Logan Zweifel September 12, 2021

1 Big-O #1

Show directly, using the definition of Big-O, that $2n^2 + 9n \in O(n^2)$.

The following is the definition for Big-O which will be used for problems 1-3 on this assignment. For a given complexity function f(n), O(f(n)) is the set of complexity functions g(n) for which there exists some positive real constant c and some nonnegative integer N such that for all $n \geq N$,

$$g(n) \le c * f(n)$$

I show that $2n^2 + 9n \in O(n^2)$. Because, for $n \ge 1$,

$$2n^2 + 9n \leq 2n^2 + 9n^2$$
$$\leq 11n^2$$

Where c = 11 and N = 1 were used to obtain the result.

2 Big-O #2

Show directly, using the definition of Big-O, that $5n^2 + 10 \in O(n^3)$.

I show that $5n^2 + 10 \in O(n^2)$. Because, for $n \ge 2$,

$$5n^2 + 10 \le 5n^3$$

Where c = 5 and N = 2 were used to obtain the result.

3 Big-O #3

Show directly, using the definition of Big-O, that $6n^2 + 12n \in O(n^2)$.

I show that $6n^2 + 12n \in O(n^2)$. Because, for $n \ge 1$,

$$6n^2 + 12n \leq 6n^2 + 12n^2$$
$$\leq 18n^2$$

Where c = 18 and N = 1 were used to obtain the result.

4 Omega # 1

Show directly, using the definition of Ω , that $6n^3 - 12n \in \Omega(n^3)$.

The following is the definition for Omega and will be used for problems 4-6 on this assignment. For a given complexity function f(n), $\Omega(f(n))$ is the set of complexity functions g(n) for which there exists some positive real constant c and some nonnegative integer N such that for all $n \geq N$,

$$g(n) \ge c * f(n)$$

I show that $6n^3 - 12n \in \Omega(n^3)$. Because, for $n \ge 2$,

$$6n^3 - 12n > 1 * n^3$$

Where c=1 and N=2 were used to obtain the result. For this question and the other two Ω questions on this HW, the constant was picked as 1 before the N, because that keeps the right side of the inequality as low as possible. Then, the N value was calculated by doing a simple calculation as to when N is the lowest and the inequality is true.

5 Omega # 2

Show directly, using the definition of Ω , that $4n^3 + 2n^2 \in \Omega(n^2)$.

I show that $4n^3 + 2n^2 \in \Omega(n^2)$. Because, for $n \ge 0$,

$$4n^3 + 2n^2 \ge 1 * n^2$$

Where c = 1 and N = 0 were used to obtain the result.

6 Omega # 3

Show directly, using the definition of Ω , that $6n^2 + 12n \in \Omega(n^2)$.

I show that $6n^2 + 12n \in \Omega(n^2)$. Because, for $n \ge 0$,

$$6n^2 + 12n \ge 1 * n^2$$

Where c = 1 and N = 0 were used to obtain the result.