Содержание

Ι	Определения	11
1	Диффеоморфизм	12
2	Формулировка теоремы о локальной обратимости в терминах систем уравнений	13
3	Формулировка теоремы о неявном отображении в терминах систем уравнений	14
4	Простое k -мерное гладкое многообразие в \mathbb{R}^m	15
5	Касательное пространство к k -мерному многообразию в \mathbb{R}^m	16
6	Относительный локальный максимум, минимум, экстремум	17
7	Формулировка достаточного условия относительного экстремума	18
8	Поточечная сходимость последовательности функций на множестве	19
9	Равномерная сходимость последовательности функций на множестве	20
10	Равномерная сходимость функционального ряда	21
11	Формулировка критерия Больцано-Коши для равномерной сходимости	22
12	Степенной ряд, радиус сходимости степенного ряда, формула Адамара	2 3
13	Кусочно-гладкий путь	2 4
14	Векторное поле	2 5
15	Интеграл векторного поля по кусочно-гладкому пути	26

16 Потенциал, потенциальное векторное поле	27
17 Локально потенциальное векторное поле	28
18 Похожие пути	29
19 Интеграл локально-потенциального векторного поля по произвольному пути	30
20 Гомотопия путей связанная и петельная	31
21 Односвязная область	32
22 Полукольцо, алгебра, сигма-алгебра	33
23 Объем	34
24 Ячейка	35
${f 25}$ Классический объем в ${\Bbb R}^m$	36
26 Мера, пространство с мерой	37
27 Полная мера	38
28 Сигма-конечная мера	39
29 Дискретная мера	40
30 Формулировка теоремы о лебеговском продолжении меры	41
31 Мера Лебега, измеримое по Лебегу множество	42
32 Борелевская сигма-алгебра	43

33	Ступенчатая функция	44
34	Разбиение, допустимое для ступенчатой функции	45
35	Измеримая функция	46
36	Свойство, выполняющееся почти везде	47
37	Сходимость почти везде	48
38	Сходимость по мере	49
39	Теорема Егорова о сходимости почти везде и почти равномерной сходимости	50
II	Теоремы	51
40	Лемма о "почти локальной инъективности"	52
	40.1 Доказательство	52
41	Теорема о сохранении области	53
	41.1 Доказательство	53
42	Следствие о сохранении области для отображений в пространство меньшей размерно-	
	сти	54
	42.1 Доказательство	54
43	Теорема о гладкости обратного отображения	55
	43.1 Доказательство	55
44	Лемма о приближении отображения его линеаризацией	56
	44.1 Доказательство	56

45	Теорема о локальной обратимости	57
	45.1 Доказательство	57
46	Теорема о неявном отображении	58
	46.1 Доказательство	58
47	Теорема о задании гладкого многообразия системой уравнений	60
	47.1 Доказательство	60
48	Следствие о двух параметризациях	62
	48.1 Доказательство	62
49	Лемма о корректности определения касательного пространства	63
	49.1 Доказательство	63
50	Касательное пространство в терминах векторов скорости гладких путей	64
	50.1 Доказательство	64
51	Касательное пространство к графику функции и к поверхности уровня	65
52	Необходимое условие относительного локального экстремума	66
	52.1 Доказательство	66
53	Вычисление нормы линейного оператора с помощью собственных чисел	67
	53.1 Доказательство	67
54	Теорема Стокса-Зайдля о непрерывности предельной функций. Следствие для рядов	68
	54.1 Доказательство	68
	54.2. Спедствие для рядов	68

		54.2.1 Доказательство	68
55	Мет	рика в пространстве непрерывных функций на компакте, его полнота	69
	55.1	Доказательство	69
56	Теор	рема о предельном переходе под знаком интеграла. Следствие для рядов	70
	56.1	Доказательство	70
	56.2	Следствие для рядов	70
		56.2.1 Доказательство	70
57	Пра	вило Лейбница дифференцирования интеграла по параметру	71
	57.1	Доказательство	71
5 8	Teop	рема о предельном переходе под знаком производной. Дифференцирование функ-	
	цион	нального ряда	72
	58.1	Доказательство	72
	58.2	Дифференцирование функционального ряда	72
		58.2.1 Доказательство	73
59	При	знак Вейерштрасса равномерной сходимости функционального ряда	74
	59.1	Доказательство	74
60	Диф	рференцируемость гамма функции	7 5
	60.1	Доказательство	75
61	Teop	рема о предельном переходе в суммах	7 6
	61.1	Доказательство	76

62	Теорема о перестановке двух предельных переходов	77
	62.1 Доказательство	77
63	Признак Дирихле равномерной сходимости функционального ряда	78
	63.1 Доказательство	78
64	Теорема о круге сходимости степенного ряда	7 9
	64.1 доказательство	79
65	Теорема о непрерывности степенного ряда	80
	65.1 Доказательство	80
66	Теорема о дифференцировании степенного ряда. Следствие об интегрировании. При-	•
	мер	81
	66.1 Доказательство	81
	66.2 Следствие об интегрировании	81
	66.3 Пример	82
67	Свойства экспоненты	83
68	Метод Абеля суммирования рядов. Следствие	84
	68.1 Доказательство	84
	68.2 Следствие	84
	68.2.1 Доказательство	84
69	Единственность разложения функции в ряд	85
	69.1 Локазательство	85

7 0	Раз	ложение бинома в ряд Тейлора	86
	70.1	Доказательство	86
71	Teo	рема о разложимости функции в ряд Тейлора	87
	71.1	Доказательство	87
72	Teo	рема Коши о перманентности метода средних арифметических	88
	72.1	Дополнительное определение	88
	72.2	Формулировка	88
	72.3	Доказательство	88
7 3	Про	остейшие свойства интеграла векторного поля по кусочно-гладкому пути	89
	73.1	Доказательство	90
74	Обо	бщенная формула Ньютона–Лейбница	91
	74.1	Доказательство	91
7 5	Xap	актеризация потенциальных векторных полей в терминах интегралов	92
	75.1	Доказательство	92
7 6	Heo	бходимое условие потенциальности гладкого поля. Лемма Пуанкаре	93
	76.1	Необходимое условие потенциальности гладкого поля	93
	76.2	Лемма Пуанкаре	93
		76.2.1 Доказательство	93
	76.3	Следствие к лемме Пуанкаре	93
		76.3.1 Доказательство	93
77	Лем	има о гусенице	94

	77.1 Доказательство	94
7 8	Лемма о равенстве интегралов по похожим путям	95
	78.1 Доказательство	95
7 9	Лемма о похожести путей, близких к данному	96
	79.1 Доказательство	96
80	Равенство интегралов по гомотопным путям	97
	80.1 Доказательство	97
81	Теорема о резиночке	98
	81.1 Доказательство	98
82	Теорема Пуанкаре для односвязной области	99
	82.1 Доказательство	99
83	Свойства объема: усиленная монотонность, конечная полуаддитивность	100
	83.1 Доказательство	100
84	Теорема об эквивалентности счетной аддитивности и счетной полуаддитивности	101
	84.1 Доказательство	101
85	Теорема о непрерывности снизу	102
	85.1 Доказательство	102
86	Теоремы о непрерывности сверху	103
	86.1 Локазательство	103

87	Счетная аддитивность классического объема	104
	87.1 Доказательство	. 104
88	Лемма о структуре открытых множеств и множеств меры 0	105
	88.1 Доказательство	. 105
89	Пример неизмеримого по Лебегу множества	106
90	Регулярность меры Лебега	107
	90.1 Доказательство	. 107
91	Лемма о сохранении измеримости при непрерывном отображении	108
	91.1 Доказательство	. 108
92	Лемма о сохранении измеримости при гладком отображении. Инвариантность мери	ы
	Лебега относительно сдвигов	109
	92.1 Доказательство	. 109
	92.2 Следствие	. 109
	92.2.1 Доказательство	. 109
93	Инвариантность меры Лебега при ортогональном преобразовании	110
	93.1 Доказательство	. 110
94	Лемма о структуре компактного оператора	111
	94.1 Доказательство	. 111
95	Теорема о преобразовании меры Лебега при линейном отображении	112
	95.1 Доказательство	. 112

96	Эквивалентность определений измеримости с разными множествами Лебега	113
97	Теорема об измеримости пределов и супремумов	114
	97.1 Доказательство	. 114
98	Характеризация измеримых функций с помощью ступенчатых	115
	98.1 Доказательство	. 115
99	Измеримость монотонной функции	116
10	Пеорема Лебега о сходимости почти везде и сходимости по мере	117
	100.1Доказательство	. 117
10	Пеорема Рисса о сходимости по мере и сходимости почти везде	118
	101.1Доказательство	. 118

Часть І

Определения

1 Диффеоморфизм

 $\mathit{Oбласть}\ \mathtt{B}\ \mathbb{R}^m$ — открытое связное множество.

$$f:\mathop{O}\limits_{{
m obs.}}\subset\mathbb{R}^m o\mathbb{R}^m-$$
 диффеоморфизм, если:

- 1. f обратима;
- 2. f дифференцируема;
- 3. (f^{-1}) тоже дифференцируема.

2 Формулировка теоремы о локальной обратимости в терминах систем уравнений

$$\begin{cases} f_1(x_1,\dots,x_m)=y_1\\ \dots & \text{все } f_i:\mathbb{R}^m\to\mathbb{R} \text{ и } f_i\in C^1.\\ \\ f_m(x_1,\dots,x_m)=y_m \end{cases}$$

Пусть при $y=(b_1,\dots,b_m)$ существует единственное решение $x=(a_1,\dots,a_m),$ что $\det\left(\frac{\partial f_i}{\partial x_j}(a)\right) \neq 0.$

Тогда для y_0 близких к (b_1, \ldots, b_m) существует решение (x_1, \ldots, x_m) близкое к (a_1, \ldots, a_m) и зависимое от y, причём оно гладкое.

3 Формулировка теоремы о неявном отображении в терминах систем уравнений

$$\begin{cases} f_1(x_1, \dots, x_m, y_1, \dots, y_n) = 0 \\ \dots & f_i \in C^r \left(\underset{\text{otkp.}}{O} \subset \mathbb{R}^{m+n}, \mathbb{R} \right). \end{cases}$$
$$f_n(x_1, \dots, x_m, y_1, \dots, y_n) = 0$$

x=a и y=b удовлетворяют системе уравнений, а также $\det\left(\frac{\partial f_i}{\partial y_i}(a,b)\right) \neq 0$. Тогда

 $\exists U(a)$ и $\exists V(b)$ такие, что $\exists ! \varphi : U(a) \to V(b)$ класса C^r , что $\forall x \in U(a)$ верно $(x, \varphi(x))$ — решение этой системы.

4 Простое k-мерное гладкое многообразие в \mathbb{R}^m

1. $M \subset \mathbb{R}^m$ — простое k-мерное многообразие в \mathbb{R}^m (непрерывное), если оно гомеоморфио открытому множеству из \mathbb{R}^k , т.е.:

$$\exists \mathop{O}\limits_{\text{откр.}} \subset \mathbb{R}^{k \leqslant m}$$
 и $\exists \Phi : O \to M$ такое, что

- Φ сюрьекция;
- Φ непрерывное;
- Φ обратимо и Φ^{-1} непрерывно.
- 2. $M \subset \mathbb{R}^m$ простое k-мерное C^r -гладкое многообразие, если:

$$\exists \mathop{O}_{\text{otkp.}} \subset \mathbb{R}^{k \leqslant m}, \, \Phi: O \to M \colon$$

- Φ гомеоморфизм;
- $\Phi \in C^r(O, \mathbb{R}^m)$ гладкость;
- $\forall t \in O$ верно, что rang $\Phi'(t) = k$ невырожденность.

5 Касательное пространство к k-мерному многообразию в \mathbb{R}^m

 $M\subset\mathbb{R}^m-k$ -мерное многообразие, $p\in M$ и $\Phi:\mathbb{R}^k\to\mathbb{R}^m$ — параметризация, $\Phi(t_0)=p$. Тогда $\Phi'(t_0)\left(\mathbb{R}^k\right)$ называется $\mathit{касательным}$ $\mathit{пространством}$ к k-мерному многообразию M в точке p. Обозначается $\mathit{Tp}(M)=\left\{\Phi'(t_0)h,\;h\in\mathbb{R}^k\right\}$.

6 Относительный локальный максимум, минимум, экстремум

$$f:E\subset\mathbb{R}^{m+n}\to\mathbb{R},\,\Phi:E\to\mathbb{R}^n.$$
 Тогда

 $x_0 \in E, \ \Phi(x_0) = 0$ — точка относительного локального максимума f, если

$$\exists U(x_0): \forall x \in U(x_0) \cap E$$
 и $\Phi(x) = 0$ верно $f(x) \leqslant f(x_0)$.

Аналогично определяется минимум.

7 Формулировка достаточного условия относительного экстрему-

 \mathbf{ma}

$$f: E \subset \mathbb{R}^{m+n} \to \mathbb{R}, \, \Phi: E \to \mathbb{R}^n, \, f, \, \Phi \in C^1.$$

Пусть $a \in E$: rang $\Phi'(a) = n$ и $\lambda \in \mathbb{R}^n$ и верно

$$\begin{cases} f'(a) - \lambda \Phi'(a) = 0 \\ \Phi(a) = 0 \end{cases}$$

Если $h=(h_x,h_y)\in\mathbb{R}^{m+n}$ удовлетворяет $\Phi'(a)h=0,$ то можно выразить $h_y=\psi(h_x).$

Рассмотрим квадратичную форму $Q(h_x) = d^2G(a,(h_x,\psi(h_x)))$, где $G = f - \lambda \Phi$ (форма Лагранжа). Тогда в зависимости от квадратичной формы можно узнать информацию о самой точке a:

- ullet Q положительно определенная точка локального минимума;
- ullet Q отрицательно определенная точка локального максимума;
- ullet Q неопределенная нет экстремума;
- в остальных случаях недостаточно информации.

8 Поточечная сходимость последовательности функций на множестве

 $f_n: X \to \mathbb{R}$, если $\exists f: E \subset X \to \mathbb{R}$, что для любого $x_0 \in E$ предел $\lim_{n \to +\infty} f_n(x_0) = f(x_0)$, то $f_n \xrightarrow[n \to +\infty]{} f \ cxo\partial umc$ я поточечно на E.

9 Равномерная сходимость последовательности функций на множестве

 $f,\,f_n:X o\mathbb{R},\,E\subset X,\,$ тогда f_n — равномерно cxodumcя на E к функции f если

$$M_n := \sup_{x \in E} |f_n(x) - f(x)| \xrightarrow[n \to +\infty]{} 0.$$

Обозначается как $f_n \rightrightarrows f$ на множестве E.

10 Равномерная сходимость функционального ряда

- 1. Функциональный ряд cxodumcs nomoчeчно на E, если для любого $x \in E$ сумма $\sum_{n=0}^{+\infty} u_n(x)$ сходится к сумме S(x);
- 2. Функциональный ряд cxodumcs равномерно на E (к сумме S(x)), если $S_n(x) \rightrightarrows S(x)$ на E, где $S_n(x)$ последовательность частичных сумм.

11 Формулировка критерия Больцано–Коши для равномерной сходимости

Функциональный ряд $\sum u_n$ равномерно сходится на E эквивалентно следующему утверждению:

$$\forall \varepsilon > 0: \exists N: \forall m \geqslant n \geqslant N$$
 и $\forall x \in E: \left|\sum_{k=n}^m u_k(x)\right| < \varepsilon$

12 Степенной ряд, радиус сходимости степенного ряда, формула Адамара

$$a_n\in\mathbb{R}$$
 (или \mathbb{C}), $B(z_0,r)\subset\mathbb{R}$ (или \mathbb{C}), тогда $\sum_{n=0}^{+\infty}a_n(z-z_0)^n$ называют $cmenehhым$ рядом.

Назовём R радиусом сходимости степенного ряда, если:

- ullet при $|z-z_0| < R$ ряд абсолютно сходится;
- ullet при $|z-z_0|>R$ ряд расходится.

$$R=rac{1}{\displaystyle\lim_{n
ightarrow+\infty}\sqrt[n]{|a_n|}}-$$
 формула Адамара.

13 Кусочно-гладкий путь

 $\gamma: [a,b] \to \mathbb{R}^m$ — кусочно-гладкий путь, если существует такое дробление $a=t_0 < t_1 < \ldots < t_n = b$, что для любого $i \in [1,n]$ путь $\gamma \big|_{[t_{i-1},t_i]}$ — гладкий (в точках t_{i-1} и t_i есть односторонние производные).

14 Векторное поле

 $V:E\subset\mathbb{R}^m o\mathbb{R}^m$ — векторное поле. По умолчанию считается, что V — непрерывное.

15 Интеграл векторного поля по кусочно-гладкому пути

V — векторное поле в E,E — открытое, γ — кусочно-гладкий путь в E. Тогда интеграл векторного поля V по кусочно-гладкому пути γ равен

$$I(V,\gamma) := \int_{a}^{b} \langle V(\gamma(t)), \gamma'(t) \rangle dt = \int_{a}^{b} V_{1}(\gamma(t)) \gamma'_{1}(t) + \ldots + V_{m}(\gamma(t)) \gamma'_{m}(t) dt$$

•

16 Потенциал, потенциальное векторное поле

 $V: \mathop{O}\limits_{ ext{ofm.}}\subset \mathbb{R}^m o \mathbb{R}^m$ — потенциальное векторное поле, а f — его потенциал, если $f\in C^1\left(O,\mathbb{R}
ight)$ и grad f=V в области O.

17 Локально потенциальное векторное поле

 $V: \underset{\text{oбл.}}{O} \subset \mathbb{R}^m \to \mathbb{R}^m$ — локально потенциальное векторное поле в O, если для любого $x \in O$ существует окрестность U(x), что V в U(x) — потенциальное поле.

18 Похожие пути

V — локально потенциальное векторное поле, $\gamma,\,\overline{\gamma}:[a,b]\to O$ — непрерывны. Тогда

 γ и $\overline{\gamma}$ — *похожие пути*, если у них имеется одинаковая V-гусеница, т.е. существуют такие шары B_1, B_2, \ldots, B_n и такие дробления t_0, t_1, \ldots, t_n и $\overline{t_0}, \overline{t_1}, \ldots, \overline{t_n}$, что $a = t_0 = \overline{t_0}, b = t_n = \overline{t_n}$, что для любого $k \in [1, n]$ $\gamma|_{[t_{k-1}, t_k]} \subset B_k$ и $\overline{\gamma}|_{[\overline{t_{k-1}}, \overline{t_k}]} \subset B_k$.

19 Интеграл локально-потенциального векторного поля по произвольному пути

 $I(V,\gamma) = I(V,\overline{\gamma}),$ где $\overline{\gamma}$ — похожий на γ кусочно-гладкий путь. В условиях соответствующей леммы такой всегда существует.

20 Гомотопия путей связанная и петельная

 $\gamma_0,\ \gamma_1:[a,b] o O,$ тогда гомотопия — это отображение $\Gamma:[a,b] imes[0,1] o O$ — непрерывное, такое что $\Gamma(\cdot,0)=\gamma_0(\cdot)$ и $\Gamma(\cdot,1)=\gamma_1(\cdot).$

Гомотопия связанная: $\gamma_0(a)=\gamma_1(a),\ \gamma_0(b)=\gamma_1(b)$ и $\forall u\in[0,1]\ \Gamma(a,u)=\gamma_0(a)$ и $\Gamma(b,u)=\gamma_0(b).$

Гомотопия петельная: $\gamma_0(a)=\gamma_0(b),\,\gamma_1(a)=\gamma_1(b)$ и $\forall u\in[0,1]$ $\Gamma(a,u)=\Gamma(b,u).$

21 Односвязная область

 $O\subset\mathbb{R}^m-\mathit{odнocesshas}$ область, если O- область и любой замкнутый путь гомотопен постоянному.

22 Полукольцо, алгебра, сигма-алгебра

X — множество, $\mathcal{P} \subset 2^X$ — полукольцо если:

- 1. $\emptyset \in \mathcal{P}$;
- 2. $\forall A, B \in \mathcal{P} \Rightarrow A \cap B \in \mathcal{P}$;
- 3. $\forall A_1, A_2 \in \mathcal{P}$ существует конечное число $B_1, B_2, \ldots, B_k \in \mathcal{P}$, что $A_1 \setminus A_2 = \bigsqcup_{i=1}^k B_i$.

 \mathcal{A} — алгебра подмножеств X, если:

- 1. $A, B \in \mathcal{A} \Rightarrow A \setminus B \in \mathcal{A};$
- 2. $X \in \mathcal{A}$.

 σ -алгебра \mathcal{A} , если это алгебра и ещё выполнено третье свойство:

$$\forall A_1, A_2, A_3, \ldots \in \mathcal{A} \Rightarrow \bigcup_{i=1}^{+\infty} A_i \in \mathcal{A}.$$

Можно вместо объединения потребовать пересечение, поскольку из одного следует другое.

23 Объем

 $\mu:\mathcal{P} o\overline{\mathbb{R}}-a\partial\partial umu$ вная, если:

- 1. μ не принимает одновременно бесконечности разных знаков;
- $2. \ \mu(\varnothing) = 0;$
- 3. $\forall A_1,\,A_2,\,\ldots,\,A_n\in\mathcal{P}$ дизъюнкты, если $A=\bigsqcup A_n\in\mathcal{P}$, тогда $\mu A=\mu A_1+\mu A_2+\ldots+\mu A_n.$

 $\mu-\mathit{oб}$ ъ \ddot{e} м, если:

- 1. $\mu: \mathcal{P} \to \overline{\mathbb{R}};$
- 2. $\mu \geqslant 0$;
- 3. μ аддитивная.

24 Ячейка

 $a,b \in \mathbb{R}^m,\, [a,b) = \{x \in \mathbb{R}^m : \forall i: a_i \leqslant x_i < b_i\}$ — ячейка.

${f 25}$ Классический объем в ${\Bbb R}^m$

$$\mu[a,b) = \prod_{i=1}^{m} (b_i - a_i).$$

26 Мера, пространство с мерой

 $\mu:\mathcal{P}\to\overline{\mathbb{R}}$ — мера, если μ — объём, а также выполнено свойство счётной аддитивности, т.е.:

$$\forall A,\,A_1,\,A_2,\,\ldots$$
, где A_i — дизъюнкты и $A=\bigsqcup_{i=1}^{+\infty}A_i\Rightarrow \mu A=\sum_{i=1}^{+\infty}\mu A_i.$

 (X,\mathcal{A},μ) — пространство с мерой, если \mathcal{A} — σ -алгебра на множестве X, а μ — мера на $\mathcal{A}.$

27 Полная мера

 $(X,\mathcal{A},\mu),\,\mu$ — полная мера, если $\forall E\in\mathcal{A}$ и $\mu E=0$ верно, что $\forall e\in E:e\in\mathcal{A}$ и $\mu e=0.$

28 Сигма-конечная мера

$$(X,\mathcal{P},\mu),\,\mu-\sigma$$
-конечная, если можно представить $X=\bigcup_{k=1}^{+\infty}B_k,$ где $\mu B_k<+\infty.$

29 Дискретная мера

X — множество, $A_1,\,A_2,\,\ldots$ — точки множества $X,\,h_1,\,h_2,\,\ldots\geqslant 0$ — их веса, $\mathcal{P}=2^X,$ и для любого $B\subset\mathcal{P}$ $\mu B=\sum_{i:A_i\in B}h_i.$

30 Формулировка теоремы о лебеговском продолжении меры

$$(X,\mathcal{P},\mu_0),\,\mu_0-\sigma$$
-конечный объём. Тогда

существует σ -алгебра $\mathcal A$ и мера $\mu:\mathcal A\to\overline{\mathbb R}$ и выполняются следующие свойства:

- 1. $\mathcal{P} \subset \mathcal{A}$ и $\mu|_{\mathcal{P}} = \mu_0$;
- 2. μ полная мера;
- 3. Если $\mathcal{P}\subset\mathcal{A}'$ и $\mu'\big|_{\mathcal{A}}=\mu_0,\,\mu'$ полная, то $\mathcal{A}\subset\mathcal{A}'$ и $\mu'\big|_{\mathcal{A}}=\mu;$
- 4. $\mathcal{P}\subset\mathcal{P}'$ полукольцо и $\mathcal{P}'\subset\mathcal{A},\,\mu'$ мера на $\mathcal{P}'\Rightarrow\mu'=\mu\big|_{\mathcal{P}'};$

5.
$$\forall A \in \mathcal{A} \ \mu A = \inf \left(\sum \mu_0 \left(P_k \right) : A \subset \bigcup_{k=1}^{+\infty} P_k, P_k \in \mathcal{P} \right).$$

31 Мера Лебега, измеримое по Лебегу множество

 $Mepa~Лебегa~e~\mathbb{R}^m$ — результат лебеговского продолжения классическое объёма. Обозначается λ или λ^m .

 $\mathcal{M}^m - \sigma$ -алгебра, на которой задана мера Лебега. Все множества из этой σ -алгебры измеримы по Лебегу.

32 Борелевская сигма-алгебра

 $\mathcal{B}-$ борелевская σ -алгебра — минимальная σ -алгебра (в \mathbb{R}^m), содержащая все открытые множества.

33 Ступенчатая функция

 $f:X o\mathbb{R}-$ ступенчатая (X,\mathcal{A},μ) , если существует конечное разбиение $X=\bigsqcup e_i,\ e_i$ — измеримы и $f\big|_{e_i}=\mathrm{const.}$

34 Разбиение, допустимое для ступенчатой функции

Разбиение $X=e_1\sqcup e_2\sqcup\ldots\sqcup e_n$ — допустимо для ступенчатой функции f, если $f\big|_{e_i}=$ const для каждого $i\in[1,n].$

35 Измеримая функция

$$(X,\mathcal{A},\mu),\,f:X o\overline{\mathbb{R}},\,E\in\mathcal{A}$$
. Тогда

f — измерима на множестве E,если $\forall a \in \mathbb{R} : E\left(f < a\right)$ — измерима.

36 Свойство, выполняющееся почти везде

 $(X, \mathcal{A}, \mu), E \in \mathcal{A}, w(x)$ — высказывание, зависящее от точки пространства. Говорят, что w(x) верно при почти всех x (или почти везде), если $\mu \{x : w(x)$ — ложно $\} = 0$.

37 Сходимость почти везде

 $f,f_n:E o\overline{\mathbb{R}}$ — измеримы, тогда

 $f_n \xrightarrow[n \to +\infty]{} f$ почти везде, если существует такое e, что $\mu e = 0$ и $\forall x \in E \setminus e : f_n(x) \to f(x)$.

38 Сходимость по мере

 $f_n, f: X \to \overline{\mathbb{R}}$ — измеримы, почти везде конечны, тогда

 f_n сходится по мере к f если $\forall \varepsilon > 0: \mu X\left(|f_n - f| \geqslant \varepsilon\right) \xrightarrow[n \to +\infty]{} 0.$

39 Теорема Егорова о сходимости почти везде и почти равномерной сходимости

 (X,\mathcal{A},μ) , $\mu X<+\infty$, $f_n,f:X\to\overline{\mathbb{R}}$ — измеримы, почти везде конечны, $f_n\to f$ — почти везде. Тогда $orall arepsilon>0:\exists e:\mu e<arepsilon:f_n\rightrightarrows f$ на $X\setminus e$.

Часть II

Теоремы

40 Лемма о "почти локальной инъективности"

 $F: \underset{\text{обл.}}{O} \subset \mathbb{R}^m \to \mathbb{R}^m$ — дифференцируема в точке $x_0 \in O, \, \det F'(x_0) \neq 0.$

Тогда $\exists c, \delta > 0 : \forall h : |h| < \delta : |F(x_0 + h) - F(x_0)| \geqslant c \cdot |h|$

40.1 Доказательство

 $|F(x_0+h)-F(x_0)|=|F'(x_0)h+\alpha(h)\,|h||\geqslant |F'(x_0)h|-|\alpha(h)|\,|h|\geqslant (\widetilde{c}-|\alpha(h)|)\,|h|\geqslant \frac{\widetilde{c}}{2}\,|h|,\text{ пусть при }|h|<\delta$ будет верно, что $|\alpha(h)|<\frac{\widetilde{c}}{2}.$

Возьмём в качестве $\widetilde{c} = \frac{1}{\|(F'(x_0))^{-1}\|}.$

41 Теорема о сохранении области

$$F: \mathop{O}\limits_{\text{откр.}} \subset \mathbb{R}^m o \mathbb{R}^m, \, \forall x \in O: \det F'(x) \neq 0.$$
 Тогда $F(O)$ — открыто.

41.1 Доказательство

Пусть $x_0 \in O$ и $y_0 = F(x_0) \in F(O)$, необходимо проверить, что y_0 — внутренняя точка F(O).

По лемме о "почти локальной инъективности" существуют такие c и δ , что для любого $h \in \overline{B(0,\delta)}$ верно $|F(x_0+h)-F(x_0)|\geqslant c|h| \text{ (и в частности } F(x_0+h)\neq F(x_0) \text{ при } |h|=\delta).$

$$r := \frac{1}{2} \text{dist} (y_0, F(S(x_0, \delta))) > 0$$

Проверим, что $B(y_0, r) \subset F(O)$. Пусть $y \in B(y_0, r)$ и g(x) := |F(x) - y| — функция на $\overline{B(x_0, \delta)}$.

- 1. На $S(x_0, \delta)$ верно, что $|F(x) y| \ge r$
- 2. При $x=x_0$ выполняется, что $|F(x_0)-y|=|y_0-y|< r,$ по теореме Вейерштрасса g достигает минимума внутри шара $B(x_0,\delta).$

Пусть $l:x\mapsto \left|F(x)-y\right|^2$ — достигает минимума таким же образом.

Найдём минимум с помощью необходимого условия экстремума, т.е. производная должна быть равна 0.

$$\begin{cases} l'_{x_1} = 0 & 2(f_1(x_1, \dots, x_m) - y_1) \cdot \frac{\partial f_1}{\partial x_1} + \dots + 2(f_m(x_1, \dots, x_m) - y_m) \cdot \frac{\partial f_m}{\partial x_1} = 0 \\ \dots \\ l'_{x_m} = 0 & 2(f_1(x_1, \dots, x_m) - y_1) \cdot \frac{\partial f_1}{\partial x_m} + \dots + 2(f_m(x_1, \dots, x_m) - y_m) \cdot \frac{\partial f_m}{\partial x_m} = 0 \end{cases}$$

Поскольку матрица F'(x) невырожденная по условию, то получаем, что $f_i(x)-y_i=0$ для всех i и g(x)=0, т.е. для любого $y\in B(y_0,r)$ существует такой $x\in O$, что F(x)=y.

42 Следствие о сохранении области для отображений в пространство меньшей размерности

$$F: \mathop{O}\limits_{ ext{откр.}} \subset \mathbb{R}^m o \mathbb{R}^l$$
, где $l < m$ и $F \in C^1(O)$, rang $F'(x) = l$ при всех $x \in O$. Тогда $F(O)$ — открыто.

42.1 Доказательство

В точке x_0 и в её окрестности ранг реализован на первых l столбцах.

Пусть
$$\widetilde{F} = \begin{pmatrix} F \\ x_{l+1} \\ \dots \\ x_m \end{pmatrix} : O \to \mathbb{R}^m$$
 или $(x_1,\dots,x_m) \mapsto (F(x_1,\dots,x_m),x_{l+1},\dots,x_m)$

 $\det \widetilde{F}(x_0) = \det F(x_0) \neq 0$ также $\forall x \in U(x_0)$, значит $\widetilde{F}(U(x_0))$ открыто в \mathbb{R}^m , значит и $F(U(x_0))$ открыто в \mathbb{R}^l .

43 Теорема о гладкости обратного отображения

$$T \in C^r \left(\underset{\text{откр.}}{O} \subset \mathbb{R}^m, \mathbb{R}^m \right) (r = 1, 2, ..., +\infty).$$

T — обратимо и $\det T'(x) \neq 0$ при $x \in O$. Тогда

- 1. $T^{-1} \in C^r$;
- 2. $(T^{-1})'(y_0) = (T'(x_0))^{-1}$ при $y_0 = T(x_0)$.

43.1 Доказательство

Индукция по r:

• База r = 1:

 $S = T^{-1}$ — обратное отображение, S — непрерывно (по теореме о сохранении области).

 $T(O) = O_1, y_0 \in O_1$, проверим дифференцируемость S в y_0 . Обозначим $A = T'(x_0)$.

По лемме о почти локальной инъективности $\exists c, \delta : x \in B(x_0, \delta) : |T(x) - T(x_0)| \geqslant c|x - x_0|$

По определению дифференцирования $T(x) - T(x_0) = A(x - x_0) + \alpha(x)|x - x_0|$

$$S(y) - S(y_0) = A^{-1}(y - y_0) + A^{-1}\alpha (S(y))|S(y) - S(y_0)|.$$

Пусть
$$\beta = A^{-1} \alpha (S(y)) |S(y) - S(y_0)|$$

Пусть y близко к $y_0: |x-x_0| = |S(y)-S(y_0)| < \delta$.

$$|\beta(y)| = |x - x_0| \cdot \left| A^{-1} \alpha\left(S(y)\right) \right| \leqslant \frac{1}{c} |T(x) - T(x_0)| \, \|A^{-1}\| |\alpha\left(S(y)\right)| = \frac{\|A^{-1}\|}{c} |\alpha\left(S(y)\right)| \, |y - y_0| = o(|y - y_0|)$$
 при $y \to y_0$. $\left(|T(x) - T(x_0)| \geqslant c|x - x_0| \Rightarrow |x - x_0| \leqslant \frac{1}{c} |T(x) - T(x_0)| \right)$.

$$y \xrightarrow{C^1} T^{-1}(y) = x \xrightarrow{C^1} T'(x) \xrightarrow{C^\infty} (T'(x))^{-1} = S'.$$

Таким образом, S' — непрерывно и к тому же, $\left(T^{-1}\right)'(y_0) = \left(T'(x_0)\right)^{-1}$ при $y_0 = T(x_0)$.

• Индукционный переход (без доказательства):

$$r = n \Rightarrow r = n + 1$$
:

$$T \in C^{n+1} \Rightarrow S \in C^{n+1} \Longleftrightarrow S' \in C^n$$
, но $T' \in C^n$, значит и $\left(T'\right)^{-1} \in C^n \Rightarrow S' \in C^n$.

44 Лемма о приближении отображения его линеаризацией

$$T \in C^1(O, \mathbb{R}^m), x_0 \in O$$
. Тогда

$$\forall h: |T(x_0+h)-T(x_0)-T'(x_0)h|\leqslant M\cdot |h|,$$
 где $M=\sup_{z\in [x_0,x_0+h]}\|T'(z)-T'(x_0)\|.$

44.1 Доказательство

$$|F(x)-F(x_0)|\leqslant \sup_{z\in [x_0,x]}\|F'(z)\|\cdot|x-x_0| - \text{по теореме Лагранжа}.$$

$$F(x) = T(x) - T'(x_0) \cdot x,$$

$$F'(x) = T'(x) - T'(x_0).$$

$$|T(x_0+h)-T(x_0)-T'(x_0)h|=|F(x_0+h)-F(x_0)| \leq \sup_{z\in[x_0,x_0+h]} ||F'(z)|||h|.$$

45 Теорема о локальной обратимости

$$T \in C^1(O, \mathbb{R}^m), x_0 \in O$$
 и $\det T'(x_0) \neq 0$. Тогда

$$\exists U(x_0): Tig|_{U(x_0)}$$
 — диффеоморфизм.

45.1 Доказательство

Достаточно доказать, что $\exists U(x_0)$, что $T\big|_{U(x_0)}$ — обратимо (и для любого $x\in U(x_0)$ $\det T'(x)\neq 0$).

$$T'(x_0)$$
 — обратимо, значит $\exists c > 0 : \forall h : |T'(x_0)h| \geqslant c|h|$, где $c = \frac{1}{\|T'(x_0)^{-1}\|}$.

Возьмём $U = B(x_0, r) \subset O$ так, что при $x \in U$ и было верным:

$$\det T'(x) \neq 0$$
 и $||T'(x) - T'(x_0)|| < \frac{c}{4}$.

Проверим, что $T|_{U(x_0)}$ — взаимно-однозначное отображение.

$$x,y \in U(x_0)$$
 и $y=x+h$

$$T(y) - T(x) = (T(x+h) - T(x) - T'(x)h) + (T'(x)h - T'(x_0)h) + T'(x_0)h$$

(Здесь и ниже римскими цифрами отображается номер скобки в выражении сверху)

$$|T(y) - T(x)| \ge |T'(x_0)h| - |I| - |II| \ge c|h| - \frac{c}{2}|h| - \frac{c}{4}|h| = \frac{c}{4}|h| \ne 0.$$

 $|I| \leqslant M|h|$

$$|T(x+h) - T(x) - T'(x)h| \leqslant M|h|$$

$$M = \sup_{z \in [x_0, x_0 + h]} ||T'(z) - T'(x)|| \leqslant \frac{c}{2}.$$

46 Теорема о неявном отображении

 $F: \underset{\text{otkp.}}{O} \subset \mathbb{R}^{m+n} \to \mathbb{R}^n, \, F \in C^r\left(O, \mathbb{R}^n\right),$

 $(a,b) \in O$ и F(a,b) = 0,

 $\det F_u'(a,b) \neq 0.$

Тогда:

1. Существует открытое $P \in \mathbb{R}^m, \ a \in P$ и также существует открытое $Q \in \mathbb{R}^n, \ b \in Q$ такие, что $\exists ! \varphi : P \to Q - C^r$ -гладкое, такое, что $\forall x \in P \ F(x, \varphi(x)) = 0.$

2.
$$\varphi'(x) = -\left(F_y'(x,\varphi(x))\right)^{-1} \cdot F_x'(x,\varphi(x)).$$

46.1 Доказательство

1. $\Phi: O \to \mathbb{R}^{m+n}$

$$(x,y) \mapsto (x,F(x,y))$$

$$\Phi' = \begin{pmatrix} \mathbb{E} & 0 \\ F'_x & F'_y \end{pmatrix}, \det \Phi'(a, b) \neq 0$$

 $\exists \widetilde{U}(a,b) : \Phi ig|_{\widetilde{U}} -$ диффеоморфизм.

$$\widetilde{U}=P_1 imes Q$$
, где $a\in P_1,\,b\in Q.$

(a)
$$\widetilde{V} = \Phi\left(\widetilde{U}\right)$$
 — открыто;

(b)
$$\exists \psi = \Phi^{-1} : \widetilde{V} \to \widetilde{U};$$

(c) Φ не меняет первую координату, значит ψ тоже не меняет,

$$\psi(u,v) = (u,H(u,v)), H: \widetilde{V} \to \mathbb{R}^n, H \in C^r;$$

(d) "ось x" и "ось u" одно и то же \mathbb{R}^m ,

$$P := (\mathbb{R}^m \times \{\mathbf{0}_n\}) \cap \widetilde{V}$$
 — открыто в \mathbb{R}^m ;

(e)
$$\varphi(x) := H(x,0) : P \to Q : F(x,\varphi(x)) = 0$$
 — единственно,

$$x \in P, y \in Q: F(x,y) = 0, (x,y) = \varphi(\Phi(x,y)) = \varphi(x,0) = (x, H(x,0)).$$

2.
$$F(x, \varphi(x)) = 0, F \circ H = 0,$$

$$\begin{pmatrix} F_x' & F_y' \end{pmatrix} \begin{pmatrix} E \\ \varphi'(x) \end{pmatrix} = 0 \Rightarrow F_x' + F_y' \varphi'(x) = 0,$$

$$F_y' \varphi' = -F_x'$$

$$\varphi' = -(F_y')^{-1} F_x'$$

47 Теорема о задании гладкого многообразия системой уравнений

 $M \subset \mathbb{R}^m$, зафиксируем $1 \leqslant k < m$ и $1 \leqslant r \leqslant +\infty$.

Тогда $\forall p \in M$ эквивалентны следующие два утверждения:

1. $\exists U \subset \mathbb{R}^m$ — открытое, $p \in U$,

 $M \cap U$ — простое k-мерное C^r -гладкое многообразие;

2. $\exists \widetilde{U} \subset \mathbb{R}^m$ — открытое, $p \in \widetilde{U}$,

что существуют функции $f_1,\,f_2,\,\ldots,\,f_{m-k}:\widetilde{U}\to\mathbb{R}\in C^r$ такие, что

$$x \in M \cap \widetilde{U} \iff f_1(x) = 0, f_2(x) = 0, \dots, f_{m-k}(x) = 0$$
 и (grad $f_1(p), \dots$, grad $f_{m-k}(p)$) — ЛНЗ.

47.1 Доказательство

• $1 \Rightarrow 2$:

Существует параметризация $\Phi \in C^r (O \subset \mathbb{R}^k, \mathbb{R}^m),$

 $\varphi_1,\dots,\varphi_m$ — координатные функции Ф и $p=\Phi(t_0),$ rang $\Phi'(t_0)=k.$

Можно считать, что $\left(\frac{\partial \varphi_i}{\partial t_i}(t_0)\right)$ — невырождена.

$$\mathbb{R}^m = \mathbb{R}^k \times \mathbb{R}^{m-k}.$$

$$L: \mathbb{R}^m \to \mathbb{R}^k$$
 — проекция, $x \mapsto (x_1, \dots, x_k)$.

 $L \circ \Phi$ имеет невырожденный производный оператор в точке t_0 .

 $\exists w(t_0)$ — окрестность $t_0, \exists V \in \mathbb{R}^k$ — открытое и $L \circ \Phi : w \to V$ — диффеоморфизм.

 $L(w) \to V$ — взаимно-однозначеное отображение, т.е. $\Phi(w)$ — график некоторого отображения $H: V \to \mathbb{R}^{m-k}$.

Пусть $\psi = (L \circ \Phi)^{-1} : V \to w, \psi \in C^r$.

Если
$$\widetilde{x} \in V$$
, то $(\widetilde{x}, H(\widetilde{x})) = \Phi(w(\widetilde{x})) \Rightarrow H \in C^r$.

 $\Phi(w)$ — открыто в M, \exists открытое $\widetilde{U} \in \mathbb{R}^m$ такое, что $\widetilde{U} \cap M = \Phi(w)$ (можно считать, что $\widetilde{U} \subset V \times \mathbb{R}^{m-k}$.

$$f_j:\widetilde{U}\to\mathbb{R},\,f_j(x)=H_j\left(L(x)
ight)-x_{k+j},\,$$
если $x\in\widetilde{U}\cap M\Leftrightarrow$ все $f_j(x)=0.$

$$\begin{pmatrix} \frac{\partial H_1}{\partial x_1} & \dots & \frac{\partial H_1}{\partial x_k} & -1 & 0 & \dots & 0 \\ \frac{\partial H_2}{\partial x_1} & \dots & \frac{\partial H_2}{\partial x_k} & 0 & -1 & \dots & 0 \\ \dots & & & & & & \\ \frac{\partial H_{m-k}}{\partial x_1} & \dots & \frac{\partial X_{m-k}}{x_k} & 0 & 0 & \dots & -1 \end{pmatrix}, \text{ где } m-k \text{ строчек и все они ЛН3.}$$

2 ⇒ 1:

Из предыдущего пункта у нас есть система уравнение, для которой верно, что grad $f_i(p)$ — ЛНЗ, можно считать, что $\det\left(\frac{\partial f_i}{\partial x_{k+j}}(p)\right)_{i,j=1..m-k} \neq 0$.

По теореме о неявном отображении $\exists H: P \to Q$, где P — окрестность $(p_1, ..., p_k)$, а Q — окрестность $(p_{k+1}, ..., p_m)$,

что $\forall (x_1, ..., x_k) \in P$ точка $(x_1, ..., x_k, H_1(x_1, ..., x_k), H_2(x_1, ..., x_k), ..., H_{m-k}(x_1, ..., x_k))$ удовлетворяет системе уравнений.

 $\Phi: P \to \mathbb{R}^m,$

 $u\mapsto (u,H(u))$ — параметризация нашего многообразия, $(P\times Q)\cap M$.

48 Следствие о двух параметризациях

 $M \subset \mathbb{R}^m - k$ -мерное простое C^r -гладкое многообразие, $p \in M, U$ — открытое в $M, p \in U$.

$$\Phi_1: O_1 \subset \mathbb{R}^k \to U \cap M$$
,

 $\Phi_2: O_2 \subset \mathbb{R}^k \to U \cap M$ (оба отображние "на" и даже гомеоморфизм)

 $(\phi_i \in C^r\left(O_i, \mathbb{R}^m\right))$. Тогда существует диффеоморфизм $\psi: O_1 \to O_2$ и $\Phi_1 = \Phi_2 \circ \psi$.

48.1 Доказательство

Допустим, что rang $\Phi_1'(p)$ и rang $\Phi_2'(p)$ на одном и том же наборе столбцов (во всех точках O_1 и O_2).

Возьмём $L \circ \Phi_1 : O_1 \to V_1$, и $L \circ \Phi_2 : O_2 \to V_2$, но можно добиться того, что и $L \circ \Phi_2 : O_2 \to V_1$, таким образом,

 $L \circ \Phi_1$ и $L \circ \Phi_2$ — тоже диффеоморфизмы, тогда

$$\Phi_1 = \Phi_2 \circ (L \circ \Phi_2)^{-1} \circ (L \circ \Phi_1).$$

49 Лемма о корректности определения касательного пространства

 $\Phi:O\subset\mathbb{R}^k\to\mathbb{R}^m-C^r$ -параметризация $U(p)\cap M,\ p\in M,\ \Phi(t_0)=p,\ M$ — простое k-мерное гладкое многообразие в \mathbb{R}^m . Тогда образ оператора $\Phi'(t_0):\mathbb{R}^k\to\mathbb{R}^m$ — это k-мерное подпространство в \mathbb{R}^m , не зависящее от Φ .

49.1 Доказательство

 Φ — параметризация, значит rang $\Phi'=k$, значит образ k-мерный. Если есть параметризацция Φ_2 , можно считать, что существует диффеоморфизм ψ , что $\Phi_2=\Phi\circ\psi$, и при этом $\Phi'_2=\Phi'\cdot\psi'$, где ψ' — невырожденный, значит образ Φ'_2 совпадает с Φ' .

50 Касательное пространство в терминах векторов скорости гладких путей

 $v\in Tp(M)\subset \mathbb{R}^m\Longleftrightarrow$ существует гладкий путь $\gamma_v:[-1,1]\to M,\,\gamma'(0)=v$ и $\gamma(0)=p.$

50.1 Доказательство

 Φ — параметризация в окрестности $P, \Phi(t_0) = p.$

- =
 - $\phi(t) = \Phi^{-1}(\gamma(t))$ соответствующий путь в E.

Путь гладкий, значит $\gamma'(t) = \Phi(\phi(t))' = \Phi'(\phi(t)) \cdot \phi'(t), \ \gamma'(0) = \Phi'(t_0)w$, что и требовалось доказать.

 $\bullet \Rightarrow$

$$v \in T_p(M) \to \exists w \in \mathbb{R}^k : \Phi'(t_0)w = v.$$

Рассмотрим путь $\gamma(t) = \Phi(t_0 + wt)$: $\gamma'(0) = \Phi'(t_0)w$, что и требовалось доказать.

51 Касательное пространство к графику функции и к поверхности уровня

Касательное пространство к графику $f:O\subset\mathbb{R}^m\to\mathbb{R}$, где $f\in C^1$ в точке $p=(x_0,f(x_0))$ задаётся уравнением

$$y - f(x_0) = f_1'(x_1)(x - x_1) + \ldots + f'm(x_m)(x - x_m).$$

Касательное пространство к поверхности уровня функции $f:\mathbb{R}^3 \to \mathbb{R}$ задаётся уравнением

$$f'_x(x_0)(x-x_0) + f'_y(y_0)(y-y_0) + f'_z(z_0)(z-z_0) = 0.$$

52 Необходимое условие относительного локального экстремума

$$f: E \subset \mathbb{R}^{m+n} \to \mathbb{R},$$

 $\Phi: E \to \mathbb{R}^n, \, a \in E$ и $\Phi(a) = 0$ — точка относительно локального экстремума.

rang
$$\Phi'(a) = n$$
, и f , $\Phi \in C^1(E)$.

Тогда
$$\exists \lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$$
, что

$$\begin{cases} f'(a) - \lambda \cdot \Phi'(a) = 0 \\ \Phi(a) = 0 \end{cases}$$

52.1 Доказательство

Пусть rang $\Phi'(a)$ реализован на столбцах x_{m+1}, \ldots, x_{m+n}

$$a=(a_1,\dots,a_m,a_{m+1},\dots,a_{m+n})=(a_x,a_y)$$
 и $\left(\frac{\partial\Phi}{\partial y}\right)$ — невырожденная матрица $n\times n.$

По теореме о неявном отображении $\varphi:U(a_x)\to V(a_y)$ и $\forall x\in U(a_x):\Phi(X,\varphi(X))=0$. Кстати, $U(x)\cap M_\Phi$ простое m-мерное многообразие. Тогда $a_x=(a_1,\dots,a_m)$ — точка локального экстремума для функции $g(x)=f(x,\varphi(x))$. Тогда

$$\begin{cases} f_x'(a) + f_y'(a)\varphi'(a_x) = 0 \\ \Phi_x'(a) + \Phi_y'(a) \cdot \varphi'(a_x) = 0 \end{cases}$$

$$\forall \lambda \in \mathbb{R}^n \ \lambda \cdot \Phi_x' + \lambda \cdot \Phi_y' \cdot \varphi' = 0$$

$$(f_x' - \lambda \Phi_x') + (f_y' - \lambda \Phi_y') \cdot \varphi' = 0$$
, подставляем $\lambda := f_y'(a) \cdot \left(\Phi_y'(a)\right)^{-1}$.

53 Вычисление нормы линейного оператора с помощью собственных чисел

 $A\in {
m Lin}\;(\mathbb{R}^m,\mathbb{R}^n)$, тогда $\|A\|=\max\sqrt{\lambda}$, где λ — собственные числа A^TA .

53.1 Доказательство

$$||A||^2 = \max |Ax|^2 = \max \langle Ax, Ax \rangle = \max \langle A^T Ax, x \rangle.$$

54 Теорема Стокса—Зайдля о непрерывности предельной функций. Следствие для рядов

 $f_n,\,f_0: X \to \mathbb{R},\,c \in X,\,f_n$ — непрерывно в точке $c.\,\,f_n \rightrightarrows f_0$ на $X.\,$ Тогда f_0 — непрерывна в точке $c.\,$

54.1 Доказательство

 $|f_0(x)-f_0(c)| \leq |f_0(x)-f_n(x)|+|f_n(x)-f_n(c)|+|f_n(c)-f_0(c)| < 3\varepsilon$ (китайский эпсилон) — следует из непрерывности по условию.

 $\forall \varepsilon > 0 : \exists U(c) : \forall x \in U(c) : |f_n(x) - f_n(c)| < \varepsilon.$

54.2 Следствие для рядов

 $u_n: X \to \mathbb{R}$ непрерывно в $x_0 \in X$.

 $\sum u_n(x)$ — равномерно сходится на $X,\,S(x)=\sum u_n(x).$ Тогда S(x) непрерывно в $x_0.$

54.2.1 Доказательство

 $S_n(x) \rightrightarrows S(x) \Rightarrow S(x)$ — непрерывно в x_0 .

55 Метрика в пространстве непрерывных функций на компакте, его полнота

$$X$$
 — компакт. $f_1,\,f_2:X o\mathbb{R},\,f_1,\,f_2$ — непрерывны на X .
$$\rho(f_1,f_2)=\max_{x\in X}|f_1(x)-f_2(x)|$$
 — метрика в $C(X)$, тогда пространство $(C(X),\rho)$ — полное.

55.1 Доказательство

56 Теорема о предельном переходе под знаком интеграла. Следствие для рядов

$$f_n \in C[a,b]$$
 и $f_n \rightrightarrows f$ на $[a,b]$.

Тогда
$$\int\limits_a^b f_n o \int\limits_a^b f$$

56.1 Доказательство

$$\left| \int_a^b f_n - \int_a^b f \right| \leqslant \int_a^b |f_n - f| \leqslant \max_{x \in [a,b]} |f_n(x) - f(x)| \cdot (b-a) \to 0 \ (a,b \in \mathbb{R}, \text{ He B } \overline{\mathbb{R}})$$

56.2 Следствие для рядов

 $u_n \in C[a,b]$ и $\sum u_n(x)$ равномерно сходится на [a,b],

$$S(x) = \sum_{n=1}^{+\infty} u_n(x), \ x \in [a, b],$$
 Тогда

$$\int_{a}^{b} S(x)dx = \sum_{n=1}^{+\infty} \int_{a}^{b} u_n(x)dx$$

$$(\sum u_n$$
 — равномерно сходится, u_n — непрерывно $\Rightarrow S(x)$ непрерывно $\Rightarrow \int S(x)$ имеет смысл).

56.2.1 Доказательство

$$\int\limits_a^b S_n(x)dx \to \int\limits_a^b S(x)dx$$
 по основной теореме,

$$\sum_{k=1}^{n} \int_{a}^{b} u_k(x) dx \to \sum_{k=1}^{+\infty} \int_{a}^{b} u_k(x) dx.$$

57 Правило Лейбница дифференцирования интеграла по параметру

$$f:[a,b] imes[c,d] o\mathbb{R},\,f,\,f_y'$$
 — непрерывны на $[a,b] imes[c,d],\,\Phi(y)=\int\limits_a^bf(x,y)dx$

Тогда
$$\Phi$$
 — дифференцируема на $[c,d]$ и $\Phi'(y)=\int\limits_a^b f_y'(x,y)dx$

57.1 Доказательство

$$\Phi'(y) = \frac{\Phi\left(y + \frac{1}{n}\right) - \Phi(y)}{\frac{1}{n}} = \int\limits_a^b \frac{f\left(x, y + \frac{1}{n}\right) - f(x, y)}{\frac{1}{n}} dx = \int\limits_a^b f_y'\left(x, y + \frac{\Theta}{n}\right) dx$$
 (производная в средней точ-

ке), обозначим как $\int_{a}^{b} g_n dx$.

$$0\leqslant\Theta\leqslant1$$
, докажем $g_n(x,y)\rightrightarrows f_y'(x,y)$ для $x\in[a,b].$

 f_y' непрерывна на компакте, поэтому по теореме Кантора $\forall \varepsilon: \exists \delta: \forall n: \delta < \frac{1}{n}: \forall x \in [a,b]: \left| f_y'\left(x,y+\frac{1}{n}\right) - f_y'(x,y) \right| < \varepsilon$, отсюда следует, что $g_n \rightrightarrows f_y'(x,y)$, тогда по теореме о предельном переходе под знаком интеграла полу-

чаем, что $\int_a^b g_n \to \int_a^b f_y'(x,y)dx$.

Теорема о предельном переходе под знаком производной. Дифференцирование функционального ряда

 $f_n \in C^1\langle a,b \rangle$ и $f_n \to f_0$ поточечно на $\langle a,b \rangle,\, f_n'
ightharpoonup arphi$ на $\langle a,b \rangle.$ Тогда

1.
$$f_0 \in C^1\langle a, b \rangle$$

2.
$$f_0' = \varphi$$
 на $\langle a, b \rangle$

58.1 Доказательство

$$x_0,\,x_1\in\langle a,b
angle,\,f_n'
ightrightarrowsarphi$$
 на $[x_0,x_1],\int\limits_{x_0}^{x_1}f_n'
ightarrow\int\limits_{x_0}^{x_1}arphi$

$$f_n(x_0) - f_n(x_0) \xrightarrow[n \to +\infty]{} \int\limits_{x_0}^{x_1} arphi,$$
 и $f_n(x_1) - f_n(x_0) o f_0(x_1) - f_0(x_0),$ значит

$$\int\limits_{x_0}^{x_1}\varphi=f_0(x_1)-f_0(x_0),\ f_0$$
— первообразная для $\varphi,\ \varphi$ — непрерывна, значит $f')-\varphi.$

58.2 Дифференцирование функционального ряда

$$u_n \in C^1(\langle a, b \rangle)$$

1.
$$\sum u_n(x) = S(x) \ x \in \langle a,b \rangle$$
 (поточечная сходимость)

2.
$$\sum u_n'(x) = \varphi(x)$$
 равномерно сходится при $x \in \langle a,b \rangle$.

Тогда

1.
$$S(x) \in C^1(\langle a, b \rangle)$$

2.
$$S'(x) = \varphi(x)$$
 при $x \in \langle a, b \rangle$

T.e.
$$\left(\sum_{n=1}^{+\infty} u_n(x)\right)' = \sum_{n=1}^{+\infty} u'_n(x)$$

58.2.1 Доказательство

Следует из основной теоремы.

$$f_n \leftrightarrow S_n$$
 и $f_0 \leftrightarrow S$.

$$f_n(x) o f_0(x)$$
 и $f_n'
ightharpoonup arphi$ и $\sum_{k=1}^n u_k'(x) = \left(\sum_{k=1}^n u_k(x)
ight)' = f_n'$

59 Признак Вейерштрасса равномерной сходимости функционального ряда

 $\sum u_n$ и $u_n:X\to\mathbb{R}.$ Также пусть существует вещественная последовательность c_n

- 1. $|u_n(x)| \leqslant c_n \ \forall x \in X;$
- 2. $\sum c_n$ сходится.

Тогда $\sum u_n(x)$ — равномерно сходится на X

59.1 Доказательство

Равномерно сходится тогда и только тогда $R_n \rightrightarrows 0$

$$\sup_{x\in X}\left|\sum_{k=n}^{+\infty}u_k(x)\right|\leqslant \sum_{k=n}^{+\infty}c_k\xrightarrow[n\to+\infty]{}0\text{ как остаток сходящегося ряда.}$$

60 Дифференцируемость гамма функции

 $\Gamma(x)$ дифференцируется на $(0, +\infty)$.

60.1 Доказательство

$$\frac{1}{\Gamma(x)} = xe^{\gamma x} \prod_{k=1}^{+\infty} \left(1 + \frac{x}{k}\right) e^{-\frac{x}{k}}.$$

$$-\ln\Gamma(x) = \ln x + \gamma x + \sum_{k=1}^{+\infty} \Big(\ln\Big(1+\frac{x}{k}\Big) - \frac{x}{k}\Big), \text{ обозначим за } u_k = \Big(\ln\Big(1+\frac{x}{k}\Big) - \frac{x}{k}\Big).$$

$$u'_k(x) = \frac{1}{x+k} - \frac{1}{k} = -\frac{x}{k(k+x)}.$$

$$|u_k'(x)|\leqslant rac{M}{k(k+M)}, \sum rac{M}{k(k+M)}$$
 — сходится по признаку Вейерштрасса.

 $\sum u_k'(x)$ равномерно сходится при $x\in(0,M),$ где M — какое угодно.

$$-\frac{\Gamma'(x)}{\Gamma(x)} = \frac{1}{x} + \gamma - \sum \frac{x}{k(k+x)}.$$

61 Теорема о предельном переходе в суммах

 $u_n: E \subset X \to \mathbb{R}, x_0$ — предельная точка E.

- 1. $\forall n : \exists \lim_{x \to x_0} u_n(x) = a_n;$
- 2. $\sum u_n(x)$ равномерно сходится на E.

Тогда

1.
$$\sum a_n$$
 — сходится;

2.
$$\sum a_n = \lim_{x \to x_0} \left(\sum_{n=1}^{+\infty} u_n(x) \right)$$
.

61.1 Доказательство

1.
$$\sum a_n - \text{сходится}$$

$$S_n(x) = \sum_{k=1}^n u_k(x), S_n^a = \sum_{k=1}^n a_k.$$

Достаточно проверить, что последовательность S_n^a фундаментальная.

$$\left| S_{n+p}^a - S_n^a \right| \le \left| S_{n+p}^a - S_{n+p}(x) \right| + \left| S_{n+p}(x) - S_n(x) \right| + \left| S_n(x) - S_n^a \right| < \varepsilon$$

2.
$$\widetilde{u_n}(x) := \begin{bmatrix} u_n(x) & x \neq x_0, x \in E \\ a_n & x = x_0 \end{bmatrix}$$

 $\widetilde{u_n}$ — непрерывна в точке x_0 . Остаётся только проверить, что $\sum \widetilde{u_n}(x)$ равномерно сходится в $E \cup \{x_0\}$

$$\sup_{x \in E \cup \{x_0\}} \left| \sum_{k=N}^{+\infty} \widetilde{u_k}(x) \right| \leqslant \sup_{x \in E} \left| \sum_{k=N}^{+\infty} u_k(x) \right| + \left| \sum_{k=N}^{+\infty} a_n \right| \to 0$$

 $\widetilde{u_n}$ непрерывна в x_0 и равномерно сходится, значит $\lim_{x\to x_0}=a_n.$

62 Теорема о перестановке двух предельных переходов

 $f_n: E \subset \underset{\text{\tiny M.II.}}{X} \to \mathbb{R}, \, x_0$ — предельная точка E, и

1. $f_n \rightrightarrows S(x)$ при $n \to +\infty$ на E;

$$2. f_n(x) \xrightarrow[x \to x_0]{} A_n$$

Тогда

1. $\exists \lim_{n \to +\infty} A_n = A \in \mathbb{R}$

2.
$$S(x) \xrightarrow[x \to x_0]{} A$$

62.1 Доказательство

1. Пусть $u_1 = f_1$, $u_2 = f_2 - f_1$, ..., $u_k = f_k - f_{k-1}$, тогда $\sum_{k=1}^n u_k = f_n$;

Тогда $\sum u_k$ сходится к A_k , т.к. f_n сходится к A_n , а также просто равномерно сходится, поскольку f_n равномерно сходится к S(x).

$$a_1 = A_1, a_2 = A_2 - A_1, \dots, a_k = A_k - A_{k-1}.$$

Тогда $\lim_{x\to x_0}u_k(x)=a_k,$ отсюда $\sum a_n$ сходится (из предыдущей теоремы).

2.
$$A = \sum a_n = \sum \lim_{x \to x_0} u_k = \lim_{x \to x_0} S(x)$$
.

63 Признак Дирихле равномерной сходимости функционального ряда

$$\sum a_n(x)b_n(x), x \in X.$$

- 1. $\exists C_a: \forall N: \forall x \in X: \left|\sum_{n=1}^N a_n(x)\right| \leqslant C_a,$ частичные суммы ряда $\sum a_n(x)$ равномерно ограничены.
- 2. $b_n \rightrightarrows 0$ при $n \to +\infty$ на множестве $X, \forall x: b_n(x)$ монотонная. Тогда $\sum a_n(x)b_n(x)$ равномерно сходится на X.

63.1 Доказательство

$$\sum_{N < k < M} a_k b_k = A_M b_M - A_{N-1} b_{N-1} + \sum_{k=N}^{M-1} (b_k - b_{k+1}) A_k$$

$$\left| \sum_{k=N}^{M} a_k b_k \right| \leq |A_M b_M| + |A_{N-1} b_N| + \left| \sum_{k=N} (b_k - b_{k+1}) A_k \right| \leq C_A \left(|b_M| + |b_N| \right) + \sum_{k=N} (b_k - b_{k+1}) A_k \leq C_a \left(|b_M| + |b_N| + |b_N| + |b_N| + |b_N| \right) \rightarrow c$$

- 1. $\sum_{n=1}^{+\infty} a_n(x)$ равномерно сходится $x \in X$;
- 2. $\exists C_B: \forall x \forall n: |b_n(x)| \leq C_m$ при каждом x $b_n(x)$ монотонна. $\sum a_n b_n$ равномерно сходится/

64 Теорема о круге сходимости степенного ряда

 $\sum a_n(z-z_0)^n$, тогда выполнено одно из трёх условий:

- 1. ряд сходится только при $z=z_0;$
- 2. ряд сходится при любых $z \in \mathbb{C}$;
- 3. $\exists R \in (0, +\infty)$ такое, что при $|z-z_0| < R$ абсолютно сходится, при $|z-z_0| > R$ расходится, при $|z-z_0| = R$ может как сходится, так и расходится.

64.1 доказательство

Изучим $\sum a_n(z-z_0)^n$ на абсолютная сходимость.

$$\overline{\lim_{n \to +\infty}} \sqrt[n]{|a_n||z - z_0|^n} = |z - z_0|\overline{\lim} \sqrt[n]{|a_n|}$$

- 1. $\overline{\lim} \sqrt[n]{|a_n|} = +\infty$, тогда при $z=z_0$ ряд абсолютно сходится, при $z \neq z_0$ ряд расходится;
- 2. $\overline{\lim} \sqrt[n]{|a_n|} = 0$, тогда при любых z ряд сходится абсолютно;
- $3. \ \overline{\lim} \sqrt[n]{|a_n|} \ \text{конечен, тогда при } |z-z_0| < \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}} \text{сходится, при } |z-z_0| > \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}} \text{расходится.}$ Тогда обозначим $R = \frac{1}{\overline{\lim} \sqrt[n]{|a_n|}} \text{формула Адамара.}$

Множество сходимости степенного ряда — это открытый круг радиуса R и некоторые точки на окружности.

65 Теорема о непрерывности степенного ряда

$$\sum a_n (z - z_0)^n, \ 0 < R \leqslant +\infty. \ \text{Тогда}$$

- 1. 0 < r < R тогда ряд равномерно сходится на $\overline{B(z_0,r)};$
- 2. $f(z) = \sum a_n (z z_0)^n$ непрерывен в $B(z_0, R)$.

65.1 Доказательство

- 1. По признаку Вейерштрасса: $|a_n(z-z_0)^n| \leqslant |a_n| \cdot r^n$ абсолютно сходится из предыдущей теоремы;
- 2. По теореме Стокса-Зайдля: $\forall z \in B(z_0,R)$ функция $f(z) = \sum a_n (z-z_0)^n$ непрерывна в точке z, поскольку каждый из её слагаемых непрерывен в точке z, а сам ряд равномерно сходится по определению радиуса сходимости.

66 Теорема о дифференцировании степенного ряда. Следствие об интегрировании. Пример

Обозначим за A ряд $\sum_{n=0}^{+\infty}a_n(z-z_0)^n$ и за A' ряд $\sum_{n=1}^{+\infty}na_n(z-z_0)^{n-1},\,0< R\leq +\infty$ — радиус сходимости для (A). Тогда

- 1. (A') имеет тот же радиус сходимости R;
- 2. Пусть $f(z) = \sum a_n (z-z_0)^n$, $z \in B(z_0,R)$. Тогда $\forall z \in B(z_0,R)$ f дифференцируема и $f'(z) = \sum na_n(z-z_0)^{n-1}$.

66.1 Доказательство

1. $\sum \alpha_n x^n$ и $\sum \alpha_n x^{n+1}$ имеют одинаковый радиус сходимости, т.к. $x \cdot S_N(x) = \widetilde{S_N(x)}$. Пределы этих сумм существуют для одинаковых x, значит и радиус сходимости один и тот же.

$$R_{A'} = \frac{1}{\overline{\lim} \sqrt[n]{n a_n}} = \frac{1}{\overline{\lim} \sqrt[n]{n} \sqrt[n]{a_n}} = R.$$

2. $a \in B(z_0, R)$, проверим, что существует f'(a). Возьмём r < R и $a \in B(z_0, r)$. Также пусть $w = z - z_0$ и $w_0 = a - z_0, \, |z - z_0| < r$ и $|a - z_0| < r$, тогда

$$\lim \frac{f(z) - f(a)}{z - a} = \sum a_n \frac{(z - z_0)^n - (a - z_0)^n}{(z - z_0) - (a - z_0)} = \sum a_n \frac{w^n - w_0^n}{w - w_0}$$
 и

$$\left| a_n \frac{w^n - w_0^n}{w - w_0} \right| \le |a_n| n r^{n-1}.$$

Заметим, что $\sum n|a_n|r^{n-1}$ сходится, т.к. ряд (A') при $z=z_0+r$ сходится абсолютно по признаку Вейерштрасса, ряд равномерно сходится в круге $B(z_0,r)$.

$$\lim_{z \to a} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{n \to \infty} \sum_{n=0}^{+\infty} \dots = \sum_{n=1}^{+\infty} n = \lim_{z \to a} \frac{(z - z_0)^n - (a - z_0)^n}{z - a} = \sum_{n=1}^{+\infty} a_n n(z - z_0)^{n-1}.$$

66.2 Следствие об интегрировании

 $f(x) = \sum a_n (x - x_0)^n$, $a_n \in \mathbb{R}$, $x_0 \in \mathbb{R}$, x — тоже вещественное и лежит в $(x_0 - R, x_0 + R)$.

Тогда при почленном интегрировании $\sum a_n \frac{(x-x_0)^{n+1}}{n+1}$ — ряд имеет тот же радиус сходимости и к тому

же
$$\int_{-\infty}^{x} \left(\sum_{n=0}^{+\infty} a_n (x - x_0)^n \right) dx = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} (x - x_0)^{n+1}$$
.

66.3 Пример

Разложить $\mathrm{arcctg}\,x$ в степенной ряд в окрестности $x_0=0$ (это же ряд Тейлора)

$$(\operatorname{arcctg} x)' = -\frac{1}{1+x^2} = -(1-x^2+x^4-x^6+\ldots) = -1+x^2-x^4+x^6+\ldots \ (|x|<1)$$

 $\operatorname{arcctg} x = \frac{\pi}{2} - x + \frac{x^3}{3} - \frac{x^5}{5} + \dots$ (не забудем, что при возврате к первообразной не надо забывать про константу).

67 Свойства экспоненты

Обозначим $\exp(z)=\sum_{n=0}^{+\infty}\frac{z^n}{n!},\,R=+\infty,$ сходится при всех $z\in\mathbb{C}.$

1.
$$\exp(0) = 1$$
;

$$2. (\exp z)' = \exp z$$

$$(\exp(z))' = \sum_{n=1}^{+\infty} \frac{z^{n-1}}{(n-1)!} = \sum_{n=0}^{+\infty} \frac{z^n}{n!} = \exp(z);$$

3.
$$\overline{\exp(z)} = \exp(\overline{z})$$
 комплексное, $\overline{\sum \frac{z^n}{n!}} = \sum \frac{\overline{z}^n}{n!};$

4.
$$\exp(z+w) = \exp(z) \cdot \exp(w)$$

$$\exp(z+w) = \sum_{n=0}^{+\infty} \frac{(z+w)^n}{n!} = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^n \frac{z^k}{k!} \frac{w^{n-1}}{(n-k)!} \right) = \left(\sum \frac{z^k}{k!} \right) \left(\sum \frac{w^k}{k!} \right)$$

68 Метод Абеля суммирования рядов. Следствие

$$\sum c_n - \text{сходящийся ряд, } f(x) = \sum c_n x^n, \, -1 < x < 1 \ (\Leftrightarrow R \geq 1). \text{ Тогда } \sum c_n = \lim_{x \to 1-0} f(x).$$

68.1 Доказательство

При $x \in (0,1), \sum c_n x^n$ — сходится по признаку Абеля,

 $\sum a_n b_n$, $\sum a_n$ — сходится, b_n — монотонно ограниченная, что чему сопоставить очевидно. Осталось проверить, что $\sum c_n x^n$ непрерывен на [0,1], т.е. равномерную сходимость $\sum c_n x^n$ на [0,1].

 $\sum a_n(x)$ — равномерно сходится, b_n — монотонная при каждом фиксированном $x, \exists C_b : \forall n : \forall x : |b_n(x)| \le C_b$.

68.2 Следствие

$$\sum a_n = A, \sum b_n = B, c_n := a_0b_n + a_1b_{n-1} + \ldots + a_nb_0$$
, известно, что $\sum c_n = C$. Тогда $A \cdot B = C$.

68.2.1 Доказательство

$$f(x) = \sum a_n x^n, g(x) = \sum b_n x^n, h(x) = \sum c_n x^n, x \in [0, 1].$$

x < 1 ряды для f и g абсолютно сходится, значит $f(x) \cdot g(x) = h(x)$ при $x \to 1$.

69 Единственность разложения функции в ряд

f единственным образом раскладывается в степенной ряд в окрестности x_0 (если можно, конечно, разложить его).

69.1 Доказательство

Потому что
$$a_n := \frac{f^{(n)}(x_0)}{n!}$$

$$f(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots \Rightarrow f \in C^{+\infty}(U(x_0)).$$

$$x = x_0 \Rightarrow a_0 = f(x_0).$$

$$f'(x)=a_1+2a_2(x-x_0)+3a_3(x-x_0)^2+\ldots,\,x:=x_0\Rightarrow a_1=f'(x_0)$$
 и $a_2=\frac{f''(x_0)}{2!}$ и т.д.

70 Разложение бинома в ряд Тейлора

 $\sigma \in \mathbb{R},$ тогда при |x|<1

$$(1+x)^{\sigma} = 1 + \sigma x + \frac{\sigma(\sigma-1)}{2}x^2 + \ldots + \frac{\sigma(\sigma-1)\ldots(\sigma-n+1)}{n!}x^n + \ldots$$

70.1 Доказательство

Пусть
$$S(x) = 1 + \sigma x + \frac{\sigma(\sigma - 1)}{2}x^2 + \dots$$
, тогда $S'(x) = \sigma \left(1 + (\sigma - 1)x + \frac{(\sigma - 1)(\sigma - 2)}{2}x^2 + \dots\right)$.

$$S'(x)(1+x) = \sigma S(x)$$

Проверим, что
$$f(x) = \frac{S(x)}{(1+x)^{\sigma}} = \text{const}$$

$$f' = \frac{S'(x)}{(1+x)^{\sigma}} - \frac{\sigma S(x)}{(1+x)^{\sigma+1}} = \frac{0}{(1+x)^{\sigma+1}} = 0 \Rightarrow \frac{S(x)}{(1+x)^{\sigma}} = \text{const}$$

$$f(0) = 1 \to S(x) = (1+x)^{\sigma}.$$

71 Теорема о разложимости функции в ряд Тейлора

 $f \in C^{\infty}([x_0 - h, x_0 + h])$. Тогда эквивалентны следующие утверждения:

- 1. f раскладывается в ряд Тейлора в окрестности x_0 ;
- 2. $\exists \delta, C, A > 0 : \forall n : \left| f^{(n)}(x) \right| < C \cdot A^n \cdot n!$ при $|x x_0| < \delta$.

71.1 Доказательство

1 ← 2

Оценим остаток в форме Лагранжа
$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k + \frac{f^{(n)}(\overline{x})}{n!} (x-x_0)^n$$

$$\left| \frac{f^{(n)}(\overline{x})}{n!} (x - x_0)^n \right| \leqslant \frac{CA^n n!}{n!} |x - x_0|^n \to 0 \text{ при } |A(x - x_0)| < 1 \text{ и } |x - x_0| < \frac{1}{A}.$$

Таким образом,
$$|x-x_0| < \min\left(\frac{1}{A}, \delta\right), R_n \to 0.$$

• $1 \Rightarrow 2$

$$f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$
. Пусть при $x = x_1 \neq x_0$ ряд сходится.

$$\frac{f^{(n)}(x_0)}{n!}(x_1-x_0)^n \to 0$$
, т.е. меньше какого-то C_1 по модулю.

$$\left| f^{(n)}(x_0) \right| \leqslant C_1 \cdot n! \cdot \frac{1}{|x_1 - x_0|^n} B^n$$

$$f^{(m)}(x) = \sum_{n=m}^{+\infty} \frac{f^{(n)}(x_0)}{(n-m)!} (x-x_0)^{n-m}$$

$$\left| f^{(m)}(x) \right| \leqslant \sum_{n=m}^{+\infty} \frac{|f^{(n)}(x_0)|}{(n-m)!} |x-x_0|^{n-m} \leqslant \sum_{n=m}^{\infty} \frac{C_1 B^n n!}{(n-m)!} |x-x_0|^{n-m} = C_1 B^m \sum_{n=m}^{+\infty} \frac{n!}{(n-m)!} |B(x-x_0)|^{n-m} = C_1 C_1 \cdot \frac{m! B^m}{|1-(B(x-x_0))|} \leqslant C_1 m! B^m 2^{m+1} = (2C_1) m! (2B)^m.$$

72 Теорема Коши о перманентности метода средних арифметических

72.1 Дополнительное определение

$$\sum_{n=0}^{+\infty} a_n, \, S_n = a_0 + a_1 + \ldots + a_n.$$

$$\sigma_n = \frac{1}{n+1} (S_0 + S_1 + \ldots + S_n).$$

Если существует $\lim_{n\to +\infty} \sigma_n = S$, то S называется суммой ряда $\sum a_n$ в смысле метода средних арифметических (или по Чезаро).

72.2 Формулировка

 $\sum a_n = S \Rightarrow \sum a_n = S$ в смысле метода средних арифметических.

72.3 Доказательство

$$\forall \varepsilon > 0 : \exists N_1 > 0 : \forall n > N_1 : |S_n - S| < \varepsilon$$

$$\sigma_n - S = \frac{1}{n+1} \sum_{i=0}^{n} (S_i - S)$$

$$|\sigma_n - S| \le \frac{1}{n+1} \sum_{i=0}^n |S_i - S| = \frac{\sum_{i=0}^{N_1} (S_i - S)}{n+1} + \frac{\sum_{i=N_1+1}^n |S_i - S|}{n+1} < 2\varepsilon.$$

73 Простейшие свойства интеграла векторного поля по кусочногладкому пути

1. Линейность по полю:

$$\forall \alpha, \beta \in \mathbb{R}, U, V$$
 — векторные поля, тогда
$$I(\alpha U + \beta V, \gamma) = \alpha I(U, \gamma) + \beta I(V, \gamma).$$

2. Аддитивность при дроблении пути:

$$\gamma: [a,b] \to \mathbb{R}^m, \ a < c < b,$$

$$\gamma_1 := \gamma\big|_{[a,c]}, \ \gamma_2 := \gamma\big|_{[c,b]} \ \mathsf{и}$$

$$I(V,\gamma) = I(V,\gamma_1) + I(V,\gamma_2).$$

3. Замена параметра:

$$\varphi:[p,q]\to[a,b], \text{ сюрьекция, }\varphi\in C^1\left([p,q]\right),\,\varphi(p)=a,\,\varphi(q)=b,$$

$$\gamma:[a,b]\to\mathbb{R}^m,\,\widetilde{\gamma}=\gamma\circ\varphi,\,\widetilde{\gamma}(s)=\gamma(\varphi(s)).$$

$$I\left(V,\gamma\right)=I\left(V,\overline{\gamma}\right).$$

4. $\gamma_1:[a,b] \to \mathbb{R}^m \ \gamma_2:[c,d] \to \mathbb{R}^m$ — гладкие пути,

 $\gamma_1(b) = \gamma_2(c) \Rightarrow \gamma = \gamma_2 \gamma_1$ — кусочно-гладкий путь (в точке b путь γ может быть и не гладким).

$$\gamma(t) = \begin{cases} \gamma_1(t), t \in [a, b] \\ \gamma_2(t - b + c), t \in [b, b + d - c] \end{cases}$$
Torus $I(V, \gamma) = I(V, \gamma_1) + I(V, \gamma_2)$

Тогда $I(V, \gamma) = I(V, \gamma_1) + I(V, \gamma_2)$

5.
$$\gamma:[a,b]\to\mathbb{R}^m,$$

$$\gamma^-(t)=\gamma(a+b-t),\,t\in[a,b].$$
 Тогда $I\left(V,\gamma^-\right)=-I\left(V,\gamma\right).$

6. Оценка интеграла по пути:

$$\gamma:[a,b]\to\mathbb{R}^m,\,L:=\gamma\left([a,b]\right)-$$
 носитель пути. Тогда
$$|I\left(V,\gamma\right)|\leqslant \max_{x\in L}|V(x)|\cdot l(\gamma).$$

73.1 Доказательство

1. Из определения в силу линейности скалярного произведения;

2.
$$\int_{a}^{b} = \int_{a}^{c} + \int_{c}^{b}$$
;

3.
$$I(V,\gamma) = \int_{a}^{b} V_{1}(\gamma(t)) \gamma'_{1} + \ldots + V_{m}(\gamma(t)) \gamma'_{m} dt = \int_{p}^{q} \left(V_{1}(\widetilde{\gamma}(s)) \gamma'_{1}(\varphi(s)) + \ldots + V_{m}(\widetilde{\gamma}(s)) \gamma'_{m}(\varphi(s))\right) \varphi'(s) ds = I(V,\widetilde{\gamma});$$

4.
$$\int_{a}^{b+d-c} \langle V(\gamma(t)), \gamma'(t) \rangle dt = \int_{a}^{b} + \int_{b}^{b+d-c} \int_{a}^{b} + \int_{c}^{d} \langle V(\gamma_{2}(\tau)), \gamma'_{2}(\tau) \rangle d\tau;$$

5.
$$I(V, \gamma^{-}) = \int_{a}^{b} \langle V(\gamma(a+b-t)) \cdot (-\gamma'(a+b-t)) \rangle dt = -\int_{a}^{b} \langle V, (\gamma(\tau)), \gamma'(\tau)(-d\tau) \rangle = -I(v, \gamma);$$

$$6. \left| \int_{a}^{b} \langle V(\gamma), \gamma' \rangle dt \right| \leqslant \int_{a}^{b} |\langle V, \gamma' \rangle| \, dt \leqslant \int_{a}^{b} |V\left(\gamma(t)\right)| \, |\gamma'(t)| dt \leqslant \max_{x \in L} |V(x)| \cdot \int_{a}^{b} |\gamma'(t)| dt = \max_{x \in L} |V(x)| \cdot l(\gamma).$$

74 Обобщенная формула Ньютона-Лейбница

 $V:O\subset\mathbb{R}^m\to\mathbb{R}^m$, потенциальное векторное поле, f — потенциал, $\gamma[a,b]\to O$ — кусочно-гладкий путь, $\gamma(a)=A,\,\gamma(b)=B.$ Тогда

$$\int_{\gamma} V_1 dx_1 + \ldots + V_m dx_m = f(B) - f(A).$$

74.1 Доказательство

1. γ — гладкий,

$$\phi(t) = f(\gamma(t)), \ \phi' = f'\gamma' = \langle \operatorname{grad} f, \gamma' \rangle = \langle V(\gamma(t)), \gamma'(t) \rangle.$$

$$\int_{a}^{b} V_{1}(\gamma(t))\gamma'_{1}(t) + \ldots + V_{m}(\gamma(t))\gamma'_{m}(t) = \int_{a}^{b} f'_{1}(\gamma(t))\gamma'_{1}(t) + \ldots + f'_{m}(\gamma(t))\gamma'_{m}(t)dt = f(\gamma(t)) \Big|_{a}^{b} = f(B) - f(A).$$

2. кусочно-гладкий,

$$I(V,\gamma) = \sum_{k=1}^{n} \int_{t_{k-1}}^{t_k} \dots = \sum_{k=1}^{n} f(\gamma(t_k)) - f(\gamma(t_{k-1})) = f(\gamma(t_n)) - f(\gamma(t_0)) = f(B) - f(A).$$

75 Характеризация потенциальных векторных полей в терминах интегралов

V — векторное поле в O. Тогда эквивалентны следующие утверждения:

- 1. V потенциальное;
- 2. Интеграл $\int\limits_{\gamma} V_1 dx_1 + \ldots + V_m dx_m$ не зависит от пути в O;
- 3. Для любого кусочно-гладкого замкнутого пути верно, что $\int\limits_{\gamma}V_1dx_1+\ldots+V_mdx_m=0.$

75.1 Доказательство

- $1 \Rightarrow 2$ формула Ньютона-Лейбница;
- $2 \Rightarrow 3$ очевидно;
- $3 \Rightarrow 2$ очевидно;
- $2 \Rightarrow 1$ фиксируем $A \in O$, $\forall x \in O$ фиксируем кусочно-гладкий путь γ_x , $f(x) := \int\limits_{\gamma_x} V_1 dx_1 + \ldots + V_m dx_m$. Надо проверить, что f потенциал.

Достаточно проверить, что $f_{x_1}'(x) = V_1(x)$ при всех x.

$$\gamma_0' = (h, 0, \dots, 0)$$

$$f(x + he_1) - f(x) = \int_{\gamma_0} V_d x_1 + \dots + V_m dx_m = \int_0^1 V_1(x_1 + th, \dots, x_m) h dt = V_1(x_1 + \alpha h, x_2, \dots, x_m) h 1 \Rightarrow V_1(x_1, \dots, x_m) = f'_{x_1}.$$

76 Необходимое условие потенциальности гладкого поля. Лемма Пуанкаре

76.1 Необходимое условие потенциальности гладкого поля

V — гладкое потенциальное векторное поле в $O\subset \mathbb{R}^m$, тогда $\forall x\in O$ и $\forall k,j$ $(1\leq k,j\leq m)$ верно $\frac{\partial v_k}{\partial x_j}=\frac{\partial v_j}{\partial x_k}.$

76.2 Лемма Пуанкаре

 $O\subset \mathbb{R}^m$ — выпуклое, $V:O o \mathbb{R}^m,\,V\in C^1(O)$ и верно $\forall k,\,l:rac{\partial v_k}{\partial x_l}=rac{\partial v_l}{\partial x_k}.$ Тогда V — потенциально.

76.2.1 Доказательство

$$A \in O, \gamma_x : [0,1] \to O, \gamma_v(t) = A + t(x-A), (\gamma_x)' = x - A.$$

$$f(x) := \int\limits_{\gamma_x} \sum v_i dx_i = \int\limits_0^1 \sum v_i \left(A + t \left(x - A\right)\right) \left(x_i - A_i\right) dt, \ I(x) = \int\limits_a^b f(c, x) dt \ \text{if} \ I'(x) = \int\limits_a^b f'_x dt.$$

$$\frac{\partial f}{\partial x_i} = \int\limits_0^1 v_i \left(A + t \left(x - A\right)\right) + \sum \frac{\partial v_i}{\partial x_j} \left(A + t \left(x - A\right)\right) t \left(x_i - A_i\right) dt = \int\limits_0^1 \left(t v_j \left(A + t \left(x - A\right)\right)\right)_t' dt - t v_j \left(A + t \left(x - A\right)\right) \Big|_{t=0}^{t=1} = v_j(x).$$

76.3 Следствие к лемме Пуанкаре

O — открытое множество в $\mathbb{R}^m,\,V\in C^1(O)$ и верное $\forall k,\,l: rac{\partial v_k}{\partial x_l}=rac{\partial v_l}{\partial x_k},$ тогда оно локально-потенциальное.

76.3.1 Доказательство

$$I(v,\gamma) = \int_{a}^{b} \langle V(\gamma(t)), \gamma'(t) \rangle dt.$$

77 Лемма о гусенице

 $O \subset \mathbb{R}^m, \ \forall x \in O$ задана окрестность $U(x), \ \text{и} \ \gamma : [a,b] \to O$ — непрерывный путь. Тогда существует дробление $a = t_0 < t_1 < t_2 < \ldots < t_n = b$ и шары $B_k \subset O, \ \forall k \in [1,n] : \gamma \big|_{[t_{k-1},t_k]} \subset B_k$.

77.1 Доказательство

 $\forall c \in [a,b]$ фиксируем $B_c = B\left(\gamma(c),r_c\right) \subset U\left(\gamma(c)\right).$

$$\overline{\alpha}_c = \inf \left(\alpha \in [a, b] : \gamma \Big|_{[\alpha, c]} \subset B_c \right),$$

$$\overline{\beta}_c = \sup \left(\beta \in [a, b] : \gamma \Big|_{[c, \beta]} \subset B_c \right).$$

Заузим $\overline{\alpha}_c < \alpha_c < \overline{\beta}_c < \overline{\beta}_c$, $\bigcup (\alpha_c, \beta_c)$ — открытое покрытие [a, b].

В точках c=a $\alpha_c=a$ и c=b $\beta_c=b,$ $[a,b]\subset\bigcup_{\text{кон.}}(\alpha_c,\beta_c).$

Удалим лишние наложение, т.е. удалим такие пары $(\alpha_i, \beta_i) \subset \bigcup_{i \neq j} (\alpha_j, \beta_j)$. Тогда $\forall (\alpha_c, \beta_c)$ существует уни-

кальная точка $d_c \in (\alpha_c, \beta_c)$ и $\gamma \bigg|_{[t_{k-1}, t_k]} \subset B_{C_k}.$

78 Лемма о равенстве интегралов по похожим путям

 $V:O o\mathbb{R}^m$ — локально потенциальное векторное поле, $\gamma,\overline{\gamma}$ — похожие, кусочно гладкие пути, $\gamma(a)=\overline{\gamma}(a)$ и $\gamma(b)=\overline{\gamma}(b)$, тогда

$$\int_{\gamma} \sum V_i dx_i = \int_{\overline{\gamma}} \sum V_i dx_i.$$

78.1 Доказательство

Берём V-гусеницу, f_k — потенциал в B_k , необходимо согласовать потенциалы, $f_k = f_{k+1}$ на $B_k \cap B_{k+1}$,

$$\int_{\gamma} \sum v_i dx_i = \sum_{k=1}^n \int \left(v_1 dx_1 + \ldots + v_m dx_m \right) = \sum f_k \left(\gamma(t_k) \right) - f_k \left(\gamma(t_{k-1}) \right) = f \left(\gamma(b) \right) - f \left(\gamma(a) \right).$$

79 Лемма о похожести путей, близких к данному

 $\gamma:[a,b] o O\subset\mathbb{R}^m$. Тогда $\exists \delta>0,$ если $\overline{\gamma}$ и $\overline{\overline{\gamma}}:[a,b] o O,$ таковы, что $\forall t\in[a,b]\ |\gamma(t)-\overline{\gamma(t)}|<\delta$ и $|\gamma(t)-\overline{\overline{\gamma}}(t)|<\delta,$

то $\gamma, \overline{\gamma}$ и $\overline{\overline{\gamma}}$ — похожи.

79.1 Доказательство

Берём V-гусеницу для γ , тогда $\gamma\left([t_{k-1},t_k]\right)$ — компактное множество в B_k , тогда $\exists \delta_k$ — окрестность этого компакта в B_k , возьмём $\delta:=\min_{1\leq k\leq n}\delta_k$.

80 Равенство интегралов по гомотопным путям

V — локально потенциальное векторное поле в $O \subset \mathbb{R}^m, \, \gamma_0$ и γ_1 — гомотопно связанные, тогда $I(V,\gamma_0) = I(V,\gamma_1).$

80.1 Доказательство

 Γ — гопотопия, $\gamma_u(t) = \Gamma(t,u), \ t \in [a,b]$ и $u \in [0,1].$ $\Phi(u) = I(V,\gamma_1).$ Проверим Φ — локально постоянно, т.е. $\forall u_0 : \exists w(u) : \forall u \in w(u_0) \cap [0,1]$ верно $\Phi(u) = \Phi(u_0).$ Γ — равномерное непрерывно, тогда

$$\forall \delta>0: \exists \sigma>0: \forall t,t': |t-t'|<\sigma \text{ и } \forall u,u': |u-u'|<\sigma \text{ выполнено } |\Gamma(t,u)-\Gamma(t',u')| \frac{\delta}{2}.$$

Берём δ из предыдущей леммы для пути γ_{u_0} и $(u-u_0)< t$ для любого $t\in [a,b], |\Gamma(t,u)-\Gamma(t,u_0)|<\frac{\delta}{2}$ и $|\gamma_u(t)-\gamma_{u_0}(t)|<\frac{\delta}{2}\Rightarrow \gamma_u$ и γ_{u_0} — похожи. Подберём $\overline{\gamma}_u$ и $\overline{\gamma}_{u_0}$ — кусочно гладкие, $\frac{\delta}{4}$ близко к γ_u и γ_{u_0} , $\forall t: |\gamma(t)-\overline{\gamma}(t)|<\delta$, значит $\overline{\gamma}_u$ и $\overline{\gamma}_{u_0}$ — похожи.

$$I(V, \gamma_u) = I(V, \overline{\gamma}_{u_0}) = I(V, \overline{\gamma}_{u_0}) = I(V, \gamma_0).$$

81 Теорема о резиночке

 $O=\mathbb{R}^2\setminus\{(0,0)\},\,\gamma:[0,2\pi] o O,\,\gamma(t) o(\cos t,\sin t)$ — петля. Тогда эта петля нестягиваема.

81.1 Доказательство

$$V(x,y) := \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$$

 $(x,y) \neq (0,0), \ \frac{\partial v_1}{x} = \frac{\partial v_2}{y} \Rightarrow V$ — непрерывное локально потенциальное,

$$I(V,\gamma) = \int_{0}^{2\pi} v_1 dx + v_2 dy = \int_{0}^{2\pi} \left(\frac{-\sin t}{\sin^2 t + \cos^2 t} (-\sin t) + \frac{\cos t}{\sin^2 t + \cos^2 t} \cos t \right) dt = 2\pi \neq 0.$$

82 Теорема Пуанкаре для односвязной области

O-односвязная область в $\mathbb{R}^m,$ V- локально потенциальное векторное поле в O. Тогда V- потенциально в O.

82.1 Доказательство

 γ_0 — кусочно-гладкий замкнутый путь, значит гомотопен постоянному пути, значит $I(V,\gamma_0)=0$ постоянному пути. т.е. выполняется критерий потенциальности вектроного поля.

83 Свойства объема: усиленная монотонность, конечная полуад-

 $\mu:\mathcal{P} o\overline{\mathbb{R}}$ — объем. Тогда

- 1. Усиленная монотонность: $\forall A,\ A_1,\ A_2,\ \dots,\ A_n\in\mathcal{P},\ \mathrm{все}\ A_i$ дизъюнкты и $\bigcup_{i=1}^n A_i\subset A,\ \mathrm{тогдa}$ $\sum_{i=1}^n \mu A_i\leqslant \mu A;$
- 2. Конечная полуаддитивность: $\forall A,\, A_1,\, A_2,\, \ldots,\, A_n \in \mathcal{P},\,$ все A_i дизъюнкты и $A \subset \bigcup_{i=1}^n A_i,\,$ тогда $\mu A \leqslant \sum_{i=1}^n \mu A_i;$
- 3. $A, B, (A \setminus B) \in \mathcal{P}, \mu B < +\infty \Rightarrow \mu (A \setminus B) \geqslant \mu A \mu B.$

83.1 Доказательство

1.
$$A \setminus \bigsqcup_{i=1}^{n} A_i = \bigsqcup_{\text{KOH.}} B_l, B_l \in \mathcal{P}, A = \bigsqcup_{i=1}^{n} A_i \sqcup \bigsqcup_{\text{KOH.}} B_k, \mu A = \sum \mu A_i + \sum \mu B_l \geqslant \sum \mu A_i.$$

- 2. $B_k = A \cap A_k \in \mathcal{P}, \ A = \bigcup_{k=1}^n B_k$ сделаем это объединением дизъюнктов, $C_1 := B_1, \ C_2 := B_2 \setminus B_1$ и т.д., $A = \bigsqcup_{k,j} D_{kj}, \ \mu A = \sum_{k,j} \mu D_{kj}$, фиксируем k и получаем $\sum \mu D_{kj} = \mu C_k \leqslant \mu B_k \leqslant \mu A_k$ и получаем $\mu A \leqslant \sum \mu A_k$;
- 3. $B \subset A$ и $\mu(A \setminus B) + \mu B = \mu A$;
 - $B \not\subset A, \ A \setminus B = A \setminus (A \cap B)$, причём $A \cap B \in \mathcal{P}$, и $\mu \left(A \setminus B \right) = \mu A \mu \left(A \cap B \right) \geqslant \mu A \mu B.$

84 Теорема об эквивалентности счетной аддитивности и счетной полуаддитивности

 $\mu:\mathcal{P} \to \overline{\mathbb{R}}$ — объём. Тогда эквивалентны:

- 1. μ счётная аддитивная (т.е. μ мера);
- 2. μ счётная полуаддитивность : $A, A_1, A_2, \ldots \in \mathcal{P}$ и $A \subset \bigcup_{i=1}^{+\infty} A_i \Rightarrow \mu A \leq \sum \mu A_i$.

84.1 Доказательство

- $1\Rightarrow 2$ 5 формул $A=\bigcup A_k$ (будут написаны позже)
- $2 \Rightarrow 1$ $A = \bigsqcup A_i, \text{ надо проверить } \mu A = \sum \mu A_i, \text{ усиленная монотонность: } \mu A \geq \sum_{i=1}^n \mu A_i, \text{ по условию } \mu A \leq \sum_{i=1}^{+\infty} \mu A_i \Rightarrow \mu A = \sum \mu A_i.$

85 Теорема о непрерывности снизу

 $\mathcal{A}-$ алгебра, $\mu:\mathcal{A}\to\overline{\mathbb{R}}-$ объём. Тогда эквивалентны следующие утверждения:

- 1. μ мера, т.е. выполняется счётная аддитивность;
- 2. μ непрерывна снизу, т.е. $A, A_1, A_2, \ldots \in \mathcal{A}, A_1 \subset A_2 \subset A_3 \subset \ldots, A = \bigcup_{i=1}^{+\infty} A_i$ и $\mu A = \lim_{i \to +\infty} \mu A_i$.

85.1 Доказательство

• $1 \Rightarrow 2$

$$B_1:=A_1,\ \dots,\ B_k:=A_k\setminus igcup_{i=1}^{k-1}A_i,\ \text{тогда}\ B_i-$$
 дизъюнкты, тогда $A_k=igsup_{i=1}^kB_i$ и $A=igsup_{i=1}^{+\infty}B_i,\ \mu A=\sum_{i=1}^{+\infty}\mu B_i=\lim_{n\to+\infty}\sum_{i=1}^n\mu B_i=\lim_{n\to+\infty}A_n.$

2 ⇒ 1

$$C=\bigsqcup C_i$$
, проверим, что $\mu C=\sum_{i=1}^{+\infty}\mu C_i,\, A_k=\bigsqcup_{i=1}^k C_i,\, A_1\subset A_2\subset A_3\subset\dots$ и $\bigcup A_i=A,$

$$\mu A = \lim_{N \to +\infty} \mu A_N = \lim_{N \to +\infty} \sum_{i=1}^N \mu C_i = \sum_{i=1}^{+\infty} \mu C_i.$$

86 Теоремы о непрерывности сверху

 $\mathcal{A}-$ алгебра, $\mu:\mathcal{A}\to\overline{\mathbb{R}}-$ конечный объём $(\mu X<+\infty)$, тогда эквивалентны следующие утверждения:

- 1. μ мера, т.е. выполняется счётная аддитивность;
- 2. μ непрерывна сверху, т.е. $A, A_1, A_2, \ldots \in A, A_1 \supset A_2 \supset \ldots, A = \bigcap_{i=1}^{+\infty} A_i, \mu A = \lim_{i \to +\infty} \mu A_i;$
- 3. μ непрерывна сверху на пустом множестве, т.е. $A_1, \ldots, A_n, \ldots \in \mathcal{A}, A_1 \supset A_2 \supset A_3 \supset \ldots, \bigcap_{i=1}^{+\infty} A_i = \emptyset.$

86.1 Доказательство

• $1 \Rightarrow 2$

$$B=A_1\setminus A,\, B_k:=A_1\setminus A_k,\,$$
тогда $B_1\subset B_2\subset B_3\subset\dots$ и $\bigcup B_k=B,\, \mu B=\lim_{k\to+\infty}\mu B_k,\, \mu A_1-\mu A=\lim_{k\to+\infty}(\mu A_1-\mu A_k)\Rightarrow\mu A=\lim_{k\to+\infty}\mu A_k.$

• $2 \Rightarrow 3$

Очевидно.

• $3 \Rightarrow 1$

$$C = \bigsqcup C_i, \text{ проверить, что } \mu C = \sum \mu C_i, A_1 \supset A_2 \supset A_3 \supset \ldots, A_k = \bigsqcup_{i=k+1}^{+\infty} C_i = C \setminus \left(\bigsqcup_{i=1}^k C_i\right) \Rightarrow A_k \in \mathcal{A}.$$

$$\bigcap A_k = \varnothing \Rightarrow \mu A_k \to 0, \ C = \bigsqcup_{i=1}^k C_i \sqcup A_k \text{ и } \mu C = \sum_{i=1}^k \mu C_i + \mu A_k, \ k \to +\infty \Rightarrow \mu C = \sum \mu C_i.$$

87 Счетная аддитивность классического объема

Классический объём в \mathbb{R}^m — есть σ -конечная мера.

87.1 Доказательство

 σ -конечность: смотреть на клеточки.

Проверим, что μ — счетна аддитивная, для этого достаточно проверить счетную полуаддитивность, т.е.:

$$P=[a,b),\,P_n=[a_n,b_n)$$
 и $P\inigcup_{n=1}^{+\infty}P_n,$ проверим, что

$$\mu P\leqslant \sum \mu P_i$$
, можно считать $P\neq \varnothing$.

Возьмём b' чуть меньше, чем b, тогда $\mu\left(P\setminus[a,b']\right)<\varepsilon>0.$

Возьмём a' чуть меньше, чем a, тогда $\mu\left([a'_n,b_n]\setminus[a_n,b_n)\right)<\frac{c}{2^n}.$

$$[a,b']\subset\bigcup_{\text{\tiny KOH.}}[a'_n,b_n),$$

$$[a,b')\subset\bigcup_{\mathrm{YOH}}[a'_n,b_n),$$

$$\mu P - \varepsilon < \mu[a, b') \leqslant \sum_{i=1}^n \mu[a_i', b_i) < \sum_{i=1}^n \mu P_i + \frac{c}{2^n} \leqslant \sum_{i=1}^{+\infty} \mu P_i + \frac{c}{2^n} \leqslant \sum_{i=1}^n \mu P_i + \varepsilon.$$

Тогда
$$\mu P \leqslant \sum_{i=1}^{+\infty} \mu P_i + 2\varepsilon \leqslant \sum_{i=1}^{+\infty} \mu P_i.$$

88 Лемма о структуре открытых множеств и множеств меры 0

- 1. $O \subset \mathbb{R}^m$ открытое, тогда $\exists Q_i$ ячейки и $O = \bigcup Q_i$, причем можно также считать, что:
 - Q_i ячейки с рациональными координатными вершинами (или двоично-рациональные);
 - $\overline{Q_i} \subset O$;
 - \bullet Q_i кубы.
- 2. E измеримо в \mathbb{R}^m , $\lambda E=0$, тогда $\forall \varepsilon: \exists Q_i$ ячейки: $E\subset \bigcup Q_i$ и $\sum \lambda Q_i<\varepsilon$.

88.1 Доказательство

- 1. $\forall x \in O$ возьмём $Q(x) \in O$ какая-нибудь ячейка из O, можно взять куб. двоичную-рациональную или $\overline{Q(x)} \subset O$.
 - $O = \bigcup_{x \in O} Q(x)$ на самом деле это счётное объединение ячеек, надо сделать их всего-лишь дизъюнктными.
- 2. $\mu E = \inf \left(\sum \mu P_i, E \subset \bigcup P_i, P_i \in \mathcal{P} \right), E \subset \bigcup P_i \text{ if } \widetilde{P_i} \supset P_i.$

$$E \subset \bigcup \widetilde{P}_i$$
, где $\widetilde{P}_i = \bigsqcup_{i=1}^{+\infty} Q_{ij}$ (двоично-рациональные кубы).

$$\lambda(\widetilde{P}_i) < \lambda P_i + \frac{\varepsilon}{2^{i+1}}.$$

$$\sum \lambda P_i < \frac{\varepsilon}{2} \text{ if } \sum \lambda \left(\widetilde{P}_i\right) < \sum \lambda P_i + \frac{\varepsilon}{2}.$$

89 Пример неизмеримого по Лебегу множества

$$x, y \in \mathbb{R}, x \sim y \iff x - y \in \mathbb{Q}.$$

 $A = [0,1] \setminus \mathbb{Q} = A$ — множество классов представителей C[0,1].

$$\bigcup_{q\in\mathbb{Q}}(A+q)=\bigsqcup_{q\in\mathbb{Q}}(A+q)=\mathbb{R}.$$

$$A=[0,1]\setminus \mathbb{Q},$$
 и $B=igsqcup_{q\in [-1,1]}A+q\subset [-1,2].$ Допустим, что A — измеримо, тогда

$$\forall q: \lambda A = \lambda(A+q) \Rightarrow B - \text{измеримо и } \lambda B = \sum_q \lambda(A+q), \text{ и это равно или } +\infty \text{ или } 0, \text{ но } \lambda B < 3(\lambda B \in [-1,2]),$$
 но и $[0,1] \subset B \Rightarrow \lambda B \neq 0.$

90 Регулярность меры Лебега

A — измеримо по Лебегу, тогда

$$\lambda A = \inf_{G \text{ otkp.}} \lambda G = \sup_{F \text{ samkh.}} = \sup_{K \in \mathcal{K} : K \subset A} \lambda K.$$

90.1 Доказательство

Если A — ограничено, то очевидно.

Если
$$A$$
 — неограничено $\mathbb{R}^m = \bigcup_n B(0,n), \, A_n = \bigcap A \cap B(0,n)$ и $A_1 \subset A_2 \subset \ldots \subset A$, тогда $\lim \lambda A_n = \lambda A$.

 λA конечно: $A_n: \lambda A_n > \lambda A - \varepsilon$, $K \subset A_n \subset A$ и $A \setminus K = (A \setminus A_n) \bigcup (A_n \setminus K)$ и $K \subset A_n$ и $\lambda K > \lambda a_n - \varepsilon$, $\lambda (A \setminus K) = \lambda (A \setminus A_n) + \lambda (A_k \setminus K) < 2\varepsilon$.

 λA бесконечно: $\forall R: \exists A_n: \lambda A_n > R$ и $\exists K \in A_n: \lambda K > R.$

91 Лемма о сохранении измеримости при непрерывном отображении

 $T:\mathbb{R}^m \to \mathbb{R}^n$ — непрерывное, $\forall E \in \mathcal{M}^m$ и $\lambda E=0$ выполняется, что $\lambda(T(E))=0$. Тогда $\forall A \in \mathcal{M}^m$ $T(A) \in \mathcal{M}^m$.

91.1 Доказательство

$$\lambda A=\sum_{K \in \mathcal{A} \atop \mathrm{kom}_\Pi.} \lambda K,\, A=\bigcup_{i=1}^{+\infty} K_i \cup \mathcal{N},$$
 где $\mathcal{N}-$ множество меры $0.$

 $T(A) = \bigcup T(K_i) \cup T(\mathcal{N})$, где объединение компактов — компакт, а $T(\mathcal{N})$ имеет меру 0.

92 Лемма о сохранении измеримости при гладком отображении. Инвариантность меры Лебега относительно сдвигов

$$\Phi: \underset{\text{откр.}}{O} \subset \mathbb{R}^m \to \mathbb{R}^m, \ \Phi \in C^1$$
. Тогда $\forall A \in \mathcal{M}^m \ \Phi(A) \in \mathcal{M}^m$.

92.1 Доказательство

Нужно проверить, что $\forall E: \lambda_m E = 0 \Rightarrow \lambda_M\left(\Phi(E)\right) = 0.$

$$O = \left| \begin{array}{c} Q_i, \text{ где } Q_i - \text{ ячейки, а также } \overline{Q_i} \subset O. \end{array} \right|$$

Достаточно разобрать случай, где $E \subset Q_i$, где $E = | E \cap Q_i$.

$$L=\max_{x\in \overline{Q_i}}\|\Phi'(x)\|<+\infty$$
, тогда $\forall x,y\in Q_i:|\Phi(x)-\Phi(y)|\leqslant L|x-y|.$

$$\forall \varepsilon > 0 : E \subset \bigcup (x_i, r_i), \ \sum \lambda_m(K_i) < \varepsilon,$$
где $K_i -$ кубы, $\Rightarrow \Phi(E) \subset \bigcup \Phi(K_i) \subset B(\Phi(x_i), L\sqrt{m}r_i) \subset \bigcup K\left(\Phi(x_i), L\sqrt{m}r_i\right).$

Мера λ_m этого куба $(2L\sqrt{m}r_i)^m = (L\sqrt{m})^m \lambda(K_i)$.

$$\sum (L\sqrt{m})^m \lambda(K_i) = (L\sqrt{m})^m \cdot \sum \lambda_m(K_i) < (L\sqrt{m})^m \varepsilon.$$

92.2 Следствие

 λ_m — инвариантна относительно сдвига, т.е. $\forall E \in \mathcal{M}^m : \forall a \in \mathbb{R}^m : E+a$ — измеримо и $\lambda E = \lambda(E+a)$.

92.2.1 Доказательство

$$\lambda E=\inf\Big(\sum\lambda(P_i)\Big)$$
, где $E\subset\bigcup P_i$ — ячейки, тогда $\lambda(E+a)=\inf\Big(\sum\lambda(P_i)\Big)$, где $E\subset\bigcup(P_i+a)$.

93 Инвариантность меры Лебега при ортогональном преобразовании

 $T:\mathbb{R}^m\to\mathbb{R}^m,\, T$ — ортогональное преобразование, тогда

$$\forall a \in \mathcal{M}^m \ T(A) \in \mathcal{M}^m \ \text{и} \ \lambda_m(T(A)) = \lambda(A).$$

93.1 Доказательство

T — гладкое, значит сохраняет измеримость.

$$\mu: \mathcal{M}^m \to \overline{\mathbb{R}}, \ \mu(A) = \lambda_m(T(A)).$$

 μ — мера (потому что T— биекция) и инвариантна относительно сдвига, значит $\mu=k\lambda_m.$

Рассмотрим шар, тогда $\mu(B(0,1)) = \lambda(T(B(0,1)))$, но $\mu(B(0,1)) = \lambda(B(0,1))$, значит k=1.

94 Лемма о структуре компактного оператора

 $V:\mathbb{R}^m \to \mathbb{R}^m$ — линейный, $\det V \neq 0$. Тогда существуют ортонормированные базисы (g_1,\ldots,g_m) и (h_1,\ldots,h_m) , а также существует числа $s_i>0$, что $\forall x\in\mathbb{R}^m$ верно, что $V(x)=\sum s_i\langle x,g_i\rangle h_i$.

94.1 Доказательство

 $W = V^T V$ — симметричная матрица, тогда для неё существует базис из собственных векторов: g_1, \dots, g_m : $\exists c_1, \dots, c_m$, что $W g_i = c_i g_i$.

$$\langle Wg_i,g_i\rangle=c_i|g_i|^2\text{ и }\langle V^TVg_i,g_i\rangle=\langle Vg_i,Vg_i\rangle=\|Vg_i\|>0 \Rightarrow c_i>0, \text{ значит возьмём }s_i=\sqrt{c_i}\text{ и }h_i=\frac{1}{s_i}Vg_i.$$

$$\langle h_k, h_i \rangle = \frac{1}{s_k s_i} \langle V g_k, V g_i \rangle = \frac{1}{s_k s_i} \langle V^T V g_k, g_i \rangle = \frac{1}{s_k s_i} \langle W g_k, g_i \rangle = \frac{c_k}{s_k s_i} \langle g_k, g_i \rangle.$$

$$x \in \mathbb{R}^m$$
 и $x = \sum \langle x, g_i \rangle g_i$, и $Vx = \sum s_i \langle x, g_i \rangle h_i$.

95 Теорема о преобразовании меры Лебега при линейном отображении жении

 $T:\mathbb{R}^m o \mathbb{R}^m,\, T$ — линейное отображение. Тогда

$$\forall A \in \mathcal{A}^m \ T(A) \in \mathcal{M}^m$$
 и $\lambda_m(T(A)) = |\det T| \lambda_m(A).$

95.1 Доказательство

- 1. $\det T = 0$, значит образ T подпространство в \mathbb{R}^m , значит он имеет меру 0;
- 2. $\det T \neq 0$, значит T невырожденный, тогда $\mu E = \lambda T(E)$ инвариантна относительно сдвигов.

$$T(\text{orp.}) = \text{orp.} \Rightarrow \mu(\text{orp.}) < +\infty \Rightarrow \exists k : \mu = k\lambda_m.$$

$$Q=$$
ед. куб на векторах $g_i=\Bigl\{\sum d_ig_i,d_i\in[0,1]\Bigr\}.$

 $T(g_0) = s_i h_i$, где T(Q) — параллелепипед на векторах h_i .

$$\lambda(TQ) = \prod_{i} |s_i h_i| = \prod s_i = |\det T|.$$

96 Эквивалентность определений измеримости с разными множествами Лебега

- 1. f измерима, значит $\forall a: E(f=a)$ измерима;
- 2. f измерима, значит $\forall \alpha > 0: \alpha_f, \, -f$ измеримы:

$$E(\alpha f < a) = E\left(f < \frac{a}{\alpha}\right);$$

$$E(-f < a) = E(f > -a).$$

3. f — измерима на E_1 и $E_2,\,\ldots,$ тогда f — измерима на $\bigcup E_k = E$:

$$E(f < a) = \bigcup_{k} E_k(f < a);$$

4. $E' \subset E$, тогда если f — измерима на $E \Rightarrow f$ — измерима на E':

$$E'(f < a) = E(f < a) \cap E';$$

- $5. \ \ f \neq 0 \text{измерима на } E, \text{ тогда } \frac{1}{f} \text{измерима и } E\left(\frac{1}{f} < a\right) = \left(E\left(\frac{1}{f} < a\right) \cap E(f > 0)\right) \bigcup \left(E\left(\frac{1}{f} < a\right) cap E(f < 0)\right) \cup \left(E\left(f > \frac{1}{a}\right) \cap E(f > 0)\right) \cup \left(E\left(f < \frac{1}{a}\right) \cap E(f < 0)\right);$
- 6. $f\geqslant 0$ измерима и $\alpha>0\Rightarrow f^{\alpha}$ измерима.

97 Теорема об измеримости пределов и супремумов

 f_n — измерима на X. Тогда

1.
$$\sum_{n} f_n(x)$$
, $\inf_{n} f_n(x)$ — измеримы;

2.
$$\overline{\lim}_{n\to+\infty} f_n(x)$$
, $\underline{\lim} f_n(x)$ — измеримы:

3. Если
$$\forall x: \exists \lim_{n \to +\infty} f_n(x) = f(x),$$
 то f — измерима;

97.1 Доказательство

1.
$$g(x) = \sum_n f_n(x)$$
, тогда $X(g > a) = \bigcup X(f_n > a)$;

2.
$$\overline{\lim_{n \to +\infty}} f_n(x) = \inf_n \left(\sum_{k \geqslant 0} f_{n+k}(x) \right);$$

3.
$$\lim_{n} = \overline{\lim} f_n$$
.

98 Характеризация измеримых функций с помощью ступенчатых

$$(X,\mathcal{A},\mu),\,f:X o\overline{\mathbb{R}},\,f\geqslant0,$$
 измерима. Тогда

 $\exists f_n -$ ступенчатая функция, что:

1.
$$0 \le f_1 \le \ldots \le f_n \le f_{n+1} \le f(x);$$

$$2. \ f(x) = \lim_{n \to +\infty} f_n(x).$$

98.1 Доказательство

$$e_k^{(n)}=X\left(rac{k}{n}\leqslant f<rac{k+1}{n}
ight)$$
, при $k=0,1,\ldots,n^2-1.$

$$e_{n^2}^{(n)} = X(f \geqslant n).$$

$$g_n = \sum \frac{k}{n}$$
 при $x \in e_k^{(n)}$.

$$\forall x: \lim_{n \to +\infty} g_n(x) = f(x)$$
, тогда $f_n(x) = \max(g_1(x), \dots, g_n(x))$.

99 Измеримость монотонной функции

100 Теорема Лебега о сходимости почти везде и сходимости по мере

 $\mu X < +\infty, \, f_n, f: X \to \overline{\mathbb{R}}$ — измерима, почти везде конечна, тогда $f_n \to f$ почти везде. Тогда $f_n \rightrightarrows f$ на мере.

100.1 Доказательство

 $f_n \to f$ на $X \setminus e$. Пусть $f_n(t) = f(t) = 0, t \in e$. Тогда есть сходимость повсюду.

Частный случай. $f_n \to 0$ и $\forall x: f_n(x)$ — монотонная. Тогда $X\left(|f_n|\geqslant \varepsilon\right)\supset X\left(|f_{n+1}|\geqslant \varepsilon\right)$.

$$\bigcap_{n=1}^{+\infty} X\left(|f_n| \geqslant \varepsilon\right) = \varnothing \Rightarrow X\left(|f_n| \geqslant \varepsilon\right) \to 0.$$

Общий случай. $f_n \to f$, и $\varphi_n(x) = \sum_{k\geqslant n} |f_k(x) - f(x)|$, тогда $\varphi_n(x) \to 0$ и φ_n — монотонная.

$$X(|fn - f| \ge \varepsilon) \subset X(\varphi_n \ge \varepsilon).$$

101 Теорема Рисса о сходимости по мере и сходимости почти везде

 $(X,\mathcal{A},\mu),\,f_n,\,f:X o\overline{\mathbb{R}}$ — измерима почти везде и конечно, $f_n\rightrightarrows f$ по мере. Тогда $\exists n_k:f_{n_k} o f$ почти везде.

101.1 Доказательство

$$\forall k: \mu X \left(|f_n - f| \geqslant \frac{1}{k} \right) \to 0.$$

$$|existsn_k$$
: при $n>n_k: \mu X\left(|f_n-f|\geqslant rac{1}{k}
ight)<rac{1}{2^k}.$

Можно считать, что $n_1 < n_2 < \dots$

Проверим, что $f_{n_k} \to f$ почти везде.

$$E_k := \bigcup_{j=k}^{+\infty} X\left(|f_{n_j} - f| \geqslant \frac{1}{j}\right).$$

$$E_1\supset E_2\supset\ldots$$
, и $E_0=\bigcap E_k$.

$$\mu E_k = \sum_{j=1}^{+\infty} \frac{1}{2^j} \leqslant \frac{2}{2^k} \text{ if } \mu E_k \to \mu E_0 \Rightarrow \mu E_0 = 0, \ x \notin E_0 : f_{n_k}(x) \to f(x).$$

 $\exists N: x \in E_n$ и всем следующим:

$$|f_{n_N}(x) - f(x)| \leqslant \frac{1}{N};$$

$$|f_{n_{N+1}}(x) - f(x)| < \frac{1}{N+1}$$
, r.e. $f_{n_k}(x) \xrightarrow[k \to +\infty]{} f(x)$.