

Grammaires algébriques

FIL

Licence info S5 TD COMPIL – 2009-2010

Exercice	 100	α	α +	400	h
ryxercice	1 145	11.	\leftarrow 1.	\Box	,,,
		α	\sim	\mathbf{u}	$^{\circ}$

Energies 1. Bes a ct des v	
On considère la grammaire algébrique $G=(V_T,V_N,A,P)$ avec $V_T=\{a,b\},V_N=\{A\}$ et $P=\{A\to aAb AA bAa \epsilon\}.$	
$\mathbf{Q} \ 1.1$: Donner des mots de $L(G)$ de longueur 0, 2, 4.	
${f Q}$ 1.2 : Tout mot commençant par a se termine-t-il par b ?	
${\bf Q}$ ${\bf 1.3}$: Quel est le langage engendré par G ? Justifier intuitivement.	
${f Q}$ 1.4 : Soit le mot $w=aabbbaab$. Donner pour $w,$ une dérivation droite, une dérivation gauche arbre syntaxique.	e et ur
${f Q}$ 1.5 : G est-elle ambiguë? Justifier.	
Exercice 2: Encore des a et des b	
Pour chacun des langages ci-dessous, donner une grammaire algébrique qui l'engendre : $ - \{a^nb^n \mid n \geq 0\}; $ $ - \text{ langage des palindromes sur } \{a,b\} \text{ (mots qui se lisent de la même manière de gauche à droite droite à gauche)}; $ $ - \{a^pb^nc^na^p \mid n,p \geq 1\}; $ $ - \{a^nb^p \mid n \geq p \geq 0\}; $ $ - \text{ langage des mots bien parenthésés par } a \text{ et } b, \text{ contenant par exemple } \epsilon, aabbab, aabb. $	e et de
Exercice 3: Un langage de commandes	
Lors du TD1 on a réfléchi à un analyseur lexical pour le langage de commandes suivant : - une commande est composée d'un nom de commande, suivi d'une liste optionnelle d'argur suivie d'une liste facultative d'options; - une liste d'arguments est une suite d'arguments; - une liste d'options est une suite non vide d'options encadrée par [et], à l'intérieur de laque	
options sont séparées par , ; – une option est un caractère précédé d'un tiret ;	
- un argument est un identificateur, de même qu'un nom de commande.	
Par exemple, macom arg1 arg2 [-a,-b] est une commande, ainsi que macom [-f] et macom.	
${f Q}$ 3.1 : Donner une grammaire algébrique qui décrit ce langage de commande. Préciser quels so terminaux, ses non-terminaux et son axiome.	ont ses
${f Q}$ 3.2 : Le langage décrit est-il régulier? Justifier.	
On envisage d'enrichir la syntaxe d'une commande pour ses options : une option est soit ractère comme précédemment soit une liste d'options. Par exemple macom [-a,[-b,[-c]],[[-d] maintenant une commande correcte (comment ça il n'est pas réaliste ce langage de commandes?)]]] est
${f Q~3.3}$: Modifier la grammaire de la question 1 pour prendre en compte ces modifications.	
${f Q~3.4}$: Le langage décrit (après modification) est-il régulier? Justifier.	

TD COMPIL 2009-2010

Exercice 4: Description de volumes

On s'intéresse à la description textuelle de volumes contenant une arborescence de répertoires et fichiers. La description commence par le mot-clé contentFor suivi du nom du volume (une suite de caractères). Ensuite on trouve la liste des fichiers et/ou répertoires contenus dans le volume. Un fichier est représenté par son nom. La description d'un répertoire commence par un crochet ouvrant suivi du nom du répertoire suivi du caractère : suivi de la description du contenu du répertoire, suivie d'un crochet fermant. Le contenu du répertoire est décrit par la liste de ses éléments. Un répertoire contient des fichiers et/ou d'autres répertoires. Les noms de répertoire et de fichier sont des suites de caractères. Un volume et un répertoire peuvent être vides de contenu. Voila un exemple de description :

contentFor USBkey README [machin :] toto [Desktop : [tpCompil : Makefile tp.tex tp.dvi] photo.jpg] dump Q 4.1: Donner les productions d'une grammaire qui engendre l'ensemble des descriptions de volume. Entourer l'axiome et souligner les terminaux. Q 4.2 : Le langage engendré par cette grammaire est-il régulier? Justifier en au plus 2 lignes. Exercice 5: Expressions régulières On souhaite décrire les expressions régulières parenthésées sur {a,b} ne contenant pas le mot vide. Le algébriques). La concaténation est implicite (pas de symbole de concaténation).

choix entre deux expressions sera dénotée par + (pour ne pas confondre avec le choix | des grammaires

 \mathbf{Q} 5.1: Écrire une grammaire à opérateur G (intuitive, et par là sans doute ambiguë) décrivant ces expressions régulières, en explicitant l'ensemble des terminaux et l'ensemble des non-terminaux.

Q 5.2: Justifier l'ambiguïté de cette grammaire.

Q 5.3: Donner un arbre syntaxique pour le mot a+b*a et le mot (a+b)*(ab). Ces mots sont-ils ambigus? Justifier.

Q 5. 4 : Sachant que l'opérateur * est prioritaire sur la concaténation, elle même prioritaire sur l'opérateur +, et que les opérateurs binaires sont associatifs à gauche, donner une grammaire non ambiguë G' équivalente à celle de la question 1.

 \mathbf{Q} 5.5: Donner à nouveau un arbre syntaxique pour le mot $\mathbf{a}+\mathbf{b}*\mathbf{a}$, cette fois pour G'.

Exercice 6: Expressions arithmétiques post-fixées

Soit la grammaire
$$G = (V_T, V_N, E, P)$$
 avec $V_N = \{E\}$, $V_T = \{+, -, *, /, i\}$ et $P = \{E \rightarrow E \ E \ + \ | E \ E \ + \ | E \ E \ - \ | E \ E \ / \ | i \ \}$

Q 6.1: Donner un arbre syntaxique pour les mots ii+i* et ii+i+.

Q 6.2: Donner un mot dont l'interprétation infixée est i+(i+i), ainsi qu'un arbre syntaxique pour ce mot.

Q 6.3: Cette grammaire est-elle ambiguë?

Licence info S5 2009-2010 2

 \Box

Exercice 7: Conditionnelles

On considère la grammaire des conditionnelles suivantes, dont l'ensemble des terminaux est $\{if, e, else, statNoIf\}$:

 $stat \rightarrow \mathtt{statNoIf} \mid \mathtt{if} \ \mathtt{e} \ stat \mid \mathtt{if} \ \mathtt{e} \ stat \ \mathtt{else} \ stat$

- Q 7.1: Montrer que cette grammaire est ambiguë.
- Q 7.2 : Donner une grammaire non ambiguë équivalente.

Pour les curieux, consulter la spécification du langage Java, paragraphe 14.5 et 14.9. http://java.sun.com/docs/books/jls/second_edition/html/statements.doc.html#101241

Exercice 8: Expressions régulières

On reprend les expressions régulières de l'exercice 5, et on considère la grammaire d'axiome E :

 $E \rightarrow choix$ $choix \rightarrow choix + concat \mid concat$ $concat \rightarrow etoile \ concat \mid etoile$ $etoile \rightarrow X * \mid X$ $X \rightarrow a \mid b \mid (E)$

 \mathbf{Q} 8.1 : Cette grammaire n'engendre pas les expressions régulières habituelles. Dites pourquoi et justifier par des exemples.

Q 8.2: Que se passe-t-il si on remplace $etoile \rightarrow X * par etoile \rightarrow E *?$

Exercice 9: Propriétés de clôture des langages algébriques

 \mathbf{Q} $\mathbf{9.1}$: Montrer que l'union / le produit de 2 langages algébrique est un langage algébrique, de même que l'étoile d'un langage algébrique.

Idée : construire une grammaire algébrique à partir de grammaires algébriques qui engendrent les langages opérandes. $\hfill\Box$

- \mathbf{Q} 9.2 : Montrer que les langages algébriques ne sont fermés ni par intersection ni par complémentaire. Idées :
 - Pour l'intersection chercher à obtenir le langage contre-exemple $\{a^nb^nc^n \mid n \geq 0\}$ à partir de deux langages algébriques qui n'imposent pas l'égalité du nombre de a, b et c, mais seulement de deux d'entre eux, du genre $\{a^nb^nc^p \mid n \geq 0, p \geq 0\}$.
 - Pour le complémentaire : partir des propriétés de clôture déjà prouvées et raisonner par l'absurde.

Exercice 10: Recettes de cuisine

J'aimerais stocker sur ordinateur mes recettes de cuisine préférées. Voilà un exemple de recette :

Riz carottes lentilles

Recette végétarienne facile et pas chère, pratique quand le réfrigérateur est vide

Nombre de part : 2

Temps de préparation : 10mn Temps de cuisson : 20mn

Coût : £ Difficulté : *

Ingrédients : 2 carottes, 2 oignons, 1/2 tasse riz, 1/2 tasse lentilles, sel, poivre, curry, huile d'olive, algues Émincer les oignons et les faire revenir dans un peu d'huile d'olive. [...] Ajouter les lentilles, attendre 12 minutes, saler en fin de cuisson.

2009-2010 3 Licence info S5

Astuces : délicieux avec de la sauce soja

Servir avec : de l'eau?

Remarques : si pas d'algues, rallonger la cuisson des lentilles Déjà dans le placard : riz, lentilles, huile, curry, sel, poivre, algues

J'ai écrit la grammaire algébrique suivante :

- les terminaux sont : { TEXTE, COUT, POURIEN, PASDONNE, DISPENDIEUX, TEMPS, DU-REEPREPA, DUREECUISSON, DUREEREPOS, SERVIRAVEC, ASTUCES, REMARQUES, INGREDIENTS, DANSPLACARD, DIFFICULTE, INRATABLE, MOYEN, DIFFICILE, NBPARTS, ENTIER, VIRG};
- les non-terminaux sont : {recette, titre, preambule, ingredients, description, postambule, commentaire, nbParts, durees, cout, difficulte, tempsPreparation, tempsCuisson, tempsRepos, lecout, listeIngredients, ingredient, astuces, remarques, dejaServiA, dansMonPlacard, tache, diff};
- l'axiome est recette;
- les productions sont les suivantes :

recette

titre preambule ingredients description postambule preambule → commentaire nbParts durees cout difficulte durees → tempsPreparation tempsCuisson temps Preparation \rightarrow DUREEPREPA TEMPS tempsCuisson \rightarrow DUREECUISSON TEMPS | ϵ tempsRepos \rightarrow DUREEREPOS TEMPS | ϵ $\operatorname{cout} \to \operatorname{COUT} \operatorname{lecout}$ $lecout \rightarrow POURIEN \mid PASDONNE \mid DISPENDIEUX$ $durees \rightarrow tempsPreparation tempsCuisson$ $tempsPreparation \rightarrow DUREEPREPA TEMPS$ $tempsCuisson \rightarrow DUREECUISSON TEMPS$ $tempsRepos \rightarrow DUREEREPOS TEMPS$ $ingredients \rightarrow INGREDIENTS\ listeIngredients$ $listeIngredients \rightarrow ingredient VIRG listeIngredients$ $ingredient \rightarrow TEXTE$ postambule → astuces remarques dansMonPlacard $astuces \rightarrow ASTUCES TEXTE$ $servirAvec \rightarrow SERVIRAVEC TEXTE$ $dansMonPlacard \rightarrow listeIngredients$ $\operatorname{description} \to \operatorname{tache} \operatorname{description} \mid \operatorname{tache}$ $tache \rightarrow TEXTE$ $difficulte \rightarrow DIFFICULTE diff$ $diff \rightarrow INRATABLE \mid MOYEN$ $nbParts \rightarrow NBPARTS ENTIER$

Q 10.1: Que pensez-vous de cette grammaire algébrique?

Exercice 11: Réduction de grammaire

Q 11.1: Réduire la grammaire $G = (V_T, V_N, S, P)$ avec $V_T = \{a, b, c\}, V_N = \{S, A, B, C, D, E\}$ et P contient les productions :

2009-2010 4 Licence info S5