

Automating Highly Critical ACI Data Center Operations

A Customer Use-Case

Sebastian Jeuk, Architect, CX Dylan Pedavoli, Consultant, CX

DEVLIT-4039

Barcelona | January 27-31, 2020

Cisco Webex Teams

Questions?

Use Cisco Webex Teams to chat with the speaker after the session

How

- 1 Find this session in the Cisco Events Mobile App
- 2 Click "Join the Discussion"
- 3 Install Webex Teams or go directly to the team space
- 4 Enter messages/questions in the team space

Wondering if Automation is the Solution for your DC Migration?

Agenda

- A Customer Migration Use-Case
- Why Automation helped solving the Customer's Use-Case
- How the Customer's Use-Case was Automated
- Migration Demo
- Lessons Learnt

The Customer Requirements

Migrate Legacy Environment to Cisco ACI (SDN-Solution) without any Downtime and Risk to Production Environment.

- Large and Complex Legacy Environment
 - · Hundreds of IOS and NX-OS devices to be migrated
 - Tens of Thousands of Endpoints
 - · Custom-build STP-based layer-2 legacy architecture
- Migration during live production with no to minimal failover times
- Complete Migration within a 3-Month window
- Migration Rollback capabilities at every stage of the way

The Migration Preparation and Decision to Automate

- Develop understanding of Legacy Network and Application Interactions
- Define Method of Procedure for every Scenario, Network Element Type and Configuration
- Network continuously changing (no freeze window)

An ever-changing, complex and large legacy Network and ad-hoc migration execution led to the decision to fully automate the migration

Why Automation solved the Customers Migration Use-Case

- No Manual intervention during Migration (except for cable move)
- Simplify a complex Migration
- Eliminate human Errors
- Reduce Migration Windows
- Pre-validate full Migration in Cisco Lab

What we Automated

End-to-End Automation

Automation is the Solution

How Did We Automate?

Step 1: Collect Network Data

Export as	
data files	

Network Elements			
Responding	<u>1107</u> ■		
Not Responding	<u>16</u> ■		
Added In Last Download	0		
Deleted In Last Download	0		
Duplicate Network Elements	0		

Step 1: Collect Network Data

- Having a source of truth for the network. How does the network look?
 - · Some internal application that collects configuration backups, output etc.
 - In our case: Collected from CSPC (Common Platform Services Collector)
- All initial data needed to be exported as data files.
 - Inventory information in .xls files (such as software version, hardware platforms)
 - Command output files as .txt (show commands, cdp neighbors, interface status)
 - · Configuration files as .txt or .cfg
- Create data files to be used for the target network.
 - Any information that cannot be retrieved from the legacy devices.
 - · New configuration items required post-migration
 - · New uplink information.

show interface co	ounters error	
show interface st	atus	1
show interface tra	ansceiver	1
show interface trunk		
show inventory		1
show ip eigrp nei	<u>ghbors</u>	1
		1
	1107	- 1
	1107	_
	<u>16</u>	
	0	

show environmen

show install active

show install committed

ř	CSPC Data	Export as
	Collection	data files

Network Elements

Added In Last Download

Deleted In Last Download

Duplicate Network Elements

Responding

Not Responding

0

Step 2: Convert Data to Structured Data

```
interface GigabitEthernet0/1
switchport access vlan 200
switchport mode access
spanning-tree portfast
!
interface GigabitEthernet0/2
ip add 1.1.1.1 255.255.255.0
no shutdown
!
interface GigabitEthernet0/3
switchport access vlan 200
switchport mode access
spanning-tree portfast
!
```

```
"hostname-SW-N5K1": {
   "serial number": "FOC123XXXX",
   "mgmt ipv4 address": "192.168.10.10",
   "chassis type": "N5K-C5672UP",
   "environment": "Pre Production",
   "legacy portchannel": "500",
   "legacy physical ints": ["Ethernet1/9", "Ethernet1/10"],
   "legacy upstream physicals ints": ["Ethernet2/9", "Ethernet2/10"],
   "target physical ints": ["Ethernet2/3", "Ethernet2/4"],
   "target upstream devices": ["ACI LEAF101", "ACI LEAF102"],
   "target upstream physicals ints": ["Ethernet1/8", "Ethernet1/8"],
   "target portchannel": "501",
   "vlans to migrate": [
           "vlan id": "36",
           "vlan name": "Pre-Production-Staging",
           "vlan_hsrp_gateway": ["10.145.45.1/24"],
           "macaddr": "0000.0c07.ac10",
           "vrf": "1 PreProd",
           "aci bridge domain": "BRD Pre 36",
           "aci epg": "EPG Pre 36",
           "aci tenant": "PRE PRODUCTION",
           "aci l3out policy name": "L30 VRF 1-PRE-PROD POD2"
    "pod id": "2",
   "site id": "2"
    "topology type": "NXOS 5K Standalone"
```

Step 2: Convert Data to Structured Data

- A Python script was used to grab all relevant data to create a master.json file.
 - All inventory information now in the form of structured data (200MB JSON File)
- The JSON data can now be used for all automation functions.
 - Data is static and required only a script re-run in order to pull updated legacy data and devices.

Easy access of device data for python applications and network

programmability

```
interface GigabitEthernet0/1
switchport access vlan 200
switchport mode access
spanning-tree portfast
!
interface GigabitEthernet0/2
ip add 1.1.1.1 255.255.255.0
no shutdown
!
interface GigabitEthernet0/3
switchport access vlan 200
switchport mode access
spanning-tree portfast
!
```

```
"hostname-SW-N5K1":
    "serial number": "FOC123XXXX",
    "mgmt ipv4 address": "192.168.10.10",
   "chassis type": "N5K-C5672UP",
   "environment": "Pre Production",
    "legacy portchannel": "500",
   "legacy_physical_ints": ["Ethernet1/9", "Ethernet1/10"],
   "legacy_upstream_physicals_ints": ["Ethernet2/9", "Ethernet2/10"],
    "target physical ints": ["Ethernet2/3", "Ethernet2/4"],
    "target upstream devices": ["ACI LEAF101", "ACI LEAF102"],
    "target upstream physicals ints": ["Ethernet1/8", "Ethernet1/8"],
   "target portchannel": "501",
    "vlans to migrate": [
           "vlan id": "36",
           "vlan name": "Pre-Production-Staging",
           "vlan hsrp gateway": ["10.145.45.1/24"],
           "macaddr": "0000.0c07.ac10",
           "vrf": "1 PreProd",
           "aci bridge domain": "BRD Pre 36",
           "aci epg": "EPG Pre 36",
           "aci tenant": "PRE PRODUCTION",
           "aci l3out policy name": "L30 VRF 1-PRE-PROD POD2"
    'topology type": "NXOS 5K Standalone
```

Step 3: Automated Scripts & Method of Procedure

```
Interface
                               IP-Address
                                              OK? Method Status
                                                                               Protocol
GigabitEthernet0/0
                               unassigned
                                               YES unset down
                                                                               down
GigabitEthernet0/1
                               unassigned
                                               YES unset down
                                                                               down
GigabitEthernet0/2
                               unassigned
                                               YES unset down
                                                                               down
GigabitEthernet0/3
                               unassigned
                                               YES unset down
                                                                               down
GigabitEthernet0/4
                               10.10.10.10
                                               YES manual up
                                                                                up
Vlan1
                               unassigned
                                               YES unset down
                                                                               down
                                                    TextFSM
```

```
from jinja2 import Template
template = Template('Hello {{ name }}!')
print template.render(name='John Doe')
t = Template("My favorite numbers: {% for n in range(1,10)
print t.render()
```


Hello John Doe! My favorite numbers: 1 2 3 4 5 6 7 8 9

Step 3: Automated Scripts & Method of Procedure

- Structured JSON data now supports.....
 - Automated documentation for migration procedures JINJA2 (python library for templating)
 - Automated migrations using Netmiko, TextFSM, RestAPI
 - Stick to open source, don't reinvent the wheel!
 - Automated testing using the Cisco Labs (ROBOT Framework)
 - Layer 1 switch > automated cable change testing
 - Setup and baseline verifications

```
from jinja2 import Template
template = Template('Hello {{ name }}!')
print template.render(name='John Doe')
t = Template("My favorite numbers: {% for n in range(1,10)
print t.render()
```



```
Hello John Doe!
My favorite numbers: 1 2 3 4 5 6 7 8 9
```


Protocol

down

down

down

down

['Vlan1', 'unassigned', 'down', 'down'

['GigabitEthernet0/0', 'unassigned', 'down', 'down'] ['GigabitEthernet0/1', 'unassigned', 'down', 'down'] ['GigabitEthernet0/2', 'unassigned', 'down', 'down']

['GigabitEthernet0/3', 'unassigned', 'down', 'down']

['GigabitEthernet0/4', '10.10.10.10', 'up', 'up']

Demo

cisco life!

Lessons Learnt

Lessons Learnt

Automation enabled a successful and timely Migration

Prior Migration

- A complete understanding of legacy environment is critical
- · Upfront planning reduces risk at later stages
- Extensive testing shifts risk away from Production

During Migration

Rollback capabilities are key to recover from unforeseen events

Programmability

- · Custom functions require additional testing and can cause overhead
- Open Source Tools/Methods validated by community and readily available

Key Takeaways

Automation is the Solution, but ...

Automation only as good as Preparation

Data Center Migration not possible without Automation

Even Automation can't solve 100% of the Migration Scenarios

Complete your online session survey

- Please complete your session survey after each session. Your feedback is very important.
- Complete a minimum of 4 session surveys and the Overall Conference survey (starting on Thursday) to receive your Cisco Live t-shirt.
- All surveys can be taken in the Cisco Events Mobile App or by logging in to the Content Catalog on <u>ciscolive.com/emea</u>.

Cisco Live sessions will be available for viewing on demand after the event at ciscolive.com.

Continue your education

Related Session

- Coding 1001 Intro to APIs and REST DEVNET-1897
- Coding 1002 Getting Started with Python DEVNET-1893

- Automated & Reliable Nexus to ACI Migration Best Practices BRKDCN-2937
- Automating ACI BRKACI-2770
- ACI Infrastructure as code Automating ACI with Terraform LABACI-1007

Automation is the Solution

CISCO Life!

Barcelona | January 27-31, 2020

DEVLIT-4039

You make possible