

So far we have seen that for all $w \in L$

y

$$|w| \ge p$$
, $\exists x, y, z \in \Sigma^*$ s.t. $w = xyz$ with $xy^*z \in L$

Let us enlist a few of the decompositions

1 / 5

$$\underbrace{aa}_{x} \underbrace{ba}_{y} \underbrace{abbab}_{z} \qquad q_{2} = q_{4}$$

$$\underbrace{a}_{x} \underbrace{abaabb}_{y} \underbrace{ab}_{z} \qquad q_{1} = q_{7}$$

y

Pumping Lemma

For every regular language L there exists some constant p such that, for every string $w \in L$ with $|w| \ge p$, there exist $x, y, z \in \Sigma^*$ with w = xyz, $|y| \ge 1$, $|xy| \le p$, and for all $i \in \mathbb{N}$, $xy^iz \in L$.

Proof

Let *L* be a regular language.

Let $M = (R, \Sigma, \delta, r_0, F)$ be a DFA recognizing L

Let

$$p$$
 (1)

be the number of states in M

Consider $w \in L$ with $|w| \ge p$

That is

$$w = w_1 w_2 \cdots w_n$$
 s.t. $n \ge p$

Here $w_i \in \Sigma$, j = 1, 2, 3, ..., n

Let

$$q_0q_1q_3\cdots q_n \tag{2}$$

that *M* enters while processing *w*.

Here

$$q_0 = r_0$$

and

$$q_j = \delta(q_{j-1}, w_j)$$
 for $j = 1, 2, 3, ..., n$

/ 5

3

The length of sequence (2) is at least p + 1

Among the first p + 1 elements in the sequence, two must be the same, by the pigeonhole principle.

We call the first of these q_k and the second q_l .

That is

$$q_k = q_l$$
 with $0 \le k < l \le p$ (3)

Let

$$x = w_1 w_2 \cdots w_k$$

$$y = w_{k+1}w_{k+2}\cdots w_l$$

$$z = w_{l+1}w_{l+2}\cdots w_n$$

Obviously w = xyz.

From (3) we have

$$k \neq l \implies y \neq \varepsilon \implies |y| > 0 \implies |y| \ge 1$$
 (4)

Furthermore, from the decomposition of w we have |xy| = l.

And from (3) it can be inferred that

$$|xy| \le p \tag{5}$$

As

x takes M from q_0 to q_k

y takes *M* from q_k to $q_k (= q_l)$

and z takes M from q_k to $q_n \in F$

Therefore, *M* must accept

$$xy^iz$$
 for $i \ge 0$

$$xy^iz \in L$$
, $\forall i \in \mathbb{N}$

From (1), (3), (4), and (6) we have established the truth of the pumping lemma.

Succinctly the pumping lemma states

L is regular
$$\Longrightarrow$$

$$\left(\exists p \,\forall w \,,\, |w| \geq p, \exists x, y, z \,,\, |xy| \leq p \,,\, |y| \geq 1 \,,\, \forall i \,,\, xy^{i}z \in L\right) \tag{7}$$

(6)

The contrapositive of (7)

$$(\forall n \exists w, |w| \ge n, \forall x, y, z, |xy| \le n, |y| \ge 1, \exists i, xy^i z \notin L)$$

 $\implies L \text{ is not regular}$

/5

5