Pure Mathematics 1

4

5

6

Tutorial 5 Trigonometry

Prove the following identity: $\frac{1}{\tan x} + \tan x = \frac{1}{\sin x \cos x}$.

Prove the identity $\frac{1 - 2\sin^2 \theta}{\cos \theta + \sin \theta} = \cos \theta - \sin \theta$

Prove the identity $(\frac{1}{\cos x} - \tan x)(\frac{1}{\sin x} + 1) = \frac{1}{\tan x}$

(a) Find the set of values of x for which 4x(x-1) > 3. [2]

(b) Using your answer in part (a), find the range of values of θ , where $0^{\circ} < \theta < 360^{\circ}$, for which $4 \sin \theta$ ($\sin \theta - 1$) > 3. [3]

$$\left[x < -\frac{1}{2}, x > \frac{3}{2}; 210 < \theta < 330\right]$$

.a) Given that $f(x) = \cos x$ for the domain $0 \le x \le k$, state the largest value of k, in radians, for which f has an inverse.

b) Sketch and label, on the same diagram, the graphs of $y = \cos x$ and $y = \sin 2x$ in the interval $0 \le x \le 2\pi$. [4]

 $[\pi]$

[2]

(a) Solve $\sin 2\alpha = \sin 30^{\circ}$ for $0^{\circ} \le \alpha \le 360^{\circ}$.

(b) State the least value of $2\cos{(3\theta+\frac{\pi}{4})}$. For $0 \le \theta \le \pi$, state the corresponding

values of θ , that give this least value. [3]

 $\left[15,75,195,255;\frac{\pi}{4},\frac{11}{12}\pi\right]$

7			
	Solve $2\cos^2 2x + \sin 2x = 1$ for $-90^\circ \le x \le 90^\circ$.	[-15, -75, 45]	
8		[13, 73,43]	
	a) By completing the square, find the greatest value of $\cos^2 \theta$ and the value of θ when this occurs.	$-\cos\theta+6$ [4]	
	b) Solve the equation $\sin 4x = \frac{1}{2}$, giving all solutions such that	at $0 \le x \le 180$	
		[2]	
	$\left[\frac{23}{4}, 60; 7\right]$	7.5,37.5,97.5,127.5	
9			
	Solve the equation $4\sin^2 2\theta \cos 2\theta = \tan^2 2\theta$, giving all the solut	ions in the	
	interval $0^{\circ} \le \theta \le 360^{\circ}$. State your answers in 1 decimal place.	[7]	
	[0, 90, 180, 270, 360, 25.5	,154.5, 205.5, 334.5]	
10			
	Find all values of x for which $0^{\circ} < x < 360^{\circ}$ that satisfy the equation		
	$(\mathbf{a}) \sin\left(\frac{1}{2}x\right) = \frac{1}{4}.$	[3]	
	(b) $1 - \cos^2 x = 3\sin x - 4\sin^3 x$.	[4]	
	[29,33	1;48.6,131.4,180,270]	
11			
	(a) Sketch the graph of $2 \sin \theta$ for $0 \le \theta \le 360$.	[2]	
	(b) Solve the following equation for all values of θ from -180° to + 180°	:	
	$4 - \sin \theta = 4 \cos^2 \theta$	[5]	
		[0,14.5,180,165.5]	
12	(a) Find all the values of y which satisfy $\tan 2y = 2$ in the interval		
	$0^{\circ} < y < 360^{\circ}$	[3]	
	(b) Show that the equation $\cos \theta + \sin \theta = 2(\sin \theta - \cos \theta)$ can be		
	express as $\tan \theta = 3$ and hence solve the equation for $0^{\circ} \le \theta \le 360^{\circ}$	[4]	
	[31.7 , 121.7 ,211.7	7,301.7;71.6,251.6]	

17			
14 The level of water, Y metres above sea level, at time t hours after midnight is given by $Y = 4.3 + 2.1 \cos{(15t - 50)^{\circ}}$, $0 < t \le 24$. (a) Find the maximum height of the water level, and the time when this happens. [3] (b) Find the values of t, correct to one decimal place, when $Y = 5.5$. [5] (i) On the same axes, sketch $y = \sin 2x$ and $y = \cos 3x$ for $0 \le x \le \pi$. Hence find the number of solutions to the equation $\sin 2x = \cos 3x$ in the same interval. (ii) Find all the values of x , $0^{\circ} \le x \le 360^{\circ}$, which satisfy the equation $3 \sin x = 2 + \frac{1}{\sin x}$. [4] (a) Find all the solutions in the interval $0^{\circ} < \theta < 180^{\circ}$ of the equation $2\sin(3\theta - 48^{\circ}) - 1 = 0$ (b) Show that $\sqrt{2\sin^2{\theta} + 6\cos^2{\theta} - 2} = 2\cos{\theta}$. [26]	[4]		
The level of water, Y metres above sea level, at time t hours after midnight is given by $Y = 4.3 + 2.1 \cos{(15t - 50)^{\circ}}$, $0 < t \le 24$. (a) Find the maximum height of the water level, and the time when this happens. [3] (b) Find the values of t, correct to one decimal place, when $Y = 5.5$. [5] (i) On the same axes, sketch $y = \sin{2x}$ and $y = \cos{3x}$ for $0 \le x \le \pi$. Hence find the number of solutions to the equation $\sin{2x} = \cos{3x}$ in the same interval. (ii) Find all the values of x , $0^{\circ} \le x \le 360^{\circ}$, which satisfy the equation $3 \sin{x} = 2 + \frac{1}{\sin{x}}$. [4] (a) Find all the solutions in the interval $0^{\circ} < \theta < 180^{\circ}$ of the equation $2\sin(3\theta - 48^{\circ}) - 1 = 0$ (b) Show that $\sqrt{2\sin^2{\theta} + 6\cos^2{\theta} - 2} = 2\cos{\theta}$. [26]			
The level of water, Y metres above sea level, at time t hours after midnight is given by $Y = 4.3 + 2.1 \cos (15t - 50)^\circ$, $0 < t \le 24$. (a) Find the maximum height of the water level, and the time when this happens. [3] (b) Find the values of t, correct to one decimal place, when $Y = 5.5$. [5] (i) On the same axes, sketch $y = \sin 2x$ and $y = \cos 3x$ for $0 \le x \le \pi$. Hence find the number of solutions to the equation $\sin 2x = \cos 3x$ in the same interval. (ii) Find all the values of x , $0^\circ \le x \le 360^\circ$, which satisfy the equation $3 \sin x = 2 + \frac{1}{\sin x}.$ [3] (a) Find all the solutions in the interval $0^\circ < \theta < 180^\circ$ of the equation $2\sin(3\theta - 48^\circ) - 1 = 0$ (b) Show that $\sqrt{2\sin^2\theta + 6\cos^2\theta - 2} = 2\cos\theta$.	[4]		
The level of water, Y metres above sea level, at time t hours after midnight is given by $Y = 4.3 + 2.1 \cos{(15t - 50)^{\circ}}$, $0 < t \le 24$. (a) Find the maximum height of the water level, and the time when this happens. [3] (b) Find the values of t, correct to one decimal place, when $Y = 5.5$. [5] [6.4,3.20am;7.0] (i) On the same axes, sketch $y = \sin 2x$ and $y = \cos 3x$ for $0 \le x \le \pi$. Hence find the number of solutions to the equation $\sin 2x = \cos 3x$ in the same interval. (ii) Find all the values of x , $0^{\circ} \le x \le 360^{\circ}$, which satisfy the equation $3 \sin x = 2 + \frac{1}{\sin x}$. [4] (a) Find all the solutions in the interval $0^{\circ} < \theta < 180^{\circ}$ of the equation $2\sin(3\theta - 48^{\circ}) - 1 = 0$ (b) Show that $\sqrt{2\sin^2{\theta} + 6\cos^2{\theta} - 2} = 2\cos{\theta}$.),0,360]		
by $Y = 4.3 + 2.1 \cos (15t - 50)^\circ$, $0 < t \le 24$. (a) Find the maximum height of the water level, and the time when this happens. [3] (b) Find the values of t , correct to one decimal place, when $Y = 5.5$. [5] [6.4,3.20am;7.0] (i) On the same axes, sketch $y = \sin 2x$ and $y = \cos 3x$ for $0 \le x \le \pi$. Hence find the number of solutions to the equation $\sin 2x = \cos 3x$ in the same interval. [3] (ii) Find all the values of x , $0^\circ \le x \le 360^\circ$, which satisfy the equation $3 \sin x = 2 + \frac{1}{\sin x}$. [4] [7] [8] (a) Find all the solutions in the interval $0^\circ < \theta < 180^\circ$ of the equation $2\sin(3\theta - 48^\circ) - 1 = 0$ (b) Show that $\sqrt{2\sin^2\theta + 6\cos^2\theta - 2} = 2\cos\theta$. [26]			
(b) Find the values of t , correct to one decimal place, when $Y = 5.5$. [5] [6.4,3.20 am ;7.0] (i) On the same axes, sketch $y = \sin 2x$ and $y = \cos 3x$ for $0 \le x \le \pi$. Hence find the number of solutions to the equation $\sin 2x = \cos 3x$ in the same interval. [3] (ii) Find all the values of x , $0^{\circ} \le x \le 360^{\circ}$, which satisfy the equation $3 \sin x = 2 + \frac{1}{\sin x}$. [4] [3] (a) Find all the solutions in the interval $0^{\circ} < \theta < 180^{\circ}$ of the equation $2\sin(3\theta - 48^{\circ}) - 1 = 0$ (b) Show that $\sqrt{2\sin^2\theta + 6\cos^2\theta - 2} = 2\cos\theta$.			
[6.4,3.20am;7.0] (i) On the same axes, sketch $y = \sin 2x$ and $y = \cos 3x$ for $0 \le x \le \pi$. Hence find the number of solutions to the equation $\sin 2x = \cos 3x$ in the same interval. [3] (ii) Find all the values of x , $0^{\circ} \le x \le 360^{\circ}$, which satisfy the equation $3 \sin x = 2 + \frac{1}{\sin x}.$ [4] [4] [5] (a) Find all the solutions in the interval $0^{\circ} < \theta < 180^{\circ}$ of the equation $2\sin(3\theta - 48^{\circ}) - 1 = 0$ (b) Show that $\sqrt{2\sin^2 \theta + 6\cos^2 \theta - 2} = 2\cos \theta$.			
(i) On the same axes, sketch $y = \sin 2x$ and $y = \cos 3x$ for $0 \le x \le \pi$. Hence find the number of solutions to the equation $\sin 2x = \cos 3x$ in the same interval. [3] (ii) Find all the values of x , $0^{\circ} \le x \le 360^{\circ}$, which satisfy the equation $3 \sin x = 2 + \frac{1}{\sin x}.$ [4] [4] [5] (a) Find all the solutions in the interval $0^{\circ} < \theta < 180^{\circ}$ of the equation $2\sin(3\theta - 48^{\circ}) - 1 = 0$ b) Show that $\sqrt{2\sin^2 \theta + 6\cos^2 \theta - 2} = 2\cos \theta$.			
(i) On the same axes, sketch $y = \sin 2x$ and $y = \cos 3x$ for $0 \le x \le \pi$. Hence find the number of solutions to the equation $\sin 2x = \cos 3x$ in the same interval. [3] (ii) Find all the values of x , $0^{\circ} \le x \le 360^{\circ}$, which satisfy the equation $3 \sin x = 2 + \frac{1}{\sin x}$. [4] (a) Find all the solutions in the interval $0^{\circ} < \theta < 180^{\circ}$ of the equation $2\sin(3\theta - 48^{\circ}) - 1 = 0$ (b) Show that $\sqrt{2\sin^2 \theta + 6\cos^2 \theta - 2} = 2\cos \theta$. [26]	,23.7]		
(i) On the same axes, sketch $y = \sin 2x$ and $y = \cos 3x$ for $0 \le x \le \pi$. Hence find the number of solutions to the equation $\sin 2x = \cos 3x$ in the same interval. [3] (ii) Find all the values of x , $0^{\circ} \le x \le 360^{\circ}$, which satisfy the equation $3 \sin x = 2 + \frac{1}{\sin x}$. [4] (a) Find all the solutions in the interval $0^{\circ} < \theta < 180^{\circ}$ of the equation $2\sin(3\theta - 48^{\circ}) - 1 = 0$ (b) Show that $\sqrt{2\sin^2 \theta + 6\cos^2 \theta - 2} = 2\cos \theta$. [26]	-, -		
$3 \sin x = 2 + \frac{1}{\sin x}.$ [3; 199.5, 340.5] a) Find all the solutions in the interval $0^{\circ} < \theta < 180^{\circ}$ of the equation $2 \sin(3\theta - 48^{\circ}) - 1 = 0$ b) Show that $\sqrt{2 \sin^2 \theta + 6 \cos^2 \theta - 2} = 2 \cos \theta$.			
[3;199.5,340.5] a) Find all the solutions in the interval $0^{\circ} < \theta < 180^{\circ}$ of the equation $2\sin(3\theta - 48^{\circ}) - 1 = 0$ b) Show that $\sqrt{2\sin^2\theta + 6\cos^2\theta - 2} \equiv 2\cos\theta$.			
a) Find all the solutions in the interval $0^{\circ} < \theta < 180^{\circ}$ of the equation $2\sin(3\theta - 48^{\circ}) - 1 = 0$ b) Show that $\sqrt{2\sin^2\theta + 6\cos^2\theta - 2} = 2\cos\theta$.	1		
a) Find all the solutions in the interval $0^{\circ} < \theta < 180^{\circ}$ of the equation $2\sin(3\theta - 48^{\circ}) - 1 = 0$ b) Show that $\sqrt{2\sin^2\theta + 6\cos^2\theta - 2} \equiv 2\cos\theta$.	,90]		
b) Show that $\sqrt{2\sin^2\theta + 6\cos^2\theta - 2} \equiv 2\cos\theta$. [26,	a) Find all the solutions in the interval $0^{\circ} < \theta < 180^{\circ}$ of the equation $2\sin(3\theta - 48^{\circ}) - 1 = 0$. [5]		
17	[3]		
	66,146		
4	!]		
b) Find all values of θ , such that $0 \le \theta \le \pi$, which satisfy the equation			
$4 \sin \theta \cos \theta = \tan \theta.$	5]		

$$\left[0,\pi,\frac{1}{3}\pi,\frac{2}{3}\pi\right]$$

- (a) If $\sin^{-1} x = \frac{\pi}{5}$, find the value of $\cos^{-1} x$. [2]
 - (b) A line goes through (a,b) and makes an angle of θ with the x-axis. Show that the equation of the line can be written as $y \cos \theta x \sin \theta = b \cos \theta a \sin \theta$. [3]
 - (c) Solve the equation $2 \tan \theta \frac{4}{\tan \theta} = \frac{1}{\sin \theta}$, giving your answers in radians in

the range $-\pi < \theta < \pi$, correct to 2 significant figures. [4]

 $\left[\frac{3}{10}\pi; \pm 2.3, 1.0\right]$

- (i) Sketch the graph of the equation $y = -2 \sin \frac{1}{2}x$ for $-\pi \le x \le \pi$. State the period. [3]
 - (ii) Prove the identity $\tan^2 \alpha \sin^2 \alpha = \tan^2 \alpha \sin^2 \alpha$. [3]
 - (iii) Find the solutions of the equation $\tan^2 x \sin x = \sin x$ in the interval $0^\circ \le x < 360^\circ$. [3]

 $[4\pi; 0, 180, 45, 135, 225, 315]$

20

- a) Solve the equation $\cos(3x) + \sqrt{3}\sin(3x) = 0$ for which $0 < x < \pi$. [4]
- b) Sketch the graph $y = 3 \sin x$ for $0 \le x \le 2\pi$.
- c) Find the values of θ such that $4 + \sin \theta = 6\cos^2 \theta$ for $-180^\circ \le \theta \le 180^\circ$. [5]

$$\[\frac{5}{18}\pi, \frac{11}{18}\pi, \frac{17}{18}\pi; 30,150,-138.2,-41.8\]$$

21

- (i) The curve with equation $y = 2 + k \sin x$ passes through the point with coordinates $\left(\frac{\pi}{2}, -2\right)$. Find
 - (a) the value of k, [2]
 - (b) the values of x in the interval $0 \le x \le 2\pi$ for which $y = 2 + 2\sqrt{2}$. [3]
- (ii) Write down the maximum and minimum values of the expression $4-2\sin 3x$ as x varies.

[2]

$$\left[-4; \frac{5}{4}\pi, \frac{7}{4}\pi; \max = 6, \min = 2\right]$$