CLASSIFYING
 BIOLOGICAL IMAGES
 USING PRE-TRAINED
 CNNs

TEAM

Nikhil Makkar, Hasnain Bilgrami, Hadi Mansourifar, Aditi Singh, Tanay Shah 1 Problem

Object Classification in Biological Domain

- Difficult to use a CNN on a small dataset
- Large number of samples required for greater accuracy
- Annotating biological images needs expertise
- Large labelled dataset not available

2 Dataset Description

Breast Cancer Histopathological Database

Benign:

- Adenosis
- Fibroadenoma
- Phyllodes tumor
- Tubular Adenoma

Malignant:

- Carcinoma
- Lobular Carcinoma
- Mucinous Carcinoma
- Papillary Carcinoma

Breast Cancer Histopathological Database

- Data from 82 patients
- RGB images, size 700x460

Magnification	Benign	Malignant	Total
40X	652	1,370	1,995
100X	644	1,437	2,081
200X	623	1,390	2,013
400X	588	1,232	1,820
Total Number of Images	2,480	5,429	7,909

Samples at 400X magnification

3

Convolutional Neural Network

Similar to Neural Networks

Encode images into meaningful features

Image references: Convolutional Neural Networks for Visual Recognition

VGG-16 Network

- Depth: critical component in performance
- Components: Conv layers, FC layers, ReLU, Pooling
- 140M parameters

Image reference: Heuritech Blog

Transfer Learning

transfer learning

ConvNet as Feature Extractor

- Use VGG-16 trained on Imagenet (1.2 M images, 1000 classes)
- Remove the last fully-connected layer
- Use as feature extractor, 4096 D vector for every image

Image reference: Heuritech Blog

5 Approach

Step 1: Import database

Step 2: Getting the features from VGG-16

tree, trees trees k

Step 3: Class imbalance

Step 4: SVM and Random Forest

6 Results

BreakHis Classification

- Dataset is divided according to the magnifications i.e. 40X, 100X, 200X, 400X
- 2 datasets:
 - 2 classes: Benign and Malignant
 - 8 classes: Subtypes of Benign and Malignant
- Classification is done using C-SVC linear, polynomial SVM and Random Forest

BreakHis Classification

2 classes (average accuracy)

	40X	100X	200X	400X
C-SVC Linear SVM	89%	89%	88%	88%
C-SVC Polynomial SVM	88%	90%	89%	85%
Random Forest	89.18%	88%	87.74%	80%

BreakHis Classification

8 classes (average accuracy)

	40X	100X	200X	400X
C-SVC Linear SVM	55.97%	51.59%	55.93%	53.06%
C-SVC Polynomial SVM	53.70%	55,12%	54.78%	53.9%
Random Forest	48.50%	49%	49.81%	48.16%

7 Conclusion

- Pre-training can be used in case of small dataset
- Pre-trained network on natural images, can give significant result in images from an entire different domain
- Performance also depends on complexity of classification task

8 Ongoing Work

AlexNet

AlexNet: ~60M parameters

REFERENCES

- Breast Cancer Histopathological Database
 http://web.inf.ufpr.br/vri/breast-cancer-database
- F. A. Spanhol, L. S. Oliveira, C. Petitjean and L. Heutte, "Breast cancer histopathological image classification using Convolutional Neural Networks," 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, 2016, pp. 2560-2567.
- Aravindh Mahendran, Andrea Vedaldi, "Visualizing Deep Convolutional Neural Networks Using Natural Pre-Images"
- Nima Tajbakhsh et. al., "Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?"
- http://www.deeplearningmodel.net
- https://github.com/tensorflow/models/tree/master/slim

Thanks!

ANY QUESTIONS?