Utility Cost of Formal Privacy for Releasing National Employer-Employee Statistics

October 25, 2016

Outline

- Preliminaries
- Dataset
- Privacy requirements
- Current SDL protection
- Applying differential privacy
- Employee-Employer privacy
- Algorithms and results

Combined employer-employee data

- whether or not a specific individual is employed
- the count of employees in a specific workplace

Preliminaries

- D is a table of records with schema $(A_1, ..., A_k)$
- dom(A_i) is the domain of attribute A_i
- dom(V) is the multidimensional domain $\times_{A \in V} dom(A)$ for the set of attributes $V = \{A_{i_1}, ..., A_{i_m}\}$
- for each record t in the table t[A_i] ∈ dom(A_i) is a value of attribute A_i
- n = |D| is the size of the table
- database with schema $(S_1, ..., S_m)$ is a collection of tables $D_1, ..., D_m$, where D_i has schema S_i

Preliminaries

- D is a table of records with schema $(A_1, ..., A_k)$
- dom(A_i) is the domain of attribute A_i
- dom(V) is the multidimensional domain $\times_{A \in V} dom(A)$ for the set of attributes $V = \{A_{i_1}, ..., A_{i_m}\}$
- for each record t in the table t[A_i] ∈ dom(A_i) is a value of attribute A_i
- n = |D| is the size of the table
- database with schema $(S_1, ..., S_m)$ is a collection of tables $D_1, ..., D_m$, where D_i has schema S_i

Preliminaries

- D is a table of records with schema $(A_1, ..., A_k)$
- dom(A_i) is the domain of attribute A_i
- dom(V) is the multidimensional domain $\times_{A \in V} dom(A)$ for the set of attributes $V = \{A_{i_1}, ..., A_{i_m}\}$
- for each record t in the table t[A_i] ∈ dom(A_i) is a value of attribute A_i
- n = |D| is the size of the table
- database with schema $(S_1, ..., S_m)$ is a collection of tables $D_1, ..., D_m$, where D_i has schema S_i

Marginal Query

Let $V = \{A_{i_1}, ..., A_{i_m}\}$ denote a subset of attributes chosen from D. Let $dom(V) = \times_{A \in V} dom(A)$. The marginal query $q_V(D)$ is defined as a vector of |dom(V)| counts, one for each cell $\mathbf{v} = (v_1, ..., v_m) \in dom(V)$. The count corresponding to cell \mathbf{v} , denoted by $q_V(D, \mathbf{v})$ is

$$|\{t \in D | t[A_{i_1}] = v_1 \wedge ... \wedge t[A_{i_m}] = v_m\}|$$
 (1)

 $q_{\emptyset}(D)$ returns a single cell whose count is the size of the table.

SQL:

Select Count(*) From *D* Group By *A_{ir},...,A_{ia}*

Marginal Query

Let $V = \{A_{i_1}, ..., A_{i_m}\}$ denote a subset of attributes chosen from D. Let $dom(V) = \times_{A \in V} dom(A)$. The marginal query $q_V(D)$ is defined as a vector of |dom(V)| counts, one for each cell $\mathbf{v} = (v_1, ..., v_m) \in dom(V)$. The count corresponding to cell \mathbf{v} , denoted by $q_V(D, \mathbf{v})$ is

$$|\{t \in D | t[A_{i_1}] = v_1 \wedge ... \wedge t[A_{i_m}] = v_m\}|$$
 (1)

 $q_{\emptyset}(D)$ returns a single cell whose count is the size of the table.

SQL:

Select Count(*) From DGroup By $A_{i_1},...,A_{i_m}$

(ϵ, δ) – DifferentialPrivacy

Let $\mathcal M$ be a randomized algorithm. Let the tables D and D' be a neighbors with the same schema. Then $\mathcal M$ satisfies (ϵ,δ) -differential privacy if for all D and D' and for all $S\subset range(\mathcal M)$

$$Pr[\mathcal{M}(D) \in S] \le e^{\epsilon} Pr[\mathcal{M}(D') \in S] + \delta$$
 (2)

Sensitivity

Let $\mathcal I$ denote the set of all tables with a given schema. let $q:\mathcal I\to\mathbb R^d$ be a query function on that table that outputs a vector of d real numbers. The sensitivity of q, denoted Δ_q , is

$$\Delta_q = extit{max}_{D,D'}$$
 neighbors $\|q(D) - q(D')\|_1$

(ϵ, δ) – DifferentialPrivacy

Let $\mathcal M$ be a randomized algorithm. Let the tables D and D' be a neighbors with the same schema. Then $\mathcal M$ satisfies (ϵ,δ) -differential privacy if for all D and D' and for all $S\subset range(\mathcal M)$

$$Pr[\mathcal{M}(D) \in S] \le e^{\epsilon} Pr[\mathcal{M}(D') \in S] + \delta$$
 (2)

Sensitivity

Let \mathcal{I} denote the set of all tables with a given schema. let $q: \mathcal{I} \to \mathbb{R}^d$ be a query function on that table that outputs a vector of d real numbers. The sensitivity of q, denoted Δ_q , is

$$\Delta_q = max_{D,D'neighbors} \|q(D) - q(D')\|_1$$

Laplace Mechanism

Let $q: \mathcal{I} \to \mathbb{R}^d$ be a query on a table and let $\eta \sim Lap(\lambda)$. The algorithm which returns $\tilde{q}(D) = q(D) + \eta^d$ satisfies ϵ -differential privacy, where η^d is a vector of d independently drawn Laplace random variables.

Expected L_p Error

Let $q: \mathcal{I} \to \mathbb{R}^d$ be a query over a table and $\tilde{q}(D)$ be a noisy answer returned by an algorithm. The expected L_p error of the algorithm is

$$E(\|q(D) - \tilde{q}(D)\|_p)$$

where $||x||_p$ is the L_p norm, and expectation is over the randomness of the algorithm.

Laplace Mechanism

Let $q: \mathcal{I} \to \mathbb{R}^d$ be a query on a table and let $\eta \sim Lap(\lambda)$. The algorithm which returns $\tilde{q}(D) = q(D) + \eta^d$ satisfies ϵ -differential privacy, where η^d is a vector of d independently drawn Laplace random variables.

Expected L_p Error

Let $q: \mathcal{I} \to \mathbb{R}^d$ be a query over a table and $\tilde{q}(D)$ be a noisy answer returned by an algorithm. The expected L_p error of the algorithm is

$$E(\|q(D) - \tilde{q}(D)\|_p)$$

where $||x||_p$ is the L_p norm, and expectation is over the randomness of the algorithm.

Database structure

Workplace

workplace id	industry	ownership	geography
--------------	----------	-----------	-----------

Worker

vorker id age	sex	race	ethnicity	education
---------------	-----	------	-----------	-----------

Job

worker id	workplace id
-----------	--------------

*** Assume each worker has exactly one job

Privacy Requirements

- The existence of a job held by a particular individual is confidential
- The existence of an employer business as well as its type and location is not confidential
- Characteristics of an establishment's workforce must be protected

Formal Privacy

Uninformed attackers: do not possess detailed background knowledge about specific individuals and establishments in the data

Informed attackers: possess specific background knowledge about specific employers and employees in the data

Assumptions

- ullet Adversary knows the set of all establishments ${\mathcal E}$ and their public attributes
- Adversary knows the universe U of all employees
- Each worker $w \in U$ has a set of private attributes $A_1, ..., A_k$
- For each emplyee w the attacker's belief is defined as π_w , a probability distribution over all values in \mathcal{T}
- Adversary's belief about all employees in U: $\theta = \prod_{w \in U} \pi_w$
- The set of all possible adversarial beliefs $\Theta = \{\theta\}$
- We distinguish subset of attackers $\Theta_{weak} \subset \Theta$ with a prior for each worker $\pi_{w} = \pi_{1,e} \times \pi_{2,w}$

Assumptions

- ullet Adversary knows the set of all establishments ${\mathcal E}$ and their public attributes
- Adversary knows the universe U of all employees
- Each worker $w \in U$ has a set of private attributes $A_1, ..., A_k$
- For each emplyee w the attacker's belief is defined as π_w , a probability distribution over all values in \mathcal{T}
- Adversary's belief about all employees in $U: \theta = \prod_{w \in U} \pi_w$
- The set of all possible adversarial beliefs $\Theta = \{\theta\}$
- We distinguish subset of attackers $\Theta_{weak} \subset \Theta$ with a prior for each worker $\pi_w = \pi_{1,e} \times \pi_{2,w}$

No re-identification of individuals:

Employee Privacy Requirement

For randomized algorithm A, if for some $\epsilon \in (0, \infty)$, and for every employee $w \in U$, for every adversary $\theta \in \Theta$, for every $a, b \in \mathcal{T}$ such that $Pr_{\theta}[w = a] > 0$ and $Pr_{\theta}[w = b] > 0$, and for every output $\omega \in range(A)$:

$$log\left(\frac{Pr_{\theta,A}[w=a|A(D)=\omega]}{Pr_{\theta,A}[w=b|A(D)=\omega]}\right/\frac{Pr_{\theta}[w=a]}{Pr_{\theta}[w=b]}\right) \leq \epsilon$$
 (3)

Then the algorithm protects employees against informed attackers at privacy level ϵ .

No precise inference of establishment size

Employer Size Requirement

A randomized algorithm A protects establishment size against an informed attacker at privacy level (ϵ, α) if, for every informed attacker $\theta \in \Theta$, for every pair of numbers x, y, and for every output $\omega \in range(A)$:

$$\left| log \left(\frac{Pr_{\theta,A}[|e| = x | A(D) = \omega]}{Pr_{\theta,A}[|e| = y | A(D) = \omega]} \middle/ \frac{Pr_{\theta}[|e| = x]}{Pr_{\theta}[|e| = y]} \right) \right| \le \epsilon$$
 (4)

whenever $x \le y \le \lceil (1+\alpha)x \rceil$ and $Pr_{\theta}[|e|=x]$, $Pr_{\theta}[|e|=y] > 0$. We say that an algorithm weakly protects establishments against an informed attacker if the condition above holds for all $\theta \in \Theta_{weak}$.

No precise inference of establishment shape

Employer Shape Requirement

Let $e_{\mathcal{X}}$ denote the subset of employees working at e who have values in $\mathcal{X} \subset A_1 \times ... \times A_k$. A randomized algorithm A protects establishment shape against an informed attacker at privacy level (ϵ, α) if, for every informed attacker $\theta \in \Theta$, for every property of a worker record $\mathcal{X} \subset A_1 \times ... \times A_k$, for every pair of numbers $0 , and for every output <math>\omega \in range(A)$ and for every number z,

$$\left| log \left(\frac{Pr_{\theta,A}[|e_{\mathcal{X}}|/|e| = p, |e| = z | A(D) = \omega]}{Pr_{\theta,A}[|e_{\mathcal{X}}|/|e| = q, |e| = z | A(D) = \omega]} \right/ \right|$$

$$\left. \frac{Pr_{\theta}[|e_{\mathcal{X}}|/|e|=p,|e|=z]}{Pr_{\theta}[|e_{\mathcal{X}}|/|e|=q,|e|=z]} \right) \right| \leq \epsilon$$

whenever $Pr_{\theta}[|e_{\mathcal{X}}|/|e| = p, |e| = z], Pr_{\theta}[|e_{\mathcal{X}}|/|e| = q, |e| = z] > 0.$

Current SDL Protection

- Database is perturbed before answering queries
- Every establishment w is assigned a unique, time-invariant, confidential distortion factor $f_w \in [1 \beta, 1 \alpha] \cup [1 + \alpha, 1 + \beta]$
- Zero values are kept unmodified
- Additional output perturbation to limit re-identification of inndividual workes.

Differential Privacy

Bipartite graph

- edge differential privacy: not strong enough
- node differential privacy: too strong

Figure 2: Employment counts from a single establishment

DEFINITION 7.1 (STRONG α -NEIGHBORS). Let D and D' be two employer-employee tables such that they differ in the employment attribute of exactly one record (say corresponding to establishment e). Let E denote the set of workers employed at e in D, and E' denote the set of workers employed at e in D'. Then D and D' are neighbors if $E \subseteq E'$, and $|E| \le |E'| \le \max(1 + \alpha)|E|, |E| + 1)$

DEFINITION 7.2 $((\alpha, \epsilon)$ -EMPLOYEE-EMPLOYER PRIVACY). A randomized algorithm \mathcal{M} is said to satisfy (α, ϵ) -Employee-Employer Privacy, if for every set of outputs $S \subseteq range(M)$, and every pair of strong α -Neighbors D and D', we have

$$Pr[\mathcal{M}(D) \in S] \le e^{\epsilon} Pr[\mathcal{M}(D') \in S]$$

THEOREM 7.1. Let \mathcal{M} be an algorithm satisfying (α, ϵ) -employer-employee privacy. Then, \mathcal{M} satisfies the individual privacy requirement at privacy level ϵ , and the establishment size and shape requirements at privacy level (ϵ, α) .

DEFINITION 7.3 (WEAK α -NEIGHBORS). Let D and D' be two employer-employee tables such that they differ in the employment attribute of exactly one record (say corresponding to establishment e). Let $\phi: U \to \{0,1\}$ be any property of a worker record, and for any $E \subset U$, let $\phi(E) = \sum_{r \in E} \phi(r)$. Let E denote the set of workers employed at e in D, and E' denote the set of workers employed at e in D'. D and D' are called weak α -neighbors if for every ϕ

$$\phi(E) \le \phi(E') \le \max((1+\alpha)\phi(E), 1) \tag{7}$$

DEFINITION 7.4 (WEAK (α, ϵ) -EMPLOYEE-EMPLOYER PRIVACY) A randomized algorithm \mathcal{M} is said to satisfy weak (α, ϵ) -Employee-Employer Privacy, if for every set of outputs $S \subseteq range(M)$, and every pair of weak α -Neighbors D and D', we have

$$Pr[\mathcal{M}(D) \in S] \le e^{\epsilon} Pr[\mathcal{M}(D') \in S]$$

THEOREM 7.2. Let A be an algorithm satisfying weak (α, ϵ) employer-employee privacy. Then, A satisfies the individual privacy requirement at privacy level ϵ and the establishment shape
requirement at level (ϵ, α) . A satisfies the establishment size requirement at level (ϵ, α) for weak adversaries.

Composition

). THEOREM 7.3. Let \mathcal{M}_1 and \mathcal{M}_2 be (α, ϵ_1) - and (α, ϵ_2) employer-employee private algorithms. Releasing the outputs of $\mathcal{M}_1(D)$ and $\mathcal{M}_2(D)$ results in $(\alpha, \epsilon_1 + \epsilon_2)$ -employer-employee privacy. The same holds for weak (α, ϵ) -employer-employee privacy.

THEOREM 7.4. Let D_1 and D_2 represent subsets of records from the employer-employee dataset that pertain to distinct sets of establishments. Let \mathcal{M}_1 and \mathcal{M}_2 be (α, ϵ) - and (α, ϵ) -employer-employee private algorithms. Releasing the outputs of $\mathcal{M}_1(D_1)$ and $\mathcal{M}_2(D_2)$ results in (α, ϵ) -employer-employee privacy. The same holds for weak (α, ϵ) -employer-employee privacy.

Composition

THEOREM 7.5. Let D_1 and D_2 represent subsets of records from the employer-employee dataset that pertain to distinct workers, but have records that arise from the same establishment. Let \mathcal{M}_1 and \mathcal{M}_2 be (α, ϵ) - and (α, ϵ) -employer-employee private algorithms. Releasing the outputs of $\mathcal{M}_1(D_1)$ and $\mathcal{M}_2(D_2)$ results in (α, ϵ) -employer-employee privacy. The same does not hold for weak (α, ϵ) -employer-employee privacy.

Intuition for the Proof:

$$d(A \cap D_1, B \cap D_1) + d(A \cap D_2, B \cap D_2) \le d(A, B),$$

Log-Laplace Algorithm

THEOREM 8.1. Suppose q_v is a query over only establishment attributes. Then, releasing q_v using Algorithm 1 satisfies (α, ϵ) -employer-employee privacy.

Algorithm 1 Log-Laplace Mechanism

Require: : n: the sum of employment counts for a set of cells, α , ϵ : privacy parameters

Ensure: : \tilde{n} : the noisy employment count

$$\begin{array}{l} \operatorname{Set} \gamma \leftarrow 1/\alpha \\ \ell \leftarrow \ln(n+\gamma) \\ \operatorname{Sample} \eta \sim Laplace(2\ln(1+\alpha)/\epsilon) \\ \tilde{n} \leftarrow e^{\ell+\eta} - \gamma \end{array}$$

Suppose q_v is a query over both establishment attributes and employee attributes. Then, releasing q_v using Algorithm 1 satisfies weak (α, ϵ) -employer-employee privacy.

Log-Laplace Algorithm

LEMMA 8.2. Let x denote a real number, and \tilde{x} the random variable denoting the output of the Log-Laplace mechanism. Let $\lambda = 2\ln(\alpha+1)/\epsilon$. Then, when $\lambda < 1$, $E[\tilde{x}] + \gamma = (x+\gamma)/(1-\lambda^2)$. When $\lambda \geq 1$, $E[\tilde{x}]$ is unbounded.

THEOREM 8.3. The expected squared relative error of the Log-Laplace mechanism for q_v is bounded when $\lambda = 2\ln(\alpha + 1)/\epsilon$ is less than 1, and is given by:

$$\mathcal{E}_{rel}(q_v) = \max_{D} \left(\frac{|q_v(D) - \mathcal{M}(D)|}{q_v(D)} \right)$$

$$\leq (1 + \gamma)^2 \frac{2\lambda^2 + 4\lambda^4}{(1 - 4\lambda^2)(1 - \lambda/2)}$$
(9)

DEFINITION 8.1 (LOCAL SENSITIVITY). Let q be a query, and \mathcal{I} be a domain of datasets. The local sensitivity of query q for a dataset $x \in \mathcal{I}$ is

$$LS_q(x) = \max_{y:y \in nbrs(x)} \lVert q(x) - q(y)
Vert_1$$

DEFINITION 8.2. Let q be a query and b a smoothing parameter. Let \mathcal{I} denote the universe of all datasets. The b-smooth sensitivity of query q with respect to database x is defined as

$$S_{q,b}^*(x) = \max_j e^{-jb} A^{(j)}(x),$$
 where $A^{(j)}(x) = \max_{y \in \mathcal{I}: d(x,y) \leq j} LS_q(y),$

and d(x, y) is the smaller integer ℓ such that there exist databases $x = x_0, x_1, \ldots, x_{\ell} = y$, such that for all i, x_{i-1} and x_i are neighbors according to either Definition 7.1 or 7.3.

DEFINITION 8.3 ([26]). A probability distribution h is (a, b)-admissible, where a and b are functions of ϵ and δ , if $\forall \lambda \in \mathbb{R}, \Delta \in \mathbb{R}^d$ with $|\lambda| \leq b$ and $|\Delta|_1 \leq a$, and $\forall S \subseteq \mathbb{R}^d$,

$$\Pr_{Z \sim h} \left[Z \in S \right] \le e^{\epsilon/2} \Pr_{Z \sim h} \left[Z \in S + \Delta \right] + \frac{\delta}{2}, \text{ and} \qquad (10)$$

$$\Pr_{Z \sim h} \left[Z \in S \right] \le e^{\epsilon/2} \Pr_{Z \sim h} \left[Z \in S \cdot e^{\lambda} \right] + \frac{\delta}{2}. \tag{11}$$

THEOREM 8.4. Suppose h is an (a,b)-admissible probability distribution with $\delta=0$, and $Z\sim h$. For query q, let S(x) be a b-smooth upper bound on the local sensitivity of q. Then, the algorithm $\mathcal{M}(x)=q(x)+\frac{S(x)}{a}\cdot Z$ satisfies (α,ϵ) -Employer-Employee privacy.

LEMMA 8.5. Let q_v be a query on x. Let x_v be the maximum number of workers belonging to a single workplace and matching the conditions in v. Then, the b-smooth sensitivity of x, $S_{v,b}^*(x)$, is

$$S_{v,b}^{*}(x) = \begin{cases} \max(x_{v} \cdot \alpha, 1) & \text{if } e^{b} \geq (1 + \alpha), \\ \text{unbounded} & \text{otherwise.} \end{cases}$$
 (12)

LEMMA 8.6 ([26]).
$$h(z) \propto \frac{1}{(1+|z|^{\gamma})}$$
 is $(\epsilon/4\gamma, \epsilon/\gamma)$ -admissible for $\gamma > 0$ ($\delta = 0$).

Algorithm 2 Smooth Gamma

Require: : n : true count, α, ϵ : privacy parameters, $\alpha+1 \leq e^{\epsilon/4}$

Ensure: : \tilde{n} : noisy count Sample $\eta \sim \frac{1}{(1+|z|^4)}$ $\tilde{n} \leftarrow n + \frac{S_{v,\epsilon/4}^*(x)}{\epsilon/16} \eta$,

LEMMA 8.7. Suppose q_v is a query over only establishment attributes. Then releasing q_v using Algorithm 2 satisfies (α, ϵ) -Employer-Employee privacy.

Suppose q_v is a query over both establishment and individual attributes. Then releasing q_v using Algorithm 2 satisfies weak (α, ϵ) -Employer-Employee privacy.

LEMMA 8.8. Algorithm 2 is unbiased and has expected L_1 error of $O(\frac{x_v \cdot \alpha}{\epsilon} + 1)$.

Approximating Privacy

DEFINITION 9.1 $((\alpha, \epsilon)$ -EMPLOYEE-EMPLOYER PRIVACY). A randomized algorithm \mathcal{M} is said to satisfy $(\alpha, \epsilon, \delta)$ -Employee-Employer Privacy, if for every set of outputs $S \subseteq range(M)$, and every pair of strong α -Neighbors D and D', we have

$$Pr[\mathcal{M}(D) \in S] \le e^{\epsilon} Pr[\mathcal{M}(D') \in S] + \delta$$

LEMMA 9.1 ([26]). The Laplace distribution, $h(z) \propto \frac{1}{2} \epsilon^{-|z|}$, is $(\epsilon/2, \frac{\epsilon}{2\ln(1/\delta)})$ -admissible.

Approximating Privacy

Algorithm 3 Smooth Laplace

 $\begin{array}{l} \textbf{Require:} \ : n : \text{true count, } \alpha, \epsilon : \text{privacy parameters, } \alpha + 1 \leq e^{\frac{\epsilon}{2\ln(1/\delta)}}. \\ \textbf{Ensure:} \ : \tilde{n} : \text{noisy count} \\ \textbf{Sample } \eta \sim Laplace(1) \\ \tilde{n} \leftarrow n + \frac{S_{v,\frac{\epsilon}{2\ln(1/\delta)}}^{*}(x)}{\epsilon/2} \eta, \end{array}$

LEMMA 9.2. Suppose q_v is a query over only establishment attributes. Then releasing q_v using Algorithm 3 satisfies $(\alpha, \epsilon, \delta)$ -employer employee privacy.

Suppose q_v is a query over both establishment and individual attributes. Then releasing q_v using Algorithm 3 satisfies weak $(\alpha, \epsilon, \delta)$ -employer employee privacy.

LEMMA 9.3. Algorithm 3 is unbiased and expected L_1 error is

Queries and Quality Measures: We use three types of query workloads to evaluate our algorithms.

- Workload 1 A marginal over all establishment characteristics: industry sector, ownership, and location at the resolution of places (e.g., cities and towns).
- Workload 2 Single queries over all establishment attributes, and over the worker attributes of sex and education.
- Workload 3 The marginal over all establishment attributes, and sex and education.

Figure 3: Average L_1 error of releasing place by industry sector by ownership marginal compared to the current system.

Figure 4: Spearman correlation between tested model and input noise infusion on the count of total workers ranked by place by industry section by ownership.

Figure 5: Average L_1 error of releasing single queries in the place by industry sector by ownership by sex by education marginal, compared to the current system.