Analisi di un Filtro Crossover

Samuele Lanzi mat. 941813

7 Aprile, 5 Maggio, 26 Maggio 2021

1 Sommario

L'esperienza svolta ha permesso di analizzare il comportamento di un filtro crossover sottoposto a differenti segnali in entrata. Acquisendo i dati relativi ai due rami del circuito al variare della frequenza del segnale è stato possibile stimare la frequenza di crossover tipica del circuito. Dapprima è stata analizzata l'ampiezza del segnale in funzione della frequenza portando risultati positivi in quanto la stima della frequenza di crossover $v_0 = (4024 \pm 4)~Hz$ è risultata compatibile con quella attesa di valore $v_0 = (4021 \pm 40)~Hz$. Dopodiché è stato analizzato lo sfasamento della tensione nei rami rispetto a quella generata, che ha portato ad una misura indipendente della frequenza di crossover pari a $v_0 = (4007 \pm 16)~Hz$ anch'essa compatibile con quella attesa.

2 Introduzione

Il filtro crossover è un tipo di circuito utilizzato nei sistemi di riproduzione audio allo scopo di dividere il segnale in due range di frequenze associati a due speakers: tweeter per alte frequenze e woofer per basse frequenze. Uno schema del circuito realizzato è rappresentato in Fig. ??. I componenti di un filtro crossover passivo sono induttanze, condensatori e resistori ed i rami costituiscono un filtro passa-basso ed un filtro passa-alto. La frequenza di separazione del se $v_0 = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\pi\sqrt{LC}}$

 $\frac{1}{2\pi\sqrt{\tau_L\tau_C}}g$ naleès pecificadel circuito eviene detta frequenza di crossover; sidimostra (detta gliina ppendice) chetale f

con $\tau_L = L/(R_L + R_{IL})$ e $\tau_C = (R_C + R_{IC})C$ rispettivamente tempi caratteristici del filtro passa-basso e filtro passa-alto. Applicando in input una tensione sinusoidale di frequenza fissata ed ampiezza costante ci si aspetta di rilevare ai capi delle resistenze R_L ed R_C due segnali alla stessa frequenza di entrata ma di ampiezza diversa dipendente dalla frequenza. D'atra parte studiando lo sfasamento ci si aspetta un andamento decrescente all'aumentare della frequenza in entrambi i rami. Si può quindi estrapolare sperimentalmente la frequenza di crossover osservando per quale valore della frequenza in ingresso si ha la stessa ampiezza oppure uno sfasamento opposto sui due rami.

3 Apparato Sperimentale

Il circuito in Fig. ?? è stato assemblato sulla breadboard della scheda di acquisizione dati NI ELVIS II. I due rami del circuito sono collegati al *Function Generator* (FGEN) di ELVIS avente resistenza interna $R_{\varepsilon} = 50 \ \Omega$. Sul ramo del woofer sono presenti un'induttanza di valore $L = (47.2 \pm 0.5) \ mH$ avente resistenza interna $R_{IL} = (198.8 \pm 0.5) \ \Omega$ ed una resistenza collegata in serie $R_L = (994 \pm 5) \ \Omega$; in parallelo, sul ramo del tweeter, sono presenti un condensatore di capacità $C = (33.2 \pm 0.3) \ nF$ e

Figura 1: Schema del circuito realizzato.

due resistenze in serie $R_C = (993 \pm 5) \ \Omega$ e $R_{IC} = (201 \pm 1) \ \Omega$ aggiunta per compensare la resistenza interna dell'induttanza. I valori delle componenti del circuito sono stati misurati mediante il *Digital Multimeter* di ELVIS attribuendo a tali valori le incertezze suggerite dalle specifiche della scheda di acquisizione fornite dal costruttore.

Per determinare la frequenza di crossover sono stati acquisiti dati relativi alla tensione in ingresso FGEN e le tensioni ai capi di R_L ed R_C al variare della frequenza in input; quest'ultima è stata fatta variare nel range $1 \ kHz - 10 \ kHz$ con incrementi di $10 \ Hz$. L'ampiezza e la fase, entrambe funzioni della frequenza, sono state estrapolate da ogni acquisizione grazie al subVI *Extract Single Tone Information* di LabVIEW. L'acquisizione è stata effettuata ad una frequenza di campionamento pari a $200 \ kHz$, grazie alla quale è stato possibile avere un grande numero di punti.

4 Risultati e Discussione

4.1 Analisi preliminare

Per verificare il corretto funzionamento del filtro è stata effettuata un'analisi preliminare: in Fig. 2 sono rappresentati alcuni comportamenti del filtro al variare di FGEN, in particolare oltre alla frequenza è stata variata anche la forma d'onda del segnale in entrata con l'ausilio dell'*Arbitrary Wave Function Generator* di ELVIS. Da questa prima analisi è possibile notare come a basse frequenze (inferiori a quella di crossover) si rileva un'ampiezza superiore sul ramo del woofer rispetto a quello del tweeter, ad alte frequenze si osserva il comportamento opposto ed alla frequenza prossima a quella di crossover le ampiezze sui due rami sono molto simili.

(d) Comportamento del filtro sottoposto ad una Linear Sweep Sine Function. È possibile apprezzare come le ampiezze sui due rami si assomiglino tanto quanto la frequanza dell'onda si avvicini a quella di crossover.

(e) Filtro sottoposto ad un segnale di ampiezza variabile

Figura 2: Effetti del filtro sui vari segnali in entrata. I dati sono rappresentati da linee continue a causa dei numerosi punti ravvicinati.

4.2 Analisi della tensione

Figura 3: Ampiezza del segnale rilevato in funzione della frequenza in ingresso e funzioni attese: (a) sweep effettuato tra 1 kHz e 10 kHz con step di 10Hz, (b) sweep tra 3950 Hz e 4100 Hz e valore atteso della frequenza di crossover con relativa incertezza. I dati e le incertezze sono stati rappresentati con linee e bande continue a causa dell'elevata densità di valori.

In Fig. 3 sono rappresentati i dati sperimentali rilevati sui rami del circuito a confronto con le curve teoriche. Ai dati sperimentali è stata associata un'incertezza $\delta V = 2~mV$ come suggerito dalle specifiche della scheda ELVIS. Le incertezze sulla frequenza sono confrontabili con la risoluzione del *Function Generator* (0.186 Hz) quindi del tutto trascurabili rispetto alle frequenze tipiche di questa esperienza. La frequenza di crossover attesa $v_0 = (4021 \pm 40)~Hz$ rappresentata in Fig. 3b è stata calcolata attraverso l'equazione (1). Gli andamenti teorici sono dati dalle seguenti espressioni:

$$V_C(v) = V \frac{r_C}{\sqrt{1 + \frac{1}{(2\pi\tau_C v)^2}}} \qquad V_L(v) = V \frac{r_L}{\sqrt{1 + (2\pi\tau_L v)^2}}$$
(2)

 V_C e V_L sono le ampiezze ai capi di R_C ed R_L , V la tensione in ingresso, v la frequenza generata, τ_C e τ_L i tempi caratteristici dei rami, $r_C = \frac{R_C}{(R_C + R_{IC})}$ e $r_L = \frac{R_L}{(R_C + R_{IC})}$ rappresentano i rapporti tra resistenza su cui viene misurata la tensione e la resistenza dell'intero ramo; per costruzione $r_C \approx r_L = 0.83 \pm 0.01$. Nella Fig. 3a notiamo che FGEN si discosta dal valore costante atteso $(2.5 \ V)$ in quanto vi è una piccola caduta di potenziale dovuta alla resistenza interna di ELVIS; tale caduta di potenziale è di circa $0.1 \ V$.

Il nostro obiettivo è quello di stimare la frequenza di crossover, quindi determinare i valori di τ_C e τ_L che meglio si adattano ai nostri dati, per fare ciò è stato eseguito un fit delle funzioni in equazione (2) sui dati sperimentali. I risultati del fit visibili in Fig. 4 hanno fornito i parametri $\tau_C = (38.40 \pm 0.06)~\mu s$ e $\tau_L = (40.27 \pm 0.01)~\mu s$ molto vicini a quelli attesi $\tau_C = (39.6 \pm 0.8)~\mu s$ e $\tau_L = (39.6 \pm 0.7)~\mu s$. I fit sono stati effettuati considerando l'ampiezza di FGEN costante e pari al suo valor medio nel range in esame, in virtù di questo fatto durante il fit è stata considerata un'incertezza sull'ampiezza pari alla massima distanza tra i dati relativi a FGEN ed il valor medio, ovvero 20~mV. A questi fit sono associati i valori di chi quadro ridotto $\tilde{\chi}_C^2 = 0.44$ e $\tilde{\chi}_L^2 = 0.07$. Entrambi i valori risultano inferiori al valore ottimale di 1 (soprattutto il secondo) in quanto la funzione di fit è molto vicina ai dati sperimentali rispetto all'incertezza associata (probabilmente è stata sovrastimata l'incertezza). Utilizzando l'equazione (1) è possibile ricavare la miglior stima della frequenza di crossover $v_0 = (4024 \pm 4)~H_Z$ visibile nel grafico in Fig. 4b; questa stima è compatibile con il valore atteso. Il valore della frequenza risulta molto preciso con un'incertezza percentuale del 0.1%, inferiore a quella associata al valore teorico.

Figura 4: (a) Confronto tra dati sperimentali e fit attraverso i parametri τ_C e τ_L , (b) range ridotto nel quale è visibile la miglior stima della frequenza di crossover ricavata dai dati.

4.3 Analisi della fase

Figura 5: Analisi della fase: (a) sfasamento in funzione della frequenza rilevato nei rami del circuito a confronto con le funzioni di aspettazione (equazioni (3)), sono inoltre rappresentate la somma degli sfasamenti e la frequenza di crossover attesa con relativa incertezza; (b) dati sperimentali e relative curve di fit tramite i parametri τ_C e τ_L , si possono notare anche la somma dei fit e la miglior stima della frequenza di crossover con relativa incertezza.

In Fig. 5a sono rappresentati i dati sperimentali rilevati sui rami del circuito a confronto con le curve teoriche. Ai dati sperimentali è stata associata l'incertezza $\delta \phi = 180 \times v/F_S$ (v frequenza generata e F_S frequenza di campionamento). Tale formula costituisce una stima dell'incertezza ed è discussa in appendice. È importante precisare che non è conosciuto il corretto funzionamento del subVI di acquisizione dati della fase per questo motivo il metodo utilizzato per stimare l'incertezza è semplificato e costituisce probabilmente un sovrastima dell'errore. Gli sfasamenti attesi seguono le seguenti espressioni:

$$\phi_C(v) = \arctan\left(\frac{1}{2\pi\tau_C v}\right)$$

$$\phi_C(v) = -\arctan(2\pi\tau_L v)$$
(3)

Per determinare la miglior stima della frequenza di crossover è stato svolto un fit delle equazioni (3) sui dati sperimentali e le curve risultanti sono rappresentate in Fig. 5b. I parametri del fit sono: $\tau_C = (42.41 \pm 0.11)~\mu s$ e $\tau_L = (37.2 \pm 0.2)~\mu s$. A questi fit sono associati i valori del chi quadrato ridotto $\tilde{\chi}_C^2 = 1.45$ e $\tilde{\chi}_L^2 = 0.91$, entrambi i valori sono confrontabili con il valore ottimale di 1 ciò significa che le curve teoriche si adattano relativamente bene ai dati sperimentali. La miglior stima della frequenza di crossover risulta essere $v_0 = (4007 \pm 16)~Hz$ compatibile con quella teorica. La stima della frequenza risulta essere molto precisa con un'incertezza percentuale del 0.4%, anch'essa inferiore a quella associata al valore di aspettazione.

5 Conclusione

L'esperienza svolta ha confermato il comportamento atteso del filtro di crossover. L'analisi dei dati relativi alla tensione ai capi delle resistenze R_C ed R_L ha evidenziato un andamento molto simile a quello previsto dalle equazioni (2) e ha portato ad una stima della frequenza di crossover $v_0 = (4024 \pm 4) \, Hz$ in accordo con quella attesa. L'analisi dello sfasamento della tensione è stato altrettanto soddisfacente ed ha evidenziato un andamento simile a ciò che ci si aspettava dalle equazioni (3). La stima della frequenza di crossover è stata $v_0 = (4007 \pm 16) \, Hz$ in accordo con quella attesa $v_0 = (4021 \pm 40) \, Hz$. Il test d'ipotesi svolto in ambedue le analisi ha portato a valori del chi quadrato ridotto relativamente lontani dal valore ottimale di 1 (soprattutto nell'analisi della tensione). Questa leggera discordanza può essere attribuita ad una stima sbagliata dell'incertezza associata a fase ed ampiezza (probabilmente sovrastimate).

Appendice

1 Per ricavare le equazioni (1), (2), e (3) facendo riferimento alla Fig. 1 procediamo con la legge di Kirchhoff per la maglia dell'induttore:

$$\vec{V} = (R_{IL} + j\omega L)\vec{I_L} + \vec{V_L} = \frac{R_{IL} + j\omega L}{R_L + R_{IL} + j\omega L}\vec{V} + \vec{V_L}$$

j unità immaginaria e $\omega=2\pi v$ pulsazione del segnale. Isolando \vec{V}_L di ha:

$$\vec{V}_L = \frac{R_L}{R_L + R_{IL} + j\omega L} \vec{V} = \frac{r_L}{1 + j\omega \tau_L} \vec{V}$$

con $r_L = R_L/(R_L + R_{IL})$ e $\tau_L = L/(R_L + R_{IL})$. Nella maglia del condensatore procedendo nella stesso modo si ha:

$$\vec{V}_C = \frac{R_C}{R_C + R_{IC} + \frac{1}{j\omega C}} \vec{V} = \frac{r_C}{1 + \frac{1}{j\omega \tau_C}} \vec{V}$$

con $r_C = \frac{R_C}{(R_C + R_{IC})}$ e $\tau_C = C(R_C + R_{IC})$. In questo modo ho la relazione tra tensione in entrata e quella sui rami del circuito. Calcolando il modulo e la fase ho rispettivamente le equazioni (2) e (3). Per avere l'equazione (1) si può procedere eguagliando i moduli delle tensioni sui rami, ricordando che per costruzione $r_C = r_L$ si ha che:

$$\frac{r_L V}{\sqrt{1 + (2\pi \tau_L \nu_0)^2}} = \frac{r_C V}{\sqrt{1 + \frac{1}{(2\pi \tau_C \nu_0)^2}}} \to \nu_0 = \frac{1}{2\pi \sqrt{\tau_C \tau_L}}$$

2 L'incertezza sulla misura della fase è stata stimata usando una possibile espressione per lo sfasamento tra due onde sinusoidali con la stessa frequenza: $\phi = 360 \times \Delta t/T$ (Δt distanza temporale tra picchi delle due onde e T = 1/v). Assumendo $\delta t = 1/(2F_S)$ si ha $\delta(\Delta t) = \delta t = 1/(2F_S)$ quindi $\delta \phi = 180 \times v/F_S$.