Package 'RLumCarlo'

May 3, 2019

```
Type Package
Title Monte-Carlo Methods for Simulating Luminescence Phenomena
Version 0.1.0.9000-6
Date 2019-05-03
Author Johannes Friedrich [aut, trl, cre] (<a href="https://orcid.org/0000-0002-0805-9547">https://orcid.org/0000-0002-0805-9547</a>),
      Sebastian Kreutzer [aut] (<a href="https://orcid.org/0000-0002-0734-2199">https://orcid.org/0000-0002-0734-2199</a>)
Maintainer Johannes Friedrich < johannes . friedrich@uni-bayreuth.de>
Description
      A collection of functions to simulate luminescence signals with Monte-Carlo methods in the
      mineral feldspar based on published models.
Contact Package Developer Team < johannes.friedrich@uni-bayreuth.de>
License GPL-3
BugReports https://github.com/R-Lum/RLumCarlo/issues
Depends R (>= 3.3.0),
      utils,
      magrittr
URL https://CRAN.R-project.org/package=RLumModel
LinkingTo Rcpp,
      RcppProgress,
      RcppArmadillo
Imports abind,
      doParallel,
      foreach,
      parallel,
      methods,
      Rcpp
Suggests R.rsp
Encoding UTF-8
VignetteBuilder R.rsp
RoxygenNote 6.1.1
```

2 calc_RLumCarlo

R topics documented:

RLumCarlo-package Modelling luminescence signals in feldspar				
Index		21		
	run_MC_TL_LOC	15		
	run_MC_TL_DELOC			
	run_MC_TL			
	run_MC_LM_OSL_LOC			
	run_MC_LM_OSL_DELOC			
	run_MC_LM_OSL			
	run_MC_ISO_LOC			
	run_MC_ISO_DELOC	9		
	run_MC_ISO	8		
	run_MC_CW_IRSL_LOC	6		
	run_MC_CW_IRSL_DELOC	5		
	run_MC_CW_IRSL			
	plot_RLumCarlo			
	calc_RLumCarlo			
	RLumCarlo-package	2		

Description

Details

Package: RLumCarlo Type: Package Version: 0.0.2 Date: 2018-08-28 License: GPL-3

Author(s)

Johannes Friedrich (University of Bayreuth, Germany), Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS-Université Bordeaux Montaigne (France)

calc_RLumCarlo Plot results from Monte-Carlo simulations with RLumCarlo

Description

Plot results from Monte-Carlo simulations with RLumCarlo

plot_RLumCarlo 3

Usage

```
calc_RLumCarlo(results)
```

Arguments

```
results array:
```

Value

This function returns a data. frame

Function version

```
0.0.1 [2017-01-27]
```

How to cite

Friedrich, J. (2019). calc_RLumCarlo(): Plot results from Monte-Carlo simulations with RLum-Carlo. Function version 0.0.1 [2017-01-27]. In: Friedrich, J., Kreutzer, S. (2019). RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-6. https://CRAN.R-project.org/package=RLumCarlo

Author(s)

Johannes Friedrich, University of Bayreuth (Germany)

plot_RLumCarlo

Plot results from Monte-Carlo simulations with RLumCarlo

Description

Plot results from Monte-Carlo simulations with RLumCarlo

Usage

```
plot_RLumCarlo(results, times = NULL, norm = FALSE, legend = FALSE,
  add = FALSE, ...)
```

Arguments

results	data.frame (required)
times	numeric (optinal): Optional vector for the x-axis
norm	logical (with default): Normalise curve to the highest intensity
legend	logical (with default): Enable/disable legend
add	logical (with default): allow overplotting of results
• • •	further arguments that can be passed to control the plot output. Currently supported are: xlab, xlim, ylim, main, lwd, type

Value

This function returns a graphical output

4 run_MC_CW_IRSL

Function version

0.1.0

How to cite

Friedrich, J., Kreutzer, S. (2019). plot_RLumCarlo(): Plot results from Monte-Carlo simulations with RLumCarlo. Function version 0.1.0. In: Friedrich, J., Kreutzer, S. (2019). RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-6. https://CRAN.R-project.org/package=RLumCarlo

Author(s)

Johannes Friedrich, University of Bayreuth (Germany), Sebastian Kreutzer, IRAMAT-CRP2A, Université Bordeaux Montaigne (France)

run_MC_CW_IRSL

Run Monte-Carlo simulation for CW-IRSL

Description

Run Monte-Carlo simulation for CW-IRSL

Usage

```
run_MC_CW_IRSL(A, rho, times, clusters = 10, r = NULL, N_e = 200,
  method = "seq", output = "signal", ...)
```

Arguments A

rho
numeric
times
vector (with default)
clusters
numeric (with default):
r
numeric (with default)
N_e
numeric (with default):
method
character (with default):
output
character (with default):

further arguments

numeric

Value

This function returns a list.

Function version

```
0.0.2 [2017-01-31]
```

How to cite

Friedrich, J., Kreutzer, S. (2019). run_MC_CW_IRSL(): Run Monte-Carlo simulation for CW-IRSL. Function version 0.0.2 [2017-01-31]. In: Friedrich, J., Kreutzer, S. (2019). RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-6. https://CRAN.R-project.org/package=RLumCarlo

Author(s)

Johannes Friedrich, University of Bayreuth (Germany), Sebastian Kreutzer, IRAMAT-CRP2A, Université Bordeaux Montaigne (France)

References

Pagonis 2017

Examples

 $\verb"run_MC_CW_IRSL_DELOC" \textit{Run Monte-Carlo simulation for CW-IRSL for GOT model}$

Description

##TODO

Usage

```
run_MC_CW_IRSL_DELOC(A, times, clusters = 10, N_e = 200,
    n_filled = N_e, R, method = "par", output = "signal", ...)
```

Arguments

```
Α
                   numeric (required)
times
                   numeric (with default)
                   numeric (with default):
clusters
N_e
                   integer (with default)
n_filled
                   integer (with default)
                   numeric (with default):
method
                   character (with default):
                   character (with default):
output
                   further arguments
. . .
```

Details

$$I_{DELOC}(t) = -dn/dt = p(t) * (n^2/(NR + n(1 - R)))$$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.0.1

How to cite

Kreutzer, S. (2019). run_MC_CW_IRSL_DELOC(): Run Monte-Carlo simulation for CW-IRSL for GOT model. Function version 0.0.1. In: Friedrich, J., Kreutzer, S. (2019). RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-6. https://CRAN.R-project.org/package=RLumCarlo

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

##TODO

Examples

 $run_MC_CW_IRSL_LOC$

Run Monte-Carlo simulation for CW-IRSL for localised transition

Description

##TODO

Usage

```
run_MC_CW_IRSL_LOC(A, times, clusters = 10, n_filled = 100, r,
  method = "par", output = "signal", ...)
```

Arguments

```
A numeric (required)

times numeric (with default):

clusters numeric (with default):

n_filled integer (with default):

r numeric (with default):

method character (with default):

output character (with default):

further arguments
```

Details

$$I_{LOC}(t) = -dn/dt = A * (n^2/(r+n))$$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.0.1

How to cite

Kreutzer, S. (2019). run_MC_CW_IRSL_LOC(): Run Monte-Carlo simulation for CW-IRSL for localised transition. Function version 0.0.1. In: Friedrich, J., Kreutzer, S. (2019). RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-6. https://CRAN.R-project.org/package=RLumCarlo

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

##TODO

8 run_MC_ISO

```
times = 0:100) %>%
  calc_RLumCarlo() %>%
  plot_RLumCarlo(legend = T)
## End(Not run)
```

run_MC_ISO

Run Monte-Carlo simulation for isothermal measurements

Description

Run Monte-Carlo simulation for isothermal measurements

Usage

```
run_MC_ISO(E, s, T = 200, rho, times, clusters = 10, r = NULL,
   N_e = 200, method = "par", output = "signal", ...)
```

Arguments

```
Ε
                  numeric (required)
                  numeric (required)
s
Τ
                  numeric (required)
                  numeric (required)
rho
times
                  numeric (with default)
                  numeric (with default):
clusters
                  numeric (with default)
r
N_e
                  numeric (with default)
                  character (with default)
method
                  character (with default)
output
                  further arguments
. . .
```

Value

This function returns a list.

Function version

0.1.0

How to cite

Friedrich, J., Kreutzer, S. (2019). run_MC_ISO(): Run Monte-Carlo simulation for isothermal measurements. Function version 0.1.0. In: Friedrich, J., Kreutzer, S. (2019). RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-6. https://CRAN.R-project.org/package=RLumCarlo

Author(s)

Johannes Friedrich, University of Bayreuth (Germany), Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Univerité Bordeaux Montaigne (France)

References

Pagonis 2017

Examples

run_MC_ISO_DELOC

Run Monte-Carlo simulation for ISO for GOT model

Description

##TODO

Usage

```
run_MC_ISO_DELOC(s, E, T = 20, times, clusters = 10, N_e = 200,
    n_filled = N_e, R, method = "par", output = "signal", ...)
```

Arguments

```
s
                   numeric (required)
Ε
                   numeric (required)
Τ
                   numeric (with default)
times
                   numeric (with default)
                   numeric (with default):
clusters
                   integer (with default)
N_e
n_filled
                   integer (with default)
                   numeric (with default):
method
                   character (with default):
                   character (with default):
output
                   further arguments
. . .
```

Details

$$I_{DELOC}(t) = -dn/dt = p(t) * (n^2/(NR + n(1-R)))$$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.0.1

How to cite

Kreutzer, S. (2019). run_MC_ISO_DELOC(): Run Monte-Carlo simulation for ISO for GOT model. Function version 0.0.1. In: Friedrich, J., Kreutzer, S. (2019). RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-6. https://CRAN.R-project.org/package=RLumCarlo

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

##TODO

run_MC_ISO_LOC

run_MC_ISO_LOC

Run Monte-Carlo simulation for ITL for localised transition

Description

##TODO

Usage

```
run_MC_ISO_LOC(s, E, T = 20, times, clusters = 10, n_filled = 100, r,
  method = "par", output = "signal", ...)
```

Arguments

```
s
                   numeric (required)
Ε
                   numeric (required)
Τ
                   numeric (with default)
times
                   numeric (with default):
clusters
                   numeric (with default):
                   integer (with default):
n_filled
r
                   numeric (with default):
                   character (with default):
method
output
                   character (with default):
                   further arguments
. . .
```

Details

$$I_{LOC}(t) = -dn/dt = p(t) * (n^2/(r+n))$$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.0.1

How to cite

Kreutzer, S. (2019). run_MC_ISO_LOC(): Run Monte-Carlo simulation for ITL for localised transition. Function version 0.0.1. In: Friedrich, J., Kreutzer, S. (2019). RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-6. https://CRAN.R-project.org/package=RLumCarlo

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

12 run_MC_LM_OSL

References

##TODO

Examples

run_MC_LM_OSL

Run Monte-Carlo simulation for LM-OSL

Description

Run Monte-Carlo simulation for LM-OSL

Usage

```
run_MC_LM_OSL(A, rho, times, clusters = 10, r = NULL, delta.r = 0.1,
   N_e = 200, method = "par", output = "signal", ...)
```

Arguments

```
Α
                  numeric
rho
                  numeric
times
                  vector (with default)
                  numeric (with default):
clusters
                  numeric (with default):
delta.r
                  numeric (with default):
N_e
                  numeric (with default):
                  character (with default):
method
output
                  character (with default):
. . .
                  further arguments
```

Value

This function returns a list.

Function version

```
0.0.1 [2017-01-27]
```

How to cite

Friedrich, J. (2019). run_MC_LM_OSL(): Run Monte-Carlo simulation for LM-OSL. Function version 0.0.1 [2017-01-27]. In: Friedrich, J., Kreutzer, S. (2019). RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-6. https://CRAN.R-project.org/package=RLumCarlo

Author(s)

Johannes Friedrich, University of Bayreuth (Germany)

References

Pagonis 2017

Examples

```
## Not run:
##TODO: Primary example, should be verified
run_MC_LM_OSL(A = 10000, rho = 0.0001, times = 1:100, clusters = 10, r = NULL,
delta.r = 0.1,
N_e = 200, method = "par", output = "signal") %>%
calc_RLumCarlo() %>%
plot_RLumCarlo(norm = T)
## End(Not run)
```

run_MC_LM_OSL_DELOC

Run Monte-Carlo simulation for LM-OSL for GOT model

Description

##TODO

Usage

```
run_MC_LM_OSL_DELOC(A, times, clusters = 10, N_e = 200,
    n_filled = N_e, R, method = "par", output = "signal", ...)
```

Arguments

```
numeric (required)
Α
times
                   numeric (with default)
clusters
                   numeric (with default):
N_e
                   integer (with default)
n_filled
                   integer (with default)
                   numeric (with default):
                   character (with default):
method
                   character (with default):
output
                   further arguments
. . .
```

Details

$$I_{DELOC}(t) = -dn/dt = p(t) * (n^2/(NR + n(1-R)))$$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.0.1

How to cite

Kreutzer, S. (2019). run_MC_LM_OSL_DELOC(): Run Monte-Carlo simulation for LM-OSL for GOT model. Function version 0.0.1. In: Friedrich, J., Kreutzer, S. (2019). RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-6. https://CRAN.R-project.org/package=RLumCarlo

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

##TODO

End(Not run)

run_MC_LM_OSL_LOC

Run Monte-Carlo simulation for LM-OSL for localised transition

Description

##TODO

Usage

```
run_MC_LM_OSL_LOC(A, times, clusters = 10, n_filled = 100, r,
  method = "par", output = "signal", ...)
```

Arguments

Α	numeric (required)
times	numeric (with default):
clusters	numeric (with default):
n_filled	integer (with default):
r	numeric (with default):
method	character (with default):
output	character (with default):
	further arguments

Details

$$I_{LOC}(t) = -dn/dt = A * (n^2/(r+n))$$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.0.1

How to cite

Kreutzer, S. (2019). run_MC_LM_OSL_LOC(): Run Monte-Carlo simulation for LM-OSL for localised transition. Function version 0.0.1. In: Friedrich, J., Kreutzer, S. (2019). RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-6. https://CRAN.R-project.org/package=RLumCarlo

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

run_MC_TL

References

##TODO

Examples

```
##=========##
## Example 1: Simulate LM-OSL
##===============================##
## Not run:
run_MC_LM_OSL_LOC(
    A = 0.12,
    r = 1,
    times = 0:100) %>%
        calc_RLumCarlo() %>%
        plot_RLumCarlo(legend = T)
## End(Not run)
```

run_MC_TL

Run Monte-Carlo simulation for TL

Description

Run Monte-Carlo simulation for TL

Usage

```
run_MC_TL(s, E, rho, r_c, times, clusters = 10, N_e = 200,
  delta.r = 0.1, method = "par", output = "signal", ...)
```

Arguments s

```
Ε
                  numeric
rho
                  numeric
r_c
                  numeric (with default)
times
                  vector (with default)
                  numeric (with default):
clusters
                  numeric (with default):
N_e
delta.r
                  numeric (with default):
                  character (with default):
method
                  character (with default):
output
. . .
                  further arguments
```

list

Value

This function returns an array with dimension length(times) x length(r) x clusters

run_MC_TL_DELOC 17

Function version

```
0.0.1 [2017-01-27]
```

How to cite

Friedrich, J. (2019). run_MC_TL(): Run Monte-Carlo simulation for TL. Function version 0.0.1 [2017-01-27]. In: Friedrich, J., Kreutzer, S. (2019). RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-6. https://CRAN.R-project.org/package=RLumCarlo

Author(s)

Johannes Friedrich, University of Bayreuth (Germany)

References

Pagonis 2017

Examples

 $run_MC_TL_DELOC$

Run Monte-Carlo simulation for TL for GOT model

Description

##TODO

Usage

```
run_MC_TL_DELOC(s, E, times, clusters = 10, N_e = 200,
    n_filled = N_e, R, method = "par", output = "signal", ...)
```

run_MC_TL_DELOC

Arguments

```
s
                   numeric (required)
Ε
                   numeric (required)
times
                   numeric (with default)
clusters
                   numeric (with default):
N_e
                   integer (with default)
n_filled
                   integer (with default)
                   numeric (with default):
                   character (with default):
method
                   character (with default):
output
                   further arguments
. . .
```

Details

$$I_{DELOC}(t) = -dn/dt = p(t) * (n^2/(NR + n(1 - R)))$$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.0.1

How to cite

Kreutzer, S. (2019). run_MC_TL_DELOC(): Run Monte-Carlo simulation for TL for GOT model. Function version 0.0.1. In: Friedrich, J., Kreutzer, S. (2019). RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-6. https://CRAN.R-project.org/package=RLumCarlo

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

##TODO

run_MC_TL_LOC 19

```
plot_RLumCarlo(legend = T)
## End(Not run)
```

run_MC_TL_LOC

Run Monte-Carlo simulation for TL for localised transition

Description

##TODO

Usage

```
run_MC_TL_LOC(s, E, times, clusters = 10, n_filled = 100, r,
  method = "par", output = "signal", ...)
```

Arguments

```
s
                   numeric (required)
Ε
                   numeric (required)
times
                   numeric (with default)
clusters
                   numeric (with default):
n_filled
                   integer (with default)
                   numeric (with default):
r
method
                   character (with default):
output
                   character (with default):
                   further arguments
```

Details

$$I_{LOC}(t) = -dn/dt = p(t) * (n^2/(r+n))$$

Value

This function returns an array with dimension length(times) x length(r) x clusters

Function version

0.0.1

How to cite

Kreutzer, S. (2019). run_MC_TL_LOC(): Run Monte-Carlo simulation for TL for localised transition. Function version 0.0.1. In: Friedrich, J., Kreutzer, S. (2019). RLumCarlo: Monte-Carlo Methods for Simulating Luminescence PhenomenaR package version 0.1.0.9000-6. https://CRAN.R-project.org/package=RLumCarlo

20 run_MC_TL_LOC

Author(s)

Sebastian Kreutzer, IRAMAT-CRP2A, UMR 5060, CNRS - Université Bordeaux Montaigne (France)

References

##TODO

```
##==========##
## Example 1: Simulate TL
##===========##
## Not run:
run_MC_TL_LOC(
    s = 3.5e12,
    E = 1.45,
    r = 1,
    times = 100:450) %>%
        calc_RLumCarlo() %>%
        plot_RLumCarlo(legend = T)
## End(Not run)
```

Index

```
array, 3, 6, 7, 10, 11, 14-16, 18, 19
calc_RLumCarlo, 2
character, 4, 5, 7-9, 11, 12, 14-16, 18, 19
data.frame, 3
integer, 5, 7, 9, 11, 14, 15, 18, 19
list, 16
logical, 3
numeric, 3-5, 7-9, 11, 12, 14-16, 18, 19
plot_RLumCarlo, 3
RLumCarlo-package, 2
run_MC_CW_IRSL, 4
run_MC_CW_IRSL_DELOC, 5
run_MC_CW_IRSL_LOC, 6
run_MC_ISO, 8
run_MC_ISO_DELOC, 9
run_MC_ISO_LOC, 11
run_MC_LM_OSL, 12
\verb"run_MC_LM_OSL_DELOC", 13"
run_MC_LM_OSL_LOC, 15
run_MC_TL, 16
run_MC_TL_DELOC, 17
\verb"run_MC_TL_LOC", \frac{19}{}
vector, 4, 12, 16
```