

5

を結合させて製造することができる。ここで、化合物(I)~(III)についての式中のAおよびBは、カルボキシル基、ホルミル基、ハロメチレン基(ここで、ハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子のいずれかである)、スルホニルオキシメチレン基(ここで、スルホニル基としては、メタンスルホニル基、トリフルオロメタンスルホニル基、パラトルエンスルホニル基などが挙げられる)などの、アミノ基と反応して結合を形成できる官能基を表す。 $R_1 \sim R_1$ 0 および R_{12} 、 R_{13} はそれぞれ前記と同じ意味を表すが、それらが、アミノ基、水酸基、カルボキシル基などの反応性官能基である場合は、必要に応じ通常用いられる適切な保護基により保護されている。 R_{11} は、前記と同じ意味を表すか、あるいは、前記と同じ意味を表すものへ変換可能な官能基を表す。

先に化合物(Ⅱ)と化合物(Ⅲ)を結合させ、必要に応じ脱保護を行った後、

化合物 (I) を結合させ、必要に応じ脱保護や官能基変換等の反応を行って製造することができるし、もしくは、先に化合物 (I) と化合物 (I) を結合させ、必要に応じ脱保護を行った後、化合物 (II) を結合させ、必要に応じ脱保護や官能基変換等の反応を行って製造することもできる。

本発明の化合物の製造は、固相法、液相法のいずれでも行うことができる。固相法で製造を行うには、自動有機合成装置を使用することができるが、マニュアル操作で行うこともできる。

5

10

15

20

25

本発明の化合物の製造に使用するアミノ酸は、ほとんどが市販されおり容易に 購入可能であるが、市販されていない場合には、一般的によく知られた方法、例 えば、Strecker法、Bucherer法、 $アセトアミドマロン酸エステル法、アミノ基保護グリシンエステルをアルキル化する方法、または<math>Z-\alpha-$ ホスホノグリシン トリメチルエステル法などにより製造することができる。

化合物(I)は、アミノ基や水酸基などの官能基が存在する場合はそれらが保護されたカルボン酸(Aが $-CO_2H$)、アルデヒド(Aが-CHO)、アルキルハライド(Aが $-CH_2-Hall)、スルホナート(<math>A$ が $-CH_2-OSO_2R$)、などであり、化合物(II)のアミノ基と反応させて結合を形成させることができる。

化合物(Π)は、ほとんどの場合、 $\alpha-P$ ミノ酸から導くことができる誘導体であり、Bはカルボキシル基($-CO_2H$)、ホルミル基(-CHO)、ハロメチル基($-CH_2-Ha$ 1)、スルホニルオキシメチル基(RSO_2O-CH_2-D)、などである。Pミノ基は化合物(Π)のAと反応して結合を形成し、Bは化合物(Π)のPミノ基と反応して結合を形成する。

化合物(Ⅲ)は、エチルアミン誘導体であり、大抵の場合、アミノ酸から誘導することができる。化合物(Ⅲ)のアミノ基は化合物(Ⅱ)のBと反応して結合を形成する。

AもしくはBがカルボキシル基の場合は、ペプチド合成においてよく知られた方法、例えば、ベンゾトリアゾールー1ーイルーオキシートリス(ジメチルアミノ)ホスホニウム ヘキサフルオロホスフェート (BOP) を用いる方法、PyCIUを用いる方法、プロモ トリピロリジノ ホスホニウム ヘキサフルオロ

ホスフェート(PyBrop)を用いる方法、クロロ トリピロリジノ ホスホ ニウム ヘキサフルオロホスフェート(PyClop)を用いる方法、O-(7 一アザベンゾトリアゾールー1ーイル)-1、1、3、3-テトラメチルウロニ ウム ヘキサフルオロホスフェート(HATU)を用いる方法、DICを用いる 方法、N-エチル-N'-3-ジメチルアミノプロピルカルボジイミド (WSC 5 I)を用いる方法、ジシクロヘキシルカルボジイミド(DCC)を用いる方法、 ジフェニルホスホリルアジド(DPPA)を用いる方法、CMPIを用いる方法、 2-ブロモ-1-メチルピリジニウム ヨージド(BMPI)を用いる方法、そ れぞれこれらの試薬とHOBTもしくはN-ヒドロキシスクシンイミド(HON Su)とを組み合わせて用いる方法、イソブチルクロロホルメートなどを用いる 10 混合酸無水物法、または、カルボキシル基をペンタフルオロフェニルエステル (OPfp) とする方法、カルボキシル基をp-ニトロフェニルエステル(ON p)とする方法、カルボキシル基をN-ヒドロキシスクシンイミドエステル(O Su)とする方法、それぞれこれらとHOBTとを組み合わせて用いる方法、な どにより、カルボキシル基を活性化させてアミノ基と縮合させることができる。 15 なお、必要に応じ、TEA、DIEA、NMM、4-ジメチルアミノピリジン (DMAP) などの塩基を添加することにより、反応を促進させることができる。 AもしくはBがホルミル基の場合は、アミノ基との通常の還元的結合形成反応 により、ハロメチレン基もしくはスルホニルオキシメチレン基の場合は、アミノ 基による置換反応により、結合を形成させることができる。 20

また、本発明の化合物は、実施例に記載される具体的な製造方法を応用して 製造することもできる。

以下、本発明の化合物の製造について実施例に基づき、さらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。

25 また、本発明化合物の有用性を説明するために、本発明化合物の代表的化合物のモチリンレセプターアンタゴニスト作用に関する薬理試験結果を試験例に示す。 表 $A-1\sim A-1$ 0 および $B-1\sim B-1$ 8 に実施例化合物の化学構造式または化学名を示す。

実施例

構造式または化学名

番号

- 1 Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂
- 2 Phe(4-Cl)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂
- 3 Phe(3,4-F₂)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂
- 4 Phe(3-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂
- 5 Phe(2-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂
- 6 Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHSO2Me TFA 塩
- 7 Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHOMe
- 8 2-((2-アミノ-3-(4-フルオロフェニル)フ°ロヒ°オニル)-N-メチルアミノ)-3-メチル酪酸 2-(3-tert ブ・チル-4-ヒト・ロキシフェニル)-1-(2-ヒ°リシ・ルカルハ・モイル)エチルアミト・
- 9 N-(2-(2-((2-アミノ-3-(4-フルオロフェニル)プロピオニル)-N-メチルアミノ)-3-メチル-プチリルアミノ)-3-(3-tBu-4-ヒト゚ロキシフェニル)プロピル)尿素
- 10 N-(2-(2-((2-アミノ-3-(4-フルオロフェニル)プ ロピ オニル)-N-メチルアミノ)-3-メチル-ブ チリルアミノ)-3-(3-tBu-4-ヒト ロキシフェニル)プ ロピ ル)グ アニシ ン
- 11 N-(2-(2-((2-アミノ-3-(4-フルオロフェニル)プロピオニル)-N-メチルアミノ)-3-メチル-プチリルアミノ)-3-(3-tBu-4-ヒト゚ロキシフェニル)プロピル)-N'-シアノ-N''-メチルク゚アニジン
- 12 2-(2-(2-アミノ-3-(4-フルオロフェニルフ°ロハ°ノイル-N-メチルアミノ)-3-メチル)フ・チリルアミノ)-3-(3-tert ブ・チル-4-ヒト・ロキシフェニル)フ゜ロヒ゜ルスルファミト・

実施例 構造式または化学名 番号 13 2-(2-(2-アミノ-3-(4-フルオロフェニルフ゜ロハ゜ノイル-N-メチルアミノ)-3-メチル)プチリルアミノ)-3-(3-tert プチル-4-ヒト゚ロキシフェニル)プロピルアミノアセタミド N-[2-(3-tert ブ チル-4-ヒト ロキシフェニル)-1-(メタンスルホニルアミノメチル)エチル]-2-14 [N-(4-フルオロフェニルアラニノイル)メチルアミノ]-3-メチルフ・タナミト・ 15 2-((2-アミノ-3-(4-7ルオロフェニル)プロピオニル)-N-メチルアミノ)-3-メチル酪酸 2-(3-t-ブ・チル-4-ヒト・ロキシフェニル)-1-カルハ・ミト・メチルエチルアミト・ 2-((2-アミノ-3-(4-7ルオロフェニル)プロピオニル)-N-メチルアミノ)-3-メチル酪酸 2-16 (3-t-ブ チル-4-ヒト ロキシフェニル)-1-メタンスルホニルメチルエチルアミト 2-(2-((2-アミノ-3-(4-7ルオロフェニル)プ ロピ オニル)-N-メチルアミノ)-3-メチル-17 フ・チリルアミノ)-3-(3-tBu-4-ヒト・ロキシフェニル)フ。ロハ。ノール 18 (2-(2-アミノ-3-(4-フルオロフェニル)プロセールアミノ)-3-メチル-ブ・チリルアミノ)-3-(3-tBu-4-ヒト゚ロキシフェニル)プロピル)メチルスルホン 19 2-(1-(2-((2-アミノ-3-(4-フルオロフェニル)プロピオニル)-N-メチルアミノ)-3-メチル-ブ・チリルアミノ)-2-(3-tert ブ・チル-4-ヒト・ロキシフェニル)エチル)-6-メチル-4-ヒ゜リミシ・ノン 20 5-(1-(2-((2-アミノ-3-(4-フルオロフェニル)プ ロハ ノイル)-N-メチルアミノ)-3-メチルフ・チリルアミノ)-2-(3-tert ブ・チル-4-ヒト・ロキシルフェニル)エチル)イミダ・ソ・リシ・ン-2,4-ジ・オン 2-((2-アミノ-3-(4-フルオロフェニル)プロピオニル)-N-メチルアミノ)-3-メチル酪酸 2-21 (3-t-ブ チル-4-ヒト ロキシフェニル)-1-(1,3,4-オキサシ アゾ -ル-2-イル)エチルアミト

実施的	列 構造式または化学名
番号	
22	2-((2-アミノ-3-(4-フルオロフェニル)プ ロピ オニル)-N-メチルアミノ)-3-メチル酪酸 2-(3-
	t-ブ・チル-4-ヒト・ロキシフェニル)-1-(1,2,4-オキサシ・アソ・-ル-5-イル)エチルアミト・
23	2-((2-アミノ-3-(4-フルオロフェニル)プ ロヒ オニル)-N-メチルアミノ)-3-メチル酪酸 2-
	(3-tert ブ・チル-4-ヒト・ロキシフェニル)-1-(チアソ・-ル-2-イル)エチルアミト・
24	2-((2-アミノ-3-(4-7ルオロフェニル)プロピオニル)-N-メチルアミノ)-3-メチル酉各酸 2-
	(3-t-プ チル-4-ヒト゚ ロキシフェニル)-1-(1,3,4-トリアソ゚ ール-2-イル)エチルアミド
25	2-[2-アミノ-3-(4-フルオロフェニル)プ ロヒ°ル]アミノ-3-メチル酪酸 2-(3-tert ブ・チル-
	4-ヒト [・] ロキシフェニル) -1- (チアソ [・] -ル-2-イル)エチルアミト [・]

ŀΑ	-4	
9	 足施例	構造式または化学名
	番号	7 (0 + D) NU
	26	Tyr(2-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH ₂
	27	Tyr(3-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH ₂
\vdash	28	Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NH ₂
一	29	N Mo-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-Nn ₂
1	30	N.Et.Phe(4-F)-N-Me-Val-Tyr(3-tBu)- Nn ₂
-	31	Db (4 F) N-Mo-Val-Tvr(3-tBu)-NHMe
-	32	N Mo Phe(4-F)-N-Me-Val-Tyr(3-tBu)- NHMe
-	33	TALE Doc(4 F)-N-Me-Val-Tyr(3-tBu)- Nrive
-	34	N.Me-Val-N-Me-Iyr(3-tbu)-1112
-	35	NET Pho(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)- NII2
-	36	Tol. (4 E) N. Mo. Vol. N. Me-Tyr(3-tBu)-Nriivie
+	37	Tara Diag(4 E) N. Mo-Val-N-Me-Ivr(3-tbu)- Nilive
+	38	N Ft Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-1111112
+	39	D - (4 E) N Mo. Val-N-Et-Tyr(3-tBu)-Nn ₂
-	40	127 Ma Dha(4 E) N-Me-Val- N-Et-Tyr(3-tDu)- 11112
H	41	N Ft Pho(4-F)-N-Me-Val- N-Et-lyr(3-tBu)- 1112
┢	42	Tol. (4 to N. M. Val-N-Et-Tyr(3-tBu)-Name
}	43	Dr. Ola (4 E) N. Me-Val- N-Et-Tyr(3-tbu)- William
-	44	N-Et-Phe(4-F)-N-Me-Val- N-Et-Tyr(5-tbu)- TVIIIVE
-	45	Dbo(4 F)-N-Et-Val-Tyr(3-tBu)-NH ₂
-	46	N. Mo. Pho(4-F)-N-Et-Val-Tyr(3-tBu)- Nn ₂
-	47	N-Et-Phe(4-F)-N-Et-Val-Tyr(3-tBu)- NII2
	48	Dbo(4 F) N-Et-Val-Tyr(3-tBu)-NHMe
	49	N Mo Pho(4-F)-N-Et-Val-Tyr(3-tBu)- NHWe
	50	N-Me-The(4-T)-N-Et-Val-Tyr(3-tBu)- NHMe
		14-110 1 110/2 - /

実施例	構造式または化学名
番号	構造式または10字名
51	Phe(4-F)-N-Et-Val-N-Me-Tyr(3-tBu)-NH ₂
52	N-Me-Phe(4-F)-N-Et-Val- N-Me-Tyr(3-tBu)- NH ₂
53	N-Et-Phe(4-F)-N-Et-Val- N-Me-Tyr(3-tBu)- NH2
54	Phe(4-F)-N-Et-Val-N-Me-Tyr(3-tBu)-NHMe
55	N-Me-Phe(4-F)-N-Et-Val- N-Me-Tyr(3-tBu)- NHMe
56	N-Et-Phe(4-F)-N-Et-Val- N-Me-Tyr(3-tBu)- NHMe
57	Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NH2
58	N-Me-Phe(4-F)-N-Et-Val- N-Et-Tyr(3-tBu)- NH ₂
59	N-Et-Phe(4-F)-N-Et-Val- N-Et-Tyr(3-tBu)- NH ₂
60	Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NHMe
61	N-Me-Phe(4-F)-N-Et-Val- N-Et-Tyr(3-tBu)- NHMe
62	N-Et-Phe(4-F)-N-Et-Val- N-Et-Tyr(3-tBu)- NHMe
63	Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHtBu
64	Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-
	NHCH ₂ SO ₂ CH ₃
65	2-(2-アミノ-3-(4-フルオロフェニル)プロピルアミノ)-N-(2-(3-tert-プチル-
	4-ヒト・ロキシフェニル)-1-カルハ・モイルエチル)-N-メチル-3-メチルフ・タナミト・
66	2-(2-アミノ-3-(4-フルオロフェニル)-N-メチルフ°ロヒ°ルアミノ)-N-(2-(3-
	tert-ブ・チル-4-ヒト・ロキシフェニル)-1-カルハ・モイルエチル)-N-メチル-3-メチル
	ブ タナミト
67	2-(N-アセチル-2-アミノ-3-(4-フルオロフェニル)プ ロヒ ルアミノ)-N-(2-(3-
	tert-プチル-4-ヒト゚ロキシフェニル)-1-カルパモイルエチル)-N-メチル-3-メチル
	ブ タナミト・
68	2-(2-アミノ-3-(4-フルオロフェニル)プ ロヒ ルアミノ)-N-(2-(3-tert-ブ チル-
	4-ヒト・ロキシフェニル)-1-カルハ・モイルエチル)-N-エチル-3-メチルフ・タナミト・
69	2-(2-アミノ-3-(4-フルオロフェニル)プロピルアミノ)-N-(2-(3-tert-プチル-
	4-ヒト・ロキシフェニル)-1-ヒト・ロキシメチルエチル)-3-メチルフ・タナミト・
70	2-(2-ブミノ-3-(4-フルオロフェニル)-N-メチルフ°ロヒ°ルアミノ)-N-(2-(3-
	tert-ブ チル-4-ヒト ロキシフェニル)-1-ヒト ロキシメチルエチル)-3-メチルブ タナミ
	F

表A	<u> </u>	
	実施例	構造式または化学名
	番号	2-(2-7ミノ-3-(4-7ルオロフェニル)プ ロピ ルアミノ)-N-(2-(3-tert-ブ チル-
	71	
	72	2-(2-7ミ)-3-(4-7ルオロノエール)-1N-メラルエテル)-N-メラル-3-メテルフ・タナミ tert-フ・テル-4-ヒト・ロキシフェニル)-1-メテルエテル)-N-メテル-3-メテルフ・タナミ
+	73	ト・ 2-(N-アセチル-2-アミノ-3-(4-アルオロフェニル)プロピールアミノ)-N-(2-(3-
		2-(N-アセチル-2-アミノ-3-(4-ブルイロブエニル) tert-ブ・チル-4-ヒト・ロキシフェニル)-1-メチルエチル)-N-メチル-3-メチルフ・タナミ
		`
Ī	74	ト・ 2-(2-アミノ-3-(4-フルオロフェニル)プ ロピ ルアミノ)-N-(2-(3-tert-ブ チル-
		2-(2-) = 1-3-(4-) ルイロフェニル) - 3-メチルフ・タナミト・ロキシフェニル) - 1-メチルエチル) - 3-メチルフ・タナミト・ 2-((2-アミノ-3-(4-フルオロフェニル) フ・ロビール) - 3-メチルフ・タナミト・
	75	
	7.0	
	76	
	77	
		2-((2-アミノ-3-(4-フルオロノエール)) ロビ ルノート ロキシメチルエチル)-N,3-ジ メチルフ tert-ブ・チル-4-ヒト・ロキシフェニル)-1-ヒト・ロキシメチルエチル)-N,3-ジ メチルフ・
	78	タナミト・ 2-(2-アミノ-3-(4-フルオロフェニル)-N-メチルプ。ロヒ。ルアミノ)-N-(1-アミノメチル -2-(3-tert-ブ・チル-4-ヒト・ロキシフェニル)エチルフ・タナミト・
		-2-(3-tert-7 +1)-4-Lr 11-1/11-1/11-1/11-11-11-11-11-11-11-11-1

実施例	構造式または化学名
番号	
101	Phe(4-F)-N-Me-Val -Tyr(3-tBu)-NHEt
102	N-Me-Phe(4-F)-N-Me-Val -Tyr(3-tBu)-NHEt
103	N-Et-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHEt
104	Phe(4-F)-N-Me-Val- N-Me-Tyr(3-tBu)-NHEt
105	N-Me-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHEt
106	N-Et-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHEt
107	Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHEt
108	N-Me-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHEt
109	N-Et-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHEt
110	Phe(4-F)-N-Et-Val -Tyr(3-tBu)-NHEt
111	N-Me-Phe(4-F)-N-Et-Val -Tyr(3-tBu)-NHEt
112	N-Et -Phe(4-F)-N-Et-Val -Tyr(3-tBu)-NHEt
113	Phe(4-F)-N-Et-Val-N-Me-Tyr(3-tBu)-NHEt
114	N-Me-Phe(4-F)-N-Et-Val-N-Me-Tyr(3-tBu)-NHEt
115	N-Et-Phe(4-F)-N-Et-Val-Me-Tyr(3-tBu)-NHEt
116	Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NHEt
117	N-Me-Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NHEt
118	N-Et-Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NHEt
119	Phe(4-F)-N-Me-Val- Tyr(3-t Bu)-NH-n-Pr
120	Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NH-i-Pr
121	Phe(4-F)-N-Me-Val-N-Me-Tyr(3-t Bu)-NH-c-Pr
122	Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHCH ₂ OH
123	N-Me-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHCH ₂ OH
124	N-Et-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHCH,OH
125	N-Me-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-
	NHCH,OH

実施例	構造式または化学名
番号	特担式または10字名
126	N-Et-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-
	NHCH ₂ OH
127	Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHCH ₂ OH
128	N-Me-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-
	NHCH ₂ OH
129	N-Et-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-
	NHCH,OH
130	Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NHCH2OH
131	N-Me-Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-
	NHCH,OH
132	Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHCH,OH
133	(2S)-2-[(2S)-2-アミノ-3-(4-フルオロフェニル)-N-メチルプロパノイルアミノ]-
	N-((1S)-1-{[3-(tert-プチル)-4-ヒト゚ロキシフェニル]メチル}-2-モルホリン-4-
	イル-2-オキソエチル)-3-メチル-N-メチルフ・タナミト・
134	(2S)-2-[(2S)-2-アミノ-3-(4-フルオロフェニル)-N-メチルプロパノイルアミノ]-
	N-((1S)-1-{[3-(tert-プチル)-4-ヒト゚ロキシフェニル]メチル}-2-[4-(メチルス
	ルホニル)と。へ。ラシ、ニル]-2-オキソエチル)-3-メチル-ハ-メチルフ、タナミト、
135	エチル 2-[4-((2S)-2-{(2S)-2-[(2S)-2-アミノ-3-(4-7ルオロフェニル)-N-メ
	チルフ°ロハ°ノイルアミノ]-3,N-シ・メチルフ・タノイルアミノ}-3-[3-(tert-ブ・チル)-4
	-ヒト・ロキシフェニル] プ・ロハ・ノイル)ヒ・ヘ・ラシ・ニルフアセテート
136	2-[4-((2S)-2-{(2S)-2-[(2S)-2-7ミノ-3-(4-7ルオロフェニル)-N-メチル
	プ [°] ロハ [°] ノイルアミノ]-3,N-シ メチルブ タノイルアミノ}-3-[3-(tert-
	ブ・チル)-4-ヒト・ロキシフェニル]フ。ロハ。ノイル)ヒ。へ。ラジ・ニル] 酢 酢酸
137	Phe(4-F)-N-Me-Val-N-Pr-Tyr(3-tBu)-NH ₂
138	Phe(4-F)-N-Me-Abu-N-Me-Tyr(3-tBu)-NH ₂
139	Phe(4-F)-N-Me-D-Abu-N-Me-Tyr(3-tBu)-NH ₂
140	Phe(4-F)-N-Me-Nva-N-Me-Tyr(3-tBu)-NH ₂

実施例	構造式または化学名
番号	III AE TO ACTORIET TO
141	Phe(4-F)-N-Me-D-Nva-N-Me-Tyr(3-tBu)-NH ₂
142	Phe(4-F)-N-Me-Ile-N-Me-Tyr(3-tBu)-NH ₂
143	Phe(4-F)-N-Me-D-Ile-N-Me-Tyr(3-tBu)-NH,
144	Phe(4-F)-N-Me-Leu-N-Me-Tyr(3-tBu)-NH ₂
145	Phe(4-F)-N-Me-D-Leu-N-Me-Tyr(3-tBu)-NH ₂
146	(2S)-2-[(2S)-2-アミノ-3-(4-フルオロフェニル)-N-メチルプロパノイルアミノ]-
	N-{(1S)-2-[3-(tert-ブ・チル)-4-ヒト・ロキシフェニル]-1-カルハ・モイルエチル}-
	N-メチルペンタ-4-エナミド
147	(2R)-2-[(2S)-2-アミノ-3-(4-フルオロフェニル)-N-メチルプロパノイルアミノ]-
	N-{(1S)-2-[3-(tert-プチル)-4-ヒト゚ロキシフェニル]-1-カルパモイルエチル}-
	N-メチルペンタ-4-エナミド
148	Phe(4-F)-N-Me-Leu(γ-Me)-N-Me-Tyr(3-tBu)-NH ₂
149	Phe(4-F)-N-Me-D-Leu(γ -Me)-N-Me-Tyr(3-tBu)-NH ₂
150	Phe(4-F)-N-Me-Ala(β-CF ₃)-N-Me-Tyr(3-tBu)-NH ₂
151	Phe(4-F)-N-Me-Chg-N-Me-Tyr(3-tBu)-NH ₂
152	Phe(4-F)-N-Me-D-Chg-N-Me-Tyr(3-tBu)-NH ₂
153	Phe(4-F)-N-Me-Cha-N-Me-Tyr(3-tBu)-NH ₂
154	Phe(4-F)-N-Me-D-Cha-N-Me-Tyr(3-tBu)-NH ₂
155	Phe(4-F)-N-Me-Phe-N-Me-Tyr(3-tBu)-NH ₂
156	Phe(4-F)-N-Me-D-Phe-N-Me-Tyr(3-tBu)-NH ₂
157	Phe(4-F)-N-Me-Phe(4-F)-N-Me-Tyr(3-tBu)-NH ₂
158	Phe(4-F)-N-Me-D-Phe(4-F)-N-Me-Tyr(3-tBu)-NH ₂
159	Phe(4-F)-N-Me-Phe(4-Cl)-N-Me-Tyr(3-tBu)-NH ₂
160	Phe(4-F)-N-Me-D-Phe(4-Cl)-N-Me-Tyr(3-tBu)-NH ₂
161	Phe(4-F)-N-Me-Tyr-N-Me-Tyr(3-tBu)-NH ₂
162	Phe(4-F)-N-Me-D-Tyr-N-Me-Tyr(3-tBu)-NH ₂
163	Phe(4-F)-N-Me-Ala(β-2-thienyl)-N-Me-Tyr(3-tBu)-NH ₂

長A−10	
実施例	構造式または化学名
番号	D. N. Mo Tyr/3.
164	Phe(4-F)-N-Me-D-Ala(β-2-thienyl)-N-Me-Tyr(3-
Ì	
165	tBu)-NH ₂ Phe(4-F)-N-Me-Ala(β-c-Pr)-N-Me-Tyr(3-tBu)-NH ₂
166	Dho(4 F)-N-Me-Phg-N-Me-1yr(3-thu)-1112
167	Dha(4 F) N-Me-q-Me-Phe-Tyr(3-tBu)-NII ₂
168	Dbo(4 E)-N-Me-q-Me-Phe-Tyr(3-tBu)-N112
169	Di - (4 E) Ni Ma-cr-Me-Leu-Tyr(3-tBu)-Nii2
170	TU - (4 E) N Me - (2-Me-1)-Abu-1yr(3-tbu)-1112
171	The star Mall Valatura of Duli 1944
	Phe(4-F)-N-Me- α -Me-D- var-fyr(σ -
172	
	amoylethyl} carbamoyl)cyclopentyl]-2-amino-3-(4-fluorophenyl)-
173	(2S)-N-I(N-{(1S)-2-[3-(tert-butyl)-4-hydroxypha-1-3-
110	1 1 1711 comb (179())////
	cyclohexyl]-2-amino-3-(4-Huorophenyi)
	thulpronanamide
174	Phe(4-F)-N-Me-Tle-Tyr(3-tBu)-NH ₂
175	Phe(4-F)-N-Me-Tle-N-Me-Tyr(3-tBu)-NH ₂ Phe(4-F)-N-Me-Tle-N-Me-Tyr(3-tBu)-NH ₂
176	$\begin{array}{c} \text{Phe}(4\text{-F})\text{-N-Me-Tic} & Vision of the properties of $
177	(2S)-N-{(1S)-2-[3-(tert-buty1)-4-nydiox)pnon/1
	-2-[2-amino-3- (2-fluoro-4-pyridyl)-N-methylpropanoylamino]-3-methyl-N-
	methylbutanamide Make Mak
178	
1.0	-2-[2-amino-3-
	-2-[2-amino-3- (2-fluoro-5-pyridyl)-N-methylpropanoylamino]-3-methyl-N-
	methylbutanamide (2S)-N-{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl}
179	(2S)-N-{(1S)-2-[3-(tell-bally)]
	othyl-3-[4-(trifluoromethyl)pnenyl]propuncy
	methyl-N-methylbutanamide methyl-N-methylbutanamide
18	(2S)-N-{(1S)-2-[3-(tert-butyl)-4-llydroxyphonyl]
	-2-{2-[(4-fluorophenyl) methyl]-3-hydroxy-N-methylpropanoylamino}-3-methyl-N-
	methyll-3-hydroxy-N-methylpropassy
	Al- (0. 4 pyridyl)-N-Me-Val-N-Me-Tyr(3-tBu)-1122
L	RIA(p-4-pyring)/ 1. Ala(p-4-pyring)/ 1. Ala(p-
<u> </u>	Pne(4-ON)-N-Mo-Tyr(3-tBu)-NH ₂
18	33 Trp-N-Me-vai-M-Mc 1,1(8 == 15)
<u> </u>	methyl butanamide N. N. Mo. Val. N. Me-Tyr(3-tBu)-NH ₂

表B-1

実施例	構造式
番号	III E IV
1	CH ₃ O NH ₂ NH ₂ N NH ₂ CH ₃ O NH ₂ CH ₃ O NH ₂
2	CH ₃ O NH ₂ CH ₃ O NH ₂ CH ₃ O CH ₃ O
3	FCH ₃ O NH ₂ CH ₃ O NH ₂ CH ₃ O CH ₃ O
4	F CH ₃ O NH ₂ CH ₃ O NH ₂ CH ₃ O CH ₃ O
5	CH ₃ O NH ₂ Pl ₃ C CH ₃ O CH ₃ O NH ₂ NH ₃ NH ₂

表B-2

Ctz+tc tol	
実施例	構造式
番号	
6	CF ₃ CO ₂ H H ₃ C CH ₃ O
7	CH ₃ O H t-Bu P ₃ C CH ₃ O CH ₃
8	CH ₃ O N OH t-Bu P ₃ C CH ₃ O N
9	CH ₃ O H HBu NH ₂ OH CH ₃ O CH ₃ OH CH ₃ O CH CH ₃ O CH CH ₃ O CH CH ₃ O CH CH CH ₃ O CH C
1 0	CH ₃ O H t-Bu NH ₂ NH ₂ NH ₂ NH ₂
11	CH ₃ O H t-Bu NHMe NCN

表 B - 3

4X D - 3	
実施例番号	構造式
1 2	CH ₃ O H t-Bu t-Bu SO ₂ NH ₂
1 3	CH ₃ O H t-Bu R ₃ C CH ₃ O NH ₂
1 4	F CH ₃ O H t-Bu H ₂ N SO ₂ CH ₃
1 5	F CH ₃ O NH ₂ NH ₂ NH ₂ NH ₂ NH ₂
1 6	CH ₃ O t-Bu SO ₂ CH ₃
1 7	CH ₃ O OH t-Bu P ₃ C CH ₃

表B-4

52 th to 172	
実施例番号	
18	H_2N H_3C CH_3
1 9	CH ₃ O H t-Bu PH CH ₃ CH ₃ CH ₃
2 0	CH ₃ O H t-Bu P O NH O NH
2 1	CH ₃ O CH ₃ O CH ₃ C CH ₃ O
2 2	CH ₃ O t-Bu
	H ₂ N N N N N N N N N N N N N N N N N N N
2 3	CH ₃ O CH ₃ C CH ₃ S S N

表B-5

実施例番号	構造式
2 4	CH ₃ O N H N-N
2 5	H ₂ N H ₃ C CH ₃

表B-6

実施例番号	構造式	
2 6	HO F Me O NH ₂ NH ₂ NH ₂ NH ₂ NH ₂ NH ₂	J
2 7	HO Me O NH ₂ NH ₂ NH ₂ NH ₂	

表B-7

実施例 番号	R 3 1	R 3 2	R 33	R 3 4	実施例 番号	R 3 1	R 3 2	R 3 3	R 3 4
28	Н	Ме	Н	H	5 4	Н	Εt	Ме	Ме
29	Ме	Ме	H	H	5 5	Ме	Εt	Мe	Ме
3 0	Εt	Ме	H	Н	5 6	Εt	Εt	Мe	Ме
3 1	H	Ме	H	Ме	5 7	Н	Εt	Εt	H
3 2	Ме	Ме	H	Ме	5.8	Мe	Εt	Εt	H
3 3	Εt	Ме	Н	Ме	5 9	Εt	Εt	Εt	H
3 4	Ме	Ме	Ме	H	6.0	Н	Εt	Εt	Ме
3 5	Εt	Ме	Ме	Н	6 1	Ме	Εt	Εt	Ме
3 6	H	Ме	Ме	Ме	6 2	Εt	Εt	Εt	Ме
3 7	Ме	Мe	Ме	Ме	101	Н	Мe	Н	Εt
38	Εt	Ме	Ме	Ме	102	Мe	Мe	H	Εt
3 9	H	Ме	Εt	H	103	Εt	Ме	H	Εt
4 0	Ме	Ме	Εt	Н	122	Н	Мe	Н	СН₂ОН
4 1	Εt	Ме	Εt	Н	123	Ме	Мe	H	CH ₂ OH
4 2	Н	Ме	Εt	Мe	124	Εt	Мe	H	CH ₂ OH
43	Ме	Ме	Εt	Мe	104	Н	Мe	Мe	E t
44	Εt	Мe	Εt	Мe	105	Ме	Мe	Мe	Εt
4 5	H	Εt	Н	Н	106	Εt	Мe	Мe	Εt
46	Ме	Εt	H	н	1 3 2	H	Мe	Мe	CH ₂ OH
47	Εt	Εt	H	н	1 2 5	Ме	Мe	Мe	CH_2OH
48	H	Εt	H	Мe	126	Εt	Мe	Ме	CH ₂ OH
49	Ме	Εt	Н	Мe	107	Н	Мe	Εt	E t
50	Εt	Εt	H	Мe	108	Ме	Мe	Εt	Εt
5 1	H	Εt	Ме	Н	109	Εt	Мe	Εt	Εt
5 2	Ме	Εt	Ме	н	1 2 7	Н	Ме	Εt	CH ₂ OH
53_	Εt	Εt	Ме	H	1 2 8	Ме	Мe	Et	CH ₂ OH
					1 2 9	Εt	Мe	Εt	CH ₂ OH

表B-8

実施例 番号	R 3 1	R 3 2	R 3 3	R 3 4
1 1 0	Н	Εt	Н	Εt
1 1 1	Ме	Εt	H	Εt
1 1 2	Εt	Εt	Н	Εt
1 1 3	H	Εt	Ме	Εt
114	Ме	Εt	Ме	Εt
115	Εt	Εt	Ме	Εt
116	H	Εt	Εt	Εt
117	Мe	Εt	Εt	Εt
118	Εt	Εt	Εt	Εt
1 3 0	H	Εt	Εt	CH ₂ OH
131	Ме	Εt	Εt	CH_2OH
1 2 1	H	Мe	Ме	сPr
119	H	Мe	H	nPr
120	H	Ме	H	i P r
1 3 7	H	Ме	nPr	Н
6 3	H	Ме	H	t B u
6 4	H	Ме	Ме	$CH_2SO_2CH_3$

表B-9

実施例 番号	R ₃₂	R 3 3	. R ₁₁	実施例番号	R 32	R 3 3	R 1 1
6 5	Н	Ме	CONH ₂	7 2	Ме	Ме	Ме
66	Мe	Ме	CONH,	7 3	Ас	Мe	Ме
6 7	Ас	Мe	CONH,	74	H	Н	Ме
68	H	Εt	CONH,	7.5	Ме	H	Ме
69	H	H	СН₂ОН	76	Аc	H	Мe
7 0	Ме	H	CH ₂ OH	7 7	Мe	Мe	CH₂OH
7 1	H	Ме	Мe	7 8	Мe	Н	CH_2NH_2

表B-10

20 1	
実施例	構造式
番号	
133	F OH OH NO
	H ₂ N N Me O
134	Me O N N-SO ₂ CH ₃
135	H ₂ N N N CO ₂ Et
136	H ₂ N N N CO ₂ H
138	H ₂ N N NH ₂ NH ₂
139	H ₂ N N N NH ₂

表B-11

Z D - 1	. 1
実施例	構造式
番号	
140	tBu tBu
	FOH
	Me O NH ₂
	H ₂ N N N NH ₂
141	tBu OH
	Me O NH ₂
	Ö nPr Me Ö
142	tBu F OH
	$ \begin{array}{c c} & \text{Me O} \\ & \text{N} \\ & $
	Ö ŠBuMe Ö
143	F OH
	Me O N NH ₂
	Ö sBuMe Ö
144	F OH
	Me o
	L N/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	O i-Bu Me Ö
145	F OH
	Me Q
	LNZNZNZNH2
	O i-Bu Me O
146	tBu OH
	Me O NH ₂
	H ₂ N Y N Y Me O
L	

表B-12

	-
実施例	構造式
番号	
147	H ₂ N NH ₂ NH ₂
148	F Me O NH ₂ NH ₂ NH ₂
149	Me O NH ₂ NH ₂ NH ₂
150A, 150B	Me O NH2 O CH2 Me O CF3
151	H ₂ N N NH ₂ NH ₂
152	Me O NH ₂ NH ₂

表 B - 1 3

4X D	LS
実施例	構造式
番号	
153	H ₂ N NH ₂ NH ₂
154	H ₂ N N NH ₂ NH ₂
155	Me O NH ₂ Me O NH ₂
156	Me O NH ₂ NH ₂
157	Me O NH ₂ Ne O NH ₂ F

表B-14

	· **
実施例	構造式
番号	,
158	H ₂ N N NH ₂ NH ₂
159	Me O NH ₂ NH ₂ O CI
160	Me O NH ₂ NH ₂ OCI
161	Me O NH ₂ NH ₂ OH
162	Me O NH ₂ NH ₂ OH

表B-15

1X D	. 0
実施例	構造式
番号	
163	H ₂ N N NH ₂ NH ₂
164	H ₂ N N NH ₂ NH ₂
165	Me O NH ₂ Me O NH ₂ Me O
166	H ₂ N N NH ₂ NH ₂ Ne O
167	H ₂ N NH ₂ NH ₂
168	H ₂ N NH ₂ NH ₂

表B-16

実施例	構造式
番号	
169	ţВи
	F OH
İ	Me o
	I NI NI NH2
	H ₂ N H O i-Bu
170	ţВu
	FOH
	Me o
	H ₂ N N NH ₂ NH ₂
151	<u> </u>
171	tBu OH
į	
	Me O NH ₂
172	i-Pr tBu
	Б ОН
	Me O NH ₂
	H_2N N N N N N N N N N
173	tBu
1.0	F OH
	Me O NH ₂
174	tBu on
	Me o
}	H ₂ N NH ₂

表B-17

4X D 1	. 1
実 施 例番号	構造式
175	Me O NH ₂ NH ₂ NH ₂ NH ₂ NH ₂
176	H ₂ N N NH ₂ O Me O
177A, 177B	Me O CONH ₂ O Me
178A, 178B	F N OH
179A, 179B	F ₃ C OH
180A, 180B	FONH ₂ CH ₃ O CONH ₂

表B-18

実施例	構造式
番号	
181	Me O O CONH ₂
182	NC H ₂ N N CONH ₂
183	H tBu OH Me O N CONH ₂ O Me

以下の実施例において、シリカゲルカラムクロマトグラフィーに用いたシリカゲルは、特に記載がない場合は、Merck Silica gel 60 (0.063-0.200mm) あるいはMerck Silica gel 60 (0.040-0.063mm) である。

5 以下の実施例における質量スペクトル、および¹H-NMRは以下の機器を用いて測定した。

質量スペクトル(EI-MS):島津GCMS-QP5050A、または島津GCMS-QP1000

質量スペクトル (ESI-MS): Extrel ELQ400

また、実施例28以降は、反応条件、機器データ、収量等を適宜表形式で示した。これらの表において、時間とは攪拌時間を表し、カラム溶媒とはシリカゲルカラムクロマトグラフィーによる精製に用いた流出溶媒を表す。

以下の実施例におけるHPLCによる保持時間(分:min)の測定は以下の条件により測定した。

装置:日立 L-6300、またはYoungLin M930

カラム: μ BONDASPHERE 5μ C18 100Å (3. 9×1 50mm)

条件:A液が0.1%TFA/蒸留水、B液が0.1%TFA/アセトニトリルで、B液:10-80%のリニアグラジエント、35分間、流速1ml/min、280nm(UV)で検出

25 実施例1

15

20

Phe (4-F) -N-Me-Val-N-Me-Tyr (3-tBu) -N

(1) Tyr (3-tBu) - OMeの合成

Tyr-OMe・HCl 500g (2.16mol) の酢酸 tertープチ

ル4500ml溶液に、70%HClO $_4$ 278ml(3.24mol)を加え、室温にて4.5日間攪拌した。反応液を減圧下に留去し、得られた残さを酢酸エチルに溶解後、飽和NaHCO $_3$ 水溶液に注入し攪拌した。有機層をとり、飽和NaHCO $_3$ 水溶液で洗浄、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した。得られた残さにエーテル950mlを加え、室温にて終夜攪拌した。析出した結晶を濾取し、Tyr(3-tBu)-OMe242g(45%)を得た。

5

10

20

25

 1 H-NMR (CDC1₃): δ 1. 38 (9H, s), 2. 83 (1H, dd, J=13. 7, 7. 4Hz), 3. 02 (1H, dd, J=13. 7, 5. 1Hz), 3. 70 (1H, dd, J=7. 4, 5. 1Hz), 3. 73 (3H, s), 6. 55 (1H, d, J=7. 9Hz), 6. 85 (1H, dd, J=7. 9, 1. 7Hz), 7. 04 (1H, d, J=1. 7Hz)

Tyr (3-t Bu) -OMe 41.4g (0.165mol) の1,4-15 ジオキサン 170ml、 H_2O 170ml溶液に、氷冷下、炭酸ナトリウム 26.2g (0.247mol) を加えた後、Z-Cl 24.7ml (0.173mol) を25分かけて加え、室温にて2.5時間攪拌した。反応液に水を加え、クロロホルムで抽出した後、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した。析出した結晶を濾取し、n-ヘキサンで洗浄、乾燥し、Z-Ty

(2) Z-Tyr (3-t-Bu) - OMeの合成

r (3-t-Bu) - OMe 54.7g (86%) を得た。

 1 H-NMR (CDCl₃): δ 1. 36 (9H, s), 3. 04 (2H, brd, J=5.6Hz), 3. 72 (3H, s), 4. 57-4.68 (1H, m), 4. 97 (1H, brs), 5. 10 (2H, s), 5. 20 (1H, brd, J=7.9Hz), 6. 55 (1H, d, J=7.9Hz), 6. 78 (1H, dd, J=7.9, 2.0Hz), 6. 95 (1H, d, J=2.0Hz), 7. 26-7.41 (5H, m)

(3) Z-Phe (3-tBu-4-ベンジルオキシ) -OMeの合成
 Z-Tyr (3-tBu) -OMe 1. 0g (2.60mmol)、ベンジルプロミド 0.56ml (4.68mmol)、および炭酸カリウム 1.0

8g(7.79mmol)のDMSO 5ml溶液を、終夜攪拌した。飽和塩化アンモニウム水溶液を加えた後、酢酸エチルで抽出し、水で洗浄し、次いで飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:n-ヘキサン=1:5)に付し、Z-Phe(3-tBu-4-ベンジルオキシ)-OMe 1.44g(99%)を得た。

5

10

25

 1 H-NMR (CDC1₃): δ 1. 36 (9H, s), 3. 05 (2H, d, J=5.6Hz), 3. 71 (3H, s), 4. 60-4.68 (1H, m), 5. 06 (2H, s), 5. 09 (2H, s), 5. 24 (1H, brd, J=8.3Hz), 6. 82 (1H, d, J=8.5Hz), 6. 88 (1H, dd, J=8.5, 1.8Hz), 7. 00 (1H, d, J=1.8Hz), 7. 27-7.50 (10H. m)

- (4) Z-N-Me-Phe (3-tBu-4-ベンジルオキシ) $-NH_2$ の 合成
- Z-Phe (3-tBu-4-ベンジルオキシ) -OMe 1.44g(2.60mmol)の1,4-ジオキサン 30ml溶液に、2N水酸化ナトリウム水溶液 3mlを加え、2時間攪拌した。水を加え、酢酸エチルで洗浄した後、水層に希塩酸を加えて酸性とし、酢酸エチルで抽出した。有機層を無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去し、粗Z-Phe(3-tBu-4-ベンジルオキシ)-OH 1.35gを得た。

この粗 Z - Phe (3 - t Bu - 4 - ベンジルオキシ) - OH 1.35gの THF 7ml溶液に、氷冷下、ヨウ化メチル 1.3ml (20.8mmol)を加えた後、水素化ナトリウム (60% in oil) 312mg (7.8mmol)をゆっくり加え、室温にて21時間攪拌した。水を加えた後、希塩酸で酸性にし、酢酸エチルで抽出した。飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥した後、減圧下に溶媒を留去し、粗 Z - N - Me - Phe (3 - t Bu - 4 - ベンジルオキシ) - OH 1.60gを得た。

この粗 Z - N - Me - Phe (3 - t Bu - 4 - ベンジルオキシ) - OH 1.6 0 gのTHF 2 5 m l 溶液に、氷冷下、クロロ炭酸エチル 0.27 m l

5

- (2.86mmol) およびNMM 0.31ml(2.86mmol)を順次加えた。15分間攪拌した後、反応液にアンモニアガスをバブリングさせながらさらに15分間攪拌し、室温にて放置後、反応液を酢酸エチルで希釈し、水で洗浄し、次いで飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、
- 減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー (展開溶媒 酢酸エチル:n-ヘキサン=2:1) に付し、Z-N-Me-P he (3-tBu-4-ベンジルオキシ) $-NH_2$ 1.08g(88%、3工程) を得た。

 $^{1}H-NMR$ (CDCl₃): δ 1. 37 (9H, s), 2. 87 (3H, s), 2. 86-2. 99 (1H, m), 3. 21-3. 35 (1H, m), 4. 73-4. 95 (1H, m), 5. 06 (2H, s), 5. 09 (2H, s), 5. 67, 5. 83and6. 13 (3/2H, brs), 6. 78-7. 47 (27/2H, m)

(5) N-Me-Tyr (3-tBu)-NH₂の合成

- 15Z-N-Me-Phe (3-tBu-4-ベンジルオキシ)-NH2 1.08g(2.28mmol)のメタノール 20ml溶液に、10%パラジウム炭素 100mgを加え、水素雰囲気下、室温にて終夜攪拌した。濾過後、減圧下に濾液を濃縮し、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:メタノール:アンモニア水=100:10:1)に付し、N
- 20 -Me-Tyr (3-tBu)-NH₂ 0.55g (96%) を得た。

 $^{1}H-NMR$ (CDCl₃) : δ 1. 40 (9H, s), 2. 31 (3H,

- s), 2. 63 (1H, dd, J = 14.7, 10.7Hz), 3. 10-3.
- 19 (2H, m), 5. 24 (1H, brs), 5. 38 (1H, brs), 6.
- 63 (1H, d, J=7. 9Hz), 6. 91 (1H, dd, J=7. 9, 1.
- 25 8 Hz), 7. 05 (1H, brs), 7. 10 (1H, d, J=1. 8Hz)
 - (6) Z-N-Me-Val-N-Me-Tyr (3-tBu)-NH₂の合成

Z-N-Me-Val-OH 700mg (2.64mmol)、N-Me-Tyr (3-tBu) -NH₂ 0.55g (2.20mmol)、およびCM

PI 674mg(2.64mmol)のTHF 22ml溶液に、氷冷下、TEA 0.61mlを加え、室温にて終夜攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、硫酸ナトリウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル: $n- \wedge + + + \vee = 3:2$)に付し、 $Z-N-Me-Val-N-Me-Tyr(3-tBu)-NH_2$ 0.98g(90%)を得た。

5

20

¹H-NMR (CDCl₃): (four rotamers)δ 0.07, 0.32, 0.63, 0.74, 0.79, 0.81, 0.84 and 0.89 (6H, d, J=6.3-6.6Hz), 1.30, 1.33, 1.37 and d 1.39 (9H, s), 2.13-2.33 (1H, m), 2.34, 2.41, 2.78, 2.87 and 2.98 (6H, s), 2.79-3.2 (2H, m), 4.40 and 4.32 (1H, d, J=10.6), 4.60-5.43 (5H, m), 5.96 (1H, brs), 6.23-7.12 (3H, m), 7.26-7.47 (5H, m)

15 (7)N-Me-Val-N-Me-Tyr(3-tBu) $-NH_2$ (以下の表中における共通中間体 I-b 3 である)合成

 $Z-N-Me-Val-N-Me-Tyr(3-tBu)-NH_2$ 0.98 g(1.97mmol)、20%水酸化パラジウム炭素 0.10gのメタノール 20ml混合物を室温下、水素雰囲気下、1.5時間攪拌した。反応液を濾過し濾液を減圧下に濃縮して得られた残さを、シリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:メタノール:アンモニア水=100:10:1)に付し、 $N-Me-Val-N-Me-Tyr(3-tBu)-NH_2$ 0.71g(99%)を得た。

 1 H-NMR (CDC $_{13}$): (two rotamers) δ 0. 35, 0. 25 71, 0. 92 and 0. 96 (6H, d, J=6. 9Hz), 1. 36 and 1. 37 (9H, s), 1. 73-1. 81 and 2. 03-2. 17 (1H, m), 1. 74 and 2. 23 (3H, s), 2. 64 (1H, d, J=9. 2Hz), 2. 90-3. 04 (1H, m), 2. 93 and 3. 00 (3H, s), 3. 19 and 4. 60 (1H, dd, J=14.

5

- 7, 5. 8 and 10. 7, 3. 8Hz), 5. 29, 5. 32 and 6. 06 (2H, brs), 5. 59 (1H, dd, J=10. 4, 5. 8Hz), 6. 54 and 6. 60 (1H, d, J=7. 9Hz), 6. 79 and 6. 93 (1H, dd, J=7. 9, 2. 0 and 1. 7Hz), 7. 01 and 7. 07 (1H, d, J=2. 0 and 1. 7Hz), 8. 10 (1H, brs)
- (8) Z-Phe (4-F) -N-Me-Val-N-Me-Tyr (3-t Bu) -NH₂の合成

Z-Phe (4-F) -OH 1.09g(3.44mmol)、N-Me-1010Val-N-Me-Tyr (3-tBu) -NH2 1.04g(2.87mmol)、およびCMPI 878mg(3.44mmol)のTHF 30ml溶液に、水冷下、TEA 0.96ml(6.88mmol)を加え、室温にて終夜攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られたで洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られたり、残さをシリカゲルカラムクロマトグラフィー(展開溶媒 n-ヘキサン:酢酸エチル=1:3)に付し、Z-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH2 1.73g(91%)を得た。

 $^{1}H-NMR$ (CDC1₃):(two rotamers) δ 0.57, 0.73, 0.75 and 0.90 (6H, d, J=6.3-6.6Hz), 1.

- 20 33 and 1. 39 (9H, s), 2. 18-3. 43 (5H, m), 2. 40 and 3. 03 (3H, s), 2. 74 and 3. 01 (3H, s), 4. 62-5. 49 (7H, m), 5. 95 (1H, brs), 6. 44 (1H, d, J=7. 9Hz), 6. 57-7. 35 (12H, m)
- (9) Phe (4-F) -N-Me-Val-N-Me-Tyr (3-tB25 u) -NH2の合成

Z-Phe (4-F) -N-Me-Val-N-Me-Tyr (3-tBu) $-NH_2$ 1.73g (2.61mmol)、10%パラジウム炭素 340mgのメタノール 50ml混合物を、室温、水素雰囲気下、17時間攪拌した。 反応液を濾過し濾液を減圧下に濃縮して得られた残さを、シリカゲルカラムクロ

マトグラフィー (展開溶媒 クロロホルム:メタノール:アンモニア水=100:10:1) に付し、Phe(4-F) -N-Me-Val-N-Me-Tyr(3-tBu) $-NH_2$ 1. 25g(91%) を得た。

 $EI-MS:528 (M^{+})$

5 ¹H-NMR (CDCl₃): (two rotamers)δ 0.50, 0.76, 0.79 and 0.93 (6H, d, J=6.3-6.9Hz), 1.34 and 1.39 (9H, s), 2.19-2.95 (5H, m), 2.50 and 3, 03 (3H, s), 2.81 and 3, 02 (3H, s), 3.17 and 3.34 (1H, dd, J=15.2, 5.9 and d 13.9, 6.9Hz), 3.66 and 3.84 (1H, dd, J=8.9, 4.6 and 8.6, 4.6Hz), 4.91 and 5.07 (1H, d, J=10.6Hz), 5.07, 5.19, 5.30, 5.98 and 6.64 (2H, brs), 5.49 (1H, dd, J=10.6, 5.9Hz), 6.35 and 6.62 (1H, d, J=7.9Hz), 6.7 (2/3H, dd, J=7.9, 1.7Hz), 6.95-7.11 (19/3H, m)

実施例2

Phe (4-C1) -N-Me-Val-N-Me-Tyr (3-tBu) - 20 NH₂

(1) Boc-Phe (4-Cl) -N-Me-Val-N-Me-Tyr (3-tBu) -NH₂の合成

Boc-Phe (4-C1) -OH 354mg (1.18mmol)、N-Me-Val-N-Me-Tyr (3-tBu) -NH₂ 0.33g (0.9 0.8mmol)、およびCMPI 301mg (1.18mmol)のTHF 8ml溶液に、氷冷下、TEA 0.38ml (2.72mmol)を加え、室温にて終夜攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:

メタノール:アンモニア水=40:1:0.05) に付し、Boc-Phe (4-C1) -N-Me-Val-N-Me-Tyr (3-tBu) -NH₂ 0.

(2) Phe (4-C1) -N-Me-Val-N-Me-Tyr (3-tB to 1) -NH2の合成

Boc-Phe (4-C1) -N-Me-Val-N-Me-Tyr (3-t) Bu) -NH₂ 0. 45g (0.697 mmol) の塩化メチレン 4ml溶液に、TFA 3mlを加え、20分間攪拌した後、減圧下に溶媒を留去した。 得られた残さに飽和NaHCO₃水を加え、塩化メチレンで抽出した後、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去し得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:メタノール:アンモニア水=30:1:0.1)に付し、Phe (4-C1) -N-Me-Val-N-Me-Tyr (3-t) Bu) -NH₂ 355mg (93%) を得た。

EI-MS: 544 and 546 (M⁺)

¹H-NMR (CDCl₃): (two rotamers)δ 0.49, 0.

75, 0.78 and 0.93 (6H, d, J=6.3-6.9Hz), 1.

34 and 1.38 (9H, s), 2.10-2.92 (5H, m), 2.

50 and 3.04 (3H, s), 2.80 and 3.01 (3H, s), 3.13 and 3.33 (1H, dd, J=15.2, 5.9 and dlasses)

20 d 13.9, 6.9Hz), 3.67 and 3.85 (1H, dd, J=8.9, 5.0 and 8.6, 5.0Hz), 4.90 and 5.06 (1H, d, J=10.6Hz), 5.33, 5.41, 5.99 and 6.

6. 37 and 6. 63 (1H, d, J=7. 9Hz), 6. 72 and 25 6. 98 (1H, dd, J=7. 9, 1. 7Hz), 7. 07-7. 10 (3H, m), 7. 25-7. 31 (2H, m)

61 (2H, brs), 5.49 (1H, dd, J=10.6, 5.9Hz),

実施例3

WO 00/44770

10

45g(77%)を得た。

Phe $(3, 4-F_2)$ - N-Me-Val-N-Me-Tyr (3-tB)

 $u) - NH_{2}$

(1) Fmoc-Phe (3, 4-F₂) -N-Me-Val-N-Me-T yr (3-tBu) -NH₂の合成

Fmoc-Phe (3, 4-F₂) -OH 500mg (1. 18mmol)、N-Me-Val-N-Me-Tyr (3-tBu) -NH₂ 0. 33g (0. 908mmol)、およびCMPI 301mg (1. 18mmol)のTHF 8ml溶液に、氷冷下、TEA 0. 38ml (2. 72mmol)を加え、室温にて終夜攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:メタノール:アンモニア水=60:1:0.05)に付し、Fmoc-Phe (3, 4-F₂) -N-Me-Val-N-Me-Tyr (3-tBu) -NH₂ 0. 56g (80%)を得た。

(2) Phe (3, 4-F₂) -N-Me-Val-N-Me-Tyr (3-15 tBu) -NH₂の合成

Fmoc-Phe (3, $4-F_2$) -N-Me-Val-N-Me-Tyr (3-tBu) $-NH_2$ 0.55g (0.715mmol) の塩化メチレン 5ml溶液に、ジエチルアミン 5mlを加え、4時間攪拌した後、減圧下に溶媒を留去した。得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒クロロホルム:メタノール:アンモニア水=60:1:0.1)に付し、Phe (3, $4-F_2$) -N-Me-Val-N-Me-Tyr (3-tBu) $-NH_2$ 381mg (97%) を得た。

 $EI - MS : 546 (M^{+})$

20

 1 H-NMR (CDCl₃): (two rotamers) δ 0.51, 0.25 74, 0.79 and 0.93 (6H, d, J=6.3-6.9Hz), 1.33 and 1.38 (9H, s), 2.10-2.93 (5H, m), 2.51 and 3.03 (3H, s), 2.83 and 3.01 (3H, s), 3.17 and 3.33 (1H, dd, J=14.8, 5.9 and 13.9, 6.6Hz), 3.66 and 3.84 (1H, dd, J=

WO 00/44770

8. 4, 5. 0 and 8. 6, 4. 3Hz), 4. 88 and 5. 07 (1H, d, J=10.6Hz), 5. 41, 5. 9 (1H, brs), 5. 4 1-5.51 (1H, m), 6. 43 and 6. 64 (1H, d, J=7.9Hz), 6. 75 (2/5H, dd, J=7.9, 1. 7Hz), 6. 84-7. 16 (28/5H, m)

実施例4

5

15

20

Phe (3-F) -N-Me-Val-N-Me-Tyr (3-tBu) -N H₂

10 (1) Boc-Phe (3-F) -N-Me-Val-N-Me-Tyr (3 -tBu) -NH2の合成

Boc-Phe (3-F) -OH 0.20g(0.706 mmol)、N-Me-Val-N-Me-Tyr (3-tBu) -NH₂ 0.21g(0.578 mmol)、およびCMPI 0.20g(0.783 mmol)のTHF 6ml溶液に、氷冷下、TEA 0.30ml(2.15 mmol)を加え、室温にて終夜攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:メタノール:アンモニア水=60:1:0.05)に付し、Boc-Phe(3-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂ 0.33g(91%)を得た。

(2) Phe (3-F) -N-Me-Val-N-Me-Tyr (3-tBu) -NH₂の合成

Boc-Phe (3-F) -N-Me-Val-N-Me-Tyr (3-tB) u) -NH $_2$ 0. 33g (0. 525mmol) の塩化メチレン 3ml溶液に、TFA 1. 5mlを加え、 $15分間攪拌した後、減圧下に溶媒を留去した。残さに塩化メチレンを加え、飽和NaHCO<math>_3$ 水溶液で洗浄した後、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した。得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:メタノール:アンモニア水=

40:1:0.1)に付し、 $Phe(3-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH_2$ 241mg(87%)を得た。

 $EI-MS:528 (M^{+})$

¹H-NMR (CDCl₃): (two rotamers)δ 0.51, 0. 5 73, 0.78 and 0.93 (6H, d, J=6.3-6.6Hz), 1. 33 and 1.38 (9H, s), 2.10-2.96 (5H, m), 2. 46 and 3.03 (3H, s), 2.78 and 3.01 (3H, s), 3.16 and 3.35 (1H, dd, J=14.8, 5.9 and d 13.9, 6.6Hz), 3.70 and 3.90 (1H, dd, J=10.8, 3, 5.6 and 8.6, 5.0Hz), 4.89 and 5.06 (1H, d, J=10.6Hz), 5.42, 5.99 (1H, brs), 5. 43-5.52 (1H, m), 6.41 and 6.64 (1H, d, J=7.9Hz), 6.72 (2/5H, dd, J=7.9, 1.7Hz), 6.83-

15 2 2 - 7. 3 3 (1 H, m)

実施例5

25

Phe (2-F) -N-Me-Val-N-Me-Tyr (3-tBu) -N H_2

6. 99 (18/5H, m), 7. 10 (2/5H, d, J=1. 7Hz), 7.

20 (1) Boc-Phe (2-F) -N-Me-Val-N-Me-Tyr (3 - t Bu) -NH₂の合成

Boc-Phe (2-F) -OH 0.20g(0.706 mmo1)、N-Me-Val-N-Me-Tyr (3-tBu) -NH $_2$ 0.21g(0.578 mmo1)、およびCMPI 0.20g(0.783 mmo1) のTHF 6m1溶液に、氷冷下、TEA 0.30m1(2.15 mmo1) を加え、室温にて終夜攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:メタノール:アンモニア水=60:1:0.05)に付し、Boc-Phe (2-1)

-F)-N-Me-Val-N-Me-Tyr (3-tBu)-NH₂ 0.3 3g (91%)を得た。

- (2) Phe (2-F) -N-Me-Val-N-Me-Tyr (3-tBu) $-NH_2$ の合成
- $Boc-Phe(2-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH_2 0.33g(0.525mmol)$ の塩化メチレン 3ml溶液に、TFA 1.5mlを加え、15分間攪拌した後、減圧下に溶媒を留去した。残さに塩化メチレンを加え、飽和NaHCO $_3$ 水溶液で洗浄した後、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した。得られた残さをシリカゲルカラ
- 10 ムクロマトグラフィー(展開溶媒 クロロホルム:メタノール:アンモニア水=40:1:0.1)に付し、Phe $(2-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH_2$ 235mg(85%)を得た。

 $EI - MS : 528 (M^{+})$

 $^{1}H-NMR$ (CDCl₃) :(two rotamers) δ 0.45, 0.

- 15 71, 0. 79 and 0. 93 (6H, d, J=5. 9-6. 6Hz), 1. 31 and 1. 38 (9H, s), 2. 10-2. 89 (5H, m), 2. 47 and 3. 06 (3H, s), 2. 76 and 3. 01 (3H, s), 3. 14 and 3. 34 (1H, dd, J=14. 3, 5. 9 an
- d 13. 9, 6. 6Hz), 3. 79 and 3. 95 (1H, dd, J = 20 8, 4, 5, 0 and 8, 6, 4, 3Hz), 4, 88, and 5, 3.
- 20 8. 4, 5. 0 and 8. 6, 4. 3Hz), 4. 88 and 5. 06 (1H, d, J=10.6Hz), 5. 37, 5. 99 (1H, brs), 5. 41-5.51 (1H, m), 6. 43 (3/5H, d, J=7.9Hz), 6. 56 (2/5H, brs), 6. 60-6.71 (1H, m), 6. 92-7.

29 (6H, m)

実施例6

25

Phe (4-F) -N-Me-Val-N-Me-Tyr (3-tBu) -N HSO₂Me TFA塩

(1) Z-N-Me-Phe (3-tBu-4-ベンジルオキシ) -NHSO

₂Meの合成

5

粗 Z - N - M e - P h e (3 - t B u - 4 - ベンジルオキシ) - O H 0.9 5 g (2.0 mm o l)、WSCI・HCl 0.77 g (3.9 9 mm o l)、およびメタンスルホナミド 0.29 g (3.0 mm o l)のDMF 15 m l 溶液に、氷冷下、DMAP 0.49 g (0.99 mm o l)を加えた後、室温にて終夜攪拌した。水、続いて2 N塩酸を加え、酢酸エチルで抽出し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した。得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル: n - へキサン=2:1)に付し、標題化合物 0.83 g (75%)を得た。

- ¹H-NMR (CDCl₃): δ 1. 36 (9H, s), 2. 80 (s, 3 H), 2. 97-3. 30 (m, 2H), 3. 21 (s, 3H), 4. 60-4. 74 (m, 1H), 5. 08 (s, 2H), 5. 13 (s, 2H), 6. 81 (d, 1H, J=8. 2Hz), 6. 86-7. 13 (m, 2H), 7. 20-7. 46 (m, 10H), 9. 0 (brs, 1H)
- 15 (2) Z-N-Me-Val-N-Me-Tyr (3-t-Bu) $-NHSO_2Me$ の合成

Z-N-Me-Tyr (3-tBu-4-ベンジルオキシ) -NHSO2Me0.80g(1.45mmol)、20%水酸化パラジウム炭素 0.09gのメタノール 15ml混合物を室温下、水素雰囲気下、終夜攪拌した。反応液を20 濾過し、濾液を減圧下に留去し、粗N-Me-Tyr (3-t-Bu) -NHSO2Me 0.53gを得た。

上記粗N-Me-Tyr (3-t-Bu)-NHSO₂Me 0.51g(1.43mmol)、Z-N-Me-Val-OH 0.49g(1.86mmol)、およびCMPI 0.51g(2.00mmol)のTHF 10ml溶25 液に、氷冷下、TEA 0.60ml(4.29mmol)を加え、室温にて終夜攪拌した。反応液に水を加え、2N塩酸により酸性をした後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒酢酸を0.5%含む、酢酸エチル:n-ヘキサン=2:3)に付し、標題化合物

- 0.70g(2工程、85%)を得た。
- (3) Boc-Phe (4-F) -N-Me-Val-N-Me-Tyr (3-t-Bu) -NHSO₂Meの合成

Z-N-Me-Val-N-Me-Tyr (3-t-Bu) -NHSO2Me50.65g(1.13mmol)、20%水酸化パラジウム炭素 0.09gのメタノール 10ml混合物を室温下、水素雰囲気下、2.5時間攪拌した。反応液を濾過し、減圧下に濾液を留去し、粗N-Me-Val-N-Me-Tyr (3-t-Bu) -NHSO2Me 0.50gを得た。

上記粗化合物 0.48g(1.09mmol)、Boc-Phe(4-F)

- 10 -OH 0.40g(1.41mmol)、およびCMPI 0.39g(1.53mmol)のTHF 8ml溶液に、氷冷下、TEA 0.46ml(3.27mmol)を加え、室温にて22時間攪拌した。反応液に水を加え、10%クエン酸水で酸性とした後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカケルカラムクロマトグラフィー(展開溶媒 酢酸を0.5%含む、酢酸エチル:n-ヘキサン=2:3)に付し、標題化合物 0.50g(2工程、65%)を得た。
 - (4) Phe (4-F) -N-Me-Val-N-Me-Tyr (3-t-Bu) -NHSO₂Me TFA塩の合成
- 20Boc-Phe (4-F) -N-Me-Val-N-Me-Tyr (3-t-Bu) -NHSO2Me 208mg (0.294mmol) の塩化メチレン6ml溶液に、TFA 3mlを加え、1.5時間攪拌した。反応液を減圧下に留去した後、残さにTFA0.1%を含むアセトニトリルー水 (1:10) 80mlを加えて溶解させ、凍結乾燥を行い、標題化合物 0.20g (94%) を得た。

 $EI - MS : 606 (M^+)$

 $^{1}H-NMR$ (DMSO-d₆) :(three rotamers) δ 0. 0 2 (d, 3/5H, J=5. 9Hz), 0. 22 (d, 3/5H, J=5. 9Hz), 0. 62 (d, 3/5H, J=7. 6Hz), 0. 68 (d, 3/5H,

J=6.6Hz), 0. 77 (d, 9/5H, J=6.6Hz), 0. 89 (d, 9/5H, J=6.3Hz), 1. 28 (s, 27/5H), 1. 31 (s, 9/5H), 1. 35 (s, 9/6H), 1. 86-2. 03 (m, 2/7H), 2. 15-2. 28 (m, 5/7H), 2. 5-3. 4 (m, 10H), 4. 3 5-4. 62 (m, 1H), 4. 80-5. 02 (1H), 5. 11-5. 42 (m, 1H), 6. 55-7. 18 (m, 7H), 8. 0-8. 2 (m, 3H), 8. 98-9. 06 (m, 1H), 11. 2 (brs. 1H)

実施例 7

25

- Phe (4-F) -N-Me-Val-N-Me-Tyr (3-tBu) -N HOMe
 - (1) Z-N-Me-Phe (4-ベンジルオキシー3-tBu)-NHOMeの合成
- Z-N-Me-Phe (4-ベンジルオキシ-3-tBu)-OH 3.8g
 (7.99mmol)のTHF 50ml溶液に、氷冷下、クロロ炭酸エチル 0.85ml(8.78mmol)を加え、次いでNMM 0.97ml(8.78mmol)をゆっくり滴下した。1時間攪拌した後、MeONH2 1.0g(12.0mmol)とTEA 2.23ml(16.0mmol)を加え、室温にて2時間攪拌した。水を加え、酢酸エチルで抽出した後、硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した。得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:n-ヘキサン=1:2)に付し、標題化合物 2.7g(67%)を得た。

¹H-NMR (CDCl₃): δ 1. 39 (9H, s), 2. 95 (3H, s), 2. 99 (1H, m), 3. 24 (1H, m), 3. 64(3H, s), 4. 7 (1H, m), 5. 1 (4H, d), 6. 8-7. 5 (13H, m), 9. 06(1H, s)

(2) N-Me-Tyr (3-tBu)-NHOMeの合成

Z-N-Me-Phe (4-ベンジルオキシ-3-tBu) -NHOMe 2. 7g(5.36mmol)のMeOH 30ml溶液に、水酸化パラジウムー炭

素 675mgを加え、水素雰囲気下、2時間攪拌した。不溶物をセライトを用いて濾別し、濾液を減圧下に濃縮した。得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 塩化メチレン:メタノール=20:1)に付し、標題化合物 1.24g(82%)を得た。

- 1 H-NMR (CDCl₃): δ 1. 43 (9H, s), 2. 45 (3H, s), 2. 92(2H, m), 3. 12 (1H, m), 3. 59 (3H, s), 6. 77 (1H, d, J=9. 4Hz), 6. 95 (1H, dd, J=2. 8, 3. 4Hz), 7. 13 (1H, d, J=3. 15Hz)
- (3) Z-N-Me-Val-N-Me-Tyr (3-tBu) -NHOMe 10 の合成

N-Me-Tyr (3-tBu) -NHOMe 1.24g(4.42mmol)、Z-N-Me-Val-OH 1.76g(6.63mmol)、および CMPI 1.7g(6.63mmol)のTHF 30ml溶液に、TEA 1.23ml(8.84mmol)を加え、終夜攪拌した。水を加え、酢酸エチルで抽出した後、無水硫酸マグネシウムで乾燥し、減圧下に濃縮した。得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:n-ヘキサン=1:1)に付し、標題化合物 1.32g(57%)を得た。

15

 $^{1}H-NMR$ (CDC1₃) : δ 0. 43 (3H, m) , 0. 80 (3H, m) , 1. 36 (9H, s) , 3. 02 (9H, m) , 3. 65 (3H, s) ,

20 4.4 (1H, m)、5.1 (3H, m)、6.4-7.4 (8H, m) (4) Boc-Phe (4-F) -N-Me-Val-N-Me-Tyr (3 -tBu) -NHOMeの合成

Z-N-Me-Val-N-Me-Tyr (3-tBu)-NHOMe 1.23g(2.33mmol) MeOH 20ml溶液に、水酸化パラジウム-炭素 350mgを加え、水素雰囲気下、1時間攪拌した。不溶物をセライトを用いて濾別し、濾液を減圧下に濃縮することにより、粗N-Me-Val-N-Me-Tyr (3-tBu)-NHOMe 0.91gを得た。

上記粗化合物 0.98g(2.5mmol)、Boc-Phe(4-F)-OH 0.92g(3.25mmol)、およびCMPI 0.83g(3.2

5 mmol)のTHF 20ml溶液に、TEA 0.52ml (3.75mm ol)を加え、終夜攪拌した。水を加え、酢酸エチルで抽出した後、無水硫酸マグネシウムで乾燥し、減圧下に濃縮した。得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル: $n-\wedge$ キサン=1:2)に付し、標題化合物 972mg (56%)を得た。

(6) Phe (4-F) -N-Me-Val-N-Me-Tyr (3-tBu) -NHOMeの合成

Boc-Phe (4-F) -N-Me-Val-N-Me-Tyr (3-tBu) -NHOMe 972mg (1.508mmol) の塩化メチレン 10m 10 l溶液に、TFA 7mlを加え、30分間攪拌した。減圧下に濃縮した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 塩化メチレン:メタノール=20:1) に付し、標題化合物 288mg (34%)を得た。EI-MS:558 (M+)

¹H-NMR (CDC1₃): δ 0.42(3H, d, J=13.5Hz), 0. 15 79 (3H, d, J=13.2Hz), 1.33 (9H, s), 2.10 (1H, m), 2.60 (1H, m), 2.90 (2H, m), 2.91 (3H, s), 3.07 (3H, s), 3.28 (1H, m), 3.68 (3H, s), 3.9 1 (1H, m), 4.82 (1H, d, J=10.7Hz), 5.13 (1H, m), 6.60 (1H, d, J=10.4Hz), 6.89 (1H, m), 7. 20 0-7.3 (5H, m), 9.1 (1H, m)

実施例8

5

2-((2-アミノ-3-(4-フルオロフェニル) プロピオニル) -N-メチルアミノ) -3-メチル酪酸 <math>2-(3-tertブチル-4-ヒドロキシフ 25 エニル) -1-(2-ピリジルカルバモイル) エチルアミド

(1) N-ベンジルオキシカルボニル-3-tertブチル-4-ヒドロキシフェニルアラニル (2-ピリジル) アミドの合成

Z-Tyr (3-tBu)-OH 3.04g(8.19mmol)のTHF 8.2ml溶液に、氷冷下N, N-カルボニルジイミダゾール 1.59g(9. 5

10

83mmol)を加え、1時間攪拌した。その後、2-アミノピリジン 925mg (9.83mmol)を加え、氷冷下で2時間、室温にて6時間半攪拌した。反応液に水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した。得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル: $n-\wedge+++>=1:2$)に付し、標題化合物 2.16g (59%)を得た。

 1 H-NMR (CDC 1 ₃) : δ 1. 24 (9H, s), 2. 95-3. 2 0 (2H, m), 4. 45-4. 60 (1H, m), 5. 11 (2H, dd, J = 17. 5, 12. 2Hz), 6. 53 (1H, d, J=7. 9Hz), 6. 8 5 (1H, d, J=7. 9Hz), 6. 95-7. 15 (2H, m), 7. 32 (5H, brs), 7. 67-7. 73 (1H, m), 8. 15-8. 25 (2H, m)

- 15 Nーベンジルオキシカルボニルー3-tertブチルー4-ヒドロキシフェニルアラニル (2-ピリジル)アミド 2.16g(4.83mmol)のメタノール 160ml溶液に、10%パラジウム炭素 400mgを加え、水素雰囲気下、室温にて終夜攪拌した。濾過後、減圧下に濾液を濃縮し、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 メタノール:アンモニア 次:塩化メチレン=10:1:100)に付し、標題化合物 1.48g(98%)を得た。

 $^{1}H-NMR$ (CDCl₃): δ 1. 36 (9H, s), 2. 72-3. 2 3 (2H, m), 3. 67-3. 72 (1H, m), 6. 62 (1H, d, J= 7. 9Hz), 6. 85-6. 88 (1H, m), 6. 95-7. 20 (2H,

- 25 m), 7. 70-7. 77 (1H, m), 8. 29-8. 39 (2H, m)
 - (3) 2-(N-ベンジルオキシカルボニル-N-メチルアミノ) <math>-3-メチ ル酪酸 2-(3-tertブチル-4-ヒドロキシフェニル) <math>-1-(2-ピリジルカルバモイル) エチルアミドの合成

3-tertブチルー4-ヒドロキシフェニルアラニル (2-ピリジル)ア

ミド 1.48g(4.73mmol)、Z-N-Me-Val-OH 1.6 3g(6.15mmol)、およびCMPI 1.57g(6.15mmol)のTHF 30ml溶液に、氷冷下TEA 1.5ml(10.88mmol)を加え、氷冷下3時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:n-ヘキサン=1:2)に付し、標題化合物 1.74g(65%)を得た。

5

 1 H-NMR (CDCl₃): δ 0. 70-0. 95 (6H, m) 1. 2 10 6 (9H, s), 2. 20-2. 35 (1H, m), 2. 70-3. 10 (5H, m), 4. 00-4. 20 (1H, m), 4. 65-4. 80 (1H, m), 5. 17 (2H, brs), 6. 44 (1H, d, J=7. 6Hz), 6. 60-6. 85 (1H, m), 6. 95-7. 10 (2H, m), 7. 36 (5H, brs), 7. 60-7. 75 (1H, m), 8. 10-8. 25 (2H, m)

25 0. 85 (3H, d, J=6. 9Hz), 1. 31 (9H, s), 1. 95-2. 11 (1H, m), 2. 36 (3H, s), 2. 81 (1H, d, J=4. 6H z), 2. 99-3. 18 (2H, m), 4. 73-4. 81 (1H, m), 6. 59 (1H, d, J=7. 9Hz), 6. 94 (1H, dd, J=7. 9, 2. 0Hz), 7. 00-7. 10 (2H, m), 7. 65-7. 72 (1H, m),

7. 80 (1H, d, J=7. 9Hz), 8. 18 (1H, d, J=8. 6Hz), 8. 25 (1H, d, J=4. 6Hz),

(5) 2-((2-プトキシカルボニルアミノ-3-(4-フルオロフェニル) プロピオニル) -N-メチルアミノ) -3-メチル酪酸 <math>2-(3-tert) t ブチルー4-ヒドロキシフェニル) -1-(2-ピリジルカルバモイル) エチルアミドの合成

5

10

15

3-メチルー2-メチルアミノ酪酸 2-(3-tertブチルー4-ヒドロキシフェニル)-1-(2-ピリジルカルバモイル) エチルアミド 1.25g(2.93mmol)、Boc-Phe(4-F)-OH 1.08g(3.81mmol)、およびCMPI 973mg(3.81mmol)のTHF 19ml溶液に、氷冷下TEA 0.94ml(6.74mmol)を加え、氷冷下4時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:n-

¹H-NMR (CDC1₃): δ 0. 65-1. 02 (6H, m), 1. 2 6 (9H, s), 1. 34 (9H, s), 2. 20-2. 40 (1H, m), 2. 75-3. 15 (4H, m), 2. 89 (3H, s), 4. 20-4. 35 (1H, m), 4. 70-5. 00 (2H, m), 6. 61 (1H, d, J=7. 9Hz), 6. 75-7. 20 (7H, m), 7. 60-7. 80 (1H, m)

20 Hz), 6. 75-7. 20 (7H, m), 7. 60-7. 80 (1H, m), 8. 20-8. 30 (2H, m)

ヘキサン=1:1) に付し、標題化合物 1.72g(85%)を得た。

クロロホルムを加え、飽和 $NaHCO_3$ 水溶液および飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した。減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 メタノール:アンモニア水:塩化メチレン=3:0.1:100)に付し、標題化合物370mgを得た。

 $EI - MS : 591 (M^+)$

¹H-NMR (CDCl₃): δ 0. 74 (2H, d, J=6.9Hz), 0. 77 (1H, d, J=6.9Hz), 0. 88 (1H, d, J=6.3Hz), 0. 95 (2H, d, J=6.3Hz), 1. 25 (9H, s), 2. 2 10 4-2.44 (1H, m), 2. 50-3.25 (4H, m), 2. 78 (2.4H, s), 2. 85 (0.6H, s), 3. 55-3.65 (0.8H, m), 3. 80-3.90 (0.2H, m), 4.00 (0.8H, d, J=10.9Hz), 4.36 (0.2H, d, J=10.9Hz), 4.65-4.80 (0.2H, m), 4.90-5.00 (0.8H, m), 6.55-7.20 (8H, m), 7.65-7.75 (1H, m), 8.15-8.25 (2H, m)

実施例9

25

5

N-(2-(2-(2-r)2/-3-(4-r)2/r)2/r) プロピオニ 20 ル)-N-メチルアミノ)-3-メチルーブチリルアミノ)-3-(3-tBu -4-ヒドロキシフェニル)プロピル)尿素

(1) Z-3-tBu-チロシノールの合成

Z-Tyr (3-tBu) -OMe 7.4g (19mmol)のTHF 190ml溶液に、氷冷下、水素化ホウ素リチウム 1.25g (57.4mmol)を加え、室温で1.5時間攪拌した。飽和NH₄Cl水溶液を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン:酢酸エチル=1:1)に付し、標題化合物 6.8g (99%)を得た。

WO 00/447/0

¹H-NMR (CDCl₃): δ 1. 38 (9H, s), 2. 15 (1H, m), 2. 78 (2H, brd, J=6. 9Hz), 3. 5-3. 8 (2H, m), 3. 8-4. 0 (1H, m), 4. 86 (1H, s), 4. 9-5. 0 (1H, m), 5. 09 (2H, s), 6. 58 (1H, d, J=7. 9Hz), 6. 88 (1H, brd, J=7. 9Hz), 7. 05 (1H, brs), 7. 34 (5H, s)

(2) 2-(ベンジルオキシカルボニルアミノ)-3-(3-tBu-4-ヒドロキシフェニル)プロピルアミンの合成

Z-3-tBu-チロシノール 2g(5.6mmol)、トリフェニルホス
 フィン 1.76g(6.7mmol)、フタルイミド 0.99g(6.7mmol)のTHF 50ml溶液に、氷冷下、アゾジカルボン酸ジエチルエステル(DEAD) 1.05ml(6.7mmol)を加え、同温度で1時間攪拌した。水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン:酢酸エチル=2:1)に付し、(1-(1,3-ジヒドロ-1,3-ジオキソーイソインドール-2-イル)メチルー2-(3-tBu-4-ヒドロキシフェニル)エチル)カルバミド酸ベンジルエステル 3.2gを得た。

上記化合物 3.2 gに40%メチルアミンメタノール溶液 40mlを室温 20 で加え、同温度で10時間攪拌した。反応混合物を減圧下濃縮し、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:メタノール:アンモニア水=20:1:0.1)に付し、標題化合物 1.9 gを得た。

 $^{1}H-NMR$ (CDCl₃): δ 1.37 (9H, s), 2.6-2.9 (4H, m), 3.7-3.9 (4/5H, m), 3.9-4.1 (1/5H,

25 m) 4. 8-4. 9 (4/5H, m) \cdot 5. 0 9 (2H, s) \cdot 5. 4-5. 5 (1/5H, m) \cdot 6. 5-6. 6 (1H, m) \cdot 6. 8 4 (1H, d, J=7. 3Hz) \cdot 6. 9-7. 1 (1H, m) \cdot 7. 3 3 (5H, s)

(3) N-(2-(ベンジルオキシカルボニルアミノ) -3-(3-tBu-4-ヒドロキシフェニル) プロピル) 尿素の合成

2-(ベンジルオキシカルボニルアミノ) -3-(3-tBu-4-ヒドロキシフェニル) プロピルアミン 1.0g (2.8 mmol)、シアン酸カリウム 0.5g(5.5 mmol)、酢酸 0.5ml、ジオキサン 10ml、水 10mlの混合物を<math>60で2時間攪拌した。飽和 $NaHCO_3$ 水溶液を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:メタノール=50:1)に付し、標題化合物 0.9g(80%)を得た。

5

20

 1 H-NMR (CD₃OD) : δ 1. 35 (9H, s), 2. 5-2. 8 10 (2H, m), 3. 0-3. 2 (1H, m), 3. 2-3. 4 (1H, m), 3. 7-3. 9 (1H, m), 5. 01 (2H, d, J=3. 6Hz), 6. 63 (1H, d, 7. 9Hz), 6. 84 (1H, brd, J=7. 9Hz), 7. 04 (1H, brs), 7. 2-7. 4 (5H, m)

(4) N-(2-(2-(ベンジルオキシカルボニル-<math>N-メチルアミノ) -15 3-メチルーブチリルアミノ) -3-(3-tBu-4-ヒドロキシフェニル) プロピル) 尿素の合成

N-(2-(ベンジルオキシカルボニルアミノ) -3-(3-tBu-4-ヒドロキシフェニル) プロピル) 尿素 <math>0.9g(2.26mmol) のメタノール 20ml溶液に、10%パラジウム炭素 <math>100mgを加え、水素雰囲気下、室温にて12時間攪拌した。濾過後、減圧下に濾液を濃縮し、N-(2-アミノ-3-(3-tBu-4-ヒドロキシフェニル) プロピル) 尿素 <math>0.54gを 得た。

上記化合物 0.53g(2mmol)、Z-N-Me-Val-OH 0.69g(2.6mmol)、およびCMPI 0.67g(2.6mmol)の THF 20ml溶液に、氷冷下、TEA 1ml(7.2mmol)を加え、室温にて1.5時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、硫酸ナトリウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:メタノール:アンモニア水=20:1:0.1)に付し、標題化合物 0.

98g (98%) を得た。

5

10

15

 1 H-NMR (CDCl₃): δ 0. 82 (3H, d, J=6. 3Hz), 0. 88 (3H, d, J=6. 3Hz), 1. 35 (9H, s), 2. 1-2. 3 (1H, m), 2. 6-2. 8 (2H, m), 2. 76 (3H, s), 3. 0-3. 4 (2H, m), 3. 9-4. 1 (1H, m), 4. 7-5. 0 (2H, m), 5. 0-5. 1 (2H, m), 5. 5-5. 6 (1H, m), 6. 4-7. 0 (5H, m), 7. 34 (5H, s)

(5) N-(2-(2-(1-7)+2)) (4-7) (4-7) プロピオニル) プロピオニル) N-3 (4-7) アミノ) N-3 (3-1) アニール) プロピル) 尿素の合成

N-(2-(2-(ベンジルオキシカルボニル-N-メチルアミノ) -3-メチルーブチリルアミノ) -3-(3-tBu-4-ヒドロキシフェニル) プロピル) 尿素 <math>0.97g(1.95mmol) のメタノール 20ml溶液に、10%パラジウム炭素 <math>100mgを加え、水素雰囲気下、室温にて3時間攪拌した。濾過後、減圧下に濾液を濃縮し、N-(2-(2-アミノ-3-メチループチリルアミノ) -3-(3-tBu-4-ヒドロキシフェニル) プロピル) 尿素 <math>0.72gを得た。

上記粗化合物 0.64g(1.85mmol)、Boc-Phe(4-F)
20 -OH 0.63g(2.22mmol)、およびCMPI 0.57g(2.23mmol)のTHF 18ml溶液に、氷冷下、TEA 0.93ml(6.67mmol)を加え、室温にて8時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、硫酸ナトリウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開25 溶媒 クロロホルム:メタノール:アンモニア水=20:1:0.1)に付し、標題化合物 0.79g(66%)を得た。

 $^{1}H-NMR$ (DMSO-d₆) : δ 0. 70, 0. 75, 0. 85, and 0. 95 (total 6H, d, J=5. 9-6. 3Hz), 1. 2-1. 4 (18H, m), 2. 0-2. 1 (1H, m), 2. 4-2. 9 (7H, m),

2. 9-3. 1 (2H, m), 3. 8-4. 0 (1H, m), 4. 3-4. 6 (2H, m), 5. 39, 5. 51 (2H, brs), 5. 74 (1H, d, J = 1. 3Hz), 5. 9-6. 0 (1H, m), 6. 6-6. 9 (2H, m), 6. 9-7. 1 (2H, m), 7. 1-7. 3 (3H, m), 7. 60 and 7. 73 (total 1H, brd), 9. 02 (1H, s)

(6) N-(2-(2-(2-r)-3-(4-r)) プロピオニル) -N-x チルアミノ) -3-x チルーブチリルアミノ) -3-(3-t) + 2 ひかった + 3 の合成

N-(2-(2-((2-(t-ブトキシカルボニルアミノ)-3-(4-フルオロフェニル)プロピオニル)-N-メチルアミノ)-3-メチルーブチリルアミノ)-3-(3-tBu-4-ヒドロキシフェニル)プロピル)尿素 0.75gの塩化メチレン 6ml溶液に、氷冷下、TFA 6mlを加え、室温で1時間攪拌した後、減圧下に溶媒を留去した。残さに塩化メチレンを加え、飽和NaHCO3水溶液で洗浄した後、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した。得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒クロロホルム:メタノール:アンモニア水=20:1:0.1)に付し、標題化合物 480mg(76%)を得た。

 $FAB-MS: 544 (M^++1)$

¹H-NMR (DMSO-d₆): δ 0. 49, 0. 73, and 0. 8 20 5 (total 6H, d, J=6. 0-6. 6Hz), 1. 30 and 1. 32 (total 9H, s), 2. 0-2. 2 (1H, m), 2. 4-3. 1 (9H, m), 3. 7-4. 1 (3H, m), 4. 52 and 5. 48 (total 2H, m), 5. 8-6. 0 (1H, m), 6. 6-6. 8 (2H, m), 6. 9-7. 3 (5H, m), 7. 67 and 8. 79 (total 1H, d, J=7. 6-8. 6Hz), 9. 01 and 9. 06 (total 1H, s)

実施例10

5

N-(2-(2-(2-r)2/-3-(4-r)2) プロピオニ

N = N - x + y + y = 1 - 3 - x + y + y = 1 - 3 - x + y = 1 - 2 - 1 + y = 1 - 2 - 2 + y = 1 +

5 (2-(ベンジルオキシカルボニルアミノ) -3-(3-tBu-4-ヒドロキシフェニル) プロピル) アミン 1.46g(4.1mmol) のジオキサン8ml溶液に氷冷下、炭酸ナトリウム 0.44g(4.1mmol) の水溶液8ml、(Boc)₂O 0.9g(4.1mmol) を順次加え、同温度で2.5時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩0水で洗浄、硫酸ナトリウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン:酢酸エチル=2:1) に付し、標題化合物 1.7g(91%)を得た。

10

15

20

25

 1 H-NMR (CDCl₃): δ 1. 38 (9H, s), 1. 42 (9H, s), 2. 6-2. 9 (2H, m), 3. 1-3. 3 (2H, m), 3. 8-4. 0 (1H, m), 4. 7-4. 8 (1H, m), 5. 08 (2H, s), 6. 5 8 (1H, d, J=8. 9Hz), 6. 85 (1H, brd, J=8. 9Hz), 7. 03 (1H, brs), 7. 2-7. 5 (5H. m)

(2)N-(2-(2-(ベンジルオキシカルボニル-N-メチルアミノ)-3-メチルーブチリルアミノ)-3-(3-tBu-4-ヒドロキシフェニル)プロピル)カルバミド酸 <math>t-Buエステルの合成

N-(2-(ベンジルオキシカルボニルアミノ)-3-(3-tBu-4-tE)ドロキシフェニル)プロピル)カルバミド酸 t-Bu エステル 1.6g(3.5 mmol)のメタノール 35ml 溶液に、10%パラジウム炭素 160mgを加え、水素雰囲気下、室温にて1.5時間攪拌した。濾過後、減圧下に濾液を濃縮し、N-((2-アミノ-3-(3-tBu-4-tE)) プロピル)カルバミド酸 t-Bu エステル 1.1gを得た。

上記粗化合物 1. 1g (3. 42mmol)、Z-N-Me-Val-OH 1. 08g (4. 08mmol)、およびCMPI 1. 04g (4. 07mm ol)のTHF 35ml溶液に、氷冷下、TEA 1. 7ml (12. 2mm

ol)を加え、室温にて1時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、硫酸ナトリウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 へキサン:酢酸エチル=2:1)に付し、標題化合物 1.8g(93%)を得た。

- - (3) N-(2-(2-((2-(ベンジルオキシカルボニルアミノ)-3-(4-フルオロフェニル) プロピオニル)-<math>N-メチルアミノ)-3-メチルーブチリルアミノ)-3-(3-tBu-4-tFu+シフェニル)プロピル)カルバミド酸 t-Buエステルの合成
- N-(2-(2-(ベンジルオキシカルボニル-N-メチルアミノ)-3-メチループチリルアミノ) -3-(3-tBu-4-ヒドロキシフェニル) プロピル) カルバミド 酸 <math>t-Bu エステル 1.8g (3.16mmol) のメタノール 35ml溶液に、10%パラジウム炭素 180mgを加え、水素雰囲気下、室温にて1時間攪拌した。濾過後、減圧下に濾液を濃縮し、<math>N-(2-(2-(N-メチルアミノ)-3-メチルーブチリルアミノ)-3-(3-tBu-4-ヒドロキシフェニル) プロピル) カルバミド酸 <math>t-Bu エステル 1.33gを得た。

上記粗化合物 1.33g(3.15mmol)、Z-Phe(4-F)-OH 1.2g(3.78mmol)、およびCMPI 0.97g(3.78mmol)のTHF 35ml溶液に、氷冷下、TEA 1.6ml(11.5mmol)を加え、室温にて10時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、硫酸ナトリウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒へキサン:酢酸エチル=1:1)に付し、標題化合物 1.48g(53%)を

得た。

 1 H-NMR (CDCl₃): δ 0. 68, 0. 75, 0. 91, and 0. 98 (total 6H, d, J=6. 2-6. 9Hz), 1. 35, 1. 37, 1. 40, and 1. 42 (total 18H, m), 2. 1-3. 4 (10H, m), 4. 0-4. 5, 4. 7-5. 1, and 5. 5-5. 7 (total 7H, m), 6. 3-7. 5 (17H, m)

(4) 2-(2-((2-(ベンジルオキシカルボニルアミノ)-3-(4-フルオロフェニル) プロピオニル)-N-メチルアミノ)-3-メチルーブチリルアミノ)-3-(3-tBu-4-ヒドロキシフェニル) プロピルアミン の

10 合成

5

N-(2-(2-((2-(ベンジルオキシカルボニルアミノ)-3-(4-7)) - (2-((2-(ベンジルオキシカルボニルアミノ)-3-(4-7)) - (3-1)

- 15 TFA 5mlを加え、室温で30分間攪拌した後、減圧下に溶媒を留去した。 残さに塩化メチレンを加え、飽和 $NaHCO_3$ 水溶液で洗浄した後、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した。得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:メタノール:アンモニア水= 20:1:0.1)に付し、標題化合物 1.1g(92%)を得た。
- 1 H-NMR (CDCl₃): δ 0. 67, 0. 76, 0. 92, and 0. 97 (total 6H, d, J=6. 6-6. 9Hz), 1. 35 and 1. 37 (total 9H, s), 2. 2-2. 5 (1H, m), 2. 4-3. 1 (9H, m), 4. 0-4. 2 and 4. 4-4. 5 (total 2H, m), 4. 7-5. 1 (2H, m), 5. 5-5. 6 and 5. 7-5. 9 (total 1H, brd, J=7. 6-8. 1Hz), 6. 2-6. 4, 6.

5-6.7, and 6.8-7.4 (total 13H, m)

(5) N-(2-(2-(2-r)2)-3-(4-r)2) プロピオニル) N-(3-r)2 ピオニル) N-(3-r)2 N-(3-

2-(2-((2-(ベンジルオキシカルボニルアミノ)-3-(4-フルオロフェニル)プロピオニル)-N-メチルアミノ)-3-メチループチリルアミノ)-3-(3-tBu-4-ヒドロキシフェニル)プロピルアミン 580mg(0.91mmol)のDMF 4.5ml溶液に室温で、1H-ピラゾール5-1-カルボキサミジン塩酸塩 161mg(1.09mmol)およびDIEA0.19ml(1.09mmol)を加え、同温度で18時間攪拌した。反応混合物を減圧下濃縮後、得られた残さをシリカゲルカラムクロマトグラフィー(アミノプロピル化処理シリカゲル chromatorex NH-DM1020(富士シリシア化学)、展開溶媒 酢酸エチル:メタノール=100:1から10:1)10に付し、N-(2-(2-((2-(ベンジルオキシカルボニルアミノ)-3-(4-フルオロフェニル)プロピオニル)-N-メチルアミノ)-3-メチルーブチリルアミノ)-3-(3-tBu-4-ヒドロキシフェニル)プロピル)グアニジン 410mgを得た。

上記化合物 410mgのメタノール 20ml溶液に、10%パラジウム炭 素 40mgを加え、水素雰囲気下、室温にて5時間攪拌した。濾過後、減圧下に濾液を濃縮し、得られた残さをシリカゲルカラムクロマトグラフィー(アミノプロピル化処理シリカゲル chromatorex NH-DM1020(富士シリシア化学)、展開溶媒 酢酸エチル:メタノール=5:1)に付し、標題化合物 250mg (76%)を得た。

20 FAB-MS: 543 (M++1)

¹H-NMR (CD₃OD)): δ 0. 47, 0. 53, 0. 80, 0. 90

(6H, d, J=6. 3-6. 9Hz), 1. 31, 1. 37 (9H, s), 2.

0-2. 3 (1H, m), 2. 41, 2. 46, and 2. 57 (total 3H, s), 2. 5-3. 4 (6H, m), 3. 8-4. 6 (3H, m), 6.

25 6-7. 3 (7H, m)

実施例11

N- (2-(2-((2-アミノ-3-(4-フルオロフェニル) プロピオニル) -N-メチルアミノ) -3-メチルーブチリルアミノ) -3- (3-tBu

WO 00/44770 PC 1/3P00/00/

-4-ヒドロキシフェニル)プロピル)-N'-シアノ-N''-メチルグアニジンの合成

2-(2-((2-(ベンジルオキシカルボニルアミノ)-3-(4-フルオ ロフェニル)プロピオニル) - N - メチルアミノ) - 3 - メチルーブチリルアミ ノ) -3-(3-tBu-4-ヒドロキシフェニル) プロピルアミン 500m5 g (0.79mmol)のエタノール 4ml溶液に室温で、ジメチル N-シ アノジチオイミノカルボネート 127mg (0.87mmol) を加え、同温 度で16時間攪拌した。反応混合物を減圧下濃縮後、得られた残さに室温で4 0%メチルアミンメタノール溶液5mlを加え、同温度で16時間攪拌した。反 応混合物を減圧下濃縮後、得られた残さをシリカゲルカラムクロマトグラフィー 10 (展開溶媒 クロロホルム:メタノール:アンモニア水=20:1:0.1) に 付し、N-(2-(2-((2-(ベンジルオキシカルボニルアミノ)-3-(4-フルオロフェニル)プロピオニル)-N-メチルアミノ)-3-メチルー ブチリルアミノ) -3-(3-tBu-4-ヒドロキシフェニル) プロピル) -N' -シアノ-N' ' -メチルグアニジン450 mg を得た。 15

上記化合物 $440 \,\mathrm{mg}$ のメタノール $6 \,\mathrm{ml}$ 溶液に、 $10 \,\mathrm{%}$ パラジウム炭素 $50 \,\mathrm{mg}$ を加え、水素雰囲気下、室温にて $15 \,\mathrm{時間}$ 攪拌した。濾過後、減圧下に 濾液を濃縮し、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:メタノール:アンモニア水=20:1:0.1)に付し、標題化 合物 $280 \,\mathrm{mg}$ ($78 \,\mathrm{\%}$) を得た。

 $FAB-MS:582(M^{+}+1)$

 $^{1}H-NMR$ (CDCl₃): δ 0. 62, 0. 79, 0. 87, and 0. 91 (total 6H, d, J=6. 3-6. 6Hz), 1. 37 and d 1. 40 (total 9H, s), 2. 1-2. 4 (1H, m), 2. 5 25 -3. 0 (10H, m), 3. 1-3. 4 (2H, m), 3. 6-4. 4 (3H, m), 5. 8-6. 1 (1H, m), 6. 6-7. 2 (7H, m), 8. 68 (1H, d, J=6. 6Hz)

実施例12

20

2-(2-(2-7)-3-(4-7)-3-(3-7)-

(1) 2-(2-(2-ベンジルオキシカルボニルアミノ-3-(4-フルオ ロフェニルプロパノイル-N-メチルアミノ) <math>-3-(3-tertブチル-4-ヒドロキシフェニル) プロピルスルファミドの合成

2-(2-(2-ベンジルオキシカルボニルアミノ-3-(4-フルオロフェニルプロパノイル-N-メチルアミノ)-3-メチル)ブチリルアミノ)-3-10 (3-tertブチル-4-ヒドロキシフェニル)プロピルアミン 514mg (0.811mmol)の1,4-ジオキサン 8ml溶液に、スルファミド156mg (1.62mmol)を加え、120℃で5時間攪拌した。反応液の溶媒を減圧下に留去し、残さに水を加えてクロロホルムで抽出し、飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去し、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 塩化メチレン:メタノール=20:1)に付し、標題化合物 397mg (69%)を得た。

 $^{1}H-NMR$ (CDC1₃): (two rotamers) δ 0. 69, 0. 85 and 0. 99 (6H, d, J=6. 3-6. 6Hz), 1. 36 a nd 1. 37 (9H, s), 1. 80-1. 90 (1H, m), 2. 22-2. 40 (1H, m), 2. 43 and 2. 81 (3H, s), 2. 60-3.

20 40 (1H, m), 2. 43 and 2. 81 (3H, s), 2. 60-3. 10 (4H, m), 3. 26-3. 38 (1H, m), 3. 70-3. 80 (1 H, m), 3. 90-4. 10 (1H, m), 4. 28-4. 44 (1H, m), 4. 72-5. 30 (3H, m), 5. 03 (2H, s), 6. 52-6. 66 (2H, m), 6. 80-7. 40 (10H, m)

25 (2) 2-(2-(2-アミノ-3-(4-フルオロフェニルプロパノイル-N-メチルアミノ) <math>-3-メチル)ブチリルアミノ)-3-(3-tertブチル-4-ヒドロキシフェニル)プロピルスルファミドの合成

- (3-tertブチル-4-ヒドロキシフェニル) プロピルスルファミド 332mg (0.466mmol)、10%パラジウム炭素 40mgのメタノール 5ml混合物を、室温、水素雰囲気下、終夜攪拌した。反応液を濾過し濾液を減圧下に濃縮して得られた残さを、シリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:メタノール:アンモニア水=200:10:1)に付し、標題化合物 180mg (67%)を得た。

 $FAB-MS:580 (M+H^{+})$

¹H-NMR (CDCl₃): (two rotamers)δ 0.63, 0.75, 0.81 and 0.93 (6H, d, J=6.3-6.6Hz), 1.10 38 and 1.39 (9H, s), 2.20-3.42 (6H, m), 2.60 and 3.02 (3H, s), 3.49 (1H, s), 3.60-3.90 (2H, m), 4.30-4.44 (1H, m), 5.30-5.40 (1H, m), 6.56-7.16 (7H, m), 8.34-8.42 (1H, m)

15 実施例13

5

(1) 2-(2-(2-ベンジルオキシカルボニルアミノ-3-(4-フルオ 20 ロフェニルプロパノイル-N-メチルアミノ) <math>-3-(3-tert) プチリルアミノ) -3-(3-tert) プロピルアミノ酢酸 -- エチルエステルの合成

2-(2-(2-ベンジルオキシカルボニルアミノ-3-(4-フルオロフェニルプロパノイル-N-メチルアミノ)-3-メチル)ブチリルアミノ)-3-25 (3-tertブチルー4-ヒドロキシフェニル)プロピルアミン 1.17g(1.84mmol)のエタノール 18ml溶液に、氷冷下、グリオキシル酸エチル 0.7ml(2.76mmol)、酢酸 1.8mlおよび水素化シアノホウ素ナトリウム 173mg(2.76mmol)を加え1時間攪拌した。反応液に飽和NaHCO3水溶液を加えて酢酸エチルで抽出し、飽和食塩水で洗

浄した。無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去し、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン:酢酸エチル:塩化メチレン:=2:3:1)に付し、標題化合物 900mg (68%)を得た。 1 H-NMR (CDC1₃):(two rotamers) δ 0.65,0.

- 5 75, 0. 91 and 0. 97 (6H, d, J=6. 2-6. 9Hz), 1. 22 and 1. 29 (3H, t, J=7. 2Hz), 1. 35 and 1. 36 (9H, s), 2. 22-2. 40 (1H, m), 2. 42 and 2. 90 (3H, s), 2. 60-3. 02 (5H, m), 3. 22-3. 46 (2H, m), 4. 06-4. 28 (2H, m), 4. 47 (1H, d, J=12.
- 10 2Hz), 4. 80-5. 12 (3H, m), 5. 29 (2H, s), 5. 74 (1H, d, J=8. 9Hz), 6. 58-7. 42 (12H, m)
 - (2) 2-(2-(2-ベンジルオキシカルボニルアミノ-3-(4-フルオロフェニルプロパノイル-N-メチルアミノ)-3-メチル) ブチリルアミノ) <math>-3-(3-tert) では -3-(3-tert)
15

- 2-(2-(2-ベンジルオキシカルボニルアミノ-3-(4-フルオロフェニルプロパノイル-N-メチルアミノ)-3-メチル) ブチリルアミノ)-3-(3-tertブチル-4-ヒドロキシフェニル) プロピルアミノ酢酸 エチルエステル 889mg(1.23mmol)のメタノール 24ml溶液にアンモニア水 16mlを加え室温にて15時間攪拌した。減圧下に溶媒を留去し、酢酸エチルで抽出し、飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去し、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:メタノール:アンモニア水=110:10:1) に付し、標題化合物 600mg(70%)を得た。
- 1 H-NMR (CDCl₃): (two rotamers) δ 0.65, 0.75, 0.90 and 0.96 (6H, d, J=6.0-6.6Hz), 1.36 and 1.37 (9H, s), 2.22-2.40 (1H, m), 2.47 and 2.82 (3H, s), 2.60-3.02 (4H, m), 3.24 and 3.26 (2H, s), 4.02-4.38 (2H, m), 4.

76-5.08(3H, m), 5.40-5.90(3H, m), 6.56-7.38(12H, m)

- (3) 2-(2-(2-アミノ-3-(4-フルオロフェニルプロパノイル-N-メチルアミノ) <math>-3-メチル) ブチリルアミノ) -3-(3-tertブチル-4-ヒドロキシフェニル) プロピルアミノアセタミドの合成
- 2-(2-(2-ベンジルオキシカルボニルアミノ-3-(4-フルオロフェニルプロパノイル-N-メチルアミノ) -3-メチル) ブチリルアミノ) -3- (3-tertブチル-4-ヒドロキシフェニル) プロピルアミノアセタミド <math>595mg(0.860mmol) のメタノール 10ml 溶液に、20%水酸
- 10 化パラジウム炭素 150mgを加え、室温、水素雰囲気下、終夜攪拌した。反 応液を濾過し、濾液を減圧下に濃縮して得られた残さを、シリカゲルカラムクロ マトグラフィー(展開溶媒 塩化メチレン:メタノール:ヘキサン=10:1: 1)に付し、標題化合物 333mg(70%)を得た。

 $FAB-MS:558(M+H^{+})$

実施例14

25

WO 00/44770

5

N-[2-(3-tertプチル-4-ヒドロキシフェニル)-1-(メタンスルホニルアミノメチル) エチル]-2-[N-(4-フルオロフェニルアラニノイル) メチルアミノ]-3-メチルプタナミド

(1) N-Z-2-(4-ベンジルオキシ-3-tertブチルフェニル) - 1-ヒドロキシメチルエチルアミンの合成

Z-Phe (4-ベンジルオキシ-3-tBu) -OMe 5.8g (12.2mmol) のメタノール (100ml) -水 (20ml) 混合溶液に、水素化

ホウ素ナトリウム 1.5g(36.6mmol)を加え、室温にて終夜攪拌した。反応液を減圧下に濃縮した後、飽和塩化アンモニウム水を加え、酢酸エチルで抽出した。有機層を硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル: $n- \wedge + \forall \nu = 1:2$)に付し、標題化合物 5.1g(94%)を得た。

(2) 3-(4-ベンジルオキシ-3-tertブチルフェニル) -2-ベンジルオキシカルボニルアミノプロピルアミンの合成

5

N-2-2-(4-ベンジルオキシ-3-tertブチルフェニル) -1-ヒドロキシメチルエチルアミン 5.09g(11.4mmol)、トリフェニル ホスフィン 4.41g(17.1mmol)、およびフタルイミド 2.51g(17.1mmol)のTHF 66ml溶液に、氷冷下、ジエチル アゾジカルボキシレート 3.0ml(17.1mmol)を加え、4時間攪拌した。反応液を濃縮して得られた残さのメタノール 70ml溶液に、ヒドラジン 6mlを加え、室温にて4時間攪拌した。反応液に水を加え、酢酸エチルで抽出し、硫酸マグネシウムで乾燥した後、減圧下に溶媒を留去した。得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 塩化メチレン:メタノール=10:1)に付し、標題化合物 2.45g(49%)を得た。

- (3) N-[3-(4-ベンジルオキシ-3-tertブチルフェニル)-2-ベンジルオキシカルボニルアミノプロピル]メタンスルホナミドの合成
- 3-(4-ベンジルオキシ-3-tertブチルフェニル)-2-ベンジルオキシカルボニルアミノプロピルアミン 1.27g(2.84mmol)の塩化メチレン 29ml溶液に、氷冷下、TEA 0.6ml(4.26mmol)を加え、続いて塩化メタンスルホニル 0.3ml(3.69mmol)をゆっくり加えた。30分間攪拌した後、水を加え、クロロホルムで抽出した。有機層を硫酸マグネシウムで乾燥し、減圧下に溶媒を留去し得られた残さを、シリカゲルカラムクロマトグラフィー(展開溶媒 塩化メチレン:酢酸エチル:n-ヘキサン=1:1:2)に付し、標題化合物 1.23g(83%)を得た。
 - (4) 2 [N-(ベンジルオキシカルボニル) メチルアミノ] N-[2-(3-tertプチルー4-ヒドロキシフェニル) -1-(メタンスルホニルア

ミノメチル) エチル] -3-メチルブタナミドの合成

5

N-[3-(4-ベンジルオキシ-3-tertブチルフェニル) -2-ベンジルオキシカルボニルアミノプロピル] メタンスルホナミド 1.2g(2.29mmol)をメタノール 23mlと塩化メチレン 5mlの混合溶液に溶解させ、水酸化パラジウムー炭素 0.60gを加え、水素雰囲気下に12時間攪拌した。不溶物をセライトを用いて濾別し、濾液を濃縮することにより、粗N-[2-アミノー3-(4-ベンジルオキシー3-tertブチルフェニル)プロピル] メタンスルホナミド 0.68gを得た。

¹H-NMR (CDCl₃): δ 1. 39 (s, 9H), 2. 48 (dd, 1H, J=8. 2, 13. 9Hz), 2. 73 (dd, 1H, J=5. 1, 13. 3Hz), 2. 94 (dd, 1H, J=7. 9, 11. 9Hz), 2. 96 (s, 3H), 3. 10-3. 22 (m, 1H), 3. 24 (dd, 1H, J=3. 6, 12. 2Hz), 6. 60 (d, 1H, J=7. 9Hz), 6. 83 (dd, 1H, J=2. 0, 7. 9Hz), 7. 03 (d, 1H, J=2. 0Hz)

- 15 上記粗化合物 0.66g、Z-N-Me-Val-OH 758mg(2.86mmol)、およびCMPI 730mg(2.86mmol)のTHF 22ml溶液に、氷冷下、TEA 0.91ml(6.59mmol)を加えた。室温にて終夜攪拌した後、飽和炭酸水素ナトリウム水を加え、酢酸エチルで抽出した。有機層を硫酸マグネシウムで乾燥し、減圧下に溶媒を留去し得られた残さを、シリカゲルカラムクロマトグラフィー(展開溶媒 塩化メチレン:酢酸エチル:n-ヘキサン=1:3:2)に付し、標題化合物 1.08g(90%)を得た。
- (5) 2-[N-(N-ベンジルオキシカルボニル-4-フルオロフェニルア ラニノイル)メチルアミノ]-N-[2-(3-tertブチル-4-ヒドロキ シフェニル)-1-(メタンスルホニルアミノメチル)エチル]-3-メチルブ タナミドの合成
 - 2-[N-(ベンジルオキシカルボニル) メチルアミノ] -N-[2-(3-tertプチル-4-ヒドロキシフェニル) -1-(メタンスルホニルアミノメチル) エチル] -3-メチルプタナミド 1.0g(1.83mmol) のメタ

ノール 18ml溶液に、水酸化パラジウム-炭素 0.40gを加え、水素雰 囲気下に1.5時間攪拌した。不溶物をセライトを用いて濾別し、濾液を濃縮し て得られた残さ 0.75g、Z-Phe (4-F) -OH 748mg (2. 66mmol)、およびCMPI 602mg (2.36mmol)のTHF 18ml溶液に、氷冷下、TEA 0.82ml (5.44mmol) を加えた。 5 室温にて終夜攪拌した後、飽和炭酸水素ナトリウム水を加え、酢酸エチルで抽出 した。有機層を硫酸マグネシウムで乾燥し、減圧下に溶媒を留去し得られた残さ を、シリカゲルカラムクロマトグラフィー(展開溶媒 塩化メチレン:酢酸エチ $\nu: n-\Delta+ + + = 1:3:2$)に付し、標題化合物 827mg (64%) を 得た。

(6) N-[2-(3-tertブチル-4-ヒドロキシフェニル) -1-(メタンスルホニルアミノメチル) エチル] -2- [N-(4-フルオロフェニ ルアラニノイル) メチルアミノ] -3-メチルブタナミドの合成

2- [N-(N-ベンジルオキシカルボニル-4-フルオロフェニルアラニノ イル) メチルアミノ] -N-[2-(3-tertブチル-4-ヒドロキシフェ15 ニル)-1-(メタンスルホニルアミノメチル)エチル]-3-メチルブタナミ ド 680mg (0.95mmol) のメタノール 10ml溶液に、水酸化パ ラジウム-炭素 0.25gを加え、水素雰囲気下に1時間攪拌した。不溶物を セライトを用いて濾別し、濾液を濃縮して得られた残さを、シリカゲルカラムク ロマトグラフィー (展開溶媒 クロロホルム:メタノール:濃アンモニア水=1 20 00:10:1) に付し、標題化合物 494mg (89%) を得た。

 $EI - MS : 578 (M^{+})$

10

 $^{1}H-NMR$ (CDCl₃) :(two rotamers) δ 0.62 (d, 21/10H, J=6.9Hz). 0.75 (d, 9/10H, J=6.6Hz), 0.84 (d.9/10H, J=6.6Hz), 0.93 (d, 21/125 0 H, J = 6. 3 Hz), 1. 36 (s, 27/10H), 1. 39 (s, 63/10H), 2. 20-2. 45 (m, 1H), 2. 46-2. 95 (m, 8 H) , 3. 02-3. 17 (m, 3H) , 3. 61-4. 05 (m, 2H) , 4. 18-4.37 (m, 1H), 4.87-4.95 (m, 7/10H), 5.2

3-5. 3.5 (m, 3/10H), 5. 5.5-5. 7.0 (m, 3/10H), 6. 2.0-6. 5.0 (m, 7/10H), 6.60-7. 2.0 (m, 7H), 8.0 1 (d, 1H, J=7.6Hz)

5 実施例15

2-((2-アミノ-3-(4-フルオロフェニル) プロピオニル) -N-メチルアミノ) -3-メチル酪酸 <math>2-(3-t-ブチル-4-ヒドロキシフェニル) -1-カルバミドメチルエチルアミド

(1) 2-(4-ベンジルオキシ-3-t-ブチルフェニル)-1-ヒドロキ10 シメチルエチルカルバミン酸 ベンジルエステルの合成

Z-Phe (3-tBu-4-ベンジルオキシ) -OMe2.46g(5.19mmol)のTHF 50ml溶液に、氷冷下、水素化ホウ素リチウム 339mg(15.57mmol)を加え、室温にて3時間攪拌した。反応液に飽和塩化アンモニウム水を加え、、酢酸エチルで抽出した。有機層を飽和食塩水で

15 洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 n-ヘキサン:酢酸エチル=2:1)に付し、標題化合物 2.30g(99%)を得た。

 $^{1}H-NMR$ (CDCl₃): δ 1. 38 (9H, s), 2. 11 (1H, brs), 2. 80 (2H, d, J=6. 9Hz), 3. 54-3. 77 (2H,

- 20 m), 3.83-3.97 (1H, m), 4.88-4.97 (1H, m), 5. 09 (4H, s), 6.85 (1H, d, J=8.3Hz), 6.97 (1H, dd, J=8.3, 1.8Hz), 7.11 (1H, d, J=1.8Hz), 7. 27-7.50 (10H, m)
- (2) 2-(4-ベンジルオキシ-3-t-ブチルフェニル)-1-メタンス25 ルホニルオキシメチルエチルカルバミン酸 ベンジルエステルの合成

2-(4-ベンジルオキシ-3-t-ブチルフェニル)-1-ヒドロキシメチルエチルカルバミン酸 ベンジルエステル 1.87g(4.18mmol)のピリジン <math>42ml溶液に、氷冷下、メタンスルホニルクロリド 0.36ml(4.60mmol)を加えた。1時間攪拌した後、水を加え、酢酸エチルで

抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下 に溶媒を留去し、標題化合物 1.93g(88%)を得た。

¹H-NMR (CDCl₃): δ 1. 38 (9H, s), 2. 76-2. 9 2 (2H, m), 2. 96 (3H, s), 4. 10-4. 21 (2H, m), 4. 5 21-4. 32 (1H, m), 4. 88-5. 00 (1H, m), 5. 09 (4 H, s), 6. 86 (1H, d, J=8. 6Hz), 6. 98 (1H, brd, J=7. 9Hz), 7. 11 (1H, brs), 7. 30-7. 48 (10H, m)

(3) 2-(4-ベンジルオキシ-3-t ブチルフェニル)-1-シアノメチル10 エチルカルバミン酸 ベンジルエステルの合成

2-(4-ベンジルオキシー3-tブチルフェニル)-1-メタンスルホニルオキシメチルエチルカルバミン酸 ベンジルエステル 1.93g(4.23mmol)のDMSO 11m1溶液にシアン化カリウム 827mg(12.7mmol)を加え、70で加熱した。4時間攪拌した後、水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 n-ヘキサン:酢酸エチル=2:1)に付し、標題化合物 1.42g(7.4%)を得た。

15

¹H-NMR (CDCl₃): δ 1. 38 (9H, s), 2. 46 (1H, 20 dd, J=16. 8, 4. 0Hz), 2. 74 (1H, dd, J=16. 8, 4. 6Hz), 2. 82 (1H, dd, J=13. 8, 8. 4Hz), 2. 96 (1H, dd, J=13. 8, 6. 5Hz), 4. 07-4. 18 (1H, m), 4. 89-4. 98 (1H, m), 5. 09 (4H, s), 6. 87 (1H, d, J=8. 3Hz), 6. 99 (1H, dd, J=8. 3, 1. 5Hz), 7. 12 (1H, d, J=1. 5Hz), 7. 36-7. 47 (10H, m)

(4) 2-(3-t-プチルー4-ヒドロキシフェニル) -1-カルバミドメチルエチルアミンの合成

2-(4-ベンジルオキシー3-t ブチルフェニル)-1-シアノメチルエチルカルバミン酸 ベンジルエステル 1.38g(3.03mmol)のDMS

- 5 上記粗化合物、20%水酸化パラジウム炭素 0.50g、およびメタノール30mlの混合物を室温下、水素雰囲気下、8時間攪拌した。反応液を濾過し、濾液を減圧下に濃縮して得られた残さを、シリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:メタノール:アンモニア水=100:10:1)に付し、標題化合物 639mg(84%)を得た。
- - (5) 2-(ベンジルオキシカルボニル) メチルアミノ-3-メチル酸酸 2-(3-t-)ブチル-4-ヒドロキシフェニル) -1-カルバミドメチルエチルアミドの合成
- Z-N-Me-Val-OH 736mg (2.78mmol)、2-(3-20 tーブチルー4ーヒドロキシフェニル)ー1ーカルバミドメチルエチルアミン579mg (2.32mmol)、およびCMPI 710mg (2.78mmol)のTHF 23ml溶液に、氷冷下、TEA 0.77mlを加え、室温にて4時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル)に付し、標題化合物 1.09g (95%)を得た。

 $^{1}H-NMR$ (CDCl₃): δ 0. 78-0. 90 (6H, m), 1. 3 7 (9H, s), 2. 14-2. 80 (5H, m), 2. 72 (3H, s), 3. 92-4. 04 (1H, m), 4. 32-4. 48 (1H, m), 5. 04, 5.

15 (2H, brs), 5. 27-5. 37 (1H, m), 5. 78, 6. 03 (1H, brs), 6. 38-6. 82 (3H, m), 7. 04 (1H, brs), 7. 30-7. 41 (5H, m).

(6) 3-メチル-2-メチルアミノ酸酸 2-(3-t-ブチル-4-ヒド5 ロキシフェニル) -1-カルバミドメチルエチルアミドの合成

2- (ベンジルオキシカルボニル) メチルアミノ-3-メチル酸酸 2- (3 - t-ブチル-4-ヒドロキシフェニル) -1-カルバミドメチルエチルアミド 1.04g (2.09 mm o 1) のメタノール 20m l 溶液に、10%パラジウム炭素 100m g を加え、水素雰囲気下、室温にて1時間攪拌した。濾過後、

10 減圧下に濾液を濃縮し、得られた残さをシリカゲルカラムクロマトグラフィー (展開溶媒 クロロホルム:メタノール:アンモニア水=100:10:1) に 付し、標題化合物 0.67g(88%)を得た。

15

 $^{1}H-NMR$ (CDCl₃): δ 0. 68 (3H, d, J=6. 9Hz), 0. 83 (3H, d, J=6. 9Hz), 1. 38 (9H, s), 1. 82-1. 97 (1H, m), 2. 27 (3H, s), 2. 45 (1H, dd, J=15.

8, 7. 3Hz), 2. 68 (1H, d, J=4. 6Hz), 2. 78-2. 9 1 (2H, m), 4. 41-4. 56 (1H, m), 5. 30 (1H, brs), 5. 58 (1H, brs), 6. 34 (1H, brs), 6. 62 (1H, d,

J = 8. 0 Hz), 6. 92 (1H, dd, J = 8. 0, 2. 0 Hz), 7. 0

20 4 (1 H, d, J=2.0 Hz)、7.63 (1 H, brd, J=8.9 Hz) (7) 2-((2-アミノ-3-(4-フルオロフェニル)プロピオニル)-N-メチルアミノ)-3-メチル酪酸 2-(3-t-ブチルー4-ヒドロキシフェニル)-1-カルバミドメチルエチルアミドの合成

Z-Phe (4-F) -OH 650mg (2.05mmol)、3-メチル
 25 -2-メチルアミノ酸酸 2-(3-t-ブチルー4-ヒドロキシフェニル)-1-カルバミドメチルエチルアミド 0.62g(1.71mmol)、および CMPI 524mg(2.05mmol)のTHF 17ml溶液に、氷冷下、TEA 0.57ml(4.10mmol)を加え、室温にて終夜攪拌した。反 応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸

マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル)に付し、2-((2-ベンジルオキシカルボニルアミノ-3-(4-フルオロフェニル)プロピオニル)- N-メチルアミノ)-3-メチル酪酸 <math>2-(3-t-ブチル-4-ヒドロキシフェニル)-1-カルバミドメチルエチルアミド 1.05g(93%)を得た。上記化合物 1.16g(1.75mmo1)、10%パラジウム炭素 120mgのメタノール 18ml混合物を、室温、水素雰囲気下、3時間攪拌した。反応液を濾過し、濾液を減圧下に濃縮して得られた残さを、シリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:メタノール:アンモニア水=100:10:1)に付し、標題化合物 761mg(82%)を得た。

 $EI-MS:528 (M^{+})$

 1 H-NMR (CDC1₃): δ 0. 67, 0. 80, 0. 90, 0. 92 (6H, d, J=6. 3-6. 9Hz). 1. 37, 1. 39 (9H, s), 2. 21-3. 22 (6H, m), 2. 61, 2. 89 (3H, s), 3. 59-3. 88, 4. 34-4. 48 (3H, m), 5. 33, 5. 42 (1H, brs), 5. 90, 6. 07 (1H, brs), 6. 56-7. 18 (7H, m), 8. 71 (1H, brd, J=8. 3Hz)

実施例16

5

10

15

- 20 2-((2-アミノ-3-(4-フルオロフェニル)プロピオニル)-N-メ チルアミノ)-3-メチル酪酸 2-(3-t-ブチル-4-ヒドロキシフェニ ル)-1-メタンスルホニルメチルエチルアミド
 - (1) 2-(4-ベンジルオキシ3-t-ブチルフェニル)-1-トルエンス ルホニルオキシメチルエチルカルバミン酸 ベンジルエステルの合成
- 25 2-(4-ベンジルオキシ-3-t-ブチルフェニル)-1-ヒドロキシメチルエチルカルバミン酸 ベンジルエステル 2.07g(4.63mmol)のピリジン 46ml溶液に、氷冷下、トルエンスルホニルクロリド 6.79g(35.6mmol)を加えた。6.5時間攪拌した後、水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧

下に溶媒を留去し、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 $n-\Delta+$ かは、酢酸エチル=2:1)に付し、標題化合物 2.46g (88%)を得た。

 1 H-NMR (CDCl₃): δ 1. 36 (9H, s), 2. 42 (3H, 5), 2. 72-2. 86 (2H, m), 3. 92-4. 09 (3H, m), 4. 84-4. 95 (1H, m), 5. 04 (2H, s), 5. 07 (2H, s), 6. 79 (1H, d, J=8. 0Hz), 6. 87 (1H, brd, J=8. 0Hz), 7. 06 (1H, brs), 7. 26-7. 48 (12H, m), 7. 76 (2H, d, J=8. 3Hz)

10 (2) 2-(4-ベンジルオキシ3-t-ブチルフェニル)-1-メチルチオ メチルエチルカルバミン酸 ベンジルエステルの合成

2-(4-ベンジルオキシ3-t-ブチルフェニル)-1-トルエンスルホニルオキシメチルエチルカルバミン酸 ベンジルエステル <math>2.4g(3.99mmo1)のエタノール 40m1溶液にナトリウムメタンチオラート 560m

- 15 g (7.99mmol)のメタノール4ml溶液を加え、40℃で3時間攪拌した。減圧下に溶媒を留去した後、飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 n-ヘキサン:酢酸エチル=5:1)に付し、標題化合物 1.6
 20 3g(86%)を得た。
 - 1 H-NMR (CDCl₃): δ 1. 38 (9H, s), 2. 12 (3H, s), 2. 61 (2H, d, J=5. 6Hz), 2. 85 (2H, d, J=6. 3Hz), 3. 99-4. 12 (1H, m), 4. 80-4. 91 (1H, m), 5. 09 (4H, s), 6. 85 (1H, d, J=8. 3Hz), 6. 96 (1H, brd, J=7. 6Hz), 7. 11 (1H, brs), 7. 27-7. 5 0 (10H, m)

25

- (3) 2-(4-ベンジルオキシ3-t-ブチルフェニル)-1-メタンスルホ ニルメチルエチルカルバミン酸 ベンジルエステルの合成
 - 2-(4-ベンジルオキシ3-t-ブチルフェニル)-1-メチルチオメチル

エチルカルバミン酸 ベンジルエステル 1.54g(3.23mmol)のT HF 75mlと水 25mlの溶液に、室温下、オキソン 5.91g(6.46mmol)を加えた。1時間攪拌した後、水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去し、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 n- キサン:酢酸エチル=1:1)に付し、標題化合物 1.59g(97%)を得た。

5

20

¹H-NMR (CDCl₃): δ 1. 38 (9H, s), 2. 88 (3H, brs), 3. 00 (2H, brd, J=6. 9Hz), 3. 17 (1H, dd, J=14. 8, 4. 6Hz), 4. 19-4. 30 (1H, m), 4. 35-4. 47 (1H, m), 5. 07-5. 18 (1H, m), 5. 09 (2H, s), 5. 10 (2H, s), 6. 85 (1H, d, J=8. 5Hz), 6. 97 (1H, dd, J=8. 5, 1. 7Hz), 7. 10 (1H, brs), 7. 28-7. 49 (10H, m)

15 (4) 2 - (3 - t - ブチル-4 - ヒドロキシフェニル) - 1 - メタンスルホ ニルメチルエチルアミンの合成

2-(4-ベンジルオキシ-3-t-ブチルフェニル)-1-メタンスルホニルメチルエチルカルバミン酸 ベンジルエステル 1.0g(1.96mmo1)、20%水酸化パラジウム炭素 0.08gのメタノール 16ml混合物を室温下、水素雰囲気下、終夜攪拌した。反応液を濾過し、濾液を減圧下に濃縮して得られた残さを、シリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:メタノール:アンモニア水=100:10:1)に付し、標題化合物0.56g(99%)を得た。

¹H-NMR (CDCl₃): δ 1. 40 (9H, s), 2. 64 (1H, dd, J=13. 7, 7. 9Hz), 2. 73 (1H, dd, J=13. 7, 5. 9Hz), 2. 93-3. 03 (1H, m), 2. 98 (3H, s), 3. 13 (1H, dd, J=14. 2, 2. 0), 3. 61-3. 74 (1H, m), 6. 62 (1H, d, J=7. 9Hz), 6. 88 (1H, dd, J=7. 9, 2. 0), 7. 05 (1H, d, J=2. 0Hz)

(5) 2-(ベンジルオキシカルボニル)メチルアミノ-3-メチル酪酸 2-(3-t-ブチル-4-ヒドロキシフェニル)-1-メタンスルホニルメチルエチルアミドの合成

Z-N-Me-Val-OH 518mg (1.96mmol)、2-(3-5
 tープチルー4ーヒドロキシフェニル)-1-メタンスルホニルメチルエチルアミン 0.47g (1.63mmol)、およびCMPI 500mg (1.96mmol)のTHF 16ml溶液に、氷冷下、TEA 0.55mlを加え、室温にて2時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、

- 46 わた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 n-へキサン:酢酸エチル=1:1)に付し、標題化合物 0.70g(81%) を得た。 $^1H-NMR(CDC1_3):\delta$ 0.83(3H,d,J=6.6Hz)、0.89(3H,d,J=6.3Hz)、1.38(9H,s)、2.14-2.33(1H,m)、2.64-2.97(2H,m)、2.74(3H,s)、
- 15 2. 91 (3H, s), 3. 13 (1H, dd, J=14.6, 4.6Hz), 3. 29 (1H, dd, J=14.6, 6.9Hz), 3. 94 (1H, d, J=11.2Hz), 4. 43-4.57 (1H, m), 4. 79 (1H, brs), 5. 14 (2H, s), 6. 40-6.84 (3H, m), 7. 06 (1H, brs), 7. 37 (5H, brs).
- 20 (6) 2-((2-アミノ-3-(4-フルオロフェニル) プロピオニル) N-メチルアミノ) <math>-3-メチル酪酸 2-(3-t-ブチル-4-ヒドロキシフェニル) -1-メタンスルホニルメチルエチルアミドの合成

2-(ベンジルオキシカルボニル)メチルアミノ-3-メチル酪酸 2-(3-t-プチル-4-ヒドロキシフェニル)-1-メタンスルホニルメチルエチル 25 アミド 0.65g(1.22mmol)のメタノール 10ml溶液に、10%パラジウム炭素 130mgを加え、水素雰囲気下、室温にて30分間攪拌した。濾過後、減圧下に濾液を濃縮した。得られた残さと、Z-Phe(4-F)-OH 465mg(1.47mmol)、およびCMPI 375mg(1.47mmol)のTHF 15ml溶液に、氷冷下、TEA 0.41m

WO 00/44770

1(2.93mmol)を加え、室温にて終夜攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 $n-\Lambda$ キサン:酢酸エチル=1:1)に付し、2-((2-ベンジルオキシカルボニルアミノ-3-(4-フルオロフェニル)プロピオニル)-N-メチルアミノ)-3-メチル酪酸 2-(3-t-ブチルー4-ヒドロキシフェニル)-1-メタンスルホニルメチルエチルアミド 484mg(57%)を得た。 上記化合物 424mg(0.609mmol)、10%パラジウム炭素 43mgのメタノール6ml混合物を、室温、水素雰囲気下、2時間攪拌した。反応液を濾過し、濾液を減圧下に濃縮して得られた残さを、シリカゲルカラムクロマトグラフィー(展開溶媒 塩化メチレン:メタノール=15:1)に付し、標題化合物 239mg(70%)を得た。

 $EI-MS:563 (M^{+})$

¹H-NMR (CDCl₃): δ 0.65, 0.78, 0.91, 0.93 (6H, d, J=6.6-7.3Hz), 1.38, 1.39 (9H, s), 2. 22-2.40 (1H, m), 2.46-3.40 (6H, m), 2.66 (3 H, s), 2.93 (3H, s), 3.60-3.83 (1H, m), 3.87, 4.26 (1H, d, J=10.8Hz), 4.38-4.67 (1H, m), 6.57-7.17, 8.88 (8H, m)

20

25

10

実施例17

2-(2-((2-T))-3-(4-T)) プロピオニル) -(3-t)
(1) 3-tBu-チロシノールの合成

Z-3-t Bu-チロシノール 8.2 g (23 mm o 1) のメタノール 2 50 m l 溶液に、10%パラジウム炭素 800 m g を加え、水素雰囲気下、室温にて10時間攪拌した。濾過後、減圧下に濾液を濃縮し、標題化合物 5.1 g (99%) を得た。

 1 H-NMR (CDCl₃): δ 1. 40 (9H, s), 2. 45 (1H, dd, J=8. 6, 13. 5Hz), 2. 71 (1H, dd, 5. 3, 13. 5Hz), 3. 0-3. 2 (1H, m), 3. 38 (1H, dd, J=7. 6, 10. 5Hz), 3. 65 (1H, dd, J=3. 6, 10. 5Hz), 6. 61 (1H, d, J=7. 9Hz), 6. 88 (1H, dd, J=2. 0, 7. 9Hz), 7. 06 (1H, d, J=2. 0Hz)

- (2) (2-(ベンジルオキシカルボニル-N-メチルアミノ) -3-メチルーブチリルアミノ) -3- (3-tBu-4-tErロキシフェニル) プロパノールの合成
- 10 3-tBu-チロシノール1g (4.48mmol)、Z-N-Me-Val-OH 1.43g(5.4mmol)、およびCMPI 1.38g(5.4mmol)のTHF 45ml溶液に、氷冷下、TEA 2.2ml(15.8mmol)を加え、室温にて13時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、硫酸ナトリウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン:酢酸エチル=1:1)に付し、標題化合物 1.9g(90%)を得た。

 1 H-NMR (CDCl₃): δ 0. 84 (3H, d, J=6.6Hz), 0. 92 (3H, d, J=6.3Hz), 2. 1-2. 3 (1H, m), 2. 5-2. 20 8 (5H, m), 3. 5-3. 7 (2H, m), 3. 9-4. 2 (2H, m), 5. 13 (2H, s), 6. 2-6. 4 (1H, m), 6. 45 (1H, d, J=7.6Hz), 6. 80 (1H, brd, J=7.6Hz), 7. 05 (1H, brs), 7. 36 (5H, s)

(3) 2-(2-((2-(t-プトキシカルボニルアミノ)-3-(4-フ25)) ルオロフェニル)プロピオニル)-N-メチルアミノ)-3-メチループチリルアミノ)-3-(3-tBu-4-ヒドロキシフェニル)プロパノールの合成 (2-(ベンジルオキシカルボニル-N-メチルアミノ)-3-メチループチリルアミノ)-3-(3-tBu-4-ヒドロキシフェニル)プロパノール 1.9g(4mmol)のメタノール 40ml溶液に、10%パラジウム炭素 1

上記粗化合物 1.4g、Boc-Phe(4-F)-OH 1.4g(4.

5 94mmol)、およびCMPI 1.3g(5.09mmol)のTHF 4 0ml溶液に、氷冷下、TEA 2ml(14.3mmol)を加え、室温にて 12時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食 塩水で洗浄、硫酸ナトリウムで乾燥し、減圧下に溶媒を留去した後、得られた残 さをシリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン:酢酸エチル= 10 1:1)に付し、標題化合物 1.9g(78%)を得た。

 1 H-NMR (CDCl₃): δ 0.77.0.92.and 1.02 (total 6H, d), 1.2-1.5 (18H, m), 2.2-3.1 (8H, m), 3.5-3.8 (2H, m), 4.0-4.3, 4.4-4.5, 4.7-4.9.and 5.2-5.4 (total 2H, m), 6.3-7.5 (8H, m)

(4) 2-(2-(2-r)-3-(4-r)-3-(4-r)-3-(3-r)-3-(

2-(2-((2-(t-))+2) + 2) + 2) - 3-(4-) + 20 フェニル)プロピオニル)-N-メチルアミノ)-3-メチルーブチリルアミノ)-3-(3-tBu-4-ヒドロキシフェニル)プロパノール 0.5gの塩化メチレン 2ml溶液に、氷冷下、TFA 2mlを加え、室温で1時間攪拌した後、減圧下に溶媒を留去した。残さに塩化メチレンを加え、飽和NaHCO3水溶液で洗浄した後、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した。得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:メタノール:アンモニア水=20:1:0.1)に付し、標題化合物250mg(60%)を得た。

 $EI - MS : 501 (M^{+})$

15

 $^{1}H-NMR$ (CDC1₃) : δ 0. 68, 0. 79, and 0. 93 (t

otal 6H, d, J=6. 3-6. 9Hz), 1. 36 and 1. 39 (total 9H, s), 2. 2-2. 4 (1H, s), 2. 5-3. 2 (4H, m), 2. 68 and 2. 84 (total 3H, s), 3. 5-3. 9 (3H, m), 3. 89 and 4. 43 (total 1H, d, J=10. 9Hz), 4. 0-4. 4 (1H, m), 6. 5-7. 1 (7H, m), 6. 58 and 8. 41 (total 1H, d, J=6. 9-7. 6Hz)

実施例18

5

25

(2-(2-(2-r))-3-(4-r)) プロピルアミノ) -3-3 プロピルアミノ) -3-(3-t) Bu -4-t ドロキシフェニル) プロピル)メチルスルホン

- (1)(2-(2-(ベンジルオキシカルボニルアミノ)-3-メチル-ブチリルアミノ)-3-(3-tBu-4-ヒドロキシフェニル)プロピル)メチルスルホンの合成
- 15 (2-(ベンジルオキシカルボニルアミノ)-3-(3-tBu-4-ヒドロキシフェニル)プロピル)メチルスルホン 797mg(1.56mmol)のメタノール 15ml溶液に、10%水酸化パラジウム 80mgを加え、水素雰囲気下、室温にて12時間攪拌した。濾過後、減圧下に濾液を濃縮し、(2-アミノ-3-(3-tBu-4-ヒドロキシフェニル)プロピル)メチルスルホ20 ン 400mg(90%)を得た。

上記粗化合物 400mg (1.4mmol)、Z-Val-OH 528mg (2.1mmol)、およびCMPI 539mg (2.1mmol)のTHF 10ml溶液に、氷冷下、TEA 0.58ml (4.2mmol)を加え、室温にて2時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、硫酸ナトリウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン:酢酸エチル=1:1)に付し、標題化合物 504mg (69%)を得た。

 $^{1}H-NMR$ (CDCl₃) : δ 0. 79 (3H, d, J=6.9Hz), 0. 91 (3H, d, J=6.6Hz), 1. 38 (9H, s), 2. 0-2. 2

 $(1\,H,\,m)$, 2. 89 $(3\,H,\,s)$, 2. 97 $(2\,H,\,d,\,J=6.\,9\,H\,z)$, 3. 1-3. 4 $(2\,H,\,m)$, 3. 94 $(1\,H,\,d\,d,\,J=5.\,6,\,7.\,9\,H\,z)$, 4. 4-4. 6 $(1\,H,\,m)$, 5. 10 $(2\,H,\,s)$, 5. 1-5. 2 $(1\,H,\,m)$, 5. 35 $(1\,H,\,b\,r\,s)$, 6. 59 $(1\,H,\,d,\,J=8.\,3\,H\,z)$, 6. 5-6. 7 $(1\,H,\,m)$, 6. 88 $(1\,H,\,b\,r\,d,\,J=8.\,3\,H\,z)$, 7. 05 $(1\,H,\,b\,r\,s)$, 7. 34 $(5\,H,\,s)$

WU UU/44//U

5

20

25

(2) (1-ホルミル-2-(4-フルオロフェニル) エチル) カルバミド酸 $t \, B \, u \, T \, Z \, T \, D \, C \, D \, C \, C$

Boc-Phe (4-F) - OH 1g (3.53mmol) およびO, N-10 ジメチルヒドロキシルアミン塩酸塩 0.38g (3.9mmol) の塩化メチレン17ml溶液に、氷冷下、TEA 1.1ml (7.9mmol) およびBOP 1.64g (3.7mmol) を加え、室温で1.5時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、硫酸ナトリウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン:酢酸エチル=1:1)に付し、N-メトキシーN-メチル-2-(t-ブトキシカルボニルアミノ)-3-(4-フルオロフェニル)プロピルアミド 1.08g (94%) を得た。

上記化合物 1g (3.07mmol)のエーテル 30ml溶液に−10℃にて水素化アルミニウムリチウム 120mg (3.16mmol)を加え、同温度で10分間攪拌した。反応混合物に同温度で硫酸水素カリウム 630mg (4.63mmol)の15ml水溶液を加えた。反応液を酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、硫酸ナトリウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン:酢酸エチル=2:1)に付し、標題化合物 0.8g (98%)を得た。

1H-NMR (CDCl3):δ 1.44 (9H, s)、3.0-3.2

(2H, m), 4. 3-4. 5 (1H, m), 5. 02 (1H, brs), 7. 00 (2H, t, J=8. 6Hz), 7. 13 (2H, dd, J=5. 4, 8. 6Hz), 9. 63 (1H, s)

⁽³⁾(3)(2-(2-(2-(t-ブトキシカルボニルアミノ)-3-(4-フ

ルオロフェニル)プロピルアミノ) -3-メチルーブチリルアミノ) -3- (3 - t B u -4-ヒドロキシフェニル) プロピル) メチルスルホンの合成

(2-(2-(ベンジルオキシカルボニルアミノ) -3-メチルーブチリルアミノ) -3-(3-tBu-4-ヒドロキシフェニル) プロピル) メチルスルホン <math>500mg(0.96mmol)のメタノール 10ml溶液に、10%パラジウム炭素 50mgを加え、水素雰囲気下、室温にて12時間攪拌した。濾過後、減圧下に濾液を濃縮し、(2-(2-アミノ-3-メチルーブチリルアミノ) -3-(3-tBu-4-ヒドロキシフェニル) プロピル) メチルスルホン <math>330mgを得た。

5

10 上記粗化合物 330mg(0.86mmol)および(1-ホルミル-2-(4-フルオロフェニル)エチル)カルバミド酸 tBuエステル 275mg (1.03mmol)のメタノール 8ml溶液に氷冷下、酢酸 0.07ml (1.22mmol)および水素化シアノホウ素ナトリウム 85mg(1.29mmol)を順次加え、室温で30分間攪拌した。塩化メチレンを加え、飽和 NaHCO3水溶液で洗浄した後、無水硫酸マグネシウムで乾燥し、減圧下に溶 媒を留去した。得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒クロロホルム:メタノール:アンモニア水=40:1:0.1)に付し、標題化合物 520mg(95%)を得た。

¹H-NMR (CDCl₃): δ 0. 68 (3H, d, J=5. 6Hz),

20 0. 85 (3H, d, J=6. 9Hz), 1. 38 (9H, s), 1. 41 (9H, s), 1. 9-2. 1 (1H, m), 2. 4-2. 9 (5H, m), 2. 9-3. 1 (2H, m), 2. 99 (3H, s), 3. 1-3. 3 (2H, m),

3. 8-4. 0 (1H, m), 4. 47 (1H, d, J=8. 9Hz), 4. 5-4. 8 (1H, m), 5. 56 (1H, brs), 6. 64 (1H, d, J=25-7. 9Hz), 6. 9-7. 2 (6H, m), 7. 7-7. 9 (1H, m)

(4) (2-(2-(2-7)-3-(4-7)-3-(4-7)-3-(3-1)-3-

 $(2-(2-(2-(t-7)+2)\pi)\pi^{2}\pi^{2})$

フェニル)プロピルアミノ)-3 – メチルーブチリルアミノ)-3 – (3 – t B u -4 – ヒドロキシフェニル)プロピル)メチルスルホン 520 m g の塩化メチレン 2 m l 溶液に、氷冷下、TFA 2 m l を加え、室温で30 分間攪拌した後、減圧下に溶媒を留去した。残さに塩化メチレンを加え、飽和NaHCO $_3$ 水溶液で洗浄した後、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した。得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:メタノール:アンモニア水=20:1:0.1)に付し、標題化合物 400 m g (91%) を得た。

 $EI - MS : 535 (M^{+})$

- 20 実施例19

25

2-(1-(2-((2-アミノ-3-(4-フルオロフェニル)) プロピオニル) -N-メチルアミノ) -3-メチルーブチリルアミノ) -2-(3-tertブチル-4-ヒドロキシフェニル) エチル) -6-メチル-4-ピリミジノン (1) <math>3-(4-ベンジルオキシ-3-tertブチルフェニル) -2-ベンジルオキシカルボニルアミノプロピオニトリルの合成

Z-Phe (4-ベンジルオキシ-3-tBu) $-NH_2$ 4.6g(10mmol) のTHF 20ml溶液に、氷冷下、ピリジン 1.6 ml (20mmol) と無水トリフルオロ酢酸 1.55 ml (11mmol) を加え、室温にて4.5日間攪拌した。反応液を減圧下に留去し、得られた残さをシリカゲ

ルカラムクロマトグラフィー (展開溶媒 酢酸エチル: $n-\triangle+$ サン=1:4) に付し、標題化合物 3.35g (99%) を得た。

 $^{1}H-NMR$ (CDCl₃): δ 1. 37 (9H, s), 3. 0 (2H, m), 4. 85 (1H, brd), 5. 03 (1H, brd), 5. 10 (2H, 5), 5. 14 (2H, s), 6. 69 (1H, d, J=8. 58Hz), 7. 05 (1H, d, J=8. 58Hz) 7. 2 (1H, s), 7. 3-7. 5 (10H, m)

(2) 2-[2-(4-ベンジルオキシ-3-tertブチルフェニル)-1-ベンジルオキシカルボニルアミノエチル]-6-メチル-4-ピリミジノンの合成

10

3- (4-ベンジルオキシ-3-tertブチルフェニル) -2-ベンジルオキシカルボニルアミノプロピオニトリル 3.48g (7.85mmol)を飽和塩酸/エタノール溶液 50mlの溶液とし、室温にて1.5日間攪拌した。減圧下に濃縮し、得られた残さをエタノール 70mlに溶解して、氷冷下、アンモニアガスを吹き込んだ後、室温にて17時間攪拌した。減圧下に濃縮し、得られた残さのメタノール 50ml溶液にアセト酢酸メチル 0.640mlおよび水酸化カリウム 562mgを加え、室温にて4.5日間攪拌した。飽和塩化アンモニウム水溶液を加え、塩化メチレンで抽出した。有機層を無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 n-ヘキサン:酢酸エチル=2:1)に付し、標題化合物 1.76g (67%)を得た。

 $^{1}H-NMR$ (CDC1₃) : δ 1. 39 (9H, s) , 2. 25 (3H, s) , 3. 09 (2H, brd) , 4. 89 (1H, brd) , 5. 03 (2H, s) , 5. 07 (2H, s) , 5. 80 (1H, brd) , 6. 14 (1H,

- 25 s), 6. 79 (1H, d, J=8. 24Hz), 6. 92 (1H, d, J=8. 24Hz) 6. 96 (1H, s), 7. 25-7. 43 (10H, m)
 - (3) 2-[1-アミノ-2-(3-tertブチル-4-ヒドロキシフェニル) エチル] -6-メチル-4-ピリミジノンの合成
 - 2-[2-(4-ベンジルオキシ-3-tertブチルフェニル) -1-ベン

10

ジルオキシカルボニルアミノエチル] -6 - メチルー4 - ピリミジノン 1.7 6 g (3.35 mm o l) および 20% 水酸化パラジウム炭素 0.15 g のメタノール 30 m l 懸濁液を、水素雰囲気下、16時間攪拌した。反応液を濾過し、濾液を減圧下に濃縮して得られた残さを、シリカゲルカラムクロマトグラフィー(展開溶媒 塩化メチレン:メタノール=10:1)に付し、標題化合物824 m g (82%)を得た。

 $^{1}H-NMR$ (CDC1₃): δ 1. 37 (9H, s), 2. 32 (3H, s), 2. 74 (1H, dd, J=8. 90, 9. 24Hz), 3. 15 (1H, dd, J=4. 28, 4. 29Hz), 4. 09 (1H, m), 6. 16 (1H, s), 6. 59 (1H, d, J=7. 92Hz), 6. 83 (1H, d, J=7. 92Hz) 6. 99 (1H, s).

(4) 2-(1-(2-(ベンジルオキシカルボニルメチルアミノ)-3-メチルーブチリルアミノ)-2-(3-tertブチルー4-ヒドロキシフェニル) エチル)-6-メチルー4-ピリミジノンの合成

Z-N-Me-Val-OH 678mg (2.55mmol)、2-[1-アミノ-2-(3-tertブチル-4-ヒドロキシフェニル)エチル]-6-メチル-4-ピリミジノン 700mg (2.32mmol)、およびCMPI653mg (2.55mmol)のTHF 20ml溶液に、氷冷下、TEA0.97mlを加え、室温にて終夜攪拌した。反応液に水を加え、酢酸エチルで20 抽出した。有機層を飽和食塩水で洗浄、硫酸ナトリウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒酢酸エチル:n-ヘキサン=1:2)に付し、標題化合物 0.77g (61%)を得た。

 1 H-NMR (CDCl₃): δ 0. 79-0. 90 (6H, m), 1. 3 25 0 (9H, m), 2. 2 (4H, m), 2. 8-3. 1 (5H, m), 4. 3 (1H, d, J=7. 3), 4. 97 (1H, m), 5. 1-5. 25 (2H, m), 6. 18 (1H, d, J=8. 58), 6. 41 (1H, d, J=8. 5 8Hz), 6. 5-6. 85 (2H, m), 7. 3 (5H, m)

(3-メチル-2-メチルアミノブチリルアミノ)エチル]-6-メチル-4-ピリミジノンの合成

2-(1-(2-(ベンジルオキシカルボニルメチルアミノ)-3-メチループチリルアミノ)-2-(3-tertブチルー4-ヒドロキシフェニル) エチル)-6-メチルー4-ピリミジノン 0.71g(1.294mmol)、20%水酸化パラジウム炭素 0.15g、メタノール 20mlの混合物を、水素雰囲気下、4時間攪拌した。反応液を濾過し、濾液を減圧下に濃縮して得られた残さを、シリカゲルカラムクロマトグラフィー(展開溶媒 塩化メチレン:メタノール=15:1)に付し、標題化合物の2つのジアステレオアイソマーについて、流出順に、(A):296mg(38%)および (B):77mg(9.4%)を得た。

(A)

5

10

 1 H-NMR (CDCl₃): δ 0. 72 (3H, d, J=6. 93Hz), 0. 83 (3H, d, J=6. 93Hz), 1. 34 (9H, s), 1. 94 (1H, m), 2. 28 (3H, s), 2. 30 (3H, s), 2. 77 (1H, d, J=4. 62Hz), 3. 11 (2H, m), 5. 04 (1H, d, J=7. 59Hz), 6. 14 (1H, s), 6. 61 (1H, d, J=7. 92Hz), 6. 81 (1H, dd, J=7. 92Hz), 6. 99 (1H, s), 7. 84 (1H, d, J=6. 92Hz)

20 (B)

25

¹H-NMR (CDCl₃): δ 0. 84 (3H, d, J=6. 93Hz), 0. 89 (3H, d, J=6. 93Hz), 1. 33 (9H, s), 2. 00 (1H, m), 2. 14 (3H, s), 2. 18 (3H, s), 2. 78 (1H, d, J=4. 95Hz), 3. 11 (2H, m), 5. 10 (1H, d, J=6. 60Hz), 6. 14 (1H, s), 6. 63 (1H, d, J=7. 92Hz), 6. 75 (1H, dd, J=7. 92Hz), 6. 97 (1H, s), 7. 81 (1H, d, J=7. 26Hz)

(6) 2-(1-(2-((2-プトキシカルボニルアミノ-3-(4-フルオロフェニル) プロピオニル) <math>-N-メチルアミノ) -3-メチループチリルア

ミノ) -2-(3-tertブチル-4-ヒドロキシフェニル) エチル) -6-メチル-4-ピリミジノン(A)の合成

Boc-Phe (4-F) -OH 200mg (0.707mmol)、2- [2-(3-tertブチルー4-ヒドロキシフェニル) -1-(3-メチルー5 2-メチルアミノブチリルアミノ) エチル] -6-メチルー4ーピリミジノン (A) 244mg (0.589mmol)、およびCMPI 180mg (0.706mmol)のTHF 8ml溶液に、氷冷下、TEA 0.25ml (4.7mmol)を加え、室温にて終夜攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下10 に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 Acetone:n-ヘキサン=1:2)に付し、標題化合物 0.33g (82%)を得た。

¹H-NMR (CDCl₃): (two rotamers)δ 0.75, 0.80, and 0.98 (6H, d, J=6.6, 6.9Hz), 1.34 a nd 1.38 (9H, s), 1.4 (9H, s), 2.10 (1H, m), 2.3 and 2.4 (3H, s), 2.7 (3H, s), 2.85 (2H, m), 3.04 (2H, d, J=7.01Hz), 4.12 and 4.58 (1H, d, J=9.6Hz), 4.75 (1H, m), 5.05 (1H, m), 4.83 and 5.2 (1H, brd), 5.45 and 5.6 (1H, d, J=7.4Hz), 6.2 (1H, s), 6.6 (1H, m), 6.77 (1H, m), 7.0 (5H, m).

(7) 2-(1-(2-((2-ブトキシカルボニルアミノ-3-(4-フルオロフェニル) プロピオニル) -N-メチルアミノ) -3-メチルーブチリルアミノ) -2-(3-tertブチルー4-ヒドロキシフェニル) エチル) -6-メチル-4-ピリミジノン(B)の合成

25

Boc-Phe (4-F) -OH 63mg (0.222mmo1)、2- [2-(3-tertブチル-4-ヒドロキシフェニル) -1-(3-メチル-2-メチルアミノブチリルアミノ) エチル] -6-メチルー4-ピリミジノン (B) 77mg (0.185mmo1)、およびCMPI 57mg (0.2

22mmol)のTHF 5ml溶液に、氷冷下、TEA 0.08ml(0.573mmol)を加え、室温にて終夜攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 Acetone:n-ヘキサン=1:2)に付し、標題化合物 0.098g(74%)を得た。

¹H-NMR (CDCl₃): (two rotamers)δ 0.78 (6H, brd), 1.3-1.4 (18H, s), 1.8 (2H, brd), 2.25 (3H, brd), 2.8 and 3.20 (7H, brd), 4.1 (2H, m), 4.4 and 4.5 (1H, d, J=9.89Hz), 4.7 and 5.17 (1H, brd), 5.3 and 5.58 (1H, d, J=9.89Hz), 6.0 and 6.17 (1H, s), 6.6 (1H, brd), 6.7-7.2 (8H, m)

5

(8) 2-(1-(2-((2-アミノ-3-(4-フルオロフェニル)) プロ 15 ピオニル) -N-メチルアミノ) -3-メチルーブチリルアミノ) -2-(3-tertブチルー4-ヒドロキシフェニル) エチル) -6-メチルー4-ピリミジノン(A)の合成

2- (1-(2-((2-ブトキシカルボニルアミノ-3-(4-フルオロフェニル)プロピオニル)-N-メチルアミノ)-3-メチルーブチリルアミノ) -20 -2-(3-tertブチルー4-ヒドロキシフェニル)エチル)-6-メチルー4ーピリミジノン(A) 279mgの塩化メチレン 8ml溶液に氷冷下、TFA 1.3mlを加えた。室温下、1時間攪拌した後、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 塩化メチレン:メタノール=15:1)に付し、標題化合物 225mg(95%)25 を得た。

 $^{1}\text{H-NMR}$ (CDCl₃):(two rotamers) δ 0. 7 and 0. 8 (6H, dd, J=6. 6 and 6. 59Hz), 1. 29 (9H, s), 2. 14 and 2. 275 (3H, s), 2. 1-2. 2 (1H, m), 2. 67 and 2. 78 (3H, s), 2. 6-2. 8 (2H, m),

3. 0.7 (2H, m), 3. 7-3. 8.3 (1H, m), 4. 1.5 and 4. 6.2 (1H, d, J=9. 8.7Hz), 4. 9.8 and 5. 1.8 (1H, d d, J=6. 5 and 7. 6Hz), 6. 0.2 and 6. 1.1 (1H, s), 6. 5.5 and 6. 8 (2H, m), 6. 9.2 (1H, d, J=6. 9.2Hz), 6. 9.3-7. 1.5 (4H, m)

- (9) 2-(1-(2-((2-アミノ-3-(4-フルオロフェニル)) プロピオニル) -N-メチルアミノ) -3-メチルーブチリルアミノ) -2-(3-tertブチル-4-ヒドロキシフェニル) エチル) -6-メチルー4-ピリミジノン(B)の合成
- 2-(1-(2-((2-ブトキシカルボニルアミノ-3-(4-フルオロフェニル)プロピオニル)-N-メチルアミノ)-3-メチルーブチリルアミノ)-2-(3-tertブチルー4-ヒドロキシフェニル)エチル)-6-メチルー4-ピリミジノン(B) 93mgの塩化メチレン 5ml溶液に氷冷下、TFA 1mlを加えた。室温下、1.5時間攪拌した後、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 塩化メチレン:メタノール=15:1)に付し、標題化合物 70mg(91.8%)を得た。

¹H-NMR (CDCl₃): (two rotamers)δ 0.68, 0.78 and 0.86 (6H, dd, J=6.6 and 6.27Hz),

20 1.3 and 1.32 (9H, s), 2.21 and 2.23 (3H, s), 2.2-2.4 (1H, brd), 2.6 and 2.8 (1H, m),

2.71-2.91 (3H, s), 3.00 (3H, m), 3.77 and
3.9 (1H, m), 3.97 and 4.52 (1H, d, J=9.37Hz), 4.97 and 5.18 (1H, m), 6.12 (1H, d, J=3.25 3Hz), 6.5-7.2 (8H, m)

実施例20

5

5-(1-(2-(2-アミノ-3-(4-フルオロフェニル) プロパノイル) -N-メチルアミノ) <math>-3-メチルブチリルアミノ) -2-(3-tert

ブチルー4ーヒドロキシルフェニル)エチル)イミダゾリジンー2, 4ージオン (1) Z-Tyr (3 - t B u) - Hの合成

5

10

15

NMR (CDC1₃): δ 1. 37 (9H, s). 3. 00-3. 14 (2 H, m), 4. 40-4. 52 (1H, m), 4. 89 (1H, brs), 5. 12 (2H, s), 5. 22-5. 32 (1H, m), 6. 57 (1H, d, J=8. 2Hz), 6. 82 (1H, d, J=8. 2Hz), 7. 00 (1H, s), 7. 30-7. 42 (5H, m), 9. 64 (1H, s)

(2) 5-(1-(ベンジルオキシカルボニルアミノ)-2-(3-tertブチルー4-ヒドロキシルフェニル) エチル) イミダゾリジンー2, 4-ジオンの合成

Z-Tyr (3-tBu) -H 2.18g (6.14mmol)のエタノー20 ル 25ml溶液に、シアン化カリウム 480mg (7.37mmol)、30%炭酸アンモニウム 1.77g (18.4mmol)および水 25mlを加え、60℃で8時間攪拌した。放冷後、飽和NaHCO3水溶液を加え、酢酸エチルで抽出し、水で洗浄し、次いで飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:n-ヘキサン=1:1)に付し、標題化合物 1.38g (53%)を得た。

 1 H-NMR (CDC 1 ₃) : δ 1. 37 (9H, s), 2. 90-3. 0 0 (2H, m), 3. 10-3. 22 (1H, m), 4. 27 (1H, brs), 5. 06 (2H, s), 5. 02-5. 12 (1H, m), 6. 07 (1H, b

rs), 6. 57 (1H, d, J=8.2Hz), 6. 88 (1H, dd, J=2.0, 8. 2Hz), 7. 10 (1H, d, J=2.0Hz), 7. 22-7.40 (5H, m)

- (3) 5-(1-(2-(ベンジルオキシカルボニル-N-メチルアミノ)-3-メチルブチリルアミノ)-2-(3-tertブチル-4-ヒドロキシルフェニル) エチル) イミダゾリジン-2, <math>4-ジオンの合成
- 5-(1-(ベンジルオキシカルボニルアミノ)-2-(3-tertブチル -4-ヒドロキシルフェニル) エチル) イミダゾリジン-2, 4-ジオン 54 3mg(1.28mmol)のメタノール 10ml溶液に、10%パラジウム 0 炭素 55mgを加え、室温、水素雰囲気下、3時間攪拌した。反応液を濾過し、 濾液を減圧下に濃縮して得られた残さを、THF 13ml溶液とし、氷冷下、 Z-N-Me-Val-OH 509mg(1.92mmol)、CMPI 4 91mg(1.92mmol)、およびTEA 0.535ml(3.84mm ol)を加え、室温にて3時間攪拌した。反応液に水を加え、酢酸エチルで抽出 した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶 媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶 媒 酢酸エチル:n-ヘキサン=2:1)に付し、標題化合物 365mg(5
- 1 H-NMR (CDCl₃): δ 0.79 and 0.85 (6H, d, 20 J=6.6Hz), 2.14-2.26 (1H, m), 2.60 (3H, s), 2.70-2.92 (2H, m), 3.89 (1H, d, J=10.8Hz), 4.27 (1H, brs), 4.62-4.74 (2H, m), 5.14 (2H, s), 6.28 (1H, d, J=7.9Hz), 6.56-7.10 (3H, m), 7.30-7.42 (5H, m)

3%)を得た。

- 25 (4) 5-(1-(3-)3+)2+(3-)3
 - 5-(1-(2-(ベンジルオキシカルボニル-N-メチルアミノ)-3-メチルブチリルアミノ)-2-(3-tertブチル-4-ヒドロキシルフェニ

ル) エチル) イミダゾリジン-2, 4-ジオン 363mg(0.675mmol) のメタノール 10ml溶液に、10%パラジウム炭素 50mgを加え、室温、水素雰囲気下、終夜攪拌した。反応液を濾過し、濾液を減圧下に濃縮し標題化合物 261mg(96%)を得た。

 $5 EI-MS: 404 (M^+)$

10

15

20

25

 $^{1}H-NMR$ (DMSO-d₆): δ 0. 79 and 0. 82 (6H, d, J=6. 3-6. 6Hz), 1. 31 (9H, s), 1. 90 (3H, s), 2. 74-2. 84 (2H, m), 4. 02-4. 14 (1H, m), 4. 17 (1H, brs), 4. 38-4. 48 (1H, m), 6. 64 (1H, d, J=8. 2Hz), 6. 82 (1H, d, J=8. 2Hz), 6. 99 (1H, s), 7. 85 (1H, brs)

(5) 5-(1-(2-(2-(ベンジルオキシカルボニルアミノ)-3-(4-フルオロフェニル) プロパノイル)-N-メチルアミノ)-3-メチルブチリルアミノ)-2-(3-tertブチル-4-ヒドロキシルフェニル) エチル) イミダゾリジン-2, <math>4-ジオンの合成

5-(1-(3-メチル-2-メチルアミノブチリルアミノ) -2-(3-tertプチル-4-ヒドロキシルフェニル) エチル) イミダゾリジン-2, 4-ジオン 254mg(0.629mmol)のTHF 6ml溶液に、氷冷下、 Z-Phe(4-F)-OH 239mg(0.755mmol)、CMPI 193mg(0.755mmol)、およびTEA 0.219ml(1.57mmol)を加え、室温にて4時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:n-ヘキサン=1:1)に付し、標題化合物 168mg(38%)を得た。

¹H-NMR (CDCl₃): (two rotamers) δ 0. 62, 0. 71, 0. 94 and 0. 98 (6H, d, J=6. 0-6. 6Hz), 1. 34 and 1. 37 (9H, s), 2. 26 and 2. 92 (3H, s), 2. 24-2. 42 (1H, m), 2. 64-3. 12 (4H, m), 3.

5

84-4. 32 (2H, m), 4. 50-4. 82 (2H, m), 5. 02-5. 12 (2H, m), 5. 20-5. 64 (1H, m), 6. 21 (1H, br s), 6. 31 (1H, brs), 6. 50-6. 60 (2H, m), 6. 86 -7. 14 (5H, m), 7. 24-7. 40 (5H, m), 7. 50-8. 0 0 (1H, m)

- (6) 5-(1-(2-(2-アミノ-3-(4-フルオロフェニル)) プロパ ノイル) -N-メチルアミノ) -3-メチルブチリルアミノ) -2-(3-tertブチル-4-ヒドロキシルフェニル) エチル) イミダゾリジン-2, 4-ジオンの合成
- 5-(1-(2-(2-(ベンジルオキシカルボニルアミノ)-3-(4-フルオロフェニル) プロパノイル)-N-メチルアミノ)-3-メチルブチリルアミノ)-2-(3-tertブチルー4-ヒドロキシルフェニル) エチル) イミダゾリジン-2, 4-ジオン <math>157mg(0.223mmol)のメタノール5ml溶液に、10%パラジウム炭素 <math>50mgを加え、室温、水素雰囲気下、
- 15 終夜攪拌した。反応液を濾過し、濾液を減圧下に濃縮して得られた残さを、プレパラティブTLC(展開溶媒 クロロホルム:メタノール:アンモニア水=100:10:1)に付し、標題化合物 83.0mg(65%)を得た。
 FAB-MS:570(M+H+)

 $^{1}\text{H-NMR}$ (DMSO-d₆):(two rotamers) δ 0. 48-20 0. 84 (6H, m), 1. 28, 1. 32 and 1. 33 (9H, s) 2. 00-2. 12 (1H, m), 2. 28, 2. 42 and 2. 62 (3H, s), 2. 40-3. 10 (4H, m), 3. 82-4. 08 (2H, m), 4. 24-4. 50 (2H, m), 6. 58-7. 30 (7H, m), 7. 66-8. 30 (2H, m), 8. 92-9. 24 (2H, m)

実施例21

25

2-((2-アミノ-3-(4-フルオロフェニル) プロピオニル)-N-メチルアミノ)-3-メチル酪酸 <math>2-(3-t-ブチル-4-ヒドロキシフェニル)-1-(1,3,4-オキサジアゾール-2-イル) エチルアミド

(1) 2-(3-t-ブチルー4-ヒドロキシフェニル) -1-(1,3,4 ーオキサジアゾール-2-イル) エチルカルバミン酸 ベンジルエステルの合成 Z-Tyr(3-tBu) -OMe 4.0g(10.39mmol)のエタノール 100ml溶液に、室温下、ヒドラジン1水和物 6.4ml(103.9mmol)を加えた。終夜攪拌した後、減圧下に溶媒を留去した。得られた残さに、室温下、オルトギ酸エチル 100ml、p-トルエンスルホン酸1水和物 198mg(1.04mmol)を加えた。1.5時間攪拌した後、1NHCl 100mlを加えた。20分間攪拌した後、酢酸エチルで抽出し、飽和炭酸水素ナトリウム水溶液で洗浄し、次いで飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:n-ヘキサン=1:1)に付し、標題化合物 1.34g(33%)を得た。。

5

10

15

 1 H-NMR (CDC1₃) : δ 1. 32 (9H, s), 3. 19 (2H, brs), 5. 02 (1H, brs), 5. 05-5. 16 (2H, m), 5. 35 (2H, brs), 6. 53 (1H, d, J=7. 9Hz), 6. 75 (1

H, dd, J=7.9, 2.0Hz), 6.85 (1H, d, J=2.0Hz), 8.34 (1H, s)

(2) 2-(3-t-)ブチルー4-ヒドロキシフェニル)-1-(1, 3, 4 -オキサジアゾールー2-イル) エチルアミンの合成

20 2-(3-t-ブチル-4-ヒドロキシフェニル)-1-(1,3,4-オキサジアゾール-2-イル) エチルカルバミン酸 ベンジルエステル 1.25g(3.16mmol)のメタノール 30ml溶液に、10%パラジウム炭素130mgを加え、水素雰囲気下、室温にて1日攪拌した。濾過後、減圧下に濾液を濃縮し、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒25 クロロホルム:メタノール:アンモニア水=100:10:1)に付し、標題化合物 0.80g(97%)を得た。

 $^{1}H-NMR$ (CDCl₃): δ 1. 36 (9H, s), 3. 02 (1H, dd, J=13. 8, 7. 9Hz), 3. 18 (1H, dd, J=13. 8, 5. 6Hz), 4. 47 (1H, dd, J=7. 9, 5. 6Hz), 6. 57 (1H,

PCT/JP00/00444

d, J=7.9Hz), 6.84 (1H, dd, J=7.9, 2.0Hz), 6.97 (1H, d, J=2.0Hz), 8.40 (1H, s)

(3) 3-メチルー2-メチルアミノ酸酸 2- (3-t-ブチルー4-ヒドロキシフェニル) -1- (1, 3, 4-オキサジアゾールー2-イル) エチルアミドの合成

5

10

15

20

上記化合物 1.23gのメタノール 24ml溶液に、10%パラジウム炭素 120mgを加え、水素雰囲気下、室温にて1時間攪拌した。濾過後、減圧下に濾液を濃縮し、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:メタノール:アンモニア水=100:10:1) に付し、標題化合物 0.87g(96%)を得た。

1H-NMR (CDCl₃): δ 0. 7-0 (3H, d, J=6. 9Hz).

0. 85 (3H, d, J=6. 9Hz). 1. 35 (9H, s). 1. 88-2.

03 (1H, m). 2. 34 (3H, s). 2. 77 (1H, d, J=4. 6H

25 z). 3. 12 (1H, dd, J=14. 0, 8. 4Hz). 3. 28 (1H, dd, J=14. 0, 5. 9Hz). 5. 45 (1H, brs). 5. 61-5.

71 (1H, m). 6. 58 (1H, d, J=8. 0Hz). 6. 68 (1H, dd, J=8. 0, 2. 0Hz). 6. 96 (1H, d, J=2. 0Hz). 7.

84 (1H, brd, J=8. 9Hz). 8. 35 (1H, s)

(4) 2- ((2-アミノ-3-(4-フルオロフェニル) プロピオニル) - N-メチルアミノ) - 3-メチル酪酸 2- <math>(3-t-ブチル-4-ヒドロキシフェニル) -1-(1,3,4-オキサジアゾール-2-イル) エチルアミドの合成

Z-Phe (4-F) -OH 835mg (2.63mmol)、3-メチル 5 -2-メチルアミノ酸酸 2-(3-t-ブチル-4-ヒドロキシフェニル)-1-(1, 3, 4-オキサジアゾール-2-イル) エチルアミド 0.82g(2. 19mmol)、およびCMPI 672mg (2. 63mmol)のT 22ml溶液に、氷冷下、TEA 0.74ml (5.26mmol)を 加え、室温にて終夜攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機 10 層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去し た後、得られた残さをシリカゲルカラムクロマトグラフィー (展開溶媒 n-へ キサン:酢酸エチル=1:1) に付し、2-(2-ベンジルオキシカルボニルア ミノー3-(4-フルオロフェニル)プロピオニル)アミノ-N,3-ジメチル 15 チルー4-ヒドロキシフェニル) エチルアミド 1.31g(89%)を得た。 上記化合物 1.31g(1.95mmol)、10%パラジウム炭素 13 0mgのメタノール 20ml混合物を、室温、水素雰囲気下、4時間攪拌した。 反応液を濾過し、濾液を減圧下に濃縮して得られた残さを、シリカゲルカラムク ロマトグラフィー (展開溶媒 クロロホルム:メタノール:アンモニア水=10 20 0:10:1) に付し、標題化合物 752mg (72%) を得た。

 $EI - MS : 539 (M^+)$

¹H-NMR (CDCl₃): (two rotamer) δ 0.75, 0.78, 0.89, 0.92 (6H, d, J=6.3-6.6Hz), 1.29, 1.34 (9H, s), 2.24-2.45 (1H, m), 2.50-2.85 (2H, m), 2.82 (3H, s), 3.04-3.20 (3H, m), 3.52-3.60, 3.72-3.85 (1H, m), 3.99, 4.43 (1H, d, J=10.9Hz), 5.42-5.53, 5.64-5.73 (1H, m), 6.42-7.18 (7H, m), 8.33, 8.42 (1H, s), 9.

62 (1H, brd, J=9. 2Hz)

実施例22

10

25

2-((2-アミノ-3-(4-フルオロフェニル) プロピオニル) -N-メ 5 チルアミノ) -3-メチル酪酸 2-(3-t-ブチル-4-ヒドロキシフェニル) -1-(1, 2, 4-オキサジアゾール-5-イル) エチルアミド

(1) N-Me-Val-Tyr (3-tBu) $-NH_2$ の合成

Tyr (3-tBu) $-OCH_3$ 1.5g (5.97mmol) のMeOH 10ml 溶液に、アンモニア水 10ml を加えて室温にて終夜攪拌した。減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー (展開溶媒 塩化メチレン:メタノール=10:1) に付し、Tyr (3-tBu) -NH, 1.4g (99%) を得た。

このTyr(3-tBu)-NH₂ 1g(4.23mmol)、Z-N-Me-Val-OH 1.23g(4.63mmol)、およびCMPI 1.2 15 g(4.69mmol)のTHF 20ml溶液に、氷冷下、TEA 1.8mlを加え、室温にて4時間攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、硫酸ナトリウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:n-ヘキサン=2:1)に付し、Z-N-Me-Val-Tyr(3-tBu)-NH₂ 1.7g(83%)を得た。

この $Z-N-Me-Val-Tyr(3-tBu)-NH_2$ 1.7g、20%水酸化パラジウム炭素 0.15g、およびメタノール 30m-l混合物を室温下、水素雰囲気下、1時間攪拌した。反応液を濾過し、濾液を減圧下に濃縮して得られた残さを、シリカゲルカラムクロマトグラフィー(展開溶媒 塩化メチレン:メタノール=10:1)に付し、標題化合物 1.07g(88%)を得た。

 1 H-NMR (CDCl₃) : δ 0. 67 (3H, d, J=6. 27Hz), 0. 80 (3H, d, J=6. 6Hz), 1. 35 (9H, s), 1. 91 (1H, m), 2. 25 (3H, s), 2. 76 (1H, d, J=4. 62Hz),

3. 00 (2H, m), 4. 75 (1H, q, J=6. 6Hz), 6. 13 (1H, s), 6. 55 (1H, s), 6. 66 (1H, d, J=7. 92Hz), 6. 89 (1H, d, J=7. 59Hz), 7. 02 (1H, s), 7. 84 (1H, d, J=7. 91Hz)

5 (2) Boc-Phe (4-F) -N-Me-Val-Tyr (3-tBu) -NH₂の合成

Boc-Phe (4-F) - OH 890mg (3.14mmol)、N-Me-Val-Tyr (3-tBu) - NH₂ 1g (2.86mmol)、およびCMPI 804mg (3.15mmol)のTHF 20ml溶液に、氷冷でMPI 804mg (3.15mmol)のTHF 20ml溶液に、氷冷で、TEA 1.2ml (7.16mmol)を加え、室温にて終夜攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 Acetone:n-ヘキサン=1:2)に付し、Boc-Phe (4-F) - N-Me-Val-Tyr (3-tBu) - NH₂ 1.5g (85%)を得た。

- (3) 2-((2-tertプトキシカルボニルアミノ-3-(4-フルオロフェニル)プロピオニル)-N-メチルアミノ)-3-メチル酪酸 <math>2-(3-t-7) t-7 - 20Boc-Phe (4-F) -N-Me-Val-Tyr (3-tBu) -NH2600mg (0.976mmol) およびN, N-ジメチルアセトアミド0.2ml (1.5mmol) のジオキサン 3ml溶液を室温にて、1時間攪拌した後、水酸化ナトリウム 108mgとヒドロキシアミン塩酸塩 190mgの酢酸/水 (7ml/3ml)溶液を加えた。室温にて10分間攪拌した後、
- 25 水を加え、濾別した沈澱物の酢酸/ジオキサン(10m1/10m1)溶液を60℃にて終夜攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:n-ヘキサン=1:1)に付し、標題化合物 474mg(76%)を得た。

PCT/JP00/00444

¹H-NMR (CDC1₃): (two rotamers)δ 0.76, 0.8, 0.86 and 0.98 (6H, d, J=6.59, 6.93, 6.27, and 6.26Hz), 1.28 and 1.32 (9H, s), 1.25 and 1.37 (9H, s), 2.15 (1H, m), 2.35 and 2.92 (3H, s), 2.9 (3H, m), 3.15 (1H, d, J=6.93Hz), 4.12 and 4.49 (1H, d, J=6.92Hz), 4.8 (1H, m), 5.38 and 5.5 (2H, m), 6.65 (1H, brd), 6.9-7.2 (7H, m), 8.37 (1H, brd)

(4) 2-((2-アミノ-3-(4-フルオロフェニル))プロピオニル) -10 N-メチルアミノ) -3-メチル酪酸 2-(3-t-ブチル-4-ヒドロキシフェニル) <math>-1-(1, 2, 4-オキサジアゾール-5-イル) エチルアミドの合成

2-((2-tertブトキシカルボニルアミノ-3-(4-フルオロフェニル)プロピオニル)-N-メチルアミノ)-3-メチル酪酸 <math>2-(3-t-7)15 チルー4-ヒドロキシフェニル)-1-(1, 2, 4-オキサジアゾール-5-イル)エチルアミド 440mgの塩化メチレン 5ml溶液に氷冷下、TFA1mlを加えた。室温下、1時間攪拌した後、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 塩化メチレン:メタノール=15:1)に付し、標題化合物 370mg(99%)を得た。

実施例23

2-((2-アミノ-3-(4-フルオロフェニル) プロピオニル) -N-メ チルアミノ) -3-メチル酪酸 <math>2-(3-tertブチル-4-ヒドロキシフェニル) -1-(チアゾール-2-イル) エチルアミド

(1)Nーベンジルオキシカルボニル-3-t B u チロシニルチオアミドの合 5 成

 $Z-Tyr(3-tBu)-NH_2$ 2. 08g(5.62mmo1) のジオキサン 70m1溶液に、ローソン試薬 1. 36g(3.37mmo1) を加え、80 \mathbb{C} にて1時間攪拌した。反応液を減圧下に留去し、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル: $n-\Lambda+++-1:3$)に付し、標題化合物 1. 66g(77%) 得た。

10

15

20

25

 1 H-NMR (CDCl₃): δ 1. 37 (9H, s), 3. 01-3. 1 4 (2H, m), 4. 56-4. 65 (1H, m), 5. 08 (2H, s), 6. 58 (1H, d, J=7. 9Hz), 6. 90 (1H, dd, J=7. 9, 1. 7Hz), 7. 09 (1H, d, J=1. 7Hz), 7. 20-7. 40 (5H, m)

(2) Nーベンジルオキシカルボニル-2-(3-tertブチル-4-ヒドロキシルフェニル) -1-(チアゾール-2-イル) エチルアミンの合成

Nーベンジルオキシカルボニルー3ー t B u チロシニルチオアミド 21.4 9 g (55.67mmol)のエタノール 300ml 溶液に、ブロモアセトアルデヒドジエチルアセタール 43ml (278mmol)を加え、80mcにて2時間攪拌し、さらにブロモアセトアルデヒドジエチルアセタール 43ml (278mmol)を加え、80mcにて4時間攪拌し、さらにブロモアセトアルデヒドジエチルアセタール 43ml (278mmol)を加え、80mcにて3時間攪拌した。反応液を減圧下に留去し、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:m1.3)に付し、標題化合物 15.32m2 (67%)得た。

 $^{1}H-NMR$ (CDCl₃): δ 1. 29 (9H, s), 3. 10-3. 3 0 (2H, m), 5. 10 (2H, s), 5. 20-5. 40 (1H, m), 6. 51 (1H, d, J=8. 3Hz), 6. 74-6. 78 (2H, m), 7. 2

20

- 2 (1H, d, J=3. 3Hz), 7. 20-7. 40 (5H, brs), 7. 76 (1H, d, J=3. 3Hz)
- (3) 2-(3-tertブチル-4-ヒドロキシルフェニル) <math>-1-(チア ゾール-2-イル) エチルアミンの合成
- 5 Nーベンジルオキシカルボニルー2ー(3-tertブチルー4-ヒドロキシルフェニル)ー1ー(チアゾールー2ーイル)エチルアミン 15.28g(37.27mmol)の塩化メチレン 1.11溶液にチオアニソール 8.75 ml(74.54mmol)を加え、氷冷下1.0M三臭化ホウ素塩化メチレン溶液 186ml(186.34mmol)を滴下し、1時間攪拌した。反応液10に水を加え、2規定水酸化ナトリウム水溶液でアルカリ性とし、塩化メチレンで抽出し、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去し、標題化合物 9.46g(90%)を得た。

¹H-NMR (CDCl₃): δ 1. 36 (9H, s), 2. 82-3. 2 7 (2H, m), 4. 51-4. 56 (1H, m), 6. 57 (1H, d, J= 15 7. 9Hz), 6. 89 (1H, dd, J=7. 9, 2. 0Hz), 6. 99 (1H, d, J=2. 0Hz), 7. 27 (1H, d, J=3. 3Hz), 7. 76 (1H, d, J=3. 3Hz)

(4) 2 - (N-tertブトキシカルボニル<math>-N-メチルアミノ) -3-メチル酪酸 2 - (3-tertブチル<math>-4-ヒドロキシフェニル) -1- (チアゾール-2-イル) エチルアミドの合成

2-(3-tertブチル-4-ヒドロキシルフェニル) -1-(チアゾール -2-イル) エチルアミン 4.67g(16.64mmol)、Boc-N-Me-Val-OH 5.0g(21.63mmol)、およびCMPI 5. 53g(21.63mmol)のTHF 110ml溶液に、氷冷下TEA 5.

25 3 3 m l (3 8. 2 7 mm o l) を加え、室温にて終夜攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 メタノール:アンモニア水:塩化メチレン=3:0.1:100)に付し、標題化合物 8. 10g(100%)得た。

 1 H-NMR (CDCl₃): δ 0. 75-0. 97 (6H, m), 1. 2 9 (6H, s), 1. 31 (3H, s), 1. 41 (3H, s), 1. 48 (6 H, s), 2. 10-2. 35 (1H, m), 2. 71 (1. 5H, s), 2. 73 (1. 5H, s), 3. 10-3. 30 (2H, m), 3. 90-4. 10 (1H, m), 5. 50-5. 70 (1H, m), 6. 58 (1H, d, J=7. 9Hz), 6. 70-6. 90 (2H, m), 7. 20 (1H, d, J=3. 0 Hz), 7. 74-7. 76 (1H, m)

- (5) 3-メチルー2-メチルアミノ酪酸 2- (3-tertブチルー4-ヒドロキシフェニル) -1- (チアゾールー2-イル) エチルアミドの合成
- 2 (N-tertブトキシカルボニル-N-メチルアミノ) 3 メチル酪酸 2 (3-tertブチルー4-ヒドロキシフェニル) 1 (チアゾールー2-イル) エチルアミド 8.03g(16.42mmol)の塩化メチレン80ml溶液にTFA 40mlを加え、室温で30分間攪拌した。反応液を減圧下に留去し、得られた残さに塩化メチレンを加え、2規定水酸化ナトリウム水溶液および飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した。得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒アセトン: ヘキサン=1:2) に付し、標題化合物の2つのジアステレオアイソマーについて、流出順に、(A):2.37g(37%)および (B):2.17g(34%)を得た。
- 20 (A)

25

5

 1 H-NMR (CDCl₃): δ 0. 65 (3H, d, J=6. 9Hz), 0. 82 (3H, d, J=6. 9Hz), 1. 33 (9H, s), 1. 85-2. 00 (1H, m), 2. 32 (3H, s), 2. 75 (1H, d, J=4. 6Hz), 3. 09-3. 37 (2H, m), 5. 63-5. 71 (1H, m), 6. 61 (1H, d, J=7. 9Hz), 6. 87-6. 92 (2H, m), 7. 2 (1H, d, J=3. 0Hz), 7. 77 (1H, d, J=3. 3Hz) (B)

 ${}^{1}H-NMR (CDCI_{3}) : \delta = 0.84 (3H, d, J=6.9Hz),$ 0. 92 (3H, d, J=6.9Hz), 1. 33 (9H, s), 1. 95-2.

15 (1H, m), 2. 11 (3H, s), 2. 68 (1H, d, J=5. 0H z), 3. 12-3. 39 (2H, m), 5. 60-5. 69 (1H, m), 6. 59 (1H, d, J=8. 2Hz), 6. 87 (1H, dd, J=7. 9, 2. 0Hz), 6. 93 (1H, d, J=2. 0Hz), 7. 22 (1H, d, J=3. 3Hz), 7. 77 (1H, d, J=3. 3Hz)

5

- (6) 2-((2-プトキシカルボニルアミノ-3-(4-フルオロフェニル) プロピオニル) -N-メチルアミノ) <math>-3-メチル酪酸 2-(3-tert) t ブチル-4-ヒドロキシフェニル) -1-(チアゾール-2-イル) エチルアミド (A) の合成
- 10 3-メチルー2-メチルアミノ酪酸 2-(3-tertブチルー4-ヒドロキシフェニル)-1-(チアゾールー2-イル) エチルアミド(A) 1.00g(2.57mmol)、Boc-Phe(4-F)-OH 947mg(3.34mmol)、およびCMPI 853mg(3.34mmol)のTHF17ml溶液に、氷冷下TEA 0.82ml(5.91mmol)を加え、室温にて終夜攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:nーヘキサン=1:2)に付し、標題化合物 1.55g(92%)得た。

¹H-NMR (CDCl₃): δ 0. 76 (3H, d, J=6.6Hz). 20 0. 86 (2H, d, J=6.6Hz). 0. 97 (1H, d, J=6.6Hz). 2). 1. 26 (3H, s). 1. 29 (6H, s). 1. 37 (6H, s). 1. 40 (3H, s). 2. 15-2. 40 (1H, m). 2. 70-3. 50. (4H, m). 2. 78 (3H, s). 4. 17 (0.3H, d, J=10.2Hz). 4. 49 (0.7H, d, J=11.2Hz). 4. 70-4. 85 25 (1H, m). 5. 25-5. 80 (1H, m). 6. 58 (1H, d, J=7.

- 25 (1H, m), 5. 25-5. 80 (1H, m), 6. 58 (1H, d, J=7. 9Hz), 6. 75-7. 30 (6H, m), 7. 21 (0. 7H, d, J=3. 3Hz), 7. 23 (0. 3H, d, J=3. 3Hz), 7. 74 (0. 3H, d, J=3. 3Hz), 7. 77 (0. 7H, d, J=3. 3Hz)
 - (7) 2-((2-プトキシカルボニルアミノ-3-(4-フルオロフェニ

ル) プロピオニル) -N-メチルアミノ) -3-メチル酪酸 2-(3-tertブチル-4-ヒドロキシフェニル) <math>-1-(チアゾール-2-イル) エチルアミド(B) の合成

3-メチル-2-メチルアミノ酪酸 2-(3-tertブチル-4-ヒドロ キシフェニル)-1-(チアゾール-2-イル) エチルアミド(B) 1.00 g(2.57mmol)、Boc-Phe(4-F)-OH 947mg(3.34mmol)、およびCMPI 853mg(3.34mmol)のTHF 17ml溶液に、氷冷下TEA 0.82ml(5.91mmol)を加え、室温にて終夜攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:nーヘキサン=1:2)に付し、標題化合物 1.54g(92%)得た。

 1 H-NMR (CDC1₃): δ 0. 57 (1H, d, J=6.6Hz), 0. 62 (1H, d, J=6.9Hz), 0. 78 (4H, d, J=6.3Hz), 1. 33 (9H, s), 1. 36 (9H, s), 2. 10-2. 30 (1H, m), 2. 60-3. 70 (4H, m), 2. 82 (1.8H, s), 2. 85 (1.2H, s), 3. 99 (0.3H, d, J=10.6Hz), 4. 51 (0.7H, d, J=10.9Hz), 4. 70-4. 90 (1H, m), 5. 20-5. 60 (1H, m), 6. 59-7. 21 (7H, m), 7. 20 (1H, d, J=3.3Hz), 7. 71 (1H, d, J=3.3Hz)

15

20

25

(8) 2-((2-アミノ-3-(4-フルオロフェニル) プロピオニル) - N-メチルアミノ) - 3-メチル酪酸 <math>2-(3-tertブチル-4-ヒドロキシフェニル) - 1-(チアゾール-2-イル) エチルアミド(A) の合成 <math>2-((2-プトキシカルボニルアミノ-3-(4-フルオロフェニル) プロ

水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した。、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー (展開溶媒 メタノール:アンモニア水:塩化メチレン=3:0.1:100) に付し、標題化合物 430mgを得た。

- 5 EI-MS: 554 (M^+)
 - $^{1}H-NMR$ (CDCl₃): δ 0.75 (2.3H, d, J=6.9H z).0.80 (0.7H, d, J=6.6Hz).0.90-0.92 (0.
 - 7 H, m), 0. 93 (2. 3 H, d, J = 6. 6 Hz), 1. 24 (7 H,
 - s), 1. 30 (2H, s), 2. 25-2. 65 (1H, m), 2. 70-3.
- 10 40 (4H, m), 2. 79 (2. 4H, s), 2. 85 (0. 6H, s), 3.
 - 50-3.60 (0.8H, m), 3.75-3.90 (0.2H, m), 3.
 - 97 (0.8H, d, J=10.9Hz), 4.51 (0.2H, d, J=10.
 - $6 \,\mathrm{Hz}$), 5. $4 \,\mathrm{5} -\mathrm{5}$. $6 \,\mathrm{0}$ (0. $2 \,\mathrm{H}$, m), 5. $6 \,\mathrm{5} -\mathrm{5}$. $8 \,\mathrm{0}$ (0. $8 \,\mathrm{Hz}$)
 - H, m), 6. 55-7. 20 (7H, m), 7. 23 (1H, d, J=3. 3
- 15 Hz), 7. 76 (1H, d, J=3. 3Hz)
 - (9) 2-((2-アミノ-3-(4-フルオロフェニル) プロピオニル) N-メチルアミノ) <math>-3-メチル酪酸 2-(3-tertブチル-4-ヒドロキシフェニル) -1-(チアゾール-2-イル) エチルアミド(B) の合成

2-((2-ブトキシカルボニルアミノ-3-(4-フルオロフェニル)プロ

- 20 ピオニル) N メチルアミノ) 3 メチル酪酸 2 (3 tertブチル
 - -4-ヒドロキシフェニル)-1-(チアゾール-2-イル)エチルアミド (B) 1.48 g(2.26 mm o l)の塩化メチレン 20 m l 溶液にTF
 - A 10mlを加え、室温で1時間半攪拌した。反応液を減圧下に留去し、得ら
 - れた残さに塩化メチレンを加え、2規定水酸化ナトリウム水溶液および飽和食塩
- 25 水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した。、減圧 下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー

(展開溶媒 メタノール:アンモニア水:塩化メチレン=3:0.1:100)

に付し、標題化合物 587mgを得た。

 $EI-MS:554 (M^{+})$

¹H-NMR (CDCl₃): δ 0.72 (1.5H, d, J=6.9H z), 0.786 (1.5H, d, J=6.3Hz), 0.793 (1.5H, d, J=6.6Hz), 0.88 (1.5H, d, J=6.3Hz), 1.24 (5.4H, s), 1.33 (3.6H, s), 2.15-2.40 (1H, m), 2.40-3.35 (4H, m), 2.75 (1.8H, s), 2.87 (1.2H, s), 3.55-3.85 (1H, m), 3.86 (0.6H, d, J=10.9Hz), 4.56 (0.4H, d, J=10.9Hz), 5.50 -5.65 (1H, m), 6.45-7.15 (7H, m), 7.17-7.2 (1H, m), 7.23 (1H, d, J=3.3Hz), 7.76 (1H, d, J=3.0Hz)

実施例24

2-((2-アミノ-3-(4-フルオロフェニル)プロピオニル)-N-メ チルアミノ) -3-メチル酪酸 2-(3-t-ブチル-4-ヒドロキシフェニ ル) -1-(1,3,4-トリアゾール-2-イル) エチルアミドの合成 15 Boc-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NH2 400mg(0.651mmol)の塩化メチレン 6.5ml溶液に室温 下、ジメチルホルムアミドジメチルアセタール 0.26ml(1.954mm ol) を加えた。30分間攪拌後、減圧下に溶媒を留去した。得られた残さのジ オキサン 6.5ml溶液に室温下、酢酸2ml、ヒドラジン1水和物 48μ 20 1 (0.977mmol)を加えた。40分間攪拌した後、反応液に水を加え、 析出した固体を濾取した。得られた固体をシリカゲルカラムクロマトグラフィー (展開溶媒 酢酸エチル)に付し、2-((2-t-ブトキシカルボニルアミノ -3-(4-フルオロフェニル)プロピオニル)-N-メチルアミノ)-3-メ チル酪酸 2-(3-t-)チルー4ーヒドロキシフェニル) -1-(1, 3, 3)25 4-トリアゾール-2-イル) エチルアミド 384mg (93%) を得た。

上記化合物 421mgの塩化メチレン 3ml溶液に氷冷下、TFA 1mlを加えた。室温下、30分間攪拌した後、反応液に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。 有機層を飽和食塩水で洗浄、無水硫酸

マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:メタノール:アンモニア水=100:10:1)に付し、標題化合物 175 mg (49%) を得た。 EI-MS:538 (M^+)

実施例25

2-[2-アミノ-3-(4-フルオロフェニル) プロピル] アミノ-3-メ 15 チル酪酸 2-(3-tertブチル-4-ヒドロキシフェニル) -1-(チア・ゾール-2-イル) エチルアミド

- (1) 2-tertブトキシカルボニルアミノ-3-メチル酪酸 2-(3-tert) -1-(チアゾール-2-イル) エ チルアミドの合成
- 20 Boc-Val-OH 890mg (4.09mmol)、2-(3-tertプチルー4-ヒドロキシフェニル) -1-(チアゾールー2ーイル) エチルアミン 1.03g(3.73mmol)、および CMPI 653mg(1.05mmol)のTHF 10ml溶液に、氷冷下、TEA 1mlを加え、室温にて終夜攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、硫酸ナトリウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:n-ヘキサン=1:1)に付し、標題化合物 1.88g(99%)を得た。

 $^{1}H-NMR$ (CDCl₃): δ 0.79 and 0.89 (6H, d, J=6.93Hz).1.29 and 1.31 (9H, s).1.42 a

nd 1. 44 (9H, s), 2. 15 (1H, brd), 3. 23 (2H, m), 3. 89 (1H, m), 5. 0 (1H, brd), 5. 4 (0. 7H, brd), 5. 57 (1H, q, J=6. 93 and 5. 92Hz), 6. 56 (1H, q, J=4. 62 and 4. 29Hz), 6. 8 (3H, br d), 7. 21 (1H, m), 7. 75 (1H, t, J=2. 07 and 3. 3Hz)

(2) 2-アミノ-3-メチル酪酸 2-(3-tertブチル-4-ヒドロキシフェニル) <math>-1-(チアゾール-2-イル) エチルアミドの合成

2-(3-tertブチル-4-ヒドロキシフェニル)-1-(チアゾールー10 2-イル) エチルアミン 1.7 gの塩化メチレン 14ml溶液に氷冷下、TFA 6mlを加えた。室温下、2時間攪拌した後、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 塩化メチレン:メタノール:酢酸エチル=20:1:2)に付し、標題化合物の2つのジアステレオアイソマーについて、流出順に、(A):700mgおよび (B): 650mg (99%) を得た。

(A)

¹H-NMR (CDCl₃-CD₃OD) : δ 0. 89 (6H, brd) 、1. 28 (9H, s) 、2. 15 (1H, m) 、3. 18-3. 7 (3H, m) 、5. 48 (1H, brd) 、6. 6 (1H, brd) 、6. 8 (2H, brd) 、7. 27 (1H, s) 、7. 7 (1H, s)

(B)

20

25

 1 H-NMR (CDCl₃-CD₃OD) : δ 0. 72 (6H, d, J=6. 27Hz) . 1. 31 (9H, s) . 1. 92 (1H, brd) . 3. 04 (2H, brd) . 3. 28 (1H, dd, J=5. 28 and 5. 6Hz) . 5. 55 (1H, m) . 6. 62 (1H, d, J=7. 92Hz) . 6. 86 (1H, brd) . 6. 97 (1H, s) . 7. 28 (1H, s) . 7. 68 (1H, d, J=2. 64Hz)

(3) 2-[2-tertブトキシカルボニルアミノ-3-(4-フルオロフェニル) プロピル] アミノ-3-メチル酪酸 <math>2-(3-tertブチル-4-

25

ヒドロキシフェニル) -1- (チアゾール-2-イル) エチルアミド (A) の合成

2-アミノー3-メチル酪酸 2-(3-tertブチル-4-ヒドロキシフェニル)-1-(チアゾール-2-イル)エチルアミド(A) 600mg(1.59mmol)および(1-ホルミル-2-(4-フルオロフェニル)エチル)カルバミド酸 tBuエステル 640mg(2.39mmol)のMeOH10ml溶液に氷冷下、NaBH3CN 200mg(3.1mmol)を加え、室温にて1時間攪拌した。減圧下に溶媒を留去した後、水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、硫酸ナトリウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒酢酸エチル:n-ヘキサン=1:1)に付し、標題化合物 935mg(93%)を得た。

¹H-NMR (CDCl₃): δ 0.75 and 0.83 (6H, d, J=6.93 and 6.59Hz), 1.36 (9H, s), 1.42 (9 15 H, s), 2.46 (2H, brd), 2.66 (2H, brd), 2.73 (1H, d, J=4.61Hz), 2.81 (1H, d, J=7.26Hz), 3.20 (2H, d, J=6.26Hz), 3.6 (2H, m), 3.8 (1H, brd), 4.7 (1H, brd), 5.6 (1H, q, J=6.93 and 5.94Hz), 6.61 (1H, d, J=7.92Hz), 6.77 (1H, 20 s), 6.85 (1H, d, J=7.92Hz), 6.9-7.21 (8H, m), 7.66 (1H, d, J=2.97Hz)

(4) 2 - [2 - t e r t \overline{j} $\overline{$

2-アミノ-3-メチル酪酸 2-(3-tertブチル-4-ヒドロキシフェニル) -1-(チアゾール-2-イル) エチルアミド(B) 600mg(1.59mmol) および<math>1-ホルミル-2-(4-フルオロフェニル) エチル) カルバミド酸 t Buエステル 640mg(2.39mmol)のMeOH 1

0 m l 溶液に氷冷下、N a B H $_3$ C N 200 m g (3.1 m m o 1) を加え、室温にて1時間攪拌した。減圧下に溶媒を留去した後、水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、硫酸ナトリウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒酢酸エチル:n-ヘキサン=1:1)に付し、標題化合物 950 m g (95%) を得た。

¹H-NMR (CDCl₃): δ 0.83 and 0.87 (6H, d, J=6.93 and 6.92Hz), 1.34 (9H, s), 1.41 (9H, s), 2.00 (1H, brd), 2.31 (2H, brd), 2.6-2.

81 (3H, brd), 2.81 (1H, d, J=7.26Hz), 3.20 (2H, m), 3.6 (2H, m), 3.8 (1H, brd), 4.58 (1H, brd), 4.83 (1H, brd), 5.59 (2H, q, J=6.93H)

z), 6. 60 (1H, d, J=7. 92Hz), 6. 81 (1H, d, J=7. 91Hz), 6. 88 (1H, s), 6. 9-7. 21 (8H, m), 7. 74

15 (1H, d, J=2.29Hz)

5

(5) 2-[2-アミノ-3-(4-フルオロフェニル) プロピル] アミノー <math>3-メチル酪酸 2-(3-tertブチル-4-ヒドロキシフェニル) <math>-1-(チアゾールー2-イル)エチルアミド(A)の合成

2- [2-tertプトキシカルボニルアミノ-3-(4-フルオロフェニ 20 ル)プロピル]アミノ-3-メチル酪酸 2-(3-tertブチル-4-ヒドロキシフェニル)-1-(チアゾール-2-イル)エチルアミド(A) 300 mgの塩化メチレン 5ml溶液に氷冷下、TFA 1mlを加えた。室温下、1時間攪拌した後、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 塩化メチレン:メタノール=15:1)に付 25 し、標題化合物 180mg(71%)を得た。

 $^{1}H-NMR$ (DMSO-d₆): δ 0. 78 and 0. 88 (6H, d, J=3. 3 and 5. 6Hz), 1. 28 (9H, s), 1. 90 (1H, brd), 2. 6 (1H, m), 2. 7-3. 0 (3H, brd), 3. 1 (2H, m), 3. 4 (1H, brd), 5. 29 (1H, q, J=5. 93)

and 8. 58Hz), 6. 69(1H, d, J=7.92Hz), 6. 86(1H, d, J=7.59Hz), 6. 95(1H, s), 7. 2(4H, m), 7. 62(1H, d, J=2.97Hz), 7. 77(1H, d, J=3.3Hz)

- 5 (6) 2-[2-アミノ-3-(4-フルオロフェニル) プロピル] アミノー <math>3-メチル酪酸 2-(3-tertブチル-4-ヒドロキシフェニル) <math>-1-(チアゾールー2-イル) エチルアミド(B) の合成
- 2-[2-tertブトキシカルボニルアミノ-3-(4-フルオロフェニル)プロピル]アミノ-3-メチル酪酸 2-(3-tertブチル-4-ヒドロキシフェニル)-1-(チアゾール-2-イル)エチルアミド(B) 300mgの塩化メチレン 5ml溶液に氷冷下、TFA 1mlを加えた。室温下、1時間攪拌した後、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 塩化メチレン:メタノール=15:1)に付し、標題化合物 193mg(76%)を得た。

実施例26

H, d, J = 3.3 Hz

Tyr (2-F) - N-Me-Val-N-Me-Tyr (3-tBu)25 $-NH_2$

(1) Boc-Tyr (2-F) -N-Me-Val-N-Me-Tyr(3-tBu) -NH₂の合成

Tyr (2-F) -OH 0.60g (3.01mmol)、およびジtert-ブチルジカーボネート 0.69g (3.16mmol)のジオキサン

(5ml) -水(5ml) 溶液に、氷冷下、TEA 0.84ml(6.02mmol)を加え、2時間攪拌した。反応液を約半分に濃縮した後、飽和NaHC O_3 水溶液を加え、エーテルで洗浄した。水層を氷冷下に2N塩酸を加えて酸性 とし、クロロホルムで抽出した後、無水硫酸マグネシウムで乾燥し、減圧下に溶 媒を留去し、粗Boc-Tyr(2-F)-OH 0.85gを得た。

上記粗Boc-Tyr (2-F) -OH 0.82g、N-Me-Val-N-Me-Tyr (3-t Bu) -NH₂ 0.77g (2.11 mmol)、およびCMPI 0.81g (3.17 mmol)のTHF 5 ml溶液に、水冷下、TEA 1.18 ml (8.44 mmol)を加え、室温にて23時間攪拌した。反応液に水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下に溶媒を留去して得られた残さをシリカゲルクロマトグラフィー(クロロホルム:メタノール:濃アンモニア水=30:1:0.05)に付し、標題化合物 0.21g (15%)を得た。

(2) Tyr (2-F) -N-Me-Val-N-Me-Tyr (3-t 15 Bu) -NH₂の合成

Boc-Tyr(2-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂ 0.21g(0.326mmol)の塩化メチレン 3ml 溶液に、TFA 1.5mlを加え、15分間攪拌した。反応液を減圧下に濃縮した後、飽和NaHCO₃水溶液を加えクロロホルムで抽出し、無水硫酸マグネシウムで乾燥した。溶媒を減圧下に留去することにより、標題化合物 173mg(82%)を得た。

 $EI-MS(M^{+}):544$

5

10

20

 1 H-NMR (DMSO-d₆-CDCl₃) : δ 0. 21 (6/5H, d, J=6. 3Hz), 0. 59 (6/5H, d, J=6. 6Hz), 0. 71 (9 25 /5H, d, J=6. 6Hz), 0. 84-0. 98 (9/5H, m), 1. 3 0 (27/5H, s), 1. 37 (18/5H, s), 2. 00-2. 22 (1 H, m), 2. 10 (6/5H, s), 2. 3-2. 8 (2H, m), 2. 44 (9/5H, s), 2. 85 (9/5H, d, J=5. 9Hz), 3. 1-3. 8 (2H, m), 3. 24 (6/5H, d, J=5. 0Hz), 3. 94-4.

20 (1H, m), 4. 51 (2/5H, d, J=10.2Hz), 4. 78 (2/5H, dd, J=3.9, 11. 2Hz), 4. 88 (3/5H, d, J=10.2Hz), 5. 41 (3/5H, dd, J=3.9, 10. 2Hz), 6. 48-7. 21 (7. 7H, m), 7. 60-7. 75 (0. 3H, m), 8. 88 (1H, d, J=7.3Hz), 9. 47 (1H, brs)

実施例27

5

15

Tyr (3-F) -N-Me-Val-N-Me-Tyr (3-tBu) $-NH_2$

10 (1) Boc-Tyr (3-F) -N-Me-Val-N-Me-Tyr (3-tBu) -NH₂の合成

Tyr (3-F) -OH 0.80g (4.02 mmol)、およびジtertーブチルジカーボネート 0.92g (4.22 mmol) のジオキサン (7 ml) -水 (7 ml) 溶液に、氷冷下、TEA 1.12ml (8.04 mmol) を加え、2.5時間攪拌した。反応液を約半分に濃縮した後、飽和NaHCO3水溶液を加え、エーテルで洗浄した。水層を氷冷下に2N塩酸を加えて酸性とし、クロロホルムで抽出した後、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去し、粗Boc-Tyr (3-F) -OH 1.18gを得た。

上記粗Boc-Tyr (3-F) -OH 1. 18g、N-Me-Val-20 N-Me-Tyr (3-t Bu) -NH₂ 1. 10g (3. 03mmol)、およびCMPI 1. 16g (4. 55mmol)のTHF 6ml溶液に、水冷下、TEA 1. 27ml (12. 1mmol)を加え、室温にて2.7時間攪拌した。反応液に水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下に溶媒を留去して得られた残さをシリカゲルクロマトグラフィー(クロロホルム:メタノール:濃アンモニア水=30:1:0.05)に付し、標題化合物 0.19g (10%)を得た。

(2) Tyr (3-F) -N-Me-Val-N-Me-Tyr (3-t Bu) -NH₂の合成

Boc-Tyr (3-F) -N-Me-Val-N-Me-Tyr (3-F)

 $t\ Bu) - NH_2 \ 0. \ 19g (0. \ 294 mmol)$ の塩化メチレン 3ml 溶液に、 $TFA \ 1. \ 5ml$ を加え、15 分間攪拌した。反応液を減圧下に濃縮した後、飽和 $NaHCO_3$ 水溶液を加えクロロホルムで抽出し、無水硫酸マグネシウムで乾燥した。溶媒を減圧下に留去することにより、標題化合物 136mg (85%)を得た。

 $EI-MS(M^{+}):544$

5

¹H-NMR (DMSO-d₆-CDCl₃): δ 0. 18 (6/5H, d, J=6. 3Hz), 0. 58 (6/5H, d, J=6. 6Hz), 0. 68 (9/5H, d, J=6. 6Hz), 0. 68 (9/5H, d, J=6. 6Hz), 0. 85 (9/5H, d, J=6. 3Hz), 10 1. 29 (27/5H, s), 1. 37 (18/5H, s), 1. 95-2. 2 1 (1H, m), 2. 04 (6/5H, s), 2. 30-3. 00 (2H, m), 2. 41 (9/5H, s), 2. 81 (9/5H, s), 3. 10-3. 60 (16/5H, m), 3. 55-6. 64 (3/5H, m), 4. 00-4. 1 0 (2/5H, m), 4. 45 (2/5H, d, J=10. 2Hz), 4. 70 (2/5H, dd, J=3. 9, 11. 2Hz), 4. 85 (3/5H, d, J=10. 2Hz), 5. 38 (3/5H, dd, J=3. 9, 10. 2Hz), 6. 51-7. 31 (8H, m), 8. 98 (1H, d, J=2. 6Hz), 9. 50 (1H, brs)

20 実施例 $28 \sim 64$ はスキーム 1 に従って製造され、実施例 $65 \sim 78$ はスキーム 2 に従って製造された。スキーム 1 および 2 の各共通中間体の製造方法を、参考例として以下に示す。また、実施例 $28 \sim 64$ における中間体の構造式を表 C-1 に示す。

WO 00/44770

表C-1

実施例28~78の共通中間体

T 1: R33=R34=H

V 1:R32=Me(市販) V 2:R32=Et

P 1 : PG=Boc, R31=H (市販) P 2 : PG=Boc, R31=Me

T 2: R33=H, R34=Me

T 4: R33=Me, R34=H(実施例1(5))

P 3 : PG=Z, R31=Et P 1 0 : PG=Boc, R31=Et

T 5: R33=R34=Me

T 7: R33=Et, R34=H T 8: R33=Et, R34=Me

T 1 7 : R33=Me, R34=CH₂SO₂CH₃

T 1 8 : R33=H, R34=tBu

T 2 0 : R33=Me, R35=H T 2 1: R33=R35=H

T 2 2: R33=H, R35=NHBoc (実施例 1 0)

T 2 3: R33=Me, R35=OH

(実施例1(5))などの表示は、本明細書中の対応する 表C-1中、 番号の実施例にその製法が記載されている化合物を示す。また、 は、商業的に入手可能な化合物を示す。

参考例1

共通中間体 T1 の合成

Tyr (3-tBu) -OMe 12.4g (49mmol) および濃アンモニア水 (240ml) の混合物を室温で18時間攪拌した。反応混合物を減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(CHCl $_3:M$ eOH=10:1)で精製し、Tyr (3-tBu) $-NH_2$ (T1) 10g (80%) を得た。

 1 H-NMR (CDCl₃) : δ 1. 40 (9H, s), 2. 63 (1H, dd, J=9. 6, 13. 9Hz), 3. 19 (1H, dd, J=4. 0, 13. 10 9Hz), 3. 58 (1H, dd, J=4. 0, 9. 6Hz), 5. 11 (1H, brs), 5. 38 (1H, brs), 6. 64 (1H, d, J=7. 9Hz), 6. 92 (1H, dd, J=2. 0, 7. 9Hz), 7. 11 (1H, d, J=2. 0Hz).

15 参考例 2

20

25

共通中間体 T2 の合成

Tyr (3-tBu) -OMe 12g (48mmol) および40%メチルアミンーメタノール溶液 (80ml) の混合物を室温で14時間攪拌した。反応混合物を減圧下濃縮し、Tyr (3-tBu) -NHMe (T2) 12gを粗生成物として得た。

 1 H-NMR (CDC1₃): δ 1. 39 (9H, s), 2. 60 (1H, dd, J=9. 6, 13. 9Hz), 2. 83 (3H, d, J=5. 0Hz), 3. 18 (1H, dd, J=4. 0, 13. 9Hz), 3. 57 (1H, dd, J=4. 0, 9. 6Hz), 6. 67 (1H, d, J=7. 9Hz), 6. 88 (1H, dd, J=1. 8, 7. 9Hz), 7. 07 (1H, d, J=1. 8Hz).

参考例3

共通中間体T5の合成

PC1/JP00/00444

WO 00/44770

15

(1) N-ホルミル-Tyr (3-tBu) - OMeの合成

塩化アセチル 22.6ml(299mmol)のジエチルエーテル 11溶液に、氷冷下、ぎ酸ナトリウム 30.6g(450mmol)を加え、室温にて23時間攪拌した。反応液をろ過し、溶媒を減圧下留去した。得られた残さを、

ホルミル-Tyr (3-tBu) -OMe 23.8g (100%) を得た。

 $^{1}H-NMR$ (CDCl₃): δ 1. 38 (9H, s), 3. 09 (2H, d, J=5. 3Hz), 3. 76 (3H, s), 4. 93 (1H, dd, J=5. 3, 13. 5Hz), 5. 23 (1H, s), 6. 02 (1H, d, J=13. 5Hz), 6. 55 (1H, d, J=7. 9Hz), 6. 80 (1H, dd, J=13.

=2.0, 7.9Hz), 6.95(1H, d, J=2.0Hz), 8.18 (1H, s).

(2) N-Me-Tyr (3-tBu)-OMeの合成

NーホルミルーTyr(3-tBu)-OMe 23.8g(85.3mmo
20 1)のTHF 400ml溶液に、氷冷下、1.0MボランーTHFコンプレックス 170mlを30分掛けて滴下した。20分間攪拌後、メタノール 50mlを加え、30分間攪拌した。反応液に33%臭化水素酸-酢酸 31mlを加え、2時間攪拌した。氷冷下、飽和NaHCO3水で中和し、クロロホルムで抽出した。有機層を飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、

25 減圧下に溶媒を留去した。得られた残さをシリカゲルカラムクロマトグラフィー (展開溶媒 クロロホルム:メタノール=20:1) に付し、N-Me-Tyr (3-tBu) -OMe 20.3g (90%) を得た。

 $^{1}H-NMR$ (CDCl₃): δ 1. 38 (9H, s), 2. 37 (3H, s), 2. 89 (2H, d, J=6. 6Hz), 3. 42 (1H, t, J=6.

6 Hz), 3. 68 (3 H, s), 6. 55 (1 H, d, J = 7. 9 Hz), 6. 86 (1 H, dd, J = 2. 0, 7. 9 Hz), 7. 02 (1 H, d, J = 2. 0 Hz)

- (3) N-Me- Tyr (3-tBu) NHMeの合成
- N-Me-Tyr(3-tBu)-OMe 8.20g(31.1mmol)
 のメタノール 20ml溶液に、30%メチルアミン-メタノール溶液 200 mlを加え、室温にて16時間攪拌した。反応液を減圧下に留去し、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:メタノール=20:1)に付し、N-Me-Tyr(3-tBu)-NHMe(T5)
 6.27g(76%)を得た。

¹H-NMR (CDCl₃): δ 1. 39 (9H, s), 2. 26 (3H, s), 2. 58 (1H, dd, J=10. 5, 14. 8Hz), 2. 84 (2H, d, J=4. 9Hz), 3. 06-3. 18 (2H, m), 5. 00 (1H, b rs), 6. 62 (1H, d, J=7. 9Hz), 6. 89 (1H, dd, J=15. 7, 7. 9Hz), 7. 08 (1H, d, J=1. 7Hz), 7. 15 (1H, brs).

参考例4

共通中間体T7の合成

- Tyr(3-tBu)-NH₂ 1.6g(6.8mmol)およびアセトアルデヒド7.6ml(0.14mol)の混合物を氷冷下で10分間攪拌した。反応混合物を氷冷減圧下に濃縮し、得られた残渣にメタノール34mlを加え、氷冷下水素化ホウ素ナトリウム0.28g(7.4mmol)を加え、同温度で15分間攪拌した。水を加え、酢酸エチルで抽出した。有機層を、水洗、乾燥後、25 減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(CHCl₃:MeOH=20:1)で精製し、N-Et-Tyr(3-tBu)-NH₂(T7) 1.3g(73%)を得た。
 - $^{1}H-NMR$ (CDC1₃) : δ 0. 96 (3H, t, J=7. 3Hz), 1. 40 (9H, s), 2. 4-2. 7 (3H, m), 3. 14 (1H, dd,

 $J=4.\ 0,\ 13.\ 9Hz)$, 3. 26 (1H, dd, $J=4.\ 0,\ 9.\ 6Hz$), 5. 25 (1H, s), 5. 38 (1H, brs), 6. 63 (1H, d, $J=7.\ 9Hz$), 6. 91 (1H, dd, $J=2.\ 0,\ 7.\ 9Hz$), 7. 1 0 (1H, d, $J=2.\ 0Hz$), 7. 18 (1H, brs).

5

参考例5

共通中間体 T8 の合成

Tyr(3-tBu)-NHMe 1.7g(6.8mmol)、アセトアルデヒド 0.76ml(13.6mmol)およびジクロロメタン 10mlの混合物を氷冷下で30分間攪拌した。反応混合物を氷冷減圧下に濃縮し、得られた残渣にメタノール20mlを加え、氷冷下水素化ホウ素ナトリウム 0.28g(7.4mmol)を加え、同温度で15分間攪拌した。水を加え、ジクロロメタンで抽出した。有機層を、水洗、乾燥後、減圧下濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(CHCl₃:MeOH=20:1)で精製し、N-Et-Tyr(3-tBu)-NHMe(T8) 1.7g(90%)を得た。

¹H-NMR (CDCl₃): δ 0. 94 (3H, t, J=7. 3Hz), 1. 39 (9H, s), 2. 4-2. 6 (2H, m), 2. 60 (1H, dd, J=9. 6, 13. 8Hz), 2. 83 (3H, d, J=4. 9Hz), 3. 13 (1H, dd, J=4. 0, 13. 8Hz), 3. 25 (1H, dd, J=4. 0, 9. 6Hz), 5. 44 (1H, brs), 6. 64 (1H, d, J=7. 9Hz), 6. 88 (1H, dd, J=2. 0, 7. 9Hz), 7. 07 (1H, d, J=2. 0Hz), 7. 27 (1H, brs)

25 参考例 6

共通中間体V2の合成

Z-Val-OH 50gのTHF 500ml溶液に、氷冷下、ヨウ化エチル 127. 3ml (1592mmol) を加えた後、水素化ナトリウム (60% in oil) 23.88g (597mmol) をゆっくり加え、60℃

にて12時間攪拌した。水を加えた後、エーテルで洗浄した。得られた水層を希塩酸で酸性にし、酢酸エチルで抽出した。飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥した後、減圧下に溶媒を留去した。得られた残さをシリカゲルカラムクロマトグラフィー(H:EA:AcOH=100:50:1)に付し、Z-N-Et-Val-OH(V2)-29.29g(53%)を得た。

¹NMR (CDCl₃): δ 0. 92 (3H, d, J=6. 3Hz), 1. 0 3 (3H, d, J=6. 6Hz), 1. 16 (3H, t, J=6. 9Hz), 2. 40-2. 60 (1H, m), 3. 15-3. 58 (2H, m), 3. 73 (1 H, brd, J=10. 9Hz), 5. 20 (2H, brs), 7. 36 (5H, brs)

参考例7

5

10

共通中間体P2の合成

Boc-Phe (4-F) -OH 13.4g(47.3mmol)のTHF 15 100ml溶液に、氷冷下、60%水素化ナトリウム 5.7g(142mmol)を加え、次いでヨウ化メチル 23.6ml(378mmol)を加えた。室温にて38時間攪拌した後、氷冷下、反応液に水を加え、n-ヘキサンにて洗浄した。氷冷下、水層を1N塩酸により酸性とし、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧下に溶媒を 20 留去した。得られた残さにエーテルおよびn-ヘキサンを加えることにより生じた沈殿物を濾過することにより、Boc-N-Me-Phe(4-F)-OH(P2) 11.4g(81%)を得た。

¹H-NMR (CDCl₃): δ 1.32 and 1.39 (9H, s), 2.67 and 2.75 (3H, s), 2.94-3.11 (1H, m), 3.20-3.35 (1H, m), 4.53-4.62 (1H, brd), 4. 97 (1H, brs), 6.90-7.20 (4H, m)

参考例8

共通中間体 P 3 の合成

O 00/447/0 PC1/JP00/0044

Z-Phe(4-F)-OH 13.9g(44.0mmol)のTHF(73ml)-DMF(37ml)溶液に、氷冷下、ヨウ化エチル 28.1ml(352mmol)、60%水素化ナトリウム 5.28g(132mmol)を加え、室温にて5.5時間攪拌した。反応液に水をゆっくり加え、エーテルで洗浄した。水層に希塩酸を加えてpHを3とし、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧下に濃縮した。得られた残さをシリカゲルカラムクロマトグラフィー($n-\Lambda$ +サン:酢酸エチル:酢酸=100:50:1)に付し、Z-N-Et-Phe(4-F)-OH(P3) 10.9g(72%)を得た。

10

15

20

参考例9

共通中間体 P 1 0 の合成

Boc-Phe (4-F) -OH 1.0g $(3.53 \, \text{mmol})$ のTHF $(6 \, \text{ml})$ -DMF $(1.5 \, \text{ml})$ 溶液に、氷冷下、ヨウ化エチル 2.24 m l $(20.8 \, \text{mmol})$ 、 $60 \, \text{%水素化ナトリウム}$ 422 mg $(10.6 \, \text{mmol})$ を加え、室温にて19時間攪拌した。反応液に水をゆっくり加え、次いで飽和NH₄Cl 水溶液を加え、酢酸エチルで抽出した。抽出液を水および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧下に濃縮した。得られた残さをシリカゲルカラムクロマトグラフィー(n-N-E tーPhe (4-F) -OH (P10) 593 mg (54%) を得た。

参考例10

共通中間体T17の合成

 $Z-N-Me-Phe(3-tBu-4-ベンジルオキシ)-NH_2 2.5$ g(5.27mmol)、35%ホルムアルデヒド水溶液 10ml、および炭酸カリウム 2.19g(15.8mmol)のアセトニトリル懸濁液を、2時間攪拌した。水を加え、酢酸エチルで抽出した後、飽和 NH_4Cl 水溶液、次いで飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥した後、減圧下に濃縮し

て得られた残さを、シリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル:塩化メチレン=1:1:1)に付し、 Z-N-Me-Phe(3-tBu-4-ベンジルオキシ) $-NHCH_2OH$ 2.0gを得た。

上記化合物 2.0g(3.97mmol)の85%蟻酸 30ml溶液に、 メタンスルフィン酸ナトリウム 1.5g(15.3mmol)を加えた後、50℃で1時間攪拌した。反応液に水を加え、酢酸エチルで抽出し、飽和NaHC〇₃水溶液で洗浄した。無水硫酸マグネシウムで乾燥し、減圧下に濃縮して得られた残さ 1.8gのメタノール 20ml溶液に、20%水酸化パラジウム炭素 0.50gを加え、水素雰囲気下に、2日間攪拌した。触媒を濾別し、濾液を濃縮して得られた残さをシリカゲルカラムクロマトグラフィー(nーヘキサン:メタノール:塩化メチレン=1:1:15)に付し、 NーMeーPhe(3ーtBu-4-ベンジルオキシ)-NHCH2SO2CH3 (T17) 890mgを得た。

15 参考例11

共通中間体T18の合成

Z-Tyr(3-tBu)-OMe 1.01g(2.62mmol)のメタノール(12ml)-水(3ml)溶液に、水酸化リチウムー水和物 0.17g(3.93mmol)を加え、室温にて2時間攪拌した。反応液をエーテルで20 洗浄した後、2N塩酸にて酸性とし、塩化メチレンで抽出した。抽出液を無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去するこにより、粗Z-Tyr(3-tBu)-OH 0.98gを得た。

上記粗化合物 0.92g(2.48mmol)、WSCI 0.52g(2.73mmol)、およびHOBT 0.37g(2.73mmol)のDMF 1.5ml溶液に、氷冷下、tertープチルアミン 0.31ml(2.48mmol)、次いでNMM 0.29ml(2.73mmol)を加え、室温にて2時間攪拌した。反応液に水を加え、酢酸エチルで抽出した後、2N塩酸、飽和NaHCO3水溶液、飽和食塩水で順に洗浄した。抽出液を無水硫酸マグネシウムで乾燥した後、減圧下に濃縮して得られた残さをシリカゲルカラムクロマトグ

ラフィー(酢酸エチル: $n- \land + \forall \nu = 1:2$)に付し、Z-Tyr(3-tBu) -NHtBu 1.05g(99%)を得た。

上記化合物 1.0g(2.34mmol)のメタノール 20ml溶液に、20%水酸化パラジウムー炭素 0.16gを加え、水素雰囲気下、2時間攪拌した。反応液をセライトを用いて濾過し、減圧下に濾液を留去することにより、粗Tyr(3-tBu)-NHtBu(T18) 0.60g(88%)を得た。

参考例12

5

共通中間体T20の合成

(1) 2-(4-ベンジルオキシ-3-tert-ブチルフェニル)-N-ベ 10 ンジルオキシカルボニルーN-メチルー1-メチルエチルアミンの合成 Z-N-Me-Phe (3-tBu-4-ベンジルオキシ) -OH 27.8 g (58.5mmol)のTHF 290ml溶液に、氷冷下、クロロ炭酸エチ ル 6.2ml (64.3mmol) およびN-メチルモルホリン 7.7ml (70.2mmol)を加え、攪拌した。2時間後、反応液に水素化ホウ素ナト 15 リウム 6.7g(175mmol)、水 100ml、およびメタノール 1 00mlを加え、室温にて6時間攪拌した。反応液を減圧下留去後、酢酸エチル で抽出した。有機層を飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、 減圧下に溶媒を留去した。得られた残さをシリカゲルカラムクロマトグラフィー (展開溶媒 塩化メチレン:酢酸エチル:n-ヘキサン=1:1:2) に付し、 20 2-(4-ベンジルオキシー3-tert-ブチルフェニル)-N-ベンジルオキシカルボニルー1-ヒドロキシメチル-N-メチルエチルアミン 12.4g (46%)を得た。

上記化合物 5.21g(11.2mmol)の塩化メチレン 55ml溶液 25 に、氷冷下、TEA 2.34ml(16.8mmol)およびメタンスルホニルクロリド 0.954ml(12.3mmol)を加え、30分間攪拌した。氷冷下、飽和NaHCO3水を加え、塩化メチレンで抽出した。有機層を水、飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去し、メシラート体を得た。このメシラート体のTHF 30ml溶液に、1M水素化

- 1 H-NMR (CDCl₃): δ 1. 14 (3H, d, J=6. 9Hz), 1. 36 (9H, s), 2. 50-2. 80 (2H, m), 2. 76 and 2. 83 (total 3H, s), 4. 30-4. 58 (1H, m), 4. 88-5. 10 (4H, m), 6. 74-7. 14 (3H, m), 7. 20-7. 50 (10H, m)
- 15 (2) 2-(3-tert-ブチル-4-ヒドロキシフェニル) -N-メチル <math>-1-メチルエチルアミン (T20) の合成

2-(4-ベンジルオキシ-3-tert-ブチルフェニル)-N-ベンジルオキシカルボニル-N-メチル-1-メチルエチルアミン 3.30g(7.35mmol) および <math>20%水酸化パラジウム-炭素触媒 350mgのメタノー

- 20 ル $100 \, \mathrm{m} \, 1$ 懸濁液を、水素雰囲気下、 $1.5 \, \mathrm{時間攪拌}$ した。触媒を濾別した後、減圧下に溶媒を留去し、 $2-(3-t\, \mathrm{er}\, t-7 \, \mathrm{fu}-4- \mathrm{tr}\, \mathrm{fu}+5 \, \mathrm{fu}$ ニル) $-\mathrm{N}-\mathrm{y}\, \mathrm{fu}-1-\mathrm{y}\, \mathrm{fu}\, \mathrm{fu}$ エチルアミン($\mathrm{T}\, 2\, 0$) $1.6\, 2\, \mathrm{g}\, (1\, 0\, 0\, \mathrm{g})$ を得た。
- ¹H-NMR (CDCl₃): δ 1. 12 (3H, d, J=6. 3Hz), 1. 25 38 (9H, s), 2. 42 (3H, s), 2. 64 (2H, d, J=6. 6H z), 2. 75-2. 90 (1H, m), 6. 55 (1H, d, J=7. 9H z), 6. 84 (1H, dd, J=1. 6, 7. 9Hz), 7. 04 (1H, d, J=1. 6Hz).

参考例13

共通中間体T21の合成

- (1) Z-N, O-ジベンジル-Tyr (3-tBu) -OMeの合成 Z-Tyr (3-tBu) -OMe 3.0g (7.78mmol)のDMF 5 20ml溶液に、氷冷下、水素化ナトリウム 0.68g (17.1mmol)を加えて15分間攪拌後、ベンジルブロミド 2.3ml (19.5mmol)を加えた。3時間攪拌後、反応液に飽和NaHCO3水溶液を加え、酢酸エチルで抽出し、水、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル: n-ヘキサン=1:5)に付し、標題化合物 4.14g (94%)を得た。
- (2) Nーベンジルー2ー(4ーベンジルオキシー3ーtertブチルフェニル)ー1ーメチルーNー(ベンジルオキシカルボニル)エチルアミンの合成 ZーN, OージベンジルーTyr(3ーtBu)ーOMe 4.14g(7.15 32mmol)のエタノール 36mlーTHF 6ml溶液に、氷冷下、2M水素化ホウ素リチウムーTHF溶液 11.0ml(22.0mmol)を加えて、室温にて終夜攪拌した。水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した。得られた残さを塩化
- メチレン 50mlの溶液とし、氷冷下、トリエチルアミン 2.0ml(14.20 4ml)、続いてメタンスルホニルクロリド 0.72ml(9.36mmol)を加えて、30分間攪拌した。反応液を飽和NaHCO3水溶液で洗浄し、有機層を無水硫酸マグネシウムで乾燥、減圧下に溶媒を留去した後、得られた残さをTHF 10mlの溶液とし、1M水素化トリエチルホウ素リチウム-THF溶液 28.0ml(28.0mmol)を加えた。3時間攪拌した後、氷冷で水を加え、塩化メチレンで抽出した。有機層を無水硫酸マグネシウムで乾燥
 - し、減圧下に溶媒を留去した後、得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:n-ヘキサン=1:5)に付し、 標題化合物 2.35g (61%)を得た。
 - (3) 2-(3-tertプチル-4-ヒドロキシフェニル) -1-メチルエ

チルアミンの合成

参考例14

15 共通中間体T23の合成

Tyr (3-tBu) -OMe 3.0g (11.9mmol)の1,4-ジオキサン(12ml)-水(12ml)溶液に、氷冷下、炭酸ナトリウム 1.9g (17.9mmol)、続いてクロロ炭酸エチル 1.26ml (13.1mmol)を加え、2時間攪拌した。反応液に水を加え、クロロホルムで抽出し、20 無水硫酸マグネシウムで乾燥した後、減圧下に濃縮した。得られた残さ 3.85gのTHF 120ml溶液に、水素化アルミニウムリチウム 2.83g (59.7mmol)を少量ずつ加えた後、60℃で5時間攪拌した。反応液を氷水に注入し攪拌した後、セライトを用いて不溶物を濾別した。濾液を酢酸エチルで抽出し、無水硫酸マグネシウムで乾燥した後、減圧下に濃縮した。得られた 25 残さをシリカゲルカラムクロマトグラフィー(塩化メチレン:メタノール=3:1)に付し、3-(3-tertブチル-4-ヒドロキシフェニル)-2-メチルアミノプロパノール(T23) 1.9g (67%、2工程)を得た。

参考例15

共通中間体P11の合成

5

(1) 2-(4-7)ルオロフェニル)-1-(N-3)トキシーN-3 ルカルバモイル)エチルカルバミン酸 tert-7 チルエステルの合成

Boc-Phe (4-F) - OH 5.0g (17.7mmol) の塩化メチレン 89ml溶液に、氷冷下、BOP試薬 9.39g (21.2mmol)、N,O-ジメチルヒドロキシルアミン塩酸塩 2.07g (21.2mmol)、およびTEA 5.92ml (42.5mmol)を加え、30分間攪拌した。反応液に水を加えて塩化メチレンで抽出した。有機層を飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した。得られた残さをシリ

10 カゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル: n-ヘキサン=1:1)に付し、標題化合物 5.76g(100%)を得た。

 1 H-NMR (CDCl₃): δ 1. 39 (9H, s), 2. 84 (1H, dd, J=6. 9, 13. 8Hz), 3. 02 (1H, dd, J=5. 9, 13. 8Hz), 3. 16 (3H, s), 3. 68 (3H, s), 4. 86-4. 96

- 15 (1H, m), 5. 10-5. 24 (1H, m), 6. 95 (1H, d, J=8. 9Hz), 6. 98 (1H, d, J=8. 9Hz), 7. 11 (1H, d, J=8. 2Hz), 7. 13 (1H, d, J=8. 2Hz).
 - (2) 2-(4-フルオロフェニル)-1-ホルミルエチルカルバミン酸 t ert-ブチルエステル (P11) の合成
- 20 上記化合物 3.30g(10.1mmol)のジエチルエーテル 150m l溶液に、氷冷下、水素化リチウムアルミニウム 498mg(13.1mmol)を加え、30分間攪拌した。反応液に硫酸水素カリウム 2.75g(20.2mmol)の水 20ml溶液を加え、1時間攪拌した。反応液を濾過後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した。得られた残さをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:n-ヘキサン=1:5)に付し、標題化合物 2.37g(88%)を得た。

 $^{1}H-NMR$ (CDC I_{3}) : δ 1. 44 (9H, s), 3. 00-3. 20 (2H, m), 4. 34-4. 46 (1H, m), 4. 98-5. 06 (1H,

m), 6. 98 (1H, d, J=8. 6Hz), 7. 01 (1H, d, J=8. 6Hz), 7. 12 (1H, d, J=8. 3Hz), 7. 14 (1H, d, J=8. 3Hz), 9. 63 (1H, s).

スキーム1に、実施例28~64の合成スキームを示す。

5

スキーム1:実施例28~64の合成スキーム

スキーム1における合成方法を以下に説明する。

10 工程1

15

化合物T、化合物V、およびCMPIのTHF溶液に、氷冷下、TEAを加え、室温にて攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した。得られた残さをシリカゲルカラムクロマトグラフィーに付し、化合物I-aを得た。

工程2

化合物 I - a のメタノール溶液に、パラジウム触媒を加え、水素雰囲気下、室温にて攪拌した。パラジウムー炭素を濾別し、濾液を減圧下に留去した。得られ 20 た残さをシリカゲルカラムクロマトグラフィーに付し、化合物 I - b を得た。

工程3

化合物I-b、化合物P、およびCMPIのTHF溶液に、氷冷下、TEAを

加え、室温にて攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した。得られた残さをシリカゲルカラムクロマトグラフィーに付し、化合物 I – c を得た。

5

10

工程4a (PG=Bocのとき)

化合物 I-c の塩化メチレン溶液に、TFAを加え、室温にて攪拌した。反応を減圧下に濃縮した後、飽和 $NaHCO_3$ 水溶液を加え、アルカリ性とし、塩化メチレンで抽出した。無水硫酸マグネシウムで乾燥した後、減圧下に溶媒を留去し、得られた残さをシリカゲルカラムクロマトグラフィーに付し、標題化合物を得た。

工程4b (PG=Zのとき)

化合物 I - c のメタノール溶液に、パラジウム触媒を加え、水素雰囲気下、室 15 温にて攪拌した。パラジウムー炭素を濾別し、濾液を減圧下に留去した。得られ た残さをシリカゲルカラムクロマトグラフィーに付し、標題化合物を得た。

スキーム2に、実施例65~78の合成スキームを示す。

スキーム2:実施例65-78の合成スキーム

5 スキーム2における合成方法を以下に説明する。

工程1

化合物 T、化合物 V 4、および CMP I の THF 溶液に、氷冷下、TEAを加え、室温にて攪拌した。反応液に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した。得られた残さをシリカゲルカラムクロマトグラフィーに付し、化合物 I ー dを得た。

工程2

10

15

化合物 I - dのメタノール溶液に、パラジウム触媒を加え、水素雰囲気下、室温にて攪拌した。パラジウム触媒を濾別し、濾液を減圧下に留去した。得られた残さをシリカゲルカラムクロマトグラフィーに付し、化合物 I - e を得た。

工程3

化合物P11、および化合物I-eのメタノール溶液に、氷冷下、酢酸、および水素化シアノホウ素ナトリウムを加え、室温にて攪拌した。反応液に飽和Na

WO 00/44 / /V

 HCO_3 水を加え、クロロホルムで抽出した。有機層を飽和食塩水で洗浄した後、 無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した。得られた残さをシリ カゲルカラムクロマトグラフィーに付し、化合物 I - f を得た。

工程4

化合物 I-fのメタノール溶液に、氷冷下、35%ホルムアルデヒド水溶液、 5 酢酸、および水素化シアノホウ素ナトリウムを加え、室温にて攪拌した。反応液 に飽和NaHCO₃水を加え、クロロホルムで抽出した。有機層を飽和食塩水で 洗浄した後、無水硫酸マグネシウムで乾燥し、減圧下に溶媒を留去した。得られ た残さをシリカゲルカラムクロマトグラフィーに付し、化合物I-gを得た。

工程5 10

15

20

25

化合物 I-fのピリジン溶液に、氷冷下、無水酢酸、および4-ジメチルアミ ノピリジンを加え、室温にて攪拌した。反応液に水を加え、酢酸エチルで抽出し た。有機層を飽和硫酸銅水溶液、水、および飽和食塩水で洗浄した後、無水硫酸 マグネシウムで乾燥し、減圧下に溶媒を留去した。得られた残さをシリカゲルカ ラムクロマトグラフィーに付し、化合物 I - hを得た。

工程6

化合物 I-hのメタノール溶液に、2N水酸化ナトリウム水溶液を加え、室温 にて攪拌した。反応液に飽和 NH_4C l水を加え、クロロホルムで抽出した。有 機層を飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、減圧下に溶媒 を留去した。得られた残さをシリカゲルカラムクロマトグラフィーに付し、化合 物I-iを得た。

工程7

化合物 I-f、あるいは I-g、あるいは I-i の塩化メチレン溶液に、TFAを加え、室温にて攪拌した。反応を減圧下に濃縮した後、飽和NaHCO₃水 溶液を加え、アルカリ性とし、塩化メチレンで抽出した。無水硫酸マグネシウム で乾燥した後、減圧下に溶媒を留去し、得られた残さをシリカゲルカラムクロマ トグラフィーに付し、標題化合物を得た。

スキーム1に従って合成された化合物の各実施例を、表D-1~D-43に 示した。

表D-1

実施例28-64の一般構造式

実施例28

	(4-F) -	N – M e -	-Val-	- T	уr	(3 - t)	Bu)	- N	NH2の合成	戈
	R 3 1	I	₹ 3 2			R 3 3			R 3 4	
	H		**			H				
工程1								L		— <u>————</u>
化合物	化合物	CMPI	TEA	T	HF	時間	カラム	2	生成物	収量
T1:	V1:g	g	m l	m	1 1	hr	溶媒		1/2/10	g g
g							, ,,,,,,,,			6
1	1. 35	1. 3	2. 1	4	0	1 9	EA:	Н	I - a 1	1. 6
							3 · 1			
I H - N N	AR (CDC	l_3) : δ	0.84	1 :	a n c	0.8	8 (6	H	d I – 4	5 6 H
[2], 1.	30 (9H,	s), 2.	15 - 2	. 3	5 (1 H. m)	2 '	7 5	(311 0)	\ 2
o - s	L(ZH, m)	, 4. 02	(1 H.	b r	d	I = 1 1	2 H 2)		1 5 - 1	7 (1
H, m),	5. 13 8	and 5.	15 (2)	Н.	s).	5 3-	5 5	,	5-5	7 [
8-6. (0, 6.1-6	5. 2, an	d 6.	5 —	6. 8	3. U	m) 6	3	. 5 – 5. 15 (1 H	', D.
= 7.91	Hz) , 6.	81 (1H.	brd.	_ J =	· 7	9 H 2)	7 0	7	40 (ID,	α, ,
7. 37	(5H, s)			-	• •	01127,		•	(In, b)	rs),
工程2										
化合物 I-	al Pd (OH) M	e OH	時間	\neg	カラム溶	媒	生	成物	一一

化合物 I — a 1 : g	Pd (OH)	MeOH ml	時間 h r	カラム溶媒	生成物	収量
1. 5	0.3	3 0	1	精製せず	I - b 1	1 1

 $^{1}H-NMR$ (CDC1₃) : δ 0.65 (3H, d, J=6.9Hz), 0.82 (3H, d, J = 6.9 Hz), 1.37 (9H, s), 1.8-2.0 (1H, m), 2.30 (3 H, s), 2. 74 (1H, d, J=4. 3Hz), 2. 9-3. 2 (2H, m), 4. 6-4. 8 (1H, m), 5. 3-5. 7 (1H, m), 6. 1-6. 3 (1H, m), 6. 5-6. 7 (1H, m), 6. 93 (1H, brd, J=7. 9Hz), 7. 06 (1H, br s), 7.6-7.8(1H, m)

表D-2

実施例28 (続き)

Phe (4-F) -N-Me-Val-Tyr (3-tBu) $-NH_2$ の合成

工程3			· · · · · · · · · · · · · · · · · · ·					
化合物 I	化合物	CMPI	TEA	THF	時間	カラム	生成物	収量
-b1:g	P1:g	g	m l	m I	hr	溶媒		g
0.3	0.29	0.26	0.4	5	18	MC:M	I - c 1	0.4
			3			20:1		5
$^{1}H-NMR$	(CDCI;	₃) :δ (). 77,	0.89	, an	d 1.0	1 (6H,	d, J=
6.6Hz)	, 1.33,	1. 36,	1. 37	, and	1. 3	9 (18H	, s), 2	. 15-
2. 4 (1H	(, m), 2	. 32 a	nd 2	. 77 (3 H,	s), 2.	7 - 3.0	(4H,
m), 4. 1	-4.3,4	4.5 - 4.	6, an	d 4.	6 - 4.	8 (2H,	m), 5.	36 (1
H, brd,	J = 8.91	Hz), 5.	44,5	. 57,	5. 71	, 5. 75	, and	6. 18
(3H. br	s) . 6. 6	3 - 7 = 2	(7H m) 7 9	R — 7	0 (1日	m)	

工程4a

化合物	TFA	CH_2Cl_2	時間	カラム	収量	HPLC
I-c1:g	m l	m l	hr	溶媒	g	min
0.4	2	4	0.5	CH:M:N	0.32	17.8
				400:10:		
				1		

 $EI-MS(M^{+}):514$

 1 H-NMR (CDCl₃): δ 0. 71, 0. 79, 0. 91, and 0. 92 (6H, d, J=6. 3-6. 6Hz), 1. 36 and 1. 38 (9H, s), 2. 2-2. 4 (1H, m), 2. 4-3. 2 (4H, m), 2. 70 and 2. 83 (3H, s), 3. 56 and 3. 79 (1H, dd, J=5. 0-5. 9, 7. 6Hz), 3. 94 and 4. 44 (1H, d, J=10. 9-11. 2Hz), 4. 56 and 4. 74 (1H, dd, J=6. 6-8. 9, 14. 2-16. 2Hz), 5. 47 (1H, brs), 5. 85 and 5. 96 (1H, brs), 6. 4-6. 9 (3H, m), 6. 9-7. 2 (5H, m), 9. 01 (1H, d, J=7. 9Hz)

表D-3

実施例29

N-Me-Phe (4-F) -N-Me-Val-Tyr (3-tBu) - N

H2の合成

R 3 1		R ₃		R 3 3				
Ме		Ме			Н			
工程3								
化合物 I	化合物	CMPI	ТЕА	THF	時間	カラム	生成物	収量
-b1:g	P2:g	g	m l	m l	hr	溶媒		g
0.3	0.31	0.26	0.4	5	2 0	MC:M	I - C 2	0.4
			3			20:1		3

 1 H-NMR (CDCl₃): δ 0.72, 0.79, and 0.92 (6H, d, J=6.6Hz), 1.33, 1.34, 1.37, and 1.40 (18H, s), 2.1-2.3 (1H, m), 2.24 and 2.67 (3H, s), 2.6-3.3 (4H, m), 4.40 and 4.50 (1H, d, J=10.9-11.6Hz), 4.5-4.8 (1H, m), 4.8-4.9 and 5.0-5.2 (1H, m), 5.49 and 5.98 (2H, brs), 6.16 (1H, s), 6.31 (1H. brd, J=8.3Hz), 6.5-6.8 (2H, m), 6.8-7.3 (5H, m)

工程4a

1	化合物	TFA	CH_2Cl_2	時間	カラム	収量	HPLC
	I-c2:g	m l	m l	hr	溶媒	g	min
	0.35	1. 5	3	0.5	CH:M:N	0.24	18.0
					400:10:		
l					1		

 $EI - MS (M^{+}) : 528$

 $^{1}H-NMR$ (CDCl₃): δ 0.52, 0.79, and 0.91 (6H, d, J=5.0-6.9Hz), 1.33 and 1.39 (9H, s), 2.1-2.3 (1H, m), 2.24 and 2.36 (3H, s), 2.56 and 2.61 (3H, s), 2.6-3.2 (4H, m), 3.54 and 3.61 (1H, dd, J=5.9-6.3, 7.3-7.6Hz), 3.78 and 4.58 (1H, d, J=10.9Hz), 4.49 and 4.68 (1H, dd, J=7.3, 14.5Hz), 5.38, 5.58, 5.78, and 5.90 (2H, brs), 6.6-7.2 (7H, m), 9.07 (1H, brd, J=7.6Hz)

表D-4

実施例30

 $N-E\ t-P\ h\ e\ (4-F)\ -N-E\ t-V\ a\ l-T\ y\ r\ (3-t\ B\ u)\ -\ N$

H₂の合成

R		F	32		R 3	3	R 3 4	
E	<u>t</u>	N N	Ме				H	
工程3								
化合物 I 一 b 1 : g	化合物 P 3 : g	CMPI g	TEA ml	THF ml	時間 hr	カラム 溶媒	生成物	収量 g
0. 3	0.36	0.26	0.4	5	1 6	CH:M:N 400:1 0:1	I - c 3	0.4

TH-NMR (CDC1₃): δ 0. 41, 0. 67, and 0. 86 (6H, d, J=6.6Hz), 1. 0-1. 2 (3H, m), 1. 36 (9H, s), 2. 1-2. 3 (1H, m), 2. 51 and 2. 76 (3H, s), 2. 6-3. 0 and 3. 0-3. 2 (6H, m), 4. 1-4. 3 (1H, m), 4. 4-4. 6 (1H, m), 4. 9-5. 0 and 5. 1-5. 3 (1H, m), 5. 13 (2H, s), 5. 35 (1H, brs), 5. 76 (2H, brs), 6. 1-6. 2 and 6. 4-7. 4 (13H, m)

工程	4	а

化合物 I - c 3 : g	Pd (OH) 2 g	MeOH ml	時間 h r	カラム溶媒	収量 g	HPLC min
0.37	0.07	5	1	CH:M:N 400:10:1	0.24	18.5

 $EI-MS(M^{+}):542$

 $^{1}H-NMR$ (CDC1₃): δ 0.39, 0.77, and 0.90 (6H, d, J=6.3-6.9Hz), 1.05 and 1.16 (3H, t, J=6.9Hz), 1.32 and 1.39 (9H, s), 2.1-2.3 (1H, m), 2.3-3.2 (6H, m), 2.43 and 2.46 (3H, s), 3.5-3.7 (1H, m), 3.76 and 4.58 (1H, d, J=10.9-11.5Hz), 4.47 and 4.68 (1H, d, J=7.0, 13.9Hz), 5.42, 5.73, and 6.00 (2H, brs), 6.6-7.2 (7.8H, m), 8.74 (0.2H, d, J=7.9Hz)

表D-5

実施例31

Phe (4-F) -N-Me-Val-Tyr (3-tBu) -NHMeの合成

]	R 3 1		R ₃₂		R 3 3			4
	<u>H</u>		Ме		Н Н			·
工程1								
化合物 T2: g	化合物 V1:g	CMPI g	TEA ml	THF ml	時間 h r	カラム 溶媒	生成物	収量 g
1. 0	1. 36	1. 31	1. 79	4 3	2. 5	EA:H 1:1	I – a 2	2. 11

 $EI-MS(M^{+}):497$

 $^{1}H-NMR$ (CDC1₃) : δ 0.84 and 0.89 (6H, d, J=6.6Hz), 1. 36 (9H, s), 2. 12-2. 30 (1H, m), 2. 71, 2. 73, and 2. 7 4 (6 H, s), 2. 70-3. 00 (2 H, m), 4. 04 (1 H, d, J=1 1. 2 Hz), 4. 40-4. 58 (1H, m), 4. 82-4. 86 (1H, m), 5. 19 (2H, s), 5. 70-5. 80 (1H, m), 6. 43 (1H, d, J=7. 9Hz), 6. 53 (1H, d, J=8.2Hz), 6.80 (1H, d, J=8.2Hz), 7.04 (1H, s), 7.3

0-7.42(5H, m)

工程2

化合物 I-a2:g	Pd-C mg	MeOH ml	時間 h r	カラム溶媒	生成物	収量
2. 01	200	5 0	2	C: M 20:1	I - b 2	1. 43

 $EI - MS (M^{+}) : 363$

 $^{1}H-NMR$ (CDC l_{3}) : δ 0. 67 and 0. 83 (6H, d, J=5. 9Hz), 1. 37 (9H, s), 1. 84-2. 02 (1H, m), 2. 31 (3H, s), 2. 73 (1 H, d, J=5. $9\,H\,z$), 2. $7\,4$ ($3\,H$, d, J=5. $0\,H\,z$), 2. $9\,0-3$. $0\,8$ (2H, m), 4. 52 (1H, ddd, J=7. 2, 7. 2, 7. 2Hz), 5. 51 (1H, br s), 5. 98 (1H, d, J=3. 6Hz), 6. 61 (1H, d, J=7. 9Hz), 6. 9 1 (1H, dd, J=2. 0, 7. 9Hz), 7. 04 (1H, d, J=2. 0Hz), 7. 68 (1H, d, J=7.9Hz)

表D-6

実施例31 (続き)

Phe (4-F) -N-Me-Val-Tyr (3-tBu) -NHMeの合成

	工程3								
	化合物I一	化合物P	CMPI	TEA	THF	時間	カラム	生成物	収量
	b2:mg	1:mg	mg	m l	m l	hr	溶媒		m g
ŀ	400	387	3 3 7	0.46	1 1	1 3	EA:H	I - c	652
							2:1	4	

 $EI-MS(M^{+}):628$

 1 H-NMR (CDCl $_{3}$): δ 0. 75, 0. 77, 0. 88, and 1. 00 (total 6H, d, J=5. 3-6. 3Hz), 1. 36, 1. 37 and 1. 39 (total 18H, s), 2. 16-2. 30 (1H, m), 2. 72 (3H, d, J=4. 6Hz), 2. 70-3. 22 (7H, m), 4. 38-4. 80, and 5. 10-5. 22 (total 3H, m), 5. 28 and 5. 32 (total 1H, brs), 5. 54-5. 64 (1H, m), 6. 04-6. 12 (1H, m), 6. 58-7. 22 (7H, m)

工程4a						
化合物	TFA	CH ₂ Cl ₂	時間	カラム	収量	HPLCm
I - c 4:	m l	m l	h r	溶媒	mg	in
mg						
5 6 4	2	8	1.5	MC:M	367	18.9
		ļ		20:1		

 $EI - MS (M^{+}) : 528$

¹H-NMR (CDCl₃): δ 0. 72, 0. 81 and 0. 92 (total 6H, d, J=6. 3-6. 6Hz), 1. 36 and 1. 38 (total 9H, s), 2. 20-2. 40 (1H, m), 2. 50-3. 24 (10H, m), 3. 59 (2/3H, dd, J=5. 6, 7. 6Hz), 3. 73 (1/5H, d, J=7. 0Hz), 3. 80 (1/3H, dd, J=6. 0, 8. 3Hz), 3. 95 (4/5H, d, J=8. 9Hz), 4. 40-4. 54 (2/5H, m), 4. 63 (3/5H, dd, J=6. 6, 14. 2Hz), 5. 65 and 5. 78 (total 1H, d, J=3. 8-4. 3Hz), 6. 60 (1/4H, d, J=8. 3Hz)

表D-7

実施例32

N-Me-Phe (4-F) -N-Me-Val-Tyr (3-tBu) -NH

Meの合成

R 3 1		R ₃	2		R 3 3		R 3 4			
Me		M e	3		H		Ме			
工程 3					· · · · · · · · · · · · · · · · · · ·					
化合物 I — b 2 : m g	化合物 P 2:mg	CMP I mg	TEA ml	THF ml	時間 hr	カラム 溶媒	生成物	収量 mg		
400	3 9 2	3 3 7	0. 4 6	1 1	1 5	EA:H 1:1	I - c 5	590		

 $EI-MS(M^{+}):642$

 $^{1}H-NMR$ (CDC13): δ 0.72, 0.80, and 0.91 (total 6 H, d, J=6.2-6.6Hz), 1.23, 1.34, 1.37 and 1.39 (total 18H, s), 2.06-2.30 (1H, m), 2.25, 2.68, 2.75 and 2.86 (total 6H, s), 2.79 (3H, d, J=4.6Hz), 2.50-3.24 (4H, m), 4.38-4.92 and 5.08-5.20 (total 3 H, m), 5.53 and 6.00 (total 1H, brs), 5.88 and 6.21 (total 1H, d, J=5.0-8.3Hz), 6.52-7.22 (7H, m)

工程 4 a

11. 6 41. 7	T = = :					
化合物 I -	TFA	CH_2Cl_2	時間	カラム	収量	HPLC
0 5	1			1)	1 *** 1 0
c5:mg	ml	m l	hr	溶媒	mg	min
492	2	0	1	0.11		
492	4	•	1	CH:M	3 0 5	18.91
*		İ		20.1	1	1
	1			1 20.1	1	i i

 $EI-MS(M^{+}):542$

 $^{1}H-NMR$ (CDC1₃): δ 0. 57, 0. 79 and 0. 91 (total 6 H, d, J=6. 3-6. 6Hz), 1. 35 and 1. 38 (total 9H, s), 2. 20-2. 34 (1H, m), 2. 25 and 2. 40 (total 3H, s), 2. 63 and 2. 64 (total 3H, s), 2. 71 and 2. 73 (total 3H, d, J=4. 3-4. 6Hz), 2. 60-3. 10 (4H, m), 3. 55 (1/2H, t, J=7. 0Hz), 3. 67 (1/2H, t, J=6. 9Hz), 3. 81 (1/2H, d, J=10. 9Hz), 5. 30-5. 72 (2H, m), 6. 58-7. 20 (7 H, m), 9. 13 (1/2H, d, J=8. 6Hz)

表D-8

実施例33

 $N-E\ t-Phe\ (4-F)\ -N-Me-Val-Tyr\ (3-tBu)\ -NH$

Meの合成

R ₃₁		R 3 2			R 3 3		R 3 4	
E t		Ме			Н		M e	
工程3	<u> </u>						1.7 C	
化合物 I -	化合物	CMPI	TEA	THF	時間	カラム	生成物	収量
b2:mg	P3:mg	mg	m l	m l	hr	溶媒		mg
490	5 5 9	414	0.4	8	1 3	EA:	I-c 6	747
			5	l		Н		•
¹ H-NMR	(CDCI)	. 8 0				1 : 1		

 $\begin{array}{c} ^{1}H-NMR \; (CDC1_{3}) \; : \delta \quad 0. \; 40, \; 0. \; 47, \; 0. \; 67 \; \text{ and } \; 0. \; 86 \; (\text{total } 6H, \; d, \; J=6. \; 3-6. \; 9Hz) \; , \; 1. \; 06-1. \; 22 \; (3H, \; m) \; , \; 1. \; 36 \; \; \text{and } \; 1. \; 38 \; (\text{total } 9H, \; s) \; , \; 2. \; 10-2. \; 26 \; (1H, \; m) \; , \; 2. \; 49 \; \; \text{and } \; 2. \; 78 \; (\text{total } 3H, \; s) \; , \; 2. \; 79 \; \; \text{and } \; 2. \; 73 \; (\text{total } 3H, \; d, \; J=4. \; 6-4. \; 9Hz) \; , \; 2. \; 60-3. \; 40 \; (6H, \; m) \; , \; 4. \; 28-4. \; 44 \; (2H, \; m) \; , \; 4. \; 90-5. \; 16 \; (3H, \; m) \; , \; 5. \; 40-5. \; 68 \; (2H, \; m) \; , \; 6. \; 38-7. \; 42 \; (12H, \; m) \end{array}$

工程4b

化合物	Dd C	Nr. OTT	n+ ==			
,	ru-C	MeOH	時間	カラム	収量	HPLC
I-c6:mg	mg	ml	hг	溶媒		
660	6.6	1.0			mg	min
1 000	6 6	10	1 2	CH:M:N	184	19 6
				10:1:0.		- 5. 6
<u> </u>			i	1		

 $EI - MS (M^{+}) : 556$

¹H-NMR (CDCl₃): δ 0. 40, 0. 77 and 0. 89 (total 6 H, d, J=6. 6Hz), 1. 06 and 1. 19 (total 3H, t, J=7. 0 -7. 3Hz), 1, 34 and 1. 38 (total 9H, s), 2. 10-2. 28 (1H, m), 2. 48 (3H, s), 2. 30-3. 20 (6H, m), 2. 73 and 2. 74 (total 3H, d, J=4. 6Hz), 3. 58-3. 70 (1H, m), 3. 76 (3/10H, d, J=11. 2Hz), 4. 38 (7/10H, dt, J=4. 9, 7. 3Hz), 4. 50 (7/10H, d, J=11. 2Hz), 4. 56 (3/10H, dt, J=7. 3, 7. 9Hz), 5. 72-5. 90 (2/3H, m), 6. 60-7. 18 (8H, m), 8. 68 (1/2H, d, J=7. 9Hz)

表D-9

実施例34

N-Me-Phe (4-F) -N-Me-Val-N-Me-Tyr (3-tB

u) -NH₂の合成

D												
R 3 1		R :					R_{33}			R :	2.4	
M e		\mathbf{M}	e		1 -		Ме			H		
工程3											<u> </u>	
化合物 I	化合物	CMPI	T =	T: A		-	84.55					
		CMPI	1	ΕA	TH	i F	時間	力	ラム	生成物	י פ	収量
I-b3 : g	P2:g	g	n	n i	m	1	hr	· X	9媒		`	g
0.600	0.638	0.549	0	.46	16	3	16		A=2: 1	7 5		
工程4a							10	H:E	A-Z: 1	I-c7		0.729
化合物	TARA	T 0		r								
	TFA	CH ₂ C1	2	時	間	1	カラム		収	量	Н	PLC
I-c7: g	m l	m l		h	r	ĺ	溶媒					
0.635	3.00	15		2		7.		77				nin
1	0.00	10	l		•		C:M:		0.4	13		19.6
		1			i	1 (0:1:	1				}
FI MC ((1+)	<u> </u>):1:			10		19.0

 $EI-MS(M^{+}):542$

 1 H-NMR (CDCl₃): (two rotamers) δ 0.58, 0.81, 0.82 and 0.93(6H, d, J=6.4-6.9 Hz), 1.32 and 1.40(9H, s), 2.20-2.34(1H, m), 2.22 and 2.24(3H, s), 2.50 and 2.93(3H, s), 2.84 and 3.04(3H, s), 2.52 and 2.74(3H, d, J=6.5-6.9Hz), 3.18-3.41(1H, m), 3.42 and 3.62(1H, t, J=5.0-6.8Hz), 5.03 and 5.13(1H, d, J=10.7-10.9 Hz), 5.42-5.49(1H, m), 5.38 and 6.01(1H, brs), 6.38 and 6.62(1H, d, J=8.0Hz), 6.78-6.99(3H, m), 7.04-7.12(3H, m)

表D-10

実施例35

 $N-E\ t-P\ h\ e\ (4-F)\ -N-M\ e-V\ a\ l-N-M\ e-T\ y\ r\ (3-t\ B$

u) -NH₂の合成

70			**************************************									
R 3 1		R_3	1 2				R_{33}	R ₃₃				
E t		M	e				Ме				R 34 H	
工程3											11	
化合物	化合物	CMPI	Т	EΑ	TH	IF	時間	77	ラム	生成	. Aldra	収量
I-b3 : g	P4:g	g	1	n I	m		hr	1	ッム 容媒	エ///	(12)	
0.460	0.520	0.420	0.420 0.53				10.0 17			I-c8		0.300
工程 4 a	<u> </u>							2	: 1	<u> </u>		
	(C) D. A	Т а										
化合物	TFA	CH ₂ Cl	2	時間	1		カラム		収量	<u></u>	H	PLC
I-c8: g	m l	m l		hr	.		溶媒		g		1	nin
0.300	1.44	1.44	2		M	C : M :	Н	0.20			20.2	
					10:1:1							
FI-MC (N/+) . FF/											

 $EI - MS (M^{+}) : 556$

 $^{^1\,}H-N\,M\,R$ (CDCl₃): (two rotamers) δ 0.54~1.1(6H, m and d, J=6.3Hz), 1.35 and 1.39(9H, s), 2.48 and 2.81(3H,s) 2.97 and 3.07(3H, s), 2.21 ~ 3.76(7H, m), 5.55~5.02(3H,m), 6.37 and 6.61(1H, d, J=8.3Hz), 6.78~7.21(6H, m)

表D-11

実施例36

Phe (4-F) -N-Me-Val-N-Me-Tyr <math>(3-tBu) -NH

- Meの合成

F	₹ 3 1		R	3 2				R ₃₃			R ₃	4
	H		M	e				Ме			M	e
工程1												
化合物	化合物	CMF	, I	TEA	T	ΗF	`T	時間	力·	ラム	生成物	収量
T5:g	V1: g	g		m l	l r	n l		hr	溶	媒		g
1.500	1.960	2.03	0	2.37	3	0.00		21	EA:I	I:MC	l-a4	2.200
									3::	2:2		
工程2												
化合物	Pd (C)H) ₂	Мe	ОН	時間	間		カラム	容媒	生成	物	収量
I-a4 : g	: 8	3	m	1	h	r						g
2.200	0.22	20	50	.00	1			精製ゼ	- व ि	I-b	4	1.400
工程3				-								
化合物 I		CM	PΙ	TE	A	ΤH	F	時間	7	ラム	生成	収量
I-b4 : g	P1: g		3	m	1	m l	l	hr		溶媒	物	g
0.430	0.420	0.4	00	0.4	7	10.0	00	19	MC	: M : H	I-c9	0.500
									10	0:1:3		
工程4a												
化合物	TFA	CH	I_2Cl	2	時間			カラム	4	収量	1	HPLC
I-c9 : g	g ml	1	m l		hr			溶媒		g		min
0.500	2.50		2.50		1		M	C : M	: H	0.32	0	19.8
				ŀ		ļ		15:1:	2		- 1	
ET MC	(34+) . = 4	_										

 $EI - MS (M^{+}) : 542$

 1 H-NMR (CDCl₃): (two rotamers) δ 0.51~0.92(6H, d, J=6.6H z), 1.32 and 1.37(9H, s), 2.24(2H, d, J=8.3H z) 2.52 and 2.82 (3H, s) 2.18 ~ 3.89 (7H, m), 3.04 and 3.13 (3H, s), 5.42~4.82(3H,m), 6.41 and 6.63(1H, d, J=8.2H z), 6.78~7.19(6H, m)

表D-12

実施例 3 7

N-Me-Phe (4-F) -N-Me-Val-N-Me-Tyr (3-tB

u) -NH-Meの合成

R 3 1		R ₃	2			R 3 3				R 3 4		
Ме		Μ e	9				Ме			M e	:	
工程3												
化合物 I	化合物	CMPI	ΤE	EA	TH	F	時間		ラム	生成物	収量	
I-b4: g	P2:g	g	m	1	m l		hr	溶	媒		g	
0.430	0.440	0.400	0.4	47	10.0	0	19		I:MC	I-c10	0.500	
								2:	l:1		J	
工程 4 a												
化合物	TFA	CH ₂ Cl	2	時間	- 目		カラム		収	量	HPLC	
I-c10: g	m l	m l		h:	r		溶媒			g	min	
0.500	2.50	2.50		1		M	C:M	: H	0.2	260	20.3	
					İ		15:1:2	: [j		

 $EI-MS(M^{+}):556$

 $^1 H-NMR$ (CDCl₃): (two rotamers) δ 0.76~0.92(6H, m and d, J=6.3H z), 1.34 and 1.39(9H, s), 2.25(3H, d, J=11.6H z), 2.52 and 2.82(3H, s), 2.95 and 3.07(3H, s), 2.21 ~ 3.64(5H, m), 2.71 and 2.76(3H, d, J=4.3H z), 5.42~5.01(3H,m), 6.37 and 6.54(1H, d, J=8.2H z), 6.78~7.11(6H, m)

表D-13

実施例38

N-Et-Phe (4-F) -N-Me-Val-N-Me-Tyr (3-tB

u) -NHMeの合成

R 3 1			R ₃	2		R 3 3				R 3 4			
E t			M	е			Мe				Ме		
工程3													
化合物 I	化合物	CM	PΙ	TEA	T	HF	時間	力	ラム	生成	物	収量	
I-b4 : g	P3 : g	{	g	m l	n	n l	hr		媒	/-		g	
0.450	0.560	0.4	160 0.50		10	0.00	 		H:MC	I-c11		0.450	
					-				1:1	1011		0.400	
工程4a													
化合物	Pd (OI	H) 2	Ме	ОН	時間		カラム		収量	量	Н	PLC	
I-c11: g	: g	_	n	ı l	hr		溶媒		g		ł	nin	
0.450	0.050)	15.00		1	М	C : M	: H	0.22	20		21.4	
						İ	15:1:2	1	J				

 $EI-MS(M^{+}):570$

 ^1H-NMR (CDCl₃): (two rotamers) δ 0.54~1.1(6H, m and d, J=6.3H z), 1.26 and 1.34(9H, s), 2.77(3H,s), 2.97(3H, s), 3.07(3H, s), 2.12 ~ 3.72(7H, m), 5.38~5.21(3H,m), 6.37 and 6.54(1H, d, J=8.3H z), 6.78~7.21(6H, m)

WO 00/44 / /0

表D-14

実施例39

Phe (4-F) -N-Me-Val-N-Et-Tyr (3-tBu) -NH

2の合成

R ₃₁ R ₃₂ R ₃₃ R ₃₄ H Me Et H 工程1 化合物 化合物 CMPI TEA THF 時間 カラム 生成物 収1 T7:g V1:g g ml ml hr 溶媒 g 4.000 5.720 5.510 6.02 100 24 EA:H:MC I-a5 3.3 2:1:1
化合物 CMPI TEA THF 時間 カラム 生成物 収量 T7:g V1:g g ml ml hr 溶媒 g 4.000 5.720 5.510 6.02 100 24 EA:H:MC I-a5 3.33
T7:g V1:g g ml ml hr 溶媒 g 4.000 5.720 5.510 6.02 100 24 EA:H:MC I-a5 3.3
4.000 5.720 5.510 6.02 100 24 EA:H:MC I-a5 3.33
4.000 0.120 0.020
2:1:1
工程2
化合物 Pd (OH) 2 MeOH 時間 カラム溶媒 生成物 収量
I-a5 : g ml hr g
3.100 0.300 70.00 1 MC: M: H I-b5 1.60
15:1:2
工程3
化合物 化合物 CMPI TEA THF 時間 カラム 生成物 収
I-b5:g P1:g g ml ml hr 溶媒 g
0.400 0.430 0.370 0.46 10.00 19 EA:H:MC I-c12 0.3
2:1:1
工程4 a
化合物 TFA CH2Cl2 時間 カラム 収量 HPL
I-c12:g ml ml hr 溶媒 g mir
0.380 1.50 1.50 2 MC:M:H 0.150 20.5
15:1:2

 $EI-MS(M^{+}):542$

 $^{^{1}}$ H - NMR (CDCl₃): (two rotamers) δ 0.72~1.33(m, 9H), 1.35 and 1.39(9H, s), 2.24(2H, d, J=8.3H z), 2.70 and 2.90(3H, s), 2.21 ~ 3.70 (7H, m) 4.92~5.23(3H, m), 6.41 and 6.61(1H, d, J=7.9H z), 6.80~7.19(6H, m)

表D-15

実施例40

N-Me-Phe (4-F) -N-Me-Val-N-Et-Tyr (3-tB

u) -NH₂の合成

R 3		R ₃	2		T		R 3 3		Т	R 3 4			
Me		M e	•		T		Εt		—		H		
工程3													
化合物	化合物	CMPI	T	EΑ	T	HF	時間	カ	ラム	生成	物	収量	
I-b5 : g	P2 : g	g	n i	n	n l	hr	t	S媒		- 123	g		
0.440	0.450	0.380	O	.48 1		0.00	19	EA:	H:MC	I-c	13	0.220	
工程4a	L		_	1			L		1:1				
化合物	TFA	CH ₂ Cl	2	時間	1		カラム		収量	1. E	T-I	PLC	
I-c13 : g	m l	m I	_	hr			溶媒		g		!	nin	
0.220	1.50	1.50				M	C : M :	Н	0.13			21.0	
E L MC (3.5.4.	15:1:2											

 $EI-MS(M^{+}):447$

 ^1H-NMR (CDCl₃): (two rotamers) δ 0.72~0.95(6H, d, J=6.6H z), 1.13~1.32(3H, m) 1.35 and 1.39(9H, s), 2.24(2H, d, J=8.3H z) 2.21 ~ 3.96 (7H, m), 2.75 and 3.08 (3H, s), 4.92~5.40(3H, m), 6.41 and 6.63(1H, d, J=7.9H z), 6.78~7.19(6H, m)

表D-16

実施例41

 $N-E\ t-P\ h\ e\ (4-F)\ -N-M\ e-V\ a\ l-N-E\ t-T\ y\ r\ (3-t\ B$

u) -NH₂の合成

R			R ₃	2				R 3 3				R 3 4		
E	t		Μe)		T		Εt				H		
工程3								· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
化合物	化合物	C	MPI	T	EA	TI	-IF	時間	カ	ラム	生成	物	収量	
I-b5 : g	P2:g	1	g	п	n l	m	1	hr		媒			g	
0.490	0.480	(0.420	0	.52	10	.00	19		I:MC	I-c1	4	0.260	
										1:1		-	0.200	
工程4a					-									
化合物	Pd (OH) 2	M e O	Н	時間	1		カラム		収量	i.	Н	PLC	
I-c14: g	: g		m l		hr	- 1	溶媒		٤			Ì	nin	
0.260	0.030		10.00		2		M	C:M:	Н	0.12	20		21.9	
72.1.16	4.2.1							15:1:2						

 $EI-MS(M^{+}):570$

 $^{^1}H-NMR$ (CDCl₃): (two rotamers) δ 0.74~1.26(12H, m), 1.34 and 1.39(9H, s), 2.84 and 2.67(3H, s), 2.22~3.81(8H, m), 4.7~5.22(3H, m), 6.43 and 6.59(1H, d, J=7.9 H z), 6.81~7.19(6H, m)

表D-17

実施例42

Phe (4-F) -N-Me-Val-N-Et-Tyr (3-tBu) -NH

Meの合成

]	R 3 1		R 32		R 3 3			1
	H		Ме		E t			
工程1								
化合物 T8: g	化合物 V1:g	CMP I g	TEA ml	THF ml	時間 hr	カラム 溶媒	生成物	収量 g
4. 2	4.80	4.62	6. 31	7 5	1 3	EA:H 1:1	I — a 6	4. 33

 $EI - MS (M^{+}) : 585$

 $^{1}H-NMR \; (CDCl_{3}) \; : \delta \quad 0.\; 53,\; 0.\; 80,\; 0.\; 82 \; and \; 0.\; 89 \; (total_{1}6H,\; d,\; J=6.\; 3-6.\; 6Hz) \; , \; 0.\; 96-1.\; 30 \; (3H,\; m) \; , \; 1.\; 34,\; 1.\; 36 \; and \; 1.\; 36 \; (total_{1}9H,\; s) \; , \; 2.\; 20-2.\; 40 \; (1H,\; m) \; , \; 2.\; 46 \; and \; 2.\; 75 \; (total_{1}3H,\; d,\; J=4.\; 6Hz) \; , \; 2.\; 57 \; and \; 2.\; 95 \; (total_{1}3H,\; s) \; , \; 2.\; 66-3.\; 68 \; (4H,\; m) \; , \; 4.\; 33,\; 4.\; 45 \; and \; 4.\; 59 \; (total_{1}1H,\; d,\; J=10.\; 6Hz) \; , \; 4.\; 78-4.\; 92 \; (1H,\; m) \; , \; 4.\; 96-5.\; 36 \; (3H,\; m) \; , \; 6.\; 30-7.\; 12 \; (4H,\; m) \; , \; 7.\; 30-7.\; 44 \; (5H,\; m) \;$

工程2

化合物	Pd (OH) ₂	MeOH	時間	カラム溶媒	生成物	収量
I-a6:g	m g	m l	hr			g
2.81	280	6 0	1. 5	CH:M	I - b 6	2. 10
1	<u> </u>			10:1		ĺ

 $EI - MS (M^{+}) : 391$

 $^{1}H-NMR$ (CDC13): δ 0. 34, 0. 73, 0. 90 and 0. 96 (total 6H, d, J=6. 3-6. 9Hz), 1. 13 and 1. 18 (total 3H, t, J=6. 9Hz), 1. 36 and 1. 37 (total 9H, s), 1. 60-1. 80 (1/2H, m), 2. 14 and 2. 27 (total 3H, s), 2. 10-2. 30 (1/2H, m), 2. 58 (1/2H, d, J=9. 6Hz), 2. 92-3. 64 (9/2H, m), 4. 50-4. 60 (1/3H, m), 4. 96-5. 10 (2/3H, m), 5. 10-5. 30 (1H, m), 6. 48 (2/3H, brs), 6. 54 (1/3H, d, J=7. 9Hz), 6. 57 (2/3H, d, J=7. 9Hz), 6. 79 (1/3H, dd, J=2. 0, 7. 9Hz), 6. 91 (2/3H, dd, J=2. 0, 7. 9Hz), 7. 00 (1/3H, d, J=2. 0, 7. 9Hz), 7. 10 (2/3H, d, J=2. 0Hz), 8. 24-8. 34 (1/3H, m)

表D-18

実施例42 (続き)

Phe (4-F) -N-Me-Val-N-Et-Tyr (3-tBu) -NH

Meの合成

工程3								
化合物 I — b 6:mg	化合物P 1:mg	CMPI mg	TEA ml	THF ml	時間 h r	カラム 溶 媒	生成物	収量 mg
457	3 9 7	3 5 9	0. 3 9	6	2 2	MC: M 20:1	I - c 1 5	724

 $EI - MS (M^{+}) : 657$

 $^{1}H-NMR~(CDCI_{3}):\delta~0.~72,~0.~78,~0.~82~and~0.~89~(total~6H,~d,~J=6.~3-6.~9Hz),~1.~08~and~1.~16~(total~3H,~t,~J=6.~9Hz),~1.~33,~1.~36,~1.~38,~and~1.~39~(total~3H,~t),~2.~14-2.~28~(1H,~m),~2.~54~and~2.~98~(total~3H,~s),~2.~65~and~2.~75~(total~3H,~d,~J=4.~6-4.~9Hz),~2.~6~3.~64~(6H,~m),~4.~58-5.~18~(4H,~m),~6.~32-6.~72~(2H,~m),~6.~90-7.~18~(5H,~m)$

工程4a		<u> </u>				
化合物 I-	TFA	CH ₂ Cl ₂	D:1.88	r ,		
c 15:mg	_	22	時間	カラム	収量	HPLC
	m l	m l	h r	溶媒	mg	min
6 5 1	3	7	1	MC: M: H	354	21 5
			i	20 . 1 . 1	004	21.5

 $EI-MS(M^{+}):556$

 $^1H-NMR~(CDCl_3):\delta~0.67,~0.82~and~0.92~(total~6H,~d,~J=6.6Hz),~1.10~and~1.15~(total~3H,~t,~J=6.9Hz),~1.34~and~1.39~(total~9H,~s),~2.24-2.44~(1H,~m),~2.67~and~2.76~(total~3H,~d,~J=4.3-4.9Hz),~2.73~and~3.05~(total~3H,~s),~2.50-3.90~(7H,~m),~4.94-5.08~(2H,~m),~6.36-7.18~(7H,~m)$

表D-19

実施例43

N-Me-Phe (4-F) -N-Me-Val-N-Et-Tyr (3-tB

u) -NHMeの合成

R ₃		R ₃	2		R 3 3		R 3 4	 	
M e		M		E t		M e			
工程3							IVI C		
化合物 I — b 6:mg	化合物P 2:mg	_	TEA ml	THF ml	時間 hr	カラム 溶媒	生成物	収量 mg	
465	424	365	0.4	6	2 1	EA:H 2:1	I - c 1 6	759	
$^{1}H-NMR$ (CDC1 ₃): δ 0. 45, 0. 73, 0. 82 and 0. 89 (total al 6H, d, J=6. 4-6. 9Hz), 1. 02 (3H, t, J=6. 6Hz), 1. 2									

al 6H, d, J=6. 4-6. 9Hz), 1. 02 (3H, t, J=6. 6Hz), 1. 2 9, 1. 36, 1. 37, 1. 39 and 1. 42 (total 18H, s), 2. 20 -2. 30 (1H, m), 2. 36, 2. 71, 2. 93 and 3. 67 (total 6H, s), 2. 77 and 2. 90 (total 3H, d, J=4. 6-4. 9Hz), 2. 60-3. 44 (6H, m), 4. 80-5. 28 (total 3H, m), 6. 09 (1H, d, J=4. 0Hz), 6. 19 and 6. 35 (total 1H, dd, J=1), 19 and 19

工程4a

· 化合物 Ⅰ c	TEA	CILCI	D+ 88		γ	
│ 化合物 I ー c	I T.L.W.	CH ₂ Cl ₂	時間	カラム	収量	HPLC
16:mg	m 1	m 1	1 <u>.</u>		W 255	
	111 1	m 1	nr	溶媒	mg	min
651	3	7	1	3.60		111 1 11
	J	'	1	MC:M:H:N	457	22 1
	<u> </u>	L		10:1:1:0.1		

 $EI-MS(M^{+}):570$

 $\begin{array}{c} ^{1}H-NMR \; (CDC1_{3}) \; : \delta \quad 0. \; 72, \; 0. \; 83 \; \text{ and } \; 0. \; 92 \; (\text{total } 6 \; H, \; d, \; J=6. \; 6 \; Hz) \; , \; 1. \; 14 \; \text{ and } \; 1. \; 16 \; (\text{total } 3H, \; t, \; J=6. \; 6 \; -6. \; 9 \; Hz) \; , \; 1. \; 34 \; \text{ and } \; 1. \; 39 \; (\text{total } 9H, \; s) \; , \; 2. \; 23 \; \text{ and } \; 2. \; 27 \; (\text{total } 3H, \; s) \; , \; 2. \; 20-2. \; 40 \; (1H, \; m) \; , \; 2. \; 55 \; (1H, \; d, \; J=6. \; 3Hz) \; , \; 2. \; 64-2. \; 88 \; (7H, \; m) \; , \; 2. \; 99 \; (1H, \; dd, \; J=9. \; 2, \; 14. \; 9 \; Hz) \; , \; 3. \; 23 \; (1H, \; dd, \; J=6. \; 9, \; 14. \; 9 \; Hz) \; , \; 3. \; 40-3. \; 74 \; (3H, \; m) \; , \; 5. \; 00-5. \; 12 \; (2H, \; m) \; , \; 6. \; 40 \; and \; 6. \; 57 \; (\text{total } 1H, \; d, \; J=7. \; 9-8. \; 2Hz) \; , \; 6. \; 44 \; (1/2H, \; brs) \; , \; 6. \; 80 \; (1/2H, \; dd, \; J=1. \; 6, \; 7. \; 9 \; Hz) \; , \; 6. \; 90-7. \; 18 \; (11/2H, \; m) \; \end{array}$

表D-20

実施例44

 $N-E\ t-P\ h\ e\ (4-F)\ -N-M\ e-V\ a\ l-N-E\ t-T\ y\ r\ (3-t\ B$

u) - NHMeの合成

R 3 1		R	3 2		R 3 3	T	R 34		
E t		M	e		Εt		M e		
工程3		<u></u> ,					141 C		
化合物 I — b 6 : mg	化合物 P3:m g	CMPI TEA g ml		THF ml	時間 hr	カラム 溶媒	生成物 収量 mg		
640	675	501	0. 5 5	9	1 7	EA:H 1:1	I - c	963	
¹ H-NMR (CDC1 ₃): δ 0.71, 0.78, 0.88, 1.07 and 1.0									

9 (total 6H, d, J=6. 3-6. 9Hz), 0. 98 and 1. 18 (total 3H, t, J=6. 9Hz), 1. 29, 1. 35 and 1. 39 (total 9H, s), 2. 14-2. 30 (1H, m), 2. 48-3. 56 (14H, m), 4. 78 (1H, d, J=10. 6Hz), 4. 86-5. 24 (3H, m), 5. 98-6. 10 (3/2H, m), 6. 21 (1H, s), 6. 59 and 6. 64 (total 1H, d, J=7. 9Hz), 6. 84-7. 20 (11/2H, m), 7. 30-7. 44 (5H, m)

工程4b

化合物 I - c	Pd (OH) ₂	MeOH	時間	カラム	収量	HPLC
17:mg	mg	ml	h r	溶媒	mg	min
870	8 7	1 5	1 5	CH: M 10:1	2 5 2	22.9

 $EI-MS(M^{+}):584$

 1 H-NMR (CDC1₃): δ 0. 73, 0. 82 and 0. 91 (total 6 H, d, J=6. 3-6. 6Hz), 1. 01, 1. 06, 1. 13 and 1. 16 (total 6H, t, J=6. 6-6. 9Hz), 1. 34 and 1. 39 (total 9 H, s), 2. 20-3. 04 (5H, m), 2. 67 and 2. 78 (total 3 H, s), 2. 69 and 2. 74 (total 3H, d, J=4. 6-4. 9Hz), 3. 26 (1H, dd, J=7. 9, 14. 2Hz), 3. 45 (1H, dd, J=8. 9, 13. 2Hz), 3. 54-3. 74 (2H, m), 4. 94-5. 12 (5/2H, m), 5. 38-5. 46 (1/2H, m), 6. 42 and 6. 57 (total 1H, d, J=7. 9-8. 3Hz), 6. 80-7. 16 (6H, m)

表D-21

実施例45

Phe (4-F) -N-Et-Val-Tyr (3-tBu) -NH2の合成

rne	Fre (4-F) -N-Et-Val-Tyr (3-tBu) -NH ₂ の合成										
	R 3 1		R ₃₂			R 3 3	· · · · · · · · · · · · · · · · · · ·	<u> </u>	R		
	H		Εt			Н	· · · · · · · · · · · · · · · · · · ·		H		
工程1								L			
化合物	化合物	CMPI	TEA	T	HF	時間	カラ	4	生成物	1 1	又量
T1:	V2:g	g	m l	m	1	hr	溶媒			"	g g
g				1			1274				5
3. 3 4. 29 4. 0 4. 3 80 2 EA:H I-a7 6. 5										- 5	
$^{1}H-NN$	AR (CDC	l_3) : δ	0.7	-1.	0	(9 H. n	1) 1		2 - 1 4	(9	H
111) , Z .	2-2.4	(1H, m)	. 2. 8	-3	. 0	(1H m) 3	Λ	- 3 1	5 / 1	TT
III) , S.	2-3. 3 t	o (2H, 1	n), 3.	6 —	3. ′	7 (1 H	hrd	T :	= 1 A	л ц "	\
4. 45-	-4. 0 (11	1, m),	b. 04	(1 H.	. b :	rs) 5	1.5	(1)	lo H	_	10
_ 5. Z ;	o(1H, m)	, b. 0 ;	2 (1 H.	b r	s).	6 47	(1 H	h	rd I-	- 7	211
2), 0.	00 (IH,	brd,	J=7.	3 H z) ,	7. 0 -	7. 2	(2 F	I. m) .	7.	3 -
7. 3 (5H, m)								-,, ,	• •	
工程2											
	化合物 I - Pd (OH) E t OH 時間 カラム溶媒 生成物 収量										
а7:	g	2	m l	h r						g.	- 1
		g								6	·
6. 4			3 0	1. 5	5	精製せす	-	I -	- b 7	4.	3 7
$^{1}H-NM$	R (CDC1	$_3):\delta$	0.63	(3 F	[, d	J = 6	6 H z				

表D-22

実施例45 (続き)

Phe (4-F) -N-Et-Val-Tyr (3-tBu) -NH2の合成

工程3								
化合物 I	化合物	CMPI	TEA	THF	時間	カラム	生成物	収量
-b7:g	P1:g	g	m l	m l	hr	溶媒		g
1	1. 17	1.06	1. 7	4	1 3	EA:H	I-c	0.5
1H - NMD	(CDC1	\				1:2	18	6

工程4a

化合物 I - c 1 8	TFA	CH ₂ Cl ₂	時間	カラム	収量	HPLC
g	m l	m l	hr	溶媒	g	min
0.51	2	4	1	MC:M	0.36	19.9
				20:1		

 $EI - MS (M^{+}) : 528$

 $^{1}H-NMR \; (CDCl_{3}) \; : \delta \quad 0. \; 60 \; (3\,H,\; d,\; J=6.\; 6\,H\,z) \; , \; 0. \; 8-0. \; 9 \\ (6\,H,\; m) \; , \; 1. \; 3\,8 \; (9\,H,\; s) \; , \; 2. \; 2-2. \; 4 \; (1\,H,\; m) \; , \; 2. \; 6\,8 \; (1\,H,\; d\,d,\; J=7.\; 3,\; 1\,3. \; 5\,H\,z) \; , \; 2. \; 8-3. \; 0 \; (2\,H,\; m) \; , \; 3. \; 0-3. \; 2\,5 \; (3\,H,\; m) \; , \\ 3. \; 7\,1 \; (1\,H,\; t,\; J=6.\; 9\,H\,z) \; , \; 4. \; 2\,1 \; (1\,H,\; b\,r\,d,\; J=1\,0.\; 9\,H\,z) \; , \; 4. \\ 4-4. \; 6 \; (1\,H,\; m) \; , \; 5. \; 5\,5 \; (1\,H,\; b\,r\,s) \; , \; 6. \; 2\,3 \; (1\,H,\; b\,r\,s) \; , \; 6. \; 6\,4 \\ (1\,H,\; d,\; J=7.\; 9\,H\,z) \; , \; 6. \; 8\,6 \; (1\,H,\; d\,d,\; J=1.\; 7,\; 7.\; 9\,H\,z) \; , \; 6. \; 9\,7 \; (2\,H,\; t,\; J=8.\; 6\,H\,z) \; , \; 7.\; 0-7.\; 2 \; (3\,H,\; m)$

表D-23

実施例46

N-Me-Phe(4-F)-N-Et-Val-Tyr(3-tBu)-NH

₂の合成

R 3 1				R ₃	2		R 3 3		R	
M e				E	t		Н			<u> </u>
工程3								·		
化合物 I	化合	物	CMP	I	TEA	THF	時間	カラム	生成物	収量
-b7:g	-b7:g P2:g g				m l	m l	hг	溶媒		g
1.0	1. 23 1. 0		6	1. 7	4	1 4	MC:M	I - c	0.5	
								50:1	1 -	4
工程4a									· · · · · · · · · · · · · · · · · · ·	
化合物		T	FΑ	С	H ₂ Cl ₂	時間		カラム	収量	HPLC
	I-c19:g m1			m l		hr		溶媒	g	min
0.48	0.48 2				4	0.5	M	IC:M	0. 2	20.4
D. J. 140. (2)							2	0:1	6	

 $EI-MS(M^{+}):542$

 $^{1}\text{H-NMR}$ (CDC1₃): δ 0. 57, 0. 68, 0. 71, and 0. 91 (6H, d, J=6. 6Hz), 0. 99 and 1. 05 (3H, t, J=6. 9Hz), 1. 37 (9H, s), 2. 29 and 2. 38 (3H, s), 2. 3-2. 5 (1H, m), 2. 8-3. 4 (6H, m), 3. 52 and 3. 60 (1H, t, J=6. 6Hz), 3. 6-3. 9 (1H, m), 4. 5-4. 7 (1H, m), 5. 66, 5. 74, 5. 83, and 6. 25 (2H, brs), 6. 66. 6-7. 2 (7H, m), 7. 61 (1H, brd, J=5. 4Hz), 9. 16 (1H, d, J=7. 6Hz)

表D-24

実施例47

 $N-E\ t-P\ h\ e\ (4-F)\ -N-E\ t-V\ a\ l-T\ y\ r\ (3-t\ B\ u)\ -NH$

₂の合成

R	3 1	R ₃	2		R 3 3		R 3 4			
E	t	E	t	Н			H			
工程3										
化合物 I 一 b 7 : g	化合物 P 3 : g	CMP I	TEA ml	THF ml	時間 hr	カラム 溶媒	生成物	収量 g		
1	1. 42	1.06	1. 7	4	14	MC: M 50:1	I - c 2 0	0.8		

 $^{1}H-NMR$ (CDC1₃): δ 0. 35-1. 2 (12H, m), 1. 36, 1. 38, a nd 1. 40 (9H, s), 2. 2-2. 4 (1H, m), 2. 7-3. 0 and 3. 2 -3. 6 (8H, m), 3. 7-3. 9, 4. 1-4. 3, 4. 4-4. 6, and 4. 9 -5. 1 (3H, m), 5. 1-5. 5 (3H, m), 6. 5-6. 7, 6. 8-7. 0, and 7. 0-7. 4 (12H, m), 7. 6-7. 8 (1H, m).

工程4a

化合物 I - c 2 0 g	Pd (OH)	MeOH ml	時間 h r	カラム溶媒	収量 g	HPLC min
0.8	0.16	1 0	1	MC: M 20:1	0.31	20.6

 $EI - MS (M^{+}) : 556$

 $^{1}H-NMR \; (CDCl_{3}) : \delta \quad 0.45, \; 0.63, \; 0.67, \; and \; 0.73 \; (6H, d, J=6.6Hz), \; 0.8-1.2 \; (6H, m), \; 1.38 \; (9H, s), \; 2.1-2.7 \; (3H, m), \; 2.7-3.3 \; (6H, m), \; 3.5-3.9 \; (2H, m), \; 4.4-4.7 \; (1H, m), \; 5.38 \; (1H, brs), \; 5.4-5.6 \; (1H, m), \; 5.9-6.3 \; (1H, m), \; 6.62 \; (1H, d, J=7.9Hz), \; 6.7-7.0 \; (3H, m), \; 7.0-7.2 \; (3H, m), \; 7.45-7.65 \; (1H, m)$

表D-25

実施例48

Phe (4-F) -N-E t-V a l-T y r (3-t B u) -NHM e o

合成

I	R 3 1			R 3 2		R 3 3		T	R	3 4								
	Н			Εt		Н				e								
工程1								·										
化合物	化	合物	CMPI	TEA	THF	時間	カラ.	ム	生成物	収量								
T2:	V 2	2 : g	g	m l	m l	hr	溶媒	ţ		g								
g																		
4. 9	6.	6 2	6. 57	8. 3	120	2	EA:	H	I - a 8	9. 0								
5							3:	2										
工程2							*											
化合物	Ŋ	Pd ((OH) ₂	МеОН	時間	カラム	溶媒	4	生成物	収量								
I - a 8	: g		g	m l	hr					g								
8.9)	0.	9 0	200	1.5	精製t	± ず	I	- b 8	6.4								
$^{1}H-NM$	1R (CDC	$(3):\delta$	0.64	(3H,	d, J = 0	6.9H	(z)	, 0. 8	3 4 (3 H,								
d, $J=6$	6. 9	Ηz),	1. 05	(3H, t	J = 7.	1 H z)	. 1.	3 7	(9H,	s)、1.9								
0-2. () 2 (1 H, n	n)、2.	51 (2H	, q, J=	=6.9H	(z),	2.	73 (31	\mathbf{H} , \mathbf{d} , $\mathbf{J} = \mathbf{I}$								
4. 9 H z	0-2.02 (1H, m), 2. 51 (2H, q, J=6.9Hz), 2. 73 (3H, d, J=4.9Hz), 2. 86 (1H, d, J=4.3Hz), 2. 91-3. 07 (2H, m), 4.																	
53 (1H, dd, $J=7$. 2, 15. 2Hz), 6. 04 (1H, brd, $J=4$. 6Hz),																		
6.63	(1 H	, d,	J=7. 9	Hz), 6	. 91 ((1H, d	d, J=	= 2.	0, 7.	9 H z) 、								
7.03	(1 H	, d, J	=2.0	Hz), 7.	. 88 (lH, d,	6. 63 (1H, d, J=7. 9Hz), 6. 91 (1H, dd, J=2. 0, 7. 9Hz), 7. 03 (1H, d, J=2. 0Hz), 7. 88 (1H, d, J=8. 3Hz)											

表D-26

実施例48 (続き)

Phe (4-F) -N-Et-Val-Tyr (3-tBu) -NHMe \emptyset

合成

工程3					· · · · · · · · · · · · · · · · · · ·						
化合物I	化1	合物	C	MPI	TEA	THF	時間	カラム		生成物	収量
-b8:	P 1	: g	Ì	g	m l	m l	hr	溶媒			g
g						ŀ	1				
1.70	1.	9 1	1.	7 2	1. 9	7. 5	3 1	MC:M:	N	I-c	0.6
								30:1:		2 1	3
								0.1			
工程4a							_				
化合物		TF	A	CH:	Cl ₂	時間	;	カラム	ı	仅量	HPLC
I - c 2 1		m l		n	וו	min		溶媒		g	min
0.54		5	- 1		6	1 5	МC	: M : N	0.	3 1	21. 0
							40:	1:0.1			
EI-MS											
$^{1}H-NMF$	(C	DC 1	3)	: δ	0.67	(1H,	d. J=	6. 6Hz)	_	0 72	(1 H
d, J = 6.	3 H	z),	0.	75 (2H, d,	J=6.	6 H z) . 0. 92	(2	H. d.	J=6

 $^{1}H-NMR \; (CDCl_{3}) \; : \delta \quad 0. \; 67 \; (1H, \; d, \; J=6. \; 6Hz) \; , \; 0. \; 72 \; (1H, \; d, \; J=6. \; 3Hz) \; , \; 0. \; 75 \; (2H, \; d, \; J=6. \; 6Hz) \; , \; 0. \; 92 \; (2H, \; d, \; J=6. \; 3Hz) \; , \; 1. \; 02-1. \; 07 \; (3H, \; m) \; , \; 1. \; 37 \; (6H, \; s) \; , \; 1. \; 39 \; (3H, \; s) \; , \; 2. \; 2-2. \; 6 \; (1H, \; m) \; , \; 2. \; 65-2. \; 77 \; (3H, \; m) \; , \; 2. \; 8-3. \; 2 \; (4H, \; m) \; , \; 3. \; 2-3. \; 4 \; (2H, \; m) \; , \; 3. \; 5-3. \; 6 \; (1H, \; m) \; , \; 3. \; 72 \; (0. \; 3H, \; m) \; , \; 3. \; 94 \; (0. \; 7H, \; d, \; J=10. \; 9Hz) \; , \; 4. \; 45-4. \; 63 \; (1H, \; m) \; , \; 5. \; 70-5. \; 85 \; (1H, \; m) \; , \; 6. \; 04 \; (0. \; 3H, \; brs) \; , \; 6. \; 44 \; (0. \; 7H, \; brs) \; , \; 6. \; 6-6. \; 8 \; (2H, \; m) \; , \; 6. \; 88-7. \; 20 \; (6H, \; m) \; , \; 7. \; 45 \; (0. \; 3H, \; brd) \; , \; 9. \; 09 \; (0. \; 7H, \; d, \; J=7. \; 9Hz)$

表D-27

実施例 4 9

N-Me-Phe (4-F) -N-Et-Val-Tyr (3-tBu) -

NHMeの合成

R				₹32		I	R ₃ ;	3		R	3 4	
M	e		I	Ξt			Н				í e	
工程3												
化合物 I	化	合物	CMPI	TE	A	CHF	時間	カラ	- <u></u>	生成	thin .	収量
-b8:	P	2 : g	g	m		m I	hr	溶如			(1 <i>0)</i>	
g		1	_					1741 X	^			g
2.03	1.	60	1. 51	2.	3	1 0	2 4	MC:N	(· NI			
	·		_, _,	J .		1 0	24			I -		0.4
				l				30:		2	2	4
工程4a							11	0.	1			
化合物	T	TFA	CH ₂ C	1	時月	8 [. ,	.ba r			
I - c 2 2	.	ml	1 -	1 2			カラ		収量	È	H	PLC
1	. [111 1	m l	İ	m i	n	溶	谋	g		r	nin
g			· 							_		
0.41		3	4		3 (MC:I	M:N	0. 2	2 3	2	0.8
	j						30:1	: 0.				
- 160-							1					

 $EI-MS(M^{+}):556$

 $^{1}H-NMR \; (CDCl_{3}) : \delta \quad 0. \; 62 \; (5/3H, \; d, \; J=6. \; 6Hz) \; , \; 0. \; 68 \; (4/3H, \; d, \; J=6. \; 6Hz) \; , \; 0. \; 91 \; (5/3H, \; d, \; J=6. \; 6Hz) \; , \; 0. \; 91 \; (5/3H, \; d, \; J=6. \; 3Hz) \; , \; 1. \; 04 \; (5/3H, \; t, \; J=7. \; 3Hz) \; , \; 1. \; 06 \; (4/3H, \; t, \; J=6. \; 9Hz) \; , \; 1. \; 37 \; (5H, \; s) \; , \; 1. \; 38 \; (4H, \; s) \; , \; 2. \; 2-2. \; 5 \; (1H, \; m) \; , \; 2. \; 30 \; (4/3H, \; s) \; , \; 2. \; 43 \; (5/3H, \; s) \; , \; 2. \; 67 \; (5/3H, \; d, \; J=4. \; 6Hz) \; , \; 2. \; 71 \; (4/3H, \; d, \; J=4. \; 9Hz) \; , \; 2. \; 8-3. \; 8 \; (58/9H, \; m) \; , \; 3. \; 83 \; (5/9H, \; d, \; J=10. \; 9Hz) \; , \; 4. \; 48 \; (1H, \; m) \; , \; 5. \; 4-6. \; 2 \; (2H, \; br) \; , \; 6. \; 62-6. \; 66 \; (1H, \; m) \; , \; 6. \; 8-7. \; 2 \; (6H, \; m) \; , \; 7. \; 40 \; (4/9H, \; brd) \; , \; 9. \; 21 \; (5/9H, \; d, \; J=7. \; 9Hz)$

WO 00/44770

表D-28

実施例50

N-Et-Phe(4-F)-N-Et-Val-Tyr(3-tBu)-N

HMe の合成

R	3 1	F	₹ 3 2		R 3 3		R 3 4	
E	t	I	<u> </u>		Н		Ме	
工程3								
化合物 I	化合物	CMPI	TEA	THF	時間	カラム	生成物	収量
-b8:	P3:g	g	m l	m l	hr	溶媒		mg
g								
1. 52	1. 53	1. 13	1. 23	20	9 6	EA:H	I-c2	5 2
						1:1	3	0
$^{1}H-NMI$	R (CDC	l ₃) : δ	0.41,	0.57,	0.6	2 and	0.72 (tot

¹H-NMR (CDCl₃): δ 0. 41, 0. 57, 0. 62 and 0. 72 (total 6H, d, J=6. 3-6. 9Hz), 0. 80-1. 20 (total 6H, m), 1. 35, 1. 38 and 1. 40 (total 9H, s), 2. 22-2. 42 (1H, m), 2. 66 (3H, d, J=4. 3Hz), 2. 74-3. 56 (8H, m), 4. 37 (1H, dd, J=7. 3, 7. 9Hz), 5. 00-5. 48 (4H, m), 5. 78-6. 00 (1H, m), 6. 50-6. 66 (1H, m), 6. 84-7. 44 (11H, m)

工程4b

	化合物 I - c	Pd (OH) 2	MeOH	時間	カラム	収量	HPLC
		_			· ·	人里	
	23:mg	mg	m l	hr	溶媒	g	min
	450	4 5	8	14	MC:M:N	308	21.6
ı				,	20:1:1		•

 $EI - MS (M^{+}) : 570$

 $^{1}H-NMR$ (CDCl₃): δ 0. 47, 0. 64, 0. 70 and 0. 76 (total 6H, d, J=6. 3-6. 6Hz), 0. 88-1. 24 (6H, m), 1. 38 (9 H, s), 2. 10-2. 64 (3H, m), 2. 70 and 2. 71 (total 3 H, d, J=4. 6Hz), 2. 80-3. 30 (6H, m), 3. 58-3. 94 (2H, m), 4. 46 (1H, dd, J=7. 6-7. 9Hz), 5. 74-6. 08 (2H, m), 6. 61 (1H, d, J=7. 9Hz), 6. 78-7. 20 (6H, m), 7. 38 (1/2 H, d, J=6. 3Hz), 8. 74 (1/2H, d, J=7. 9Hz)

表D-29

実施例51

Phe $(4-F) - N-Et-Val-N-Me-Tyr (3-tBu) - NH_2$

の合成

F	₹ 3 1			R	3 2				D					
	H				<u>32</u> Et				R 3 3			R	3 4	
工程1					<u> </u>				Мe			I	-I	
化合物	10	△ Atm	0145	1										
1		合物	CMPI TEA		- 1	TH:	- 1	時間		カラム	生成物	勿	収量	
T4: g		: g	g		m		_ m 1		<u>h r</u>		溶媒	1		g
3.360	4.6	500	4.11	3	3.7	3	110		20		H:ACT	I-a9		5.970
T#20											3:2			0.070
工程2	, : -			·					_	_		·		
化合物		Po	l-C	Μe	e OH		時間		カラム溶	·····································	生质	支物	1	又量
I-a9:			g	n	n I	- 1	hr	1				,		
5.870)	1.0	000]	114	1	1		精製せ	ਰ ਰੈ	T.	b9	-	.600
工程3											<u> </u>		3	.000
化合物 I	1	化合物	CM	PΙ	T	EΑ	TH	F	時間	1,	ラム	H-++		(D7 E
I-b9: g	I	P1:g	g		m		m		hr		タム 容媒	生成物	9	収量
1.200		1.350	1.2		-	33	6							g
			-:-	20	1.	00	"		18		EA	I-c24]]	l.160
工程4a					1		'		<u>. </u>		2:1			
化合物	\top	TFA	Сн	₂ C 1		100	間	T —	+= ,		, here			
I-c24 : g		m l		n l	` ²			ļ	カラム		収			, L C
1.06		5.00			-+		r		溶媒		g		m	in
1.00		5.00		10		1	.5		MC:M:	1	0.2	51	1	9.3
F.IMS	(N/+	. 545							15:1:2					

 $EI - MS (M^{+}) : 542$

 $^{^{1}}$ H-NMR (CDCl₃): (two rotamers) δ 0.30, 0.69, 0.82 and 0.85(6H, d, J=6.4-6.9 Hz), 0.92 and 1.12(3H, t, J=3.4-4.1HZ), 1.35 and 1.37(9H, s), 2.25-2.40(1H, m), 2.56-3.37(5H, m), 2.82 and 3.02(3H, s), 3.60-3.77(2H, m), 4.83-5.38(2H, m), 6.02band 6.18(2H, brs), 6.43 and 6.62(1H, d, J=6.8Hz), 6.82-7.15(6H, m)

表D-30

実施例52

N-Me-Phe (4-F) -N-Et-Val-N-Me-Tyr (3-tBu) $-NH_2$ の合成

R 3 1		R ₃			Т	D					
Ме			_			R_{33}			R	<u>3</u> 4	
工程3		Et				Мe	H				
											
化合物 I	化合物	CMPI	T	EA	THF	時間	カ	ラム	生成	Atra .	収量
I-b9: g	P2:g	g	n	n i	m l	hr		タ媒	上水	199	
1.200	1.420	1.220									g
	2.120	1.220	1.220 1.33 7		′	30		:EA	I-c25		0.740
工程4a						1		1:2			
化合物	TFA	CH ₂ Cl;		時間	<u> </u>	カラム		IIV.	E.	1 ++	D. C
I-c25 : g	l m l	m 1	۱ '	hı				収		1	PLC
0.674		·				溶媒			3	n	nin
0.074	3.00	10		2	1	MC:M:H	I	0.2	78		20.0
72.		_l				10:1:2	ĺ				
FI-MS ()	(1+) · FF					10.1.2					

 $EI - MS (M^{+}) : 556$

 $^{^{1}}$ H-NMR (CDCl₃): (two rotamers) δ 0.42, 0.78, 0.84 and 0.91(6H,d, J=6.3-6.9 Hz), 0.94 and 1.18(3H, t, J=3.6Hz), 1.35 and 1.37(9H, s), 2.20-2.34(1H, m), 2.29(3H, s), 2.62-3.02(4H, m), 2.93 and 3.04(3H,s), 3.17-3.31(2H, m), 3.45-3.72(1H, m), 5.02 and 5.22(1H, d, J=10.7-10.9 Hz), 5.09 and 5.17(1H, t, J=5.8-6.1Hz), 5.69, 6.07 and 6.57(2H, brs), 6.45 and 6.64(1H, d, J=8.0Hz), 6.78-7.14(6H, m)

表D-31

実施例53

N-Et-Phe (4-F) -N-Et-Val-N-Me-Tyr (3-tB

u) -NH₂の合成

R 3 1		R ₃	2				R 3 3	······		R ₃	
Et		E	t		\top		Me			H	
工程3					•						
化合物 I	化合物	CMPI	T	EA	T	ΗF	時間	カラ	4	生成物	収量
I-b9 : g	P3:g	g	n	ni	n	n l	hr	溶如			g
1.020	1.640	1.220	1	.33		8	12	MC:N	1:H	I-c26	
								20:1			1.010
工程4b											
化合物	Pd-0	MeOF	I	時間]	,	カラム		収量	i i	HPLC
I-c26 : g	g	m l	İ	hr	.		溶媒		g		min
0.934.	0.093	20		3		MC:I	M:H		0.20)1	20.7
		7 O /D /+ n+ BE				=15:	1:2		0.10		22.4

収量0.201g(HPLC保持時間20.7min)の化合物について

 $EI - MS (M^{+}) : 570$

 $^1\,H-N\,M\,R$ (CDC 1_3) : (two rotamers) $\delta\,0.42,0.79,0.84$ and 0.91(6H, d and m, J=6.3-6.9Hz), 1.02 and 1.11(6H, t, J=3.6Hz), 1.33 and 1.40(3H, s), 2.20-3.36(9H, m), 2.92 and 3.03(3H, s), 3.51-3.75(1H, m), 5.00-5.38(2H, m), 6.02 and 6.58(2H, brs), 6.42-6..62(1H, d, J=8.0Hz), 6.82-7.20(6H, m)

収量0.103g (HPLC保持時間22.4min) の化合物について

 $EI-MS(M^{+}):570$

 1 H-NMR (CDC1 $_{3}$): (two rotamers) δ 0.13 and 0.79(4H, t, J=3.4 Hz), 0.62 and 0.89(2H, d, J=6.3-6.9Hz), 0.97 and 1.05(6H, t, J=3.6Hz), 1.34 and 1.41(9H, s), 1.92-2.03(1H,m), 2.21-2.60(2H, m), 3.00 and 3.08(3H, s), 2.74-3.25(4H, m), 3.60-3.72(1H, m), 4.62(1H, d, J=8.0Hz), 4.78-4.82(1H, m), 5.18-5.36(2H, m), 6.02(1H, brs), 6.59 and 6.63(1H, d, J=8.0Hz), 6.81-6.98(3H, m), 7.09-7.20(3H, m)

表D-32

実施例54

Phe (4-F) -N-E t-V a l-N-M e-T y r (3-t Bu) -N H

Meの合成

R	3 1		R 3 2	T		R 3 3	R	
I I	<u> </u>		Εt			Ме	M	
工程1								
化合物 T5: g	化合物 V2:g	CMP I g	TEA ml	THF ml	時間 hr	カラム 溶媒	生成物	収量 g
3. 9 3	5. 0	4. 56	5. 0	150	1 2	EA:H 2:1	I - a 1 0	5. 02

 $EI-MS(M^{+}):525$

 $^{1}H-NMR$ (CDC1₃) : δ 0. 23-1. 08 (9H, m) , 1. 34, 1. 37, 1. 39 (9H, s) , 2. 10-3. 56 (10H, m) , 4. 25-5. 33 (5H, m) , 6. 00-7. 48 (9H, m)

工程2

化合物 I -	Pd (OH) 2	Magni	D± BB	1 - 1 - 14		
1	I d (OH) 2	MeOH	時間	カラム溶媒	生成物	収量
a10:g	g	m l	min			g
4. 92	0.50	9 4	4.0	O T T 3 () T	<u> </u>	5
1. 52	0.50	94	40	CH:M:N	I-b10	3.42
				100:10:		
				1		

¹H-NMR (CDC1₃): δ 0. 35, 0. 69, 0. 88, 0. 95 (6H, d, J=6. 6-6. 9Hz), 0. 82, 1. 03 (3H, t, J=7. 1Hz), 1. 37 (9H, s), 1. 66-1. 83 (1H, m), 1. 92 (2H, dd, J=13. 9, 6. 6Hz), 2. 76, 2. 79 (3H, d, J=4. 8Hz), 2. 89, 2. 99 (3H, s), 2. 92 -3. 23 (2H, m), 4. 55, 5. 46 (1H, dd, J=10. 9, 4. 0Hz), 5. 71, 5. 89 (1H, brs), 6. 13, 8. 19 (1H, m), 6. 55, 6. 60 (1H, d, J=7. 9Hz), 6. 78, 6. 91 (1H, dd, J=7. 9, 1. 7Hz), 7. 00, 7. 07 (1H, d, J=1. 7Hz)

表D-33

実施例54 (続き)

Phe (4-F) - N - Et - Val - N - Me - Tyr (3-tBu) - NH

Meの合成

工程3													
化合物 I 一	化合	物P┃	CMPI	TE	ΞA	TH	F	時間	力 :	ラム	生	成物	収量
b10:g	1:	g	g	m	1 .	m	l	hг	溶	媒			mg
1. 15	1.	2 5	1. 13	1.	2 3	2 ()	1 3	ΕA	: H	I	— c	4 3 4
		L							2	1	2	27	
工程4a													
化合物I一c		ΓFΑ	CH ₂ C	l 2	時	間		カラム	4	収量		Н	PLC
27:mg		m l	m l		h	r		溶媒		mg			in .
4 3 4		2	2		2.	5	E	A : E 1	ОН	86.		2	0.6
							=	= 10:	1	0		2 :	2.8
İ										26.			
]							8			

収量86.0mg (HPLC保持時間20.6min) の化合物について

 $EI - MS (M^{+}) : 556$

 1 H-NMR (CDC 1 3) : δ 0. 27-1. 18 (9H, m) , 1. 35, 1. 39 (9H, s) , 2. 15-3. 77 (12H, m) , 2. 84, 3. 06 (3H, s) , 4. 87-5. 27 (2H, m) , 5. 99-7. 20 (8H, m)

収量26.8mg (HPLC保持時間22.8min) の化合物について

 $EI-MS(M^{+}):556$

 $^{1}H-NMR (CDCl_{3}): \delta \quad 0. \ 16, \ 0. \ 40, \ 0. \ 55, \ 0. \ 84 \ (6H, \ d, \ J=6. \ 3-6. \ 9Hz), \ 0. \ 83, \ 1. \ 01 \ (3H, \ t, \ J=7. \ 1Hz), \ 1. \ 36, \ 1. \ 41 \ (9H, \ s), \ 2. \ 00-2. \ 21 \ (1H, \ m), \ 2. \ 67, \ 2. \ 76 \ (3H, \ d, \ J=4. \ 8Hz), \ 3. \ 05, \ 3. \ 09 \ (3H, \ s), \ 2. \ 81-3. \ 30 \ (7H, \ m), \ 3. \ 68-3. \ 87 \ (1H, \ m), \ 3. \ 72, \ 3. \ 80 \ (1H, \ dd, \ J=7. \ 8, \ 6. \ 1Hz), \ 4. \ 61, \ 5. \ 10 \ (1H, \ d, \ J=10. \ 7Hz), \ 4. \ 66, \ 5. \ 24 \ (1H, \ dd, \ J=9. \ 7, \ 6. \ 4Hz), \ 6. \ 05-7. \ 20 \ (8H, \ m)$

表D-34

実施例55

N-Me-Phe (4-F) -N-Et-Val-N-Me-Tyr (3-tB

u) -NHMeの合成

R ₃₁			R	3 2				R 3 3		R 3 4		
Me			E	t				Ме			M	
工程3											101	<u>e</u>
化合物 I -	化合		MPI	MPI TEA			F	時間	カラ	<u>、</u>	生成物	勿 収量
b10:g	P2:		g	m l		m	_	hr	溶如			加 mg
1. 0	1. 1	4 0	. 98	1. 0	7	1 '	7	14	EA:	H	I-c	
工程4a									2:	1	28	
化合物		TFA	CH ₂	Cl ₂	Cl ₂ 時			カラム	۸	4	又量	HPLC
	I-c28:mg m1					r	溶媒			n	ng	min
3 2 2	3 2 2					2	E	A:Et	ОН	1	0 1	21.1
IM 長 1 0 1							10:	1	3	3 8	22.6	

収量101mg (HPLC保持時間21. 1min) の化合物について

 $EI-MS(M^{+}):570$

 1 H-NMR (CDCl₃): δ 0. 41, 0. 79, 0. 86, 0. 90 (6H, d, J=6. 3-6. 9Hz), 0. 94, 1. 15 (3H, t, J=7. 3Hz), 1. 34, 1. 39 (9H, s), 2. 27, 2. 28 (3H, s), 2. 71, 2. 76 (3H, d, J=4. 8Hz), 2. 15-3. 78 (9H, m), 2. 93, 3. 08 (3H, s), 4. 9

収量38mg (HPLC保持時間22.6min) の化合物について

 $EI-MS(M^{+}):570$

 1 H-NMR (CDCl₃): δ 0. 10, 0. 14, 0. 63, 0. 85 (6H, d, J=6. 3-6. 9Hz), 0. 82, 0. 95 (3H, t, J=7. 1Hz), 1. 35, 1. 40 (9H, s), 2. 18, 2. 54 (3H, s), 2. 71, 2. 75 (3H, d, J=4. 8Hz), 2. 99, 3. 08 (3H, s), 1. 89-3. 27 (8H, m), 3. 46-3. 64 (1H, m), 4. 54, 5. 19 (1H, d, J=10. 6Hz), 4. 66, 5. 23 (1H, t, J=7. 3Hz), 6. 51, 6. 60 (1H, d, J=7. 9Hz), 6. 07-7. 20 (7H, m)

表D-35

実施例56

 $N-E\ t-P\ h\ e\ (4-F)\ -N-E\ t-V\ a\ l-N-M\ e-T\ y\ r\ (3-t\ B$

u) -NHMeの合成

R 3 1				R ₃	2			R 3 3		T	R	2.4	
E t				Εt	·			Ме			M		
工程3												<u> </u>	
化合物 I -		分物	СМ	PΙ	TE	A	THF	時間	カラ	ラム	生成物	n I	収量
b10:g	P 3	: g		3	m l		m l	hr 溶媒				^	mg
1. 0					98 1.07			1 4	ΕA	: H	I-c	: †	5 7 6
									2:	1	2 9		
工程4b													
化合物		Ρd	C	Ме	OH	F	時間	力	ラム	T	収量	I	IPLC
I - c 2 9 :	mg		Ş	n	ור] :	hr	Ŕ	字媒	ļ	mg		min
5 7 6	576 0.05						3	EA: EtO		OH 192			2. 0
								1 5	: 1	İ	129	į.	3. 6
収量192m	g (H	PLO	2保持	時間2	2. 0	m i	n) の(合物に	ついて				

 $EI-MS(M^{+}):584$

 $^{1}H-NMR$ (CDC1₃) : δ 0. 41-1. 18 (12H, m), 1. 35, 1. 3 9 (9H, s), 2. 12-4. 13 (14H, m), 2. 92, 3. 08 (3H, s), 4. 99-5. 27 (2H, m), 6. 00-7. 20 (8H, m)

収量129mg (HPLC保持時間23.6min) の化合物について

 $EI-MS(M^{+}):584$

 $^{1}H-NMR$ (CDC1₃) : δ 0. 12-1. 30 (12H, m) , 1. 36, 1. 4 1 (9H, s), 1. 93-4. 16 (14H, m), 2. 99, 3. 07 (3H, s), 4. 57-5. 23 (2H, m), 5. 40-7. 22 (8H, m)

表D-36

実施例 5 7

Phe (4-F) -N-E t-V a l-N-E t-T y r (3-t B u) -N H

2の合成

I	R_{31}				3 2				R 3 3			1	R_{34}	
	Н			E	t				Εt				Н	··
工程1														
化合物	化	合物	CMP	·I	ΤE	A	TH	F	時間	カラム		生成	物	収量
T7:g	V	2:g	g	- 1	m l		m	1	hr		媒			g
16.000	24	1.088	23.20	00	25.3	32 40		.00	60	EA:F	I:MC	I-a	11	16.000
			<u> </u>	<u> </u>			-			3:5	2:2			
工程2														
化合物		Pd (O	H) 2	Ме	OH	開	铜		カラム	容媒	4	E成物	Ţ	収量
I-all:	g	: g	<u> </u>	n	n l	l hr								g
9.000		0.90	0	20	0.00		2		M C : M	: H		I-b11		4.000
									15:1:	2				
工程3														
化合物		化合物	CM	PΙ	T	EΑ	T	ΗF	時間	カラ	ラム	生成	物	収量
I-b11 : g	3	P1:g		3	m	ıl	n	n l	hr	溶	媒			g
1.100		1.150	1.0	40	1.	13	10	0.00	72	EA:F	I:MC	I-c3	30	0.700
		· · · · · · · · · · · · · · · · · · ·	_L		<u> </u>					3:2	2:2			
工程4a														
化合物		TFA	CH	2 C	l ₂	時	間		カラム		収』	1	Н	PLC
I-c30:	g	m l]1		h	r	溶媒			g			nin	
0.650		2.00	2.00 2.00					M	C : M :	Н	0.180			20.9
						15:1:2								
EI-MS	M	+) . 54	2											

 $E I - MS (M^+) : 542$

 $^{^{1}}$ H-NMR (CDCl₃): (two rotamers) δ 0.51, 0.82, 0.87 and 0.94(6H, d, J=6.6~6.9H z), 0.82~1.31(6H, m), 1.35 and 3.81(9H, s), 2.21 ~ 3.82 (9H, m) 4.83~5.30(3H, m), 6.62 and 6.54(1H, d, J=7.9H z), 6.80~7.21(6H, m)

表D-37

実施例 5 8

N-Me-Phe (4-F)-N-Et-Val-N-Et-Tyr $(3-tBu)-NH_2$ の合成

R 3 1		2				R 3 3		R 3 4			
M e		Εt	:				Εt			H	
工程3											
化合物	化合物	CMPI	T	ΕA	T	HF	時間	カ	ラム	生成物	収量
I-b11 : g	P2:g	g	nl	r.	n l	hr		媒		g	
1.240	1.360	1.170	1	.28	10	0.00	72	EA:	H:MC	I-c31	0.300
									2:2		
工程4a						_					
化合物	TFA	CH ₂ Cl	2	時間	Ŋ		カラム		収	量	HPLC
I-c31: g	m l	m l		hr	hr		溶媒		Ę		min
0.280	80 2.00 2.00					MC:M:		Н	0.1	70	21.2
					15:1:2	İ					

 $EI-MS(M^{+}):570$

 $^{^1 \,} H - NMR$ (CDCl₃): (two rotamers) δ 0.63~1.30(9H, m and d, J=6.3Hz),), 1.34 and 1.39(9H, s), 2.30(3H, s), 2.22~3.90(9H, m), 4.97~5.33(3H, m), 6.43 and 6.62(1H, d, J=7.92), 6.81~7.19(6H, m)

表D-38

実施例 5 9

 $N-E\ t-P\ h\ e\ (4-F)\ -N-E\ t-V\ a\ l-N-E\ t-T\ y\ r\ (3-t\ B$

u) -NH₂の合成

R ₃ ,			R ₃	2			R 3 3				R 3 4		
E t			E	t				Εt					
工程3	<u> </u>			-						1			
化合物	化合物	CM	MPI TE		A	TH	F	時間	カラ	<u>ل</u>	生成物	7	収量
I-b11 : g	P3:g		g m		1	m	l	hr	溶如	某		- 1	g
1.500	1.500 1.980				0	10.0	00	72	EA:H		I-c32		0.700
工程4b							نـــــــ		3:2	2			
化合物	Pd (0)	H) ₂	ОН	OH 時			カラ』	<u> </u>	117	(量	H	PLC	
I-c32 : g	: g		m	1	l hi		溶媒			g			nin
0.650	0.068	5	10.	00	2	2	MC:M:H				240		20.0
FI-MS (N(+) . 450							15:1:2	2				

 $EI - MS (M^{+}) : 458$

 $^{^{1}}$ H-NMR (CDCl₃): (two rotamers) δ 0.85~1.27(15H, m), 1.37 and 1.39(9H, s), 2.03~3.63(11H, m), 4.50~4.55(1H, m), 5.02~5.34(2H, m), 6.43 and 6.60(1H, d, J=8.24), 6.81~7.19(6H, m)

表D-39

実施例60

Phe (4-F) -N-Et-Val-N-Et-Tyr (3-tBu) -NHMe

の合成

F	₹ 3 1			P					- 12						
	H				3 2				R 3 3			R	3 4		
工程 1	11			<u>_</u>	it		l_		Et			M			
化合物		合物	CMF) I	TE	A	THI	7	時間		カラム	生成物	勿 収量		
T8:g	V2	: g				m l r			hr		溶媒				
10.000	15.	.000	14.000 14			14.96		_	48		H:EA	I-a12	5.610		
								-	40		2:1	1-812	0.610		
工程2											<u></u>	1			
化合物	勿	Po	l-C	Me	ОН	ТВ	寺間	_	カラム落	s htt	1 4-5	+ #4	uter Ed		
I-a12:		1	g			- 1	h r		NJAK	***	(土)		収量		
5.500			000										g		
0.500	,	1.0	,00	1	00		2	1	H:AC'	I,	I-b	12	2.950		
工程3		<u></u>						<u> </u>	1:1						
		11 . 6 . 41	1 -		,		,								
化合物I		化合物	CM	PΙ	TI	EΑ	TH	F	時間	カ	ラム	生成物	収量		
I-b12 : g	I	?1:g	€	5	m	1	m	İ	hr	沒	媒		g		
0.900		0.943	0.8	50	0.	93	6		48	CH:N	M:N	I-c33			
	J								1	300:		1 000	0.750		
工程4a									·!						
化合物		TFA	СН	₂ C 1	,	時	間		カラム		収	小	HPLC		
I-c33 : g	3	m l	m l			h		溶媒		j	24.		min		
0.742		4.00	6				2		CH:M:N						
						4	•				0.2	10	22.0		
E I -MS	(M+) : 570	<u> </u>		E I – MS (M ⁺) : 570										

 $^{^{1}}$ H-NMR (CDCl₃): (two rotamers) δ 0.64 and 0.78-1.20(12H, d and m, J=7.0-7.9Hz), 1.24and 1.37(9H, s), 2.20-2.40(1H, m), 2.62-3.08(4H, m), 3.19-3.46(3H, m), 3.57-3.89(2H, m), 4.62-5.11(2H, m), 6.44-6..62(2H, m), 6.79-7.13(5H, m)

表D-40

実施例61

N-Me-Phe (4-F) -N-Et-Val-N-Et-Tyr (3-t B

u) -NHMe の合成

R ₃₁									
		R	2		R_{33}		T	R	
Me		Et	t		Et		┼──		
工程3								M	<u>e</u>
化合物 I I-b12:g	化合物 P2:g	CMP I	TEA m l	THF ml	時間	カラ		生成物	7 収量
0.979	1.077	0.925			hr	溶媒		<u></u>	g
	1.077	0.925	1.00	24	53	H:E		I-c34	0.410
工程4a					<u> </u>	2:	<u> </u>	<u> </u>	
化合物	TFA	CH ₂ C1	2 時		カラム		itiz	E.	
I-c34 : g	l m l	m l	h		溶媒	İ		量	HPLC
0.400	4.00						{	g	min
_	4.00	4	1		CH:M:N		0.0	34	22.4
EI-MS (M+) · 584	_ 			200:10:1				

 $^{^{1}}H-NMR$ (CDCl₃): (two rotamers) δ 0.65 and 0.85-1.20(12H, d and m, J=6.8-7.9Hz), 1.34 and 1.39(9H, s), 2.30 and 2.33(3H, s), 2.30-2.48(1H, m), 2.65-3.89(10H, m), 4.90-5.07(2H, m), 5.10-5.23(2H, m), 6.48-6.58(1H, m), 6.63-7.20(6H, m)

表D-41

実施例 6 2

N-Et-Phe (4-F) - N-Et-Val-N-Et-Tyr (3-tBu)

-NHMe の合成

	D			\neg						
						R_{33}			R.	14
	E	t			_	Et				
								<u> </u>	101	-
11 Ath	CMDI	7	TO A			04.50			· · · · · · · · · · · · · · · · · · ·	
	CMF	1	IEA		HF	時間	カラ	ム	生成物	収量
P3:g	g	g r			nl,	hr	溶如	Ų.		g
1.277	0.945	1	110	6	3.00	18			T 05	
		•				40			1-c35	0.540
						1	20:1	:1		
Тъ			,							
Pd - C	MeOF	-I	時間	ij)	カラム		心程	1	HPLC
g	m l		hr		İ		1		-	
					<u> </u>					min
0.000					MC:M:H] 0.24		.0	23.2
F. I. M.S. (Mt) TOO					2	25:1:3]			
	P d - (g 0.050	E E	P3:g g 1.277 0.945 Pd-C Me OH m 1 0.050 67	化合物 CMPI TEA P3:g g ml 1.277 0.945 1.10 Pd-C MeOH 時間 g ml hr 0.050 67 2	Et	Et 化合物	Et Et 化合物 PI P3: g g ml ml ml hr 1.277 0.945 1.10 6.00 48 Pd-C MeOH	Et Et 化合物 CMPI TEA THF 時間 カラ ア3:g g ml ml hr 溶媒 1.277 0.945 1.10 6.00 48 MC:M 20:1 Pd-C MeOH 時間 カラム g ml hr 溶媒 0.050 67 2 MC:M:H 25:1:3	化合物 CMPI TEA THF 時間 カラム P3:g g ml ml hr 溶媒 1.277 0.945 1.10 6.00 48 MC:M:H 20:1:1 Pd-C MeOH 時間 カラム 収量 g ml hr 溶媒 g 0.050 67 2 MC:M:H 25:1:3 0.24	化合物

 $EI - MS (M^{+}) : 598$

 $^1\mathrm{H-NMR}$ (CDCl $_3$): (two rotamers) $\delta\,0.64$ and 0.84-0.92(6H, d and m, J=7.9Hz), 1.04, 1.05 and 1.13(6H, t, J=6.3 Hz), 1.33 and 1.39(3H, s), 2.21-2.94(6H, m), 3.12-3.80(6H, m), 4.82-5.08(1H, m), 5.13 and 5.20(1H, d, J=9.7Hz), 6.47 and 6.58(1H, d, J=8.8Hz), 6.79-7.19(6H, m)

表D-42

実施例 6 3

Phe (4-F) -N-Me-Val-Tyr (3-tBu) -NHtBuの合

成

				T.	<u> </u>				D		T	D	
R ₃	1				3 2				R 3	3	-	R 3	4
H					<u>ие</u>				_H		1	t B	u
工程1													
化合物T	化包	う物	CM	PΙ	TEA		TH	F	時	間 力力	ラム	生成物	収量
18:g	V 2	: g	g ml				m l		h	r 溶	媒		g
0.58	0.	5 5	0.	5 6	0.6	1	1 ()	2	ΕA	: H	I - a	1. 0
٧.										1	: 3	1 3	
工程2													
化合物		Ρd	(OF	I) 2	MeOI	-I	時間		カラ	ラム溶媒	生	成物	収量
I-a13			g		m l		hr						g
1.0		0	. 1	6	2 0		5		精	製せず	I	b 1 3	0.75
工程3					· · · · · · · · · · · · · · · · · · ·								
化合物 I -	化	合物	CM	PΙ	TEA	T	HF	時	間	カラ.	4	生成物	収量
b13:g		1:	٤	3	m l	n	n l	h	r	溶媒	:	ļ	g
	i i	g	·										
0.37	0	. 3	0.	3 3	0.3		4	1	4	MC: M	: N	I - c	0.5
		4			8				İ	50:	1:	3 6	8
									- 1	0.	1		
工程4a													
化合物		TI	r A	CF	I ₂ Cl ₂	Di-	寺間		力	ラム	4	又量	HPLC
I-c36		m	1		m l	m	i n		Ť	容媒		g	min
0.49		- 2	2		4		3 0	1	MС	: M : N	0.	3 1	23.4
			. 1					3	0:	1:0.			
		Ì								1	_		
EI-MS	(M+)) : 5	70										
1H-NMI	R (C	DC	l ₃)	: δ	0.72	(2	2H,	d,	J =	6. 9 H	z) 、	0.83	2 (1H,
d, $J=6$. 6 H	(z),	Õ.	92-	-0.96	(3	H, r	n)	. 1	. 19 (3	3 H, s	s), 1.	22 (6
H, s).	1. 3	7 (3 H,	s),	1.38	(6	Н,	s)	、2	2-2.	4 (lH, m)	. 2. 5

 $^{1}H-NMR (CDCl_{3}) : \delta = 0.72 (2H, d, J=6.9Hz) . 0.82 (1H, d, J=6.6Hz) . 0.92-0.96 (3H, m) . 1.19 (3H, s) . 1.22 (6H, s) . 1.37 (3H, s) . 1.38 (6H, s) . 2.2-2.4 (1H, m) . 2.5-3.0 (32/5H, m) . 3.17 (3/5H, dd, J=4.9, 13.9Hz) . 3.61 (3/5H, br) . 3.82 (2/5H, br) . 3.96 (3/5H, d, J=10.9Hz) . 4.3-4.6 (7/5H, m) . 5.25 (1/3H, s) . 5.41 (1/3H, br) . 5.48 (2/3H, s) . 6.03 (2/3H, br) . 6.6-6.8 (2H, m) . 6.9-7.2 (5H, m) . 9.00 (1H, d, J=7.9Hz)$

表D-43

実施例64

Phe (4-F) -N-Me-Val-N-Me-Tyr (3-tBu) -NH CH₂SO₂CH₃の合成

R	3 1		R	3 2				R_{33}			R 34		
I-	I			е				Ме		C	H ₂ S	02	CH ₃
工程1													
化合物	化合物	CM	PI	TE.	A T	`HF		時間	カ	ラム	生成	物	収量
T17:	V1:	8	3	m l	1	m l		hr	溶	媒			g
g	g												
0.840	0.782	0.7	53	0.82	2	10	1	15		H:MC	I-a	14	1.200
					<u> </u>				3::	2:2			
工程2													
化合物	Pd (O	H) 2	. M ∈	OH	時	間	7	カラム溶	媒	生成	物		収量
I-al4: g	: 8	3	n	n 1	h	r				-			g
1.100	0.15	0	30	0.00	2			精製せて	ず	I-b1	l 4		0.850
工程3		•											
化合物 I	化合物	C	MPI	TI	EΑ	THI	F	時間	カラ	ラム	生成	物	収量
I-b14: g	: g		g	m	1	m l		hr	溶	媒			g
0.850	0.710	0	.572	0.	62	10.00	0	17	EA:H	:MC	I-c3	37	1.020
				<u> </u>					1::	l:1			
工程4a													
化合物	Pd (OH	() 2	MeC	HC	時間			カラム		収量	it _	Н	PLC
I-c37: g	: g		m l		h r	·		溶媒		g		I	nin
1.020	0.150		30.0	00	2		M	C : M	: H	0.53	30		20.2
								15:1:2					
FI-MS	$(M^+) \cdot 69$	<u> </u>											

 $E I - MS (M^{+}) : 620$

 1 H-NMR (CDCl₃): (two rotamers) δ 0.78(3H, dd, J=6.6, 12.1Hz), 0.91(3H, dd, J=6.6, 11.2Hz), 1.26 and 1.35(9H, s), 2.00(3H,s), 2.55, 2.63, 2.75, 2.84, 2.99 and 3.16(8H,s), 2.21 \sim 5.30(11H, m), 6.43 and 6.55(1H, d, J=7.9Hz), 6.76 \sim 7.13(6H, m)

スキーム 2 に従って合成された化合物の各実施例を、表D-44 4 \sim D-66 に示した。

表D-44

実施例 6 5

2-(2-Tミノー3-(4-T)ルオロフェニル)プロピルアミノ)-N-(2-(3-t)ert-T) では、-1-T に、-1-T では、-1-T に、-1-T では、-1-T に、-1-T に、-1-T に、-1-T に、-1-T に、-1-T に、-1-T に、-1-T に、-1-T に、-1-T に、-1-T

実施例65-78の一般構造式

$$\begin{array}{c|c} F & OH \\ \hline & H_2N & N & R' \\ \hline & H_{33} & O \\ \hline & H_{33} & R' \\ \end{array}$$

R	3 2	F	2 3 3		R'.]		
F	I	N	Лe	(CONH	2		
工程 1								
化合物	化合物	CMP	TEA	THF	時間	カラム	生成物	収量
T4:g	V4:g	I:g	m l	m l	hr	溶媒		g
5. 78	6.97	7.08	8.05	115	1 9	EA:H	I-d1	9.50
						1:1		
¹ H-NMF	R (CDC I	₃) : δ	0.63,	0.74,	0.8	9 and	0.94	(tota
1 6 H,	d, $J=6$.	6 - 6.	9 H z),	1.36	and	1. 39	(tota	1 9 H,
s), 1.	90-2.	04 (1H,	m), 2.	80 - 3	3. 38	(2H, m)), 2.9	6 and
3.04(total	3H, s)	, 4. 14	-4. 2	2 (1/	2H, m)	, 4. 40	-4.50
(1/2 H,	, m), 4.	60 - 4.	70 (1)	∕2H, n	n), 4	. 88 - 5.	40 (1	1/2H,
m), 5.	88 (1/:	2 H, br	s), 6. 4	49 (1/	′2H,	d, J=7.	9 H z) ,	6. 58
(1/2H,	d, J=7	'. 9 H z)	, 6.87	(1 H,	d, J =	7. 9Hz), 7.0	2 - 7.1
4 (1H, 1	m), 7. 3	30-7.4	0 (5H,	m)				
工程 2		- 8-						
化合物	P d -	C MeC	OH 時	間	粗生	戍物Ⅰ-e ∶	Lを、精製せ	ずに
I-d1:	g g	m	l h	r	工程3	で用いた		
4. 23	0.5	0 10	0 :	2				

表D-45

実施例65 (続き)

ル)	ーN-メチル-	3-メチルブタナミ	ドの合成
----	---------	-----------	------

工程3								
化合物 I	化合物	NaBH ₃ CN	AcOH	MeOH	時間	カラム	生成物	収量
<u>-е 1</u>	P5:g	g	m l	m l	hr	溶媒	1.00.00	σ
工程2の	2. 37	1.16	1. 0	9 0	1	EA:H	I - fI	2 0
粗生成物			1		_	1:1		2. 0
E 7 366	(2.4.1)			<u> </u>	L			, ,

 $E I - MS (M^{+}) : 600$

 $^{1}H-NMR$ (CDCl₃): δ 0. 86 and 1. 02 (total 6H, d, J=6. 6-6. 9Hz), 1. 31, 1. 35, 1. 37 and 1. 43 (total 18 H, s), 1. 56-1. 80 (3H, m), 2. 58-3. 20 (7H, m), 3. 56-3. 66 (1H, m), 4. 51 (1H, d, J=8. 6Hz), 5. 28 (1H, brs), 5. 58-5. 68 (1H, m), 5. 93 (1H, brs), 6. 53 (1H, d, J=8. 2Hz), 6. 82-7. 22 (7H, m)

工程7

/LAAM T	TEA	OII OI	nd mm	T		
化合物 I -	I P A	CH_2Cl_2	時間	カラム	収量	HPLC
f1:mg	-m 1		١,	•	~=	111 20
1 1 . III g	ml	m l	nr	溶媒	mg	min
360	2	0	2 5			
1 300	3	3	0.5	MC:M:N	275	17.8
1				10 10 1)
1	ľ			1 10:1:0.1		

 $EI - MS (M^{+}) : 500$

 $^{1}H-NMR \; (CDC1_{3}) \; : \delta \quad 0. \; 47, \; 0. \; 67, \; 0. \; 92 \; and \; 0. \; 95 \; (totall 6H, d, J=6. \; 3-6. \; 6Hz) \; , \; 1. \; 38 \; (9H, s) \; , \; 1. \; 64-1. \; 80 \; (2H, m) \; , \; 1. \; 97 \; (1H, dd, J=5. \; 3, \; 11. \; 6Hz) \; , \; 2. \; 28 \; (1H, dd, J=9. \; 2, \; 13. \; 5Hz) \; , \; 2. \; 72 \; (1H, dd, J=4. \; 0, \; 13. \; 5Hz) \; , \; 2. \; 80-3. \; 02 \; (3H, m) \; , \; 2. \; 94 \; (3H, s) \; , \; 3. \; 18 \; (1H, dd, J=5. \; 8, \; 14. \; 5Hz) \; , \; 5. \; 31 \; (1H, brs) \; , \; 5. \; 55 \; (1H, dd, J=5. \; 9, \; 10. \; 9Hz) \; , \; 6. \; 00 \; (1H, brs) \; , \; 6. \; 59 \; (1H, d, J=8. \; 2Hz) \; , \; 6. \; 89 \; (1H, dd, J=1. \; 9, 8. \; 2Hz) \; , \; 6. \; 97 \; (2H, t, J=8. \; 2Hz) \; , \; 7. \; 11 \; (2H, t, J=8. \; 2Hz) \; , \; 7. \; 11 \; (1H, d, J=1. \; 9Hz) \; , \; 7. \; 11 \; (1H, d, J=1. \; 9Hz) \; , \; 7. \; 11 \; (1H, d, J=1. \; 9Hz) \; , \; 7. \; 11 \; (1H, d, J=1. \; 9Hz) \; , \; 7. \; 11 \; (1H, d, J=1. \; 9Hz) \; , \; 7. \; 11 \; (1H, d, J=1. \; 9Hz) \; , \; 7. \; 11 \; (1H, d, J=1. \; 9Hz) \; , \; 7. \; 11 \; (1H, d, J=1. \; 9Hz) \; , \; 7. \; 11 \; (1H, d, J=1. \; 9Hz) \; , \; 7. \; 11 \; (2H, t, J=8. \; 2Hz) \; , \; 7. \; 11 \; (1H, d, J=1. \; 9Hz) \; , \; 11 \; (1H, d, J=1. \; 9Hz) \; , \; 11 \; (1H, d, J=1. \; 9Hz) \; , \; 11 \; (1H, d, J=1. \; 9Hz) \; , \; 11 \; (1H, d, J=1. \; 9Hz) \; , \; 11 \; (1H, d, J=1. \; 9Hz) \; , \; 11 \; (1H, d, J=1. \; 9Hz) \; , \; 11 \; (1H, d, J=1. \; 9Hz) \; , \; 11 \; (1H, d, J=1. \; 9Hz) \; , \; 11 \; (1H, d, J=1. \; 9Hz) \; , \; 11 \; (1H$

表D-46

実施例66

2-(2-アミノ-3-(4-フルオロフェニル)-N-メチルプロピルアミノ)-N-(2-(3-tert-ブチル-4-ヒドロキシフェニル)-1-カルバモイルエチル)-N-メチル-3-メチルブタナミドの合成

P		T D			=			
R ₃₂		R 3 3			R'			
M e		M e		C(2HNC			
工程4								
化合物 I -	нсно	1 3 1	AcOH	MeOH	時間	カラム	生成物	収量
f1:mg	m l	mg	m l	m l	h	溶媒		mg
530	0.38	117	0.1	8	0.5	H : A	I-g	5 3 2
			0			1 : 1	1	
$^{1}H-NMR$	(CDC	$(3):\delta$ 0.	76. (7.8	and	0 9 1	(t o t	2 1 6
H, d , $J=$	5. $2-6$	5. 6Hz) 1	. 37	and 1	38 ((tota	1 101	/ o L
11.56-1.	. 10 (4	łH, m) .l.	94 - 2	. 30 (2	(H m)	2 10	and	2 0
9 (tota	1 3 H.	s),2.6(0 - 3 = 2	· 0 0 (2	m) 3	, 2 . 4 3	2 76	4. 0
m),4.38	and	4. 62 (t	otai	1 H 6	, 1117,0 I I— Q	. 50 -	3. / b	(TH,
30 (1H. 1	m) .5.	64-5.72	(1 H r	n) 6 (1, J-0 17 (11), 5. Z	2-5.
62 (1H. r	m) 6. 9	94-7.12	(6H n	n) , o . (, , (11	i, Dis),0.5	2-6.
工程7	,		(011, 1	11/				
化合物 I -	TFA	CH,Cl,	時間		= 1	1 (1)	7 🗐 📗	
g1:mg	m l	m l	h r		ラム	i		IPLC
465	4	4			容媒			min
400	-	4	1		: M : N		80 2	21.5
EAR-MC	. 5 1 5 7	()() () ()		10:	1:0.1			
FAB-MS	: 2 1 2 ((M+H+)						
II-IVMK		δ): δ 0.	14, 0.	83, 0	. 89	and	1.01	(tot
al on,	a, j=0	3 - 6.6	Hz),	1.40	and	1. 43	(tota	al 9
11, 5), 1.	84-2	. 18 (2H,	m), 2	. 10 (;	3 H. s)	. 2. 3	8 - 2 + 3	50 (1)
н, m), 2.	60 - 3	3.04 (3H)	m) , ;	2.91	and	3. 06	(tota	1 2
\mathbf{H} , \mathbf{S}), 3 .	18 - 3	. 30 and	1 3.5	8 - 3.6	66 (to	tal	3 H m)	- 7 +
70 and	5. 61	(total	1 H, (dd, J=	4.3 -	5. 0.	10.91	12)
o. oo ar	na 6.	69 (tot	al II	I. d. J	= 7.9	H2).	6 92	and
o. 96 (fc	tal	1H, dd, J	=1.3	, 7.9F	Iz), 7	. 04-	7.34	(5 H.
m)							- -	,

表D-47

実施例67

2-(N-アセチル-2-アミノ-3-(4-フルオロフェニル) プロピルアミノ) -N-(2-(3-tert-ブチル-4-ヒドロキシフェニル) -1-カルバモイルエチル) -N-メチル-3-メチルブタナミドの合成

R 3	2	R ₃	3		R	, 					
A c		M e				NH,					
工程 5			7			2					
化合物 I -	Ac ₂ O	DMAP	ピリジ	ンド	指	カラム	生成物	収量			
f1:mg	m l	mg	m l								
451	3	42.9	5	1	. 5	EA:H	I - h 1	306			
177						1:1		İ			
¹ H-NMR	(CDC1 ₃	$):\delta 0$	13,	0.6	0 a	nd 0.8	7 (tot	a 1 6			
$ \Pi, \Omega, J =$	6.3-6.	6H2),	1.23	3. 1.	2.6	1 32 27	1 1 2	6 (+ -			
lai 18.	tal $18H$, 8), $2.06-2.30$ ($3H$, m) $2.15.2.16.2 pd. 3.16$										
	31 (total 6H, s), 2. 48 (1H, dd, J=7. 9, 13. 2Hz), 2. 7										
14-2.94	4-2.94(2H, m), 3.05 and 3.07(total 3H a) 2 and										
] - 3. 42 (-3. 42 (2H, m), 3. 88-4. 00 (1H, m), 4. 88 (1H, d, J=8. 6 Hz), 5. 08-5. 42 (3H, m), 6. 31 (1H, brs), 6. 92 (2H, d,										
J112), S.	U 0 - 5. 4	· Z (3H,	m), 6	. 31	(1 H.	hre) 6	99 (2)	ᄄᇻᅥ			
J=8.2H: 工程6	2), 6. 9	8 (ZH,	a, J =	8. 21	Hz),	7.08-7	. 26 (31	I, m)			
化合物 I —	NI - OII			24.00							
h1:mg	NaOH	Med		時間		カラム	生成物	収量			
412	m l	m		hr		溶媒		mg			
412	1	4		1]	EA:H	I — i 1	3 4 1			
1 LI NIMED	(CDCI)					1:1					
$^{1}H-NMR$	$(CDCL^3)$	$: \delta = 0.$	05,	0.11	, 0.	52 and	0.61	(tot			
21 1011, (al 6H, d, J=6. 3-6. 9Hz), 1. 36, 1. 37 and 1. 42 (tot										
al 18H, s), 1. 70 and 2. 05 (total 3H, s), 2. 00-2. 42 (2H, m), 2. 80-3. 40 (5H, m), 3. 04 and 3. 07 (total											
1 3H. s)	u, 4. 8	0-3.4	U (5H	, m),	3. (04 and	3. 07 (1	tota			
, -,	, 3. 04	-3.88	(1H,	m), 4	1. 76	3 - 5.32	(5 H, m),	5. 9			
m)	(1H, brs), 6. 56 $(1H, d, J=8.2Hz)$, 6. $88-7.30$ $(6H, brs)$										
/				··-			·				

実施例67 (続き)

2-(N-アセチル-2-アミノ-3-(4-フルオロフェニル) プロピルアミノ) -N-(2-(3-tert-ブチル-4-ヒドロキシフェニル) -1-カルバモイルエチル) -N-メチル-3-メチルブタナミドの合成

工程7						
化合物 I - i 1	TFA	CH_2CI_2	時間	カラム	収量	HPLC
mg	ml	m l	hr	溶媒	m g	min
3 3 0	3	2	0.5	CH:M	210	23.4
				10:1		

¹H-NMR (CDC1₃): δ 0. 31, 0. 69, 0. 81 and 0. 86 (total 6H, d, J=6. 3-7. 0Hz), 1. 38 (9H, s), 1. 78-1. 86 (1H, m), 1. 85 (3H, s), 2. 5-2. 94 (3H, m), 3. 05 and 3. 07 (total 3H, s), 3. 04-3. 30 (1H, m), 3. 50-3. 84 (2H, m), 4. 10 and 4. 40 (total 1H, brs), 4. 63 and 4. 66 (total 1H, brs), 5. 06 (1H, d, J=10. 2Hz), 5. 16-5. 32 (2H, m), 6. 54 and 6. 65 (total 1H, d, J=7. 9-8. 2Hz), 6. 80 and 6. 93 (total 1H, dd, J=1. 5-2. 0, 7. 9-8. 2Hz), 6. 98-7. 14 (5H, m)

実施例68

R		T			D.'			
F			R ₃₃	 	R'			
工程1	1		<u> </u>		CONH	2		
	//- O s/		,					
化合物	化合物	CMPI	TEA	THF	時間	カラム	生成物	収量
T7:g	V4:g	g	m l	m l	hr	溶媒		g
1.01	1. 25	1. 27	1. 23	10	19	EA:H	I-d2	0.7
						1:1		_
¹ H-NMR	(CDCI	$_3)$: δ	0.72,	0.87,	0.9	2 and	0. 9.5	(+ 0 +
lai on,	α , $\beta = 0$	-6.6	9 H z) .	1. 14	-13	(3 H	m) 1	27
mu 1. 3		al 9E	l, s). 1	. 86-	1 9 8	(1H m) 2 7	6 /1 /
j TII, uu,	J — O. O	, I J. 8	Hz), 3	. 12 (3 / 4 H	1 66	- 7 0	12 0
Hz), 3.	24 - 3.	56 (3H	(, m) . 4	$\frac{1}{20}$	and.	1, aa, j 1 33 <i>(</i>	-1. 9,	13.9
dd, $J=6$	6 - 8.	6.8.9	Hz) 4	60	and	4, 33 (total	1 H,
t, J = 7.	2 - 7.6	H_2) 5	02-5	20 /	a 11 u 7 / 2 i i	4. / I (total	1H,
J=8. 6H	12) 6	26 (1/	. 02 0	. 20 (· / Z II	., m) , 5	. 36 (11	H, d,
1 H d 1	= 7 0 -	20 (1)	211, 01	5), 0.	54	and 6.	. 58 (to	otal
1H, d, J	7. J	7112	7, 0. 8	4-6.	92 (t	otal	1 H, m),	7. 0
8 (1 H, d 工程 2	, <u>J — 1.</u>	/HZ),	7. 20-	7. 40	(5H,	m)		
	-			·				
化合物	Pd-0	C Me C	H H 時間	- 1	粗生质	艾物 I - e 2	を、精製せ	ず
I-d2:g		m l	h	r l		で用いた		· .
0.62	0.10) 12	1					

実施例68 (続き)

2-(2-アミノ-3-(4-フルオロフェニル) プロピルアミノ) -N-(2-(3-tert-ブチル-4-ヒドロキシフェニル) -1-カルバモイルエチル) -N-エチル-3-メチルブタナミドの合成

工程3								
化合物I	化合物	NaBH ₃ CN	AcOH	MeOH	時間	カラム	生成物	収量
- e 2	P5:mg	mg	m l	m l	hr	溶媒		mg
工程2の	400	124	0.4	1 0	1	EA:H	I - f 2	2 9
粗生成物						1:1		8

工程7						
化合物 I - f 2	TFA	CH ₂ Cl ₂	時間	カラム	収量	HPLC
mg	m l	ml	hr	溶媒	mg	min
3 3 1	2	3	0.5	MC:M	234	19.7
	1			20:1	ļ	

 $EI-MS(M^{+}):514$

 $^{1}H-NMR$ (CDCl₃): δ 0.56, 0.75, 0.94 and 0.96 (total al 6H, d, J=6.6-6.9Hz), 1.17 and 1.26 (total 3 H, t, J=6.9-7.3Hz), 1.38 (9H, s), 1.50-1.80 (2H, m), 1.98 (1H, dd, J=8.6, 11.2Hz), 2.20-2.50 (2H, m), 2.71 (1H, dd, J=3.8, 13.2Hz), 2.88-3.50 (5H, m), 4.54-4.62 and 4.94-5.02 (1H, m), 5.21 and 6.40 (total 1H, brs), 6.58 (1H, d, J=8.2Hz), 6.82-7.18 (6H, m)

表D-51

実施例 6 9

2-(2-アミノ-3-(4-フルオロフェニル) プロピルアミノ) -N-(2-(3-tert-ブチル-4-ヒドロキシフェニル) <math>-1-ヒドロキシメチル エチル) -3-メチルブタナミドの合成

D		7						
	3 2	<u>-</u>	R 3 3		R'			
	<u> </u>		H		CH_2OI	-I		
工程1		•						
化合物工	化合物	CMPI	TEA	THF	時間	カラム	生成物	物 収量
19:g	V4:g	g	m l	m l	hr	溶媒	1	g
1. 2	1.62	1.65	1.8	5 0	1. 5	EA: H	I - d	
					1 1	1 - 1		
1H-NMF	(CDC	l ₃) : δ	0.81	(3H.	brd.	I = 6	Ha)	0.91(3
11, U, J -	-о. од:	2), l. :	38 (9H	, s).	2.0-2	2 (1)	LI m)	2 40 (1
H, brs)	, 2. 6-	-2.9(2	2 H. m)	. 3. 5	-3 7 (2 H m	2 0	2. 49 (1 2 (1H, d
d, $J = 5$.	, 7. 9	Hz), 5.	11 (2	H. s)	5 1 -	_ 5 2	', а. у (? ш ~ `	$\frac{2}{6}$, 6. 09
(1H, b)	d, $J=7$	7. 6Hz)	. 6. 5	7 (1 H	, 0. I =	7 QH	(4П, III) 2) С	0.09
dd, J=3	1.3,7.	9 H z) .	7. 0.4	(1H	d 1=	1 2 LT a	2), O.	80 (IH,
s)		- , ,			u, j —	1. 3112	,,,,,	30 (5H,
工程2					_			
化合物I一c	13 Pd	-C Me	OHIB	寺間	カラム溶	5.6H	4	
g	g	1	. 1	n r	カノム海	採	生成物	収量
2. 2	$\frac{1}{0}$			1 2	*主告: 12.~	12	-	g
			0 5 7	(277	精製せる	9	I — e 3	1. 6
$^{1}H - NMR$ d. $I = 6$	9H2)	3/.0	O. 57	(3H,	a, j=6	. 6 H z), 0.8	39 (3H,
d, $J = 6$.	0 1 2	1. 50 (3D, S)	, Z ^ (177	1-2.3	(1H, n	1) , 2 .	68 (1H,
dd, J = 8	d I — 2	. 3 H Z)	, 2. 8) (1H,	dd, J=	= 6.3,	13.9I	$\exists z$), 3.
23 (1H, 75 (1H	\mathbf{d} , $\mathbf{J} = \mathbf{S}$. OHZ)	, 3. b2	2 (1H,	dd, J=	=6.3,	10.91	$\exists z)$, \exists .
75 (1H, H. brs)	6 6 1	-3. U, 1	. U. 9 A	Z), 4	0-4.	2 (1 H	, m) , 5	5. 45 (1
H, brs)	7 05	(III, C	1, J = I	. 9Hz), 6. 9	0 (1H	, dd, J	= 2.0,
7. 9 H z) z)	, ,, , ,	(II, Q	, j = 2.	UHZ)	, 7. 5	5 (1H,	brd,	I=6.6H
	-							

実施例69 (続き)

2-(2-アミノ-3-(4-フルオロフェニル) プロピルアミノ) -N-(2-(3-tert-ブチル-4-ヒドロキシフェニル) -1-ヒドロキシメチルエチル) -3-メチルブタナミドの合成

工程3								
化合物 I -e 3: g	化合物 P5:g	NaBH ₃ CN	AcOH m l	MeOH m l	時間 h r	カラム 溶媒	生成物	.収量 g
0.8	0.8	0.33	0. 2	25	1. 5	CH:M:N 300:1	I - f	1. 0
1H-NMF	(CDC) . 8 0	60 (0:1		

 1 H-NMR (CDCl₃): δ 0. 69 (3H, brd, J=5. 9Hz), 0. 81 (3H, d, J=6. 9Hz), 1. 38 (9H, s), 1. 42 (9H, s), 1. 8-2. 0 (1H, m), 2. 35-3. 0 (6H, m), 3. 0-3. 2 (1H, m), 3. 5-3. 9 (3H, m), 4. 1-4. 3 (1H, m), 4. 5-4. 7 (1H, m), 5. 47 (1H, br brd, J=7. 6Hz)

化合物	TFA	CH CI	0+88	T		
I-f3:g		CH ₂ Cl ₂	時間	カラム	収量	HPLC
1 1 3 · g	m l	m l	hr	溶媒	g	min
0.3	0.5	5	1 0	CH:M:N	0.21	17 7
				200:10:	0. 21	11. 1
				1		
1H-NMD (C)	D O I \			I		

 $\begin{array}{c} ^{1}H-NMR\;(CDC\,l_{\,3})\;:0.\;\;7\;2\;(3H,\;d,\;J=6.\;\;9Hz)\;,\;0.\;\;8\;3\;(3H,\;d,\;J=6.\;\;9Hz)\;,\;1.\;\;3\;8\;(9H,\;s)\;,\;1.\;\;8-2.\;\;0\;(1H,\;m)\;,\;\;2.\;\;4-2.\;\;9\;(7H,\;m)\;,\;2.\;\;9-3.\;\;1\;(1H,\;m)\;,\;3.\;\;5\;0\;(1H,\;dd,\;J=4.\;\;6,\;1\;1.\;\;6Hz)\;,\;3.\;\\ 6\;6\;(1H,\;dd,\;J=3.\;\;0,\;1\;1.\;\;6Hz)\;,\;4.\;\;1-4.\;\;3\;(1H,\;m)\;,\;6.\;\;6\;0\;(1H,\;dd,\;J=7.\;\;9Hz)\;,\;6.\;\;9\;2\;(1H,\;dd,\;J=1.\;\;7,\;7.\;\;9Hz)\;,\;7.\;\;0-7.\;\;2\;(6H,\;m)\;,\;7.\;\;3\;5\;(1H,\;brd,\;J=8.\;\;3Hz)$

表D-53

実施例70

2-(2-アミノ-3-(4-フルオロフェニル)-N-メチルプロピルアミノ)-N-(2-(3-tert-ブチル-4-ヒドロキシフェニル)-1-ヒドロキシメチルエチル)-3-メチルブタナミドの合成

R	3 2	R ₃	3	Ī.						
M	e	H		(CH,OI	H				
工程4										
化合物 I	нсно	NaBH ₃ CN	AcOH	MeOH	時間	カラ	<u></u>	生成物	収量g	
- f 3:	m l	g	m l	m l	hr	溶媒		1 1/2/1/	W#2 6	
g						'-~	•			
0.34	0.23	0.077	0.0	6	1.	CH: M	1 : N	I-g	0.3	
]			7		5	, , - ,				
						0:		٠		
1H-NMI	R (CDC)	$_3):\delta$. 82 (3H, d	J = 0	5. 3 H 2	z),	0.94	(3H.	
d, $J=6$.	6Hz),	1. 37 (9	H, s)	, 1. 4	1 (9 H	(, s).	2. 0	6 (3H.	s).	
2.1 - 2.	. 6 (4H,	m), 2.	70 (1 F	H, dd,	J = 8.	9.14	4. 2	H2)	2 8 -	
3. 0 (2)	H, m), 3	3. 5-3. 8	3 (3H,	m), 4.	2 - 4	. 5 (2	H. m	i) . 5.	62 (1	
H, brs)	, 6.4-	-6. 6 (1F	I, m),	6.62	(1H,	d, J =	7. 9	Hz).	6. 9-	
7. 2 (61	H, m)				,	•	. •	,	· · ·	
工程7										

工1 注 1						
化合物	TFA	CH ₂ Cl ₂	時間	カラム溶媒	収量	HPLC
I-g3:g	m l	m l	hr		g	min
0.3	0.5	5	1 0	CH:M:N	0.17	20.1
1			1	200:10:1		

 $EI - MS (M^{+}) : 487$

 $^{1}H-NMR \; (CDC1_{3}) \; :0. \; 79 \; (3H, \; d, \; J=6. \; 6Hz) \; , \; 0. \; 94 \; (3H, \; d, \; J=6. \; 6Hz) \; , \; 1. \; 39 \; (9H, \; s) \; , \; 1. \; 9-2. \; 2 \; (1H, \; m) \; , \; 2. \; 22 \; (3H, \; s) \; , \; 2. \; 2-2. \; 4 \; (3H, \; m) \; , \; 2. \; 51 \; (1H, \; d, \; J=8. \; 9Hz) \; , \; 2. \; 6-2. \; 8 \; (2H, \; m) \; , \; 2. \; 87 \; (1H, \; dd, \; J=6. \; 6, \; 14. \; 2Hz) \; , \; 3. \; 0-3. \; 2 \; (1H, \; m) \; , \; 3. \; 57 \; (1H, \; dd, \; J=5. \; 3, \; 10. \; 9Hz) \; , \; 3. \; 72 \; (1H, \; dd, \; J=3. \; 6, \; 10. \; 9Hz) \; , \; 4. \; 1-4. \; 3 \; (1H, \; m) \; , \; 6. \; 19 \; (1H, \; brd, \; J=7. \; 3Hz) \; , \; 6. \; 63 \; (1H, \; d, \; J=7. \; 9Hz) \; , \; 6. \; 89 \; (1H, \; dd, \; J=1. \; 7, \; 7. \; 9Hz) \; , \; 6. \; 98 \; (2H, \; t, \; J=8. \; 6Hz) \; , \; 7. \; 0-7. \; 2 \; (3H, \; m) \;$

表D-54

実施例71

2-(2-アミノ-3-(4-フルオロフェニル) プロピルアミノ) -N-(2-(3-tert-ブチル-4-ヒドロキシフェニル) -1-メチルエチル) -N-メチル-3-メチルブタナミドの合成

R	3 2		R 3 3		R'			
	-I		Ме		Ме			
工程1								
化合物T	化合物	CMPI	TEA	カラム	生成物	収量		
20:g	V4:g	g	m l	m l	hr	溶媒		g
1.62	2. 22	2. 25	2.46	3 6	1 6	EA:1	H I-d	2. 7
			<u> </u>			1:1		4
			0.67,					5 (tot
al 6H	d, J =	6.6 - 6	. 9 Hz),	1. 08	an	d 1.	20 (to	tal 3
H, d, J:	= 6.6 - 6	5. 9 Hz)	, 1. 37	a n d	1. 3	9 (to	tal 91	H, s),
1.88-	2.02(lH, m),	2.60-	2. 90	(2H,	m), 2	. 89 (31	H, d, J
= 3.3H	z), 4. 3	30-4.	46 (1H,	m), 4.	90-	5.00	(1 H, m)	, 5. 0
7 (2H,	s), 6.	48 an	d 6.59	(tot	a l	1H, d,	J = 7.9	Hz),
6. 78-	6.88 (I	lH, m),	7.00-	7.08	(1H,	m), 7.	30-7	40 (5
H, m)								
工程2								
化合物		d-C	МеОН	時間	カラ	ム溶媒	生成物	収量
I-d4		g	m l	hr				g
2. 6	8 0	. 25	5 0	1 8	M	C : M	I – e 4	1. 35
			•			0:1		
¹ H-NMR	(CDC)	₃) : δ	0.68,0	. 85,	0.9	and	0. 9 9	(tota
l 6H, d, $J=6.6-6.9Hz$), l. 11 and l. 24 (total 3H,								
d, $J=6$.	6 H z) ,	1.88-	-2.04 (1H, m)	, 2.	58 - 2	. 70 (2 F	I, m),
2.83	and 2.	91 (t	otal 3	3H, s)	, 3.	56 - 3.	64 (1F	I, m),
3. 95	and 4	. 99 (t	otal	1H, d	dd, i	f = 6.6	6. 9.	7. 6 H
z), 6.	62 and	6.67	7 (tota	I 1H.	d. I	= 7.91	H2) 6	77 a

nd 6.88 (total 1H, dd, J=1.7, 7.9Hz), 6.98 and

7. 02 (total 1H, d, J=1.7Hz)

表D-55

実施例71 (続き)

2-(2-アミノ-3-(4-フルオロフェニル) プロピルアミノ) -N-(2-(3-tert-ブチル-4-ヒドロキシフェニル) -1-メチルエチル) -

N-メチル-3-メチルブタナミドの合成

工程3								
化合物 I - e 4: g	化合物 P5:g	NaBH₃CN m g	AcOH m l	MeOH m l	時間 h r	カラム 溶媒	生成物	収量g
1. 26	1. 58	5 2 1	0. 45 3	4 0	1	EA: H 1:4	I – f 4	1. 5

 $^{1}H-NMR$ (CDCl₃): δ 0.74, 0.85 and 0.99 (total 6 H, d, J=6.6-6.9Hz), 1.16 (3H, d, J=6.9Hz), 1.30, 1.41 and 1.44 (total 18H, s), 1.50-1.70 (3H, m), 2.36-2.90 (7H, m), 3.52-3.68 (1H, m), 4.54-4.64 (1H, m), 5.22-5.38 (1H, m), 6.51 and 6.60 (total 1H, d, J=7.9Hz), 6.80-7.20 (6H, m)

工程7

化合物 I - f 4:	TFA	CH ₂ Cl ₂	時間	カラム	収量	HPLC
m g	m l	m l	hr	溶媒	mg	min
3 3 0	2	3	0.5	CH:M:N	224	20.8
				10:1:0.		
				1	1	,

 $EI-MS(M^{+}):471$

 $^{1}H-NMR$ (CDCl₃): δ 0.80,0.91 and 0.92 (total 6 H, d, J=6.6Hz), 1.15 (3H, d, J=6.9Hz), 1.38 and 1.41 (total 9H, s), 1.64-2.04 (4H, m), 2.28-3.14 (5 H, m), 2.79 and 2.92 (total 3H, s), 3.90-4.02 and 5.10-5.24 (total 1H, m), 6.62 and 6.65 (total 1H, d, J=7.4-7.6Hz), 6.74-7.20 (6H, m)

実施例 7 2

2-(2-アミノ-3-(4-フルオロフェニル)-N-メチルプロピルアミノ)-N-(2-(3-tert-ブチル-4-ヒドロキシフェニル)-1-メチルエチル)-N-メチル-3-メチルブタナミドの合成

R ₃₂ R ₃₃ R'											
R	3 2		R ₃						ļ		•
M e M e							Mе		<u> </u>		
工程4											
化合物 I	HC	HO	NaBH ₃ CN	AcOH	MeC)H	時間	カラ		生成物	収量
- f 4:	m	1	mg	m l	m	!	h	溶	楳	1	mg
g											
5 2 0	0.	3 9	120	0.10	9		0.	H:	EΑ	I-g	404
				5		İ	5	2:	1	4	
¹ H-NMI	R (C	DC I	$_{3}$) : δ 0	. 28, 0). 74	, (0.81	ar	ı d	0.91	(tot
al 6H	, d,	J=6	3 - 6.	6 H z) ,	1. 1	7	and	1.	2 1	(tot	al 3
H, d, J	= 6.	6 - (6. 9 H z)	, 1. 3	7 a	n d	1.	39 (to	tal	18H,
s), 1.	50-	1. 6	0 (1H, r	n), 1.	58 (3 H,	, s),	1.	8 0 -	-2. 52	(4H,
			4 (3H, r								
			4 (1H, r								
2 (8H,											
工程7		· · · · · · · · · · · · · · · · · · ·									
化合物		TF	A CH ₂ C	1 2 1	寺間		カラム	,	4	又量	HPLC
I-g4:	mg	m l	ml	1	n r		溶媒		r	ng	min
<u> </u>										50	0 4 5

 I-g4:mg
 ml
 ml
 hr
 溶媒
 mg
 min

 386
 2
 4
 0.5
 CH:M
 272
 24.5

 10:1
 10:1

 $FAB-MS:486 (M+H^{+})$

 $^{1}\text{H-NMR}$ (CDCl₃): δ 0. 44, 0. 79, 0. 93 and 0. 96 (total 6H, d, J=6. 6-6. 9Hz), 1. 13 and 1. 20 (total 3H, d, J=6. 6-6. 9Hz), 1. 39 and 1. 41 (total 9H, s), 1. 50-1. 98 (3H, m), 2. 04-2. 18 (1H, m), 2. 13 and 2. 30 (total 3H, s), 2. 32-3. 10 (5H, m), 2. 80 and 2. 86 (total 3H, s), 4. 18-4. 28 and 5. 24-5. 36 (total 1H, m), 6. 57 and 6. 61 (total 1H, d, J=7. 9Hz), 6. 72-7. 18 (6H, m)

表D-57

実施例73

2-(N-アセチル-2-アミノ-3-(4-フルオロフェニル) プロピルアミノ) -N-(2-(3-tert-ブチル-4-ヒドロキシフェニル) -1-メチルエチル) -N-メチル-3-メチルブタナミドの合成

R 3 2		F	₹ 3 3		R'	7			
Ac			Ме		Ме	1			
工程 5									
化合物 I - f	Ac ₂ C	DMA	生成物	収量					
4:mg	m l	mg	ml	hr	~ 熔媒		mg		
735	4	1 5	8 6	16.	5 EA: F	I I - h 4	489		
					1:2				
¹ H-NMR (nd 0.86			
al 6H, d	J = 6	3 - 6	6 H z) ,	1. 13	and 1.	15 (tot	al 3		
H, d, $J = 6$. 3 H z), 1.	30, 1. 3	3, 1.	36 and	1. 42 (t	otal		
18H, s), 1.69, 2.08, 2.13 and 2.31 (total 6H, s),									
2.02-2.	2.02-2.84 (5H, m), 2.91 and 2.96 (total 3H, s),								
3.14-3.	40 (2	H, m),	3. 82-	4.04((1H, m),	4.70-5.	28 (2		
H, m), 6.									
工程6									
化合物 I	N	аОН	MeOH	時間	カラム	生成物	収量		
-h4:mg		m l	m l	hr	溶媒		mg		
470		1	6	1	精製せず				
¹ H-NMR (CDCla	δ :	0.11,0	. 12,	0.51 an	d 0.64	(tot		
al 6H, d	J = 5	.9 - 6.	6 H z) ,	1. 09	and 1.	13 (tot	al 3		
H, d, $J = 6.3 - 6.6 Hz$), 1.37, 1.38, 1.40 and 1.43 (to)									
tal 18H	, s),	1.66	and 2	. 03 (total 3	H, s), 2	. 00-		
2. 44 (3H,	m) ,	2.62-	-2. 72 (2	2H, m)	, 2.68 a	and 2.9	2 (to		
tal 3H,	tal 3H, s), 2.88-3.40 (2H, m), 3.72-3.88 (1H, m),								
4.52-5.	32 (2)	H, m),	6.52 - 7	7.34 (7H, m)		-		

実施例73 (続き)

2-(N-アセチル-2-アミノ-3-(4-フルオロフェニル) プロピルアミノ) -N-(2-(3-tert-ブチル-4-ヒドロキシフェニル) -1-メチルエチル) -N-メチル-3-メチルブタナミドの合成

工程7					•	
化合物 I - i 4	TFA	CH ₂ Cl ₂	時間	カラム	収量	HPLC
mg	m l	m l	hr	溶媒	mg	min
3 5 1	2	2	0.5	MC:M:H	2 3 3	27.7
			'	20:1:1		

 1 H-NMR (CDCl₃): δ 0. 27, 0. 69, 0. 83 and 0. 87 (total 6H, d, J=6. 3-6. 9Hz), 1. 11 (3H, d, J=6. 6Hz), 1. 3 9 and 1. 40 (total 9H, s), 1. 78 and 1. 83 (total 3H, s), 1. 80-2. 04 (1H, m), 2. 50-2. 74 (4H, m), 2. 82 and 2. 93 (total 3H, s), 3. 28-3. 64 (2H, m), 4. 00-4. 24 (1H, m), 4. 62 and 4. 74 (total 1H, s), 4. 64-5. 10 (1H, m), 4. 97 and 5. 13 (total 1H, d, J=10. 6-10. 9Hz), 6. 60-7. 18 (7H, m)

実施例74

2-(2-Tミノ-3-(4-T)ルオロフェニル)プロピルアミノ)-N-(2-(3-t)) er t-(3-t) er

R	3 2	R 3 3				R'					
	H	_l		H			Me				
工程1											
化合物	化合物	С	CMPI		ΈA	T	HF	時間	カラム	生成物	収量
T21:g	V4:g	L	g	1	m l	r	nl	hr	溶媒		g
3.000	4.350	4	1.400	6	6.00		80	5	H:EA:MC	I-d5	4.000
= 70.	<u> </u>	<u> </u>							5:1:1		1.000
工程2											
化合物	Pd(OH) ₂ :		MeOH 時間 カラム溶媒			生成物	収量				
I-d5 : g	g		ml		hr						3
4.000	0.400		100		1		МС	:Me:H	I-e5		nd 0.500
								0:1:1			eomers)
工程3					-						
化合物	化合物	Na	BH ₃ CN	Τ.	AcOH	1	MeOH	時間	カラム	生成物	収量g
I-e5 : g	P5:g		g		m l		m l	hr	溶媒		V=6
1.200	1.100	(0.490		0.30	T	30	2	H:EA:MC		0.730
		••••••			***********************		***		3:2:2	I-f5	560
0.480	0.628	(0.207 0.3			10	2	H:EA	j	0.620	
L									1:1		

実施例74 (続き)

2-(2-アミノ-3-(4-フルオロフェニル) プロピルアミノ) -N-(2-(3-tert-ブチル-4-ヒドロキシフェニル) -1-メチルエチル) -2-1-スチルエチル) -1-スチルエチル) -1-スチルエチル) -1-スチルエチル) -1-スチルエチル) -1-スチルエチル) -1-スチルエチル) -1-スチルエチル) -1-スチルエチル) -1-スチルエチル) -1-スチルエチル) -1-スチルエチル

3 -	メチル	<i>ブタ</i> ・	+=1	ドの合成
U	ノ・ノフル		/ - 1	` V

工程7						
化合物 I-f5:g	TFA ml	CH ₂ Cl	時間 h r	カラム 溶媒	収量 g	HPLCmin
0.500	2.00	2	1	MC:M:H 10:1:1	0.320	20.7
0.113	1.00	2	1	CH:M:N 300:10:1	0.063	20.4

収量0.320g (HPLC保持時間20.7min) の化合物について

 $EI-MS(M^{+}):457$

 $^1\,H-N\,M\,R$ (CDCl $_3$) : δ 0.73(3H, d, J=6.9Hz), 0.84(3H,d, J=6.9Hz), 1.08(3H,d, J=6.3Hz), 1.37(9H,s), 1.81~2.00(1H,m), 2.28-2.80(9H,m), 2.90-3.00(1H,m), 4.21~4.38 (1H,m), 6.68(1H, d, J=8.2Hz), 6.83~7.18(6H,m)

収量 0. 063g (HPLC保持時間 20.4min) の化合物について

 $EI-MS(M^{+}):457$

 $^1\,H-N\,M\,R$ (CDCl $_3$): δ 0.88 and 0.92(6H, d, J=6.9Hz), 1.14(3H, d, J=6.6Hz), 1.39(9H, s), 2.00-2.10(1H, m), 2.18-2.44(3H, m), 2.84-2.96(4H, m), 3.63-3.75(1H, m), 4.22-4.31(1H, m), 6..60(1H, d, J=6.8Hz), 6.86-7.26(6H, m)

実施例 7 5

2-((2-アミノ-3-(4-フルオロフェニル) プロピル) -N-メチルア ミノ) -N-(2-(3-tert-ブチル-4-ヒドロキシフェニル) -1- メチルエチル) -3-メチルブタナミドの合成

R ₃	2	R 3 3			R'		ך		
Me		Н			Me		┥		
工程4									
化合物 I	нсно	NaBH ₃ CN	AcOH	MeOH	時間	カ	ラム	生成	収量
I-f5: g	m l	g	m l	ml	hr		· · · · · · · · · · · · · · · · · · ·	物	g
0.400	0.32	0.093	0.30	10	2		A:MC	- "	0.300
	 		******************************			t e	1:1	I-g5	0.000
0.500	0.380	0.118	0.10	9	2	H:E	A:MC		0.320
						2:	1:1		
工程 7					·				
化合物	TFA	CH_2Cl_2	時間)	カラム		収量	at the	HPLC
I-g5: g	m l	m 1	hr	-	溶媒	- 1	g	_	min
0.240	1.00	1	1		C:M:H		0.14	10	23.0
					10:1:1	ŀ	0.14		20.0
0.320	2.00	4	1	C	H:M:N		0.22	6	22.5
収長の 1.4		O / TI the BB O		3	0:10:1			-	

収量 0. 1 4 0 g (HPL C 保持時間 2 3. 0 m i n) の化合物について

 $EI-MS(M^++1):472$

 1 H - NMR(CDC 1 3): δ 0.82(3H, d, J=6.6Hz), 0.93(3H,d, J=6.6Hz), 1.29(3H,d, J=6.3Hz), 1.38(9H,s), 2.03-2.80(11H,m), 2.20(3H,s), 3.00-3.14(1H,m), 4.33~4.40(1H,m), 5.64(1H,d,J=7.7Hz), 6.68(1H,d,J=7.9Hz), 6.87(1H,d,J=7.9Hz), 6.95~7.18(5H,m) 収量 0. 2 2 6 g(HPLC保持時間 2 2.5 min)の化合物について

 $EI - MS (M^{+}) : 471$

 $^1\,H-N\,M\,R$ (C D C l $_3$): δ 0.68 and 0.95(6H, d, J=6.6Hz), 1.15(3H,d, J=6.6Hz), 1.37(9H,s), 2.01-2.17(1H,m), 2.21(3H,s), 2.32-2.49(4H,m), 2.64-2.72(3H,m), 3.08-3.10(1H,m), 4.22-4.32(1H,q,J=2.5Hz), 5.60(1H,d,J=6.8Hz), 6.65 and 6.84(2H,d,J=7.9Hz), 6.94-7.00(3H,dd,J=6.3, 11.2 Hz), 7.13-7.18(2H,m)

実施例76

2-(N-アセチル-2-アミノ-3-(4-フルオロフェニル) プロピルアミノ) -N-(2-(3-tert-ブチル-4-ヒドロキシフェニル) -1-メチルエチル) -3-メチルブタナミドの合成

R			R_{33}				R	,	7			
A	C		H				M	e	\dashv			
工程 5												
化合物	Ac ₂ O	DMA	P	ピリ	ジン	時間	7	カラム		/+ ct: #/m		utra tea
I-f5: g	m l	ml	-1	m		hr		溶媒		生成物	1	収量
0.630	3.00	0.21			50	16				~		g
		1.00		00	10		H:EA:MC 3:2:2		I-h5	- '	0.560	
工程 6		·					1	3:2:2				·
化合物	NaOF	IN	ЛеОН		時間	9		カラム		4115.41		
I-h5 : g	m l		m l		hi	1		溶媒		生成物	4	又量 g
0.540	2.00		4.00		1							
工程7			1.00	1				精製せず		I-i5		0.430
化合物	TFA	CH ₂ C	1	n±	:BB [
I-i5 : g	ml		-	1	間			ラム		収量	HF	LC
0.430		m l		hr				媒		g	m	in
0.430	2.00	2.00)	1		MC:M:H			0.185	2	2.5	
EI-MS (1 0) :	1:1				
$\mathbf{r} - \mathbf{M} \mathbf{S}$	$(M^{+}+1)$ · ϵ	20								1		

 $EI - MS (M^+ + 1) : 500$

 $^{^1\,}H-N\,M\,R$ (CDCl $_3$) : δ 0.70(3H, d, J=5.6Hz), 0.84(3H,d, J=6.6Hz), 1.05(3H,d, J=6.6Hz), 1.37(9H,s), 1.78-1.96(2H,m), 1.90(3H,s), 2.43-2.74(4H,m), 3.07-3.32(2H,m), 3.46-3.56(1H,m), 3.59(1H, d, J=14.5Hz), 4.10-4.72(3H,m), 4.71(2H,s), 6.18-6.22(2H,br), 6.63-6.78(2H,m), 6.95-7.18(5H,m)

表D-63

実施例77

2-((2-P > 1-3-(4-7) + 1-3

R ₃	2		R	3.3					R'					
Me			N	Лe				C	H ₂ OH					•
工程1														
化合物	化合物	С	MPI	ΤE	EA	TI	ΗF		時間	カ	ラム	生成物	7	収量
T23:g	V4:		g	m	1	m	1 1		h r	溶	媒		-	g
	g				}									
0.928	1.470		1.497	1.6	64	3	39		15	H:E	A:M	I-d6	\top	1.170
										2:	3:1	<u> </u>		
工程2														
化合物	Pd-C	;	MeC	H	B	寺間		ナ	ラム溶	媒	生	成物	1	仅量
I-d6: g	g		m l		l	n r								g
1.170	0.220)	25		<u> </u>	1			精製せす	<u> </u>	I	-e6	0	.836
工程3														
化合物 I	化合物		NaBH ₃ C	N	AcOl	H	Me	eОН	時間	力:	ラム	生成物) 1	又量 g
I-e6 : g	P5:g		g	L	m l		n	n l	hr	溶	媒			
0. 836	0.997		0.329		0.28	3	2	25	1	MC:	M:H	I-f6	T	1.200
										15:	1:1			
工程4		_												
化合物I	нсно	1	NaBH₃C	N	AcOI	H		HOs	時間		ラム	生成物	1 4	又量 g
I-f6: g	m l		g		m l		m	ı l	hr		媒			
0.530	0400	1	0.119		0.10)		9	2		CT	I-g6		0.341
										2:	1:			
工程7		_		··	,									····
化合物	TFA		CH_2C	l ₂		間			カラム		40	2量		PLC
I-g6 : g	m l	4	m l		h		\perp		溶媒			g	m	in
0.225	2.5		3] 1	l			H:M:N		0.	100	2	24.3
FI-MS (M+) · 47							3	00:10:1					
1 - 1/1 > (NA ' 1 ' 17	1												

 $EI - MS (M^{+}) : 471$

 $^{^1\,}H-NMR$ (CDCl $_3$): $\delta\,0.12,\,0.79,0.84$ and 0.98(6H, d, J=6.6-6.8Hz), 1.20(9H, s), 2.02-3.00(10H, m), 2.18 and 2.58(3H, s), 2.84 and 2.87(3H, s), 3.61-3.82(3H, m), 4.01-4.11 and 4.89-4.97(1H, m), 6.52 and 6.63(2H, d, J=8.1Hz), 6.72and 6.89(1H, d, J=7.9Hz), 6.93-7.14(4H, m)

表D-64

実施例78

2-(2-アミノ-3-(4-フルオロフェニル)-N-メチルプロピルアミノ)-N-(1-アミノメチル-2-(3-tert-ブチル-4-ヒドロキシフェニル) エチル)-3-メチルブタナミドの合成

		0 / /	, ,, ,	<i>)</i> – 1.				
R	3 2	I	₹33		R'		l	
	е		Н		C H ₂ N	νΗ,		
工程1								
化合物	化合物	CMPI	TEA	TH	F 時間	カラ』	」 生/	成 収量
T 2 2:	V4:g	g	m l	ml	hr	溶媒		
g							"	
0.89	0.90	0.92	0.8	1 3	20	MC:M	: N I -	- 1.4
			9			100:		- ' -
1				<u> </u>		0.1		
H-NMF	(CDC)	$_3):\delta$	0.80	(3H,	d, J=	6. 6Hz) , 0. 9	1 (3H.
ju, 1—6.	onz)	· 1. 37	(9 H.	s),	1.42 ((2 HP	2 0 0	_ 2 1 5
((I II, III)	· 55	-2.90	(2H,	m) 、	3.10-	3 30 6	2 H m)	2 0 0
-4.20	(ZH, M)	、4.80	-4.9	0 (1	H. m) .	5 11 (2H hr	o) =
20-5.	4 U (1H,	m) , 6.	35-6	5. 5 C) (1 Н. т	m).6	57 (1 LT	a 1 — 1
1. 9 m Z)	. 0. 84	(1H, d	d, J	=1.	3, 7. 9	Hz) 、 7	. 02 (1	H, 1. 3
工程2	36 (5H	, brs)						
	7.5							
化合物	Pd-C	"	1	間	カラム	溶媒	生成物	収量
I-d7:		m l		ır				g
1. 40	0.40	0 40	1	6	MC:1		I - e 7	0.89
177 272					100:5	: 0. 1] [
$^{1}H-NMR$	(CDC1	$_3):\delta$ (5 6	(3H,	d, J = 0	5. 9 Hz)	. 0. 8	8 (3H,
d, $J = 6$.	9 H z) 、	1.38	(9H, s) , 1	. 43 (9	H. s).	2 10	-2 2 1

TH-NMR (CDCl₃): δ 0. 56 (3H, d, J=6.9Hz), 0. 88 (3H, d, J=6.9Hz), 1. 38 (9H, s), 1. 43 (9H, s), 2. 10-2. 30 (1H, m), 2. 65-2. 85 (2H, m), 3. 15-3. 35 (3H, m), 4. 15-4. 30 (1H, m), 4. 95-5. 05 (1H, m), 6. 62 (1H, d, J=7.9Hz), 6. 88 (1H, dd, J=2.0, 7.9Hz), 7. 01 (1H, d, J=2.0Hz), 7. 43 (1H, d, J=8.3Hz)

表D-65

実施例78 (続き)

2-(2-アミノ-3-(4-フルオロフェニル)-N-メチルプロピルアミノ)-N-(1-アミノメチルー2-(3-tert-ブチルー4-ヒドロキシフェニル)エチル)-3-メチルブタナミドの合成

工程 3								
化合物 I -e 7: g	化合物 P 5 : g	NaBH₃CN g	AcOH m l	MeOH m l	時間 h r	カラム 溶媒	生成物	収量g
1. 02	1. 07	0.28	0. 1 5	2 6	1	EA:H 1:2		1. 4
H-NMF	S (CDC)	₃) : δ 0	. 70 (3H, d,	J=6	. 6 Hz)	0.82	(3 H.

TH-NMR (CDC1₃): δ 0. 70 (3H, d, J=6.6Hz), 0. 82 (3H, d, J=6.6Hz), 1. 37 (9H, s), 1. 39 (9H, s), 1. 44 (9H, s), 1. 80-2. 00 (1H, m), 2. 20-2. 50 (1H, m), 2. 60-2. 9 0 (6H, m), 3. 10-3. 40 (2H, m), 3. 70-3. 90 (1H, m), 4. 2 0-4. 30 (1H, m), 4. 60-4. 80 (1H, m), 4. 95-5. 10 (1H, m), 6. 60 (1H, d, J=7.9Hz), 6. 85-7. 30 (6H, m)

工程4

化合物 I	НСНО	NaBH ₃ CN	AcOH	MeOH	D±.88	J 1	11 -1544	
	_	14aDI13CI4			時間	カラム	生成物	収量
1	m l	g	m l	m l	hr	溶媒		g
0.75	0.48	0.14	0.1	1 1	1	EA:	I-g7	0 7
			3			Н		6
177						1:2		

 $^{1}H-NMR$ (CDC1₃): 0.83 (3H, d, J=6.6Hz), 0.93 (3H, d, J=6.6Hz), 1.36 (9H, s), 1.41 (18H, s), 1.90-3.10 (10H, m), 3.10-3.30 (2H, m), 3.60-3.80 (1H, m), 4.40-4.60 (1H, m), 4.60-4.80 (1H, m), 4.90-5.05 (1H, m), 6.10-6.20 (1H, m), 6.30-6.40 (1H, m), 6.63 (1H, d, J=7.9Hz), 6.85-7.25 (6H, m)

WO 00/44770

表D-66

実施例78 (続き)

2-(2-アミノ-3-(4-フルオロフェニル)-N-メチルプロピルアミノ)-N-(1-アミノメチル-2-(3-tert-ブチル-4-ヒドロキシフェニル) エチル) <math>-3-メチルブタナミドの合成

工程 7						
化合物	TFA	CH_2Cl_2	時間	カラム溶媒	収量	HPLC
I-g7:g	m l	m l	hr		g	min
0.70	1 0	0	1	MC:M:N	0.46	17.7

100:10:1

 $EI-MS(M^{+}):486$

 $^{1}H-NMR \ (CDCl_{3}) : \delta \quad 0.83 \ (3H, d, J=6.6Hz) \ , 0.95 \ (3H, d, J=6.6Hz) \ , 1.39 \ (9H, s) \ , 2.00-2.90 \ (10H, m) \ , 2.19 \ (3H, s) \ , 2.95-3.10 \ (1H, m) \ , 4.20-4.35 \ (1H, m) \ , 6.06 \ (1H, d, J=8.3Hz) \ , 6.62 \ (1H, d, J=7.9Hz) \ , 6.87 \ (1H, dd, J=1.7,7.9Hz) \ , 6.94-7.15 \ (5H, m)$

実施例101~121はスキーム3に従って、実施例121~131はスキーム4に従って、実施例132はスキーム5に従って、実施例133~135はス10 キーム6に従って、実施例136はスキーム7に従って、実施例137はスキーム8に従って、実施例138~165はスキーム9に従って、実施例166および176はスキーム10に従って、実施例167~171はスキーム11に従って、実施例172および173はスキーム12に従って、実施例174はスキーム13に従って、実施例175はスキーム14に従って、実施例177~179はスキーム15に従って、実施例180はスキーム16に従って、実施例181 および182はスキーム17に従って、実施例183はスキーム18に従って製造された。

スキーム3~8における各共通中間体の製造方法を、参考例として以下に示す。 また、実施例101~137における中間体の構造式を表C-2に示す。

表 C - 2

実施例101~137の共通中間体

T1: R33=H, R34=H

T3: R33=H, R34=Et

T6: R33=Me, R34=Et

T9: R33=Et, R34=Et

T10: R33=H, R34=n-Pr

T11: R33=H, R34=i-Pr

T12: R33=Me, R34=c-Pr

T16: R33=n-Pr, R34=H

T13

T14

T15

V1: R32=Me

V2: R32=Et

PG Ö

P3: PG=Z, R31=Et

P4: PG=Z, R31=H

P5: PG=Z, R31=Me

РСТ/ЈР00/00444

参考例16

共通中間体T3、T9の合成 合成スキームを以下に示す。

5

共通中間体T3、T9の合成スキーム

10

15

20

共通中間体T3、T9の合成法を以下に説明する。

工程1) T3の合成

化合物 Tyr (3-t Bu) - OMeのメタノール溶液に 70% エチルアミン 水溶液を加えた後室温で攪拌した。反応液を減圧濃縮した後、ジクロロメタンで 抽出し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さを カラムクロマトグラフィ(シリカゲル)で精製して化合物 T3 を得た。

工程2) T9の合成

化合物T3、acetaldehydeのメタノール溶液に冷却下でNaBH $_3$ CNを徐々に滴下した。 NaHCO $_3$ 水溶液を加え反応を終結させ、反応液を滅圧濃縮した。ジクロロメタンで抽出し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して化合物T9を得た。

結果を表E-1に示す。なお、表E-1において、「Reaction 1」、「Reaction 2」などはそれぞれ工程1、工程2などを、「React ion time」は攪拌時間を、「Column sol.」は、カラム溶媒(シリカゲルクロマトグラフィーによる精製に用いた流出溶媒)を、「Product」は生成物を、「Amount」は生成物の収量を、それぞれ表す。以降

の表においても同じである。

表E-1 共通中間体 T3: Tyr(3-tBu)-NHEt 及び T9:N-Et-Tyr(3-tBu)-NHEt

Reaction1				_		
Tyr(3-tBu)-OMe (g)	Ethyl amine (ml)	McOH (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
14.000	168.00	56.00	18	nHx:EA =1:1	T3	12.810
Reaction2			<u> </u>		I-,	
Compound T3(g)	CH3CHO (ml)	NaBH₃CN (g)	MeOH (ml)	Reaction time (hr)	Column sol.	Amount (g)
12.810	2.98	3.350	100.00	0.5	MC:MeOH =20:1	8.130

参考例17

共通中間体T6、T10、T11、T12、T13の合成 合成スキームを以下に示す。

5 共通中間体T6、T10、T11、T12、T13の合成スキーム

Z. N OH CICO₂Et, NMM, THF Reaction 1
$$\frac{18u}{R_{33}}$$
 OBn $\frac{18u}{R_{33}}$ OBn $\frac{18u}{R_{34}}$ OBn $\frac{1}{R_{34}}$ $\frac{1}{R_{34}}$ $\frac{1}{R_{33}}$ $\frac{1}{R_{34}}$ $\frac{1}{R_{33}}$ $\frac{1}{R_{34}}$ $\frac{1}{R_{33}}$ $\frac{1}{R_{34}}$ $\frac{1}{R_{33}}$ $\frac{1}{R_{34}}$ $\frac{1}{R_{33}}$ $\frac{1}{R_{34}}$ $\frac{1}{R_{34}}$ $\frac{1}{R_{34}}$ $\frac{1}{R_{33}}$ $\frac{1}{R_{34}}$ $\frac{1}{R_$

上記反応スキームにおける R_{33} および R_{34} は、表 $E-2\sim E-6$ に示した置換基を意味する。

10

15

これら共通中間体の合成法を以下に説明する。

工程1)

Z-N-Me-Tyr (O-Bn, 3-tBu) -OH、エチルクロロホルメートのTHF溶液にNMMを加え室温で攪拌し、アルキルアミンのTHF溶液を加えた。反応液に水を加えた後、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製してI-a (2) \sim (6) を得た。

工程2)

I-a (2) \sim (6) のメタノール溶液に水酸化パラジウムー炭素を加え、水 20 素雰囲気下、室温で攪拌した。反応混合物を濾過し、濾液を減圧下に濃縮して得られた残さをカラムクロマトグラフィ(シリカゲル)で精製して化合物T 6、T 1 0、T 1 1、T 1 2、T 1 3 を得た。結果を表E F 2 F F 6 に示す。

表E-2

共通中間体工6

N-Me-Tyr (3-tBu) -NHE t

	R33					R34		
	Me					Et		
Reaction 1								
Z-N-Me-Tyr(O- En,3-tBu)-CH (g)	Ethylamine (ml)	CLCO ₂ Et (ml.)	MM (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
11.300	118.80	3.40	3.90	230.00	6	nHx:EA =2:1	I-a(2)	8.400
Reaction 2								
Compound I-a(2) (g)	Pd(CH) ₂ (g)	MeCH (ml.)	Reaction time (hr)		Column sol.			unt g)
6.200	0.600	120.00		3	MC:MeO	H =20:1	3.6	500

表E-3

共通中間体 T 1 0

Tyr (3-tBu) -NH-n-Pr

	R33					R34						
	н			n-Pr								
Reaction 1	_											
Z-N-Me-Tyr(O- Bn,3-tBu)-OH (g)	n- Propylamine (ml)	CLCO _Z Et (ml.)	NMM (ml.)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)				
1.100	1.40	0.57	0.66	30.00	2	nHx:EA:MC =1:3:1	I-a(3)	1.150				
Reaction 2												
Compound I-a(3) (g)	Pd(CH)₂ (g)	MeCH (ml.)	Reaction time (hr)		Colum	n sol.	Amount (g)					
1.150	0.200	30.00		2	MC:MeO	H =20:1	0.580					

表E-4

共通中間体T11

Tyr (3-tBu) -NH-i-Pr

	R33			R34								
	Н				i-Pr							
Reaction1												
Z-N-Mb-Tyr(O- Bn,3-tBu)-OH (g)	i-Propyl amine (ml)	CICO ₂ B (ml)	NMM (mi)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)				
1.300	0.72	0.54	0.46	15.00	0.6	nHx:EA=2:1	I-a(4)	1.200				
Reaction2	<u> </u>	<u>.</u>					` ′ _					
Compound I-a(4)(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)		Colur	nn sol.	Amount (g)					
1.200	0.500	30.00	3.	5 EA:MeC		EA:MeOH = 20:1		60				

表E-5

共通中間体T12

N-Me-Tyr (3-tBu) -NH-c-Pr

R33				R34							
	Me				o-Pr						
Reaction 1											
Z-N-Me-Tyr(O- Bn,3-tBu)-CH (g)	c-Propyl- amine (ml)	(MJ) CIOD ^E EF	NMM (ml.)	THF (ml.)	Reaction time (hr)	Colum sol.	Product	Amount (g)			
1.000	1.20	0.46	0.40	30.00	2	nHx:FA:MC =1:3:1	I-a(5)	1.050			
Reaction 2			:								
Compand I-a(5) (g)	Pd(CH) ₂ (g)	M±CH (ml.)	Reaction time (hr)		Column sol.		Arcunt (g)				
1.050	0.200	30.00	2		MC:M±CH =20:1		0.500				

共通中間体 P 5 は、参考例 7 に示した方法と同様にして合成した。

表E-6

共通中間体 T 1 3

(2S) - 3 - [3 - (tert - butyl) - 4 - hydroxyphenyl] - 2 - (methylamino) - 1 - morpholin - 4 - ylpropan - 1 - one - (tert - butyl) - 4 - hydroxyphenyl] - 2 - (methylamino) - 1 - morpholin - 4 - ylpropan - 1 - one - (tert - butyl) - 4 - hydroxyphenyl] - 2 - (methylamino) - 1 - morpholin - 4 - ylpropan - 1 - one - (tert - butyl) - 4 - hydroxyphenyl] - 2 - (tert - butyl) - 4 - hydroxyphenyl] - 4 - hydroxyph

	R34 morpholine							
Reaction 1								
Z-N-Me-Tyr(O- Bn,3-tBu)-OH (g)	morpholine (g)	ClCO ₂ Et (ml)	NMM (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.200	0.660	0.27	0.42	15.00	20	nHx:EA =1:1	I-a(6)	1.200
Reaction 2								-
Compound I-a(6) (g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)		Column sol.		Amount (g)	
1.200	0.300	20.00	20		MC:MeOH =20:1		0.600	

WO 00/44770

参考例18

共通中間体T14の合成 合成スキームを以下に示す。

5 共通中間体T14の合成スキーム

3-tBu)-OH

共通中間体T14の合成法を以下に説明する。

工程1)

参考例17の工程1の方法によって化合物I-a(7)を得た。

15 工程 2)

10

化合物 I - a (7) のジクロロメタン溶液に冷却下でTFAを加え、室温で攪拌した。反応液を減圧濃縮した後、ジクロロメタンで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して I - b (7) を得た。

20 (7)を得た

工程3)

化合物 I-b (7), $CISO_2Me$ のジクロロメタン溶液に冷却下でTEAを加え、室温で攪拌した。反応液に水を加え、酢酸エチルで抽出

し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製してI-c (7)を得た。

工程 4)

5 参考例17の工程2の方法によって化合物T14を得た。結果を表E-7に示す。

表E-7

共通中間体 T 1 4

10 (2S)-3-[3-(tert-butyl)-4-hydroxyphenyl]-2-(methylamino)-1-[4-(methylsulfonyl) piperazineyl]propane-1-one

Z-N-Me-Tyr(O- Bn,3-tBu)-OH (g)	Boc- piperazine (g)	ClCO ₂ Et (ml)	NMM (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount	
1.500	0.700	0.36	0.42	15.00	20	nHx:EA=1:1	I-a(7)	1.900	
Reaction 2				·		<u> </u>		1.900	
Compound I-a(7) (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colum	n sol.	Product	Amount (g)		
1.900	5.00	20.00	4	MC:MeOH=20:1		I-b(7)	1.400		
Reaction 3			-						
Compound I-b(7) (g)	ClSO ₂ Me (ml)	TEA (ml)	MC (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)		
1.400	0.46	0.82	20.00	2	MC:MeOH =20:1	I-c(7)	1.500		
Reaction 4									
Compound I-c(7) (g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)		Colum	Column sol.		Amount (g)	
1.500	0.300	20.00	20		MC:MeOH =20:1		0.900		

参考例19

共通中間体T15の合成 合成スキームを以下に示す。

5 共通中間体T15の合成スキーム

共通中間体 T 1 5 の合成法を以下に説明する。

10 工程1)

15

化合物 I-b (7)、2-プロモ酢酸エチルエステルのジクロロメタン溶液に冷却下でTEAを加え、室温で攪拌した。反応液に水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製してI-a (8)を得た。

工程 2)

参考例17の工程2の方法で化合物T15を得た。結果を表E-8に示す。

表E-8

共通中間体 T 1 5

Ethyl 2-(4-{(2S)-3-[3-(tert-butyl)-4-hydroxyphenyl]-2-(methylamino)propanoyl} piperazinyl)acetate

Reaction1							
Compound I-b(7) (g)	Ethyl bromo acetate(mil)	TEA (ml)	MC (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.970	0.30	0.40	17.00	4	nHx:EA=3:1	1-a(8)	1.000
Reaction2							
Compound 1-a(8) (g)	Pd(OH) ₂ (g)		MeOH (ml)		Reaction time (hr)		Amount (g)
1.000	0.300		16.00		1		0.643

5

参考例20

共通中間体T16の合成 合成スキームを以下に示す。

10

20

共通中間体T16の合成スキーム

15 共通中間体 T 1 6 の合成法を以下に説明する。

化合物T1のメタノール溶液にプロピオンアルデヒドを加え、室温で30分間 攪拌した後、 $NaBH_3$ CNを加え、2時間攪拌した。反応液に飽和 NH_4 C1 水溶液を加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製してT16を得た。結果を表E-9に示す。

表E-9

共通中間体T16

N-Pr-Tyr(3-tBu)-NH₂

Reaction						
Compound T1 (g)	CH ₃ CH ₂ CHO (ml)	NaBH ₃ CN (g)	MeOH (ml)	Reaction time (hr)	Column sol.	Amount (g)
4.000	1.34	1.170	70.00	2	nHx:EA=1:2	1.580

スキーム3に、実施例101~121の合成スキームを示す。

10 スキーム3:実施例101~121の合成スキーム

$$Z \stackrel{\text{IBu}}{\sim} OH + \underset{\hat{H}_{33}}{\leftarrow} OH + \underset{\hat{H}_$$

15

5

I-c101~121

上記反応スキームにおける R_{31} 、 R_{32} 、 R_{33} および R_{34} は、表D-101~

D-12-1に示した置換基を意味する。

スキーム3における合成方法を以下に説明する。

20 工程1)

化合物T、化合物V及びCMPIのTHF溶液に冷却下TEAを加え、室温で 攪拌した。反応液に水を加え、酢酸エチルで抽出し、飽和 $NaHCO_3$ 水溶液で 洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さを

カラムクロマトグラフィ(シリカゲル)で精製してI-a101~121を得た。

工程 2)

化合物 I - a 1 0 1 ~ 1 2 1 のメタノール溶液に P d / C を加え、水素雰囲気 下で、室温で攪拌した。 P d / C を濾去した後、濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して化合物 I - b 1 0 1 ~ 1 2 1 を得た。

工程 3)

10 化合物 $I-b101\sim121$, 化合物 $P1\sim5$ 及び CMPI の THF 溶液に 冷却下で TEA を加え室温で攪拌した。反応液に水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して化合物 I-c1 0 $1\sim121$ を得た。

15

20

工程 4 - a)

工程 4-b)

化合物 I-c 1 0 1 \sim 1 2 1 のメタノール溶液にP d / CまたはP d / OH) 25 $_2$ を加え、水素雰囲気下で室温で攪拌した。P d / CまたはP d / OH) $_2$ を濾去した後、濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して目的化合物を得た。

スキーム3に従って合成された化合物の各実施例を、表D-101~D-12

1に示した。

表D-101

実施例101

Phe(4-F)-N-Me-Val -Tyr(3-tBu)-NHEt の合成

	R31	<u> </u>	R32	F	₹33		R34	
D 1	Н	<u> </u>	Ме		Н		Et	
Reaction1	-							
Compound T3(g)	Compound V1(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun
3.000	3.000	4.350	3.30	60.00	20	nHx:EA =1:1	I-a101	5.220
Reaction2				<u> </u>		 		
Compound I-a101(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Column sol.	Pro	duct	Amount (g)	
4.500	0.450	45.00	20	MC:MeOH =20:1	I-b101		2.200	
Reaction3					L			
Compound I-b101(g)	Compound P4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.600	0.500	0.600	0.50	15.00	20	nHx:EA =1:1	I-c101	0.830
Reaction4-b			<u></u>		<u> </u>			
Compound I-c101(g)	Pd(OH) ₂ (g)	McOH (ml)	Reaction time (hr)	Colum	ın sol.	Amount (g)	HPLC min	
0.830	0.100	10.00	20	MC:MeOH =10:1 0.170		18.	42	
SI-MS(M*+1)	557				· · · · · · · · · · · · · · · · · ·			
)U m) 1 27	(011 -) 2.25.2.26	VIII) 0.50				
77(1H m) 6.6	3): δ 0.59-1.05(9 0-7.72(8Н,m), 9.0	11,111 <i>)</i> , 1.37	(311, 8), 2.23-2.35	y(1r1, m), 2.58-	-3.24(9H, m),3.	58-3.97(2H,m),	4.44-4.62(11	l,m), 5.59-

表D-102

実施例102

N-Me-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHEt

R	31		R32		R33		R34	
N	Ле		Me	*	Н		Eı	
Reaction1								
Compound T3(g)	Compound V1(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
3.000	3.000	4.350	3.30	60.00	20	nHx:EA =1:1	x:EA =1:1 I-a102	
Reaction2					<u> </u>	· · · · · · · · · · · · · · · · · · ·		
Compound I-a102(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Colu	mn sol.	n sol. Product Amou		
4.500	0.450	45.00	20	MC:MeOH =20:1 I-b		I-b102	2.2	200
Reaction3			*	 	,			
Compound I-b102(g)	Compound P2 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.000	1.000	1.310	0.72	20.00	20	nHx:EA =1:1	I-c102	1.560
Reaction4-a						···		
Compound I-c102(g)	TFA (ml)	MC (ml)	Reaction time (hr)	f Column sol.		HP m	LC in	
1.500	1.70	10.00	4	MC:Me	OH =10:1	0.28	18.73	

1H-NMR(CDCl₃): (two rotamers) δ 0.57, 0.79, 0.92 and 1.00(9H, d and m, J=6.3-6.8Hz), 1.34and 1.38(9H, s), 2.25, 2.40 and 2.58, 2.65(6H, s), 2.05-2.40(1H, m), 2.67-3.25(6H, m), 3.55 nad 3.68(1H,m), 3.84, 4.40 and 4.55(2H, d and m, J=10.9Hz), 5.56 and 5.72(1H,m), 6.65-7.17(8H,m), 9.15 and 9.18 (1H, d, J=8.2Hz)

表D-103

N-Et-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHEt

31		R32	1	R33		R34	
i		Me		Н		Et	
Compound V1(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
3.000	4.350	3.30	60.00	20	nHx:EA =1:1	I-a103	5.220
				•	<u> </u>		L
Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Column soi. Product			mount (g)	
0.450	45.00	20	MC:MeOH =20:1		I-b103	2.200	
		<u> </u>			· · · · · · · · · · · · · · · · · · ·		
Compound P3 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.670	1.050	0.57	20.00	20	nHx:EA =1:1	I-c103	0.800
··		· · · · · · · · · · · · · · · · · · ·					
Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Colu	Column sol.			
0.100	10.00	20	MC:Me	OH =10:1	0.220	19.	27
571		<u> </u>					
	Compound V1(g) 3.000 Pd(OH) ₂ (g) 0.450 Compound P3 (g) 0.670 Pd(OH) ₂ (g) 0.100	Compound CMPI V1(g) (g) 3.000 4.350 Pd(OH) ₂ MeOH (g) (ml) 0.450 45.00 Compound CMPI P3 (g) (g) 0.670 1.050 Pd(OH) ₂ MeOH (g) (ml) 0.100 10.00	Compound CMPI TEA (ml) 3.000 4.350 3.30 Pd(OH)2 MeOH Reaction time (hr) 0.450 45.00 20 Compound CMPI TEA (ml) (ml) (ml) 0.670 1.050 0.57 Pd(OH)2 MeOH Reaction time (ml) (hr) (hr) (n	Compound CMPI TEA THF (ml)	Compound CMPI TEA THF Reaction time V1(g) (g) (ml) (ml) (hr) 3.000 4.350 3.30 60.00 20 Pd(OH) ₂ MeOH Reaction time (hr) Column sol. 0.450 45.00 20 MC:MeOH = 20:1 Compound CMPI TEA THF Reaction time P3 (g) (g) (ml) (ml) (hr) 0.670 1.050 0.57 20.00 20 Pd(OH) ₂ MeOH Reaction time Column sol. (g) (ml) (hr) Column sol. O.100 10.00 20 MC:MeOH = 10:1	Compound CMP TEA THF Reaction time Column sol. 3.000 4.350 3.30 60.00 20 nHx:EA =1:1 Pd(OH)2 (ml) (mr) Column sol. Product 0.450 45.00 20 MC:MeOH =20:1 I-b103 Compound CMP TEA THF Reaction time Column sol. P3 (g) (g) (ml) (ml) (hr) Column sol. 0.670 1.050 0.57 20.00 20 nHx:EA =1:1 Pd(OH)2 MeOH Reaction time Column sol. (g) (ml) (hr) Column sol. (g) 0.100 10.00 20 MC:MeOH =10:1 0.220	Compound CMP TEA THF Reaction time Column sol. Product

1H-NMR(CDC₃): (two rotamers) δ 0.42-1.20(12H,m), 1.35 and 1.39(9H, s), 2.05-2.26(1H, m), 2.31-2.54(1H, m), 2.40 and 2.50(3H,s), 2.62-3.26(6H,m), 3.62-3.80(1H,m),4.34-4.58(1H,m), 5.79-5.87(1H, m), 6.60-7.04(7H, m)

表D-104

実施例104

 $Phe (4-F)-N-Me-Val-\ N-Me-Tyr (3-tBu)-NHEt$

R3	31	L	R32	R	33		R34	
H	I		Me	N	1e		Et	
Reaction1								
Compound T6 (g)	Compound V1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
2.500	3.570	3.440	2.50	90.00	8	nHx:EA =1:2	I-a104	4,200
Reaction2								
Compound I-a104 (g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colum	ın sol.	Product	Am (£	
4.200	0.400	75.00	5	MC:MeOH =20:1 I-b104		3.9	00	
Reaction3			 -					
Compound I-b104(g)	Compound P4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.300	1.600	1.300	0.90	30.00	18	nHx:EA =1:2	I-c104	0.920
Reaction4-b			*************************************		- 			
Compound I-c104(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Column sol. Amount (g)		HPI mi		
0.920	0.100	10.00	3	MC:MeO	H =20:1	0.210	19.5	57

ESI-MS(M⁺+1): 557

1H-NMR(CDCl₃): (two rotamers) δ 0.56, 0.77, 0.79 and 0.92(6H, d, J=6.4-6.7Hz), 1.01-1.12(3H, m), 1.38 and 1.33(9H, s), 2.19-2.68(2H, m), 2.52 and 2.83(3H, s), 2.68-3.42(4H, m), 3.00 and 3.02(3H, s),3.65-3.87(1H, m), 4.90-5.11 and 5.35-5.47(2H, m), 5.95-6.08(1H, m), 6.36 and 6.62(1H, d, J=7.8-7.9Hz), 6.68-7.16(6H, m)

表D-105

実施例105

N-Me-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHEt

	31		R32	R	33		R34	
Ŋ	/le		Me	N	1e		Et	
Reaction1								
Compound T6 (g)	Compound V1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
2.500	3.570	3.440	2.50	90.00	8	nHx:EA =1:2	l-a105	4.200
Reaction2			4					<u> </u>
Compound I-a105 (g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colum	nn sol.	Product	Am	
4.200	0.400	75.00	5	MC:MeOH =20:1 1-b105		3.9	00	
Reaction3			*					
Compound I-b105 (g)	Compound P2 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.300	1.480	1.300	0.90	30.00	18	nHx:EA =1:2	l-c105	1.020
Reaction4-a					<u> </u>			
Compound I-c105 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colum	n sol.	Amount (g)	HP m	
1.020	2.30	23.00	6	MC:MeO	H =20:1	0.200	20.2	213

1H-NMR(CDCl₃): (two rotamers) δ 0.63, 0.80, 0.81 and 0.92(6H, d, J=6.4-6.9Hz), 1.06(3H, t, J=7.3Hz), 1.34 and 1.39(9H, s), 2.13-2.33(1H, m), 2.22 and 2.25(3H, s), 2.53 and 2.82(3H s), 2.54(1H, s), 2.60-2.70(2H, m), 2.74-2.90(1H, m), 2.95 and 3.06(3H, s), 3.45 and 3.59(1H, t, J=5-6.8Hz),5.07 and 5.15(1H, d, J=10.6-10.9Hz), 5.05 and 5.38(1H, dd, J=8.1-9.3, 6.1-6.8Hz), 6.0(1H, t, J=5.0Hz),6.40 and 6.61(1H, d, J=8.0Hz), 6.75(3H, m), 7.02-7.18(3H, m)

表D-106

実施例106

N-Et-Phe(4-F)-N-Me-Val-N-Me-Tyr(3-tBu)-NHEt

R	31		R32		R33		R34	
	Et		Me		Me		Et	
Reaction1								
Compound T6 (g)	Compound V1 (g)	CMPI (g)	TEA (ml)	(m) (m)		Product	Amoun (g)	
2.500	3.570	3.440	2.50	90.00	8	nHx:EA =1:2	I-a106	4.200
Reaction2			·			·		i
Compound I-a106 (g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colu	ımn sol.	Product	Amount (g)	
4.200	0.400	75.00	5	MC:MeOH= 20:1		I-b106		200
Reaction3								
Compound I-b106 (g)	Compound P3 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.300	1.740	1.300	0.90	30.00	15	nHx:EA =1:2	l-c106	1.050
Reaction4-b				_				
Compound 1-c106 (g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colu	mn sol.	Amount (g)	HPLC	
1.050	0.100	14.00	3	MC:MeOH= 20:1		0.200	20.950	

1H-NMR(CDCl₃): (two rotamers) δ 0.65, 0.79, 0.8 and 0.91(6H, d, J=6.0Hz), 0.97-1.08(6H, m), 1.34 and 1.39(9H, s), 2.21-2.38(2H, m), 2.46-2.59(2H, m), 2.61-2.9(2H, m), 2.5 and 2.75(3H, s), 2.96 and 3.06(3H, s), 3.17-3.46(2H, m), 3.55 and 3.68(1H, t, J=7.0Hz), 5.01-5.36(2H, m), 5.97-6.0(1H, m), 6.41 and 6.59(1H, d, J=8.0Hz), 6.79-6.98(3H, m), 7.04-7.17(3H, m)

表D-107

Phe (4-F)-N-Me-Val-N-Et-Tyr (3-tBu)-NHEt

R	31		R32		R33		R34	
	Н		Me		Et		Et	
Reaction1						<u> </u>	<u>CI</u>	
Compound T9(g)	Compound V1(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun
6.000	16.300	26.200	14.30	30.00	15	nHx:EA=2:1	I-a107	3.030
Reaction2			-				<u> </u>	
Compound I-a107(g)	Pd(OH)₂ (g)	MeOH (ml)	Reaction time (hr)	Column sol.		Product		ount g)
8.000	1.200	50.00	15	MC:MeOH = 10:1		1-6107	5.0	000
Reaction3			·	· · · · · · · · · · · · · · · · · · ·				
Compound I-b107(g)	Compound P4(g)	CMPI (g)	TEA (m!)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun
0.800	0.815	0.606	0.40	30.00	18	nHx:EA=1:2	I-c107	1.040
Reaction4-b								
Compound I-c107(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Column sol.		Amount (g)	HP m	
1.047	0.156	20.00	3.5	MC:McOH =20:1		0.252	21.09	

1H-NMR(CDCl₃):(two rotamers) & 0.74, 0.80 and 0.92(6H, d, J=7.0-7.9Hz), 0.97-1.20(6H, m),1.32 and 1.36(9H, s), 2.20-3.13(5H, m), 2.74 and 3.05(3H, s), 3.15-3.35(3H, m), 3.35-3.95(3H, m), 4.92-5.10(2H, m), 6.44 and 6.73(1H, d, J=8.8Hz), 6.50(3/5H, m), 6.75(3/5H, dd, J=7.9, 1.7Hz), 6.90-7.29(29/5H, m)

表D-108

実施例108

N-Me-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHEt

R	31	1	R32		R33		R34	
N	1c	Мс			Et		Et	
Reaction1								
Compound T9(g)	Compound V1(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product Amo	
6.000	16.300	26.200	14.30	30.00	15	nHx:EA=2:1	I-a 108	3.030
Reaction2								3.030
Compound l-a108(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Column sol.		Product		ount g)
8.000	1.200	50.00	15.00	MC:McOH = 10:1		I-b108	5.000	
Reaction3								
Compound I-b108(g)	Compound P2(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.022	1.130	0.966	0.70	20.00	19	nHx:EA=1:2	I-c108	1.590
Reaction4-a								
Compound I-c108(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Amount (g)	HP	
1.590	1.80	10.00	3	MC:McOH =20:1		0.251	21.54	

1H-NMR(CDCl₃):(two rotamers) δ 0.78-0.90 and 0.95(6H, m and d, J=7.9Hz), 0.97-1.10(3H, m), 1.10 and 1.22(3H, m),1.31 and 1.39(9H, s), 2.21-2.25(3H, s), 2.19-2.40(1H, m),2.55-3.35(7H, m), 2.69 and 2.72(3H, s), 3.42-3.75(3H, m),4.95-5.10(1H, m),5.12(1H, d, J=10.6Hz),6.44 and 6.58(1H, d, J=8.8Hz), 6.50(3/5H,m), 6.79(3/5H, dd, J=8.1, 2.5Hz), 6.88-7.00(12/5H, m), 7.05-7.20(12/5H, m) 7.27(1H, brs)

表D-109

実施例109

N-Et-Phe (4-F)-N-Me-Val-N-Et-Tyr (3-tBu)-NHEt

E	31	 	R32		R33		R34	
Reaction1	<u> </u>	L	Ме		Et		Et	
Compound	Compound	CMPI	TEA	THF	Reaction time			T 4
T9(g)	V1(g)	(g)	(ml)	(ml)	(hr)	Column sol.	Product	Amoun (g)
6.000	16.300	26.200	14.30	30.00	15	nHx:EA=2:1	I-a109	3,030
Reaction2							1	3.030
Compound I-a109(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Column sol. Product		Amo	Amount	
8.000	1.200	50.00	15	MC:MeOH = 10:1 1-b		l-b109	5.000	
Reaction3			······································		<u></u>			
Compound I-b109(g)	Compound P3(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount
0.800	0.819	0.606	0.40	16.00	18	nHx:EA=1:2	I-c109	(g) 1.000
eaction4-b			'			<u>i</u>		
Compound 1-c109(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colui	nn sol.	Amount (g)	HPL mir	_
1.000	0.150	20.00	15	MC:Met	OH ≃20:1	0.127	21.92	

1H-NMR(CDCl₃):(two rotamers) δ 0.78-0.88 and 0.92(6H, m and d, J=7.4Hz), 0.98-1.18(6H, m), 1.20(3H, q, J=6.4Hz), 1.34 and 1.38(9H, s), 2.20-2.43(2H, m),2.43-3.35(8H, m),2.68 and 2.80(3H, s), 3.42-3.78(3H, m), 4.90-5.12(1H, m), 5.12(1H, d, J=10.6Hz), 6.42 and 6.58(1H, d, J=15.3Hz), 6.50(1/3H,m), 6.80(2/3H, dd, J=8.8, 2.1Hz), 6.85-7.00(3H, m),7.05-7.17(10/3H, m),7.30(2/3H, brs)

表D-110

 $Phe (4-F)-N-Et-Val\ -Tyr (3-tBu)-NHEt$

R	31		R32	1	V33		R34	
	H		Et		Н		Et	
Reaction1								
Compound T3 (g)	Compound V2 (g)	CMPi (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amour (g)
6.000	6.240	8.700	6.60	120.00	20	nHx:EA=1:1	I-a110	9.540
Reaction2								1
Compound I-a110 (g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Column sol. Product			mount (g)	
6.000	0.600	60.00	20	MC:MeOH =20:1		I-b110	3.570	
Reaction3								
Compound I-b110(g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
1.200	1.500	2.000	1.00	20.00	20	nHx:EA =1:1	I-c110	0.400
Reaction4-a					· · · · · · · · · · · · · · · · · · ·			
Compound I-c110(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Amount (g)	HPLC min	
0.400	0.60	3.00	4	MC:MeOH =20:1		0.200	20.	25
SI-MS(M+1): 557							
H-NMR(CDC	J.): 8 0 62-1 10	5/12H m) 1	38/0H c) 2.2	5 2 45/1H m	2 62 2 96/011	m),3.92 and 3.95		

1H-NMR(CDCl₃): δ 0.62-1.16(12H,m), 1.38(9H, s), 2.25-2.45(1H, m), 2.62-3.86(9H, m), 3.92 and 3.95(1H, d, J=10.0Hz), 4.44 5.56(1H, m), 5.67-5.90(1H, m), 6.60-7.20(7H, m), 9.05 and 9.08(1H, d, J=7.8Hz)

表D-111

N-Me-Phe(4-F)-N-Et-Val-Tyr(3-tBu)-NHEt

F	V3 1	T	R32		R33	T	D0.4	
1	Vie		Ei		H		R34	
Reaction1				L	11		Et	
Compound T3 (g)	Compound V2 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
6.000	6.240	8.700	6.60	120.00	20	nHx:EA =1:1	I-a111	9.540
Reaction2					·	-		2.540
Compound I-alll (g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Colu	ımın sol.	Product		ount g)
6.000	0.600	60.00	20	MC:Me	:OH =20:1	I-b111		
Reaction3				·	 , l			
Compound I-b111(g)	Compound P2 (g)	CMIPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.000	1. 60 0	2.000	1.00	20.00	20	nHx:EA =1:1	I-c111	0.400
Reaction4-a			· · · · · · · · · · · · · · · · · · ·		· · ·			0.400
Compound I-c111(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	Column sol. Amount (g)		HP.	
0.400	0.60	3.00	4	MC:Me	OH =20:1	0.300	20.	
ESI-MS(M+1)								
II NI MY	- > /							

1H-NMR(CDCl₃): (two rotamers) δ 0.67 and 0.80-1.16(12H, d and m, J=6.8Hz), 1.37(9H, s), 2.30(3H, s), 2.35-2.39(1H, m), 2.79-3.22(8H, m), 3.53-3.59(1H, m), 4.04-4.15(1H, m), 4.39-4.46(1H, m), 5.73-5.77(1H, m), 6.61 and 6.64(1H, d, J=8.2Hz), 6.84-7.19(6H, m)

表D-112

実施例112

N-Et-Phe(4-F)-N-Et-Val-Tyr(3-tBu)-NHEt

	31	L	R32		R33		R34	
	Et		Et		Н		Et	
Reaction1				· · · · · · · · · · · · · · · · · · ·		L	<u> Li</u>	
Compound T3 (g)	Compound V2 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
6.000	6.240	8.700	6.60	120.00	20	nHx:EA =1:1	I-a112	9.540
Reaction2								
Compound I-a112 (g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Colu	mn sol.	Product		ount g)
6.200	0.600	60.00	20	MC:MeOH =20:1 I-b112		3.570		
Reaction3								
Compound I-b112(g)	Compound P3 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.000	1.585	2.000	1.00	20.00	20	nHx:EA =1:1	I-c112	0.550
Reaction4-b					<u> </u>			0.550
Compound I-c112(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Colur	nn sol.	Amount (g)	HP.	
0.400	0.050	4.00	20	MCM OU soa		21.0		

1H-NMR(CDCl₃): (two rotamers) δ 0.48 and 0.71-1.31(15H, d and m, J=7.4Hz), 1.37(9H, s), 2.20-2.61(2H, m), 2.71-3.34(10H, m), 3.60-3.82(2H, m), 4.40-4.56(1H, m), 5.80-5.98(1H, m), 6.67-7.01(3H, m), 7.02-7.16(3H, m), 7.48 and 7.50(1H, d, J=6.8Hz), 8.73 and 8.76(1H,d, J=7.9Hz)

表D-113

Phe (4-F)-N-Et-Val-N-Me-Tyr (3-tBu)-NHEt

	31		R32	R	133		R34	
	Н		Et	N	Me		Et	
Reaction1								
Compound T6 (g)	Compound V2 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
4.170	8.720	5.880	4.20	150.00	20	nHx:EA =1:2	I-a113	5.500
Reaction2					1	1 -1.2		<u> </u>
Compound I-a113 (g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colun	nn sol.	Product		ount g)
5.500	0.500	100.00	2	MC:MeC	OH =20:1	I-b113		:00
Reaction3			·			<u> </u>	···	
Compound I-b113 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.000	0.850	0.760	0.60	20.00	18	nHx:EA =1:2	I-c113	0.320
Reaction4-a						<u> </u>		
Compound I-c113 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colum	ın sol.	Amount (g)	HP1 mi	
0.320	0.70	7.40	6	MC:MeO	PH =20:1	0.020	20.2	:60
ESI-MS(M+1)	: 571		<u> </u>			<u> </u>		
H-NMR(CDC 3.04(3H,s), 2.5	l ₃): (two rotame 5-3.39(8H,m), 3	ers) δ 0.36-0 3.68-3.78(1F).96(8H,m), 0.9 I,m), 4.90-5.32	98-1.10(4H,m) (2H,m) 6.45 a	, 1.35 and 1.3	9(9H,s), 2.28-2	2.41(1H,m), 2 7-7.23(6H, m	2.84 and

表D-114

実施例114

$N\hbox{-}Me\hbox{-}Phe (4\hbox{-}F)\hbox{-}N\hbox{-}Et\hbox{-}Val\hbox{-}N\hbox{-}Me\hbox{-}Tyr (3\hbox{-}tBu)\hbox{-}NHEt$

	31		R32	F	133		R34	
	ic	<u> </u>	Et	1	Me		Et	
Reaction1								
CompoundT6 (g)	Compound V2 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
4.170	8.720	5.880	4.20	150.00	20	nHx:EA =1:2	I-a114	5.500
Reaction2					·			L
Compound I-a114 (g)	Pd/C (g)	McOH (ml)	Reaction time (hr)	Colur	nn sol.	Product	Am.	ount
5.500	0.500	100.00	2	MC:MeOI	=20:1	I-b114		00
Reaction3						L	·	
Compound I-b114 (g)	Compound P2 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.000	0.850	0.760	0.60	20.00	20	nHx:EA =1:2	I-c114	0.300
Reaction4-a						<u></u>		
Compound I-c114 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colun	ın sol.	Amount (g)	HP:	
0.300	0.70	6.80	6	MC:MeOH	=20:1	0.030	20.8	80
ESI-MS(M*+1)		0.80	6	MC:MeOH	=20:1	0.030	20.8	80

1H-NMR(CDCl₃): (two rotamers) δ 0.51, 0.81, 0.87 and 0.91(6H, d, J=6.3-6.9Hz), 0.94, 1.04 and 1.17(6H, t, J=3.6Hz), 1.34 and 1.39(9H,s), 2.18-2.62(1H, m), 2.38(3H, s), 2.57-2.88 (3H,m), 2.91-3.38(5H,m), 2.94 and 3.06(3H,s), 3.49 and 3.57(1H, t, J=6.4-7.2Hz), 5.49-5.32 (2H,m), 6.02-6.1 and 6.53-6.59(1H, m), 6.45 and 6.64(1H, d, J=8.0Hz), 6.76-7.03(3H, m), 7.08 -7.19(3H, m)

表D-115

実施例115

N-Et-Phe(4-F)-N-Et-Val-Me-Tyr(3-tBu)-NHEt

	31		R32		₹33		R34	
	3t	<u> </u>	Et		Me		Et	
Reaction1		_						
Compound T6 (g)	Compound V2 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
4.170	8.720	5.880	4.20	150.00	20	nHx:EA =1:2	l-a115	5.500
Reaction2							****	
Compound I-a115 (g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colu	mn sol.	Product		ount g)
5.500	0.500	100.00	2	MC:MeO	PH =20:1	I-b115	3.	200
Reaction3						L		
Compound I-b115 (g)	Compound P3 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.000	0.850	0.760	0.60	20.00	18	nHx:EA =1:2	I-c115	0.300
Reaction4-b								
Compound (g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colu	mn sol.	Amount (g)		LC in
0.300	0.030	4.00	3	MC:MeO	H =20:1	0.040	21	.59
ESI-MS(M*+1): 599		<u> </u>			<u> </u>		

1H-NMR(CDCl₃):(two rotamers) δ 0.38-1.17(15H,m), 1.34, 1.36 and 1.38(9H,s), 3.38-2.12 (1H,m), 3.55(1H, t, J=6.3Hz), 3.47-3.72(1H, m), 4.88-5.37(2H, m), 5.79-6.09 and 6.63-6.7(1H, m), 6.42 and 6.62(1H, dd, J=8.3,7.4Hz), 7.05-7.22(6H,m)

表D-116

実施例116

Phe (4-F)-N-Et-Val-N-Et-Tyr (3-tBu)-NHEt

R	31		R32	I	233		R34	
	Н		Et		Et		E	
Reaction 1								
Compound T9(g)	Compound V2(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
5.020	9.110	17.550	9.50	100.00	16	nHx:EA=3:1	l-a116	3.030
Reaction2					<u> </u>			1 5.050
Compound I-a116(g)	Pd(OH) ₂ (g)	McOH (ml)	Reaction time (hr)	Colu	mn sol.	Product	ł	ount g)
3.030	0.454	60.00	14	MC:MeO	H = 10:1	l-b116		24
Reaction3								
Compound I-b116(g)	Compound P4(g)	CMPI (g)	TEA (ml)	ТНF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.600	0.680	0.549	0.40	12.00	18	nHx:EA=1:1	I-c116	0.200
Reaction4-b					<u> </u>			
Compound I-c116(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colum	nn sol.	Amount (g)	HP m	
0.200	0.030	4.00	3	MC:MeC	OH =20:1	0.053	21.	59
ESI-MS(M+1):			0.78-1.30(15H,					

1H-NMR(CDCl₃):(two rotamers) δ 0.60 and 0.78-1.30(15H, d and m, J=7.9Hz), 1.34 and 1.38(9H, s), 2.22-2.50(1H, m), 2.52-3.00(3H, m), 3.00-3.54(6H, m), 3.54-3.94(2H, m), 4.82-5.05(1H, m), 5.10(1H, m), 6.45-6.70(2H, m), 6.80(3/4H, m), 6.91-7.25(21/4H, m)

表D-117

実施例117

$N\hbox{-}Me\hbox{-}Phe (4\hbox{-}F)\hbox{-}N\hbox{-}Et\hbox{-}Val\hbox{-}N\hbox{-}Et\hbox{-}Tyr (3\hbox{-}tBu)\hbox{-}NHEt$

CM PI (g) 17.550 M eOH (mi) 60.00	TEA (ml) 9.50 Reaction time (hr)		Reaction time (hr) 16 mn sol.	Column sol. nHxEA=3:1 Product	Product I-a117	Amoun (g) 3.030
(g) 17.550 M eOH (ml)	(ml) 9.50 Reaction time (hr)	(ml) 100.00 Colu	(hr) 16	nHxEA=3:1	Product	(g) 3.030
(g) 17.550 M eOH (ml)	(ml) 9.50 Reaction time (hr)	(ml) 100.00 Colu	(hr) 16	nHxEA=3:1	I-a117	(g) 3.030
M eOH (mi)	Reaction time (hr)	Colu			!	L
(mi)	time (hr)		mn sol.	Product	Amo	L
(mi)	time (hr)		mn sol.	Product	Amo	
60.00	14				(g	
	1	MC:MeC)H = 10:1	I-b117	2.2	
CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column soi.	Product	A mount
0.585	0.40	16.00	48	nHx:EA=1:1	ſ-c117	0.378
				l		
M C (ml)	Reaction time (hr)	Colu	nn sol.	Amount (g)	HPL mir	
4.00	3	M C:M e	OH =20:1	0.056	22.2	.0
(.00	ml) time (hr)	mi) time (hr) Colur	mi) time (hr) Column sol. .00 3 MC:MeOH = 20:1	mi) time (hr) Column sol. Amount (g) .00 3 M C:M eOH = 20:1 0.056	ml) time (hr) Column sol. Amount HPI (g) min

2.33(3H, s), 2.30-2.48(1H, m), 2.65-3.89(12H, m), 4.90 and 5.07(1H, m), 5.18 and 5.23(1H, d, J=9.7Hz), 6.48 and 6.58(1H, d, J=8.8Hz), 6.63(1/2H, m), 6.80(1H, dd, J= 8.1, 1.8Hz), 6.90-7.0(7/2H, m), 7.05(1/2H, d, J=1.7Hz), 7.06-7.20(5/2H, m)

表D-118

N-Et-Phe (4-F)-N-Et-Val-N-Et-Tyr (3-tBu)-NHEt

R	31		R32	F	33		R34	
F	31		Et		E1	 	Et	
Reaction1				·		L		
Compound T9(g)	Compound V2(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun
5.020	9.110	17.550	9.50	100.0	16	nHx:EA=3:1	I-a118	3.030
Reaction2							. 4110	3.000
Compound I-a118(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Colum	nn sol.	Product		ouni g)
3.030	0.454	60.00	14	MC:MeOl	f = 10:1	I-b118		240
Reaction3								
Compound I-b118(g)	Compound P3(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.520	0.642	0.475	0.30	10.00	48	nHx:EA=1:1	I-c118	0.174
Reaction4-b					<u>-</u>		1 0110	0.174
Compound I-c118(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colum	n sol.	Amount (g)	HP)	
0.174	0.026	4.00	3	MC:MeO	H=20:1	0.141	22.8	
SI-MS(M*+1):6	513		·		<u></u>			

1H-NMR(CDCl₃):(two rotamers) δ 0.75 and 0.80-0.98(8H, d and m, J=7.9Hz), 0.98-1.08(6H, m), 1.08-1.23(4H, m), 1.34 and 1.38(9H, s), 2.23-2.88(6H, m), 2.93-3.88(9H, m), 4.92 and 5.08(1H, m), 5.15 and 5.22(1H, d, J=9.7Hz), 6.49 and 6.57(1H, d, J=8.8Hz), 6.63(1/2H, m), 6.80(1/2H, dd, J=8.1, 1.7Hz), 6.85-7.00(3H, m), 7.05(1/2H, d, J=1.7Hz), 7.08-7.20(5/2H, m)

表D-119

Phe(4-F)-N-Me-Val- Tyr(3-t Bu)-NH-n-Pr

	31		R32	R3	3		R34	
	H		Me	Н			n-Pr	
Reaction1							H-T1	
Compound T10(g)	Compound V1(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun
0.580	0.640	0.670	0.92	10.00	18	nHx:EA=1:1	1 110	(g)
Reaction2			<u> </u>			IIIIX:EA=1:1	l-a119	1.030
Compound I-a119(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Column	ı sol.	Product		ount g)
1.030	0.200	10.00	2	MC:MeOl	H=15:1	I-b119	0.	
Reaction3			· · · · · · · · · · · · · · · · · · ·					
Compound I-b119(g)	Compound P1(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.760	0.660	0.650	1.07	10.00	19	nHx:EA=1:2	I-c119	1.100
Reaction4-a								1.100
Compound I-c119(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column	sol.	Amount (g)	HP) mi	_
1.100	6.66	13.30	2	MC:MeOH	=15:1	0.210	20.	
SI-MS(M ⁺ +1)	:557							

1H-NMR(CDC₃): (two rotamers) δ 0.68-0.92(9H, m), 1.38 and 1.39(9H, s), 2.69 and 2.85 (3H, s), 1.37-3.20(7H, m), 3.90(1H, m), 3.93(1H, d, J=10.9Hz), 4.42-4.57(1H, m), 6.62-7.17(7H, m)

表D-120

実施例120

Phe (4-F)-N-Me-Val-Tyr (3-tBu)-NH-i-Pr

	31		R32	R	33		R34	
	H		Ме		н		i-Pr	
Reaction1								
Compound T11 (g)	Compound V1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.660	0.630	0.910	0.66	10.00	3	nHx:EA= 1:1	I-a120	1.210
Reaction2			· 					l
Compound I-a120 (g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colur	nn sol.	Product		ount g)
1.210	0.500	20.00	2	MC:Me(OH =20:1	I-b120	0.9	900
Reaction3								
Compound I-b120 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.900	0.650	0.880	0.64	15.00	3	nHx:EA =2:1	I-c120	1.300
Reaction4-a					·			
Compound I-c120 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colum	nn sol.	Amount (g)	HP m	LC in
1.300	5.00	20.00	2	MC:MeO	H = 25:1	0.960	19.	.99
ESI-MS(M*+1):557							

1H-NMR(CDCl₃): (two rotamers) δ 0.70-1.07(12H, m), 1.35 and 1.38(9H, s), 1.72(2H, brs), 2.29-2.37(1H, m), 2.72 and 2.83(3H, s), 2.52-2.74(4H, m), 3.60 and 3.81(1H, dd, J=8.2, 3.0Hz), 3.85-3.98(2H, m), 4.42-4.60(1H, m), 5.48 and 5.69(1H, d, J=7.8Hz), 6.62-6.80(2H, m), 6.90-6.98(3H, m), 7.06-7.11(2H, m), 9.07(1H, d, J=8.2Hz)

表D-121

実施例121

 $Phe (4-F)-N-Me-Val-N-Me-Tyr (3-t\ Bu)-NH-c-Pr$

	R31		R32		R33	1	R34	
Reaction1	Н	<u> </u>	Ме		Ме		c-Pr	
Compound T12(g)	Compound V1(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.500 Reaction2	0.520	0.600	0.70	10.00	18	nHx:EA:MC =1:1:1	I-a121	0.850
								L
Compound I-a121(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Colu	nn sol.	Product	1	ount g)
0.850	0.200	10.00	2	MC:Me	OH=15:1	l-b121		100
Reaction3								
Compound I-b121(g)	Compound P1(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.400	0.540	0.550	0.57	10.00	19	nHx:EA:MC =1:3:1	I-c121	0.720
Reaction4-a						=1:5:1	1	
Compound I-c121(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colum	n sol.	Amount (g)	HPI	
0.700	3.30	6.60	2	MC:MeOI	H =15:1	0.210	18.1	
SI-MS(M++1):	569					·L		
H-NMR(CDCl ı), 4.43-5.26(31	3): (two rotamers H, m), 6.48 and 6) δ 0.17-0. i.61(1H, d,	88(11H, m), 1 J=7.9Hz), 6.6	.31 and 1.34(9 2-7.16(6H, m)	H, s), 2.28, 2.63	3, 2.90 and 3.93(6	H, s), 2.11-3.	08 (6H,

スキーム4に、実施例122~131の合成スキーム示す。

スキーム4:実施例122~131の合成スキーム

上記反応スキームにおける R_{31} 、 R_{32} 、および R_{33} は、表D-122~ D-131に示した置換基を意味する。

スキーム4における合成方法を以下に説明する。

工程1)

5

化合物 I-b1, 3, 5, 11 化合物 P 3~5 及び C M P I の T H F 溶液に冷却下で T E A を加え室温で攪拌した。反応液に水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して I - a 1 2 2~1 3 1 を 得た。

20 工程 2)

- b 1 2 2 ~ 1 3 1 を得た。

工程3)

化合物 I - b 1 2 2 ~ 1 3 1 のメタノール溶液に P d / C を加え、水素雰囲気下 で室温で攪拌した。 P d / C を濾去した後、濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して目的化合物を得た。

スキーム4に従って合成された化合物の各実施例を、表D-122~D-131に示す。

表D-122

実施例122

 $Phe (4\text{-}F)\text{-}N\text{-}Me\text{-}Val\text{-}Tyr (3\text{-}tBu)\text{-}NHCH}_2OH$

	R31			R32			R33	
	Н			Me			Н	
Reaction1								
Compound I-b1 (g)	CompoundP4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.700	0.760	0.610	0.56	40.00	4	nHx:EA=2:1	l-a122	1.000
Reaction2			•					
Compound I-a122(g)	HOHO (ml)	K₂CO₃ (g)	(ml)	Reaction time (hr)	Column sol.	Product	Amo (g	
1.000	1.15	0.430	30.00	2	nHx:EA:MC =1:3:1	I-b122	0.90	00
Reaction3								
Compound I-b122(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colur	nn sol.	Amount (g)	HP1 miu	
0.900	0.140	13.00	2	EA:MeC	OH=15:1	0.560	15.9	л
ESI-MS(M+1):54:	5				<u></u>			

1H-NMR(CDX1₃): (two rotamers) δ 0.69, 0.75, 0.83 and 0.90(6H, d, J=6.4-6.7Hz), 1.34 and 1.35(9H, s), 2.22-3.17(5H, m) 2.68 and 2.88(3H, s), 3.57 and 3.82(1H, dd, J=8.0-8.5, 5.5-6.0Hz), 4.51-4.74(3H, m), 6.61-9.02(8H, m)

表D-123

$N\text{-Me-Phe}(4\text{-}F)\text{-N-Me-Val-Tyr}(3\text{-}tBu)\text{-NHCH}_{2}OH$

R31			R32			200	
Me							
			IVE		L	H	
Compound P5(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.569	0.439	0.60	20.00	16	nHx:FA=1·1	L-2123	0.920
		<u> </u>		L		1-4125	0.920
HCHO (ml)	K₂CO₃ (g)	(ml)	Reaction time (hr)	Column sol.	Product		
1.00	0.380	25.00	2	nHx:EA=1:1	I-b123		
						0.7.	
Pd/C (g)	MeOH (ml)		Colum	n sol.	Amount		
0.100	10.00	1.5	EA:MeO	H=30:1	0.228	16.0	
	Me Compound P5(g) 0.569 HCHO (mi) 1.00 Pd/C (g)	Mc Compound CMPI P5(g) (g) 0.569 0.439 HCHO K ₂ CO ₃ (ml) (g) 1.00 0.380 Pd/C McOH (g) (ml)	Me Compound P5(g) CMPI (ml) TEA (ml) P5(g) (g) (ml) 0.569 0.439 0.60 HCHO (ml) K2CO3 (ml) CH3CN (ml) 1.00 0.380 25.00 Pd/C (g) MeOH (ml) Reaction time (hr) (g) (ml) (hr)	Me R32 Me Me Compound P5(g) CMPI (g) TEA (mt) THF (mt) 0.569 0.439 0.60 20.00 HCHO K ₂ CO ₃ (mt) (mt) (g) (mt) (hr) (mt) (hr) 2 1.00 0.380 25.00 2 Pd/C (g) (mt) (hr) Reaction time (hr) Column	Me Me Compound PS(g) CMPI (g) TEA (ml) THF (ml) Reaction time (hr) 0.569 0.439 0.60 20.00 16 HCHO (ml) K ₂ CO ₃ (ml) CH ₃ CN (hr) Reaction time (hr) Column sol. 1.00 0.380 25.00 2 nHx:EA = 1:1 Pd/C (g) MeOH (ml) Reaction time (hr) Column sol.	Me R32 Me Me Compound PS(g) CMPI (g) TEA (ml) THF (ml) Reaction time (hr) Column sol. 0.569 0.439 0.60 20.00 16 nHxEA =1:1 HCHO (ml) (g) (ml) (hr) Column sol. Product 1.00 0.380 25.00 2 nHxEA =1:1 I-b123 Pd/C (g) McOH (ml) Reaction time (hr) Column sol. Armount (g) 0.100 1000 1.5 TAM OUL see at (c) Armount (g)	Me R32 R33 Me H Compound PS(g) CMPI (g) TEA (mt) THF (hr) Column sol. Product 0.569 0.439 0.60 20.00 16 nHxEA =1:1 I-a123 HCHO (ml) K2CO3 (ml) CH3CN (hr) Reaction time (hr) Column sol. Product Amount (g) 1.00 0.380 25.00 2 nHxEA =1:1 I-b123 0.92 Pd/C (g) McOH (hr) Reaction time (hr) Column sol. Arrount (g) HPI (g) 0.100 1000 1.5 EAMACH 2014 2014 Arrount (g)

¹H-NMR(CDCl₃): (two rotamers) δ 0.52, 0.77 and 0.89(6H, d, J=6.5-6.8Hz), 1.31 and 1.37(9H, s), 2.08-2.17(1H, m), 2.24 and 2.28(3H, s), 2.46 and 2.56(3H, s), 2.58-3.06(4H, m), 3.54-4.35(2H, m), 6.62-7.34(7H, m)

表D-124

実施例 1 2 4

$\hbox{N-Et-Phe(4-F)-N-Me-Val-Tyr(3-tBu)-NHCH}_2\hbox{OH}$

	R31			R32			R33	
	Ð			Me		 		
Reaction1						<u> </u>	Н	
Compund I-b1 (g)	Compound P3(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.630	0.750	0.555	0.75	20.00	26	nHcEA=1:1	I-a124	0.987
Reaction2				·	<u>. </u>			
Compound I-al24(g)	HCHO (ml)	K₂CO₃ (g)	(mJ) CH²CN	Reaction time (hr)	Column soi.	Product	Am.	
0.980	1.10	0.400	25.00	2	nHcEA=1:1	I-b124	0.9	
Reaction3								
Compound I-b124(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colum	n sol.	Amount (g)	HPI mi	
0910	0.200	15.00	3	MCMeC	H=15:1	0.250	16.3	
:SI-MS(M [†] +1):573								

1H-NMR(CDCl₃):(two rotarrers) δ 0.50, 0.75, 0.82 and 0.85(6H, d, J=6.3-7.0Hz), 0.98 and 1.12(3H, ι, J=6.7Hz), 1.40 and 1.45(9H, s), 2.15(1H, m), 2.42 and 2.46(3H, s), 2.40(2H, m), 2.60-3.10(5H, m), 3.63(1H, dd, J=10.6, 6.0Hz), 4.50(1H, m), 4.70(2H, m), 6.70(4H, m), 6.90(1H, m), 7.00(1H, s), 7.12(1H, s), 7.20 and 7.40(1H, m), 8.75(1H, d, J=6.6Hz)

表D-125

$\hbox{N-Me-Phe(4-F)-N-Me-Val- N-Me-Tyr(3-tBu)-NHCH$_2$OH}$

	R31			R32		R33			
	Me			Me			Me .		
Reaction 1						i	re-		
Conpound I-b3(g)	Compound P5 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)	
1.200	1.420	1.100	0.92	30.00	14	nHx:EA:MC =1:2:1	I-a125	1.800	
Reaction 2	· · · · · · · · · · · · · · · · · · ·								
Compound I-al25(g)	(ml.)	K ₂ CO ₃ (g)	(mJ) CH³CN	Reaction time (hr)	Column sol.	Product	Anou (g)	=	
1.790	1.970	0.730	52.00	2	nHx:EA:MC =1:3:1	I-b125	1.500		
Reaction 3									
Compound I-bl25(g)	Pd/C (g)	M≅CH (ml)	Reaction time (hr)	Column col Albuit API					
1.500	0.230	20.00	2	EA:MeOH=10:1		0.970	17.27		
ESI-MS(M+1):5	73			·					

1H-NMR(CDCl₃):(two rotamers) d 0.57, 0.79 and 0.92(6H, d, J=6.3-6.8Hz), 1.34 and 1.38(9H, s), 2.22 and 2.25(3H, s) 2.29(1H, m), 2.52 and 2.82(3H, s), 2.55-2.89(3H, m), 2.92 and 3.04(3H, s), 3.20 and 3.39(1H, dd, J=11.1-14.1,6.3-7.3Hz), 3.46 and 3.61(1H, t, J=6.8-6.9Hz), 4.59-4.76(2H, m), 5.03 and 5.14(1H, d, J=10.5Hz), 5.11 and 5.37(1H, dd, J=6.3, 9.73Hz), 6.39 and 6.61(1H,d,J=7.9-8.2 Hz),6.77-7.12(6H,m)

表D-126

実施例126

$N\text{-}Et\text{-}Phe (4\text{-}F)\text{-}N\text{-}Me\text{-}Val\text{-}N\text{-}Me\text{-}Tyr (3\text{-}tBu)\text{-}NHCH}_2OH$

R31				R32		R33		
	Et			Me		Me		
Reaction1								
Compund 1-b3(g)	Compound P3 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.400	1.720	1.270	1.07	38.00	14	nHx:EA =2:1	I-a126	2110
Reaction2			<u> </u>			·		
Compound I-a126(g)	HCHO (ml)	K₂CO₃ (g)	(ml)	Reaction time (hr)	Column sol.	Product	Amount (g)	
2.050	2.20	0.820	59.00	2	nHx:EA:MC =1:3:1	I-b126	2.000	
Reaction3				<u> </u>		·		
Compound I-b126(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Column sol. Amount (g)		HP.		
1.950	0.290	27.00	2	EA:MeOH =10:1 1.350 1		18.	09	

1H-NMR(CDCl₃):(two rotamers) δ 0.60, 0.79 and 0.91(6H, d, J=6.4-6.5Hz), 1.00 and 1.04(t, 3H, J=6.7-7.2Hz), 1.34 and 1.39(9H, s), 2.18-2.89(7H, m) 2.52 and 2.77(3H, s), 2.95 and 3.04(3H, s), 3.22 and 3.39(1H, dd, J=14.0-15.0, 7.9-7.6Hz), 3.57 and 3.70(t, 1H, J=6.8, 6.9Hz), 4.59-4.73(2H, m),5.05 and 5.13(1H, d, J=10.6-10.7Hz), 5.13 and 5.31(1H, dd, J=9.0,7.3Hz), 6.45 and 6.62(1H, d, J=7.9 and 8.04Hz), 6.78-7.12(6H, m)

表D-127

Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)-NHCH₂OH

	R31			R32				
н			 			R33		
Reaction1				Me			Et	
Compund I-b5 (g)	Compound P4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time	Column sol.	Product	Amount
0.760	1.240	0.990	0.91	20.00	12	nHx:EA =1:1		(g)
Reaction2					12	nHX:EA =1:1	I-a127	0.440
Compound I-a127(g)	HCHO (ml)	K ₂ CO ₃ (g)	CH₃CN (ml)	Reaction time	Column sol.	Product	Amo	unt
0.420	0.76	0.035	5.00	(hr) 12		Troduct	(g	
eaction3			1 5.00	12	nHxEA=1:1	I-b127	0.37	70
Compound I-b127(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colum	n sol.	Amount	HPL	С
0.350	0.050	15.00	3	MC:MeO	H-20-1	(g)	min	
SI-MS(M+1):573					11-20.1	0.100	18.2	5

1H-NMR(CDC₃): (two rotamers) δ 0.67, 0.81 and 0.91(6H, d, J=5.9-6.9Hz),1.07 and 1.16(3H, t, J=6.8 and 6.1Hz), 1.33 and 1.38(9H, s), 2.24-2.49(2H, m) 2.58-2.75(1H, m), 2.78 and 3.05(3H, s),2.83-3.03(1H, m), 3.15-3.30(1H, m), 3.37-3.44(1H, m), 3.55-3.65(1H, m), 3.75-3.90(1H, m), 4.55-4.76(2H, m),4.85-5.06(2H, m), 6.43 and 6.61(1H, d, J=8.1-8.4Hz), 6.75-7.1(6H, m), 7.36 and 8.03(1H, brs)

表D-128

$N\text{-}Me\text{-}Phe(4\text{-}F)\text{-}N\text{-}Me\text{-}Val\text{-}N\text{-}Et\text{-}Tyr(3\text{-}tBu)\text{-}NHCH_2OH$

	R31			R32			R33		
	Me			Me			Et		
Reaction1									
Compund I-b5(g)	Compound P5 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun	
0.700	1.230	0.950	0.91	20.00	12	nHx:EA =1:1	I-a128	0.640	
Reaction2				•				0.040	
Compound I-a128(g)	HCHO (ml)	K ₂ CO ₃ (g)	CH ₃ CN	Reaction time (hr)	Column sol.	Product	Amount (g)		
0.610	1.10	0.051	3.00	12	nHx:EA =1:1	I-b128	0.560		
Reaction3					لــــــــــا				
Compound I-b128(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Column sol.		Amount (g)	HPLC min		
0.540	0.080	23.00	1	1/21/1011 -0		18.	85		
SI-MS(M+1):587			1						

1H-NMR(CDCl₃):(two rotamers) δ 0.77, 0.83, 0.84 and 0.93(6H, d, J=6.4-6.8Hz),1.12 and 1.18(3H, t, J=7.0-7.1Hz), 1.34 and 1.38(9H, s), 2.25(3H, s), 2.29-2.39(1H, m), 2.64-3.01(3H, m), 2.75 and 2.85(3H, s), 3.21-3.33(1H, m), 3.42-3.69(3H, m), 4.58-4.76(2H, m), 4.88-4.94 and 5.10-5.19(1H, m), 5.12(1H, dd, J=10.5, 2.6Hz), 6.50 and 6.61(1H, d, J=8.0Hz), 6.80-6.98(3H, m), 7.07-7.15(3H, m), 7.42 and 8.29(1H, t, J=6.0-6.4Hz)

表D-129

実施例129

$N\text{-}Et\text{-}Phe (4\text{-}F)\text{-}N\text{-}Me\text{-}Val\text{-}N\text{-}Et\text{-}Tyr (3\text{-}tBu)\text{-}NHCH}_2OH$

	R31			R32			R33		
	Eı			Me			El		
Reaction1						<u> </u>	EI .		
Compund I-b5 (g)	Compound P3 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)	
1.000	1.370	1.010	0.92	25.00	12	nHx:EA =1:1	I-a129	0.970	
Reaction2			 -	L	<u> </u>				
Compound I-a129(g)	HCHO (ml)	K₂CO₃ (g)	CH ₃ CN (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)		
0.950	1.70	0.079	6.00	12	nHx:EA =1:1	I-b129	0.790		
Reaction3									
Compound I-b129(g)	Pd/C (g)	McOH (ml)	Reaction time (hr)	Colum	m sol.	Amount (g)	HPLC min		
0.780	0.120	30.00	2	MC:MeOH	i =20:1	0.300	19.68		
ESI-MS(M+1):601									

1H-NMR(CDC₃):(two rotamers) δ 0.76, 0.82, 0.83 and 0.92(6H, d, J=6.4-6.9Hz), 1.00-1.28(6H, m), 1.34 and 1.38(9H,s), 2.25-2.43(2H, m), 2.49-2.59(1H, m), 2.65-2.97(3H, m), 2.72 and 2.79(3H, s), 3.17-3.33(1H, m), 3.41-3.76(3H, m), 4.52-4.74(2H, m), 4.85-4.90 and 5.12-5.16(1H, m), 5.09(1H, dd J=10.7, 3.5Hz), 6.48 and 6.59(1H, d, J=8.0-8.4Hz), 6.80-6.98(3H, m), 7.08-7.17(3H, m), 7.38 and 8.32(1H, t, J=5.7Hz)

表D-130

Phe(4-F)-N-Et-Val-N-Et-Tyr(3-tBu)-NHCH2OH

	R31			R32		R33		
	Н		Et			Et		
Reaction1				•		<u> </u>		
Compund I-b11 (g)	Compound P4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.770	1.250	1.000	0.68	25.00	30	nHx:EA =1:1	I-a130	0.200
Reaction2							<u> </u>	
Compound I-al30(g)	(ml)	K₂Œ₃ (g)	(ml)	Reaction time (hr)	Column sol.	Product	Amount	(g)
0.200	0.36	0.400	4.00	12	nHx:EA =1:1	I-b130	0.100	
Reaction3								
Compound I-b130(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Column	sol.	Amount (g)		
0.100	0.015	5.00	1	MC:MeOH	=25:1	0.016	18.41	
SI-MS(M+1):5					·			

1H-NMR(CDCl₃): (two rotamers) d 0.54, 0.81, 0.87 and 0.93(6H, d, J=6.0-6.8Hz), 1.12 and 1.19(6H, t, J=6.8-7.2Hz), 1.36 and 1.39(9H, s), 2.25-2.43(1H, m), 2.60-2.74(1H, m), 2.78-2.99(2H, m), 3.16-3.50(4H,m), 3.56-3.80(2H, m), 4.53-4.74(2H, m), 4.83-4.88 and 4.99-5.11(2H, m), 6.48 and 6.63(1H, d, J=7.9Hz), 6.80-6.85 and 6.96-7.18(6H, m), 7.46-7.49 and 7.58-

表D-131

$N\text{-}Me\text{-}Phe(4\text{-}F)\text{-}N\text{-}Et\text{-}Val\text{-}N\text{-}Et\text{-}Tyr(3\text{-}tBu)\text{-}NHCH}_2OH$

R31			D22		T		
Me		 -			R33		
					<u> </u>	Et	
Compound P5 (g)	CMPi (g)	TEA (ml)	THF (ml)	Reaction time	Column sol.	Product	Amount
1.340	1.000	0.68	25.00	30	nHx:FA =1:1	1 0121	(g)
					1.1.2.1.2.1	1-8131	0.170
HCHO (ml)	K₂◯◯₃ (g)	CH ₃ CN (ml)	Reaction time (hr)	Column sol.	Product		
0.31	0.014	4.00	12	nHv:EA 1.1		(g)	
					1-6131	0.08	80
Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colum	n sol.	Amount		_
0.012	4.00	1	MC:MeOH	I =25:1	0.040	min 18.97	
	Mc Compound P5 (g) 1.340 HCHO (ml) 0.31 Pd/C (g)	Mc Compound (g) 1.340 1.000 HCHO (k ₂ CO ₃ (ml) (g) 0.31 0.014 Pd/C MeOH (ml)	Compound CMPI TEA (ml)	Me R32 Compound P5 (g) CMPI (ml) TEA (ml) THF (ml) 1.340 1.000 0.68 25.00 HCHO (ml) K ₂ CO ₃ (ml) CH ₃ CN (hr) Reaction time (hr) 0.31 0.014 4.00 12 Pd/C (g) MeOH (ml) (hr) Column 0.013 1.00 1.00	Me R32 Compound P5 (g) CMPI (g) TEA (ml) THF (ml) Reaction time (hr) 1.340 1.000 0.68 25.00 30 HCHO (ml) K ₂ CO ₃ (ml) CH ₃ CN (hr) Reaction time (hr) Column sol. 0.31 0.014 4.00 12 nHx:EA = 1:1 Pd/C (g) MeOH (ml) Reaction time (hr) Column sol. 0.012 4.00 1 Column sol.	Compound CMPI TEA THF Reaction time Column sol.	Me R32 R33 Et Et R33 Compound P5 (g) (g) (ml) TEA (ml) THF (ml) (hr) Column sol. Product 1.340 1.000 0.68 25.00 30 nHx:EA =1:1 1-a131 HCHO (ml) (g) (ml) CH ₃ CN (ml) Reaction time (hr) Column sol. Product Amount (g) 0.31 0.014 4.00 12 nHx:EA =1:1 1-b131 0.08 Pd/C (g) (ml) (ml) Reaction time (hr) Column sol. Amount (g) HPL (g) min 0.012 4.00 1 MC:MeOH (25:1) 0.00 0.00 0.00

1H-NMR(CDCl₃):(two rotamers) δ 0.64(1H, d, J=6.4Hz), 0.85-0.97(7H, m), 1.10-1.19(4H, m), 1.33 and 1.37(9H, s), 2.25-2.43(1H, m), 2.29 and 2.31(3H, s), 2.67-2.86(3H, m), 3.12-3.65 and 3.74-3.81(6H, m), 4.52-4.72(2H, m), 4.87-4.92 and 5.09-5.19(2H, m), 6.45 and 6.59(1H, d, J=8.0 and 8.4Hz), 6.78(2/3H, dd, J=7.9, 1.5Hz), 6.90-6.98(7/3H, m), 7.04(2/3H, d, J=1.5Hz), 7.10-7.16(7/3H, m), 7.50 and

スキーム5に、実施例132の合成スキームを示す。

スキーム5:実施例132の合成スキーム

5 Z-N-Me-Val-N-Me-

I-a132

I-b132

Tyr(3-tBu)-NH,

10 スキーム5における合成方法を以下に説明する。

工程1)

化合物 Z-N-Me-Val-N-Me-Tyr (3-tBu) $-NH_2$ の CH_3CN 溶液に 3.8% HCHOと K_2CO_3 を加え室温で攪拌した。反応液に 飽和 NH_4Cl 水溶液を加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水 硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製してI-a132を得た。

工程 2)

15

化合物 I - a 1 3 2 のメタノール溶液に P d / C を加え、水素雰囲気下で室温 で攪拌した。 P d / C を濾去した後、濾液を減圧濃縮した残さをカラムクロマト グラフィ(シリカゲル) で精製して I - b 1 3 2 を得た。

工程3)

化合物 I-b132、化合物 P4及び CMPIの THF 溶液に冷却下で TEA 25 を加え室温で攪拌した。反応液に水を加え、酢酸エチルで抽出し、飽和食塩水で

洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さを カラムクロマトグラフィ(シリカゲル)で精製してI-c132を得た。

工程4)

5 化合物 I - c 1 3 2 のメタノール溶液に P d / C を加え、水素雰囲気下で室温で攪拌した。 P d / C を濾去した後、濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して目的化合物を得た。

スキーム5に従って合成された化合物の実施例を表D-132に示す。

表D-132

実施例132

 $Phe (4\text{-}F)\text{-}N\text{-}Me\text{-}Val\text{-}N\text{-}Me\text{-}Tyr (3\text{-}tBu)\text{-}NHCH}_2OH$

Me Me Me Me	· · · · · · · · · · · · · · · · · · ·	R31			R32			R33		
Reaction		Н			Me		T			
Tyr(3-tBu)-NH ₂ (g) (ml) (g) (ml) (hr) Column sol. Product (g) 2.000 3.00 1.100 71.00 2 nHx:EA:MC =1:3:1 I-a132 2.000 Reaction2 Compound Pd/C MeOH Reaction time (hr) Column sol. Product Amount (g) 1.950 0.290 50.00 1 EA:MeOH=7:1 I-b132 0.730 Reaction3 Compound Compound CMPI TEA THF Reaction time (hr) (hr) Column sol. Product (g) 0.730 0.880 0.700 0.50 35.00 4 nHx:EA=1:4 I-c132 0.700 reaction4 Compound Pd/C MeOH Reaction time (hr) Column sol. Product (g) 0.730 0.880 0.700 0.50 35.00 4 nHx:EA=1:4 I-c132 0.700 reaction4 Compound Pd/C MeOH Reaction time (hr) Column sol. Product (g) 0.700 0.110 10.00 4 MCMeOH=20:1 0.410 16.64	Reaction1	,								
Compound Pd/C MeOH Reaction time Column sol. Product Amount (g)	Z-N-Mc-Val-N-Mc- Tyr(3-tBu)-NH ₂ (g)			1		Column sol.	Product			
Compound Pd/C MeOH Reaction time Column sol. Product Amount (g)	2.000	3.00	1.100	71.00	2		I-a132	2.	2.000	
I-a132(g) (g) (mi) (hr) Column sol. Product Amount (g)	Reaction2						<u> </u>			
1.950 0.290 50.00 1 EA:MeOH =7:1 I-b132 0.730 Reaction3 Compound I-b132(g) Compound P4(g) CMPI TEA (mi) (mi) (mi) (hr) Column sol. (hr) Product (g) Amount (g) 0.730 0.880 0.700 0.50 35.00 4 nHx:EA =1:4 I-c132 0.700 eaction4 Compound I-c132(g) Pt/C (g) MeOH (hr) Column sol. Amount (g) HPLC min 0.700 0.110 10.00 4 MCMeOH =20:1 0.410 16.64	•		1	1			Product	l '		
Compound Compound CMPI TEA THF Reaction time Column sol. Product Arround (g) (mi) (mi) (hr) Column sol. Product (g) (g) (mi) (hr) (hr) Column sol. Product (g) (hr)	1.950	0.290	50.00	1	EA:MeOH =7:1		I-b132			
I-b132(g) P4(g) (g) (ml) (ml) (hr) Column sol. Product Amount (g)	Reaction3		<u> </u>				L			
0.730 0.880 0.700 0.50 35.00 4 nHx:EA =1:4 I-c132 0.700 eaction4 Compound I-c132(g) Pd/C (g) MeOH (hr) Reaction time (hr) Column sol. Amount (g) HPLC min 0.700 0.110 10.00 4 MCMeOH =20:1 0.410 16.64		•		1	1		Column sol.	Product		
Compound I-c132(g) Pd/C (g) MeOH (nt) Reaction time (hr) Column sol. Amount (g) HPLC min 0.700 0.110 10.00 4 MCMeOH = 20:1 0.410 16.64		0.880	0.700	0.50	35.00	4	nHx:EA=1:4	I-c132		
1-c132(g) (g) (ml) (hr) Column sol. Arrount (g) min 0.700 0.110 10.00 4 MCMeOH = 20:1 0.410 16.64	Reaction4			· 						
16.64 16.64					Colum	n sol.				
SI-MS(M*+1):559	0.700	0.110	10.00	4	MC:MeO	H=20:1	0.410	16.		
	SI-MS(M+1):559			 L			L			

1H-NMR(CDCl₃): (two rotamers) δ 0.49, 0.74, 0.78 and 0.91(6H, d, J=5.9-6.6Hz), 1.33 and 1.37(9H, s), 2.20-2.97(4H, m),2.54, 2.81 and 3.00(6H, s),3.16 and 3.35(1H, dd, J=13.7-15.1, 6.2-6.5Hz),3.71 and 3.85(1H, dd, J=8.1-9.4, 4.5-5.0Hz), 4.64 and 4.69(2H, d, J=6.0-6.4Hz), 4.79 and 5.06(1H, d, J=10.2-10.6Hz), 5.00 and 5.36(1H, dd, J=9.2, 5.5Hz), 6.43 and 6.64(1H, d, J=7.8Hz), 6.71-7.12(6H, m)

スキーム6に、実施例133~135の合成スキームを示す。

スキーム6:実施例133~135の合成スキーム

上記反応スキームにおけるR c は、表D-133~D-135に示した置換基を 10 意味する。

スキーム6における合成方法を以下に説明する。

工程1)

5

化合物T13~T15, 化合物V1及びCMPIのTHF溶液に冷却下でT EAを加え室温で攪拌した。反応液に水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製してI-a133~135を 得た。

20 工程2)

化合物 I - a 1 3 3 ~ 1 3 5 のメタノール溶液に水酸化パラジウムー炭素を加え、水素雰囲気下、室温で攪拌した。反応混合物を濾過し、濾液を減圧下に濃縮して得られた残さをカラムクロマトグラフィ(シリカゲル)で精製して I - b 1

WO 00/44770 PCT/JP00/00444

33~135を得た。

工程3)

化合物 I - b 1 3 3 ~ 1 3 5、化合物 P 1、及び C M P I の T H F 溶液に冷却 下で T E A を加え室温で攪拌した。反応液に水を加え、酢酸エチルで抽出し、飽 和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮 した残さをカラムクロマトグラフィ(シリカゲル)で精製して I - c 1 3 3 ~ 1 3 5 を得た。

10 工程4)

15

化合物 I-c 133~135のジクロロメタン溶液に冷却下でTFAを加え室温で攪拌した。反応液に飽和NaHCO $_3$ 水溶液を加え中和し、ジクロロメタンで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して目的化合物を得た。

スキーム 6 に従って合成された化合物の各実施例を、表 $D-133\sim D-135$ に示す。

WO 00/44770 PCT/JP00/00444

表D-133

実施例133

 $(2S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methyl propanoylamino]-N-((1S)-1-\{[3-(text-superscript{1.5})-2-amino-3-(4-fluorophenyl)-N-methyl propanoylamino]-N-((1S)-1-\{[3-(text-superscript{1.5})-2-amino-3-(4-fluorophenyl)-N-methyl propanoylamino]-N-((1S)-1-\{[3-(text-superscript{1.5})-2-amino-3-(4-fluorophenyl)-N-methyl propanoylamino]-N-((1S)-1-\{[3-(text-superscript{1.5})-2-amino-3-(4-fluorophenyl)-N-methyl propanoylamino]-N-((1S)-1-\{[3-(text-superscript{1.5})-2-amino-3-(4-fluorophenyl)-N-methyl propanoylamino]-N-((1S)-1-\{[3-(text-superscript{1.5})-2-amino-3-(4-fluorophenyl)-N-methyl propanoylamino]-N-((1S)-1-\{[3-(text-superscript{1.5})-2-amino-3-(4-fluorophenyl)-N-methyl propanoylamino]-N-((1S)-1-\{[3-(text-superscript{1.5})-2-amino-3-(4-fluorophenyl)-N-methyl propanoylamino-3-(4-fluorophenyl)-N-methyl - hydroxyphenyl] methyl \} - 2 - morpholin - 4 - yl - 2 - oxoethyl) - 3 - methyl - N - methylbutan$ amide

	·····			R				
				4-morpholine	e			
Reaction 1	-							
Compound T13(g)	Compound V1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amour (g)
0.600	0.490	0.720	0.50	20.00 1 20		nHx:EA = 1:1	l-a133	0.900
Reaction2					·			L
Compound I-a133(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Colu	nn sol.	Product		ount g)
0.900	0.100	20.00	20	MC:MeOH = 20:1		I-b133	0.6	600
Reaction3						1		
Compound I-b133(g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.600	0.450	0.530	0.40	20.00	20	nHx:EA = 1:1	I-c133	0.850
Reaction4								
Compound I-c133 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colum	nn sol.	Amount (g)	HP!	
0.850	3.00	10.00	4	MC:MeOI	H = 20:1	0.600	19.	77

1H-NMR(CDCl₃): (two rotamers) δ 0.78 and 0.85(6H, d, J=6.2-6.7Hz), 1.37(9H, s), 2.23-2.28(1H, m), 2.24(3H, s), 2.48-2.56(1H, m), 2.79-2.87(5H, m), 3.02-3.09(1H, m), 3.40-3.74(10H, m), 5.01-5.05(1H, J=10.0 Hz), 5.79-5.84(1H,m), 6.39 and 6.41(1H,d, J=7.9Hz), 6.74-6.77(1H,m), 6.99-7.18(6H,m)

WO 00/44770 PCT/JP00/00444

表D-134

実施例134

 $(2S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methylpropanoylamino]-N-((1S)-1-\{[3-(tert-butyl)-4-hydroxyphenyl]methyl\}-2-[4-(methylsulfonyl)piperazinyl]-2-oxoethyl)-3-methyl-N-methylbutanamide$

				R				
			4-(meth)	(isulfonyl)	piperazine			
Reaction 1							······	
Compound T14(g)	Compound V1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.200	0.790	1.100	0.84	20.00 20		nHx:EA = 1:1	I-a134	1.500
Reaction 2						<u> </u>		·
Compound I-a134 (g)	Pd(OH) ₂ (g)	M cOH (ml)	Reaction time (hr)	Column soi.		Product	Amount (g)	
1.500	0.300	20.00	20	MC:McOH = 20:1		1-6134	0.9	000
Reaction3			· · · · · · · · · · · · · · · · · · ·					
Compound I-b134 (g)	Compound P1 (g)	CM P1 (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.700	0.520	0.430	0.38	15	2	nHx:EA = 1:l	I-c134	0.700
Reaction4								
Compound I-c134 (g)	TFA (mt)	М С (ml)	Reaction time (hr)	Col	umn sol.	Amount (g)	H P m	
0.700	3.00	10.00	4	MC:Me	OH = 20:1	0.350	19	.94

1H-NMR(CDCl₃): (two rotamers) & 0.79 and 0.85(6H, d, J=6.2-6.7Hz), 1.37(9H, s), 2.23-2.28(1H, m), 2.52-2.69(4H, m), 2.73(3H, s), 2.75-2.89(7H, m), 3.01-3.16(4H, m), 3.58-3.78(1H, m), 5.03 and 5.07(1H, d, J=10.6 Hz), 5.75-5.81(1H, m), 6.42 and 6.45(1H, d, J=7.9Hz), 6.76-6.80(1H, m), 6.99-7.18(6H, m)

表D-135

実施例135

Ethyl 2-[4-((2S)-2-{(2S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methylpropanoyl amino]-3,N-dimethylbutanoylamino}-3-[3-(tert-butyl)-4-hydroxyphenyl] propanoyl)pipe razinyl]acetate

				R				
			ethył-	-2-pipcrazii	rylacetate			
Reaction1								
Compound T15 (g)	Compound V1 (g)	CM PI (g)	TEA (ml)	THF Reaction time (ml) (hr)		Column sol.	Product	Amoun (g)
0.643	0.547	0.527	0.50	16.00 16		nHx:EA= 2:3	I-a135	0.827
Reaction2								L
Compound I-a135 (g)	Pd(OH) ₂ (g)	McOH (ml)	Reaction time (hr)	Colt	ımn sol.	Product		ount g)
0.827	0.250	13.00	1	MC:MeOH =20:1		I-b135	0.0	i45
Reaction3								
Compound I-b135 (g)	Compound P1 (g)	CM PI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Calumn sol.	Product	Amount (g)
0.645	0.458	0.413	0.40	12	16	nHx:EA= 2:3	I-c135	0.796
Reaction4								
Compound I-c135(g)	TFA (mi)	MC (ml)	Reaction time (hr)	Colu	mn sol.	Amount (g)	H P m	LC in
0.796	2.00	5.00	1	MC:Me	OH =30:1	0,430	17	.1

1H-NMR(CDCl₃): (two rotamers) δ 0.77 and 0.84(6H, d, J=6.4-6.8Hz),1.26(3H, t, J=7.1Hz),1.26(9H, s), 2.22-2.30(1H, m),2.47-2.54(1H, m),3.00-3.07(1H, m) 2.40, 2.81 and 3.18(6H, s), 3.54-3.73(5H, m), 4.18(2H, q, J=7.1Hz), 5.03(2H, d, J=10.4Hz), 5.85(1H, t, J=2.3Hz), 6.40(1H, d, J=7.9Hz), 6.72-6.75 (1H, dd, J=9.7, 1.9Hz), 7.00-7.26(5H, m)

スキーム7に、実施例136の合成スキームを示す。

スキーム7:実施例136の合成スキーム

工程1)

5

実施例135で得られた化合物をジオキサン溶液に加えた後、2N-NaO H溶液を加え室温で攪拌した。反応液に水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して目的化合物を得た。

15 スキーム7に従って合成された化合物の実施例を、表D-136に示す。

表D-136

実施例136

2-[4-((2S)-2-((2S)-2-amino-3-(4-fluorophenyl)-N-((2S)-2-((2S)-2-amino-3-(4-fluorophenyl)-N-((2S)-2-(

5 methylpropanoylamino]-3,N-dimethylbutanoylamino}-3-[3-(tert-

butyl)-4-hydroxyphenyl]propanoyl)piperazinyl]acetic acid

Compound of Example 135(g)	NaOH (g)	H₂O (ml)	Dioxane (ml)	Reaction time (hr)	Column sol.	Amount (g)	HPLC min
0.375	0.400	5.00	5.00	16	MC:MeOH=20:1	0.200	14.97

ESI-MS(M+1):656

1H-NMR(CD3OD): (two rotamers) δ 0.78 and 0.82(6H, d, J=6.1Hz),1.27(9H, s), 2.12-2.29(1H, m), 2.74-3.12(8H, m),3.61-3.82(4H, m), 2.48, 2.94, 3.25 and 3.55(6H, s), 4.50-4.56(1H, q, J=10.5Hz), 5.02(1H, d, J=10.5Hz), 5.73(1H, t, J=7.9Hz), 6.74-6.78(1H, dd, J=9.4, 2.2Hz), 7.00-7.27(6H, m)

スキーム8に、実施例137の合成スキームを示す。

10

スキーム8:実施例137の合成スキーム

15

スキーム8における合成方法を以下に説明する。

工程1)

化合物V3、化合物P4及びCMPIのTHF溶液に冷却下でTEAを加え室 20 温で攪拌した。反応液に水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、 WO 00/44770 PCT/JP00/00444

無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製してI-a137を得た。

工程2)

化合物 I-a137のメタノール溶液にNaOHと水を加え室温で攪拌した。 反応液に飽和 NH_4Cl 水溶液を加え、減圧濃縮した後、酢酸エチルで抽出し、 飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃 縮した残さをカラムクロマトグラフィ(シリカゲル)で精製してI-b137を 得た。

10

15

工程3)

化合物 I ー b 1 3 7、化合物 T 1 6 及び C M P I の T H F 溶液に冷却下で T E A を加え室温で攪拌した。反応液に水を加え、酢酸 エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して I ー c 1 3 7 を得た。

工程4)

化合物1-c137のメタノール溶液にPd/Cを加え、水素雰囲気下で室温で攪拌した。Pd/Cを濾去した後、濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して目的化合物を得た。

スキーム8に従って合成された化合物の実施例を、表D-137に示す。

PC1/JP00/00444

表D-137

実施例137

Phe(4-F)-N-Me-Val-N-Pr-Tyr(3-tBu)-NH₂

Reaction1								
Compound V3 (g)	Compound P4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.146	3.000	2.410	2.20	28.00	12	nHx:EA =5:1	I-a137	1.877
Reaction2			<u></u>	<u></u>				
Compound I-a137(g)	NaOH (g)	H ₂ O- (ml)	MeOH (ml)	Reaction time (hr)	Pro	duct		ount g)
1.870	0.646	8.00	40.00	8	I-b	137	1.	710
Reaction3								
Compound I-b137(g)	Compound T10 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column soi.	Product	Amount (g)
1.710	0.709	0.976	0.88	14.00	12	nHx:EA =3:2	I-c137	0.610
Reaction4			-l			<u>-</u> <u>-</u>		<u> </u>
Compound I-c137(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colun	n sol.	Amount (g)		LC in
0.400	0.080	16.00	1	MC:MeOl	·l =25:1	0.128	22	2.7

1H-NMR(CDCl₃): δ 0.66(3H, d, J=6.6Hz), 0.80(3H, d, J=6.5Hz), 0.84(3H, t, J=7.4Hz), 1.33(9H, s), 1.43-1.59(2H, m), 2.20-228(1H, m), 253(1H, dd, J=13.5, 9.1Hz), 2.60-2.75(2H, m), 2.95(1H, dd, J=13.8, 4.8Hz), 3.01(3H, s), 3.20(1H, dd, J=14.1, 6.2Hz), 3.32(1H, dd, J=13.6, 10.9Hz), 3.52-3.63(1H, m), 3.89-3.93(1H, m), 4.21-4.28(1H, m), 4.89(1H, d, J=10.6Hz), 5.48(1H, brs), 6.51(1H, d, J=7.9Hz), 6.73(1H, dd, J=7.9, 1.9Hz), 6.82(1H, brs), 6.99-7.10(3H, m), 7.11-7.16(2H, m)

スキーム9~14における各共通中間体の製造方法を、参考例として以下に示 す。また、実施例 $138\sim176$ における共通中間体の構造式を表C-3および 表 C-4 に示す。

WO 00/44770 PCT/JP00/00444

T4: R33=Me

表C-3

実施例138~176の共通中間体

I1:R=Et , I2:R=Et(D)

I3:R=n-Pr, I4:R=n-Pr(D)

I5:R=s-Bu (市販), I6:R=s-Bu(D)

I7:R=i-Bu (市販), I8:R=i-Bu(D)

I9:R=Allyl, I10:R=Allyl(L,D-mixture)

II1:R=neo-Pentyl, I12:R=neo-Pentyl(D)

I13:R=CH₂CF₃(L,D-mixture)

I14:R=c-Hex, I15:R=c-Hex(D)

I16:R= CH_2c -Hex, I17:R= CH_2c -Hex(D)

I18:R=CH₂Ph, I19:R=CH₂Ph(D)

 $I20:R=CH_2Ph(4-F), I21:R=CH_2Ph(4-F)(D)$

I22:R=CH₂Ph(4-Cl), I23:R=CH₂Ph(4-Cl)(D)

 $I24:R=CH_2Ph(4-OBn), I25: R=CH_2Ph(4-OBn)(D)$

I26:R=CH₂(2-thienyl), I27: R=CH₂(2-thienly)(D)

I28:R=CH₂c-Pr

I38:R=tBu

I29:N-Me-Phg-OMe, I30:N-Me-D-Phg-OMe

 \dot{R}_{33} T1: R33=H

P1: PG=Z or Boc

P4: PG=Z or Boc

表C-4

実施例138~176の共通中間体 (続き)

I31: R=CH₂Ph, I32: R=CH₂Ph(D)

I33: R=i-Bu

I34: R=Et(D)

I35: R=i-Pr(D)

表C-3及び表C-4において、(市販)とは、商業的に入手可能なことを示す。(D)は立体化学がD体であるアミノ酸を表し、記載がないものはL体のアミノ酸を表す。共通中間体 I において、P G は Z または $B \circ c$ を表す。

参考例21

共通中間体 I 1~ I 2 8 の合成 合成スキームを以下に示す。

5

15

共通中間体 I 1~ I 2 8 の合成スキーム

10 共通中間体 I 1~ I 2 8 の合成法を以下に説明する。

工程1)

Z保護もしくはBoc保護アミノ酸のTHF溶液に冷却下でNaHとMeIを加え室温で攪拌した。反応液に水を加え、1N HCIを加え $pH=3\sim4$ に調整した後、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して $11\sim128$ を得た。

結果を表E-10~E-35に示す。

WO 00/44770 PCT/JP00/00444

表 E - 10

共通中間体 I 1:Z-N-Me-Abu-OH

			R			
			Et			
Reaction					· · · · · · · · · · · · · · · · · · ·	
Z-Abu-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
2.000	4.20	1.340	40.00	15	MC:MeOH =10:1	1.400

表E-11

共通中間体 I 2: Boc-N-Me-D-Abu-OH

			R			
			Et:D			
Reaction						
Boc-(D)-Abu- OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amoun (g)
0.750	1.83	0.738	18.00	48	MC:MeOH =8:1	0.810

表E-12

共通中間体 I 3: Z-N-Me-Nva-OH

			R	···		
			n-Pr			
Reaction						
Z-Nva-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount
2.000	5.00	0.960	30.00	24	MC:MeOH =10:1	2.090

表E-13

共通中間体 I 4: Boc-N-Me-D-Nva-OH

			R			
			n-Pr:D			
Reaction						
Boc-(D)-Nva- OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
1.000	2.87	0.552	25.00	40	MC:MeOH =10:1	1.000

表E-14

共通中間体 I 6: Boc-N-Me-D-Ile-OH

	·		R			
		S	-Bu:D			
Reaction						
Boc-(D)-Ile-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
0.500	1.35	0.866	17.00	12	MC:MeOH =10:1	0.490

表E-15

共通中間体 I 8: Boc-N-Me-D-Leu-OH

			R			
		j	-Bu:D			
Reaction						
Boc-(D)-Leu-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
1.000	2.49	1.600	17.00	12	MC:MeOH =15:1	0.960

10/00/004

表 E-16

共通中間体 I 9:

 $(2S)\hbox{-}2\hbox{-}[N\hbox{-}(tert\hbox{-}butoxy carbonyl)\hbox{-}methylamino] pent\hbox{-}4\hbox{-}enoic acid}$

		R				
	A	llyl				
Reaction						
(2S)-2-[(tert- butoxy)carbonylamino]pent-4- enoic acid (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
0.660	1.79	1.150	12.00	12	MC:MeOH =10:1	0.570

表 E - 17

共通中間体 I 10:

2-[N-(tert-butoxycarbonyl)-methylamino]pent-4-enoic acid

	R									
	Allyl: D,L-mixture									
Reaction										
2-[(tert-butoxy)carbonyi - amino]pent-4-enoic acid (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)				
2.656	7.67	4.924	51.00	12	MC:MeOH =15:1	2.360				

WO 00/44770

表E-18

共通中間体 I 1 1 : BOC-N-Me-Leu(γ-Me)-OH

		R				
		neo-P	ent			
Reaction						
BOC-Leu(gamma- Me)-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
1.930	4.86	3.120	40.00	48	MC:MeOH =10:1	1.500

表 E-19

共通中間体 I 1 2 : BOC-N-Me-D-Leu(γ-Me)-OH

		R				
		лео-Репt	:D			
Reaction						
BOC-(D)-Leu(gamma- Me)-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
1.000	2.50	1.630	20.00	24	MC:MeOH =10:1	1.110

表 E - 20

共通中間体 I 1 3 : 2[N-(phenylmethoxy)carbonyl-methylamino]-4,4,4-trifluorobutanoic acid

			R			
		CH ₂ CF ₃ :I	,D-mixture			
Reaction						
Z-2-amino-4,4,4- trifluorobutanoic acid (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
0.75	1.61	1.03	20.00	12	MC:MeOH =10:1	0.567

表 E - 21

共通中間体 I 1 4: Boc-N-Me-Chg-OH

			R			
		c-	Hex			
Reaction						"
Boc-Chg-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
2.000	3.60	2:300	40.00	20	MC:MeOH =30:1	1.500

表 E - 22

共通中間体 I 1 5 : Boc-N-Me-D-Chg-OH

			R			
		c-H	lex:D			
Reaction						
Boc-(D)-Chg-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
1.500	2.70	1.740	30.00	20	MC:MeOH =30:1	1.150

表 E - 23

共通中間体 I 1 6: Boc-N-Me-Cha-OH

			R			
			CH₂c-He	x		
Reaction						
Boc-Cha-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
2.000	3.40	1.100	23.00	18	MC:MeOH =10:1	1.300

表 E - 24

共通中間体 I 1 7: Boc-N-Me-D-Cha-OH

			R			
		CH ₂	c-Hex:D			-
Reaction						
Boc-(D)-Cha-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
1.000	1.72	0.552	11.50	18	MC:MeOH =10:1	1.000

表 E - 25

共通中間体 I 18: Boc-N-Me-Phe-OH

			R			
		CI	-I₂Ph			
Reaction					·	
Boc-Phe-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
1.000	1.66	0.400	20.00	20	MC:MeOH =20:1	0.800

表 E - 26

共通中間体 I 1 9 : Boc·N-Me-D-Phe-OH

			R			
		CH	₂Ph:D			
Reaction						
Boc-(D)-Phe-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
0.890	1.66	0.400	20.00	20	MC:MeOH =20:1	0.800

表E-27

共通中間体 I 2 0 : Boc-N-Me-Phe(4-F)-OH

			R			
		СН	2Phe(4-F)			
Reaction				<u> </u>		
Boc-Phe-(4-F)-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
15.000	27.00	6.360	180.00	24	MC:MeOH =10:1	15.000

表E-28

共通中間体 I 2 1 : Boc-N-Me-D-Phe(4-F)-OH

			R			
		CH₂	Phe(4-F):D		-	
Reaction						
Boc-(D)-Phe(4-F)- OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
1.000	1.76	0.424	12.00	18	MC:MeOH =10:1	1.000

表 E - 29

共通中間体 I 2 2 : Boc-N-Me-Phe(4-Cl)-OH

			R			
		(CH ₂ Ph(4-Cl)			
Reaction						
Boc-Phe(4-Cl)- OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
2.000	3.32	0.800	40.00	18	MC:MeOH =20:1	1.630

表 E - 3 0

共通中間体 I 2 3: Boc-N-Me-D-Phe(4-Cl)-OH

		٠.	R	-		
		CH ₂ I	Ph(4-CI):D			
Reaction						
Boc-(D)-Phe(4- Cl)-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
1.000	1.66	0.401	20.00	18	MC:MeOH =20:1	0.781

表E-31

共通中間体 I 2 4: Boc-N-Me-Phe(4-OBn)-OH

			R			
		C	H ₂ Ph(4-OBn)			
Reaction						
Boc-Phe(4- OBn)-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
2.500	3.35	0.808	50.00	36	MC:MeOH =20:1	2.590

表 E - 32

共通中間体 I 2 5 : Z-N-Me-D-Phe(4-OBn)-OH

			R			
		CI	I ₂ Ph(4-OBn)	:D		
Reaction						
Z-(D)-Phe(4- OBn)-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
2.000	2.51	0.592	40.00	36	MC:MeOH =20:1	2.060

表 E - 33

共通中間体 I 2 6 : Boc-N-Me-Ala(β-2-thienyl)-OH

			R			
			CH ₂ (2-Thienyl)		
Reaction						
Boc-Ala(beta-2- thienyl)-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
1.000	1.84	0.443	20.00	18	MC:MeOH =20:1	0.916

表E-34

共通中間体 I 2 7 : Boc-N-Me-D-Ala(β -2-thienyl)-OH

			R			
		CI	I ₂ (2-Thienyl):	D		
Reaction						
Boc-(D)- Ala(beta-2- thienyl)-OH (g)	Methyl iodide	NaH - (g) -	THF (ml)	Reaction time (hr)	- Column sol.	Amount (g)
1.000	1.84	0.443	20.00	18	MC:MeOH =20:1	1.040

表E-35

共通中間体 I 28: Z-N-Me-Ala(β-c-Pr)-OH

			R			
		CH-	c-Propyl			
Reaction				· · · · · · · · · · · · · · · · · · ·		
Z-N-Ala(beta-c- Pr)-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
1.500	2.84	0.680	15.00	15	MC:MeOH =10:1	1.160

5

参考例22

共通中間体 I 2 9 の合成

合成スキームを以下に示す。

10

共通中間体 I 29の合成スキーム

15 共通中間体 I 29の合成法を以下に説明する。

工程1)

N-Me-Phg-OHのメタノール溶液に $SOCl_2$ を冷却下で徐々に滴下した後、還流しながら攪拌した。反応液を減圧濃縮して粗化合物 I29を得た。

20

結果を表E-36に示す。

表 E - 36

共通中間体 I 2 9: N-Me-Phg-OMe

Reaction				
N-Me-Phg- OH (g)	SOC1 ₂ (m1)	MeOH (ml)	Reaction time (hr)	Amount (g)
2.000	1.32	20.00	3.00	2.000

- 5.-

参考例23

共通中間体 I 3 0 の合成 合成スキームを以下に示す。

10 共通中間体 I 3 0 の合成スキーム

Z-N-Me-D-Phg-OMe

I30

共通中間体I30の合成法を以下に説明する。

工程1) 15

20

Z-D-Phg-OHとCH₃IのTHF、DMFの混合溶液に冷却下でNa Hを徐々に滴下した後、室温で攪拌した。反応液に水を加え、酢酸エチルで抽出 し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減 圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製してZ-N-M e-D-Phg-OMeを得た。

工程 2)

Z-N-Me-D-Phg-OMeのメタノール溶液に水酸化パラジウムー炭 素を加え、水素雰囲気下、室温で攪拌した。反応混合物を濾過し、濾液を減圧下 に濃縮して得られた残さをカラムクロマトグラフィ(シリカゲル)で精製して I 3 0 を得た。

結果を表E-37に示す。

5 表 E - 37

共通中間体 I 3 0 : N-Me-D-Phg-OMe

ZNMb-(D)- Phg-OH(g)	Mathyl iodide (ml)	NaH (g)	THF/DMF (nl)	Reaction time (hr)	Column sol.	Product	Amount (g)
2000	3.49	0.842	20.00 (10.00/10.00)	16	nHcEA=5:1	Z-N-Me-(D)- Phg-OMe	2200
Reaction2							
ZNMb-(D)- Phg-OMe(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)		Column sol.		Arrount (g)
2.200	0.330	40.00	12		nHcEA=5:1		1.240

参考例24

10 共通中間体 I 3 1 ~ I 3 5 の合成 合成スキームを以下に示す。

共通中間体 I 31~ I 35の合成スキーム

15 α-Me-Amino acid

Z- α-Me-Amino acid

I31~I35

共通中間体 I 31~ I 35の合成法を以下に説明する。

工程1)

 $\alpha-Me-amino$ $acid と Na_2CO_3$ のジオキサン、水の混合溶液に冷却下でZ-Clを徐々に滴下しながら攪拌した。反応液に水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して $Z-\alpha-Me-Amino$ acid を得た。

工程2)

5

 $Z-\alpha-Me-Amino$ acidと CH_3 IのTHF溶液に冷却下でNa10 Hを徐々に加えた。反応液に1N HCIを加え $pH=3\sim4$ に調整した後、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して $I31\sim I35$ を得た。

15 結果を表E-38~E-42に示す。

表E-38

共通中間体 I 3 1: Z-N-Me-α-Me-Phe-OH

				R					
				CH₂Ph					
Reaction1									
alpha-Me-Phe- OH (g)	Z-C1 (ml)	Na ₂ CO ₃ (g)	Dioxane (ml)	(m) H²O	Reaction time (hr)	Column sol.	Product	Amount (g)	
1.000	0.90	0.900	25.00	25.00	5	MC:MeOH =10:1	Z-alpha-Me- - Phe-OH	0.890	
Reaction2							I		
Z-alpha-Me-Phe- OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.			Amount (g)	
0.890	1.40	0.340	28.00	15	MC:MeOH	H =10:1	1.1	80	

WO 00/44770 PCT/JP00/00444

表E-39

共通中間体 I 3 2 : Z-N-Me-α-Me-D-Phe-OH

				R				
				CH ₂ Ph:D				
Reaction1								
alpha-Mc-(D)- Phe-OH (g)	Z-Ct (ml)	Na ₂ CO ₃ (g)	Dioxane (ml)	H ₂ O (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.000	0.90	0.900	25.00	25.00	5	MC:MeOH =10:1	Z-alpha-Me- (D)-Phe-OH	0.810
Reaction2								
Z-alpha-Me-(D)- Phe-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.		Amo (g	
0.810	1.40	0.340	28.00	15	MC:MeOH	I =10:1	1.0:	50

表E-40

共通中間体 I 3 3 : Z-N-Me-α-Me-Leu-OH

				R				
				i-Bu				
Reaction1								
alpha-Me-Leu-OH (g)	Z-Cl (ml)	Na ₂ CO ₃ (g)	Dioxane (ml)	H ₂ O (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.970	2.10	2.140	30.00	20.00	24	MC:MeOH =10:1	Z-alpha-Me- Leu-OH	2.000
Reaction2								
Z-alpha-Me-Leu- OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.		Amount (g)	
2.000	4.40	2.000	35.00	12	MC:MeOH =10:1		1.780	

表E-41

共通中間体 I 3 4 : Z-N-Me-α-Me-D-Abu-OH

				R				
				CH ₂ CH ₃ :D				
Reaction1								
alpha-Me-(D)- Abu-OH (g)	Z-Cl (ml)	Na ₂ CO ₃ (g)	THF (ml)	H ₂ O (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.250	0.36	0.450	10.00	2.00	3	MC:MeOH =10:1	Z-alpha-Me- (D)-Et-OH	0.177
Reaction2					<u> </u>		(3) 2. 0.1	
Z-alpha-Me- (D)-Abu-OH (g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.		Amount (g)	
0.750	0.42	0.190	10.00	12	MC:MeOH =10:1		0.152	

表E-42

共通中間体 I 3 5 : Z-N-Me-α-Me-D-Val-OH

				R				
				i-Pr.D				
Reaction1								
alpha-Me-(D)- Val-OH (g)	Z-Cl (ml)	Na ₂ CO ₃ (g)	Dioxane (ml)	H ₂ O (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.000	1.31	1.454	4.00	4.00	12	MCMeOH =15:1	Z-alpha-Me- (D)-Val-OH	0.170
Reaction2								
Z-alpha-Me-(D)- Val-OH(g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.		Amount (g)	
0.170	0.40	0.128	3.00	12	MC:MeOH=10:1		0.170	

参考例25

共通中間体 I 36、 I 37の合成 合成スキームを以下に示す。

5 共通中間体 I 36、 I 37の合成スキーム

共通中間体 I 36、I37の合成法を以下に説明する。

10 工程1)

15

Spiro-cyclic-Amino acidと CH_3 IのTHF溶液に冷却下でNaHを徐々に滴下した。反応液に1N HClを加え $pH=3\sim4$ に調整した後、エチルアセテートで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製してI36 \sim 37を得た。

結果を表E-43およびE-44に示す。

表 E - 43

共通中間体 I 36:

 $1\hbox{-}[N\hbox{-}methyl (phenyl methoxy) carbonylamino] cyclopentane carboxylic\ acid$

Reaction				 		
Z-1-amino-1-cyclo pentanecarboxylic acid(g)	i Meinviindide i	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
2.000	3.79	0.912	26.00	18	MC:MeOH =20:1	1.730

表 E - 44

共通中間体 I 37:

 $1\hbox{-}[N\hbox{-}methyl (phenylmethoxy) carbonylamino] cyclohexane carboxylic acid$

Reaction	v 					
Z-1-amino-1-cyclo hexanecarboxylic acid(g)	Methyl iodide (ml)	NaH (g)	THF (ml)	Reaction time (hr)	Column sol.	Amount (g)
4.000	7.19	1.730	80.00	18	MC:MeOH =20:1	4.190

参考例26

共通中間体 I 3 8 の合成 合成スキームを以下に示す。

5 共通中間体 I 38の合成スキーム

共通中間体 I 3 8 の合成法を以下に説明する。

10

15

工程1)

Boc-Tle-OHのDMF溶液に冷却下でNaHとMeIを加え室温で攪拌した。反応液に1N HClを加え、酢酸エチルで抽出し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮してBoc-N-Me-Tle-OMeを得た。

工程 2)

Boc-N-Me-Tle-OMeのメタノール、水の混合溶液にNaOHを加え室温で攪拌した。反応液に1N HClを加えpH=3~4に調整した後、、20 酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製してI38を得た。

結果を表E-45に示す。

表E-45

共通中間体 I 38: Boc-N-Me-Tle-OH

Reaction1						
Boc-Tle-OH (g)	Methyl iodide (ml)	NaH (g)	DMF (ml)	Reaction time (hr)	Product	Amount (g)
1.000	2.70	0.865	18.00	16	Boc-N-Me-Tle-OMe	1.180
Reaction2						
Boc-N-Me- Tie-OMe (g)	NaOH (g)	MeOH (ml)	H ₂ O (ml)	Reaction time (hr)	Column sol.	Amount (g)
1.180	0.550	10.00	2.00	22	22 MC:MeOH=10:1	

WO 00/44770 PCT/JP00/00444

スキーム9に、実施例138~165の合成スキームを示す。

スキーム9:実施例138~165の合成スキーム

スキーム9における合成方法を以下に説明する。

10 工程1)

5

化合物 T4、化合物 I1~I28及び CMPIの THF 溶液に冷却下で TEAを加え室温で攪拌した。反応液に水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して I-a138~165を得た。

15

20

工程 2 - a)

化合物 I-aのジクロロメタン溶液に冷却下でTFAを加え室温で攪拌した。 反応液を減圧濃縮した後、飽和 $NaHCO_3$ 水溶液を加え中和し、酢酸エチルで 抽出し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さを カラムクロマトグラフィ(シリカゲル)で精製してI-bを得た。

工程 2 - b)

化合物 I - a のメタノール溶液に P d / C を加え、水素雰囲気下で室温で攪拌 した。 P d / C を濾去した後、濾液を減圧濃縮した残さをカラムクロマトグラフ 25 ィ(シリカゲル)で精製して I - b を得た。 PCT/JP00/00444

工程3)

5

化合物 $I-b138\sim165$ 、化合物 P1 または P4 及び CMPI の THF 溶液に冷却下で TEA を加え室温で攪拌した。反応液に水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して $I-c138\sim165$ を得た。

工程 4 - a)

10 化合物 I-c のジクロロメタン溶液に冷却下でTFAを加え室温で攪拌した。 反応液を減圧濃縮した後、飽和 $NaHCO_3$ 水溶液を加え中和し、酢酸エチルで 抽出し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さを カラムクロマトグラフィ(シリカゲル)で精製して目的化合物を得た。

15 工程4-b)

化合物 I - cのメタノール溶液にPd/Cを加え、水素雰囲気下で室温で攪拌した。Pd/Cを濾去した後、濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して目的化合物を得た。

20 スキーム9に従って合成された化合物の各実施例を、表D-138~D-165に示す。

なお、実施例番号に付されたAは低極性異性体を表しBは高極性異性体を表す。例えば、実施例150Aの化合物は Phe(4-F)-N-Me-Ala(β -CF $_3$)-N-Me-Tyr(3-tB u)-NH $_2$ の低極性異性体を表し、実施例150Bの化合物は Phe(4-F)-N-Me-Ala(β -

25 CF₃)-N-Me-Tyr(3-tBu)-NH₂の低極性異性体を表す。

表D-138

実施例138

$Phe (4-F)-N-Me-Abu-N-Me-Tyr (3-tBu)-NH_2$

				R				
				Et		***************************************		
Reaction 1								
Compound T4 (g)	Compound I1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.800	0.960	0.980	0.90	30.00	12	nHx:EA=1:2	I-a138	1.420
Reaction2-b							l	
Compound I-a138(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Column sol.	Product		Amount (g)	
1.400	0.430	28.00	2	MC:MeOH =15:1	I-b138		0.950	
Reaction3								
Compound I-b138(g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.890	0.860	0.780	0.70	5.00	72	nHx:EA =1:1	I-c138	0.720
Reaction4-a			·	<u> </u>	<u> </u>	L		
Compound I-c138(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.	Amount (g)		HPLC min	
0.720	1.80	9.00	3	MC:McOH= 15:1			17.07	

1H-NMR(CD₃OD):(two rotamers) δ 0.55 and 0.88(3H, t, J=7.2-7.6Hz), 1.39 and 1.44(9H, s), 1.56-1.85(2H, m), 2.23, 2.62, 2.91 and 2.98(6H, s), 2.56-3.01(4H, m), 3.26(1H, dt, J=3.0-4.7, 13.9-15.4Hz), 3.78 and 3.97(1H, dd, J=8.4, 5.1Hz), 5.28 and 5.55(1H, dd, J=7.8-11.6, 4.8-6.0Hz), 6.59 and 6.74(1H, d, J=8.0Hz), 6.69-7.30(6H, m)

表D-139

実施例139

$Phe (4\text{-}F)\text{-}N\text{-}Me\text{-}D\text{-}Abu\text{-}N\text{-}Me\text{-}Tyr (3\text{-}tBu)\text{-}NH_2$

				R				
				Et:D				
Reaction 1								~
Compound T4 (g)	Compound I2(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun
0.770	0.800	0.950	0.85	60.00	12	nHx:EA =1:2	I-a139	1.100
Reaction2-a					l —			
Compound I-a139(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.	Product		Amount (g)	
1.100	4.90	26.00	1	MC:MeOH =8:1	I-b139		0.770	
Reaction3				'				
Compound I-b139(g)	Compound P1(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun
0.770	0.750	0.670	0.60	44.00	72	nHx:EA =1:2	I-c139	1.310
Reaction4-a						L		<u></u>
Compound I-c139(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.	Amount (g)		HP m	
1.300	4.20	21.00	2	MC:MeOH= 15:1			19.96	

ESI-MS(M*+1):515

1H-NMR(CD₃OD): δ 0.48(3H, t, J=7.5Hz), 1.36(9H, s), 1.38-1.43(2H, m), 2.59 and 2.87(3H, s), 2.73(1H, dd, J=13.2, 7.5 Hz), 2.81-2.92(2H, m), 3.02 and 3.14(3H, s), 3.37(1H, dd, J=15.0,6.1Hz), 3.93(1H, t, J=6.8-7.1Hz), 4.82(1H, t, J=7.7Hz), 5.34(1H, brs),5.50(1H, dd, J=11.3, 5.9Hz), 6.42(1H, brs),6.57(1H, d, J=7.8Hz), 6.88(1H, dd, J=7.7, 2.0Hz), 6.96(2H, t, J=8.6Hz), 7.08(1H, d, J=2.3Hz), 7.13(2H, m)

表D-140

 $Phe (4-F)-N-Me-Nva-N-Me-Tyr (3-tBu)-NH_2$

				R				
				n-Pr				
Reaction1								
Compound T4 (g)	Compound I3 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amour
0.830	0.800	0.847	0.84	30.00	24	nHx:EA =1:2	l-a140	1.372
Reaction2-b							== -	1.572
Compound I-a140(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Column sol.	Product		Amount (g)	
1.372	0.200	80.00	2	MC:MeOH =10:1	I-b140		0.895	
Reaction3					<u> </u>			
Compound I-b140(g)	Compound P4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.500	0.480	0.387	0.40	20.00	16	nHx:EA =1:2	I-c140	0.744
Reaction4-b	-		<u> </u>	····	II			0.744
Compound I-c140(g)	Pd/C (g)	MeOH (mi)	Reaction time (hr)	Column sol.	Amount (g)		HPLC min	
0.727	0.200	50.00	2	MC:MeOH =10:1	0.450		19.05	

1H-NMR(CDCl₃+CD₃OD): (two rotamers) & 0.20 and 0.70-1.20(3H, m), 0.65 and 0.75(3H, t, J=6.9Hz), 1.50-1.70(1H, m), 1.33 and 1.38(9H, s), 2.30 and 2.69(3H, s), 2.47 and 2.70(2H, m), 2.72(3H,s), 2.80 and 2.92(2H, m), 3.65 and 3.85(1H,m), 4.83(1H, m), 5.84(1H, m), 6.48(1H, d, J=9.69Hz), 6.70-6.82(1H, m), 6.90-7.20(5H, m)

表D-141

 $Phe (4-F)-N-Me-D-Nva-N-Me-Tyr (3-tBu)-NH_2 \\$

				R				
Reaction1				n-Pr:D				
Compound T4 (g)	Compound 14 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun
0.650	0.547	0.665	0.70	20.00	16	nHx:EA =1:2	I-a141	0.670
Reaction2-a					J			1 0.070
Compound I-a141(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.	Product		Amount (g)	
0.670	1.50	10.00	2	MC:MeOH =10:1	I-b141			500
Reaction3		· · · · · · · · · · · · · · · · · · ·		L	L			
Compound I-b141(g)	Compound P4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.490	0.480	0.387	0.40	20.00	16	nHx:EA =1:2	I-c141	0.680
Reaction4-b			***************************************		L			
Compound I-c141(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Column sol.	Amount (g)		HP mi	
0.680	0.100	20.00	2	MC:MeOH =10:1	0.358		22.27	

1H-NMR(CDCl₃+CD₃OD): (two rotamers) δ 0.65-0.90(2H, m), 0.75(3H, t, J=6.9Hz), 1.20-1.50(2H, m), 1.37 and 1.39(9H, s), 2.75(2H, brs), 2.85 and 2.87(3H,s), 2.80(1H, m), 3.00 and 3.02(3H, s), 3.45(1H, m), 3.95(1H, t, J=7.2Hz), 4.91(1H, t, J=7.5Hz), 5.40(2H, m, brs), 6.40(1H, brs), 6.60(1H, d, J=9.3Hz), 6.37(1H, d, 9.3Hz), 6.90-7.18(5H, m)

表D-142

 $Phe (4-F)-N-Me-Ile-N-Me-Tyr (3-tBu)-NH_2 \\$

			s-Bu				
		-					
Compound I5 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amour (g)
1.000	0.910	0.83	19.00	12	nHx:EA= 2:3	I-a142	1.350
			'				
Pd/C (g)	McOH (ml)	Reaction time (hr)	Column sol.	Product		Amount (g)	
0.190	50.00	2	MC:MeOH =20:1	I-b142		0.920	
							
Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.830	0.750	0.67	25.00	12	nHx:EA=2:3	I-c142	1.170
				<u> </u>	L		
TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.	Amount (g)		HPI mi	
2.75	13.00	3	MC:MeOH =20:1	0.710		19.7	10
	15 (g) 1.000 Pd/C (g) 0.190	15 (g) (g) 1.000 0.910	15 (g) (g) (ml) 1.000 0.910 0.83	Compound CMPI TEA THF (ml)	Compound CMPI TEA THF Reaction time (hr)	Compound CMPI TEA THF Reaction time Column sol.	Compound CMPI TEA (ml) Reaction time Column sol. Product

1H-NMR(CDCl₃ + CD₃OD):(two rotamers) δ 0.38, 0.81, 0.85 and 0.88(6H, d, J=6.0-6.5Hz), 0.93-1.02(1H, m), 1.18-1.29(1H, m), 1.34 and 1.39(9H, s), 1.97-2.11(1H, m), 2.38-2.93(3H, m), 2.50, 2.86, 2.95 and 3.00(6H, s), 3.11-3.18(1H, m), 3.69 and 3.84(1H, dd, J=8.0-8.9, 4.0-5.5Hz), 4.91-4.96 and 5.02-5.14(4/3H, m), 5.45(2/3H, dd, J=10.2, 5.7Hz), 6.48(2/3H, d, J=7.9Hz), 6.65-6.71(1H, m), 6.91-7.12(16/3H, m)

WO 00/44770

表D-143

実施例143

 $Phe(4\text{-}F)\text{-}N\text{-}Me\text{-}D\text{-}Ile\text{-}N\text{-}Me\text{-}Tyr(3\text{-}tBu)\text{-}NH_2$

				R				
				s-Bu:D				
Reaction1		-						
Compound T4 (g)	Compound I6 (g)	CMPI (g)	TEA (mi)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.420	0.490	0.510	0.46	10.00	12	nHx:EA =2:3	I-a143	0.330
Reaction2-a								
Compound I-a143 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.	Product		Amount (g)	
0.310	0.94	4.70	3	MC:MeOH = 10:1	I-b143		0.240	
Reaction3								
Compound 1-b143 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.240	0.220	0.200	0.18	6.00	12	nHx:EA =2:3	I-c143	0.340
Reaction4-a			4					
Compound I-c143 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.	Amount (g)		HP m	LC in
0.330	1.20	6.00	4	MC:MeOH = 10:1	0	.140	23.	200

ESI-MS(M*+1):543

1H-NMR(CDCl₃): δ 0.27(3H, d, J=6.8Hz), 0.67-0.80(4H, m), 0.88-0.97(1H, m), 1.36(9H, s), 1.74-1.85(1H, m), 2.71(1H, dd, J=13.9, 7.2Hz), 2.84-3.00(2H, m), 2.96(3H, s), 3.12(3H, s), 3.35(1H, dd, J=14.6, 5.2Hz), 3.96(1H, t, J=7.0Hz), 4.79(1H, d, J=11.0Hz), 5.46(1H, dd, J=11.5, 5.4Hz), 5.50(1H, brs), 6.35(1H, brs), 6.58(1H, d, J=8.0Hz), 6.90-7.05(4H, m), 7.12-7.16(2H, m)

WO 00/44770 PCT/JP00/00444

表D-144

実施例144

 $Phe (4-F)-N-Me-Leu-N-Me-Tyr (3-tBu)-NH_{2}$

				R				
				i-Bu				
Reaction 1								
Compound T4 (g)	Compound 17 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.747	1.000	0.910	0.83	19.00	12	nHx:EA=2:3	I-a144	1.320
Reaction2-b								L
Compound I-a144 (g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Column sol.		Product	1	ount g)
1.300	0.190	50.00	2	MC:MeOH =20:1		I-b144	0.9	940
Reaction3			· 				<u> </u>	
Compound I-b144 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.940	0.850	0.760	0.69	25.00	12	nHx:EA =2:3	I-c144	1.230
Reaction4-a							L1	
Compound I-c144 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Amount (g)	HP m	
1.210	2.90	14.50	3	MC:MeOH =20:1		0.750	19.:	380

1H-NMR(CD₃OD):(two rotamers) δ 0.66, 0.73, 0.94 and 0.96(6H, d, J=6.0-6.6Hz),1.37 and 1.40(9H, s), 1.40-1.52(2H, m), 1.55-1.68(1H, m), 2.26 and 2.65(3H, s), 2.53-2.69(1H, m), 2.69-3.00(1H, m),2.86 and 3.00(3H, s), 3.09-3.29(1H, m),3.72-3.78 and 3.90-3.94(1H, m), 4.56-4.64(1H, m),4.94-5.06(1H, m), 5.39-5.52(1H, m), 6.55-6.78(2H, m), 6.94-7.30(5H, m)

表D-145

実施例145

$\label{eq:Phe} Phe (4-F)-N-Me-D-Leu-N-Me-Tyr (3-tBu)-NH_2$

				R				
Reaction1				i-Bu:D				
Compound T4 (g)	Compound 18 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amour (g)
0.810	0.960	1.000	0.91	25.00	12	nHx:EA=2:3	l-a145	1.450
Reaction2-a								1.430
Compound I-a145 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol. Product			Amount (g)	
1.430	4.60	23.00	3	MC:MeOH =5:1		I-b145		40
Reaction3								
Compound I-b145 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time	Column sol.	Product	Amount
1.140	1.010	0.910	0.83	25.00	12	nHx:EA=2:3	I-c145	(g) 0.940
Reaction4-a					1			0.740
Compound I-c145 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	Column sol.		HP	
0.920	2.20	11.00	3	MC:MeOH =5:1		(g) 0.60	21.40	

1H-NMR(CDCl₃): δ 0.72(3H, d, J=4.3Hz), 0.73(3H, d, J=4.1Hz), 0.81-0.92(2H, m), 1.24-1.30(1H, m), 1.36(9H, s), 2.73-2.90(3H, m), 2.84(3H, s), 2.99(3H, s), 3.30(1H, dd, J=14.6, 5.6Hz), 3.96(1H, t, J=7.2Hz), 5.02(1H, dd, J=9.9, 4.9Hz), 5.44(1H, dd, J=10.9, 5.6Hz), 5.63(1H, brs), 6.38(1H, brs), 6.57(1H, d, J=8.4Hz), 6.85(1H, dd, J=7.8, 1.9Hz), 6.91-7.01(3H, m), 7.09-7.13(2H, m) WO 00/44770 PCT/JP00/00444

表D-146

実施例146

 $(2S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methylpropanoylamino]-N-\{(1S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methylpropanoylamino]-N-\{(1S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methylpropanoylamino]-N-\{(1S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methylpropanoylamino]-N-\{(1S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methylpropanoylamino]-N-\{(1S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methylpropanoylamino]-N-\{(1S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methylpropanoylamino]-N-\{(1S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methylpropanoylamino]-N-\{(1S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methylpropanoylamino]-N-\{(1S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methylpropanoylamino]-N-\{(1S)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methylpropanoylamino]-N-\{(1S)-2-[(2S)-2-(2S)$

2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl}-N-methylpent-4-enamide

				R				
				Allyl				
Reaction 1								
Compound T4 (g)	Compound 19 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	A moun
0.573	0.630	0.700	0.64	14.00	12	nHx:EA=2:3	I-a146	0.900
Reaction 2-a							<u> </u>	
Compound 1-a146 (g)	TFA (mł)	MC (ml)	Reaction time (hr)	Column sol.		Product		ount g)
0.870	2.90	14.0	3	MC:MeOH=10:1		I-b146		560
Reaction3			<u>-</u> 1				L	
Compound I-b146 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.660	0.620	0.560	0.51	17.00	12	nHx:EA =2:3	I-c146	0.570
Reaction4-a					<u> </u>	L		
Compound I-c146 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Amount (g)	HP	
0.550	1.35	5.40	3	MC:MeOH=10:1		0.36	17.750	

1H-NMR(CDCl₃): (two rotamers) δ 0.97-1.04(1/2H, m), 1.34 and 1.36(9H, s), 2.12-2.24(1/2H, m), 2.32-2.75(2H, m), 2.34 and 2.66(3H, s), 2.84-2.99(2H, m), 2.97(3H, s), 3.07-3.18(1H, m), 3.62-3.66 and 3.83-3.87(1H, m), 4.80-5.09(3H, m), 5.25-5.33 and 5.63-5.76(1H, m), 5.35-5.46(1H, m), 5.39(1H, brs), 6.06(0.5H, brs), 6.41 and 6.58(1H, d, J=8.2 and 8.0Hz), 6.74 and 6.83(1H, dd, J=7.9, 1.9Hz), 6.92-7.00(2H, m), 7.03-7.14(3H, m), 7.36(1/2H, brs) O 00/44770 PCT/JP00/00444

表D-147

実施例147

 $(2R)-2-[(2S)-2-amino-3-(4-fluorophenyl)-N-methylpropanoylamino]-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl\}-N-methylpent-4-enamide$

				R			· · · · · · · · · · · · · · · · ·	
·				Allyl:D)	·		
Reaction1			_			······································		
Compound T4 (g)	Compound I10 (g)	CMPI (g)	TEA (mi)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun
1.180	1.300	1.440	1.30	30.00	12	nHx:EA =1:1	I-a147	0.340
Reaction2-a						<u> </u>	i	<u> </u>
Compound I-a147 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Product		ount g)
0.330	1.10	5.00	3	MC:MeOH=7:1		I-b147	0.2	
Reaction3			<u> </u>					
Compound I-b147 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.270	0.240	0.220	0.30	6.00	12	nHx:EA =2:3	I-c147	0.370
Reaction4-a			<u></u>					
Compound I-c147 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Amount (g)	HP) mi	
0.350	1.30	5.00	3	MC:MeOH=7:1		0.24	20.320	

1H-NMR(CDCl₃): δ 1.35(9H, s), 1.99-2.16(2H, m), 2.64-2.72(1H, m), 2.79-2.89(2H, m), 2.87(3H, s), 2.97(3H, s), 3.31(1H, d, J=15.3, 5.9Hz), 3.90(1H, t, J=7.0Hz), 4.87-4.93(2H, m), 5.01(1H, dd, J=9.0, 6.7Hz), 5.16-5.29(1H, m), 5.44(1H, dd, J=10.5, 6.0Hz), 5.50(1H, brs), 6.37(1H, brs), 6.57(1H, d, J=7.8Hz), 6.85(1H, dd, J=7.9, 1.9Hz), 6.92-6.98(2H, m), 7.02(1H, d, J=2.2Hz), 7.09-7.13(2H, m)

WO 00/44770 PCT/JP00/00444

表D-148

実施例148

Phe(4-F)-N-Me-Leu(γ -Me)-N-Me-Tyr(3-tBu)-NH₂

				R				
				neo-Per	nt			
Reaction 1								
Compound T4 (g)	Compound I11 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amour (g)
0.630	0.780	0.770	0.35	25.00	48	пНх:EA =1:2	I-a148	0.850
Reaction2-a						·	L	L
Compound I-a148(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Product	4	ount g)
0.800	2.50	12.50	4	MC:MeOH=9:1		I-b148	0.	600
Reaction3				·	19			
Compound I-b148(g)	Compound P4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.600	0.580	0.470	0.42	30.00	12	nHx:EA:MC =1:2:1	I-c148	0.950
Reaction4-b					·	·		
Compound I-c148(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Co	lumn sol.	Amount (g)		LC in
0.950	0.140	13.00	3	MC:McOH=20:1		0.58	20.	96

1H-NMR(CD₃OD):(two rotamers) δ 0.71 and 0.99(9H, s), 1.43 and 1.46(9H, s), 1.28-1.40(2H, m), 2.43, 2.81, 2.97 and 3.07(6H, s), 2.23-3.04(4H, m), 3.25-3.28(1H, m), 3.79(2/3H, m), 3.92(1/3H, dd, J=9.8, 4.6Hz), 5.58 and 5.53(1H, dd, J=6.9-8.2, 4.8-6.9Hz), 6.61 and 6.80(1H, d, J=8.2Hz), 6.74-7.37(6H, m)

表D-149

Phe(4-F)-N-Me-D-Leu(γ -Me)-N-Me-Tyr(3-tBu)-NH₂

				R				
Deser's 1			ne	oPent:D				
Reaction1	, 							
Compound T4 (g)	Compound I12 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.800	0.990	0.980	0.90	30.00	12	nHx:EA=1:2		 -
Reaction2-a					1 12	HFIX:EA=1:2	I-a149	1.250
Compound I-a149(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Product	1	ount
1.250	3.90	19.50	3	MC:MeOH=20:1		I-b149		99
Reaction3	_						0.	<i>77</i>
Compound I-b149(g)	Compound P4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount
1.000	0.970	0.780	0.71	50.00	5	nHx:EA=1:2	I-c149	(g)
Reaction4-b					<u> </u>		1-0149	1.500
Compound I-c149(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colu	ımn sol.	Amount (g)	HP)	
1.500 SI-MS(M ⁺ +1):	0.230	20.00	2	MC:Me	OH=20:1	0.83	22.0	

1H-NMR(CD₃OD):(two rotamer) δ 0.62 and 0.84(9H, s), 0.88 and 1.35(2H, s), 1.40(9H, s), 2.45 and 2.82(3H, s), 2.84-2.95(3H, m), 3.04 and 3.10(3H, s), 3.23(1H, dd, J=14.7, 4.9Hz), 4.65(1H, dd, J=8.0, 2.3Hz), 5.28(1H, m), 5.45(1H, dd, J=11.8, 5.1Hz), 6.63(1H, d, J=7.9Hz), 6.88(1H, dd, J=8.0, 2.3Hz), 7.01(2H, m), 7.10(1H, d, J=2.3Hz), 7.25(2H, dd, J=8.5, 5.4Hz)

WO 00/44770 PCT/JP00/00444

表D-150A

実施例150A (less polar)

$Phe(4-F)-N-Me-Ala(\beta-CF_3)-N-Me-Tyr(3-tBu)-NH_2$

				R	-			
Reaction1				CH ₂ CF ₃ :L,D	-mixture			
Compound T4(g)	Compound I13(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amour (g)
0.500	0.560	0.560	0.51	20.00 5.000		nHx:EA=1:1	I-a150	0.980
Reaction2-b			··				1	0.560
Compound I-a150(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Column sol. Product			ount g)	
0.980	0.500	20.00	2	MC:MeOH =15:1		I-b150A	0.360(le	ss polar)
Daniel a						I-b150B	0.280(mc	re polar)
Reaction3								
Compound I-b150A(g)	Compound P4(g)	CMPI (g)	TEA (ml)	THF Reaction time (ml) (hr)		Column sol.	Product	Amount (g)
0.360	0.310	0.270	0.27	15.00	12	nHx:EA=1:1	I-c150A	0.32
Reaction4-b								
Compound I-c150A(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colum	m sol.	Amount (g)	HPI mir	
0.310	0.150	10.00	2	EA:MeOH =15:1		0.200	18.6	
SI-MS(M+1):	569	·						
H-NMR(CD3C 4.8Hz), 3.72(1), 7.25-7.30(2H	~ ~ ·, · ~ · . ~ , . ~ , , , , , , , , , , , ,	rs) δ 1.38 a 4.73(1H, br	nd 1.41(9H, s), 2 s), 5.53 and 5.57	2-20, 2.56, 2 (1H, d, J=4.6	91, and 2.99(6H, 5Hz), 5.80(1H, q	s), 2.38-3.03(4H, m), , J=4.4Hz), 6.55-6.79), 3.25 and 3.31 (2H, m), 7.00-3	(1H, d, 7.15(3H,

表D-150B

実施例150B (more polar)

 $Phe(4\text{-}F)\text{-}N\text{-}Me\text{-}Ala(\beta\text{-}CF_3)\text{-}N\text{-}Me\text{-}Tyr(3\text{-}tBu)\text{-}NH_2$

				R				
			CH ₂	CF ₃ :L,D-mix	ture			
Reaction3								
Compound I-b150B(g)	Compound P4(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.270	0.240	0.200	0.20	15.00	12.00	nHx:EA =1:1	I-c150B	0.300
Reaction4-b					_1			
Compound I-c150B(g)	Pd/C (g)	. MeOH (ml)	Reaction time (hr)	Column sol.		Amount (g)	HPLC min	
0.300	0.150	10.00	2	EA:MeOH =20:1		0.170	21.51	

ESI-MS(M⁺+1): 569

1H-NMR(CD₃OD):(two rotamers) & 1.40(9H, s), 2.19-2.40(2H, m), 2.73 and 2.76(1H, d, J=7.0Hz), 2.89(3H, s), 2.92-2.96(1H, m), 2.98(3H, s), 3.21 and 3.24(1H, d, J=6.1Hz), 4.03(1H, t, J=7.2Hz), 4.52-4.61(1H, m), 5.36(1H, q, J=5.5Hz), 5.61(1H, t, J=7.0Hz), 6.67(1H, d, J=8.0Hz), 6.89(1H, dd, J=7.9, 2.4Hz), 7.01-7.10(3H, m), 7.24-7.29(2H, m)

表D-151

実施例 1 5 1

$Phe (4-F)-N-Me-Chg-N-Me-Tyr (3-tBu)-NH_2\\$

		· <u> </u>		R				
				c-Hex				
Reaction 1								
Compound T4 (g)	Compound I14(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
1.290	1.500	2.650	1.45	30.00	20	nHx:EA=1:1	I-a151	0.700
Reaction2-a				···	· · · · · · · · · · · · · · · · · · ·			
Compound [-a151(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Product	Amount (g)	
0.700	4.00	20.00	4	MC:MeOH =20:1		I-b151	0.4	
Reaction3								
Compound I-b151(g)	Compound P1 (g)	CMPI (g)	TEA (m!)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount
0.400	0.380	0.760	0.41	20.00	20	nHx:EA=1:1	I-c151	0.500
Reaction4-a			<u> </u>					
Compound I-c151(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Amount (g)	HPLC min	
	1	20.00		MC:MeOH =20:1		0.400	20.140	

1H-NMR(CDCl₃): (two rotamers) δ 0.72-1.68(10 H, m), 1.35 and 1.40(9H, s), 1.82-2.10(1H, m), 2.30-2.65(1H, m), 2.52(3H,s), 2.70-2.90(1H, m), 2.75(3H, s), 2.75-2.90(1H, m), 3.05-3.40(3H, m), 3.60-3.85(1H, m), 5.05-5.20(2H, m), 6.35-6.75(2H, m), 6.75-7.20(5H, m)

表D-152

Phe(4-F)-N-Me-D-Chg-N-Me-Tyr(3-tBu)-NH₂

				R			_	
				c-Hex:D				
Reaction1								
Compound T4 (g)	Compound I15(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.600	0.620	1.520	0.69	20.00 20 nHx:EA=1:1		nHx:EA=1:1	l-a152	0.540
Reaction2-a								
Compound I-a152(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Product	Amount (g)	
0.540	3.00	15.00	4	MC:MeOH =20:1		I-b152	0.250	
Reaction3						··-		
Compound I-b152(g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.250	0.240	0.470	0.26	15.00	20	nHx:EA=1:1	l-c152	0.350
Reaction4-a	L				'			
Compound I-c152(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Amount (g)	HPLC min	
0.350	3.00	10.00	4	MC:MeOH =20:1		0.27	22.040	

1H-NMR(CDCl3): (two rotamers) & 0.65-1.70(11H, m), 1.38(9H, s), 2.15-2.35(1H, m), 2.25(3H, s), 2.75-3.05(1H, m), 2.95(3H, s), 3.10-3.25(3H, m), 5.20-5.27(2H, m), 5.55-5.65(1H, m), 6.15-6.25(2H, m), 6.54 and 6.57(2H, d, J=8.4 Hz), 6.75-6.95(1H, m), 7.05-7.15(2H, m)

表D-153

 $Phe(4-F)-N-Me-Cha-N-Me-Tyr(3-tBu)-NH_2\\$

				R CH₂c-Hex				
Reaction1				CH2C-HEX				
Compound T4 (g)	Compound 116 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun
0.950	1.300	1.150	1.10	38.00 15		nHx:EA=1:1	I-a153	1.600
Reaction2-a					· ·	-l		1.000
Compound I-a153 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol. Prod		Product	Amount (g)	
1.600	4.80	24.00	3	MC:MeOH =20:1		I-b153	0.8	40
Reaction3							· · · ·	
Compound I-b153 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.840	0.680	0.620	0.60	20.00	15	nHx:EA=1:1	i-c153	1.100
Reaction4-a						<u> </u>		
Compound 1-c153 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Amount (g)	HP:	-
1.100	2.40	12.00	3	MC:MeOH =30:1		0.50	21.154	

1H-NMR(CDCl₃): (two rotamers) δ 0.09-1.88(13H, m), 1.35 and 1.26(9H, s), 2.32-2.80(2H, m), 2.46 and 2.74(3H, s), 2.83-3.27(3H, m), 2.99 and 3.03(3H, s), 3.59-3.73 and 3.81-3.95(1H, m), 4.62-4.74 and 5.11-5.25(1H, m), 5.27-5.59(2H, m), 6.08(1/2H, brs), 6.44 and 6.63(1H, d, J=7.9-8.3Hz), 6.77 and 6.87(1H, dd, J=7.2-7.5 1.8-1.9Hz), 6.92-7.20(5H, m), 7.59(1/2H, brs)

PC1/JP00/0044

表D-154

実施例154

$Phe (4-F)-N-Me-D-Cha-N-Me-Tyr (3-tBu)-NH_2\\$

			R				
	-		CH ₂ c-Hex:	D			
Compound 117 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun
1.000	0.900	0.80	29.00	15	nHx:EA=1:1	I-a154	1.200
							
TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Product	Amount (g)	
3.60	18.00	3	MC:MeOH =20:1		I-b154	0.740	
		·					
Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.600	0.540	0.50	17.00	15	nHx:EA=1:1	I-c154	0.900
				<u></u> 1			
TFA (mi)	MC (ml)	Reaction time (hr)	Colu	mn sol.	Amount (g)		
2.00	10.00	3	MC:MeOH =30:1		0.24	25.1	44
		· · · · · · · · · · · · · · · · · · ·		1	<u>-</u>		
	117 (g) 1.000 TFA (ml) 3.60 Compound P1 (g) 0.600 TFA (ml) 2.00 3:583	117 (g) (g) 1.000 0.900	Compound CMPI TEA (ml)	CH2C-Hex: Compound CMPI TEA THF 117 (g) (g) (ml) (ml) 1.000 0.900 0.80 29.00 TFA MC Reaction time (hr) Column 3.60 18.00 3 MC:M Compound CMPI TEA THF P1 (g) (g) (ml) (ml) 0.600 0.540 0.50 17.00 TFA MC Reaction time Column (ml) (ml) (hr) Column 2.00 10.00 3 MC:Me	CH₂c-Hex:D Compound 117 (g) CMPI (g) TEA (ml) THF (hr) Reaction time (hr) 1.000 0.900 0.80 29.00 15 TFA (ml) MC (ml) Reaction time (hr) Column sol. 3.60 18.00 3 MC:MeOH = 20:1 Compound P1 (g) TEA (ml) THF (ml) Reaction time (hr) 0.600 0.540 0.50 17.00 15 TFA (ml) MC (ml) Column sol. Column sol. 2.00 10.00 3 MC:MeOH = 30:1	Compound CMPI TEA THF Reaction time Column sol.	CH₂c-Hex:D Compound 117 (g) CMPI (g) TEA (ml) THF (ml) Reaction time (hr) Column sol. Product 1.000 0.900 0.80 29.00 15 nHx:EA=1:1 I-a154 TFA (ml) MC (ml) Reaction time (hr) Column sol. Product Am (g) 3.60 18.00 3 MC:MeOH = 20:1 I-b154 0.7 Compound P1 (g) TEA (ml) THF (ml) Reaction time (hr) Column sol. Product 0.600 0.540 0.50 17.00 15 nHx:EA=1:1 I-c154 TFA (ml) MC (ml) Column sol. Column sol. Amount (g) HP (g) 2.00 10.00 3 MC:MeOH = 30:1 0.24 25.1

1H-NMR(CDCl₃): δ 0.62-1.37(13H, m), 1.37(9H, m), 2.67-3.10(7H, m), 2.88(3H, s), 2.97(3H, s), 3.30 and 3.35(1H, d, J=3.3-3.4Hz), 3.95(1H, t, J=6.9Hz), 5.04 and 5.08(1H, d, J=4.2-4.5Hz), 5.43 and 5.47(1H, d, J=5.4-5.8Hz), 5.52(1H, brs), 6.37(1H, brs), 6.58(1H, d, J=7.9Hz), 6.79-7.09(4H, m), 7.11(1H, d, J=5.2Hz), 7.14(1H, d, J=5.4Hz)

表D-155

 $Phe (4-F)-N-Me-Phe-N-Me-Tyr (3-tBu)-NH_2\\$

Compound 118 (g) 1.000	CMPI (g) 1.230	TEA (ml)	CH₂Ph THF				
118 (g)	(g)	1	ТНЕ	1			
118 (g)	(g)	1	THF	I			
1.000	1 220	(-11)	(mi)	Reaction time (hr)	Column soi.	Product	Amoun (g)
	1.230	0.89	20.00	20	nHx:EA =1:1	I-a155	1.390
							J
Pd/C (g)	MeOH (ml)	Reaction time (hr)	Column sol.		Product	Amount (g)	
0.300	20.00	20	MC:MeOH =20:1		I-b155	0.840	
							,
ompound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.710	0.720	0.52	15.00	20	nHx:EA =1:1	I-c155	0.997
		·		<u> </u>			
TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Amount (g)	HPLC min	
3.00	10.00	4	MC:MeOH =20:1		0.68	19.7	710
77		· · · · · · · · · · · · · · · · · · ·				-	
	(g) 0.300 cmpound P1 (g) 0.710 cml (ml) 3.00 cm (two rotame)	(g) (ml) 0.300 20.00 Empound CMPI (g) 0.710 0.720 TFA MC (ml) (ml) 3.00 10.00 77 (two rotamers) δ 1.40 a	(g) (ml) time (hr) 0.300 20.00 20 Dempound CMPI TEA (ml) 0.710 0.720 0.52 TFA MC Reaction (ml) (ml) time (hr) 3.00 10.00 4	(g) (ml) time (hr) Color 0.300 20.00 20 MC:M Description of time (hr) Color Description of time (hr) Color Description of time (hr) Color Description of time (hr) Color TFA MC Reaction (ml) (ml) time (hr) Color TFA (ml) (ml) time (hr) MC:Mo T77 (two rotamers) § 1.40 and 1.42(9H, s), 2.54(3H, color	(g) (ml) time (hr) Column sol. 0.300 20.00 20 MC:MeOH = 20:1 Description of the column sol. Ompound CMPI TEA THF Reaction time (hr) 0.710 0.720 0.52 15.00 20 TFA MC Reaction (ml) Column sol. (ml) (ml) time (hr) Column sol. 3.00 10.00 4 MC:MeOH = 20:1	(g) (ml) time (hr) Column sol. Product 0.300 20.00 20 MC:MeOH = 20:1 I-b155 Empound CMPI TEA THF Reaction time (hr) Column sol. 0.710 0.720 0.52 15.00 20 nHx:EA = 1:1 TFA MC Reaction (ml) (ml) time (hr) Column sol. (g) 3.00 10.00 4 MC:MeOH = 20:1 0.68	(g) (ml) time (hr) Column sol. Product (g) 0.300 20.00 20 MC:MeOH = 20:1 I-b155 0.8 Product (g) (ml) (ml) (ml) Column sol. Product (hr) Column sol. Product (hr) 0.710 0.720 0.52 15.00 20 nHx:EA = 1:1 I-c155 TFA MC Reaction (ml) (ml) time (hr) Column sol. (g) mi 3.00 10.00 4 MC:MeOH = 20:1 0.68 19.7 (two rotamers) & 1.40 and 1.42(9H, s), 2.54(3H, s), 2.61-3.04(5H, m), 3.15-3.39(4H, m), 3.67-3

表D-156

$Phe(4-F)-N-Me-D-Phe-N-Me-Tyr(3-tBu)-NH_2 \\$

			·	R				
Reaction 1				CH₂Ph:D				
Compound T4 (g)	Compound I19 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amou (g)
0.800	0.800	1.230	0.89	20.00	20	nHx:EA=1:1	I-a156	1.140
Reaction2-a			-l	L	<u> </u>		1	1.140
Compound I-a156(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column soi. Pr		Product		ount g)
1.140	3.00	10.00	4	MC:M	eOH =20:1	I-b156	0.990	
Reaction3								
Compound I-b156(g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun
0.770	0.710	0.720	0.52	20.00	20	nHx:EA=1:1	I-c156	0.960
Reaction4-a					<u> </u>			
Compound I-c156(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	mn sol.	Amount (g)	HPLC min	
0.960	3.00 ·	10.00	4	MC:MeOH =20:1		0.73	21.960	
SI-MS(M+1)	: 577							
H-NMR(CDC 15(1H, m), 6.	l ₃): δ 1.42(9H, 75-6.80(1H, m)	, s), 2.47-2.6 , 6.82-7.45(1	5(4H, m), 2.97- 1H, m)	-3.25(2Н, п	a), 3.04(3H,s), 3	.15(3H, s), 3.32	-3.51(3H, m)), 4.01-

WO 00/44770 PCT/JP00/00444

表D-157

実施例 1 5 7

$Phe(4\text{-}F)\text{-}N\text{-}Me\text{-}Phe(4\text{-}F)\text{-}N\text{-}Me\text{-}Tyr(3\text{-}tBu)\text{-}NH_2$

				R		-		
			(H2Phe(4-F)				
Reaction1								
Compound T4 (g)	Compound 120 (g)	CMPi (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.960	1.370	1.180	1.10	38.00 15		nHx:EA=1:2	l-a157	1.880
Reaction2-a			· 			· · · · · · · · · · · · · · · · · · ·	 -	!
Compound I-a157 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Product		ount 3)
1.880	5.40	27.00	3	MC:MeOH =20:1		l-b157	1.220	
Reaction3			·				· · · · · · · · · · · · · · · · · · ·	
Compound I-b157(g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.220	0.780	0.710	0.60	23.00	18	nHx:EA=1:2	I-c157	1.550
Reaction4-a			<u> </u>		·			
Compound I-c157 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Amount (g)	HP m	
1.550	3.30	16.00	3	MC:MeOH =20:1		0.73	21.0)35

1H-NMR(CDCl₃): (two rotamers) δ 1.28 and 1.35(9H, s), 2.30-3.25(12H, m), 2.38 and 2.56(3H, s), 2.86 and 2.99(3H, s), 3.49-3.72(1H, m), 4.84-5.17(1H, m), 5.18-5.41(2H, m), 5.51-5.78(1H, m), 6.38 and 6.43(1H, d, J=8.3Hz), 6.60-7.23(10H, m)

WO 00/44770 PCT/JP00/00444

表D-158

実施例158

Phe(4-F)-N-Me-D-Phe(4-F)-N-Me-Tyr(3-tBu)-NH₂

				R				
			CI	I2Phe(4-F):D				
Reaction1								
Compound T4 (g)	Compound I21 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amour (g)
0.700	1.000	0.850	0.80	27.00 18 nHx:EA=1:2		I-a158	1.120	
Reaction2-a							. 4150	1.120
Compound I-a158 (g)-	TFA (ml)	MC (ml)	Reaction time (hr)	- Column sol. Product		Amount (g)		
1.120	3.30	16.50	3	MC:MeOH =20:1		I-b158		880
Reaction3			'			1	 ,	
Compound I-b158 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.880	0.560	0.500	0.50	16.00	15	nHx:EA=1:2	I-c158	0.900
leaction4-a			<u> </u>		L		1-0156	0.900
Compound I-c158 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Amount (g)	HPLC min	
0.900	2.00	10.00	3	Man or		0.30	23.049	

1H-NMR(CDCl₃): (two rotamers) d 1.34 and 1.37(9H, s), 2.38-2.51(1H, m), 2.53-2.82(5H, m), 2.86(3H, s), 2.88(3H, s), 3.04-3.15(1H, m), 3.21 and 3.26(1H, d, J=6.4-6.3), 3.78-3.95(1H, m), 5.26-5.38(1H, m), 5.38-5.52(1H, m), 5.62(1H, brs), 6.79(1H, d, J=8.1Hz), 6.78(1H, d, J=8.7Hz), 6.83-7.22(9H, m)

表D-159

実施例159

Phe(4-F)-N-Me-Phe(4-Cl)-N-Me-Tyr(3-tBu)-NH₂

				R				
				CH ₂ Ph(4-Cl)			
Reaction1								
Compound T4 (g)	Compound I22 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amour (g)
1.080	1.630	1.330	0.91	.20.00 16 nH		nHx:EA≈1:1	l-a159	2.000
Reaction2-a					- 	I		<u></u>
Compound l-a159(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol. Product		Product	Amount (g)	
2.000	5.60	25.00	1	MC:MeOH =20:1		I-b159	1.	
Reaction3			<u> </u>					
Compound 1-b159 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.130	0.861	0.777	0.53	20.00	3	nHx:EA=1:1	I-c159	0.908
Reaction4-a						<u></u>		
Compound I-c159(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	Column sol.		HP) mi	
0.908	1.96	10.00	3	MC:MeOH =20:1		0.625	21.59	

1H-NMR(CDCl₃): (two rotamers) d 1.28 and 1.35(9H,s), 2.38 and 2.55(3H, s), 2.40-3.32(6H, m), 2.85 and 3.0(3H, s), 3.56 and 3.72(1H, t, J = 8.8Hz), 4.92(2/5H, m), 5.20-5.50(5/2H, m), 5.60 and 5.78(3/5H, brs), 6.35-7.40(25/2H, m)

表D-160

$Phe (4-F)-N-Me-D-Phe (4-Cl)-N-Me-Tyr (3-tBu)-NH_2 \\$

				R				
			C	:H ₂ Ph(4-Cl):	D			
Reaction 1								
Compound T4 (g)	Compound I22 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun
0,519	0.781	0.639	0.44	10.00 16 nHx:EA=1:1		nHx:EA=1:1	I-a160	0.947
Reaction2-a					· / ·			L
Compound I-a160(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Product	Amount (g)	
0.947	5.60	15.00	1	MC:MeOH =20:1		I-b160	0.6	524
Reaction3								
Compound I-b160 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)			Product	Amount (g)
1.130	0.476	0.430	0.30	15.00	3	nHx:EA=1:1	I-c160	0.46
Reaction4-a								
Compound I-c160(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colur	nn sol.	Amount (g)	HPLC min	
0.460	1.00	5.00	3	MC:MeOH =20:1		0.300	19.53	

5.43(6/4H, m), 6.20(3/4H, brs), 6.52(1H, d, J=8.8Hz), 6.78(1H, d, J=8.8Hz), 6.90-7.32(10H, m)

WO 00/44770 PCT/JP00/00444

表D-161

実施例161

$Phe(4-F)-N-Me-Tyr-N-Me-Tyr(3-tBu)-NH_2$

				R CH ₂ Ph(4-OF	<u></u>			
Reaction1				31151 II(4-OI				
Compound T4 (g)	Compound I24 (g)	CMPI (g)	TEA (mi)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun
1.300	2.600	1.730	1.09	30.00 3		nHx:EA=1:1	I-a161	2.610
Reaction2-a						<u> </u>		1
Compound I-a161(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Product	Amount (g)	
2.610	6.47	33.00	3	MC:MeOH =20:1		I-b161	1.3	300
Reaction3			-t	*****				
Compound I-b161 (g)	Compound P4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.300	1.200	0.964	0.70	30.00	3	nHx:EA=1:1	l-c161	1.880
Reaction4-b								
Compound I-c161(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Colu	mn sol.	Amount (g)	HPLC min	
1.880	0.282	40.00	3	MC:MeOH =20:1		0.500	17.	94
SI-MS(M*+1)	:593		· · · · · · · · · · · · · · · · · · ·					
H-NMR(CD ₃ C	DD): (two rota	mers) d 1.4	1 and 1.42(9H,s),), 5.60(1H, m), 6.	2.32 and 2.3	39(3H, s), 2.90 a	nd 3.07(3H, s),	2.59-3.50(7H	I. m), 3.72

表D-162

実施例 1 6 2

$Phe (4-F)-N-Me-D-Tyr-N-Me-Tyr (3-tBu)-NH_2 \\$

				R				
			C	H ₂ Ph(4-OH)	:D			
Reaction 1								
Compound T4 (g)	Compound I25 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun
0.920	2.000	1.220	0.77	30.00 3		nHx:EA=1:1	I-a162	1.550
Reaction2-b					<u> </u>		<u> </u>	
Compound I-a162(g)	Pd/C (g)	McOH (ml)	Reaction time (hr)	Column sol.		Product	Amount (g)	
1.550	0.233	20.00	12	MC:MeOH =20:1		I-b162	0.9	977
Reaction3								
Compound f-b162 (g)	Compound P4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.977	1.080	0.871	0.64	20.00	3	nHx:EA=1:1	I-c162	1.330
Reaction4-b	····				ـــــــــــــــــــــــــــــــــــــ			
Compound I-c162(g)	Pd/C (g)	McOH (ml)	Reaction time (hr)	Colur	Column sol.		HPLC min	
1.330	0.200	30.00	3	MC:MeOH =20:1		0.500	18.	54
SI-MS(M+1):593		·		<u></u>	<u></u>		· · · · · · · · · · · · · · · · · · ·

1H-NMR(CD₃OD): δ 1.45(9H,s), 2.42-2.75(4H, m), 3.02(3H, s), 2.34-3.15(2H, m), 3.32(1/5H, dd, J = 7.6, 8.8Hz), 4.03(4/5H, t, J=8.8Hz), 5.42-5.65(2H, m), 6.65-7.25(12H, m)

WO 00/44770 PCT/JP00/00444

表D-163

実施例163

Phe(4-F)-N-Me-Ala(β -2-thienyl)-N-Me-Tyr(3-tBu)-NH₂

				R				
			C	H ₂ (2-Thienyl)			
Reaction1							···	
Compound T4 (g)	Compound I26 (g)	CMPI (g)	TEA (ml)	THF Reaction time (ml) (hr)		Column sol.	Product	Amoun
0.670	0.916	0.820	0.56	20.00	16	nHx:EA=1:1	I-a163	1.280
Reaction2-a								L
Compound I-a163(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Product	Amount (g)	
1.280	3.80	19.00	3	MC:MeOH =20:1		I-b163	0.513	
Reaction3								
Compound J-b163 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.513	0.418	0.379	0.30	20.00	3	nHx:EA=1:1	I-c163	0.587
Reaction4-a			<u> </u>			·		
Compound I-c163(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	nn sol.	Amount (g)	HPLC min	
0.587	1.32	10.00	3	MC:Me	OH =20:1	0.35	23.7	
ESI-MS(M*+1)	:583		<u> </u>		I			

1H-NMR(CDCl₃+ CD₃OD): (two rotamers) δ 1.30 and 1.35(9H,s), 1.80(1/3H, m), 2.25, 2.58 and 2.88, 3.0(6H, s), 2.0-3.25(5H, m), 3.35(2/3H, m), 3.60(1H, m), 4.90(1/3H, m), 5.27(2/3H, m), 5.37-5.64(1H, m), 6.40-6.72(2H, m), 6.72-7.20(8H, m)

表D-164

Phe(4-F)-N-Me-D-Ala(β -2-thienyl)-N-Me-Tyr(3-tBu)-NH₂

				R				
			C	H ₂ (2-Thicny	i):D		·	
Reaction1								
Compound T4 (g)	Compound I26 (g)	CMPI (g)	TEA (ml)	THF Reaction time (hr)		Column sol.	Product	Amoun
0.760	1.040	0.930	0.64	20.00 16		nHx:EA=1:1	l-a164	1.430
Reaction2-a				<u> </u>	-1			
Compound I-a164(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Product	Amount (g)	
1.430	4.43	25.00	3	MC:MeOH =20:1		I-b164	0.500	
Reaction3								
Compound I-b164 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.500	0.400	0.360	0.28	20.00	3	nHx:EA=1:1	I-c164	0.857
Reaction4-a			. <u></u>		<u> </u>	t	<u>-</u>	
Compound I-c164(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Amount (g)	HPLC min	
0.857	1.92	15.00	3	MC:MeOH =20:1		0.33	21.7	

1H-NMR(CDCl₃): δ 1.35(9H,s), 2.17-3.20(7H, m), 2.91(3H, s), 2.95(3H, s), 3.28(1/2H, dd, J=15.8, 7.9Hz), 3.85(1/2H, t, J=7.9Hz), 5.35 and 5.45(2H, m), 5.65(1H, brs), 6.28(2/3H, brs), 6.48-7.30(28/3H, m)

WO 00/44770 PCT/JP00/00444

表D-165

実施例165

$Phe(4\text{-}F)\text{-}N\text{-}Me\text{-}Ala(\beta\text{-}c\text{-}Pr)\text{-}N\text{-}Me\text{-}Tyr(3\text{-}tBu)\text{-}NH_2$

				R											
				CH ₂ c-Pr		· · · · · · · · · · · · · · · · · · ·									
Reaction 1															
Compound T4 (g)	Compound I28 (g)	Reaction Column set	Reaction Column sel	Reaction Column and	Reaction Column col	Column co	Columnation Columnation	Reaction Column and	Column sel	Column col			Column sol.	Product	Amour
0.820	1.100	1.000	0.90	33.00	17	nHx:EA=1:1	I-a165	1.260							
Reaction2-b					<u> </u>		1 - 1 - 1 - 1	1.200							
Compound I-a165 (g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)	Column sol.		Product	Amount (g)								
1.260	0.120	24.00	3	MC:MeOH =30:1		I-b165	0.600								
Reaction3															
Compound I-b165 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)							
0.600	0.540	0.490	0.50	16.00	18	nHx:EA=1:1	I-c165	0.590							
Reaction4-a			· · · · · · · · · · · · · · · · · · ·		L										
Compound I-c165 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Amount (g)	HPLC min								
0.590	1.40	7.00	3	MC:MeOH =30:1		0.300	18.61								
	: 541				L										

PCT/JP00/00444

スキーム10に、実施例166および176の合成スキームを示す。

スキーム10:実施例166および176の合成スキーム

I-c166, I-c176

スキーム10における合成方法を以下に説明する。

10 工程1)

15

化合物 P 4、化合物 I 2 9、I 3 0 及び C M P I の T H F 溶液に冷却下で T E A を加え室温で攪拌した。反応液に水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して I ー a 1 6 6、I ー a 1 7 6 を得た。

工程 2)

化合物 I-a166、I-a176のジオキサン溶液に2N-NaOHを加え室温で攪拌した。反応液に1N-HC1を加え $pH=3\sim4$ に調整した後、酢酸20 エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製してI-b166、I-b176を得た。

WO 00/44770 PCT/JP00/00444

工程 3)

化合物 I-b166、I-b176、化合物 T4 及び CMPI の THF 溶液に冷却下で TEA を加え室温で攪拌した。反応液に水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して I-c166、I-c176 を得た。

工程4)

化合物 I-c166、I-c176のメタノール溶液に $Pd(OH)_2$ を加え、 10 水素雰囲気下で室温で攪拌した。 $Pd(OH)_2$ を濾去した後、濾液を減圧濃縮 した残さをカラムクロマトグラフィ(シリカゲル)で精製して目的化合物を得た。

スキーム10に従って合成された各化合物の実施例を、表D-166および D-176に示す。

15

5

WO 00/447/0

表D-166

実施例166

Phe(4-F)-N-Me-Phg-N-Me-Tyr(3-tBu)-NH₂

3 MC	(hr) (hr) (O) 3 Column sol. C:MeOH =20:1	Column sof. nHx:EA =1:1 Product I-b166	I-a166	Amount (g) 1.070 ount g)
tion time (hr)	Column sol. C:MeOH =20:1	=1:1 Product I-b166	Am ()	ount g)
(hr) 3 MC	C:MeOH =20:1	I-b166	()	g)
(hr) 3 MC	C:MeOH =20:1	I-b166	()	g)
		me	1.0)30
	Reaction ti	me		
	Reaction ti	me		
THF) (hr)	Column soi.	Product	Amount (g)
0.42 20.00	0 3	nHx:EA =1:1	I-c166	0.595
				
tion time (hr)	Column sol.	Amount (g)	HPLC min	
3 MC	::MeOH =20:1	0.480	20.	.00
	(hr)	(hr) Column sol.	(hr) Column sol. (g)	(hr) Column sol. (g) m

1H-NMR(CD₃OD): (two rotamers) δ 1.40 and 1.49(9H,s), 2.75 and 2.90(3H, s), 2.95 and 3.15(3H, s), 2.53-3.50(5H, m) 4.12(1H, m), 4.74 and 5.32(1H, m), 6.40-7.58(15H, m)

表D-176

Phe(4-F)-N-Me-D-Phg-N-Me-Tyr(3-tBu)-NH₂

Reaction1								
Compound I30 (g)	Compound P4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.646	2.160	2.300	1.45	20.00	3	nHx:EA =1:1	I-a176	1.030
Reaction2					'			L
Compound I-a176(g)	2N NaOH (ml)	dioxane (ml)	Reaction time (hr)	Column sol.		Product	Amount (g)	
1.030	2.40	20.00	3	MC:MeOH =20:1		I-b176	0.540	
Reaction3					L			
Compound I-b176 (g)	Compound T4 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.540	0.268	0.355	0.22	10.00	3	nHx:EA =1:1	I-c176	0.450
Reaction4					·			
Compound I-c176(g)	Pd(OH) ₂ (g)	McOH (ml)	Reaction time (hr)	Column sol.		Amount (g)	HPLC min	
0.450	0.070	10.00	3	MC:MeOH =20:1		0.270	20.98	

6.2Hz), 6.25(1H, brs), 6.35(2H, d, J=8.8Hz), 6.75(1H, d, J=8.8Hz), 6.90(1H, dd, J=8.8, 1.7Hz), 7.05-7.45(8H, m)

PC1/JP00/00444

スキーム11に、実施例167~171の合成スキームを示す。

スキーム11:実施例167~171の合成スキーム

スキーム11における合成方法を以下に説明する。

10 工程1)

15

化合物 T 1、化合物 I 3 1~ I 3 5 及び CMP I の THF 溶液に冷却下で T E A を加え室温で攪拌した。反応液に水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して I ー a 1 6 7~17 1を得た。

工程 2)

化合物 I ー a 1 6 7~1 7 1 のメタノール溶液に P d / C を加え、水素雰囲気下で室温で攪拌した。 P d / C を濾去した後、、濾液を減圧濃縮した残さをカラ 20 ムクロマトグラフィ(シリカゲル)で精製して I - b 1 6 7~1 7 1を得た。

工程 3)

化合物 I - b 1 6 7 ~ 1 7 1、化合物 P 1、及び C M P I の T H F 溶液に冷却下で T E A を加え室温で攪拌した。 反応液に水を加え、酢酸エチルで抽出し、飽

WO 00/44770 PCT/JP00/00444

和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製してI-c167 \sim 171を得た。

5 工程4)

10

スキーム11に従って合成された各化合物の実施例を、表D-167~D-171に示す。

PCT/JP00/00444

表D-167

実施例167

$Phe(4\text{-}F)\text{-}N\text{-}Me\text{-}\alpha\text{-}Me\text{-}Phe\text{-}Tyr(3\text{-}tBu)\text{-}NH_2$

		·		R				
				CH ₂ Phe		· · · · · · · · · · · · · · · · · · ·		
Reaction 1					· · · · · · · · · · · · · · · · · · ·			
Compound T1 (g)	Compound I31 (g)	i i i i i i i i i i i i i i i i i i i	1 1 1 1 1		Jacobson in in Colu	Product	Amoun (g)	
0.570	1.180	0.900	0.80 24.00 5		5	nHx:EA =1:2	I-a167	0.360
Reaction2				<u> </u>				·
Compound I-a167 (g)	Pd/C (g)	MeOH (ml)		Reaction time Pro		duct Amoun		
0.360	0.040	6.00	3		I-b1	I-b167		:60
Reaction3	· · · · · · · · · · · · · · · · · · ·				<u> </u>		L	
Compound I-b167 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.260	0.420	0.780	0.40	6.30	120	nHx:EA =1:2	I-c167	0.060
Reaction4								
Compound I-c167 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Amount (g)	HPLC min	
0.060	0.20	0.70	3	MC:Me	OH =20:1	0.01	21.813	
SI-MS(M+1)): 577		*					

1H-NMR(CDCl₃): δ 1.30(3H, s), 1.34(9H, s), 2.37-2.62(3H, m), 2.51(3H, s), 3.07(1H, d, J=14.5Hz), 3.24-3.41(2H, m), 3.73(1H, t, J=8.3Hz), 4.48-4.57(1H, m), 5.37-5.58(2H, m), 6.50(1H, d, J=9.0Hz), 6.75(1H, d, J=9.3Hz), 6.77(1H, s), 6.97-7.37(9H, m)

表D-168

実施例168

$Phe (4-F)-N-Me-\alpha-Me-Phe-Tyr (3-tBu)-NH_2: Diaster eomeric\ mixture$

				R				
				CH ₂ Phe:I)			
Reaction1								
Compound T1 (g)	Compound 132 (g)	CMPI (g)	TEA THF (ml) (ml)		Reaction time (hr)	Column sol.	Product	Атоun (g)
0.390	0.820	0.640	0.60	16.00	5	nHx:EA =1:2	l-a168	0.670
Reaction2				.		<u> </u>		L
Compound I-a168 (g)	Pd/C (g)	MeOH (ml)		Reaction time (hr)		duct	Amount (g)	
0.670	0.060	12.00	3		1-b	168	0.500	
Reaction3	_			-				
Compound I-b168 (g)	Compound P1 (g)	CMPi (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.500	0.810	1.400	1.20	12.00	120	nHx:EA =2:1	I-c168	0.210
Reaction4								
Compound I-c168 (g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Amount (g)	HPLC min	
0.210	0.53	2.60	3	MC:MeOH =20:1		0.070	20.15/20.93	

1H-NMR(CDCl₃): (two rotamers) δ 1.12-1.41(3H, m), 1.35(9H, s), 1.98 and 2.40(3H, s), 2.36(1H, s), 2.46-2.78(2H, m), 2.82-3.28(4H, m), 3.42-3.83(2H, m), 4.52-4.72(1H, m), 5.38-5.56(1H, m), 5.98-6.22(1H, m), 6.61-6.28(2H, m), 6.35-7.38(10H, m)

PCT/JP00/00444

表D-169

実施例169

$Phe (4-F)\text{-}N\text{-}Me\text{-}\alpha\text{-}Me\text{-}Leu\text{-}Tyr (3-tBu)\text{-}NH_2$

				R				
Reaction1				i-Bu				
Compound T1 (g)	Compound I33 (g)	CMPI (g)	TEA (ml)	1 1 1		Column sol.	Product	Amount (g)
1.560	1.770	2.310	1.68	60.00	12	nHx:EA:MC = 1:1.5:1	I-a169	2.390
Reaction2				<u> </u>	-	111.5.1	L	<u> </u>
Compound I-a169(g)	Pd/C (g)	MeOH (ml)	Reaction time (hr)		P	roduct	Amount (g)	
2.390	0.360	80.00	12		1	-b169	1.490	
Reaction3			<u> </u>					170
Compound I-b169(g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.490	1.230	1.510	1.10	78.00	12	nHx:EA=1:2	I-c169	0.910
Reaction4-a	_		·		<u> </u>			0.510
Compound I-c169(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Column sol.		Amount (g)	HPLC min	
0.850	1.30	1.30	4	MC:MeOH =25:1		0.130	21.50	

1H-NMR(CD₃OD): δ 0.79(6H, ε, J=7.0Hz), 1.27(3H, s), 1.46(9H, s), 1.51-1.79(3H, m), 2.54-2.67(2H, m), 2.76(3H, s), 3.04(1H, dd, J=14.3, 5.6Hz), 3.21(1H, dd, J=14.0, 6.8Hz), 3.81(1H, t, J=6.5-7.1Hz), 4.56(1H, dd, J=14.1, 6.4Hz), 5.39(1H, brs), 5.78(1H, brs), 6.61(1H, d, J=7.8Hz), 6.93-7.14(6H, m), 7.45(1H, brs)

表D-170

実施例170

$Phe (4\text{-}F)\text{-}N\text{-}Me\text{-}\alpha\text{-}Me\text{-}D\text{-}Abu\text{-}Tyr (3\text{-}tBu)\text{-}NH_2$

				R				
				Et:D		···		
Reaction1								
Compound T1(g)	Compound I34(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.147	0.150	0.220	0.16	3.00 12 nHx:EA = 1:1		I-a170	0.251	
Reaction2-			· · · · · · · · · · · · · · · · · · ·	·		 		L
Compound I-a170(g)	Pd/C (g)	MeOH (ml)		on time or)	Pro	duct		ount g)
0.250	0.150	5.00		3 І-ь170		0.1	51	
Reaction3								
Compound I-b170(g)	Compound P1(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.150	0.18	0.160	0.12	3.00	16	nHx:EA =1:1	I-c170	0.145
Reaction4			·		··!		J	
Compound I-c170(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Col	umn sol.	Amount (g)	HP m	
0.140	0.60	3.00	2.5	EA:Me	OH =20:1	0.075	19	.5
ESI-MS(M*+1):5	15				L			

1H-NMR(CDCl₃): 6 0.57(3H, t, J=7.6Hz), 1.21(3H, s), 1.37(9H, s), 1.63-1.82(2H, m), 1.70-1.92(2H, m), 2.59-2.71(2H, m), 2.72(3H, s), 3.03-3.21(2H, m), 3.84(1H, t, J=7.0Hz), 4.60(1H, q, J=6.0Hz), 5.51(1H, brs), 5.84(1H, d, J=7.3 Hz), 6.62(1H, d, J=8.0Hz), 6.91-7.03(5H, m), 7.09-7.14(2H, m), 7.54(1H, s)

表D-171

実施例171

$Phe (4\text{-}F)\text{-}N\text{-}Me\text{-}\alpha\text{-}Me\text{-}D\text{-}Val\text{-}Tyr (3\text{-}tBu)\text{-}NH_2$

				. R				
-				i-Pr:D				
Reaction 1								
Compound T1 (g)	Compound 135 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun
0.144	0.170	0.150	0.17	3.6	12	nHx:EA=3:2	I-a171	
Reaction2								0.120
Compound I-a171(g)	Pd/C (g)	MeOH (ml)	1	on time ar)	Pro	duct		ount g)
0.120	0.020	5.00	1	.5	I-b	171		080
Reaction3						<u>-</u> L		
Compound I-b171(g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.080	0.190	0.170	0.12	2.00	30	nHx:EA=2:3	[-c171	
Reaction4						<u></u>		0.050
Compound I-c171(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colt	emn sol.	Amount (g)	HP m	
0.050	0.36	1.00	3	MC:M	cOH =7:1	0.02	20.	40

1H-NMR(CDCl₃): δ 0.69(3H, d, J=6.7Hz), 0.85(3H, d, J=6.7Hz), 1.16(3H, s), 1.36(9H, s), 1.76-1.92(1H, m), 2.27-2.44(1H, m), 2.52-2.70(2H, m), 2.82(3H, s), 3.03-3.24(2H, m), 4.54-4.62(1H, m), 5..47(1H, brs), 5.76(1H, d, J=7.5Hz), 6.60(1H, d, J=8.1Hz), 6.87-7.06(4H, m), 7.09-7.16(2H, m), 7.37(1H, brs)

WO 00/44770 PCT/JP00/00444

スキーム12に、実施例172および173の合成スキームを示す。

スキーム12:実施例172および173の合成スキーム

スキーム12における合成方法を以下に説明する。

10 工程1)

15

化合物 T 1、化合物 I 3 6~ I 3 7 及び CMP I の THF 溶液に冷却下で T E A を加え室温で攪拌した。反応液に水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して I ー a 1 7 2~ 1 7 3 を得た。

工程 2)

化合物 I-a 1 7 2 \sim 1 7 3 のメタノール溶液に P d (OH) $_2$ を加え、水素雰囲気下で室温で攪拌した。 P d (OH) $_2$ を濾去した後、濾液を減圧濃縮した 残さをカラムクロマトグラフィ(シリカゲル)で精製して I-b 1 7 2 \sim 1 7 3 を得た。

工程 3)

化合物 I-b172~173、化合物P1、及びCMPIのTHF溶液に冷却

0 00/44 / / 0

PCT/JP00/00444

下でTEAを加え室温で攪拌した。反応液に水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して I-c172~173を得た。

5

工程4)

化合物 I-c 172~173のジクロロメタン溶液に冷却下でTFAを加え室温で攪拌した。反応液を減圧濃縮した後、飽和N a H C O $_3$ 水溶液を加え中和し、酢酸エチルで抽出し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減10 圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して目的化合物を得た。

スキーム12に従って合成された各化合物の実施例を、表D-172および D-173に示す。

15

表D-172

実施例172

 $\label{eq:control} \end{cases} \begin{tabular}{ll} (2S)-N-[(N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl) arbamoyl)-y-carbamoyl-2-amino-3-(4-fluorophenyl)-N-methylpropanamide arbamoylethyl) arbamoylethyl arbamoyl-2-amino-3-(4-fluorophenyl)-N-methylpropanamide arbamoylethyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoylethyl arbamoyl arbamoyl arbamoylethyl arbamoylethyl arbamoyl arbamoylethyl arbamoyl$

Compound T1 (g)	Compound 136 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.600	1.050	0.973	0.70	20.00	3	nHx:EA =1:1	I-a172	1.210
Reaction2						L	 	L
Compound I-a172(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reactio (h		Pro	duct	Colum	n sol.
1.210	0.182	30.00	3		[-b.	172	MC:Me0)H =20:1
Reaction3			 			<u></u>		
Compound I-b172 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.744	1.170	1.050	0.72	20.00	52	nHx:EA =1:1	I-c172	0.518
Reaction 4					···			
Compound (-c172(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	ımn sol.	Amount (g)	HP mi	
0.518	1.330	10.00	3	MC:Me	OH =20:1	0.130	19.	59

1H-NMR(CDCl₃): (two rotamers) & 1.30 and 1.40(9H,s), 1.15-2.42(8H, m), 2.52-2.80(2H, m), 2.86 and 2.92(3H, s), 3.02-3.35(2H, m), 3.58 and 3.85(1H, m),4.30 and 4.61(1H, m), 5.68(1H, brs),6.08-6.42(1H, m), 6.51-7.39(7H, m)

表D-173

実施例173

 $(2S)-N-\{(N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl\} carbamoyl)$

$cyclohexyl]\hbox{-}2-amino\hbox{-}3-(4-fluorophenyl)\hbox{-}N-methylpropanamide}$

Reaction 1			······································		, 			
Compound T1(g)	Compound 137 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.708	1.310	0.766	0.84	20.00	3	nHx:EA =1:1	I-a173	1.400
Reaction2			•					
Compound I-a173(g)	Pd(OH) ₂ (g)	McOH (ml)	Reaction (h		Proc	iuct		ount g)
1.400	0.210	30.00	3		I-b1	73	0.9	934
Reaction3								
Compound I-b173 (g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.930	1.410	1.270	0.87	30.00	120	nHx:EA =1:1	I-c173	0.271
Reaction4								
Compound I-c173(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	mn sol.	Amount (g)	HP m	
0.271	0.700	5.00	3	MC:Me	OH =20:1	0.030	24.	76
ESI-MS(M+1):541		<u>l</u>		l			

WO 00/44770 PCT/JP00/00444

スキーム13に、実施例174の合成スキームを示す。

スキーム13:実施例174の合成スキーム

スキーム13における合成方法を以下に説明する。

10 工程1)

5

化合物 T1、化合物 I38及び CMP Iの THF 溶液に冷却下で TEAを加え 室温で攪拌した。反応液に水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、 無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムク ロマトグラフィ(シリカゲル)で精製して I-a174を得た。

15

20

工程 2)

化合物 I-a174のジクロロメタン溶液に冷却下でTFAを加え室温で攪拌した。反応液を減圧濃縮した後、飽和 $NaHCO_3$ 水溶液を加え中和し、酢酸エチルで抽出し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製してI-b174を得た。

工程 3)

化合物 I-b174, 化合物 P1, 及びCMPIのTHF溶液に冷却下で

PCT/JP00/00444

TEAを加え室温で攪拌した。反応液に水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製してI-c174を得た。

5 工程4)

化合物 I-c 174のジクロロメタン溶液に冷却下でTFAを加え室温で攪拌した。反応液を減圧濃縮した後、飽和 $NaHCO_3$ 水溶液を加え中和し、酢酸エチルで抽出し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して目的化合物を得た。

10

スキーム13に従って合成された化合物の実施例を、表D-174に示す。

WO 00/44770 PCT/JP00/00444

表D-174

実施例174

Phe(4-F)-N-Me-Tle-Tyr(3-tBu)-NH₂

Reaction1								
Compound T1 (g)	Compound I38 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.633	0.660	0.756	0.37	15.00	24	nHx:EA =1:2	I-a174	0.670
Reaction2								I
Compound I-a174(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colu	mn sol.	Product		ount g)
0.670	2.00	10.00	1	MC:Me	OH =10:1	I-b174	0.5	518
Reaction3			•					
Compound I-b174(g)	Compound P1 (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.518	0.809	0.730	0.40	10.00	36	nHx:EA =1:2	I-c174	0.393
Reaction4			<u> </u>		<u>'</u>			
Compound I-c174(g)	TFA (ml)	MC (ml)	Reaction time (hr)	Colum	nn sol.	Amount (g)	HP)	
0.393	1.00	5.00	1	MC:MeO	H =15:1	0.162	17	54

ESI-MS(M+1):529

1H-NMR(CDCl₃):(two rotamers) δ 1.02 and 1.03 (9H,s), 1.35 and 1.36(9H, s), 2.75(3H, s), 2.70 and 3.00(4H, m), 3.12(1H, dd, J=10.3, 6.3Hz), 3.60 and 3.82(1H, m), 4.64(1H, m), 5.50(1H, brs), 5.80 and 6.00(1H, brs), 6.70(1H, s), 6.80-7.15(6H, m)

PC 1/JP00/00444

スキーム14に、実施例175の合成スキームを示す。

スキーム14:実施例175の合成スキーム

5 Tyr(O-Bn,3-tBu)-OMe

I-a175

10

スキーム14における合成方法を以下に説明する。

工程1)

Tyr(O-Bn,3-tBu)-OMe、化合物Boc-Tle-OH及びCMPIのTHF 25 溶液に冷却下TEAを加え室温で攪拌した。反応液に水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製してI-a175を得た。

20 工程 2)

化合物 I ー a 1 7 5 の DMF溶液に冷却下でNaHとMe I を加え室温で攪拌

WO 00/44770 PCT/JP00/00444

した。反応液に冷却下で水を加え、1N HClを加え中和し、EA/nHx (1/2) で抽出した。有機層を飽和食塩水で3回洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製してI-b175を得た。

5

10

工程3)

化合物 I - b 1 7 5 のメタノール溶液に 2 8 %アンモニア水溶液を加え室温で 攪拌した。反応液を減圧濃縮した後、酢酸エチルで抽出し、飽和食塩水で洗浄し、 無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムク ロマトグラフィ(シリカゲル)で精製して I - c 1 7 5 を得た。

工程4)

化合物 I-c 175のジクロロメタン溶液に冷却下でTFAを加え室温で攪拌した。反応液を減圧濃縮した後、飽和 $NaHCO_3$ 水溶液を加え中和し、酢酸エチルで抽出し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製してI-d 175を得た。

工程5)

化合物 I - d 1 7 5、化合物 P 4 及び C M P I の T H F 溶液に冷却下で T E A を加え室温で攪拌した。反応液に水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して I - e 1 7 5 を得た。

工程 6)

25 化合物 I-e175のメタノール溶液にPd (OH) $_2$ を加え、水素雰囲気下で室温で攪拌した。Pd (OH) $_2$ を濾去した後、濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して目的化合物を得た。

スキーム14に従って合成された化合物の実施例を、表D-175に示す。

表D-175

実施例175

 $Phe (4-F)\text{-}N\text{-}Me\text{-}Tle\text{-}N\text{-}Me\text{-}Tyr (3-tBu)\text{-}NH_2$

Tyr(O-Bn,3-tBu)- OMe (g)	Boc-Tie-OH (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction tim (hr)	Column sol.	Product	Amoun
1.720	1.280	1.410	1.40	34.00	12	nHx:EA=5:1	7 195	
Reaction2			<u> </u>		1	111X.EAS3:1	I-a175	2.200
Compound	NaH	Methyl	DMF	Reaction tim		Τ		
I-a175 (g)	(g)	Iodide(mi)	(ml)	(hr)	Column sol.	Product	1	nount
2.200	0.480	2.22	22.00	1	nHx:EA=5:1	I-b175		(g) 930
Reaction3						1-0173	1.	930
Compound	NH,OH	MeOH	Reaction time				Δ	ount
I-b175 (g)	(ml)	(ml)	(hr)	Colu	nn soi.	Product		Dunt g)
1.930	130.00	230.00	20	nHx:E	A=2:1	I-c175		564
Reaction4	1						U.,	
Compound	TFA	MC	Reaction time					
I-c175 (g)	(ml)	(ml)	(hr)	Colum	nn sol.	Product	Am (s	ount
0.680	2.78	8.00	1.5	MC:MeOH	=20:1	I-d175	0.5	
teaction5			I					
Compound	Compound	CMPI	TEA	THF	Reaction time	·		
I-d175 (g)	P1(g)	(g)	(ml)	(ml)	(hr)	Column sol.	Product	Amount (g)
0.500 eaction6	0.951	0.546	0.50	12.50	12	nHx:EA=2:1	I-d175	0.254
							L	0.25
Compound	Pd(OH) ₂		Reaction time	Colo		Amount	HPI	C
I-d175 (g)	(g)	(ml)	(hr)	Colum	n sol.	(g)	mi	
0.250	0.050	10.00	3	MC:MeO	H=15:1	0.098	19.2	80

1H-NMR(CDCl₃): 6 0.80(9H, s), 1.37(9H, s), 2.68(1H, dd, J=13.6, 7.3Hz), 2.85-3.01(2H, m), 2.92(3H, s), 2.98(3H, s), 3.11-3.22(1H, m), 3.94(1H, t, J=7.0Hz), 5.19(1H, s), 5.22(1H, brs), 5.37(1H, dd, J=10.5, 5.6Hz), 5.98(1H, brs), 6.55(1H, d, J=7.9Hz),6.88(1H, dd, J=8.0, 2.2Hz),6.94-7.00(2H, m),7.07-7.14(3H, m)

スキーム15における各共通中間体の製造方法を、参考例として以下に示す。また、実施例177~180における共通中間体の構造式を表C-5に示す。

5 表C-5

実施例177~180の共通中間体

PCT/JP00/00444

参考例27 共通中間体P6~P8の合成 合成スキームを以下に示す。

5 共通中間体P6~P8の合成スキーム

共通中間体P6~P8の合成法を以下に説明する。

F-Pyridyl iodide [2-Fluoro-4-(iodomethyl) pyridineと2-Fluoro-5-(iodomethyl) pyridineと2-Fluoro-5-(iodomethyl) pyridine]は、J. Med. Chem., 1998, 41(23), 4615を参照して合成し、P7とP8の合成は上記の2-Fluoro-5-(iodomethyl) pyridineと4-(Iodomethyl)-1-(trifluoromethyl) benzeneを使用してP6と同じ方法で合成した。

20

25

10

工程1)

グリシンエチルエステル塩酸塩と CS_2 、水の $THF混合溶液にK_2CO_3$ と CH_3 I を滴下した後、室温で攪拌した。反応終結後、水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さのDMSO、水の混合溶液に K_2CO_3 を徐々に滴下した後、

冷却下で CH_3 I を徐々に滴下し、室温で攪拌した。反応液に水を加え、 Et_2 Oで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。 濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して I-a177-I を得た。

5

工程 2)

化合物 I-a177-I、 t-BuOKoTHF溶液に-78°CでF-pyridy I $iodideを徐々に滴下しながら攪拌した。反応液に水を加え、 <math>Et_2O$ で抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過 した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製してI-b177-Iを得た。

工程 3)

化合物 I - b 1 7 7 - I のエタノール、水、ジオキサンの混合溶液に飽和H C 1 エタノール溶液を加え室温で攪拌した。反応液を減圧濃縮した後、ジクロロメタンで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して I - c 1 7 7 - I を得た。

20 工程4)

25

化合物 I-c 177-I、 Na_2CO_3 のジオキサン、水の混合溶液に冷却下でZ-C 1を徐々に滴下した後、室温で攪拌した。反応液に水を加え、 Et_2O で抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して I-d 177-I を得た。

工程 5)

化合物 I-d177-I のジオキサン溶液に 2N-NaOH を加え室温で攪拌した。反応液に 1N-HCI を加え $pH=3\sim4$ に調整した後、酢酸エチルで

抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液 を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製してP6を 得た。

5 結果を表E-46~E-48に示す。

表E-46

共通中間体 P 6

$3\hbox{-}(2\hbox{-}fluoro\hbox{-}4\hbox{-}pyridyl)\hbox{-}2\hbox{-}[(phenylmethoxy)carbonylamino] propanoic acid$

Reaction 1 - a							
Gly-OEt HCl(g)	K ₂ CO, (g)	Methyl iodide(ml)	CS ₂ (ml)	THF/H ₂ O (m1)	Reaction time (hr)	Product	Amoun
20.000	19.890	8.96	8.66	60.00 /14.00	1	Crude intermediate	27.061
Reaction 1-b							
Crude intermediate (g)	K,CO, (g)	Methyl iodide(ml)	DMSO/H ₂ O (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
12.000	8.590	3.90	60.00 / 14.00	0.5	nHx:EA =5:1	I-a177-I	11.7000
Reaction 2							
I-a177-i (g)	2-fluoro-4- (lodomethyl) pyridiac(ml)	(g)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
2.000	2.520	1.190	32.00	2.50	nHx:EA ≈7:1	I-6177-j	2.480
Reaction3		· · · · · · · · · · · · · · · · · · ·			LL		
I-b177-I (g)	HCl(sat'd in (ml)	EtOH)	E10 H/H 20 (ml)	Dioxane (ml)	Reaction time (hr)	Product	Amount (g)
2.480	11.50		11.50 / 11.50	6	16	I-c177-1	1.33
leaction 4					L	·	
1-c177-1 (g)	ZC: (m1)	Na ₂ CO ₃ (g)	Dioxan (m		Reaction time (hr)	Product	Amount (g)
1.330	0.99	1.000	18.00 /	18.00	2	1-d177-1	1.36
eaction5	<u>-</u>			L	L-		
l-d177-l (g)	NaOH (g)	EtOH/		Reactio (hi		Amou (g)	n t
1.330	0.314	30.00 /	10.00	1.50	00	1.200	1

表E-47

共通中間体 P 7

3-(2-fluoro-5-pyridyl)-2-[(phenylmethoxy)carbonylamino]propanoic acid

Reaction 1 - a			CS ₂	THF/H ₂ O	Reaction		Amount
Gly-OEt HCl(g)	K₂CO,	Methyl	-		time (hr)	Product	(g)
Oly-OEI HCI(B)	(g)	iodide(m1)	(ml)	(m1)	mile (m)		(6/
20.000	19.890	8.96	8.66	60.00 /14.00	1	Crude intermediate	27.061
Reaction 1-b						,	
Crude	K,CO,	Methyl	DMSO/H2O	Reaction time	Column sol.	Product	Amoun
intermediate(g)	(g)	iodide(ml)	(m1)	(br)	Column 30		(g)
			60.00 / 14.00	0.5	WITX.LA	1-2178-1	11.7000
12.000	8.590	3.90	80.007 14.00	0.5		<u> </u>	
Reaction2							
	2-fluoro-5-	tBuOK	THF	Reaction time	Column sol.	Product	Amoun
I-a178-I (g)	(iodomethyl)	(g)	(m1)	(hr)	Coramin son		(g)
	pyridine(ml)		60.00	3.00	лНх:ЕА	1-6178-1	4.300
3.990	8.37	2.380	80.00				
Reaction3		1	<u> </u>	Reaction time		Amo	unt
I-b178-l (g)	HCl(sat'd in	EtOH/H ₂ O	Dioxane		Product	(g	
1-D1/0-1 (8)	EtOH)(ml)	(ml)	(ml)	(hr)			
4,300	20.00	12.00 / 12.00	10.00	16	1-c178-J	1.8	80
Reaction 4						Amo	
	ZCI	Na ₂ CO ₃	Dioxane/	Reaction time	Product	1	
l-c178-l (g)	(m1)	(g)	H2O (ml)	(hr)		(8	
1.880	1.40	1.410	25.00 / 25.00	2	I-d178-I	2.9	40
Reaction 5							
T	NaOH	5,000	12O (m1)	Reaction		Amo	
1-d178-I (g)	(g)	l EiOH/E	130 (m1)	(h	1)	(g)	
				1.5		2.4	

表E-48

共通中間体 P8

$\hbox{2-[(Phenylmethoxy) carbonylamino]-3-[4-(trifluoromethyl) phenyl] propanoic acid}$

Reaction 1-a						 -	
Gly-OEt-HCl(g)	K ₂ CO ₃ (g)	Methyl iodide(ml)	CS ₂ (ml)	THF/H2O (ml)	Reaction time (hr)	Product	Amoun (g)
20.000	19.890	8.96	8.66	60.00 /14.00	1	Crude intermediate	27.061
Reaction 1 - b							
Crude intermediate(g)	K ₂ CO ₃ (g)	Methyl iodide(ml)	DMSO/H ₂ O (m1)	Reaction time (hr)	Column sol.	Product	Amount (g)
12.000	8.590	3.90	60.00 / 14.00	0.5	nHx:EA =5:1	J-a179-I	11.700
Reaction 2				*	<u> </u>		
i-a179-i (g)	4-(iodomethyl)-1- (trifluoto methyl)benzeee (ml)	1BuOK (g)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
2.120	3.220	1.270	40.00	2	nHx:EA =7:1	I-b179-1	3.730
Reaction3						·	
l-b179-l (g)	HC1 (sat'd in EtOH	l)(m!)	EtOH/H2O (ml)	Dioxane (ml)	Reaction time (hr)	Product	Amount (g)
1.620	6.50		6.50 / 6.50	3.00	16	I-c179-I	0.737
Ceaction 4							
I-c179-I (g)	ZCI (m1)	Na ₂ CO ₃ (g)	Dioxane/ H ₂ O (ml)	Reaction time (hr)	Product	Amot (g)	
0.737	0.45	0.450	9.00 / 9.00	1	I-d179-I	1.09	0
leaction 5							
l-d177-l (g)	NaOH (g)	EtOH/H;	O (m1)	Reactio (h		Amoi (g)	
1.090	0.186	9.00 /	9.00	1.		1.01	

参考例28

共通中間体 P 9 の合成 合成スキームを以下に示す。

5 共通中間体P9の合成スキーム

共通中間体P9の合成法を以下に説明する。

10

15

工程1)

Na-metalのエタノール溶液にdiethyl malonateと4 - (chloromethyl) -1-fluorobenzeneを滴下した後、室温で攪拌した。反応液を減圧濃縮した後、水を加え、 Et_2 Oで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮して粗化合物 I-a180-Iを得た。

工程 2)

25 結果を表E-49に示す。

表E-49

共通中間体 P 9

$\hbox{2-(Ethoxycarbonyl)-3-(4-fluorophenyl)} propanoic\ acid$

Reaction1					
Diethyl malonate (g)	4-(chloromethyl)-1- fluorobenzene (ml)	Na-metal (g)	EtOH (ml)	Product	Amount (g)
15.000	10.90	2.180	120.00	I-a180-I	25.000
Reaction2			•	•	
l-a180-I (g)	KOH (g)	EtOH (ml)	Amount		(g)
2.160	5.170	160.00		1.400	

スキーム15に、実施例177A、B~179A、Bの合成スキームを示す。

スキーム15:実施例177A、B~179A、Bの合成スキーム

N-Me-Val-N-Me-Tyr

I-a177A (less polar)

実施例 177 A(less polar)

(3-tBu)-NH₂

I-a177B (more polar)

実施例 177 B(more polar)

スキーム15における合成方法を、実施例177A及びBを例にとって以下 に説明する。

10

15

5

化合物P6、N-Me-Val-N-Me-Tyr (3-tBu)-NH2 工程1) 及びСМРІのТНF溶液に冷却下でTEAを加え室温で攪拌した。反応液に水 を加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾 燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲ ル)で精製してI-a177A (less polar)とI-a177B (m ore polar)を得た。

- 化合物I-a177A (less polar)とI-a177B (more polar) の各々のメタノール溶液にPd (OH) $_2$ を加え、水素雰囲気下で 20 室温で攪拌した。Pd(OH) $_2$ を濾去した後、、濾液を減圧濃縮した残さをカ ラムクロマトグラフィ (シリカゲル) で精製して目的化合物を得た。
 - 実施例178 (178AおよびB) と実施例179 (179AおよびB) は、上 記P6に代えて、それぞれ、P7とP8を用いて上記と同じ方法で反応させて得 25 た。

スキーム15に従って合成された化合物の各実施例を、表D-177A~179Bに示す。

11 0 00/44/10

表D-177A

実施例177A:Less polar

 $(2S)-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl\}-2-[2-amino-3-1]-(2S)-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl\}-2-[2-amino-3-1]-(2S)-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl\}-2-[2-amino-3-1]-(2S)-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyll]-1-carbamoylethyll]-1-carbamoy$

(2-fluoro-4-pyridyl)-N-methylpropanoylamino]-3-methyl-N-methylbutanamide

N-Me-Val-N-Me- Tyr(3-tBu)-NH ₂ (g)	Compound P6(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
							l-a177A	0.275
0.776	0.886	0.711	0.45	30,00	16	nHx:EA=1:1	1-a177B	0.288
Reaction2								
Compound I- a177A(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Column sol.	Amo (g		HP:	
0.275	0.042	20.00	3	MC:MeOH =20:1	0.1	60	17.	50

ESI-MS(M*+1):530

1H-NMR(CDCl₃): (two rotamers) δ 0.32, 0.42 and 0.60, 0.88(6H, d, J=7.1-7.9Hz), 1.37 and 1.42(9H, s), 2.00-2.20(1H, m), 2.52 and 2.91, 2.95(6H, s), 2.60-3.28(4H, m), 2.95(3H, s), 3.75(1/2H, dd, J=8.8, 6.1Hz), 3.95(1/2H, t, J=8.8Hz), 4.65 and 5.00(1H, d, J=8.8Hz), 4.96 and 5.47(1H, dd, J=8.8, 7.0Hz), 5.60 and 6.05(1H, brs), 6.60 and 6.15(1H, d, J=8.8Hz), 6.70 and 7.04(2H, m), 6.92 and 7.12(2H, m)

WO 00/44770 PCT/JP00/00444

表D-177B

実施例177B: more polar

 $(2S)-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl\}-2-[2-amino-3-1]-carbamoylethyl-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl-3-[3-(tert-butyl)-4-hydroxyphenyl-3-[3-(tert-butyl)-4-hydroxyphenyl-3-[3-(tert-butyl)-4-hydroxyphenyl-3-[3-(tert-butyl)-4-hydroxyphenyl-3-[3-(tert-butyl)-4-hydroxyphenyl-3-[3-(ter$

(2-fluoro-4-pyridyl)-N-methyl propanoylamino]-3-methyl-N-methyl butanamide

Reaction2						-
Compound I-a177B(g)	Pd(OH)₂ (g)	MeOH (ml)	Reaction time (hr)	Column sol.	Amount (g)	HPLC min
0.288	0.043	20.00	3	MC:MeOH =20:1	0.160	15.48

ESI-MS(M+1):530

1H-NMR(CDCl₃): (two rotamers) & 0.46, 0.72 and 0.78, 0.91(6H, d, J=7.1-7.9Hz), 1.32 and 1.38(9H, s), 2.15-2.40(1H, m), 2.50, 2.83, and 3.0, 3.08(6H, s), 2.40-3.40(5H, m), 3.70 and 3.90(1H, dd, J=8.8, 3.5-4.4Hz), 4.81 and 5.05(1H, d, J=9.7Hz), 4.99 and 5.52(2H, m), 6.05 and 6.49(1H, brs), 6.48 and 6.64(1H, d, J=7.9Hz), 6.74 and 6.76, 6.82(2H, brs), 6.90-7.18(2H, m), 8.12(1H, d, J=6.2Hz)

表D-178A

実施例178A:less polar

 $(2S)-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl\}-2-[2-amino-3-1]-(2S)-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl\}-2-[2-amino-3-1]-(2S)-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl\}-2-[2-amino-3-1]-(2S)-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl\}-2-[2-amino-3-1]-(2S)-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl]-1-(2S)-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl]-1-(2S)-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl]-1-(2S)-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-(2S)-N-[3-(tert-butyl)-4-hydroxyphenyl]-1-(2S)-N-[3-(tert-butyl)-4-hydroxyphenyl]-1-(2S)-N-[3-(tert-butyl)-4-hydroxyphenyl]-1-(2S)-N-[3-(tert-butyl)-4-hydroxyphenyl]-1-(2S)-N-[3-(tert-butyl)-4-hydroxyphenyl]-1-(2S)-N-[3-(tert-butyl)-1-(S)-N-[3-(tert-butyl)-4-hydroxyphenyl]-1-(S)-N-[3-(tert-butyl)-1-(S)-N-[3-(tert-butyl)-1-(S)-N-[3-(tert-butyl)-4-hydroxyphenyl]$

(2-fluoro-5-pyridyl)-N-methylpropanoylamino]-3-methyl-N-methylbutanamide

Reaction1								
N-Me-Val-N-Me- Tyr(3-tBu)-NH ₂ (g)	Compound P7(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.000	1.140	0.917	0.58	20.00	3	nHx:EA=1:1	I-a178A	0,380
							l-a178B	0.100
Reaction2								
Compound I-a178A(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Column sol.	Amount (g)		HPLC min	
0.380	0.057	10.00	3	MC:MeOH =20:1	0.210		17.76	

ESI-MS(M+1):530

1H-NMR(CDCl₃): (two rotamers) δ 0.32, 0.42 and 0.60, 0.89(6H, d, J=7.1-7.9Hz), 1.37 and 1.42(9H, s), 2.00-2.30(1H, m), 2.50, 2.90 and 2.94, 2.95(6H, s), 2.58-3.29(4H, m), 3.70(1/2H, dd, J=8.8, 6.1Hz), 3.90(1/2H, t, J=8.8Hz), 4.67 and 5.04(1H, d, J=8.8Hz), 4.95 and 5.47(1H, dd, J=8.8, 7.0Hz), 5.70(1H, brs), 6.05 and 6.55(1H, brs), 6.58 and 6.65(1H, d, J=8.8Hz), 6.75-6.99(2H, m), 7.10 and 7.18(1H, brs), 7.58-7.75(1H, m), 8.12(1H, m)

表D-178B

実施例 1 7 8 B: more polar

 $(2S)-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl\}-2-[2-amino-3-1]-(2S)-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl\}-2-[2-amino-3-1]-(2S)-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl\}-2-[2-amino-3-1]-(2S)-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl\}-2-[2-amino-3-1]-(2S)-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyll]-1-carbamoylethylll[-1-carbamoylethyll]-1-carbamoylethylll[-1-carbamoylethylll]-1-carbamoylethylll[-1-carbamoylethylll]-1-carbamoylethylll[-1-carbamoylethylll]-1-carbamoylethylll[-1-carbamoylethylll]-1-carbamoylethylll[-1-carbamoylethyll$

(2-fluoro-5-pyridyl)-N-methyl propanoylamino]-3-methyl-N-methyl butanamide

Reaction2						
Compound I-a178B(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Column sol.	Amount (g)	HPLC min
0.100	0.015	5.00	3	MC:MeOH =20:1	0.040	15.65

ESI-MS(M+1):530

1H-NMR(CDCl₃): (two rotamers) δ 0.50, 0.75 and 0.77, 0.95(6H, d, J=7.1-7.9Hz), 1.32 and 1.39(9H, s), 2.00-2.30(1H, m), 2.47, 2.83 and 3.0, 3.05(6H, s), 2.18-3.42(4H, m), 3.61 and 3.82(1H, dd, J=8.8, 3.5-4.0Hz), 4.85 and 5.07(1H, d, J=9.7Hz), 5.57 and 5.70, 5.79, 6.11(2H, m and brs), 6.55 and 6.65(1H, d, J=7.9-8.8Hz), 6.73, 6.88 and 6.97(2H, m), 7.13(1H, brs), 7.60-7.75(1H, m), 7.97 and 8.05(1H, brs)

表D-179A

実施例179A:less polar

 $(2S)-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl\}-2-\{2-amino-N-methyl-3-[4-(trifluoromethyl)phenyl]propanoylamino\}-3-methyl-N-methylbutanamide$

Reaction1								
N-Me-Val-N-Me- Tyr(3-tBu)-NH ₂ (g)	Compound P8(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.513	0.626	0.435	0.3	30.00	3	nHx:EA= 1:1	I-a179A	0.330
							I-a179B	0.332
Reaction2								
Compound I-a179A(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Column sol.	Amount (g)		HPLC min	
0.330	0.049	10.00	3	MC:MeOH =20:1	0.136		19.89	

ESI-MS(M+1):579

1H-NMR(CDCl₃): (two rotamers) δ 0.49, 0.74 and 0.79, 0.93(6H, d, J=6.3-6.8Hz), 1.34 and 1.39(9H, s), 2.25-2.48(1H, m), 2.53, 2.79 and 3.01, 3.05(6H, s), 2.58-3.40(4H, m), 3.74 and 3.90(1H, m), 4.87 and 5.07(1H, d, J=10.5-10.9Hz), 5.38-5.10(2H, m), 6.20(2/3H, brs), 6.40 and 6.65(1H, d, J=7.9Hz), 6.58(1/3H, brs), 6.73 and 6.97(1H, d, J=7.9-8.4Hz), 7.12(1H, m), 7.27-7.30(2H, m), 7.55-7.60(2H, m)

WO 00/44770 PCT/JP00/00444

表D-179B

実施例179B:more polar

(2S)-N-{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl}-2-{2-amino-N-

 $methyl-3-[4-(trifluoromethyl)phenyl] propanoylamino \}-3-methyl-N-methylbutanamide$

Reaction2						
Compound I-a179B(g)	Pd(OH) ₂ (g)	MeOH (ml)	Reaction time (hr)	Column sol.	Amount (g)	HPLC min
0.332	0.049	10.00	3	MC:MeOH =20:1	0.123	22.09

ESI-MS(M+1):579

1H-NMR(CDCl₃): (two rotamers) δ 0.33, 0.36 and 0.55, 0.87(6H, d, J=6.4-6.9Hz), 1.37 and 1.41(9H, s), 2.00-2.20(1H, m), 2.56, 2.92 and 2.98(6H, s), 2.60-3.21(4H, m), 3.77 and 3.96(1H, m), 4.67 and 5.02(1H, d, J=10.6-10.9Hz), 4.96 and 5.45(1H, dd, J=9.0-11.3, 3.4-6.0Hz), 5.67 and 6.04(1H, brs), 6.57 and 6.63(1H, d, J=7.9Hz), 6.74 and 6.94(1H, dd, J=8.0-9.8, 1.8-2.1Hz), 7.08 and 7.16(1H, d, J=1.9Hz), 7.27-7.37(2H, m), 7.52-7.60(2H, m)

スキーム16に、実施例180A及びBの合成スキームを示す。

スキーム16:実施例180A及びBの合成スキーム

5 N-Me-Val-N-Me-Tyr

I-a180A (less polar)

実施例 180A (less polar)

 $(3-tBu)-NH_2$

I-a180B (more polar)

実施例 180B (more polar)

スキーム16における合成方法を以下に説明する。

10 工程1)

化合物 P9、N-Me-Val-N-Me-Tyr(3-tBu) $-NH_2$ 、 EDCL及びHOBTのDMF溶液に冷却下でTEAを加え、室温で攪拌した。 反応液に水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製してI-a180A(Iess polar)とI-a180B(More polar)を得た。

工程2)

化合物 I-a180A (less polar) & I-a180B (mor 20 e polar) の各各のエタノール溶液に冷却下で $NaBH_4$ を加え、室温で 攪拌した。反応液に1N HCl溶液を加え、Et $_2$ Oで抽出し、飽和食塩水で 洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さを カラムクロマトグラフィ(シリカゲル)で精製して目的化合物(less polar、more polar)を得た。

25

15

スキーム16に従って合成された化合物の各実施例を、表D-180A及び B に示す。

表D-180A

実施例180A:Less polar

 $(2S)-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl\}-2-\{2-[(4-fluorophenyl)-3-hydroxy-N-methylpropanoylamino\}-3-methyl-N-methylbutanamide$

N-Mo-Val-N-Mo- Tyr(3-tBu)-NH ₂ (g)	Compound P9(g)	(g)	(g)	TEA (ml)	THF (mi)	Reaction time (hr)	Column sol.	Product	Amount (g)
1.500 1.29	1.030	0.824	1.08	30.00	2.5	nHbcEA=1:1	I-a180A	0.700	
Reaction2							1.1	l-a180B	0.820
Compound I-a180A(g)	NaBH, (g)	ErOH (ml)	Reaction time (hr)	Column sol.		Armount (g)		HPLC min	
0.700	0.490	30.00	3	MC:MbOH =20:1		0.17		21,83	

ESI-MS(M+1):544

1H-NMR(CDCl₃): (two rotamers) δ 0.48, 0.74 and 0.76, 0.92(6H, d, J=6.0-7.2Hz), 1.35 and 1.39(9H, s), 2.05-2.50(1H, m), 2.50, 2.80 and 2.98, 3.01(6H, s), 2.40-3.36(5H, m), 3.50-3.70(2H, m), 3.50-3.70(2H, m), 4.90 and 5.08(1H, d, J=10.6Hz), 5.45(1H, m), 5.50 and 6.05(1H, brs), 5.70 and 6.20(1H, brs), 6.44 and 6.64(1H, d, J=8.8-8.3Hz), 6.73-7.15(7H, m)

表D-180B

実施例 1 8 0 B: more polar

 $(2S)-N-\{(1S)-2-[3-(tert-butyl)-4-hydroxyphenyl]-1-carbamoylethyl\}-2-\{2-[(4-fluorophenyl)-4-hydroxyphenyl]-1-carbamoylethyl\}-2-\{2-[(4-fluorophenyl)-4-hydroxyphenyl]-1-carbamoylethyl\}-2-\{2-[(4-fluorophenyl)-4-hydroxyphenyl]-1-carbamoylethyl\}-2-\{2-[(4-fluorophenyl)-4-hydroxyphenyl]-1-carbamoylethyl\}-2-\{2-[(4-fluorophenyl)-4-hydroxyphenyl]-1-carbamoylethyl\}-2-\{2-[(4-fluorophenyl)-4-hydroxyphenyl]-1-carbamoylethyl\}-2-\{2-[(4-fluorophenyl)-4-hydroxyphenyl]-1-carbamoylethyl\}-2-\{2-[(4-fluorophenyl)-4-hydroxyphenyl]-1-carbamoylethyl\}-2-\{2-[(4-fluorophenyl)-4-hydroxyphenyl]-1-carbamoylethyl\}-2-\{2-[(4-fluorophenyl)-4-hydroxyphenyl]-1-carbamoylethyl\}-2-\{2-[(4-fluorophenyl)-4-hydroxyphenyl]-1-carbamoylethyl]-2-\{2-[(4-fluorophenyl)-4-hydroxyphenyl]-1-carbamoylethyl]-2-\{2-[(4-fluorophenyl)-4-hydroxyphenyl]-1-carbamoylethyl]-1-carbamoylethyl]-1-carbamoylethyl]-1-carbamoylethyl]-1-carbamoylethyl]-1-carbamoylethyl]-1-carbamoylethyl]-1-carbamoylethyl]-1-carbamoylethyl]-1-carbamoylethyl]-1-carbamoylethyl]-1-carbamoylethyl]-1-carbamoylethyl]-1-carbamoylethyll]-1$

$methyl] \hbox{-} 3-hydroxy-N-methyl propanoylamino} \hbox{-} 3-methyl-N-methyl butanamide}$

Reaction2										
Compound NaBH, I-a180B(g) (g)		EtOH (ml)	Reaction time (hr)	Column sol.	Amount (g)	HPLC min				
0.820	0.492	30.00	. 3	MC:MeOH =20:1	0.060	23.95				

ESI-MS(M+1):544

1H-NMR(CDCl₃): (two rotamers) δ 0.17-0.20 and 0.44, 0.84(6H, m and d, J=6.5-6.7Hz), 1.36 and 1.40(9H, s), 2.00-2.20(1H, m), 2.41 and 2.90, 2.92(6H, s), 2.67-4.00(13H, m),4.73 and 5.00(1H, d, J=10.5Hz), 5.20 and 5.35(1H, m), 5.83 and 6.18(1H, brs), 6.38 and 6.51(1H, brs), 6.62 and 6.65(1H, d, J=7.9Hz), 6.75-7.20(8H, m)

スキーム17に、実施例181及び182の合成スキームを示す。

スキーム17:実施例181及び182の合成スキーム

5 N-Me-Val-N-Me-Tyr

I-a181

実施例181

 $(3-tBu)-NH_2$

スキーム17における合成方法を、実施例181を例にとって以下に説明する。

10 工程1)

15

化合物Boc-Ala(β -4-pyridyl)-OH、N-Me-Val-N-Me-Tyr(3-tBu)-NH₂及びCMPIのTHF溶液に冷却下でTEAを加え、室温で攪拌した。反応液に水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製してI-al81を得た。

工程 2)

化合物 I - a 1 8 1 のジクロロメタン溶液に冷却下でTEAを加え、室温で攪 20 拌した。減圧濃縮してジクロロメタンで抽出し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、濾過した。濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して目的化合物を得た。

実施例182の化合物は、 $Boc-Ala(\beta-4-pyridyl)-OH$ 25 を用いて実施例181と同じ方法で反応させて得た。

スキーム17に従って合成された化合物の各実施例を、表D-181及びD-182に示す。

表D-181

実施例181

Ala(β -4-pyridyl)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂

N-Me-Val-N-Me- Tyr(3-tBu)-NH ₂ (g)	Boc-Ala(beta-4- pyridyl)-OH (g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.680	0.500	0.960	0.52	15.00	24	MC:MeOH =30:1	I-a181	0.800
Reaction2								
Compound I-a181(g)	TFA	MC (ml)	Reaction time (hr)	Column soi.		Amount (g)	HPLC min	
0.800	4.00	20.00	3	MC:MeOH =20:1		0.450	13.30	

ESI-MS(M+1):512

1H-NMR(CDC₃): (two rotamers) δ 0.40, 0.72 and 0.82, 0.96(6H, d, J=6.3-6.7Hz), 1.37 and 1.42(9H, s), 2.05-2.30(1H, m), 2.51, 2.89 and 2.94, 2.96(6H, s), 2.59-3.30(4H, m), 4.65-5.05(1H, m), 5.30(1H, s), 5.45-5.05(1H, m), 6.30-6.45(1H, m), 6.60-7.05(2H, m), 7.10-7.20(2H, m), 8.20-8.25(2H, m)

表D-182

実施例182

Phe(4-CN)-N-Me-Val-N-Me-Tyr(3-tBu)-NH₂

Reaction1						•		
N-Me-Val-N-Me- Tyr(3-tBu)-NH _e (g)	Boc-Phe(4-CN)- CH(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amoun (g)
0.620	0.500	0.660	0.48	15.00	24	MCMeOH =30:1	I-a182	0.900
Reaction2			*	·				·
Compound I-a182(g)	TFA	MC (mi)	Reaction time (hr)	Column sol.	Amount (g)		HPLC min	
0.900	4.00	20.00	4	MCM±OH =20:1	0.520		16.82	

ESI-MS(M+1):536

1H-NMR(CDCl₃): (two rotarrers) & 0.48, 0.76 and 0.85, 0.94(6H, d, J=6.3-6.8Hz), 1.37 and 1.43(9H, s), 2.20-2.70(1H, m), 2.55, 2.85 and 2.95, 3.05(6H, s), 3.15-3.40(2H, m), 3.65-3.85(2H, m), 4.75-5.20(2H, m), 5.40-5.50(1H, m), 6.40-6.65(1H, m), 6.75-6.85(1H, m), 6.95-7.15(1H, m), 7.25-7.35(2H, m), 7.58-7.63(2H, m)

O 00/447/0 PCT/JP00/00444

スキーム18に、実施例183の合成スキームを示す。

スキーム18:実施例183の合成スキーム

5 N-Me-Val-N-Me-Tyr

I-a183

実施例183

 $(3-tBu)-NH_2$

スキーム18における合成方法を以下に示す。

10 工程1)

15

20

工程 2)

化合物 I-a 1 8 3 のメタノール溶液に P d (O H) $_2$ を加え、水素雰囲気下で室温で攪拌した。 P d (O H) $_2$ を濾去した後、、濾液を減圧濃縮した残さをカラムクロマトグラフィ(シリカゲル)で精製して目的化合物を得た。

スキーム18に従って合成された化合物の実施例を表D-183に示す。

表D-183

実施例183

 $Trp-N-Me-Val-N-Me-Tyr(3-tBu)-NH_2$

Z-Trp-OH(g)	CMPI (g)	TEA (ml)	THF (ml)	Reaction time (hr)	Column sol.	Product	Amount (g)
0.700	0.660	0.48	15.00	24	MCMeOH =30:1	I-a183	0.700
			·	·	·		
Pd(OH) ₂	MeOH (ml)	Reaction time (hr)	Column sol.	oi. Amount HPLC min		·· -	
0.100	20.00	24	MC:MeOH =20:1	0.380 18.14		14	
	0.700 Pd(OH) ₂	2-1rp-OH(g) (g) 0.700 0.660 Pd(OH) ₂ MeOH (mi)	2-1rp-OH(g) (g) (ml) 0.700 0.660 0.48 Pti(OH) ₂ MeOH Reaction time (hr)	2-1rp-OH(g) (g) (ml) (ml) 0.700	2-1rp-OH(g) (g) (ml) (ml) (hr) 0.700	2-1rp-OH(g) (g) (ml) (ml) (hr) Column sol. 0.700 0.660 0.48 15.00 24 MCMcOH = 30:1 Pd(OH) ₂ MeOH Reaction (ml) time (hr) Column sol. (g) 0.100 20.00 24 MCMcOH 0.380	2-1rp-OH(g) (g) (ml) (ml) (hr) Column sol. Product 0.700 0.660 0.48 15.00 24 MCMeOH =30:1 I-a183 Pd(OH) ₂ MeOH Reaction time (hr) Column sol. (g) mi

1H-NMR(CDCl₃): (two rotamers) δ 0.39, 0.73 and 0.79, 0.93(6H, d, J=6.3-6.7Hz), 1.33 and 1.39(9H, s), 2.15-2.35(2H, m), 2.37, 2.75 and 2.95, 3.05(6H, s), 2.60-3.15(2H, m), 3.25-3.40(2H, m), 3.80-4.05(1H, m), 4.70-5.10(1H, m), 6.30-6.55(1H, m), 6.65-7.20(5H, m), 7.40-7.60(2H, m)

PC1/JP00/004

試験例1

モチリン受容体結合試験

モチリン受容体結合試験は次の方法で行った [Vantrappen et al., Regul. Peptides, 15, 143 (1986)]。屠殺したウサギより十二指腸を摘出し、粘膜を剥離後、 $50\,\mathrm{mM}$ Tris溶液中でホモジナイズして蛋白液とした。蛋白液を 125 Iモチリン $25\,\mathrm{pM}$ と共にインキュベートした後に、蛋白に結合した放射活性を測定した。インキュベート液中に何も添加しなかった際の放射活性と、大過剰のモチリン($10^{-7}\mathrm{M}$)を添加した 際の放射活性の差を特異的結合とした。薬物の活性は特異的結合を50%に減少させる濃度(IC_{50} 、nM)で表した。結果を表 $F-1\sim F-3$ に示す。

試験例2

ウサギ摘出十二指腸縦走筋標本の収縮に対する作用

15 モチリンによるウサギ摘出十二指腸縦走筋標本の収縮に対する作用を次の方法で調べた。屠殺したウサギより摘出した十二指腸標本(5×15mm)を、28℃に加温したクレブス(Krebs)溶液を満たした恒温槽(organ bath 10ml)中に縦走筋方向に懸垂した。混合ガス(95%O₂、5%CO₂)をKrebs溶液に連続的に通気し、十二指腸標本の収縮は、アイソトニ20ックトランスデューサー(isotonic transducer、ME-3407、ME Commercial、Tokyo、Japan)を介して等張性(負荷1g)に記録した。収縮の程度はアセチルコリン10⁻⁴Mの濃度による収縮を100%として、それに対する割合で示した。薬物の活性は、恒温槽内に添加したモチリンによる濃度依存的収縮に対する影響を、pA₂値として計算した。結果を表F-1~F-3に示す。

表F-1

実施例番号	モチリン受容体結合試験	収縮抑制試験
	IC_{50} (nM)	pA ₂
1	0.89	8. 8
2	0.71	8. 7
3	1. 5	8. 7
4	1. 6	8. 3
8	0.35	9. 5
9	1. 0	9. 0
1 2	0. 52	9. 3
1 4	0.70	9. 3
1 5	0.82	8. 5
1 6	0.41	9. 4
1 7	0.70	9. 1
1 9	2. 2	8. 7
2 1	0.27	9.8
2 2	0.52	8. 3
2 3	0.67	9. 3
2 4	0. 94	9. 1

表F-2

実施例番号	モチリン受容体結合試験	177 公立七年出土 15七年本
	I C ₅₀ (n M)	収縮抑制試験
2 6	7. 3	p A 2
2 7	1. 2	8. 0
2 8	0. 52	8. 6
2 9	0. 45	9. 0
3 0	0. 43	8. 7
3 1		9. 1
3 2		9. 5
3 3	0.76	9. 1
3 4	1. 7	8. 4
	1. 5	9. 4
3 5	1. 7	8.8
3 6	2. 3	8.8
3 7	0.60	8.8
3 8	3. 0	8. 2
3 9	2. 0	8. 7
4 0	1. 6	8. 6
4 1	3. 1	8. 4
4 2	1. 2	8. 3
4 3	1. 9	8. 5
4 4	3. 6	8. 5
6 3	0.62	8. 4
6 4	1. 0	9. 0
101	0. 24	8. 9
102	0.31	9. 0
1 0 3	0.86	8. 9

表F-3

		
実施例番号	モチリン受容体結合試験	収縮抑制試験
	IC_{50} (nM)	pA ₂
104	0.32	9. 1
1 0 5	0.31	9. 8
1 0 6	0.62	9.8
107	0.39	8. 7
108	0.43	9. 0
109	0.17	8. 7
1 1 9	0.40	9. 4
1 2 0	0. 27	9. 0
1 2 1	0.41	8. 9
1 2 2	0.47	9. 0
1 2 3	0.70	9. 1
1 2 4	0.98	9. 1
1 2 5	1. 0	9. 0
1 2 6	1. 9	9. 2
1 2 7	1. 7	8. 7
1 2 8	1. 5	8. 7
1 2 9	4. 0	8. 5
1 3 2	0.86	8. 9

表F-4

121/2 TELST E	T ==:-	
実施例番号	モチリン受容体結合試験	収縮抑制試験
	IC_{50} (nM)	pA_2
1 3 3	1. 1	8. 2
1 3 4	1. 5	8.3
1 3 5	0.70	8. 5
1 3 6	6.8	7.6
1 4 0	4. 0	8. 2
1 4 2	0.62	8. 6
1 4 4	2. 0	8. 5
1 4 8	4. 1	8. 4
151	0.36	8. 2
155	2. 5	8. 1
157	6. 1	8. 1
163	2. 4	7.8
165	2. 8	
166	1. 8	8. 2
182		9.8
	2. 3	8. 5
183	0.57	9. 5

産業上の利用の可能性

本発明の化合物は、モチリンレセプターアンタゴニスト作用等を有し、過敏性 腸症候群治療薬などの医薬として有用である。

請求の範囲

1. 一般式(1)

(式中、Суは一般式(2)

$$\begin{array}{cccc}
R_3 & R_1 \\
R_4 & R_5
\end{array}$$
(2)

5

10

15

20

で示される基、置換基を有していてもよい複素環、炭素数 $3\sim7$ のシクロアルキル基、またはフェニル基を表す。 R_1 、 R_2 、 R_3 、 R_4 、 R_5 は水素原子、ハロゲン原子、水酸基、アミノ基、トリフルオロメチル基、または、ニトリル基を表し、 R_1 、 R_2 、 R_3 、 R_4 、 R_5 のうち少なくとも一つは、ハロゲン原子、トリフルオロメチル基、ニトリル基のうちのいずれかである。

 R_6 は、水素原子、置換基を有していてもよい炭素数 $1 \sim 3$ の直鎖もしくは分枝鎖状のアルキル基、アミノ基、または、水酸基を表す。

 R_7 は、水素原子、置換基を有していてもよい炭素数 $1 \sim 3$ の直鎖もしくは分枝鎖状のアルキル基、置換基を有していてもよいアミノ基、または、水酸基を表す。

R。は、水素原子、メチル基、または、エチル基を表す。

R₉は、置換基を有していてもよい炭素数 1~6の直鎖もしくは分枝鎖状のアルキル基、置換基を有していてもよい炭素数 2~6の直鎖もしくは分枝鎖状のアルケニル基、置換基を有していてもよい炭素数 2~6の直鎖もしくは分枝鎖状のアルキニル基、炭素数 3~7のシクロアルキル基、または、置換基を有していてもよいフェニル基を表す。

 R_{20} は、水素原子、または、炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基を表す。また、 R_{9} と R_{20} は一緒になって炭素数 $3\sim7$ のシクロアルキル基を形成してもよい。

 R_{10} は、水素原子、または、炭素数 $1 \sim 3$ の直鎖もしくは分枝鎖状のアルキ

ル基を表す。

 R_{11} は、水素原子、置換基を有していてもよい炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基、-CO-N(R_{14}) R_{15} 、カルボキシル基、または、置換基を有していてもよい複素環を表す。

 R_{12} は、水酸基、または、 $-OR_{16}$ を表す。

 R_{13} は、水素原子、炭素数 $1\sim6$ の直鎖もしくは分枝鎖状のアルキル基、炭素数 $2\sim6$ の直鎖もしくは分枝鎖状のアルケニル基、炭素数 $2\sim6$ の直鎖もしくは分枝鎖状のアルキニル基、または一般式 (3)

$$R_{17}$$
 R_{18}
 R_{19}

10 で示される基を表す。

 R_{14} および R_{15} は、同一または異なって、水素原子、置換基を有していてもよい炭素数 $1\sim 4$ の直鎖もしくは分枝鎖状のアルキル基、炭素数 $3\sim 7$ のシクロアルキル基、炭素数 $1\sim 4$ の直鎖もしくは分枝鎖状のアルキルオキシ基、炭素数 $1\sim 4$ の直鎖もしくは分枝鎖状のアルキルスルホニル基、または複素環を表し、

15 または $-N(R_{14})R_{15}$ として、置換基を有していてもよい $3\sim7$ 負環のアミンを表す。

 R_{16} は、炭素数 $1\sim4$ の直鎖状のアルキル基を表す。

R₁₇は、水素原子またはメチル基を表す。

 R_{18} および R_{19} は、一緒になって、炭素数 $3\sim7$ のシクロアルキル基もしく 20 はシクロアルケニル基を表す。

Xは、カルボニル基、または、メチレン基を表す。

Yは、カルボニル基、または、メチレン基を表す。

但し、C yが3-インドリル基のときは、(i) R_{11} は置換基を有していてもよい複素環であるか、または、(i i) R_6 は水素原子であり; R_7 はアミノ 基であり; R_8 はメチル基であり; R_9 はイソプロピル基であり; R_{20} は水素原子であり; R_{10} はメチル基であり; R_{11} はカルバモイル基であり; R_{12} はヒドロキシル基であり; R_{13} はtert-ブチル基であり;Xはカルボニル基であ

WO 00/44770

り;Yはカルボニル基である。C Yがシクロヘキシル基またはフェニル基のときは、 R_{11} は置換基を有していてもよい複素環である。)

PCT/JP00/00444

で示される化合物、その水和物、またはその薬学的に許容しうる塩。

- 2. 一般式(1)において、
- 5 Cyが一般式(2)で示される基である請求項1記載の化合物、その水和物、またはその薬学的に許容しうる塩。
 - 3. 一般式(1)において、

C yが一般式(2)で示される基であり、ここで、 R_1 、 R_2 、 R_3 、 R_4 、 R_5 が、これらのうち少なくとも一つはハロゲン原子であって、かつ、その他は水素原子

- 10 または水酸基である、請求項1記載の化合物、その水和物、またはその薬学的に許容しうる塩。
 - 4. 一般式(1)において、

C yが一般式(2)で示される基であり、ここで、 R_3 がハロゲン原子であるか、または、 R_2 および R_3 が同一のハロゲン原子である、請求項1記載の化合物、

- 15 その水和物、またはその薬学的に許容しうる塩。
 - 5. 一般式(1)において、

C yが一般式(2)で示される基であり、ここで、 R_3 がハロゲン原子であって、かつ、 R_1 、 R_2 、 R_4 、 R_5 がいずれも水素原子であるか、あるいは、 R_2 および R_3 が同一のハロゲン原子であって、かつ、 R_1 、 R_4 、 R_5 がいずれも水素原子

20 である、請求項1記載の化合物、その水和物、またはその薬学的に許容しうる塩。6. 一般式(1)において、

C yが一般式(2)で示される基であり、ここで、 R_1 、 R_2 、 R_3 、 R_4 、 R_5 は、これらのうち少なくとも一つがトリフルオロメチル基であって、かつ、その他が水素原子、ハロゲン原子、または水酸基である、請求項1記載の化合物、その水和物、またはその薬学的に許容しうる塩。

7. 一般式(1)において、

25

C yが一般式(2)で示される基であり、ここで、 R_1 、 R_2 、 R_3 、 R_4 、 R_5 は、これらうち少なくとも一つがニトリル基であって、かつ、その他が水素原子、ハロゲン原子または水酸基である、請求項1記載の化合物、その水和物、またはそ

の薬学的に許容しうる塩。

8. 一般式(1)において、

C y が一般式(2)で示される基であり、ここで、 R_3 がトリフルオロメチル基である請求項1記載の化合物、その水和物、またはその薬学的に許容しうる塩。

5 9. 一般式(1)において、

C y が一般式(2)で示される基であり、ここで、R $_3$ がニトリル基である請求項1記載の化合物、その水和物、またはその薬学的に許容しうる塩。

10. 一般式(1)において、

Cyが、置換基を有していてもよい複素環である請求項1記載の化合物、その水 10 和物、またはその薬学的に許容しうる塩。但し、Cyが3-インドリル基のときは、(i) R_{11} は置換基を有していてもよい複素環であるか、または、(ii) R_{6} は水素原子であり; R_{7} はアミノ基であり; R_{8} はメチル基であり; R_{9} はイソプロピル基であり; R_{20} は水素原子であり; R_{10} はメチル基、 R_{11} はカルバモイル基であり; R_{12} はヒドロキシル基であり; R_{13} は tert -ブチル 基であり;Xはカルボニル基であり;Xはカルボニル基である。

11. 一般式(1)において、

C yが、炭素数 $3\sim7$ のシクロアルキル基である請求項 1 記載の化合物、その水和物、またはその薬学的に許容しうる塩。但し、C y がシクロヘキシル基のときは、 R_{11} は置換基を有していてもよい複素環である。

20 12. 一般式(1)において、

C yがフェニル基であり、 R_{11} が置換基を有していてもよい複素環である、請求項1記載の化合物、その水和物、またはその薬学的に許容しうる塩。

13. 一般式(1)において、

 R_6 が、水素原子またはメチル基である請求項 $1\sim12$ のいずれか1項に記載の 25 化合物、その水和物、またはその薬学的に許容しうる塩。

14. 一般式(1)において、

 R_7 が、水素原子または置換基を有していてもよいアミノ基である請求項 $1\sim 1$ 3のいずれか1項に記載の化合物、その水和物、またはその薬学的に許容しうる塩。

15. 一般式(1)において、

 R_8 が、水素原子またはメチル基である請求項 $1\sim14$ のいずれか1項に記載の化合物、その水和物、またはその薬学的に許容しうる塩。

- 16. 一般式(1)において、
- 5 R₉が、メチル基、イソプロピル基、イソブチル基、sec‐ブチル基、ter t‐ブチル基、3‐ペンチル基、ネオペンチル基、シクロヘキシル基、フェニル 基、ベンジル基、パラ‐ヒドロキシベンジル基、シクロヘキシルメチル基または パラ‐フルオロベンジル基である請求項1~15のいずれか1項に記載の化合物、 その水和物、またはその薬学的に許容しうる塩。
- 10 17. 一般式(1)において、

 R_{20} が、水素原子またはメチル基である請求項 $1\sim16$ のいずれか1項に記載の化合物、その水和物、またはその薬学的に許容しうる塩。

18. 一般式(1)において、

 R_{10} が、水素原子またはメチル基である請求項 $1\sim17$ のいずれか1項に記載の化合物、その水和物、またはその薬学的に許容しうる塩。

R」が、メチル基、ヒドロキシメチル基、カルバモイルメチル基、メタンスル

19. 一般式(1)において、

15

ホニルメチル基、ウレイドメチル基、スルファモイルアミノメチル基、メタンスルホニルアミノメチル基、カルバモイル基、エチルカルバモイル基、nープロピルカルバモイル基、イソプロピルカルバモイル基、シクロプロピルカルバモイル基、tertーブチルカルバモイル基、2ーピリジルカルバモイル基、メトキシカルバモイル基、2ーチアゾリル基、1,3,4ーオキサジアゾールー2ーイル基、1,2,4ーオキサジアゾールー5ーイル基、1,3,4ートリアゾールー2ーイル基、6ーメチルー4ーピリミジノンー2ーイル基、メチルカルバモイル

25 基、メタンスルホニルメチルカルバモイル基、メトキシメチルカルバモイル基、 1ーモルホニリルカルボニル基、4ーカルボキシメチルー1ーピペラジンカルボ ニル基、4ーエトキシカルボニルメチルー1ーピペラジンカルボニル基、または、 4ーメチルスルホニルー1ーピペラジンカルボニル基である請求項1~18のいずれか1項に記載の化合物、その水和物、またはその薬学的に許容しうる塩。 20. 一般式(1)において、

 R_{12} が、水酸基である請求項 $1\sim19$ のいずれか1項に記載の化合物、その水和物、またはその薬学的に許容しうる塩。

- 21. 一般式(1)において、
- 5 R_{13} が、イソプロピル基、 $tert-ブチル基(tBu)、1, 1-ジメチルプロピル基、または、1, 1-ジメチル-2-プロペニル基、である請求項<math>1\sim20$ のいずれか1項に記載の化合物、その水和物、またはその薬学的に許容しうる塩。
 - 22. 一般式(1)において、
- 10 C yが一般式(2)で示される基であり、ここで、 R_1 、 R_2 、 R_3 、 R_4 、 R_5 は、これらのうち少なくとも一つがハロゲン原子であって、かつ、その他が水素原子または水酸基であり; R_6 が、水素原子またはメチル基であり; R_7 が、水素原子または置換基を有していてもよいアミノ基であり; R_8 が、水素原子またはメチル基であり; R_8 が、水素原子またはメチル基であり; R_9 が、メチル基、イソプロピル基、イソブチル基、S e C ブ
- 15 チル基、 $tert-ブチル基、3-ペンチル基、ネオペンチル基、シクロヘキシル基、フェニル基、ベンジル基、パラーヒドロキシベンジル基、パラーフルオロベンジル基、または、シクロヘキシルメチル基であり; <math>R_{20}$ が、水素原子であり; R_{10} が、水素原子またはメチル基であり; R_{11} が、メチル基、ヒドロキシメチル基、カルバモイルメチル基、メタンスルホニルメチル基、ウレイドメチル
- 20 基、スルファモイルアミノメチル基、メタンスルホニルアミノメチル基、カルバモイル基、メチルカルバモイル基、エチルカルバモイル基、n-プロピルカルバモイル基、イソプロピルカルバモイル基、シクロプロピルカルバモイル基、tert-ブチルカルバモイル基、2-ピリジルカルバモイル基、メタンスルホニルメチルカルバモイル基、メトキシカルバモイル
- 基、1ーモルホリニルカルボニル基、4ーカルボキシメチルー1ーピペラジンカルボニル基、4ーエトキシカルボニルメチルー1ーピペラジンカルボニル基、4ーメチルスルホニルー1ーピペラジンカルボニル基、2ーチアゾリル基、1,3,4ーオキサジアゾールー2ーイル基、1,2,4ーオキサジアゾールー5ーイル基、1,3,4ートリアゾールー2ーイル基、または、6ーメチルー4ーピリミ

ジノンー 2 ーイル基であり; R_{12} が、水酸基であり; R_{13} が、イソプロピル基、t e r t ーブチル基(t B u)、1, 1 ージメチルプロピル基、または、1, 1 ージメチルー 2 ープロペニル基である請求項1 に記載の化合物、C の水和物、またはその薬学的に許容しうる塩。

23. Phe (4-F) - N - Me - Val - N - Me - Tyr (3-tB)5 u) $-NH_2$. Phe (4-C1) -N-Me-Val-N-Me-Tyr (3 $- t B u) - NH_2$, Phe (3, $4 - F_2$) - N - M e - V a l - N - M e -Tyr (3-tBu) $-NH_2$. Phe (3-F) -N-Me-Val-N-Me-Tyr (3-tBu) -NH₂. Phe (4-F) -N-Me-Val-N 10 フルオロフェニル)プロピオニル)-N-メチルアミノ)-3-メチル酪酸 2 - (3-tertブチル-4-ヒドロキシフェニル)-1-(2-ピリジルカル バモイル) エチルアミド、N-(2-(2-(2-アミノ-3-(4-フルオ ロフェニル)プロピオニル)-N-メチルアミノ)-3-メチルーブチリルアミ ノ) -3-(3-t Bu-4-ヒドロキシフェニル) プロピル) 尿素、<math>N-(2)15 - (2-(2-アミノ-3-(4-フルオロフェニルプロパノイル-N-メチル アミノ) -3-メチル) ブチリルアミノ) -3-(3-tertブチル-4-ヒ ドロキシフェニル) プロピル) スルファミド、N-[2-(3-tertブチル -4-ヒドロキシフェニル)-1-(メタンスルホニルアミノメチル)エチル] -2-[N-(4-フルオロフェニルアラニノイル) メチルアミノ] -3-メチ20 ルブタナミド、2-((2-アミノ-3-(4-フルオロフェニル)プロピオニ ル) -N-メチルアミノ) -3-メチル酪酸 2-(3-t-ブチル-4-ヒド ロキシフェニル) -1-カルバミドメチルエチルアミド、2-((2-アミノ-3-(4-フルオロフェニル)プロピオニル)-N-メチルアミノ)-3-メチ ル酪酸 2-(3-t-ブチル-4-ヒドロキシフェニル)-1-メタンスルホ 25 ニルメチルエチルアミド、2-(2-((2-アミノ-3-(4-フルオロフェ ニル)プロピオニル) - N - メチルアミノ) - 3 - メチルーブチリルアミノ) -3-(3-tBu-4-ヒドロキシフェニル) プロパノール、 <math>2-(1-(2-tBu))((2-アミノ-3-(4-フルオロフェニル)プロピオニル)-N-メチルア

= 2 - (3 - 1) - 2 - (3 - 1) - 2 - (3 - 1) - 2 - (3 - 1) - 2 - (3 - 1) - 2 - (1) - (1) - 2 - (1) - (1ロキシフェニル) エチル) -6-メチル-4-ピリミジノン、2-((2-アミ ノー3-(4-フルオロフェニル)プロピオニル)-N-メチルアミノ)-3-メチル酪酸 $2-(3-t-\vec{j}$ チルー4ーヒドロキシフェニル) -1-(1, 3,4ーオキサジアゾールー2ーイル)エチルアミド、2-((2-アミノ-3-5 (4-フルオロフェニル)プロピオニル)-N-メチルアミノ)-3-メチル酪 酸 2-(3-t-7)チルー4-ヒドロキシフェニル)-1-(1, 2, 4-)オ キサジアゾールー5ーイル) エチルアミド、2-((2-アミノー3-(4-フ ルオロフェニル) プロピオニル) -N-メチルアミノ) -3-メチル酪酸 2-(3-tertプチル-4-ヒドロキシフェニル) -1- (チアゾール-2-イ 10 ル) エチルアミド、2-((2-アミノ-3-(4-フルオロフェニル) プロピ オニル) -N-メチルアミノ) -3-メチル酪酸 2-(3-t-ブチル-4-ヒドロキシフェニル) -1-(1,3,4-トリアゾール-2-イル) エチルア \geq F. Tyr (2-F) -N-Me-Val-N-Me-Tyr (3-tB u) $-NH_2$, Tyr (3-F) -N-Me-Val-N-Me-Tyr (3 15 - t B u) -NH $_2$. Phe (4-F) -N-Me-Val-Tyr (3-t B u) $-NH_2$, N-Me-Phe (4-F) -N-Me-Val-Tyr (3 $t B u) - NH_2$, N-E t-Phe (4-F) - N-Me-Val-Tyr $(3-t Bu) - NH_2$. Phe (4-F) - N-Me-Val-Tyr (3 -tBu)-NHMe, N-Me-Phe (4-F)-N-Me-Val-Ty 20 r (3-tBu) -NHMe, N-Et-Phe (4-F) -N-Me-Val -Tyr (3-tBu) -NHMe, N-Me-Phe (4-F) -N-Me-PheVal-N-Me-Tyr (3-tBu) $-NH_2$, N-Et-Phe (4-F) $-N-Me-Val-N-Me-Tyr (3-tBu) - NH_2$, Phe (4-F) - N - Me - Val - N - Me - Tyr (3 - tBu) - NHMe25 N-Me-Phe (4-F) -N-Me-Val-N-Me-Tyr (3-tB u) -NHMe. N-Et-Phe (4-F) -N-Me-Val-N-Me-Tyr (3-tBu) -NHMe, Phe (4-F) -N-Me-Val-N- $E t - T y r (3 - t B u) - N H_2$, N - M e - P h e (4 - F) - N - M e

-Val-N-Et-Tyr (3-tBu) $-NH_2$, N-Et-Phe (4 -F) -N-Me-Val-N-Et-Tyr (3-tBu) - NH₂, Phe (4-F) -N-Me-Val-N-Et-Tyr (3-tBu) -NHMeN-Me-Phe (4-F) -N-Me-Val-N-Et-Tyr (3-t Bu) -NHMe, N-Et-Phe (4-F) -N-Me-Val-N-E5 t-Tyr (3-tBu) -NHMe. Phe (4-F) -N-Me-Val-Tyr (3-tBu) -NHtBu, Phe (4-F) -N-Me-Val-N -Me-Tyr (3-tBu) $-NHCH_2SO_2CH_3$, Phe (4-F) -N-Me-Val-Tyr (3-tBu) -NHEt, N-Me-Phe (4-F) -N-Me-Val-Tyr (3-tBu) -NHEt, N-Et-Ph10 e (4-F) -N-Me-Val-Tyr (3-tBu) -NHEt, Phe (4-F) -N-Me-Val-Tyr (3-tBu) -NHCH₂OH, N-Me-Phe (4-F) -N-Me-Val-Tyr (3-tBu) - NHC H_2OH , N-Et-Phe(4-F)-N-Me-Val-Tyr(3-tB)u) - NHCH₂OH, Phe (4-F) -N-Me-Val-N-Me-T 15 yr (3-tBu) - NHEt, N-Me-Phe (4-F) -N-Me-V al-N-Me-Tyr (3-tBu) - NHEt, N-Et-Phe (4-F) -N-Me-Val-N-Me-Tyr (3-tBu) - NHEt, Ph e (4-F) -N-Me-Val-N-Me-Tyr (3-tBu) -NHCH $_{2}$ OH. N-Me-Phe (4-F) -N-Me-Val-N-Me-Tyr 20 (3-tBu) - NHCH₂OH, N-Et-Phe (4-F) -N-Me-Val-N-Me-Tyr (3-tBu) - NHCH₂OH, Phe (4-F) -N-Me-Val-N-Et-Tyr (3-tBu) -NHEt, N-Me-Phe(4-F)-N-Me-Val-N-Et-Tyr(3-tBu)- NHE t. N-E t-Phe (4-F) -N-Me-Val- N-E t-T 25 yr (3-tBu) - NHEt, Phe (4-F) -N-Me-Val-N- $Et-Tyr(3-tBu)-NHCH_2OH, N-Me-Phe(4-F)-$ N-Me-Val-N-Et-Tyr (3-tBu) - NHCH₂OH, N-E t - P h e (4 - F) - N - M e - V a l - N - E t - T y r (3 - t B)

PCT/JP00/00444

u) - NHCH₂OH、Phe (4-F) -N-Me-Val-N-Me-T yr (3-t Bu) -NHcPr、およびPhe (4-F) -N-Me-Val-Tyr (3-t Bu) -NHnPr Phe (4-F) -N-Me-Val-Tyr (3-t Bu) -NHiPrからなる化合物群から選択される請求項1記載の化合物、その水和物、またはその薬学的に許容しうる塩。

- 24. 請求項 $1\sim23$ のいずれか1項に記載の化合物を有効成分として含有する医薬。
- 25. 請求項1~23のいずれか1項に記載の化合物を含有するモチリンレセプターアンタゴニスト。
- 10 26. 請求項1~23のいずれか1項に記載の化合物を有効成分として含有する消化管運動抑制剤。
 - 27. 請求項1~23のいずれか1項に記載の化合物を有効成分として含有する高モチリン血症治療剤。

28. 一般式(4)

$$\begin{array}{c|c}
Cy & R_6 \\
R_7 & R_8 \\
X & N & N \\
R_{20} & R_9 & R_{10}
\end{array}$$

$$\begin{array}{c}
R_{12} \\
R_{13} \\
R_{13}
\end{array}$$
(4)

15

20

25

5

(式中、Cy、 R_6 、 R_8 、 R_9 、 R_{20} 、 R_{10} 、 R_{12} 、 R_{13} 、XおよびYは、請求項1におけると同じ意味を表す。

 R_7 、は、水素原子、保護された置換基を有していてもよい炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基、保護された置換基を有していてもよいアミノ基、または、保護された水酸基を表す。

 R_{11} "は、水素原子、置換基を有していてもよい炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基、-CO-N(R_{14}) R_{15} (ここで、 R_{14} 、 R_{15} は請求項 1 におけると同じ意味を表す。)、カルボキシル基、保護されたアミノ基を有している炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基、または、置換基を有していてもよい複素環を表す。)

で示される化合物、その水和物、またはその薬学的に許容しうる塩。

29. 一般式 (5)

$$\begin{array}{c|c}
Cy & R_6 & R_8 & R_{12} \\
R_7" & X & N & R_{11} & R_{13}
\end{array}$$

$$\begin{array}{c|c}
R_{12} & R_{13} & R_{13} & R_{14} & R_{1$$

(式中、Cy、 R_6 、 R_8 、 R_9 、 R_{20} 、 R_{10} 、 R_{12} 、 R_{13} 、XおよびYは、請求項1におけると同じ意味を表す。

 R_7 "は、水素原子、保護されていてもよい置換基を有していてもよい炭素数 $1 \sim 3$ の直鎖もしくは分枝鎖状のアルキル基、保護されていてもよい置換基を有していてもよいアミノ基、または、保護されていてもよい水酸基を表す。

 R_{11} は、水素原子、保護された置換基を有していてもよい炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基、-CO-N (R_{14}) R_{15} (ここで、 R_{14} 、 R_{15} は請求項 1 におけると同じ意味を表す。)、カルボキシル基、または、置換基を有していてもよい複素環を表す。)

で示される化合物、その水和物、またはその薬学的に許容しうる塩。

30. 一般式(6)

5

10

20

$$\begin{array}{c|c}
R_{12} \\
R_{13} \\
R_{20} R_{9} R_{10}
\end{array}$$
(6)

(式中、 R_8 、 R_9 、 R_{20} 、 R_{10} 、 R_{12} 、 R_{13} 、およびYは、請求項1におけ ると同じ意味を表す。

P,は、水素原子、またはアミンの保護基を表す。

 R_{11} 、、、は、水素原子、置換基を有していてもよい炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基、-CO-N(R_{14}) R_{15} (ここで、 R_{14} 、 R_{15} は請求項 1 におけると同じ意味を表す。)、カルボキシル基、保護されたアミノ基を有している炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基、または、置換基を有していてもよい複素環を表す。)

で示される化合物、その水和物、またはその薬学的に許容しうる塩。

31. 一般式 (7)

$$\begin{array}{c|c}
Cy & R_8 \\
R_7 & X^{\circ} & P_2 \\
R_{20} & R_0
\end{array} (7)$$

(式中、 C y 、 R_6 、 R_8 、 R_9 、 R_2 0、およびXは、請求項1におけると同じ意味を表す。

 R_7 "は、水素原子、保護されていてもよい置換基を有していてもよい炭素数 $1\sim3$ の直鎖もしくは分枝鎖状のアルキル基、保護されていてもよい置換基を有していてもよいアミノ基、または、保護されていてもよい水酸基を表す。

P₂は、保護されていてもよいカルボキシル基、ホルミル基、または、脱離基のついたメチル基を表す。)で示される化合物、その水和物、またはその薬学的に許容しうる塩。

32. 一般式(8)

$$P_{3}$$
, N
 R_{11}
 R_{13}
 R_{10}
(8)

10

15

5

(式中、 R_{10} 、 R_{13} は請求項1におけると同じ意味を表す。

 P_3 は、水素原子、またはアミンの保護基を表す。

 R_{11} / / / / は、水素原子、置換基を有していてもよい炭素数 $1 \sim 3$ の直鎖もしくは分枝鎖状のアルキル基、-CO-N (R_{14}) R_{15} (ここで、 R_{14} 、 R_{15} は請求項 1 におけると同じ意味を表す。)、カルボキシル基、保護されたアミノ基を有している炭素数 $1 \sim 3$ の直鎖もしくは分枝鎖状のアルキル基、または、置換基を有していてもよい複素環を表す。

 R_{12} は、水酸基、または、 $-OR_{16}$ (ここで、 R_{16} は請求項1におけると同じ意味を表す。)を表す。)

20 で示される化合物、その水和物、またはその薬学的に許容しうる塩。

33. 一般式(9)

$$\begin{array}{c}
Cy & R_6 \\
R_7 & P_4
\end{array} (9)$$

(式中、Су、 R6は請求項1におけると同じ意味を表す。

R₇"は、水素原子、保護されていてもよい置換基を有していてもよい炭素数 1~3の直鎖もしくは分枝鎖状のアルキル基、保護されていてもよい置換基を有していてもよいアミノ基、または、保護されていてもよい水酸基を表す。

 P_4 は、保護されていてもよいカルボキシル基、ホルミル基、または、脱離基のついたメチル基を表す。)

で示される化合物、その水和物、またはその薬学的に許容しうる塩。

34. 一般式(10)

$$P_5 \xrightarrow{N} P_6 P_6 P_9$$
 (10)

5

(式中、 R_8 、 R_9 、 R_2 のは請求項1におけると同じ意味を表す。

 P_5 は、水素原子、または、アミンの保護基を表す。

 P_6 は、保護されていてもよいカルボキシル基、ホルミル基、または、脱離基のついたメチル基を表す。)

10 で示される化合物、その水和物、またはその薬学的に許容しうる塩。

					1
É				A CONTRACTOR OF THE PROPERTY O	
y ,			•		10 mm 1 mm 1 mm 1 mm 1 mm 1 mm 1 mm 1 m
0. s		10 to 10 10 10 10 10 10 10 10 10 10 10 10 10	experience of a second	and the second of the second	ing was
14 11					
			TRANSPORT		a part of the state of the
				. * - *	
√ ₄					1
		•			
15					
i.					
100 - 100 -			and the same and the same and the same of	m and the state of	
			* .*		
16 1			*		
				a	
			100		
And the second					
*					
				*	
			, v. v.		
3			1,000		
3					
er K					
			***	o de la final de l	
mest:					
ise:		*			
1,	· ·				
4					•
: 					•
9		The second section of the second section is the second section of the section of the section			1 - (0.00 00 000)
			•		
				*	
-					4
No.					

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/00444

			/ -	1200/00444
	SIFICATION OF SUBJECT MATTER . Cl ⁷	IP 1/00, A61P 5/00	0, C07K 5/	062, C07K 5/065
According to	o International Patent Classification (IPC) or to both	national classification and I	PC	
B. FIELDS	S SEARCHED			
Int.	229/36	C07K 5/062, C07K	5/065, C0	
	ion searched other than minimum documentation to t			
REGI	ata base consulted during the international search (na STRY (STN), CA (STN), CAPLUS (STN)	me of data base and, where p	practicable, sea	rch terms used)
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where a	appropriate, of the relevant p	assages	Relevant to claim No.
E,X	WO, 00/17231, A1 (Chugai Pharm 30 March, 2000 (30.03.00) (Fa	naceutical Co., L amily: none)	itd.),	1-34
	WO, 99/09053, A1 (Chugai Pharm 25 February, 1999 (25.02.99) & AU, 9886490, A1 & JP, 2000		td.),	1-34
X	JP, 7-188282, A1 (Yoko Suetsun 25 July, 1995 (25.07.95) (Fam	a), mily: none)		1,13-18,20, 24,28-29
['	JP, 6-220088, A1 (Asahi Chemic 09 August, 1994 (09.08.94) (F	Family: none)	Ltd.),	1,13-18,20, 24,28-29
8 8 8 8	EP, 532466, A2 (CIBA GEIGY AG) 17 March, 1993 (17.03.93) & AU, 9222889, A & NO, 9203 & CA, 2077948, A & FI, 9204 & JP, 5-230095, A & HU, 6363 & TW, 213454, A & CZ, 9202 & ZA, 9206938, A & NZ, 2442	3533, A 3035, A 32, T 3802, A3		1-5,13-18, 24,28-29, 32-34
Further d	documents are listed in the continuation of Box C.	See patent family and	nex.	
A" document considered earlier doc date L" document cited to est special rea O" document means P" document than the pr	ategories of cited documents: t defining the general state of the art which is not d to be of particular relevance cument but published on or after the international filing t which may throw doubts on priority claim(s) or which is stablish the publication date of another citation or other ason (as specified) referring to an oral disclosure, use, exhibition or other published prior to the international filing date but later riority date claimed ual completion of the international search	considered novel or can step when the document	conflict with the e or theory under relevance; the cla nnot be considered it is taken alone relevance; the cla ni inventive step where other such dious to a person since same patent far	application but cited to lying the invention aimed invention cannot be d to involve an inventive aimed invention cannot be when the document is occuments, such killed in the art mily
27 Apr	ril, 2000 (27.04.00)	16 May, 2000	(16.05.0) () ()
Japane	ese Patent Office	Authorized officer		
acsimile No.	1	Telephone No.		

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/00444

Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
The compounds of claims 30 to 34 are considered as being intermediates for the compounds of claim 1, but include those which are not novel. Therefore, it cannot be said that the main structural element common to both the intermediates and the final products is novel. Thus, there is no matter common to all of claims 1 to 29, 30, 31, 32, 33, and 34, and a group of inventions of claims 1 to 29 and the invention of claim 30, 31, 32, 33 or 34 are not considered as relating to a group of inventions so linked as to form a single general inventive concept.
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International application No.

PCT/JP00/00444

			P00/00444
C (Continua	ation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant	passages	Relevant to claim No
	& SK, 9202802, A3 & CN, 1089269, A & RU, 2067585, C1 & US, 5643878, A & IL, 103126, A		
х	EP, 111266, A (CIBA GEIGY AG), 20 June, 1984 (20.06.84) & AU, 8321937, A & NO, 8304441, A & DK, 8305559, A & FI, 8304345, A & JP, 59-110661, A & HU, 32550, T & PT, 77761, A & DD, 217807, A & ZA, 8308986, A & US, 4595677, A & ES, 8606394, A & ES, 8702437, A		30,34
х	WO, 97/19908, A1 (NIHON NOHYAKU CO., LTD.), 05 June, 1997 (05.06.97) & AU, 9677105, A1 & JP, 9-208541, A2		31,33-34
х	BUDAVARI, S. et al. "The Merck Index", (1996) MERGING., p.1677	CK & CO.,	32
х	BUDAVARI, S. et al. "The Merck Index", (1996) MERCINC., p.1253	CK & CO.,	33
х	BUDAVARI, S. et al. "The Merck Index", (1996) MERCINC., p.1690	CK & CO.,	34

国際調査報告

国際出願番号 PCT/JP00/00444

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C1' C07K 5/087, A61K 38/06, A61P 1/00, A61P 5/00, C07K 5/062, C07K 5/065, C07C 229/06, C07C 229/36

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1' C07K 5/087, A61K 38/06, C07K 5/062, C07K 5/065, C07C 229/06, C07C 229/36

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

REGISTRY (STN), CA (STN), CAPLUS (STN)

	ると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
E, X	WO,00/17231,A1 (中外製薬株式会社) 30.3月.2000(30.03.00) (ファミリーなし)	1-34
P, X	WO, 99/09053, A1 (中外製薬株式会社) 25. 2月. 1999(25. 02. 99) & AU, 9886490, A1 & JP, 2000-044595, A2	1-34
X	JP, 7-188282, A1(末綱陽子)25.7月.1995 (25.07.95) (ファミリーなし)	1, 13-18, 20, 24, 28-29
ļ l		.

🗵 C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 27.04.00 国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 郵便番号100-8915		国際調査報告の発送日 1 6.05.00
		特許庁審査官 (権限のある職員) 高堀 栄二 4B 9281
東京都千代田区霞海	が関三丁目4番3号	電話番号 03-3581-1101 内線 3448

第 I 欄 請求の範囲の一部の調査ができないときの意見 (第 1 ページの 2 の続き)
法第8条第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。
1. 請求の範囲は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
2. 請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
3.
第Ⅱ欄 発明の単一性が欠如しているときの意見 (第1ページの3の続き)
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
請求項30-34に記載されている化合物は、請求項1に記載された化合物の中間体であ
ると認められるが、請求項30-34に記載されている化合物は、いずれも新規ではない化 合物を含むものであるから、中間体及び最終生成物に共通する主要な構造部分が新規である
とはいえない。 したがって、請求の範囲1-29、30、31、32、33及び34の全てに共通の事項
はなく、請求の範囲1-29、30、31、32、33及び34に記載された発明が単一の
一般的発明概念を形成するように連関している一群の発明であるとは認められない。
1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。
2.
加調査手数料の納付を求めなかった。
3. <u></u> 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載
されている発明に係る次の請求の範囲について作成した。
泊 fin 部本工製劇 み田鉾の中ゥイア用子でみ来
追加調査手数料の異議の申立てに関する注意
※ 追加調査手数料の納付と共に出願人から異議申立てがなかった。

国際調査報告

国際出願番号 PCT/JP00/00444

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
x	JP, 6-220088, A1 (旭化成株式会社) 9.8月.1994(09.08.94) (ファミリーなし)	1, 13–18, 20, 24, 28–29
X	EP, 532466, A2 (CIBA GEIGY AG) 17. 3月. 1993 (17. 03. 93) & AU, 9222889, A & NO, 9203533, A & CA, 2077948, A & FI, 9204035, A & JP, 5-230095, A & HU, 63632, T & TW, 213454, A & CZ, 9202802, A3 & ZA, 9206938, A & NZ, 244288, A & SK, 9202802, A3 & CN, 1089269, A & RU, 2067585, C1 & US, 5643878, A & IL, 103126, A	1-5, 13-18, 24, 28-29, 32-34
Х	EP, 111266, A (CIBA GEIGY AG) 20.6月.1984(20.06.84) & AU, 8321937, A & NO, 8304441, A & DK, 8305559, A & FI, 8304345, A & JP, 59-110661, A & HU, 32550, T & PT, 77761, A & DD, 217807, A & ZA, 8308986, A & US, 4595677, A & ES, 8606394, A & ES, 8702437, A	30, 34
X	WO, 97/19908, A1(日本農薬株式会社)5.6月.1997(05.06.97) & AU, 9677105, A1 & JP, 9-208541, A2	31, 33-34
X	BUDAVARI, S. et al. "The Merck Index", (1996) MERCK & CO., Inc., p. 1677	32
Х	BUDAVARI, S. et al. "The Merck Index", (1996) MERCK & CO., Inc., p. 1253	33
Х	BUDAVARI, S. et al. "The Merck Index", (1996) MERCK & CO., Inc., p. 1690	34
	·	
	·	

THIS PAGE BLANK (USPTO)