The poweRlaw package: Examples

Colin S. Gillespie

Last updated: December 19, 2013

The poweRlaw package provides an easy to use interface for fitting and visualising heavy tailed distributions, including power-laws. The fitting procedure follows the method detailed in Clauset *et al.*¹ This vignette provides examples of the fitting procedure.

¹ A.~Clauset, C.R. Shalizi, and M.E.J. Newman. Power-law distributions in empirical data. *SIAM review*, 51(4):661– 703, 2009

1 Discrete data: Moby Dick

The Moby Dick dataset contains the frequency of unique words in the novel Moby Dick by Herman Melville. This data set can be downloaded from

http://tuvalu.santafe.edu/~aaronc/powerlaws/data.htm or loaded directly

```
library("poweRlaw")
data("moby")
```

To fit a discrete power-law to this data², we use the displ constructor

² The object moby is a simple R vector.

```
m_pl = displ$new(moby)
```

The resulting object, m_pl, is a displ³ object. It also inherits the discrete_distribution class. After creating the displ object, a typical first step would be to infer model parameters.⁴ We can estimate the lower threshold, via:

```
est = estimate_xmin(m_pl)
m_pl$setXmin(est)
```

For a given value x_{\min} , the scaling parameter is estimated by numerically optimising the log-likelihood. The optimiser is initialised using the analytical MLE

$$\hat{\alpha} \simeq 1 + n \left[\sum_{i=1}^{n} \log \left(\frac{x_i}{x_{\min} - 0.5} \right) \right]^{-1}$$
.

This yields a threshold estimate of $x_{\min} = 7$ and scaling parameter $\alpha = 1.95$, which matches results found in Clauset et~al. [2009]. Alternatively, we could perform a parameter scan for each value of x_{\min} :

```
estimate_xmin(m_pl, pars = seq(1.5, 2.5, 0.1))
```

The parameter scan will typically be slower than using the optimiser. To fit a discrete log-normal distribution, we follow a similar procedure, except we begin by creating a dislnorm.⁵

³ displ: discrete power-law.

 4 When the displ object is first created, the default parameter values are NULL and x_{\min} is set to the minimum x-value.

⁵ dislnorm: discrete log-normal object

```
m_ln = dislnorm$new(moby)
est = estimate_xmin(m_ln)
```

which yields a lower threshold of $x_{\min} = 3$ and parameters (-17.9, 4.87). A similar procedure is applied to fit the Poisson distribution; we create a distribution object using dispois, then fit as before.

The data CDF and lines of best fit can be easily plotted:

```
plot(m_pl)
lines(m_pl, col = 2)
lines(m_ln, col = 3)
lines(m_pois, col = 4)
```

to obtain figure 1. It clear that the Poisson distribution is not appropriate for this data set. However, the log-normal and power-law distribution both provide reasonable fits to the data.

Parameter uncertainty 1.1

To get a handle on the uncertainty in the parameter estimates, we use a bootstrapping procedure, via the bootstrap function. This procedure can be applied to any distribution object.⁶ Furthermore, the bootstrap procedure can utilize multiple CPU cores to speed up inference.7

```
## 5000 bootstraps using two cores
bs = bootstrap(m_pl, no_of_sims=5000, threads=2)
```

By default, the bootstrap function will use the maximum likelihood estimate to estimate the parameter and check all values of x_{min} . When possible x_{\min} values are large, then it is recommend that the search space is reduced. For example, this function call

```
bootstrap(m_pl, xmins = seq(2, 20, 2))
```

will only calculate the Kolmogorov-Smirnoff statistics at values of x_{\min} equal to

$$2, 4, 6, \ldots, 20$$
.

A similar argument exists for the parameters.⁸

The bootstrap function, returns bs_xmin object that has three components:

- 1. The goodness of fit statistic obtained from the Kolmogorov-Smirnoff test. This value should correspond to the value obtained from the estimate_xmin function.
- 2. A data frame containing the results for the bootstrap procedure.
- 3. The average simulation time, in seconds, for a single bootstrap.

The boostrap results can be explored in a variety way. First we can estimate the standard deviation of the parameter uncertainty, i.e.

Figure 1: Data CDF of the Moby Dick data set. The fitted power-law (green line), log-normal (red line) and poisson (blue) distributions are also given.

⁶ For example, bootstrap(m_ln).

⁷The output of this bootstrapping procedure can be obtained via data(bootstrap_moby).

⁸ For single parameter models, pars should be a vector. For the log-normal distribution, pars should be a matrix of values.

Figure 2: Results from the standard bootstrap procedure (for the power-law model) using the Moby Dick data set: bootstrap(m_pl). The top row shows the mean estimate of parameters x_{\min} and α . The bottom row shows the estimate of standard deviation for each parameter. The dashed-lines give approximate 95% confidence intervals.

After 5000 iterations, the standard deviation of x_{min} and α is estimated to be 2.1 and 0.03 respectively.

```
sd(bs$bootstraps[, 2])
## [1] 1.897
sd(bs$bootstraps[, 3])
## [1] 0.02476
```

Alternatively, we can visualise the results using the plot function:

```
## trim=0.1 only displays the final 90% of
## iterations
plot(bs, trim = 0.1)
```

to obtain figure 2. This top row of graphics in figure 2 give a 95% confidence interval for mean estimate of the parameters. The bottom row of graphics give a 95% confidence for the standard deviation of the parameters. The parameter trim in the plot function controls the percentage of samples displayed. When trim=0.1, we only display the final 90% of data.

We can also construct histograms.

```
hist(bs$bootstraps[, 2])
hist(bs$bootstraps[, 3])
```

to get figure 3.

A similar bootstrap analysis can be obtained for the log-normal distribution

```
bs1 = bootstrap(m_ln)
```

in this case we would obtain uncertainty estimates for both of the log-normal parameters.

9 When trim=0, all iterations are displayed.

Figure 3: Characterising uncertainty in parameter values. (a) x_{min} uncertainty (standard deviation 2) (b) α uncertainty (std dev. 0.03)

Figure 4: Results from the bootstrap procedure (for the power-law model) using the Moby Dick data set: bootstrap $_p(m_pl)$. The top row shows the mean estimate of parameters x_{\min} , α and the *p*-value. The bottom row shows the estimate of standard deviation for each parameter. The dashed-lines give approximate 95% confidence intervals.

Testing the power-law hypothesis

Since it is possible to fit a power-law distribution to any data set, it is appropriate to test whether it the observed data set actually follows a power-law. Clauset et al, suggest that this hypothesis is tested using a goodness-of-fit test, via a bootstrapping procedure. This test generates a p-value that can be used to quantify the plausibility of the hypothesis. If the *p*-value is large, than any difference between the empirical data and the model can be explained with statistical fluctuations. If $p \simeq 0$, then the model does not provide a plausible fit to the data and another distribution may be more appropriate. In this scenario,

 H_0 : data is generated from a power-law distribution.

 H_1 : data is not generated from a power-law distribution.

To test these hypothesis, we use the bootstrap_p function

```
bs_p = bootstrap_p(m_pl)
```

The point estimate of the *p*-value is one of the elements of the bs_p object10

```
bs_p$p
## [1] 0.6778
```

Alternatively we can plot the results

```
plot(bs_p)
```

to obtain figure 4. The graph in the top right hand corner gives the cumulative estimate of the *p*-value; the final value of the purple line corresponds to bs_p\$p. Also given are approximate 95% confidence intervals.

¹⁰ Also given is the average time in seconds of a single bootstrap: $bs_psim_time = 1.75$.

Comparing distributions

A second approach to assessing is a direct comparison of two models. A standard technique is to use Vuong's test, which a likelihood ratio test for model selection using the Kullback-Leibler criteria. The test statistic, R, is the ratio of the log-likelihoods of the data between the two competing models. The sign of R indicates which model is better. Since the value of *R* is obviously subject to error, we use the method proposed by Vuong, 1989.11

To compare two distributions, each distribution must have the same lower threshold. So we first set the log normal distribution object to have the same x_{\min} as the power law object:

```
<sup>11</sup> Q~H Vuong. Likelihood ratio tests
for model selection and non-nested hy-
potheses. Econometrica: Journal of the
Econometric Society, 57:307-333, 1989
```

```
m_ln$setXmin(m_pl$getXmin())
```

Next we estimate the parameters for this particular value of x_{min} :

```
est = estimate_pars(m_ln)
m_ln$setPars(est)
```

Then we can compare distributions

```
comp = compare_distributions(m_pl, m_ln)
```

This comparison gives a *p*-value of 0.6824. This *p*-value corresponds to the *p*-value on page 29 of the Clauset paper (the paper gives 0.69). The differences occur because we estimated the scaling parameter in the power law using the MLE, whereas Clauset et al, used a parameter scan, i.e.

```
est = estimate_pars(m_pl, pars = seq(1.95, 1.96, 5e-04))
m_pl$setPars(est)
comp = compare_distributions(m_pl, m_ln)
```

now gives p = 0.6491.

Overall these results suggest that one model can't be favoured over the other.

Investigating the effect in x_{\min}

The estimate of the scaling parameter, α , is typically highly correlated with the threshold limit, x_{min} . This relationship can be easily investigated with the poweRlaw package. First, we create a vector of thresholds to scan

```
xmins = 1:1500
```

then a vector to store the results

```
est_scan = 0 * xmins
```

Next, we loop over the x_{min} values and estimate the parameter value conditional on the x_{\min} value:

Figure 5: Estimated parameter values conditional on the threshold, x_{min} . The horizontal line corresponds to $\alpha = 1.95$.

```
for (i in seq_along(xmins)) {
   m_pl$setXmin(xmins[i])
   est_scan[i] = estimate_pars(m_pl)$pars
}
```

The results are plotted figure 5. For this data set, as the lower threshold increases, so does the point estimate of α .

Continuous data: electrical blackouts

In this example, we will investigate the numbers of customers affected in electrical blackouts in the United States between 1984 and 2002. 12 The data set can be downloaded from Clauset's website:13

```
blackouts = read.table("blackouts.txt")
```

Although the blackouts data set is discrete, since the values are large, it makes sense to treat the data as continuous. Continuous power-law objects take vectors as inputs, so

```
m_bl = conpl$new(blackouts$V1)
```

then we estimate the lower-bound via

```
est = estimate_xmin(m_bl)
```

This gives a point estimate of $x_{\min} = 230000$. We can then update distribution object:

```
m_bl$setXmin(est)
```

Using generic plot method

```
plot(m_bl)
lines(m_bl, col = 2, lwd = 2)
```

we get figure 6. To fit a discrete log-normal distribution we follow a similar procedure:

```
m_bl_ln = conlnorm$new(blackouts$V1)
est = estimate_xmin(m_bl_ln)
m_bl_ln$setXmin(est)
```

and add the line of best fit to the plot via

```
lines(m_bl_ln, col = 3, lwd = 2)
```

It is clear from figure 6 that the log-normal distribution provides a better fit to this data set.

12 M.E.J. Newman. Power laws, pareto distributions and zipf's law. Contemporary physics, 46(5):323-351, 2005

13 http://goo.gl/BsqnP

Figure 6: CDF plot of the blackout dataset with line of best fit. Since the minimum value of x is large, we fit a continuous power-law as this is more it efficient. The power-law fit is the green line, the discrete log-normal is the red line.

Multiple data sets: the American-Indian war

In a recent paper, Bohorquez et~al. investigated insurgent attacks in Afghanistan, Iraq, Colombia, and Peru.¹⁴ Each time, the data resembled power laws. Friedman used the power-law nature of casualties to infer under-reporting in the American-Indian war. Briefly, by fitting a power-law distribution to the observed process, the latent, unobserved casualties can be inferred.¹⁵

The number of casualties observed in the American-Indian War can be obtained via

```
data("native_american")
data("us_american")
```

Each data set is a data frame with two columns. The first column is number of casualties recorded, the second the conflict date

```
head(native_american, 3)
     Cas
               Date
     18 1776-07-15
## 1
## 2 26 1776-07-20
## 3 13 1776-07-20
```

The records span around one hundred years, 1776 – 1890. The data is plotted in figure 7.

It is straightforward to fit a discrete power-law to this data set. First, we create discrete power-law objects:

```
m_na = displ$new(native_american$Cas)
m_us = displ$new(us_american$Cas)
```

then we estimate x_{\min} for each data set:

¹⁴ J.~C. Bohorquez, S.~Gourley, A.~R. Dixon, M.~Spagat, and N.~F. Johnson. Common ecology quantifies human insurgency. Nature, 462(7275):911-914, 2009

Figure 7: Casualty record for the Indian-American war, 1776 – 1890. Native Americans casualties (purple circles) and US Americans casualties (green triangles). Data taken from Friedman.

¹⁵ J.~A. Friedman. Using power laws to estimate conflict size. 2013

```
est_na = estimate_xmin(m_na, pars = seq(1.5, 2.5, 0.001))
est_us = estimate_xmin(m_us, pars = seq(1.5, 2.5, 0.001))
```

and update the power-law objects

```
m_na$setXmin(est_na)
m_us$setXmin(est_us)
```

The resulting fitted distributions can be plotted on the same figure

```
plot(m_na)
lines(m_na)
##Don't create a new plot
##Just store the output
d = plot(m_us, draw=FALSE)
points(d$x, d$y, col=2)
lines(m_us, col=2)
```

The result is given in figure 8. The tails of the distributions appear to follow a power-law. This is consistent with the expectation that smaller-scale engagements are less likely to be recorded. However, for larger scale engagements, it is very likely that a record is made.

Figure 8: Plots of the CDFs for the Native American and US American casualties. The lines of best fit are also given.

References

- J.~C. Bohorquez, S.~Gourley, A.~R. Dixon, M.~Spagat, and N.~F. Johnson. Common ecology quantifies human insurgency. Nature, 462(7275):911–914, 2009.
- A.~Clauset, C.R. Shalizi, and M.E.J. Newman. Power-law distributions in empirical data. SIAM review, 51(4):661-703, 2009.
- J.~A. Friedman. Using power laws to estimate conflict size. 2013.
- M.E.J. Newman. Power laws, pareto distributions and zipf's law. *Contemporary physics*, 46(5):323–351, 2005.
- Q~H Vuong. Likelihood ratio tests for model selection and nonnested hypotheses. Econometrica: Journal of the Econometric Society, 57:307-333, 1989.

Session Info

```
print(sessionInfo(), locale = FALSE)
## R version 3.0.2 (2013-09-25)
## Platform: x86_64-pc-linux-gnu (64-bit)
##
## attached base packages:
## [1] stats graphics grDevices utils
## [5] datasets methods base
##
## other attached packages:
## [1] poweRlaw_0.20.2 knitr_1.5
##
## loaded via a namespace (and not attached):
## [1] VGAM_0.9-3 codetools_0.2-8
## [3] digest_0.6.3 evaluate_0.5.1
## [5] formatR_0.10 highr_0.3
## [7] parallel_3.0.2 stats4_3.0.2
## [9] stringr_0.6.2 tools_3.0.2
```