1 Grandeurs de description d'un fluide

- À l'échelle microscopique, les **fluides** (les gaz et les liquides) sont constitués d'**entités** (des molécules, des atomes ou des ions) en mouvement incessant et désordonné.
- À l'échelle macroscopique, les fluides sont décrits par trois grandeurs physiques :

	Masse volumique	Température	Pression	
Unités et symboles à l'échelle macroscopique	ρ en kg · m -³	<i>T</i> en °C ou en K (Kelvin)	<i>P</i> en Pa	
À l'échelle microscopique, la grandeur traduit :	croscopique, particules c'est-à- grandeur dire leur nombre		la fréquence des chocs des particules contre les parois du récipient.	

2 Force pressante

L'action mécanique exercée par un fluide sur une paroi est modélisée par une force pressante:

3 Loi de Mariotte

Le volume *V* occupé par un gaz dépend de la pression *P* de ce gaz. La **loi de Mariotte** indique que, à température constante, quelles que soient les unités de pression et de volume utilisées :

 $P \cdot V = constante$

4 Loi fondamentale de la statique des fluides

La loi fondamentale de la **statique des fluides** permet d'énoncer que la différence de pression $\Delta P = (P_{\rm B} - P_{\rm A})$ entre deux points A et B d'un liquide au repos est proportionnelle à la différence d'altitude (ou dénivellation) $\Delta z = (z_{\rm A} - z_{\rm B})$ entre ces deux points : $\Delta P = \rho \cdot g \cdot \Delta z$.

intensité de pesanteur (en $\mathbf{N} \cdot \mathbf{kg}^{-1}$) ($g = 9.81 \text{ N} \cdot \mathbf{kg}^{-1}$ à la surface de la Terre)

masse volumique du fluide (en kg · m-3)

DONNÉES

Masse volumique de l'eau en mer : ρ = 1 025 kg · m⁻³ ; intensité de pesanteur à la surface de la Terre : g = 9,81 N · kg⁻¹

1 Grandeurs de description d'un fluide

2 Force pressante

	A	D	C
La force pressante F exercée sur une surface d'aire $S = 0.25 \text{ m}^2$ par un fluide à la pression $P = 1.0 \times 10^5 \text{ Pa est}$:	$F = 2.5 \times 10^{-6} \text{ N}$	$F = 4,0 \times 10^5 \text{ N}$	$F = 2.5 \times 10^4 \text{ N}$

3 Loi de Mariotte

	А	В	C
5 Une quantité donnée de gaz occupe un volume V= 5,0 L à la pression P= 1,0 bar. Si la pression est doublée, alors le volume de cette quantité de gaz :	reste toujours égal à 5,0 L.	vaut 10 L.	vaut 2,5 L.

4 Loi fondamentale de la statique des fluides

Diffusion du dioxyde d'azote

Le dioxyde d'azote NO₂ est un gaz roux. On réalise l'expérience ci-dessous.

- **1.** Expliquer, au niveau microscopique, la présence de gaz roux dans les deux flacons en fin d'expérience.
- **2. a.** Que peut-on dire du nombre de molécules de dioxyde d'azote lors de l'expérience ?
- b. La masse volumique du gaz roux change-t-elle lors de l'expérience ? Si oui, dans quel sens ?

13 Densité moléculaire

Le diazote N₂ (g) est le principal constituant de l'air.

Données :

Densités moléculaires :

 $N_1 = 1.7 \times 10^{28} \ m^{-3}$;

 $N_2 = 3.3 \times 10^{28} \text{ m}^{-3}$;

 $N_3 = 2.6 \times 10^{25} \text{ m}^{-3}$.

Fluide	Masse volumique ρ (en kg · m ⁻³)		
N ₂ (g)	1,2		
N ₂ (ℓ)	808		
H ₂ O (ℓ)	1 000		

- 1. En utilisant le modèle microscopique des fluides, expliquer la différence de masse volumique constatée entre le diazote gazeux et le diazote liquide?
- **2. a.** Quelle densité moléculaire *N* est celle du diazote gazeux ? Justifier.
- b. Associer une densité moléculaire *N* à chaque liquide (on précise qu'une molécule de diazote est environ 1,5 fois plus lourde qu'une molécule d'eau).

DONNÉES

1 bar = 10^5 Pa; $P_{atm} = 1,013 \times 10^5$ Pa

Force pressante exercée par l'air atmosphérique

Même à pression atmosphérique, l'air contenu dans un ballon exerce une action mécanique sur les parois et le bouchon.

- **1.** Quelle est l'origine microscopique de cette action ?
- **2.** Représenter sans souci d'échelle par des vecteurs les forces pressantes \vec{F}_A , \vec{F}_B , \vec{F}_C et \vec{F}_D qui modélisent les actions exercées par l'air du ballon sur les surfaces S_A , S_B , S_C et S_D .

15 Calcul de force pressante

- Donner la relation définissant la valeur de la force pressante F exercée par un fluide sur une surface d'aire S. Préciser les unités à utiliser.
- 2. La valeur F d'une force pressante change-t-elle si :
- a. l'aire 5 de la surface est doublée ?
- b. la pression P est réduite de moitié?
- Si oui, préciser le sens et la valeur de cette variation.
- 3. Au sol, la plus haute pression atmosphérique a été mesurée le 31 décembre 1968 en Sibérie : $P_{\text{atm}} = 1 083,8 \text{ hPa}$. Calculer la valeur F de la force pressante exercée par l'air atmosphérique lors du record atteint sur la surface de la peau estimée à 1,5 m².

17 Variation de volume en plongée

À une certaine profondeur, à la pression P_C = 4,0 bar, on enferme un volume d'air V_C = 1,0 L dans un ballon.

- **1. a.** D'après la loi de Mariotte, à température constante, le volume *V* d'une quantité de gaz donnée est-il proportionnel ou inversement proportionnel à sa pression *P* ?
- b. En déduire le volume V_A de l'air dans le ballon à la pression P_A .
- 2. a. D'après la loi de Mariotte, quelle relation peut-on écrire entre les grandeurs V_C , P_C , V_B et P_B ?

- En déduire le volume V_B de l'air dans le ballon.
- 3. En surface, à pression atmosphérique, l'air enfermé dans un ballon occupe un volume V_0 . Calculer sa valeur.
- 4. Expliquer pourquoi il est très dangereux pour un plongeur de remonter vers la surface en bloquant sa respiration.

🚺 Modéliser le comportement d'un gaz

Le tableau ci-dessous donne les valeurs de la pression *P* d'une quantité d'air maintenue à température constante dans une seringue et les valeurs du volume *V* occupé.

P (en hPa)	697	859	996	1 157	1 370	1 695	1 983
V (en mL)	50	40	35	30	25	20	17

Le comportement de l'air suit il la loi de Mariotte ? On pourra justifier par le tracé d'un graphique.

DONNÉES

 P_{atm} = 1,013 × 10⁵ Pa; 1 hPa = 10² Pa; g = 9,8 N·kg⁻¹; $ρ_{\text{eau}}$ = 1,00×10³ kg·m⁻³;

 $\rho_{eau\,de\,mer} = 1,025 \times 10^3~kg \cdot m^{-3}$; $\rho_{Hg} = 1,36 \times 10^4~kg \cdot m^{-3}$

20 Utiliser la loi de la statique des fluides

Une éprouvette graduée de 100 mL est remplie d'eau.

- **1.** Classer les pressions aux points A, B et C par ordre croissant.
- 2. a. Écrire la loi qui établit la relation entre la différence de pression entre les points A et B et leur différence d'altitude z. Préciser l'unité à utiliser pour chaque grandeur.
- b. En déduire la valeur de la différence de pression $(P_B P_A)$ entre A et B.
- 3. Calculer la différence de pression entre les points A et C. Le résultat validet-il la réponse donnée en 1 ?

Variation de pression en plongée

En surface, à l'altitude z_0 = 0 m, un plongeur est soumis à la pression atmosphérique P_0 = $P_{\rm atm}$. À une certaine profondeur $z_{\rm Ar}$ la pression augmente et vaut $P_{\rm A}$.

- 1. a. Écrire la relation liant P_{atm} , P_{A} , z_{A} et z_{0} .
- b. Comment nomme-t-on cette relation? Préciser les unités à utiliser pour chaque grandeur.
- c. En déduire la valeur de la pression PA.
- a. Écrire la relation liant P_A, P_B, z_A et z_B.
- **b.** En déduire la valeur de la profondeur z_B sachant que $P_B = 3.0 \times 10^3 \text{ hPa}$.

26 Effet de la pression en plongée

Lors d'une plongée en apnée, un plongeur inspire, en surface, un volume d'air dans ses poumons égal à 6,0 L. Au cours de la descente, la loi fondamentale de la statique des fluides permet de relier la pression *P* de l'eau à la profondeur *z* d'immersion :

$$P - P_{atm} = \rho \cdot g \cdot z$$
 avec P en Pa , z en m et ρ en $kg \cdot m^{-3}$ et $g = 9.8 N \cdot kg^{-1}$

Données : En surface z=0 m et $P_{atm}=1,013\times 10^5$ Pa. Lors de la descente, la pression de l'air dans les poumons d'un plongeur est égale à la pression de l'eau à l'extérieur. Le volume V d'une sphère de rayon R est : $V=\frac{4}{3}\cdot\pi\cdot R^3$. $\rho_{eau\ de\ mer}=1,03\times 10^3\ kg\cdot m^{-3}$.

- 1. Le volume de l'air dans les poumons du plongeur augmente-t-il ou diminue-t-il au cours de sa descente ? Justifier la réponse.
- 2. On veut déterminer la profondeur à laquelle le volume occupé par l'air dans les poumons du plongeur a la taille d'une orange.
- a. Estimer en litre le volume moyen d'une orange (de 10 cm de diamètre).
- b. En déduire la profondeur évoquée.

28 Les limites de la plongée

Depuis 2012, le record du monde d'apnée *No Limit* est détenu par H. Nitsch, surnommé *The flying fish*, avec une profondeur de 253 m. Il subit à la profondeur maximale une pression 25 fois supérieure à celle de la surface.

Données : $P_{atm} = 1~013~hPa$; 1,0 $bar = 1.0 \times 10^5~Pa$; $\rho_{eau~de~mer} = 1.03 \times 10^3~kg \cdot m^{-3}$; $g = 9.8~N \cdot kg^{-1}$; surface des lunettes de plongée : $S = 1.4 \times 10^{-1}~dm^2$

- **1. a.** Utiliser la loi fondamentale de statique des fluides pour déterminer la variation de pression entre la surface et la profondeur atteinte lors de ce record. En déduire la pression à 253 m de profondeur.
- b. Montrer que, dans l'eau de mer, la pression augmente d'un bar tous les 10 m.
- 2. Calculer la valeur maximale de la force pressante modélisant l'action mécanique exercée par l'eau sur la surface des lunettes. La comparer à celle exercée en surface.

