

Model: F-03A

TEST REPORT

For

Mobile phone incorporated with Bluetooth

In conformity with

FCC CFR 47 Part15 (October 1, 2007) / RSS-210 Issue 7, RSS-Gen Issue 2

Model: F-03A

FCC ID/ IC Certification No.: VQK-F-03A / 337E-F03A

Test Item: Mobile phone incorporated with Bluetooth

Report No: RY0811Z10R1

Issue Date: 10 November 2008

Prepared for

Fujitsu Limited

1-1, Kamikodanaka 4-chome, Nakahara-ku, Kawasaki 211-8588,

Japan

Prepared by

RF Technologies Ltd.

472, Nippa-cho, Kohoku-ku, Yokohama, 223-0057, Japan

Telephone: +81+(0)45- 534-0645 FAX: +81+(0)45- 534-0646

This report shall not be reproduced, except in full, without the written permission of RF Technologies Ltd. The test results in this report apply only to the sample tested. RF Technologies Ltd. is managed to ISO17025 and has the necessary knowledge and test facilities for testing according to the referenced standards.

RF Technologies Ltd. Page 1 of 48

Issue Date: 10 November 2008 Report No.: RY0811Z10R1 Model: F-03A

Table of contents

1	General information	3
1.1	1 Product description	3
1.2	2 Test(s) performed/ Summary of test result	3
1.3	3 Test facility	4
1.4	4 Measurement uncertainty	4
1.5	J	
	1.5.1 Table of test summary	
1.6		
	1.6.1 Test configuration of EUT	5
	1.6.2 Operating condition:	
	1.6.3 Setup diagram of tested system:	
1.7	— 1 ·· I	
1.8	8 Deviation from the standard	6
2	Test procedure and test data	7
2.1	Occupied Bandwidth (20 dB / 99%)	7
2.2	2 Hopping Carrier Frequency Separation	10
2.3	Number of Hopping Channel	12
2.4	4 Average Time of Occupancy	14
2.5	5 Peak Output Power	18
2.6	· · · · · · · · · · · · · · · · · · ·	
2.7	7 Transmitter Radiated spurious emissions	24
2	2.7.1 Below 30 MHz	
2	2.7.2 Between 30 – 1000 MHz	27
2	2.7.3 Above 1000 MHz	
2.8	8 Transmitter AC power line conducted emissions	
	9 Receiver Radiated spurious emissions	
-	2.9.1 Between 30 – 1000 MHz	
	2.9.2 Above 1000 MHz	
2.1	10 Receiver AC power line conducted emissions	39
3	Test setup photographs	42
3.1		
3.2	2 Antenna Port Measurements	43
3.3	Radiated spurious emissions	44
3.4	4 AC power line conducted emissions	47
4]	List of utilized test equipment/ calibration	48

History

Report No.	Date	Revisions	Revised By
RY0811Z10R1	10 November 2008	Initial Issue	K. Ohnishi

Model: F-03A

1 General information

1.1 Product description

Test item : Mobile phone incorporated with Bluetooth

Manufacturer : Fujitsu Limited

Address : 1-1, Kamikodanaka 4-chome, Nakahara-ku, Kawasaki 211-8588, Japan

Model : F-03A FCC ID : VQK-F-03A IC Certification No : 337E-F03A

Serial numbers : RF Radiated (353716020000562), RF Conducted (353716020002063)

Fundamental Operated Frequency : Tx/Rx Freq. (2402 - 2480 MHz)

Oscillator frequencies : 26 MHz

Type of Modulation : FHSS (GFSK, π /4DQPSK, 8DPSK) RF Output Power : 2.15dBm (measured at the antenna terminal)

Antenna Gain : 0.85 dBi (λ /4 Monopole antenna)

Receipt date of EUT : 23 October 2008 Nominal power source voltages : DC 3.7V (Battery)

1.2 Test(s) performed/ Summary of test result

Test specification(s) : FCC CFR 47. Part 15 (October 1, 2007) / RSS-210 Issue 7, RSS-Gen Issue 2

Test method(s) : ANSI C63.4: 2003 Test(s) started : 23 October 2008 Test(s) completed : 10 November 2008

Purpose of test(s) : Grant for Certification of FCC / IC

Summary of test result : Complied

Note: The above judgment is only based on the measurement data and it does not include the measurement uncertainty. Accordingly, the statement below is applied to the test result.

The EUT complies with the limit required in the standard in case that the margin is not less than the measurement uncertainty in the Laboratory.

Compliance of the EUT is more probable than non-compliance is case that the margin is less than the measurement uncertainty in the Laboratory.

Test engineer : K. Ohnishi

K.Ohnishi

EMC testing Department

Reviewer

T. Ikegami

Manager

EMC testing Department

RF Technologies Ltd. Page 3 of 48

472, Nippa-cho, Kohoku-ku, Yokohama, 223-0057, Japan

Telephone: +81+(0)45-534-0645, FAX: +81+(0)45-534-0646, Web: http://www.rft.jp

Model: F-03A

1.3 Test facility

The Federal Communications Commission has reviewed the technical characteristics of the test facilities at RF Technologies Ltd., located in 472, Nippa-cho, Kohoku-ku, Yokohama, 223-0057, Japan, and has found these test facilities to be in compliance with the requirements of 47 CFR Part 15, section 2.948, per October 1, 2007. The description of the test facilities has been filed under registration number 879401 at the Office of the Federal Communications Commission. The facility has been added to the list of laboratories performing these test services for the public on a fee basis.

The list of all public test facilities is available on the Internet at http://www.fcc.gov.

Registered by Voluntary Control Council for Interference by Information Technology Equipment (VCCI) Each registered facility number is as follows;

Test site (Semi-Anechoic chamber 3m) R-2393

Test site (Shielded room) C-2617

Registered by Industry Canada (IC): The registered facility number is as follows; Test site No. 1 (Semi-Anechoic chamber 3m): 6974A

Accredited by **National Voluntary Laboratory Accreditation Program** (NVLAP) for the emission tests stated in the scope of the certificate under Certificate Number 200780-0

This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

NVLAP LAB CODE 200780-0

1.4 Measurement uncertainty

The treatment of uncertainty is based on the general matters on the definition of uncertainty in "Guide to the expression of uncertainty in measurement (GUM)" published by ISO. The Lab's uncertainty is determined by referring UKAS Publication LAB34: 2002 "The Expression of Uncertainty in EMC Testing" and CISPR16-4-2: 2003 "Uncertainty in EMC Measurements".

The uncertainty of the measurement result in the level of confidence of approximately 95% (k=2) is as follows;

Conducted emission: \pm 1.9 dB (10 kHz – 30 MHz) Radiated emission (9 kHz - 30MHz): \pm 2.8 dB Radiated emission (30MHz - 1000MHz): \pm 5.7 dB Radiated emission (above 1000MHz): \pm 5.8 dB

RF Technologies Ltd. Page 4 of 48

Model: F-03A

1.5 Summary of test results

1.5.1 Table of test summary

Requirement of;	Section in FCC15	Section in RSS210/ RSS- Gen	Result	Sample	Section in this report
1.5.1 Occupied Bandwidth (20 dB/99%)	15.247(a)(1)	A8.1(1)	-	A2	2.1
1.5.2 Hopping Carrier Frequency Separation	15.247(a)(1)	A8.1(2)	Complied	A2	2.2
1.5.3 Number of Hopping Channel	15.247(a)(1)(iii)	A8.1(4)	Complied	A2	2.3
1.5.4 Average Time of Occupancy	15.247(a)(1)(iii)	A8.1(4)	Complied	A2	2.4
1.5.5 Peak Output Power	15.247(a)(1)/(b)(1)	A8.4(2)	Complied	A2	2.5
1.5.6 Conducted Spurious Emissions	15.247(d)	A8.5	Complied	A2	2.6
1.5.7 Transmitter Radiated Spurious Emissions	15.205(b)/15.209	A8.5	Complied	A1	2.7
1.5.8 Transmitter AC Power Line Conducted Emissions	15.207	RSS-Gen 7.2.2	Complied	A1	2.8
1.5.9 Receiver Radiated Spurious Emissions	15.109	RSS-Gen 6	Complied	A1	2.9
1.5.10 Receiver AC Power Line Conducted Emissions	15.107	RSS-Gen 7.2.2	Complied	A1	2.10

1.6 Setup of equipment under test (EUT)

1.6.1 Test configuration of EUT

Equipment(s) under test:

	Item	Manufacturer	Model No.	Serial No.	Remarks
A1	Mobile phone incorporated with Bluetooth	Fujitsu Limited	F-03A	353716020000562	For radiated test
A2	Mobile phone incorporated with Bluetooth	Fujitsu Limited	F-03A	353716020002063	For conducted test
В	Li-ion Battery Pack	Fujitsu Limited	F10	AFF29105	3.7V, 870mAh

Support Equipment(s):

	Item	Manufacturer	Model No.	Serial No.
С	AC Adapter	NEC Corporation	MAS-BH0008-A 002	QKA
D	Monaural headset	NTT DOCOMO, INC.	-	-

Connected cable(s):

No.	Item	Identification	Shielded	Ferrite	Connector Type	Length
		(Manu.e.t.c)	YES / NO	Core YES / NO	Shielded YES / NO	(m)
1	DC power cable	NEC Corporation	No	No	No	0.6
2	AC power cable	NEC Corporation	No	No	No	1.3
3	Conversion cable	NTT DOCOMO, INC.	No	No	No	0.1

RF Technologies Ltd. Page 5 of 48

Model: F-03A

1.6.2 Operating condition:

Operating mode:

The EUT was tested under the following test mode prepared by the applicant:

- (1-1) GMSK modulation, Continuous transmission with DH1/3/5 PACKET at hopping off (2402MHz)
- (1-2) GMSK modulation, Continuous transmission with DH1/3/5 PACKET at hopping off (2441MHz)
- (1-3) GMSK modulation, Continuous transmission with DH1/3/5 PACKET at hopping off (2480MHz)
- (1-4) $\pi/4$ DQPSK modulation, Continuous transmission with DH1/3/5 PACKET at hopping off (2402MHz)
- (1-5) $\pi/4$ DQPSK modulation, Continuous transmission with DH1/3/5 PACKET at hopping off (2441MHz)
- (1-6) $\pi/4$ DQPSK modulation, Continuous transmission with DH1/3/5 PACKET at hopping off (2480MHz)
- (1-7) 8DQPSK modulation, Continuous transmission with DH1/3/5 PACKET at hopping off (2402MHz)
- (1-8) 8DQPSK modulation, Continuous transmission with DH1/3/5 PACKET at hopping off (2441MHz)
- (1-9) 8DQPSK modulation, Continuous transmission with DH1/3/5 PACKET at hopping off (2480MHz)
- (1-10) Continuous transmission with DH1/3/5 PACKET at hopping on
- (2-1) Continuous receiving (2402MHz)
- (2-2) Continuous receiving (2441MHz)
- (2-3) Continuous receiving (2480MHz)

1.6.3 Setup diagram of tested system:

[Configuration 1]

[Configuration 2]

1.7 Equipment modifications

No modifications have been made to the equipment in order to achieve compliance with the applicable standards described in clause 1.2.

1.8 Deviation from the standard

No deviations from the standards described in clause 1.2.

RF Technologies Ltd. Page 6 of 48

Model: F-03A

2 Test procedure and test data

2.1 Occupied Bandwidth (20 dB / 99%)

Test setup

Test setup is the following drawing. The antenna port of EUT was connected to the spectrum analyzer.

Test procedure

Measurement procedures were implemented according to the method of ANSI C63.4: 2003 clauses 13.1.7. The EUT antenna port connected to the spectrum analyzer. The RBW is set to 1% to 3% of the measured 20dB bandwidth. The VBW is set to 3 times of the RBW. The sweep time is coupled appropriate.

Limitation

There are no limitations. The measurement value is used to calculation of the limitation of the channel separation and the emission designator.

Test equipment used (refer to List of utilized test equipment)

TR06	CL23				
------	------	--	--	--	--

Test results

Operating	perating Transmission Channel Transmission		Bandwidth [MHz]		
Mode		Frequency	20dB	99%	
GFSK	Low (0ch)	2402	0.897	0.970	
(1Mbps)	Middle (39ch)	2441	0.937	0.970	
(TMOPS)	High (78ch)	2480	0.937	0.962	
π/4DQPSK	Low (0ch)	2402	1.338	1.218	
(2Mbps)	Middle (39ch)	2441	1.338	1.218	
(21/10/05)	High (78ch)	2480	1.338	1.218	
8DPSK	Low (0ch)	2402	1.266	1.226	
	Middle (39ch)	2441	1.274	1.218	
(3Mbps)	High (78ch)	2480	1.266	1.226	

RF Technologies Ltd. Page 7 of 48

Model: F-03A

Test Data

Tested Date: November 10, 2008

Temperature: 21 °C
Humidity: 43 %

Atmos. Press: 1022 hPa

20dB Bandwidth

Model: F-03A

99% Occupied Bandwidth

Model: F-03A

2.2 Hopping Carrier Frequency Separation

Test setup

Test setup is the following drawing. The antenna port of EUT was connected to the spectrum analyzer.

Test procedure

The EUT antenna port connected to the spectrum analyzer. The RBW is set to more than 1% of its span. The VBW is set to more than RBW. The sweep time is coupled appropriate.

Limitation

15.247(a)(1) frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test equipment used (refer to List of utilized test equipment)

TR06	CL23		

Test results – comply with the limitation

Operating Mode	Measured Channel	Measured Frequency (MHz)	Two-third of the 20dB bandwidth (MHz)	Frequency Separation (MHz)
GFSK	Middle (39ch)	2441	0.625	1.0
π/4DQPSK	Middle (39ch)	2441	0.892	1.0
8DPSK	Middle (39ch)	2441	0.849	1.0

Test Data

Tested Date: October 23, 2008

Temperature: 22 °C

Humidity: 59 %

Atmos. Press: 1020 hPa

Operating mode: GFSK

RF Technologies Ltd. Page 10 of 48

Model: F-03A

Operating mode: $\pi/4DQPSK$

Operating mode: 8DPSK

RF Technologies Ltd. Page 11 of 48

Model: F-03A

2.3 Number of Hopping Channel

Test setup

Test setup is the following drawing. The antenna port of EUT was connected to the spectrum analyzer.

Test procedure

The EUT antenna port connected to the spectrum analyzer. The RBW is set to more than 1% of its span. The VBW is set to more than RBW. The sweep time is coupled appropriate. The span is set to cover the authorized band. The analyzer is set to MAX HOLD. The EUT is hopping operation.

Limitation

15.247(a) (1) (iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

Test equipment used (refer to List of utilized test equipment)

TR06	CL23		

Test results – Comply with the limitation

Hopping channel: 79 channels

Test Data

Tested Date: October 23, 2008

Temperature: 22 °C Humidity: 59 %

Atmos. Press: 1020 hPa

Operating mode: GFSK

RF Technologies Ltd. Page 12 of 48

Model: F-03A

Operating mode: $\pi/4DQPSK$

Operating mode: 8DPSK

Model: F-03A

2.4 Average Time of Occupancy

Test setup

Test setup is the following drawing. The antenna port of EUT was connected to the spectrum analyzer.

Test procedure

The EUT antenna port connected to the spectrum analyzer. The RBW is set to 1 MHz. The VBW is set to more than RBW. The sweep time is coupled appropriate. The span is set to 0 MHz and single sweep with video triggered. The EUT is hopping operation.

The average time of occupancy within the 31.6 seconds (79 channels * 0.4) is calculated as follows in accordance with Bluetooth formula;

In case of DH1: (average time of occupancy) = (pulse width) * (1600/2)/79 * 31.6In case of DH3: (average time of occupancy) = (pulse width) * (1600/4)/79 * 31.6In case of DH5: (average time of occupancy) = (pulse width) * (1600/6)/79 * 31.6

Limitation

15.247(a)(1)(iii) The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test equipment used (refer to List of utilized test equipment)

TR06	CL23		

Test results – comply with the limitation.

Operating Mode	Frequency [MHz]	Transmission	Pulse width	Time of occupancy		
		Packet Type	(msec)	(msec)		
		DH1	0.387	123.840		
	2402	DH3	1.650	264.000		
		DH5	2.900	309.333		
		DH1	0.389	124.480		
GFSK	2441	DH3	1.639	262.240		
		DH5	2.889	308.160		
		DH1	0.388	124.160		
	2480	DH3	1.638	262.080		
		DH5	2.888	308.053		
		DH1	0.392	125.440		
	2402	DH3 1.652		264.320		
		DH5	2.902	309.547		
		DH1	0.392	125.440		
π /4DQPSK	2441	DH3	1.650	264.000		
		DH5	2.900	309.333		
		DH1	0.389	124.480		
	2480	DH3	1.647	263.520		
		DH5	2.897	309.013		
		DH1	0.392	125.440		
	2402	DH3	1.642	262.720		
		DH5	2.900	309.333		
		DH1	0.392	125.440		
8DPSK	2441	DH3	1.642	262.720		
		DH5	2.892	308.480		
		DH1	0.393	125.760		
	2480	DH3	1.642	262.720		
		DH5	2.892	308.480		

RF Technologies Ltd. Page 14 of 48

Model: F-03A

Test Data

Tested Date: October 23, 2008

Temperature: 22 °C

Humidity: 59 %

Atmos. Press: 1020 hPa

Operating mode: GFSK

Model: F-03A

Operating mode: $\pi/4DQPSK$

Model: F-03A

Operating mode: 8DPSK

Model: F-03A

2.5 Peak Output Power

Test setup

Test setup is the following drawing. The antenna port of EUT was connected to the spectrum analyzer.

Test procedure

The EUT antenna port connected to the spectrum analyzer. The RBW is set to the greater than 20dB bandwidth. The VBW is set to three times of RBW. The sweep time is coupled appropriate. The span is set to cover the carrier output spectrum. The analyzer is set to MAX HOLD. The EUT is set measured transmission channel under hopping off mode.

Limitation

15.247(a) (1) Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW(21dBm).

Test equipment used (refer to List of utilized test equipment)

TR06	CL23		

Test results – comply with the limitation.

Operating Mode	Mode Transmission		Output power	Output power	Output power
	Channel	(dB)	(dBm)	(dBm)	(mW)
	(Frequency: MHz)		[Reading]	[Result]	[Result]
	Low (2402)	0.2	-0.27	-0.07	0.984
GFSK	Middle (2441)	0.2	-0.28	-0.08	0.982
	High (2480)	0.2	-0.50	-0.3	0.933
	Low (2402)	0.2	1.42	1.62	1.452
π/4DQPSK	Middle (2441)	0.2	1.55	1.75	1.496
	High (2480)	0.2	1.42	1.62	1.452
	Low (2402)	0.2	1.70	1.9	1.549
8DPSK	Middle (2441)	0.2	1.95	2.15	1.641
	High (2480)	0.2	1.86	2.06	1.607

RF Technologies Ltd. Page 18 of 48

Model: F-03A

Test Data

Tested Date: October 23, 2008

Temperature: 22 °C
Humidity: 59 %

Atmos. Press: 1020 hPa

Model: F-03A

2.6 Conducted Spurious Emissions (Antenna Port)

Test setup

Test setup is the following drawing. The antenna port of EUT was connected to the spectrum analyzer.

Test procedure

The EUT antenna port connected to the spectrum analyzer. The RBW is set to 100 kHz. The VBW is set to 300 kHz. The sweep time is set to the coupled. The spectrum is cheated from 30 MHz to 26 GHz.

The EUT is set measured transmission channel under hopping off mode.

Limitation

15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Test equipment used (refer to List of utilized test equipment)

TR06 CL23

Test results – comply with the limitation.

There were no conducted spurious emissions with levels of more than 20 dB below the applicable limit.

RF Technologies Ltd. Page 20 of 48

Model: F-03A

Test Data

Tested Date: October 23, 2008

Temperature: 22 °C

Humidity: 59 %

Atmos. Press: 1020 hPa

Model: F-03A

Middle (39ch) 2441MHz

Model: F-03A

High (78ch) 2480MHz

Model: F-03A

2.7 Transmitter Radiated spurious emissions

Test setup

Test setup was implemented according to the method of ANSI C63.4: 2003 clause 6 "General requirements for EUT equipment arrangements and operation", clause 8.2 and Annex H.3 "Radiated emission measurements setup".

Model: F-03A

Test procedure

Measurement procedures were implemented according to the method of ANSI C63.4: 2003 clauses 8.2.

The EUT is place on a non-conducted table which is 0.8m height from a ground plane and the measurement antenna to EUT distance is 3 meters. The turn table is rotated for 360 degrees to determine the maximum emission level. In the frequency range of 9 kHz to 30 MHz, a calibrated loop antenna was positioned with its plane vertical at the distance 3m from the EUT with an extrapolation of corrected distance factor and rotated about its vertical axis for maximum response at each azimuth about the EUT. For certain applications, the loop antenna also needs to be positioned horizontally. The center of the loop shall be 1 m above the ground.

In the frequency above 30 MHz, the antenna height scanned between 1m and 4m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

EUT is placed at three different orientations (X, Y and Z axis) in order to find the worst orientation.

The spectrum analyzer and receiver is set to the followings;

Below 30 MHz: RBW=10 kHz, VBW= 30 kHz

Final measurement is carried out with a receiver RBW of 9 kHz (QP)

Between 30 - 1000 MHz: RBW=100 kHz, VBW= 300 kHz

Final measurement is carried out with a receiver RBW of 120 kHz (QP)

Above 1000 MHz: Peak measurement- RBW=1 MHz, VBW= 1 MHz

Average measurement – RBW=1 MHz, VBW=10 Hz

Applicable rule and limitation

§15.205 restricted bands of operation

Except as shown in paragraph 15.205 (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.490 - 0.510	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(1)

15.205(b) except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

RF Technologies Ltd. Page 25 of 48

Model: F-03A

15.209(a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

Frequency	Field Strength	Measurement Distance
(MHz)	(uV/m)	(m)
0.009 - 0.490	2400/F (kHz)	300
0.490 - 1.705	24000/F (kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 –216	150	3
216 – 960	200	3
Above 960	500	3

In the emission table above, the tighter limit applies at the band edges.

The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission.

The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz.

Radiated emission limits in the above bands are based on measurements employing an average detector.

Test results - Complied with requirement.

Test Data

2.7.1 Below 30 MHz

Test equipment used (refer to List of utilized test equipment)

LP01	CLH	1 K 0 4	

Tested Date: November 3, 2008

Temperature: 21 °C

Humidity: 48 %

Atmos. Press: 1014 hPa

Result

There is no spurious emission with levels of more than 20 dB below the applicable limit

Model: F-03A

2.7.2 Between 30 – 1000 MHz

Test equipment used (refer to List of utilized test equipment)

BA03	CL11	PR03	TR04
------	------	------	------

Tested Date: November 3, 2008

Temperature: 21 °C

Humidity: 48 %

Atmos. Press: 1014 hPa

Operating mode: Continuous Communication (GFSK, 2480MHz: Worst configuration)

EUT position: Y-plane (Maximum position)

Setting: Configuration 2 Measurement distance: 3 m

No.	Frequency [MHz]	Reading [dBuV]	Factor [dB/m]	Loss [dB]	Gain [dB]	Result [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Antenna Polarization
1	75.971	43.7	6.6	8.0	29.7	28.6	40.0	11.4	Vert.
2	75.999	33.4	6.6	8.0	29.7	18.3	40.0	21.7	Hori.
3	152.099	41.1	10.7	8.9	29.6	31.1	43.5	12.4	Hori.
4	152.113	31.8	10.7	8.9	29.6	21.8	43.5	21.7	Vert.
5	228.136	37.3	10.9	9.6	29.6	28.2	46.0	17.8	Hori.
6	247.868	30.5	12.2	9.9	29.6	23.0	46.0	23.0	Hori.

Calculation method

The Correction Factors and RESULT are calculated as followings.

Correction Factor [dB] = FACTOR [dB/m] + LOSS [dB] – GAIN [dB]

RESULT [dBuV/m] = READING [dBuV] + Correction Factor [dB]

Sample calculation at 75.971 MHz vertical result as follow:

Result [dBuV/m] = Reading + C.F = 43.7 + 6.6 + 8.0 - 29.7 = 28.6Margin = Limit - Result = 40.0 - 28.6 = 11.4 [dB]

RF Technologies Ltd. Page 27 of 48

Model: F-03A

Graphical express of test result (30MHz-1000MHz)

Antenna polarization: Horizontal

Antenna polarization: Vertical

Model: F-03A

2.7.3 Above 1000 MHz

Test equipment used (refer to List of utilized test equipment)

 	(1				
PR99	SH01	TR06	CL23	CL24	HPF1	DH01	AC01	

Tested Date: November 7, 2008

Temperature: 21 °C

Humidity: 58 %

Atmos. Press: 1014 hPa

Restricted Band Edge (GPSK, Low channel, Horizontal (Worst))

Restricted Band Edge (GFSK, High channel, Horizontal (Worst))

RF Technologies Ltd. Page 29 of 48

Model: F-03A

Restricted Band Edge ($\pi/4$ DQPSK, Low channel, Horizontal (Worst))

Restricted Band Edge (π/4DQPSK, High channel, Horizontal (Worst))

Model: F-03A

Restricted Band Edge (8DPSK, Low channel, Horizontal (Worst))

Restricted Band Edge (8DPSK, High channel, Horizontal (Worst))

Model: F-03A

Harmonics and Spurious Emission above 1000 MHz

Measurement distance: 3 m

Operating mode: Continuous Communication (GFSK, $\pi/4$ DQPSK 8DPSK)

There were no spurious emissions graters than noise floor.

TX	Freq.		Result (c	dBuV/m)		Liı	nit	Ma	rgin
СН		Pe	ak	Av	ve.	(dBu	V/m)	(d	B)
(MHz)	(MHz)	Hori.	Vert.	Hori.	Vert.	Peak	Ave.	Peak	Ave.
	4804	<48.1	<47.9	<35.2	<35.3	74.0	54.0	>25.9	>18.7
	7206	<49.2	<49.0	-	-	67.2	ı	>18.0	-
1ch	9608	<53.8	<53.9	-	-	67.2	ı	>13.3	-
2402	12010	<57.5	<57.5	<44.4	<45.3	74.0	54.0	>16.5	>8.7
	14412	<61.5	<60.8	-	-	67.2	1	>6.4	-
	~26000	<64.8	<64.7	<51.2	<51.5	74.0	54.0	>9.2	>2.5

TX	Freq.		Result (c	dBuV/m)		Liı	nit	Mai	rgin
СН		Pe	ak	A	ve.	(dBu	V/m)	(d	B)
(MHz)	(MHz)	Hori.	Vert.	Hori.	Vert.	Peak	Ave.	Peak	Ave.
	4882	<48.4	<48.0	<35.0	<35.9	74.0	54.0	>25.6	>18.1
	7323	<51.8	< 50.2	<38.1	<38.0	74.0	54.0	>22.2	>15.9
39ch	9764	<55.5	<55.6	-	-	67.5	ı	>11.9	ı
2441	12205	<58.2	<58.9	<44.5	<44.4	74.0	54.0	>15.1	>9.5
	14646	<62.4	<63.4	-	-	67.5	1	>4.1	-
	~26000	<65.3	<64.7	<51.4	<51.5	74.0	54.0	>8.7	>2.5

TX	Freq.		Result (c	lBuV/m)		Liı	nit	Margin	
СН		Peak		Ave.		(dBuV/m)		(dB)	
(MHz)	(MHz)	Hori.	Vert.	Hori.	Vert.	Peak	Ave.	Peak	Ave.
	4960	<49.2	<49.1	<35.1	<34.9	74.0	54.0	>24.8	>18.9
	7440	<52.4	<53.1	<38.3	<37.8	74.0	54.0	>20.9	>15.7
79ch	9920	<55.4	< 55.3	-	-	64.4	-	>9.0	-
2480	12400	<59.3	<59.5	<45.5	<44.3	74.0	54.0	>14.5	>8.5
	14880	<62.8	<62.8	<49.3	<49.5	74.0	54.0	>11.2	>4.5
	~26000	<67.2	<67.1	<52.9	<52.5	74.0	54.0	>6.8	>1.1

Note1: This frequency is not in the restriction band therefore this spurious emission shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power (15.247 (d)).

The radiated carrier level of each frequency is follows (RBW = 100 kHz);

- < 87.2 dBuV/m at 2402 MHz
- < 87.5 dBuV/m at 2441 MHz
- < 84.4 dBuV/m at 2480 MHz

RF Technologies Ltd. Page 32 of 48

Model: F-03A

2.8 Transmitter AC power line conducted emissions

Test setup

Test setup was implemented according to the method of ANSI C63.4: 2003 clause 6 "General requirements for EUT equipment arrangements and operation" and Annex H.1 "AC power line conducted emission measurements setup".

Test procedure

Measurement procedures were implemented according to the method of ANSI C63.4: 2003 clauses 7, clause 13.1.3 and Annex H.2 "AC power line conducted emission measurements".

Exploratory measurements were used the spectrum analyzer to identify the frequency of the emission that has the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable positions, and with a typical system equipment configuration and arrangement.

Final ac power line conducted emission measurements were performed based on the exploratory tests.

The EUT cable configuration and arrangement and mode of operation that produced the emission with the highest amplitude relative to the limit are selected for the final measurement.

When the measurement value is grater than average limitation the average detection measurements were performed.

Applicable rule and limitation

§15.207 (a) AC power line conducted limits

Frequency of Emission (MHz)	Conducted I	Limit (dBuV)
rrequency of Emission (wiffz)	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency.

Test equipment used (refer to List of utilized test equipment)

TR04	PL06	LN05	CL11

Test results - Complied with requirement.

RF Technologies Ltd. Page 33 of 48

The lower limit applies at the band edges.

Model: F-03A

Test Data

Tested Date: November 3, 2008

Temperature: 21 °C

Humidity: 48 %

Atmos. Press: 1014 hPa

Operating mode: Continuous Communication

	Fraguenov	Rea	ding	C.F.	Res	sult	Liı	mit	Ma	rgin	
No.	Frequency [MHz]	QP [dBuV]	AV [dBuV]	[dB]	QP [dBuV]	AV [dBuV]	QP [dBuV]	AV [dBuV]	QP [dB]	AV [dB]	PHASE
1	0.151	48.1	31.9	0.3	48.4	32.2	66.0	56.0	17.6	23.8	N
											11
2	0.151	46.7	31.2	0.3	47.0	31.5	65.9	55.9	18.9	24.4	L
3	1.856	37.4	27.6	0.3	37.7	27.9	56.0	46.0	18.3	18.1	N
4	1.859	36.6	26.4	0.3	36.9	26.7	56.0	46.0	19.1	19.3	L
5	3.750	29.4	22.4	0.5	29.9	22.9	56.0	46.0	26.1	23.1	L
6	3.763	32.5	25.3	0.5	33.0	25.8	56.0	46.0	23.0	20.2	N

The power line conducted emission voltage is calculated by adding the LISN factor and Cable loss attenuation from the measured reading. The calculation is as follows:

Result = Reading + C. F
where
$$C.F = LISN Factor + Cable Loss$$
 [dB]

Sample calculation at 0.151 MHz QP result as follow:

Result [dBuV] = Reading + C.F =
$$48.1 + 0.3 = 48.4$$
 [dBuV]
Margin = Limit - Result = $66.0 - 48.4 = 17.6$ [dB]

RF Technologies Ltd. Page 34 of 48

Model: F-03A

Graphical express of test result (0.15 MHz-30MHz)

AC Power line conducted emission. (Phase N)

AC Power line conducted emission. (Phase L)

Model: F-03A

2.9 Receiver Radiated spurious emissions

Test setup - Same as clause 2.7

Test procedure - Same as clause 2.7

Applicable rule and limitation at 3m

§15.109 radiated emission limitation

,			
Frequency	Measurement Distance	Field Strength	Field Strength
(MHz)	(m)	(uV/m)	(dBuV/m)
30 - 88	3	100	40.0
88 –216	3	150	43.5
216 – 960	3	200	46.0
Above 960	3	500	54.0

In the emission table above, the tighter limit applies at the band edges.

The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector.

Test results - Complied with requirement.

2.9.1 Between 30 – 1000 MHz

Test equipment used (refer to List of utilized test equipment)

BA03	CL11	PR03	TR04	
21100		11100	1110.	

Test Data

Tested Date: November 3, 2008

Temperature: 21 °C

Humidity: 48 %

Atmos. Press: 1014 hPa

Operating mode: Receiving (2480MHz: Worst configuration)

EUT position: Y-plane (Maximum position)

Setting: Configuration 2 Measurement distance: 3 m

No.	Frequency [MHz]	Reading [dBuV]	Factor [dB/m]	Loss [dB]	Gain [dB]	Result [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Antenna Polarization
1	75.957	33.2	6.6	8.0	29.7	18.1	40.0	21.9	Hori.
2	75.961	43.5	6.6	8.0	29.7	28.4	40.0	11.6	Vert.
3	151.919	32.0	10.7	8.9	29.6	22.0	43.5	21.5	Vert.
4	151.971	41.1	10.7	8.9	29.6	31.1	43.5	12.4	Hori.
5	247.867	29.4	12.2	9.9	29.6	21.9	46.0	24.1	Vert.
6	247.868	30.6	12.2	9.9	29.6	23.1	46.0	22.9	Hori.

Calculation method

The Correction Factors and RESULT are calculated as followings.

Correction Factor [dB] = FACTOR [dB/m] + LOSS [dB] – GAIN [dB]

RESULT [dBuV/m] = READING [dBuV] + Correction Factor [dB]

Sample calculation at 75.961 MHz vertical result as follow:

Result [dBuV/m] = Reading + C.F = 43.5 + 6.6 + 8.0 - 29.7 = 28.4 Margin = Limit - Result = 40.0 - 28.4 = 11.6 [dB]

RF Technologies Ltd. Page 36 of 48

Model: F-03A

Graphical express of test result (30MHz-1000MHz)

Antenna polarization: Horizontal

Antenna polarization: Vertical

Model: F-03A

2.9.2 Above 1000 MHz

Test equipment used (refer to List of utilized test equipment)

					,	
F	PR99	TR06	CL23	CL24	DH01	

Tested Date: November 7, 2008

Temperature: 21 °C

Humidity: 58 %

Atmos. Press: 1014 hPa

Operating mode: Receiving (2441MHz: Worst configuration)

EUT position: X-plane (Maximum position)

Setting: Configuration 2 Measurement distance: 3 m

There are no spurious emissions other than listed below;

1	[MHz] 2443.262	[dBuV] 50.4	[dB/m] 28.8	[dB] 2.4	37.4	[dBuV/m] 44.2	[dBuV/m] 54.0	[dB]	Polarization Vert.
No.	Frequency	Reading	Factor	Loss	Gain [dB]	Result	Limit	Margin	Antenna

Calculation method

The RESULT is calculated as followings.

RESULT [dBuV/m] = READING [dBuV] + Antenna Factor [dB/m] + Cable Loss [dB] – AMP Gain [dB]

RF Technologies Ltd. Page 38 of 48

Model: F-03A

2.10 Receiver AC power line conducted emissions

Test setup - Same as clause 2.8

Test procedure - Same as clause 2.8

Applicable rule and limitation

§15.107 (a) AC power line conducted limits

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
riequency of Emission (WHZ)	Quasi-peak	Average			
0.15-0.5	66 to 56 *	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

^{*} Decreases with the logarithm of the frequency.

Test equipment used (refer to List of utilized test equipment)

TR04	PLO	5 LN05	CL11
------	-----	--------	------

Test results - Complied with requirement.

The lower limit applies at the band edges.

Model: F-03A

Test Data

Tested Date: November 3, 2008

Temperature: 21 °C

Humidity: 48 %

Atmos. Press: 1014 hPa

Operating mode: Receiving (2441MHz: Worst configuration)

	Frequency	Rea	ding	C.F.	Res	sult	Liı	mit	Ma	rgin	
No.	[MHz]	QP [dBuV]	AV [dBuV]	[dB]	QP [dBuV]	AV [dBuV]	QP [dBuV]	AV [dBuV]	QP [dB	AV [dB]	PHASE
1	0.151	45.9	31.7	0.3	46.2	32.0	65.9	55.9	19.7	23.9	N
2	0.152	45.0	30.5	0.3	45.3	30.8	65.9	55.9	20.6	25.1	L
3	1.810	37.2	26.3	0.3	37.5	26.6	56.0	46.0	18.5	19.4	L
4	2.012	35.8	26.2	0.3	36.1	26.5	56.0	46.0	19.9	19.5	N
5	3.694	29.7	21.7	0.5	30.2	22.2	56.0	46.0	25.8	23.8	L
6	3.754	32.2	24.2	0.5	32.7	24.7	56.0	46.0	23.3	21.3	N

The power line conducted emission voltage is calculated by adding the LISN factor and Cable loss attenuation from the measured reading. The calculation is as follows:

Result = Reading + C. F
where
$$C.F = LISN Factor + Cable Loss$$
 [dB]

Sample calculation at 1.810MHz QP result as follow:

Result [dBuV] = Reading + C.F =
$$37.2 + 0.3 = 37.5$$
 [dBuV]
Margin = Limit - Result = $56.0 - 37.5 = 18.5$ [dB]

RF Technologies Ltd. Page 40 of 48

Model: F-03A

Graphical express of test result (0.15 MHz-30MHz)

AC Power line conducted emission. (Phase N)

AC Power line conducted emission. (Phase L)

RF Technologies Ltd.

Page 41 of 48

Model: F-03A

4 List of utilized test equipment/ calibration

RFT ID No.	Kind of Equipment and Precision	Manufacturer	Model No.	Serial Number	Calibration Date	Calibrated until
AC01	Anechoic Chamber (1st test room)	JSE	203397C	-	2008/07/04	2009/07/03
BA03	Bilogical Antenna	CHASE	CBL6111	1309	2008/05/07	2009/05/06
CL11	Antenna Cable	RFT	-	-	2008/06/11	2009/06/10
CL23	RF Cable 0.5m	SUCOFLEX	SF104PE	48773/4PE	2008/06/10	2009/06/09
CL24	RF Cable 5.0m	SUCOFLEX	SF104PE	48775/4PE	2008/06/10	2009/06/09
LN05	LISN	Kyoritsu	KNW-407	8-1773-2	2008/05/21	2009/05/20
PL06	Pulse Limiter	PMM	PL-01	0000J10109	2008/01/17	2009/01/15
PR03	Pre. Amplifier	Anritsu	MH648A	M41984	2008/05/12	2009/05/11
PR99	Pre. Amplifier	Agilent	8449B	3008A01803	2008/08/18	2009/08/31
HPF1	High Pass Filter (3500MHz)	TOKIMEC	TF323DCA	603	2008/06/09	2009/06/08
TR06	Test Receiver (F/W: 3.93 SP2)	Rohde & Schwarz	ESU26	100002	2008/09/02	2009/09/01
SH01	Standard Horn Antenna (18-26G)	A.H. Systems	SAS-572	208	2008/07/23	2011/07/22
TR04	Test Receiver (F/W: 3.82 SP1)	Rohde & Schwarz	ESCI	100447	2008/09/16	2009/09/15
DH01	DRG Horn Antenna	A.H. Systems	SAS-571	785	2008/1/31	2010/1/29

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.