9/24/21, 5:31 AM Udacity Reviews

< Return to Classroom

DISCUSS ON STUDENT HUB

Smart Beta Portfolio and Portfolio Optimization

REVIEW
CODE REVIEW
HISTORY

Meets Specifications

Great job, you are ready to go! We Clearly, you have acquired all the important concepts from this project. Wish you all the best for the upcoming projects! Tip: If you are interested in finding the optimal weights by other techniques, such as backtracking algorithm, I strongly suggest that you can read this article. Also, if you still find Pandas a little confusing, you might find this cheatsheet very useful.

Part 1: Smart Beta Portfolio

```
The function generate_dollar_volume_weights computes dollar volume weights.
Well done! You successfully compute the dollar volume weights.
Tip: Here is another way to do the job.
 def generate_dollar_volume_weights(close, volume):
       dollar_volume = close * volume
       return (dollar_volume.T / dollar_volume.T.sum()).T
The function calculate_dividend_weights computes dividend weights.
Well done! You successfully compute the dollar volume weights.
Tip: Here is another way to do the job.
 def calculate_dividend_weights(ex_dividend):
      dividend_cumsum_per_ticker = ex_dividend.cumsum().T
      return (dividend_cumsum_per_ticker/dividend_cumsum_per_ticker.sum()).T
The function | generate_returns | computes returns.
Fantastic, you correctly compute returns with shift function.
Tip: Here is another way to do the job.
 def generate_returns(prices):
      return prices / prices.shift(1) - 1
```

The function | generate_weighted_returns | computes weighted returns. Excellent, you correctly get the weighted returns by multiplying returns and weights 4 The function calculate_cumulative_returns computes cumulative returns. Good job! You successfully generate the cumulative returns with the cumprod function. The function tracking_error computes tracking error. Good, you successfully generate the tracking error with a correct annualized term np.sqrt(252)

Part 2: Portfolio Optimization

The function <code>get_covariance_returns</code> computes covariance of the returns. Well done, you correctly calculate the covariance of the returns with np.cov function. The function get_optimal_weights computes optimal weights. Fantastic, you correctly compute the optimal weights with cvx.Minimize .

The function rebalance_portfolio computes weights for each rebalancing of the portfolio. Excellent, you correctly get the weights for each rebalancing of the portfolio The function <code>get_portfolio_turnover</code> computes cost of all the rebalancing. Good job! You successfully generated the cost of all the rebalancing. **I** DOWNLOAD PROJECT

RETURN TO PATH

Rate this review

START