國立臺灣科技大學答案卷

National Taiwan University of Science and Technology Answer Sheet

姓名/Name	學號	Student ID	班級/Class		
科目/Course title			日期/Date		
欄 從此處開始寫起。試卷	8用紙務須節用,非	經主試認可不得續用其他	也紙張作答。/Please write fr	om here	
1. Poringion De le	1 +5V				
Doxington	IE { Ro= k				
RESM	1.				
Jo J Vel	10 Voz	J. = 35	靈 頓電路 /	有成一個大的 的	T
THO IS			夏美= 月=100=1		
Rin	J. J. IE	(a)			
Ju «Ju	-	Vy = Vc2 = 5	- RC IE	. IE	24
β		JB = 5- RC. I	E-Rf IB = 5-1k	IE - 2M. B2 = 3	- TE (1K+ 1000)
		X. VB1 = 0.) +0.1.	= 1.4 V	= :	5- IE (1,2 K)
		1. IE = 5-1.5 1.2k	$\frac{4}{5} = \frac{3.6}{1.2k} = 3 \text{ m A}$	≈ Ic2 ×	
		$T_{\alpha 1} = \frac{3m}{\alpha^{+}} = 3$	10 A 2. Iy= B. :	3107= 3.10 A =	IEI = IB2
		10 β	¥		H
	÷	(6)	(B+) Yez		(0)
Ti-Vo	{ Rc	Vb2 =	Vi (B+1) Yez+r	<u> </u>	Rb1 = (B+1)[Ye] = (B+1)
Thur a	1		1- >5m		= [833 + 10 - 8,33]
Rij Ja	1/0	Yez=	$\frac{V_T}{1_{E2}} = \frac{3m}{3m} =$	8,33	= 169,10) k
VI OP J) ji	Ye =	$\frac{\sqrt{r}}{ E } \approx \frac{stm}{3.10^{-5}} =$	833.33	Ril = Vi (Vi-Vo)/Rf
Te o	75	1	71: (0(- 8.33		R-I
Fin Pb1 1262		VL 2 =	711	- = 0.5 Vi	= (50/1)

教師簽章

For dc analysis, open-circuit the two coupling capacitors. Then replace the 9-V source and the two $20\text{-k}\Omega$ resistors by their Thévenin equivalent, namely, a 4.5-V source and a $10\text{-k}\Omega$ series resistance. The latter can be added to the $10\text{-k}\Omega$ resistor that is connected to the base. The result is the circuit shown in Fig. 1, which can be used to calculate I_E .

(a)
$$I_E = \frac{4.5 - 0.7}{2 + \frac{20}{\beta + 1}}$$

= $\frac{3.8}{2 + \frac{20}{101}} = 1.73 \text{ mA}$

Figure 1

$$I_C = \alpha I_E = 0.99 \times 1.73 \text{ mA}$$

= 1.71 mA
 $g_m = \frac{I_C}{V_T} = 68.4 \text{ mA/V}$
 $r_e = \frac{V_T}{I_E} = \frac{25 \text{ mV}}{1.73 \text{ mA}} = 14.5 \Omega$
= 0.0145 k Ω
 $r_\pi = (\beta + 1)r_e = 101 \times 0.0145$
= 1.46 k Ω

(b) Replacing the BJT with its T model (without r_o) and replacing the capacitors with short circuits results in the equivalent-circuit model shown in Fig. 2.

Figure 2

From Fig. 2 we see that

$$v_e = \left(i_e + i_e \frac{r_e}{10}\right) (10 \parallel 2)$$

 $v_b = v_e + i_e r_e = i_e (10 \parallel 2) \left(1 + \frac{r_e}{10}\right) + i_e r_e$
 $i_i = (1 - \alpha)i_e + i_e \frac{r_e}{10}$
 $= \frac{i_e}{\beta + 1} + i_e \frac{r_e}{10}$

We can now obtain R_{in} from

$$R_{\text{in}} \equiv \frac{v_b}{i_l} = \frac{(10 \parallel 2) \left(1 + \frac{r_e}{10}\right) + r_e}{\frac{1}{\beta + 1} + \frac{r_e}{10}}$$

$$= \frac{(\beta + 1)(10 \parallel 2) \left(1 + \frac{r_e}{10}\right) + (\beta + 1)r_e}{1 + (\beta + 1)\frac{r_e}{10}}$$

$$= \frac{101 \times (10 \parallel 2) \times (1 + 0.00145) + 101 \times 0.0145}{1 + 101 \times 0.00145}$$

$$= \frac{168.577 + 1.4645}{1 + 0.14645} = 148.3 \text{ k}\Omega$$

$$\frac{v_b}{v_{\text{sig}}} = \frac{R_{\text{in}}}{R_{\text{in}} + R_{\text{sig}}} = \frac{148.3}{148.3 + 10} = 0.937$$

$$\frac{v_o}{v_b} = \frac{v_e}{v_b} = \frac{i_e \left(1 + \frac{r_e}{10}\right) (10 \parallel 2)}{i_e \left(1 + \frac{r_e}{10}\right) (10 \parallel 2) + i_e r_e}$$

$$= \frac{1.00145 \times (10 \parallel 2)}{1.00145 \times (10 \parallel 2) + 0.0145}$$

$$= 0.991 \text{ V/V}$$

$$G_v \equiv \frac{v_o}{v_{\text{sig}}} = 0.937 \times 0.991 = 0.93 \text{ V/V}$$

.),)

$$\frac{3.0}{5.04m} \Rightarrow \frac{\sqrt{6}}{\sqrt{7}} = -\frac{9m(R_p || R_L || Y_0)}{\sqrt{7}} = -\frac{3L_p s_s}{\sqrt{7}} (1 - \frac{V_{4s}}{V_p})$$

$$= -\frac{9m(R_p || R_L || Y_0)}{5.042 \cdot (|.5k|| 5_1^2 .52)k}$$

$$= -2.95$$

厚 頁從此開始寫起。			
4. }	(b) Rin	1 20-	Yo + lin Ro = Vin
3-000		3ro I din Yo	+ Ro) = Vin (1+ gm/o)
	· Figm	J Vin	Yo+ RD 100K+20
	lintovin	Kin = lin	1-1 gm/0 1+ 2m-10
3 10 K	Y		120k
Vs A			120k
· · · ·	(6)		= 600 D
	Rout	ix	3
		(· · · · ·	i into ity
		Yo	10k) ro + ix10k = Vx
	= 3 fm	ix (1+g,	mlok) ro + ix.lok = Vx
	ix 3 10K	VX	
	W 13/0F	$Pout = \frac{v_X}{iX} = (1+$	9m10k) Vo+10k
	7	,	0k+ 2m.10k.100k+10k
		. = 0	0K+ 2000K+10K
		= 2	-/10k
			×
	(1)	11 20 K	sok
	V. 0 310k	$v_0 = \frac{1}{10k + Rin}$	= 10K+600 = 1,89
	2 7		*
	Voxoki Fil		
			1/
	- /		
	gmro+/	· >0K	
	gmro+/ Yo+gmroilok+ Jok		
	U		
	= 100K+200K+20K	. 20/	

國立臺灣科技大學答案卷

National Taiwan University of Science and Technology Answer Sheet

1	vational fatwari University of Science and Technologic	gy Answer Sheet	
姓名/Name	學號/Student ID	班級/Class	
科目/Course title_		日期/Date	

記分欄

從此處開始寫起。試卷用紙務須節用,非經主試認可不得續用其他紙張作答。/Please write from here

$$5 \times \frac{54.6}{95.4 + 150 + 54.6} = 5 \times \frac{54.6}{300} = 0.91 \quad (Q | 69 Vg)$$

Ib· Rs = 0.4 m×10 k = 4 =) R1 的
$$V_3 = -5+4 = -1$$

数態: $kn(V_{95}-V_1)^2 = 0.8(0.91-(-1)-1.2)^2$
= 0.8 × (0.71)²
= 0.4 (mA) sat

$$\frac{\sqrt{o}}{\sqrt{i}} = -g_m(R_0 || g_m Y_0^{-1}) : Y_0 = \omega^{-1}, \frac{\sqrt{o}}{\sqrt{i}} = -g_m R_0$$

$$= -g_m R_0$$

 $g_{m} = 2 k_n V_{oV}$ $= \frac{2 J_{oV}}{V_{oV}}$ $= 2 J_{oV} k_n J_{oV}$

世算出來差不多