Toric Geometry: Example Sheet 1

Isaac Martin

Last compiled January 31, 2022

§ Theory Problems

EXERCISE 1. Given a cone $\sigma \subseteq N_{\mathbb{R}}$ prove that the double dual recovers the original cone:

$$(\sigma^{\vee})^{\vee} = \sigma.$$

This justifies the use of the word "dual".

Proof: We provide two solutions to this problem.

(1) This is a rather inelegant solution which makes use of the identifications $V \cong V^{\vee} \cong (V^{\vee})^{\vee}$ in the case that V is a finite dimensional vector space. It nonetheless reflects how one typically thinks of the dual cone σ^{\vee} geometrically.

Recall that for any field K and any K-vector space V of dimension $n < \infty$, we can find a non-canonical isomorphism $V \cong V^{\vee}$. One typically constructs such an isomorphism as follows.

First, fix a basis $\{e_1,...,e_n\}$ for V and define e_i^\vee to be the K-linear functional $e_i^\vee(\sum_{i=1}^n a_i e_i) = a_i$. It is straightforward to check that $\{e_1^\vee,...,e_n^\vee\}$ forms a basis for the dual space V^\vee . We may similarly define the basis $\{e_1^{\vee\vee},...,e_n^{\vee\vee}\}$ of the double dual $V^{\vee\vee}$.

The pairing $\langle -, - \rangle : V^{\vee} \times V \to K$ appearing in the definition of σ^{\vee} is the bilinear map defined $\langle \lambda, v \rangle = \lambda(v)$. Adopting the above notation in the case that $V = N_{\mathbb{R}}$, we see that this pairing is simply the standard Euclidean inner product. Indeed, letting $\{e_i\}$ denote the standard basis on $\mathbb{R}^n \cong N_{\mathbb{R}}$, given any $v \in N_{\mathbb{R}}$ and $m \in M_{\mathbb{R}}$ and choosing $a_i \in \mathbb{R}$ and $b_i \in \mathbb{R}$ such that $v = \sum a_i e_i$ and $m = \sum b_i e_i^{\vee}$, we see that

$$\langle m, v \rangle = m(v)$$

= $(b_1 e_1^{\vee} + ... + b_n e_n^{\vee})(v)$
= $b_1 e_1^{\vee}(v) + ... + b_n e_n^{\vee}(v)$
= $b_1 \cdot a_1 + ... + b_1 \cdot a_1$.

By identifying $N_{\mathbb{R}}$ and $M_{\mathbb{R}}$ via $e_i \leftrightarrow e_i^{\vee}$, we may in fact *define* $\langle m, v \rangle$ to be the Euclidean inner product. This is useful because the Euclidean inner product is symmetric, i.e. $\langle m, v \rangle = \langle v, m \rangle$. By further identifying $\operatorname{Hom}_{\mathbb{R}}(M_{\mathbb{R}}, \mathbb{R}) = M_{\mathbb{R}}^{\vee}$ with $N_{\mathbb{R}}$ and $M_{\mathbb{R}}$ by $e_i \leftrightarrow e_i^{\vee} \leftrightarrow e_i^{\vee}$, we see that for $v \in M_{\mathbb{R}}^{\vee}$ and $m \in M_{\mathbb{R}}$,

$$\langle v, m \rangle \ge 0 \iff \langle m, v \rangle \ge \iff \langle m, v' \rangle \ge 0$$

where v' is the unique element in $N_{\mathbb{R}}$ corresponding to $v \in M_{\mathbb{R}}^{\vee}$. Thus, under these identifications, we quite literally have that $(\sigma^{\vee})^{\vee} = \sigma$.

(2) After reading Fulton more closely, I realized that it is perhaps more natural to define $(\sigma^{\vee})^{\vee}$ to be a subset of σ rather than a subset of $\mathrm{Hom}_{\mathbb{R}}(M_{\mathbb{R}},\mathbb{R})$. Given a subset $A\subseteq M_{\mathbb{R}}$, we first define the *predual* cone $A^{\vee}\subseteq N_{\mathbb{R}}$ of A to be

$$A^{\vee} = \{ v \in N_{\mathbb{R}} \mid \lambda(v) \ge 0, \text{ for all } \lambda \in A \},$$

and then define the double dual $(\sigma^{\vee})^{\vee}$ to be the predual cone of σ^{\vee} . Showing that $(\sigma^{\vee})^{\vee} = \sigma$ is therefore equivalent to showing that for any $v_0 \in N_{\mathbb{R}} \setminus \sigma$, there is some $\lambda \in \sigma^{\vee}$ such that $\lambda(v_0) < 0$.

To do this, we use a version of the Hahn-Banach theorem I came across on Wikipedia. I'm not entirely sure this works, as I'm taking for granted that $N_{\mathbb{R}} \cong \mathbb{R}^n$ as a *topological* vector space. Here is the theorem:

Theorem 0.1. Let A and B be non-empty convex subsets of a real locally convex topological vector space X. If $Int(A) \neq \emptyset$ and $B \cap Int(A) = \emptyset$, then there exists a continuous linear functional $f: X \to \mathbb{R}$ such that $\sup f(A) \leq \inf f(B)$ and $|f(a)| < \inf f(B)$ for all $a \in Int(A)$.

Let v_0 be any element of $N_{\mathbb{R}}$ not in σ . Let A be an open ball centered at v_0 such that $A \cap \sigma = \emptyset$. This exists because σ is a closed subset of $N_{\mathbb{R}}$ which does not contain v_0 , meaning the distance from v_0 to σ is positive. By Hahn-Banach, there exists a linear functional $\lambda \in M_{\mathbb{R}}$ such that $\lambda(v_0) < M = \inf \lambda(B)$. We show that $M = v_0$, hence $\lambda \in \sigma^{\vee}$.

We must have that $M \le 0$ since $\lambda(0) = 0$ and $0 \in \sigma$. If M < 0, then there would necessarily be some $x \in \sigma$ such that $\lambda(x) < 0$. Assuming this to be the case, set $a = \frac{2\lambda(v_0)}{\lambda(x)}$, noting that a > 0 since $\lambda(x), \lambda(v_0) < 0$. This means that $ax \in \sigma$. However, recalling that $\lambda(v_0) < 0$, we have that

$$\lambda(ax) = a\lambda(x) = 2\lambda(v_0) < \lambda(v_0),$$

which is impossible since $\lambda(v_0) < \lambda(u)$ for all $u \in \sigma$. Hence, by contradiction, M = 0 and λ is nonnegative on all of σ . This means $\lambda \in \sigma^{\vee}$, so we are done.

I sincerely hope there is another proof besides the two provided here. The first feels highly unnatural and the second seems non-trivial. Given that both Cox-Little-Schneck and Fulton omit a proof of this fact in their book and that neither includes this problem as an exercise, I expect there exists a more natural, obvious proof of this fact that I am missing.

EXERCISE 10 Another problem

§ Practice Problems

EXERCISE 1. First problem

EXERCISE 10 Another problem