- 1) Grafy eulerowskie
 - własności
 - algorytmy
- 2) Problem chińskiego listonosza

Grafy eulerowskie

Def. Graf (multigraf, niekoniecznie spójny) jest *grafem eulerowskim*, jeśli zawiera cykl zawierający wszystkie krawędzie. Graf jest *półeulerowski*, gdy posiada łańcuch o powyższej własności.

Przykład Poniżej podano reprezentacje trzech grafów, z których pierwszy jest eulerowski, drugi – półeulerowski, natomiast ostatni nie jest ani eulerowski ani półeulerowski.

Grafy eulerowskie

Nazwa "eulerowski" pochodzi stąd, iż Euler w 1736 r. rozwiązał "problem mostów królewieckich". Pytano, czy można przejść dokładnie raz przez każdy z siedmiu mostów (rys. po lewej) tak, aby powrócić do punktu wyjścia. Zauważmy, że problem jest równoważny stwierdzeniu, czy graf pokazany na rys. po prawej stronie jest eulerowski.

Grafy eulerowskie

Aby podać warunek konieczny i dostateczny na to, aby dany graf był eulerowski będzie potrzebny poniższy lemat:

Lemat Jeśli każdy wierzchołek multigrafu G ma stopień równy co najmniej 2, to G zawiera cykl.

Dowód: Jeśli G zawiera pętle lub krawędzie wielokrotne, to lemat jest spełniony, więc zakładamy dalej, że G jest grafem prostym. Następnie konstruujemy ścieżkę: wybieramy dowolny wierzchołek $v_1 \in V(G)$, po czym dodajemy kolejne według zasady: jeśli v_i jest ostatnio dodanym wierzchołkiem, to jeśli v_i jest sąsiedni z v_j poprzednio dodanym do ścieżki, to otrzymujemy cykl zawierający $v_j,...,v_i$ co kończy dowód. W przeciwnym wypadku wybieramy dowolnego sąsiada wierzchołka v_i (istnieje, ponieważ $\deg(v_i)>1$) i dodajemy go do ścieżki. Graf G jest skończony więc w pewnym kroku otrzymamy wierzchołek v_k , który jest sąsiedni z pewnym v_i , gdzie l < k.

Tw. Eulera

Tw. (Euler, 1736) Multigraf spójny jest eulerowski wtedy i tylko wtedy, gdy stopień każdego wierzchołka jest liczbą parzystą.

Dowód: (\Rightarrow) Jeśli C jest cyklem Eulera w G, to trawersujemy i usuwamy krawędzie w E(G) zgodnie z kolejnością zadaną przez C. Gdy przechodzimy przez dowolny wierzchołek v, to usuwamy dwie incydentne z nim krawędzie, więc stopień tego wierzchołka w tak zredukowanym grafie pozostaje parzysty. Na rys. poniżej kolorem czerwonym oznaczono krawędzie, które zostały usunięte z G.

Tw. Eulera

Dowód tw. Eulera (\Leftarrow) *G* jest spójny, więc dla każdego v zachodzi deg(v)>1 więc z poprzedniego lematu wiadomo, że G zawiera cykl, który oznaczmy przez C. Twierdzenie dowodzimy przez indukcję względem m. Jeśli C = G, to dowód jest zakończony. W przeciwnym wypadku każda składowa spójności grafu G - E(C) spełnia założenie twierdzenia, więc z założenia indukcyjnego jest eulerowska. Znajdujemy cykl Eulera w G następująco: przechodzimy przez kolejne wierzchołki w C i jeśli bieżący wierzchołek należy do pewnej składowej spójności, to trawersujemy cykl Eulera w tej składowej, powracając do tego samego wierzchołka w C.

Składowe spójności grafu G - E(C)

Algorytm Fleury'ego

Wniosek Multigraf spójny jest eulerowski wtedy i tylko wtedy, gdy zbiór jego krawędzi można podzielić na rozłączne cykle.

Wniosek Multigraf spójny jest półeulerowski, gdy posiada co najwyżej dwa wierzchołki nieparzystego stopnia. Jeden z nich jest początkiem, a drugi końcem łańcucha Eulera.

Algorytm Fleury'ego (znajdujący cykl Eulera)

- rozpocznij wędrówkę w dowolnym wierzchołku
- usuwaj strawersowane krawędzie, przechodząc po moście jedynie w ostateczności (sytuacja, w której są do wyboru co najmniej dwa mosty oznacza, że graf nie jest eulerowski).

Inny algorytm...

```
procedure Euler(G)
begin
  stos := \emptyset; ce := \emptyset;
  stos.push( dowolny wierzchołek grafu );
  while stos \neq \emptyset do begin
     v := stos.top;
     if deg(v) \neq 0 then begin
        u – sąsiad v o najniższym indeksie;
        G := (V(G), E(G) \setminus \{\{u,v\}\});
        stos.push(u);
     end else begin (* deg(v) = 0 *)
        stos.pop(v);
        ce.push(v);
     end
  end
end
```

Zmienne:

stos – stos pomocniczy;
 ce – stos przechowujący
 wierzchołki w kolejności
 w jakiej tworzą cykl Eulera

Uwagi:

- operacja *top* zwraca wierzchołek na szczycie stosu, ale zawartość stosu się nie zmienia
- wynik działania procedury to cykl Eulera zapamiętany w zmiennej *ce*
- deg zwraca stopień wierzchołka w zredukowanym grafie

Problem chińskiego listonosza

Dana jest sieć ulic oraz poczta. Aby listonosz dostarczył korespondencję musi przejść wzdłuż każdej ulicy co najmniej raz i powrócić do punktu wyjścia. Formułując problem w języku grafów, pytamy o najkrótszą zamkniętą marszrutę w grafie *G* utworzonym na podstawie sieci ulic, w którym wagi krawędzi odpowiadają długościom ulic.

Znany jest efektywny algorytm rozwiązujący ten problem. Rozważymy trzy przypadki:

Przypadek 1: graf *G* jest eulerowski. Wówczas każdy cykl Eulera jest optymalnym rozwiązaniem, które można znaleźć korzystając np. z algorytmu Fleury'ego.

CPP: przypadek 2

Graf *G* jest półeulerowski. Znajdujemy ścieżkę Eulera łączącą dwa wierzchołki nieparzystego stopnia *u* i *v*. Następnie szukamy najkrótszej drogi z *u* do *v*. Łącząc obie drogi otrzymujemy rozwiązanie.

Przykład

1) Droga Eulera:

$$b \rightarrow a \rightarrow f \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow c \rightarrow f \rightarrow e$$

2) Najkrótsza droga z *e* do *b*

$$e \rightarrow f \rightarrow a \rightarrow b$$

3) "Trasa listonosza":

$$b \rightarrow a \rightarrow f \rightarrow b \rightarrow c \rightarrow$$

$$d \rightarrow e \rightarrow c \rightarrow f \rightarrow e \rightarrow f \rightarrow a \rightarrow b$$

CPP: przypadek ogólny

- 1. Zidentyfikuj wierzchołki nieparzystego stopnia w grafie *G*. Niech *W* będzie zbiorem takich wierzchołków.
- 2. Skonstruuj obciążony graf pełny G o zbiorze wierzchołków W, w którym waga krawędzi $\{u,v\}$ jest równa długości najkrótszej ścieżki łączącej u z v w wyjściowym grafie G.

CPP: przypadek ogólny

- 3. Znajdź minimalne skojarzenie dokładne (ang. *minimum weight perfect matching*) *M* w grafie *G*'.
- 4. Dla każdej krawędzi $e \in M$ dodaj krawędzie w grafie G, które odpowiadają najkrótszej ścieżce odpowiadającej e.
- 5. Nowo powstały graf jest eulerowski.

