Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОННИКИ (ТУСУР)

Кафедра компьютерных систем в управлении и проектировании (КСУП)

РАЗРАБОТКА ПЛАГИНА «ПОРИСТАЯ СРЕДА» ДЛЯ СИСТЕМЫ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ «AUTOCAD»

ПРОЕКТ СИСТЕМЫ

по дисциплине

«Основы разработки САПР» (ОРСАПР)

		Выполнил:
		Студент гр. 580-2
		Иванов А.А.
« <u></u>	_>>	2023 г.
		Руководитель:
		к.т.н., доцент каф. КСУП
		Калентьев А.А.
//		2023 г

Оглавление

1 Описание САПР	3
1.1 Информация о выбранной САПР	3
1.2 Описание АРІ	3
1.3 Обзор аналогов плагина	6
2 Описание предмета проектирования	7
3 Проект Системы	8
3.1 Диаграмма классов	8
3.2 Макеты пользовательского интерфейса	9
Список используемых источников	13

1 Описание САПР

1.1 Информация о выбранной САПР

Autodesk AutoCAD — это программа автоматизированного проектирования. Он был создан Autodesk, компанией, которая в основном производит программное обеспечение и решения для таких отраслей, как архитектура, машиностроение, дизайн продукции, производство, строительство и других. AutoCAD позволяет эффективно создавать и редактировать проекты и цифровые изображения как в 2D, так и в 3D [1].

Аналоги AutoCAD:

- Autodesk Inventor;
- Autodesk Fusion 360;
- SolidWorks;
- Kompas-3D.

Данная САПР была выбрана из-за ряда преимуществ:

- Документация к АРІ;
- Обширный список инструментов для создания деталей.

1.2 Описание АРІ

Интерфейс прикладного программирования (иногда интерфейс программирования приложений) (англ. application programming ginterface, API) — набор готовых классов, процедур, функций, структур и констант, предоставляемых приложением (библиотекой, сервисом) для использования во внешних программных продуктах [2].

Для AutoCAD существует ObjectARX — набор динамически подключаемых библиотек, позволяющий реализовать взаимодействие между

разрабатываемым плагином и САПР. Для работы с ним необходимо подключить файлы API с расширением .dll в проект, использующий .NET Framework 4.8.

Свойства и методы, используемые при разработке плагина, представлены в таблицах 1.1-1.8.

Таблица 1.1 — Основные методы интерфейса DocumentManager

Название	Тип	Описание
MdiActiveDocument()	Document	Метод для создания и получения документа чертежа
MdiActiveDocument.Editor()	Editor	Метод для получения редактора текущего чертежа

Таблица 1.2 — Используемые свойства класса Database

Название	Тип данных	Описание
TransactionManager	TransactionManager	Доступ к TransactionManager для базы данных.

Таблица 1.3 — Используемые методы класса TransactionManager

Название	Тип возвращаемых данных	Описание
StartTransaction	Transaction	Начинает новую транзакцию.

Таблица 1.4 — Используемые методы класса Transaction

Название	Входные	Тип	Описание
	параметры	возвраща	
		емых	
		данных	
Commit		void	Функция фиксирует изменения,
			внесенные во все объекты DBObject,
			открытые во время транзакции, а
			затем закрывает их.
GetObject	ObjectId,	DBObject	Функция вызывает функцию Open()
	DatabaseServices.		верхней транзакции, передавая все
	OpenMode		полученные аргументы.
AddNewlyCreated	DBObject,	void	Если add == true, объект, на который
DBObject	[MarshalAs(Unm		указывает obj, добавляется в верхнюю
	anagedType.U1)]		транзакцию. Если add == false, то
	bool		объект удаляется из любой
			транзакции, в которой он находится.

Таблица 1.5 — Используемые методы класса BlockTableRecord

Название	Входные параметры	Тип	Описание
		возвращаемых	
		данных	
AppendEntity	[CallerMustClose] Entity	ObjectId	Добавляет объект в базу
			данных и запись таблицы
			блоков.
GetObject	ObjectId,	DBObject	Функция вызывает функцию
_	DatabaseServices.OpenMode	_	Open() верхней транзакции,
			передавая все полученные
			аргументы.

Таблица 1.6 — Используемые методы класса Point3dCollection

Название	Входные параметры	Тип возвращаемых	Описание
		данных	
Add	Point3d	int	Добавляет объект,
			представленный значением, в
			эту коллекцию.

Таблица 1.7 — Используемые методы класса PolyFaceMesh

Название	Входные	Тип	Описание
	параметры	возвращаемых	
		данных	
AppendFaceRecord	FaceRecord	ObjectId	Функция добавляет
			FaceRecord, на который
			указывает toAppend, в конец
			списка фейслей PolyFaceMesh
AppendVertex	PolyFaceMeshVertex	ObjectId	Функция добавляет объект
			PolyFaceMeshVertex, на
			который указывает
			vertexToAppend, в конец
			списка вершин PolyFaceMesh

Таблица 1.8 — Используемые методы класса SubDMesh

Название	Входные параметры	Тип	Описание
		возвращаем	
		ых данных	
SetSubDMesh	Point3dCollection,	void	Создает сетку для заданного
	Int32Collectionm, int		массива вершин и массива
			списка граней.
ConvertToSolid	[MarshalAs(Unmanaged	Solid3d	Создает объект AcDb3dSolid из
	Type.U1)] bool,		данных сетки
	[MarshalAs(Unmanaged		
	Type.U1)] bool		

1.3 Обзор аналогов плагина

Прямых аналогов для данного плагина нет. Косвенные плагины реализовывают только часть требуемой функциональности.

Плагин GeoMESH предоставляет инструменты для создания и редактирования цифровых моделей рельефа и триангулированных нерегулярных сетей.

GeoMESH предоставляет команды для:

- Чтение точек местности из LAS и текстовых файлов;
- Генерация сетки для неравномерно распределенных точек местности;
 - Генерация контурных линий;
 - Создание шаблонов контурных линий;
 - Строительство секций;
- Расчет разницы объемов между различными моделями местности [3].

Пользовательский интерфейс представлен на рисунке 1.1.

Рисунок 1.1 — Пользовательский интерфейс плагина GeoMESH

2 Описание предмета проектирования

Пористый материал — твердое тело, содержащее в своем объёме свободное пространство в виде полостей, каналов или пор. В пористых материалах с губчатой структурой невозможно выделить отдельные первичные частицы, и поры в них представляют собой сеть каналов и полостей различной формы и переменного сечения.

Рисунок 1.2 — Модель пористой среды с размерами

Изменяемые параметры для плагина (также все обозначения показаны на рис. 1.2):

- длина моделируемой среды L (0,001-1000мм; 1 1000мм, если ширина или высота меньше 1мм);
- ширина моделируемой среды W (0,001 1000мм; 1 1000мм, если длина или высота меньше 1мм);
- высота моделируемой среды Н (0,001 1000мм; 1 1000мм, если длина или ширина меньше 1мм);
- пористость I (5 80% от общего объёма моделируемой среды. Доля объема порового пространства в общем объеме пористой среды);
 - размер пор D (0,001 0,06мм от общей высоты забора).

3 Проект Системы

3.1 Диаграмма классов

Диаграмма классов (class diagram) показывает набор классов, интерфейсов и коопераций, а также их связи. Диаграммы этого вида чаще всего используются для моделирования объектно-ориентированных систем. Предназначены для статического представления системы. Диаграммы классов, включающие активные классы, представляют статическое представление процессов системы [4].

Диаграмма классов для плагина представлена на рисунке 3.1.

Класс ParameterValue хранит в себе значение параметра и проверяет значение на принадлежность к диапазону.

Класс Parameter служит связкой между ParameterValue и ParameterUserCotrol.

Класс PorousParameter хранит в себе все созданные параметры и связывает их с ParameterType.

Класс PorousBuilder строит искомую модель.

Класс NoiseGenerator генерирует шаблон шума по заданным параметрам для дальнейшего построения модели.

Класс Wrapper связывает CAD систему с MainForm.

Рисунок 3.1 — UML-диаграмма классов плагина

3.2 Макеты пользовательского интерфейса

На рисунках 3.2-3.6 представлены макеты пользовательского интерфейса.

Рисунок 3.2 — Макет пользовательского интерфейса

Рисунок 3.3 — Обозначение блоков в пользовательском интерфейсе. 1 — название параметров; 2 — поля для ввода значений параметров; 3 — ограничения параметров; 4 — кнопка построения

Рисунок 3.4 — Макет пользовательского интерфейса с неправильно введёнными значениями параметров

Рисунок 3.5 — Макет пользовательского интерфейса при попытке построения фигуры с неправильно введённым параметром

Рисунок 3.6 — Макет пользовательского интерфейса при попытке построения фигуры с несколькими неправильно введёнными параметрами

Список используемых источников

- 1 What Is AutoCAD and What Is It Used For? [Электронный ресурс]. Режим доступа: свободный (дата обращения: 22.10.2023), https://www.makeuseof.com/what-is-autocad/
- 2 Иванова В., Путь аналитика. Практическое руководство ІТ-специалиста. 2-е изд. [Текст]/Иванова В., Перерва А. СПб.: Питер, 2015. 304 с
- 3 GeoMESH | AutoCAD | Autodesk App Store. [Электронный ресурс]. Режим доступа: свободный (дата обращения: 09.10.2023), https://apps.autodesk.com/ACD/ru/Detail/Index?id=1842816844021215808&app Lang=en&os=Win64
- 4 Буч, Г. Язык UML. Руководство пользователя. 2-е изд. [Текст]/Г. Буч, Д. Рамбо, И. Якобсон. М.: ДМК Пресс, 2006. 496 с