3489.
$$2\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - \frac{\partial^2 z}{\partial y^2} + \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$$
, если $u = x + 2y + 2$ и $v = x - y - 1$.

3490.
$$(1+x^2)\frac{\partial^2 z}{\partial x^2} + (1+y^2)\frac{\partial^2 z}{\partial y^2} + x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 0$$
, если $u = \ln(x + \sqrt{1+x^2})$ и $v = \ln(y + \sqrt{1+y^2})$.

3491.
$$ax^2 \frac{\partial^2 z}{\partial x^2} + 2bxy \frac{\partial^2 z}{\partial x \partial y} + cy^2 \frac{\partial^2 z}{\partial y^2} = 0$$
 $(a, b, c - y)$

постоянны), если $u = \ln x$ и $v = \ln y$.

3492.
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$$
, если
$$u = \frac{x}{x^2 + y^2} \text{ и } v = -\frac{y}{x^2 + y^2}.$$

3493.
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^3} + m^2 z = 0, \text{ если}$$

$$x = e^u \cos v$$
, $y = e^u \sin v$.

3494.
$$\frac{\partial^2 z}{\partial x^2} - y \frac{\partial^2 z}{\partial y^2} = \frac{1}{2} \frac{\partial z}{\partial y}$$
 (y>0), если $u = x-2 \sqrt{y}$ и $v = x + 2 \sqrt{y}$.

3495.
$$x^2 \frac{\partial^2 z}{\partial x^2} - y^2 \frac{\partial^2 z}{\partial y^2} = 0$$
, если $u = xy$ и $v = \frac{x}{y}$.

3496.
$$x^2 \frac{\partial^2 z}{\partial x^3} - (x^2 + y^2) \frac{\partial^2 z}{\partial x \partial y} + y^3 \frac{\partial^2 z}{\partial y^2} = 0$$
, если

$$a = x + y \quad u = \frac{1}{x} + \frac{1}{y}.$$

3497.
$$xy \frac{\partial^2 z}{\partial x^2} - (x^2 + y^2) \frac{\partial^2 z}{\partial x \partial y} + xy \frac{\partial^2 z}{\partial y^2} + y \frac{\partial z}{\partial x} + xy \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = 0$$
, если $u = \frac{1}{2} (x^2 + y^2)$ и $v = xy$.

3498.
$$x^2 \frac{\partial^2 z}{\partial x^2} - 2x \sin y \frac{\partial^2 z}{\partial x \partial y} + \sin^2 y \frac{\partial^2 z}{\partial y^2} = 0$$
, если

$$u = x \operatorname{tg} \frac{y}{2}$$
 $u \quad v = x$.

3499.
$$x \frac{\partial^2 z}{\partial x^2} - y \frac{\partial^2 z}{\partial y^2} = 0$$
 (x>0, y>0), если $x = (u + v)^2$ и $y = (u - v)^2$.