Diszkrét Matematika 1. Írásbeli vizsga, 2016. január 18. (90 perc)

NÉV: NEPTUN kód: (Leendő) szakirány:
1. Alapvető fontosságú fogalmak
A következő hat kérdésre 1-1 pont kapható. Ebből legalább 4 pontot kell szerezni.
1. Írja fel a szorzásra vonatkozó Moivre-azonosságot.
2. Mik a kvantorok, és mi a jelentésük?
3. Adjunk meg (rendezett párok halmazaként) három tranzitív relációt az $\{1,2,3\}$ alaphalmazon.
4. Hányféle dobás lehetséges 4 teljesen egyforma dobókockával?
5. Húzza alá a megoldható kongruenciákat: $21x \equiv 7 \pmod{1}4$; $30x \equiv 4 \pmod{5}$; $11x \equiv 4 \pmod{10}$; $4132x \equiv 1 \pmod{4133}$.
6. Mikor mondjuk az egészek körében, hogy két szám kongruens egymással modulo m ?

2. Definíciók, tételkimondások

A következő nyolc kérdésre 1-1 pont kapható.

- 1. Írja fel a negyedik egységgyököket trigonometrikus alakban.
- 2. Definiálja a részbenrendezést.
- 3. Adjon meg egy olyan $f: \mathbb{N} \to \mathbb{N}$ függvényt, mely szürjektív, de nem injektív.
- 4. Definiálja a disztributivitást, és mutasson példát.
- 5. Bontsa fel a zárójelet a binomiális tétel segítségével: $(2x-3)^5$.
- 6. Hány olyan 7 hosszú sorozat képezhető a latin ábécé 26 eleméből, melyben csupa különböző betű szerepel (nem kell kiszámolni a konkrét számot, elég csak a képlet)?
- 7. Hogyan definiáljuk az Euler-féle φ függvényt?
- 8. Mi a 47^{1281} utolsó két számjegye tízes számrenszerben?

3. Bizonyítások

A következő három bizonyításra 3-3 pont kapható. Ebből legalább 3 pontot el kell érni (tételkimondásért nem jár pont). Az összpontszám alapján a ponthatárok: 10-től 2-es, 14-től 3-as, 18-tól szóbelizhet a 4-es, illetve 5-ös osztályzatért.

- 1. Mondjon ki és bizonyítson be a halmazok komplementerének tulajdonságai közül 5-öt.
- 2. Mondja ki és igazolja az ismétlés nélküli kombinációk számáról szóló állítást.
- 3. Mondjon ki és igazoljon az oszthatóság tulajdonságai közül 8-at a természetes számok körében.

4. Szóbeli kiváltását lehetővé tevő opcionális tétel

Ez a feladat maximálisan 5 pontot ér. Ha ebből legalább 3 pont megvan, és az összpontszám eléri a 20, illetve 24 pontot, akkor 4-es, illetve 5-ös érdemjegyet ajánlunk.

Legyen X az \mathbb{N} véges részhalmazainak halmaza. Ez részbenrendezett halmaz a "részhalmaza" relációval (legkisebb eleme az üres halmaz). Legyen $Y = \mathbb{N}$, ezen az "osztója" relációt tekintve szintén egy részbenrendezést kapunk ($a \leq b$, ha a osztója b-nek).

- 1. Mi Y legkisebb eleme?
- 2. Legyen $p_0 = 2, p_1 = 3, p_2 = 5, \ldots$ a prímszámok sorozata. Tekintsük a következő $f: X \to Y$ leképezést: $f(A) = \prod_{k \in A} p_k$. Mennyi lesz $f(\{0,1,2\})$, illetve $f(\{1,3,5\})$?
- 3. Injektív, szürjektív, illetve bijektív függvény-e f? Indokoljunk.
- 4. Igaz-e, hogy f monoton növő, illetve szigorúan monoton növő?
- 5. Legyen A egy n elemű halmaz. Hány eleme van az $\{y \in Y \mid y \leq f(A)\}$ halmaznak?