

Support Vector Machine

Mahdi Roozbahani Georgia Tech

Math moment

$$7 \times 0 = 0$$
 $3 \times 0 = 0$
 $0 = 0$
 $7 \times 0 = 3 \times 0$
 $7 = 3$

Outline

Precursor: Linear Classifier and Perceptron

- **Support Vector Machine**
- Parameter Learning

Binary Classification function function

Given training data (\mathbf{x}_i, y_i) for $i = 1 \dots N$, with $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \{-1,1\}$, learn a classifier $f(\mathbf{x})$ such that

$$f(\mathbf{x}_i)$$
 $\begin{cases} \geq 0 & +1 \\ < 0 & -1 \end{cases}$

i.e. $y_i f(\mathbf{x}_i) > 0$ for a correct classification.

Linear Separability

linearly separable

not linearly separable

Linear Classifier

A linear classifier has the form $f(\mathbf{x}) = 0$

$$f(x) = x\theta + \theta_0$$

$$f(x) < 0$$

$$f(x) > 0$$

- in 2D the discriminant is a line
- θ is the normal to the line, and θ_0 the bias
- θ is known as the weight vector

ટાઉ 20 XB = 0 X Ixol _x શ3 Sign(>0) =+1 Q < 90 X^{223} $X \cdot \Theta = |X|^{223} | |\Theta| \cos \theta < \Theta$ e>90Sign (< 0) = -1

Linear Classifier (higher dimension)

A linear classifier has the form

$$f(x) = x\theta + \theta_0$$

in 3D the discriminant is a plane, and in nD it is a hyperplane

The Perceptron Classifier

Considering \boldsymbol{x} is linearly separable and \boldsymbol{y} has two labels of $\{-1,1\}$

$$f(x_i) = x_i \theta$$
 Bias is inside θ now

How can we separate datapoints with label 1 from datapoints with label -1using a line?

yi fixi) <0 (yi) xi (xdx1) GIR

Misclassified

Perceptron Algorithm:

Ex.
$$y_i f(x_i) < 0$$
 actual predicted

- Initialize $\theta = 0$
- Go through each datapoint $\{x_i, y_i\}$
 - If x_i is misclassified then $\theta^{t+1} \leftarrow \theta^t + \alpha y_i x_i$
- Until all datapoints are correctly classified

- Initialize $\theta = 0$
- Go through each datapoint $\{x_i, y_i\}$
 - If x_i is misclassified then $\theta^{t+1} \leftarrow \theta^t + \alpha y_i x_i$
- Until all datapoints are correctly classified

before update

after update

Linear separation

We can have different separating lines

0= [00 01--- Od]

Which line is the best?

Why is the bigger margin better?

All cases, error is zero and they are linear, so they are all good for generalization. What *\theta* maximizes the margin?

What is the Best θ ?

• maximum margin solution: most stable under perturbations of the inputs

6 Perceptron example 0 0 0 -2 0 0 8 0 -8 -10 -15 -10 -5

- if the data is linearly separable, then the algorithm will converge
- convergence can be slow ...
- separating line close to training data
- we would prefer a larger margin for generalization (better generalization)

Outline

- Precursor: Linear Classifier and Perceptron
- Support Vector Machine
- Parameter Learning

Finding θ with a **fat** margin

$$\int_{C} dx = 0$$

$$\int_{C} dx = 0$$

Solution (decision boundary) of the line: $x\theta=0$

$$Xi\theta = C \qquad |Xi\theta| = 1$$

Let x_i to be the nearest data point to the line (plane):

$$|x_i\theta| > 0$$

Our line solution is $x\theta = 0$

Does it matter if I scale up or down θ for the decision boundary?

$$|x_i\theta|=1 \rightarrow$$
 normalization

Let's pull out $heta_0$ from $heta=(heta_1,\dots, heta_d)$ and call it be b

Decision boundary would be:
$$x\theta+b=0$$

Computing the distance

The distance between x_i and the line $x\theta + b = 0$ where $|x_i\theta + b| = 1$

The vector $\boldsymbol{\theta}$ is perpendicular to the decision line.

You should ask me why?

 x_2

Consider x' and x'' on the plane

$$x'\theta + b = 0$$
 and $x''\theta + b = 0$
 $x'\theta + b = x''\theta + b$

$$(x'-x'')\theta=0$$

 x_1

What is the distance of my fat margin?

What is the distance between x_i and the plane?

Let's take any point x on the line:

Distance would be projection of $(x_i - x)$ vector on θ .

To project the vector, we need to normalize θ to get the unit vector.

$$\hat{\theta} = \frac{\theta}{\|\theta\|} \Rightarrow \text{distance} = \left| (x_i - x)\hat{\theta} \right| \text{ which is the dot product}$$

distance =
$$\frac{1}{||\theta||} |(x_i \theta - x \theta)|$$

Now we need to maximize the margin

-Maximize
$$\frac{1}{||\theta||}$$

Subject to Min value of
$$|x_i\theta + b| = 1 \Rightarrow nearest \ neighbour$$

 $i = 1, 2, ..., N$

There is a "min" in our constraining; it can be hard to optimize this problem(non-convex form)

Can I write the following term to get rid of absolute value?

$$|x_i\theta + b| = y_i(x_i\theta + b) \Rightarrow$$
 for a correct classification

If min
$$|x_i\theta + b| = 1 \Rightarrow so it can be at least 1$$

Maximize
$$\frac{1}{||\theta||}$$

Subject to
$$y_i(x_i\theta + b) \ge 1$$
 for $i = 1, 2, ..., N$

Maximize
$$\frac{2}{\|\theta\|_{2}^{2}}$$

If $\theta \neq 0$, there exists a max value

Subject to
$$y_i(x_i\theta + b) \ge 1$$
 for $i = 1, 2, ..., N$

Minimize $\frac{1}{2}\theta\theta^T$

Subject to
$$y_i(x_i\theta + b) \ge 1$$
 for $i = 1, 2, ..., N$

Constrained optimization

Minimize
$$\frac{1}{2}\theta\theta^T$$
 $\lambda(\theta,\alpha) = \frac{1}{2}\theta\theta^T - \alpha g(x)$

Subject to $y_i(x_i\theta + b) \ge 1$ for $i = 1,2,...,N$
 $g(x) > 0$
 $\theta \in \mathbb{R}^d, b \in \mathbb{R}$

Using Lagrange method: But wait, there is an inequality in our constraints

We use Karush-Kuhn-Tucker (KKT) condition to deal with this problem

$$g(x) = y_i(x_i\theta + b) - 1$$
 $\alpha = lagrange multiplier$

1) Stationary

We need to optimize θ , b, and α

- 2) $g(x) \ge 0$ Primal feasibility
- 3) $\alpha \ge 0$ Dual feasibility
- 4) $g(x)\alpha = 0$ Complementary slackness $\Rightarrow \begin{cases} g(x) > 0, & \alpha = 0 \\ \alpha > 0, & g(x) = 0 \end{cases}$

$$\frac{1}{2}(x_0^2+1)=1$$

$$g(x) = y_i(x_i\theta + b) - 1 = 0$$

3)
$$g(x)\alpha = 0$$
 Complementary slackness $\Rightarrow \begin{cases} g(x) > 0, & \alpha = 0 \\ \alpha > 0, & g(x) = 0 \end{cases}$

Lagrange formulation

Minimize

$$\frac{1}{2}\theta\theta^T$$

$$\frac{1}{2}\theta\theta^T \qquad \text{s.t.} \qquad y_i(x_i\theta + b) - 1 \ge 0$$

 $\mathcal{L}(\theta,b,\alpha) = \frac{1}{2}\theta\theta^T - \sum_{i=1}^{N} \alpha_i(y_i(x_i\theta + b) - 1)$

Minimize w.r.t θ and b and maximize w.r.t each $\alpha_i \geq 0$

$$abla_{\theta} \mathcal{L}(\theta, b, \alpha) = \theta - \sum_{i=1}^{N} \alpha_{i} y_{i} x_{i} = 0$$

$$abla_{\lambda k} \mathcal{L}(\theta, b, \alpha) = -\sum_{i=1}^{N} \alpha_{i} y_{i} x_{i} = 0$$

$$\theta = \sum_{i=1}^{N} \alpha_i y_i x_i$$

Let's substitute these in the Lagrangian:

$$\mathcal{L}(\theta, b, \alpha) = \frac{1}{2}\theta\theta^{T} - \sum_{i=1}^{N} \alpha_{i}(y_{i}(x_{i}\theta + b))$$

$$\mathcal{L}(\theta, b, \alpha) = \sum_{i=1}^{N} \alpha_{i} + \frac{1}{2}\theta\theta^{T} - \sum_{i=1}^{N} \alpha_{i}(y_{i}(x_{i}\theta + b))$$

$$\sum_{i=1}^{N} \alpha_{i}(y_{i}(x_{i}\theta + b))$$

$$\mathcal{L}(\theta, b, \alpha) = \sum_{i=1}^{N} \alpha_i + \frac{1}{2}\theta\theta^T - \sum_{i=1}^{N} \alpha_i (y_i(x_i\theta)) = \sum_{i=1}^{N} \alpha_i + \frac{1}{2}\theta\theta^T - \theta\theta^T =$$

$$= \sum_{i=1}^{N} \alpha_i - \frac{1}{2}\theta\theta^T$$

$$\theta = \sum_{i=1}^{N} \alpha_i y_i x_i$$

$$\sum_{i=1}^{N} \alpha_i y_i = 0$$

A Dual form

$$\mathcal{L}(\theta, b, \alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \theta \theta^T$$

$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{b}, \boldsymbol{\alpha}) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j \alpha_i \alpha_j x_i x_j^T$$

maximize w.r.t each $\alpha_i \geq 0$ for i = 1, ..., N and

$$\sum_{i=1}^{N} \alpha_i y_i = 0$$

The solution – quadratic programming

$$\max_{\alpha} \sum_{i=1}^{N} \frac{\alpha_i}{\alpha_i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j \frac{\alpha_i}{\alpha_j} x_i x_j^T$$

Quadratic programming packages usually use "min"

$$\min_{\alpha} \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_{i} y_{j} \alpha_{i} \alpha_{j} x_{i} x_{j}^{T} - \sum_{i=1}^{N} \alpha_{i}$$

$$\min_{\alpha} \frac{1}{2} \alpha^{T} \begin{bmatrix} y_{1} y_{1} x_{1}^{T} & y_{1} y_{2} x_{1} x_{2}^{T} & \dots & y_{1} y_{N} x_{1} x_{N}^{T} \\ y_{2} y_{1} x_{2} x_{1}^{T} & y_{2} y_{2} x_{2} x_{2}^{T} & \dots & y_{2} y_{N} x_{2} x_{N}^{T} \\ \dots & \dots & \dots & \dots \\ y_{N} y_{1} x_{N} x_{1}^{T} & y_{N} y_{2} x_{N} x_{2}^{T} & \dots & y_{N} y_{N} x_{N} x_{N}^{T} \end{bmatrix}_{N \times N} \alpha + (-I^{T}) \alpha$$

$$\min_{\alpha} \frac{1}{2} \alpha^T Q \alpha - 1^T \alpha \quad \text{subject to} \quad y^T \alpha = 0; \alpha \ge 0$$

Quadratic programming will give us α

Solution: $\alpha = \alpha_1, ..., \alpha_N$

KKT condition
$$(\alpha_i g_i(\theta) = 0)$$
: $\alpha_i (y_i(x_i \theta + b) - 1) = 0$

$$(y_i(x_i\theta + b) - 1) > 0 \qquad \Rightarrow \qquad \alpha_i = 0$$

$$(y_i(x_i\theta + b) - 1) = 0$$
 \Rightarrow $\alpha_i > 0 \Rightarrow x_i \text{ is a support vector}$

Training

$$\theta = \sum_{i=1}^{N} \alpha_i y_i x_i$$

No need to go over all datapoints

$$\rightarrow \theta = \sum_{x_i \text{in } SV} \alpha_i y_i x_i$$

and for b pick any support vector and calculate: $y_i(x_i\theta + b) = 1$

Testing

For a new test point s

Primal form Compute:
$$S\theta + b = \sum_{x_i \in SV} \alpha_i y_i x_i s^T + b$$

Classify s as class 1 if the result is positive, and class 2 otherwise

Geometric Interpretation

From x to z space

$$\max_{\alpha} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j \alpha_i \alpha_j x_i x_j^T$$

 $let's say x is n \times d$ xx^{T} will be $n \times n$

If I add millions of dimensions to x, would it affect the final size of xx^T ?

In z space

$$\max_{\alpha} \sum_{i=1}^{N} \frac{\alpha_i}{\alpha_i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j \alpha_i \alpha_j \mathbf{z}_i \mathbf{z}_j^T$$

In x space, they are called pre-images of support vectors

Take-Home Messages

- Linear Separability
- Perceptron
- SVM: Geometric Intuition and Formulation