ANALISI E SVILUPPO DI UN CRAWLER PER LA CREAZIONE DI UNA BASE DI CONOSCENZA SEMANTICA DEL PERSONALE UNIVERSITARIO

parte del progetto OSIM (*Open Space Innovative Minds*) del DISIT (*Distributed Systems and Internet Technology Laboratory*) della facoltà di ingegneria

STEFANO MARTINA

Relatore: Elena Barcucci; Corelatore: Paolo Nesi

UNIVERSITÀ DEGLI STUDI DI FIRENZE Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Informatica

Tesi di laurea, 20 luglio 2012, (7) (3) (3) (4) (4)

- I sistemi classici di ricerca non sono efficaci per certi ambiti
- È necessaria la possibilità di poter ricercare chi ha certe competenze
- Le pagine delle persone hanno una struttura complessa e non semantica
- È necessario fornire un'interfaccia sia per interrogare che per amministrare le competenze

2 / 18

- I sistemi classici di ricerca non sono efficaci per certi ambiti
- È necessaria la possibilità di poter ricercare chi ha certe competenze
- Le pagine delle persone hanno una struttura complessa e non semantica
- È necessario fornire un'interfaccia sia per interrogare che per amministrare le competenze

2 / 18

- I sistemi classici di ricerca non sono efficaci per certi ambiti
- È necessaria la possibilità di poter ricercare chi ha certe competenze
- Le pagine delle persone hanno una struttura complessa e non semantica
- È necessario fornire un'interfaccia sia per interrogare che per amministrare le competenze

- I sistemi classici di ricerca non sono efficaci per certi ambiti
- È necessaria la possibilità di poter ricercare chi ha certe competenze
- Le pagine delle persone hanno una struttura complessa e non semantica
- È necessario fornire un'interfaccia sia per interrogare che per amministrare le competenze

Schema di OSIM

- Creare una base di conoscenza del personale universitario
- Organizzare le competenze in modo gerarchico
- Possibilità di effettuare query

Schema di OSIM

- Creare una base di conoscenza del personale universitario
- Organizzare le competenze in modo gerarchico
- Possibilità di effettuare query

Schema di OSIM

- Creare una base di conoscenza del personale universitario
- Organizzare le competenze in modo gerarchico
- Possibilità di effettuare query

3 / 18

Schema di OSIM

- Creare una base di conoscenza del personale universitario
- Organizzare le competenze in modo gerarchico
- Possibilità di effettuare query

Collaborative SKOS Accelerator and Manager

- Il lavoro si concentra su CoSKOSAM, in particolar modo sul crawler
- Il crawler si presentava destrutturato e non funzionante
- Le pagine da acquisire presentano una struttura complessa, così come l'ontologia su cui scrivere
- È stato svolto un lavoro di studio del progetto
- Sono state implementate nuove funzionalità

Collaborative SKOS Accelerator and Manager

- Il lavoro si concentra su CoSKOSAM, in particolar modo sul crawler
- Il crawler si presentava destrutturato e non funzionante
- Le pagine da acquisire presentano una struttura complessa, così come l'ontologia su cui scrivere
- È stato svolto un lavoro di studio del progetto
- Sono state implementate nuove funzionalità

Collaborative SKOS Accelerator and Manager

- Il lavoro si concentra su CoSKOSAM, in particolar modo sul crawler
- Il crawler si presentava destrutturato e non funzionante
- Le pagine da acquisire presentano una struttura complessa, così come l'ontologia su cui scrivere
- É stato svolto un lavoro di studio del progetto
- Sono state implementate nuove funzionalità

4 / 18

Collaborative SKOS Accelerator and Manager

- Il lavoro si concentra su CoSKOSAM, in particolar modo sul crawler
- Il crawler si presentava destrutturato e non funzionante
- Le pagine da acquisire presentano una struttura complessa, così come l'ontologia su cui scrivere
- È stato svolto un lavoro di studio del progetto
- Sono state implementate nuove funzionalità

Collaborative SKOS Accelerator and Manager

- Il lavoro si concentra su CoSKOSAM, in particolar modo sul crawler
- Il crawler si presentava destrutturato e non funzionante
- Le pagine da acquisire presentano una struttura complessa, così come l'ontologia su cui scrivere
- È stato svolto un lavoro di studio del progetto
- Sono state implementate nuove funzionalità

Strutture usate

- Vengono usate le strutture semantiche RDF, RDFS. OWL per la memorizzazione dell'informazioni
- Viene usato il framework GATE per l'analisi del linguaggio naturale
- Vengono usate l'ontologia SKOS e FOAF

Strutture usate

- Vengono usate le strutture semantiche RDF, RDFS. OWL per la memorizzazione dell'informazioni
- Viene usato il framework GATE per l'analisi del linguaggio naturale
- Vengono usate l'ontologia SKOS e FOAF

Strutture usate

per la memorizzazione dell'informazioni

Vengono usate le strutture semantiche RDF, RDFS. OWL

- Viene usato il framework GATE per l'analisi del linguaggio naturale
- Vengono usate l'ontologia SKOS e FOAF per rappresentare competenze e persone

Creazione dello SKOS

- Interviene l'esperto di dominio per la creazione dello SKOS
- La competenza può essere inserita come radice dello SKOS
- Oppure come specificazione di un'altra competenza

Creazione dello SKOS

- Interviene l'esperto di dominio per la creazione dello SKOS
- La competenza può essere inserita come radice dello SKOS
- Oppure come specificazione di un'altra competenza

Creazione dello SKOS

- Interviene
 l'esperto di dominio
 per la creazione
 dello SKOS
- La competenza può essere inserita come radice dello SKOS
- Oppure come specificazione di un'altra competenza

7 / 18

Crawler keyword

Problemi principali

- Reperire tutte le pagine del dipartimento seguendo una struttura complessa
- È necessario del NLP per individuare nel testo le keyword
- Gestire i casi in cui le keyword siano di lingue diverse
- Va gestito il caso in cui l'estrazione delle keyword dia esiti errati

Crawler keyword

Problemi principali

- Reperire tutte le pagine del dipartimento seguendo una struttura complessa
- È necessario del NLP per individuare nel testo le keyword
- Gestire i casi in cui le keyword siano di lingue diverse
- Va gestito il caso in cui l'estrazione delle keyword dia esiti errati

Crawler keyword

- Reperire tutte le pagine del dipartimento seguendo una struttura complessa
- È necessario del NLP per individuare nel testo le keyword
- Gestire i casi in cui le keyword siano di lingue diverse
- Va gestito il caso in cui l'estrazione delle keyword dia esiti errati

Crawler keyword

- Reperire tutte le pagine del dipartimento seguendo una struttura complessa
- É necessario del NLP per individuare nel testo le keyword
- Gestire i casi in cui le keyword siano di lingue diverse
- Va gestito il caso in cui l'estrazione delle keyword dia esiti errati

- Reperire le pagine di ogni persona
- Individuare le competenze associate alle persone
- Reperire la struttura (persone, corsi, dipartimenti) dalle pagine
- Scrivere le informazioni nell'ontologia
- Va gestito il multilingua delle competenze

- Reperire le pagine di ogni persona
- Individuare le competenze associate alle persone
- Reperire la struttura (persone, corsi, dipartimenti) dalle pagine
- Scrivere le informazioni nell'ontologia
- Va gestito il multilingua delle competenze

- Reperire le pagine di ogni persona
- Individuare le competenze associate alle persone
- Reperire la struttura (persone, corsi, dipartimenti) dalle pagine
- Scrivere le informazioni nell'ontologia
- Va gestito il multilingua delle competenze

- Reperire le pagine di ogni persona
- Individuare le competenze associate alle persone
- Reperire la struttura (persone, corsi, dipartimenti) dalle pagine
- Scrivere le informazioni nell'ontologia
- Va gestito il multilingua delle competenze

- Reperire le pagine di ogni persona
- Individuare le competenze associate alle persone
- Reperire la struttura (persone, corsi, dipartimenti) dalle pagine
- Scrivere le informazioni nell'ontologia
- Va gestito il multilingua delle competenze

- Pagine JSP
- Chiamate HTTP tramite Javascript alla Servlet
- Creazione gestore comand
- Esecuzione comando
- Risposta JSON alla pagina

- Pagine JSP
- Chiamate HTTP tramite Javascript alla Servle
- Creazione gestore comand
- Esecuzione comando
- Risposta JSON alla pagina

- Pagine JSP
- Chiamate HTTP tramite Javascript alla Servlet
- Creazione gestore comand
- Esecuzione comando
- Risposta JSON alla pagina

- Pagine JSP
- Chiamate HTTP tramite Javascript alla Servlet
- Creazione gestore comandi
- Esecuzione comando
- Risposta JSON alla pagina

- Pagine JSP
- Chiamate HTTP tramite Javascript alla Servlet
- Creazione gestore comandi
- Esecuzione comando
- Risposta JSON alla pagina

- Pagine JSP
- Chiamate HTTP tramite Javascript alla Servlet
- Creazione gestore comandi
- Esecuzione comando
- Risposta JSON alla pagina

- Viene usata una coda di processi
- Sequenzialmente viene creato un thread per ogni processo della coda
- Il thread chiama il giusto engine secondo l'operazione richiesta

- Viene usata una coda di processi
- Sequenzialmente viene creato un thread per ogni processo della coda
- Il thread chiama il giusto engine secondo l'operazione richiesta

- Viene usata una coda di processi
- Sequenzialmente viene creato un thread per ogni processo della coda
- Il thread chiama il giusto engine secondo l'operazione richiesta

- Viene usata una coda di processi
- Sequenzialmente viene creato un thread per ogni processo della coda
- Il thread chiama il giusto engine secondo l'operazione richiesta

- Viene usata una coda di processi
- Sequenzialmente viene creato un thread per ogni processo della coda
- Il thread chiama il giusto engine secondo l'operazione richiesta

Interfaccia keyword

- Interviene un esperto di dominio
- Sceglie quali sono le keyword significative
- Le keyword scelte sono inserite in un gazetteer

Interfaccia keyword

- Interviene un esperto di dominio
- Sceglie quali sono le keyword significative
- Le keyword scelte sono inserite in un gazetteer

Interfaccia keyword

- Interviene un esperto di dominio
- Sceglie quali sono le keyword significative
- Le keyword scelte sono inserite in un gazetteer

Interfaccia SKOS

Interfaccia SKOS

Interfaccia SKOS

Risultati

Sono stati acquisiti:

- 49 dipartimenti
- 249000 keyword

- 13000 documenti
- 2344 docenti

Stato dei principali dipartimenti per i quali è stata fatta la validazione

Dipartimento	Key.	Gaz.	Doc.
Dipartimento di meccanica	2958	523	92
Dipartimento di Anat., Ist. e Medicina Legale	2012	909	400
Dipartimento di Elettronica e Telecomunicazioni	6660	430	255
Dipartimento di Ingegneria Civile e Ambientale	6502	470	245
Dipartimento di Scienze della Terra	10127	143	179
Dipartimento di Teoria e Storia del Diritto	6574	1173	43
Dipartimento di scienze economiche	5115	1047	285
Dipartimento di matematica per le decisioni	2258	232	122
Dipartimento di sistemi ed informatica	7803	1733	335

Risultati

Sono stati acquisiti:

• 49 dipartimenti

• 13000 documenti

249000 keyword

2344 docenti

Stato dei principali dipartimenti per i quali è stata fatta la validazione:

Dipartimento	Key.	Gaz.	Doc.
Dipartimento di meccanica	2958	523	92
Dipartimento di Anat., Ist. e Medicina Legale	2012	909	400
Dipartimento di Elettronica e Telecomunicazioni	6660	430	255
Dipartimento di Ingegneria Civile e Ambientale	6502	470	245
Dipartimento di Scienze della Terra	10127	143	179
Dipartimento di Teoria e Storia del Diritto	6574	1173	43
Dipartimento di scienze economiche	5115	1047	285
Dipartimento di matematica per le decisioni	2258	232	122
Dipartimento di sistemi ed informatica	7803	1733	335

- Sono stati studiati ed analizzati il problema e le diverse complessità
- I problemi principali sono la struttura delle pagine, creare una ontologia che possa essere amministrata e interrogata e fornire una interfaccia usabile
- Sono state formulate e implementate le due fasi di crawling
- Sono stati proposti possibili sviluppi futuri, ad esempio
 - usare XSLT per implementare una fase di pre-crawling
 - identificare le keyword anche con i verbi
 - un miglioramento della parte di query sull'ontologia

- Sono stati studiati ed analizzati il problema e le diverse complessità
- I problemi principali sono la struttura delle pagine,
 creare una ontologia che possa essere amministrata e interrogata e fornire una interfaccia usabile
- Sono state formulate e implementate le due fasi di crawling
- Sono stati proposti possibili sviluppi futuri, ad esempio
 - usare XSLT per implementare una fase di pre-crawling
 - identificare le keyword anche con i verbi
 - un miglioramento della parte di query sull'ontologia

- Sono stati studiati ed analizzati il problema e le diverse complessità
- I problemi principali sono la struttura delle pagine, creare una ontologia che possa essere amministrata e interrogata e fornire una interfaccia usabile
- Sono state formulate e implementate le due fasi di crawling
- Sono stati proposti possibili sviluppi futuri, ad esempio
 - usare XSLT per implementare una fase di pre-crawling
 - identificare le keyword anche con i verbi
 - un miglioramento della parte di query sull'ontologia

- Sono stati studiati ed analizzati il problema e le diverse complessità
- I problemi principali sono la struttura delle pagine, creare una ontologia che possa essere amministrata e interrogata e fornire una interfaccia usabile
- Sono state formulate e implementate le due fasi di crawling
- Sono stati proposti possibili sviluppi futuri, ad esempio
 - usare XSLT per implementare una fase di pre-crawling
 - identificare le keyword anche con i verbi
 - un miglioramento della parte di query sull'ontologia

 \mathcal{FINE}

- RDF permette di rappresentare:
 risorse, asserzioni su di esse e relazioni tra di esse
 - Le risorse sono identificate univocamente da URI
 - Le asserzioni sono rappresentate da triple: soggetto - predicato - oggetto
- RDFS è una estenzione semantica di RDF che fornisce un vocabolario per definire classi e proprietà
 - Le risorse possono essere divise in classi, i membri delle classi sono dette istanze e vengono definite tramite rdf:type
 - È possibile definire sottoclassi tramite rdfs:subClassOf
 - È possibile definire sottoproprietà tramite rdfs:subPropertyOf
 - È possibile definire un dominio di una proprietà con rdfs:domain e un'immagine con rdfs:range
- OWL estende RDFS per creare strutture logiche
 - Le strutture descritte con OWL si chiamano ontologie
 - Sulle ontologie è possibile estrarre conoscenza con dei reasoner

- RDF permette di rappresentare:
 risorse, asserzioni su di esse e relazioni tra di esse
 - Le risorse sono identificate univocamente da URI
 - Le asserzioni sono rappresentate da triple: soggetto - predicato - oggetto
- RDFS è una estenzione semantica di RDF che fornisce un vocabolario per definire classi e proprietà
 - Le risorse possono essere divise in classi, i membri delle classi sono dette istanze e vengono definite tramite rdf:type
 - È possibile definire sottoclassi tramite rdfs:subClassOf
 - È possibile definire sottoproprietà tramite rdfs:subPropertyOf
 - È possibile definire un dominio di una proprietà con rdfs:domain e un'immagine con rdfs:range
- OWL estende RDFS per creare strutture logiche
 - Le strutture descritte con OWL si chiamano ontologie
 - Sulle ontologie è possibile estrarre conoscenza con dei reasoner

- RDF permette di rappresentare:
 risorse, asserzioni su di esse e relazioni tra di esse
 - Le risorse sono identificate univocamente da URI
 - Le asserzioni sono rappresentate da triple: soggetto - predicato - oggetto
- RDFS è una estenzione semantica di RDF che fornisce un vocabolario per definire classi e proprietà
 - Le risorse possono essere divise in classi, i membri delle classi sono dette istanze e vengono definite tramite rdf:type
 - È possibile definire sottoclassi tramite rdfs:subClassOf
 - E possibile definire sottoproprietà tramite rdfs:subPropertyOf
 - È possibile definire un dominio di una proprietà con rdfs:domain e un'immagine con rdfs:range
- OWL estende RDFS per creare strutture logiche
 - Le strutture descritte con OWL si chiamano ontologie
 - Sulle ontologie è possibile estrarre conoscenza con dei reasoner

- RDF permette di rappresentare:
 risorse, asserzioni su di esse e relazioni tra di esse
 - Le risorse sono identificate univocamente da URI
 - Le asserzioni sono rappresentate da triple: soggetto - predicato - oggetto
- RDFS è una estenzione semantica di RDF che fornisce un vocabolario per definire classi e proprietà
 - Le risorse possono essere divise in classi, i membri delle classi sono dette istanze e vengono definite tramite rdf:type
 - È possibile definire sottoclassi tramite rdfs:subClassOf
 - È possibile definire sottoproprietà tramite rdfs:subPropertyOf
 - È possibile definire un dominio di una proprietà con rdfs:domain e un'immagine con rdfs:range
- OWL estende RDFS per creare strutture logiche
 - Le strutture descritte con OWL si chiamano ontologie
 - Sulle ontologie è possibile estrarre conoscenza con dei reasoner

- RDF permette di rappresentare:
 risorse, asserzioni su di esse e relazioni tra di esse
 - Le risorse sono identificate univocamente da URI
 - Le asserzioni sono rappresentate da triple: soggetto - predicato - oggetto
- RDFS è una estenzione semantica di RDF che fornisce un vocabolario per definire classi e proprietà
 - Le risorse possono essere divise in classi, i membri delle classi sono dette istanze e vengono definite tramite rdf:type
 - È possibile definire sottoclassi tramite rdfs:subClassOf
 - E possibile definire sottoproprietà tramite rdfs:subPropertyOf
 - È possibile definire un dominio di una proprietà con rdfs:domain e un'immagine con rdfs:range
- OWL estende RDFS per creare strutture logiche
 - Le strutture descritte con OWL si chiamano ontologie
 - Sulle ontologie è possibile estrarre conoscenza con dei reasoner

- RDF permette di rappresentare:
 risorse, asserzioni su di esse e relazioni tra di esse
 - Le risorse sono identificate univocamente da URI
 - Le asserzioni sono rappresentate da triple: soggetto - predicato - oggetto
- RDFS è una estenzione semantica di RDF che fornisce un vocabolario per definire classi e proprietà
 - Le risorse possono essere divise in classi, i membri delle classi sono dette istanze e vengono definite tramite rdf:type
 - È possibile definire sottoclassi tramite rdfs:subClassOf
 - È possibile definire sottoproprietà tramite rdfs:subPropertyOf
 - È possibile definire un dominio di una proprietà con rdfs:domain e un'immagine con rdfs:range
- OWL estende RDFS per creare strutture logiche
 - Le strutture descritte con OWL si chiamano ontologie
 - Sulle ontologie è possibile estrarre conoscenza con dei reasoner

- RDF permette di rappresentare:
 risorse, asserzioni su di esse e relazioni tra di esse
 - Le risorse sono identificate univocamente da URI
 - Le asserzioni sono rappresentate da triple: soggetto - predicato - oggetto
- RDFS è una estenzione semantica di RDF che fornisce un vocabolario per definire classi e proprietà
 - Le risorse possono essere divise in classi, i membri delle classi sono dette istanze e vengono definite tramite rdf:type
 - È possibile definire sottoclassi tramite rdfs:subClassOf
 - È possibile definire sottoproprietà tramite rdfs:subPropertyOf
 - È possibile definire un dominio di una proprietà con rdfs:domain e un'immagine con rdfs:range
- OWL estende RDFS per creare strutture logiche
 - Le strutture descritte con OWL si chiamano ontologie
 - Sulle ontologie è possibile estrarre conoscenza con dei reasoner

- RDF permette di rappresentare:
 risorse, asserzioni su di esse e relazioni tra di esse
 - Le risorse sono identificate univocamente da URI
 - Le asserzioni sono rappresentate da triple: soggetto - predicato - oggetto
- RDFS è una estenzione semantica di RDF che fornisce un vocabolario per definire classi e proprietà
 - Le risorse possono essere divise in classi, i membri delle classi sono dette istanze e vengono definite tramite rdf:type
 - È possibile definire sottoclassi tramite rdfs:subClassOf
 - È possibile definire sottoproprietà tramite rdfs:subPropertyOf
 - È possibile definire un dominio di una proprietà con rdfs:domain e un'immagine con rdfs:range
- OWL estende RDFS per creare strutture logiche
 - Le strutture descritte con OWL si chiamano ontologie
 - Sulle ontologie è possibile estrarre conoscenza con dei reasoner

- RDF permette di rappresentare:
 risorse, asserzioni su di esse e relazioni tra di esse
 - Le risorse sono identificate univocamente da URI
 - Le asserzioni sono rappresentate da triple: soggetto - predicato - oggetto
- RDFS è una estenzione semantica di RDF che fornisce un vocabolario per definire classi e proprietà
 - Le risorse possono essere divise in classi, i membri delle classi sono dette istanze e vengono definite tramite rdf:type
 - È possibile definire sottoclassi tramite rdfs:subClassOf
 - È possibile definire sottoproprietà tramite rdfs:subPropertyOf
 - È possibile definire un dominio di una proprietà con rdfs:domain e un'immagine con rdfs:range
- OWL estende RDFS per creare strutture logiche
 - Le strutture descritte con OWL si chiamano ontologie
 - Sulle ontologie è possibile estrarre conoscenza con dei reasoner

- RDF permette di rappresentare:
 risorse, asserzioni su di esse e relazioni tra di esse
 - Le risorse sono identificate univocamente da URI
 - Le asserzioni sono rappresentate da triple: soggetto - predicato - oggetto
- RDFS è una estenzione semantica di RDF che fornisce un vocabolario per definire classi e proprietà
 - Le risorse possono essere divise in classi, i membri delle classi sono dette istanze e vengono definite tramite rdf:type
 - È possibile definire sottoclassi tramite rdfs:subClassOf
 - È possibile definire sottoproprietà tramite rdfs:subPropertyOf
 - È possibile definire un dominio di una proprietà con rdfs:domain e un'immagine con rdfs:range
- OWL estende RDFS per creare strutture logiche
 - Le strutture descritte con OWL si chiamano ontologie
 - Sulle ontologie è possibile estrarre conoscenza con dei reasoner

- RDF permette di rappresentare:
 risorse, asserzioni su di esse e relazioni tra di esse
 - Le risorse sono identificate univocamente da URI
 - Le asserzioni sono rappresentate da triple: soggetto - predicato - oggetto
- RDFS è una estenzione semantica di RDF che fornisce un vocabolario per definire classi e proprietà
 - Le risorse possono essere divise in classi, i membri delle classi sono dette istanze e vengono definite tramite rdf:type
 - È possibile definire sottoclassi tramite rdfs:subClassOf
 - È possibile definire sottoproprietà tramite rdfs:subPropertyOf
 - È possibile definire un dominio di una proprietà con rdfs:domain e un'immagine con rdfs:range
- OWL estende RDFS per creare strutture logiche
 - Le strutture descritte con OWL si chiamano ontologie
 - Sulle ontologie è possibile estrarre conoscenza con dei reasoner

- È un framework open source per lo sviluppo di applicazioni per l'analisi del linguaggio naturale
- Fornisce un editor di sviluppo GATE Developer e una API GATE Embedded
- Le applicazione sono costituite da plugin eseguiti in cascata sui documenti
- I plugin creano delle annotazioni sui documenti
- I gazetteer sono insiemi di liste di parole che vengono annotate
- Le regole JAPE permettono di individuare pattern nelle annotazioni utilizzando espressioni regolari
- ANNIE è una pipeline che annota nel testo parole, frasi, e parti del testo (sostantivi, verbi, etc...)

- È un framework open source per lo sviluppo di applicazioni per l'analisi del linguaggio naturale
- Fornisce un editor di sviluppo GATE Developer e una API GATE Embedded
- Le applicazione sono costituite da plugin eseguiti in cascata sui documenti
- I plugin creano delle annotazioni sui documenti
- I gazetteer sono insiemi di liste di parole che vengono annotate
- Le regole JAPE permettono di individuare pattern nelle annotazioni utilizzando espressioni regolari
- ANNIE è una pipeline che annota nel testo parole, frasi, e parti del testo (sostantivi, verbi, etc...)

- È un framework open source per lo sviluppo di applicazioni per l'analisi del linguaggio naturale
- Fornisce un editor di sviluppo GATE Developer e una API GATE Embedded
- Le applicazione sono costituite da plugin eseguiti in cascata sui documenti
- I plugin creano delle annotazioni sui documenti
- I gazetteer sono insiemi di liste di parole che vengono annotate
- Le regole JAPE permettono di individuare pattern nelle annotazioni utilizzando espressioni regolari
- ANNIE è una pipeline che annota nel testo parole, frasi, e parti del testo (sostantivi, verbi, etc...)

- È un framework open source per lo sviluppo di applicazioni per l'analisi del linguaggio naturale
- Fornisce un editor di sviluppo GATE Developer e una API GATE Embedded
- Le applicazione sono costituite da plugin eseguiti in cascata sui documenti
- I plugin creano delle annotazioni sui documenti
- I gazetteer sono insiemi di liste di parole che vengono annotate
- Le regole JAPE permettono di individuare pattern nelle annotazioni utilizzando espressioni regolari
- ANNIE è una pipeline che annota nel testo parole, frasi, e parti del testo (sostantivi, verbi, etc...)

- È un framework open source per lo sviluppo di applicazioni per l'analisi del linguaggio naturale
- Fornisce un editor di sviluppo GATE Developer e una API GATE Embedded
- Le applicazione sono costituite da plugin eseguiti in cascata sui documenti
- I plugin creano delle annotazioni sui documenti
- I gazetteer sono insiemi di liste di parole che vengono annotate
- Le regole JAPE permettono di individuare pattern nelle annotazioni utilizzando espressioni regolari
- ANNIE è una pipeline che annota nel testo parole, frasi, e parti del testo (sostantivi, verbi, etc...)

- È un framework open source per lo sviluppo di applicazioni per l'analisi del linguaggio naturale
- Fornisce un editor di sviluppo GATE Developer e una API GATE Embedded
- Le applicazione sono costituite da plugin eseguiti in cascata sui documenti
- I plugin creano delle annotazioni sui documenti
- I gazetteer sono insiemi di liste di parole che vengono annotate
- Le regole JAPE permettono di individuare pattern nelle annotazioni utilizzando espressioni regolari
- ANNIE è una pipeline che annota nel testo parole, frasi, e parti del testo (sostantivi, verbi, etc...)

- È un framework open source per lo sviluppo di applicazioni per l'analisi del linguaggio naturale
- Fornisce un editor di sviluppo GATE Developer e una API GATE Embedded
- Le applicazione sono costituite da plugin eseguiti in cascata sui documenti
- I plugin creano delle annotazioni sui documenti
- I gazetteer sono insiemi di liste di parole che vengono annotate
- Le regole JAPE permettono di individuare pattern nelle annotazioni utilizzando espressioni regolari
- ANNIE è una pipeline che annota nel testo parole, frasi, e parti del testo (sostantivi, verbi, etc...)

Resource Description Framework

- Rappresentare risorse, asserzioni su di esse e relazioni tra di esse
- Le risorse sono identificate univocamente da URI
- Le asserzioni sono rappresentate da triple
 - Il soggetto deve essere un URI
 - Il predicato deve essere un URI
 - L'oggetto può essere un URI o un letterale
- Possibilità di usare blank node per i soggetti e oggetti
- Possibilità di usare la reificazione per fare asserzioni su di una asserzione

Resource Description Framework

- Rappresentare risorse, asserzioni su di esse e relazioni tra di esse
- Le risorse sono identificate univocamente da URI
- Le asserzioni sono rappresentate da triple
 - Il soggetto deve essere un URI
 - Il predicato deve essere un URI
 - L'oggetto può essere un URI o un letterale
- Possibilità di usare blank node per i soggetti e oggetti
- Possibilità di usare la reificazione per fare asserzioni su di una asserzione

Resource Description Framework

- Rappresentare risorse, asserzioni su di esse e relazioni tra di esse
- Le risorse sono identificate univocamente da URI
- Le asserzioni sono rappresentate da triple
 - Il soggetto deve essere un URI
 - Il predicato deve essere un URI
 - L'oggetto può essere un URI o un letterale
- Possibilità di usare blank node per i soggetti e oggetti
- Possibilità di usare la reificazione per fare asserzioni su di una asserzione

Resource Description Framework

- Rappresentare risorse, asserzioni su di esse e relazioni tra di esse
- Le risorse sono identificate univocamente da URI
- Le asserzioni sono rappresentate da triple
 - Il soggetto deve essere un URI
 - Il predicato deve essere un URI
 - L'oggetto può essere un URI o un letterale
- Possibilità di usare blank node per i soggetti e oggetti
- Possibilità di usare la reificazione per fare asserzioni su di una asserzione

Resource Description Framework

- Rappresentare risorse, asserzioni su di esse e relazioni tra di esse
- Le risorse sono identificate univocamente da URI
- Le asserzioni sono rappresentate da triple
 - Il soggetto deve essere un URI
 - Il predicato deve essere un URI
 - L'oggetto può essere un URI o un letterale
- Possibilità di usare blank node per i soggetti e oggetti
- Possibilità di usare la reificazione per fare asserzioni su di una asserzione

Resource Description Framework

- Rappresentare risorse, asserzioni su di esse e relazioni tra di esse
- Le risorse sono identificate univocamente da URI
- Le asserzioni sono rappresentate da triple
 - Il soggetto deve essere un URI
 - Il predicato deve essere un URI
 - L'oggetto può essere un URI o un letterale
- Possibilità di usare blank node per i soggetti e oggetti
- Possibilità di usare la reificazione per fare asserzioni su di una asserzione

Resource Description Framework

- Rappresentare risorse, asserzioni su di esse e relazioni tra di esse
- Le risorse sono identificate univocamente da URI
- Le asserzioni sono rappresentate da triple
 - Il soggetto deve essere un URI
 - Il predicato deve essere un URI
 - L'oggetto può essere un URI o un letterale
- Possibilità di usare blank node per i soggetti e oggetti
- Possibilità di usare la reificazione per fare asserzioni su di una asserzione

Resource Description Framework

- Rappresentare risorse, asserzioni su di esse e relazioni tra di esse
- Le risorse sono identificate univocamente da URI
- Le asserzioni sono rappresentate da triple
 - Il soggetto deve essere un URI
 - Il predicato deve essere un URI
 - L'oggetto può essere un URI o un letterale
- Possibilità di usare blank node per i soggetti e oggetti
- Possibilità di usare la reificazione per fare asserzioni su di una asserzione

- Estenzione semantica di RDF che fornisce un vocabolario per definire classi e proprietà
- Le risorse possono essere divise in classi, i membri delle classi sono dette istanze e vengono definite tramite rdf:type
- È possibile definire sottoclassi tramite rdfs:subClassOf
- Le proprietà sono i predicati di RDF
- È possibile definire sottoproprietà tramite rdfs:subPropertyOf
- È possibile definire un dominio di una proprietà con rdfs:domain e un'immagine con rdfs:range
- Esistono dei vocabolari per definire contenitori e collezioni

- Estenzione semantica di RDF che fornisce un vocabolario per definire classi e proprietà
- Le risorse possono essere divise in classi, i membri delle classi sono dette istanze e vengono definite tramite rdf:type
- È possibile definire sottoclassi tramite rdfs:subClassOf
- Le proprietà sono i predicati di RDF
- È possibile definire sottoproprietà tramite rdfs:subPropertyOf
- È possibile definire un dominio di una proprietà con rdfs:domain e un'immagine con rdfs:range
- Esistono dei vocabolari per definire contenitori e collezioni

- Estenzione semantica di RDF che fornisce un vocabolario per definire classi e proprietà
- Le risorse possono essere divise in classi, i membri delle classi sono dette istanze e vengono definite tramite rdf:type
- È possibile definire sottoclassi tramite rdfs:subClassOf
- Le proprietà sono i predicati di RDF
- È possibile definire sottoproprietà tramite rdfs:subPropertyOf
- È possibile definire un dominio di una proprietà con rdfs:domain e un'immagine con rdfs:range
- Esistono dei vocabolari per definire contenitori e collezioni

- Estenzione semantica di RDF che fornisce un vocabolario per definire classi e proprietà
- Le risorse possono essere divise in classi, i membri delle classi sono dette istanze e vengono definite tramite rdf:type
- È possibile definire sottoclassi tramite rdfs:subClassOf
- Le proprietà sono i predicati di RDF
- È possibile definire sottoproprietà tramite rdfs:subPropertyOf
- È possibile definire un dominio di una proprietà con rdfs:domain e un'immagine con rdfs:range
- Esistono dei vocabolari per definire contenitori e collezioni

- Estenzione semantica di RDF che fornisce un vocabolario per definire classi e proprietà
- Le risorse possono essere divise in classi, i membri delle classi sono dette istanze e vengono definite tramite rdf:type
- È possibile definire sottoclassi tramite rdfs:subClassOf
- Le proprietà sono i predicati di RDF
- È possibile definire sottoproprietà tramite rdfs:subPropertyOf
- È possibile definire un dominio di una proprietà con rdfs:domain e un'immagine con rdfs:range
- Esistono dei vocabolari per definire contenitori e collezioni

- Estenzione semantica di RDF che fornisce un vocabolario per definire classi e proprietà
- Le risorse possono essere divise in classi, i membri delle classi sono dette istanze e vengono definite tramite rdf:type
- È possibile definire sottoclassi tramite rdfs:subClassOf
- Le proprietà sono i predicati di RDF
- È possibile definire sottoproprietà tramite rdfs:subPropertyOf
- È possibile definire un dominio di una proprietà con rdfs:domain e un'immagine con rdfs:range
- Esistono dei vocabolari per definire contenitori e collezioni

- Estenzione semantica di RDF che fornisce un vocabolario per definire classi e proprietà
- Le risorse possono essere divise in classi, i membri delle classi sono dette istanze e vengono definite tramite rdf:type
- È possibile definire sottoclassi tramite rdfs:subClassOf
- Le proprietà sono i predicati di RDF
- È possibile definire sottoproprietà tramite rdfs:subPropertyOf
- È possibile definire un dominio di una proprietà con rdfs:domain e un'immagine con rdfs:range
- Esistono dei vocabolari per definire contenitori e collezioni

- Estende RDFS per creare strutture logiche
- Le strutture descritte con OWL si chiamano ontologie
- Sulle ontologie è possibile estrarre conoscenza con dei reasoner
- Esistono tre dialetti con livelli di espressività logica crescenti

- Estende RDFS per creare strutture logiche
- Le strutture descritte con OWL si chiamano ontologie
- Sulle ontologie è possibile estrarre conoscenza con dei reasoner
- Esistono tre dialetti con livelli di espressività logica crescenti

- Estende RDFS per creare strutture logiche
- Le strutture descritte con OWL si chiamano ontologie
- Sulle ontologie è possibile estrarre conoscenza con dei reasoner
- Esistono tre dialetti con livelli di espressività logica crescenti

- Estende RDFS per creare strutture logiche
- Le strutture descritte con OWL si chiamano ontologie
- Sulle ontologie è possibile estrarre conoscenza con dei reasoner
- Esistono tre dialetti con livelli di espressività logica crescenti

- È un vocabolario RDF che permette la descrizione di sistemi di organizzazione
- L'elemento fondamentale è il concept definito come istanza di skos:Concept
- Si indicano le label con: skos:prefLabel, skos:altLabel, skos:hiddenLabel
- Esistono relazioni semantiche definite con: skos:broader, skos:narrower e skos:relate
- I concept possono essere organizzati in vocabolari istanze di skos:ConceptScheme con la proprietà skos:inScheme

- È un vocabolario RDF che permette la descrizione di sistemi di organizzazione
- L'elemento fondamentale è il concept definito come istanza di skos:Concept
- Si indicano le label con: skos:prefLabel, skos:altLabel, skos:hiddenLabel
- Esistono relazioni semantiche definite con: skos:broader, skos:narrower e skos:relate
- I concept possono essere organizzati in vocabolari istanze di skos:ConceptScheme con la proprietà skos:inScheme

- È un vocabolario RDF che permette la descrizione di sistemi di organizzazione
- L'elemento fondamentale è il concept definito come istanza di skos:Concept
- Si indicano le label con: skos:prefLabel, skos:altLabel, skos:hiddenLabel
- Esistono relazioni semantiche definite con: skos:broader, skos:narrower e skos:relate
- I concept possono essere organizzati in vocabolari istanze di skos:ConceptScheme con la proprietà skos:inScheme

- È un vocabolario RDF che permette la descrizione di sistemi di organizzazione
- L'elemento fondamentale è il concept definito come istanza di skos:Concept
- Si indicano le label con: skos:prefLabel, skos:altLabel, skos:hiddenLabel
- Esistono relazioni semantiche definite con: skos:broader, skos:narrower e skos:relate
- I concept possono essere organizzati in vocabolari istanze di skos:ConceptScheme con la proprietà skos:inScheme

- È un vocabolario RDF che permette la descrizione di sistemi di organizzazione
- L'elemento fondamentale è il concept definito come istanza di skos:Concept
- Si indicano le label con: skos:prefLabel, skos:altLabel, skos:hiddenLabel
- Esistono relazioni semantiche definite con: skos:broader, skos:narrower e skos:relate
- I concept possono essere organizzati in vocabolari istanze di skos:ConceptScheme con la proprietà skos:inScheme

- È un vocabolario per definire una rete sociale con RDF
- La persona viene descritta come istanza di foaf:Person
- La proprietà foaf:name specifica il nome di una persona
- foaf:knows mette in relazione due persone
- Esistono altre proprietà per indicare altri attributi di una persona, o per identificare l'appartenenza ad un gruppo

- È un vocabolario per definire una rete sociale con RDF
- La persona viene descritta come istanza di foaf:Person
- La proprietà foaf:name specifica il nome di una persona
- foaf:knows mette in relazione due persone
- Esistono altre proprietà per indicare altri attributi di una persona, o per identificare l'appartenenza ad un gruppo

- È un vocabolario per definire una rete sociale con RDF
- La persona viene descritta come istanza di foaf:Person
- La proprietà foaf:name specifica il nome di una persona
- foaf:knows mette in relazione due persone
- Esistono altre proprietà per indicare altri attributi di una persona, o per identificare l'appartenenza ad un gruppo

7 / 7

- È un vocabolario per definire una rete sociale con RDF
- La persona viene descritta come istanza di foaf:Person
- La proprietà foaf:name specifica il nome di una persona
- foaf:knows mette in relazione due persone
- Esistono altre proprietà per indicare altri attributi di una persona, o per identificare l'appartenenza ad un gruppo

- È un vocabolario per definire una rete sociale con RDF
- La persona viene descritta come istanza di foaf:Person
- La proprietà foaf:name specifica il nome di una persona
- foaf:knows mette in relazione due persone
- Esistono altre proprietà per indicare altri attributi di una persona, o per identificare l'appartenenza ad un gruppo