Fraktalne dimenzije

Kuslan Urazbakhtii

Uvo

Opomba o teor mere

Podobnostna dimenzija

dimenzija

dimenzija

Hausdorffova mera Hausdorffova

Fraktalne dimenzije

Ruslan Urazbakhtin

Fakulteta za matematiko in fiziko, Univerza v Ljubljani

6. maj 2025

"Much of the beauty of fractals is to be found in their mathematics"

— Kenneth Falconer

Kazalo

Fraktalne dimenzije

Urazbakhti

Uvo

Opomba o teo mere Podobnostna

Podobnostna dimenzija

Hausdorffova dimenzija

Hausdorffova mer. Hausdorffova dimenzija

1 Uvod

- Kaj so fraktali?
- Opomba o teorije mere
- Podobnostna dimenzija

2 Hausdorffova dimenzija

- Hausdorffova mera
- Hausdorffova dimenzija

Kaj so fraktali?

Fraktalne dimenzije

Ruslan Urazbakhti

Uvod

Kaj so fraktali

opomba o teoriji nere -----

dimenzija

Hausdorffova dimenziia

Hausdorffova mera Hausdorffova

Kaj so fraktali?

Fraktalne dimenzije

Kuslan Urazbakhti

Uvo

Opomba o teor mere Podobnostna dimenzija Hausdorffova limenzija

Kaj so fraktali?

- Besedo "fraktal" je uvedel matematik Benoit Mandelbrot v svojem temeljnem eseju leta 1975. Izvira iz latinske besede "fractus".
- Besedo "fraktal" Mendelbrot je uporabljal za opis patoloških množic, ki niso bili usklajene z običajno evklidsko geometrijo.
- V svojem originalnem eseju Benoit Mendelbrot je definiral fraktal kot množico, ki ima Hausdorffovo dimenzijo strogo večjo od njene topološke dimenzije.

Kaj so fraktali?

Fraktalne dimenzije

Ruslan Urazbakhti

Uvo

Kaj so fraktali? Opomba o teori mere Podobnostna dimenzija

Hausdorffova dimenzija Hausdorffova mer Hausdorffova Če rečemo, da je neka množica F fraktal, potem si mislimo, da

- F ima fino strukturo, tj. podrobnosti se vidijo vedno enako (neodvisno od skale);
- **2** *F* je dovolj nenaravna, da je ne moremo opisat s pomocjo elementarne geometrije tako lokalno kot globalno;
- 3 F včasih ima samopodobno obliko;
- Običajno je fraktalna dimenzija F večja od njene topološke dimenzije;
- **V** večini primerov je *F* definirana na zelo preprost način, običajno rekurzivno.

Zakaj potrebujemo fraktalno dimenzijo?

Fraktalne dimenzije

Kuslan Urazbakhti

Uvo

Kaj so fraktali? Opomba o teori mere Podobnostna dimenzija

Hausdorffova dimenzija Hausdorffova me Hausdorffova

- Metode iz evklidske geometrije/analize niso dovolj, da opišemo lastnosti fraktalov.
- Fraktalna geometrija nam ponuja osnovno konstrukcijo za obravnavo množic, ki izgledajo nekako nenaravno.
- Zelo na grobo povedano nam dimenzija množice pove, koliko prostora ta zavzema v ambientnem prostoru.
- Dimenzija meri kompleksnost množice na poljubno majhnih skalah ter opisuje nekatere njene geometrijske in topološke lastnosti.

Mera

Fraktalne dimenzije

Urazbakhti

Uvo

Opomba o teorije mere Podobnostna

dimenzija Hausdorffova dimenzija

dimenzija Hausdorffova mera Hausdorffova dimenzija

- Če želimo govoriti o fraktalnih dimenzijah, moramo poznati osnovne ideje teorije mere.
- Bomo obravnavali le mere na \mathbb{R}^n .
- Mera je način opisati "velikost" množice, ki je izmerjena na nek način.

Borelova σ -algebra

Fraktalne dimenzije

Urazbakhti

Uvo

Kaj so fraktal

Opomba o teorije mere

Podobnostna dimenzija

Hausdorffova dimenzija

> Hausdorffova mera Hausdorffova dimenzija

Definicija

Družina podmnožic Σ množice \mathbb{R}^n je σ -algebra, če:

- $\mathbb{1} \mathbb{R}^n \in \Sigma$;
- **2** Če je $A \in \Sigma$, potem $A^c \in \Sigma$;
- 3 Poljubna števna unija množic iz Σ je element Σ .

Borelova σ -algebra

Fraktalne dimenzije

Urazbakhtii

Uvo

Kaj so fraktali? Opomba o teorije

nere Podobnostna Himenzija

Hausdorffova dimenzija

Hausdorffova mer Hausdorffova dimenzija

Definicija

Družina podmnožic Σ množice \mathbb{R}^n je σ -algebra, če:

- $\mathbb{1} \mathbb{R}^n \in \Sigma$;
- **2** Če je $A \in \Sigma$, potem $A^c \in \Sigma$;
- 3 Poljubna števna unija množic iz Σ je element Σ .

Definicija

- Najmanjšo σ -algebro na \mathbb{R}^n , ki vsebuje vse odprte podmnožice \mathbb{R}^n , imenujemo Borelova σ -algebra.
- Podmnožica $A \subseteq \mathbb{R}^n$ je **Borelova**, če pripada Borelovi σ -algebri.

Borelova σ -algebra

Fraktalne dimenzije

Kuslan Urazbakhtir

Uvod

Kaj so fraktali?

Opomba o teorije mere

Podobnostna

Hausdorffova dimenzija

Hausdorffova mei Hausdorffova dimenzija

Definicija

- Najmanjšo σ -algebro na \mathbb{R}^n , ki vsebuje vse odprte podmnožice \mathbb{R}^n , imenujemo Borelova σ -algebra.
- Podmnožica $A \subseteq \mathbb{R}^n$ je **Borelova**, če pripada Borelovi σ -algebri.

Opomba

- Vse odprte in vse zaprte množice so Borelovi.
- Poljubna števna unija (presek) odprtih (zaprtih) množic je Borelova množica.
- Vsi množici, ki smo jih bomo obravnavali, bodo Borelovi.

Ilmenzija Hausdorffova mer Hausdorffova

Definicija

Preslikava $\mu:\mathcal{P}(\mathbb{R}^n) \to [0,\infty) \cup \{\infty\}$ je **mera** na \mathbb{R}^n , če

- \blacksquare Če je $\{A_i\}_{i\in\mathbb{N}}$ števna družina podmnožic \mathbb{R}^n , potem

$$\mu\left(\bigcup_{i=1}^{\infty}A_i\right)\leq\sum_{i=1}^{\infty}\mu(A_i)$$

4 Če je $\{A_i\}_{i\in\mathbb{N}}$ števna družina paroma disjunktnih Borelovih podmnožic \mathbb{R}^n , potem

$$\mu\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}\mu(A_i)$$

Mera na \mathbb{R}^n

Fraktalne dimenzije

Urazbakhti

Uvod

Opomba o teorije mere Podobnostna

dimenzija Hausdorffova dimenzija

dimenzija Hausdorffova mer Hausdorffova

Definicija

Pravimo tudi, da je $\mu(A)$ mera množice A.

Opomba

- $\mu(A)$ lahko si predstavljamo kot "velikost" množice A, ki je izmerjena na nek način.
- 4. pogoj pravi, da če množico A razbijemo na števno mnogo paroma disjunktnih Borelovih množic, potem vsota mer delov je enaka mere celotne množice (ponavadi ga težko dokazati).

Primeri mer

Fraktalne dimenzije

Urazbakhti

Uvo

Opomba o teorije mere Podobnostna dimenzija

Hausdorffova dimenzija Hausdorffova n

Mera štetja.

Naj bo $A \subseteq \mathbb{R}^n$. Definiramo $\mu(A) = \begin{cases} n; & |A| = n \in \mathbb{N}, \\ \infty; & \text{sicer} \end{cases}$. Potem μ je mera na \mathbb{R}^n .

Točkasta masa.

Naj bo $a \in \mathbb{R}^n$, $A \subseteq \mathbb{R}^n$. Definiramo $\mu(A) = \begin{cases} 1; & a \in A, \\ 0; & \text{sicer} \end{cases}$. Potem μ je mera (porazdelitev mase) na \mathbb{R}^n .

Lebesgueva \mathcal{L}^n mera

Fraktalne dimenzije

Kuslan Urazbakhti

Uvo

Kaj so fraktali?

Opomba o teorije

mere Podobnostna

Hausdorffova dimenzija

Hausdorffova mera

Lebesgueva \mathcal{L}^n mera na \mathbb{R}^n je posplošitev evklidskih pojmov "dolžina", "ploščina", "volumen" itn. na večji razred množic.

Lebesgueva \mathcal{L}^n mera

Fraktalne dimenzije

Ruslan Urazbakhti

Uvc

Opomba o teorije mere Podobnostna

dimenzija Hausdorffova Iimenzija

dimenzija Hausdorffova n Naj bo $A = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid a_i \le x_i \le b_i\}$ kvader v \mathbb{R}^n , potem n-dim volumen množice A je

$$\operatorname{vol}^n(A) := (b_1 - a_1)(b_2 - a_2) \dots (b_n - a_n).$$

Definicija

Lebesgueva mera $\mathcal{L}^n:\mathcal{P}(\mathbb{R}^n) \to [0,\infty]$ je definirana s predpisom

$$\mathcal{L}^n(A) = \inf \left\{ \sum_{i=1}^{\infty} \operatorname{vol}^n(A_i) \mid A \subseteq \bigcup_{i=1}^{\infty} A_i
ight\},$$

kjer so A; kvadri.

Lebesgueva \mathcal{L}^n mera

Fraktalne dimenziie

Opomba o teorije

Opomba

- Gledamo vsa pokritja množice A z kvadri in vzemimo najmanjši možen volumen.
- ullet \mathcal{L}^1 je posplošitev pojma "dolžina", \mathcal{L}^2 je posplošitev pojma "ploščina" itn.

Cantorjeva množica *C*

Fraktalne dimenziie

Opomba o teorije

Izračunamo dolžino $\mathcal{L}^1(C)$ Cantorjeve množice $C = \bigcup_{n=1}^{\infty} C_n$.

C5

Lema

Naj bosta $A, B \subseteq \mathbb{R}^n$ Borelovi, $A \subseteq B$. Naj bo μ mera na \mathbb{R}^n . Potem $\mu(B \setminus A) = \mu(B) - \mu(A)$.

Kochova krivulja K

Fraktalne dimenzije

Kuslan Urazbakhtii

Uvo

Kaj so frakta

nere

Podobnostna dimenzija

Hausdorffova

Hausdorffova mera Hausdorffova

Kaj je narobe z C in K?

Fraktalne dimenzije

Ruslan Urazbakhtir

Uvoc

Kaj so fraktali?

Opomba o teor mere

Podobnostna dimenzija

Hausdorffova

Hausdorffova mera

Kaj je narobe z C in K?

Fraktalne dimenzije

Kusian Urazbakhtii

Uvo

aj so fraktali? pomba o teorije ere

Podobnostna dimenzija

Hausdorffov

Hausdorffova mera

- Očitno je, da je pri izbiri dimenzije nekaj narobe (torej z nami).
 - Ni možnosti, da bi dobili kaj pametnega, če bi računali ploščino daljice ali šteli njene točke.

Ali obstaja boljša možnost za izbiro dimenzije?

Fraktalne dimenzije

Ruslan Urazbakhti

Uvo

Kaj so fraktali?

Opomba o teori mere

Podobnostna dimenzija

Hausdorffov dimenzija

> Hausdorffova mera Hausdorffova

Ali obstaja boljša možnost za izbiro dimenzije?

Fraktalne dimenzije

Urazbakhti

Uvo

(aj so fraktali? Opomba o teori

Podobnostna

dimenzija

Hausdorffova dimenzija

Hausdorffova mera Hausdorffova Obstaja.

Fraktalne dimenzije

Urazbakhtii

Uvo

aj so iraktali: pomba o teorije ere

Podobnostna dimenzija

Hausdorffov

Hausdorffova mera Hausdorffova

- Kaj lahko povemo o masi daljice, če dvakrat zmanjšamo njeno dolžino?
- Kaj lahko povemo o masi kvadrata, če dvakrat zmanjšamo dolžino njegove stranice?

Fraktalne dimenzije

Urazbakhti

Uvc

pomba o teorije ere

Podobnostna dimenzija

Hausdorffova dimenzija

Hausdorffova mera

Kaj lahko povemo o masi daljice, če dvakrat zmanjšamo njeno dolžino?

Kaj lahko povemo o masi kvadrata, če dvakrat zmanjšamo dolžino njegove stranice?

Torej

$$m(\lambda D) = \lambda^s m(D).$$

Fraktalne dimenzije

Kuslan Urazbakhti

Uvc

pomba o teoriji ere

Podobnostna dimenzija

Hausdorffova

Hausdorffova me

Torej

$$m(\lambda D) = \lambda^s m(D).$$

Kaj se zgodi z maso Cantorjeve množice, če trikrat zmanjšamo začetni interval?

 C_1 ———

J₂ — —

- - - -

C₄ -- -- --

- -- --

C₅

...

Fraktalne dimenzije

Ruslan Urazbakhti

Uvo

Kaj so fraktali? Opomba o teor mere

Podobnostna dimenzija

dimenzija

dimenzija

Hausdorffova mera

Kaj se zgodi z maso Kochove krivulje, če trikrat zmanjšamo začetni interval?

Fraktalne dimenzije

Kuslan Urazbakhti

Uvo

aj so fraktali? pomba o teorije oro

Podobnostna dimenzija

Hausdorffov

Hausdorffova mera

Definicija

Naj bo množica $F \subseteq \mathbb{R}^n$ sestavljena iz m kopij same sebe, kjer je vsaka kopija zmanjšana za faktor r. Potem rečemo, da ima množica F podobnastno dimenzijo enako $\log_r m$.

Fraktalne dimenzije

Kuslan Urazbakhti

Uvo

aj so fraktali? pomba o teori

Podobnostna dimenzija

Hausdorffova dimenzija

Hausdorffova mera Hausdorffova

Definicija

Naj bo množica $F\subseteq\mathbb{R}^n$ sestavljena iz m kopij same sebe, kjer je vsaka kopija zmanjšana za faktor r. Potem rečemo, da ima množica F podobnastno dimenzijo enako $\log_r m$.

Spet imamo en problem...

Fraktalne dimenzije

Kusian Urazbakhtii

Uvod Kaj so fral

aj so fraktali? pomba o teorije ere

Podobnostna dimenzija

Hausdorffova dimenzija

Hausdorffova mer Hausdorffova dimenzija

Definicija

Naj bo množica $F\subseteq\mathbb{R}^n$ sestavljena iz m kopij same sebe, kjer je vsaka kopija zmanjšana za faktor r. Potem rečemo, da ima množica F podobnastno dimenzijo enako $\log_r m$.

Spet imamo en problem...

Samopodobnih množic je zelo malo. Recimo, že krožnica ni taka.

Fraktalne dimenzije

Kusian Urazbakhtii

Uvod Kai so

aj so fraktali? pomba o teorij ere

Podobnostna dimenzija

Hausdorffova dimenzija

Hausdorffova mer.

Definicija

Naj bo množica $F\subseteq\mathbb{R}^n$ sestavljena iz m kopij same sebe, kjer je vsaka kopija zmanjšana za faktor r. Potem rečemo, da ima množica F podobnastno dimenzijo enako $\log_r m$.

Spet imamo en problem...

Samopodobnih množic je zelo malo. Recimo, že krožnica ni taka.

Hausdorffova dimenzija

Fraktalne dimenzije

Kuslan Urazbakhti

Uvo

Kaj so fraktali? Opomba o teor mere Podobnostna dimenzija

Hausdorffova dimenzija

Hausdorffova mera Hausdorffova dimenzija

- Hausdorffova dimenzija izmed vseh "fraktalnih" dimenzij, ki jih ljudje uporabljajo, je najbolj stara in verjetno najbolj pomembna.
- Lahko jo definiramo za poljubno množico in matematično je zelo priročna, ker je osnovana na meri, s katero lahko relativno preprosto kaj naredimo.
- Glavna pomanjkljivost je, da jo v večini situacij težko izračunati ali oceniti z numerični metodi.

Fraktalne dimenzije

Urazbakhti

Uvo

aj so fraktali

nere Podobnostna

Hausdorffov

dimenzija

Hausdorffova mera Hausdorffova

Definicija

Naj bo $F \subseteq \mathbb{R}^n$. Naj bo $\{U_i\}$ števna družina množic iz \mathbb{R}^n , za katero velja:

$$\forall i \in \mathbb{N} . 0 \leq |U_i| \leq \delta;$$

$$F \subseteq \bigcup_{i=1}^{\infty} U_i.$$

Potem $\{U_i\}$ imenujemo δ -pokritje množice F.

Fraktalne dimenzije

Urazbakhti

Uvo

Naj so fraktali? Opomba o teorij nere

mere Podobnostna

Hausdorffova dimenzija

Hausdorffova mera

Hausdorffo

Naj bo $F \subseteq \mathbb{R}^n$ in $s \ge 0$. Za vsak $\delta > 0$ definiramo

$$\mathcal{H}^s_\delta(F) = \inf \left\{ \sum_{i=1}^\infty |U_i|^s \mid \{U_i\} \; ext{je δ-pokritje F}
ight\}$$

Fraktalne dimenzije

Urazbakhti

Uvo

(aj so fraktali?)pomba o teorije nere Podobnostna

Hausdorffova dimenzija

Hausdorffova mera

Naj bo $F \subseteq \mathbb{R}^n$ in $s \ge 0$. Za vsak $\delta > 0$ definiramo

$$\mathcal{H}^s_\delta(F) = \inf \left\{ \sum_{i=1}^\infty |U_i|^s \mid \{U_i\} \text{ je δ-pokritje } F
ight\}$$

Ko $\delta \to 0$, razred možnih pokritij F se zmanjšuje, torej inf narašča, torej lahko definiramo:

$$\mathcal{H}^{s}(F) = \lim_{\delta \to 0} \mathcal{H}^{s}_{\delta}(F)$$

Ta limita vedno obstaja za vsako množico $F \subseteq \mathbb{R}^n$.

Fraktalne dimenzije

Urazbakhti

Uvc

Kaj so fraktali? Dpomba o teorij∈ nere Podobnostna

Hausdorffova dimenzija

Hausdorffova mera Hausdorffova Naj bo $F \subseteq \mathbb{R}^n$ in $s \ge 0$. Za vsak $\delta > 0$ definiramo

$$\mathcal{H}^s_\delta(F) = \inf \left\{ \sum_{i=1}^\infty |U_i|^s \mid \{U_i\} \text{ je δ-pokritje } F
ight\}$$

Ko $\delta \to 0$, razred možnih pokritij F se zmanjšuje, torej inf narašča, torej lahko definiramo:

$$\mathcal{H}^{s}(F) = \lim_{\delta \to 0} \mathcal{H}^{s}_{\delta}(F)$$

Ta limita vedno obstaja za vsako množico $F \subseteq \mathbb{R}^n$. Število $\mathcal{H}^s(F)$ imenujemo s-dim Hausdorffova mera množice F.

Trditev

 \mathcal{H}^s je mera na \mathbb{R}^n .

Fraktalne dimenziie

Hausdorffova mera

Opomba

Hausdorffova mera je posplošitev Lebesgueve mere na necele dimenzije. Se da pokazati, da

$$\mathcal{H}^n(F) = \frac{1}{c_n} \mathcal{L}^n(F),$$

kjer je c_n volumen *n*-dim krogle z polmerom $\frac{1}{2}$, tj.

$$c_n = \frac{\pi^{(n/2)}}{2^n \Gamma(n/2+1)}$$

Fraktalne dimenzije

Urazbakhtir

Uvo

aj so fraktali? pomba o teorije ere

mere Podobnostna dimenzija

Hausdorffov dimenzija

Hausdorffova mera

Hausdorff

Definicija

Podobnostna preslikava z koeficientom podobnosti c>0 je preslikava $P: \mathbb{R}^n \to \mathbb{R}^n$, za katero velja:

$$\forall x, y \in \mathbb{R}^n . |P(x) - P(y)| = c|x - y|$$

Fraktalne dimenzije

Urazbakhti

Uvo

Kaj so fraktali? Opomba o teor nere Podobnostna

Hausdorffova dimenzija

Hausdorffova mera Hausdorffova Naj bo $P: \mathbb{R}^n \to \mathbb{R}^n$ podobnostna preslikava z podobnostnim koeficientom c > 0. Naj bo $F \subseteq \mathbb{R}^n$.

Dobro poznamo lastnosti skaliranja dolžine, ploščine, volumna, npr.

Ali velja enako tudi za \mathcal{H}^s ?

Fraktalne dimenzije

Urazbakhti

Uvo

Opomba o teorij nere

Podobnostr dimenzija

lausdorffova imenzija

Hausdorffova mera

Hausdorff

Naj bo $P: \mathbb{R}^n \to \mathbb{R}^n$ podobnostna preslikava z podobnostnim koeficientom c > 0. Naj bo $F \subseteq \mathbb{R}^n$.

Trditev

$$\mathcal{H}^s(P_*(F))=c^s\mathcal{H}^s(F)$$

Fraktalne dimenzije

Urazbakhtir

Uvo

aj so fraktali? pomba o teorije ere

mere Podobnostna dimenzija

Hausdorffov dimenzija

Hausdorffova mera

Hausdorff

Definicija

Podobnostna preslikava z koeficientom podobnosti c>0 je preslikava $P: \mathbb{R}^n \to \mathbb{R}^n$, za katero velja:

$$\forall x, y \in \mathbb{R}^n . |P(x) - P(y)| = c|x - y|$$

Fraktalne dimenzije

Urazbakhti

Uvo

Kaj so fraktali? Opomba o teor nere Podobnostna

Hausdorffova dimenzija

Hausdorffova mera Hausdorffova Naj bo $P: \mathbb{R}^n \to \mathbb{R}^n$ podobnostna preslikava z podobnostnim koeficientom c > 0. Naj bo $F \subseteq \mathbb{R}^n$.

Dobro poznamo lastnosti skaliranja dolžine, ploščine, volumna, npr.

Ali velja enako tudi za \mathcal{H}^s ?

Fraktalne dimenzije

Urazbakhti

Uvo

Opomba o teorij nere

Podobnostr dimenzija

lausdorffova imenzija

Hausdorffova mera

Hausdorff

Naj bo $P: \mathbb{R}^n \to \mathbb{R}^n$ podobnostna preslikava z podobnostnim koeficientom c > 0. Naj bo $F \subseteq \mathbb{R}^n$.

Trditev

$$\mathcal{H}^s(P_*(F))=c^s\mathcal{H}^s(F)$$

Fraktalne dimenzije

Urazbakhtir

Uvo

aj so fraktali? Ipomba o teorije Iere

mere Podobnostna dimenzija

Hausdorffov dimenzija

Hausdorffova mera

Hausdorffe

Definicija

Naj bosta $X\subseteq \mathbb{R}^n$ in $Y\subseteq \mathbb{R}^m$. Preslikava $f:X\to Y$ je **Höldorjeva** stopnje $\alpha>0$, če

$$\exists c > 0 . \forall x, y \in X . |f(x) - f(y)| \le c|x - y|^{\alpha}$$

Fraktalne dimenzije

Kuslan Urazbakhtii

Uvo

Opomba o teorije nere

Podobnostna dimenzija

Hausdorffova dimenzija

Hausdorffova mera Hausdorffova

Definicija

Naj bosta $X \subseteq \mathbb{R}^n$ in $Y \subseteq \mathbb{R}^m$. Preslikava $f: X \to Y$ je **Höldorjeva** stopnje $\alpha > 0$, če

$$\exists c > 0 \, . \, \forall x, y \in X \, . \, |f(x) - f(y)| \le c|x - y|^{\alpha}$$

Trditev

Naj bo $F \subseteq \mathbb{R}^n$ in $f : F \to \mathbb{R}^n$ Höldorjeva preslikava stopnje $\alpha > 0$. Potem za vsak $s \ge 0$ velja:

$$\mathcal{H}^{s/\alpha}(f_*(F)) \leq c^{s/\alpha}\mathcal{H}^s(F)$$

Fraktalne dimenzije

Kusian Urazbakhtii

Uvo

Opomba o teorije nere Podobnostna

Podobnostna dimenzija

Hausdorffova dimenzija

Hausdorffova mera Hausdorffova

Trditev

Naj bo $F \subseteq \mathbb{R}^n$ in $f : F \to \mathbb{R}^n$ Höldorjeva preslikava stopnje $\alpha > 0$. Potem za vsak s > 0 velja:

$$\mathcal{H}^{s/\alpha}(f_*(F)) \leq c^{s/\alpha}\mathcal{H}^s(F)$$

Posledica

Če je $f: F \to \mathbb{R}^n$ Lipschitzova, tj.

$$\exists c > 0 \, . \, \forall x, y \in X \, . \, |f(x) - f(y)| \le c|x - y|,$$

potem

$$\mathcal{H}^s(f_*(F)) \leq c^s \mathcal{H}^s(F)$$

Fraktalne dimenzije

Urazbakhti

Uvo

Kaj so fraktali? Opomba o teorije mere Podobnostna

Hausdorffova dimenzija

Hausdorffova mera Hausdorffova dimenzija Naj bo $F \subseteq \mathbb{R}^n$. Gledamo funkcijo

$$\mathcal{H}_F:[0,\infty)\longrightarrow [0,\infty]$$
 $s\longmapsto \mathcal{H}^s(F)$

Lema

Naj bo $F\subseteq \mathbb{R}^n$. Če je $\mathcal{H}^s(F)<\infty$, potem $\mathcal{H}^t(F)=0$ za vse t>s.

Fraktalne dimenzije

Ruslan Urazbakhtir

Uvo

Kaj so fraktali? Opomba o teorije mere

mere Podobnostna dimenzija

Hausdorffova dimenzija

Hausdorffova mera Hausdorffova dimenzija

Lema

Naj bo $F\subseteq \mathbb{R}^n$. Če je $\mathcal{H}^s(F)<\infty$, potem $\mathcal{H}^t(F)=0$ za vse t>s.

Oglejmo si graf funkcije \mathcal{H}_F :

Fraktalne dimenzije

Urazbakhti

Uvo

laj so fraktali?)pomba o teorij nere

Podobnostna dimenzija

Hausdorffov

Hausdorffova mer Hausdorffova dimenzija

Definicija

Hausdorffova dimenzija množice $F \subseteq \mathbb{R}^n$ je

$$\mathsf{dim}_{H}F = \inf\left\{s \geq 0 \mid \mathcal{H}^{s}(F) = 0\right\} = \sup\left\{s \geq 0 \mid \mathcal{H}^{s}(F) = \infty\right\}$$

Fraktalne dimenzije

Urazbakhtii

Uvo

(aj so fraktali? Opomba o teorije nere Podobnostna

dimenzija Hausdorffova

dimenzija Hausdorffova i

Hausdorffova mer Hausdorffova dimenzija

Definicija

Hausdorffova dimenzija množice $F \subseteq \mathbb{R}^n$ je

$$\mathsf{dim}_{\mathcal{H}}F = \inf\left\{s \geq 0 \mid \mathcal{H}^s(F) = 0\right\} = \sup\left\{s \geq 0 \mid \mathcal{H}^s(F) = \infty\right\}$$

Opomba

- Po dogovoru $\sup(\emptyset) = 0$.
- lacktriangle Ta dimenzija je definirana za poljubno podmnožico \mathbb{R}^n .

Fraktalne dimenzije

Urazbakhtii

Uvo

Kaj so fraktali*!* Opomba o teorije nere Podobnostna

Podobnostna dimenzija

Hausdorffova dimenzija

Hausdorffova mera Hausdorffova dimenzija

Definicija

Hausdorffova dimenzija množice $F \subseteq \mathbb{R}^n$ je

$$\mathrm{dim}_{H}F=\inf\left\{s\geq0\mid\mathcal{H}^{s}(F)=0\right\}=\sup\left\{s\geq0\mid\mathcal{H}^{s}(F)=\infty\right\}$$

Imamo:

$$\mathcal{H}^{s}(F) = \begin{cases} \infty; & 0 \leq s < \dim_{H} F \\ 0; & s > \dim_{H} F; \end{cases}$$

Če je $s = \dim_H F$, potem $\mathcal{H}^s(F)$ lahko $0, \infty$ ali $a \in \mathbb{R}$.

Hausdorffova dimenzija krogle B^n

Fraktalne dimenzije

Urazbakhtir

Uvo

Kaj so fraktal

Opomba o teorij mere

dimenzija

dimenzija

Hausdorffova mera

Hausdorffova dimenzija

Lema

$$\dim_H B^n = n$$

Fraktalne dimenzije

Kuslan Urazbakhtii

Uvo

(aj so fraktali?)nombo o toorii

mere

dimenzija

Hausdorffova

Hausdorffova mera

Hausdorffova dimenzija

Hvala za pozornost!