Sprawozdanie z piątego laboratorium WSI

Michał Goławski, 325158

1. Opis algorytmu

Algorytm korzysta z sieci neuronowej trzywarstwowej. Na wejściu otrzymuje zdjęcie odręcznie pisanej cyfry w postaci 784 wektora pikseli przeskalowanych do wartości w zakresie [0, 1]. Algorytm do optymalizacji swoich wag i biasów wykorzystuje metodę gradientu prostego. Każda z warstw neuronów jest warstwą w pełni połączoną, każdy neuron jako funkcję aktywacji wykorzystuje funkcję tangensa. Funkcja straty która jest wykorzystywana do obliczenia $\frac{\delta E}{\delta Y}$ w ostatniej warstwie jest funkcją błędu średniokwadratowego. Algorytm na wyjściu zwraca 10 elementowy wektor, którego składowe reprezentują prawdopodobieństwo wystąpienia danej pod indeksem wektora cyfry.

2. Opis eksperymentów

Algorytm użył do treningu bazy danych MNIST losując z niego 10000 obrazów. Dane z pikselami zostały zamienione z macierzy o rozmiarze 28x28 na wektor o 784 składowych. Ponadto wartości pikseli zostały przeskalowane by były w zakresie liczbowym 0-1. W ten sposób algorytm mógł uzyskać lepsze efekty. Etykiety do zbioru treningowego musiały zostać podane algorytmowi w postaci 10 elementowych wektorów zawierających pojedynczą 1 i resztę wypełnioną zerami. Na przykład etykieta reprezentująca cyfrę 2 została zamieniona w wektor [0, 0, 1, 0, ..., 0]. Do testowania użyto losowych 1000 obrazów z bazy danych MNIST. Parametry użyte do trenowania sieci neuronowej wynoszą 0.1 dla wielkości kroku β i 50 dla liczby epok (liczby wykonanych iteracji przez metodę gradientu prostego).

3. Wyniki eksperymentów

3.1. Skuteczność

Skuteczność wynosiła 0.927 co w połączeniu z faktem, że klasy były rozłożone mniej więcej równomiernie pokazuje, że algorytm działa dobrze.

3.2. Raport klasyfikacji

Class	Precision	Recall	F1-score
0	0.98	0.98	0.98
1	0.99	0.99	0.99
2	0.90	0.95	0.92
3	0.92	0.90	0.91
4	0.91	0.92	0.91
5	0.90	0.92	0.91
6	0.97	0.97	0.97
7	0.92	0.88	0.90
8	0.83	0.87	0.85
9	0.92	0.87	0.89

Jak widzimy na tabeli powyżej wszystkie parametry dla każdej klasy są większe od 0.83 co oznacza, że algorytm klasyfikując elementy danej klasy rzadko się myli przydzielając do niej elementy z innej klasy (parametr precision). Ponadto algorytm klasyfikując elementy danej klasy rzadko przydziela je do innej klasy (parametr recall). Średnia harmoniczna z tych dwóch parametrów czyli f1-score pokazuje wyraźnie, że algorytm działa zadowalająco.

3.3. Confusion Matrix

Jak widać na confusion matrix algorytm poprawnie klasyfikuje obrazy liczb, zaciemniony obszar układa się w przekątną co oznacza, że obrazki zostały sklasyfikowane poprawnie w znacznej większości dla danej klasy.