Quantum algorithms 2021/2022: Exercices 2

Benoît Vermersch (benoit.vermersch@lpmmc.cnrs.fr) -October 3, 2022

1 Implementation of Grover's diffuser operator

Our goal is to design a quantum circuit for Grover's diffuser operator $U_{\psi} = 2 |\psi\rangle \langle \psi| - 1$, with $|\psi\rangle = 1/\sqrt{N} \sum_{x} |x\rangle$.

- 1. Write down a circuit U_1 that prepares $|\psi\rangle$ from $|0\rangle^{\otimes n}$
- 2. Evaluate U_1^2 .
- 3. We aim at implementing U_{ψ} as $U_{\psi} = U_1 U_2 U_1$. Write down the circuit corresponding to U_2 .
- 4. Prove that U_2 can be written as $U_2 = -X^{\otimes n}U_3X^{\otimes n}$, with U_3 a n-qubit controlled Z gate
- 5. Write U_3 in terms of the Toffoli gate.
- 6. Write and represent graphically the full circuit for $-U_{\psi}$. Comment on the role of the minus sign.