Privatezza e Protezione dei Dati - Papers

Alessandro Marchetti

2024

0.1 Introduction

Chapter 1

k-anonimity

1.1 Introduzione

Contesto è il rilascio di *microdata*. De-identificazione non garantisce anonimità.

1.2 k-anonimity e Table k-anonime

Il concetto di k-anonimity cerca di catturare sulla Private Table (PT) il vincolo che i dati rilasciati dovrebbero essere associabili in maniera indistinguibile a non meno di un certo numero di respondent.

Il set di attributi disponibili esternamente e quindi sfruttabili per fare linking è chiamato quasi-identifier.

Definizione 1 (k-anonimity requirement)

Ogni rilascio di data deve essere tale che ogni combinazione di valori del Quasi-Identifier può essere matchata in maniera indistinguibile con almeno k respondent

Definizione 2 (k-anonimity)

Date una table $T(A_1, A_2, ...A_m)$ e un insieme di attributi QI, Quasi-Identifier sulla table T:

T soddisfa k-anonimity rispetto a QI se e solo se ogni sequenza di valori in T[QI] appare almeno con k occorrenze in $T[QI]^1$

Definizione $\ref{eq:continuous}$ è sufficiente per k-anonimity. Applicazione di k-anonimity richiede una preliminare identificazione del Quasi-Identifier.

 $^{^{1}}T[QI]$ denota la proiezione con tuple duplicate degli attributi QI in T

Il *Quasi-Identifier* dipende dalle informazioni esterne disponibili al recipiente poichè determina le capacità di linking dello stesso. Diversi *Quasi-Identifier* possono potenzialmente esistere per una data table.

Per semplicità a seguire nel paper si assume che:

- PT ha unico Quasi-Identifier.
- Quasi-Identifier è composto da tutti gli attributi nella PT disponibili esternamente.
- PT contiene al massimo una sola tupla per ogni respondent.

k-anonimity si concentra su due tecniche di protezione: Generalization e Suppression, le quali preservano la veridicità dei dati (diversamente da swapping e scrambling).

1.2.1 Generalization

Sostituzione dei valori di un attributo con valori più generali. Consideriamo:

- Domain: set di valori che un attributo può assumere.
- Generalized domains: contiene valori generalizzati e relativo mapping tra ogni domain e ogni sua generalizzazione.
- Dom: set di domini originali con le loro generalizzazioni.
- Generalization relationship \leq_D : dati D_i , $D_j \in Dom$, $D_i \leq D_j$ significa che i valori in D_j sono generalizzazioni dei valori in D_i .

 \leq_D definisce ordinamento parziale su \mathtt{Dom} ed è richiesto nelle seguenti condizioni:

Condizione 1 (C1 - Determinismo nel processo di generalizzazione) $\forall D_i, D_j, D_z$ Dom:

$$D_i \leq_D D_j, D_i \leq_D D_z \implies D_j \leq_D D_z \vee D_z \leq_D D_j^2.$$

Condizione 2 (C2 -)

Tutti gli elementi massimali di Dom sono singleton ³.

• \mathbf{DGH}_D - Domain Generalization Hierarchy: gerarchia di ordninamento totale per ogni dominio $D \in \mathtt{Dom}$.

Per quanto riguarda i valori nei domini consideriamo:

 $^{^2}$ Questo comporta che ogni dominio D_i ha al massimo un solo dominio di generalizzazione diretta D_i

 $^{^3\}mathrm{La}$ condizione assicura che tutti i valori in ogni dominio possano essere generalizzati ad un singolo valore

- Value generalization relationship \leq_V : associa ogni valore in D_i ad un unico valore in D_j , sua generalizzazione.
- VGH_D Value Generalization Hierarchy: albero dove
 - Foglie sono valori in D.
 - Radice è il valore, singolo, nell'elemento massimale di DGH_D

1.2.2 Suppression

Consideriamo Soppressione di Tupla. "Modera" la Generalization quando un numero limitato di $outlier^4$ forzerebbe una generalizzazione elevata.

1.3 Generalizzazione k-Minima

Definizione 3 (Table Generalizzata con Soppressione)

Consideriamo T_i e T_j due table sugli stessi attributi. T_j è generalizzazione (con soppressione di tupla) di T_i , riportata come $T_i \leq T_j$,

- 1. $|T_j| \leq |T_i|$
- 2. Dominio $dom(A, T_j)$ è uguale o una generalizzazione di $dom(A, T_i)$, dove A indica ogni attributo in $T_{i,j}$
- 3. E' possibile definire funzione iniettiva che associa ogni tupla $t_j \in T_j$ con una tupla $t_i \in T_i$, per la quale ogni attributo in t_j è uguale o generalizzazione del corrispondente in t_i .

Definizione 4 (Distance Vector)

Siano $T_i(A_1, ..., A_n)$ e $T_j(A_1, ..., A_n)$ tali che $T_i \leq T_j$.

il distance vector di T_j da T_i è il vettore $DV_{i,j} = [d_1, ..., d_n]$ dono comi di x = 1 n à la lumphorza dell'amica persone tra

dove ogni $d_z, z=1,...,n$ è la lunghezza dell'unico percorso tra $dom(A_z,T_i)$ e $dom(A_z,T_j)$ nella DGH_{D_z}

Corollario 1 (Ordine Parziale tra DV)

$$DV \, = \, [d_1, \, ..., \, d_n] \, \leq \, DV' \, = \, [d_1', \, ..., \, d_n'] \, \, \text{se e solo se } d_i \, \leq d_i' \, \, \text{per } i = 1, \, ..., \, n.$$

Si costruisce una gerarchia di distance vectors come lattice (diagramma) corrispondente alla DGH_D come in fig. ??

⁴TODO outlier

Figure 1.1

Per bilanciare tra perdita di precisione dovuta a *Generalization* e perdita di completezza dovuta a *Suppression* si suppone che data holder determini la soglia MaxSup, che indica il numero di tuple che possono essere soppresse.

Definizione 5 (Generalizzazione k-minima con Soppressione)

Siano T_i e T_j due table tali che $T_i \leq T_j$, e sia MaxSup la soglia di soppressione accettabile scelt. T_j è una generalizzazione k-minima di T_i se e solo se:

- 1. T_j soddisfa k-anonimity applicando soppressione minima, ossia T_j soddisfa k-anonimity $e: \forall T_z: T_i \leq T_z, \ DV_{i,z} = DV_{i,j}, \ T_z$ soddisfa k-anonimity $\Longrightarrow |T_j| \geq |T_z|$.
- 2. $|T_i| |T_j| \leq MaxSup$.
- 3. $\forall T_z : T_i \leq T_z \ e \ T_z \ soddisfa \ le \ condizioni \ 1 \ e \ 2 \implies \neg (DV_{i,z} < DV_{i,j}).$

Ultima espressione rende meglio come $DV_{i,z} \geq DV_{i,j}$. Il concetto che esprime è che "non esiste un'altra Generalization T_z che soddisfi 1 e 2 con un DV minore di quello di T_j "

Diversi **preference criteria** possono essere applicati nella scelta della generalizzazione minimale preferita:

- **Distanza assoluta minima**: minor numero totale di passi di generalizzazione (indipendentemente dalle gerarchie di *Generalization* considerate).
- Distanza relativa minima: minimizza il numero relativo di passi di generalizzazione (passo relativo ottenuto dividendo per l'altezza del dominio della gerarchia a cui si riferisce.
- Massima distribuzione: maggior numero di tuple distinte.
- Minima soppressione: minor tuple soppresse (maggior cardinalità).

1.4 Classificazione tecniche di k-anonimity

Classificazione in fig. ??.

	Suppression			
Generalization	Tuple	Attribute	Cell	None
Attribute	$AG_{-}TS$	$\mathbf{AG}_{-}\mathbf{AS}$	$\overline{\mathbf{AG}_{-}\mathbf{CS}}$	\mathbf{AG}_{-}
		$\equiv AG_{-}$		$\equiv AG_{-}AS$
Cell	$CG_{-}TS$	$\mathbf{CG}_{-}\mathbf{AS}$	$\overline{\mathbf{CG}_{-}\mathbf{CS}}$	\mathbf{CG}_{-}
	not applicable	not applicable	$\equiv \text{CG}_{-}$	$\equiv \text{CG_CS}$
None	_TS	$_{-}\mathbf{AS}$	_CS	-
				not interesting

Fig. 8. Classification of k-anonymity techniques

Figure 1.2

Casi not applicable (CG_TS e CG_AS): supportare Generalization a grana fine (cella) implica poter applicare soppressione allo stesso livello.

Algorithm	Model	Algorithm's type	Time complexity
Samarati [26]	AG_TS	Exact	exponential in $ QI $
Sweeney [29]	$AG_{-}TS$	Exact	exponential in $ QI $
Bayardo-Agrawal [5]	$AG_{-}TS$	Exact	exponential in $ QI $
LeFevre-et-al. [20]	AG_TS	Exact	exponential in $ QI $
Aggarwal-et-al. [2]	$_{ m CS}$	O(k)-Approximation	$O(kn^2)$
Meyerson-Williams [24] ²	$_{\text{-CS}}$	$O(k \log k)$ -Approximation	$O(n^{2k})$
Aggarwal-et-al. [3]	CG_{-}	O(k)-Approximation	$O(kn^2)$
Iyengar [18]	AG_TS	Heuristic	limited number of iterations
Winkler [33]	$AG_{-}TS$	Heuristic	limited number of iterations
Fung-Wang-Yu [12]	AG_{-}	Heuristic	limited number of iterations

Figure 1.3: Alcuni approcci a k-anonimity(n è numero di tuple in PT).

1.5 Algoritmo Samarati (AG'TS)

Il primo algoritmo per garantire k-anonimity è stato proposto insieme alla definizione di k-anonimity. La definizione di k-anonimity è basata sul QI quindi l'algoritmo lavora solo su questo set di attributi e su table con più di k tuple.

Data una DGH ci sono diversi percorsi dall'elemento in fondo alla gerarchia alla radice. Ogni percorso è una differente strategia di generalizzazione. Su ogni percorso c'è esattamente una Generalization minima localmente (nodo più basso che garantisce k-anonimity).

In maniera naif si può cercare su ogni percorso il minimo locale per poi trovare il minimo globale tra questi ma non è praticabile per l'elevato numero di percorsi.

Per ottimizzare la ricerca si sfrutta la proprietà che salendo nella gerarchia la soppressione richiesta per avere k-anonimity diminuisce:

- Ogni nodo in *DGH* viene associato ad un numero, **height**, corrispondente alla somma degli elementi nel Distance Vector associato.
- Altezza di ogni DV nel diagramma (distance vector lattice VL) si scrive come height(DV,VL).

Se non c'è soluzione che soddisfi k-anonimity sopprimendo meno di MaxSup ad altezza k non può esistere soluzione che soddisfi ad una altezza minore.

L'algoritmo usa binary search cercando la minore altezza in cui esiste un DV che soddisfa k-anonimity rispettando MaxSup e ha come primo passo:

Cerco ad altezza
$$\lfloor \frac{h}{2} \rfloor$$
: $\begin{cases} \text{trovo vettore che soddisfa } k\text{-anonimity} \implies \lfloor \frac{h}{4} \rfloor \\ \text{altrimenti} \implies \text{cerco in } \lfloor \frac{3h}{4} \rfloor \end{cases}$ (1.1)

La ricerca prosegue fino a trovare l'altezza minore in cui esiste vettore che soddisfa k-anonimity con MaxSup.

1.5.1 Evitare il calcolo delle table generalizzate

Algoritmo richiederebbe il calcolo di tutte le table generalizzate. Per evitarlo introduciamo il concetto di DV tra tuple.

Definizione 6 (Distance Vector tra tuple - Antenato Comune)

Sia T una table.

Siano $x,y \in T$ due tuple tali che $x = \langle v_1', ..., v_n' \rangle$ e $y = \langle v_1'', ..., v_n'' \rangle$ con v_i' e v_i'' valori in D_i con i = 1, ..., n.

Il distance vector tra x e y è $V_{x,y} = [d_1, ..., d_n]$. dove d_i è la lunghezza (uguale) dei due percorsi da v'_i e v''_i al loro comune antenato comune più prossimo v_i sulla VGH_{D_i} .

In altri termini ogni distanza in $V_{x,y}$ è una distanza uguale dal dominio di v_i' e v_i'' al dominio in cui sono generalizzati allo stesso valore v_i .

Allo stesso modo $V_{x,y}$ per $x,y \in T_i$ equivale a $DV_{i,j}$ per $T_i \leq T_j$ per cui $x \in y$ vengono generalizzate alla stessa tupla t.

Per il momento il resto è delirio

1.6 Bayardo-Agrawal: k-Optimize (AG'TS)

Approccio considera che la generalizzazione di attributo A su dominio **ordinato** D corrisponde ad un partizionamento del dominio dell'attributo in intervalli.

1.7 Incognito

report graphicx [italian] babel tikz hyperref amsmath x color darkgreenrgb0.0, 0.5, 0.0 Cloud Security: Issues and Concerns paper

Contents

1.8 Summary

Il presente paper si pone l'obiettivo di spiegare come il garantire la sicurezza significa anche assicurare la confidenzialità, integrità dei dati e anche la loro disponibilità, CIA in una parola.

1.9 Introduzione

Nella prima parte

1.10 CIA nel Cloud

1.11 Problemi e Sfide