Bronsted – Lowery theory of Acids and bases:

This is also called protonic theory.

Acid: which donates proton

Eg: HCl, H₂SO₄, HNO₃ etc.

Base: which accepts proton

Eg: NH_3 , PH_3 , N_2H_4 , $R - NH_2$ etc.

• Bronsted acid could be a neutral molecule, anion, cation.

Neutral molecule \rightarrow HCl, HNO₃, H₂SO₄ etc.

Cations
$$\rightarrow H_3O^+, NH_4^+$$

Anions $\to HSO_4^-$, HCO_3^- , $H_2PO_4^-$, $H(PO_4)^{2-}$, $H_2(PO_3)^-$ Bronsted base could be neutral, cation or anion

Neutral \rightarrow NH₃, PH₃, N₂H₄ etc.

anions \rightarrow CN⁻ Br⁻ I⁻ OH⁻ etc.

Cations \rightarrow [Al(H₂O)₅OH)]²⁺, [Fe(H₂O)₅OH]²⁺

Neutralisation:

It involves transfer of proton from acid to base and formation of conjugate acid – base pair.

1)
$$HCl + H_2 \bigcirc Cl^- + H_3 O^+$$

2)
$$NH_3 + H_2O \rightarrow NH_4^{\oplus} + OH_{B_2}^{-}$$

3)
$$NH_3 + HCl \rightarrow NH_4^+ + Cl^ A_1 \rightarrow B_2$$

• Amphoteric or Amphiprotic substance: The act as both acids and base because they donate proton and accept proton.

Eg: H₂O

Conjugate acid – base pairs:

The acid base pair which differs by a proton is called conjugated acid base pair.

Acid
☐ H[⊕] = conjugate base

Base + H[⊕] = conjugate acid

Eg:	Acid	Base
	HCl	Cl®
	H_2SO_4	HSO_4^-
	HSO_4^-	SO_4^{2-}
	H ₂ S	HS [?]
	C_2H_2	$CH \equiv C^{?}$
	CH ₄	CH_3^-

$$[Al(H_2O)_6]^{3+} [Al(H_2O)_5OH]^{2+}$$

 $[Fe(H_2O)_6]^{3+} [Fe(H_2O)_5OH]^{2+}$
 H_2 H^-
 H e^-

• In any conjugate acid base pair, if the acid is stronger, the base is weak and if base is stronger, the acid is weak.

Eg:

- 1. HCl is strong acid, Cl² is weak conjugate base.
- 2. CH₃COOH is weak acid CH₃COO[®] is strong base
- 3. NH_3 is weak base, NH_4^+ strong acid
- 4. $HClO_4$ is strongest acid, ClO_4^- weak base
- List of conjugate acid base pairs in a particular order of strength.

Acid		Base	
[Decreases acidic strength]			
1.	HClO ₄	ClO_4^-	
2.	HI	I -	
3.	HBr	Br⁻	
4.	H_2SO_4	HSO_4^-	
5.	HCI	Cl ⁻	
6.	HNO ₃	NO_3^-	
7.	H₃O ⁺	H_2O	
8.	HSO_4^-	SO_4^{2-}	
9.	H_3PO_4	$H_2PO_4^-$	
10.	HF	F-	
11.	CH₃COOH	CH₃COO⁻	
12.	H ₂ CO ₃	HCO_3^-	
13.	HCN	CN ⁻	
14.	NH_4^+	NH_3	
15.	H ₂ O	OH ⁻	
16.	NH ₃	NH_2^-	
17.	OH?	O^{2-}	
18.	CH ₄	CH_3^-	

- Strength of bronsted acids and bronsted bases will depend on the ability to donate or to accept proton.
- **Strong acids :** which have more ability to donate protons.

Eg: HClO₄, HCl, H₂SO₄

• Weak acids: which have less tendency to donate proton.

Eg: HF, CH₃COOH, H₂CO₃, HCN

- Among Hydracids HCN is the weakest acid
- Strong bases: which have greater tendency to accept protons
 Eg: OH⁻, CH₃COO⁻, CH₃ etc.
- Weak bases \rightarrow which have less tendency to accept the proton. Eg: Cl⁻, ClO_4^- , Br⁻, l⁻ NH₃.....etc.
- Levelling effect: The strength of stronger acids like $HClO_4$, H_2SO_4 , HCl, HNO_3 will become equal to the strength of H_3O^+ ion in presence of H_2O . This is called levelling effect $HClO_4 \approx H_2SO_4 \approx HCl \approx HNO_3 = H_3O^+$
- Similarly the strength of stronger bases like NaOH, KOH, CsOH will become equal to the strength of $OH^{\tiny{\square}}$ ion in presence of H_2O

 $NaOH \approx KOH \approx CsOH = OH^{2}$

- This levelling effect of acids is due to greater proton accepting tendency of H₂O and instantly conversion into H₃O⁺ therefore the real strength cannot be determined.
- The acids like HClO₄, H₂SO₄ etc. cannot be determined in a levelling solvent like H₂O.
- Therefore the strongest acid that can exist in water is H_3O^+ and the strongest base that can exist is OH^{2} ion.
- In a solvent like glacial acetic acid, the real strength of acids can be determined because of poor tendency to accept protons. Therefore acetic acid is differentiating solvent and the strongest acid that can exist in acetic acid solvent is HClO₄.
- In acetic acid, HClO₄ > H₂SO₄ > HCl > HNO₃

Types of solvents: Based on proton donating or proton accepting tendency, solvents are classified into 4 types by bronsted lowery solvents.

1) Protophilic solvents: which accept proton

Eg: H₂O, NH₃, ether, C₂H₅OH etc.

Protophilic solvents will increase acidic strength and decrease the basic strength.

- 2) Photogenic solvents: which donate H⁺ protogenic solvents will decrease the acidic strength and increase the basic strength.
- 3) Amphiprotic solvents: which donates and accept proton

Eg: H_2O , C_2H_5OH

4) Aprotic solvents: which neither donates nor accepts proton.

Eg: CCl₄, CHCl₃, C₆H₆, Acetone

Merits of Bronsted - Lowery theory:

1) It could explain acid base behaviour in non – aqueous solvents also .

Eg: liquid SO₂, liquid NH₃

- 2) It could explain the basic nature of substances like NH₃.
- 3) It could explain the acidic nature of HCl gas.
- 4) It is more generalized than Arrhenius theory.

Limitations of Bronsted – Lowery theory:

- 1) This theory explains behaviour of acids only when there is a base (or) It explains behaviour of base only when there is a acid. (Acid base pairs must be present)
- 2) It fails to explain the acidic nature of electron deficient compound like BF₃, AlCl₃ etc.