Exercise 1: L0 Regularization

Consider the regression learning setting, i.e., $\mathcal{Y} = \mathbb{R}$, and feature space $\mathcal{X} = \mathbb{R}^p$. Let the hypothesis space be the linear models:

$$\mathcal{H} = \{ f(\mathbf{x}) = \boldsymbol{\theta}^{\top} \mathbf{x} \mid \boldsymbol{\theta} \in \mathbb{R}^p \}.$$

Suppose your loss function of interest is the L2 loss $L(y, f(\mathbf{x})) = \frac{1}{2}(y - f(\mathbf{x}))^2$. Consider the L_0 -regularized empirical risk of a model $f(\mathbf{x} \mid \boldsymbol{\theta})$:

$$\mathcal{R}_{\text{reg}}(\boldsymbol{\theta}) = \mathcal{R}_{\text{emp}}(\boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}\|_{0} = \frac{1}{2} \sum_{i=1}^{n} \left(y^{(i)} - \boldsymbol{\theta}^{\top} \mathbf{x}^{(i)} \right)^{2} + \lambda \sum_{i=1}^{p} \mathbb{1}_{|\boldsymbol{\theta}_{i}| \neq 0}.$$

Assume that $\mathbf{X}^T\mathbf{X} = \mathbf{I}$, which holds if \mathbf{X} has orthonormal columns. Show that the minimizer $\hat{\theta}_{\text{L}0} = (\hat{\theta}_{\text{L}0,1}, \dots, \hat{\theta}_{\text{L}0,p})^{\top}$ is given by

$$\hat{\theta}_{\mathrm{L}0,i} = \hat{\theta}_i \mathbb{1}_{|\hat{\theta}_i| > \sqrt{2\lambda}}, \quad i = 1, \dots, p,$$

where $\hat{\boldsymbol{\theta}} = (\hat{\theta}_1, \dots, \hat{\theta}_p)^{\top} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ is the minimizer of the unregularized empirical risk (w.r.t. the L2 loss). For this purpose, use the following steps:

(i) Derive that

$$\arg\min_{\boldsymbol{\theta}} \mathcal{R}_{\text{reg}}(\boldsymbol{\theta}) = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^{p} -\hat{\theta}_{i} \theta_{i} + \frac{\theta_{i}^{2}}{2} + \lambda \mathbb{1}_{|\theta_{i}| \neq 0}.$$

(ii) Note that the minimization problem on the right-hand side of (i) can be written as $\sum_{i=1}^{p} g_i(\theta_i)$, where

$$g_i(\theta) = -\hat{\theta}_i \theta + \frac{\theta^2}{2} + \lambda \mathbb{1}_{|\theta| \neq 0}.$$

What is the advantage of this representation if we seek to find the θ with entries $\theta_1, \ldots, \theta_p$ minimizing $\mathcal{R}_{reg}(\theta)$?

- (iii) Consider first the case that $|\hat{\theta}_i| > \sqrt{2\lambda}$ and infer that for the minimizer θ_i^* of g_i it must hold that $\theta_i^* = \hat{\theta}_i$. Hint: Show that $g_i(\hat{\theta}_i) < 0 = g_i(0)$ and argue that the minimizer must have the same sign as $\hat{\theta}_i$.
- (iv) Derive that $\theta_i^* = \hat{\theta}_i \mathbb{1}_{|\hat{\theta}_i| > \sqrt{2\lambda}}$, by using (iii) (and also still considering the case $|\hat{\theta}_i| > \sqrt{2\lambda}$).
- (v) Consider the complementary case of (iii) and (iv), i.e., $|\hat{\theta}_i| \leq \sqrt{2\lambda}$, and infer that for the minimizer θ_i^* of g_i it must hold that $\theta_i^* = 0$.

Hint: What is $g_i(0)$? Consider $\tilde{g}_i(\theta) = -\hat{\theta}_i\theta + \frac{\theta^2}{2} + \lambda$ which is the smooth extension of g_i . What is the relationship between the minimizer of g_i and the minimizer of \tilde{g}_i ?

Exercise 2: Regularization

- (a) Simulate a data set with n = 100 observations based on the relationship $Y = \sin(x_1) + \varepsilon$ with noise term ε following some distribution. Simulate p = 100 additional covariates x_2, \ldots, x_{101} that are not related to Y.
- (b) On this data set, use different models (and software packages) of your choice to demonstrate
 - overfitting and underfitting;

- \bullet L1, L2 and elastic net regularization;
- the underdetermined problem;
- ullet the bias-variance trade-off;
- $\bullet\,$ early stopping using a simple neural network.