Discrete Uniform Probability Distribution:

☐ When the possible values of the probability mass function are all equal, then the probability distribution is a discrete uniform probability distribution.

DISCRETE UNIFORM PROBABILITY MASS FUNCTION

$$f(x) = 1/n \tag{4.15}$$

- ☐ Where n = the number of unique values that may be assumed by the random variable.
- □ Example: Fair 6-sided die
 - □ Lottery Probability for picking any one number is the same for all outcomes.

Discrete Probability Distributions Bernoulli Trial An independent trial in which there are 2 outcomes Example: Martin's an online specialty clothing store Sends out targeted e-mails to its best customers Special discounts available only to the recipients. Each email is a Bernoulli Trial Click Link = Success Do not Click = Faiure

Binomial Probability Distribution:

- □ A binomial probability distribution
 - □ used to describe many situations in which a fixed number (*n*) of repeated identical and independent trials has two, and only two, possible outcomes:
 - ☐ Used to calculate the probability of a given number of successes in a set of (n) Bernoulli trials

Discrete Probability Distributions

The probability mass function for a binomial random variable that calculates the probability of x successes in n independent events.

BINOMIAL PROBABILITY MASS FUNCTION

$$f(x) = \binom{n}{x} p^{x} (1-p)^{(n-x)}$$

where

x = the number of successes

(4.16)

p = the probability of a success on one trial

n = the number of trials

f(x) = the probability of x successes in n trials

and

$$\left(\begin{array}{c} n \\ x \end{array}\right) = \frac{n!}{x!(n-x)!}$$

Probability Distribution for the Number of Customers Who Click on the Link in the Martin's Targeted E-Mail

If you Send n = 3 Emails

x	f(x)
0	$\frac{3!}{0!3!}(0.30)^0(0.70)^3 = 0.343$
1	$\frac{3!}{1!2!}(0.30)^1(0.70)^2 = 0.441$
2	$\frac{3!}{2!1!}(0.30)^2(0.70)^1 = 0.189$
3	$\frac{3!}{3!0!}(0.30)^3(0.70)^0 = \frac{0.027}{1.000}$

$$f(x) = \frac{n!}{x!(n-x)!} p^x (1-p)^{(n-x)}$$

If you Send n = 1000 Emails

$$f(301) = {1000 \choose 301} (.3)^{301} (.7)^{1000 - 301}$$

$$= \frac{1000!}{301!(1000 - 301)!} (.3)^{301} (.7)^{699}$$

$$= .027$$

Or 2.7% Chance

Discrete Probability Distributions

Probability Distribution for the Number of Customers Who Click on the Link in the Martin's Targeted E-Mail

(3 Emails Sent)

- □ What's the probability that NO MORE THAN 1 person response?
 - □ 0.343 + 0.441 = 0.784
 - □ Or 78.4% chance that 1 or none respond
 - ☐ (Add the probabilities together)

Figure 4.15: Excel Worksheet for Computing Binomial Probabilities of the Number of Customers Who Make a Purchase at Martin's

Discrete Probability Distributions

Poisson Probability Distribution:

- □ useful in estimating the number of occurrences of an event over a specified interval of time and space.
- □ Examples:
 - □ Number of patients who arrive at a health care clinic between 8:00am and 9:00am.
 - □ Number of computer-server failures in a month.
 - □ Number of repairs needed in 10 miles of highway.
 - □ Number of leaks in 100 miles of pipeline.

- ☐ Poisson probability distribution applies if:
 - □ 1. The probability of an occurrence is the same for any two intervals (of time or space) of equal length.
 - □ Probability of a patient arriving between 8:00-8:01 = probability of a patient arriving between 8:59-9:00 am
 - □ 2. The occurrence or nonoccurrence in any interval (of time or space) is independent of the occurrence or nonoccurrence in any other interval.
 - □ The arrival of a patient at 8:02am is independent of a patient arriving at 8:03am

POISSON PROBABILITY MASS FUNCTION

$$f(x) = \frac{\mu^x e^{-\mu}}{x!}$$
 (4.17)

where

f(x) = the probability of x occurrences in an interval

 μ = expected value or mean number of occurrences in an interval

 $e \approx 2.71828$

Discrete Probability Distributions

□ Poisson probability example:

Average number of patients arriving in a 15 minute period = 10.

POISSON PROBABILITY MASS FUNCTION

$$y = \frac{\mu^x e^{-\mu}}{x!} \tag{4.17}$$

where

f(x) = the probability of x occurrences in an interval

 $\mu=$ expected value or mean number of occurrences in an interval

 $e \approx 2.71828$

Probability of exactly
5arrivals in 15 minutes =
$$f(5) = \frac{10^5 e^{-10}}{5!} = 0.0378$$

Figure 4.16: Excel Worksheet for Computing Poisson Probabilities of the Number of Patients Arriving at the Emergency Room

- Probability of a **Discrete** Random Variable
 - the probability mass function f(x) provides the probability that the random variable assumes a particular value.

- ☐ Probability of a **Continuous**Random Variable
 - the probability density function, f(x) does not directly provide probabilities
 - the probability of any particular value of the random variable is zero
 - ☐ We are computing the probability that the random variable assumes any value in an interval.

Continuous Probability Distributions

Continuous Uniform Probability Distribution:

- □ Example:
 - ☐ Random variable x representing the flight time of an airplane traveling from Chicago to New York.
 - □ Suppose the flight time can be any value between 120 and 140 minutes
 - $\ \square$ Assuming the probability of any interval inside of the 120 140 minutes is the same
 - ☐ This implies => Uniform Distribution

UNIFORM PROBABILITY DENSITY FUNCTION

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b\\ 0 & \text{elsewhere} \end{cases}$$
 (4.18)

UNIFORM DISTRIBUTION: CUMULATIVE PROBABILITIES

$$P(x \le x_0) = \frac{x_0 - a}{b - a} \text{ for } a \le x_0 \le b$$
 (4.19)

- ☐ The calculation of the expected value and variance for a continuous random variable is analogous to that for a discrete random variable.
- □ For uniform continuous probability distribution, the formulas for the expected value and variance are:

$$E(x) = \frac{a+b}{2} = \frac{120+140}{2}$$

$$= 130$$

$$Var(x) = \frac{(b-a)^2}{12} = \frac{(140-120)^2}{12} = 33.33$$

Continuous Probability Distributions

Triangular Probability Distribution:

- $\hfill \Box$ Useful only when subjective probability estimates are available.
- ☐ In the **triangular probability distribution**, we need only specify:
 - \Box The minimum possible value a.
 - \Box The maximum possible value b.
 - \Box The most likely value (or mode) of the distribution m.

☐ The general form of the triangular probability density function is:

TRIANGULAR PROBABILITY DENSITY FUNCTION

$$f(x) = \begin{cases} \frac{2(x-a)}{(b-a)(m-a)} & \text{for } a \le x \le m \\ \frac{2(b-x)}{(b-a)(b-m)} & \text{for } m < x \le b \end{cases}$$
 (4.20)

where

 $a = \min \max \text{ value}$

b = maximum value

m = mode

Continuous Probability Distributions

☐ The geometry required to find the area under the graph for any given value is slightly more complex than that required to find the area for a uniform distribution.

TRIANGULAR DISTRIBUTION: CUMULATIVE PROBABILITIES

$$P(x \le x_0) = \begin{cases} \frac{(x_0 - a)^2}{(b - a)(m - a)} & \text{for } a \le x_0 \le m \\ 1 - \frac{(b - x_0)^2}{(b - a)(b - m)} & \text{for } m < x_0 \le b \end{cases}$$
(4.21)

Figure 4.20: Triangular Distribution to Determine

$$P(10 \ ? \ x \ ? \ 18) = P(x \ ? \ 18) - P(x \ ? \ 10)$$

$$P(x \le 18) - P(x \le 10) = \left[1 - \frac{(24 - 18)^2}{(24 - 6)(24 - 12)}\right] - \left[\frac{(10 - 6)^2}{(24 - 6)(10 - 6)}\right] = 0.6111$$

Continuous Probability Distributions

Normal Probability Distribution:

- ☐ One of the most useful probability distributions
- □ Wide variety of practical and business applications:
 - $\hfill\Box$ Heights and weights of people.
 - □ Test scores.
 - □ Scientific measurements.
 - □ Uncertain quantities such as demand for products.
 - □ Rate of return for stocks and bonds.
 - ☐ Time it takes to manufacture a part or complete an activity.

☐ The probability density function that defines the bell-shaped curve of the normal distribution is:

NORMAL PROBABILITY DENSITY FUNCTION

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$
 (4.22)

where

 $\mu = \text{mean}$

 σ = standard deviation

 $\pi \approx 3.14159$

 $e \approx 2.71828$

Continuous Probability Distributions

Characteristics of the normal distribution:

 The entire family of normal distributions is differentiated by two parameters

 μ and σ

- 2. The highest point on the normal curve is at the mean, which is also the median and mode of the distribution.
- 3. The mean of the distribution can be any numerical value: negative, zero, or positive

Characteristics of the normal distribution (continued):

- 4. The normal distribution is symmetric
- The tails of the curve extend to infinity in both directions and theoretically never touch the horizontal axis.
- The standard deviation determines how flat and wide the normal curve is;
 - larger values of the standard deviation result in wider, flatter curves
 - ☐ showing more variability in the data

Continuous Probability Distributions

Characteristics of the normal distribution (continued):

- Probabilities = areas under the normal curve.
 - ☐ The total area under the curve for the normal distribution is 1.
- 8. The percentages of values in some commonly used intervals are:
 - a. 68.3% of the values are within
 - + or 1 SD of the mean
 - b. 95.4% of the values are within
 - + or 2 SD of the mean
 - C. 99.7% of the values are within
 - + or 3 SD of the mean

Areas Under the Curve for Any Normal Distribution

- ☐ Example: Grear Aircraft Engines sells aircraft engines to commercial airlines.
 - ☐ Grear offers guarantees that engines will provide certain amount of lifetime flight hours
 - ☐ Based on extensive flight testing and computer simulations, Grear believes mean lifetime flight hours is normally distributed with a mean

 μ = 36,500 hours and standard deviation σ = 5,000 hours.

☐ What is the probability that an engine will last more than 40,000 hours?

Continuous Probability Distributions

Figure 4.25: Grear Aircraft Engines Lifetime Flight Hours Distribution

Calculate P(x >= 40,000) by hand:

- □ Standardize 40,000 as a Z-score
- □ Look up the z-score on the Z-table
- □ Find its corresponding probability
 - Row corresponding to leading digit
 - □ Column corresponding to second digit
 - □ Intersect row and column
- □ For P(x>=40,000) = 1 (intersection of row and column)

Exponential Probability Distribution:

- may be used for random variables such as:
 - ☐ Time between patient arrivals at an emergency room.
 - □ Distance between major defects in a highway.
 - ☐ Time until default in certain credit-risk models.

EXPONENTIAL PROBABILITY DENSITY FUNCTION

$$f(x) = \frac{1}{\mu} e^{-x/\mu} \quad \text{for } x \ge 0$$
 (4.23)

where

 μ = expected value or mean

e = 2.71828

Continuous Probability Distributions

- ☐ Example: x represents time between business loan defaults for a particular lending agency.
- ☐ If the mean time between loan defaults is 15 months,

What is the probability that the next default will be between 6 and 18 months?

☐ To compute exponential probabilities, we use:

EXPONENTIAL DISTRIBUTION: CUMULATIVE PROBABILITIES

$$P(x \le x_0) = 1 - e^{-x_0/\mu} \tag{4.24}$$

Figure 4.31: Using Excel to Calculate Business Loan Defaults Example

24	A		В	C	
1		Mean, μ =	15		
2					
3		$P\left(x\leq 18\right) =$	=EXPON.DIST(18,1/\$B\$1, TRUE)		
4		$P(x \le 6) =$	=EXPON.DIST(6,1/\$B\$1, TRUE)		
5	$P(6 \le x \le 18) = P(x \le 18)$ -	$-P(x \le 6) =$	=B3-B4		
			A	В	С
	1		Mean, μ =	15	
	2				
	3		$P(x \le 18) =$	0.6988	
	4		$P(x \le 6) =$	0.3297	
	5	P (6 ≤ 2	$x \le 18$ = $P(x \le 18) - P(x \le 6)$ =	0.3691	

☐ Figure 4.31 shows how to calculate these values for an exponential distribution in Excel using EXPON.DIST.