# WEEK-5 PRESENTATION ANALOG DESIGN INTERNSHIP

Mentor
Dr G S Javed
Technical Lead @Intel

Co-Mentor Dr Naushad Alam *Professor* 

Prepared By:
Munazir Reza
B.Tech (Electronics engg.)
Z.H.C.E.T, A.M.U, Aligarh

# SESSION OUTLINE

- Previous Preview
- ADT Toolbox
- Source Follower Amplifier design
- o Common Source Amplifier design
- Differential Pair design
- Operational Amplifier design
- Project: Two stage op-amp design

#### Week-1

- Extract Charts for NMOS & PMOS
- o gm/gds vs gm/id
- Vgs vs gm/id
- Id/w vs gm/id
- Design Common Source and Source Follower Amplifier from charts.
- Observe large (W/L) ratios.

#### Week-2

- Design Current Mirror
- o Design Delay Cell
- Design Common Source amplifier, Differential Pair and op-amp with Small (W/L) ratios.

#### Week-3

• Design Cascode CS amplifier & op-amp.

# ADT TOOLBOX

• Official link: <a href="https://at.master-micro.com">https://at.master-micro.com</a>



# DESIGN BY USING ADT TOOLBOX

- The Analog Designer's Toolbox (ADT): Towards a new paradigm for analog IC design.
- ADT provides a turnkey solution that enables everyone to reap the benefits of the GM/ID design methodology powered by pre-computed lookup tables (LUTs).
- At the device level, ADT Device Xplore gives an easy interface to plot arbitrary design charts involving complex expressions.
- The designer can explore devices from different technologies at different corners and temperatures, and extract simulator-accurate design points while taking second-order effects into consideration.



# CONTINUE.....

- At the block level, ADT Design Xplore gives the designer the power of design space exploration, constraints management, live tuning, and optimization, all in a single cockpit without invoking the simulator.
- Moreover, with a single click, ADT can build the testbenches in the background and report the results from your favorite simulator. The aim of ADT is to boost productivity, restore designer's intuition, and make the design process systematic, optimized, and fun!

Source: ieee.org

# ADT TOOLBOX INTERFACE

#### LUT GENERATION



# **ADT: DEVICE XPLORE**



# LUT INTERFACE GM/GDS VS GM/ID CHART



# ID/W VS GM/ID CHART



# VGS VS GM/ID CHARTS



Note: We can draw many charts from ADT Device Xplore

e.g: ID/GDS, GBW, FT vs GM/ID

#### MODEL FILE USED

• File: CMOS180.txt

Supply Voltage: 1.8 V

- <a href="https://web.stanford.edu/~murmann/gmid">https://web.stanford.edu/~murmann/gmid</a>
- 0.18μm CMOS models

# SOURCE FOLLOWER AMPLIFIER

lo Specs:

 $\circ$  Av=1

CL=1pF

 $\circ$  Rout=75  $\Omega$ 

• gm/id= 10 ....(Choose)

 $\circ$  gm/gds=76.93

 $\circ$  gm=13.33 mS

• Id=1.33 mA

o gds=172.2 μS

 $\circ$  Ro1=5.77 K $\Omega$ 

• Let Ro2=10 K $\Omega$ 

• Id/gds=13.3

o gm/id=5.112

• W2=31 μm

Id/w = 14.58

 $W1=91.22 \mu m$ 

W1=66.6 µm (tuning to get Rout)

 $gds=100 \mu S$ 

gm/gds=67.36

Vgs=819.2mV

Vgs=870mV

Vin=1.77V

# **SIMULATION**

.include "C:\Users\ASUS\Desktop\CMOS180.txt"



# RESULT

| Simulated Value    | Specifications |
|--------------------|----------------|
| Av= 0.814 v/v      | Av=1 v/v       |
| BW=1.82 GHz        | BW=2.12 GHz    |
| Rout=75.1 $\Omega$ | Rout=75 Ω      |
| Id=1.3 mA          | Id=1.33 mA     |
| Vout(dc)=0.87 V    | Vout(dc)=0.9 V |

# TRANSIENT ANALYSIS



# FREQUENCY RESPONSE



# COMMON SOURCE AMPLIFIER

# **Specification:**

$$Gain(Av)=40$$

Rout=150 K
$$\Omega$$

$$BW=25 MHz$$

#### Calculation:

#### Formula Used

• BW(3dB freq) = 
$$\frac{1}{2\pi Rout.CL}$$

Av=gm.Rout

• Rout= ro1 // ro2

$$\circ$$
 gm=0.266 mS

$$\circ$$
 gds=3.25  $\mu$ S

id/w = 13.6

Continue....

- $\circ$  Ro2=293.12 K Ω
- o gds2=3.41 μS
- $\circ$  (Id/gds)2=7.8
- o (gm/id)₂= 7.106 ..... from chart
- $\circ$  (Id/w)<sub>2</sub>=7.312 ..... from chart
- Vgs2=712.9 mV
- $\circ$  W2= 3.63 µm

# SIMULATION



# SOME CHANGES

Internal capacitance at node Vout = cgd2 + cgd1(1+Av)

C(Vout) = 3.36 fF

So CL=42.44 f -3.36 f = 39.08 fF

# RESULT AND CONCLUSION

| Simulated Value  | Specifications |
|------------------|----------------|
| Av = 40.01  v/v  | Av=40 v/v      |
| BW=25.06 MHz     | BW=25MHz       |
| GBW=1.002 GHz    | GBW=1 GHz      |
| Rout=149.327 KΩ  | Rout=150 KΩ    |
| Id=26.73 μA      | Id=26.6 μA     |
| Vout(dc)=0.773 V | Vout(dc)=0.9 V |

# SPICE ERROR LOG FILE

#### --- Transfer Function ---

Transfer\_function: -40.0109 transfer vin#Input\_impedance: 1e+020 impedance output\_impedance\_at\_V(vout): 149327 impedance

```
Semiconductor Device Operating Points:
                        --- BSIM3 MOSFETS ---
Name:
             m2
                         m1
Model:
                         nch
             pch
                       2.67e-05
Id:
          -2.67e-05
Vqs:
          -7.13e-01
                       6.58e-01
Vds:
          -1.03e+00
                       7.74e-01
Vbs:
           0.00e+00
                       0.00e+00
Vth:
          -4.48e-01
                       4.59e-01
Vdsat:
          -2.19e-01
                       1.52e-01
           1.87e-04
                       2.68e-04
Gm:
Gds:
           3.21e-06
                       3.49e-06
Gmb
           5.86e-05
                       7.00e-05
Cbd:
           0.00e+00
                       0.00e+00
Cbs:
           0.00e+00
                       0.00e+00
Cgsov:
           2.38e-15
                       9.57e-16
Cgdov:
           2.38e-15
                       9.57e-16
Cqbov:
           2.98e-19
                       3.28e-19
          1.24e-14
dQqdVqb:
                       6.48e-15
dQqdVdb:
          -2.38e-15
                      -9.32e-16
dQqdVsb:
          -9.67e-15
                      -5.23e-15
          -2.39e-15
                      -9.63e-16
dQddVqb:
dQddVdb:
          2.39e-15
                       9.60e-16
dQddVsb:
           4.60e-18
                     4.49e-18
dQbdVqb: -1.61e-15 -9.88e-16
dQbdVdb:
          -5.20e-19
                      1.92e-18
          -7.20e-16
                      -4.05e-16
dQbdVsb:
```

# **UNIT DEVICES**



# TRANSIENT ANALYSIS



Vin(p-p)=2 mV

Vout=78.88 mV

Gain=39.44

# **FREQUENCY**



# DIFFERENTIAL PAIR

#### Using two Common Source Amplifier



# CALCULATION FOR CURRENT SOURCE

# $Id=54.96 \mu A$

 $gm/id = 10 \dots (Choose)$ 

Vgs=Vb=0.662

Id/w = 13.41

 $W5=4.09 \ \mu m$ 

W5=4.14  $\mu m$  .....for unit device



# RESULT AND CONCLUSION

| Simulated Value  | Specifications |
|------------------|----------------|
| Av= 36.18 v/v    | Av=40 v/v      |
| BW=28.66 MHz     | BW=25MHz       |
| GBW=1.03 GHz     | GBW=1 GHz      |
| Rout=263.492 KΩ  |                |
| Iss= 54.46 μA    | Iss= 54.96μA   |
| Vout(dc)=0.949 V | Vout(dc)=0.9 V |

#### TRANSIENT ANALYSIS



# FREQUENCY RESPONSE



#### COMMON SOURCE AMPLIFIER

Specs:

Av=40

Rout= $93 \text{ K}\Omega$ 

Formula Used

Av=gm.Rout

$$W = \frac{id}{id/w}$$

Rout=Ro1 // Ro3

$$gds = \frac{1}{ro}$$

 $\circ$  gm=0.43 mS

o gm/id=12

o Id=35.8 μA

o Ro1=165 KΩ

o gds3= 4.69 μS

 $\circ$  (Id/gds)<sub>3</sub>=7.63

o gm/id=6.315

• W3=3.91 μm

gm/gds=70.92

 $gds=6.06 \mu S$ 

 $Ro3 = 213.125 \text{ K}\Omega$ 

Id/W=9.896

 $W1=3.61 \mu m$ 

Id/W=9.133

# **SIMULATION**

.include C:\Users\ASUS\Desktop\CMOS180.txt



# RESULTS

| Simulated Value | Specifications |
|-----------------|----------------|
| Av= 40.15 v/v   | Av=40 v/v      |
| Rout=95.632 KΩ  | Rout=93 KΩ     |
| Id= 35.18 μA    | Id= 35.8 μA    |
| Vout(dc)=1.07 V | Vout(dc)=0.9 V |

# OP-AMP (STAGE-1)

# **Using Common Source Amplifier**



# RESULT

| Simulated Value | Specifications  |
|-----------------|-----------------|
| Av= 39.8092 v/v | Av=40 v/v       |
| BW=28.66 MHz    | BW=25MHz        |
| GBW=1.03 GHz    | GBW=1 GHz       |
| Rout=97.259 KΩ  | Rout=93 KΩ      |
| Iss= 70.3 μA    | Iss= 71.6 μA    |
| Vout(dc)=1.04 V | Vout(dc)=1.15 V |

# FREQUENCY ANALYSIS



Frequency

## TRANSIENT ANALYSIS



Vin1-Vin2(pp)=4 mV Vout1(pp)=158.68 mV Gain=39.67

## **COMMON SOURCE AMPLIFIER**

#### For Second Stage op-amp

```
'Specs:
Av=28
\frac{1}{2}gm2=8 x 0.432 mS = 3.384 mS
Rout2 = 8K\Omega
~ Vgs1≡780 mV
o gm/id=5.466 id/w=11.9 ....from chart
o gm/gds=46.96 ....from chart
o Id=619 μA
• W6=52μm
o gds6=72.06 μS
                            Ro6 = 13.87 \text{ K}\Omega
\circ Ro7=18.9 K\Omega
                            gds7=52.9 \mu S
```

o (Id/gds)7=11.7

o gm/id=6.24 id/w=31.05

• W7=19.9 μm **W7=15.84 μm in Simulation** 

o Vgs7=0.7629 V

# **SIMULATION**

 $. include \ C: \ \ Vars \ \ \ Desktop \ \ \ CMOS180.txt$ 



# RESULT

| Simulated Value  | Specifications |
|------------------|----------------|
| Av= 28.34 v/v    | Av=28 v/v      |
| BW=256.9 MHz     |                |
| GBW=9. 24 GHz    |                |
| Rout=9.6 KΩ      | Rout=8 KΩ      |
| IB2= 494 μA      | IB2= 619 μA    |
| Vout(dc)=0.998 V | Vout(dc)=0.9 V |

# FREQUENCY RESPONSE



Frequency

## TRANSIENT ANALYSIS



# PROJECT: DESIGNING OF TWO STAGE OPERATIONAL AMPLIFIER

| Specification    |               |  |  |  |
|------------------|---------------|--|--|--|
| Gain(Av)         | ≥ 1000 (60dB) |  |  |  |
| GBW              | 1GHz          |  |  |  |
| Phase Margin     | ≥50           |  |  |  |
| Load Capacitance | 20 fF         |  |  |  |

## PROJECT: TWO STAGE OP-AMP

## Combining Stage-1 and Stage-2



#### **CAPACITOR**



C1=Capacitance at Node(Vout1)= Cgd4 + Cgd1 + { (Cgd6 + Cc)\*(1+Av2)} C1= 1.3 pF

C2=Capacitance at Node(Vout2)= CL + Cgd7 + { (Cgd6 + Cc)\*(1 +  $\frac{1}{Av2}$ )}

C2=73.52 fF

## POLE AND ZERO

Dominant Pole

where Rout1=97.25 K $\Omega$ 

• Fp2= Beyond 1GHz

where Rz=12k, Gm2=2.95mS

## FREQUENCY COMPENSATION

- $\circ$  Cc=10 fF (generally Cc=(0.3-0.5)\*CL)
- Rz=12 K $\Omega$  (generally Rz= $^{1}/_{Gm2}$ )
- But we have taken  $12 \text{ K}\Omega$  for achieving Phase Margin of  $45^{\circ}$ .

# RESULT

| Simulated Value                                                                                 | Specifications            |  |  |  |
|-------------------------------------------------------------------------------------------------|---------------------------|--|--|--|
| Av= 1139 v/v                                                                                    | $Av \ge 1000 \text{ v/v}$ |  |  |  |
| BW=1.12 MHz                                                                                     | BW=1 MHz                  |  |  |  |
| GBW=1.02 GHz                                                                                    | GBW=1 GHz                 |  |  |  |
| Rout=9.68 KΩ                                                                                    | Rout=8 KΩ                 |  |  |  |
| Vout(dc)=0.97 V                                                                                 | Vout(dc)=0.9 V            |  |  |  |
| IB1=70.3 μA, IB2= 493.24 μA<br>Total Current=563.54 μA<br>Vdd=1.8<br>Powe Discipation = 1.01 mW | -<br>-<br>-               |  |  |  |
| Phase Margin = 45°                                                                              | Phase Margin = 50°        |  |  |  |
| Gain Margin = 16.5 dB                                                                           | -                         |  |  |  |
| CL=20 fF                                                                                        | CL=20 fF                  |  |  |  |

# TABLE

| Stage 1                                     | Stage 2                                            |  |  |  |
|---------------------------------------------|----------------------------------------------------|--|--|--|
| L=0.36µm                                    | L=0.36µm                                           |  |  |  |
| $W_{1,2} = 3.6 \mu m$ $\frac{W}{L} = 10$    | W <sub>6</sub> =52.02 $\mu$ m $\frac{w}{L}$ =144.5 |  |  |  |
| $gm_{1,2} = 0.419 \text{ mS}$               | $gm_6 = 2.59 \text{ mS}$                           |  |  |  |
| $W_{3,4} = 3.78 \mu m$ $\frac{W}{L} = 10.5$ | $W_7 = 15.84 \ \mu m$ $\frac{W}{L} = 44$           |  |  |  |
| $gm_{3,4} = 0.21 \text{ mS}$                | $gm_7 = 3.05 \text{ mS}$                           |  |  |  |

## SPICE ERROR LOG FILE

| Semicondu | ctor Device | Operating Po | oints:    |           |           |           |           |
|-----------|-------------|--------------|-----------|-----------|-----------|-----------|-----------|
|           |             | BSIM         | 3 MOSFETS | -         |           | _         | _         |
| Name:     | mб          | m3           | m4        | m7        | m5        | m2        | m1        |
| Model:    | pch         | pch          | pch       | nch       | nch       | nch       | nch       |
| Id:       | -4.93e-04   | -3.52e-05    | -3.52e-05 | 4.93e-04  | 7.03e-05  | 3.52e-05  | 3.52e-05  |
| Vgs:      | -7.54e-01   | -7.54e-01    | -7.54e-01 | 7.63e-01  | 7.63e-01  | 7.40e-01  | 7.40e-01  |
| Vds:      | -8.26e-01   | -7.54e-01    | -7.54e-01 | 9.74e-01  | 4.50e-01  | 5.96e-01  | 5.96e-01  |
| Vbs:      | 0.00e+00    | 0.00e+00     | 0.00e+00  | 0.00e+00  | 0.00e+00  | -4.50e-01 | -4.50e-01 |
| Vth:      | -4.50e-01   | -4.48e-01    | -4.48e-01 | 4.58e-01  | 4.62e-01  | 5.82e-01  | 5.82e-01  |
| Vdsat:    | -2.55e-01   | -2.50e-01    | -2.50e-01 | 2.19e-01  | 2.15e-01  | 1.38e-01  | 1.38e-01  |
| Gm:       | 2.95e-03    | 2.11e-04     | 2.11e-04  | 3.05e-03  | 4.40e-04  | 4.19e-04  | 4.19e-04  |
| Gds:      | 6.24e-05    | 4.69e-06     | 4.69e-06  | 4.09e-05  | 1.09e-05  | 5.73e-06  | 5.73e-06  |
| Gmb       | 9.53e-04    | 6.66e-05     | 6.66e-05  | 7.91e-04  | 1.13e-04  | 9.52e-05  | 9.52e-05  |
| Cbd:      | 0.00e+00    | 0.00e+00     | 0.00e+00  | 0.00e+00  | 0.00e+00  | 0.00e+00  | 0.00e+00  |
| Cbs:      | 0.00e+00    | 0.00e+00     | 0.00e+00  | 0.00e+00  | 0.00e+00  | 0.00e+00  | 0.00e+00  |
| Cgsov:    | 3.42e-14    | 2.48e-15     | 2.48e-15  | 7.78e-15  | 1.15e-15  | 1.77e-15  | 1.77e-15  |
| Cgdov:    | 3.42e-14    | 2.48e-15     | 2.48e-15  | 7.78e-15  | 1.15e-15  | 1.77e-15  | 1.77e-15  |
| Cgbov:    | 2.98e-19    | 2.98e-19     | 2.98e-19  | 3.28e-19  | 3.28e-19  | 3.28e-19  | 3.28e-19  |
| dQgdVgb:  | 1.78e-13    | 1.30e-14     | 1.30e-14  | 5.26e-14  | 7.80e-15  | 1.18e-14  | 1.18e-14  |
| dQgdVdb:  | -3.42e-14   | -2.48e-15    | -2.48e-15 | -7.58e-15 | -1.13e-15 | -1.72e-15 | -1.72e-15 |
| dQgdVsb:  | -1.38e-13   | -1.01e-14    | -1.01e-14 | -4.27e-14 | -6.32e-15 | -9.53e-15 | -9.53e-15 |
| dQddVgb:  | -3.43e-14   | -2.50e-15    | -2.50e-15 | -7.81e-15 | -1.19e-15 | -1.78e-15 | -1.78e-15 |
| dQddVdb:  | 3.43e-14    | 2.49e-15     | 2.49e-15  | 7.79e-15  | 1.18e-15  | 1.78e-15  | 1.78e-15  |
| dQddVsb:  | 1.04e-16    | 8.68e-18     | 8.68e-18  | 2.36e-17  | 1.14e-17  | 1.33e-17  | 1.33e-17  |
| dQbdVqb:  | -2.25e-14   | -1.67e-15    | -1.67e-15 | -7.92e-15 | -1.17e-15 | -1.67e-15 | -1.67e-15 |
| dQbdVdb:  | -2.52e-17   | -2.70e-18    | -2.70e-18 | 1.63e-17  | -9.51e-18 | 7.38e-19  | 7.38e-19  |
| dQbdVsb:  | -1.10e-14   | -7.45e-16    | -7.45e-16 | -3.25e-15 | -4.67e-16 | -4.71e-16 | -4.71e-16 |
|           |             |              |           |           |           |           |           |

--- Transfer Function ---

transfer Fransfer function: -1139.14 vin1#Input impedance: 1e+020 impedance

output impedance at V(vout2):

9688.45

impedance

## FREQUENCY RESPONSE



Frequency

#### TRANSIENT ANALYSIS



Vin1-Vin2(pp)=40 μV Vout2(pp)=45.54 mV Gain=1138.5

#### LEARN IN THIS INTERNSHIP

- Learn gmid methodology for designing Amplifier.
- How to Extract different charts used in gmid method
- Designed using ADT Toolbox
- Able to Design Amplifier with given Specification
- Completed project: Design of two Stage op-amp with gain bandwidth product of 1Ghz.

## REFERENCES

- IEEE.ORG
- The Design of Two-Stage Miller Op-Amp: The Final Verdict! | Dr. Hesham Omran, Youtube Link: <a href="https://youtu.be/PT31xAEd\_v4">https://youtu.be/PT31xAEd\_v4</a>

#### **Special Thanks to:**

- Prof Syed Atiqur Rahman Sir
- Prof Mohammad Jawaid Siddiqui Sir
  - Dr Saif Abrar Sir
    - Mudassir Sir
  - Shamsul Haque Sir
    - Mohd Kashif Sir
      - Ayush Sharma
        - Afzal Malik
    - Mohsin Hussain

&

My Parents

Thank you