REG PLOT

Plot data and a linear regression model fit

Finds the best fit linear regression line which helps to predict the amount of change in Y on one unit change in X

```
In [1]:
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         tips = sns.load_dataset('tips')
In [2]:
         tips.head()
Out[2]:
            total_bill
                                                  time size
                       tip
                              sex
                                  smoker day
         0
                16.99
                      1.01 Female
                                       No
                                           Sun
                                                 Dinner
                                                          2
         1
                10.34
                      1.66
                             Male
                                       No
                                           Sun
                                                 Dinner
                                                          3
         2
               21.01 3.50
                             Male
                                       No Sun
                                                Dinner
                                                          3
         3
                23.68 3.31
                             Male
                                       No
                                           Sun
                                                 Dinner
         4
               24.59 3.61 Female
                                       No Sun
                                                Dinner
                                                          4
```

1. Create a basic reg plot

```
In [3]: sns.regplot(data=tips,x='total_bill',y='tip')
```

Out[3]: <AxesSubplot:xlabel='total_bill', ylabel='tip'>

2. Change the styling of reg plot, only line, only scatter, show/hide the ci, change the ci value, change n_boot

```
line_kws=dict(color='black'),
scatter_kws=dict(s=80,alpha=0.8),
n_boot=1500)
```

Out[12]: <AxesSubplot:xlabel='total_bill', ylabel='tip'>

HEAT MAPS

A heatmap is a graphical representation of data where values are depicted by color.

```
In [2]: mart=pd.read_csv(r'C:\Users\lenovo\Downloads\train.csv')
mart.columns = mart.columns.str.lower()
mart.head()
```

Out[2]:		item_id	item_w	item_type	item_mrp	outlet_id	outlet_year	outlet_size	outlet_location_type
	0	FDU32	21.027499	Baking Goods	197.352319	OUT046	2004	Small	Tier 2
	1	NCT54	21.102371	Meat	148.250214	OUT035	1987	Small	Tier 1
	2	FDW08	20.882263	Hard Drinks	205.465010	OUT035	1999	Small	Tier 3
	3	FDJ22	21.050435	Starchy Foods	253.417583	OUT046	1996	Small	Tier 1
	4	FDF47	21.247876	Baking Goods	240.871039	OUT035	1988	Small	Tier 3

```
In [32]: mart.shape
Out[32]: (87864, 9)

In [3]: martPiv = mart.pivot_table(index='outlet_year',columns='outlet_size',values='sales')
martPiv
```

Out[3]:

outlet_size	High	Medium	Small
outlet_year			
1987	2015.037160	1792.973492	1917.302712
1988	1695.209700	1444.865311	1641.739583
1996	2265.268983	2272.371502	2219.790139
1997	2029.428925	1826.732664	1903.967543
1998	2306.542273	2279.666103	2233.775392
1999	2004.082749	1850.282194	1909.920236
2003	2261.028030	2158.063891	2190.118601
2004	1966.898730	1826.582596	1889.009488
2005	1935.238262	1010.230431	1215.937098
2007	2180.578424	2213.387887	2567.411612
2008	2169.407763	1900.378559	2201.448849
2009	1923.770187	1554.601061	1890.260032

```
In [43]: sns.set_style('white')
  plt.figure(figsize=(5,8))
  sns.heatmap(martPiv)
```

Out[43]: <AxesSubplot:xlabel='outlet_size', ylabel='outlet_year'>

Out[51]: <AxesSubplot:xlabel='outlet_size', ylabel='outlet_year'>


```
In [52]: mart.corr()
Out[52]: item_w item_mrp outlet_year sales
```

	item_w	item_mrp	outlet_year	sales
item_w	1.000000	-0.022830	0.009632	0.000615
item_mrp	-0.022830	1.000000	-0.009837	0.014813
outlet_year	0.009632	-0.009837	1.000000	-0.035701
sales	0.000615	0.014813	-0.035701	1.000000

Out[66]: <AxesSubplot:>

CLUSTER MAP

Plot a matrix dataset as hierarchically clustered heatmap

```
In [67]:
          martPiv.head()
Out[67]:
          outlet_size
                           High
                                    Medium
                                                  Small
          outlet_year
               1987 2015.037160 1792.973492 1917.302712
               1988 1695.209700 1444.865311 1641.739583
               1996 2265.268983 2272.371502 2219.790139
               1997 2029.428925 1826.732664 1903.967543
               1998 2306.542273 2279.666103 2233.775392
In [69]:
          sns.clustermap(martPiv,
                         #col cluster=False, -- to remove the col clustering
                         #row_cluster = False, -- to remove the row clustering
                         annot=True,
                         #z score = 1, -- 1 or 0\
                         #standard scale=1
```

Out[69]: <seaborn.matrix.ClusterGrid at 0x25b244f5520>

FACET GRID PLOT

Multi-plot grid for plotting conditional relationships

```
In [70]: mart.head()
```



```
var = sns.FacetGrid(mart,col='outlet_size')
In [79]:
           var.map_dataframe(sns.lineplot,x='outlet_year',y='sales')
           <seaborn.axisgrid.FacetGrid at 0x25b27cc21c0>
Out[79]:
                          outlet_size = Small
                                                        outlet_size = Medium
                                                                                          outlet_size = High
             4000
             3000
             2000
             1000
                     1990
                                             2010
                                                                            2010
                                                                                     1990
                                                                                                      2005
                                                                                                            2010
                           1995
                                 2000
                                       2005
                                                     1990
                                                           1995
                                                                 2000
                                                                       2005
                                                                                           1995
                                                                                                2000
                                                                                            outlet_year
                            outlet_year
                                                            outlet_year
           var = sns.FacetGrid(mart,col='outlet size')
In [81]:
           var.map_dataframe(sns.kdeplot,x='sales')
           <seaborn.axisgrid.FacetGrid at 0x25b287fab20>
Out[81]:
                                                                                           outlet_size = High
                           outlet_size = Small
                                                          outlet_size = Medium
             0.0004
             0.0003
             0.0002
             0.0001
             0.0000
                        0
                            2500
                                 5000
                                       7500
                                            10000
                                                       0
                                                           2500
                                                                5000
                                                                      7500 10000
                                                                                       0
                                                                                           2500
                                                                                                5000
                                                                                                      7500 10000
                                sales
                                                                sales
                                                                                               sales
           var = sns.FacetGrid(mart,col='outlet_size')
In [11]:
           var.map_dataframe(sns.scatterplot,x='outlet_year',y='sales', hue='outlet_location_type'
           <seaborn.axisgrid.FacetGrid at 0x24e82c782b0>
Out[11]:
                          outlet size = Small
                                                        outlet size = Medium
                                                                                         outlet size = High
              10000
               8000
               6000
               4000
               2000
                  0
                      1990
                            1995 2000
                                       2005 2010
                                                      1990 1995 2000 2005 2010
                                                                                     1990 1995 2000 2005 2010
                             outlet year
                                                            outlet year
                                                                                            outlet year
           var = sns.FacetGrid(mart,col='outlet_size',row='outlet_location_type',
                                   sharey=False, #to have unique y axes for each plot
                                   ylim = (0,1000) # y axes limit'
```

```
var.map_dataframe(sns.histplot,x='sales')
var.set_axis_labels('sales','count') #setting labels for the axis
var.set_titles(col_template='{col_name} Type',row_template='{row_name} Type')
```

Out[22]: <seaborn.axisgrid.FacetGrid at 0x24e8cefeaf0>

In Γ 1: