POLITECHNIKA WARSZAWSKA

Wydział Mechatroniki Instytut Automatyki i Robotyki

Zasady Budowy Robotów

Projekt nr 2

Prowadzący: prof. nzw dr hab. inż. Mariusz Olszewski

Wykonali: Mińkowski Rafał Piórkowski Arkadiusz Gr. 37

0. Dobór robota

Dobrano robota części regionalnej o strukturze części regionalnej $\{C_R, B_{R1}, B_{R2}, ...\}$ firmy **ABB IRB 2600-20/1,65**. Przyjęto uproszczenie kształtu wszystkich członów w postaci prostopadłościanów.

1. Podanie zależności i obliczenie parametrów kinematycznych mechanizmu robota

1.1. Człon "1" {C_p}

Człon przyjęto jako prostopadłościan o podstawie prostokątnej (255x255 mm), wysokości h_1 =445mm, oraz l_1 = 150 mm.

Dla członu "1" $\{C_{\rm R}\}$ znane są następujące parametry:

$$\omega_{0/0} = 0 \frac{rad}{s}$$
 $\varepsilon_{0/0} = 0 \frac{rad}{s^2}$ $v_{00/0} = 0 \frac{m}{s}$ $a_{00/0} = 0 \frac{m}{s^2}$ $\phi_1 = 0$

Przyjmujemy:

$$\phi_1 = 175^{\circ}/s = 3,0543 \frac{rad}{s}$$
 $\phi_1 = 175^{\circ}/s^2 = 3,0543 \frac{rad}{s^2}$

Parametry geometryczne:

$$r_{01,00/1} = \begin{bmatrix} l_1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0,15 \\ 0 \\ 0 \end{bmatrix} m$$

$$r_{Cm1,00/1} = \begin{bmatrix} x_{Cm1,00} \\ y_{Cm1,00} \\ z_{Cm1,00} \end{bmatrix} = \begin{bmatrix} \frac{l_1}{2} \\ -h_1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0,075 \\ -0,225 \\ 0 \end{bmatrix} m$$

$$r_{Cm1,01/1} = \begin{bmatrix} x_{Cm1,01} \\ y_{Cm1,01} \\ z_{Cm1,01} \end{bmatrix} = \begin{bmatrix} -l_1 \\ 2 \\ -h_1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} -0,075 \\ -0,225 \\ 0 \end{bmatrix} m$$

Macierz transformacji:

$$A_{1,0} = \begin{bmatrix} C_1 & S_1 & 0 \\ 0 & 0 & 1 \\ S_1 & -C_1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$$

Prędkość kątowa członu "i=1":

$$\omega_{1/1} = A_{1,0} \left[\omega_{0/0} + \phi_1 e_{z0/0} \right] = A_{1,0} \left[0 + \begin{bmatrix} 0 \\ 0 \\ \phi_1 \end{bmatrix} \right] = \begin{bmatrix} C_1 & S_1 & 0 \\ 0 & 0 & 1 \\ S_1 & -C_1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \phi_1 \end{bmatrix} = \begin{bmatrix} 0 \\ \phi_1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 3,0543 \end{bmatrix} \frac{rad}{s}$$

Ex-wektorowa macierz prędkości członu "i - 1 = 0":

$$W_{0/0} = [0]$$

Przyśpieszenie kątowe członu "i = 1":

$$\hat{\boldsymbol{\varepsilon}}_{1/1} = A_{1,0} \left[\hat{\boldsymbol{\varepsilon}}_{0/0} + \ddot{\boldsymbol{\varphi}}_{1} e_{z \, 0/0} + W_{0/0} \left(\dot{\boldsymbol{\varphi}}_{1} e_{z \, 0/0} \right) \right] = A_{1,0} \left[0 + \ddot{\boldsymbol{\varphi}}_{1} e_{z \, 0/0} + 0 \left(\dot{\boldsymbol{\varphi}}_{1} e_{z \, 0/0} \right) \right]$$

$$\varepsilon_{1/1} = \begin{bmatrix} C_1 & S_1 & 0 \\ 0 & 0 & 1 \\ S_1 & -C_1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \phi_1 \end{bmatrix} = \begin{bmatrix} 0 \\ \phi_1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 3,0543 \end{bmatrix} \frac{rad}{s^2}$$

Ex-wektorowa macierz prędkości członu "i = 1":

$$W_{1/1} = \begin{bmatrix} 0 & -\omega_{1,z1} & \omega_{1,y1} \\ \omega_{1,z1} & 0 & -\omega_{1,x1} \\ -\omega_{1,y1} & \omega_{1,x1} & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & \phi_1 \\ 0 & 0 & 0 \\ -\phi_1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 3,0543 \\ 0 & 0 & 0 \\ -3,0543 & 0 & 0 \end{bmatrix} \frac{rad}{s}$$

Prędkość liniowa punktu "01" w członie "i = 1":

$$v_{01/1} = A_{1,0} v_{00/0} + W_{1/1} r_{01,00/1} = A_{1,0} 0 + \begin{bmatrix} 0 & 0 & \phi_1 \\ 0 & 0 & 0 \\ -\phi_1 & 0 & 0 \end{bmatrix} \begin{bmatrix} l_1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -l_1 \phi_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0,4581 \end{bmatrix} \frac{m}{s}$$

Wymnożenie ex-wektorowych macierzy prędkości członu "i = 1":

$$W_{1/1}W_{1/1} = \begin{bmatrix} 0 & 0 & \phi_1 \\ 0 & 0 & 0 \\ -\phi_1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & \phi_1 \\ 0 & 0 & 0 \\ -\phi_1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} -\dot{\phi}_1^2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -\dot{\phi}_1^2 \end{bmatrix} = \begin{bmatrix} -9,3289 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -9,3289 \end{bmatrix} \frac{rad^2}{s^2}$$

Ex-wektorowa macierz przyśpieszenia członu "1":

$$E_{1/1} = \begin{bmatrix} 0 & -\varepsilon_{1,z_1} & \varepsilon_{1,y_1} \\ \varepsilon_{1,z_1} & 0 & -\varepsilon_{1,x_1} \\ -\varepsilon_{1,y_1} & \varepsilon_{1,x_1} & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & \phi_1 \\ 0 & 0 & 0 \\ -\phi_1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 3,0543 \\ 0 & 0 & 0 \\ -3,0543 & 0 & 0 \end{bmatrix} \frac{rad}{s^2}$$

Przyśpieszenie liniowe punktu "01" w członie "1"

$$a_{01/1} = A_{1,0} a_{00/0} + E_{1/1} r_{01,00/1} + W_{1/1} W_{1/1} r_{01,00/1}$$

$$a_{01/1} = A_{1,0} 0 + \begin{bmatrix} 0 & 0 & \phi_1 \\ 0 & 0 & 0 \\ -\phi_1 & 0 & 0 \end{bmatrix} \begin{bmatrix} l_1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -\dot{\phi}_1^2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -\dot{\phi}_1^2 \end{bmatrix} \begin{bmatrix} l_1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -l_1\dot{\phi}_1 \end{bmatrix} + \begin{bmatrix} -l_1\dot{\phi}_1^2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -l_1\dot{\phi}_1^2 \\ 0 \\ -l_1\ddot{\phi}_1 \end{bmatrix} = \begin{bmatrix} -1,3993 \\ 0 \\ -0,4581 \end{bmatrix} \frac{m}{s^2}$$

Prędkość liniowa punktu "Cm1" w członie "1":

$$v_{Cm\,1/1} = A_{1,0}v_{00/0} + W_{1/1}r_{Cm\,1,00/1} = A_{1,0}0 + \begin{bmatrix} 0 & 0 & \phi_1 \\ 0 & 0 & 0 \\ -\phi_1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_{Cm\,1,00} \\ y_{Cm\,1,00} \\ z_{Cm\,1,00} \end{bmatrix} = \begin{bmatrix} z_{Cm\,1,00}\,\phi_1 \\ 0 \\ -x_{Cm\,1,00}\,\phi_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -0,2291 \end{bmatrix} \frac{m}{s}$$

Przyspieszenie liniowe punktu "Cm1" w członie "1":

$$a_{Cm1/1} = a_{01/1} + E_{1/1} r_{Cm1,01/1} + W_{1/1} W_{1/1} r_{Cm1,01/1}$$

$$a_{Cm1/1} = \begin{bmatrix} -l_1 \dot{\phi}_1^2 \\ 0 \\ -l_1 \dot{\phi}_1 \end{bmatrix} + \begin{bmatrix} 0 & 0 & \phi_1 \\ 0 & 0 & 0 \\ -\phi_1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_{Cm1,01} \\ y_{Cm1,01} \\ z_{Cm1,01} \end{bmatrix} + \begin{bmatrix} -\dot{\phi}_1^2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -\dot{\phi}_1^2 \end{bmatrix} \begin{bmatrix} x_{Cm1,01} \\ y_{Cm1,01} \\ z_{Cm1,01} \end{bmatrix}$$

$$a_{Cm1/1} = \begin{bmatrix} -l_1 \dot{\phi}_1^2 \\ 0 \\ -l_1 \ddot{\phi}_1 \end{bmatrix} + \begin{bmatrix} \dot{\phi}_1 z_{Cm1,01} \\ 0 \\ -\dot{\phi}_1^2 x_{Cm1,01} \end{bmatrix} + \begin{bmatrix} -\dot{\phi}_1^2 x_{Cm1,01} \\ 0 \\ -\dot{\phi}_1^2 z_{Cm1,01} \end{bmatrix} = \begin{bmatrix} z_{Cm1,01} \ddot{\phi}_1 - (l_1 + x_{Cm1,01}) \dot{\phi}_1^2 \\ 0 \\ -(l_1 + x_{Cm1,01}) \ddot{\phi}_1 - z_{Cm1,01} \dot{\phi}_1^2 \end{bmatrix} = \begin{bmatrix} -0,6997 \\ 0 \\ -0,2291 \end{bmatrix} \frac{m}{s^2}$$

1.2. Człon "2" $\{B_{p_1}\}$

Człon przyjęto jako prostopadłościan o podstawie prostokatnej (130x130 mm), wcięciu d = 238mm, odsadzeniu e = 0 mm, oraz długości l_2 = 815 mm.

Wartości początkowe:

$$\omega_{1/1} = \begin{bmatrix} 0 \\ 3,0543 \\ 0 \end{bmatrix} \frac{rad}{s} \qquad \varepsilon_{1/1} = \begin{bmatrix} 0 \\ 3,0543 \\ 0 \end{bmatrix} \frac{rad}{s^2} \qquad v_{01/1} = \begin{bmatrix} 0 \\ 0 \\ 0,4581 \end{bmatrix} \frac{m}{s} \qquad a_{01/1} = \begin{bmatrix} -1,3993 \\ 0 \\ -0,4581 \end{bmatrix} \frac{m}{s^2} \qquad \phi_2 = 0$$

Przyjmujemy:

$$\phi_2 = 175^{\circ}/s = 3,0543 \frac{rad}{s}$$
 $\phi_2 = 175^{\circ}/s^2 = 3,0543 \frac{rad}{s^2}$

Parametry geometryczne:

$$r_{02,01/2} = \begin{bmatrix} l_2 \\ 0 \\ e \end{bmatrix} = \begin{bmatrix} 0,815 \\ 0 \\ 0 \end{bmatrix} m$$

$$r_{Cm2,01/2} = \begin{bmatrix} x_{Cm2,01} \\ y_{Cm2,01} \\ z_{Cm2,01} \end{bmatrix} = \begin{bmatrix} \frac{l_2}{2} \\ 0 \\ d \end{bmatrix} = \begin{bmatrix} 0,4075 \\ 0 \\ 0,238 \end{bmatrix} m$$

$$r_{Cm2,02/2} = \begin{bmatrix} x_{Cm2,02} \\ y_{Cm2,02} \\ z_{Cm2,02} \end{bmatrix} = \begin{bmatrix} -l_2 \\ 2 \\ 0 \\ d \end{bmatrix} = \begin{bmatrix} -0,4075 \\ 0 \\ 0,238 \end{bmatrix} m$$

Macierz transformacji:

$$A_{2,1} = \begin{bmatrix} C_2 & S_2 & 0 \\ -S_2 & C_2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Prędkość kątowa członu "i=2":

$$\omega_{2/2} = A_{2,1} \left[\omega_{1/1} + \phi_2 e_{z1/1} \right] = A_{2,1} \left[\omega_{1/1} + \begin{bmatrix} 0 \\ 0 \\ \phi_2 \end{bmatrix} \right] = \begin{bmatrix} C_2 & S_2 & 0 \\ -S_2 & C_2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ \phi_1 \\ \phi_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3,0543 \\ 3,0543 \end{bmatrix} \frac{rad}{s}$$

Ex-wektorowa macierz prędkości członu "
$$i - 1 = 1$$
":
$$W_{1/1} = \begin{bmatrix} 0 & -\omega_{1,z_1} & \omega_{1,y_1} \\ \omega_{1,z_1} & 0 & -\omega_{1,x_1} \\ -\omega_{1,y_1} & \omega_{1,x_1} & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & \phi_1 \\ 0 & 0 & 0 \\ -\phi_1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 3,0543 \\ 0 & 0 & 0 \\ -3,0543 & 0 & 0 \end{bmatrix} \frac{rad}{s}$$

Przyśpieszenie kątowe członu "i = 2"

$$\tilde{\epsilon}_{2/2} = A_{2,1} [\, \epsilon_{1/1} + \vec{\varphi}_2 \, e_{z\,1/1} + W_{1/1} (\, \vec{\varphi}_2 \, e_{z\,1/1})]$$

$$\varepsilon_{2/2} = \begin{bmatrix} C_2 & S_2 & 0 \\ -S_2 & C_2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \phi_1 \phi_2 \\ \ddot{\phi}_1 \\ \ddot{\phi}_2 \end{bmatrix} = \begin{bmatrix} C_2 \phi_1 \phi_2 + S_2 \ddot{\phi}_1 \\ -S_2 \phi_1 \dot{\phi}_2 + C_2 \ddot{\phi}_1 \\ \ddot{\phi}_2 \end{bmatrix} = \begin{bmatrix} 9,3289 \\ 3,0543 \\ 3,0543 \end{bmatrix} \frac{rad}{s^2}$$

Ex-wektorowa macierz prędkości członu "i = 2":

$$W_{2/2} = \begin{bmatrix} 0 & -\omega_{2,z2} & \omega_{2,y2} \\ \omega_{2,z2} & 0 & -\omega_{2,x2} \\ -\omega_{2,y2} & \omega_{2,x2} & 0 \end{bmatrix} = \begin{bmatrix} 0 & -\phi_2 & C_2\phi_1 \\ \phi_2 & 0 & -S_2\phi_1 \\ -C_2\phi_1 & S_2\phi_1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -3,0543 & 3,0543 \\ 3,0543 & 0 & 0 \\ -3,0543 & 0 & 0 \end{bmatrix} \frac{rad}{s}$$

Prędkość liniowa punktu "02" w członie "i = 2":

$$v_{02/2} = A_{2,1} v_{01/1} + W_{2/2} r_{02,01/2} = \begin{bmatrix} e C_2 \phi_1 \\ l_2 \phi_2 - e S_2 \phi_1 \\ -(l_1 + l_2 C_2) \phi_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 2,4893 \\ -2,9474 \end{bmatrix} \frac{m}{s}$$

Wymnożenie ex-wektorowych macierzy prędkości członu "i = 2":

$$W_{2/2}W_{2/2} = \begin{bmatrix} 0 & -\phi_2 & C_2\phi_1 \\ \phi_2 & 0 & -S_2\phi_1 \\ -C_2\phi_1 & S_2\phi_1 & 0 \end{bmatrix} \begin{bmatrix} 0 & -\phi_2 & C_2\phi_1 \\ \phi_2 & 0 & -S_2\phi_1 \\ -C_2\phi_1 & S_2\phi_1 & 0 \end{bmatrix} = \begin{bmatrix} -18,6575 & 0 & 0 \\ 0 & -9,3289 & 9,3289 \\ 0 & 9,3289 & -9,3289 \end{bmatrix} \frac{rad^2}{s^2}$$

Ex-wektorowa macierz przyśpieszenia członu "2":

$$E_{2/2} = \begin{bmatrix} 0 & -\varepsilon_{2,z2} & \varepsilon_{2,y2} \\ \varepsilon_{2,z2} & 0 & -\varepsilon_{2,x2} \\ -\varepsilon_{2,y2} & \varepsilon_{2,x2} & 0 \end{bmatrix} = \begin{bmatrix} 0 & -\phi_2 & -S_2\phi_1\phi_2 + C_2\phi_1 \\ \phi_2 & 0 & -C_2\phi_1\phi_2 - S_2\phi_1 \\ S_2\phi_1\phi_2 - C_2\phi_1 & C_2\phi_1\phi_2 + S_2\phi_1 & 0 \end{bmatrix}$$

$$E_{2/2} = \begin{bmatrix} 0 & -3,0543 & 3,0543 \\ 3,0543 & 0 & -9,3289 \\ -3,0543 & 9,3289 & 0 \end{bmatrix} \frac{rad}{s^2}$$

Przyśpieszenie liniowe punktu "02" w członie "2":

$$a_{02/2} = A_{2,1} a_{01/1} + E_{2/2} r_{02,01/2} + W_{2/2} W_{2/2} r_{02,01/2}$$

$$a_{02/2} = \begin{bmatrix} e C_2 \ddot{\varphi}_1 - (l_1 + l_2 C_2) C_2 \dot{\varphi}_1^2 - l_2 \dot{\varphi}_1^2 \\ -e S_2 \ddot{\varphi}_1 + (l_1 + l_2 C_2) S_2 \dot{\varphi}_1^2 + l_2 \ddot{\varphi}_2 \\ -(l_1 + l_2 C_2) \ddot{\varphi}_1 - e \dot{\varphi}_1^2 + 2 l_2 S_2 \dot{\varphi}_1 \dot{\varphi}_2 \end{bmatrix} = \begin{bmatrix} -16,6055 \\ 2,4893 \\ -2,9474 \end{bmatrix} \frac{m}{s^2}$$

Prędkość liniowa punktu "Cm2" w członie "2":

$$v_{Cm2/2} = v_{02/2} + W_{2/2} r_{Cm2,02/2} = \begin{bmatrix} (e + z_{Cm2,02}) C_2 \phi_1 - y_{Cm2,02} \phi_2 \\ (l_2 + x_{Cm2,02}) \phi_2 - (e + z_{Cm2,02}) S_2 \phi_1 \\ -[l_1 + (l_2 + x_{Cm2,02}) C_2 - y_{Cm2,02} S_2] \phi_1 \end{bmatrix} = \begin{bmatrix} 0,7269 \\ 1,2446 \\ -1,7028 \end{bmatrix} \frac{m}{s}$$

Przyśpieszenie liniowe punktu "Cm2" w członie "2":

$$a_{Cm\,2/2} = a_{02/2} + E_{2/2} r_{Cm\,2,02/2} + W_{2/2} W_{2/2} r_{Cm\,2,02/2} = \begin{bmatrix} -8,2755\\ 1,2446\\ -3,9231 \end{bmatrix}$$

1.3. Człon "3" {B_{R2}}

Człon przyjęto jako prostopadłościan o podstawie prostokątnej (115x115 mm) oraz długości l_2 = 795 mm.

Wartości początkowe:

$$\omega_{2/2} = \begin{bmatrix} 0 \\ 3,0543 \\ 3,0543 \end{bmatrix} \frac{rad}{s} \qquad \varepsilon_{2/2} = \begin{bmatrix} 9,3289 \\ 3,0543 \\ 3,0543 \end{bmatrix} \frac{rad}{s^2} \qquad v_{02/2} = \begin{bmatrix} 0 \\ 2,4893 \\ -2,9474 \end{bmatrix} \frac{m}{s} \qquad a_{02/2} = \begin{bmatrix} -16,6055 \\ 2,4893 \\ -2,9474 \end{bmatrix} \frac{m}{s^2} \qquad \phi_3 = 0$$

Przyjmujemy:

$$\phi_3 = 175 \text{ s/s} = 3,0543 \frac{rad}{s}$$
 $\phi_3 = 175 \text{ s/s}^2 = 3,0543 \frac{rad}{s^2}$

Parametry geometryczne:

$$r_{03,02/3} = \begin{bmatrix} l_3 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0,795 \\ 0 \\ 0 \end{bmatrix} m$$

$$r_{Cm3,02/3} = \begin{bmatrix} x_{Cm3,02} \\ y_{Cm3,02} \\ z_{Cm3,02} \end{bmatrix} = \begin{bmatrix} 0,3975 \\ 0 \\ 0 \end{bmatrix} m$$

$$r_{Cm3,03/3} = \begin{bmatrix} x_{Cm3,03} \\ y_{Cm3,03} \\ z_{Cm3,03} \end{bmatrix} = \begin{bmatrix} -0,3975 \\ 0 \\ 0 \end{bmatrix} m$$

Macierz transformacji:

$$A_{3,2} = \begin{bmatrix} C_3 & S_3 & 0 \\ -S_3 & C_3 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Prędkość katowa członu "i=3":

$$\omega_{3/3} = A_{3,2} \left[\omega_{2/2} + \phi_3 e_{z2/2} \right] = \begin{bmatrix} C_3 & S_3 & 0 \\ -S_3 & C_3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} S_2 \phi_1 \\ C_2 \phi_1 \\ \phi_2 + \phi_3 \end{bmatrix} = \begin{bmatrix} S_{23} \phi_1 \\ C_{23} \phi_1 \\ \phi_2 + \phi_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 3,0543 \\ 6,1087 \end{bmatrix} \frac{rad}{s}$$

Ex-wektorowa macierz prędkości członu ,i-1=2":

$$W_{2/2} = \begin{bmatrix} 0 & -\omega_{2,z2} & \omega_{2,y2} \\ \omega_{2,z2} & 0 & -\omega_{2,x2} \\ -\omega_{2,y2} & \omega_{2,x2} & 0 \end{bmatrix} = \begin{bmatrix} 0 & -\phi_2 & C_2\phi_1 \\ \phi_2 & 0 & -S_2\phi_1 \\ -C_2\phi_1 & S_2\phi_1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -3,0543 & 3,0543 \\ 3,0543 & 0 & 0 \\ -3,0543 & 0 & 0 \end{bmatrix} \frac{rad}{s}$$

Przyśpieszenie katowe członu ,i = 3":

$$\varepsilon_{3/3} = A_{3,2} \left[\varepsilon_{2/2} + \ddot{\varphi}_3 e_{z2/2} + W_{2/2} (\dot{\varphi}_3 e_{z2/2}) \right]$$

$$\varepsilon_{3/3} = \begin{bmatrix} S_{23} \ddot{\phi}_1 + C_{23} \dot{\phi}_1 (\dot{\phi}_2 + \dot{\phi}_3) \\ C_{23} \ddot{\phi}_1 + S_{23} \dot{\phi}_1 (\dot{\phi}_2 + \dot{\phi}_3) \\ \ddot{\phi}_2 + \ddot{\phi}_3 \end{bmatrix} = \begin{bmatrix} 18,6578 \\ 3,0543 \\ 6,1087 \end{bmatrix} \frac{rad}{s^2}$$

Ex-wektorowa macierz predkości członu i = 3".

$$W_{3/3} = \begin{bmatrix} 0 & -\omega_{3,z3} & \omega_{3,y3} \\ \omega_{3,z3} & 0 & -\omega_{3,x3} \\ -\omega_{3,y3} & \omega_{3,x3} & 0 \end{bmatrix} = \begin{bmatrix} 0 & -(\phi_2 + \phi_3) & C_{23}\phi_1 \\ \phi_2 + \phi_3 & 0 & -S_{23}\phi_1 \\ -C_{23}\phi_1 & S_{23}\phi_1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -6,1087 & 3,0543 \\ 6,1087 & 0 & 0 \\ -3,0543 & 0 & 0 \end{bmatrix} \frac{rad}{s}$$

Prędkość liniowa punktu "03" w członie "i = 3":

$$v_{03/3} = A_{3,2} v_{02/2} + W_{3/3} r_{03,02/3} = \begin{bmatrix} e C_{23} \phi_1 + l_2 S_3 \phi_2 \\ l_2 C_3 \phi_2 - e S_{23} \phi_1 + l_3 (\phi_2 + \phi_3) \\ -(l_1 + l_2 C_2 + l_3 C_{23}) \phi_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 7,3457 \\ -5,3756 \end{bmatrix} \frac{m}{s}$$

Wymnożenie ex-wektorowych macierzy prędkości członu "i = 3":

$$W_{3/3}W_{3/3} = \begin{bmatrix} 0 & -(\phi_2 + \phi_3) & C_{23}\phi_1 \\ \phi_2 + \phi_3 & 0 & -S_{23}\phi_1 \\ -C_{23}\phi_1 & S_{23}\phi_1 & 0 \end{bmatrix}^2 = \begin{bmatrix} -46,6450 & 0 & 0 \\ 0 & -37,3162 & 18,6578 \\ 0 & 18,6578 & -9,3287 \end{bmatrix} \frac{rad^2}{s^2}$$

Ex-wektorowa macierz przyśpieszenia członu "3":

$$E_{3/3} = \begin{bmatrix} 0 & -\epsilon_{3,z3} & \epsilon_{3,y3} \\ \epsilon_{3,z3} & 0 & -\epsilon_{3,x3} \\ -\epsilon_{3,y3} & \epsilon_{3,x3} & 0 \end{bmatrix}$$

$$E_{3/3} = \begin{bmatrix} 0 & -(\phi_2 + \phi_3) & -S_{22}\phi_1(\phi_2 + \phi_3) + C_{23}\phi_1 \\ \phi_2 + \phi_3 & 0 & -C_{23}\phi_1(\phi_2 + \phi_3) - S_{23}\phi_1 \\ S_{23}\phi_1(\phi_2 + \phi_3) - C_{23}\phi_1 & C_{23}\phi_1(\phi_2 + \phi_3) + S_{23}\phi_1 & 0 \end{bmatrix}$$

$$E_{3/3} = \begin{bmatrix} 0 & -6,1087 & 3,0543 \\ 6,1087 & 0 & -18,6578 \\ -3,0543 & 18,6578 & 0 \end{bmatrix} \frac{rad}{s^2}$$

Przyśpieszenie liniowe punktu "03" w członie "3":

$$a_{03/3} = A_{3,2} a_{02/2} + E_{3/3} r_{03,02/3} + W_{3/3} W_{3/3} r_{03,02/3}$$

$$a_{03/3} = \begin{bmatrix} e C_{23} \ddot{\phi_1} + l_2 S_3 \ddot{\phi_2} - (l_1 + l_2 C_2 + l_3 C_{23}) C_{23} \dot{\phi_1}^2 - l_2 C_3 \dot{\phi_2}^2 - l_3 (\dot{\phi_2} + \dot{\phi_3})^2 \\ -e S_{23} \ddot{\phi_1} + l_2 C_3 \ddot{\phi_2} + l_3 (\ddot{\phi_2} + \ddot{\phi_3}) + (l_1 + l_2 C_2 + l_3 C_{23}) S_{23} \dot{\phi_1}^2 + l_2 S_3 \dot{\phi_2}^2 \\ -(l_1 + l_2 C_2 + l_3 C_{23}) \ddot{\phi_1} - e \dot{\phi_1}^2 + 2 l_2 S_2 \dot{\phi_1} \dot{\phi_2} + 2 l_3 S_{23} \dot{\phi_1} (\dot{\phi_2} + \dot{\phi_3}) \end{bmatrix} = \begin{bmatrix} -53,6879 \\ 7,3457 \\ -5,3756 \end{bmatrix} \frac{m}{s^2}$$

Predkość liniowa punktu "Cm3" w członie "3":

$$v_{Cm3/3} = v_{03/3} + W_{3/3} r_{Cm3,03/3}$$

$$v_{Cm3/3} = \begin{bmatrix} (e + z_{Cm3,03}) C_{23} \phi_1 + l_2 S_3 \phi_2 - y_{Cm3,03} (\phi_2 + \phi_3) \\ (l_3 + x_{Cm3,03}) (\phi_2 + \phi_3) + l_2 C_3 \phi_2 - (e + z_{Cm3,03}) S_{23} \phi_1 \\ -[l_1 + l_2 C_2 + (l_3 + x_{Cm3,03}) C_{23} - y_{Cm3,03} S_{23}] \phi_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 4,9175 \\ -4,1615 \end{bmatrix} \frac{m}{s}$$

Przyśpieszenie liniowe punktu "Cm3" w członie "3":

$$a_{Cm3/3} = a_{03/3} + E_{3/3} r_{Cm3.03/3} + W_{3/3} W_{3/3} r_{Cm3.03/3}$$

$$a_{Cm3/3} = \begin{bmatrix} (e + z_{Cm3,03/3}) C_{23} \ddot{\varphi}_1 + l_2 S_3 \ddot{\varphi}_2 - [l_1 + l_2 C_2 + (l_3 + x_{Cm3,03/3}) C_{23} - y_{Cm3,03/3} S_{23}] C_{23} \dot{\varphi}_1^2 \\ - (e + z_{Cm3,03/3}) S_{23} \ddot{\varphi}_1 + l_2 C_3 \ddot{\varphi}_2 + [l_1 + l_2 C_2 + (l_3 + x_{Cm3,03/3}) C_{23} - y_{Cm3,03/3} S_{23}] S_{23} \dot{\varphi}_1^2 \\ - [l_1 + l_2 C_2 + (l_3 + x_{Cm3,03/3}) C_{23} - y_{Cm3,03/3} S_{23}] \ddot{\varphi}_1 - (e + z_{Cm3,03/3}) \dot{\varphi}_1^2 + 2 l_2 S_2 \dot{\varphi}_1 \dot{\varphi}_2 \end{bmatrix} + \\ \begin{bmatrix} -y_{Cm3,03/3} (\ddot{\varphi}_2 + \ddot{\varphi}_3) - l_2 C_3 \dot{\varphi}_2^2 - (l_3 + x_{Cm3,03/3}) (\dot{\varphi}_2 + \dot{\varphi}_3)^2 \\ (l_3 + x_{Cm3,03/3}) (\ddot{\varphi}_2 + \ddot{\varphi}_3) + l_2 S_3 \dot{\varphi}_2^2 - y_{Cm3,03/3} (\dot{\varphi}_2 + \dot{\varphi}_3)^2 \\ 2 [(l_3 + x_{Cm3,03/3}) S_{23} + y_{Cm3,03/3} C_{23}] \dot{\varphi}_1 (\dot{\varphi}_2 + \dot{\varphi}_3) \end{bmatrix} \\ a_{Cm3/3} = \begin{bmatrix} -35,1467 \\ 17,6281 \\ -4,1615 \end{bmatrix} \frac{m}{s^2}$$

2. Podanie zależności i obliczenie parametrów kinetycznych mechanizmu robota – podejście "ciężkie"

2.1. Człon "3" {B_{R2}}

Znamy następujące wartości parametrów kinematycznych:

$$\omega_{3/3} = \begin{bmatrix} 0 \\ 3,0543 \\ 6,1087 \end{bmatrix} \frac{rad}{s} \qquad \varepsilon_{3/3} = \begin{bmatrix} 18,6578 \\ 3,0543 \\ 6,1087 \end{bmatrix} \frac{rad}{s^2} \qquad a_{Cm3/3} = \begin{bmatrix} -35,1467 \\ 17,6281 \\ -4,1615 \end{bmatrix} \frac{m}{s^2}$$

Parametry konstrukcyjne oraz związane z układem napędowym:

Masa: $m_3 = 50 kg$

Tensor bezwładności:

$$\begin{split} I_{x3} = & \frac{1}{12} m_3 * \left(y_3^2 + z_3^2 \right); I_{y3} = \frac{1}{12} m_3 * \left(x_3^2 + z_3^2 \right) \\ & I_{z3} = & \frac{1}{12} m_3 * \left(x_3^2 + y_3^2 \right); I_{xy3} = I_{xz3} = I_{yz3} = 0 \\ \Pi_{3/3}^{Cm3} = & \begin{bmatrix} I_{x3} & -I_{xy3} & -I_{xz3} \\ -I_{yx3} & I_{y3} & -I_{yz3} \\ -I_{zx3} & -I_{zy3} & I_{z3} \end{bmatrix} = \begin{bmatrix} 0,1102 & 0 & 0 \\ 0 & 2,6885 & 0 \\ 0 & 0 & 2,6885 \end{bmatrix} kg \cdot m^2 \end{split}$$

gdzie $x_3, y_3 i z_3$ są wymiarami członu w odpowiednich osiach.

Parametry geometryczne:

$$r_{Cm3,02/3} = \begin{bmatrix} x_{Cm3,02} \\ y_{Cm3,02} \\ z_{Cm3,02} \end{bmatrix} = \begin{bmatrix} 0,3975 \\ 0 \\ 0 \end{bmatrix} m$$

$$r_{Cm3,03/3} = \begin{bmatrix} x_{Cm3,03} \\ y_{Cm3,03} \\ z_{Cm3,03} \end{bmatrix} = \begin{bmatrix} -0,3975 \\ 0 \\ 0 \end{bmatrix} m$$

Wymagane ex-wektorowe macierze R do obliczeń numerycznych:

$$R_{Cm3,02/3} = \begin{bmatrix} 0 & -z_{Cm3,02} & y_{Cm3,02} \\ z_{Cm3,02} & 0 & -x_{Cm3,02} \\ -y_{Cm3,02} & x_{Cm3,02} & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -0.3975 \\ 0 & 0.3975 & 0 \end{bmatrix} m$$

$$R_{Cm3,03/3} = \begin{bmatrix} 0 & -z_{Cm3,03} & y_{Cm3,03} \\ z_{Cm3,03} & 0 & -x_{Cm3,03} \\ -y_{Cm3,03} & x_{Cm3,03} & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0.3975 \\ 0 & 0.3975 & 0 \end{bmatrix} m$$

Kąt φ₄ i jego pochodne (przyjęte przez rekonstrukcję)

$$\phi_4 = 0 \quad \dot{\phi}_4 = 360^\circ / s = 6,2832 \frac{rad}{s} \quad \dot{\phi}_4 = 360^\circ / s^2 = 6,2832 \frac{rad}{s^2}$$

Macierz transformacji układów maszynowych:

$$A_{4,3} = \begin{bmatrix} C_4 & S_4 & 0 \\ -S_4 & C_4 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Suma obciążenia masowego wnoszonego przez część lokalną i dopuszczoną przez producenta maksymalną masę obciążenia użytkowego:

$$m_{\Delta} = 28 + 20 = 48 \, kg$$

Ex-wektorowa prędkość kątowa członu "3":

$$W_{3/3} = \begin{bmatrix} 0 & -6,1087 & 3,0543 \\ 6,1087 & 0 & 0 \\ -3,0543 & 0 & 0 \end{bmatrix} \frac{rad}{s}$$

Macierz transformacji układów maszynowych:

$$A_{3,4} = \begin{bmatrix} C_4 & S_4 & 0 \\ -S_4 & C_4 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Siła oddziaływania członu "3" na człon "4" w układzie członu "3":

$$g_{1/1} = \begin{bmatrix} 0 \\ -g \\ 0 \end{bmatrix} \quad g_{2/2} = \begin{bmatrix} -S_{2}g \\ -C_{2}g \\ 0 \end{bmatrix} \quad g_{3/3} = \begin{bmatrix} -S_{23}g \\ -C_{23}g \\ 0 \end{bmatrix}$$

$$g_{1/1} = g_{2/2} = g_{3/3} = g_{4/4} = \begin{bmatrix} 0 \\ -9,81 \\ 0 \end{bmatrix} \frac{m}{s^{2}}$$

$$a_{03/3} = \begin{bmatrix} -53,6879 \\ 7,3457 \\ -5,3756 \end{bmatrix} \frac{m}{s^{2}}$$

$$F_{4,3/4} = m_{4} (A_{4,3}a_{03/3} - g_{4/4}) = \begin{bmatrix} -2577 \\ 823,5 \\ -258 \end{bmatrix} N$$

$$F_{4,3/3} = A_{3,4}F_{4,3/4} = \begin{bmatrix} -2577 \\ 823,5 \\ -258 \end{bmatrix} N$$

Moment sił oddziaływania członu "3" na człon "4" w układzie członu "3":

$$M_{4,3/4} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} Nm$$

$$M_{4,3/3} = A_{3,4} M_{4,3/4} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} Nm$$

Siła oddziaływania członu "2" na człon "3":

$$F_{3,2/3} = F_{4,3/3} + m_3 a_{Cm3/3} - m_3 g_{3/3}$$

$$F_{3,2/3} = \begin{bmatrix} -4334,3\\2195,4\\-466,1 \end{bmatrix} N$$

Kręt członu "3" względem punktu C_{m3} :

$$K_{3/3}^{Cm3} = \Pi_{3/3}^{Cm3} \omega_{3/3} = \Pi_{3/3}^{Cm3} \begin{bmatrix} S_{23} \phi_1 \\ C_{23} \phi_1 \\ \phi_2 + \phi_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 8,2116 \\ 16,4235 \end{bmatrix} \frac{kg \cdot m^2}{s}$$

Eulerian członu "3" względem punktu C_{m3} :

$$E_{3/3}^{Cm3} = \Pi_{3/3}^{Cm3} \, \varepsilon_{3/3} + W_{3/3} K_{3/3}^{Cm3} = \begin{bmatrix} 2,0562 \\ 8,2116 \\ 16,4235 \end{bmatrix} \frac{kg \cdot m^2}{s}$$

Moment sił oddziaływania członu "2" na człon "3":

$$M_{3,2/3} = M_{4,3/3} - R_{Cm3,03/3} F_{4,3/3} + R_{Cm3,02/3} F_{3,2/3} + E_{3/3}^{Cm3} = \begin{bmatrix} 2,1\\296\\1216,4 \end{bmatrix} Nm$$

2.2. Człon "2" {B_{R1}}

Znamy następujące wartości parametrów kinematycznych:

$$\omega_{2/2} = \begin{bmatrix} 0 \\ 3,0543 \\ 3,0543 \end{bmatrix} \frac{rad}{s} \qquad \varepsilon_{2/2} = \begin{bmatrix} 9,3289 \\ 3,0543 \\ 3,0543 \end{bmatrix} \frac{rad}{s^2} \qquad a_{Cm\,2/2} = \begin{bmatrix} -8,2755 \\ 1,2446 \\ -3,9231 \end{bmatrix}$$

Parametry konstrukcyjne oraz związane z układem napędowym:

Masa: $m_2 = 80 \, kg$

Tensor bezwładności:

$$I_{x2} = \frac{1}{12} m_2 * (y_2^2 + z_2^2); I_{y2} = \frac{1}{12} m_2 * (x_2^2 + z_2^2)$$

$$I_{z2} = \frac{1}{12} m_2 * (x_2^2 + y_2^2); I_{xy2} = I_{xz2} = I_{yz2} = 0$$

$$II_{z/2}^{Cm2} = \begin{bmatrix} I_{x2} & -I_{xy2} & -I_{xz2} \\ -I_{yx2} & I_{y2} & -I_{yz2} \\ -I_{zx2} & -I_{zy2} & I_{z2} \end{bmatrix} = \begin{bmatrix} 0,2253 & 0 & 0 \\ 0 & 4,5408 & 0 \\ 0 & 0 & 4,5408 \end{bmatrix} kg \cdot m^2$$

gdzie $x_2, y_2 i z_2$ są wymiarami członu w odpowiednich osiach.

Parametry geometryczne:

$$r_{Cm2,01/2} = \begin{bmatrix} x_{Cm2,01} \\ y_{Cm2,01} \\ z_{Cm2,01} \end{bmatrix} = \begin{bmatrix} \frac{l_2}{2} \\ 0 \\ d \end{bmatrix} = \begin{bmatrix} 0,4075 \\ 0,238 \end{bmatrix} m$$

$$r_{Cm2,02/2} = \begin{bmatrix} x_{Cm2,02} \\ y_{Cm2,02} \\ z_{Cm2,02} \end{bmatrix} = \begin{bmatrix} -\frac{l_2}{2} \\ 0 \\ d \end{bmatrix} = \begin{bmatrix} -0,4075 \\ 0 \\ 0,238 \end{bmatrix} m$$

Wymagane ex-wektorowe macierze R do obliczeń numerycznych:

$$R_{Cm2,01/2} = \begin{bmatrix} 0 & -z_{Cm2,01} & y_{Cm2,01} \\ z_{Cm2,01} & 0 & -x_{Cm2,01} \\ -y_{Cm2,01} & x_{Cm2,01} & 0 \end{bmatrix} = \begin{bmatrix} 0 & -0,238 & 0 \\ 0,238 & 0 & -0,4075 \\ 0 & 0,4075 & 0 \end{bmatrix} m$$

$$R_{Cm2,02/2} = \begin{bmatrix} 0 & -z_{Cm2,02} & y_{Cm2,02} \\ z_{Cm2,02} & 0 & -x_{Cm2,02} \\ -y_{Cm2,02} & x_{Cm2,02} & 0 \end{bmatrix} = \begin{bmatrix} 0 & -0,238 & 0 \\ 0,238 & 0 & 0,4075 \\ 0 & -0,4075 & 0 \end{bmatrix} m$$

Kat φ_3 i jego pochodne:

$$\phi_3 = 0$$
 $\phi_3 = 175^{\circ}/s = 3,0543 \frac{rad}{s}$ $\phi_3 = 175^{\circ}/s^2 = 3,0543 \frac{rad}{s^2}$

Ex-wektorowa prędkość kątowa członu "2":

$$W_{2/2} = \begin{bmatrix} 0 & -3,0543 & 3,0543 \\ 3,0543 & 0 & 0 \\ -3,0543 & 0 & 0 \end{bmatrix} \frac{rad}{s}$$

Macierz transformacji układów maszynowych:

$$A_{2,3} = \begin{bmatrix} C_3 & -S_3 & 0 \\ S_3 & C_3 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Siła oddziaływania członu "2" na człon "3" w układzie członu "2":

$$F_{3,2/2} = A_{2,3} F_{3,2/3} = \begin{bmatrix} -4334,3\\2195,4\\-466,1 \end{bmatrix} N$$

Moment sił oddziaływania członu "2" na człon "3" w układzie członu "2":

$$M_{3,2/2} = A_{2,3} M_{3,2/3} = \begin{bmatrix} 2,1\\296\\1216,4 \end{bmatrix} Nm$$

Siła oddziaływania członu "1" na człon "2":

$$F_{2,1/2} = F_{3,2/2} + m_2 a_{Cm2/2} - m_2 g_{2/2} = \begin{bmatrix} -4996,3\\3079,8\\-779,9 \end{bmatrix} N$$

Kręt członu "2" względem punktu C_{m2} :

$$K_{2/2}^{Cm2} = \Pi_{2/2}^{Cm2} \omega_{2/2} = \Pi_{2/2}^{Cm2} \begin{bmatrix} S_2 \phi_1 \\ C_2 \phi_1 \\ \phi_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 13,8691 \\ 13,8691 \end{bmatrix} \frac{kg \cdot m^2}{s}$$

Eulerian członu "2" względem punktu C_{m2} :

$$E_{2/2}^{Cm2} = \Pi_{2/2}^{Cm2} \varepsilon_{2/2} + W_{2/2} K_{2/2}^{Cm2} = \begin{bmatrix} 2,1021 \\ 13,8691 \\ 13,8691 \end{bmatrix} \frac{kg \cdot m^2}{s}$$

Moment sił oddziaływania członu "1" na człon "2"

$$M_{2,1/2} = M_{3,2/2} - R_{Cm2,02/2} F_{3,2/2} + R_{Cm2,01/2} F_{2,1/2} + E_{2/2}^{Cm2} = \begin{bmatrix} -206,3\\660,1\\3379,9 \end{bmatrix} Nm$$

2.3. Człon "1" {C_R}

Znamy następujące wartości parametrów kinematycznych:

$$\omega_{1/1} = \begin{bmatrix} 0 \\ 3,0543 \\ 0 \end{bmatrix} \frac{rad}{s} \qquad \varepsilon_{1/1} = \begin{bmatrix} 0 \\ 3,0543 \\ 0 \end{bmatrix} \frac{rad}{s^2} \qquad a_{Cm\,1/1} = \begin{bmatrix} -0,6997 \\ 0 \\ -0,2291 \end{bmatrix} \frac{m}{s^2}$$

Parametry konstrukcyjne oraz związane z układem napędowym:

Masa: $m_1 = 120 \, kg$

Tensor bezwładności:

$$\begin{split} I_{x1} = & \frac{1}{12} \, m_1 \left(y_1^2 + z_1^2 \right); I_{y1} = \frac{1}{12} \, m_1 \left(x_1^2 + z_1^2 \right) \\ & I_{z1} = \frac{1}{12} \, m_1 \left(x_1^2 + y_1^2 \right); I_{xy1} = I_{xz1} = I_{yz1} = 0 \\ \Pi_{1/1}^{Cm1} = & \begin{bmatrix} I_{x1} & -I_{xy1} & -I_{xz1} \\ -I_{yx1} & I_{y1} & -I_{yz1} \\ -I_{zx1} & -I_{zy1} & I_{z1} \end{bmatrix} = \begin{bmatrix} 2,6305 & 0 & 0 \\ 0 & 1,3005 & 0 \\ 0 & 0 & 2,6305 \end{bmatrix} kg \cdot m^2 \end{split}$$

gdzie $x_2, y_2 i z_2$ są wymiarami członu w odpowiednich osiach.

Parametry geometryczne:

$$r_{Cm1,00/1} = \begin{bmatrix} x_{Cm1,00} \\ y_{Cm1,00} \\ z_{Cm1,00} \end{bmatrix} = \begin{bmatrix} \frac{l_1}{2} \\ -h_1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0,075 \\ -0,225 \\ 0 \end{bmatrix} m$$

$$r_{Cm1,01/1} = \begin{bmatrix} x_{Cm1,01} \\ y_{Cm1,01} \\ z_{Cm1,01} \end{bmatrix} = \begin{bmatrix} \frac{-l_1}{2} \\ -h_1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} -0,075 \\ -0,225 \\ 0 \end{bmatrix} m$$

Wymagane ex-wektorowe macierze R do obliczeń numerycznych:

$$R_{Cm1,00/1} = \begin{bmatrix} 0 & -z_{Cm1,00} & y_{Cm1,00} \\ z_{Cm1,00} & 0 & -x_{Cm1,00} \\ -y_{Cm1,00} & x_{Cm1,00} & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -0,225 \\ 0 & 0 & -0,075 \\ 0,255 & 0,075 & 0 \end{bmatrix} m$$

$$R_{Cm1,01/1} = \begin{bmatrix} 0 & -z_{Cm1,01} & y_{Cm1,01} \\ z_{Cm1,01} & 0 & -x_{Cm1,01} \\ -y_{Cm1,01} & x_{Cm1,01} & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -0,255 \\ 0 & 0 & 0,075 \\ 0,255 & -0,075 & 0 \end{bmatrix} m$$

Kąt φ_2 i jego pochodne:

$$\phi_2 = 0$$
 $\phi_2 = 175^{\circ}/s = 3,0543 \frac{rad}{s}$ $\phi_2 = 175^{\circ}/s^2 = 3,0543 \frac{rad}{s^2}$

Ex-wektorowa prędkość kątowa członu "1":

$$W_{1/1} = \begin{bmatrix} 0 & 0 & 3,0543 \\ 0 & 0 & 0 \\ -3,0543 & 0 & 0 \end{bmatrix} \frac{rad}{s}$$

Macierz transformacji układów maszynowy

$$A_{1,2} = \begin{bmatrix} C_2 & -S_2 & 0 \\ S_2 & C_2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Siła oddziaływania członu "1" na człon "2" w układzie członu "1":
$$F_{2,1/1} = A_{1,2} F_{2,1/2} = \begin{bmatrix} -4996,3\\3079,8\\-779,9 \end{bmatrix} N$$

Moment sił oddziaływania członu "1" na człon "2" w układzie członu "1":

$$M_{2,1/1} = A_{1,2} M_{2,1/2} = \begin{bmatrix} -206,3\\660,1\\3379,9 \end{bmatrix} Nm$$

Siła oddziaływania członu "0" na człon "1":

$$F_{1,0/1} = F_{2,1/1} + m_1 a_{Cm \, 1/1} - m_1 g_{1/1} = \begin{bmatrix} -5080,3\\4257\\-807,4 \end{bmatrix} N$$

Kręt członu "1" względem punktu C_{m1} :

$$K_{1/1}^{Cm1} = \Pi_{1/1}^{Cm1} \omega_{1/1} = \begin{bmatrix} 0 \\ 3,9721 \\ 0 \end{bmatrix} \frac{kg \cdot m^2}{s}$$

Eulerian członu "1" względem punktu C_{m1} :

$$E_{1/1}^{Cm1} = \Pi_{1/1}^{Cm1} \varepsilon_{1/1} + W_{1/1} K_{1/1}^{Cm1} = \begin{bmatrix} 0 \\ 3,9721 \end{bmatrix} \frac{kg \cdot m^2}{s}$$

Moment sił oddziaływania członu "0" na człon "1":

$$M_{1,0/1} = M_{2,1/1} - R_{Cm1,01/1} F_{2,1/1} + R_{Cm1,00/1} F_{1,0/1} + E_{1/1}^{Cm1} = \begin{bmatrix} -200.1 \\ 783.1 \\ 3911.3 \end{bmatrix} Nm$$

Macierz transformacyjna:

$$A_{0,1} = \begin{bmatrix} C_1 & 0 & S_1 \\ S_1 & 0 & -C_1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

Moment oddziaływania członu "0" na człon "1" w układzie członu "0":

$$M_{1,0/0} = A_{0,1} M_{1,0/1} = \begin{bmatrix} -200.1 \\ -3911.3 \\ 783.1 \end{bmatrix} Nm$$

3. Dobór napędów dla poszczególnych członów robota

Dokonano doboru napędów dla wybranego robota ABB 2600-20/1,65. Dla robotów przemysłowych zazwyczaj napęd członu "i"-tego znajduje się w członie "i-1".

3.1. Człon "3" {B_{R2}}

Silnik napędzający człon "3" jest umieszczony w członie "2"-obrót wokół $\overline{e_{z2}}$. Mamy dane pochodne kąta ϕ_3 :

$$\phi_3 = 3,0543 \frac{rad}{s}$$
 $\phi_3 = 3,0543 \frac{rad}{s^2}$

Można z niej wyznaczyć prędkość obrotową członu:

$$n_3 = \phi_3 \frac{60}{2\pi} = 3,0543 \frac{60}{2\pi} = 29,1667 \frac{obr}{min}$$

Położenie silnika jest wzdłuż osi osi z układu maszynowego członu drugiego:

$$\alpha_{N2} = 0^{\circ}$$

$$\beta_{N2} = 0^{\circ}$$

$$\gamma_{N2} = 90^{\circ}$$

$$\vec{e}_{N2} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Przy obliczaniu momentu należy uwzględnić starty na tarcie. Przyjęto łożyskowanie ślizgowe, smarowane, dla którego współczynnik obciążenia tarciowego wynosi k_i=0,1.

smarowane, dla którego współczynnik obciążenia tarciowego wynosi
$$k_t$$
=0,1.
$$M_{3,2/2}^n = \frac{M_{3,2/2}}{1-k_t} = \frac{1216,4 \, Nm}{0,90} = 1351,5556 \, Nm$$

Przyjęto przekładnię o sprawności $\eta_{z2} = 0.8$ i przełożeniu $v_{z2} = 100$. Wówczas, znamionowa prędkość kątowa i obrotowa napędu oraz moment na wale silnika wynoszą odpowiednio:

$$\omega_{z2} = v_{z2} \dot{\phi}_3 = 100 \cdot 3,0543 = 305,43 \frac{rad}{s}$$

$$\omega_{z2} = v_{z2} \dot{\phi}_3 = 100 \cdot 3,0543 = 305,43 \frac{rad}{s^2}$$

$$n_{z2} = \omega_{z2} \frac{60}{2\pi} = 2916,6667 \frac{obr}{min}$$

$$M_{z2} = \frac{M_{3,2/z^2}^n}{v_{z2}\eta_{z2}} = \frac{1351,6667}{100 \cdot 0,8} = 16,8944 Nm$$

Na podstawie tych danych dokonano doboru silnika oraz przekładni.

Dobrano silnik firmy Mitsubishi Electric HG-JR703 261546 o parametrach:

- -nominalny moment: 22,3 Nm;
- -nominalna prędkość obrotowa: 3000 obr/min;
- -moment bezwładności: $I_{napędu} = 0.00433 \text{ kg} \cdot \text{m}^2$;
- -maksymalna prędkość obrotowa: 5000 obr/min;
- -maksymalny moment: 66,8 Nm;
- -hamulec elektromagnetyczny;
- -zasilanie: 200V AC;

Dobrano przekładnię firmy Harmonic Drive CSG-20-100-GH Type II o parametrach:

- -sprawność: 80%;
- -rozmiar: 20 mm;
- -przełożenie: 100;

- -moment bezwładności: $I_{przekladni} = 0.42 \cdot 10^{-4} kg \cdot m^2$;
- -maksymalne prędkość średnia wejściowa: 3500 obr/min;
- -maksymalna prędkość wejściowa: 6500 obr/min;
- -nominalny moment przy 3000 obr/min: 45 Nm;

Po uwzględnieniu bezwładności układu napędowego (podejście lekkie):

$$I_{z2}=I_{napedu}+I_{przekładni}=0,004372\cdot kg\cdot m^2$$

$$M_{z2} = \frac{M_{3,2/z^2}^n}{v_{z2}\eta_{z2}} + I_{z2}[(\vec{\epsilon_2}\vec{e_{z2}}) + v_{z2}\vec{\phi_3}] = 13,92 \, Nm$$

Można zatem stwierdzić, że silnik został dobrany odpowiednio - spełnia wymagania dla podejścia lekkiego.

3.2. Człon "2" {B_{R1}}

Silnik napędzający człon "2" jest umieszczony w członie "1"-obrót wokół $\overline{e_{z1}}$. Daną mamy pochodną kąta ϕ_2 :

$$\phi_2 = 3,0543 \frac{rad}{s}$$
 $\phi_2 = 3,0543 \frac{rad}{s^2}$

Można z niej wyznaczyć prędkość obrotową członu:

$$n_2 = \phi_2 \frac{60}{2\pi} = 3,0543 \frac{60}{2\pi} = 29,1667 \frac{obr}{min}$$

Położenie silnika jest wzdłuż osi osi z układu maszynowego członu pierwszego:

$$\alpha_{N1} = 0$$

$$\beta_{N1} = 0$$

$$\gamma_{N1} = 90$$

$$\vec{e}_{N1} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Przy obliczaniu momentu należy uwzględnić starty na tarcie. Przyjęto łożyskowanie ślizgowe, smarowane, dla którego współczynnik obciążenia tarciowego wynosi k_i=0,1.

$$M_{2,1/z1}^n = \frac{M_{2,1/1}\overline{e_{z1}}}{1-k_t} = \frac{3379,9 \text{ Nm}}{0,90} = 3755,4444 \text{ Nm}$$

Przyjęto przekładnię o sprawności $\eta_{z1} = 0.8$ i przełożeniu $\nu_{z1} = 50$. Wówczas, znamionowa prędkość kątowa i obrotowa napędu oraz moment na wale silnika wynoszą odpowiednio:

$$\omega_{z1} = v_{z1} \dot{\phi}_2 = 50.3,0543 = 152,715 \frac{rad}{s}$$

$$\omega_{z1} = v_{z1} \dot{\phi}_2 = 50.3,0543 = 152,715 \frac{rad}{s^2}$$

$$n_{z1} = \omega_{z1} \frac{60}{2\pi} = 1458,3333 \frac{obr}{min}$$

$$M_{z1} = \frac{M_{2,1/z1}^n}{v_{z1} \eta_{z1}} = \frac{3755,4444}{50.08} = 93,8861 Nm$$

Na podstawie tych danych dokonano doboru silnika oraz przekładni.

Dobrano silnik firmy Mitsubishi Electric HG-JR22K1M 261559 o parametrach:

- -nominalny moment: 140 Nm;
- -nominalna prędkość obrotowa: 1500 obr/min;

-moment bezwładności: $I_{napedu} = 0.0489 \, kg \cdot m^2$;

- -maksymalna prędkość obrotowa: 2500 obr/min;
- -maksymalny moment: 420 Nm;
- -hamulec elektromagnetyczny;

-zasilanie: 200V AC;

Dobrano przekładnię firmy Harmonic Drive CSG-32-50-GH Type II o parametrach:

-sprawność: 80%; -rozmiar: 32 mm; -przełożenie: 50;

-moment bezwładności: $I_{przekladni} = 2,7 \cdot 10^{-4} kg \cdot m^2$;

- -maksymalne prędkość średnia wejściowa: 3500 obr/min;
- -maksymalna prędkość wejściowa: 4800 obr/min;
- -nominalny moment przy 2000 obr/min: 99 Nm;

Po uwzględnieniu bezwładności układu napędowego (podejście lekkie):

$$I_{z1} = I_{napedu} + I_{przekladni} = 0.04917 \cdot kg \cdot m^2$$

$$M_{z1} = \frac{M_{2,1/z1}^n}{V_{z1}\eta_{z1}} + I_{z1}[(\vec{\epsilon_1}\vec{e_{z1}}) + V_{z1}\vec{\phi_2}] = 101,3952 \, Nm$$

Można zatem stwierdzić, że silnik został dobrany odpowiednio - spełnia wymagania dla podejścia lekkiego.

3.3. Człon "1" {C_R}

Silnik napędzający człon "1" jest umieszczony w członie "0"-obrót wokół wersora $\overrightarrow{e_{z0}}$, który pokrywa się z wersorem układu bazowego $\overrightarrow{e_z}$ (podstawa). Daną mamy pochodną kąta ϕ_1 :

$$\phi_1 = 3,0543 \frac{rad}{s}$$
 $\phi_1 = 3,0543 \frac{rad}{s^2}$

Można z niej wyznaczyć prędkość obrotową członu:

$$n_1 = \phi_1 \frac{60}{2\pi} = 3,0543 \frac{60}{2\pi} = 29,1667 \frac{obr}{min}$$

Położenie silnika jest wzdłuż osi osi z układu maszynowego członu zerowego-podstawy:

$$\alpha_{N0} = 0^{\circ}$$

$$\beta_{N0} = 0^{\circ}$$

$$\gamma_{N0} = 90^{\circ}$$

$$\vec{e_{N0}} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Przy obliczaniu momentu należy uwzględnić starty na tarcie. Przyjęto łożyskowanie ślizgowe, smarowane, dla którego współczynnik obciążenia tarciowego wynosi k₁=0,1.

$$M_{1,0/z0}^n = \frac{M_{1,0/0}e_{z0}}{1-k_t} = \frac{783,1 \, Nm}{0,90} = 870,1111 \, Nm$$

Silnik umieszczony w podstawie obciążony jest mniejszym momentem od pozostałych dwóch silników, ponieważ umieszczony jest on w osi pionowej i nie musi pokonywać siły grawitacji.

Przyjęto przekładnię o sprawności $\eta_{z1} = 0.8$ i przełożeniu $v_{z1} = 50$. Wówczas, znamionowa prędkość kątowa i obrotowa napędu oraz moment na wale silnika wynoszą odpowiednio:

$$\omega_{z0} = v_{z0} \, \phi_1 = 100 \cdot 3,0543 = 305,43 \, \frac{rad}{s}$$

$$\omega_{z0} = v_{z0} \, \phi_1 = 100 \cdot 3,0543 = 305,43 \, \frac{rad}{s^2}$$

$$n_{z0} = \omega_{z0} \, \frac{60}{2\pi} = 2916,6667 \, \frac{obr}{min}$$

$$M_{z0} = \frac{M_{1,0/z0}^n}{v_{z0} \, \eta_{z0}} = \frac{870,1111}{100 \cdot 0.8} = 10,8763 \, Nm$$

Na podstawie tych danych dokonano doboru silnika oraz przekładni.

Dobrano silnik firmy Mitsubishi Electric HG-JR503 261545 o parametrach:

-nominalny moment: 15,9 Nm;

-nominalna prędkość obrotowa: 3000 obr/min;

-moment bezwładności: $I_{napędu} = 0,0019 \text{ kg} \cdot \text{m}^2$;

-maksymalna predkość obrotowa: 6000 obr/min;

-maksymalny moment: 47,7 Nm;

-hamulec elektromagnetyczny;

-zasilanie: 200V AC;

Dobrano przekładnię firmy Harmonic Drive CSG-20-100-GH Type II o parametrach:

-sprawność: 80%;

-rozmiar: 20 mm; -przełożenie: 100;

-moment bezwładności: $I_{przekladni} = 0.42 \cdot 10^{-4} kg \cdot m^2$;

-maksymalne prędkość średnia wejściowa: 3500 obr/min;

-maksymalna prędkość wejściowa: 6500 obr/min;

-nominalny moment przy 3000 obr/min: 45 Nm;

Po uwzględnieniu bezwładności układu napędowego (podejście lekkie):

$$I_{z0} = I_{napedu} + I_{przekladni} = 0.001942 \cdot kg \cdot m^2$$

$$M_{z0} = \frac{M_{1,0/z0}^n}{v_{z0}\eta_{z0}} + I_{z0}[(\vec{\epsilon_0}\vec{e_{z0}}) + v_{z0}\vec{\phi_1}] = 11,4695 Nm$$

Można zatem stwierdzić, że silnik został dobrany odpowiednio - spełnia wymagania dla podejścia lekkiego.

Wnioski:

Niestety nie było możliwe porównanie silników dobranych w projekcie z silnikami dobranymi przez producenta, ponieważ nie udało się zebrać informacji o tym jakich silników użył producent. Silniki dobrano tak, aby spełniały one wymaganie kinetyczne, ale nie miały zbyt dużych wartości mocy, ponieważ były one wtedy drogie. Wszystkie dobrane w projekcie silniki spełniają wymagania kinetyczne. Największą moc posiada silnik napędzający człon drugi, ponieważ musi on pokonać największe momenty związane z przyspieszeniem ziemskim. Człon pierwszy za to musi wykonywać jedynie ruch obrotowy wokół osi równoległej do osi działania przyspieszenia grawitacyjnego.

4. Załączniki

4.1. Robot

Obliczenia wykonano do robota **ABB IRB 2600-20/1,65** Szkic konstrukcyjny: Załączniki na końcu dokumentu. Zdjęcie:

4.2. Napedy

Wszystkie dobrane napędy są produktem firmy **Mitsubishi Electric** i należą do tej samej serii **HG-JR**. Preferowanie zastosowanie to sterowanie ruchem maszyn i urządzeń przemysłowych(pracujące wewnątrz). Podane napędy zawierają wbudowane enkodery. Nie różnią się one wyglądem, a tylko parametrami i rozmiarami.

Szkic konstrukcyjny:

●HG-JR703(B), HG-JR903(B), HG-JR7034(B), HG-JR9034(B)

Zdjęcie:

Wycinek karty katalogowej:

Motor series 200 V	speed		Batad		Moment	Rated		Servo mo	Amplifier pairing MR-J4														
		Max. speed [r/min]	Rated torque [Nm]	Max. torque [Nm]			Servo motor model	Voltage	Protec- tive structure	10	20	40	60	70	100	200	350	500	700	11K	15K	22K	Art. no
IG-MR			0.16	0.48	0.0162	0.05	HG-MR053			•													248661
U-MK			0.32	0.95	0.0300	0.10	HG-MR13			•													248662
ΝЛ	3000	6000	0.64	1.9	0.0865	0.20	HG-MR23	200 V AC	IP65		•												248663
IVI			1.3	3.8	0.142	0.40	HG-MR43					•											24866
			2.4	7.2	0.586	0.75	HG-MR73																24866
C VD			0.16	0.56	0.0450	0.05	HG-KR053			•													24865
IG-KR			0.32	1.1	0.0777	0.10	HG-KR13		IP65	•													248652
/	3000	6000	0.64	2.2	0.221	0.20	HG-KR23	200 V AC			•												248653
N			1.3	4.5	0.371	0.40	HG-KR43					•											248654
• •			2.4	8.4	1.26	0.75	HG-KR73							•									248655
			2.4	7.2	7.26	0.50	HG-SR52	200 V AC					•										24867
			4.8	14.3	11.6	1.00	HG-SR102								•								248672
IG-SR			7.2	21.5	16.0	1.50	HG-SR152									•							248673
${}^{\circ}$	2000	3000	9.5	28.6	46.8	2.00	HG-SR202		IP67							•							248674
)			16.7	50.1	78.6	3.50	HG-SR352										•						248675
			23.9	71.6	99.7	5.00	HG-SR502										•	•					248676
			33.4	100	151	7.00	HG-SR702											•	•				248677
	3000		1.6	4.8 <6.4> ®	1.52	0.5	HG-JR53	200 V AC					•		•2								261539
			2.4	7.2 <9.6> ®	2.09	0.75	HG-JR73		IP67®					•		● (2)							261540
			3.2	9.6 <12.7> ^①	2.65	1.0	HG-JR103								•	● ②							261541
IG-JR		6000	4.8	14.3 <19.1> ^①		1.5	HG-JR153									•	•2						261542
I			6.4	19.1 <25.5> ®		2.0	HG-JR203									•	O 2						261543
J		ľ	10.5 <11.1>®	47.7		3.3 <3.5>®	HG-JR353										•	23					261544
		-	15.9	<63.7> ®		5.0	HG-JR503											•	•2				26154
		5000	22.3	66.8	43.3	7.0	HG-JR703	8											•				261546
			28.6	85.8	55.8	9.0	HG-JR903													•			261547
		3000	70.0	210	220	11	HG-JR11K1M													•			261557
	1500	[95.5	286	315	15	HG-JR15K1M														•	_	261558
		2500	140	420	489	22	HG-JR22K1M															•	261559
IG-RR			3.2	8.0	1.50	1.0	HG-RR103									•							26289
			4.8	11.9	1.90	1.5	HG-RR153		IP65							•							26289
U	3000	4500	6.4	15.9	2.30	2.0	HG-RR203	200 V AC									•						262898
11			11.1	27.9	8.30	3.5	HG-RR353											•					262899
			15.9	39.8	12.0	5.0	HG-RR503											•					262900

[®]The value in angle brackets is applicable when the maximum torque is increased. The maximum torque will be increased by changing the servo amplifier to be combined (see [®]).

[®] This combination of the HG-JR servo motor and the servo amplifier increases the maximum torque from 300 % to 400 % of the rated torque.

[©] The value in angle brackets is applicable when the servo motor is used with MR-J4-500B or MR-J4-500A.

© 22 kW of HG-JR series is rated IP44

4.3. Przekładnie

Wszystkie dobrane przekładnie falowe są produktem firmy **Harmonic Drive** i należą do tej samej serii **CSG-GH**. Preferowane zastosowanie to przekładnie redukujące serwonapędów i silników krokowych. Nie różnią się one wyglądem, a tylko parametrami i rozmiarami.

Zdjęcie:

Wycinki karty katalogowej wraz ze szkicem konstrukcyjnym:

		Rated Torque	Rated Torque	Limit for	Limit for	Limit for Momentary	Max. Average Input Speed *6	Max. Input	Mass *8		
Size	Ratio	at 2000 rpm *1	at 3000 rpm *2	Average Torque *3	Repeated Peak Torque *4	Torque *5	Input Speed *6	Speed *7	Shaft	Flange	
		Nm	Nm	Nm	Nm	Nm	rpm	rpm	kg	kg	
	50	7.0	6.1	9.0	23	46					
14	80	10	8.7	14	30	61	3500	8500	0.62	0.50	
	100	10	8.7	14	36	70	1				
	50	33	29	44	73	127					
	80	44	38	61	96	165		6500	1.8		
20	100	52	45	64	107	191	3500			1.4	
	120	52	45	64	113	191					
	160	52	45	64	120	191					
	50	99	86	140	281	497			4.6		
	80	153	134	217	395	738]	4800			
32	100	178	155	281	433	812	3500			3.2	
	120	178	155	281	459	812]				
	160	178	155	281	484	812					
	50	229	200	345	650	1235					
	80	407	356	507	918	1651					
45	100	459	401	650	982	2033	3000	3800	13	10	
	120	523	457	806	1070	2033					
	160	523	457	819	1147	2033					
	80	969	846	1352	2743	4836					
65	100	1236	1080	1976	2990	5174	1900	2800	32	24	
~	120	1236	1080	2041	3263	5174] .500	2000	5		
	160	1236	1080	2041	3419	5174]				

CSG-GH-20 Outline Dimensions

Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions.

Dimension Table

wn on the drawing above.

	(Unit: mm)													Table 071-1
Flores	Coupling	A (H7)		В	C		F (H7)		G		He	Moment of Inertia	Mass	(kg) *2
riange		Min.	Max.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Typical	(10 ⁻⁴ kgm²)	Shaft	Flange
Type I	1	30	45	5	36	48	7.0	7.8	23.0	33.0	92.0	0.28	2.3	1.9
Type II	2	50	70	10	60	80	8.0	14.6	25.0	32.0	99.0	0.42	2.6	2.2
Type III	2	50	80	10	60	100	8.0	14.6	25.0	32.0	99.0	0.42	2.8	2.4

CSG-GH-32 Outline Dimensions

Only primary dimensions are shown in the drawings below. Refer to the confirmation drawing for detailed dimensions.

Dimension Table

		(Unit: mm)											Table 072-1	
Flange	Coupling	A (H7)		В	C		F (H7)		G		H ^{et}	Moment of Inertia	Mass	(kg) *2
		Min.	Max.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Max.	(10 ⁻⁴ kgm²)	Shaft	Flange
Type I	3	50	85	10	58	105	9.0	19.6	28.0	57	133	2.7	6.4	5.0
Type II	2	70	95	5	85	115	16.0	25.8	35.0	67	145.5	2.7	6.6	5.2
Type III	1	95	130	7	115	165	11.0	19.6	36.0	65	141	2.0	7.9	6.5

4.4. Sterowniki

Do sterowania silnikami firmy Mitsubishi Electric wykorzystano dedykowane do tego programowalne kontrolery serii MELSEC iQ-R, które zapewniają niezawodność. Sterowniki regulacji położenia serwonapędów należące także do serii MELSEC iQ-R umożliwiają osiągniecie dużej wydajności. Jako oprogramowanie dobrano iQ Works. Ten kompleksowy pakiet oprogramowania zawiera różne oprogramowania do PLC i kontroli ruchu. Wykorzystanie takiego pakietu umożliwia sprawne sterowanie silnikami, także w trybie multiaxis.

Zdjęcie:

