Causal Abstractions and Causal Representation Learning

Sander Beckers

University of Tübingen – Cluster of Excellence in Machine Learning sanderbeckers.com

Causal Representation Learning Workshop, 05/08/2022

- Overview
- 2 Causal Representation Learning for Dummies
- 3 Causal Abstraction Learning Causal Abstraction Causal Abstraction Learning
- 4 From CAL to CRL

- Overview
- 2 Causal Representation Learning for Dummies
- 3 Causal Abstraction Learning Causal Abstraction Causal Abstraction Learning
- 4 From CAL to CRL

Goals

1. Formulate Causal Abstraction Learning (CAL)

2. Interpret CRL as lying somewhere between CAL and RL

Big Picture: Goal 1

 $\mathsf{RL} = \mathsf{Representation} \ \mathsf{Learning} : \ \mathsf{use} \ \vec{X} \ \mathsf{to} \ \mathsf{learn} \ \mathcal{V}_H$

 $CRL = Causal Representation Learning: use \vec{X}$ to learn

- \mathcal{U}_H , \mathcal{V}_H ,
- M_H over \mathcal{U}_H , \mathcal{V}_H .

CAL = Causal Abstraction Learning: use $(\mathcal{U}_L, \mathcal{V}_L, \mathcal{I}_L)$ to learn

- M_L over \mathcal{U}_L , \mathcal{V}_L ,
- \mathcal{U}_H , \mathcal{V}_H ,
- M_H over \mathcal{U}_H , \mathcal{V}_H ,
- such that M_H is a causal abstraction of M_L .

Big Picture: Goal 2

RL:

- understandable (Auto Encoders)
- realistic (data exists)
- non-causal

CAL:

- understandable (Causal Abstractions + Auto Encoders)
- unrealistic (data does not exist, M_L too complex)
- very causal (both M_L and M_H)

CRL:

- understandable if we view it as simplified CAL
- realistic if we view it as complicated RL
- causal enough (M_H)

- Overview
- 2 Causal Representation Learning for Dummies
- 3 Causal Abstraction Learning Causal Abstraction Causal Abstraction Learning
- 4 From CAL to CRL

CRL using Auto Encoders

- Schölkopf, B. Locatello, F., Bauer, S., Ke, NR., Kalchbrenner, N., Goyal, A., and Bengio, Y.: Towards Causal Representation Learning, IEEE, 2021
- von Kügelgen, J., and Schölkopf, B.: From Statistical to Causal Learning, Preprint, 2022

Data: Low-level, high-dimensional, entangled \vec{X}

Target:

- ullet High-level, low-dimensional, disentangled \mathcal{U}_H and \mathcal{V}_H
- Causal model M_H over \mathcal{U}_H and \mathcal{V}_H

Standard Auto Encoder

$$\vec{X} = p(\mathcal{V}_H)$$
 with $p = \mathsf{Decoder}$

$$\mathcal{V}_H = q(ec{X})$$
 with $q = \mathsf{Encoder}$

Choose distance function d over \vec{X} , a suitable α , and consider the reconstruction loss (expected, worst-case, etc.,):

$$d(\vec{X}, p(q(\vec{X}))) < \alpha$$

But our \mathcal{V}_H are not independent...

Reduced Form Auto Encoder (RFAE)

Reduced form of a causal model: $V_H = m_H(U_H)$

So we learn
$$V_H=m_H(\mathcal{U}_H)$$
, $\vec{X}=p(m_H(\mathcal{U}_H))$, and $\mathcal{U}_H=q(\vec{X})$

such that

$$d(\vec{X}, p(m_H(q(\vec{X}))) < \alpha$$

Limitation of RFAE

Of course reduced form entirely ignores interventions!

 M_H can be seen as a function $M_H: \mathcal{U}_H \times \mathcal{I}_H \to \mathcal{V}_H$

 m_H is simply M_H for empty intervention: $m_H(\mathcal{U}_H) = M_H(\mathcal{U}_H, \emptyset)$

What is CRL? The challenge of learning M_H for all \mathcal{I}_H .

- Overview
- 2 Causal Representation Learning for Dummies
- 3 Causal Abstraction Learning Causal Abstraction Causal Abstraction Learning
- 4 From CAL to CRL

- Overview
- 2 Causal Representation Learning for Dummies
- 3 Causal Abstraction Learning Causal Abstraction
 Causal Abstraction Learning
- 4 From CAL to CRL

Literature

Rubenstein, P.K., Weichwald, S., Bongers, S., Mooij, J.M., Janzing, D., Grosse-Wentrup, M., Schölkopf, B.: Causal Consistency of Structural Equation Models, UAI 2017

Beckers, S. and Halpern, J.: Abstracting Causal Models, AAAI 2019

Beckers, S., Eberhardt, F., and Halpern, J.: Approximate Causal Abstraction, UAI 2019

Causal Models

Causal Model $M = (\mathcal{V}, \mathcal{U}, \mathcal{F}, \mathcal{I})$:

- ullet \mathcal{V} : endogenous variables
- \mathcal{U} : exogenous variables
- \mathcal{F} : set of structural equations (one for each $X \in \mathcal{V}$):
- *I*: set of allowed interventions, i.e., the interventions that we care about, or that are possible.
 - Innovation by Rubenstein et. al. (2017):
 - E.g., $A := X_1 + X_2$. Then can we allow an intervention like $X_1 \leftarrow 5$? What choice of $A \leftarrow a$ would work?

Probabilistic Causal Models: add Pr over \mathcal{U} , this induces $\text{Pr}_{\mathcal{V}}$ over \mathcal{V} .

Causal Abstraction

Say we have $M_L = (\mathcal{V}_L, \mathcal{U}_L, \mathcal{F}_L, \mathcal{I}_L)$, $M_H = (\mathcal{V}_H, \mathcal{U}_H, \mathcal{F}_H, \mathcal{I}_H)$, and an abstraction function τ : $\mathcal{V}_H = \tau(\mathcal{V}_L)$

Challenge: can we extend the interpretation of τ so that we make sense of: $M_H = \tau(M_L)$?

Remember: $M_L: \mathcal{U}_L \times \mathcal{I}_L \to \mathcal{V}_L$

To extend τ , we need:

- $\tau_{\mathcal{U}_L}: \mathcal{U}_L \to \mathcal{U}_H$
- $\omega_{\tau}: \mathcal{I}_{L} \to \mathcal{I}_{H}$

Causal Abstraction

$$(\overrightarrow{u}, C \leftarrow c) \xrightarrow{M_H(.)} \stackrel{E}{e'} \approx e$$

$$\uparrow_{U(.)}, \omega_{\tau}(.) \qquad \tau(.)$$

$$(\overrightarrow{u}, \overrightarrow{W} \leftarrow \overrightarrow{w}) \xrightarrow{M_L(.)} \overrightarrow{T} = \overrightarrow{t}$$

How well does M_H approximate M_L ?

=

How close are the predictions of M_H and M_L ?

distance between e' and e.

Causal Abstraction

$$M_H = au(M_L)$$
 iff

for all \vec{u}_L , $\vec{W} \leftarrow \vec{w} \in \mathcal{I}_L$:

$$\tau(M_L(\vec{u}_L, \vec{W} \leftarrow \vec{w})) = M_H(\tau_{\mathcal{U}_L}(\vec{u}_L), \omega_{\tau}(\vec{W} \leftarrow \vec{w})).$$

 $\tau\text{-}\alpha$ approximate abstraction: play around (expected, worst-case, etc.,) with probabilities of

$$d(\tau(M_L(\vec{u}_L, \vec{W} \leftarrow \vec{w})), M_H(\tau_{\mathcal{U}_I}(\vec{u}_L), \omega_{\tau}(\vec{W} \leftarrow \vec{w}))) < \alpha$$

Where do $\tau_{\mathcal{U}_l}$ and ω_{τ} come from?

• Just look for best $\tau_{\mathcal{U}_L}$ that does the job

•
$$\omega_{\tau}(\vec{Y} \leftarrow \vec{y}) = \vec{Z} \leftarrow \vec{z}$$
 if " $\tau(\vec{y}) = \vec{z}$ ", and not defined else.

- Overview
- 2 Causal Representation Learning for Dummies
- 3 Causal Abstraction Learning Causal Abstraction Causal Abstraction Learning
- 4 From CAL to CRL

Problem Formulation

Data: Low-level, high-dimensional, disentangled $(\mathcal{U}_L, \mathcal{I}_L, \mathcal{V}_L)$

Target:

- ullet High-level, low-dimensional, disentangled \mathcal{U}_H and \mathcal{V}_H
- Causal model M_H over \mathcal{U}_H and \mathcal{V}_H
- Causal model M_L over \mathcal{U}_L and \mathcal{V}_L
- $\tau: \mathcal{V}_L \to \mathcal{V}_H$ so that $M_H = \tau(M_L)$

Part 1: RL for CAL

Apply Standard Auto Encoders to learn the functions and representations (ignoring causality):

$$\mathcal{U}_L = p_{\mathcal{U}}(\mathcal{U}_H)$$
 and $\mathcal{U}_H = \tau_{\mathcal{U}}(\mathcal{U}_L)$ such that $d(\mathcal{U}_L, p_{\mathcal{U}}(\tau_{\mathcal{U}}(\mathcal{U}_L))) < \alpha$.

$$\mathcal{V}_L = p_{\mathcal{V}}(\mathcal{V}_H)$$
 and $\mathcal{V}_H = \tau(\mathcal{V}_L)$ such that $d(\mathcal{V}_L, p_{\mathcal{V}}(\tau(\mathcal{V}_L))) < \alpha$.

$$\mathcal{I}_L = p_{\mathcal{I}}(\mathcal{I}_H)$$
 and $\mathcal{I}_H = \omega(\mathcal{I}_L)$ such that $d(\mathcal{I}_L, p_{\mathcal{I}}(\omega(\mathcal{I}_L))) < \alpha$.

Part 2: Causal Abstraction Constraints

- $\bullet \omega \approx \omega_{\tau}$
 - Do they have similar domains?
 - $d(\omega(\mathcal{I}_L), \omega_{\tau}(\mathcal{I}_L)) < \alpha$?

2 Find M_L and M_H such that M_H is a τ - α approximate abstraction of M_L :

$$d(\tau(M_L(\vec{u}_L, \vec{W} \leftarrow \vec{w})), M_H(\tau_{\mathcal{U}_I}(\vec{u}_L), \omega_{\tau}(\vec{W} \leftarrow \vec{w}))) < \alpha$$

- Overview
- 2 Causal Representation Learning for Dummies
- 3 Causal Abstraction Learning Causal Abstraction Causal Abstraction Learning
- 4 From CAL to CRL

CAL does not match CRL context

Low-level is entangled

Low-level causal model is too complex

We don't have data/knowledge of low-level interventions

We don't observe the low-level exogenous variables

AE's only work when the high-level variables are independent

Solution

Move away from CAL towards RL

Suggestion:

- We don't need M_L
- Acquire separate data sets \vec{X}_i under specific (but unknown) high-level interventions
- Solve RFAE problem for each set i
- Require that the combination of solutions are consistent (i.e., are all derived from a single M_H)

Realistic CRL?

Data: for each $i \in \{1, ..., n\}$:

- low-level, high-dimensional, entangled \vec{X}_i
- where i corresponds to unknown unique high-level $\vec{C_i} \leftarrow \vec{c_i}$

Target:

- ullet High-level, low-dimensional, disentangled \mathcal{U}_H and \mathcal{V}_H
- Causal model M_H over \mathcal{U}_H and \mathcal{V}_H

Part 1: RFAE

For each i we learn:

$$\mathcal{V}_H = m_i(\mathcal{U}_H), \ ec{X}_i = p_i(m_i(\mathcal{U}_H)), \ ext{and} \ \mathcal{U}_H = q_i(ec{X}_i)$$

such that

$$d(\vec{X}_i, p_i(m_i(q_i(\vec{X}_i))) < \alpha$$

Part 2: Causal Constraints

Remember: $M_H: \mathcal{U}_H \times \mathcal{I}_H \to \mathcal{V}_H$

So find M_H and $\vec{C_i} \leftarrow \vec{c_i}$ such that for all i:

$$d(m_i(\mathcal{U}_H), M_H(\mathcal{U}_H, \vec{C_i} \leftarrow \vec{c_i})) < \alpha$$

Conclusion

1 Defined Causal Abstraction Learning in the image of CRL.

2 Causal Abstraction Learning can help in understanding CRL.