

Conductive Polymer Solid Electrolytic Chip Capacitors

A, B, C, D, E, G, H, K, S, T, **U, W, X, Y, 5 CASE**

> **∧** 156 J -XXXXX ~

∧ 476 E

XXXXX

N. P. R CASE

106

AVX LOGO Polymer

- ID Code

- Rated Voltage E = 25V

MARKING

FEATURES

- Conductive polymer electrode
- Benign failure mode under recommended use conditions
- Lower ESR
- 3x reflow 260°C compatible
- CV range: 0.47-470µF / 2.5-125V
- 18 case sizes available

APPLICATIONS

• Smart phone, Tablets, Notebook, LCD TV, Power supplies

Elektra Award 2010

CASE DIMENSIONS: millimeters (inches)

	Code	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H+0.20 (0.008) -0.10 (0.004)	W₁±0.20 (0.008)	A+0.30 (0.012) -0.20 (0.008)	S Min.
	Α	1206	3216-18	3.20 (0.126)	1.60 (0.063)	1.60 (0.063)	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
	В	1210	3528-21	3.50 (0.138)	2.80 (0.110)	1.90 (0.075)	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
	C	2312	6032-28	6.00 (0.236)	3.20 (0.126)	2.60 (0.102)	2.20 (0.087)	1.30 (0.051)	2.90 (0.114)
	D	2917	7343-31	7.30 (0.287)	4.30 (0.169)	2.90 (0.114)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
	Е	2917	7343-43	7.30 (0.287)	4.30 (0.169)	4.10 (0.162)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
	G	1206	3216-15	3.20 (0.126)	1.60 (0.063)	1.50 (0.059) max	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
	Н	1210	3528-15	3.50 (0.138)	2.80 (0.110)	1.50 (0.059) max	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
	K	1206	3216-10	3.20 (0.126)	1.60 (0.063)	1.00 (0.039) max	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
	N	0805	2012-10	2.05 (0.081)	1.30 (0.051)	1.00 (0.039) max	1.00 (0.039)	0.50 (0.020)	0.85 (0.033)
	Р	0805	2012-15	2.05 (0.081)	1.35 (0.053)	1.50 (0.059) max	1.00±0.10 (0.039±0.004)	0.50 (0.020)	0.85 (0.033)
	R	0805	2012-12	2.05 (0.081)	1.30 (0.051)	1.20 (0.047) max	1.00±0.10 (0.039±0.004)	0.50 (0.020)	0.85 (0.033)
	S	1206	3216-12	3.20 (0.126)	1.60 (0.063)	1.20 (0.047) max	1.20 (0.047)	0.80 (0.031)	1.10 (0.043)
	Т	1210	3528-12	3.50 (0.138)	2.80 (0.110)	1.20 (0.047) max	2.20 (0.087)	0.80 (0.031)	1.40 (0.055)
	U	2924	7361-43	7.30 (0.287)	6.10 (0.240)	4.10 (0.162)	3.10 (0.120)	1.30 (0.051)	4.40 (0.173)
	W	2312	6032-15	6.00 (0.236)	3.20 (0.126)	1.50 (0.059) max	2.20 (0.087)	1.30 (0.051)	2.90 (0.114)
	Х	2917	7343-15	7.30 (0.287)	4.30 (0.169)	1.50 (0.059) max	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
	Υ	2917	7343-20	7.30 (0.287)	4.30 (0.169)	2.00 (0.079) max	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
	5	2917	7343-40	7.30 (0.287)	4.30 (0.169)	3.80 (0.150)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
Γ			\	W1 dimension a	applies to the termi	ination width for A d	imensional area d	only.	

HOW TO ORDER

016 = 16 Vdc

020 = 20 Vdc

Part Numbers already changed to an "E" suffix will continue to be supplied with only black resin. Those Part Numbers currently produced with gold resin will eventually change to black before July, 2020.

075 = 75 Vdc

100 = 100 Vdc

TECHNICAL SPECIFICATIONS (Common for all TCJ series)

Technical Data:	All technical data relate to an ambient temperature of +25°C
Capacitance Tolerance:	±20%
Leakage Current DCL:	0.1CV
Reliability:	1% per 1000 hours at 85°C, V _R with 0.1Ω/V series impedance, 60% confidence level
Resistance to soldering heat:	3x260°C peak for max. 10s reflow

NOTE: Conductive Polymer Capacitors are designed to operate within the limits of the environmental conditions specified for each series. If operated continuously at their maximum temperature and / or humidity limit, or beyond these limits, capacitors may exhibit a parametric shift in capacitance and increases in ESR. These changes may occur earlier if the specified environmental conditions are exceeded. Similarly, their normal operational time period will be significantly extended if their general duty cycle includes operation below maximum temperature within humidity controlled environments. Careful attention should be paid to maximum temperature with associated high humidity environments as well as voltage derating, ripple current and current surges. Please reference the AVX Conductive Polymer Capacitor Guidelines for more information or contact factory for application assistance.

Conductive Polymer Solid Electrolytic Chip Capacitors

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

С	ар					Rated Vol	tage DC (V) to 85°C						
μF	Code	2.5V (e)	4V (G)	6.3V (J)	10V (A)	16V (C)	20V (D)	25V (E)	35V (V)	50V (T)	63V (<u>J</u>)	75V (<u>P</u>)	100V (A)	125V (<u>B</u>)
0.47	474										B(400)			
0.68	684									B(400)	B(300)			
1.0	105							P(500)		B(300)	B(300) C(300)			
1.5	155								B(200)	B(300) C(300)	C(300)			
2.2	225								B(200)	C(300)	C(200)			
3.3	335								B(200)	C(200)	C(200)			D(250)
4.7	475				K(300,500) R(500)			B(100,150)	B(200) C(200)	C(200) X(250) Y(250)	C(200) D(120)	D(150)	D(250)	
6.8	685					A(200)		A(150), B(90,150) T(100,150)	C(200)	C(200) D(120)	D(120) E(100,150)	D(120)		
10	106			A(300) N(200,250,500) R(500)	A(200,300)	A(200) B(100,200) T(100,150,200)	A(150)	A(150) B(90,100,150)	B(200) C(200) Y(70)	D(90,120) E(70,100)	E(100,150)			
15	156		A(300)	A(300)	A(200)	B(150)		B(100,150) Y(90)	B(200), C(200) D(70,100) Y(70,100)	E(70,100)				
22	226		A(300)	A(300), K(400) N(500), R(500) S(400), T(150)	B(300) T(70,150)	A(300) B(150)	B(90,150) Y(70)	B(100,150), C(100) D(60,100) Y(70)	D(70,100) Y(150)					
33	336		A(300)	A(200) B(70,200) T(150)	B(70,200) C(100) T(70,150)	A(200) H(150) Y(45,60,70)	Y(70)	D(60,100) X(70,100) Y(60,70,100)	D(70,100) E(55,70) U(70), Y(100)					
47	476		A(200) T(80)	A(70,100,200), B(70) K(150,200,400) P(500), R(500) T(55,70,80,120)	B(70) C(100) H(100)	X(45,70) Y(45,70)	D(55) X(55,70) Y(70)	D(60,100) E(50) Y(100)	E(55), U(70) Y(100)					
68	686	A(250)	A(250) B(70) T(80)	B(55,70) C(100), H(100) T(200), W(70)	D(45,55) Y(45,55)	D(50) Y(50)	D(55) E(45) Y(50)	D(70) E(50) Y(100)						
100	107	A(200), B(70)	A(200) B(40,70) G(300) T(70,150)	A(100,150) B(40,45,55,70) C(70,100) T(70,200), W(70)	D(18,25,45,55,80) Y(18,25,45,55)	D(50), E(40) Y(50)	D(55) E(45) Y(55)	D(55,70) E(80) U(70)						
150	157	B(70)	B(70), D(15) Y(15,25,45)	B(25,35,45,55,70) D(12,15,25,40) H(200), W(40,70) Y(15,25,40)	D(25,40,45,55) Y(25,40,45,55)	D(40,50,70) E(40) Y(40,50,70)		U(70)						
220	227	B(35,45,70)	B(35,45,55,60,70) D(12,15,25,40) Y(15,25,40)	B(70,200) D(12,15,25,35,40,50) H(170) Y(15,25,35,40,50)	D(15,25,40,50) Y(15,25,40,50)	D(50	U(70)							
330	337	B(35,45,70) Y(25,40)	D(15,25,40,50) Y(15,25,40,50)	D(12,15,18,25,40,50) Y(15,25,40,50)	D(25) 5(35,100)	E(50,70) 5(100)								
470	477	D(12,15,25,40,50) Y(15,25,40,50)	D(10,12,15,25,40,50) Y(15,25,40,50)	D(25) X(50,55,100)		5(100)								

Released ratings, (ESR ratings in mOhms in parentheses) Engineering samples - please contact AVX Note: Voltage ratings are minimum values. AVX reserves the right to supply higher voltage ratings in the same case size, to the same reliability standards.

Conductive Polymer Solid Electrolytic Chip Capacitors

AVX	Case	Capacitance	Rated	Maximum Operating	DCL	DF	ESR Max.	10	00kHz RMS	Current (m	nA)	Product	
Part No.	Size	(µF)	Voltage (V)	Temperature (°C)	Max. (μA)	Max. (%)	@ 100kHz (mΩ)	45°C	85°C	105°C	125°C	Category	MSL
				105		t @ 85°C							
TCJA686M002#0250E TCJA107M002#0200E	A	68 100	2.5 2.5	105 105	17 25	6	250 200	600 700	400 500	300	_	3	3
TCJB107M002#0200E	В	100	2.5	125	25	6	70	1300	900	600	300	1	3
TCJB157M002#0070E	В	150	2.5	105	37.5	6	70	1300	900	600	-	3	3
TCJB227M002#0035E	В	220	2.5	105	55	8	35	1900	1300	900	-	3	3
TCJB227M002#0045E	В	220	2.5	105	55	8	45	1700	1200	800	_	3	3
TCJB227M002#0070E TCJB337M002#0035E	B	220 330	2.5 2.5	105 105	55 82.5	8	70 35	1300	900	600 900	_	3	3
TCJB337M002#0045E	В	330	2.5	105	82.5	8	45	1700	1200	800	_	3	3
TCJB337M002#0070E	В	330	2.5	105	82.5	8	70	1300	900	600	-	3	3
TCJY337M002#0025E	Y	330	2.5	105	82.5	6	25	2700	1900	1200	_	2	3
TCJY337M002#0040E TCJD477M002#0012	Y D	330 470	2.5 2.5	105 105	82.5 117.5	6	12	2200 4300	1500 3000	1000	_	3 2	3
TCJD477M002#0015E	D	470	2.5	105	117.5	6	15	3900	2700	1800	_	2	3
TCJD477M002#0025E	D	470	2.5	105	117.5	6	25	3000	2100	1400	-	2	3
TCJD477M002#0040E	D	470	2.5	105	117.5	6	40	2400	1700	1100	-	3	3
TCJD477M002#0050E	D	470	2.5	105	117.5	6	50	2100	1500	900	_	3	3
TCJY477M002#0015 TCJY477M002#0025E	Y	470 470	2.5 2.5	85 105	117.5 117.5	6	15 25	3500 2700	2500 1900	1200	_	5	3
TCJY477M002#0040E	Y	470	2.5	105	117.5	6	40	2200	1500	1000	_	3	3
TCJY477M002#0050E	Y	470	2.5	105	117.5	6	50	1900	1300	900	_	3	3
TO 144 FOR 400 1 110000		15	_	105		@ 85°C	200	000	100	000	000		
TCJA156M004#0300E	A	15	4	125	6	6	300	600	400 400	300	200	1	3
TCJA226M004#0300E TCJA336M004#0300E	A	22 33	4	125 125	8.8 13.2	6	300	600	400	300	200	1	3
TCJA476M004#0200E	A	47	4	105	18.8	6	200	700	500	300	-	3	3
TCJT476M004#0080E	Т	47	4	105	18.8	8	80	1100	800	500	-	3	3
TCJA686M004#0250E	A	68	4	105	27.2	6	250	600	400	300	-	3	3
TCJB686M004#0070E TCJT686M004#0080E	B T	68 68	4	125 105	27.2 27.2	6 8	70 80	1300	900	600 500	300	3	3
TCJA107M004#0200E	A	100	4	105	40	6	200	700	500	300	_	3	3
TCJB107M004#0040E	В	100	4	105	40	8	40	1800	1300	800	_	3	3
TCJB107M004#0070E	В	100	4	125	40	8	70	1300	900	600	300	1	3
TCJG107M004#0300E	G	100	4	105	40	10	300	600	400	300	_	3	3
TCJT107M004#0070E TCJT107M004#0150E	+	100 100	4	105 105	40 40	8	70 150	1200 800	800 600	500 400	_	3	3
TCJB157M004#0130E	В	150	4	105	60	6	70	1300	900	600	_	3	3
TCJD157M004#0015	D	150	4	105	60	6	15	3900	2700	1800	-	2	3
TCJY157M004#0015	Υ	150	4	105	60	6	15	3500	2500	1600	_	2	3
TCJY157M004#0025E	Y	150 150	4	105 105	60 60	6	25 45	2700	1900 1400	1200 900	_	2	3
TCJY157M004#0045E TCJB227M004#0035E	В	220	4	105	88	10	35	1900	1300	900	_	3	3
TCJB227M004#0045E	В	220	4	105	88	10	45	1700	1200	800	_	3	3
TCJB227M004#0055	В	220	4	105	88	10	55	1500	1100	700	_	3	3
TCJB227M004#0060E	В	220	4	105	88	10	60	1400	1000	600	_	3	3
TCJB227M004#0070E TCJD227M004#0012	B D	220 220	4	105 105	<u>88</u> 88	10	70 12	1300 4300	900 3000	600 1900	_	3 2	3
TCJD227M004#0015E	D	220	4	105	88	6	15	3900	2700	1800	_	2	3
TCJD227M004#0025E	D	220	4	105	88	6	25	3000	2100	1400	-	2	3
TCJD227M004#0040E	D	220	4	105	88	6	40	2400	1700	1100	-	2	3
TCJY227M004#0015 TCJY227M004#0025E	Y	220 220	4	105 105	88 88	6	15 25	3500 2700	2500 1900	1600 1200	_	2	3
TCJY227M004#0025E	Y	220	4	105	88	6	40	2200	1500	1000	_	3	3
TCJD337M004#0040E		330	4	105	132	6	15	3900	2700	1800	_	2	3
TCJD337M004#0025E	D	330	4	105	132	6	25	3000	2100	1400	_	2	3
TCJD337M004#0040E		330	4	105	132	6	40	2400	1700	1100	-	3	3
TCJD337M004#0050E	D Y	330	4	105	132	6	50	2100	1500	900	_	3	3
TCJY337M004#0015 TCJY337M004#0025E		330 330	4	85 105	132 132	6	15 25	3500 2700	2500 1900	1200	_	5	3
TCJY337M004#0040E	Y	330	4	105	132	6	40	2200	1500	1000	_	3	3
TCJY337M004#0050E		330	4	105	132	6	50	1900	1300	900	-	3	3
TCJD477M004#0010	D	470	4	105	188	6	10	4700	3300	2100	_	2	3
TCJD477M004#0012 TCJD477M004#0015E	D D	470 470	4	105 105	188 188	6	12 15	4300 3900	3000 2700	1900 1800	_	2 2	3
TCJD477M004#0015E		470	4	105	188	6	25	3000	2100	1400	_	2	3
TCJD477M004#0040E		470	4	105	188	6	40	2400	1700	1100	_	2	3
TCJD477M004#0050E		470	4	105	188	6	50	2100	1500	900	_	2	3
TCJY477M004#0015	Y	470	4	85	188	6	15	3500	2500	1200	_	5	3
TCJY477M004#0025E TCJY477M004#0040E		470 470	4	105 105	188 188	6	25 40	2700 2200	1900 1500	1200 1000	_	3	3
TCJY477M004#0040E	Y	470	4	105	188	6	50	1900	1300	900	_	3	3
. 201						t @ 85°C							
TCJA106M006#0300E	Α	10	6.3	125	6	6	300	600	400	300	200	1	3
TCJN106M006#0200E		10	6.3	105	6	6	200	600	400	300	_	3	3
TCJN106M006#0250E TCJN106M006#0500E		10 10	6.3 6.3	105 105	<u>6</u> 6	6	250 500	600 400	400 300	300 200	_	3	3
TCJR106M006#0500E	R	10	6.3	105	6	6	500	400	300	200	_	3	3
			0	. 50					- 55			_	

Conductive Polymer Solid Electrolytic Chip Capacitors

AVX	Case	Capacitance	Rated	Maximum Operating	DCL	DF	ESR Max.	10	00kHz RMS	Current (n	nA)	Product	
Part No.	Size	(μF)	Voltage (V)	Temperature (°C)	Max. (μA)	Max. (%)	@ 100kHz (mΩ)	45°C	85°C	105°C	125°C	Category	MS
CJA156M006#0300E	Α	15	6.3	125	9	6	300	600	400	300	200	1 1	3
CJA226M006#0300E	Α	22	6.3	125	13.2	6	300	600	400	300	200	1	3
CJK226M006#0400E	K	22	6.3	105	13.2	8	400	500	400	200	_	3	3
CJN226M006#0500E	N	22	6.3	105	13.2	10	500	400	300	200	_	3	3
JR226M006#0500E	R	22	6.3	105	13.2	10	500	400	300	200	_	3	3
CJS226M006#0400E	S	22	6.3	105	13.2	8	400	500	400	200	_	3	3
CJT226M006#0150E	Т	22	6.3	105	13.2	6	150	800	600	400	_	3	3
JA336M006#0200E	Α	33	6.3	105	19.8	6	200	700	500	300	_	3	3
JB336M006#0070E	В	33	6.3	125	19.8	6	70	1300	900	600	300	1	3
JB336M006#0200E	В	33	6.3	125	19.8	6	200	800	600	400	200	1	3
JT336M006#0150E	T	33	6.3	105	19.8	8	150	800	600	400	_	3	3
JA476M006#0070E	Α	47	6.3	105	28.2	6	70	1200	800	500	_	3	(
JA476M006#0100E	Α	47	6.3	105	28.2	6	100	1000	700	500	_	3	(
JA476M006#0200E	Α	47	6.3	105	28.2	6	200	700	500	300	_	3	(
JB476M006#0070E	В	47	6.3	125	28.2	6	70	1300	900	600	300	1	(
JK476M006#0150E	K	47	6.3	105	28.2	6	150	800	600	400	_	3	(
JK476M006#0200E	K	47	6.3	105	28.2	6	200	700	500	300	_	3	(
JK476M006#0400E	K	47	6.3	105	28.2	6	400	500	400	200	_	3	(
JP476M006#0500E	Р	47	6.3	105	28.2	10	500	400	300	200	_	3	(
JR476M006#0500E	R	47	6.3	105	28.2	10	500	400	300	200	_	3	(
JT476M006#0055E	Т	47	6.3	105	28.2	8	55	1300	900	600	_	3	
JT476M006#0070E	Т	47	6.3	105	28.2	8	70	1200	800	500	_	3	;
JT476M006#0080E	T	47	6.3	105	28.2	8	80	1100	800	500	_	3	;
JT476M006#0120E	Т	47	6.3	105	28.2	8	120	900	600	400	_	3	;
JB686M006#0055E	В	68	6.3	125	40.8	8	55	1500	1100	700	400	1	;
JB686M006#0070E	В	68	6.3	125	40.8	8	70	1300	900	600	300	1	
JC686M006#0100E	С	68	6.3	125	40.8	6	100	1300	900	600	300	1	
JH686M006#0100E	Н	68	6.3	105	40.8	6	100	1000	700	500	_	3	
JT686M006#0200E	Т	68	6.3	105	40.8	8	200	700	500	300	_	3	
JW686M006#0070E	W	68	6.3	125	40.8	8	70	1400	1000	600	400	1	
JA107M006#0100E	Α	100	6.3	105	60	10	100	1000	700	500	_	3	;
JA107M006#0150E	Α	100	6.3	105	60	10	150	800	600	400	_	3	
JB107M006#0040E	В	100	6.3	105	60	10	40	1800	1300	800	_	3	,
JB107M006#0045E	В	100	6.3	105	60	10	45	1700	1200	800	_	3	,
JB107M006#0055E	В	100	6.3	105	60	10	55	1500	1100	700	_	3	
JB107M006#0070E	В	100	6.3	105	60	10	70	1300	900	600	_	3	;
JC107M006#0070E	С	100	6.3	105	60	6	70	1600	1100	700	_	3	
JC107M006#0100E	С	100	6.3	105	60	6	100	1300	900	600	_	3	
JT107M006#0070E	Т	100	6.3	105	60	10	70	1200	800	500	_	3	
JT107M006#0200E	Т	100	6.3	105	60	10	200	700	500	300	_	3	
JW107M006#0070E	W	100	6.3	105	60	6	70	1400	1000	600	_	3	
JB157M006#0025E	В	150	6.3	105	90	10	25	2200	1500	1000	_	3	
JB157M006#0035E	В	150	6.3	105	90	10	35	1900	1300	900	_	3	
JB157M006#0045E	В	150	6.3	105	90	10	45	1700	1200	800	_	3	
JB157M006#0055E	В	150	6.3	105	90	10	55	1500	1100	700	_	3	
JB157M006#0070E	В	150	6.3	105	90	10	70	1300	900	600	_	3	
JD157M006#0012	D	150	6.3	105	90	6	12	4300	3000	1900	-	2	
JD157M006#0015E	D	150	6.3	105	90	6	15	3900	2700	1800	_	2	
JD157M006#0025E	D	150	6.3	105	90	6	25	3000	2100	1400	-	2	
JD157M006#0040E	D	150	6.3	105	90	6	40	2400	1700	1100	_	2	
JH157M006#0200E	Н	150	6.3	105	90	6	200	700	500	300	_	3	
JW157M006#0040E	W	150	6.3	105	90	6	40	1800	1300	800	_	3	
JW157M006#0070E	W	150	6.3	105	90	6	70	1400	1000	600	_	3	
CJY157M006#0015	Υ	150	6.3	105	90	6	15	3500	2500	1600	_	2	
JY157M006#0025E	Υ	150	6.3	105	90	6	25	2700	1900	1200	-	2	
JY157M006#0040E	Y	150	6.3	105	90	6	40	2200	1500	1000	_	3	
JB227M006#0070E	В	220	6.3	105	132	10	70	1300	900	600	_	3	
JB227M006#0200E	В	220	6.3	105	132	10	200	800	600	400	_	3	
JD227M006#0012	D	220	6.3	105	132	6	12	4300	3000	1900	_	2	
JD227M006#0015E	D	220	6.3	105	132	6	15	3900	2700	1800	_	2	
JD227M006#0025E	D	220	6.3	105	132	6	25	3000	2100	1400	_	2	
JD227M006#0035E	D	220	6.3	105	132	6	35	2500	1800	1100	_	3	
JD227M006#0040E	D	220	6.3	105	132	6	40	2400	1700	1100	_	3	
JD227M006#0050E	D	220	6.3	105	132	6	50	2100	1500	900	_	3	
JH227M006#0170E	Н	220	6.3	105	132	10	170	800	600	400	_	3	
JY227M006#0015	Υ	220	6.3	85	132	6	15	3500	2500	-	_	5	
JY227M006#0025E	Υ	220	6.3	105	132	6	25	2700	1900	1200	-	2	;
JY227M006#0035E	Υ	220	6.3	105	132	6	35	2300	1600	1000	_	2	
JY227M006#0040E	Υ	220	6.3	105	132	6	40	2200	1500	1000	_	2	
JY227M006#0050E	Υ	220	6.3	105	132	6	50	1900	1300	900	_	2	
JD337M006#0012	D	330	6.3	105	198	6	12	4300	3000	1900	_	3	
JD337M006#0015E	D	330	6.3	105	198	6	15	3900	2700	1800	_	3	
JD337M006#0018E	D	330	6.3	105	198	6	18	3500	2500	1600	_	3	
JD337M006#0025E	D	330	6.3	105	198	6	25	3000	2100	1400	_	3	
JD337M006#0040E	D	330	6.3	105	198	6	40	2400	1700	1100	-	2	;
JD337M006#0050E	D	330	6.3	105	198	6	50	2100	1500	900	_	2	
CJY337M006#0015	Υ	330	6.3	85	198	12	15	3500	2500	-	-	5	;
JY337M006#0025E	Υ	330	6.3	105	198	12	25	2700	1900	1200	_	3	
JY337M006#0040E	Ý	330	6.3	105	198	12	40	2200	1500	1000	_	3	
JY337M006#0050E	Ý	330	6.3	105	198	12	50	1900	1300	900	_	3	
							1						

Conductive Polymer Solid Electrolytic Chip Capacitors

AVX	Case	Capacitance	Rated	Maximum Operating	DCL	DF	ESR Max.	10	00kHz RMS	Current (n	nA)	Product	
Part No.	Size	(μF)	Voltage (V)	Temperature (°C)	Max. (μA)	Max. (%)	@ 100kHz (mΩ)	45°C	85°C	105°C	125°C	Category	MSL
TCJD477M006#0025E	D	470	6.3	105	282	6	25	3000	2100	1400	-	2	3
TCJX477M006#0050 TCJX477M006#0055E	X	470 470	6.3 6.3	105 105	282 282	6	50 55	1900 1800	1300	900 800	_	3	3
TCJX477M006#0100E	X	470	6.3	105	282	6	100	1300	900	600	-	3	3
						@ 85°C							
TCJK475M010#0300E TCJK475M010#0500E	K	4.7	10 10	105 105	4.7 4.7	6	300 500	500 400	400 300	200	_	3	3
TCJR475M010#0500E	R	4.7	10	105	4.7	6	500	400	300	200		3	3
TCJA106M010#0200E	Α	10	10	125	10	6	200	700	500	300	200	1	3
TCJA106M010#0300E	A	10	10	125	10	6	300	600	400	300	200	1	3
TCJA156M010#0200E TCJB226M010#0300E	A B	15 22	10	125 125	15 22	6	300	700 600	500 400	300	200	1	3
TCJT226M010#0070E	T	22	10	105	22	6	70	1200	800	500	-	3	3
TCJT226M010#0150E	Т	22	10	105	22	6	150	800	600	400	-	3	3
TCJB336M010#0070E	B	33	10	125 125	<u>33</u> 33	6	70 200	1300	900	600 400	300	1	3
TCJB336M010#0200E TCJC336M010#0100E	C	33	10	125	33	6	100	800 1300	900	600	300	1	3
TCJT336M010#0070E	Ť	33	10	105	33	6	70	1200	800	500	-	3	3
TCJT336M010#0150E	T	33	10	105	33	6	150	800	600	400	_	3	3
TCJB476M010#0070E TCJC476M010#0100E	B	47 47	10 10	105 125	47 47	6	70 100	1300	900	600 600	300	3	3
TCJH476M010#0100E	Н	47	10	105	47	6	100	1000	700	500	-	3	3
TCJD686M010#0045E	D	68	10	105	68	6	45	2200	1500	1000	_	3	3
TCJD686M010#0055E	D	68	10	105	68	6	55	2000	1400	900	-	3	3
TCJY686M010#0045E	Y	68	10	105	68	6	45	2000	1400	900		3	3
TCJY686M010#0055E TCJD107M010#0018	D	100	10	105 105	68 100	6	55 18	1800 3500	2500	800 1600	_	2	3
TCJD107M010#0025E	D	100	10	105	100	6	25	3000	2100	1400	-	2	3
TCJD107M010#0045E	D	100	10	105	100	6	45	2200	1500	1000	-	3	3
TCJD107M010#0055E TCJD107M010#0080E	D	100	10 10	105	100	6	55	2000 1700	1400	900 800	_	3	3
TCJD107M010#0080E	D Y	100	10	105 105	100	6	80 18	3200	1200 2200	1400	_	3 2	3
TCJY107M010#0025E	Ý	100	10	105	100	6	25	2700	1900	1200	_	2	3
TCJY107M010#0045E	Υ	100	10	105	100	6	45	2000	1400	900	-	3	3
TCJY107M010#0055E	Y	100	10	105	100	6	55	1800	1300	800	_	3	3
TCJD157M010#0025E TCJD157M010#0040E	D D	150 150	10 10	105 105	150 150	6	25 40	3000 2400	2100 1700	1400 1100	_	3	3
TCJD157M010#0045E	D	150	10	105	150	6	45	2200	1500	1000	_	3	3
TCJD157M010#0055E	D	150	10	105	150	6	55	2000	1400	900	-	3	3
TCJY157M010#0025E	Y	150	10	105	150	6	25	2700	1900	1200	_	3	3
TCJY157M010#0040E TCJY157M010#0045E	Y	150 150	10	105 105	150 150	6	40 45	2200	1500 1400	1000 900	_	3	3
TCJY157M010#0045E	Y	150	10	105	150	6	55	1800	1300	800	_	3	3
TCJD227M010#0015	D	220	10	105	220	6	15	3900	2700	1800	-	3	3
TCJD227M010#0025E	D	220	10	105	220	6	25	3000	2100	1400	_	3	3
TCJD227M010#0040E TCJD227M010#0050E	D D	220 220	10 10	105 105	220 220	6	40 50	2400 2100	1700 1500	1100 900	_	3	3
TCJY227M010#0030L	Y	220	10	85	220	6	15	3500	2500	-		5	3
TCJY227M010#0025E	Y	220	10	105	220	6	25	2700	1900	1200	_	3	3
TCJY227M010#0040E	Y	220	10	105	220	6	40	2200	1500	1000	-	3	3
TCJY227M010#0050E TCJD337M010#0025E	Y D	220 330	10	105 105	220 330	6	50 25	1900 3000	1300 2100	900	_	3 2	3
TCJ5337M010#0025E	5	330	10	105	330	10	35	2600	1800	1200	_	2	3
TCJ5337M010#0100E	5	330	10	105	330	10	100	1500	1100	700	-	2	3
TO 14 005 MO10 #00005	Ι Λ	0.0	10	105		@ 85°C	1 000	700	I 500	1 000	1 000	1 4 1	0
TCJA685M016#0200E TCJA106M016#0200E	A	6.8	16 16	125 125	10.9 16	6	200	700 700	500 500	300	200	1	3
TCJB106M016#0100E	В	10	16	125	16	6	100	1100	800	500	300	1	3
TCJB106M016#0200E	В	10	16	125	16	6	200	800	600	400	200	1	3
TCJT106M016#0100E	Ţ	10	16	125	16	6	100	1000	700	500	300	1	3
TCJT106M016#0150E TCJT106M016#0200E	T	10	16 16	125 125	16 16	6	150 200	800 700	600 500	400 300	200	1	3
TCJB156M016#0150E	В	15	16	125	24	6	150	900	600	400	200	1	3
TCJA226M016#0300E	Α	22	16	105	35.2	10	300	600	400	300	_	3	3
TCJB226M016#0150E	В	22	16	125	35.2	6	150	900	600	400	200	1	3
TCJA336M016#0200E TCJH336M016#0150E	H	33	16 16	105 105	52.8 52.8	10 6	200 150	700 800	500 600	300 400	_	3	3
TCJH336M016#0150E	Y	33	16	105	52.8	6	45	2000	1400	900	_	2	3
TCJY336M016#0060E	Y	33	16	105	52.8	6	60	1800	1300	800	_	2	3
TCJY336M016#0070E	Y	33	16	105	52.8	6	70	1600	1100	700	-	2	3
TCJX476M016#0045E TCJX476M016#0070E	X	47	16 16	105 105	75.2 75.2	6	45 70	2000 1600	1400	900 700	_	2	3
TCJX476M016#0070E	Y	47	16	105	75.2	6	45	2000	1400	900	_	2	3
TCJY476M016#0070E	Y	47	16	105	75.2	6	70	1600	1100	700	-	2	3
TCJD686M016#0050E	D	68	16	105	108.8	6	50	2100	1500	900	_	2	3
TCJY686M016#0050E	Y D	68 100	16	105 105	108.8	6	50	1900	1300	900	-	2	3
TCJD107M016#0050E TCJE107M016#0040E	E	100	16 16	105	160 160	6	50 40	2100 2500	1500 1800	1100	_	2	3
TCJY107M016#0050E	Y	100	16	105	160	6	50	1900	1300	900	_	2	3
TCJD157M016#0040E	D	150	16	85	240	6	40	2400	1700	-	-	5	3
TCJD157M016#0050E	D	150	16	85	240	6	50	2100	1500	- 900	_	5	3
TCJD157M016#0070E	D	150	16	105	240	6	70	1800	1300	800	_	3	3

Conductive Polymer Solid Electrolytic Chip Capacitors

AVX	Case	Capacitance	Rated	Maximum Operating	DCL	DF	ESR Max.	10	00kHz RMS	Current (m	nA)	Product	
Part No.	Size	(µF)	Voltage (V)	Temperature (°C)	Max. (μA)	Max. (%)	@ 100kHz (mΩ)	45°C	85°C	105°C	125°C	Category	MSL
TCJE157M016#0040E	E	150	16	105	240	6	40	2500	1800	1100	-	2	3
TCJY157M016#0040E TCJY157M016#0050E	Y	150 150	16 16	105 105	240 240	6	40 50	2200 1900	1500 1300	1000	-	3	3
TCJY157M016#0050E	Y	150	16	105	240	6	70	1600	1100	700	_	3	3
TCJD227M016#0050E	D	220	16	105	352	10	50	2100	1500	900	_	2	3
TCJE337M016#0050E	Е	330	16	105	528	10	50	2200	1500	1000	-	2	3
TCJE337M016#0070E	E	330	16	105	528	10	70	1900	1300	900	_	2	3
TCJ5337M016#0100E	5	330	16	105	528	10	100	1500	1100	700	-	2	3
TCJ5477M016R0100E	5	470	16	105	752 20 Vol :	10 t @ 85°C	100	1500	1100	700	_	3	3
TCJA106M020#0150E	Α	10	20	105	20	6	150	800	600	400	_	3	3
TCJB226M020#0090E	В	22	20	105	44	6	90	1200	800	500	_	3	3
TCJB226M020#0150E	В	22	20	105	44	6	150	900	600	400	_	3	3
TCJY226M020#0070E	Y	22	20	105	44	6	70	1600	1100	700	_	2	3
TCJY336M020#0070E TCJD476M020#0055E	Y D	33 47	20 20	105 105	66 94	6	70 55	1600 2000	1100	700 900	_	2	3
TCJX476M020#0055E	X	47	20	105	94	6	55	1800	1300	800	_	3	3
TCJX476M020#0070E	X	47	20	105	94	6	70	1600	1100	700	_	3	3
TCJY476M020#0070E	Υ	47	20	105	94	6	70	1600	1100	700	_	2	3
TCJD686M020#0055E	D	68	20	105	136	6	55	2000	1400	900	_	3	3
TCJE686M020#0045E	E	68	20	105	136	6	45	2400	1700	1100	_	2	3
TCJY686M020#0050E TCJD107M020#0055E	Y D	68 100	20 20	105 105	136 200	6	50 55	1900	1300	900	_	2	3
TCJE107M020#0045E	E	100	20	105	200	6	45	2400	1700	1100	_	3	3
TCJY107M020#0045E	Y	100	20	105	200	6	55	1800	1300	800	_	2	3
TCJU227M020R0070E	U	220	20	105	440	12	70	2300	1600	1000	_	2	3
						t @ 85°C							
TCJP105M025#0500E	Р	1.0	25	105	2.5	6	500	400	300	200	_	2	3
TCJB475M025#0100E TCJB475M025#0150E	B B	4.7	25 25	105 105	11.8 11.8	6	100 150	1100 900	800 600	500 400	_	3	3
TCJB475M025#0150E	A	6.8	25	105	17	6	150	800	600	400	_	3	3
TCJB685M025#0090E	В	6.8	25	105	17	6	90	1200	800	500	_	2	3
TCJB685M025#0150E	В	6.8	25	105	17	6	150	900	600	400	_	3	3
TCJT685M025#0100E	Т	6.8	25	105	17	6	100	1000	700	500	_	3	3
TCJT685M025#0150E	T	6.8	25	105	17	6	150	800	600	400	_	3	3
TCJA106M025#0150E	A	10	25	105	25	6	150	800	600	400	_	3	3
TCJB106M025#0090E TCJB106M025#0100E	B B	10	25 25	105 105	25 25	6	100	1200	800 800	500 500	_	2 2	3
TCJB106M025#0100E	В	10	25	105	25	6	150	900	600	400	_	2	3
TCJB156M025#0100E	В	15	25	105	37.5	6	100	1100	800	500	_	2	3
TCJB156M025#0150E	В	15	25	105	37.5	6	150	900	600	400	_	2	3
TCJY156M025#0090E	Υ	15	25	105	37.5	6	90	1400	1000	600	_	2	3
TCJB226M025#0100E	В	22	25	105	55	6	100	1100	800	500	_	2	3
TCJB226M025#0150E	В	22	25	105	<u>55</u>	6	150	900	600	400	_	2	3
TCJC226M025#0100E TCJD226M025#0060E	C D	22 22	25 25	105 105	<u>55</u> 55	6	100 60	1300	900	900	_	3 2	3
TCJD226M025#0000E	D	22	25	105	55	6	100	1500	1100	700	_	2	3
TCJY226M025#0070E	Y	22	25	105	55	6	70	1600	1100	700	-	3	3
TCJD336M025#0060E	D	33	25	105	82.5	6	60	1900	1300	900	_	2	3
TCJD336M025#0100E	D	33	25	105	82.5	6	100	1500	1100	700	-	2	3
TCJX336M025#0070E	X	33	25	105	82.5	6	70	1600	1100	700	_	2	3
TCJX336M025#0100E TCJY336M025#0060E	X	33 33	25 25	105 105	82.5 82.5	6	100 60	1300	900	600 800	_	2	3
TCJY336M025#0070E	Y	33	25	105	82.5	6	70	1600	1100	700	_	2	3
TCJY336M025#0100E	Y	33	25	105	82.5	6	100	1400	1000	600	_	2	3
TCJD476M025#0060E	D	47	25	105	117.5	6	60	1900	1300	900	_	3	3
TCJD476M025#0100E	D	47	25	105	117.5	6	100	1500	1100	700	_	3	3
TCJE476M025#0050E TCJY476M025#0100E	E Y	47 47	25	105	117.5 117.5	6	50	2200 1400	1500	1000	_	3	3
TCJP476M025#0100E	D	68	25 25	105 105	170	6	100 70	1800	1300	800	_	3 2	3
TCJE686M025#0070E	E	68	25	105	170	6	50	2200	1500	1000	_	3	3
TCJY686M025#0100E	Y	68	25	105	170	6	100	1400	1000	600	_	3	3
TCJD107M025#0055E	D	100	25	105	250	6	55	2000	1400	900	-	2	3
TCJD107M025#0070E	D	100	25	105	250	6	70	1800	1300	800	_	2	3
TCJE107M025#0080E	E U	100	25 25	105	250	6 12	80	1800	1300	800	- 600	2	3
TCJU107M025R0070E TCJU157M025R0070E	U	100 150	25	125 105	250 375	12	70	2300	1600 1600	1000	600	2	3
1 000 107 WIOZUI 1007 OE	U	100	20	100		t @ 85°C	10		1000	1000			
TCJB155M035#0200E	В	1.5	35	105	5.3	6	200	800	600	400	_	2	3
TCJB225M035#0200E	В	2.2	35	105	7.7	6	200	800	600	400	-	3	3
	В	3.3	35	105	11.6	6	200	800	600	400	_	3	3
TCJB335M035#0200E		4.7	35	105	16.5	6	200	800 900	600 600	400	_	3	3
TCJB475M035#0200E	В			105				L LAUTE 1					
TCJB475M035#0200E TCJC475M035#0200E	С	4.7	35	105	16.5	6						3	
TCJB475M035#0200E TCJC475M035#0200E TCJC685M035#0200E	C	4.7 6.8	35 35	105	23.8	6	200	900	600	400	-	3	3
TCJB475M035#0200E TCJC475M035#0200E TCJC685M035#0200E TCJB106M035#0200E	С	4.7	35 35 35		23.8 35								
TCJB475M035#0200E TCJC475M035#0200E TCJC685M035#0200E	C C B	4.7 6.8 10	35 35	105 105	23.8	6	200 200	900 800	600 600	400 400	_ _	3 2	3
TCJB475M035#0200E TCJC475M035#0200E TCJC685M035#0200E TCJB106M035#0200E TCJC106M035#0200E	C C B C	4.7 6.8 10 10	35 35 35 35	105 105 105	23.8 35 35	6 6 6	200 200 200	900 800 900	600 600 600	400 400 400	_ _ _	3 2 3	3 3 3

Conductive Polymer Solid Electrolytic Chip Capacitors

RATINGS & PART NUMBER REFERENCE

AVX	Case	Capacitance	Rated Voltage	Maximum Operating	DCL Max.	DF Max.	ESR Max.	10	00kHz RMS	Current (m	nA)	Product	MSL
Part No.	Size	(μF)	(V) ¯	Temperature (°C)	(μ A)	(%)	@ 100kHz (mΩ)	45°C	85°C	105°C	125°C	Category	
TCJD156M035#0070E	D	15	35	105	52.5	6	70	1800	1300	800	_	3	3
TCJD156M035#0100E	D	15	35	105	52.5	6	100	1500	1100	700	-	3	3
TCJY156M035#0070E	Υ	15	35	105	52.5	6	70	1600	1100	700	_	3	3
TCJY156M035#0100E	Υ	15	35	105	52.5	6	100	1400	1000	600	_	3	3
TCJD226M035#0070E	D	22	35	105	77	6	70	1800	1300	800	_	2	3
TCJD226M035#0100E	D	22	35	105	77	6	100	1500	1100	700	-	2	3
TCJY226M035#0150E	Υ	22	35	105	77	6	150	1100	800	500	-	3	3
TCJD336M035#0070E	D	33	35	105	115.5	6	70	1800	1300	800	_	2	3
TCJD336M035#0100E	D	33	35	105	115.5	6	100	1500	1100	700	_	2	3
TCJE336M035#0055E	Е	33	35	105	115.5	6	55	2100	1500	900	_	3	3
TCJE336M035#0070E	Е	33	35	105	115.5	6	70	1900	1300	900	-	3	3
TCJU336M035R0070E	U	33	35	125	115.5	12	70	2300	1600	1000	600	1	3
TCJY336M035#0100E	Υ	33	35	105	115.5	6	100	1400	1000	600	_	3	3
TCJE476M035#0055E	Е	47	35	105	164.5	6	55	2100	1500	900	_	2	3
TCJU476M035R0070E	Ū	47	35	125	164.5	12	70	2300	1600	1000	600	1	3
TCJY476M035#0100E	Y	47	35	105	164.5	6	100	1400	1000	600	_	3	3
TOOT IT OMICCONOTICE			- 00	100		@ 85°C		1 100	1000	000			
TCJB684M050#0400E	В	0.68	50	105	3.4	6	400	600	400	300	_	3	3
TCJB105M050#0300E	В	1.0	50	105	5	6	300	600	400	300	_	3	3
TCJB155M050#0300E	В	1.5	50	105	7.5	6	300	600	400	300	_	3	3
TCJC155M050#0300E	С	1.5	50	105	7.5	6	300	800	600	400	_	3	3
TCJC225M050#0300E	С	2.2	50	105	11	6	300	800	600	400	_	3	3
TCJC335M050#0200E	C	3.3	50	105	16.5	8	200	900	600	400	_	3	3
TCJC475M050#0200E	C	4.7	50	105	23.5	8	200	900	600	400	_	3	3
TCJX475M050#0250E	X	4.7	50	105	23.5	6	250	800	600	400	_	2	5
TCJY475M050#0250E	Y	4.7	50	105	23.5	6	250	900	600	400	_	2	5
TCJC685M050#0200E	Ċ	6.8	50	105	34	8	200	900	600	400	_	3	3
TCJD685M050#0120E	D	6.8	50	105	34	10	120	1400	1000	600	_	3	3
TCJD106M050#0090E	D	10	50	105	50	10	90	1600	1100	700	_	3	3
TCJD106M050#0030E	D	10	50	105	50	10	120	1400	1000	600	_	3	3
TCJE106M050#0070E	E	10	50	105	50	6	70	1900	1300	900		3	3
TCJE106M050#0070E	E	10	50	105	50	6	100	1600	1100	700	_	3	3
						6	70			900	_		
TCJE156M050#0070E	E	15	50	105	75			1900	1300		_	3	3
TCJE156M050#0100E	E	15	50	105	75 63 Volt	6 : @ 85°C	100	1600	1100	700	_	3	3
TCJB474M063#0400E	В	0.47	63	105	3	8	400	600	400	300	_	3	3
TCJB684M063#0300E	В	0.47	63	105	4.3	8	300	600	400	300	_	3	3
	<u>В</u>	1.0		105	6.3	8	300	600	400	300	_	3	3
TCJB105M063#0300E TCJC105M063#0300E	C	1.0	63 63	105	6.3	6	300	800	600	400	_	3	3
	C		63	105		6	300	800	600	400		3	
TCJC155M063#0300E	C	1.5			9.5					400	_		3
TCJC225M063#0200E		2.2	63	105	13.9	6	200	900	600		_	3	3
TCJC335M063#0200E	C	3.3	63	105	20.8	6	200	900	600	400	_	3	3
TCJC475M063#0200E	С	4.7	63	105	29.6	6	200	900	600	400	_	3	3
TCJD475M063#0120E	D	4.7	63	105	29.6	6	120	1400	1000	600	-	3	3
TCJD685M063#0120E	D	6.8	63	105	42.8	6	120	1400	1000	600	-	3	3
TCJE685M063#0100E	E	6.8	63	105	42.8	6	100	1600	1100	700	-	3	3
TCJE685M063#0150E	E	6.8	63	105	42.8	6	150	1300	900	600	_	3	3
TCJE106M063#0100E	E	10	63	105	63	6	100	1600	1100	700	-	3	3
TCJE106M063#0150E	Е	10	63	105	63	6	150	1300	900	600	_	3	3
TO ID 47EMOZE#04 FOE		1 7 1	7.5	105		@ 85°C	150	1000	000	F00		1 0 1	
TCJD475M075#0150E TCJD685M075#0120E	D D	4.7 6.8	75 75	105 105	35.3 51	6	150 120	1200 1400	800 1000	500 600	_	3	3
10000001VIU10#0120E	U	0.0	10	100		t @ 85°C	120	1400	1000	1 000		J	
TCJD475M100#0250E	D	4.7	100	105	47	8	250	900	600	400	_	4	3
						t @ 85°C							
TCJD335M125#0250E	D	3.3	125	105	41.2	8	250	900	600	400	_	4	3

Moisture Sensitivity Level (MSL) is defined according to J-STD-020.

All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5RMS

with DC bias of 2.2 volts. DCL is measured at rated voltage after 5 minutes.

ESR allowed to move up to 1.25 times catalog limit post mounting.

For typical weight and composition see page 274.

NOTE: AVX reserves the right to supply higher voltage ratings or tighter tolerance part in the same case size, to the same reliability standards.

Conductive Polymer Solid Electrolytic Chip Capacitors

RECOMMENDED DERATING FACTOR

Voltage and temperature derating as percentage of Vr

PRODUCT CATEGORY 1 (TEMPERATURE RANGE -55°C TO +125°C)

TEST		Condition			C	haracteri	stics					
				Visual examination	no	visible dam	age					
	Apply rate	d voltage (Ur) at 85°C and	d / or 2/3 rated	DCL	1.2	5 x initial lir	nit					
Endurance		r) at 125°C for 2000 hours e of ≤0.1Ω/V. Stabilize at		ΔC/C	wit	nin +10/-20	% of initi	al value				
		urs before measuring.		DF	1.5	x initial lim	it					
				ESR	2 x	initial limit						
				Visual examination	no	visible dam	age					
	Store at 12	25°C, no voltage applied,	for 2000 hours.	DCL	2 x	2 x initial limit						
Storage Life	Stabilize a	t room temperature for 1-		ΔC/C	wit	within +10/-20% of initial value						
	measuring	J.		DF	1.5	1.5 x initial limit						
				ESR	2 x	2 x initial limit						
				Visual examination	no	visible dam	age					
		65°C and 95% relative h		DCL	3 x	initial limit						
Humidity	hours, wit	th no applied voltage. Sure and humidity for 1-2	Stabilize at room 2 hours before	ΔC/C	wit	nin +35/-5%	6 of initia	l value				
	temperature and humidity measuring. Step Temperature			DF	1.5	x initial lim	it					
				ESR	2 x	initial limit		al value 2				
	Step 1	Temperature°C +20	Duration(min) 15		+20°	C -55°C	+20°C	nitial value 0°C +85°C +125° * 10 x IL* 12.5 x 9% +20/-0% +30/-0 * 1.5 x IL* 2 x IL initial value	+125°C	+20°C		
Temperature	2 3	-55 +20	15 15	DCL	IL*	n/a	IL*	itial value ial value C +85°C 10 x IL* 1 +20/-0% - 1.5 x IL* itial value	12.5 x IL*	IL*		
Stability	4	+85	15	ΔC/C	n/a	+0/-20%	±5%	+20/-0%	+30/-0%	±5%		
	5 6	+125 +20	15 15	DF	IL*	1.5 x IL*	IL*	10 x IL* 12.5 x +20/-0% +30/-0		IL*		
	Apply 1.3	3x 2/3x rated voltage (Ur) at 125°C for	Visual examination	no	visible dam	age					
Surge	1000 cyc	les of duration 6 min (30 sec charge,	DCL	init	al limit						
Voltage		sec discharge) through resistance of 1000Ω	h a charge /	ΔC/C	wit	nin +10/-20	% of initi	al value				
Voltage	discriding	c resistance or roots		DF	1.2	5 x initial lir	nit					
				Visual examination	no	visible dam	age					
Mechanical				DCL	init	al limit			1			
Shock	MIL-STD	0-202, Method 213, Co	ondition C	ΔC/C	wit	nin ±5% of	initial val	ue				
OHOOK				DF	init	al limit						
				ESR	init	al limit						
				Visual examination	no	visible dam	age					
				DCL	init	al limit						
Vibration	MIL-STD	0-202, Method 204, Co	ondition D	ΔC/C	wit	nin ±5% of	initial val	ue				
				DF	init	al limit						
				ESR	init	al limit						

^{*}Initial Limit

Initial measurement max. 1hr after the removal from dry pack or after pretreatment at 85°C for 24 hours.

Conductive Polymer Solid Electrolytic Chip Capacitors

PRODUCT CATEGORY 2, 3, 4 (TEMPERATURE RANGE -55°C TO +105°C)

TEST		Condition			Characteristics							
	Apply rate	ed voltage (Ur) at 85°C	for 2000 hours	Visual examination	no visible damage							
		circuit impedance of \leq RIES). And / or apply ra		DCL	1.25 x initial limit							
Endurance Storage Life Humidity Temperature Stability Surge Voltage	(CATEGO	RY 2) or 0.8x rated vol	tage (CATEGORY	ΔC/C	within +10/-20% of initial value							
	3, 4) at 10	05°C for 2000 hours thr	ough a circuit	DF	1.5 x initial limit							
		ce of ≤0.1Ω/V Always st ure for 1-2 hours before		ESR	2 x initial limit							
	<u> </u>											
				Visual examination	no visible damage							
		105°C, no voltage appli		DCL (V _R ≤ 75V)	1.25 x initial limit 2 x initial limit							
Storage Life		abilize at room tempera fore measuring.	ature for 1-2	DCL ($V_R > 75V$) $\Delta C/C$	within +10/-20% of initial value							
	Tiours bei	ore measuring.		DF	1.5 x initial limit							
				ESR	2 x initial limit							
				Visual examination	no visible damage							
		65°C and 95% relative h	,	DCL	3 x initial limit							
Humidity		th no applied voltage. S		ΔC/C	within +35/-5% of initial value							
		ure and humidity for 1-2	2 nours before	DF	1.5 x initial limit							
		9.		ESR	2 x initial limit							
	1 +20 15		Duration(min)	-	+20°C -55°C +20°C +85°C +105°C +20°C							
Tomporoturo				DCL								
· -	3	+20	15									
Stability	5	+85 +105	15 15	ΔC/C	n/a +0/-20% ±5% +20/-0% +30/-0% ±5%							
	6	+20	15	DF								
		rated voltage (Ur) at 105 1.3x 0.8x rated voltage		Visual examination	no visible damage							
Surge		RY 3, 4 for 1000 cycles of		DCL	initial limit							
_	(30 sec ch	arge, 5 min 30 sec discl	harge) through a	ΔC/C	within +10/-20% of initial value							
	charge / d	lischarge resistance of 1	000Ω	DF	1.25 x initial limit							
				Visual examination	no visible damage							
Mechanical				DCL	initial limit							
Shock	MIL-SID	-202, Method 213, Co	ndition C	ΔC/C	within ±5% of initial value							
				DF	initial limit							
				ESR	initial limit							
				Visual examination	no visible damage							
\(\(\) \(NAU OTD	000 14 11 1004 0		DCL	initial limit							
Vibration	MIL-SID	-202, Method 204, Co	naition D	ΔC/C	within ±5% of initial value							
				DF	initial limit							
				ESR	initial limit							

*Initial Limit

Initial measurement max. 1hr after the removal from dry pack or after pretreatment at 85°C for 24 hours.

Conductive Polymer Solid Electrolytic Chip Capacitors

PRODUCT CATEGORY 5 (TEMPERATURE RANGE -55°C TO +85°C)

TEST		Condition			Char	acteristic	s					
				Visual examination	no visib	le damage						
	Apply rate	ed voltage (Ur) at 85°C fo	r 2000 hours	DCL	1.25 x ir	nitial limit						
Endurance	through a	circuit impedance of ≤ 0 .	1Ω/V. Stabilize at	ΔC/C	within +	10/-20% o	f initial va	lue				
Endurance Storage Life Humidity	room tem	perature for 1-2 hours be	efore measuring.	DF		tial limit						
				ESR		2 x initial limit						
				Visual examination		le damage						
	Store at 8	5°C, no voltage applied,	for 2000 hours.	DCL		nitial limit						
Storage Life		at room temperature for 1	-2 hours before	ΔC/C	_	within +10/-20% of initial value						
	measuring).		DF	-	1.5 x initial limit						
				ESR		2 x initial limit						
				Visual examination		le damage						
		65°C and 95% relative h		DCL		5 x initial limit						
Humidity		th no applied voltage. Sure and humidity for 1-2		ΔC/C		within +35/-5% of initial value						
	measurin			DF		1.5 x initial limit						
	0.			ESR	2 x initi							
	Step 1	Temperature°C +20	Duration(min) 15		+20°C	-55°C	+20°C	+85°C	+20°C			
Temperature	2	-55	15	DCL	IL*	n/a	IL*	10 x IL*	IL*			
Stability	3 4	+20 +85	15 15	ΔC/C	n/a	+0/-20%	±5%	+20/-0%	±5%			
,	5	+20	15	DF	IL*	1.5 x IL*	IL*	1.5 x IL*	IL*			
0	Apply 1.2	x rated voltage (Ur) at 8	ESC for	Visual examination	no visib	no visible damage						
-	1000 cyc	les of duration 6 min (30	sec charge,	DCL	initial lin	initial limit						
voitage		sec discharge) through resistance of 1000Ω	a charge /	ΔC/C	within +	within +10/-20% of initial value						
	discriarge	resistance of 100012		DF	1.25 x ir	nitial limit						
				Visual examination	no visib	le damage						
Machanical				DCL	initial lin	nit						
	MIL-STD	0-202, Method 213, Co	ndition C	ΔC/C	within ±	5% of initia	al value					
Snock				DF	initial lin	nit						
				ESR	initial lin	nit						
				Visual examination	no visib	le damage						
				DCL	initial lin	nit						
Vibration	MIL-STE	0-202, Method 204, Co	ndition D	ΔC/C	within ±	5% of initia	al value					
				DF	initial lin	nit						
				ESR	initial lin	nit						

*Initial Limit

Initial measurement max. 1hr after the removal from dry pack or after pretreatment at 85°C for 24 hours.

Conductive Polymer Solid Electrolytic Chip Capacitors

AVX SOLID ELECTROLYTIC CAPACITOR ROADMAP

Five Capacitor Construction Styles

SERIES LINE UP: CONDUCTIVE POLYMER

