

MECÂNICA QUÂNTICA II – ÁLGEBRA LINEAR

Sandro Dias Pinto Vitenti

Departamento de Física – CCE – UEL

1. Considere o conjunto \mathbb{R}^n , como podemos torná-lo um espaço vetorial? Faça os seguintes itens:

- (a) Uma operação de soma de vetores.
- (b) Um operação de multiplicação por escalar.
- (c) Mostre que as propriedades de um espaço vetorial são satisfeitas.
- 2. Podemos transformar o conjunto das funções continuas entre [0, L] (i.e., C[0, L]) em um espaço vetorial? Faça os seguintes itens:
 - (a) Uma operação de soma de vetores.
 - (b) Um operação de multiplicação por escalar.
 - (c) Mostre que as propriedades de um espaço vetorial são satisfeitas.
 - (d) Se restringirmos o conjunto original para funções em C[0, L] que satisfazem f(0) = 1 e f(L) = 0. As mesmas operações acima definem um espaço vetorial? Por que?
- 3. Dado um espaço vetorial \mathbb{V}^n com produto interno, mostre que o conjunto dos vetores ortogonais a $|v\rangle$ forma um subespaço vetorial.
- 4. Dados dois operadores lineares em no espaço vetorial com produto interno $\mathbb V$, i.e., $A, B \in Op(\mathbb V)$.
 - (a) Mostre que se A for auto-adjunto seus autovetores tem autovalores reais.
 - (b) Mostre que se A for auto-adjunto seus autovetores com autovalores diferentes são ortogonais.
 - (c) Suponha que B é auto-adjunto e [A, B] = 0. Mostre que se $|a_i\rangle$ é autovetor de A, então B $|a_i\rangle$ também será.