Diseño lógico: El modelo relacional

Bases de Datos

Curso 2018-2019

Jesús Correas – jcorreas@ucm.es

Departamento de Sistemas Informáticos y Computación Universidad Complutense de Madrid

Bibliografía

- Bibliografía básica:
 - R. Elmasri, S.B. Navathe. Fundamentals of Database Systems (6a Ed). Addison-Wesley, 2010. (en español: Fundamentos de Sistemas de Bases de Datos (5a Ed). Addison-Wesley, 2007).
 Capítulos 5 y 7 (5a ed. en español). Capítulos 3 y 9 (6a ed.).

Contenido

- Introducción. El modelo relacional.
- Elementos fundamentales del modelo relacional:
 - relaciones, tuplas, atributos, restricciones de integridad.
- Esquema de una relación, instancia de una relación.
- Esquema de una BD relacional, BD relacional (instancia).
- Superclaves, claves, claves externas.
- Restricciones del modelo relacional.
- Restricciones de integridad referencial.
- Conversión del modelo ER al modelo relacional.

Introducción. El modelo relacional.

- El modelo relacional (MR) fue propuesto por E. F. Codd (de IBM) en 1970, antes de proponerse el modelo ER (que propuso P. Chen en 1976).
- Las primeras implementacions aparecieron a principios de los años 80 (IBM, Oracle).
- Contiene los principios formales que están detrás de todos los sistemas de BD relacionales.
- Después se ha utilizado en la mayor parte de los SGBD relacionales comerciales: DB2, Informix, Oracle, Sybase, SQLServer, MySQL, PostgreSQL, etc.
- **SQL** es el lenguaje de consulta que se utiliza en estos SGBD y es el estándar de la industria para BD relacionales.

Elementos fundamentales del modelo relacional.

- En el modelo relacional una BD se representa mediante una colección de relaciones.
- Una relación se puede ver de manera informal como una tabla de valores (o un fichero plano con registros, aunque es diferente).
- No se debe confundir con las relaciones del modelo ER: Tanto las entidades como las relaciones del modelo ER pasan a ser relaciones del modelo relacional.
 - Veremos más adelante cómo se realiza la conversión del modelo ER al modelo relacional.
- Cada fila (o tupla) de la tabla corresponde a un elemento de la relación: un conjunto de datos relacionados.
 - Cada tupla representa un elemento que se corresponde con una entidad o relación del contexto de la aplicación.
- Cada columna tiene un nombre y corresponde a un atributo específico de las tuplas de la tabla, definido sobre un dominio.

Esquema de relación, estado de relación.

 Un esquema de relación representa la estructura de una relación del modelo relacional:

Un **Esquema de relación R** es de la forma $R(A_1, ..., A_n)$, donde A_i son los **atributos** de la relación.

• Ejemplo:

```
EMPLEADO(NSS, Nombre, Puesto, Edad, Telefono)
```

- El grado o aridad de una relación es el número de atributos que tiene.
- Cada **atributo** A_i es **es el nombre de un rol** jugado por un **dominio**. Utilizamos $dom(A_i)$ para referirnos al dominio de un atributo.
- No se permiten atributos compuestos o multivalorados.
- Ejemplo: En el esquema de relación anterior:

```
dom(NSS)es el conjunto de todos los números de SS posibles,dom(Puesto)es el conjunto de todos puestos disponiblesen la empresa, etc.
```

Instancia o estado de relación.

Una **relación** (también denominada **instancia o estado de relación**) de un esquema $R(A_1, \ldots, A_n)$ es un **conjunto de tuplas** $\{t_1, \ldots, t_m\}$, donde cada tupla es una **secuencia ordenada** de valores: $t_j = \langle v_1, \ldots, v_n \rangle$, donde v_i es NULO o bien $v_i \in dom(A_i)$.

- Es una relación **en sentido matemático:** Un subconjunto del producto cartesiano $dom(A_1) \times \cdots \times dom(A_n)$.
- Un esquema de relación puede tener varios atributos definidos en el mismo dominio, cumpliendo diferentes roles. Por ejemplo, el teléfono particular y el teléfono del trabajo.
- Ejemplo: Dado el esquema de relación:

```
EMPLEADO (NSS, Nombre, Puesto, Edad, Telefono)
una instancia de la relación EMPLEADO es por ejemplo la siguiente:
{\langle 11234, Arturo García, Cocinero, 37, 911234567\rangle, \langle 43210, Javier Muñoz, pinche, 22, 911234000\rangle, \ldots\rangle}
```

BD relacional y esquema de BD relacional.

Más definiciones:

- Un Esquema de BD relacional está formado por un conjunto de esquemas de relación R y un conjunto de restricciones de integridad RI.
- Una BD relacional (también denominada instancia o estado de BD relacional) es un conjunto de relaciones (conjuntos de tuplas) del esquema de BD relacional correspondiente.
 - Un estado de BD relacional es válido (o correcto) si se cumplen las restricciones de integridad.
 - Es inválido (incorrecto) en caso contrario.
- Las restricciones de integridad las veremos más adelante.

Características de las relaciones.

- Las relaciones son conjuntos de tuplas en sentido matemático: no están ordenadas y no pueden contener tuplas repetidas.
- Los valores de los atributos dentro de cada tupla sí están ordenados.
- Cada valor es atómico: no se permiten valores compuestos (al menos dentro del modelo relacional).
- No se permiten múltiples valores: los atributos multivalorados del modelo ER se convertirán en otras relaciones.
- Se utiliza el valor especial NULO cuando no se tiene el valor para un atributo en una tupla por algún motivo:
 - ▶ No es aplicable a esa tupla,
 - Es desconocido o no está disponible para ese estado de la BD.
- Interpretación de una relación: Las tuplas de una relación representan hechos sobre entidades o relaciones (del mod. ER).
- Por defecto los atributos no pueden tener valor NULO; para que acepten el valor NULO deben marcarse en el MR con un asterisco.

Superclaves y claves en las relaciones.

 Los conceptos de superclave y clave son similares a los del modelo ER:

Una **superclave** es un subconjunto de los atributos de una relación que permite **identificar** cada tupla del conjunto.

Representa una **restricción de unicidad:** no puede haber dos tuplas distintas en la relación que tengan el mismo valor en estos atributos.

- Una clave candidata es una superclave con un número mínimo de atributos (ninguno de sus subconjuntos es clave).
- Una de las claves candidatas es elegida clave primaria de la relación.
- En el modelo relacional las claves primarias se representan subrayadas en el esquema de relación. Ejemplo:

```
EMPLEADO (NIF, Nombre, Apellido, NSS, FecNacim)
```

• Además existe el concepto de clave externa (foreign key, FK):

Clave externa o foránea.

- En una BD relacional distintas relaciones pueden tener **atributos que representen el mismo concepto.**
- En especial, en una relación se pueden utilizar atributos para **referirse** a tuplas de otra relación.
- Lo vemos con un ejemplo:
 - Queremos representar la información del departamento para el que trabajan los empleados de una empresa:

Podemos modelarlo utilizando un atributo en la relación empleado que se refiera al departamento para el que el empleado trabaja:

```
EMPLEADO(NIF, Nombre, Apellido, NSS, FecNacim, Dept)
DEPARTAMENTO(IdDept, Descripción)
```

- ► Dept forma una clave externa que hace referencia a DEPARTAMENTO.
- Dept e IdDept representan el mismo concepto y están definidos en el mismo dominio.

Clave externa o foránea.

Un conjunto de atributos FK de una relación R_1 es una clave externa que hace referencia a otra relación R_2 si se cumple:

- 1. Los atributos de FK tienen los mismos dominios que los atributos de la **clave primaria de** R_2 .
- 2. Los valores de los atributos de FK en una tupla de R_1 , o aparecen en la clave primaria de una tupla de R_2 , o bien son NULO.
- Las claves primarias y externas se utilizan para expresar algunas restricciones en el MR para garantizar que los datos de un estado de BD relacional sean correctos y consistentes.

Restricciones en el modelo relacional.

Hay tres tipos de restricciones:

- Restricciones implícitas: inherentes al modelo relacional.
 - ▶ No puede haber **tuplas duplicadas** en una relación.
 - ▶ No se permiten atributos compuestos o multivalorados.
- Restricciones explícitas: expresables en el modelo relacional.
 - ▶ **Restricciones de dominio:** el valor de cada atributo A_i debe estar en $dom(A_i)$.
 - Restricciones de clave: Dos tuplas diferentes no pueden tener el mismo valor para los atributos de una superclave (y en particular la clave primaria).
 - ▶ Restricciones de integridad de entidad: El valor de los atributos de la clave primaria no puede ser NULO.
 - Restricciones de integridad referencial. El valor de los atributos de una clave externa, o bien aparecen en una tupla de la relación referenciada, o todos tienen el valor NULO.
- Restricciones no expresables en el MR: restricciones semánticas (reglas de negocio): las comprueban los programas de aplicación y disparadores o aserciones.

Restricciones de integridad referencial.

- Las restricciones anteriores, excepto las de integridad referencial y las semánticas, se especifican para una relación individual.
- Las restricciones de integridad referencial se especifican entre dos relaciones para mantener la consistencia de las tuplas de ambas:

La tupla de una relación R_1 que hace referencia a otra relación R_2 mediante una **clave externa**, debe hacer referencia a una **tupla existente** de R_2 .

- Normalmente corresponden a relaciones entre entidades del modelo ER.
- Las restricciones de integridad se pueden mostrar en forma de diagrama con una flecha que va desde cada clave externa hasta la clave primaria de la relación referenciada.

Paso del Modelo ER al Modelo Relacional.

 Está formado por una serie de pasos, agrupados por el tipo de elemento a considerar:

Paso de tipos de entidades:

- 1. Tipos de entidades regulares.
- 2. Tipos de entidades débiles.

Paso de tipos de relaciones binarias:

- 3. Tipos de relaciones 1:N.
- 4. Tipos de relaciones N:M.
- 5. Tipos de relaciones 1:1.

Paso de atributos multivalorados:

6. Atributos multivalorados.

Paso de tipos de relaciones n-arias:

7. Tipos de relaciones *n*-arias.

Paso del Modelo ER extendido:

- 8. Generalizaciones / especializaciones.
- 9. Agregaciones.

Paso de ER a MR: Pasos 1 y 2. Tipos de entidad.

Paso 1. Tipos de entidades regulares.

- Por cada tipo de entidad *E* que no sea débil se crea un esquema de relación *R* con el mismo nombre y atributos.
- Los atributos compuestos se incluyen con sus componentes simples.
- La clave primaria del esquema R es la misma que la de la entidad E.
 Si el atributo clave es compuesto, la clave estará formada por los componentes simples.

Paso 2. Tipos de entidades débiles.

- Cada tipo de entidad débil E (con entidad identificadora D) se transforma en un esquema de relación R que incluye los atributos de E más los atributos de la clave de D.
- La **clave primaria** de *R* es la **combinación** de la clave parcial de *E* con la clave primaria de *D*.

Paso 3. Tipos de relación binaria 1:*N*.

- Suponemos que S es una relación 1:N entre dos tipos de entidad E y D, donde E tiene cardinalidad N y para las que se han creado esquemas de relación R_E y R_D en el modelo relacional.
- La conversión consiste en lo siguiente:
 - ▶ Se añaden al esquema R_E (lado N de la relación) los atributos de la clave primaria de R_D (lado 1) y los atributos de la relación S.
 - ▶ Se añade a R_E una **clave externa** formada por el conjunto de atributos que forma la clave primaria de R_D .
- Si la participación de E es parcial, los atributos añadidos a R_E deben admitir valores nulos.¹
- Si la participación de D es total, esta información se pierde en el MR (deberíamos añadir restricciones semánticas al sistema).

¹Recuerda que los atributos que permiten valores nulos se deben marcar con un asterisco

Paso 3. Tipos de relación binaria 1: N (cont.)

Ejemplo: (los atributos no se muestran en la figura)

Los esquemas de relación generados son los siguientes:

```
DEPARTAMENTO (<a href="Deptid">Deptid</a>, Descripcion)

EMPLEADO (<a href="NIF">NIF</a>, Nombre, Apellido, FecNacim, DeptId*, Horas*)

- Deptid es una clave externa que hace referencia a DEPARTAMENTO.
```

- Se añade Deptid a EMPLEADO para representar la relación: cada empleado hace referencia al ld de departamento en el que trabaja, y en un departamento pueden trabajar varios empleados.
- La participación de EMPLEADO en TRABAJA es parcial: el atributo Deptid debe permitir valores nulos (hay un asterisco en Deptid).

Paso 3. Tipos de relación binaria 1: N (cont.)

- Si el número de valores nulos esperado es muy grande, puede ser conveniente crear un nuevo esquema de relación R_S con:
 - ▶ los atributos de las claves primarias de R_E y R_D y los propios de S;
 - ▶ clave primaria formada por los atributos de R_E;
 - **Claves externas** que hacen referencia a R_E **y** R_D .
- En este caso los atributos en R_S no deben permitir valores nulos (la participación parcial se expresa mediante la ausencia de tuplas en la relación R_S).
- Ejemplo:

DEPARTAMENTO (DeptId, Descripción)

EMPLEADO (NIF, Nombre, Apellido, FecNacim)

TRABAJA (NIF, DeptId, Horas)

- NIF es una clave externa que hace referencia a EMPLEADO
- Deptid es una clave externa que hace referencia a DEPARTAMENTO

Paso 4. Tipos de relación binaria N:M.

- Suponemos una relación S de cardinalidad N:M entre dos tipos de entidades E y D para las que se han creado relaciones R_E y R_D en el modelo relacional.
- La conversión se hace de la siguiente forma:
 - ▶ Se crea una nueva relación R_S con los atributos de las claves primarias de R_E y R_D y los atributos de la relación S.
 - La clave primaria de R_S está formada por los atributos que provienen de las claves primarias de R_E y R_D .
 - Se incluyen dos **claves externas** en R_S desde cada uno de los conjuntos de atributos que forman las claves primarias de R_E y R_D , hacia los esquemas de relación R_E y R_D , respectivamente.
- La información de participación total de ambos tipos de entidad se pierde en el modelo relacional (debemos añadir restricciones semánticas para representarlo).

Paso 4. Tipos de relación binaria N:M (cont.)

Ejemplo: (los atributos no se muestran en la figura)

• Los esquemas de relación generados son los siguientes:

```
PLATO(<u>IdPlato</u>, Descripción, precio)
INGREDIENTE(<u>IdIngr</u>, Descripción)
CONTIENE(IdPlato, IdIngr, Cantidad)
```

- IdPlato es una clave externa que hace referencia a PLATO.
- IdIngr es una clave externa que hace referencia a INGREDIENTE.
- CONTIENE se añade para representar la relación: un par (IdPlato, IdIngr) en el esquema CONTIENE indica que el ingrediente IdIngr se utiliza para preparar el plato IdPlato.
- Un plato puede contener varios ingredientes y viceversa.
- La participación total no puede representarse en ninguno de los lados utilizando claves externas: se requiere una restricción semántica.

Paso 5. Tipos de relación binaria 1:1

- Suponemos una relación 1:1 entre dos tipos de entidad E y D, para las que se han creado esquemas de relación R_E y R_D en el modelo relacional.
- Se pueden dar tres casos en función de las restricciones de participación:
 - 1. Ambos tipos de entidad tienen participación total en S:
 - Se puede crear una única relación R_{E,D} combinando los atributos de ambas entidades.
 - Solo se mantiene una de las claves primarias, la que se considere más adecuada para el sistema.
 - * Se podría aplicar el caso 2, pero se pierde información sobre las restricciones de participación.
 - 2. Un tipo de entidad (ej., R_E) tiene participación total en S:
 - ★ Se añaden a R_E los atributos de la clave primaria de R_D y los atributos de S.
 - ★ Se añade una clave primaria a R_E que haga referencia a R_D .
 - * En la conversión se pierde la información de restricciones de cardinalidad de R_E (pues es similar a una relación 1:N).

Paso 5. Tipos de relación binaria 1:1 (cont.)

- 3. Ambos tipos de entidad tienen participación parcial en S:
 - ▶ Se elige uno de los tipos de entidad (ej., R_E) y se aplica el caso 2.
 - ▶ Los atributos añadidos a R_E deben admitir valores nulos.
 - La información de cardinalidad también se pierde en este caso.

• Ejemplo:

- Los esquemas de relación generados son:
 - DEPARTAMENTO(<u>IdDept</u>, Descripción, **NIFDirector***)
 EMPLEADO(NIF, Nombre, Apellido, FecNacim)
 - NIFDirector es una clave externa que hace referencia a EMPLEADO
- ► NIFDirector se añade a DEPARTAMENTO para representar la relación: cada departamento hace referencia al NIF del director.
- ► La participación de DEPARTAMENTO en DIRIGE puede representarse como parcial o total si se permiten o no valores nulos en NIFDirector.
- ► La cardinalidad 1 de DEPARTAMENTO no se puede representar (es necesario añadir restricción semántica).

Paso 6. Atributos multivalorados.

- Por cada atributo multivalorado M en un tipo de entidad E se crea un nuevo esquema de relación R con un atributo M más la clave primaria de E.
- La clave primaria de *R* está formada por el atributo *M* más la clave primaria de *E*.
- Esta relación tendrá una **clave externa** formada por los atributos de la clave primaria procedente de la clave de *E*.

• Ejemplo:

EMPLEADO(SSN, Nombre, Apellido, FecNacim)
TELEFONOS(SSN, telefono)

- SSN es una clave externa que hace referencia a EMPLEADO.

Paso 7. Tipos de relaciones ternarias.

- Suponemos una relación S entre tres tipos de entidad con a lo sumo una entidad con cardinalidad 1. La correspondencia con el MR es la siguiente:
 - ▶ Se crea un nuevo esquema de relación R_S con los atributos de las claves primaria de los tipos de entidad participantes y los atributos propios de la relación S.
 - ▶ La **clave primaria** de *R*_S está formada por los atributos de las claves primarias **de las tres entidades**.
 - Se añaden tres claves externas a R_S, de cada uno de los conjuntos de atributos copiados de las claves primarias de cada tipo de entidad, que hacen referencia a los esquemas de los que proceden.
- Si la cardinalidad de un tipo de entidad es 1, entonces la clave primaria de R_S no debe incluir los atributos que proceden de ese tipo de entidad.

Paso 7. Tipos de relaciones ternarias (cont.)

Ejemplo: (los atributos no se muestran en la figura)

• Los esquemas de relación se generan de la siguiente forma:

```
PROVEEDOR (<u>IdProv</u>, Nombre)

INGREDIENTE (<u>IdIngr</u>, Descripción)

SUCURSAL (<u>IdSuc</u>, Dirección)

SUMINISTRA (<u>IdSuc</u>, <u>IdIngr</u>, <u>IdProv</u>)
```

- IdSuc es una clave externa que hace referencia a SUCURSAL.
- IdIngr es una clave externa que hace referencia a INGREDIENTE.
- IdProv es una clave externa que hace referencia a PROVEEDOR.
- Se añade PROVEE para representar la relación: una tupla (IdSuc, IdIngr, IdProv) en el esquema PROVEE indica que el ingrediente IdIngr es provisto por el proveedor IdProv a la sucursal IdSuc.
- La cardinalidad 1 de PROVEEDOR se representa excluyéndola de la clave primaria. Se pueden representar participaciones totales?

Jesús Correas (DSIC - UCM)

Paso 8. Generalización y especialización.

Para el modelo ER extendido se añaden dos nuevos pasos:

- Suponemos una relación ISA entre un tipo de entidad superclase P y un tipo de entidad subclase S.
- La conversión al MR es la siguiente:
 - ▶ El esquema de relación del tipo de entidad skuperclase R_P se crea siguiendo el paso 1.
 - Para el tipo de entidad subclase S se crea un esquema de relación R_S que incluye los atributos de S y los atributos de la clave primaria de la superclase R_P.
 - ▶ La clave primaria de R_S está formada por los atributos provenientes de la clave primaria de la superclase R_P .
 - Además se añade una **clave externa** a R_S con los atributos de su clave primaria, que hace referencia a la clave primaria de R_P .

Paso 8. Generalización y especialización (cont.)

Ejemplo:

• Los esquemas de relación que se generan son los siguientes:

```
VEHICULO(<u>Bastidor</u>, Matrícula, Precio)
CAMION(<u>Bastidor</u>, Tonelaje, NumEjes)
COCHE(<u>Bastidor</u>, Plazas)
MOTO(<u>Bastidor</u>, Cilindrada)
```

- Tres claves externas de Bastidor en CAMION, COCHE y MOTO que hacen referencia a VEHICULO.

Paso 9. Agregaciones.

- Los tipos de entidades o de relaciones dentro o fuera de una agregación se construyen en el modelo relacional con los pasos anteriores.
- Suponemos un tipo de relación S que relaciona una agregación A con un tipo de entidad E.
- Para pasar la relación S al MR, aplicamos uno de los pasos anteriores
 (3 al 7), pero utilizamos los atributos de la relación S y los siguientes:
 - ► Los atributos de la **clave primaria del tipo de entidad** *E*.
 - Los atributos de la **clave primaria** del esquema de relación que representa **el tipo de relación principal de la agregación** *A*.
- Por último, se añaden claves externas de los conjuntos que forman las claves primarias que hagan referencia a los esquemas de relación de los que proceden.

Paso 9. Agregaciones (cont.)

Ejemplo:

• Los esquemas de relación se generan de la siguiente forma:

```
PROVEEDOR(<u>IdProv</u>, Nombre)

INGREDIENTE(<u>IdIngr</u>, Descripción, Precio)

OFRECE(IdProv, IdIngr)
```

- IdProv es una clave externa que hace referencia a PROVEEDOR.
- IdIngr es una clave externa que hace referencia a INGREDIENTE.

ESTABLECIMIENTO (<u>IdSuc</u>, Dirección, **IdProv**, **IdIngr**)

- {IdProv, IdIngr} es una única clave externa que hace referencia a OFRECE.