Contactless Delivery Robot

Boost the Business | Save Manual Work | Restrain the Spread of Virus

Assumptions

- The robot we design is used as the "carrier engine" or the "control centre" for the delivery machine. Products are preloaded in the cabins carried or dragged by the robot.
- All the parking space are set as static obstacles (the collision-avoidance system only deals with moving obstacles or dynamic obstacles)
- The store is using **scheduled pick-up** mode, assuming allocating 6 pickups during each 15 minutes. Products are **preloaded** in the cabins carried by the robot.
- The map of parking lot is **preloaded** in the navigation system.
- The parking lot is **completely open-air**. GPS signal will not be affected or blocked.
- > The QR code for product pickup is issued and sent to the customer prior to scheduled pick up time.

Work Flow

Navigate to destination Use A* navigate algorithm calculate fastest route on Raspberry Pi Raspberry Pi sends instruction series to Arduino Arduino Arduino executes moving instructions (with turning

collision-avo

Customer sends arrive message to the store, store sends parking lot number to the robot.

Check location

- GPS checks whether robot arrive in the range of target parking spot
- If not, re-navigate from current spot to target spot
- If don't arrive at correct spot after twice navigation, report issue

Process pickup

- Ask customer to scan pickup QR code and type in first name
- If matched, open cabin
- If not matched, have three trials, or enter store for help

Update pickup info

Update the actual pickup time in the store database, complete the record for transaction

Coding Flow

Run **Get Parking Loc.py**Type in parking lot number
Return number **to main.py**

Call **send2Arduino (instruction)** function
Send **instruction** one by one to Arduino for execution

Until all instructions finishes, call **checkNearestLot()**Get current location and calculate whether arrives at the target place
Return **current location** and **isArrived** flag

Take parking number as parameter "end"

Call astar(maze, start, end) function

Return instruction series

Arduino gets instruction and executes
Return **instDone** flag as instruction finishes

If isArrived = 0, take current location as parameter "start" call astar(maze, start, end) function again

If **isArrived = 1**, run userInteraction.py
Return **processed = 1** and wait for next customer

Getting Parking Lot Number

Zhuoxin Ma

Message

|Scan QR code | |Enter parking lot number | |send out message|

Python Script

| staff in store enter parking lot number received | | pass parking lot number to main.py as destination |


```
# #send parking Lot number to pi
def get_parking_loc():
    loc = input ("Enter customer's parking location: ")
    return loc

parking_loc = get_parking_loc();
print (parking_loc)
```

Enter customer's parking location: 6

Python directly receive SMS message

- > Get an SMS enabled Plivo phone number
- Create a Flask application to handle incoming SMS message (using Flask and Plivo python packages)
- > Extract parking lot number directly from the message received
- Reference: https://www.plivo.com/blog/receive-respond-sms-python-flask-plivo/

Interact with a Web

- > Create a simple webpage to allow user type in their parking lot number
- ➤ Generate a QR code for the URL of the webpage

Navigate to Destination

Lang Sun (Raspberry Pi)
 Zhuoxin Ma (Arduino)
 Yuchen Miao (Data Transfer)
 Yichen Xiao (Turning Precision)

Data Transfer Between Pi and Arduino

——— Yuchen Miao

Arduino Execution

Zhuoxin Ma Yichen Xiao

Arduino Execution

Movement Function

```
Pin
Definition
```

```
//pin definition for motor
int ML Ctrl = 4;
                 //define the direction control pin of B motor
int ML PWM = 5; //define the PWM control pin of B motor
int MR Ctrl = 2; //define the direction control pin of A motor
int MR PWM = 9; //define the PWM control pin of A motor
```

```
Setup
```

```
Serial.begin (9600);
//motor pin setup
pinMode (ML Ctrl, OUTPUT);//Right side motor direction
pinMode (ML PWM, OUTPUT); // Right side motor direction
pinMode (MR Ctrl, OUTPUT);//Left side motor direction
pinMode (MR PWM, OUTPUT);//Left side motor speed
```

```
Forward
Function
```

```
void forward() { // move forward
     ultrasonic avoid();
     digitalWrite(ML_Ctrl, HIGH);
      analogWrite(ML_PWM, 255);
     digitalWrite(MR_Ctrl, LOW);
     analogWrite(MR_PWM, 175);
      delay(move_time);
```

```
leftturn();
leftturn();
```

void backward() { // turn around

```
Stop
Function
```

```
void stop() { //stop
     digitalWrite(ML Ctrl, HIGH);
     analogWrite(ML PWM, 0);
     digitalWrite(MR Ctrl, HIGH);
     analogWrite(MR PWM, 0);
     delay(200);
```

Movement Function

```
Left turn
Function
```

```
void leftturn() { // turn left
     turningAngle=0;
     while(1){
       timer = millis();
       // Read normalized values
       Vector norm = mpu.readNormalizeGyro();
       turningAngle = turningAngle + norm.XAxis * timeStep;
       delay((timeStep*1000) - (millis() - timer));
       digitalWrite(ML Ctrl, HIGH);
       analogWrite(ML PWM, testSpeed2);
       digitalWrite(MR Ctrl, HIGH);
       analogWrite(MR PWM, testSpeed2);
       //Serial.println(turningAngle);
       if(turningAngle<86&&turningAngle>=0){
         digitalWrite(ML_Ctrl, HIGH);
         analogWrite(ML PWM, testSpeed2);
         digitalWrite(MR Ctrl, HIGH);
         analogWrite(MR PWM, testSpeed2);
       }else if (turningAngle>94) {
         digitalWrite(ML Ctrl, LOW);
         analogWrite(ML PWM, testSpeed1);
         digitalWrite(MR Ctrl, LOW);
         analogWrite(MR PWM, testSpeed1);
       }else{
         digitalWrite(ML_Ctrl, HIGH);
         analogWrite(ML PWM, 0);
         digitalWrite(MR Ctrl, HIGH);
         analogWrite(MR_PWM, 0);
         break;
```

Right turn Function

```
void rightturn() { // turn right
     turningAngle=0;
     while(1){
       timer = millis();
       // Read normalized values
       Vector norm = mpu.readNormalizeGyro();
       turningAngle = turningAngle + norm.XAxis * timeStep;
       delay((timeStep*1000) - (millis() - timer));
       digitalWrite(ML Ctrl, LOW);
       analogWrite(ML_PWM, testSpeedl);
       digitalWrite(MR Ctrl, LOW);
      analogWrite(MR PWM, testSpeedl);
       //Serial.println(turningAngle);
       if(turningAngle>-88&&turningAngle<=0){
         digitalWrite(ML_Ctrl, LOW);
         analogWrite(ML PWM, testSpeedl);
         digitalWrite(MR_Ctrl, LOW);
         analogWrite(MR_PWM, testSpeedl);
       }else if (turningAngle<-92){
         digitalWrite(ML Ctrl, HIGH);
         analogWrite(ML PWM, testSpeedl);
         digitalWrite(MR Ctrl, HIGH);
         analogWrite(MR PWM, testSpeedl);
       }else{
         digitalWrite(ML Ctrl, HIGH);
         analogWrite(ML PWM, 0);
         digitalWrite(MR_Ctrl, HIGH);
         analogWrite(MR PWM, 0);
         break;
```

Movement Function

Execution Function

```
//next section defines how arduino execute instruction sent from pi
void execute_move(int x1, int y1){ // execute the move instruction from raspberry pi
 if (x1 == -1) {
   if (y1 == -1) {
     stop(); leftturn(); stop(); forward();
     stop(); leftturn(); stop(); forward();
     stop(); backward(); stop();
   }else if (y1 == 0) {
     stop(); leftturn(); stop(); forward();
     stop(); rightturn(); stop();
   }else if(yl == 1){
     stop(); leftturn(); stop(); forward();
     stop(); rightturn(); stop(); forward();
     stop();
 }else if (x1 == 0) {
   if(y1 == -1){
     stop(); backward(); stop(); forward();
     stop(); backward(); stop();
   }else if (yl == 0) {
     stop();
   }else if (yl == 1) {
     stop(); forward(); stop();
 }else if (x1 == 1) {
   if(y1 == -1){
     stop(); rightturn(); stop(); forward();
     stop(); rightturn(); stop(); forward();
     stop(); backward();stop();
   }else if (yl == 0){
     stop; rightturn(); stop(); forward();
     stop(); leftturn(); stop();
     //instDone = true;
   }else if(yl == 1){
     stop(); rightturn(); stop(); forward();
     stop(); leftturn(); stop(); forward();
     stop();
```


Future Improvement

Add Component for Orientation Calibration

- ➤ Current system only hard-code the directionback-to-original after each movement execution. Don't have solution for the case if direction-back-to-original fail to work.
- Can set an original direction and try using electronical compass to calibrate the direction each time after executing movement instruction.

More Precise Motor

- Current motor can only use PWM signal to adapt the speed which is not precise.
- Use more powerful and more precise motor like stepper motor which can decrease movement error between each individual motor (less deviation when moving and turning).

More Sturdy and Durable Frame

- Current Frame is soft and handmade, and the holes used to hang the motors are hand-drilled. Imprecision and errors accumulate fast along with movement.
- Use more sturdy materials, better design the position for each component, manufacture the hanging points for parts more precisely.

Collision-Avoidance System (Ultrasonic Sensor)

Specification

- ➤ Ranging Distance: 2cm 400cm
- Resolution: 0.3cm
- ➤ Measuring Angle: 15 degree


```
//ultrasonic sensor pin setup
pinMode (trigPin, OUTPUT);
pinMode (echoPin, INPUT);
```


Pin Name	Port Connection			
Vcc	soldered +5V Vcc			
Trigger				
Echo	digital PWM output			
Ground				

Collision-Avoidance System

Check Obstacle Function

```
// functions for ultrasonic sensor
double read ultrasonic(){
 // initialize: turn off the signal for 5 microseconds
 digitalWrite (trigPin, LOW);
 delayMicroseconds (5);
 // turn on the sensor and let it emit the signal for 10 microseconds (8 pulses)
 digitalWrite (trigPin, HIGH);
 delayMicroseconds (10);
 // turn off
 digitalWrite (trigPin, LOW);
 // set echopin active to receive the signal sent reflected back
 // pulseIn calculate the time used between sending out and receiving the ultrasonic signal
 duration = pulseIn (echoPin, HIGH);
 // calculate the distance in cm
 cm = (duration/2)/29.1;
 return cm;
```

Avoid Obstacle Function

```
void ultrasonic_avoid(){
 Serial.println("Checking obstacles!");
 //Serial.println();
 delay(2000);
 //Serial.println();
//forward();
 distance = read ultrasonic();
 Serial.println(distance);
 //Serial.println();
 delay(2000);
 if (distance < safe dist) {
  Serial.println("Distance less than 50 cm, obstacle ahead detected!");
  //Serial.println();
  delay(2000);
  while (distance < safe_dist) {
    distance = read ultrasonic();
    Serial.println("Wait until obstacle disappear!");
    Serial.println(distance);
    delay(1000);
  Serial.println("Interrupt finish! Go!");
```

Forward Function

```
void forward() { // move forward
    ultrasonic_avoid();
    digitalWrite(ML_Ctrl, HIGH);
    analogWrite(ML_PWM, 255);
    digitalWrite(MR_Ctrl, LOW);
    analogWrite(MR_PWM, 175);
    delay(move_time);
}
```

Demo

Future Improvement

Multi-directional Obstacle-Avoidance

- ➤ Only one ultrasonic sensor is used on our robot, and according to specification, the measuring angle is just 15 degree which means the detection range is limited.
- Can place more sensors on the robot with different facing angle to more effectively avoid obstacles in multiple directions.

Simultaneous Detection

- ➤ It's hard to do "multi-threading" on Arduino which means it's difficult to detect the obstacle while the robot is moving.
- We hard coded the collision-avoidance in the forward() function to make sure it is safe to move before start moving.
- ➤ Can try to add another Arduino board to handle the collision avoidance functionality.

Turning Precision (MPU6050, Gyro)

Yichen Xiao

Turning Precision (MPU6050, Gyro)

Right Turn

Left Turn

full_version_2 | Arduino 1.8.19 (Windows Store 1.8.57.0)

```
File tits Seeth Took Nep

Mi_wrung_

Int_wrung_

Serial_vrile('\n');

Se
```

Turning Precision (MPU6050, Gyro)

Execution_Move Demo

Execute (0,-1)

```
full_version_2 | Arduino 1.8.19 (Windows Store 1.8.57.0)
File Edit Sketch Tools Help
314
              for(int i = 0; i <= fieldIndex; i++)
                 values[i] = values[i]*sign[i];
            instruction_update(values[0],values[1]);
            reset_data();
322
        Serial.write('\n');
        //}
326 }
328 void sendFeedback() {
        Serial.write(instDone);
        Serial.write('\n');
331 }
334
335 //main function
 336 void loop() {
 337 //test execute move with gyro and ultrasonic (single instruction)
338 execute_move(0,-1);
339 stop();
340 delay(1000);
341 }
343
344
345
Sketch uses 11524 bytes (35%) of program storage space. Maximum is 32256 bytes.
Global variables use 678 bytes (33%) of dynamic memory, leaving 1370 bytes for local variables. Maximum is 2048 bytes.
```


Execution_Move Demo

Execute (-1,1)

Check Location (GPS) Yuchen Miao

User Interaction

Zhuoxin Ma

Process Pickup

- ➤ Use two-step verification, require QR code and customer first name
- Reduce the cases of misdrawing goods

Update Pickup Info

- Automatically record pickup time in the system
- Improve store database and e-commerce system

Process Pickup

	Order Number	Order Time	Product Name	Product Code	Buyer	Scheduled Pick Up Time	Cabin #	Actual Pick Up Time
0	1	13:20, 14-2-2021	iphone 12	01023	Matt Iqra	slot 3	1	NaN
1	2	15:30, 14-2-2021	iphone 12 pro	39480	Ansari Mishaal	slot 3	2	NaN
2	3	15:43, 14-2-2021	iphone 12 pro	85743	Appadoo Disha	slot 3	3	NaN
3	4	16:40, 14-2-2021	logi keyboardxxx	58934	Bishop Zac	slot 3	4	NaN
4	5	17:02, 14-2-2021	ipad pro	84839	Phil Fred	slot 3	5	NaN
5	6	19:06, 14-2-2021	macbook pro	39407	Bell Johnathan	slot 3	6	NaN
6	7	19:47, 14-2-2021	logi mousexxx	93504	Bruca Tudor	slot 7	NaN	NaN
7	8	20:09, 14-2-2021	iphone 12	59348	Mirza Nabeel	slot 4	NaN	NaN
8	9	20:18, 14-2-2021	iphone 12 pro max	98954	Megan Wailly	slot 6	NaN	NaN
9	10	21:09, 14-2-2021	iphone 12	30299	Muir Ben	slot 8	NaN	NaN

Step 1

- ➤ Ask customer to scan QR code sent by the store
- > Extract product number
- > Find order in the data frame
- ➤ If no matched order, let customer enter store for help
- If there is matched order, process step 2

Step 2

- Require customer to enter first name which should be the same name they entered when placing the order
- Customer can try three times, if fail exceed three times, let customer try again later or tell them enter store for help

Other \ Situations

➤ If customer come during the time which is not the schedule pick up time, let customer enter store for help

Process Pickup

```
Get _order_info()
```

Extract the product number from result got by scanning the QR code

```
def get_order_info():
    print("Please scan your product QR code!")
    decode = scan_product_qrcode()
    product_code = decode.split(": ")[-1]
    return product_code
```

match()

Check if customer name matches with the product number

```
def match():
    customer_name = input ("Please type in your first name:")
    get_name = operate_info.|loc[idx[0]].at["Buyer"]
    if customer_name.lower() == get_name.split(' ')[0].lower():
        return True
    else:
        return False
```

Process Pickup + Update Info

Main function

```
#initialize
   process = 0
 3 picked = 0
 5 # delivery robot arrived!
 6 if isarrived == 1:
       # ask customer to scan their QR code
       product_code = get_order_info()
       # find the order from system database
       idx = operate_info.index[operate_info['Product Code'] == product_code].tolist()
10
12
       # check if product info matches with customer name in the system
13
       get name = operate info.loc[idx[0]].at["Buyer"]
14
       if not idx:
15
           print("Your order can not be found in the system! Please enter store and ask for help!")
16
       else:
17
           if match():
18
               print("Processing...")
19
               process = 1
20
           else:
21
22
               for i in range (0,3):
23
24
                   print("Customer name and order don't match !")
25
                   request = input ("Try typing first name again ? (Y/N)")
26
27
                   if request in ["N","n","no","NO","No"]:
28
                       print("Thanks. See you.")
29
30
                   elif request in ["Y","y","yes","YES","Yes"]:
31
                       get_name = operate_info.loc[idx[0]].at["Buyer"]
32
                       if match ():
33
                           print("Processing...")
34
                           process = 1
                           break
36
                       elif t == 3 :
                           print("Exceed maximum trial times. Try again later.")
38
                   else:
40
                       print("Invalid input!")
41
                       break
43 # if match: process "open cabin"
       cabin_num = operate_info.loc[idx[0]].at["Cabin #"]
       # if customer does not come during the scheduled pick up time
       if cabin num == "NaN":
48
           print("Your order is not ready for pick up! Please come during scheduled time slot or enter store for help!")
49
           print("Opening cabin #" + cabin_num)
50
51
           picked = 1
53 # update pick up time into system database
54 if picked == 1:
       pickup time = str(datetime.datetime.now()).split(".")[0]
       operate_info.at[idx,'Actual Pick Up Time'] = pickup_time
       print('Item has been picked up by customer at ' + pickup_time)
58
```

User Interaction Demo

Customer come during scheduled time

User Interaction Demo

Customer doesn't come during scheduled time

Conclusion

Zhuoxin Ma Yuchen Miao Lang Sun Yichen Xiao

Potential Improvement

INFODATA 03

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim

INFODATA 04

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim

INFODATA 06

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim

Find a better operating logic, allowing customer to come anytime after the order is processed

Thanks for watching

Thanks everyone for the hard work!

Thanks Professor Liu for all the help!