TEXT FLY WITHIN THE BOOK ONLY

LIBRARY OU_160400 ANAMABIL AN

AN INTRODUCTION TO MATHEMATICS

AN INTRODUCTION TO MATHEMATICS

With Applications to Science and Agriculture

BY

ISAIAH LESLIE MILLER

Professor of Mathematics, South Dakota State College of Agriculture and Mechanic Arts

F. S. CROFTS & CO.

NEW YORK -:- -:- MCMXXX

COPYRIGHT, 1930, BY F. S. CROFTS & Co., INC.

PREFACE

AFTER some fourteen years of teaching in American colleges and universities the author finds that the average high school graduate has not developed in himself a mathematical type of reasoning. He therefore hopes that this treatment may in some measure accomplish this purpose.

The first few chapters are devoted to a thorough review of high school algebra, for the author is convinced that most college freshmen need considerable drill on the fundamental processes of algebra before attempting a very extensive study of mathematics.

In preparing this book the author has kept in mind two types of students: first, those who will never take additional work in mathematics, and second, those who will continue the work in science or agriculture for advanced degrees and will doubtless desire to pursue additional courses in mathematics. He has therefore attempted to write a book basic in the fundamental principles of mathematics and at the same time has endeavored to make practical applications to the fields of science and agriculture, wherever possible. He feels that a thorough knowledge of the material covered in this work will enable the second type of student to successfully pursue a course in analytical geometry followed by a course in the calculus.

The author gratefully acknowledges his indebtedness to his colleagues, Professor Wm. Asker for preparing the chapter on statistics, and Mr. H. B. MacDougal for checking much of the material, to Professor I. W. Smith of the North Dakota Agricultural College for using the material in mimeographed form and offering many valuable suggestions, to Dean D. A. Roth-

vi PREFACE

rock of Indiana University for reading most of the manuscript and to Professor Wm. Marshall of Purdue University for encouraging him in the work.

The author also desires to thank Professor E. S. Crawley of the University of Pennsylvania for his generous permission to use the greater part of his *Tables of Logarithms* as a portion of this book.

I. L. MILLER

SOUTH DAKOTA STATE COLLEGE

CONTENTS

CHAPTER I

ALGEBRAIC OPERATIONS

	IIIGEDIUITO OF ETUTTOTIO	
ARTI		PAGE
1.	FOUR FUNDAMENTAL OPERATIONS	. 1
2.	Addition and Subtraction	. 1
3.	Use of Parentheses, Signs of Aggregation	. 1
4.	MULTIPLICATION	. 3
5.	Division	. 4
6.	Division of a Polynomial by a Polynomial	. 4
7.	ZERO IN DIVISION	. 4
	CHAPTER II	
	FACTORING	
R	IMPORTANT TYPE PRODUCTS	. 6
	OTHER IMPORTANT PRODUCTS	
	HIGHEST COMMON FACTOR	-
	LOWEST COMMON MULTIPLE	
		. 10
	CHAPTER III	
	LINEAR EQUATIONS IN ONE UNKNOWN	
12.	Equalities	. 12
	SOLUTION OR ROOT OF AN EQUATION	
	EQUIVALENT EQUATIONS	
15.	OPERATIONS ON EQUATIONS	. 13
	TYPE FORM OF THE LINEAR EQUATION IN ONE UNKNOWN	
	VERIFICATION BY SUBSTITUTION	
	CHAPTER IV	
	FRACTIONS	
18.	ALGEBRAIC FRACTION	. 16
19.	Operations	. 16

viii CONTENTS

ARTI		'AGI
20.	REDUCTION OF A FRACTION TO ITS LOWEST TERMS	1
21.	Addition and Subtraction	18
22.	MULTIPLICATION AND DIVISION	19
23.	COMPLEX FRACTIONS	20
	FRACTIONAL EQUATIONS	2
	• • • • • • • • • • • • • • • • • • • •	
	CHAPTER V	
	FUNCTIONS	
25.	CONSTANTS AND VARIABLES	24
-	Definition of a Function.	2
	FUNCTIONAL NOTATION	2
	FUNCTIONAL RELATIONS	2
	FORMULAS TAKEN FROM GEOMETRY	20
	GRAPHICAL REPRESENTATION OF FUNCTIONAL RELATIONS	2
	STATISTICAL DATA	3
or.	STATISTICAL DATA	0
	CHAPTER VI	
	SYSTEMS OF LINEAR EQUATIONS	
32	GRAPHS OF LINEAR EQUATIONS	39
	GRAPHICAL SOLUTION	4
	ALGEBRAIC SOLUTION	4:
	SOLUTION OF THREE LINEAR EQUATIONS IN THREE UNKNOWNS.	4
	SLOPE OF A STRAIGHT LINE	48
	DISTANCE BETWEEN TWO POINTS	50
		50
	EQUATION OF A STRAIGHT LINE	5:
	•	Ű.
40.	PROBLEM (SLOPE AND ONE POINT FORM OF THE EQUATION OF A	
41	Line)	5
	PARALLEL LINES	5
42.	Perpendicular Lines	5
	CHAPTER VII	
	QUADRATIC EQUATIONS	
43	Typical Form	5
	Solution of the Quadratic Equation	5
	CLASSIFICATION OF NUMBERS	6:
IJ.	CHARGIFICATION OF INUMERICAL	J.

ix

ARTI	ICLE P	AGE
46.	CHARACTER OF ROOTS. DISCRIMINANT	63
	SUM AND PRODUCT OF THE ROOTS	65
48.	Graphical Solution	65
49.	MINIMUM VALUE OF A QUADRATIC FUNCTION	67
	CHAPTER VIII	
	EXPONENTS, RADICALS, BINOMIAL EXPANSION AND LOGARITHMS	
5 0.	DEFINITION OF A NUMBER	74
51.	Radicals	77
52 .	BINOMIAL EXPANSION	7 9
5 3.	LOGARITHMS. DEFINITION	81
54 .	Properties of Logarithms	82
	Common Logarithms	83
5 6.	Use of Tables	84
	CHAPTER IX	
	PROGRESSIONS	
57.	Arithmetical Progression	88
	Elements of an Arithmetical Progression	88
	RELATIONS AMONG THE ELEMENTS	88
	ARITHMETIC MEANS	89
	Geometrical Progression	90
	ELEMENTS OF A GEOMETRICAL PROGRESSION	90
	RELATIONS AMONG THE ELEMENTS	90
	CHAPTER X	
	INTEREST, ANNUITIES, SINKING FUND	
	, ,	nc
	SIMPLE INTEREST	92
	Compound Interest	95
	Compound Interest Formulas	95
	Annuities	97
	AMOUNT OF AN ANNUITY	97
ο у .	AMOUNT OF AN ANNUITY, WHERE THE ANNUAL PAYMENT IS	100
70	MADE IN P INSTALLMENTS	100
10.	PRESENT VALUE	101

X CONTENTS

AKTI	-	AGE
	PRESENT VALUE OF AN ANNUITY	104
72.	PRESENT VALUE OF AN ANNUITY, WHERE THE ANNUAL PAYMENT	
	IS MADE IN P EQUAL INSTALLMENTS	105
73.	SINKING FUNDS	108
	Amortization	
75	Amortization Schedule	110
70.	Interest and Annuity Tables	119
10.	INTEREST AND ANNUITY TABLES	112
	CHAPTER XI	
	TRIGONOMETRIC FUNCTIONS	
77	Meaning of Trigonometry	115
	TRIGONOMETRIC DEFINITIONS.	115
	Co-Functions and Complementary Angles	117
	RELATIONS AMONG THE FUNCTIONS	118
81.	Functions of 30°, 45°, 60°	
82.	LINE VALUES OF THE FUNCTIONS	121
83.	VARIATIONS OF THE FUNCTIONS	122
84.	NATURAL TRIGONOMETRIC FUNCTIONS AND LOGARITHMS OF THE	
	Trigonometric Functions	122
	CHAPTER XII	
	COLUMNATION ON MILE DIGITAL ANGLE MDIANGLE	
	SOLUTION OF THE RIGHT ANGLE TRIANGLE	
85	FORMULAS FOR THE SOLUTION OF A RIGHT TRIANGLE	125
	Applying the Formulas	
оо.	ATTENING THE POLICE	120
	CHAPTER XIII	
	TRIGONOMETRIC FUNCTIONS OF ANY ANGLE	
	SOLUTION OF THE OBLIQUE TRIANGLE	
	NOTION OF ANY OBSERVED AND AND AND AND AND AND AND AND AND AN	
87.	Trigonometric Definitions	130
88.	Laws of Signs	131
	Functions of Negative angles	
	Functions of 180°—θ, Supplementary Angles	
	FUNCTIONS OF THE SUM OF TWO ANGLES	
	Functions of the Difference of Two Angles	
J	TOTAL OF THE PRESENTATION OF THE PROPERTY OF T	

хi

ARTI		AGE
93.	Functions of Twice an Angle	136
94.	HALF-ANGLE FORMULAS	137
95.	SUM AND DIFFERENCE FORMULAS	138
96.	Theorem of Sines	140
97.	THEOREM OF COSINES	144
98.	THEOREM OF TANGENTS	147
99.	Area of a Triangle	149
100.	SUMMARY OF METHODS OF SOLVING ANY TRIANGLE	151
	CHAPTER XIV	
	THE DERIVATIVE AND SOME APPLICATIONS	
101	THE MEANING OF A TANGENT TO A CURVE	153
	THE DERIVATIVE	
103	DERIVATIVE OF A CONSTANT	157
104.	DERIVATIVE OF A SIM.	158
105.	DERIVATIVE OF A SUM. DERIVATIVE OF A PRODUCT	158
	DERIVATIVE OF A QUOTIENT.	
	FORMULAS STATED IN WORDS	
108.	Derivative of u^n	160
109.	Increasing and Decreasing Functions	
110.	MAXIMA AND MINIMA	
111.	Applications of the Theory of Maxima and Minima	168
	CHAPTER XV	
	STATISTICS AND APPLICATION	
110	T	4=0
	Introduction.	
110.	FREQUENCY TABLES	
	MEASURES OF CENTRAL TENDENCY	171
110.	DETERMINATION OF THE ARITHMETIC MEAN FROM A FREQUENCY TABLE	170
116	TABLE DETERMINATION OF THE MEDIAN FROM A FREQUENCY TABLE.	
	VARIABILITY	
	Correlation	
119.	THE RANK METHOD OF CORRELATION	101
120.	THE PRODUCT MOMENT FORMULA OR THE PEARSON CORRELA-	101
	TION COEFFICIENT	183
		100

CONTENTS

CHAPTER XVI

PROBABILITY

ARTICLE	PAGE
121. Meaning of Probability	186
122. PROBABILITY BASED UPON OBSERVATION OR EXPERIENCE	187
123. MEANING OF MORTALITY TABLE	. 188
124. Permutations	189
125. Combinations	191
126. Compound Events	192
CHAPTER XVII	
ANNUITIES AND INSURANCE	
127. MEANING OF LIFE ANNUITY	195
128. Pure Endowments	. 195
129. PRESENT VALUE (COST) OF A LIFE ANNUITY	196
130. Life Annuity Due	. 197
131. Temporary Annuity	197
132. Life Insurance Definitions	
133. Ordinary Life Policy	
134. LIMITED PAYMENT LIFE POLICY	202
135. TERM INSURANCE	204
136. Endowment Insurance	206
127 MEANING OF RESERVE	207

TABLES

TABLE	P	AGE
I.	COMMON LOGARITHMS OF NUMBERS	211
II.	LOGARITHMS OF THE TRIGONOMETRIC FUNCTIONS	231
III.	VALUES OF THE TRIGONOMETRIC FUNCTIONS	277
IV.	American Experience Table of Mortality	282
V.	COMMUTATION COLUMNS	283
VI.	Amount of 1	285
VII.	PRESENT VALUE OF 1	287
VIII.	Amount of 1 per Annum at Compound Interest	289
IX.	PRESENT VALUE OF 1 PER ANNUM	291
	Index	293

AN INTRODUCTION TO MATHEMATICS

CHAPTER I

ALGEBRAIC OPERATIONS

- 1. Four fundamental operations. The operations with numbers are made up of additions, subtractions, multiplications and divisions. These operations are known as the four fundamental operations of algebra.
 - 2. Addition and subtraction.
 - a. Addition is commutative. This means that a + b = b + a.
- b. The sum of two or more numbers is the same, irrespective of the way in which they are grouped. Thus:

$$a + b + c = (a + b) + c = a + (b + c).$$

3. Use of parentheses. Signs of aggregation. The signs of aggregation are:

Parentheses	()
Brackets	[]
Braces	{	}
${f V}$ inculum		
Bar		

Signs of aggregation may be removed with or without change of sign of each term included within the signs of aggregation, according as the sign - or + precedes the sign of aggregation. Thus:

$$x - \{3y - 2[z - (y - 3) - (2y + 4)]\}\$$

$$= x - \{3y - 2[z - y + 3 - 2y - 4]\}\$$

$$= x - \{3y - 2z + 6y + 2\}\$$

$$= x - 9y + 2z - 2$$

Exercises

Add:

1.
$$3x - 2y$$
, $7x + 6y$, $-5x + 4y$.

2.
$$2x + 3y - 7z$$
, $4x - 9y + 6z$, $8x + 7y + 3z$.

3.
$$4a^2b^2 + 5ac^2 - 2c^3$$
, $7a^2b^2 - 2ac^2$, $7ac^2 + 4c^3$.

4.
$$2x^2 - 3ax + 3c$$
, $3x^2 + ax - c$, $x^2 - 2ax - 5c$.

5.
$$7x^3 - 4x + 2x^2 - 5$$
, $-2x + 5x^3 + 1 - 2x^2$, $4 + 3x + 2x^2 + x^3$.

Subtract the first expression from the second in the following:

6.
$$3m + 2n, 4m - 5n$$
.

7.
$$2a^2 + 3a - 5$$
, $4a^2 - 2a + 4$.

8.
$$3x^2 + 5xy - 4y^2 - 3x$$
, $4x^2 - 2xy + y^2 + 2x$.

9.
$$5a^3 + 6ay^2 + 3ay - 2a + 3$$
, $2a^3 + ay - 5ay^2 + 3a - 7$.

10. From the sum of 3a - 4b + 5c and 8b - 2a - 3c, subtract the sum of 3a - 2b + 4c and 4b - 5a - 2c.

Combine coefficients of similar terms:

11.
$$ay + by + cy$$
.

Solution.
$$ay + by + cy = (a + b + c)y$$
.

12.
$$2ax + 6bx - 3cx$$
.

13.
$$4x - 2abx + 7cx$$
.

14.
$$am + bm + an + bn$$
.

Simplify by removing signs of aggregation and combining like terms:

15.
$$2a - 3 + (x - 5a) - 2(3a - 2x)$$
.

16.
$$2(a-3) - 7(a+2) + 8(a-3)$$
.

17.
$$7y - 3[4 - 2(y + 1) + 3(y - 4) - (y - 7)]$$
.

18.
$$3a - [2a - b - \{3a - 2b - (2a + \overline{b - a}) + 3a\} - 3b]$$
.

19.
$$x - (-2x - \{-5x + [x - \overline{3x - 2}] - 3\} - [3x - \overline{2x + 3}]).$$

20.
$$7y - 5[4 - 3(y - 4 - b) - 4\{b - (5y + b) - 5\}].$$

21.
$$4z - \{-5z + (2z - 4w - \overline{3z + 2}) - 3(2z - 5w) - 8\}$$
.

4. Multiplication.

- a. The factors of a product may be taken in any order. Thus, cd = dc.
- b. The factors of a product may be grouped in any manner. Thus, abc = (ab)c = a(bc) = b(ac).
 - c. When m and n are positive integers, $a^m \cdot a^n = a^{m+n}$.

That is, the exponent of the product of two or more powers of a number is the sum of the exponents of the powers taken singly. This is known as the first law of exponents for positive integers.*

Exercises

Multiply:

1. 2abc, $-3a^2bc^2$, $5ab^3c$.

2.
$$3x^2$$
, $7xy^2 + 3x^2y - 2x^3y^2$.

3.
$$5a^2 + 2ay^2$$
, $3a - 4a^2y$.

4.
$$(x + y)(x + y)(x + y)$$
.

5.
$$(a - b - c)(a + b + c)$$
.

6.
$$(x + y + 2z)^2$$
.

7.
$$\left(x-\frac{y}{3}\right)\left(x+\frac{y}{3}\right)$$
.

8.
$$(x^2 - y)^3$$
.

9.
$$(m^2 - mn + n^2)(m^2 + mn + n^2)$$
.

10.
$$(a-b)^n(a-b)^3$$
.

^{*} For a complete discussion of exponents see Chapter VIII.

5. Division. If a and b are any given numbers and b is not zero, there is only one number x such that a = bx. The process of finding x is the process of dividing a by b. a is called the dividend, b the divisor and x the quotient.

Example.
$$\frac{a^m}{a^n} = a^{m-n}$$
, where $m > n$.

That is, the exponent in the quotient of two powers of a number is the exponent of the dividend minus the exponent of the divisor.

Note the condition that b is not to be zero. This means that the divisor can not be zero.

6. Division of a polynomial by a polynomial. Before performing the indicated division the dividend and divisor should be arranged according to ascending or descending powers of some letter.

Example. Divide
$$19a - 9a^2 + a^4 + 3a^3 - 6$$
 by $3 + a^2 - 2a$.

Solution. $a^4 + 3a^3 - 9a^2 + 19a - 6$ $a^2 - 2a + 3$ $a^4 - 2a^3 + 3a^2$ $a^2 + 5a - 2$

$$5a^3 - 12a^2$$

$$5a^3 - 10a^2 + 15a$$

$$- 2a^2 + 4a - 6$$

$$- 2a^2 + 4a - 6$$

7. Zero in division. Division by zero is excluded from the operations in algebra. That is to say, the divisor can not be zero. If the dividend is zero, the quotient is zero. That is, $\frac{0}{a} = 0$.

Where is the fallacy in the following?

Let
$$x = m$$
. (1)

Multiply both sides by
$$x$$
, $x^2 = mx$. (2)

Subtract
$$m^2$$
 from both sides, $x^2 - m^2 = mx - m^2$. (3)

Divide both sides by
$$x - m$$
, $x + m = m$. (4)

But by (1)
$$x = m. ag{5}$$

By (4) and (5)
$$2m = m$$
. (6)

Hence
$$2 = 1$$
. (7)

Exercises

Divide:

1.
$$33a^3b^3c^3 - 9a^2bc^2 + 15ab^2c$$
 by $3abc$.

2.
$$20c4d^3 + 15c^2d^2 - 10cd$$
 by $5cd$.

3.
$$\frac{x^4 - 13x^3y + 5x^2}{x^2}$$

4.
$$\frac{-5y^3 + 15y^4 - 10y^2}{5y^2}$$
.

$$\mathbf{5.} \ \frac{16x^3y^2 - 8xy^3 + 12x^2y^2}{4xy^2}$$

6.
$$x^2y^2 - y^4 + x^4$$
 by $x^2 - xy + y^2$.

The solution of this example gives $x^2 + xy + y^2$ as a quotient and $-2y^4$ as a remainder. And as in arithmetic, the complete quotient may be written.

$$x^2 + xy + y^2 + \frac{-2y^4}{x^2 - xy + y^2}$$

7.
$$y^3 + 27$$
 by $y + 3$.

8.
$$a^3 - 8$$
 by $a - 2$.

9.
$$x^3 - 5x^2 - 17x + 66$$
 by $x - 6$.

10.
$$2x^4 - 8x^3 + 7 + 3x^2 + 10x$$
 by $2x^2 - 4x - 7$.

11.
$$a^4 + a^2b^2 + b^4$$
 by $a^2 + ab + b^2$.

12.
$$2x^3 - 9x^2y - 12y^3 + 17xy^2$$
 by $2x - 3y$.

13.
$$2x^4 - x^3y - 3x^2y^2 + xy^3$$
 by $x^2 + xy$.

14.
$$4a^3 - 3a - 15a^2 + 4$$
 by $a^2 - 3a - 3$.

15.
$$8a^3 + 27b^3$$
 by $2a + 3b$.

CHAPTER II

FACTORING

- 8. Important type products. The following type forms have already been treated in high school algebra. They should be reviewed here and memorized.
 - a. Common monomial factor.

$$ab + ac = a(b + c).$$

Example. $2ax - 6a^3 = 2a(x - 3a^2)$.

b. Trinomial square.

$$a^2 + 2ab + b^2 = (a+b)^2$$

Example.
$$9 + 6a + a^2 = (3 + a)^2$$
.

c. Difference of two squares.

$$m^2 - n^2 = (m - n)(m + n).$$

Example.
$$(a+2b)^2 - c^2 = (a+2b-c)(a+2b+c).$$

d. Trinomial of the form.

$$x^{2} + (m + n)x + mn = (x + m)(x + n).$$

Example.
$$x^2 + 5x + 6 = (x + 2)(x + 3)$$
.

e. Difference of two cubes.

$$m^3 - n^3 = (m - n)(m^2 + mn + n^2).$$

Example.
$$8m^6 - n^3s^3 = (2m^2)^3 - (ns)^3$$
$$= (2m^2 - ns)(4m^4 + 2m^2ns + n^2s^2).$$

f. Sum of two cubes.

$$m^3 + n^3 = (m+n)(m^2 - mn + n^2).$$
 Example.
$$8x^3 + 27y^6 = (2x)^3 + (3y^2)^3$$
$$= (2x + 3y^2)(4x^2 - 6xy^2 + 9y^4).$$

g. Trinomial of the form.

$$ax^2 + bx + c$$

Certain expressions of this form may be factored by inspection. The factors are two binomials whose first terms are factors of ax^2 and whose last terms are factors of c. Now we must choose the terms of binomials so that the algebraic sum of the cross products is bx.

Example. Factor $6x^2 - x - 15$.

The first terms of the factors are 3x and 2x or 6x and x, and the last terms of the factors are ± 3 and ∓ 5 , or ± 1 and ∓ 15 . Choosing the terms so that the algebraic sum of the cross products is -x, we find the factors to be 2x + 3 and 3x - 5.

Hence
$$6x^2 - x - 15 = (2x + 3)(3x - 5)$$
.

h. Grouping of terms.

$$mx + ny + nx + my = (m+n)(x+y).$$

Example.

$$14ax + 21bx - 4ay - 6by = 7x(2a + 3b) - 3y(2a + 3b)$$
$$= (7x - 2y)(2a + 3b).$$

Exercises

Factor the following:

1.
$$2m + 3mn$$
.

2.
$$a^2 - 9b^2$$
.

3.
$$x^2 - 9x + 8$$
.

4.
$$t^2 + 9t - 36$$
.

5.
$$x^3 - 8y^6$$
.

6.
$$a^2 - c^2 - b^2 + 2bc$$
.

7.
$$7mx - 9ny + 7nx - 9my$$
.

8.
$$x^2 - mx + 2nx - 2mn$$
.

9.
$$8m^3n^6 + 27p^3$$
.

10.
$$(m+2)^2 - 5(m+2) - 176$$
.

11.
$$(a-b)^3 - 3(a-b)^2 - 4(a-b)$$
.

12.
$$y^2 - 8yz - 9x^2 + 16z^2$$
.

13.
$$21x^2 - 26x - 15$$
.

14.
$$a^4 - 16b^4 = (a^2)^2 - (4b)^2$$
.

15.
$$16a^2 + 56ab + 49b^2$$
.

16.
$$x^{3n} - y^3 = (x^n)^3 - y^3$$
. (Find two factors only.)

17.
$$(x + y)^3 - (v - w)^3$$
.

18.
$$x^4 - 3x^3y - 10x^2y^2$$
.

9. Other important products.

i. Square of a polynomial. The square of a polynomial equals the sum of the squares of the terms of the polynomial plus twice the product of each term by every term that follows. Thus,

$$(x + y + z + w)^{2} = x^{2} + y^{2} + z^{2} + w^{2} + 2xy + 2xz + 2xw$$
$$+2yz + 2yw + 2zw.$$

j. Expressions that can be written as the difference of two squares.

Example. Factor $4a^4 + b^4$.

By the addition of $4a^2b^2$ and the subtraction of the same term we have

$$4a^{4} + b^{4} = 4a^{4} + 4a^{2}b^{2} + b^{4} - 4a^{2}b^{2}$$

$$= (2a^{2} + b^{2})^{2} - (2ab)^{2}$$

$$= (2a^{2} + b^{2} - 2ab)(2a^{2} + b^{2} + 2ab).$$

k. Cube of a binomia. By actual multiplication, we find that

$$(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

 $(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

Note.—If a polynomial can be put into the form of the product under (i), it can be factored.

Example.
$$a^2 + b^2 + 16c^2 + 2ab + 8ac + 8bc$$

= $(a)^2 + (y)^2 + (4c)^2 + 2 \cdot a \cdot b + 2 \cdot a \cdot 4c + 2b \cdot 4c$
= $(a + b + 4c)^2$.

Exercises

1.
$$x^2 + 9y^2 + 4z^2 + 6xy - 4xz - 12yz$$
. (See 9 (i).)

2.
$$l^2 + 4m^2 - 4lm + 4l - 8m + 4$$
.

3.
$$x^3 - 9x^2y + 27xy^2 - 27y^3$$
. (See 9 (k).)

4.
$$a^3 + 6a^2b + 12ab^2 + 8b^3$$
.

5.
$$x^4 - 6x^2 + 1$$
.

6.
$$a^4 - a^2 + 1$$
.

7.
$$x^4 + 4y^4$$
.

and

8.
$$x^2 + y^2 + 16z^2 - zxy + 8xz - 8yz$$
.

10. Highest common factor. A number or expression which will divide two or more expressions without a remainder, is called a common factor of those expressions.

The product of all the common prime factors of two or more expressions is called their highest common factor (H.C.F.).

To find the H.C.F. of two or more expressions, resolve each into its prime factors, and then find the product of the common prime factors.

Example. Find the H.C.F. of $a^2 - b^2$ and $a^2 - 5ab + 4b^2$.

Solution.
$$a^2 - b^2 = (a - b)(a + b),$$

 $a^2 - 5ab + 4b^2 = (a - b)(a - 4b).$
 $a^2 - 5ab + 4b^2 = (a - b)(a - 4b).$

P----!--

Exercises

Find the H.C.F. of the following sets of expressions:

- 1. ax2, 2abx, 3a2b2.
- 2. 52, 117, 78.
- 3. $x^2 + 2xy + y^2$, $x^2 + xy$, and $x^2 7xy 8y^2$.
- 4. $x^3 1$, $x^2 + 13x 14$, $x^2 1$.
- **5.** $x^3 + 3x^2y + 3xy^2 + y^3$, $x^3 + 2x^2y + xy^2$, and $x^2y + 2xy^2 + y^3$.
- 6. $r^2 6r + 9$, $r^2 + 5r 24$, and $r^2 9r + 18$.
- 7. $(x^2y xy^2)^2$, $xy(x^2 y^2)$.
- 8. $x^2 3x 40$, $x^2 x 30$, $x^2 + 3x 10$.
- 9. $x^2 (y + c)^2$, $(y x)^2 z^2$, $y^2 (x z)^2$.
- **10.** $(x^2-1)(x^2+5x+6)$, $(x^2+3x)(x^2-x-6)$.
- 11. Lowest common multiple. The lowest common multiple (L.C.M.) of two or more expressions is defined as the product of all their prime factors, each taken the greatest number of times that it occurs in any of the expressions. It is evident that the L.C.M. of two or more expressions is the expression of lowest degree which contains each of the given expressions as a factor.

Example. Find the L.C.M. of $x^2 - x - 2$; $x^2 - 8x + 12$; $x^2 - 5x - 6$.

Solution.
$$x^2 - x - 2 = (x - 2)(x + 1),$$

 $x^2 - 8x + 12 = (x - 2)(x - 6),$
 $x^2 - 5x - 6 = (x - 6)(x + 1).$
 $\therefore (x - 2)(x + 1)(x - 6) = \text{L.C.M.}$

Exercises

Find the L.C.M. of each of the following sets of expressions:

- 1. $3ax^2$; a^2bx ; $2ab^2x$.
- 2. $x^2 + xy$; $x^3 + y^3$; $x^2 3xy 4y^2$.
- 3. x + 1; x + 2; $x^2 + 3x + 2$.
- **4.** $a^2 + 7a + 10$; $a^2 + 4a 5$.
- **5.** $a^3 + 8$; $a^3 8$; $a^2 4$.
- 6. $x^2 x 6$; $x^2 6x + 9$; 6x 18.
- 7. $a^2 b^2$; $a^2 2ab 3b^2$; $(a + b)^2$.
- 8. $6x^2 + 18x 60$; $3x^2 + 24x + 45$; $8x^2 24x + 16$.

CHAPTER III

LINEAR EQUATIONS IN ONE UNKNOWN

12. Equalities. A statement that two expressions are equal is called an *equality*.

There are two kinds of equalities, identical equalities or identities, and conditional equalities or equations.

In an identity the two members are equal for all values of the symbols for which the expressions are defined. Thus,

$$x^2 - 4 = (x - 2)(x + 2)$$
 is an identity.

A conditional equality or an equation is true for only certain values of the letters involved. Thus, x-3=7 is an equation and is true for the value x=10 only.

Exercises

Which are the following, equations or identities?

1.
$$(l+m)^2 = l^2 + 2lm + m^2$$
.

2.
$$\frac{y^2-b^2}{y-b}=y+b$$
.

3.
$$x^3 - 3x + 2 = 0$$
.

4.
$$y^2 - 2y + 3 = 0$$
.

13. Solution or root of an equation. By the solution or root of an equation in one unknown we mean the value of the unknown that reduces the equation to an identity. Thus, 6 is a solution of x-2=4, for when x=6 the equation becomes the identity 4=4.

- 14. Equivalent equations. Two equations having the same roots are said to be equivalent. Thus the equations x 5 = 0 and 2x 10 = 0 are equivalent.
- 15. Operations on equations. The following operations may be performed on the members of an equation:
 - (1) Adding the same number to both members.
 - (2) Subtracting the same number from both members.
- (3) Multiplying both members by the same number, zero excluded.
- (4) Dividing both members by the same number, zero excluded.
- 16. Type form of the linear equation in one unknown. The linear equation in a single unknown is of the form:

$$Ax + B = 0, \quad A \neq 0. \tag{1}$$

In fact every linear equation in one unknown can be reduced to the form of (1). Its solution is $x = -\frac{B}{A}$, as may be verified by substitution.

17. Verification by substitution. The operations of Art. 15 are useful in finding solutions but the solution is not complete until the values of the unknown are substituted in the equation to be solved. If such substitution produces an identity the solution is correct.

Exercises and Problems

Solve the following for x and verify the results:

1. 4x + 5 = 2x - 3.

Solution,
$$4x + 5 = 2x - 3. \tag{1}$$

Transpose and collect
$$2x = -8$$
. (2)

Divide by 2
$$x = -4$$
. (3)

Check. Substitute (3) in (1) and

$$4(-4) + 5 = 2(-4) - 3,$$

 $-11 = -11.$

- $2. \ 3x + 5 = 7x 9.$
- 3. $2x(3x+2) = 6x^2 8$.
- **4.** $4(x+2) + x^2 = x^2 8$.
- **5.** (x+1)(x+2) = x(x+4).
- **6.** 2[x + x(x 1) + 1] = (x + 2)(2x 1).
- 7. (a + b)x + (a b)x = ab.
- 8. $\frac{x}{2} + \frac{2x}{5} = \frac{3x}{10} + 6$.
- 9. 1.5x + 3.2x = 2.3x + 12.72.
- 10. $\frac{x}{m} + \frac{y}{n} = 1$.
- 11. Given s = vt, solve for v and t.
- 12. Given $s = \frac{1}{2}gt^2$, solve for g.
- **13.** Given $F = \frac{9}{5}C + 32$, solve for C.
- 14. A miller has wheat worth \$2.20 per bushel and another lot worth \$1.80 per bushel. He wishes to mix these to make 40 bushels of wheat which shall be worth \$2.10 per bushel. How much of each shall he take?
- 15. A farmer has a cow whose milk contains 4% of butter fat (called a 4% milk) and another one which gives 5% milk. How shall he mix the milks to obtain 40 pounds of a $4\frac{1}{4}\%$ milk?
- 16. How much cream that contains 30% butter fat should be added to 500 pounds of milk that contains $3\frac{1}{2}\%$ butter fat to produce a standard milk with 4% of butter fat?
- 17. The milk from a certain cow contains $3\frac{1}{2}\%$ butter fat while that of another cow contains $4\frac{3}{4}\%$ butter fat. What will be the percentage of fat in an equal mixture?
- 18. A man made two investments amounting together to \$5,000. On the first he gained 8%, and on the second he lost 6%. His net gain on the two was \$120. What was the amount of each investment?

19. How heavy a stone can a man, by exerting a force of 175 pounds, lift with a crow-bar 6 feet in length if the fulcrum be six inches from the stone (neglect the weight of the crow-bar)?

Remember that $W \cdot w = F \cdot f$, where W is the weight to be lifted, F the force applied, w the distance between weight and fulcrum and f the distance between force and fulcrum.

- 20. A man can do a piece of work in 5 days, another in 6 days, and a third in 12 days. How many days will it require all to do it when working together?
- 21. The milk from a cow that gives 4 gallons of milk containing 3% butter fat is mixed with 9 gallons of milk containing 5% butter fat. What is the percentage of butter fat in the mixture?

CHAPTER IV

FRACTIONS

- **18.** Algebraic fraction. An algebraic fraction is the indicated quotient of two expressions. Thus, $\frac{m}{n}$ means m divided by n.
- 19. Operations. The following operations and principles are used in the treatment of fractions:
- I. The value of a fraction is not changed by multiplying or dividing both numerator and denominator by the same number. That is,

$$\frac{m}{n} = \frac{am}{an}$$
 and $\frac{m}{n} = \frac{\frac{m}{a}}{\frac{n}{a}}$.

II. Changing the sign of either the numerator or denominator of a fraction is equivalent to changing the sign of the fraction. That is,

$$\frac{-a}{b} = -\frac{a}{b} = \frac{a}{-b}.$$

III. Adding two fractions having a common denominator gives a fraction whose numerator is the sum of the numerators and whose denominator is the common denominator. That is,

$$\frac{l}{n} + \frac{m}{n} = \frac{l+m}{n}$$

$$\frac{l}{n} - \frac{m}{n} = \frac{l - m}{n}.$$

IV. The sum and the difference of any two fractions, $\frac{a}{b}$ and $\frac{c}{d}$, are equal to $\frac{ad + bc}{bd}$ and $\frac{ad - bc}{bd}$ respectively.

For, by I,
$$\frac{a}{b} = \frac{ad}{bd}$$
, and $\frac{c}{d} = \frac{bc}{bd}$.

Hence by III,
$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
 and $\frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}$.

V. The product of two or more fractions is a fraction whose numerator is the product of their numerators and whose denominator is the product of their denominators. That is,

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

VI. To divide one fraction by another, invert the divisor and then multiply. That is,

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$$

The reciprocal of a number is 1 divided by the number. Thus the reciprocal of a is $\frac{1}{a}$; of $\frac{m}{n}$ is $\frac{n}{m}$.

20. Reduction of a fraction to its lowest terms. Separate the numerator and the denominator into their prime factors and then cancel common factors by division.

Reduce to its lowest terms, $\frac{x^2 + 6x + 9}{x^2 - 9}$.

Solution.
$$\frac{x^2+6x+9}{x^2-9} = \frac{(x+3)(x+3)}{(x-3)(x+3)} = \frac{x+3}{x-3}$$

Exercises

Reduce to lowest terms:

1.
$$\frac{51x}{85y}$$

$$a^2 + ab$$

$$2. \ \frac{a^2+ab}{a^2-ab}$$

3.
$$\frac{a^3-b^3}{a^2-b^2}$$

4.
$$\frac{(m+n)^3}{m^3+n^3}$$
.

5.
$$\frac{(a-b)(c-d)(b-c)}{(a-c)(c-b)(a-b)}$$

6.
$$\frac{x+1}{(x+1)+(x+1)^2}$$

7.
$$\frac{(x^4-y^4)(x^3-y^3)}{(x^3+y^3)(x^2+y^2)}$$

8.
$$\frac{a^2-3a+2}{a^2+4a-5}$$

9.
$$\frac{x^2+x-20}{x^2+4x-5}$$

10.
$$\frac{m-m^2-n+mn}{m-mn+n^2-n}$$

21. Addition and subtraction. Reduce the fractions to be added or subtracted to a common denominator and then add or subtract numerators.

Example. Add
$$\frac{3}{a^2 + 2a + 1} + \frac{4a}{a^2 - 1}$$
.

Solution. $\frac{3}{a^2 + 2a + 1} + \frac{4a}{a^2 - 1} = \frac{3}{(a+1)(a+1)}$

$$+ \frac{4a}{(a+1)(a-1)} = \frac{3(a-1)}{(a+1)(a+1)(a-1)}$$

$$+ \frac{4a(a+1)}{(a+1)(a+1)(a-1)} = \frac{4a^2 + 7a - 3}{(a+1)(a+1)(a-1)}$$

Exercises

Perform the following additions and subtractions:

1.
$$\frac{x}{5} + \frac{y}{6}$$

$$2. \ \frac{a}{x} - \frac{a+b}{2x}.$$

3.
$$\frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3}$$

4.
$$\frac{1}{x^2-4}-\frac{1}{(x-2)^2}$$

5.
$$\frac{7}{a+b} - \frac{2}{a} - \frac{5}{b}$$

6.
$$\frac{a+b}{a-b} - \frac{a-b}{a+b}$$

7.
$$\frac{x}{a+1} - \frac{x}{a-1}$$

8.
$$x + y + \frac{x}{y} - 1$$
.

9.
$$\frac{4}{x+1} - \frac{x-2}{x^2-x} - \frac{3x}{x^2-1}$$

10.
$$\frac{5}{3x-3} - \frac{8}{5x-15}$$

11.
$$\frac{1}{x} + \frac{1}{y} - \frac{1}{x+y} + \frac{1}{x-y}$$

12.
$$\frac{x^2+8x+13}{x^2+7x+10}-\frac{x-1}{x+2}$$

13.
$$\frac{3}{2(x+2)} - \frac{2}{(x+2)^2} + \frac{1}{2(x-2)}$$

14.
$$\frac{a+b}{a-b} - \frac{a-b}{a+b} - \frac{6a^2-2b^2}{a^2-b^2}$$

15.
$$\frac{a+4}{a^2+a+1} - \frac{a^2+4a-2}{1-a^3} - \frac{-1}{1-a}$$

16.
$$\frac{3a}{a^2+a-20}+\frac{2}{a^2-6a-55}-\frac{a-1}{a^2-15a+44}$$

17.
$$\frac{x+3}{x^2+5x+6} + \frac{x+2}{x^2+8x+12}$$

18.
$$\frac{1}{(a-b)(b-c)} + \frac{1}{(a-c)(c-b)} - \frac{1}{(b-a)(c-a)}$$

22. Multiplication and division. See principles V and VI. (Art. 19.)

Example (a). Find $\frac{x^2 - 2x + 1}{x^2 - 1} \cdot \frac{x + 1}{x^2 + 1}$

Solution.
$$\frac{x^2 - 2x + 1}{x^2 - 1} \cdot \frac{x + 1}{x^2 + 1} = \frac{x - 1}{x^2 + 1}$$

Example (b).
$$\frac{(a-b)^2}{a+b} \div \frac{a^2-ab}{b}.$$
Solution.
$$\frac{(a-b)^2}{a+b} \div \frac{a^2-ab}{b} = \frac{(a-b)^2}{a+b} \cdot \frac{b}{a^2-ab}$$

$$= \frac{(a-b)(a-b)}{a+b} \cdot \frac{b}{a(a-b)} = \frac{b(a-b)}{a(a+b)}.$$

Exercises

Perform the following multiplications and divisions:

1.
$$\frac{2}{(1+x)^2} \cdot \frac{x+1}{x-1}$$

2. $\frac{1}{a-b} \left(\frac{1}{y-a} - \frac{1}{y-b} \right)$

3. $\frac{m^2 - mn}{a^2 - ab} \cdot \frac{a^2 + ab}{m^2 + mn}$

4. $\frac{6ab}{a-b} \div \frac{8ax}{a+b}$

5. $\frac{m^2 + 2mn}{m^2 + 4n^2} \div \frac{m^2 - 4n^2}{mn - 2n^2}$

7. $\left(\frac{x^2}{a^2} - \frac{x}{a} + 1 \right) \div \left(\frac{x^2}{a^2} + \frac{x}{a} + 1 \right)$

8. $\frac{n^2 - n - 20}{n^2 - 25} \cdot \frac{n^2 - 25}{n+1} \div \frac{n^2 + 2n - 8}{n^2 - n - 2}$

9. $\left(a + \frac{ab}{a-b} \right) \left(b - \frac{ab}{a+b} \right)$

10. $\frac{x^2 + y^2}{x^3 - y^3} \cdot \frac{x^4 + y^4}{x^4 - y^4} \div \frac{x + y}{(x-y)^2}$

23. Complex fractions. A fraction with a fraction in its numerator or denominator or in both is called a complex fraction.

To simplify a complex fraction multiply both the numerator and the denominator of the complex fraction by the L.C.M. of the denominators of the simple fractions that make up the terms.

Example.
$$\begin{split} \frac{1}{x} + \frac{1}{y+x} &= \frac{xy(y^2 - x^2) \left[\frac{1}{x} + \frac{1}{y+x} \right]}{xy(y^2 - x^2) \left[\frac{1}{y} - \frac{1}{y-x} \right]} \\ &= \frac{y(y^2 - x^2) + xy(y-x)}{x(y^2 - x^2) - xy(y+x)} = -\frac{y(y^2 - 2x^2 + xy)}{x^2(x+y)}. \end{split}$$

Exercises

Simplify the following fractions:

1.
$$\frac{\frac{1}{3} + \frac{1}{4}}{\frac{7}{6}}$$

6. $\frac{2x + 3 - \frac{1}{x - 1}}{x - 1}$

2. $\frac{x - \frac{1}{y}}{y - \frac{1}{x}}$

7. $\frac{1 - \frac{x - 1}{2} - x}{1 - \frac{1 - x}{2} - x}$

8. $\frac{x - y + \frac{1}{x}}{\frac{1}{x^2} + \frac{1}{x} + 1}$

9. $\frac{m - n}{m - n + \frac{1}{m + n} + \frac{1}{m - n}}$

5. $\frac{x}{x - 1} - 1$

10. $\frac{\left(\frac{a + b}{a^2 + ab + b^2}\right)\left(a^2 + \frac{b^4}{a^2 + b^2}\right)}{1 \div \left(\frac{a}{a + b} + \frac{b}{a - b}\right)}$

24. Fractional equations. To solve an equation that involves fractions, clear it of fractions by multiplying each

member by the lowest common denominator (L.C.D.) of the fractions. (See Art. 23.)

When the unknown occurs in the denominator, multiplying by the L.C.D. may or may not introduce new roots that do not satisfy the equation to be solved. Such roots that do not satisfy the original equation are called *extraneous* roots.

Example 1. Solve
$$\frac{5}{x-1} + \frac{3}{x-5} = 1$$
.
Solution. $\frac{5}{x-1} + \frac{3}{x-5} = 1$. (1)

Multiplying (1) by (x-1)(x-5) gives

$$5(x-5) + 3(x-1) = (x-1)(x-5).$$
 (2)

Simplifying (2),
$$x^2 - 14x + 33 = 0$$
, (3)

$$(x-11)(x-3) = 0. (4)$$

Hence,

x = 11

or

x = 3

The roots of (2) are 11 and 3 and both satisfy (1).

Example 2. Solve
$$\frac{x-3}{x^2-9} = \frac{1}{7}$$
.

Solution.
$$\frac{x-3}{x^2-9}=\frac{1}{7} \tag{1}$$

Multiplying (1) by $(x^2 - 9)$ 7 gives

$$x^2 - 7x + 12 = 0. (2)$$

or

$$(x-3)(x-4)=0.$$

Hence,
$$x = 3$$
, $x = 4$. (3)

The roots of (2) are 3 and 4. Now x = 4 satisfies (1), but

x = 3 does not satisfy (1) since the left hand member has no meaning when x = 3. Hence the extraneous root x = 3 is introduced in clearing of fractions.

The above example shows the importance of checking each solution by substituting the original equation.

Exercises

Solve the following equations and check the results:

1.
$$\frac{3}{x-2} = \frac{2}{x-3}$$

5.
$$\frac{4x+17}{x+3} - \frac{10-3x}{x-4} - 7 = 0.$$

$$2. \ \frac{5x}{x+1} - \frac{2}{x-3} = 2.$$

6.
$$\frac{3}{x-7} - \frac{4}{x-8} + \frac{1}{x-9} = 0$$
.

$$3. \ \frac{x-9}{x-5} + \frac{x-5}{x-8} = 2.$$

7.
$$\frac{m+x}{m-x}=\frac{m+n}{m-n}$$

4.
$$\frac{3x}{x-2} = \frac{14}{x+2} + 3$$
.

8.
$$\frac{x^2-4}{x-2}=\frac{x^2+1}{x-1}$$

CHAPTER V

FUNCTIONS

25. Constants and variables. A constant is a symbol which represents the same number throughout a discussion.

A variable is a symbol which may represent different numbers in the discussion or problem into which it enters.

Thus, in the formula for the volume V of a sphere of radius r, $V = \frac{4}{3}\pi r^3$, the symbol π is a constant, whatever values V and r may have, while V and r are variables.

In most cases the letters a, b, c, \ldots from the beginning of the alphabet are used to denote constants while the letters x, y, z at the end of the alphabet are used to denote variables.

26. Definition of a Function. When two variables, x and y, are so related that to definitely assigned values of x there correspond definite values of y, then y is said to be a function of x.

Thus in the equation, $V=\frac{4}{3}\pi r^3$, volume V is a function of r, the radius, for to every value of r there corresponds a definite volume. The expression, x^2+3x-5 is a function of x, for to every value of x there corresponds a definite value for the expression. If we make x=2, the expression takes the value 5, and when x=3, the expression equals 13.

27. Functional Notation. When the same function of x occurs several times in a single algebraic discussion, we may simplify the work by representing the given function by some symbol. It is the custom to represent a function of x by the symbol of f(x) which is read "f" function of "x" If another function of x occurs in the same discussion it can be represented

by F(x), which is read "F major function of x," while f(x) is read "f minor function of x."

Thus, we may let,

$$f(x) = x^2 + 3x - 5.$$
Then,
$$f(2) = 2^2 + 3.2 - 5 = 5$$
and
$$f(a) = a^2 + 3a - 5.$$

that is, f(2) and f(a) mean the values of the function when x = 2 and a, respectively.

Exercises

- 1. Given f(x) = 2x 5, find f(1), f(3), f(-2).
- 2. Given $F(x) = x^3 x^2 + 3$, find F(1), F(-a).
- 3. Given $f(n) = \frac{n^2 + n + 2}{n^2 n 1}$, find $f(1), f(2), f(\frac{1}{2})$.
- **4.** If $f(x) = x^3 + x$ and $F(x) = 2x^2 4x 5$, find the quotients $\frac{f(1)}{F(1)}$ and $\frac{f(3)}{F(2)}$.
- 28. Functional relations. Whenever two variables are so related that one depends, for its value, on the value of the other there is said to exist a functional relation between these two variables. There are many examples of functional relations in most every line of endeavor. However, it is possible to express only a few of these relations in the form of an algebraic equation.

Illustration (a). There exists a functional relation between the area and radius of a circle. The algebraic equation expressing this relation is, $A = \pi r^2$.

Illustration (b). The temperature of a place depends upon the time, altitude and latitude of the place. Hence, we have a functional relation existing, but this relation can not be expressed by an algebraic equation.

Exercises

- 1. Does there exist a functional relation among the volume, altitude and radius of base of a cylinder? Can this relation be expressed by an algebraic equation? If so, what is the equation?
- 2. What functional relation exists between the Fahrenheit and centigrade temperatures?
- 29. Formulas taken from geometry. Most of the formulas of mensuration are algebraic equations expressing functional relations.

The following is a list of useful common formulas:

1. Area A of a rectangle of sides a and b.

$$A = ab$$
.

2. Area A of a parallelogram of base b and altitude h.

$$A = bh$$
. (Fig. 1.)

3. Area A of triangle of base b and alti-

$$A = \frac{1}{3}bh. \quad (\text{Fig. 2.})$$

4. Area A of triangle in terms of its sides a, b, and c.

Fig. 2.

$$A = \sqrt{s(s-a)(s-b)(s-c)},$$

where,

tude h.

$$s = \frac{a+b+c}{2}$$
 (Fig. 3.)

5. Area A of a circle of radius r, or diameter D.

$$A = \pi r^2$$
, or $A = \frac{1}{4}\pi D^2$.

6. Circumference C of a circle of diameter D or of radius r.

$$C = \pi D$$
, or $C = 2\pi r$.

As an approximation which is sufficiently close for our purpose we may use 3.14159 as the value of π . For many practical purposes we may use $\pi = \frac{2}{7} = 3.14 + .$

7. Area A of a trapezoid of base b and c and altitude h.

$$A = \frac{1}{2}(b+c)h$$
. (Fig. 4.)

8. Length c of the hypotenuse of a right triangle of sides a and b.

$$c = \sqrt{a^2 + b^2}$$
. (Fig. 5.)

Fig. 5.

9. Volume V of a cube of edge a.

$$V = a^3$$
. (Fig. 6.)

Fig. 6.

10. Volume V of a rectangular solid of length l, width w and altitude h.

$$V = lwh$$
. (Fig. 7.)

11. Volume V of a cylinder of altitude h, and radius of base r.

$$V = \pi r^2 h$$
. (Fig. 8.)

Fig. 8.

12. Volume V of a cone of altitude h and radius of base r.

$$V = \frac{1}{3}\pi r^2 h$$
. (Fig. 9.)

Fig. 9.

13. Volume V of a sphere of radius r, or diameter D.

$$V = \frac{4}{3}\pi r$$
, or $V = \frac{1}{6}\pi D^3$. (Fig. 10.)

Fig. 10.

14. Surface S of a sphere of radius r, or diameter D.

$$S = 4\pi r^2, \quad \text{or} \quad S = \pi D^2.$$

Problems

- 1. The height of a cylinder is 5 feet greater than the radius. Express the volume as a function of the height; as a function of the radius.
- 2. The altitude of a right triangle is k feet less than the base b. Express the hypotenuse in terms of the base b.
- 3. How many cubic yards must be excavated in digging a ditch 300 rods long, 18 inches wide at the bottom, 6 feet wide at the top and 5 feet deep? How much water would be discharged by such a ditch in 3 hours' time if it flows 3 feet deep at the rate of 1.2 feet per second?
- 4. How much concrete is there in a circular silo whose walls are 9 inches thick, 14 feet outside diameter and 32 feet high?
- 5. What is the capacity of a silo of the dimensions of Ex. 4? How many cows will it maintain for 150 days? (One ton of silage occupies 50 cubic feet, and the daily ration per cow is 35 pounds.)
- 6. How much concrete will be required to build a water tank 6 feet long 3 feet wide and 2 feet high (all inside dimensions) if the walls and bottom are 8 inches thick? The proportions of the mixture are to be 1:2:3 (1 sack of cement, 2 cubic feet sand, 3 cubic feet gravel). It is figured that one cubic yard of concrete of the above proportions requires 7 sacks cement, 14 cubic feet of sand and 21 cubic feet of gravel.

What would be the total cost of material, if cement costs 90 cents per sack and sand and gravel \$2.00 each per cubic yard?

30. Graphical representation of functional relations. Functional relations may be represented graphically. This may be done whether the relation can be expressed by an algebraic equation or not. (See Art. 28.) Let X'X and Y'Y (Fig. 11) be two straight lines meeting at right angles. Let them be considered as two number scales having the point of intersection as the zero point of each. Let A be any point in the plane. From A drop perpendiculars to the two lines. Let x represent

the distance to Y'Y, and y the distance to X'X. If A lies to the left of Y'Y, x is considered negative and if A lies below X'X, y is considered negative. It is evident that no matter where A lies in the plane there corresponds to it two and only two numbers and those numbers are the perpendiculars to Y'Y and X'X respectively.

The lines X'X and Y'Y are called the coordinate axes, and

Fig. 11.

their point of intersection, O, is called the *origin*. The first line is called the X-axis and the second line is called the Y-axis. The distance from the point to the Y-axis is called the *abscissa* and the distance to the X-axis is called the *ordinate*. The two values are called the *coordinates* of the point. A customary notation is A(x, y) which means the point A whose coordinates are x and y.

If we have any two numbers given it is evident that there is one and only one point in the plane having these numbers as its coordinates. The first number is the abscissa and the second number is the ordinate of the point. If for example we have the numbers 3 and -4, we measure from the origin in the positive direction a distance 3 on the X-axis and at this point we erect a perpendicular and measure downwards a distance 4. This gives us the point whose x = 3 and whose y = -4. The point may be represented by the symbol (3, -4).

When a point is thus located, it is said to be plotted. In plotting points and representing graphically functional relations, it will be convenient to use coordinate paper. Then to represent a number the side of a square may be used as the unit of length. To plot a point, count off from the origin along the X-axis the number of divisions required to represent the abscissa and from this point count off the number of divisions parallel to the Y-axis required to represent the ordinate.

The change in a function can be represented on coordinate paper. As an example the change in the area of a square due to a change in the length of the sides can be represented in the following way: Let A be the area and l the length of the side. Now construct a table showing the area for different values of l.

l =	$\frac{1}{2}$	1	$\frac{3}{2}$	2	3	4	5
A =	1	1	$2\frac{1}{4}$	4	9	16	25

Draw coordinate axes on paper and plot the points $(\frac{1}{2}, \frac{1}{4})$, $(1, 1), (\frac{3}{2}, 2\frac{1}{4})$, (2, 4) and so on. (Fig. 12.) Connect the points by a smooth curve. From the table of values we see that the

area increases more rapidly than the side. This fact is also

Fig. 12.

shown by the upward bending of the curve.

By this method any function may be represented on coordinate paper. This representation of a function is called the graph of the function. The graph of the function f(x) contains all the points whose coordinates are x, f(x) and no other points.

As an example let us obtain the graph of x + 3 for values of x between -5 and +3. Let f(x) = x + 3. Anyvalue of x with the corresponding value of f(x) determines a point whose ordinate is f(x). Now, assuming

values of x and computing the corresponding values of f(x), we obtain the following table of values:

x =	-5	-4	-3	-2	-1	0	1	2	3
f(x) =	-2	-1	0	1	2	3	4	5	6

The corresponding points, (-5, -2), (-4, -1), ..., are plotted in Fig. 13. It is seen that the curve connecting these points in order is a straight line. This shows that the function x + 3 increases at a uniform rate as x increases.

Exercises and Problems

- **1.** Plot the points (3, 4), (5, -6), (-2, 3), (-3, -4).
- 2. Draw the triangle having for vertices the points (0, 0), (3, 2), (-3, 3).
- 3. Draw the quadrilateral having for vertices the points (2, 2), (6, 5), (5, -1), (-1, -5).
- 4. What is the abscissa of a point on the Y-axis? The ordinate of a point on the X-axis?
 - 5. Find the distance between the points (1, 2) and (4, 6).
- 6. Draw a curve showing the change in the volume of a cube as the length of the edge 1 changes from 0 to 5.
- 7. One side of a rectangle is l, the other side is l+2. Show by a graph the change in the area as l changes from 0 to 5.
- 8. Show by a graph the change in volume of a sphere as the diameter d changes.

Graph the following functions on coordinate paper.

9.	2x + 3.	13.	$2x^2+x.$
10.	3x-2.	14.	$x^2 + x + 1$.
11.	x ² .	15.	$x-x^2$.
12.	$x^2 + 1$.	16.	x^3 .

31. Statistical Data. In Art. 30 it was shown how to graph a functional relation where the relation can be expressed by an algebraic equation. As stated before there are many functional relations that can not be expressed by an algebraic equation. As an example there is a relation between the weight of a calf

Fig. 14.—Time-Temperature Graph.

and its age, but we can not express this relation by an algebraic equation. Such relations may be exhibited by means of a graph as will now be shown.

Example. On a winter's day the thermometer was read at 6 a.m. and every hour afterward until 6 p.m. The readings were -10° , -8° , -7° , -5° , -2° , 0° , 2° , 8° , 9° , 10° , 5° , 0° , -4° . Make a graph showing the relation between temperature and time.

Choose two lines at right angles as axes, Fig. 14. Time in

hours is measured on the horizontal axis. The temperature in degrees is measured vertically upward and downward. Thus for 10 a.m. we count 4 spaces to the right and 2 spaces down locating a point. In a similar way we locate points for all of the data. By joining these points in order the graph is obtained.

From this temperature curve we may obtain much information, e.g.: When was the temperature changing most rapidly? When was it warmest? When coldest? When was the change a rise? When a fall?

Exercises

1. The daily gain in weight of a calf in pounds for period of one hundred days is given in the following table:

Age in days	0	100	200	300	400	500
Daily gain in pounds	3 2	2.8	2.55	2.3	2 16	2
Age in days	600	700	800	1000	1100	1200
Daily gain in pounds	1.9	1.8	1.7	1.57	1.5	1.47

Draw a curve showing this information. Plot days on the horizontal scale and pounds on the vertical scale.

2. The Statistical Abstract for 1915 gives the following figures for the values of exports and imports of merchandise for the years 1900–1915.

Year	Exports	Imports	Year	Exports	Imports
1900	\$1,394,483,082	\$849,941,184	1908	\$1,860,773,346	\$1,194,341,792
1901	1,487,764,991	823,172,165	1909	1,663,011,104	1,311,920,224
1902	1,381,719,401	903,320,948	1910	1,744,984,720	1,556,947,430
1903	1,420,141,679	1,025,719,237	1911	2,049,320,199	1,527,226,105
1904	1,460,827,271	991,087,371	1912	2,204,322,409	1,653,264,934
1905	1,518,561,666	1,117,513,071	1913	2,465,884,149	1,813,008,234
1906	1,743,864,500	1,226,562,446	1914	2,364,579,148	1,893,925,657
1907	1,880,851,078	1,434,421,425	1915	2,768,589,340	

Make a graphical representation of these statistics.

3. The Year Book, Department of Agriculture, gives the following South Dakota Farm prices of corn and hay for the years 1899–1919:

Year	Corn	Hay	Year	Corn	Hay	Year	Corn	Hay
1899	\$0 26	\$3.10	1906	\$0.29	\$4.50	1913	\$0.56	\$6.50
1900	0.29	3.95	1907	0.46	5.50	1914	0.50	5.70
1901	0.45	4.49	1908	0.50	4.10	1915	0.49	5.30
1902	0.41	4.15	1909	0.50	5.10	1916	0.77	5 40
1903	0.35	4.63	1910	0.40	7.10	1917	1.20	10.60
1904	0.36	4.29	1911	0.53	8.50	1918	1.10	10 00
1905	0.31	4.02	1912	0.37	6.10	1919	1.19	13.50

Make a graph showing the price of corn also a graph showing the price of hay.

- 4. Plot a graph of the attendance of students at your college or university for the years 1910-1930.
- 5. Using the data below, plot a curve using years as abscissa and price of corn as ordinates. Do you notice any regularity in the number of years elapsing between successive high prices? Successive low prices? Draw like graphs for the other crops listed.

AVERAGE FARM PRICE DECEMBER FIRST

Data from the Year Book of the Department of Agriculture

Year	Corn	Wheat	Oats	Barley	Rye	Potatoes	Hay, Dollars per Ton
1870	\$49.4	\$94.4	\$39.0	\$ 79 1	\$ 73.2	\$ 65.0	12.47
1871	43 4	114.5	36 2	75 8	71.1	53.9	14.30
1872	35.3	111 4	29.9	68 6	67.6	53.5	12 94
1873	44 2	106 9	34 6	86.7	70.3	65.2	12.53
1874	58 4	86 3	47 1	86.0	77.4	61 5	11.94
1875	36 7	89.5	32 0	74.1	67 1	34.4	10.78
1876	34 0	97.0	32 4	63.0	61.4	61 9	8.97
1877	34 8	105 7	28.4	62.5	57.6	43.7	8.37
1878	31 7	77.6	24 6	57.9	52.5	58.7	7.20
1879	37.5	110 8	33.1	58 9	65.6	43 6	9.32
1880	39 6	95.1	36.0	66.6	75.6	48.3	11.65
1881	63 6	119.2	46.4	82 3	93.3	91.0	11.82
1882	48.5	88 4	37.5	62.9	61.5	55.7	9 73
1883	42.4	91.1	32.7	58.7	58.1	42.2	8.19
1884	35.7	64 5	27.7	48.7	51.9	39.6	8.17
1885	32 8	77.1	28.5	56.3	57.9	44.7	8.71
1886	36 6	68 7	29.8	53 6	53 .8	46.7	8.46
1887	44 4	68.1	30 4	51.9	54.5	68.2	9 97
1888	34.1	92 6	27.8	59.0	58 8	40.2	8.76
1889	28 3	69 8	22.9	41.6	42.3	35 4	7.04
1890	50 6	83 8	42.4	62 7	62.9	75.8	7 87
1891	40.6	83 9	31 5	52.4	77.4	3 5.8	8.12
1892	39.4	62.4	31.7	47.5	54.2	66.1	8 20
1893	36.5	53.8	29.4	41.1	51.3	59.4	8.68
1894	45.7	49.1	32.4	44.2	50.1	53.6	8.54
1895	25.3	50.9	19.9	33.7	44.0	26.6	8.35
1896	21.5	72 6	18.7	32.3	40.9	28.6	6.55
1897	26.3	80.8	21.2	37.7	44.7	54.7	6.62
1898	28.7	58.2	25.5	41.3	46.3	41.4	6.00
1899	30 3	58.4	24.9	40 3	51.0	39.0	7.27
1900	35.7	61.9	25.8	40.9	51.2	43.1	8.89
1901	60.5	62.4	39.9	45.2	55.7	76.7	10.01

.Average Farm Price December First—Continued

Year	Corn	Wheat	Oats	Barley	Rye	Potatoes	Hay, Dollars per Ton
1902	\$40.3	\$63.0	\$30.7	\$45.9	\$50.8	\$47.1	9.06
1903	42.5	69.5	34.1	45.6	54.5	61.4	9.07
1904	44.1	92.4	31.3	42.0	68.8	45.3	8.72
1905	41.2	74.8	29.1	40.5	61.1	61.7	8.52
1906	39.9	66.7	31.7	41.5	58.9	51.1	10.37
1907	51.6	87.4	44.3	66.6	73 1	61.8	11.68
1908	60.6	92.8	47.2	55.4	73.6	70.6	8.98
1909	57.9	98 6	40.2	54.0	71.8	54.1	10.50
1910	48.0	88.3	34.4	57.8	71.5	55.7	12.14
1911	61.8	87.4	45.0	86 9	83.2	79 9	14.29
1912	48.7	76.0	31.9	50.5	66.3	50.5	11.79
1913	69.1	79.9	39.2	53 7	63.4	68.7	12.43
1914	64.4	98.6	43.8	54 3	86.5	48 9	11.12
1915	57.5	92.0	36.1	51.7	83.9	61.6	10. 70
1916	88.9	160 3	52.4	88.2	122.1	146.1	10.59
1917	127.9	200.8	66.6	113.7	166.0	122 8	17.09
1918	136.5	204.2	70.9	91.7	151.6	119 3	20.13
1919	134.5	214.9	70.4	120.6	133.2	159.5	20.08
1920	67.0	143.7	46.0	71.3	126.8	114 5	17.76
1921	42.3	92.7	30.3	42.2	70.2	111 1	12.13
1922	65.8	100.7	39 .4	52.5	68.5	58.1	12.56
1923	72.6	92.3	41.4	54.1	65.0	78 1	14.13
1924	98.2	129.9	47 7	74.1	106 5	62 5	13.77
1925	67.4	141.6	38.0	58 9	78.2	186.8	13 94
1926	64.4	119.9	39 .8	57.4	83.5	141.7	14.09

CHAPTER VI

SYSTEMS OF LINEAR EQUATIONS

32. Graphs of Linear Equations. In Art. 30 the graphical representation of functional relations was discussed and the graphs of some functions were given.

Review Questions

- 1. What is meant by (a) coordinate axes, (b) abscissa, (c) ordinate, (d) coordinates of a point?
 - 2. What is meant by the origin? What are its coordinates?
 - 3. Locate points represented by (-3, 4), (5, -3), (-2, -3), (3, 2).
- **4.** What is the plane figure having the points (3, 2), -3, 2), (-3, -2), (3, -2) for its vertices?

An equation of the form Ax + By + C = 0 (1) is called a *linear equation*. If $B \neq 0$, this equation may be thrown into the form

$$y = -\frac{Ax}{B} - \frac{C}{B} {2}$$

In (2) we may assume A, B and C as fixed and assign values to x and compute the corresponding values of y. This will give any number of pairs of values which may be plotted as coordinates of points. Equation (2) expresses y as a function of x, and the graph of this function is called the graph of equation (1).

It may be easily shown that the graph of all equations of the form of (1) is a straight line.

It is because of this fact that such equations are called linear equations. When A or B is zero, the graph is a line parallel to the X-axis or to the Y-axis respectively. Thus, the equation y-3=0 gives a line parallel to the X-axis, and 3 units above it. And the equation

x-2=0 gives a line parallel to the Y-axis, and 2 units to the right of that axis.

Exercises and Problems

Obtain the graphs of the following equations:

1.
$$x + 2y - 6 = 0$$
.

Solution. Solve the equation for y, thus getting $y = 3 - \frac{x}{2}$. expresses y as a function of x. Now, assigning values to x and computing the corresponding values of y, we obtain the following table of values:

x =	-4	-2	0	2	4	6	8	10	12
<i>y</i> =	5	4	3	2	1	0	-1	-2	-3

Plotting the points (-4, 5), $(-2, 4), \ldots$ we obtain the graph (Fig. 15), of the above We might have equation. plotted only two of the above points and connected them by a straight line, thus obtaining the required graph. Thus in graphing any other linear equation, we need only to locate two points and connect them by a straight line.

$$2x - 3y - 6 = 0.$$

3.
$$4x - 6y + 6 = 0$$
.

4.
$$3x + 2y - 4 = 0$$
.

5.
$$4x - 5y = 0$$

$$4x - 5y = 0$$

6.
$$4x - 5y - 10 = 0$$
.

7.
$$2y - 3 = 0$$
.

8.
$$3x - 4 = 0$$
.

9. Construct the graph of the equation $F = \frac{9}{5}C + 32$, taking the values of C along the horizontal and the corresponding values of F along the vertical axis.

- 10. Where does the graph 3x 2y 6 = 0 cut the X-axis? The Y-axis? The abscissa of the point where the line intersects the X-axis is called the X-intercept and the ordinate of the point where it cuts the Y-axis is called the Y-intercept. What is the ordinate for the X-intercept? The abscissa for the Y-intercept?
 - 11. Find the intercepts of the following:

$$a. 3x - 2y - 12 = 0.$$

$$b. 5x + 2y - 4 = 0.$$

$$c. \ 2x + 3y = 0.$$

- 12. Graph the equations 2x y 4 = 0 and x + y 2 = 0 using the same coordinate axes for both graphs. Do the two lines have a point in common? What are its coordinates? Do these coordinates satisfy both equations?
- 13. Graph x 2y 4 = 0 and x 2y 8 = 0. Do these lines have a point in common?
- 14. Graph x 2y 4 = 0 and 2x 4y 8 = 0. Do these lines have a point in common?
- **33.** Graphical Solution. In Art. 32 it was stated that the graph of a linear equation in two unknowns, x and y, is a straight line. The equation of this line will be satisfied by any number of pairs of values for x and y and these values will be the coordinates of the points on the graph.

Now assume that we have a second linear equation and that its graph is drawn using the same coordinate axes. This equation too will be satisfied by any number of pairs of values for x and y and these pairs of values will be the coordinates of the points on its graph.

Further assume that these two graphs intersect in some point P. Since this point lies on both graphs, its coordinates will satisfy both equations. In the solution of a system of linear equations in two unknowns x and y we are seeking a pair of values for x and y which will satisfy both equations simultane-

ously. The coordinates of this point then is the solution of the system.

Example. Solve graphically the system of equations

$$x - y + 1 = 0$$
; (2) $2x + y - 7 = 0$. (1)

The graphs of equations (1) and (2) are numbered (1) and

(2) in Figure 16. They intersect in the point whose coordinates are (2, 3), and consequently x = 2, y = 3 is the solution of the system.

The graphs of two equations may be parallel lines. Then the lines have no point in common and their equations have no solution. Such equations are said to be *incompatible* or *inconsistent*. (See Ex. 13, Art. 32.)

Again the graphs of two equations may be coincident. Then

the lines have an indefinitely large number of points in common and their equations do not have a unique solution. The two equations of the system are in this case *equivalent* or *dependent*. (See Ex. 14, Art. 32.)

Exercises

Find the solutions of the following systems of equations by plotting their graphs.

1.
$$2x + y = 4$$
, $3x + 2y = 10$.

2.
$$6x - 5y = 14$$
, $7x + 2y = 32$.

3.
$$2x + 3y = 10$$
,
 $5x + 3y = 7$.

4.
$$4x + 6y = 8$$
,
 $2x + 3y = 6$.

5.
$$3x + y = 19$$
, $2x - y = 1$.

6.
$$7x - 3y = 26$$
, $2x + 11y = 43$.

34. Algebraic solution: Two simple equations in two unknowns may be solved simultaneously for the two values of the unknowns by the process of elimination as is illustrated below.

Example. Solve the equations

$$x - y = 4, \tag{1}$$

$$x - 4y = -14. (2)$$

Solution. First Method.

From (1) we have

$$x = 4 + y. ag{3}$$

Substituting this value for x in (2), we find

$$4 + y - 4y = -14, (4)$$

 \mathbf{or}

$$-3y = -18$$
, $y = 6$.

Substituting 6 for y in (1), we find

$$x - 6 = 4$$
, or $x = 10$.

Hence the required values for x and y are 10 and 6 respectively. This method is known as elimination by substitution.

Solution. Second Method.

From (1) subtract (2) and we get

$$3y = 18, \quad y = 6.$$
 (3)

Multiplying (1) by 4 and (2) by -1, the two equations become

$$4x - 4y = 16, (4)$$

$$-x + 4y = 14. (5)$$

Adding (4) and (5), we get

$$3x = 30$$
, $x = 10$.

Hence the required solution is x = 10, y = 6.

This method is known as elimination by addition and subtraction.

Exercises and Problems

1.
$$3x - 4y = 26$$
,
 $x - 8y - 22 = 0$.

2. $x + \frac{y}{3} = 11$,
$$\frac{x}{3} + 3y = 21$$
.
$$\frac{x}{3} + \frac{y}{2} - \frac{x - y}{3} = 8$$
,
$$\frac{x + y}{3} + \frac{x - y}{4} = 11$$
.

3. $\frac{x + y}{3} + \frac{x - y}{4} = 11$.

4. $y + 1 = 3x$,
$$5x + 9 = 3y$$
.

5. $\frac{4}{x} - \frac{3}{y} = \frac{14}{5}$,
$$\frac{2}{x} + \frac{5}{y} = \frac{25}{3}$$
.

(Hint: Solve first for $\frac{1}{x}$ and $\frac{1}{y}$)
$$6. x + y = m + n$$
,
$$mx - ny = m^2 - n^2$$
.

7. $ax + by = 2ab$,
$$bx + ay = a^2 + b^2$$
.

- 8. A rectangular field is 35 rods longer than it is wide. The length of the fence around it is 310 rods. Find the dimensions of the field.
- 9. A man has \$25,000 at interest. For one part he receives 6% and for the other part 5%. His total income is \$1,350. How is the money divided?
- 10. What quantities of two liquids, one 95% alcohol and the other 20% alcohol, must be used to give a 20 gallon mixture of 50% alcohol?

35. Solution of three linear equations in three unknowns.

The process of solving three linear equations in three unknowns may be illustrated by the following example:

Solve the equations

$$3x + 2y - z = 4, (1)$$

$$5x - 3y + 2z = 5, (2)$$

$$6x - 4y + 3z = 7, (3)$$

for x, y, and z.

Solution. Eliminate z between (1) and (2). This may be done by multiplying (1) by 2 and adding the result to (2), we have,

$$6x + 4y - 2z = 8, (4)$$

$$5x - 3y + 2z = 5, (5)$$

$$11x + y = 13. ag{6}$$

Now eliminating z between (1) and (3), we have,

$$9x + 6y - 3z = 12, (7)$$

$$6x - 4y + 3z = 7, (8)$$

$$15x + 2y = 19. (9)$$

Now solve (6) and (9) for x and y as illustrated in Art. 34. Multiply (6) by -2 and add the result to (9) and we obtain,

$$7x=7,$$

$$x = 1$$
.

Substituting x = 1 in (6), we have,

$$y=2$$
.

Substituting x = 1, y = 2 in (1) and solving for z, we have,

$$z = 3$$
.

Hence the solution of equations (1), (2), and (3) is

$$x = 1, y = 2, z = 3.$$

Exercises

Solve for x, y, and z:

1.
$$2x - 4y + 5z = 18$$
, $5x + 3y - 4z = 5$, $y + z = 2$, $z + 2y + 3z = 19$. 2. $x + y = 1$, $z + z = 2$, $z + x = 4$.

3. Make up 100 pounds of an ice cream mixture which will contain 12% fat and 10% milk solids, not fat. The following ingredients are used:

Sugar, 14 pounds.

Gelatine, $\frac{1}{2}$ pound.

Flavoring, $\frac{1}{2}$ pound.

Condensed milk, 8 pounds.

Cream, whole milk and skim milk powder.

The composition of the products are:

Condensed milk, 9% fat and 20% solids. Cream, 30% fat and 6.3% solids. Whole milk, 3% fat and 8.73% solids. Skim milk powder, 100% solids.

Solution.

Let x = no. of pounds of cream, y = no. of pounds of milk,z = no. of pounds of skim milk powder.

Then,

$$0.30x + 0.03y + 0.09(8) = 12,$$

$$0.063x + 0.0873y + 0.020(8) + z = 10,$$

$$x + y + z + 14 + 8 + \frac{1}{2} + \frac{1}{2} = 100.$$

 \mathbf{Or}

(1)
$$10x + y = 376$$
,

(2)
$$630x + 873y + 10000z = 84000$$
,

(3)
$$x + y + z = 77$$
.

(4)
$$9370x + 9127y = 686000$$
, (3) - (2)

(6)
$$8190y = 333688$$
, $y = 40.74$ pounds of milk.

(7)
$$10x = 376 - 40.74 = 335.26$$
,
 $x = 33.53$ pounds of cream.
 $z = 77 - 40.74 - 33.53$,
 $z = 2.73$ pounds of milk powder.

Check:

Cream,	33.53
Milk,	40.74
Milk powder,	2.73
Sugar,	14.00
Gelatine,	.50
Flavor,	.50
Condensed milk,	8.00

Total, 100.00 pounds .3(33.53) + .03(40.74) + .09(8) = 12.0012.063(33.53 + .0873(40.74) + .2(8) + 2.73 = 9.9990.

Suppose skim milk powder is not added. We will have three equations in two unknowns which may not be solved. We would have,

- (1) 10x + y = 376,
- (2) 630x + 873y = 84000,
- (3) x + y = 77.

Any two of the above equations may be solved for x and y but these values of x and y will not satisfy the other equation. Hence, the mixture is impossible, without adding skim milk or some other ingredient to make the balance.

4. Make up 100 pounds of ice cream mixture which will have 12% fat and 10% milk solids. The following ingredients are used: 14 pounds of sugar, $\frac{1}{2}$ pound of gelatine, $\frac{1}{2}$ pound of flavoring, 16 pounds of condensed milk, whole milk, cream and skim milk powder. The composition of the products are: condensed milk, 9% fat and 20% solids; cream, 34% fat and 5.95% solids; whole milk, 4% fat and 8.75% solids; skim milk powder, 100% solids. Find the proper amounts of cream, whole milk and skim milk powder and check the results.

36. Slope of a straight line. Given a line AB, Fig. 17. Take any point P on the line and through P draw a line PQ, toward the right, parallel to the X-axis and at Q erect a per-

pendicular to PQ intersecting AB in R. QR is defined as the rise of the line as the point R moves along the line from P toward the right, and PQ is known as the run. The rise divided by the corresponding run is defined as the slope of the line AB.

It is evident that one line can have but one slope, for if we ax take any other point S on AB and draw through it a line parallel to the X-axis, say ST, and erect at T a perpendicular

TV, we get the triangles PQR and STV which are similar. Therefore the slope of $AB = \frac{QR}{PQ} = \frac{TV}{ST}$ (a constant value).

Problem. Given two points $P(x_1, y_1)$ and $Q(x_2, y_2)$. Express the slope of the line joining these points in terms of the coordinates of the points, Fig. 18.

Solution. Drop perpendiculars to the axes as shown. Then,

Slope of
$$PQ = \frac{AQ}{PA} = \frac{y_2 - y_1}{x_2 - x_1}$$
 (1)

Thus the slope of a line between two points is equal to the difference of the ordinates of the points divided by the difference of their abscissas subtracted in the same order.

In Fig. 18 (a), the slope is positive since both AQ and PA

are positive, but in Fig. 18 (b) the slope is negative for AQ is negative and PA is positive.

In Fig. 18 (a) AQ is a rise but in Fig. 18 (b) AQ is a fall.

We observe that a rise gives us a positive slope, while a fall gives us a negative slope.

Exercises

- 1. Construct a line through (2, 3) whose slope is $\frac{3}{5}$. (Hint: A slope $\frac{3}{5}$ means a rise of 3 and a run of 5. Therefore begin at (2, 3), rise 3 units and run 5 units to the right. Connect the final point with (2, 3). The resulting line will have the slope $\frac{3}{5}$.)
- 2. Construct a line through (1, -2) having $\frac{2}{3}$ for its slope, also, one having $-\frac{2}{3}$ for its slope.

For each of the following pairs of points:

- (a) Plot the points,
- (b) Draw the straight line through them,
- (c) Find the slope of the line.
- 3. (1, 2) and (3, 5).

- 6. (-3, -4) and (-2, -3).
- **4.** (3, 2) and (-3, -5).
- 7. (6, 7) and (-3, 2).
- 5. (-2, 3) and (2, -2).
- 8. (0, 5) and 2, 0).

37. Distance between two points, $P(x_1, y_1)$ and $Q(x_2, y_2)$ in terms of the coordinates of the points. In Fig. 18 we see that

$$PQ = \sqrt{(PA)^2 + (AQ)^2}.$$

$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2},$$
(2)

since

$$PA = x_2 - x_1$$
 and $AQ = (y_2 - y_1)$.

Example. Find the distance between the points (5, 6) and (1, 3).

Solution.
$$PQ = \sqrt{(5-1)^2 + (6-3)^2} = \sqrt{16+9} = 5.$$

Exercises

- 1. Find the distance between the pairs of point in Exercises 3 to 8, Art. 36.
 - 2. Find the distance from the origin to the point (a, b).
- 3. Prove that the triangle having for its vertices the points (-1, 2), (4, -3), (5, 3) is an isosceles triangle.
- **4.** Find the lengths of the sides of the triangle having the points (2, 1), (5, 5) and (-5, 0) for its vertices.
- **38.** Equation of a straight line. Up to this time we have had certain equations given to find the graphs of these equations. Our problem now is to find the equation when the graph is given. We must find an algebraic expression for the relation existing between the x-distance and the y-distance of a point which will hold for all points on the line.

For example, if a point is located anywhere on the y-axis, its x-coordinate is always zero. The algebraic statement for this fact is the equation x = 0, hence this is the equation of the Y-axis, for it is the one statement that is true for all points on the Y-axis, and for no other points.

What is the equation of the X-axis.

As another example let us find the equation of the line parallel to the X-axis and 2 units above it?

In this case y will always be 2, regardless of the value of x. The algebraic statement of this fact is the equation y = 2, or y - 2 = 0, and this is the required equation.

What is the equation of the line that is always the same distance from each of the coordinate axes?

39. Problem. To derive the equation of a straight line in

terms of the coordinates of two given points on the line. Let LM be the line determined by the two points $P(x_1, y_1)$ and $Q(x_2, y_2)$ and let R(x, y) be any other point on LM. Since R, P, Q are all on the same line LM, the slopes of RP and PQ are equal. Hence by (1) Art. 36, the required equation is

$$\frac{y-y_1}{x-x_1}=\frac{y_1-y_2}{x_1-x_2},$$
 (3)

which may also be written in the form

Fig. 19.

$$y-y_1=\frac{y_1-y_2}{x_1-x_2}(x-x_1). \hspace{1.5cm} (4)$$

Either (3) or (4) is known as the two-point form of the equation of the straight line.

If one of the given points, say (x_1, y_1) , is the origin (0, 0) equation (4) takes the form

$$y = \frac{y_2}{x_2}x,\tag{5}$$

which is the equation of the line through the origin and another given point.

OF

or

Exercises

1. Find the equation of the line determined by the points (1. 2) and (5, 4).

Construct the line determined by these points and take Solution.

any other point R on the line having (x, y) for its coordinates. Then, the slopes of PQ and QR are equal, and we have,

$$\frac{4-2}{5-1} = \frac{y-4}{x-5},$$

$$\frac{1}{2} = \frac{y-4}{x-5},$$

from which $y = \frac{1}{2}x + \frac{3}{2}$. What is the slope of the straight line? Does the equation show this slope? The equation could be

gotten by substituting the coordinates of the points in equation (4). This would give us

$$y - 4 = \frac{4 - 2}{5 - 1}(x - 5),$$
$$y - 4 = \frac{1}{2}(x - 5),$$
$$y = \frac{1}{5}x + \frac{3}{5}.$$

which is the same result as obtained above.

2. Find the equations of the straight lines determined by the following points. Reduce each equation to the form showing its slope.

- (a) (3, 4) and (-2, 2). (c) (2, 3) and (-2, 4).
- (b) (3, 2) and (5, 6).
- (d) (-3, 5) and (2, 3).

3. Find the equations of the sides of a triangle whose vertices are the points (4, 3), (2, -2), (-3, 4).

40. Problem. To derive the equation of a straight line in terms of its slope and the coordinates of a given point on the

Y

0

R(x,y)

Fig. 21.

 $P(x_i, y_i)$

line. Let $P(x_1, y_1)$ be the given point and m the given slope. And let R(x, y) be any other point on the line. From Fig. 21 we see that the slope of the

line is $\frac{y-y_1}{x-x_1}$. But the slope of

the line is given as m. Hence we may write,

$$\frac{y-y_1}{x-x_1}=m, (6)$$

or
$$y - y_1 = m(x - x_1)$$
. (7)

Equation (7) is known as the slope and one-point form of the equation of the line.

Exercises

1. Find the equation of the line which passes through the point (3, 2) and has the slope 3.

Solution. Substituting direct in equation (7) (3, 2) for (x_1, y_1) and 3 for m, we get, y - 2 = 3(x - 3) or y = 3x - 7 as the required equation. Does the equation of this line show its slope?

- 2. Find the equations of the lines passing through the following points and having the given slopes.
 - (a) Through (2, 3) with slope $\frac{3}{4}$.
 - (b) Through (-3, 4) with slope -2.
 - (c) Through (5, -3) with slope $-\frac{2}{3}$.
 - 3. What are the slopes of the lines whose equations are:

(a)
$$2x - 3y + 6 = 0$$
? Ans. $m = \frac{2}{3}$.

(b)
$$ax + by + c = 0$$
? Ans. $m = \frac{-a}{b}$.

- 4. Find the equation of each of the straight lines described below.
 - (a) A line whose X-intercept is 3 and whose slope is $\frac{2}{5}$.
 - (b) A line whose Y-intercept is k and whose slope is m.

Answer (b): y = mx + k. This equation is known as the slope Y-intercept form of the equation of a line.

41. Parallel lines. If two straight lines are parallel, their slopes are equal.

Draw two parallel lines and select any two points on each

Fig. 22.

line. (See Fig. 22.) The slopes are respectively. $\frac{a_1}{b_1}$ and $\frac{a_2}{b_2}$. The triangles ABC and DEF are similar, since their corresponding sides are parallel.

Hence $\frac{a_1}{b_1} = \frac{a_2}{b_2}$, and the two slopes are equal. X Therefore, if two lines are parallel, their slopes are

equal. And conversely, if the slopes of two lines are

equal, the lines are parallel.

Example. Find the equation of the line which passes through the point (1, 2) and is parallel to the line 3x - y-7 = 0.

Solution. The equation of the given line may be written in the form, y = 3x - 7, which shows that its slope is 3. Since the line, whose equation we are seeking, is parallel to the given line it will likewise have 3 for its slope. Hence, substituting in equation (7) Art. 40, we get

$$y - 2 = 3(x - 1),$$

$$3x - y - 1 = 0.$$

or

42. Perpendicular lines. If two straight lines are perpen-

Fig. 23.

dicular to each other, the slope of one is the negative reciprocal of the slope of the other.

Draw two perpendicular lines as shown in Fig. 23. The slope of the one line is $m_1 = \frac{-a_1}{b_1}$. (Why negative?) The other slope is

$$m_2=\frac{a_2}{b_2}.$$

The triangles ABC and EDF are similar, since their corresponding sides are perpendicular to each other. Hence we have,

$$\frac{a_2}{b_2} = \frac{b_1}{a_1} = \frac{1}{\frac{a_1}{b_1}} = -\left[\frac{1}{\frac{-a_1}{b_1}}\right]$$

$$m_2 = -\frac{1}{\frac{-a_1}{a_1}}$$

or

Therefore, if two lines are perpendicular, the slope of one is the negative reciprocal of the slope of the other.

And conversely, if the slope of one line is the negative reciprocal of the slope of another, the lines are perpendicular to each other.

Example. Show that the lines (1) 3x - y + 6 = 0 and (2) 2x + 6y - 5 = 0 are perpendicular to each other.

Writing the above equations in the slope Y-intercept form. (See Ex. 4 (b) Art. 40), we get,

$$y = 3x + 6, \text{ and} \tag{1}$$

$$y = \frac{-1}{3}x + \frac{5}{6} \tag{2}$$

We observe that their respective slopes are 3 and $-\frac{1}{3}$. The lines are therefore perpendicular.

Exercises on Chapter VI

- 1. Write the equation of the line which shall pass through the intersection of x + y + 1 = 0 and x 3y + 8 = 0, and have a slope equal to 4.
 - 2. Find the equations of the lines satisfying the following conditions:
 - (a) Passing through (2, 3) and with slope = -4.
 - (b) Having the X-intercept = 4, Y-intercept = -5.
 - (c) Slope = -3, X-intercept = 8.

- 3. Prove by means of slopes that (0, -2), (4, 2), (0, 6), (-4, 2) are the vertices of a rectangle.
 - 4. What are the equations of the sides of the figure in example 3?
- 5. Find the equation of the straight line passing through the point of intersection of 2x + 5y 8 = 0 and 2x y + 4 = 0 and perpendicular to the line 5x 10y = 0.
- 6. Show that the points (2, 4), (-1, 0), (5, 8) are on the same straight line.
- 7. Show that the points (-1, 2), (4, -3), (5, 3) are the vertices of an isosceles triangle.
- 8. Prove that the diagonals of a square are equal and perpendicular to each other.
 - 9. Find the equation of the line which passes through (2, -1) and is:
 - (a) Parallel to 3x + 2y + 3 = 0,
 - (b) Perpendicular to 3x + 2y + 3 = 0.

CHAPTER VII

QUADRATIC EQUATIONS

43. Typical form. We may regard the equation

$$Ax^2 + Bx + C = 0 \tag{1}$$

as the typical form of every quadratic equation in a single unknown x, for every quadratic equation can be thrown into the form (1) by the proper rearrangement of its terms. The coefficients A, B, and C represent numbers which are in no way dependent upon the unknown number x and A is not zero, for if it were equation (1) would become Bx + C = 0 which is not a quadratic equation but a linear equation.

The function $Ax^2 + Bx + c(A \neq 0)$ is the typical quadratic function.

Exercises

Arrange the following equations in the typical form. What are the values of A, B, and C?

1.
$$x^2 + (3x - 5)^2 + 2x - 5 = 0$$
.

Expanding and collecting terms, we get,

$$10x^2 - 28x + 20 = 0,$$

or

$$5x^2 - 14x + 10 = 0,$$

and

$$A = 5, B = -14, C = 10.$$

2.
$$3x(x-1) = x^2 - 2x - 3$$
.

$$3. \ \frac{1}{x} - \frac{1}{x+1} = 2.$$

4.
$$(z+2)^3 - (z-3)^3 + 3 = (z-2)^2$$
.

5.
$$(x+m)^2 + (x-m)^2 = 4mx + 3x^2$$
.

Solution of Ex. 5: We get,

$$x^2 + 2mx + m^2 + x^2 - 2mx + m^2 - 4mx - 3x^2 = 0$$

and combining terms,

$$-x^2 - 4mx + 2m^2 = 0,$$

or

$$x^2 + 4mx - 2m^2 = 0.$$

This is of form (1) and A = 1, B = 4m, $C = -2m^2$.

6.
$$4m^2x^2 + 3k^2x^2 - 8mx + 3x - m + k = 0$$
.

7.
$$x^2 + (mx + b)^2 = r^2 - mx$$
.

44. Solution of the quadratic equation. The quadratic formula. A quadratic equation may be solved by the process known as "completing the square."

As an example, solve $9x^2 + 3x = 2$.

Solution. Write the equation in the form,

$$x^2 + \frac{1}{3}x = \frac{2}{3}. (1)$$

Add $(\frac{1}{2} \cdot \frac{1}{3})^2 = \frac{1}{36}$ to both members, and the left hand member is a perfect square. That is,

$$x^2 + \frac{1}{3}x + \frac{1}{36} = \frac{2}{9} + \frac{1}{36} = \frac{9}{36} = \frac{1}{4},$$
 (2)

or

$$(x + \frac{1}{6})^2 = \frac{1}{4}. (3)$$

Extract the square root of both members.

$$x + \frac{1}{6} = \pm \frac{1}{2},$$

$$x = -\frac{1}{6} \pm \frac{1}{2},$$

$$x = \frac{1}{2} \text{ or } -\frac{2}{3}.$$
(4)

Both of these values of x satisfy the original equation, as may be seen by substituting them for x in the original equation.

Apply the method of "completing the square" to the typical form,

$$Ax^2 + Bx + C = 0. ag{1}$$

Transpose C and divide through by A,

$$x^2 + \frac{B}{A}x = -\frac{C}{A}. (2)$$

Add $\left(\frac{1}{2} \cdot \frac{B}{A}\right)^2$ to both members,

$$x^{2} + \frac{B}{A}x + \frac{B^{2}}{4A^{2}} = \frac{B^{2}}{4A^{2}} - \frac{C}{A} = \frac{B^{2} - 4AC}{4A^{2}},$$
 (3)

or

$$\left(x + \frac{B}{2A}\right)^2 = \frac{B^2 - 4AC}{4A^2} \tag{4}$$

Extracting the square root of both members,

$$x + \frac{B}{2A} = \pm \frac{1}{2A} \sqrt{B^2 - 4AC},$$

$$x = \frac{-B}{2A} \pm \frac{1}{2A} \sqrt{B^2 - 4AC},$$

$$x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}.$$
(6)

The roots, then, of the typical form (1) are

$$x_1 = \frac{-B + \sqrt{B^2 - 4AC}}{2A},$$

and

$$x_2=\frac{-B-\sqrt{B^2-4AC}}{2A},$$

which could be verified by substitution.

We may therefore use the expression,

$$\frac{-B \pm \sqrt{B^2 - 4AC}}{2A},$$

as the formula for the solution of any quadratic equation.

As an example, solve $3x^2 + 7x - 6 = 0$. In this equation, A = 3, B = 7, C = -6, and substituting these values of A, B and C in the formula, we get,

$$x = \frac{-7 \pm \sqrt{49 - 4 \cdot 3(-6)}}{2 \cdot 3} = \frac{-7 \pm 11}{6},$$

$$x_1 = \frac{-7 + 11}{6} = \frac{2}{3},$$

$$x_2 = \frac{-7 - 11}{6} = -3.$$

and

or

Our solutions then are $\frac{2}{3}$ and -3.

As another example, solve $x^2 - x - 1 = 0$.

By formula,
$$x_1 = \frac{1 + \sqrt{5}}{2}$$
,

$$x_2=\frac{1-\sqrt{5}}{2}.$$

Here the quantity under the radical is not a perfect square and we say the *solutions are irrational*. We will now define rational and irrational numbers.

A rational number is defined as one that can be expressed as the quotient of two integers. An irrational number is one that can not be thus expressed.

Thus 15, $\frac{1}{2}$, $\frac{3}{5}$ are rational numbers; $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, $1 + \sqrt{5}$, $\frac{1 - \sqrt{5}}{2}$ are irrational numbers.

Exercises

Solve the following equations by formula and check the results:

1.
$$6x^2 - 11x + 4 = 0$$
.

2.
$$5x^2 - 3x - 14 = 0$$
.

3.
$$14x^2 + 11x - 15 = 0$$
.

4.
$$2x^2 - 5x + 2 = 0$$
.

$$5. \ 3x^2 + 8x - 3 = 0.$$

6.
$$7y^2 + 9y - 10 = 0$$
.

7.
$$x^2 + x - 1 = 0$$
.

8.
$$x^2 + 2x - 1 = 0$$
.

9.
$$2x^2 + 3x - 9 = 0$$
.

10.
$$7x^2 - 32 = -2x$$
.

11.
$$2x^2 - x - 2 = 0$$
.

12.
$$2x^2 - 3x - 2 = 0$$
.

13.
$$\frac{x+3}{2x-7} - \frac{2x-1}{x-3} = 0.$$

14.
$$x^2 - 2ax + 3x - 6a = 0$$
.

15.
$$\frac{w + \frac{1}{w}}{w - \frac{1}{w}} + \frac{1 + \frac{1}{w}}{1 - \frac{1}{w}} = \frac{13}{4}$$

$$16. \ x^2 + lx + m = 0.$$

17.
$$(2x-3)^2=8x$$
.

18.
$$\frac{2x}{x+2} + \frac{x+2}{2x} = 2$$
.

45. Classification of numbers. Algebraic numbers are divided into two classes, real numbers and imaginary numbers.

Real numbers are of two kinds, rational and irrational (see Art. 44 for definition of rational and irrational numbers).

In order to care for the square root of a negative number, we introduce the symbol $\sqrt{-1} = i$ and define it as the *imaginary* unit just as 1 is defined as the real unit. Then any number of the form ai, where a is real, is defined as a pure imaginary; and any number of the form a + bi, where a and b are real is defined as a complex number.

For example,
$$\sqrt{-25} = 5\sqrt{-1} = 5i$$
, and $\sqrt{-37} = \sqrt{37}\sqrt{-1} = \sqrt{37}i$ also, $3 + \sqrt{-37} = 3 + \sqrt{37}i$.

Imaginary numbers occur in the solution of certain quadratic equations.

As an example, solve $2x^2 - 3x + 4 = 0$. By formula:

$$x_{1} = \frac{3 + \sqrt{(-3)^{2} - 4 \cdot 2 \cdot 4}}{4} = \frac{3 + \sqrt{-23}}{4},$$

$$= \frac{3 + \sqrt{23}i}{4},$$

$$x_{2} = \frac{3 - \sqrt{23}i}{4}.$$

and

Here, both roots are of the form a + bi and are complex.

We can interpret the number $\sqrt{17}$ as the length of the hypotenuse of a right triangle whose sides are 4 and 1, but we can not interpret in an elementary way the number $\sqrt{-17}$ or $\sqrt{17}i$. However, the new number $\sqrt{-1}$ is of great importance in studying the physical world, particularly in the theory of alternating currents in electricity.

Exercises

Solve for x:

1.
$$2x^2 - 5x + 4 = 0$$
.

3.
$$3x^2 - x + 2 = 0$$
.

2.
$$x^2 - x + 1 = 0$$
.

4.
$$7x^2 - 3x + 1 = 0$$
.

46. Character of the roots of the quadratic. Discriminant. We have shown in Art. 44 that the solutions of the quadratic equation, $Ax^2 + Bx + C = 0$, are given by the formula,

$$\frac{-B \pm \sqrt{B^2 - 4AC}}{2A}.$$

The expression B^2-4AC which appears under the radical sign is called the *discriminant* of the equation. An inspection of the value of the discriminant is sufficient to determine the character of the roots. It is easily observed that the following statements are true:

- I. When $B^2 4AC$ is negative, the roots are imaginary.
- II. When $B^2 4AC = 0$, the roots are real and equal.
- III. When $B^2 4AC$ is positive, the roots are real and unequal.
- IV. When $B^2 4AC$ is positive and a perfect square, the roots are real, unequal and rational.
- V. When $B^2 4AC$ is positive and not a perfect square, the roots are real and unequal and irrational.

Why is the expression $B^2 - 4AC$ called the discriminant?

Exercises

Without solving, determine the character of the roots of the following equations:

1.
$$2x^2 - 7x + 3 = 0$$
.

Solution of example 1.

Here A = 2, B = -7, C = 3.

Then $B^2 - 4AC = (-7)^2 - 4 \cdot 2 \cdot 3 = 49 - 24 = 25$, which is positive. Therefore by III, the roots are real and unequal.

Also, since 25 is a perfect square, we have from IV that the roots are rational.

2.
$$3x^2 + 2x + 1 = 0$$
.

6.
$$x^2 + x = -1$$
.

$$3. \ 2x^2 - 4x + 3 = 0.$$

7.
$$3x^2 - x - 10 = 0$$
.

4.
$$x^2 + 6x - 8 = 0$$
.

8.
$$x^2 + x = 1$$
.

5.
$$4x^2 + 4x + 1 = 0$$
.

9.
$$4x^2 + 16x + 7 = 0$$
.

10. For what values of k will the roots of the quadratic $k^2y^2 + 5y + 1 = 0$, be equal?

Solution of Ex. 10.

Here $A = k^2$, B = 5, C = 1, and $B^2 - 4AC = (5)^2 - 4k^2 = 25 - 4k^2$.

According to II, the roots will be equal when k is so determined that $25 - 4k^2 = 0$ or $4k^2 = 25$, or $k = \pm \frac{5}{2}$.

11. For what value (or values) of m will the solutions of the following be equal?

(a)
$$y^2 + 12y + 8m = 0$$
. (c) $(m+1)y^2 + my + m + 1 = 0$.
(b) $(2z + m)^2 = 8z$. (d) $a^2(mx + 1) + b^2x^2 = a^2b^2$.

47. The sum and product of the roots. The two roots of the typical quadratic equation are

$$x_1 = \frac{-B + \sqrt{B^2 - 4AC}}{2A}$$
 and $x_2 = \frac{-B - \sqrt{B^2 - 4AC}}{2A}$.

The sum of these roots is $-\frac{B}{A}$, and their product is $\frac{C}{A}$, which is easily obtained by adding and multiplying them together, respectively.

Summing up, we have,

$$x_1 + x_2 = -\frac{B}{A} \tag{1}$$

and

$$x_1x_2 = \frac{C}{A} {2}$$

Thus, by means of (1) and (2) above, we can find the sum and product of the roots without solving the equation. Thus, in the equation, $2x^2 - 5x + 3 = 0$, the sum of the roots is $\frac{5}{2}$, and the product is $\frac{3}{2}$.

Exercises

What is the sum and product of the solutions of each of the following equations?

1.
$$3x^2 + 6x - 1 = 0$$
.
5. $m^2x^2 - m(a - b)x - ab = 0$.

2.
$$5x^2 - 4x + 2 = 0$$
.
6. $acx^2 - bcx + adx - bd = 0$.

3.
$$x^2 + \frac{1}{2}x + \frac{1}{7} = 0$$
.
4. $x^2 - 10x + 13 = 0$.
7. $4a + ax^2 = 2x + 2a^2x$.
8. $x^2 - 2ax + a^2 + b^2 = 0$.

48. Graphical solution of a quadratic equation. In order to solve graphically the equation
$$x^2 - 4x + 3 = 0$$
, we let $y = x^2 - 4x + 3$ and compute a table of values as follows:

x =	-3	-2	-1	0	1	2	3	4	5	6	7
<i>y</i> =	24	15	8	3	0	-1	0	3	8	15	24

Plotting the points (-2, 15), (-1, 8) ... from the table and drawing a smooth curve through them we get the curve in Fig. 24. The graph crosses the X-axis at 1 and 3; hence, for

these values of x the function $x^2 - 4x + 3$ is zero. That is to say, 1 and 3 are the solutions of the equation $x^2 - 4x + 3 = 0$.

These solutions are represented graphically by the abscissas of the points where the graph crosses the X-axis.

Were we to graph the function $Ax^2 + Bx + C$ where A is positive and not zero, we would get a curve having the same general shape as the curve in Fig. 25. This curve is called a

parabola. If the graph crosses the X-axis, the X-intercepts give the real solutions of the equation $Ax^2 + Bx + C = 0$. If the curve has no point in common with the X-axis, the roots are imaginary. If the curve touches the X-axis, the roots are real and equal.

We have just stated above that the graph of the general quadratic function, $Ax^2 + Bx + C$, is called a parabola and is similar in shape to Fig. 25. We note that the parabola is symmetrical with respect to a certain line. The curve in Fig. 25 is symmetrical with respect to the line AB. This line AB is called the axis of the parabola. If we draw any line LM perpendicular to the axis AB intersecting the parabola in L and M and the axis in N we find that LN = MN. Then, what do we mean by the parabola being symmetrical with respect to its axis?

The curve in Fig. 24 is a parabola and we notice that it is symmetrical with respect to the line parallel to the Y-axis and two units to the right. What are the coordinates of the lowest point on this curve?

Exercises

Construct the graphs of the functions in the following equations and determine the roots if they are real. Determine the axis of symmetry of each of the curves. What are the coordinates of the lowest point on each curve?

1.
$$x^2 - 2x - 3 = 0$$
.6. $x^2 - 2x - 1 = 0$.2. $4x^2 - 12x + 9 = 0$.7. $x^2 + 4x + 3 = 0$.3. $x^2 - 2x + 5 = 0$.8. $x^2 + x + 1 = 0$.4. $x^2 - 9x + 14 = 0$.9. $x^2 + 4x + 6 = 0$.5. $x^2 + 2x - 1 = 0$.10. $x^2 + 2x + 2 = 0$.

49. Minimum value of a quadratic function. We have just shown in Art. 48 that the graph of a quadratic function is a parabola symmetrical with respect to a certain vertical line

called the axis of the parabola. (See Fig. 25.) We notice that the axis intersects the parabola in a single point B and that this point B is the lowest point on the curve. Such a point is called a minimum point and the ordinate of such a point is defined as the minimum value of the quadratic function, $Ax^2 + Bx + C$. In figure 24 the coordinates of the lowest point on the graph are (2, -1) and -1 is the minimum value of the quadratic function $x^2 - 4x + 3$.

Consider again the equation, (1) $y = x^2 - 4x + 3$. The graph of this equation is Fig. 24. From the table of values we see that to a given value of y there corresponds two values of x. When y = 3, x = 0 and 4. When y = 0, x = 1 and 3. When y = -1, x = 2. We observe, then, that to every value of y there corresponds two values of x and that as y decreases the two corresponding values of x approach each other and finally for a certain value of y the two corresponding values of x are equal. In the above example the value of y, which causes the two values of x to be equal, is x = -1. But this value of y is the minimum value of the function, $x^2 - 4x + 3$.

Then, to determine the minimum value of the function, $x^2 - 4x + 3$, we must determine the value of y which will make equation (1) have equal values for x. Equation (1) may be written (2) $x^2 - 4x + 3 - y = 0$. Now, the roots of (2) will be equal when the discriminant equals zero.

We have,

$$(-4)^2 - 4(3 - y) = 0, (3)$$

or
$$y = -1, (4)$$

which is the minimum value of the function.

Example. Find the minimum value of the function,

$$x^2 + 3x + 4$$
.

Solution.

Let
$$y = x^2 + 3x + 4$$
. (1)

Then
$$x^2 + 3x + (4 - y) = 0$$
. (2)

Setting the discriminant equal to zero, we get,

$$9 - 4(4 - y) = 0$$
, or (3)

$$y = \frac{7}{4},\tag{4}$$

which is the minimum value of $x^2 + 3x + 4$.

Let us now find the minimum value of the typical quadratic function, $Ax^2 + Bx + C$.

Let
$$y = Ax^2 + Bx + C. \tag{1}$$

Then
$$Ax^2 + Bx + (C - y) = 0.$$
 (2)

Setting the discriminant equal to zero, we get,

$$B^2 - 4A(C - y) = 0, (3)$$

and

$$y = \frac{4AC - B^2}{A},\tag{4}$$

which is the minimum value of the quadratic, $Ax^2 + Bx + C$.

Thus far in the discussion of the quadratic, $Ax^2 + Bx + C$, we have assumed that "A" was a positive number. Now, if "A" were a negative number, the graph would not be similar to Fig. 25, but would have the same general shape as Fig. 26. Fig. 26 is a parabola also, but here the point B is a maximum and not a minimum as in Fig. 25. The expression, $\frac{4AC-B^2}{4A}$, gives us the minimum or

Fig. 26.

maximum value of the quadratic according as "A" is positive or negative.

Thus the maximum value of $-2x^2 + 3x + 5$ is

$$\frac{4(-2)5 - 3^3}{4(-2)} = \frac{-40 - 9}{-8} = \frac{49}{8} = 6\frac{1}{8}.$$

Exercises

Find the maximum or minimum values of the following:

1.
$$x^2 - 6x + 10$$
.

5.
$$x^2 + 2x + 2$$
.

2.
$$2x^2 - x - 3$$
.

6.
$$2 + 2x - x^2$$
.

3.
$$-3x^2 + 2x - 10$$
.

7.
$$mx^2 + nx + k$$
.

4.
$$1-x-2x^2$$

8.
$$-5x^2 + x + 1$$
.

Exercises on Chapter VII

1. Solve:

(a)
$$12x^2 + x - 1 = 0$$
. (b) $\frac{3y - 6}{y + 2} = y - 2$.

(b)
$$\frac{3y-6}{y+2} = y-2$$

$$(c) x^2 - 4x + 1 = 0$$

(c)
$$x^2 - 4x + 1 = 0$$
. (d) $x^2 - 5.3x + 2.1 = 0$.

2. Find by the graphical method the approximate values of the roots of the equations

(a)
$$x^2 - 4x - 13 = 0$$
, (b) $x^2 + 2x - 13 = 0$.

$$(b) x^2 + 2x - 13 = 0.$$

3. Find the sum and product of the roots of the following equations:

(a)
$$3x^2 = 5 - 2x$$
, (b) $2x^2 + 5x + 3 = 0$,
(c) $(mx + 2)^2 = 4x$.

4. Determine the character of the roots of the following:

(a)
$$3x^2 + x + 1 = 0$$
, (b) $2x^2 - 5x + 1 = 0$,
(c) $16x^2 + 8x + 1 = 0$.

5. Find the number of acres in the largest rectangular field that can be inclosed by a mile of fence.

Solution.

Let x equal length of the field.

Then, 160 - x =width of field and A (the area) = x(160 - x) = $160x - x^2$ or $A = -x^2 + 160x$. Thus the maximum area is given by

$$A = \frac{4(-1) \cdot 0 - (160)^2}{4(-1)} = \frac{(160)^2}{4} = 6400$$
 square rods,

or 40 acres. When A equals 6400, we find that x equals 80 rods and the field is in the shape of a square.

6. Divide 20 into two parts such that the sum of their squares shall be a minimum.

Solution:

Let x =one part.

Then, 20 - x =other part and S (the sum of their squares) = $x^2 + (20 - x)^2$ or $S = 2x^2 - 40x + 400$, and the minimum value of S is given by

$$S = \frac{4 \cdot 2 \cdot 400 - (-40)^2}{4 \cdot 2} = 200.$$

When S = 200, we have,

$$200 = 2x^2 - 40x + 400,$$

or

$$x^2 - 20x + 100 = 0,$$

 $x = 10$, one part,

and

20 - x = 10, other part.

- 7. A window is to be constructed in the shape of a rectangle surmounted by a semicircle. Find the dimensions that will admit the maximum amount of light, if its perimeter is to be 48 feet.
- 8. A rectangular piece of ground is to be fenced off and divided into four equal parts by fences parallel to one of the sides. What should the dimensions be in order that as much ground as possible may be enclosed by 200 rods of fence?
- 9. A rectangular field is to be fenced off along the bank of a straight river, using 160 rods of fence. If no fence is needed along the river, what is the shape of the field in order that the enclosed area shall be the greatest possible?

Let.

- 10. A park is 150 rods long and 90 rods wide. It is decided to double the area of the park, still keeping it rectangular, by adding strips of equal width to one end and one side. Find the width of the strips.
- 11. A farmer starts cutting grain around a field 120 rods long and 80 rods wide. How wide a strip must he cut to make 10 acres?
- 12. A rectangular piece of ground is to be fenced off in the corner of a rectangular field and divided into four equal lots by fences parallel to one of the sides. What should the dimensions be in order that as much ground as possible may be enclosed by 200 rods of fence, the fences of the given field being used for two sides of the required field?
- 13. Build a water tank to hold 100 cubic feet. The length of the base is to be twice the width. Find the dimensions that will make the cost a minimum.

Solution. The cost will be a minimum when the surface is a minimum.

x =width of the base.

Then,
$$2x = \text{length of the base.}$$
Let $y = \text{depth.}$
Then, $2x^2y = 100 \text{ (volume)},$ (1)
 $2x^2 + 6xy = S \text{ (surface)}.$ (2)

Substituting (1) in (2), we obtain,

$$S = 2x^{2} + \frac{300}{x}$$

$$= \frac{2x^{3} + 300}{x}$$
(3)

Our problem is to determine a value of x that will make S a minimum. This may be done by giving x values and computing the corresponding values of S.

x =	1	2	3	4	41/4	41/2	5	6	7
S =	302	158	118	107	106.7	107.16	110	122	140%

We notice that when $x = 4\frac{1}{4}$, S = 106.7 and this value is approximately the least value S can take. Hence the dimensions are (approx.) $4\frac{1}{4}$ feet, $8\frac{1}{2}$ feet and $2\frac{4}{5}$ feet.

This problem illustrates another method for obtaining a minimum value of a function.

14. A covered box is to hold 200 cubic feet. The length of the base is to be two times the width. Find the dimensions that will make the cost a minimum.

CHAPTER VIII

EXPONENTS, RADICALS, BINOMIAL EXPANSION AND LOGARITHMS

50. Definition of a number. Laws of exponents. Any number N may be defined as some other number a (a fixed number) raised to the nth power. Thus we may write

$$N = a^n. (1)$$

In (1) N is the number, a is defined as the base of the system of numbers and n is the exponent or the power to which a, the base must be raised to produce the number. For example, $1000 = 10^3$. Here 1000 is the number, 10 is the base and 3 is the power to which 10 must be raised to produce 1000.

By a^n , we mean the product of $a \cdot a \cdot a$... to n factors, by a^4 , we mean $a \cdot a \cdot a \cdot a$.

The laws of exponents are as follows:

I. $a^m \cdot a^n = a^{m+n}$. To multiply numbers having the same base, we add their exponents. Thus, $5^2 \cdot 5^4 = 5^6$.

II. $a^m \div a^n = a^{m-n}$. To divide numbers having the same base, we subtract the exponent of the divisor from the exponent of the dividend. Thus, $5^5 \div 5^3 = 5^{5-3} = 5^2$.

III.
$$(a^m)^n = a^{mn}$$
. Thus, $(5^3)^2 = 5^{3 \cdot 2} = 5^6$.

IV.
$$(ab)^m = a^m b^m$$
. Thus, $(3 \cdot 4)^3 = 3^3 \cdot 4^3$.

V.
$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$
. Thus, $\left(\frac{2}{3}\right)^3 = \frac{2^3}{3^3}$.

The above formulas apply not only when m and n are positive integers, but in all cases.

For example:
$$3^{2/5} \cdot 5^{-1/3} = 3^{2/5 - 1/3} = 3^{1/15}$$
.

By $a^{p/q}$ we mean the qth root of a^p . That is,

VI.
$$a^{p/q} = \sqrt[r]{a^p}$$
. Thus, $3^{2/5} = \sqrt[5]{3^2}$ and $5^{1/3} = \sqrt[3]{5}$.

VII.
$$a^{\circ} = 1$$
. For $a^{\circ} \cdot a^n = a^{\circ + n} = a^n$, and $a^{\circ} = \frac{a^n}{a^n} = 1$

VIII.
$$a^{-n} = \frac{1}{a^n}$$
. For $a^{-n} \cdot a^n = a^{-n+n} = a^{\circ} = 1$, and $a^{-n} = \frac{1}{a^n}$.

Thus,
$$7^{-2/3} = \frac{1}{7^{2/3}} = \frac{1}{\sqrt[3]{7^2}} = \frac{1}{\sqrt[3]{49}}$$
.

Exercises

Simplify the following indicated operations:

1.
$$x^3 \cdot x^5 \cdot x^{1/2}$$
.

5.
$$(a^{-1/2})^3$$
.

2.
$$(x^2y^3)^4$$
.

2.
$$(x^2y^3)^4$$
.
3. $a^7 \div a^3$.

6.
$$(m^{1/3} + n^{1/3})m^{1/3}n^{1/3}$$

4.
$$(\frac{2}{3})^5 \div (\frac{2}{3})^3$$
.

7.
$$(8a^3b^6)^{1/3}$$
.

Write each of the following with a radical sign and simplify:

8.
$$(16)^{1/4}$$
.

11.
$$x^{1/3}y^{1/3}$$
.

9.
$$(27)^{2/3}$$

12.
$$\left(\frac{8a^6}{27b^9}\right)^{1/3}$$
.

10. $(3)^{2/3}$.

Write the following in a form such that negative exponents do not appear and reduce to simplest form:

13.
$$12a^{-2/3}$$
.

14.
$$\frac{1}{(a+b)^{-2}}$$

15.
$$a^2b^{-3}c^{-2}$$
.

$$16. \ \frac{1}{2a^{-2}b^{-3}}$$

17.
$$\frac{1}{a^{-2}+b^{-2}}$$

18.
$$\left(\frac{2}{3}\right)^{-2} \left(\frac{225}{16}\right)^{-1/2}$$
.

19.
$$\frac{1}{a^{-3}} + \frac{1}{b^{-3}}$$

20.
$$(8x^{-3}y^{-6})^{1/3}$$
.

21.
$$2^{-2} - 2^{-3}$$

22.
$$(a^2 + b^2)^\circ$$
.

34 $\sqrt[3]{a^6h^3c^{-3}}$

Change the following into expressions without radical signs or negative exponents:

23.
$$\sqrt{b}$$
.
24. $\sqrt[3]{x^4}$.
25. $\sqrt{a^2b^4c^8}$.
26. $\sqrt[3]{x^{-6}y^{-2}}$.
27. $\sqrt[3]{(a+b)^6}$.
29. $\sqrt[3]{(a^3)^{-2}}$.
30. $\sqrt[3]{x^{-5}}$.
31. $\sqrt[3]{\sqrt{a^4}}$.
32. $\sqrt[4]{(x+y)^{-3}}$.
33. $\sqrt{9(x+y)^2}$.

28. $\sqrt{(x+y)^{-4}}$. Solve the equation:

35.
$$y^{-2/3} = 9$$
.
Solution. $\frac{1}{y^{2/3}} = 9$.
 $\frac{1}{y} = 9^{3/2}$, or $y = \frac{1}{9^{3/2}}$.
But $9^{3/2} = \sqrt{9^3} = 27$.

Therefore,

Solve the following for x:

36.
$$x^{1/3} = 2$$
. **38.** $\frac{1}{2}x^{-1/3} = 3$. **37.** $x^{-1/3} = 4$. **39.** $x^{2/3} = 4$.

 $y = \frac{1}{27}$

Multiply the following:

40.
$$a^{2/3} - a^{1/3}b^{1/3} + b^{2/3}$$
 by $a^{1/3} + b^{1/3}$.
41. $\sqrt{a^3} + \sqrt{b^3}$ by $a^{3/2} - b^{3/2}$.

Divide the following:

42.
$$x^{3/5} + b^{3/4}$$
 by $x^{1/5} + b^{1/4}$.
43. $16x^2 - 81y^4$ by $2x^{1/2} - 3y$.
44. $\sqrt[4]{a^3} - \sqrt[5]{b^5}$ by $a^{1/4} - b^{2/5}$.

51. Radicals. Simplification of radicals. An indicated root of a number is called a radical. Thus the expression $\sqrt[n]{a}$ is a radical. The quantity a under the radical sign is known as the radicand; n the number which indicates the root of the radicand is known as the index of the root.

For the purpose of computation it is often convenient to be able to change the form of radicals. A few examples will illustrate the processes:

Example 1. Simplify $\sqrt{32}$.

Solution.
$$\sqrt{32} = \sqrt{16 \cdot 2} = \sqrt{16} \sqrt{2} = 4\sqrt{2}$$
.

Example 2. Simplify $\sqrt[3]{128}$.

Solution.
$$\sqrt[3]{128} = \sqrt[3]{64 \cdot 2} = \sqrt[3]{64} \sqrt[3]{2} = 4\sqrt[3]{2}$$
.

Example 3. Simplify $\sqrt{\frac{32}{27}}$.

Solution.
$$\sqrt{\frac{32}{27}} = \frac{\sqrt{32}}{\sqrt{27}} = \frac{4\sqrt{2}}{3\sqrt{3}}$$

Example 4. Simplify $\sqrt{20} + 8\sqrt{45} - \sqrt{5}$.

Solution.

$$\sqrt{20} + 8\sqrt{45} - \sqrt{5} = 2\sqrt{5} + 24\sqrt{5} - \sqrt{5} = 25\sqrt{5}$$

In example 4 we reduced each radical to the same radicand and then added terms.

Example 5. Simplify $\sqrt[3]{27x^5y^3z^4}$.

Solution.
$$\sqrt[3]{27x^5y^3z^4} = \sqrt[3]{27x^3y^3z^3x^2z}$$

= $\sqrt[3]{27x^3y^3z^3} \sqrt[3]{x^2z} = 3xyz \sqrt[3]{x^2z}$.

Exercises

Simplify the following radicals:

1.
$$\sqrt{75}$$
.

2.
$$\sqrt[3]{81}$$
.

3.
$$7\sqrt{147}$$
.

4.
$$\sqrt[4]{81}$$
.

5.
$$5\sqrt[3]{32}$$
.

6.
$$\sqrt{m^6 + m^3 n^2}$$
.

7.
$$\sqrt[3]{(x+y)^4}$$
.

8.
$$\left(\frac{1}{x^3} + \frac{1}{y^3}\right)^{1/3}$$
.

9.
$$\sqrt{4a^2b^3c}$$
.

10.
$$\sqrt{(x+y)^2(x-y)^3}$$

19. $3\sqrt{b^3} + 4\sqrt{a^2bc^4} + \sqrt{4b^5c^2}$

20.
$$\frac{1+\sqrt{2}}{\sqrt{z}}$$

20.
$$\frac{1}{\sqrt{5}}$$

Solution.
$$\frac{1+\sqrt{2}}{\sqrt{5}} = \frac{1+\sqrt{2}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}+\sqrt{10}}{5}$$

21.
$$\frac{3}{\sqrt{3}-\sqrt{2}}$$

Solution.
$$\frac{3}{\sqrt{3-\sqrt{2}}} = \frac{3}{\sqrt{3-\sqrt{2}}} \cdot \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}$$

$$=\frac{3\sqrt{3}+3\sqrt{2}}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}=\frac{3\sqrt{3}+3\sqrt{2}}{3-2}=3\sqrt{3}+3\sqrt{2}.$$

In examples 20 and 21 we have multiplied both the numerator and the denominator by the same expression. This expression was chosen so as to free the denominators of radicals. This process is known as the rationalization of the denominator.

11.
$$\sqrt[6]{a^3x^3}$$
.

Solution.
$$\sqrt[6]{a^3x^3} = (a^3x^3)^{1/6}$$

$$= a^{3/6}x^{3/6} = a^{1/2}x^{1/2} = \sqrt{ax}.$$

12.
$$\sqrt[4]{4x^2y^2}$$
.

13.
$$\sqrt[6]{216x^3y^6}$$
.

14.
$$\sqrt[6]{8}$$
.

15.
$$\sqrt[4]{9}$$
.

16.
$$\sqrt{3} - 2\sqrt{3} + 11\sqrt{3}$$
.

17.
$$3\sqrt[3]{28} - \sqrt[3]{63} + 4\sqrt[3]{175}$$

18.
$$\sqrt[3]{81} + 5\sqrt[3]{24} - \sqrt[3]{375}$$
.

22.
$$\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$$
.
23. $\frac{3}{\sqrt{6} + 3}$.
24. $\frac{2}{2 - \sqrt{3}}$.
25. $\frac{2 + \sqrt{3}}{\sqrt{2} - \sqrt{3}}$.
26. $\sqrt{80} \div \sqrt{5}$.
27. $\sqrt[3]{135} \div \sqrt[3]{5}$.
28. $\sqrt[3]{a^2bc^2} \div \sqrt[3]{ac^2}$.
Solution. $\sqrt[3]{a^2bc^2} \div \sqrt[3]{ac^2}$.
 $= \sqrt[3]{\frac{a^2bc^2}{ac^2}} = \sqrt[3]{ab}$.

To divide radicals having the same index, divide the radicand of the numerator by the radicand of the denominator. If the radicals do not have the same index, reduce them to radicals having the same index and then divide.

29.
$$\sqrt[3]{25} \div \sqrt{5}$$
.
Solution. $\sqrt[3]{25} = (25)^{1/3} = (25)^{2/6} = \sqrt[6]{(25)^2} = \sqrt[6]{625}$,
 $\sqrt{5} = (5)^{1/2} = (5)^{3/6} = \sqrt[6]{(5)^3} = \sqrt[6]{125}$,
and $\sqrt[3]{25} \div \sqrt{5} = \sqrt[6]{625} \div \sqrt[6]{125} = \sqrt[6]{5}$.
30. $6\sqrt{150} \div 5\sqrt{45}$.
31. $\sqrt[3]{a^2n} \div \sqrt[3]{an^2}$.
32. $(\sqrt{5} + 2\sqrt{3})^2$
33. $\sqrt{2} \div \sqrt[3]{2}$.
34. $\sqrt[4]{9} \div \sqrt[3]{3}$.
37. $\sqrt{\frac{n-1}{n+1}} \div \sqrt{\frac{n+1}{n-1}}$.

52. Binomial expansion; positive integral exponents. By multiplication we find:

$$(a + b)^2 = a^2 + 2ab + b^2,$$

 $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3,$
 $(a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4.$

From the above expansion we observe the following properties:

- (1) The first term of the expansion is the first term of the binomial raised to the same power as that of the binomial.
- (2) The exponents of a decrease by unity from term to term while the exponents of b increase by unity.
- (3) The coefficient of the second term of the expansion is equal to the exponent of the binomial.
- (4) If in any term the coefficient be multiplied by the exponent of a and divided by the exponent of b increased by unity, we get the coefficient of the next term.

The question now arises: Do the four properties stated above hold for the expansion of $(a+b)^n$, for all positive integral values of n? By actual multiplication we see that these properties do hold for all positive integral values of n up to n=4, and we assume that they hold for all positive integral values of n. This gives us the expansion.

$$(a+b)^{n} = a^{n} + na^{n-1}b + \frac{n(n-1)}{2}a^{n-2}b^{2} + \frac{n(n-1)(n-2)}{2 \cdot 3}a^{n-3}b^{3} + \dots + \frac{n(n-1)\dots(n-r+2)}{2 \cdot 3 \cdot 4 \dots(r-1)}a^{n-r+1}b^{r-1} + \dots + b^{n}.$$

$$(1)$$

Expansion (1) is known as the binomial expansion or binomial theorem. We have assumed that it is true for all positive integral values of n. This fact may be proven by the process known as mathematical induction but that is beyond the scope of this text.

In the expansion of $(a + b)^n$, the rth term is

$$\frac{n(n-1)(n-2)\dots(n-r+2)}{2\cdot 3\cdot 4\dots(r-1)}a^{n-r+1}b^{r-1}.$$
 (2)

Exercises

Expand:

1.
$$(2-3x)^5$$
.

Solution. Here
$$a = 2$$
, $b = -3x$, $n = 5$.

Then,
$$(2-3x)^5 = (2)^5 + 5(2)^4(-3x) + 10(2)^3(-3x)^3 + 10(2)^2(-3x)^3 + 5(2)(-3x)^4 + (-3x)^5$$

$$=32 - 240x + 720x^2 - 1080x^3 + 810x^4 - 243x^5$$

2.
$$(a+b)^7$$
.

3.
$$(a-b)^5$$
.

4.
$$(2+a)^4$$
.

5.
$$(2x-5)^5$$
.

6.
$$(2x + y)^4$$
.

7. $\left(\frac{a}{2}+3\right)^5$

8.
$$(a + \sqrt{c})^3$$
.

9.
$$(x+y+z)^3$$
.

(Hint: Consider x + y as representing one number.)

10. Find the fourth term of $(a + 3b)^s$.

Solution. The rth term is given by the expression

$$\frac{n(n-1)(n-2)\ldots(n-r+2)}{2\cdot 3\cdot 4\ldots(r-1)}a^{n-r+1}b^{r-1}.$$

Here, n = 8, r = 4, a = a, b = 3b, n - r + 2 = 6, n - r + 1 = 5, r - 1 = 3. Substituting these values in the above expression, we have, $\frac{8 \cdot 7 \cdot 6}{2 \cdot 3} a^{5}(3b)^{3} = 1512a^{5}b^{3}$.

- 11. Find the 13th term of $(2x + y)^{18}$.
- 12. Find the middle term of $(x^2 + 2y)^8$.
- **13.** Find the 9th term of $(3 2y)^{13}$.
- 14. Use the binomial theorem to find $(1.1)^{15}$, correct to four significant figures. (Hint: Write $(1.1)^{15}$ as $(1+.1)^{15}$.)
 - 15. Find (1.01)¹⁰ correct to 5 significant figures.
- **53.** Logarithms. Definition. In Article 50 a number N was defined by the equation, (1) $N = a^n$, where a was defined

as the base of the system of numbers and n as the power to which the base must be raised to produce the number N. We there assumed that the definition held for all positive and negative values of n both integral and fractional. It could be shown that it also holds for irrational values of n, and we now assume this without proof. That is, we now give a meaning to such numbers as $a^{\sqrt{2}}$, $a^{\sqrt{3}}$, where a > 0.

If $a^n = N(a > 0, a \neq 1)$ then n is said to be the *logarithm* of N to the base a, and this is written $n = \log_a N$.

The two equations
$$a^n = N$$
 (2)

thus mean the same thing; and the terms exponent and logarithm are equivalent.

We assume that the laws of exponents given in Article 50 which apply to rational exponents are also valid when irrational exponents are involved.

Exercises

1. $\log_5 25 = ?$	$\log_{10} 100 = ?$	$\log_2 16 = ?$
$2 \log_2 \frac{1}{2} = ?$	$\log_a a = ?$	$log_{in} 4 = ?$

3. Fill out the following table:

Base	Number	Logarithm			
	1000	3			
5 2		4			
2	$\frac{1}{32}$				
1	32	-5			
7	343				
6		3			

54. Properties of logarithms.

1. The logarithm of a product equals the sum of the logarithms of its factors.

Let $\log N = n$ and $\log M = m$, then $a^n = N$, $a^m = M$, (definition of logarithm) and $NM = a^{n+m}$ (1. Art. 50).

Hence

$$\log_a NM = n + m.$$

That is.

$$\log_a NM = \log_a N + \log_i M.$$

This property is true for any number of factors in the product.

Example.
$$\log_{10} 105 = \log_{10} 3 + \log_{10} 5 + \log_{10} 7$$
.

2. The logarithm of a quotient is equal to the logarithm of the dividend minus the logarithm of the divisor. The proof of this property is left as an exercise for the student.

Example.
$$\log_{10} \frac{125}{73} = \log_{10} 125 - \log_{10} 73$$
.

3. The logarithm of N^n equals n times the logarithm of N. This property is true for any value of the exponent n, whether positive or negative, integer or fraction. The proof is left for the student.

Example. $\log_{10} (153)^3 = 3 \log_{10} 153$.

Exercises

1. With 10 as base, $\log 2 = 0.30103$, $\log 3 = 0.47712$, $\log 5 = 0.69897$. Find $\log 4$, $\log 6$, $\log 8$, $\log 9$, $\log 12$, $\log 15$, $\log 20$.

Ans.: 0.60206, 0.77815, 0.90309, 0.95424, 1.07918, 1.17609, 1.30103.

- 2. From the results of Ex. 1 above find $\log {9 \choose 5}$, $\log {15 \choose 8}$, $\log 144$.
- 55. Common logarithms. Characteristic and mantissa. Any positive number (except 0 and 1) may be used as a base for a logarithmic system. Logarithms with 10 as a base are called *common logarithms*. This is the system used for all ordinary calculations.

From the table

$$10^{3} = 1000$$
 $10^{-1} = .1$
 $10^{2} = 100$ $10^{-2} = .01$
 $10^{1} = 10$ $10^{-3} = .001$
 $10^{0} = 1$

or

it is evident that the logarithm of an integral power of 10 is an integer, either positive or negative. The logarithms of numbers between 1 and 10 are between 0 and 1, logarithms of numbers between 10 and 100 are between 1 and 2, and so on. For example, $\log 7 = 0.84510$, $\log 70 = 1.84510$, $\log 700 = 2.84510$, $\log 7000 = 3.84510$.

The integral part of a logarithm is called the *characteristic*; the decimal part is called the *mantissa*.

(A) Law of the characteristic. From the above examples, we observe that log 7 has a characteristic 0, log 70 has 1, log 700 has 2, and log 7000 has 3. From this we see that the characteristic of a logarithm of a whole number is one less than the number of digits in the number. We also observe from the table that the characteristics of the logarithms of numbers less than 1 are negative and equal to the number of places which the first significant figure occupies to the right of the decimal point. Thus

$$\log 0.00325 = -3 + .51188$$

In such cases the characteristic is negative and the mantissa is positive. It is customary in case of negative characteristics to write

$$\log 0.00325 = \overline{3}.51188$$
$$\log 0.00325 = 7.51188-10.$$

(B) Law of the mantissa. The mantissa is the same for any sequence of digits and does not depend upon the position of the decimal point.

For example, $\log 3256 = 3.51268$ $\log 325.6 = 2.51268$ $\log 32.56 = 1.51268$ $\log 3.256 = 0.51268$

56. Use of tables. In Table I in the back of this book five-place logarithms are given. The mantissas of the logarithms

of all integers from 1 to 9999 are recorded correct to five decimal places. The methods by which such a table can be made will not be discussed here as it is beyond the scope of this text. In order to use the tables intelligently we must know how to read from the tables the logarithm of a given number, and also the number having a given logarithm.

Examples

1. Find the logarithm of 2354. Read down the column headed N for the first three significant figures, then at the top of the table for the fourth figure. In the row with 235 and the column with 4 is found 37181.

Hence, $\log 2354 = 3.37181$.

2. Find the logarithm of 32.625. This number has more than four significant figures, so we must obtain its logarithm by the process known as *interpolation*. As in example 1, we find that the mantissas of 32620 and 32630 are 51348 and 51362, respectively. The difference between these two mantissas is 14. Since 32625 is five tenths of the interval from 32620 to 32630, we add to 51348

 $0.5 \times 14 = 7$.

Hence,

 $\log 32.625 = 1.51355.$

3. Find the number whose logarithm is 1.78147. The mantissa 78147 is found in the table and is in the column headed by 6 and opposite the digits 604 in the column headed by N. Thus the digits corresponding to mantissa 78147 are 6046.

Hence, $\log 60.46 = 1.78147$.

4. Find the number whose logarithm is $\overline{2}.62029$. The mantissa 62029 is not found in the table, but it lies between the two adjacent mantissas 62024 and 62034. The mantissa 62024 corresponds to the number 4171 and 62034 corresponds to 4172. The mantissa 62029 is $\frac{5}{10}$ of the interval from 62024 to 62034. Thus the number whose mantissa is 62029 is 41710 $+\frac{5}{10} \times 10 = 41715$.

$$\log 0.041715 = \overline{2}.62029.$$

5. Find the value of
$$N = \frac{3.26 \times 72.65}{2.72}$$
 to five significant figures.

Solution.

$$\log N = \log 3.26 + \log 72.65 - \log 2.72$$

$$\log 3.26 = 0.51322$$

$$\log 72.65 = 1.86124$$

$$\log (3.26)(72.65) = 2.37446$$

$$\log 2.72 = 0.43457$$

$$\log N = 1.93989$$

$$N = 87.074.$$

6. Find the value of

$$N = \frac{\sqrt[3]{0.345}\sqrt{7.5}}{\sqrt{52.3}}.$$

Solution.

$$\log N = \frac{1}{3} \log 0.345 + \frac{1}{2} \log 7.5 - \frac{1}{2} \log 52.3$$

$$\log 0.345 = \overline{1}.53782 = 29.53782 - 30$$

$$\log 7.5 = 0.87506$$

$$\log 52.3 = 1.71850$$

$$\frac{1}{3} \log 0.345 = 9.84594 - 10$$

$$\frac{1}{2} \log 7.5 = 0.43753$$

$$10.28347 - 10$$

$$\frac{1}{2} \log 52.3 = 0.85925$$

$$\log N = 9.42422 - 10$$

$$N = 0.26559$$

Why did we write $\log 0.345 = 29.53782 - 30$?

- **7.** Find the value of $N = \sqrt[5]{0.235}$.
- **8.** Find the value of $N = \frac{78.54 \times 9.67}{8.269}$.
- **9.** Find the value of $N = \frac{(104.6)^{1/2} \times (0.2536)^{1/3}}{(5.87)^{1/2}}$.
- 10. Find the value of $S = P(1+i)^n$, when P = 235, i = .06, n = 7.
 - 11. Find the value of $\frac{0.07}{(1.07)^{11}-1}$

CHAPTER IX

PROGRESSIONS

57. Arithmetical progressions. An arithmetical progression is a succession of numbers so related that each one is obtained by adding a fixed number to the preceding number.

The numbers forming the progression are called its *terms*. The fixed amount which must be added to any term to get the next term is called the *common difference*.

Thus, 1, 3, 5, 7, 9, ... is an arithmetical progression, having 2 for its common difference.

- **58.** Elements of an arithmetical progression. Let a represent the first term, d the common difference, n the number of terms, l the nth or last term, s the sum of the terms. The five numbers a, d, n, l and s are called elements of the arithmetical progression.
- **59.** Relations among the elements. If a is the first term and d the common difference, the progression is a, (a + d), (a + 2d), (a + 3d), ... (a + (n 1)d). It is evident that the nth or last term is

$$l = a + (n-1)d. (1)$$

Since s denotes the sum of the progression, we may write,

$$s = a + (a + d) + (a + 2d) + \dots (l - 2d) + (l - d) + l,$$
 (2)

or
$$s = l + (l - d) + (l - 2d) + \dots (a + 2d) + (a + d) + a.$$
 (3)

By adding (2) and (3) we get,

$$2s = (a + l) + (a + l) + \dots (a + l) + (a + l) + (a + l) + (a + l) + (a + l).$$

Hence,
$$s = \frac{n}{2}(a+l)$$
. (4)

Equations (1) and (4) are the two relations among the five elements that always exist. If we know any three of these elements, we may find the other two by using (1) and (4).

60. Arithmetic means. The first and last terms of an arithmetical progression are called the *extremes*, and the remaining terms in between are called the *arithmetical means*. By the aid of (1) any number of means may be inserted between any two numbers.

Exercises

Find l and s for the following arithmetical progressions:

1. 3, 5, 7, 9, ... to 15 terms.

Solution. l = a + (n-1)d.

Here, a = 3, d = 2, n = 15.

Then, $l = 3 + 14 \cdot 2 = 31$.

And $s = \frac{15}{2}(3+31) = 15 \times 17 = 255.$

- 2. 5, 2, -1, -4, to 12 terms.
- 3. $\frac{2}{3}$, $\frac{7}{12}$, $\frac{1}{2}$, to 10 terms.
- 4. 2, 9, 16, 23, to 9 terms.
- **5.** Given d = 4, n = 15, l = 59; find a and s.
- **6.** Given a = 12, l = -64, s = -520; find n and d.
- 7. Insert 5 arithmetical means between 2 and 14.
- 8. Insert 11 arithmetical means between 3 and 7.

- **61.** Geometrical progression. A geometric progression is a succession of numbers so related that the ratio of each one to the preceding one is a fixed number, called the ratio. Thus 2, 6, 18, 54, ... is a geometrical progression having three for its ratio.
- **62.** Elements of a geometrical progression. Let a represent the first term, r the ratio, n the number of terms, l the nth, or last, term and s the sum of the terms. The numbers a, r, n, l, and s are called the elements of the geometrical progression.
- **63.** Relations among the elements. If a is the first term and r the ratio, the progression is a, ar, ar^2 , ar^3 , ... ar^{n-1} .

It is evident that the nth or last term is

$$l = ar^{n-1}. (5)$$

Since s denotes the sum of the progression, we may write,

$$s = a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1}.$$
 (6)

Then,
$$sr = ar + ar^2 + ar^3 + ar^4 + \dots ar^{n-1} + ar^n$$
. (7)

Subtracting (6) from (7), we have $sr - s = ar^n - a$.

Hence,
$$s = \frac{a(r^n - 1)}{r - 1}$$
 (8)

Equations (5) and (8) are the two relations among the five elements that always exist. If we know any three of these elements we may find the other two by using (5) and (8).

The first and last term of a geometrical progression are called the *extremes*, and the remaining terms in between are called the *geometrical means*. By the aid of (5), any number of means may be inserted between two numbers.

Exercises

- 1. Given a = 2, r = 3, n = 8; find l and s.
- 2. Given a = 3, r = 2, n = 10; find l and s.
- 3. Given s = 242, a = 2, n = 5; find r and l.
- 4. Insert 4 geometrical means between 3 and 96.
- 5. The first term of a geometrical progression is 3, and the last term 81. If there are four terms in the progression, find the ratio and the sum of the terms.
- 6. An employer hires a clerk for five years at a beginning salary of \$500 per year with either a raise of \$100 each year after the first, or a raise of \$25 every six months after the first half year. Which is the better proposition for the clerk?
 - 7. Find the sum of the progression

$$1 + (1+i) + (1+i)^2 + (1+i)^3 + \dots + (1+i)^{n-1}$$
.

Ans. $\frac{(1+i)^n - 1}{i}$.

8. Find the sum of the progression

$$(1+i)^{-1} + (1+i)^{-2} + (1+i)^{-3} + \dots + (1+i)^{-n}.$$
Ans. $\frac{1-(1+i)^{-n}}{i}.$

9. By the use of logarithms find the value of $\frac{(1+i)^n-1}{i}$, when i=.06 and n=8.

Solution. We have
$$\frac{(1.06)^8 - 1}{.06}$$
$$\log (1.06) = 0.02531$$
$$\log (1.06)^8 = 0.20248$$
$$(1.06)^8 = 1.59396$$
$$(1.06)^8 - 1 = 0.59396$$
$$\frac{(1.06)^8 - 1}{.06} = \frac{0.59396}{.06} = 9.899.$$

10. Find the value of $255 \left[\frac{(1.07)^{10} - 1}{.07} \right]$.

CHAPTER X

INTEREST, ANNUITIES, SINKING FUND

64. Simple interest. Simple interest at any rate is most readily computed by the application of the principle of aliquot parts.

If we consider a year as composed of 12 months of 30 days each (360 days),

At 6%, the interest on \$1 for 1 year is \$0.06,

At 6%, the interest on \$1 for 2 mo. (60 days) is \$0.01,

At 6%, the interest on \$1 for 6 days is \$0.001.

That is, to find the interest on any sum of money at 6% for 6 days, point off three places in the principal sum; and for 60 days, point off two places in the principal sum.

The interest on \$1357 for 6 days at 6% is \$1.357 and the interest on \$1357 for 60 days is \$13.57.

Illustrations:

Find the interest on:

1. \$385.60 for 32 days at 6%.

\$0.3856 = int. for 6 days

\$1.9280 = int. for 30 days (5.6 days)

 $.1285 = int. for 2 days (\frac{1}{3} \cdot 6 days)$

^{2.0565} or 2.06 = int. for 32 days.

- 2. \$435.00 for 115 days at 6%.
 - \$4.350 = int. for 60 days
 - 2.175 = int. for 30 days ($\frac{1}{2}$ ·60 days)
 - $1.450 = \text{int. for } 20 \text{ days } (\frac{1}{3} \cdot 60 \text{ days})$
 - $.362 = int. for \quad 5 days (\frac{1}{4} \cdot 20 days)$
 - \$8.337 = int. for 115 days.
- 3. \$520.00 for 93 days at 8%.
 - \$5.20 = int. for 60 days at 6%
 - $2.60 = \text{int. for } 30 \text{ days at } 6\% \left(\frac{1}{2} \cdot 60 \text{ days}\right)$
 - .26 = int. for 3 days at 6% ($\frac{1}{10} \cdot 30$ days)
 - \$8.06 = int. for 93 days at 6%
 - $2.69 = \text{int. for } 93 \text{ days at } 2\% \ (\frac{1}{3} \cdot 6\%)$
 - \$10.75 = int. for 93 days at 8%.
- 4. \$285.50 for 78 days at 5%.
 - \$2.855 = int. for 60 days at 6%
 - .714 = int. for 15 days at 6% ($\frac{1}{4} \cdot 60$ days)
 - .143 = int. for 3 days at 6% ($\frac{1}{5} \cdot 15$ days)
 - 3.712 = int. for 78 days at 6%.
 - .619 = int. for 78 days at 1%
 - 3.093 = int. for 78 days at 5%

5. \$275.00 from March 3, 1928 to January 2, 1929 at 7%.

9 mo. 29 days

\$ 2.75 = int. for 60 days (2 mo.) at 6%

\$11.00 = int. for 240 days (8 mo.) at 6%

1.375 = int. for 30 days (1 mo.) at 6%

.917 = int. for 20 days at 6% ($\frac{1}{3} \cdot 60$ days)

.275 = int. for 6 days at 6%

.137 = int. for 3 days at 6% ($\frac{1}{2} \cdot 6$ days)

\$13.704 = int, for 9 mo. 29 days at 6%

2.284 = int. for 9 mo. 29 days at 1%

\$15.988 = int. for 9 mo. 29 days at 7%.

Exercises

1. Find the interest at 6% on:

\$825 for 50 days, \$753.40 for 70 days. \$365.50 for 97 days, \$847.60 for 125 days.

2. Solve 1, if the rate is 7%.

3. Find the interest at 8% on:

\$425 for 38 days,

\$575 for 68 days,

\$545 for 90 days,

\$750 for 115 days,

\$800 for 100 days,

\$250 for 83 days.

Find the interest at 6% on the following:

4. \$756.50 from Feb. 20, 1928 to Sept. 15, 1928,

5. \$3756.40 from March 1, 1927 to July 10, 1928,

6. \$5250.00 from April 10, 1928 to March 5, 1929.

7. A note for \$350 was given July 7, 1927. What was the interest at 7% due Sept. 5, 1928? (Ans. \$28.45)

8. Find the interest on 4, 5, 6 at 8%.

- **65.** Compound interest. Simple interest is calculated on the original principal only, and is proportional to the time. If the interest, when due, is added to the principal, and the interest for the next period is calculated on the principal thus increased and this process is continued with each succeeding accumulation of interest, the interest is said to be compound. Interest may be computed annually, semi-annually, quarterly, or at some other regular interval. That is, interest is converted into principal at these regular intervals.
- **66.** Compound interest formulas. Let P be the principal, i the rate of interest, and S the amount to which P will accumulate in n years. The interest for one year will be Pi, and the amount at the end of the year will be P + Pi = P(1 + i). This is the principal for the second year, and the interest for the second year will be P(1 + i)i. The amount at the end of the second year will be

$$P(1+i) + P(1+i)i = P(1+i)^2$$
.

By similar reasoning we find that the amount at the end of the third year is $P(1+i)^3$, and in general the amount at the end of n years is $P(1+i)^n$. We thus have the formula

$$S = P(1+i)^n.$$
(1)

In equation (1) i is the annual rate of interest and the formula is used when the interest is converted into principal annually. If the interest were converted into principal m times per year, we would replace i in the formula by $\frac{i}{m}$ and n by mn. That is

we would find the compound amount at $\frac{i}{m}$ per cent per period for mn periods.

Example. Find the compound amount of \$100 for 15 years at 6% converted semi-annually. The amount would be \$100(1.03)³⁰.

Then in general, if interest is at rate j converted m times per year, formula (1) is replaced by

$$S = P\left(1 + \frac{j}{m}\right)^{mn}. (2)$$

Exercises

- 1. Find the amount of \$250 at 6% interest converted annually for 5 years.
 - 2. Solve example 1 if the interest is converted semi-annually.
- 3. How long will it take \$100 to double itself at 6% interest converted annually?

Solution. Here P = \$100 and S = \$200, since it is to be double the value of P. We then have, $200 = 100(1.06)^n$. Our problem now is to find n. Taking logarithms of both sides of the above equation, we have,

$$\log 200 = \log 100 + n \log (1.06),$$

and solving for n we get,

$$n = \frac{\log 200 - \log 100}{\log 1.06} = \frac{2.3010 - 2.0000}{.0253} = 11.9 \text{ years.}$$

Note. This is the time required for any principal to double itself at 6%.

- 4. How long will it require \$75 to double itself at 5% interest converted annually?
- 5. How long will it take any principal to double itself at i% converted annually?
- 6. What principal will amount to \$1000 in 6 years at 6% converted annually?
- 7. A father wishes to have \$2000 to give his son on his 21st birthday. What sum should he deposit at his birth in a savings bank paying 5% interest converted annually?

- 67. Annuities. Any series of equal payments, made at equal intervals of time, is known as an annuity. The word annuity implies yearly payments, but in a broader sense the term annuity is used to describe any series of equal payments made at equal intervals of time. Unless otherwise designated, the payments are understood to be made at the end of the interval of time and to continue for a specified number of periods. The dividends from an investment, income from rented property, and insurance premiums are some examples of an annuity.
- **68.** Amount of an annuity. The sum to which the entire number of payments accumulate is called the amount of the annuity. We now find the amount of an annuity of one dollar per annum. The symbol $s_{\overline{n}}$, is universally used to represent the amount of an annuity of 1 per annum, payable annually for n years at rate i per annum. The first payment made at the end of the first year will be at interest for n-1 years and its compound amount will be $(1+i)^{n-1}$. (See (1) Art. 66.) The second payment made at the end of the second year will accumulate to $(1+i)^{n-2}$ and the third payment made at the end of the third year will accumulate to $(1+i)^{n-3}$ and so on. The last payment will be a cash payment of 1 and will draw no interest. We then have

$$s_{\overline{n}|} = (1+i)^{n-1} + (1+i)^{n-2} + (1+i)^{n-3} + \dots + (1+i) + (1+i)^{n-2} + \dots + (1+i)^{n-2} + \dots + (1+i)^{n-1}.$$

This is a geometrical progression of n terms, having 1 for first term and (1 + i) for ratio.

The sum of this series is $\frac{(1+i)^n-1}{i}$. (See ex. 7, Art. 63.)

Hence,
$$s_{\overline{n}} = \frac{(1+i)^n - 1}{i}.$$
 (1)

If the annual payment is R and if K represents the amount,

we have,
$$K = Rs_{\overline{n}} = R \frac{(1+i)^n - 1}{i}$$
 (2)

Formulas (1) and (2) are true where the interest is converted once a year. Now, if the interest is converted m times a year, we replace (1+i) by $\left(1+\frac{j}{m}\right)^m$ and i by $\left(1+\frac{j}{m}\right)^m-1$ in (1) and (2) and get,

$$s_{\bar{n}|j} = \frac{\left(1 + \frac{j}{m}\right)^{mn} - 1}{\left(1 + \frac{j}{m}\right)^{m} - 1},\tag{3}$$

and

$$K = R \frac{\left(1 + \frac{j}{m}\right)^{m} - 1}{\left(1 + \frac{j}{m}\right)^{m} - 1} \tag{4}$$

Exercises

1. Find the amount of an annuity of \$200 per annum for 15 years at 5% interest.

Solution. From equation (2) above we have,

$$K = \$200s_{\overline{n}|} = 200 \frac{(1.05)^{15} - 1}{.05}$$

$$= 4000((1.05)^{15} - 1)$$

$$\log 1.05 = 0.02119$$

$$15 \log 1.05 = 0.31785$$

$$(1.05)^{15} = 2.0790$$

$$(1.05)^{15} - 1 = 1.0790$$

$$K = 4000 \times 1.0790 = \$4316.00.$$

and

Note. If the number of conversions is not specified in a problem, it will be understood that the interest is converted annually.

2. If in example 1 the interest is converted semi-annually, find the amount of the annuity.

Solution. From equation (4) above we have,

$$K = 200 \frac{(1.025)^{30} - 1}{(1.025)^2 - 1}$$

$$\log 1.025 = 0.01072$$

$$30 \log 1.025 = 0.32160$$

$$(1.025)^{30} = 2.0970$$

$$(1.025)^{30} - 1 = 1.0970$$

$$2 \log 1.025 = 0.02144$$

$$(1.025)^2 = 1.0506$$

$$(1.025)^2 - 1 = 0.0506$$

$$K = \frac{200 \times 1.0970}{.0506} = \$4,336.$$

and

- 3. The annual rent of a house is \$500. Find the amount of this annuity for 20 years at 5%.
- 4. A man deposits in a savings bank at the end of each year \$400. What will be the amount of his savings at the end of 16 years, if the bank pays 4% interest converted semi-annually?
- 5. What sum must be deposited in a savings bank at the end of each year to amount to \$5000 at the end of 10 years, if the bank pays 4% interest?

Solution. Here we have the amount of an annuity to find the annual deposit.

From (2) we have,
$$5000 = R \frac{(1.04)^{10} - 1}{.04}$$
.

Solving for
$$R$$
 we get, $R = \frac{.04(5000)}{(1.04)^{10} - 1}$
$$= \frac{$200}{0.4801} = $416.58.$$

- 6. What sum must be deposited in a savings bank paying 5% interest, converted semi-annually, to provide for the payment of a debt of \$5000 due in 6 years?
- 7. A man gives a mortgage on his farm for \$3000, which is to be paid in 5 years. How much money must he deposit at the end of each year in a savings bank, paying 4% interest, to care for the debt when due? The interest on the mortgage is 6%. What will be his total yearly outlay to care for this debt?
- **69.** Amount of an annuity, where the annual payment, R is payable in p equal installments. The amount of an annuity of 1 per annum, payable in p equal installments at equal intervals during the year, will be denoted by the symbol, $s\frac{(p)}{n}$. If the interest is converted yearly and i is the rate, $s\frac{(p)}{n}$ can be expressed in terms of n, i, and p as follows. At the end of the pth part of a year, $\frac{1}{p}$ is paid. This sum will remain at interest for $\left(n-\frac{1}{p}\right)$ years and will amount to

$$\frac{1}{p}(1+i)^{n-1/p}.$$

The second installment of $\frac{1}{p}$ will be at interest for $\left(n-\frac{2}{p}\right)$ years and will amount to $\frac{1}{p}(1+i)^{n-2/p}$, and so on until np installments are paid. The last installment will be paid at the

end of n years and will draw no interest. Adding all these installments beginning with the last one, we have

$$s\frac{(p)}{n} = \frac{1}{p} + \frac{1}{p}(1+i)^{1/p} + \frac{1}{p}(1+i)^{2/p} + \dots + \frac{1}{p}(1+i)^{n-2/p} + \dots + \frac{1}{p}(1+i)^{n-1/p}.$$
 (1)

This is a geometrical progression of np terms having $\frac{1}{p}$ for first term and $(1+i)^{1/p}$ as the ratio.

Hence,
$$s\frac{(p)}{n} = \frac{(1+i)^n - 1}{p[(1+i)^{1/p} - 1]}$$
 (2)

and
$$K = Rs \frac{(p)}{n} = R \frac{(1+i)^n - 1}{p[(1+i)^{1/\nu} - 1]}$$
 (3)

If the interest is converted m times a year, we substitute $\left(1 + \frac{j}{m}\right)^m$ for (1 + i) and (3) becomes

$$K = R \frac{\left(1 + \frac{j}{m}\right)^{mn} - 1}{p\left[\left(1 + \frac{j}{m}\right)^{m/p} - 1\right]}$$
 (4)

If the number of conversion periods is equal to the number of installments per year, i.e., m = p, equation (4) takes a simpler form. Then,

$$K = \frac{R\left[\left(1 + \frac{j}{p}\right)^{np} - 1\right]}{p\left[\left(1 + \frac{j}{p}\right)^{p/p} - 1\right]} = \frac{R}{p} \frac{\left(1 + \frac{j}{p}\right)^{np} - 1}{\frac{j}{p}}$$
(5)

Equation (5) is the same as equation (2) Art. 68, $\frac{R}{p}$ being the periodic payment for np periods at rate $\frac{j}{p}$ per period.

Exercises and Problems

1. Find the amount of an annuity of \$400 per year paid in four quarterly installments of \$100 for 6 years if the rate of interest is 6%.

Solution. Here R = \$400, i = .06, p = 4, n = 6, and using (3), Art. 69, we get,

$$K = \frac{400[(1.06)^6 - 1]}{4[(1.06)^{1/4} - 1]} = 100 \frac{(1.06)^6 - 1}{(1.06)^{1/4} - 1}$$

$$\log 1.06 = 0.02531$$

$$\log (1.06)^{1/4} = 0.00633$$

$$(1.06)^{1/4} = 1.01467$$

$$(1.06)^{1/4} - 1 = 0.01467$$

$$\log (1.06)^6 = 0.15186$$

$$(1.06)^6 = 1.41860$$

$$(1.06)^6 - 1 = 0.41860$$

$$K = \frac{100(0.41860)}{0.01467} = $2853.$$

Hence,

2. If in Ex. 1, the interest were converted semi-annually, what would be the amount of the annuity?

Solution. Here R = 400, p = 4, n = 6, m = 2 and j = .06. Using equation (4), Art. 69, we get,

$$K = \frac{400[(1.03)^{12} - 1]}{4[(1.03)^{1/2} - 1]} = 100 \frac{(1.03)^{12} - 1}{(1.03)^{1/2} - 1}$$

 $\log 1.03 = 0.01284$

 $\log (1.03)^{1/2} = 0.00642$

Hence,

$$(1.03)^{1/2} = 1.01488$$

$$(1.03)^{1/2} - 1 = 0.01488$$

$$\log (1.03)^{12} = 0.15408$$

$$(1.03)^{12} = 1.42587$$

$$(1.03)^{12} - 1 = 0.42587$$
Hence,
$$K = \frac{100(0.42587)}{0.01488} = $2862.$$

3. What would be the amount of the annuity defined in Ex. 1, if the interest were converted quarterly?

Solution. Here R=400, p=4, n=6, m=4, and j=.06. Since m=p, we use (5), Art. 69, and

$$K = \frac{100(1.015)^{24} - 1}{.015}$$

$$\log 1.015 = 0.00647$$

$$\log (1.015)^{24} = 0.15528$$

$$(1.015)^{24} = 1.42980$$

$$(1.015)^{24} - 1 = 0.42980$$

$$K = \frac{100(0.42980)}{015} = $2865.$$

Note. In solving Examples 1, 2, 3 above, 5 place logarithms were used. Had 7 place interest and annuity tables been used the results would have been \$2852.15, \$2859.53 and \$2863.35 respectively, which are correct to the nearest cent. But ordinarily 5 place logarithms will give results which are accurate enough. Should the student desire complete interest and annuity tables, he is referred to "Tables of Compound Interest Functions and Logarithms of Compound Interest Functions," by James W. Glover and Harry C. Carver, published by George Wahr, Ann Arbor, Michigan.

4. Find the amount of an annuity of \$400 per year, payable in two semi-annual installments of \$200 for 8 years, if the rate of interest is 4% converted quarterly.

- 5. A man pays into a Building and Loan Association \$25 at the end of each month for 10 years. If the association pays 6% interest and computes its interest at the end of each six months, what will he have to his credit at the end of the 10 years?
- 6. In purchasing a house priced at \$6000, a man pays \$3000 down and gives a five-year mortgage for the balance. In order to meet the mortgage when due he deposits in a 5% savings bank at the end of each month a portion of his monthly salary. Find the monthly deposit.

(Hint: Use equation (3), Art. 69 and solve for $\frac{R}{12}$ as R was solved for in Ex. 5, Art. 68.)

70. Present value. We may need to find the value of a sum of money at some time before it is due. By the present value of a sum S, due in n years, we mean the principal that will at a given rate amount to S in n years. This problem is solved by equation (1) Art 66. Solving this equation for P, we get

$$P = \frac{S}{(1+i)^n} = Sv^n$$
, where $v = \frac{1}{1+i}$. (1)

Example. Find the present value of a note of \$200 due in 5 years if money is worth 5% interest.

Solution. Here we have,

$$P = \frac{\$200}{(1.05)^5} = \frac{\$200}{1.2763} = \$156.70.$$

71. Present value of an annuity. By the present value of an annuity we mean the sum of the present values of all the payments. The present value of an annuity of 1 per annum is represented by the symbol $a_{\overline{n}|}$. We now find the present value of an annuity of 1 per annum for n years at rate i per annum. The present value of the first payment made at the end of the first year will be

$$\frac{1}{1+i}=(1+i)^{-1}.$$

The present value of the second payment made at the end of the second year will be $(1+i)^{-2}$ and the third payment made at the end of the third year will have for its present value $(1+i)^{-3}$ and so on. The last payment made at the end of n years will have $(1+i)^{-n}$ for its present value. We have then,

$$a_{\overline{n}|} = (1+i)^{-1} + (1+i)^{-2} + (1+i)^{-3} + \dots + (1+i)^{-n}.$$
 (1)

This is a geometrical progression of n terms, having $(1+i)^{-1}$ for first term and $(1+i)^{-1}$ for ratio. The sum of this series is

$$a_{\overline{n}|} = \frac{(1+i)^{-1}[(1+i)^{-n} - 1]}{(1+i)^{-1} - 1}$$

$$= \frac{(1+i)^{-n} - 1}{1 - (1+i)}$$

$$= \frac{(1+i)^{-n} - 1}{-i} = \frac{1 - (1+i)^{-n}}{i}.$$
 (2)

If the annual payment is R and A represents the present value, we have,

$$A = Ra_{\overline{n}|} = R \frac{1 - (1 + i)^{-n}}{i}$$
 (3)

If the interest is converted m times a year, we substitute $\left(1+\frac{j}{m}\right)^m$ for (1+i) and $\left(1+\frac{j}{m}\right)^m-1$ for i in (3) and get,

$$A = R \frac{1 - \left(1 + \frac{j}{m}\right)^{-mn}}{\left(1 + \frac{j}{m}\right)^{m} - 1}$$
 (4)

72. Present value of an annuity, where the annual payment R is payable in p equal installments. The present value of an

annuity of 1 per annum payable in p equal installments will be denoted by $a\frac{(p)}{n}$. If the interest is converted yearly and i is the rate, $a\frac{(p)}{n}$ can be expressed in terms of n, i, and p as follows. The first payment will be made at the end of the pth part of the year and its present value will be $\frac{1}{p}(1+i)^{-1/p}$. Similarly, the present value of the second payment will be $\frac{1}{p}(1+i)^{-2/p}$ and so on. The present value of the last payment will be $\frac{1}{p}(1+i)^{-n}$. Adding the present values of all these payments we get,

$$a\frac{(p)}{n!} = \frac{1}{p}(1+i)^{-1/p} + \frac{1}{p}(1+i)^{-2/p} + \dots + \frac{1}{p}(1+i)^{-n}. \quad (1)$$

This is a geometrical progression of np terms having $\frac{1}{p}(1+i)^{-1/p}$ for first term and $(1+i)^{-1/p}$ for ratio.

Hence,
$$a\frac{(p)}{n} = \frac{1 - (1+i)^{-n}}{p[(1+i)^{1/p} - 1]}.$$
 (2)

And $A = R \frac{1 - (1+i)^{-n}}{p[(1+i)^{1/p} - 1]}$ (3)

If the interest is converted m times per year, (3) becomes

$$A = R \frac{1 - \left(1 + \frac{j}{m}\right)^{-mn}}{p\left[\left(1 + \frac{j}{m}\right)^{m/p} - 1\right]}$$
 (4)

When m = p, (see (5) Art. 69), (4) takes the form,

$$A = R \frac{1 - \left(1 + \frac{j}{p}\right)^{-np}}{p\left[\left(1 + \frac{j}{p}\right)^{p/p} - 1\right]} = \frac{R}{p} \frac{1 - \left(1 + \frac{j}{p}\right)^{-np}}{\frac{j}{p}}$$
(5)

which is similar to (3) Art. 71, $\frac{R}{p}$ being the periodic payment for np periods at rate $\frac{j}{p}$ per period.

Exercises and Problems

1. What is the present value of an annuity of \$200, payable at the end of each year, for 12 years, if money is worth 6%?

Solution.
$$A = 200 \frac{1 - (1.06)^{-12}}{.06}$$
.
$$\log 1.06 = 0.02531$$

$$\log (1.06)^{-12} = - (0.30372) = 9.69628 - 10$$

$$(1.06)^{-12} = 0.49691$$

$$1 - (1.06)^{-12} = 0.50309$$

$$A = \frac{200(0.50309)}{.06} = \$1676.97.$$

- 2. Find the cost of an annuity of \$500, to run 20 years and payable at the end of the year if money is worth 6%, converted semi-annually.
- 3. A man purchased a house, paying \$5000 down and \$500 at the end of each year for 8 years. What would be the equivalent price if he paid all in cash at the time of purchase, money being worth 8%?
- 4. Find the cost of an annuity of \$100 payable at the end of each month and to run for 10 years, if money is worth 4%. (Hint: Use equation (3), Art. 72.)

5. A house is purchased for \$10,000 and it is arranged that \$5000 cash be paid and the balance in 10 equal annual installments, including interest at 6%. Find the annual payment.

Solution. \$10,000 - \$5000 = \$5000, balance to be paid in 10 equal annual payments including interest. Here we have the present value of an annuity and are required to find the annual payment. Substituting in equation (3), Art. 71, we get,

$$5000 = R \frac{1 - (1.06)^{-10}}{.06},$$

and

$$R = \frac{.06(5000)}{1 - (1.06)^{-10}} = \frac{.06(5000)}{0.44160} = \$679.34.$$

- 6. A piece of property is offered for sale for \$500 cash and \$1000, at the end of each year for 5 years, or for \$5000 cash. Which is the better plan for the buyer if money is worth 5%?
- 7. A man wishes to provide an income for old age. He assumes that at the age of 25 years he will have 35 years of productive activity ahead of him, and that he can save \$300 per year during that time. This accumulation at 5% compound interest at age of 60 will purchase what annual payments for 20 years, if money is worth 5%?

Ans. \$2174.40.

73. Sinking funds. When an obligation becomes due at some future date, it is usually desirable to provide for the payments by accumulating a fund by periodic contributions, together with interest earnings. Such an accumulated fund is called a sinking fund.

Example. A debt of \$8000, bearing 8% interest is due in 4 years. A sinking fund is to be accumulated at 6%. What sum must be deposited in the sinking fund at the end of each year to care for the principal when due? Ans. \$1828.73.

The amount in the sinking fund at any particular time may be shown by the following schedule known as an accumulation schedule:

ACCUMULATION SCHEDULE

Years	Annual Deposit	Interest on Fund	Total Annual Increment	Value of Fund at End of Each Year
1	1828.73			1828.73
2	1828.73	109 72	1938.45	3767.18
3	1828 73	226.03	2054 76	5821.94
4	1828 73	349 32	2178 05	7999.99

We notice that at the end of the fourth year the value of the fund is \$7999.99 or one cent less than the amount of the debt. This would have been avoided had we used the nearest mill instead of the nearest cent in our computations.

DEPRECIATION SCHEDULE

Age in Years	Book Value at End of Year	Annual Payment to Sinking Fund to Cover Depreciation	Interest on Depreciation Allowance	Total in Sinking Fund
0	235 00			
1	211.44	23 56	0.00	23.56
2	186 70	23.56	1.18	48 30
3	160.72	23 56	2.42	74.28
4	133 45	23 56	3 71	101.55
5	104.81	23.56	5.08	130.19
6	74.74	23.56	6 51	160.26
7	43.17	23 56	8 01	191.83
8	10.02	23.56	9.59	224.98
				1

Example. A farmer pays \$235 for a binder. The best estimates show that it will have a life of 8 years and a scrap value of \$10. He wishes to create a sinking fund to provide

for its depreciation. Assuming money worth 5%, what is the annual depreciation charge? Make a schedule showing the book value of the machine at the end of each year and the total amount in the sinking fund at any time.

Solution. The annual depreciation charge will equal the annual deposit required to accumulate in 8 years at 5% to \$225 (\$235 - \$10).

Using (2) Art. 68, we find the annual charge to be \$23.56.

We notice that the book value of the machine at the end of any year equals the original cost less the total amount in the sinking fund at that time.

74. Amortization. Instead of leaving the entire principal of a debt standing until the end to be cancelled by a sinking fund, we may consider any payment over what is needed to pay interest on the principal to be applied at once toward liquidation of the debt. As the debt is being paid off, a less and less amount goes towards the payment of interest, so that with a uniform payment per year, a greater amount goes towards the payment of principal. This method of extinguishing a debt is called the method of amortization of principal.

75. Amortization schedules.

Consider a debt of \$2000 bearing 6% interest. Suppose that it is desired to repay this in 8 equal annual installments, including interest.

Substituting in equation (3) Art 71, we get,

$$2000 = R \frac{1 - (1.06)^{-8}}{.06},$$

$$R = \frac{.06(2000)}{1 - (1.06)^{-8}} = \$322.07.$$

The interest for the first year will be \$120; hence \$202.07 of first payment would be used for the reduction of principal,

leaving \$1797.93 due on principal at the beginning of the second year. The interest on this amount is \$107.88; hence, the principal is reduced by \$214.19, leaving \$1583.74 due on principal at the beginning of the third year, and so on. This process may be continued by means of the following schedule known as an amortization schedule:

Year	Principal at Beginning of Year	Interest at 6%	Principal Repaid
1	2000 00	120.00	202.07
2	1797 93	107 88	214.19
3	1583.74	95 02	227.05
4	1356 69	81 40	240.67
5	1116.02	66 96	255.11
6	860 91	51 65	270.42
7	590 49	35.43	286 64
8	303 85	18.23	303.84
	9609 63	576.57	1999.99

Such a schedule gives us the amount remaining due on the principal at the beginning of any year during the amortization period. The principal at the beginning of the last year should equal the last principal repaid and the sum of the principals repaid should equal the original principal. You will notice that there is a discrepancy in the above example of only one cent. This would have been avoided had we used the nearest mill instead of the nearest cent in our computations. As a further check we notice that the interest on the sum of all the principals outstanding is equal to the sum of all the interest paid. In the above example we see that the sum of the principals outstanding is \$9609.63 and that the interest on this sum at 6% is \$576.57.

The Federal Farm Loan Act provides for the lending of money to farmers at a reasonable rate of interest, with the privilege of amortizing the principal by equal annual payments over a long period of time. The maximum loan on a farm is for 40% of the appraised value. The rate is 5% and the usual time allowed is 30 years.

Example. A farmer buys a farm for \$10,000. He has \$6000 to pay down and secures a Federal farm loan for the balance to be amortized in 30 years at 5%.

Using equation (3), Art. 71 we find the annual payment to be \$260.206 or \$260.21.

The following table shows the progress of this loan for the first five years:

Year	Principal at Beginning of Year	Interest at 5%	Principal Repaid
1	4000.00	200 00	60 21
2	3939 79	196.99	63 22
3	3876 57	193.83	66.38
4	3810 19	190.51	69 70
5	3740.49	187.02	73.19

76. Interest and annuity tables. In the note of Art. 69 we referred to certain interest and annuity tables. Tables giving the values of $(1+i)^n$ $(1+i)^{-n}$, $\frac{(1+i)^n-1}{i}$, $\frac{1-(1+i)^{-n}}{i}$, and other interest functions for all integral

values of n up to 200 and for different values of i have been computed accurately to seven decimal places. Time and space do not permit of the inclusion of such complete tables in this text. However, it seems advisable to spend a little time here

in pointing out the use of such tables and their value as time saving devices. For this reason brief tables for $(1+i)^n$, $(1+i)^{-n}$, $\frac{(1+i)^n-1}{i}$ and $\frac{1-(1+i)^{-n}}{i}$ have been included.

In solving Ex. (1), Art. 68, we would have,

$$K = 200s_{15}$$
 at 5%.

Here, n = 15, i = .05 and the tabular value of $s_{\overline{15}}$ at 5% is 21.5785636.

Hence, $K = 200 \times 21.5785636 = 4315.71 .

It would be interesting to discuss the methods used in constructing such tables but time and space do not permit of this discussion.

The student may now solve by tables, exercises 1, 2, 6, 7, Art. 66; exercises 1, 3, 4, 5, 6, 7, Art. 68; exercises 1, 2, 5, 6, 7, Art. 72.

Exercises and Problems

- 1. Find the annual payment that will be necessary to amortize in 10 years a debt of \$2000, bearing interest at 8%. Construct a schedule.
- 2. The Federal Farm Loan Bank loaned a farmer \$5000 at 5% interest, convertible semi-annually. The agreement was that the farmer should repay principal and interest in equal semi-annual installments covering a period of 15 years. Find the amount of each semi-annual payment.
- 3. At the age of 25 a young man resolves that, when he is 60 years of age, he will have \$40,000 saved. If he invests his savings semi-annually at 6% interest, convertible semi-annually, what amount must he save semi-annually? If at age 60 he desired to have it paid back to him as an annual annuity payable at the end of each year, what would be his annual income over a period of 25 years if money at that time were worth 5% interest?
- 4. The beneficiary of a policy of insurance is offered a cash payment of \$20,000 or an annuity of \$1500 for 20 years certain, the first pay-

ment to be made one year hence. Allowing interest at 4% per annum, which is the better option, and how much better per annum?

- 5. A house is purchased for \$15,000 and it is arranged that \$5000 cash be paid, and the balance in 10 equal annual installments, including interest at 6%. Find the annual payment and construct a schedule.
 - 6. Complete the farm loan schedule in Art. 75.
- 7. What would have been the equal payment if made semi-annually with interest at 5% semi-annually?
- 8. A tractor costs \$1200. It is estimated that with proper care it will have a life of 8 years with a scrap value of \$50 at the end of this time. Construct a depreciation schedule on a 4% interest basis.

CHAPTER XI

TRIGONOMETRIC FUNCTIONS

77. Meaning of trigonometry. The word trigonometry comes from two Greek words meaning triangle and measurement. This would suggest that the subject deals with the solution of the triangle. This is one of the important applications of trigonometry, but the subject is much broader than this for it is the basis of many important topics.

The development of trigonometry depends entirely upon six fundamental definitions which are called the trigonometric functions. These are sine, cosine, tangent, cotangent, secant and cosecant and will be defined in Art. 78.

Any triangle is composed of six parts, three sides and three angles. If any three parts are given, provided at least one of them is a side, geometry enables us to construct the triangle, and trigonometry enables us to compute the unknown parts from the numerical values of the

78. Trigonometric definitions. Consider the right-angled triangle ABC (Fig. 27). A and B are acute angles, C is the right angle, and a, b, c, are the sides opposite the respective angles. The six different ratios and

sides opposite the respective angles. The six different ratios among the three sides are $\frac{a}{c}$, $\frac{b}{c}$, $\frac{a}{b}$, $\frac{b}{a}$, $\frac{c}{b}$, and $\frac{c}{a}$, and these are defined as the six trigonometric functions of the angle A. Thus we have,

$$\frac{a}{c} = \frac{\text{side opposite } A}{\text{hypotenuse}} = \text{sine of } A, \text{ written sin } A.$$

$$\frac{b}{c} = \frac{\text{side adjacent } A}{\text{hypotenuse}} = \text{cosine of } A, \text{ written cos } A.$$

$$\frac{a}{b} = \frac{\text{side opposite } A}{\text{side adjacent } A} = \text{tangent of } A, \text{ written tan } A.$$

$$\frac{b}{a} = \frac{\text{side adjacent } A}{\text{side opposite } A} = \text{cotangent of } A, \text{ written cot } A.$$

$$\frac{c}{b} = \frac{\text{hypotenuse}}{\text{side adjacent } A} = \text{secant of } A, \text{ written sec } A.$$

$$\frac{c}{a} = \frac{\text{hypotenuse}}{\text{side opposite } A} = \text{cosecant of } A, \text{ written csc } A.$$

Since the trigonometric functions of the angle A are ratios of the sides of a right triangle, it is evident that they are constant for any fixed angle and do not change value for different lengths of the sides of the triangle. (This follows from the definition of similar triangles.)

Applying the definitions to angle B, we may write

$$\sin B = \frac{b}{c} = \cos A,$$

$$\cos B = \frac{a}{c} = \sin A,$$

$$\tan B = \frac{b}{a} = \cot A,$$

$$\cot B = \frac{a}{b} = \tan A,$$

$$\sec B = \frac{c}{a} = \csc A,$$

$$\csc B = \frac{c}{b} = \sec A.$$
(2)

79. Co-functions and complementary angles. The cosine, cotangent and cosecant of an angle are co-functions of the sine. tangent and secant, respectively. Since in Fig. 27, A and B are complementary angles, $A + B = 90^{\circ}$, it follows from (2) that any function of an angle equals the co-function of the complement of that angle. For example,

$$\sin 25^{\circ} = \cos 65^{\circ}$$
, $\tan 29^{\circ} = \cot 61^{\circ}$.

Exercises

Fill the blanks in the following with the proper co-function:

1.
$$\sin 75^{\circ} = ?$$

2.
$$\tan 18^{\circ} 20' = ?$$

3.
$$\cot 75^{\circ} 18' = ?$$

4. sec
$$19^{\circ} 37' = ?$$

- 5. $\csc 47^{\circ} 29' = ?$
- 6. $\sec (90^{\circ} A) = ?$
- 7. $\tan 38^{\circ} 15' = ?$
- 8. $\cos 72^{\circ} 18' = ?$
- 9. Construct an acute angle A such that $\tan A = \frac{3}{4}$ and write the other trigonometric functions of the angle.

Solution. From the definition of the tangent, we know that A is an angle of a triangle having 3 for opposite side and 4 for adjacent side. hypotenuse then is 5 (8, Art. 29). The functions are.

 $\sin A = \frac{3}{5}, \qquad \cot A = \frac{4}{3},$ $\cos A = \frac{4}{5}, \qquad \sec A = \frac{5}{4}.$ $\tan A = \frac{3}{4}. \qquad \csc A = \frac{5}{4}.$

Construct the angle A in the following and write the other functions:

Fig. 28.

10.
$$\sin A = \frac{8}{17}$$
.

11.
$$\cos A = \frac{2}{3}$$
.

12.
$$\cot A = \frac{5}{4}$$
.

13.
$$\sec A = 3$$
.

14.
$$\csc A = 2$$
.

15.
$$\tan A = \frac{4}{3}$$
.

If in Fig. 27,

16.
$$\sin A = \frac{1}{5}$$
,

$$c = 15$$
, find a and b.

17.
$$\tan A = \frac{4}{3}$$
,

$$b = 24$$
, find a and c.

18.
$$\cos A = 0.325$$
, $b = 10$, find c ,

80. Relations among the functions. From Fig. 27 we have,

$$a^2 + b^2 = c^2$$
 (8, Art. 29)

$$\frac{a^2}{c^2} + \frac{b^2}{c^2} = 1$$
 (dividing (3) by c^2) (4)

But, $\sin A = \frac{a}{c}$, $\cos A = \frac{b}{c}$

Hence,
$$\sin^2 A^* + \cos^2 A = 1.$$
 (A)

$$\frac{a^2}{b^2} + 1 = \frac{c^2}{b^2} \text{ (dividing (3) by } b^2)$$
 (5)

But, $\tan A = \frac{a}{b}$ and $\sec A = \frac{c}{b}$.

Hence,
$$\tan^2 A + 1 = \sec^2 A, \qquad (B)$$

It is left for the student to show that,

$$\cot^2 A + 1 = \csc^2 A. \tag{C}$$

$$\tan A = \frac{1}{\cot A} = \frac{\sin A}{\cos A}.$$
 (D)

$$\cot A = \frac{1}{\tan A} = \frac{\cos A}{\sin A}.$$
 (E)

$$\sec A = \frac{1}{\cos A}.$$
 (F)

$$\operatorname{csc} A = \frac{1}{\sin A}.$$
 (G)

The above relations are important and should be learned. They are known as fundamental identities.

^{*} $\sin^2 A$, means $(\sin A)^2$.

Exercises

Making use of the fundamental identities verify the following identities:

1.
$$\frac{\tan A - 1}{\tan A + 1} = \frac{1 - \cot A}{1 + \cot A}$$

Verification: An identity may be verified by reducing the left-hand member to the form of the right, the right-hand member to the form of the left or both members to a common form. Thus,

$$\frac{\tan A - 1}{\tan A + 1} = \frac{\frac{1}{\cot A} - 1}{\frac{1}{\cot A} + 1}, \text{ by } (D)$$

$$= \frac{\frac{1 - \cot A}{\cot A}}{\frac{\cot A}{\cot A}}$$

$$= \frac{1 - \cot A}{1 + \cot A}.$$

an $A + \cot A = \sec A \csc A$.

3.
$$\tan A \cos A = \sin A$$
.

$$4. \frac{\sin A}{\csc A} + \frac{\cos A}{\sec A} = 1.$$

$$\mathbf{5.} \cot A + \frac{\sin A}{1 + \cos A} = \csc A.$$

6.
$$\frac{1+\cot^2 A}{1+\tan^2 A}=\cot^2 A$$
.

7.
$$\sin A \sec A \cot A = 1$$
.

8.
$$\sec A - \cos A = \sin A \tan A$$
.

81. Functions of 30°, 45°, 60°. From Fig. 29, we have,

$$\sin 45^{\circ} = \frac{1}{\sqrt{2}} = \frac{1}{2}\sqrt{2},$$

$$\cos 45^{\circ} = \frac{1}{\sqrt{2}} = \frac{1}{2}\sqrt{2},$$

$$\tan 45^{\circ} = 1, \quad \csc 45^{\circ} = \frac{\sqrt{2}}{1} = \sqrt{2},$$

$$\cot 45^{\circ} = 1, \quad \sec 45^{\circ} = \frac{\sqrt{2}}{1} = \sqrt{2}.$$
Fig. 29.

From Fig. 30, we have,

$$\sin 30^{\circ} = \frac{1}{2} = \cos 60^{\circ},$$
 $\cos 30^{\circ} = \frac{\sqrt{3}}{2} = \sin 60^{\circ},$
 $\tan 30^{\circ} = \frac{1}{\sqrt{3}} = \frac{1}{3}\sqrt{3} = \cot 60^{\circ},$
 $\cot 30^{\circ} = \frac{\sqrt{3}}{1} = \tan 60^{\circ},$
 $\sec 30^{\circ} = \frac{2}{\sqrt{3}} = \frac{2}{3}\sqrt{3} = \csc 60^{\circ},$
 $\csc 30^{\circ} = 2 = \sec 60^{\circ}.$

Fig. 30.

Exercises

Making use of the results of Art. 81, find the numerical values of the following:

- 1. $7 \cos 60^{\circ} 2 \sin 30^{\circ} + 3 \cot 45^{\circ}$. Ans. $5\frac{1}{2}$. 2. $6 \sin 60^{\circ} (\sin 30^{\circ} \tan 60^{\circ} - \cot 60^{\circ})$. Ans. $\frac{3}{2}$. 3. $\left(\frac{\sin^2 60^{\circ} - \cos^2 60^{\circ}}{\tan^2 30^{\circ}}\right) \left(\frac{\cot^2 45^{\circ} + \tan^2 45^{\circ}}{\cot^2 30^{\circ}}\right)$. Ans. 1.
- **4.** $\tan 45^{\circ} \cot 30^{\circ} + \sec 30^{\circ} \cos 45^{\circ}$. Ans $\sqrt{3} + \frac{1}{3}\sqrt{6}$.

82. Line values of the functions. Fig. 31 is a circle having unity for its radius. DB and EC are perpendicular to AC and FG is perpendicular to AF. Then we may write,

Fig. 31.

$$\sin A = \frac{BD}{AD} = BD.$$

since, AD is the unit.

$$\cos A = \frac{AB}{AD} = AB.$$

$$\tan A = \frac{CE}{AC} = CE.$$

$$\sec A = \frac{AE}{AC} = AE.$$

$$\cot A = \cot G = \frac{FG}{AE} = FG.$$

$$\csc A = \csc G = \frac{AG}{AF} = AG.$$

83. Variations of the functions. As A increases from 0° to 90° , it is easily seen from Fig. 31 that

sin A varies from 0 to 1, $\cos A$ varies from 1 to 0, $\tan A$ varies from 0 to ∞ , $\cot A$ varies from ∞ to 0, $\sec A$ varies from 1 to ∞ , $\csc A$ varies from ∞ * to 1.

84. Natural trigonometric functions and logarithms of the trigonometric functions. In Table III in the back of this text, the values of the sine, cosine, tangent and cotangent are given correct to five decimal places, and in Table II, the logarithms of these functions are given. The method of using these tables differs very little from that employed in the use of Table I. A few exercises will illustrate the process.

Exercises

- 1. Find the value of sin 14° 35′. This value as found in the table is 0.25179.
- 2. Find the value of tan 35° 47′. This value is not given in the tables, but we find the values of tan 35° 45′ and tan 35° 50′ to be 0.71990 and 0.72211, respectively. The difference between these two values is 0.00221. Since 35° 47′ is two-fifths of the way from 35° 45′ to 35° 50′, we add to 0.71990

 $\frac{2}{5} \cdot 0.00211 = 0.00084.$

Hence, $\tan 35^{\circ} 47' = 0.72074$.

* ∞ is the symbol for infinity. It is evident that as A increases CE increases and when A becomes 90°, CE becomes larger than any finite value. We say then that $\tan 90^\circ = \infty$.

3. Find the value of cot 66° 38′. When the angle is greater than 45° we must read up the page, reading the function at the bottom of the page and the angle on the right. We find the values of cot 66° 35′ and cot 66° 40′ to be 0.43308 and 0.43136, respectively. The difference between these two values is 0.00172. Since 66° 38′ is three-fifths of the way from 66° 35′ to 66° 40′, we subtract from 0.43308

$$\frac{3}{5} \cdot 0.00172 = 0.00103$$
.

Hence,

$$\cot 66^{\circ} 38' = 0.43205.$$

4. Find the angle whose tangent is 0.41856. The angle is not found in these tables, but it lies between the angles 22° 40′ and 22° 45′, the values of whose tangents are 0.41763 and 0.41933, respectively. Now, 0.41856 is $\frac{9.3}{170}$ of the way from 0.41763 to 0.41933. Thus the angle, whose tangent is 0.41856, is

$$22^{\circ} 40' + \frac{93}{170} \cdot 5' = 22^{\circ} 43'.$$

Hence,

$$\tan 22^{\circ} 43' = 0.41856.$$

5. Find $\log \sin 43^\circ 29' 45''$. We find $\log \sin 43^\circ 29'$ and $\log \sin 43^\circ 30'$ to be 9.83768-10 and 9.83781-10, respectively. The difference between these two values is 0.00013. Since $43^\circ 29' 45''$ is three fourths of the way from $43^\circ 29'$ to $43^\circ 30'$, we add to 9.83768-10

$$\frac{3}{4} \cdot 0.00013 = 0.00010.$$

Hence.

$$\log \sin 43^{\circ} 29' 45'' = 9.83778 - 10.$$

6. Find the angle the logarithm of whose cosine is 9.90504 - 10. The angle lies between $36^{\circ} 31'$ and $36^{\circ} 32'$, the logarithms of whose cosines are 9.90509 - 10 and 9.90499 - 10, respectively. Now, 9.90504 - 10 is $\frac{5}{10}$ of the way from 9.90509 - 10 to 9.90499 - 10.

Thus the angle, the logarithm of whose cosine is 9.90504 - 10, is

$$36^{\circ} 31' + \frac{5}{10} \cdot 60'' = 36^{\circ} 31' 30''.$$

Hence,

$$\log \cos 36^{\circ} 31' 30'' = 9.90504 - 10.$$

7. Find the following:

- (a) $\tan 38^{\circ} 27'$,
- (b) $\sin 75^{\circ} 18'$,
- (c) $\cot 5^{\circ} 29'$.
- Ans. (a) 0.79421, (b) 0.96727, (c) 10.417.

8. Find the angle A when:

(a)
$$\sin A = 0.37820$$
, (b) $\cot A = 2.3424$.
Ans. (a) $A = 22^{\circ} 13'$, (b) $A = 23^{\circ} 7'$.

9. Find the following:

(a)
$$\log \cos 41^{\circ} 28'$$
, (b) $\log \tan 76^{\circ} 18' 40''$.
Ans. (a) $9.87468 - 10$, (b) 0.61333 .

10. Find the angle A when:

(a)
$$\log \sin A = 9.32860 - 10$$
, (b) $\log \cot A = 9.36200 - 10$.
Ans. (a) $A = 12^{\circ} 18' 17''$, (b) $A = 77^{\circ} 2' 22''$.

CHAPTER XII

SOLUTION OF THE RIGHT ANGLE TRIANGLE

85. Formulas for the solution of a right triangle. If any two parts of a right triangle (at least one side) are known the following formulas are employed to obtain the other parts:

$$a^{2} + b^{2} = c^{2}$$
, (1)
 $A + B = 90^{\circ}$, (2)
 $\sin A = \frac{a}{c} = \cos B$, (3)
 $\cos A = \frac{b}{c} = \sin B$, (4)
 $\tan A = \frac{a}{b} = \cot B$. (5)

86. Applying the Formulas. Before attempting to solve any problem, a careful drawing should be made of the required triangle (enough parts will be given to completely construct it). The proper formulas should be chosen and an outline for the solution be made before making use of the tables. This will usually save much time. An exercise will illustrate the plan.

Illustrated Problem I. In a right triangle $A = 37^{\circ} 50'$, b = 15.6. Find a and c.

Solution. Approximate construction.

(a) By trigonometric functions:

(b) By logarithms:

$$a = b \tan A,$$
 $c = \frac{b}{\cos A},$ $B = 90 - A.$

DATA AND RESULTS		
A b	37° 50′ 15.6	
B a c	52° 10′ 12.115 19.751	

Logs		
9.89020 - 10 1 19312		
1.08332		
11.19312-10 9.89752-10		
1.29560		

Illustrated Problem II. In a right triangle a=25.6, c=31.3. Find A, B and b.

$$\sin A = \frac{a}{c}, \qquad \cos A = \frac{b}{c}.$$

$$\sin A = \frac{25.6}{31.3}, \qquad b = c \cos A.$$

$$\sin A = 0.81789, \qquad b = 31.3 \times 0.57548. \qquad A$$

$$A = 54^{\circ} 52', \qquad b = 18.012,$$

$$B = 90^{\circ} - A = 35^{\circ} 8'.$$

Exercises

Solve the first five exercises making use of the trigonometric functions. Use logarithms on the next three.

1. Given, $a = 17.5$,	$A = 47^{\circ} 10';$	Find b , c , and B .
2. Given, $a = 13.7$,	b = 35.3;	Find A , B , and c .
3. Given, $c = 340$,	$B = 29^{\circ} 30';$	Find A , b , and a .
4. Given, $b = 275$,	$A = 52^{\circ} 25';$	Find a , B , and c .
5. Given, $a = 37.5$,	b=122;	Find A , B , and c .
6. Given, $a = 25.62$,	$A = 33^{\circ} 20';$	Find B , b , and c .
7. Given, $c = 67.7$,	$A = 23^{\circ} 30';$	Find a , b , and B .
8. Given, $a = 32.56$,	c=42.82;	Find A , B , and b .

- 9. In measuring the width of a river, a line AB is measured 500 feet along one bank. A perpendicular to AB at A is erected which locates a point C upon the opposite bank, and the angle ABC is found to be 38° 10′. Find the width of the stream. Ans. 393 feet.
- 10. Find the height of a tree which casts a horizontal shadow of 75.5 feet when the sun's angle of elevation is 57° 50'. Ans. 120 feet.

NOTE. The angle which the line of sight to an object makes with a horizontal line in the same vertical plane is called an angle of elevation when the object is above the eye of the observer and an angle of depression when the object is below the eye of the observer.

Fig. 35.

- 11. A building 30 feet wide and 50 feet long has a gable roof with a pitch (angle of elevation) of 35°. The rafters project 16 inches beyond the walls and the roof projects 16 inches beyond the ends. Find the length of the rafters and the number of squares of roofing required. (A square is 100 sq. ft.)
- 12. A line segment AB, has an angle of elevation of θ .* Find its horizontal and vertical projections.

Solution. The horizontal and vertical projections of AB are gotten by dropping the perpendiculars AC, BD, and AE, BF to the horizontal

and vertical lines respectively. CD and EF are the required projections. We see then that the horizontal and vertical projections of a line segment are equal to the base and altitude of a right triangle of which the line segment is the hypotenuse. Hence,

$$CD = AG = AB \cos \theta$$
, and

$$EF = GB = AB \sin \theta$$
.

- 13. Find the projection of a line 560 feet long running N. 35° 20′ E. upon a line running East and West.
- * θ is the Greek letter theta. Some of the other Greek letters that we shall use to denote angles are α , alpha; β , beta; γ , gamma; ϕ , phi.

- 14. A force of 250 lbs. making an angle of 36° 10′ with the horizontal acts upon a heavy body. Find the forces which tend to move the body horizontally and vertically. (These horizontal and vertical forces are called the horizontal and vertical components.)
- 15. Horizontal and vertical forces of 150 lbs. and 80 lbs., respectively, act upon a body. What is the resultant of these forces and what angle does the line of this resultant force make with the horizontal?
- 16. A flag pole 75 ft. high casts a shadow 122 ft. long. What is the angle of elevation of the sun at that time?
- 17. A telephone post is anchored to a stone buried in the ground by a stay wire which makes an angle of 63° with the horizontal. The tension in the wire is 500 lbs. Find the horizontal and vertical pull on the stone.
- 18. From a point A in a level plain the angle of elevation of the top of a hill is 38°. From a point B, 750 ft. closer to the hill the angle of elevation is 70°. How high is the top of the hill above the plain?

Ans. 818.9 ft.

CHAPTER XIII

TRIGONOMETRIC FUNCTIONS OF ANY ANGLE SOLUTION OF THE OBLIQUE TRIANGLE

87. Trigonometric definitions. In Art. 78 the trigonometric functions for an acute angle were given. We shall now extend these definitions to include any angle. Coordinate axes (Art. 30, Fig. 11) will be employed in the location of the angle. Starting with the positive extremity of the X-axis and going in a counter-clockwise direction the coordinate axes divide the plane into four quadrants numbered I, II, III, IV (Fig. 37).

A positive angle is described when a radius OP is rotated about O, counter clockwise, from the initial position OX into a

terminal position OP. Denoting this angle by θ , the coordinates of P by (x, y), and OP by r we have from Fig. 34 the following definitions:

$$-x \sin \theta = \frac{y}{r}, \quad \csc \theta = \frac{r}{y},$$

$$\cos \theta = \frac{x}{r}, \quad \sec \theta = \frac{r}{x},$$

$$\tan \theta = \frac{y}{x}, \quad \cot \theta = \frac{x}{y},$$

These definitions hold for an angle whose terminal side lies in any one of the four quadrants.

88. Laws of signs. The algebraic signs of the trigonometric functions for angles terminating in the respective quadrants are determined by the signs of x and y for that quadrant. The student may show that these signs are as indicated by the following diagram:

Quadrant	sin	cos	tan	cot	sec	csc
I	+	+	+	+	+	+
II	+	_	_	_	_	+
III	_	_	+	+	_	_
IV	_	+	_	_	+	_

89. Functions of negative angles. A negative angle is described when a radius, OP is rotated about O, clockwise, from the initial position OX.

In Fig. 38 angle AOP_2 is equal to $-\theta$, angle AOP_1 is equal to θ .

$$r_2 = r_1, \quad x_2 = x_1, \quad y_2 = -y_1.$$

We may write,

$$\sin (-\theta) = \frac{y_2}{r_2} = \frac{-y_1}{r_1} = -\sin \theta,$$

$$\cos (-\theta) = \frac{x_2}{r_2} = \frac{x_1}{r_1} = \cos \theta,$$

$$\tan (-\theta) = \frac{y_2}{x_2} = \frac{-y_1}{x_1} = -\tan \theta,$$

$$\cot (-\theta) = \frac{x_2}{y_2} = \frac{x_1}{-y_1} = -\cot \theta.$$
(1)

F1G. 36.

The above relations hold for angles whose terminal sides lie in any one of the four quadrants.

90. Functions of $180^{\circ} - \theta$. Supplementary angles. In Fig. 39 triangle OA_2P_2 equals triangle OA_1P_1 , and $x_2 = -x_1$, $y_2 = y_1$, $r_2 = r_1$. Hence,

$$\sin (180 - \theta) = \frac{y_2}{r_2} = \frac{y_1}{r_1} = \sin \theta,$$

$$\cos (180 - \theta) = \frac{x_2}{r_2} = \frac{-x_1}{r_1} = -\cos \theta,$$

$$\tan (180 - \theta) = \frac{y_2}{x_2} = \frac{y_1}{-x_1} = -\tan \theta,$$

$$\cot (180 - \theta) = \frac{x_2}{y_2} = \frac{-x_1}{y_1} = -\cot \theta.$$
(2)

The student may show that the above relations hold when θ is an angle of the second quadrant.

Exercises

- 1. Show that the fundamental identities (Art. 80) hold for angles in any quadrant.
- 2. Writing $180^{\circ} + \theta$ as $(180 (-\theta))$ and making use of relations (2), Art. 90, and (1), Art. 89 show that

$$\sin (180 + \theta) = -\sin \theta,$$

$$\cos (180 + \theta) = -\cos \theta,$$

$$\tan (180 + \theta) = \tan \theta,$$

$$\cot (180 + \theta) = \cot \theta.$$
(3)

- 3. Make the proper drawings and show that the functions of $90^{\circ} \theta$ are equal to the co-functions of θ .
- 4. Write 90° + θ as (90 (- θ)) and making use of (1), Art. 89 show that

$$\sin (90 + \theta) = \cos \theta,$$

$$\cos (90 + \theta) = -\sin \theta,$$

$$\tan (90 + \theta) = -\cot \theta,$$

$$\cot (90 + \theta) = -\tan \theta.$$
(4)

5. Fill the blanks with the proper function of the supplement of each angle:

(a)
$$\sin 110^{\circ} = \sin 70^{\circ}$$

(b) $\tan 99^{\circ} 18' =$

(c) $\tan (90^{\circ} + \theta) =$

(d) $\sin 175^{\circ} =$

(e)
$$\cot 109^{\circ} 15' =$$

 $(f) \cos 135^{\circ} =$

 $(g) \cos (90^{\circ} - \alpha) =$

(h) cot $120^{\circ} =$

6. Draw figures and show:

(a)
$$\sin 70^{\circ} = \cos 20^{\circ} = \sin 110^{\circ}$$
,

- (b) $\sin 130^{\circ} = \sin 50^{\circ}$,
- (c) $\sin 220^{\circ} = -\sin 40^{\circ}$,
- (d) $\cos 190^{\circ} = -\cos 10^{\circ}$.

Fig. 40.

Solution (a). In Fig. 40

$$r_1 = r_2, x_2 = -x_1, y_2 = y_1.$$
Hence,
$$\sin 70^\circ = \frac{y_1}{r_1} = \frac{y_2}{r_2} = \sin 110^\circ.$$
Also,
$$\sin 70^\circ = \cos 20^\circ, (Art. 79)$$

$$\sin 70^\circ = \cos 20^\circ = \sin 110^\circ.$$

91. Functions of the sum of two angles. In Fig. 41, SR is perpendicular to OR and SN is perpendicular to OM, and ΔSTR is similar to ΔOMR .

We may write,

$$\sin (\theta + \phi) = \frac{NS}{OS} = \frac{MR + TS}{OS}$$

But $MR = OR \sin \theta = OS \cos \phi \sin \theta$,

and $TS = SR \cos \theta = OS \sin \phi \cos \theta.$

Hence,
$$\sin(\theta + \phi) = \sin\theta\cos\phi + \sin\phi\cos\theta$$
. (5)

Also,
$$\cos (\theta + \phi) = \frac{ON}{OS} = \frac{OM - TR}{OS}$$

But $OM = OR \cos \theta = OS \cos \phi \cos \theta$,

and $TR = SR \sin \theta = OS \sin \phi \sin \theta$.

Hence,
$$\cos(\theta + \phi) = \cos\theta\cos\phi - \sin\theta\sin\phi$$
. (6)

From (5) and (6) we have,

$$\tan (\theta + \phi) = \frac{\sin (\theta + \phi)}{\cos (\theta + \phi)} = \frac{\sin \theta \cos \phi + \sin \phi \cos \theta}{\cos \theta \cos \phi - \sin \phi \sin \theta}$$

If we divide both numerator and denominator of the above expression by $\cos \theta \cos \phi$, we get,

$$\tan (\theta + \phi) = \frac{\frac{\sin \theta}{\cos \theta} + \frac{\sin \phi}{\cos \phi}}{1 - \frac{\sin \theta}{\cos \theta} \cdot \frac{\sin \phi}{\cos \phi}}$$

Hence,
$$\tan (\theta + \phi) = \frac{\tan \theta + \tan \phi}{1 - \tan \theta \tan \phi}$$
 (7)

In Fig. 41, θ and ϕ are acute angles and their sum is also acute. However, relations (5), (6), and (7) hold for all angles of any magnitude, and we assume this without proof.

92. Functions of the difference of two angles. If we write $\sin (\theta - \phi)$ as $\sin (\theta + (-\phi))$ and substitute in (5), Art. 91, we get,

$$\sin (\theta - \phi) = \sin \theta \cos (-\phi) + \cos \theta \sin (-\phi).$$

But
$$\cos(-\phi) = \cos \phi$$
, $\sin(-\phi) = -\sin \phi$. ((1), Art. 89.)

Hence,

$$\sin (\theta - \phi) = \sin \theta \cos \phi - \cos \theta \sin \phi. \tag{8}$$

The student may show that,

$$\cos (\theta - \phi) = \cos \theta \cos \phi + \sin \theta \sin \phi, \tag{9}$$

and
$$\tan (\theta - \phi) = \frac{\tan \theta - \tan \phi}{1 + \tan \theta \tan \phi}$$
 (10)

93. Functions of twice an angle. If we make $\phi = \theta$ and substitute in (5), Art. 91, we get,

$$\sin 2\theta = 2\sin \theta \cos \theta. \tag{11}$$

When $\phi = \theta$ (6) becomes,

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta, \tag{12}$$

$$= 1 - 2 \sin^2 \theta$$
 ((A), Art. 80.)

$$= 2 \cos^2 \theta - 1.$$
 ((A), Art. 80.)

The student may show that,

$$\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}.$$
 (13)

94. Half-angle formulas. In (11), (12), (13), Art. 93, let $\theta = \frac{x}{2}$, and we get,

$$\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2}.\tag{14}$$

$$\cos x = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}$$

$$= 1 - 2\sin^2 \frac{x}{2}$$

$$= 2\cos^2 \frac{x}{2} - 1.$$
(15)

$$\tan x = \frac{2 \tan \frac{x}{2}}{1 - \tan^2 \frac{x}{2}} \tag{16}$$

Solving the second, and third forms of (15) respectively for $\sin \frac{x}{2}$ and $\cos \frac{x}{2}$, we get,

$$\sin\frac{x}{2} = \pm\sqrt{\frac{1-\cos x}{2}},\tag{17}$$

and

$$\cos\frac{x}{2} = \pm\sqrt{\frac{1+\cos x}{2}}.\tag{18}$$

95. Sum and difference formulas. If we add (5) and (8), subtract (8) from (5), add (6) and (9), and subtract (9) from (6), respectively, we get,

$$\sin (\theta + \phi) + \sin (\theta - \phi) = 2 \sin \theta \cos \phi,$$

$$\sin (\theta + \phi) - \sin (\theta - \phi) = 2 \cos \theta \sin \phi,$$

$$\cos (\theta + \phi) + \cos (\theta - \phi) = 2 \cos \theta \cos \phi,$$

$$\cos (\theta + \phi) - \cos (\theta - \phi) = -2 \sin \theta \sin \phi.$$
(19)

Let $\theta + \phi = x$, $\theta - \phi = y$, then,

$$\theta = \frac{x+y}{2}, \qquad \phi = \frac{x-y}{2}.$$

Making these substitutions in (19), we have,

$$\sin x + \sin y = 2\sin \frac{x+y}{2}\cos \frac{x-y}{2}.$$
 (20)

$$\sin x - \sin y = 2\cos\frac{x+y}{2}\sin\frac{x-y}{2}.$$
 (21)

$$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}.$$
 (22)

$$\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}.$$
 (23)

Exercises

1. Show that $\cos 75^{\circ} = \frac{1}{4}(\sqrt{6} - \sqrt{2})$.

Solution.
$$\cos 75^{\circ} = \cos (45^{\circ} + 30^{\circ})$$

 $= \cos 45^{\circ} \cos 30^{\circ} - \sin 45^{\circ} \sin 30^{\circ}, ((6), \text{Art. 91})$
 $= \frac{1}{2} \sqrt{2} \cdot \frac{1}{2} \sqrt{3} - \frac{1}{2} \sqrt{2} \cdot \frac{1}{2}, (\text{Art. 81})$
 $= \frac{1}{4} \sqrt{6} - \frac{1}{4} \sqrt{2}.$

- 2. Show that $\cos 15^{\circ} = \sin 75^{\circ} = \frac{1}{4}(\sqrt{6} + \sqrt{2})$.
- 3. Show that $\tan 15^\circ = \tan (45^\circ 30^\circ) = 2 \sqrt{3}$.
- **4.** Draw a figure and show that (5) and (6) hold when $(\theta + \phi)$ lies in the second quadrant.
 - 5. If $\sin x = \frac{1}{3}$, find $\sin 2x$, also $\cos 2x$, and $\tan 2x$.

Solution. By the method of exercise 9, Art. 79, we find that if $\sin x = \frac{1}{3}$, $\cos x = \frac{2}{3}\sqrt{2}$, and $\tan x = \frac{1}{4}\sqrt{2}$.

Then by (11), Art. 93, we have,

$$\sin 2x = 2 \cdot \frac{1}{3} \cdot \frac{2}{3} \sqrt{2} = \frac{4}{9} \sqrt{2}$$
. $\cos 2x = ?$ $\tan 2x = ?$

- 6. Find $\tan 43^{\circ} 36'$, if $\tan 21^{\circ} 48' = .4$.
- 7. Find sin 15°, knowing cos 30° = $\frac{\sqrt{3}}{2}$.
- 8. Show that $\sin 3\theta = 3 \sin \theta 4 \sin^3 \theta$.

Hint: Write $\sin 3\theta$ as $\sin (2\theta + \theta)$, and expand by (5), Art. 91, and apply (11), (12), Art. 93, and (A), Art. 80.)

- **9.** Show that $\cos 3\theta = 4 \cos^3 \theta 3 \cos \theta$.
- 10. Show that $\sin 40^{\circ} + \sin 10^{\circ} = 2 \sin 25^{\circ} \cos 15^{\circ}$.
- 11. Show that $\sin 70^{\circ} \sin 40^{\circ} = 2 \cos 55^{\circ} \sin 15^{\circ}$.
- 12. Show that $\frac{\sin 5x + \sin x}{\cos 5x + \cos x} = \tan 3x.$

13. Show that
$$\frac{\sin x + \sin y}{\sin x - \sin y} = \frac{\tan \frac{x + y}{2}}{\tan \frac{x - y}{2}}$$

96. Theorem of sines. The lettering in figures 42 and 43 is similar to that in figure 27. Draw a perpendicular p from

vertex B to opposite side b (opposite side produced in Fig. 43). Then, from the right triangles AKB and CKB, we get,

$$\sin A = \frac{p}{c}, \quad \sin C = \frac{p}{a}.$$

Dividing $\sin A$ by $\sin C$, we have

(a)
$$\frac{\sin A}{\sin C} = \frac{a}{c}$$

This is true for both Figures 42 and 43, for in Fig. 43, we have

$$\sin(180 - C) = \sin C.$$

Drawing a perpendicular from vertex C to side c, we would get, similarly,

$$(b) \quad \frac{\sin A}{\sin B} = \frac{a}{b}.$$

Also, drawing a perpendicular from vertex A to side a, we would have,

(c)
$$\frac{\sin C}{\sin B} = \frac{c}{b}$$

The above results may be written in the form,

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} \tag{24}$$

Theorem. In any triangle the sines of the angles are proportional to the opposite sides.

By observing (a), (b) and (c) it is easily seen that the Theorem of Sines may be used to solve a triangle when two sides and an angle opposite one of the sides are given, or when the angles and a side are given.

Example I. Given a = 5.63, b = 42.3 and $A = 25^{\circ}$ 10'; find B, C, and c.

Fig. 44.

Solution. Construction, Formulas,

$$\sin B = \frac{b \sin A}{a},$$

$$C = 180 - (A + B),$$

$$c = \frac{a \sin C}{\sin A}.$$

DATA AND RESULTS			
a	35.6		
b	42.3		
A	25° 10′		
B	30° 21′		
C	124° 29′		
c	69.005		

Logs			
b sin A	1.62634 9.62865 – 10		
а	11.25499 — 10 1.55145		
sin B	9.70354-10		
$a \sin C$	1.55145 9.91608-10		
sin A	11.46753-10 9.62865-10		
с	1.83888-10		

This example admits of two solutions which is evident from the above construction, i.e., both triangles ABC and AB'C are solutions.

Second solution (AB'C):

$$B' = 180^{\circ} - B = 149^{\circ} 39',$$

 $C = 180^{\circ} - (A + B') = 5^{\circ} 11',$
 $c = \frac{a \sin C}{\sin A} = 7.567.$

As a matter of fact, when two sides and an angle opposite one of the sides are given, the data may admit of two solutions, one solution or no solution, but these facts will come out in the solution and we need not generalize on them.

Example II. Given a = 45.6, $A = 35^{\circ} 15'$, $B = 76^{\circ} 10'$; find b, c, and C.

Construction, Formulas, Solution.

$$C = 180 - (A + B),$$

$$b = \frac{a \sin B}{\sin A},$$

$$c = \frac{a \sin C}{\sin A}.$$

DATA AND RI	ESULTS
-------------	--------

-	
a	45.6
A	35° 15′
B	76° 10′
C	68° 35′
b	76.717
c	73.553

Logg

Logs			
$a \\ \sin B$	1.65896 9.98 722 – 10		
sin A	11.64618 - 10 9.76129 - 10		
b	1.88489		
$\sin C a$	9 96893 - 10 1.65896		
sin A	11.62789 - 10 9.76129 - 10		
c	1.86660		
	1		

Exercises

- 1. Make drawings to show that when two sides of a triangle and an angle opposite one of these sides are given there may be two solutions, one solution or no solution.
 - **2.** Given a = 48.3, $A = 48^{\circ} 30'$, $B = 75^{\circ} 15'$; find b, c.
 - **3.** Given a = 149.5, b = 115.6, $A = 71^{\circ} 20'$; find B, C, c. **4.** Given a = 23.1, c = 16.5, $C = 33^{\circ} 10'$; find A, B, b.

 - **5.** Given b = 125.6, $B = 39^{\circ} 45'$, $C = 105^{\circ} 15'$; find A, a, c.

97. Theorem of cosines. In triangle ABC drop a perpendicular h from B to side b. From the right triangle BHC, we get,

(a)
$$a^2 = h^2 + \overline{HC^2}$$

= $h^2 + (b - AH)^2$
= $h^2 + \overline{AH^2} + b^2 - 2b\overline{AH}$.

But from the right triangle ABH, we have,

(b)
$$h^2 + \overline{AH^2} = c^2$$
, and $AH = c \cos A$.

Substituting (b) in (a) we get,

$$a^2 = b^2 + c^2 - 2bc \cos A. (25)$$

It may also be shown that,

$$b^2 = a^2 + c^2 - 2 ac \cos B, (26)$$

and
$$c^2 = a^2 + b^2 - 2 ab \cos C.$$
 (27)

Theorem. In any triangle the square on any side is equal to the sum of the squares on the other two sides minus twice the product of the other two sides and the cosine of the included angle.

It is evident that the Theorem of Cosines may be used to find the third side of a triangle when two sides and the included angle are given. It may also be used to find the angles of a triangle when the three sides are given.

Example I. Given a = 37.5, b = 18.5 and $C = 39^{\circ} 45'$; find c.

Solution. From (27) we have,

$$c^2 = (37.5)^2 + (18.5)^2 - 2(37.5)(18.5)(0.7688)$$

= 681.79.

c = 26.11.

Example II. Given a = 42, b = 17, c = 53; find the angles.

Solution. Solving (25) for $\cos A$, we get,

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

and substituting for a, b, and c their values, we have,

$$\cos A = \frac{(17)^2 + (53)^2 - (42)^2}{2 \times 17 \times 53} = 0.7403.$$

 $A = 42^{\circ} 15'.$

And by using (26) and (27) we could get angles B and C.

Exercises

- 1. In example II, find angles B and C.
- 2. Show that the Theorem of Pythagoras is a special case of the Cosine Theorem.
- 3. Making use of the Theorem of Sines, find angles A and B of Example I.
- **4.** Given b = 52.5, c = 43.4, $A = 45^{\circ} 20'$; find B, C, and a.

Solution. Construct the triangle and drop perpendicular h from B to side b. This gives us two right triangles, ABH and CBH. Let AH be represented by m and HC by n.

Formulas:

$$(1) h = c \sin A,$$

$$(2) m = c \cos A,$$

$$(3) n = b - m,$$

(4)
$$\tan C = \frac{h}{n}$$
,

(5)
$$B = 180 - (A + C)$$
,

(6)
$$a = \frac{c \sin A}{\sin C} = \frac{h}{\sin C}$$

b	52.5
c	43.4
A	45° 20′
h	30 866
m	30 509
n	21 991
C	54° 32′
B	80° 8′
a	37 898

Logs

c	1.63749
$\sin A$	9.85200-10
h	1.48949
$\cos A$	9 84694 - 10
\boldsymbol{c}	1.63749
m	1.48443
h	1.48949
n	1.34225
tan C	0.14724
h	11.48949-10
$\sin C$	9 91087-10
a	1.57862

Check:
$$\frac{a}{\sin A} = \frac{b}{\sin B}$$
; $a \sin B = b \sin A$.
 $\log a = 1.57862$ $\log b = 1$

$$\log \sin B = \frac{9.99353 - 10}{1,57215}$$

$$\log b = 1.72016$$

$$\log \sin A = 9.85200 - 10$$

$$1.57216$$

- **5.** Given a = 296, c = 236, $b = 75^{\circ} 20'$; find A, C, and b. (Solve similar to exercise 4.)
- 6. Given a=385, b=476, c=225; find angles A, B and C and check by the Sine Theorem.
- 98. Theorem of tangents.* From the Theorem of Sines, we have

(a)
$$\frac{a}{b} = \frac{\sin A}{\sin B},$$

$$\frac{a+b}{b} = \frac{\sin A + \sin B}{\sin B},$$

adding 1 to both members of (a).

(c)
$$\frac{a-b}{b} = \frac{\sin A - \sin B}{\sin B},$$

subtracting 1 from both members of (a).

$$\frac{a+b}{a-b} = \frac{\sin A + \sin B}{\sin A - \sin B},$$

dividing (b) by (c).

From (20) and (21), Art. 95, we have,

(e)
$$\frac{\sin A + \sin B}{\sin A - \sin B} = \frac{2\sin\frac{A+B}{2}\cos\frac{A-B}{2}}{2\cos\frac{A+B}{2}\sin\frac{A-B}{2}}$$
$$= \tan\frac{A+B}{2}\cot\frac{A-B}{2},$$
$$= \frac{\tan\frac{A+B}{2}}{\tan\frac{A-B}{2}}.$$

^{*} Art. 98 may be omitted from this course.

Combining (d) and (e), we get,

$$\frac{a+b}{a-b} = \frac{\tan\frac{A+B}{2}}{\tan\frac{A-B}{2}}.$$
 (28)

We may show in a similar manner,

$$\frac{b+c}{b-c} = \frac{\tan\frac{B+C}{2}}{\tan\frac{B-C}{2}},\tag{29}$$

and

$$\frac{a+c}{a-c} = \frac{\tan\frac{A+C}{2}}{\tan\frac{A-C}{2}}$$
(30)

Theorem. In any triangle the sum of two sides divided by their difference, is equal to the tangent of half the sum of the opposite angles divided by the tangent of half the difference of these angles.

The Theorem of Tangents may be used to solve a triangle when two sides and the included angle are given. This will be illustrated by an example.

Example I. Given a = 255, b = 182, $C = 48^{\circ} 20'$; find A, B and c.

Solution. Construction, Formulas,

Data an	RESULTS	Logs		
$egin{aligned} a \ b \end{aligned}$	255 182	$\begin{array}{c} a-b \\ \tan \frac{1}{2}(A+B) \end{array}$	1.86332 0.34803	
a+b $a-b$	437 73	(a+b)	12.21135-10 2.64048	
\overline{C}	48° 20′	$\tan \frac{1}{2}(A - B)$	9.57087-10	
$\frac{A+B}{2}$ $A-B$	65° 50′	$a \sin C$	2.40654 9.87334-10	
2 A	20° 25′ 86° 15′	sin A	12.27988-10 9.99907-10	
B c	45° 25′ 190.9	С	2.28081	

Check: $b \sin A = a \sin B$.

$$\log b = 2.26007 \qquad \log a = 2.40654$$

$$\log \sin A = \frac{9.99907 - 10}{2.25914} \log \sin B = \frac{9.85262 - 10}{2.25916}$$

99. Area of a triangle. We know that the area of any triangle is equal to one half of any side multiplied by the altitude to that side (Formula 3, Art. 29). Also, 4, Art. 29 gives us the area of a triangle when the three sides are given.

Formulas expressing the area of a triangle in terms of any three of its parts (not all three angles and no side) might be derived, but we prefer to have the student remember the above principle and work out each problem separately. A problem or two will illustrate the method of procedure.

Example I. Given a = 25.6, b = 37.5, $C = 42^{\circ} 20'$; the area of the triangle.

Solution. Construction,

Formulas,

(a) Area =
$$\frac{1}{2}bh$$
,

(b)
$$h = a \sin C,$$

(c) Area =
$$\frac{1}{2}ab \sin C$$

= $\frac{1}{2} \times 25.6 \times 37.5 \sin 42^{\circ} 20'$
= $\frac{1}{2} \times 25.6 \times 37.5 \times 0.67344 = 323.25$.

(d)
$$h = c \sin B = \frac{a \sin B \sin C}{\sin A}$$

Area =
$$\frac{1}{2}a^2 \frac{\sin B \sin C}{\sin A}$$

= $\frac{1}{2} \frac{(225)^2 \sin 59^\circ 20' \sin 75^\circ 10'}{\sin 45^\circ 30'}$
= 29508.

Exercises

- 1. Given a = 75, b = 38, $A = 37^{\circ}$; find the area of the triangle.
- 2. Given a = 65, b = 75, c = 92; find the area of the triangle.
- 3. Given c = 492, a = 525, $A = 76^{\circ} 40'$; find the area of the triangle.
- **4.** Given $A = 47^{\circ} 20'$, $B = 75^{\circ} 25'$, c = 75.2; find the area of the triangle.
- 100. Summary of methods of solving any triangle. We will divide the discussion up into four cases.
- Case I. Given two angles and a side. The Sine Theorem will be applied in this case.
- Case II. Given two sides and an angle opposite one of the sides. The Sine Theorem will be applied here.
- Case III. Given two sides and the included angle. If only the third side is required, it may be obtained directly by using the Cosine Theorem. But if the other angles are also required, one of two methods may be used; we may apply the method of example 4, Art. 97, or we may use the Theorem of Tangents, Art. 98.
- Case IV. Given the three sides to find the angles. The Cosine Theorem may be used in this case as illustrated in Example II, Art. 97,

Examples on Chapter XIII

- 1. Solve the following triangles for the unknown parts:
 - (1) a = 372, b = 450, c = 525; find the angles and the area.
 - (2) a = 52, b = 75, $C = 37^{\circ} 10'$; find c, A, and B and area.
 - (3) b = 62.8, a = 73.7, $A = 35^{\circ} 45'$; find c, B and C and the area.
 - (4) Given $A = 75^{\circ} 25'$, $B = 37^{\circ} 45'$, c = 455; find a, b, C and the area.
- 2. Given b = 875, c = 458, $A = 72^{\circ} 20'$; find B, C and a, using the theorem of tangents.
- 3. Given a, b, A; write down the proper equations for obtaining the unknown parts, including the area.
- **4.** In order to find the distance between two points, A and B, separated by a high hill, a point C was taken where both A and B could be seen. CA, CB and angle ACB were measured and found to be 2521 feet, 3623 feet and 70° 45′ respectively. Find the distance from A to B.
- 5. To determine the distance of a point A across a lake from a point B on the near shore, a line BC and the angles ABC and BCA were measured and found to be 2562 yd. 75°, and 62° 20′, respectively. Find the distance AB.
- 6. Two streets meet at an angle of 80° 10′. How much land is there in the triangular corner lot which fronts 425 feet on one street and 315 feet on the other?
- 7. From the top of a hill 650 feet high the angles of depression of the top and bottom of a tower are 52° and 65° respectively, what is the height of the tower?
- 8. Two forces of 200 lbs. and 175 lbs. act at an angle of 50° with each other. Find the resultant force and also the angle that the resultant makes with the 200 lb. force.

CHAPTER XIV

THE DERIVATIVE AND SOME APPLICATIONS

101. The meaning of a tangent to a curve. In Fig. 52 we

have a curve C cut by a line lin the two points P and Q. Now assume that P is a fixed point and that Q moves along the curve towards P. As Qmoves towards P the line lturns about P and approaches, in general, a limiting position (PT in the figure), and at the instant when Q coincides with P the line l coincides with PT. The line PT is called the tangent to the curve C at the point P.

102. The derivative. Let us consider the curve, Fig. 53. whose equation is y = f(x). Take any point P(x, y) on the curve and increase the abscissa of the point by an amount Δx (read delta x, and not delta times x) and let Δy denote the corresponding increase of y. We notice that this gives us a second point $Q(x + \Delta x, y + \Delta y)$ on the curve. We note that y has changed by an amount Δy while x was changing by an amount

The ratio $\frac{\Delta y}{\Delta x}$ is the average rate of change in y with respect

to x within the interval Δx . We also observe that this ratio is the slope of the chord PQ. (See Art. 36.) If we now let Δx approach 0, the ratio $\frac{\Delta y}{\Delta x}$ generally approaches a fixed value which is defined as the rate of change of y with respect to x at the point P. It is also evident that as Δx approaches 0, the

Fig. 53.

point Q approaches the point P, the chord PQ approaches the tangent t, and the ratio $\frac{\Delta y}{\Delta x}$ approaches as its value the slope of the tangent at the point P. The limiting value of $\frac{\Delta y}{\Delta x}$ as Δx approaches 0 is defined as the derivative of y with respect to x at any point P(x, y). The derivative is designated by the symbol $\frac{dy}{dx}$, and we write,

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{dy}{dx}.$$

We shall now find $\frac{dy}{dx}$ for $y = x^2$. We have,

$$y = x^2. (1)$$

$$y + \Delta y = (x + \Delta x)^2 = x^2 + 2x\Delta x + \Delta x^2. \tag{2}$$

Subtracting (1) from (2) we have,

$$\Delta y = 2x\Delta x + \Delta x^2. \tag{3}$$

Dividing (3) by Δx ,

$$\frac{\Delta y}{\Delta x} = 2x + \Delta x,$$

and

$$\frac{dy}{dx} = \frac{\text{Lim}}{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{\text{Lim}}{\Delta x \to 0} (2x + \Delta x) = 2x. \tag{4}$$

Exercises

1. Find the slope of the curve $y = 3x^2 - 5x + 2$ at the point (2, 4). Solution.

$$y = 3x^2 - 5x + 2. (1)$$

$$y + \Delta y = 3(x + \Delta x)^2 - 5(x + \Delta x) + 2.$$
 (2)

$$\Delta y = 6x\Delta x + 3\Delta x^2 - 5\Delta x. \tag{3}$$

$$\frac{\Delta y}{\Delta x} = 6x + 3\Delta x - 5. \tag{4}$$

$$\frac{dy}{dx} = 6x - 5. (5)$$

The slope at any point (x, y) is (6x - 5).

The slope at the point (2, 4) is obtained by substituting 2 for x in (5), which gives us 7. Hence the tangent to the curve, $y = 3x^2 - 5x + 2$, at the point (2, 4) has 7 for its slope.

2. Find the derivative of $y = \frac{1}{x}$.

Solution.

$$y = \frac{1}{x}. (1)$$

$$y + \Delta y = \frac{1}{x + \Delta x}.$$
(2)

$$\Delta y = \frac{1}{x + \Delta x} - \frac{1}{x} = \frac{-\Delta x}{x(x + \Delta x)}.$$
 (3)

$$\frac{\Delta y}{\Delta x} = \frac{-1}{x(x + \Delta x)}.$$
(4)

$$\frac{dy}{dx} = \frac{-1}{x^2}. (5)$$

3. Find the derivative of $y = \sqrt{x}$.

Solution.

$$y = \sqrt{x}. (1)$$

$$y + \Delta y = \sqrt{x + \Delta x}.$$
(2)

$$\Delta y = \sqrt{x + \Delta x} - \sqrt{x}.$$

$$= \frac{(\sqrt{x + \Delta x} - \sqrt{x})(\sqrt{x + \Delta x} + \sqrt{x})}{(\sqrt{x + \Delta x} + \sqrt{x})}$$
(3)

(See Ex. 21, page 78)

$$=\frac{(x+\Delta x)-x}{\sqrt{x+\Delta x}+\sqrt{x}}=\frac{\Delta x}{\sqrt{x+\Delta x}+\sqrt{x}}$$

$$\frac{\Delta y}{\Delta x} = \frac{1}{\sqrt{x + \Delta x} + \sqrt{x}}. (4)$$

$$\frac{dy}{dx} = \frac{1}{2\sqrt{x}}. (5)$$

Find the slopes of the following curves at the points indicated.

4. $y = x^2 - 3x + 2$, at the point where x = 3. Trace the curve.

5.
$$y = 2x^3 + x^2 + x$$
, at $x = 2$.

6.
$$y = \frac{1}{x^2 + 1}$$
, at $x = 1$.

- 7. At what point does the curve $y = x^2 + 3x + 5$ have the slope 5? Ans. (1, 9).
- 8. At what point does the curve $y = x^2 4x + 10$ have the slope 0? Trace the curve and notice carefully its shape at the point where the slope is 0. (See Art. 48.) Ans. (2, 6).
- **9.** If l is the length of the side of a square, the area A is given by $A = l^2$. If l is changing, find the rate at which A is changing when l = 4 ft.

Solution.

$$A = l^2. (1)$$

$$A + \Delta A = (l + \Delta l)^2. \tag{2}$$

$$\Delta A = 2l\Delta l + \Delta l^2. \tag{3}$$

$$\frac{\Delta A}{\Delta l} = 2l + \Delta l. \tag{4}$$

$$\frac{dA}{dl} = 2l. (5)$$

When l=4, the rate of change is $\frac{dA}{dl}\Big|_{l=4}=8$. That is to say, the rate of change of A with respect to l when l=4, is 8 times the rate at which l is changing.

- 10. If the radius of a circle is changing, what is the rate of change of the area A when the radius is 3 feet? (See 5, Art. 29.)
- 103. Derivative of a constant. If y = c, then it does not matter what the values of x and Δx are; y will remain unchanged, and $\Delta y = 0$.

Hence,
$$\frac{\Delta y}{\Delta x}=0$$
, and $\frac{dy}{dx}=0$. Thus, $\frac{dc}{dx}=0$. (I)

104. Derivative of a sum. If u and v are functions of x, then,

$$\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}.$$
 (II)

Proof. Let y = u + v.

$$y + \Delta y = u + \Delta u + v + \Delta v. \tag{1}$$

$$\Delta y = \Delta u + \Delta v. \tag{2}$$

$$\frac{\Delta y}{\Delta x} = \frac{\Delta u}{\Delta x} + \frac{\Delta v}{\Delta x} \tag{3}$$

$$\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}. (4)$$

105. Derivative of a product. If u and v are functions of x, then

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}.$$
 (III)

Proof. Let $y = u \cdot v$.

$$y + \Delta y = (u + \Delta u)(v + \Delta v)$$

$$= uv + u\Delta v + v\Delta u + \Delta u\Delta v.$$
(1)

$$\Delta y = u\Delta v + v\Delta u + \Delta u\Delta v. \tag{2}$$

$$\frac{\Delta y}{\Delta x} = u \frac{\Delta v}{\Delta x} + v \frac{\Delta u}{\Delta x} + \Delta u \frac{\Delta v}{\Delta x}$$
 (3)

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx},\tag{4}$$

since,

$$\lim_{\Delta x \to 0} \left(\Delta u \cdot \frac{\Delta v}{\Delta x} \right) = 0 \cdot \frac{dv}{dx} = 0.$$

If u = c (constant), we have from (III),

$$\frac{d}{dx}(cv) = c\frac{dv}{dx}. (III')$$

106. Derivative of a quotient. If u and v are functions of x, then,

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}.$$
 (IV)

Proof. Let $y = \frac{u}{v}$

$$y + \Delta y = \frac{u + \Delta u}{v + \Delta v}.$$
(1)

$$\Delta y = \frac{u + \Delta u}{v + \Delta v} - \frac{u}{v}$$

$$= \frac{uv + v\Delta u - uv - u\Delta v}{v(v + \Delta v)}$$
(2)

$$=\frac{v\Delta u-u\Delta v}{v(v+\Delta v)}.$$

$$\frac{\Delta y}{\Delta x} = \frac{v \frac{\Delta u}{\Delta x} - u \frac{\Delta v}{\Delta x}}{v(v + \Delta v)}.$$
 (3)

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}.$$
 (4)

If u = c (constant), we have from (IV),

$$\frac{d}{dx} \left(\frac{c}{v} \right) = \frac{-c\frac{dv}{dx}}{v^2}.$$
 (IV')

107. Formulas stated in words.

- I. The derivative of a constant is 0.
- II. The derivative of the sum of two functions is equal to the sum of their derivatives.
- III. The derivative of the product of two functions is equal to the first function times the derivative of the second plus the second times the derivative of the first.
- III'. The derivative of a constant times a variable is equal to the constant times the derivative of the variable.
- IV. The derivative of the quotient of two functions is equal to the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, divided by the square of the denominator.
- IV'. The derivative of a constant divided by a function is equal to minus the constant times the derivative of the function divided by the square of the function.
- 108. Derivative of u^n . If $y = u^n$, where u is a function of x and n is a positive integer, then,

$$\frac{dy}{dx} = nu^{n-1}\frac{du}{dx}. (V)$$

Proof:

$$y + \Delta y = (u + \Delta u)^{n}$$

$$= u^{n} + nu^{n-1} \Delta u + \frac{n(n-1)}{2!} u^{n-2} \Delta u^{2} + \dots + \Delta u^{n}. \quad (1)$$
(See Art. 52.)

$$\Delta y = nu^{n-1}\Delta u + \frac{n(n-1)}{2!}u^{n-2}\Delta u^2 + \ldots + \Delta u^n.$$
 (2)

$$\frac{\Delta y}{\Delta x} = nu^{n-1} \frac{\Delta u}{\Delta x} + \frac{(n-1)}{2!} u^{n-2} \Delta u \frac{\Delta u}{\Delta x} + \ldots + \Delta u^{n-1} \frac{\Delta u}{\Delta x}$$
(3)

$$\frac{dy}{dx} = nu^{n-1}\frac{du}{dx},\tag{4}$$

$$\lim_{\Delta x \to 0} \left(\Delta u^{n-1} \frac{\Delta u}{\Delta x} \right) = 0 \cdot \frac{du}{dx} = 0.$$

If $y = x^n(u = x)$, (V) takes the particular form,

$$\frac{dy}{dx} = nx^{n-1} (V')$$

Although the above proof is valid only for positive integral values of n, formulas (V) and (V') are true for all values of the exponent. This we shall assume without proof.

Exercises

Find the derivative of the following functions:

1.
$$y = 3x^3 - 5x^2 + 2x + 4$$
.

Solution.
$$\frac{dy}{dx} = 3\frac{d}{dx}(x^3) - 5\frac{d}{dx}(x^2) + 2\frac{d}{dx}(x)$$
. (See (II) and (III').)
= $9x^2 - 10x + 2$. (See (V').)

Hence,
$$\frac{d}{dx}(3x^3 - 5x^2 + 2x + 4) = 9x^2 - 10x + 2$$
.

2.
$$y = (x^2 + 2)(3x^3 + 4x)$$

Solution.
$$\frac{dy}{dx} = (x^2 + 2)\frac{d}{dx}(3x^3 + 4x) + (3x^3 + 4x)\frac{d}{dx}(x^2 + 2).$$
(See (III).)
$$= (x^2 + 2)(9x^2 + 4) + (3x^3 + 4x)2x.$$

$$= 15x^4 + 30x^2 + 8.$$

Hence,
$$\frac{d}{dx}(x^2+2)(3x^3+4x)=15x^4+30x^2+8$$
.

3.
$$y = \frac{x^2 + 3x}{x - 2}$$

Solution.
$$\frac{dy}{dx} = \frac{(x-2)\frac{d}{dx}(x^2+3x) - (x^2+3x)\frac{d}{dx}(x-2)}{(x-2)^2},$$

$$= \frac{(x-2)(2x+3) - (x^2+3x)}{(x-2)^2}$$

$$= \frac{x^2-4x-6}{(x-2)^2}.$$
Hence,
$$\frac{d}{dx}\left(\frac{x^2+3x}{x-2}\right) = \frac{x^2-4x-6}{(x-2)^2}.$$

4. $u = (2x^3 + 3x + 2)^3$.

Solution. This function is of the form u^n , where $u = 2x^3 + 3x + 2$ and n = 3.

Hence, using (V) we obtain,

$$\frac{dy}{dx} = 3(2x^3 + 3x + 2)^2(6x^2 + 3).$$

5.
$$y = \sqrt[3]{3x^2 + 2x + 5}$$
.

Solution.
$$y = (3x^2 + 2x + 5)^{1/3}$$
.

$$\frac{dy}{dx} = \frac{1}{3}(3x^2 + 2x + 5)^{-2/3}(6x + 2)$$
. (See (V).)

Hence,
$$\frac{d}{dx}\sqrt[3]{3x^2+2x+5} = \frac{6x+2}{3(3x^2+2x+5)^{\frac{3}{2}}}.$$

6.
$$y = 1 - 3x - 5x^2 - x^3$$
.

7.
$$y = x - 3x^3 - 2x^5$$
.

8.
$$y = \frac{1}{x} - \frac{1}{x^2} + \frac{3}{x^3}$$
 (Use (IV').)

9.
$$y = \frac{3x-1}{2-2x}$$

10.
$$y = (4x^3 - 5x)(x^2 - 5x + 2)$$
.

11.
$$y = (x^2 + 3x)^3(x^3 + 5x + 2)$$
.

12.
$$y = \sqrt{x^3 - 9x^2 + 4}$$

13.
$$y = \frac{(1+x)(1-x^2)}{x^2}$$
.

Find the slope of each of the following curves at the point indicated:

14.
$$y = 3x^2 + 2x + 5$$
, where $x = -1$.

Solution. The slope at any point (x, y) is $\frac{dy}{dx} = 6x + 2$. (See Ex. 1, page 155.)

The slope at the point where x = -1 is therefore -4.

15.
$$y = \frac{x}{x+3}$$
, where $x = 3$.

16.
$$y = (x + 2)(x^2 + 1)$$
, where $x = -1$.

Find the equation of the tangent to each of the following curves at the points indicated:

17.
$$y = 2x^2 + 3x + 1$$
, where $x = -2$.

Solution. At the point where x = -2, $y = 2(-2)^2 + 3(-2) + 1 = 3$. The slope of the tangent at the point (-2, 3) is -5. Hence, the equation of the tangent is

$$y-3 = -5(x+2)$$
. (See equation (7), page 53), or, $5x + y + 7 = 0$.

18.
$$y = x^3 - 3x^2 + 4x + 5$$
, where $x = 2$.

19.
$$y = 2x^3 - x^2 - 4$$
, where $x = 1$.

20. Find the tangent to the curve $y = 3x^2 - x$ which shall have 5 for its slope. Ans. 5x - y - 3 = 0.

109. Increasing and decreasing functions. A function, y = f(x), is said to be increasing when it increases as x increases and is said to be decreasing when it decreases as x increases. Assume that figure 54 is the graph of y = f(x). Going from left to right, we notice that the curve is rising between the points P_1 and P_2 , falling between the points P_2 and P_3 , and rising to the right of P_3 . In other words, the function f(x) is

increasing as x increases from x_1 to x_2 , decreasing as x increases from x_2 to x_3 , and increasing as x increases from x_3 to x_4 , and so on. We notice also that the slope of the tangent is positive when the curve is rising and negative when the curve is falling. (See Figs. 18a and 18b.) That is, the derivative of f(x)

is positive when f(x) is increasing and negative when f(x) is decreasing.

Hence, we conclude,

If
$$\frac{dy}{dx} > 0$$
, $y = f(x)$ increases.

If
$$\frac{dy}{dx} < 0$$
, $y = f(x)$ decreases.

Example. Show that $y = x^2 + 4x + 3$ is decreasing when x = -4 and increasing when x = 0. Graph the function.

Hence, y is increasing.

Solution. $y = x^2 + 4x + 3.$ $\frac{dy}{dx} = 2x + 4.$ When x = -4, $\frac{dy}{dx} = -4$.

Hence, y is decreasing.

When x = 0, $\frac{dy}{dx} = 4$.

110. Maxima and minima. Maxima and minima values of quadratic functions were discussed in Art. 49. Maxima and minima values in general will now be discussed. A maximum value of a function is that value where the function ceases to increase and begins to decrease. A minimum value of a function is that value where the function ceases to decrease and begins to increase. A maximum point is that point on the graph of a function where the graph ceases to rise and begins to fall. A minimum point is that point where the graph ceases to fall and begins to rise.

Fig. 55.

Observing Fig. 54, we notice that P_2 is a maximum point and P_3 is a minimum point. It is evident that at such points the tangent is parallel to the X-axis; that is,

$$\frac{dy}{dx}=0.$$

However, the vanishing of the derivative does not mean that the function necessarily has a maximum or a minimum. The tangent is parallel to the X-axis at the point P_4 , but the function

has neither a maximum nor a minimum there. It appears from the figure that the test is as follows:

At a point where $\frac{dy}{dx} = 0$, if $\frac{dy}{dx}$ changes from positive to negative (as x increases), y is a maximum; if $\frac{dy}{dx}$ changes from negative to positive, y is a minimum; if $\frac{dy}{dx}$ does not change sign, y is neither a maximum nor a minimum.

Example. Find the maximum and minimum values of the function, $y = \frac{x^3}{3} - \frac{x^2}{2} - 6x + 5$. Graph the function.

Solution.

$$y = \frac{x^3}{3} - \frac{x^2}{2} - 6x + 5. \tag{1}$$

$$\frac{dy}{dx} = x^2 - x - 6 = (x+2)(x-3). \tag{2}$$

When
$$\frac{dy}{dx} = 0$$
, $x = -2, 3$.

When
$$x = -2$$
, $y = 12\frac{1}{3}$.

When
$$x = 3$$
, $y = -8\frac{1}{2}$.

When x < -2, we notice that $\frac{dy}{dx} > 0$ and when x > -2 we find that $\frac{dy}{dx} < 0$. Hence, the point $(-2, 12\frac{1}{3})$ is a maximum point on the graph of the function and $12\frac{1}{3}$ is a maximum value of the function.

When x < 3, $\frac{dy}{dx} < 0$; and when x > 3, $\frac{dy}{dx} > 0$. Hence, the point $(3, -8\frac{1}{2})$ is a minimum point on the graph and $-8\frac{1}{2}$ is a minimum value of the function. (See Fig. 56.)

Fig. 56.

Exercises

In the following exercises determine the value of x for which $\frac{dy}{dx} = 0$. Determine the corresponding values of y and show whether these values are a maximum or a minimum.

- 1. $y = x^2 4x + 5$. Minimum at (2, 1).
- 2. $y = -x^2 + 6x + 7$. Maximum at (3, 16).
- 3. $y = x^3 + 3x^2 9x 27$. Maximum at (-3, 0), minimum at (1, -32).
 - 4. $y = 3x^3 9x^2 27x + 30$. x = -1, gives y = 45, maximum. x = 3, gives y = -51, minimum.

5.
$$y = x^3 - 8$$
, $x = 0$, gives neither a maximum nor a minimum.

6.
$$y = x^3 - 3x^2 + 6x + 10$$
. Neither maximum nor minimum.

7.
$$y = \frac{1-x+x^2}{1+x-x^2}$$
 $x = \frac{1}{2}$, gives $y = \frac{3}{5}$, minimum.

8.
$$y = \frac{x^2 - 7x + 6}{x - 10}$$
. $x = 4$, gives maximim; $x = 16$, gives minimum.

111. Applications of the theory of maxima and minima. It was shown in Art. 110 that, at a point where the first derivative is 0, a function has either a maximum or a minimum value (provided the derivative changes sign at the point). This theory will now be applied to some practical problems.

Example. A box is to be made of a piece of card board 8 inches square by cutting equal squares out of the corners and turning up the sides. Find the volume of the largest box that can be made in this way.

Solution. Let x = the length of the side of each of the squares cut out. Then the volume of the box is

$$V = x(8 - 2x)^2. (1)$$

$$\frac{dy}{dx} = (8 - 2x)(8 - 6x). (2)$$

Making

$$\frac{dV}{dx} = 0$$
, we find,

$$x = 4, \frac{4}{3}$$

When x = 4, V = 0. Hence, the value x = 4 can not be used.

When $x = \frac{4}{3}$, $V = \frac{1024}{27}$, and this is a maximum value.

Problems

- 1. Solve problems 5, 6, 7, 8, and 9, pages 70 and 71, making use of the derivative.
- 2. A box with a square base and open top is to hold 108 cubic feet. Find the dimensions that will make its construction most economical.

Solution. Let us assume one side of the base to be x and the altitude to be y. It is evident here that the thing desired is to minimize the surface. Now the surface consists of the four sides and the base. Hence, we may write:

$$S = 4xy + x^2. (1)$$

Since the volume is to be 108 cubic feet, we may write

$$x^2y = 108$$
, or $y = \frac{108}{x^2}$. (2)

Substituting the above value of y in (1) we obtain,

$$S = \frac{432}{x} + x^2. {3}$$

$$\frac{dS}{dx} = \frac{-432}{x^2} + 2x. {4}$$

When

$$\frac{dS}{dx} = 0, 2x^3 = 432, x = 6.$$
 (5)

Making x = 6 in (2), we see that y = 3. Hence, the dimensions of the box are $6 \times 6 \times 3$.

3. A silo is made in the form of a cylinder, with a hemispherical roof; there is a floor of the same thickness as the wall and roof. Find the most economical shape.

Ans. Diameter = total height.

Silos are not built this way. Why not?

4. A watering trough is to hold 500 gallons. Find the dimensions that will make its construction most economical if its base is to be a rectangle with one side three times the other. (There are 231 cubic inches in one gallon.)

Ans. Base 3.1 feet by 9.3 feet.

Altitude 2.32 feet.

CHAPTER XV

STATISTICS AND APPLICATIONS

- 112. Introduction. In Chapter V it was pointed out that many functional relations that can not be expressed by an algebraic equation may be exhibited by means of a graph. The graph usually gives a better view of a numerical situation than a table. By letting the eye follow the graph we get at once an approximate picture of fluctuations in the series of values. If we want to study such variations more closely or make comparisons between two or more sets of data, numerical methods are usually clearer and more convenient. The branch of mathematics that deals with quantitative data affected to a marked extent by a multiplicity of causes is called statistics.
- 113. Frequency tables. The simplest way of presenting a series of numerical values is simply to list the values in their natural order in a table. As for instance Average Farm Prices December First on pages 37 and 38. We may, however, group the values and get what we call a frequency table. The price of corn in the table referred to varies from $21.5\,\mbox{\'e}$ in 1896 to $136.5\,\mbox{\'e}$ in 1918. We divide the total range into classes, for instance $20\,\mbox{\'e}$ but less than $30\,\mbox{\'e}$, $30\,\mbox{\'e}$ but less than $40\,\mbox{\'e}$, and so on, and count the number of cases in each group. We find 5 cases between $20\,\mbox{\'e}$ and $29.9\,\mbox{\'e}$, 16 cases between $30\,\mbox{\'e}$ and $39.9\,\mbox{\'e}$, 15 cases between $40\,\mbox{\'e}$ and $49.9\,\mbox{\'e}$, 5 cases between $50\,\mbox{\'e}$ and $59.9\,\mbox{\'e}$, 10 cases between $80\,\mbox{\'e}$ and $89.9\,\mbox{\'e}$, 1 case between $90\,\mbox{\'e}$ and $99.9\,\mbox{\'e}$, 0 case between $100\,\mbox{\'e}$ and $109.9\,\mbox{\'e}$, 0 case between $110\,\mbox{\'e}$ and

 $119.9\,$ ¢, 1 case between $120\,$ ¢ and $129.9\,$ ¢, and 2 cases between $130\,$ ¢ and $139.9\,$ ¢. These facts are recorded in a frequency table as follows:

Price	Number of Cases	Price	Number of Cases
20-29 9	5	80- 89 9	1
3 0- 3 9.9	16	90-99.9	1
40-49 9	15	100-109.9	0
50-59 9	5	110-119.9	0
60-69.9	10	120-129.9	1
70-79.9	1	130-139 9	2

The size of the class, or the *class interval*, is arbitrary, but should be governed by the total range and the number of cases.

Exercises

Construct similar frequency tables for prices on the other farm products listed, using the following class intervals:

1. Wheat, 10¢.

4. Rye, 10¢.

2. Oats, 5¢.

5. Potatoes, 10¢.

3. Barley, 5¢.

6. Hay, 50¢.

114. Measures of Central Tendency. If we study, for instance, two tables giving prices for a certain grade of hogs day by day for two years, we will find that there is much overlapping in prices. The question in which year were hog prices higher could not be answered directly from such tables. To make a comparison we must have a single price that is in some measure representative of the prices for the year, or what we call a measure of central tendency. We shall consider three such measures: arithmetic mean, median, and mode.

Arithmetic mean (or what is commonly called the average)

is simply the sum of the measures divided by their number. Or, expressed in a formula,

$$M = \frac{\Sigma X}{N}.$$
 (1)

Median is the middlemost measure, when the measures have been arranged in order of magnitude. For example, in the series

12 is the median, for there are five measures smaller than 12 and five measures larger than 12.

If the series has an even number of terms there is no middlemost measure, and we define the median as a measure halfway between the two middle measures. For example in the series

11 is the median, because it is halfway between 10, the fifth measure, and 12, the sixth measure.

Mode is the measure that occurs most frequently in the series. Consider for example the following table of representative hog sales at Sioux City Stock Yard, January 4, 1926:

Number	Weight	Price	Number	Weight	Price
14	233	\$10.90	4	237	\$11.00
33	208	10.90	27	163	11.10
35	226	10.95	50	153	11.25
22	240	11.00	36	162	11.25
6	250	11.00	2	165	11.30
6	245	11.00	11	175	11.30

\$11.25 is the mode, because the greatest number of hogs, or 86, were sold at this price. In market reports a modification of

the mode is often used, namely the bulk of sales. For instance in the above report, bulk of sales is \$10.95 to \$11.25.

115. Determination of the arithmetic mean from a frequency table. We here make the assumption that the measures within the class are all concentrated at the *midpoint of the class interval*. For example, in the frequency table of prices of corn (Art. 113) there were 5 cases where the price was between $20.0 \, \text{\'e}$ and $29.9 \, \text{\'e}$. We here assume the price for all five cases within this class to be $25 \, \text{\'e}$, the price for all 16 cases within the next class to be $35 \, \text{\'e}$, and so on. We then obtain the following table (f stands for f requency, or number of cases in the class):

Class Interval	f	X	fX
20- 29.9	5	25	125
30- 39.9	16	35	560
40-49.9	15	45	675
50- 59.9	5	55	275
60- 69.9	10	65	650
70- 79.9	1	75	75
80 89 S	1	85	85
90- 99.9	1	95	95
100-109 9	0	105	0
110-119 9	0	115	0
120-129.9	1	125	125
130-139 9	2	135	270
		$\Sigma fX =$	2935

$$M = \frac{\Sigma f X}{N}$$
 $M = \frac{2935}{57} = 51.5 c$

This value of the arithmetic mean is only approximate and usually differs somewhat from the value obtained from the summation of the original values divided by their number. In our example we would have found 51.9¢ from the original

data. The values computed by the two methods become more nearly equal as the number of cases increases and the size of the class interval decreases.

Example. Compute the average prices of wheat, oats, barley, rye, potatoes, and hay for the years 1870 to 1926 from the original data and from the frequency tables.

116. Determination of the median from a frequency table. If the values are arranged in a frequency table we make the assumption, when computing the median, that the values within an interval are uniformly distributed in the interval. For example take the frequency table showing the price of corn. There are 57 cases and according to the definition $\frac{57}{2}$ or 28.5 measures must be below and 28.5 measures above the median. If we start at the lower end we find that there are 21 cases below 40c and 15 cases in the class $40 - 49.9 \rlap/e$. The median must therefore be somewhere in this interval. Subtracting 21 from 28.5 we obtain 7.5, and the median must be the 7.5th measure in the class $40 - 49.9 \rlap/e$. As there are 15 measures in this class the 7.5th measure must be $\frac{7.5}{15} \cdot 10$ or 5. Add this

value to 40 and we get $45\rlap/e$ as the median. The same value would be obtained if we started at the higher end. In the groups above 50 there are 21 measures, and the median must be the (28.5-21) or 7.5th measure in the interval $40-49.9\rlap/e$

counting from the top. $\frac{7.5}{15} \cdot 10 = 5$, which value should be subtracted from 50e which again gives us 45e.

117. Variability. It is often desirable to have some measure of the variability of a series of values; for instance, prices of some farm product during a year. We have several such values of variability. Those considered here are the *range*,

the mean deviation, the quartile deviation, and the standard deviation.

The range. Take the two series

- (1) 5, 9, 10, 14, 16, 16, 18, 24, 31.
- (2) 9, 12, 14, 15, 16, 17, 19, 20, 22.

Both have a mean of 16 and a median of 16; hence they are alike as far as central tendency is concerned. Yet, they are rather different. Series (1) includes measures from 5 to 31, while (2) varies only from 9 to 22. The difference between the highest and the lowest value in a series of measures is called the range. Series (1) has a range of 26, while series (2) has a range of only 13. The range is a measure of variability but gives a very incomplete picture of a series, being dependent only upon the highest and lowest measures.

The mean deviation. If we determine the amount that each of the terms in series (1) varies from the mean, we get the series

the mean of which is 5.78. This value is called the mean deviation. For series (2) we get a mean deviation of 3.11. The mean deviation is a measure of the tendency of the individual measures in a series to scatter. The mean deviation may be calculated from any measures of central tendency, the mean, median or mode. It should, therefore, always be indicated from which measure of central tendency the mean deviation is calculated.

Exercise

Calculate the mean deviation from the mean for prices of corn, wheat, oats, barley, rye, potatoes, and hay for the years 1870–1926. Try to do this with prices arranged in frequency tables and compare the value so determined for one of the products with the value obtained from the use of the original tabulation.

The quartile deviation or semi-interquartile range. As we determined the median as a point on a scale of values below which half of the number of cases are found and above which the other half are found, so we may determine two other points such that one-fourth of the number of values are found below and three-fourths above one of these points, and three-fourths below and one-fourth above the other point. Half of the difference between these two measures is called the semi-interquartile range and is a measure of the spread or variability of the series.

If the series of values are given in order of their magnitude we may simply count off one-fourth of the number of cases from the top and one-fourth from the bottom of the series and take the mean of the values so obtained. If the series is given as a frequency table the work is done practically the same way as in calculating the median. In our previous example on prices of corn we have 57 cases or 14.25 in each quartile. The first quartile point is at $30 + \frac{14.25 - 5}{16} \times 10$ or 35.8 % and the third

quartile point (first from the top) at $70 - \frac{14.25 - 6}{10} \times 10$ or $61.8 \not e$. The semi-interquartile range is therefore $\frac{61.8 - 35.8}{2}$ or $13 \not e$.

Exercise

Calculate the semi-interquartile ranges for prices of wheat, oats, barley, rye, potatoes and hay for the years 1870–1916.

The standard deviation. The most generally used measure of variability is the standard deviation, obtained in the following way: Calculate the deviations from the mean, square these deviations, add the squares, divide by the number of cases, and extract the square root of the quotient. The standard deviation is usually

designated by the Greek letter σ (sigma) and may be expressed by the following formula,

$$\sigma = \sqrt{\frac{d^2}{N}}, \qquad (2)$$

where d represents deviations from the mean, and N the number of cases.

As the deviations are usually rather awkward numbers to handle the formula may be expressed in the original measures X.

By substituting d = X - M; $M = \frac{\Sigma X}{N}$; $d = X - \frac{\Sigma X}{N}$ in (2) we have

$$\sigma = \sqrt{\frac{\Sigma \left(X - \frac{\Sigma X}{N}\right)^2}{N}},$$

$$\sigma = \sqrt{\frac{\Sigma \left(X^2 - \frac{2X\Sigma X}{N} + \left(\frac{\Sigma X}{N}\right)^2\right)}{N}},$$

$$\sigma = \sqrt{\frac{\Sigma X^2}{N} - \frac{2\Sigma (X\Sigma X)}{N} + \frac{\Sigma (\Sigma X)^2}{N^3}},$$

$$\sigma = \sqrt{\frac{\Sigma X^2}{N} - \left(\frac{\Sigma X}{N}\right)^2},$$
(3)

since, $\Sigma(X\Sigma X) = (\Sigma X)^2$,

and
$$\frac{\Sigma(\Sigma X)^2}{N^3} = \frac{(\Sigma X)^2}{N^2}$$

Although formula (3) looks more formidable than (2), it is in reality much simpler. Expressed in words, the operations are as follows: Square the original measures, add the squares, and divide by the number of cases. This gives $\frac{\Sigma X^2}{N}$. Next,

add the original measures, divide the sum by N, and square the quotient. This gives $\left(\frac{\Sigma X}{N}\right)^2$. Subtract $\left(\frac{\Sigma X}{N}\right)^2$ from $\frac{\Sigma X^2}{N}$ and extract the square root of the difference. This gives σ .

If the series of values is given in the form of a frequency table, we must multiply each value by its frequency, and our formulas become

$$\sigma = \sqrt{\frac{\Sigma f d^2}{N}},\tag{4}$$

$$\sigma = \sqrt{\frac{\Sigma f X^2}{N} - \left(\frac{\Sigma f X}{N}\right)^2}.$$
 (5)

The chief objection to the range as a measure of variability has already been illustrated. The addition of one or two extreme cases may increase the range to several times its former value without actually causing any great change in the tendency of the cases to group themselves about some central value. The quartile deviation almost entirely eliminates the effect of extreme cases, a condition which is not always wholly desirable. It is also unreliable in those instances in which the distribution of the items under discussion departs decidedly from symmetry. In such situations the mean deviation is much more useful. The standard deviation, making use, as it does, of the squares of the deviations of all items from the mean, is affected strongly by extreme cases but reduces the effect somewhat by taking the square root of the sum. The greatest advantage of this measure is the ease with which it lends itself to algebraic manipulation. In making use of any of these measures of variability to compare distributions, the size of the objects involved must be kept in mind. As an example, suppose we consider the physical measurements of a group of men. A range of two inches in their heights would be almost negligible, while a range of two inches in the lengths of their feet would indicate a wide variety of sizes.

If we divide the quartile measure by the sum of the two values which were used in its computation, and divide each of the other measures by the arithmetic mean of the distribution to which they are applied, our measures become coefficients and allow us to compare more conveniently distributions of items of widely different magnitudes.

Example. Calculate the standard deviation of prices of corn for 1870–1926.

Class Interval	f	X	fX	fX²
20- 29.9	5	25	125	3,125
30- 39 9	16	35	560	19,600
40- 49 9	15	45	675	30,375
50- 59 9	5	55	275	15,125
60- 69.9	10	65	650	42,250
70- 79.9	1	75	75	5,625
80-899	1	85	85	7,225
90- 99 9	1	95	95	9,025
100-109.9	0	105	0	0
110-119.9	0	115	0	0
120-129 9	1	125	125	15,625
130-139 9	2	135	270	36,450
	$\Sigma f = 57$		$\Sigma fX = 2935$	$184,425 = \Sigma f X$

$$\sigma = \sqrt{\frac{184,425}{57} - \left(\frac{2935}{57}\right)^2} = 25.2 \not\in$$

Exercises

- 1. Calculate the standard deviation of prices of wheat, oats, barley, rye, potatoes, and hay during the years 1870-1926.
 - 2. Show that formula (3) follows from (2).
- 118. Correlation. In the physical sciences the value of a variable is usually dependent upon, or, as we say, is a function

of a single variable or at least very few other variables, and one or more constants. For example, the electric current that flows through a conductor depends upon the electromotive force and the resistance of the conductor. Expressed as a functional relationship we may write

$$C = f(E,R).$$

In the laboratory we are usually able to keep all of the independent variables except one constant and allow this one to vary at will, thus arriving at a mathematical formula for the relationship. We may for instance keep the electromotive force constant and vary the resistance; we than find that the current varies inversely as the resistance. Again we may keep the resistance constant and vary the electromotive force, thus finding that the current varies directly as the electromotive force. By properly selecting the units in which we measure we may reduce all the constants to the value 1 and establish the formula,

$$C=\frac{E}{R}$$

where C = the current in amperes, E = electromotive force in volts, and R = resistance in ohms.

In the biological and still more so in the social sciences the number of variables is usually large and it is difficult or in many cases impossible to keep certain variables constant while varying others in the course of an experiment. We often have to measure the various factors of a phenomenon as it occurs without our controlling influence and by means of statistical analysis of the observed values draw conclusions regarding their interdependence. We may be able to establish a degree of relationship even if we are unable to determine the nature of this relationship.

The degree of relationship between two series of values of two variables is usually measured by the coefficient of correlation. This coefficient may have values from +1 through 0 to -1. If there is a perfect agreement between the variation of the two variables so that both increase or decrease together the correlation is said to be perfect and positive. Such a correlation exists between the values of current and electromotive force if the resistance is kept constant. The coefficient of correlation would in this case be +1. If on the other hand an increase in one variable always is accompanied by a decrease in the other variable the correlation is perfect and negative, = -1. Such would be the relationship between current and resistance if voltage is kept constant. If there is no relationship between the variables but an increase in one is just as likely to be accompanied by a decrease as by an increase in the other variable, the coefficient of correlation is 0.

There may, however, be a *tendency* for one variable to increase or decrease as the other variable increases or decreases, although the correspondence is not perfect. In such a case we get a coefficient of correlation between 0 and +1. If, on the other hand one variable tends to increase as the other variable decreases although imperfectly, we get values of the coefficient of correlation between 0 and -1.

After this description of the meaning of the term coefficient of correlation we shall give the two most commonly used methods of computing said coefficient, omitting the rather complicated mathematical theory on which they are based.

119. The rank method of correlation. This coefficient is usually designated by ρ (rho, Greek letter) and differs slightly from the coefficient r determined by the product-moment formula as described below.

Let the following two series of values be the mean prices of wheat and corn for ten weeks:

	Wheat	Corn
1st week	\$ 1.25	\$0 67
2nd week	1.28	0.65
3rd week	1.33	0.75
4th week	1.40	0.76
5th week	1.36	0.74
6th week	1.41	0.77
7th week	1.34	0.72
8th week	1.30	0 70
9th week	1.35	0.73
10th week	1.38	0.71

Rank the prices of each, assigning to the lowest price the rank 1 and to highest price the rank 10. We then get

	Wheat Rank	Corn Rank	Rank of Wheat Minus Rank of Corn = d	d^2
1st week	1	2	-1	1
2nd week	2	1	1	1
3rd week	4	8	-4	16
4th week	9	9	0	0
5th week	7	7	0	0
6th week	10	10	0	0
7th week	5	5	0	0
8th week	3	3	0	0
9th week	6	G	0	0
10th week	8	4	4	16
				$\Sigma d^2 = 34$

The coefficient of rank correlation, C, is then obtained by the formula,

$$C = 1 - \frac{6\Sigma d^2}{N(N^2 - 1)},\tag{6}$$

where N is the number of cases and d is the differences in rank.

$$C = 1 - \frac{6 \times 34}{10(10^2 - 1)}$$
$$= 1 - \frac{204}{205} = 1 - 0.206 = 0.794.$$

The coefficient of rank correlation takes into account the ranks of the variables only, but not their magnitude. If two or more terms are equal they are given the same rank. For instance, if the 12th and 13th terms are equal, they are both given the rank 12.5. If the 12th, 13th, and 14th are alike, all three are given the rank 13, etc.

Exercise

Determine by the rank method the correlations between prices of wheat on the one hand and prices of (a) corn, (b) oats, (c) barley, (d) rye, (e) potatoes, (f) hay, on the other hand, as given on pp. 37ff.

120. The product moment formula or the Pearson correlation coefficient. This formula is

$$r = \frac{\sum xy}{N \cdot \sigma_x \cdot \sigma_y},\tag{7}$$

where x are the deviations of the terms in the X-series from their mean (with proper signs), y the variations of the terms in the Y-series from their mean, N the number of cases, σ_x the standard deviation of the X-series, and σ_y the standard deviation of the Y-series.

Recalling that $\sigma_x = \sqrt{\frac{\sum x^2}{N}}$ and $\sigma_y = \sqrt{\frac{\sum y^2}{N}}$ we may substitute these values in (7) and get

$$r = \frac{\Sigma xy}{N \sqrt{\frac{\Sigma x^2}{N}} \sqrt{\frac{\Sigma y^2}{N}}},$$

or
$$r = \frac{\sum xy}{\sqrt{\sum x^2 \cdot \sum y^2}}.$$
 (8)

Example

	Price of Wheat in Cents	Price of Corn in Cents Y	$X - M_x$ or x	Y-M _y or y	хy	<i>x</i> ²	y ²
1st	125	67	-9	- 5	+45	81	25
2nd.	128	65	-6	-7	+42	36	49
3rd .	133	75	-1	+3	- 3	1	9
4th	140	76	+6	+4	+24	36	16
5th	136	74	+2	+2	+ 4	4	4
6th	141	77	+7	+5	+35	49	25
7th .	134	72	0	0	0	0	0
8th	130	70	-4	-2	+ 8	16	4
9th	135	73	+1	+1	+ 1	1	1
0th	138	71	+4	-1	- 4	16	1

$$\Sigma X = 1340$$
 $\Sigma Y = 720$ $\Sigma x^2 = 240$ $\Sigma y^2 = 134$ $\Sigma xy = +152$

$$M_x = \frac{\Sigma X}{N} = 134$$
 $M_y = \frac{\Sigma Y}{N} = 72$
$$r = \frac{\Sigma xy}{\sqrt{\Sigma x^2 \Sigma y^2}} = \frac{+152}{\sqrt{240 \times 134}} = 0.847.$$

If the means of the X- and Y-series come out with decimals, this method involves considerable numerical work. We may then employ to advantage a modification of the formula that uses the original X- and Y-values.

Recalling that

$$x = X - M_x = X - \frac{\Sigma X}{N},$$

$$y = Y - M_y = Y - \frac{\Sigma Y}{N},$$

and substituting these values in (8), we get,

$$r = \frac{\Sigma \left(X - \frac{\Sigma X}{N}\right) \left(Y - \frac{\Sigma Y}{N}\right)}{\sqrt{\Sigma \left(X - \frac{\Sigma X}{N}\right)^2 \Sigma \left(Y - \frac{\Sigma Y}{N}\right)^2}}$$

$$= \frac{\Sigma XY - \frac{\Sigma X\Sigma Y}{N}}{\sqrt{\left(\Sigma X^2 - \frac{(\Sigma X)^2}{N}\right) \left(\Sigma Y^2 - \frac{(\Sigma Y)^2}{N}\right)}}$$
(9)

The work can be further reduced due to the fact that the subtraction of a constant term from either series does not affect the coefficient of correlation. We could, for instance, in our example subtract 124 from all the X-values and 64 from all the Y-values, thus materially reducing the size of the figures with which we have to operate.

Exercise

Determine by the product moment formula the correlations between prices of wheat, on the one hand, and prices of (a) corn, (b) oats, (c) barley, (d) rye, (e) potatoes, (\mathring{f}) hay, on the other hand, as given on pp. 37ff.

CHAPTER XVI

PROBABILITY

121. Meaning of probability. A box contains four white and five black balls. One ball is drawn at random and then replaced and this process is continued indefinitely. proportion of the balls drawn will be black? Here there are nine balls to be drawn or we may say there are nine possibilities, and either of the nine balls is equally likely to be drawn or any one of the nine possibilities is equally likely to happen. Of the nine possibilities, any one of four would result in drawing a white ball and any one of five would result in drawing a black ball. We would say, then, that four possibilities of the nine are favorable to drawing a white ball and the other five possibilities are favorable to drawing a black ball. We put the above statement in another way by saying that in a single draw the probability of drawing a white ball is 4 and the probability of drawing a black ball is §. This does not mean that out of only nine draws, exactly four would be white and five black. does mean that, if a single ball were drawn at random and were replaced and this process continued indefinitely, & of the balls drawn would be white and 5 would be black. Or the ratio of the number of white balls drawn to the number of black balls drawn would be as 4 to 5.

Reasoning similar to the above led LaPlace to formulate the following definition of probability: If h is the number of possible ways that an event will happen and f is the number of possible ways that it will fail and all of the possibilities are equally likely,

the probability that the event will happen is $\frac{h}{h+f}$ and the prob-

ability that it will fail is
$$\frac{f}{h+f}$$
.

It is evident, then, that the sum of the probability that an event will happen and the probability that it will fail is 1, the symbol for certainty.

In analyzing a number of possibilities we must be sure that each of them is *equally likely* to happen before we attempt to apply the above definition of probability.

Example. What is the probability that a man, age 30 and in good health, will die before age 35? In this case we might reason thus: The event can happen in only one way and fail in only one way, and consequently, the probability that he will die before age 35 is $\frac{1}{2}$. But this reasoning is false for we are assuming that living five years and dying within five years are equally likely for a man now 30 years old. But this is not the actual experience. This example will be discussed in Art. 122.

122. Probability based upon observation or experience. There are many events in which it is impossible to enumerate all the equally likely ways in which the event can happen or fail. Yet by means of experience we may determine to a fair degree of accuracy the probability that a future event will happen at a certain time. If we have observed that an event has happened h times out of n possible ways, where n is a large number, we conclude that h/n is a fair estimate of the probability that the event will again happen and our confidence in this estimate increases as the number of possibilities, n, increases.

We are now ready to solve the problem which was stated in Art. 121. The American Experience Table of Mortality shows that out of 85,441 men living at age 30, the number of living at age 35 will be 81,822. Then the number dying before age

35 is 85,441 - 81,822 or 3619. Hence the probability that a man aged 30 will die before age 35 is $\frac{3619}{85,441} = .04235$. In this problem n = 85,441 and h = 3619.

We have previously stated that the value h/n is only an estimate, but it is accurate enough (when n is large enough) for many practical purposes.

123. Meaning of mortality table. If it were possible to trace a large number of persons, say 100,000, living at age 10 until the death of each occurred, and a record kept of the number living at each age x and the number dying between the ages x and x + 1, we would have a mortality table.

However, mortality tables are not constructed by observing a large number of individuals living at a certain age until the death of each, for it is evident that this method would not be practicable, but would be next to impossible, if not impossible. Mechanical methods have been devised for the construction of such tables, but the scope of this text does not permit of the discussion of these methods.

Table IV (back of book) is known as the American Experience Table of Mortality and is based upon the records of the Mutual Life Insurance Company of New York. It was first published in 1868 and is used by life insurance companies in America to determine the premium to charge for their policies. It will be used in this book as a basis for all computations dealing with mortality statistics. It consists of five columns as follows: The first gives the ages running from 10 to 95, the different ages being denoted by x; the second gives the number living at the beginning of each age x and is denoted by l_x ; the third gives the number dying between ages x and x + 1 and is denoted by d_x ; the fourth gives the probability of dying in the year from age x to age x + 1 and is denoted by q_x ; and the fifth gives the probability of living a year from age x to age x + 1 and is denoted by p_x .

Exercises

- 1. What is the probability that a man aged 40 will live to be 65? What is the probability that a man of the same age will die before reaching age 65? What is the sum of the two probabilities? (See solution of problem in art. 122.)
- 2. Suppose 100,000 lives age 10 were insured for one year, by a company for \$1000 each. Using the American Experience Table as a basis and not figuring interest, what would be the cost to each individual? Ans. \$7.49.
- 3. What would be the cost of \$1000 insurance for one year on the life of an individual 30 years old? (Assume for convenience that 85,441 individuals are insured by the same company.) Ans. \$8.43.
- 124. Permutations. Number of permutations of things all different. Before discussing permutations we state the following principle, which is fundamental: If one thing may be done in p ways and after it has been done in one of these ways, another thing may be done in q ways, then the two things together may be done in the order named in pq ways.

It is evident that for each of the p ways of doing the first thing there are q ways of doing the second thing and the total number of ways of doing the two in succession is pq.

This principle may be extended to three or more things.

Example. A man may go from A to B over any one of 4 routes and from B to C over any one of 7 routes. In how many ways may he go from A to C through B?

Ans. 28.

Each of the different ways that a number of things may be arranged is known as a permutation of those things. For example the different arrangements of the letters abc are—abc, acb, bac, bca, cab, cba. There are 3 different ways of selecting the first letter and after it has been selected in one of these ways there remain 2 ways of selecting the second letter. Then the first two letters may be selected in 3×2 or 6 ways. It is clear

that we have no choice in the selection of the third letter and consequently the total number of permutations (or arrangements) of the three letters is 6.

Now suppose there are n things all different and we wish to find the number of permutations of these things taken r at a time, n > r.

Since only r of the n things are to be used at a time, there are only r places to be filled. The first place may be filled by any one of the n things and the second place by any one of the n-1 remaining things. Then, the first and second places together may be filled in n(n-1) ways. The third place may be filled by any one of the n-2 remaining things. Hence the first three places may be filled in n(n-1)(n-2) ways. Reasoning in a similar way we see that after r-1 places have been filled, there remain n-(r-1) things from which to fill the rth place. Applying the fundamental principle stated above we have

$$_{n}P_{r} = n(n-1)(n-2) \dots (n-r+1)$$
 (1)

When r = n, (1) becomes,

$$_{n}P_{n} = n(n-1)(n-2) \dots 3 \cdot 2 \cdot 1 = n!$$
 (2)

Note. The symbol $n^P r$ is used to denote the number of permutations of n things taken r at a time. n! is a symbol which stands for the product of all the integers from 1 up to and including n, and is read "factorial" n.

Exercises

- 1. A man has two suits of clothes, three shirts, four ties and two hats. In how many ways may he dress by changing suits, shirts, ties and hats?
- 2. How many arrangements of the letters in the word "Vermont" can be made, using in each arrangement
 - (a) 4 letters? (b) all
 - (b) all the letters?
 - 3. How many signals could be made from 4 different flags?

4. Four persons enter a street car in which there are 7 vacant seats. In how many ways may they be seated?

125. Combinations. Number of combinations of things all different. By a combination we mean a group of things without any regard for order of arrangement of the individuals within the group. For example abc, acb, bac, bca, cab, cba are the same combination of the letters abc, but each arrangement is a different permutation.

By the number of combinations of n things taken r at a time is meant the number of different groups that may be formed from n individuals when r individuals are placed in each group. For example ab, ac, bc are the different combinations of the letters abc when two letters are used at a time.

The symbol ${}_{n}C_{r}$ is used to stand for the number of combinations of n things taken r at a time. We will now derive an expression for ${}_{n}C_{r}$. For each one of the ${}_{n}C_{r}$ combinations there are r! different permutations. And for all of the ${}_{n}C_{r}$ combinations there are ${}_{n}C_{r}r!$ permutations, which is the number of permutations of n things taken r at a time. Hence,

$${}_{n}C_{r}r! = {}_{n}P_{r},$$
and
 ${}_{n}C_{r} = \frac{{}_{n}P_{r}}{r!}.$
Since,
 ${}_{n}P_{r} = n(n-1)(n-2)\dots(n-r+1),$
we have
 ${}_{n}C_{r} = \frac{n(n-1)(n-2)\dots(n-r+1)}{r!}.$ (3)

Exercises

1. Find the number of combinations of 8 things taken 5 at a time. Solution. Here n = 8 and r = 5.

Then,
$${}_{8}C_{8} = \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4}{5 \cdot 4 \cdot 3 \cdot 2} = 56.$$

- 2. How many committees of 5 men can be selected from a group of 12 men?
- 3. Out of 7 Englishmen and 6 Americans, how many committees of 3 Englishmen and 2 Americans can be chosen?

 Ans. 525.
- 4. How many different sums can be made up from a cent, a nickel, a dime, a quarter, and a dollar?

 Ans. 31.
- 5. An urn contains 4 white and 9 black balls. If 5 balls are drawn at random, what is the probability that (a) all are black, (b) 2 white and 3 black?
- Solution. (a) The total number of ways that 5 balls may be drawn from 13 balls is ${}_{13}C_5$ or 1287 ways. And the number of ways that 5 black balls may be drawn is ${}_{9}C_5$ or 126 ways. Hence, the probability of drawing 5 black balls is ${}_{128}^{128}$ or ${}_{143}^{14}$.
- (b) 2 white balls may be drawn in ${}_4C_2$ ways or 6 ways. And for each one of these 6 ways of drawing 2 white balls, 3 black balls may be drawn in ${}_9C_3$ or 84 ways. Then 2 white balls and 3 black balls may be drawn together in $6\cdot 84$ or 504 ways (see fundamental principle, art. 124). Hence, the probability of drawing 2 white and 3 black balls is $\frac{50.84}{128.7}$ or $\frac{5.6}{148}$.
- 6. A bag contains 5 white, 6 black and 8 red balls. If 4 balls are drawn at random, what is the probability that (a) all are black, (b) 2 white and 2 red, (c) 2 black and 2 white, (d) 1 white, 1 black and 2 red?
- 126. Compound events. We may think of an event as composed of two or more simpler events. These component simpler events may be independent, dependent or exclusive. Two or more events are said to be independent or dependent when the occurrence of any one of them at a given trial does not or does affect the occurrence of the others. Two or more events are said to be exclusive when the occurrence of any one of them on a particular occasion excludes the occurrence of another on that occasion. We give now three theorems without proof.
- **Theorem I.** If $p_1, p_2 \dots p_r$ are the separate probabilities of r independent events, the probability that all of these events will

happen together at a given trial is the product of their separate probabilities, that is,

$$p = p_1 \cdot p_2 \cdot p_3 \ldots p_r. \tag{4}$$

Theorem II. Let p_1 be the probability of a first event; let p_2 be the probability of a second event after the first has happened; let p_3 be the probability of a third event after the first two have happened; and so on. Then the probability that all of these events will occur in order is

$$p = p_1 \cdot p_2 \cdot p_3 \ldots p_r. \tag{5}$$

Theorem III. If p_1, p_2, \ldots, p_r are the separate probabilities of r mutually exclusive events, the probability that one of these events will happen on a particular occasion when all of them are in question is

$$P = p_1 + p_2 + p_3 \ldots + p_r.$$
(6)

Exercises

1. The probability that A will live 15 years is $\frac{1}{7}$, the probability that B will live 15 years is $\frac{1}{6}$, and the probability that C will live 15 years is $\frac{1}{8}$. What is the probability that all three will live 15 years?

Solution. We have here three independent events, where $p_1 = \frac{1}{7}$, $p_2 = \frac{1}{6}$, $p_3 = \frac{1}{8}$.

Hence, $P = \frac{1}{7} \cdot \frac{1}{6} \cdot \frac{1}{8} = \frac{1}{336}$.

2. Find the probability of drawing 2 white balls in succession from a bag containing 5 white and 6 black balls, if the first ball drawn is not replaced before the second drawing is made.

Solution. We have here two dependent events. The probability that the first draw will be white is $\frac{5}{5+6} = \frac{5}{11}$ the probability that

the second draw will be white is $\frac{4}{4+6} = \frac{2}{5}$. Then $p_1 = \frac{5}{11}$ and p_2

$$=\frac{2}{5}$$
 Hence,

$$P = \frac{5}{11} \cdot \frac{2}{5} = \frac{2}{11}.$$
 ((5) Art. 126)

- 3. Five coins are tossed at once. What is the probability that all will be heads?
- 4. A bag contains 3 white, 4 black, and 6 red balls. One ball is drawn and not replaced, then a second ball is drawn and not replaced and then a third ball is drawn. What is the probability (a) that a ball of each color will be drawn, (b) that 2 blacks and 1 red will be drawn, (c) that all will be red?
- **5.** Suppose that in example 4 the balls were replaced after each draw. Then answer (a), (b), and (c).
- 6. Three men of ages 25, 30, 32 respectively form a partnership. What is the probability (a) that all three will be living at the end of 8 years, (b) that the first two will be living, (c) that one only of the three will be living? Use the American Experience Table of Mortality.
- 7. A man and wife are 24 and 23 when they marry. What is the probability that they will both live to celebrate their Golden Wedding?

CHAPTER XVII

ANNUITIES AND INSURANCE

- 127. Meaning of life annuity. In Chapter X annuities certain (those that continue a certain time regardless of any future happening) were discussed. By a life annuity we mean a succession of periodical payments which continue only during the life of the individual concerned. It is clear then that the cost of such an annuity will depend upon the probability of living as well as upon the rate of interest. Before computing the cost of a life annuity we will discuss pure endowments.
- 128. Pure endowments. A pure endowment is a sum of money payable to a person aged x, at a specified future date, provided the person survives until that date. We will now find the cost of an endowment of 1 to be paid at the end of n years to a person whose present age is x. The symbol, $n^E x$, will stand for the cost of such an endowment.

Suppose l_x individuals, all of age x, agree to contribute equally to a fund that will assure the payment of one dollar to each of the survivors at the end of n years. From the mortality table we see that out of the l_x individuals entering this agreement, l_{x+n} of them would be living at the end of n years. Consequently, it would require l_{x+n} dollars at that time. But the present value of this sum is

$$v^n \cdot l_{x+n}$$
 (Equation (1), Art. 70)

and since l_x persons are contributing equally to this fund, the share of each will be

$$v^n l_{x+n} \div l_x.$$

Hence,
$${}_{n}E_{x} = \frac{v^{n}l_{x+n}}{l_{x}}. \tag{1}$$

If the numerator and the denominator of (1) be multiplied by v_{z_1} it becomes

$$\frac{v^{x+n}l_{x+n}}{v^xl_x},$$

and if we agree that the product $v^x l_x$ shall be denoted by D_x , then (1) becomes,

$$_{n}E_{x} = \frac{D_{x+n}}{D_{x}}.$$
 (2)

 D_x is one of four symbols, called commutation symbols, that are used to facilitate insurance computations. See Table V in the back of this book. This table is based on the American Experience Table of Mortality and a $3\frac{1}{2}\%$ interest rate is used. There are other commutation tables based upon different tables of mortality and different rates of interest are used.

129. Present value (cost) of a life annuity. We now propose to find the present value of a life annuity of one dollar per annum payable to an individual, now aged x. The symbol, a_x , is used to denote such an annuity. We see that the present value of this annuity is merely the sum of pure endowments, payable at the end of one, two, three and so on years. Consequently,

$$a_x = {}_{1}E_x + {}_{2}E_x + {}_{3}E_x + \dots \text{ to end of table.}$$

$$= \frac{D_{x+1}}{D_x} + \frac{D_{x+2}}{D_x} + \frac{D_{x+3}}{Dx} + \dots \text{ to end of table.}$$

$$= \frac{D_{x+1} + D_{x+2} + D_{x+3} + \dots ((2), \text{ Art. 128.})}{D_x}$$
(3)

$$a_x = \frac{N_{x+1}}{D_x},\tag{4}$$

where

$$*N_{x+1} = D_{x+1} + D_{x+2} + D_{x+3} + \dots$$
 to end of table. (5)

130. Life annuity due. When the first payment under an annuity is made immediately, we have what is called an annuity due. The present value of an annuity due of 1 per annum to a person aged x is denoted by a_x . An annuity due differs from an ordinary annuity (Art. 129) only by an immediate payment. Consequently we have

$$a_{x} = 1 + a_{x},$$

$$= 1 + \frac{N_{x+1}}{D_{x}} = \frac{D_{x} + N_{x+1}}{D_{x}}$$

$$= \frac{D_{x} + D_{x+1} + D_{x+2} + D_{x+3} + \dots \text{ to end of table.}}{D_{x}}$$
 (6)

$$=\frac{N_x}{D_x},\tag{7}$$

where

$$N_x = D_x + D_{x+1} + D_{x+2} + \dots$$
 to end of table. (8)

131. Temporary annuity. When the payments under a life annuity stop after a certain time although the individual be still living, we have what is called a temporary annuity. Such an annuity which ceases after n years is denoted by the symbol $a_{x_{\overline{n}, l}}$.

It is clear that the present value of a temporary annuity is equal to the sum of present values of pure endowments payable at end of $1, 2, 3, \ldots, n$ years. Thus,

$$a_{x\overline{n-1}} = {}_{1}E_{x} + {}_{2}E_{x} + \dots + {}_{n}E_{x},$$

$$= \frac{D_{x+1} + D_{x+2} + \dots + D_{x+n}}{D_{x}}$$

$$= \frac{D_{x+1} + D_{x+2} + \dots \text{ to end of table}}{D_{x}}$$

$$- \frac{D_{x+n+1} + D_{x+n+2} + \dots \text{ to end of table}}{D_{x}}$$
(9)

$$a_{x\overline{n'}|} = \frac{N_{z+1} - N_{z+n+1}}{D_z} \tag{10}$$

If the first of the n payments be made immediately and the last payment be made at the end of n-1 years, we then have a temporary annuity due. Letting $a_{x\bar{n}|}$ represent such an annuity, we get,

$$a_{x\overline{n}} = 1 + a_{x\overline{n-1}},$$

$$= 1 + \frac{D_{x+1} + D_{x+2} + \dots + D_{x+n-1}}{D_x}$$

$$= \frac{D_x + D_{x+1} + D_{x+2} + \dots + D_{x+n-1}}{D_x}$$

$$= \frac{N_x - N_{x+n}}{D}.$$
(11)

Exercises

1. Find the cost of a pure endowment of \$5000 due in 15 years and purchased at age 25, interest at $3\frac{1}{2}\%$.

Solution. Here
$$x = 25$$
, $n = 15$, and ${}_{15}E_{25} = \frac{D_{40}}{D_{25}} = \frac{19727.4}{37673.6} = .523639.$

Hence, $5000_{15}E_{25} = 2618.20 .

2. What is the cost of a life annuity of \$500 per annum for a person aged 50, interest at $3\frac{1}{2}\%$?

Solution. From (4) Art. 129,

$$a_{50} = \frac{N_{51}}{D_{50}} = \frac{1691650}{12498.6}$$

= 13.534716.

The annuity of \$500 has a cost of

$$500a_{50} = 500(13.534716) = $6767.36.$$

3. A man aged 60 has \$10,000 with which to buy a life annuity. What will be his annual income on a $3\frac{1}{2}\%$ basis?

Solution. Here we have the cost of an annuity and are required to find the annual rent. Hence, from (4) Art. 129, we have,

$$Ra_{60} = \$10,000,$$

$$R = \frac{\$10,000}{a_{60}}.$$

But, $a_{60} = \frac{N_{61}}{D_{60}} = \frac{73754.7}{7351.65} = 10.032401,$ $R = \frac{10,000}{10.032401} = \$996.77.$

- 4. An heir, aged 14, is to receive \$30,000 when he becomes 21. What is the present value of his estate on a $3\frac{1}{2}\%$ basis?
- 5. What would be the present value of the estate in Ex. 4 on a 4% basis? Ans. \$21,597.30.
- 6. According to the terms of a will a person aged 30 is to receive a life income of \$6000, first payment at once An inheritance tax of 3% on the present value of the income must be paid immediately. Find the present value of the income and the amount of the tax.

 Ans. \$117,632.40, \$3,528.97.
- 7. A man carrying a \$10,000 life insurance policy arranges it so that the proceeds at his death shall be payable to his wife in annual install-

ments for 20 years certain, first payment upon due proof of death. What would be the annual installment?

- 8. What would be the annual installment in Ex. 7, if payments were to be made throughout the life of his wife, assuming that she was 55 years of age at his death?
- 9. What would be the annual installment in Ex. 8, if the wife took a twenty-year temporary annuity?
- 132. Life insurance definitions. Life insurance is fundamentally sound only when a large group of individuals is considered. Each person contributes to a general fund from which the losses sustained by individuals of the group are paid. The organization that takes care of this fund and settles the claim for all losses is known as an insurance company. The deposit made to this fund by the individuals is called a premium. Since, the payment of this premium by the individuals insures a certain sum or benefit at his death, he is spoken of as the insured and the person to whom the benefit is paid at the death of the insured is called the beneficiary. The agreement made between the insured and the company is called a policy and the insured is sometimes spoken of as the policy holder. If all of those insured were of the same age all premiums would be the same, but since the policy holders are of different ages it is evident that the premiums vary. One of the main problems is to determine the premium to be paid for a certain benefit. It is clear that the premium will depend upon the probability of dying and also upon the rate of interest to be paid on funds left with the company. The premium based upon these two things only is known as a net premium. However, the insurance company has many expenses, in connection with the securing of policy holders, such as advertising, commissions, salaries, office supplies, et cetera, and consequently, must make a charge in addition to the net premium. The net premium plus this additional charge is called the gross or office premium. The premium may be single, or it may be

paid annually, and this annual premium may sometimes be paid in semiannual, quarterly or even monthly installments. All premiums are paid in advance.

133. Ordinary life policy. An ordinary life policy is one wherein the benefit is payable at death and at death only. The net single premium on an ordinary life policy is the present value of this benefit. The symbol A_x will stand for the net single premium of a benefit of 1.

Let us assume that each of l_x persons all of age x, buys an ordinary life policy of 1. During the first year there will be d_x deaths, and consequently, at the end of the first year * the company will have to pay d_x in benefits. Hence, the present value of these benefits will be vd_x . There will be d_{x+1} deaths during the second year and the present value of these benefits will be v^2d_{x+1} , and so on. The sum of the present values of all future benefits will be given by the expression,

$$vd_x + v^2d_{x+1} + v^3d_{x+2} + \dots$$
 to end of table.

Since l_x persons buy benefits of 1 each, we will obtain the present value of each person's benefit by dividing the above expression by l_x . Therefore,

$$A_x = \frac{vd_x + v^2d_{x+1} + v^3d_{x+3} + \dots \text{ to end of table.}}{l_x}$$
 (13)

If both numerator and denominator of (9) be multiplied by v^x , we get,

$$A_{x} = \frac{v^{x+1}d_{x} + v^{x+2}d_{x+1} + \dots \text{ to end of table,}}{v^{x}l_{x}}$$

$$= \frac{C_{x} + C_{x+1} + C_{x+2} + \dots \text{ to end of table.}}{D_{x}}$$

$$A_{x} = \frac{M_{x}}{D_{x}}, \qquad (14)$$

* In reality claims are paid upon due proof of the death of the insured, but we here assume that they are not paid until the end of the year.

where,

$$C_x^* = v^{x+1}d_x$$
, $C_{x+1} = v^{x+2}d_{x+1}$, and so on,

and $M_x^* = C_x + C_{x+1} + C_{x+2} + \dots$ to end of table.

Life insurance policies are seldom bought by a single premium. The common plan is to pay a fixed annual premium throughout the life of the policy. We denote the annual premium of an ordinary life policy of 1 by the symbol P_x . The payment of P_x , at the beginning of each year, for life forms a life annuity due and the present value of this annuity must be equivalent to the net single premium. Thus we have,

$$P_x \mathbf{a}_x = A_x. \tag{15}$$

Solving for P_x , we get,

$$P_{x} = \frac{A_{x}}{a_{x}} = \frac{M_{x}}{N_{x}},$$

$$A_{x} = \frac{M_{x}}{D} \quad \text{and} \quad a_{x} = \frac{N_{x}}{D}.$$
(16)

since,

Exercises

- 1. What is the net single premium for an ordinary life policy for \$10,000 on a person aged 25?
 - 2. What is the annual premium on the policy of Ex. 1?
- 3. Compare annual premiums on ordinary life policies of \$10,000 for ages 20 and 21 and for ages 50 and 51. Note the annual change in cost for the two periods of life.
- 134. Limited payment life policy. The limited payment life policy is like the ordinary life policy † in that the benefit is payable at death and death only, but differs from it in that the

^{*} See Table V.

[†] The ordinary life policy and the limited payment life policy, are often spoken of as whole life policies in that the benefit of either is not payable until death.

equivalent of the net single premium is arranged to be paid in n annual payments. Here n is the number of annual payments that are to be made unless death should occur earlier. The standard forms of limited payment policies are usually for ten, fifteen, twenty or thirty payments but other forms may be written.

It is evident that the n annual premiums on the limited payment life policy form a temporary life annuity due. It is also evident that this annuity is equivalent to the net single premium A_x . Hence, if the net annual premium for a benefit of 1 be denoted by ${}_{n}P_{x}$, we may write,

$$_{n}P_{x} \ a_{x\overline{n}} = A_{x}. \quad ((11), Art. 131.)$$
 (17)

Solving for ${}_{n}P_{x}$ and substituting for $a_{x\bar{n}}$ and A_{x} , we get,

$$_{n}P_{x} = \frac{M_{x}}{N_{x} - N_{x} + n}$$
 (18)

Exercises

1. Find the net annual premium on a twenty-payment life policy for \$2500 on a person aged 30.

Solution. Using (18), Art. 131, we have,

$${}_{20}P_{30} = \frac{M_{30}}{N_{30} - N_{50}} = \frac{10,259}{596,804 - 181,663}$$
$$= \frac{10,259}{415,141} = 0.024712.$$

$$2500_{20}P_{30} = $61.78.$$

- 2. Find the net annual premium for a fifteen-payment life policy of \$10,000 issued at age 45.
- 3. Find the net annual premium on a twenty-payment life policy of \$5000 for your age at nearest birthday.
- 4. Compare annual premiums on twenty-payment life policies of \$20,000 for ages 25 and 26 and for ages 50 and 51. Note the annual change in cost for the two periods of life.

135. Term insurance. Term insurance is temporary insurance as it provides for the payment of the benefit only in case death occurs within a certain period of n years. After n years the policy becomes void. The stated period may be any number of years, but usually term policies are for five years, ten years, fifteen years and twenty years.

The symbol $A_{x\overline{n}}$ is used to denote the net single premium on a *n*-year term policy of benefit 1, bought at age x.

If we assume that each of l_x persons all of age x, buys a term policy for n years, the present value of the payments made by the company will be given by

$$vd_x + v^2d_{x+1} + v'd_{x+2} + \dots v^nd_{x+n-1}. \tag{19}$$

Since each of l_x persons buys a benefit of 1, the present value of the benefit of each person will be gotten by dividing expression (19) by l_x , Hence,

$$A^{1}_{x\overline{n}|} = \frac{vd_{x} + v^{2}d_{x+1} + \ldots + v^{n}d_{x+n-1}}{l_{x}}$$
 (20)

If both the numerator and the denominator of (20) be multiplied by v^x , we get,

$$A^{1}_{z\overline{n_{1}}} = \frac{v^{x+1}d_{x} + v^{x+2}d_{x+1} + \dots v^{x+n}d_{x+n-1}}{v^{x}l_{x}}$$

$$= \frac{(v^{x+1}d_{x} + v^{x+2}d_{x+1} + \dots \text{to end of table})}{v^{x}l_{x}}$$

$$= \frac{(v^{x+n+1}d_{x+n} + v^{x+n+2}d_{x+n+1} + \text{to end of table})}{v^{x}l_{x}}.$$

$$A^{1}_{z\overline{n_{1}}} = \frac{M_{x} - M_{x+n}}{D}. \quad ((14), \text{ Art. 133.})$$

When the term insurance is for one year only, the net pre-

mium is called the *natural premium*. It is given by making n = 1 in (21) Thus,

$$A^{1}_{x\overline{1}|} = \frac{M_{x} - M_{x+1}}{D_{x}} = \frac{C_{x}}{D_{x}}$$
 (22)

The net annual premium for a term policy of 1 for n years will be denoted by the symbol $P^1_{x\overline{n}|}$. It is evident that the annual premiums for a term policy constitute a temporary annuity due. This annuity is equivalent to the net single premium. Thus,

$$P^{1}_{x\overline{n}} a_{x\overline{n}} = A^{1}_{x\overline{n}}. \tag{23}$$

Solving for P_{xn} and substituting for $a_{x\overline{n}}$ and $A_{x\overline{n}}$, we get,

$$P_{x_{n}}^{1} = \frac{M_{x} - M_{x+n}}{N_{x} - N_{x+n}}$$
 ((12), Art. 131 and (24)

Exercises

1. Find the net single premium for a term insurance of \$1000 for 15 years for a man aged 30.

Solution. From (21), Art. 135, we have,

$$A_{30} = \frac{M_{30} - M_{45}}{D_{40}} = \frac{10259 - 7192.81}{30,440.8}$$
$$= \frac{3066.19}{20440.8} = 0.10072,$$

and $1000 A_{30} = $100.72.$

- 2. Find the net single premium for a term insurance of \$25,000 for 5 years for a man aged 50.
- 3. What is the net annual premium for the insurance described in Ex. 2?
- 4. What are the natural premiums for ages 20, 30, 40, and 50 for an insurance of \$1000?
- 5. A person aged 35 buys a \$10,000 term policy which will terminate at age 65. Find the net annual premium.

136. Endowment insurance. In an endowment policy the company agrees to pay a certain sum in event of the death of the insured within a specified period, known as the endowment period, and also agrees to pay this sum at the end of the endowment period, provided the insured be living to receive it. From the above definition it is evident that an endowment insurance of 1 for n years may be considered as a term insurance of 1 for n years plus an n-year pure endowment of 1. (See Art. 128 and Art. 135.)

Thus, if we let the symbol $A_{x\overline{n}|}$ stand for the net single premium for an endowment of 1 for n years we have,

$$A_{x\overline{n'}|} = A^{1}_{x\overline{n'}|} + {}_{n}E_{x}$$

$$= \frac{M_{x} - M_{x+n}}{D_{x}} + \frac{D_{x+n}}{D_{x}}.$$
(25)

$$A_{x\overline{n}|} = \frac{M_x - M_{x+n} + D_{x+n}}{D_x}$$
 (26)

We shall now find the net annual premium for an endowment of 1 for n years, the premiums to be payable for k years. The symbol $_kP_{x_{n-1}}$ will stand for the annual premium of such an endowment. It is clear that these premiums constitute a temporary annuity due that is equivalent to the net single premium. Hence,

$$_{k}P_{x\overline{n}|}a_{x\overline{k}|}=A_{x\overline{n}|}. (27)$$

Solving for ${}_{k}P_{x\overline{n}|}$ and substituting for $a_{x\overline{k}|}$ and $A_{x\overline{n}|}$, we get,

$$_{k}P_{x\overline{n}|} = \frac{M_{x} - M_{x+n} + D_{x+n}}{N_{x} - N_{x+k}}$$
 (28)

If the number of annual payments are to be equal to the

number of years in the endowment period, then k = n, and (28) becomes,

$$P_{x\overline{n}|} = \frac{M_x - M_{x+n} + D_{x+n}}{N_x - N_{x+n}}$$
 (29)

Exercises

1. Find the net annual premium on a \$10,000 20-payment, 30-year endowment policy taken at age 25.

Solution. From (28), we have,

$$\begin{split} {}_{20}P_{25} &= \frac{M_{25} - M_{55} + D_{55}}{N_{25} - N_{45}} \\ &= \frac{11,631.1 - 5510.54 + 9733.40}{770,113 - 253,745} \\ &= \frac{15,853.96}{516,368} = 0.0307028. \end{split}$$

$$10,000_{20}P_{25\overline{30}} = \$307.03.$$

- 2. Find the net single premium on a \$1000 20-year endowment policy for a person aged 35.
- 3. Find the net annual premium for a \$10,000 20-payment endowment policy maturing at age 60, taken at age 25.
- 4. Find the net annual premium on a \$20,000 15-year endowment policy taken at age 55.
- 137. Meaning of reserves. By observing the table of mortality, we see that the probability of dying within any one year increases each year after the tenth year of age. Consequently, the natural premium will increase with each year's increase of age. The net annual premium will be much larger than the natural premium during the earlier years of the policy, but finally for the later years the natural premium will become larger than the net annual premium.

During the earlier years the difference between the net annual premium and the natural premium is set aside at interest annually. This fund grows from year to year and is held intact to meet the heavier mortality of the later years. This amount so held by the company is known as the reserve * or the value of its policies. This is unlike the reserve of a bank for it is not held to meet some unexpected emergency but it is a real liability of the company to be used to settle the claims of its policy-holders.

The above remarks may be illustrated as follows: Suppose a man aged 35 takes out a \$1000 ordinary life policy. His net annual premium for that age on a $3\frac{1}{2}\%$ basis would be \$19.91. The natural premium for that year would be \$8.65, leaving a difference of \$11.26 † to be placed in the reserve. However, at age 60 the natural premium would be \$25.79, which is \$5.88 larger than the net annual premium, this deficiency being cared for by the reserve.

Let us assume that each of \$1,822 persons, all aged 25, buy an ordinary life policy of \$1000. The total net annual premiums would amount to \$1,629,076.02. This amount would accumulate to \$1,686,093.68 by the end of the first year. According to the table of mortality the death losses to be paid at the end of the first year would amount to \$732,000.00, leaving \$954,093.68 in the reserve. This would leave a terminal reserve of \$11.77 to each of the \$1,090 survivors. The premiums received at the beginning of the second year amount to \$1,614,501.90, which, when added to \$954,093.68, makes a total of \$2,568,595.58, and so on. The following table is self explanatory.

Table showing terminal reserves on an ordinary life policy for \$1000 on the life of an individual aged 35 years.

^{*} The reserve on any one policy at the end of any policy year is known as the terminal reserve for that year, or the policy value.

[†] This is the initial reserve for the first year.

Policy Year	Funds on Hand at Beginning of Year	Funds Accumulated at 3½%	Death Losses	Funds at End of Year	Amount of Credit of Each Survivor
1st	1,629,076.02	1,686,093.68	732,000	954,093.68	11.77
2nd	2,568,595.58	2,658,496.43	737,000	1,921,496.43	23.91
3rd	3,521,324.66	3,644,571.02	742,000	2,902,571.02	36.46
4th	4,487,625.03	4,644,692.94	749,000	3,895,692.94	49.40
5th	5,465,835.36	5,657,139.60	756,000	4,901,139.60	62.75

The above table illustrates what we mean by a reserve. Reserves, however, are not figured in this way. Formulas for finding the reserves on different kinds of policies and for any year may be derived but we shall not attempt this discussion here.

TABLE I.

COMMON LOGARITHMS OF NUMBERS.

N.		0	1	2	3	4	5	6	1 7	8	1 9		Pro	p. P	ts.
	-		 - -	-		 -	┝	<u> </u>	+	 	+	┢		P	
100	o	000	043	087	130	173 604	217	260 689	303	346	389 817	lı	44	43	42
0I 02	l	432 860	475 903	518 945	988	*030	647 *072	*115	732 *157	775 *199	*242	1		1	1
03	01		326	368	410	452	494	536	578	620	662	2	4.4 8.8	4.3 8.6	8.4
04	l	703	745	787	828	870	912	953	993	*036	*078	3	13.2	12.9	12.6
∘5 ∘6	02		160	202	243	284	325	366	407	449	490	4 5	17.6 22.0	17.2 21.5	16.8
	l	53 r	572	012	653	694	735	776	816	857	898	6		25.8	25.2
o7 o8	0,1	938	979 383	*019	*060 463	*100	*141	*181 583	*222 623	*262 663	*302 703	7		30.1	29.4
09	U,1	342 743	782	423 822	862	503 902	543 941	981	*021	*060	*100	8		34·4 38 ·7	
11Ó	04		179	218	258	297	336	376	415	454	493	"		30.7	37.0
11		532	571	610	650	689	727	766	805	844	883		41	40	39
12		922	961	99 <u>9</u> 38 <u>5</u>	*038	*077 461	*115	*154	*192	*231 614	*269	1	4.1	4.0	3.9
13	9	308	346		423	١.	500	538	576	1 .	652	3	8.2	8.0 12.0	7.8 11.7
14 15	06	690	729 108	767 145	80 5 183	843 221	881 258	918 296	956 333	994 371	7032 408	4	16.4	16.0	15.6
16	00	446	483	521	558	595	633	670	707	744	781	5	20.5	20.0	19.5
17	l	819	856	893	930	967	⁶ 004	*041	*078	*115	*151		24.6 28.7	24.0 28.0	23.4 27.3
18	07	188	225	262	298	335	372	408	445	482	518	7 8	32.8		31.2
19		<u>555</u>	591	628	664	700	737	_773_	809	846	882	9	36.9	36.0	35.1
120	٠.	918	954	990	*027	*063	*099	*135	*171	207	²⁴³	П	38	37	36
2I 22	08	279 636	314 672	350 707	386 743	422 778	458 814	493 849	529 884	565 920	955	ı	3.8		
23		991	*026	*061	*096	*132	*167	*202	*237	272	*307	2	7.6	3.7 7.4	3.6 7.2
24	09	342	377	412	447	482	517	552	587	621	656	3	11.4	11.1	10.8
25	_	691	726	760	795	830	864	899	934	968	*003	4	15.2	14.8	14.4 18.0
26	10	037	072	106	140	175	209	243	278	312	346	5	22.8	22.2	21.6
27		380	415	449	483	517	551	585	619	653	687	7	26.6	25.9	25.2
28 29		721 059	755 093	789 126	823 160	857 193	890	924 261	958	992 327	*025 361	8	30.4 34.2	29.6	28.8
180		394	428	461	494	528	561	594	628	661	694	91	34.2	33.3	32.4
31		727	760	793	826	860	893	926	959	992	024	1	35	34	33
32	12	057	090	123	156	189	222	254	287	320	352	1	3.5	3.4	3.3 6.6
33		3 ⁸ 5	418	450	483	516	548	581	613	646	678	2	7.0	6.8	
34	7.0	710	743 066	775 098	808	840 162	872	905	937 258	969 290	*001 322	3	10.5 14.0	13.6	9.9 13.2
35 36	13	033 354	386	418	130 450	481	194 513	545	577	609	640	5	17.5	17.0	16.5
	•	672	704	735	767	799	830	862	893	925	956		21.0	20.4	19.8
37 38		988	*019	*05I	*082	*114	*145	*176	*208	239	*270		24.5 28.0	23.8 27.2	23.1 26.4
39	14	301	333	364	395	426	457_	_489	520	551	_582	9	31.5	30.6	
140		613	644	675	706	₃ 737	768	799	829	860	891	1	32	31	30
41 42	TE	922 229	953 259	983 290	*014 320	*045 351	*076 381	*106 412	*137 442	*168 473	*198 503		-	- 1	
43	•3	534	564	594	625	655	685	715	746	776	806	1 2	3.2 6.4	3. ī 6. 2	3.0 6.0
44		836	866	897	927	957	987	*017	*047		*107	3	9.6	9.3	9.0
45 46	16	137	167	197	227	256	286	316	346	376	406		16.0	12.4	12.0 15.0
		435	465	495	524	554	584	613	643	673	702		19.2	18.6	18.0
47		732	761	791	820	8 5 0	879	909	938	967	997	7	22.4	21.7	21.0
48 49	17	026 319	056 348	08 5	406	143 435	173 464	202 493	231 522	260 551	289 580			24.8 27.9	24.0
150	-	609	638	667	696	725	754	782	811	840	869	91	20.0	-1.7	-/.0
N.		0		2		4	_		7		<u> </u>		Des	- P	
и.		•	1	26	3	4	5	6	7	8	9		L 10	p. Pt	Pa.

N.	0	1	2	3	4	5	6	7	1 8	9	ī	Prop.	Pts.
150	17 609	638	667	696	725	754	782	811	840	869		-	
51	898	926	955	984	*013	*041	*070	*099	*127	*156	l	29	28
52	18 184 469	213	241	270	298	327 611	355	384 667	412	441	1	2.9	2.8
53		498 780	526 808	554	583		639		696	724	3	5.8 8.7	5.6 8.4
54 55	752 19 033	061	089	837	865	893 173	921	949	977 257	*00 <u>5</u> 28 <u>5</u>	4	11.6	11.2
56	312	340	368	396	424	451	479	507	535	562	5	14.5	14.0 16.8
57	590	618	645	673	700	728	756	783	811	838		17.4	19.6
58 59	866 20 140	893 167	921 194	948	976 249	*003 276	*030 303	*058 330	*085 358	*112 385	7 8	23.2	22.4
160	412	439	466	493	520	548	575	602	629	656	9	26.1	25.2
61	683	710	737	763	790	817	844	871	898	925		27	25
62 63	952 21 219	978	*005	*032	*059	*085	*112	*139	*165	*192	1	2.7	2.6
		245	272	299	325	352	378	405	431	458	3	5.4 8.1	5.2 7.8
64 65	484 748	511 775	537 801	564 827	590 854	617 880	906	669 932	696 958	722 985	4	10.8	10.4
66	22 011	037	063	089	115	141	167	194	220	240	5 6	13 5 16.2	13.0 15.6
67	272	298	324	350	376	401	427	453	479	505	7	18.9	18.2
68 69	531 789	557 814	583 840	608 866	634 891	660 917	686 943	712 968	737 994	763 *019	8	21.6	20.8
170	23 045	070	096	121	147	172	198	223	249	274	9	24.3	23.4
71	300	325	350	376	401	426	452	477	502	528	l	2	5
72	553	578	603	629	654	679	704	729	754	779	l		.5
73	803	830	855	880	905	930	955	980	*005	*030			.o '. 5
74 75	24 055 304	080 329	10 <u>5</u> 353	130 378	15 <u>5</u> 403	180 428	204 452	229 477	254 502	279 527		4 10	.0
76	551	576	601	625	650	674	699	724	748	773			.5 .0
77	797	822	846	871	895	920	944	969	993	*018	l	7 17	
78 79	25 042 285	066 310	091 334	115 358	139 382	164 406	188 431	45 5	237 479	261 503		8 20	
180	527	551	575	600	624	648	672	696	720	744		9 22	5
81	768	792	816	840	864	888	912	935	959	983	l	24	23
82	26 007	031	055	079	102	126	150	174	198	221	1	2.4	2.3
83	245 482	269	293	316	340	364	387	411	435	458	3	4.8 7.2	4.6 , 6.9
84 85	717	505 741	529 764	553 788	576 811	600 834	623 858	647 881	670 905	928	4	9.6	9.2
85 86	951	975	998	*021	*045	*o68	*091	*114	*138	*í61	5 6	12.0	11.5 13.8
87	27 184	207	231	254	277	300	323	346	370	393	7 8	16.8	16. I
88 89	416 646	439 669	462 692	485 715	508 738	531 761	554 784	577 807	600 830	623 852	8	19.2	18.4 20.7
190	875	898	921	944	967	989	*012	*035	*058	*081	,		•
91	28 103	126	149	171	194	217	240	262	285	307		22	21
92 93	330 556	353 578	375 601	398 623	421 646	443 668	466 691	488 713	735	533 758	1 2	2.2	2. I
	780	803	825	847	870	892	914			981	3	4.4 6.6	4.2 6.3
94 95	29 003	026	048	070	092	115	137	937	959 181	203	4	8.8	8.4
96	226	248	270	292	314	336	358	380	403	425	5	11.0	10.5 12.6
97 98	447	469	491	513	535	557	579	601	623	645	7 8	15.4	14.7 16.8
98 99	667 885	688 907	710 929	732 951	754 973	776 994	798 *016	820 *038	842 *060	863 *081	8	17.6	
200	30 103	125	146	168	190	211	233	255	276	298		, - 5.0 [· j
N.	0	1	2	3	4	5	6	7	8	9	3	Prop.	Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
200	30 103	125	146	168	190	211	233	255	276	298	
10	320	341	363	384	406	428	449	47 I	492	514	22 21
02	5 <u>3</u> 5	557	578	600	621	643	664	685	707	728	I 2.2 2.I
03	750	771	792	814	835	856	878	899	920	942	2 4.4 4.2
04	963	984	*006	*027	*048	*069	*091	*112	*133	*154	3 6.6 6.3 4 8.8 8.4
o5 o6	31 175 387	197 408	218 429	2 <u>3</u> 9 4 <u>5</u> 0	260 471	281 492	302	323 534	34 5 555	366 576	
		1 '	1	660	681					1	6 13.2 12.6
07 08	597 806	618	639 848	869	890	702 911	723 931	744 952	76 5 973	785 994	7 15.4 14.7 8 17.6 16.8
09	32 015	035	056	077	098	118	139	160	181	201	9 19.8 18.9
210	222	243	263	284	305	325	346	366	387	408	J. 1. 3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
11	428	449	469	490	510	531	552	572	593	613	20
12	634	654	675	695	715	736	756	777	797	818	I 2.0
13	838	858	879	899	919	940	960	980	*001	*021	2 4.0
14	33 041	062	082	102	122	143	163	183	203	224	3 6.o 4 8.o
15 16	244 445	264 465	284 486	304 506	32 <u>5</u> 526	34 <u>5</u> 546	36 5 566	385 586	405 606	425 626	
		666	686		- 1		766	786	i	826	5 10.0 6 12 0
17 18	646 846	866	885	706 905	726 925	746 945	965	985	806 *005	*025	7 14.0 8 16.0
19	34 044	064	084	104	124	143	163	183	203	223	9 18.0
220	242	262	282	301	321	341	361	380	400	420	9,
21	439	459	479	498	518	537	557	577	596	616	19
22	635	655	674	694	713	733	753	772	792	811	1 1.9
23	830	850	869	889	908	928	947	967	986	*005	2 3.8
24	35 025	044	064	083	102	122	141	160	180	199	3 57 4 7.6
25 26	218 411	238 430	257 449	276 468	295 488	31 <u>5</u> 507	334 526	353 545	372 564	392 583	
1							-		[6 11.4
27 28	603 793	622 813	641 832	660 851	679 870	698 889	908	736	755 946	774 965	7 13.3 8 15.2
29	984	*003	*02I	*040	*059	*078	*097	*116	*135	*154	8 15.2 9 17.1
280	36 173	192	211	229	248	267	286	305	324	342	1.
31	361	380	399	418	436	455	474	493	511	530	tS
32	549	568	586	605	624	642	661	680	698	717	1 1.8
*33	736	754	773	791	810	829	847	866	884	903	2 3.6
34	922	940	959	977	996	*014	*033	*051	*070	*o88	3 5.4 4 7.2
35 36	37 IO7 29I	125 310	144 328	162 346	181 36 5	199 383	218 401	236 420	254 438	273 457	5 9.0
		- 1	-			566	585		621		6 10.8
37 38	· 475 658	493 676	511 694	530 712	548 731	749	767	603 785	803	639 822	7 12.6 8 14.4
39	840	858	876	894	912	931	949	967	985	*003	9 16.2
240	38 021	c39	057	075	093	112	130	148	166	184	
41	202	220	238	256	274	292	310	328	346	364	17
42	382	399	417	435	453	471	489	507	525	543	I 1.7
43	561	578	596	614	632	6 5 0	668	686	703	721	2 3.4
44	739	757	775	792	810	828 **	846 *023	863 *041	881 *058	899 *076	3 5.1 4 6.8
45 46	917 39 094	934	952 129	970 146	987 164	*005 182	199	217	235	252	5 8.5
	270	287	- [٠ ۱	- 1					428	
47 48	445	463	30 5 480	322 498	340 515	358 533	375 550	393 568	410 585	602	7 11.9 8 13.6
49	620	637	655	672	690	707	724	742	759	777	9 15.3
250	794	811	829	846	863	881	898	915	933	950	,
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

250	N.		0	1	2	3	4	5	6	7	8	9	Pro	p. Pts.
52	250	39	794	811	829	846	863	188	898		933	950		
53	51				*002		*037		*071					18
S4		40												
1.00 1.00	5 3		312	329	1 -	364	381		1			466		
Second Color					518						1			
State	55					705								
58 41 162 179 196 212 229 246 263 280 296 313 8 144 430 447 464 481 16.2 290 246 263 280 296 313 8 144 430 447 464 481 16.2 166 664 681 697 714 731 747 764 780 797 814 11.7 23.4 863 880 896 913 299 946 963 979 1 1.7 193 210 226 243 259 275 292 308 3 5.1 1.7 3.4 66 423 399 496 423 439 455 472 408 68 813 830 846 862 878 894 911 927 743 799 75 781 797 7 711.9 297 7313 323 343 355	50		024		-		1 -		-		-	1	6	
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	57		993						*0 <u>9</u> 5				7	12.6
260		41								1		313	-	
61 664 681 697 714 731 747 764 780 797 814 17 662 830 847 863 880 896 913 929 946 963 979 1 1 1.7 664 780 968 979 97													9	10.2
62 830 847 863 880 866 913 929 946 963 979 1 1.7 63 996 *o12 *o29 *o45 *o62 *o78 *o95 *111 *127 *144 2 3.4 64 42 160 177 193 210 226 243 257 292 298 3 3 5.1 66 488 504 521 537 553 570 586 602 619 635 6 10.2 67 651 667 684 700 716 732 749 765 781 797 711.9 813 833 846 886 888 894 911 997 711.9 813 896 991 943 959 981 965 722 *888 *104 *120 915.3 921 924 894 915 943 999 945										· ·			ł	17
63		l												_
64											*127	*144		
1.6				į.	1	}		ŀ	1		1			
Second Part		42												6.8
67			488						586	602	610		5	8.5
68 813 830 846 862 878 894 911 927 943 959 975 991 *008 *024 *040 *056 *072 *088 *104 *120 915.3 270 43 136 152 169 185 201 217 233 249 265 281 71 297 313 329 345 361 377 393 409 425 441 16 72 457 473 489 505 521 537 553 569 584 600 1 1.6 73 616 632 648 664 680 696 712 727 743 759 2 3.2 44 101 107 122 138 184 170 185 201 217 232 6 9.6 4.4 4091 107 122 138 154 170 185	4				1 -				-	1				
69 975 991 *008 *024 *040 *056 *072 *688 *104 *122 9 15.3 270 43 136 152 169 185 201 217 233 249 265 281 71 297 313 329 345 361 377 393 409 425 641 72 457 473 489 505 521 537 533 699 4825 640 73 616 632 648 664 680 696 712 727 743 759 2 3.2 74 775 791 807 823 838 854 870 886 902 917 4 64 691 710 122 138 154 170 185 201 217 232 5 80 6 64 64 64 64 654 654 654	68		812										7	
270											*104	*120		
71		12			-			,					,	13.3
72 457 473 486 50\$\bar{5}\$ 521 537 553 569 584 600 1 1.6 3.2 74 775 791 807 823 838 854 870 886 902 917 3 4.8 6.4 775 791 807 823 838 854 870 886 902 917 3 4.8 6.4 775 791 807 867 870 886 902 917 3 4.8 6.4 776 444 091 107 122 138 154 170 185 201 217 232 6 9,6 6.4 69 96 76 792 695 623 638 564 469 514 509 541 12.0 96 96 963 790 94 *010 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2<		43												16
73 616 632 648 664 680 696 712 727 743 759 2 3.2 74 775 791 807 823 838 854 870 886 902 917 3 4.8 75 933 949 965 981 996 107 102 138 154 170 185 201 217 232 6 9.6 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>505</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Τ.</td><td>т.6</td></td<>						505							Τ.	т.6
74 775 791 807 823 838 854 870 886 902 917 3 4.8 75 933 949 965 981 996 **012 **028 **044 **059 **075 4 6.4 6.9 6 9.6 **012 **028 **044 **059 **075 5 8.0 6 9.6 **012 **185 201 217 232 6 9.6 9.6 9.6 **04 **04 420 436 451 467 483 498 514 529 545 8 11.2 8 7*9 560 576 592 607 623 638 654 669 685 7*00 9 14.4 8 8 8 7*0 9 14.4 8 9 8 9 8 6 669 685 7*0 9 14.4 4 8 12.8 8 8 12.8 </td <td></td> <td></td> <td>616</td> <td></td> <td></td> <td>664</td> <td>680</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			616			664	680							
75			775		807	822	828	SE4	870	886	1	1		
76 44 091 107 122 138 154 170 185 201 217 232 6 9.6 9.7 9.0							996	*OI2	*028			*075		
77 248 264 279 295 311 326 342 358 373 389 7 11.28 78 404 420 436 451 467 483 498 514 529 545 8 12.8 79 560 576 592 607 623 638 634 669 685 700 9 14.4 81 871 886 902 917 932 948 963 979 994 *010 914.4 82 45 025 040 056 071 086 102 117 133 148 163 1 1.5 83 179 194 209 225 240 255 271 286 301 317 2 3.0 84 332 347 362 378 393 408 423 439 454 469 3 4.5		44											5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	77		2.18	264	270	ı	1	226	2/12	258	272	280		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	78							483					8	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							623		654					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	280		716	731	747	762	778	793	809	824	840	855		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8r		871	886	902	917	932	948	963	979	994	*010		15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		45	025				086						1	1.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 1		179	194	209	225	240	255	271	286	301	317		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84			347	362	378	393			439		469		4.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	85				515	530								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	86		637	652	667	682	697	712		743	758	773	6	
88 939 954 969 984 000 *015 *705 *8 12.0 290 240 2255 270 285 300 315 330 345 359 374 91 389 404 419 434 449 464 479 494 509 523 93 687 702 716 731 746 761 776 790 805 820 2 2.8 94 835 850 864 879 894 *909 923 938 953 967 95 982 997 *012 *266 *041 *056 *700 *805 *110 4 96 47 129 144 159 173 188 202 217 232 246 261 5 97 276 290 305 319 334 349 363 378 392 407 7 9.8 98 422 436 451 465 480 494 509 524 538 553 8 11.2 99 567 582 596 611 625 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>879</td><td></td><td></td><td></td><td>7</td><td></td></t<>									879				7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		٠.							*030				8	
91 389 404 419 434 449 464 479 494 509 523 14.4 99 894 422 436 451 465 480 99 567 582 596 611 625 640 654 669 883 894 894 800 712 727 741 756 770 784 799 813 828 842		40											9	13.5
91	1				;									14
93			389								509			•
94 835 850 864 879 894 909 923 938 953 967 4 5.6 959 47 129 144 159 173 188 202 217 232 246 261 6 8.4 99 99 99 99 99 99 99 99 99 99 99 99 99			530											
94 95 982 997 *012 *026 *041 *056 *070 *085 *100 *114 4 5.6 6 96 47 129 144 159 173 188 202 217 232 246 261 6 8.4 98					1 '					_		1 1		
96 47 129 144 159 173 188 202 217 232 246 261 6 8.4 97 276 290 305 319 334 349 363 378 392 407 7 9.8 98 422 436 451 465 480 494 509 524 538 553 8 11.2 99 567 582 596 611 625 640 654 669 683 698 9 12.6 300 712 727 741 756 770 784 799 813 828 842											953 *TOO	907		
97	95	17										261		7.0
98		4/					1			1 -				
99	97					319	334						7	
800 712 727 741 756 770 784 799 813 828 842							625			660	683			
		•								-		Personal Property	9	
N. 0 1 2 3 4 5 6 7 8 9 Prop. Pts.	N.		0	1	2			5	6	7	8	9	Pro	p. Pts.

N.		0	1	2	3	4	5	6	7	8	9	Prop. Pts.
800	47	712	727	741	756	770	784	799	813	828	842	
0I 02	18	857 3 001	871	885	900	914 058	929 073	943 087	958	972	986	
03	40	144	159	173	187	202	216	230	244	259	273	1 15
04	ı	287	302	316	330	344	359	373	387	401	416	1 1.5
o5 o6	•	430 572	444 586	458 601	47 <u>3</u>	487 629	501 643	515 657	530 671	544 686	558 700	2 3.0 3 4.5
07		714	728	742	756	770	78 5	799	813	827	841	4 6.0
08 09	l	855 996	869 *010	883 *024	897 *038	911 *052	926 *066	940	954 *094	968 *108	982 *122	5 7.5 6 9.0
81Ó	49	136	150	164	178	192	206	220	234	248	262	7 10.5 8 12.0
11 12	l	276 415	290 429	304 443	318 457	332 471	346 485	360 499	374 513	388 527	402 541	9 13.5
13	l	554	568	582	596	610	624	638	651	665	679	
14		693 831	707 845	721 859	734 872	748 886	762 900	776	790	803	817	14
15 16		969	982	996	*010	*024	*037	914 *051	927 *065	941 *079	95 5 *092	I 1.4
17	50	106	120	133	147	161	174	188	202	215	229	2 2.8
18 19	l	243 379	256 393	270 406	284 420	297 433	311 447	325 4 I	338 474	352 488	365 501	3 4.2 4 5.6
820		515	529	542	556	569	583	596	10	623	637	5 7.0 6 8.4
2I 22		651 786	664 799	678 813	691 826	70 <u>5</u> 840	718 853	732 866	745 880	759 893	772 907	7 9.8
23		920	934	947	961	974	987	*001	*014	*028	*041	8 11.2 9 12.6
24 25	51	05 <u>5</u> 188	o68 202	081 215	09 <u>5</u> 228	108 242	121	135 268	148 282	162 295	17 5 308	
26 26		322	335	348	362	375	255 388	402	415	428	441	
27 28		455	468 601	481 614	495	508	521	534	548 680	561	574	1 1.3
29		587 720	733	746	627 759	640 772	654 786	667 799	812	693 825	706 838	2 2.6
880		851	865	878	891	904	917	930	943	957	970	3 3.9 4 5.2
31 32	52	983 114	996 127	*009 140	*022 153	*035 166	*048 179	*061 192	*075 205	880*	*101 231	4 5.2 5 6.5 6 7.8
33		244	257	270	284	297	310	323	336	349	362	7 9.1
34 35		375 504	388 517	401 530	414 543	427 556	440 569	453 582	466 595	479 608	492 621	8 10.4 9 11.7
36		634	647	660	673	556 686	699	711	724	737	750	,
37 38		763 892	776 905	789 917	802	815	827	840 969	853 982	866 994	879 *007	
39	53	020	033	046	930 058	943 071	956 084	097	110	122	135	12
840		148	161	173	186	199	212	224	237	250	263	I I.2 2 2.4
41 42		275 403	288 415	301 428	314 441	326 453	339 466	352 479	364 491	377 504	390 517	3 3.6
43		529	542	555	567	580	593	605	6í8	631	643	5 6.o
44 45		656 782	668 794	681 807	694 820	706 832	719 845	732 857	744 870	757 882	769 895	
46		908	920	933	945	958	970	983	995	*008	*020	8 9.6
47 48	54	033	045	058	070	083 208	095	108	120	133	145	9 10.8
49		283	170 295	183 307	195 320	332	220 345	233 357	245 370	258 382	270 394	
850		407	419	432	444	456	469	481	494	506	518	
N.		0	1	2	3	4	5	6	7	8	9	Prop. Pts.

850 51 52	54 <u>407</u> 531	419	T								
	531	7-7	432	444	456	469	481	494	506	518	
52		543	555	568	580	593	605	617	630	642	
53	654 777	667 790	679 802	691 814	704 827	716 839	728 851	741 864	753 876	765 888	1 70
54	900	913	925	937	949	962	974	986	998	*011	13 1 1.3
55 56	55 023 145	035	169	060 182	072	084 206	096 218	108 230	121	133	I I.3 2 2.6
57	267	279	291	303	315	328	340	352	364	25 5 376	3 3.9 4 5.2
58	388	400	413	425	437	449	461	473	485	497	5 6.5
59 860	509	522 642	534	546 666	558 678	570	582	594	606	618	
61	630 751	763	654 775	787	799	811	703 823	835	727 847	739 859	8 10.4
62	871	883	895	907	919	.931	943	955	967	979	9 11.7
63	991	*003	*015	*027	*038	*050	*062	*074	*086	*098	
64 65	56 110 229	122 241	134 253	146 26 5	158 277	170 289	182 301	194 312	205 324	217 336	12
66	348	360	372	384	396	407	419	431	443	455	I I.2
67 68	467	478	490 608	502 620	514	526	538	549 667	561	573	2 2.4 3 3.6
69	58 <u>5</u> 703	597 714	726	738	6 <u>32</u>	644 761	773	785	679 797	691 808	3 3.6 4 4.8
870	820	832	844	855	867	879	891	902	914	926	5 6.0 6 7.2
71 72	937 57 954	949	961	972 089	984 101	996	*008 124	*019	*031	*043	7 8.4
73	57 054 171	183	194	206	217	113 229	241	136 252	264	159 276	8 9.6 9 10.8
74	287	299	310	322	334	345	357	368	380	392	9,10.0
75 76	403 519	530	426 542	438 553	449 565	461 576	473 588	484 600	496	507 623	
77	634	646	657	669	680	692	703	715	726	738	11
78	749	761	772	784	795	8ó7	818	830	841	852	1 1.1
79 330	864 978	990	887 *001	*013	910 *024	921 *035	_933 *047	944 *058	955 *070	967 *081	2 2.2 3 3.3
81	58 092	104	115	127	138	149	161	172	184	195	4 4.4
82	206	218	229	240	252	263	274	286	297	309	5 5. 5 6 6.6
83 84	320	331	343	354 467	365 478	377	388	399	410	422	7 7.7 8 8.8
85	433 546	444 557	456 559	580	591	490 602	501 614	512 625	524 636	53 5 647	9 9.9
86	659	670	681	692	704	715	726	737	749	760	
87 88	77 I 883	782 894	794 906	80 <u>5</u>	816 928	827 939	838 950	961	861 973	872 984	,
89	995	*006	*017	*028	*040	*05I	*062	*073	*084	*095	10
890	59 106	118	129	140	151	162	173	184	195	207	I I.O 2 2.0
91 92	218 329	340	240 351	251 362	262 373	273 384	284 395	295 406	306 417	318 428	3 3.0
93	439	450	461	472	483	494	506	517	528	539	4 4.0 5 5.0
94	550	561	572	583		605	616	627	638	649	6 6.0
95 96	660 770	671 780	682 791.	693 802	704 813	715 824	726 835	737 846	748 857	759 868	7 7.0 8 8.0
_	879	890	901	912	923	934	945	956	966		9 9.0
97 98	988	999 108	*010	*02I	*032	*043	*054	*065	*ó76 184	977 *086	
99 400	60 097 206	217	228	239	249	152 260	163 271	173 282	293	195 304	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.		0	1	2	3	4	5	6	7	8	9	Prop. Pts.
400	60	206	217	228	239	249	260	271	282	293	304	-
01 02		314 423	325 433	336 444	347 455	358 466	369 477	379 487	390 498	509	412 520	
03		531	541	552	563	574	584	595	606	617	627	
04		638	649	660	670	681	692	703	713	724	735	ŀ
o5 o6		746 853	756 863	767 874	778 88 <u>5</u>	788 895	799 906	917	927	938	949) 11
07		959	970	981	991	*002	*013	*023	*034	*045	*055	1 1.1
08	61	066 172	077 183	087	098	109 215	119	130 236	140 247	151 257	162 268	2 2.2 3 3.3
09 410	-	278	289	194 300	310	321	22 <u>5</u> 331	342	352	363	374	4 4.4
11	-	384	395	405	416	426	437	448	458	469	479	5 5.5 6 6.6
12 13		490 595	500 606	511 616	521 627	532 637	542 648	553 658	563 669	574 679	584 690	7 7.7 8 8.8
14		700	711	721	731	742	752	763	773	784	794	9 9.9
15		80₹	815	826	836	847	857	868	878	888	899	1
16	60	909	920	930	941	951	962	972	982 086	993	*003	
17 18	62	014 118	024 128	034 138	04 5 149	055 159	066 170	076 180	190	097 201	107	Ī
19	_	221	232	242	252	263	273	284	294	304	315	
420 21	-	32 <u>5</u> 428	335	346	356	366 469	_377_ 480	387 490	397 500	408 511	418 521	1 10
22		531	439 542	449 552	459 562	572	583	593	603	613	624	1 1.0
23		634	641	655	665	675	685	696	706	716	726	2 2.0
24 25		737 839	747 849	757 859	767 870	778 880	788 890	798 900	910	818 921	829 931	3 3.0 4 4.0
26		941	951	961	972	982	992	*002	*012	*022	*033	5 5.0 6 6.0
27	63	043	o <u>53</u>	063	07 <u>3</u>	083	094	104	114	124	134	7 7.0
28 29		144 246	15 <u>5</u> 256	16 <u>5</u> 266	175 276	18 <u>5</u> 286	195 296	205 306	317	225 327	236 337	8 8.0 9 9.0
480		347	357	367	377	387	397	407	417	428	438	919.0
31 32		448 548	458 558	468 568	478 579	488 589	498 599	508 609	518	528 629	538 639	
33		649	659	669	679	689	699	709	719	729	739	
34		749	759	769	779	789	799	809	819	829	839	
35 36		849 949	859 959	869 969	879 979	889 988	899 998	909 *008	919 *018	929 *028	939 *038	9
	64	- 1	058	068	078	088	098	108	118	128	137	1 0.9
37 38		147	157	167 266	177	187 286	197	207	217	227 326	237	2 1.8
39 440		246 345	256 355	365	276 375	385	296 395	306 404	316	424	<u>335</u> 434	3 2.7 4 3.6
41	_	444	454	464	473	483	493	503	513	523	532	5 4.5
42 43		542 640	552 650	562 660	572 670	582 680	591 689	601 699	611 709	621 719	631 729	6 5.4 7 6.3 8 7.2
43		738	748	758	768	777	787	797	807	816	826	8 7.2 9 8.1
45 46		836	846	856	865	875	885	895	904	914	924	910.1
1		933	943	953	963 060	972	982	992 089	*002	*ó11	*02I 118	
47 48	65	128	137	050	157	070 167	079 176	186	099 196	108 205	215	
49	_	225	234	244	254	263	273	283	292	302	312	
450		321	331	341	350	360	369	379	389	398	408	
N.		0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
450 51 52 53	65_321 418 514 610	331 427 523 619	341 437 533 629	350 447 543 639	360 456 552 648	369 466 562 658	379 475 571 667	389 485 581 677	398 495 591 685	408 504 600 696	
54 55 56	706 801 896	715 811 906	72 <u>5</u> 820 916	734 830 925	744 839 935	753 849 944	763 858 954	772 868 963	782 877 973	792 887 982	10
57 58 59 460	66 087 181 276	*001 096 191 285	*011 106 200 295	*020 115 210 304	*030 124 219 314	*039 134 229 323	*049 143 238 332	*058 153 247 342	*068 162 257 351	*077 172 266 361	1 1.0 2 2.0 3 3.0 4 4.0
61 62 63	370 464 558	380 474 567	389 483 577	398 492 586	408 502 596	417 511 605	427 521 614	436 530 624	445 539 633	455 549 642	5 5.0 6 6.0 7 7.0 8 8.0
64 65 66	652 745 839	75 <u>5</u> 848	671 764 857	680 773 867	689 783 876	699 792 885	708 801 894	717 811 904	727 820 913	736 829 922	9 9.0
67 68 69 470	932 67 02 <u>5</u> 117 210	941 034 127 219	950 043 136 228	960 052 145 237	969 062 154 247	978 071 164 256	987 080 173 265	997 089 182 274	*006 099 191 284	*015 108 201 293	
71 72 73	302 394 486	311 403 495	321 413 504	330 422 514	339 431 523	348 440 532	357 449 541	367 459 550	376 468 560	38 <u>5</u> 477 569	9 1 0.9 2 1.8
74 75 76	578 669 761	587 679 770	596 688 779	605 697 788	614 706 797	624 715 806	633 724 815	733 825	651 742 834	660 752 843	3 2.7 4 3.6 5 4.5 6 5.4
77 78 79 480	852 943 68_034 124	952 943 133	961 052 142	879 970 061 151	888 979 070 160	897 988 079 169	906 997 088 178	916 *006 _097 _187	925 *015 106	934 *024 115 205	7 6.3 8 7.2 9 8.1
81 82 83	21 <u>5</u> 30 <u>5</u> 395	224 314 404	233 323 413	242 332 422	251 341 431	260 3 <u>5</u> 0 440	269 359 449	278 368 458	287 377 467	296 386 476	
84 85 86	48 <u>5</u> 574 664	494 583 673	502 592 681	511 601 690	520 610 699	529 619 708	538 628 717	547 637 726	556 646 735	565 655 744	8
87 88 89 490	753 842 931 69 020	762 851 940 028	771 860 9 <u>49</u> 937	780 869 9 <u>58</u> 046	789 878 966 055	797 886 975 064	806 895 _984 073	815 904 993 082	824 913 *002 090	833 922 ^X 011 -099	1 0.8 2 1.6 3 2.4 4 3.2
91 92 93	108 197 285	117 205 294	126 214 302	13 5 223 311	144 232 320	152 241 329	161 249 338	170 258 346	179 267 355	188 276 364	5 4.0 6 4.8 7 5.6 8 6.4
94 95 96	373 461 548	381 469 557	390 478 566	399 487 574	408 496 583	417 504 592	425 513 601	434 522 609	443 531 618	452 539 627	9 7.2
97 98 99 500	636 723 810 897	732 819 906	653 740 827 914	662 749 836 923	671 758 845 932	679 767 854 940	688 775 862 949	697 784 871 958	793 880 966	714 801 888 975	
N.	0	1	2	3	4	5	6	7	8	973	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
500	69 897	906	914	923	932	940	949	958	966	975	
01 02	984 70 070	992	*001 088	*010	*018	*027 114	*036	*044 131	*053	*062 148	
03	157	165	174	183	191	200	209	217	226	234	
04	243	252	260	269	278	286	295	303	312	321	l
05 06	329 415	338 424	346 432	35 5	364 449	372 458	381 467	389 475	398 484	406 492	9
07	501	509	518	526	535	544	552	561	569	578	1 0.9
o8	586	595	603	612	621	629	638	646	655	663	2 1.8
9 510	672	68o 766	689	697	706	714 800	723 808	731	740	749	3 2.7 4 3.6
11	757 842	851	774 859	783 868	791 876	885	893	902	910	919	5 4.5
12	927	935	944	952	961	969	978	986	995	*003	7 6.3
13	71 012	020	029	037	046	o54	063	071	079	o88	8 7.2 9 8.1
14 15	181	189	113	122 206	130	139 223	147	155 240	164 248	172 257	910.7
16	265	273	282	290	299	307	315	324	332	341	
17	349	357	366	374	383	391	399	408	416	425	
81 91	433 517	441 525	450 533	458 542	466 550	475 559	483 567	492 575	500	508 592	
52 0	600	609	617	625	634	642	650	659	667	675	
21	684	692	700	709	717	725	734	742	750	759	8
22 23	767 850	775 858	784 867	792 875	800 883	809 892	900	825 908	834 917	925	1 0.8 2 1.6
24	933	941	950	958	966	975	983	991	999	*008	3 2.4
25	72 016	024	032	041	ó49	057	066	074	082	090	4 3.2 5 4.0
26	181	189	115	206	132	140	148	156	165	173	6 4.8
27 28	263	272	280	288	214 296	304	230 313	239 321	247 329	255 337	7 5.6 8 6.4
29	346	354	362	370	378	387	395	403	411	419	9 7.2
580	428 509	436 518	414 526	452	460	469 550	558	_48 _.	493	501 583	
31 32	509 591	599	607	534 616	542 624	632	640	648	57 <u>5</u> 656	665	
33	673	681	689	697	705	713	722	730	738	746	
34	754 835	762 843	770 852	779 860	787 868	79 <u>5</u> 876	803 884	811	900	908	
35 36	916	925	933	941	949	957	965	973	981	989	7
37 38	997	*006	*014	*022	*030	*оз8	*046	*054	*062	*070	1 0.7
38 39	73' 078 1 5 9	086 167	094 175	102	111	119	127 207	215	143 223	151 231	2 I.4 3 2.1
540	239	247	255	263	272	280	288	296	304	312	8 د 4
41	320	328	336	344	352	360	368	376	384	392	5 3.5 6 4.2
42 43	400 480	408 488	416 496	424 504	432 512	440 520	448 528	456 536	464 544	472 552	7 4.9
44	560	568	576	584	592	600	608	616	624	632	8 5.6 9 6.3
45 46	640	648	656	664	672	679	687	695	703	711] ,,
	719	727 807	735 81 <u>5</u>	743 823	751	759	767 846	775	783 862	791	
47 48	799 878	886	894	902	830 910	838 918	926	854 933	941	870 949	
49	_957	965	973	981	989	997	*005	*013	*020	*028	
550	74 036	044	052	060	068	076	084	092	099	107	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
550	74 036	044	052	060	o68	076	084	092	099	107	
51 50	115	123	131	139	147	155	162 241	170	178	186 265	1
52 53	194 27 3	280	288	296	225 304	233 312	320	249 327	257 335	343	1
54	351	359	367	374	382	390	398	406	414	421	
55 56	429 507	437 515	445 523	453 531	461 539	468 547	476 554	484 562	492 570	500 578	
	586	593	601	609	617	624	632	640	648	656	
57 58	663	671	679	687	695	702	710	718	726	733	
59 560	741 819	749 827	757 834	764 842	772 850	780 858	788 865	796 873	803 881	889	
61	896	904	912	920	927	935	943	950	958	966	8
62 63	974 75 051	981	989	997 074	*005 082	*012 089	*020 097	*028	*035	*043	1 0.8
64	128	136	143	151	159	166	174	182	189	197	2 1.6
65 66	205	213	220	228	236	243	251	259	266	274	3 2.4 4 3.2
67	282 358	289 366	297 374	30 <u>5</u> 381	312 389	320 397	328 404	335	343 420	351 427	5 4.0 6 4.8
68	435	442	450	458	465	473	481	488	496	504	7 5.6
69 570	511	519	526	5 <u>34</u> 610	542 618	549 626	557 633	56 <u>5</u>	572 648	580 656	8 6.4 9 7.2
71	_587 664	595 671	603 679	686	694	702	709	717	724		J17
72	7 40	747	755	762	770	778	785 861	793 868	800	732 808 884	1
73 74	815 891	823 899	90E	838	846 921	853 929		944	876 952	959	
75	967	974	982	989	997	*005	937 *012	*020	*027	*035	
76	76 042	0 <u>5</u> 0	057	065	072	080	087	095	103	110	
77 7 8	118 193	125 200	133 208	140 215	148 223	155 230	163 238	170 245	178 253	185 260	
79	268	275	283	290	298	305	313	320	328	_335	
580 81	_ <u>3</u> 43 418	35°	358	365 440	373 448	380 455	388 462	<u>395</u> 470	403 477	485	
82	492	425 500	433 507	515	522	530	537	545	552	559	
83	567	574	582	589	597	604	612	619	626	634	7 1 0.7
84 85	641 716	649 723	656 730	664 738	671 745	678 753	686 760	693 768	701 775	708 782	2 1.4
86	790	797	80 <u>5</u>	812	819	827	834	842	849	856	3 2.I 4 2.8
87 88	864 938	871	879	986 960	893 967	901 975	908 982	916 989	923 997	930 *004	5 3.5
89	77 012	945 019	953 026	034	907 041	048	056	063	997	078	7 4.9
590	085	093	001	107	115	122	129	137	144	151	8 5.6 9 6.3
91 92	159 232	166 240	173 247	181 254	188 262	195 269	203	283	217 291	225 298	910.3
93	305	313	320	327	335	342	349	357	364	371	
94	379	386	393 466	401	408 481	415 488	422	430 503	437 510	444 517	
95 96	452 525	459 532	539	474 546	554	561	495 568	576	583	590	
97 98	597	605	612	619	627	634	641	648	656	663	
98 99	670 743	677 730	685 757	692 764	699 772	706 779	714 786	/2I 793	728 801	735 808	
600	815	822	830	837	844	851	859	866	873	880	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

222											
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
600	77 815	822	830	837	844	851	859	866	873	88o	
01	887	895	902	909	916	924	931	938	945	952	
02	960	967	974	981	988 061	996 068	*003	*010 082	*017	*025 097	
03	78 032	039	046	053		,	075	1	161	168	
04 05	10.1 176	183	118	125	132 204	140 211	219	154	233	240	
06	247	254	262	269	276	283	290	297	305	312	8
07	319.	326	333	340	347	353	362	369	376	383	1 0.8
о8	390	398	405	412	419	426	433	440	447	455	2 1.6 3 2.4
610	462	469	476	483	490 561	497 569	504	512	519 590	526 597	4 3.2
11	_53 <u>3</u> 604	540 611	547 618	5 <u>54</u> 625	63:1	640	647	654	661	668	5 4.0 6 4.8
12	675	682	689	696	701	711	718	725	732	739	7 5.6 8 6.4
13	746	753	760	767	774	781	789	796	803	810	
14	817	824	831	838	845	852	859	866	873	880	9 7.2
15 16	888 958	89 5 965	902 972	909 979	916 986	923 993	930	937 *007	944 *014	951 *021	
					-	064	071	078	085	092	
17 18	7 9 029 099	036	043	0 <u>5</u> 0	057 127	134	141	148	155	162	
19	169	176	183	190	197	204	211	218	225	232	
620	239	246	253	260	267	274	281	288	295	302	1.7
21	309	316	323	330	337	344	351 421	358 428	36 <u>5</u> 43 <u>5</u>	372 442	1 .
22 23	379 449	386 456	393 463	400 470	407 477	414 484	491	428	505	511	I 0.7 2 I.4
24	518	525	532	539	546	553	560	567	574	58r	3 2.1
25	588		602	609	616	623	630	637	644	650	4 2.8
26	657	595 664	671	678	685	692	699	706	713	720	5 3.5 6 4.2
27	727	734 803	741	748	754	761	768	775	782	789	7 4.9
28 29	796 865	803	810 879	817	824 893	900	837 906	913	920	858 927	8 5.6 9 6.3
680	934	941	948	955	962	969	975	982	989	996	910.3
31	80 003	OIO	017	024	030	037	044	051	058	065	
32	072	079	085	092	099	106	113	120	127	134	
3 3	140	147	154	161	168	175	182	l	195	202	
34	209 277	216 284	223 291	229 298	236 305	243 312	250 318	257 325	264 332	271 339	
35 36	346	353	359	366	373	380	387	393	400	407	16
	414	421	428	434	441	448	455	462	468	475	1 0.6
37 38	482	489	496	502	509	516	523	530	536	543	2 1.2
39	_550	557	564	570	577	584	591	_598 665	604	611	3 I.8 4 2.4
640	618 686	625	632	638 706	645	652 720	659 726		740	747	5 3.0 6 3.6
41 42	754	693 760	699 767	774	713 781	787	794	733 801	808	814	
43	821	828	835	841	848	855	862	868	875	882	7 4.2 8 4.8
44	88 9	895	902	909	916	922	929	936	943	949	9 5.4
45	956	963	969	976	983	990	996 064	*003	*010	*017 084	
46	81 023	030	037	0.43	050	057		070	077	1	
47 48	09 0 158	164	104 171	178	117	124	131	204	211	151 218	
49	224	231	238	245	251	258	265	271	278	285	
650	291	298	305	311	318	325	331	338	345	351	
N.	O	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
650 51 52 53	81 291 358 425 491	298 36 5 431 498	30 <u>5</u> 371 438 50 <u>5</u>	311 378 445 511	318 385 451 518	325 391 458 525	331 398 465 531	338 405 471 538	345 411 478 544	351 418 485 551	
54 55 56	558 624 690	564 631 697	571 637 704	578 644 710	584 651 717	591 657 723	598 664 730	604 671 737	611 677 743	617 684 750	
57 58 59 660	757 823 889 954	763 829 895 961	770 836 902 968	776 842 908 974	783 849 915 981	790 856 921 987	796 862 928 994	803 869 935 *000	809 875 941 *007	816 882 948 *014	
61 62 63	82 020 086 151	027 092 158	033 099 164	040 105 171	046 112 178	053 119 184	060 125 191	066 132 197	073 138 204	079 145 210	7 I 0.7 2 I.4
64 65 66 67	217 282 347 413	223 289 354 419	230 295 360 426	236 302 367 432	243 308 373 439	249 315 380 445	321 387 452	263 328 393 458	269 334 400 46 <u>5</u>	276 341 406 471	3 2.1 4 2.8 5 3.5 6 4.2
68 69 670	478 _543_ _607	484 549 614	491 556 620	497 562 627	504 569 633	510 575 640	517 582 646	523 588 653	530 595 659	536 601 666	7 4.9 8 5.6 9 6.3
71 72 73	672 737 802 866	679 743 808 872	685 750 814 879	692 756 821 885	698 763 827	705 769 834 898	711 776 840	718 782 847	724 789 853 918	73º 795 860	
74 75 76	930 995 83 059	937 *001 065	943 *008	950 *014	892 956 *020 085	963 *027	90 <u>5</u> 969 °033	911 975 *040 104	982 *046	924 988 *052	
78 79 680	123 187 251	129 193 257	136 200 264	142 206 270	149 213 276	155 219 283	161 225 289	168 232 296	174 238 302	181 245 308	
81 82 83 84	31 <u>5</u> 378 442 506	321 385 448 512	327 391 455 518	334 398 461 525	340 404 467	347 410 474 537	353 417 480 544	359 423 487 550	366 429 493 556	372 436 499 563	6 1 0,6
85 86 87	569 632 696	575 639 702	582 645 708	588 651 715	531 594 658 721	664 727	607 670 734	613 677 740	620 683 746	626 689 753	2 1.2 3 1.8 4 2.4 5 3.0
88 89 690	759 822 885	765 828 891	83 <u>5</u> 897	778 841 904	784 847 910	790 853 916	797 860 923	803 866 929	809 872 935	816 879 942	5 3.0 6 3.6 7 4.2 8 4.8 9 5.4
91 92 93 94	948 84 011 073 136	954 017 080 142	960 023 086 148	967 029 092 15 <u>5</u>	973 036 098 161	979 042 10 5 167	985 048 111 173	992 055 117 180	998 061 123 186	*004 067 130 192	ソ ジ ジ 4
95 96 97	198 261	205 267 330	211 273 336	217 280 342	223 286 348	230 292 354	236 298 361	242 305 367	248 311	255 317 379	
98 99 700	386 448 5 10	392 454 516	398 460 522	404 466 528	410 473 535	417 479 541	423 485 547	429 491 553	435 497 559	442 504 566	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
700	84 510	516	522	528	535	541		553			
10	572	578	584	590	597	603	609	615	621	628	ł
02 03	634 696	702	646 708	652 714	658 720	66 <u>5</u> 726	733	739	68 <u>3</u>	689 751	
04	757	763	770	776	782	788		800		813	
05	819	825	831	837	844	850	856	862	868	874	
06	88o	887	893	899	905	911	917	924	1	936	7
o7 o8	942 85 003	948	954 016	960	967	973 034	979 040	98 <u>5</u>	991 052	997 058	I 0.7 2 I.4
9	05 065	071	077	083	089	095	101	107	114	120	3 2.1
710	126	132	138	144	150	156	163	169	175	181	4 2.8 5 3.5
11 12	187 248	193	199 260	205 266	211	217 278	224 285	230	236	242 303	6 4.2
13	309	254 315	321	327	333	339	345	352	297 358	364	7 4.9 8 5.6
14	370	376	382	388	394	400	406	412	418	425	8 5.6 9 6.3
15	431	437	443	449	455	461	467	473	479	485	
16	491	497	503	509	516	522 582	528 588	534	540	546	
17 18	552 612	558 618	564 62 <u>5</u>	570 631	576 637	643	649	594 655	600	667	
19	673	679	685	691	697	703	709	715	721	727	1
720	733	739	745	751	757	763	769	775	781	788	1.6
2I 22	794 854	800 860	806 866	812 872	818 878	824 884	830	836 896	902	908	1 0.6
23	914	920	926	932	938	944	950	956	962	968	2 1.2
24	974	98 0	986	992	998	*004	*010	*016	*022	*028	3 1.8
25 26	86 034 094	100	046 106	052	058	064 124	130	076 136	082	088 147	4 2.4 5 3.0
27	153	159	165	171	177	183	189	195	201	207	6 3.6
28	213	219	225	231	237	243	249	255	261	267	7 4.2 8 4.8
29	273	279	285	291	297	303	308	314	320	326	9 5.4
780 31	332	338 398	344 404	350 410	356 415	362 421	368 427	374 433	38o 439	386 445	
32	451	457	463	469	475	481	487	493	499	504	
33	510	516	522	528	534	540	546	552	558	564	
34	570	576	581 641	587 646	593	599	605 664	611	617	623 682	
35 36	629 688	63 5 694	700	705	652 711	658 717	723	670 729	676 735	741	5
	· 747	753	759	764	770	776	782	788	794	800	1 0.5
37 38	806	812	817	823 882	829 888	835	841	847	853	859	2 1.0
39 7 40	864 923	870 929	876 935	941	947	894 953	900 958	906 964	911	917 976	3 I.5 4 2.0
41	982	988	994	999	*005	*011	*017	*023	*029	*03 <u>5</u>	5 2.5
42	87 ó 40	646	052	058	064	070	075	081	087	093	6 3.0 7 3.5
43	099	105	III	116	122	128	134	140	146	151	8 4.0
44 45	157 216	163	169 227	17 5 233	181 239	186 24 5	192 251	198 256	204 262	210 268	9 4.5
46	274	280	286	291	297	303	309	315	320	326	
47 48	332	338	344	349	355	361	367	373	379	384	
48 49	39 0 448	396 454	402 460	408 466	413 471	419 477	42 5 483	431 489	437 495	442 500	
750	506	512	518	523	529	535	541	547	552	558	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
750	87_506	512	518	523	529	535	541	547	552	558	
51	564 622	570 628	576	581	587	593	599 656	604 662	610 668	616	
52 53	679	685	633	639	703	651 708		720	726	731	
54	737	743	749	754	760	766		777	783	789	
55 56	795 852	800 858	806 864	812	818	823 881	829 887	835	841	846	İ
57	910	915	921	927	933	938	944	950	955	904 961	1
58	967	973	978	984	990	996	*001	*007	*013	*018	
59 7 60	88 024 081	030	036	041	047	053 110	058	064	070	076	
61	138	144	150	098	161	167	173	178	127	133	6
62	195	201	207	213	218	224	230	235	241	247	1 0.6
63	252	258	264	270	275	281	287	292	298	304	2 I.2 3 I.8
64 65	309 366	315 372	377	326 383	332 389	338 395	343	349 406	35 5	360 417	4 2.4
66	423	429	434	440	446	451	457	463	468	474	5 3.0 6 3.6
67 68	480 526	485	491	497	502	508 564	513	519	52 <u>5</u> 581	530 587	7 4.2 8 4.8
69	536 593	542 598	547 604	553 610	559 615	621	570 627	576 632	638	643	9 5.4
770	649	655	660	666	672	677	683	689	694	700	
71 72	705 762	711 767	717 773	722 779	728 784	734 790	739 795	745 801	750 807	756 812	
73	818	824	829	835	840	846	852	857	863	868	
74	874	880	885	891	897	902	908	913	919	925	
75 76	930 986	936	94 I 997	947 *003	953 *009	958 *014	964 *020	969 *025	975 *031	981 *037	
77	89 042	048	053	059	064	070	076	081	087	092	
78	098	104	109	115	120	126 182	131	137	143	148	
79 780	154 209	159 215	165	170 226	176 232	237	243	193 248	198 254	204	
8r	265	271	276	282	287	293	298	304	310	315	5
82 83	321 376	326 382	332 387	337 393	343 398	348 404	354 409	360 415	365 421	371 426	1 0.5
84	432	437	443	448	454	459	465	470	476	481	2 I.0 3 I.5
85	487	492	498	504	509	515	520	526	531	537	4 2.0
86 8-	542	548	553	559	564	570	575	581	586	592	5 2.5 6 3.0
87 88	597 653	603 658	609 664	614 669	620 675	625 680	631 686	636 691	642 697	647 702	7 3.5 8 4.0
89	653 708	713	719	724	730	735	741	746	752	757	8 4.0 9 4.5
790 91	_763 818	768 823	774 829	779 834	78 <u>5</u> 840	790 845	796 851	801 856	862	812	
92	873	878	883	889	894	900	905	911	916	922	
93	927	933	938	944	949	955	960	966	971	977	
94 95	982 90 037	988 042	993 048	998 053	*004 059	*009 064	*01 <u>5</u> 069	*020 075	*026 080	*031 086	
96	091	097	102	108	113	119	124	129	135	140	
97 98	146	151	157	162	168	173	179	184	189	195	
98 99	200 255	206 260	211 266	217 271	222 276	227 282	233 287	238 293	244 298	249 304	
800	309	314	320	325	331	336	342	347	352	358	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
800	90_309	314	320	325	331	336	342	347	352	358	
01 02	363 417	369 423	374 428	380 434	38 5	390 445	396 450	455	407 461	412 466	j
03	472	477	482	488	493	499	504	509	515	520	
04 05	526 580	531 585	536 590	542 5 <u>9</u> 6	547 601	553 607	558 612	563 617	623	574 628	
06 07	634 687	639	644	650 703	709	660 714	720	725	730	736	
o8	741	747 800	752 806	757 811	763	768 822	773	779 832	784 838	789 843	
9 810	<u>795</u> 849	854	859	865	870	875	881	886	891	897	ł
11 12	902 956	907 961	913 966	918 972	924 977	929 982	934 988	940 993	94 <u>5</u> 998	950 *004	6
13	91 009	Ó14	020	025	030	ó36	041	046	052	057	I 0.6 2 I.2
14 15	062 116	068	073	078	084 137	089 142	094	153	158	110	3 1.8
16	169	174	180	185	190	196	201	206	212	217	4 2.4 5 3.0
17 18	222 275	228 281	233 286	238 291	243 297	249 302	254 307	259 312	26 <u>5</u> 318	270 323	6 3.6 7 4.2 8 4.8
19 820	_328 _381	_334 _387	339 392	344 397	3 <u>5</u> 0 403	355 408	360 413	365 418	371	376 429	8 4.8 9 5.4
21	434	440	445	43	455	461	466	471	477	482	
22 23	487 5 40	492 545	498 551	503 556	508 561	514 566	519 572	524 577	529 582	535 587	
24 25	5 93 645	598 651	603 656	609 661	614 666	619 672	624 677	630 682	63 5 687	640 693	
26	69 8	703	709	714	719	724	730	735	740	745	
27 28	751 803	756 808	761 ' 814	766 819	772 824	777 829	782 834	787 840	79 <u>3</u> 84 <u>5</u>	798 850	
29 880	855 908	861 913	918	87 í 924	876	882	887	892	897	903	
31	960	965	971	976	929 981	_934 986	939 991	944 997	950 *002	9 <u>5</u> 5 *007	
32 33	92 012 065	018 070	023	o28 o8o	033 085	038	044	049 101	106	059	5
34	117	122	127	132	137	143	148	153	158	163	I 0.5 2 I.0
35 36	169 221	174 226	179 231	184 236	189 241	19 <u>5</u> 247	200 252	205 257	210 262	215 267	3 1.5
37 38	· 273	278 330	28 <u>3</u> 335	288 340	293 345	298 350	304 355	309 361	314 366	319 371	5 2.5
39	376	185	387	392	397	402	407	412	418	423	7 3.5
840	428	433	438	443 495	449 500	454 505	459 511	464 516	469 521	474 526	8 4.0 9 4.5
42 43	531 583	536 588	542 593	547 598	552 603	557 609	562 614	567	572 624	578 629	
44	634	639	645	6 5 0	653	66 0	665	670	675	681	
45 46	686 737	691 742	696 747	701 752	706 758	711 763	716 768	722 773	727 778	732 783	
47 48	788	793	799	804	809	814	819	824	829	834	
49	840 891	845 896	8 <u>5</u> 0 901	85 <u>5</u> 906	960 911	865 916	870 921	875 927	932 932	937	
850	942	947	952	957	962	967	973	978	983	988	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	Ú	1	2	3	4	5	6	7	8	9	Prop. Pts.
850	92_942	947	952	957	962	967	973	978	983	988	
51 52	993	998 049	*003 054	*008	*013 064	*018 069	*024 075	*029 080	*034 085	*039	
52 53	93 044 095	100	105	110	115	120	125	131	136	141	
54	146	151	156	161	166	171	176	181	186	192	
55 56	197 247	202 252	207 258	212 263	217 268	222 273	227	232 283	237 288	242	6
57	298	303	308	313	318	323	328	334	1	344	1 0,6
58	349	354	359	364	369	374	379	384	339 389	394	2 I.2 3 I.8
59 860	_399	404	460 460	414	420	425	480	435	440	445	3 I.8 4 2.4
61	_4 <u>5</u> 0_ 500	455 505	510	515	470 520	475 526	531	485 536	490 541	495 546	5 3.0 6 3.6
62	551	556	561	566	571	576	581	586	591	596	7 4.2
63	601	606	611	616	621	626	631	636	641	646	8 4.8 9 5.4
64 65	651 702	656 707	661 712	666 717	671 722	676 727	682 732	68 ₇	692 742	697 747	913.4
66	75 ²	757	762	767	772	777	782	787	792	797	
67	802	807	812	817	822	827	832	837	842	847	
68 69	852 902	857 907	862 912	867	922	877 927	932	887 937	942	897 947	
870	952	957	962	967	972	977	982	987	992	997	
71	94 002	007	012	017	022	027	032	037	042	047	5
72 73	052 101	057 106	062	116	072 121	077 126	082	086	091 141	146	1 0.5 2 1.0
74	151	156	161	166	171	176	181	186	191	196	3 1.5
75 76	201	206	211	216	221	226	231	236	240	245	4 2.0 5 2.5
	250	255	260	265	270	275	280	285	290	295	6 3.0
77 78	300 349	30 5 354	359	315	320 369	325 374	379	33 5 384	340	345 394	7 3.5 8 4.0
79	399	404	409	414	419	424	429	433	438	443	9 4.5
880 81	_448	453	458	463 512	468	473	478	483	488	493	
82	498 5 47	503 552	507 557	562	517 567	522 571	527 576	532 581	537 586	542 591	
83	596	601	606	611	616	621	626	630	635	640	
84 85	645 694	650 699	655 704	660 709	66 5	670 719	67 <u>5</u> 724	680	68 5	689 738	
86	743	748	753	758	763	768	773	778	783	787	4
87	792	797	802	807	812	817	822	827	832	836	1 0.4
88 89	841 890	846 895	900	856 90 5	910	866 915	919	876 924	88o 929	885 934	2 0.8
890	939	944	949	954	959	963	968	973	978	983	4 1.6
91	988	993	998	*002	*007	*012	*017	*022	*027	*032	5 2.0 6 2.4
92 93	95 036 085	041	046	100	056 10 5	109	066 114	071	075 124	080 129	7 2.8
94	134	139	143	148	153	158	163	168	173	177	8 3.2 9 3.6
95 96	182	187	192	197	202	207	211	216	221	226	5 / J.V
	231	236	240	245	250	255	260	265	270	274	
97 98	279 328	284 332	289 337	294 342	299 347	303 352	308 357	313 361	318 366	323 371	
99	376	381	386	390	395	400	405	410	415	419	
900	424	429	434	439	444	448	453	458	463	468	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
900	95 424	429	434	439	444	448	453	458	463	468	
OI	472	477	482	487	492	497	501	506	511	516	
02 03	521 569	525 574	530 578	535 583	540 588	545 593	550 598	554 602	559 607	564 612	
04	617	622	626	631	636	641	646	650	655	660	
o5 o6	66 5 713	670 718	674 722	679 727	684 732	689 737	694 742	698 746	703 751	708 756	
07	761	766	770	775	780	785	789	794	799	804	
o8	809	813	818	823	828	832	837	842	847	852	
910	_856 _904	909	914	918	923	928	933	890 938	89 5	899 947	
11	952	957	961	966	971	976	980	985	990	995	5
12	999	*004	*óo9	*014	*019	1023	*028	*033	*v38	*042	1 0.5
13	96 047	052	057 104	109	066	071	123	080	085	090	2 I.0 3 I.5
14 15	09 <u>5</u> 142	099	152	156	161	166	171	175	180	137	4 2.0
16	190	194	199	204	209	213	218	223	227	232	6 3.0
17 18	237 284	242 289	246 294	251 298	256 303	261 308	265 313	270 317	275 322	280 327	7 3.5 8 4.0
19	332	336	341	346	350	355	360	365	369	374	9 4.5
920	_379	384	388	393	398	402	407	412	417	421	
2 I 22	426 473	431 478	435 483	440 487	44 5 492	4 <u>5</u> 0 497	454 501	459 506	464 511	468 515	ļ.
23	520	525	530	534	539	544	548	553	558	562	
24	567	572	577	581 628	586	591 638	595 642	600 647	60 <u>5</u> 652	609 656	
25 26	614 661	619	624 670	675	633 680	685	689	694	699	703	
27	708	713	717	722	727	731	736	741	745	75º	
28 29	75 5 802	759 806	764 811	769 816	774 820	778 823	783 830	788 834	792 839	797 844	
980	848	853	858	862	867	872	876	881	886	890	
31	895	900	904	909	914	918	923	928	932	937	4
32 33	942 988	946 993	951 997	956 *002	960 *007	965	970 *016	974 *021	979 *025	984 *030	1 0.4 2 0.8
34	97 035	039	044	049	053	058	063	067	072	077	3 1.2
35	081 128	o86	090	OC 5	100	104	109	114	118 165	123	4 1.6 5 2.0
36 37	174	132	137	1 12 188	146	151	155 202	206	211	169 216	6 2.4
38	220	225	230	234	239	243	248	253	257	262	7 2.8 8 3.2
39 940	267	271	276	280	285	290	294	299	304	308	9 3.6
41	_313 359	317 364	322 368	327 373	331 377	336 382	340 387	345 391	3 <u>5</u> 0 396	354 400	
42	405	410	414	419	424	428	433	437	442	447	
43	451	456	460	465	470	474	479	483	488	493	
44 45	497 5 43	502 548	506 552	511 557	516 562	520 566	52 <u>5</u> 571	529 575	534 580	53 <u>9</u> 58 <u>5</u>	
46	589	594	598	603	607	612	617	621	626	630	
47 48	63 5 681	640 685	644 690	649 695	653 699	658 704	663 708	667 713	672 717	676 722	
49	727	731	736	740	745	749	754	759	763	768	
950	772	777	782	786	791	795	800	804	809	813	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
950 51 52 53	97 <u>772</u> 818 864 909	777 823 868 914	782 827 873 918	786 832 877 923	791 836 882 928	795 841 886 932	800 845 891 937	804 850 896 941	809 855 900 946	813 859 905 950	
54 55 56	955 98 000 046	95 <u>9</u> 005 050	964 009 055	968 014 059	973 019 064	978 023 068	982 028 073	987 032 078	991 037 082	996 041 087	
57 58 59 960	091 137 182 227	096 141 186 232	100 146 191 236	10 <u>5</u> 150 195 241	109 155 200 245	114 159 204 250	118 164 209 254	123 168 214 259	127 173 218 263	132 177 223 268	
61 62 63	272 318 363	277 322 367	28I 327 372	286 331 376	290 336 381	29 5 340 385	299 345 390	304 349 394	308 354 399	313 358 403	5 1 0.5 2 1.0
64 65 66	408 453 498	412 457 502	417 462 507	421 466 511	426 471 516	430 475 520	43 5 480 52 5	439 484 529	444 489 534	448 493 538	3 I.5 4 2.0 5 2.5 6 3.0
67 68 69 970	543 588 632 677	547 592 637 682	552 597 641 686	556 601 646 691	561 605 650 695	565 610 65 <u>5</u> 700	570 614 659 704	574 619 664 709	579 623 668 713	583 628 673 717	7 3.5 8 4.0 9 4.5
71 72 73	722 767 811	726 771 816	73 ^I 776 820	735 780 825	740 784 829	744 789 834	749 793 838	753 798 843	758 802 847	762 807 851	
74 75 76	856 900 945 989	860 905 949	86 5 909 954	914 958	874 918 963	878 923 967	883 927 972 *016	932 976 *021	892 936 981	896 941 985	
77 78 79 980	99 034 078 123	994 038 083	998 043 087 131	*003 047 092 136	*007 052 096 140	*012 056 100	061 10 <u>5</u> 149	06 5 109	*025 069 114 158	*029 074 118 162	
81 82 83	167 211 255	171 216 260	176 220 264	180 224 269	18 5 229 273	189 233 277	193 238 282	198 242 286	202 247 291	207 251 295	I 0.4 2 0.8
84 85 86	300 344 388	304 348 392	308 352 396	313 357 401	317 361 405	322 366 410	326 370 414	330 374 419	33 5 379 423	339 383 427	3 1.2 4 1.6 5 2.0 6 2.4
87 88 89 990	432 476 520 564	436 480 524 568	441 484 528 572	445 489 533 577	449 493 537 581	454 498 542 585	458 502 546 590	463 506 550 594	467 511 555 599	471 515 559 603	7 2.8 8 3.2 9 3.6
91 92 93	607 651 695	612 656 699	616 660 704	621 664 708	62 <u>5</u> 669 712	629 673 717	634 677 721	638 682 726	642 686 730	647 691 734	
94 95 96	739 782 826	743 787 830	747 791 835	752 795 839	756 800 843	760 804 848	76 <u>5</u> 808 852	769 813 856	774 817 861	778 822 865	
97 98 99 1000	870 913 957 00 000	874 917 961 004	878 922 965 009	883 926 970 013	930 974 017	935 978 022	896 939 983 026	900 944 987 030	904 948 991 035	909 952 996 039	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

TABLE II.

LOGARITHMS

OF THE

SINE, COSINE, TANGENT, AND COTANGENT

FOR

EACH MINUTE OF THE QUADRANT.

							_		
<u></u>	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.		Prop.	Pts.
U						0.00 000	60		
1	6.46 373	30103	6.46 373	30103	3.53 627	0,00 000	59	d. 17	p 1"
2	6 76 476	17609	6.76 476	17600	3.23 524	0.00 000	58		01.72
3	6.94 08 3 7.06 579	12494	6.94 08 3 7 06 579	12494	2.93 421	0.00 000	57 56	17609 2	93.48
4_	7.16 270	9691	7.16 270	9691	2.83 730	0.00 000			08 23
5 6	7.10 270	7918	7.10 2/0	7918	2.75 812	0.00 000	55 54		61.52
7	7 30 882	6694	7.30 882	6694	2.69 118	0.00 000	53		31.97 11.57
8	7.36 682	5800	7.36 682	5800	2.63 318	0.00 000	52		96.67
9	7.41 797	4576	7.41 797	5115 4576	2.58 203	0 00 000	_51		85 25
10	7 46 373	4130	7.46 373	4139	2.53 627	0 00 000	50		76.27
II	7 50 512	3779	7.50 512	3779	2.49 488	0.00 000	49		68.98 62.98
12	7.54 291 7.57 767	3476	7.54 291 7.57 767	3476	2.45 709	0.00 000	48 47		57·93
14	7.60 985	3218	7.60 986	3219	2.39 014	0.00 000	46		53.65
15	7.63 982	2997	7 63 982	2996	2.36 018	0.00 000	45		53.63
16	7.66 784	2802	7 66 785	2803	2.33 215	0 00 000	44		49. 9 5
17	7.69 417	2633	7 69 418	2633	2.30 582	9 99 999	43		49 93
18	7.71 900	2483	7.71 900	2482	2.28 100	9 99 999	42		46 72 46.70
19	7.74 248	2348	7 74 248	2348	2 25 752	9 99 999	_4 ¹ _		40.70 43.88
20	7.76 475	2119	7 76 475	2119	2.23 524	9 99 999	40		41.38
21	7.78 594	2021	7 78 595	2020	2.21 405	9.99 999	39		41.37
22	7 80 615 7.82 545	1930	7 80 615 7.82 546	1931	2.19 385	9 99 999	38		39 13
24 24	7.84 393	1848	7 84 394	1848	2.17 454 2 15 606	9.99 999 9.99 999	37 36		37.13
25	7.86 166	1773	7.86 167	1773	2.13 833	9.99 999	35		37.12
26	7.87 870	1704	7.87 871	1704	2.12 129	9.99.999	34	2021	35.32 33.68
27	7.89 509	1639	7.89 510	1639	2 10 490	9 99 999	33	2020	33.67
28	7.91 088	1579	7.91 089	1579	2.08 911	9.99 999	32		32.18
29	7 92 612	1524	7.02 613	1524 1473	2 07 387	9 99 998	31	1930	32.17
30	7.9.1 08.1	1424	7.94 086	1424	2 05 914	9 99 998	30		30.80
31	7.95 508	1379	7 95 510	1379	2 04 490	9 99 998	29		29.55 28.40
32	7 96 887	1336	7 96 889	1336	2.03 111	9 99 998	28 27		27.32
33 34	7 99 520	1297	7 99 522	1297	2 00 478	9.99 998	26	1579	26 32
35	8.00 779	1259	8.00 781	1259	1 99 219	9.99 998	25	1524	25.40
36 36	8.02 002	1223	8.02 004	1223	1 97 996	9 99 998	24		24.55
37	8.03 192	1190	8.03 194	1190	1.96 806	9.99 997	23		24 53
38	8.04 350	1128	8.04 353	1159	1.95 647	9 99 997	22		23.73 22.98
39	8.05 478	1100	8 05 481	1100	1 94 519	9.99 997	21	23/9	22.90
40	8.06 578	1072	8 06 581	1072	1.93 419	9 99 997	20	4	4
4I	8.07 650	1046	8 07 653	1047	1 92 347	9.99 997	19	d. p. p. 1"	d. p. p. 1"
42	8.08 696 8.09 718	1022	8.08 700 8.09 722	1022	1 91 300	9 99 997 9 99 997	18		915 15.25 914 15 23
43 44	8.10 717	999	8 10 720	998	1 89 280	9 99 997	16		896 14.93
45	8.11 693	976	8 11 606	976	1.88 304	9 99 996	15	1223 20.38	895 14.92
46 46	8.12 647	954	8 12 651	955	1.87 349	9 99 996	14	1190 19.83	878 14.63
47	8.13 581	934	8.13 585	934	1.86 415	9 99 996	13		877 14.62
48	8 14, 495	914	8.14 500	915	1.85 500	9 99 996	12		860 14.33
49	8.15 391	896 877	8 15 305	895 878	1 84 603	9.09 996	11		843 14.05 828 13.80
50	8.16 268	86o	8.16 273	86o	I 83 727	9 99 995	10		827 13.78
51	8.17 128	843	8.17 133	843	1 82 867	9 99 995	9		812 13.53
52 52	8.17 971 8.18 798	827	8 17 076 8.18 804	828	1 82 024 1.81 196	9 99 995	8	1046 17.43	797 13.28
53 54	8.19 610	812	8.19 616	812	1.80 384	9.99 99 <u>5</u> 9.99 99 <u>5</u>	7 6		782 13.03
55	8 20 407	797	8 20 413	797	1.79 587	9 99 994	-5		769 12.82
56 56	8.21 189	782	8.21 195	782	1.79 307 1 78 805	9 99 994	4		756 12.60 755 12.58
57	8.21 958	769	8.21 964	769	1.78 036	9 99 994	3		743 12.38
58	8 22 713	755	8.22 720	756	1.77 280	9.99 994	2		742 12.37
59	8 23 456	743 730	8 23 462	742 730	1.76 538	9 99 994	1		730 12.17
60	8.24 186	, 30	8.24 192	,30	1.75 808	9.99 993	0		
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	,	Prop. 1	Pte.

1	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.			Prop	Pts	
0	8.24 186	717	8.24 192	718	1.75 808	9.99 993	60				
I	8.24 903	706	8.24 910	706	1.75 090	9.99 993	59	ľ			
3	8.25 609 8.26 304	695	8.25 616 8.26 312	696	1.74 384	9.99 993 9.99 993	58 57				
4	8.26 988	684	8.26 996	684	1.73 004	9.99 993	56	İ			
	8.27 661	673	8.27 669	673	1.72 331	9.99 992	55				
5 6	8.28 324	663	8.28 332	663	1.71 668	9.99 992	54				
7	8.28 977	653 644	8.28 986	654 643	1.71 014	9.99 992	53				
8	8.29 621	634	8.29 629	634	1.70 371	9.99 992	52				
9 10	8.30 255	624	8.30 263	625	1.69 737	9.99 991	51 50	d.	p. p. 1"		p. p. 1"
11	8.30 879 8.31 495	616	8.30 888 8.31 50 5	617	1.69 112	9.99 991 9.99 991	49	718	11.97	485	8.08
12	8.32 103	608	8.32 112	607	1.67 888	9.99 990	48	717	11.95	480	8.00
13	8.32 702	599	8 32 711	599	1.67 289	9.99 990	47	706 696	11.77 11.60	475 474	7.92
14	8.33 292	590 583	8.33 302	591 584	1.66 698	9 99 990	46	695	11.58	470	7.83
15	8.33 875	575	8.33 886	575	1.66 114	9.99 990	45	684	11.40	464	7.73
16	8.34 450	568	8.34 461	568	1.65 539	9.99 989	44	673	11.22	460	7.67
17 18	8 35 018 8.35 578	560	8.35 o29 8.35 590	56r	1.64 971	9.99 989 9.99 989	43 42	663	11.05	459	7.65
19	8.36 131	553	8.36 143	553	1.63 857	9.99 989	4I	654 653	10.90	455 450	7.58 7.50
20	8.36 678	547	8.36 689	546	1.63 311	9.99 988	40	644	10.73	446	7.43
21	8.37 217	539	8.37 229	540	1.62 771	9 99 988	39	643	10.72	445	7.42
22	8.37 750	533 526	8.37 762	533 527	1.62 238	9.99 988	38	634	10.57	441	7.35
23	8.38 276	520	8 38 289	527	1.61 711	9.99 987	37	625	10.42	437	7.28
24	8.38 796	514	8 38 809	514	1 61 191	9.99 987	36	624 617	10.40	436 433	7.27 7.22
25 26	8.39 310	508	8.39 323	509	1.60 677 1 60 168	9.99 987	35	616	10.27	432	7.20
27	8.39 818 8.40 320	502	8.39 832 8.40 334	502	1.59 666	9.99 986 9.99 986	34 33	608	10.13	428	7.13
28	8.40 816	496	8.40 830	496	1.59 170	9 99 986	32	607	10.12	427	7.12
29	8.41 307	491	8.41 321	491	1 58 679	9 99 985	31	599	9.98	424	7.07
30	8.41 792	485	8 41 807	486	1.58 193	9.99 985	30	591 590	9.85 9.83	420	7.00 6.98
31	8.42 272	480	8.42 287	480	1.57 713	9 99 985	29	584	9.73	416	6.93
32	8.42 746	474 479	8 42 762	475 470	1.57 238	9.99 984	28	583	9.72	412	6.87
33 34	8.43 216 8.43 680	464	8.43 232 8.43 696	464	1.56 768 1 56 304	9 99 984 9 99 984	27 26	575	9.58	411	6.85
35	8.44 139	459	8.44 156	460	1 55 844	9 99 983	25	558 561	9.47	408	6.80 6.73
36	8.44 594	455	8.44 611	455	1.55 389	9.99 983	24	560	9·35 9·33	401	6.68
37	8.45 044	450	8.45 061	450	1.54 939	9.99 983	23	553	9.22	400	6.67
38	8.45 489	445 441	8.45 507	446 441	1.54 493	9.99 982	22	547	9.12	397	6.62
39	8.45 930	436	8.45 948	437	1.54 052	9.99 982	21	546	9.10	396	6.60
40	8.46 366	433	8.46 385	432	1.53 615	9 99 982	20	540 539	9.00 8.98	393 390	6.55 6.50
4I 42	8.46 799 8.47 226	427	8.46 817 8.47 245	428	1.53 183	9.99 981 9 99 981	18	533	8.88	386	6.43
43	8.47 650	424	8.47 669	424	1 52 331	9.99 981	17	527	8.78	383	6.38
44	8.48 069	419	8 48 089	420	1.51 911	9 99 980	16	526	8.77	382	6.37
45	8.48 485	416	8.48 505	416	1.51 495	9.99 980	15	520	8.67	380	6.33
46	8.48 896	411 408	8.48 917	412 408	1.51 083	9.99 979	14	514 5 0 9	8.57 8.48	379 376	6.32 6.27
47	8.49 304	404	8.49 325	404	1.50 675	9 99 979	13	508	8.47	373	6.22
48 49	8.49 708 8.50 108	400	8.49 729 8.50 130	401	1.50 271 1.49 870	9 99 979 9.99 978	12 11	502	8.37	370	6.17
50	8.50 504	396		397			10	496	8.27	369	6.15
51	8.50 897	393	8.50 527 8.50 920	393	I.49 473 I.49 080	9 99 9 7 8 9 99 9 7 7	9	491 486	8.18	367 363	6.12 6.05
52	8.51 287	390	8.51 310	390	1.48 690	9 99 977	8	400	0.10	1 3 3 1	9.03
53	8.51 673	386 382	8.51 696	386 383	1.48 304	9.99 977	7				
54	8.52 055	379	8.52 079	380	1.47 921	9 99 976					
55	8.52 434	376	8.52 459	376	1.47 541	9.99 976	5				
56	8.52 810	373	8.52 835	373	1 47 165	9.99 975	4				
57 58	8.53 183 8.53 552	369	8.53 208 8.53 578	370	1.46 792 1.46 422	9.99 975 9.99 974	3 2				
59	8.53 919	367	8.53 945	367	1.46 055	9.99 974	1				
60	8.54 282	363	8.54 308	363	1.45 692	9.99 974	0				
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	,		Prop.	Dte	

1	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.		Prop. Pts.
O	8.54 282	360	8.54 308	36x	1.45 692	9 99 974	60	
1 2	8.54 642 8.54 999	357	8.54 669	358	1.45 331	9.99 973	59 58	
3	8.55 354	355	8.55 027 8.55 382	355	±.44 973 1.44 618	9.99 973 9.99 972	57	
4	8.55 705	35I	8.55 734	352	1.44 266	9.99 972	56	
	8.56 054	349	8.56 083	349	1.43 917	9.99 971	55	
5 6	8.56 400	346	8.56 429	346	1.43 571	9.99 971	54	
7	8.56 743	343	8.56 773	344 341	1.43 227	9.99 970	53	i
8	8.57 084	341 337	8.57 114	338	1.42 886	9.99 970	52	d. p. p. 1" d. p. p.1"
9	8.57 421	336	8.57 452	336	1.42 548	9.99 969	51	361 6.02 291 4.85
10	8.57 757 8.58 089	332	8.57 788 8 58 121	333	1.42 212	9 99 969 9.99 968	50	360 6.00 290 4.83
12	8.58 419	330	8 58 451	330	1.41 549	9.99 968	49 48	358 5.97 289 4.82
13	8.58 747	328	8.58 779	328	1.41 221	9.99 967	47	357 5 95 288 4.80
14	8.59 072	325	8.59 105	326	1.40 893	9 99 967	46	355 5.92 287 4.78
15	8.59 395	323	8.59 428	323	1.40 572	9 99 967	45	352 5.37 285 4.75 351 5.85 284 4.73
16	8.59 715	320 318	8 59 749	321	1.40 251	9 99 966	44	351 5.85 284 4.73 349 5.82 283 4.72
17	8.60 033	316	8.60 063	316	I 39 932	9.99 966	43	346 5.77 281 4.68
18 19	8.60 349 8.60 662	313	8.60 384 8.60 698	314	1.39 616	9 99 96 5 9.99 964	42 41	344 5.73 280 4.67
20		311		311	1.39 302		40	343 5.72 279 4.65
21	8 60 973 8.61 282	309	8.61 009 8.61 319	310	1.38 991	9 99 964 9 99 963	39	341 5.68 278 4.63
22	8.61 589	307	8 61 626	307	1.38 374	9.99 963	38	338 5 63 277 4.62 337 5.62 276 4.60
23	8.61 894	305	8.61 931	305	1 38 069	9.99 962	37	337 5.62 276 4.60 336 5 60 274 4.57
24	8.62 196	302	8 62 234	303	I 37 766	9.99 962	36	333 5.55 273 4.55
25	8 62 497	301	8.62 535	301	1.37 465	9.99 961	35	332 5.53 272 4.53
26	8.62 793	298 296	8.62 834	299 297	1 37 166	9.99 961	34	330 5.50 271 4.52
27	8.63 091	294	8.63 131	295	1 36 869	9.99 960	33	328 5.47 270 4.50
28 29	8.63 385 8.63 678	293	8.63 426	292	1.36 574	9.99 960	32	326 5.43 269 4.48 325 5.42 268 4.47
30		290	8.63 718	291	1 36 282	9.99 959	31	325 5.42 268 4.47 323 5.38 267 4.45
31	8.63 968 8.64 256	288	8 64 009 8.64 298	289	1 35 991	9 99 959 9.99 958	29	321 5.35 266 4.43
32	8.64 543	287	8.64 585	287	1.35 702	9.99 958	28	320 5.33 264 4.40
33	8.64 827	284	8.64 870	285	1.35 130	9.99 957	27	319 5.32 263 4.38
34	8.65 110	283 281	8.65 154	284 281	1.34 846	9 99 956	26	318 5.30 261 4.35 316 5.27 260 4.33
35	8.65 391		8 65 435	280	1 34 563	9 99 956	25	316 5.27 260 4.33 314 5.23 259 4 32
36	8.65 670	279 277	8.65 713	278	1 34 285	9.99 955	24	313 5.22 258 4.30
37	8.65 947	276	8 65 993	276	1.34 007	9.99 955	23	311 5.18 257 4.28
38 39	8.66 223 8 66 497	274	8.66 269 8.66 543	274	1.33 731 1.33 457	9.99 954 9 99 954	22 2I	310 5.17 256 4.27
40	8.66 769	272	8.66 816	273			20	309 5.15 255 4.25
41	8.67 039	270	8.67 087	271	1.33 184 1.32 913	9 99 953	19	307 5.12 254 4.23 305 5.08 253 4 22
42	8.67 308	269	8.67 356	269	1.32 644	9.99 952	18	303 5.05 252 4.20
43	8.67 575	267	8.67 624	268	1.32 376	9 99 951	17	302 5.03 251 4.18
44	8.67 841	266 263	8.67 890	266 264	1.32 110	9.99 951	16	301 5.02 250 4.17
45	8.68 104	263	8.68 154	263	1 31 846	9.99 950	15	299 4.98 249 4.15
46	8.68 367	263	8.68 417	261 261	1.31 583	9.99 949	14	298 4.97 248 4 13
47 48	8.68 627 8.68 886	259	8.68 678	260	1.31 322	9 99 949	13	297 4.95 247 4.12 296 4.93 246 4.10
46 49	8.69 144	258	8.68 938 8.69 196	258	1 31 062	9 99 948	12 11	295 4.92 245 4 08
50	8.69 400	256		257		9 99 948	10	294 4.90 244 4.07
51	8.69 654	254	8.69 453 8.69 708	255	1.30 547	9.99 947 9.99 946	9	293 4.88 243 4 05
52	8 69 907	253	8.69 962	254	1.30 038	9.99 946	8	292 4.87 242 4.03
53	8.70 159	252	8.70 214	252	1.29 786	9.99 945	7	
54	8 70 409	250	8.70 465	251	1.29 535	9 99 944	6	
55	8.70 658	249	8.70 714	249	1.29 286	9.99 944	5	
56	8.70 903	247	8.70 962	248 246	1 29 038	9.99 943	4	
57	8.71 151	246 244	8.71 208	245	1.28 792	9 99 942	3	
58 59	8.71 395 8.71 638	243	8.71 453 8.71 697	244	1.28 547 1.28 303	9.99 942	2	
60	8.71 880	242	8.71 940	243	1.28 060	9 99 941 9.99 940	0	
\vdash	L. Cos.	d.	L. Cotg.	c. d.		L. Sin.		Prop. Pts.
					8			

7	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.			Pro	p. Pts	
0	8.71 880		8.71 940		1.28 060	9 99 940	60				
1	8.72 120	239	8.72 181	241	1.27 819	9 99 940	59	6	238	234	229
2	8.72 359	238	8.72 420	239	1.27 580	9 99 939	58		23.8	23.4	22.9
3 4	8.72 597 8.72 834	237	8.72 659 8.72 896	237	I 27 341 I.27 104	9.99 938	57 56	78	31.7	31.2	30.5
	8.73 069	235	8.73 132	236	1.26 868	9.99 937	55	9	35.7	35.1	34.4
5 6	8.73 303	234	8.73 366	234	1.26 634	9.99 937	55 54	10	39.7	39.0	38.2
7 8	8.73 535	232	8.73 600	234	1.26 400	9.99 936	53	20	79.3	78 0	76.3
	8 73 767	232	8.73 832	232	1.26 168	9 99 935	52	30 40	119.0	117.0	114 5 152.7
9	8 73 397	230	8.74 063	231	1.25 937	9.99 934	51	50	198.3		
10	8.74 226	228	8.74 292	229	1.25 708	9.99 934	5υ	ľ	225	220	216
11	8.74 454 8.74 680	226	8 74 521 8.74 748	227	1.25 479	9.99 933	49 48	6	22.5	22.0	21.6
13	8.74 906	226	8.74 974	226	1.25 252	9.99 932 9.99 932	47	7	26.3	25.7	25.2
14	8.75 130	224	8.75 199	225	1.24 801	9.99 931	46	8	30.0	293	28.8
15	8.75 353	223	8.75 423	224	1.24 577	9.99 930	45	9	33.8	330	32.4
16	8.75 575	222	8.75 645	222	1.24 355	9 99 929	44	10 20	37.5	36.7	36.c
17	8.75 795	220 220	8.75 867	222	1.24 133	9.99 929	43	30	75.0	73.3	72.0
18	8.76 015	219	8.76 087	219	1.23 913	9.99 928	42	40	150.0	146 7	144.0
19 20	8.76 234 8 76 451	217	8.76 3n6 8 76 525	219	1.23 694	9.99 927	41	50			
2U 2I	8.76 667	216	8 70 525 8.76 742	217	1.23 475	9 99 926	39	l	212	208	204
22	8.76 883	216	8 76 958	216	I.23 258 I 23 042	9.99 926 9.99 925	38	6	21.2	20.8	20.4
23	8.77 097	214	8 77 173	215	1.22 827	9 99 924	37	7	247	243	23.8
21	8.77 310	213	8.77 387	214	1.22 613	9 99 923	36	8	28.3	27.7	27.2
25	8.77 522	212	8.77 600	213	1.22 400	9 99 923	35	9	31.8	31.2	30.6
26	8.77 733	210	8.77 811	211	1.22 189	9 99 922	34	20	35·3 70·7	34.7 69 3	34.0 68.0
27 28	8.77 943	200	8.78 022	210	1 21 978	9 99 921	33	30	106.0	104.0	102.0
20	8.78 152 8 78 360	208	8.78 232 8 78 441	200	1.21 768 1.21 559	9 99 920	32 31	40	141.3	138.7	136.0
30	C.78 568	208	8.78 649	208	1.21 351		30	50	176.7	173.3	170.0
31	8.78 774	206	8 78 855	206	1.21 145	9 99 918	20		201	197	193
32	8.78 979	205	8.79 061	206	1 20 939	9 99 917	28	6	20.1	197	19.3
33	8.79 183	204 203	8.79 266	205	1.20 734	9.99 917	27	7	23.5	27 0	22.5
34	8.79 386	202	8.79 470	204 203	1.20 530	9 99 916	26	8	26.8	26.3	25.7
35	8.79 588	201	8.79 673	202	1.20 327	9 99 915	25	9 10	30 2 33.5	29.6 32.8	29.0 32.2
36	8.79 789	201	8.79 875 8.80 076	201	1.20 125	9 99 914	21	20	67.0	65.7	64.3
37 38	8.79 990 8.80 189	199	8.80 277	201	I.19 924 I.19 723	9 99 913	23 22	30	100.5	98.5	96.5
39	8.80 388	199	8.90 476	199	1.19 524	9 99 912	21	40	134.0	131.3	128.7
40	8.8o 585	197	8.80 674	198	1.19 326	9 99 911	20	50	167.5	164.2	160.8
41	8.80 782	197 196	8 80 872	198 196	1.19 128	9 99 910	19		189	185	181
42	8.80 978	190	8.81 068	196 196	1.18 932	9 99 909	18	6	18.9	18 5	181
43	8.81 173	194	8.81 264	195	1.18 736	9 99 909	17	7	22.1	21.6	21.1
44_	8.81 367	193	8.81 459	194	1.18 541	9 99 908	16	8	25.2 28.4	24 7 27.8	24.I 27.2
45	8.81 560	192	8.81 653	193	1.18 347	9 99 907	15	10	31.5	30.8	30.2
46 47	8.81 752 8.81 944	192	8.81 846 8.82 038	192	1.18 154 1.17 9 62	9 99 905	14 13	20	63.0	61.7	60.3
48	8.82 134	190	8 82 230	192	1.17 770	9 99 904	12	30	94.5	92.5	90.5
49	8.82 324	190	8.82 420	190	1.17 580	9.99 904	11	40	126.0	123.3	120.7
50	8.82 513	189	8.82 610	190	1.17 390	9.99 903	10	F,O	157.5	154 2	150.8
51	8.82 701	188 187	8.82 799	189	1.17 201	9 99 902	9	Ι.		3 2	1 =
52	8.82 888	187	8.82 987	188	1.17 013	9 99 901	8	6		.3 0.2	
53	8.83 073 8.83 261	186	8 83 175	186	1.16 825	9 99 900	7	7		0.4 0.2	
54		185	8.83 361	18 6	1.16 639	9.99 899		٥		0.4 0.3 0.5 0.3	
55 56	8.83 446 8.83 630	184	8.83 547 8.83 732	185	1.16 453 1.16 268	9 99 898 9 99 898	5 4	10		0.5 0.3	0.2
57	8.83 813	183	8.83 916	184	1.16 084	9 99 897	3	20	1.3	.0 07	0.3
58	8.83 996	183	8.84 100	184	1.15 900	9 99 896	2	30	2.0	.5 1.0	
59	8.84 177	181	8 84 282	182	1.15 718	9 99 895	1	40		1.0	
60	8.84 358	101	8.84 464	102	1.15 536	9.99 894	0	50	9 3.3 2	.5 1.7	0.8
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	,		Pro	p. Pts	•

								_			
	L. Sin.	d.	L. Tang	. c. d	L. Cotg.	L. Cos.			Pro	p. Pt	8.
0	8.84 358	181	8.84 464		1.15 536	9.99 894	60	П			
I	8.84 539	179	8.84 646	182	1.15 354	9.99 893	59	6	18.0	177	174
3	8.84 718 8.84 897	179	8.84 826 8.85 006	180	1.15 174	9.99 892	58	7	21.0	17.7	20.3
4	8.85 075	178	8.85 185	179	1.14 994	9.99 891	57 56	ĺ	24.0	23.6	
	8.85 252	177	8 85 363	178	1.14 637	9 99 890	55	9	27.0	26.6	26.1
5	8.85 429	177	8.85 540	177	1.14 460	9 99 889	54	10	30.0	29.5	29.0
7	8.85 605	176	8.85 717	177	1.14 283	9 99 888	53	20	60,0	59.0 88.5	58.c
8	8.85 780	175	8.85 893	176	1.14 107	9.99 887	52	30 40	120.0	118.0	
9	8 85 955	173	8.86 069	174	1.13 931	9.99 886	51	50			
10	8.86 128 8.86 301	173	8.86 243 8.86 417	174	1.13 757	9 99 885	50	1	171	169	167
12	8.86 474	173	8.86 591	174	1.13 409	9 99 884 9 99 883	49 48	6	17.1	16.9	16.7
13	8.86 645	171	8.86 763	172	1.13 237	9.99 882	47	7	20.0	19.7	19.5
14	8.86 816	171	8 86 935	172	1.13 063	9 99 881	46	8	22.8	22.5	22.3
15	8.86 987	171	8.87 106	171	1.12 894	9 99 880	45	9	25.7	25.4	25.1
16	8.87 156	169	8 87 277	171	1.12 723	9 99 879	44	10 20	28.5 57.0	28.2 56.3	27.8 55.7
17 18	8.87 325	169	8.87 447 8.87 616	169	1.12 553	9 99 879	43	30	85.5	84.5	83.5
19	8.87 494 8.87 661	167	8 87 785	169	1.12 384	9 99 878 9 99 877	42 41	40	114.0	1127	1113
20	8 87 829	168	8 87 953	168	1.12 047	9 99 876	40	50	142.5	140.8	139.2
21	8.87 995	166	8 88 120	167	1.11 880	9 99 875	39	l	165	163	160
22	8.88 161	166	8.88 287	167	1.11 713	9 99 874	38	6	16.5	16.3	16.0
23	8.88 326	165 164	8.88 453	166 165	1.11 547	9 99 873	37	7	19.3	190	18.7
2.1	8.88 490	164	8 88 618	165	1.11 382	9 99 872	36	8	22.0	21.7	21.3
25 26	8 88 654	163	8.88 783	165	1.11 217	9.99 871	35	10	24.8 27.5	24.5 27.2	24.0 26.7
27	8.88 817 8.88 980	163	8.88 948 8 89 111	163	1.11 052 1.10 880	9.99 870 9 99 869	34 33	20	55.0	54 3	53.3
28	8 89 142	162	8.89 274	163	1 10 726	9 99 868	32	30	82.5	81.5	80.0
29	8 89 304	162	8.89 437	163	1.10 563	9.99 867	31	40	110.0	108.7	106.7
30	8.89 464	160	8 89 598	161	1.10 402	9.99 866	30	50	137.5	135.8	133.3
31	8.89 625	161	8 89 760	162	1.10 240	9 99 865	29		157	155	153
32	8 89 784	159 159	8.89 920	160	1.10 080	9 99 864	28	6	15.7	15.5	15.3
33 34	8.89 943 8.90 102	159,	8.90 080 8.90 240	160	1 09 920 1 09 760	9 99 863 9 99 862	27 26	7 8	18.3 20.9	18.1 20.7	17.9 20.4
35	8.90 260	158	8.90 399	159	1.09 601	9 99 861	25	9	23.6	23.3	23.0
35 36	8.90 417	157	8.90 557	158	1 09 443	9 99 860	24	01	26.2	25.8	25.5
37	8.90 574	157	8.90 715	158	1.09 285	9 99 859	23	20	52.3	51.7	51.0
38	8.90 730	156	8.90 872	157	109 128	9 99 858	22	30	78.5	77.5	76.5
_39	8.90 885	155	8.91 029	157 156	1.08 971	9 99 857	21	40 50	130.8	103.3	102.0
40	8.91 040	155	8.91 185	155	1.08 815	9 99 856	20	3~ ;	-	-	
4I 42	8.91 19 5 8.91 349	154	8.91 340 8.91 495	155	1.08 660 1.08 505	9 99 85 5 9 99 854	19 18	6	151	149	147
43	8.91 502	153	8.91 495	155	1.08 350	9 99 853	17	7	15.1	14 9 17.4	14.7
44	8.91 655	153	8 91 803	153	1 08 197	9.99 852	16	8	20 1	199	19.6
45	8 91 807	152	8.91 957	I 54	1 08 043	9 99 851	15	9	22 7	22.4	22.I
46	8 91 959	152	8.92 110	153	1.07 890	9 99 850	14	10	25.2	24.8	24.5
47	8.92 110	151	8.92 262	152 152	1 07 738	9 99 848	13	20	50.3	49.7	49.0
48	8.92 261 국 92 411	150	8.92 414	151	1.07 586	9 99 847 9 99 846	12 11	30 40	75.5	74·5 99·3	73.5 98.0
49 50		150	8 92 565	151	1.07 435		10	50	125.8		122.5
51	8.92 561	149	8.92 716 8 92 866	150	1.07 284 1.07 134	9.99 845 9 99 844	10	Ī	1 146	1.2	1
52	8.92 859	149	8.93 016	150	1.06 984	9 99 843	8		6 14.	- 1 -	0.1
53	8 93 007	148	8.93 163	149	1.06 835	9.99 842	7		7 17		0.1
54	8.93 154	147 147	8 93 313	148 149	1 06 687	9 99 841	6		8 19.	5 0.3	O.I
55	8.93 301	147	8.93 462	147	1 06 538	9.99 840	5		9 21		0.2
56	8 93 448	146	8.93 609	147	1.06 391	9 99 839	4	2			0.2
57 58	8 93 594 8.93 740	146	8.93 756 8 93 903	147	1.06 244 1.06 097	9.99 838 9.99 837	3	3			0.3 0.5
59	8 93 885	145	8.94 049	146	1.00 097	9.99 836	I	4			0.7
60	8.94 030	145	8.94 195	146	1.05 805	9 99 834	0		0 121.		0.8
	L. Cos.	d.		e. d.	L. Tang.	L. Sin.	,	\vdash	Pror	. Pts	
					8.				E		

1	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.		Prop. Pts.			
U	8.94 030		8 94 195		1.05 803	9.99 834	60	_			
I	8.94 174	144	8.94 340	145	1.05 660	9.99 833	59 58	اء	145	143	141
3	8.94 317 8.94 461	144	8.94 485 8 94 630	145	1.05 515	9.99 832 9.99 831	58 57	7	14.5 16.9	14.3 16.7	14.1 16.5
4	8.94 603	142	8.94 773	143	1.05 227	9.99 830	56	8	19.3	19.1	18.8
5	8 94 746	143	8.94 917	144	1.05 083	9.99 829	55	9	21.8	21.5	21.2
	8.94 887	141	8.95 060	143	1.04 940	9 99 828	54	20	24.2 48.3	23.8	23.5 47.0
7 8	8.95 029	141	8 95 202	142	1.04 798	9.99 827	53	30	72.5	47.7 71.5	70.5
°	8.95 170 8.95 310	140	8.95 344 8 95 486	142	1.04 656	9 99 825 9 99 824	52 51	40	96.7	95.3	94.0
10	8.95 450	140	8 95 627	141	1.04 373	9 99 823	50	50	120.8	119.2	117.5
11	8.95 589	139	8 95 767	140	1.04 233	9 99 822	49	1	139	138	136
12	8.95 728	139	8 95 908	141	1 04 092	9.99 821	48	6	13.9	13.8	13.6
13	8.95 867	139	8 96 047	140	1.03 953	9 99 820	47	7 8	16.2	16.1	15.9
14	8 96 005	138	8 95 187	138	1.03 813	9 99 819	_46	9	18.5 20 9	18.4 20.7	18.1 20.4
15 16	8 96 143 8.96 280	137	8 96 325 8 96 464	139	1.03 67 5 1.03 536	9 99 817	45	10	23.2	23.0	22.7
17	8.96 417	137	8 96 602	138	1.03 338	9.99 816 9.99 815	44 43	20	4Ğ.3	460	45.3
18	8.96 553	136	8 96 739	137	1.03 261	9 99 814	42	30	69.5	69 o	68.0
19	8.96 689	136 136	8 96 877	138 136	1 03 123	9 99 813	41	40 50	92.7 115.8	92.0 115.0	90.7
20	8.96 825	135	8.97 013	-	1.02 987	9 99 812	40	50	-		1133
21	8.96 960	135	8 97 150	137 135	1.02 850	9 99 810	39		135	133	131
22 23	8 97 993	134	8.97 285 8 97 421	136	1.02 715	9 99 809 9 99 808	38	6	13 5 15.8	13.3	13.1 15.3
24	8 97 363	134	8 97 556	135	1.02 444	9 99 807	37 36	8	18.0	17.7	175
25	8.97 496	133	8.97 691	¥35	1.02 309	9 99 806	35	9	20.3	20,0	19.7
26	8 97 629	133	8 97 825	134	1,02 175	9 99 804	34	10	22.5	22.2	21.8
27	8.97 762	133 132	8 97 959	134	1.02 041	9 99 803	33	20	45 0	44.3	43.7
28	8 97 894	132	8 98 092	133	1 01 908	9.99 802	32	30 40	67.5 90 0	66.5 88.7	65.5 87.3
29 30	8 98 026	131	8 98 225	133	1 01 775	9 99 801	31	50		110.8	
31	8 98 157 8.98 288	131	8 98 358 8.98 490	132	1.01 642	9 99 800	30	Ι,	129	128	126
32	8 98 419	131	8 98 622	132	1.01 378	9 99 798 9 99 797	29 28	6	12.9	8.41	12.6
33	8 98 549	130	8.98 753	131	1.01 247	9.99 796	27	7	15.1	14.9	14.7
34_	8.98 679	130	8 98 884	131	1.01 116	9 99 795	26	8	17.2	17.1	168
35	8.98 808	129	8.99 013	131	1.00 985	9 99 793	25	9	194	19.2	18.9
36	8.98 937	129	8 99 145	130	1.00 855	9 99 792	24	20	21.5 43.0	2I 3 42.7	21.0 42.0
37 38	8.99 o66 8.99 191	128	8 99 27 <u>5</u> 8 99 40 <u>5</u>	130	1.00 725 1.00 595	9 99 791	23 22	30	64.5	64.0	63.0
39	8.99 322	128	8 99 534	129	1.00 466	9 99 790 9 99 788	21	40	86.0	85.3	84.0
40	8.99 450	128	8 99 662	128	1.00 338	9 99 787	20	50	107.5	106.7	105.0
41	8 99 577	127	8.99 791	129	1.00 200	9 99 786	19	1	125	123	122
42	8 99 704	127	8 99 919	128	1.00 081	9.99 783	18	6	12.5	12.3	12.2
43	8 99 830	126 126	9.00 016	127	0 99 954	9.99 783	17	7	14.6	14.4	14.2
44	8 99 956	126	9.00 174	127	0.99 826	9 99 782	16	8	16.7 18.8	16.4 18.5	16.3 18.3
45 46	9 00 082	125	9.00 301	126	0.99 699	9.99 781	15	10	20.8	20.5	20.3
47	9.00 207	125	9 00 427	126	0.99 573 0.99 447	9 99 780 9.99 778	14	20	41.7	41.0	40.7
48	9.00 456	124	9.00 679	126	0 99 321	9 99 777	12	3C	62.5	61.5	61.0
49_	9.00 581	125	9.00 805	126	0.99 195	9 99 776	11	40	83.3	82.0	81.3
50	9.00 704	123	9 00 930		0.99 070	9.99 773	10	50	104.2	102.5	-
51	9 00 828	123	9 01 055	125	0 98 945	9.99 773	9	١.	121	120	1
52	9.00 951	123	9 01 179	124	0.98 821	9.99 772	8	6	12.1		
53 54	9.01 195	122	9.01 303 9.01 427	124	0.98 573	9.99 771 9 99 769	7 6	7 8	14.1		
55	9.01 318	122	9.01 550	123	0.98 450	9.99 768		9	18.2		
56	9.01 440	122	9.01 673	123	0.98 327	9.99 767	4	10	20.2	20.0	0.2
57	9.01 561	121	9.01 795	123	0 98 204	9 99 765	3	20	40.3		
58	9.01 682	121	9.01 918	122	0 98 082	9 99 764	2	30	80.7		
.59	9 or 8o3	120	9.02 040	122	0 97 960	9.99 763	I	40 50			
60	9.01 923		9.02 162		0 97 838	9.99 761	0	Ľ			
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	,		Pro	p. Pts	

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	9.01 923 9.02 043 9.02 163 9.02 283 9.02 402 9.02 520 9.02 539 9 02 757 9 02 874 9 02 992 9.03 109 9.03 342 9 03 3458 9 03 574 9.03 690 9 03 920 9.04 034 9.04 149 9.04 262	120 120 120 118 119 118 117 118 117 116 116 116 116 116 115	9.02 162 9 02 283 9 02 404 9.02 525 9.02 645 9.02 885 9.03 005 9.03 124 9.03 361 9.03 479 9.03 597 9 03 714 9 03 832	121 121 120 121 120 121 119 120 118 119 118	0.97 838 0 97 717 0.97 596 0.97 47 <u>5</u> 0.97 3 <u>5</u> 5 0.97 2 <u>34</u> 0.97 11 <u>5</u> 0.96 995 0.96 876 0 96 758 0.96 639 0.96 521 0.96 403	9.99 761 9.99 760 9.99 759 9.99 757 9.99 755 9.99 753 9.99 753 9.99 751 9.99 749 9.99 748	59 58 57 56 55 54 53 52 51	6 7 8 9 10 20 30 40 50	121 12.1 14.1 16.1 18.2 20.2 40.3 60.5 80 7 100.8	12.0 14.0 16.0 18.0 20.0 40.0 60.0	13.9 15.9 17.9 19.8 39.7 59.5 79.3
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	9 02 163 9.02 283 9.02 402 9.02 520 9.02 520 9.02 757 9 02 874 9 02 992 9.03 109 9.03 342 9.03 342 9.03 574 9.03 690 9.03 920 9.03 920 9.03 920 9.04 034 9.04 149	120 120 119 118 119 118 117 118 117 116 116 116 116 116 115	9 02 404 9.02 525 9.02 645 9.02 766 9.02 885 9.03 005 9.03 124 9.03 361 9.03 479 9.03 597 9.03 714 9.03 832 9.03 948	121 120 121 119 120 118 118 119 118	0.97 596 0.97 475 0.97 355 0.97 234 0.97 115 0.96 995 0.96 758 0.96 639 0.96 639	9.99 759 9.99 757 9.99 755 9.99 755 9.99 752 9.99 751 9.99 749 9.99 748	58 57 56 55 54 53 52 51	7 8 9 10 20 30 40	12.1 14.1 16.1 18.2 20.2 40.3 60.5 80 7	12.0 14.0 16.0 18.0 20.0 40.0 60.0	11.9 13.9 15.9 17.9 19.8 2 39.7 5 59.5 79.3
3 4 5 6 7 8 9 10 11 12 13 14 15 16	9.02 283 9.02 402 9.02 520 9.02 539 9 02 757 9 02 874 9 02 992 9.03 109 9.03 226 9.03 342 9 03 458 9 03 574 9.03 690 9.03 920 9.04 034 9.04 149	119 118 119 118 117 118 117 116 116 116 116 115	9.02 525 9.02 645 9.02 766 9.02 885 9.03 005 9.03 124 9.03 361 9.03 479 9.03 597 9 03 714 9 03 832 9 03 948	121 120 121 119 120 118 118 119 118 118	0.97 475 0 97 355 0.97 234 0.97 115 0.96 995 0 96 876 0 96 758 0.96 639 0.96 521 0.96 403	9.99 757 9.99 756 9 99 755 9.99 753 9.99 752 9.99 751 9 99 749 9.99 748	57 56 55 54 53 52 51	7 8 9 10 20 30 40	14.1 16.1 18.2 20.2 40.3 60.5 80 7	14.0 16.0 18.0 20.0 40.0 60.0	13.9 15.9 17.9 19.8 39.7 59.5 79.3
4 5 6 7 8 9 10 11 12 13 14 15 16	9.02 402 9.02 520 9.02 639 9.02 639 9.02 874 9.02 992 9.03 109 9.03 226 9.03 342 9.03 574 9.03 690 9.03 920 9.04 034 9.04 149	118 119 118 117 118 117 116 116 116 116 115	9.02 645 9.02 766 9.02 885 9.03 005 9.03 124 9.03 361 9.03 479 9.03 597 9.03 714 9.03 832 9.03 948	121 119 120 119 118 119 118 118	0 97 355 0.97 234 0.97 115 0.96 995 0 96 876 0 96 758 0.96 639 0.96 521 0.96 403	9.99 756 9 99 755 9.99 753 9.99 752 9.99 751 9 99 749 9.99 748	56 55 54 53 52 51	8 9 10 20 30 40	16.1 18.2 20.2 40.3 60.5 80.7	16.0 18.0 20.0 40.0 60.0	15.9 17.9 19.8 39.7 59.5 79.3
5 6 7 8 9 10 11 12 13 14 15 16	9.02 520 9.02 639 9 02 757 9 02 874 9 02 992 9.03 109 9.03 226 9.03 342 9 03 574 9.03 690 9 03 805 9.03 920 9.04 034 9.04 149	119 118 117 118 117 116 116 116 116 115	9.02 766 9.02 885 9.03 005 9.03 124 9 03 242 9.03 361 9.03 479 9.03 597 9 03 714 9 03 832 9 03 948	119 120 119 118 119 118 118	0.97 234 0.97 115 0.96 995 0 96 876 0 96 758 0.96 639 0.96 521 0.96 403	9 99 755 9.99 753 9.99 752 9.99 751 9 99 749 9.99 748	55 54 53 52 51	10 20 30 40	20.2 40.3 60.5 80 7	20.0 40.0 60.0 80.0	19.8 39.7 59.5 79.3
7 8 9 10 11 12 13 14 15 16 17	9.02 639 9 02 757 9 02 874 9 02 992 9.03 109 9.03 226 9.03 342 9 03 574 9.03 690 9.03 920 9.04 034 9.04 149	118 117 118 117 117 116 116 116 116 115 115	9.02 885 9.03 005 9.03 124 9 03 242 9.03 361 9.03 479 9.03 597 9 03 714 9 03 832 9 03 948	120 119 118 119 118 118	0.97 115 0.96 995 0 96 876 0 96 758 0.96 639 0.96 521 0.96 403	9.99 753 9.99 752 9.99 751 9 99 749 9.99 748	54 53 52 51	20 30 40	40.3 60.5 80 7	40.0 60.0 80.0	39·7 59·5 79·3
9 10 11 12 13 14 15 16 17	9 02 874 9 02 992 9.03 109 9.03 226 9.03 342 9 03 458 9 03 574 9.03 690 9 03 805 9.03 920 9.04 034 9.04 149	117 118 117 116 116 116 116 115 115	9.03 124 9 03 242 9.03 361 9.03 479 9.03 597 9 03 714 9 03 832 9 03 948	119 118 119 118 118	0 96 876 0 96 758 0.96 639 0.96 521 0.96 403	9.99 752 9.99 751 9 99 749 9.99 748	53 52 51	30 40	60.5 80 7	60.0 80.0	59.5 79.3
9 10 11 12 13 14 15 16 17	9 02 992 9.03 109 9.03 226 9.03 342 9 03 458 9 03 574 9.03 690 9 03 805 9.03 920 9.04 034 9.04 149	118 117 117 116 116 116 116 115 115	9 03 242 9.03 361 9.03 479 9.03 597 9 03 714 9 03 832 9 03 948	118 119 118 118	0.96 758 0.96 639 0.96 521 0.96 403	9 99 749 9.99 748	51	40	80 7	80.0	79.3
10 11 12 13 14 15 16	9.03 109 9.03 226 9.03 342 9.03 574 9.03 690 9.03 805 9.03 920 9.04 034 9.04 149	117 116 116 116 116 116 115	9.03 361 9.03 479 9.03 597 9.03 714 9.03 832 9.03 948	119 118 118	0.96 639 0.96 521 0.96 403	9.99 748					
11 12 13 14 15 16 17	9.03 226 9.03 342 9.03 458 9.03 574 9.03 690 9.03 805 9.03 920 9.04 034 9.04 149	116 116 116 116 115 115	9.03 479 9.03 597 9.03 714 9.03 832 9.03 948	118	0.96 521						
12 13 14 15 16 17	9.03 342 9 03 458 9 03 574 9.03 690 9 03 805 9.03 920 9.04 034 9.04 149	116 116 116 115 115	9.03 597 9 03 714 9 03 832 9 03 948	117	0.96 403		50	1	118	117	116
13 14 15 16 17	9 03 458 9 03 574 9.03 690 9 03 805 9.03 920 9.04 034 9.04 149	116 116 115 115	9 03 714 9 03 832 9 03 948			9.99 747	49 48	6	11.8	11.7	11.6
14 15 16 17	9 03 574 9.03 690 9 03 805 9.03 920 9.04 034 9.04 149	115 115 114	9 03 832	118	0.96 286	9 99 744	47	7	13.8	13.7	13.5
16 17	9 03 805 9.03 920 9.04 034 9.04 149	115 115 114	9 03 948		0.96 168	9 99 742	46	8	15.7	15.6	15.3
17	9.03 920 9.04 034 9.04 149	115		116	0.96 052	9.99 741	45	9	17.7	17.6	17.4
	9.04 034 9.04 149	114	9 04 065	117	0.95 935	9 99 740	44	10 20	19.7	19.5 39.0	19.3 38.7
	9.04 149		9 04 181	116	0.95 819	9 99 738	43	30	39.3 59 0	58.5	58.0
19		1:5	9 04 297	116	0.95 703	9.99 737	42	40	78.7	78.0	77.3
20	9.04 202	113	9 04 413	115	0 95 587	9 99 736	41 40	50	98.3	97.5	96.7
21	9 04 376	114	9 04 528	115	0 95 472 0 95 357	9 99 734	39		115	114	113
22	9.04 490	114	9 04 758	115	0 95 357	9 99 733 9 99 731	38	6	11.5	11.4	11.3
23	9.04 603	113	9.04 873	115	0.95 127	9.99 730	37	7	13.4	133	132
24	9 04 715	112	9 04 987	114	0 95 013	9 99 728	36	8	15.3	15.2	15.1
25	9.04 828	113	9 05 101	114	0 94 899	9.99 727	35	9	17.3	17.1	17.0
26	9.04 940	112	9 05 214	113	0.94 786	9 99 726	34	10 20	19.2	19 O 38.0	18.8 37.7
27 28	9.05 052	112	9 05 328	113	0.94 672	9.99 724	33	30	57.5	57.0	56.5
20 20	9.05 164	111	9.05 441	112	0.94 559	9 99 723	32	40	76.7	76.0	75.3
30		111	9 05 553	113	0.94 447	9 99 721	30	50	95.8	95.0	94.2
31	9.05 380	111	9.05 666 9.05 778	112	0 94 334	9 99 720 9 99 718	29		112	III	110
32	9.05 607	110	9 05 890	112	0 94 110	9 99 717	28	6	11.2	11.1	110
33	9.05 717	110	9 06 002	112	0.93 998	9.99 716	27	7	13.1	13.0	128
34	9.05 827	110	9.06 113	111	0 93 887	9 99 714	26	8	149	14.8	14.7
35	9.05 937	100	9 06 224	111	0 93 776	9 99 713	25	9 10	16.8 18.7	16.7	16.5 18.3
36	9.06 046	109	9 06 333	110	0 93 665	9 99 711	24	20	37-3	37.0	36.7
37 38	9.06 155 9.06 264	109	9 06 445 9.06 556	111	0 93 555	9 99 710 9 99 708	23	30	56.0		55.0
39	9.06 372	108	9.06 666	110	0 93 444 0 93 334	9 99 707	21	40	74.7	74.0	73.3
40	9 06 481	109	9.06 775	109	0 93 225	9 99 705	20	50	93-3	92.5	91.7
41	9 06 589	108	9.06 885	110	0.93 115	9 99 704	19		109	108	107
42	9.06 696	107	9 06 994	109	0 93 006	9 99 702	18	6	10.9	10.8	10.7
43	9.06 804	108	9.07 103	109	0 92 897	9 99 701	17	7	12.7	12.6	12.5
44	9.06 911	107	9 07 211	100	0.92 789	9.99 699	16	8	14.5	14.4 16.2	14.3 16.1
45	9.07'018	106	9.07 320	108	0.92 680	9 99 698	15	10	18.2	18 0	17.8
46 47	9.07 124	107	9.07 428	108	0.92 572	9.99 696 9.99 69 5	14	20	36.3	36.0	35.7
4/ 48	9.07 337	106	9.07 536 9.07 643	107	0.92 464	9.99 693	13	30	54.5	54.0	53.5
49	9.07 442	105	9 07 751	108	0.92 35/	9.99 692	11	40	72.7	72.0	71.3
50	9.07 548	106	9.07 858	107	0 92 142	9 99 690	10	50	908	90.0	89.2
51	9.07 653	105	9.07 964	106	0.92 036	9.99 689	9		106	105	104
52	9 07 758	105	9.08 071	107	0.91 929	9 99 687	8	6	10.6	10.5	10.4
53	9.07 863	105	9.08 177	106	0 91 823	9 99 686	7	7 8	12.4	12.3	12.1
54	9.07 968	104	9.08 283	106	0 91 717	9 99 684	6	9	14.1 15.9	14.0	13.9 15.6
55	9.08 072	104	9.08 389	106	0.91 611	9.99 683	5	10	17.7	17.5	17.3
56 57	9.08 176	104	9.08 493 9.08 600	105	0.91 505 0.91 400	9.99 681	4	20	35.3	35.0	34.7
58	9.08 383	103	9.08 705	105	0.91 400	9.99 680 9.99 678	3	30	53.0	52.5	52.0
59	9.08 486	103	9.08 810	105	0 91 190	9 99 677	ĩ	40	70.7	70.0	69 3
60	9.08 589	103	9.08 914	104	0 91 086	9.99 675	O	50	88. ₃	87.5	86.7
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	7		Prop	. Pte	

1	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.		Prop. Pts.
0	9 08 589	103	9.08 914	105	0.91 086	9.99 675	60	
1 2	9.08 692 9.08 795	103	9.09 019 9.09 123	104	0.90 981	9.99 674	59 58	6 10.5 10.4 10.3
3	9.08 897	102	9.09 227	104	0.90 773	9 99 672 9.99 670	57	7 12.3 12.1 12.0
4	9.08 999	102	9.09 330	103	0.90 670	9.99 669	56	8 14.0 13.9 13.7
5 6	9.09 101	101	9.09 434	103	0.90 566	9.99 667	55	9 15.8 15.6 15. 5 10 17.5 17.3 17.2
	9 09 202 9.09 304	102	9.09 537 9 09 640	103	0.90 463 0.90 360	9.99 666 9.99 664	54	20 35.0 34 7 34.3
7 8	9.09 405	101	9.09 742	102	0.90 258	9.99 663	53 52	30 52 5 52.0 51.5
9	9.09 506	101	9 09 845	103	0 90 155	9.99 661	51	40 70 0 69 3 68.7 50 87.5 86.7 85.8
10	9.09 606	101	9.09 947	102	0.90 053	9.99 659	50	102 101 100
II I2	9.09 707	100	9.10 049 9.10 150	101	0.89 951 0.89 850	9 99 658 9.99 656	49 48	6 10.2 10.1 10.0
13	9.09 907	100	9.10 252	102	0.89 748	9.99 655	40	7 11.9 11.8 11.7
14	9.10 006	99	9.10 353	101	0.89 647	9 99 653	46	8 136 135 13.3
15	9.10 106	100 99	9.10 454	101	0 89 546	9.99 651	45	9 15 3 15.2 15.0 10 17.0 16.8 16.7
16	9.10 203	99	9.10 555	101	0.89 445	9 99 650	44	20 34.0 33.7 33.3
17	9.10 304	98	9.10 656 9 10 756	100	0.89 344 0.89 244	9.99 648 9 99 647	43 42	30 51.0 50.5 50.0
19	9.10 501	99	9 10 856	100	0 89 144	9 99 645	41	40 68.0 67 3 66.7
20	9.10 599	98	9.10 956	100	0.89 044	9 99 643	40	50 85.0 84.2 83.3
21	9.10 697	98 98	9.11 056	100	0.88 944	9.99 642	39	99 98 97
22	9.10 795	98	9.11 155	99 99	0.88 845	9.99 640	38	6 99 98 9.7
23 24	9.10 893 9.10 990	97	9.11 254 9.11 353	99	0.88 746 0.88 647	9 99 638 9 99 637	37 36	7 11.6 11.4 11.3 8 13.2 13.1 12.9
25	9.11 087	97	9.11 452	99	0.88 548	9.99 635	35	9 149 14.7 14.6
26	9.11 184	97	9.11 551	99	0.88 449	9 99 633	33 34	10 16.5 16.3 16.2
27	9.11 281	97	9.11 649	98	0.88 351	9 99 632	33	20 33.0 32.7 32.3 30 49.5 49 0 48.5
28	9.11 377	96 97	9 11 747	98 98	0.88 253	9 99 630	32	30 49.5 49 0 48.5 40 66.0 65.3 64.7
29	9.11 474	96	9.11 845	98	0.88 155	9 99 629	31	50 82.5 81.7 80.8
30 31	9.11 570 9 11 666	96	9.11 943	97	0.88 057 0.87 960	9 99 627 9.99 625	30 20	96 95 94
32	9.11 761	95	9.12 040	98	0.87 862	9.99 624	28	6 96 9.5 9.4
33	9.11 857	96	9.12 235	97	0.87 765	9 99 622	27	7 11.2 11.1 11.0
34	9.11 952	95 95	9.12 332	97 96	0 87 668	9 99 620	26	8 12.8 12.7 12.5
35	9.12 047	95	9 12 428	97	0.87 572	9 99 618	25	9 14 4 14.3 14.1 10 16.0 15.8 15.7
36 37	9.12 142 9.12 236	94	9.12 523 9.12 621	96	0.87 475 0.87 379	9.99 617 9 99 615	24 23	20 32 0 31.7 31 3
38	9.12 331	95	9 12 717	96	0.87 283	9 99 613	22	30 48.0 47.5 47.0
39	9.12 425	94 94	9.12 813	96 96	0 87 187	9 99 612	21	40 64.0 63.3 62.7 50 80.0 79.2 78.3
40	9.12 519	93	9.12 909	95	0.87 091	9 99 610	20	
41	9.12 612	93	9.13 004	95 95	0.86 996 0.86 901	9 99 608	19	93 92 91 6 9.3 9.2 9 I
42 43	9.12 706 9.12 799	93	9.13 099 9.13 194	95	0.86 806	9 99 607 9 99 60 <u>5</u>	18 17	7 10.4 10 7 10.6
44	9.12 892	93	9.13 289	95	0.86 711	9 99 603	16	8 12.4 12.3 12.1
45	9.12 985	93	9.13 384	95	o 86 616	9 99 601	15	9 14.0 13.8 13.7
46	9.13 078	93 93	9 13 478	94 95	0.86 522	9 99 600	14	10 15.7 15.3 15.2 20 31.0 30.7 30.3
47	9.13 171	93	9.13 573 9.13 667	95	0.86 427	9 99 598	13 12	30 46.5 46.0 45.5
48 49	9.13 263 9.13 355	92	9.13 761	94	o.86 333 o.86 239	9.99 596 9 99 59 5	11	40 62.0 61.3 60 7
50	9.13 447	92	9.13 854	93	0.86 146	9 99 593	ĬO	50 77.5 76.7 75.8
51	9.13 539	92	9.13 948	94	0.86 052	9 99 591	9	90 2 I
52	9.13 630	91 92	9 14 041	93 93	0.85 959	9 99 589	8	6 90 0.2 0.1
53	9.13 722 9.13 813	92 91	9.14 134 9.14 227	93	0.85 866	9 99 588	7 6	7 10.5 0.2 0.1 8 12.0 0.3 0.1
<u>54</u> 55	9.13 904	91	9.14 320	93	o.85 773 o.85 68o	9 99 586	5	9 13.5 0.3 0.2
55 56	9.13 904	90	9.14 412	92	0.85 588	9.99 582	4	10 15.0 0.3 0.2
57	9.14 085	91	9.14 504	92	0.85 496	9 99 581	3	20 30.0 0.7 0.3
58	9.14 175	90 91	9.14 597	93 91	0.85 403	9.99 579	2	30 45 0 1.0 0.5 40 60.0 1.3 0.7
59	9.14 266	90	9.14 688	92	0.85 312	9.99 577	1	50 75.0 1.7 0.8
60	9.14 356		9.14 780		0.85 220	9.99 575	0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	,	Prop. Pts.

1	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.		Prop. Pts.
0	9.14 356	89	9.14 780	92	0.85 220	9 99 575	60	
I	9.14 445	90	9.14 872	91	0.85 128	9 99 574	59	6 9.2 9.1 90
3	9.14 53 5 9 14 624	89	9.14 963 9.15 054	91	0.85 037	9 99 572 9 99 570	58 57	7 10.7 10.6 10 5
4	9 14 714	90	9.15 145	9 x	0.84 855	9 99 568	56	8 12.3 12.1 12.0
5	9.14 803	89	9.15 236	91	0.84 764	9.99 566	55	9 13.8 13.7 13.5
	9 14 891	88 80	9.15 327	91	0.84 673	9 99 565	54	10 15.3 15.2 15.0 20 30.7 30 3 30.0
7 8	9.14 980	89	9 15 417	91	0.84 583	9 99 563	53	30 46.0 45.5 45.0
9	9.15.009	88	9.15 598	90	0.84 492	9 99 561 9.99 559	52 51	40 61 3 60.7 60.0
10	9.15 245	88	9 15 688	90	0.84 312	9 99 557	50	50 76.7 75 8 75.0
II	9.15 333	88	9.15 777	89	0 84 223	9 99 556	49	, 89 88
12	9.15 421	88 87	9 15 867	90 89	0.84 133	9 99 554	48	6 8.9 8.8
13	9.15 508	83	9 15 956	90	0.84 044	9 99 552	47	7 10.4 10.3 8 11 9 11.7
14	9 15 596	87	9.16 046	89	0.83 954	9 99 550	46	9 13.4 13.2
15 16	9.15 770	87	9 16 135	89	0 83 865	9.99 548 9 99 546	45 44	10 14.8 14.7
17	9.15 857	87	9.16 312	88	0.83 688	9.99 545	43	20 29.7 29.3
18	9.15 914	8 ₇ 86	9.16 401	89 88	0.83 599	9 99 543	42	30 44.5 44.0 40 59 3 58.7
19	9.16 030	86	9 16 489	88	0.83 511	9 99 541	41	40 59 3 58.7 50 74.2 73.3
20	9.16 116 9.16 203	87	9.16 577	88	0 83 423	9.99 539	40	87 86 85
2I 22	9.16 289	86	9.16 665 9 16 753	88	0 83 335	9 99 537 9 99 535	39 38	6 8.7 86 8.5
23	9.16 374	85	9.16 841	88	0.83 159	9.99 533	37	7 102 100 9.9
24	9.16 465	86 85	9 16 928	8 ₇ 88	0 83 072	9 99 532	36	8 11.6 11.3 11.3
25	9.16 545	86	9 17 016	87	0 82 984	9.99 530	35	9 13.1 12.9 12.8
26	9.16 631	85	9 17 103	87	0.82 897	9 99 528	34	10 14.5 14.3 14.2 20 29 0 28.7 28.3
27 28	9.16 716 9.16 801	85	9.17 190 9.17 277	87	0.82 810	9 99 526 9.99 524	33 32	30 43 5 43.0 42.5
29	9.16 886	85	9 17 363	86	082 637	9.99 522	3 ²	40 58 0 57 3 56.7
30	9.16 970	84	9 17 450	87	0.82 550	9 99 520	30	50 72.5 71 7 70.8
31	9 17 055	85	9 17 536	86	0 82 464	9 99 518	29	84 83
32	9 17 139	84 84	9.17 622	86 86	0.82 378	9.99 517	28	6 8.4 83
33	9 17 223 9.17 307	84	9.17 708 9 17 794	86	0.82 292 0 82 206	9.99 515	27 26	7 9.8 9.7 8 11.2 11 1
34 35	9.17 391	84	9.17 880	86	0 82 120	9.99 513 9.99 511	25	9 126 125
35 36	9.17 474	83	9.17 965	85	0.82 035	9.99 509	24	10 14.0 13.8
37	9.17 558	84	9.18 051	86	0 81 949	9.99 507	23	20 28 0 27.7
38	9.17 641	8 ₃ 8 ₃	9 18 136	85 85	0 81 864	9 99 505	22	30 42.0 41.5 40 56.0 55.3
39	9 17 724	83	9 18 221	85	0.81 779	9 99 503	21	50 70.0 69.2
40	9.17 807 9.17 890	83	9 18 306 9 18 391	85	0.81 694	9 99 501	20	82 81 8o
4I 42	9.17 973	83	9.18 391	84	0.81 525	9-99 499 9 99 497	18	6 82 81 8.0
43	9.18 055	82	9.18 550	85	081 440	9.99 495	17	7 96 95 9.3
44	9.18 137	82 83	9 18 6 14	84 84	0.81 356	9.99 494	16	8 10.9 10.8 10.7
45	9 18 220	82	9 18 728	84	0 81 272	9 99 492	15	9 12.3 12.2 12.0 10 13 7 13 5 13 3
46	9 18 302 9.18 383	81	9 18 812 9 18 896	84	0.81 188	9 99 490	14	10 13 7 13 5 13 3 20 27.3 27.0 26.7
47 48	9.18 465	82	9 18 979	83	0.81 104	9.99 488 9 99 486	13	30 41 0 40.5 40.0
49	9.18 547	82	9 19 063	84	0.80 937	9 99 484	11	40 54 7 54.0 53.3
50	9.18 628	81	9.19 1 16	83	0.80 854	9.99 482	10	50 68.3 67.5 66.7
51	9.18 709	81 81	9 19 229	83 83	0.80 771	9.99 480	9	2 I
52 53	9.18 790 9.18 871	81	9 19 312	83	o.8o 688 o.8o 6o 5	9.99 478	8 7	6 0.2 0.1
53 54	9.18 952	81	9 19 395 9 19 478	83	0.80 522	9 99 476 9 99 474	6	7 0.2 0.1 8 0.3 0.1
55	9.19 033	81	9 19 561	83	0 80 439	9.99 474	5	9 0.3 0.2
56	9.19 113	80	9.19 643	82	0.80 357	9.99 470	4	10 0.3 0.2
57	9.19 193	80 80	9.19 725	82 82	0.80 273	9 99 468	3	20 0.7 0.3
58	9.19 273	8o	9 19 807	82	0.80 193 0 80 111	9 99 466	2 I	30 1.0 0.5 40 1.3 0.7
59 60	9.19 353 9.19 433	80	9.19 889	82	0.80 020	9.99 464 9.99 462	0	50 1.7 0.8
-	L. Cos.	d.		a d			-	Prop. Pts.
ш	H. C05.	u.	L. Cotg.	v. a.	n. rang.	L. Sin.	′	Frop. Fts.

	L. sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.		Prop. Pts.
0	9.19 433	80	9.19 971	82	0.80 029	9.99 462	60	82 81 80
I	9.19 513	79	9.20 053	81	0.79 947	9.99 460	59	6 8.2 8x 80 6 8.2 8.1 8.0
3	9.19 592 9.19 672	8o	9.20 134	82	0.79 866	9.99 458 9.99 456	58 57	7 9.6 95 93
4	9.19 751	79	9.20 297	8 t	0.79 703	9.99 454	56	8 10.9 108 107
5	9.19 830	79	9 20 378	8r	0.79 622	9.99 452	55	9 12.3 12.2 12.0
5 6	9.19 909	79 79	9.20 459	81 81	0 79 541	9.99 450	54	10 13.7 13.5 13.3 20 27.3 27.0 26 7
7 8	9 19 988	79	9.20 540	81	0.79 460	9.99 448	53	30 41.0 40.5 40.0
9	9.20 145	78	9 20 701	80	0.79 379	9.99 446 9.99 444	52 51	40 54.7 54.0 53.3
10	9.20 223	78	9.20 782	8x	0.79 218	9 99 442	50	50 68 3 67 5 66.7
II	9.20 302	79	9.20 862	80	0.79 138	9.99 440	49	79 78
12	9.20 380	78	9.20 942	80	0.79 058	9.99 438	48	6 7.9 7.8
13	9.20 458	78 77	9.21 022	80 80	0.78 978	9.99 436	47	7 92 9.1 8 105 10.4
14	9.20 535	78	9.21 102	80	0 78 893	9.99 434	46	9 11.9 11.7
15 16	9.20 613 9.20 691	78	9.21 182 9.21 261	79	0.78 818 0.78 739	9.99 432	45	10 13.2 13.0
17	9.20 768	77	9 21 341	80	0.78 659	9.99 429 9.99 427	44 43	20 26.3 26 0
18	9.20 845	77	9.21 420	79	0.78 580	9.99 425	42	30 39 5 39.0
19	9.20 922	77	9.21 499	79	0.78 501	9.99 423	41	40 52.7 52 0 50 65.8 65 0
20	9 20 999	77	9.21 578	79	0.78 422	9 99 421	40	
21	9.21 076	77 77	9.21 657	79 79	0.78 343	9 99 419	39	6 7.7 7.6
22 23	9.21 153 9.21 229	76	9.21 736 9.21 814	78	0.78 264 0.78 186	9.99 417 9.99 415	38 37	7 9.0 8.9
21	9 21 306	77	9 21 893	79	0.78 107	9 99 413	36 36	8 10.3 10.1
25	9.21 382	76	9 21 971	78	0.78 029	9.99 411	35	9 11 6 11.4
26	9.21 458	76 76	9 22 049	78	0.77 951	9 99 409	34	10 12.8 12.7 20 25.7 25.3
27	9.21 534	76 76	9.22 127	78 78	0.77 873	9.99 407	33	30 38.5 38.0
28 29	9 21 610 9.21 685	75	9.22 205	78	0.77 795	9 99 404	32 31	40 51.3 50.7
30	9.21 761	76	9.22 361	78	0.77 639	9 99 402	30	50 64.2 63.3
31	9.21 836	75	9.22 438	77	0.77 562	9 99 398	29	75 74
32	9.21 912	76	9.22 516	78	0 77 484	9 99 396	28	6 7.5 7.4
33	9 21 987	75 75	9.22 593	77 77	0 77 407	9.99 394	27	7 8.8 8.6 8 100 9.9
34	9 22 062	75 75	9.22 670	77	0 77 330	9.99 392	26	8 100 9.9 9 11.3 11.1
35 36	9.22 137	74	9 22 747 9.22 824	77	0 77 253	9.99 390	25	10 12 5 12.3
37	9.22 286	75	9.22 024	77	0.77 176	9 99 388 9 99 385	24 23	20 25.0 24.7
38	9.22 361	75	9.22 977	76	0.77 023	9 99 383	22	30 37 5 37.0
39	9 22 435	74	9.23 054	77 76	0.76 946	9 99 381	21	40 50.0 49.3 50 62.5 61.7
40	9.22 509	74	9.23 130	76	0.76 870	9.99 379	20	
41	9.22 583	74 74	9.23 206	77	0.76 794	9 99 377	19	6 7.3 7.2 7.1
42 43	9.22 657 9.22 731	74	9 23 283 9.23 359	76	0.76 717 0.76 641	9 99 375 9-99 372	18 17	7 8.5 8.4 8 3
44	9.22 803	74	9.23 435	76	0.76 565	9 99 370	16	8 9.7 9.6 9.5
45	9.22 878	73	9 23 510	75	0.76 490	9 99 368	15	9 11.0 10.8 10.7
46	9.22 952	74	9.23 586	76	0.76 414	9 99 366	14	10 12.2 12.0 11.8 20 24.3 24.0 23.7
47	9.23 025	73 73	9.23 661	75 76	0 76 339	9 99 364	13	20 24.3 24.0 23.7 30 36.5 36.0 35.5
48 49	9.23 098	73	9.23 737 9.23 812	75	0.76 263 0.76 188	9 99 362	12 11	40 48.7 48.0 47.3
50	9.23 244	73	9.23 887	75	0.76 113	9.99 359	10	50 60.8 60.0 59.2
51	9.23 244	73	9.23 962	75	0.76 038	9.99 357		3 2
52	9.23 390	73	9 2 4 0 37	75	0.75 963	9.99 353	9 8	6 0.3 0.2
53	9.23 462	72	9.24 112	75	0.75 888	9 99 351	7	7 0.4 0.2 8 0.4 0.3
54	9 23 535	73 72	9 24 186	74 75	0.75 814	9.99 348	6	8 0.4 0.3 9 0.5 0.3
55 56	9.23 607	72	9.24 261	74	0.75 739	9.99 346	5	10 0.5 0.3
50 57	9.23 679 9.23 752	73	9.24 335 9.24 410	75	0.75 66 5 0.75 590	9.99 344 9 99 342	4	20 1.0 0.7
58	9 23 823	71	9 2 1 484	74	0.75 516	9.99 342	2	30 1.5 1.0
59	9.23 895	72	9 24 558	74	0.75 442	9.99 337	1	40 20 1.3 50 2.5 1.7
60	9.23 967	72	9 24 632	74	0 75 368	9 99 335	0	J∪ 2.5 1./
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	,	Prop. Pts.

1	L. Sin.	d.	L. Tang.	c. d	L. Cotg.	L. Cos.	d.	Π	Prop. Pts.
0	9.23 967	72	9.24 632		0.75 368	9-99 335	2	60	
I	9.24 039	71	9.24 706	74	0.75 294	9.99 333	2	59	6 7.4 7.3
2	9.24 110 9.24 181	71	9.24 779 9.24 853	74	0.75 221	9.99 331	3	58 57	7 8.6 8.5
3 4	9.24 253	72	9.24 053	73	0.75 074	9.99 326	2	56	8 9.9 9.7
-	9.24 324	71	9.25 000	74	0.75 000	9 99 324	2	55	9 11.1 11.0
5	9 24 395	71	9.25 073	73	0.74 927	9.99 322	2	54	10 12.3 12.2
7	9.24 466	71	9.25 146	73	0.74 854	9 99 319	3	53	20 24.7 24.3 30 37.0 36.5
8	9.24 536	70	9.25 219	73 73	0.74 781	9.99 317	2	52	40 49.3 48.7
9	9 24 607	70	9.25 292	73	0.74 708	9.99 315	2	51	50 61.7 60.8
10	9.24 677 9.24 748	71	9.25 365	72	0.74 635	9.99 313	3	50 49	1 72 1 71
12	9.24 748	70	9.25 437 9.25 510	73	0.74 490	9.99 308	2	48	6 7.2 7.1
13	9.24 888	70	9.25 582	72	0.74 418	9.99 306	2	47	7 8.4 8.3
14	9.24 958	70 70	9 25 655	73	0.74 345	9 99 304	2	.46	8 9.6 9.5
15	9.25 028	1 -	9.25 727		0.74 273	9.99 301	3	45	9 10 8 10.7
16	9.25 098	70 70	9.25 799	72 72	0.74 201	9.99 299	2	44	20 24.0 23.7
17 18	9.25 168	69	9.25 871	72	0.74 129	9.99 297	3	43	30 35.0 35.5
19	9.25 237 9.25 307	70	9 25 94 <u>3</u> 9 26 01 <u>5</u>	72	0.74 057 0 73 985	9.99 294	2	42 41	40 48.0 47 3
20	9.25 376	69	9.26 086	71	0 73 914	9.99 290	2	40	50 60.0 59.2
21	9.25 445	69	9.26 158	72	0.73 842	9.99 288	2	39	70 69
22	9.25 514	69	9.26 229	71	0.73 771	9 99 285	3	38	6 7.0 6.9
23	9.25 583	69 69	9.26 301	72 71	0.73 699	9 99 283	2 2	37	7 8.2 8.1 8 9.3 9.2
24	9.25 652	69	9.26 372	71	0.73 628	9.99 281	3	36	8 9.3 9.2 9 10.5 10.4
25	9.25 721	69	9.26 443	71	0.73 557	9 99 278	2	35	10 11.7 11.5
26 27	9.25 790 9 25 858	68	9.26 514 9.26 585	71	0 73 486	9.99 276 9.99 274	2	34	20 23.3 23.0
28	9.25 927	69	9.26 655	70	0.73 415	9.99 274	3	33 32	30 35 0 34.5
29	9.25 995	68	9.26 726	71	0 73 274	9.99 269	2	31	40 46 7 46.0
30	9.26 063	68	9.26 797	71	0.73 203	9.99 267	2	30	50 58.3 57.5
31	9.26 131	68 68	9.26 867	70	0.73 133	9 99 264	3	29	68 67
32	9.26 199	68	9.26 937	70 71	0.73 063	9.99 262	2	28	6 6.8 6.7
33	9 26 267 9 26 335	68	9.27 008	70	0.72 992	9 9 9 2 60 9 99 2 57	3	27 26	7 7.9 7.8 8 9.1 8.9
34		68	9.27 078	70	0.72 922		2		9 10 2 10.1
35 36	9.26 403 9.26 470	67	9.27 148 9.27 218	70	0.72 852	9 99 255	3	25 24	10 11.3 11.2
37	9 26 538	68	9.27 288	70	0.72 712	9 99 250	2	23	20 22.7 22.3
38	9.26 605	67	9.27 357	69	0.72 643	9 99 248	2	22	30 34.0 33 5
39	9.26 672	67 67	9 27 427	70 69	0.72 573	9 99 245	3	21	40 45.3 44.7 50 56.7 55.8
40	9.26 739	67	9.27 496	70	0.72 504	9 99 243	2	20	i i
41	9.26 806	67	9 27 566	69	0.72 434	9 99 241	3	19	6 6.6 6.5
42 43	9.26 873	67	9 27 635	69	0.72 363 0 72 296	9 99 238 9.99 236	2	18 17	7 77 7.6
44	9 27 007	67	9.27 704	69	0 72 227	9 99 233	3	16	8 8.8 8.7
45	9 27 073	66	9 27 842	69	0.72 158	9 99 231	2	15	9 9.9 9.8
46	9.27 140	67	9.27 911	69	0 72 689	9.99 229	2	14	10 11.0 10.8
47	9.27 206	66	9.27 980	69	0.72 020	9.99 226	3	13	20 22.0 21.7 30 33.0 32.5
48	9.27 273	67 66	9.28 049	69 68	0.71 951	9 99 224	3	12	30 33.0 32.5 40 44.0 43.3
49	9 27 339	66	9 28 117	69	071 883	9.99 221	2	11	50 55.0 54.2
50	9.27 405	66	9 28 186	68	0.71 814	9.99 219	2	10	3 2
51 52	9.27 471 9.27 537	66	9.28 254 9.28 323	69	0.71 746 0.71 677	9.99 217	3	9	6 0.3 0.2
53	9.27 602	65	9.28 391	68	0.71 609	9.99 212	2	7	7 0.4 0.2
54	9.27 668	66	9.28 459	68	0.71 541	9.99 209	3	6	8 0.4 0.3
55	9.27 734	66	9.28 527	68	0.71 473	9.99 207	2	5	9 0.5 0.3
56	9.27 799	65 65	9.28 595	68 67	0.71 405	9.99 204	3	4	10 0.5 0.3 20 1.0 0.7
57	9.27 864	66	9.28 662	68	0 71 338	9 99 202	2	3 2	30 1.5 1.0
58 59	9.27 930 9.27 993	65	9.28 730 9.28 798	68	0.7I 270 0.7I 202	9 99 200 9.99 197	3	1	40 2.0 1.3
60	9.28 060	65	9.28 865	67	0.71 133	9.99 193	2	0	50 2.5 1.7
	L. Cos.	d.	L. Cotg.	c. d.		L. Sin.	d.	,	Prop. Pts.

5 9.38 541 64 9.29 268 67 0.70 732 9.99 182 3 55 10 20 20 20 20 20 20 20 20 20 20 20 20 20	′	L. Sin.	d.	L. Tang.	'c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
1 9.28 150 65 9.28 900 67 0.71 000 9.99 192 2 58 6 3 9.28 28 150 64 9.29 067 67 0.70 933 9.99 187 3 57 7 5 9.28 341 65 9.20 201 67 0.70 793 9.99 183 2 57 7 6 9.28 448 64 9.29 233 67 0.70 793 9.99 183 3 55 10 7 9.28 512 69 9.29 402 69 0.70 665 9.99 177 3 53 30 8 9.28 765 64 9.29 535 66 70.70 655 9.99 177 3 51 40 11 9.28 806 64 9.29 668 67 0.70 532 9.99 167 3 50 12 9.28 866 64 9.29 98 866 66 0.70 232 9.99 162 2 48 6 13 9.28 866 64 9.29 9866 66 <	U		6.		40	0.71 133	9.99 193		60	
3 9.28 854 64 9.29 075 4 9.29 175 7 0.70 933 9.99 187 3 57 7 6										6 6.8 6.7
4 928 310 65 9.29 134 67 9.70 866 9.99 185 2 56 8 8 9.28 418 64 9.29 268 67 0.70 793 9.99 180 3 55 10 10 9.28 451 64 9.29 468 67 0.70 793 9.99 173 3 53 30 10 9.28 705 64 9.29 458 67 0.70 598 9.99 177 3 53 30 11 9.28 705 64 9.29 458 67 0.70 598 9.99 173 3 51 40 11 9.28 705 64 9.29 458 67 0.70 598 9.99 173 3 51 40 11 9.28 896 64 9.29 501 67 0.70 332 9.99 163 3 47 7 7 9.29 150 68 9.29 938 66 0.70 266 9.99 163 3 47 7 7 9.29 150 68 9.29 938 66 0.70 268 9.99 150 3 44 20 15 9.29 458 68 9.29 277 63 9.29 938 66 0.70 268 9.99 150 3 44 20 20 20 20 20 20 20						0.71 000				
5 9.28 3.44 64 9.29 201 67 0.70 799 9.99 182 3 55 90 9.28 512 64 9.29 335 67 0.70 605 9.99 177 2 53 30 30 30 9.28 527 65 9.29 402 66 0.70 503 9.99 175 3 51 50 10 9.28 805 67 0.70 605 9.99 177 2 53 30 30 30 11 9.28 805 64 9.29 686 67 0.70 503 9.99 170 3 51 50 11 9.28 805 64 9.29 686 67 0.70 303 9.99 170 3 50 11 9.28 805 64 9.29 800 66 0.70 206 9.99 100 3 49 66 0.70 206 9.99 100 2 46 8 11 9.29 800 66 0.70 206 9.99 100 2 46 8 11 9.29 800 66 0.70 206 9.99 105 2 46 8 11 9.29 100 64 9.29 800 66 0.70 206 9.99 157 2 41 10 10 10 10 10 10 10 10 10 10 10 10 10						0.70 866	9.99 107	2		
7 9.28 577 64 9.29 402 67 0.70 665 9.99 177 3 53 30 9 9.28 611 64 9.29 468 67 0.70 598 9.99 173 3 52 40 10 9.28 765 64 9.29 601 66 0.70 332 9.99 170 3 50 12 9.28 833 64 9.29 668 67 0.70 332 9.99 165 3 48 6 13 9.28 866 64 9.29 686 66 0.70 266 9.99 165 3 48 6 15 9.29 921 63 9.29 866 66 0.70 268 9.99 160 3 47 7 16 9.29 921 63 9.29 936 66 0.70 268 9.99 157 3 45 10 17 9.29 157 63 9.29 936 66 0.70 268 9.99 157 3 45 10 19 9.29 077 63 9.29 932 66										
7 9.28 512 65 9.29 402 67 0.70 665 9.99 177 3 53 30 09 92 177 1 2 2 2 2 3 3 5 1 5 0	ĕ	9.28 448						_		
9 9.28 6.17 6.4 9.29 468 66 0.70 539 9.99 175 3 55 50 10 9.28 836 64 9.29 686 67 0.70 532 9.99 170 3 50 12 9.28 833 64 9.29 686 67 0.70 332 9.99 165 3 48 67 13 9.28 896 64 9.29 880 66 0.70 266 9.99 162 2 46 8 8 16 9.29 980 66 0.70 266 9.99 162 2 46 8 8 16 9.29 980 66 0.70 266 9.99 157 2 4 4 8 8 16 9.29 150 63 9.29 932 66 0.70 266 9.99 157 2 4 4 8 8 17 9.29 150 63 9.29 932 66 0.70 266 9.99 157 2 4 4 9.30 18 9.29 157 63 9.29 932 66 0.70 266 9.99 155 2 43 30 18 9.29 277 63 9.30 613 66 0.69 870 99 145 3 40 50 18 9.29 403 63 9.30 261 65 0.69 870 99 147 3 41 10 10 10 10 10 10 10 10 10 10 10 10 10	7								53	
10 9.28 705 04 9.29 535 67 0.70 465 9.99 170 2 30 12 9.28 833 13 9.28 896 64 9.29 601 65 0.70 399 9.99 167 3 49 49 150 15 9.29 024 64 9.29 806 66 0.70 206 9.99 162 3 47 8 15 9.29 024 64 9.29 806 66 0.70 206 9.99 157 3 45 9 17 9.29 150 63 9.29 938 66 0.70 034 9.99 157 3 44 20 20 277 63 9.30 130 65 0.69 805 9.99 145 3 41 20 20 277 63 9.30 130 65 0.69 805 9.99 145 3 41 20 22 29 29 466 63 9.30 261 63 9.30 261 63 9.30 326 65 0.69 805 9.99 142 3 39 30 22 29 .29 466 63 9.30 391 65 0.69 805 9.99 137 2 30 30 30 22 29 .29 466 63 9.30 391 65 0.69 609 9.99 137 3 37 7 25 29 61 63 9.30 587 65 0.69 609 9.99 137 3 34 20 30 30 30 30 30 30 30			64							40 45.3 44.7
11			64		67			2		50 56.7 55.8
12				9.29 533	l .					66 65
14 9.28 960 64 9.29 860 65 9.29 9.20 9	12	9.28 833					9.99 165			
15			03 6₄				9.99 162		47	7 7.7 7.6
16 9.29 087 63 9.29 932 66 0.70 068 9 99 155 2 44 10 10 10 10 10 10 10 10 10 10 10 10 10										
17 9.49 150 63 9.49 998 66 0.70 002 9.99 152 3 43 30 18 9.99 277 63 9.30 130 65 0.69 370 9.99 147 3 41 40 50 11 19 9.90 277 63 9.30 130 65 0.69 370 9.99 147 3 41 40 12 19 2.90 466 63 9.30 261 65 0.69 370 9.99 147 3 41 40 12 19 2.90 466 63 9.30 261 65 0.69 370 9.99 147 3 39 12 19 12			63		66			1		
18 9.30 24 64 9.30 63 9.30 66 66 0.69 99 150 2 42 30 20 9.29 277 63 9.31 195 65 0.69 805 99 147 3 41 21 9.29 466 63 9.30 26 65 0.69 799 142 3 399 22 9.29 466 63 9.30 26 65 0.69 69 9.99 142 3 399 24 9.29 596 63 9.30 526 65 0.69 674 9.99 137 3 37 7 25 9.29 61 62 9.30 52 65 0.69 478 9.99 137 3 37 7 26 9.29 716 62 9.30 582 65 0.69 473 9.99 132 3 33 33 33 33 33 33 33 33 33								3		
19	18					0.69 936	9.99 150	1		
21 92 9403 63 930 261 65 0.69 764 999 142 3 38 6 23 9.29 529 63 9.30 326 65 0.69 674 999 142 3 38 6 24 9.29 529 62 4 9.30 457 65 0.69 543 9.99 137 3 37 7 62 28 92 716 62 9.30 587 65 0.69 478 999 132 3 34 10 27 9 22 779 63 930 582 65 0.69 478 999 132 3 34 10 27 9 22 779 63 930 782 65 0.69 478 999 127 3 33 30 27 65 0.69 478 999 127 3 33 30 27 65 0.69 478 999 127 3 33 30 27 65 0.69 478 999 127 3 33 30 27 65 0.69 478 999 127 3 33 30 27 65 0.69 478 999 127 3 33 30 27 65 0.69 478 999 127 3 33 30 27 65 0.69 478 999 127 3 33 30 27 65 0.69 478 999 127 3 33 30 27 65 0.69 478 9.99 127 3 32 29 29 907 62 930 778 65 0.69 478 9.99 127 3 32 20 20 20 20 20 20 20 20 20 20 20 20 20		9.29 277							41	
22 9.29 466 62 9.30 587 65 0.69 678 9.99 140 2 38 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6								1		
23										64 63 6 6.4 6.3
24								3		
25 9 29 65; 62 9 30 717 63 9 30 652 65 0.69 478 9 99 132 2 3 33 34 32 00 32 32 32 33 34 32 00 32 32 33 34 32 00 32 32 33 34 32 00 32 32 32 33 34 32 00 32 32 33 34 32 00 32 32 33 34 32 00 32 34 32 00 32 34 32 00 32 34 34 32 00 32 34 34 32 00 32 34 34 32 00 32 34 34 34 34 34 34 34 34 34			62					_	36	8 8.5 8.4
26 9 29 716 63 9 30 652 65 0.69 243 9.99 130 3 33 30 30 30 30 30 30 30 30 30 30 30										
28 9 29 841 62 9 30 717 65 0.69 283 9.99 124 3 32 30 0.69 283 9.99 124 3 32 30 0.69 283 9.99 124 3 31 30 0.69 283 9.99 124 3 31 30 0.69 283 9.99 124 3 31 30 0.69 283 9.99 124 3 31 30 0.69 283 9.99 124 3 31 0.69 283 9.99 124 3 31 0.69 283 9.99 124 3 31 0.69 283 9.99 124 3 31 0.69 283 9.99 124 3 31 0.69 283 9.99 124 3 32 0.69 283 9.99 124 3 32 0.69 283 9.99 124 3 32 0.69 283 9.99 124 3 32 0.69 283 9.99 124 3 32 0.69 283 9.99 124 3 32 0.69 283 9.99 124 3 32 0.69 283 9.99 124 3 32 0.69 283 9.99 124 3 32 0.69 283 9.99 124 3 32 0.69 283 9.99 124 3 32 0.69 283 9.99 124 3 32 0.69 283 9.99 124 3 32 0.69 283 9.99 124 3 32 0.69 283 9.99 124 3 32 0.69 283 9.99 124 3 32 0.69 283 9.99 124 3 32 0.69 283 9.99 124 3 32 0.69 283 9.99 124 3 32 0.69 293 9.99 124 3 32 0.69 293 124 29 0.69 283 9.99 124 3 32 0.69 293 124 27 7 7 18 18 18 18 18 18 18 18 18 18 18 18 18	26			9.30 587		0.69 413				
29 9 29 903 62 9 30 782 65 0.69 2184 9.99 124 2 31 30 50 30 300 30 30 50 50 30 30 50 50 30 30 50 50 30 30 50 30 30 50 50 30 30 50 50 30 30 50 50 50 60 99 99 112 2 27 7 30 30 30 30 30 30 31 40 60 60 60 60 60 99 99 112 2 27 7 31 40 30 31 40 30 30 30 30 31 40 40 40 40										
30 9.49 966 31 9.30 926 32 9.30 906 33 9.30 151 62 9.30 140 63 9.30 151 64 0.69 039 9.99 117 34 9.30 021 35 9.30 275 36 9.30 336 63 9.31 168 64 0.68 039 9.99 106 37 9.30 398 62 9.31 168 63 0.68 832 9.99 106 38 9.30 439 63 9.31 168 64 0.68 832 9.99 106 3 25 9.31 168 65 0.68 867 9.99 109 3 26 37 9.30 398 61 9.31 307 64 0.68 639 9.99 099 3 21 40 9.30 532 61 9.31 425 64 0.68 575 65 9.31 9.99 093 3 20 3 20 3 20 3 20 3 20 3 20 3 20 3 2										
31			63		64			3		
32 9.30 000 61 9 30 075 64 0.69 025 9 99 114 3 28 6 33 9.30 151 62 9 31 104 64 0.68 896 9.99 112 2 27 7 35 9.30 275 62 9.31 104 64 0.68 896 9.99 109 3 26 8 36 9.03 396 61 9.31 297 64 0.68 679 9.99 104 2 24 10 37 9.30 398 62 9.31 297 64 0.68 679 9.99 101 2 24 10 38 9.30 459 62 9.31 489 64 0.68 679 9.99 101 3 23 30 40 9.30 521 61 9.31 489 64 0.68 575 9.99 096 3 21 40 42 9.30 704 64 9.31 616 63 0.68 511 9.99 093 2 20 50 41 9.30 704 61 9.31 616 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td></td><td> 62 61</td></t<>								2		62 61
33		9.30 090		9 30 975						
35 9,30 275 62 9,31 104 64 0.68 832 9.99 106 3 25 9 36 9,0 30 36 61 9,31 233 64 0.68 8707 9.99 104 2 24 20 37 9 30 398 61 9,31 361 64 0.68 6707 9.99 104 3 23 30 38 9,30 459 61 9,31 361 64 0.68 6703 9.99 099 2 22 30 39 9,30 521 61 9,31 425 64 0.68 575 9.99 099 2 22 30 41 9,30 704 61 9,31 616 64 0.68 575 9.99 093 3 20 42 9,30 705 61 9,31 616 64 0.68 834 9.99 088 3 18 64 0.68 834 9.99 088 3 18 64 0.68 841 9.99 088 3 16 8 3 18 6 68 48 9.99 088 3 1										
36 9.30 9.36 61 9.31 233 64 0.68 77 9.99 104 2 24 10 37 9 30 398 62 9.31 297 64 0.68 703 9.99 104 3 23 30 38 9.30 459 61 9.31 361 64 0.68 639 9.99 099 2 22 30 39 9.30 521 62 9.31 425 64 0.68 575 9.99 096 3 21 40 40 9.30 582 61 9.31 489 64 0.68 575 9.99 096 3 21 40 41 9 30 613 61 9.31 552 63 0.68 575 9.99 096 3 21 40 42 9.30 704 61 9.31 616 64 0.68 384 9.99 088 3 18 6 43 9.30 765 61 9.31 616 63 0.68 384 9.99 088 3 18 6 43 9.30 765 61 9.31 743 64 0.68 384 9.99 088 3 16 8 45 9.30 887 61 9.31 743 64 0.68 130 9.99 080 3 16 8 45 9.30 887 61 9.31 743 64 0.68 130 9.99 088 3 16 8 45 9.30 887 61 9.31 743 64 0.68 130 9.99 088 3 16 8 48 9.31 068 60 9.31 90 63 0.68 07 9 00 77 3 113 20 114 10 10 10 10 10 10 10 10 10 10 10 10 10										
38 9.30 459 62 9.31 297 64 0.68 703 9.99 101 3 23 30 30 39 9.30 521 65 9.31 425 64 0.68 639 9.99 995 3 21 400 9.30 532 66 9.31 5489 65 0.68 875 9.99 996 3 21 400 9.30 532 66 9.31 616 64 0.68 871 9.99 095 3 21 400 400 400 400 400 400 400 400 400 40			61							
38 9.30 459 61 9.31 361 62 9.31 425 64 0.68 6575 9.99 9.69 3 22 340 41 9.30 582 41 9.31 552 63 0.68 575 9.99 9.69 3 20 50 50 50 50 50 50 50 50 50 50 50 50 50					64	0.68 703				20 20.7 20.3
40	38	9.30 459			64	0.68 639			22	
41 9 30 6 13 6 9 31 552 64 0 68 8 48 9 99 09 2 19 19 44 9 930 765 61 9 31 616 64 0 68 8 84 9 99 088 3 18 6 64 0 68 8 57 9 99 088 3 16 8 8 8 9 99 08 9 16 8 9 9 9 08 9 16 8 9 9 9 08 9 16 8 9 9 9 08 9 16 8 9 9 9 08 9 16 8 9 9 9 08 9 16 8 9 9 9 08 9 16 8 9 9 9 08 9 16 8 9 9 9 08 9 16 8 9 9 9 08 9 17 9 9 18 70 9 18 70 6 9 18 70 70 70 70 70 70 70 70 70 70 70 70 70					64		9.99 096			
42 9.30 704 61 9.31 616 63 0.68 834 9.99 088 3 18 6 43 9.30 705 61 9.31 616 63 0.68 831 9.99 088 3 15 8 6 44 9.30 825 61 9.31 743 64 0.68 827 9.99 088 3 16 8 8 15 9.30 887 61 9.31 806 64 0.68 827 9.99 088 3 16 8 8 16 8 16 9.31 93 008 61 9.31 93 008 61 9.31 93 008 61 9.31 93 008 61 9.31 93 008 60 9.31 93 008 60 9.31 93 008 007 9.90 072 3 114 10 10 10 10 10 10 10 10 10 10 10 10 10										
43 9.30 765 61 9.31 679 63 0.68 321 9.99 086 2 17 7 7 44 9.30 825 61 9.31 876 63 0.68 194 9.99 086 3 15 9 9 086 61 9.31 876 64 0.68 130 9.99 078 2 14 10 10 10 10 10 10 10 10 10 10 10 10 10		9 30 0 13		9 31 552		0 68 384				
44 9.30 825 61 9 31 743 64 0 68 257 9 99 083 3 16 8 9 9 0 0 68 257 9 99 083 3 16 8 9 0 0 68 257 9 99 083 3 15 9 9 0 0 68 268 0 9 0 70 2 14 10 10 10 15 15 9 15 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			61		63			2		1 1 3 7
45 9.30 887 60 9.31 806 64 0.68 130 9.99 080 2 15 90 104 14 15 15 15 15 15 16 15 15 15 15 15 15 15 15 15 15 15 15 15										8 8.0 7.9
46 9 30 947 61 9.11 870 61 9.31 933 63 0.68 067 9 90 175 3 13 20 84 9.31 068 60 9.31 996 63 0.68 067 9.00 175 3 13 30 122 135 102 102 102 102 102 102 102 102 102 102	45			9.31 806		0.68 194	9 99 080		15	
48 9.31 068 60 9.31 996 63 0.68 004 9.91 072 3 12 30 64 9.31 129 60 9.32 059 63 0.67 941 9.09 072 3 11 50 50 50 50 50 50 50 50 50 50 50 50 50	46						9.99 078			
49 9.31 129 61 9.32 050 63 0.67 941 9.09 070 2 11 40 50 50 51 9.31 25 61 9.32 122 63 0.67 878 9.99 067 3 10 50 52 9.31 310 60 9.32 124 63 0.67 052 9.99 064 3 9 9 9 9 9 9 9 9 9	47	9.31 008								
50 9.31 189 60 9.23 122 63 0.67 878 9.99 067 3 10 50 51 9.31 250 61 9.32 185 63 0.67 015 9.99 067 3 10 9 52 9.31 310 60 9.32 248 63 0.67 075 9.99 062 2 8 6 53 9.31 370 60 9.32 311 63 0.67 689 9.99 050 3 7 7 54 9.31 430 60 9.32 373 62 0.67 564 9.99 056 3 6 8 55 9.31 490 9 9.32 498 62 0.67 564 9.99 051 3 5 9 56 9.31 549 9 9.32 498 62 0.67 562 9.99 051 3 4 10			6 1		63					40 40.0 39 3
51 9.31 25 6 9.32 185 63 0.67 315 9.99 064 3 9 9 53 13 0 0 9.32 248 63 0.67 752 9.99 064 3 9 9 53 3 7 7 7 6 9.31 430 60 9.32 311 63 0.67 627 9.99 050 3 7 7 7 6 9.32 149 60 9.32 373 62 0.67 627 9.99 056 3 6 8 6 9.32 373 62 0.67 564 9.99 056 3 6 9 9 9 059 059 059 059 059 059 059 059 0					63			3		50 50.0 49.2
52 9 31 310 60 9.32 248 63 0.67 752 9.99 062 2 8 8 64 65 65 9.31 370 60 9.32 311 63 0.67 689 9.99 050 3 7 7 7 64 9.31 430 60 9.32 373 63 0.67 627 9.09 056 3 6 8 8 65 69 9.31 549 9 9.32 436 62 0.67 502 9.99 054 5 9 9.33 498 62 0.67 502 9.99 051 3 4 10									9	3 2
54 9.31 430 60 9.32 373 62 0.67 627 9.09 056 3 6 8 8 55 9 31 190 56 9.31 549 9 9.32 498 62 0.67 502 9.99 051 3 4 10	52	9 31 310		9.32 218		0.67 752	9.99 062		8	
55 9 31 490 60 9 32 436 63 0.67 564 9 90 054 2 5 9 56 9.31 549 59 9.32 498 62 0.67 502 9 99 051 3 4 10									7	
56 9.31 549 59 9.32 498 62 0.67 502 9 99 051 3 4 10										
3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4			59		62			3		
1 5/ 1 9.31 009	57	9.31 609	60	9.32 561	63	0.67 439		3		20 1.0 0.7
58 9.31 669 60 9.32 623 62 0.67 377 9.99 046 2 2 30	58	9.31 669		9.32 623		0.67 377	9.99 046		2	
59 9.31 720 60 9.32 005 62 0.07 315 9 09 043 3	-	9.31 728		9.32 685		0.67 313	9 99 043			
60 9.31 798 9 32 747 0.67 253 9 99 040 0	30	9.31 798		9 32 747	-	0.67 253	9 99 040	,	0	3-1-3 -1/
L. Cos. d. L. Cotg. c. d. L. Tang. L. Sin. d. / Pro		L. Cos.	d.	L. Cotg.	c. d.	L. Taug.	L. Sin.	d.	,	Prop. Pts.

244					12				
L	L. Sin.	d.	L. Taug	c. d	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.31 788	T	9.32 747	1.	0.67 253	9.99 040		60	
I	9.31 847	59 60	9 32 810	63	0.67 190	9.99 038	3	59	63 62
2	9.31 907	59	9.32 872	61	0.67 128	9.99 035	3	58	6 6.3 6.2
3	9.31 966	59	9.32 933	62	0.67 067	9.99 032	2	57	7 7.4 7.2 8 8.4 8.3
4	9.32 025	59	9.32 995	62	0.67 005	9 99 030	3	56	9 95 93
5 6	9.32 084	50	9.33 057	62	0.66 943	9.99 027	3	55	10 10.5 10 3
7	9.32 143	59	9.33 119	6z	0.66 820	9.99 022	2	54 53	20 21.0 20.7
ĺ á	9.32 261	59	9.33 242	62	0.66 758	9.99 019	3	52	30 31.5 31.0
9	9.32 319	. 58	9.33 303	61	0.66 697	9 99 016	3	51	40 42.0 41.3
10	9.32 378	59	9 33 365	62	0.66 635	9.99 013	3	50	50 52.5 51 7
11	9.32 437	59 58	9.33 426	61 61	0.66 574	9 99 011	2	49	61 60
12	9.32 495	58	9.33 487	61	0.66 513	9 99 008	3	48	6 6.1 6.0
13	9.32 553	59	9.33 548	61	0.66 452	9.99 005	3	47	7 7.1 7.0 8 8.1 8.0
14	9.32 612	58	9.33 609	61	0.66 391	9 99 002	2	46	8 8.1 8.0 9 9.2 90
15	9.32 670	58	9.33 670	61	0.66 330	9 99 000	3	45	10 10.2 10.0
16 17	9.32 728 9.32 786	58	9.33 731	61	0 66 269	9.98 997	3	44	20 20.3 20.0
18	9.32 844	58	9.33 792 9.33 853	61	0.66 147	9 98 994 9 98 991	3	43 42	30 30.5 30.0
19	9.32 902	58	9.33 913	60	0.66 087	9 98 989	2	41	40 40.7 40.0
20	9.32 960	58	9.33 974	6x	0,66 026	9.98 986	3	40	50 50.8 50.0
21	9.33 018	58	9.34 934	60	0.65 966	9 98 983	3	39	59
22	9.33 075	57	9 34 095	61	0.65 905	9.98 980	3	38	6 5.9
23	9.33 133	58	9.34 155	60 60	0.65 845	9.98 978	2	37	7 6.9
24	9.33 190	57 58	9.34 215	6z	0.65 785	9 98 973	3	36	8 7.9
25	9.33 248	57	9.34 276	60	0.65 724	9 98 972	3	35	9 89 10 98
26	9.33 305	57	9.34 336	60	0.65 664	9 98 969	2	34	20 19.7
27	9.33 362	58	9.34 396	60	0.65 604	9.98 967	3	33	30 29.5
28 20	9 33 420 9·33 477	57	9 34 456 9.34 516	60	0.65 544 0.65 484	9.98 964 9.98 961	3	32 31	40 39.3
30		57		60		9.98 958	3	30	50 49.2
31	9.33 534 9.33 591	57	9.34 576 9.34 635	59	0.65 424	9.98 955	3	29	58 57
32	9.33 647	56	9 34 695	60	0.65 305	9 98 953	2	28	6 58 57
33	9.33 704	57	9 34 755	бо	0.65 245	9 98 950	3	27	7 6.8 6.7
34	9.33 761	57	9.34 814	59 60	0.65 186	9 98 947	3	26	8 7.7 7.6
35	9.33 818	57	9 34 874		0.65 126	9 98 944	3	25	9 8.7 86
36	9.33 874	56 57	9.34 933	59 59	0.65 067	9 98 941	3	24	10 9.7 9 5 20 19.3 19 0
37	9 33 931	56	9.34 992	59	0 65 008	9 98 938	3	23	30 29.0 28.5
38	9.33 987	56	9.35 051	60	0.64 949 0.64 889	9.98 936	3	22 2I	40 38.7 38.0
39	9.34 043	57	9.35 111	59		9 98 933	3	20	50 48.3 47 5
40	9.34 100	56	9 35 170	59	0.64 830	9.98 930 9 98 927	3		56 55
41 42	9.34 156 9.34 212	56	9 35 229 9.35 288	59	0.64 771 0 64 712	9 98 927	3	19 18	6 5.6 5.5
43	9.34 268	56	9.33 247	59	0.64 653	9 98 921	3	17	
44	9.34 324	56	9.35 405	58	0.64 595	9 98 919	2	16	8 7.5 7.3
	9.34 380	56	9.35 464	59	0.64 536	9.98 916	3	15	9 8.4 8.3
45 46	0.34 436	56	9 35 523	59	0.64 477	9 98 913	3	14	10 93 9.2
47	9.34 491	55 56	9 35 581	58	0.64 419	9.98 910	3	13	20 18.7 18.3 30 28.0 27.5
48	9.34 547	55	9.35 640	59 58	0.64 360	9 98 907	3	12	30 28.0 27.5 40 37.3 36.7
49	9.34 602	56	9.35 698	59	0.64 302	9.98 904	3		50 46.7 45.8
50	9.34 658	55	9.35 757	58	0.64 243	9.98 901	3	10	3 3
51 52	9.34 713 9.34 769	56	9.35 813 9 35 873	58	0.64 185 0.64 127	9 98 898 9.98 896	2	9	6 0.3 0.2
53	9.34 824	55	9.35 931	58	0.64 069	9.98 893	3		7 0.4 0.2
54	9.34 879	55	9.35 989	58	0 64 011	9.98 890	3	7 6	8 0.4 0.3
55	9.34 934	55	9.36 047	58	0.63 953	9.98 887	3	5	9 0 5 0.3
56	9.34 989	55	9.36 105	58	0 63 895	9.98 884	3	4	10 0.5 0.3
57	9.35 044	55	9.36 163	58	0.63 837	9.98 881	3	3	20 1.0 0.7
58	9.35 099	55 55	9.36 221	58 58	0.63 779	9 98 878	3	2	30 1.5 1.0
59	9.35 154	55 55	9.36 279	57	0.63 721	9.98 875	3	1	40 2.0 1.3 50 2.5 1.7
60	9.35 209		9.36 336		0.63 664	9.98 872		0	30 2.3 2.7
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	1	Prop. Pts.

0 9.35 200 54 9.36 336 58 0.05 606 9.88 860 3 3 0.05 37 3 0.05 373 55 9.36 364 58 0.05 506 9.88 860 3 58 58 5.77 7 0.68 53 3 0.05 373 55 9.36 524 58 0.05 376 3 0.05 373 55 9.36 524 57 0.05 343 9.98 861 3 3 56 8 7.7 7.6 50 3.5 50 54 9.36 526 57 0.05 343 9.98 861 3 3 56 8 7.7 7.6 50 3.5 50 54 9.36 524 57 0.05 343 9.98 863 3 54 20 1.03 1.	′	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
1 9.35 263 34 9.36 264 3 9.28 267 2 3 3 3 3 3 3 9.36 252 3 3 3 9.36 252 3 3 9.36 252 3 9.36 263 3 9.37 263 3 9.36 263 3 9.37 263 3 9.37 263 3 9.37 263 3 9.36 263 3 9.37 263 3 9.38 263 3 9.37 263 3 9.37 263 3 9.37 263 3 9.37 263		9.35 209			-0					
3		9.35 263					9 98 869		59	
4	_			9.30 452		0.03 548	9.98 807	t .		7 6.8 6.7
S				9.36 566	57	0.63 434	9.98 861		56	8 7.7 7.6
6 9.33 536 59 8 9.35 599 8 9.36 781 599 8 9.36 782 57 10 9.37 535 11 9.37 506 11 9.37 806 12 9.38 806 13 9.37 806 14 9.38 806 15 9.36 808 15 9.36 808 16 9.36 808 17 9.36 808 18 9.36 808 19 9.37 808 19 9.36 808 19 9.38 808 10 9.38 808					1 -					9 8.7 8.6
7 9.35 599 34 9.36 738 57 0.65 262 9.98 849 3 53 30 29.0 28.5 36	6			9.36 681		0.63 319	9 98 855			
9 9,33 698 54 9,36 829 57 0.63 918 836 3 3 50 50 48.3 47.5 50 48.3 47.5 19.35 866 54 9,37 903 57 0.62 927 9,98 837 3 48 6 5.6 5.6 5.4 14 9,35 968 54 9,37 903 57 0.62 920 9,98 834 3 47.7 7 6.5 6.4 14 9,35 968 54 9,37 93 57 0.62 920 9,98 834 3 47.7 7 6.5 6.4 14 9,35 968 54 9,37 137 57 0.62 867 9,98 837 3 46 8 7.5 7.3 16 9,36 129 54 9,37 137 57 0.62 867 9,98 834 3 47.7 7 6.5 6.4 14 9,35 968 54 9,37 137 57 0.62 867 9,98 834 3 47.7 7 6.5 6.4 18 9,36 129 54 9,37 137 57 0.62 867 9,98 832 3 44 10 9,3 18 9,36 182 53 9,37 363 57 0.62 879 9,98 816 3 18 9,36 182 53 9,37 363 57 0.62 694 9,98 816 3 42 29 9,36 236 54 9,37 419 56 0.62 581 9,98 816 3 22 9,36 395 54 9,37 419 56 0.62 581 9,98 816 3 22 9,36 395 54 9,37 414 56 0.62 356 9,98 807 3 3 8 41 41 49 37.3 36.7 641 42 29 30 395 54 9,37 414 56 0.62 356 9,98 807 3 3 8 22 9,36 560 83 9,37 812 56 0.62 412 9,98 807 3 3 36 57 0.62 412 9,98 807 3 3 22 9,36 660 52 9,37 881 56 0.62 412 9,98 807 3 3 36 57 0.62 412 9,98 807 3 3 36 9,37 756 56 0.62 412 9,98 798 3 3 3 36 7 7 6.3 32 9,37 756 56 0.62 412 9,98 798 3 3 3 3 6 5 9,37 812 56 0.62 418 9,98 798 3 3 3 3 6 5 9,37 812 56 0.62 418 9,98 798 3 3 3 3 6 5 9,37 812 56 0.62 418 9,98 798 3 3 3 3 6 9 3 7 1 2 2 9,36 660 52 9,37 812 56 0.62 418 9,98 798 3 3 3 3 3 0 27.0 3 3 9,37 798 5 3 9,38 935 54 0.62 202 9,98 788 3 3 3 3 2 20 18.5 2 2 9,36 660 52 9,37 812 56 0.62 418 9,98 798 3 3 3 3 3 2 2 1 2 2 2 2 3 3 3 2 3 2 2 2 3 3 3 2 3 2		9.35 590		9.36 738	1					
10		9.35 044								
11 9.33 806 54 9.36 666 57 0.62 934 9.08 846 3 48 6 5.6 5.5 5.5 13 9.35 968 54 9.37 935 93 57 0.62 930 9.98 834 3 48 6 5.6 5.6 5.5 15 9.37 935 958 54 9.37 137 56 0.62 807 9.98 837 3 46 8 7.5 5.6 6.4 14 9.35 968 54 9.37 137 5 0.62 807 9.98 834 3 46 8 7.5 5.6 6.4 13 9.36 129 54 9.37 137 5 0.62 807 9.98 825 3 44 41 0.9.3 18 9.36 129 54 9.37 250 57 0.62 807 9.98 825 3 44 41 0.9.3 18 9.36 129 54 9.37 250 57 0.62 807 9.98 825 3 44 41 0.9.3 18 9.36 182 53 9.37 363 57 0.62 694 9.98 822 3 43 30 18.7 13.7 19 9.36 236 54 9.93 713 56 0.62 581 9.98 813 3 42 42 30 18.7 13.7 33.7 7.6 12.7 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2			54					3		50 48.3 47.5
12 9.35 860 54 9.37 923 57 9.62 977 9.98 837 3 48 6 5.6 5.6 5.6 5.1 9.35 968 54 9.37 137 55 9.36 920 9.98 834 3 47 7 6.5 5.6			54		57					56 55
13 935 948 54 9.37 137 57 0.62 920 9.98 834 3 46 8 7.5		9.35 860		9.37 023		0.62 977				6 5.6 5.5
15		9 35 914		9.37 080		0.62 920			47	
15										8 7.5 7.3
17 9,36 139 18 9,36 189 19 9,36 236 19 9,36 236 19 9,36 236 19 9,36 236 19 9,36 236 19 9,36 236 19 9,36 236 19 9,36 236 19 9,36 236 19 9,36 236 19 9,36 236 19 9,37 237 20 9,36 349 19 9,37 237 19 9,36 349 19 9,37 237 19 9,36 349 19 9,37 237 19 9,36 349 19 9,37 237 19 9,36 502 19 9,37 237 19 9,36 503 19 9,36 503 19 9,36 503 19 9,37 237 19 9,36 608 19 9,37 236 19 9,38 236 19 9,36 766 19 9,37 237 19 9,36 871 19 9,37 288 19 9,38 373 19 9,37 288 19 9,38 373 19 9,36 871 19 9,37 288 19 9,38 373 19 9,37 288 19 9,38 373 19 9,37 281 19 9,38 265 19 9,38 373 19 9,37 881 10 9,38 282 10 18.0 20 18.7 18.3 20 18.7 18.3 20 18.7 18.3 20 18.7 18.3 20 18.7 18.3 20 18.6 7 21 18.9 298 792 21 22 2 3 3 3 39 21 20 18.0 21 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		9.36 022								10 9.3 9.2
18 9.36 182 53 9.37 363 57 0.62 637 9.98 815 3 42 37.3 36.7 37.9 20 9.36 289 53 9.37 476 56 0.62 581 9.98 813 3 30 40 37.3 36.7 45.8 21 9.36 395 53 9.37 532 56 0.62 468 9.98 813 3 30 56 56 56 0.62 458 9.98 804 3 37 7 6.3 41 50 46.7 45.8 22 9.36 502 53 9.37 705 56 0.62 356 9.98 804 3 37 7 6.3 25 9.36 555 53 9.37 705 56 0.62 300 9.98 804 3 37 7 6.3 26 9.36 660 52 9.37 812 56 0.62 244 9.98 798 3 35 10 9.98 798 3 35 10 9.98 798 3 33 32 20 18.0 20 9.98 798 3 33 32 20 18.0 20 18.0 20 20							0.08.822			20 18.7 18.3
19 9.36 286 34 35 9.37 419 57 50 0.62 581 9.98 813 3 40 50 467 45.8		0.36 182								
21 9.36 349 53 9.37 532 56 0.62 469 9.8 810 3 29 36 345 53 9.37 538 56 0.62 469 9.8 810 3 38 6 6 5.4 469 47 48 49 9.37 548 52 9.36 649 52 9.38 649 52 9.37 566 0.62 300 9.8 801 3 36 9.37 76 6.3 469 52 9.38 660 52 9.37 566 0.62 300 9.8 801 3 36 9.37 76 6.3 469 56 0.62 300 9.8 801 3 36 9.37 76 6.3 469 56 0.62 300 9.8 801 3 36 9.37 76 6.3 469 56 0.62 300 9.8 801 3 36 9.37 76 6.3 469 56 0.62 300 9.8 801 3 36 9.37 76 6.3 469 56 0.62 300 9.8 801 3 36 9 8.1 10 9.0 10 10 10 10 10 10 10 10 10 10 10 10 10		9.36 236					9 98 816		41	
22 9 36 395 53 937 588 56 0.62 496 9 98 807 3 38 6 5.4 23 9.36 419 54 9.37 644 56 0.62 310 9.8 807 3 36 8 7.2 24 9 65 652 9.36 555 3 9.37 7756 56 0.62 320 9.98 804 3 37 7 6.3 36 8 7.2 27 9.36 660 52 9.37 812 56 0.62 320 9.98 795 3 34 20 18.0 28 9.36 713 53 9.37 924 56 0.62 320 9.98 786 3 32 9.37 785 56 0.62 329 9.98 786 33 32 20 18.0 33 32 20 18.0 32 29 9.36 871 52 9.38 803 55 0.61 9.98 786 3 31 9.36 871 52 9.38 803 55 0.61 9.98 786 3 31 9.36 871 52 9.38 803 55 0.61 9.98 9.88 777 3 28 6 5 5 3 9.38 137 55 9.38 803 55 0.61 246 9.98 765 3 23 9.37 928 52 9.38 423 55 0.61 246 9.98 759 3 22 30 26.5 26.0 27 9.37 806 51 9.38 803 55 0.61 246 9.98 759 3 22 30 26.5 26.0 26.1 246 9.98 759 3 22 30 26.5 26.0 26.1 246 9.98 759 3 22 30 26.5 26.0 26.1 246 9.98 759 3 22 30 26.5 26.0 26.1 246 9.98 759 3 22 30 26.5 26.0 26.1 246 9.98 759 3 22 30 26.5 26.0 26.1 246 9.98 759 3 22 30 26.5 26.0 26.1 246 9.98 759 3 22 30 26.5 26.0 26.1 246 9.98 759 3 22 30 26.5 26.0 26.1 246 9.98 759 3 22 30 26.5 26.0 26.1 246 9.98 759 3 22 30 26.5 26.0 26.1 246 9.98 759 3 22 30 26.5 26.0 26.1 246 9.98 759 3 22 30 26.5 26.0 26.1 246 9.98 759 3 22 30 26.5 26.0 26.1 246 9.98 759 3 22 30 26.5 26.0 26.1 246 9.98 759 3 22 30 26.5 26.0 26.1 246 9.37 549 52 9.38 869 55 0.61 361 9.98 759 3 22 30 26.5 26.0 26.1 246 9.98 759 3 22 30 26.5 26.0 26.1 246 9.98 759 3 22 30 26.5 26.0 26.1 246 9.98 759 3 22 30 26.5 26.0 26.0 26.1 246 9.98 759 3 22 30 26.5 26.0 26.0 26.1 246 9.98 759 3 22 30 26.5 26.0 26.0 26.1 246 9.98 759 3 22 30 26.5 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0				9.37 476				1		
23 9.36 449 53 54 9.37 641 56 0.62 336 9.98 804 3 36 8 7.2 6.3 24 9.36 502 53 9.37 756 56 0.62 230 9.98 804 3 36 8 7.2 25 9.36 503 53 9.37 756 56 0.62 244 9.98 798 3 35 10 9.0 27 9.36 666 52 9.37 808 56 0.62 247 9.98 798 3 34 20 18.0 28 9.36 713 53 9.37 924 56 0.62 247 9.98 789 3 32 40 36.0 29 9.36 766 53 9.37 924 56 0.62 276 9.98 789 3 32 40 36.0 30 9.36 819 52 9.38 091 56 0.62 009 9.98 780 3 32 40 36.0 31 9.36 871 52 9.38 091 56 0.61 909 9.98 780 3 32 40 36.0 32 9.36 924 53 9.38 147 56 0.61 909 9.98 780 3 32 40 36.0 33 9.36 924 53 9.38 147 56 0.61 909 9.98 780 3 32 99 80 77.2 33 9.36 924 53 9.38 147 56 0.61 909 9.98 780 3 28 6 6 53 52 33 9.37 081 52 9.38 257 55 0.61 798 9.98 774 3 28 6 6 53 52 33 9.37 081 52 9.38 257 55 0.61 687 9.98 774 3 28 6 6 53 52 336 9.37 081 52 9.38 423 55 0.61 687 9.98 774 3 26 8 7.1 6.9 336 9.37 287 52 9.38 423 55 0.61 687 9.98 765 3 24 10 8.8 8.7 34 9.37 081 52 9.38 423 55 0.61 521 9.98 750 3 22 10 8.8 8.7 35 9.37 081 52 9.38 423 55 0.61 521 9.98 750 3 22 10 8.8 8.7 40 9.37 341 52 9.38 534 55 0.61 351 9.98 756 3 24 10 8.8 8.7 40 9.37 341 52 9.38 808 54 41 9.37 393 52 9.38 493 55 0.61 351 9.98 750 3 22 10 8.8 8.7 42 9.37 445 52 9.38 808 54 43 9.37 497 52 9.38 808 54 44 9.37 549 52 9.38 863 55 0.61 351 9.98 750 3 22 34 9.37 600 51 9.38 808 54 45 9.37 600 51 9.38 808 55 45 9.37 600 51 9.38 808 55 45 9.37 600 51 9.38 808 55 55 9.38 113 51 9.39 909 54 0.60 810 9.98 712 3 77 6.0 0.5 51 0.4 0.60 864 9.98 753 3 15 9.39 801 55 9.39 801 55 55 9.38 113 51 9.39 909 54 0.60 810 9.98 712 3 77 6.0 0.5 52 9.39 801 55 55 9.38 113 51 9.39 909 54 0.60 810 9.98 712 3 77 7 6.4 0.2 55 9.38 113 51 9.39 569 54 0.60 377 9.98 703 3 56 0.60 377 9.98 604 3 57 9.38 215 51 9.39 569 54 0.60 6377 9.98 604 3 58 9.38 266 51 9.39 569 54 0.60 377 9.98 604 3 58 9.38 266 51 9.39 569 54 0.60 377 9.98 604 3 50 0.60 377 9.98 604 3 50 0.60 377 9.98 604 3 50 0.60 377 9.98 604 3 50 0.60 377 9.98 604 3 50 0.60 377 9.98 604 3 50 0.60 377 9				9.37 532						
24		9 30 395				0.02 412	9 98 807			
25		9.36 502	53		56		9.98 801	3	36	8 7.2
26			1							9 8.1
28		9 36 608		9.37 812						
29 9.36 766 53 9.37 980 56 0.62 020 9.98 786 3 3 31 40 36.0 33.0 9.36 871 52 9.38 035 56 0.61 909 9.98 780 3 29 58 33 32 9.36 976 52 9.38 021 55 0.61 798 9.98 777 3 26 8 71.1 6.9 33 9.37 028 52 9.38 257 55 0.61 798 9.98 777 3 26 8 7.1 6.9 38 257 55 0.61 798 9.98 778 3 26 8 7.1 6.9 38 257 55 0.61 798 9.98 779 3 26 8 7.1 6.9 38 257 55 0.61 798 9.98 779 3 26 8 7.1 6.9 38 25 38 9.37 237 52 9.38 257 55 0.61 521 9.98 750 3 22 30 26.5 26.3 34.7 32 39 37 289 52 9.38 534 55 0.61 411 9.98 753 3 22 30 26.5 26.3 34.7 32 34 9.37 497 52 9.38 589 55 0.61 356 9.98 756 3 21 40 35.3 34.7 35.3 34.9 3.7 49.7 52 9.38 649 55 0.61 356 9.98 756 3 21 40 35.3 34.7 35.3 34.9 3.7 49.7 52 9.38 649 55 0.61 356 9.98 756 3 21 40 35.3 34.7 34.9 3.7 49.7 52 9.38 649 55 0.61 356 9.98 750 3 21 40 35.3 34.7 34.9 3.7 49.7 52 9.38 864 55 0.61 356 9.98 750 3 21 40 35.3 34.7 34.9 3.7 49.7 52 9.38 864 55 0.61 356 9.98 750 3 21 40 35.3 34.7 34.9 3.7 49.7 52 9.38 864 55 0.61 356 9.98 750 3 21 40 35.3 34.7 34.9 3.7 49.7 52 9.38 864 55 0.61 356 9.98 750 3 21 40 35.3 34.7 34.9 37 39.3 65.5 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2		9.36 660		9.37 868						
30		9.36 713		9.37 924			9 98 789			40 36.0
31										
32 9.36 924 53 9.38 147 56 061 853 9.98 777 3 28 6 5.2 28 33 9.36 974 52 9.38 265 55 0.61 743 9.98 771 3 26 8 7.1 6.9 36 32 32 7 8 8 8 8 7.1 6.9 38 868 55 0.61 743 9.98 771 3 26 8 7.1 6.9 38 368 55 0.61 743 9.98 771 3 26 8 7.1 6.9 38 368 55 0.61 743 9.98 765 3 24 10 8 8 8.7 37 9.37 185 52 9.38 423 55 0.61 521 9.98 762 3 20 17.7 17.3 38 9.37 287 52 9.38 423 55 0.61 521 9.98 759 3 22 10.7 17 17.3 39 9.37 289 52 9.38 534 55 0.61 411 9.98 753 3 22 40 35.3 34.7 25 9.38 589 55 0.61 356 9.98 756 3 21 40 35.3 34.7 25 9.38 589 55 0.61 361 9.98 756 3 21 40 35.3 34.7 25 9.38 699 55 0.61 356 9.98 750 3 21 40 35.3 34.7 25 9.38 699 55 0.61 356 9.98 750 3 19 9.38 4.2 42 9.37 4.45 52 9.38 6.99 55 0.61 361 9.98 750 3 19 9.38 4.2 42 9.37 5.49 52 9.38 868 54 0.61 192 9.98 746 4 18 6 0.5 10 4.4 2 43.3 3 17 7 6.0 0.61 4.2 9.98 740 3 16 8 6 8 0.5 10 4.4 9.37 5.49 9.38 868 54 0.61 192 9.98 740 3 16 8 6 8 0.5 10 4.4 9.37 5.49 9.38 868 54 0.61 192 9.98 740 3 16 8 6 8 0.5 10 4.4 9.37 703 52 9.38 863 55 0.61 361 192 9.98 740 3 16 8 6 8 0.5 10 4.4 9.37 703 52 9.38 863 55 0.61 137 9.98 740 3 16 8 6 8 0.5 10 4.4 9.37 703 51 9.38 898 55 0.61 9.98 740 3 16 8 6 8 0.5 10 4.4 9.37 703 52 9.38 863 55 0.61 137 9.98 740 3 16 8 6 8 0.5 10 10 10 10 10 10 10 10 10 10 10 10 10			52	9.30 035				3		53 52
33 9.36 976 52 9.38 262 55 0.61 798 9.98 774 3 27 7 6.2 6.1 6.9 9.37 0.37 0.37 0.38 53 9.38 313 55 0.61 687 9.98 768 3 24 24 24 24 25 36 0.61 632 9.98 765 3 24 24 25 36 26.5 26.0 0.61 632 9.98 765 3 24 24 26 17.7 17.3 28 28 9.37 287 52 9.38 423 55 0.61 521 9.98 759 3 22 26.5 26.0 0.61 632 9.98 759 3 26.5 26.0 0.61 632 9.98 759 3 26.5 26.0 0.61 632 9.98 759 3 26.5 26.0 0.61 632 9.98 759 3 26.5 26.0 0.61 632 9.98 759 3 26.5 26.0 0.60 759 9.98 759 3 26.5 26.0 0.60 759 9.98 759 3 22 26.5 26.0 0.60 759 9.98 759 3 26.5 26.0 0.60 759 9.98 759 3 26.5 26.0 0.60 759 9.98 759 3 26.5 26.0 0.60 759 9.98 759 3 26.5 26.0 0.60 759 9.98 759 3 26.5 26.0 0.60 759 9.98 759 3 26.5 26.0 0.60 759 9.98 759 3 26.5 26.0 0.60 759 9.98 759 3 26.5 26.0 0.60 759 9.98 759 3 26.5 26.0 0.60 759 9.98 759 3 26.5 26.0 0.60 759 9.98 759 3 26.5 26.0 0.60 759 9.98 759 3 26.5 26.0 0.60 759 9.98 759 3 26.5 26.0 0.60 759 9.98 759 3 26.5 26.0 0.60 759 9.98 759 3 26.5 26.0 0.60 759 9.98 759 3 26.5 26.0 0.60 759 9.98 759 3 26.5 26.0 0.60 759 9.98 759 3 26.5 26.0 0.60 759 9.98 759 3 26		9.36 924								6 53 5.2
35 9.37 081 53 9.38 313 56 0.61 632 9.98 768 3 24 20 17.7 17.3 37 9.37 185 52 9.38 479 56 0.61 577 9.98 762 3 22 30 26.5 26.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27	33	9.36 976		9.38 202		0.61 798	9.98 774			
36 9.37 133 52 9.38 368 55 0.61 6577 9.98 765 3 23 30 26.5 26.0 33 9.37 237 337 237 237 237 237 237 237 237 2										8 7.1 6.9
37 9.37 185 52 9.38 442 55 0.61 521 9.98 750 3 22 26.5 26.0 34.2 43.3 30 26.5 26.0 4.4 2 43.3 30 27 287 52 9.38 589 55 0.61 356 9.98 750 3 21 40 35.3 34.7 55 0.61 411 9.98 750 3 19 37 445 52 9.38 589 55 0.61 356 9.98 750 3 19 51 44.2 43.3 30 26.5 26.0 4.4 2 43.3 30 26.5 26.0 4.6 26.5 26.0 4.6 26.5 26.0 4.6 26.5 26.0 4.6 26.5 26.0 4.6 26.5 26.0 4.6 26.5 26.0 4.6 26.5 26.0 4.6 26.	35				3					
38 9.37 287 52 9.38 479 50 0.61 521 9.98 759 3 22 30 22.5 2.30 22.5 2.33 34.7 40 9.37 289 52 9.38 589 55 0.61 466 9.98 759 3 21 40 35.3 34.7 50 44.2 9.37 393 52 9.38 589 55 0.61 361 9.98 759 3 21 50 44.2 43.3 34.7 50 44.2 43.3 3 19 51 4 9.37 445 52 9.38 699 55 0.61 361 9.98 750 3 19 51 4 18.6 5.1 4 0.61 321 9.98 736 4 18.6 5.1 0.61 321 9.98 736 4 18.6 5.1 0.61 321 9.98 736 4 18.6 5.1 0.65 14 0.61 132 9.98 746 4 18.6 6.5 1.4 0.65 14 0.61 132 9.98 746 4 18.6 6.5 1.4 0.65 14 0.66 1246 9.98 7									24	20 17.7 17.3
39 9.37 289 52 9.38 534 55 0.61 466 9.98 756 3 21 40 35.3 34.4 35.3 34.4 33.3 34.4 33.3 34.4 34.1 9.37 393 32 42 9.37 393 32 42 9.37 393 32 42 9.37 497 52 9.38 699 55 0.61 356 9.98 750 3 17 7 6.0 0.5 4.2 4.3 3 17 7 6.0 0.5 6.0 0.5 4.4 9.37 549 52 9.38 869 55 0.61 356 9.98 740 3 16 8 6 5.1 0.6 0.61 391 9.98 740 3 16 8 6 8 0.5 9.38 863 55 0.61 137 9.98 731 3 15 9 7 7 0.6 0.63 16 8 6 8 6 8 0.5 9.39 737 3 15 9 7 7 0.6 0.61 137 9.98 731 3 15 9 7 7 0.6 0.61 137 9.98 731 3 15 9 7 7 0.6 0.61 032 9.98 731 3 15 9 7						0.61 521				30 26.5 26.0
40 9.37 3.41 52 9.38 589 55 0.61 311 9.98 753 3 19 51 4.4.2 13.3 4 42 9.37 445 52 9.38 699 55 0.61 301 9.98 746 4 18 6 5.1 0.4 43 9.37 497 52 9.38 868 54 6.61 192 9.98 740 3 16 8 6 8 0.5 16 8 0.61 192 9.98 740 3 16 8 6 8 0.5 16 8 0.61 192 9.98 740 3 16 8 6 8 0.5 16 10 10 10 10 10 10 10 10 10 10 10 10 10		9.37 289								
42 937 445 52 9.38 699 55 0.61 301 9.98 746 4 18 6 5.1 0.4 43 9.37 447 52 9.38 868 54 6.61 192 9.98 740 3 16 8 68 0.5 1 0.4 19 0.61 137 9.98 740 3 16 8 68 0.5 10 0.61 301 9.98 740 3 16 8 68 0.5 10 0.61 137 9.98 740 3 16 8 68 0.5 10 0.61 137 9.98 737 3 15 10 8.5 0.7 10 10 8.5 0.7 10 10 8.5 0.7 10 10 8.5 0.7 10 10 8.5 0.7 10 10 8.5 0.7 10 10 8.5 0.7 10 10 8.5 0.7 10 10 8.5 0.7 10 10 8.5 0.7 10 10 8.5 0.7 10 10 8.5 0.7 10 10 10 10 10 10 10 10 10 10 10 10 10	40				,	0.61 411	9.98 753		20	
43 9.37 497 52 9.38 754 55 0.61 246 9.98 743 3 17 7 6.0 0.5 44 9.37 549 52 9.38 808 54 0.61 192 9.98 743 3 16 8 68 0.5 45 9.37 605 52 9.38 808 55 0.61 137 9.98 737 3 16 8 68 0.5 47 9.37 755 52 9.38 918 55 0.61 032 9.98 734 3 14 10 8.5 0.7 48 9.37 755 52 9.39 032 55 0.60 973 9.98 733 3 13 20 17.0 1.3 48 9.37 755 52 9.39 032 55 0.60 973 9.98 728 3 12 30 25.5 2.0 49 9.37 806 51 9.39 902 55 0.60 973 9.98 728 3 11 40 34.0 2.7 50 9.37 858 51 9.39 902 55 0.60 973 9.98 728 3 11 40 34.0 2.7 50 9.37 858 51 9.39 905 54 0.60 864 9.98 725 3 11 50 42.5 3.3 51 9.37 905 51 9.39 905 54 0.60 864 9.98 719 3 9 87 10 52 2.97 10 5	41	9.37 393	-	9.38 644						
44 9.37 549 52 9.38 868 54 0.61 192 9.98 749 3 16 8 6 8 0.5 9.37 650 52 9.38 863 55 0.61 137 9.98 737 3 15 0.8.5 0.7 0.61 0.82 9.98 731 3 1.4 10 8.5 0.7 0.61 0.82 9.98 731 3 1.4 10 8.5 0.7 0.61 0.82 9.98 731 3 1.4 10 8.5 0.7 0.61 0.82 9.98 731 3 1.4 10 8.5 0.7 0.61 0.82 9.98 731 3 1.4 10 8.5 0.7 0.61 0.82 9.98 731 3 1.4 10 8.5 0.7 0.61 0.82 9.98 731 3 1.4 10 8.5 0.7 0.61 0.82 9.98 731 3 1.4 10 8.5 0.7 0.61 0.82 9.98 731 3 1.4 10 8.5 0.7 0.61 0.82 9.98 731 3 1.4 10 8.5 0.7 0.61 0.82 9.98 731 3 1.4 10 8.5 0.7 0.61 0.82 9.98 731 3 1.4 10 8.5 0.7 0.60 9.7 0.60 9.7 0.60 9.7 0.60 9.7 0.60 9.7 0.60 9.7 0.60 9.7 0.60 9.7 0.60 9.7 0.60 9.7 0.60 9.7 0.60 9.7 0.60 9.9 731 3 1.4 0.7 0.7 0.60 9.7 0.60 9.9 731 3 1.4 0.7 0.7 0.60 9.7 0.60 9.9 731 3 1.4 0.7 0.7 0.60 9.7 0.60 9.7 0.60 9.7 0.60 9.7 0.60 9.7 0.7 0.60 9.7	42			9.38 099						
45 9.37 600 51 9.38 863 55 0.61 137 9.98 737 3 15 10 8.5 0.7 0.61 082 9.98 734 3 14 12 0.17.0 1.3 13 20 17.0 1.3 14 15 15 9.37 87.5 52 9.39 027 55 0.60 973 9.98 728 3 12 20 17.0 1.3 12 0.17.0 1.3 12			52	9.38 808	54			3		
40 9.37 652 51 9.38 918 55 0 61 082 9 98 734 3 14 20 17.0 1.3 48 9.37 703 51 9.38 972 54 0.61 028 9 98 728 3 12 20 17.0 1.3 48 9.37 753 52 9.39 027 55 0.60 973 9 08 728 3 12 30 25.5 2.0 49 9.37 868 52 9.39 130 54 0.60 810 9.98 725 3 111 50 142.5 3.3 51 9.37 900 51 9.39 120 54 0.60 810 9.98 715 3 10 50 142.5 3.3 51 9.37 900 51 9.39 120 54 0.60 810 9.98 715 4 8 0 0.3 0.2 53 9.38 011 51 9.39 299 54 0.60 810 9.98 715 4 8 0 0.3 0.2 53 9.38 011 51 9.39 299 54 0.60 647 9.98 712 3 7 7 0.4 0.2 54 9.38 062 51 9.39 353 54 0.60 647 9.98 703 3 6 8 0.4 0.3 55 9.38 113 51 9.39 407 54 0.60 533 9 98 703 3 6 8 0.4 0.3 57 9.38 215 51 9.39 515 54 0.60 533 9 98 703 3 4 10 0.5 0.3 58 9.38 266 51 9.39 569 54 0.60 337 9.98 694 3 1 0 0.5 0.3 59 9.38 317 51 9.39 663 54 0.60 337 9.98 694 3 1 40 2.0 1.3 60 9.38 368 9.38 667 51 9.39 663 54 0.60 337 9.98 694 3 1 40 2.0 1.3										9 77 0.6
48 9 37 703 51 9.38 972 54 0.60 28 9 98 731 3 13 20 17.0 1.34 49 9.37 806 51 9.39 902 55 0.60 973 9 98 728 3 12 30 25.5 2.0 49 9.37 806 51 9.39 908 22 55 0.60 978 9.98 728 3 11 40 34.0 2.7 55 9.37 905 51 9.39 130 54 0.60 810 9.98 719 3 9 8 728 3 10 50 42.5 3.3		9.37 652	- 1	9.38 918		0 61 082	9 98 734		14	
49 9.37 806 51 9.39 082 55 0.60 918 9.98 725 3 11 40 34.0 2.7 50 0.60 918 9.98 715 3 9.39 905 51 9.39 905 905 905 905 905 905 905 905 905 90	47	9-37 703		9.38 972					13	
50 9.37 888 52 9.39 136 54 0.60 864 9.98 722 3 10 50 42.5 3.3 51 9.37 909 51 9.39 136 54 0.60 810 9.98 722 3 9 3 2 52 9.37 900 51 9.39 245 55 0.60 755 9.98 715 4 8 6 0.3 0.2 53 9.38 061 51 9.39 299 54 0.60 701 9.98 712 3 7 7 0.4 0.2 54 9.38 113 51 9.39 351 54 0.60 647 9.98 702 3 6 8 0.4 0.3 55 9.38 113 51 9.39 407 54 0.60 593 9.98 706 3 5 9.05 0.3 57 9.38 216 51 9.39 515 54 0.60 539 9.98 703 3 4 10 0.5 0.3 58 9.38 266 51 9.39 69 54		9 37 755		9.39 027		0.60 973				
51 9.37 900 51 9.39 190 54 0.60 810 9.98 719 3 9 3 2 52 9.37 900 51 9.39 190 54 0.60 810 9.98 715 4 8 6 0.3 0.2 53 9.38 001 51 9.39 295 54 0.60 701 9.98 712 3 7 7 0.4 0.2 54 9.38 062 51 9.39 353 54 0.60 670 9.98 709 3 6 8 0.4 0.3 55 9.38 164 51 9.39 467 54 0.60 679 9.98 709 3 5 9.05 0.3 57 9.38 215 51 9.39 461 54 0.60 483 9.98 700 3 3 20 1.0 0.5 0.3 58 9.38 266 51 9.39 515 54 0.60 483 9.98 700 3 3 20 1.0 0.7 59 9.38 317 51 9										
52 9.37 960 51 9.39 245 55 0.60 755 9.98 715 4 8 6 0.3 0.2 53 9.38 062 51 9.39 299 54 0.60 677 9.98 709 3 7 7 0.4 0.2 55 9.38 113 51 9.39 407 54 0.60 647 9.98 709 3 6 8 0.4 0.3 56 9.38 164 51 9.39 461 54 0.60 633 9.98 703 3 4 10 0.5 0.3 57 9.38 215 51 9.39 515 54 0.60 485 9.98 700 3 3 20 1.0 0.5 0.3 58 9.38 266 51 9.39 515 54 0.60 431 9.98 697 3 2 20 1.0 0.7 59 9.38 377 51 9.39 623 54 0.60 431 9.98 697 3 2 30 1.5 1.0 0.60 431 9.98 697 3 2 30 1.5 1.0 0.60 431 </td <td></td> <td></td> <td>51</td> <td></td> <td>54</td> <td></td> <td></td> <td>3</td> <td></td> <td></td>			5 1		54			3		
53 9.38 062 51 9.39 299 54 0.60 670 9.98 712 3 7 7 0.4 0.2 55 9.38 113 1 9.39 407 54 0.60 647 9.98 706 3 5 9.05 0.3 56 9.38 164 51 9.39 467 54 0.60 539 9.98 706 3 5 9.05 0.3 57 9.38 215 51 9.39 515 54 0.60 639 9.98 700 3 2 10 0.5 0.3 58 9.38 266 51 9.39 569 54 0.60 317 9.98 697 3 2 30 1.0 0.7 59 9.38 368 9.39 677 54 0.60 323 9.98 690 4 0 50 2.5 1.7									8	
55 9 38 113 51 9.39 407 54 0.60 539 9.98 706 3 5 9 0.5 0.3 56 9.38 164 51 9.39 467 54 0.60 539 9.98 706 3 4 10 0.5 0.3 57 9.38 215 51 9.39 515 54 0.60 485 9.98 700 3 2 20 1.0 0.7 58 9.38 266 51 9.39 569 54 0.60 431 9.98 697 3 2 30 1.5 1.0 0.7 0.60 337 9.98 694 3 1 40 2.0 1.3 1.0 1.0 2.0 1.0 2.0 1.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.3 1.0 2.0 1.0 2.0 1.0 2.0 1.0 <td< td=""><td>53</td><td>9.38 011</td><td></td><td>9.39 299</td><td></td><td>0.60 701</td><td>9.98 712</td><td></td><td>7</td><td>7 0.4 0.2</td></td<>	53	9.38 011		9.39 299		0.60 701	9.98 712		7	7 0.4 0.2
55 938 164 51 9.39 461 54 0.60 539 9.98 703 3 4 10 0.5 0.3 55 9.38 215 51 9.39 515 54 0.60 485 9.98 700 3 3 20 1.0 0.5 53 59 9.38 317 51 9.39 623 54 0.60 431 9.98 694 3 1 40 2.0 1.3 60 1.5 1.0 0.5 0.3 9.38 368 9.38 368 9.39 677 54 0.60 323 9.98 690 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
33 9.38 215 51 9.39 515 54 0.60 431 9.98 690 3 2 20 1.0 0.7 58 9.38 317 51 9.39 623 54 0.60 431 9.98 690 3 2 20 1.5 1.0 0.7 59 9.38 368 51 9.39 677 54 0.60 327 9.98 694 3 1 40 2.0 1.3 50 2.5 1.7					- 1					
58 9.38 a66 51 9.39 569 54 0.60 431 9.99 697 3 2 30 1.5 1.0 50 9.38 317 51 9.39 623 54 0.60 377 9.98 694 3 1 40 2.0 1.3 50 2.5 1.7 50 2.5 1.7							9.98 703			0,0
59 9.38 317 51 9.39 623 54 0.60 377 9 98 694 3 1 40 2.0 1.3 50 2.5 1.7 60 9.38 368 7 9.39 677 54 0.60 323 9.98 690 4 0	58	9.38 266	51		54			3		30 1.5 1.0
60 9.38 368 51 9.39 677 54 0.60 323 9.98 690 4 0 50 2.5 1.7				9.39 623		0.60 377	9 98 694			
L. Cos. d. L. Cotg. c. d. L. Tang. L. Sin. d. / Prop. Pts.	60	9.38 368	51		54		9.98 690	4	0	50 2.5 1.7
		L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	1	Prop. Pts.

_	T	_	T	_		:		_	
<u></u>	L. Sin.	d.	L. Tang	c. d	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.38 358		9.39 677		0.60 323	9.92 690		60	
1	9.38 418	50 51	9.39 731	54 54	0.60 269	9.98 687	3	59	1
2	9.38 469	50	9.39 785	53	0.60 215	9.98 684	3	58	54 53
3	9.38 519	51	9.39 838	54	0.60 162	9.98 681	3	57	6 5.4 5.3
4	9.38 570	- 50	9.39 892	- 53	0.60 108	9 98 678	3	56	7 6.3 6.2
5 6	9.38 620	50	9.39 945	54	0.60 055	9.98 675	4	55	8 7.2 7.1 9 8.1 8.0
	9.38 670 9.38 721	51	9-39 999	53	0.60 001	9.98 671 9.98 668	3	54	9 8.1 8.0 10 9.0 8.8
7 8	9.38 771	50	9.40 052 9.40 106	54	0.59 948	9.98 665	3	53 52	20 18.0 17.7
9	9.38 821	50	9.40 159	53	0.59 841	9.98 662	3	51	30 27.0 26.5
10	9.38 871	- 50	9.40 212	53	0.59 788	9.98 659	3	50	40 36.0 35.3
11	9.38 921	50	9.40 266	54	0.59 734	9 98 656	3	49	50 45.0 44.2
12	9 38 971	50	9.40 319	53	0.59 681	9.98 652	4	48	
13	9.39 021	50	9.40 372	53	0.59 628	9 98 649	3	47	ł
14	9.39 071	50	9 40 425	53	0.59 575	9 98 646	3	46	52 51
15	9.39 121	50	9.40 478	53	0.59 522	9.98 643	3	45	6 5.2 5.1
16	9.39 170	49	9.40 531	53	0.59 469	9.98 640	3	44	7 6.1 6.0
17	9.39 220	50	9 40 584	53 52	0.59 416	9 98 636	4	43	8 6.9 6.8
18	9.39 270	50 49	9 40 636	52	0.59 364	9 98 633	3	42	9 7.8 7.7
19	9.39 319	- 50	9 40 689	53	0.59 311	9 98 630	3	41	10 8.7 8.5 20 17.3 17.0
20	9 39 369	49	9 40 742	53	0.59 258	9.98 627	4	40	30 26 0 25.5
21	9 39 418	49	9 40 795	52	0.59 205	9 98 623	3	39	40 34.7 34.0
22	9.39 467	50	9.40 847	53	0 59 153	9.98 620	3	38	50 43.3 42.5
23	9.39 517	49	9.40 900	52	0.59 100	9.98 617 9.98 614	3	37 36	0 1 100 14-0
24	9.39 566	49	9.40 952	53	0.59 048		4		
25 26	9.39 615	49	9.41 003	52	0.58 995	9.98 610	3	35	50 49
27	9.39 664 9.39 713	49	9.41 057 9.41 109	52	0.58 943	9.98 607 9.98 604	3	34	6 5.0 4.9
28	9.39 762	49	9.41 161	52	0.58 839	9.98 601	3	33 32	7 5.8 5.7
29	9.39 811	49	941 214	53	0 58 786	9 98 597	4	31	8 6.7 6.5
30	9.39 860	49	9.41 266	52	0.58 734	9 98 594	3	30	9 7.5 7.4
31	9.39 909	49	9.41 318	52	0.58 682	9.98 591	3	29	10 8.3 8.2
32	9.39 958	49	9.41 370	52	0.58 630	9.98 588	3	28	20 16.7 16.3
33	9.40 006	48	9.41 422	52	0 58 578	9.98 584	4	27	30 25.0 24.5
34	9.40 053	49 48	9.41 474	52 52	0.58 526	9 98 581	3	26	40 33.3 32.7 50 41.7 40.8
35	9.40 103	1 .	9.41 526		0.58 474	9.98 578		25	30 41.7 40.0
36	9.40 152	49 48	9.41 578	52 51	0.58 422	9 98 574	4	24	
37	9.40 200	49	9.41 629	52	0.58 371	9.98 571	3	23	1 48 1 47
38	9 40 249	48	9.41 681	52	0.58 319	9.98 568	3	22	
39	9.40 297	49	9.41 733	5×	0.58 267	9.98 565	4	21	6 4.8 4.7 7 5.6 5.5
40	9.40 346	48	9.41 784	52	0.58 216	9.98 561	3	20	8 6.4 6.3
41	9.40 394	48	9 41 836	51	0.58 164	9.98 558	3	19	9 7.2 7.1
42	9.40 442	48	9.41 887	52	0.58 113	9 98 555	4	18	10 8.0 7.8
43	9.40 490 9 40 538	48	9 41 939	51	0.58 of i 0.58 of o	9.98 551	3	17 16	20 16.0 15.7
44		48	9 41 990	51			3		30 24.0 23.5
45 46	9.40 586 9.40 634	48	9.42 041	52	0.57 959	9.98 543 9.98 541	4	15	40 32.0 31.3
40 47	9.40 682	48	9.42 093	51	0 57 907 0.57 856	9.98 538	3	14	50 40.0 39.2
48	9.40 730	48	9.42 195	51	0.57 803	9.98 535	3	13	
49	9.40 778	48	9.42 246	51	0.57 754	9.98 531	4	11	
50	9.40 825	47	9.42 297	51	0.57 703	9.98 528	3	10	4 3
51	9.40 873	48	9.42 348	51	0.57 652	9.98 525	3	9	6 0.4 0.3
52	9.40 921	48	9 42 399	51	0.57 601	9.98 521	4	8	7 0.5 0.4 8 0.5 0.4
53	9.40 968	47	9.42 450	51	0.57 550	9 98 518	3	7	8 0.5 0.4 9 0.6 0.3
54	9.41 016	48	9.42 501	5×	0.57 499	9.98 513	3	6	10 0.7 0.5
55	9.41 063	47	9.42 552	51	0 57 448	9.98 511	4	5	20 1.3 1.0
56	9.41 111	48	9.42 603	51	0.57 397	9.98 508	3	4	30 2.0 1.5
57	9.41 158	47	9.42 653	50	0.57 347	9.98 503	3	3	40 2.7 2.0
58	9.41 205	4'	9.42 704	5x	0.57 296	9.98 501	4	2	50 3.3 2.5
59	9.41 252	42	9.42 755	50	0.57 245	9.98 498	4	I	
60	9.41 300		9.42 805	لــــــــــــــــــــــــــــــــــــــ	0.57 193	9.98 494		0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	,	Prop. Pts.

	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.41 300		9.42 805		0.57 193	9.98 494		60	
1	9.41 347	47	9.42 856	5±	0.57 144	9.98 491	3	59	
3	9.41 394 9.41 441	47	9.42 906	51	0.57 094	9.98 488 9.98 484	4	58 57	51 50
4	9.41 488	47	9.43 937	50	0.56 993	9.98 481	3	56	6 5.1 5.0 7 6.0 5.8
	9 41 535	47	9.43 057	50	0.56 943	9.98 477	4	55	7 6.0 5.8 8 6.8 6.7
5 6	9.41 582	47	9.43 108	51	0.56 892	9.98 474	3	54	9 7.7 7.5
7	9.41 628	46 47	9.43 158	50	0.56 842	9.98 471	3	53	10 8.5 8.3
8	9.41 675	47	9.43 208	50	0.56 792	9 98 467	4	52	20 17.0 16.7
9	9 41 722	46	9 43 258	50	0.56 742	9.98 464	4	51	30 25.5 25.0
10 11	941703	47	9.43 308	50	0.56 692	9 98 460 9 98 457	3	50	40 34.0 33.3 50 42.5 41.7
12	9.41 861	46	9 43 358 9.43 408	50	0.56 592	9.98 453	4	49 48	3-14-3 4-7
13	9.41 923	47	9.43 458	50	0.56 542	9 98 450	3	47	ł
14	9.41 954	46 47	9 43 508	50 50	0.56 492	9.98 447	3	46	1 49 48
15	9.42 001	46	9 43 558	1 -	0 56 442	9.98 443	4	45	6 49 4.8
16	9.42 047	46	9 43 607	49 50	0.56 393	9.98 440	3	44	7 5.7 5.6
17	9.42 093	47	9.43 657	50	0 56 343	9.98 436	3	43	8 6.5 6.4
18 19	9 42 140 9.42 186	46	9.43 707 9.43 756	49	0.56 293 0.56 244	9 98 433 9 98 429	4	42 41	9 74 7.2 10 8.2 8.0
20	9.42 232	46	9.43 806	50	0.56 194	9 98 426	3	40	20 16.3 16.0
21	9 42 278	46	9.43 855	49	0.56 145	9 98 422	4	39	30 24.5 24.0
22	9.42 324	46 46	9 43 905	50	0.56 095	9 98 419	3	38	40 32.7 32.0
23	9.42 370	46	9.43 954	49 50	0.56 046	9 98 415	3	37	50 40.8 40.0
24	9.42 116	45	9.44 004	49	0.55 996	9 98 412	3	36	
25	9.42 461	46	9.44 053	49	0.55 947	9.98 409	4	35	47 46
26 27	9.42 507 9.42 553	46	9 44 102 9.44 151	49	o 55 898 o.55 849	9 98 405 9 98 402	3	34 33	6 47 46
28	9.42 599	46	9 44 201	50	0.55 799	9.98 398	4	33	7 5.5 5.4
29	9.42 644	45	9.44 230	49	0.55 750	9.98 395	3	31	8 6.3 6.1
30	9.42 690	46	9.44 299	49	0.55 701	9 98 391	4	30	9 7.1 6.9
31	9.42 735	45 46	9.44 348	49 49	0.55 652	9.98 388	3	29	10 7.8 7.7
32	9.42 781	45	9.44 397	49	0.55 603	9.98 384	3	28	20 15.7 15.3 30 23.5 23.0
33 34	9.42 826 9.42 872	46	9.44 446 9.44 495	49	0.55 554 0 55 505	9 98 381 9.98 377	1 4	27 26	40 31.3 30.7
35	9.42 917	45	9.44 544	49	0.55 456	9 98 373	4	25	50 39.2 38.3
36	9 42 962	45	9.44 592	48	0.55 408	9 98 370	3	24	
37	9 43 008	46	9.44 641	49	0.55 359	9 98 366	4	23	
38	9.43 053	45 45	9.44 690	49 48	0.55 310	9.98 363	3	22	45 44
39	9 43 098	45	9.44 738	49	0.55 262	9 98 359	3	21	6 4.5 4.4
40	9.43 143	45	9.44 787	49	0.55 213	9.98 356	4	20	7 5.3 5.1 8 6.0 5.0
41 42	9.43 188 9.43 233	45	9.44 836 9.44 884	48	0.55 164 0.55 116	9 98 352 9.98 349	3	19	8 6.0 5.9 9 6.8 6.6
43	9 43 278	45	9.44 933	49	0.55 067	9.98 345	4	17	10 7.5 7.3
44	9.43 323	45	9.44 981	48 48	0.55 019	9.98 342	3	16	20 15 0 14.7
45	9.43 367	44	9.45 029		0.54 971	9.98 338	4	15	30 22.5 22.0 40 30.0 29.3
46	9.43 412	45 45	9.45 078	49 48	0.54 922	9 98 334	4	14	50 37.5 36.7
47	9.43 457	45	9.45 126	48	0.54 874	9.98 331	4	13	5 . 57. 5 5-17
48 49	9 43 502 9 43 54 ⁶	44	9.45 174 9.45 222	48	0.54 826 0.54 778	9.98 327 9 98 324	3	12 11	
50	9 43 591	45	9.45 271	49	0.54 729	9.98 320	4	10	4 3
51	9.43 635	44	9.45 319	48	0.54 681	9.98 317	3	9	6 0.4 0.3
52	9 43 680	45	9 45 367	48	0.54 633	9.98 313	4	8	7 0.5 0.4
53	9.43 724	44	9 45 415	48 48	0.54 585	9.98 309	4	7	8 0.5 0.4 9 0.6 0.5
54	9.43 769	45 44	9.45 463	48	0.54 537	9.98 306	3	6	10 0.7 0.5
55	9.43 813	44	9.45 511	48	0.54 489	9 98 302	3	5	20 1.3 1.0
56 57	9.43 857 9.43 901	44	9.45 559 9 45 606	47	0.54 441	9.98 299 9.98 295	4	4	30 2.0 1.5
57 58	9.43 946	45	9.45 654	48	0.54 394 0.54 346	9.98 291	4	3 2	40 27 2.0
59	9.43 990	44	9.45 702	48	0.54 298	9.98 288	3	ī	50 3.3 2.5
60	9.44 034	44	9.45 750	48	0.54 250	9.98 284	4	0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	,	Prop. Pts.

7	L. Sin.	d.	L. Tang	c. d	L. Cotg.	L. Cos.	d.	П	Prop. Pts.
0	9.44 034		9.45 750	47	0.54 250	9.98 284	1	60	
I	9.44 078	44	9 45 797	48	0.54 203	9.98 281	3	59	} <u> </u>
3	9.44 122 9.44 166	44	9.45 84 3 9.45 892	47	0.54 155	9.98 277 9.98 273	4	58 57	48 47
4	9 44 210	44	9 45 940	48	0.54 060	9.98 270	3	56	6 48 4.7 7 5.6 5.3
	9.44 253	43	9.45 987	47	0.54 013	9 98 266	4	55	7 5.6 5. 3 8 6.4 6.3
5	9.44 297	44	9 46 035	48	0.53 965	9 98 262	4	54	9 7.2 7.1
7	9 44 341	44	9.46 082	47	0.53 918	9 98 259	3	53	10 8.0 78
8	9 44 383	44	9 46 130	48	0.53 870	9 98 255	4	52	20 16.0 15.7
9	9.44 428	43	9.46 177	47	0 53 823	9 98 251	3	51	30 24.0 23.5
10	9.44 472	44	9.46 224	47	0.53 776	9 98 248	4	50	40 320 31.3
11	9.44 516	43	9.46 271	48	0.53 729	9.98 244	4	49	50 40.0 39.2
12	9.44 559 9.44 602	43	9 46 319 9 46 366	47	0.53 681	9.98 240 9.98 237	3	48	ì
14	9.44 646	44	9 46 413	47	0.53 587	9.98 233	4	47 46	1 46 1 45
15	9.44 689	43	9.46 460	47	0.53 540	9.98 229	4	45	6 4.6 4.5
16	9.44 733	44	9 46 507	47	0.53 493	9.98 226	3	44	
17	9.44 776	43	9.46 554	47	0.53 446	9 98 222	4	43	7 5.4 5.3 8 6.1 6.0
18	9.44 819	43	9.46 60 1	47	0.53 399	9 98 218	4	42	9 6.9 6.8
19	9 44 862	43	9 46 648	47	0.53 352	9 98 215	3	41	10 7.7 7.5
20	9.44 925	43	9.46 694	1	0.53 306	9 98 211	4	40	20 15.3 15.0
21	9 44 948	43	9 46 741	47 47	0.53 259	9 98 207	4	39	30 23.0 22.5
22	9.44 992	43	9.46 788	47	0.53 212	9.98 204	4	38	40 30 7 30.0 50 38.3 37.5
23	9.45 035	42	9.46 83 <u>5</u> 9 46 881	46	0.53 165	9.98 200	4	37	30 30.3 37.3
24	9 45 077	43		47	0.53 119	9 98 196	4	36	ł
25 26	9.45 120 9.45 163	43	9.46 928 9.46 975	47	0.53 072	9 98 192 9 98 189	3	35	44 43
27	9.45 206	43	9.40 9/5	46	0.53 025	9 98 185	4	34 33	6 44 4.3
28	9.45 249	43	9.47 068	47	0.52 932	9 98 181	4	32	7 5.1 5.0
29	9.45 292	43	9.47 114	46	0.52 886	9 98 177	4	31	8 59 5.7
30	9.45 334	42	9.47 160	46	0.52 840	9 98 174	3	30	9 6.6 6.5
31	9.45 377	43	9.47 207	47	0.52 793	9 98 170	4	29	10 7.3 7.2
32	9.45 419	42	9.47 253	46 46	0.52 747	9.98 166	4	28	20 14 7 14.3
33	9.45 462	43 42	9.47 299	47	0.52 701	9 98 162	3	27	30 22.0 21.5 40 29 3 28.7
34	9.45 504	43	9.47 346	46	0.52 654	9 98 159	4	26	50 36.7 35.8
35	9.45 547	42	9.47 392	46	0.52 608	9 98 155	4	25	3 . 3 . 7 . 33.
36 37	9.45 589 9.45 632	43	9 47 438 9.47 484	46	0.52 562	9 98 151 9 98 147	4	24 23	
38 38	9 45 674	42	9.47 530	46	0.52 470	9 98 144	3	22	42 41
39	9.45 716	42	9.47 576	46	0.52 424	9 98 140	4	21	6 42 4.1
40	9 45 758	42	9.47 622	46	0.52 378	9 98 136	4	20	7 49 4.8
41	9.45 801	43	9.47 668	46	0.52 332	9 98 132	4	19	8 56 5.3
42	9.45 843	42	9.47 714	46	0.52 286	9 98 129	3	18	9 6.3 6.2
43	9 45 885	42 42	9.47 760	46 46	0.52 240	9 98 125	4	17	10 7.0 6.8 20 14.0 13.7
44	9.45 927	42	9.47 806	46	0.52 194	9.98 121	4	16	30 21.0 20.5
45	9.45'969	42	9.47 852	45	0.52 148	9 98 117	4	15	40 28.0 27.3
46	9.46 011	42	9.47 897	46	0.52 103	9 98 113	3	14	50 35.0 34 2
47 48	9.46 053 9.46 095	42	9.47 943	46	0.52 057	9.98 110 9.98 106	4	13	
49	9.46 136	41	9.47 989 9.48 035	46	0.52 011	9.98 100	4	II	
50	9.46 178	42	9.48 080	45	0.51 920	9 98 098	4	10	4 3
51	9.46 220	42	9.48 126	46	0.51 920	9.98 098	4	9	6 0.4 0.3
52	9.46 262	42	9.48 171	45	0.51 829	9 98 090	4	8	7 0.3 0.4
53	9.46 303	4X	9.48 217	46	0.51 783	9.98 087	3	7	8 0.5 0.4 9 0.6 0.5
54	9.46 345	42 41	9.48 262	45	0.51 738	9.98 083	4	6	9 0.6 0. 5
55	9.46 386	42	9.48 307	45 46	0.51 693	9.98 079		5	20 1.3 1.0
56	9.46 428	42 41	9.48 353	45	0.51 647	9.98 075	4	4	30 2.0 1.5
57	9.46 469	42	9.48 398	45	0.51 602	9.98 071	4	3	40 2.7 2.0
58 59	9.46 511 9.46 552	41	9.48 443	46	0.51 557	9.98 o67 9.98 o63	4	2 I	50 3.3 2.5
60		42		45		9.98 060	3	0	
80	9.46 594		9.48 534		0.51 466				
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	1	Prop. Pts.

	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.46 594	-	9.48 534	,	0.51 466	9.98 060		60	
1	9.46 635	41 41	9.48 579	45 45	0.51 421	9.98 056	4	59	
3	9.46 676 9.46 717	41	9.48 624	45	0.51 376	9.98 052 9.98 048	1 7	58 57	6 4.5 4.4
4	9.46 758	41	9.48 714	45	0.51 286	9.98 0 44	4	56	6 4.5 4.4 7 5.3 5.1
5	9.46 800	42	9.48 759	45	0.51 241	9.98 040	4	55	8 6.0 5.9
ĕ	9.46 841	41	9.48 804	45	0.51 196	9.98 036	4	54	9 6.8 6.6
7	9.46 882	41	9 48 849	45 45	0.51 151	9.98 032	3	53	10 7.5 7.3
8	9.4 6 923 9.46 964	41	9.48 894	45	0.51 106	9 98 02 <u>9</u> 9 98 02 <u>5</u>	4	52	20 15.0 14.7 30 22.5 22.0
9 10	9.47 904	41	9.48 939 9.48 984	45	0.51 061	9 98 021	4	51 50	40 30.0 29.3
11	9.47 035	40	9.40 904	45	0.50 971	9 98 021	4	49	50 37.5 36.7
12	9.47 086	4¥	9.49 973	44	0.50 927	9 98 013	4	48	ł
13	9.47 127	41 41	9 49 118	45	0.50 882	9.98 009	4	47	
14	9.47 168	41 41	9.49 163	45	0.50 837	9 98 005	4	46	43
15 16	9.47 209	40	9 49 207	45	0.50 793	9 98 001	4	45	6 4.3 7 5.0
17	9.47 249 9.47 290	41	9.49 252 9 49 296	44	0 50 748	9 97 997 9 97 993	4	44 43	7 5.0 8 5.7
18	9.47 330	40	9 49 341	45	0.50 659	9 97 989	4	42	9 6.3
19	9.47 371	41 T	9.49 385	44	ი.50 615	9 97 986	3	41	10 7.2
20	9 47 411	40	9.49 430	45	0 50 570	9 97 982	4	40	20 14.3
21	9 47 452	41 40	9-49 474	44	0,50 526	9 97 978	4	39	30 21.5 40 28.7
22	9.47 492	41	9 49 519	44	0 50 481	9 97 974	4	38 37	50 35.8
23 24	9·47 533 9·47 573	40	9.49 563 9.49 607	44	0.50 437	9.97 970 9 97 966	4	36	1
25	9.47 613	40	9 49 652	45	0 50 348	9 97 962	4	35	1
26	9.47 654	41	9 49 696	44	0.50 304	9 97 958	4	34	42 4I
27	9.47 694	40	9 49 740	44	0.50 260	9 97 9 <u>5</u> 4	1 4	33	6 4.2 4.1
28	9.47 734	40 40	9 49 784	44	0.50 216	9.97 950	4	32	7 4.9 4.8 8 5.6 5. 5
30	9.47 774	40	9 49 829	44	0 50 172	9 97 946	4	31 30	9 6.3 6.2
31	9.47 814 9.47 854	40	9 49 872 9.49 916	44	0.50 128	9 97 942 9.97 938	4	20	10 7.0 6.8
32	9.47 894	40	9.49 960	44	0.50 040	9.97 934	4	28	20 14.0 13.7
33	9-47 934	40	9.50 004	44	0.49 996	9 97 930	4	27	30 21.0 20.5 40 28.0 27.3
34	9-47 974	40 40	9.50 048	44 44	0.49 952	9 97 926	4	26	50 35.0 34 2
35	9.48 014	40	9.50 092	44	0.49 908	9 97 922	4	25	1
36 37	9.48 054 9.48 094	40	9.50 136 9.50 180	44	0.49 864	9.97 918 9.97 914	4	24 23	ļ
38	9.48 133	39	9.50 223	43	0.49 777	9.97 914	4	22	1 40 39
39	9.48 173	40	9.50 267	44	0 49 733	9.97 906	4	21	6 4.0 39
40	9.48 213	40	9.50 311	44	0.49 689	9 97 902	4	20	7 4.7 4.6
41	9.48 252	39	9 50 355	44	0.49 645	9 97 898	4	19	8 5.3 52 9 6.0 59
42	9.48 292	40 40	9.50 398	43 44	0 49 602	9 97 894	4	18	10 6.7 6.5
43 44	9.48 332 9.48 371	39	9.50 442 9.50 485	43	0.49 558	9.97 890 9 97 886	4	17	20 13.3 13 0
45	9.48 411	40	9.50 529	44	0.49 471	9 97 882	4	15	30 20.0 19.5
46	9 48 450	39	9 50 572	43	0.49 428	9 97 878	4	14	40 26.7 26.0 50 33.3 32.5
47	9.48 490	40	9.50 616	44	0 49 384	9.97 874	4	13	3-133-3-32-3
48	9.48 529	39 39	9 50 659	43 44	0.49 341	9 97 870	4	12	I
49 50	9.48 568	39	9.50 703	43	0.49 297	9 97 866	5	10	5 4 3
51	9.48 607 9.48 647	40	9.50 746 9 50 789	43	0.49 254 0.49 211	9.97 861 9.97 857	4	9	6 0.5 0.4 0 3
5 ²	9.48 686	39	9 50 833	44	0.49 211	9.97 853	4	8	7 0.6 0.5 0.4
53	9.48 725	39	9.50 876	43	0.49 124	9.97 849	4	7	8 0.7 0 5 0.4 9 0.8 0 6 0.3
54	9.48 764	39 39	9.50 919	43 43	0.49 081	9.97 845	4	6	10 0.8 0.7 0.5
55	9.48 803	39	9 50 962	43	0.49 038	9.97 841	4	5	20 1.7 1.3 10
56 57	9.48 842 9.48 881	39	9.51 005	43	0.48 993 0.48 952	9.97 837 9 97 833	4	4	30 2.5 20 1.5
58	9.48 920	39	9.51 048	44	0.48 952	9.97 829	4	2	40 3.3 2.7 2.0 50 4 2 3 3 2.5
59	9.48 959	39	9.51 135	43	o 48 865	9.97 825	4	1	3~14~133123
60	9.48 998	39	9.51 178	43	0.48 822	9.97 821	4	U	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	,	Prop. Pts.

	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.	Π	Prop. Pts.
0	9 43 993	1	9.51 178		0 48 822	9 97 821	 	60	
ī	9 49 937	39	9.51 221	43	0 48 779	9 97 817	4	59	1
2	9 49 076	39 39	9.51 264	43	0 48 736	9 97 812	5	58	43 42
3	9.49 115	38	9 51 306	43	0.48 694	9 97 808 9 97 804	4	57 56	6 4.3 42
	9 49 153	39	9 51 349	43	0.48 608	9 97 800	4	-	7 50 49 8 57 56
5 6	9 49 231	39	9 51 392 9.51 43 5	43	0.48 565	9 97 796	4	55 54	$9 6\frac{7}{5} 6.3$
7	9 49 269	38	9 51 478	43	0 48 522	9 97 792	4	53	10 7.2 70
8	9 49 308	39 39	9 51 520	42	0 48 480	9 97 788	4	52	20 143 140
9	9 49 347	38	9 51 563	43 43	0 48 437	9 97_784	5	51	30 21 5 21 0 40 28.7 28.0
10	9 49 385	39	9 51 606	42	0 48 394	9 97 779	4	50	50 35 8 35.0
12	9 19 421	38	9 51 648 9 51 691	43	0 48 352	9 97 775 9 97 771	4	49 48	3 135 133
13	9 49 500	38	9 51 73 +	43	0 48 266	9 97 767	4	47	
1.4	9 49 539	39 38	9.51 776	42	0 48 22 1	9 97 763	4	46	41
15	9 49 577	38	9 51 819	43	0 48 181	9 97 759	1	45	6 4.1
16	9 49 615	39	9 51 861	42 12	0 48 139	9 97 754	5	44	7 48 8 55
17	9 19 654 9 19 692	38	9 51 903 9 51 946	43	0 48 097	9 97 750 9 97 746	4	43 42	9 62
19	9 49 730	38	9 51 988	42	0.48 012	9 97 742	4	41	10 68
20	9 19 768	38	9 52 031	43	0 47 969	9 97 738	4	10	20 13.7
21	9 19 806	38	9 52 073	42	0.47 927	9 97 731	4	39	30 20 5 40 27 3
22	9 49 844	38 38	9 52 115	42	0 47 885	9 97 729	5 4	38	40 27 3 50 31 2
23	9 49 882	38	9 52 157	42 43	0 17 843	9 97 725	4	37	391312
21	9 49 920	38	9 52 200	42	0.47 800	9 97 721	4	36	
25 26	9 49 958	38	9 52 242 9 52 284	42	0.47 758 0 47 716	9 97 717 9 97 713	4	35 34	39 38
27	9 50 034	38	9 52 326	42	0.47 674	9 97 708	5	33	6 39 38
28	9 50 072	38	9 52 368	42	0 47 632	9 97 704	4	32	7 46 44
29	9 50 110	38 38	9 52 410	42 42	0 47 590	9 97 700	4	31	8 5.2 5 I 9 5 9 5 7
30	9 50 148	37	9 52 452	42	0.47 548	9 97 696	5	30	9 59 57 10 65 63
31	9 50 185	38	9 52 494	42	0 47 506	9 97 691 9 97 687	4	29 28	20 130 127
32 33	9 50 223	38	9 52 536 9.52 578	42	0.47 464	9 97 683	4	27	30 195 190
34	9 50 298	37	9.52 620	42	0 47 380	9 97 679	4	26	40 26 0 25.3 50 32 5 31 7
35	9 50 336	38	9.52 661	41	0 47 339	9 97 674	5	25	50 32 5 31 7
36	9 50 374	38	9.52 703	42	0 47 297	9 97 670	4	24	
37	9 50 411	37 38	9.52 745	42 42	0 47 255	9 97 666	4	23 22	37 36
38 39	9 50 449	37	9 52 787 9 52 829	42	0 47 213 0 47 171	9 97 662 9 97 657	5	2Z 2I	6 3.7 36
40	9 50 523	37	9 52 870	41	0.47 130	9 97 653	4	20	7 43 42
41	9 50 561	38	9.52 912	42	0.47 088	9 97 649	4	10	8 49 48
42	9 50 598	37	9 52 953	41	0 47 047	9 97 645	4	18	9 56 5.4 10 62 60
43	9 50 635	37 38	9 52 995	42	0 47 005	9 97 640	5	17	20 12 3 12 0
44	9 59 673	37	9 53 037	41	o 46 n63	9 97 636	4	16	30 18 5 18.0
45 46	9 50 710	37	9.53 078 9.53 120	42	0 46 922 0.46 880	9 97 632 9 97 628	4	15 1.	40 24 7 24.0
47	9 50 784	37	9.53 161	41	0.46 839	9 97 623	5	13	50 30.8 30.0
48	9 50 821	37	9 53 202	41	0.46 798	9 97 619	4	12	
49	9 50 858	37 38	9.53 244	42 41	0.46 756	9 97 615	4 5	11	5 4
50	9 50 896	37	9.53 285	42	0.46 715	9 97 610	4	10	6 0.5 0.4
51	9 50 933	37	9 53 327	41	0.46 673	9 97 606	4	9	7 0.6 0.5
52 53	9 50 970	37	9 53 368 9 53 4 0 9	41	0.46 632 0.46 591	9 97 602 9 97 597	5	7	8 0.7 0.5
54	951 043	36	9 53 450	41	0.46 550	9 97 593	4	6	9 0.8 0.6
55	9 51 080	37	9 53 492	42	0 46 508	9 97 589	4	5	20 1.7 1.3
56	9 51 117	37	9 53 533	41	0 46 467	9 97 58 4	5	4	30 25 20
57	9 51 154	37 37	9 53 574	41 41	0 46 426	9 97 580	4 4	3	40 33 27
58 59	951 191	36	9.53 615 9.53 656	41	0 46 38 <u>5</u> 0 46 344	9 97 576 9 97 571	5	2 1	50 42 3.3
60		37		41			4	- 0	
-00	9.51 264		9 53 697		0 46 303	9.97 567		-	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	,	Prop. Pts.

1	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.51 264	37	9.53 697	41	0.46 303	9.97 567	4	60	
1 2	9.51 301 9.51 338	37	9.53 738 9.53 779	4×	0.46 262	9.97 563 9.97 558	5	59 58	41 40
3	9.51 374	36	9.53 820	41	0.46 180	9.97 554	4	57	6 4.1 4.0
4	9.51 411	37 36	9.53 861	41	0.46 139	9.97 550	5	56	7 48 4.7
5 6	9.51 447	37	9.53 902	41	0.46 098	9 97 545	4	55	8 5. 5 5.3 0 62 6.0
	9.51 484 9.51 520	36	9.53 943 9.53 984	41	0 46 057	9.97 54 I 9.97 536	5	54 53	9 62 6.0
7 8	9 51 557	37	9 54 025	41	0 45 975	9.97 532	4	52	20 13.7 13.3
9	9.51 593	36 36	9.54 065	40 41	° 45 935	9 97 528	4 5	51	30 20.5 20.0
10	9.51 629	37	9.54 106	41	0.45 894	9.97 523	,	50	40 27.3 26.7 50 34.2 33.3
11 12	9.51 666 9.51 702	36	9.54 147 9.54 187	40	0.45 853	9.97 51 <u>9</u> 9.97 51 <u>5</u>	4	49 48	30 / 3412 / 3313
13	9 51 738	36	9.54 228	41	0.45 772	9.97 510	5	47	
14	9.51 771	36 37	9.54 269	41 40	0 45 731	9.97 506	4	46	39
15	9.51 811	37 36	9.54 309	41	0.45 691	9.97 501	5	45	6 3.9
16 17	9.51 847 9.51 883	36	9.54 350	40	0 45 650	9.97 497	5	44	7 4.6 8 5.2
18	9.51 919	36	9.54 390 9 54 431	4×	0.45 610 0.45 569	9.97 492 9.97 488	4	43 42	9 5.9
19	9.51 955	36	9 54 471	40	0.45 529	9.97 484	4	41	10 6.5
20	9.51 991	36 36	9.54 512	41	0.45 488	9.97 479	5	40	20 13.0
21	9.52 027	36 36	9.54 552	40 41	0.45 448	9.97 475	4 5	39	30 19.5 40 26.0
22	9 52 063	36	9.54 593 9.54 633	40	0.45 407	9.97 470 9.97 466	4	38 37	50 32.5
24	9.52 135	36	9.54 673	40	0.45 327	9.97 461	5	36	
25	9.52 171	36	9 54 714	41 41	0.45 286	9 97 457	4	35	
26	9.52 207	36 35	9.54 754	40 40	0.45 246	9 97 453	4 5	34	37 36
27 28	9.52 242	36	9·54 794 9·54 835	41	0.45 206	9 97 448	4	33	6 3.7 3.6 7 4.3 4.2
29	9 52 278	36	9 54 875	49	0 45 165	9 97 444 9 97 439	5	32 31	8 4.9 4.8
30	9.52 35 >	36	9.54 915	40	0.45 085	9 97 435	4	30-	9 5.6 5.4
31	9.52 385	35	9.54 955	40	0.45 045	9 97 430	5	29	10 62 6.0 20 12.3 12.0
32	9.52 421	36 35	9.54 995	40 40	0.45 005	9 97 426	4 5	28	30 18.5 18.0
33 34	9 52 456 9 52 492	36	9.55 03 5 9.55 0 75	40	0 44 96 <u>5</u> 0.44 92 <u>5</u>	9.97 421 9 97 417	4	27 26	40 24.7 24.0
35	9.52 527	35	9.55 115	40	0.44 885	9 97 412	5	25	50 30.8 30.0
36	9.52 563	36	9.55 155	40	0.44 845	9 97 408	4	24	
37	9.52 598	35 36	9 55 195	40	0.44 805	9 97 403	5	23	35 34
38	9.52 634 9.52 669	35	9.55 235	40	0.44 765	9 97 399	5	22 21	6 3.5 3.4
39 40	9.52 705	36	9.55 275	40	0.44 725	9 97 394	4	20	7 4.1 4.0
41	9.52 740	35	9 55 31 <u>3</u> 9·55 35 <u>3</u>	40	0.44 645	9.97 390 9 97 385	5	19	8 4.7 4.5
42	9.52 775	35	9 55 393	40	0.44 605	9 97 381	4	18	9 53 5.1 10 5.8 5.7
43	9.52 811	36 35	9 55 434	39 40	0.44 566	9 97 376	5 4	17	20 11.7 11 3
44	9.52 846	35	9 55 474	40	0.44 526	9 97 372	5	16	30 17.5 17.0
45 46	9.52 881 9.52 916	35	9 55 514 9·55 554	40	0.44 486 0.44 446	9 97 367 9.97 363	4	15 14	40 23.3 22.7
47	9.52 951	35	9.55 593	39	0.44 407	9.97 358	5	13	50 29.2 28.3
48	9.52 986	35	9.55 633	40	0.44 367	9.97 353	5	12	
49	9.53 021	35 35	9.55 673	40 39	0 44 327	9.97 349	5	11	1514
50	9.53 056	36	9.55 712	40	0.44 288	9.97 344	4	10	6 0.5 0.4
51 52	9.53 092 9.53 126	34	9.55 752 9.55 791	39	0.44 248	9.97 340 9.97 335	5	8	7 0.6 0.5
53	9.53 161	35	9.55 831	40	0.44 169	9.97 331	4	7	8 0.7 0.5 9 0.8 0.6
54	9 53 195	35 35	9 55 870	39 40	0.44 130	9 97 326	5 4	6	10 0.8 0.7
55	9.53 231	35	9.57, 910	39	0 44 000	9.97 322	5	5	20 1.7 1.3
56 57	9.53 266 9.53 301	35	9.55 949 9 55 989	40	0.44 051	9.97 317	5	4	30 2.5 2.0
57 58	9.53 301	35	9 55 909	39	0.44 011	9.97 308	4	2	40 3.3 2.7 50 4.2 3.3
59	9.53 370	34	9.56 067	39	0.43 933	9 97 303	5	I	J= (4 .2 · 3.3
80	9.53 405	35	9 56 107	40	0 43 893	9 97 299	4	0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	,	Prop. Pts.

1	L. Sin.	d.	L. Tang	c. d	L. Cotg.	L. Cos.	d.	Π	Prop. Pts.
U	9.53 405		9.56 107		0.43 893	9.97 299	-	60	1
I	9.53 440	35 35	9.56 146 9.56 185	39 39	0.43 854	9.97 294 9.97 289	5	59 58	
3	9·53 475 9·53 509	34	9.56 224	39	0.43 776	9.97 285	4	57	6 4.0 3.9
4	9.53 544	35	9.56 264	40	0.43 736	9.97 280	5	56	7 4.7 4.6
5 6	9.53 578	34	9.56 303	39	0.43 697	9 97 276	5	55	8 5.3 5.2
	9.53 613	34	9.56 342 9.56 381	39	0.43 658	9 97 271	5	54	9 6.0 5.9 10 6.7 6.5
7 8	9.53 647 9.53 682	35	9.56 420	39	0.43 580	9.97 266 9.97 262	4	53 52	20 13.3 13.0
9	9.53 716	34	9.56 459	39	0 43 541	9.97 257	5	51	30 20.0 19.5
10	9.53 751	35	9.56 498	39	0.43 502	9.97 252	5	50	40 26.7 26.0
II	9.53 785	34	9 56 537	39 39	0.43 463	9.97 248	5	49	50 33.3 32.5
12	9.53 819 9.53 854	35	9.56 576 9 56 615	39	0.43 424	9.9 7 243 9 9 7 238	5	48 47	
14	9.53 888	34	9 56 654	39	0.43 346	9.97 234	4	46	1 38 37
15	9.53 922	34	9.56 693	39	0.43 307	9.97 229	5	45	6 3.8 3.7
16	9.53 957	35 34	9.56 732	39 39	0.43 268	9.97 224	5 4	44	7 4.4 4.3 8 5.1 4.0
17 18	9.53 991 9.54 023	34	9.56 771 9.56 810	39	0.43 229	9.97 220 9 9 7 2 15	5	43 42	8 5.1 4.9 9 5.7 5.6
19	9.54 025	34	9.56 849	39	0.43 151	9 97 210	5	41	10 6.3 6.2
20	9.54 093	34	9.56 887	38	0 43 113	9.97 206	4	40	20 12.7 12.3
21	9.54 127	34	9 56 926	39	0.43 074	9.97 201	5	39	30 19.0 18 5 40 25.3 24 7
22	9.54 161	34 34	9.56 965	39 39	0.43 035	9 97 196	4	38	50 31.7 30.8
23 24	9.54 195 9 54 229	34	9.57 004 9.57 042	38	0.42 996	9.97 1 92 9.97 187	5	37 36	5 .5 , .5
25	9.54 263	34	9.57 081	39	0 42 919	9 97 182	5	35	
26	9.54 297	34	9.57 120	39	0 42 880	9.97 178	4	34	35
27	9 54 331	34 34	9 57 158	38 39	0.42 842	9 97 173	5 5	33	6 3.5
28 29	9.54 365	34	9.57 197	38	0.42 803 0 42 765	9.97 168 9 97 163	5	32 31	7 4.I 8 4.7
30	9.54 399	34	9.57 235 9.57 274	39	0 42 726	9 97 159	4	30	9 5.3
31	9.54 433 9.54 466	33	9.57 274	38	0.42 688	9.97 154	5	29	10 5.8
32	9.54 500	34	9.57 351	39	0.42 649	9 97 149	5	28	20 11.7 30 17.5
33	9.54 534	34 33	9.57 389	38 39	0.42 611	9 97 145	4 5	27 26	40 23.3
34	9 54 567	34	9 57 428	38	0 42 572	9 97 140	5		50 29.2
35 36	9.54 601 9.54 633	34	9.57 466 9.57 504	38	0.42 534	9.97 135	5	25 24	
37	9.54 663	33	9 57 543	39	0.42 457	9.97 126	4	23	
38	9.54 702	34 33	9 57 581	38 38	0.42 419	9.97 121	5 5	22	6 3.4 3.3
39	9.54 735	34	9 57 619	39	0.42 381	9.97 116	5	21	6 3.4 3.3 7 4.0 3.9
40 41	9.54 769 9.54 802	33	9.57 658 9.57 696	38	0.42 342	9 97 111	4	19	8 4.5 4.4
42	9.54 836	34	9.57 734	38	0.42 364	9.97 102	5	18	9 5.1 3.0
43	9.54 869	33	9.57 772	38	0.42 228	9 97 097	5	17	10 5.7 5.5 20 11.3 11.0
44	9.54 903	34 33	9.57 810	38 39	0.42 190	9 97 092	5 5	16	30 17.0 16.5
45	9.54 936	33	9 57 849	38	0 42 151	9 97 087	4	15	40 22.7 22.0
46 47	9.54 969 9.55 003	34	9 57 887 9 57 925	38	0.42 113	9.97 083 9.97 078	5	14 13	50 28.3 27.5
48	9.55 036	33	9 57 963	38	0.42 073	9.97 073	5	12	
49	9.55 069	33	9 58 001	38 38	0 41 999	9.97 068	5 5	11	15 4
50	9.55 102	33 34	9.58 039	38	0.41 961	9.97 063	4	10	6 0.5 0.4
51 52	9.55 136	33	9.58 077	38	0.41 923 0.41 885	9.97 059	5	9 8	7 0.6 0.5
53	9.55 169 9.55 202	33	9.58 113	38	0.41 847	9 97 054 9.97 049	5	7	8 0.7 0.5
54	9.55 235	33	9.58 191	38	0.41 809	9 97 044	5	6	9 0.8 0.6 10 0.8 0.7
55	9.55 268	33	9.58 229	38	0.41 771	9.97 039	5	5	20 1.7 1.3
56	9.55 301	33 33	9.58 267	38 37	0.41 733	9.97 035	4 5	4	30 2.5 2.0
57 58	9.55 334 9.55 367	33	9.58 304 9.58 342	38	0.41 696 0.41 658	9.97 030 9.97 025	5	3 2	40 3.3 2.7
59	9.55 400	. 33	9.58 380	38	0.41 620	9.97 020	5	ī	50 4.2 3.3
60	9 55 433	33	9.58 418	38	0 41 582	9.97 015	5	0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	1	Prop. Pts.

1	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
U	9.55 433	33	9.58 418	37	0.41 582	9.97 015	5	60	
1 2	9.55 466 9.55 499	33	9.58 455 9.58 493	38	0.41 545	9.97 010 9.97 005	5	59 58	
3	9.55 532	33	9.58 531	38	0 41 469	9.97 001	4	57	6 3.8 3.7
4	9.55 564	32	9.58 569	38	0.41 431	9.96 996	5	56	7 4.4 4.3
5 6	9.55 597	33	9.58 606	37 38	0.41 394	9.96 991	5	55	8 5.1 4.9
	9.55 630	33 33	9.58 644	37	0.41 356	9 96 986	5	54	9 5.7 5.6
7 8	9 55 663 9 55 695	32	9.58 681 9 58 719	38	0.41 319	9 96 981 9.95 976	5	53 52	10 6.3 6.2 20 12.7 12.3
9	9.55 728	33	9.58 757	38	0.41 243	9.95 971	5	51	30 19.0 18.5
10	9.55 761	33	9 58 794	37	0.41 206	9 96 966	5	50	40 25.3 24 7
11	9.55 793	32	9 58 832	38	0.41 168	9.96 962	4 5	49	50 31.7 30.8
12	9.55 826	33 32	9 58 869	37 38	0 41 131	9 96 957	5	48	
13 14	9.55 858 9.55 891	33	9.58 927 9.58 944	37	0.41 093	9.96 952 9.96 94 7	5	47 46	1 36 1 33
15	9.55 923	32	9.58 981	37	0.41 010	9 96 942	5	45	6 3.6 3.3
16	9.55 956	33	9.50 981	38	0.40 981	9 96 937	5	45	7 4.2 3.9
17	9.55 988	32	9.59 056	37	040 944	9.96 932	5	43	8 4.8 4.4
18	9.55 021	33 32	9.59 094	38 37	0.40 906	9.96 927	5 5	42	9 5.4 5.0
19	9.56 053	32	9 59 131	37	0 40 869	9 96 922	5	41	10 60 5.5
20	9.56 085	33	9 59 168	37	0.40 832	9 96 917	5	40	30 18.0 16.5
2I 22	9 56 118 9.56 150	32	9 59 275 9 59 243	38	0.40 795	9.96 912	5	39 38	40 24.0 22.0
23	9 56 182	32	9 59 280	37	0.40 720	9 96 903	4	37	50 30.0 27.5
24	9.56 213	33	9 59 317	37	0.40 683	9 96 898	5	36	
25	9.56 247	32	9 59 354	37	0 40 646	9 96 893	5	35	
26	9 56 279	32 32	9.59 391	37 38	0.40 609	9.96 888	5 5	34	6 3.2
27 28	9 56 311 9 56 343	32	9 59 420 9 59 466	37	0 40 571	9 96 883 9 96 878	5	33 32	7 3.7
29	9.56 375	32	9 59 503	37	0.40 497	9.96 873	5	31	8 4.3
30	9.56 408	33	9.59 540	37	0.40 460	9 96 868	5	30	9 4.8
31	9.56 440	32		37	0.40 423	9 96 863	5	29	10 5.3 20 10.7
32	9.56 472	32 32	9 59 577 9.59 614	37 37	0 40 386	9 96 858	5 5	28	20 10.7 30 16.0
33	9.56 504 9.56 536	32	9.59 651 9 59 688	37	0.40 349	9.96 853 9 96 848	5	27 26	40 21.3
34	9 56 568	32	9.59 725	37	0 40 275	9 96 843	5	25	50 26.7
35 36	9.56 599	31	9.59 762	37	0 40 275	9.96 838	5	24	
37	9.56 631	32	9 59 799	37	0 40 201	9 96 833	5	23	
38	9.56 663	32 32	9.59 835	36 37	0.40 165	9.96 828	5 5	22	6 31 0.6
39	9.56 695	32	9 59 872	37	0.40 128	9 96 823	5	21	6 31 0.6 7 3.6 0.7
40	9.56 727	32	9.59 909	37	0 40 091	9 96 818	5	20	8 4.1 0.8
41 42	9.56 759 9.56 790	3 1	9 59 946 9.59 983	37	0 40 054	9 96 813 9 96 808	5	19	9 4.7 0.9
43	9.56 822	32	9.60 019	36	0.39 981	9 96 803	5	17	10 5.2 1.0
44	9.56 854	32	9 60 036	37	0 39 944	9 96 798	5	16	20 10.3 2.0 30 15.5 3.0
45	9.56 886	32	9.60 093	37	0.39 907	9.96 793	5	15	40 20.7 4.0
46	9.56 917	31 32	9 60 130	37 36	0.39 870	9 96 788	5	14	50 25.8 5.0
47 48	9.56 949 9.56 980	3z	9 60 166 9 60 203	37	0.39 834 0.39 797	9 96 783	5	13	
49	9.57 012	32	9 60 240	37	0.39 797	9.96 772	6	11	
50	9 57 044	32	9 60 276	36	0.39 724	9 96 767	5	10	5 4
51	9.57 075	31	9 60 313	37	0.39 687	9.96 762	5	9	6 0.5 0.4 7 0.6 0.3
52	9 57 107	32 31	9.60 349	36 37	0.39 6;1	9.96 757	5 5	8	8 0.7 0.5
53 54	9.57 138 9 57 169	31	9 60 386 9 60 422	36	0 39 614 0.39 578	9.96 752 9.96 747	5	7	9 0.8 0.6
<u>54</u> 55	9.57 201	32	9.60 439	37	0.39 578	9.96 742	5	5	10 0.8 0.7
55 56	9.57 232	31	9.60 439	36	0.39 505	9.96 737	5	4	20 1.7 1.3 30 2.5 2.0
57	9.57 264	32	9.60 532	37	0.39 468	9 96 732	5	3	40 3.3 2.7
58	9.57 295	31 31	9.60 568	36 37	0.39 432	9.96 727	5	2	50 4.2 3.3
59	9.57 326	32	9.60 603	37 36	0.39 395	9.96 722	5	I	
60	9.57 358		9.60 641		0.39 359	9.96 717		0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	1	Prop. Pts.

/	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9 57 358		9 60 641	1	0 39 359	9 96 717	-	60	
1	9 57 389	31	9 60 677	36	0.39 323	9.96 711	6 5	59	
2	9 57 420	31	9 60 714	37 36	0 39 286	9 96 706 9 96 701	5	58	37 36
3	9 57 451	31	g 60 750 g 60 786	30	0 39 250	9 96 696	5	57 56	6 37 36
- 4		32	9 00 700	37	0 39 177	9 96 691	5	55	7 43 42 8 49 48
5	9 57 514	31	9 60 859	36	0 39 141	9 96 686	5	54	9 56 54
7	9 57 576	31	9 60 895	36	0 39 105	9 96 681	5	53	10 6.2 60
8	9 57 607	31	9 60 931	30	0 39 000	9 96 676	5 6	52	20 12 3 12 0
9	9 57 638	31 31	9 60 907	36 37	0 39 033	9 96 670	5	_ 51	30 185 180
10	9.57 669	31	9 01 004	36	0 38 996	9 96 665	5	50	40 24.7 24 0 50 30 8 30 0
11	9 57 700	3r	9 61 040	36	0 38 900	9 96 660	5	49	3013001300
12	9 57 731	3x	961 076	36	0 38 921	9 96 655 9 96 650	5	48 47	
14	9 57 762 9 57 793	31	961 118	36	0 38 852	9 96 645	5	46	35
15	9 57 824	31	961 184	36	0 38 816	9 96 640	5	45	6 35
16	9 57 855	31	9 01 220	36	0 38 780	9 90 634	6	44	7 41
17	9 57 885	30	9 61 256	36	0 38 711	9 96 629	5	43	8 47
18	9 57 916	31	9 61 202	36	0.38.708	9 95 624	5	42	9 53
10	9 57 9 17	31	9 61 328_	36 36	0 38 672	9 90 619	5 5	41	10 58
20	9 57 978	30	9 61 364	36	0 38 636	9 96 614	6	40	20 11 7 30 17.5
21	9 58 008	31	9 61 100	36	0 38 600	9 96 608	5	39	40 23 3
22 23	9 58 039 9 58 070	31	9 61 436 9 61 472	36	038564 038528	9 96 603 9 96 598	5	38 37	50 29 2
24	9 58 101	31	9 61 508	36	0 38 102	9 90 593	5	36	
25	9 58 131	30	961 544	36	0 38 456	9 96 588	5	35	
26	9 58 162	31	961 579	35	0.38 421	9 96 582	6	34	32 31
27	9 58 192	30	961 615	36	0 38 385	9 96 577	5	33	6 32 31
28	9 58 223	31	9 61 651	36 36	0 38 349	9 96 572	5 5	32	7 37 36
29	9 58 253	31	961 687	35	0 38 313	9 96 567	5	31	8 43 41 9 48 47
30	9 58 284	30	9 01 722	36	0 38 278	9 96 562	6	30	10 53 52
31	9 58 31 <u>1</u> 9 58 34 <u>5</u>	31	9 61 758	36	0.38 242	9 96 556	5	29 28	20 107 103
32	9 50 345	30	9 61 794	36	0.38 170	9 96 551 9 96 546	5	27	30 160 155
34	9 58 406	31	961 865	35	0.38 1 15	9 96 541	5	26	40 21 3 20 7
35	9.58 430	30	9 61 901	36	0 38 099	0 96 535	6	25	50 26.7 25.8
36	9.58 467	31	961 936	35	0.38 004	96 530	5	2.1	
37	9 58 497	30	961 972	36	0 38 028	9 96 525	5	23	
38	9 58 527	30 30	9 02 008	36 35	0 37 992	9 90 520	5 6	22	6 30 20
39_	9 58 557	31	9 62 0 13	36	03797	_9 96 514	5	21	6 30 29 7 35 34
40	9 58 588	30	9 52 079	35	0 37 921	9 96 509	5	20	8 40 39
41	9 58 618	30	962114	36	0 37 880 0 37 850	9 96 504 9 96 498	6	18	9 45 44
42 43	9 58 648 9.58 678	30	9 62 150 9 62 185	35	0 37 815	9 90 498	5	17	10 50 48
43	9.58 709	31	9 62 221	36	9 37 779	9 90 488	5	16	20 100 97
45	9 58 739	30	9 62 256	35	0 37 744	9 96 483	5	15	30 15 0 14 5 40 20 0 19 3
46	9 58 769	30	9 62 292	36	0.37 708	9 96 477	6	1.4	50 25 0 24 2
47	9 58 799	30	9 62 327	35	0 37 673	9 90 472	5	13	J J 4 *
48	9 58 829	30 30	0 62 352	35 36	0 37 638	9 96 467	5	12	
49	9 58 859	30	9 62 398	35	0 37 602	9 96 461	5	H	6 5
50	9 58 889	30	9 62 433	35	0 37 567	9 96 456	5	10	6 0.6 05
51 52	9 58 919	30	9 62 468	35 36	0 37 532	9 96 451 9 96 445	6	9	7 07 06
53	9 58 979	30	9 62 539	35	0 37 461	9 90 445	5	7	8 08 07
54	9 59 009	30	9 62 574	35	0 37 426	9 96 435	5	6	9 09 08
55	9 59 039	30	9.62 609	35	0 37 391	9 95 429	6		10 10 08
56	9 59 069	30	9 62 645	36	0 37 355	9 96 421	5	4	30 30 25
57	9 59 098	29	9 62 680	35	0 37 320	9 96 419	5	3	40 40 33
58	9 59 128	30 30	9 62 715	35 35	0 37 285	9 96 413	5	2	50 50 42
59	9 59 158	30	9 62 750	35	0.37 250	9 96 408	5	I	
60	9 59 188		9 62 785		0.37 215	9 96 403		0	
Ш	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L Sin.	d.	'	Prop. Pts.

1	L. Sin.	d.	L. Tang.	c. d.	L. Cotg«	L. Cos.	d.		Prop. Pts.
U	9.59 188	30	9.62 785	35	0.37 213	9.96 403	6	60	
1 2	9.59 218 9.59 247	29	9.62 820 9.62 855	35	0.37 180 0.37 143	9.96 397 9 96 392	5	59 58	36 35
3	9.59 277	30	9.62 890	35	0.37 110	9.96 387	5	57	6 3.6 3.5
4	9.59 307	30 29	9.62 926	36 35	0.37 074	9.96 381	6 5	56	7 4.2 4.1
5 6	9.59 336	30	9.62 961	35	0.37 039	9.96 376	6	55	8 4.8 4.7
0	9.59 366 9.59 396	30	9.62 996 9.63 031	35	0.37 004	9.96 370 9.96 36 3	5	54 53	9 5.4 5.3 10 6.0 5.8
7 8	9.59 425	29	9.63 066	35	0.36 934	9.96 360	5	52	20 12.0 11.7
9	9.59 455	30 29	9.63 101	35	0.36 899	9 96 354	6 5	51	30 18.0 17.5
10	9.59 484	30	9.63 135	34 35	0.36 865	9 96 349	6	50	40 24.0 23.3 50 30.0 29.2
11	9.59 514 9.59 543	29	9.63 170 9.63 205	35	0.36 830 0 36 795	9 96 343 9.96 338	5	49 48	30 30,0 29.2
13	9.59 573	30	9.03 203	35	0.36 760	9.96 333	5	47	
14	9.59 602	29	9.63 275	35	0.36 725	9.96 327	6 5	46	34
15	9.59 632	30 29	9.63 310	35 35	0.36 690	9.96 322	6	45	6 3.4
16 17	9.59 661 9.59 690	29	9.63 345	34	0.36 655 0.36 621	9.96 316	5	44	7 4.0 8 4.5
18	9.59 720	30	9.63 379 9.63 414	35	0.36 586	9 96 311 9 96 305	6	43 42	9 51
19	9.59 749	29	9 63 449	35	0.36 551	9 96 300	5	41	10 5.7
20	9.59 778	29 30	9.63 484	35 35	0.36 516	9.96 294	6 5	40	20 II.3 30 I7.0
21	9.59 808	29	9.63 519	35 34	0.36 481	9.96 289	5	39	30 17.0 40 22.7
22 23	9.59 837 9.59 866	29	9.63 553 9.63 588	35	0 36 447	9.96 284 9.96 278	6	38	50 28.3
24	9.59 895	29	9 63 623	35	0.36 377	9.96 273	5	37 36	
25	9.59 924	29	9.63 657	34	0.36 343	9 96 267	6	35	
26	9.59 954	30 20	9.63 692	35 34	0.36 308	9 96 262	5 6	34	6 3.0 2.0
27 28	9.59 983	29	9.63 726	35	0.36 274	9.96 256	5	33	
20	9,60 012 9 60 041	29	9 63 761 9.63 796	35	0 36 239	9 96 251 9 96 245	6	32 31	7 3.5 3.4 8 4.0 3.9
30	9.60 070	29	9.63 830	34	0.36 170	9.96 240	5	30	9 4.5 4.4
31	9.60 099	29	9.63 865	35	0.36 135	9 96 234	6	29	10 5.0 4.8
32	9.60 128	29 29	9.63 899	34	0.36 101	9 96 229	5	28	20 10.0 9.7 30 15.0 14.5
33	9.60 157 9.60 186	29	9.63 934	35 34	0.36 066	9.96 223	5	27 26	40 20.0 19.3
34	9.60 215	29	9.63 968	35	0.36 032	9.96 218	6		50 25.0 24.2
35 36	9.60 244	29	9.64 003 9 64 037	34	0.35 997 0 35 963	9 96 212	5	25 24	
37	9.60 273	29	9.64 072	35	0.35 928	9.96 201	6	23	
38	9.60 302	29 29	9.64 106	34	0.35 894	9.96 196	5 6	22	6 2.8
39	9.60 331	28	9.64 1.40	34 35	0.35 860	9.96 190	5	21	7 3.3
40	9.60 359 9.60 388	29	9.64 173	34	0 35 825	9 96 18 <u>5</u> 9 96 1 7 9	6	20 19	8 3.7
41 42	9.60 417	29	9.64 243	34	0 35 791 0 35 757	9 96 179	5	18	9 4.2
43	9.60 446	29 28	964 278	35	0 35 722	9.56 168	6	17	10 4.7 20 9.3
44	9.60 474	20	9.64 312	34 34	o 35 688	9 96 162	5	₋ 16	30 14.0
45	9.60 503	29	9.64 346	35	0.35 654	9 96 157	6	15	40 187
46 47	9.60 532 9.60 561	29	9.64 38 I 9.64 41 E	34	0.35 619	9 96 151 9.96 146	5	14	50 23.3
48	9.60 589	28	9 64 449	34	0.35 551	9 96 140	6	12	
49	9.60 618	29 28	9 64 483	34	0 35 517	9 96 135	5	11	16 5
50	9.60 646	26 29	9.64 517	34 35	0.35 483	9 96 129	6	10	6 0.6 0.5
51	9.60 675	29	9.64 552	34	0.35 448	9 96 123	5	9	7 0.7 0 6
52 53	9.60 704	28	9.64 586 9.64 620	34	0.35 414 0 35 380	9 96 118	6		8 0.8 0.7
54	9.60 761	29	9 64 654	34	0 35 346	9.96 107	5	7 6	9 0.9 0.8 10 1.0 0.8
55	9.60 789	28	9.64 688	34	0.35 312	9.96 101	6	5	20 2.0 1.7
56	9.60 818	29 28	9.64 722	34 34	0.35 278	9.96 095	5	4	30 3.0 2.5
57 58	9.60 846 9.60 875	20	9 64 756	34	0.35 244	9.96 090	6	3	40 4.0 3.3
59	9.60 903	28	9.64 790 9.64 824	34	0.35 210	9.96 084 9.96 079	5	1	50 5.0 4.2
60	9:60 931	28	9.64 858	34	0.35 142	9.96 073	6	0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	,	Prop. Pts.

									
<u></u>	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.60 931	T	9.54 858		0.35 142	9.96 073	6	60	
1	9.60 960	29 28	9.64 892	34	0.35 108	9.96 067	5	59	
2	9.60 988	28	9.64 926	34	0.35 074	9.96 062	6	58	34 33
3	9 61 016 9.61 0.13	29	9.64 960	34	0.35 040	9.96 056 9 96 050	6	57 56	6 3.4 3.3
4		28	9.64 994	34	0.35 006		5		7 4.0 3.9 8 4.5 4.4
5 6	9 61 073 9.61 101	28	9.65 028 9.65 062	34	0.34 972	9.96 04 3 9.96 039	6	55	8 4.5 4.4 9 5.1 5.0
7	9.61 129	28	9.65 096	34	0.34 938	9.96 034	5	54 53	10 5.7 5.5
l á	9.61 158	29	9.65.130	34	0.34 870	9.96 028	6	52	20 11.3 11.0
9	9.61 186	28	9.65 164	34	0.34 836	9 96 022	6	51	30 17.0 16.5
10	9.61 214	28	9.65 197	38	0.34 803	9.96 017	5	50	40 22.7 22.0
11	9.61 242	28	9.65 231	34	0.34 769	9 96 011	6	49	50 28.3 27.5
12	961 270	28 28	9.65 265	34	0.34 735	9.96 005	1	48	i
13	9.61 298	28	9.65 299	,34 34	0.34 701	9 96 00 0	5	47	1
14	9.61 326	28	9 65 333	33	0.34 667	9 95 994	6	46	29
15	9 61 354	28	9.65 366		0.34 634	9.95 988	6	45	6 2.9
16	9.61 382	29	9.65 400	34	0.34 600	9 95 982	5	44	7 3.4 8 3.9
17 18	9.61 411 9.61 438	27	9 65 434 9.65 467	33	0.34 566	9 95 977 9 95 971	6	43 42	9 4.4
19	9.61 466	28	9.65 501	34	0.34 499	9 95 965	6	41	10 4.8
20	9 61 494	28	9.65 535	34	0.34 465	9.95 960	5	40	20 9.7
21	9.61 522	28	9.65 568	33	0.34 432	9.95 954	6	39	30 14.5
22	9.61 550	28	9.65 602	34	0.34 398	9.95 948	6	38	40 19.3
23	9.61 578	28	9.65 636	34	0.34 364	9.95 942	6	37	50 24.2
24	9.61 606	28 28	9.65 669	33	0 34 331	9 95 937	5	36	
25	9.61 634	28	9.65 703	34	0.34 297	9.95 931	6	35	
26	9.61 662	28	9.65 736	33	0.34 264	9.95 925	5	34	28 6 2.8
27	9.61 689	28	9 65 770	34 33	0.34 230	9.95 920	6	33	
28 29	9.61 717	28	9.65 803	34	0.34 197	9.95 914	6	32	7 3·3 8 3·7
30		28	9.65 837	33	0.34 163	9 95 908	6	31	9 4.2
	9.61 773 9.61 800	27	9 65 870 9.65 904	34	0.34 130	9.95 902 9.95 897	5	29	10 4.7
31 32	9.61 828	28	9.65 937	33	0.34 063	9.95 891	6	28	20 9.3
33	9.61 856	28	9.65 971	34	0.34 029	9 95 885	6	27	30 14.0
34	9.61 883	27	9.66 004	33	0.33 996	9 95 879	6	26	40 18.7
35	961911	28	9 66 038	34	0.33 962	9.95 873	6	25	50 23.3
36	9.61 939	28	9.66 071	33	0.33 929	9.95 868	5	24	
37	9 61 966	27 28	9 66 104	33	0 33 896	9.95 862	6	23	
38	9 61 99 1	27	9.66 138	34	0.33 862	9.95 856	6	22	6 2.7
39	9.62 021	28	9.66 171	3 3 3 3	0.33 829	9 95 850	6	21	6 2.7 7 3.2
40	9.62 019	27	9 66 204	34	0.33 796	9.95 844	.5	20	8 3.6
41	9.62 076	28	9.66 238	33	0.33 762	9 95 839	6	19	9 4.1
42	9.62 104	27	9 66 271 9.66 304	33	0 33 729	9 95 833 9.95 827	6	18 17	10 45
43 44	9.02 131	28	9 66 337	33	0.33 663	9.95 821	6	16	20 9.0
45	9.62 133	27	9.66 371	34	0.33 629	9.95 815	6	15	30 13.5
45 46	9.02 133	28	9.66 404	33	0.33 596	9.95 810	5	14	40 18.0 50 22.5
47	9.62 241	27	9.66 437	33	0.33 563	9.95 804	6	13	50 22.5
48	962 268	27	9.66 470	33	0.33 530	9.95 798	6	12	
49	9 62 295	28	9.66 503	33	0.33 497	9 95 792	6 6	11	1615
50	9.62 323	27	9.66 537	34	0.33 463	9.95 786	6	10	6 0.6 0.5
51	9.62 350	27 27	9.66 570	33	0.33 430	9.95 780	5	9	7 0.7 0.6
52	9.62 377	28	9.66 603	33 33	0.33 397	9.95 775	6	8	8 0.8 0.7
53	9.62 405	27	9.66 636 9.66 669	33	0.33 364	9 95 769	6	7	9 0.9 0.8
54	9 62 432	27		33	0.33 331	9.95 763	6		10 1.0 0.8
55 56	9.62 459	27	9.66 702 9.66 73 5	33	0.33 298	9.95 757	6	5	20 20 1.7
57	9.62 513	27	0.66 768	33	0.33 232	9.95 751 9.95 745	6	4 3	30 3.0 2.5
58	9.62 541	28	9.66 8oI	33	0.33 199	9.95 739	6	3	40 4.0 3.3 50 5.0 4.2
59	9.62 568	27	9.66 834	33	0.33 166	9.95 733	6	I	30,3014.2
60	9.62 593	274	9.66 867	33	0.33 133	9.95 728	5	0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	1	Prop. Pts.

			T .	T	1	1 _				
T		L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.	L	Prop. Pts.
T	0					0.33 133	9.95 728		60	
2		9.62 622		9.66 900		0.33 100	9.95 722		59	
3 9.02 730 74 750	-			9.66 933		0.33 067			58	
1				9 00 906						
0										7 3.9 3.7
7 9.62 784 97 9.67 103 33 0.32 809 9.5 686 6 53 2 20 III.0 10.7 9.62 838 97 9.67 163 32 0.32 836 9.95 686 6 53 2 20 III.0 10.7 9.62 838 97 9.67 163 32 0.32 837 9.95 687 6 51 30 16.5 16.0 30 16.0 30 16.5 16.0 30 16	5ِ		ł		1		9 95 698	6		
8 9.66 811 97 907 131 33 9.03 869 995 860 6 52 30 11.5 10.7 99.62 818 37 90.7 132 33 0.32 80.4 9.55 668 5 10 9.62 818 37 9.67 132 33 0.32 80.4 9.55 668 5 10 9.62 818 37 9.67 282 33 0.32 275 995 657 6 48 13 9.62 972 97 967 32 33 0.32 275 995 657 6 48 13 9.62 972 97 967 32 30 0.32 275 995 657 6 48 17 9.62 972 97 967 32 30 0.32 275 995 651 6 47 17 9.62 972 97 9.67 360 33 0.32 257 995 651 6 47 17 18 9.62 972 97 9.67 360 33 0.32 257 995 651 6 47 18 9.62 972 97 9.67 360 33 0.32 257 995 651 6 47 18 9.62 972 97 9.67 360 33 0.32 257 995 651 6 47 18 9.62 972 97 9.67 426 33 0.32 257 995 651 6 42 9 4.1 10 4.5 18 9.62 972 97 9.67 426 33 0.32 476 995 601 6 42 9 4.1 10 4.5 18 9.62 972 97 9.67 528 30 0.32 444 9.95 603 6 42 9 9.0 13.5 19 9.67 526 33 0.32 444 9.95 507 6 38 30 3.3 0.32 257 995 651 6 42 9 9.0 13.5 19 9.67 526 33 0.32 444 9.95 507 6 38 30 3.3 0.32 257 995 651 6 42 9 9.0 13.5 19 9.67 526 33 0.32 444 9.95 507 6 38 30 3.3 0.32 257 995 651 6 42 9 9.0 13.5 19 9.67 526 33 0.32 444 9.95 507 6 38 30 3.3 0.32 257 995 501 6 37 9.67 528 30 0.32 441 9.95 507 6 38 30 3.3 0.32 257 995 501 6 37 9.67 752 33 0.32 444 9.95 507 6 38 37 50 22.5 50 50 37 50 50 50 50 50 50 50 50 50 50 50 50 50							9 95 092	6		9 50 4.8
9 9.62 898 87 9.67 163 33 0.32 837 9.95 674 6 50 10 9.62 865 77 9.67 163 33 0.32 804 9.668 80 150 11 9.62 862 87 9.67 262 33 0.32 738 9.95 663 5 48 13 9.62 972 27 9.67 362 33 0.32 738 9.95 657 6 48 13 9.62 972 27 9.67 362 33 0.32 673 9.95 657 6 46 46 16 16 16 16 16 16 16 16 16 16 16 16 16	á		27		1		0.05 680			
10							9.95 674			
11					33			1		
12									49	50 27.5 26.7
13 9.062 972 7 9.07 320 32 32 0.32 673 9.95 643 6 46 46 47 10 10 10 10 10 10 10 1	12			9.67 262		0.32 738	9 95 657		48	
15 9,62 996 79 9,67 360 33 0,32 6,07 9,95 639 64 44 7 3,32 3,43 3,44 3,									47	
15 9.02 999										27
10 9.63 052 27 9.67 426 33 30 0.32 574 9.95 627 6 43 8 3.6			1					ı		
18										
19 963 106 27 967 491 33 0.32 432 995 609 6 42 10 4.5			1			0.32 574	9.95 027			-
20							995 021	6		
21 9.03 159			27					6		
22			26		32					
24				9 67 589	33				38	40 18.0
24	23			9.67 622					37	50 22.5
25				9 67 654					36	
26 9.63 292 27 9.67 719 32 0.32 281 9.95 573 6 33 6 2.6 2.6 2.6 2.6 32 7 3.0 3.2 215 9.95 567 6 33 6 2.6 32 7 3.0 3.2 215 9.95 567 6 33 6 2.6 32 8 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5					i .		9 95 579		35	i . i
28 9.63 315	20				-		9 95 573		34	
29 9.63 372 37 9.67 817 32 0.32 215 9.95 555 6 31 8 3.5 30 9.63 312 9.67 850 33 0.32 118 9.95 555 6 31 8 3.5 32 9.63 425 26 9.67 915 33 0.32 118 9.95 549 6 30 9 3.9 3										
30 9-63 398 31 9-63 398 9-65 313 9-65 347 32 9-67 917 32 9-67 917 33 9-63 478 34 9-63 557 36 9-68 508 39 9-67 917 39 9										
31 9.63 425 27 9.67 882 32 0.32 118 9.95 543 6 29 20 8.7 33 9.63 478 27 9.67 947 32 0.32 053 9.95 537 6 28 30 13.0 34 9.63 551 27 9.67 947 32 0.32 053 9.95 537 6 26 26 40 17.3 30 0.32 020 9.95 525 6 22 40 17.3 30 0.32 020 9.95 525 6 26 26 40 17.3 30 0.32 020 9.95 525 6 22 40 17.3 30 0.32 0.32 020 9.95 525 6 22 40 17.3 30 0.32 0.32 0.32 0.32 0.32 0.32 0.32								6		
32 9.63 451 27 9.67 915 32 0.32 053 995 537 6 28 20 8.7 33 9.63 531 27 9.67 917 32 0.32 053 995 537 6 27 36 13.0 32 053 995 537 6 27 36 13.0 32 053 995 537 6 27 36 13.0 32 0.32 053 995 537 6 27 36 13.0 32 0.32 053 995 537 6 27 36 13.0 32 0.32 053 995 537 6 27 36 13.0 32 0.32 053 995 537 6 27 36 13.0 32 0.32 053 995 537 6 27 36 13.0 32 0.32 053 995 537 6 27 36 13.0 32 0.32 053 995 537 6 27 36 13.0 32 0.32 053 995 537 6 27 36 13.0 32 0.32 053 995 537 6 27 36 13.0 32 0.32 053 995 537 6 27 36 13.0 32 0.32 053 995 537 6 27 36 13.0 32 0.32 053 995 537 6 27 36 13.0 32 0.32 053 995 537 6 27 36 13.0 32 0.32 053 995 537 6 27 36 13.0 32 0.32 0.32 053 995 537 6 27 36 13.0 32 0.32 053 995 537 6 27 36 13.0 32 0.32 053 995 537 6 27 36 13.0 32 0.32 053 995 537 6 27 36 13.0 32 0.32 053 995 537 6 27 36 13.0 32 0.32 053 995 537 6 27 36 13.0 32 0.32 053 995 537 6 27 36 13.0 32 0.32 053 995 537 6 27 36 13.0 32 0.32 053 995 537 6 27 36 13.0 32 0.32 053 995 537 6 27 36 13.0 32 0.32 0.32 0.32 0.32 0.32 0.32 0.3		9.03 398	27		32			6		
33 9.63 478 af 9.67 937 32 0.32 0.53 0.55 1 6 27 30 13.0 13.0 33 0.32 0.32 0.35 0.35 1 6 26 26 26 27 3.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0										
34 9.63 504 9.67 930 33 0 32 2020 995 525 6 26 40 17.3 35 9.63 531 26 9.68 0.68 27 33 0.31 9.95 519 6 25 24 30 24 24 30 31 0.31 9.95 507 7 24 24 30 0.31 9.95 507 7 24 24 30 0.31 9.95 507 7 22 24 30 0.31 9.95 507 7 22 24 30 0.31 80 9.95 507 7 22 24 30 0.31 80 9.95 507 7 22 24 30 0.31 80 9.95 507 7 22 24 24 24 9.95 36 24 29 9.95 40 29 29 40 9.95 40 60 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>30 13.0</td>										30 13.0
35										
36 9.63 557 26 26 9.68 044 32 59 39 9.63 583 26 9.68 074 32 0.31 923 9.95 507 6 22 3 0.31 858 9.95 500 7 6 22 3 0.31 858 9.95 500 7 6 22 3 0.31 858 9.95 494 6 21 6 0.7 0.8 8 0.9 0.31 858 9.95 494 6 21 6 0.7 0.8 8 0.9 0.31 858 9.95 494 6 21 6 0.7 0.8 8 0.9 0.31 858 9.95 494 6 10 10 10 10 10 10 10 10 10 10 10 10 10	35					0.31 988		1 :	25	50 21.7
38 9.63 610 9.68 109 32 9.95 500 7 22 22 7 7 9.68 109 32 9.31 891 9.95 500 7 6 21 6 0.7 9.68 109 32 9.68 11.2 33 9.48 58 9.95 494 6 21 6 0.7 7 0.8 9.68 109	36	9.63 557				0.31 956	9 95 513		24	
39 9.63 636 26 9.68 142 31 0.31 858 9.95 494 6 21 7 0.8	37									
39 9,63 93 9,68 142 9,68 142 9,68 143 9,68 143 9,68 26 9,68 26 9,58 143 9,68 26 9,58 143 9,68 27 9,68 26 32 0,31 794 9,95 482 6 16 10 8 0.9 42 9,63 715 26 9,68 20 33 0.31 794 9.95 476 6 17 10 1.2 43 9,63 741 26 9,68 30 33 0.31 697 9.95 476 6 17 10 1.2 20 23 45 9,63 820 26 9,68 368 33 0.31 697 9.95 456 15 40 4.7 50 1.8 19 9.95 452 14 50 1.8 11 50 1.5 8 40 4.7		9.63 616						6		
41 9.63 689 27 9.68 266 329 33 0.31 761 9.95 476 6 18 9 1.1 10 1.2 20 2.3 34 4.4 9.63 767 26 9.68 289 37 32 0.31 769 9.5 476 6 17 10 1.2 20 2.3 34 4.4 9.63 767 26 9.68 307 32 0.31 769 9.5 476 6 17 10 1.2 20 2.3 32 0.31 664 9.63 820 26 9.68 836 32 0.31 664 9.95 458 6 15 40 4.7 4.7 4.7 9.63 846 26 9.68 400 32 0.31 568 9.95 446 6 13 30 3.5 5 8 9.68 400 32 0.31 568 9.95 446 6 13 30 3.5 5 8 9.68 400 32 0.31 568 9.95 446 6 13 30 3.5 5 8 9.68 400 32 0.31 568 9.95 446 6 13 30 3.5 5 8 9.68 400 32 0.31 568 9.95 446 6 13 30 3.5 5 8 9.68 400 32 0.31 568 9.95 446 6 13 30 3.5 5 8 9.68 400 32 0.31 568 9.95 446 6 13 30 3.5 5 8 9.68 400 32 0.31 568 9.95 446 6 13 30 3.5 5 8 9.68 400 32 0.31 568 9.95 446 6 13 30 3.5 5 8 9.68 400 32 0.31 568 9.95 446 6 13 30 3.5 5 8 9.68 400 32 0.31 568 9.95 446 6 13 30 3.5 5 8 9.68 400 32 0.31 568 9.95 446 6 13 30 3.5 5 8 9.68 400 32 0.31 568 9.95 446 6 13 30 3.5 5 8 9.68 400 32 0.31 568 9.95 446 6 13 30 3.5 5 8 9.68 400 32 0.31 3600 9.95 446 6 13 30 3.5 5 8 9.68 400 32 0.31 3600 9.95 446 6 13 30 3.5 5 8 9.68 400 32 0.31 3600 9.95 446 6 13 30 3.5 5 8 9.68 400 32 0.31 374 9.95 400 6 6 9.68 500 32 0.31 471 9.95 402 6 6 9.68 500 32 0.31 374 9.95 540 6 6 7 9 0.9 0.8 8 0.9 0.9 0.9 0.8 8 0.9 0.9 0.9 0.8 8 0.9 0.9 0.8 8 0.9 0.9 0.9 0.8 8 0.9 0.9 0.9 0.8 8 0.9 0.9 0.9 0.8 8 0.9 0.9 0.9 0.8 8 0.9 0.9 0.9 0.8 8 0.9 0.9 0.9 0.8 0.9 0.9 0.8 0.9 0.9 0.9 0.8 0.9 0.9 0.9 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9										
42 9.63 715 9 9.68 239 33 0.31 794 9.95 476 6 18 9 1.1 12 13 14 19 19 11 12 15 15 15 15 15 15 15 15 15 15 15 15 15								6		2 1
43 9.63 741 a6 9.68 271 32 9.95 470 6 17 10 1.2 23 44 9.63 767 a6 9.68 300 32 9.58 470 6 16 16 30 3.5 40 40 9.63 820 47 9.63 846 6 9.68 400 32 9.58 452 6 14 50 8.68 400 32 9.58 452 6 14 50 8.68 400 32 9.58 452 6 14 50 8.68 400 32 9.58 452 6 14 50 8.68 400 32 9.58 452 6 14 50 8.68 400 32 9.58 452 6 14 50 8.68 400 32 9.58 452 6 14 50 8.68 405 32 9.58 452 6 14 50 8.68 405 32 9.58 452 6 14 50 8.68 405 32 9.58 452 6 14 50 8.68 405 32 9.58 452 6 14 50 8.68 405 32 9.58 452 6 14 50 8.68 405 32 9.58 452 6 14 50 8.68 405 32 9.58 452 6 14 50 8.68 405 32 9.58 452 6 14 50 8.68 405 32 9.58 452 6 14 50 8.68 405 32 9.58 452 6 14 50 8.68 405 32 9.58 452 6 14 50 8.68 405 32 9.58 452 6 15 9.63 9.65 405 40 9.65 400 40 8.68 405 32 9.58 405 40 9.58 452 6 15 9.63 400 40 8.68 405 32 9.58 452 6 15 9.64 60 8.68 405 32 9.58 405 40 9.58 40 9.58 405 40 9.58 405 40 9.58 405 40 9.58 405 40 9.58 405 40 9.58 405 40 9.58 405 40 9.58 405 40 9.58 405 40 9.58 405 40 9.58 40 9.58 405 40 9.58 405 40 9.58 405 40 9.58 405 40 9.58 405 40 9.58 405 40 9.58 405 40 9.58 405 40 9.58 405 40 9.58 405 40 9.58 40 9.58 405 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 40 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 400 40 9.58 400 40 40 9.58 400 40 40 9.58 400 40 40 9.58 400 40 40 9.58 40 40 9.58 400 40 40 9.58 400 40 40 9.58 400 40 40 9.58 400 40 40 9.58 400 40 40 9.58 400 40 40 9.58 400 40 40 9.58 400 40 40 9.58	41									
44 9.63 767 26 9.68 30° 32 0.31 697 9.95 464 6 16 30 3.5 464 9.63 892 26 9.68 400 32 0.31 508 9.95 446 6 13 40 4.7 5.8 50 5.8 50 9.63 892 26 9.68 405 32 0.31 508 9.95 446 6 13 50 5.8 50 9.64 102 26 9.68 503 32 0.31 503 9.95 427 9.63 9.64 0.62 26 9.68 503 32 0.31 471 9.95 421 6 9.68 9.68 9.68 9.68 9.68 9.68 9.68 9.	43		26	9.68 271						10 1.2
45 9.63 794 27 9.68 336 33 33 0.31 664 9.95 458 6 15 40 4.7 4.7 9.63 846 26 9.68 493 32 0.31 568 9.95 440 6 13 3 2.6 9.68 493 26 9.68 495 32 0.31 568 9.95 440 6 13 3 2.6 9.68 495 32 0.31 558 9.95 427 6 12 12 12 12 12 12 12 12 12 12 12 12 12					32					
46 9.63 826 26 9.68 400 32 0.31 632 9.95 452 6 14 13 50 5.8 48 9.63 872 49 9.63 872 26 9.68 432 32 0.31 568 9.95 440 6 12 12 15 9.63 950 26 9.68 497 32 0.31 550 9.95 437 7 100 6 0.6 0.5 52 9.63 976 26 9.68 529 32 0.31 471 9.95 427 6 8 0.8 0.8 0.31 553 9.95 447 6 7 100 6 0.6 0.5 53 9.64 002 26 9.68 561 32 0.31 471 9.95 427 6 8 0.8 0.8 0.31 471 9.95 427 6 8 0.8 0.8 0.31 471 9.95 427 6 8 0.8 0.8 0.31 471 9.95 427 6 8 0.8 0.8 0.8 0.31 471 9.95 427 6 8 0.8 0.8 0.31 471 9.95 427 6 8 0.8 0.8 0.31 471 9.95 427 6 8 0.8 0.8 0.31 471 9.95 427 6 8 0.8 0.8 0.31 471 9.95 427 6 8 0.8 0.8 0.31 471 9.95 427 6 8 0.8 0.8 0.31 471 9.95 427 6 8 0.8 0.8 0.31 471 9.95 429 6 8 0.8 0.8 0.31 471 9.95 429 6 8 0.8 0.8 0.31 471 9.95 429 6 8 0.8 0.8 0.31 471 9.95 429 6 8 0.8 0.31 471 9.95 429 6 8 0.8 0.31 471 9.95 429 6 8 0.8 0.31 471 9.95 429 6 8 0.8 0.31 471 9.95 429 6 8 0.8 0.31 471 9.95 429 6 8 0.8 0.31 471 9.95 429 6 8 0.8 0.31 471 9.95 429 6 8 0.31 471 9.9									15	
48 9 63 872 26 9.68 400 32 0.31 568 9 95 440 6 6 11 1 6 5 7 0.68 432 32 0.31 568 9 95 440 6 6 11 1 7 10 10 10 10 10 10 10 10 10 10 10 10 10	46	9.63 820		9 68 368		0.31 632	9 95 452			
49 9.63 898 26 9.68 497 32 0.31 503 9.95 434 6 121 6 5 5 9.63 954 968 953 32 0.31 310 9.95 427 6 9.68 0.5 9.64 0.52 26 9.68 658 32 0.31 31 407 9.95 409 6 6 9.68 0.5 9.64 0.5 9.64 0.5 9.68 668 33 0.31 314 0.9 9.95 409 6 6 9.68 0.7 9.68 0.5 9.64 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68									13	30 3.0
49 9.63 904 9.68 497 32 9.58 497 7 10 6 5 51 9.63 950 26 9.68 529 32 0.31 503 9.95 421 6 9 7 0.7 0.6 0.5 52 9.63 976 26 9.68 529 32 0.31 471 9.95 421 6 8 7 0.7 0.6 0.5 53 9.64 002 26 9.68 593 32 0.31 439 9.95 442 6 8 8 0.8 0.7 0.7 0.6 54 9.61 028 26 9.68 593 32 0.31 439 9.95 442 6 7 9 0.9 0.8 55 9.64 054 26 9.68 568 32 0.31 374 9.95 493 6 7 9.09 0.8 57 9.64 108 26 9.68 658 32 0.31 342 9.95 391 7 4 30 3.0 2.5 58 9.64 132 26 9.68 786 32 0.31 248 9.95 372 6 1 30 2.5										
51 9,63 952 9,68 97 9,68 92 32 0,31 471 9,95 427 6 9 6 0.6 0.5 52 9,63 976 26 9,68 561 32 0,31 471 9,95 421 6 8 8 0.8 0.7 0.6 53 9,64 0,24 26 96 8,66 33 32 0.31 439 9.95 497 6 8 8 0.8 0.7 0.05 55 9,64 0,54 26 9,68 658 32 0.31 314 9.95 409 6 6 7 9 0.9 0.8 55 9,64 0,54 26 968 698 32 0.31 314 9.95 397 6 5 20 20 1.7 57 9,64 103 26 968 722 32 0.31 32										16.5
51 9.63 9.65 9.63 9.68 561 32 0.31 439 9.95 421 6 8 7 0.7 0.6 53 9.64 002 26 968 5693 32 0.31 439 9.95 441 6 7 6 7 0.6 0.7 0.6 54 9.64 0.28 26 9.68 562 32 0.31 347 9.95 409 6 6 7 9 0.9 0.8 55 9.64 0.54 26 9.68 626 32 0.31 374 9.95 493 6 6 9 0.9 0.9 0.9 0.8 55 9.64 105 26 9.68 698 32 0.31 374 9.95 397 6 5 20 2.0 1.7 57 9.64 103 26 9.68 722 32 0.31 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
53 9.64 002 26 9.68 626 32 0.31 439 9.95 409 6 6 7 8 0.9 0.9 0.8 0.5 964 0.54 9.64 0.68 26 9.68 668 32 0.31 374 9.95 409 6 6 7 9 0.9 0.8 0.8 0.5 9.64 0.8 26 9.68 658 32 0.31 342 9.95 397 6 5 20 2.0 1.7 0.8 0.5 9.64 106 26 9.68 754 32 0.31 376 9.95 384 6 2 2 0.31 376 9.95 384 6 2 2 0.31 376 9.95 384 6 2 2 0.31 376 9.95 384 6 2 2 0.31 376 9.95 384 6 2 2 0.31 376 9.95 384 6 2 2 0.31 376 9.95 384 6 2 2 0.31 376 9.95 384 6 2 2 0.31 376 9.95 384 6 2 2 0.31 376 9.95 384 6 2 2 0.31 376 9.95 384 6 2 2 0.31 376 9.95 384 6 2 2 0.31 376 9.95 378 6 2 0.31 376 9.95 378 6 2 0.31 376 9.95 378 6 2 0.31 376 9.95 378										7 0.7 0.6
54 9.64 oct 26 9.68 626 33 0.31 374 9.95 403 6 6 10 1.0 0.8 55 9.64 oct 26 968 659 32 0.31 342 9.95 397 6 5 20 2.0 1.7 57 9.64 106 26 968 722 32 0.31 278 9.95 397 7 3 30 3.0 2.5 58 9.64 158 26 968 754 32 0.31 278 9.95 378 6 2 25 0 5.0 4.2 59 9.64 158 26 968 786 32 0.31 214 9.95 372 6 2 50 5.0 4.2 60 9.64 184 9.68 818 32 0.31 182 9.95 366 0 1 50 5.0 4.2			26							8 0 8 0.7
55 964 054 56 9.64 080 26 968 690 32 0.31 342 9.95 397 6 5 20 2.0 1.7 57 9.64 106 26 968 690 32 0.31 310 9.95 397 6 4 30 3.0 2.5 58 9.64 132 26 968 754 32 0.31 246 9.95 397 7 3 40 4.0 3.3 59 9.64 158 26 968 786 32 0.31 246 9.95 378 6 2 2 50 5.0 4.2 60 9.64 184 9.68 818 32 0.31 214 9.95 372 6 1 1 50 5.0 4.2				9.68 626					6	
56 9.64 106 26 968 690 32 0.31 310 0.95 391 7 4 30 3.0 2.5 58 9.64 132 26 968 754 968 754 9.64 158 26 968 786 26 9.64 158 26 9.68 786 26 9.64 158 26 9.68 818 20 0.31 214 9.95 372 6 1 2 50 5.0 4.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					32					
57 9.64 106 26 968 722 32 0.31 278 9.95 384 7 3 40 4.0 3.3 59 9.64 158 26 968 786 26 9.68 184 9.68 184 9.95 378 6 1 50 5.0 5.0 4.2 9.95 378 9.95 366 9.68 188 9.68 188 9.95 366 9.95 366 9.95 378 9.95 366 9.95 36				9 68 690						
58 9.64 158 26 968 754 32 968 786 32 9.64 158 26 9.68 818 32 0.31 214 9.95 378 6 1 1 50 5.0 4.2 32 0.31 182 9.95 378 6 1 1 50 5.0 4.2	57	9.64 106		9 68 722		0.31 278	9.95 384			
32 0.31 214 9.95 372 6 1 0.31 182 9.95 366 Q									2	
60 9.64 184 9.68 818 0.31 182 9.95 366 Q		9.64 158				0.31 214	9.95 372		-	
L. Cos. d. L. Cotg. c. d. L. Tang. L. Sin. d. / Prop. Pts.	60	9.64 184		9.68 818	<i></i>	0.31 182	9.95 366		ď.	
		L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	đ.	/	Prop. Pts.

1	L. Sin.	d.	L. Tang.	c. d	L. Cotg.	L. Cos.	d.	Т	Prop. Pts.
0	9.64 184	26	9.68 818	 	0.31 182	9.95 366	6	80	
1	9.64 210	36	9.68 850	32	0.31 150	9.95 360	6	59	
2	9.64 236	96	9.68 882 9.68 914	32	0.31 118	9.95 354	6	58	32 31
3	9.64 288	26	9.68 946	32	0.31 086	9.95 348 9.95 341	7	57 56	6 3 2 3.1
	9.64 313	25	9.68 978	32	0.31 022	9.95 335	6	55	7 3.7 3.6 8 4.3 4.1
5 6	9 64 339	26	9.69 010	32	0.30 990	9.95 329	6	54	9 4.8 4.7
7	9 64 365	26	9.69 042	32	0.30 958	9 95 323	6	53	10 5.3 5.2
8	9 64 391	26 26	9.69 074	32 32	0.30 926	9.95 317	6	52	20 10.7 10.3
9	9.64 417	25	9.69 106	32	0.30 894	9 95 310	7	51	30 16.0 15.5
10	9.64 442	26	9.69 138	32	0.30 862	9.95 304	6	50	40 21.3 20.7 50 26.7 25.8
11	9.64 468 9.64 494	26	9.69 170	32	0.30 830	9.95 298	6	49 48	30 (20.7) 23.0
13	9.64 519	25	9 69 234	32	0.30 766	9.95 292 9.95 286	6	47	
14	9.64 545	26	9.69 266	32	0.30 734	9.95 279	7	46	∤ 26
15	9.64 571	26	9.69 298	32	0.30 702	9.95 273	6	45	6 2.6
16	9.64 596	25	9 69 329	31	0.30 671	9.95 267	6	44	7 3.0
17	9.64 622	26 25	9.69 361	32	0.30 639	9 95 261	6	43	8 3.5
18	9.64 647	26	9.69 393	32 32	0.30 607	9.95 254	7	42	9 3.9
19	9.64 673	25	9 69 425	32	0.30 575	9 95 248	6	41	10 4.3 20 8.7
20	9.64 698	26	9.69 457	31	0.30 543	9.95 242	6	40	30 13.0
2I 22	9.64 724 9.64 749	25	9.69 488 9.69 520	32	0.30 512	9.95 236 9 95 229	7	39 38	40 17.3
23	9.64 775	26	9.69 552	32	0.30 448	9.95 223	6	37	50 21.7
24	9 64 800	25	9.69 584	32	0.30 416	9 95 217	6	36	
25	9.64 826	26	9.69 615	31	0.30 383	9.95 211	6	35	
26	9.64 851	25 26	9.69 647	32 32	0.30 353	9.95 204	7	34	25
27	9.64 877	25	9.69 679	31	0.30 321	9.95 198	6	33	6 2.5
28 29	9.64 902 9.64 927	25	9.69 710 9.69 742	32	0.30 290	9 95 192	7	32 31	7 2.9 8 3.3
30	9.64 953	26		32	0.30 258	9.95 185	6	30	9 3.8
31	9.64 9.53	25	9.69 774 9.69 805	31	0.30 226	9.95 179 9.95 173	6	29	10 4.2
32	9.65 003	25	9.69 837	32	0.30 163	9.95 167	6	28	20 8.3
33	9.65 029	26	9.69 868	31	0.30 132	9.95 160	7	27	30 12.5 40 16.7
34	9.65 054	25 25	9.69 900	32 32	0.30 100	9.95 154	6	26	50 20.8
35	9.65 079	25	9.69 932	31	0.30 068	9 95 148	7	25	30 / 20.0
36	9.65 104	26	9 69 963	32	0.30 037	9.95 141	6	24	
37 38	9.65 130 9.65 155	25	9 69 99 5 9.70 026	31	0.30 005	9 95 135	6	23 22	24
39	9.65 180	25	9.70 058	32	0.29 9/4	9.95 122	7	21	6 2.4
40	9 65 205	25	9.70 089	31	0.29 911	9.95 116	6	20	7 2.8
41	9.65 230	25	9.70 121	32	0.29 879	9 95 110	6	19	8 3.2
42	9.65 255	25	9.70 152	31	0.29 848	9.95 103	7	18	9 3.6 10 4.0
43	9.65 281	26 25	9.70 184	32 31	0.29 816	9.95 097	6	17	20 80
44	9.65 306	25	9 70 215	32	0.29 785	9.95 090	7	16	30 12.0
45	9.65,331	25	9.70 247	31	0.29 753	9.95 084	6	15	40 16.0
46	9.65 356 9.65 381	25	9.70 278	31	0.29 722 0.29 691	9.95 078	7	14	50 20.0
47 48	9.65 406	25	9.70 309 9.70 341	32	0.29 659	9.95 071 9.95 063	6	13	
49	9.65 431	25	9.70 372	31	0.29 028	9.95 059	6	11	ا مییا
50	9.65 456	25	9.70 404	32	0.29 596	9.95 052	7	10	7 6
51	9.65 481	25	9.70 435	31	0.29 565	9.95 046	6	9	6 0.7 0.6 7 0.8 0.7
52	9.65 506	25 25	9.70 466	31 32	0.29 534	9.95 039	7	8	8 0.9 0.8
53	9.65 531	25	9.70 498	31	0.29 502	9.95 033	6	7 6	9 1.1 0.9
54	9.65 556	24	9.70 529	31	0.29 471	9 95 027	7		10 1.2 1.0
55 56	9.65 580 9.65 605	25	9 70 560 9.70 592	32	0.29 440	9 95 020 9.95 014	6	5 4	20 2.3 2.0
57	9.65 630	25	9.70 623	31	0.29 377	9.95 007	7	3	30 3.5 3.0 40 4.7 4.0
58	9.65 655	25	9.70 654	31	0.29 346	9.95 oot	6	2	40 4.7 4.0 50 5.8 5.0
59	9.65 680	25	9.70 685	3z	0.29 313	9.94 993	6	1	3013.013.0
60	9.65 703	25	9.70 717	32	0.29 283	9.94 988	7	0	
	L. Cos.	d.	L. Cotg.	e. d.	L. Tang.	L. Sin.	d.	-	. Prop. Pts.

·	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.65 703	24	9.70 717	31	0.29 283	9.94 988	6	60	
1 2	9.65 729 9.65 754	25	9.70 748 9.70 779	3 ×	0.29 252	9.94 982 9.94 975	7	59 58	
3	9.65 779	25	9.70 810	31	0.29 190	9 94 969	6	57	6 3.2 3.1
4	9.65 804	25 24	9.70 841	31	0.29 159	9.94 962	7	56	7 3.7 3.6
5	9.65 828	25	9.70 873	31	0.29 127	9 94 956	7	55	8 4.3 4.1
	9.65 853 9.65 878	25	9.70 904	31	0.29 096	9 94 949	6	54	9 4.8 4.7
7 8	9.65 902	24	9.70 935 9.70 966	31	0.29 065	9 94 943 9.94 936	7	53 52	10 5.3 5.2 20 10.7 10.3
9	9 65 927	25	9.70 997	31	0.29 003	9.94 930	6	51	30 16.0 15.5
10	9.65 952	25	9 71 028	31	0.28 972	9 94 923	7	50	40 21.3 20.7
11	9.65 976	24 25	9 71 059	31	0.28 941	9 94 917	6	49	50 26.7 25.8
12	9.66 001 9.66 025	24	9.71 090	31	0.28 910	9 94 911	7	48	ŀ
13 14	9.66 050	25	9.71 121 9 71 153	32	0.28 847	9.94 904 9 94 898	6	47 46	1 30
15	9.66 075	25	9.71 184	3 1	0.28 816	9 94 891	7	45	6 3.0
16	9.66 099	24	9.71 215	31	0.28 785	9 94 885	6	44	7 3.5
17	9.66 124	25	9.71 246	31	0 28 754	9.94 878	7	43	8 4.0
18	9.66 148	24 25	9.71 277	31	0.28 723	9 94 871	7	42	9 4.5 10 5.0
19 20	9 66 173	24	9.71 308	31	0.28 661	9 94 865	7	41	10 5.0 20 10.0
21	9.66 197 9 66 221	24	9.71 339	3x	0.28 630	9 94 858 9 94 852	6	39	30 15.0
22	9.66 246	25	971401	31	0.28 599	9 94 845	7	38	40 20.0
23	9.66 270	24 25	9.71 431	30	0.28 569	9 94 839	6	37	50 25.0
24	9 66 295	25	9 71 462	31	0.28 538	9 94 832	7	36	
25	9.66 319	24	9.71 493	31	0.28 507	9 94 826	7	35	25 24
26 27	9.66 343 9.66 368	25	9 71 524 9.71 555	31	0.28 476	9 94 819 9 94 813	6	34 33	6 2.5 2.4
28	9.66 392	24	9.71 586	31	0.28 414	9.94 806	7	32	7 2.9 2.8
29	9.66 416	24	9.71 617	3x	0.28 383	9 94 799	7	31	8 3.3 3.2
30	9.66 441	25 24	971 648	31 31	0.28 352	9.94 793	7	30	9 3.8 3.6
31	9.66 465	24	9.71 679	30	0.28 321	9 94 786	6	29 28	20 8.3 8.0
32 33	9.66 489 9.66 513	24	9.71 709 9.71 740	31	0.28 291	9 94 780 9 94 773	7	27	30 12.5 12.0
34	9.66 537	24	9.71 771	31	0 28 229	9 94 767	6	26	40 16.7 16.0
35	9.66 562	25	9 71 802	31	0.28 198	9 94 760	7	25	50 20.8 20.0
36	9.66 586	24 24	9.71 833	31	0.28 167	9 94 753	7	24	
37	9.66 610 9 66 634	24	9.71 863 9.71 894	3r	0.28 137	9.94 747	7	23	23
38 39	9.66 658	24	9.71 994	31	0.28 075	9.94 740 9 94 734	6	22 2I	6 2.3
40	9.66 682	24	9.71 955	30	0.28 045	991727	7	20	7 2.7
41	9.66 706	24	971 986	3x	0.28 014	9 94 720	7	19	8 31
42	9.66 731	25 24	9 72 017	31	0.27 983	9.94 714	6	18	9 3. 5 10 3.8
43	9.66 753	24	9.72 048	30	0.27 952	9 94 707	7	17 16	20 7.7
44	9.66 779	24	9.72 078	31	0.27 922	9 94 700	6		30 11.5
45 46	9.66 827	24	9.72 109	3 x	0.27 891	9.94 694 9.94 687	7	15 14	40 15.3
47	9.66 851	24	9.72 170	30	0.27 830	9.94 680	7	13	50 19.2
48	9.66 875	24	9.72 201	31 30	0.27 799	9 94 674	6	12	
49_	9.66 899	24 23	9 72 231	31	0.27 769	9 94 667	7	11	17 6
50	9.66 922	24	9.72 262	31	0.27 738	9.94 660	6	10	6 0.7 0.6
51 52	9.66 946 9.66 970	24	9.72 293	30	0.27 707	9.94 654 9.94 647	7	9	7 0.8 0.7
53	9.66 994	24	9.72 354	31	0.27 646	9.94 640	7	7	8 0.9 0.8 9 1.1 0.9
54	9.67 018	24	9.72 384	30 30	0.27 616	9.94 634	7	6	10 1.2 1.0
55	9.67 042	24 24	9.72 413	30	0.27 585	9.94 627	7	5	20 2.3 2.0
56	9.67 066	24	9.72 445	31	0.27 555	9.94 620	6	4	30 3.5 3.0
57 58	9.67 090	23	9.72 476 9.72 506	30	0.27 524	9.94 614 9.94 607	7	3	40 4.7 4.0 50 5.8 5.0
59	9.67 137	24	9.72 537	31	0.27 463	9.94 600	7	ī	50 5.8 5.0
80	9.67 161	24	9.72 567	30	0.27 433	9.94 593	7	0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	,	Prop. Pts.

260 **28°**

0 9.67 161 1 9.67 183 2 9.67 283 3 9.67 232 4 9.67 286 5 9.67 280 6 9.67 383 7 9.67 387 8 9 67 374 10 9.67 381 11 9.67 445 13 9.67 445 13 9.67 445 13 9.67 480 14 9 67 492 15 9.67 503 17 9.67 503 20 9.67 600 20 9.67 600 20 9.67 600 20 9.67 600 20 9.67 600 20 9.67 600 21 9.67 600 22 9.67 600 23 9.67 750 26 9.67 750 26 9.67 750 26 9.67 750 27 9.67 800 31 9.67 800 31 9.67 800 32 9.67 800 33 9.67 936 34 9.67 936 35 9.68 006 37 9.68 006 37 9.68 006 37 9.68 006 37 9.68 006 37 9.68 006 37 9.68 006 37 9.68 006 37 9.68 006 37 9.68 006 37 9.68 006 37 9.68 006 37 9.68 006 37 9.68 006 37 9.68 006 37 9.68 006 37 9.68 006 37 9.68 006 37 9.68 005 38 9.68 052 39 9.68 052 39 9.68 141 43 9.68 190 45 968 190 45 968 190	24 23 24 24 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 24 23 24 24 23 24 24 24 24 24 24 24 24 24 24 24 24 24	9.72 567 9.72 598 9.72 628 9.72 659 9.72 689 9.72 750 9.72 780 9.72 811 9.72 871 9.72 893 9.72 902 9.72 903 9.73 023 9.73 024 9.73 084 9.73 114	31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30	0.27 433 0.27 402 0.27 372 0.27 341 0.27 311 0.27 250 0.27 250 0.27 129 0.27 159 0.27 128 0.27 098 0.27 098 0.27 059 0.27 059 0.27 059 0.27 059 0.27 059 0.27 059 0.27 059	9.94 593 9.94 587 9.94 589 9.94 573 9.94 567 9.94 569 9.94 553 9.94 546 9.94 533 9.94 526 9.94 519 9.94 519 9.94 519 9.94 506 9.94 506 9.94 506	6 7 6 7 7 6 7 7 6 7	59 58 57 56 55 54 53 52 51 50 49 48 47	31 30 6 3.1 3.0 7 3.6 3.5 8 4.1 4.0 9 4 7 4.5 10 5.2 5.0 20 10.3 10.0 30 15.5 15.0 40 20.7 20.0 50 25.8 25.0
2 9.67 208 3 9.67 232 4 9.67 235 5 9.67 280 6 9.67 327 8 9.67 332 7 9.67 327 8 9.67 339 9 9.67 350 9 9.67 371 10 9.67 398 11 9.67 441 13 9.67 445 13 9.67 539 17 9.67 539 17 9.67 539 17 9.67 538 10 9.67 630 20 9.67 680 23 9.67 636 22 9.67 680 23 9.67 773 24 9.67 773 27 9.67 796 28 9.67 773 27 9.67 780 30 9.67 803 31 9.67 803 31 9.67 933 32 9.67 933 33 9.67 933 33 9.67 933 33 9.67 935 35 9.68 068 37 9.68 098 41 9.68 121 42 9.68 121 42 9.68 121 43 968 167 44 9.68 199 45 968 121	23 24 24 23 24 24 24 25 26 26 26 26 26 26 26 26 26 26 26 26 26	9.72 628 9 72 659 9.72 689 9 72 720 9 72 750 9 72 780 9 72 811 9.72 872 9.72 992 9 72 993 9 72 993 9 73 054 9.73 084 9 73 11.4	30 31 30 31 30 31 30 31 30 31 30 31 30 31	0.27 372 0.27 341 0.27 311 0.27 280 0.27 250 0.27 250 0.27 159 0.27 159 0.27 108 0.27 098 0.27 098 0.27 098 0.27 097 0.26 977	9.94 580 9.94 573 9.94 567 9.94 560 9.94 553 9.94 540 9.94 533 9.94 526 9.94 513 9.94 513 9.94 506	7 6 7 7 7 6 7 7 7	58 57 56 55 54 53 52 51 50 49 48 47	6 3.1 3.0 7 3.6 3.5 8 4.1 4.0 9 47 4.5 10 5.2 5.0 20 10.3 10.0 30 15.5 15.0 40 20.7 20.0
3 9.67 922 4 9.67 256 5 9.67 280 6 9.67 303 7 9.67 330 9 9.67 374 10 9.67 393 11 9.67 481 13 9.67 481 14 9.67 492 15 9.67 539 17 9.67 539 17 9.67 539 17 9.67 562 18 9.67 633 21 9.67 633 21 9.67 633 21 9.67 633 21 9.67 633 21 9.67 633 21 9.67 633 21 9.67 633 21 9.67 633 21 9.67 633 21 9.67 633 21 9.67 633 21 9.67 636 22 9.57 680 23 9.67 730 24 9.67 800 33 9.67 936 34 9.67 800 31 9.67 800 31 9.67 803 33 9.67 936 34 9.68 063 37 9.68 063 37 9.68 063 37 9.68 063 37 9.68 093 41 9.68 191 42 9.68 192 44 9.68 192 45 968 144 43 968 167 44 9.68 190 45 968 134	24 24 24 23 24 24 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 24 24 24 24 24 24 24 24 24 24 24 24	9 72 659 9.72 689 9 72 780 9 72 780 9 72 811 9 72 811 9.72 872 9.72 902 9 72 932 9 72 933 9 73 054 9 73 114	30 30 31 30 31 30 31 30 31 30 31 30	0.27 341 0.27 311 0.27 250 0.27 250 0.27 220 0.27 159 0.27 159 0.27 058 0.27 068 0.27 068 0.27 057 0.27 007	9.94 573 9.94 567 9.94 560 9.94 553 9.94 540 9.94 533 9.94 526 9.94 519 9.94 513 9.94 506	7 6 7 7 7 6 7 7 6 7	57 56 55 54 53 52 51 50 49 48 47	6 3.1 3.0 7 3.6 3.5 8 4.1 4.0 9 47 4.5 10 5.2 5.0 20 10.3 10.0 30 15.5 15.0 40 20.7 20.0
4 9.67 256 5 9.67 280 6 9.67 303 7 9.67 337 8 9.67 373 8 9.67 374 10 9.67 398 11 9.67 445 13 9.67 445 13 9.67 445 14 9.67 539 17 9.67 539 17 9.67 539 17 9.67 633 21 9.67 636 22 9.67 633 21 9.67 636 22 9.67 763 24 9.67 773 27 9.67 780 28 9.67 773 27 9.67 780 31 9.67 803 31 9.67 803 32 9.67 933 33 9.67 933 34 9.67 936 35 9.67 936 37 9.68 099 32 9.67 930 34 9.68 099 35 9.68 092 38 9.68 052 39 9.68 094 41 9.68 098 41 9.68 121 42 9.68 121 42 9.68 144 43 9.68 167 44 9.68 199 45 968 121	24 23 24 23 24 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 24 24 23 24 24 24 24 24 24 24 24 24 24 24 24 24	9.72 689 9 72 720 9 72 750 9 72 780 9 72 811 9 72 811 9.72 872 9.72 902 9 72 932 9 72 993 9 73 054 9 73 084 9 73 11.4	31 30 30 31 30 31 30 31 30 30 31	0.27 311 0.27 280 0.27 250 0.27 220 0.27 189 0.27 189 0.27 128 0.27 098 0.27 068 0.27 057 0.26 977	9.94 567 9.94 560 9.94 553 9.94 546 9.94 540 9.94 533 9.94 519 9.94 513 9.94 506	7 7 7 6 7 7 6 7	56 55 54 53 52 51 50 49 48 47	7 3.6 3.5 8 4.1 4.0 9 4 7 4.5 10 5.2 5.0 20 10.3 10.0 30 15.5 15.0 40 20.7 20.0
5 9.67 280 6 9.67 303 7 9.67 327 8 9 67 337 8 9 67 339 9 9 67 374 10 9.67 398 11 9 67 441 12 9.67 492 13 9.67 468 14 9 67 492 15 9.67 552 18 9.67 563 19 9.67 636 19 9.67 636 22 9.67 633 21 9 67 636 22 9.67 638 23 9.67 636 22 9.67 680 23 9.67 753 24 9.67 750 25 9.67 750 26 9.67 773 27 9 67 796 28 9 67 820 29 9.67 843 30 9.68 80 31 9 67 850 31 9 68 850 32 9 68 850 34 9 68 852 39 9 68 8 852 39 9 68 8 852 39 9 68 8 852 39 9 68 8 144 43 9 68 167 44 9 68 167 44 9 68 167 45 9 68 213	23 24 23 .24 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 24 24 24 24 24 24 24 24 24 24 24 24	9 72 720 9 72 750 9 72 780 9 72 811 9 72 811 9 72 82 9 72 902 9 72 903 9 72 903 9 73 903 9 73 084 9 73 114	30 31 30 31 30 31 30 31 30 31	0.27 250 0.27 220 0.27 189 0.27 159 0.27 098 0.27 068 0.27 037 0.27 007	9.94 553 9.94 546 9 94 540 9 94 533 9 94 526 9 94 519 9.94 513 9 94 506	7 7 6 7 7 7 6	54 53 52 51 50 49 48 47	8 4.I 4.0 9 47 4.5 10 5.2 5.0 20 10.3 10.0 30 15.5 15.0 40 20.7 20.0
6 9.67 303 7 9.67 335 9 9.67 335 9 9.67 335 11 9.67 398 11 9.67 421 12 9.67 468 13 9.67 468 14 9.67 539 17 9.67 562 18 9.67 539 17 9.67 562 18 9.67 633 21 9.67 636 22 9.67 680 23 9.67 636 22 9.67 680 23 9.67 726 25 9.67 775 27 9.67 726 28 9.67 843 30 9.67 843 30 9.67 806 31 9.67 806 31 9.67 806 31 9.67 806 31 9.67 806 31 9.67 806 31 9.67 806 31 9.67 806 31 9.68 805 32 9.67 913 33 9.67 936 34 9.68 806 37 9.68 806 37 9.68 806 37 9.68 809 41 9.68 121 42 9.68 121 42 9.68 121 42 9.68 121 43 9.68 167 44 9.68 190 45 968 213	24 23 .24 24 23 24 23 24 23 24 23 24 23 24 23 24	9 72 780 9 72 811 9 72 841 9 72 872 9 72 902 9 72 902 9 72 903 9 73 023 9 73 054 9 73 084 9 73 114	30 31 30 31 30 31 30 31	0.27 220 0.27 189 0.27 159 0.27 128 0.27 098 0.27 068 0.27 037 0.27 007	9.94 553 9.94 546 9 94 540 9 94 533 9 94 526 9 94 519 9.94 513 9 94 506	7 6 7 7 7 6	53 52 51 50 49 48 47	9 47 4.5 10 5.2 5.0 20 10.3 10.0 30 15.5 15.0 40 20.7 20.0
8 9 67 350 9 9 67 374 10 9.67 398 11 9 67 421 12 9.67 458 13 9.67 468 14 9 67 492 15 9.67 552 18 9.67 553 10 9.67 560 20 9.67 636 22 9.67 636 22 9.67 636 23 9.67 636 24 9.67 750 26 9.67 773 27 9 67 796 28 9.67 773 27 9 67 796 28 9.67 780 30 9.67 803 31 9.67 803 31 9.67 913 33 9.67 93 34 9.67 95 35 9.67 95 36 9.68 052 39 9.68 052 39 9.68 052 39 9.68 052 39 9.68 052 39 9.68 094 41 9.68 121 42 968 164 43 968 167 44 9.68 193 45 968 134	23 .24 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24	9 72 811 9 72 841 9 72 841 9 72 902 9 72 902 9 72 903 9 72 993 9 73 023 9 73 084 9 73 114	30 30 31 30 31 30	0.27 189 0.27 159 0.27 128 0.27 098 0.27 068 0.27 037 0.27 007	9 94 540 9 94 533 9 94 526 9 94 519 9.94 513 9 94 506	6 7 7 7 6 7	52 51 50 49 48 47	20 10.3 10.0 30 15.5 15.0 40 20.7 20.0
9 9 67 374 10 9,67 398 11 9,67 445 13 9,67 445 13 9,67 445 13 9,67 492 15 9,67 539 17 9,67 539 17 9,67 539 20 9,67 633 21 9,67 636 22 9,67 636 23 9,67 703 24 9,67 775 25 9,67 750 26 9,67 773 27 9,67 805 31 9,67 805 32 9,67 936 33 9,67 936 34 9,67 936 35 9,67 936 36 9,68 029 37 9,68 029 38 9,68 029 38 9,68 052 39 9,68 098 41 9,68 098 41 9,68 098 41 9,68 098 41 9,68 121 42 968 144 43 968 167 44 9,68 199 45 968 143	24 23 24 23 24 23 24 23 24 23 24 23 24 23 24 23 24	9 72 841 9.72 872 9.72 902 9 72 932 9 72 963 9 72 993 9 73 023 9 73 084 9 73 114	30 31 30 31 30 31	0.27 159 0.27 128 0.27 098 0.27 068 0.27 037 0.27 007	9 94 533 9 94 526 9 94 519 9.94 513 9 94 506	7 7 6 7	51 50 49 48 47	30 15.5 15.0 40 20.7 20.0
10 9.67 398 11 9 967 445 13 9.67 445 13 9.67 445 13 9.67 468 14 9 967 492 15 9.67 515 16 9.67 539 17 9.67 560 20 9.67 680 23 9.67 636 22 9.67 680 23 9.67 726 25 9.67 773 27 9 67 796 28 9 67 820 29 9.67 843 30 9.67 808 31 9.67 936 32 9.67 936 33 9.67 936 34 9.67 936 35 9.68 065 37 9.68 069 38 9.68 052 39 9.68 052 39 9.68 098 41 9.68 121 42 968 144 43 968 167 44 9.68 190 45 968 131	23 24 23 24 23 24 23 24 23 24 23 24 23 24	9.72 872 9.72 902 9 72 932 9 72 963 9 72 993 9.73 023 9.73 054 9.73 084 9.73 114	30 31 30 30 30	0.27 128 0.27 098 0.27 068 0.27 037 0.27 007	9 94 526 9 94 519 9 94 513 9 94 506	7 6 7	50 49 48 47	40 20.7 20.0
11 9 67 421 112 9.67 448 13 9.67 448 14 9 67 492 15 9.67 539 17 9.67 552 18 9.67 562 18 9.67 656 10 9.67 650 20 9.67 633 21 9 67 656 22 9.67 680 23 9.67 726 25 9.67 726 25 9.67 726 26 9.67 820 27 9.67 800 31 9.67 800 31 9.67 800 31 9.67 800 31 9.67 800 31 9.67 800 31 9.67 800 32 9.67 913 33 9.67 936 34 9.68 069 37 9.68 006 37 9.68 006 37 9.68 009 41 9.68 121 42 9.68 194 43 968 167 44 9.68 190 45 968 213	24 23 24 23 24 23 24 23 24 23 24 23 24 23	9.72 902 9 72 932 9 72 963 9 72 993 9.73 023 9 73 054 9.73 084 9 73 114	30 31 30 31	0.27 098 0.27 068 0.27 037 0.27 007 0.26 977	9 94 519 9.94 513 9 94 506	6 7	49 48 47	
13 9.67 468 14 9 67 492 15 9.67 515 16 9.67 539 17 9.67 560 28 9.67 586 10 9.67 630 22 9.67 636 22 9.67 680 23 9.67 726 25 9.67 773 27 9 67 7750 26 9.67 843 30 9.67 803 31 9.67 938 32 9.67 933 24 9.67 973 27 9 67 896 38 9 67 820 29 9.67 843 30 9.68 063 31 9.67 913 33 9.67 933 34 9.67 953 35 9.68 068 37 9.68 068 37 9.68 068 37 9.68 069 41 9.68 121 42 968 141 43 968 167 44 9.68 190 45 968 968 075	23 24 23 24 23 24 23 24 23 24 23 24 23	9 72 963 9 72 993 9.73 023 9 73 054 9.73 084 9 73 114	31 30 31	0.27 037 0.27 007 0.26 977	9 94 506	7	47	ł
14 9 67 492 15 9.67 515 16 9.67 539 17 9.67 562 18 9.67 660 20 9.67 660 21 9.67 680 23 9.67 726 25 9.67 773 27 9.67 773 27 9.67 796 28 9.67 841 30 9.67 843 30 9.67 800 31 967 893 32 9.67 913 33 9.67 936 34 967 959 35 9.67 942 36 9.68 052 39 9.68 052 39 9.68 052 39 9.68 052 39 9.68 094 41 9.68 191 42 9.68 194 43 968 167 44 9.68 190 45 968 213	24 23 24 23 24 23 24 23 24 23	9 72 993 9.73 023 9 73 054 9.73 084 9 73 114	30 30 31	0.27 007				
15 9.67 515 16 9.67 539 17 9.67 539 17 9.67 539 19 9.67 536 10 9.67 636 20 9.67 633 21 9.67 656 22 9.67 686 23 9.67 703 24 9.67 773 27 9.67 775 28 9.67 773 27 9.67 780 38 9.67 803 31 9.67 803 32 9.67 913 33 9.67 936 34 9.67 936 35 9.68 029 36 076 37 9.68 029 38 9.68 052 39 9.68 052 39 9.68 052 39 9.68 052 39 9.68 052 39 9.68 052 39 9.68 052 39 9.68 121 42 9.68 194 43 968 167 44 9.68 199 45 968 143	23 24 23 24 23 24 23 24 23 24	9.73 023 9 73 054 9.73 084 9 73 114	30 31	0.26 977	9 94 499		46	
16 9.67 539 17 9.67 562 18 9.67 586 10 9.67 636 20 9.67 636 22 9.67 680 23 9.67 763 24 9.67 726 25 9.67 773 27 9 67 776 28 9 67 820 29 9.67 843 30 9.67 803 31 9.67 913 33 9.67 936 34 9 67 959 35 9.68 005 37 9.68 009 38 9.68 005 39 9.68 005 39 9.68 005 39 9.68 005 39 9.68 005 39 9.68 005 39 9.68 005 39 9.68 009 41 9.68 121 42 9.68 194 43 968 167 44 9.68 190 45 968 134	23 24 23 24 23 24 23	9 73 054 9.73 084 9 73 114		0.20 9//	0.04.400	7		6 2.9
17 9.67 562 18 9.67 660 20 9.67 660 21 9.67 680 22 9.67 680 23 9.67 726 25 9.67 773 27 9.67 776 28 9.67 820 29 9.67 841 30 9.67 800 31 9.67 800 32 9.67 913 33 9.67 936 34 967 890 35 9.67 936 36 9.68 006 37 9.68 006 37 9.68 006 37 9.68 006 37 9.68 009 41 9.68 121 42 9.68 191 42 968 144 43 968 167 44 9.68 190 45 968 213	24 23 24 23 24 23	9.73 084 9 73 114	30	0.26 946	9 94 492 9 94 485	7	45 44	6 2.9 7 3.4
10 9.67 600 20 9.67 633 21 9 67 636 22 9.67 680 23 9.67 726 25 9.67 726 25 9.67 750 26 9.67 780 27 9 67 796 28 9 67 820 31 9 67 800 31 9 67 800 31 9 67 800 32 9.67 913 33 9.67 936 34 9 67 959 35 9.67 942 36 9.68 006 37 9.68 009 37 9.68 009 38 9.68 052 39 9 68 075 40 9.68 094 41 9.68 121 42 9 68 144 43 9 68 167 44 9.68 190 45 9 68 213	23 24 23 24 23	9 73 114		0.26 916	9.91 479	6	43	8 3.9
20 9.67 633 21 9 67 656 22 9.67 680 23 9.67 703 24 9.67 726 25 9.67 750 26 9.67 773 27 9 67 796 28 9 67 820 29 9.67 843 30 9.67 806 31 9 67 806 32 9.67 913 33 9.67 936 34 9 67 959 35 9.68 029 36 9.68 029 37 9.68 029 38 9.68 052 39 968 075 40 9.68 098 41 9.68 121 42 968 144 43 968 167 44 968 196	24 23 24 23	1 0 72 T 4 4	30 30	0.26 886	9 94 472	7	42	9 4.4
21 9 67 656 22 9.67 680 23 9.67 703 24 9.67 703 24 9.67 773 26 9.67 773 27 9 67 796 28 9 67 820 29 9.67 843 30 9.67 803 31 9.67 913 33 9.67 913 33 9.67 953 34 9.67 953 35 9.68 006 37 9.68 009 38 9.68 052 39 9.68 052 39 9.68 098 41 9.68 121 42 968 144 43 968 167 44 9.68 190 45 968 193	23 24 23	9 73 144	31	0.26 856	9 94 465	7	41	10 48
22 9.67 680 23 9.67 703 24 9.67 703 24 9.67 750 26 9.67 750 26 9.67 796 28 9.67 841 30 9.67 800 31 9.67 800 32 9.67 936 33 9.67 936 34 9.67 936 34 9.67 936 35 9.67 932 36 9.68 006 37 9.68 006 37 9.68 009 41 9.68 121 42 9.68 194 43 968 167 44 9.68 190 45 968 213	24 23	9.73 175	30	0 26 825	9 94 458	7	40	20 9 <i>7</i> 30 14.5
23 9.67 703 24 9.67 726 25 9.67 750 26 9.67 773 27 9 67 796 28 9.67 800 29 9.67 843 30 9.67 800 31 9.67 800 32 9.67 936 34 9.67 936 35 9.67 936 36 9.68 029 38 9.68 052 39 9.68 052 39 9.68 052 39 9.68 052 40 9.68 098 41 9.68 121 42 9.68 144 43 9.68 167 44 9.68 190 45 968 167		9 73 205 9 73 235	30	0 26 795	9 94 45I 9 94 445	6	39 38	40 19 3
24 9.67 726 25 9.67 750 26 9.67 773 27 9 67 796 28 9 67 820 29 9.67 843 30 9.67 800 31 9.67 800 32 9.67 913 33 9.67 936 34 9 67 959 35 9.68 006 37 9.68 009 38 9.68 052 39 9.68 052 39 9.68 052 39 9.68 052 40 9.68 094 41 9.68 121 42 9.68 121 42 9.68 167 44 9.68 190 45 9 68 213		9 73 265	30	0.26 735	9 94 438	7	37	50 24.2
26 9.67 773 27 9 67 796 28 9 67 820 29 9.67 843 30 9.67 890 31 9 67 890 32 9.67 913 33 9.67 936 34 9 67 959 35 9.68 029 38 9.68 052 39 9 68 075 40 9.68 098 41 9.68 121 42 9 68 144 43 9 68 167 44 9.68 199 45 9 68 213	23	9 73 295	30	0 26 705	9 94 431	7	36	
27 9 67 796 28 9 67 843 29 9.67 843 30 9.67 800 31 9 67 800 32 9.67 936 34 9 67 959 35 9.67 936 36 9.68 006 37 9.68 006 37 9.68 005 38 9.68 052 39 9.68 052 39 9.68 052 40 9.68 094 41 9.68 121 42 9.68 121 42 9.68 167 44 9.68 190 45 9 68 213	24	9 73 325	31 30	0 26 674	9 94 424	7	35	
28 9 67 820 29 9.67 841 30 9.67 843 31 9.67 890 32 9.67 913 33 9.67 936 34 9 67 959 35 9.67 936 36 9.68 06 37 9.68 029 38 9.68 052 39 968 075 40 9.68 094 41 9.68 121 42 968 141 43 968 167 44 9.68 190 45 968 213	23	9 73 356	30	0.26 644 0.26 614	9 94 417	7	34	6 2.4 2.3
29 9.67 843 30 9.67 866 31 967 896 32 9.67 913 33 9.67 936 34 967 953 35 9.68 068 37 9.68 029 38 9.68 052 39 9.68 052 39 9.68 052 40 9.68 098 41 9.68 121 42 968 144 43 968 167 44 9.68 199 45 968 213	24	9 73 386 9.73 416	30	0.26 584	9 94 410 9 94 404	6	33 32	7 2.8 2.7
31 9 67 890 32 9.67 913 33 9.67 936 34 9 67 959 35 9.68 968 06 36 9.68 06 37 9.68 029 38 9.68 052 39 968 075 40 9.68 094 41 9.68 194 42 968 144 43 968 167 44 9.68 199 45 968 213	23	9 73 446	30	0.26 554	9 94 397	7	31	8 3.2 31
32 9.67 913 33 9.67 959 34 9 67 959 35 9.68 968 968 968 968 968 968 968 968 968 9	23	9 73 476	30	0.26 524	9 94 390	7	30	9 3.6 3.5
33 9.67 936 34 9 67 936 35 9.67 932 36 9.68 006 37 9.68 029 38 9.68 052 39 9.68 075 40 9.68 094 41 9.68 144 42 968 144 43 968 167 44 9.68 190 45 9 68 213	24 23	9 73 507	31 30	0.26 493	9 94 383	7	29	10 40 3.8 20 80 7.7
34 9 67 959 35 9.67 982 36 9.68 006 37 9.68 029 38 9.68 075 39 9 68 075 40 9.68 094 41 9.68 121 42 9 68 141 43 9 68 167 44 9.68 190 45 9 68 213	23	9 73 537	30	0.26 463 0.26 433	9 94 376	7	28 27	30 120 115
35 9.67 982 36 9.68 006 37 9.68 029 38 9.68 052 39 968 075 40 9.68 094 41 9.68 124 42 968 144 43 968 167 44 9.68 190 45 968 213	23	9 73 567 9 73 59 <i>1</i>	30	0.26 403	9 94 369 9 94 362	7	26	40 16.0 153
36 9.68 006 37 9.68 029 38 9.68 052 39 9.68 075 40 9.68 094 41 9.68 194 42 9.68 144 43 9.68 190 44 9.68 190 45 9.68 213	23	9 73 627	30	0.26 373	9 94 355	7	25	50 200 19.2
38 9.68 o52 39 9.68 o75 40 9.68 o93 41 9.68 121 42 9.68 144 43 9.68 190 44 9.68 190 45 9.68 243	24	9 73 657	30	0 26 343	9 94 349	6	2.1	
39 9 68 075 40 9.68 096 41 9.68 121 42 9 68 144 43 9 68 167 44 9.68 190 45 9 68 213	23 23	9.73 687	30 30	0.26 313	9.94 342	7	23	22
40 9.68 094 41 9.68 121 42 9.68 144 43 9.68 167 44 9.68 190 45 9.68 213	23	9.73 717 9 73 747	30	0.26 283 0 26 253	9 94 335	7	22	6 22
41 9.68 121 42 9 68 144 43 9 68 167 44 9.68 190 45 9 68 213	23	973747	30	0.26 223	9 94 321	7	20	7 2.6
42 9 68 144 43 9 68 167 44 9.68 190 45 9 68 213	23	973 807	30	0.26 193	9 94 314	7	10	8 29
44 9.68 190 45 9 68 213	23	9 73 837	30	0 26 163	9 94 307	7	18	9 33
45 9 68 213	23 23	9.73 867	30 30	0.26 133	9.94 300	7	17	10 3.7 20 7.3
	23	9 73 897	30	0 26 103	9 94 293	7	16	30 11.0
	24	9 73 927 9 73 957	30	0.26 073 0 26 043	9 94 286 9 94 279	7	15 14	40 14 7
47 9.68 260	23	9 73 987	30	0 26 013	9 94 273	6	13	50 18.3
48 9.68 283	23	9 74 017	30	0 25 983	9 94 266	7	12	
49 9.68 305	22 23	9 74 047	30	0.25 953	9 94 259_	7	11	1716
50 9.68 328	23	9.74 077	30	0 25 923	9.94 252	7	10	6 07 0.6
51 9.68 351 52 9.68 374	23	9 74 IO7 9 74 I37	30	0.25 893 0 25 863	9 94 245	7	9	7 0.8 0.7
53 9.68 397	23	9.74 166	29	0.25 834	9 94 231	7	7 6	8 09 0.8
54 9.68 427	23	9.74 195	30	0.25 804	9.94 224	7	6	9 1.1 0.9
55 9.68 443	23 23	9 74 226	30	0 25 774	9 94 217	7	.5	20 2 3 2.0
56 9 68 466 57 9.68 489	23	9.74 256	30	0.25 744	9 94 210	7	4	30 3.5 3.0
57 9.68 489 58 9.68 512		9.74 286 9.74 316	30	0.25 714 0.25 684	9 94 203	7	3	40 4.7 4.0
59 9.68 534	23	9.74 345	29	0 25 655	9.94 189	7	ī	50 5.8 5.0
60 9.68 557	22	9 74 375	30	0.25 623	9 94 182	7	0	
L. Cos.		L. Cotg.	c. d.	L.Tang.	L. Sin.	d.	,	Prop. Pts.

1	L. Siu.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
V	9.68 557		9.74 375	T	0.25 623	9.94 182	_	60	
1	9.68 580	23	9.74 405	30	0.25 595	9.94 175	7	59	ŀ
3	9.68 603 9.68 625	22	9.74 435	30	0.25 565	9.94 168 9.94 161	7	58 57	30
4	9.68 648	23	9.74 494	29	0.25 506	9.94 154	7	56	6 3.o 7 3.5
5	9.68 671	23	9 74 524	30	0.25 476	9.94 147	7	55	8 4.0
6	9 68 694	23	9.74 554	30 29	0.25 446	9.94 140	7	54	9 4.5
7 8	9.68 716	23	9 74 583	30	0.25 417	9.94 133	7	53	10 5.0
ů	9 68 739 9 68 762	23	9.74 613 9.74 643	30	0.25 387	9 94 126 9.94 119	7	52 51	20 10.0 30 15.0
10	9.68 784	22	9.74 673	30	0.25 327	9.94 112	7	50	40 20.0
11	9 68 807	23	9.74 702	29	0.25 298	9.94 105	7	49	50 25.0
12	9.68 829	22	9.74 732	30	0.25 268	9.94 098	7 8	48	
13	9 68 852	23 23	9 74 762	29	0.25 238	9 94 090	7	47	
14	9 68 875	22	9.74 791	30	0.25 209	9 94 083	7	_46_	6 2.0
15	9.68 920	23	9.74 821	30	0.25 179	9.94 076 9 94 069	7	45 44	6 2.9 7 3.4
17	9 68 942	22	9.74 880	29	0.25 120	9 94 062	7	43	8 3.9
18	9 68 965	23	9 74 910	30	0.25 090	9.94 055	7	42	9 4.4
19	9.68 987	23	9 74 939	30	0 25 061	9 94 048	7	41	10 4.8
20	9.69 010	22	9.74 969	29	0.25 031	9.94 041	7	40 39	20 9.7 30 14.5
22	9 69 032 9.69 055	23	9.74 998 9.75 028	30	0.25 002 0.24 972	9 94 034 9 94 027	7	39	40 19.3
23	9 69 077	22	9.75 058	30	0.24 942	9.94 020	7	37	50 24.2
24_	9.69 100	23	9 75 087	29 30	0.24 913	9 94 012	8 7	_36	
25	9.69 122	22	9 75 117	29	0.24 883	9 94 005	7	35	
26 27	9.69 144 9.69 167	23	9.75 146 9.75 176	30	0.24 854	9 93 998	7	34 33	6 2.3
28	9 69 189	22	9.75 205	29	0.24 824	ς 93 991 9 93 984	7	32	
29	9.69 212	23	9.75 235	30	0.24 765	993977	7	31	8 3.1
30	9.69 234	22	9 75 26 +	29	0.24 736	9 93 970	7	30	9 3.5
31	9 69 256	22	9 75 29 +	30 29	0.24 706	9 93 963	7 8	29	10 3.8 20 7.7
32 33	9.69 279 9 69 301	22	9.75 323 9.75 353	30	0.24 6/7	9.93 955 9 93 948	7	28 27	30 11.5
34	9.69 323	22	9.75 382	29	0.24 618	9 93 941	7	26	40 15.3
35	9.69 345	22	9.75 411	29	0 24 589	9.93 934	7	25	50 19.2
36	9.69 368	23 22	9.75 441	30	0.24 559	9.93 927	7	24	
37	9 69 390	22	9.75 470	29 30	0 24 530	9.93 920	7 8	23	22
38 39	9 69 412	22	9 75 500 9.75 529	29	0.24 500 0.24 471	9 93 912	7	21	6 2.2
40	9.69 456	23	9.75 558	29	0.24 442	9 93 898	7	20	7 2.6
41	9.69 479	23	9 75 588	30	0.24 412	9.93 891	7	19	8 2.9
42	9.69 501	22	9.75 617	29 30	0.24 383	9.93 884	7 8	18	9 3.3 10 3.7
43	9.69 523	22	9.75 647 9.75 676	29	0.24 353	9 93 876 9 93 869	7	17 16	20 7.3
44	9.69 545 9.69 567	22	9.75 705	29	0.24 324	9 93 862	7	15	30 11.0
45 46	9.69 589	22	9.75 735	30	0.24 265	9 93 855	7	14	40 14.7
47	9.69 611	22	9.75 764	29	0.24 236	9.93 847	8	13	50 18.3
48	9.69 633	22	9 75 793	29 29	0.24 207	9 93 840	7	12	
. 49	9.69 655	22	9.75 822	30	0.24 178	9.93 833	7	10	18 7
50 51	9.69 677 9.69 699	22	9.75 852 9.75 881	29	0.24 148	9.93 826 9 93 819	7	9	6 0.8 0.7
52	9.69 721	22	9.75 910	29	0.24 090	9.93 811	8	8	7 0.9 0.8
53	9.69 743	22	9.75 939	29	0.24 061	9.93 804	7	7	8 1.1 09 9 1.2 1.1
_54	9.69 765	22	9.75 969	30 29	0.24 031	9.93 797	7 8	6	10 1.3 1.2
55	9 69 787	22	9.75 998	29	0.24 002	9.93 789	7	5	20 2.7 2.3
56 57	9.69 809 9.69 831	22	9.76 027 9.76 056	29	0.23 973	9.93 782 9 93 775	7	4 3	30 4.0 3.5
58	9.69 853	22	9.76 086	30	0.23 914	9 93 768	7	2	40 5.3 4.7 50 6.7 5.8
59	9.69 875	22 22	976 113	29 20	0.23 885	9 93 760	8	1	30 (0.7) 3.0
60	9.69 897		9.76 144	9	0.23 856	9.93 753	′	0	
	L. Cos.	d.	L. Cotg.	c. d.	L.Tang.	L. Sin.	d.	,	Prop. Pts.
-					60°			_	

262					30,				
'	L. Sin.	d.	L. Tang	c. d	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.69 897		9.76 144		0.23 856	9.93 753	T	60	
1	9.69 919	22	9.76 173	29	0.23 827	9.93 746	8	59	1
2	9.69 941	22	9.76 202	29	0.23 798	9.93 738	7	58	30 99
3	9.69 963	21	9.76 231 9.76 261	30	0.23 769	9.93 731	7	57 56	6 3.0 2.9
4	9.70 006	22	9.76 290	29	0.23 710	9.93 724	7	55	7 3.5 3.4
5 6	9.70 028	22	9.76 319	29	0.23 681	9.93 709	8	54	8 4.0 3.9 9 4.5 4.4
7	9.70 050	32	9.76 348	29	0.23 652	9.93 702	7	53	10 5.0 4.8
8	9.70 072	22	9.76 377	29	0.23 623	9.93 695	8	52	20 10.0 9.7
9	9.70 093	22	9.76 406	29	0.23 594	9.93 687	7	51	30 15.0 14.5
10	9.70 115	22	9.76 435	20	0.23 565	9.93 680	7	50	40 20.0 19.3 50 25.0 24.2
11	9.70 137 9.70 159	22	9.76 464 9.76 493	29	0.23 536	9.93 673 9.93 665	8	49 48	30 23.0 24.2
13	9.70 180	21	9.76 522	29	0.23 478	9 93 658	7	47	
14	9.70 202	23	9.76 551	29	0 23 449	9 93 650	8	46	1 28
15	9.70 224	22	9 76 580	29	0,23 420	9 93 643	7	45	6 2.8
16	9.70 245	21	9.76 609	29	0.23 391	9.93 636	8	44	7 3.3
17	9.70 267	22	9.76 639	30	0.23 361	9 93 628	7	43	8 3.7
18	9.70 288	21	9 76 668	29	0.23 332	9.93 621	7	42	9 42 10 4.7
19 20	9.70 310	22	9.76 697	28	0.23 303	9 93 614	8	41 40	10 4.7 20 9.3
21	9.70 332 9.70 353	21	9.76 725 9.76 754	29	0.23 275	9 93 606 9 93 599	7	39	30 14.0
22	9.70 353	22	9.76 783	29	0.23 240	9.93 591	8	38	40 18.7
23	9.70 396	21	9.76 812	29	0.23 188	9 93 584	7	37	50 23 3
24	9.70 418	22 21	9 76 841	29	0.23 159	9.93 577	7 8	36	
25	9.70 439	22	9.76 870	29	0.23 130	9.93 569	7	35	
26	9.70 461	22	9.76 899	29	C.23 IOI	9.93 562	8	34	22
27 28	9.70 482 9 70 504	22	9.76 928 9.76 957	29	0.23 072	9.93 554	7	33 32	6 2.2 7 2.6
20	9.70 525	21	9.76 986	29	0.23 014	9.93 547 9.93 539	8	31	8 2.9
30	9.70 547	23	9.77 015	29	0.22 985	9 93 532	7	30	9 3.3
31	9.70 568	21	9.77 044	29	0.22 956	9.93 525	7	29	10 3.7
32	9.70 590	22	9.77 073	29	0.22 927	9 93 517	8	28	20 7.3
33	9.70 611	21	9.77 IOI	28 29	0.22 899	9.93 510	7 8	27 26	30 11.0 40 14.7
34	9.70 633	21	9.77 130	29	0 22 870	9.93 502	7		50 18.3
35 36	9.70 654 9.70 675	21	9.77 159 9.77 188	20	0.22 841	9.93 495	8	25 24	
37	9.70 697	22	9.77 217	39	0.22 783	9.93 487 9.93 480	7	23	
38	9.70 718	21	9.77 246	29	0.22 754	9.93 472	8	22	21
39	9.70 739	21	9.77 274	28	0.22 726	9 93 465	7 8	21	6 2. <u>r</u>
40	9.70 761	22	9-77 393	29	0.22 697	9.93 457		20	7 2.5 8 2.8
41	9.70 182	21	9.77 332	29	0.22 668	9 93 450	7 8	19	8 2.8 9 3.2
42	9.70 803 9.70 824	21	9.77 361	29	0.22 639 0.22 610	9.93 442	7	18 17	10 3.5
43 44	9.70 824	22	9 77 390 9.77 418	28	0.22 582	9.93 43 5 9 93 427	8	16	20 7.0
45	9.70 867	21	9 77 447	29	0.22 553	9 93 420	7	15	30 10.5
46	9.70 888	21	9.77 476	29	0.22 524	9.93 412	8	14	40 14.0 50 17.5
47	9.70 909	21	9.77 503	29	0.22 495	9.93 403	7 8	13	30 1/.3
48	9.70 93I	22 21	9.77 533	28 29	0.22 467	9.93 397	7	12	
49	9.70 952	21	9.77 562	29	0.22 438	9.93 390	8	11	1817
50 51	9.70 973	21	9.77 591	28	0.22 409	9.93 382	7	10	6 0.8 0.7
51 52	9.70 994 9.71 015	21	9.77 619 9.77 648	29	0.22 381	9.93 375	8	9	7 0.9 0.8
53	9.71 036	21	9.77 677	29	0.22 323	9.93 360	7	7	8 1.1 0.9
54	9.71 058	22	9.77 706	29	0.22 294	9 93 352	8	6	9 1.2 1.1
55	9.71 079	21	9.77 734	28	0.22 266	9.93 344		5	10 1.3 1.2
56	9.71 100	21 21	9.77 763	29 28	0.22 237	9.93 337	7 8	4	30 4.0 3.5
57 58	9.71 121	21	9.77 791	29	0.22 209	9 93 329	7	3	40 5.3 4.7
59	9.71 142	21	9 77 820 9.77 849	29	0.22 180 0.22 151	9.93 322 9 93 314	8	1	50 6.7 5.8
60	9.71 184	21	9.77 877	28	0.22 123	9.93 307	7	0	
	L. Cos.	d.	L. Cotg.	c. d.		L. Sin.	d.	,	Prop. Pts.

1	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.71 184	21	9.77 877	20)	0 22 123	9 93 307	8	60	
1 2	971205 9712⊒6	21	9 77 906	29	0 22 094	9 93 299	8	59 58	
3	971 247	21	9 77 963	28	0.22 037	9 93 284	7	57	6 29
4	971 208	21 21	9 77 992	29 ∡8	0 22 008	9 93 276	8	50	7 34
,5	971 289	21	9 78 020	20	0 21 980	9 93 269	7 8	55	8 39
6	971 310	21	9 78 049	28	0 21 951	9 93 261	8	54	9 44
7 8	971 331	21	9 78 077	20)	0 21 923	9 93 253	7	53 5≥	10 48 20 97
9	971 373	21	9 78 135	29	0 21 865	9.93 238	8	51	30 145
10	9 71 393	20	9 78 163	28	0,21 837	9.93 230	8	50	40 193
11	97141	2 I 2 I	9 78 192	29 28	0 21 808	993223	8	49	50 24.2
12	9 71 435	21	9 78 220	20	0 21 780	993 215	8	48	
13	971 456 971 477	21	9 78 249 9 78 27 7	28	0 21 751	9 93 207	7	47	
1.1	971 477	21	9 78 306	29	0 21 694	9 93 192	8	46	28 6 28
10	971 498	21	9 78 331	8٠.	0 21 666	9 93 181	8	45 44	7 33
17	971 539	20	9 78 303	20	0 21 637	9 93 177	7	43	8 37
18	9 71 500	21	9 78 391	28 28	0 21 609	9 93 169	8	42	9 42
10	971 581	21	9 78 410	20	0 21 581	_9 93 161 	7	41	10 47
20	971 602	20	9 78 448	28	0 21 552	9 93 154	8	10	20 93 30 140
2I 22	971 622	21	9 78 476 9 78 505	29	0 21 524	993116	8	39 38	40 18 7
23	971 664	21	9 78 533	28	0 21 407	9 93 131	7	37	50 23 3
21	971 685	21	9.78.502	29	0 21 438	9 93 123	8	36	
25	9 71 705	20	9 78 500	28 .o	0 21 410	993115	1	35	
26	971726	21	9 78 618	28 20	0 21 382	0 93 108	7 8	34	21
27 28	971747	20	9 78 647 9 78 675	28	0 21 353	9 93 092	8	33 32	6 2 1 7 2 5
20	971 788	21	9 78 701	20)	021 325	9 03 084	8	31	8 28
30	971 809	21	9.78 732	28	0 21 208	9 93 977	7	30	9 32
31	971 820	20	9 78 700	⊿8	0 21 240	9 93 009	8	29	10 35
32	971 850	21	9 78 789	29 28	0 21 211	9 93 061	8	28	20 70 30 105
33	9 71 870	20 21	9 78 817	28	0 21 183	9 93 953	7	27	40 14 0
34	9.71 891	20	9.78 845	29	0 21 155	9 93 046	8	26	50 17.5
35 36	971911	21	9 78 87 1	28	0 21 126	9 93 038 9 93 030	8	25 24	
37	971 952	20	9 78 930	28	0 21 070	9 93 022	8	23	
38	971 973	21	9.78 959	29	0 21 041	9 43 014	8	22	20
39	9.71 994	21 20	9 78 987	28	0.51.013	9 93 007	7 8	21	6: 20
40	972014	20	9 79 015	. 28	0.20 085	9 93 999	8	20	7 23 8 27
4I	972 931	21	9 79 043	.:9	0 20 957	9 92 991	8	19 18	9 30
42 43	9 72 055	20	0 79 072	. 9	0 20 928	992983	7	17	10 33
43	9.72.096	21	0 70 128	28	0 20 872	9 92 968	8	16	20 07
+5	9 72 110	20	9 79 150	28	0 20 844	9 42 960	8	15	30 100 40 13 3
46	9 72 137	21	9 79 185	20	0 20 815	9 92 952	8	14	50 167
47	9 72 157	20	979213	-8	0 20 787	9 92 9 14	8	13	
48 49	9 72 177	21	9.79.241 9.79.269	28	0 20 750	9 92 936	7	12	
50	9 72 213	20	9.79 207	28	0 20 703	9 92 921	8	10	8 7
51	9 72 238	20	9.79 207	20	0.20 074	9 92 921	8	Q	6 08 07
52	9 72 259	_ I	9 79 351	28	0 20 646	0 02 905	8	8	7 c 9 o.8 8 I I o.9
53	9 72 270	20 20	9.79 382	28 28	0 20 018	9 92 897	8	7	9 12 1.1
5.4	9 72 290	21	9 70 410	28	0 20 590	9.92 889	8	6	10 1.3 1 2
55 50	9.72 320	20	9 79 43 ⁸ 9 79 466	28	0.20 562	9 92 881	7	5	20 2.7 2.3
57	9 72 340	20	9 79 400	20	0.20 505	9 92 855	8	4 3	30 40 3.5
58	972 381	21	979 523	28	0 20 477	0 02 858	8	2	40 53 47 50 67 58
_59	9.72.401	20	9 79 551	28	0 20 410	9 92 850	8	1	1
60	9 72 421		9.7 9 579		0 20 421	9 92 842	1	U	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	,	Prop. Pts.

204				,	02				
<u></u>	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.72 421	1	9.79 579	-0	0.20 421	9.92 842		60	
1	9.72 441	20	9.79 607	28 28	0.20 393	9.92 834	8	59	
2	9.72 461	21	9.79 635	28	0.20 363	9.92 826	8	58	29 28
3 4	9.72 482 9.72 502	20	9.79 663 9.79 691	28	0.20 337	9.92 818 9.92 810	8	57 56	6 2.9 2.8
	9.72 522	20	9.79 719	28	0.20 281	9.92 803	7		7 3.4 3.3
5 6	9.72 542	20	9.79 747	28	0.20 253	9 92 795	8	55 54	8 3.9 3.7 9 4.4 4.2
7	9.72 562	20	9.79 776	29	0.20 224	9.92 787	8	53	10 4.8 4.7
8	9.72 582	20	9.79 804	28 28	0.20 196	9.92 779	8	52	20 9.7 9.3
9	9.72 602	20	9.79 832	28	0.20 168	9.92 771	8	51	30 14.5 14.0
10	9.72 622	21	9.79 860	28	0.20 140	9 92 763	8	50	40 19.3 18.7
11	9.72 643	20	9.79 888	28	0.20 112	9.92 755	8	49	50 24 2 23.3
12	9.72 663 9.72 683	20	9.79 916	28	0.20 084	9.92 747 9.92 739	8	48	
13 14	9.72 703	20	9.79 944 9.79 972	28	0.20 030	9.92 731	8	47 46	
15	9.72 723	20	9 80 000	28	0.20 000	9.92 723	8	45	6 27
16	9.72 743	20	9.80 028	28	0.19 972	9.92 715	8	44	7 3.2
17	9.72 763	20	9.80 056	28	0.19 944	9.92 707	8	43	8 36
18	9.72 783	20	9.80 084	28	0.19 916	9.92 699	8	42	9 4.1
19	9 72 803	20	9.80 112	28 28	0.19 888	9 92 691	8	41	10 4.5
20	9.72 823	20	9.80 140	28	0.19 860	9.92 683	В	40	20 90
21	9.72 843	20	9.80 168	27	0.19 832	9.92 675	8	39	30 13.5 40 18.0
22	9.72 863	20	9.80 195	28	0.19 805	9 92 667	8	38	50 22.5
23 24	9.72 883 9.72 902	19	9.80 223 9.80 251	28	0.19 777	9.92 659 9.92 651	8	37 36	30 22.3
		20		28		9 92 643	8		
25 26	9 72 922 9.72 912	20	9.80 279 9.80 307	28	0.19 721	9.92 635	8	35 34	21 20
27	9.72 962	20	9.80 335	28	0.19 665	9.92 627	8	33	6 2.1 2.0
28	9.72 982	20	9.80 363	28	0.19 637	9.92 619	8	32	7 2.5 2.3
29	9.73 002	20	9.80 391	28	0 19 609	9.92 611	8	31	8 2.8 2.7
30	9.73 022	20	9.80 419	28	0.19 581	9.92 603	8	30	9 3.2 3.0
31	9.73 041	19	9.80 447	28	0.19 553	9 92 595	8	29	10 3.5 3.3
32	9.73 061	20	9.80 474	27 28	0.19 526	9 92 587	8	28	20 7.0 6.7 30 10.5 10.0
33	9 73 081	20	9.80 502	28	0.19 498	9 92 579	8	27 26	30 10.5 10.0 40 14 0 13.3
34	9.73 101	20	9.80 530	28	0.19 470	9 92 571	8		50 17.5 16.7
35	9.73 121	19	9.80 558	28	0 19 442	9.92 563	8	25	3.7-7.57-1.7
36	9.73 140 9.73 160	20	9.80 586 9.80 614	28	0.19 414	9.92 55 5 9.92 546	9	24	
37 38	9.73 180	20	9.80 614	28	0.19 358	9 92 538	8	23	19 9
39	9.73 200	20	9.80 669	27	0.19 331	9 92 530	8	21	6 1.9 0.9
40	9 73 219	19	9.80 697	28	0.19 303	9 92 522	8	20	7 2.2 1.1
41	9.73 239	20	9.80 723	28	0.19 275	9 92 514	8	19	8 25 1.2
42	9.73 259	20	9.80 753	28	0 19 247	9 92 506	8	18	9 29 1.4
43	9.73 278	19	9.80 781	28	0.19 219	9.92 498	. 8 . 8	17	10 32 1.5
44	973 298	20	9.80 808	27 28	0.19 192	9.92 490	8	16	20 6.3 3.0 30 95 4.5
45	9 73 318		9.80 836	28	0.19 164	9 92 482		15	40 12.7 6.0
46	9.73 337	19	9.80 864	28	0 19 136	9 92 473	9	14	50 15.8 7.5
47	9.73 357	20	9 80 892	27	0.19 108	9.92 465	8	13 12	
48 49	9.73 377 9.73 395	19	9.80 919 9 80 947	28	0.19 081	9.92 457 9.92 449	8	11	
50	9.73 416	20	9.80 975	28	0.19 033	9.92 449	8	10	8 7
51	9.73 416	19	9.80 975	28	0.19 025	9.92 441	8	9	6 0.8 0.7
52	9.73 455	20	9.81 030	27	0.18 970	9.92 425	8	8	7 0.9 0.8
53	9.73 474	19	9.81 058	28	0.18 942	9.92 416	9	7	8 1.1 0.9
54	9.73 494	20	9.81 086	28	0.18 914	9 92 408	8	6	9 1.2 1.1
55	9.73 513	19	9.81 113	27	0.18 887	9.92 400	8	5	10 1.3 1.2
56	9.73 533	20	9.81 141	28 28	0.18 859	9 92 392	8	4	30 4.0 3.5
57	9.73 552	19 20	9.81 169	28	0.18 831	9.92 384	8	3	40 5.3 4.7
58	9.73 572	19	9.81 196	27	0.18 804	9.92 376	٥	2	50 6.7 5.8
59	9.73 591	20	9.81 224	28	0.18 776	9.92 367	8	1	
60	9.73 611		9.81 252		0.18 748	9.92 359		0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	,	Prop. Pts.

1	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
U	9.73 611		9.81 252		0.18 748	9.92 359	8	60	
1	9.73 630	19	9.81 279	27	0 18 721	9.92 351	8	59	
2 3	9.73 650 9.73 669	19	9.81 307 9.81 335	28	0.18 693 0.18 665	9.92 34 <u>3</u> 9.92 33 <u>5</u>	8	58 57	6 28 27 6 28 2.7
4	9.73 689	20	9.81 362	27	0.18 638	9 92 326	9	56	6 28 2.7 7 3.3 32
	9.73 708	19	9 81 390	28	0.18 610	9.92 318	8	55	8 37 3.6
5 6	9.73 727	19	9.81 418	28	0.18 582	9 92 310	8 8	54	9 4.2 4.1
7	9.73 747	19	9.81 445	27	0.18 555	9.92 302	9	53	10 4.7 4.5
8	9.73 766	19	9.81 473	27	0.18 <u>527</u> 0 18 <u>5</u> 00	9 92 293	8	52	20 9.3 9.0 30 14 0 13.5
9	9.73 785	20	9.81 500	28		9 92 285	8	51 50	30 14 0 13.5 40 18 7 18.0
11	9.73 805 9.73 824	19	9.81 528 9 81 556	28	0.18 472 0.18 444	9 92 277 9 92 269	8	49	50 23.3 22.5
12	9.73 843	19	9.81 583	27	0.18 417	9.92 260	9	48	
13	9 73 863	20	9.81 611	28	0.18 389	9 92 252	8	47	
14	9.73 882	19	9 81 638	27 28	0.18 362	9 92 244	9	46	20
15	9 73 901	19 20	9 81 666	27	0.18 334	9.92 235	8	45	6 20
16	9.73 921	19	9.81 693	28	0 18 307	9.92 227	8	44	7 2.3 8 2.7
17 18	9.73 940	19	9 81 721 9.81 748	27	0.18 279 0.18 252	9.92 219	8	43 42	8 2.7 9 3.0
19	9·73 959 9·73 978	19	9.81 776	28	0.18 224	9.92 202	9	41	10 3.3
20	9 73 997	19	9 81 803	27	0.18 197	9.92 194	8	40	20 67
21	974 017	20	9 81 831	28	0.18 169	9 92 186	8	39	30 10.0
22	9.74 036	19	9 81 858	27 28	0.18 142	9.92 177	9	38	40 13.3 50 16.7
23	9.74 055	19	9.81 886	27	0.18 114	9 92 169	8	37	50 10.7
24	9.74 074	19	9.81 913	28	0 18 087	9.92 161	9	36	
25 26	9.74 093 9.74 II3	20	9.81 941 9 81 968	27	0.18 059 0.18 032	9.92 152 9.92 144	8	35 34	19
27	9.74 132	19	9 81 996	28	0.18 004	9.92 136	8	33	6 1.9
28	9.74 151	19	9.82 023	27	0.17 977	9 92 127	9	32	7 2.2
29	9.74 170	19	9 82 051	28 27	0 17 949	9 92 119	8	31	8 2.5
30	9.74 189	19	9 82 078	28	0.17 922	9.92 111		30	9 2.9 10 3.2
31	9.74 208	19	9 82 106	27	0.17 894	9 92 102	9	29	20 6.3
32	9.74 227 9.74 246	19	9.82 133 9.82 161	28	0.17 867 0.17 839	9.92 094	8	28 27	30 9.5
33 34	974 265	19	9.82 188	27	0.17 812	9 92 077	9	26	40 12.7
35	9.74 284	19	9.82 215	27	0.17 785	9.92 069	8	25	50 15.8
36	9.74 303	19	9.82 243	28	0.17 757	9 92 060	9	24	
37	9.74 322	19	9.82 270	27 28	0.17 730	9.92 052	8	23	1 18
38	9.74 341	19	9 82 298	27	0.17 702	9.92 044	9	22	6 18
39	9.74 360	19	9.82 325	27	0.17 675	9 92 035	8	2I 20	7 2.1
40	9.74 379	19	9.82 352 9.82 380	28	0.17 648 0.17 620	9.92 027 9.92 018	9	19	8 2.4
41 42	9.74 398 9.74 417	19	9.82 407	27	0.17 593	9.92 010	8	19	9 2.7
43	9.74 436	19	9 82 435	28	0.17 565	9.92 002	8	17	10 30
44	9 74 455	19	9 82 462	27 27	0.17 538	9.91 993	9	16	20 60 30 9.0
45	9.74 474	19	9.82 489	28	0.17 511	9.91 985	9	15	40 12.0
46	9.74 493	19	9 82 517	27	0 17 483	9 91 976	8	14	50 15.0
47 48	9.74 512 9.74 531	19	9 82 544 9 82 571	27	0.17 456 0.17 429	9.91 968	9	13 12	
49	9 74 549	18	9.82 599	28	0.17 401	9.91 951	8	11	_
50	9 74 568	19	9 82 626	27	0.17 374	9.91 942	9	10	9 8
51	9.74 587	19	9 82 653	27 28	0.17 347	9.91 934	8	9	6 0 9 0.8
52	9.74 606	19	982681	28	0.17 319	9 91 925	9	8	7 1.1 0.9 8 1.2 1.1
53	9.7 1 625	19	9 82 708	27	0.17 292	991917	9	7	9 1 4 1.2
54	974644	18	9 82 735	27			8		10 1.5 1.3
55 56	9.74 662 9 74 681	19	9 82 702	28	0.17 238 0.17 210	9.91 900 9.91 891	9	5 4	20 3.0 27
57	974 700	19	9.82 817	27	0.17 183	9.91 883	8	3	30 4.5 4.0 40 60 5.3
58	974719	19	9 82 844	27	0.17 156	9.91 874	9	2	40 60 5.3 50 7.5 6.7
59	9.74 737	18 19	9.82 871	27 28	0.17 129	9.91 866	9	1	J- 1, 31 - 1,
60	9.74 756	-9	9.82 899		0.17 101	9.91 857	,	0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	,	Prop. Pts.

266 34°

0 9.74 756 19 9.88 996 37 0.17 101 9.91 877 8 33 34 34 34 34 34 34	7	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
1 9.74 775 19 9.82 950 27 0.17 974 9.91 849 8 35 6 2.8 2.7										
3									59	
4 9.74 831 19 9.83 008 27 0.16 0.			18		27			8		
S									56	
6 9.74 888	5				1 .				55	8 3.7 3.6
8 9.74 9.96 9.83 117 27 0.16 835 9.91 789 8 51 20 9.3 9.8 311 9.74 9.61 18 9.83 198 27 0.16 826 9.91 772 9 50 23.3 12.5 18 13 9.74 9.96 19 9.83 252 27 0.16 775 9.91 753 8 49 40 18.0 13 9.75 9.01 19 9.83 252 27 0.16 775 9.91 753 8 40 18.0 18.0 19 16 19 17 18 18 18 18 18 18 18	6									
9 9.74 924 18 9.83 144 27 0.16 856 9.91 781 8 50 30 14.0 18.0	8	9.74 007	19				9.91 798			
10			1				9.91 781			30 14.0 13.5
11	10	9 74 943		9.83 171	1	0.16 829	9.91 772	l		
12 9.74 999 19 9.83 325			1	9.83 198						50 23.3 22.5
14 9.75 017 18 9.83 28b 28 0.16 720 9.91 738 8 46 46 46 15 15 15 15 15 15 15 1										1
15			18		28			8	46	∤ 2 6
16 9.75 5073 18 9.83 334 97 0.16 666 9.91 720 8 44 7 3.0 18 9.75 073 19 9.83 388 27 0.16 639 9.91 712 8 43 9 3.9 20 9.75 110 18 9.83 442 27 0.16 587 9.91 695 8 41 0 4.2 9 3.9 21 9.75 147 19 9.83 470 27 0.16 538 9.91 669 9 40 3.0 10 4.3 41 0 4.3 9 3.9 3.9 3.9 1.0 4.3 42 9 3.9 3.9 1.0 4.3 42 9 3.9 3.9 1.0 4.3 42 9 3.3 1.0 4.3 43 43 43 43 43 43 43 43 43 43 43 43 42 9 3.3 1.0 4.0 1.1 4.0 4.0 9.91 669 9 30 3.0 1.1 1.1 4.0 4.0 9.91 651					1			l		6 2.6
17 975 071 18 9.83 388 27 0.16 612 9.91 703 9 43 9 3.9 19 975 171 19 9.83 441 27 0.16 558 9.91 695 8 41 10 4.3 21 9.75 164 19 9.83 442 27 0.16 558 9.91 696 9 37 22 9.75 164 18 9.83 470 27 0.16 558 9.91 697 9 39 40 17.3 23 9.75 184 24 9.75 202 18 9.83 551 27 0.16 476 9.91 669 9 37 24 9.75 202 18 9.83 551 27 0.16 476 9.91 669 9 37 25 9.75 221 28 9.83 551 27 0.16 476 9.91 669 9 37 26 9.75 298 9 9.83 524 27 0.16 395 9.91 694 9 34 6 1.9 27 9.75 276 18 9.83 685 27 0.16 341 9.91 678 9 34 9 34 6 1.9 28 9.75 276 18 9.83 685 27 0.16 341 9.91 678 9 33 7 2.2 29 9.75 395 9 9.83 793 27 0.16 287 9.91 599 30 31 8 2.5 29 9.75 395 18 9.83 795 27 0.16 287 9.91 599 30 31 8 2.5 31 9.75 308 18 9.83 795 27 0.16 287 9.91 599 8 20 0.6 32 9.75 343 18 9.83 795 27 0.16 287 9.91 599 8 28 20 0.6 33 9.75 490 18 9.83 893 27 0.16 260 9.91 573 9 28 30 9.5 30 9.83 893 27 0.16 016 9.91 512 9 28 30 9.5 30 9.83 930 27 0.16 016 9.91 512 9 24 30 30 9.0 30 30 30 30 30 30 30	16	9.75 054		9.83 334		0.16 666	9 91 720		44	
19 975 170 19 9.83 415 27 0.16 588 9.91 695 8 41 10 4.3 20 8.7 21 9.75 147 19 9.83 470 22 9.75 163 19 9.83 470 27 0.16 503 9.91 650 9 36 38 40 17.3 24 9.75 202 18 9.83 470 27 0.16 449 9.91 650 9 36 38 50 21.7 32 47 0.16 449 9.91 651 8 38 50 21.7 32 47 0.16 449 9.91 651 8 35 37 0.16 449 9.91 651 8 35 37 0.16 449 9.91 651 8 35 37 0.16 349 9.91 652 9 33 36 1.9 349										
20										
21 9.75 147 19 9.83 470 28 0.16 530 9 1677 9 39 39 39 17.3 22 9.75 161 18 9.83 470 27 0.16 503 9 1 660 9 37 36 13.4 24 9.75 201 18 9.83 551 27 0.16 449 9.91 650 9 37 36 21.7 25 9.75 221 19 9.83 551 27 0.16 368 9.91 650 9 37 36 21.7 25 9.75 233 18 9.83 605 27 0.16 368 9.91 649 9 34 66 1.9 28 9.75 276 18 9.83 605 27 0.16 368 9.91 647 9 33 33 33 13 33 13 34 365 27 0.16 368 9.91 647 8 32 7 2.2 29 9.75 291 18 9.83 686 27 0.16 368 9.91 647 8 32 7 2.2 29 9.75 331 18 9.83 740 27 0.16 287 9.91 501 32 20 0.3 31 9.75 331 18 9.83 740 27 0.16 260 9.91 591 32 20 0.3 32 9.75 368 18 9.83 752 27 0.16 260 9.91 591 32 20 0.3 33 9.75 368 18 9.83 752 27 0.16 260 9.91 591 32 20 0.3 34 9.75 368 18 9.83 876 27 0.16 260 9.91 573 9 27 30 9.5 35 9.75 478 18 9.83 876 27 0.16 178 9.91 565 9 22 30 9.75 478 18 9.83 876 27 0.16 178 9.91 565 9 22 30 9.75 478 18 9.83 987 27 0.16 260 9.91 573 9 22 30 9.5 38 9.75 478 18 9.83 987 27 0.16 178 9.91 565 9 22 30 9.75 478 18 9.83 987 27 0.16 260 9.91 573 9 22 30 9.5 39 9.75 478 18 9.83 987 27 0.16 260 9.91 521 9 21 9 22 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			18		1 .			9		20 8.7
23 9.75 184 19 9.83 524 27 0.16 449 9.91 660 9 37 36 21.7 221 19 9.83 551 27 0.16 449 9.91 660 8 2 27 0.16 395 9.91 634 9 34 6 1.9 32 28 9.75 276 18 9.83 652 27 0.16 368 9.91 643 9 33 36 6 1.9 32 29 9.75 276 18 9.83 655 27 0.16 341 9.91 617 8 32 7 2.2 29 9.75 373 18 9.83 686 27 0.16 314 9.91 617 8 32 7 2.2 39 9.75 331 18 9.83 768 27 0.16 287 9.91 591 32 29 9.75 368 18 9.83 768 28 0.16 232 9.91 592 29 33 30 9.75 368 18 9.83 795 27 0.16 265 9.91 591 32 29 2.3 30 9.5 34 9.75 368 18 9.83 876 27 0.16 265 9.91 573 9 27 30 9.5 349 37 37 37 0.16 265 9.91 573 9 27 30 9.5 368 18 9.83 876 27 0.16 265 9.91 573 9 27 30 9.5 368 38 22 27 0.16 265 9.91 573 9 27 30 9.5 368 38 9.75 423 18 9.83 876 27 0.16 178 9.91 565 9 25 33 9.75 478 18 9.83 987 27 0.16 265 9.91 573 9 22 33 9.75 478 18 9.83 987 27 0.16 265 9.91 547 9 24 33 9.75 551 18 9.83 987 27 0.16 265 9.91 521 9 21 42 9.75 533 18 9.84 98 27 0.16 265 9.91 521 9 21 9 22 1 9.83 88 22 49 9.75 569 18 9.84 98 27 0.15 969 9.91 582 9 21 9 22 1 9.83 88 22 49 9.75 569 18 9.84 98 27 0.15 969 9.91 584 9 21 9 22 1 9.84 98 39 9.75 478 18 9.84 98 9.91 584 9.91 5					i	0.16 530	9 91 677		39	30 13.0
24 9.75 202 18 9.83 551 27 0.16 479 9.91 651 8 35 35 27 0.16 479 9.91 631 8 35 35 27 0.16 368 9.91 632 9 34 8 35 35 37 9.75 294 18 9.83 686 27 0.16 368 9.91 625 8 32 37 22 29 9.75 294 18 9.83 686 27 0.16 341 9.91 668 9 31 8 2.5 29 9.75 294 18 9.83 768 27 0.16 341 9.91 668 9 31 8 2.5 32 32 32 32 33 9.75 350 19 9.83 768 28 0.16 232 9.91 591 32 20 6.3 33 9.75 350 18 9.83 768 27 0.16 260 9.91 591 32 20 6.3 33 9.75 365 18 9.83 768 27 0.16 260 9.91 593 8 29 20 6.3 33 9.75 365 18 9.83 876 27 0.16 151 9.91 565 8 26 50 15.8 36 9.75 478 18 9.83 930 27 0.16 151 9.91 565 8 26 50 15.8 39 9.75 478 19 9.83 930 27 0.16 016 9.91 591 9 22 24 38 9.75 5478 19 9.83 930 27 0.16 016 9.91 591 9 22 24 29 25 23 33 9.75 551 18 9.83 930 27 0.16 016 9.91 530 9 22 23 33 9.75 551 18 9.84 901 27 0.15 989 9.91 547 9.83 930 27 0.16 016 9.91 532 9 21 6 1.8 24 9.75 569 18 9.84 065 27 0.15 989 9.91 460 9 14 9.75 569 18 9.84 065 27 0.15 985 9.91 460 9 14 9.75 569 18 9.84 065 27 0.15 985 9.91 460 9 14 9.75 569 18 9.84 065 27 0.15 985 9.91 460 9 14 9.75 575 18 9.84 020 27 0.15 881 9.91 460 9 14 9.75 575 18 9.84 200 27 0.15 881 9.91 460 9 14 9.75 575 18 9.84 200 27 0.15 881 9.91 460 9 14 9.91 500 15 9.91 381 9.91 500 15 9.91 381 9.91 360 9.91 381 9.91 360 9.91 381 9.91 360 9.91 381 9.91 360 9.91 381 9.91 360 9.91 381 9.91 360 9.91 381 9		9.75 165	1	9 83 497		0.16 503	9 91 669			40 17.3 50 21.7
25 975 221 19 9.83 578 27 0.16 422 9.91 643 9 35 9.75 239 18 9.83 632 27 0.16 395 9.91 634 9 33 6 1.9 2.2 29 9.75 258 19 9.83 652 27 0.16 368 9.91 625 9 33 6 1.9 2.2 32 9.75 294 18 9.83 659 27 0.16 341 9.91 608 9 31 8 2.5 32 32 9.75 313 18 9.83 713 27 0.16 287 9.91 599 8 29 31 8 2.5 32 32 9.75 335 19 9.83 740 27 0.16 260 9.91 599 8 29 20 6.3 33 9.75 368 18 9.83 795 27 0.16 205 9.91 573 9 28 30 9.5 34 9.75 386 18 9.83 795 27 0.16 205 9.91 573 9 27 30 6.3 33 9.75 368 18 9.83 822 27 0.16 205 9.91 573 9 27 30 9.83 795 27 0.16 124 9.91 556 9 25 30 9.5 37 39 9.75 495 18 9.83 876 27 0.16 124 9.91 557 9 24 33 9.75 383 8 29 9.83 892 27 0.16 124 9.91 557 9 24 33 9.75 383 9.75 495 18 9.83 876 27 0.16 124 9.91 557 9 24 40 12.7 50 15.8 20 33 9.75 495 18 9.83 893 27 0.16 000 9.91 530 8 22 33 9.75 531 18 9.83 895 27 0.16 000 9.91 530 8 22 33 9.75 531 18 9.83 895 27 0.16 000 9.91 530 8 22 33 9.75 551 18 9.83 805 27 0.16 000 9.91 530 8 22 18 9.83 805 27 0.16 000 9.91 530 8 22 18 9.83 805 27 0.16 000 9.91 530 8 22 18 9.83 80 27 0.16 000 9.91 530 8 22 18 9.84 000 27 0.15 960 9.91 400 9 18 9 2.7 9.84 038 27 0.15 960 9.91 400 9 18 9 2.7 9.84 038 27 0.15 960 9.91 400 9 18 9 2.7 9.84 038 27 0.15 960 9.91 400 9 18 9 2.7 9.84 030 9.91 400 9 18 9 2.7 9.95 600 18 9.84 000 27 0.15 980 9.91 447 9.75 600 18 9.84 000 27 0.15 980 9.91 447 9.75 600 18 9.84 000 27 0.15 880 9.91 447 9.75 600 18 9.84 200 27 0.15 800 9.91 445 9.75 600 18 9.84 200 27 0.15 800 9.91 445 9.91 440 9.75 600 18 9.84 200 27 0.15 800 9.91 447 9.75 600 18 9.84 200 27 0.15 800 9.91 447 9.75 600 18 9.84 200 27 0.15 800 9.91 440 9.75 600 18 9.84 200 27 0.15 800 9.91 440 9.75 600 18 9.84 200 27 0.15 800 9.91 345 9 11 9.90 300 9.00 300 300 300 300 300 300 300 300 30		9.75 184		9.83 524		0.16 476			37	3-12,
26 9.75 239 18 9.83 605 27 0.16 395 9 91 634 9 34 19 27 9.75 276 18 9.83 659 27 0.16 368 9.91 625 9 33 6 1.9 29 9.75 276 18 9.83 686 27 0.16 341 9.91 608 9 31 8 2.5 30 9.75 331 19 9.83 740 27 0.16 287 9.91 599 8 29 2.0 6.3 32 7 2.2 2.9 32 9.75 331 19 9.83 768 28 0.16 280 9.91 599 8 29 2.0 6.3 29 15 599 8 29 2.0 6.3 32 9.91 582 9 28 30 9.53 768 28 8 6.16 232 9.91 582 9 28 30 9.53 78 27 0.16 178 9.91 582 9 28 30 9.55 9 25 30 9.55 9 25 <td< td=""><td></td><td></td><td>19</td><td></td><td>27</td><td></td><td></td><td></td><td></td><td></td></td<>			19		27					
27 9.75 236 19 9.83 632 27 0.16 368 9.91 625 9 33 32 7 2.2 29 9.75 294 18 9.83 665 27 0.16 341 9.91 608 9 31 9 32 7 2.2 29 9.75 294 18 9.83 666 27 0.16 314 9.91 608 9 31 9 2.2 7 2.2 2.2 2.7 0.16 287 9.91 599 8 2.2 7 2.2 2.2 3.3 9.75 335 19 9.83 768 28 0.16 287 9.91 582 9 28 20 6.3 3.2 9.2 2.7 0.16 232 9.91 582 9 28 20 6.3 3.3 9.75 385 18 9.83 768 28 0.16 232 9.91 582 9 28 20 6.3 3.0 9.5 40 12.7 40 12.7 40 12.7 50 15.8 26 59 9.91 582 9 23 30 9.5 40 12.7 50 15.8 26 40 12.7 50								9		
29 9.75 294 18 9.83 686 27 0.16 341 9.91 668 9 31 8 2.5 9 30 9.75 393 18 9.83 740 27 0.16 260 9.91 591 8 29 10 32 20 6.3 33 9.75 386 18 9.83 768 27 0.16 260 9.91 593 8 29 28 30 9.5 33 9.75 386 18 9.83 768 27 0.16 151 9.91 555 8 26 50 15.8 983 882 27 0.16 151 9.91 555 8 26 50 15.8 983 882 27 0.16 151 9.91 555 9 227 386 18 9.83 876 27 0.16 151 9.91 556 9 25 15.8 983 893 27 0.16 078 9.91 593 8 22 27 38 9.83 893 27 0.16 079 9.91 538 9 23 30 9.75 478 18 9.83 930 27 0.16 079 9.91 538 9 23 30 9.75 478 19 9.83 930 27 0.16 079 9.91 538 9 23 30 9.75 478 19 9.83 930 27 0.16 079 9.91 538 9 23 30 9.75 478 19 9.83 984 27 0.16 079 9.91 538 9 23 8 22 20 6.3 30 9.75 478 19 9.83 983 27 0.16 079 9.91 538 9 23 18 18 22 20 6.0 32 20 6.3 30 9.75 478 19 9.83 930 27 0.16 079 9.91 538 9 23 18 22 20 6.0 32 20 6.3 30 9.75 478 19 9.83 930 27 0.16 079 9.91 538 9 23 18 22 20 6.0 32 2	27	9.75 258		9.83 632		0.16 368	9.91 625			
30 9.75 313 18 9.83 713 27 0.16 260 9.91 590 8 29 20 6.3 31 9.75 350 19 9.83 740 27 0.16 260 9.91 591 8 29 20 6.3 32 9.75 368 18 9.83 795 27 0.16 260 9.91 573 9 27 40 12.7 35 9.75 495 18 9.83 876 27 0.16 151 9.91 565 8 26 50 15.8 35 9.75 495 18 9.83 893 27 0.16 151 9.91 567 9 24 37 9.75 443 18 9.83 993 27 0.16 151 9.91 582 9 23 38 9.75 495 18 9.83 993 27 0.16 151 9.91 587 9 24 37 9.75 443 18 9.83 993 27 0.16 151 9.91 587 9 23 38 9.75 495 18 9.83 993 27 0.16 070 9.91 538 8 22 39 9.75 478 19 9.83 984 27 0.16 043 9.91 521 9 21 7 21 4U 9.75 504 18 9.84 085 27 0.15 962 9.91 495 9 18 10 3.0 44 9.75 550 18 9.84 062 27 0.15 985 9.91 477 9 16 30 9.0 45 9.75 562 18 9.84 062 27 0.15 985 9.91 477 9 16 30 9.0 45 9.75 569 18 9.84 202 27 0.15 881 9.91 450 9 14 49 9.75 560 18 9.84 202 27 0.15 881 9.91 450 9 14 49 9.75 560 18 9.84 202 27 0.15 980 9.91 477 9 16 30 9.0 45 9.75 751 18 9.84 202 27 0.15 986 9.91 477 9 16 30 9.0 45 9.75 751 18 9.84 202 27 0.15 881 9.91 450 9 14 49 9.75 566 18 9.84 202 27 0.15 881 9.91 450 9 14 49 9.75 566 18 9.84 202 27 0.15 881 9.91 450 9 14 49 9.75 757 18 9.84 202 27 0.15 860 9.91 493 9 15 50 9.75 787 18 9.84 381 27 0.15 666 9.91 398 9 7 9 14 1.2 51 9.75 787 18 9.84 381 27 0.15 588 9.91 380 9 7 9 1 1 1.5 1.8 52 9.75 883 18 9.84 446 27 0.15 588 9.91 385 9 1 1 1.5 1.8 50 9.75 883 18 9.84 486 27 0.15 588 9.91 385 9 1 1 1.5 1.8 52 9.75 883 18 9.84 446 27 0.15 588 9.91 345 9 1 1 1.5 1.8 53 9.75 883 18 9.84 446										
31 9.75 331 18 9.83 713 27 0.16 267 9.91 591 8 29 20 6.3 32 32 9.75 355 19 9.83 768 27 0.16 265 9.91 593 9 28 30 9.5 34 9.75 356 18 9.83 795 27 0.16 267 9.91 565 9 25 368 38 22 27 0.16 178 9.91 565 9 25 36 18 9.83 876 27 0.16 178 9.91 567 9 25 36 18 9.83 876 27 0.16 178 9.91 547 9 24 37 9.75 478 18 9.83 987 27 0.16 079 9.91 538 8 22 33 9.75 478 18 9.83 987 27 0.16 079 9.91 538 8 22 33 9.75 478 18 9.83 984 27 0.16 079 9.91 530 8 22 33 9.75 501 18 9.84 081 27 0.15 969 9.91 504 9 21 7 2.1 18 9.83 984 984 98 27 0.16 064 9.91 521 9 21 7 2.1 18 9.83 984 984 985 27 0.15 079 9.91 504 9 21 9 22 9 22 9 22 9 23 9 24 9 24 9 25 9 24 9 24 9 25 9 25 9 25										
32 9.75 368 18 9.83 768 28 0.16 232 9.91 582 9 28 30 9.5 343 34 9.75 368 18 9.83 892 27 0.16 205 9.91 573 9 25 36 18 9.83 876 27 0.16 178 9.91 565 9 25 37 492 18 9.83 876 27 0.16 178 9.91 565 9 25 37 492 18 9.83 876 27 0.16 178 9.91 565 9 25 37 492 18 9.83 876 27 0.16 178 9.91 567 9 25 37 492 18 9.83 876 27 0.16 178 9.91 567 9 22 4 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2			18	0.83 713	27			8		10 32
33 9.75 366 18 9.83 795 27 0.16 205 9.91 573 8 26 40 12.7 34 9.75 386 18 9.83 849 9.83 849 27 0.16 178 9.91 556 9.9 25 36 40 12.7 35 9.75 405 18 9.83 876 27 0.16 151 9.91 556 9.91 547 9.24 37 9.75 441 18 9.83 930 27 0.16 070 9.91 538 8 22 37 0.16 070 9.91 538 8 22 37 0.16 070 9.91 530 9.91 547 9.91 530 9.93 957 975 478 18 9.83 984 27 0.16 070 9.91 530 8 22 18 40 9.75 490 18 9.83 987 27 0.16 070 9.91 530 8 22 18 41 9.75 514 9.84 011 27 0.15 989 9.91 504 9.91 41 42 9.75 531 18 9.84 065 27 0.15 969 9.91 495 9 18 10 3.0 44 9.75 569 18 9.84 092 27 0.15 989 9.91 486 9 17 20 6.0 45 9.75 605 18 9.84 119 27 0.15 881 9.91 460 9.91 477 9 16 30 9.0 45 9.75 605 18 9.84 173 27 0.15 887 9.91 445 9.75 605 18 9.84 227 27 0.15 887 9.91 445 9.75 605 18 9.84 227 27 0.15 887 9.91 445 9.75 605 18 9.84 227 27 0.15 887 9.91 451 9 13 9 14 48 9.75 605 18 9.84 227 27 0.15 882 9.91 450 9 14 49 9.75 605 18 9.84 227 27 0.15 882 9.91 450 9 14 49 9.75 605 18 9.84 227 27 0.15 882 9.91 450 9 12 49 9.75 605 18 9.84 227 27 0.15 882 9.91 450 9 12 50 9.75 757 14 18 9.84 207 27 0.15 882 9.91 450 9 12 50 9.75 758 18 9.84 227 27 0.15 746 9.91 445 9 12 50 9.75 750 18 9.84 227 27 0.15 746 9.91 445 9 12 50 9.75 750 18 9.84 227 27 0.15 766 9.91 493 9 12 50 9.75 751 18 9.84 388 9 9.91 497 9 8 51 9.75 750 18 9.84 381 27 0.15 582 9.91 451 9 13 9.84 381 27 0.15 582 9.91 451 9 13 9.84 381 27 0.15 580 9.91 497 9 8 51 9.75 750 18 9.84 381 27 0.15 569 9.91 389 9 1 50 9.75 751 18 9.84 381 27 0.15 569 9.91 389 9 6 50 9.75 751 18 9.84 381 27 0.15 585 9.91 381 9 50 9.75 751 18 9.84 388 9 9.84 482 27 0.15 558 9.91 381 9 9.84 301 27 0.15 588 9.91 381 9 9.84 301 27 0.15 588 9.91 381 9 9.84 301 27 0.15 588 9.91 381 9 9.84 301 27 0.15 588 9.91 381 9 9.84 301 27 0.15 588 9.91 381 9 9.84 301 27 0.15 588 9.91 381 9 9.84 301 27 0.15 588 9.91 381 9 9.84 301 27 0.15 588 9.91 381 9 9.84 301 27 0.15 588 9.91 381 9 9.84 301 27 0.15 588 9.91 381 9 9.84 301 27 0.15 588 9.91 381 9 9.84 301 27 0.15 588 9.91 38				9.83 768						
34 9.75 405 18 9.83 876 27 0.16 151 9.91 556 9 24 924 9.75 405 18 9.83 876 27 0.16 124 9.91 547 9 24 9.75 478 19 9.83 930 27 0.16 000 9.91 538 8 22 8 6 1.8 9.75 478 19 9.83 957 27 0.16 012 9.91 538 8 22 8 6 1.8 9.75 478 19 9.83 957 27 0.16 012 9.91 530 8 22 2 6 6 1.8 9.84 11 9.75 514 9.84 011 27 0.15 962 9.91 504 9 18 9.84 011 27 0.15 962 9.91 495 9 18 19 9 2.7 9.84 038 27 0.15 962 9.91 495 9 18 19 9 2.7 9.84 038 27 0.15 962 9.91 495 9 18 19 9 2.7 9.84 038 27 0.15 962 9.91 495 9 18 19 9 2.7 9.84 038 27 0.15 983 9.91 486 9 17 10 3.0 0.15 984 09.75 569 18 9.84 109 27 0.15 983 9.91 486 9 17 10 3.0 0.15 983 9.91 486 9 17 10 3.0 0.15 984 9.75 569 18 9.84 193 27 0.15 985 9.91 486 9 17 10 3.0 0.0 0.15 983 9.91 486 9 17 10 3.0 0.15 983 9.91 480 9 16 9 16 9 16 9 16 9 16 9 16 9 16 9 1	33									
35 9.75 423 18 9.83 876 27 0.16 151 9.91 530 9 23 38 9 9.75 478 19 9.83 930 27 0.16 097 9.91 530 8 22 8 18 9.83 9.75 478 19 9.83 957 27 0.16 043 9.91 521 9 21 7 2.1 9.75 514 18 9.83 957 27 0.16 043 9.91 521 9 21 7 2.1 9.75 514 19 9.83 984 11 27 0.15 016 016 9.91 520 8 19 9 2.7 9.75 533 19 9.84 052 27 0.15 962 9.91 495 9 18 10 3.0 9.2 44 9.75 531 18 9.84 062 27 0.15 962 9.91 495 9 18 10 3.0 9.0 44 9.75 560 18 9.84 062 27 0.15 988 9.91 504 9 17 20 6.0 44 9.75 560 18 9.84 103 27 0.15 881 9.91 460 9 17 20 6.0 44 9.75 560 18 9.84 103 27 0.15 881 9.91 460 9 16 30 9.0 477 9 16 30 9.0 477 9 16 30 9.0 5 15 40 12.0 9.75 660 18 9.84 200 27 0.15 884 9.91 451 9 12 9 12 9 18 9.84 200 27 0.15 800 9.91 441 9 12 9 12 9 13 9 14 9 12 9 12 9 15 9 15 9 15 9 15 9 15 9 15			1					-		
37 9.75 11 18 983 903 27 0.16 097 9.91 538 8 22 18	35		18	9 83 849	1					
38 9.75 478 19 9.83 930 27 0.16 070 9.91 530 8 22 1 6 1.8 4U 9.75 490 18 9.84 011 27 0.15 989 9.91 504 8 19 9 2.7 4.1 9.75 513 18 9.84 038 27 0.15 989 9.91 504 8 19 9 2.7 4.2 9.75 550 18 9.84 065 27 0.15 935 9.91 486 9 17 10 3.0 4.4 9.75 560 18 9.84 062 27 0.15 935 9.91 486 9 17 20 6.0 4.5 9.75 660 18 9.84 110 27 0.15 854 9.91 460 9 16 20 6.0 4.7 9.75 602 18 9.84 120 27 0.15 854 9.91 460 9 16 20 6.0 4.8 9.75 602 19 9.84 170 27 0.15 854 9.91 460 9 16 20 6.0 4.8 9.75 602 19 9.84 170 27 0.15 854 9.91 460 9 14 4.9 9.75 604 18 9.84 200 27 0.15 854 9.91 460 9 14 4.9 9.75 605 18 9.84 200 27 0.15 854 9.91 450 9 12 4.9 9.75 605 18 9.84 200 27 0.15 854 9.91 450 9 12 4.9 9.75 606 18 9.84 200 27 0.15 854 9.91 442 9 12 4.9 9.75 606 18 9.84 200 27 0.15 603 9.91 442 9 12 4.9 9.75 678 18 9.84 334 27 0.15 693 9.91 445 9 13 5.9 9.75 733 18 9.84 381 27 0.15 663 9.91 389 9 7 5.9 9.75 769 18 9.84 334 27 0.15 663 9.91 389 9 7 5.9 9.75 769 18 9.84 381 27 0.15 663 9.91 389 9 7 5.9 9.75 803 18 9.84 445 27 0.15 585 9.91 303 9 3 5.9 9.75 823 18 9.84 445 27 0.15 585 9.91 303 9 3 5.9 9.75 823 18 9.84 445 27 0.15 558 9.91 303 9 3 5.9 9.75 823 18 9.84 445 27 0.15 558 9.91 303 9 3 5.9 9.75 823 18 9.84 445 27 0.15 558 9.91 303 9 3 5.9 9.75 823 18 9.84 445 27 0.15 558 9.91 303 9 3 5.9 9.75 823 18 9.84 445 27 0.15 558 9.91 303 9 3 5.9 9.75 823 18 9.84 445 27 0.15 558 9.91 303 9 3 5.9 9.75 823 18 9.84 445 27 0.15 558 9.91 303 9 3 5.9 9.75 823 18 9.84 445 27 0.15 558 9.91 303 9 3 5.9 9.75 823 18 9.84 445 27 0.15 558 9.91 303 9 3 5.9 9.75 823 18 9.84 445 27 0.15 558 9.91 303 9 3 5.9 9.75 823 18 9.84 446 27 0.15 558 9.91 303 9 3 5.9 9.75 823 18 9.84 446 27 0.15 558 9.91 303 9 3 5.9 9.75 823 18 9.84 446 27 0.15 558 9.91 303 9 3 5.9 9.75 825 18 9.84 446 27 0.15 558 9.91 303 9 3 5.9 9.75 825 18 9.84 446 27 0.15 558 9.91 303 9 3 5.9 9.75 825 18 9.84 446 27 0.15 558 9.91 303 9 5.9 0.15 500 9.91 345 9 5.0 0.15 500 9.91 345 9 5.0 0.15 500 9.91								9		
39 9.75 490 9.83 98.4 98.3 98.4 98.3 98.4 98.3 98.4 98.3 98.4 98.4 98.4 98.4 98.4 98.4 98.4 98.4 98.4 98.4 98.4 98.4 98.4 99	38									
41 9.75 514 9.84 011 27 0.15 969 9.91 504 8 19 9 2.7 9.84 038 27 0.15 969 9.91 495 9 18 9 2.7 9.84 038 27 0.15 969 9.91 495 9 18 9 2.7 9.84 092 27 0.15 968 9.91 477 8 16 30 9.84 190 27 0.15 881 9.91 460 9 16 30 9.0 16 30 9.0 18 9.84 190 27 0.15 884 9.91 460 9 16 30 9.0 18 9.84 190 27 0.15 884 9.91 460 9 16 30 9.0 18 9.84 190 27 0.15 884 9.91 460 9 16 30 9.0 18 9.84 190 27 0.15 884 9.91 460 9 16 30 9.0 18 9.84 190 27 0.15 885 9.91 485 9 16 30 9.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15										
41 9.75 533 18 9.84 038 27 0.15 962 9.91 495 9 18 10 3.0 9.4 44 9.75 569 18 9.84 065 27 0.15 935 9.91 486 9 17 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			78		i					
43 9.75 559 18 9.84 605 27 0.15 935 9.91 486 9 17 20 6.0 30 9.0 487 9 16 30 9.0 477 9 16 30 9.0 477 9 17 17 18 18 9.84 107 18 18 9.84 107			19					9		
44 9.75 507 18 9.84 192 27 0.15 881 9.91 460 9 14 50 15.0 45 9.75 605 18 9.84 146 27 0.15 887 9.91 450 9 14 50 15.0 47 9.75 604 18 9.84 200 27 0.15 805 9.91 441 9 12 12 12 12 13 13 15 18 9.75 696 18 9.84 227 27 0.15 73 9.91 433 9 11 9 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15				9.84 065						
45 9.75 587 18 9.84 119 27 0.15 881 9.91 460 9 14 50 15.0 44 9.75 605 18 9.84 173 27 0.15 805 9.91 450 9 13 9.75 605 18 9.84 202 27 0.15 805 9.91 442 9 12 9 13 9.84 202 27 0.15 805 9.91 443 9 12 9 13 9.84 202 27 0.15 746 9.91 433 9 11 9 12 9.84 202 27 0.15 730 9.91 433 9 11 9 12 9.84 202 27 0.15 730 9.91 433 9 11 9 12 9.84 202 27 0.15 730 9.91 445 9 9 13 9.84 202 27 0.15 730 9.91 445 9 9 14 12 9 12 9 13 9 13 9 13 9 13 9 13 9 13 9	_						9.91 477			
47 9.75 624 19 9.84 173 27 0.15 827 9.91 451 9 13 49 9.75 624 18 9.84 200 27 0.15 827 9.91 451 9 12 9.84 227 27 0.15 73 9.91 433 9 11 9 9.84 254 9.75 696 18 9.84 280 26 0.15 730 9.91 442 9 9.84 280 27 27 0.15 730 9.91 443 9 12 9.84 280 27 27 0.15 730 9.91 446 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	45	9.75 587			-		9.91 469			40 12.0
48 975 642 18 9.84 200 27 0.15 800 9.91 442 9 9 12 45 9 11 8 9.84 200 27 0.15 773 9.91 425 9 11 8 9.84 280 26 0.15 720 9.91 446 9 9 9 9 7 11 0.9 8 12 12 12 12 12 12 12 12 12 12 12 12 12	40	9.75 605	19							50 15.0
49 9.75 666 18 9.84 227 27 0.15 773 9.91 433 9 8 11 9.84 254 27 0.15 746 9.91 425 9 9 8 8 1.5 9.75 696 18 9.84 280 26 0.15 720 9.91 4416 9 9 8 1.1 0.9 0.84 254 9.975 751 18 9.84 361 27 0.15 666 9.91 389 9 7 9 14 1.2 1.1 1.1 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3		9 75 642			27			9		
50 9.75 078 18 9.84 254 254 254 9.84 254 9.84 254 9.84 254 9.84 254 9.84 280 26 0.15 720 9.91 445 9 9 6 0.9 0.8 9.84 280 26 0.15 720 9.91 445 9 9 8 7 1.1 0.9 8 7 1.1 0.9 8 1.1 0.9 8 1.1 0.9 8 1.1 0.9 8 1.1 0.9 8 1.1 0.9 8 1.1 0.9 8 1.1 0.9 8 1.1 0.9 8 1.1 0.9 8 1.1 0.9 8 1.1 0.9 8 1.1 0.9 8 8 1.2 1.1 1.0 0.9 8 8 1.2 1.1 1.1 0.9 9 8 8 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.2 1.2 <td>49</td> <td>9.75 660</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1018</td>	49	9.75 660								1018
51 9.75 090 18 9.84 280 9.84 07 27 0.15 673 9.91 410 9 8 7 1.1 0.9 1.5 0.15 673 9.91 470 9 8 7 1.1 0.9 1.5 0.15 673 9.91 307 9 1 1 1 0.9 1.5 0.15 673 9.91 308 9 7 7 1.1 0.9 1.5 0.15 673 9.91 308 9 7 7 1.1 0.9 1.5 0.15 673 9.91 308 9 7 7 1.1 0.9 1.5 0.15 673 9.91 308 9 7 7 1.1 0.9 1.5 0.15 673 9.91 308 9 7 7 1.1 0.9 1.5 0.15 673 9.91 308 9 7 7 1.1 0.9 1.5 0.15 673 9.91 308 9 7 7 1.1 0.9 1.5 0.15 0.15 0.15 0.15 0.15 0.15 0.15		9.75 678								
53 9.75 733 18 9.84 361 27 0.15 663 9.91 398 9 7 6 81.2 1.1 1.2 1.5 1.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5										7 1.1 0.9
54 9.75 751 18 9.84 361 27 0.15 639 9.91 380 9 6 10 15 1.8 1.8 1.8 9.84 388 27 0.15 612 9.91 381 9 6 10 15 1.8 10 15 1.8 10 15 1.8 10 15 1.8 10 15 1.8 10 15 1.8 10 15 1.8 10 15 1.8 10 15 1.8 10 15 1.8 10 15 1.8 10 15 18 10 15 18 18 10 15 15 18 10 15 18 12			19		27					
55 975 769 18 9.84 388 27 0.15 612 9.91 381 9 5 30 3.0 2.7 9.57 9.75 803 18 9.84 442 27 0.15 585 9.91 363 9 3 3 4.0 6.0 5.3 9.75 841 18 9.84 469 27 9.84 469 27 9.75 841 18 9.84 469 27 0.15 558 9.91 345 9 1 1 9.84 496 27 0.15 554 9.91 345 9 1 1 9.84 496 27 0.15 554 9.91 345 9 1 1 9.84 496 27 0.15 504 9.91 345 9 1 1 9.84 523 9 0.15 477 9.91 336 9 0 0				9.84 361					6	
56 9.75 787 16 9.84 445 27 0.15 585 9.91 372 9 4 30 4.5 4.0 5.3 58 9.75 823 18 9.84 449 27 0.15 558 9.91 363 9 3 40 6.0 5.3 5.9 9.75 821 18 9.84 496 27 0.15 531 9.91 3354 9 2 50 7.5 6.7 9.84 496 27 0.15 504 9.91 345 9 1 1 9.84 496 27 0.15 504 9.91 345 9 1 1 9.84 496 27 0.15 504 9.91 345 9 1 1 9.84 496 27 0.15 504 9.91 345 9 1 1 9.84 523 27 0.15 477 9.91 336 9 0 0	55						9 91 381			
58 9.75 8a3 18 9.84 465 27 0.15 537 9.91 345 9 9 1 5 5 0 7.5 6.7 9.84 496 27 9.84 496 27 0.15 537 9.91 345 9 1 1 9 1 1 9 1 1 1 1 1 1 1 1 1 1 1 1	56									30 4.5 4.0
59 9.75 841 18 9.84 496 27 0.15 504 9.91 345 9 1 50 17.5 10.7 9.91 336 9 0 0	57	9.75 805	18	9.84 442						
60 9.75 859 18 9.84 523 27 0.15 477 9.91 336 9 0								9		50 7.5 0.7
L. Cos. d. L. Cotg. c. d. L. Tang. L. Sin. d. , Prop. Pts.			18		27			9	U	
		L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	,	Prop. Pts.

1	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.	Π	Prop. Pts.
U	9.75 859	18	9.84 523	27	0.15 477	9.91 336		60	
1 2	9.75 877	18	9.84 550	26	0.15 450	9.91 328	8	59	_
3	9.75 895 9.75 913	18	9.84 576 9.84 603	27	0.15 424	9.91 319	9	58 57	6 2.7 2.6
4	9 75 931	18	9.84 630	27	0.15 370	9.91 301	9	56	6 2.7 2.6 7 3.2 3.0
5 6	9.75 949	18	9.84 657	27	0.15 343	9 91 292	9	55	8 3.6 3.3
	9 75 9 ⁶ 7 9.75 9 ⁸ 5	18	9.84 684 9.84 711	27	0.15 316	9 91 283	9	54	9 4.1 3.9
7 8	9.75 903	18	9.84 738	27	0.15 262	9 91 274 9.91 266	8	53 52	10 4.5 4.3 20 9.0 8.7
9	9.76 021	18	9.84 764	26	0.15 236	9.91 257	9	51	30 13.5 13.0
10	9.76 039	18	9.84 791	27 27	0.15 209	9.91 248	9	50	40 18.0 17.3
11	9.76 057 9.76 075	18	9.84 818	27	0.15 182	9.91 239 9.91 230	9	49 48	50 22.5 21.7
13	9.76 093	18	9 84 872	27	0.15 135	9.91 230	9	47	Ì
14	976 111	18	9.84 899	27	0.15 101	9.91 212	9	46	1 18
15	9.76 129	1	9 84 925	26	0.15 075	9.91 203	9	45	6 r.8
16	9.76 146 9.76 164	17	9 84 952	27	0.15 048	9 91 194	9	44	7 2.I 8 2.4
17 18	9.76 182	18	9.84 979 9.85 006	27	0.15 021	9 91 185 9.91 176	ģ	43 42	8 2.4 9 2.7
19	9 76 200	18	9 85 033	27	0.14 967	9 91 167	9	41	10 3.0
20	9.76 218	18	9.85 059	26	0.14 941	9 91 158	9	40	20 6.0
21	9.76 236	18 17	9.85 086	27 27	0.14 914	9.91 149	9	39	30 9.0 40 12.0
22 23	9.76 253 9.76 271	18	9 85 113	27	0.14 887 0.14 860	9.91 141 9.91 132	9	38	50, 15.0
24	9.76 289	18	9 85 166	26	0.14 834	9 91 123	9	37 36	ŭ . ŭ
25	9 76 307	18	9 85 193	27	0.14 807	9.91 114	9	35	
26	9 76 324	17	9.85 220	27 27	0.14 780	9.91 105	9	34	17
27 28	9.76 342 9.76 360	18	9.85 247 9.85 273	26	0.14 753 0.14 727	9.91 096 9.91 087	9	33 32	6 I.7 7 2.0
29	9.76 378	18	9.85 300	27	0.14 700	9.91 078	9	31	8 2.3
30	9.76 395	17	9.85 327	27	0.14 673	9 91 069	9	30	9 2.6
31	9.76 413	18	9 85 354	27 26	0,14 646	9.91 060	9	29	10 2.8
32	9.76 431	18	9 85 380	27	014620	9.91 051	9	28	20 5.7 30 8.5
33 34	9.76 448 9 76 466	18	9 85 407 9 85 434	27	0.14 593 0.14 566	9.91 042	9	27 26	40 11.3
35	9.76 484	18	9 85 460	26	0.14 540	9 91 023	10	25	50 14.2
36	9.76 501	17	9 85 487	27	0.14 513	991 014	9	24	
37	9.76 519	18 18	9 85 514	27 26	0.14 486	9 91 005	9	23	1 10
38 39	9.76 537 9.76 554	17	9.85 540 9.85 567	27	0.14 460 0.14 433	9 90 996	9	22 2I	6 1.0
40	9 76 572	18	9 85 594	27	0.14 406	9.90 978	9	20	7 1.2
41	9.76 590	18	9 85 620	26	0 14 380	9 90 969	9	19	8 1.3
42	9.76 607	17	9.85 647	27	0.14 353	9 90 960	9	18	9 1.5 10 1.7
43	9 76 623	17	9 85 674 9 85 700	27 26	0.14 326	9 90 951 9.90 942	9	17 16	20 3.3
44 45	9.76 660	18	9 85 727	27	0.14 300	9.90 942	ģ	15	30 5.0
45 46	9.76 677	17	9.85 754	27	0.14 2/3	9 90 933	9	14	40 6.7
47	9.76 695	18	9 85 780	26	0.14 220	9.90 913	9	13	50 8.3
48	9.76 712	17	9.85 807	27 27	0.14 193	9 90 906	9	12	
.49 50	9.76 730	17	9 85 834	26	0.14 166	9 90 896 9 90 887	9	10	1918
51	9.76 747	18	9.85 860	27	0.14 140	9 90 887	9	9	6 0.9 0.8
52	9.76 782	17	9.85 913	26	0.14 087	9.90 869	9	8	7 I.I 0.9 8 I.2 I.I
53	9.76800	18	9 85 940	27 27	0.14 060	9.90 860	9	7	8 1.2 1.1 9 1.4 1.2
54	9.76817	18	9 85 967	26	0.14 033	9.90 851	٥		10 1.5 1.3
55 56	9.76835 9.76852	17	9 85 993 9 85 920	27	0.14 007	9.90 842 9.90 832	10	5 4	20 3.0 2.7
57	9.76 870	18	9.86 046	26	0.13 954	9.90 823	9	3	30 4.5 4.0 40 6.0 5.3
58	9.76 887	17	9.86 073	27 27	0.13 927	9.90 814	9	2	40 6.0 5.3 50 7.5 6.7
59	9.76 904	17	9.86 100	26	0.13 900	9.90 803	9	_ I	
60	9.76 922		9.86 126		0.13 874	9.90 796		0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	,	Prop. Pts.

	L. Sin.	d.	L. Tare	c. d.	L. Cotg.	L. Cos.	d.	T	Prop. Pts.
1	9.76 922	<u> </u>	9.86 126	- u	0.13 874	 	 "	60	
ĭ	9.76 939	17	9.86 153	27	0.13 847	9.90 796 9.90 787	9	59	
2	9.76 957	18	9.86 179	26	0.13 821	9.90 777	10	58	1 27 26
3	9.76 974	17	9.86 206	27 26	0.13 794	9.90 768	9	57	6 27 2.6
4	9.76 991	18	9.86 232	27	0.13 768	9.90 759	9	_56	7 3.2 3.0
5	9 77 009 9.77 026	17	9.86 259	26	0.13 741	9.90 750 9.90 741	9	55 54	8 3.6 3.5
7	9.77 043	17	9.86 312	27	0.13 688	9.90 731	10	53	9 4.1 39
8	9.77-061	18	9.86 338	26	0.13 662	9.90 722	9	52	20 90 8.7
9	9 77 078	17	9.86 365	27	0.13 633	9 90 713	9	51	30 13.5 13.0
10	9.77 095	17	9 86 392	26	0.13 608	9.90 704	10	50	40 18.0 17.3 50 22.5 21.7
11	9.77 112 9.77 130	18	9 86 418 9 86 44 5	27	0.13 582	9 90 694 9 90 685	9	49 48	30 22.5 21.7
13	9.77 147	17	9.86 471	26	0.13 529	9.90 676	9	47	Į
14	9.77 164	17	9.86 498	27	0.13 502	9.90 667	9	46	18
15	9.77 181	17	9.86 524		0.13 476	9.90 657	ſ	45	6 1.8
16	9.77 199	17	9.86 551	27 26	0.13 449	9.90 648	9	44	7 2.1
17 18	9.77 216	17	9.86 577 9.86 603	26	0.13 423	9.90 639	9	43	8 2.4
10	9.77 233 9 77 250	17	9 86 630	27	0.13 397 0.13 370	9.90 630 9 90 620	10	42 41	9 2.7 10 3.0
20	9.77 268	18	9.86 656	26	0.13 344	9 90 611	9	40	20 6.0
21	9 77 285	17	9.86 683	27	0.13 317	9 90 602	9	39	30 9.0
22	9.77 302	17	9.86 709	26	0.13 291	9 90 592	10	38	40 120
23	9.77 319	17	9 86 736 9 86 762	27 26	0.13 264	9 90 583	9	37	50 15.0
24	9 77 336	17	9 86 789	27	0.13 238	9 90 574	9	3 ⁶ .	}
25 26	9.77 353 9 77 370	17	9 86 815	26	0.13 211	9 90 505	10	35 34	17
27	9.77 387	17	9 86 842	27	0.13 158	9.90 546	9	33	6 1.7
28	9.77 405	18	9 86 868	26 26	0.13 132	9 90 537	9 10	32	7 2.0
29	9.77 422	17	9 86 894	27	0 13 106	9 90 527	9	31	8 2.3 9 2.6
30	9.77 439	17	9.86 921	26	0.13 079	9.90 518	9	30	10 2.8
31 32	9.77 456 9.77 473	17	9.86 947 9 86 974	27	0.13 053 0.13 026	9.90 509 9 90 499	10	29 28	20 5.7
33	9.77 490	17	9 87 000	26	0.13 000	9 90 490	9	27	30 8.5
34	9.77 507	17	9.87 027	27 26	0.12 973	9.90 480	10	26	40 11.3 50 14.2
35	9.77 524	17	9.87 053	26	0.12 947	9.90 471	9	25	30 14.2
36	9 77 541	17	9 87 079	27	0.12 921	9.90 462	10	24	1
37 38	9 77 558 9-77 575	17	9 87 106 9 87 132	26	0.12 868	9 90 452 9 90 443	9	23 22	1 16
39	9.77 592	17	9.87 158	26	0.12 842	9.90 434	9	21	6 r.6
40	9.77 609	17	9 87 185	27	0.12 815	9.90 424	10	20	7 1.9
41	9.77 626	17	9.87 211	26	0.12 789	9.90 415	9	19	8 2.I 9 2.4
42	9.77 643	17	9.87 238	27 26	0.12 762	9 90 405	9	18	10 2.7
43	9.77 660 9.77 677	17	9 87 264	26	0.12 736	9.90 396 9.90 386	10	17 16	20 5.3
44	9.77 694	17	9.87 317	27	0.12 683	9 90 377	9	15	30 8.0
45 46	9.77 711	17	9.87 343	26	0.12 657	9 90 368	9	14	40 10.7
47	9.77 728	17	9.87 369	26	0 12 631	9 90 358	10	13	50 13 3
48	9.77 744	16 17	9.87 396	27 26	0.12 604	9.90 349	9	12	
49_	9.77 761	17	9 87 422	26	0.12 578	9.90 339	9	11	10 9
50	9.77 778 9.77 795	17	9.87 448 9.87 475	27	0.12 552 0.12 525	9.90 330	10	10	6 1.0 0.9
51 52	9.77 795	17	9.87 501	26	0.12 525	9.90 320	9	9	7 1.2 1.1
53	9.77 829	27	9.87 527	26	0.12 473	9.90 301	10	7	8 1.3 1.2
54	9.77 846	17 16	9 87 554	27 26	0.12 446	9 90 292	9	6	9 1.5 1.4
55	9.77 852	17	9.87 580	26	0,12 420	9 90 282	9	5	20 3.3 3.0
56	9.77 879	17	9.87 606 9.87 633	27	0.12 394	9.90 273	10	4	30 5.0 4.5
57 58	9.77 896 9.77 913	17	9.87 659	26	0.12 367 0 12 341	9 90 263 9.90 254	9	3 2	40 6.7 6.0
59	9.77 930	17	9.87 685	26	0.12 315	9.90 244	10	ī	50 8.3 7.5
60	9.77 946	16	9.87 711	26	0.12 289	9.90 235	9	0	
	L. Cos.	d.	L. Cotg.	c. d.	L.Tang.	L. Sin.	d.	,	Prop. Pts.

7	L. Sin.	d.	L.Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.77 946		9.87 711	27	0.12 289	9.90 235	10	60	
I	9.77 963	17	9.87 738	26	0.12 262 0.12 236	9.90 225 9.90 216	9	59 58	27
3	9.77 980 9.77 997	17	9.87 764 9.87 790	26	0.12 210	9.90 206	10	57	6 2.7
4	9.78 013	16	9.87 817	27 26	0.12 183	9.90 197	9	_56	7 3.2
5	9.78 030	17	9.87 843	26	0.12 157	9.90 187	9	55	8 3.6
6	9.78 047	16	9.87 869 9.87 895	26	0.12 131	9.90 178 9.90 168	10	54 53	9 4.1 10 4.5
7 8	9.78 o63 9.78 o8o	17	9.87 922	27	0.12 078	9.90 159	9	52	20 9.0
9	9.78 097	17 16	9.87 948	26 26	0.12 052	9.90 149	10	51	30 13.5
10	9.78 113	17	9.87 974	26	0.12 026	9.90 139	9	50	40 18.0 50 22.5
11	9.78 130 9.78 147	17	9.88 000 9.88 027	27	0.12 000	9.90 I30 9.90 I20	10	49 48	3-13
13	9.78 163	16	9.88 053	26	0.11 947	9.90 111	9	47	
14	9 78 180	17	9.88 079	26 26	0.11 921	9 90 101	10	46	1 26
15	9.78 197	x6	9.88 105	26	0 11 895	9.90 091	9	45	6 2.6 7 3.0
16	9.78 213 9.78 230	17	9.88 131 9.88 15 8	27	0.11 869	9 90 082	10	44 43	8 3.3
17 18	9.78 236	16	9.88 184	26	0.11 816	9 90 063	9	42	9 3.9
19	9.78 263	17	9.88 210	26 26	0.11 790	9 90 053	10	41	10 4.3 20 8.7
20	9.78 280	17	9.88 236	26	0.11 764	9 90 043	9	40	20 8.7 30 13.0
21	9.78 296	17	9.88 262 9.88 289	27	0.11 738	9 90 034 9 90 024	10	39 38	40 17.3
22	9.78 313 9.78 329	16	9.88 315	26	0.11 /11	9.90 014	10	37	50 21.7
24	9 78 346	17 16	9 88 341	26 26	0.11 659	9 90 005	9	36	
25	9.78 362	17	9.88 367	26	0.11 633	9 89 995	10	35	1 17
26	9.78 379	16	9.88 393	27	0.11 607	9.89 985 9.89 976	9	34 33	6 1.7
27 28	9.78 395 9 78 412	17	9.88 420 9.88 446	26	0.11 580	9.89 976	10	32	7 2.0
29	9 78 428	16	9.88 472	26	0.11 528	9.89 956	10	31	
30	9.78 445	17	9.88 498	26 26	0.11 502	9.89 947	10	30	9 2.6 10 2.8
31	9.78 461	16 17	9.88 524	26	0.11 476	9 89 937	10	29 28	20 5.7
32 33	9.78 478 9.78 494	16	9.88 550 9 88 577	27	0.11 450	9.89 927 9.89 918	9	27	30 8.5
33	9.78 510	16	9.88 603	26	0.11 397	9 89 908	10	26	40 11.3 50 14.2
35	9 78 527	17	9.88 629	26	0.11 371	9.89 898	10	25	30 14.2
36	9 78 543	16	9.88 655	26 26	0.11 345	9.89 888	9	24	
37 38	9.78 560 9.78 576	16	9.88 681 9.88 707	26	0.11 319	9.89 879 9.89 869	10	23 22	1 16
39	9.78 592	16	9.88 733	26	0.11 267	9.89 859	10	21	6 1.6
10	9.78 609	17	9.88 759	26	O.II 24I	9.89 849	10	20	7 I.9 8 2.I
41	9.78 625	16	9.88 786	27 26	0.11 214	9.89 840	9	19	9 2.4
42	9.78 642 9.78 658	16	9 88 812 9.88 838	26	0.11 188	9.89 830	10	17	10 2.7
43 44	9.78 674	16	9.88 864	26	0.11 102	9.89 810	10	16	20 5.3 30 8.0
45	9 78 691	17	9.88 890	26	0.11 110	9.89 801	9	15	30 8.0 40 10.7
46	9.78 707	16 16	9.88 916	26 26	0.11 084	9.89 791	10	14	50 13.3
47	9 78 723	16	9.88 942 9 88 968	26	0.11 058	9.89 781 9.89 771	10	13	l .
48 49	9.78 739 9 78 756	17	9.88 994	26	0.11 032	9.89 761	10	111	
50	9.78 772	16	9.89 020	26	0.10 980	9 89 752	9	10	6 1.0 0.9
51	9.78 788	16	9.89 046	26 27	0.10 954	9.89 742	10	9	7 1.2 1.1
52	9 78 803	17	9.89 073	26	0.10 927	9.89 732 9.89 722	10	8	8 1.3 1.2
53 54	9.78 821 9.78 837	16	9.89 099	26	0.10 901	9.89 712	10	7 6	9 1.5 1.4
55	9.78 853	16	9.89 151	26	0.10 849	9.89 702	10	5	10 1.7 1.5 20 3.3 3.0
56	9.78 869	16	9.89 177	26 26	0 10 823	9.89 693	9	4	30 5.0 4.5
57	9.78 886	17	9.89 203	26	0.10 797	9.89 683	10	3 2	40 6.7 6.0
58 59	9.78 902 9 78 918	16	9.89 229	26	0.10 771	9.89 663	10	ſī	50 8.3 7.5
60	9 78 934	16	9.89 281	26	0.10 719	9.89 653	10	0	
	L. Cos.	d.	L. Cotg.	c. d	. L. Tang	L. Sin.	d.	1	Prop. Pts.
-					تبسسطه		_	_	

270 38°

7	L. Sin.	d.	L. Tang	. c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.78 934	16	9.89 281	26	0.10 719	9.89 653	10	60	
I	9.78 950	17	9.89 307	26	0.10 693	9.89 643	10	59	
3	9.78 967 9.78 983	16	9.89 333 9.89 359	26	0.10 667	9.89 633	9	58 57	26 25 6 2.6 2.5
4	9.78 999	16	9.89 385	26	0.10 613	9.89 614	10	56	6 2.6 2.5 7 3 2.9
	9.79 013	16	9.89 411	26	0.10 589	9.89 604	10	55	8 3.5 33
5 6	9.79 031	16 16	9.89 437	26 26	0.10 563	9.89 594	10	54	9 39 3.8
7	9.79 047	16	9.89 463	26	0.10 537	9.89 584	10	53	10 4.3 4.2 20 8.7 8.3
8 9	9.79 063 9.79 079	16	9.89 489 9.89 515	26	0.10 511	9.89 574 9.89 564	10	52 51	20 8.7 8.3 30 13.0 12.5
10	9.79 095	- 16	9.89 541	- 26	0.10 459	9.89 554	10	50	40 17.3 16.7
11	9.79 111	16	9 89 567	26	0.10 433	9.89 544	10	49	50 21.7 20.8
12	9.79 128	17	9.89 593	26 26	0.10 407	9.89 534	10	48	
13	9.79 144	16	9.89 619	26	0.10 381	9 89 524	10	47	
14	9.79 160	16	9 89 645	26	0.10 355	9 89 514	10	46	6 1.7
15 16	9.79 176 9.79 192	16	9 89 671	26	0.10 329	9.89 50 <u>4</u> 9 89 49 <u>5</u>	9	45 44	6 1.7 7 2.0
17	9.79 208	16	9.89 723	26	0 10 277	9 89 485	10	43	8 2.3
18	9.79 224	16	9.89 749	26	0.10 251	9.89 475	10	42	9 2.6
19	9 79 240	16	9.89 775	26 26	0.10 225	9 89 465	10	41	10 2.8
20	9.79 256	16	9.89 801	26	0.10 199	9.89 455	10	40	20 5.7 30 8.5
21	9 79 272 9.79 288	16	9 89 827 9.89 853	26	0.10 173	9.89 44 <u>5</u> 9.89 43 <u>5</u>	10	39 38	40 11.3
23	9.79 304	16	9.89 879	26	0.10 147	9.89 435	10	37	50 14.2
24	9.79 319	×5	9.89 905	26	0.10 095	9 89 415	10	36	
25	9.79 335	16	9.89 931	26	0.10 069	9.89 405	10	35	
26	9.79 351	16 16	9.89 957	26 26	0.10 043	9.89 395	10	34	16 15
27 28	9.79 367	16	9.89 983	26	0.10 017	9 89 385	10	33	6 16 1.5 7 1.9 1.8
29	9.79 383 9.79 399	16	9.90 009 9.90 035	26	0.09 991	9.89 37 5 9.89 364	11	32 31	8 2.1 2.0
30	9.79 415	16	9.90 061	26	0.09 939	9.89 354	10	30	9 2.4 2.3
31	9.79 431	16	9.90 086	25	0.09 914	9.89 344	10	29	10 2.7 2.5
32	9.79 447	16 16	9.90 112	26 26	0.09 888	9.89 334	10	28	20 5.3 5.0 30 8.0 7.5
33	9.79 463	15	9.90 138	26	0.09 862	9 89 324	10	27 26	40 10.7 10.0
34	9.79 478	16	9.90 164	26	0 09 836	9.89 314	10		50 13.3 12.5
35 36	9.79 494 . 9.79 510	16	9.90 190 9.90 216	26	0.09 810	9 89 304 9.89 294	10	25 24	
37	9.79 526	16	9.90 242	26	0.09 758	9 89 284	10	23	
38	9.79 542	16 16	9.90 268	26 26	0.09 732	9.89 274	10	22	11
39	9.79 558	15	9.90 294	26	0.09 706	9 89 264	10	21	6 I.I 7 I.3
40	9.79 573	16	9.90 320	26	0.09 680	9 89 254	10	20	8 1.5
41 42	9.79 589 9.79 605	16	9. 90 346 9 90 371	25	0.09 654	9 89 244 9.89 233	11	19 18	9 1.7
43	9.79 621	16	9 90 397	26	0.09 603	9 89 223	10	17	10 1.8
' 44	9.79 636	15 16	9.90 423	26 26	0.09 577	9.89 213	10	16	20 3 7 30 5.5
45	9.79 652	16	9.90 449	26	0.09 551	9.89 203	10	15	40 7.3
46	9.79 668	16	9 90 475	26	0.09 525	9 89 193	10	14	50 9.2
47 48	9.79 684 9.79 699	15	9.90 501 9.90 527	26	0.09 499 0.09 473	9.89 183 9.89 173	10	13	
49	9.79 715	16	9 90 553	26	0.09 447	9.89 162	11	11	
50	9.79 731	16	9.90 578	25	0.09 422	9 89 152	10	10	6 I.O O.O
51	9.79 746	15 16	9 90 604	26 26	0.09 396	9.89 142	10	9	6 I.0 0.9 7 I.2 I.I
52	9 79 762	16	9.90 630	26	0.09 370	9.89 132	10	8	8 1.3 1.2
53 54	9.79 778 9.79 793	15	9 90 656 9.90 682	26	0.09 344	9.89 122 9.89 112	10	7 6	9 1.5 1.4
55	9.79 791	16	9.90 708	26	0.09 310	9.89 101	11	5	10 1.7 1.5
55 56	9.79 825	16	9.90 708	26	0.09 292	9.89 101 9.89 091	10	5 4	20 3.3 3 ° 30 5.0 4
57	979840	15	9 90 759	25	0.09 241	9.89 081	10	3	30 5.0 4 40 6.7 6.0
58	9.79 856	16 16	9.90 785	26 26	0.09 215	9.89 071	10	2	50 8.3 7.5
59	9.79 872	15	9 90 811	26	0.09 189	9.89 060	10	1	
60	9.79 887		9.90 837		0.09 163	9.89 050		.0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	′	Prop. Pts.

1	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.79 887	16	9.90 837	26	0.09 163	9.89 050	10	60	
1 2	9.79 903 9.79 918	15	9.90 863 9.90 889	26	0.09 137	9.89 040 9 89 030	10	59 58	1 26
3	9.79 934	16	9.90 914	25	0.09 086	9 89 020	10	57	6 2,6
4	9.79 950	16	9.90 940	26 26	0.09 060	9.89 009	11	56	7 3.0
5 6	9.79 965	16	9.90 966	26	0.09 034	9.88 999	10	5 5	8 3.5
	9 79 981 9.79 996	15	9 90 992 9.91 018	26	0.09 008	9.88 989 9.88 978	11	54 53	9 3.9 10 4.3
7 8	9 80 012	16	9 91 043	25	0.08 957	9 88 968	10	52	20 8.7
9	9.80 027	15	9.91 069	26 26	0.08 931	9 88 958	10	51	30 13. 0
10	9.80 043	15	9 91 095	26	0.08 905	9.88 948	11	50	40 17.3 50 21.7
II I2	9.80 058 9.80 074	16	9 91 121 9.91 147	26	0.08 879	9.88 937 9.88 927	10	49 48	30 / 21.7
13	9.80 089	15	9.91 172	25	0.08 828	9.88 917	10	47	
14	9.80 105	16 15	9.91 198	26 26	0.08 802	9.88 906	11	46	25
15	9.80 120	16	9.91 224	26	0.08 776	9.88 896	10	45	6 2.5
16 17	9.80 136 9.80 151	15	9 91 250 9.91 276	26	0.08 750	9 88 886 9 88 875	11	44	7 2.9 8 3.3
18	9.80 166	15	9 91 301	25	0.08 699	9.88 865	10	43 42	9 3.8
19	9.80 182	16	9.91 327	26 26	0.08 673	9.88 855	10	41	10 4.2
20	9.80 197	15 16	9.91 353	26	0 08 647	9 88 844	10	40	20 8.3 30 12.5
21	9.80 213	15	9.91 379	25	0.08 621	9.88 834	10	3 9	40 16.7
22 23	9.80 228 9.80 244	16	9.91 404 9.91 430	26	0.08 596 0 08 570	9 88 824 9.88 813	11	38 37	50 20.8
21	9.80 259	15	9.91 456	26	0.08 544	9 88 803	10	36	
25	9.80 274	15 16	9.91 482	26 25	0.08 518	9 88 793	11	35	
26	9.80 290	15	9.91 507	25	0.08 493	9.88 782	10	34	6 1.6
27 28	9.80 305 9.80 320	15	9.91 533 9.91 559	26	0.08 467 0.08 441	9.88 772 9 88 761	11	33 32	6 1.6 7 1.9
20	9.80 326	16	9 91 585	26	0.08 415	9.88 751	10	31	8 2.1
30	9.80 351	25	9.91 610	25	0.08 390	9.88 741	10	30	9 2.4
31	9.80 366	15 16	9.91 636	26 26	0.0 ⁹ 364	9.88 730	11	29	10 2.7
32	9.80 382	15	9.91 662	26	0 28 338	9 88 720	10	28	20 5.3 30 8.0
33 34	9.80 397 9.80 412	15	9.91 688 9.91 713	25	c.08 312 o.08 287	9.88 709 9.88 699	10	27 26	40 10.7
35	9.80 428	16	9.91 739	26	0 08 261	9.88 688	11	25	50 13.3
35 36	9.80 443	¥5	9.91 765	26	0 08 235	9.88 678	10	24	
37	9 80 458	15	9.91 791	26 25	0.08 209	9 88 668	10	23	I5
38	9 80 473 9.80 489	16	9.91 816 9.91 842	26	0.08 184 0.08 158	9 88 657 9.88 647	10	22 2I	6 1.5
39 40	9.80 504	15	9.91 868	26	0.08 132	9.88 636	11	20	7 1.8
41	9 80 519	15	9.91 893	25	0.08 107	9 88 626	10	19	8 2.0
42	9.80 534	15	9.91 919	26 26	0.08 081	9.88 615	11	18	9 2.3 10 2.5
43	9 80 550	16 15	9 91 945	26 26	0.08 055	9.88 605	11	17 16	20 5.0
44	9.80 56 5 9.80 580	15	9 91 971	25	0.08 029	9.88 594	10		30 7.5
45 46	9.80 580	15	9.91 996 9.92 022	26	0.07 978	9 88 584 9.88 573	11	15 14	40 10.0
47	9.80 610	15	9.92 048	26	0.07 952	9.88 563	10	13	50 12.5
48	9.80 625	15 16	9.92 073	25 26	0.07 927	9 88 552	11	12	
49	9.80 641	15	9.92 099	26	0.07 901	9.88 542	11	11	111 10
50 51	9.80 656 9.80 671	15	9.92 123 9.92 150	25	0.07 875 0.07 830	9.88 531 9.88 521	10	10	6 1.1 1.0
51 52	9.80 686	15	9.92 176	26	0.07 824	9.88 510	**	8	7 1.3 1.2
53	9.80 701	15	9.92 202	26	0.07 798	9.88 499	11	7	8 1. 5 1.3 9 1.7 1.5
_54	9.80 716	15 15	9.92 227	25 26	0.07 773	9.88 489	10 11	6	10 1.8 1.7
55	9.80 731	15	9.92 253	26	0.07 747	9.88 478	10	5	20 3.7 3.3
56 57	9.80 746 9.80 762	16	9.92 279 9 92 304	25	0.07 721	9.88 468 9.88 457	11	4	30 5.5 5.0
58	9.80 777	15	9 92 330	26	0.07 670	9.88 447	10	2	40 7.3 6.7 50 9.2 8.3
.59	9.80 792	75 15	9.92 356	26 25	0.07 644	9.88 436	11	1	3-12-13
60	9.80 807	-3	9 92 381	-3	0 07 619	9.88 425		0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	,	Prop. Pts.

1	L. Sin.	d.	L. Tang	c. d	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.80 807	1	9.92 381	26	0.07 619	9.88 425	10	60	
I	9.80 822	15	9.92 407	26	0.07 593	9.88 415	11	59	i
2	9.80 837 9 80 852	15	9.92 433	25	0.07 567	9.88 404 9.88 394	10	58	26
3 4	9.80 867	15	9.92 458 9.92 484	26	0.07 542	9.88 383	11	57 56	6 2.6
5	9.80 882	- 15	9.92 510	26	0.07 490	9.88 372	**	55	7 3° 8 3.5
6	9.80 897	15	9 92 535	25	0.07 463	9.88 362	10	54	9 3.9
7	9.80 912	15	9.92 561	26	0.07 439	9.88 351	11	53	10 43
8	9.80 927	15	9.92 587	26 25	0.07 413	9.88 340	11	52	20 8.7
9	9.80 942	- 15	9 92 612	26	0.07 388	9.88 330	11	51	30 13.0
10	9.80 957	15	9.92 638	25	0.07 362	9.88 319	11	50	40 17.3 50 21.7
11	9.80 972	15	9 92 663	26	0.07 337	9.88 308	10	49	30 (21./
13	9.80 987	15	9.92 689	26	0.07 311	9.88 298 9.88 287	**	48 47	1
14	9.81 017	15	9 92 740	25	0.07 260	9 88 276	11	46	1 25
15	9.81 032	15	9 92 766	26	0.07 234	9.88 266	10	45	6 2.5
16	9.81 047	15	9 92 792	26	0.07 208	9.88 255	II	44	7 2.9
17	9.81 061	14	9.92 817	25 26	0.07 183	9.88 244	11	43	8 3.3
18	9.81 076	15	9 92 843	25	0.07 157	9.88 234	10	42	9 3.8
19	9.81 091	15	9 92 868	26	0 07 132	9 88 223	111	41	10 4.2
20	9.81 106	15	9.92 894	26	0.07 106	9.88 212	11	40	20 8.3 30 12.5
2I 22	9.81 121 9.81 136	15	9.92 920	25	0.07 080	9.88 201 9.88 191	10	39	40 16.7
23	9.81 130	15	9.92 945 9.92 971	26	0.07 055	9.88 180	11	38 37	50 20.8
24	9.81 166	15	9.92 996	25	0.07 004	9.88 169	11	36	
25	981 180	14	9.93 022	26	0.06 978	9 88 158	11	35	
26	9.81 195	15	9.93 048	26	0 06 952	9.88 148	10	34	15
27	9.81 210	15	9 93 073	25 26	0.06 927	9 88 137	11	33	6 1.5
28	9.81 225	15	9.93 099	25	0.06 901	9.88 126	11	32	7 1.8
29	9.81 240	14	9 93 124	26	0.06 876	9.88 115	10	31	8 2.0
30	9.81 254	15	9 93 150	25	0.06 850	9.88 105	11	30	9 2. 3 10 2.5
31	9.81 269 9.81 284	15	9 93 175	26	0 06 825	9.88 og4 9.88 o83	11	29 28	20 5.0
32 33	9.81 204	15	9.93 201 9 93 227	26	0.06 799	9.88 072	11	27	30 7.5
34	9.81 314	15	9.93 252	25	0 06 748	9.88 061	11	26	40 10.0
35	9.81 328	14	9.93 278	26	0.06 722	9.88 051	10	25	50 12.5
36	9.81 343	15	9.93 303	25	0.06 697	9.88 040	11	24	Į.
37	9.81 358	15	9 93 329	26	0.06 671	9.88 029	11	23	ł
38	9.81 372	14	9.93 354	25 26	0.06 646	9.88 018	11	22	14
39_	9.81 387	15	9 93 380	26	0.06 620	9.88 007	11	21	6 1.4 7 1.6
40	9.81 402	15	9.93 406	25	0 06 594	9 87 996	11	20	7 1.6 8 1.9
41	9.81 417	14	9.93 431	26	0.06 569	9.87 985	10	19	9 2.1
42 43	9.81 431 9.81 446	15	9.93 457 9 93 482	25	0.06 543 0.06 518	9 87 975 9.87 964	11	18	10 2.3
44,	9.81 461	15	9.93 508	26	0.00 310	9.87 953	11	16	20 47
45	9.81 475	14	9.93 533	25	0 06 467	9 87 942	11	15	30 7.0
46	9.81 492	15	9.93 557	26	0 06 441	9.87 931	11	14	40 9.3 50 11.7
47	9.81 50 5	15	9 93 584	25	0.06 416	9.87 920	11	13	50 11./
48	9.81 519	14	9 93 610	26 26	0 06 390	9.87 909	11	12	l
49	9.81 534	15	9 93 636	25	0 06 364	9.87 898	11	11	11 10
50	9.81 549	14	9.93 651	26	0.06 339	9.87 887	10	10	6 1.1 10
51	9.81 563 9.81 578	15	9 93 687	25	0.06 313	9.87 877	11	9	7 1.3 1.2
52 53	9.81 592	14	9 93 712	26	0.06 262	9 87 866 9.87 855	11	8 7	8 1.5 1.3
53 54	9.81 607	15	9 93 753	25	0.06 237	9.87 844	11	6	9 1.7 1.5
55	9 81 622	15	9.93 789	26	0.06 211	9.87 833	11	5	10 1.8 1.7
56	9 81 636	14	9.93 814	25	0.06 186	9.87 822	11	4	20 3.7 3.3 30 5.5 5.0
57	9.81 651	15	9.93 840	26	0.06 160	987811	11	3	40 7.3 6.7
58	9.81 665	14 15	9.93 865	25 26	0.06 133	9.87 800	11	2	50 9.2 8.3
59	9.81 680	14	9 93 891	25	0.06 109	9.87 789	11	1	
60	9.81 694		9.93 916		0.06 084	9.87 778		O	
1	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	,	Prop. Pts.

1	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.81 694		9.93 916	26	0.06 084	9.87 778	11	60	
1	9 81 709	15	9.93 942	25	0.06 058	9.87 767	11	59	ł
2	9.81 723 9.81 738	15	9.93 967	26	0.06 033	9.87 756 9.87 745	11	58	26
3 4	9.81 752	14	9.93 993 9.94 018	25	0.05 982	9.87 734	11	57 56	6 2,6
5	9 81 767	15	9.94 044	26	0.05 956	9.87 723	11	55	7 3.0 8 3. 5
6	9.81 781	14	9.94 069	25	0.05 931	9.87 712	11	54	9 3.9
7	9.81 796	15	9.94 095	26 25	0.05 905	9.87 701	11	53	10 4.3
8	981810	15	9.94 120	26	0.05 880	9.87 690	11	52	20 8.7
9 10	9.81 825	14	9.94 146	25	0.05 854	9.87 679	11	51 50	30 13.0 40 17.3
111	9.81 854	15	9 94 171 9.94 197	26	0.05 829	9.87 657	11	49	50 21.7
12	9.81 868	14	9.94 222	25	0.05 778	9.87 646	11	48	J. 1
13	9.81 882	14	9.94 248	26	0.05 752	9 87 635	11	47	
14	9.81 897	15	9 94 273	25	0.05 727	9.87 624	11	46	25
15	9.81 911	15	9.94 299	25	0.05 701	9.87 613	13	45	6 2.5
16 17	9.81 926 9.81 940	14	9 94 324	26	0.05 676	9 87 601 9.87 590	11	44 43	7 2.9 8 3.3
18	9.81 955	15	9.94 350 9.94 375	25	0.05 625	9.87 579	11	43 42	8 3.3 9 3.8
19	9 81 969	14	9 94 401	26	0.05 599	9.87 568	11	41	10 4.2
20	9.81 983	14	9.94 426	25	0.05 574	9.87 557	11	40	20 8.3
21	9.81 998	15	9.94 452	26 25	0.05 548	9.87 546	11	39	30 12.5
22	9 82 012	14	9 94 477	26	0.05 523	9.87 535	11	38	40 16.7 50 20.8
23 24	9.82 026 9.82 041	15	9 94 5 03 9 94 528	25	0.05 497 0 05 472	9.87 524 9.87 513	11	37 36	30 20.0
25	9 82 055	14	9 94 554	26	0.05 446	9 87 501	12	35	
26	9 82 069	14		25	0.05 421	9.87 490	11	34	15
27	9.82 084	15	9 94 579 9 94 604	25 26	0.05 396	9.87 479	11	33	6 1.5
28	9.82 098	14	9 94 630	25	0.05 370	9.87 468	x1	32	7 1.8 8 2.0
29	9.82 112	14	9 94 655	26	n.o5 345	9 87 457	11	31	8 2.0 9 2.3
30	9.82 141	15	9.94 631 9.94 631	25	0.05 319	9.87 446 9 87 434	12	30 20	10 2.5
31 32	9.82 155	14	9.94 732	26	0.05 268	9.87 434	11	28	20 5.0
33	9.82 169	14	9.94 757	25	0.05 243	987412	11	27	30 7.5
34	9.82 184	15 14	9 94 733	26 25	0 05 217	9 87 401	11	26	40 10.0 50 12.5
35	9.82 198	14	9 94 808	26	0.05 192	9 87 390	12	25	30 12.3
36	9.82 212 9 82 226	14	9.94 834 9.94 859	25	0.05 166	9.87 378 9.87 367	11	24	
37 38	9.82 240	14	9.94 884	25	0.05 116	9.87 356	11	23	114
39	9.82 255	15	9 94 910	26	0.05 090	9 87 345	11	21	6 1.4
40	9 82 269	14	9.94 935	25	0 05 065	9.87 334	11	20	7 1.6
41	9.82 283	14	9.94 961	26 25	0.05 039	9.87 322	12	19	8 1.9 9 2.1
42	9.82 297	14	9.94 986	26	0.05 014	9.87 311	111	18	10 2.3
43 44	9.82 311 9.82 326	15	9.95 012 9.95 037	25	0.04 988	9.87 300 9.87 288	12	17 16	20 4.7
45	9.82 340	14	9.95 062	25	0.04 938	9.87 277	11	15	30 7.0
46	9.82 354	14	9.95 088	26	0.04 912	9.87 266	11	14	40 9.3 50 11.7
47	9.82 368	14	9.95 113	25 26	0.04 887	9.87 255	11	13	30 1 11./
48	9.82 382	14	9 95 139	25	0.04 861	9 87 243	12	12	
49 50	9.82 396	14	9.95 164	26	0.04 836	9.87 232	11	11	12 11
51	9.82 410 9.82 424	14	9.95 190 9.95 215	25	0.04 810	9.87 221 9.87 209	12	10	6 1.2 1.1
52	9 82 439	15	9.95 240	25	0.04 760	9.87 198	11	8	7 1.4 1.3
53	9.82 453	14	9.95 266	26	0.04 734	9.87 187	11	7	8 1.6 1. 3 9 1.8 1.7
54	9.82 467	14 14	9.95 291	25 26	0.04 709	9.87 175	12	- 6	10 2.0 1.8
55	9.82 481	14	9.95 317	25	0.04 683	9.87 164	11	5	20 4.0 3.7
56 57	9.82 495 9.82 509	14	9.95 34 2 9.95 368	26	0.04 658	9.87 153 9.87 141	12	4	30 6.0 5.5
57 58	9.82 523	14	9.95 393	25	0.04 607	9.87 130	21	3	40 8.0 7.3 50 10.0 9.2
59	9.82 537	14	9.95 418	25	0.04 582	9.87 119	11	I	30 10.0 9.2
60	9.82 551	14	9.95 444	26	0.04 556	9.87 107	12	0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	,	Prop. Pts.

		_	T	_					7
<u></u>	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.	L	Prop. Pts.
0	9.82 551		9.95 444		0.04 556	9.87 107		60	
1	9.82 565	14	9.95 469	25 26	0.04 531	9.87 096	11	59	I
2	9.82 579	14	9 95 495	25	0.04 505	9.87 085	12	58	26
3	9.82 593	14	9 95 520	25	0.04 480	9 87 073 9.87 062	11	57 56	6 2.6
4		14	9.95 545	26	0.04 455		12		7 3.0
5	9.82 621 9.82 635	14	9.95 571	25	0.04 429	9.87 050	11	55	8 3.3
7	9.82 649	14	9.95 596 9.95 622	26	0.04 404	9.87 039 9.87 028	11	54 53	9 3.9 IO 4.3
á	9.82 663	14	9.95 647	25	0.04 353	9.87 016	12	52 52	10 4.3 20 8.7
9	9.82 677	14	9.95 672	25	0.04 328	9.87 005	11	51	30 13.0
10	9.82 69I	14	9.95 698	26	0.04 302	9.86 993	12	50	40 17.3
11	9.82 705	14	9.95 723	25	0.04 277	9.86 982	11	49	50 21.7
12	9.82 719	14	9.95 748	25	0.04 252	9 86 970	12	48	
13	9.82 733	14	9 95 774	26	0.04 226	9.86 959	XI	47	•
14	9.82 747	14	9 95 799	25 26	0.04 201	9 86 947	12	46	25
15	9.82 761	14	9.95 825	l	0.04 175	9.86 936		45	6 2.5
16	9.82 775	14	9 95 850	25	0.04 150	9 86 924	12	44	7 2.9
17	9.82 788	13	9 95 875	25 26	0.04 125	9.86 913	11	43	8 3.3
18	9.82 802	14	9 95 901	25	0.04 099	9 86 902	11	42	9 3.8
19	9.82 816	14	9.95 926	26	0.04 074	9 86 890	11	41	10 4.2
20	9.82 830	14	9.95 952	25	0.04 048	9 86 879	12	40	20 8.3
21	9.82 844	14	9-95 977	25	0.04 023	9.86 867	12	39	30 12 5 40 16.7
22	9.82 858	14	9.96 002	26	0.03 998	9 86 855	11	38	40 16.7 50 20.8
23	9.82 872 9.82 885	13	9.96 028	25	0 03 972	9 86 844	12	37	30 20.0
24		14	9.96 053	25	0.03 9.17	9 86 832	11	36	1
25 26	9.82 899	14	9.96 078	26	0.03 922	9 86 821 9.86 809	12	35	1 14
27	9.82 913 9.82 927	14	9.96 104 9.96 129	25	0.03 896 0.03 871	9.86 798	11	34	6 1.4
28	9.82 941	14	9.96 155	26	0.03 845	9.86 786	12	33 32	7 1.6
20	9.82 953	14	9.96 180	25	0.03 820	9 86 775	11	31	8 1.9
30	9.82 968	13	9.96 205	25	0.03 795	9 86 763	12	30	9 2.1
31	9.82 982	14	9.96 231	26	0.03 795	9 86 752	11	29	10 2.3
32	9.82 996	14	9.96 256	25	0.03 744	9.86 740	12	28	20 4.7
33	9.83 010	24	9.96 281	25	0.03 719	9.86 728	12	27	30 7.0
34	9.83 023	13	9.96 307	26	0 03 693	9.86 717	11	26	40 9.3
35	9.83 037	14	9.96 332	25	0.03 668	9 86 705	12	25	50 11.7
36	9.83 051	14	9.96 357	25	0.03 643	9 86 694	11	24	
37	9.83 065	14	9.96 383	26	0.03 617	9.86 682	12	23	l .
38	9.83 078	13	9.96 408	25 25	0.03 592	9.86 670	12	22	13
39	9.83 092	14	9.96 433	25 26	0.03 567	9 86 659	12	21	6 1.3
40	9.83 106		9.96 459		0.03 541	9.86 647		20	7 I.5 8 I.7
4I	9.83 120	14	9 96 484	25 26	0.03 516	9.86 635	12	19	8 1.7 9 2.0
42	9.83 133	13	9.96 510	25	0.03 490	9 86 624	11	18	10 2.2
43	9.83 147	14	9.96 533	25	0.03 465	9.86 612	12	17	20 4.3
44	9.83 161	13	9.96 560	26	0.03 440	9.86 600	11	16	30 6.5
45	9.83 174	14	9.96 586	25	0.03 414	9 86 589	12	15	40 8.7
46	9.83 188	14	9.96 611	25	0.03 389	9.86 577	12	14	50 10.8
47	9.83 202	13	9.96 636 9.96 662	26	0.03 364	9.86 565 9.86 554	11	13	
48	9.83 215 9.83 229	14	9.96 687	25	0.03 338	9.86 542	12	11	
49 50		13		25	0.03 288	9.86 530	12	10	12 11
51	9.83 242 9.83 256	14	9.96 712 9.96 738	26	0.03 262	9.86 518	12	9	6 1.2 1.1
52	9.83 270	14	9.96 763	25	0.03 237	9.86 507	11	8	7 1.4 1.3
53	9.83 283	13	9.96 788	25	0.03 212	9 86 495	12	7	8 1.6 1.3
54	9.83 297	¥4	9.96 814	26	0.03 186	9.86 483	12	6	9 1.8 1.7
55	9.83 310	13	9.96 839	25	0.03 161	9.86 472	11	5	10 2.0 1.8
56 56	9.83 324	14	9.96 864	25	0.03 136	9.86 460	12	4	20 4.0 3.7 30 6.0 5.5
57	9.83 338	14	9.96 890	26	0.03 110	9 86 448	12	3	30 6.0 5.5 40 8.0 7.3
58	9.83 351	13	9.96 913	25	0.03 085	9.86 436	12	2	50 10.0 9.2
59	9.83 363	14	9.96 940	25 26	0.03 060	9.86 425	11	I	35 20.0 9.2
60	9.83 378	13	9.96 966	20	0.03 034	9 86 413	12	0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	,	Prop. Pts.

1	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.83 378	14	9.96 966	25	0.03 034	9.86 413	12	60	
1 2	9.83 392 9.83 405	13	9.96 991 9.97 016	25	0.03 009	9.86 401 9.86 389	12	59 58	
3	9.83 409	14	9.97 042	26	0.02 958	9.86 377	12	57	6 2.6
4	9.83 432	13	9.97 067	25	0.02 933	9 86 366	11	56	7 3.0
5	9.83 446	14	9 97 092	25	0.02 908	9.86 354	12	55	8 3.3
5 6	9.83 459	13	9.97 118	26	0.02 882	9 86 342	12	54	9 3.9
7	9.83 473	14	9.97 143	25 25	0.02 857	9.86 330	12	53	10 4.3
8	9.83 486 9.83 500	14	9.97 168 9.97 193	25	0.02 832	9 86 318 9.86 306	12	52 51	20 8.7 30 13.0
10	9.83 513	13		26	0.02 781	9.86 295	11	50	40 17.3
11	9.83 527	14	9.97 219 9.97 244	25	0.02 756	9.86 283	12	49	50 21.7
12	9 83 540	13	9.97 269	25	0.02 731	9.86 271	12	48	
13	9 83 554	14	9.97 295	26	0.02 705	9.86 259	12	47	
14	9.85 567	13	9 97 320	25 25	0.02 680	9 86 247	12	46	25
15	9.83 581	13	9 97 345	26	0.02 655	9.86 235	12	45	6 2.5
16	9.83 594	14	9.97 371	25	0.02 629	9.86 223	12	44	7 2.9 8 3.3
17	9.83 608 9.83 621	13	9 97 396 9 97 421	25	0.02 604	9.86 211 9.86 200	11	43 42	8 3.3 9 3.8
19	9.83 634	13	9 97 447	26	0.02 553	9.86 188	12	42 41	10 4.2
20	9 83 648	14	9.97 472	25	0.02 528	9.86 176	12	40	20 8.3
21	9.83 661	13	9 97 497	25	0 02 503	9.86 164	13	39	30 12.5
22	9.83 674	13	9.97 523	26	0.02 477	9.86 152	12 12	38	40 16.7 50 20.8
23	9.83 688	14	9.97 548	25 25	0.02 452	9.86 140	12	37	30 20.6
2.1	9.83 701	14	9.97 573	25	0.02 427	9.86 128	12	36	
25 26	9.83 715	13	9.97 598	26	0.02 402	9.86 116 9.86 104	12	35	1 14
27	9.83 728 9.83 741	13	9 97 624 9 97 649	25	0 02 376	9.86 092	12	34 33	6 1.4
28	9.83 755	14	9 97 674	25	0.02 326	9.86 080	12	32	7 1.6
29	9.83 768	13	9 97 700	26	0 02 300	9 86 o68	12	31	8 1.9
30	9.83 781	13	9.97 725	25	0.02 275	9.86 056	12	30	9 2.1
31	9.83 795	14	9.97 750	25 26	0.02 250	9.86 044	12	29	10 2.3 20 4.7
32	9.83 808	13	9.97 776	25	0.02 224	9 86 032	12	28	30 7.0
33 34	9.83 821 9.83 834	13	9.97 801 9.97 826	25	0.02 199	9 86 020	12	27 26	40 9.3
35	9.83 848	24	9.97 851	25	0 02 149	9.85 996	12	25	50 11.7
35	9.83 861	13	9.97 877	26	0.02 123	9.85 984	12	24	
37	9.83 874	13	9 97 902	25	0.02 098	9.85 972	12	23	
38	9.83 887	13 14	9 97 927	25 26	0.02 073	9.85 960	12	22	6 I.3
39	9.83 901	13	9 97 953	25	0.02 047	9.85 948	12	21	6 1.3 7 1.5
40	9.83 914	13	9 97 978	25	0.02 022	9.85 936	12	20	8 1.7
4I 42	9.83 927	13	9.98 003 9 98 029	26	0.01 997 0.01 971	9.85 924 9.85 912	12	19	9 2.0
43	9.83 954	24	9 98 054	25	0.01 946	9.85 900	12	17	10 2.2
44	9 83 967	13	9 98 079	25	0 01 921	9.85 888	12	16	20 4.3 30 6.5
45	9.83 980	13	9.98 104	25 26	0.01 896	9.85 876	12	15	40 8.7
46	9.83 993	13	9 98 130	20 25	0 01 870	9 85 864	13	14	50 10.8
47 48	9.84 006	14	9 98 155 9.98 180	25	0.01 845	9.85 851 9.85 839	12	13	
49	9.84 033	13	9.98 206	26	0.01 794	9.05 039	12	11	
50	9.84 046	13	9.98 231	25	0.01 760	9.85 815	13	10	12 11
51	9.84 059	13	9.98 256	25	0.01 744	9.85 803	12	9	6 1.2 1.1
52	9.84 072	13	9 98 281	25	0.01 719	9.85 791	12	8	7 1.4 1.3 8 1.6 1.5
53	9.84 085	13	9.98 307	26 25	0.01 693	9.85 779	12	7	9 1.8 1.7
54	9.84 098	14	9.98 332	25 25	0.01 668	9.85 766	12	6	10 2.0 1.8
55	9.84 112	13	9.98 357	26	0.01 643	9.85 754	12	5	20 4.0 3.7
56 57	9 84 125 9.84 138	13	9.98 383 9.98 408	25	0.01 517	9.85 742 9.85 730	12	4 3	30 6.0 5.5 40 8.0 7.3
58	9.84 151	13	9 98 433	25	0.01 567	9.85 718	12	2	40 8.0 7.3 50 10.0 9.2
59	9.84 164	13	9.98 458	25 26	0.01 542	9.85 706	12	1	35,140,0,9,2
60	9.84 177	13	9.98 484	20	0.01 516	9.85 693	13	0	
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	,	Prop. Pts.

1	L. Sin.	d.	L. Tang.	c. d.	L. Cotg.	L. Cos.	d.		Prop. Pts.
0	9.84 177	13	9.98 484	25	0.01 516	9.85 693	12	60	
1 2	9.84 190 9.84 203	13	9.98 509 9 98 534	25	0.01 491	9.85 681 9.85 669	12	59 58	J 26
3	9.84 216	13	9 98 560	26	0.01 440	9 85 657	12	57	6 2.6
4	9 84 229	13	9 98 585	25 25	0.01 415	9 85 645	13	56	7 3.0
5 6	9.84 242	13	9 98 610	25	0 01 300	9.85 632	12	55	8 3.3
	9.84 255 9,84 269	14	9 98 635 9 98 661	26	0.01 36 3 0.01 339	9.85 620 9.85 608	12	54	9 3.9 10 4.3
7 8	9.84 282	13	9.98 686	25	0.01 339	9.85 596	12	53 52	20 8.7
9	9.84 295	13	9 98 711	25 26	0.01 289	9 85 583	13	51	30 13.0
10	9.84 308	13	9.98 737		0.01 263	9.85 571	12	50	40 17.3
11	9.84 321	13	9 98 762	25 25	0.01 238	9.85 559	12	49	50 21.7
12 13	9 84 334 9 84 347	13	9.98 787 9.98 812	25	0.01 213	9 85 547 9 85 534	13	48 47	
14	9.84 360	13	9.98 838	26	0.01 162	9.85 522	12	46	1 25
15	9.84 373	13	9 98 863	25	0 OI 137	9.85 510	12	45	6 2.5
16	9.84 385	12	9 98 888	25 25	0.01 112	9 85 497	13	44	7 2.9
17 18	9 84 398	13	9 98 913	26	0.01 087	9 85 485	12	43	8 3.3 9 3.8
10	9.84 411 9 84 424	13	9 98 939 9 98 964	25	0 01 061	9 85 473 9 85 460	13	42 4I	9 3.8 10 4.2
20	9 84 437	13	9 98 989	25	0 01 011	9 85 448	12	40	20 8.3
21	9.84 450	13	9 99 015	26	0 00 985	9 85 436	12	39	30 12 5
22	9 84 463	13	9 99 040	25	0.00 960	9.85 423	13	38	40 16.7 50 20.8
23 24	9.84 476	13	9.99 065	25 25	0.00 935	9 85 411	12	37 36	30 / 20.0
25	9.84 489	13	9 99 190	26	0.00 910	9.85 399 9.85 386	13	35	
25 26	9.84 515	13	9 99 116 9.99 141	25	0.00 859	9.85 374	12	35	14
27	9.84 528	13	9 99 166	25	0.00 834	9.85 361	13	33	6 1.4
28	9.84 540	12	9 99 191	25 26	0.00 809	9 85 349	12	32	7 1.6
29	9.84 553	13	9 99 217	25	0.00 783	9 85 337	13	31	8 1.9 9 2.1
30 31	9.84 566	13	9 99 242	25	0.00 758	9 85 324 9 85 312	12	30 29	10 2.3
32	9.84 579 9 84 592	13	9 99 267 9.99 293	26	0 00 733	9.85 299	13	28	20 4.7
33	9.84 605	13	9 99 318	25	0.00 682	9.85 287	12	27	30 7.0
34	9.84 618	13	9 99 343	25 25	0 00 657	9 85 274	13	26	40 93 50 11.7
35	9.84 630	13	9 99 368	26	0 00 632	9 85 262	12	25	3= , ==,
36 37	9 84 643 9.84 656	13	9 99 394 9 99 419	25	o.oo 6a6 o.oo 581	9 85 250 9.85 237	13	24 23	
38	9 84 669	13	9 99 419	25	0.00 556	9.85 225	12	22	13
39	9.84 682	13	9 99 469	25	0 00 531	9 85 212	13	21	6 1.3
40	9.84 694		9 99 495	26	0.00 505	9.85 200	12	20	7 1.5 8 1.7
41	9.84 707	13	9.99 520	25 25	0.00 480	9 85 187	13	19	9 2.0
42 43	9.84 720 9 84 733	13	9 99 545 9.99 570	25	0.00 455	9.85 175	13	18	10 2.2
44	9.84 745	12	9 99 596	26	0.00 404	9 85 150	12	16	20 4.3
45	9.84 758	13	9 99 621	25	0 00 379	985 137	13	15	30 65 40 87
46	9.84 771	13	9 99 646	25 26	0.00 354	9 85 125	12	14	50 10.8
47 48	9.84 784	13	9 99 672	25	0.00 328	985 112	13	13	
40 49	9.84 796 9.84 809	13	9.99 697 9.99 722	25	0.00 303	9.85 100 9.85 087	13	11	
50	9.84 822	13	9 99 747	25	0.00 253	9 85 074	13	10	12
51	9.84 833	13	9 99 773	26	0.00 227	9 85 062	12	9	6 1.2
52	9.84 847	12	9 99 798	25 25	0.00 202	9 85 049	13	8	7 1.4 8 1.6
53 54	9.84 860 9.84 873	13	9.99 823 9.99 848	25	0.00 177	9.85 037 9 85 024	13	7 6	9 1.8
55	9.84 885	12	9 99 874	26	0.00 132	9 85 012	12	5	10 2.0
56	9.84 898	13	9.99 899	25	0.00 120	9.84 999	13	4	20 4.0 30 6.0
57	9.84 911	13	9 99 924	25	0.00 076	9.84 986	13	3	40 8.0
58	9.84 923	12	9.99 949	25 26	0.00 051	9 84 974	12	2	50 10.0
59 60	9.84 936	13	9.99 975	25	0.00 025	9.84 961	12	0	
 	9.84 949				0,00 000	9.84 949			
	L. Cos.	d.	L. Cotg.	c. d.	L. Tang.	L. Sin.	d.	1	Prop. Pts.

TABLE III.

NATURAL

SINES, COSINES, TANGENTS, AND COTANGENTS.

Ŀ	, ,	N. Sin.	N. Tan.	N. Cot.	N. Cos.		0 /	N. Sin.	N. Tan.	N. Cot.	N. Cos.	
0	0	.00 000	.00 000	Infinity.	Unity.	90 o	2 30	.04 362	.04 366	22.904	.99 903	87 30
	5	145	145	687.55	"	55	35	507	512	22.164	898	25
1	IO	291	291	343 77	"	50	40	653	658	21.470	892	20
ı	15	436	436	229.18	.99 999	45	45	798	803	20.819	885	15
ı	20	582	582	171.89	998	40	50	.04 943	.04 949	20,206	878	10
L	25	727	727	137.51	997	35	55	.05 088	.05 093	19.627	870	5
1	30	00 873	.00 873	114.59	.99 996	30	3 o	.05 234	.05 241	19.081		87 o
1	35	810 10.	01 018	98.218	993	25	5	379	387	18.564	855	55
	40	164	164	85.940	993	20	10	524	533	18 075	847	50
1	45	309	309	76.390	991	15	15	669	678	17.611	839	45
1	50	454	455	68 750	989	10	20	814	824	17.169	831	40
l_	55	600	600	62 499	987	5	25	.05 960	.05 970	16.750	822	35
1	0	.01 745	.01 746	57.290		89 o	30	.06 105	.06 116	16.350	.99 813	30
1	5	.01 891	108 10.	52 882	982	55	35	250	262	15.969	804	25
ı	10	.02 036	02 036	49.104	979	50	40	395	408	.605	795	20
	15	181	182	45.829	976	45	45	540	554	15 257	786	15
ı	20	327	328	42.964	973	40	50	685	700	14.924	776	10
L	25	472	473	40.436	969	35	55	831	847	.606	766	5
ľ	30	.02 618	.02 619	38.188	.99 966	30	4 0	.06 976	.06 993	14.301	.99 756	86 o
	35	763	764	36.178	962	25	5	.07 121	.07 139	14.008	746	55
ı	40	.02 908	.02 910	34 368	958	20	IO	266	285	13.727	736	50
•	45	.03 054	.03 055	32.730	953	15	15	411	431	·457	725	45
	50	199	201	31.242	949	10	20	556	578	13.197	714	40
_	55	345	346	29.882	944	5	25	701	724	12.947	703	35
2	0	.03 490	.03 492	28.636	.99 939	88 o	30	.07 846	.07 870	12.706	.99 692	30
ı	5	635	638	27.490	934	55	35	.07 991	.08 017	.474	680	25
Ī	10	781	783	26.432	929	50	40	.08 136	163	.251	668	20
ı	15	.03 926	.03 929	25.452	923	45	45	281	309	12.035	657	15
I	20	.04 071	.04 073	24.542	917	40	50	426	456	11.826	644	10
į	25	217	220	23.695	911	35	55	571	602	.623	632	5
2	30	.04 362	.04 366	22 904	.99 903	87 30	5 o	.08 716	.08 749	11.430	.99 619	85 o
Γ		N. Cos.	N. Cot.	N. Tan.	N. Sin.	۰,		N. Cos.	N. Cot.	N. Tan.	N. Sin.	۰,

01	N. Sin.	N. Tan	N. Cot	N. Cos.	1	۰,	N. Sin.	N. Tan	N. Cot.	N. Cos.	_
_		-	 		85 o	-		-	 	-	80 o
5	.08 716	.08 749	.242	.99 619 607	55	10 o 5	.77 365 508	.17 633 783	5.6713	.98 481 455	55
10	.09 005	.09 042	11.059	594	50	10	651	.17 933	.5764	430	50
15	150	189	10.883	580	45	15	794	.18 083	.5301	404	45
20	295	335	.712	567	40	20	.17 937 .18 081	233	.4845	378	40
_ 25	.09 585	.09 629	.546	553	35	25	.18 081	.18 534	-4397	352	35 30
30 35	729	775	.229	.99 540 526	30 25	30 35	367	.18 534 684	5.3955 .3521	.98 325	25
40	.09.874	.09 923	10.078	511	20	40	509	835	.3093	272	20
45	.10 019	.10 069	9.9310	497	15	45	652	.18 986	.2672	245	15
50	164	216	.7882	482	10	50	. 795 . 28 G - 8	.19 136	.2257	218	10
55 6 o	308	363	.6493	467	84 o	55 11 o	.19 0:1	287	.1848	.98 163	79 o
6 o 5	.10 453 597	. 10 510	9.5144	.99 452 437	55	5	224	19 438 589	5 1446	135	55
10	742	805	.2553	421	50	10	366	740	.0658	107	50
15	.10 887	.10 952	.1309	406	45	15	509	.19 891	5.0273	079	45
20	.11 031 176	.11 099	9.0098 8.8919	390	40	20	652	.20 042	4 9894	050 .98 021	40
25 30	.11 320	.11 394	8.7769	374	35 30	25 30	794	194	.9520 4 9152		35 30
35	465	541	.6648	·99 357	25	35 35	.19 937 .20 079	.20 345 497	.8788	.97 992 963	25
40	609	688	-5555	324	20	40	222	648	.8430	934	20
45	754	836	.4490	307	15	45	364	800	.8077	905	15
50	.11 898 .12 043	.12 131	.3450	290 272	10 5	50 55	507	20 952	.7729	87 <u>5</u> 84 <u>5</u>	10 5
55 7 o	.12 187	.12 278	8.1443	.99 255	83 o	12 o	.20 791	.21 256	.7385 4.7046	.97 815	78 o
5	331	426	8 0476	237	55	5	.20 933	408	.6712	784	.55
10	476	574	7 9530	219	50	10	.21 076	560	.6382	754	50
15	620	722	.8606	200	45	15	218	712	.6057	723	45
20	764 .12 908	.12 869 .13 017	.7704 .6821	182 163	40	20	360 502	.21 864	.5736	692 661	40
25		.13 165	7.5958		35	-25 30	.21 644	.22 160	4 5107	97 630	35 3C
30 35	.13 053 197	313	.5113	.99 I44 I25	30 25	35	786	322	4 5107	598	25
40	341	461	.4287	106	20	40	21 928	475	·4494	566	20
45	485	609	-3479	087	15	45	.22 070	628	.4194	534	15
50 55	629 773	758 13 906	.2687 .1912	067 047	10	5 0 55	212 353	781 .22 934	.3897 .3604	502 470	10 5
8 0	.13 917	.14 054	7.1154	99 027	82 o	13 o	.22 495	.23 087	4.3313	.97 437	77 o
5	.14 061	202	7.0410	.99 006	55	5	637	240	.3029	·9/ 43/ 404	55
10	205	351	6,9682	98 986	50	10	778	393	.2747	371	50
15	349	499	.8969 .8 2 69	965	45	15	.22 920	547	.2468	338	45
20 25	493 637	648 7 96	.7584	944 923	40 35	20 25	.23 062 203	.23 854	.1922	304 271	40 35
30	.14 781	.14 945	6.6912	.98 902	30	30	.23 345	.24 008	4.1653	.97 237	30
35	.14 925	.15 094	.6252	880	25	35	486	162	.1388	203	25
40	.15 069	243	.5606	858	20	40	627	316	.1126	169	20
45	212	391	.4971	836	15	45	769	470	.0867	134	15
50 55	356 500	540 689	.4348 -3737	814 791	10 5	50 55	.23 910	624 778	.0611 .0358	100 06 <u>5</u>	10 5
9 0	.15 643	.15 838	6.3138	.98 769	81 o	14 o	.24 192	·24 933	4.0108	.97 030	76 o
5	787	.15 988	.2549	746	55	5	333	.25 087	3.9861	.96 994	55
10	.15 931	.16 137	.1970	723	50	10	474	242	.9617	959	50
15	16 074	286	.1402	700 676	45	15	615	397	9375	923 887	45
20 25	218 361	43 <u>5</u> 585	.0844 6.0296	652	40 35	20 25	756 .24 897	552 797	.9136 .8900	851	40 35
30	.16 503	.16 734	5.9758	.98 629	30	30	.25 038	.25 862	3.8667	.96 815	30
35	648	.16 884	.9228	604	25	35	179	.26 017	.8436	778	25
40	792	.17 033	.8708	580	20	40	320	172	,8208	742	20
45	.16 935	183	.8197 .7694	556	15 10	45	460 601	328	.7983	705	15 10
50 55	.17 078	333 483	.7094	531 506	5	50 55	741	483 639	.7760 ·7539	667 630	5
10 o	.17 365	.17 633	5.6713	.98 481	80 o	15 o	.25 882	.26 795	3.7321	.96 593	75 o
-	N. Cos.	N. Cot.	N. Tan.	N Sin.	0 /		N. Cos.	N. Cot.	N. Tan.	N. Sin.	0 /
				_ {							

0 /	N. Sin.	N. Tan.	N. Cot.	N. Cos.		۰,	N. Sin.	N. Tan.	N. Cot.	N. Cos.	
15 o	.25 882	.26 793	3.7321	.96 593	75 o	20 o	.34 202	.36 397	2.7475	.93 969	70 o
5	.26 022	.26 951	.7105	555	55	_5	339	562	.7351	QIQ	55
10 15	163 303	.27 107 263	.6891	517 479	50 45	10 15	475 612	.36 892	.7228 .7106	869 819	50 45
20	443	419	.6470	440	40	20	748	·37 °57	.6985	769	40
25	584	576	.6264	402	35	25	.34 884	223	.6865	718	35
30	.26 724	.27 732	3 6059	.96 363	30	30	.35 021	.37 388	2.6746	.93 667	30
35	.26 864 .27 004	.27 889 .28 046	.5856 .5656	324 285	25 20	35	157	554 720	.6628 .6511	616 56 <u>3</u>	25 20
40 45	.27 004 144	203	-5457	246	15	40 45	293 429	.37 887	.6395	514	15
50	23.4	360	.5261	206	10	50	565	.38 053	.6279	462	10
55	421	517	.5067	166	5	55	701	220	.6163	410	5
16 o	.27 564	.28 675	3.4874	.96 126	7 4 o	21 o	.35 837	.38 386	2.6051	.93 358	69 o
5 10	704 843	832 28 990	.4684 .4495	086 046	55 50	5 10	·35 973 ·36 108	553 721	.5938 .5826	306 253	55 50
15	27 983	.29 147	.4308	.96 003	45	15	244	.38 888	.5713	201	45
20	.28 123	305	.4124	.95 964	40	20	379	.39 055	.5603	148	40
25	262	463	.3941	923	35	25	515	223	·5495	095	35
30 35	28 402 541	.29 621 780	3·3759 .3580	.95 882 841	30 25	30 35	.36 650 7 85	.39 391	2.5386 .5279	.93 042	30 25
40	68o	.29 938	.3402	799	20	35 40	.36 921	559 727	.5279	935	20
45	820	.30 097	.3226	757	15	45	.37 056	.39 896	.5065	881	15
50	.28 959	255	.3052	715	10	50	191	.40 065	.4960	827	10
55 17 o	.29 098	414	.2879	673	5	55	326	234	.4855	773	5
17 o 5	.29 237 37 ⁶	.3º 573 732	3.2709 .2539	.95 630 588	73 o	22 o 5	.37 461 595	.40 403 572	2.4751 .4648	.92 718 664	68 o 55
10	515	.30 891	.2371	545	50	10	730	741	.4545	609	50
15	654	.31 051	.2205	502	45	15	863	.40 911	-4443	554	45
20	793	210	.2041	459	40	20	.37 999	.41 081	.4342	499	40
25	.29 932	370	.1878	415	_ 35	25	.38 134 .38 268	251	.4242	444	35
30 3 5	.30 071	.31 530 690	3.1716 .1556	.95 372 328	30 25	30 35	.38 2 68 403	.41 421 592	2.4142 .4043	.92 388 332	30 25
40	348	.31 8 5 0	.1397	284	20	40	537	763	-3945	276	20
45	486	.32 010	.1240	240	15	45	671	.41 933	.3847	220	15
50	623 763	171 331	.1084	195	10	50	805 .38 939	.42 10 5 276	.3750 .3654	164 107	10
18 o	.30 902	.32 492	3.0777	95 106	72 o	23 o	.39 939	.42 447	2.3559	.92 050	67 o
5	.31 040	653	.0625	95 100	55	5	207	619	.3464	.91 994	55
IO	178	814	.0475	95 015	50	10	341	791	.3369	936	50
15	316	.32 975	.0326	94 970	45	15	474 608	.42 963	.3276	879 822	45
20 25	454 593	.33 136 298	.0178 3.0032	924 878	40 35	20 25	741	.43 136 308	.3183	764	40 35
30	.31 730	33 460	2 9887	.94 832	30	30	.39 875	.43 481	2.2998	.91 706	30
35	.31 868	621	.9743	786	25	35	.40 008	654	.2907	648	25
40	.32 006	783	.9600	740	20	40	141	.43 828	.2817	590	20
45	144 282	·33 945 ·34 108	•9459	693 646	15	45	275 408	.44 001	.2727	531 472	15 10
50 5 5	419	270	.9319 .9180	599	5	50 55	408 541	175 349	.2549	472	5
19 o	·32 557	-34 433	2.9042	.94 552	71 0	24 o	.40 674	·44 523	2.2460	.91 355	66 o
5	694	596	.8905	504	55	5	806	697	.2373	295	55
10	832	758	.8770	457	50	10	.40 939	.44 872	.2286	236	50
15 20	32 969 .33 106	.34 922 .35 08§	.8636 .8502	409 361	45 40	15 20	.41 072 204	.45 047	.2199 .2113	176 116	45 40
25	244	248	.8370	313	35	25	337	397	.2028	91 056	35
30	.33 381	.35 412	2.8239	.94 264	30	30	.41 469	·45 573	2.1943	.90 996	30
35	518	576	.8109	215	25	35	602	748	.1859	936	25
40	655	740	.7980	167	20	40	734 866	.45 924 .46 101	.1775	875	20
45 50	.33 929	.35 904 .36 068	.7852 .7725	068 068	15 10	45 50	.41 998	.40 101 277	.1692 .1609	814 753	15 10
55	.34 065	232	.7600	.94 019	5	55	.42 130	454	.1527	692	5
20 o	.34 202	.36 397	2.7475	.93 969	70 o	25 o	.42 262	.46 631	2.1445	.90 631	65 o
	N. Cos.	N. Cot.	N. Tan.	N. Sin.	° /		N. Cos.	N. Cot.	N. Tan.	N. Sin.	۰,

280					_						_
۰,	N. Sin.	N. Tan.	N. Cot.	N. Cos.		۰,	N. Sin.	N. Tan.	N. Cot.	N. Cos.	
25 o	.42 262	.46 631	2.1445	.90 631	65 o	80 o	50 000	-57 735	1.7321	.86 603	6 0 o
5	394	808	.1364	569	55	5	126	-57 929	.7262	530	55
10	525	.46 985	.1283	507	50	10	252	.58 124	.7205	457	50
15	657	.47 163	.1203	446	45	15	377	318	.7147	384	45
20 25	788 .42 920	341 519	.1123	383 321	40 35	20 25	503 628	513 709	.7090 .7033	310 237	40 35
						30		.58 903	1.6977	.86 163	
30 35	.43 051 · 182	.47 698 .47 876	2.0965	.90 259 196	30 25	35	754 .50 879	.59 101	.6920	089	30 25
33 40	313	.48 055	.0809	133	20	40	.51 004	297	.6864	.86 015	20
45	445	234	.0732	070	15	45	129	494	.6808	.85 941	15
50	575	414	.0655	.90 007	10	50	254	691	.6753	866	10
55	706	593	.0579	.89 943	5	_ 55	379	.59 888	.6698	792	5
26 o	.43 837	.48 773	2.0503	.89 879	84 o	31 o	.51 504	.60 086	1.6643	.85 717	59 o
5	.43 968	.48 953	.0428	816	55	5	628	284	.6588	642	55
10	.44 098	.49 134	.0353	752	50	10	753	483	.6534	567	50
15	229	315	.0278	687	45	15	.51 877	681	.6479	491	45
20	359	495	.0204	623	40	20	.52 002 126	.60 881	.6426	416	40
25	490	677	.0130	558	35	25			.6372	340	35
30	.44 620	49 858	2.0057	.89 493	30	30	.52 250	.61 280	1.6319	.85 264 188	30
35 40	750 .44 880	.50 040 222	1.9984	428 363	25 20	35 40	374 498	480 681	.6265 .6212	112	25 20
45	.45 010	404	.9840	298	15	45	490 621	.61 882	.6160	.85 035	15
50	140	587	.9768	232	10	50	745	.62 083	.6107	.84 959	10
55	269	769	.9697	167	5	55	869	285	.6055	882	5
27 o	45 399	.50 953	1.0626	.89 101	63 o	32 o	.52 992	.62 487	1,6003	.84 805	58 o
5	529	.51 136	.9556	.89 035	55	5	.53 115	689	.5952	728	55
10	658	319	.9486	.88 968	50	10	238	.62 892	.5900	650	50
15	787	503	.9416	902	45	15	361	.63 095	.5849	573	45
20	.45 917	688	-9347	835	40	20	484	299	.5798	495	40
25	46 046	.51 872	.9278	768	35	2 5	607	503	·5747	417	35
30	.46 173	.52 057	1 9210	.88 701	30	30	.53 730	.63 707	1.5697	.84 339	30
35	304	512	.9142	634	25	35	853	.63 912	.5647	261	25
40	433 561	427 613	.9074	566	20	40	·53 975	.64 117	-5597	182 104	20
45 50	600	798	.9007 .8940	499 431	15	45 50	·54 0 97	322 528	·5547 ·5497	.84 025	15 10
55	819	.52 985	.8873	363	5	55	342	734	.5448	.83 946	5
28 o	.46 947	.53 171	1.8807	.88 295	62 0	33 o	.54 464	.64 941	1.5399	.83 867	57 o
5	.47 076	358	.8741	226	55	5	586	.65 148	,5350	788	55
10	204	545	.8676	158	50	10	708	355	.5301	708	50
15	332	732	.8611	089	45	15	829	563	.5253	629	45
20	460	.53 920	.8546	.88 020	40	20	·54 951	771	.5204	549	40
25	588	.54 107	.8482	.87 951	35	25	.55 072	.65 980	.5156	469	35
30	47 715	.54 296	1.8418	.87 882	30	30	.55 194	.66 189	1.5108	.83 389	30
35	844	484	.8354	812	25	35	315	398	.5061	308	25
'40	.47 971	673	.8291	743	20	40	436	608	.5013	228	20
45 50	48 099 226	.54 862 .55 051	.8228 .8163	673 603	15 10	45 50	557 678	.67 028	.4966 .4919	.83 o66	15 10
55	354	241	.8103	532	5	55	799	239	.4872	.82 985	5
29 o	.48 481	·55 43I	1.8040	.87 462	61 o	34 o	.55 919	.67 451	1.4826	.82 904	56 0
5	608	621	.7979	391	55	5	.56 040	663	4779	822	55
10	735	.55 812	.7917	321	50	10	160	.67 875	·4733	741	50
15	862	.56 003	.7856	230	45	15	280	.68 088	.4687	659	45
20	.48 989	194	.7796	178	40	20	401	301	.4641	577	40
25	.49 116	385	·7735	107	35	25	521	514	.4596	495	35
30	.49 2 12	.56 577	1.7675	.87 036	30	30	641	.68 728	1.4550	.82 413	30
35	369	769	.7615	.86 964	25	35	760	.68 942	.4505	330	25
40	495	.56 962	.7556	892	20	40	.56 880	.69 157	.4460	248	20
45 50	622 748	.57 155 348	.7496	820 748	15	45 50	.57 000	372 588	.4413 .4370	.82 082	15 10
55	.49 874	54I	·7437 ·7379	675	5	55	238	.69 804	.4376	.81 999	5
80 o	.50 000	-57 735	1.7321	.86 6o3	60 o	35 o	.57 358	.70 021	1.4281	.81 915	55 o
$\vdash \vdash$	N. Cos.	N. Cot.	N. Tan.	N. Sin.	0 /		N. Cos.	N. Cot.	N. Tan.	N. Sin.	0 /

۰,	N. Sin.	N. Tan.	N. Cot.	N. Cos.		۰,	N. Sin.	N. Tan.	N. Cot.	N. Cos.	
35 o	.57 358	.70 021	1.4281	.81 915	55 o	40 o	.64 279	.83 910	1.1918	.76 604	50 o
5	477	238	-4237	832	55	5	390	.84 158	.1882	511	55
10 15	596 713	455 673	.4193 .4150	748 664	50 45	10 15	501 612	407 656	.1847	417 323	50
20	833	.70 891	4106	580	40	20	723	.84 906	.1778	229	45 40
25	.57 952	.71 110	.4063	496	35	25	834	.85 157	1743	135	35
30	.58 070	.71 329	1.4019	.81 412	30	30	.64 945	.85 408	1.1708	.76 041	30
35	189	549	.3976	327	25 20	35	.65 0 55	660	.1674	.75 946	25
40 45	307 425	769 71 990	·3934 ·3891	242 157	15	40 45	276	.85 912 .86 166	.1640 .1606	851 756	20 15
50	543	.72 211	.3848	.81 072	10	50	386	419	.1571	661	10
55	661	432	.3806	.80 987	5	55	496	674	.1538	566	5
36 o	.58 779	.72 654	1.3764	.80 902	54 o	41 o	.65 606	.86 929	1.1504	.75 47I	49 o
5 10	.58 896 .59 014	.72 877 .73 100	.3722 .3680	816 730	55 50	5 10	716 825	.87 184 441	.1470	375 280	55
15	131	323	.3638	644	45	15	.65 935	698	.1403	184	50 45
20	248	547	·3597	558	40	20	.66 044	.87 955	.1369	.75 088	40
25	365	771	3555	472	35	25	153	.88 214	.1336	.74 992	35
30	.59 482	.73 996	1 3514	.80 386	30	30	.66 262	.88 473	1.1303	.74 896	30
35 40	599 716	.74 221 447	·3473 ·3432	299 212	25 20	35 40	371 480	.88 992	.1270 .1237	799 703	25 20
45	832	67+	.3392	125	15	45	588	.89 253	.1204	606	15
50	.59 949	.74 900	.3351	.80 038	10	50	697	515	.1171	509	10
55	.60 065	.75 128	.3311	79 951	5	55	805	.89 777	.1139	412	5
37 o	60 182 208	·75 355 584	1.3270	.79 864	53 o	42 o	66 913 67 021	.90 040	1.1106	·74 314 217	48 o
5 10	290 414	.75 812	.3 23 0 .3190	776 688	55 50	5 10	129	304 569	.10/4	120	55 50
15	529	76 042	.3151	6 0 0	45	15	237	.90 834	.1009	.74 022	45
20	645	272	.3111	512	40	20	344	.91 099	.0977	.73 924	40
25	761	502	.3072	424	35	25	452	366	.0945	826	35
30 35	.60 991	.76 733 .76 964	1 3032	.79 335	30 25	30 35	.67 559 666	.91 633	1.0913	.73 728 629	30 25
33 40	.61 107	.77 196	.2954	247 158	20	40		.92 170	.0850	531	20
45	222	428	.2915	.79 069	15	45	773 880	439	.0818	432	15
50	337	661	.2876	.78 980	10	50	.67 987 .68 003	709	.0786	333	10
55 38 o	.61 566	.77 895 .78 129	.2838	.78 801	52 o	55 43 o	.68 093 .68 200	.92 980	.0755 1.0724	234	47 o
5	681	363	1.2799 .2761	711	55	5	306	.93 252 524	.0692	.73 135 .73 036	47 o 55
10	7 95	598	.2723	622	50	10	412	.93 797	.0661	.72 937	50
15	.61 909	.78 834	.2685	532	45	15	518	.94 071	.0630	837	45
20	.62 024 138	.79 070 306	.2647 .2609	442	40	20	624	345 620	.0599 .0569	737 637	40
25 30	.62 251	·79 544	1.2572	.78 261	35 30	25	.68 835	.94 896	1.0538	·72 537	35 30
35	365	.79 781	.2534	170	25	30 35	.68 941	.95 173	.0507	437	25
40	479	.80 020	-2497	.78 079	20	40	.69 046	451	.0477	337	20
45	592	258	.2460	.77 988	15	45	151	.95 729	.0446	236	15
50 55	706 819	49 ⁸ 738	.2423 .2386	897 806	10 5	50 55	256 3 6 1	.96 oo8 288	.0416 .0385	.72 035	10 5
39 o	.62 932	.80 978	1.2349	·77 715	51 o	44 o	.69 466	.96 569	1.0355	.71 934	46 o
5	.63 045	.81 220	.2312	623	55	5	570	.96 850	.0325	833	55
10	158	461	.2276	531	50	10	673	.97 133	.0295	732	50
15 20	271 383	.81 946	.2239	439	45 40	15 20	779 883	416 700	.0265	630 529	45 40
25 25	496	.82 190	.2167	347 255	35	25	.69 987	.97 984	.0235	329 427	35
30	.63 608	.82 434	1.2131	.77 162	30	30	.70 091	.98 270	1.0176	.71 325	30
35	720	678	.2095	.77 070	25	35	193	556	.0147	223	25
40	832	.82 923	.2059	.76 977	20	40	298	.98 843	.0117	121	20
45 50	.63 944 .64 056	.83 169 415	.2024 .1988	884 791	15 10	45 50	401 503	.99 131 420	.0058	.71 019 .70 916	15 10
55	167	662	.1953	698	5	55	608	.99 710	.0029	813	5
40 o	.64 279	.83 910	1.1918	.76 604	50 o	45 o	.70 711	1.00 000	1.0000	.70 711	45 o
	N. Cos.	N. Cot	N. Tan.	N. Sin.	0/		N. Cos.	N. Cot.	N. Tan.	N. Sin.	0/

Age	Number Living	Number of Deaths d_x	Yearly Probabil- ity of Dying qx	Yearly Probabil- ity of Living Px	Age	Number Living	Num- ber of Deaths	Yearly Probabil- ity of Dying q_x	Yearly Probabil- ity of Living Px
10	100,000	749	0.007 490	0.992 510	53	66,797	1091	0.016 333	0.983 667
11	99,251	746	0.007 516	0.992 484	54	65,706	1143	0.017 396	0.982 604
12	98,505	743	0.007 543	0.992 457	55	64,563	1199	0.018 571	0.981 429
13	97,762	740	0.007 569	0.992 431	56	63,364	1260	0.019 885	0.980 115
14	97,022	737	0.007 596	0.992 404	57	62,104	1325	0.021 335	0.978 665
15 16 17 18	96,285 95,550 94,818 94,089 93,362	735 732 729 727 725	0.007 634 0.007 661 0.007 688 0.007 727 0.007 765	0.992 366 0.992 339 0.992 312 0.992 273 0.992 235	58 59 60 61 62	60,779 59,385 57,917 56,371 54,743	1394 1468 1546 1628 1713	0.022 936 0.024 720 0.026 693 0.028 880 0.031 292	0.977 064 0.975 280 0.973 307 0.971 120 0.968 708
25	92,637	723	0.007 805	0.992 195	63	53,030	1800	0.033 943	0.966 057
21	91,914	722	0.007 855	0.992 145	64	51,230	1889	0.036 873	0.963 127
22	91,192	721	0.007 906	0.992 094	65	49,341	1980	0.040 129	0.959 871
23	90,471	720	0.007 958	0.992 042	66	47,361	2070	0.043 707	0.956 293
24	89,751	719	0.008 011	0.991 989	67	45,291	2158	0.047 647	0.952 353
25	89,032	718	0.008 065	0.991 935	68	43,133	2243	0.052 002	0.947 998
26	88,314	718	0.008 130	0.991 870	69	40,890	2321	0.056 762	0.943 238
27	87,596	718	0.008 197	0.991 803	70	38,569	2391	0.061 993	0.938 007
28	86,878	718	0.008 264	0.991 736	71	36,178	2448	0.067 665	0.932 335
29	86,160	719	0.008 345	0.991 655	72	33,730	2487	0.073 733	0.926 267
30	85,441	720	0.008 427	0.991 573	73	31,243	2505	0.080 178	0.919 822
31	84,721	721	0.008 510	0.991 490	74	28,738	2501	0.087 028	0.912 972
32	84,000	723	0.008 607	0.991 393	75	26,237	2476	0.094 371	0.905 629
33	83,277	726	0.008 718	0.991 282	76	23,761	2431	0.102 311	0.897 689
34	82,551	729	0.008 831	0.991 169	77	21,330	2369	0.111 064	0.888 936
35	81,822	73 ²	0.008 946	0.991 054	78	18,961	2291	0.120 827	0.879 173
36	81,090	737	0.009 089	0.990 911	79	16,670	2196	0.131 734	0.868 266
37	80,353	74 ²	0.009 234	0.990 766	80	14,474	2091	0.144 466	0.855 534
38	79,611	749	0.009 408	0.990 592	81	12,383	1964	0.158 605	0.841 395
39	78,862	756	0.009 586	0.990 414	82	10,419	1816	0.174 297	0.825 703
40	78,106	765	0.009 794	0.990 206	83	8,603	1648	0.191 561	0.808 439
41	77,341	774	0.010 008	0.989 992	84	6,955	1470	0.211 359	0.788 641
42	76,567	785	0.010 252	0.989 748	85	5,485	1292	0.235 552	0.764 448
43	75,782	797	0.010 517	0.989 483	86	4,193	1114	0.265 681	0.734 319
44	74,985	812	0.010 829	0.989 171	87	3,079	933	0.303 020	0.696 980
45	74,173	829	0.011 163	0.988 837	88	2,146	744	0.346 692	0.653 308
46	73,345	848	0.011 562	0.988 438	89	1,402	555	0.395 863	0.604 137
47	72,497	870	0.012 000	0.988 000	90	847	335	0.454 545	0.545 455
48	71,627	896	0.012 509	0.987 491	91	462	246	0.532 466	0.467 534
49	70,731	927	0.013 106	0.986 894	92	216	137	0.634 259	0.365 741
50	69,804	962	0.013 781	0.986 219	93	79	58	0.734 177	0.265 823
51	68,842	1011	0.014 541	0.985 459	94	21	13	0.857 143	0.142 857
52	67,841	1044	0.015 389	0.984 611	95	3	3	1.000 000	0.000 000

TABLE V.—COMMUTATION COLUMNS, SINGLE PREMIUMS, AND ANNUITIES 283
DUE, AMERICAN EXPERIENCE TABLE, 3½ PER CENT

Age						
*	D_x	N_x	C_x	M_x	$1+a_x$	A_x
10	70891.9	1575 535.	513.02	17612.9	22.2245	0.24845
11	67981.5	1504 643.	493.69	17099.9	22.1331	0.25154
12	65189.0	1436 662.	475.08	16606.2	22.0384	0.25474
13	62509.4	1371 473.	457.16	16131.1	21.9403	0.25806
14	59938.4	1303 963.	439.91	15674.0	21.8385	0.26151
15	57471.6	1249 025.	423.88	15234.1	21.7329	0.26508
16	55104.2	1191 553.	407.87	14810.2	21.6236	0.26877
17	52832.9	1136 449. 1033 616.	392.47	14402.3	21.5102	0.27261
18	50653.9		378.15	14009.8	21.3926	0.27659
19	48562.8	1032 962.	364.36	13631.7	21.2707	0.28071
20	46556.2	984 400.	351.07	13267.3	21.1443	0.28497
21	44630.8	937 843.	338.73	12916.3	21.0134	0.28940
22	42782.8	893 213.	326.82	12577.5	20.8779	0.29399
23	41009.2	850 430.	315.33	12250.7	20.7375	0.29873
24	39307.1	809 421.	304.24	11935.4	20.5922	0.30365
25	37673.6	770 113.	293.55	11631.1	20.4417	0.30873
26	36106.1	732 440.	283.62	11337.6	20.2858	0.31401
27	34601.5	696 334.	274.03	11054.0	20.1244	0.31947
28	33157.4	661 732.	264.76	10779.9	19.9573	0.32512
29	31771.3	628 575.	256.16	10515.2	19.7843	0.33097
30	30440.8	596 804.	247.85	10259.0	19.6054	0.33702
31	29163.5	566 363.	239.797	10011.2	19.4202	0.34328
32	27937.5	537 199.	232.331	9771.38	19.2286	0.34976
33	26760.5	509 262.	225.406	9539.04	19.0304	0.35646
34	25630.1	482 501.	218.683	9313.64	18.8256	0.36339
35	24544.7	456 871.	212.157	9094.96	18.6138	0.37055
36	23502.5	432 326.	206.383	8882.80	18.3949	0.37795
37	22501.4	408 824.	200.757	8676.42	18.1688	0.38560
38	21 539.7	386 323.	195.798	8475.66	17.9354	0.39349
39	20615.5	364 783.	190.945	8279.86	17.6946	0.40163
40	19727.4	344 167.	186.684	8088.92	17.4461	0.41003
4I	18873.6	324 440.	182.493	7902.23	17.1901	0.41869
42	18052.9	305 566.	178.828	7719.74	16.9262	0.42762
43	17263.6	287 513.	175.421	7540.91	16.6543	0.43681
44	16504.4	270 250.	172.680	7365.49	16.3744	0.44628
45	15773.6	253 745.	170.127	7192.81	16.0867	0.45600
45 46	15070.0	237 972.	168.345	7022.68	15.7911	0.46600
47	14392.1	222 902.	166.872	6854.34	15.4878	0.47626
48	13738.5	208 510.	166.047	6687.47	15.1770	0.48677
49	13107.9	194 771.	165.983	6521.42	14.8591	0.49752
50	12498.6	181 663.	166.424	6355.44	14.5346	0.50849
51	11909.6	169 165.	167.316	6189.01	14.2041	0.51967
52	11339.5	157 252.	168.601	6021.70	13.8679	0.53104
						1

284 Table V.—Commutation Columns, Single Premiums, and Annuities Due, American Experience Table, $3\frac{1}{2}$ Per Cent

		i	l			
Age						
x	D_x	N_x	C_x	M_x	1 + ax	A_x
	0-			*0.4		
53	10787.4	145916. 135128.	170.234	5853.10 5682.86	13.5264 13.1801	0.54258
54	10252.4	135120.	1/2.31/	3002.00	13.1001	0.55430
55	9733.40	124876.	174.646	5510.54	12.8296	0.56615
56	9229.60	115142.	177.325	5335.90	12.4753	0.57813
57	8740.17	105912.8	180.168	5158.57	12.1179	0.59022
58	8264.44	97172.6	183.139	4978.40	11.7579	0.60239
59	7801.82	88908.2	186.340	4795.27	11.3958	0.61463
60	7351.65	81106.4	189.604	4608.93	11.0324	0.62692
61	6913.44	73754.7	192.909	4419.32	10.6683	0.63924
62	6486.75	66841.3	196.117	4226.41	10.3043	0.65155
63	6071.27	60354.5	199.109	4030.30	9.9410	0.66383
64	5666.85	54283.3	201.887	3831.19	9.5791	0.67607
<u> </u>			 			
65	5273.33	48616.4	204.457	3629.30	9.2193	0.68824
66	4890.55	43343·I	206.522	3424.84	8.8626	0.70030
67	4518.65	38452.5	208.022	3218.32	8.5097	0.71223
63	4157.82	33933.9	208.903	3010.30	8.1615	0.72401
69	3808.32	29776.1	208.858	2801.40	7.8187	0.73560
70	3470.67	25967.7	207.881	2592.54	7.4820	0.74698
71	3145.43	22497.1	205.639	2384.66	7.1523	0.75813
72	2833.42	19351.6	201.851	2179.02	6.8298	0.76904
73	2535.75	16518.2	196.436	1977.17	6.5141	0.77972
74	2253.57	13982.5	189.491	1780.73	6.2046	0.79018
75	1987.87	11728.9	181.253	1591.24	5.9002	0.80048
76	1739.39	9741.02	171.940	1409.99	5.6002	0.81062
77	1508.63	8001.63	161.889	1238.05	5.3039	0.82064
78	1295.73	6493.00	151.2646	1076.158	5.0111	0.83054
79	1100.647	5197.27	140.0891	924.894	4.7220	0.84032
80	923.338	4096.62	128.8801	784.805	4.4368	0.84997
81	763.234	3173.29	116.9588	655.924	4.1577	0.85940
82	620.465	2410.05	104.4881	538.966	3.8843	0.86865
83	494.995	1789.59	91.6152	434.478	3.6154	0.87774
84	386.641	1294.59	78.9565	342.862	3.3483	0.88677
85	294.610	907.95	67.0490	263.906	3.0819	0.89578
86	217.598	613.34	55.8566	196.857	2.8187	0.90468
87	154.383	395.74	45.1992	141.000	2.5634	0.91332
88	103.963	241.36	34.82426	95.8011	2.3216	0.92149
89	65.6231	137.398	25.09929	60.9768	2.0937	0.92920
	98 70.47	21 225	16.82244	35.8775	1.8738	0.93664
90	38.3047 20.18692	71.775 33.47∞	10.385393	19.05509	1.6580	0.93004
91 92	9.11888	13.2831	5.588150	8.66970	1.4567	0.94393
93	3.22236	4.16420	2.285484	3.08155	1.2923	0.95630
93	0.827611	0.94184	0.685393	0.79576	1.1380	0.96152
95	0.114232	0.114232	0.110369	0.110369	1.0000	0.96618

TABLE VI.—AMOUNT OF $s = (i + i)^n$

n	1%	11/2%	2%	3%	72
1	1.0100 0000	1.0150 0000	1.0200 0000	1.0300 0000	1
2	1.0201 0000	1.0302 2500	1.0404 0000	1.0609 0000	2
3	1.0303 0100	1.0456 7838	1.0612 0800	1.0927 2700	3
4	1.0406 0401	1.0613 6355	1.0824 3216	1.1255 0881	4
5	1.0510 1005	1.0772 8400	1.1040 8080	1.1592 7407	5
6 7 8 9	1.0615 2015 1.0721 3535 1.0828 5671 1.0936 8527 1.1046 2213	1.0934 4326 1.1098 4491 1.1264 9259 1.1433 8998 1.1605 4083	1.1261 6242 1.1486 8567 1.1716 5938 1.1950 9257 1.2189 9442	1.1940 5230 1.2298 7387 1.2667 7008 1.3047 7318 1.3439 1638	6 7 8 9
11	1.1156 6835	1.1779 4894	1.2433 7431	1.3842 3387	11
12	1.1268 2503	1.1956 1817	1.2682 4179	1.4257 6089	12
13	1.1380 9328	1.2135 5244	1.2936 0663	1.4685 3371	13
14	1.1494 7421	1.2317 5573	1.3194 7876	1.5125 8972	14
15	1.1609 6896	1.2502 3207	1.3458 6834	1.5579 6742	15
16	1.1725 7864	1.2689 8555	1.3727 8571	1.6047 0644	16
17	1.1843 0443	1.2880 2033	1.4002 4142	1.6528 4763	17
18	1.1961 4748	1.3073 4064	1.4282 4625	1.7024 3306	18
19	1.2081 0895	1.3269 5075	1.4568 1117	1.7535 0605	19
20	1.2201 9004	1.3468 5501	1.4859 4740	1.8061 1123	20
21	1.2323 9194	1.3670 5783	1.5156 6634	1.8602 9457	21
22	1.2447 1586	1.3875 6370	1.5459 7967	1.9161 0341	22
23	1.2571 6302	1.4083 7715	1.5768 9926	1.9735 8651	23
24	1.2697 3465	1.4295 0281	1.6084 3725	2.0327 9411	24
25	1.2824 3200	1.4509 4535	1.6406 0599	2.0937 7793	25
26	1.2952 5631	1.4727 0953	1.6734 1811	2.1565 9127	26
27	1.3082 0888	1.4948 0018	1.7068 8648	2.2212 8901	27
28	1.3212 9097	1.5172 2218	1.7410 2421	2.2879 2768	28
29	1.3345 0388	1.5399 8051	1.7758 4469	2.3565 6551	29
30	1.3478 4892	1.5630 8022	1.8113 6158	2.4272 6247	30
31	1.3613 2740	1.5865 2642	1.8475 8882	2.5000 8035	31
32	1.3749 4068	1.6103 2432	1.8845 4059	2.5750 8276	32
33	1.3886 9009	1.6344 7918	1.9222 3140	2.6523 3524	33
34	1.4025 7699	1.6589 9637	1.9606 7603	2.7319 0530	34
35	1.4166 0276	1.6838 8132	1.9998 8955	2.8138 6245	35
36	1.4307 6878	1.7091 3954	2.0398 8734	2.8982 7833	36
37	1.4450 7647	1.7347 7663	2.0806 8509	2.9852 2668	37
38	1.4595 2724	1.7607 9828	2.1222 9879	3.0747 8348	38
39	1.4741 2251	1.7872 1025	2.1647 4477	3.1670 2698	39
40	1.4888 6373	1.8140 1841	2.2080 3966	3.2620 3779	40
41	1.5037 5237	1.8412 2868	2.2522 0046	3.3598 9893	41
42	1.5187 8989	1.8688 4712	2.2972 4447	3.4606 9589	42
43	1.5339 7779	1.8968 7982	2.3431 8936	3.5645 1677	43
44	1.5493 1757	1.9253 3302	2.3900 5314	3.6714 5227	44
45	1.5648 1075	1.9542 1301	2.4378 5421	3.7815 9584	45
46	1.5804 5885	1.9835 2621	2.4866 1129	3.8950 4372	46
47	1.5962 6344	2.0132 7910	2.5363 4351	4.0118 9503	47
48	1.6122 2608	2.0434 7829	2.5870 7039	4.1322 5188	48
49	1.6283 4834	2.0741 3046	2.6388 1179	4.2562 1944	49
50	1.6446 3182	2.1052 4242	2.6915 8803	4.3839 0602	50

TABLE VI.—AMOUNT OF $s = (r + i)^n$

n	3½%	4%	5%	6%	n
1	1.0350 0000	1.0400 0000	1.0500 0000	1.0600 0000	1
2	1.0712 2500	1.0816 0000	1.1025 0000	1.1236 0000	2
3	1.1087 1788	1.1248 6400	1.1576 2500	1.1910 1600	3
4	1.1475 2300	1.1698 5856	1.2155 0625	1.2624 7696	4
5	1.1876 8631	1.2166 5290	1.2762 8156	1.3382 2558	5
6	1.2292 5533	1.2653 1902	1.3400 9564	1.4185 1911	6
7	1.2722 7926	1.3159 3178	1.4071 0042	1.5036 3026	7
8	1.3168 0904	1.3685 6905	1.4774 5544	1.5938 4807	8
9	1.3628 9735	1.4233 1181	1.5513 2822	1.6894 7896	9
10	1.4105 9876	1.4802 4428	1.6288 9463	1.7908 4770	10
11 12 13 14 15	1.4599 6972 1.5110 6866 1.5639 5606 1.6186 9452 1.6753 4883	1.5394 5406 1.6010 3222 1.6650 7351 1.7316 7645 1.8009 4351	1.7103 3936 1.7958 5633 1.8856 4914 1.9799 3160 2.0789 2818	1.8982 9856 2.0121 9647 2.1329 2826 2.2609 0396 2.3965 5819	11 12 13 14
16	1,7339 8604	1.8729 8125	2.1828 7459	2.5403 5168	16
17	1,7946 7555	1.9479 0050	2.2920 1832	2.6927 7279	17
18	1,8574 8920	2.0258 1652	2.4066 1923	2.8543 3915	18
19	1,9225 0132	2.1068 4918	2.5269 5020	3.0255 9950	19
20	1,9897 8886	2.1911 2314	2.6532 9771	3.2071 3547	20
21	2.0594 3147	2.2787 6807	2.7859 6259	3.3995 6360	21
22	2.1315 1158	2.3699 1879	2.9252 6072	3.6035 3742	22
23	2.2061 1448	2.4647 1554	3.0715 2376	3.8197 4966	23
24	2.2833 2849	2.5633 0416	3.2250 9994	4.0489 3464	24
25	2.3632 4498	2.6658 3633	3.3863 5494	4.2918 7072	25
26	2.4459 5856	2.7724 6978	3.5556 7269	4.5493 8296	26
27	2.5315 6711	2.8833 6858	3.7334 5632	4.8223 4594	27
28	2.6201 7196	2.9987 0332	3.9201 2914	5.1116 8670	28
29	2.7118 7798	3.1186 5145	4.1161 3560	5.4183 8790	29
30	2.8067 9370	3.2433 9751	4.3219 4238	5.7434 9117	30
31	2.9050 3148	3.3731 3341	4.5380 3949	6.0881 0064	31
32	3.0067 0759	3.5080 5875	4.7649 4147	6.4533 8668	32
33	3.1119 4235	3.6483 8110	5.0031 8854	6.8405 8988	33
34	3.2208 6033	3.7943 1634	5.2533 4797	7.2510 2528	34
35	3.3335 9045	3.9460 8899	5.5160 1537	7.6860 8679	35
36	3.4502 6611	4.1039 3255	5.7918 1614	8.1472 5200	36
37	3.5710 2543	4.2680 8986	6.0814 0694	8.6360 8712	37
38	3.6960 1132	4.4388 1345	6.3854 7729	9.1542 5235	38
39	3.8253 7171	4.6163 6599	6.7047 5115	9.7035 0749	39
40	3.9592 5972	4.8010 2063	7.0399 8871	10.2857 1794	40
41	4.0978 3381	4.9930 6145	7.3919 8815	10.9028 6101	41
42	4.2412 5799	5.1927 8391	7.7615 8756	11.5570 3267	42
43	4.3897 0202	5.4004 9527	8.1496 6693	12.2504 5463	43
44	4.5433 4160	5.6165 1508	8.5571 5028	12.9854 8191	44
45	4.7023 5855	5.8411 7568	8.9850 0779	13.7646 1083	45
46	4.8669 4110	6.0748 2271	9.4342 5818	14.5904 8748	46
47	5.0372 8404	6.3178 1562	9.9059 7109	15.4659 1673	47
48	5.2135 8898	6.5705 2824	10.4012 6965	16.3938 7173	48
49	5.3960 6459	6.8333 4937	10.9213 3313	17.3775 0403	49
50	5.5849 2686	7.1066 8335	11.4673 9979	18.4201 5427	50

TABLE VII.—PRESENT VALUE OF $\mathbf{z}_{i'}$ $v^{n} = (\mathbf{1} + i)^{-n}$

n	1%	11/2%	2%	3%	n
1	0.9900 9901	0.9852 2167	0.9803 9216	0.9708 7379	1
2	0.9802 9605	0.9706 6175	0.9611 6878	0.9425 9591	2
3	0.9705 9015	0.9563 1699	0.9423 2233	0.9151 4166	3
4	0.9609 8034	0.9421 8423	0.9238 4543	0.8884 8705	4
5	0.9514 6569	0.9282 6033	0.9057 3081	0.8626 0878	5
6 7 8 9	0.9420 4524 0.9327 1805 0.9234 8322 0.9143 3982 0.9052 8695	0.9145 4219 0.9010 2679 0.8877 1112 0.8745 9224 0.8616 6723	0.8879 7138 0.8705 6018 0.8534 9037 0.8367 5527 0.8203 4830	0.8374 8426 0.8130 9151 0.7894 0923 0.7664 1673 0.7440 9391	6 7 8 9
11 12 13 14 15	0.8963 2372 0.8874 4923 0.8786 6260 0.8699 6297 0.8613 4947	0.8489 3323 0.8363 8742 0.8240 2702 0.8118 4928 0.7998 5150	0.8042 6304 0.7884 9318 0.7730 3253 0.7578 7502 0.7430 1473	0.7224 2128 0.7013 7988 0.6809 5134 0.6611 1781 0.6418 6195	11 12 13 14
16	0.8528 2126	0.7880 3104	0.7284 4581	0.6231 6694	16
17	0.8443 7749	0.7763 8526	0.7141 6256	0.6050 1645	17
18	0.8360 1731	0.7649 1159	0.7001 5937	0.5873 9461	18
19	0.8277 3992	0.7536 0747	0.6864 3076	0.5702 8603	19
20	0.8195 4447	0.7424 7042	0.6729 7133	0.5536 7575	20
21	0.8114 3017	0.7314 9795	0.6597 7582	0.5375 4928	21
22	0.8033 9621	0.7206 8763	0.6468 3904	0.5218 9250	22
23	0.7954 4179	0.7100 3708	0.6341 5592	0.5066 9175	23
24	0.7875 6613	0.6995 4392	0.6217 2149	0.4919 3374	24
25	0.7797 6844	0.6892 0583	0.6095 3087	0.4776 0557	25
26	0.7720 4796	0.6790 2052	0.5975 7928	0.4636 9473	26
27	0.7644 0392	0.6689 8574	0.5858 6204	0.4501 8906	27
28	0.7568 3557	0.6590 9925	0.5743 7455	0.4370 7675	28
29	0.7493 4215	0.6493 5887	0.5631 1231	0.4243 4636	29
30	0.7419 2292	0.6397 6243	0.5520 7089	0.4119 8676	30
31	0.7345 7715	0.6303 0781	0.5412 4597	0.3999 8715	31
32	0.7273 0411	0.6209 9292	0.5306 3330	0.3883 3703	32
33	0.7201 0307	0.6118 1568	0.5202 2873	0.3770 2625	33
34	0.7129 7334	0.6027 7407	0.5100 2817	0.3660 4490	34
35	0.7059 1420	0.5938 6608	0.5000 2761	0.3553 8340	35
36	0.6989 2495	0.5850 8974	0.4902 2351	0.3450 3243	36
37	0.6920 0490	0.5764 4309	0.4806 1093	0.3349 8294	37
38	0.6851 5337	0.5679 2423	0.4711 8719	0.3252 2615	38
39	0.6783 6967	0.5595 3126	0.4619 4822	0.3157 5355	39
40	0.6716 5314	0.5512 6232	0.4528 9042	0.3065 5684	40
41	0.6650 0311	0.5431 1559	0.4440 1021	c.2976 2800	41
42	0.6584 1892	0.5350 8925	0.4353 0413	o.2889 5922	42
43	0.6518 9992	0.5271 8153	0.4267 6875	o.2805 4294	43
44	0.6454 4546	0.5193 9067	0.4184 0074	o.2723 7178	44
45	0.6390 5492	0.5117 1494	0.4101 9680	c.2644 3862	45
46	0.6327 2764	0.5041 5265	0.4021 5373	0.2567 3653	46
47	0.6264 6301	0.4967 0212	0.3942 6836	0.2492 5876	47
48	0.6202 6041	0.4893 6170	0.3865 3761	0.2419 9880	48
49	0.6141 1921	0.4821 2975	0.3789 5844	0.2349 5029	49
50	0.6080 3882	0.4750 0468	0.3715 2788	0.2281 0708	50

TABLE VII.—PRESENT VALUE OF I

 $v^n = (\mathbf{1} + i)^{-n}$

n	31/2%	4%	5%	6%	n
1	0.9661 8357	0.9615 3846	0.9523 8095	0.9433 9623	1
2	0.9335 1070	0.9245 5621	0.9070 2948	0.8899 9644	2
3	0.9019 4271	0.8889 9636	0.8638 3760	0.8396 1928	3
4	0.8714 4223	0.8548 0419	0.8227 0247	0.7920 9366	4
_ 5	0.8419 7317	0.8219 2711	0.7835 2617	0.7472 5817	5
6	0.8135 0064	0.7903 1453	0.7462 1540	0.7049 6054	6
7	0.7859 9096	0.7599 1781	0.7106 8133	0.6650 5711	7 8
8	0.7594 1156	0.7306 9021	0.6768 3936	0.6274 1237	
9	0.7337 3097	0.7025 8674	0.6446 0892	0.5918 9846	9
10	0.7089 1881	0.6755 6417	0.6139 1325	0.5583 9478	10
11	0.6849 4571	0.6495 8093	0.5846 7929	0.5267 8753	11
12	0.6617 8330	0.6245 9705	0.5568 3742	0.4969 6936	12
13	0.6394 0415	0.6005 7409	0.5303 2135	0.4688 3902	13
14	0.6177 8179	0.5774 7508	0.5050 6795	0.4423 0096	14
15	0.5968 9062	0.5552 6450	0.4810 1710	0.4172 6506	15
16	0.5767 0591	0.5339 0818	0.4581 1152	0.3936 4628	16
17	0.5571 0378	0.5133 7325	0.4362 9669	0.3713 6442	17
18	0.5383 6114	0.4936 2812	0.4155 2065	0.3503 4379	18
19	0.5201 5569	0.4746 4242	0.3957 3396	0.3305 1301	19
20	0.5025 6588	0.4563 8695	0.3768 8948	0.3118 0473	20
21	0.4855 7090	0.4388 3360	0.3589 4236	0.2941 5540	21
22	0.4691 5063	0.4219 5539	0.3418 4987	0.2775 0510	22
23	0.4532 8563	0.4057 2633	0.3255 7131	0.2617 9726	23
24	0.4379 5713	0.3901 2147	0.3100 6791	0.2469 7855	24
25	0.4231 4699	0.3751 1680	0.2953 0277	0.2329 9863	25
26	0.4088 3767	0.3606 8923	0.2812 4073	0.2198 1003	26
27	0.3950 1224	0.3468 1657	0.2678 4832	0.2073 6795	27
28	0.3816 5434	0-3334 7747	0.2550 9364	0.1956 3014	28
29	0.3687 4815	0.3206 5141	0.2429 4632	0.1845 5674	29
30	0.3562 7841	0.3083 1867	0.2313 7745	0.1741 1013	30
31	0.3442 3035	0.2964 6026	0.2203 5947	0.1642 5484	31
32	0.3325 8971	0.2850 5794	0.2098 6617	0.1549 5740	32
33	0.3213 4271	0.2740 9417	0.1998 7254	0.1461 8622	33
34	0.3104 7605	0.2635 5209	0.1903 5480	0.1379 1153	34
35	0.2999 7686	0.2534 1547	0.1812 9029	0.1301 0522	35
36	0.2898 3272	0.2436 6872	0.1726 5741	0.1227 4077	36
37	0.2800 3161	0.2342 9685	0.1644 3563	0.1157 9318	37
38	0.2705 6194	0.2252 8543	0.1566 0536	0.1092 3885	38
39	0.2614 1250	0.2166 2061	0.1491 4797	0.1030 5552	39
40	0.2525 7247	0.2082 8904	0.1420 4568	0.0972 2219	40
41	0.2440 3137	0.2002 7793	0.1352 8160	0.0917 1905	41
42	0.2357 7910	0.1925 7493	0.1288 3962	0.0865 2740	42
43	0.2278 0590	0.1851 6820	0.1227 0440	0.0816 2962	43
44	0.2201 0231	0.1780 4635	0.1168 6133	0.0770 0908	44
45	0.2126 5924	0.1711 9841	0.1112 9651	0.0726 5007	45
46	0.2054 6787	0.1646 1386	0.1059 9668	0.0685 3781	46
47	0.1985 1968	0.1582 8256	0.1009 4921	. 0.0646 5831	47
48	0.1918 0645	0.1521 9476	0.0961 4211	0.0609 9840	48
49	0.1853 2024	0.1463 4112	0.0915 6391	0.0575 4566	49
50	0.1700 5337	0.1407 1262	0.0872 0373	0.0542 8836	50

$$s_{\overline{n}|} = \frac{(\mathbf{1} + i)^n - \mathbf{1}}{i}$$

n	1%	11/2%	2%	3%	n
1	1.0000 0000	1.0000 0000	1,0000 0000	1.0000 0000	1
2	2.0100 0000	2.0150 0000	2,0200 0000	2.0300 0000	2
3	3.0301 0000	3.0452 2500	3,0604 0000	3.0909 0000	3
4	4.0604 0100	4.0909 0338	4,1216 0800	4.1836 2700	4
5	5.1010 0501	5.1522 6693	5,2040 4016	5.3091 3581	5
6 7 8 9 10	6.1520 1506 7.2135 3521 8.2856 7056 9.3685 2727 10.4622 1254	6.2295 5093 7.3229 9419 8.4328 3911 9.5593 3169 10.7027 2167	6.3081 2096 7.4342 8338 8.5829 6905 9.7546 2843 10.9497 2100	6.4684 0988 7.6624 6218 8.8923 3605 10.1591 0613 11.4638 7931	6 7 8 9
11	11.5668 3467	11.8632 6249	12.1687 1542	12.8077 9569	11
12	12.6825 0301	13.0412 1143	13.4120 8973	14.1920 2956	12
13	13.8093 2804	14.2368 2960	14.6803 3152	15.6177 9045	13
14	14.9474 2132	15.4503 8205	15.9739 3815	17.0863 2416	14
15	16.0968 9554	16.6821 3778	17.2934 1692	18.5989 1389	15
16	17.2578 6449	17.9323 6984	18.6392 8525	20.1568 8130	16
17	18.4304 4314	19.2013 5539	20.0120 7096	21.7615 8774	17
18	19.6147 4757	20.4893 7572	21.4123 1238	23.4144 3537	18
19	20.8108 9504	21.7967 1636	22.8405 5863	25.1168 6844	19
20	22.0190 0399	23.1236 6710	24.2973 6980	26.8703 7449	20
21	23.2391 9403	24.4705 2211	25.7833 1719	28.6764 8572	21
22	24.4715 8598	25.8375 7994	27.2989 8354	30.5367 8030	22
23	25.7163 0183	27.2251 4364	28.8449 6321	32.4528 8370	23
24	26.9734 6485	28.6335 2080	30.4218 6247	34.4264 7022	24
25	28.2431 9950	30.0630 2361	32.0302 9972	36.4592 6432	25
26	29.5256 3150	31.5139 6896	33.6709 0572	38.5530 4225	26
27	30.8208 8781	32.9866 7850	35.3443 2383	40.7096 3352	27
28	32.1290 9669	34.4814 7867	37.0512 1031	42.9309 2252	28
29	33.4503 8766	35.9987 0085	38.7922 3451	45.2188 5020	29
30	34.7848 9153	37.5386 8137	40.5680 7921	47.5754 1571	30
31	36.1327 4045	39.1017 6159	42.3794 4079	50.0026 7818	31
32	37.4940 6785	40.6882 8801	44.2270 2961	52.5027 5852	32
33	38.8692 0853	42.2986 1233	46.1115 7020	55.0778 4128	33
34	40.2576 9862	43.9330 9152	48.0338 0160	57.7301 7652	34
35	41.6602 7560	45.5920 8789	49.9944 7763	60.4620 8181	35
36	43.0768 7836	47.2759 6921	51.9943 6719	63.2759 4427	36
37	44.5076 4714	48.9851 0874	54.0342 5453	66.1742 2259	37
38	45.9527 2361	50.7198 8538	56.1149 3962	69.1594 4927	38
39	47.4122 5085	52.4806 8366	58.2372 3841	72.2342 3275	39
40	48.8863 7336	54.2678 9391	60.4019 8318	75.4012 5973	40
41	50.3752 3709	56.0819 1232	62.6100 2284	78.6632 9753	41
42	51.8789 8946	57.9231 4100	64.8622 2330	82.0231 9645	42
43	53.3977 7936	59.7919 8812	67.1594 6777	85.4838 9234	43
44	54.9317 5715	61.6888 6794	69.5026 5712	89.0484 0911	44
45	56.4810 7472	63.6142 0096	71.8927 1027	92.7198 6139	45
46	58.0458 8547	65.5684 1398	74.3305 6447	96.5014 5723	46
47	59.6263 4432	67.5519 4018	76.8171 7576	100.3965 0095	47
48	61.2226 0777	69.5652 1929	79.3535 1927	104.4083 9598	48
49	62.8348 3385	71.6086 9758	81.9405 8966	108.5406 4785	49
50	64.4631 8218	73.6828 2804	84.5794 0145	112.7968 6729	50

$$s_{\overline{n}} = \frac{(1+i)^n - 1}{i}$$

-	,	T			_
n	31/2%	4%	5%	6%	n
1	1.0000 0000	1.0000 0000	1.0000 0000	1.0000 0000	1
2	2.0350 0000	2.0400 0000	2.0500 0000	2.0600 0000	2
3	3.1062 2500	3.1216 0000	3.1525 0000	3.1836 0000	3
4	4.2149 4288	4.2464 6400	4.3101 2500	4.3746 1600	4
5	5.3624 6588	5.4163 2256	5.5256 3125	5.6370 9296	5
6	6.5501 5218	6.6329 7546	6.8019 1281	6.9753 1854	6
7 8	7.7794 0751	7.8992 9448	8.1420 0845	8.3938 3765	7 8
	9.0516 8677	9.2142 2626	9.5491 0888	9.8974 6791	
9 10	10.3684 9581	10.5827 9531	11.0265 6432	11.4913 1598 13.1807 9494	10
11	13.1419 9192	13.4863 5141	14.2067 8716	14.9716 4264	11
12	14.6019 6164	15.0258 0546	15.9171 2652	16.8699 4120	12
13	16.1130 3030	16.6268 3768	17.7129 8285	18.8821 3767	13
14	17.6769 8636 19.2956 8088	18.2919 1119 20.0235 8764	19.5986 3199 21.5785 6359	21.0150 6593 23.2759 6988	14
15	19.2930 8088	20.0235 8/04	21.5/85 0359	23.2/39 0988	15
16	20.9710 2971	21.8245 3114	23.6574 9177	25.6725 2808	16
17	22.7050 1575	23.6975 1239	25.8403 6636	28.2128 7976	17
18	24.4996 9130	25.6454 1288	28.1323 8467	30.9056 5255	18
19 20	26.3571 8050 28.2796 8181	27.6712 2940 29.7780 7858	30.5390 0391 33.0659 5410	33.7599 9170 36.7855 9120	19
	20.2/90 0101	29.7/00 /030	33.003, 3410	30.7033 9120	
21	30.2694 7068	31.9692 1072	35.7192 5181	39.9927 2668	21
22	32.3289 0215	34.2479 6979	38.5052 1440	43.3922 9028	22
23	34.4604 1373	36.6178 8858	41.4304 7512	46.9958 2769	23
24	36.6665 2821	39.0826 0412	44.5019 9887	50.8155 7735	24
25	38.9498 5669	41.6459 0829	47.7270 9882	54.8645 1200	25
26	41.3131 0168	44.3117 4462	51.1134 5376	59.1563 8272	26
27	43.7590 6024	47.0842 1440	54.6691 2645	63.7057 6568	27
28	46.2906 2734	49.9675 8298	58.4025 8277	68.5281 1162	28
29	48.9107 9930	52.9662 8630	62.3227 1191	73.6397 9832	29
30	51.6226 7728	56.0849 3775	66.4388 4750	79.0581 8622	30
31	54.4294 7098	59.3283 3526	70.7607 8988	84.8016 7739	31
32	57.3345 0247	62.7014 6867	75.2988 2937	90.8897 7803	32
33	60.3412 1005	66.2095 2742	80.0637 7084	97.3431 6471	33
34 •	63.4531 5240	69.8579 0851	85.0669 5938	104.1837 5460	34
35	66.6740 1274	73.6522 2486	90.3203 0735	111.4347 7987	35
36	70.0076 0318	77.5983 1385	95.8363 2272	119.1208 6666	36
37	73.4578 6930	81.7022 4640	101.6281 3886	127.2681 1866	37
38	77.0288 9472	85.9703 3626	107.7095 4580	135.9042 0578	38
39	80.7249 0604	90.4091 4971	114.0950 2309	145.0584 5813	39
40	84.5502 7775	95.0255 1570	120.7997 7424	154.7619 6562	40
4I	88.5095 3747	99.8265 3633	127.8397 6295	165.0476 8356	41
42	92.6073 7128	104.8195 9778	135.2317 5110	175.9505 4457	42
43	96.8486 2928	110.0123 8169	142.9933 3866	187.5075 7724	43
44	101.2383 3130	115.4128 7696	151.1430 0559	199.7580 3188	44
45	105.7816 7290	121.0293 9204	159.7001 5587	212.7435 1379	45
46	110.4840 3145	126.8705 6772	168.6851 6366	226.5081 2462	46
47	115.3509 7255	132.9453 9043	178.1194 2185	241.0986 1210	47 48
48	120.3882 5659	139.2632 0604	188.0253 9294	256.5645 2882	
49	125,6018 4557	145.8337 3429	198.4266 6259	272.9584 0055	49
50	130.9979 1016	152.6670 8366	209.3479 9572	290.3359 0458	50
<u> </u>					<u>. </u>

$$a_{\overline{n}|} = \frac{(1 - v^n)}{i}$$

n	1%	11%	2%	3%	n
1 2	0.9900 9901 1.9703 9506	0.9852 2167	0.9803 9216	0.9708 7379 1.9134 6970	1 2
3	2.9409 8521	2.9122 0042	2.8838 8327	2.8286 1135	
4	3.9019 6555	3.8543 8465	3.8077 2870	3.7170 9840	3
5	4.8534 3124	4.7826 4497	4.7134 5951	4.5797 0719	5
6					6
	5.7954 7647 6.7281 9453	5.6971 8717 6.5982 1396	5.6014 3089 6.4719 9107	5.4171 9144 6.2302 8296	
7 8	7.6516 7775	7.4859 2508	7.3254 8144	7.0196 9219	7 8
و	8.5660 1758	8.3605 1732	8.1622 3671	7.7861 0892	ا و
ΙÓ	9.4713 0453	9.2221 8455	8.9825 8501	8.5302 0284	10
11	10.3676 2825	10.0711 1779	9.7868 4805	9.2526 2411	11
12	11.2550 7747	10.9075 0521	10.5753 4122	9.9540 0399	12
13	12.1337 4007	11.7315 3222	11.3483 7375	10.6349 5533	13
14	13.0037 0304	12.5433 8150	12.1062 4877	11.2960 7314	14
15	13.8650 5252	13.3432 3301	12.8492 6350	11.9379 3509	15
16	14.7178 7378	14.1312 6405	13.5777 0931	12.5611 0203	16
17	15.5622 5127	14.9076 4931	14.2918 7188	13.1661 1847	17
18	16.3982 6858	15.6725 6089	14.9920 3125	13.7535 1308	18
19	17.2260 0850	16.4261 6837	15.6784 6201	14.3237 9911	19
20	18.0455 5297	17.1686 3879	16.3514 3334	14.8774 7486	20
21	18.8569 8313	17.9001 3673	17.0112 0916	15.4150 2414	21
22	19.6603 7934	18.6208 2437	17.6580 4820	15.9369 1664	22
23	20.4558 2113	19.3308 6145	18.2922 0412	16.4436 0839	23
24	21.2433 8726	20.030+0537	18.9139 2560	16.9355 4212	24
25	22.0231 5570	20.7196 1120	19.5234 5647	17.4131 4769	25
26	22.7952 0366	21.3986 3172	20.1210 3576	17.8768 4242	26
27	23.5596 0759	22.0676 1746	20.7068 9780	18.3270 3147	27
28	24.3164 4316	22.7267 1671	21.2812 7236	18.7641 0823	28
12 9	25.0657 8530	23.3760 7558	21.8443 8466	19.1884 5459	29
30	25.8077 0822	24.0158 3801	22.3964 5555	19.6004 4135	30
31	26.5422 8537	24.6461 4582	22.9377 01 52	20.0004 2849	31
32	27.2695 8947	25.2671 3874	23.4683 3482	20.3887 6553	32
33	27.9896 9255	25.8789 5442	23.9885 6355	20.7657 9178	33
34	28.7026 6589	26.4817 2849	24.4985 9172	21.1318 3668	34
35	29.4085 8009	27.0755 9458	24.9986 1933	21.4872 2007	35
36	30.1075 0504	27.6606 8431	25.4888 4248	21.8322 5250	36
37	30.7995 0994	28.2371 2740	25.9694 5341	22.1672 3544	37
38	31.4846 6330	28.8050 5163	26.4406 4060	22.4924 6159	38
39	32.1630 3298	29.3645 8288	26.9025 8883	22.8082 1513	39
40	32.8346 8611	29.9158 4520	27-3554 7924	23.1147 7197	40
41	33.4996 8922	30.4589 6079	27.7994 8945	23.4123 9997	41
42	34.1581 0814	30.9940 5004	28.2347 9358	23.7013 5920	42
43	34.8100 0806	31.5212 3157	28.6615 6233	23.9819 0213	43
44	35.4554 5352	32.0406 2223	29.0799 6307	24.2542 7392	44
45	36.0945 0844	32.5523 3718	29.4901 5987	24.5187 1254	45
46	36.7272 3608	33.0564 8983	29.8923 1360	24.7754 4907	46
47	37.3536 9909	33.5531 9195	30.2865 8196	25.0247 0783	47
48	37.9739 5949	34.0425 5365	30.6731 1957	25.2667 0664	48
49	38.5880 7871	34.5246 8339	31.0520 7801	25.5016 5693	49
50	39.1961 1753	34.9996 8807	31.4236 0589	25.7297 6401	50
		<u> </u>	I	1	1

$$a_{\overline{n|}} = \frac{(\mathbf{1} - v^n)}{i}$$

n 3½% 4% 5% 6% 1 0.9661 8357 0.9615 3846 0.9523 8095 0.9433 962 2 1.8996 9428 1.8860 9467 1.8594 1043 1.8333 926 3 2.8016 3698 2.7750 9103 2.7232 4803 2.6730 119 4 3.6730 7921 3.6298 9522 3.5459 5050 3.4651 056 5 4.5150 5238 4.4518 2233 4.3294 7667 4.2123 637 6 5.3285 5302 5.2421 3686 5.0756 9206 4.9173 243; 7 6.1145 4398 6.0020 5467 5.7863 7340 5.5823 814 8 6.8739 5554 6.7327 4487 6.4632 1276 6.2027 938	3
2 1.8996 9428 1.8860 9467 1.8594 1043 1.8333 926' 3 2.8016 3698 2.7750 9103 2.7232 4803 2.6730 119, 4 3.6730 7921 3.6298 9522 3.5459 5050 3.4651 056' 5 4.5150 5238 4.4518 2233 4.3294 7667 4.2123 6379 6 5.3285 5302 5.2421 3686 5.0756 9206 4.9173 2433 7 6.1145 4398 6.0020 5467 5.7863 7340 5.5823 8144	3
2 1.8996 9428 1.8860 9467 1.8594 1043 1.8333 926' 3 2.8016 3698 2.7750 9103 2.7232 4803 2.6730 119, 4 3.6730 7921 3.6298 9522 3.5459 5050 3.4651 056' 5 4.5150 5238 4.4518 2233 4.3294 7667 4.2123 6379 6 5.3285 5302 5.2421 3686 5.0756 9206 4.9173 2433 7 6.1145 4398 6.0020 5467 5.7863 7340 5.5823 8144	3
4 3.6730 7921 3.6298 9522 3.5459 5050 3.4651 056 5 4.5150 5238 4.4518 2233 4.3294 7667 4.2123 6375 6 5.3285 5302 5.2421 3686 5.0756 9206 4.9173 243; 7 6.1145 4398 6.0020 5467 5.7863 7340 5.5823 8144	
5 4.5150 5238 4.4518 2233 4.3294 7667 4.2123 6375 6 5.3285 5302 5.2421 3686 5.0756 9206 4.9173 2435 7 6.1145 4398 6.0020 5467 5.7863 7340 5.5823 8145	1 4
6 5.3285 5302 5.2421 3686 5.0756 9206 4.9173 243; 7 6.1145 4398 6.0020 5467 5.7863 7340 5.5823 8144	
7 6.1145 4398 6.0020 5467 5.7863 7340 5.5823 814	5
7 6.1145 4398 6.0020 5467 5.7863 7340 5.5823 8144	6
1 0 6 0man rest. 6 maam 4,0m 6,6aa ramé ! 6 aan aa 0:	
9 7.6076 8651 7.4353 3161 7.1078 2168 6.8016 922	
10 8.3166 0532 8.1108 9578 7.7217 3493 7.3600 870	10
11 9.0015 5104 8.7604 7671 8.3064 1422 7.8868 7458	11
12 9.6633 3433 9.3850 7376 8.8632 5164 8.3838 4394	
13 10,3027 3849 9.9856 4785 9.3935 7299 8.8526 8296	
14 10.9205 2028 10.5631 2293 9.8986 4094 9.2949 8393	
15 11.517+ 1090 11.1183 8743 10.3796 5804 9.7122 4899	15
16 12.0941 1681 11.6522 9561 10.8377 6956 10.1058 9527	
17 12.6513 2059 12.1656 6885 11.2740 6625 10.4772 5969	17
18 13.1896 8173 12.6592 9697 11.6895 8690 10.8276 0348	
19 13.7098 3742 13.1339 3940 12.0853 2086 11.1581 1649	
20 14.2124 0330 13.5903 2634 12.4622 1034 11.4699 2122	20
21 14.6979 7420 14.0291 5995 12.8211 5271 11.7640 7662	21
2 2 15.1671 2484 14.4511 1533 13.1630 0258 12.0415 8172	22
23 15.6204 1047 14.8568 4167 13.4885 7388 12.3033 7898	23
24 16.0583 6760 15.24 69 6314 13.7986 4179 12.5503 5753	24
25 16.4815 1459 15.6220 7994 14.0939 4457 12.7833 5616	25
26 16.8903 5226 15.9827 6918 14.3751 8530 13.0031 6619	26
27 17.2853 6451 16.3295 8575 14.6430 3362 13.2105 3414	27
28 17.6670 1885 16.6630 6322 14.8981 2726 13.4061 6428	28
29 18.0357 6700 16.9837 1463 15.1410 7358 13.5907 2102	29
30 18.3920 4541 17.2920 3330 15.3724 5103 13.7648 3115	30
31 18.7362 7576 17.5884 9356 15.5928 1050 13.9290 8599	31
32 19.0688 6547 17.8735 5150 15.8026 7667 14.0840 4339	32
33 19.3902 0818 18.1476 4567 16.0025 4921 14.2302 2961	33
34 19.7006 8423 18.4111 9776 16.1929 0401 14.3681 4.14	34
35 20.0006 6110 18.6646 1323 16.3741 9429 14.4982 4636	35
36 20.2904 9381 18.9082 8195 16.5468 5171 14.6209 8713	36
37 20.5705 2542 19.1425 7880 16.7112 8734 14.7367 8031	37
38 20.8410 8736 19.3678 6423 16.8678 9271 14.8460 1916	38
39 21.1024 9987 19.5844 8484 17.0170 4067 14.9490 7468	39
40 21.3550 7234 19.7927 7388 17.1590 8635 15.0462 9687	40
41 21.5991 0371 19.9930 5181 17.2943 6796 15.1380 1592	41
42 21.8348 8281 20.1856 2674 17.4232 0758 15.2245 4332	42
43 22.0626 8870 20.3707 9494 17.5459 1198 15.3061 7294	43
44 22.2827 9102 20.5488 4129 17.6627 7331 15.3831 8202	44
45 22.4954 5026 20.7200 3970 17.7740 6982 15.4558 3209	45
46 22.7009 1813 20.8846 5356 17.8800 6650 15.5243 6990	46
47 22.8994 3780 21.0429 3612 17.9810 1571 15.5890 2821	47
48 23.0912 4425 21.1951 3088 18.0771 5782 15.6500 2661	48
49 23.2765 6450 21.3414 7200 18.1687 2173 15.7075 7227	49
50 23.4556 1787 21.4821 8462 18.2559 2546 15.7618 6064	50
, [,]	1

(The Numbers Refer to Pages)

Abscissa, 30. Accumulation schedule, 108, 109, Addition, 1. of fractions, 18. of radicals, 77. Algebraic fraction, 16. addition and subtraction of. 18. multiplication and division of, 19. Algebraic operations, 1-5. American Experience Table, 188. Amortization of principal, 110. Amortization schedule, 110. Amount of an annuity, 97, 100. Annuity, definition of, 97. Area of a triangle, 26, 149. Arithmetical means, 89, 171, 173. Arithmetical progression, 88. common difference of, 88. elements of, 88. nth term of, 88. sum of, 88. Axes. coordinate, 30.

Base of a system of numbers, 81. Beneficiary, 200. Benefit, 200. Binomial expansion, 79.

Change in a function, 31. Characteristic of a logarithm, 83. Circle area of, 27.

circumference of, 27.

Classification of numbers, 62. Co-functions and complementary angles, 117. Combinations, 191. Complex fractions, 20. Complex numbers, 62. Compound events, 192. Compound interest, 95. Constants, 24. Coordinate axes, 30. Coordinates of a point, 30. Correlation, 179. coefficient of, 181. the rank method of, 181. Cosecant, defined for acute angle, 116. for any angle, 130. Cosine, defined for acute angle, 116. for any angle, 130. Cosine of a difference, 136. Cosine of a sum, 135. Cosines, theorem of, 144. Cotangent, defined. for acute angle, 116.

Decreasing functions, 163. Dependent events, 192. Depreciation schedule, 109. Depression, angle of, 128. Derivative, definition, 153. of a constant, 157.

for any angle, 130.

Derivative, definition—Continued. of a product, 158. of a quotient, 159. of a sum, 158. of u^n , 160. Deviation, 176. mean deviation, 176. quartile deviation, 176. standard deviation, 176. Difference, trigonometric functions of. 136. Discriminant of a quadratic equation, 63. Distance between two points, 50. Division, 4. Division by zero, 4. Elevation, angle of, 128. Endowment insurance, 206. Equalities, 12. Equation of a line, 50. slope and point form, 53. two point form, 51. Equations, 12. equivalent, 13. extraneous roots of, 22. fractional, 21. linear, 12. quadratic, 58. simultaneous, 39. solution or root of, 12. Exclusive events, 193. Exponents, laws of, 74. Extremes of arithmetical progression, 89. of geometrical progression, 90.

Factorial, 190. Factoring, 6-11. Formulas taken from geometry, 26. Fractions, 16-23.
addition and subtraction of, 18.
complex, 20.
multiplication and division of, 19.
operations of, 16.
Frequency tables, 170.
Function, 24-38.
definition of, 24.
graph of a, 29.
trigonometric, 115.
Functional notation, 24.
Functional relations, 25.

Geometrical progression, 90.
elements of, 90.
nth term of, 90.
ratio of, 90.
sum of, 90.
Graphical solution
of a quadratic equation, 65.
of simultaneous linear equations,
41.

Half angle formulas, 137. Highest Common factor, 9.

Geometric mean, 90.

Identities, 12.
Imaginary numbers, 62.
Inconsistent equations, 42.
Increasing functions, 163.
Independent events, 192.
Infinity, meaning of, 122.
Insurance, definitions, 200.
endowment, 206.
limited payment life, 202.
ordinary life, 201.
term, 204.
Intercepts on the axes, 41.
Interest, 92–96.
compound, 95.

Interest, simple, 92.	Natural premium, 205.
Interpolation, 85.	Negative angles, 131.
Irrational numbers, 61.	Net premium, 200.
Irrational roots of a quadratic equa-	annual, 201.
tion, 61.	single, 201.
Law of cosines, 144.	Numbers
Law of sines, 140.	complex, 62.
Law of tangents, 147.	imaginary, 62.
Life annuity, 195–200.	irrational, 61.
due, 197.	rational, 61.
meaning of, 195.	real, 62.
present value of, 196.	
temporary, 197.	Office premium, 200.
Life insurance definitions, 200.	Ordinary life policy, 201.
Limited payment life policy, 202.	Ordinate, 30.
Linear equations, 12.	Origin of coordinates, 30.
Line representation of trigonometric	
functions, 121.	Parallel lines, 54.
Logarithms, 81–87.	Parentheses, 1.
characteristic, 83.	Pearson correlation coefficient, 183.
common, 83.	Permutations, 189–190.
definition of, 81.	definition of, 189.
mantissa, 83.	of n things r at a time, 190.
properties of, 82.	Perpendicular lines, 55.
Lowest common multiple, 10.	Policy, 200.
Lowest common munipic, 10.	endowment, 206.
Mantissa, 83.	limited payment life, 202.
Maxima, 67, 165.	ordinary life, 201.
Mean deviation, 175.	term, 204.
Means, 89, 90, 171.	Policy holder, 200.
arithmetical, 89.	Premium, 200.
geometrical, 90.	annual, 201.
Measures of central tendency, 171.	gross, 200.
Median, determination of, from a	natural, 205.
frequency table, 174.	net, 200.
Minima, 67, 165.	net annual, 201.
Mode, 172.	net single, 201.
Mortality table, 188.	office, 200.
Multiplication	Present value, 104.
of fractions, 19.	of an annuity, 104, 105.
of polynomials, 3.	of a life annuity, 196.

sum of, 65.

Secant. defined Principal for acute angle, 116. amortization of, 110. for any angle, 130. Probability, 186-194. based upon observation or ex-Signs of agregation, 1. Simple interest, 92. perience, 187. definition of La Place, 186. Sine, defined for acute angle, 116. meaning of, 186. Product moment formula, 183. for any angle, 130. Sine of a sum, 135. Product of the roots of a quadratic, 65. Sines, law of, 140. Progressions, 88-91. Sinking fund, 108. arithmetical, 88. Slope of a line, 48. Solution elements of, 88, 90, of an equation, 12. geometrical, 90. of an oblique triangle, 141–151. Pure endowment, 195. of a quadratic equation, 59. of a right triangle, 125-129. Quadrants, 130. of simultaneous linear equations, Quadratic equations, 58-73. 43, 44. solution of, 59. Standard deviation, 176. typical form of, 58. Statistics, definition of, 170. Quadratic function, 58. Straight line, equation of, 50. Quartile deviation, 176. in point slope form, 53. through two points, 51. Radicals, 77. Subtraction of fractions. 18. Radicand, 77. Rank method of correlation, 181. of polynomials, 1. Sum and difference formulas, 138. Rational numbers, 61. Real numbers, 62. Sum, trigonometric functions of, 135. Reserve, 207-209. Right triangles, solution of, 125-129. Roots, 12. Tangent, defined imaginary, 63. for acute angle, 116. for any angle, 130. nature of, 63. Tangents, law of, 147. of an equation, 12. Tangent of a sum, 135. of a quadratic equation, 59. product of, 65. Tangent to a curve, 153. rational, 64. definition of, 153. equation of, 163. real, 64. ·

slope of, 154.

Temporary annuity, 197.
Term insurance, 204.
Terminal reserve, 208.
Triangle, area of, 26, 149.
Trigonometric functions, 115–123.
defined, 115.
of complementary angles, 117.
of difference, 136.
of half an angle, 137.
of sum, 135.
of supplementary angles, 132.
of twice an angle, 136.

Twice an angle, functions of, 136.
Typical form
of linear equation, 13.
of quadratic equation, 58.

Variable definition of 24.

Variable, definition of, 24. Variations of the trigonometric functions, 122.

Zero, division by, 4.

INDEX