► Maths - Feuille d'exos n° 21 =

Déterminant

I. Déterminant d'une matrice, d'une famille de

vecteurs

Calculer et factoriser les déterminants suivants : Ex. 21.1

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				_		
$ \begin{array}{c c} \cos(2a) & a-b-c \\ \cos(2b) & 2b & b \\ \cos(2c) & 2c \\ 1 & 1 \\ b & c \\ 3 & c^3 \end{array} $	2a	2b	c-a-b			
$ \begin{array}{c c} \cos(2a) & a \\ \cos(2b) \\ \cos(2c) \\ 1 & 1 \\ b & c \\ 0 & 3 & c^3 \end{array} $	2a	b-a-c	2c	a^p	b bp bn	c c^p c^n
$\frac{1}{b}$	a-b-c	28	2c			
$ \begin{vmatrix} 1 & \cos a \\ 1 & \cos b \\ 1 & \cos c \end{vmatrix} $ $ \begin{vmatrix} 1 & 1 \\ a & b \\ a^3 & b^3 \end{vmatrix} $	$\cos(2a)$	$\cos(2b)$	$\cos(2c)$	<u> </u>	c	. c ³
	$\cos a$	$\cos b$	$\cos c$	1 1	a b	$a^3 b^3$
	\Box		_			

Soit E un \mathbb{K} -espace vectoriel muni d'une base \mathcal{B} **Ex.** 21.2

 $\overline{(e_1;e_2;e_3)}$. Soit $\lambda \in \mathbb{K}$.

Calculer $\det_{\mathcal{B}}(e_2 + e_3; e_3 + e_1; e_1 + e_2)$ puis $\det_{\mathcal{B}}\left(e_1 + \lambda e_2; e_2 + \lambda e_3; e_3 + \lambda e_1\right)$ **Ex.** 21.3 On se place dans $\mathbb{R}_2[X]$ muni de sa base canonique \mathcal{B} . Soient $P_1 = (X+1)^2$, $P_2 = X+1$ et $P_3 = 9X-5$.

- a. Montrer que la famille $\mathcal{F} = (P_i)_{i \leq 3}$ est une base de $\mathbb{R}_2[X]$.
- b. Déterminer $\det_{\mathcal{F}}(\mathcal{B})$.

On pourra éventuellement traiter les deux question en même temps.

((m+1, m-1), (4, -4+2m)) est une base de \mathbb{R}^2 .

Est-ce le cas en dimension n = 2?

Généraliser aux matrices antisymétriques de $\mathcal{M}_n(\mathbb{K}), n \in \mathbb{N}^*$.

 $\overline{\mathbf{Ex.}\ 21.6}$ On rappelle que la suite de Fibonacci est définie par $F_0=0$, $\overline{F_1=1}$ et pour tout $n\in\mathbb{N},\ F_{n+2}=F_{n+1}+F_n$.

On note
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
.

- a. Exprimer A^n en fonction des termes de la suite de Fibonacci.
- b. En déduire que $\forall n \in \mathbb{N}^*$, $F_{n+1}F_{n-1} F_n^2 = (-1)^n$.

Ex. 21.7 Soit $n \in \mathbb{N}^*$. Montrer qu'il n'existe pas de matrice $\overline{A \in \mathcal{M}_{2n+1}}(\mathbb{R})$ telle que $A^2 + I_{2n+1} = 0_{2n+1}$.

Donner une matrice $A \in \mathcal{M}_2(\mathbb{R})$ telle que $A^2 + I_2 = 0_2$ puis une matrice $A \in \mathcal{M}_{2n}(\mathbb{R})$ telle que $A^2 + I_{2n} = 0_{2n}$. Ex. 21.8 Soit $n \in \mathbb{N}^*$ et $A \in \mathcal{M}_n(\mathbb{R})$ telle que pour tout $(i,j) \in [1;n]^2$, $a_{ij} = \pm 1$.

Montrer que 2^{n-1} divise det A.

 $\underline{\mathbf{Ex. 21.9}} \quad \text{Soit } A \in \mathcal{M}_n(\mathbb{R}) \text{ avec } \forall (i,j) \in [[1;n]]^2, a_{i,j} = (-1)^{\max(i,j)}.$

Calculer det A.

Ex. 21.10 Centrale 2017 PSI Maths 1 - Extrait

Soit $n \in \mathbb{N}^*$, $E = \mathcal{M}_n(\mathbb{C})$. Pour toute matrice M de E, on note f_M l'endomorphisme de \mathbb{C}^n canoniquement associé à M.

 $(u; f_M(u); ...; f_m^{n-1}(u))$ soit une base de \mathbb{C}^n . u est alors appelé vecteurOn dit que f_M est **cyclique** s'il existe un vecteur $u \in \mathbb{C}^n$ tel que cyclique de f_M .

On dit que f_M est **diagonalisable** s'il existe une base $(e_1, ..., e_n)$ de \mathbb{C}^n et un *n*-uplet $(\lambda_1; ...; \lambda_n) \in \mathbb{C}^n$ tel que

$$\forall i \in \llbracket 1; n \rrbracket, f_M(e_i) = \lambda_i e_i$$

Ex. 21.4 Déterminer les valeurs de $m \in \mathbb{R}$ pour lesquelles la famille Autrement dit, f_M est diagonalisable si et seulement si f_M est une composée d'affinités.

Ex. 21.5 Montrer que le déterminant d'une matrice antisymétrique $(e_1; ...; e_n)$ la base de diagonalisation et $(\lambda_1; ...; \lambda_n) \in \mathbb{C}^n$ les scalaires est nul en dimension 3. On suppose dans la suite que f_M est diagonalisable et on note

Soit
$$u = \sum_{i=1}^{n} u_i e_i \in \mathbb{C}^n$$
.

a. Donner une condition nécessaire et suffisante portant sur $(u_1; ...; u_n; \lambda_1; ...; \lambda_n)$ pour que $(u; f_M(u); ...; f_m^{n-1}(u))$ soit une

b. Soit
$$A(x) = \det \begin{pmatrix} 1 & \dots & 1 & 1 \\ x_1 & \dots & x_{n-1} & x \\ \vdots & \vdots & \vdots \\ x_1^{n-1} & \dots & x_{n-1}^{n-1} & x^{n-1} \end{pmatrix} \in \mathbb{C} \text{ où } x_1, \dots, x_{n-1}$$

sont des nombres complexes.

- x + y + (1+a)z = 0i. Montrer que A(x) est un polynôme en x dont on précisera
- ii. Montrer que $\forall i \in [[1; n-1]], A(x_i) = 0$.
- $A(x) = a(x_1, ..., x_{n-1})(x x_1)(x x_2)...(x x_{n-1}) =$ | f est-il un automorphisme de $\mathbb{R}_2[X]$? $a\left(x_{1},...,x_{n-1}\right)\left[\begin{array}{c} \left(x-x_{i}\right)\end{array}\right]$ iii. En déduire que

où $a(x_1,...,x_{n-1})$ est un complexe ne dépendant que de la valeur de $x_1, ..., x_{n-1}$.

iv. Soit $x_n \in \mathbb{C}$. Montrer que

$$A(x_n) = \prod_{1 \le i < j \le n} (x_j - x_i)$$

c. Déduire des questions précédentes une condition nécessaire et suffisante pour qu'un endomorphisme diagonalisable soit cyclique. Caractériser alors ses vecteurs cycliques.

II. Déterminant d'un endomorphisme, divers

 $\mathbf{Ex.}$ 21.11 On se place dans \mathbb{R} .

Déterminer le rang des systèmes suivants puis les résoudre :

$$\begin{cases}
-2x + y + z = 0 \\
x - 2y + z = 0
\end{cases} \begin{cases}
x + y \\
x + y - 2z = 0
\end{cases} \begin{cases}
x + y \\
x + y
\end{cases}$$

$$\begin{cases}
x - 2y + z - 3t = 1
\end{cases} \begin{cases}
x + y \\
x + y
\end{cases}$$

$$\begin{cases}
x - 2y + z - 3t = 1
\end{cases} \begin{cases}
x + y \\
x + y
\end{cases}$$

$$\begin{cases}
x + y \\
x + y
\end{cases}$$

$$\begin{cases}
x + y \\
x + y
\end{cases}$$

$$\begin{cases}
x + y \\
x + z
\end{cases}$$

$$\begin{cases}
(1 + a)x + y + z = 0
\end{cases} \begin{cases}
x + y \\
x + z
\end{cases}$$

$$\begin{cases} y + z + t &= 3 \\ x + y + z &= 3 \\ x + 2y + 3z &= 6 \\ -x - y + 2z &= 0 \\ 3x + 2y - 4z &= 1 \end{cases}$$

Ex. 21.12 Soit f l'endomorphisme de $\mathbb{R}_2[X]$ défini par

$$f(P) = (X+1)^2 P'' + (X-1)P' + P$$