MAS3114 MATLAB Assignment 1

Name: Samantha Bennett (enter you name here; -20 points if the info is incorrect/missing)

UF ID: ####-#### (enter your UF ID here; -20 points if the info is incorrect/missing)

```
clear
% Initialize the random number generator by typing the command
rng(#######,'twister')
% where ####### must be your 8-digit UF ID number
% another -20 points if no UF ID or incorrect UF ID for the random number generator
```

Exercise 1 -- Creating Matrices

```
1A
  \% manually enter each entry for the 3 x 3 matrix A and separate each row by a semicolon
 A = [1 \ 2 \ 3; \ 4 \ 5 \ 6; \ 7 \ 8 \ 9]
  A = 3 \times 3
             2
                   3
       1
             5
                    6
  b = [1; -1; 1]
  b = 3 \times 1
      1
      -1
       1
  c = [2, -2, 2]
 c = 1 \times 3
            -2
                    2
  D = [1 \ 2 \ 3 \ 4; \ -4 \ -3 \ -2 \ -1; \ 2 \ 1 \ 4 \ 3]
  D = 3 \times 4
       1
             2
                    3
      -4
            -3
                   -2
                         -1
  % A(:,2) returns 2nd column
  A(:,2)
  ans = 3 \times 1
       2
       5
 % D(3,:) returns return 3rd row
  D(3,:)
  ans = 1 \times 4
      2
             1
                   4
                          3
```

```
ans = 3 \times 4
      1
            2
                  3
                        1
            5
      4
                  6
                       -1
      7
            8
                  9
                        1
 \% Give an explanation why and fix this command to get a 4 x 3 matrix in the
 % output result.
 %[A; c] returns 4x3 matrix with c added to the rows of A (not columns)
 ans = 4 \times 3
            2
                  3
      1
      4
            5
                  6
      7
            8
                  9
      2
           -2
                  2
[A c] is not the correct command because c is 4x1 so it cannot be added an extra column at the end of A since
A is a 3x3.
1B
 % eye(6) is a 6x6 matrix with pivot column with value = 1 in every column
 eye(6)
 ans = 6 \times 6
            0
                        0
                             0
                                   0
      1
                  0
      0
                  0
                        0
                             0
            1
                                   0
      0
            0
                  1
                        0
                             0
                                   0
      0
            0
                  0
                        1
                             0
                                   0
      0
            0
                  0
                        0
                             1
                                   0
                             0
                                   1
 % zeros(5,3) is a 5x3 matrix full of 0's
 zeros(5,3)
 ans = 5 \times 3
      0
            0
                  0
      0
            0
                  0
            0
                  0
      0
      0
            0
                  0
            0
 % zeros(4) is a 4x4 matrix full of 0's
 zeros(4)
 ans = 4 \times 4
      0
            0
                  0
            0
                  0
                        0
      0
```

% [A b] returns augmented matrix [A b]

[A b]


```
ans = 4 \times 3
      1
           1
                 1
      1
            1
                 1
      1
            1
                 1
 % diag(c) is a 3x3 matrix with pivots columns with values from c in every column
 diag(c)
 ans = 3 \times 3
      2
           0
                 0
      0
           -2
                 0
      0
           0
                 2
1C
 % randi([-8,8],3,6) is a 3x6 matrix filled with random numbers from -8 - 8
 F = randi([-8,8],3,6)
 F = 3 \times 6
           -4
                             2
      6
                 3
                                  -1
                       1
           5
                             5
                 -1
                       1
                                  3
     -4
      2
                 3
                       4
                            -3
                                  -1
 % F(:, [2 4]) = F(:, [4 2]) returns F matrix with column 2 and 4 switched
 F(:, [2 4]) = F(:, [4 2])
 F = 3 \times 6
                             2
      6
           1
                 3
                      -4
                                  -1
     -4
                       5
                            5
            1
                 -1
                                  3
      2
            4
                 3
                       2
                            -3
                                  -1
 E = [A F]
 E = 3 \times 9
      1
            2
                 3
                       6
                             1
                                  3
                                        -4
                                              2
                                                   -1
      4
            5
                 6
                      -4
                             1
                                        5
                                              5
                                  -1
                                                   3
      7
            8
                 9
                       2
                             4
                                        2
                                  3
                                             -3
                                                   -1
 % The command [m,n] = size(E), where
 % m represents the number of rows and n represents the number of columns
 [m,n] = size(E)
 m = 3
 n = 9
 E(:, [3 6])
 ans = 3 \times 2
      3
           3
      6
           -1
      9
            3
 E(:, 3:6)
 ans = 3 \times 4
```

% ones(4,3) is a 4x3 matrix full of 1's

ones(4,3)

```
3 6 1 3
6 -4 1 -1
9 2 4 3
```

Compare the commands E(:, [3 6]) and E(:, 3:6):

- E(:, [3 6]) returns the thrid and sixth column as a matrix
- E(:, 3:6) returns the 3rd 6th column as a matrix

Exercise 2 -- Solving Ax = b

2A

The matrix B is the reduced row echelon form of [A b] and the pivcol is number of pivot columns and what column they're in in the matrix A.

The system Ax = b is inconsistent because there is pivot column in the last column.

2B

```
rank_comp(A, [A b])
rank([A]) does not equal to rank([A b])
```

The Rouch-Capelli Theorem states that if A and [A b] have the same rank, then they are consistent.

By Rouch-Capelli Theorem, the system Ax = b is inconsistent.

Compare your result with part A. Do you have the same conclusion? I have the same result as part A.

2C

```
[m,n] = size(A);
LS_solution(n, A, [A b])
```

Ax = b is inconsistent and it has no solution

Exercise 3 -- Underdetermined and Overdetermined Systems

3A

```
% create a 2x3 matrix A1 with random entries between -8 and 8
A1 = randi([-8,8],2,3);
% create a 2x1 vector b with random entries between -8 and 8
```

```
b = randi([-8,8],2,1);
% display the augmented matrix [A1 b] and
% call LS_solution for the system A1x=b to determine the number of solutions of the system
[m,n] = size(A1);
[A1 b]
```

```
ans = 2 \times 4

-8 8 5 -2

3 -2 8 -7
```

```
LS_solution(n, A1, [A1 b])
```

Ax = b is consistent and it has infinitely many solutions

```
% create 2x3 matrices A2 and A3, and repeat the process for the systems A2x=b and A3x=b
A2 = randi([-8,8],2,3);
b = randi([-8,8],2,1);
[m,n] = size(A2);
[A2 b]
```

```
ans = 2 \times 4

-6 -5 -6 7

-3 -1 -2 2
```

```
LS_solution(n, A2, [A2 b])
```

Ax = b is consistent and it has infinitely many solutions

```
A3 = randi([-8,8],2,3);
b = randi([-8,8],2,1);
[m,n] = size(A3);
[A3 b]
```

```
ans = 2 \times 4

-6 -3 4 5

0 6 -7 2
```

```
LS_solution(n, A3, [A3 b])
```

Ax = b is consistent and it has infinitely many solutions

- **3B** We expect most underdeterminded systems to have infinitely many solutions because they have more variables than equations. This makes it harder to find unique solutions for each variable.
 - Can an underdetermined linear system have a unique solution? Why or why not?

It cannot because an underdetermined linear system have either have no solution or infinitely many solutions. When the linear system does have a solution, it must be infinitely many solutions because there are columns that are not pivot columns not including the last column. Therefore, the solution would include variables without solutions. For example,

```
1 2 0 4 x + 2y = 4
0 1 3 3 y + 3z = 3
```

In this example, z does not have a unique solution. Therefore, the whole linear system is infinitely many solutions.

• Can an underdetermined linear system have no solution? If yes, give an example where A is 2x3.

An understeremined linear system can have no solution. For example,

In this example, there is a pivot column in the last column, so this linear system has no solution.

(Use the "INSERT" to add math equations in your example)

3C

```
% create a 3x2 matrix A1 with random entries between -8 and 8
A1 = randi([-8,8],3,2);
% create a 3x1 vector b with random entries between -8 and 8
b = randi([-8,8],3,1);
% display the augmented matrix [A1 b] and
[A1 b]
```

```
ans = 3×3

-5 -1 -5

-8 -5 7

8 5 -6
```

```
% call LS_solution for the system A1x=b to determine the number of solutions of the system [m,n] = size(A1); LS_solution(n, A1, [A1 b])
```

Ax = b is inconsistent and it has no solution

```
% create 3x2 matrices A2 and A3, and repeat the process for the systems A2x=b and A3x=b
A2 = randi([-8,8],3,2);
b = randi([-8,8],3,1);
[A2 b]
```

```
ans = 3 \times 3

-2 -5 2

-6 7 -8

8 -1 2
```

```
[m,n] = size(A2);
LS_solution(n, A2, [A2 b])
```

Ax = b is inconsistent and it has no solution

```
A3 = randi([-8,8],3,2);
b = randi([-8,8],3,1);
[A3 b]
```

```
ans = 3 \times 3
```

```
1 -1 0
7 -2 -7
0 5 0
```

```
[m,n] = size(A3);
LS_solution(n, A3, [A3 b])
```

Ax = b is inconsistent and it has no solution

3D We expect most overdeterminded systems to be inconsistent because the matrix has to work out perfectly to not be inconsistent. It has to have 2 pivot columns in the 2 left-most columns (with a 3x2 matrix). If the pivot column is in the last column, then it is inconsistent.

An overdetermined linear system can have one solution or infinitely many solutions. For example,

• one solution -- give an example where A is 3x2

$$2x = 3y + 1$$
$$3x = 2y + 4$$
$$x = y + 1$$

(Use the "INSERT" to add math equations in your example)

• infinitely many solutions -- give an example where A is 3x2 (DO NOT give three identical equations as an example)

$$x + 6y = 6$$
 1 6 6
 $0x + 0y = 0$ 0 0 0
 $0x + 0y = 0$ 0 0 0

(Use the "INSERT" to add math equations in your example)