

BHASKARACHARYA NATIONAL INSTITUTE FOR SPACE APPLICATIONS AND GEO-INFORMATICS

WEEKLY PROGRESS REPORT (27/03/2023 - 02/04/2023)

WEEK 10

PROJECT NAME

MALWARE DETECTION USING ML

DESIGN AND IMPLEMENT ML MODEL TO PROJECT DESCRIPTION:

DETECT MALWARE IN SYSTEM

PRATHAM PATEL, Shubham Patel, Shashank **GROUP MEMBER:**

Sharma, Yash Soni

12 **GROUP ID:**

HARSH KIRATSATA **GROUP GUIDE:**

SIDHDHARTH PATEL **GROUP COORDINATOR:**

MAYANK PATEL, RITIKA LADHA, KINJAL **COLLEGE GUIDE NAME:**

CHAUDHARI

COLLEGE GUIDE No.: +91 9033280445,8866438698, 9723173567

mayank.patel@adaniuni.ac.in, **COLLEGE GUIDE EMAIL.:**

ritika.ladha@adaniuni.ac.in,

kinjal.chaudhari@adaniuni.ac.in

COLLEGE NAME: ADANI INSTITUTE OF INFRASTRUCTURE AND

ENGINEERING

27/03/2023 TILL 02/04/2023 (7 DAYS)

27/03/2023	Deciding Learning rate for model.
28/03/2023	Programming for normalization and train test split.
29/03/2023	Coding stat matrices, architect.
30/03/2023	Holiday(Ram navmi)
31/03/2023	Programing remaining functions(gradient descent, placeholders)
01/04/2023	Debugging and model improvisation.
02/04/2023	Holiday (Sunday)

WEEK 11(PLAN)	In the next week we are planning to implement this model for other
	viruses and malwares.

REFERENCE:

- https://research.google/pubs/pub46484/
- https://www.kdd.org/kdd2018/hands-on-tutorials/view/deep-learning-with-keras
- https://www.researchgate.net/publication/332824465 Intrusion Detection by Deep Learning with TensorFlow

_

Screenshots:

```
A=x train.shape[1] #features ~about 40 features
B=len(y train onehot[0])
**************************
## print stats
precision scores list = []
accuracy \overline{s}cores \overline{l}ist = []
def print stats metrics(y test, y pred):
   print('Accuracy: %.2f' % accuracy score(y test, y pred) )
    #Accuracy: 0.84
    accuracy scores list.append(accuracy score(y test, y pred))
    confmat = confusion matrix(y true=y test, y pred=y pred)
    print ("confusion matrix")
   print(confmat)
   print (pd.crosstab(y_test, y_pred, rownames=['True'], colnames=['Predicted']
    precision_scores_list.append(precision_score(y_true=y_test, y_pred=y_pred))
    print('Precision: %.3f' % precision score(y true=y test, y pred=y pred))
   print('Recall: %.3f' % recall score(y true=y_test, y_pred=y_pred))
   print('F1-measure: %.3f' % f1_score(y_true=y_test, y_pred=y_pred))
```

```
[[ 97212 109]
[ 149 392373]]
Predicted 0 1
                         All
True
0
         97212 109
                       97321
         149 392373 392522
All
         97361 392482 489843
Precision: 1.000
Recall: 1.000
F1-measure: 1.000
epoch 999 out of 1000
Accuracy score
Run 999, 0.9994732737541199
Accuracy: 1.00
confusion matrix
[[ 97212 109]
[ 149 392373]]
Predicted 0 1
                         All
True
         97212 109 97321
0
          149 392373 392522
All
         97361
               392482 489843
Precision: 1.000
Recall: 1.000
F1-measure: 1.000
<<<<<DONE>>>>>
```

```
def layer(input, weight_shape, bias_shape):
    weight stddev = (2.\overline{0}/\text{weight shape}[0])**0.5
    w init = tf.random normal initializer(stddev=weight stddev)
    bias_init = tf.constant_initializer(value=0)
    W = tf.get_variable("W", weight_shape, initializer=w_init)
b = tf.get_variable("b", bias_shape, initializer=bias_init)
    return tf.nn.relu(tf.matmul(input, W) + b)
def inference deep layers (x tf, A, B):
    with tf.variable_scope("hidden_1"):
    hidden_1 = layer(x_tf, [A, 30], [30])
with tf.variable_scope("hidden_2"):
    hidden_2 = layer(hidden_1, [30, 20],[20])
with tf.variable_scope("hidden_3"):
         hidden_3 = \overline{\text{layer}}(hidden 2, \overline{\text{[20, 15], [15]}})
    with tf.variable scope ("hidden 4"):
         hidden_4 = layer(hidden_3, [15, 10], [10])
    with tf.variable_scope("output"):
         output = layer(hidden 4, [10, B], [B])
    return output
def loss deep(output, y_tf):
    xentropy = tf.nn.softmax cross entropy with logits(logits=output, labels=y
```