GAS LEAKAGE MONITORING AND ALERTING SYSTEM

IBM - NALAIYA THIRAN PROJECT BASED LEARNING

ON PROFESSIONAL READINESS FOR INNOVATION, EMPLOYABILITY AND ENTREPRENEURSHIP

A PROJECT REPORT INTERNAL MENTOR: RAMALAKSHMI K INDUSTRY MENTOR: KUMAR JULURI

VINOTHBABU T	1902116
VAIKUNDAMUTHU N	1902111
VIMAL R	1902115
ABINASH J	1902305

BACHELOR OF ENGINEERING IN ELECTRONICS AND COMMUNICATION ENGINEERING

ABSTRACT

Home fires have been more common in recent years, posing a greater risk to human life and property. Liquid petroleum gas (LPG) is very flammable and can burn even far from the site of the leak. The majority of fires are caused by a poor-quality rubber tube or because the regulator is not switched off while not in use. As a result, designing a gas leakage alarm system is critical. As a result, this study proposes a gas leakage warning system that detects gas leaks and alerts the individuals onboard.

The number of deaths has risen in recent years as a result of LPG explosions. To avoid this problem, a system to detect LPG leakage is required. The method of detecting potentially harmful gas leaks using multiple sensors is known as gas leak detection. Several LPG detection and alarm system designs have been presented in the literature. We have created a kitchen gas leak detection and automated gas shut-off system. Gas detectors based on wireless and GSM technologies have also been proposed. This paper describes an LPG leak detection and alarm system for preventing fires and ensuring home safety.

TABLE OF CONTENTS

CHAPTER NO	TITLE	PAGE NO
1	INTRODUCTION 1. Project Overview 2. Purpose	3
2	LITERATURE SURVEY 1. Existing problem 2. References 3. Problem Statement Definition	4
3	 IDEATION & PROPOSED SOLUTION 1. Empathy Map Canvas 2. Ideation & Brainstorming 3. Proposed Solution 4. Problem Solution fit 	5
4	REQUIREMENT ANALYSIS 1. Functional requirement 2. Non-Functional requirement	10
5	PROJECT DESIGN 1. Data Flow Diagrams 2. Solution & Technical Architecture 3. User Stories	12
6	PROJECT PLANNING & SCHEDULING 1. Sprint Planning & Estimation 2. Sprint Delivery Schedule 3. Reports from JIRA	16
7	CODING & SOLUTIONING 1. Feature 1 2. Feature 2 3. Database Schema	22

8	TESTING 1. Test Cases 2. User Acceptance Testing	25
9	RESULTS Performance Metrics	28
10	ADVANTAGES & DISADVANTAGES	29
11	CONCLUSION	31
12	FUTURE SCOPE	30
13	APPENDIX 1. Source Code 2. GitHub & Project Demo Link	31

GAS LEAKAGE MONITORING AND ALERTING SYSTEM

1. INTRODUCTION

1.1 PROJECT OVERVIEW:

The world has been moving at a rapid pace to adapt the most advanced technologies and connect anything, which means everything. Various establishments such as hotels, canteens, and industries use flammable gases such as LPG, carbon dioxide, ammonia, and others to provide the best hospitality services to their customers. The use of these gases has undoubtedly made technologies smarter, but it also introduces a risk factor that poses a threat to and damages life. As a result, safety becomes a serious concern. Due to this factor, a gas leaking monitoring and alerting system is required at such accident-prone locations so that continuous monitoring of any type of leakage could be detected regardless of human senses. The designed system continuously monitors the surroundings for any leakage and alerts the user. It alerts the user about environmental conditions such as temperature and gas level using an Ethernet shield module and an Android application. The Internet of Things (IoT) is a futuristic technology that proposes the interconnection of devices and the internet. Because safety is a top priority, the proposed gas detection system employs IoT to detect leaks and alert the user to prevent them. Because the gases are toxic, they must be monitored in such a way that any increase in their level is detected and appropriate precautions are taken.

1.2 PURPOSE:

The design of a sensor-based automatic gas leakage detector with an alert and control system has been proposed. This is an affordable, less power using, lightweight, portable, safe, user friendly, efficient, multi featured and simple system device for detecting gas. To monitor this gas leak, the system includes an MQ6 gas detector. This sensor detects the amount of leaking gas present in the surrounding atmosphere. In this way, the consequences of an explosion or gas leak can be avoided.

2. LITERATURE SURVEY

2.1. EXISTING PROBLEMS:

The primary goal of the gas leakage monitoring system is to detect malfunctions in the pressurized gas system to prevent the accumulation of gases and thus the explosion. Our gas detection system not only continuously monitors the surroundings but also prevents further gas leakage in the environment, reducing the risk of fire. The gas detection system not only continuously monitors the surroundings but also prevents further gas leakage in the environment, reducing the risk of fire. This integrated system will take IoT to the next level and will undoubtedly assist people in meeting their business requirements. In today's world, safety is critical, and certain solutions must be implemented in places of work and residence. Working or living in hazardous conditions, whether with electricity or oil and gas, necessitates certain safety protocols. The gas leakage detection system can be optimized for toxic gas detection while also being upgraded with smoke and fire

detectors to detect the presence of smoke and fire. It is critical to ensure worker safety, but it is even more critical to use the appropriate technology.

2.2 REFERENCES:

- 1. *Irfanullah, Razaullah, Saleem Aslam, Fazal Muqeem*, "Internet of Things Platform for Real Time Automated Safety System Based on Multi Sensor Network and Bluetooth Module", 2022 5th Conference on Cloud and Internet of Things (CloT),
- 2. *G. Ramesh, J. Jolin Dorrothi, R. Nithya Shree, S. Sailanjali Ajitha,* "Smart in Sync Cylinder Reserving and LPG Gas Tracking System", 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), pp.554-557, 2021.
- 3. Sourav Debnath, Samin Ahmed, Suprio Das, Abdullah-Al Nahid, Anupam Kumar Bairagi, "IoT based Low-Cost Gas Leakage, Fire, and Temperature Detection System with Call Facilities", 2020 2nd International Conference on Advanced Information and Communication Technology (ICAICT), pp.11-16, 2020.
- 4 *Flores-Cortez, O., Cortez, R., & González, B.* (2021, June). Design and Implementation of an IoT Based LPG and CO Gases Monitoring System. In CS & IT Conference Proceedings (Vol. 11, No. 8). CS & IT Conference Proceedings.
- 5 *Khan, M. M. (2020)*. Sensor-Based Gas Leakage Detector System. In Engineering Proceedings (Vol. 2, No. 1, p. 28). Multidisciplinary Digital Publishing Institute.
 6. Islam, M. N., Mondal, S. K., Hossain, M. A., & Al Zubaer, A. Multi-functional Gas

Detector can be in the Air Gas Concentration Signal into the Electrical Signal Display and Remote Transmission.

- 7. *Wei, J. C., & Wei, J. T.* (2021). U.S. Patent No. 10,969,357. Washington, DC: U.S. Patent and Trademark Office.
- 8 *Singh, H., Abdulla, R., & Selvaperumal, S. K.* (2021). Carbon monoxide detection using IoT. Journal of Applied Technology and Innovation (e-ISSN: 2600-7304), 5(3), 7.
- 9 *Mariselvam, V., & Dharshini, M. S.* (2021). IoT-based level detection of gas for booking management using the integrated sensor. Materials Today: Proceedings, 37, 789-792
- 10 *Alqourabah, H., Muneer, A., & Fati, S. M.* (2021). A smart fire detection system using IoT technology with an automatic water sprinkler. International Journal of Electrical & Computer Engineering (2088-8708), 11(4)

2.3. PROBLEM STATEMENT DEFINITION

In most industries, one of the key parts of any safety plan for reducing risks to personnel and plant is the use of early-warning devices such as gas detectors. These can help to provide more time in which to take remedial or protective action. They can also be used as part of a total, integrated monitoring and safety system for an industrial plant. Rapid expansion of oil and gas industry leads to gas leakage incidents which are very serious and dangerous. Solutions need to be found out at least to minimize the effects of these incidents since gas leaks also produce a significant financial loss. The challenges are not only to design a prototype of the device that can only detect but also automatically respond to it whenever the leakage occurs.

3.IDEATION AND PROPOSED SOLUTION

3.1. EMPATHY MAP CANVAS:

3.2.1 IDEATION:

Problem Statement PS):	Most of the LPG explosions are caused by undetected gas leakage in the pre-detection condition. So that LPG detection system is needed. The purpose of this system is to detect gas leakage, neutralize it, and prevent the explosion using IoT		
lam	Industrial expert		
I'm trying to	frequently monitor the gas leakage and make sure to prevent cylinder explosion.		
But	hard to detect leakage by man surveillance.		
Because	It's really hard to observe the leakage by a human and to monitor them 24 hours a day.		
Which makes me feel	Frustrated and fearful about the life of workers associated with the industry and plant downfall.		

Group Ideas

3.2.2. BRAINSTORMING:

3.3. PROPOSED SOLUTION:

S.No.	Parameter	Description

1.	ProblemStatement(Problem to be solved)	Develop an ADVANTAGES:
		ADVANTAGES: 1.'Intrinsically Safe' conformity is simple to achieve.
		2.Low operating expenses and maintenance requirements. 3.Trustworthy technology.
		4.Long-term exposure to a gas does not cause
2.	Idea/Solution description	This product helps the industries in monitoring the mission of harmful gases In several areas, the gas sensors will be integrated tomonitor the gas leakage If in any area gas leakage is detected the admins will benotified along with the location
3.	Novelty/Uniqueness	Fastest alerts to the workersUser friendly.
4.	SocialImpact/CustomerSatisfaction	 Cost efficient. Easy installation and provide efficient results Can work with irrespective of fear.
5.	BusinessModel(RevenueModel)	 The product is advertised all over the platforms. Since itis economical, even helps small scale industries from disasters. As the product usage can be understood by everyone, it iseasy for them to use it properly for their safest organization.
6.	Scalability of the Solution	 Since the product is cost efficient, it can be placed in many places in the industries. Even when the gas leakage is more, the product sense the accurate values and alerts the workers effectively.

3.4. PROBLEM SOLUTION FIT:

4.REQUIREMENT ANALYSIS

4.1 Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	Leakage	Installation of Gas sensors at specified intervals.
FR-2	Notification	When rule condition is met, notification triggered using MQTT.
FR-3	Geo coordinates of nodes	Predefined set of GPS locations of nodes is obtained.
FR-4	IoT Platform	IBM Watson IoT Platform
FR-5	Cloud Services	IBM Cloud Database
FR-6	Programming tool	NODE-RED Services

4.2 Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No	Non- FunctionalRequirement	Description
NFR-1	Usability	Easy user interface with alerting notifications and location of the defect gas cylinder.
NFR-2	Security	 Secure Cloud database is used. Notify only the registered and verified users. Multiple deployments across the potential sources can help industries to avoid any industrial accidents and protect workplace safely.
NFR-3	Reliability	1. Gas exposure will measured with ± 25% of the true concentration of the target analyze with 95% certainty. 2.Robust device that can withstand harsh industrial conditions and provide real-time gas leakage detection

NFR 4	Performance	1. Accurate data monitoring system enables periodic analysis of the air quality.
NFR 5	Availability	 Through Suppliers. With online shopping platforms

5.PROJECT DESIGN

5.1 Data Flow Diagrams:

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

5.2. SOLUTION AND TECHNICAL ARCHITECTURE:

5.3 USER STORIES:

User	Functional	User	User	Acceptance	Priority	Release	Team
type	requirements	story	story/task	criteria			members
		Number					
Customer	Gas detection	USN-1	As a user I can	I can notice	HIGH	SPRINT-	Sneha
	and level		get the gas	gas leakage		1	Shruthi
	monitoring		leakage alert				Jeyadhar-
			when gas				ani
			leaking				yamuna
		USN-2	As a user I can	I can observe	MEDIUM	SPRINT-	Sneha
			get the	the level of gas		1	Shruthi
			different gas	leakage			Jeyadhar-
			level				ani
							yamuna
		USN-3	As a user I can	I can operate	MEDIUM	SPRINT-	Sneha
			turn on	the exhausting		2	Shruthi
			exhausting fan	fan anytime.			Jeyadhar-
							ani
							yamuna
		USN-4	As a user I can	I can turn on	HIGH	SPRINT-	Sneha
			turn on	fan when there		2	Shruthi
			exhaust fan	is a leakage of			Jeyadhar-
			when gas	gas.			ani
			leaking				yamuna
	Node-Red	USN-5	As a user I can	I can	HIGH	SPRINT-	Sneha
	Creation		receive gas			3	Shruthi

		leakage levels	receive			Jeyadhar-
		to alert	a;erting			ani
		message	message when			yamuna
			there is a gas			
			leak.			
	USN-6	As a user,i can	I can receive	MEDIUM	SPRINT-	Sneha
		receive gas	messages		3	Shruthi
		leaking levels	instantly when			Jeyadhar-
		with alerting	there is a gas			ani
		messages.	leak.			yamuna
Documentation	USN-7	As a user I can	Documentation	HIGH	SPRINT-	Sneha
		get gas level	with gas level		4	Shruthi
		and	and amount of			Jeyadhar-
		documentation	gas level			ani
						yamuna

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning and Estimation:

S.NO	MILESTONES	ACTIVITIES	DATE
1.	PhasePreparation	Pre-requisites	24Aug2022
		Prior Knowledge	25Aug2022
		Project Structure	23Aug2022
		Project Flow	23Aug2022
		Project Objectives	22Aug2022
		Registrations	26Aug2022
		Environment Set-up	27Aug2022

	Ideation Phase	I :tt C	2042022
2.	Ideation Phase	Literature Survey	29Aug2022-
			03Sept2022
		Empathy Map	5Sept 2022-7Sept
		_ ,, _	2022
		ProblemStatement	8Sept 2022-10Sept
		T1	2022
2	D : (D : D	Ideation	12Sept 2022–16Sept
3.	Project Design Phase - 1	Proposed Solution	19 Sept 2022
			– 23 Sept 2022
			2022
		Dualdana Calastian	24 C+ 2022
		Problem Solution Fit	24 Sept 2022
		FIL	– 26 Sept 2022
		Solution	27 Sept 2022
		Architecture	– 30 Sept
		Memeetare	2022
4.	Project Design Phase - 2	Customer	03 Oct 2022 –
''	Troject Design Thate	Journey Map	08 Oct 2022
		F	
		Requirement	09 Oct 2022 –
		Analysis	11 Oct 2022
		Data Flow Diagrams	11 Oct 2022 –
			14 Oct 2022
		Technology	15 Oct 2022 -
		Architecture	16 Oct 2022
5.	Project Planning Phase	Milestones & Tasks	17 Oct 2022 –
			18 Oct 2022
		Sprint Schedules	19 Oct 2022 –
		Sprint Schedules	22 Oct 2022
<u> </u>	<u>l</u>	1	22 OCI 2022

6.	Project Development Phase	Sprint - 1	26 Oct 2022 – 31 Oct 2022
		Sprint – 2	01 Nov 2022 - 07 Nov 2022
		Sprint – 3	08 Nov 2022 - 13 Nov 2022
		Sprint – 4	15 Nov 2022 - 20 Nov 2022

1.Sprint Delivery Schedule

Sprint	Functional	User Story	User Story /	Story Point	Priority
Бринс	Requirement	oser story	Task		Tilonity
	(Epic)				
Sprint-1	Create	US-1	Create the	5	High
			IBM Cloud		
			services		
			which are		
			being used in		
			this project.		
Sprint-1	Configure	US-2	Configure the	1	Medium
			IBM Cloud		
			services		
			which are		
			being used in		
			completing		
			this project.		

Sprint-1	Create	US-3	IBM Watson IoT platform acts as the mediator to connect the web application to IoT devices, so create the IBM Watson IoT platform.	1	Medium
Sprint-1	Configure	US-4	Configure the IBM Watson IoT which are being used to display the output.	13	High
Sprint-2	Create	US-1	In order to connect the IoT device to the IBM cloud, create a device in the IBM Watson IoT platform and get the device credentials.	13	High
Sprint-2	Configure	US-2	Configure a device in the IBM Watson IoT platform and get the device credentials.	3	Medium
Sprint-2	Create	US-3	Create a Node-RED service.	3	High
Sprint-2	Configure	US-4	Configure the connection security and create API keys that are used in the Node- RED service for accessing the IBM IoT Platform	1	Medium

Sprint-3	Develop	US-1	Develop a	13	High
- F			python script		8
			to publish		
			random		
			sensor data		
			such as		
			temperature,		
			Flame level		
			and Gas level		
			to the IBM		
			IoTplatform		
Sprint-3	Configure	US-2	After	1	Medium
1			developing		
			python code		
			and		
			commands		
			just run the		
			code		
Sprint-3	Print	US-3	Print the	1	Low
1			statements		
			which		
			represent the		
			control of the		
			devices.		
Sprint-3	Publish	US-4	Publish Data	5	High
- F			to The IBM		8
			Cloud		
Sprint-4	Create	US-1	Create Web	5	High
1			UI in Node-		J
			Red		
Sprint-4	Configure	US-2	Configure the	5	High
1			NodeRED		J
			flow to		
			receive data		
			from the		
			IBMIoT		
			platform		
Sprint-4	Configure	US-3	Use cloudant	5	High
-			DB nodes to		
			store the		
			received		
			sensor data in		
			the cloudant		
			DB		
Sprint-4	Publish	US-4	Publish the	5	High
±			received data		
			in		
			webapplicatio		

NODE RED WORKING

6.3. Reports from JIRA:

PROJECT TRACKER:

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date(Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	24 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	31 Oct 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	07 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

7.CODING AND SOLUTIONING

CODE

This is the code that was run in python idle version 3.7(64-bit), this code is used to simulate the gas values, and acts as the input for the project. In this python code we simulate the levels of five gases Propane, carbon monoxide. LPG ,methane, Hydrogen, the units used is ppm. These values are integers and they are

published as a d object to the website.

```
import time
import sys
import ibmiotf.application
import ibmiotf.device
import random
#Provide your IBM Watson Device Credentials
organization = "s0uwr0"
deviceType = "weather_device"
deviceId = "vpsr_weather"
authMethod = "token"
authToken = &guot;9mMbsPkwZ-NtBMUAPc&guot;
# Initialize GPIO
def myCommandCallback(cmd):
print("Command received: %s" % cmd.data['command'])
print(cmd)
try:
deviceOptions = {"org": organization, "type": deviceType,
"id": deviceId, "auth-
method": authMethod, "auth-token": authToken}
deviceCli = ibmiotf.device.Client(deviceOptions)
#.....
except Exception as e:
print("Caught exception connecting device: %s" % str(e))
sys.exit()
# Connect and send a datapoint " hello " with value " world " into the cloud
as an event of
type " greeting" 10 times
deviceCli.connect()
while True:
#Get Sensor Data from DHT11
Propane = random.randint(0, 2000);
Carbon Monoxide = random.randint(0, 100);
LPG= random.randint(0, 2000);
Methane = random.randint(0, 1000);
Hydrogen= random.randint(0, 5000);
```

```
data = {"d":{
" Propane": Propane,
"Carbon_Monoxide&quot::
Carbon_Monoxide, "LPG": LPG,
" Methane & quot; : Methane,
"Hydrogen":Hydrogen
}
#print data
def myOnPublishCallback():
print (" Published Propane = %s ppm" % Propane, " LPG = %s ppm" %
LPG, &quot:to
IBM Watson")
success = deviceCli.publishEvent("IoTSensor", "json", data, qos=0,
on publish=myOnPublishCallback)
if not success:
print("Not connected to IoTF")
time.sleep(1)
deviceCli.commandCallback = myCommandCallback
# Disconnect the device and application from the cloud
deviceCli.disconnect()
```

This code connects to the device in the IBM IoT platform, which is in turn connected to Node red. The gas levels can also be viewed at Node red.

7.1 FEATURE 1

- Here the Gas level is continuously monitored in real time using an app with negligible delay.
- High sensitivity to the five gases s Propane, carbon monoxide. LPG ,methane, Hydrogen
- Long life of the system, easy to monitor and maintain
- Detection threshold for the gases in ppm
- 1. Propane 1,000 ppm.
- 2. Carbon Monoxide 50 ppm.
- 3. LPG Harmful level 2,000 ppm
- 4. Methane 1,000 ppm
- 5. Hydrogen 4,100ppm
- If the detection threshold is breached, then the user is alerted.

7.2 FEATURE 2

- This project helps the industries in monitoring the emission of harmful gases from any location (i.e any part of the world).
- The inspectors don't necessarily have to be in the factory/ plant, so they don't have to get exposed to these harmful gases.
- In several industries, the leakage of gases can cause, economic loss to the company, which can be minimized using this system.
- In the web application, admins can view the sensor parameters and the gas levels.

7.3 DATABASE SCHEMA

The table in the database named gas:-

8. TESTING:

8.1 TEST CASE

8.2 USER ACCEPTANCE TESTING:

Section			Total Cases	Not Tested	Fail	Pass
Print Engine			7	О	О	7
Client Application			51	О	О	51
Security			2	О	О	2
Outsource Shipping	j		3	О	О	3
Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Su	btotal
By Design	10	4	2	3		20
Duplicate	1	o	3	О		4
External	2	3	О	1		6
Fixed	11	2	4	20		37
Not Reproduced	О	o	1	О		1
Skipped	О	o	1	1		2
Won't Fix	О	5	2	1		8
Totals	24	14	13	26		77

TEST CASE ANALYSIS

Exception Reporting	9	0	0	9
Final Report Output	4	0	0	4
Version Control	2	0	0	2

9 RESULTS:

The system can be taken as a small attempt to connect the existing primary gas detection methods to a mobile platform integrated with IoT platforms. The gases are sensed in an area of 1m radius of the rover and the sensor output data is continuously transferred to the local server. The accuracy of sensors is not up to the mark, thus stray gases are also detected which creates an amount of error in the outputs of the sensors, especially in case of methane. Further the availability and storage of toxic gases like hydrogen sulfide also creates problems for testing the assembled hardware. As the system operates outside the pipeline, the complication of system maintenance and material selection of the system in case of corrosive gases is reduced. Thus, the system at this stage can only use data as a primary indicator of leakage inside a plant.

9.1 PERFORMANCE METRICS

S.no	Name of the Phase	Tasks Performed	Performance Metrics

1	Development of Problem statement	The underlying problem was analyzed and a rough idea of the solution was planned	The problem statement was developed
2	Ideation Phase	Extracting use and test case	Empathy map, Ideation and literature survey were formulated.
3	Project design phase-1	Proposed solution Problem solution fit Solution architecture	The same was written and uploaded in git hub.
4	Project design phase2	Customer journey Functional requirements Data flow diagrams Technology architecture.	Customer journey Functional requirements Data flow diagrams Technology architecture were made
5	Project planning phase	Prepare milestone and activity list Sprint delivery plan	Prepare milestone and activity list Sprint delivery plan wereprepared
6	Project developmentphase	Project development delivery of sprint-1 Project development delivery of sprint-2 Project development delivery of sprint-3 Project development delivery of sprint-4	The four sprints were successfully completed

10.ADVANTAGES AND DISADVANTAGES

10.1 ADVANTAGES

- 1. Get real time alerts about the gaseous presence in the atmosphere.
- 2. Prevent fire hazards and explosions.
- 3. Supervise gas concentration levels.
- 4. Ensure worker's health.
- 5. Real-time updates about leakages.
- 6. Cost-effective installation.
- 7. Data analytics for improved decisions.
- 8. Measure oxygen level accuracy.
- 9. Get immediate gas leak alerts.

10.2 DISADVANTAGES

- 1. It requires air or oxygen to work.
- 2. It gets reacted due to heating of wire.
- 3. It can be poisoned by lead, chlorine and silicon

11.CONCLUSION

This gas leak detector system contains two features, this includes the SMS Gateway featurefor only sending warning information regarding the gas leak to user, and the alarm for the warning alert. There is some improvement which can be applied for the future work, such as regarding the SMS Gateway, it needs to be enhanced with features such as notifying the user whenever the remainingcredit balance is insufficient. Another thing which can be enhanced is regarding the sensor, the sensors in this module do not include somewhat notification for notifying the user whenever the sensor is not working properly or not connected to the micro-controller for some cases, therefore, it is recommended to add this feature in the future work for better refinement.

12. FUTURE SCOPE

We propose to build the system using an MQ6 gas detection sensor and interface it with an Aurdino Uno micro controller along with an LCD Display. This system uses the gas sensor to detect any gas leakages. The gas sensor sends out a signal to the micro controller as soon as it encounters a gas leakage. The micro controller processes this signal and a message is displayed on the LCD to alert the user.

13. APPENDIX:

```
import time
import sys
import cv2
import numpy as np
import smtplib
import threading Fire_Reported = 0
video = cv2.VideoCapture("Rocket Launch - 228.mp4") # If you want to use a webcam use
Index like 0,1. while True:
(grabbed, frame) = video.read() if not grabbed:
break
frame = cv2.resize(frame, (850, 540))
blur = cv2.GaussianBlur(frame, (21, 21), 0)
hsv = cv2.cvtColor(blur, cv2.COLOR_BGR2HSV)
lower = [110, 50, 50] # threshold value for fire colour
upper = [130, 255, 255]
lower = np.array(lower, dtype="uint8")
upper = np.array(upper, dtype="uint8")
mask = cv2.inRange(hsv, lower, upper)
```

```
output = cv2.bitwise_and(frame, hsv, mask=mask)
no_red = cv2.countNonZero(mask)
if int(no_red) > 15000:
Fire_Reported = Fire_Reported + 1
cv2.imshow("output",output)
cv2.imshow("video",frame)
if cv2.waitKey(1) & 0xFF == ord('q'): #For killing the program break
cv2.destroyAllWindows()
video.release()
13.1 SOURCE CODE:
#include <LiquidCrystal.h>
LiquidCrystal lcd(5,6,8,9,10,11);
Int redled = 2;
Int greenled = 3;
Int buzzer = 4;
Int sensor = A0;
Int sensorThresh = 400;
Void setup()
pinMode(redled, OUTPUT);
pinMode(greenled,OUTPUT);
pinMode(buzzer,OUTPUT);
pinMode(sensor,INPUT);
Serial.begin(9600);
Lcd.begin(16,2);
Void loop()
Int analogValue = analogRead(sensor);
Serial.print(analogValue);
If(analogValue>sensorThresh)
```

```
digitalWrite(redled,HIGH);
digitalWrite(greenled,LOW);
tone(buzzer,1000,10000);
lcd.clear();
lcd.setCursor(0,1);
lcd.print("ALERT");
delay(1000);
lcd.clear();
lcd.setCursor(0,1);
lcd.print("EVACUATE");
delay(1000);
}
Else
digitalWrite(greenled,HIGH);
digitalWrite(redled,LOW);
noTone(buzzer);
lcd.clear();
lcd.setCursor(0,0);
lcd.print("SAFE"); delay(1000);
lcd.clear();
lcd.setCursor(0,1);
lcd.print("ALL CLEAR");
delay(1000);
```

13.2.1 GITHUB LINK:

https://github.com/IBM-EPBL/IBM-Project-36781-1660297806