Теортест-1 (Вариант 3)

Тема – определенный интеграл

Задача 1

Выберите все верные утверждения:

- 1. Любая кривая имеет бесконечно много различных параметризаций;
- 2. Длина кривой зависит от параметризации;
- 3. Длина спрямляемой кривой конечна;
- 4. Длина кривой определяется как супремум длин всевозможных параметризаций кривой;
- 5. Кусочно-гладкая кривая спрямляема;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. Если f кусочно-непрерывна на [a,b], то F обобщенная первообразная для f на [a,b];
- 2. Если $f \ge 0$ на [a, b], то F не убывает на [a, b];
- 3. F непрерывна на [a, b];
- 4. $\int_a^b f(x)dx = F(b) F(a);$

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Пусть f(x) – дифференцируемая функция. Выберите все верные утверждения:

- 1. $\int f'(x)e^x dx = e^x f(x) \int f(x)e^x dx;$
- 2. $\int \frac{f'(x)}{x^2} dx = \frac{f(x)}{x^2} + \int \frac{f(x)}{x} dx;$
- 3. $\int f(x) \sin x dx = \cos x \cdot f(x) \int f'(x) \cos x dx$;
- 4. $\int f'(x) \sin x dx = \cos x \cdot f(x) \int f(x) \cos x dx$;

Задача 4

Пусть $f \in R[a,b], \, a < b.$ Выберите все верные утверждения:

1. Если $\int_a^b |f(x)| dx < A$, то $\left| \int_a^b f(x) dx \right| < A$;

- 2. Если $\int_a^b |f(x)| dx = 0$, то $f(x) \equiv 0$ на [a,b];
- 3. Если $f \ge 0$ на [a, b], то $\int_a^b f(x) dx \ge 0$;
- 4. Если $f \geq 0$ на [a,b] и $\exists c \in [a,b] \colon f(c) > 0$, то $\int_a^b f(x) dx > 0$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Выберите все функции, имеющие дробно-рациональные первообразные:

- 1. $\frac{x^2-1}{x^2+1}$;
- 2. $\frac{x}{x^2-1}$;
- 3. $\frac{x^3-3(x-1)^2}{(x-1)^3}$;
- 4. $\frac{2x+1}{x^2(x+1)^2}$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Пусть функция u=u(x) – первообразная для функции v=v(x) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. v = u';
- 2. udt = dv;
- 3. v = u' + C;
- 4. u = v':

Задача 7

Пусть f интегрируема и $f \ge 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f > 0 на [a, b];
- 2. f непрерывна в точке a и f(a) = 1;
- 3. f возрастает (нестрого) на [a, b] и f(b) = 1;
- 4. f((a+b)/2) = 1;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Функция $f\in R[0,10]$ и $-1\leq f(x)\leq 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_0^2 x f(x) dx$:

- 1. [-1, 20];
- 2. [-1, 10];
- 3. [-2, 20];
- 4. [0, 10];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Выберите все верные утверждения (множества А и В имеют площадь):

- 1. при движении площадь не меняется;
- 2. площадь отрезка равна нулю;
- 3. площадь графика интегрируемой функции равна нулю;
- 4. любое множество имеет неотрицательную площадь;

Задача 10

Пусть $f:[a,b]\to\mathbb{R};\ \sigma_{\tau}(\xi)$ — интегральная сумма для f, построенная по разбиению τ с оснащением $\xi;s_{\tau},S_{\tau}$ — нижняя и верхняя суммы Дарбу. Выберите все верные утверждения:

- 1. $\forall \tau \ \forall \varepsilon > 0 \ \exists \xi : \ \sigma_{\tau}(\xi) < s_{\tau} + \varepsilon;$
- 2. $\forall \tau \ \forall \varepsilon > 0 \ \exists \xi : \ \sigma_{\tau}(\xi) < s_{\tau} \varepsilon;$
- 3. $\forall \tau : s_{\tau} < S_{\tau}$;
- 4. $\forall \tau \ \exists \xi : \ s_{\tau} \leq \sigma_{\tau}(\xi) \leq S_{\tau};$