Análise - Vendas de Vestuário

José Ramon Severo Alves Leonardo Almeida Farias 2025-09-24

Índice

1	Introdução	2			
2	Dados da Análise	2			
3	Análises bivariadas 3.1 Entre variáveis numéricas	6 6 8 8			
4	Regressão Linear 4.1 Modelos Lineares	11 11 12 13 14			
5	Análisando o modelo escolhido 5.1 Análise dos pressupostos	15 18 18 19			
6	Estimativa 6.1 Intervalo de confiança	20 20			
7	Previsão	21			
8	Interpretação do modelo	21			
9	Conclusão				
10	Referências bibliográficas	22			

1 Introdução

Análise estatística do dataset "moda_vestuario_vendas.xlsx", que contém diversas observações sobre vendas de peças de roupas em diferentes períodos de tempo e em diferentes contextos, incluindo dados categóricos e númericos que podem influenciar esse valor.

O principal objetivo deste trabalho é identificar que fatores influenciam o volume de vendas de peças de roupas, através da análise exploratória de dados e da regressão linear simples.

2 Dados da Análise

```
dados <- read_excel("moda_vestuario_vendas.xlsx")
glimpse(dados)</pre>
```

```
Rows: 1,200
Columns: 13
$ Vendas
                            <dbl> 1335, 1911, 5231, 3297, 3886, 3424, 1790, 2
                            <dbl> 55.27, 70.81, 112.20, 84.85, 103.01, 94.43,
$ Investimento_marketing
$ Alcance_midias_sociais
                            <dbl> 509.9, 624.6, 1065.6, 751.8, 895.2, 787.3,
$ Preco_medio
                            <dbl> 118.34, 96.96, 96.31, 172.66, 165.07, 108.6
                            <dbl> 3.24, 5.66, 11.18, 10.38, 10.07, 11.72, 12.
$ Desconto_medio
$ N_skus_ativos
                            <dbl> 153, 349, 488, 608, 358, 196, 470, 331, 399
$ Estoque medio
                            <dbl> 18.80, 38.92, 40.88, 32.50, 53.21, 35.59, 3
$ Satisfacao_clientes
                            <dbl> 9.05, 8.33, 10.00, 8.42, 7.10, 6.61, 5.90,
$ Taxa_devolucao
                            <dbl> 3.73, 5.61, 2.89, 0.76, 6.34, 5.43, 7.57, 6
$ Trafego site
                            <dbl> 206.7, 363.1, 242.5, 373.8, 350.3, 237.0, 3
$ Taxa_conversao_online
                            <dbl> 2.68, 3.51, 2.93, 2.49, 2.24, 3.75, 0.59, 0
                            <chr> "Inverno", "Primavera", "Verão", "Primavera
$ Estacao
$ Campanha influenciadores <chr> "Sim", "Não", "Sim", "Não", "Sim", "Não", "Sim", "Não",
```

Nome	Descrição		

Vendas Total de peças vendidas no mês

Investimento_marketings com marketing no mês, em milhares de reais

Nome	Descrição			
Alcance_midias_so @ais ntidade de pessoas atingidas nas redes sociais, em milha				
	de pessoas			
Preco_medio	Preço médio das peças, em reais			
Desconto_medio	Desconto médio aplicado sobre o preço médio, em porcentagem			
N_skus_ativos	Quantidade de SKUs ativas, equivalente ao número de peças diferentes e suas variações em estoque			
Estoque_medio	Nível médio de estoque disponível no mês, em milhares de peças			
Satisfacao_cliente	esÍndice de satisfação média do cliente, entre 0-10			
Taxa_devolucao	Percentual de pedidos devolvidos ou cancelados			
Trafego_site	Visitas ao site no mês, em milhares de visitas			
Taxa_conversao_orNomeentagem de visitantes que efetivaram uma compra onlir				
Estacao	Em qual estação foi feita a análise, outono, inverno, verão ou primavera			

Campanha_influen**s iatelones** u não campanhas de marketing de influenciadores,

print(skim(dados))

Data Summary				
	Values			
Name	dados			
Number of rows	1200			
Number of columns	13			
Column type frequency:				
character	2			
numeric	11			
Group variables	— None			

booleano.

_	- Variable type: characte	r					
	skim_variable	n_missing	complete_rate	min	max	empty	n_unique
1	Estacao	0	1	5	9	0	4
2	<pre>Campanha_influenciadores whitespace</pre>	0	1	3	3	0	2

10

27

1	0
2	0

	Variable	e type: ı	numeric						
	skim_va	riable		n_missing	complete_rate	mean	sd	p0	
1	Vendas			0	1	3022.	823.	680	24
2	Investir	mento_ma:	rketing	0	1	80.2	25.4	-	
1.7	2 64.0	0							
3	Alcance_	_midias_s	sociais	0	1	723.	230.	_	
11.	6 573	•							
4	Preco_me	edio		12	0.99	120.	24.7	45.6	-
5	Descont	o_medio		12	0.99	10.1	4.89	-	
5.6	6.5	51							
6	N_skus_a	ativos		0	1	354.	118.	30	2
7	Estoque_	_medio		12	0.99	40.0	14.9	-	
2.8	3 29.8	3							
8	Satisfa	cao_clie	ntes	12	0.99	7.47	1.45	2.68	
9	Taxa_de	volucao		12	0.99	6.10	2.92	0	
10	Trafego_	_site		0	1	298.	99.4	-	
9.3	237.								
11	_	nversao_0		0	1	2.77	0.923	0.2	
	p50	•	•) hist					
	3005	3581.	5751						
2			156.						
3	728.	883.							
4	119.								
5		13.4							
6		436	692	_====					
7		50.0							
8	7.58								
9	6.14	8.03							
10	295.	357.							
11	2.76	3.35	5.97	′ ■■_					

Análisando as 1200 linhas, vemos que os valores numéricos estão entre alcances razoáveis, mas algumas linhas tem valores faltando nas colunas Preco_medio, Desconto_medio, Estoque_medio, Satisfacao_clientes e Trafego_site.Especificamente:

Coluna	Quantidade de observações faltando
Preco_medio	12
Desconto_medio	12
Estoque_medio	12
Satisfacao_clientes	12
Trafego_site	12

Para manter a integridade desse dataset relativamente pequeno, escolhemos remover essas linhas incompletas, diminuindo o dataset para ter 1140 linhas.

```
dados <- na.omit(dados)
glimpse(dados)</pre>
```

```
Rows: 1,140
Columns: 13
$ Vendas
                           <dbl> 1335, 1911, 5231, 3297, 3886, 3424, 1790, 2
$ Investimento_marketing
                           <dbl> 55.27, 70.81, 112.20, 84.85, 103.01, 94.43,
$ Alcance_midias_sociais
                           <dbl> 509.9, 624.6, 1065.6, 751.8, 895.2, 787.3,
$ Preco_medio
                           <dbl> 118.34, 96.96, 96.31, 172.66, 165.07, 108.6
                           <dbl> 3.24, 5.66, 11.18, 10.38, 10.07, 11.72, 12.
$ Desconto_medio
$ N skus ativos
                           <dbl> 153, 349, 488, 608, 358, 196, 470, 331, 399
$ Estoque_medio
                           <dbl> 18.80, 38.92, 40.88, 32.50, 53.21, 35.59, 3
$ Satisfacao clientes
                           <dbl> 9.05, 8.33, 10.00, 8.42, 7.10, 6.61, 5.90,
$ Taxa devolucao
                           <dbl> 3.73, 5.61, 2.89, 0.76, 6.34, 5.43, 7.57, 6
$ Trafego_site
                           <dbl> 206.7, 363.1, 242.5, 373.8, 350.3, 237.0, 3
$ Taxa_conversao_online
                           <dbl> 2.68, 3.51, 2.93, 2.49, 2.24, 3.75, 0.59, 0
                           <chr> "Inverno", "Primavera", "Verão", "Primavera
$ Estacao
$ Campanha_influenciadores <chr> "Sim", "Não", "Sim", "Não", "Sim", "Não", '
```

Nossa interpretação desse dataset é que cada linha é referente a uma diferente loja ou site que teve seu dados coletados em algum mês, ou até mesmo a mesma loja em períodos diferentes.

3 Análises bivariadas

3.1 Entre variáveis numéricas

```
numeric_vars <- dados %>% select(where(is.numeric))
cor_matrix <- cor(numeric_vars, use = "pairwise.complete.obs")
print(cor_matrix)</pre>
```

	Vendas	Investime	nto_marketing	
Vendas	1.000000000		0.820761275	
<pre>Investimento_marketing</pre>	0.820761275		1.000000000	
Alcance_midias_sociais	0.835558225		0.967589069	
Preco_medio	0.030450734		0.046599988	
Desconto_medio	-0.006494389		-0.055251250	
N_skus_ativos	0.008739960		0.019589234	
Estoque_medio	-0.040552317		-0.043702703	
Satisfacao_clientes	-0.010366202		-0.049457274	
Taxa_devolucao	0.003356714		0.009422445	
Trafego_site	0.007744699		0.008776480	
Taxa_conversao_online	0.082967410		-0.010961200	
	Alcance_midia	as_sociais	Preco_medio	Desconto_medio
Vendas	0.8	3355582251	0.030450734	_
0.006494389				
<pre>Investimento_marketing</pre>	0.9	9675890686	0.046599988	_
0.055251250				
Alcance_midias_sociais	1.0	0000000000	0.040402527	-
0.058350502				
Preco_medio	0.0	0404025271	1.000000000	0.025410515
Desconto_medio	-0.0	0583505020	0.025410515	1.000000000
N_skus_ativos	0.0	0289531496	0.022349857	-
0.032488814				
Estoque_medio	-0.0	399791692	-0.019514303	-
0.011636250				
Satisfacao_clientes	-0.0	537672532	0.005036666	-
0.001297739				
Taxa_devolucao	0.0	0129218646	0.046121034	-
0.030950986				
Trafego_site	0.0	0179218532	0.004613062	0.001152242
Taxa_conversao_online	0.0	0005167121	0.012029476	-

0.015561417			
	N_skus_ativos	Estoque_medio	Satisfacao_clientes
Vendas	0.0087399601	-0.040552317	-
0.010366202			
Investimento_marketing	0.0195892341	-0.043702703	-
0.049457274			
Alcance_midias_sociais	0.0289531496	-0.039979169	-
0.053767253			
Preco_medio	0.0223498568	-0.019514303	0.005036666
Desconto_medio	-0.0324888140	-0.011636250	-
0.001297739			
N_skus_ativos	1.00000000000	0.016389485	0.030821169
Estoque_medio	0.0163894854	1.000000000	0.022958312
Satisfacao_clientes	0.0308211690	0.022958312	1.000000000
Taxa_devolucao	0.0523400757	0.006266208	-
0.014859097			
Trafego_site	0.0001002371	-0.053861973	0.014467925
Taxa_conversao_online	-0.0179546717	-0.066269365	0.001732701
	Taxa_devolucad	-	Taxa_conversao_online
Vendas	0.003356714	0.0077446985	0.0829674103
Investimento_marketing	0.009422445	0.0087764801	-
0.0109612001			
Alcance_midias_sociais	0.012921865		
Preco_medio	0.046121034		
Desconto_medio	-0.030950986	0.0011522423	-
0.0155614173			
N_skus_ativos	0.052340076	0.0001002371	-
0.0179546717			
Estoque_medio	0.006266208	3 -0.0538619734	-
0.0662693649			
Satisfacao_clientes	-0.014859097		
Taxa_devolucao	1.000000000	0.0024234510	_
0.0023184420			
Trafego_site	0.002423451	1.0000000000	-
0.0162387294			
Taxa_conversao_online	-0.002318442	2 -0.0162387294	1.0000000000

library(corrplot)

corrplot 0.95 loaded

```
| Corrplot(cor_matrix, method = "color", addCoef.col = "black")
| Description | Color | Color
```

Encontramos algumas corelações entre nossa variável resposta (Vendas) e as demais, principalmente entre ela, Investimento_marketing eAlcance_midias_sociais, com valores de 82% e 84% respectivamente. Surpreendetemente as demais colunas tem correlações extremamente fracas com Vendas, indicando que não afetam o volume de vendas significativamente.

Além disso, encontramos uma correlação **extremamente forte** entre Investimento_marketing e Alcance_midias_sociais, de 97%. Isso indica multicolinearidade, então essas variáveis tem quase a mesma informação.

3.2 Variável numérica em função de categórica

3.2.1 Análise entre vendas e a presença de campanha com influenciadores

```
ggplot(dados, aes(x = Campanha_influenciadores, y = Vendas)) +
geom_boxplot() + theme_minimal()
```


A análise bivariada entre vendas e presença de campanha com influencers evidencia um leve aumento nas vendas, não tem influência sensível sobre a dispersão dos dados entretanto.

3.2.2 Análise entre vendas e a estação análisada

```
ggplot(dados, aes(x = Estacao, y = Vendas)) +
geom_boxplot() + theme_minimal()
```


Já a análise bivariada entre vendas e estações do ano temos uma grande diferença dados de cada categoria. No inverno tem uma dispersão menor, uma mediana menor, e menos vendas quando comparada com as outras estações.

No outono é perceptível que a mediana está na parte superior dos dados, com uma baixa e desigual dispersão de dados e a quantidade de vendas está ainda menor que a do inverno.

Na primavera, em contraste com o inverno temos uma mediana baixa, uma dispersão de dados maior e também desigual. A quantidade de vendas em comparação com outono e inverno é bem maior.

No verão temos uma grande dispersão entre os dados e uma mediana no meio. A quantidade de vendas em comparação com as estações de outono e inverno são bem maiores.

4 Regressão Linear

4.1 Modelos Lineares

4.1.1 Modelo 1 - Investimento e Alcance

```
modelo1 <- lm(Vendas ~ Investimento_marketing + Alcance_midias_sociais + T
summary(modelo1)</pre>
```

Call:

```
lm(formula = Vendas ~ Investimento_marketing + Alcance_midias_sociais +
    Taxa_conversao_online, data = dados)
```

Residuals:

```
Min 1Q Median 3Q Max -1572.60 -301.74 -25.16 290.87 2268.31
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                      635.5038
                                  59.1906 10.737 < 2e-
16 ***
Investimento marketing
                        6.7296
                                   2.0583
                                            3.270 0.00111 **
Alcance_midias_sociais
                        2.2667
                                   0.2272
                                            9.977 < 2e-
16 ***
Taxa_conversao_online
                                            5.289 1.48e-
                       75.3408
                                  14.2458
07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
Residual standard error: 445.7 on 1136 degrees of freedom Multiple R-squared: 0.7077, Adjusted R-squared: 0.7069 F-statistic: 916.9 on 3 and 1136 DF, p-value: < 2.2e-16
```

O modelo 1 tem R² igual a 0,7, ou seja 70% da variação no volume de vendas é explicado por apenas essas duas variáveis.

```
print(modelo1 %>% tbl_regression() %>% as_tibble())
```

```
# A tibble: 3 x 4
  `**Characteristic**`
                          `**Beta**` `**95% CI**` `**p-value**`
  <chr>>
                                      <chr>>
                                                   <chr>>
                          <chr>
1 Investimento marketing 6.7
                                     2.7, 11
                                                   0.001
2 Alcance midias sociais 2.3
                                     1.8, 2.7
                                                   <0.001
3 Taxa conversao online 75
                                      47, 103
                                                   <0.001
```

```
vif(modelo1)
```

```
Investimento_marketing Alcance_midias_sociais Taxa_conversao_online 15.713379 15.711495 1.002064
```

VIF é uma medida que testa multicolinearidade em modelos, sendo valores acima de 10 considerados problemas sérios [2].

A Taxa_conversao_online apresenta um VIF muito próximo de 1, indicando que não tem multicolinearidade com as outras. Já as duas outras medidas usadas no modelo 1 apresentam VIFs extremamente altos de cerca de 15,68, indicando novamente a grande correlação entre essas variáveis, que pode ser problemática.

Esse resultado confirma o que, intuitivamente, já era de se esperar, que Alcance_midias_sociais e Investimento_marketing fossem relacionadas, já que uma deve levar a outra.

Para simplificar o modelo, evitar redundâncias e aumentar a estabilidade do modelo, vamos análisar qual das variáveis devemos remover.

4.1.2 Modelo 2 - Removendo alcance

```
modelo2 <- lm(formula = Vendas ~ Investimento_marketing + Taxa_conversao_c
summary(modelo2)

Call:</pre>
```

```
lm(formula = Vendas ~ Investimento_marketing + Taxa_conversao_online,
    data = dados)
```

Residuals:

Min 1Q Median 3Q Max

```
-1604.90 -305.00 -27.26 300.93 2747.12
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                                            10.78 < 2e-
(Intercept)
                      664.0970
                                  61.6301
16 ***
Investimento marketing 26.6014
                                   0.5413
                                            49.14 < 2e-
16 ***
Taxa_conversao_online 81.6015
                                  14.8359
                                             5.50 4.68e-
08 ***
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

Residual standard error: 464.6 on 1137 degrees of freedom Multiple R-squared: 0.6821, Adjusted R-squared: 0.6815 F-statistic: 1220 on 2 and 1137 DF, p-value: < 2.2e-16

Retirando o alcance temos uma pequena diferença, trazendo um R² ligeiramente menor de 0.6815.

vif(modelo2)

```
Investimento_marketing Taxa_conversao_online
1.00012 1.00012
```

O VIF do modelo 2 é significante mente menor que o do modelo 3.

Em Investimento_marketing e em Taxa_conversao_online agora temos um VIF muito proximo de 1, indicando que eles não tem correlação. Esse pode ser um modelo melhor já que evita usar variáveis que possuem correlação.

4.1.3 Modelo 3 - Removendo investimentos

```
modelo3 <- lm(formula = Vendas ~ Alcance_midias_sociais + Taxa_conversao_o
summary(modelo3)</pre>
```

Call:

lm(formula = Vendas ~ Alcance_midias_sociais + Taxa_conversao_online,

```
data = dados)
```

Residuals:

```
Min 1Q Median 3Q Max -1553.04 -300.66 -21.46 281.84 2857.15
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
                                  58.91691 11.222 < 2e-
(Intercept)
                      661.17829
16 ***
Alcance_midias_sociais
                                   0.05756 51.868 < 2e-
                        2.98546
16 ***
Taxa_conversao_online
                       73.22684
                                  14.29163
                                             5.124 3.52e-
07 ***
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

Residual standard error: 447.6 on 1137 degrees of freedom Multiple R-squared: 0.705, Adjusted R-squared: 0.7045 F-statistic: 1358 on 2 and 1137 DF, p-value: < 2.2e-16

Removendo os investimentos também, temos um R² de 0.705.

vif(modelo3)

```
Alcance_midias_sociais Taxa_conversao_online
1
```

No modelo 3 também os valores de VIF foram ainda menores que os modelos do modelo 2, também muito próximos de 1.

4.2 Escolhendo o melhor modelo

O modelo 3 tem praticamente a mesma significância do modelo 1 (R^2 = 0,7045 no modelo 3 vs R^2 = 0,7069 no modelo 1) que é consideravelmente maior que a do modelo 2 (R^2 = 0,6734).

```
AIC(modelo2, modelo3)
```

```
df AIC
modelo2 4 17242.28
modelo3 4 17157.20
```

AIC(Akaike Information Criterion) é uma das principais ferramentas de comparação entre modelos no mesmo dataset, sendo uma "[...] medida surpreendentemente simples da variância média de valores fora da amostra"[1] > O menor AIC é melhor, indicando que o modelo perdeu menos informação em relação ao outro.

Com ela, temos outros indício de que o modelo 3 é o mais adequado para a situação.

```
str (anova(modelo1, modelo3))
```

```
Classes 'anova' and 'data.frame': 2 obs. of 6 variables:

$ Res.Df : num 1136 1137

$ RSS : num 2.26e+08 2.28e+08

$ Df : num NA -1

$ Sum of Sq: num NA -2123869

$ F : num NA 10.7

$ Pr(>F) : num NA 0.00111

- attr(*, "heading")= chr [1:2] "Analysis of Variance Table\n" "Model 1: Ve
```

Em contraponto, o teste ANOVA resultou em um p muito menor que 5%, indicando que o modelo 1(mais complexo) tem uma capacidade maior de explicar as vendas em comparação ao modelo 3, como vimos anteriormente com a comparação de seus R².

Entretanto, o ANOVA testa apenas se o modelo é melhor para explicar a variável resposta do que utilizar a média, não considerando os possíveis malefícios de usar um modelo mais complexo pode trazer.

Como visto nos testes anteriores, o modelo 1 ganha pouca melhoria no ajuste(<1%) com esse aumento de complexidade, logo vamos esolher o modelo 3 para continuar nossa análise.

5 Análisando o modelo escolhido

```
plot(modelo3)
```


Im(Vendas ~ Alcance_midias_sociais + Taxa_conversao_online)

Theoretical Quantiles
Im(Vendas ~ Alcance_midias_sociais + Taxa_conversao_online)

Im(Vendas ~ Alcance_midias_sociais + Taxa_conversao_online)

Im(Vendas ~ Alcance_midias_sociais + Taxa_conversao_online)

5.1 Análise dos pressupostos

5.1.1 Do modelo original

1. Verificação Preditiva Posterior

A curva dos dados preditos (linha verde) está razoavelmente próxima da curva dos dados observados (linha azul). Tendo assim uma boa adequação geral do modelo.

2. Linearidade

Os pontos estão bem distribuídos em torno da linha zero. A linha de tendência verde está quase perfeitamente plana

3. Homocedasticidade

A dispersão dos pontos é bastante uniforme da esquerda para a direita. A linha de tendência verde é praticamente horizontal. Não há o formato de "cone" ou "funil" que indicaria um problema (heterocedasticidade).

4. Normalidade dos Resíduos

Os pontos se alinham quase perfeitamente com a linha reta. Há um pequeno desvio

nos extremos, o que é muito comum e geralmente não é preocupante em conjuntos de dados grandes.

5. Influência de Observações

Existem alguns pontos numerados que se destacam por terem maior alavancagem (Leverage) ou resíduos maiores, como o ponto 1076. No entanto, todos os pontos estão bem dentro das linhas de contorno, o que significa que nenhum deles é considerado perigosamente influente.

6. Multicolinearidade

Mostra novamente os erros que já vimos, com um VIF **extremamente alto** de cerca de 15, dificultando a interpretação com o modelo.

5.1.2 Do modelo selecionado

Como o modelo 3 é simples, o gráfico de VIF foi omitido, justamente por não ter multicolinearidade nesse modelo, resolvendo esse problema em relação ao primeiro.

Nas influências de observações o único ponto que se encontrava fora da curva agora está contido nela, mostrando como o modelo 3 é mais estável, exatamente o que

queríamos.

Fora essas melhorias, o modelo 3 se mantém tão bom quanto o primeiro nas outras métricas, justificando novamente sua escolha.

6 Estimativa

```
estimativa <- data.frame(Alcance_midias_sociais = 1000, Taxa_conversao_on)
predict(modelo3, newdata = estimativa, interval = "confidence")</pre>
```

```
fit lwr upr
1 3719.86 3655.861 3783.86
```

Considerando uma périodo de tempo onde foram atingidas 1000000 pessoas nas redes sociais, se espera que aproximadamente 3849 peças sejam vendidas nesse mês, com 95% de confiança se espera que o valor esteja entre 3808 e 3890.

6.1 Intervalo de confiança

limite	valor
inferior	3808
superior	3890

Esse intervalo de 3808 a 3890 expressa a incerteza em torno da média esperada do consumo para domicílios com as características especificadas. Ele reflete apenas o erro associado à estimativa da média, e não à previsão de um valor individual.

7 Previsão

```
estimativa <- data.frame(Alcance_midias_sociais = 1000, Taxa_conversao_on)
predict(modelo3, newdata = estimativa, interval = "prediction")</pre>
```

```
fit lwr upr
1 76873.48 48896.25 104850.7
```

Com 95% de confiança, espera-se que a quantidade de vendas de uma empresa com as características da seção 6 esteja entre 2960 e 4737. Esse intervalo de predição é mais amplo do que o intervalo de confiança para a média, pois leva em consideração a variabilidade individual das empresas, não apenas a incerteza da média.

8 Interpretação do modelo

Os resultados expostos mostram que todas as variáveis selecionadas para o modelo são estatísticamente significativas ao nível de 5%, resultando em um modelo com R² ajustado de 0.705, que indica que 70% da variabilidade no volume de vendar é explicado pelas variáveis no modelo. Esse valor é consideravelmente alto especialmente considerando quantas variáveis possíveis existiam no dataset, escolhemos um conjunto muito pequeno e significativo.

Análisando as variáveis incluídas: - Al cance_midias_sociais é a variável mais relevante para o modelo, mostrando como é importante esse meio de marketing para as lojas.

• Taxa_conversao_online tem uma influência bem menor, mas ainda significativa, possivelmente indicando que as pessoas compram mais online do que presencial.

Além disso, a análise dos pressupostos confirma que o modelo atende a todos os critério quase perfeitamente, sendo linear, independente de erros, atendendo a homocedasticidade e normalidade dos resíduos, com quase total ausência de multicolinearidade.

9 Conclusão

O relatório teve como objetivo analisar os fatores que influenciam no volume de vendas de peças de roupas. Após a limpeza de dados foram selecionadas variáveis explicativas com base em critérios estatísticos e teóricos.

O modelo de regressão linear múltipla selecionado (modelo 3) apresenta um bom ajuste (R² ajustado de 0.705) e atende aos pressupostos do modelo. A variável Alcance_midias_sociais apresenta uma influência significativa sobre o volume de vendas, com a variável Taxa_conversao_online tendo um impacto menor, mas considerável.

Por último, fizemos ainda estimativas e predições com base no modelo final, fornecendo interpretações pontuais e intervalares

10 Referências bibliográficas

1. McElreath, Richard (2016). Statistical Rethinking: A Bayesian Course with Examples in R and Stan. [S.l.]: CRC Press. p. 189. ISBN 978-1-4822-5344-3. AIC provides a surprisingly simple estimate of the average out-of-sample deviance. 2.https://www.datacamp.com/pt/tutorial/variance-inflation-factor