How to prepare a presentation

Alfredo Canziani, Ritchie Ng @alfcnz, @RitchieNg

Objectives

- 1. Sensitisation on presentation importance
- 2. Practical advices on preparation

Typical scenario

- You've completed a "large and complex project"
- You're proud of quantity and quality

Need to present it

- Objective: convince others about
 - Quality of job / results...
 - ... and your quality

Average student

- Does not understand the presentation importance
 - Believes job quality is **obvious**

- Does not perceive the difficulty of crafting a presentation
- Considers it a formality (burden)
- Crafts it without commensurate effort
- Does ignore the fundamental rules

Law of Nature

• IF an awesome job is terribly presented

- THEN
 - 1. No one understands it's awesome
 - 2. The job is perceived as **terrible**

Ideal scenario

- Plenty of time for presenting
- Everyone's dying to listen to you
- Everyone knows objectives and problems
- Everyone's absolutely paying attention, without interruption

EASY

Real scenario

- You have ~ 20 minutes
- Someone remembers what you had to do
- A few know the technicalities
- Everyone's going through something in life
- Not everyone can or wants to pay attention all the time

VERY, VERY, VERY HARD

General premises

What's the context

- 1. To whom shall I present
- 2. How long do I have

To whom shall I present

- University lesson
- University seminar
- High school conference
- Non-scientific talk
- Large scientific conference
- Thesis defence

Newbie hypothesis

- Infinite amount of time
- Need to talk about everything that has been done

- The audience
 - Has **infinite** intelligence
 - Has infinite comprehension speed

• A **few reviews** to the initial draft are sufficient

Correct hypothesis

- I have k minutes \Rightarrow need to practice
- Many interesting things will definitely be skipped
- If I prepare well, someone may understand something
- Will be required very many iterations and edits

Infinite comprehension speed

- Total time 5 seconds to say...
- As you can see, we're the best performing solution

Correct approach

- 1. Explain explicitly what x- and y-axis are
- 2. Comment every chart
- 3. Point out the most significative part
- 4. State if better is above or below
- 5. If possible, show ideal curve

Presentation organisation

Initial part

Two questions to address

- 1. What is the **problem**
- 2. Why it is relevant

Common WRONG approach

- Mix of:
 - What has been done
 - How it works
- This is the solution

 How can anyone understand anything if no problem has been described???

Problem ≠ solution

- Solution details: little important
 - No one understands them
 - Too short time
 - Heterogenic audience
 - They are **not** the presentation objective
 - Thesis or article are used for this

- Problem relevance: very important
 - Everyone can understand it

Problem description (I)

• It is the most critical and most important part

- Who does not understand it turns off
- It is the only fully understandable part
- If you're not able to explain the problem, how can you motivate the listener?

Problem description (II)

- From one sentence up to two slides
- Depends on
 - Problem's nature
 - Audience type

- Do not spare effort
- Rehearse, rehearse, and rehearse again

Problem description (III)

- Concise
 - And **separated** from *why* it is relevant
- Specific

Generic vs. specific e.g. (I)

- Text to image
 - NO

- Generative adversarial text to image synthesis
 - OK

Generic vs. specific e.g. (II)

- Image inpainting
 - NO

- Semantic Image Inpainting with Deep Generative Models
 - YES

The solution (I)

- The details can be understood only by whom has already worked on the same problem
 - Often, no one understands them

Cannot be written approximately

Who is interested will make questions

The solution (II)

- It does not make sense to
 - Fill slides with formulae / algorithms / diagrams
 - Tell the whole journey to get to the solution

- It's hard enough to communicate the relevance
- Not how it works but why it's necessary

Thesis defence

- Need to identify the personal contribution
- Which is often hard to grasp...

Personal contribution

- Things NOT to do
 - Waste time on project importance
 - Candidate work is under evaluation
 - Not the project / affiliation

- Things to DO
 - How it was before and how it is after
 - What you did and what others did

Practical suggestions

Presentation preparation

• Estimate 2-3 minutes per slide

- Fundamental for
 - Assessing how many things can be told
 - Convince oneself that many thing won't be said

Give up to begin with

Do not rush describing "everything"

- Carefully curate problem and relevance
- A few interesting bits will have to be omitted

 NEVER speed up (or reduce the explanations) in order to say more things

Mind the time!!!

Never exceed the allocated time

- In the real world, time is the most valuable resource anyone has
- Basic respect character towards colleagues and audience

- Better finish slightly earlier than later
- Never end up with 15 slides 2 minutes to the end

Make many trials

Perform presenting trials, aloud

- Very annoying but indispensable
 - Estimate timings
 - Identify complex / dangerous points

Memorise the beginning

Learn by heart the first 3–4 minutes

- Necessary to get going
- If you freeze at the beginning (emotional), you'll stay frozen

Never improvise!

 Decide in advance what to and not to say (never add on the go)

- One may often want to add and clarify
 - Very dangerous!
 - Turn a blind eye: if needed, questions will be asked

Do not talk of things you didn't plan to talk about

Where to look

Do not make eye contact

- Easy to discourage oneself
 - "He's sleeping, am I saying boring things?"
 - "She's laughing, am I telling stupid things?"
 - •
- Look at the opposite wall
- Do not expect nodding
- Any feedback to consider: questions

How to speak?

Slowly, without hurry, loudly

- Impossible
 - Following high speed speech
 - Concentrating on listening whispers

 Many (me included) do not like seeing the speaker with his/her hands in his/her pockets

Practical suggestions: the slides

Better this...

- Since the emergence of Deep Neural Networks (DNNs) as a prominent technique in the field of computer vision, the ImageNet classification challenge has played a major role in advancing the state-of-the-art. While accuracy figures have steadily increased, the resource utilisation of winning models has not been properly taken into account. In this work, we present a comprehensive analysis of important metrics in practical applications: accuracy, memory footprint, parameters, operations count, inference time and power consumption.
- Key findings are: (1) power consumption is independent of batch size and architecture; (2) accuracy and inference time are in a hyperbolic relationship; (3) energy constraint is an upper bound on the maximum achievable accuracy and model complexity; (4) the number of operations is a reliable estimate of the inference time. We believe our analysis provides a compelling set of information that helps design and engineer efficient DNNs.

... or this?

- Comparing networks for publishing
 - Accuracy

- Comparing networks for practical applications
 - Accuracy
 - Memory footprint
 - Parameters
 - Operations count
 - Inference time
 - Power consumption

What is a slide

- Aid for the presenter...
- ... and above all for the audience

- Used for **following** a presentation
- It is **not** the presentation

Density

• It must be comprehensible at first sight

- Not full of words
- Not presentation transcript
 - (although this is an exception)

Writing style

Adopt a telegram style, eliminate any unnecessary word

- Algorithm
 - 1. Write a sentence
 - 2. Remove every unnecessary word

Logic structure ⇒ graphical structure

Clearly separate concepts with graphics

- Mustn't require reading concentration
- Who concentrate reading won't concentrate listening

- Suggested style:
 - Bullet points with one concept per point
 - One or two hierarchical levels
 - Reasonable usage of **bold**, *italic*, and **a few** colours

- Advanced style:
 - Avoid text altogether
 - Use drawings...
 - ... and animations

Font

- At least 20 points
- 24 is better
- 28 is perfect

- Printed font are bad for screen font
 - Times New Roman is **not** okay
 - Palatino is also **not** okay
- Calibri, Tahoma, Arial, Helvetica are good choices

Colours

Better black background and white characters

Or white background and black characters

Better than weird combinations

• Like these two

Special effects

- Remove "special effects", fading is all you need
- Technical presentation ≠ advertisement

It's not easy

• Rehearse, rehearse

Summarising...

- Independently from your future career
 - Having technical qualities is not enough
 - It's fundamental that they can be communicated to others

- Fundamental
 - Know how to present your own work
 - Spend time and effort in the preparation

Last slide

- Will be shown for the longest amount of time
- Do **not** waste it to thank the audience
- Use it for something meaningful
 - Summary of achievements
 - Future work
 - List of published works