Corso di Laurea: Ingegneria Informatica Testo n.xx - Esame di Fisica Generale sessione del 13/01/2022

Matricola:

Nome:

Nota Bene: assumere per i calcoli $g=10~\mathrm{m/s^2}$

Cognome:	Anno di Corso:
ESERCIZIO.1 – Meccanica Con riferimento alla figura, al soffitto di una stanza di altezza $h=3m$ è appesa una molla priva di massa e ideale di costante elastica $K=40N/m$ e lunghezza a riposo $l_0=1m$. All' estremità della molla attaccata una pallina di massa $m=1kg$, assimilabile a un punto materiale. Il sistema può oscillare solo in verticale.	
1.a Si calcoli a quale distanza dal soffitto d_e si trova la posizione di equilibrio della pallina. Se il sistema viene spostato dalla posizione di equilibrio, con quale periodo T oscillerà la pallina?	
$d_e = \dots T = \dots$	
1. b Si calcoli a quale distanza dal pavimento h_e si trova la posizione di equilibrio della pallina. Se il sistema viene spostato dalla posizione di equilibrio, con quale frequenza f oscillerà la pallina?	
$h_e = \dots \qquad f = \dots$	
$2.a$ La molla viene allungata fino a che la pallina tocca il pavimento e poi rilasciata. Dimostrare che la pallina arriva a colpire il soffitto e determinare l'energia cinetica E_c della pallina un istante prima di toccare il soffitto	
$E_c = \dots$	
2.b La molla viene allungata fino a che la pallina tocca il terra e poi rilasciata. Dimostrare che la pallina arriva a colpire il soffitto e determinare la differenza di energia potenziale, $E_{pf} - E_{pi}$, tra l'energia potenziale della pallina un istante prima di toccare il soffitto (E_{pf}) e l'energia potenziale iniziale quando la molla è allungata fino a toccare il pavimento (E_{pi}) .	
$E_{pf} - E_{pi} = \dots$	
3.a Dopo aver colpito il soffitto, la pallina inverte il proprio moto ma non arriva a terra e si ferma per un istante ad un'altezza $h^{'}=1$ m dal pavimento prima di invertire nuovamente il suo moto. Si calcoli l'energia persa E_{diss} nell'urto con il soffitto.	
E_{diss} =	

 $(Figura\ qualitativa\ e\ non\ in\ scala\ a\ scopo\ illustrativo)$

ESERCIZIO.2 - Elettromagnetismo

Con riferimento alla figura, un protone di massa $m=1.67\times 10^{-27}~kg$ e carica $q=1.6\times 10^{-19}~C$, in moto con una velocità $v_0=10^5~ms^{-1}$ diretta orizzontalmente lungo lasse x. All'istante t=0~s entra nel punto medio tra le facce di un condensatore carico. Le facce del condensatore sono quadrate, di lato l=1~cm, distanti d=1~mm e parallele al piano xz (vedi figura). Il condensatore è mantenuto a una differenza di potenziale ignota. Si consideri trascurabile la forza di gravità.

1.a All'uscita del condensatore la traiettoria del protone forma un angolo $\alpha = 5.50^{\circ}$ con l'asse x verso il basso, cioè verso y < 0. Si calcoli il tempo t^* impiegato dal protone a uscire dal condensatore e la differenza di potenziale $(V_A - V_B)$ tra l'armatura inferiore (V_A) e l'armatura superiore (V_B) .

$$t^* = \dots V_A - V_B = \dots$$

1.b All'uscita del condensatore la traiettoria del protone forma un angolo $\alpha=5.50^o$ con l'asse x verso il basso, cioè verso y<0. Si calcoli il tempo t^* impiegato dal protone a uscire dal condensatore e il campo elettrico \overrightarrow{E} nella regione tra le armature del condensatore.

$$t^* = \dots \qquad \overrightarrow{E} = \dots$$

2.a Determinare il campo magnetico $\overrightarrow{B} = B_z \hat{z}$ che è necessario applicare lungo z affinchè il protone attraversi il condensatore senza essere deflesso.

$$\overrightarrow{B} = \dots$$

3.a Supponiamo di annullare la differenza di potenziale tra le armature, lasciando invariato il campo magnetico trovato. Determinare l'angolo di deflessione β rispetto all'orizzontale e la velocità \overrightarrow{v}_B all'uscita del condensatore

$$\beta = \dots \qquad \overrightarrow{v}_B = \dots$$

3.b Supponiamo di annullare la differenza di potenziale tra le armature, lasciando invariato il campo magnetico trovato. Determinare l'angolo di deflessione β rispetto all'orizzontale e la lunghezza della traiettoria L percorsa dal protone all'interno del condensatore

$$\beta = \dots \qquad L = \dots \dots$$

(Figura qualitativa a solo scopo illustrativo)

Corso di Laurea: Ingegneria Informatica

 ${\operatorname{Testo}}\,\,{\operatorname{n.xx}}$ - Esame di Fisica Generale sessione del 13/01/2022

Nome: Matricola:

Cognome: Anno di Corso:

ESERCIZIO.1 - Meccanica

Con riferimento alla figura, al soffitto di una stanza di altezza $h=3\,m$ è appesa una molla priva di massa e ideale di costante elastica $K=40\,N/m$ e lunghezza a riposo $l_0=1\,m$. All' estremità della molla attaccata una pallina di massa $m=1\,kg$, assimilabile a un punto materiale. Il sistema può oscillare solo in verticale.

1.a Si calcoli a quale distanza dal soffitto d_e si trova la posizione di equilibrio della pallina. Se il sistema viene spostato dalla posizione di equilibrio, con quale periodo T oscillerà la pallina?

$$d_e = 1.25 m$$
 $T = 9.93 \times 10^{-1} s$

1.b Si calcoli a quale distanza dal pavimento h_e si trova la posizione di equilibrio della pallina. Se il sistema viene spostato dalla posizione di equilibrio, con quale frequenza f oscillerà la pallina?

$$h_e = 1.75 \ m$$
 $f = 1.01 \ s^{-1}$

2.a La molla viene allungata fino a che la pallina tocca il pavimento e poi rilasciata. Dimostrare che la pallina arriva a colpire il soffitto e determinare l'energia cinetica E_c della pallina un istante prima di toccare il soffitto

$$h > 2d_e \implies 3 \ m > 2.5 \ m$$
 $E_c = 30 \ J$

2.b La molla viene allungata fino a che la pallina tocca il terra e poi rilasciata. Dimostrare che la pallina arriva a colpire il soffitto e determinare la differenza di energia potenziale, $E_{pf} - E_{pi}$, tra l'energia potenziale della pallina un istante prima di toccare il soffitto (E_{pf}) e l'energia potenziale iniziale quando la molla è allungata fino a toccare il pavimento (E_{pi}) .

$$h > 2d_e \quad \Rightarrow \quad 3 \ m > 2.5 \ m \qquad \qquad E_{pf} - E_{pi} = \quad \text{-30 } J$$

3.a Dopo aver colpito il soffitto, la pallina inverte il proprio moto ma non arriva a terra e si ferma per un istante ad un'altezza h'=1 m dal pavimento prima di invertire nuovamente il suo moto. Si calcoli l'energia persa E_{diss} nell'urto con il soffitto.

$$E_{diss} = 50 J$$

Nota Bene: assumere per i calcoli $g = 10 \text{ m/s}^2$

(Figura qualitativa e non in scala a scopo illustrativo)

ESERCIZIO.2 - Elettromagnetismo

Con riferimento alla figura, un protone di massa $m=1.67\times 10^{-27}~kg$ e carica $q=1.6\times 10^{-19}~C$, in moto con una velocità $v_0=10^5~ms^{-1}$ diretta orizzontalmente lungo lasse x. All'istante t=0~s entra nel punto medio tra le facce di un condensatore carico. Le facce del condensatore sono quadrate, di lato l=1~cm, distanti d=1~mm e parallele al piano xz (vedi figura). Il condensatore è mantenuto a una differenza di potenziale ignota. Si consideri trascurabile la forza di gravità.

1.a All'uscita del condensatore la traiettoria del protone forma un angolo $\alpha = 5.50^{\circ}$ con l'asse x verso il basso, cioè verso y < 0.Si calcoli il tempo t^* impiegato dal protone a uscire dal condensatore e la differenza di potenziale $(V_A - V_B)$ tra l'armatura inferiore (V_A) e l'armatura superiore (V_B) .

$$t^* = 1 \times 10^{-7} s$$
 $V_A - V_B = -1.01 V$

1.b All'uscita del condensatore la traiettoria del protone forma un angolo $\alpha=5.50^o$ con l'asse x verso il basso, cioè verso y<0. Si calcoli il tempo t^* impiegato dal protone a uscire dal condensatore e il campo elettrico \overrightarrow{E} nella regione tra le armature del condensatore.

$$t^* = 1 \times 10^{-7} s$$
 $\overrightarrow{E} = (0, -1.01 \times 10^3, 0) Vm^{-1}$

2.a Determinare il campo magnetico $\overrightarrow{B} = B_z \hat{z}$ che è necessario applicare lungo z affinchè il protone attraversi il condensatore senza essere deflesso.

$$\overrightarrow{B} = -1.01 \times 10^{-2} \hat{z} T$$

3.a Supponiamo di annullare la differenza di potenziale tra le armature, lasciando invariato il campo magnetico trovato. Determinare l'angolo di deflessione β rispetto all'orizzontale e la velocità \overrightarrow{v}_B all'uscita del condensatore

$$\beta = 5.53^{\circ}$$
 $\overrightarrow{v}_B = (9.95 \times 10^4, 9.63 \times 10^3, 0) \ ms^{-1}$

3.
b Supponiamo di annullare la differenza di potenziale tra le armature, lasciando invariato il campo magnetico trovato.
 Determinare l'angolo di deflessione β rispetto all'orizzontale in radianti e la lunghezza della trai
ettoria L percorsa dal protone all'interno del condensatore

$$\beta = 5.53^{\circ}$$
 $L = 0.01 m$

(Figura qualitativa a solo scopo illustrativo)

(Figura qualitativa e non in scala a scopo illustrativo)

Domanda.1

Le forze agenti sulla pallina sono la forza peso e la forza di richiamo della molla. All'equilibrio la somma di tali forze è nulla per cui, nel sistema di riferimento indicato in figura a):

$$-K(y_e - l_0) + mg = 0 \quad \Rightarrow \quad d_e = y_e = l_0 + \frac{mg}{K}$$

dove abbiamo indicato con y_e la posizione di equilibrio della pallina e del sistema (pallina più molla) nel sistema di riferimento indicato, che corrisponde alla distanza d_e dal soffitto. Mentre la distanza dal pavimento è pari a $h_e = h - d_e$ Quando il sistema viene spostato dalla posizione di equilibrio, l'equazione del moto è quella di un oscillatore armonico:

$$m\ddot{y} = -K(y - l_0) + mg \quad \Rightarrow \quad \ddot{y} + \frac{K}{m} \left(y - l_0 - \frac{m}{k} g \right)$$

la cui pulsazione è $\omega=\sqrt{\frac{K}{m}},$ e $l_0+\frac{m}{k}g$ è la lunghezza della molla in condizioni di equilibrio . Per cui:

$$T = \frac{2\pi}{\omega} = 2\pi\sqrt{\frac{m}{K}} \quad \Rightarrow \quad f = \frac{1}{T} = \frac{\omega}{2\pi} = \frac{1}{2\pi}\sqrt{\frac{K}{m}}$$

Il sistema se spostato dalla posizione di equilibrio di $|\Delta y|$, oscillerà attorno alla posizione di equilibrio con:

$$y(t) \in [y_e - |\Delta y|, y_e + |\Delta y|]$$

L'ampiezza dell'oscillazione attorno alla posizione di equilibrio dipende dall'allungamento (o dalla compressione) rispetto alla posizione di equilibrio.

Domanda.2

Quando la molla viene allungata fino a portare la pallina sul pavimento, (vedi figura b), l'allungamento della molla rispetto alla posizione di equilibrio è $\Delta y = h - \left(l_0 + \frac{mg}{k}\right)$. Affinchè la pallina arrivi a colpire il soffitto è necessario che $\Delta y = h - \left(l_0 + \frac{mg}{k}\right) > \left(l_0 + \frac{mg}{k}\right)$, per cui $h > 2\left(l_0 + \frac{mg}{k}\right)$. I dati del problema verificano questa relazione.

Prima dell'urto con il soffitto, poichè le forze in gioco, forza gravitazionale e forza elastica, sono forze conservative, si conserva l'energia meccanica. Ponendo l'origine dell'energia potenziale gravitazionale a quota nulla dal terra, dalla conservazione dell'energia, indicando con E_i ed E_f l'energia iniziale e finale del sistema molla-pallina, possiamo scrivere:

$$E_i = \frac{1}{2}K(h - l_0)^2$$
 $E_f = \frac{1}{2}K(l_0)^2 + \frac{1}{2}mv^2 + mgh$

Per cui l'energia cinetica della pallina quando arriva sul soffitto è data da:

$$E_c = \frac{1}{2}mv^2 = \frac{1}{2}Kh(h-2l_0) - mgh$$

Ponendo l'origine dell'energia potenziale gravitazionale a quota nulla dal terra, l'energia potenziale iniziale e finale sono date

rispettivamente da:
$$E_{pi} = \frac{1}{2}K\left(h - l_0\right)^2 \quad \Rightarrow \quad E_{pf} = \frac{1}{2}K\left(l_0\right)^2 + mgh \text{ dalle quali } E_{pf} - E_{pi} = -\frac{1}{2}Kh\left(h - 2l_0\right) + mgh$$
 Domanda.3

In questo caso, se la pallina non arriva a terra ma si ferma vuol dire che l'urto è anelastico e l'energia non si conserva. L'energia dissipata è data da $E_i - E'_f$, dove E_i è stata determinata nella Domanda 2 e E'_f si ottiene da:

$$E'_{f} = \frac{1}{2}K(h - l_{0} - h')^{2} + mgh'$$

Per cui l'energia dissipata è data da:

$$E_{diss} = \frac{1}{2}K(h - l_0)^2 - \frac{1}{2}K(h - l_0 - h')^2 - mgh'$$

Soluzione Esercizio 2

Domanda 1

Il campo elettrico è diretto lungo l'asse y per cui $\overrightarrow{E}=E_y \hat{y}$. La forza \overrightarrow{F} agente sulla massa m quando questa è all'interno del condensatore è $\overrightarrow{F}=(0,qE_y,0)$. Per cui, lungo x il moto è rettilineo ed uniforme con $v_x=v_0$. Usando il sistema di coordinate assegnato, $x(t)=-\frac{l}{2}+v_0t$. Da $x(t^*)=\frac{l}{2}$ si ottiene che il tempo impiegato ad attraversare il condensatore è pari a $t^*=\frac{l}{v_0}$. Lungo y, il moto è uniformemente accelerato con $a_y=\frac{qE_y}{m}$ dalla quale $v_y(t^*)=a_yt^*=\frac{qE_y}{m}\frac{l}{v_0}$ Dalle quali:

$$\frac{v_y(t^*)}{v_x} = \frac{qE_y}{m} \frac{l}{v_0^2} = -tg(\alpha) \quad \Rightarrow \quad E_y = -\frac{m}{q} \frac{v_0^2}{l} tg\alpha \quad \Rightarrow \quad \overrightarrow{E} = \left(0, -\frac{m}{q} \frac{v_0^2}{l} tg\alpha, 0\right)$$

$$V_A - V_B = \int_{-\frac{d}{2}}^{\frac{d}{2}} E_y dy = E_y d = -\frac{m}{q} \frac{v_0^2}{l} dtg\alpha$$

(Figura qualitativa e non in scala a scopo illustrativo)

m,q

Domanda 2

Affinchè il protone non venga deflesso la risultante delle forza elettrica $(\overrightarrow{F}_{el})$ e magnetica (\overrightarrow{F}_m) agenti sul protone deve essere nulla:

$$\overrightarrow{F}_{el} + \overrightarrow{F}_{m} \quad \Rightarrow \quad qE_{y}\hat{y} = -q\overrightarrow{v} \wedge \overrightarrow{B} = -qv_{0}\hat{x} \wedge B_{z}\hat{z} = qv_{0}B_{z}\hat{y} = qE_{y}\hat{y} \quad \Rightarrow \quad B_{z} = \frac{E_{y}}{v_{0}} = -\frac{m}{q}\frac{v_{0}}{l}tg\alpha$$

Domanda 3

Se nello spazio occupato dal condensatore è presente solo il campo magnetico uniforme determinato nella domanda 2, il protone compie un moto circolare uniforme nel piano xy fino a quando è all'interno del condensatore.

(Figura qualitativa e non in scala a scopo illustrativo)

L'unica forza agente è infatti la forza magnetica e vale $\frac{mv_0^2}{r} = qv_0B$, per cui il raggio di curvatura del moto è $r = \frac{mv_0}{qB}$. Pertanto, all'uscita del condensatore (vedi figura) l'angolo di deflessione si ottiene dalle seguenti relazioni:

$$sin\beta = \frac{l}{r} = \frac{lqB}{mv_0} \quad \Rightarrow \quad \beta = asin\left(\frac{lqB}{mv_0}\right)$$

Con riferimento alla figura, la lunghezza della traiettoria L e la velocità \overrightarrow{v}_B all'uscita del condensatore sono rispettivamente date da:

$$L = r\beta \quad \overrightarrow{v}_B = (v_0 cos\beta, v_0 sin\beta)$$