1 ЗАВДАННЯ

Згідно варіанту, розробити алгоритм вирішення задачі і виконати його програмну реалізацію на будь-якій мові програмування.

Задача, алгоритм і його параметри наведені в таблиці 2.1.

Зафіксувати якість отриманого розв'язку (значення цільової функції) після кожних 20 ітерацій до 1000 (допускається самостійній вибір кроку та верхньої границі ітерацій) і побудувати графік залежності якості розв'язку від числа ітерацій.

Зробити узагальнений висновок.

Таблиця 2.1 – Варіанти алгоритмів

T.C.	
№	Задача і алгоритм
1	Задача про рюкзак (місткість Р=250, 100 предметів, цінність
	предметів від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)),
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1
	різному предмету, оператор схрещування одноточковий по 50 генів,
	мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген).
	Розробити власний оператор локального покращення.
2	Задача комівояжера (100 вершин, відстань між вершинами
	випадкова від 5 до 50), мурашиний алгоритм ($\alpha = 2$, $\beta = 4$, $\rho = 0,4$,
	Lmin знайти жадібним алгоритмом, кількість мурах M = 30,
	починають маршрут в різних випадкових вершинах).
3	Задача розфарбовування графу (200 вершин, степінь вершини не
	більше 20, але не менше 1), бджолиний алгоритм АВС (число бджіл
	30 із них 2 розвідники).
4	Задача про рюкзак (місткість Р=200, 100 предметів, цінність
	предметів від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)),
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1
	різному предмету, оператор схрещування двоточковий порівну

	генів, мутація з ймовірністю 10% змінюємо тільки 1 випадковий
	ген). Розробити власний оператор локального покращення.
5	Задача комівояжера (150 вершин, відстань між вершинами
	випадкова від 5 до 50), мурашиний алгоритм ($\alpha = 2$, $\beta = 3$, $\rho = 0.4$,
	Lmin знайти жадібним алгоритмом, кількість мурах M = 35,
	починають маршрут в різних випадкових вершинах).
6	Задача розфарбовування графу (250 вершин, степінь вершини не
	більше 25, але не менше 2), бджолиний алгоритм АВС (число бджіл
	35 із них 3 розвідники).
7	Задача про рюкзак (місткість Р=150, 100 предметів, цінність
	предметів від 2 до 10 (випадкова), вага від 1 до 5 (випадкова)),
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1
	різному предмету, оператор схрещування рівномірний, мутація з
	ймовірністю 5% два випадкові гени міняються місцями). Розробити
	власний оператор локального покращення.
8	Задача комівояжера (200 вершин, відстань між вершинами
	випадкова від 0(перехід заборонено) до 50), мурашиний алгоритм (α
	$= 3, \beta = 2, \rho = 0,3,$ Lmin знайти жадібним алгоритмом, кількість
	мурах М = 45, починають маршрут в різних випадкових вершинах).
9	Задача розфарбовування графу (150 вершин, степінь вершини не
	більше 30, але не менше 1), бджолиний алгоритм АВС (число бджіл
	25 із них 3 розвідники).
10	Задача про рюкзак (місткість Р=150, 100 предметів, цінність
	предметів від 2 до 10 (випадкова), вага від 1 до 5 (випадкова)),
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1
	різному предмету, оператор схрещування рівномірний, мутація з
	ймовірністю 10% два випадкові гени міняються місцями).
	Розробити власний оператор локального покращення.
<u> </u>	

11	Задача комівояжера (250 вершин, відстань між вершинами
	випадкова від 0(перехід заборонено) до 50), мурашиний алгоритм (α
	$=2,\beta=4,\rho=0,6,$ Lmin знайти жадібним алгоритмом, кількість
	мурах М = 45, починають маршрут в різних випадкових вершинах).
12	Задача розфарбовування графу (300 вершин, степінь вершини не
	більше 30, але не менше 1), бджолиний алгоритм АВС (число бджіл
	60 із них 5 розвідники).
13	Задача про рюкзак (місткість Р=250, 100 предметів, цінність
	предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)),
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1
	різному предмету, оператор схрещування одноточковий 30% і 70%,
	мутація з ймовірністю 5% два випадкові гени міняються місцями).
	Розробити власний оператор локального покращення.
14	Задача комівояжера (250 вершин, відстань між вершинами
	випадкова від 1 до 40), мурашиний алгоритм (α = 4, β = 2, ρ = 0,3,
	Lmin знайти жадібним алгоритмом, кількість мурах M = 45 (10 з
	них дикі, обирають випадкові напрямки), починають маршрут в
	різних випадкових вершинах).
15	Задача розфарбовування графу (100 вершин, степінь вершини не
	більше 20, але не менше 1), класичний бджолиний алгоритм (число
	бджіл 30 із них 3 розвідники).
16	Задача про рюкзак (місткість Р=250, 100 предметів, цінність
	предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)),
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1
	різному предмету, оператор схрещування двоточковий 30%, 40% і
	30%, мутація з ймовірністю 10% два випадкові гени міняються
	місцями). Розробити власний оператор локального покращення.
17	Задача комівояжера (200 вершин, відстань між вершинами
	випадкова від 1 до 40), мурашиний алгоритм ($\alpha = 2$, $\beta = 4$, $\rho = 0.7$,
	Lmin знайти жадібним алгоритмом, кількість мурах M = 45 (15 з

 бджіл 60 із них 5 розвідники). Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету, оператор схрещування триточковий 25%, мутація з ймовірністю 5% два випадкові гени міняються місцями). Розробити власний оператор локального покращення. Задача комівояжера (200 вершин, відстань між вершинами випадкова від 1 до 40), мурашиний алгоритм (α = 3, β = 2, ρ = 0,7, Lmin знайти жадібним алгоритмом, кількість мурах М = 45 (10 з них елітні, подвійний феромон), починають маршрут в різних випадкових вершинах). Задача розфарбовування графу (200 вершин, степінь вершини не більше 30, але не менше 1), класичний бджолиний алгоритм (число бджіл 40 із них 2 розвідники). Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету, оператор схрещування триточковий 25%, мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген). Розробити власний оператор локального покращення. Задача комівояжера (300 вершин, відстань між вершинами випадкова від 1 до 60), мурашиний алгоритм (α = 3, β = 2, ρ = 0,6, 		них дикі, обирають випадкові напрямки), починають маршрут в
 більше 50, але не менше 1), класичний бджолиний алгоритм (число бджіл 60 із них 5 розвідники). Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету, оператор схрещування триточковий 25%, мутація з ймовірністю 5% два випадкові гени міняються місцями). Розробити власний оператор локального покращення. Задача комівояжера (200 вершин, відстань між вершинами випадкова від 1 до 40), мурашиний алгоритм (α = 3, β = 2, ρ = 0,7, Lmin знайти жадібним алгоритмом, кількість мурах М = 45 (10 з них елітні, подвійний феромон), починають маршрут в різних випадкових вершинах). Задача розфарбовування графу (200 вершин, степінь вершини не більше 30, але не менше 1), класичний бджолиний алгоритм (число бджіл 40 із них 2 розвідники). Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету, оператор схрещування триточковий 25%, мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген). Розробити власний оператор локального покращення. Задача комівояжера (300 вершин, відстань між вершинами випадкова від 1 до 60), мурашиний алгоритм (α = 3, β = 2, ρ = 0,6, 		різних випадкових вершинах).
 бджіл 60 із них 5 розвідники). Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету, оператор схрещування триточковий 25%, мутація з ймовірністю 5% два випадкові гени міняються місцями). Розробити власний оператор локального покращення. Задача комівояжера (200 вершин, відстань між вершинами випадкова від 1 до 40), мурашиний алгоритм (α = 3, β = 2, ρ = 0,7, Lmin знайти жадібним алгоритмом, кількість мурах М = 45 (10 з них елітні, подвійний феромон), починають маршрут в різних випадкових вершинах). Задача розфарбовування графу (200 вершин, степінь вершини не більше 30, але не менше 1), класичний бджолиний алгоритм (число бджіл 40 із них 2 розвідники). Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету, оператор схрещування триточковий 25%, мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген). Розробити власний оператор локального покращення. Задача комівояжера (300 вершин, відстань між вершинами випадкова від 1 до 60), мурашиний алгоритм (α = 3, β = 2, ρ = 0,6, 	18	Задача розфарбовування графу (300 вершин, степінь вершини не
 Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету, оператор схрещування триточковий 25%, мутація з ймовірністю 5% два випадкові гени міняються місцями). Розробити власний оператор локального покращення. Задача комівояжера (200 вершин, відстань між вершинами випадкова від 1 до 40), мурашиний алгоритм (α = 3, β = 2, ρ = 0,7, Lmin знайти жадібним алгоритмом, кількість мурах М = 45 (10 з них елітні, подвійний феромон), починають маршрут в різних випадкових вершинах). Задача розфарбовування графу (200 вершин, степінь вершини не більше 30, але не менше 1), класичний бджолиний алгоритм (число бджіл 40 із них 2 розвідники). Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету, оператор схрещування триточковий 25%, мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген). Розробити власний оператор локального покращення. Задача комівояжера (300 вершин, відстань між вершинами випадкова від 1 до 60), мурашиний алгоритм (α = 3, β = 2, ρ = 0,6, 		більше 50, але не менше 1), класичний бджолиний алгоритм (число
предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету, оператор схрещування триточковий 25%, мутація з ймовірністю 5% два випадкові гени міняються місцями). Розробити власний оператор локального покращення. 20 Задача комівояжера (200 вершин, відстань між вершинами випадкова від 1 до 40), мурашиний алгоритм (α = 3, β = 2, ρ = 0,7, Lmin знайти жадібним алгоритмом, кількість мурах М = 45 (10 з них елітні, подвійний феромон), починають маршрут в різних випадкових вершинах). 21 Задача розфарбовування графу (200 вершин, степінь вершини не більше 30, але не менше 1), класичний бджолиний алгоритм (число бджіл 40 із них 2 розвідники). 22 Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету, оператор схрещування триточковий 25%, мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген). Розробити власний оператор локального покращення. 23 Задача комівояжера (300 вершин, відстань між вершинами випадкова від 1 до 60), мурашиний алгоритм (α = 3, β = 2, ρ = 0,6,		бджіл 60 із них 5 розвідники).
генетичний алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету, оператор схрещування триточковий 25%, мутація з ймовірністю 5% два випадкові гени міняються місцями). Розробити власний оператор локального покращення. 20 Задача комівояжера (200 вершин, відстань між вершинами випадкова від 1 до 40), мурашиний алгоритм (α = 3, β = 2, ρ = 0,7, Lmin знайти жадібним алгоритмом, кількість мурах М = 45 (10 з них елітні, подвійний феромон), починають маршрут в різних випадкових вершинах). 21 Задача розфарбовування графу (200 вершин, степінь вершини не більше 30, але не менше 1), класичний бджолиний алгоритм (число бджіл 40 із них 2 розвідники). 22 Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету, оператор схрещування триточковий 25%, мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген). Розробити власний оператор локального покращення. 23 Задача комівояжера (300 вершин, відстань між вершинами випадкова від 1 до 60), мурашиний алгоритм (α = 3, β = 2, ρ = 0,6,	19	Задача про рюкзак (місткість Р=250, 100 предметів, цінність
різному предмету, оператор схрещування триточковий 25%, мутація з ймовірністю 5% два випадкові гени міняються місцями). Розробити власний оператор локального покращення. 20 Задача комівояжера (200 вершин, відстань між вершинами випадкова від 1 до 40), мурашиний алгоритм (α = 3, β = 2, ρ = 0,7, Lmin знайти жадібним алгоритмом, кількість мурах М = 45 (10 з них елітні, подвійний феромон), починають маршрут в різних випадкових вершинах). 21 Задача розфарбовування графу (200 вершин, степінь вершини не більше 30, але не менше 1), класичний бджолиний алгоритм (число бджіл 40 із них 2 розвідники). 22 Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету, оператор схрещування триточковий 25%, мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген). Розробити власний оператор локального покращення. 23 Задача комівояжера (300 вершин, відстань між вершинами випадкова від 1 до 60), мурашиний алгоритм (α = 3, β = 2, ρ = 0,6,		предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)),
 мутація з ймовірністю 5% два випадкові гени міняються місцями). Розробити власний оператор локального покращення. Задача комівояжера (200 вершин, відстань між вершинами випадкова від 1 до 40), мурашиний алгоритм (α = 3, β = 2, ρ = 0,7, Lmin знайти жадібним алгоритмом, кількість мурах М = 45 (10 з них елітні, подвійний феромон), починають маршрут в різних випадкових вершинах). Задача розфарбовування графу (200 вершин, степінь вершини не більше 30, але не менше 1), класичний бджолиний алгоритм (число бджіл 40 із них 2 розвідники). Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету, оператор схрещування триточковий 25%, мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген). Розробити власний оператор локального покращення. Задача комівояжера (300 вершин, відстань між вершинами випадкова від 1 до 60), мурашиний алгоритм (α = 3, β = 2, ρ = 0,6, 		генетичний алгоритм (початкова популяція 100 осіб кожна по 1
 Розробити власний оператор локального покращення. 3адача комівояжера (200 вершин, відстань між вершинами випадкова від 1 до 40), мурашиний алгоритм (α = 3, β = 2, ρ = 0,7, Lmin знайти жадібним алгоритмом, кількість мурах М = 45 (10 з них елітні, подвійний феромон), починають маршрут в різних випадкових вершинах). 3адача розфарбовування графу (200 вершин, степінь вершини не більше 30, але не менше 1), класичний бджолиний алгоритм (число бджіл 40 із них 2 розвідники). 3адача про рюкзак (місткість Р=250, 100 предметів, цінність предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету, оператор схрещування триточковий 25%, мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген). Розробити власний оператор локального покращення. 3адача комівояжера (300 вершин, відстань між вершинами випадкова від 1 до 60), мурашиний алгоритм (α = 3, β = 2, ρ = 0,6, 		різному предмету, оператор схрещування триточковий 25%,
 Задача комівояжера (200 вершин, відстань між вершинами випадкова від 1 до 40), мурашиний алгоритм (α = 3, β = 2, ρ = 0,7, Lmin знайти жадібним алгоритмом, кількість мурах М = 45 (10 з них елітні, подвійний феромон), починають маршрут в різних випадкових вершинах). Задача розфарбовування графу (200 вершин, степінь вершини не більше 30, але не менше 1), класичний бджолиний алгоритм (число бджіл 40 із них 2 розвідники). Задача про рюкзак (місткість P=250, 100 предметів, цінність предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету, оператор схрещування триточковий 25%, мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген). Розробити власний оператор локального покращення. Задача комівояжера (300 вершин, відстань між вершинами випадкова від 1 до 60), мурашиний алгоритм (α = 3, β = 2, ρ = 0,6, 		мутація з ймовірністю 5% два випадкові гени міняються місцями).
випадкова від 1 до 40), мурашиний алгоритм (α = 3, β = 2, ρ = 0,7,		Розробити власний оператор локального покращення.
 Lmin знайти жадібним алгоритмом, кількість мурах М = 45 (10 з них елітні, подвійний феромон), починають маршрут в різних випадкових вершинах). Задача розфарбовування графу (200 вершин, степінь вершини не більше 30, але не менше 1), класичний бджолиний алгоритм (число бджіл 40 із них 2 розвідники). Задача про рюкзак (місткість P=250, 100 предметів, цінність предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету, оператор схрещування триточковий 25%, мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген). Розробити власний оператор локального покращення. Задача комівояжера (300 вершин, відстань між вершинами випадкова від 1 до 60), мурашиний алгоритм (α = 3, β = 2, ρ = 0,6, 	20	Задача комівояжера (200 вершин, відстань між вершинами
них елітні, подвійний феромон), починають маршрут в різних випадкових вершинах). 21 Задача розфарбовування графу (200 вершин, степінь вершини не більше 30, але не менше 1), класичний бджолиний алгоритм (число бджіл 40 із них 2 розвідники). 22 Задача про рюкзак (місткість P=250, 100 предметів, цінність предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету, оператор схрещування триточковий 25%, мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген). Розробити власний оператор локального покращення. 23 Задача комівояжера (300 вершин, відстань між вершинами випадкова від 1 до 60), мурашиний алгоритм (α = 3, β = 2, ρ = 0,6,		випадкова від 1 до 40), мурашиний алгоритм ($\alpha = 3$, $\beta = 2$, $\rho = 0.7$,
 Випадкових вершинах). 21 Задача розфарбовування графу (200 вершин, степінь вершини не більше 30, але не менше 1), класичний бджолиний алгоритм (число бджіл 40 із них 2 розвідники). 22 Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету, оператор схрещування триточковий 25%, мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген). Розробити власний оператор локального покращення. 23 Задача комівояжера (300 вершин, відстань між вершинами випадкова від 1 до 60), мурашиний алгоритм (α = 3, β = 2, ρ = 0,6, 		Lmin знайти жадібним алгоритмом, кількість мурах M = 45 (10 з
 Задача розфарбовування графу (200 вершин, степінь вершини не більше 30, але не менше 1), класичний бджолиний алгоритм (число бджіл 40 із них 2 розвідники). Задача про рюкзак (місткість P=250, 100 предметів, цінність предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету, оператор схрещування триточковий 25%, мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген). Розробити власний оператор локального покращення. Задача комівояжера (300 вершин, відстань між вершинами випадкова від 1 до 60), мурашиний алгоритм (α = 3, β = 2, ρ = 0,6, 		них елітні, подвійний феромон), починають маршрут в різних
більше 30, але не менше 1), класичний бджолиний алгоритм (число бджіл 40 із них 2 розвідники). 22 Задача про рюкзак (місткість P=250, 100 предметів, цінність предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету, оператор схрещування триточковий 25%, мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген). Розробити власний оператор локального покращення. 23 Задача комівояжера (300 вершин, відстань між вершинами випадкова від 1 до 60), мурашиний алгоритм (α = 3, β = 2, ρ = 0,6,		випадкових вершинах).
 бджіл 40 із них 2 розвідники). Задача про рюкзак (місткість P=250, 100 предметів, цінність предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету, оператор схрещування триточковий 25%, мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген). Розробити власний оператор локального покращення. Задача комівояжера (300 вершин, відстань між вершинами випадкова від 1 до 60), мурашиний алгоритм (α = 3, β = 2, ρ = 0,6, 	21	Задача розфарбовування графу (200 вершин, степінь вершини не
 Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету, оператор схрещування триточковий 25%, мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген). Розробити власний оператор локального покращення. Задача комівояжера (300 вершин, відстань між вершинами випадкова від 1 до 60), мурашиний алгоритм (α = 3, β = 2, ρ = 0,6, 		більше 30, але не менше 1), класичний бджолиний алгоритм (число
предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету, оператор схрещування триточковий 25%, мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген). Розробити власний оператор локального покращення. 23 Задача комівояжера (300 вершин, відстань між вершинами випадкова від 1 до 60), мурашиний алгоритм ($\alpha = 3$, $\beta = 2$, $\rho = 0.6$,		бджіл 40 із них 2 розвідники).
генетичний алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету, оператор схрещування триточковий 25%, мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген). Розробити власний оператор локального покращення. 23 Задача комівояжера (300 вершин, відстань між вершинами випадкова від 1 до 60), мурашиний алгоритм (α = 3, β = 2, ρ = 0,6,	22	Задача про рюкзак (місткість Р=250, 100 предметів, цінність
різному предмету, оператор схрещування триточковий 25%, мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген). Розробити власний оператор локального покращення. 23 Задача комівояжера (300 вершин, відстань між вершинами випадкова від 1 до 60), мурашиний алгоритм ($\alpha = 3$, $\beta = 2$, $\rho = 0.6$,		предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)),
мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген). Розробити власний оператор локального покращення. Задача комівояжера (300 вершин, відстань між вершинами випадкова від 1 до 60), мурашиний алгоритм ($\alpha = 3$, $\beta = 2$, $\rho = 0.6$,		генетичний алгоритм (початкова популяція 100 осіб кожна по 1
Розробити власний оператор локального покращення. Задача комівояжера (300 вершин, відстань між вершинами випадкова від 1 до 60), мурашиний алгоритм (α = 3, β = 2, ρ = 0,6,		різному предмету, оператор схрещування триточковий 25%,
23 Задача комівояжера (300 вершин, відстань між вершинами випадкова від 1 до 60), мурашиний алгоритм ($\alpha = 3$, $\beta = 2$, $\rho = 0.6$,		мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген).
випадкова від 1 до 60), мурашиний алгоритм ($\alpha = 3$, $\beta = 2$, $\rho = 0.6$,		Розробити власний оператор локального покращення.
	23	Задача комівояжера (300 вершин, відстань між вершинами
		випадкова від 1 до 60), мурашиний алгоритм ($\alpha = 3$, $\beta = 2$, $\rho = 0.6$,
Lmin знаити жадіоним алгоритмом, кількість мурах $M = 45$ (15 з		Lmin знайти жадібним алгоритмом, кількість мурах M = 45 (15 з
них елітні, подвійний феромон), починають маршрут в різних		них елітні, подвійний феромон), починають маршрут в різних
випадкових вершинах).		випадкових вершинах).

24	Задача розфарбовування графу (400 вершин, степінь вершини не
	більше 50, але не менше 1), класичний бджолиний алгоритм (число
	бджіл 70 із них 10 розвідники).
25	Задача про рюкзак (місткість Р=250, 100 предметів, цінність
	предметів від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)),
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1
	різному предмету, оператор схрещування одноточковий по 50 генів,
	мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген).
	Розробити власний оператор локального покращення.
26	Задача комівояжера (100 вершин, відстань між вершинами
	випадкова від 5 до 50), мурашиний алгоритм (α = 2, β = 4, ρ = 0,4,
	Lmin знайти жадібним алгоритмом, кількість мурах M = 30,
	починають маршрут в різних випадкових вершинах).
27	Задача розфарбовування графу (200 вершин, степінь вершини не
	більше 20, але не менше 1), бджолиний алгоритм АВС (число бджіл
	30 із них 2 розвідники).
28	Задача про рюкзак (місткість Р=200, 100 предметів, цінність
	предметів від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)),
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1
	різному предмету, оператор схрещування двоточковий порівну
	генів, мутація з ймовірністю 10% змінюємо тільки 1 випадковий
	ген). Розробити власний оператор локального покращення.
29	Задача комівояжера (150 вершин, відстань між вершинами
	випадкова від 5 до 50), мурашиний алгоритм ($\alpha = 2$, $\beta = 3$, $\rho = 0.4$,
	Lmin знайти жадібним алгоритмом, кількість мурах M = 35,
	починають маршрут в різних випадкових вершинах).
30	Задача розфарбовування графу (250 вершин, степінь вершини не
	більше 25, але не менше 2), бджолиний алгоритм АВС (число бджіл
	35 із них 3 розвідники).
	·

31	Задача про рюкзак (місткість Р=250, 100 предметів, цінність
	предметів від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)),
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1
	різному предмету, оператор схрещування одноточковий по 50 генів,
	мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген).
	Розробити власний оператор локального покращення.
32	Задача комівояжера (100 вершин, відстань між вершинами
	випадкова від 5 до 50), мурашиний алгоритм ($\alpha = 2$, $\beta = 4$, $\rho = 0,4$,
	Lmin знайти жадібним алгоритмом, кількість мурах M = 30,
	починають маршрут в різних випадкових вершинах).
33	Задача розфарбовування графу (200 вершин, степінь вершини не
	більше 20, але не менше 1), бджолиний алгоритм АВС (число бджіл
	30 із них 2 розвідники).
34	Задача про рюкзак (місткість Р=200, 100 предметів, цінність
	предметів від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)),
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1
	різному предмету, оператор схрещування двоточковий порівну
	генів, мутація з ймовірністю 10% змінюємо тільки 1 випадковий
	ген). Розробити власний оператор локального покращення.
35	Задача комівояжера (150 вершин, відстань між вершинами
	випадкова від 5 до 50), мурашиний алгоритм ($\alpha = 2$, $\beta = 3$, $\rho = 0.4$,
	Lmin знайти жадібним алгоритмом, кількість мурах M = 35,
	починають маршрут в різних випадкових вершинах).