

Thyristor Modules

V_{RSM}	V_{RRM}	Type
V_{DSM}	V_{DRM}	
V	V	
900	800	MCC 21-08io8 B
1300	1200	MCC 21-12io8 B
1500	1400	MCC 21-14io8 B
1700	1600	MCC 21-16io8 B

Symbol	Conditions	Maximum Ratings		
I_{TRMS}	$T_{VJ} = T_{VJM}$	33	A	
I_{TAVM}	$T_C = 85^\circ\text{C}$; 180° sine	21	A	
I_{TSM}	$T_{VJ} = 45^\circ\text{C}$; $V_R = 0$	320 350	A A	
	$T_{VJ} = T_{VJM}$ $V_R = 0$	280 310	A A	
I^2dt	$T_{VJ} = 45^\circ\text{C}$ $V_R = 0$	500 520	A^2s A^2s	
	$T_{VJ} = T_{VJM}$ $V_R = 0$	390 400	A^2s A^2s	
$(di/dt)_{cr}$	$T_{VJ} = T_{VJM}$ $f = 50\text{Hz}$, $t_p = 200\mu\text{s}$	repetitive, $I_T = 45\text{ A}$	150	$\text{A}/\mu\text{s}$
	$V_D = \frac{2}{3} V_{DRM}$ $I_G = 0.45\text{ A}$ $di_G/dt = 0.45\text{ A}/\mu\text{s}$	non repetitive, $I_T = I_{TAVM}$	500	$\text{A}/\mu\text{s}$
$(dv/dt)_{cr}$	$T_{VJ} = T_{VJM}$; $V_{DR} = \frac{2}{3} V_{DRM}$ $R_{GK} = \infty$; method 1 (linear voltage rise)		1000	$\text{V}/\mu\text{s}$
P_{GM}	$T_{VJ} = T_{VJM}$ $I_T = I_{TAVM}$	$t_p = 30\mu\text{s}$ $t_p = 300\mu\text{s}$	10 5	W
P_{GAV}			0.5	W
V_{RGM}			10	V
T_{VJ}			-40...+125	$^\circ\text{C}$
T_{VJM}			125	$^\circ\text{C}$
T_{stg}			-40...+125	$^\circ\text{C}$
V_{ISOL}	50/60 Hz, RMS $I_{ISOL} \leq 1\text{ mA}$	$t = 1\text{ min}$ $t = 1\text{ s}$	3000 3600	V_\sim V_\sim
M_d	Mounting torque (M5) Terminal connection torque (M5)		2.5-4.0/22-35 Nm/lb.in. 2.5-4.0/22-35 Nm/lb.in.	
Weight	Typical including screws		90	g

Data according to DIN/IEC 747 and refer to a single thyristor unless otherwise stated.

Symbol	Conditions	Characteristic Values	
I_{RRM}, I_{DRM}	$T_{VJ} = T_{VJM}; V_R = V_{RRM}; V_D = V_{DRM}$	5	mA
V_T	$I_T = 45 \text{ A}; T_{VJ} = 25^\circ\text{C}$	1.6	V
V_{TO}	For power-loss calculations only ($T_{VJ} = 125^\circ\text{C}$)	0.85	V
r_T		15	$\text{m}\Omega$
V_{GT}	$V_D = 6 \text{ V}; T_{VJ} = 25^\circ\text{C}$ $T_{VJ} = -40^\circ\text{C}$	1.0	V
		1.2	V
I_{GT}	$V_D = 6 \text{ V}; T_{VJ} = 25^\circ\text{C}$ $T_{VJ} = -40^\circ\text{C}$	65	mA
		80	mA
V_{GD}	$T_{VJ} = T_{VJM}; V_D = \frac{2}{3} V_{DRM}$	0.2	V
I_{GD}		5	mA
I_L	$T_{VJ} = 25^\circ\text{C}; t_p = 10 \mu\text{s}; V_D = 6 \text{ V}$ $I_G = 0.3 \text{ A}; dI_G/dt = 0.3 \text{ A}/\mu\text{s}$	150	mA
I_H	$T_{VJ} = 25^\circ\text{C}; V_D = 6 \text{ V}; R_{GK} = \infty$	100	mA
t_{gd}	$T_{VJ} = 25^\circ\text{C}; V_D = \frac{1}{2} V_{DRM}$ $I_G = 0.3 \text{ A}; dI_G/dt = 0.3 \text{ A}/\mu\text{s}$	2	μs
t_q	$T_{VJ} = T_{VJM}; I_T = 15 \text{ A}, t_p = 300 \mu\text{s}; -dI/dt = 10 \text{ A}/\mu\text{s}$ $V_R = 100 \text{ V}; dv/dt = 20 \text{ V}/\mu\text{s}; V_D = \frac{2}{3} V_{DRM}$	typ.	150 μs
I_{RM}	$T_{VJ} = T_{VJM}; I_T = 30 \text{ A}, -dI/dt = 0.3 \text{ A}/\mu\text{s}$	4	A
R_{thJC}	per thyristor; DC current	1.1	K/W
	per module	0.55	K/W
R_{thJK}	per thyristor; DC current	1.3	K/W
	per module	0.65	K/W
d_s	Creepage distance on surface	12.7	mm
d_A	Strike distance through air	9.6	mm
a	Maximum allowable acceleration	50	m/s^2

Optional accessories for module-type MCC 23 version 1 B

Keyed gate/cathode twin plugs with wire length = 350 mm, gate = yellow, cathode = red

Type ZY 200L (L = Left for pin pair 4/5) } UL 758, style 1385,

Type ZY 200R (R = right for pin pair 6/7) } CSA class 5851, guide 460-1-1

Fig. 1 Gate trigger characteristics

Fig. 2 Gate trigger delay time

Dimensions in mm (1 mm = 0.0394")

