$n_1 n_2 \cdots n_r$

there are

choices for $(x_1, ..., x_r)$.

p. 2-7

Binomial coefficients

$$\binom{n}{r} = \frac{n!}{r!(n-r)!} = (n)_r$$

▶ The Binomial Theorem: For all $-\infty < x, y < \infty$

$$\underbrace{(x+y)^n}_{r=0} = \sum_{r=0}^n \binom{n}{r} \underline{x^r y^{n-r}}_{r}.$$

$$(x+y)^n = (x+y) \times \cdots \times (x+y).$$

■ Proof. If

$$(x+y)^n = (x+y) \times \cdots \times (x+y)$$

is expanded, then x^ry^{n-r} will appear as often as x can be chosen from r of the n factors; i,e., in $\binom{n}{r}$ ways

■ Example. When
$$\underline{n=3}$$
, $(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$.

► Binomial identities

Example: how many subsets are there of a set consisting of *n* elements?

• Letting $\underline{x}=-1$ and $\underline{y}=1$, we get $\mathbf{O} = \sum_{r=0}^{n} \binom{n}{r} \binom{-1}{r}$

>A useful identity:

$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$$

contain $2: \binom{n-1}{r-1}$ not contain (n-1)

Partitions

Example: How many distinct arrangements formed from the letters

M I, S, S₂I₂S₃S₄I₃P₁P₂I₄?

list

partitions There are 11 letters which can be arranged in 11! Ways different But, this leads to double counting. If the 4 "S" are permuted, 4 "S" treated

then nothing is changed. Similarly, for the 4 "I"s and 2 "P"s.

Each configuration of letters counted

$$4! \times 4! \times 2! = 1,152$$

times and the answer is $\frac{11!}{4!4!2!} = 34,650$.

combination

alize

identical"

where $Z_1, ..., Z_r$ are mutually exclusive subsets of Z whose union is Z; i.e., combination