

Optimal codes for correcting a single (wrap-around) burst of erasures

Henk D.L. Hollmann and Ludo M.G.M. Tolhuizen ^{*}

February 2, 2008

Abstract

In 2007, Martinian and Trott presented codes for correcting a burst of erasures with a minimum decoding delay. Their construction employs $[n, k]$ codes that can correct any burst of erasures (including wrap-around bursts) of length $n - k$. They raised the question if such $[n, k]$ codes exist for all integers k and n with $1 \leq k \leq n$ and all fields (in particular, for the binary field). In this note, we answer this question affirmatively by giving two recursive constructions and a direct one.

^{*}The authors are with Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands; e-mail:{henk.d.l.hollmann,ludo.tolhuizen}@philips.com

1 Introduction

In [1], Martinian and Trott present codes for correcting a burst of erasures with a minimum decoding delay. Their construction employs $[n, k]$ codes that can correct any burst of erasures (including wrap-around bursts) of length $n - k$. Examples of such codes are MDS codes and cyclic codes. The question is raised in [1] if such $[n, k]$ codes exist for all integers k and n with $1 \leq k \leq n$ and all fields (in particular, over the binary field). In this note, we answer this question affirmatively by giving two recursive constructions and a direct one.

Throughout this note, all matrices and codes are over the (fixed but arbitrary) finite field \mathbb{F} , and we restrict ourselves to linear codes.

Obviously, a code of length n can correct a pattern E of erasures if and only if any codeword can be uniquely recovered from its values in the $(n - |E|)$ positions outside E . As a consequence, if an $[n, k]$ code can correct a pattern E of erasures, then $n - |E| \geq k$, i.e., $|E| \leq n - k$. We call an $[n, k]$ code *optimal* if it can correct any burst of erasures (including wrap-around bursts) of length $n - k$.¹ Equivalently, an $[n, k]$ code is optimal if knowledge of any k (cyclically) consecutive symbols from a codeword allows one to uniquely recover that codeword, or, in coding parlance, if each of the n sets of k (cyclically) consecutive codeword positions forms an information set. We call a $k \times n$ matrix *good* if any k cyclically consecutive columns of G are independent. It is easy to see that a code is optimal if and only if it has a good generator matrix.

Throughout this note, we denote with I_k the $k \times k$ identity matrix, and with X^T the transpose of the matrix X .

2 A recursive construction of optimal codes

In this section, we give a recursive construction of good matrices, and hence of optimal codes. We start with a simple duality result.

Lemma 2.1 *Let C be an $[n, k]$ code, and let C^\perp be its dual. If $I \subset \{1, \dots, n\}$ has size k and is an information set for C , then $I^* = \{1, \dots, n\} \setminus I$ is an information set for C^\perp .*

Proof: By contradiction. Suppose that I^* is not an information set for C^\perp . Then there is a non-zero word \mathbf{x} in C^\perp that is zero in the positions indexed by I^* . As \mathbf{x} is in C^\perp , for any word $\mathbf{c} \in C$ we have that

$$0 = \sum_{i=1}^n x_i c_i = \sum_{i \in I} x_i c_i.$$

¹A more precise terminology would be "optimal for the correction of a single (wrap-around) burst of erasures", but we opted for just "optimal" for notational convenience.

As a consequence, there are k -tuples that do not occur in I in any word of C , a contradiction. We conclude that I^* is an information set for C^\perp . \square

As a consequence, we have the following.

Corollary 2.2 *A linear code is optimal if and only if its dual is optimal.*

Our first theorem shows how to construct a good $k \times (k+n)$ matrix from a good $k \times n$ matrix.

Theorem 2.3 *Let $G = (I_k \ P)$ be a good $k \times n$ matrix. Then $G' = (I_k \ I_k \ P)$ is a good $k \times (k+n)$ matrix.*

Proof: Any k cyclically consecutive columns in G' either are k different unit vectors, or k cyclically consecutive columns of G . \square

Our next theorem shows how to construct a good $n \times (2n-k)$ matrix from a good $k \times n$ matrix.

Theorem 2.4 *Let $G = (I_k \ P)$ be a good $k \times n$ matrix. The the following $n \times (2n-k)$ matrix G' is good*

$$G' = \begin{pmatrix} I_{n-k} & 0 & I_{n-k} \\ 0 & I_k & P \end{pmatrix}.$$

Proof: As G is good, Corollary 2.2 implies that the generator matrix $(-P^T \ I_{n-k})$ of the dual of the code generated by G is good. By cyclically shifting the columns of this matrix over $(n-k)$ positions to the right, we obtain the good matrix $(I_{n-k} \ -P^T)$.

Theorem 1 implies that $(I_{n-k} \ I_{n-k} \ -P^T)$ is good, and so the matrix $H = (I_{n-k} \ -P^T \ I_{n-k})$ obtained by cyclically shifting the columns of the former matrix over n positions, is good. Clearly, after multiplying the columns of a good matrix with non-zero field elements, we obtain a good matrix; as a consequence, $H' = (-I_{n-k} \ -P^T \ I_{n-k})$ is good. As H' is a good full-rank parity check matrix of the code generated by G' , this latter matrix is good. \square

Remark The construction from Theorem 2.4 also occurs in the proof of [1, Thm.1].

The construction from Theorem 2.3 increases the code length and fixes its dimension; the construction from Theorem 2.4 also increases the code length, but fixes its redundancy. These constructions can be combined to give a recursive construction of optimal $[n, k]$ code for all k and n . The following definition is instrumental in making this explicit.

Definition 2.5 *For positive integers r and k , we recursively define the $k \times r$ matrix $P_{k,r}$ as follows:*

$$P_{k,r} = \begin{cases} \begin{pmatrix} I_r \\ P_{k-r,r} \end{pmatrix} & \text{if } 1 \leq r < k, \\ I_k & \text{if } r = k, \\ (I_k \ P_{k,r-k}) & \text{if } r > k. \end{cases}$$

Theorem 2.6 For each positive integer k , the matrix I_k is good.

For all integers k and n with $1 \leq k < n$, the $k \times n$ matrix $(I_k P_{k,n-k})$ is good.

Proof: The first statement is obvious.

The second statement will be proved by induction on $k + n$. It is easily verified that it is true for $k + n = 3$. Now assume that the statement is true for all integers a, b with $1 \leq a \leq b$ and $a + b < k + n$. We consider three cases.

If $2k < n$, then by induction hypothesis $(I_k P_{k,n-2k})$ is good. By Theorem 2.3, $(I_k I_k P_{k,n-2k}) = (I_k P_{k,n-k})$ is also good.

If $2k = n$, then $(I_k P_{n-k}) = (I_k P_{k,k}) = (I_k I_k)$, which obviously is a good matrix. If $k < n$ and $2k > n$, the induction hypothesis implies that $(I_{2k-n} P_{2k-n,n-k})$ is a good $(2k - n) \times k$ matrix. By Theorem 2.4,

$$\begin{pmatrix} I_{n-k} & 0 & I_{n-k} \\ 0 & I_{2k-n} & P_{2k-n,n-k} \end{pmatrix} = (I_k P_{k,n-k})$$

is also good. \square

Example 2.7 Theorem 2.6 implies that $(I_{28} P_{28,17})$ is a good 28×45 matrix.

According to the definition, $P_{28,17} = \begin{pmatrix} I_{17} \\ P_{11,17} \end{pmatrix}$.

Again according to the definition, $P_{11,17} = (I_{11} P_{11,6})$.

Continuing in this fashion, $P_{11,6} = \begin{pmatrix} I_6 \\ P_{5,6} \end{pmatrix}$.

Finally, $P_{5,6} = (I_5 P_{5,1})$, and, as can be readily seen by induction on k , $P_{k,1}$ is the all-one vector of height k .

Putting this altogether, we find that the following 28×45 matrix G is good:

$$G = \left(\begin{array}{ccc|cc|ccc} I_6 & 0 & 0 & 0 & 0 & I_6 & 0 & 0 \\ 0 & I_5 & 0 & 0 & 0 & 0 & I_5 & 0 \\ 0 & 0 & I_6 & 0 & 0 & 0 & 0 & I_6 \\ \hline 0 & 0 & 0 & I_6 & 0 & I_6 & 0 & I_6 \\ 0 & 0 & 0 & 0 & I_5 & 0 & I_5 & P_{5,6} \end{array} \right),$$

where $P_{5,6} = (I_5 \mathbf{1})$, where $\mathbf{1}$ denotes the all-one column vector.

To close this section, we remark that with an induction argument it can be shown that for all positive integers k and r , we have $P_{k,r} = P_{r,k}^T$.

3 Adding one column to a good matrix

In Theorem 2.3, we added k columns to a good $k \times n$ matrix to obtain a good $k \times (k + n)$ matrix. In this section, we will show that it is always possible to add a single column to

a good $k \times n$ matrix in such a way that the resulting $k \times (n + 1)$ matrix is good; we also show that in the binary case, there is a *unique* column that can be added. The desired result is a direct consequence of the following observation, which may be of independent interest.

Lemma 3.1 *Let \mathbb{F} be any field, and let $a_1, a_2, \dots, a_{2k-2}$ be a sequence of vectors in \mathbb{F}^k such that $a_i, a_{i+1}, \dots, a_{i+k-1}$ are independent over \mathbb{F} for $i = 1, \dots, k - 1$. For $i = 1, \dots, k$, let b_i be a nonzero vector orthogonal to $a_i, a_{i+1}, \dots, a_{i+k-2}$. Then b_1, \dots, b_k are independent over \mathbb{F} .*

Proof: For $i = 1, \dots, k$, we define

$$V_i := \text{span}\{a_i, \dots, a_{i+k-2}\}.$$

For an interval $[i + 1, i + s] := \{i + 1, i + 2, \dots, i + s\}$, with $0 \leq i < i + s \leq k$, we let

$$V_{[i+1, i+s]} = V_{i+1} \cap \cdots \cap V_{i+s}$$

denote the intersection of V_{i+1}, \dots, V_{i+s} . Note that by definition

$$V_{[i, i]} = V_i = b_i^\perp.$$

We claim that

$$V_{[i+1, i+s]} = \text{span}\{a_{i+s}, \dots, a_{i+k-1}\}.$$

This is easily proven by induction on s : obviously, the claim is true for $s = 1$; if it holds for all $s' \leq s$, then

$$\begin{aligned} V_{[i+1, i+s+1]} &= V_{[i+1, i+s]} \cap V_{i+s+1} \\ &= \text{span}\{a_{i+s}, \dots, a_{i+k-1}\} \cap \text{span}\{a_{i+s+1}, \dots, a_{i+s+k-1}\}, \end{aligned}$$

hence $V_{[i+1, i+s]}$ certainly contains $a_{i+s+1}, \dots, a_{i+k-1}$ and does not contain a_{i+s} , since by assumption $a_{i+s} \notin \text{span}\{a_{i+s+1}, \dots, a_{i+s+k-1}\}$.

So by our claim it follows that

$$\{0\} = V_{[1, k]} = V_1 \cap \cdots \cap V_k = b_1^\perp \cap \cdots \cap b_k^\perp,$$

hence b_1, \dots, b_k are independent. \square

As an immediate consequence, we have the following.

Theorem 3.2 *Let M be a good $k \times n$ matrix over $\text{GF}(q)$. There are precisely $(q - 1)^k$ vectors $x \in \text{GF}(q)^k$ such that the matrix (Mx) is good.*

Proof: Let $M = (m_0, m_1, \dots, m_{n-1})$ have columns $m_0, \dots, m_{n-1} \in GF(q)^k$. We want to find all vectors $x \in GF(q)^k$ with the property that the k vectors

$$m_{n-i}, \dots, m_{n-1}, x, m_0, \dots, m_{k-i-2} \quad (1)$$

are independent, for all $i = k-1, k-2, \dots, 0$. So, for $i = k-1, k-2, \dots, 0$, let b_i be a nonzero vector orthogonal to $m_{n-i}, \dots, m_{n-1}, m_0, \dots, m_{k-i-2}$; since M is good, the $k-1$ vectors $m_{n-i}, \dots, m_{n-1}, m_0, \dots, m_{k-i-2}$ are independent, and hence the vectors in (1) are independent if and only if $(x, b_i) = \lambda_i \neq 0$. Again since M is good, the $2k-2$ vectors

$$m_{n-k+1}, \dots, m_{n-1}, m_0, \dots, m_{k-2}$$

satisfy the conditions in Lemma 3.1, hence the vectors b_0, \dots, b_{k-1} are independent. So for each choice of $\lambda = (\lambda_0, \dots, \lambda_{k-1})$ with $\lambda_i \neq 0$ for each i , there is a unique vector x for which $(x, b_i) = \lambda_i$, and these vectors x are precisely the ones for which (Mx) is good. \square

4 Explicit construction of good matrices

By starting with the $k \times k$ identity matrix, and repeatedly applying Theorem 3.2, we find that for each field \mathbb{F} and all positive integers k and n with $n \geq k$, there exists a $k \times n$ matrix G such that

- (1) the k leftmost columns of G form the $k \times k$ identity matrix, and
- (2) for each j , $k \leq j \leq n$, the j leftmost columns of G form a good $k \times j$ matrix.

Note that Theorem 3.2 implies that for the binary field, these matrices are unique. It turned out that they have a simple recursive structure, which inspired our general construction.

In this section, we give, for all positive integers k and n with $k \leq n$, an explicit construction of $k \times n$ matrices over \mathbb{Z}_p , the field of integers modulo p , that satisfy the above properties (1) and (2). Note that such matrices also satisfy (1) and (2) for extension fields of \mathbb{Z}_p .

We start with describing the result for $p = 2$. Let M_1 be the matrix

$$M_1 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad (2)$$

and for $m \geq 1$, let M_{m+1} be the given as

$$M_{m+1} = \begin{pmatrix} M_m & 0 \\ M_m & M_m \end{pmatrix}. \quad (3)$$

Clearly, M_m is a binary $2^m \times 2^m$ matrix. The relevance of the matrix M_m to our problem is explained in the following theorem.

Theorem 4.1 Let k and r be two positive integers, and let m be the smallest integer such that $2^m \geq k$ and $2^m \geq r$. Let Q be the $k \times r$ matrix residing in the lower left corner of M_m . Then for each integer j for which $k \leq j \leq k+r$, the j leftmost columns of the matrix $(I_k Q)$ form a good binary $k \times j$ matrix.

Theorem 4.1 is a consequence from our results for the general case in the remainder of this section.

We now define the matrices that are relevant for constructing good matrices over \mathbb{Z}_p .

Definition 4.2 Let p be a prime number, and let k, r be positive integers. Let m be the smallest integer such that $p^m \geq r$ and $p^m \geq k$. The $k \times r$ matrix $Q_{k,r}$ is defined as

$$Q_{k,r}(i, j) = \binom{p^m - k + i - 1}{j - 1} \quad \text{for } 1 \leq i \leq k, 1 \leq j \leq r.$$

In Theorem 4.8 we will show that the matrix $(I_k Q_{k,r})$ is good over \mathbb{Z}_p . But first, we derive a recursive property of the Q -matrices. To this aim, we need some well-known results on binomial coefficients modulo p .

Lemma 4.3 Let p be a prime number, and let m be a positive integer. For any integer i with $1 \leq i \leq p^m - 1$, we have that $\binom{p^m}{i} \equiv 0 \pmod{p}$.

Proof: The following proof was pointed out to us by our colleague Ronald Rietman. Let $1 \leq i \leq p^m - 1$. We have that

$$\binom{p^m}{i} = \frac{p^m \binom{p^m - 1}{i-1}}{i}.$$

In the above representation of $\binom{p^m}{i}$, the nominator contains at least m factors p , while the denominator contains at most $m - 1$ factors p . \square

Lemma 4.4 Let p be a prime number, and let m be a positive integer. Moreover, let i, j, k, ℓ be integers such that $0 \leq i, k \leq p - 1$ and $0 \leq j, \ell \leq p^m - 1$. Then we have that

$$\binom{ip^m + j}{kp^m + \ell} \equiv \binom{i}{k} \binom{j}{\ell} \pmod{p}.$$

Proof: This is a direct consequence of Lucas' theorem (see for example [2, Thm. 13.3.3]). We give a short direct proof. Clearly, $\binom{ip^m + j}{kp^m + \ell}$ is the coefficient of $z^{kp^m + \ell}$ in $(1+z)^{ip^m+j}$. Now we note that

$$(1+z)^{ip^m+j} = (1+z)^{ip^m} (1+z)^j = [(1+z)^{p^m}]^i (1+z)^j.$$

It follows from Lemma 4.3 that $(1+z)^{p^m} \equiv 1 + z^{p^m} \pmod{p}$, and so

$$(1+z)^{ip^m+j} \equiv (1+z^{p^m})^i (1+z)^j \pmod{p}.$$

Hence, modulo p , the coefficient of $z^{kp^m + \ell}$ in $(1+z)^{ip^m+j}$ equals $\binom{i}{k} \binom{j}{\ell}$. \square

Corollary 4.5 Let p be a prime, and let m be a positive integer. Let a, b, c, d be integers such that $0 \leq a, c \leq p - 1$ and $1 \leq b, d \leq p^m$. Then we have

$$Q_{p^{m+1}, p^{m+1}}(ap^m + b, cp^m + d) \equiv \binom{a}{c} Q_{p^m, p^m}(b, d) \pmod{p}.$$

Proof: According to the definition of $Q_{p^{m+1}, p^{m+1}}$, we have that

$$Q_{p^{m+1}, p^{m+1}}(ap^m + b, cp^m + d) = \binom{ap^m + b - 1}{cp^m + d - 1}, \text{ and } Q_{p^m, p^m}(b, d) = \binom{b - 1}{d - 1}.$$

The corollary is now obtained by application of Lemma 4.4. \square

In words, Theorem 4.5 states that $Q_{p^{m+1}, p^{m+1}}$ can be considered as a $p \times p$ block matrix, for which each block is a multiple of Q_{p^m, p^m} . For example, for $p = 3$, we obtain

$$Q_{3^{m+1}, 3^{m+1}} = \begin{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} & \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} & \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} & \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} & \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} & \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} \end{pmatrix} \times Q_{3^m, 3^m} = \begin{pmatrix} Q_{3^m, 3^m} & 0 & 0 \\ Q_{3^m, 3^m} & Q_{3^m, 3^m} & 0 \\ Q_{3^m, 3^m} & 2Q_{3^m, 3^m} & Q_{3^m, 3^m} \end{pmatrix}.$$

For $p = 2$, we obtain the relation in (3).

Taking $a = p - 1$ and $c = 0$ in Theorem 4.5, we see that over \mathbb{Z}_p , the $p^m \times p^m$ block in the lower left hand corner of $Q_{p^{m+1}, p^{m+1}}$ equals Q_{p^m, p^m} . Definition 4.2 implies $Q_{k,r}$ is the $k \times r$ matrix residing in the lower left hand corner of Q_{p^m, p^m} , where m is the smallest integer that such that $p^m \geq k$ and $p^m \geq r$. The above observations imply that whenever $k' \geq k$ and $r' \geq r$, then over \mathbb{Z}_p , the matrix $Q_{k,r}$ is the $k \times r$ submatrix in the lower left hand corner of $Q_{k',r'}$. In particular, $Q_{k,r+1}$ can be obtained by adding a column to $Q_{k,r}$.

We now state and prove results on the invertibility in \mathbb{Z}_p of certain submatrices of $Q_{k,r}$, that will be used to prove our main result in Theorem 4.8.

Lemma 4.6 Let $n \geq 0$ and $b \geq 1$. The $b \times b$ matrix V_b with $V_b(i,j) = \binom{n+i-1}{j-1}$ for $1 \leq i, j \leq b$ has an integer inverse.

Proof: By induction on b . For $b = 1$, this is obvious.

Next, let $b \geq 2$. Let S be the $b \times b$ matrix with

$$S(i,j) = \begin{cases} 1 & \text{if } i = j, \\ -1 & \text{if } i \geq 2 \text{ and } i = j + 1, \\ 0 & \text{otherwise.} \end{cases}$$

The matrix S has an integer inverse: it is easy to check that $S^{-1}(i,j) = 1$ if $i \geq j$, and 0 otherwise. We have that

$$(SV_b)(1,j) = V_b(1,j) = \binom{n}{j-1}, \text{ and}$$

$$(SV_b)(i, j) = V_b(i, j) - V_b(i-1, j) = \binom{n+i-1}{j-1} - \binom{n+i-2}{j-1} = \binom{n+i-2}{j-2} \text{ for } 2 \leq j \leq b.$$

In other words, SV_b is of the form

$$SV_b = \begin{pmatrix} 1 & A \\ 0 & V_{b-1} \end{pmatrix}.$$

By induction hypothesis, V_{b-1} has an integer inverse, and so $V_b S$ has an integer inverse (namely the matrix $\begin{pmatrix} 1 & -AV_{b-1}^{-1} \\ 0 & V_{b-1}^{-1} \end{pmatrix}$). As S has an integer inverse, we conclude that V_b has an integer inverse. \square

Lemma 4.7 *Let p be a prime number, and let $a \geq 0$ and $b \geq 1$ be integers such that $a + b \leq p^m$. The $b \times b$ matrix W_b with $W_b(i, j) = \binom{p^m-1+i-b}{a+j-1}$ for $1 \leq i, j \leq b$ is invertible over \mathbb{Z}_p .*

Proof: Similarly to the proof of Lemma 4.6, we apply induction on b .

For $b = 1$, we have the 1×1 matrix with entry $\binom{p^m-1}{a}$. By induction on i , using that $\binom{p^m-1}{i} = \binom{p^m}{i} - \binom{p^m-1}{i-1}$ and employing Lemma 4.3, we readily find that $\binom{p^m-1}{i} \equiv (-1)^i \pmod{p}$ for $0 \leq i \leq p^m - 1$. As a consequence, the lemma is true for $b = 1$.

Now let $b \geq 2$. We define the $b \times b$ matrix T by

$$T(i, j) = \begin{cases} 1 & \text{if } i = j \\ 1 & \text{if } j \geq 2 \text{ and } i = j - 1 \\ 0 & \text{otherwise} \end{cases}$$

It is easy to check T has an integer inverse, and that $T^{-1}(i, j) = (-1)^{i-j}$ if $i \leq j$ and 0 otherwise. In order to show that W_b is invertible in \mathbb{Z}_p , it is thus sufficient to show that $W_b T$ is invertible in \mathbb{Z}_p . By direct computation, we have that $(W_b T)(i, 1) = W_b(i, 1)$, and

$$(W_b T)(i, j) = W_b(i, j) + W_b(i, j-1) = \binom{p^m-1+i-b}{a+j-1} + \binom{p^m-1+i-b}{a+j-2} = \binom{p^m+i-b}{a+j-1}.$$

In particular, $(W_b T)(b, 1) = \binom{p^m-1}{a} \equiv (-1)^a \pmod{p}$, and for $2 \leq j \leq b$, we have that $(W_b T)(b, j) = \binom{p^m}{a+j-1} \equiv 0 \pmod{p}$. We thus have that

$$W_b T \equiv \begin{pmatrix} A & W_{b-1} \\ (-1)^a & 0 \end{pmatrix} \pmod{p}.$$

As W_{b-1} is invertible over \mathbb{Z}_p , the matrix $W_b T$ (and hence the matrix W_b) is invertible over \mathbb{Z}_p . \square

Remark The matrix in Lemma 4.7 need not have an integer inverse. For example, take $p = 2, m = 2, a = 1$ and $b = 2$. The matrix W_2 equals

$$\begin{pmatrix} \binom{2}{1} & \binom{3}{1} \\ \binom{2}{2} & \binom{3}{2} \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 1 & 3 \end{pmatrix},$$

and so $W_2^{-1} = \begin{pmatrix} 1 & -1 \\ -\frac{1}{3} & \frac{2}{3} \end{pmatrix}$. Note that modulo 2, W_2 equals $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, confirming that W_2 does have an inverse in the integers modulo $p = 2$.

We are now in a position to prove the main result of this section.

Theorem 4.8 *Let k and r be positive integers. For $j = k, k+1, \dots, k+r$, the matrix consisting of the j leftmost columns of the matrix $(I_k Q_{k,r})$ is good over \mathbb{Z}_p .*

Proof: We denote the matrix $(I_k Q_{k,r})$ by G , and the i -th column of G by \mathbf{g}_i . Let $k \leq j \leq k+r$. To show that the matrix consisting of the columns $1, 2, \dots, j$ of G is good, we show that for $1 \leq i \leq j$, the vectors $\mathbf{g}_i, \mathbf{g}_{i+1}, \dots, \mathbf{g}_{i+k-1}$ are independent over \mathbb{Z}_p , where the indices are counted modulo j . This is obvious if $j = k$ and if $i = 1$, so we assume that $j \geq k+1$ and $i \geq 2$. We distinguish between two cases.

(1) $2 \leq i \leq k$.

The vectors to consider are $\mathbf{e}_i, \dots, \mathbf{e}_k, \mathbf{g}_{k+1}, \dots, \mathbf{g}_{i+k-1}$ (if $i+k-1 \leq j$), or $\mathbf{e}_i, \dots, \mathbf{e}_k, \mathbf{g}_{k+1}, \dots, \mathbf{g}_j, \mathbf{e}_1, \dots, \mathbf{e}_{k-j+i-1}$ (if $i+k-1 \geq j+1$). We define $b := \min(i-1, j-k)$. The vectors under consideration are independent if the $b \times b$ matrix consisting of the b leftmost columns of $Q_{k,r}$, restricted to rows $i-b, i-b+1, \dots, i=1$, is invertible in \mathbb{Z}_p . This follows from Lemma 4.6.

(2) $i \geq k+1$.

The vectors to consider are $\mathbf{g}_i, \dots, \mathbf{g}_{i+k-1}$ (if $i+k-1 \leq j$), or $\mathbf{g}_i, \dots, \mathbf{g}_j, \mathbf{e}_1, \dots, \mathbf{e}_{k-j+i-1}$ (if $i+k-1 \geq j+1$). We define $b := \min(k, j-i+1)$. The vectors under consideration are independent if the $b \times b$ matrix consisting of the b bottom entries of the columns $i-k+1, i-k+2, \dots, i-k+b$ of $Q_{k,r}$ is invertible in \mathbb{Z}_p . This follows from Lemma 4.7. \square

References

- [1] E. Martinian and M. Trott, "Delay-Optimal Burst Erasure Code Construction", ISIT 2007, Nice, France, June 24-29, 2007, pp. 1006–1010.
- [2] R.E. Blahut, *Theory and Practice of Error Control Codes*, Addison Wesley, 1983.