MATH 131-HOMEWORK 4

Due on Monday, Feb 4, before class.

Please read section §2.A, §2.B.

Question 1 (10 points)

Suppose v_1, \ldots, v_m is linearly independent in V and $w \in V$. Prove that if

$$v_1 + w, \ldots, v_m + w$$

is linearly dependent, then $w \in \operatorname{Span}(v_1, \ldots, v_m)$.

Question 2 (10 points) Let $V = \{A \in \mathtt{Mat}_{2 \times 2}(\mathbb{F}) \mid \mathtt{tr} A = 0\}$. Find a basis of V.

Question 3 (10 points) Let U be the subspace of \mathbb{C}^5 defined by:

$$U = \{(z_1, z_2, z_3, z_4, z_5) \in \mathbb{C}^5 : 6z_1 = z_2 \text{ and } z_3 + 2z_4 + 3z_5 = 0\}.$$

- (a) Find a basis of U.
- (b) Extend the basis in part (a) to a basis of \mathbb{C}^5 .

Question 4 (10 points) Prove or disprove: there exists a basis p_0, p_1, p_2, p_3 of $P_3(\mathbb{F})$ such that none of the polynomial p_0, p_1, p_2, p_3 has degree 2.

Question 5 (10 points) Let $p_0 = 1+x$, $p_1 = 1+3x+x^2$, $p_2 = 2x+x^2$, $p_3 = 1+x+x^2 \in \mathbb{R}[x]$.

- (a) Show that p_0, p_1, p_2, p_3 spans the vector space $P_2(\mathbb{R})$.
- (b) Reduce the list p_0, p_1, p_2, p_3 to a basis of $P_2(\mathbb{R})$.

Question 6 (10 points) Suppose v_1, v_2, v_3, v_4 is a basis of V. Prove that

$$v_1 + v_2, v_2 + v_3, v_3 + v_4, v_4$$

is also a basis of V.