Discrete Mathematics

Review - Chapter 2, Basic Structures: Sets, Functions, Sequences, Sums, and Matrices

Part 2

Sequences₁

- A sequence(→g) is a function from a subset of the integers
 (usually either the set {0, 1, 2, 3, 4,} or {1, 2, 3, 4,}) to a
 set S.
- A geometric progression: $a, ar^2, ..., ar^n,...$
- A arithmetic progression: a, a + d, a + 2d, ..., a + nd, ...
- Finding a formula for the nth term of the sequence generated by a recurrence relation is called solving the recurrence relation.
 => solution (or closed formula)

```
a_n = a_{n-1} + 3 for n = 2,3,4,... and suppose that a_1 = 2.

a_2 = 2 + 3

a_3 = (2 + 3) + 3 = 2 + 3 \cdot 2

:

a_n = a_{n-1} + 3 = (2 + 3 \cdot (n - 2)) + 3 = 2 + 3(n - 1)
```

Summations₁

Sum of the terms $a_m, a_m + 1, ..., a_n$ from the sequence $\{a_n\}$

The notation:

$$\sum_{j=m}^{n} a_{j} \qquad \sum_{j=m}^{n} a_{j} \qquad \sum_{m \leq j \leq n} a_{j}$$

represents

$$a_m + a_{m+1} + \cdots + a_n$$

The variable *j* is called the *index of summation*. It runs through all the integers starting with its *lower limit m* and ending with its *upper limit n*.

Product Notation (optional)

Product of the terms a_m , a_{m+1} , ..., a_n from the sequence $\{a_n\}$

The notation:

$$\prod_{j=m}^{n} a_{j}$$

$$\prod_{j=m}^n a_j$$

$$\prod_{j=m}^n a_j \qquad \prod_{m \le j \le n} a_j$$

represents

$$a_m \times a_{m+1} \times \cdots \times a_n$$

Some Useful Summation Formulae

TABLE 2 Some Useful Summation Formulae.

Sum	Closed From
$\sum_{k=0}^{n} ar^{k} \left(r \neq 0 \right)$	$\frac{ar^{n+1}-a}{r-1}, \ r\neq 1$
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$
$\sum_{k=0}^{\infty} x^k, x < 1$	$\frac{1}{1-x}$
$\sum_{k=0}^{\infty} kx^{k-1}, \mathbf{x} < 1$	$\frac{1}{\left(1-x\right)^2}$

Cardinality 1

- one-to-one from A to B: $|A| \le |B|$
- one-to-one correspondence from A to B: |A| = |B|
- An infinite set is countable if and only if it is possible to list the elements of the set in a sequence (indexed by the positive integers).
 ex) Integer (countable), rational number (countable) real number (uncountable)
- A set that is either finite or has the same cardinality
 as the set of positive integers (Z⁺) is called countable.

Showing that a Set is Countable 1

Example 1: Show that the set of positive even integers *E* is countable set.

Solution: Let
$$f(x) = 2x$$

$$1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$$

$$\updownarrow \quad \updownarrow \quad \updownarrow \quad \updownarrow \quad \updownarrow \quad \updownarrow$$

$$2 \quad 4 \quad 6 \quad 8 \quad 10 \quad 12$$

Then f is a bijection from \mathbb{N} to E since f is both one-to-one and onto. To show that it is one-to-one, suppose that f(n) = f(m). Then 2n = 2m, and so n = m. To see that it is onto, suppose that t is an even positive integer. Then t = 2k for some positive integer k and f(k) = t.

The Positive Rational Numbers are Countable 1

Definition: A rational number can be expressed as the ratio of two integers p and q such that $q \neq 0$ and p, $q \in \mathbf{Z}^+$

- ¾ is a rational number
- V2 is not a rational number.

Example 3: Show that the positive rational numbers are countable.

Solution: The positive rational numbers are countable since they can be arranged in a sequence:

$$r_1, r_2, r_3, \dots$$

The next slide shows how this is done.

The Positive Rational Numbers are Countable 2

Constructing the List

First list p/q with p + q = 2.

Next list p/q with p + q = 3

And so on.

Terms not circled are not listed because they repeat previously listed terms

1, ½, 2, 3, 1/3,1/4, 2/3, ...

First row q = 1. Second row q = 2. etc.

The Real Numbers are Uncountable

Georg Cantor (1845-1918)

 $r_1 = 0.d_{11}d_{12}d_{13}d_{14}d_{15}d_{16}...$

 $r_2 = 0.d_{21}d_{22}d_{23}d_{24}d_{25}d_{26}...$

Example: Show that the set of real numbers is uncountable.

Solution: The method is called the Cantor diagonalization argument, and is a proof by contradiction.

- 1. Suppose **R** is countable. Then the real numbers between 0 and 1 are also countable (any subset of a countable set is countable an exercise in the text).
- 2. The real numbers between 0 and 1 can be listed in order r_1 , r_2 , r_3 ,...
- 3. Let the decimal representation of this listing be
- 4. Form a new real number with the decimal expansion $r = d_1 d_2 d_3 d_4 \dots$

where
$$d_i = 3$$
 if $d_{ii} \neq 3$ and $d_i = 4$ if $d_{ii} = 3$

- 5. r is not equal to any of the r_1 , r_2 , r_3 ,... Because it differs from r_i in its ith position after the decimal point. Therefore there is a real number between 0 and 1 that is not on the list since every real number has a unique decimal expansion. Hence, all the real numbers between 0 and 1 cannot be listed, so the set of real numbers between 0 and 1 is uncountable.
- 6. Since a set with an uncountable subset is uncountable (an exercise), the set of real numbers is uncountable.