Polar Coordinates

Gunja Sachdeva

Department of Mathematics BITS Pilani, Goa Campus

August 6, 2024

Recall

locate a point (ancodered pavo) in the plane, using distance's angle 101 (A, B) (2,0) are related as follows (21,4) (s,0) - a (x,y) Use x=s,0000, y=ssin0 (x,y) = (3,0) Use $y^2 = x^2 + y^2$, $tan0 = \frac{y}{x}$ Fix 9= +1 x2+12, choose 0 such (x,y) and (2,0) he in the same quadrant.

Convert the following polar equations into Cartesian equations:

1.
$$r\cos\theta = 2$$

2.
$$r\sin\theta = r\cos\theta$$
 \Rightarrow $\%$

2.
$$r\sin\theta = r\cos\theta$$
 \Rightarrow $y=x$
3. $r^2 = 4r\sin\theta$ \Rightarrow $x^2+y^2=yy$ \Rightarrow $x^2+y^2-yy+y=y$
4. $r = \csc\theta e^{r\cos\theta}$ \Rightarrow $y=x$
5. $r\sin\theta = r\cos\theta$ \Rightarrow $y=x$

4.
$$r = \csc\theta e^{r\cos\theta}$$

5.
$$r\sin\theta = \ln r + \ln(\cos\theta)$$
. $y = \ln x$

Convert the following Cartesian equations into polar equations:

1.
$$x=2$$
 \Rightarrow $f(0) = 2$

2.
$$x^2 + y^2 = 4$$
 3 $y^2 = 4$ 4 $y^2 = 4$ 3 $y^2 = 4$ 4 $y^2 = 4$ 5 $y^2 = 4$

2.
$$x^{2} + y^{2} = 4$$
 => $y^{2} = 4$ => $y^{2} =$

4.
$$x^2 + xy + y^2 = 1$$

5.
$$(x+2)^2 + (y-5)^2 = 16$$

Graphing of Polar equations

Plot: vory or gives different values of y

verhed and horizontal

lines gives a quaph poper

n= f(0) -> curve in

the plane

vary 0 gives volves of

writes and the lines
passing through
the origin gues a
geoph poper.

Polar curves

The graph of a polar equation $r = f(\theta)$ [or, more generally, $F(r, \theta) = 0$] consists of all points that have at least one polar representation (r, θ) , whose coordinates satisfy the equation.

Example. Which of the following points lies on the polar curve $r = \cos(\theta/3)$

Example. What curve is represented by the polar equation r = 2?

Example. Sketch the polar curve $\theta = 1$.

0=1

Circles and lines

August 6, 2024

Graph paper of Polar coordinate system

Graph the sets of points whose polar coordinates satisfy the following

conditions:

2.
$$-3 \le r \le 2$$
, $\theta = \frac{\pi}{4}$

1.
$$1 \le r \le 2$$
, $0 \le \theta \le \frac{\pi}{2}$
2. $-3 \le r \le 2$, $\theta = \frac{\pi}{4}$
3. $\frac{2\pi}{3} \le \theta \le \frac{5\pi}{6}$, no restriction on r

Plotting the Polar curve

One way to graph a polar equation $r = f(\theta)$ is to make a table of (r,θ) -values, plot the corresponding points, and connect them in order of increasing θ .

Example. Plot $r = 2\cos\theta$

•	
=)	
•	

$$3x^{2} = 29.(050)$$

$$x^{2} + y^{2} = 2x = 3x^{2} - 2x + 1 + y^{2} = 1$$

$$(x-1)^{2} + y^{2} = 1$$

 $r = 2 \cos \theta$ $\pi/6$ $\pi/4$ $\pi/3$ $\pi/2$ $2\pi/3$ $3\pi/4$ $5\pi/6$ π D 2007 Thomson Higher Education

(1,0)

This method can work well if enough points have been plotted to reveal all the loops and dimples in the graph.

Another technique for graphing

- First graph $r = f(\theta)$ in the Cartesian $r\theta$ -plane.
- then use the Cartesian graph as a "table" and guide to sketch the polar coordinate graph

Example. Sketch the curve $r = 1 + \sin \theta$.

Step 1. We first sketch the graph of $r=1+\sin\theta$ in Cartesian coordinates. This enables us to read at a glance the values of r that correspond to increasing values of θ

Another technique for graphing

- First graph $r = f(\theta)$ in the Cartesian $r\theta$ -plane.
- then use the Cartesian graph as a "table" and guide to sketch the polar coordinate graph

Example. Sketch the curve $r = 1 + \sin \theta$.

Step 1. We first sketch the graph of $r=1+\sin\theta$ in Cartesian coordinates. This enables us to read at a glance the values of r that correspond to increasing values of θ

Step 2. We plot the curve in the polar graph

• We see that, as θ increases from 0 to $\frac{\pi}{2}$, r (the distance from O) increases from 1 to 2. So, we sketch the corresponding part of the polar curve.

Step 2. We plot the curve in the polar graph

• We see that, as θ increases from 0 to $\frac{\pi}{2}$, r (the distance from O) increases from 1 to 2. So, we sketch the corresponding part of the polar curve.

• As θ increases from to $\frac{\pi}{2}$ to π , r decreases from 2 to 1.

Step 2. We plot the curve in the polar graph

• We see that, as θ increases from 0 to $\frac{\pi}{2}$, r (the distance from O) increases from 1 to 2. So, we sketch the corresponding part of the polar curve.

• As θ increases from to $\frac{\pi}{2}$ to π , r decreases from 2 to 1.

• As θ increases from to π to $\frac{3\pi}{2}$, r decreases from 1 to 0.

• As θ increases from to π to $\frac{3\pi}{2}$, r decreases from 1 to 0.

• Finally, as θ increases from $\frac{3\pi}{2}$ to 2π , r increases from 0 to 1.

