

**FIGURE 9** This graph shows the plot of the volume versus the Kelvin temperature data of a sample of gas at constant pressure.

Gas volume and Kelvin temperature are directly proportional to each other at constant pressure as shown in **Figure 9.** 

The relationship between Kelvin temperature and gas volume is known as Charles's law. **Charles's law** states that the volume of a fixed mass of gas at constant pressure varies directly with the Kelvin temperature. Charles's law may be expressed as follows:

$$V = kT$$
 or  $\frac{V}{T} = k$ 

The value of T is the Kelvin temperature, and k is a constant. The ratio V/T for any set of volume-temperature values always equals the same k. The form of Charles's law that can be applied directly to most volume-temperature problems involving gases is as follows:

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

 $V_1$  and  $T_1$  represent initial conditions.  $V_2$  and  $T_2$  represent a different set of conditions. When three of the four values  $T_1$ ,  $V_1$ ,  $T_2$ , and  $V_2$  are known, you can use this equation to calculate the fourth value for a system at constant pressure.

## **SAMPLE PROBLEM D**

For more help, go to the *Math Tutor* at the end of this chapter.

A sample of neon gas occupies a volume of 752 mL at 25°C. What volume will the gas occupy at 50°C if the pressure remains constant?

## **SOLUTION**

1 ANALYZE

**Given:**  $V_1$  of Ne = 752 mL;  $T_1$  of Ne = 25°C + 273 = 298 K;  $T_2$  of Ne = 50°C + 273 = 323 K **Unknown:**  $V_2$  of Ne in mL

**2** PLAN

Because the gas remains at constant pressure, an increase in temperature will cause an increase in volume. To obtain  $V_2$ , rearrange the equation for Charles's law.

**3** COMPUTE

Substitute values for  $V_1$ ,  $T_1$ , and  $T_2$  to obtain the new volume,  $V_2$ .

$$V_2 = \frac{V_1 T_2}{T_1} = \frac{(752 \text{ mL Ne})(323 \text{ K})}{298 \text{ K}} = 815 \text{ mL Ne}$$

**4** EVALUATE

As expected, the volume of the gas increases as the temperature increases. Units cancel to yield milliliters, as desired. The answer contains the appropriate number of significant figures.

## **PRACTICE**

Answers in Appendix E

- **1.** A sample of neon gas has a volume of 752 mL at 25.0°C. What will the volume at 100.0°C be if pressure is constant?
- 2. A sample of nitrogen gas is contained in a piston with a freely moving cylinder. At 0.0°C, the volume of the gas is 375 mL. To what temperature must the gas be heated to occupy a volume of 500.0 mL?

Go to **go.hrw.com** for more practice problems that ask you to use Charles's law.

