Ranking and Prediction of Amazon Fine Food based on Costumer's rating and review

Chan Hei Nam, Cheng Tin Chu, Lei Wen Feng, Ng Wing Hin

Introduction

User's rating and review is one of the explicit ways to determine product's popularity. In this project, we are trying to process the Amazon Fine Food Reviews such that the result can be used to predict the rating based on review.

Basic statistics of the dataset

Basic statistics of the dataset

	Rating	Word(Processed)
Mean	4.18	255
Minimum	1	7
Maximum	5	14425

System Structure

There are mainly three stages in our system :

- Stage 1 Pre-processing the dataset.
- Stage 2 Using MapReduce, find the first hundred k-shingles, $1 \le k \le 5$, of each rating, $1 \le \text{rating} \le 5$.
- Stage 3 Do prediction of rating based on the review input to the system.

Stage 1 Pre-processing

Algorithm 1: Pre-processing

while There exists next row inside Reviews.csv do

Extract **Rating** and **Text**;

Lower **Text** and remove *some* stopwords and punctuation;

Returning line with format Rating, $word_1$, $word_2$, ...;

end

Example result from Stage 1

Original data:

- Id, ProductId, UserId, ProfileName, HelpfullnessNumerator, HelpfullnessDenominator, Score, Time, Summary, Text
- 1,B001E4KFG0,A3SGXH7AUHU8GW,delmartian,1,1,5,1303862400,Good Quality Dog Food,I have bought...
- 2,B00813GRG4,A1D87F6ZCVE5NK,dll pa,0,0,1,1346976000,Not as Advertised,"Product arrived labeled...
- 3, B000LQOCH0, ABXLMWJIXXAIN, "Natalia Corres" "Natalia Corres" "1,1,4,1219017600, ""Delight" says it all ", "This is a confection... This is a confection of the confection
- 4,B000UA0QIQ,A395BORC6FGVXV,Karl,3,3,2,1307923200,Cough Medicine,If you are looking...

Result data:

Score, Text

- 5, bought vitality canned dog food products good quality product looks...
- 1,product arrived labeled jumbo salted peanuts the peanuts actually...
- 4, confection centuriesit light pillowy citrus gelatin nutsin case filberts...
- 2, looking secret ingredient robitussin believe iti got addition root...

Stage 2 MapReduce

Algorithm 2: MapReduce (Mapper)

Stage 2 MapReduce

Algorithm 2: MapReduce (Reducer)

Exmaple result from Stage 2

Result from MapReduce :

Score	k	frequency	shingle
3	4	23	food freshly openedpi likes
1	2	238	br tried
2	1	1601	say
3	4	27	coffeetea love organic coffee

Stage 3 Prediction

Algorithm 3: Prediction using length-k shingles

```
Load the records from Shingle Database;
Find all k-shingles in the input text;
foreach shingle do
   Collect all records of shingle from database;
   Append to RecordsFound;
end
if RecordsFound is not empty then
   score = weighted average of RecordsFound;
else
   score = average of all records in database;
end
return score;
```

Stage 3 Prediction

Prediction Example

Database:

Score	k	frequency	shingle
5	1	68	good
4	1	35	good
5	1	57	really

Input: this is really good

Score:

$$\frac{5 \times 68 + 4 \times 35 + 5 \times 57}{68 + 35 + 57} = 4.78125$$

Stage 3 Prediction

Using shingles of different lengths, we got different performances:

Shingle Length	Mean Squared Error
1	0.228009
2	0.328691
3	0.418788
4	0.442992
5	0.444860

But we need to respect shingles of different length. How?

Regression Model

Regression model

System of linear equation:

$$y_{1} = \beta_{0} + \beta_{1}x_{1} + \dots + \beta_{5}x_{5}$$

$$y_{2} = \beta_{0} + \beta_{1}x_{1} + \dots + \beta_{5}x_{5}$$

$$\vdots \qquad \vdots$$

$$y_{n} = \beta_{0} + \beta_{1}x_{1} + \dots + \beta_{5}x_{5}$$
(1)

In matrix form:

$$\mathbf{Y} = \beta_0 + \beta \cdot \mathbf{X}$$

where

Y is a $n \times 1$ matrix, β_0 is a $n \times 1$ matrix, β is a 5×1 matrix, **X** is a $n \times 5$ matrix

Regression Model

Complexity

key computation step:

- $\mathbf{X}^T\mathbf{X}$ in $O(n \times k^2)$
- $(X^TX)^{-1}$ in $O(k^3)$

As n >> k, the overall complexity is O(n).

Demostration

Conculsion