Math 318: Assignment 5 Solutions

Problem 1

Let s be the truth assignment s(p)=1, s(q)=1, s(r)=0. Then we have $\tilde{s}(p\wedge q)=1$, $\tilde{s}((\neg p)\vee q)=1$ and $\tilde{s}(p\vee r)=1$. However, since $\tilde{s}(r)=0$ as well, we have $\Gamma\not\vdash r$. Thus by the soundness theorem, we have $\Gamma\not\vdash r$. \square

Problem 2

Since $(\neg p) \land q = \neg (p \lor \neg q) = \neg (q \to p)$, we have that for any truth assignment s, $\tilde{s}(q \to p) \neq \tilde{s}((\neg p) \land q)$. Thus Γ is not satisfiable, so by the completeness theorem, Γ is inconsistent. Thus Γ proves anything, and in particular $\Gamma \vdash p$.

Formal deduction preamble

Recall from class that we have the following lemmas:

Lemma 1. $\vdash \phi \rightarrow \phi$ for every ϕ .

Lemma 2. $\{\phi\} \vdash \psi \rightarrow \phi$ for every ϕ and ψ .

We will also use the following:

Lemma 3. If $\Gamma \vdash \phi \rightarrow (\psi \rightarrow \chi)$, then $\Gamma \vdash (\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi)$.

Proof. A formal proof from Γ is as follows:

$$\begin{array}{ll} \text{(1)} & (\phi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi)) \\ \text{(2)} & \phi \rightarrow (\psi \rightarrow \chi) \\ \text{(3)} & (\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi) \\ \end{array} \tag{A2)}$$

Below, when we reference a lemma or a previous problem, we really are inserting the formal proof.

Problem 3

A formal proof is as follows:

$$\begin{array}{ll} \text{(1)} & ((\neg p) \rightarrow (\neg q)) \rightarrow (q \rightarrow p) \\ \text{(2)} & (((\neg p) \rightarrow (\neg q)) \rightarrow q) \rightarrow (((\neg p) \rightarrow (\neg q)) \rightarrow p) \end{array} \tag{A3}$$

Problem 4

Part (a)

Let $\Gamma = \{\alpha \to \beta, \beta \to \gamma\}$. A formal proof from Γ is as follows:

(1)	$\alpha \to (\beta \to \gamma)$	(Lemma 2 with $eta o\gamma\in\Gamma$)
(2)	$(\alpha \to \beta) \to (\alpha \to \gamma)$	(Lemma 3 with (1))
(3)	$\alpha \to \beta$	$(\alpha \to \beta \in \Gamma)$
(4)	$\alpha \to \gamma$	(MP with (2) and (3))

Part (b)

Let $\Gamma = \{\alpha \to \beta\}$. A formal proof from Γ is as follows:

$$\begin{array}{lll} \text{(1)} & (\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow (\beta \rightarrow \gamma)) \\ \text{(2)} & (\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)) \\ \text{(3)} & (\beta \rightarrow \gamma) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)) \\ \text{(4)} & ((\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \beta)) \rightarrow ((\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \gamma)) \\ \text{(5)} & (\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \beta) \\ \text{(6)} & (\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \gamma) \\ \end{array} \qquad \begin{array}{ll} \text{(A1)} \\ \text{(A2)} \\ \text{(Problem 4a with (1) and (2))} \\ \text{(Lemma 3 with (3))} \\ \text{(Lemma 2 with } \alpha \rightarrow \beta \in \Gamma) \\ \text{(MP with (4) and (5))} \end{array}$$

Part (c)

This one is similar to the previous one. A formal proof is as follows:

(1)	$(\beta \to \gamma) \to (\alpha \to (\beta \to \gamma))$	(A1)
(2)	$(\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$	(A2)
(3)	$(\beta \to \gamma) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$	(Problem 4a with (1) and (2))
(4)	$((\beta \to \gamma) \to (\alpha \to \beta)) \to ((\beta \to \gamma) \to (\alpha \to \gamma))$	(Lemma 3 with (3))
(5)	$(\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \beta))$	(A1)
(6)	$(\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \gamma))$	(Problem 4a with (4) and (5))

Problem 5

A formal proof is as follows:

(1)	$\neg\neg\alpha \to (\neg\neg\neg\neg\alpha \to \neg\neg\alpha)$	(A1)
(2)	$(\neg\neg\neg\neg\alpha\to\neg\neg\alpha)\to(\neg\alpha\to\neg\neg\neg\alpha)$	(A3)
(3)	$\neg\neg\alpha \to (\neg\alpha \to \neg\neg\neg\alpha)$	(Problem 4a with (1) and (2))
(4)	$(\neg \alpha \to \neg \neg \neg \alpha) \to (\neg \neg \alpha \to \alpha)$	(A3)
(5)	$\neg \neg \alpha \to (\neg \neg \alpha \to \alpha)$	(Problem 4a with (3) and (4))
(6)	$(\neg\neg\alpha\to\neg\neg\alpha)\to(\neg\neg\alpha\to\alpha)$	(Lemma 3 with (5))
(7)	$\neg\neg\alpha\to\neg\neg\alpha$	(Lemma 1)
(8)	$\neg \neg \alpha \rightarrow \alpha$	(MP with (6) and (7))

Problem 6

A formal proof is as follows:

$$\begin{array}{lll} \text{(1)} & \neg \neg \neg \alpha \to \neg \alpha & \text{(Problem 5 with } \neg \alpha) \\ \text{(2)} & (\neg \neg \neg \alpha \to \neg \alpha) \to (\alpha \to \neg \neg \alpha) & \text{(A3)} \\ \text{(3)} & \alpha \to \neg \neg \alpha & \text{(MP with (1) and (2))} \end{array}$$