

10.020 Data Driven World

Linear Regression: Training

Peng Song, ISTD

Week 9, Lesson 1, 2021

Revision: Supervised Learning

Classification

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
- y is categorical

Regression

We will focus on Regression this week

- Given (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n)
- Learn a function f(x) to predict y given x
- y is numeric

Revision: Supervised Learning Process

Today: Linear Regression

Regression Problem: House Pricing Prediction

- Given samples (x, y), where
 - x is house size
 - y is house price
- Learn a function y = f(x)
 - Assume f is a linear function

Regression Problem: House Pricing Prediction

- Given samples (x, y), where
 - x is house size
 - y is house price
- Learn a function y = f(x)
 - Assume f is a linear function

Linear Regression

Linear regression is a machine learning algorithm that assumes a **linear** relationship between the input variable x and the single output variable y.

Training Set

Size in feet $^2(x)$	Price (\$) in 1000's (y)	
2104	460	
1416	232	
1534	315	-m = 47
852	178	
•••		

- m = Number of training examples
- *x* = Input variable / feature
- y = Output variable / target variable
- $(x^i, y^i) = i^{th}$ training example

Examples:

$$x^{1} = 2104$$
 $x^{2} = 1416$
 $y^{1} = 460$

Training Set

Visualize the training set as a scatter plot.

Hypothesis is a **candidate model** that approximates a target function for mapping examples of inputs to outputs.

Hypothesis is a **candidate model** that approximates a target function for mapping examples of inputs to outputs.

Hypothesis is a **candidate model** that approximates a target function for mapping examples of inputs to outputs.

Hypothesis in Linear Regression

$$y = h_{\beta}(x) = \beta_0 + \beta_1 x$$

 β_0 and β_1 are unknown parameters of the hypothesis

Hypothesis in Linear Regression

$$y = h_{\beta}(x) = \beta_0 + \beta_1 x$$

How to choose β_0 and β_1 ?

Idea: Choose β_0 , β_1 so that our predicted value $h_{\beta}(x^i)$ is close to the observed value y^i for our training examples $\{(x^i, y^i)\}$

Idea: Choose β_0 , β_1 so that our predicted value $h_{\beta}(x^i)$ is close to the observed value y^i for our training examples $\{(x^i, y^i)\}$

minimize
$$\frac{1}{2m}\sum_{i=1}^{m} \left(h_{\beta}(x^{i}) - y^{i}\right)^{2}$$
 where $h_{\beta}(x^{i}) = \beta_{0} + \beta_{1}x^{i}$

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\beta}(x^{i}) - y^{i})^{2}$$

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\beta}(x^i) - y^i)^2$$

Cost function

minimize
$$J(\beta_0, \beta_1)$$
 β_0, β_1

where $h_{\beta}(x^i) = \beta_0 + \beta_1 x^i$

• Hypothesis: $h_{\beta}(x) = \beta_0 + \beta_1 x$

• Parameters: β_0, β_1

• Cost function: $J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\beta}(x^i) - y^i)^2$

• **Goal**: minimize $J(\beta_0, \beta_1)$ β_0, β_1

Hypothesis:

$$h_{\beta}(x) = \beta_0 + \beta_1 x$$

Parameters:

$$\beta_0, \beta_1$$

Cost function:

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\beta}(x^i) - y^i)^2 \longrightarrow J(\beta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\beta}(x^i) - y^i)^2$$

Goal: minimize $J(\beta_0, \beta_1)$ β_0, β_1

• Hypothesis:

$$h_{\beta}(x) = \beta_1 x$$

$$\beta_0 = 0$$

• Parameters:

$$\beta_1$$

Cost function:

$$J(\beta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\beta}(x^i) - y^i)^2$$

Goal:

minimize
$$J(\beta_1)$$
 β_1

 $J(\beta_1)$, function of β_1

 $J(\beta_1)$, function of β_1

How to solve the problem?

Gradient descent is an iterative optimization algorithm for finding a **local minimum** of a **differentiable** function.


```
Start with some \beta_1
Repeat until convergence { \beta_1 \coloneqq \beta_1 - \alpha \; \frac{\partial}{\partial \beta_1} J(\beta_1) }
```

 α : Learning rate (step size) $\frac{\partial}{\partial \beta_1} J(\beta_1)$: derivative


```
Start with some \beta_1
Repeat until convergence { \beta_1 \coloneqq \beta_1 - \alpha \; \frac{\partial}{\partial \beta_1} J(\beta_1) }
```

 α : Learning rate (step size) $\frac{\partial}{\partial \beta_1} J(\beta_1)$: derivative


```
Start with some \beta_1
Repeat until convergence { \beta_1 \coloneqq \beta_1 - \alpha \ \frac{\partial}{\partial \beta_1} J(\beta_1) }
```

 α : Learning rate (step size) $\frac{\partial}{\partial \beta_1} J(\beta_1)$: derivative

Start with some β_0 , β_1 Repeat until convergence { $\beta_0 \coloneqq \beta_0 - \alpha \; \frac{\partial}{\partial \beta_0} J(\beta_0, \beta_1)$ $\beta_1 \coloneqq \beta_1 - \alpha \; \frac{\partial}{\partial \beta_1} J(\beta_0, \beta_1)$ }

Cost function: $J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\beta}(x^i) - y^i)^2$

Hypothesis: $h_{\beta}(x) = \beta_0 + \beta_1 x$


```
Start with some \beta_0, \beta_1
Repeat until convergence {
\beta_0 \coloneqq \beta_0 - \alpha \ \frac{\partial}{\partial \beta_0} J(\beta_0, \beta_1)
\beta_1 \coloneqq \beta_1 - \alpha \ \frac{\partial}{\partial \beta_1} J(\beta_0, \beta_1)
}
```

How to compute the gradient $\frac{\partial}{\partial \beta_0} J(\beta_0, \beta_1), \frac{\partial}{\partial \beta_1} J(\beta_0, \beta_1)$ (i.e., partial derivative)?

Linear regression model

Cost function: $J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\beta}(x^i) - y^i)^2$

Hypothesis: $h_{\beta}(x) = \beta_0 + \beta_1 x$

Computing Partial Derivative

• Differentiate equation $J(\beta_0, \beta_1)$ with respect to β_0

$$\frac{\partial}{\partial \beta_0} J(\beta_0, \beta_1) = \frac{\partial}{\partial \beta_0} \frac{1}{2m} \sum_{i=1}^m (h_\beta(x^i) - y^i)^2$$

$$= \frac{\partial}{\partial \beta_0} \frac{1}{2m} \sum_{i=1}^m (\beta_0 + \beta_1 x^i - y^i)^2$$

$$= \frac{1}{m} \sum_{i=1}^m (\beta_0 + \beta_1 x^i - y^i)$$

$$= \frac{1}{m} \sum_{i=1}^m (h_\beta(x^i) - y^i)$$

Computing Partial Derivative

• Differentiate equation $J(\beta_0, \beta_1)$ with respect to β_1

$$\frac{\partial}{\partial \beta_1} J(\beta_0, \beta_1) = \frac{\partial}{\partial \beta_1} \frac{1}{2m} \sum_{i=1}^m (h_\beta(x^i) - y^i)^2$$

$$= \frac{\partial}{\partial \beta_1} \frac{1}{2m} \sum_{i=1}^m (\beta_0 + \beta_1 x^i - y^i)^2$$

$$= \frac{1}{m} \sum_{i=1}^m (\beta_0 + \beta_1 x^i - y^i) x^i$$

$$= \frac{1}{m} \sum_{i=1}^m (h_\beta(x^i) - y^i) x^i$$

Gradient Descent for Linear Regression

Start with some β_0 , β_1 Repeat until convergence { $\beta_0 \coloneqq \beta_0 - \alpha \ \frac{\partial}{\partial \beta_0} J(\beta_0, \beta_1)$ $\beta_1 \coloneqq \beta_1 - \alpha \ \frac{\partial}{\partial \beta_1} J(\beta_0, \beta_1)$ }

Note: update β_0 and β_1 simultaneously

Linear Regression

- Hypothesis: $h_{\beta}(x) = \beta_0 + \beta_1 x$
- Cost function: $J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\beta}(x^i) y^i)^2$
- Gradient Descent:

$$\beta_0 := \beta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\beta(x^i) - y^i)$$

$$\beta_1 := \beta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\beta(x^i) - y^i) x^i$$

Can we write these equations in a more compact form?

$$h_{\beta}(x) = \beta_0 + \beta_1 x$$
$$= [1 \quad x] \times \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$$

$$= x \times b$$

where
$$\boldsymbol{x} = \begin{bmatrix} 1 & x \end{bmatrix}$$
 $\boldsymbol{b} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$

For m data points, $\hat{y}^i = h_\beta(x^i) = \beta_0 + \beta_1 x^i = x^i \times b$

 $\hat{\mathbf{y}}^m = \mathbf{x}^m \mathbf{b}$

$$\hat{y}^{1} = \mathbf{x}^{1}\mathbf{b}$$

$$\hat{y}^{2} = \mathbf{x}^{2}\mathbf{b}$$

$$\vdots$$

$$\hat{y} = \begin{bmatrix} \hat{y}^{1} \\ \hat{y}^{2} \\ \vdots \\ \hat{y}^{m} \end{bmatrix} = \begin{bmatrix} \mathbf{x}^{1}\mathbf{b} \\ \mathbf{x}^{2}\mathbf{b} \\ \vdots \\ \mathbf{x}^{m}\mathbf{b} \end{bmatrix} = \begin{bmatrix} \mathbf{x}^{1} \\ \mathbf{x}^{2} \\ \vdots \\ \mathbf{x}^{m} \end{bmatrix} \mathbf{b} = \mathbf{X} \times \mathbf{b}$$

where
$$X = \begin{bmatrix} x^1 \\ x^2 \\ \vdots \\ x^m \end{bmatrix} = \begin{bmatrix} 1 & x^1 \\ 1 & x^2 \\ \vdots & \vdots \\ 1 & x^m \end{bmatrix}$$

Cost function
$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}^i - y^i)^2$$

$$= \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}^i - y^i) \times (\hat{y}^i - y^i)$$

$$= \frac{1}{2m} [(\hat{y}^1 - y^1) \dots (\hat{y}^m - y^m)] \times \begin{bmatrix} (\hat{y}^1 - y^1) \\ \dots \\ (\hat{y}^m - y^m) \end{bmatrix}$$

$$= \frac{1}{2m} (\hat{y} - y)^T \times (\hat{y} - y)$$
where $\hat{y} = \begin{bmatrix} \hat{y}^1 \\ \hat{y}^2 \\ \dots \\ y^m \end{bmatrix}$ $y = \begin{bmatrix} y^1 \\ y^2 \\ \dots \\ y^m \end{bmatrix}$

$$\beta_0 := \beta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (\hat{y}^i - y^i)$$

$$\beta_1 := \beta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (\hat{y}^i - y^i) x^i$$

$$\begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} - \alpha \frac{1}{m} \begin{bmatrix} \sum_{i=1}^{m} (\hat{y}^i - y^i) \\ \sum_{i=1}^{m} (\hat{y}^i - y^i) x^i \end{bmatrix}$$

$$\boldsymbol{b} = \boldsymbol{b} - \alpha \frac{1}{m} \boldsymbol{X}^{\mathrm{T}} \times (\hat{\boldsymbol{y}} - \boldsymbol{y})$$

$$\boldsymbol{b} = \boldsymbol{b} - \alpha \frac{1}{m} \boldsymbol{X}^{\mathrm{T}} \times (\boldsymbol{X} \times \boldsymbol{b} - \boldsymbol{y})$$

$$\begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} - \alpha \frac{1}{m} \begin{bmatrix} 1 & \dots & 1 \\ x^1 & \dots & x^m \end{bmatrix} \begin{bmatrix} (\hat{y}^1 - y^1) \\ \dots \\ (\hat{y}^m - y^m) \end{bmatrix}$$

Linear Regression

• Hypothesis:
$$\widehat{y} = X \times b$$

• Cost Function:
$$J(\beta_0, \beta_1) = \frac{1}{2m} (\widehat{y} - y)^{\mathrm{T}} \times (\widehat{y} - y)$$

• Gradient Descent:
$$\mathbf{b} = \mathbf{b} - \alpha \frac{1}{m} \mathbf{X}^{\mathrm{T}} \times (\mathbf{X} \times \mathbf{b} - \mathbf{y})$$

where
$$\hat{\mathbf{y}} = \begin{bmatrix} \hat{y}^1 \\ \hat{y}^2 \\ \hat{y}^3 \\ \vdots \\ \hat{y}^m \end{bmatrix}$$
 $\mathbf{X} = \begin{bmatrix} 1 & x^1 \\ 1 & x^2 \\ 1 & x^m \end{bmatrix}$ $\mathbf{b} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$ $\mathbf{y} = \begin{bmatrix} y^1 \\ y^2 \\ y^3 \\ \vdots \\ y^m \end{bmatrix}$

Cohort Problem CS0

CS0. *Plot:* Read data for Boston Housing Prices and write a function get_features_targets() to get the columns for the features and the targets from the input argument data frame.

Cohort Problem CS1

CS1. Cost Function: Write def compute_cost(X, y, beta) to compute the cost function of a linear regression model.

Cost Function: $J(\beta_0, \beta_1) = \frac{1}{2m} (\widehat{y} - y)^{\mathrm{T}} \times (\widehat{y} - y)$

Hypothesis: $\hat{y} = X \times b$

Note: m is the number of data points (i.e., number of rows in X)

Cohort Problem CS2

CS2. Gradient Descent: Write a function called

```
def gradient_descent(X, y, beta, alpha, num_iters):
```

- X: is a 2-D numpy array for the features
- y: is a vector array for the target
- beta: is a column vector for the initial guess of the parameters
- alpha: is the learning rate
- num iters: is the number of iteration to perform

Gradient Descent:
$$\boldsymbol{b} = \boldsymbol{b} - \alpha \frac{1}{m} \boldsymbol{X}^{\mathrm{T}} \times (\boldsymbol{X} \times \boldsymbol{b} - \boldsymbol{y})$$

Thank You!