

TIRUCHIRAPPALLI CAMPUS

81. A, B, Bin, D and Bout are crospectively the minuend, the subtrahend, the BORROW-IN, the DIFFERENCE output and the Borrow out in the case of full subtractor. Determine the bit status of D and Bout for the bollowing values of A, B and Bin

Block diagram:

BERNEY TAXABLE

Touth table bot full subtractor K-MAP

K-MAP

Deci	A	В	Bin	D	Bout
D	D	D	0	0	Ь
1	D	D	1	1	1
2	D	1	D	1	1
3	0	1	1	D	1
4	1	0	D	1	0
5	1	0	1	0	0
6	1	1	D	D	D
7	1	1	1	1	1

i) Difference

A B	Bin B'Bin	B'Bin	BBIN	BBin'
A'	0	1 1	3	1
A	1 4	5	4	6

D = AB'B'n + A'B'Bin + ABBin + ABBin

ii) Borriou out

A BE	n B'Bin	B'Bin	BBin	BBIN
A']	0	1	11	1]
A	4	. 5	1	6

Bout = A'Bin + A'B + BBin

Bout = A'B+Bin(A'+B)

TIRUCHIRAPPALLI CAMPUS

a) A=0; B=1; Bin=1

D = 0 ; Bout 1

b) A = 1 ; B = 4 ; Bin = D

. D=0 ; B=0

c) A=1; B=1; Brn=1

D=1 ; B Dut = 1

d) A=0; B=0; Brn=1

D=4; Bout = 1

- Determine the number of half and full adder circuit blocks required to construct a 64 bit binary parellel adder. Also, determine the number and type of additional logic gates needed to transform thus 64 bit adder subtractor
 - i) An 64 but binary parellel adder orequires 1 half adder and 63 full adder
- we need to add 64 YOR gate and 64 AND gate.
 - .) YOR and AND gate = 64
 - ·) Total no of logical gate = 128

[64 bit adden] + [64 YOK gate] + [64 AND gate] = 64 bit adder subtractor

MARIA PARA LA COL

TIRUCHIRAPPALLI CAMPUS

3) Prove that the logic diagram from the bigure performs the bunction of a half-subtractor provided that Y represents the DIFFERENCE output and X-represent the BORROW output

TRUTH TABLE

	A	В	DH	Borrow
1	0	0	0	D
	0	1	1	1
1	1	0	1	0
1	1	1	0	0

K-MAP

A) DIFFERENCE

AB	8'	В		
A'	0	1,		
Α	1 2	3		

Y= AB + AB'

Y = ADB

For Byterence - ABB

B) BORROW

Forom the above logic diagram, it is clear that y = ABB which is EX-DR and X is A'B (AND gate).

thence it is proved.

TIRUCHIRAPPALLI CAMPUS

4) Implement the Boolean function with a buitable multiplexer 4(A,B,C) = x(1,2,5) where worther his here has to be higher the page

				+
D	TA	В	C	y
0	0	0	0	1
1	0	0	1	:0
1	0	1	0	10
2	6	1	1	1
-	1	0	0	1
4	1	D	1	. 0
5	1	1	0	- 1
6			1	1
7	1	1	4	

A BALL LOT D. C. M. D. BOLLEY

TIRUCHIRAPPALLI CAMPUS

05. Design a 10 line decimal to BCD priority encodes:

				- 1	- 11			1-1	+-+	1-	+ ,	1		
D	Po	D _i	P ₂	D3	P4	D5	D6	DF	Dg	Da	A	B	C	D
0	0	0	0	0	D	0	0	0	0	0	0	0	0	0
1	×	1	0	0	0	0	0	0	0	0	0	0	0	1
2	X	X	1	0	0	0	D	D	0	0	0	0	1	0
3	X	X	×	1	D	0	D	0	0	0	0	0	1	1
4	X	×	x	X	1	O	0	D	0	D	0	1	0	0
5	x	x	X	X	X	1	0	b	0	0	0	1	0	1
ь	×	X	X	X	X	X	1	0	0	D	0	1	1	0
7	×	×	×	×	X	X	X	1	D	b	0	1	1	1
8	×	X	×	×	×	X	X	x	1	0	1	D	0	6
9	×	×	X	×	×	×	×	×	×	1	1	0	0	1

TIRUCHIRAPPALLI CAMPUS

6) A combinational circuit is defined by $F \ge 2(0, 2, 5, 6, 7)$ Hardware implement the Roblean function F with a suitable decoder and an external DR/NDR gate having the minimum number of inputs

				-
D	A	В	C	Y
0	0	D	0	1
1	0	0	1	0
2	0	1	D	1
3	0	1	1	0
4	1	0	0	6
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

Y = A'B'C' + A'BC' + ABC' + ABC' + ABC' Y = A'C'(B'+B) + AB(C'+C) + AB'O Y = A'C' + AB + AB'C Y = A'C' + A[B+B'C]

Y = A/B'C'+ A'LBC'+B'C) + ABC'+ABC

Y = A'(BC'+B'C) + ABC'

Y = A' (B+C) + ABC'

