Millman's theorem

Tapas Kumar Bhattacharya

 $\begin{array}{c} {\rm Department~of~Electrical~Engineering} \\ {\rm I.I.T~Kharagpur} \end{array}$

October 23, 2017

Contents

L	Mill	man's Theorem	3
	1.1	Unbalanced star connected load fed from a balanced 3-ph supply	3

1 Millman's Theorem

Imagine you have number of sources with voltages $E_1, E_2 \cdots E_N$, with internal impedances $Z_1, Z_2 \cdots Z_N$ respectively and assume that these sources are connected in parallel as shown in figure 1. Millman's

Figure 1:

theorem gives you a handy formula to calculate the the terminal voltage V_{ON} . We write the KCL at point O.

$$\frac{V_{ON} - E_1}{Z_1} + \frac{V_{ON} - E_2}{Z_2} + \dots + \frac{V_{ON} - E_n}{Z_n} = 0$$
or, $\left(\frac{1}{Z_1} + \frac{1}{Z_2} + \dots + \frac{1}{Z_n}\right) V_{ON} = \frac{E_1}{Z_1} + \frac{E_2}{Z_2} + \dots + \frac{E_n}{Z_n}$
or, $V_{ON} = \frac{\frac{E_1}{Z_1} + \frac{E_2}{Z_2} + \dots + \frac{E_n}{Z_n}}{\frac{1}{Z_2} + \dots + \frac{1}{Z_n}}$
we know, Admittance $Y = \frac{1}{Z}$

$$\therefore V_{ON} = \frac{E_1 Y_1 + E_2 Y_2 + \dots + E_n Y_n}{Y_1 + Y_2 + \dots + Y_n}$$

After knowing V_{ON} , we can calculate currents through each branch. For example current through Z_1 from bottom to top is $\frac{E_1 - V_{ON}}{Z_1}$.

2 Unbalanced star connected load fed from a balanced 3-ph supply

Look at the circuit 2 where E_{AN} , E_{BN} and E_{CN} represent a balanced three phase voltage, N being the supply neutral. Magnitudes of the voltages are same and they are mutually 120° apart which means that $E_{AN} + E_{BN} + E_{CN} = 0$, O being the star point of the load **not connected to the supply neutral N**. We want to calculate the currents I_A , I_B and I_C .

Figure 2:

These currents can be calculated provided we know V_{ON} which can be calculated by using Millman's theorem as follows.

$$V_{ON} = \frac{E_{AN}Y_1 + E_{BN}Y_2 + E_{CN}Y_3}{Y_1 + Y_2 + Y_3}$$

where, $Y_1 = 1/Z_1$, $Y_2 = 1/Z_2$ and $Y_3 = 1/Z_3$. After knowing V_{ON} , the currents are calculated as follows.

$$I_A = V_{AO}Y_1 = (V_{AN} - V_{ON})Y_1$$

 $I_B = V_{BO}Y_2 = (V_{BN} - V_{ON})Y_2$
 $I_C = V_{CO}Y_3 = (V_{CN} - V_{ON})Y_3$

