Case Study: Disease prediction with Symptoms Analysis

By: Pandarge Nikhil N 1504012 **Bhusnar Pradip S 1404037 Guided By:** Prof.Rankhambe J P Code: #-----# Disease prediction with Symptoms analysis # @author Nikhil N Pandarge # @author Pradip S Bhusnar #----code: getwd()

colnames(bc_data) <- c("sample_code_number",

```
"clump_thickness",

"uniformity_of_cell_size",

"uniformity_of_cell_shape",

"marginal_adhesion",

"single_epithelial_cell_size",

"bare_nuclei",

"bland_chromatin",

"normal_nucleoli",

"mitosis",

"classes")
```

head(bc_data)

<pre>> head(bc_data) sample_code_number clump_thickness uniformity_of_cell_size uniformity_of_cell_shape</pre>								
1	1000025	5	1		1			
2	1002945	5	4		4			
3	1015425	3	1		1			
4	1016277	6	8		8			
5	1017023	4	1		1			
6	1017122	8	10		10			
marginal_adhesion single_epithelial_cell_size bare_nuclei								
bland_chromatin normal_nucleoli								
1	1	2	1	3	1			
2	5	7	10	3	2			
3	1	2	2	3	1			
4	1	3	4	3	7			
5	3	2	1	3	1			
6	8	7	10	9	7			

mitosis classes

- 1 1 2
- 2 1 2
- 3 1 2
- 4 1 2
- 5 1 2
- 6 1 4

Code:

bc_data[bc_data == "?"] <- NA

#how many NAs are in the data

length(which(is.na(bc_data)))

Output:

16

Code:

how many samples would we loose, if we removed them?

nrow(bc_data)

Output:

699

Code: nrow(bc_data[is.na(bc_data),]) **Output:** 16 Code: #-----# impute missing data install.packages("mice") library(mice) bc data[,2:10] <- apply(bc data[, 2:10], 2, function(x) as.numeric(as.character(x))) dataset_impute <- mice(bc_data[, 2:10], print = FALSE) bc_data <- cbind(bc_data[, 11, drop = FALSE],</pre> mice::complete(dataset impute, 1)) bc data\$classes <- as.factor(bc data\$classes)</pre>

How many benign and malignant cases are there?

summary(bc_data\$classes)

Output:

> summary(bc_data\$classes)
benign malignant
458 241

Code:

library(ggplot2)

ggplot(bc_data, aes(x = classes, fill = classes)) +
 geom_bar()

ggplot(bc_data, aes(x = clump_thickness)) +
 geom_histogram(bins = 10)


```
# principal component analysis:
if (!requireNamespace("BiocManager", quietly = TRUE))
 install.packages("BiocManager")
BiocManager::install("pcaGoPromoter")
library(pcaGoPromoter)
library(ellipse)
# perform pca and extract scores
pcaOutput <- pca(t(bc data[, -1]), printDropped = FALSE, scale = TRUE,
center = TRUE)
pcaOutput2 <- as.data.frame(pcaOutput$scores)</pre>
# define groups for plotting
pcaOutput2$groups <- bc data$classes
centroids <- aggregate(cbind(PC1, PC2) ~ groups, pcaOutput2, mean)
conf.rgn <- do.call(rbind, lapply(unique(pcaOutput2$groups), function(t)</pre>
 data.frame(groups = as.character(t),
        ellipse(cov(pcaOutput2[pcaOutput2$groups == t, 1:2]),
             centre = as.matrix(centroids[centroids$groups == t, 2:3]),
             level = 0.95),
        stringsAsFactors = FALSE)))
```

```
ggplot(data = pcaOutput2, aes(x = PC1, y = PC2, group = groups, color =
groups)) +
geom_polygon(data = conf.rgn, aes(fill = groups), alpha = 0.2) +
geom_point(size = 2, alpha = 0.6) +
scale_color_brewer(palette = "Set1") +
labs(color = "",
    fill = "",
    x = paste0("PC1: ", round(pcaOutput$pov[1], digits = 2) * 100, "%
variance"),
    y = paste0("PC2: ", round(pcaOutput$pov[2], digits = 2) * 100, "%
variance"))
```


code:

library(tidyr)

```
gather(bc_data, x, y, clump_thickness:mitosis) %>% ggplot(aes(x = y, color = classes, fill = classes)) + geom_density(alpha = 0.3) + facet_wrap( ~ x, scales = "free", ncol = 3)
```



```
# configure multicore
install.packages("doParallel")
library(doParallel)
cl <- makeCluster(detectCores())</pre>
registerDoParallel(cl)
library(caret)
#Training, validation and test data
set.seed(42)
index <- createDataPartition(bc data$classes, p = 0.7, list = FALSE)
train data <- bc data[index, ]
test_data <- bc_data[-index, ]
library(dplyr)
rbind(data.frame(group = "train", train_data),
   data.frame(group = "test", test data)) %>%
 gather(x, y, clump_thickness:mitosis) %>%
 ggplot(aes(x = y, color = group, fill = group)) +
 geom density(alpha = 0.3) +
 facet wrap( \sim x, scales = "free", ncol = 3)
```

Output:

Code:

predictions <- predict(model_glm, test_data)</pre>

Output:

> model_glm Generalized Linear Model

490 samples 9 predictor

Pre-processing: scaled (9), centered (9)

Resampling: Cross-Validated (10 fold, repeated 10 times) Summary of sample sizes: 442, 440, 443, 442, 441, 441, ...

Resampling results:

RMSE Rsquared MAE 1.951781 0.5273127 1.62851

```
predictions <- predict(model_glm, test_data)</pre>
```

model_glm\$finalModel\$linear.predictors ==
model_glm\$finalModel\$fitted.values
residual is the difference between observed value and predicted value.


```
#rain forest
set.seed(42)
model rf <- caret::train(classes ~ .,
              data = train data,
              method = "rf".
              preProcess = c("scale", "center"),
              trControl = trainControl(method = "repeatedcv",
                             number = 10,
                             repeats = 10,
                             savePredictions = TRUE,
                             verboselter = FALSE))
model_rf$finalModel$confusion
imp <- model rf$finalModel$importance
imp[order(imp, decreasing = TRUE), ]
Output:
> model_rf$finalModel$confusion
     benign malignant class.error
benign
           310
                   11 0.03426791
malignant
             6
                   163 0.03550296
> imp <- model_rf$finalModel$importance
> imp[order(imp, decreasing = TRUE), ]
                        uniformity_of_cell_size
         bare nuclei
uniformity_of_cell_shape
```

43.079030	38.388266	36.212991
bland_chromatin	normal_nucleoli	
single_epithelial_cell_size		
28.917296	20.936824	19.624624
clump_thickness	marginal_adhesion	mitosis
17.791695	11.687941	2.961946

estimate variable importance

importance <- varImp(model_rf, scale = TRUE)</pre>

plot(importance)

confusionMatrix(predict(model_rf, test_data), test_data\$classes)

Output:

> confusionMatrix(predict(model_rf, test_data), test_data\$classes)
Confusion Matrix and Statistics

Reference

Prediction benign malignant

benign 135 2 malignant 2 70

Accuracy: 0.9809

95% CI: (0.9517, 0.9948)

No Information Rate : 0.6555 P-Value [Acc > NIR] : <2e-16

Kappa: 0.9576

Mcnemar's Test P-Value: 1

Sensitivity: 0.9854 Specificity: 0.9722

Pos Pred Value : 0.9854 Neg Pred Value : 0.9722

Prevalence: 0.6555
Detection Rate: 0.6459

Detection Prevalence : 0.6555 Balanced Accuracy : 0.9788

'Positive' Class : benign

Code:

results <- data.frame(actual = test_data\$classes, predict(model_rf, test_data, type = "prob"))

results\$prediction <- ifelse(results\$benign > 0.5, "benign", ifelse(results\$malignant > 0.5, "malignant", NA))

results\$correct <- ifelse(results\$actual == results\$prediction, TRUE, FALSE)

ggplot(results, aes(x = prediction, fill = correct)) +
 geom_bar(position = "dodge")

ggplot(results, aes(x = prediction, y = benign, color = correct, shape =
correct)) +
 geom_jitter(size = 3, alpha = 0.6)

#Feature Selection:

library(corrplot)

calculate correlation matrix
corMatMy <- cor(train_data[, -1])
corrplot(corMatMy, order = "hclust")</pre>

