Responsable: S.TALEB

Série d'exercices 1

Exercice 1

Soit $(X_1, ..., X_n)$ un n-échantillon d'une variable aléatoire X de fonction de répartition F.

On définit la fonction de répartition empirique F_n par :

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{X_i \le x\}}, x \in \mathbb{R}.$$

- 1. Donner la loi de $nF_n(x)$. En déduire $E(F_n(x))$ et $V(F_n(x))$.
- 2. Montrer que

$$\sqrt{n} \frac{(F_n(x) - F(x))}{\sqrt{F(x)(1 - F(x))}} \stackrel{loi}{\to} N(0,1).$$

3. Monter que

$$F_n(x) \xrightarrow{m.q} F(x).$$

- 4. En déduire, de 3, que $F_n(x) \xrightarrow{proba} F(x)$.
- 5. Montrer que

$$F_n(x) \stackrel{P.S}{\to} F(x)$$
.

Exercice 2:

Montrer que

$$\sum_{j=k}^{n} C_n^j p^j (1-p)^{n-j} = \frac{n!}{(k-1)! (n-k)!} \int_0^p t^{k-1} (1-t)^{n-k} dt.$$

Indication : intégrer par parties le second membre de l'égalité.

Exercice 3:

Soit $(X_1, ..., X_n)$ un n-échantillon d'une loi $U_{[0,1]}$ et soit $(X_{(1)}, ..., X_{(n)})$ l'échantillon ordonné associé.

- 1. Déterminer la loi de $X_{(k)}$, $k = \overline{1, n}$.
- 2. Déterminer la loi de l'étendue $W = X_{(n)} X_{(1)}$ puis calculer E(W) et V(W).
- 3. Montrer que les $W_{i,i+1} = X_{(i+1)} X_{(i)}$ sont de même loi que $X_{(1)}$.
- 4. Donner la loi de $W_{i,j} = X_{(j)} X_{(i)}$ puis calculer $E(W_{i,j})$, j > i.

Exercice 4:

Soit $(X_1, ..., X_n)$ un n-échantillon d'une loi $\xi(\lambda)$ et soit $(X_{(1)}, ..., X_{(n)})$ l'échantillon ordonné associé.

- 1. Donner la loi du vecteur $(X_{(1)}, ..., X_{(n)})$.
- 2. Montrer que les $W_{i,i+1} = X_{(i+1)} X_{(i)}$ sont des variables aléatoires indépendantes et que

$$W_{i,i+1} \sim \xi(\lambda(n-i)).$$

3. Montrer que les variables aléatoires $X_{(i)}$ et $X_{(j)} - X_{(i)}$, i < j, sont indépendantes et que $X_{(j)} - X_{(i)}$ a la même loi que $X_{(j-i)}$ dans un (n-i)-échantillon de même loi exponentielle.

Exercice 5:

Soient $X_{(1)}, ..., X_{(2m+1)}$ les statistiques d'ordre d'un (2m+1)-échantillon issu de la loi $U_{]\theta_1,\theta_2[}$. On considère les statistiques :

- La médiane $T_1 = X_{(m+1)}$,
- La moyenne extrême $T_2 = \frac{X_{(1)} + X_{(2m+1)}}{2}$
- La moyenne de l'échantillon $T_3 = \overline{X} = \frac{1}{2m+1} \sum_{i=1}^{2m+1} X_i$.
- 1. Donner la loi de $X_{(i)}$, $i = \overline{1, (2m+1)}$.
- 2. Montrer que T_1 , T_2 et T_3 ont la même espérance.
- 3. Déterminer $V(T_i)$, $i = \overline{1,3}$.
- 4. Examiner le comportement asymptotique des rapports de variance des trois estimateurs et commenter les résultats.

Exercice 6:

Soient $X_{(1)}$, ..., $X_{(n)}$ les statistiques d'ordre d'un n-échantillon issu d'une loi continue de fonction de répartition F. On pose

$$V_k = \frac{Z_k}{Z_{k+1}}, \qquad U_{k+1} = Z_{k+1}, \qquad où \quad Z_k = F(X_{(k)}).$$

- 1. Que représente Z_k , $k = \overline{1, n}$.
- 2. Rappeler la loi de Z_k et la loi conjointe du couple (Z_k, Z_{k+1}) .
- 3. Montrer que V_k et U_{k+1} sont des v.a. indépendantes et que V_k^k est uniformément distribuée sur $]0,1[,k=\overline{1,n-1}]$.

Exercice 7:

Soit $(R_1, ..., R_n)$ le vecteur des rangs associé à l'échantillon $(X_1, ..., X_n)$.

- 1. Rappeler la loi de $(R_1, ..., R_n)$, R_i et la loi conjointe du couple (R_i, R_j) , $1 \le i < j \le n$.
- 2. Déterminer $Cov(R_i, R_j)$, $1 \le i < j \le n$.
- 3. Calculer $\sum_{i=1}^{n} R_i$ et $V(\sum_{i=1}^{n} R_i)$.