Álgebra I Ejercicios para entregar

1. Determinar si las siguientes funciones son inyectivas, sobreyectivas o biyectivas. Para las que sean biyectivas hallar la inversa y para las que no sean sobreyectivas hallar la imagen.

i)
$$f: \mathbb{N} \longrightarrow \mathbb{N}$$
, $f(n) = \begin{cases} \frac{n}{2} & \text{si } n \text{ es par} \\ n+1 & \text{si } n \text{ es impar} \end{cases}$

ii)
$$f: \mathbb{N} \longrightarrow \mathbb{N}$$
, $f(n) = \begin{cases} n-1 & \text{si } n \text{ es par} \\ 2n & \text{si } n \text{ es impar} \end{cases}$

iii)
$$f: \mathbb{Z} \longrightarrow \mathbb{N}$$
, $f(a) = \begin{cases} 2a & \text{si } a > 0\\ 1 - 2a & \text{si } a \leq 0 \end{cases}$

2. Sea $X = \{n \in \mathbb{N} : n \leq 2016\}$. Definimos la relación \mathcal{R} en $\mathcal{P}(X)$ dada por

$$ARB \Leftrightarrow \#(A\triangle B) \leq 3.$$

Decidir si la relación es reflexiva, simétrica, antisimétrica, o transitiva. Para $A = \{4, 8, 15, 16, 23, 42\}$ hallar la cantidad de $B \in \mathcal{P}(X)$ tales que $A\mathcal{R}B$.

3. Sean $n \ y \ m$ dos enteros positivos. Sea \mathcal{F} el conjunto de las funciones de $\{1,\ldots,n\}$ en $\{1,\ldots,m\}$. Definimos la relación \mathcal{R} en \mathcal{F} dada por: $f \ \mathcal{R} \ g$ si y solo si existe $h: \{1,\ldots,n\} \to \{1,\ldots,n\}$ biyectiva tal que $f \circ h = g$.

Probar que \mathcal{R} es una relación de equivalencia. ¿Cuántas clases de equivalencia hay? ¿Y si cambiamos \mathcal{F} por el conjunto de las funciones inyectivas? ¿Y por las sobreyectivas?

- 4. Hallar el menor número natural n tal que (n:99)=33 y n tiene exactamente 48 divisores positivos.
- 5. Sea $a \in \mathbb{Z}$ tal que $(9a^{25} + 10 : 280) = 35$. Hallar el resto de la división de a por 70.
- 6. Sea $\omega_{23} \in \mathbb{C}$ una raíz primitiva de la unidad de orden 23. Hallar la parte real de $\sum_{k=1}^{11} \omega_{23}^{k^2}$.
- 7. Determinar todos los $a \in \mathbb{C}$ tales que 2 es una raíz múltiple del polinomio

$$f = aX^5 + 8X^4 - 26X^3 + 44X^2 - 40X - (32a + 16).$$

1

Para cada valor de a hallado factorizar el polinomio en $\mathbb{C}[X]$, $\mathbb{R}[X]$ y $\mathbb{Q}[X]$.