NII International Internship program Segmented Fusion

Warping method

20180126

Sylvia

Advisors: Prof. A.Sugimoto

Ass.Prof. D.Thomas

Summary

Summary

- Previously
 - Implemented dual quaternion skinning with heat weight
- Progress
 - Found the reason of the distortion when warping
 - ◆ scaling
 - ◆ Un-standard mesh in volume
 - Completed the fusion with dual quaternion blending
 - Refined the positions of bones

Presenter: Sylvia

Blending function

$$j^2$$
 j^2
 j^2
 new

Presenter: Sylvia Advisors: Prof. A.Sugimoto, Ass.Prof. D.Thomas

Blending results

Use assigned rotation to warping the meshes

First frame

Presenter: Sylvia

Advisors: Prof. A.Sugimoto, Ass.Prof. D.Thomas

Second frame

Presenter: Sylvia

Blending with scale

- Because of the noise of the data, the length of bone is not consistent.
- Two ways to decompose the transformation into a scale component and a rigid component
- ♠ 1. apply a polar decomposition on transform matrix
- ◆ 2. put a scale component when concatenate the local joint transform matrix

Standard meshes

The distortion between the intersection when there is large motion is because the backward of quaternion. Since the first frame is not uniform model, the distortion is obvious.

Standard meshes

Reference: Le, B. H., & Hodgins, J. K. (2016). <u>Real-time skeletal skinning with optimized centers of rotation</u>. *ACM Transactions on Graphics (TOG)*, 35(4), 37.

Presenter: Sylvia

Standard meshes

I warp the first mesh and save standard mesh in volume.

old version volume

new concept

Presenter: Sylvia

Standard meshes

I warp the first mesh and save standard mesh in volume.

Blending result

Presenter: Sylvia

Standard meshes

The positions of warping vertices are not correct.

First frame mesh

First frame vertices

ideal

Presenter: Sylvia

Other warping problems

There is another problems: the deformation of clothes

Warping result in the reserve side

Presenter: Sylvia

Fusion result

Use dual quaternion warping in the TSDF fusion

Presenter: Sylvia

Refinement of bone's

For each body part, fix parent joint's location and refine the other joint's position

Presenter: Sylvia

大学共同利用機関法人 情報・システム研究機構 国立情報学研究所 National Institute of Informatics

Refinement result

Original warping

Warping with refinement

Presenter: Sylvia

Refinement result

Original fusion

Fusion with refinement

Presenter: Sylvia

Thesis

本学共同利用機関法人 情報・システム研究機構 国立情報学研究所 National Institute of Informatics

The outline

- Introduction
- Related work
- System Overview
- Methods
 - Notation
 - Initialization
 - Warping
 - Refinement
 - Integration
- Results
- Conclusions

Presenter: Sylvia

Next step

- Complete warping method
- Refine the rotation of bones

Presenter: Sylvia