1. Статическая характеристика детектора АМ сигналов (СХД).

Статическая характеристика детектора - зависимость постоянной составляющей тока диода I_0 от амплитуды входного ВЧ сигнала:

 $I_0 = f(U_m)$

Выражение для СХД:

а) для слабых сигналов

$$i = aU_{m}^{2} = (U_{mx} = U_{m}\cos\omega_{0}t) = aU_{m}^{2}\cos^{2}\omega_{0}t = \frac{aU_{m}^{2}}{2} + \frac{aU_{m}^{2}}{2}\cos^{2}\omega_{0}t$$

следовательно

$$I_0 = \frac{aU_m^2}{2}$$

б) для сильных сигналов

$$I_0 = SU_m(1-\cos\theta)*\alpha_0(\theta)$$

СХД имеет вид параболы для малых амплитуд и прямой линии для больших

амплитуд:

Дополнительно о амплитудных детекторах:

• Диодный детектор

Детектор сигналов АМ предназначен для того, чтобы из ВЧ АМ сигнала получить НЧ модулирующий сигнал. Схема простейшего амплитудного диодного детектора показана на рис.3.16.

Назначение нелинейного элемента, диода – преобразование ВЧ АМ сигнала, его нелинейное преобразование с целью создания нужных нам низких, модулирующих частот.

Назначение линейной цепи, т.е. RC фильтра нижних частот (ФНЧ), выделение низкой частоты, т.е. выделение спектра модулирующего сигнала.

• Квадратичный детектор:

Как мы уже говорили, в этом случае ВАХ диода аппроксимируется полиномом второй степени и, следовательно, для определения спектра тока через диод используется метод "кратных дуг". На вход детектора подаем амплитудно-модулированный сигнал, т.е. выражение для АМ сигнала надо подставить в полином:

$$\begin{split} &i = aU^{2} = /U_{\text{BX}}(t) = U_{\text{aM}}(t) = U_{\text{m}}(1 + M_{\text{a}}\cos(\Omega t)\cos(\omega_{0}t) / = \\ &= aU^{2}_{\text{m}}(1 + M_{\text{a}}\cos(\Omega t))^{2}\cos^{2}(\omega_{0}t) = aU^{2}_{\text{m}}(1 + 2M_{\text{a}}\cos(\Omega t) + \\ &\frac{M_{a}^{2}}{2} + \frac{M_{a}^{2}}{2}\cos(2\Omega t))(\frac{1}{2} + \frac{1}{2}\cos(2\omega_{0}t)) = \\ &= \frac{aU_{m}^{2}}{2}(1 + \frac{M_{a}^{2}}{2}) + aU_{m}^{2}M_{a}\cos(\Omega t) + \frac{aU_{m}^{2}M_{a}^{2}\cos(2\Omega t)}{4} + \\ &+ \frac{aU_{m}^{2}}{2}(1 + \frac{M_{a}^{2}}{2})\cos(2\omega_{0}t) + \frac{aU_{m}^{2}M_{a}}{2}(\cos((2\omega_{0} - \Omega)t) + \cos((2\omega_{0} + \Omega)t)) + \\ &\frac{aU_{m}^{2}M_{a}^{2}}{8}(\cos((2\omega_{0} - 2\Omega)t) + \cos((2\omega_{0} + 2\Omega)t)) \end{split}$$

В соответствии с полученным выражением построим спектр тока через диод

ФНЧ выделяет низкочастотные составляющие тока, т.к. его АЧХ, показанная пунктиром на рисунке 3.19 имеет вид:

$$K(\omega) = \frac{R}{\sqrt{1 + (\omega RC)^2}}$$

ФНЧ выделяет:

- постоянную составляющую с частотой равной 0,
- . полезную составляющую с частотой модулирующего колебания Ω ,то есть: $I_{\Omega} = a U_m^2 M_A$.
- вторую гармонику полезного сигнала с частотой 2Ω , $I_{2*\Omega} = \frac{aU_m^2 M_a^2}{4}$, которая определяет степень нелинейных искажений полезного сигнала.

При квадратичном детектировании кроме полезной составляющей с частотой Ω возникают нелинейные искажения полезного сигнала с частотой 2Ω . Коэффициент нелинейных искажений равен:

$$\mathbf{K}_{\text{\tiny H.Y.}} = \frac{I_{2\Omega}}{I_{\Omega}} = \frac{M_A}{4}$$

Чем глубже, т.е. лучше модуляция, тем больше нелинейные искажения.

• Линейный детектор:

Для сильных сигналов с большой амплитудой BAX диода аппроксимируется отрезками прямых (см. рис.8.3).

$$\mathbf{i} = \begin{cases} 0, npuU < E_0 \\ S(U - E_0), npuU \ge E_0 \end{cases}$$
, где S=tg α

Метод анализа: метод «угла отсечки». Ток через диод имеет вид импульсов, которые мы можем представить в виде ряда Фурье. Таким образом, ток через диод может быть записан в виде:

$$i = I_0 + I_1 \cos \omega_0 t + I_2 \cos(2\omega_0 t) + I_3 \cos(3\omega_0 t) + \dots$$

$$I_k = I_{\text{max}}(t)\alpha_k(\theta) = \underbrace{SU_m(1 + M_a \cos \Omega t)(1 - \cos \theta)}_{I_{\text{max}}(t)}\alpha_k(\theta)$$
(3.11)

Спектр тока через диод для режима "линейный детектор" показан на рис.3.20.

Спектр тока содержит только полезную, модулирующую частоту Ω в низкочастотной области. При линейном детектировании отсутствуют нелинейные искажения полезного сигнала. ФНЧ отфильтровывает высокочастотные составляющие тока, ослабляет их в соответствии с сопротивлением RC цепи для разных частот:

$$Z_{RC} = \frac{R}{\sqrt{1 + (\omega RC)^2}}$$
 (3.12)

Спектр напряжения на выходе RC-цепочки имеет вид:

ФНЧ заметно ослабляет несущую частоту по сравнению с низкой частотой, т.е. улучшает качество детектирования.

2. Некоторые виды цифровой модуляции. Методы модуляции без памяти. Сигналы АИМ, ФМ, КАМ.

Некоторые виды цифровой модуляции.

При передаче цифровой информации по каналам связи модулятор отображает информацию в форму аналоговых сигналов, которые согласованы с характеристиками канала. Отображение происходит по средством выбора блоков из $k=\log_2 M$ двоичных символов из символов информационной последовательности $\{a_n\}$ а выбора одного из $M=2^k$ детерминированных сигналов с ограниченной энергией $\{S_m(t), m=\overline{1:M}\}$.

- 1. Если отображение цифровой информации {a_n} в сигнал так, что сигнал, передаваемый на данном интервале времени, зависит от одного или более сигналов, переданных ранее, то говорят, что модулятор имеет память.
- 2. Если отображении $\{a_n\}$ в сигналы $\{S_m(t)\}$ происходит так, что передаваемые не зависят от ранее переданных, то говорят, что модулятор не имеет памяти.

Так же модуляторы бывают линейными и нелинейными. Линейность требует выполнения принципа суперпозиций (наложении) при отображении $\{a_n\}$ в $\{S_m(t)\}$.

Амплитудно – импульсная модуляция (АИМ) или (ДАМ).

АИМ – линейная цифровая модуляция.

$$S_m(t) = A_m(t)g(t)\cos(2\pi f_c t)$$
, m= $\overline{1:M}$, $0 \le t \le T$, A_m — амплитуда сигнала, соответствующая возможным k — битовым блокам или символам.

А_т принимает дискретные значения.

A_m=(2m-1-M)d, 2d – расстояние между соседними амплитудами сигналов,

g(t) — вещественный сигнальный импульс, форму которого определяет спектр передаваемого сигнала.

Скорость передачи канальных символов при AM равна $\frac{R}{k}$ - скорость с которой происходит изменения амплитуды гармонического сигнала.

Временной интервал $T_B = \frac{1}{R}$ — называют информационным интервалом

$$T=kT_B=\frac{\kappa}{R}$$
 - символьный

интервал или интервал информационного символа.

R бит – скорость появления двоичной информационной последовательности {a_n}

Сигналы АМ имеют энергию:

$$E_m = \int_0^T S_m^2(t)dt = \frac{1}{2}A_m^2 \int_0^T g^2(t)dt = \frac{1}{2}A_m^2 E_g$$

 E_q - энергия импульса g(t).

Пространственная диаграмма сигналов цифровой АМ

Цифровая AM называется также модуляцией с амплитудным сдвигом (MAC, ASK).

Сигналы фазовой модуляции (ФМ).

ФМ – нелинейная модуляция.

$$S_m(t) = g(t)\cos(2\pi f_c t + \frac{2\pi(m-1)}{M}), \ m = \overline{1:M}, \ 0 < t < T$$
, $\underline{g(t)}$ — определяет огибающую сигнала, $\underline{\Theta}_m = \frac{2\pi(m-1)}{M}$ — определяет М возможных значений фазы.

которая переносит передаваемую информацию.

Цифровую ФМ также называют модуляцией с фазовым сдвигом (МФС, PSK)

Сигналы Sm(t) имеют одинаковую энергию:

$$E = \int_{0}^{T} S_{m}^{2}(t)dt = \frac{1}{2} \int_{0}^{T} g^{2}(t)dt = \frac{1}{2} Eg.$$

Пространственная диаграмма сигналов цифровой ФМ

Квадратурная амплитудная модуляция(КАМ, QАМ)

$$S_m(t) = A_{mc} \cdot g(t) \cos(2\pi f_c t) - A_{ms} \cdot g(t) \sin(2\pi f_c t), \quad m = \overline{j:M}, \quad 0 \le t \le T, \quad \underline{Amc, Ams} - \underline{f:M} \cdot \underline{$$

информационные амплитуды сигнала для квадратурных несущих $\underline{g(t)} - \text{вещественный сигнальный импульс.}$

Альтернативно сигнал КАМ можно выразить так:

$$S_m(t) = V_m g(t) \cos(2\pi f_c t + \Theta_m)$$

$$V_m = \sqrt{A_{ms}^2 + A_{mc}^2}, \quad \Theta_m = arctg(\frac{A_{ms}}{A})$$

КАМ можно рассматривать как комбинацию амплитудной и фазовой модуляции. Можно образовать определенную комбинацию M_1 уровней АМ и M_2 уровней позиционной ФМ, чтобы сконструировать комбинированное АМ-ФМ сигнальное созвездие, содержащее $M=M_1\cdot M_2$ точек пространства сигналов. Если $M_1=2^n$, $M_2=2^m$, то сигнальное созвездие сводится к мгновенной передаче $m+n=\log_2 M_1\cdot M_2$ двоичных символов, возникающих со скоростью $\frac{R}{M_1+R_2}$.

Пространственная диаграмма комбинированной АМ-ФМ

Для частного случая, когда амплитуда сигналов принимает ряд дискретных значений $\{(2m-1-M)d, m=\overline{1:M}\}$, пространственная диаграмма сигналов является прямоугольной

Также к методу модуляции без памяти относятся модуляция с частотным сдвигом:

Ортогональные сигналы

Нелинейная модуляция без памяти.

$$S_m(t) = A\cos(2\pi f_c t + 2\pi m \triangle f t),$$

$$m = \overline{1:M} \quad 0 \le t \le T$$

Этот вид частотной модуляции (ЧМ) называется модуляцией с частотным сдвигом (МЧС, FSK), $\rho_{km}=0$; $\triangle f=\frac{1}{2T}$

Задача: Найти амплитудный и фазовый спектр сигнала. (графики хз нужны ли, вроде как нет, на всякий креплю примерно как они выглядят)

Пример из лекции:

прямоугольного импульса с амплитудой А и длительностью т на рис.1.4

$$S(j\omega) = \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} A e^{-j\omega t} dt = A \tau \frac{\sin 0.5\omega \tau}{0.5 \omega \tau}$$

получим спектр S(jω) на рис.1.5 :

