

Post Hoc Synthetic Purposive Sampling for Post Hoc External Validity Assessment

Simon Hoellerbauer (UMass Amherst), Isabel Laterzo-Tingley (UT Austin)

Research Objectives

• Can the structure of synthetic purposive sampling (SPS) be adapted for post hoc evaluation of the generalizability of samples when researchers have no site selection ability?

- Introduced by [1] for use during design stage of studies to select optimal sites for multi-site studies
- Minimize

$$f(\mathbf{S}, \mathbf{W}) = \frac{1}{N - N_S} \sum_{k=1}^{N} (1 - S_k) \left(\frac{1}{L} \sum_{l=1}^{L} B_{kl}(\mathbf{S}, \mathbf{W}) \right)$$
(1)

over \mathbf{S} and \mathbf{W} , where $B_{kl}(\mathbf{S}, \mathbf{W}) = (X_{kl} - \sum_{j:S_j=1} W_{jk} X_{jl})^2$

Post Hoc SPS

• Post hoc SPS: compare SPS-optimal site selection against actual site selection using objective function:

$$\frac{f(\mathbf{S} = \mathbf{S}_{\text{actual}}, \mathbf{W} = \mathbf{W}_{\mathbf{S}_{\text{actual}}}^*)}{f(\mathbf{S} = \mathbf{S}^*, \mathbf{W} = \mathbf{W}_{\text{overall}}^*)}$$
(2)

 $O\Gamma$

$$\frac{f(\mathbf{S} = \mathbf{S}_{\text{actual}}, \mathbf{W} = \mathbf{W}_{\text{overall}}^*)}{f(\mathbf{S} = \mathbf{S}^*, \mathbf{W} = \mathbf{W}_{\text{overall}}^*)}$$
(3)

where $\mathbf{W}_{\text{overall}}^*$ are the naive SPS-optimal weights and $\mathbf{W}^*_{\mathbf{S}_{\text{actual}}}$ are the SPS-optimal weights when \mathbf{S} is constrained to S_{actual}

• Definition of target population is **key**: can identify all possible site selections

Example: Naumann et al. 2018

- Investigated attitudes towards immigration in 15 countries in Europe
- Austria, Belgium, **Switzerland**, Czechia, Germany, Denmark, Spain, Finland, France, United Kingdom, **Ireland**, Netherlands, Norway, Slovenia, Sweden $\rightarrow target$ population
- **Bolded** countries: Randomly chosen site selection from all 5005 possible 6-site selections

Illustrating Post Hoc SPS

How well can we generalize to target population - i.e. approximate non-selected sites - using Switzerland, Germany, Finland, Ireland, Norway, and Slovenia?

Ratio to Global Minimum

Because we know target population (all 15 countries), we can also compare against all possible site selections \rightarrow allows us to evaluate relatively how well a site selection minimizes imbalance in non-selected sites.

 $\frac{f(\mathbf{S} = \mathbf{S}_{\text{actual}}, \mathbf{W} = \mathbf{W}_{\text{S}_{\text{actual}}}^*)}{f(\mathbf{S} = \mathbf{S}^*, \mathbf{W} = \mathbf{W}_{\text{overall}}^*)} \text{ vs } \frac{f(\mathbf{S} = \mathbf{S}_{\text{actual}}, \mathbf{W} = \mathbf{W}_{\text{overall}}^*)}{f(\mathbf{S} = \mathbf{S}^*, \mathbf{W} = \mathbf{W}_{\text{overall}}^*)} \text{ for all 5005 possible 6-site selections}$

Comparing Optimal Naumann et al. 2018 Site Selection to Dandamly Chasen Cita Calastia

SPS Optimal	Site Overlap w/ Optimal	Sites Selected	Objective Function Value (W-Overall)	Objective Function Value (W-S-Actual)	Percentile Rank (Overall)	Percentile Rank (S-Actual)
Yes	6	Switzerland, Czechia, Germany, Denmark, Spain, Netherlands	0.944	0.944	1.000	1.000
No	2	Switzerland, Germany, Finland, Ireland, Norway, Slovenia	2.332	1.183	0.415	0.852

Conclusions

- Can use SPS post hoc to compare a set of sites for a study against the optimal set of sites
- Using S_{actual} -optimized weights (3) is better measurement of minimum imbalance in a site selection than using the overall SPS weights

Next Steps

- For [2], compare ATE estimates for suboptimal site selections
- Illustrate comparing between studies
- Optimize generalizable population

Optimizing Generalizable Population

- Invert SPS optimization to choose the set of non-selected sites to which we can generalize with fixed selected sites
- Fix $\mathbf{S} = \mathbf{S}_{\text{Actual}}$; Let $\mathbf{M} = (M_1, M_2, \dots, M_N)$, where $M_i = 1$ if a site is included in the generalizable population

$$\min_{\mathbf{m}, \mathbf{W}} \frac{1}{N_M - N_S} \sum_{k: M_k = 1} (1 - S_k) \left(\frac{1}{L} \sum_{l=1}^L B_{kl}(\mathbf{S}, \mathbf{W}) \right)$$
(4)

- Can constrain N_M to be in a certain range
- Can add $\lambda * N_M$ or $\lambda * \frac{1}{N_M}$ as penalty terms to favor smaller and larger generalizable populations, respectively

Email: hoellerbauers@gmail.com Website: https://hoellers.github.io

References

- [1] Naoki Egami and Diana Da In Lee. Designing multi-site studies for external validity: Site selection via synthetic purposive sampling. Working Paper, 2024.
- [2] Elias Naumann, Lukas F. Stoetzer, and Giuseppe Pietrantuono. Attitudes towards highly skilled and low-skilled immigration in Europe: A survey experiment in 15 European countries. European Journal of Political Research, 57(4):1009–1030, 2018.