

# AUDITORIA WI-FI BASEADA EM ESP32

**POR: AUGUSTO DALEFFE & JOÃO PAVAN** 

## **OBJETIVO DO PROJETO**

O projeto teve como intuito desenvolver um auditor para redes sem fio, a fim de trazer à tona vulnerabilidades comuns dentro do meio. Para isso, foram utilizados exclusivamente um conjunto de ESP32, componentes responsáveis pela simulação de uma rede sem fio e seus usuários.

Durante o desenvolvimento foram implementados alguns ataques comuns a redes wifi, nosso objetivo foi mostrar como é possível identificar e neutralizar esses ataques com dispositivos de baixo custo e sem muito poder computacional.



## ARQUITETURA GERAL DO SISTEMA

#### **Topologia Escolhida:**

• Topologia Estrela: Apenas um AP para N clientes

#### **Componentes principais:**

- ESP32 Auditor/AP: Ponto de acesso e monitor da rede Wi-Fi
- Clientes legítimos: Dispositivos simulando uso normal
- Clientes maliciosos: Dispositivos injetando ataques de flooding

A comunicação é totalmente embarcada, sem dependência de ferramentas externas, garantindo integração eficiente e autossuficiente.



# LÓGICA DO ACCESS POINT (AUDITOR)

O firmware inicializa o ESP32 como Access Point configurando nome da rede, senha, canal e limite máximo de conexões para controle rigoroso do ambiente.

Um servidor TCP na porta 3333 é criado para comunicação e debug em tempo real.

Funções internas monitoram eventos da rede, identificam padrões de ataque e acionam a função add\_to\_blacklist() para mitigar ameaças.



## **ATAQUES SIMULADOS**



#### **DEAUTH FLOOD**

Envio contínuo e forçado de desconexões para desestabilizar clientes legítimos.



#### **AUTHFLOOD**

Bombardeio de tentativas de autenticação falsas para sobrecarregar o sistema.



#### **PACKET FLOOD**

Saturação do canal via envio massivo e contínuo de pacotes com MACs aleatórios.

Cada ataque é configurado com MACs randômicos, intervalos curtos entre eventos e alto número de tentativas, simulando cenários reais para testes robustos.

# LÓGICA DE DETECÇÃO DOS ATAQUES

#### **DEAUTH FLOOD**

Detecta alta frequência incomum de solicitações de desconexão, típicas de ataques de negação de serviço.

#### **AUTH FLOOD**

Monitora múltiplas tentativas de autenticação rejeitadas em curto espaço de tempo.

#### **PACKET FLOOD**

Conta o número de pacotes enviados por segundo por cada endereço MAC para identificar excessos anormais.

Dispositivos identificados como ofensores são inseridos automaticamente na blacklist temporária, impedindo conexões subsequentes e protegendo a rede.

## DESAFIOS TÉCNICOS ENFRENTADOS

## **LIMITAÇÕES AVANÇADAS**

**ARP Spoofing:** demanda manipulação em nível de camada 2, com controle detalhado da pilha de rede não suportado no ESP32 padrão.

#### **MOTIVOS TÉCNICOS**

Firmware restrito, ausência de suporte ao modo monitor + AP simultâneo e necessidade de modificações profundas no IDF da Espressif.

#### **COMPLEXIDADE DO EVIL TWIN**

Requer replicar o AP legítimo com múltiplas interfaces Wi-Fi ou soft APs simultâneos, indisponíveis no firmware nativo do ESP32.

#### **RESULTADO PRÁTICO**

Foco confiável em ataques de flooding, ampliando conhecimento em segurança Wi-Fi embarcada e limites do hardware.

## **CONCLUSÃO E APRENDIZADOS**

#### **RESULTADOS DE DEFESA**

Identificação e bloqueio eficaz dos ataques simulados, com preservação dos clientes legítimos.

## **SOLUÇÕES EMBUTIDAS**

Blacklist dinâmica e lógica embarcada com recursos limitados do ESP32 mostraram-se eficientes.

### POTENCIAL DIDÁTICO

O projeto oferece uma ferramenta prática para educação em segurança de redes Wi-Fi e testes em ambientes controlados.

## **FIM**