Pregunta 1 (2,5 puntos))

Sea $(A, +, \cdot)$ un anillo conmutativo. Dado $x \in A$ se dice que x es nihilpotente si $\exists n \in \mathbb{N}^*$ tal que $x^n = 0$.

Sean $x, y \in A$ tales que x e y son nihilpotentes. Demuestre que:

- a) $x \cdot y$ es nihilpotente.
- b) x + y es nihilpotente.
- c) 1 x no es nihilpotente.

Indicación: Calcule previamente $(1-x)(1+x+\cdots+x^k)$ siendo $k \in \mathbb{N}^*$.

Pregunta 2 (2,5 puntos)

¿Cuántas aplicaciones sobreyectivas existen del conjunto $A=\{1,2,3,\cdots,n+1\}$ al conjunto $B=\{1,2,3,\cdots,n\}$? Justifique la respuesta.

Pregunta 3 (2,5 puntos)

Demuestre que para todo $n \in \mathbb{N}^*$ se tiene que

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)} = 1 - \frac{1}{n+1}.$$

Pregunta 4 (2,5 puntos) (1+1,5)

- a) Resuelva en \mathbb{C} la ecuación $z^2 6z + 12 = 0$.
- b) Sea $\omega = 3 + i\sqrt{3}$. Calcule el módulo y el argumento de los números ω , $\omega 4$, $\frac{\omega}{\omega 4}$ y $\frac{\overline{\omega}}{\overline{\omega} 4}$, siendo $\overline{\omega}$ el conjugado de ω .