PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

	INTERNATIONAL APPLICATION PUBLIS	HED (JNDER THE PATENT COOPERATION TREATY (PCT)				
	(51) International Patent Classification ⁵ : C07F 5/02, A61K 31/69	A1	(11) International Publication Number: WO 94/21650				
			(43) International Publication Date: 29 September 1994 (29.09.94)				
•	(21) International Application Number: PCT/US94/0 (22) International Filing Date: 23 March 1994 (23.0		CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT,				
*((30) Priority Data: 08/036,377 24 March 1993 (24.03.93)	U	Published With international search report.				
	(71) Applicant: THE DU PONT MERCK PHARMACE COMPANY [US/US]; 1007 Market Street, Wilmin 19898 (US).						
	(72) Inventors: AMPARO, Eugene, Cruz; 107 Garfield West Chester, PA 19380 (US). MILLER, William 1909 Coventry Lane, Glen Mills, PA 19342 (US). SKY, Gregory, James; 86A Paladin Drive, Wilming 19802-1715 (US). WITYAK, John; 127 Kelton Ro Grove, PA 19390 (US).	i, Henry PACOI gton, D	y; R. E				
	(74) Agents: REINERT, Norbert, F. et al.; The Du Pon Pharmaceutical Company, Legal/Patent Records 1007 Market Street, Wilmington, DE 19898 (US).						
	-						
(54) Title: BORONIC ACID AND ESTER INHIBITORS OF THROMBIN							
(57) Abstract							
	Novel boronic acid derivatives of formula (I), which are useful inhibitors of trypsin-like enzymes, are disclosed: R ¹ -Z-CHR ² -F						
			·				
ACT.							
}							
			·				
.:	•						
-							
*							
			·				
.							
.							

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑŪ	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IB	freiand	NZ	New Zealand
BJ	Benin	п	lialy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	ŞE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
a	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	Ц	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	ŲΑ	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	. MIL	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Vict Nam
GA	Gabon				

Title

Boronic Acid and Ester Inhibitors of Thrombin

Field of the Invention

5 This invention relates to the discovery of new boronic acid derivatives which are inhibitors of thrombin and pharmaceutical compositions thereof.

Background of the Invention

- Hemostasis is the normal physiological process in which bleeding from an injured blood vessel is arrested. It is a dynamic and complex process in which thrombin plays a key role. Blood coagulation may occur through either of two cascades of zymogen activations, the
- extrinsic and intrinsic pathways of the coagulation cascade. The last protease in each pathway is thrombin, which acts to hydrolyze four small peptides (two FpA and two FpB) from each molecule of fibrinogen, thus deprotecting its polymerization sites. Once formed, the
- linear fibrin polymers may be cross-linked by factor XIIIa, which is itself activated by thrombin. In addition, thrombin is a potent activator of platelets, upon which it acts at specific receptors. Thrombin activation of platelets leads to aggregation of the
- cells and secretion of additional factors that further accelerate the creation of a hemostatic plug. Thrombin also potentiates its own production by the activation of factors V and VIII (see Hemker and Beguin in: Jolles, et. al., "Biology and Pathology of Platelet Vessel Wall
- 30 Interactions, "pp. 219-26 (1986), Crawford and Scrutton in: Bloom and Thomas, "Haemostasis and Thrombosis," pp. .47-77, (1987), Bevers, et. al., Eur. J. Biochem. 1982, 122, 429-36, Mann, Trends Biochem. Sci. 1987, 12, 229-33).
- 35 Thrombosis may be regarded as the pathological condition wherein improper activity of the hemostatic

mechanism results in intravascular thrombus formation. Etiological factors such as the presence of atherosclerotic plaque, phlebitis and septicemia may cause thrombosis, leading to impaired blood flow to the 5 effected tissues and possible serious pathological consequences.

Currently, two of the most effective classes of drugs in clinical use as anticoagulants are the heparins and the vitamin K antagonists. The heparins are ill-defined mixtures of sulfated polysaccharides that bind to, and 10 thus potentiate the action of antithrombin III. Antithrombin III is a naturally occurring inhibitor of the activated clotting factors IXa, Xa, XIa, thrombin and probably XIIa (see Jaques, Pharmacol. Rev. 1980, 15 31, pp. 99-166). The vitamin K antagonists, of which warfarin is the most well-known example, act indirectly by inhibiting the post-ribosomal carboxylations of the vitamin K dependent coagulation factors II, VII, IX and X (see Hirsch, Semin. Thromb. Hemostasis 1986, 12, 1-20 11). While effective therapies for the treatment of thrombosis, heparins and vitamin K antagonists have the unfortunate side effects of bleeding and marked interpatient variability, resulting in a small and unpredictable therapeutic safety margin. The use of 25 direct acting thrombin inhibitors is expected to

Thrombin is a serine protease having trypsin-like specificity for the cleavage of sequence-specific Arg-Xxx peptide bonds. As with other serine proteases, the 30 cleavage event begins with an attack of the active site serine on the scissile bond of the substrate, resulting in the formation of a tetrahedral intermediate. This is followed by collapse of the tetrahedral intermediate to form an acyl enzyme and release of the amino terminus of the cleaved sequence. Hydrolysis of the acyl enzyme then releases the carboxy terminus.

alleviate these problems.

A number of naturally occurring thrombin inhibitors have been reported. These include nazumamide A from Theonella sp. (see Fusetani, et. al., Tetrahedron Lett. 1991, 32, 7073-4), cyclotheonamide A from Theonella sp. (see Fusetani, et. al., J. Am. Chem. Soc. 1990, 112, 7053-4), amblyommin from Amblyomma hebraeum (see Bonin, et. al., EP 345614), hirudin from Hirudo medicinalis, recombinant versions of hirudin and hirudin fragments (see Rigbl and Jackson, EP 352903, Koerwer, WO 9109946, Meyer, et. al., WO 9108233, Dawson, et. al., WO 9109125, Maraganore, et. al., WO 9102750 and Maraganore, EP 333356).

Synthetic thrombin inhibitors have also been disclosed. Arylsulfonylarginine amides such as (2R, 4R)- $4-\text{methyl-1-}[N^2-\{(3-\text{methyl-1},2,3,4-\text{tetrahydro-8-}\}]$ 15 quinolinyl)sulfonyl}-L-arginyl]-2-piperidinecarboxylate have been shown to be effective inhibitors of thrombin (see Okamoto, et. al. Thromb Res. 1976, 8, 77-82, Ohshiro, et. al., Blood Vessel 1983, 14, 216-8), as 20 have compounds containing constrained arginine mimics such as (2-naphthylsulfonylglycyl)-4-amidinophenylalanyl piperidide (see Stuerzebecher, et. al., Thromb. Res. 1983, 29, 635-42), 1-[2-[5-(dimethylamino) naphth-1-ylsulfonamido]-3-(2-25 iminohexahydropyrimidin-5-yl)propanoyl]-4-

methylpiperidine dihydrochloride (see Ishikawa, JP 88227572 and Ishikawa and Inamura, JP 88227573), N- (trans-4-amino-methylcyclohexylcarbonyl)-4-O-(2-picolyl)-L-tyrosine 4-acetanilide dihydrochloride (see Okamoto, et. al., EP 217286) and 4- [(aminoiminomethyl)amino]benzoic acid esters (see Fuji, et. al., DE 3005580, Matsuoka, et. al., Jpn. J. Pharmacol. 1989, 51, 455-63, and Takeshita, et. al., EP 435235).

Inhibitor design has benefitted from the knowledge of the mechanism of action and of the peptide sequences

which are thought to bind in the catalytic site of thrombin, e.g., -Gly-Val-Arg-Gly- of fibrinogen (see Blombäck, et. al., J. Biol. Chem., 1972, 247, 1496-512), Ile-Pro-Arg-Ser- of prothrombin (see Magnussen, et. al., in: Reich, et. al., "Proteases and Biological Control, "pp. 123-149 (1975)) and -Val-Pro-Arg-Gly- of factor XIII (see Takagi and Doolittle, Biochemistry 1974, 13, 750-6 and Nakamura, et. al., Biochem. Biophys. Res. Commun. 1974, 58, 250-256). This class of mechanism-based inhibitors are exemplified by the 10 tripeptide aldehyde D-Phe-Pro-N-Me-Arg-H (see Bajusz, et. al., J. Med. Chem. 1990, 33, 1729-35), the chloromethyl ketone Ac-(D)-Phe-Pro-ArgCH2Cl (see Kettner and Shaw, Thromb. Res. 1979, 14, 969-73) and the 15 trifluoromethyl ketone D-Phe-Pro-ArgCF3 (see Kolb, et. al., US 697987).

Kettner and Shenvi (EP 293881, published June 12, 1988), disclose peptide boronic acid inhibitors of trypsin-like proteases of formula (1)

20
$$R^{1}-[(A^{3})_{q}(A^{2})_{p}(A^{1})_{o}]_{n}-NH-CHR^{2}-BY^{1}Y^{2}$$
 (1)

25

30

35

wherein Y¹ and Y², independently, are hydroxyl or fluoro or, taken together, form a moiety derived from a dihydroxy compound having at least two hydroxy groups separated by at least two connecting atoms in a chain or ring, said chain or ring comprising 1 to about 20 carbon atoms and, optionally, a heteroatom which can be N, S, or O; R² is a substituted alkyl selected from the group consisting of -(CH2)z-X, -CH(CH3)-(CH2)2-X, -CH2-CH(CH3)-CH2-X, -(CH2)2-CH(CH3)-X and -(CH2)2-CH(CH3)-X, where X is -NH2, -NH-C(NH)-NH2 or -S-C(NH)-NH2, and z is 3 to 5; n, o, p and q are, independently, either 0 or 1; A¹, A² and A³ are, independently, amino acids of L- or D-configuration selected from the group consisting of Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr and Val; and R¹

is a peptide comprised of 1 to about 20 amino acids, an acyl or a sulfonyl group comprised of 1 to about 20 carbon atoms, H, or an N-terminal protecting group. In this disclosure, Kettner and Shenvi demonstrated that the pinanediol esters of boropeptides are pharmacologically equivalent to the corresponding boronic acids.

Metternich (EP 0471651 A2) discloses borolysine thrombin inhibitors of formula (2)

 $W-Y-NR^4-CHR^5-BO^1O^2$ (2)

10

wherein W is an N-protecting group; Y is a sequence of n amino acids such that the n+1 amino acid peptide Y-Lys or Y-Arg has an affinity for the active site of a 15 trypsin-like protease; where n is an integer of from 1 to 10 and in which at least one amino acid is an unnatural amino acid having a hydrophobic side chain; Q1 and Q^2 are the same or different and are selected from -OH, -COR₁, -CONR₁R₂, -NR₁R₂ or -OR₃ of Q^1 and Q^2 taken 20 together form a diol residue; R1, R2 and R3 which may be the same or different, are C₁₋₁₀alkyl, C₆₋₁₀aryl, C₆₋ 10aralkyl, or phenyl substituted by up to three groups selected from C₁₋₄alkyl, halogen and C₁₋₄alkoxy; R₄ is hydrogen or C₁₋₁₀alkyl; R₅ is a group -A-X; wherein A is $-(CH_2)_z$ in which z is 2, 3, 4 or 5; $-CH(CH_3)-(CH_2)_2$ -; $-CH_2-CH(CH_3)-CH_2-$; $-(CH_2)_2-CH(CH_3)-$; $-(CH_2)_2-C(CH_3)_2-$; $CH(CH_3) - (CH_2)_{3} - ; -CH_2 - CH(CH_3) - (CH_2)_{2} - ; -CH_2 - CH_2 - CH(CH_3) -$ CH_2- ; $-(CH_2)_3-CH(CH_3)-$; $-(CH_2)_3-C(CH_3)_2$: C_{6-10} aryl C_{6-10} 10aralkyl and X is -NH2, -NH-C(NH)-NH2, -S-C(NH)-NH2,-N3, 30 $-C_{1-4}$ alkoxy, C_{1-4} alkylthio or Si(CH₃)₃ or R₄ and R₅ taken together form a trimethylene group and the asymmetric carbon atom may have the D- or L-configuration or represent any mixture of these.

Surprising for their lack of a basic residue at P_1 are tripeptide thrombin inhibitors comprised of 1-

aminoboronic and 1-aminophosphonic acid analogs of 3-methoxy-propylglycine (see Claeson, et. al., US 07-245428) and pentylglycine (see Cheng, et. al., "Symposium on Thrombosis and Hemostasis," 1991, Amsterdam, Abstract 2150).

In addition to thrombin inhibition, boropeptides have been disclosed with utility as a treatment for tumors, viral infections and arthritis (US 4963655A and EP 354522A), emphysema (US 4499082A), hypertension (EP 315574A) and as factor VII/VIIa inhibitors (WO 8909612A). Kleemann, et. al. (AU A-24693/88) disclose renin-inhibiting 1-amino boronic acid derivatives of formula (3)

15 $A^{1}-A^{2}-HN-CHR^{2}-BXR^{3}(YR^{4})$ (3)

10

in which A^1 denotes a radical of formulae (4-8).

$$R^{1}NR^{6}-CHR^{5}-CO-$$

$$R^{1}CHR^{12}-CHR^{5}-CO-$$

$$R^{1}NR^{6}-CHR^{5}-CHR^{7}-CHR^{8}-CHR^{9}-CO-$$

$$R^{1}CHR^{12}-CHR^{5}-CHR^{7}-CHR^{8}-CHR^{9}-CO-$$

$$R^{10}-(CH_{2})_{n}-CH(CH_{2})_{m}R^{11}-CO-$$
(8)

Despite the foregoing, more efficacious and specific thrombin inhibitors are needed as potentially valuable therapeutic agents for the treatment of thrombosis.

None of the cited references describe or suggest the new thrombin-inhibiting boronic acid derivatives of the present invention.

Summary of Invention

The present invention pertains to novel

compounds of formula (I):

R1-Z-CHR2-BY1Y2

(I)

wherein

 Y^1 and Y^2 are independently

- a) -OH,
- 10

15

20

5

- b) -F,
- c) $-NR^3R^4$, or
- d) C1-C8-alkoxy;

 \mathbf{Y}^{1} and \mathbf{Y}^{2} when taken together can form

- a) a cyclic boron ester where said chain or ring contains from 2 to 20 carbon atoms and, optionally, a heteroatom which can be N, S, or O,
 - b) a divalent cyclic boro amide where said chain or ring contains from 2 to 20 carbon atoms,
 - c) a cyclic boro amide-ester where said chain or ring contains from 2 to 20 carbon atoms;

Z is

- a) $-(CH_2)_mCONR_{-}$
- b) $-(CH_2)_mCSNR^8-$
- c) -(CH₂)_mSO₂NR⁸-,
- 25 d) $-(CH_2)_mCO_2$
 - e) $-(CH_2)_mC(S)O-$, or
 - f) $-(CH_2)_mSO_2O_{-};$

R¹ is

a) -(CH₂)_p-aryl, wherein aryl is phenyl, naphthyl or biphenyl substituted with one, two or three substituents selected from the group consisting of halo (F, Cl, Br, I), -CN, Cl-Cl0-alkyl, C3-C8-cycloalkyl, C2-Cl0-alkenyl, C2-Cl0-alkynyl, methylenedioxy, -R⁸, -OR⁸, -NO₂, -CF₃, -S(O)_rR⁷,

$$-NR^8R^9$$
, $-COR^8$, $-CO2R^8$, $-CONR^8R^9$, NR^8COR^9 ; $-\xi$

NR¹²

;

- b) heteroaryl, wherein heteroaryl is an unsubstituted, monosubstituted or disubstituted:
 - i) 5- or 6-membered aromatic ring, which contains from 1 to 3 heteroatoms selected from the group consisting of O, N, and S,
 - ii) quinolinyl,
 - iii) isoquinolinyl,
- iv) benzopyranyl,
 - v) benzothiophenyl,
 - vi) benzofuranyl,
 - vii) 5,6,7,8-tetrahydroquinolinyl
 - viii) 5,6,7,8-tetrahydroisoquinolinyl

15

20

10

5

and wherein the substituents are members selected from the group consisting of halo (F, Cl, Br, I), -CN, C1-C10-alkyl, C3-C8-cycloalkyl, C2-C10-alkenyl, C2-C10-alkynyl, -R⁸, -OR⁸, -NO₂, -CF₃, -S(O)_TR⁷, -NR⁸R⁹, -COR⁸, -CO₂R⁸, -CONR⁸R⁹, NR⁸COR⁹, NRCO₂R⁹, \$

c) E R

25

d)

5

e)

10

f)

15

۲g)

 \mathbb{R}^2 is

- a) $-(CH_2)_n-NHC(NH)NH_2$,
- b) $-(CH_2)_n$ -NHC (NH) NHCOCH₃,

- c) $-(CH_2)_n-SC(NH)NH_2$,
- d) $-(CH_2)_n-SC(NH)NHCOCH_3$,
- e) $-(CH_2)_n-NH_2$, or
- f) $-(CH_2)_n-NH(2-pyridyl);$
- R³ is H, phenyl or C1-C4-alkyl;

R⁴ is H or phenylsulfonyl;

 R^5 and R^6 are hydrogen or when taken together from a six membered aromatic ring optionally substituted with one, two or three substituents selected from the group

- consisting of halo (F, Cl, Br, I), -CN, C1-C10-alkyl, 10 C3-C8-cycloalkyl, C2-C10-alkenyl, C2-C10-alkynyl, -OR8, $-NO_2$, $-CF_3$, $-S(0)_rR^7$, $-NR^8R^9$, $-COR^8$, $-CO_2R^8$, $-CONR^8R^9$, phenyl, benzyl, phenylethyl; R^7 is
- a) phenyl, 15
 - b) C1-C4-alkyl,
 - c) C1-C4-alkoxy, or
 - d) -CF3;

R8 and R9 are independently

20 a) H,

b)

$$\xi^{-(CH_2)_m} \underbrace{\frac{i!}{!!}}_{R^7}$$

- 25 c) C3-C7-cycloalkyl,
 - d) C1-C8-alkyl;

 R^{10} and R^{11} are independently

- a) halo (F, Cl, Br, I),
- b) -CN,
- c) C1-C10-alkyl, 30
 - d) C3-C8-cycloalkyl,
 - e) C2-C10-alkenyl,
 - f) C2-C10-alkynyl,
 - $q) OR^8$,

```
h) -NO2,
         i) -CF3,
         j) -S(0)_{r}R^{7},
         k) -NR^8R^9
 5
         1) - COR^9
         m) - CO_2R^8
         n) -CONR_{R}9;
     R^{12} is
10
         a) H,
         b) C1-C4-alkyl,
         c) phenyl,
         d) benzyl
         e) - COR^7
15
         f) -SO_2R^7
     m is 0 to 6;
     n is 3 or 4;
     p is 0 to 2;
     r is 0 to 2;
20
     t is 1 to 5
     E is -CO-, -SO_2-, -CH_2- or a single bond,
     F is -CO-; and pharmaceutically acceptable salts
     thereof.
          Preferred compounds of formula (I) are those
     compounds wherein R1 is phenyl and biphenyl containing
25
     1-3 substituents selected from the series halo (F, Cl,
     Br, I), C1-C10-alkyl, C3-C8-cycloalkyl, C2-C10-alkenyl,
    C2-C10-alkynyl, -R^8, -OR^8, -NO_2, -CF_3, -S(O)_rR^7, -NR^8R^9,
     -COR8, -CO2R8, -CONR8R9; NR8COR9;
    R^2 is
30
```

b) $-(CH_2)_3-SC(NH)NH_2$. More preferred are those preferred compounds wherein Z is $-(CH_2)_mCONR^8-$.

a) $-(CH_2)_3-NHC(NH)NH_2$, or

```
Most preferred are those more preferred compounds
     listed below:
     N^{1}-(4-phenylbenzoyl)-(R)-boroarginine, hydrochloride
     N^{2}-(3-phenoxybenzoyl)-(R)-boroarginine,
                                                hydrochloride
    N^{1}-(1-fluorenonyl)-(R)-boroarginine, hydrochloride
     N^{1}-(4-[1-butyl]benzoyl)-(R)-boroarginine,
                                                  hydrochloride
     N^{1}-(2-benzoylbenzoyl) - (R) -boroarginine, hydrochloride
     N^{1}-(5-phenyl-2-furoyl)-(R)-boroarginine, hydrochloride
     N^{1}-(3-[N-benzyloxycarbonyl-N-methylamino]-4-[1-butyl]-
    benzoyl) - (R) -boroarginine, hydrochloride
10
     N^{1}-(2-phenyl-4-isoquinolyl)-(R)-boroarginine,
     hydrochloride '
     N^{1}-(4-cyclohexylbenzoyl)-(R)-boroarginine,
     hydrochloride
    N^{1}-(2-methyl-4-phenylbenzoyl)-(R)-boroarginine,
15
    hydrochloride
     Illustrative of the compounds of this invention are the
     following:
20
    N^{1}-(4-phenylbenzoyl)-(R)-boroarginine (+)-pinanediol,
    bisulfite
    N^{1}-(3-phenylbenzoyl)-(R)-boroarginine (+)-pinanediol,
    bisulfite
    N^{1}-(3-phenoxybenzoyl)-(R)-boroarginine (+)-pinanediol,
25
    bisulfite
    N^{1}-(4-[4-pyridyl]benzoyl)-(R)-boroarginine (+)-
    pinanediol, bisulfite
    N^{1}-(2-benzoylbenzoyl)-(R)-boroarginine (+)-pinanediol,
30
    bisulfite
    N^{1}-(3-benzoylbenzoyl)-(R)-boroarginine (+)-pinanediol,
    bisulfite
    N^{1}-(4-benzoylbenzoyl)-(R)-boroarginine (+)-pinanediol,
    bisulfite
```

```
N^{1}-(3-[N-benzyloxycarbonyl]aminobenzoyl)-(R)-
     boroarginine (+)-pinanediol, bisulfite
     N^{1} (3-[N-benzyloxycarbonyl-N-methyl]aminobenzoyl) - (R) -
     boroarginine (+)-pinanediol, bisulfite
 5 N^{1}-(4-ethylbenzoyl)-(R)-boroarginine (+)-pinanediol,
     bisulfite
     N^{1}-(4-n-propylbenzoyl)-(R)-boroarginine (+)-pinanediol,
     bisulfite
     N^{1}-(4-isopropylbenzoyl)-(R)-boroarginine (+)-pinanediol,
     bisulfite
10
     N^{1}-(4-n-butylbenzoyl)-(R)-boroarginine (+)-pinanediol,
     bisulfite
     N^{1}-(4-tert-butylbenzoyl)-(R)-boroarginine (+)-
     pinanediol, bisulfite
     N^{1}-(4-n-hexylbenzoyl)-(R)-boroarginine (+)-pinanediol,
15
     bisulfite
     N^{2}-(4-cyclohexylbenzoyl)-(R)-boroarginine (+)-
     pinanediol, bisulfite
     N^{2}-(2-[N-(2-phenylethyl)carbonyl]aminobenzoyl)-(R)-
20
    boroarginine (+)-pinanediol, bisulfite
     N^{1}-(4-n-butyloxybenzoyl)-(R)-boroarginine (+)-
    pinanediol, bisulfite
    N^{1}-(4-[N-cyclopropylcarbonyl]aminobenzoyl)-(R)-
    boroarginine (+)-pinanediol, bisulfite
25 N^{1} (4-[N-cyclohexylcarbonyl]aminobenzoyl) - (R) -
    boroarginine (+)-pinanediol, bisulfite
     N^{1}-(4-[N-(4-methoxy)benzoyl]aminobenzoyl)-(R)-
    boroarginine (+)-pinanediol, bisulfite
    N^{1}-(4-[4-methoxy]phenylbenzoyl)-(R)-boroarginine (+)-
30
    pinanediol, bisulfite
    N^{1}-(2-[2-phenyl]benzyloxycarbonylbenzoyl)-(R)-
    boroarginine (+)-pinanediol, bisulfite
    N^{2}-(2-[1-naphthyl]benzoyl)-(R)-boroarginine (+)-
    pinanediol, bisulfite
35
    N^{1}-(4-[4-carboxy]phenylbenzoyl)-(R)-boroarginine (+)-
    pinanediol, bisulfite
```

```
N^{1}-(4-phenylbenzoyl)-(R)-borothioarginine (+)-
     pinanediol, hydrobromide
     N^{1}-(3-phenylbenzoyl)-(R)-borothioarginine (+)-
     pinanediol, hydrobromide
     N^{1}-(3-phenoxybenzoyl)-(R)-borothioarginine (+)-
     pinanediol, hydrobromide
     N^{1}-(2-benzoylbenzoyl)-(R)-borothioarginine (+)-
     pinanediol, hydrobromide
     N^{1}-(3-benzoylbenzoyl)-(R)-borothioarginine (+)-
10
     pinanediol, hydrobromide
     N^{1}-(4-benzoylbenzoyl)-(R)-borothioarginine (+)-
     pinanediol, hydrobromide
     N^{1}-(3-[N-benzyloxycarbonyl]aminobenzoyl)-(R)-
     borothioarginine (+)-pinanediol, hydrobromide
15
     N^{1}-(3-[N-benzyloxycarbonyl-N-methyl]aminobenzoyl)-(R)-
     borothioarginine (+)-pinanediol, hydrobromide
     N^{2}-(4-ethylbenzoyl)-(R)-borothioarginine (+)-pinanediol,
    hydrobromide
     N^{1}- (4-n-propylbenzoyl) - (R) -borothioarginine (+) -
    pinanediol, hydrobromide
    N^{1}-(4-isopropylbenzoyl)-(R)-borothioarginine (+)-
    pinanediol, hydrobromide
    N^{1}-(4-n-butylbenzoyl)-(R)-borothioarginine (+)-
    pinanediol, hydrobromide
    N^{1}-(4-tert-butylbenzoyl)-(R)-borothioarginine (+)-
    pinanediol, hydrobromide
    N^{1}-(4-n-\text{hexylbenzoyl})-(R)-borothioarginine (+)-
    pinanediol, hydrobromide
    N^{1}-(4-cyclohexylbenzoyl)-(R)-borothioarginine (+)-
    pinanediol, hydrobromide
30
    N^{1}-(2-[N-(2-phenylethyl) carbonyl] aminobenzoyl) - (R) -
    borothioarginine (+)-pinanediol, hydrobromide
    N^{1}-(4-n-butyloxybenzoyl)-(R)-borothioarginine (+)-
    pinanediol, hydrobromide
    N^{1}-(4-[N-cyclopropylcarbonyl]aminobenzoyl)-(R)-
   borothioarginine (+)-pinanediol, hydrobromide
```

```
N^{1}- (4-[N-cyclohexylcarbonyl] aminobenzoyl) - (R) -
    borothioarginine (+)-pinanediol, hydrobromide
    N^{1}-(4-[N-(4-methoxy)benzoyl]aminobenzoyl)-(R)-
    borothioarginine (+)-pinanediol, hydrobromide
 5 N^{1}-(4-[4-methoxy]phenylbenzoyl)-(R)-borothioarginine
     (+)-pinanediol, hydrobromide
    N^{1}-(2-[2-phenylbenzyloxycarbonyl]benzoyl)-(R)-
    borothioarginine (+)-pinanediol, hydrobromide
    N^{1}-(2-[1-naphthyl]benzoyl)-(R)-borothioarginine (+)-
    pinanediol, hydrobromide
    N^{1}-(4-[4-carboxy]phenylbenzoyl)-(R)-borothioarginine
     (+)-pinanediol, hydrobromide
    N^{1}-([2-anthraquinonyl]carbonyl)-(R)-boroarginine (+)-
    pinanediol, bisulfite
    N^{1}-([2-dioxothioxanthinonyl]carbonyl)-(R)-boroarginine
     (+)-pinanediol, bisulfite
    N^{1}-([2-anthraquinonyl]carbonyl)-(R)-borothioarginine
     (+)-pinanediol, hydrobromide
    N^{1}-([2-dioxothioxanthinonyl]carbonyl)-(R)-
    borothioarginine (+)-pinanediol, hydrobromide
    N^{1}-([2-fluoren-9-onyl]carbonyl)-(R)-borothiohomoarginine
    (+)-pinanediol, hydrobromide
    N^{1}-([2-fluoren-9-onyl]carbonyl)-(R)-boroarginine (+)-
    pinanediol, bisulfite
    N^{1}-([2-fluoren-9-onyl]carbonyl)-(R)-borothioarginine
25
    (+)-pinanediol, hydrobromide
    N^{1}-([3-fluoren-9-onyl]carbonyl)-(R)-borothioarginine
    (+)-pinanediol, hydrobromide
    N^{1}-([3-fluoren-9-onyl]carbonyl)-(R)-boroarginine (+)-
    pinanediol, bisulfite
    N^{1}-([4-fluoren-9-onyl]carbonyl)-(R)-borothioarginine
    (+)-pinanediol, hydrobromide
    N^{1}-([4-fluoren-9-onyl]carbonyl)-(R)-boroarginine (+)-
    pinanediol, bisulfite
    N^{1}-(1-naphthoy1)-(R)-borothioarginine (+)-pinanediol,
```

hydrobromide

```
N^{1}-(1-naphthoyl)-(R)-boroarginine (+)-pinanediol,
     bisulfite
     N^{1} (2-methyl-4-phenyl-5-methoxybenzoyl) - (R) -
     borothioarginine (+)-pinanediol, hydrobromide
 5
     N^{1}-(2-methyl-4-phenyl-5-carboxamidobenzoyl) - (R) -
     borothioarginine (+)-pinanediol, hydrobromide.
     N^{1}-(2-methyl-4-phenyl-5-fluorobenzoyl)-(R)-
     borothioarginine (+)-pinanediol, hydrobromide
     N^{1}-(2-methyl-4-phenyl-5-trifluoromethylbenzoyl)-(R)-
10
     borothioarginine (+)-pinanediol,
                                        hydrobromide
     N^{1}-(2-methyl-4-phenyl-5-chlorobenzoyl)-(R)-
    borothioarginine (+)-pinanediol,
                                        hydrobromide
     N^{1}-(2-methyl-4-phenyl-5-hydroxybenzoyl)-(R)-
     borothioarginine (+)-pinanediol, hydrobromide
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl)-(R)-
     borothioarginine (+)-pinanediol, hydrobromide
     N^{2}-(2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl)-
     (R)-borothioarginine (+)-pinanediol, hydrobromide
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl)-(R)-
20
    borothioarginine (+)-pinanediol, hydrobromide
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-
    trifluoromethylbenzoyl) - (R) - borothioarginine (+) -
    pinanediol, hydrobromide
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl)-(R)-
25
    borothioarginine (+)-pinanediol, hydrobromide
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-hydroxybenzoyl)-(R)-
    borothioarginine (+)-pinanediol, hydrobromide
    N^{1}-(2-methyl-4-phenyl-5-methoxybenzoyl)-(R)-boroarginine
     (+)-pinanediol, bisulfite
   N^{1}-(2-methyl-4-phenyl-5-carboxamidobenzoyl)-(R)-
30
    boroarginine (+)-pinanediol, bisulfite
    N^{1}-(2-methyl-4-phenyl-5-fluorobenzoyl)-(R)-boroarginine
    (+)-pinanediol, bisulfite
    N^{2}-(2-methyl-4-phenyl-5-trifluoromethylbenzoyl)-(R)-
35
    boroarginine (+)-pinanediol, bisulfite
```

```
N^{1}-(2-methyl-4-phenyl-5-chlorobenzoyl)-(R)-boroarginine
     (+)-pinanediol, bisulfite
     N^{1}-(2-methyl-4-phenyl-5-hydroxybenzoyl)-(R)-boroarginine
     (+)-pinanediol, bisulfite
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl)-(R)-
     boroarginine (+)-pinanediol, bisulfite
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl)-
     (R)-boroarginine (+)-pinanediol, bisulfite
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl)-(R)-
    boroarginine (+)-pinanediol, bisulfite
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-
     trifluoromethylbenzoyl)-(R)-boroarginine (+)-pinanediol,
    bisulfite
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl)-(R)-
    boroarginine (+)-pinanediol, bisulfite
15
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-hydroxybenzoyl)-(R)-
    boroarginine (+)-pinanediol, bisulfite
    N^{1}-(2-[5-phenyl]furylcarbonyl)-(R)-boroarginine (+)-
    pinanediol, bisulfite
20
    N^{1}-(2-[5-phenyl]thiophenylcarbonyl)-(R)-boroarginine
     (+)-pinanediol, bisulfite
    N^{1}-(2-[5-phenyl]furylcarbonyl)-(R)-borothioarginine (+)-
    pinanediol, hydrobromide
    N^{1}-(2-[5-phenyl]thiophen-ylcarbonyl)-(R)-
    borothioarginine (+)-pinanediol, hydrobromide
25
    N^{2}-(3-[6-phenyl]pyridylcarbonyl)-(R)-boroarginine (+)-
    pinanediol, bisulfite
    N^{1}-(3-[5-benzyloxy]pyridylcarbonyl)-(R)-boroarginine
    (+)-pinanediol, bisulfite
30
    N^{1}-(3-[6-phenyl]pyridylcarbonyl)-(R)-borothioarginine
    (+)-pinanediol, hydrobromide
    N^{1}-(3-[5-benzyloxy]pyridylcarbonyl)-(R)-borothioarginine
    ·(+)-pinanediol, hydrobromide
    N^{1}-(2-benzopyronylcarbonyl)-(R)-boroarginine (+)-
```

35

pinanediol, bisulfite

```
N^{1}-(2-benzopyronylcarbonyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide N^{1}-(3-isoquinolinylcarbonyl)-(R)-boroarginine (+)-pinanediol, bisulfite
```

- N^{1} -(2-phenyl-4-isoquinolinylcarbonyl)-(R)-boroarginine (+)-pinanediol, bisulfite N^{1} -(3-isoquinolinylcarbonyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide N^{1} -(2-phenyl-4-isoquinolinylcarbonyl)-(R)-
- borothioarginine (+)-pinanediol, hydrobromide N^{1} -(2-isoquinolinylcarbonyl)-(R)-boroarginine (+)-pinanediol, bisulfite N^{1} -(2-isoquinolinylcarbonyl)-(R)-borothioarginine (+)-pinanediol, hydrobromide

(***

(F)

- 15 N^{1} -(4-phenylbenzoyl)-(R)-boroarginine, hydrochloride N^{1} -(3-phenylbenzoyl)-(R)-boroarginine, hydrochloride N^{1} -(3-phenoxybenzoyl)-(R)-boroarginine, hydrochloride N^{1} -(4-[4-pyridyl]benzoyl)-(R)-boroarginine, hydrochloride
- 20 N^{1} -(2-benzoylbenzoyl)-(R)-boroarginine, hydrochloride N^{1} -(3-benzoylbenzoyl)-(R)-boroarginine, hydrochloride N^{1} -(4-benzoylbenzoyl)-(R)-boroarginine, hydrochloride N^{1} -(3-[N-benzyloxycarbonyl]aminobenzoyl)-(R)-boroarginine, hydrochloride
- N¹-(3-[N-benzyloxycarbonyl-N-methyl]aminobenzoyl)-(R)boroarginine, hydrochloride
 N¹-(4-ethylbenzoyl)-(R)-boroarginine, hydrochloride
 N¹-(4-n-propylbenzoyl)-(R)-boroarginine, hydrochloride
 N¹-(4-isopropylbenzoyl)-(R)-boroarginine, hydrochloride
- 30 N¹-(4-tert-butylbenzoyl)-(R)-boroarginine,
 hydrochloride
 N¹-(4-n-hexylbenzoyl)-(R)-boroarginine, hydrochloride
 N¹-(4-cyclohexylbenzoyl)-(R)-boroarginine,
 hydrochloride
- 35 N^{1} -(2-[N-(2-phenylethyl)carbonyl]aminobenzoyl)-(R)-boroarginine, hydrochloride

```
N^{1}-(4-n-butyloxybenzoyl)-(R)-boroarginine,
     hydrochloride
     N^{2}-(4-[N-cyclopropylcarbonyl]aminobenzoyl)-(R)-
     boroarginine, hydrochloride
     N^{1}- (4-[N-cyclohexylcarbonyl]aminobenzoyl) - (R) -
     boroarginine, hydrochloride
     N^{1}- (4-[N-(4-methoxy)benzoyl]aminobenzoyl) - (R) -
     boroarginine, hydrochloride
     N^{1}-(4-[4-methoxy]phenylbenzoyl)-(R)-boroarginine,
10
     hydrochloride
     N^{1}-(2-[2-phenyl]benzyloxycarbonylbenzoyl)-(R)-
     boroarginine, hydrochloride
     N^{2}-(2-[1-naphthyl]benzoyl)-(R)-boroarginine,
     hydrochloride
15
    N^{1}-(4-[4-carboxy]phenylbenzoyl)-(R)-boroarginine,
    hydrochloride
     N^{2}-([2-anthraquinonyl]carbonyl)-(R)-boroarginine,
    hydrochloride
    N^{1}-([2-dioxothioxanthinonyl]carbonyl)-(R)-boroarginine,
20
    hydrochloride
    N^{1}-([2-fluoren-9-onyl]carbonyl)-(R)-boroarginine,
    hydrochloride
    N^{1}-([3-fluoren-9-onyl]carbonyl)-(R)-boroarginine,
    hydrochloride
25
    N^{1}-(1-naphthoy1)-(R)-boroarginine, hydrochloride
    N^{1}-([4-fluoren-9-onyl]carbonyl)-(R)-boroarginine,
    hydrochloride
    N^{1}-(2-methyl-4-phenyl-5-methoxybenzoyl)-(R)-
    boroarginine, hydrochloride
30
    N^{1}-(2-methyl-4-phenyl-5-carboxamidobenzoyl)-(R)-
    boroarginine, hydrochloride
    N^{1}-(2-methyl-4-phenyl-5-fluorobenzoyl)-(R)-boroarginine,
    hydrochloride
    N^{1}-(2-methyl-4-phenyl-5-trifluoromethylbenzoyl)-(R)-
```

(....

boroarginine, hydrochloride

```
N^{1}-(2-methyl-4-phenyl-5-chlorobenzoyl)-(R)-boroarginine,
     hydrochloride
     N^{1}-(2-methyl-4-phenyl-5-hydroxybenzoyl)-(R)-
     boroarginine, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl)-(R)-
     boroarginine, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl)-
      (R)-boroarginine, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl)-(R)-
10
     boroarginine, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-
     trifluoromethylbenzoyl)-(R)-boroarginine, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl)-(R)-
     boroarginine, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-hydroxybenzoyl)-(R)-
15
     boroarginine, hydrochloride
     N^{2}-(2-[5-phenyl]furylcarbonyl)-(R)-boroarginine,
     hydrochloride
     N^{1}-(2-[5-phenyl]thiophenylcarbonyl)-(R)-boroarginine,
    hydrochloride
20
     N^{1}-(2-benzopyronylcarbonyl) - (R)-boroarginine,
     hydrochloride
     N^{1}-(2-isoquinolinylcarbonyl)-(R)-boroarginine,
     hydrochloride
25
     N^{1}-(3-isoquinolinylcarbonyl)-(R)-boroarginine,
     hydrochloride
     N^{1}-(2-phenyl-4-isoquinolinylcarbonyl)-(R)-boroarginine,
     hydrochloride
     N^{1}-(4-phenylbenzoyl)-(R)-borothioarginine,
    hydrochloride
30
    N^{1}-(3-phenylbenzoyl)-(R)-borothioarginine,
    hydrochloride
    N^{1}-(3-phenoxybenzoyl)-(R)-borothioarginine,
    hydrochloride
35
    N^{1}-(2-benzoylbenzoyl)-(R)-borothioarginine,
    hydrochloride
```

(The

```
N^{1}-(3-benzoylbenzoyl)-(R)-borothioarginine,
     hydrochloride
     N^{1}-(4-benzoylbenzoyl)-(R)-borothioarginine,
     hydrochloride
     N^{1}-(3-[N-benzyloxycarbonyl]aminobenzoyl)-(R)-
 5
     borothioarginine, hydrochloride
     N^{1}-(3-[N-benzyloxycarbonyl-N-methyl]aminobenzoyl)-(R)-
     borothioarginine, hydrochloride
     N^{1}-(4-ethylbenzoyl)-(R)-borothioarginine, hydrochloride
   N^{1}-(4-n-propylbenzoyl)-(R)-borothioarginine,
     hydrochloride
     N^{1}-(4-isopropylbenzoyl)-(R)-borothioarginine,
     hydrochloride
     N^{1}-(4-n-butylbenzoyl)-(R)-borothioarginine,
     hydrochloride
     N^{1}-(4-tert-butylbenzoyl)-(R)-borothioarginine,
     hydrochloride
     N^{1}-(4-n-hexylbenzoyl)-(R)-borothioarginine,
     hydrochloride
20
     N^{1}-(4-cyclohexylbenzoyl)-(R)-borothioarginine,
     hydrochloride
     N^{1}-(2-[N-(2-phenylethyl) carbonyl] aminobenzoyl) - (R) -
     borothioarginine, hydrochloride
     N^{1}-(4-n-butyloxybenzoyl)-(R)-borothioarginine,
    hydrochloride
25
     N^{1}-(4-[N-cyclopropylcarbonyl]aminobenzoyl)-(R)-
    borothioarginine, hydrochloride
    N^{1}-(4-[N-cyclohexylcarbonyl]aminobenzoyl)-(R)-
    borothioarginine, hydrochloride
30 N^{2} (4-[N-(4-methoxy) benzoyl) aminobenzoyl) - (R) -
    borothioarginine, hydrochloride
    N^{2}-(4-[4-methoxy]phenylbenzoyl)-(R)-borothioarginine,
    hydrochloride
    N^{2} - (2-[2-phenylbenzyloxycarbonyl]benzoyl) - (R) -
35
    borothioarginine, hydrochloride
```

```
N^{1}-(2-[1-naphthyl]benzoyl)-(R)-borothioarginine,
     hydrochloride
     N^{1}-(4-[4-carboxy]phenylbenzoyl)-(R)-borothioarginine,
     hydrochloride
     N^{1}-([2-anthraquinonyl]carbonyl)-(R)-borothioarginine,
     hydrochloride
     N^{1}-([2-dioxothioxanthinonyl]carbonyl)-(R)-
     borothioarginine, hydrochloride
     N^{1}-([2-fluoren-9-onyl]carbonyl)-(R)-
     borothiohomoarginine, hydrochloride
     N^{1}-([2-fluoren-9-onyl]carbonyl)-(R)-borothioarginine,
     hydrochloride
     N^{1}-([3-fluoren-9-onyl]carbonyl)-(R)-borothioarginine,
     hydrochloride
     N^{1}-([4-fluoren-9-onyl]carbonyl)-(R)-borothioarginine,
15
     hydrochloride
     N^{1}-(1-naphthoyl)-(R)-borothioarginine, hydrochloride
     N^{1}-(2-methyl-4-phenyl-5-methoxybenzoyl)-(R)-
    borothioarginine, hydrochloride
    N^{1}-(2-methyl-4-phenyl-5-carboxamidobenzoyl) - (R) -
20
    borothioarginine, hydrochloride
    N^{1}-(2-methyl-4-phenyl-5-fluorobenzoyl)-(R)-
    borothioarginine, hydrochloride
    N^{2}-(2-methyl-4-phenyl-5-trifluoromethylbenzoyl)-(R)-
    borothioarginine, hydrochloride
    N^{1}-(2-methyl-4-phenyl-5-chlorobenzoyl)-(R)-
    borothioarginine, hydrochloride
    N^{1}-(2-methyl-4-phenyl-5-hydroxybenzoyl)-(R)-
    borothioarginine, hydrochloride
30
   N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl)-(R)-
    borothioarginine, hydrochloride
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl)-
     (R)-borothioarginine, hydrochloride
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl)-(R)-
35
    borothioarginine, hydrochloride
```

```
N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-
     trifluoromethylbenzoyl) - (R) -borothioarginine,
     hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl)-(R)-
     borothioarginine, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-hydroxybenzoyl)-(R)-
     borothioarginine, hydrochloride
     N^{1}-(2-[5-phenyl] furylcarbonyl)-(R)-borothioarginine,
     hydrochloride
   N^{1}-(2-[5-phenyl]thiophenylcarbonyl)-(R)-
     borothioarginine, hydrochloride
     N^{1}-(3-[6-phenyl]pyridylcarbonyl)-(R)-boroarginine,
     hydrochloride
     N^{1}-(3-[5-benzyloxy]pyridylcarbonyl)-(R)-boroarginine,
15
    hydrochloride
     N^{1}-(3-[6-phenyl]pyridylcarbonyl)-(R)-borothioarginine,
    hydrochloride
     N^{1}-(3-[5-benzyloxy]pyridylcarbonyl)-(R)-
    borothioarginine, hydrochloride
20
    N^{1}-(2-benzopyronylcarbonyl)-(R)-borothioarginine,
    hydrochloride
    N^{2}-(3-isoquinolinylcarbonyl)-(R)-borothioarginine,
    hydrochloride
    N^{1}-(2-phenyl-4-isoquinolinylcarbonyl)-(R)-
    borothioarginine, hydrochloride
25
    N^{2}-(2-isoquinolinylcarbonyl)-(R)-borothioarginine,
    hydrochloride
    N^{2}-(4-phenylbenzoyl)-(R)-borolysine (+)-pinanediol,
    hydrochloride
    N^{2}-(3-phenylbenzoyl)-(R)-borolysine (+)-pinanediol,
    hydrochloride
    N^{1}-(3-phenoxybenzoyl)-(R)-borolysine (+)-pinanediol,
    hydrochloride
    N^{1}-(4-[4-pyridyl]benzoyl)-(R)-borolysine (+)-pinanediol,
35
    hydrochloride
```

```
N^{2}-(2-benzoylbenzoyl)-(R)-borolysine (+)-pinanediol,
     hydrochloride
     N^{1}-(3-benzoylbenzoyl)-(R)-borolysine (+)-pinanediol,
     hydrochloride
     N^{1}-(4-benzoylbenzoyl)-(R)-borolysine (+)-pinanediol,
     hydrochloride
     N^{1}-(3-[N-benzyloxycarbonyl]aminobenzoyl)-(R)-borolysine
     (+)-pinanediol,
                      hydrochloride
     N^{1}-(3-[N-benzyloxycarbonyl-N-methyl]aminobenzoyl)-(R)-
    borolysine (+)-pinanediol, hydrochloride
     N^{1}-(4-ethylbenzoyl)-(R)-borolysine (+)-pinanediol,
    hydrochloride
     N^{1}-(4-n-propylbenzoyl)-(R)-borolysine (+)-pinanediol,
    hydrochloride
    N^{1}-(4-isopropylbenzoyl)-(R)-borolysine (+)-pinanediol,
15
    hydrochloride
    N^{1}-(4-tert-butylbenzoyl)-(R)-borolysine (+)-pinanediol,
    hydrochloride
    N^{1}-(4-n-hexylbenzoyl)-(R)-borolysine (+)-pinanediol,
20
    hydrochloride
    N^{1}-(4-cyclohexylbenzoyl)-(R)-borolysine (+)-pinanediol,
    hydrochloride
    N^{1}-(2-[N-(2-phenylethyl) carbonyl] aminobenzoyl) - (R) -
    borolysine (+)-pinanediol, hydrochloride
25
   N^{1}-(4-n-butyloxybenzoyl)-(R)-borolysine (+)-pinanediol,
    hydrochloride
    N^{1}-(4-[N-cyclopropylcarbonyl]aminobenzoyl)-(R)-
    borolysine (+)-pinanediol, hydrochloride
    N^{1}-(4-[N-cyclohexylcarbonyl]aminobenzoyl)-(R)-borolysine
30
    (+)-pinanediol, hydrochloride
    N^{1}-(4-[N-(4-methoxy)benzoyl]aminobenzoyl)-(R)-borolysine
    (+)-pinanediol, hydrochloride
    N^{1}-(4-[4-methoxy]phenylbenzoyl)-(R)-borolysine (+)-
    pinanediol, hydrochloride
    N^{1}-(2-[2-phenyl]benzyloxycarbonylbenzoyl)-(R)-borolysine
    (+)-pinanediol, hydrochloride
```

(·

()

```
N^{1}-(2-[1-naphthyl]benzoyl)-(R)-borolysine (+)-
     pinanediol, hydrochloride
     N^{1}-(4-[4-carboxy]phenylbenzoyl)-(R)-borolysine (+)-
     pinanediol,
                  hydrochloride
    N^{1}-([2-anthraquinonyl]carbonyl)-(R)-borolysine (+)-
    pinanediol, hydrochloride
     N^{1}-([2-dioxothioxanthinonyl]carbonyl)-(R)-borolysine
     (+)-pinanediol, hydrochloride
     N^{1}-([2-fluoren-9-onyl]carbonyl)-(R)-borolysine (+)-
10
    pinanediol, hydrochloride
     N^{2}-([3-fluoren-9-onyl]carbonyl)-(R)-borolysine (+)-
    pinanediol, hydrochloride
    N^{1}-(1-naphthoyl)-(R)-borolysine (+)-pinanediol,
    hydrochloride
    N^{1}-([4-fluoren-9-onyl]carbonyl)-(R)-borolysine (+)-
15
    pinanediol, hydrochloride
    N^{1}-(2-methyl-4-phenyl-5-methoxybenzoyl)-(R)-borolysine
     (+)-pinanediol, hydrochloride
    N^{1}-(2-methyl-4-phenyl-5-carboxamidobenzoyl)-(R)-
    borolysine (+)-pinanediol, hydrochloride
20
    N^{2}-(2-methyl-4-phenyl-5-fluorobenzoyl)-(R)-borolysine
     (+)-pinanediol, hydrochloride
    N^{1}-(2-methyl-4-phenyl-5-trifluoromethylbenzoyl)-(R)-
    borolysine (+)-pinanediol, hydrochloride
   N^{1}-(2-methyl-4-phenyl-5-chlorobenzoyl)-(R)-borolysine
25
     (+)-pinanediol, hydrochloride
    N^{2}-(2-methyl-4-phenyl-5-hydroxybenzoyl)-(R)-borolysine
    (+)-pinanediol, hydrochloride
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl)-(R)-
30
    borolysine (+)-pinanediol, hydrochloride
    N1-(2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl)-
    (R)-borolysine (+)-pinanediol, hydrochloride
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl)-(R)-
    borolysine (+)-pinanediol, hydrochloride
```

```
N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-
     trifluoromethylbenzoyl) - (R) - borolysine (+) - pinanediol,
     hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl)-(R)-
     borolysine (+)-pinanediol, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-hydroxybenzoyl)-(R)-
     borolysine (+)-pinanediol, hydrochloride
     N^{1}-(2-[5-phenyl]furylcarbonyl)-(R)-borolysine (+)-
     pinanediol, hydrochloride
10
     N^{1}-(2-[5-phenyl]thiophen-ylcarbonyl)-(R)-borolysine (+)-
     pinanediol, hydrochloride
    N^{1}-(2-benzopyronylcarbonyl)-(R)-borolysine (+)-
     pinanediol, hydrochloride
     N^{1}-(2-isoquinolinylcarbonyl)-(R)-borolysine (+)-
15
     pinanediol, hydrochloride
     N^{2}-(3-isoquinolinylcarbonyl)-(R)-borolysine (+)-
     pinanediol, hydrochloride
     N^{1}-(2-phenyl-4-isoquinolinylcarbonyl)-(R)-borolysine
     (+)-pinanediol, hydrochloride
20
     N^{1}-(4-phenylbenzoyl)-(R)-borolysine,
                                            hydrochloride
     N^{1}-(3-phenylbenzoyl)-(R)-borolysine,
                                            hydrochloride
     N^{1}-(3-phenoxybenzoyl)-(R)-borolysine,
                                             hydrochloride
     N^{1}-(4-[4-pyridyl]benzoyl)-(R)-borolysine, hydrochloride
     N^{2}-(2-benzoylbenzoyl)-(R)-borolysine, hydrochloride
25
    N^{1}-(3-benzoylbenzoyl)-(R)-borolysine, hydrochloride
     N^{1}-(4-benzoylbenzoyl)-(R)-borolysine, hydrochloride
     N^{1}-(3-[N-benzyloxycarbonyl]aminobenzoyl)-(R)-borolysine,
    hydrochloride
    N^{1}-(3-[N-benzyloxycarbonyl-N-methyl]aminobenzoyl)-(R)-
30
    borolysine, hydrochloride
    N^{1}-(4-ethylbenzoyl)-(R)-borolysine, hydrochloride
    N^{1}-(4-n-propylbenzoyl)-(R)-borolysine, hydrochloride
    N^{1}-(4-isopropylbenzoyl)-(R)-borolysine, hydrochloride
    N^{1}-(4-tert-butylbenzoyl)-(R)-borolysine,
                                                hydrochloride
35
    N^{1}-(4-n-hexylbenzoyl)-(R)-borolysine, hydrochloride
    N^{1}-(4-cyclohexylbenzoyl)-(R)-borolysine, hydrochloride
```

(%)

```
N^{1} (2-[N-(2-phenylethyl) carbonyl] aminobenzoyl) - (R) -
     borolysine, hydrochloride
     N^{1}-(4-n-butyloxybenzoyl)-(R)-borolysine, hydrochloride
     N^{1}- (4-[N-cyclopropylcarbonyl] aminobenzoyl) - (R) -
     borolysine, hydrochloride
     N^{1}-(4-[N-cyclohexylcarbonyl]aminobenzoyl)-(R)-
     borolysine, hydrochloride
     N^{1}-(4-[N-(4-methoxy)benzoyl]aminobenzoyl)-(R)-
     borolysine, hydrochloride
10
   N^{2}-(4-[4-methoxy]phenylbenzoyl)-(R)-borolysine,
    hydrochloride
     N^{1}-(2-[2-phenyl]benzyloxycarbonylbenzoyl)-(R)-
    borolysine, hydrochloride
    N^{1}-(2-[1-naphthyl]benzoyl)-(R)-borolysine,
15
    hydrochloride
     N^{1}-(4-[4-carboxy]phenylbenzoyl)-(R)-borolysine,
    hydrochloride
     N^{1}-([2-anthraquinonyl]carbonyl)-(R)-borolysine,
    hvdrochloride
   N^{1}-([2-dioxothioxanthinonyl]carbonyl)-(R)-borolysine,
20
    hydrochloride
    N^{1}-([2-fluoren-9-onyl]carbonyl)-(R)-borolysine,
    hvdrochloride
    N^{1}-([3-fluoren-9-onyl]carbonyl)-(R)-borolysine,
25 hydrochloride
    N^{1}-(1-naphthoyl)-(R)-borolysine, hydrochloride
    N^{1}-([4-fluoren-9-onyl]carbonyl)-(R)-borolysine,
    hvdrochloride
    N^{2}-(2-methyl-4-phenyl-5-methoxybenzoyl)-(R)-borolysine,
30 hydrochloride
    N^{1}-(2-methyl-4-phenyl-5-carboxamidobenzoyl)-(R)-
    borolysine, hydrochloride
    N^{1}-(2-methyl-4-phenyl-5-fluorobenzoyl)-(R)-borolysine,
    hydrochloride
35 N^{1}-(2-methyl-4-phenyl-5-trifluoromethylbenzoyl)-(R)-
    borolysine, hydrochloride
```

```
N^{1}-(2-methyl-4-phenyl-5-chlorobenzoyl) - (R)-borolysine,
     hydrochloride
     N^{1}-(2-methyl-4-phenyl-5-hydroxybenzoyl)-(R)-borolysine,
     hydrochloride
 5 N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-methoxybenzoyl)-(R)-
     borolysine, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-carboxamidobenzoyl)-
     (R)-borolysine, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-fluorobenzoyl)-(R)-
    borolysine, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-
     trifluoromethylbenzoyl) - (R) -borolysine, hydrochloride
     N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-chlorobenzoyl)-(R)-
    borolysine, hydrochloride
    N^{1}-(2-methyl-4-[4-carboxy]phenyl-5-hydroxybenzoyl)-(R)-
15
    borolysine, hydrochloride
    N^{2}-(2-[5-phenyl]furylcarbonyl)-(R)-borolysine,
    hydrochloride
    N^{1}-(2-[5-phenyl]thiophen-ylcarbonyl)-(R)-borolysine,
20
    hydrochloride
    N^{1}-(2-benzopyronylcarbonyl)-(R)-borolysine,
    hydrochloride
    N^{1}-(2-isoquinolinylcarbonyl)-(R)-borolysine,
    hydrochloride
25
    N^{1}-(3-isoquinolinylcarbonyl)-(R)-borolysine,
    hydrochloride
    N^{2}-(2-phenyl-4-isoquinolinylcarbonyl)-(R)-borolysine,
    hydrochloride
    N^{1}-(2-methyl-4-phenylbenzoyl)-R-borolysine,
30
   hydrochloride
    N^{1}-(2-methyl-4-phenylbenzoyl)-R-borolysine, (+)-
    pinanediol, hydrochloride
    N^{1}-(2-methyl-4-phenylbenzoyl)-R-borothioarginine (+)-
    hydrobromide
    N^{2}-(2-methyl-4-phenylbenzoyl)-R-borothioarginine (+)-
35
    pinanediol, hydrochloride
```

(

 N^{1} -(2-methyl-4-phenylbenzoyl)-R-boroarginine (+)-hydrochloride N^{1} -(2-methyl-4-phenylbenzoyl)-R-boroarginine (+)-pinanediol, bisulfite

5

Detailed Description of the Invention

Throughout the specification, the following conventional three-letter abbreviations for amino acid residues or amino acids apply:

Ala = alanine
Arg = arginine

Asn = asparagine

Asp = aspartic acid

15 Cys = cysteine

Gln = glutamine

Glu = glutamic acid

Gly = glycine

His = histidine

20 Ile = isoleucine

Leu = leucine

Lys = lysine

Met = methionine

Phe = phenylalanine

25 Pro = proline

Ser = serine

Thr = threonine

Trp = tryptophan

Tyr = tyrosine

30 Val = valine

The prefix "boro" indicates amino acid residues where the carboxy group is replaced by a boronic acid (Formula I, Y^1 and $Y^2 = -OH$).

The pinanediol boronic acid ester and the pinacol boronic acid ester are abbreviated "-C10H16" and

"-C6H12" respectively. Other illustrations of diols useful for deriving boronic acid esters are 1,2-ethanediol, 1,3-propanediol, 1,2-propanediol, 2,3-butanediol, 1,2-diisopropylethanediol, 5,6-decanediol, 1,2-dicyclohexylethanediol.

Note that throughout the text when an alkyl substituent is mentioned, the normal alkyl structure is meant (e.g. butyl is n-butyl) unless otherwise specified. However, in the definition of radicals above (e.g. R³), both branched and straight chains are included in the scope of alkyl.

10

15

20

It is understood that many of the compounds of the present invention contain one or more chiral centers and that these stereoisomers may possess distinct physical and biological properties. The present invention comprises all of the stereoisomers or mixtures thereof. If the pure enantiomers or diastereomers are desired, they may be prepared using starting materials with the appropriate stereochemistry, or may be separated from mixtures of undesired stereoisomers by standard techniques, including chiral chromatography and recrystallization of diastereomeric salts.

Synthesis

The compounds of formula (I) can be prepared using
the reactions and techniques described below. The
reactions are performed in a solvent appropriate to the
reagents and materials employed and suitable for the
transformations being affected. It will be understood
by those skilled in the art of organic synthesis that
the functionality present on the molecule should be
consistent with the chemical transformations proposed
and this will sometimes require judgment as to the order
of synthetic steps or selection of particular process
scheme used from that shown below in order to obtain a
desired compound of the invention.

WO 94/21650

5

Scheme 1. Synthesis of Thrombin Inhibitors

Reagents: a. IBCF, NMM, RCO₂H, Et₃N, 0 °C, b. NaN₃, c. H₂, Pd(OH)₂/C, HCl, d. DMAP, aminoiminomethanesulfonic acid, e. phenylboronic acid

10

Amine hydrochloride 1 is readily available via the procedure of Kettner and Shenvi (EP 0293881 A2).

There are numerous synthetic methods by which to prepare amide 2, however, competing with amide formation is the cyclization of 1 to afford a complex mixture containing the desired amide and the corresponding N-acylboroproline. Since purification at this stage is unfeasible, choosing the correct method for amide formation is crucial to obtaining 2 in a purity suitable for subsequent synthetic transformations.

Three methods are preferred for the preparation of 2. 10 In the first, a solution of 1 in tetrahydrofuran or dichloromethane at 0 °C is treated sequentially with the desired acid chloride followed by two equivalents of triethylamine. The mixture is then allowed to warm to room temperature overnight. The second method is the mixed anhydride procedure of Anderson, et. al. (J. Am. 15 Chem. Soc. 1967, 89, 5012). In this method the isobutyl mixed anhydride is generated by dissolving the carboxylic acid component in tetrahydrofuran and adding one equivalent of N-methylmorpholine. The solution is 20 cooled to 0 °C and one equivalent of isobutyl chloroformate is added. After 5 minutes, a solution of 1 in chloroform is added, followed by the addition of one equivalent of triethylamine. The mixture is typically stirred at 0 °C for one hour followed by one 25 to several hours at room temperature. The third method for amide formation is the hydroxybenzotriazole/DCC method of König and Geiger (Chem. Ber. 1970, 103, 788-Thus, to a solution of 1 and the carboxylic acid component in dimethylformamide or tetrahydrofuran at 0 30 °C is added N-methylmorpholine, 1-hydroxybenzotriazole hydrate (2 eq) and DCC (1.05 eq). The solution is allowed to warm to room temperature overnight.

The preferred method for the preparation of azide 3 is by reaction of 2 with sodium azide (1.1 eq) in dimethylformamide at 70 °C for 2 hours.

The azide displacement may also be performed prior to amide formation. This is the preferred method in cases where the rate of amide formation is slow relative to the rate of cyclization. Azide 4 is prepared by a modification of the procedure of Kettner and Shenvi (EP 0293881 A2) as shown in Scheme 2. Thus, bromide 5 is reacted with sodium azide, followed by homologation to give 6, chloride displacement to afford 7 and acidic hydrolysis to give 4. Amide formation between 4 and the carboxylic acid component then affords 3 directly.

Scheme 2. Synthesis of Azide 4

Reagents: a. NaN₃ b. CHCl₂Li, ZnCl₂, c. LiN(TMS)₂, d. 4M HCl, dioxane

15

20

 $\int_{0}^{\infty} \frac{dx}{x} \, dx$

Reduction of azide 3 to amine 8 may be accomplished by hydrogenation over precious metal catalysts. The preferred catalyst for this transformation is Pearlman's catalyst (palladium hydroxide on carbon). The amine is typically isolated as the hydrochloride salt. Isolation of 8 as the free base typically results in lowered yields. Salts of 8 which may confer superior physical properties may be preferred over the hydrochloride salt.

Formamidination of amine 8 may be accomplished using 25 cyanamide. Due to the low reactivity of amine 8,

however, the preferred method for this transformation is reaction with 4-dimethylaminopyridine (DMAP) and aminoiminomethanesulfonic acid (AMSA, prepared by the method of Kim, et. al., *Tetrahedron Lett.* 1988, 29, 3183-6). This affords guanidine 9, which is isolated as the bisulfite or hydrochloride salt.

Cleavage of pinanediol ester 9 may be accomplished using anhydrous boron trichloride according to the procedure of Matteson and Ray (J. Am. Chem. Soc. 1980, 102, 7588). This method, however, is strongly Lewis acidic and leads to partial destruction of the substrate. The preferred method for water soluble boronic acids is a transesterification reaction that is run in the presence of excess phenylboronic acid. The free boronic acid 10 may then be isolated using cation exchange chromatography.

The isothiouronium functionalized analogs 11/12 are prepared from bromide 2 according to the procedure of Kettner and Shenvi (EP 0293881 A2).

Inhibitors containing a sulfonamide in place of a carboxamide are prepared from either 1 or 4 by reaction with a sulfonyl chloride in the presence of a hindered amine (Scheme 3). The product sulfonamide 13 is then converted to the guanidinium 14 or isothiouronium 15 in the same manner as the corresponding carboxamides.

30

5

Scheme 3. Synthesis of Sulfonamides

10

15

Inhibitors containing the borolysine moiety are prepared analogously to those containing boroarginine according to Kettner and Shenvi (EP 0293881 A2).

Novel biaryls synthesized in this invention are prepared through palladium catalyzed coupling of an appropriate arylmetal species to the aryl halide of choice using the methods described in Negishi, et. al., Org. Synth. 1987, 66, 67-74, and references cited within.

20

EXAMPLE 1: N^{1} -(4-Phenylbenzoyl)boroarginine (+)-Pinanediol, Bisulfite

Part A: (+)-Pinanediol 4-bromo-1(R)-(4-phenylbenzovl)aminobutane-1-boronate. To a solution of (+)pinanediol 4-bromo-1(R)-aminobutane-1-boronate hydrochloride (5.00 g, 13.6 mmol) in dichloromethane (50 mL) at 0 °C was added 4-phenylbenzoyl chloride (4.97 g, 22.9 mmol) followed by N-methylmorpholine (4 mL, 36 mmol). After 1 hour, the cooling bath was removed and the mixture stirred at room temperature for 2 hours. The mixture was then diluted with ethyl acetate and 10 washed with 0.1 M hydrochloric acid, saturated sodium bicarbonate and saturated sodium chloride. The organic phase was dried over anhydrous magnesium sulfate, filtered and the filtrate concentrated in vacuo to afford 3.37 g (48%) of the desired amide, mass spectrum: $(M+H)^+ = 510/512$; ¹H NMR (300 MHz, CDCl₃) $\delta 7.9$ (2H, d, J 15 = 8.3), 7.84 (1H, bs), 7.6 (2H, d, J = 8.3), 7.44 (5H, m), 4.37 (1H, m), 3.41 (1H, t, J = 6.9), 2.0 (10H, m) 1.49 (3H, s), 1.38 (1H, m), 1.29 (3H, s), 0.91 (3H, s).

20 Part B: (+)-Pinanediol 4-azido-1(R)-(4-phenylbenzoyl)aminobutane-1-boronate. To a solution of (+)pinanediol 4-bromo-1(R)-(4-phenylbenzoyl)aminobutane-1boronate (3.37 g, 6.60 mmol) in dimethylformamide (6 mL) was added sodium azide (547 mg, 8.41 mmol). resulting mixture was heated at 70 °C for 2 hours, 25 cooled to room temperature, and diluted with ethyl acetate. The mixture was then washed with water, saturated sodium chloride and dried over anhydrous magnesium sulfate. Filtration, followed by concentration of the filtrate in vacuo gave 3.04 g (97%) 30 of the desired azide, mass spectrum: $(M+H)^+ = 473$; 1H NMR (300 MHz, CDCl₃) δ 7.89 (2H, d, J = 8.3), 7.75 (1H, bs), 7.3 (7H, m), 4.32 (1H, m), 3.32 (1H, m), 2.0 (10H, m) 1.48 (3H, s), 1.3 (4H, m), 0.9 (3H, s).

Part C: N^{1} -(4-Phenylbenzovl)boroornithine (+)pinanediol. hydrochloride. To a solution of (+)pinanediol 4-azido-1(R)-(4-phenylbenzoyl)aminobutane-1boronate (3.04 g, 6.44 mmol) in methanol (30 mL) was added Pearlman's catalyst Pd(OH)2/C, 200 mg) and 1 M hydrochloric acid (6.5 mL, 6.5 mmol). The mixture was placed on a Parr apparatus and hydrogenated at 50 psi The mixture was filtered using Celite™. for 3 hours. washed with methanol and the filtrate concentrated in The resulting amorphous solid was dissolved in water and washed with ether. The aqueous phase was then concentrated in vacuo and crystallized from ethyl acetate-hexanes, giving 1.52 g (49%) of the desired amine hydrochloride, mass spectrum: $(M+H)^+ = 447$; mp: 157-170 °C; 1 H NMR (400 MHz, CDCl₃/DMSO-d₆) δ 9.88 (1H, bs), 8.18, (2H, d, J = 8.3), 8.13 (3H, bs), 7.68 (2H, d, bs)J = 8.3), 7.61 (2H, d J = 7.0), 7.45 (2H, d, J = 7.0), 7.37 (1H, d, J = 7.30), 4.20 (1H, d, J = 6.3), 2.99 (1H, m), 2.87 (2H, m), 2.31 (1H, m), 2.13 (1H, m), 1.84 (7H, m), 1.56 (1H, d, J = 10.0), 1.42 (3H, s), 1.29 (3H, s), 0.89 (3H, s).

10

15

20

Part D: N^{1} -(4-Phenylbenzoyl)boroarginine (+)pinanediol, bisulfite. To a solution of N^{1} -(4-25 phenylbenzoyl)boroornithine (+)-pinanediol, hydrochloride (80 mg, 0.17 mmol) in ethanol (2 mL) was added 4-dimethylaminopyridine (40 mg, 0.33 mmol). After 15 minutes, aminoiminomethanesulfonic acid (40 mg, 0.32 mmol) was added and the resulting mixture heated at 30 reflux for 3 hours. After cooling to room temperature, the mixture was filtered and the filtrate concentrated The residue was dissolved in chloroform and washed with 0.1 M hydrochloric acid, water and dried over anhydrous magnesium sulfate. Filtration, followed 35 by concentration of the filtrate in vacuo afforded 73 mg

(84%) of the desired guanidine, mass spectrum: $(M+H)^+ = 489$; 1H NMR (400 MHz, CDCl₃, 60 °C) δ 9.48 (1H, bs), 8.10 (2H, d, J = 8.1), 8.07 (1H, bs), 7.75 (1H, bs), 7.54 (2H, d, J = 8.3), 7.48 (2H, d, J = 7.0), 7.35 (3H, m), 7.06 (4H, bs), 4.19 (1H, bd, J = 8.3), 3.1 (2H, m), 2.84 (1H, m), 2.29 (1H, m), 2.12 (1H, m), 1.96 (1H, m), 1.75 (6H, m), 1.47 (1H, d, J = 10.2), 1.40 (3H, s), 1.24 (3H, s), 0.83 (3H, s).

10 EXAMPLE 34: (+)-Pinanediol 4-(Formamidino)thio-1(R)-(4-phenylbenzoyl)aminobutane-1-boronate, Hydrobromide

(+)-Pinanediol 4-(formamidino)thio-1(R)-(4phenylbenzovl) aminobutane-1-boronate, hydrobromide. 15 a solution of (+)-pinanediol 4-bromo-1(R)-(4-phenylbenzoyl)aminobutane-1-boronate (200 mg, 0.392 mmol) in methanol (3 mL) was added thiourea (120 mg, 1.58 mmol). The reaction was stirred at room temperature for 3 days. The mixture was concentrated in vacuo, the residue 20 dissolved in water and washed with ether. Concentration of the aqueous portion afforded 80 mg (35%) of the desired isothiourea, mass spectrum: (M+H) + = 506; 1H NMR (300 MHz, CDCl₃) $\delta 8.15$ (2H, d, J = 8.4), 7.61 (2H, d, J = 8.4), 7.52 (2H, m), 7.38 (3H, m), 6.47 (1H, bs), 4.2325 (1H, dd, J = 6.6, 1.9), 3.24 (1H, m), 3.14, (1H, m),2.96, (1H, m), 2.32 (1H, m), 2.15 (1H, m), 1.99 (1H, m), 1.78 (6H, m), 1.48 (1H, d, J = 10.1), 1.42 (3H, s), 1.27 (3H, s), 0.86 (3H, s).

The compounds listed in Tables 1-12 can be prepared using the above examples.

TABLE 1

5

	Ex	x	$\mathbf{R}^{\mathbf{A}}$	RB	RC	Y ¹ , Y ²	Phys
							Data
	1 NHC	(NH) NH ₂	н	н	. Ph	(+)-pinanediol	A
10	2 NHC	(NH) NH ₂	н	Ph	. н	(+)-pinanediol	
	3 NHC	(NH) NH ₂	н.	OPh	Ph	(+)-pinanediol	В
	4 NHC	(NH) NH ₂	н	H	4-pyridyl	(+)-pinanediol	С
	5 NHC	(NH) NH ₂	COPh	Н	н	(+)-pinanediol	
	6 NHC	(NH) NH ₂	н	COPh	н	(+)-pinanediol	
15	7 NHC	(NH) NH ₂	Н	Н	COPh	(+)-pinanediol	
	8 NHC	(NH) NH ₂	н	NHCbz	н	(+)-pinanediol	
	9 NHC	(NH) NH ₂	н	NMeCbz	н	(+)-pinanediol	
	10 NHC	(NH) NH ₂	н	н	Et	(+)-pinanediol	
	11 NHC	(NH) NH ₂	. Н	н	n-Pr	(+)-pinanediol	•
20	. 12 NHC	(NH) NH ₂	Н	H	i-Pr	(+)-pinanediol	
	13 NHC	(NH) NH ₂	H	н	n-Bu	(+)-pinanediol	
	14 NH	C (NH) NH ₂	н	н	t-Bu	(+)-pinanediol	
	15 NHC	C(NH)NH2	Н	н	n-hexyl	(+)-pinanediol	
	16 NH	C(NH)NH2	н	н	cyclohexyl	(+)-pinanediol	
25	17 NH	C(NH)NH2	NHCO (CH2) 2Ph	H	н	(+)-pinanediol	

	18	NHC (NH) NH2	H	Н	O-n-Bu	(+)-pinanediol	
	19	NHC (NH) NH ₂	H		NHCOcyclopropyl	(+)-pinanediol	
	Ex	x	RA	RB	RC	Y^1, Y^2	Phys
					•		Data .
5							
	20	NHC (NH) NH2	. Н	Н	NHCO-cyclohexyl	(+)-pinanediol	
	21	NHC (NH) NH2	н	Н	NHCO (4-C6H40Me)	(+)-pinanediol	·
	22	NHC (NH) NH2	н	н	4-C6H4OMe	(+)-pinanediol	
	23	NHC (NH) NH2	CO_2CH_2 (2- C_6H_4Ph)	H	H	(+)-pinanediol	
10	24	NHC (NH) NH2	н	H	1-naphthyl	(+)-pinanediol	
	25	NHC (NH) NH ₂	H	H	4-C6H4CO2H	(+)-pinanediol	
	26	$^{\mathrm{NHC}}$ (NH) $^{\mathrm{NH}_2}$	COPh	H	Me	(+)-pinanediol	
	27	NHC (NH) NH2	н	NHCbz	n-Bu	(+)-pinanediol	·
	28	$^{\mathrm{NHC}}$ (NH) $^{\mathrm{NH}_2}$	н	NMeCbz	n-Bu	(+)-pinanediol	
15	29	NHC (NH) NH2	Me	H	Ph	(+)-pinanediol	QQ
	30	NHC (NH) NH2	Me	н	4-C6H4CO2H	(+)-pinanediol	
	31	NHC (NH) NH2	н	H	4-C6H4CO2Me	(+)-pinanediol	
	32	NHC (NH) NH2	Ме	H	4-C6H4CO2Me	(+)-pinanediol	
•	33	NHC (NH) NH2	н	OMe	Ph	(+)-pinanediol	
20	34	SC (NH) NH ₂	н	H	Ph	(+)-pinanediol	D
	35	SC (NH) NH ₂	н	Ph	Н	(+)-pinanediol	E
	36	SC (NH) NH ₂	Н	OPh	Н	(+)-pinanediol	F
	37	SC (NH) NH ₂	COPh	H	Н	(+)-pinanediol	G
	38	SC (NH) NH ₂	н	COPh	H _.	(+)-pinanediol	H
25	39	SC (NH) NH ₂	Н	H	COPh	(+)-pinanediol	I .
	40	SC (NH) NH ₂	Н	NHCbz	Н	(+)-pinanediol	J
	41	SC (NH) NH ₂	н	NMeCbz	, Н	<pre>(+)-pinanediol</pre>	K
	42	SC (NH) NH ₂	н	Н	Et	(+)-pinanediol	T.
	43	SC (NH) NH ₂	н	H	n-Pr	(+)-pinanediol	M
30	44	SC (NH) NH ₂	. Н	H	i-Pr	(+)-pinanediol	N
	45	SC (NH) NH ₂	Н	Н	n-Bu	(+)-pinanediol	0
	46	SC (NH) NH ₂	н	H	t-Bu	(+)-pinanediol	Ρ,
	47	SC (NH) NH ₂	н	H	n-hexyl	(+)-pinanediol	Q
	48	SC (NH) NH ₂	Н	H	cyclohexyl	(+)-pinanediol	R
35	49	SC (NH) NH ₂	NHCOCH2CH2Ph	H	H	(+)-pinanediol	s .
	50	SC (NH) NH ₂	H	H	O-n-Bu	(+)-pinanediol	T

	51	SC (NH) NH ₂	H	Н	NHCOcyclopropyl	(+)-pinanediol	U
	Ex	x	RA	R ^B	_R C	Y ¹ , Y ²	Phys
			*				Data
5	52	SC (NH) NH ₂	Н	н	NHCOcyclohexyl	(+)-pinanediol	v
	53	SC (NH) NH2	н	н	NHCO (4-C6H4OMe)	(+)-pinanediol	W
	54	SC (NH) NH2	н	H,	4-C6H4OMe	(+)-pinanediol	X
	55	SC (NH) NH2	CO2CH2 (2-C6H4Ph)	H	Н	(+)-pinanediol	Y
	56	SC (NH) NH ₂	н	н	1-naphthyl	(+)-pinanediol	
10	57	SC (NH) NH ₂	н	н	4-C6H4CO2H	(+)-pinanediol	
	58	SC (NH) NH ₂	н	NHCbz	n-Bu	(+)-pinanediol	Z
	59	SC (NH) NH ₂	н	NMeCbz	n-Bu	(+)-pinanediol	AA
	60	SC (NH) NH ₂	COPh	н	Me	(+)-pinanediol	BB
	61	SC (NH) NH ₂	H	Н	4-pyridyl	(+)-pinanediol	
15	62	SC (NH) NH2	Ме	Н	4-C6H4CO2H	(+)-pinanediol	
	63	SC (NH) NH ₂	H	Н	4-C6H4CO2Me	(+)-pinanediol	
	64	SC (NH) NH ₂	Me	Н	4-C6H4CO2Me	(+)-pinanediol	
	65	SC (NH) NH ₂	Me	Н	Ph	(+)-pinanediol	
	66	SC (NH) NH ₂	н	OMe	Ph	(+)-pinanediol	
20	67	CH2NH2	н	Н	Ph	(+)-pinanediol	
	68	CH2NH2	н	Ph	Н	(+)-pinanediol	
	69	CH2NH2	н	OPh	H	(+)-pinanediol	
	70	CH ₂ NH ₂	COPh	Н	н	(+)-pinanediol	
	71	CH2NH2	н	COPh	Н	(+)-pinanediol	
25	72	CH2NH2	Н	H	COPh	(+)-pinanediol	
	73	CH2NH2	. Н	NHCbz	н	(+)-pinanediol	
	74	CH2NH2	н	NMeCbz	н	(+)-pinanediol	
	75	CH2NH2	. Н	Н	Et	(+)-pinanediol	
	76	CH2NH2	Н	H	n-Pr	(+)-pinanediol	
30	77	CH2NH2	н	Н	i-Pr	(+)-pinanediol	
	78	CH2NH2	н	н	n-Bu	(+)-pinanediol	
	79	CH2NH2	н	н	t-Bu	(+)-pinanediol	
	80	CH2NH2	Н	Н	n-hexyl	(+)-pinanediol	
	81	CH2NH2	Н	Н	cyclohexyl	(+)-pinanediol	
35	82	CH2NH2	NHCOCH2CH2Ph	Н	Н	(+)-pinanediol	
	83	CH2NH2	н	н	O-n-Bu	(+)-pinanediol	·

						•	
	84	CH2NH2	н	H	NHCOcyclopropyl	(+)-pinanediol	
	Ex	x	RA	$R^{\mathbf{B}}$	RC	Y ¹ , Y2	Phys
							Data
	85	CH2NH2	н	Н	NHCOcyclohexyl	(+)-pinanediol	,
5	86	CH2NH2	н	H	NHCO (4-C6H4OMe)	(+)-pinanediol	
	87	CH2NH2	н	н	4-C6H4OMe	(+)-pinanediol	,
	88	CH2NH2	CO ₂ CH ₂ (2-C ₆ H ₄ Ph)	Н	Н	(+)-pinanediol	
	89	CH2NH2	н	н	1-naphthyl	(+)-pinanediol	
	90	CH2NH2	н	Н	4-C6H4CO2H	(+)-pinanediol	
10	91	CH2NH2	н	NHCbz	n-Bu	(+)-pinanediol	
	92	CH2NH2	н	NMeCbz	n-Bu	(+)-pinanediol	
	93	CH2NH2	COPh	Н	Ме	(+)-pinanediol	
	94	CH2NH2	н	н	4-pyridyl	(+)-pinanediol	
	95	CH2NH2	Me	Н	4-C6H4CO2H	(+)-pinanediol	
15	96	CH2NH2	H	Н	4-C6H4CO2Me	(+)-pinanediol	
	97	CH2NH2	Me	н	4-C6H4CO2Me	(+)-pinanediol	
	98	CH2NH2	Me	·H	Ph	(+)-pinanediol	
	99	CH2NH2	н	OMe	Ph	(+)-pinanediol	
	100	CH2NH2	н	OMe	Ph	Н, Н	
20	101	NHC (NH) NH2	Н	Н	Ph	Н, Н	•
	102	NHC (NH) NH2	Н	Ph	н	н, н	
	103	NHC (NH) NH ₂	. Н	OPh	. Ph	н, н	
	104	NHC (NH) NH ₂	,H	н	4-pyridyl	н, н	
	105	NHC (NH) NH2	COPh	· H	н	н, н	
25	106	NHC (NH) NH ₂	Н	COPh	н	н, н	
	107	NHC (NH) NH ₂	. Н	H	COPh	н, н	
	108	NHC (NH) NH ₂	н .	NHCbz	Н	Н, Н	
	109	NHC (NH) NH ₂	н	NMeCbz	Н	Н, Н	•
	110	NHC (NH) NH ₂	н	Н	Et	Н, Н	•
30	111	NHC (NH) NH ₂	. н	H	n-Pr	н, н	
	112	NHC (NH) NH2	Н	. Н	i-Pr	н, н	
	113	NHC (NH) NH2	н	H	n-Bu	н, н	
	114	NHC (NH) NH2	Н	H	. t-Bu	н, н	
	115	NHC (NH) NH ₂	Н	Н	n-hexyl	н, н	
35	116	NHC (NH) NH2	н	H	cyclohexyl	н, н	·
	117	NHC (NH) NH2	NHCO (CH2) 2Ph	H	H	H,H	

	Ex	x	RA	RB	RC	Y ¹ , Y ²	Phys
							Data
	118	NHC (NH) NH2	н	H	O-n-Bu	н, н	
	119	NHC (NH) NH2	H	H	NHCOcyclopropyl	н, н	
5	120	NHC (NH) NH2	н	н	NHCO-cyclohexyl	н, н	
	121	NHC (NH) NH2	н	н	NHCO (4-C6H4OMe)	н, н	
	122	NHC (NH) NH2	н	н	4-C6H4OMe	н, н	
•	123	NHC (NH) NH2	CO2CH2 (2-C6H4Ph)) H	н	н, н	
	124	NHC (NH) NH2	н	H	1-naphthyl	н, н	
10	125	NHC (NH) NH2	н	Н	4-C6H4CO2H	н, н	
	126	NHC (NH) NH2	COPh	. Н	Me	, н,н	
	127	NHC (NH) NH2	н	NHCbz	n-Bu	н, н	
	128	NHC (NH) NH2	н	NMeCbz	n-Bu	н, н	
	129	NHC (NH) NH2	Me	H	Ph	Н, Н	
15	130	NHC (NH) NH2	Me	Н	4-C6H4CO2H	Н, Н	
	131	NHC (NH) NH2	H	H	4-C6H4CO2Me	н, н	
	132	NHC (NH) NH2	Me	H	4-C6H4CO2Me	н, н	
•	133	NHC (NH) NH2	н	OMe	Ph	н, н	
	134	SC (NH) NH2	. н	н	Ph	Н, Н	
20	135	SC (NH) NH2	н	Ph	Н	н, н	
	136	SC (NH) NH2	н	OPh	н	н, н	.1
	137	SC (NH) NH2	COPh	Н	н	н, н	
	138	SC (NH) NH2	· H	COPh	н	н, н	
	139	SC (NH) NH2	н	н	COPh	н,н	
25	140	SC (NH) NH2	н	NHCbz	,· H	н, н	
	141	SC (NH) NH2	H	NMeCbż	н	н, н	
	142	SC (NH) NH2	н	н	Et	н, н	
	143	SC (NH) NH2	н	н	n-Pr	Н, Н	
	144	SC (NH) NH2	H	н	i-Pr	Н, Н	
30	145	SC (NH) NH2	н	Н	n-Bu	· Н, Н	
	146	SC (NH) NH2	H	н	t-Bu	н, н	
	147	SC (NH) NH2	H	н	n-hexyl	н, н	
	148	SC (NH) NH2	Н	н	cyclohexyl	. н, н	
	149	SC (NH) NH2	NHCOCH2CH2Ph	н	H	н, н	_
35	150	SC (NH) NH2	н	Н	O-n-Bu	н, н	
	Ex	· x	RA	RB	RC	Y^1, Y^2	Phys

				•			Data
	151	SC (NH) NH ₂	н	н	NHCO (CH ₂) 2phenyl	н, н	RR
	152	SC (NH) NH ₂	н	н	NHCOcyclohexyl	н, н	
	153	SC (NH) NH ₂	н	Н	NHCO (4-C6H4OMe)	н, н	
5	154	SC (NH) NH ₂	H	н	4-C6H4OMe	н, н	
	155	SC (NH) NH ₂	CO2CH2 (2-C6H4Ph)	н	н	'н, н	
		SC (NH) NH ₂	н	н	1-naphthyl	н, н	
	157	SC (NH) NH ₂	н	H	4-C6H4CO2H	н, н	
	158	SC (NH) NH ₂	Н	NHCbz	n-Bu	н, н	
10	159	SC (NH) NH2	H	NMeCbz	n-Bu	Н, Н	
	160	SC (NH) NH2	COPh	н	· Me	н, н	
	161	SC (NH) NH ₂	н	Н	4-pyridyl	Н, Н	
	162	SC (NH) NH2	Me	Н	4-C6H4CO2H	. Н, Н	
	163	SC (NH) NH2	н	Н	4-C6H4CO2Me	н, н	
15	164	SC (NH) NH2	Me	Н	4-C6H4CO2Me	н,н	
	165	SC (NH) NH2	Me	Н	Ph	н, н	
	166	SC (NH) NH2	н	OMe	Ph	н, н	
•	167	CH ₂ NH ₂	н	Н	Ph	н, н	
	168	CH2NH2	. н	Ph	н	· Н, Н	
20	169	CH2NH2	. н	OPh	Н	Н,Н	
	170	CH2NH2	COPh	Н	H	н, н	
	171	CH2NH2	н	COPh	Н	H,.H	
	172	CH2NH2	Н	H	COPh	н, н	
	173	CH2NH2	Н		Н .	Н, Н	
25	174	CH2NH2	н	NMeCbz	Н	Н, Н	
	175	CH2NH2	H	Н	Et	н, н	
	176	CH2NH2	H	H	n-Pr	н, н	
	177	CH2NH2	. Н		i-Pr	Н, Н	
	178	CH2NH2	н		n-Bu	н, н	
30	179	CH2NH2	Н		t-Bu	Н, Н	
	180	CH2NH2	. н		n-hexyl	н, н	
	181	CH2NH2	н		cyclohexyl	н, н	,
	182	CH2NH2	NHCOCH2CH2Ph	Н	Н	н, н	
	183	CH2NH2	н		O-n-Bu	Н, Н	
35	Ex	x	RA	RB	RC	Y ¹ ,Y ²	Phys
							Data

WO 94/21650	PCT/US94/02965
-------------	----------------

	184	CH2NH2	н	н	NHCOcyclopropyl	н, н
	185	CH2NH2	н	H	NHCOcyclohexyl	н, н
	186	CH2NH2	. Н	Н	NHCO (4-C6H4OMe)	Н, Н
	187	CH2NH2	H	Н	4-C6H4OMe	Н, Н
5	188	CH2NH2	$CO_2CH_2(2-C_6H_4Ph)$	Н	н	н,н
	189	CH2NH2	н	Н	1-naphthyl	н, н
	190	CH2NH2	Н	Н	4-C6H4CO2H	Н, Н
	191	CH2NH2	н	NHCbz	n-Bu	Н, Н
	192	CH2NH2	н	NMeCbz	n-Bu	Н, Н
10	193	CH2NH2	COPh	н	Me	Н, Н
	194	CH2NH2	н	Н	4-pyridyl	н, н
	195	CH2NH2	Me	H	4-C6H4CO2H	н, н
	196	CH2NH2	н	Н	4-C6H4CO2Me	н, н
	197	CH2NH2	Me	H	4-C6H4CO2Me	Н,Н
15	198	CH2NH2	Ме	н	Ph	Н, Н

TABLE 2

where
$$R^2$$
 is $X(CH_2)_3$ -, and where R^1 is $X(R_2)_3$ -, and R_1

Ż0

(

	Ex	x	¥	Y ¹ , Y ²	Phys
				•	Data
	199	CH2NH2	CO	(+)-pinanediol	
25	200	CH2NH2	so ₂	(+)-pinanediol	
	201	NHC (NH) NH ₂	СО	(+)-pinanediol	
٠.	Ex	x	Y	_Y 1, _Y 2	Phys

	•				Data
	202	NHC (NH) NH ₂	so ₂	(+)-pinanediol	
	203	SC (NH) NH ₂	CO	(+)-pinanediol	cc
	204	SC (NH) NH2	so ₂	(+)-pinanediol	DD
5	205	CH2NH2	со	н, н	
	206	CH2NH2	so ₂	Н, Н	
	207	NHC (NH) NH2	СО	н, н	
•	208	NHC (NH) NH2	so ₂	н, н	
	209	SC (NH) NH ₂	со	н, н	
10	210	SC (NH) NH ₂	so ₂	н, н	

TABLE 3

where
$$R^2$$
 is $XCH_2(CH_2)CH_2$ -, and where R^1 is

15					
	Ex	x	t	Y ¹ , Y ²	Phys
					Data
	211	NH ₂	2	(+)-pinanediol	
	212	SC (NH) NH ₂	2	(+)-pinanediol	EE
20	213	SC (NH) NH ₂	1	(+)-pinanediol	FF
	214	NHC (NH) NH2	2	(+)-pinanediol	
	215	NHC (NH) NH2	1	(+)-pinanediol	
	216	NH ₂	2	н, н	
	217	SC (NH) NH ₂	2	н, н	
25					
	Ex	x	T	Y^1, Y^2	Phys

 C_{2}^{2}

Data

	218	SC (NH) NH ₂	1	н, н
	219	NHC (NH) NH2	2	Н, Н
5	220	NHC (NH) NH2	1	н, н

TABLE 4

10	Ex	x	\mathbf{Y}^{1} , \mathbf{Y}^{2}	Phys	Data
	221	CH2NH2	(+)-pinanediol		
	222	NHC (NH) NH2	(+)-pinanediol		
	223	SC (NH) NH ₂	(+)-pinanediol	GG	
	224	CH2NH2	н, н		
15	225	NHC (NH) NH2	н, н		
	226	SC (NH) NH2	н, н		

TABLE 5

where
$$R^2$$
 is $X(CH_2)_3$ -, and where R^1 is $X(R^2)_3$ -, and R^1

Phys Data	Y^1, Y^2	×	Ex	
	(+)-pinanediol	CH2NH2	227	5
	(+)-pinanediol	NHC (NH) NH2	228	
HH.	(+)-pinanediol	SC (NH) NH ₂	229	
	н, н	CH2NH2	230	
	н, н	NHC (NH) NH2	231	
	н, н	SC (NH) NH2	232	10

TABLE 6

where
$$R^2$$
 is $X(CH_2)_3$ -, and where R^1 is R^D
 R^1

15

િ

	Ex	x	$R^{\mathbf{A}}$	RC	$\mathbb{R}^{\mathbb{D}}$	Y ¹ ,Y ²	Phys	Data
	233	NHC (NH) NH2	Me	Ph	OMe	(+)-pinanediol		
	234	NHC (NH) NH2	Me	Ph	CONH ₂	(+)-pinanediol		
	235	NHC (NH) NH2	Me	Ph	F	(+)-pinanediol		
, 5	236	NHC (NH) NH2	Me	Ph	CF3	(+)-pinanediol		
	237	NHC (NH) NH2	Me	Ph	Cl	(+)-pinanedicl		
	238	NHC (NH) NH2	Me	Ph	. ОН	(+)-pinanediol		
	239	NHC (NH) NH2	Me	4-C6H4CO2H	OMe	(+)-pinanediol		
	240	NHC (NH) NH2	Me	4-C6H4CO2H	CONH2	(+)-pinanediol		
10	241	NHC (NH) NH2	Me	4-C6H4C02H	F	(+)-pinanediol		
	242	NHC (NH) NH2	Me	4-C6H4CO2H	CF3	(+)-pinanediol		
	243	NHC (NH) NH2	Me	4-C6H4CO2H	Cl	(+)-pinanediol		
	244	NHC (NH) NH2	Me	4-C6H4CO2H	ОН	(+)-pinanediol		
	245	SC (NH) NH2	Me	Ph	ОМе	(+)-pinanediol		
15	246	SC (NH) NH2	Me	Ph	CONH ₂	(+)-pinanediol		
	247	SC (NH) NH2	Me	Ph	F	(+)-pinanediol		
	248	SC (NH) NH2	Me	Ph	CF3	(+)-pinanediol		
	249	SC (NH) NH2	Me	Ph	Cl	(+)-pinanediol		
	250	SC (NH) NH ₂	Me	Ph	ОН	(+)-pinanediol		
20	251	SC (NH) NH2	Me	4-С6Н4СО2Н	OMe	(+)-pinanediol		
	252	SC (NH) NH ₂	Me	4-С6Н4СО2Н	CONH ₂	(+)-pinanediol		
	253	SC (NH) NH ₂	Me	4-С6Н4СО2Н	F	(+)-pinanediol		
	254	SC (NH) NH ₂	Me	4-С6Н4СО2Н	CF3	(+)-pinanedicl		•
	255	SC (NH) NH ₂	Me	4-С6Н4СО2Н	Cl	(+)-pinanediol	,	
25	256	SC (NH) NH2	Me	4-C6H4CO2H	ОН	(+)-pinanediol		
	257	CH2NH2	Me	Ph	OMe	(+)-pinanediol -		
	258	CH2NH2	Me	Ph	CONH ₂	(+)-pinanediol		
	259	CH2NH2	Me	Ph	F	(+)-pinanediol		
	260	CH2NH2	Me	Ph	CF3	(+)-pinanediol		
30	261	CH2NH2	· Me	Ph	Cl	(+)-pinanediol		
	262	CH2NH2	Me	Ph	ОН	(+)-pinanediol		
	263	CH2NH2	Me	4-C6H4CO2H	OMe	(+)-pinanediol		•
	264	CH2NH2	Me	4-C6H4CO2H	CONH2	(+)-pinanediol		
	265	CH2NH2	Me	4-C6H4CO2H	F	(+)-pinanediol		
35	266	CH2NH2	Me	4-C6H4CO2H	CF3	(+)-pinanediol		
	Ex	x	$\mathbb{R}^{\mathbb{A}}$	_R C	ŔD	Y^1, Y^2	Phys	Data

•	267	CH2NH2	Me	4-C6H4CO2H	Cl	(+)-pinanediol			
	268	CH2NH2	Ме	4-C6H4CO2H	ОН	(+)-pinanediol			
	269	NHC (NH) NH ₂	Me	Ph	OMe	Н, Н			
	270	NHC (NH) NH2	Me	Ph	CONH ₂	Н, Н			
5	271	NHC (NH) NH2	Me	Ph	F	н, н			
	272	NHC (NH) NH ₂	Me	Ph	CF3	н, н	٠		
	273	NHC (NH) NH2	Me	Ph	Cl	н, н			
	274	NHC (NH) NH2	Me	Ph	ОН	'н, н			
	275	NHC (NH) NH ₂	Me	4-C6H4CO2H	OMe	н,н			
10	276	NHC (NH) NH2	Me	4-C6H4CO2H	CONH2	н, н			
	277	NHC (NH) NH ₂	Me	4-C6H4CO2H	F	н, н			
	278	NHC (NH) NH2	Me	4-C6H4CO2H	CF3	н, н	•		
	279	NHC (NH) NH2	Me	4-С6Н4СО2Н	Cl	Н, Н			
	280	NHC (NH) NH2	Me	4-С6Н4СО2Н	ОН	н, н			
15	281	SC (NH) NH2	Me	Ph	OMe	н, н			
	282	SC (NH) NH2	Me	Ph	conh ₂	н, н			
	283	SC (NH) NH ₂	Me	Ph	F	н, н			
	284	SC (NH) NH ₂	Me	Ph	CF3	н, н			
	285	SC (NH) NH ₂	Me	Ph	Cl	н, н			
20	286	SC (NH) NH ₂	Me	Ph	OH	н, н			
	287	SC (NH) NH ₂	Me	4-C6H4CO2H	OMe	н, н			
	288	SC (NH) NH ₂	Me	4-C6H4CO2H	CONH ₂	н, н			
	289	SC (NH) NH ₂	Me	4-C6H4CO2H	F	н, н			
	290	SC (NH) NH ₂	. Me	4-C6H4CO2H	CF3	н, н			
25	291	SC (NH) NH ₂	Ме	4-С6Н4СО2Н	Cl	Н, Н			
	292	SC (NH) NH ₂	Me	4-C6H4CO2H	ОН	н, н			
	293	CH2NH2	Me	Ph	OMe	Н,Н			
	294	CH2NH2	Me	Ph	CONH ₂	н, н			
	295	CH2NH2	Me	Ph	F	Н, Н			
30	296	CH2NH2	Me	Ph	CF3	н, н			
	297	CH2NH2	Me	Ph	Cl	Н,Н	;		
	298	CH2NH2	Me	Ph	ОН	н, н			
	299	CH2NH2	Ме	4-C6H4CO2H	OMe	н, н			
	300	CH2NH2	Me	4-C6H4CO2H	CONH2	н, н			
35	Ex	x	RA	RC	$\mathbb{R}^{\mathbb{D}}$	y ¹ , y ²	Phys	Data	
	301	CH2NH2	Me	4-C6H4CO2H	F	н, н			

302	CH2NH2	Me	4-C6H4CO2H	CF3	н, н
303	CH2NH2	Me	4-C6H4CO2H	Cl	н, н
304	CH2NH2	Me	4-C6H4CO2H	OH	H,H

5

TABLE 7

Where
$$R^2$$
 is $X(CH_2)_3$ -, and where R^1 is $X(CH_2)_3$ -, and $X(CH_2)_3$ -, and

	Ex	. X	Y^1, Y^2	Phys Data
	305	NHC (NH) NH2	(+)-pinanediol	
10	306	SC (NH) NH ₂	(+)-pinanediol	, II
	307	CH2NH2	(+)-pinanediol	
	308	NHC (NH) NH2	н, н	
	309	SC (NH) NH2	н, н	
	310	CH2NH2	H, H	

15

TABLE 8

	Ex	x	¥	Y ¹ , Y ²	Phys	Data
•	311	NHC (NH) NH2	0	(+)-pinanediol		
	312	SC (NH) NH ₂	0	(+)-pinanediol		JJ
	313	CH2NH2	0	(+)-pinanediol		
5	314	NHC (NH) NH2	s	(+)-pinanediol		
	315	SC (NH) NH2	s	(+)-pinanediol		
	316	CH2NH2	. S	(+)-pinanediol		
	317	NHC (NH) NH2	0	Н,Н		
	318	SC (NH) NH2	ο	н, н		
10	319	CH2NH2	О	н,н		
	320	NHC (NH) NH2	s	н,н		
	321	SC (NH) NH ₂	s	н, н		
	322	CH2NH2	S	н,н		

TABLE 9

15

where
$$R^2$$
 is $X(CH_2)_3$ -, and where R^1 is R^2

 R^B $\mathbb{R}^{\mathbb{C}}$ y^1, y^2 Еx x Phys Data 323 NHC (NH) NH2 H Ph (+)-pinanediol 324 NHC (NH) NH2 OBn H (+)-pinanediol 20 325 SC (NH) NH2 Ph H (+)-pinanediol KK 326 SC (NH) NH2 H OBn (+)-pinanediol LL 327 CH2NH2 H Ph (+)-pinanediol 328 CH2NH2 QBn Н (+)-pinanediol 329 NHC (NH) NH2 Н Ph H, H 25 330 NHC (NH) NH2 OBn Н H,H 331 SC (NH) NH2 Ph H,H H Y^1, Y^2 $_{\mathbf{R}}^{\mathbf{C}}$ x R^B Ex Phys Data 332 SC (NH) NH2 Н OBn H,H

WO 94/21650 ·

PCT/US94/02965

333	CH2NH2	H	Ph	Н, Н
334	CH2NH2	OBn	H	н, н

TABLE 10

where
$$R^2$$
 is $X(CH_2)_3$ -, and where R^1 is NH

5

 Y^1, Y^2 x Ex Phys Data 335 NHC (NH) NH2 (+)-pinanediol 336 SC (NH) NH2 (+)-pinanediol MM 10 337 CH2NH2 (+)-pinanediol 338 NHC (NH) NH2 H,H 339 SC (NH) NH2 H,H 340 CH2NH2 H,H

15

TABLE 11

Ex $x w^1 w^2 R^3 y^1, y^2$ Phys

						•	Data
	341	NHC (NH) NH ₂	N	CH	Н	(+)-pinanediol	
	342	SC (NH) NH2	N	CH	H	(+)-pinanediol	
	343	CH2NH2	N	CH	Н	(+)-pinanediol	
5	344	NHC (NH) NH2	СН	N	Ph	(+)-pinanediol	
	345	SC (NH) NH2	СН	N	Ph	(+)-pinanediol	00
	346	CH2NH2	CH	N	Ph	(+)-pinanediol	
	347	NHC (NH) NH2	N	СН	H	н, н	
	348	SC (NH) NH ₂	N	CH	Н	н, н	
10	349	CH ₂ NH ₂	N	СН	H	н,н	
	350	NHC (NH) NH2	CH	N	Ph	н, н	
	351	SC (NH) NH ₂	CH	N	Ph	Н,Н	•

TABLE 12

CH

where
$$R^2$$
 is $X(CH_2)_3$ -, and where R^1 is NH

Ph

H,H

 x^1, x^2 x Phys Ex Data NHC (NH) NH2 (+)-pinanediol 353 SC (NH) NH2 354 (+)-pinanediol PP 20 355 CH2NH2 (+)-pinanediol NHC (NH) NH2 356 H,H SC (NH) NH2 357 . н,н CH2NH2 358 H,H

25

15

352

CH2NH2

TABLE 13

where
$$R^2$$
 is $X(CH_2)_3$ -, and where R^1 is $X(R_2)_3$ -, and R^1

Ex X R³ Y¹, Y² Phys Data

359 SC (NH) NH2 H (+)-pinanediol NN

TABLE 14

5

where
$$R^2$$
 is $X(CH_2)_3$ -, and where R^1 is $(CH_2)_m$
 R^1

Where R^2 is $X(CH_2)_3$ -, and $(CH_2)_m$
 R^4

 x^1, x^2 10 RA R^B $\mathbb{R}^{\mathbb{C}}$ Ex Phys Data SC (NH) NH2 Н NHCO (CH2) 2Ph Н (+)-pinanediol RR 2 2 Ph SC (NH) NH2 Н (+)-pinanediol H SC (NH) NH2 2 H (+)-pinanediol OPh Ph SC (NH) NH2 1 Н Н 4-pyridyl (+)-pinanediol 15 NHC (NH) NH2 1 COPh Н Н (+)-pinanediol Н (+)-pinanediol NHC (NH) NH2 Н COPh 3 NHC (NH) NH2 3 Н Н (+)-pinanediol COPh

Physical Data for Tables 1-14
A: MS (M+H) + = 489; 1H NMR (400 MHz, CDCl₃, 60 °C)
9.48 (1H, bs), 8.10 (2 H, d, J = 8.1), 8.07 (1 H,
bs), 7.75 (1 H, bs), 7.54 (2 H, d, J = 8.3), 7.48 (2 H, d, J = 7.0), 7.35 (3 H, m), 7.06 (4 H, bs), 4.19
(1 H, bd, J = 8.3), 3.1 (2 H, m), 2.84 (1 H, m), 2.29
(1 H, m), 2.12 (1 H, m), 1.96 (1 H, m), 1.75 (6 H, m), 1.47 (1 H, d, J = 10.2), 1.40 (3 H, s), 1.24 (3
H, s), 0.83 (3 H, s).

B: MS (DCI - NH₃), 505 $(M + H)^+$.

C: MS $(M+H)^+ = 490$.

D: MS (M+H) + = 506; ¹H NMR (300 MHz, CDCl₃) 8.15 (2 H, d, J = 8.4), 7.61 (2 H, d, J = 8.4), 7.52 (2 H, m), 7.38 (3 H, m), 6.47 (1 H, bs), 4.23 (1 H, dd, J = 6.6, 1.9), 3.24 (1 H, m), 3.14, (1 H, m), 2.96, (1 H, m), 2.32 (1 H, m), 2.15 (1 H, m), 1.99 (1 H, m), 1.78 (6 H, m), 1.48 (1 H, d, J = 10.1), 1.42 (3 H, s), 1.27 (3 H, s), 0.86 (3 H, s).

E: mp 145-150 °C.

25 F: MS (DCI - NH₃), 522 (M + H)⁺.

G: HRMS (DCI - NH₃), Calc: 534.2597, Found: 534.2609.

30 H: HRMS (DCI - NH₃), Calc: 534.2597, Found: 534.2605.

I: HRMS (DCI - NH₃), Calc: 534.2597, Found: 534.2609.

J: $[a]_D = -14.85^\circ$ (c = 0.606, MeOH); ¹H NMR (300 MHz, 35 DMSO - d₆) 10.07 (br s, 1 H), 10.05 (br s, 1 H), 8.96 (4 H, br s), 8.08 (1 H, s), 7.71 (1 H, dd, J = 8.1,

1.1), 7.61 (1 H, d, J = 7.7), 7.30 - 7.50 (6 H, m),
5.18 (2 H, s), 4.08 (1 H, br d), 3.08 - 3.25 (2 H,
m), 2.50 - 2.65 (1 H, m), 2.15 - 2.30 (1 H, m), 1.97
- 2.10 (1 H, m), 1.40 - 1.90 (8 H, m), 1.31 (3 H, s),
5 1.24 (3 H, s), 0.84 (3 H, s); IR (KBr) 2500 - 3700
(br), 1734, 1646, 1578, 1550, 1440, 1222, 1058 cm⁻¹;
MS (CI - NH₃), m/e (%) 537.2 (10.2, M + H - H₂NCN)+),
429.0 (42.8), 277.0 (100); Anal. Calcd for
C₃₀H₄₀BBrN₄O₅S: C, 54.64; H, 6.11; N, 8.50; B, 1.64.
10 Found: C, 54.52; H, 6.16; N, 8.45; B, 1.60.

K: $[a]_D = -15.07^\circ$ (c = 0.604, MeOH); ¹H NMR (300 MHz, DMSO - d₆) 9.98 (1 H, br s), 8.96 (4 H, br s), 7.93 (1 H, narrow m), 7.80 (1 H, app d), 7.64 (1 H, m), 7.56

- 15 (1 H, app t), 7.25 7.42 (5 H, m), 5.13 (2 H, s), 4.11 (1 H, dd, J = 8.3, 1.7), 3.30 (3 H, s), 3.10 -3.25 (2 H, m), 2.57 - 2.68 (1 H, m), 2.15 - 2.30 (1 H, m), 1.97 - 2.10 (1 H, m), 1.48 - 1.90 (7 H, m), 1.44 (1 H, d, J = 9.9), 1.31 (3 H, s), 1.24 (3 H, s),
- 20 0.84 (3 H, s); IR (KBr) 2500 3700 (br), 1710, 1647, 1159 cm⁻¹; MS (CI NH₃), m/e (%) 593.2 (1.2, (M + H)⁺), 568.3 (22, (M + NH₄ H₂NCN)⁺), 551.3 (100, (M + H H₂NCN)⁺); Anal. Calcd for C₃₁H₄₂BBrN₄O₅S: C, 55.29; H, 6.29; N, 8.32; B, 1.61. Found: C, 55.15;
- 25 H, 6.21; N, 8.22; B, 1.47.

L: $[a]_D = -14.12^\circ$ (c = 0.602, MeOH); ¹H NMR (300 MHz, DMSO - d₆) 10.09 (1 H, br s), 8.98 (4 H, br s), 7.90 (2 H, d, J = 8.3), 7.42 (2 H, d, J = 8.3), 4.06 (1 H, d, J = 7.0), 3.15 - 3.20 (2 H, m), 2.70 (2 H, q, J = 7.7), 2.54 (1 H, m), 2.18 - 2.28 (1 H, m), 1.98 - 2.08 (1 H, m), 1.44 - 1.84 (8 H, m), 1.30 (3 H, s), 1.24 (3 H, s), 1.20 (3 H, t, J = 7.7), 0.84 (3 H, s); IR (KBr) 2600 - 3700 (br), 1646, 1614, 1598, 1570, 35 1500, 1123 cm⁻¹; MS (DCI - NH₃), m/e (%) 458 (100, (M

+ H) +); Anal. Calcd for C₂₄H₃₇BBrN₃O₃S: C, 53.54; H, 6.93; N, 7.81; B, 2.01. Found: C, 53.75; H, 6.98; N, 7.74; B, 1.97.

5 M: $[a]_D = -14.21^\circ$ (c = 0.556, MeOH); ¹H NMR (300 MHz, DMSO - d₆) 10.06 (1 H, br s), 8.95 (4 H, br s), 7.88 (2 H, d, J = 8.1), 7.40 (2 H, d, J = 8.1), 4.06 (1 H, dd, J = 1.7, 8.3), 3.14 - 3.17 (2 H, m), 2.65 (2 H, t, J = 7.5), 2.50 - 2.60 (1 H, m), 2.18 - 2.28 (1 H, m), 1.98 - 2.08 (1 H, m), 1.45 - 1.84 (10 H, m), 1.30 (3 H, s), 1.24 (3 H, s), 0.89 (3 H, t, J = 7.3), 0.84 (3 H, s); IR (KBr) 2500 - 3700 (br), 1646, 1614, 1598, 1570, 1500, 1446, 1236, 1124, 1082 cm⁻¹; MS (CI - NH₃), m/e (%) 472.2 (13.5, (M + H)⁺), 430.2 (100, (M + H) - H₂NCN)⁺), 278.0 (61.9); Anal. Calcd for C₂5H₃9BBrN₃O₃S: C, 54.36; H, 7.12; N, 7.61; B, 1.96. Found: C, 54.50; H, 7.18; N, 7.83; B, 1.73.

(· · · ·

- N: [a]_D = -13.79° (c = 0.602, MeOH); ¹H NMR (300 MHz, DMSO d₆) 10.03 (1 H, br s), 8.94 (4 H, br s), 7.89 (2 H, d, J = 8.3), 7.45 (2 H, d, J = 8.3), 4.06 (1 H, br d), 3.10 3.23 (2 H, m), 2.90 3.05 (1 H, m), 2.50 2.60 (1 H, m), 2.15 2.30 (1 H, m), 1.95 2.08 (1 H, m), 1.42 1.89 (8 H, m), 1.30 (3 H, s), 1.24 (3 H, s), 1.23 (6 H, d, J = 7.0), 0.84 (3 H, s); IR (KBr) 2500 3700 (br), 1646, 1613, 1598, 1123 cm⁻¹; MS (DCI NH₃), m/e (%) 472 (100, (M + H)⁺), 430 (37, (M + H H₂NCN)⁺); Anal. Calcd for C₂₅H₃₉BBrN₃O₃S: C, 54.36; H, 7.12; N, 7.61; B, 1.96. 30 Found: C, 54.64; H, 7.17; N, 7.50; B, 1.74.
- O: $[a]_D = -13.19^\circ$ (c = 0.364, MeOH); ¹H NMR (300 MHz, DMSO d₆) 10.03 (1 H, br s), 8.93 (4 H, br s), 7.88 (2 H, d, J = 8.5), 7.40 (2 H, d, J = 8.5), 4.06 (1 H,
- 35 br d, J = 6.6), 3.15 3.20 (2 H, m), 2.67 (2 H, t, J

= 7.7), 2.50 - 2.60 (1 H, m), 2.18 - 2.28 (1 H, m), 1.95 - 2.08 (1 H, m), 1.24 - 1.84 (10 H, m), 1.23 - 1.35 (2 H, m), 1.30 (3 H, s), 1.24 (3 H, s), 0.90 (3 H, t, J = 7.3), 0.84 (3 H, s); IR (KBr) 2500 - 3700 (br), 1646, 1614, 1598, 1500, 1123 cm⁻¹; MS (CI - NH₃), m/e (%) 486.2 (3.3, (M + H)⁺), 444.2 (87.1, (M + H - H₂NCN)⁺), 292.0 (100); Anal. Calcd for C₂₆H₄₁BBrN₃O₃S: C, 55.13; H, 7.30; N, 7.42; B, 1.91. Found: C, 54.99; H, 7.22; N, 7.29; B, 2.07.

10 P: $[a]_D = -12.71^\circ$ (c = 0.598, MeOH); ¹H NMR (300 MHz, DMSO - d₆) 10.05 (1 H, br s), 8.95 (4 H, br s), 7.90 (2 H, d, J = 8.6), 7.59 (2 H, d, J = 8.6), 4.06 (1 H, br d), 3.10 - 3.23 (2 H, m), 2.50 - 2.62 (1 H, m),

15 2.16 - 2.30 (1 H, m), 1.96 - 2.08 (1 H, m), 1.42 - 1.90 (8 H, m), 1.31 (9 H, s), 1.30 (3 H, s), 1.24 (3 H, s), 0.84 (3 H, s); IR (KBr) 2500 - 3700 (br), 1646, 1613, 1597, 1498, 1123 cm⁻¹; MS (DCI - NH₃), m/e (%) 486 (100, (M + H)⁺), 444 (16, (M + H -

20 H₂NCN)⁺); Anal. Calcd for C₂₆H₄₁BBrN₃O₃S: C, 55.13; H, 7.30; N, 7.42; B, 1.91. Found: C, 55.09; H, 7.45; N, 7.40; B, 1.67.

Q: 1 H NMR (300 MHz, DMSO - d₆) \$10.06 (1 H, br s), 8.95 25 (4 H, br s), 7.88 (2 H, d, J = 8.5), 7.40 (2 H, d, J = 8.5), 4.06 (1 H, br d, J = 6.6), 3.10 - 3.23 (2 H, m), 2.66 (2 H, t, J = 7.7), 2.50 - 2.60 (1 H, m), 2.15 - 2.30 (1 H, m), 1.95 - 2.08 (1 H, m), 1.40 - 1.90 (10 H, m), 1.20 - 1.38 (12 H, m), 0.80 - 0.90 (6

30 H, m); IR (KBr) 2500 - 3700 (br), 1646, 1614, 1598, 1500, 1124 cm⁻¹; MS (DCI - NH₃), m/e (%) 514 (100, (M + H) +), 472 (16, (M + H - H₂NCN) +); Anal. Calcd for $C_{28H_{45}BBrN_3O_3S}$: C, 56.57; H, 7.63; N, 7.07; B, 1.82. Found: C, 56.19; H, 7.53; N, 6.97; B, 1.99.

35

R: $[a]_D = -11.70^\circ$ (c = 0.530, MeOH); ¹H NMR (300 MHz, DMSO - d₆) d10.05 (1 H, br s), 8.83 - 9.13 (4 H, br d), 7.88 (2 H, d, J = 8.3), 7.43 (2 H, d, J = 8.3), 4.06 (1 H, br d), 3.05 - 3.25 (2 H, m), 2.45 - 2.67 (2 H, m), 2.13 - 2.30 (1 H, m), 1.94 - 2.10 (1 H, m), 1.30 - 1.90 (18 H, m), 1.30 (3 H, s), 1.24 (3 H, s), 0.84 (3 H, s); IR (KBr) 2500 - 3700 (br), 1646, 1613, 1598, 1500, 1448, 1122 cm⁻¹; MS (DCI - NH₃), m/e (%) 512 (100, (M + H)⁺), 470 (40, (M + H - H₂NCN)⁺); Anal. Calcd for C₂₈H₄3BBrN₃O₃S: C, 56.77; H, 7.32; N, 7.09; B, 1.82. Found: C, 56.49; H, 7.38; N, 6.96; B, 1.75.

15 T: $[a]_D = -8.31^\circ$ (c = 0.614, MeOH); ¹H NMR (300 MHz, DMSO - d₆) d9.98 (1 H, br s), 8.95 (4 H, br s), 7.93 (2 H, d, J = 8.8), 7.11 (2 H, d, J = 8.8), 4.00 - 4.10 (3 H, m), 3.10 - 3.23 (2 H, m), 2.50 - 2.60 (1 H, m), 2.15 - 2.30 (1 H, m), 1.95 - 2.08 (1 H, m),

S: HRMS (DCI - NH₃), Calc: 577.3019, Found: 577.3025.

- 20 1.37 1.90 (12 H, m), 1.29 (3 H, s), 1.24 (3 H, s), 0.94 (3 H, t, J = 7.4), 0.84 (3 H, s); IR (KBr) 2500 3700 (br), 1646, 1608, 1498, 1262, 1124 cm⁻¹; MS (DCI NH₃), m/e (%) 502 (100, (M + H)⁺), 460 (28, (M + H H₂NCN)⁺); Anal. Calcd for C₂6H₄1BBrN₃O₄S: C,
- 25 53.62; H, 7.10; N, 7.21; B, 1.86. Found: C, 53.61; H, 7.09; N, 7.20; B, 1.78.
 - U: HRMS (DCI NH₃), Calc: 513.2707, Found: 513.2702.
- 30 V: HRMS (DCI NH₃), Calc: 555.3165, Found: 555.3176. W: HRMS (DCI - NH₃), Calc: 579.2812, Found: 579.2801.
 - X: HRMS (DCI NH₃), Calc: 450.2962, Found: 450.2958.
- 35 Y: HRMS (DCI NH₃), Calc: 640.3016, Found: 640.3022.

Z: [a]_D = -8.80° (c = 0.602, MeOH); ¹H NMR (300 MHz, DMSO - d₆) 10.03 (1 H, br s), 9.25 (1 H, br s), 8.96 (4 H, br s), 7.92 (1 H, d, J = 1.5), 7.72 (1 H, dd, J = 8.1, 1.5), 7.25 - 7.50 (6 H, m), 5.17 (2 H, s), 4.08 (1 H, dd, J = 8.1, 1.5), 3.08 - 3.27 (2 H, m), 2.65 (2 H, br t), 2.50 - 2.60 (1 H, m), 2.15 - 2.30 (1 H, m), 1.95 - 2.08 (1 H, m), 1.40 - 1.90 (10 H, m), 1.30 (3 H, s), 1.24 (3 H, s), 1.15 - 1.38 (2 H, m) buried underneath methyl absorptions), 0.77 - 0.95 (6 H, m); IR (KBr) 2500 - 3700 (br), 1704, 1646, 1572, 1539, 1453, 1234, 1123, 1056 cm⁻¹; MS (CI - NH₃), m/e (%) 593.2 (1.3, (M + H - H₂NCN)⁺), 485.2 (42.7), 333.0 (100); Anal. Calcd for C₃₄H₄₈BBrN₄O₅S: C, 57.07; H, 6.76; N, 7.83; B, 1.51. Found: C,

િ

8.98 (4 H, br s), 7.77 - 7.92 (2 H, m), 7.08 - 7.55

20 (6 H, m), 4.90 - 5.30 (2 H, m), 4.09 (1 H, br d),
3.04 - 3.35 (5 H, m), 2.35 - 2.65 (3 H, m), 2.15 2.30 (1 H, m), 1.97- 2.10 (1 H, m), 1.37- 1.93 (10 H,
m), 1.31 (3 H, s), 1.24 (3 H, s), 1.10 - 1.37 (2 H,
m, buried underneath methyl absorptions), 0.72 - 0.93

25 (6 H, m); MS (CI - NH₃), m/e (%) 649.4 (1.9, (M +
H)⁺), 624.4 (31, (M + NH₄ - H₂NCN)⁺), 607.2 (100, (M +

AA: ${}^{1}H$ NMR (300 MHz, DMSO - d₆) \$9.98 (1 H, br s),

57.17; H, 6.84; N, 7.76; B, 1.41.

H)⁺), 624.4 (31, (M + NH₄ - H₂NCN)⁺), 607.2 (100, (M + H - H₂NCN)⁺), 455.0 (39), 444.0 (29.8); Anal. Calcd for $C_{35}H_{50}BBrN_{4}O_{5}S$: C, 57.62; H, 6.91; N, 7.68; B, 1.48. Found:

30 C, 57.37; H, 6.86; N, 7.64; B, 1.40. BB: HRMS (DCI - NH₃), Calc: 520.2805, Found: 520.2796.

CC: HRMS (DCI - NH₃), Calc: 560.2390, Found: 560.2407.

35 DD: HRMS (DCI - NH₃), Calc: 596.2060, Found: 596.2055.

EE: HRMS (DCI - NH₃), Calc: 546.2597, Found: 546.2604.

FF: HRMS (DCI - NH₃), Calc: 534.2597, Found: 534.2609.

5 GG: HRMS (DCI - NH₃), Calc: 532.2441, Found: 532.2445.

HH: HRMS (DCI - NH₃), Calc: 532.2441, Found: 532.2452.

II: HRMS (DCI - NH₃), Calc: 480.2493, Found: 480.2492.

10

20

35

JJ: HRMS (DCI - NH₃), Calc: 496.2441, Found: 496.2449.

KK: HRMS (DCI - NH₃), Calc: 507.2601, Found: 507.2592.

15 LL: HRMS (DCI - NH₃), Calc: 537.2667, Found: 537.2685.

MM: HRMS (DCI - NH₃), Calc: 498.2233, Found: 498.2231.

NN: HRMS (DCI - NH₃), Calc: 481.2445, Found: 481.2442.

OO: HRMS (DCI - NH₃), Calc: 557.2758, Found: 557.2754.

PP: HRMS (DCI - NH₃), Calc: 5481.2445, Found: 481.2440.

25 QQ: HRMS (NH3) - CI/DEP), Calc: 503.3193, Found: 503.3199.

RR: HRMS (DCI-NH3), Calc: 605.333; Found: 605.3325.

30 Utility

The compounds of formula (I) are useful as inhibitors of trypsin-like enzymes, notably human thrombin, plasma kallikrein and plasmin. Because of their inhibitory action, these compounds are indicated for use in the prevention or treatment of physiological

reactions catalyzed by the aforesaid enzymes such as blood coagulation and inflammation.

As an illustration of the above, the biological activity of compounds of the present invention is demonstrated by their *in vitro* inhibition of synthetic substrate hydrolysis by human thrombin S-2238 Chromogenic Assay (IC₅₀). The synthetic substrate H-D-Phe-Pip-Arg-pNA (S-2238, Kabi) is cleaved by thrombin, liberating the p-nitroanalide group which absorbs light at 405 nm. Enzyme activity is measured in both the presence and absence of inhibitor. A decrease in absorbance at 405 nm in the presence of inhibitor is indicative of thrombin inhibition.

10

25

30

35

(

A mixture of 10 μL human thrombin (Enzyme Research Laboratories, Inc.) at an activity of approximately 7 units/mL, 10 μL of the inhibitor (normally at a concentration of 10⁻³ M or less), and 160 μL buffer (0.15 M NaCl, 10 mM HEPES, 10 mM Tris, 1 g/L PEG 8,000, pH 7.4) are incubated for 10 minutes at room temperature. To this mixture is added 20 μL of the synthetic substrate S-2238 at a concentration of 1 mM and the reaction allowed to occur for 10 minutes, after which absorbance at 405 nm is determined.

Using the methodology described above, representative compounds of this invention were evaluated and found to exhibit an IC₅₀ of less than 1 mM, thereby confirming the utility of the compounds of the invention as effective thrombin inhibitors.

Since the compounds of formula (I) have antithrombogenic properties, they may be employed when an
anti-thrombogenic agent is indicated, such as for
control of the coagulation or the fibrinolysis system
in mammals or they may be added to blood for the
purpose of preventing coagulation or the blood due to

contact with blood collecting or distribution containers, tubing or apparatus.

10

15

20

25

this invention.

Generally, these compounds may be administered orally or parenterally to a host to obtain an antithrombogenic effect. The dosage of the active compound depends on the mammalian species, body weight, age, and mode of administration as will be obvious to one skilled in the art. In the case of large mammals such as humans, the compounds may be administered alone or in combination with pharmaceutical carriers or diluents at a dose of from 0.02 to 15 mg/Kg to obtain the anti-thrombogenic effect, and may be given as a single dose or in divided doses or as a sustained release formulation.

Pharmaceutical carriers or diluents are well known and include sugars, starches and water, which may be used to make tablets, capsules, injectable solutions or the like which can serve as suitable dosage forms for administration of the compounds of this invention. Remington's Pharmaceutical Sciences, A. Osol, is a standard reference text which discloses suitable pharmaceutical carriers and dosage forms. The disclosure of this text is hereby incorporated by reference for a more complete teaching of suitable

dosage forms for administration of the compounds of

WHAT IS CLAIMED IS:

1. A compound of formula (I)

 $R^{1}-Z-CCHR^{2}-BY^{1}Y^{2}$

5

(I)

wherein

 Y^1 and Y^2 are independently

- a) -OH
- 10

15

- b) -F,
- c) NR^3R^4 , or
- d) C1-C8- alkoxy;

 Y^1 and Y^2 when taken together can form

- a) a cyclic boron ester where said chain or ring contains from 2 to 20 carbon atoms and, optionally, a heteroatom which can be N, S, or O,
 - a divalent cyclic boro amide where said chain or ring contains from 2 t 20 carbon atoms,
- 20 c) a cyclic boro amide-ester where said chain or ring contains from 2 to 20 carbon atoms;
 - Z is
 - a) $-(CH_2)_mCONR^8-$,
- 25
- b) $-(CH_2)_mCSNR^8-$,
- c) $-(CH_2)_mSO_2NR^8-$,
- d) $-(CH_2)_mCO_2-$,
- e) $-(CH_2)_mC(S)O-$, or
- f). $-(CH_2)_mSO_2O_{-};$

30

35

 R^1 is

a) -(CH2)p-aryl, wherein aryl is phenyl, naphthyl or biphenyl substituted with one, two or three substituents selected from the group consisting of halo (F, Cl, Br, I), CN, C1-C10-alkyl, C3-C8-cycloalkyl, C2-C10-alkenyl,

C2--C10-alkynyl,
$$-R^8$$
, $-OR^8$, methylenedioxy, $-NO_2$, $-CF_3$, $-S(O)_rR^7$, NR^8R^9 , $-COR^8$, $-CO_2R^8$

- 5 b) heteroaryl, wherein heteroaryl is an unsubstituted or monosubstituted or disubstituted
 - i) 5- or 6-membered aromatic ring, which contains from 1 to 3 heteroatoms selected from the group consisting of O, N, and S,
 - ii) quinolinyl,
 - iii) isoquinolinyl,
 - iv) benzopyranyl,
 - v) benzothiophenyl,
- vi) benzofuranyl,

10

25

 $({\mathbb N})$

- vii) 5,6,7,8-tetrahydroquinolinyl
- viii) 5,6,7,8-tetrahydroisoquinolinyl

and wherein the subtitutents are members selected from the group consisting of halo (F, C1, Br, I, -CN, C1-C10-alkyl, C3-C8-cycloalkyl, C2-C10-alkenyl, C2-C10-alkynyl, -R⁸, OR⁸, NO₂, -CF₃, -S(O)_rR⁷, NR⁸R⁹, -COR⁸, -CONR⁸R⁹, NR⁸COR⁹, NR⁸CO2R⁹,

c) F

PCT/US94/02965

WO 94/21650

d) R¹⁰

•

5

e)

f)

ξ (CH₂)_t

10 g)

220 R1

 \mathbb{R}^2 is

15

a) $-(CH_2)_n$ -NHC (NH) NH₂,

b) $-(CH_2)_n$ -NHC (NH) NHCOCH3,

c) $-(CH_2)_n-SC(NH)NH_2$,

e) $-(CH_2)_n-SC(NH)_2$, or

f) - (CH) n-NH (2-pyridyl);

R³ is H, phenyl or C1-C4-alkyl;

R4 is H, or phenylsulfonyl;

R⁵ and R⁶ are hydrogen or when taken together form a six membered aromatic ring optionally substituted with one, two or three substituents selected from the group consisting of halo (F, C1, Br, I), -CN, C1-C10-alkyl, C3-C8-cycloalkyl, C2-C10-alkenyl, C2-C10-alkynyl, -OR⁸, -NO₂, -CF₃, -S(O)_rR⁷, -NR⁸R⁹, -COR⁸, -COR₂R⁸, -CONR⁸R⁹, phenyl, benzyl, phenylethyl;

 \mathbb{R}^7 is

5

- 10 a) phenyl,
 - b) C1-C4-alkyl,
 - c) C1-C4-alkoxy, or
 - d) -CF3;
 - R^8 and R^9 are independently
- 15 a) H,
 - b)

- c) C3-C7-Cycloalkyl,
- d) C1-C8-alkyl;
- 20 R^{10} and R^{11} are independently
 - a) halo (F, C1, Br, I),
 - b) -CN,
 - c) C1-C10-alkyl,
 - d) C3-C8-cycloalkyl,
- e) C2-C10-alkenyl,
 - f) C2-C10-alkynyl,
 - $q) OR^8$
 - h) NO2,
 - i) -CF3,
- 30 j) $-s(0)_{r}R^{7}$,
 - $k) -NR^8R^9$
 - 1) $-COR^9$,
 - m) $-CO_2R^8$, or
 - n) $-CONR^8R^9$;

 R^{12} is

- a) H,
- b) C1-C4-alkyl,
- 5 c) phenyl
 - d) benzyl,
 - e) - COR^7
 - $f) -SO_2R^7$

m is 0 to 6;

- 10 n is 3 or 4;
 - p is 0 to 2;
 - r is 0 to 2;
 - t is 1 to 5

E is -CO-, $-SO_2-$, $-CH_2-$ or a single bond,

15 F is -CO-, and pharmaceutically acceptable salts thereof.

2. A compound of Claim 1 wherein:

R1 is phenyl containing 1-3

substituents selected from the series halo (F, CL, Br, I), C1-C10-alkyl, C3-C8-cycloalkyl, C2-C10-alkenyl, C2-C10-alkynyl, $-R^8$, $-OR^8$, $-NO_2$, $-CF_3$, $-S(O)_rR^7$, $-NR^8R^9$, $-COR^8$, $-CO_2R^8$, $CONR^8R^9$, NR^8COR^9 , and

25

()

R₂ is

- a) -(CH₂)₃-NHC(NH)NH₂, or
- b) $-(CH_2)_3-SC(NH)_NH_2$.
- 30 3. A compound of Claim 2 wherein Z is $-(CH_2)_mCONR^8-$.
 - A compound of Claim 3 selected from the group consisting of

 N^{1} -(4-phenylbenzoyl)-(R)-boroarganine, hydrochloride,

 N^{1} -(3-phenoxybenzoyl)-(R)-boroarganine, hydrochloride,

- N^{1} -(1-fluorenonyl)-(R)-boroarginine, hydrochloride,
- N^{1} -(4-[butyl]benzoyl)-(R)-boroarginine, hydrochloride,
- N¹-(2-benzoylbenzoyl)-R-boroarginine, hydrochloride,
- N^{1} -(5-phenyl-2-furol)-R-boroarginine, hydrochloride,
 - N¹-(3-[N-benzyloxycarbonyl-N-methylamino]-4-[1-butyl]-benzoyl)-(R)-boroarginine, hydrochloride,
 - N¹-(2-phenyl-4-isoquinolyl)-(R)-boroarginine, hydrochloride,
- 10 N^{1} -(4-cyclohexylbenzoyl)-(R)-boroarginine, hydrochloride
 - N1-(2-methyl-4-phenylbenzoyl)-(R)-boroarginine, hydrochloride, or
- 5. A pharmaceutical composition comprising a
 pharmaceutically suitable carrier and a therapeutically effective amount of a compound of any one of claims 1 through 4.
- 6. A method of treating a physiological disorder in a
 warm blooded animal catalyzed by trypsin-like enzymes
 comprising administering to an animal in need of such
 treatment an effective amount of a compound of any
 one of claims 1 through 4.

INTERNATIONAL SEARCH REPORT

Inte inal Application No PCT/US 94/02965

A. CLASS IPC 5	SIFICATION OF SUBJECT MATTER CO7F5/02 A61K31/69		
According	to International Patent Classification (IPC) or to both national	classification and IPC	
	S SEARCHED		
Minimum IPC 5	documentation searched (classification system followed by clas CO7F A61K	sification symbols)	
Documenta	ation searched other than minimum documentation to the extent	that such documents are included in the fields	searched .
Electronic	data hase consulted during the international search (name of da	ta base and, where practical, search terms used)
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of	the relevant passages	Relevant to claim No.
A	EP,A,O 471 651 (SANDOZ LTD/SAN MBH/SANDOZ-ERFINDUNGEN) 19 Feb cited in the application see the whole document	IDOZ-PATENT-G oruary 1992	1-6
Ā	WO,A,92 07869 (KAKKAR, V.V. ET 1992 see the whole document	AL.) 14 May	1-6
A	EP,A,O 293 881 (E.I. DU PONT D AND COMPANY) 7 December 1988 cited in the application see the whole document	DE NEMOURS	1-6
[] Fur	ther documents are listed in the continuation of box C.	Patent family members are listed	l in annex.
Щ			
"A" docum	ategories of cited documents: nent defining the general state of the art which is not dered to be of particular relevance.	T later document published after the in or priority date and not in conflict to cited to understand the principle or invention.	with the application out
"L" docum which citatio	ent which may throw doubts on priority claim(s) or i is cited to establish the publication date of another on or other special reason (as specified) nent referring to an oral disclosure, use, exhibition or	 "X" document of particular relevance; the cannot be considered novel or cannot nivolve an inventive step when the cannot be considered to involve an indocument is combined with one or incents, such combination being obtile. 	ot be considered to locument is taken alone - e claimed invention inventive step when the more other such docu-
"P" docum	means ent published prior to the international filing date but than the priority date claimed	in the art. *& document member of the same pater	
Date of the	actual completion of the international search	Date of mailing of the international	search report
7	June 1994	1 4. 06. 9	34
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk	Authorized officer	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,	Rinkel, L	

INTERNATIONAL SEARCH REPORT.

International application No.

PCT/US 94/02965

٠.	Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	_
	This international search report has not been established in respect of certain claims under Article 17(2)(2) for the following reasons:	
	1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: "Remark: Although claim 6 is directed to a method of treatment of	
	(diagnostic method practised on) the human/animal body the search has been carried out and based on the alleged effects of the compound/composition."	
	2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:	
		•
	3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
	Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	1
	This International Searching Authority found multiple inventions in this international application, as follows:	1
	1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.	
	2. As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	
	3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:	
	4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	
	Remark on Protest The additional search fees were accompanied by the applicant's protest.	
	No protest accompanied the payment of additional search fees.	

INTERNATIONAL SEARCH REPORT

.nformation on patent family members

Intr onal Application No PCT/US 94/02965

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-0471651	19-02-92	CA-A- 2 JP-A- 2	643312 3179291 2048953 4330094 5288707	11-11-93 20-02-92 14-02-92 18-11-92 22-02-94
WO-A-9207869	14-05-92	EP-A-	636521 3900791 0509080 5504775	29-04-93 26-05-92 21-10-92 22-07-93
EP-A-0293881	07-12-88	AU-B- AU-A- CA-A- DE-A- JP-A- US-A-	5187157 623592 1733288 1328332 3878991 1063583 5242904 5250720	16-02-93 21-05-92 08-12-88 05-04-94 15-04-93 09-03-89 07-09-93