# RNA Sequencing

Elisha Roberson, Ph.D.

Depts. of Medicine & Genetics eroberson@wustl.edu 2016-December-06





## Comparing RNA-Seq and microarrays



• Hybridization requires known targets



• Expression detected by fluorescence



• Low-level expression can be difficult to detect compared to background



• High-level expression can saturate probes



• Variation in the subject's RNA sequence can affect binding kinetics

#### **RNA-Seq differences**

- Counting no probes to saturate (though some sequences can predominate the library) and can always sequence more to get low-expressors
- Doesn't \*require\* a known gene sequence
- Not affected by variation, as long as it doesn't affect transcript stability

Isoform A Isoform B

## Sample prep is *critical*



 Blood is low-risk, easy to access, and frequently used

• **But** strongly enriched for red cells. What transcripts will predominate?



- Freeze PBMCs directly
- Lyse directly in Trizol



#### **Tissues**

- Biopsies, whole organs, etc.
- Unlike blood, the complex structure and embedded connective fibers make tissues more difficult to process and preserve.



• Some solutions, like RNAlater, can preserve tissue RNA for short-term storage at RT or long-term storage at -20°C



- PBMCs shipped on (too little) dry ice
- Degraded 3'-5'
- PolyA kit fails

## Library prep / cDNA methods

## Polyadenylation (polyA) preps





- polyT primed firststrand synthesis works
- **But** can lead to 3' bias and only captures polyadenylated transcripts.

## Polyadenylation (polyA) preps



## Ribosomal depletion preps

- Majority of cellular RNA is non-coding, particularly ribosomal RNA
- RNA polymerase I (28S, 18S, 5.8S rRNA) and Pol III (5S rRNA)
- Not polyadenylated



## Ribosomal depletion preps



## Ribosomal depletion preps



## Stranded preps

- Standard cDNA → library prep retains no information about transcript strand.
- Some loci have antisense transcripts



## Stranded preps



- Normal first strand synthesis. 2<sup>nd</sup> strand incorporates uracil
- Uracil-DNA glycosylase excises U-base from DNA
- Endonuclease VIII breaks backbone at those sites

# Sequencing choices

#### Short reads

- Illumina
  - Single-end vs. paired-end
    - Paired-end superior. Estimates insert size empirically
  - Read length
    - Greater cycle number preferred
    - 2x75 good compromise
  - Depth / coverage
    - Very different from DNA seq
    - Variable gene length and expression level
    - Several tools to estimate

## Long reads – Pac Bio SMRT

• Full-length isoform sequencing (\$\$\$\$)

| Pacbio Library Construction and Sequencing | Cost Per Sample |                                               |
|--------------------------------------------|-----------------|-----------------------------------------------|
| Sequencing SMRT Cell                       | \$257           | Min \$1,100 / sample for whole transcriptome. |
| Standard Library Prep                      | \$560           |                                               |
| Low_input Library Prep                     | \$603           |                                               |
| Iso-Seq Whole Transcriptome Lib_Prep       | \$875           |                                               |
| Iso-Seq Targeted Lib_Prep                  | \$664           |                                               |

## Long reads – Oxford nanopore

MinION / PromethION (also \$\$\$\$\$)



## Alignment and counting

Genome locus

Isoform A

Isoform B

#### Genome locus



#### Genome locus



#### Genome locus



Genomic aligners expect the library to reflect **genome** architecture. Intron splicing looks like large deletions, and can confuse aligner.

One alternative is to align to transcript FASTA rather than whole-genome.

## Splice-aware genome aligners

- Tophat2 (bowtie derived)
- Spliced Transcript Alignment to Reference (STAR)

## Transcript alignment

- Kallisto
- Sailfish / Salmon

## De novo assembly

- ABySS / TransABySS
- Trinity
- SOAPdenovo-Trans

## Ribosomal depletion alignment



## Counting reads

**Counting tools** 

HTSeq count subread featureCount RSEM



## RNA-Seq complications - duplicates





Highly covered genomic locus for DNA-Seq

#### RNA-Seq complications - duplicates

#### Genome locus









- For DNA-Seq the target is equimolar, but RNA-Seq is more complicated
- Important considerations:
  - Sequencing depth
  - Gene relative expression level
  - Gene size



- But this is a solvable problem
- Adding a short barcode to each fragment during PCR, called a unique molecular identifier (UMI) we know whether reads are truly unique, even with identical 5' mapping

# Estimating gene abundance & differential expression

#### Abundance metrics

• Fragments per Kb of exon per million mapped reads (FPKM)

• Transcripts per million (TPM)

- TPM preferable
  - Different total reads between experiments skew FPKM
  - TPM consistent, i.e. 1 TPM sample A and sample B really means similar abundance

# Modeling counts – edgeR, DESeq2

Counts are not normally distributed

- What models counts?
  - Poisson distribution
    - But assumes variance & mean equal
  - Negative binomial
    - Mean ≠ variance
    - edgeR, DESeq2 R packages

# Modeling counts – cuffdiff2

 Combine uncertainty and overdispersion into a single model of fragment count variability (beta negative binomial)



- 5) Test for signficance of changes between conditions in transcript-level counts
- edgeR & DESeq2 model <u>gene-level</u> differential expression
- cuffdiff2 tests for significant isoform-level DE

# Modeling counts - VOOM



 VOOM uses log2 of counts per million normalization factor

Differential
 expression using the
 empirical Bayes
 limma pipeline

#### How similar are gene DE algorithms?



## Transcript k-mer modeling - sailfish



- Hashing uses a large amount of memory
- But lookups are blazingly fast
- Calculates TPMs

#### Transcript pseudoalignment - kallisto



- Builds a de Bruijn graph of transcript sequences
- Pseudoalignment –
   compatible transcripts,
   not where in transcript
- Very fast and efficient
- Allows for bootstrapping

# Transcript DE from kallisto - Sleuth



# Single cell RNASeq – Fluidigm C1



- Microfluidics capture single cells
- Lyse cells and generate cDNA
- Requires live cells
- 96-800 cells / chip

# Single cell RNASeq - DropSeq



- Flows beads in a droplet.
- Cells, usu singles, merge into a droplet for library prep.
- 10s of thousands of cells.

# RNA-Seq to diagnose Mendelian disease



<sup>\*</sup> Cummings et al. 2015. http://biorxiv.org/content/biorxiv/early/2016/09/08/074153.full.pdf

- RNA-Seq vs. microarrays
  - Microarray requires knowing target sequence
  - Poor dynamic range (hard to detect low-level expressors, saturate at high-levels)

- Sample collection & storage
  - Blood should be spun down to PBMCs
    - Can be directly lysed
  - Tissue should have RNAlater applied soon as possible, followed by disruption.

- cDNA / library prep
  - Polyadenylation library methods selectively capture polyA transcripts
  - Ribosomal depletion methods degrade ribosomal RNA, but leave non-polyadenylated
  - Strandedness
    - There are an appreciable number of genes with antisense transcripts.
    - Also useful for identifying genes in species without a reference genome

- Sequencing technologies
  - Long reads (expensive), but sequence full isoform
  - Short read. Reasonable price.
- Aligner
  - Must use an aligner that is aware of introns
  - May align to either genes (STAR, etc) or transcriptome (Tophat 2 and kallisto)
- Counting
  - Subread featureCounts, HTSeq count, RSEM

- Differential expression
  - Gene, negative binomial: edgeR, DESeq2
  - Gene, log2 counts per million: VOOM
  - Transcript, TPM, kallisto.
  - Transcript, TPM, Sailfish
- Single-cell
  - Isolate a single cell and make a libraries (low-output)
  - Spike-ins help
  - UMIs help also