

CLAIMS

What is claimed is.

1 1. A process comprising:
2 forming a stiffener upon a first substrate, wherein the first substrate includes a top
3 section and a bottom section, wherein the stiffener is disposed against the top section;
4 contacting the stiffener with a polymer film that is disposed upon a second
5 substrate; and
6 delaminating the bottom section.

1 2. The process according to claim 1, wherein contacting the stiffener with a polymer
2 film includes:
3 forming the polymer film on the second substrate; and
4 contacting the polymer film against the stiffener under conditions to cause a
5 greater adhesion force between the polymer film and the stiffener than between the top
6 section and the bottom section.

1 3. The process according to claim 1, wherein forming a stiffener includes:
2 depositing an oxide on the top section of the first substrate, wherein the stiffener
3 has a roughness that greater than or equal to prime grade polish.

1 4. The process according to claim 1, wherein delaminating the bottom section
2 includes:

3 forming an embrittlement zone in the substrate to form the top section and the
4 bottom section; and

5 heating under conditions to separate the bottom section from the top section.

1 5. The process according to claim 1, wherein delaminating the bottom section
2 includes: forming an embrittlement zone in the substrate to form the top section and the bottom
3 section; and

4 heating under conditions to separate the bottom section from the top section.

1 6. The process according to claim 1, further including:
2 contacting the top section with a third substrate; and
3 delaminating the second substrate.

1 7. The process according to claim 1, further including:
2 contacting the top section with a third substrate; and
3 delaminating the second substrate, wherein delaminating the second substrate
4 includes attenuating the polymer film, selected from back-side access through the second
5 substrate and lateral access between the second substrate and the third substrate, and the
6 combination thereof.

1 8. The process according to claim 1, wherein delaminating the bottom section
2 exposes a fracture surface, further including:
3 forming a first dielectric layer upon the fracture surface;

contacting the fracture surface with a dielectric layer on a third substrate; and delaminating the second substrate.

9. The process according to claim 1, wherein delaminating the bottom section exposes a fracture surface, further including:

forming a first dielectric layer upon the fracture surface;

contacting the top section underside with a dielectric layer on a third substrate;

and

delaminating the second substrate, wherein delaminating the second substrate includes attenuating the polymer film, selected from back-side access through the second substrate and lateral access between the second substrate and the third substrate, and the combination thereof.

10. A process of forming a bonded epitaxial film device comprising:

forming an active device upon a top section of a first substrate;

forming a stiffener upon the top section of the first substrate, wherein the first

substrate includes a bottom section;

contacting the stiffener with a polymer film that is disposed upon a second

substrate;

delaminating the bottom section from the top section along a fracture surface;

forming a first dielectric layer upon the fracture surface;

contacting the first dielectric layer with a dielectric layer on a third substrate; and

delaminating the second substrate.

1 11. The process according to claim 10, after forming an active device and before
2 forming a stiffener , further including:

3 defining the top section from the bottom section by forming an embrittlement
4 zone therebetween.

1 12. The process according to claim 10, after forming an active device and before
2 forming a stiffener , further including:

3 implanting ions into the substrate to form an embrittlement zone and thereby
4 defining the top section from the bottom section.

1 13. The process according to claim 10, before contacting the stiffener with a polymer
2 film, further including:

3 forming a polymer film on the second substrate, wherein the polymer film is
4 selected from poly(arylene ether) (PAE), poly(arylene ether ether ketone) (PAEEK),
5 poly(arylene ether ether acetylene) (PAEEA), poly(arylene ether ether acetylene ether
6 ether ketone) (PAEEAEEK), poly(arylene ether ether acetylene ketone) (PAEEAK),
7 poly(naphthylene ether) (PNE), and combinations thereof.

1 14. The process according to claim 10, before contacting the stiffener with a polymer
2 film, further including:

3 forming a polymer film on the second substrate, wherein the polymer film is
4 selected from homopolymers, block copolymers, graft copolymers, polymer blends,
5 interpenetrating polymer networks (IPNs), and semi-interpenetrating polymer networks

6 (SIPNs), wherein forming a polymer film includes dissolving the polymer in a solvent
7 selected from alcohols, ketones, ethers, and combinations thereof.

1 15. The process according to claim 10, wherein forming a stiffener includes:
2 depositing an oxide on the top section of the first substrate, wherein the stiffener
3 has a roughness that greater than or equal to prime grade polish.

1 16. The process according to claim 10, wherein delaminating the bottom section from
2 the top section includes:
3 heating under conditions to cause a first delamination stress in the embrittlement
4 zone, wherein the first delamination stress is greater than a second delamination stress
5 that exists between the polymer film and the stiffener.

1 17. The process according to claim 10, wherein forming a first oxide layer upon the
2 fracture surface includes:
3 forming a first dielectric layer on the fracture surface by a process selected from
4 thermal oxide growth, thermal nitride growth, thermal carbide growth, thermal oxide
5 growth followed by carbon doping, oxide chemical vapor deposition, nitride chemical
6 vapor deposition, carbide chemical vapor deposition, carbon-doped oxide chemical vapor
7 deposition, and combinations thereof.

1 18. The process according to claim 10, before contacting the fracture surface with a
2 dielectric layer on a third substrate further including:

3 forming the dielectric layer on the third substrate, by a process selected from
4 thermal oxide growth, thermal nitride growth, thermal carbide growth, thermal oxide
5 growth followed by carbon doping, oxide chemical vapor deposition, nitride chemical
6 vapor deposition, carbide chemical vapor deposition, carbon-doped oxide chemical vapor
7 deposition, and combinations thereof.

1 19. The process according to claim 10, before contacting the fracture surface with a
2 dielectric layer on a third substrate further including:

3 forming the oxide layer on the third substrate, wherein the dielectric layer on the
4 third substrate and the first dielectric layer are substantially identical oxides selected from
5 silica, alumina, ceria, thoria, zirconia, hafnia, titania, and combinations thereof.

1 20. A process comprising:

2 providing a first wafer including a top section and a bottom section and a stiffener
3 disposed against the top section;

4 providing an intermediate substrate including a first side and a second side and a
5 polymer film disposed on the first side;

6 applying the polymer film to the stiffener;

7 treating the polymer film under conditions that cause the polymer to reflow
8 against the stiffener and to outgas; and

9 delaminating the bottom section.

- 1 21. The process according to claim 20, further including:
2 debonding the polymer from the stiffener by a process selected from lateral
3 isotropic etching and wet isotropic etching through back-side access through the
4 intermediate substrate.
- 1 22. The process according to claim 20, further including:
2 debonding the polymer from the stiffener by a process selected from lateral
3 isotropic etching and isotropic etching through back-side access through the intermediate
4 substrate, wherein the etching is selected from a wet etch and a dry etch, and wherein the
5 etch chemistry is selected from a wet etch and an oxygen plasma etch.
- 1 23. The process according to claim 20 following delaminating the bottom section,
2 further including:
3 forming a second top section and a second bottom section in the bottom section;
4 applying a second stiffener to the second top section;
5 providing an intermediate substrate including a first side and a second side and a
6 polymer film disposed on the first side;
7 applying the polymer film to the second stiffener; and
8 delaminating the second bottom section.
- 1 24. An article of manufacture comprising:
2 a first substrate active layer, wherein the first substrate active layer includes an
3 upper surface and a fracture surface that is disposed opposite the upper surface;

4 a first dielectric layer disposed on the fracture surface;
5 a stiffener disposed on the upper surface;
6 a transfer substrate disposed against the first dielectric layer, wherein the transfer
7 substrate includes a transfer substrate dielectric layer.

1 25. The article according to claim 24, wherein the stiffener has a microsurface
2 roughness that is greater than or equal to about 10 nm.

1 26. The article according to claim 24, wherein the first active substrate includes a gate
2 stack that extends into the stiffener.

1 27. The article according to claim 24, further including:
2 a polymer film disposed against the stiffener, wherein the polymer film has a
3 glass transition temperature above about 200° C.

1 28. The article according to claim 24, further including:
2 a polymer film disposed against the stiffener, wherein the polymer film is selected
3 from poly(arylene ether) (PAE), poly(arylene ether ether ketone) (PAEEK), poly(arylene
4 ether ether acetylene) (PAEEA), poly(arylene ether ether acetylene ether ether ketone)
5 (PAEEAEEK), poly(arylene ether ether acetylene ketone) (PAEEAK), poly(naphthylene
6 ether) (PNE), and combinations thereof.

1 29. The article according to claim 24, wherein the first substrate active layer, the first
2 dielectric layer, the stiffener, and the transfer substrate comprise a bonded, bottom silicon-film
3 device and further including:

4 a bonded, upper silicon-film device disposed above the bonded, bottom silicon-
5 film device.

1 30. The article according to claim 29, further including:

2 at least one bonded silicon-film device disposed above the bonded, bottom
3 silicon-film device, and wherein the upper silicon-film device is disposed above the at
4 least one bonded silicon-film device.