Año: 2020

Modelos de diseño

Modelos de diseño de ingeniera para circuitos secuenciales sincrónicos

En el presente documento se desarrollará la resolución según las metodologías de Moore y Mealy para resolver ejemplos presentes en la clase teórica de *Circuitos Secuenciales*

El detector de secuencias

Diseñe una máquina que produzca un 1 en la salida cada vez que exactamente dos de las últimas tres entradas han sido 1

Por ejemplo, la secuencia de entrada 011011100 debe producir en la salida la 001111010 Asuma que la entrada es una línea serial de 1 bit Utilice flip-flops D

	T1	T2	T3	T4	T5	T6	T7	T8	T9
Entrada Serial	0	1	1	0	1	1	1	0	0
1º acum.	0	1	2	2	2	2	3	2	1
Salida Serial	0	0	1	1	1	1	0	1	0

Este SSS responde al modelo de Mealy dado que la vble externa afecta directamente la salida.

1) Diagrama de E/T

Prof. Guillermo E. Prisching

Año: 2020

2) Tabla de estados

Estado inicial	Vble externa X	Estado final	Vble de salida S
Α	0	В	0
Α	1	С	0
В	0	D	0
В	1	Е	0
С	0	F	0
С	1	G	0
D	0	D	0
D	1	Е	0
Е	0	F	0
Е	1	G	1
F	0	Е	1
F	1	D	0
G	0	F	1
G	1	G	0
Н	0	А	0
Н	1	A	0

3) Codificación de los estados

Estado	Código binario
Α	000
В	001
С	010
D	011
Е	100
F	101
G	110
Н	111

Año: 2020

4) Seleccionar los elementos de memorias Para este caso se utilizará como elemento de memoria un FF D.

Desarrollamos la tabla de excitación del FF:

Estado inicial	Estado final	Entradas
Qt	Q_{t+1}	
0	0	0
0	1	1
1	0	0
1	1	1

5) Tabla de excitación y tabla de códigos de estado aplicadas al sistema secuencial sincrónico

Como se usan 3 elementos de memoria o FF la tabla quedará así:

Est	tado inic	cial	Vble.	Es	Estado final		FF ₂	FF₁	FF₀	Salida
Q _{2 T}	Q _{1 T}	Q _{0 T}	Х	Q _{2 T+1}	Q _{1 T+1}	Q _{0 T+1}	D_2	D ₁	D_0	S ₁
0	0	0	0	0	0	1	0	0	1	0
0	0	0	1	0	1	0	0	1	0	0
0	0	1	0	0	1	1	0	1	1	0
0	0	1	1	1	0	0	1	0	1	0
0	1	0	0	1	0	1	1	0	1	0
0	1	0	1	1	1	0	1	1	0	0
0	1	1	0	0	1	1	0	1	1	0
0	1	1	1	1	0	0	1	0	0	0
1	0	0	0	1	0	1	1	0	1	0
1	0	0	1	1	1	0	1	1	0	1
1	0	1	0	1	0	0	1	0	0	1
1	0	1	1	0	1	1	0	1	1	0
1	1	0	0	1	0	1	1	0	1	1
1	1	0	1	1	1	0	1	1	0	0
1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

Año: 2020

6) Simplificación de funciones de excitación.

Aquí se van a representar las entradas de los FF y las salidas con las vbles. de los mapas K (Karnaugth) siendo las coordenadas los estados iniciales y las vbles. externas determinando de este modo las dimensiones del mapa

Coordenadas del mapa: Q2Q1Q0 y X

Contenido del mapa: D₂ D₁ D₀ S₁ dando lugar a 4 mapas

Las vbles. más significativas van en las filas y las menos en las columnas

)

Q_2Q_1/Q_0X	00	01	11	10
00	0	0	1	0
01	1	1	1	0
11	1	1	0	0
10	1	1	0	1

 D_1

Q_2Q_1/Q_0X	00	01	11	10
00	0	1	0	1
01	0	1	0	1
11	0	1	0	0
10	0	1	1	0

 D_0

Q_2Q_1/Q_0X	00	01	11	10
00	1	0	1	1
01	1	0	0	1
11	1	0	0	0
10	1	0	1	0

 S_1

Q_2Q_1/Q_0X	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	0	0	0
10	0	1	0	1

Año: 2020

Ecuaciones de simplificación obtenidas de los mapas:

$$\begin{split} &D_2 = Q_1 \, \overline{Q_0} + Q_2 \, \overline{Q_0} + \overline{Q_2} \, Q_0 \, X + Q_2 \, \overline{Q_1} \, \overline{X} \\ &D_1 = \overline{Q_0} \, X + Q_2 \, \overline{Q_1} \, X + \overline{Q_2} \, Q_0 \, \overline{X} \\ &D_0 = \overline{Q_0} \, \overline{X} + \overline{Q_1} \, Q_0 + \overline{Q_2} \, Q_0 \, \overline{X} \\ &S_1 = Q_2 \, Q_1 \, \overline{Q_0} \, \overline{X} + Q_2 \, \overline{Q_1} \, \overline{Q_0} \, X + Q_2 \, \overline{Q_1} \, Q_0 \, X \end{split}$$

7) Implementación del circuito digital