1.- DATOS DE LA ASIGNATURA

Nombre de la asignatura:	Estadística Inferencial I
Carrera:	Ingenierías en Logística e Industrial
Clave de la asignatura:	AEF-1024
SATCA ¹	3 - 2 - 5

2.- PRESENTACIÓN

Caracterización de la asignatura.

Fundamentación.

La materia de Estadística Inferencial I:

- Se plantea como una asignatura básica de la Carrera de Ingeniería en Logística e Industrial y común a la mayor parte de las Ingenierías.
 - Proporciona los elementos básicos para hacer análisis a partir del estadístico de la muestra y conceptos de la estimación estadística.
 - Permite establecer inferencias sobre una población, conclusiones a partir de la información que arrojan las pruebas de hipótesis.
 - A partir de las pruebas de bondad de ajuste, se establece el nivel de aplicabilidad de los conceptos del análisis estadístico.

Intención Didáctica.

Se organiza la materia de Estadística Inferencial I, para las Ingenierías en Logística e industrial, en cinco unidades:

- La unidad uno, introduce al estudiante en los conceptos, teoremas y contexto de la teoría del muestreo probabilístico y no probabilístico, así como las distribuciones fundamentales para el muestreo.
- La unidad dos, introduce al alumno en los conceptos de estimadores puntuales y análisis por intervalos de confianza de la media, proporción, varianza y determinación del tamaño de muestra.
- La unidad tres, contiene la teoría de las pruebas de hipótesis, la confiabilidad y eficacia de los errores tipo I y tipo II, determinación de potencia de la prueba a que se somete una muestra del fenómeno de interés respecto a una población de referencia.
- La unidad cuatro, introduce al estudiante a la teoría de bondad de ajuste y pruebas no paramétricas en una muestra del fenómeno de interés respecto a una población de referencia, verificando la adecuación del modelo probabilístico.
- La unidad cinco, introduce al estudiante al análisis de las relaciones entre variables, la aplicación de la teoría de mínimos cuadrados y el modelo matemático resultante del

¹ Sistema de asignación y transferencia de créditos académicos.

caso de estudio y sus límites de validez.

La materia de Estadística Inferencial I, permite al estudiante:

- Identificar los estimadores de los parámetros de los fenómenos para evaluar su comportamiento, y determinar la verosimilitud de las hipótesis estadísticas.
- Hacer el cálculo de estimación por intervalo y las características del proceso de análisis logístico, la descripción de un fenómeno de interés, al nivel de confianza establecido por la prueba, su interpretación y la toma de decisiones correspondiente.
- Establecer características de calidad como criterios de aceptación o rechazo en problemas que involucren errores tipo I o errores tipo II que involucran al productor o proveedor (o cliente) de un bien o servicio logístico.
- Estructurar métodos de análisis propios para la investigación en una prueba de bondad de ajuste a partir del conocimiento de las formas que los fenómenos se presentan.
- Utilizar el análisis de dispersión y la relación que tienen las variables asociadas con el grado de correlación entre las mismas y su exactitud o confianza en un modelo lineal simple o múltiple en la toma de decisiones.

3.- COMPETENCIAS A DESARROLLAR

Competencias específicas

Considera los fenómenos aleatorios presentes en todo proceso logístico, como:

- Diseño, planear, organizar, manejar, controlar y mejorar sistemas de abastecimiento y distribución de bienes y servicios de manera sustentable.
- Dirigir las actividades logísticas de carga, tráfico y seguridad interna y externa de servicios y productos de las empresas en forma eficaz y eficiente.
- Administrar los sistemas de flujo y manejo de materiales en las organizaciones en forma eficaz y eficiente.
- Usar el software disponible para el modelado, diseño, operación y control eficiente de sistemas logísticos.
- Desarrolla proyectos de investigación relacionados con la logística aplicando la metodología más adecuada.
- Utiliza tecnologías de información y comunicación (TIC's) disponibles en el proceso de toma de decisiones para la operación eficiente de los procesos logísticos.
- Selecciona los empaques y embalajes para manejar, distribuir, y confinar productos, bajo las normas nacionales e internacionales de seguridad en el transporte.
- Aplica sistemas de calidad, seguridad y ambiente dentro del campo logístico orientado a lograr el desarrollo sustentable y la satisfacción del cliente.

Competencias genéricas

Competencias instrumentales

Investigación bibliográfica confiable y pertinente sobre los conceptos de estadística inferencial.

Capacidad de análisis y síntesis de información sobre la estadística inferencial.

Aplicar conocimientos generales de sobre muestreo y la inferencia estadística.

Solucionar situaciones que involucren pruebas de parámetros o tolerancias desde la perspectiva de probabilidad y la inferencia estadística aplicadas a la logística.

Tomar decisiones con base a un análisis de estadística inferencial, en el campo de la logística.

Resolver situaciones de inferencia mediante la utilización de software disponible.

Competencias Interpersonales

Capacidad crítica y autocrítica.

Habilidades y capacidad interpersonales para el trabajo en equipo interdisciplinario y multidisciplinario.

Capacidad de comunicarse con profesionales y expertos de otras áreas en forma efectiva.

Reconocimientos y apreciación de la diversidad y multiculturalidad.

Habilidad para trabajar en un ambiente laboral interdisciplinario y multidisciplinario.

Compromiso ético.

Competencias Sistémicas

Dar sentido y significado a los conocimientos estadísticos y probabilísticos en la práctica profesional.

Apertura y adaptación a nuevas situaciones que requieran del análisis interdisciplinario.
Trabajar en forma autónoma. Búsqueda del logro, con reflexión ética.

4.- HISTORIA DEL PROGRAMA

Lugar y fecha de elaboración o revisión	Participantes	Observaciones (cambios y justificación)
Zacatecas, Zac. 12 al 16 de Abril 2010	Cd. Valles, Superior de Tantoyuca, la Laguna,	

Lugar y fecha de elaboración o revisión	Participantes	Observaciones (cambios y justificación)
Instituto Tecnológico de Cd. Juárez, del 27 de abril al 1 de mayo del 2009	Representantes de los Institutos Tecnológicos de: Cd. Juárez, León, Pabellón de Arteaga, Ags., Puebla, Querétaro, Superior de Cuautitlán Izcalli, Superior de Fresnillo, Superior de Tlaxco, Tehuacán, Tijuana Toluca.	Reunión de Diseño curricular de la carrera de Ingeniería en Logística del Sistema Nacional de Educación Superior Tecnológica.
Instituto Tecnológico de Puebla 8 del 12 de junio del 2009	Representantes de los Institutos Tecnológicos de: León, Querétaro, Superior de Cuautitlán Izcalli.	Análisis, diseño, y elaboración del programa sintético de la carrera de Ingeniería en Logística.
Tecnológico de estudios Superiores de Ecatepec. 09 al 13 de noviembre del 2009.	Academia de Ingeniería en Logística. Instituto Tecnológico de Querétaro, Cuautitlán Izcalli, León. Pueble,Toluca, Tijuana.	Desarrollo de los programas completos de estudio de la carrera de Ingeniería en Logística.

Lugar y fecha de elaboración o revisión	Participantes	Observaciones (cambios y justificación)	
Instituto Tecnológico de	Instituto Tecnológico de:	Reunión Nacional de	
Aguascalientes, 15 al 18	Reynosa, Aguascalientes,	Implementación Curricular de	
de Junio de 2010.	Querétaro, Irapuato, León,	las Carreras de Ingeniería en	
	Tehuacán, Puebla,	Gestión Empresarial e	
Linares,Cd. Juarez.		Ingeniería en Logística y	
		Fortalecimiento Curricular de	

las Asignaturas Comunes por
Área de Conocimiento para los
Planes de Estudio Actualizados
del SNEST.

5.- OBJETIVO(S) GENERAL(ES) DEL CURSO (competencia específica a desarrollar en el curso

- Comprender los métodos estadísticos para inferir los parámetros de la población a partir de una muestra de interés de estudio.
- Determinar los intervalos de confianza referentes a la muestra de interés para inferir el valor de los parámetros de la población de partida.
- Validar por pruebas de hipótesis, alguna medida de interés en la muestra, y la inferencia en la población de estudio las medidas de: especificación, dimensiones en calidad, tolerancia, prueba destructiva o no destructiva de materiales, empaques o embalajes, etc.
- Determinar mediante las pruebas de bondad de ajuste el nivel de validez de los modelos en los fenómenos logísticos que se presenten en la práctica profesional, su comportamiento y control normado.

5.1 COMPETENCIAS TRANSVERSALES A DESARROLLAR

- Realizar transferencias de reflexión de los contenidos temáticos de la materia de Estadística Inferencial I a otras asignaturas de su plan de estudios.
- Búsqueda de información confiable y pertinente en diversas fuentes; aplicando el criterio ético en el reconocimiento y valoración de los materiales que pudieran tener valor desde el punto de vista probabilístico o estadístico.
- Capacidad de realizar actividades intelectuales de reflexión, análisis y síntesis, deducción e inducción y pensamiento hipotético, para la toma de decisiones y resolución de problemas con sentido ético, desde el punto de vista estadístico.
- Desarrollo de pensamiento hipotético para análisis de casos, generación de ideas, solución de problemas y transferencia de conocimientos a la práctica.
- Mostrar apertura a nuevas situaciones, reconocer y valorar la multiculturalidad; así como trabajar en ambientes laborales inter y multidisciplinarios.
- Observar y analizar fenómenos y problemas propios de su campo ocupacional con sentido ético.
- Actuar con criterio ético en el ámbito personal, académico, social y profesional.

6.- COMPETENCIAS PREVIAS

- Concepto y manejo de límites y continuidad.
- Aplicar reglas de derivación.
- Calcular Máximos y Mínimos
- Tener conocimientos del cálculo integral
- Calcular e interpretar las medidas de tendencia central y de dispersión de una variable
- Conceptuar la variable aleatoria: Discreta y Continua
- Calcular una matriz inversa.
- Calcular el valor esperado.

• Utilizar las tablas de las distribuciones normal x², t y F.

7.- TEMARIO

Unidad	Temas	Subtemas			
1	Distribuciones	1.1 Introducción a la Estadística Inferencial			
	Fundamentales para	1.2 Muestreo: Introducción al muestreo y tipos			
	el Muestreo	de muestreo			
		1.3 Teorema del límite central			
		1.4 Distribuciones fundamentales para el			
		muestreo			
		1.4.1 Distribución muestral de la media			
		1.4.2 Distribución muestral de ladiferencia de medias			
		1.4.3 Distribución muestral de la proporción			
		1.4.4 Distribución muestral de la diferencia de proporciones			
		1.4.5 Distribución t-student			
		1.4.6 Distribución muestral de la varianza			
		1.4.7 Distribución muestral de la relación			
		de varianzas			
2	Estimación	2.1 Introducción			
		2.2 Características de un estimador			
		2.3 Estimación puntual			
		2.4 Estimación por intervalos			
		2.4.1 Intervalo de confianza para la media			
		2.4.2 Intervalo de confianza para la diferencia			
		de medias			
		2.4.3 Intervalos de confianza para la proporción			
		2.4.4 Intervalos de confianza para la diferencia			
		de proporciones			
		2.4.5 Intervalos de confianza para la varianza			
		2.4.6 Intervalos de confianza para la relación de			
		varianzas 2.5 Determinación del tamaño de muestra			
		2.5.1 Basado en la media de la Población			
		2.5.1 Basado en la proporción de la Población			
		2.5.3 Basado en la diferencia entre las medias			
		de la Población			
3	Pruebas de hipótesis	3.1 Introducción			
-	1 1 1 2 2 2	3.2 Confiabilidad y significancia			
		3.3 Errores tipo I y tipo II			
		3.4 Potencia de la prueba			
		3.5 Formulación de Hipótesis estadísticas			
		3.6 Prueba de hipótesis para la media			
		3.7 Prueba de hipótesis para la diferencia de medias			
		3.8 Prueba de hipótesis para la proporción			
		3.9 Prueba de hipótesis para la diferencia de			

		nronorciones			
		proporciones			
		3.10 Prueba de hipótesis para la varianza 3.11 Prueba de hipótesis para la relación de			
		· ·			
		varianzas.			
		3.12 Uso de software estadístico			
4	Pruebas de bondad	4.1 Bondad de ajuste			
	de ajuste y pruebas	4.1.1 Análisis Ji-Cuadrada			
	no paramétricas	4.1.2 Prueba de independencia			
		4.1.3 Prueba de la bondad del ajuste			
		4.1.4 Tablas de contingencia			
		4.1.5 Uso del software estadístico.			
		4.2 Pruebas no paramétricas			
		4.2.1 Escala de medición			
		4.2.2 Métodos estadísticos contra no			
		paramétricos			
		4.2.3 Prueba de Kolmogorov – Smirnov			
		4.2.4 Prueba de Anderson – Darling			
		4.2.5 Prueba de Ryan – Joiner			
		4.2.6 Prueba de Shappiro – Wilk.			
		4.2.7 Aplicaciones del paquete computacional			
5	Regresión lineal	5.1 Regresión Lineal simple			
	simple y múltiple	5.1.1 Prueba de hipótesis en la regresión lineal			
	. , .	simple			
		5.1.2 Calidad del ajuste en regresión lineal			
		simple			
		5.1.3 Estimación y predicción por intervalo en			
		regresión lineal simple			
		5.1.4 Uso de software estadístico			
		5.2 Regresión lineal múltiple			
		5.2.2 Pruebas de hipótesis en regresión lineal			
		múltiple			
		5.2.3 Intervalos de confianza y predicción en			
		regresión múltiple			
		5.2.4 Uso de un software estadístico			
		5.3 Regresión no lineal			
	J	1 0.0 1.09.00.011 110 1111001			

8.- SUGERENCIAS DIDÁCTICAS (desarrollo de competencias genéricas)

El profesor debe:

- Conocer el contenido de la materia, de tal forma que domine los contenidos y métodos de trabajo,
- Dar respuesta a las preguntas que se generen en el grupo, pues es una materia básica de la ingeniería, que implica el desarrollo de los esquemas cognitivo, conductual y procedimental en la formación académica de los estudiantes.
- Establecer los métodos de trabajo en forma ordenada y precisa; explique las variaciones que se puedan encontrar al solucionar problemas, fomente un ambiente de grupo cordial y colaborativo en el aprendizaje.
- Fomentar la investigación de información cuantitativa y cualitativa sobre los contenidos de la asignatura en distintas fuentes.
- Propiciar el uso adecuado de conceptos, términos propios y métodos estadísticos, parámetros poblacionales, intervalos de confianza, pruebas de hipótesis, identificación de los tipos de errores I y II, las pruebas de bondad de ajustes y el cálculo de la regresión.
- Desarrollar actividades de análisis para el establecimiento de criterios para la solución de problemas por equipo e independiente de tipo logístico.
- Desarrollar ejemplos de aplicación en el campo de la Ingeniería.
- Organizar actividades de investigación en torno a las operaciones logísticas o Industriales.
- Relacionar el contenido de la materia con otras materias propias de la actividad logística, para la solución de problemas de forma interdisciplinaria.
- Propiciar el uso adecuado de conceptos y términos de Estadística Inferencial I
- Organizar actividades como: Cálculo del tamaño de la muestra, determinación de los intervalos de confianza,
- Fomentar la investigación de información sobre los contenidos de la asignatura en distintas fuentes.
- Desarrollar actividades de análisis para la solución de problemas.

9.- SUGERENCIAS DE EVALUACIÓN

Las evidencias de los aprendizajes que contribuyen al desarrollo de competencias son:

De comportamiento: Dinámica de grupos, métodos de toma de decisiones, observación en participaciones individuales o grupales en clase, dialogo en forma de interrogatorio.

De desempeño: Reportes de investigación sean individuales o grupales, problemas desarrollados en forma independiente.

De producto: AOP aprendizaje orientado a proyectos, ABP aprendizaje basado en problemas, Método de casos, Métodos de creatividad, Métodos de simulación, resolución de problemas, Interactividad con la computadora, Portafolio de evidencias, Rúbricas de evaluación.

De conocimiento: Pruebas objetivas de los temas vistos en clase, Método de casos, Análisis de situaciones, Experimentos, Rúbricas de evaluación.

10.- UNIDADES DE APRENDIZAJE

Unidad 1: Teoría del muestreo.

Competencia especifica a desarrollar	Actividades de Aprendizaje
Comprender la Teoría del muestreo.	 Investigación bibliográfica y discusión de conceptos relacionados con el muestreo.
Distinguir entre muestreo aleatorio probabilístico y no probabilístico.	 Proporcionar al estudiante dos situaciones hipotéticas de procesos y/o poblaciones finitas para que en grupos de 2 alumnos, obtengan de
Comprender los conceptos y aplicar teoría de distribuciones de muestreo y	dichos procesos, un conjunto de datos para su análisis.
diferentes tipos de fenómenos que se presentan en una muestra.	 Obtener los valores de t, χ2, F y Z de las diferentes distribuciones muéstrales.
Desarrollar la capacidad de análisis de los resultados obtenidos de un estudio muestral.	 Obtener los valores de probabilidad en tablas para los diferentes valores de los estadísticos t, x2, F y Z
macoural.	 Interpretar los resultados obtenidos.

Unidad 2: Teoría de estimación.

Competencia especifica a desarrollar Act	ividades de Aprendizaje
Aplicará los fundamentos de la teoría de estimación en problemas que requieran el cálculo del tamaño de la muestra, con los diferentes intervalos de confianza de la media, proporción y varianza, que se	 Proporcionar al estudiante dos situaciones hipotéticas de procesos y/o poblaciones finitas para que en grupo de 2 alumnos, obtengan de dichos procesos, un conjunto de datos para su análisis. Obtener los valores de t, χ2, F y Z de las diferentes distribuciones muéstrales. Obtener los valores de probabilidad en tablas

para los diferentes valores de los estadísticos t, χ2, F y Z
 Calcular dado un conjunto de datos los intervalos de confianza, según proceda, para la media, diferencia de medias, varianza, proporción, diferencia de proporciones varianza y relación de varianzas.
 Interpretar el significado de los intervalos de confianza para: la media, diferencia de medias, la proporción, diferencia de

 Dado un conjunto de datos diferenciar la importancia de utilizar estimadores puntuales y estimadores por intervalos.

proporciones, varianza y relación de

• Determinar el tamaño de la muestra

varianzas.

Unidad 3: Prueba de hipótesis.

Competencia desarrollar	especifica a	Ac	tividades de Aprendizaje
básicos de hipótesis. Identificar los que se prese hipótesis Identificar y a posibles fenó	aplicar los conceptos e una prueba de diferentes fenómenos ntan en una prueba de analizar cuáles son los menos que se pueden vés de una prueba de	•	Formular y resolver ejercicios aplicando la metodología de prueba de hipótesis para: la media, diferencia de medias, proporción, diferencia de proporciones, varianza y relación de varianzas Obtener el tamaño de la muestra para diferentes situaciones del error tipo I, error tipo II y para la potencia de la prueba. Simular un caso en donde: Se genere una hipótesis para una situación en donde el interés pueda ser, la media, diferencia de medias, proporción, diferencia de proporciones, varianza y relación de varianzas. Generar datos del caso Probar la hipótesis del caso Obtener conclusiones Cambiar el tamaño de muestra y mostrar su impacto.

Unidad 4: Pruebas de bondad de ajuste y pruebas no paramétricas.

	npetencia especifica a arrollar	1	Actividades de Aprendizaje
•	Identificar y aplicar los conceptos		Resolver ejercicios aplicando:
	de las pruebas de bondad de	:	o prueba χ2,
	ajuste		 Prueba de Kolmogorov-Smirnov

- Establecer cuál es la metodología aplicable a una prueba de bondad de ajuste
- Identificar y aplicar los conceptos de una prueba no paramétrica
- o prueba de Anderson Darling
- o Prueba de Ryan Joiner.
- o Prueba de Shappiro Wilk.
- Dado un conjunto de datos:
 - o Aplicar las tres pruebas
 - o Analizar los resultados
 - o Contrastar las pruebas

Unidad 5: Regresión Lineal Simple y Múltiple.

Competencia especific desarrollar	a a	Actividades de Aprendizaje
 Identificar y aplicar los obásicos del modelo de lineal simple Establecer las condicior distinguir entre una regre correlación Identificar y aplicar los obásicos del modelo de múltiple Identificar y aplicar los obásicos del modelo de no lineal 	nes para sión y un onceptos regresión	 Utilizar correctamente un modelo de regresión para propósitos de estimación y predicción Comprender la importancia del análisis de regresión lineal simple y múltiple, y explique los conceptos generales. Aplicar las pruebas de hipótesis para evaluar su calidad de ajuste. Diferenciar entre regresión lineal simple y múltiple para tomar decisiones acerca de cuál modelo usar en determinada circunstancia. Comprender la importancia del análisis de regresión no lineal y explique los conceptos generales. Aplicar las pruebas de hipótesis para evaluar su calidad de ajuste. Utilizar software, para obtener una respuesta rápida y precisa en la generación de los parámetros de los modelos.

11.- FUENTES DE INFORMACIÓN

DeVore, J. (2005). Probabilidad y Estadística para Ingeniería y Ciencias. México: Thomson

Hines, W. y Montgomery, D. (2003). Probabilidad y Estadística para Ingeniería y Administración. México: CECSA

Montgomery, D. C. y Runger, G. C. (1998). Probabilidad y Estadística aplicadas a la Ingeniería. México: McGraw Hill.

Ross, S. M. (2001). Probabilidad y Estadística para Ingenieros. México: McGraw Hill.

Salvatore, D., Reagle, D. (2004). Estadística y econometría. España: Mc Graw-Hill.

Spiegel, M. R. (1992). Manual de Fórmulas y Tablas Matemáticas. México: McGraw Hill.

Spiegel, M. R. (1988). Probabilidad y Estadística. México: McGraw Hill.

Walpole, R. E., Myers, R. H., Myers, S. L. (1999). Probabilidad y Estadística para Ingenieros. México: Pearson Prentice Hall.

12.- PRÁCTICAS PROPUESTAS

- AOP Aprendizaje Orientado a Proyectos: Desarrollo por equipos de trabajo bajo la guía del profesor con los estudiantes la colección de una muestra, para su análisis, aplicando las técnicas y métodos de trabajo desarrollados a lo largo del curso y su presentación por avances para cada parcial,
 - Un proyecto de investigación que utilice los conceptos de muestreo.
 - Determinación de parámetros de la muestra y sus estimadores.
 - Pruebas de hipótesis, determinación del error tipo I, tipo II.
 - Pruebas e bondad de ajuste.
 - Determinar la relación entre variables por el análisis de regresión
- ABP Aprendizaje Basado en Problemas: Realizar en forma individual o por equipos, los problemas propuestos en el curso en el área logística, con análisis de resultados obtenidos en cada unidad del temario, utilizando Excel, u otro software disponible.
- Portafolio de evidencias con todos los problemas resueltos durante el curso.

Software propuesto a utilizar:

- Excel
- Statgraphics (consultar www.statgraphics)
- Minitab
- Mathcad
- Software disponible