Poisson Regression Inference

STA courses next semester

Some classes to consider after STA 214:

- STA 247 Design and Sampling
- STA 279 Statistical Computing
- STA 310 Probability (requires calc II)
- STA 363 Intro to Statistical Learning (requires linear algebra)

Other cool courses to consider:

- STA 311 Statistical Inference (requires STA 310)
- STA 312 Linear Models (requires STA 310 and linear algebra)
- STA 362 Multivariate Statistics (requires linear algebra)
- STA 365 Applied Bayesian Statistics (requires STA 310)
- STA 368 Time Series and Forecasting (requires STA 310)

Last time

A concerned parent asks us to investigate crime rates on college campuses. We have access to data on 81 different colleges and universities in the US, including the following variables:

- type: college (C) or university (U)
- nv: the number of crimes for that institution in the given year
- enroll1000: the number of enrolled students, in thousands
- region: region of the US C = Central, MW = Midwest, NE = Northeast, SE = Southeast, SW = Southwest, and W = West)

$$Crimes_i \sim Poisson(\lambda_i)$$

$$\log(\lambda_i) = \beta_0 + \beta_1 M W_i + \beta_2 N E_i + \beta_3 S E_i + \beta_4 S W_i + \beta_5 W_i$$

Goodness of fit

Goodness of fit test: If the model is a good fit for the data, then the residual deviance follows a χ^2 distribution with the same degrees of freedom as the residual deviance

Residual deviance = 621.24, df = 75

```
pchisq(621.24, df=75, lower.tail=F)
```

```
## [1] 5.844298e-87
```

So our model might not be a very good fit to the data.

Why might our model not be a good fit?

Potential issues with our model

- The Poisson distribution might not be a good choice
- There may be additional factors related to the number of crimes which we are not including in the model

Which other factors might be related to the number of crimes?

Offsets

We will account for school size by including an **offset** in the model:

$$\log(\lambda_i) = eta_0 + eta_1 M W_i + eta_2 N E_i + eta_3 S E_i + eta_4 S W_i + eta_5 W_i \ + \log(Enrollment_i)$$

Motivation for offsets

We can rewrite our regression model with the offset:

$$egin{aligned} \log(\lambda_i) &= eta_0 + eta_1 M W_i + eta_2 N E_i + eta_3 S E_i + eta_4 S W_i + eta_5 W_i \ &+ \log(Enrollment_i) \end{aligned}$$

Fitting a model with an offset

The offset doesn't show up in the output (because we're not estimating a coefficient for it)

Fitting a model with an offset

$$egin{aligned} \log(\widehat{\lambda}_i) &= -1.30 + 0.10 MW_i + 0.76 NE_i + \ 0.87 SE_i + 0.51 SW_i + 0.21 W_i \ &+ \log(Enrollment_i) \end{aligned}$$

How would I interpret the intercept -1.30?

When to use offsets

Offsets are useful in Poisson regression when our counts come from groups of very different sizes (e.g., different numbers of students on a college campus). The offset lets us interpret model coefficients in terms of rates instead of raw counts.

With your neighbor, brainstorm some other data scenarios where our response is a count variable, and an offset would be useful. What would our offset be?

Inference

$$egin{aligned} \log(\lambda_i) &= eta_0 + eta_1 M W_i + eta_2 N E_i + eta_3 S E_i + eta_4 S W_i + eta_5 W_i \ &+ \log(Enrollment_i) \end{aligned}$$

Our concerned parent wants to know whether the crime rate on campuses is different in different regions.

What hypotheses would we test to answer this question?

Likelihood ratio test

Full model:

$$egin{aligned} \log(\lambda_i) &= eta_0 + eta_1 M W_i + eta_2 N E_i + eta_3 S E_i + eta_4 S W_i + eta_5 W_i \ &+ \log(Enrollment_i) \end{aligned}$$

Reduced model:

$$\log(\lambda_i) = eta_0 + \log(Enrollment_i)$$

Likelihood ratio test

What is my test statistic?

Likelihood ratio test

```
m2 <- glm(nv ~ region, offset = log(enroll1000),</pre>
           data = crimes, family = poisson)
summary(m2)
## Null deviance: 491.00 on 80 degrees of freedom
## Residual deviance: 433.14 on 75 degrees of freedom
G = 491 - 433.14 = 57.86
pchisq(57.86, df=5, lower.tail=F)
## [1] 3.361742e-11
```

Inference

$$egin{aligned} \log(\lambda_i) &= eta_0 + eta_1 M W_i + eta_2 N E_i + eta_3 S E_i + eta_4 S W_i + eta_5 W_i \ &+ \log(Enrollment_i) \end{aligned}$$

Now our concerned parent wants to know about the difference between Western and Central schools. They would like a "reasonable range" of values for the difference between the regions.

How would we construct a "reasonable range" of values for this difference?

Confidence intervals

$$egin{aligned} \log(\lambda_i) &= eta_0 + eta_1 M W_i + eta_2 N E_i + eta_3 S E_i + eta_4 S W_i + eta_5 W_i \ &+ \log(Enrollment_i) \end{aligned}$$

```
Estimate Std. Error z value Pr(>|z|)
##
             -1.30445
                       0.12403 - 10.517 < 2e-16 ***
  (Intercept)
  regionMW
           0.09754
                       0.17752 0.549 0.58270
## regionNE
          0.76268
                       0.15292 4.987 6.12e-07 ***
## regionSE
          0.87237
                       0.15313 5.697 1.22e-08 ***
                       0.18507 2.740 0.00615 **
  regionSW 0.50708
## regionW
             0.20934
                       0.18605 1.125 0.26053
```

95% confidence interval for β_5 :

https://sta214-s23.github.io/class_activities/ca_lecture_20.html

$$Articles_i \sim Poisson(\lambda_i) \ \log(\lambda_i) = eta_0 + eta_1 Female_i + eta_2 Married_i + eta_3 Kids_i + \ eta_4 Prestige_i + eta_5 Mentor_i \$$

Do I need an offset for this model?

$$Articles_i \sim Poisson(\lambda_i) \ \log(\lambda_i) = eta_0 + eta_1 Female_i + eta_2 Married_i + eta_3 Kids_i + \ eta_4 Prestige_i + eta_5 Mentor_i \$$

We are interested in the relationship between prestige and the number of articles published, after accounting for other factors. What confidence interval should we make?

```
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.304617 0.102981 2.958 0.0031 **
## femWomen -0.224594 0.054613 -4.112 3.92e-05 ***
## marMarried 0.155243 0.061374 2.529 0.0114 *
## kid5 -0.184883 0.040127 -4.607 4.08e-06 ***
## phd 0.012823 0.026397 0.486 0.6271
## ment 0.025543 0.002006 12.733 < 2e-16 ***
```

How do I construct a confidence interval for $\exp\{\beta_4\}$?