CSCI-GA.2560-001, Artificial Intelligence

April 4, 2022

Solutions to Problem 1 of Homework 8 (5 Points)

Name: Anav Prasad (ap7152)

Due: 5PM on Monday, April 4

Collaborators:

Gridworld (4x4 - skipped O as too similar to 0)

A	В	С	D
E	F	G	Н
I	J	K	L
M	N	Р	Q

Similar to the maze from class, in Gridworld you can make 4 possible moves: up, down, left, right. However, in case you are at an edge/corner, rather than lose moves the boundary moves simply transition to self. Multiple "self" moves are merged.

e.g. the actions from M are I, N, M and from P are {K,N,P,Q}

You may either:

- Use a spreadsheet (Note: search for "iterative calculation" for info on setting up excel or sheets to allow recursive formulas.)
- Use your Lab 3 solver
- Use a closed form algebraic computation

Please indicate which you did in case of small numerical discrepancies.

Print answers to 3 decimal places, using 150 iterations and tolerance of 0.001.

Answers accepted correct within .01

Remember: α is the "transition failure probability" for a decision node. So $\alpha = 0.15$ means the success rate is 0.85

You will use the Bellman equation: the utility of a state is equal to the immediate reward for that state, plus the discounted utility of future state(s).

$$v(s) = R(s) + \gamma * P * v(s)$$

Question:

Assuming that:

• A and Q are terminal states with a reward of 2

• all other states give a reward of -3 and are chance nodes with uniform random probabilities (.25 for each of the 4 transitions, .333 for corners).

Solve the value function as a Markov reward process. Print the 14 non-terminal values.

Solution:

Formulas for value iteration:

A = 2	$B = -3 + \frac{A+F+C+B}{4}$	$C = -3 + \frac{B+G+D+C}{4}$	$D = -3 + \frac{C + H + D}{3}$
$E = -3 + \frac{E+I+F+A}{4}$	$F = -3 + \frac{E+J+G+B}{4}$	$G = -3 + \frac{F + K + H + C}{4}$	$H = -3 + \frac{G + L + H + D}{4}$
$I = -3 + \frac{I + M + J + E}{4}$	$J = -3 + \frac{I+N+K+F}{4}$	$K = -3 + \frac{J + P + L + G}{4}$	$L = -3 + \frac{K + Q + L + H}{4}$
$M = -3 + \frac{M+N+I}{3}$	$N = -3 + \frac{M+N+P+J}{4}$	$P = -3 + \frac{N+P+Q+K}{4}$	Q = 2

So, the values obtained after value iteration are as follows:

A = 2	B = -38.493	C = -55.366	D = -59.865
E = -38.493	F = -50.117	G = -55.741	H = -55.366
I = -55.366	J = -55.741	K = -50.118	L = -38.494
M = -59.865	N = -55.366	P = -38.494	Q = 2

CSCI-GA.2560-001, Artificial Intelligence

April 4, 2022

Solutions to Problem 2 of Homework 8 (5 Points)

Name: Anav Prasad (ap7152) Due: 5PM on Monday, April 4

Collaborators:

Assuming that:

• A and Q are terminal states with a reward of 15 and -15 respectively

- states J and G give a reward of 3, and are chance nodes with uniform random probabilities
- all other states give a reward of -1 and are decision nodes

Using a discount factor γ of 0.9 and a Q-learning α of 0.15 (a.k.a. decision node probability of failure), solve the MDP using value iteration and greedy policy computation.

Print out the learned policy, e.g. $\{F \to E, K \to J, ...\}$ and also the 14 non-terminal values under that policy.

Solution:

The learned policy is as follows:

- \bullet $B \to A$
- \bullet $C \to B$
- \bullet $D \to C$
- \bullet $E \to A$
- \bullet $F \rightarrow E$
- \bullet $H \to G$
- \bullet $I \to E$
- $\bullet \ K \to J$
- \bullet $L \to K$
- $\bullet \ M \to I$
- \bullet $N \to J$
- \bullet $P \to K$

Formulas for value iteration using the learned policies:

$$A = 15$$

$$B = -1 + \gamma \cdot \left((1 - \alpha) \cdot A + \frac{\alpha}{3} \cdot (F + C + B) \right)$$

$$C = -1 + \gamma \cdot \left((1 - \alpha) \cdot B + \frac{\alpha}{3} \cdot (G + D + C) \right)$$

$$D = -1 + \gamma \cdot \left((1 - \alpha) \cdot C + \frac{\alpha}{2} \cdot (H + D) \right)$$

$$E = -1 + \gamma \cdot \left((1 - \alpha) \cdot A + \frac{\alpha}{3} \cdot (E + I + F) \right)$$

$$F = -1 + \gamma \cdot \left((1 - \alpha) \cdot E + \frac{\alpha}{3} \cdot (J + G + B) \right)$$

$$G = 3 + \frac{\gamma}{4} \cdot (F + K + H + C)$$

$$H = -1 + \gamma \cdot \left((1 - \alpha) \cdot G + \frac{\alpha}{3} \cdot (L + H + D) \right)$$

$$I = -1 + \gamma \cdot \left((1 - \alpha) \cdot E + \frac{\alpha}{3} \cdot (I + M + J) \right)$$

$$J = 3 + \frac{\gamma}{4} \cdot (I + N + K + F)$$

$$K = -1 + \gamma \cdot \left((1 - \alpha) \cdot J + \frac{\alpha}{3} \cdot (P + L + G) \right)$$

$$L = -1 + \gamma \cdot \left((1 - \alpha) \cdot I + \frac{\alpha}{3} \cdot (Q + L + H) \right)$$

$$M = -1 + \gamma \cdot \left((1 - \alpha) \cdot J + \frac{\alpha}{3} \cdot (M + N + P) \right)$$

$$P = -1 + \gamma \cdot \left((1 - \alpha) \cdot K + \frac{\alpha}{3} \cdot (N + P + Q) \right)$$

$$Q = -15$$

So, the values obtained after value iteration, using the learned policies, are as follows:

A = 15	B = 11.860	C = 9.311	D = 7.173
E = 11.860	F = 9.600	G = 11.037	H = 8.386
I = 9.311	J = 11.037	K = 8.425	L = 5.390
M = 7.173	N = 8.386	P = 5.390	Q = -15