Presentación (3G)

Curso 2024/2025

Tecnologías de los Sistemas de Información en la Red

- Objetivos
- 2. Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Resumen de fechas
- 7. Bibliografía

Horarios y profesor

- José <u>Ramón García</u> Escrivá, DSIC
 - Despacho 1D42, edificio 1F
 - Tutorías previa cita (<u>rgarcia@upv.es</u>)
 - Utilizad <u>siempre</u> remitentes de la UPV
- Docencia semanal en TSR

Grupo	Aula 1	Aula 2	Labo turno 2
3G	X 08:00-09:30, aula 1E 1.4	V 11:30-13:00, aula 1E 1.4	V 09:30-11:00, labo 0
4GIA	L 08:00-09:30, aula 1G 1.6	X 09:30-11:00, aula 1G 1.6	
3B			V 08:00-9:30, labo 4

- 1. Objetivos
- 2. Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Resumen de fechas
- 7. Bibliografía

General:

 Transmitir una aproximación pragmática dirigida al diseño y construcción de sistemas distribuidos.

Específicos (algunos excesivos):

- 1. Entender las propiedades de los sistemas distribuidos:
- 2. Conocer algunas de las tecnologías y aproximaciones existentes más importantes
- 3. Comprender algunos diseños de arquitecturas para la resolución de problemas específicos

Los específicos se detallan a continuación...

General:

 Transmitir una aproximación pragmática dirigida al diseño y construcción de sistemas distribuidos.

Específicos:

- 1. Entender las propiedades de los sistemas distribuidos
 - Problemas que aparecen, y que hay que resolver
 - Propiedades obtenibles, ámbitos de aplicación
 - Influencia de la estructura de un sistema (arquitectura) para resolver/mitigar problemas y obtener propiedades deseables.
- 2. Conocer algunas de las tecnologías y aproximaciones existentes más importantes
- 3. Comprender algunos diseños de arquitecturas para la resolución de problemas específicos

General:

 Transmitir una aproximación pragmática dirigida al diseño y construcción de sistemas distribuidos.

Específicos:

- 1. Entender las propiedades de los sistemas distribuidos
- 2. Conocer algunas de las tecnologías y aproximaciones existentes más importantes
 - Programación asíncrona para la implementación de componentes
 - Middleware para facilitar la interacción entre componentes
- 3. Comprender algunos diseños de arquitecturas para la resolución de problemas específicos

General:

 Transmitir una aproximación pragmática dirigida al diseño y construcción de sistemas distribuidos.

Específicos:

- 1. Entender las propiedades de los sistemas distribuidos
- 2. Conocer algunas de las tecnologías y aproximaciones existentes más importantes
- 3. Comprender algunos diseños de arquitecturas para la resolución de problemas específicos
 - Estudio de ejemplos de sistemas y su estructura
 - Uso de tecnologías relevantes para la resolución de problemas de laboratorio

- 1. Objetivos
- 2. Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Resumen de fechas
- 7. Bibliografía

2. Estructura

Asignatura con 6 créditos

▶ Teoría y seminarios se estructuran en una misma secuencia de temas

- Teoría (1.5 cr)
 - Principios generales
 - Propiedades
 - Problemas
- Seminarios (3 cr)
 - Tecnologías básicas
 - Ejemplos, estudio de casos y resolución de problemas
- Laboratorio (1.5 cr)
 - Implementación de soluciones a problemas sencillos

Estas dos partes se imparten en el aula. Se considerarán conjuntamente como "teoría" en las próximas secciones.

- Objetivos
- 2. Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Resumen de fechas
- 7. Bibliografía

3. Teoría. Temario

- 1. Introducción
- 2. JavaScript y NodeJS
- 3. Middleware. ZeroMQ
- 4. Despliegue de servicios. Docker
- Gestión de fallos
- 6. Escalabilidad

3. Teoría. Temario

Considerando las 28 clases que habrá en el cuatrimestre, los temas se distribuirán como sigue:

Introducción	JavaScript. NodeJS			Gestión fallos	Escalabilidad
3	7	6	6	3	3

- ▶ En cada tema:
 - Hay vídeos (screencasts) que describen cada uno de sus apartados.
 - Disponibles en PoliformaT, en su sección de "Docencia Inversa"
 - Accesibles para todos los grupos
 - Complementados con boletines de ejercicios específicos
 - Cada apartado dispone de exámenes de autoevaluación.
 - Disponibles en PoliformaT, sección "Exámenes"

- 1. Objetivos
- 2. Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Resumen de fechas
- 7. Bibliografía

- No usamos poliLabs porque dificulta la comunicación mediante puertos. Por ello...
 - Cada estudiante empleará su *máquina virtual de portal* (gestionada mediante **https://portal-ng.dsic.upv.es**).
 - ▶ También dispones de una MV (tsr-vbox-2425.ova, que ocupa 5.2GB) para *VirtualBox* (www.virtualbox.org) que puedes usar en tu PC, y descargar desde...

https://filesender.rediris.es/?s=download&token=033417 6c-95db-c8d1-0939-1015ad550239

Ambas alternativas cubren los requisitos de laboratorio. Puedes usar Visual Studio Code como editor.

- Antes de comenzar las prácticas, debes cubrir el "Proyecto 0: JavaScript básico"
 - No tiene reserva en el calendario, ni supervisión por el profesor
 - Debe realizarse ANTES del Proyecto 1, incluso si el/la estudiante cuenta con experiencia previa en JavaScript
- Planificación del resto de proyectos en PoliformaT
 - Ver hoja siguiente

Planificación

PRÁCTICA	SESIÓN	L	M	X	J	V
1	1	30 sep	1 oct	2 oct	3 oct	4 oct
	2	7 oct	15 oct	8 oct (CL)	10 oct	11 oct
	3	14 oct	22 oct	16 oct	17 oct	18 oct
2	4	21 oct	29 oct	23 oct	24 oct	25 oct
	5	28 oct	12 nov	13 nov	7 nov	8 nov
	6	11 nov	19 nov	20 nov	14 nov	15 nov
	7	18 nov	26 nov	27 nov	21 nov	22 nov
3	8	25 nov	3 dic	4 dic	28 nov	29 nov
	9	9 dic	10 dic	11 dic	12 dic	5 dic (CL)
	10	16 dic	17 dic	18 dic	19 dic	13 dic

CL (cambios lectivos): El 8 de octubre, martes, será miércoles lectivo. El 5 de diciembre, jueves, será viernes a efectos lectivos.

- Tecnologías a usar:
 - JavaScript + NodeJS
 - ØMQ (y su adaptación a NodeJS)
 - Docker
- Tres proyectos que hacen uso de las tecnologías anteriores:
 - Proxy inverso TCP/IP (3 sesiones)
 - Desarrollo de aplicaciones en NodeJS con ØMQ (4 sesiones)
 - 3. Despliegue (3 sesiones)

Se detallan a continuación...

4. Laboratorios: Proyectos

Proxy inverso TCP/IP (3 sesiones)

- Tecnologías: JavaScript, NodeJS
- Objetivos: Iniciación al desarrollo con JS+NodeJS, programación asincrónica en el servidor, callbacks, desarrollo de aplicaciones
- Evaluación: junto al primer parcial
- 2. Desarrollo de aplicaciones en NodeJS con ØMQ (4 sesiones)
- 3. Despliegue (3 sesiones)

4. Laboratorios: Proyectos

- 1. Proxy inverso TCP/IP (3 sesiones)
- Desarrollo de aplicaciones en NodeJS con ØMQ (4 sesiones)
 - Tecnologías: ØMQ, JSON
 - Objetivos: Desarrollar aplicaciones distribuidas en las que los componentes son procesos que se comunican mediante un sistema de mensajería (ØMQ) adoptando roles específicos
 - Evaluación:
 - Examen específico de respuesta abierta: 2 de diciembre.
- 3. Despliegue (3 sesiones)

4. Laboratorios: Proyectos

- Proxy inverso TCP/IP (3 sesiones)
- 2. Desarrollo de aplicaciones en NodeJS con ØMQ (4 sesiones)
- 3. Despliegue (3 sesiones)
 - Tecnología puntera: Docker
 - Objetivos: Entender y preparar el despliegue de un servicio distribuido multi-componente, incluyendo tecnologías actuales de contenerización y de configuración del despliegue
 - Evaluación: mediante test junto al segundo parcial

- 1. Objetivos
- 2. Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Resumen de fechas
- 7. Bibliografía

- Deben considerarse dos partes:
 - 1. Teoría
 - 2. Laboratorio
- Esas dos partes se estructuran en tres exámenes:
 - 1. Primer parcial (35%):
 - Teoría: Temas 1, 2 y (parte del) 3
 - Proyecto 1
 - 2. Proyecto 2 (30%)
 - 3. Segundo parcial (35%):
 - Teoría: Temas (fin del 3), 4, 5 y 6
 - Proyecto 3

- Dos exámenes parciales, recuperables (70%)
- 2. Examen del segundo proyecto, recuperable (30%)
- 3. Examen de recuperación

Estas 3 pruebas se detallan a continuación...

Dos exámenes parciales, recuperables (70%)

- Exámenes tipo test individuales
 - Cuestiones de opción múltiple
 - Nota mínima: 3 puntos
- Estas pruebas incluirán este contenido:
 - Teoría
 - Proyectos 1 y 3
- > Fechas:
 - ▶ Primer parcial: 4 de noviembre (incluye el Proyecto 1).
 - Segundo parcial: 13 de enero (incluye el Proyecto 3).
- 2. Examen del segundo proyecto, recuperable (30%)
- 3. Examen de recuperación

- Dos exámenes parciales, recuperables (70%)
- 2. Examen del segundo proyecto, recuperable (30%)
 - Ejercicio individual
 - Fecha: 2 de diciembre
 - Se requiere una calificación mínima de 3 puntos
- 3. Examen de recuperación

- Dos exámenes parciales, recuperables (70%)
- 2. Examen del segundo proyecto, recuperable (30%)

3. Examen de recuperación

- Permite recuperar los exámenes anteriores
- ▶ Fecha: 30 de enero
- Su nota prevalece sobre la del examen a recuperar
 - ▶ El primer parcial incluye el Proyecto 1
 - ▶ El segundo parcial incluye el Proyecto 3

- Objetivos
- 2. Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Resumen de fechas
- 7. Bibliografía

6. Resumen de fechas

- Actos de evaluación:
 - 4 de noviembre: primer parcial (incluye el proyecto 1)
 - 2 de diciembre: examen individual sobre el proyecto 2
 - ▶ 13 de enero: segundo parcial (incluye el proyecto 3)
 - ▶ 30 de enero: recuperaciones de todas las pruebas
 - La nota de la recuperación prevalece sobre el acto original a recuperar

6. Resumen de fechas: calendario TSR/3G

Primer parcial: L04/11, 18h Laboratorio 2: L02/12, 12.15h Segundo parcial: L13/01, 15h Recuperaciones: V30/01, 11h

TSR Presentación 30

- Objetivos
- 2. Estructura
- 3. Teoría
- 4. Laboratorios
- 5. Evaluación
- 6. Resumen de fechas
- 7. Bibliografía

7. Bibliografía

- No existe un texto que se adecúe a los contenidos del curso.
 - Para cada unidad se ha elaborado una guía del estudiante
 - ES EQUIVALENTE A UN LIBRO DE LA ASIGNATURA.
 - DEBÉIS ESTUDIARLAS TODAS.
 - También se dispone de pequeñas presentaciones que explican varios conceptos importantes
- Existe mucho material disperso
 - Gran parte del material está en inglés.
- Textos generales de consulta y sitios web para profundizar en los materiales presentados en clase

7. Bibliografía

Consulta general

- Distributed Systems: Principles and Paradigms (2nd Edition). Andrew S. Tanenbaum and Maarten van Steen. Prentice Hall International, 2006. (Existe traducción al español)
- Distributed Systems: Concepts and Design (5th Edition).
 George Coulouris, Jean Dollimore, Tim Kindberg, Gordon Blair. Addison-Wesley, 2011. (Existe traducción al español)
- http://zguide.zeromq.org. Buena fuente de discusiones y ejemplos sobre estructuras de componentes distribuidos.

7. Bibliografía

- Tecnología
 - Se presenta una bibliografía básica.
 - http://nodejs.org
 - http://zguide.zeromq.org
 - http://mongodb.org
 - http://docker.com/
- Estudio de casos
 - Las referencias serán suministradas en su caso por cada profesor.

8. Dos consejos de tu profesor

Un asignatura veterana como TSR dispone de materiales muy valiosos en PoliformaT, que pueden ser usados productivamente.

¡Pero hace falta USARLOS!

El *coleccionismo* sin participación no proporciona aprendizaje.

Selecciona pocos ejercicios ¡pero complétalos!

- ¿Se puede aprender y aprobar?, ¿no es doble trabajo?
 - Vete a saber dónde estaría la humanidad, la ciencia y la universidad si el aprendizaje no llevara a la cualificación

8. Dos consejos de tu profesor

- Los alumnos que se involucran, aprenden y obtienen MUY BUENAS calificaciones. P.ej.
 - ▶ En uno de los grupos del curso 2023-2024 hubo 30 matriculados.
 - En las primeras dos semanas asistieron más de 25 estudiantes a las sesiones, pero esa asistencia disminuyó progresivamente.
 - Destacó un colectivo de entre ocho y doce estudiantes, que fue el único en asistir a las dos últimas semanas.
- No parece extraño que los resultados (antes de recuperaciones) fueran:

NOTA	PARCIAL 1	PRÁCTICA 2	PARCIAL 2
SOB	5	2	1
NOT	7	1	4
APT	7	8	3
SUS	4	7	15
N.P.	7	12	7

Cruzando los nombres de alumnos con estos números, se comprobó que aquellos que continuaron asistiendo a las clases son los que obtuvieron las mejores calificaciones.