问题 (1): 在本系列问题中, 我们将研究循环群的结构. 这里, 为了避免歧义, 我们统一循环群的定义: 称一个群 G 是循环群当且仅当存在 $g \in G$, 使得任取 $g' \in G$, 都存在 $n \in \mathbb{Z}$ 使得 $g' = g^n$.

问题 (1.1): 对群 G, 请证明 下列条件等价:

- (1) G 是循环群.
- (2) 存在满同态 $\phi: \mathbb{Z} \to G$.

问题 (1.2):<u>请证明</u>: 对整数加法群 \mathbb{Z} , 若 H 是 \mathbb{Z} 的子群, 则存在 $n \in \mathbb{Z}$, 使得 $H = n\mathbb{Z}$. 问题 (1.3):请证明 如下事实成立:

- (1) 若 G 是无限循环群, 则 $G \cong \mathbb{Z}$.
- (2) 若 G 是有限循环群, |G| = n, 则 $G \cong \mathbb{Z}/n\mathbb{Z}$.

问题 (1.4):请证明: 若 G 是循环群, 则 G 的子群和商群也是循环群.

问题 (2): 在本系列问题中, 我们将研究交换群范畴中的内射对象 (injective objective).

问题 (2.1): 对于交换群 A, 若对于任意交换群 G, H 是 G 的子群, 以及态射 $\phi: H \to A$, 都存在态射 $\widetilde{\phi}: G \to A$, 使得 $\widetilde{\phi}|_{H} = \phi$, 则我们称 A 是内射的.<u>请证明</u>: 若 A 是内射的,则 A 满足如下性质:

对任意的 $a \in A$ 以及 $n \in \mathbb{Z}$, 都存在 $a' \in A$, 使得 $(a')^n = a$.

特别地, 我们称满足如上性质的交换群是可除的.

问题 (2.2): 对于可除的交换群 A, 以及交换群 G 和 G 的子群 H, 若 G/H 是循环群, 请证明: 对于态射 $\phi: H \to A$, 存在态射 $\widetilde{\phi}: G \to A$, 使得 $\widetilde{\phi}|_{H} = \phi$.

问题 (2.3):请证明: 若交换群 A 是可除的,则 A 是内射的.

提示: 利用 Zorn 引理.(对偏序集 S, 对 $s_0 \in S$, 若任取 $s \in S$, 每当 $s \geq s_0$, 都有 $s = s_0$, 则称 s_0 是 S 中的一个极大元. 对全序集合 I, 考虑保序的 $f: I \to S$, 即当 $i \leq j$, 总有 $f(i) \leq f(j)$, 则我们称 f 为 S 中的一个链. Zorn 引理的陈述如下: 若 S 中的每一条链都存在上界, 即对链 $f: I \to S$, 都存在 $s \in S$ 使得 $f(i) \leq s$ 对所有 $i \in I$ 成立, 则 S 中存在极大元.)

问题 (2.4):请证明: \mathbb{Q} 和 \mathbb{Q}/\mathbb{Z} 是内射的.

问题 (2.5):<u>请证明</u>: 若 $\{A_i\}_{i\in I}$ 是一族内射的交换群, 则其乘积 $\prod_{i\in I} A_i$ 也是内射的. 这里 $\prod_{i\in I} A_i$ 中的元素是映射 $f: I \to \bigsqcup_{i\in I} A_i$, 其中 $f(i) \in A_i$ (当 $a_i = f(i)$, 通常用 $(a_i)_{i\in I}$ 表示 f), 其上的运算是 $(a_i)_{i\in I}(a_i')_{i\in I} = (a_ia_i')_{i\in I}$.

问题 (2.6):<u>请证明</u>: 若 G 是交换群,则存在内射的交换群 A,使得 G 可以嵌入 A,即存在单态射 $\phi: G \to A$.

提示: 你可以首先证明, 任取 $g \in G$, 存在态射 $\phi_q : G \to \mathbb{Q}/\mathbb{Z}$, 使得 $\phi_q(g) \neq 0$.

问题 (3): 本系列问题中, 我们将介绍 GL_n 的 Bruhat 分解以及一些相关的事实.

问题 (3.1): 记 $T_n(K)$ 是 $GL_n(K)$ 中所有对角矩阵的集合 (即只有主对角线元素非零的矩阵的集合). <u>请证明</u>: 存在态射 $\phi: B_n(K) \to T_n(K)$, 使得 $\phi|_{T_n(K)} = Id$ 且 $Ker(\phi) = U_n(K)$.

问题 (3.2): 记 $w = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, <u>请证明</u>: $\mathrm{GL}_2(K)$ 关于 $\mathrm{B}_2(K) - \mathrm{B}_2(K)$ 的双陪集分解是:

$$GL_2(K) = B_2(K) \sqcup B_2(K)wB_2(K).$$

问题 (3.3): 记 $G = GL_2(K)$, $B = B_2(K)$, 进一步地, 记 $N_G(B) = \{g \in G : gBg^{-1} = B\}$, 请证明: $N_G(B) = B$.

问题 (3.4): 记 $U = U_2(K)$, 请证明 如下事实:

- (1) $U \times B \to BwB, (u, b) \mapsto uwb$ 是双射.
- (2) $B \times U \to BwB, (b, u) \mapsto bwu$ 是双射.

问题 (3.5):请证明: $N_G(U) = B$.

问题 (3.6): 如果你熟悉线性代数的话, 对 $\sigma \in S_n$, 记 $w_{\sigma} = (\delta_{i\sigma(j)})$, <u>请证明</u>: $\mathrm{GL}_n(K) = \bigcup \mathrm{B}_n(K) w_{\sigma} \mathrm{B}_n(K)$.

问题 (3.7): 对 $\sigma \in S_n$, 请证明 如下事实:

- (1) $U_n(K) \times B_n(K) \to B_n(K) w_\sigma B_n(K), (u, b) \mapsto uwb$ 是满射.
- (2) $B_n(K) \times U_n(K) \to B_n(K) w_{\sigma} B_n(K), (b, u) \mapsto bwu$ 是满射.

问题 (3.8): <u>请证明</u>: $N_{GL_n(K)}(B_n(K)) = B_n(K)$ 且 $N_{GL_n(K)}(U_n(K)) = B_n(K)$.

问题 (4): 本题中, 我们将介绍 GL_n 的极大环面以及一些相关的事实.

问题 (4.1): 记 $G = GL_n(K), T = T_n(K),$ 进一步地, 我们记:

$$C_G(T) = \{g \in G : gt = tg$$
对所有 $t \in T$ 成立 $\}$,

请证明: $C_G(T) = T$.

问题 (4.2): 对 G 的子群 S, 若其满足以下三个条件:

- (1) S 是交换群.
- (2) 任取 $s \in S$, 都有 s 是可对角化. 即存在 $g \in G$, 使得 $gsg^{-1} \in T$.
- (3) 存在 $d \in \mathbb{Z}_{\geq 1}$, 使得存在同构 $S \cong (K^{\times})^d$.

则我们称 $S \in G$ 中的一个 (代数) 环面.请证明: $T \in G$ 中一个极大的环面.

说明: 对于代数群 S, 若 $S_{K^{sep}} \cong \mathbb{G}_m^d$, 则称 S 是一个 (代数) 环面. 可以证明, 我们在 (4.2) 中对环面的定义在 K 是代数闭域时, 譬如 $K = \mathbb{C}$ 时, 与一般的环面的定义等价的.

问题 (4.3): 对于 $t \in T$, 若 $t = \operatorname{diag}(\lambda_1, \lambda_1, \dots, \lambda_1, \lambda_2, \dots, \lambda_r)$, 即 t 是对角线元素分别为 $\lambda_1, \dots, \lambda_r$ 的对角矩阵, 其中每个 λ_i 都连续出现 n_i 次, <u>请证明</u>: 对 $g \in G$, 若 gt = tg, 则 g 具有如下的形式:

$$g = \begin{pmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & & \cdots & \vdots \\ 0 & 0 & \cdots & A_r \end{pmatrix},$$

其中 $A_i \in GL_{n_i}(K)$.

问题 (4.4): 对于 $t \in T$, $t = \operatorname{diag}(t_1, \ldots, t_n)$. 当 $\sigma \in S$, 记 $w_{\sigma} = (\delta_{i\sigma(j)})$, <u>请证明</u>: $w_{\sigma}^{-1}tw_{\sigma} = \operatorname{diag}(t_{\sigma(1)}, \ldots, t_{\sigma(n)})$.

问题 (4.5): 对 $g \in G$, 记:

$$C_G(g) = \{ g' \in G : g'g = gg' \},$$

请证明: 若 $C_G(g) = G$, 则 $g \in K^{\times}I_n$.

问题 (4.6): 若 $A \in G$ 的交换子群, $a \in A$, <u>请证明</u>: 若 $C_G(a) \neq G$, 且 a 可对角化, 则存在 $g \in G$, 使得 $gAg^{-1} \subset \prod_{i=1}^{r} A_i$, 其中 $A_i \in GL_{n_i}(K)$ 的子群, 且 $n_i < n$.

问题 (4.7):请证明: 若 $\stackrel{\circ}{A}$ 是 G 的交换子群, 且 A 中的所有元素都可对角化, 则存在 $q \in G$, 使得 $qAq^{-1} \subset T$.

问题 (4.8):<u>请证明</u>: 若 $S \in G$ 的 (代数) 环面, 则存在 $g \in G$, 使得 $gSg^{-1} \subset T$. 进一步地, 请证明 下列条件等价:

- (1) T' 是 G 的极大 (代数) 环面.
- (2) 存在 $g \in G$, 使得 $T' = gTg^{-1}$.

问题 (5): 本节中, 我们将研究可上三角化的矩阵, 以及一些相关的问题.

问题 (5.1): 对 $g \in GL_n(\mathbb{C})$, 若存在 $g' \in GL_n(\mathbb{C})$, 使得 $g'gg'^{-1} \in B_n(\mathbb{C})$, 则称 g 是可上三角化的. 请证明: $GL_n(\mathbb{C})$ 中的所有元素都是可三角化的, 即 $GL_n(\mathbb{C}) = \bigcup_{g \in G} gB_n(\mathbb{C})g^{-1}$. 提示: 在本题中, 你可以直接使用如下线性代数的事实: 对 $g \in GL_n(\mathbb{C})$, 存在 $g' \in GL_n(\mathbb{C})$, 使得 $g'gg'^{-1}$ 具有如下的形式:

$$\begin{pmatrix} \lambda_1 & * \\ 0 & g_{n-1} \end{pmatrix},$$

其中 $\lambda_1 \in \mathbb{C}$, 而 $g_{n-1} \in \mathrm{GL}_{n-1}(\mathbb{C})$. 上述事实的线性代数含义是: 代数闭域上任意矩阵都至少存在一个特征值.

问题 (5.2): 对群 G 及其子群 H, <u>请证明</u>: 对 $g,g' \in G$, 若 gH = g'H, 则 $gHg^{-1} = g'Hg'^{-1}$. 问题 (5.3): 对有限群 G 及其子群 H, <u>请证明</u>: $G \neq \bigcup_{g \in G} gHg^{-1}$.

问题 (5.4): 对 $g \in GL_2(K)$, 记 $f_g(t) = \det(tI - g)$, <u>请证明</u>: $f_g(t)$ 是只依赖于 g 所在共轭类的多项式. 即对 $g' \in GL_2(K)$, 有 $f_g(t) = f_{g'gg'^{-1}}(t)$.

问题 (5.5): 由 (5.3), 则 $\mathrm{GL}_2(\mathbb{F}_p) \neq \bigcup_{g \in \mathrm{GL}_2(\mathbb{F}_p)} g \mathrm{B}_2(\mathbb{F}_p) g^{-1}$. 即 $\mathrm{GL}_2(\mathbb{F}_p)$ 中的矩阵并不是全部都可以上三角化. <u>请具体写出</u> $\mathrm{GL}_2(\mathbb{F}_p)$ 中的一个不可上三角化的元素.