1 Rappels d'algèbre linéaire

Matrice de permutation

$$P_{\sigma} := \left(\sum_{j=1}^{n} E_{\sigma(i),j}\right)_{i}$$

avec $E_{i,j}$ la matrice élémentaire (i,j).

Théorème de Schur $\forall A \in \mathcal{M}_n(\mathbb{C}), \exists U \in \mathcal{M}_n(\mathbb{C}), \underbrace{U^* = U^{-1}}_{\text{unitaire}} \land U^*AU \in$ $\mathcal{T}_{n,s}(\mathbb{C})$

1.1 Méthodes itératives

Principe On cherche une suite $x^{(p)}$ de \mathbb{R}^n convergeant vers la solution de Ax = b:

$$\forall x^{(0)} \quad x^{(p+1)} = H(x^{(p)})$$

Propriétés

- A n'est jamais modifiée
- Problème du suivi de la convergence et du choix du test d'arrêt
- Solution obtenue inexacte
- Matrice doit vérifier conditions de convergence
- Vitesse de convergence dépend de la matrice

Décomposition en valeurs singulières

Objectif Soit
$$A \in \mathcal{M}_n(\mathbb{R}), n \geq 1$$
.
On pose $A = U\Sigma V^{\top}$ avec
$$\begin{cases} U \in \mathcal{O}_n(\mathbb{R}) \\ V \in \mathcal{O}_n(\mathbb{R}) \\ \Sigma \in \mathcal{M}_n(\mathbb{R}) \end{cases}$$

On a

$$\Sigma = \begin{pmatrix} \sigma_i & 0 & \cdots & | & 0 & \cdots & 0 \\ 0 & \sigma_i & \cdots & | & 0 & \cdots & 0 \\ 0 & 0 & \ddots & | & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & | & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & | & 0 & \cdots & 0 \end{pmatrix}$$

2.1 SVD d'une matrice

SVD Singular value decomposition Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $rgA \ge 1$

2.1.1 Propriétés

- 1. A est symétrique réelle semi-définie-positive i.e. $\forall x \in \mathbb{R}^n, \ x^\top (A^\top A)x \geq 0$ i.e. $\forall x \in \mathbb{R}^n, \ \|Ax\|^2 \geq 0$
- 2. $\operatorname{Sp}(A) \subset \mathbb{R}_+$
- 3. $A^{\top}A$ est orthoDZ: $\begin{cases} \ker(A^{\top}A) &= \ker A \\ \operatorname{im}(A^{\top}A) &= \operatorname{im}(A^{\top}) \end{cases}$

Preuve (de 3.)

- $\ker A \subset \ker(A^{\top}A)$: TRIVIAL
- $\ker A \supset \ker(A^{\top}A)$ Soit $x \in \ker(A^{\top}A)$. On a

$$A^{\top}Ax = 0$$

$$\implies x^{\top}(A^{\top}Ax) = 0$$

$$\implies ||Ax||^2 = 0$$

$$\implies x \in \ker A$$

• $\operatorname{im} A \subset \operatorname{im}(A^{\top}A)$

$$\dim \ker(A^{\top}A) + \operatorname{rg}(A^{\top}A) = n$$

$$\implies \operatorname{rg}(A^{\top}A) = n - \dim \ker(A^{\top}A)$$

$$= n - \dim \ker A \qquad \operatorname{car} \ker A = \ker(A^{\top}A)$$

$$= \operatorname{rg} A$$

$$= \operatorname{rg}(A^{\top})$$

$$\implies \operatorname{im}(A^{\top}A) \subset \operatorname{im} A$$

- $\operatorname{im} A \supset \operatorname{im}(A^{\top}A) : \mathbb{TRIVIAL}$
- 4. $A^{\top}A \in GL_n(\mathbb{R}) \iff \operatorname{rg} A = n$

Preuve (de 4.)

$$A^{\top}A \in GL_n(\mathbb{R}) \iff \ker(A^{\top}A) = \{0\}$$

$$\iff \ker A = \{0\}$$

$$\iff \operatorname{rg} A = n \qquad \text{par th\'eor\`eme du rang}$$

2.2 Construction de la SVD de A

Soit $A \in \mathcal{M}_{m,n}(\mathbb{R})$ tel que rg $A \geq 1$. On note $r := \operatorname{rg} A$.

- dim ker $(A^{\top}A) = n r$ par théorème du rang. Donc $0 \in \operatorname{Sp}(A^{\top}A)$ et mult $_{A^{\top}A}(0) = n - r$
- On note $(\lambda_i)_{i \in [\![1,n]\!]} = \operatorname{Sp}(A^\top A) \subset \mathbb{R}_+^*$, telles que $i < j \implies \lambda_i \le \lambda_j$ On note $(v_i)_{i \in [\![1,r]\!]}$ une bond DZante de $A^\top A$ associée à $(\lambda_i)_{i \in [\![1,n]\!]}$ Et on pose enfin

$$\mathcal{E} = \left(\underbrace{v_1, \dots, v_r}_{\text{bon de (ker } A)^\top}, \underbrace{v_{r+1}, \dots, v_n}_{\text{bon de ker } A}\right)$$

• On pose $V = (v_1, \ldots, v_r) \in \mathcal{O}_n(\mathbb{R})$ Et

$$\forall i \in [1, n] u_i = \frac{1}{\sqrt{\lambda_i}} A v_i \in \mathbb{R}^n$$

$$\forall (i,j) \in [\![1,r]\!]^2 \quad \langle U_i, U_j \rangle = \frac{1}{\sqrt{\lambda_i \lambda_j}} \langle Av_i, Av_j \rangle$$

$$= \frac{1}{\sqrt{\lambda_i \lambda_j}} \left\langle \underbrace{A^\top Av_i}_{\lambda_i v_i}, A^\top Av_j \right\rangle$$

$$= \sqrt{\frac{\lambda_i}{\lambda_j}} \underbrace{\langle v_i, v_j \rangle}_{\delta_{ij}} \qquad \text{car } (v_i)_i \text{ orthonormée}$$

$$= \delta_{ij} \qquad \text{car si } i = j, \text{ ça fait 1, sinon ça fait 0}$$

Donc $(U_i)_i$ est une famille orthonormée de \mathbb{R}^m

Donc $\operatorname{rg}(U_i)_{i \in [1,n]} = r$

Or $(u_i)_i \subset \operatorname{im} A$

D'où $(u_i)_i \subset \operatorname{im} A$ et $(\operatorname{rg} u_i)_i = \operatorname{rg} A$

Donc $(U_i)_i = \operatorname{im} A$

et $(U_i)_i$ bon de im A.

D'où $0 \in \operatorname{Sp}(A^{\top}A)$ avec im A

On la complète en $(U_i)_{i \in [1,m]}$ bon de \mathbb{R}^m

$$\mathcal{F} = \left(\underbrace{u_1, \dots, u_r}_{\text{bon de im } A}, \underbrace{u_{r+1}, \dots, u_m}_{\text{bon de (im } A)^{\top}}\right)$$

Posons $U = (U_1, \dots, U_m) \in \mathcal{O}_n(\mathbb{R})$

Remarque $\forall i \in [1, r]$

$$Bu_i = \mu_i u_i$$

Avec B, μ_i à determiner.

$$AA^{\top}U_{i} = \frac{1}{\sqrt{\lambda_{i}}} \underbrace{AA^{\top}Av_{i}}_{\text{par def de } v_{i}}$$

$$= \sqrt{\lambda_{i}}Av_{i}$$

$$= \lambda_{i} \underbrace{\left(\frac{1}{\sqrt{\lambda_{i}}}Av_{i}\right)}_{U_{i}}$$

$$= \lambda_{i}U_{i}$$

D'où U_i vecteur propre de AA^{\top} associé à λ_i

• On pose

$$\Sigma = U^{\top} A V$$

$$= U^{\top} \left(\underbrace{A v_{1}, \dots, A v_{r}}_{\sqrt{\lambda_{i}} u_{i}}, \underbrace{A v_{r+1}, \dots, A v_{n}}_{0 \text{ car } v_{i} \in \text{ker } A}\right)$$

$$= \begin{pmatrix} u_{1}^{\top} \\ \vdots \\ u_{m}^{\top} \end{pmatrix} \left(\underbrace{\sqrt{\lambda_{j}} \langle u_{i}, u_{j} \rangle | (0)}_{\sqrt{\lambda_{j}} \langle u_{i}, u_{j} \rangle | (0)}\right)$$

$$= \begin{pmatrix} \sqrt{\lambda_{1}} & (0) & | \\ \vdots & \ddots & | (0) \\ (0) & \sqrt{\lambda_{r}} & | \\ (0) & | & (0) \end{pmatrix}$$

$$\Rightarrow A = U \sigma V^{\top}$$

Définition: SVD de A Décomposition de la forme

$$A = U\Sigma V^{\top}$$

Avec U, Σ, V comme définies précédemment

On appelle valeurs singulières notées $(\sigma_i)_i$ les valeurs propres racines carrées

Il manque un passage, j'étais en retard de 7 minutes au cours :/

2.3 Matrice pseudo-inverse

Ou pseudo-inverse généralisée

Soit $A \in \mathcal{M}_{n,n}(\mathbb{R})$ telle que rg $A = r \geq 1$

Définition: Matrice pseudo-inverse Soit $A = U\Sigma U^{\top}$ la SVD de A On définit la pseudo-inverse

$$A^+ = V \Sigma^+ U^\top$$

avec $\Sigma^+ = \begin{pmatrix} \Sigma_r^{-1} & | & 0 \\ 0 & | & 0 \end{pmatrix}$ avec le bloc non-nul de taille $r \times r$.

Proposition

- 1. $AA^{+} = \prod_{Im A}$
- 2. $A^{+}A = \prod_{\ker A^{\top}}$

Avec Π_A la projection orthogonale sur A

Soit $Q \in \mathcal{O}_{n,r}(\mathbb{R})$.

A Lors QQ^{\top} est une projection othogonale sur le sous-espace engendré par les colonnes de Q.

Preuve () cf. CTD factorisation Q_r

1.

$$AA^{+} = U\Sigma \underbrace{V^{\top}V}_{\text{Im}} \Sigma^{+}U^{\top}$$

$$= \begin{pmatrix} u_{1} & u_{2} \end{pmatrix} \begin{pmatrix} \Sigma_{1} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \Sigma_{1}^{-1} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} u_{1}^{\top} \\ u_{2}^{\top} \end{pmatrix}$$

$$= u_{1}u_{1}^{\top}$$

Avec $U_1 = \begin{pmatrix} u_1 & \dots & u_r \end{pmatrix} \in \mathcal{M}_{m,r}$ telle que $u_1^\top u_2 = I_r$. Donc

$$AA^{+} = \underbrace{\Pi_{(u_{1},\dots,u_{r})}}_{\operatorname{Im}A}$$
$$= \Pi_{\operatorname{Im}A}$$

2.

$$AA^{+} = V_{1}V_{1}^{\top}$$

$$= \underbrace{\Pi_{(v_{1},...,v_{r})}}_{\ker A^{\top}}$$

$$= \Pi_{\ker A^{\top}}$$

Théorème Caractérisation de Moore-Penrose A^+ est l'unique solution du système

$$(MP) \begin{cases} AXA &= A \\ XAX &= X \\ (AX)^{\top} &= AX \\ (XA)^{\top} &= XA \end{cases}$$

Avec $X \in \mathcal{M}_{n,n}(\mathbb{R})$

Preuve ($Etude\ de\ (MP)$)

Existance de solution

1.

$$AA^{+}A = U\Sigma \underbrace{\operatorname{Im}}_{V^{\top}V} \Sigma^{+} \underbrace{U^{\top}U}_{\operatorname{Im}} \Sigma V^{\top}$$
$$= U\Sigma\Sigma^{+}\Sigma V^{\top}$$

Or

$$\Sigma \Sigma^{+} \Sigma = \begin{pmatrix} \Sigma_{r} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \Sigma_{r}^{-1} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \Sigma_{r} & 0 \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} \Sigma_{r} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} I_{r} & 0 \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} \Sigma_{r} & 0 \\ 0 & 0 \end{pmatrix}$$
$$= \Sigma$$

Donc

$$AA^+A = U\Sigma V^\top = A$$

$$A^{+}AA^{+} = V \underbrace{\Sigma^{+}\Sigma\Sigma^{+}}_{\Sigma^{+}} U^{\top}$$
$$= V\Sigma^{+}U^{\top}$$
$$= A^{+}$$

$$(AA^+)^{\top} = (U_1U_1^{\top})^{\top}$$
 cf. prop. sur AA^{\top} et A^+A
= $U_1U_1^{\top}$
= AA^+

$$(A^+A)^\top = (V_1V_1^\top)^\top$$
$$= V_1V_1^\top$$
$$= A^+A$$

d
(où A^+ solution de (MP) associée à
 A

Unicité de la solution Soient X_1, X_2 deux solutions de (MP) associées à A.

• Montrons $AX_1 = AX_2$

$$AX_1 = (AX_1)^\top$$
 par 3. appliquée à X_1
$$= X_1^\top A^\top$$
$$= X_1^\top (AX_2A)^\top$$
$$= X_1^\top A^\top X_2^\top A^\top$$
$$= (AX_1)^\top (AX_2)^\top$$
$$= (AX_1)(AX_2)$$
 par 3. appliquée à X_1
$$= AX_1AX_2$$
 par 1. appliquée à X_1
$$= AX_2$$

- On montre de même: $X_1A = X_2A$.
- Montrons $X_1 A X_2 = A$

$$X_1AX_2=X_2AX_2\\ =X_2 & \text{par 2. appliqu\'ee à }X_2\\ =X_2 & \text{car }AX_1=AX_2\\ \text{i.e.} & X_1=X_2 & \text{par 2. appliqu\'ee à }X_1 \\ \end{array}$$

Donc on peut permuter \cdot^{\top} et \cdot^{+} .

Théorème $^{\top}=^{+}$

$$A^{\top +} = A^{+\top}$$

Preuve () On vérifie que $(A^+)^{\top}$ est solution de (MP) associée à A.

1.

$$A^\top (A^+)^\top A^\top = (AA^+A)^\top$$

$$= A^\top \qquad \qquad \text{par 1. appliqu\'ee à } A^+$$

2.

$$(A^+)^\top A^\top (A^+)^\top = \underbrace{(A^+ A A^+)^\top}_{A+}$$
 par 2 appliquée à A^+
$$= (A^+)^\top$$

3.

$$(A^{\top}(A^+)^{\top})^{\top} = \underbrace{(A^+A)^{\top}}_{A^+A})^{\top}$$
 par 4. appliquée à A^+
$$= (A^+A)^{\top}$$
$$= A^{\top}(A^+)^{\top}$$

4.

$$((A^+)^\top A^\top)^\top = \underbrace{[(AA^+)^\top]}_{AA^+}^\top$$
 par 3. appliquée à A^+
$$= (A^+)^\top A^\top$$

d'où $A^{+\top}$ solution de (MP) associée à A^{\top} . Par caractérisation de Moore-Penrose:

$$A^{\top +} = A^{+\top}$$

Théorème Caractérisation de A^+ par l'image d'un vecteur de \mathbb{R}^n Soit $b \in \mathbb{R}^n$.

Alors A^+b est la solution de norme $\|\cdot\|_2$ minimale de

$$(\mathcal{P}) \min_{x \in \mathbb{R}^n} f(x) = \frac{1}{2} ||Ax - b||_2^2$$

Preuve ()

•

$$\forall x \in \mathbb{R}^n, \begin{cases} \nabla f(x) &= A^{\top} (Ax - b) \\ \nabla^2 f(x) &= A^{\top} A \text{ semi-def pos.} \end{cases}$$

Donc f convexe sur \mathbb{R}^n et les points critiques ont des minima globaux.

•

$$\nabla f = A^{\top} (AA^{+}b - b)$$

$$= V_{1} \Sigma_{1} U_{1}^{\top} (U_{1} \Sigma_{r} \underbrace{V_{1}^{\top} V_{1}}_{I_{2}} \Sigma_{r}^{-1} U_{1}^{\top} b - b)$$

$$= V_{1} \Sigma_{r} (\underbrace{U_{1}^{\top} U_{1}}_{I_{2}} U_{1}^{\top} - U_{1}^{\top}) b$$

$$= 0$$

car

$$A = U\Sigma V^{\top} = U_1\Sigma_r V_1^{\top}$$

$$A^+ = V\Sigma^+ U^{\top} = V_1\Sigma_r^{-1} U_1^{\top}$$

et A^+b est solution de (\mathcal{P})

• Montrons $\forall v \in \mathbb{R}^n$, v solution de (\mathcal{P}) , $\exists x_0 \in \ker A$, $x = x_0 + A^+b$ Soit $x \in \mathbb{R}^n$ solution de (\mathcal{P}) .

Or $\mathbb{R}^n = \ker A \oplus \ker A^{\perp}$.

D'où $\exists !(x_0, x_\perp) \in \ker A \times \ker A^\perp, x = x_0 + x_\perp.$

Or x solution de (\mathcal{P}) donc $\nabla f(x) = 0$.

D'où

$$A^{\top}Ax = A^{\top}b$$

$$\iff A^{\top}A(x_0 + x_{\perp}) = A^{\top}b$$

$$\iff A^{\top} \underbrace{Ax_0}_{0 \text{ car } x_0 \in \text{ ker } A} + A^{\top}Ax_{\perp} = A^{\top}b$$

$$\iff A^{\top}Ax_{\perp} = A^{\top}b$$

Or
$$A^{\top}A(A^+b) = A^{\top}b$$
 car $A^{\top}b$ solution de (\mathcal{P})
D'où $A^{\top}Ax_{\perp} = A^{\top}A(A^+b)$ i.e. $A^{\top}A(x_{\perp} - A^+b) = 0$.
D'où $x_{\perp} - A^+b \in \ker(A^{\top}A) = \ker A$ (cf. prop. de $A^{\top}A$)

$$A^+b = X_1 \Sigma_r^{-1} U_1^\top b$$

$$\in \operatorname{Im} V_1$$
or $V_1 = \begin{pmatrix} v_1 & \dots & v_r \end{pmatrix}$ avec les $(u_i)_i$ b.o.n. de $\ker A^\top$

D'où $A^+b\in\ker A^\perp$ Or $x_\perp\in\ker A^\perp$ donc $x_\perp-A^+b\in\ker A^\perp$ D'où $x_\perp-A^+b\in\ker A\cap\ker A^\perp=\{0\}$ car $\ker A\oplus\ker A^\perp=\mathbb{R}^n$ et $x_\perp=A^+b$ D'où $\exists x_0\in\ker A, x=x_0+A^+b$

• Bilan

$$\forall x \in \mathbb{R}^n$$
, solution de $(\mathcal{P}) \implies ||x||_2 \ge ||A^+b||_2$

Corollaire Equation normale $\forall b \in \mathbb{R}^m, (A^{\top}A)A^+b = A^{\top}b,$

Proposition Cas particuliers

1. A inversible: $\operatorname{rg} A = m = n$

$$A^+ = A^{-1}$$

2. $\operatorname{rg} A = m \ (m \ge n)$

$$A^+ = (A^\top A)^{-1} A^\top$$

3. $\operatorname{rg} A = m \quad (n \ge m)$

$$A^+ = A^\top (AA^\top)^{-1}$$

Preuve ()

1. A^{-1} vérifie (MP)

2. rg A=n donc $A^{\top}A$ inversible. (cf. prop. de $A^{\top}A$). D'après les équations normales,

$$\forall b \in \mathbb{R}^m, \quad (A^\top A)A^+b = A^\top b$$

$$\operatorname{donc} \quad (A^\top A)A^+ = A^\top$$

$$\operatorname{donc} \quad A^+ = (A^\top A)^{-1}A^\top$$

3. On pose $B = A^{\top}$. On a $B^{\top}B$ inversible.

$$\operatorname{rg} B = m$$

d'où par 2.

$$B^+ = (B^\top B)^{-1} B^\top$$
 i.e. $(A^\top)^+ = (AA^\top)^{-1} A$ i.e. $(A^+)^\top = (AA^\top)^{-1} A$ car \cdot^+ et \cdot^\top permuttent i.e. $A^+ = A^\top (AA^\top)^{-1}$

$$\begin{array}{c} [\text{--}\cdot{:}] \ (\text{--}1,\ 0) - (10,\ 0) \ \operatorname{nodeker} A \ ; \ [\text{--}\cdot{:}] \ (0,\ \text{--}1) - (0,\ 10) \ \operatorname{nodeker} A^\top \ ; \ [\text{--}\cdot{:}] \ (1,\ 1) \\ \operatorname{node} U_{|\ker A}^{|\operatorname{Im} A^\top} - (20,\ 1) \ \operatorname{node} A = [U]; \end{array}$$

Figure 1: