An Evolutionary Approach for Forex Trading Based on Technical Indicators

Alexandre C. B. Delbem ¹
Geraldo Silva ²
Victor Hugo Cândido de Oliveira ¹

¹ICMC/USP ²IBILCE/UNESP

01 de Dezembro de 2016

- Technical Analysis
 - Definition
 - Technical Indicators
- Currency Strength Strategy
- **Evolutionary Approach**
- Results
- References

Definition

• Murphy (1999) defines Technical Analysis as "the study of market action, primarily through the use of charts, for the purpose of forecasting future price trends"

Definition

- Murphy (1999) defines Technical Analysis as "the study of market action, primarily through the use of charts, for the purpose of forecasting future price trends"
- Market action information sources (Murphy, 1999):
 - Price
 - Volume
 - Open interest

Definition

- Murphy (1999) defines Technical Analysis as "the study of market action, primarily through the use of charts, for the purpose of forecasting future price trends"
- Market action information sources (Murphy, 1999):
 - Price
 - Volume
 - Open interest
- Philosophy (Murphy, 1999):
 - Market action discounts everything
 - Prices move in trends
 - History repeats itself

- Technical Analysis
 - Definition
 - Technical Indicators
- Currency Strength Strategy
- **Evolutionary Approach**
- Results
- References

Simple Moving Average – SMA

$$SMA(p, n) = \sum_{i=1}^{n} \frac{p_i}{n}$$

Examples of SMA¹ with 5, 30 and 80 periods:

¹http://www.fmlabs.com/reference/default.htm?url=SMA.htm

Relative Strength Index – RSI

$$RSI(p, n) = 100 - \frac{100}{1 - RS}$$

$$RS = \frac{AvgUp}{AvgDn}$$

Example of RSI (Wilder Jr, 1978) with 14 periods:

Stochastic Oscilator

$$\%K = \frac{close-lowest(n_K)}{highest(n_K)-lowest(n_K)}$$

 $\%D = MA(\%K, n_D)$

Example of Stochastic Oscilator (Lane and M.D., 1984) with $n_K = 14$, $n_D = 3$ periods:

Stochastic RSI

Apply Lane's Stochastic Oscilator over Wilder's Relative Strength Index

Fibonacci Retracement Lines

Fibonacci Retracement Lines are placed according to some ratios present in the Fibonacci sequence²:

$$F_{n+1} = F_n + F_{n-1}$$

$$\frac{F_n}{F_{n-1}} \approx 1.618$$

$$\frac{F_n}{F_{n+1}} \approx 0.618$$

$$\frac{F_n}{F_{n+2}} \approx 0.382$$

$$\frac{F_n}{F_{n+3}} \approx 0.236$$

²http://stockcharts.com/school/doku.php?id=chart_school:
chart_analysis:fibonacci_retracemen

Fibonacci Retracement Lines

These lines are used as support and resistance levels

- Technical Analysis
- Currency Strength Strategy
 - Currencies
 - Strength Matrixes
 - Selecting Currencies
 - Order Management
- Evolutionary Approach
- 4 Results
- Seferences

Currency Strength Strategy

Based on the strength of the following currencies and the 21 currency pairs resulting of their combination

Symbol	Name
AUD	Australian Dollar
CAD	Canadian Dollar
EUR	Euro
GBP	Pound Sterling
JPY	Japanese Yen
NZD	New Zealand Dollar
USD	United States Dollar

- Technical Analysis
- Currency Strength Strategy
 - Currencies
 - Strength Matrixes
 - Selecting Currencies
 - Order Management
- Evolutionary Approach
- 4 Results
- Seferences

Currency Strength – Strength Matrixes

- Matrix 1: if the current price is above SMA(Close, n) $\rightarrow m \in \{-1, 1\}$
- Matrix 2: if the current price has retracted to Fibonacci's 0.382 level (using SMA(Close, n))
 → m ∈ {-1, 0, 1}
- Matrix 3: $M1 + M2 \rightarrow m \in [-2, 2] \cap \mathbb{Z}$
- Vector 4: sum of columns for each line $\rightarrow v \in [-12, 12] \cap \mathbb{Z}$

$$v[i] = \sum_{i=1}^{7} x_{ij}, i = 1, 2, ..., 7$$

• Matrix 4: strength difference between currencies $\rightarrow m \in [-24, 24] \cap \mathbb{Z}$

- Technical Analysis
- Currency Strength Strategy
 - Currencies
 - Strength Matrixes
 - Selecting Currencies
 - Order Management
- Sevolutionary Approach
- Results
- Seferences

Currency Strength – Selecting Currencies

Loop in time, taking risk per order and maximum risk into account.

- Choose, based on M4, the group of pairs with the higher strength difference (>= 6)
- Do not choose pairs which currencies have absolute strength (vector 4) below 4
- Some definitions
 - Stop loss is placed 15 pips below the last bottom
 - ► Take profit is placed 3 * (current SL) pips above current price (TP:SL = 3:1)
 - ► Stochastic RSI: stoch(RSI(n = 14), fastK = 5, fastD = 5, slowD = 3), using fastD (%D)

- Technical Analysis
- Currency Strength Strategy
 - Currencies
 - Strength Matrixes
 - Selecting Currencies
 - Order Management
- Evolutionary Approach
- 4 Results
- Seferences

Estratégia de Julho – Order Management

- Order is open following the strength given by Matrix 4. BUY order example:
 - Current price is above SMA(High, n) by at least 5 pips
 - Stochastic RSI is below 20% or 70% but falling
 - Pair strength given by M3 is 2 (max)
 - Last bottom must be below current price
 - When the candle opens below last top price the SL is updated to 15 pips below the last bottom
- Lot size is calculated based on risk per order

- Technical Analysis
- 2 Currency Strength Strategy
- Sevolutionary Approach
 - Genetic Algorithms
 - Cromosome structure
- Results
- Seferences

Genetic Algorithms

- Developed by Holland (1975), Genetic Algorithms are probabilistic search methods inspired by natural selection and genetics (Cunha et al., 2012).
- Reproduction, competition, mutation and selection

Algorithm 1 Genetic Algorithm Structure (Cunha et al., 2012)

- 1: *t* ← 0
- 2: Generate initial population P(t)
- 3: Evaluate individuals from P(t)
- 4: while Stopping criteria is not reached do
- 5: Select parents P'(t) from P(t)
- 6: Apply genetic operators to P'(t) to obtain new population P(t+1)
- 7: Evaluate P(t+1)
- 8: $t \leftarrow t+1$
- 9: Retrieve optimization final result

- Technical Analysis
- 2 Currency Strength Strategy
- Evolutionary Approach
 - Genetic Algorithms
 - Cromosome structure
- Results
- Seferences

Cromosome structure

Vector with 240 integer values

- Risk per order and total risk (2)
- Update SL pips until SL (21)
- Pair selection SMA periods (21)
- Pair selection Minimum pair strength difference given by M4 (21)
- Pair selection Minimum currency strength given by V4 (7)
- Fibonacci SMA periods (21)
- Pair selection Minimum distance from SMA (21)
- Stochastic RSI RSI periods (21)
- Stochastic RSI Stochastic periods %K, %D and slowD (3*21)
- Order Management Distance from last bottom to place Stop Loss (21)
- Order Management Ratio TP:SL (21)

- Technical Analysis
- 2 Currency Strength Strategy
- Evolutionary Approach
- Results
 - 1000 chromosomes
 - 100 chromosomes
 - 100 chromosomes with seed
- References

Results – First generation 1000 chromosomes

Results – Selection

- Technical Analysis
- 2 Currency Strength Strategy
- Evolutionary Approach
- Results
 - 1000 chromosomes
 - 100 chromosomes
 - 100 chromosomes with seed
- References

Results – First generation 100 chromosomes

Results – Selection

Results – Selection, crossover and mutation

Results - Crossover, mutation and selection

Results – 10th generation

Results – 20th generation

Results – 30th generation

- Technical Analysis
- 2 Currency Strength Strategy
- 3 Evolutionary Approach
- Results
 - 1000 chromosomes
 - 100 chromosomes
 - 100 chromosomes with seed
- References

Results – First generation 100 chromosomes around seed

Results - Selection

Results – Selection, crossover and mutation

Results - Crossover, mutation and selection

Results – 10th generation

Results – 20th generation

Results – 30th generation

References I

- António Gaspar Cunha, Ricardo Takahashi, and Carlos Henggeler Antunes. *Manual de computação evolutiva e metaheurística*. Coimbra University Press, 2012. ISBN 978-989-26-0150-2. doi: 10.14195/978-989-26-0583-8. URL http://dx.doi.org/10.14195/978-989-26-0583-8.
- John H. Holland. *Adaptation in Natural and Artificial Systems*. University of Michigan Press, Ann Arbor, MI, 1975. Second Edition, 1992.
- George C. Lane and M.D. Lane's stochastics. *Technical Analysis of Stocks and Commodities*, 2:87–90, 1984.
- John J Murphy. *Technical Analysis Of The Financial Markets*. Penguin Publishing Group, 1999. ISBN 9781101659199.
- J. Welles Wilder Jr. New Concepts in Technical Training Systems. Trend Research, 1978. ISBN 0894590278.

