

Algorithms and Data Structures 2 CS 1501

Spring 2022

Sherif Khattab

ksm73@pitt.edu

Announcements

- Upcoming deadlines:
 - Homework 11 due on 4/11
 - Lab 11 due on 4/15
 - Homework 12 due on 4/18
 - Assignment 3 and 4 due on 4/18

Previous lecture ...

- Integer Multiplication
 - Karatsuba's algorithm
 - Divide and conquer
 - Reduce the number of subproblems

CourseMIRROR Reflections (most confusing)

- The concept of a minimum st-cut was most confusing today.
- how to find st-cut
- Which edges are counted for min ST cuts? What does it have to do with being reachable by S
- when talking about max flow, is it the flow over each edge or do you add up the flows of each edge on the path?
- Is there any connection between articulation points (if there are a direct path between two articulation points) and st-cut path. It seems as similar, as the whole graph can to maintain being connected/hold max flow
- It'd be nice to see a formalized algorithm for priority first search
- karatsuba is still confusing as to what exactly is happening.
- The multiplication algorithms and their runtime
- euclids algorithm

CourseMIRROR Reflections (most interesting)

- Seeing the difference between gradeschool multiplication and karatsuba's multiplication
- Optimizing multiplication based on bits and decreasing the number of multiplies
- Seeing new multiplication algorithms.
- The Integer Multiplication Problem and its associated algorithms was most interesting.
- the different multiplication algorithms were hard to follow but still interesting
- I found Karatsubas Algorithm to be interesting, using the sum of all 4 multiplications to reduce total multiplications to 3 was cool
- How to find the ST-cuts and how max flow = min cut
- backedges as a way to undo previous selections
- Graph
- The maximum spanning tree used to do the PFS
- Ford Fulkerson applications

Assignment 4 Hint

- tripsWithin(budget)
 - Returns a set of paths whose total cost <= a given budget
 - Backtracking
 - Recursive helper method
 - Solve(current decision, current solution)
 - Current decision
 - Current vertex
 - Current solution
 - The set of paths so far
 - The current path
 - The remaining balance

Assignment 4 Hint

Inside the recursive method

- Iterative over neighbors of current vertex
 - If neighbor is not marked and edge price <= remaining balance
 - Add neighbor to current path
 - Add a copy of current path to the set of paths
 - Mark the neighbor
 - Recur on the neighbor
 - Unmark the neighbor
 - Remove the neighbor from current path

Problem of the Day: Cryptography

- Cryptography enabling secure communication in the presence of third parties
 - O Alice wants to send Bob a message without anyone else being able to read it

Encryption Model

Enter the adversary

- Consider the adversary to be anyone that could try to eavesdrop on Alice and Bob communicating
 - People in the same coffee shop as Alice or Bob as they talk over WiFi
 - Admins operating the network between Alice and Bob
 - And mirroring their traffic to the NSA...
- Will have access to:
 - O The ciphertext
 - The encrypted message
 - The encryption algorithm
 - At least Alice and Bob should assume the adversary does
- The key material is the only thing Bob knows that the adversary does not

Cryptography has been around for some time

- Early, classic encryption scheme:
 - O Caesar cipher:
 - "Shift" the alphabet by a set amount
 - Use this shifted alphabet to send messages
 - The "key" is the amount the alphabet is shifted

Yes, that Caesar

Alphabet

ABCDEFGHIJKLMNOPQRSTUVWXYZ XYZABCDEFGHIJKLMNOPQRSTUVW

By modern standards, incredibly easy to crack

- BRUTE FORCE
 - Try every possible shift
 - 25 options for the English alphabet
 - 255 for ASCII
- OK, let's make it harder to brute force
 - Instead of using a shifted alphabet, let's use a random permutation of the alphabet
 - Key is now this permutation, not just a shift value
 - O R size alphabet means R! possible permutations!

By modern standards, incredibly easy to crack

- Just requires a bit more sophisticated of an algorithm
- Analyzing encrypted English for example
 - Sentences have a given structure
 - Character frequencies are skewed
 - Essentially playing Wheel of Fortune

So what is a good cipher?

- One-time pads
 - O List of one-time use keys (called a *pad*) here
- To send a message:
 - O Take an unused pad
 - O Use modular addition to combine key with message
 - For binary data, XOR
 - Send to recipient
- Upon receiving a message:
 - O Take the next pad
 - O Use modular subtraction to combine key with message
 - For binary data, XOR
 - O Read result
- Proven to provide perfect secrecy

$$H(m|C) = H(m)$$

One-Time Pad

One-time pad example

```
Encoding:
          4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
                 Н
                                       Pad:
                                                Q J
Message:
              H E L L O
                                               16 9 2 22 19
                 4 11 11 14
                              (mod 26)
             16 9 2 22 19
         +
             23 13 13 7 7
Encrypted
                Ν
              X
                   Ν
                      Н
                         Н
Message:
             23 13 13 7 7
                 9 2 22 19
                              (mod 26)
             16
                 4 11 11 14
              Н
```

One-Time Pad Example 1

Alia:
$$\frac{1011001}{01100101}$$
 $\frac{111000101}{0110110}$
 $\frac{1011100110}{01110110}$

One-Time Pad Example 2

One-Time Pad

Difficulties with one-time pads

- Pads must be truly random
- Both sender and receiver must have a matched list of pads in the appropriate order
- Once you run out of pads, no more messages can be sent

Symmetric ciphers

- E.g., DES, AES, Blowfish
- Users share a single key
 - O Numbers of a given bitlength (e.g., 128, 256)
 - O Key is used to encrypt/decrypt many messages back and forth
- Encryptions/decryptions will be fast
 - O Typically linear in the size the input
- Ciphertext should appear random
- Best way to recover plaintext should be a brute force attack on the encryption key
 - O Which we have shown to be infeasible for 128bit AES keys

Problems with symmetric ciphers

- Alice and Bob have to both know the same key
 - O How can you securely transmit the key from Alice to Bob?
- Further, if Alice also wants to communicate with Charlie, her and
 - Charlie will need to know the same key, a different key from the key

Alice shares with Bob

- O Alice and Danielle will also have to share a different key...
- O etc.

Enter public-key encryption

- Each user has their own pair of keys
 - A public key that can be revealed to anyone
 - A *private* key that only they should know
- How does this solve our problem?
 - Public key can simply be published/advertised
 - Posted repositories of public keys
 - Added to an email signature
 - O Each user is responsible only for their own keypair
- Let's look at a public-key crypto scheme in detail...

RSA Cryptosystem in-depth

- What are RSA keypairs?
- How messages encrypted?
- How are messages decrypted?
- How are keys generated?
- Why is it secure?

RSA keypairs

- Public key is two numbers, which we will call n and e
- Private key is a single number we will call d
- The length of n in bits is the key length
 - O I.e., 2048 bit RSA keys will have a 2048 bit n value
 - Note that "n" will be used to indicate the RSA public key component for our discussion of RSA...

Encryption

Say Alice wants to send a message to Bob

- 1. Looks up Bob's public key
- 2. Convert the message into an integer: m
- 3. Compute the ciphertext c as:

$$\bigcirc$$
 c = m^e (mod n)

4. Send c to Bob

Decryption

Bob can simply:

- 1. Compute m as:
 - a. $m = c^d \pmod{n}$
- 2. Convert m into Alice's message

Really?

What??!!

n, e, and d need to be carefully generated

- 1. Choose two prime numbers p and q
- 2. Compute n = p * q
- 3. Compute $\varphi(n)$

$$\bigcirc \phi(n) = \phi(p) * \phi(q) = (p - 1) * (q - 1)$$

- 4. Choose e such that
 - \bigcirc 1 < e < $\phi(n)$
 - \bigcirc GCD(e, $\varphi(n)$) = 1
 - I.e., e and $\varphi(n)$ are co-prime
- 5. Determine d as $d = e^{-1} \mod(\varphi(n))$

What the φ?

- Here, we mean φ to be Euler's totient
- $\varphi(n)$ is a count of the integers < n that are co-prime to n
 - O I.e., how many k are there such that:

$$\blacksquare$$
 1 <= k <= n AND GCD(n, k) = 1

- p and q are prime..
 - \bigcirc Hence, $\varphi(p) = p 1$ and $\varphi(q) = q 1$
- Further, φ is multiplicative
 - O Since p and q are prime, they are co-prime, so

I won't detail the proof here...

$$\phi(9) = ? = 6$$

$$\int_{1}^{2} \frac{3}{3} \frac{4}{5} \frac{5}{6} \frac{6}{7} \frac{7}{8}$$

$$G(D(2,9) = 1$$

Greatest Common Divisor

- GCD(a, b)
 - O Largest int that evenly divides both a and b
- Easiest approach:
 - O BRUTE FORCE

```
i = min(a, b)
while(a % i != 0 || b % i != 0):
    i--
```

- Runtime?
 - \bigcirc $\Theta(\min(a, b))$
 - O Linear!
 - In *value* of min(a, b)...
 - O Exponential in n
 - Assuming a, b are n-bit integers

Euclid's algorithm

Euclidean example 1

• GCD(30, 24)

$$\bigcirc$$
 = GCD(24, 30 % 24)

• = GCD(24, 6)

$$\bigcirc = GCD(6, 24 \% 6)$$

- = GCD(6, 0)...
 - O Base case! Overall GCD is 6

Euclidean example 2

$$\bullet$$
 = GCD(99, 78)

• =
$$GCD(78, 21)$$

$$\bigcirc$$
 78 = 21 * 3 + 15

$$\bullet$$
 = GCD(21, 15)

$$\bigcirc$$
 21 = 15 * 1 + 6

$$\bullet$$
 = GCD (15, 6)

$$\bigcirc$$
 15 = 6 * 2 + 3

$$\bullet$$
 = GCD(6, 3)

$$\bigcirc$$
 6 = 3 * 2 + 0

Analysis of Euclid's algorithm

- Runtime?
 - O Tricky to analyze, has been shown to be linear in n
 - Where, again, n is the number of bits in the input

Extended Euclidean algorithm

• In addition to the GCD, the Extended Euclidean algorithm (XGCD) produces values x and y such that:

$$\bigcirc$$
 GCD(a, b) = i = ax + by

Examples:

$$\bigcirc$$
 GCD(30,24) = 6 = 30 * 1 + 24 * -1

$$\bigcirc$$
 GCD(99,78) = 3 = 99 * -11 + 78 * 14

Can be done in the same linear runtime!

Extended Euclidean example

$$\bullet$$
 = GCD(99, 78)

$$\bullet$$
 = GCD(78, 21)

$$\bullet$$
 = GCD(21, 15)

$$\bullet$$
 = GCD (15, 6)

$$\bigcirc$$
 15 = 6 * 2 + 3

• =
$$GCD(6, 3)$$

$$\bigcirc$$
 6 = 3 * 2 + 0

$$\bullet$$
 3 = 15 - (2 * 6)

GCD/XGCD Example 1

$$\begin{array}{c}
a = 63 \\
b = 24 \\
GCD(0,b) = GCD(1,0\%)
\end{array}$$

$$\begin{array}{c}
2*2^{4}_{1} \cdot 15 = 63 \\
6CD(2^{4}_{1} \mid 5) = 6CD(3^{4}_{1} \mid 5)
\end{array}$$

$$\begin{array}{c}
GCD(2^{4}_{1} \mid 5) = 6CD(5^{4}_{1} \mid 5)
\end{array}$$

$$\begin{array}{c}
1*15 + 9 = 24 \\
GCD(15,9) = GCD(15,9) = 33 = x \cdot 63 + 3 \cdot 24
\end{array}$$

$$\begin{array}{c}
CCD(15,9) = GCD(15,9) = GCD(15,9) \\
GCD(15,9) = GCD(15,9) = GCD(15,9) \\
GCD(15,9) = GCD(15,9) = GCD(15,9)
\end{array}$$

$$\begin{array}{c}
1*15 + 6 = 15 \\
GCD(15,9) = GCD(15,9) = GCD(15,9)
\end{array}$$

$$\begin{array}{c}
1*15 + 6 = 15 \\
GCD(15,9) = GCD(15,9) = GCD(15,9)
\end{array}$$

$$\begin{array}{c}
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\
1*15 + 1 \\$$

GCD/XGCD Example 2

$$GCD(84, 32)$$

$$GCD(a, b) = GCD(b, a/b)$$

$$GCD(a, c) = 0$$

$$GCD(8, 32) = GCD(37, 89/32)$$

$$GCD(8, 32) = GCD(87, 20)$$

$$GCD(8, 32/22)$$

$$GCD(8, 32/2$$

OK, now what about multiplicative inverses mod $\varphi(n)$?

- $d = e^{-1} \mod(\varphi(n))$
- Means that $d = 1/e \mod(\varphi(n))$
- Means that $e * d = 1 \pmod{\phi(n)}$

- O For some z
- Can further restate this as: $e * d z * \phi(n) = 1$
- Or similarly: $1 = \phi(n) * (-z) + e * d$
- How can we solve this?
 - O Hint: recall that we know GCD($\phi(n)$, e) = 1

Use extended Euclidean algorithm!

- GCD(a, b) = i = ax + by
- Let:
 - \bigcirc a = $\varphi(n)$
 - \bigcirc b = e
 - \bigcirc x = -z
 - \bigcirc y = d
 - Oi = 1
- GCD($\phi(n)$, e) = 1 = $\phi(n)$ * (-z) + e * d
- We can compute d in linear time!

RSA keypair example notes

- p and q must be prime
- n = p * q
- $\varphi(n) = (p 1) * (q 1)$
- Choose e such that
 - \bigcirc 1 < e < φ (n) and GCD(e, φ (n)) = 1
- Solve XGCD($\phi(n)$, e) = 1 = $\phi(n)$ * (-z) + e * d
- Compute the ciphertext c as:
 - \bigcirc c = m^e (mod n)
- Recover m as:
 - \bigcirc m = c^d (mod n)

Please submit your reflections by using the CourseMIRROR App

If you are having a problem with CourseMIRROR, please send an email to **coursemirror.development@gmail.com**

8/29/2022

