Cosmmus? Suporte a jogos maciçamente multijogador em cenários com recursos limitados

Carlos Eduardo Benevides Bezerra Federal University of Rio Grande do Sul Bento Gonçalves, 9500, Porto Alegre, RS, Brazil E-mail: carlos.bezerra@inf.ufrgs.br

Abstract—Traditionally, a central server is utilized to provide support to massively multiplayer games, where the number of participants is of the order of tens of thousands. In this work, it is proposed the utilization of geographically distributed lowercost nodes, employing techniques to minimize the necessary bandwidth to these server nodes. One of these techniques is a refinement of interest management algorithm, which obtained significant results in simulations. Other techniques still in preliminary phase of specification are: server nodes overlay network construction using knowledge of the real network topology, load balancing and hotspots dectection.

I. INTRODUCTION

Atualmente, jogos eletrônicos têm se tornado bastante populares, especialmente os jogos maciçamente multijogador, onde há um número de participantes simultâneos da ordem de dezenas de milhares [1]. Como exemplos, podemos citar World of Warcraft [2], Lineage II [3] e Guild Wars [4].

Usualmente, o suporte de rede para este tipo de aplicação consiste em um servidor central com recursos - capacidade de processamento e largura de banda para comunicação com os jogadores - super-dimensionados, ao qual se conectam as máquinas clientes. Cada jogador interage através de um destes clientes, que envia suas ações para o servidor, que as processa, verificando que alterações no jogo elas causam, e difunde o resultado para todos os clientes envolvidos. Em virtude do número de participantes simultâneos que este tipo de jogo costuma ter, percebe-se que tais tarefas demandam por uma quantidade de recursos significativa, no que tange a poder de processamento e, principalmente, largura de banda disponível para que sejam enviadas e recebidas as atualizações de estado.

Nos últimos anos, têm-se pesquisado alternativas à abordagem com servidor centralizado. Uma delas é a distribuição, entre os próprios participantes, tanto da simulação do jogo quanto da responsabilidade de atualizarem-se entre si quando realizam ações. A comunicação entre eles ocorre par-a-par, formando uma rede descentralizada [5]. Esta abordagem seria o ideal, não fossem alguns prolemas que lhe são inerentes. Por exemplo, como os jogadores participam do processamento da simulação, é necessário que eles entrem em acordo no que diz respeito ao estado da partida, sob pena de haver inconsistências caso isto não seja feito.

Outra questão se refere ao número de envios que cada participante tem que executar. No modelo cliente-servidor, basta que cada um envie suas ações para o servidor, que se encarrega de simular e difundir o novo estado para os outros

jogadores. No caso do modelo par-a-par, cada par envolvido torna-se responsável por enviar atualizações de estado para os outros participantes. O problema disto reside no fato de que não se pode garantir que todos os jogadores possuam conexões de rede com largura de banda suficiente para isso. Por fim, sem um servidor central, que poderia atuar como árbitro, o jogo torna-se dependente da simulação que os próprios jogadores executam, que pode ser desvirtuada de forma a chegar a um resultado inválido, que beneficie indevidamente determinado jogador ou mesmo que invalide a sessão de jogo.

Além do modelo par-a-par, existe também a alternativa de utilizar um servidor distribuído, em que diversos nodos conectados entre si dividem a tarefa de simular o jogo, como também de enviar as atualizações de estado aos jogadores [6]. Tal abordagem possibilita o uso de computadores de menor custo para comporem o sistema distribuído servidor, barateando a infra-estrutura de suporte. Questões como consistência e vulnerabilidade a trapaça podem ser abstraídas, restringindo o conjunto de nodos servidores a computadores comprovadamente confiáveis, o que é plausível, levando em conta que o número de nodos servidores deverá ser algumas ordens de grandeza menor do que o número de jogadores. Além disso, não é necessário exigir que cada jogador envie atualizações de estado para os outros jogadores. Com menores exigências de largura de banda e processaento aos jogadores, o jogo torna-se acessível para um maior público.

O presente trabalho propõe uma abordagem de servidores distribuídos, utilizando técnicas para reduzir o consumo de largura de banda causado pelo tráfego do jogo entre os servidores e os clientes, diminuindo a quantidade de recursos necessários, através de um refinamento da técnica de gerenciamento de interesse dos jogadores. [rever-repensar]Uma das propostas consiste em um refinamento da técnica de gerenciamento de interesse [7], que obteve resultados significativos nas simulações realizadas. Além disso, propõe-se uma técnica que visa prover qualidade de serviço, adaptando a freqüência de atualizações enviadas pelo servidor à disponibilidade de recursos. [sure?]Outra consiste em um heurística para detecção de aglomerados de jogadores - ou hotspots - de forma a otimizar o balanceamento de carga entre os servidores.[/sure?]

O artigo está dividido da seguinte maneira: na seção II são citados alguns trabalhos relacionados onde buscou-se distribuir o servidor do jogo; na seção III, são apresentadas as definições de alguns conceitos utilizados ao longo do texto; na seção

IV, é descrito o modelo de distribuição proposto; na seção V é apresentada a otimização proposta para reduzir o tráfego sem comprometer a qualidade do jogo; nas seções VI e VII é descrita a simulação realizada para validar a técnica proposta e os resultados obtidos, respectivamente e, na seção VIII, são apresentadas as conclusões a que se chegou neste trabalho.

II. RELATED WORK

Como já foi dito, alguns trabalhos já foram feitos nos últimos anos visando distribuir o suporte a jogos maciçamente multijogador. Uma das abordagens é o modelo par-a-par, que tem algumas dificuldades, no que se refere a consistência do estado do jogo nos diferentes pares participantes, vulnerabilidade a trapaça e uso eficiente de largura de banda. Alguns autores propõem abordagens cujo objetivo é minimizar estes problemas. Um destes trabalhos [5] propõe a divisão do ambiente virtual simulado no jogo em regiões, e dentro de cada região é escolhido um par que será eleito coordenador daquela região. Sua função será a de gerenciar o interesse dos jogadores, verificando para quais pares cada atualização realmente precisa ser enviada. Dessa forma, reduz-se o uso de largura de banda de envio dos pares. No entanto, o uso de largura de banda de envio de cada participante ainda tende a ser significativamente superior àquele necessário quando utilizado o modelo cliente-servidor, pois neste é necessário que cada jogador envie suas ações para apenas um destino. No modelo par-a-par, cada jogador deve atualizar, normalmente, mais de um outro jogador. Além disso, é necessário que o par escolhido para gerenciar o interesse naquela região seja confiável.

Outro trabalho voltado para o modelo par-a-par [8] tem uma abordagem semelhante à de [5], mas sugere que, para cada região do ambiente virtual, seja criada uma "federação de servidores", formada por pares escolhidos entre os participantes. A simulação torna-se mais confiável, já que diferentes nodos irão gerenciar aquele lugar no mundo do jogo e precisarão estar em acordo para que a simulação prossiga. Porém, o risco dos nodos escolhidos para gerenciarem aquela região cometerem trapaça de conluio [9] não é eliminado. Além disso, o próprio acordo entre os nodos servidores, que provê maior confiabilidade na simulação, implica em grande quantidade de tráfego entre os nodos participantes, além de potencialmente atrasar cada passo da simulação.

Em [6], é proposta uma arquitetura distribuída para jogos maciçamente multijogador, também baseada na divisão do ambiente virtual do jogo em regiões, porém a cada uma destas estaria associado um nodo servidor. O jogador que estivesse situado em determinado lugar no mundo virtual deveria conectar-se ao servidor responsável por aquela região. Desta forma, cada servidor agruparia diferentes jogadores, baseado em sua localidade no ambiente do jogo. Para alcançar consistência entre os diferentes nodos servidores efetuando a simulação, é utilizado o conceito de travas. Quando um determinado nodo servidor precisa alterar o estado de uma entidade qualquer da partida, primeiro precisa obter acesso exclusivo àquela entidade. Para isso, ele negocia com os outros

nodos servidores que possam também querer fazer alguma alteração, para somente então efetuar a mudança. Quando termina, o acesso é liberado, e os outros servidores são avisados através de mensagens.

A primeira grande restrição no trabalho de [6], no entanto, é a premissa de que os nodos servidores estão conectados através de uma rede de alta velocidade e baixa latência, o que não pode ser assumido quando se trata de nodos de mais baixo custo geograficamente distribuídos. Outro problema é que a questão da escalabilidade é tratada através da pura e simples expansão do ambiente virtual, supondo que os jogadores se espalharão por ele. Por último, sugere-se resolver o problema de haver um grande número de jogadores no mesmo lugar através de sucessivos reparticionamentos recursivos das regiões, de forma a dividir os jogadores entre diferentes servidores. No entanto, existe um limite para o reparticionamento do ambiente virtual, e é deixado de lado o que fazer quando é atingido este limite.

III. DEFINITIONS

Neste artigo será descrito o modelo de suporte a jogos maciçamente jogador proposto e, ao longo do texto, serão utilizados alguns termos que precisam antes ser definidos, pois alguns deles são específicos da área de jogos de computador. Define-se avatar como sendo a representação no ambiente virtual do jogador, que, através dele, interage com o mundo do jogo e com outros jogadores. Regiões são divisões do ambiente virtual, cada uma podendo conter jogadores presentes. Assumindo regiões contíguas, define-se fronteira como sendo a divisa entre duas regiões adjacentes. Será utilizado o termo cliente para referir-se ao computador utilizado por cada jogador para conectar-se a um dos servidores do jogo, assim como o termo servidor fará referência a cada nodo integrante do sistema distribuído que estará servindo o jogo.

IV. DISTRIBUTION MODEL
V. GRADUAL AREA OF INTEREST
VI. SIMULATION
VII. RESULTS
VIII. CONCLUSION

The conclusion goes here.

ACKNOWLEDGMENT

The authors would like to thank...

REFERENCES

- F. Cecin, R. Real, R. de Oliveira Jannone, C. Geyer, M. Martins, and J. Barbosa, "FreeMMG: A Scalable and Cheat-Resistant Distribution Model for Internet Games," *IEEE Int. Sym. on Distributed Simulation and Real-Time Applications*, pp. 83–90, 2004.
- [2] Blizzard, "World of warcraft," 2004, http://www.worldofwarcraft.com/.
- [3] NCsoft, "Lineage ii," 2003, http://www.lineage2.com/.
- [4] ArenaNet, "Guild wars," 2005, http://www.guildwars.com/.
- [5] G. Schiele, R. Suselbeck, A. Wacker, J. Hahner, C. Becker, and T. Weis, "Requirements of Peer-to-Peer-based Massively Multiplayer Online Gaming," Proceedings of the Seventh IEEE International Symposium on Cluster Computing and the Grid, pp. 773–782, 2007.
- [6] M. Assiotis and V. Tzanov, "A distributed architecture for MMORPG," Proceedings of 5th ACM SIGCOMM workshop on Network and system support for games, 2006.

- [7] J. Boulanger, J. Kienzle, and C. Verbrugge, "Comparing interest management algorithms for massively multiplayer games," *Proceedings of 5th ACM SIGCOMM workshop on Network and system support for games*, 2006.
- [8] T. Iimura, H. Hazeyama, and Y. Kadobayashi, "Zoned federation of game servers: a peer-to-peer approach to scalable multi-player online games," Proceedings of ACM SIGCOMM 2004 workshops on NetGames' 04: Network and system support for games, pp. 116–120, 2004.
- [9] J. Yan and B. Randell, "A systematic classification of cheating in online games," Proceedings of 4th ACM SIGCOMM workshop on Network and system support for games, pp. 1–9, 2005.