Partie II: Constitution de la matière

Unité 4: modèle de l'atome

Objectifs:

Savoirs:

- Connaitre la constitution d'un atome
- Savoir que l'atome est électriquement neutre
- Savoir que la masse d'un atome est essentiellement concentré dans son noyau
- Savoir que le numéro atomique caractérise l'élément chimique
- Connaitre le symbole de quelques éléments

Savoir-faire

- Connaitre et savoir le symbole ^A_ZX
- Evaluer la masse d'un atome en faisant la somme de celles de ses protons et de ses neutrons
- Savoir interpréter une suite de transformations chimiques enta terme de conservation d'un élément.

I. La structure de l'atome

Toute la matière de l'univers est constituée à partir des atomes.

Rappelons que : l'atome est formé d'un noyau chargé positivement entouré d'électrons chargés négativement.

1. Modèle de l'atome

L'atome est représenté par une boule, l'ordre de grandeur de son rayon est $10^{-10}\,m$ et son noyau par une boule l'ordre de grandeur de son rayon est $10^{-15}\,m$.

Comparaison entre le rayon de l'atome et le rayon de noyau :

$$\frac{r_a}{r_n} = \frac{10^{-10}}{10^{-15}} = 10^5$$

Le rayon de l'atome est plus grand de $10^5\,$ fois par rapport au celui de noyau.

L'atome est donc constitué essentiellement de vide. On dit que l'atome à une structure lacunaire.

Cours de chimie de tronc commun scientifique et technologie

2. Le noyau de l'atome

Le noyau est constitué des particules s'appellent les nucléons.

Les nucléons sont les protons et les neutrons :

Le proton; noté p; est une particule chargée d'électricité positive, sa charge électrique est vaut $q=+e=+1,6\times10^{-19}C$ (e est la charge élémentaire et C est l'unité de la charge électrique au SI) et sa masse est $m_p \approx 1,673\times10^{-27}\,\mathrm{Kg}$

- Le neutron ; noté n ; est une particule électriquement neutre de masse $m_n \approx 1,675 \times 10^{-27} \text{ Kg}$
- Le nombre de protons que noyau contient s'appelle le numéro atomique représenter par la lettre Z.
- Le nombre de neutrons dans le noyau est représenté par la lettre N.
- Le nombre de nucléons d'un noyau est représenté par la lettre A tel que A = Z + N
- Représentation conventionnelle du noyau de l'atome (en général l'atome)

 Le noyau d'un atome de symbole chimique X est représenté par : ^A_ZX

Exercice résolu :

On considère le noyau représenté par $_{12}^{24}$ Mg . Quelle est la composition de ce noyau.

Solution:

Pour ce noyau Z = 12 et A = 24.

Il comporte donc 12 protons et comme N = A - Z = 12 neutrons.

3. Electrons

L'électron ; noté e^- ; est une particule chargé d'électricité négative sa charge $q=-e=-1,6\times 10^{-19}C$ et sa masse $m_e=9,1\times 10^{-31}Kg$

La charge élémentaire e est la valeur absolue de la charge d'électron, il est considéré comme la charge la plus petite que l'on prise envisagé.

La charge +Ze du noyau (Z protons) est compensée par la charge -Ze des électrons.

Donc l'atome contient Z électrons dans son cortège électronique.

Physique et histoire

Les nucléons

- En 1919, Ernest Rutherford a donné le nom de proton au noyau de l'atome d'hydrogène.
- En 1932, James Chadwick a découvert le neutron.
- En 1932, Werner Heisenberg a fait l'hypothèse que les noyaux atomiques sont formés de protons et de neutrons

Cours de chimie de tronc commun scientifique et technologie

4. Masse de l'atome

La masse de l'atome est la somme de masses de tous ses compositions.

$$m({}_{Z}^{A}X) = Z \times m_{p} + (A - Z) \times m_{n} + Z \times m_{e}$$

On néglige la masse d'électron devant la masse de proton $m_{_{\rm e}} \ll m_{_{\rm p}}$.

On dit alors que la masse de l'atome est pratiquement égale à celle de son noyau (la masse d'un atome est concentré au noyau)

Puisque $m_p \approx m_n$, on écrit :

$$m\binom{A}{Z}X = Z \times m_p + (A - Z) \times m_n$$
$$= A \times m_p$$

Exercice résolu : Calculer la masse de l'atome de cuivre 63/22/20 Cu

solution:

$$m\binom{63}{29}Cu$$
 = $63 \times m_p$ = $63 \times 1,673 \times 10^{-27} \text{ Kg}$
 $m\binom{63}{29}Cu$ = $1,054 \times 10^{-25} \text{ Kg}$

II. L'élément chimique

1. Les isotopes

Les atomes isotopes d'un élément chimique sont les ensembles d'atomes caractérisés par le même numéro atomique Z et de nombre de nucléons A différents (i.e. nombre de neutrons différent).

Exemples: ${}_{6}^{12}C$; ${}_{6}^{13}C$; ${}_{6}^{14}C$ isotopes d'élément de carbone

Isotopes	¹² ₆ C	¹³ ₆ C	¹⁴ ₆ C
Abondance isotopique naturelle	98,9%	1,1%	Très faible

Abondance isotopique est le pourcentage de la masse de chaque isotope dans un mélange naturelle de l'élément chimique.

2. Les ions monoatomiques

➤ Les ions monoatomiques s'obtiennent à partir des atomes par perte ou gain d'un ou plusieurs électrons.

Cours de chimie de tronc commun scientifique et technologie

- ▶ Un atome qui perd des électrons acquiert une charge positive, il se forme un ion positif s'appelle cation : ex. Na^+ ; K^+ ; Ca^{2+} ...
- \triangleright Un atome qui gagne des électrons acquiert une charge négative, il se forme un ion négative s'appelle anion : ex. F^- ; Cl^- ; O^{2-}

3. L'élément chimique

On donne le nom d'élément chimique à l'ensemble des particules (isotopes et ions monoatomique) caractérisées par le même numéro atomique Z et son symbole chimique.

Au cours des transformations chimique il y a conservation de l'élément chimique.

III. Répartition électronique

Les électrons des atomes de numéro atomique comprise entre 1 et 18 ($1 \le Z \le 18$) se répartissent dans des couches électronique représenter par les lettres : K, L et M.

Les règles de remplissage des couches électroniques :

- a- Une couche électronique ne peut contenir qu'un nombre limité d'électrons.
 - Le nombre maximum d'électron dans les couches est :
 - 2 électrons dans la couche K.
 - ➤ 8 électrons dans la couche L.
 - > 8 électrons dans la couche M.
 - La couche qui contient le nombre maximum d'électron qu'elle peut recevoir porte le nom couche saturée et dans les autres cas porte le nom de couche non saturée.
- b- Les électrons se plaçant d'abord dans la couche K puis, quand celle-ci est saturée, ils remplissent la couche L. quand la couche L est saturée, ils remplissent la couche M.

Exercice d'application :

Le numéro atomique de l'élément soufre est : Z = 16

- 1. Ecrire la répartition des électrons de l'atome de soufre.
- 2. Indiquer la (ou les) couche(s) interne(s) et la couche externe.
- 3. Combien d'électrons l'atome de soufre a-t-il dans sa couche externe.
- 4. Refaire la même question pour les éléments de aluminium Al son numéro atomique Z=13 et d'oxygène O son numéro atomique Z=8.