Numerical Methods for Hyperbolic PDEs Homework 1

James King*, Robert Ziegler†

March 06, 2024

Exercise 1

(1a)

We first find necessary conditions for a smooth solution u of the IVP, where we assume the domain is $(x,t) \in \mathcal{D} = \mathbb{R} \times \mathbb{R}_{\geq 0}$. Since the PDE is linear (so also quasi-linear) of first order, the integral surface

$$\mathcal{S} = \{x, t, u(x, t) : (x, t) \in \mathcal{D}\} \subset \mathbb{R}^3$$

is the union of characteristic curves for the solution u. The characteristic field of the equation is the constant vector field

$$\mathbf{F}(x,t,u) = \begin{pmatrix} 8/3 \\ 1 \\ 0 \end{pmatrix},$$

satisfying $\mathbf{F} \cdot \begin{pmatrix} -u_x \\ -u_t \\ 1 \end{pmatrix} = 0$. Thus, setting $\Phi = (x, t, u)$, the characteristic equa-

tions given by the ODE system $\dot{\Phi} = F(\Phi)$ are

$$\begin{cases} \dot{x}(s) = 8/3 \\ \dot{t}(s) = 1 \\ \dot{u}(s) = 0 \end{cases}$$

Solving this, we get

$$\begin{cases} x(s) = 8/3s + x_0 \\ t(s) = s + t_0 \\ u(s) = u(x(s), t(s)) = C, \end{cases}$$

^{*}Immatriculation Nr. 23-942-030

 $^{^\}dagger {\rm Immatriculation~Nr.~18-550-558}$

where x_0, t_0, C are constants. Inserting the initial values we get

$$t(0) = t_0 = 0$$

$$u(0) = C = u(x_0, 0) = \exp(x_0^2).$$

Using u(x(s), s) = C for all $s \ge 0$ we obtain the necessary condition

$$u(x(s), s) = u(8/3s + x_0, s) = \exp(x_0^2),$$

for all $x_0 \in \mathbb{R}$ and $s \geq 0$. By a substitution, using that

$$\mathbb{R} \to \mathbb{R}$$
$$s \mapsto 8/3s + x_0$$

is bijective, it follows that the solution u must satisfy

$$u(x,t) = \exp((x - 8/3t)^2).$$

Now it can easily be checked that this is indeed a solution of the IVP.

(1b)

Since the equation is again quasi-linear of first order, we can use the same approach as in (1a) and the same domain \mathcal{D} . Assuming again a smooth solution ρ , we have the characteristic vector field

$$\mathbf{F}(x,t,\rho) = \begin{pmatrix} 2\rho \\ 1 \\ 0 \end{pmatrix},$$

leading to the characteristic equations

$$\begin{cases} \dot{x}(s) = 2\rho \\ \dot{t}(s) = 1 \\ \dot{\rho}(s) = 0 \end{cases}$$

Since $\rho(s) = \rho(x(s), t(s))$ must be constant we obtain

$$\begin{cases} x(s) = 2Cs + x_0 \\ t(s) = s + t_0 \\ \rho(s) = C = \rho(0) \end{cases}$$

Inserting the inital values we get t(s) = s and

$$\rho(s) = C = \begin{cases} 3, & x_0 < 0 \\ 4, & x_0 \ge 0 \end{cases}$$

$$\begin{cases} 6s + x_0, & x_0 < 0 \end{cases}$$

$$x(s) = \begin{cases} 6s + x_0, & x_0 < 0 \\ 8s + x_0, & x_0 \ge 0 \end{cases}$$

Note that the characteristic curves $\{(x(t),t)\}_{x_0\in\mathbf{R}}$ for the IVP do not cover all of \mathcal{D} , so there cannot exist a smooth solution.

However, we can find a weak solution. The PDE is of the form

$$\rho_t + f(\rho)_x = 0,$$

where $f(z) = z^2$. This is a scalar conservation law as a Riemann problem. Using the Rankine-Hugoniot condition in chapter 3.2.1 of the lecture notes, we find that the shock speed satisfies

$$s(t) = \frac{f(4) - f(3)}{4 - 3} = 16 - 9 = 7.$$

A weak solution is therefore given by

$$u(x,t) = \begin{cases} 3, & x < 7t \\ 4, & x \ge 7t. \end{cases}$$

Exercise 2

Let $\mathcal{D} = [0,1] \times \mathbb{R}_{\geq 0}$. We see as in Exc. (1a), that the PDE has characteristic curves of the form

$$x(t) = t + x_0, \quad x_0 \in \mathbb{R}.$$

Therefore, a smooth solution u has the form $u(x,t) = u(x-t,0) = \phi(x-t)$ for some function ϕ defined on $(-\infty,1]$ which is smooth on $(-\infty,1)$. Therefore, using the boundary conditions, we get

$$u(0,t) = \phi(-t) \stackrel{!}{=} 0, \quad t \ge 0$$

 $u(1,t) = \phi(1-t) \stackrel{!}{=} 2, \quad t \ge 0$

Thus, inserting t = 0, t = 1 respectively, we get $\phi(0) = 0$ and $\phi(0) = 2$, which is a contradiction. So no smooth solution can exist.

This makes sense physically: The value u of at (x,t)=(0,0) gets transported along the line x=t to the point (1,1), but the boundary condition assumes different values.

Exercise 3

N	L^1 -Error	rate	L^2 -Error	rate	L^{∞} -Error	rate
40	0.389	-	0.439	-	0.633	-
80	0.244	0.676	0.274	0.680	0.394	0.686
160	0.137	0.826	0.154	0.829	0.221	0.835
320	0.073	0.909	0.082	0.912	0.117	0.919
640	0.038	0.952	0.042	0.955	0.060	0.960


```
L1 average convergence rate: 0.8461225657687025
L2 average convergence rate: 0.8493698611798441
Linf average convergence rate: 0.8551629751356852
N = 40
L1 Error at N=40: 0.38923302848668573
L2 Error at N=40: 0.43903877844187666
Linf Error at N=40: 0.6330159194916749
N=80
L1 Error at N=80: 0.24362661560581
L2 Error at N=80: 0.27411998636520424
Linf Error at N=80: 0.3935569426046138
L1 local convergence rate at N=80 : 0.675962382915764
L2 local convergence rate at N=80: 0.6795408521992293
Linf local convergence rate at N=80: 0.6856693917659438
N = 160
L1 Error at N=160: 0.13740391449661243
L2 Error at N=160: 0.1542774109075745
Linf Error at N=160: 0.22064638481508903
L1 local convergence rate at N=160 : 0.8262486470791478
L2 local convergence rate at N=160: 0.8292806804609256
Linf local convergence rate at N=160: 0.8348362805240694
N = 320
L1 Error at N=320: 0.07318614062592668
L2 Error at N=320: 0.08198966235056662
Linf Error at N=320: 0.11673426176222013
L1 local convergence rate at N=320 : 0.9087807315757385
L2 local convergence rate at N=320: 0.9120129154835559
Linf local convergence rate at N=320: 0.9185080522830033
N = 640
L1 Error at N=640: 0.037828251432594016
L2 Error at N=640: 0.0422828891918873
Linf Error at N=640: 0.060002689477895554
L1 local convergence rate at N=640 : 0.9521063779454269
L2 local convergence rate at N=640: 0.9553680597832739
Linf local convergence rate at N=640: 0.9601289847018769
```