Υπολογιστική Νοημοσύνη

<u>Εργασία 1</u>

Έλεγχος γωνίας προσανατολισμού ενός δορυφόρου με ασαφείς ελεγκτές

Ονοματεπώνυμο: Σιδηρόπουλος Λεωνίδας

AEM: 9818

email: <u>leonsidi@ece.auth.gr</u> Περίοδος: Φεβρουάριος 2023

Σχεδίαση γραμμικού ελεγκτή

Σε αυτήν την εργασία καλούμαστε να σχεδιάσουμε ένα γραμμικό ελεγκτή με τα εξής χαρακτηριστικά:

- 1. Υπερύψωση για βηματική είσοδο (M_p) μικρότερη από 10%.
- 2. Χρόνος ανόδου $(t_{_{_{\!T}}})$ μικρότερος από 1.2 seconds.

Ο ελεγκτής μπορεί να μοντελοποιηθεί ως εξής:

$$G_c(s) = K_p + \frac{K_I}{s} = \frac{K_p(s+c)}{s}, c = \frac{K_I}{K_p}$$

Αυθαίρετα επιλέγουμε το c μεταξύ των -1, -9 και πιο κοντά στο -1. Οπότε έστω c = 2.

Η συνάρτηση ανοιχτού βρόχου Α(s) προκύπτει:

$$A(s) = G_c(s) * G_p(s) = \frac{K_p(s+c)}{s} * \frac{10}{(s+1)(s+9)} = \frac{10K_p(s+2)}{s(s+1)(s+9)}$$

Χρησιμοποιώντας το matlab script "PI_controller.m", το διάγραμμα του γεωμετρικού τόπου των ριζών με το rlocus είναι:

Η υπερύψωση δίνεται από τον τύπο: $M_p = e^{\frac{-\zeta^*\pi}{\sqrt{1-\zeta^2}}} * 100\%$

και η φυσική συχνότητα από τον τύπο: $\omega_n = \frac{1.8}{t_r}$

Λύνοντας τις 2 παραπάνω εξισώσεις προκύπτει:

$$\zeta = 0.5911, \, \omega_n = 1.5$$

Επομένως, επιλέγοντας ως $K_p=0.8$ κατασκευάζουμε το διάγραμμα της βηματικής απόκρισης και παρατηρούμε ότι: $M_p=9.3554<10\%,\,t_r=1.0906<1.2~{\rm sec}$ άρα οι τιμές

είναι αποδεκτές. Επομένως θα έχουμε $K_p = 0.8$, $K_{\rm I} = c * K_p = 2 * 0.8 = 1.6$

Σχεδίαση ασαφούς ελεγκτή (FLC)

Για τις συναρτήσεις συμμετοχής διαθέτουμε 7 λεκτικές μεταβλητές για το σφάλμα (Error), 9 λεκτικές μεταβλητές για τη μεταβολή του σφάλματος (Change of Error) και 9 λεκτικές μεταβλητές για τη μεταβολή του σήματος ελέγχου (Change of U). Τα χαρακτηριστικά του FLC είναι τα εξής:

• Ασαφοποιητής: Singleton

• AND: min

• ALSO: max

• Συνάρτηση συμπερασμού: κανόνας Larsen

• Απο-ασαφοποιητής: COA

Χρησιμοποιώντας το matlab script "fis.m", το FIS που καλούμαστε να σχεδιάσουμε είναι το παρακάτω:

System satellite: 2 inputs, 1 outputs, 63 rules

Στη συνέχεια παρουσιάζονται οι συναρτήσεις συμμετοχής για το σφάλμα (Ε), τη μεταβολή του σφάλματος (CE) και τη μεταβολή του σήματος ελέγχου (CU):

Η βάση κανόνων διαμορφώνεται ως εξής:

		E									
		NL	NM	NS	ZR	PS	PM	PL			
	PV	PS	PM	PL	PV	PV	PV	PV			
	PL	ZR	PS	PM	PL	PV	PV	PV			
	PM	NS	ZR	PS	PM	PL	PV	PV			
CE	PS	NM	NS	ZR	PS	PM	PL	PV			
	ZR	NL	NM	NS	ZR	PS	PM	PL			
	NS	NV	NL	NM	NS	ZR	PS	PM			
	NM	NV	NV	NL	NM	NS	ZR	PS			
	NL	NV	NV	NV	NL	NM	NS	ZR			
	NV	NV	NV	NV	NV	NL	NM	NS			

Για την υλοποίηση του απο-ασαφοποιητή με την τεχνική Center of Area (COA), χρησιμοποιούμε το matlab script "customdefuzz.m". Οι είσοδος είναι οι τιμές των x και y των συναρτήσεων συμμετοχής και η έξοδος είναι:

$$CoA = \frac{\sum_{min}^{x} f(x) * x dx}{\sum_{max}^{x} f(x) dx}$$

όπου χ είναι η τιμή της linguistic μεταβλητής, Xmax και Xmin αντιπροσωπεύουν το εύρος της linguistic μεταβλητής.

Σενάριο 1

α) Στο αρχείο "scenario1.slx" υλοποιούμε το σύστημα ελέγχου και τον ελεγκτή FZ-PI στη Simulink όπως φαίνεται παρακάτω:

Σύστημα ελέγχου

Ελεγκτής FZ-PI

Πρέπει:

- T = 0.01 sec
- $r \in [0, 50]$
- $M_p < 7\%$
- $t_r < 0.6 \text{ sec}$

Θέτουμε $K_e = 1$ και έχουμε:

•
$$\alpha = \frac{K_P}{K_I} = \frac{0.8}{1.6} = 0.5$$

•
$$K = \frac{K_p}{F\{a * K_a\}} = \frac{0.8}{F\{0.5 * 1\}} = \frac{0.8}{0.5 * 1} = 1.6$$

Η απόκριση για τη μέγιστη είσοδο w(k) = 50 είναι:

Παρατηρούμε ότι τα αποτελέσματα δεν είναι αποδεκτά καθώς $M_p=9.341\%>7\%,\,t_r=1.087\,sec>0.6\,sec$, επομένως χρειάζεται να κάνουμε αλλαγές στις τιμές των K_e , K και α , όπου θα αυξήσουμε τα 2 πρώτα και θα μειώσουμε το τελευταίο. Μειώνοντας το α , μειώνεται κατά πολύ ο t_r αλλά αυξάνεται η M_p και γι αυτό χρειάζεται αύξηση των κερδών K_e και K.

Επομένως, ξανατρέχουμε την προσομοίωση με τα νέα δεδομένα: $K_e=1.5,\,K=50,\,\alpha=0.25$ και έχουμε:

Παρατηρούμε ότι τα αποτελέσματα είναι αποδεκτά καθώς $M_p=4.737\%<7\%$, $t_r=0.467~sec<0.6~sec$. Στον παρακάτω πίνακα συνοψίζονται οι τιμές των παραμέτρων για τον γραμμικό ελεγκτή και για τον αρχικό και τελικό FZ-PI.

Ελεγκτής	K_{p}	$K_{_{I}}$	α	K	K_{e}	t_r (sec)	$M_p(\%)$
Γραμμικός ΡΙ	8.0	1.6	1	1	1	1.0906	9.3554
Αρχικός FZ-PI	-	-	0.5	1.6	1	1.087	9.341
Τελικός FZ-PI	-	-	0.25	50	1.5	0.467	4.737

Παρατηρήσεις: Από τον παραπάνω πίνακα, βλέπουμε πως ο FZ-PI είναι καλύτερος από τον γραμμικό ελεγκτή.

β) Αν το σφάλμα (Ε) είναι το NS και η μεταβολή του σφάλματος (CE) είναι το ZR τότε η μεταβολή του σήματος ελέγχου (CU) είναι το NS, σύμφωνα με τον πίνακα της βάσης κανόνων πιο πάνω.

Πηγαίνοντας στο matlab script "fis.m" με την εντολή "ruleview(fis_obj)" στο τέλος του κώδικα παίρνουμε το διάγραμμα των κανόνων που διεγείρονται και που φαίνεται παρακάτω.

γ) Η 3D επιφάνεια του ασαφή ελεγκτή παρουσιάζεται παρακάτω.

Στόχος του ελεγκτή είναι η μείωση του σφάλματος στο 0. Αν το σφάλμα (Ε) και η μεταβολή του σφάλματος (CE) είναι συγχρόνως αρνητικά, τότε το σφάλμα έχει αυξητική τάση και ο ελεγκτής δίνει μια αρνητική έξοδο για να διορθώσει το σφάλμα. Αν τώρα το σφάλμα (Ε) και η μεταβολή του σφάλματος (CE) είναι συγχρόνως θετικά, τότε το σφάλμα έχει αυξητική τάση και ο ελεγκτής δίνει μια θετική έξοδο για να διορθώσει το σφάλμα. Τέλος δεν είναι αναγκαία επιπρόσθετη έξοδος, όταν το σφάλμα αυτοδιορθώνεται ή είναι 0.

Σενάριο 2

Ελεγκτής FZ-PI

Στο αρχείο "scenario2.slx" για να πάρουμε ξεχωριστά τις αποκρίσεις του ελεγκτή για τον τετραγωνικό και τραπεζοειδή παλμό, πρέπει να συνδέσουμε και να αποσυνδέσουμε τις εισόδους Signal 1 και Signal 2.

Απόκριση ελεγκτή με τετραγωνικό παλμό

Παρατηρούμε ότι στον τετραγωνικό παλμό δεν υπάρχουν μεταβάσεις, άρα έχει καλύτερη απόκριση σε σύγκριση με τον τραπεζοειδή παλμό.