```
In [95]: import sys
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import sklearn.metrics as metrics
import statsmodels.api as sm
from statsmodels.stats.outliers_influence import variance_inflation_fact
or
```

Load data ¶

Already split up only the number data into X values and Y_true values. df.describe only takes the numeric values.

```
In [69]: df.describe()
```

Out[69]: __

	age	bmi	children	spending
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

You will need to create dummy variables in your homework by yourself.

Plotting - simple

Out[70]: Text(0.5,0,'bmi')

Check for Multicollinearity

```
In [73]: vif = pd.DataFrame()
    vif["VIF Factor"] = [variance_inflation_factor(X.values, i) for i in ran
        ge(X.shape[1])]
    vif["features"] = X.columns
    vif.round(1)
```

Out[73]:

	VIF Factor	features
0	7.8	bmi
1	1.8	children
2	7.5	age

Learn more about Variance Inflation Factors here. https://en.wikipedia.org/wiki/Variance inflation factor). A cutoff from 10 is ok.

using Statistics model

```
In [94]: X2 = sm.add_constant(X) # to force the linear model
    model = sm.OLS(Y_true, X2)
    model2 = model.fit()
    print(model2.summary())
```

OLS Regression Results											
======================================											
======											
Dep. Varia		spendir	ng	R-squ	uared:						
0.120											
Model:		OI	LS	Adj.	R-squared:						
0.118											
Method:	Least	Square	es	F-sta	atistic:						
60.69											
Date:		Tue, 25	Aug 202	20	Prob	(F-statisti	ic):				
8.80e-37											
Time:		13:56:2	22	Log-I	Likelihood:						
-14392.	-										
No. Observ	ations:		133	38	AIC:			2.			
879e+04											
Df Residua		133	34	BIC:			2.				
881e+04											
Df Model:				3							
Covariance	Type:	r	onrobus	st							
========	========				=====			====			
======											
	coe	f std	err		t	P> t	[0.025				
0.975]											
const	-6916.243	3 1757.	480	-3	.935	0.000	-1.04e+04	-3			
468.518				_							
bmi	332.083	£ 51.	310	6	.472	0.000	231.425				
432.741				_				_			
children	542.864	7 258.	241	2 .	.102	0.036	36.261	1			
049.468							105 050				
age	239.994	5 22.	289	10.	.767	0.000	196.269				
283.720											
	:=======	=======	======	====	=====	=======	=======	====			
Omnibus:			325.39) E	Dunch :	n-Watson:					
2.012		323.33	15	Durbi	III-watson:						
		0.00	١.	Taras	o Pora (TR)						
Prob(Omnibus): 603.372			0.00	, 0	Jarqu	ie-Bera (JB)	•				
Skew:			1.52	20	Prob('.TR\•		9.			
54e-132		1.52	-0	1100((00).		۶.				
Kurtosis:			4.25	55	Cond.	No -					
290.			7.2	, ,	COM .	. 110.					
	:=======	=======	======	====	=====	=========	========	====			
======											
·											

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Rebuilding it by 'hand'

OLS is only one of many ways... here is another. Using the standard linear regression model.

```
In [99]: regr = linear_model.LinearRegression()
    regr.fit(X,Y_true)

Out[99]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=F
    alse)
```

The coefficient of the model are:

```
In [100]: regr.coef_
#note the way we created the matrix: X=df[['bmi','children','age']]
Out[100]: array([332.0833645 , 542.86465225, 239.99447429])
```

To do the actual calculation we have now to create the predictions Y_pred and compare them with the true data Y_true.

```
Y pred=regr.predict(X)
In [101]:
In [86]:
          explained variance=metrics.explained variance score(Y true, Y pred)
          mean absolute error=metrics.mean absolute error(Y true, Y pred)
          mse=metrics.mean squared error(Y true, Y pred)
          mean squared log error=metrics.mean squared log error(Y true, Y pred)
          median absolute error=metrics.median absolute error(Y true, Y pred)
          r2=metrics.r2 score(Y true, Y pred)
          print('explained_variance: ', round(explained variance,4))
          print('mean squared log error: ', round(mean squared log error,4))
          print('r2: ', round(r2,4))
          print('MAE: ', round(mean_absolute_error,4))
          print('MSE: ', round(mse,4))
          print('RMSE: ', round(np.sqrt(mse),4))
          explained variance: 0.1201
          mean squared log error: 0.747
          r2: 0.1201
          MAE: 9015.4422
          MSE: 128943244.6356
          RMSE: 11355.3179
```