

UNIVERSITÉ DE SHERBROOKE

Faculté de génie Département de génie électrique et génie informatique

ÉLÉMENTS DE STATIQUE ET DE DYNAMIQUE APP 1

Présenté à :

Μ.

 $\operatorname{Pr\acute{e}sent\acute{e}}$ par :

Hubert Dubé - dubh3401 Marc Sirois - sirm2508 Gabriel Lavoie - lavg2007

Sherbrooke
4 septembre 2019

Table des matières

1	Introduction				
2	Cinématique				
	2.1	Mouvement de A dans le cas général	1		
	2.2	Mouvement horizontal de A	1		
	2.3	Mouvement vertical de A	2		
	2.4	Analyse avec Matlab	3		
3	Statique et dynamique				
	3.1	Statique	3		
	3.2	Dynamique	4		
	3.3	Analyse avec Matlab	4		
4	Cor	nclusion	4		

Table des figures

	\mathbf{a}	Position finale	1
	b	Position finale	1
1	Positio	on du mouvement horizontale	1
2	Compo	osantes en fonction de $ heta$	2
	a	Position initiale	2
	b	Position finale	2
3	Positio	on du mouvement vertical	2
4	Composantes en fonction de θ		
5	couple	statique en fonction de $ heta$	3
6	couple	dynamique en fonction de $ heta$	4

1 Introduction

2 Cinématique

2.1 Mouvement de A dans le cas général

Le positionnement de \overrightarrow{OA} peut être exprimé par l'addition :

$$\overrightarrow{OA} = \overrightarrow{OB} + \overrightarrow{BA} \tag{1}$$

$$\overrightarrow{OA_x} = l_1 cos(\theta) + l_2 cos(\phi) \tag{2}$$

$$\overrightarrow{OA_y} = l_1 sin(\theta) + l_2 sin(\phi) \tag{3}$$

la vitesse étant la dérivée de la position :

$$\overrightarrow{V_A} = \frac{d\overrightarrow{OA}}{dt} \tag{4}$$

$$\overrightarrow{V_A x} = \frac{d\overrightarrow{OA_x}}{dt} = \frac{l_1 cos(\theta) + l_2 cos(\phi)}{dt}$$
(5)

$$\overrightarrow{V_{Ax}} = -l_1 \sin(\theta)\dot{\theta} - l_2 \sin(\phi)\dot{\phi} \tag{6}$$

$$\overrightarrow{V_A y} = \frac{d\overrightarrow{OA_y}}{dt} = \frac{l_1 sin(\theta) + l_2 sin(\phi)}{dt}$$
(7)

$$\overrightarrow{V_A x} = l_1 \cos(\theta) \dot{\theta} - l_2 \cos(\phi) \dot{\phi} \tag{8}$$

(9)

La même stratégie peut être utilisé pour obtenir l'accélération :

$$\overrightarrow{a_A} = \frac{d\overrightarrow{V_A}}{dt} \tag{10}$$

$$\overrightarrow{a_A x} = \frac{d\overrightarrow{OA_x}}{dt} = \frac{l_1 cos(\theta) + l_2 cos(\phi)}{dt}$$
 (11)

(12)

2.2 Mouvement horizontal de A

 ${\tt Figure} \ 1 - Position \ du \ mouvement \ horizontale$

FIGURE 2 – Composantes en fonction de θ

2.3 Mouvement vertical de A

Figure 3 – Position du mouvement vertical

FIGURE 4 – Composantes en fonction de θ

2.4 Analyse avec Matlab

3 Statique et dynamique

3.1 Statique

Figure 5 – couple statique en fonction de θ

3.2 Dynamique

3.3 Analyse avec Matlab

4 Conclusion