Lista zadań nr 6

Teoria Grafów – metody algebraiczne dla grafów, grafy cykliczne, grafy hamiltonowskie dr Anna Beata Kwiatkowska

Zadanie 1.

Podaj interpretację wektorów AI i A²I, gdzie I jest wektorem jednostkowym oraz A jest macierzą sąsiedztwa grafu G.

Zadanie 2.

G jest grafem o macierzy sąsiedztwa A. Jaka jest interpretacja grafowa elementów diagonalnych a_{ii}^3 macierzy sasiedztwa A³?

Zadanie 3.

Wykorzystaj twierdzenie 6.2 do wykazania, że grafy G_1 i G_2 są izomorficzne. Znajdź macierz permutacji T.

Zadanie 4.

Zdefiniujmy graf Z_7^2 na ciele 7-elementowym (zbiorze reszt modulo 7) w ten sposób, że dla x,y \in Z₇, xy jest krawędzią wtedy i tylko wtedy, gdy x-y \in {1,-1,2,-2}. Podobnie definiujemy Z_7^3 warunkiem x - y \in {1,-1,3,-3}. Są to tzw. grafy cykliczne. Narysuj te grafy, a następnie rozstrzygnij czy są one izomorficzne.

Zadanie 5.

Udowodnij, że jeśli w grafie istnieją dwa różne cykle zwierające tą samą krawędź e, to istnieje w nim cykl nie zawierający e.

Zadanie 6.

Dany jest digraf D, dwa jego wierzchołki v i u oraz liczba naturalna k. Napisz program, który znajdzie liczbe wszystkich marszrut długości k, łaczących te wierzchołki.

Zadanie 7.

Udowodnij, że w grafie G=(V,E) o n wierzchołkach jeśli dowolna para wierzchołków u, v spełnia, że $det(u)+det(v) \ge n-1$, to graf G jest spójny.

Szkic dowodu:

Przypuśćmy, że G jest niespójny i ma dwie składowe o liczbie wierzchołków k>1 i n-k. Wtedy stopień wierzchołka pierwszej składowej jest równy co najwyżej k-1 a drugiej n-k-1. Jeśli v należy do

pierwszej składowej, a u należy do drugiej składowej to $det(u)+det(v) \le k-1+n-k-1=n-2$. Otrzymujemy sprzeczność z założeniem.

Zadanie 8.

Udowodnij, że grafie pełnym liczba różnych cykli Hamiltona jest równa $\frac{(n-1)!}{2}$.

Zadanie 9.

Udowodnij, że w grafie pełnym o n ≥ 3 wierzchołkach i nieparzystej wartości n jest $l = \frac{n-1}{2}$ krawędziowo rozłącznych cykli Hamiltona.

Szkic dowodu:

Graf zupełny o n wierzchołkach ma $\frac{n(n-1)}{2}$ krawędzi. Każdy cykl Hamiltona składa się z n krawędzi, zatem liczba krawędziowo rozłącznych cykli Hamiltona nie przekracza $\frac{n-1}{2}$.

Niech wierzchołki będą ponumerowane kolejnymi liczbami naturalnymi. Można skonstruować l krawędziowo rozłącznych cykli Hamiltona C₁, C₂, ..., C₁ w następujący sposób:

krawędziowo rozłącznych cykli Hamiltona
$$C_1$$
, C_2 , ..., C_1 w następujący sposób: $C_i = \left(i, i-1, i+1, i-2, ..., i+\frac{n-1}{2}, i\right)$, $dla\ i=1,2,...,l$ Operacje wykonujemy mod(n).

Zadanie 10.

Podaj przykład grafu ilustrujący, że:

- warunek $d(v) \ge \frac{n}{2}$ występujący w twierdzeniu Diraca nie może być zastąpiony warunkiem
- twierdzenie Orego jest silniejsze niż twierdzenie Diraca,
- twierdzenie Posy jest silniejsze od twierdzenia Orego.
- Twierdzenie Chvatala jest silniejsze od twierdzenia Posy.