Module 16: Support Vector Machines (SVMs)

Video 2: The Kernel Trick

Equations

In this video, Dr. Gomes explains the mathematics behind two approaches for the introduction of nonlinearity into linear regression. The equations introduced are summarized below.

Equation 1: Derivative of the slope of the loss function

$$\frac{\partial d}{\partial p} = 0 \qquad \sum_{i} (\beta^{T} \phi(x_i) - y_i) \phi(x_i) + \lambda \beta = 0$$

Remove the remaining summation from the notation by defining a vector form for y_i and a matrix form for $\phi(x_i)$.

Define Φ as an N by M matrix that holds the features for each of the x_i data points as rows:

$$\Phi = \begin{bmatrix} \phi_{(x_i)}^T \\ \vdots \\ \phi_{(x_N)}^T \end{bmatrix} \in \mathbb{R}^{N \times M}$$

And define a column vector *Y* to hold the output data:

$$Y = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}$$

Berkeley Engineering Berkeley Haas

Using these definitions, equation 1 becomes

$$\Phi^T \Phi \beta - \Phi^T y + \lambda \beta = 0$$

And then solve for β :

$$\beta = (\Phi^T \Phi + \lambda I_M)^{-1} \Phi^T Y$$

Once the optimal β is computed, the training data can be discarded, and the M coefficients β_0 through β_{M-1} and use them to make a prediction for a new data point x_n using:

$$y(x_n) = \beta^T \phi(x_n)$$

Equation 2: Definition of the Alphas (α_i)

Define an alternative set of parameters α_i :

$$\alpha_i := -\frac{1}{\lambda}(y(x_i) - y_i) = -\frac{1}{\lambda}(\beta^T \phi(x_i) - y_i)$$
 $i = 1 ... N$

Plug this definition into equation 1 and divide by λ to get:

$$\sum_{i} (-\lambda \alpha_i) \phi(x_i) + \lambda \beta = 0$$

And cancel λ to obtain equation 3.

Equation 3: The expression between optimal Betas and optimal Alphas

$$\beta = \sum_{i} \alpha_{i} \phi(x_{i}) = \boxed{\Phi^{T} \alpha} \qquad \alpha = \begin{bmatrix} \alpha_{i} \\ \vdots \\ \alpha_{N} \end{bmatrix}$$

Equation 4: Definition of the alphas [equation 2] in Matrix form

$$-\lambda\alpha = \Phi\beta - Y$$

Use equation 3 to eliminate $oldsymbol{eta}$ in equation 4:

$$-\lambda\alpha = \Phi\Phi^T\alpha - Y$$

And solve for α :

$$\alpha = (\Phi \Phi^T - \lambda I)^{-1} Y$$