Time: 3 Hours

AUTUMN END SEMESTER EXAMINATION-2014

5th Semester B.Tech / B.Tech Dual Degree

THEORY OF COMPUTATION CS-504

(Regular-2012 & Back of Previous Admitted Batches)

Full Marks: 60

Answer any SIX questions including Question No. 1 which is compulsory.

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable and all parts of a question should be answered at one place only.

1. Answer all the following questions.

 $[2 \times 10]$

- a) Define Pushdown Automata. How Pushdown Automata are different from Finite Automata?
- b) What do you mean by inherently ambiguous Context Free Language? Give proper example to explain your answer.
- c) What language the following Context Free Grammar will generate?

 $S \rightarrow pFq$

 $F \rightarrow pF | Fq | \lambda$

- d) Let L and M be two CFLs. The L \cap M is also a Context Free Language. (True / False). Give proper example to support your answer.
- e) Construct a DFA that accepts all palindromes of length 3 over the alphabet $\Sigma = \{m, n\}$.
- f) What do you mean by Chomsky Hierarchy? Give a Chomsky classification of languages accepted by different automata.

g) Consider the following grammar.

$$S \rightarrow aT \mid bV$$

$$V \rightarrow bS |aVV|b$$

$$T \rightarrow bTT \mid aS \mid a$$

Obtain a Leftmost and Rightmost derivation for the string "aabbabab".

h) Find δ^* (q, λ) for each state q in the following Finite Automata.

- i) State True or False with proper justification. The language of a DFA (over Σ) in which every state except the start state is a final state is Σ^+ .
- j) State pumping lemma for Context Free Languages.
- 2. a) Let L be the language of the regular expression a*b*+b*a*. [4
 - (i) Give an example of a string $\{a, b\}^*$ not in L.
 - (ii) Design a DFA with six states to accept L.
 - b) Convert the following NFA to DFA. Assume Q0 as initial and Q2 as final state. [4

δ	A	В
Q0	{Q1,Q2,Q3}	{Q2,Q3}
Q1	{Q1,Q2}	{Q2,Q3}
Q2	ф	{Q2,Q3,Q4}
Q3	{Q4}	{Q2,Q3,Q4}
Q4	ф	ф

3. a) Find the minimized DFA for the following finite automata.

[4

[4

[4

b) Convert the following automaton to its corresponding regular expression.

- 4. a) Let $L = \{\alpha \in \{1, 2\}^* | \alpha = \alpha^R\}$. Show that the language L is not regular using pumping lemma for regular languages.
 - b) Prove or disprove the language $L = \{w \in \{0, 1\}^* \mid w \text{ has } \{0, 1\}^* \mid w \text{ has }$
- 5. a) Give Context Free Grammars for the following languages [4

(i)
$$L = \{p^m q^n r^{m+n} | m, n \ge 0\}$$

(ii)
$$L = \{x^m y^n | n \le m+3\}$$

b. Consider the following grammar

$$A \rightarrow AA|a|b$$

- (i) Show that the above grammar is ambiguous.
- (ii) Write an equivalent unambiguous grammar for the above ambiguous grammar.

Find an equivalent grammar G' with no useless variable.

- b) Design a PDA for the following Context Free Language [5 $L = \{xcx^R \mid x \in \{p,q\}^*\}$
- 7. a) Show that the following language is regular. [3 $L = \{w \in \{0,1\}^* \mid x \text{ ends with 1 and does not contain the substring } 00\}$
 - b) Convert the following Context Free Grammar to Chomsky [5 Normal Form.

 $S \rightarrow AACD$ $A \rightarrow aAb \mid \lambda$ $C \rightarrow aC \mid a$ $D \rightarrow aDa \mid bDb \mid \lambda$

8. a) Design a Turing Machine that accepts the following language. [6

 $L = \{ 0^k 1^k : k \ge 1 \}$

b) Show that the languages accepted by Finite Automata are closed under Intersection. [2

XXXXX