

Key Insights:

1. How Efficient Were We This Week?

Line efficiency bounced between 58% and 70%, showing room for improvement on slower days. Maintaining stable productivity starts with keeping this line consistently above target.

2. Total Downtime (In Mins)

1388 Minutes Lost in Just 6 Days

That's over 23 hours of production time. August 30 and September 2 saw the highest losses. Digging into those days helps prevent repeat slowdowns.

3. Average Downtime Per Day (In Mins) Small Days, Big Delays

Daily downtime averaged 22.75 minutes, with dips and peaks hinting at inconsistent flow. Targeting bottlenecks could smooth these curves.

4. Total Batches Produced

38 Batches, But Not All Were Smooth

While production stayed steady, matching output with efficiency is the next goal. Volume without speed leads to backlog and downtime.

5. Downtime by Factor (Bar Chart)

"Who's on Top... of Bringing Us DOWN?"

The main culprits:

- Machine adjustment 332 mins
- Machine failure 254 mins
- Inventory shortage 225 mins

Targeting these 3 could cut over 60% of total downtime.

6. Preventable vs Non-Preventable Downtime

Preventable Downtime = 56%

That's time we can win back through better training, SOPs, or clearer workflows. It's not just machines, people matter too.

7. Downtime by Product

Held Up by... What We MAKE?

CO-600 is responsible for nearly 500 minutes of downtime, followed by CO-2L and RB-600. Could complexity or setup time be slowing these lines?

8. Daily Downtime Trend (Line Area Chart)

6 Days, 6 Clues

The downtime trend shows a double peak pattern, with Sept 2 being the highest. Can we predict and prevent spikes like these?

9. Operator vs Product Downtime Matrix

Who's Facing the Heat?

Charlie and Dee handled the most downtime-heavy batches, especially with CO-600. Balancing workloads or adding targeted support may reduce strain.