UC Berkeley Department of Electrical Engineering and Computer Sciences

EECS 126: PROBABILITY AND RANDOM PROCESSES

Discussion 05

Spring 2023

1. Order Statistics Practice

For the random variables $X_1, \ldots, X_5 \sim_{\text{i.i.d.}} \text{Uniform}([0,1])$, let $X_{(i)}$ be the *i*th order statistic, i.e. the *i*th smallest value of $\{X_1, \ldots, X_5\}$. Recall that the pdf of $X_{(i)}$ is

$$f_{X_{(i)}}(x) = n \binom{n-1}{i-1} f(x) F(x)^{i-1} (1 - F(x))^{n-i},$$

where f and F are the pdf and cdf of X_i .

- a. What is the pdf of $X_{(i)}$ for i = 1, ..., 5?
- b. What is $\mathbb{E}(X_{(i)})$?
- c. Find the expected value of the range of $\{X_1, \ldots, X_5\}$, that is, the difference between the lowest and highest values.

2. Exponential Bounds

Let $X \sim \text{Exponential}(\lambda)$. For $x > \lambda^{-1}$, find bounds on $\mathbb{P}(X \geq x)$ using Markov's inequality, Chebyshev's inequality, and the Chernoff bound.

3. Convergence in Probability

Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of i.i.d. random variables distributed uniformly in [-1,1]. Show that the following sequences $(Y_n)_{n\in\mathbb{N}}$ converge in probability to some limit.

a.
$$Y_n = \prod_{i=1}^n X_i$$
.

b.
$$Y_n = \max\{X_1, ..., X_n\}.$$

c.
$$Y_n = (X_1^2 + \dots + X_n^2)/n$$
.