République Islamique de Mauritanie Ministère de l'Education Nationale Direction de l'Enseignement Secondaire Service des Examens

Baccalauréat 2008

Session normale

Honneur - Fraternité - Justice

Séries : C & TMGM Epreuve: Mathématiques Durée: 4 heures Coefficients: 9 & 6

Exercice 1 (3 points)

Soit la fonction f définie sur IR par : $f(x) = x + \frac{1}{e^x + 1}$. On note (C) sa courbe représentative dans un

repère orthonormé (O; i, j) d'unité 2cm.

1.a) Dresser le tableau de variation de f . (1 pt)

b) Démontrer que f réalise une bijection de IR sur un intervalle J que l'on déterminera. (0,5 pt)

2. Démontrer et interpréter géométriquement chacune des relations suivantes :

a) $\lim (f(x)-(x+1))=0$; (0,25 pt)

b) $\lim (f(x)-x)=0$; (0,25 pt)

c) $\forall x \in \mathbb{R}$: $x \le f(x) \le x+1$: (0,25 pt)

d) $\forall x \in \mathbb{R}$; f(-x)+f(x)=1; (0.25 pt)

e) $f(-0.7) \times f(-0.6) < 0$. (0.25 pt)

3. Construire la courbe (C). (0,25 pt)

Exercice 2 (3 points)

Pour tout entier nature $n \in \mathbb{N}^*$ on pose : $U_n = \int_1^x x^3 (\ln x)^n dx$.

1.a) Démontrer en utilisant une intégration par parties que : $U_1 = \frac{3e^4 + 1}{16}$. (1 pt)

b) Montrer que la suite (U_n) est décroissante et positive. Que peut-on en déduire ? (0,5 pt)

2.a) Montrer, en utilisant une intégration par parties, que pour tout $n \ge 2$ on a: $4U_n + nU_{n-1} = e^4$. (0, 5 pt)

b) En déduire le calcul de U₂ et U₃. (0, 5 pt)

3.a) Démontrer que pour tout entier $n \in IN^*$ on a: $\frac{e^4}{n+5} \le U_n \le \frac{e^4}{n+4}$. (0,25 pt)

b) En déduire $\lim_{n\to\infty} U_n$ et $\lim_{n\to\infty} (nU_n)$. (0,25 pt)

Exercice 3 (4 points)

Dans l'ensemble des nombres complexes \mathbb{C} , on pose: $P(z) = z^3 - (5+6i)z^2 + (-4+14i)z + 8-8i$.

1.a) Calculer P(1). (0,5 pt) b) Résoudre l'équation P(z) = 0 (1,25 pt)

b) Résoudre l'équation P(z) = 0.

2) Dans le plan complexe muni d'un repère orthonormé direct (O;u,v), on considère quatre points

 $A \;,\; B \;,\; C \;\; \text{et} \;\; G \;\; \text{tels que} \;;\;\; z_A = 2i \;, \qquad z_B = 1 \;, \qquad G = bar\big\{(A,2),(B,-2),(C,-1)\big\} \;\; \text{et} \;\; z_G = 6 \;.$

a) Calculer l'affixe z_c du point C et montrer que le triangle ABC est rectangle en A. Placer les points A, B, C et G sur la figure. (1 pt)

b) Déterminer puis construire les deux ensembles Γ_1 et Γ_2 des points M du plan définis par :

 $M \in \Gamma_1 \Leftrightarrow 2MA^1 - 2MB^2 - MC^2 = -10$ (0.5 pt)

 $M \in \Gamma_3 \Leftrightarrow MA^2 - MB^2 = -5$. (0, 5 pt)

c) Que peut-on dire à propos de la position relative des deux ensembles Γ_1 et Γ_2 ? (0,25 pt)

Exercice 4 (4 points)

1) On considère la fonction u définie sur]1;+∞[par :	$u(x) = \frac{1}{\ln x}.$	
Dresser le tableau de variation de u.		(1 pt)

3) Pour tout entier naturel
$$n \in IN^*$$
 on pose : $F_n(x) = \int_x^{x+n} f(t) dt = \int_x^{x+n} e^{\frac{1}{\ln t}} dt$ où $x \in]1; +\infty[$.

a) Montrer que :
$$\forall x \in]1; +\infty[$$
; $nf(x+n) \le F_n(x) \le nf(x)$. En déduire $\lim_{x \to +\infty} F_n(x)$. (0, 5 pt)

b) Montrer que :
$$\forall x > 0$$
; $e^x > 1 + x$. En déduire que : $\forall t > 1$; $0 < \ln t < t - 1$. (0, 5 pt)

c) Montrer que :
$$\forall x \in]1; +\infty[$$
; $F_n(x)-n > \ln\left(\frac{x+n-1}{x-1}\right)$. En déduire $\lim_{x \to t^+} F_n(x)$. (0,5 pt)
d) Dresser le tableau de variation de F_n .

e) Tracer une allure de la courbe représentative de la fonction
$$F_1$$
 dans un repère orthonormé $(0, \vec{i}, \vec{j})$, (cas $n = 1$).

Exercice 5 (6 points)

Dans le plan orienté, on considère un triangle ABE direct rectangle et isocèle en A. Soient F et G les points tels que le quadrilatère AEFG soit un carré direct. Les points I, O et C sont les milieux respectifs des segments [AB], [BE] et [EA]. Le point J est le symétrique de I par rapport à O.

respectite was segmental rately [ask] of tax], the point a car is symmetric as a fair raph	Paris as are in
 1.a) Faire une figure illustrant les données précédentes (On pourra prendre (AB) hor b) Démontrer qu'il existe une unique rotation r qui transforme A en B et E en A c) Déterminer l'angle et le centre de r. d) Déterminer r(J). 	
 2.a) Démontrer qu'il existe une unique similitude directe s qui transforme C en A e b) Déterminer l'angle et le rapport de s. c) Montrer que s(E) = G et déterminer l'image du carré COJE par la similitude dir 	(0,5 pt)
3) Soit Ω le centre de la similitude s.	(0.75 -1)
a) Montrer que le point Ω appartient aux cercles de diamètres [JF], [EG], [CA] et	
b) Démontrer que les deux cercles de diamètres [JF] et [AB] sont tangents en Ω .	(0,25 pt)
4. On considère les deux cercles Γ et Γ' passant par Ω et de centres respectifs l'intersection de ces deux cercles autre que Ω .	
a) Démontrer que s(T) = T' En déduire que les points O A B et D sont cocyclie	mies (0,25 pt)

a) Démontrer que $s(\Gamma) = \Gamma'$. En déduire que les points Ω , A, B et D sont cocycliques. (0,25 pt

b) Soit M un point de Γ distinct de Ω et de D . On pose s(M)=M'. Démontrer que les points M, M'et D sont alignés. (0,25 pt)

Fin.