# Axioma de Completitud de los números Reales

#### Análisis Real

#### Axioma de Completitud de los números Reales

El axioma de completitud, entre otras cosas, nos permitirá introducir cierto subconjunto de lo números Reales: los Irracionales, además de proporcionar a los Reales de una propiedad de "densidad" que es fundamental en muchos teoremas del Análisis

#### Conjuntos Acotados

Sea S un subconjunto no vacío de  $\mathbb{R}$ . Se dice que es:

1. Acotado superiormente si existe un número  $u \in \mathbb{R}$  tal que  $x \leq u$  para todo  $x \in S$ .

En este caso u se denomina cota superior de S









#### Conjuntos Acotados

Sea S un subconjunto no vacío de  $\mathbb{R}$ . Se dice que es:

1. Acotado superiormente si existe un número  $u\in\mathbb{R}$  tal que  $x\leq u \text{ para todo } x\in S.$ 

En este caso u se denomina cota superior de S

2. Acotado inferiormente si existe un número  $w\in\mathbb{R}$  tal que  $w\leq x \text{ para todo } x\in S.$ 

En este caso w se denomina cota inferior de S









#### Conjuntos Acotados

Sea S un subconjunto no vacío de  $\mathbb{R}$ . Se dice que es:

1. Acotado superiormente si existe un número  $u \in \mathbb{R}$  tal que  $x \leq u$  para todo  $x \in S$ .

En este caso u se denomina cota superior de S

2. Acotado inferiormente si existe un número  $w \in \mathbb{R}$  tal que  $w \leq x$  para todo  $x \in S$ .

En este caso w se denomina cota inferior de S

3. Acotado si es acotado superior e inferiormente, en caso contrario se dice que es no acotado













# Ejemplos de subconjuntos acotados y no acotados en $\mathbb R$

1.  $A = \{x \in \mathbb{R} : 0 < x\}$  está acotado inferiormente pero no superiormente.

















# Ejemplos de subconjuntos acotados y no acotados en $\mathbb R$

- 1.  $A = \{x \in \mathbb{R} : 0 < x\}$  está acotado inferiormente pero no superiormente.
- 2.  $B = \{x \in \mathbb{R} : 0 < x \le 1\}$  está acotado superior e inferiormente.



















# Ejemplos de subconjuntos acotados y no acotados en $\mathbb R$

- 1.  $A = \{x \in \mathbb{R} : 0 < x\}$  está acotado inferiormente pero no superiormente.
- 2.  $B = \{x \in \mathbb{R} : 0 < x \le 1\}$  está acotado superior e inferiormente.



















# Ejemplos de subconjuntos acotados y no acotados en $\mathbb{R}$

- 1.  $A = \{x \in \mathbb{R} : 0 < x\}$  está acotado inferiormente pero no superiormente.
- 2.  $B = \{x \in \mathbb{R} : 0 < x \le 1\}$  está acotado superior e inferiormente.

Si un conjunto es acotado, ¿Cuántas cotas puede tener?















Sea S un subconjunto no vacío de  $\mathbb{R}$ .

1. Si u es una cota superior de S y  $u \in S$  entonces se dice que u es el máximo de S, lo cual se denota por;  $u = \max S$ 

Sea S un subconjunto no vacío de  $\mathbb{R}$ .

- 1. Si u es una cota superior de S y  $u \in S$  entonces se dice que u es el máximo de S, lo cual se denota por;  $u = \max S$
- 2. Si w es una cota inferior de S y  $w \in S$  entonces se dice que w es el mínimo de S, lo cual se denota por;  $w = \min S$

Sea S un subconjunto no vacío de  $\mathbb{R}$ .

- 1. Si u es una cota superior de S y  $u \in S$  entonces se dice que u es el máximo de S, lo cual se denota por;  $u = \max S$
- 2. Si w es una cota inferior de S y  $w \in S$  entonces se dice que w es el mínimo de S, lo cual se denota por;  $w = \min S$

Sea S un subconjunto no vacío de  $\mathbb{R}$ .

- 1. Si u es una cota superior de S y  $u \in S$  entonces se dice que ues el máximo de S, lo cual se denota por;  $u = \max S$
- 2. Si w es una cota inferior de S y  $w \in S$  entonces se dice que wes el mínimo de S, lo cual se denota por;  $w = \min S$

De los siguientes conjuntos, ¿cuál posee máximo? ¿cuál posee mínimo?

1. 
$$A = \{x \in \mathbb{R} : 0 < x\}$$











Sea S un subconjunto no vacío de  $\mathbb{R}$ .

- 1. Si u es una cota superior de S y  $u \in S$  entonces se dice que ues el máximo de S, lo cual se denota por;  $u = \max S$
- 2. Si w es una cota inferior de S y  $w \in S$  entonces se dice que wes el mínimo de S, lo cual se denota por;  $w = \min S$

De los siguientes conjuntos, ¿cuál posee máximo? ¿cuál posee mínimo?

- 1.  $A = \{x \in \mathbb{R} : 0 < x\}$
- 2.  $B = \{x \in \mathbb{R} : 0 < x \le 1\}$











Sea S un subconjunto no vacío de  $\mathbb{R}$ .

- 1. Si u es una cota superior de S y  $u \in S$  entonces se dice que ues el máximo de S, lo cual se denota por;  $u = \max S$
- 2. Si w es una cota inferior de S y  $w \in S$  entonces se dice que wes el mínimo de S, lo cual se denota por;  $w = \min S$

De los siguientes conjuntos, ¿cuál posee máximo? ¿cuál posee mínimo?

- 1.  $A = \{x \in \mathbb{R} : 0 < x\}$
- 2.  $B = \{x \in \mathbb{R} : 0 < x \le 1\}$











Sea S un subconjunto no vacío de  $\mathbb{R}$ .

- 1. Si u es una cota superior de S y  $u \in S$  entonces se dice que u es el máximo de S, lo cual se denota por;  $u = \max S$
- 2. Si w es una cota inferior de S y  $w \in S$  entonces se dice que w es el mínimo de S, lo cual se denota por;  $w = \min S$

De los siguientes conjuntos, ¿cuál posee máximo? ¿cuál posee mínimo?

- 1.  $A = \{x \in \mathbb{R} : 0 < x\}$
- 2.  $B = \{x \in \mathbb{R} : 0 < x \le 1\}$

Ejercicio: Demostrar que el máximo y el mínimo de un conjunto, en caso de que existan, son únicos

Sea S un subconjunto no vacío de  $\mathbb{R}$ , acotado superiormente. Un número real b se denomina supremo de S, lo cual se denota por  $b=\sup S$ , si satisface las siguientes dos condiciones:

1. b es cota superior de S

Sea S un subconjunto no vacío de  $\mathbb{R}$ , acotado superiormente. Un número real b se denomina supremo de S, lo cual se denota por  $b = \sup S$ , si satisface las siguientes dos condiciones:

- 1. b es cota superior de S
- 2. Si u es otra cota superior de S entonces  $b \leq u$

Sea S un subconjunto no vacío de  $\mathbb{R}$ , acotado superiormente. Un número real b se denomina supremo de S, lo cual se denota por  $b = \sup S$ , si satisface las siguientes dos condiciones:

- 1. b es cota superior de S
- 2. Si u es otra cota superior de S entonces  $b \leq u$

Sea S un subconjunto no vacío de  $\mathbb{R}$ , acotado superiormente. Un número real b se denomina supremo de S, lo cual se denota por  $b = \sup S$ , si satisface las siguientes dos condiciones:

- 1. b es cota superior de S
- 2. Si u es otra cota superior de S entonces b < u

Lo anterior nos dice que el supremo de un conjunto es la menor de 💿 las cotas superiores









Sea S un subconjunto no vacío de  $\mathbb{R}$ , acotado inferiormente. Un número real a se denomina ínfimo de S, lo cual se denota por  $b=\inf S$ , si satisface las siguientes dos condiciones:

1. a es cota inferior de S

Sea S un subconjunto no vacío de  $\mathbb{R}$ , acotado inferiormente. Un número real a se denomina ínfimo de S, lo cual se denota por  $b=\inf S$ , si satisface las siguientes dos condiciones:

- 1. a es cota inferior de S
- 2. Si w es otra cota inferior de S entonces  $w \leq a$

Sea S un subconjunto no vacío de  $\mathbb{R}$ , acotado inferiormente. Un número real a se denomina ínfimo de S, lo cual se denota por  $b=\inf S$ , si satisface las siguientes dos condiciones:

- 1. a es cota inferior de S
- 2. Si w es otra cota inferior de S entonces  $w \leq a$

Sea S un subconjunto no vacío de  $\mathbb{R}$ , acotado inferiormente. Un número real a se denomina ínfimo de S, lo cual se denota por  $b=\inf S$ , si satisface las siguientes dos condiciones:

- 1. a es cota inferior de S
- 2. Si w es otra cota inferior de S entonces  $w \leq a$

Lo anterior nos dice que el ínfimo de un conjunto es la mayor de las cotas inferiores







Ejercicio: Muestre que el ínfimo y el supremo de un conjunto, si existen, son únicos

### Axioma de Completitud

Todo subconjunto **no vacío** de  $\mathbb R$  que esté acotado superiormente tiene supremo

#### Axioma de Completitud

Todo subconjunto **no vacío** de  $\mathbb R$  que esté acotado superiormente tiene supremo

Como consecuencia del axioma de completitud se deduce que: Todo subconjunto **no vacío** de  $\mathbb R$  que esté acotado inferiormente tiene ínfimo

### Propiedad de Aproximación

Sea S un subconjunto no vacío y acotado de números reales

1.  $b = \sup S$  si y sólo si dado  $\epsilon > 0$  existe  $x_{\epsilon} \in S$  tal que:

$$b - \epsilon < x_\epsilon$$











### Propiedad de Aproximación

Sea S un subconjunto no vacío y acotado de números reales

1.  $b = \sup S$  si y sólo si dado  $\epsilon > 0$  existe  $x_{\epsilon} \in S$  tal que:

$$b - \epsilon < x_{\epsilon}$$

2.  $a = \inf S$  si y sólo si dado  $\epsilon > 0$  existe  $x_{\epsilon} \in S$  tal que:

$$x_{\epsilon} < a + \epsilon$$













#### Propiedad Aditiva

Dados dos subconjuntos no vacíos A y B de  $\mathbb{R}$ , se define el conjunto:

$$C=\{x+y:x\in A \text{ y }y\in B\}$$

Si A y B están acotados superiormente entonces C está acotado superiormente y  $\sup C = \sup A + \sup B$ 













#### Principio del Buen Orden

Todo subconjunto no vacío de  $\mathbb{Z}_+$  tiene mínimo.













#### Propiedad Arquimedeana

El Axioma de Completitud, entre otras cosas, se usa para demostrar que el conjunto  $\mathbb{Z}_+$  de los enteros positivos no es un subconjunto acotado superiormente de  $\mathbb{R}$ . Esto es lo que se denomina propiedad Arquimedeana

#### Propiedad Arquimedeana

Si  $x \in \mathbb{R}$  entonces existe  $n_x \in \mathbb{Z}_+$  tal que  $x < n_x$ 









#### Consecuencias de la Propiedad Arquimedeana

- 1. El conjunto de los enteros positivos no está acotado superiormente
- 2. Si  $S\{1/n:n\in\mathbb{Z}_+\}$  entonces inf S=0
- 3. Si x > 0 entonces existe  $n_x \in \mathbb{Z}_+$  tal que  $\frac{1}{-} < x$
- 4. Si x > 0 entonces existe  $n_x \in \mathbb{Z}_+$  tal que  $n_x 1 \le x < n_x$















#### Otra consecuencia del Axioma de Completitud

Existe un número real b tal que  $b^2=2$ 













#### Densidad de los números racionales e irracionales

Sean x, y números reales tales que x < y entonces existe un número racional r tal que x < r < y













#### Densidad de los números racionales e irracionales

Sean  $x,\,y$  números reales tales que x < y entonces existe un número racional r tal que x < r < y

Sean  $x,\,y$  números reales tales que x < y entonces existe un número irracional w tal que x < w < y













## **Ejercicios**

- 1. Sean A y B dos subconjuntos no vacíos de  $\mathbb{R}$ . Muestre que si  $A \subset B$  y y B está acotado entonces inf  $B < \inf A$  y sup  $A < \emptyset$  $\sup B$
- 2. Sea A un subconjunto no vacío y acotado superiormente de  $\mathbb{R}$ . Defina el conjunto  $-A = \{-x : x \in A\}$ . Muestre que A está acotado inferiormente
- 3. Muestre que todo subconjunto no vacío y acotado inferiormente de R tiene ínfimo
- 4. Muestre que todo subconjunto acotado superiormente de  $\ensuremath{\mathbb{Z}}$ tiene máximo
- 5. Encontrar el supremo y el ínfimo del conjunto  $A = \begin{cases} \frac{3+2n}{3-2n} : n \in \mathbb{Z}_+ \end{cases}$













### **Ejercicios**

- 1. Encontrar el supremo y el ínfimo, si existen, del conjunto A = $\{x \in \mathbb{R} : x^2 - 4x - 12 < 0\}$
- 2. Hallar un número racional entre  $\sqrt{10}$  y  $\sqrt{11}$



















# MACC Matemáticas Aplicadas y Ciencias de la Computación

















