[MHT-CET 2021]

(online shift)

(Memory based questions)

If α , β , γ and a, b, c are complex numbers such that $\frac{\alpha}{a} + \frac{\beta}{b} + \frac{\gamma}{c} = 1 + i$ and $\frac{a}{\alpha} + \frac{b}{\beta} + \frac{c}{\gamma} = 0$, 1.

then the value of $\frac{\alpha^2}{a^2} + \frac{\beta^2}{b^2} + \frac{\gamma^2}{c^2}$ is equal to

- b) 1
- c) 2 i
- d) 2i

11

1

2. If $z = \frac{\pi}{4} (1+i)^4 \left(\frac{1-\sqrt{\pi}i}{\sqrt{\pi}+i} + \frac{\sqrt{\pi}-i}{1+\sqrt{\pi}i} \right)$ then $\left(\frac{\mid z \mid}{amp(z)} \right)$ equals.

a) 1

b) π

c) 3π

d) 4

If $z = \frac{(\sqrt{3} + i)^3 (3i + 4)^2}{(8 + 6i)^2}$, then |z| is equal to

a) 8

b) 2

c) 5

d) 4

If $\frac{3}{2+\cos\theta+i\sin\theta} = a+ib$, then $[(a-2)^2+b^2]$ is equal to 4.

d) 2

5. The value of $(1+i)^5 - (1-i)^7$ is

- a) 64
- b) -64i
- c) 64 i
- d) 64

If ω is complex cube root of unity and $(1 + \omega)^7 = A + B\omega$, then values of A and B are 6. respectively.

- a) 0, 1
- b) 1, 1
- c) 1, 0

The complex number with argument $\frac{5\pi^c}{6}$ at a distance of 2 units from the origin is 7.

- a) $\sqrt{3}-i$
- b) $\sqrt{3} + i$
- c) $-\sqrt{3}-i$ d) $-\sqrt{3}+i$

If z(2-i) = (3+i), then 8.

$$z^{38} = ?$$
 (where $z = x + iy$)

- a) $-(2^{19})i$
- b) 2¹⁹ i
- c) $-(2^{19})$
- d) 219

- If x = 1 + 2i, then the value of $x^3 + 7x^2 x + 16$ is
 - b) -17 + 24 i
- c) 17 24 i
- d) 17 + 24i

If ω is the complex cube root of unity then $(3+5\omega+3\omega^2)^2+(3+3\omega+5\omega^2)^2=$

c) 4

If z = x + iy satisfies the condition |z + 1| = 1 then z lies on the

a) Parabola with vertex (0, 0)

b) circle with centre (-1, 0) and radius 1

c) circle with centre (1, 0) and radius 1

d) Y - axis

If amplitude of (z-2-3i) is $\frac{3\pi}{4}$, then locus of z is (where z=x+iy)

a) x + y = 1

b) x + y = 5

c) x - y = -5

The square roots of the complex number (-5-12i) are

a) $\pm (2-3i)$

b) $\pm (3 + 2i)$

c) $\pm (2 + 3i)$

d) $\pm (3-2i)$

14. $\frac{3+2i}{1+i} = \frac{1}{2} (x+iy)$, then x-y=

b) 3

c) 6

d) 5

The complex number with argument $\frac{5\pi^{c}}{6}$ at a distance of 2 units from the origin is b) $\sqrt{3} + i$ c) $-\sqrt{3} - i$ d) $-\sqrt{3} + i$

[MHT-CET 2022]

Let z be a complex number such that |z|+z=3+i, $i=\sqrt{-1}$, then |z| is equal to b) $\frac{5}{3}$ c) $\frac{\sqrt{34}}{3}$ d) $\frac{5}{4}$

a) $\frac{\sqrt{41}}{4}$

17. If $x = -2 - \sqrt{3}i$, where $i = \sqrt{-1}$, then the value of $2x^4 + 5x^3 + 7x^2 - x + 41$ is

a) 6

b) 76 c) -76

18. If $(x+iy)^{\frac{1}{3}} = a+ib$, where $x, y, a, b \in \mathbb{R}$ and $i = \sqrt{-1}$ then $\frac{x}{a} - \frac{y}{b} = \frac{1}{a}$

a) $a^2 + b^2$.

b) $2(a^2 - b^2)$

c) $-2(a^2+b^2)$ d) a^2-b^2

If α and β are the complex cube roots of unity, then $\alpha^3 + \beta^3 + \alpha^{-2} \cdot \beta^{-2}$ is equal to

a) 0

b) 3

c) - 3

d) 1

20. If $\left(\frac{1-i}{1+i}\right)^{100} = a+ib$, where $a, b \in \mathbb{R}$ and $i = \sqrt{-1}$, then (a, b) is equal to

a) (0, 1)

b) (1, 0)

c) (2,-1)

d) (-1, 2)

30. If
$$(3x+2)-(5y-3)i$$
 and $(6x+3)+(2y-4)i$ are conjugates of each other, then $\frac{x-y}{x+y}$ equals

(1+i)²

(1+i)²

(1+i)²

(2y-4) i are conjugates of each other, then $\frac{x-y}{x+y}$ equals

- 31. If a > 0 and $z = \frac{(1+i)^2}{a+i}$, $i = \sqrt{-1}$ has magnitude $\frac{2}{\sqrt{5}}$, then $z = \frac{1}{\sqrt{5}}$ a) $\frac{2+4i}{5}$ b) $\frac{2-4i}{5}$

- c) $\frac{-2+4i}{5}$ d) $\frac{-2-4i}{5}$
- 32. $\frac{i^{248} + i^{246} + i^{244} + i^{242} + i^{240}}{i^{249} + i^{247} + i^{245} + i^{243} + i^{241}} =$

- c) 1
- d) 1

- 33. $\left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)^{10} + \left(\frac{1}{\sqrt{2}} \frac{i}{\sqrt{2}}\right)^{10} = 1$
 - a) 64

b) 32

c) 0

- d) 2
- Let $z \in C$ with Im (z) = 10 and it satisfies $\frac{2z-n}{2z+n} = 2i-1$, $i = \sqrt{-1}$ for some natural 34.
 - a) n = 20 and Re (z) = 10
 - c) n = 40 and Re (z) = 10

- b) n = 20 and Re (z) = -10
- d) n = 40 and Re (z) = -10
- If z = x + iy and $z^{\frac{1}{3}} = a + ib$, where $x, y, a, b \in \mathbb{R}$ and $i = \sqrt{-1}$, then $\frac{x}{a} + \frac{y}{b} = \frac{1}{2}$
- b) $4(a^2+b^2)$
- c) $-2(a^2-b^2)$ d) $-2(a^2+b^2)$
- 36. If $x = \frac{5}{1-2i}$, then $x^3 + x^2 x + 22 = \frac{5}{1-2i}$

c) 9

- If $|z-2+i| \le 2$, then the difference between the greatest and the least value of |z| is

- d) $4+2\sqrt{5}$
- a) 4 b) 2 c) $2\sqrt{5}$ 38. Let $z_1 = 4i^{40} 5i^{35} + 6i^{17} + 2$, $z_2 = -1 + i$, then $|z_1 + z_2| = -1$

- d) 15

- 39. Argument of $\frac{1+i\sqrt{3}}{\sqrt{3}+i}$ is
 - a) 30°

- b) 45°
- c) 60°
- d) 90°
- If $w = \frac{z}{z \frac{i}{2}}$ and |w| = 1, $i = \sqrt{-1}$, then z lies on
 - a) a line
- b) a circle
- c) a parabola
- d) an ellipse
- 41. If $w = \frac{z}{z \frac{i}{2}}$ and |w| = 1, $i = \sqrt{-1}$, then z lies on
 - a) a line
- b) a circle
- c) a parabola d) an ellipse

J. L. LALL

nur

The polar form of the complex number $z = \frac{1}{2} + \frac{\sqrt{3}}{2}$, is

a)
$$\mathbb{I}\left(\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right)$$

b)
$$1\left(\cos\left(\frac{\pi}{6}\right) - i\sin\left(\frac{\pi}{6}\right)\right)$$

$$\leq$$
 $1\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right)$

d)
$$1\left(\cos\left(\frac{\pi}{3}\right) - i\sin\left(\frac{\pi}{3}\right)\right)$$

52. If $z = r(\cos\theta + i\sin\theta)$, then $\frac{z}{z} + \frac{\bar{z}}{z} =$

- c) $2\cos\theta$

If z is a complex number such that $|z| \ge 2$, then the minimum value of $z + \frac{1}{2}$: 53.

- a) is strictly greater than $\frac{3}{2}$ but less than $\frac{5}{2}$
- b) is equal to $\frac{5}{2}$
- c) lies in the interval (1, 2)
- d) is strictly greater than $\frac{5}{2}$

If P (x, y) denotes z = x + iy, $x, y \in \mathbb{R}$ and $i = \sqrt{-1}$ in Argand's plane and $\frac{z-1}{z+2i} = 1$, then the locus of P is

- a) a straight line
- b) a circle
- c) a parabola
- d) a hyperbola

If z = x + iy satisfies the condition |z + 1| = 1, then z lies on the

- a) y-axis
- b) parabola with vertex (0, 0)
- c) circle with centre (-1,0) and radius 1
- d) circle with centre (1, 0) and radius 1

56. If $\left|\frac{z}{1+i}\right| = 2$, where z = x + iy represents a circle, then centre C and radius r of circle are

- a) $C \equiv (0,0), r = 2\sqrt{2}$ b) $C \equiv (0,3), r = 8$ c) $C \equiv (3,0), r = 4$ d) $C \equiv (6,0), r = 2$

57. If |z| = 1 and $w = \frac{z-1}{z+1}$, $z \neq -1$, then Re (w) is

a) 0

- b) $-\frac{1}{(z+1)^2}$ c) $\frac{\sqrt{2}}{(z+1)^2}$
- d) $\left| \frac{z}{z+1} \right| \cdot \frac{1}{|z+1|^2}$

58. If z = x + iy, then the area of the rectangle whose vertices are the roots of the equation $z\bar{z}^3 + \bar{z}z^3 - 350 = 0$ is

- a) 80 sq units
- b) 48 sq units
- c) 40 sq units
- d) 32 sq units

59. If $z^2 + z + 1 = 0$, where $z = \omega = \text{complex cube root of unity, then } \left(z^3 + \frac{1}{z^3}\right)^2 + \left(z^4 + \frac{1}{z^4}\right)^2 = 0$

a) 1

b) 2

c) 4

d) 5