Logik und Komplexität ÜBUNG 7

Denis Erfurt, 532437 HU Berlin

Aufgabe 1)

Aufgabe 2)

Sei $GG \subseteq UGraph$ die Klasse der Strukturen, bei denen jeder Knoten einen Geraden Grad besitzt.

zeige GG ist nicht EMSO-definierbar in UGraph.

Laut dem Satz von Ajtai und Fagin genügt es zu zeigen, dass Duplicator eine Gewinnstrategie im (l,m)-Ajtai-Fagin-Spiel besitzt.

Phase 1. Duplicator wählt einen vollständigen-Graphen $\mathfrak{A} = K_{2^{l+m}+1}$. Beobachtung: für einen vollständigen-Graphen gilt:

n ist ungerade
$$\Leftrightarrow K_n \in GG$$

Spoiler wählt hiernach die Mengen $X_1^{\mathfrak{A}},...,X_l^{\mathfrak{A}}\subseteq V$ Sei $c^{\mathfrak{A}}(a):=\{X_i^{\mathfrak{A}}:a\in X_i^{\mathfrak{A}}\}$ die Farbe eines Knotens a. Für jede Farbe $f\subseteq\{X_1^{\mathfrak{A}},...,X_l^{\mathfrak{A}}\}$ sei

$$M_f^{\mathfrak{A}} := \{ a \in A : c^{\mathfrak{A}}(a) = f \}$$

zeige: nach l Mengen exestiert exestiert ein $M_f^{\mathfrak{A}}$ so dass $|M_f^{\mathfrak{A}}| \geq 2^m$ Beweis durch vollständige Induktion:

Induktionsannahme: nach der i-ten Menge $X_i^{\mathfrak{A}}$ exestiert ein f mit $|M_f^{\mathfrak{A}}| \geq 2^{l-i+m}$

Induktionsanfang: i=0 Wir wissen dass $|A|=2^{l+m}$. Für $f=\{\}$ ist $M_f^{\mathfrak{A}}=A\Rightarrow |M_f^{\mathfrak{A}}|\geq 2^{l+m}$

Induktionsschritt: $i \to i+1$ Nach IA exestiert ein f mit $|M_f^{\mathfrak{A}}| \ge 2^{l-i+m}$ Spoiler wählt ein $X_{i+1}^{\mathfrak{A}}$.

Sei
$$f' := f \cup \{X_{i+1}^{\mathfrak{A}}\}$$

Nach **IA** wissen wir:

$$|M_{f'}^{\mathfrak{A}}| + |M_f^{\mathfrak{A}}| \ge 2^{l-i+m}$$

Falls $|M_{f'}^{\mathfrak{A}}| < 2^{l-(i+1)+m}$, dann folgt daraus $|M_f^{\mathfrak{A}}| \geq 2^{m-(i+1)+m}$ Falls $|M_f^{\mathfrak{A}}| < 2^{l-(i+1)+m}$, dann folgt daraus $|M_{f'}^{\mathfrak{A}}| \geq 2^{m-(i+1)+m}$

Indunktionsschluss: Nach
l Mengen exestiert eine Farbe f mit $|M_f^{\mathfrak{A}}| \geq 2^m$

Phase 2. Duplicator wählt $\mathfrak{B} = K_{2^{l+m}+2}$. Nach Beobachtung ist $\mathfrak{B} \in UGraph \setminus GG$ Weiter wählt Duplicator die Mengen $X_1^{\mathfrak{B}}, ..., X_l^{\mathfrak{B}}$ so, dass für jede Farbe f gilt:

$$|M_f^{\mathfrak{B}}| = |M_f^{\mathfrak{A}}| \text{ oder } |M_f^{\mathfrak{B}}|, |M_f^{\mathfrak{A}}| \ge 2^m \tag{1}$$

Intuitiv färbt Duplicator den neuen Knoten mit der in $\mathfrak A$ häufigsten Farbe.

Phase 3. Betrachte das EF-Spiel auf $\mathfrak{A}' := (\mathfrak{A}, X_1^{\mathfrak{A}}, ..., X_l^{\mathfrak{A}})$ und $\mathfrak{B}' := (\mathfrak{B}, X_1^{\mathfrak{B}}, ..., X_l^{\mathfrak{B}})$

Für jede Wahl $a_i \in A$ von Spoiler kann Dup wegen (1) ein $b_i \in B$ wählen, so dass $c(a)^{\mathfrak{A}} = c(b)^{\mathfrak{B}}$: Falls $|M_f^{\mathfrak{B}}| = |M_f^{\mathfrak{A}}|$ so hat Duplicator eine Gewinnstrategie, in dem er Spoilers züge Kopiert. Falls $|M_f^{\mathfrak{B}}|, |M_f^{\mathfrak{A}}| \geq 2^m$ so besitzt Duplicator eine Gewinnstrategie, indem er ein neues Element wählt, falls Spoiler ein neues Element mit dieser Farbe gewählt hat. Andernfalls falls Spoiler ein in Runde i gewähltes Element wählt, so wählt Duplicator in Runde i gewählte Element der anderen Struktur. Analog für Spoilers wahl aus \mathfrak{B} .

Somit ist gezeigt das Duplicator eine Gewinnstrategie im (l,m)-Ajtai-Fagin-Spiel besitzt. Somit ist nach Satz 3.44 GG nicht EMSO-definierbar in UGraph.

Aufgabe 3)

Aufgabe 4)