Classical and Modern Approaches for Solving the Steiner Tree Problem

Teodora Dobos

Technical University of Munich

June 21, 2022

Steiner Tree Problem

Given:

- ightharpoonup G = (V, E) undirected
- ightharpoonup cost function $c: E \to \mathbb{Q}^+$
- $\blacktriangleright \ \ \text{terminals set} \ R \subseteq V$

Objective:

▶ find tree that connects all terminals and has minimum weight

Classical Approaches Overview

- 1. Repetitive Shortest Path Heuristic
- 2. Kou-Markowsky-Berman Algorithm (Metric Closure)
- 3. Mehlhorn Algorithm
- 4. Primal-Dual Method

Classical Approaches Overview

- 1. Repetitive Shortest Path Heuristic \rightarrow implemented \checkmark
- 2. Kou-Markowsky-Berman Algorithm \rightarrow NetworkX package
- 3. Mehlhorn Algorithm

ightarrow implemented \checkmark

4. Primal-Dual Method

ightarrow implemented \checkmark

 $ightharpoonup 2\left(1-rac{1}{|R|}
ight)$ approximation algorithms

Repetitive Shortest Path Heuristic

Input graph

Compute shortest paths with sources $r \in R$

Choose a random terminal: $T=(\{r\},\emptyset)$

1

Choose closest $u \in R$ and connect it to the component via its shortest path

Repeat until ${\cal T}$ contains all terminals

Remove all non-terminals with degree 1 (no change in this example)

Repetitive Shortest Path Heuristic Summary

- 1. compute shortest paths with sources $r \in R$
- 2. $T = (\{r\}, \emptyset)$ with arbitrary $r \in R$
- 3. grow T to obtain a feasible solution
 - 3.1 choose closest $u \in R$
 - 3.2 add minimum path $u \rightarrow T$
- 4. remove all non-terminals with degree 1

Kou-Markowsky-Berman Algorithm (Metric Closure)

Input graph ${\cal G}$

Compute the metric closure of ${\cal G}$

Metric closure G_1

Compute a minimum spanning tree $G_2 = MST(G_1)$

Replace edges in G_2 with corresp. shortest paths in $G o G_3$

Compute a minimum spanning tree $G_4 = MST(G_3)$

Delete unnecessary edges

Kou-Markowsky-Berman Algorithm Summary

$$\to G_1 := (R, E_1, d_1)$$

$$\rightarrow G_2 := MST(G_1)$$

 $\rightarrow G_4 := MST(G_3)$

3. replace edges in G_2 by their shortest paths in G

$$\rightarrow G_3$$

$$\rightarrow T$$

Mehlhorn Algorithm

Input graph

Partition $V o \mathsf{Voronoi}$ regions

Partition $V o \mathsf{Voronoi}$ regions

Consider all interregional edges

Choose $\left|R\right|$ interregional edges that lead to the shortest interterminal paths

Create a new graph G^\prime induced by terminals

Proceed with steps 2-5 of Kou-Markowsky-Berman Algorithm

compute minimum spanning tree

- $\rightarrow G_2 := MST(G')$
- replace edges in G_2 by their shortest paths in G
- lacktriangle compute minimum spanning tree $ightarrow G_4 := MST(G_3)$
- delete unnecessary edges

 $\rightarrow G_3$

Mehlhorn Algorithm Summary

1. construct G' as before

 $\rightarrow G'$

2. compute minimum spanning tree

 $\rightarrow G_2 := MST(G')$

 $\rightarrow G_4 := MST(G_3)$

4. compute minimum spanning tree

3. replace edges in G_2 by their shortest paths in G

 $\rightarrow G_3$

5. delete unnecessary edges

 $\rightarrow T$

Primal-Dual Algorithm

Active sets \mathcal{A}_r for all terminals $r \in R$

Tight edge: add node to active set

Tight edge: add node to active set

Merge active sets - find connecting path & add it to the primal solution

Merge active sets - find connecting path & add it to the primal solution

Merge active sets - find connecting path & add it to the primal solution

Resulting Steiner tree

Deep Reinforcement Learning & Cherrypick

From Q-learning...

Q-learning:

- ▶ agent learns an action-utility function (Q-function) \rightarrow expected utility of taking an action in a given state: **Q(state, action)**
- create & update a Q-table (fixed size!)

From Q-learning...

Q-learning:

- ▶ agent learns an action-utility function (Q-function) \rightarrow expected utility of taking an action in a given state: **Q(state, action)**
- create & update a Q-table (fixed size!)

Steiner Tree setting:

- **state** := nodes included in the current solution
- action := add an uncovered node to the state

From Q-learning...

Q-learning:

- ▶ agent learns an action-utility function (Q-function) \rightarrow expected utility of taking an action in a given state: **Q(state, action)**
- create & update a Q-table (fixed size!)

Steiner Tree setting:

- state := nodes included in the current solution
- action := add an uncovered node to the state
- ⇒ large # possibilities (state, action)
- ⇒ creating & maintaining a Q-table is extremely difficult

... to Deep Reinforcement Learning

Solution: deep reinforcement learning:

- ▶ use a deep neural network (NN) to approximate the Q-value function
- does not compute all Q(state, action)
- computes Q(action), i.e. Q(node)

Cherrypick - Idea

- lacktriangle iteratively grows a connected component C by adding to it a vertex which:
 - ightharpoonup is connected to C in G
 - has the maximum Q-value

Cherrypick - Idea

- ightharpoonup iteratively grows a connected component C by adding to it a vertex which:
 - ightharpoonup is connected to C in G
 - has the maximum Q-value
- two main parts:
 - 1. Graph Embedding Model \implies 'manipulable' graph format
 - 2. Deep Q Network → learn Q-values

Cherrypick - Graph Embedding Model

ightharpoonup similarity matrix ightharpoonup relationship btw. each node and the 'special' k terminals

Cherrypick - Graph Embedding Model

- Similarity matrix → relationship btw. each node and the 'special' k terminals
- **message passing** \rightarrow obtain **vertex embeddings** for all $v \in V$ considering:
 - similarity matrix
 - neighbors' embeddings
 - $v \in R$?
 - v in the current solution?
- lacktriangle use vertex embeddings to compute ${f Q-values}$ for all $v\in V$

Cherrypick - Graph Embedding Model

- Similarity matrix → relationship btw. each node and the 'special' k terminals
- **message passing** \rightarrow obtain **vertex embeddings** for all $v \in V$ considering:
 - similarity matrix
 - neighbors' embeddings
 - $v \in R$?
 - v in the current solution?
- use vertex embeddings to compute **Q-values** for all $v \in V$

The vertex embeddings and the Q-values are computed using learnable weights!

Cherrypick - Deep Q Network (DQN)

- learn the Q-values (i.e. optimize the weights) using DQN
- solve a standard reinforcement learning task
- lacktriangle adding a node v to the current solution gives a reward that depends on:
 - $v \in R$?
 - ightharpoonup row(v) in the similarity matrix

Cherrypick

How do we compute a Steiner tree?

Cherrypick - Overview

- 1. Graph embedding model \implies initial Q-values for all nodes
- 2. While not all terminals are covered:
 - 2.1 Pick node based on policy & add to the current solution
 - 2.2 If learning mode:
 - 2.2.1 Optimize loss function \implies update weights used in the graph embedding model & Q-values
 - 2.2.2 Recompute similarity matrix
 - 2.2.3 Recalculate Q-values
- 3. Remove non-terminals with degree 1

Cherrypick - Overview

- 1. Graph embedding model \implies initial Q-values for all nodes
- 2. While not all terminals are covered:
 - 2.1 Pick node based on policy & add to the current solution
 - 2.2 If learning mode:
 - 2.2.1 Optimize loss function \implies update weights used in the graph embedding model & Q-values
 - 2.2.2 Recompute similarity matrix
 - 2.2.3 Recalculate Q-values
- 3. Remove non-terminals with degree 1

Special ingredients: 2 DQNs, replay memory (details in the documentation)

Evaluation

- 1. Approximation ratio
- 2. Running time
- 3. Early stopping mechanism (Primal-Dual Algorithm)
- 4. Transfer learning (Cherrypick)
- 5. Weight sharing (Cherrypick)
- 6. Sequential learning (Cherrypick)

Evaluation Dataset

- 1. PACE 2018 Challenge
- 2. small generated graphs (complete, grid, wheel, ladder)

Approximation Ratio - all algorithms - less than 400 vertices

Figure: PACE Challenge Results.

Approximation Ratio - approximation algorithms - less than 7000 vertices

Figure: PACE Challenge Results.

Approximation Ratio - all algorithms - less than 7000 vertices

Figure: PACE Challenge Results.

Approximation Ratio - Cherrypick

Is it always that bad?

Approximation Ratio - Cherrypick

Figure: Results for small graphs.

What would we expect?

Running Time - Algorithmic Complexities

Algorithm	Complexity		
Mehlhorn	$O(V \log V + E)$		
Repetitive Shortest Path	$O(R (E + V \log V))$		
KMB (Metric closure)	$O(R (E + V \log V))$		
Primal-Dual	$O(V E \log E)$		

Table: Complexities of the approximation algorithms

Running Time - Algorithmic Complexities

Algorithm	Complexity		
Mehlhorn	$O(V \log V + E)$		
Repetitive Shortest Path	$O(R (E + V \log V))$		
KMB (Metric closure)	$O(R (E + V \log V))$		
Primal-Dual	$O(V E \log E)$		

Table: Complexities of the approximation algorithms

 $\mathsf{Mehlhorn} < \mathsf{Repetitive} \ \mathsf{Shortest} \ \mathsf{Path} = \mathsf{KMB} \ (\mathsf{Metric} \ \mathsf{closure}) < \mathsf{Primal-Dual}$

Running Time - approximation algorithms - less than 400 vertices

Figure: PACE Challenge Results.

Running Time - approximation algorithms - less than 7000 nodes

Figure: PACE Challenge Results.

Theory:

 $Mehlhorn < Repetitive \ Shortest \ Path = KMB \ (Metric \ closure) < Primal-Dual$

Theory:

Mehlhorn < Repetitive Shortest Path = KMB (Metric closure) < Primal-Dual

Practice:

Figure: PACE Challenge Results.

Theory:

Mehlhorn < Repetitive Shortest Path = KMB (Metric closure) < Primal-Dual

Practice:

Figure: PACE Challenge Results.

Primal-Dual faster than KMB (Metric closure)?

Running Time - Primal-Dual Algorithm

- edge sorting most expensive step
- ▶ sorting algorithm? → Timsort (default in Python)
 - efficient
 - takes advantage of any ordering already present in a collection

Running Time - Primal-Dual Algorithm

- edge sorting most expensive step
- ightharpoonup sorting algorithm? o Timsort (default in Python)
 - efficient
 - takes advantage of any ordering already present in a collection
- Primal-Dual Algorithm:
 - ▶ subsets of ordered edges are likely to be present in the set of edges
 - the same 'amount' is added to all dual variables in each iteration

Running Time - Primal-Dual Algorithm

- edge sorting most expensive step
- ▶ sorting algorithm? → Timsort (default in Python)
 - efficient
 - takes advantage of any ordering already present in a collection
- Primal-Dual Algorithm:
 - ▶ subsets of ordered edges are likely to be present in the set of edges
 - ▶ the same 'amount' is added to all dual variables in each iteration
- → efficient sorting

Early Stopping Mechanism for Primal-Dual Algorithm

Early Stopping Mechanism - Primal-Dual Algorithm

Idea:

- \blacktriangleright stop each iteration with probability p=0.3 if at least two active components were already merged
- make solution feasible:
 - ▶ merge, iteratively, the largest two components C_1 , $C_2 \to {\rm add}$ shortest path $r_1 \to r_2$ with $r_i \in C_i, i \in \{1,2\}$
- combination Primal-Dual Algorithm & Repetitive Shortest Path Heuristic

Early Stopping Mechanism - Primal-Dual Algorithm - less than 400 vertices

Figure: PACE Challenge Results.

Early Stopping Mechanism - Primal-Dual Algorithm - less than 7000 vertices

Figure: PACE Challenge Results.

Early Stopping Mechanism - Primal-Dual Algorithm - Comments

- good results for small graphs, but no guarantees...
- drawbacks:
 - does not take into consideration the 'progress' made between the last iteration in which two components were merged and the iteration that is stopped early
 - shortest path computation

Evaluation

Cherrypick evaluation scenarios

Transfer Learning - Cherrypick

Consider a graph G and a subgraph $G' \subset G$.

- lacktriangle randomly initialize weights to solve instance given by $G o {\sf Q} ext{-values}\ Q$
- lacktriangle set Q as the initial Q-values when solving instance given by G'
- apply Cherrypick

Transfer Learning - Cherrypick

Consider a graph G and a subgraph $G' \subset G$.

- ightharpoonup randomly initialize weights to solve instance given by G o Q-values Q
- ightharpoonup set Q as the initial Q-values when solving instance given by G'
- apply Cherrypick

Idea:

use learned global knowledge locally

Transfer Learning - Cherrypick

Instance	V(G)	V(G')	E(G)	E(G')	Tr.L.	No Tr.L.
1	17	13	24	16	2.5	2.8
2	17	13	24	13	1	1.6
3	19	14	32	20	1.71	3.23
4	19	14	32	20	3.29	2.52
5	28	28	63	51	2.46	1.82
6	28	20	63	37	2.24	2.71
7	12	8	26	13	1	3
8	12	10	23	15	1	1
9	21	17	27	21	1	1
10	12	10	26	17	1	3

Table: Subgraph results obtained with & without the transfer learning approach.

Weight Sharing - Cherrypick

Idea:

- improve the initial solution computed for an instance in multiple, independent algorithm executions
- lacktriangle 1st run: randomly initialize weights and solve the instance ightarrow Q-values Q
- ightharpoonup next run: use Q as the initial Q-values and solve the same instance
- repeat for a fixed number of times (4)

Weight Sharing - Cherrypick

Figure: PACE Challenge Results.

Summary (1)

- ► Classical approaches achieve similar approximation ratios in practice
- ▶ Mehlhorn is the fastest algorithm in theory & practice
- ► KMB (Metric closure) is the slowest in practice (among the classical approaches)
- ▶ Primal-Dual is faster than KMB (Metric closure) in practice due to Timsort

Summary (2)

- ► Cherrypick approximation ratios grow with the number of edges
- Primal-Dual Early stopping mechanism works well for small graphs
- Cherrypick Transfer learning approach leads to good results
- Cherrypick Weight sharing approach works well, but is computationally expensive