

Universidad de Antioquia Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Cursos de Servicios para Ingeniería

Materia: Cálculo integral	Código: 2555231	Grupo: 5	Parcial 3 (25 %)	Nota
Docente: Alejandro Piedrahita H.			Fecha: 24/03/2022	
Estudiante:			Documento:	

La evaluación consta de 4 ejercicios para ser resueltos en un tiempo máximo de 1 hora y 50 minutos. Los procedimientos empleados para llegar a cada respuesta deben ser justificados y quedar registrados en las hojas de respuesta. No está permitido utilizar dispositivos electrónicos ni documentos o apuntes durante la prueba. Realice los procedimientos de forma clara y ordenada.

- 1. 20% Calcule el volumen del solido S cuya base es un disco circular de radio 2 y las secciones transversales perpendiculares a la base son cuadradas.
- 2. 20% Calcule la longitud de la curva

$$y = \frac{x^5}{6} + \frac{1}{10x^3}, \quad 2 \le x \le 6.$$

- 3. 30% Considere el sólido de revolución obtenido al hacer girar alrededor de la recta x=2, la región limitada por las curvas $y=x^3$ y $x=y^2$.
 - a) 12% Plantee la integral que determina el volumen del sólido de revolución por el método de arandelas.
 - b) 12% Plantee la integral que determina el volumen del sólido de revolución por el método de cascarones cilíndricos.
 - c)
 $\boxed{6\%}$ Halle el volumen exacto del solido de revolución.
- 4. 30% Considere la región R limitada por las curvas y = x + 2, $y = x^2$ y que se encuentra a la derecha de recta x = 1.
 - a)
 $\boxed{3\,\%}$ Realice un bosquejo de dicha región.
 - b) 18% Determine las coordenadas del centroide de R.
 - c) $\boxed{9\%}$ Use el Teorema de Pappus para determinar el volumen del sólido de revolución que se genera al rotar R respecto a la recta x=-1.