Data Preprocessing

Data Science

- Multi-disciplinary field that uses scientific methods, processes, algorithms and systems to extract knowledge and insight from structured and unstructured data
- Central concept is gaining insight from data
- Machine learning uses data to extract knowledge

Need for Data Preprocessing

- Real world data are tend to be incomplete, noisy and inconsistent due to their huge size and their likely origin from multiple heterogeneous sources
- Preprocessing is important to clean the data
- Low quality data will lead to low quality of analysis results
- If the users believe the data is of low quality (dirty), they are unlikely to trust the results of any data analytics that has been applied to
- Low quality data can cause confusion for analytic procedure using machine learning techniques, resulting in unreliable output
- Data could be
 - Incomplete,
 - noisy and
 - inconsistent
 - These are common properties of large real world databases

Data Preprocessing Techniques

- Data cleaning:
- Data integration:
- Data transformation:
- Data reduction :

Data Preprocessing Techniques

Data cleaning:

- Applied to
 - identify the missing values,
 - fill in missing values,
 - remove noise and
 - correct inconsistency in the data

Data integration:

- It merges data from multiple sources in to a coherent data source
- Data transformation:
 - Transforming the entries of data to a common format
 - Techniques like normalization and standardization applied to transform the data to another form to improve the accuracy and efficiency of machine learning (ML) algorithms involving distance measures

Data Preprocessing Techniques

Data reduction:

- Applied to obtain a reduced representation that is much smaller in volume, yet producing almost same analytical results
- It can reduce the data size by
 - Aggregation
 - Eliminating irrelevant and redundant features (attributes) through correlation analysis
 - Reducing dimension
- These techniques are not mutually exclusive; they may work together

Descriptive Data Summarization (Descriptive Analytics)

- It serves as a foundation for data preprocessing
- It helps us to study the general characteristics of data and identify the presence of noise or outliers
- Data characteristics:
 - Central tendency of data
 - Centre of the data
 - Measuring mean, median and mode
 - Dispersion of data
 - The degree to which numerical data tend to spread
 - Measuring range, quartiles, interquartile range (IQR), the five-number summary and standard deviation

Mean:

- Let x_1 , x_2 , ..., x_N be a set of N values in an attribute. Mean of this set of values is given by

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Number of records (tuples), N = 10

Years of experience	Salary (in Rs 1000)
3	30
8	57
9	64
13	72
3	36
6	43
11	59
21	90
1	20
16	83

Sum: 91

Mean:

- Let x_1 , x_2 , ..., x_N be a set of N values in an attribute. Mean of this set of values is given by

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Number of records (tuples), N = 10

Years of experience	Salary (in Rs 1000)
3	30
8	57
9	64
13	72
3	36
6	43
11	59
21	90
1	20
16	83

Mean Years of experience: Sum/10

9.1

Mean:

- Let x_1 , x_2 , ..., x_N be a set of N values in an attribute. Mean of this set of values is given by

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Number of records (tuples), N = 10

Years of experience	Salary (in Rs 1000)
3	30
8	57
9	64
13	72
3	36
6	43
11	59
21	90
1	20
16	83

Mean Salary: Sum/10

Mean:

- Let x_1 , x_2 , ..., x_N be a set of N values in an attribute. Mean of this set of values is given by

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Mean is a better measure of central tendency for the symmetric data (symmetrically distributed data)

Number of records (tuples), N = 10

Years of experience	Salary (in Rs 1000)
3	30
8	57
9	64
13	72
3	36
6	43
11	59
21	90
1	20
16	83

Mean: 9.1 55.4

Median:

- Let x_1 , x_2 , ..., x_N be a set of N values in an attribute. The median is the "middle" number (value), when those numbers are listed in order from smallest to greatest.
- Median is the value separating the higher half from the lower half of a data sample
- For a given data of N values in sorted order
 - If N is odd, then median is the middle value of the ordered list
 - If N is even, then median is the average of middle two values

Number of records (tuples), N = 10

Years of experience	Salary (in Rs 1000)
3	30
8	57
9	64
13	72
3	36
6	43
11	59
21	90
1	20
16	83

Illustration: Median of attribute "Years of experience"

Median:

- Let x_1 , x_2 , ..., x_N be a set of N values in an attribute. The median is the "middle" number (value), when those numbers are listed in order from smallest to greatest.
- Median is the value separating the higher half from the lower half of a data sample
- For a given data of N values in sorted order
 - If N is odd, then median is the middle value of the ordered list
 - If N is even, then median is the average of middle two values

Sort the values in "Years of experience"

Years of experience
1
3
6
8
9
11
13
16
16
21

Median:

- Let x_1 , x_2 , ..., x_N be a set of N values in an attribute. The median is the "middle" number (value), when those numbers are listed in order from smallest to greatest.
- Median is the value separating the higher half from the lower half of a data sample
- For a given data of N values in sorted order
 - If N is odd, then median is the middle value of the ordered list
 - If N is even, then median is the average of middle two values

Sort the values in "Years of experience"

Years of experience
1
3
6
8
9
11
13
16
16
21

Median: $\frac{9+1}{2}$

Median:

- Let x_1 , x_2 , ..., x_N be a set of N values in an attribute. The median is the "middle" number (value), when those numbers are listed in order from smallest to greatest.
- Median is the value separating the higher half from the lower half of a data sample
- For a given data of N values in sorted order
 - If N is odd, then median is the middle value of the ordered list
 - If N is even, then median is the average of middle two values
- For asymmetrically distributed (skewed) data, a better measure of centre of data is median

Sort the values in "Years of experience"

Years of experience
1
3
6
8
9
11
13
16
16
21

Median: 10

 Mode: Most frequent value in an attribute in the data

> Illustration: Mode of attribute "Years of experience"

> Assume that values are discrete numerical

Number of records (tuples), N = 10

Years of experience	Salary (in Rs 1000)
3	30
8	57
9	64
13	72
3	36
6	43
11	59
21	90
1	20
16	83

Mode: 3

Mode: Most frequent value in an attribute in the data

Number of samples, N = 61

Date	Temperature
Sept 1	25.47
Sept 2	26.19
Sept 3	25.17
Sept 4	24.30
Sept 5	24.07
Sept 6	21.21
Sept 7	23.49
Sept 8	21.79
Sept 9	25.09
Sept 10	25.39
Oct 29	23.06
Oct 30	23.72
Oct 31	23.02

Mean: 22.85

Median: 22.89

- The mode of a continuous variable is the value at which the probability density function, f(x), is at a maximum.
- It is a value that is most likely to lie within the same interval as the outcome

Mode: $(22.32 - 23.62) \sim = 22.97$

- · The degree to which numerical data tend to spread
- It is also called as variance (in symmetrically distributed data)
- Common measures of data dispersion:
 - Range
 - The five-number summery (based on quartiles)
 - The inter quartile range (IQR)
 - Standard deviation
- Range: The range of a finite set of values is the difference between the maximum and minimum values

- Quartiles:
 - The k^{th} percentile:
 - Let x_1 , x_2 , ..., x_N be a set of N values in an attribute
 - The k^{th} percentile of a set of data in numerical order is the value of x_n having the property that kpercent of data entries lie at or below x_n
 - Example: 50th percentile
 - The value (number) below which 50% of the data entries (values) lie
 - Those 50% of entries have values equal to or less that 50th percentile

Number of records (tuples), N = 10

Years of experience	Salary (in Rs 1000)
3	30
8	57
9	64
13	72
3	36
6	43
11	59
21	90
1	20
16	83
10	03

Illustration: 50th percentile of attribute "Years of experience"

- Quartiles:
 - The k^{th} percentile:
 - Let x_1 , x_2 , ..., x_N be a set of N values in an attribute
 - The kth percentile of a set of data in numerical order is the value of x_n having the property that k percent of data entries lie at or below x_n
 - Example: 50th percentile
 - The value (number) below which 50% of the data entries (values) lie
 - Those 50% of entries have values equal to or less that 50th percentile

Sort the values in "Years of experience"

Years of experience	
1	
3	
6	
8	
9	
11	
13	
16	
16	
21	

50th Percentile: 10

Illustration: 50th percentile of attribute "Years of experience"

- Quartiles:
 - The k^{th} percentile:
 - Let x_1 , x_2 , ..., x_N be a set of N values in an attribute
 - The kth percentile of a set of data in numerical order is the value of x_n having the property that k percent of data entries lie at or below x_n
 - Example: 25th percentile
 - The value (number) below which 25% of the data entries (values) lie
 - Those 25% of entries have values equal to or less that 25th percentile
 - Middle element between minimum and 50th percentile

Sort the values in "Years of experience"

Years of experience
1
3
6
8
9
11
13
16
16
21

25th Percentile: 6

Illustration: 25th percentile of attribute "Years of experience"

- Quartiles:
 - The k^{th} percentile:
 - Let x_1 , x_2 , ..., x_N be a set of N values in an attribute
 - The kth percentile of a set of data in numerical order is the value of x_n having the property that k percent of data entries lie at or below x_n
 - Example: 75th percentile
 - The value (number) below which 75% of the data entries (values) lie
 - Those 75% of entries have values equal to or less that 75th percentile
 - Middle element between maximum and 50th percentile

Sort the values in "Years of experience"

Years of
experience
1
3
6
8
9
11
13
16
16
21

75th Percentile: 16

Illustration: 75th percentile of attribute "Years of experience"

- Quartiles:
 - The k^{th} percentile:
 - Let x_1 , x_2 , ..., x_N be a set of N values in an attribute
 - The k^{th} percentile of a set of data in numerical order is the value of x_n having the property that k percent of data entries lie at or below x_n
 - Median is the 50th percentile (the second quartile (Q2))
 - The first quartile (Q1): It is the 25th percentile
 - The third quartile (Q3): It is the 75th percentile
 - The quartiles including median give some indication of centre, spread and shape of distribution
- The distance between the Q1 and Q3 is a simple measure of spread
- Interquartile range (IQR): Distance between the first quartile (Q1) and third quartile (Q2)

$$IQR = Q3 - Q1$$

- The five-number summary of distribution:
 - It consists of minimum value, Q1, median, Q3 and maximum value

Box plots are the popular way of visualising distribution

- The whiskers terminate at
 - Smallest (minimum) or largest (maximum) observations or
 - the most extreme observations occurring within $1.5 \times IQR$ of respective quartiles (Q1 and Q3)

- The five-number summary of distribution:
 - It consists of minimum value, Q1, median, Q3 and maximum value

Box plots are the popular way of visualising distribution

- 1.5 x IQR is equivalent to 2.7σ from mean if the distribution is normal distribution
 - It is close to 3σ from mean which is a standard in normal distribution

- The five-number summary of distribution:
 - It consists of minimum value, Q1, median, Q3 and maximum value

Box plots are the popular way of visualising distribution

- Lower bound: $Q1 (1.5 \times IQR)$ Upper bound: $Q3 + (1.5 \times IQR)$
- Outliers: Any datapoint less than the lower bound and larger than the upper bound

- Variance (σ^2) :
 - Let x_1 , x_2 , ..., x_N be a set of N values in an attribute. variance (σ^2) of this set of values is given by

$$\sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu)^2$$
 $\mu = \text{mean}$

- Standard deviation (σ):
 - The square root of variance $\sigma = \sqrt{\text{Variance}}$
- Standard deviation measures the spread about the mean
 - It is used when the mean is chosen as the measure of centre, especially in symmetric distribution
- The quartiles Q1 and Q3 measure the spread about median
 - Q1 and Q3 are used when the median is chosen as the measure of centre, especially in skewed distribution