LU2ME003: Méthodes mathématiques et numériques pour la mécanique 1

TP1 - Interpolation / intégration

On se donne n = 3. Les n + 1 points de mesure f_j d'une grandeur f(x) sont donnés en n + 1 abscisses x_j ($0 \le j \le n = 3$) et notés dans le tableau suivant (cf. TD 2) :

j	0	1	2	3
x_j	-2	0	4	6
f_j	3	5	8	5

Créer un fichier donnees.dat contenant les mesures sur deux colonnes : x_j , f_j .

L'objectif de ce TP est de réaliser une approximation polynômiale P(z) de f(z) dans le domaine [-2, 6] et ensuite de calculer numériquement l'intégrale du polynôme interpolé.

- 1. Soit $z_{test} \in [-2, 6]$ quelconque. Utiliser les éléments du tableau (x_j, f_j) donné cidessus pour implémenter le calcul de la valeur du polynôme interpolé de Lagrange P_{test} pour cette valeur de z_{test} , donnée par $P_{test} = \sum_{i=0}^{n} f_i \left(\prod_{j=0, j\neq i}^{n} \frac{(z_{test} x_j)}{(x_i x_j)} \right)$. Pour cela utiliser 2 boucles imbriquées. Affichez à l'écran la valeur numérique obtenue.
- 2. On souhaite construire le polynôme P point par point. Pour cela, on discrétise le domaine [-2,6] en m sous-intervalles, avec m=10: on pose $h=(x_n-x_0)/m$ le pas d'espace, puis on introduit les abscisses $z_k=x_0+k*h$, pour k=0,...,m. On calcule un vecteur P à m+1 composantes dont chaque composante P_k est la valeur du polynôme de Lagrange pour l'abscisse z_k . Calculer et afficher à l'écran les m+1 couples de valeurs z_k , P_k (utiliser une boucle extérieure pour varier k).
- 3. Créer un fichier lagrange.dat contenant deux colonnes : z_k , P_k . Utiliser gnuplot pour tracer sur une même figure les points (z_k, P_k) et les quatre points de mesure (ou de collocation) initiaux.
- 4. Calculer et afficher à l'écran une valeur approchée I_h de l'intégrale $I(x) = \int_{-2}^6 P(z)dz$ par la méthode composite des trapèzes, en utilisant les m+1 valeurs de P obtenues à la question 2.
- 5. Calculer et afficher à l'écran l'erreur E entre la valeur approchée précédente et la valeur exacte de l'intégrale.
- 6. Faire varier la valeur de m pour que h = 0.1, 0.01, 0.001, 0.0001 et 0.00001, et créer un fichier **erreur.dat** à deux colonnes : h et E(h). Tracer l'erreur E(h) en fonction du pas d'espace h en échelle log-log, et vérifier l'ordre de l'erreur.
- 7. © Reproduire la démarche précédente à partir de la méthode composite de Simpson.