Задания

16 марта 2017 г.

- 1. Пусть C категория предпорядка, а D нет.
 - (а) Могут ли С и D быть изоморфны?
 - (b) Могут ли **C** и **D** быть эквивалентны?
- 2. Пусть ${\bf C}$ категория с одним объектом, а ${\bf D}$ нет.
 - (а) Могут ли С и D быть изоморфны?
 - (b) Могут ли **C** и **D** быть эквивалентны?
- 3. Пусть C дискретная категория, а D нет.
 - (а) Могут ли С и D быть изоморфны?
 - (b) Могут ли **C** и **D** быть эквивалентны?
- 4. Пусть ${\bf C}$ группоид, а ${\bf D}$ нет.
 - (а) Могут ли С и D быть изоморфны?
 - (b) Могут ли **C** и **D** быть эквивалентны?
- 5. Пусть \mathbf{C}' некоторая полная подкатегория категории \mathbf{C} . Какие из следующих утверждений верны?
 - (a) Любой мономорфизм в ${f C}'$ является мономорфизмом в ${f C}.$
 - (b) Любой морфизм в ${\bf C}'$, являющийся мономорфизмом в ${\bf C}$, является мономорфизмом в ${\bf C}'$.
 - (c) Если $X\in Ob({\bf C}')$ (ко)предел диграммы $D:{\bf J}\to {\bf C}',$ то X (ко)предел D в ${\bf C}.$
 - (d) Если диграмма $D: \mathbf{J} \to \mathbf{C}'$ имеет (ко)предел в \mathbf{C} , то в \mathbf{C}' тоже существует (ко)предел D.
- 6. Пусть $F: \mathbf{C} \to \mathbf{D}$ некоторый функтор. Какие из следующих утверждений верны? Как изменится ответ, если предположить, что F эквивалентность категорий?
 - (a) Если $f:X \to Y$ мономорфизм в ${\bf C}.$ то F(f) мономорфизм в ${\bf D}.$

- (b) Если X (ко)предел диаграммы $D: \mathbf{J} \to \mathbf{C}$, то F(X) (ко)предел диграммы $F \circ D: \mathbf{J} \to \mathbf{D}$.
- 7. Докажите, что **Num** эквивалентна \mathbf{Set}_{fin} .
- 8. Докажите, что **Mat** изоморфна \mathbf{Mat}^{op} .
- 9. Докажите, что \mathbf{Set}_{fin} не эквивалентна \mathbf{Set} .
- 10. Пусть $F, G: \mathbf{C} \to \mathbf{D}$ пара функторов. Естественное преобразование $\alpha: F \to G$ называется естественным изоморфизмом, если для любого объекта X в \mathbf{C} морфизм $\alpha_X: F(X) \to G(X)$ является изоморфизмом. Докажите, что $\alpha: F \to G$ естественный изоморфизм тогда и только тогда, когда α изоморфизм в категории $\mathbf{D}^{\mathbf{C}}$.
- 11. Пусть \mathbf{C} декартова категория. Докажите, что \times 1 изоморфен тождественному функтору в $\mathbf{C}^{\mathbf{C}}$.
- 12. Пусть **Cat** категория малых категорий. Ее объекты это малые категории (то есть такие категории, в которых коллекции объектов и морфизмов являются множествами). Морфизмы в категории **Cat** это функторы между категориями.

Пусть **Graph** – категория графов. Ее объекты – графы, то есть пары (V,E), состоящие из множества вершин V и функции E, сопоставляющей каждой паре вершин $x,y\in V$ множество E(x,y) ребер из x в y.

Морфизм графов (V,E) и (U,D) состоит из функции $f:V\to U$ и функции $f:E(x,y)\to D(f(x),f(y))$ для всех $x,y\in V$. Композиция и тождественные морфизмы определены очевидным образом.

Определите забывающий функтор из **Cat** в **Graph**. Докажите, что этот функтор строгий.

13. Пусть I — некоторое множество, тогда определим категорию \mathbf{Fam}_I семейств множеств, индексированных I. Объекты категории \mathbf{Fam}_I — это семейства множеств $\{A_i\}_{i\in I}$. Другими словами, объект \mathbf{Fam} — это функция $A:I\to Ob(\mathbf{Set})$, сопоставляющей каждому $i\in I$ некоторое множество A_i .

Морфизм в \mathbf{Fam}_I из $\{A_i\}_{i\in I}$ в $\{B_i\}_{i\in I}$ – это семейство функций $\{f_i:A_i\to B_i\}_{i\in I}$. Композиции и тождественные морфизмы определяются очевидным образом.

Пусть \mathbf{Set}/I — категория множеств над I. Объекты категории \mathbf{Set}/I — это пары (X,f), где X — множество и $f:X\to I$ — функция. Морфизмы в \mathbf{Set}/I из (X,f) в (Y,g) — это функции $h:X\to Y$ такие, что

следующий треугольник коммутирует:

Тождественные морфизмы и композиция определяются как соответствующие операции в \mathbf{Set} .

Докажите, что категории \mathbf{Fam}_I и \mathbf{Set}/I эквивалентны.