Econ 709 Problem Set 5

Sarah Bass *

October 12, 2020

Question 1

Part A

Let $\varepsilon > 0$ and $N > \frac{1}{\varepsilon}$. Then for any $n \in \mathbb{N}$ such that $n \geq N$, we can see that:

$$a_n - 0 = \frac{1}{n} - 0$$

$$\leq \frac{1}{N}$$

$$\leq \varepsilon$$

Thus $a_n \to 0$ as $n \to \infty$.

Part B

Let $\varepsilon > 0$ and $N > \frac{1}{\varepsilon}$. Then for any $n \in \mathbb{N}$ such that $n \geq N$, we can see that:

$$a_n - 0 = \frac{1}{n}\sin(\frac{n\pi}{2}) - 0$$

$$\leq \frac{1}{n}$$

$$\leq \frac{1}{N}$$

$$\leq \varepsilon$$

Thus $a_n \to 0$ as $n \to \infty$.

Question 2

Part A

Let $\varepsilon > 0$ and $N > \varepsilon$. Then for any $n \in \mathbb{N}$ such that $n \geq N$, we can see that:

$$\lim_{n \to \infty} P(|X_n - 0| \ge \varepsilon) = \lim_{n \to \infty} P(|X_n| \ge \varepsilon)$$

$$= \lim_{n \to \infty} P(n \ge \varepsilon)$$

$$= \lim_{n \to \infty} (\frac{2}{n})$$

$$\leq \lim_{n \to \infty} (\frac{2}{N})$$

$$= 0$$

^{*}I have discussed this problem set with Emily Case, Michael Nattinger, Alex Von Hafften, and Danny Edgel.

Part B

$$E(X_n) = -n(\frac{1}{n}) + 0(1 - \frac{2}{n}) + n(\frac{1}{n})$$

= 0

Part C

$$Var(X_n) = E(X_n^2) - E(X_n)^2$$

$$= n^2(\frac{1}{n}) + 0^2(1 - \frac{2}{n}) + n^2(\frac{1}{n}) - (0)^2$$

$$= 2n$$

Part D

$$E(X_n) = 0(1 - \frac{1}{n}) + n(\frac{1}{n})$$

= 1

Part E

Let $\varepsilon > 0$ and $N > \varepsilon$. Then for any $n \in \mathbb{N}$ such that $n \geq N$, we can see that:

$$\lim_{n \to \infty} P(|X_n - 0| \ge \varepsilon) = \lim_{n \to \infty} P(|X_n| \ge \varepsilon)$$

$$= \lim_{n \to \infty} P(n \ge \varepsilon)$$

$$= \lim_{n \to \infty} (\frac{1}{n})$$

$$\leq \lim_{n \to \infty} (\frac{1}{N})$$

$$= 0$$

However, since we proved in part D that $E(X_n) = 1$, $X_n \to_p 0$ does not necessarily mean that $E(X_n) = 0$.

Question 3

Part A

$$E(\bar{Y}^*) = E(\frac{1}{n} \sum_{i=1}^n w_i Y_i)$$

$$= \frac{1}{n} \sum_{i=1}^n w_i E(Y_i)$$

$$= \frac{1}{n} \sum_{i=1}^n w_i \mu_i$$

$$= \frac{1}{n} n \mu$$

$$= \mu$$

Part B

$$Var(\bar{Y}^*) = Var(\frac{1}{n} \sum_{i=1}^n w_i Y_i)$$
$$= \frac{1}{n^2} \sum_{i=1}^n w_i^2 Var(Y_i)$$
$$= \frac{1}{n^2} \sum_{i=1}^n w_i^2 \sigma_Y^2$$

Part C

By Chebychev's Inequality, $Pr(|\bar{Y}^* - \mu| \geq \lambda) \leq \frac{Var(\bar{Y}^*)}{\lambda^2} \Rightarrow Pr(|\bar{Y}^* - \mu| \geq \lambda) \leq \frac{\sum_{i=1}^n w_i^2 \sigma_Y^2}{n^2 \lambda^2}$. Since $\frac{1}{n^2} \sum_{i=1}^n w_i^2 \to 0$ as $n \to \infty$, $Pr(|\bar{Y}^* - \mu| \geq \lambda) = 0$. Thus $\bar{Y}^* \to_p \mu$.

Part D

By Chebychev's Inequality,

$$\begin{split} Pr(|\bar{Y}^* - \mu| &\geq \lambda) \leq \frac{Var(\bar{Y}^*)}{\lambda^2} \\ &= \frac{\sum_{i=1}^n w_i^2 \sigma_Y^2}{n^2 \lambda^2} \\ &\leq \frac{\sigma_Y^2 \sum_{i=1}^n (w_i \max_{j \leq n} w_j)}{n^2 \lambda^2} \\ &= \frac{\sigma_Y^2 \left(\max_{j \leq n} w_j \right)}{n \lambda^2} \end{split}$$

Then $\frac{\max_{j\leq n} w_j}{n} \to 0$ as $n \to \infty$ is a sufficient condition in Part C.

Question 4

Part A

Assuming the moment exists, then by the WLLN, $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}\rightarrow_{p}E[X_{i}^{2}].$

Part B

Assuming the moment exists, then by the WLLN, $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{3}\rightarrow_{p}E[X_{i}^{3}].$

Part C

We cannot determine if $\max_{i \leq n} X_i$ will converge in probability using the WLLN or CMT.

Part D

Assuming the moment exists, then by the WLLN, $\frac{1}{n}\sum_{i=1}^n X_i^2 \to_p E[X_i^2]$ and $\frac{1}{n}\sum_{i=1}^n X_i \to_p E[X_i]$. So by the CMT $\frac{1}{n}\sum_{i=1}^n X_i^2 - (\frac{1}{n}\sum_{i=1}^n X_i)^2 \to_p E[X_i^2] - E[X_i]^2 = Var(X_i)$

Part E

Assuming the moment exists, then by the WLLN, $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} \rightarrow_{p} E[X_{i}^{2}]$ and $\frac{1}{n}\sum_{i=1}^{n}X_{i} \rightarrow_{p} E[X_{i}]$. So by the CMT $\frac{\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}}{\frac{1}{n}\sum_{i=1}^{n}X_{i}} \rightarrow_{p} \frac{E[X_{i}^{2}]}{E[X_{i}]}$

Part F

Assuming the moment exists, then by the WLLN, $\frac{1}{n}\sum_{i=1}^{n}X_{i} \to_{p} E[X_{i}]$. If $E[X_{i}] \neq 0$, then the indicator function is continuous, and by the CMT $1(\frac{1}{n}\sum_{i=1}^{n}X_{i}) \to_{p} E[X_{i}]$. However, if $E[X_{i}] = 0$, the indicator function is not continuous so the CMT cannot be applied.

Question 5

First note that $\log(\hat{\mu}) = \log((\Pi_{i=1}^n X_i)^{\frac{1}{n}}) = \frac{1}{n} \sum_{i=1}^n \log X_i \to_p E[\log X_i]$ by the WLLN. Then $\hat{\mu} = \exp(\log(\hat{\mu}))$, and by the CMT $\exp(\log(\hat{\mu})) \to_p \exp(E[\log X_i])$. Thus $\hat{\mu} \to_p \mu$.

Question 6

Part A

The natural moment estimator is $\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k \to_p E[X_i^k] = \mu_k$ by the WLLN.

Part B

Note that $Var(X_i) = E[X_i^{2k}] - E[X_i^{k}]^2 = \mu_{2k} - \mu_k^2 < \infty$. Then by the CLT, $\sqrt{n}(\hat{\mu_k} - \mu_k) \to_d N(0, \mu_{2k} - \mu_k^2)$.

Question 7

Part A

The natural moment estimator is $\hat{m}_k = (\frac{1}{n} \sum_{i=1}^n X_i^k)^{\frac{1}{k}} = \hat{\mu}_k^{\frac{1}{k}}$, using $\hat{\mu}_k$ defined in the previous question.

Part B

Using the Delta Method, we can calculate the variance as $Var(X_i) = \frac{1}{k} \mu_k^{\frac{1-k}{k}} (\mu_{2k} - \mu_k^2)$. So $\sqrt{n}(\hat{m_k} - m_k) \to_d N(0, \frac{1}{k} \mu_k^{\frac{1-k}{k}} (\mu_{2k} - \mu_k^2))$

Question 8

Part A

Using the Delta method, $Var(X_i) = 2\mu v^2$ So $\sqrt{n}(\hat{\beta} - \beta) = N(0, 2\mu v^2)$.

Part B

If $\mu = 0$, we get a normal distribution with no variance, so the distribution converges to a point mass at 0.

Part C

If $\mu = 0$

$$\begin{split} \sqrt{n}\hat{\mu} &\to_d N(0, v^2) \\ &\Rightarrow \frac{\sqrt{n}\hat{\mu}}{v} \to_d N(0, 1) \\ &\Rightarrow \left(\frac{\sqrt{n}\hat{\mu}}{v}\right)^2 \to_d \chi_1^2 \\ &\Rightarrow \sqrt{n}\hat{\mu}^2 = \sqrt{n}\hat{\beta} \to_d v^2 \chi_1^2 \end{split}$$