3.2. Aktívny experiment

- ⇒ Aktívny experiment zisťujú sa odozvy na zámerne zavádzané vstupné testovacie signály.
- ⇒ Cieľ experimentu vytvorenie takých podmienok, aby sa dosiahli kvalitné odhady parametrov systému pomocou neveľkého objemu meraní a výpočtov.
- ⇒ Plánovanie (navrhovanie) experimentov (Design of Experiments DOE, Designed Experiments, Experimental Design)
 - Disciplína matematickej štatistiky, zaoberajúca sa štúdiom vplyvu viacerých nezávislých premenných (faktorov) na sledovanú závislú veličinu.
 - o Umožňuje roztriediť faktory na významné a menej významné.
 - Vznikla v agronómii pri systematickej analýze dielčích vplyvov na úrodu v prvej polovici 20. storočia. Základy modernej teórie plánovania experimentov položil sir Ronald Fischer: The Arrangement of Field Experiments (1926), The Design of Experiments (1935).
- ⇒ Plánovaný experiment postupnosť vopred naplánovaných pokusov pri ktorých sa cieľavedome vykonáva zmena vstupných faktorov procesu tak, aby mohli byť pozorované a vhodným vyhodnotením experimentálnych dát identifikované odpovedajúce zmeny odozvy.

3.2.1. Ortogonálny plán pre lineárny model

⇒ Predpokladáme lineárny statický n-faktorový model

$$\hat{y} = \hat{\theta}_0' + \hat{\theta}_1' u_1' + \ldots + \hat{\theta}_n' u_n'$$

kde premenné u_i' aj parametre $\hat{\theta}_i'$ majú **fyzikálny význam** a každá premenná u_i' má vymedzený **pracovný rozsah** svojimi hraničnými hodnotami

$$u_{imin}' \leq u_i' \leq u_{imax}'$$

Pracovná oblasť bude v priestore vstupov $\mathbf{U}' \subset \mathbb{R}^n$ mať tvar hyperkvádra s dĺžkou hrán $d_i = (u'_{imax} - u'_{imin}).$

Počet neznámych parametrov je 1+k=1+n

- ⇒ Ak pre každý z **n vstupov** uskutočníme merania na **h hladinách (hodnotách)**, potom **celkový počet bodov**, v ktorých sa budú experimenty realizovať, je N = hⁿ.
- ⇒ **Skutočné hodnoty** výstupu y sa môžu **od odhadovaných** hodnôt ŷ **líšiť**, čo môže byť spôsobené tým, že
 - zvolený model je pre aproximáciu skutočnej závislosti nevhodný,
 - výsledky meraní sú zaťažené takými chybami, že dochádza ku skresľovaniu hodnôt odhadovaných parametrov.

Vplyv týchto faktorov nemožno od seba oddeliť, ale **ich štatistickú separáciu** možno urobiť tak, že **v každom z N bodov urobíme q paralelných meraní** s výsledkami y_{ij} , kde i = 1,2,...,N a j = 1,2,...,q a potom v každom bode určíme výberový priemer

5

$$\overline{y}_i = \frac{1}{q} \sum_{j=1}^q y_{ij}$$

Rozptyl jednotlivých meraní k priemernej hodnote je mierou presnosti merania. zatiaľ čo rozptyl výstupu regresnej funkcie voči priemernej hodnote merania v každom z N bodov hovorí o adekvátnosti modelu.

- \Rightarrow V dôsledku paralelných meraní vzrastie celkový počet meraní na $P = qN = qh^n$. Hodnotu N možno minimalizovať tým. že **zredukujeme počet hladín na** h = 2 (t.i. experimenty budeme robiť iba v krajných hodnotách vstupných premenných – rohových bodoch hyperkvádra), potom $N = 2^n$. V každom z týchto bodov budeme robiť minimálne q = 2 merania.
- ⇒ Vstupy u' pretransformujeme na bezrozmerné premenné u

$$u_{i} = \frac{u_{i}' - \frac{u_{imax}' + u_{imin}'}{2}}{\frac{u_{imax}' - u_{imin}'}{2}} = \frac{2u_{i}' - u_{imax}' - u_{imin}'}{u_{imax}' - u_{imin}'}$$

$$u_{i} \in \langle u_{imin}', u_{imax}' \rangle \implies u_{i} \in \langle -1, 1 \rangle$$

$$u_i \in \langle u'_{imin}, u'_{imax} \rangle \implies u_i \in \langle -1, 1 \rangle$$

z pôvodného hyperkvádra sa stáva hyperkocka s dĺžkou hrany rovnou 2. Bezrozmerné hodnoty vstupov potom nadobúdajú iba dve hodnoty: 1 pre $u'_i = u'_{imax}$ a -1 pre $u'_i = u'_{imin}$.

Potom **modelom** je rovnica: $\hat{y} = \hat{\theta}_0 + \hat{\theta}_1 u_1 + ... + \hat{\theta}_n u_n$ a **počet meraní** je $P = q2^n$

$$\hat{y} = \hat{\theta}_0 + \hat{\theta}_1 u_1 + \ldots + \hat{\theta}_n u_n$$

$$P=q2^n$$

⇒ Rozmiestnenie bodov merania v priestore

dvojfaktorový lineárny plán

trojfaktorový lineárny plán

Matica systému H bude mať koeficienty (iba hodnoty 1 alebo -1)

$$h_{ij} = u_{ij} = (-1)^{int(\frac{i-1}{2^{j-1}})}$$
 $i = 1, 2, ..., 2^n$ $j = 0, 1, ..., n$

V prípade trojfaktorového plánu ide o problém riešenia preurčeného systému 2³=8 rovníc pre 1+3=4 neznáme regresné koeficienty. Tabuľka ortogonálneho plánu je nasledovná:

Číslo merania	Matica H					Výstupy					
	u _o	u ₁	u ₂	u ₃	y ₁	y ₂	•••	y _q	ÿ	ŷ	
1	1	1	1	1	Х	Х	• • • •	Х	Х		
2	1	-1	1	1	Х	Х	•••	Х	Х		
3	1	1	-1	1	Х	Х	•••	Х	х		
4	1	-1	-1	1	Х	Х		Х	х		

5	1	1	1	-1	Х	Х	•••	Х	Х	
6	1	-1	1	-1	Х	Х	•••	Х	Х	
7	1	1	-1	-1	Х	Х	•••	Х	Х	
8	1	-1	-1	-1	Х	Х	•••	Х	Х	

Predposledný stĺpec obsahuje výberový priemer z q meraní.

 \Rightarrow Ak označíme jednotkový vektor dĺžky 2^n ako $\mathbf{L}_n = (1, 1, ..., 1)^T$, potom $\mathbf{H} = (\mathbf{L}_n, \mathbf{U}_n)$, kde \mathbf{U}_n je matica rozmeru 2ⁿ x n.

ORTOGONALITA

Skalárny súčin ľubovoľných dvoch stĺpcov matice H je rovný nule, t.j. stĺpce tejto matice sú navzájom ortogonálne. Z toho vyplýva, že:

Súčet prvkov každého stĺpca matice H je rovný 0 (okrem prvého):

$$\boldsymbol{L}_{n}^{T}\boldsymbol{u}_{j}=\sum_{i=1}^{2^{n}}u_{ij}=0$$

Informačná matica R aj disperzná matica P sú diagonálne:

$$\mathbf{R} = \mathbf{H}^{\mathsf{T}} \mathbf{H} = \begin{pmatrix} \mathbf{L}_{n}^{\mathsf{T}} \\ \mathbf{U}_{n}^{\mathsf{T}} \end{pmatrix} (\mathbf{L}_{n}, \mathbf{U}_{n}) = 2^{n} \begin{pmatrix} 1 & \mathbf{0}^{\mathsf{T}} \\ \mathbf{0} & \mathbf{I}_{n} \end{pmatrix} = 2^{n} \mathbf{I}_{n+1}$$

$$\mathbf{P} = \mathbf{R}^{-1} = \frac{1}{2^n} \mathbf{I}_{n+1}$$

V dôsledku ortogonality plánu sa výrazne zjednodušia výpočty (nemusíme počítať inverziu matice) a tiež jednotlivé koeficienty θ_i sú navzájom nezávislé, t.j. ich kovariancia je nulová.

 \Rightarrow Zvýšením počtu faktorov o 1 dostaneme ortogonálnu maticu \mathbf{H}_{n+1} ,ktorej prvým stĺpcom bude jednotkový vektor \mathbf{L}_{n+1} a zvyšných n+1 stĺpcov predstavuje maticu \mathbf{U}_{n+1} , ktorú získame pomocou rekurentného vzťahu:

$$\mathbf{U}_{n+1} = \begin{pmatrix} \mathbf{U}_n & \mathbf{L}_n \\ \mathbf{U}_n & -\mathbf{L}_n \end{pmatrix}$$

 \Rightarrow Na **výpočet** jednotlivých **regresných koeficientov** $\hat{\theta}_i$, j = 0,1,...,n použijeme Gaussov vzorec, ktorý sa zjednoduší na tvar:

$$\hat{\theta}_{j}^{*} = \frac{1}{2^{n}} \sum_{i=1}^{2^{n}} \overline{y}_{i} u_{ij} = \frac{1}{2^{n}} \sum_{i=1}^{2^{n}} \overline{y}_{i} (-1)^{int} \left(\frac{i-1}{2^{j-1}}\right)$$

$$j = 0, 1, \dots, n$$

Tieto koeficienty sú **nevychýleným odhadom** parametrov θ_i .

⇒ Pre disperzie jednotlivých regresných koeficientov platí:

$$\sigma_{\theta_j}^2 = \sigma^2 p_{jj} = \frac{1}{2^n} \sigma^2$$

Disperziu šumu σ^2 **nepoznáme**, musíme ju odhadnúť na základe nameraných údajov

$$S_{\overline{Y}}^2 = \frac{Q_{\overline{Y}}}{v_{\overline{Y}}} \qquad Q_{\overline{y}} = \sum_{i=1}^{2^n} \sum_{j=1}^q (y_{ij} - \overline{y}_i)^2 \qquad v_{\overline{y}} = 2^n (q - 1)$$

 S_y^2 je výberový rozptyl jednotlivých vzoriek (meraní) voči priemeru skupiny a odhaduje disperziu šumov σ^2 , potom pre odhad disperzie regresných koeficientov platí:

$$S_{\theta_j}^2 = \frac{1}{2^n} S_{\bar{y}}^2 \qquad \Rightarrow \qquad S_{\theta_j} = 2^{\frac{-n}{2}} S_{\bar{y}}$$

- ⇒ Ak má niektorý z regresných koeficientov malú hodnotu
 - a. jeho hodnota by **mala byť nulová**, t.j. príslušný faktor nemá vstupovať do modelu, jeho nenulová hodnota je **spôsobená chybami merania**
 - b. jeho hodnota má byť nenulová a nemožno ho zanedbať.

Pri **testovaní štatistickej významnosti vplyvu jednotlivých faktorov** na výslednú regresnú závislosť môžeme použiť štatistiku t, ktorá sa riadi Studentovým rozdelením s

$$\begin{aligned} \nu_{\,\overline{y}} &= 2^{\,n} \big(q - 1 \big) \text{ stupňami voľnosti} & t &= \frac{\hat{\theta}_{j}^{\,*} - \theta_{j}}{S_{\theta_{j}}} = \frac{\hat{\theta}_{j}^{\,*} - \theta_{j}}{S_{\overline{y}}} \, 2^{\frac{n}{2}} \end{aligned}$$
 Dosadíme do
$$P \bigg(-t_{1 - \frac{\alpha}{2}} \Big(\nu_{\,\overline{Y}} \Big) \leq t \leq t_{1 - \frac{\alpha}{2}} \Big(\nu_{\,\overline{Y}} \Big) \bigg) = 1 - \alpha$$

po úprave
$$P\left(\theta_{j} - t_{1-\frac{\alpha}{2}} \left(v_{\overline{Y}}\right) \frac{S_{\overline{Y}}}{2^{\frac{n}{2}}} \leq \hat{\theta}_{j}^{*} \leq \theta_{j} + t_{1-\frac{\alpha}{2}} \left(v_{\overline{Y}}\right) \frac{S_{\overline{Y}}}{2^{\frac{n}{2}}}\right) = 1 - \alpha$$

$$P\left(\theta_{j} - \delta \leq \hat{\theta}_{j}^{*} \leq \theta_{j} + \delta\right) = 1 - \alpha$$

Ak θ_j =0, t.j. t.j. člen θ_j u $_j$ sa v štruktúre reálneho systému nenachádza, potom platí $P\Big(\!\!\!-\delta \leq \hat{\theta}_i^* \leq \delta\Big)\!\!\!\!= 1-\alpha$

Koeficient $\hat{\theta}_{i}=0$ a teda **faktor** u_{i} **z modelu vypustíme**, ak

$$\delta = S_{\theta_j} t_{1-\frac{\alpha}{2}} \left(v_{\overline{y}} \right) = t_{1-\frac{\alpha}{2}} \left(v_{\overline{y}} \right) \frac{S_{\overline{y}}}{2^{\frac{n}{2}}}$$

⇒ Adekvátnosť lineárneho modelu (je lineárny model vhodný?)

overíme pomocou Fisher-Snedecorovho testu

$$w = \frac{S_{\widetilde{y}}^2}{S_{\overline{y}}^2} = \frac{\frac{1}{2^n - n - 1} q \sum_{i=1}^{2^n} (\overline{y}_i - \hat{y}_i)^2}{\frac{1}{2^n (q - 1)} \sum_{i=1}^{2^n} \sum_{j=1}^q (y_{ij} - \overline{y}_i)^2}$$

kde

$$S_{\widetilde{Y}}^2 = \frac{Q_{\widetilde{Y}}}{v_{\widetilde{Y}}} \qquad Q_{\widetilde{y}} = q \sum_{i=1}^{2^n} (\overline{y}_i - \hat{y}_i)^2 \qquad v_{\widetilde{Y}} = 2^n - n - 1$$

je výberový rozptyl výstupu regresného modelu voči priemeru skupiny údajov. Ak sú oba rozptyly približne rovnaké (t.j. chyba modelu je približne na úrovni chyby merania), platí $P\big(w \leq w_{\scriptscriptstyle 1-\alpha}\big(v_{\scriptscriptstyle{\bar{y}}},v_{\scriptscriptstyle{\bar{y}}}\big)\big) = 1-\alpha$

Lineárny model je adekvátny, ak $W \le W_{1-\alpha}(v_{\widetilde{y}}, v_{\overline{y}})$

v opačnom prípade je potrebná iná štruktúra modelu.

Postup:

1. Vstupy u_i' pretransformujeme na bezrozmerné premenné $u_i \in \langle -1,1 \rangle$

$$u_{i} = \frac{u'_{i} - \frac{u'_{imax} + u'_{imin}}{2}}{\frac{u'_{imax} - u'_{imin}}{2}} = \frac{2u'_{i} - u'_{imax} - u'_{imin}}{u'_{imax} - u'_{imin}}$$

$$i = 1, ..., n$$

- 2. Vytvoríme maticu \mathbf{H} rozmiestnenie bodov merania. Zvolíme počet paralelných meraní v každom bode q. Odmeriame hodnoty výstupu y_{ij} , $i=1,...,2^n$, j=1,...,q. Vypočítame výberový priemer z q meraní \overline{y}_i pre $i=1,...,2^n$.
- 3. Určíme hodnoty parametrov

$$\hat{\theta}_{j} = \frac{1}{2^{n}} \sum_{i=1}^{2^{n}} \overline{y}_{i} u_{ij} = \frac{1}{2^{n}} \sum_{i=1}^{2^{n}} \overline{y}_{i} \left(-1\right)^{int} \left(\frac{i-1}{2^{j-1}}\right)$$
 $j = 0, \dots, n$

4. Otestujeme štatistickú významnosť parametrov. Koeficient $\hat{\theta}_j = 0$ a teda faktor u_i z modelu vypustíme, ak

$$\begin{split} -\delta & \leq \hat{\theta}_j \leq \delta & \delta = S_{\theta_j} t_{1-\frac{\alpha}{2}} \Big(v_{\overline{y}} \Big) = \frac{S_{\overline{y}}}{2^{\frac{n}{2}}} t_{1-\frac{\alpha}{2}} \Big(v_{\overline{y}} \Big) \\ e & S_{\overline{Y}}^2 = \frac{Q_{\overline{Y}}}{v} \qquad v_{\overline{Y}} = 2^n (q-1) \qquad Q_{\overline{y}} = \sum_{i=1}^{2^n} \sum_{j=1}^q (y_{ij} - \overline{y}_i)^2 \end{split}$$

5. Otestujeme adekvátnosť lineárneho plánu. Lineárny model je adekvátny, ak

$$\begin{split} \frac{S_{\widetilde{Y}}^2}{S_{\widetilde{Y}}^2} &= \frac{\frac{1}{2^n - n - 1} q \sum_{i=1}^{2^n} \left(\overline{y}_i - \hat{y}_i \right)^2}{\frac{1}{2^n (q - 1)} \sum_{i=1}^{2^n} \sum_{j=1}^{q} \left(y_{ij} - \overline{y}_i \right)^2} \leq w_{1 - \alpha} \left(v_1, v_2 \right) & v_1 &= 2^n - n - 1 \\ v_2 &= 2^n (q - 1) \\ S_{\widetilde{Y}}^2 &= \frac{Q_{\widetilde{Y}}}{v_{\widetilde{Y}}} & Q_{\widetilde{y}} &= q \sum_{i=1}^{2^n} \left(\overline{y}_i - \hat{y}_i \right)^2 & v_{\widetilde{Y}} &= 2^n - n - 1 \end{split}$$

Príklad → priklad_ortog_plan.pdf + cvičenia

3.2.2. Ortogonálny plán pre kvadratický model

⇒ Predpokladáme **n-faktorový kvadratický model**

$$\hat{y} = \hat{\theta}_0 + \hat{\theta}_1 u_1 + \ldots + \hat{\theta}_n u_n + \hat{\theta}_{n+1} u_1^2 + \ldots + \hat{\theta}_{2n} u_n^2 + \hat{\theta}_{2n+1} u_1 u_2 + \ldots + \hat{\theta}_k u_{n-1} u_n$$

9

počet neznámych parametrov

$$1+k=\frac{1}{2}(n+1)(n+2)=1+\frac{1}{2}n(n+3),$$

t.j. treba **rozšíriť počet stĺpcov** matice **H** a **zväčšiť aj počet riadkov** (počet bodov plánu experimentu)

⇒ Kompozičný plán – kompozícia troch skupín bodov plánu:

- a) **rohové** 2ⁿ vrcholov hyperkocky s dĺžkou hrany rovnou dvom (pre 3-faktorový plán modré body 1-8)
- b) **osové** 2n bodov na osiach, symetricky položené voči počiatku, vzdialené od neho o hodnotu α (červené body 9-14)
- c) **počiatok n-rozmerného priestoru** (zelený bod 15)

spolu: $N = 2^{n} + 2n + 1$ **bodov.**

⇒ Ortogonalita plánu

- nastavenie μ tak, aby súčet prvkov v stĺpcov prislúchajúcim kvadrátom faktorov bol nulový
- nastavenie α tak, aby stĺpce boli navzájom aj voči ostatným ortogonálne

$$\mu = \sqrt{\frac{2^n}{N}}$$

$$\alpha = \pm \sqrt{\frac{1}{2} \mu N (1 - \mu)}$$

Tabuľka ortogonálneho plánu pre kvadratický model:

			Stĺpce matice H										
Typy Počet bodov bodov	~		Matica U			$U_1^2 - \mu$	$u_2^2 - \mu$	$U_3^2 - \mu$	u_1u_2	u ₁ u ₃	u_2u_3		
		u_0	U ₁	u ₂	u ₃	5.1 pt	5.2 pt	3 P					
			0	1	2	3	4	5	6	7	8	9	
		1	1	1	1	1	1-μ	1-μ	1-μ	1	1	1	
	İ	2	1	-1	1	1	1-μ	1-μ	1-μ	-1	-1	1	
' (1)	İ	3	1	1	-1	1	1-μ	1-μ	1-μ	-1	1	-1	
ŏ	ŏ on	4	1	-1	-1	1	1-μ	1-μ	1-μ	1	-1	-1	
Rohové _z	5	1	1	1	-1	1-μ	1-μ	1-μ	1	-1	-1		
	6	1	-1	1	-1	1-μ	1-μ	1-μ	-1	1	-1		
		7	1	1	-1	-1	1-μ	1-μ	1-μ	-1	-1	1	
	8	1	-1	-1	-1	1-μ	1-μ	1-μ	1	1	1		
		9	1	α	0	0	α^2 - μ	-μ	-μ	0	0	0	
.40		10	1	-α	0	0	α^2 - μ	-μ	-μ	0	0	0	
9xox 2n	11	1	0	α	0	-μ	α^2 - μ	-μ	0	0	0		
	12	1	0	-α	0	-μ	α^2 - μ	-μ	0	0	0		
		13	1	0	0	α	-μ	-μ	-μ α²-μ	0	0	0	
		14	1	0	0	-α	-μ	-μ	α^2 - μ	0	0	0	
Stred	1	15	1	0	0	0	-μ	-μ	-μ	0	0	0	

⇒ Informačná matica má tvar

$$\mathbf{R} = \mathbf{H}^{\mathsf{T}} \mathbf{H} = \begin{pmatrix} r_0 & \mathbf{0}^{\mathsf{T}} & \mathbf{0}^{\mathsf{T}} & \mathbf{0}^{\mathsf{T}} \\ \mathbf{0} & r_1 \mathbf{I}_n & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & r_2 \mathbf{I}_n & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & r_3 \mathbf{I}_{\binom{n}{2}} \end{pmatrix}$$

$$\begin{split} & r_0 = 2^2 + 2n + 1 = N \\ & r_1 = 2^n + 2\alpha^2 = \mu N \\ & r_2 = 2^2 (1 - \mu)^2 + 2(\alpha^2 - \mu)^2 + (2n - 1)\mu^2 = \frac{1}{2}\mu^2 N^2 (1 - \mu)^2 \\ & r_3 = 2^n = \mu^2 N \end{split}$$

kde I_n je jednotková matica rozmeru $n \times n$,

 $I_{\binom{n}{2}}$ je jednotková matica, ktorá má $\binom{n}{2} = \frac{1}{2}n(n-1)$ riadkov a stĺpcov

Disperzná matica $P = R^{-1}$ \rightarrow $p_i = \frac{1}{r_i}$

$$\mathbf{P} = \begin{pmatrix} p_0 & \mathbf{0}^T & \mathbf{0}^T & \mathbf{0}^T \\ \mathbf{0} & p_1 \mathbf{I}_n & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & p_2 \mathbf{I}_n & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & p_3 \mathbf{I}_{\binom{n}{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{r_0} & \mathbf{0}^T & \mathbf{0}^T & \mathbf{0}^T \\ \mathbf{0} & \frac{1}{r_1} \mathbf{I}_n & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \frac{1}{r_2} \mathbf{I}_n & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \frac{1}{r_3} \mathbf{I}_{\binom{n}{2}} \end{pmatrix}$$

⇒ Odhad hľadaných parametrov

$$\begin{split} \widehat{\theta}_j^{\star} &= p_1 \sum_{i=1}^N \overline{y}_i u_{ij} & j = 1, 2, \cdots, n \\ \widehat{\theta}_j^{\star} &= p_2 \sum_{i=1}^N \overline{y}_i \Big(u_{i,j-n}^2 - \mu \Big) & j = n+1, \dots, 2n \\ \widehat{\theta}_j^{\star} &= p_3 \sum_{i=1}^N \overline{y}_i u_{ix} u_{iz} & j = \frac{\big(x+1\big)\big(2n-z\big)}{2} + z = 2n+1, \cdots, k \,, \, 1 \leq x < z \leq n \\ & \text{koef. pri zmiešaných súčinoch} \\ \widehat{\theta}_0^{\star} &= p_0 \sum_{i=1}^N \overline{y}_i - \mu \sum_{i=1}^n \widehat{\theta}_{i+n}^{\star} & \text{absolútny člen} \end{split}$$

⇒ Výberové rozptyly odhadovaných parametrov

$$\operatorname{cov}(\hat{\boldsymbol{\theta}}) = \sigma^2 \mathbf{P}$$

$S_{\theta_i}^2 = p_1 S_{\overline{y}}^2$	i = 1, 2,, n	koef. pri lineárnych členoch
$S_{\theta_i}^2 = p_2 S_{\overline{y}}^2$	$i = n + 1, \ldots, 2n$	koef. pri kvadratických členoch
$S_{\theta_i}^2 = p_3 S_{\bar{y}}^2$	i=2n+1,,k	koef. pri zmiešaných súčinoch
$S_{\theta_0}^2 = (p_0 + \mu^2 n)$	$(p_2)S_{\bar{y}}^2$	absolútny člen

kde

$$S_{\overline{y}}^{2} = \frac{1}{(q-1)N} \sum_{i=1}^{N} \sum_{j=1}^{q} (y_{ij} - \overline{y}_{i})^{2} \qquad v_{\overline{y}} = (q-1)N$$

je výberový rozptyl vzoriek voči priemeru skupiny.

⇒ Testovanie štatistickej významnosti vplyvu jednotlivých faktorov

Koeficient θ_i z modelu vypustíme, ak

$$-\delta_j \leq \hat{\theta}_j^* \leq \delta_j \hspace{1cm} \text{kde} \hspace{1cm} \delta_j = S_{\theta_j} t_{1-\frac{\alpha}{2}} (v_{\overline{y}})$$

⇒ Adekvátnosť kvadratického modelu overíme pomocou Fisher-Snedecorovho testu

$$w = \frac{S_{\widetilde{y}}^{2}}{S_{\overline{y}}^{2}} = \frac{\frac{1}{N-k-1} \sum_{i=1}^{N} q(\overline{y}_{i} - \hat{y}_{i})^{2}}{\frac{1}{N(q-1)} \sum_{i=1}^{N} \sum_{j=1}^{q} (y_{ij} - \overline{y}_{i})^{2}}$$

$$k\acute{y} \text{ model je adekvátny, ak}$$

$$w \leq w_{1-\alpha}(v_{1}, v_{2})$$

$$v_1 = N - k - 1$$
, $v_2 = N(q - 1)$

Kvadratický model je adekvátny, ak

$$W \leq W_{1-\alpha}(v_1, v_2)$$

Postup:

1. Vstupy u_i' pretransformujeme na bezrozmerné premenné $u_i \in \langle -1,1 \rangle$

$$u_{i} = \frac{u'_{i} - \frac{u'_{imax} + u'_{imin}}{2}}{\frac{u'_{imax} - u'_{imin}}{2}} = \frac{2u'_{i} - u'_{imax} - u'_{imin}}{u'_{imax} - u'_{imin}}$$
 $i = 1, ..., n$

2. Počet bodov je $N = 2^n + 2n + 1$ a

$$\mu = \sqrt{\frac{2^n}{N}} \qquad \qquad \alpha = \pm \sqrt{\frac{1}{2} \, \mu N \! \left(1 - \mu \right)} \label{eq:epsilon}$$

- Vytvoríme maticu H rozmiestnenie bodov merania. Zvolíme počet paralelných meraní v každom bode q. Odmeriame hodnoty výstupu y_{ij}, i = 1,...,N, j = 1,...,q. Vypočítame výberový priemer z q meraní ȳ_i pre i = 1,...,N.
- 4. Určíme prvky disperznej matice

$$p_3 = \frac{1}{\mu^2 N}$$
 $p_2 = \frac{2}{\mu^2 (1-\mu)^2 N^2}$ $p_1 = \frac{1}{\mu N}$ $p_0 = \frac{1}{N}$

5. Určíme hodnoty odhadu parametrov

$$\begin{split} \hat{\theta}_j^* &= p_1 \sum_{i=1}^N \overline{y}_i u_{ij} & j = 1, 2, \cdots, n \\ \hat{\theta}_j^* &= p_2 \sum_{i=1}^N \overline{y}_i \Big(u_{i,j-n}^2 - \mu \Big) & j = n+1, \ldots, 2n \\ \hat{\theta}_j^* &= p_3 \sum_{i=1}^N \overline{y}_i u_{ix} u_{iz} & j = \frac{\big(x+1\big)\big(2n-z\big)}{2} + z = 2n+1, \cdots, k \;, \; 1 \leq x < z \leq n \\ & \text{koef. pri zmiešaných súčinoch} \\ \hat{\theta}_0^* &= p_0 \sum_{i=1}^N \overline{y}_i - \mu \sum_{i=1}^n \hat{\theta}_{i+n}^* & \text{absolútny člen} \end{split}$$

6. Otestujeme štatistickú významnosť parametrov. Koeficient $\hat{\theta}_{j}$ z modelu vypustíme, ak

$$\begin{split} &-\delta_j \leq \hat{\theta}_j \leq \delta_j \qquad \delta_j = S_{\theta_j} t_{1-\frac{\alpha}{2}} \Big(\nu_{\overline{y}} \Big) \\ &S_{\theta_i}^2 = p_1 S_{\overline{y}}^2 \qquad i = 1, 2, \dots, n \qquad \text{koef. pri line\'arnych \'clenoch} \\ &S_{\theta_i}^2 = p_2 S_{\overline{y}}^2 \qquad i = n+1, \dots, 2n \qquad \text{koef. pri kvadratick\'ych \'clenoch} \\ &S_{\theta_i}^2 = p_3 S_{\overline{y}}^2 \qquad i = 2n+1, \dots, k \qquad \text{koef. pri zmie\'san\'ych s\'u\'cinoch} \\ &S_{\theta_0}^2 = \Big(p_0 + \mu^2 n p_2 \Big) S_{\overline{y}}^2 \qquad \text{absol\'utny \'clen} \\ &Q_{\overline{y}} = \sum_{i=1}^N \sum_{j=1}^q \Big(y_{ij} - \overline{y}_i \Big)^2 \qquad \nu_{\overline{y}} = N(q-1) \qquad S_{\overline{y}}^2 = \frac{Q_{\overline{y}}}{\nu_{\overline{y}}} \end{split}$$

7. Otestujeme adekvátnosť kvadratického plánu. Kvadratický model je adekvátny, ak

$$\frac{S_{\widetilde{Y}}^2}{S_{\widetilde{Y}}^2} = \frac{\frac{1}{N-k-1} \sum_{i=1}^{N} q(\overline{y}_i - \hat{y}_i)^2}{\frac{1}{N(q-1)} \sum_{i=1}^{N} \sum_{j=1}^{q} \left(y_{ij} - \overline{y}_i\right)^2} \le w_{1-\alpha}(v_1, v_2) \qquad v_1 = N-k-1, \ v_2 = N(q-1)$$