

Exercise session #2

BC for a double scenario engine assembly line

- Let's assume to have a demand as attached
- WACC=10%
- Scenario 1: Manual line 5 M€, per unit cost=94€
- Scenario 2: Automatic line 20M€, puc= 46€
- Investment: 40% in 2024, 60% in 2025
- Evaluate the profitability (reference is always the major investment)

Solution

Insert new data of cost

Investment with yearly distribution

		Formulas	2024	2025	2026	2027	2028	2029	2030	2031	2032	total
INPUT												
Volumes	kupy	\	0	100	200	270	280	250	230	230	140	1700
Automatic investment	M€		8,00	12,00								20,00
Automatic cost (€)	54											
Manual investment	M€		2,00	3,00								5,00
Manual cost	94											
WACC	_10%_											
ОИТРИТ												
Actualization at 2024		=(1-WACC)**(n-1)	1,11	1,00	0,90	0,81	0,73	0,66	0,59	0,53	0,48	6,81
Actualized investment		=ACT*Make Inv	8,89	12,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	20,89
Actualized total costs		=Cost*Vol*ACT	0,00	5,40	9,72	11,81	11,02	8,86	7,33	6,60	3,62	64,36
Actualized VT		=ACT*VT	2,22	3,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	5,22
Actualized prices		=Price*Vol*ACT	0,00	9,40	16,92	20,56	19,19	15,42	12,77	11,49	6,29	112,03
Delta Discounted cash flow		 =ACT(Vt+Price-Inv-Cost)	-6,67	-5,00	7,20	8,75	8,16	6,56	5,43	4,89	2,68	32,01
NPV		=Cumulated DCF	-6,67	-11,67	-4,47	4,28	12,45	19,01	24,44	29,33	32,01	
Total actualized investment		=Cumulated INV	6,67	15,67	15,67	15,67	15,67	15,67	15,67	15,67	15,67	
Profitability	204%	=Cum CCF/Cum Inv										

Good profitability of automation

STELLANTIS is the sole owner of this document. It cannot be copied or given to third parties without permission

Exercise 1

- Having in mind the PROs of a Transfer line vs a Machining center line analyze the following scenario.
- There is a demand of 300 k/y. The alternative solutions are:
 - 1. a transfer line with #3 unit. The units cost of 250 k€ each and have a technical capacity of 350k/y. Efficiency of every single unit is 95%.
 - 2. a flexible line with #2 machining centers. Each center has a cost of 400K€, a capacity of 200k/y and efficiency 90%.
- Which are the considerations you can do to support the decision?

Ex 1 solution

Scenario transfer:

Efficiency series 0,95**3=0,85
Resultant capacity= 350*0.85=300K so aligned with the demand Total cost 750 K€
Ratio K€ cost per kupy= 750/300= 2,5 k€/kupy

Scenario MCs:

Efficiency #2 machining center in parallel = (0,9+0,9)/2=0,9 Resultant capacity= 400*0,9*2= 360 kupy Total cost 800 K€ Ratio K€ cost per kupy= 800/360= 2,2 k€/kupy

The best solution is the transfer line, with series, that requires a minor investment.

But to decide we need to explore if the major capacity could be an opportunity. If yes, the major flexibility and the best ratio €/capacity let us opt for parallel.

Exercise 2

- Which is the main difference of machine tool for machining?
- Can you define the main technologies for each of these?
- Which are the main steps of a gear machining?

EX 2 solution

Which is the main difference of machine tool for machining?

Prismatic and rotating

Can you define the main technologies for each of these?

- Prismatic: milling, drilling, tapping, boring, bore honing
- Rotating: turning, grinding, hobbing, teeth honing

Which are the main steps of a gear machining?

- Turning
- Hobbing
- Heat treatment
- · Griding or finishing

Block diagram transmission /gear

4/18/2023

STELLANTIS is the sole owner of this document. It cannot be copied or given to third parties without permission

18

Exercise 3

In a ring-shape assembly line

Assumptions:

- Total length 60 m
- Pallet dimension 1 m and number #40
- Speed 3 m/min
- Three automatic assembly station:
 - #1 cycle time 40 s, #2 cycle time 50 s,#3 cycle time 30 s
- In the middle there are synchronous continuous moving manual operation that do not impact the flow

Questions

- Which is the bottleneck? Which is the max throughput?
- Using Queuing theory M/M/1 model which are the time in queue before the other stations?
- Which the queue before the bottleneck?
- Is the pallet number enough?

Exercise 3 solution

- Station #1 1/0,66=1,5 u/min,
- station #2 1/ 0,84=1,2 u/min,
- station #3 1/0,5=2 u/min

2. Op #2 is bottleneck, Pmax=1.2/min= max throughput

- Let consider the other two stations as a M/M/1 system with:
- Lambda=1.2 u/min
- Mu(1)=1,5 u/min
- Mu(3)=2 u/min

Formula:

- Average time that the customer wait in the queue TQ= λ/μ (μ λ)
- TQ1= 1,2/ (1,5*(1,5-1,2))= 2,66 min
- TQ3= 1,2/(2*(2-1,2))= 1,2/1,6=0,75 min
- T(1)=2,66 +0,66=3,33 min
- T(3)=0,75+0,5= 1,25 min

- 3. Use Little law to calculate the total cross time:
 - TCT= N.pallet/P= 40/1,2= 33.33 min
- 4. Calculate T transport= L/speed= 60/3= 20 min since the other station are continuous moving the cross time is inside the transport
- 5. TCT= 33.33= 20+ 3,33+1,25+ TQ bottleneck+0,84 hence:
 - TQ bottleneck= around 8 min
- 6. Pallet in the que in front of the bottleneck=8*1,2=10
 - The number of pallet seems OK
 - 10 in front of station #2, 1 inside #2, 2 in #1 and 2
 #3, the remaining 25 are around the line.