Mobile Computing Architecture

UW Bothell, WA

Internet Over Things (IoT) over 5G

P

IoT History

• The term "IoT" can most likely be attributed to Kevin Ashton in 1997 and his work at Procter and Gamble using RFID tags to manage supply chains.

Year	Device	Reference
	Mario W. Cardullo receives the patent for first RFID tag.	US Patent US 3713148 A
1982	Carnegie Mellon Internet- connected soda machine.	https://www.cs.cmu.edu/~coke/history_long.txt
1989	Internet- connected toaster at Interop '89.	IEEE Consumer Electronics Magazine (Volume: 6, Issue: 1, Jan. 2017)
	HP introduces HP LaserJet IIISi: the first Ethernet- connected network printer.	http://hpmuseum.net/display_item.php?hw=350
	Internet- connected coffee pot at University of Cambridge (the first Internet-connected camera).	https://www.cl.cam.ac.uk/coffee/qsf/coffee.html
1996	General Motors OnStar (2001 remote diagnostics).	https://en.wikipedia.org/wiki/OnStar
1998	Bluetooth Special Interest Group (SIG) formed.	https://www.bluetooth.com/about-us/our-history
	LG Internet Digital DIOS refrigerator.	https://www.telecompaper.com/news/lg-unveils-internetready-refrigerator221266

2000	First instances of the Cooltown concept of pervasive computing everywhere: HP Labs, a system of computing and communication technologies that, combined, create a web-connected experience for people, places, and objects.	https://www.youtube.com/watch?v=U2AkkuIVV-I
2001	First Bluetooth product launched: KDDI Bluetooth- enabled mobile phone.	http://edition.cnn.com/2001/BUSINESS/asia/04/17/tokyo.kddibluetooth/index.html
2005	United Nation's International Telecommunications Union report predicting the rise of IoT for the first time.	http://www.itu.int/osg/spu/publications/internetofthings/internetofThings_summary.pdf
2008	IPSO Alliance formed to promote IP on objects, first IoT-focused alliance.	https://www.ipso-alliance.org
2010	The concept of Smart Lighting formed after success in developing solid- state LED light bulbs.	https://www.bu.edu/smartlighting/files/2010/01/BobK.pdf
2014	Apple creates iBeacon protocol for beacons.	https://support.apple.com/en-us/HT202880

IoT Definition

The basic requirements of a device to be considered part of the IoT:

- Computationally capable of hosting an Internet protocol software stack
- Hardware and power capable of utilizing a network transport such as 802.3
- Not a traditional Internet-connected device, such as a PC, laptop, smartphone, server, data center appliance, office productivity machine, or tablet computer

Note: Most IoT installations are not a single device that has the capabilities of running an Internet hardware and software stack. Most sensors and devices have no capabilities of reaching the Internet directly. These devices connect via gateways in a hub-and-spoke model. Connectivity is through local personal area networks, non-IP networks (Bluetooth), industrial protocols (ModBus), legacy brownfield protocols (RS232), and hardware signals.

IoT In Industry

IoT Over 5G

reen Malik. Mobile Computing Architecture, 2020

IoT Over 5G

IoT over 5G – Low Power Wide Area (LPWA)

- Global vendors and developers are launching **NB-IoT and LTE-M** networks as an integral part of their long term 5G IoT strategies.
- Mobile IoT refers to low power wide area (LPWA) 3GPP standardized secure operator managed IoT networks in licensed spectrum.
- Networks designed for IoT applications that are low cost, use low data rates, require long battery lives and often operate in remote and hard to reach locations.
- Existing cellular networks are evolving to deliver service to billions of new devices providing complete IoT connectivity in the 5G era.
- NB-IoT and LTE-M are 3GPP standards that are both are set to coexist with other 3GPP 5G technologies, so fulfilling the long term 5G LPWA requirements. 3GPP has agreed that the LPWA use cases will continue to be addressed by evolving NB-IoT and LTE-M as part of the 5G specifications, so confirming the long-term status of both NB-IoT and LTE-M as 5G standards.

een Malik. Mobile Computing Architecture, 2020

IoT Use-Cases Massive IoT | Critical IoT | eMBB

ireen Malik. Mobile Computing Architecture. 2

IoT: LPWA Characteristics

LPWA technologies possess the following characteristics:

- Low power consumption that enables devices to operate for many years on a single charge
- Low device unit cost
- Improved outdoor and indoor coverage compared with existing wide area technologies
- Secure connectivity and strong authentication
- Optimized data transfer for small, intermittent blocks of data
- Simplified network topology and deployment
- Network scalability for capacity upgrade

Sireen Malik. Mobile Computing Architecture.

IoT: LTE-M and NB-IoT

LTE-Machine Type Communication

• LTE-M supports lower device complexity, massive connection density, low device power consumption, low latency and provides extended coverage, while allowing the reuse of the LTE installed base.

Narrowband - IoT

Narrowband IoT (NB-IoT) is a 3GPP radio technology standard introduced in Release 13 that addresses the LPWA requirements of the IoT. NB-IoT is characterized by improved indoor coverage, support of massive number of low throughput devices, low delay sensitivity, ultra-low device cost, low device power consumption and optimized network architecture.

IoT Performance

Two Leading LPWA Technologies

IoT Devices Performance

	Release/Category				
	Release 8	Release 12	Release 13	Release 13	
	Cat-4	Cat-0	Cat-M	NB-IoT	
Max. system bandwidth	20MHz	20MHz	1.4MHz	200kHz	
Downlink peak rate	150 Mbit/s	I Mbit/s	I Mbit/s	~200kbit/s	
Uplink peak rate	50 Mbit/s	I Mbit/s	I Mbit/s	~200kbit/s	
Duplex	Full duplex	Half duplex	Half duplex	Half duplex	
Number of antennas	2	T	1	f	
Transmit power (UE)	23dBm	23dBm	20dBm	23dBm	
Estimated modem complexity	100%	40%	20%	<15%	

IoT Devices Roadmap

IoT Generic Architecture

11/12/2020

CISCO

IoT over 5G Mobile Network – Capillary Network

IoT Deployment – Automation Stacks Two Examples

Hosted Applications

on an Application Development & Execution Platform with corresponding analytics (cloud and distributed via Mobile Edge Compute)

Monetize

data & event collection, storage, Analytics Applications Location, Fault management, Enterprise mgmt

Manage Devices

device configuration/discovery, service activation, software updates and device campaign management

Manage Service

SIM Subscription, Provisioning, Rate Plans, Charging eSIM, Enterprise Mgmt

11/12/2020

17

Malik. Mobile Computing Architecture, 2020

IoT Slice

Reading Material

GSMA-5G-Mobile-IoT.pdf

5G enabled Tactile Internet.pdf

Malik. Mobile Computing Architecture, 2020