Homework 3

Jin Xu

jx217@scarletmail.rutgers.edu

ECE, School of Graduate Studies

Rutgers University

Q1

Implementation

Without balancing, two-three tree is similar to BST, only **put()** needs some changes:

```
#at bottom
if Null
    new a Node with red link, which means default 3-nodes
if on the left side
    ...
    check for 4-nodes, revert it to 3-nodes
if on the right side
    ...
    check for 4-nodes, revert it to 3-nodes
```

I also implemented the str function, call **print(tree)** to print the in-order key-value pairs sequence.

Q2

Note: For each data is an average of 10 experiments

Result

N	Random AveLen	Ordered AveLen
1	1	1
2	1.5	1.5
4	2.125	2.5
8	3.125	4.5
16	4.31875	8.5
32	5.7375	16.5
64	6.715625	32.5
128	7.938281	64.5
256	9.244922	128.5
512	10.54238	256.5
1024	12.1249	512.5
2048	13.11255	1024.5
4096	15.05837	2048.5
8192	16.39889	4096.5
16384	17.84252	8192.5

Analysis

Result shows random insertion is O(logN), and ordered insertion is always O(N/2)

Q3

Note: It takes too long to run 100 trials for each on my computer, so the data is actually 10 times average

Result

N	Red Nodes (%)
10000	25.357
100000	25.388
1000000	25.392

Analysis

Result shows that not matter how great N is, the red nodes is always take a quarter in the tree.

Q4

Note: It takes too long to run 1000 trials for each on my computer, so the data is actually 5 trials

Result

Analysis

ullet The average path length for red-black tree is O(logN), and it is slightly smaller than simple BST path length (as result from Q2).

• The standard deviation is flipping between 0.05 to 0.12, that is because as the height of tree is increasing, the length for the leaves are increasing too, which causes the turning points for standard deviation.

Q5

Result

- **select(7)** is 8
- rand(7) is 6