Product (SKU) Clustering for Dillard's

Motivations

Dillard's App Today:

- Simple and outdated recommendation system
 - Only products from same brands are recommended.
 - Very similar type of products.
 - Barely a personalized experience.

Challenges

• Large data set

- Too many categories for some desired variables, hard for one hot encoding
- Limited computing sources to handle

• Primarily offline stores

- Not much online information

• <u>Limited data on customers</u>

- No information about customer themselves to make better recommendations
- Dependent upon proxy information from Dillard's sale data

Solutions

- Chose similar variables with less categories as substitute
 - Still capture most features of the original ones.
 - Easier to compute and do one hot encoding.

- Sale data as proxy for customer likes
 - Sale data can serve to model the likes of customers as products belongs to the same cluster can serve us recommendations

Methods

PCA:

- It breaks the features down into principal components such that each component is linearly independent of the other component
- We stop when the inertia by clusters elbows. We used 7 clusters in our analysis

• K-Means:

- Select the number of 7 groups with corresponding randomly initialized center points.
- Classify each data point by computing its distance and repeat the steps till it converges or we reach the maximum number of iterations.

Methods

• <u>Hierarchical Clustering</u>:

- Computationally expensive. Cannot handle 680,000 rows. We ran it on 10000 rows and it gave 2 clusters
- Can explore it if more computational resources were available

• Gaussian Mixture Modeling:

- Assumes each data point from a gaussian distribution. There is a latent variable γ for each data point that determines which type of gaussian distribution was used.
- Similar to k-means, we assumed 7 clusters.

Features of Choice

• Brand:

- Good predictor as consumers tend to stick with certain brands.
- But over 2000 factors, tough for one hot encoding.
- "Department" (60 columns) used instead to capture the features of "Brand".

Top Three:				
	id [PK] bigint	dept_name character varying	count bigint	
1	4505	POLOMEN	142108	
2	6006	INVEST	150815	
3	7106	BRIOSO	131106	

Feature of Choice

- When it comes to any form of business, money related topic never goes away:
 - Avg Price: average price of each sku.
 - **Percent Discount**: the average discount percent of an item.
 - Percent Return: the average rate of return of an item.

Feature of Choice

• Color:

- Over 200 used colors in SKU, too many for one hot encoding.
- Reduced to 17 most-common color groups.
- Each sku assigned to a color.

Feature of Choice

• Location:

- People in different regions might have entirely different preferences.
- Used a mapping table from US census to get the "Region"

Results

 Randomly select 25 skus and perform two clustering methods (K-means and Gmm).

• The colored ones are the pairs that both algorithms put into the same cluster.

sku	K-means Cluster	Gmm Labels
5157585	3	6
4786297	3	6
3558696	7	2
3829286	7	2
2528788	5	0
4192124	7	1
754438	2	6
6876630	1	1
5711256	1	1
9007336	6	2
7664037	4	6
8411572	4	6
2444420	5	1
5044109	3	1
4198166	7	6
2948120	7	6
3181271	7	5
3613505	7	5
5243871	3	2
9890968	6	4
5736285	1	2
50316	2	0
2474743	5	6
6988824	1	0

Use Case 1

Physical Shopping Site

• Scan QR code to get sku when customer takes an item to fitting room

• System automatically recommends items from corresponding cluster

Record customer's decision for further data collection.

Use Case 2

- Current systems recommendation system is a rule based one which recommends same brand to the customer
- We recommend to replace it with clustering based system so that products in the same cluster as the items in the cart are recommended to the user
- Half of the results will use same brand so as to achieve the similar result as the current baseline

ROI

- Without A/B Testing results, we can only assume the lift percentage of implementing our model
- ROI Analysis constructed under 3 sets of assumptions:
 - Bull case: lift = 20%;
 - Neutral case: lift = 10%
 - Bear case: lift = 1%
- Even under the bear case, the ROI amount is \$2.2million dollars; ROI rate is 362%.

Given More Time/Resources/Data....

If more time & resources are given:

- Use brand as feature.
 - More accurate cluster based on over 2000 brands.
- Try hierarchical clustering on entire dataset
 - Obtain the optimal number of clusters, human intervention not required.
 - Clear visualization from dendrograms, practical and easy to understand.
- Get more and more recent data for training
 - Never a bad thing to have more data.