Functional Programming

SS 2025

Torsten Grust University of Tübingen

Domain-Specific Languages (DSLs)

• DSLs are "small" languages designed to easily and directly express the concepts/idioms of a specific domain. *Not* Turing complete in general.

• Examples:

Domain	DSL
OS automation	Shell scripts
Typesetting	(La)TeX
Queries	SQL
Game Scripting	UnrealScript, Lua
Parsing	Bison, ANTLR

Two Main Flavors of DSLs

- Standalone DSL: separate parser, compiler, and runtime.
 - However: many DSLs are PL-like and feature variables, definitions (macros), conditionals, ... This leads to:
- Embedded DSL: retain given host PL syntax (DSL raises level of abstraction), reuse parser/compiler/runtime.
 - Familiarity and syntactic conventions carry over, less implementation effort. DSL comes in form of family of functions/operators (library) and possibly higher-order functions to represent new control flow constructs.

Embedded DSL in Functional Programming Languages

- Functional languages make for good hosts for embedded DSLs:
 - algebraic data types (e.g., to model ASTs)
 - higher-order functions (abstraction, control constructs)
 - lightweight syntax (layout/whitespace, non-alphabetic identifiers, juxtaposition for application)

Examples (program syntax matches notation used in the domain):

- In Haskell, we can define infix binary operator ==> to denote Boolean implication ⇒.
- 2. We can use Unicode symbols like ∪ to denote set union, ...

DSL Design Space: Library

Example (an embedded DSL for finite sets of integers):

```
type IntegerSet = ...

empty :: IntegerSet
insert :: Integer -> IntegerSet -> IntegerSet
delete :: Integer -> IntegerSet -> IntegerSet
member :: Integer -> IntegerSet -> Bool

member 3 (insert 1 (delete 3 (insert 2 (insert 3 empty)))) -> False
```

DSL programs are compositions of constructor and observer applications. Haskell syntax of composition, applications, and literal elements reused.

DSL Design Space: Library

• **DSL implementation option 1:** Representation of integer set fully exposed:

type IntegerSet = [Integer] -- unsorted, duplicates allowed

- ∘ Introduction of new operators is straightforward. Can adopt domain-specific notation $(e.g., \in, \subseteq)$ if desired.
- A But: Any such extension of the "library" is based on the current exposed implementation. A later change of representation is impossible/requires reimplementation (if possible) of the extensions.

Interlude: Haskell Modules

• Group related definitions (values, types) in single file M.hs:

```
module M where
type Predicate a = a -> Bool
id :: a -> a
id = \x -> x
```

- ∘ Module hierarchy: module A.B.C.M lives in file A/B/C/M.hs.
- Explicit export lists hide all other definitions:

```
module M (id) where
-- only the definition of id is exported,
-- type Predicate a not exported
```

• Access definitions in other module M:

```
import M
```

Modules and Abstract Data Types

• Abstract data types: export algebraic data type, but *not* its constructor functions:

```
module M (Rose, leaf) where -- constructor Node not exported

data Rose a = Node a [Rose a]

leaf :: a -> Rose a
leaf x = Node x []
```

• If you must, explicity export the constructors:

```
module M (Rose(Node), leaf) where -- export constructor Node
module M (Rose(..), leaf) where -- export all constructors
```

o Instance def.s and deriving are exported with their type.

Importing Modules

• Qualified import to partition Haskell's name space:

```
import qualified M
t :: M.Rose Char
t = M.leaf 'x'
```

• Partially import module (required definitions only):

```
import Data.List (nub, reverse)
    :

import Data.List hiding (reverse) -- everything but reverse
    :
```

DSL Design Space: Library

[Back from the module interlude.]

- DSL implementation option 2: integer set representation realized as an abstract data type.
 - Inside module SetLanguage, implement one of many possible integer set representations, e.g.:
 - 1. Unordered lists (implementation type [a]).
 - 2. Characteristic functions (implementation type a -> Bool).
 - Do not expose these implementation details. The clients of module SetLanguage can not peek inside and will not be able to tell the difference.

Shallow vs. Deep DSL Embeddings

Recall that our integer set DSL featured two categories of operations:

DSLs offer two principal design choices to implement the semantics of these operations:

- 1. Constructors do all the hard work (\rightarrow shallow embedding).
- Conctructors are trivial, instead observers perform actual work
 (→ deep embedding).

Shallow DSL Embedding

- In a **shallow DSL embedding**, the semantics of DSL operations are directly expressed in terms of host language values (*e.g.*, lists or characteristic functions).
- For the integer set DSL:
 - Constructors empty, insert, delete will perform actual work,
 i.e., actually compute these values. Harder to add.
 - Observers member and card will be trivial and merely inspect these values. Trivial to add.

Deep DSL Embedding

- In a **deep DSL embedding**, the DSL operations build an *abstract* syntax tree (AST) that represents operation applications and arguments:
 - o Constructors merely build the AST and are very easy to add.
 - Observers interpret (traverse) the AST and thus perform the actual work.

Using Type Classes to Generate ASTs for Deep DSL Embeddings

- Consider a deep DSL embedding for a simple language of arithmetic expressions and its simple eval observer.
- Construction of expressions requires the use of constructors. The notation of nested expressions quickly becomes tedious:

File: expr-deep-num.hs

```
import ExprDeepNum
-- e1 = 8 * 7 - 14
e1 :: Expr
e1 = Sub (Mul (Val 8) (Val 7)) (Val 14)

main :: IO ()
main = print $ eval e1
```

Using Type Classes to Generate ASTs for Deep DSL Embeddings

• Type Expr represents simple arithmetic expressions (over integers). Exactly what is described by type class Num:

```
class Num a where
  (+) :: a -> a -> a
  (*) :: a -> a -> a
  (-) :: a -> a -> a
  negate :: a -> a
  abs :: a -> a
  signum :: a -> a
  fromInteger :: Integer -> a
```

☑ Idea: Make Expr an instance of Num. Don't let operator + perform actual arithmetic, but construct an AST (Add) instead.

- Algebraic data types are instrumental in making the deep embedding approach feasible (lightweight construction of ASTs, pattern matching to traverse/interpret ASTs, ...).
- Now consider another example:
 - A deeply embedded expression language over integers and Booleans.
 - Evaluation of such an expression via observer eval yields a result of type Either Integer Bool.

- **Problem:** our current deep embedding is *untyped* (or rather: *uni-typed*): *all* constructors simply yield an AST of type Expr regardless of actual expression value.
- Let us make this problem apparent by using a variant of Haskell's syntax when we declare the algebaic data type Expr.
 - We will need the Haskell language extension GADTs. Enable via GHC compiler pragma:

{-# LANGUAGE GADTs #-}

♀ Idea:

- 1. Encode the type of a DSL expression (here: Integer or Bool) in its Haskell type.
 - In a nutshell, let us have ASTs of types Expr Integer and Expr Bool (not just Expr).
- 2. Use Haskell's type checker to ensure at compile time that only well-typed DSL expressions can be built.

- Haskell language extension: {-# LANGUAGE GADTs #-}
- Define entirely new parameterized type T, its constructors K_i , and their type signatures:

```
data T a_1 a_2 ... a_n where K_1 :: b_{11} -> ... -> b_{1(n1)} -> T t_{11} t_{12} ... t_{1n} K_2 :: b_{21} -> ... -> b_{2(n2)} -> T t_{21} t_{22} ... t_{2n} ...
```

Type Class Example: One DSL, Multiple Embeddings

- Example: Define an expression language over integers that supports variable binding $(e.g., let x = e_1 in e_2)$.
- We want to try out multiple representation types a for the language. Define type class Expr a for which we can define multiple instances:
 - 1. Shallow embedding #1: Represent expressions as Haskell functions Env → Integer that map a given environment ({x+42}) of variable bindings to the expression's value.
 - 2. Shallow embedding #2: Derive a String form of the expression.
 - 3. Deep embedding: Build a simple abstract syntax tree (AST Integer) that represents the expression (this opens up the opportunity to simplify expressions, for example).

Example: Shallow Embedding of a Pattern Matching DSL

- Example: Define a shallowly embedded DSL for string pattern matching.
- Follow an idea in Phil Wadler's seminal 1985 paper "How to Replace Failure by a List of Successes":
 - 1. Given an input string, a pattern returns the **list of matches**. If matching fails, return the **empty list**.
 - 2. One match consists of
 - a result of some type a (e.g., the matched characters, constructed token or parse tree) and
 - the residual input string left to match.
- -- Match against a string, return result of type a
 type Pattern a = String -> [(a, String)]

Example: Shallow Embedding of a Pattern Matching DSL

```
match literal char
match empty string
fail always
alternative
sequence
repetition
DSL function
lit :: Char -> Pattern Char
empty :: a -> Pattern a
fail always
fail :: Pattern a
-> Pattern a -> Pattern a
sequence
repetition
seq :: (a -> b -> c) -> Pattern a -> Pattern b -> Pattern c
repetition
```

Operations of a pattern matching DSL

Notes:

- Type Char -> Pattern Char = Char -> String -> [(Char, String)].
- Alternative design for sequencing:

```
seq :: Pattern a -> Pattern b -> Pattern (a,b).
```

Less flexible, cumbersome deeply nested tuples when longer sequence patterns are constructed

Example: Shallow Embedding of a Pattern Matching DSL

Functional programs are mathematical objects. We can formulate proofs about their behavior. Consider:

- 1. rep returns the longest match first
 (rep (lit 'a') "aab" = [("aa", "b"), ("a", "ab"), ("", "aab")])
- 2. alt p fail = alt fail p = p
 (if one alternative is failure, only the other alternative
 remains, proof based on [] ++ xs = xs ++ [] = xs).
- 3. seq f p (empty e) = seq f (empty e) p = p, if f x e = f e x = x, i.e., e is the identity of f (proof based on comprehension reasoning).