

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of : Attorney Docket No. 2006_0560A

Oddvin REISO et al. : Confirmation No. 1717

Serial No. 10/576,108 : Group Art Unit 1793

Filed July 17, 2006 : Examiner Jie Yang

Al-Mg-Si ALLOY SUITED FOR : Mail Stop: AMENDMENT

EXTRUSION

<u>AMENDMENT</u>

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

Responsive to the Office Action of January 20, 2010, Applicants submit the following remarks in support of the patentability of the presently claimed invention over the disclosures of the references relied upon by the Examiner in rejecting the claims. Further and favorable reconsideration is respectfully requested in view of these remarks.

As Applicants have previously noted, and as discussed on page 2 of the specification, the present invention relates to a specific aluminium alloy with narrow alloying elements, i.e. a "selection invention".

That is, the present invention relates to an AlMgSi aluminium alloy where Mn is added as an alloying element within narrow limits (0.03 - 0.06 wt%) in combination with low additions of Mg (0.35 - 0.5 wt%) and Si (0.35 - 0.6 wt%). Such narrow additions of Mn in combination with small and narrow additions of Mg and Si have a positive effect on the extrudability of the AlMgSi alloy, in addition to promoting the transformation of the AlFeSi intermetallic phases and forming AlMnFeSi dispersoid particles during homogenization. These particles act as nucleation sites for Mg₂Si particles during cooling after homogenization.

The rejection of claims 5, 7 and 8 under 35 USC §103(a) as being unpatentable over Shibata (JP '857) is respectfully traversed.