1. Dwójnik szeregowy RLC (wykład Odbiorniki RLC w obwodach sinusoidalnych slajd 21,22)

9. Dwójnik szeregowy RLC

W schematach zastępczych różnych układów elektrycznych najczęściej występują wszystkie trzy elementy pasywne. Rozpatrywany dwójnik szeregowy RLC jest włączony na napięcie sinusoidalne u, a przez elementy obwodu płynie prąd sinusoidalny. Przyjmiemy dla uproszczenia rozważań, że faza początkowa prądu w obwodzie jest równa zeru, czyli: i=Im sin ωt

Dwójnik szeregowy RLC: a) schemat obwodu, b) wykres wektorowy dla $X_L > X_C$ $u = U_m \sin(\omega t + \varphi)$ c) wykres wektorowy dla X_L<X_C

W wyniku przepływu prądu sinusoidalnego na poszczególnych elementach idealnych powstaną napięcia

Zgodnie z drugim prawem Kirchhoffa: $u = u_R + u_L + u_C$ Napięcie na elementach są następujące

$$u_R = RI_m \sin \omega t$$

$$u_L = \omega L I_m \sin(\omega t + \frac{\pi}{2})$$

$$u_C = \frac{1}{\omega C} I_m \sin(\omega t - \frac{\pi}{2})$$

a napięcie wypadkowe:

$$u = U_m \sin(\omega t + \varphi)$$

21

d) wykres wektorowy dla X_L=X_C

Tak jak poprzednio wyznaczamy:

amplitudę Um wartość skuteczną U fazę początkową φ Po podstawieniu do wzoru otrzymujemy:

$$u = RI_m \sin \omega t + \frac{1}{\omega C} I_m \sin(\omega t - \frac{\pi}{2}) + \omega LI_m \sin(\omega t + \frac{\pi}{2})$$

Zatem możemy zapisać amplitudę napięcia:

$$U_{\rm m} = \sqrt{U_{\rm Rm}^2 + (U_{\rm Lm} - U_{\rm Cm})^2} ~~{\rm po~uwzględnieniu~U_{\rm Rm} = RI_{\rm m},~U_{\rm Lm} = X_{\rm L}I_{\rm m}~, U_{\rm Cm} = 1/\omega CI_{\rm m} = X_{\rm C}I_{\rm m}}$$

otrzymamy wartości skuteczne:
$$U = \sqrt{R^2 + (X_L - X_C)^2 I}$$
 oznaczymy: $Z = \sqrt{R^2 + (X_L - X_C)^2}$

Wielkość Z nazywamy modułem impedancji lub po prostu impedancją dwójnika szeregowego RLC, a wielkość X=X_L-X_C nazywamy reaktancją dwójnika RLC.

Zatem U=ZI nazywamy prawem Ohma dla wartości skutecznych dwójnika szeregowego RLC.

Reaktancja X jest dodatnia jeśli X_L>X_C (indukcyjny charakter obwodu), ujemna jeśli X_L<X_C (pojemnościowy charakter obwodu) lub równa zeru jeśli X_L=X_C (rezystancyjny charakter obwodu).

W dwójniku szeregowym RLC napięcie wypadkowe może wyprzedzać prąd, może się opóźniać w fazie względem prądu i może pozostawać w fazie z prądem. W pierwszych dwóch przypadkach otrzymujemy trójkaty napięć, w ostatnim przypadku powstaje w obwodzie zjawisko rezonansu napięć.

22

2. Dwójnik równoległy RLC (wykład Odbiorniki RLC w obwodach sinusoidalnych slajd 23,24)

10. Dwójnik równoległy RLC

Przeanalizujmy dwójnik RLC, którego elementy idealne są połączone równolegle. Przyjmiemy dla uproszczenia rozważań, że faza początkowa napięcia w obwodzie jest równa zeru, czyli: u=U_m sin ωt.

Dwójnik równoległy RLC

- a) schemat obwodu

- b) wykres wektorowy dla B_C>B_L
 c) wykres wektorowy dla B_C<B_L
 d) wykres wektorowy dla B_C=B_L

Zgodnie z pierwszym prawem Kirchhoffa:

$$i = i_R + i_L + i_C$$

Prądy płynące w poszczególnych elementach są

$$i_R = GU_m \sin \omega t$$

$$i_{L} = \frac{1}{\omega L} U_{m} \sin(\omega t - \frac{\pi}{2})$$

$$i_{C} = \omega C U_{m} \sin(\omega t + \frac{\pi}{2})$$

$$i_C = \omega C U_m \sin(\omega t + \frac{\pi}{2})$$

a prąd wypadkowy: $i = I_m \sin(\omega t + \varphi)$

23

- e) trójkat admitancji dla B_C>B_L
- f) trójkąt admitancji dla B_C<B_L

Tak jak poprzednio wyznaczamy: amplitudę U_m , wartość skuteczną U, fazę początkową ϕ :

$$i = GU_m \sin \omega t + \omega CU_m \sin(\omega t + \frac{\pi}{2}) - \frac{1}{\omega l} U_m \sin(\omega t + \frac{\pi}{2})$$

amplitudę prądu: $I_m = \sqrt{I_{Rm}^2 + (I_{Cm} - I_{Lm})^2}$ a wartość skuteczną prądu: $I = \sqrt{G^2 + (B_C - B_L)^2 U}$

Oznaczymy: $Y = \sqrt{G^2 + (B_C - B_L)^2}$ Wielkość Y nazywamy modułem **admitancji** lub po prostu admitancją dwójnika równoległego RLC, a wielkość B=B_C-B_L nazywamy susceptancją dwójnika RLC

Zatem I=YU nazywamy prawem Ohma w postaci admitancyjnej.

Susceptancja B jest dodatnia jeśli B_C>B_L (indukcyjny charakter obwodu), ujemna jeśli B_C<B_L (pojemnościowy charakter obwodu) lub równa zeru jeśli B_C=B_L (rezystancyjny charakter obwodu).

W dwójniku równoległym RLC napięcie wypadkowe może wyprzedzać prąd, może się opóźniać w fazie względem prądu i może pozostawać w fazie z prądem. W pierwszych dwóch przypadkach otrzymujemy trójkąty prądów, w ostatnim przypadku powstaje w obwodzie zjawisko rezonansu prądów.

3. Budowa tranzystora bipolarnego, symbole, charakterystyki tranzystora.

(wykład wzmacniacz na tranzystorze bipolarnym od str. 9)

2. Tranzystory bipolarne (warstwowe)

Rys. 1. Budowa tranzystora NPN.

Patrząc na diodowe modele zastępcze tranzystorów można stwierdzić, że tranzystor składa się z dwóch połączonych ze sobą diod o wspólnej warstwie n lub p.

Tranzystor warstwowy jest elementem bipolarnym o

Jedna z warstw jest źródłem ładunków (emituje ładunki) i dlatego nazywana jest emiterem E. Środkowa warstwa nazywa się bazą B. Jej zadaniem jest sterowanie przepływem ładunków. Ostatnia warstwa nazywa się kolektorem C (łac. collectus=zbieranie), gdyż zbiera ładunki.

Rys. 2. Symbole graficzne tranzystora bipolarnego i diodowe schematy zastępcze.

9

Występujące dwa modele tranzystorów PNP i NPN funkcjonują identycznie, różnice występują tylko w kierunkach zewnętrznych źródeł napięcia i w kierunkach przepływu prądów.

Korzystając z tego schematu można powiedzieć, że w tranzystorze złącze baza-emiter i kolektor-baza zachowują się jak diody. Aby tranzystor znajdował się w stanie normalnej pracy to muszą być spełnione następujące warunki:

- dla tranzystora npn potencjał kolektora musi być wyższy od potencjału emitera,
- dla tranzystora pnp potencjał kolektora musi być niższy od potencjału emitera,
- "dioda" baza-emiter musi być spolaryzowana w kierunku przewodzenia, a "dioda" kolektor-baza w

Aby te warunki były spełnione to źródła napięć zasilających muszą być podłączone jak na rys. 3 dla tranzystora npn i jak na rys. 4 dla tranzystora pnp.

Tranzystor NPN przewodzi, kiedy baza i kolektor są dodatnio spolaryzowane względem emitera. W tranzystorze PNP baza i kolektor muszą być ujemnie spolaryzowane względem emitera.

10

Tranzystor bipolarny jest sterowany prądowo prądem bazy!

Bardzo ważnym jest, aby patrząc na diodowy model zastępczy nie mylić czasami prądu kolektora z prądem przewodzenia "diody" kolektor-baza gdyż jest ona spolaryzowana zaporowo, a płynący prąd kolektora jest wynikiem działania tranzystora. Prąd kolektora I_C i prąd bazy I_B wpływające do tranzystora łączą się w jego wnętrzu i wypływają w postaci prądu emitera I_E (patrz na rys. 6).

W tranzystorach bipolarnych warstwy emitera i kolektora są silniej domieszkowane niż warstwa bazy. Jeżeli w tranzystorze NPN złącze baza-emiter jest spolaryzowane w kierunku przewodzenia, a złącze kolektor-baza w kierunku zaporowym, to w tranzystorze popłynie prąd elektronowy od emitera przez pierwsze złącze do bazy.

Ponieważ warstwa bazy jest wyjątkowo cienka elektrony przepływają przez bazę i docierają do drugiego złącza. Tam są przyciągane przez dodatnio spolaryzowaną elektrodę kolektora. Złącze baza-emiter przewodzi elektrony i nie tworzy dla nich warstwy zaporowej.

W tranzystorach mala zmiana prądu bazy powoduje duże zmiany prądu kolektora. Występuje zjawisko wzmocnienia prądu.

Przyjęło się w sposób określony oznaczać napięcia na tranzystorze. Napięcie na elektrodach tranzystora mierzone względem masy oznaczane jest indeksem w postaci pojedynczej dużej litery C, B lub E i tak na przykład $U_{\rm C}$ oznacza napięcie na kolektorze.

Napięcie między dwoma elektrodami oznacza się podwójnym indeksem, np. dla napięcia między bazą, a emiterem będzie to U_{BE} .

Na rys. 5 przedstawiony jest tranzystor pracujący w układzie wzmacniacza. Złącze **kolektor-baza jest spolaryzowane zaporowo** (bateria E_C), natomiast złącze **baza-emiter w kierunku przewodzenia** (bateria E_B).

11

Statyczne charakterystyki tranzystora

Właściwości tranzystora można opisać na podstawie jego charakterystyk statycznych. Dla każdego z trzech układów pracy tranzystora podaje się zwykle dwie charakterystyki: wejściową i wyjściową. Charakterystyki statyczne przedstawiają zależności między prądami: emitera I_E, bazy I_B, kolektora I_C i napięciami: baza-emiter U_{BE}, kolektor-emiter U_{CE} i kolektor-baza U_{CB}.

Typowy przebieg charakterystyk wejściowych I_B = $f(U_{BE})$ przy U_{CE} =const oraz charakterystyk wyjściowych I_C = $f(U_{CE})$ przy I_B =const tranzystora p-n-p pracującego w układzie WE przedstawione są na rysunku poniżej:

15

Rys. 8. Charakterystyki tranzystora: charakterystyka wejściowa i charakterystyka wyjściowa

Na charakterystyce wyjściowej wyraźnie widać, że wartość prądu kolektora zależy od prądu bazy, podwyższenie różnicy potencjałów między kolektor-emiter nieznacznie tylko wpływa na wzrost wartości prądu.

4. Układy zasilania wzmacniacza: a) Potencjometryczny i b) ze sprzężeniem kolektorowym

(wykład Wzmacniacz na tranzystorze bipolarnym od strony 23

a)

Układ z potencjometrycznym zasilaniem bazy

Aby tranzystor przewodził to złącze baza-emiter musi być spolaryzowane w kierunku przewodzenia, a napięcie baza-emiter U_{BE} musi mieć odpowiednią wartość (przyjmuje się najczęściej ok. 0,6V do 0,7V).

Najprostszym sposobem polaryzacji bazy, jaki można by zastosować jest ustalenie napięcia U_{BE} przy pomocy dzielnika napięciowego R1 i R2 tak jak to jest pokazane na rys.13. Jest to jednak najgorszy sposób rozwiązania układu polaryzacji tranzystora.

Rys. 13. Układ potencjometrycznego zasilania bazy.

Stosując II-gie prawo Kirchhoffa, Prawo Ohma oraz korzystając ze wzoru na dzielnik napięcia można przedstawiony układ opisać następującymi równaniami:

$$U_{CC}=U_{RC}+U_{CE}=I_{C}\cdot R_{C}+U_{CE}$$
 $U_{BE}=U_{CC}\cdot (R2/(R1+R2))$

Pierwsze z tych równań wyznacza prostą obciążenia, która wyznacza punkt pracy (I_C oraz U_{CE}), drugie może posłużyć do wyliczenia wartości R1 i R2. Dla założonego punktu pracy, czyli prądu I_C oraz napięcia U_{CE} z charakterystyk tranzystora można określić prąd bazy I_B i napięcie baza-emiter U_{BE}, co jest pokazane na rys. 14, a następnie można wyliczyć rezystancje R1 oraz R2.

Układ ze sprzężeniem kolektorowym

Układ przedstawiony na rys. 17 jest zmodyfikowanym układem z wymuszonym prądem bazy. Modyfikacja polega na tym, że rezystor $R_{\rm B}$ jest podłączony do kolektora, a nie do zasilania $U_{\rm CC}$.

Układ ten charakteryzuje się lepszą stałością punktu pracy niż dwa wcześniej zaprezentowane. Charakterystycznym jest również dla niego to, że nie dopuszcza do tego, aby tranzystor wszedł w stan nasycenia nawet przy bardzo dużej wartości β . Dzieje się tak dzięki zastosowaniu ujemnego sprzężenia zwrotnego, realizowanego przez włączenie rezystora $R_{\rm B}$ między kolektor i bazę - stąd też jego nazwa "układ ze sprzężeniem kolektorowym".

Rys. 17.

26

Podobnie jak dla poprzednich układów stosując II-gie prawo Kirchhoffa, Prawo Ohma oraz tym razem również I prawo Kirchhoffa można przedstawiony układ opisać następującymi równaniami

$$\begin{array}{lll} I_{RC} = I_C + \ I_B & U_{CC} = U_{RC} + \ U_{CE} & U_{CC} = I_{RC} \cdot \ R_C + \ U_{CE} = (I_C + \ I_B) \cdot R_C + \ U_{CE} \\ U_{CE} = U_{RB} + \ U_{BE} = I_B \cdot R_B + \ U_{BE} & \end{array}$$

Korzystając z tych równań oraz pamiętając o zależności $I_C=\beta$ · I_B (przy pominięciu I_{C0}) i stosując kilka przekształceń i uproszczeń można wyprowadzić wzór na prąd kolektora I_C płynący w tym układzie.

$$I_C = (U_{CC} - U_{BE})/(R_C + R_B/\beta)$$

Z otrzymanego wzoru widać, że zależność prądu kolektora od zmian napięcia U_{BE} jest podobna jak dla układu z wymuszonym prądem bazy, natomiast wpływ β na prąd kolektora I_C jest znacznie mniejszy niż w poprzednich układach, gdyż I_C nie jest dla tego układu proporcjonalny do I_B .

Jednak najbardziej istotną zaletą tego układu jest to, że nie dopuszcza do tego aby tranzystor wszedł w stan nasycenia nawet przy bardzo dużej wartości β . Jeżeli zastosujemy w układzie tranzystor o współczynniku β większym niż przewidywany to prąd kolektora I_C "będzie chciał" wzrosnąć (gdyż $I_C=\beta\cdot I_B$), co spowoduje wzrost spadku napięcia na R_C , a to z kolei pociągnie za sobą zmniejszenie napięcia na kolektorze U_{CE} , co da zmniejszenie prądu bazy, czyli zmniejszenie prądu kolektora.

Jak widać układ sam "przeciwdziała" wzrostowi prądu kolektora i wejściu tranzystora w stan nasycenia. Tak właśnie działa ujemne sprzężenie zwrotne. Układ ze sprzężeniem kolektorowym jest mniej wrażliwy na zmiany β i U_{BE} niż układ z wymuszonym prądem bazy.

5. Funkcje specjalne w LOGO: symbole graficzne i przebiegi czasowe.(opóźnione wyłączenie, podtrzymane opóźnione załączenie, AND z pamięcią. (wykład z LOGO i materiały na laby)

Funkcje specjalne:

Oznaczenie w LOGO!	Nazwa funkcji specjalnej	REM
R Par	Przekaźnik czasowy wyzwalany zboczem Strona 137.	REM
En JUIU Q	Asynchroniczny generator impulsów Strona 140.	REM
En G	Generator losowy Strona 141.	
Trg - Q	Sterownik oświetlenia schodowego Strona 143.	REM
Tru - Tru - Q	Przełącznik wielofunkcyjny Strona 146.	REM
No1 - Q No2 - Q	Timer tygodniowy Strona 149.	
No -MM DD - Q	Timer roczny Strona 154.	

Oznaczenie w LOGO!	Nazwa funkcji specjalnej	REM	
Funkcje czasowe			
Trg Par	Opóżniene włączenie Strona 125.	REM	
Trg - Q	Opóźnione wyłączenie Strona 129.	REM	
Trg - Q - Q	Opóźnione włącz/wyłącz Strona 131.	REM	
Trg - G	Opóźnienie z podtrzymaniem Strona 133.	REM	
Trg - G	Przekaźnik czasowy z wyjściem im- pulsowym Strona 135.	REM	

Opóźnione wyłączenie

Wyjście bloku przyjmuje stan 0 po upływie zadanego czasu.

Pojawienie się poziomu wysokiego na wejściu Trg (zmiana stanu z 0 na

1) powoduje wzbudzenie wyjścia Q (stan wyjścia hi).

Wykres czasowy

11

Zmiana stanu na wejściu Trg z 1 na 0 powoduje rozpoczęcie odliczania czasu Ta, przy czym wyjście pozostaje wzbudzone. W momencie, kiedy Ta osiągnie zadaną wartość T (Ta=T), wyjście ulega wyzerowaniu.

Każde zbocze opadające na wejściu Trg powoduje rozpoczęcie odliczania od początku.

Wejście zerujące R służy do zerowania wyjścia oraz czasu Ta przed jego upływem.

Podtrzymane opóźnienie załączenia

Narastające zbocze impulsu wyzwalającego Trg uruchamia odliczanie czasu T, po upływie którego, wyjście Q zostaje ustawione w stan wysoki i pozostaje w tym stanie dopóki nie wystąpi sygnał kasujący R. Jeśli w czasie T wystąpi następny impuls Trg to nie wywoła on żadnego efektu (czas T nie zostanie naliczany od początku).

AND z pamięcią stanu (zbocze)

Wykres czasowy sygnałów w bloku AND z pamięcią stanu:

Oznaczenie w LOGO!

Wyjście bloku AND z pamięcią stanu przyjmuje stan 1, jeśli stany na wszystkich wejściach mają wartość 1 i przynajmniej jedno wejście w poprzednim cyklu miało stan 0.