

QBE DATA SCIENCE WORKSHOP

Data analysis

How data is leveraged in expanding business

Data Engineering

Here is a workflow / checklist of this to look out for and fix

Data Wrangling Exercises

type

spreadsheet

programming language

RDBMS

data source

flat files; reports

API feed; unstructured data (images, videos, documents)

database; data dump; logs

output

report; dashboard

export to flat file; database; API

updated data; dashboard

objective

simple calculations & visualization

data analytics

data storage and manipulation

scaling

software; worksheets CPU; memory; libraries

disk space; optimization

Table of Contents

POINTS FOR DISCUSSION:

- Data Sampling
- Different Sampling Designs
- Challenges
- Basic Statistics
- Inferential Statistics
- Examples and Use Cases

data are *samples* taken from the *population*

Target Population

but don't get me wrong, *population* is also *data*, so why play only with the *sample*?

analysis on the population as a whole costs *money* and *time*

Target Population

More Money, More Time

the goal, therefore, is to *estimate* the *population using the samples only*.

but how?

well to *properly estimate* the population, we need *the sample to be a representative* of it.

Sample and Population

in

Halo-Halo

hence, in order for the *sample* to be a *representative of the population*, the sample must *be random* (or well-mixed).

in summary, data is a random sample from the population.

Target Population

Colors:

- White
- Red
- Black
- Orange
- Purple
- Blue

Target Population

Colors:

- White 6
- Red 5
- Black 3
- Orange 3
- Purple 2
- Blue 2

so how did we select this sample?

well, we need to *design* our *sampling procedure*.

there are two approaches: non-probability and probability.

Probability vs Non-Probability

Probability

- lule It is defined as a quantitative measure of uncertainty state of information or event.
- \Box It is an index with range from 0 to 1.
- ☐ It is approximated through proportion of number of events / total experiments:

Probability = 0 : certain the state will not happen.

Probability = 1 : the event will surely happen.

Probability = 0.5: we have maximum doubt about the state that it will happen

Non-Probability

Odds of the event happening are not equal

Probability vs Non-Probability
 Given every member of this room

Probability: every member of this population has a known and equal chance of being selected

Non-Probability: names on the first page, or on the center has higher chance of being selected

- Non-Probability
 - Purposive Sampling
 - Snowball Sampling
 - Quota Sampling
- Probability
 - Simple Random Sampling
 - Systematic Sampling
 - Stratified Sampling

- Probability
 - Simple Random Sampling (*let's do draw lots*)
 - Systematic Sampling
 (I'll interview every 4th house in this street)
 - Stratified Sampling
 (I'll take sample for every year level
 or group)

Probability Sampling: Pros and Cons

Pros

- o creates samples that are highly representative of the population
- minimize the risk of over or under representation -- ensuring your results are representative of the population
- can use statistical means to validate your results (e.g. confidence intervals, margins of errors)

Cons

o tedious and time consuming, especially when creating larger samples

- Non-Probability
 - Purposive Sampling (hey, can I interview you?)
 - Snowball Sampling (do you know someone like you?)
 - Quota Sampling
 (I only need 30 people, can I
 interview the first 30 people in this
 group?)

Non-Probability Sampling: Pros and Cons

Pros

- speed, cost-effectiveness, ease of availability
- o fine-tune the research by collecting results that only have vital insights

Cons

- o preconceived notions that the researcher can influence the results (purposive)
- o involved high amount of ambiguity

0

When to use Non-Probability Sampling

- use this to indicate if a particular trait or characteristic exists in a population
- when aim is conducting qualitative research, pilot studies, or exploratory research.
- have limited time to conduct research or have budget constraints.
- needs to observe whether a particular issue needs in-depth analysis
- use it when you do not intend to generate results that will generalize the entire population

Non-probability sampling	Probability sampling
Sample selection based on the subjective judgment of the researcher.	The sample is selected at random.
Not everyone has an equal chance to participate.	Everyone in the population has an equal chance of getting selected.
The researcher does not consider sampling bias.	Used when sampling bias has to be reduced.
Useful when the population has similar traits.	Useful when the population is diverse.
The sample does not accurately represent the population.	Used to create an accurate sample.
Finding respondents is easy.	Finding the right respondents is not easy.

- Non-Probability
 - Purposive Sampling (hey, can I interview you?)
 - Snowball Sampling (do you know someone like you?)
 - Quota Sampling (I only need 30 people, can I interview the first 30 people in this group?)
- Probability
 - Simple Random Sampling (*let's do draw lots*)
 - Systematic Sampling (I'll interview every 4th house in this street)
 - Stratified Sampling (I'll take sample for every year level or group)

Sampling vs Non-sampling Errors

Potential sources of error

in estimating a population distribution using a sample

Sampling error

Non-sampling error

Because the sample is not the whole population

Poor sampling method

Questionnaire or measurement error

Behavioural effects

Sampling Errors

Sampling errors are affected by factors such as the **size and design of the sample**, **population variability**, and **sampling fraction**.

Categories of Sampling Errors:

- Population Specification Error Happens when the analysts do not understand who to survey. For example, for a survey of breakfast cereals, the population can be the mother, children, or the entire family.
- Selection Error Occurs when the survey participation is self-selected by the respondents implying only those who are interested respond. Selection error can be reduced by encouraging participation.
- Sample Frame Error Occurs when a sample is selected from the wrong population data.
- Non-Response Error Occurs when a useful response is not obtained from the surveys. It may
 happen due to the inability to contact potential respondents or their refusal to respond.

Non-sampling Errors

most common non-sampling errors include errors in data entry, biased questions and decision-making, non-responses, false information, and inappropriate analysis.

Mechanics of Non-Sampling Error

- Random errors -- Random errors are errors that cannot be accounted for and
 just happen. In statistical studies, it is believed that each random error offsets
 each other, generally speaking, so they are of little to no concern.
- Systematic errors -- Systematic errors affect the sample of the study and, as a result, will often create useless data. A systematic error is consistent and repeatable, so the creators of the study must take great care to mitigate such an error.

Non-sampling Errors

- Non-response error -- caused by the differences between the people who choose to participate compared to the people who do not participate in a given survey.
- Measurement error -- refers to all errors relating to the measurement of each sampling unit, as
 opposed to errors relating to how they were selected, often arises when there are confusing
 questions, low-quality data due to sampling fatigue (i.e., someone is tired of taking a survey), and
 low-quality measurement tools.
- Interviewer error -- occurs when the interviewer (or administrator) makes an error when recording a response. In qualitative research, an interviewer may lead a respondent to answer a certain way. In quantitative research, an interviewer may ask the question in a different way, which leads to a different end result.
- Adjustment error -- situation where the analysis of the data adjusts it in such a way that it is not
 entirely accurate. Forms of adjustment error include errors with weighting the data, data cleaning,
 and imputation.
- Processing error -- A processing error arises when there is a problem with processing the data that causes an error of some kind. An example will be if the data were entered incorrectly or if the data file is corrupt.

Sampling vs Non-sampling Errors

Potential sources of error

in estimating a population distribution using a sample

Sampling error

Non-sampling error

Because the sample is not the whole population

Poor sampling method

Questionnaire or measurement error

Behavioural effects

Reducing Errors

suppose we now have our representative sample data, how do we *get insights* from it?

well that's where *basic statistics* comes in.

then?

Look for patterns, by doing exploratory data analysis.

How to look for patterns?

Descriptive Statistics and Data Visualization!

Identify your data

is it univariate or multivariate?

is it categorical or continuous?

then?

Look for patterns, by doing exploratory data analysis.

How to look for patterns?

Descriptive Statistics and Data Visualization!

Descriptive Statistics

- Univariate
 - Mean
 - Median
 - Mode categorical
 - Variance
 - Kurtosis
 - Skewness
- Multivariate
 - Pairwise Correlation

Data Visualization: Next Session

- Univariate
 - Plot the Histogram (Distribution)
 - Plot the Data if Time Series

- Multivariate
 - Plot X and Y
 - 3D

Time Series (not covered)

Basic Statistics

- Mean
- Median
- Mode
- Variance
- Standard Deviation
- Kurtosis
- Skewness

Basic Statistics

- Mean (the average value)
- Median (the middle value)
- Mode (the frequent value)
- Variance (the value for homogeneity or heterogeneity)
- Standard Deviation (standardized variance)
- Kurtosis (another measure for variance)
- Skewness (the location of concentration of points)

- Mean -- the sum of a variable's values divided by the total number of values
- **Median** -- the middle value of a variable
- **Mode** the value that occurs most often

The incomes of five randomly selected people in the United States are:

- Mean =
- Median =
- Mode =

The incomes of five randomly selected people in the United States are:

- **Mean** = (10,000 + 10,000 + 45,000 + 60,000 + 1,000,000) / 5 = \$225,000
- Median =
- Mode =

The incomes of five randomly selected people in the United States are:

- **Mean** = (10,000 + 10,000 + 45,000 + 60,000 + 1,000,000) / 5 = \$225,000
- **Median** = \$45,000
- Mode =

The incomes of five randomly selected people in the United States are:

- **Mean** = (10,000 + 10,000 + 45,000 + 60,000 + 1,000,000) / 5 = \$225,000
- **Median** = \$45,000
- **Mode** = \$10,000

Mean, Median and Mode

Employee	Salary (Annual)
John	420,000
Mike	510,000
Kate	630,000
Shane	450,000
Catty	550,000
Mathew	900,000
Sam	1,000,000

Mean, Median and Mode

Employee	Salary (Annual)
John	420,000
Mike	510,000
Kate	630,000
Shane	450,000
Catty	550,000
Mathew	900,000
Sam	1,000,000

Mean

Employee	Salary (Annual)
John	420,000
Mike	510,000
Kate	630,000
Shane	450,000
Catty	550,000
Mathew	900,000
Sam	1,000,000

Mean: (420,000 + 510,000 + 630,000 + ... + 1,000,000) / 7 = 637,142.86

Median: Sort the data first and take the middle

Employee	Salary (Annual)
John	420,000
Mike	510,000
Kate	630,000
Shane	450,000
Catty	550,000
Mathew	900,000
Sam	1,000,000

Median: 420000, 450000, 510000, **550000**, 630000, 900000, 1000000

Mode: Applicable for Categorical Variables Only

Employee	Salary (Annual)
John	420,000
Mike	510,000
Kate	630,000
Shane	450,000
Catty	550,000
Mathew	900,000
Sam	1,000,000

Mean, Median and Mode

Customer	Quantity of orders	Country
John	160	UK
Mike	1440	UK
Kate	1200	EIRE
Shane	10	France
Catty	20	UK
Mathew	30	France
Sam	60	Belgium

Mean

Customer	Quantity of orders	Country
John	160	UK
Mike	1440	UK
Kate	1200	EIRE
Shane	10	France
Catty	20	UK
Mathew	30	France
Sam	60	Belgium

Median

Customer	Quantity of orders	Country
John	160	UK
Mike	1440	UK
Kate	1200	EIRE
Shane	10	France
Catty	20	UK
Mathew	30	France
Sam	60	Belgium

Mode

Customer	Quantity of orders	Country
John	160	UK
Mike	1440	UK
Kate	1200	EIRE
Shane	10	France
Catty	20	UK
Mathew	30	France
Sam	60	Belgium

Mean

Customer	Quantity of orders	Country
John	160	UK
Mike	1440	UK
Kate	1200	EIRE
Shane	10	France
Catty	20	UK
Mathew	30	France
Sam	60	Belgium

Mean: (160 + 1440 + 1200 + . . . + 60) / 7 = 417.14

Median: Sort the data first and take the middle

Customer	Quantity of orders
John	160
Mike	1440
Kate	1200
Shane	10
Catty	20
Mathew	30
Sam	60

Median: 10, 12, 30, 60, 160, 1200, 1440

Mode: Applicable for Categorical Variables Only

Customer	Quantity of orders	Country
John	160	UK
Mike	1440	UK
Kate	1200	EIRE
Shane	10	France
Catty	20	UK
Mathew	30	France
Sam	60	Belgium

Mode: Applicable for Categorical Variables Only

Customer	Quantity of orders	Country
John	160	UK
Mike	1440	UK
Kate	1200	EIRE
Shane	10	France
Catty	20	UK
Mathew	30	France
Sam	60	Belgium

Number from UK = 3, Number from France = 2, Number of Belgium = 1, Number of EIRE = 1 Mode = UK

what are the *insights* from these statistics (mean, median, mode, etc.)?

how sure are we on our *estimates*?

well, we can estimate that using the *variance*.

- Range -- difference between the smallest and largest values in the data
- Variance -- calculated by taking the average of the squared differences between each value and the mean
- Standard Deviation square root of the variance
- Skew -- measure of whether some values of a variable are extremely different from the majority of the values. Skew = 3 * (Mean – Median) / Standard Deviation

The incomes of five randomly selected people in the United States are:

- Range -- difference between the smallest and largest values in the data
- Variance --
- Standard Deviation --
- Skew --

The incomes of five randomly selected people in the United States are:

- Range -- 1,000,000 10,000 = 990,000
- Variance --
- Standard Deviation --
- Skew --

The incomes of five randomly selected people in the United States are:

- Range -- 1,000,000 10,000 = 990,000
- Variance -- calculated by taking the average of the squared differences between each value and the mean

```
-[(10,000 - 225,000)^2 + (10,000 - 225,000)^2 + (45,000 - 225,000)^2 + (60,000 - 225,000)^2 + (1,000,000 - 225,000)^2] / 5 = 150,540,000,000
```

- Standard Deviation —
- Skew --

The incomes of five randomly selected people in the United States are:

\$10,000, \$10,000, \$45,000, \$60,000, and \$1,000,000

- Range -- 1,000,000 10,000 = 990,000
- Variance -- [(10,000 225,000)^2 + (10,000 225,000)^2 + (45,000 225,000)^2 + (60,000 225,000)^2 + (1,000,000 225,000)^2] / 5 = 150,540,000,000
- Standard Deviation square root of the variance
 - Square Root (150,540,000,000) = 387,995

Skew --

The incomes of five randomly selected people in the United States are:

- Range -- 1,000,000 10,000 = 990,000
- Variance -- [(10,000 225,000)^2 + (10,000 225,000)^2 + (45,000 225,000)^2 + (60,000 225,000)^2 + (1,000,000 225,000)^2] / 5 = 150,540,000,000
- Standard Deviation Square Root (150,540,000,000) = 387,995
- Skew -- Skew = 3 * (Mean Median) / Standard Deviation
 - -- Income is positively skewed

Degrees of Freedom

Standard deviation in a population is:

$$\sigma^2 = rac{\displaystyle\sum (x-\mu)^2}{n}$$

The estimate of population standard deviation calculated from a random sample

$$s^2=rac{\displaystyle\sum_{i=1}^n(x_i-ar{x})^2}{n-1}$$

Variance

Employee	Quantity of Orders	
John	160	
Mike	1440	
Kate	1200	
Shane	10	
Catty	20	
Mathew	30	
Sam	60	

```
Mean = 417.14

Variance = (Salary - Mean)^2 / (n - 1)

(Salary - Mean)^2 = (160 - 417.14)^2

+ (1440 - 417.14)^2

+ (1200 - 417.14)^2

:

+ (60 - 417.14)^2

= 2326135.72

Variance = 2326135.72 / (7 - 1) = 2326135.72 / 6 = 387689.28
```

Standard Deviation

Employee	Quantity of Orders	
John	160	
Mike	1440	
Kate	1200	
Shane	10	
Catty	20	
Mathew	30	
Sam	60	

```
Mean = 417.14
Variance = (Salary - Mean)^2 / (n - 1)
(Salary - Mean)^2 = (160 - 417.14)^2
                   + (1440 - 417.14)<sup>2</sup>
                   + (1200 - 417.14)<sup>2</sup>
                   + (60 - 417.14)^2
                   = 2326135.72
Variance = 2326135.72 / (7 - 1) = 2326135.72 / 6 = 387689.28
Standard Deviation = Square Root of Variance = 622.65
```

the larger the variance/standard deviation the larger the variability of the data, and vice-versa

histogram

Histogram

Employee	Salary (Annual)	
John	420,000	
Mike	510,000	
Kate	630,000	
Shane	450,000	
Catty	550,000	
Mathew	900,000	
Sam	1,000,000	

Histogram of Salaries of 1000 Employees

Employee	New Salary (Annual)	
John	408,562.78	
Mike	524,922.50	
Kate	570,671.90	
Shane	495,470.25	
Catty	695,920.38	
Mathew	637,457.63	
Sam	625,171.31	
:	:	

Bell Curve

Skewed to the Right (Positively Skewed)

Skewed to the Left (Negatively Skewed)

New Hire Count, New Hires Same Period Last Year, Actives YoY % Change BY MONTH

New Hire Count, Active Employee Count

BY REGION, ETHNICITY

Bad Hires (<60 Days of Employment)

BY REGION, ETHNICITY

- Range difference between the smallest and largest values in the data
- Variance -- calculated by taking the average of the squared differences between each value and the mean
- Standard Deviation -- square root of the variance
- Skew -- measure of whether some values of a variable are extremely different from the majority of the values

Measure of Centrality

- Mean -- the sum of a variable's values divided by the total number of values
- Median -- the middle value of a variable
- Mode -- the value that occurs most often

Questions?

QBE DATA SCIENCE WORKSHOP

Data analysis

How data is leveraged in expanding business

- Range difference between the smallest and largest values in the data
- Variance -- calculated by taking the average of the squared differences between each value and the mean
- Standard Deviation -- square root of the variance
- Skew -- measure of whether some values of a variable are extremely different from the majority of the values

Measure of Centrality

- Mean -- the sum of a variable's values divided by the total number of values
- Median -- the middle value of a variable
- Mode -- the value that occurs most often

Table of Contents

POINTS FOR DISCUSSION:

- Inferential Statistics
- Data Analytics Excrcise

Descriptive Statistics

Describes the data you have but can't be generalized beyond that.

Why not just look at the means?

Looking at the means may show a difference, but we can't be sure if the difference is **reliable** (statistically significant).

Inferential Statistics

These are statistics, such as t-test, that allow us to make inferences about the population beyond our sample data.

What is a t-test?

used to compare two sets of samples (continuous variables)

A t-test is a statistic that checks if two means (averages) are **reliably** different from each other.

Assumptions of t-test

- Data points are independent
- Sample size is small (n < 30)
- Sample values are accurate
- Population variance is known

Assumptions of z-test

- Data points are independent
- Sample size is large (n > 30)
- Population variance is not known

BASIS FOR COMPARISON	T-TEST	Z-TEST
Meaning	T-test refers to a type of parametric test that is applied to identify, how the means of two sets of data differ from one another when variance is not given.	Z-test implies a hypothesis test which ascertains if the means of two datasets are different from each other when variance is given.
Based on	Student-t distribution	Normal distribution
Population variance	Unknown	Known
Sample Size	Small	Large

Source: Difference between t-test and z-test

z-test statistic

$$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$$

- x is the sample mean
- σ is the population standard deviation
- n is the sample size
- μ is the population mean

t-test statistic

used to compare two sets of samples (continuous variables)

$$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$

- x is the sample mean
- s is the sample standard deviation
- n is the sample size
- μ is the population mean

t-test statistic

t = variance between groups variance within groups

A big t-value = different groups

A small t-value = similar groups

Source: Difference between t-test and z-test

Analysis of Variance (ANOVA)

used to compare multiple samples in a single test (generalized vs t-test)

Source: Questionpro

ANOVA

used to compare multiple samples in a single test (generalized vs t-test)

$$H_o: \mu_1 = \mu_2 = \cdots = \mu_L$$
 Null hypothesis

$$H_1: \mu_l \neq \mu_m$$
 Alternate hypothesis

Source: Analytics Vidhya

ANOVA

used to compare multiple samples in a single test (generalized vs t-test)

t Table											
cum. prob	t .50	t .75	t .80	t .85	t .90	t .95	t .975	t .99	t .995	t .999	t .999
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.000
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.86
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.04
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.78
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.58
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.43
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.31
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.22
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.14
15 16	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602 2.583	2.947 2.921	3.733	4.07
17	0.000	0.690	0.865	1.071	1.337	1.746	2.120 2.110	2.583	2.898	3.686	4.01
18	0.000 0.000	0.689 0.688	0.863 0.862	1.069 1.067	1.333 1.330	1.740 1.734	2.110	2.552	2.878	3.646 3.610	3.96 3.92
19	0.000	0.688	0.861	1.066	1.328	1.734	2.093	2.532	2.861	3.579	3.88
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.81
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.79
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.76
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.74
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.72
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.70
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.69
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.67
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.65
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.64
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.55
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.46
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.41
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.39
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.30
Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.29
L	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
					Confid	dence Le	evel				

Each t-value has a corresponding p-value.

The p-value is the probability that the pattern of data in the sample could be produced by random data (from the population).

if p = 0.05, there is 5% chance there is no real difference

if p = 0.01, there is 1% chance

p-values are dependent on the sample size

Most authors refer to p < 0.05 as statistically significant p < 0.001as statistically highly significant

Significance Level: Alpha

Alpha levels (sometimes just called "significance levels") are used in hypothesis tests;

 it is the probability of making the wrong decision when the null hypothesis is true.

- one-tailed test: entire 5% of the alpha level in one tail (in either the left, or the right tail)
- two-tailed test: splits your alpha level in half (as in the image to the left).

Significance Level: Alpha

Let's say you're working with the standard alpha level of 0.5 (5%). A two tailed test will have half of this (2.5%) in each tail. Very simply, the hypothesis test might go like this:

- A null hypothesis might state that the mean = x.
 You're testing if the mean is way above this or way below.
- 2. You run a t-test, which churns out a t-statistic.
- 3. If this test statistic falls in the top 2.5% or bottom 2.5% of its probability distribution (in this case, the t-distribution), you would reject the null hypothesis.

The "cut off" areas created by your alpha levels are called rejection regions. It's where you would reject the null hypothesis, if your test statistic happens to fall into one of those rejection areas. The terms "one tailed" and "two tailed" can more precisely be defined as referring to where your rejection regions are located.

Significance Level: Alpha

The "cut off" areas created by your alpha levels are called rejection regions. It's where you would reject the null hypothesis, if your test statistic happens to fall into one of those rejection areas.

The terms "one tailed" and "two tailed" can more precisely be defined as referring to where your rejection regions are located.

The results are only applied to the populations that resemble the sample tested

The sample and the population should be roughly normal in distribution.

Each group should have roughly the same number of data points.

All data should be independent. Each point should not influence each other.

And so on...

How to overcome limitations?

study data and apply appropriate statistics

				Outcome	variable		
		Nominal	Categorical (>2 Categories)	Ordinal	Quantitative Discrete	Quantitative Non-Normal	Quantitative Normal
	Nominal	X ² or Fisher's	λ ^Q	X ² -trend or Mann Whitney	Mann- Whitney	Mann- Whitney or log-rank ^a	Student's t test
	Categorical (2>categories)	χ²	λ^2	Kruskal- Wallis ^b	Kruskal- Wallis ^b	Kruskal- Wallis ^b	Analysis of variance ^e
Input Variable	Ordinal (Ordered categories)	X ² -trend or Mann Whitney	•	Spearman rank	Spearman rank	Spearman rank	Spearman rank or linear regression ⁶
	Quantitative Discrete	Logistic regression	•		Spearman rank	Spearman rank	Spearman rank or linear regression ^d
	Quantitative non-Normal	Logistic regression	•		*	Plot data and Pearson or Spearman rank	Plot data and Pearson or Spearman rank and linear regression
	Quantitative Normal	Logistic regression	0.8			Linear regression ⁶	Pearson and linear regression

My data is in categories (nominal) or ordered (ordinal)	non-parametric
My data has equal intervals (interval)	Parametric
My data represents a normal distribution of a population (bell curve shape / equal number above and below the mean)	Yes, normal distribution, fairly distributed > parametric Not a normal distribution / extreme scores > non-parametric
The variance (spread around the mean) of the 2 samples are not significantly different.	Not significantly different / SD is quite similar → parametric Significantly different. SD are quite different → non-parametric

You can **only** be asked to work out the **sign test** (**non-parametric**).

If you are not told otherwise, assume parametric.

Chi-Square Statistic

find if there are any significant association between the two categorical variables

- determines if a sample data matches a population
- tests to see whether distributions of categorical variables differ from each other

Chi-Square Statistic

find if there are any significant association between the two categorical variables

• Example:

- Null Hypothesis: Gender and voting preferences are independent
- Alternative Hypothesis: Gender and voting preferences are not independent

$$\chi_c^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

	Testing difference (unrelated) Independent Groups	Testing difference (related) Repeated Measures / Matched Pairs	Testing association or correlation
Nominal Data in categories (males, females, football teams)	Chi-Squared test	Sign test	Chi-Squared test
Ordinal Ordered in some way via rank or rating scale. ('unsafe' data/subjective)	Mann-Whitney	Wilcoxon	Spearman's rho.
Interval Set measurements where each unit is the same (time, temperature, weight)	Unrelated t-Test (parametric)	Related t-Test (parametric)	Pearson's r (parametric)

Scenario

The HappyJoy Company sells chicken to customers.

Scenario

They are rewarding its best performing store with an all-expense paid trip to Boracay for all employees of the branch.

Scenario

However, the company didn't give any criteria of what 'best performing' means and managers have to defend the performance of their stores.

Two-sample t-test

$$t = \frac{\overline{x_a} - \overline{x_b}}{\sqrt{s_a^2/N_a - s_b^2/N_b}}$$

$$t = \frac{157.28 - 149.11}{\sqrt{30.84^2/27 - 5.75^2/27}}$$

$$t = 1.354$$

The Two Managers

Store A mean: 157.28

Store A SD: 30.84

Store B mean: 149.11

Store B SD: 5.75

The Story of Two Managers

	126	187	103	113	197	119	189
Ctoro A	191	161	174	205	166	115	121
Store A	198	135	137	173	169	155	179
	167	184	120	184	110	151	175

	141	148	148	157	141	144	146
Ctoro D	141	144	142	140	146	145	141
Store B	158	153	154	151	154	152	152
	153	156	158	156	149	153	152

The Story of Two Managers

	Week 1	126	187	103	113	197	119	189
Store	Week 2	191	161	174	205	166	115	121
A	Week 3	198	135	137	173	169	155	179
	Week 4	167	184	120	184	110	151	175

	Week 1	141	148	148	157	141	144	146
Store	Week 2	141	144	142	140	146	145	141
В	Week 3	158	153	154	151	154	152	152
	Week 4	153	156	158	156	149	153	152

The Third Manager

{for ANOVA}

The Two Managers

I have the best performing store. I have the highest sales average of happy chicken last month at **157** happy chicken per day.

Your standard deviation is 30 while I only have 6. So I have a more stable store than you have.

The Two Managers

Store A mean: 157.28 per day

Store A SD: 30.84

Store B mean: 149.11 per day

Store B SD: 5.75

Perform t-test

Two-sample t-test

Use this equation:

$$t = \frac{\overline{x_a} - \overline{x_b}}{\sqrt{s_a^2/N_a - s_b^2/N_b}}$$

x are sample meanss are standard deviationsN are sample sizes

- State the hypothesis
- Pick level of significance
- Collect Data
- Calculate test statistic
- Decision
- Conclusion

State the hypotheses:

Null hypothesis, Ho:

"Store A and Store B has the same average chicken sold for the last month"

Alternative hypothesis, Ha:

"They have different averages"

State the hypotheses:

Null hypothesis, Ho:

$$\overline{x_a} = \overline{x_b}$$

$$t < t_{crit}$$

Alternative hypothesis, Ha: $\overline{x_a} \neq \overline{x_h}$

$$\overline{x_a} \neq \overline{x_b}$$

$$t > t_{crit}$$

Pick level of significance:

$$\alpha = 0.05$$

or

$$\alpha = 0.001$$

Collect Data:

Store A mean: 157.28

per day

Store A SD: 30.84

Store B mean: 149.11

per day

Store B SD: 5.75

used to compare two sets of samples (continuous variables)

$$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$

- x is the sample mean
- s is the sample standard deviation
- n is the sample size
- μ is the population mean

t Table											
cum. prob	t .50	t .75	t .80	t .85	t .90	t .95	t .975	t .99	t .995	t .999	t .999
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.000
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.86
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.04
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.78
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.58
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.43
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.31
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.22
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.14
15 16	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602 2.583	2.947 2.921	3.733	4.07
17	0.000	0.690	0.865	1.071	1.337	1.746	2.120 2.110	2.583	2.898	3.686	4.01
18	0.000	0.689 0.688	0.863 0.862	1.069 1.067	1.333 1.330	1.740 1.734	2.110	2.552	2.878	3.646 3.610	3.96 3.92
19	0.000	0.688	0.861	1.066	1.328	1.734	2.093	2.532	2.861	3.579	3.88
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.85
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.81
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.79
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.76
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.74
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.72
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.70
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.69
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.67
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.65
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.64
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.55
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.46
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.41
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.39
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.30
Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.29
Ĺ	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
	Confidence Level										

Calculate the statistic:

$$t = \frac{\overline{x_a} - \overline{x_b}}{\sqrt{s_a^2/N_a - s_b^2/N_b}}$$

$$t = \frac{157.28 - 149.11}{\sqrt{30.84^2/27 - 5.75^2/27}}$$

$$t = 1.354$$

Calculate the statistic:

$$t = 1.354$$

$$t_{crit} = 2.052$$

Decision:

$$t = 1.354$$

$$t_{crit} = 2.052$$

$$t < t_{crit}$$

The t-score is less than the critical t score so we don't reject the null hypothesis

Conclusion:

"We have enough evidence to not reject the null hypothesis therefore Store A and Store B has no statistically significant difference between their average happychicken sales."

Types of Errors

Does this mean they both win (or lose)?

Huh! Show me the tacos!

I have the better store and I will prove it to you!!

One-sample t-test

National daily average of happy chicken sales:

146 chicken per day

$$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$

- x is the sample mean
- s is the sample standard deviation
- n is the sample size
- μ is the population mean

Let's help Eve win the competition!!

Apply the steps of hypothesis testing to Eve's problem

- State the hypothesis
- Pick level of significance
- Collect Data
- Calculate test statistic
- Decision
- Conclusion

$$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$

- x is the sample mean (149.11)
- s is the sample standard deviation (5.75)
- n is the sample size (27)
- μ is the population mean (146)

$$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$

$$t = 2.809$$

$$t > t_{crit}$$

t Table											
cum. prob	t .50	t .75	t .80	t .85	t .90	t .95	t .975	t .99	t .995	t .999	t .999
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.000
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.86
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.04
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.78
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.58
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.43
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.31
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.22
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.14
15 16	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602 2.583	2.947 2.921	3.733	4.07
17	0.000	0.690	0.865	1.071	1.337	1.746	2.120 2.110	2.583	2.898	3.686	4.01
18	0.000	0.689 0.688	0.863 0.862	1.069 1.067	1.333 1.330	1.740 1.734	2.110	2.552	2.878	3.646 3.610	3.96 3.92
19	0.000	0.688	0.861	1.066	1.328	1.734	2.093	2.532	2.861	3.579	3.88
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.85
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.81
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.79
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.76
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.74
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.72
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.70
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.69
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.67
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.65
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.64
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.55
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.46
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.41
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.39
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.30
Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.29
Ĺ	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
	Confidence Level										

$$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$

$$t = 2.809$$

$$t > t_{crit}$$

I win! Thanks for the help!

I'm not done yet! I had promos on the 2nd week of operations. I'm sure we improved after that!

Really? We did some promotion too. Let's see which promo was more successful.

- State the hypothesis
- Pick level of significance
- Collect Data
- Calculate test statistic
- Decision
- Conclusion

Perform another hypothesis testing!

Think of a management dilemma and solve it using hypothesis testing

- State the hypothesis
- Pick level of significance
- Collect Data
- Calculate test statistic
- Decision
- Conclusion

Congrats for finishing the course!

Let's do more hypothesis testing from now on!

