Спектральная космология нулевого поля. Теория. (Zero-field spectral cosmology. Theory)

Евгений Монахов ООО "VOSCOM ONLINE" Research Initiative ORCID: 0009-0003-1773-5476

Аннотация

Предлагается гипотеза о том, что физическое пространство-время и взаимодействия возникают из более фундаментального вероятностного поля, существующего на нулевом уровне энтропии. В этом состоянии отсутствуют пространство и время, а присутствуют лишь амплитуды и вероятностные поля, представляющие потенциальные конфигурации всех возможных энергий и взаимодействий. Сформулированы базовые постулаты, приведены предварительные математические соотношения и набросан план исследований, направленных на сопоставление данной модели с известными физическими законами и константами.

1 Вводная интуиция и постулаты ZFSC

1.1 Постулат 1: Нулевой уровень энтропии

Предполагается существование фундаментального пред-геометрического уровня, на котором отсутствуют классические расстояния, пространствение и временные измерения, а энтропия стремится к нулю:

$$S \to 0$$
.

Формально начальное состояние представляется чистым квантовым состоянием ρ на вероятностно-амплитудной структуре \mathcal{H} с нулевой энтропией

$$S(\rho) = -\text{Tr}(\rho \ln \rho) = 0.$$

На этом уровне Вселенная описывается чистым вероятностным полем амплитуд:

$$\Psi = \sum_{i} a_i |i\rangle,$$

где $\{|i\rangle\}$ — потенциальные конфигурации (пространства, энергии, взаимодействия), а $a_i\in\mathbb{C}$ — их амплитуды.

• Обозначим гильбертово пространство «потенциальных состояний» \mathcal{H} .

• На *Н* задан **самосопряжённый оператор** (наблюдаемый)

$$\Lambda = L + M \tag{1}$$

где L — «внутрисекторная» часть (локальные связи), M — «межсекторные» связи (смешивания).

Физический смысл. Спектр $\{\lambda_k^{\text{eff}}\}$ оператора Λ кодирует потенциальные «частоты» $\tilde{\omega}_k$ элементарных **мод**, из которых потом эмерджируют частицы, поля и геометрия.

1.2 Собственные моды и базовые формулы

$$\Lambda \mathbf{v}_k = \lambda_k^{\text{eff}} \mathbf{v}_k, \qquad \tilde{\omega}_k \equiv \sqrt{\lambda_k^{\text{eff}}} \ (\geq 0).$$
 (2)

- ullet \mathbf{v}_k собственный вектор (форма «моды»).
- $\lambda_k^{\mathrm{eff}} \geq 0$ собственное значение (квадрат «частоты»).
- $\tilde{\omega}_k$ эффективная «частота» моды.

Массы частиц.

$$m_k = \frac{\hbar}{c^2} \tilde{\omega}_k = \frac{\hbar}{c^2} \sqrt{\lambda_k^{\text{eff}}}$$
(3)

- \hbar редуцированная постоянная Планка.
- c скорость света в вакууме.

Смешивания (PMNS/CKM).

$$U_{\alpha i} \sim \langle \alpha | \mathbf{v}_i \rangle$$
 (4)

- $|\alpha\rangle$ базис «ароматов/секторов» (электронный, мюонный, и т.д.).
- Перекрытия собственных векторов дают углы смешивания и фазу СР.

2 Эмерджентная геометрия: как «рождаются» время и пространство

2.1 Спектральный переход (ZFST): «Великое развёртывание»

Гипотеза перехода. «Большой взрыв» заменяем на спектральный переход нулевого поля (ZFST) — быстрый режим роста связности и появления не-нулевой энтропии S.

Вводим «прото-время» τ — параметр эволюции спектра под действием некоторого градиентного потока (минимизации «спектрального действия»):

$$\frac{d\Lambda}{d\tau} = -\frac{\delta S_{\text{spec}}}{\delta \Lambda}, \qquad S_{\text{spec}} = \text{Tr} f\left(\frac{\Lambda}{\Lambda_*}\right). \tag{5}$$

- f положительная затухающая функция (например, сглаженный срез спектра).
- Λ_* масштаб отсечки (Планков порядок).
- Смысл: система «раскладывает» высокие и низкие моды в структуру с минимальным «спектральным действием».

Эмерджентное физическое время.

$$t(\tau) = \int_{-\tau}^{\tau} \zeta(S(\tau')) d\tau', \quad \zeta' > 0$$
(6)

• $\zeta(S)$ — монотонная «скорость часов»: пока $S\approx 0$, физическое время «почти стоит»; при росте S часы «включаются».

2.2 Спектральный зазор и масштабный фактор

Определим первый ненулевой зазор:

$$\lambda_1(\tau) = \min\{\lambda_k^{\text{eff}}(\tau) > 0\}, \qquad \xi(\tau) \sim \frac{1}{\sqrt{\lambda_1(\tau)}}.$$
 (7)

- \bullet ξ корреляционная длина (размер областей когерентности).
- Допущение: масштабный фактор $a \propto \xi$:

$$\boxed{a(\tau) \propto \frac{1}{\sqrt{\lambda_1(\tau)}}} \Rightarrow H \equiv \frac{\dot{a}}{a} = -\frac{1}{2}\frac{\dot{\lambda}_1}{\lambda_1}.$$
 (8)

Если на фазе ZFST $\lambda_1(\tau)$ падает экспоненциально,

$$\lambda_1(t) = \lambda_1(0) e^{-2Ht} \implies a(t) \propto e^{Ht}, \tag{9}$$

получаем **инфляцию без инфлатона**: ускоренное расширение — чистая спектральная динамика.

2.3 Вакуумная энергия и энтропийное подавление

Эффективная плотность «вакуума» из нулевых энергий мод (с энтропийным весом):

$$\rho_{\text{vac}}(S, a) = \frac{\hbar}{2V(a)} \sum_{k} \tilde{\omega}_{k} F(\tilde{\omega}_{k}, S) \Theta(k_{c}(a) - k)$$
(10)

- $V(a) \propto a^3$ объём;
- $\frac{\hbar}{2}\tilde{\omega}_k$ нулевая энергия моды;
- $F(\tilde{\omega},S) \in [0,1]$ энтропийный фактор подавления высоких частот при росте S;
- Θ оконная функция с «скользящей» отсечкой $k_c(a)$ (космологическая комодовость).

Физика: пока сумма слабо меняется $\Rightarrow w = p/\rho \approx -1$ и инфляция идёт; по мере «выключения» подавляющих факторов инфляция останавливается, энергия перераспределяется в **локализованные моды** (нагрев).

2.4 Спектральная размерность и поэтапное развёртывание 1D ightarrow 3D

Спектральная размерность d_s вводится через тепловой след (heat trace):

$$K(s) = \text{Tr } e^{-s\Lambda} \sim \frac{1}{(4\pi s)^{d_s/2}} \quad (s \to 0^+).$$
 (11)

• При ZFST возможна стадия $d_s \simeq 1$ (квазилинейные цепочки связей), затем потоком (5) сеть получает **три эквивалентных «направления»** связности $\Rightarrow d_s \to 3$.

Почему именно 3D + время? (Гипотеза минимальности.) Конфигурации с $d_s = 1$ нестабильны (слишком малые объёмы корреляций), $d_s \ge 4$ — спектрально «дорогие» (много высоких мод без достаточного подавления). Минимум «спектрального действия» достигается при **трёх** почти равных ортогональных связях — т.е. 3D.

Где «сидят» другие измерения? В блоках Λ с большими зазорами ($\lambda_{\text{compact}} \gg \lambda_1$) — их корреляционные длины микроскопичны, они остаются компактифицированными. Вклад в ρ_{vac} от них подавлен $F(\tilde{\omega}, S)$, но они:

- сдвигают калибровочные константы (через интегрирование высоких мод),
- вносят малые поправки к массам/смешиваниям,
- могут давать слабые «скрытые» взаимодействия.

3 Массы, поколения и смешивания

3.1 «Лестница поколений»

Эмпирически в каждом семействе видим три иерархических уровня. ZFSC моделирует это «лестницей»:

$$\mu = \{0, \varepsilon, c\varepsilon\}, \qquad m_i^2 \propto \lambda_0 + \mu_i$$
(12)

- $\lambda_0 \ge 0$ базовый сдвиг уровня (общий «фон» сектора);
- $\varepsilon > 0 \text{mar}$;
- c > 1 **отношение иерархии** (ключевая характеристика семейства).

Из двух масс $\to c$. Например, для лептонов (порядок $e \to \mu \to \tau$):

$$c_{\ell} = \frac{m_{\tau}^2 - m_e^2}{m_{\mu}^2 - m_e^2} \approx 2.828 \times 10^2. \tag{13}$$

Для нейтрино (в терминах разностей): $c_{\nu} = \frac{\Delta m_{31}^2}{\Delta m_{21}^2} \approx 34$.

3.2 Микромодель «поколений»: матрица $B(\delta, r, ...)$

Минимальная 3×3-версия:

$$B(\delta, r; g_L) = \begin{pmatrix} 0 & g_L & 0 \\ g_L & \delta & r \\ 0 & r & 0 \end{pmatrix}, \quad \operatorname{spec}(B) = \left\{ 0, \ \frac{\delta \pm \sqrt{\delta^2 + 4(g_L^2 + r^2)}}{2} \right\}$$
(14)

- δ «центральный сдвиг» (асимметрия центрального узла);
- r правый «плечевой» канал связи; g_L левый канал.

Для отсортированных уровней ($\lambda_{\min} < \lambda_{\min} < \lambda_{\max}$) и $\lambda_{\min} = 0$ (как в (14)) «лестничное» отношение

$$c = \frac{\lambda_{\text{max}} - \lambda_{\text{min}}}{\lambda_{\text{mid}} - \lambda_{\text{min}}} = \frac{2\sqrt{\delta^2 + 4(g_L^2 + r^2)}}{\sqrt{\delta^2 + 4(g_L^2 + r^2)} - \delta}$$
(15)

и в режиме большой δ :

$$c \approx \frac{\delta^2}{g_L^2 + r^2} + 2$$
 $(\delta^2 \gg g_L^2 + r^2).$ (16)

Смысл: огромные иерархии c естественно получаются при большом центральном сдвиге δ и узкой «горловине» связей (малые g_L, r).

 6×6 и асимметрии. Практически мы используем расширенную 6×6 -матрицу с рёбрами g_L, g_R и асимметриями $h_{1,2,3}$, что позволяет:

- поддержать разные иерархии в секторах (ν, ℓ, u, d) ;
- вводить общие параметры (унификация) и проверять предсказательность.

3.3 Предсказание лёгкой массы из двух тяжёлых

Если лестница $\{0,1,c\}$ и мы идентифицируем $\mu \to 1, \tau \to c$, то

$$s^{2} = \frac{m_{\tau}^{2} - m_{\mu}^{2}}{c - 1}, \qquad \boxed{m_{\text{light}}^{2} = m_{\mu}^{2} - s^{2}}$$
(17)

- s^2 общий «масштаб» сектора;
- важно: тут c предсказанный моделью (из спектра B), а не вычисленный из трёх масс (иначе это тождество, а не предсказание).

4 Гравитация и кривизна из спектра

4.1 Эвристика для G

Суммарная «жёсткость» вакуума, складывающаяся из всех мод:

$$\boxed{\frac{1}{G_{\text{eff}}} \sim \sum_{k} \hbar \tilde{\omega}_{k} W_{k}} \tag{18}$$

• W_k — вес, зависящий от структуры мод и подавления (аналог «спектрального действия»).

Идея: чем больше высокочастотных мод задействовано (с учётом $F(\tilde{\omega}, S)$), тем больше «упругость» геометрии (меньше G).

4.2 Вклад отдельной моды в кривизну

В линейном режиме:

$$\delta R_{\mu\nu}^{(k)} \simeq \frac{8\pi G}{c^4} T_{\mu\nu}^{(k)}, \qquad T_{\mu\nu}^{(k)} \propto m_k u_\mu u_\nu$$
 (19)

- u_{μ} 4-скорость носителя моды;
- m_k из (3); суммарно $\sum_k \delta R_{\mu\nu}^{(k)}$ формирует наблюдаемую кривизну.

Это связывает **массы** и **кривизну** как две стороны одного спектрального «механизма» Λ .

5 Тёмная энергия и «почему она мала»

5.1 Формула вакуума и подавление

Вернёмся к (10): малая ρ_{Λ} обеспечивается:

- подавлением $F(\tilde{\omega}, S)$ для «компактных» высоких мод (блоки с большими λ);
- «скользящей» отсечкой $k_c(a)$, уменьшающей вклад ультрафиолета при росте a.

Эффективное уравнение состояния.

$$w+1 \simeq -\frac{d \ln \rho_{\text{vac}}}{d \ln a} \simeq -\frac{d \ln F}{d \ln a}$$
 (малое). (20)

Ожидается $w \approx -1$ с крошечным дрейфом — космологически проверяемый след.

6 Почему 1D \to 3D, а не другие измерения, и «где они сидят»

- 1. Стадия 1D. При самом начале ZFST сеть связи «тонкая», спектральный зазор λ_1 велик, $d_s \approx 1$. Масштаб $a \propto 1/\sqrt{\lambda_1}$ растёт экспоненциально (9).
- 2. **Развилка к 3D.** Минимум S_{spec} достигается при трёх почти равноправных «направлениях» связей (энтропийная эффективность): $d_s \to 3$.
- 3. Почему не 4D? Для $d_s \geq 4$ характерный спектр $\rho(\lambda)$ даёт слишком сильный ультрафиолет без достаточного подавления F, что делает ρ_{vac} нестабильной/слишком большой (эвристически: «дорого» в спектральном действии).
- 4. **Остальные измерения** застревают в «компактных» блоках Λ с большими зазорами $\lambda_{\mathrm{compact}}$:

- корреляционная длина $\xi_{\rm compact} \sim 1/\sqrt{\lambda_{\rm compact}}$ микроскопична;
- их вклад в наблюдаемую динамику идёт через **ренормировку констант**, малые смещения масс/смешиваний и ρ_{Λ} .

7 Вычислительная программа и проверяемые следствия

7.1 Матрицы поколений и коэффициент с

Мы используем матрицы $B(\delta, r; g_L, g_R, h_{1,2,3})$ размера 3, 4 или 6. В простейшем 3×3 случае c задаётся (15)–(16); в 6×6 — численно по трём фиксированным уровням (важно не выбирать триплет под таргет, иначе возникает скрытая подгонка).

Практическое правило (честность):

- выбираем одно правило триплета (напр., «три нижних уровня») и **не меняем** его между секторами;
- в унификационных режимах с предсказывается, а не подгоняется.

7.2 Предсказание лёгких масс

Для лептонов:

$$m_e^{\text{pred}} = \sqrt{m_\mu^2 - \frac{m_\tau^2 - m_\mu^2}{c_\ell^{\text{pred}} - 1}},$$
 (21)

где c_ℓ^{pred} извлечён из спектра B в том же **унификационном режиме**, что и для нейтрино, кварков и т.д. Аналогично можно строить предсказания для лёгких кварков (u,d) из (c,s,t) или (d,s,b).

7.3 Инструментарий

- Режимы: independent_all, shared_r_all, shared_delta_all, full_unify_all, grand_unify_all, grand_unify_all_scaled.
- Критерии «прорыва»: в жёстких режимах (full_unify_all) одновременно
 - $-z_{\nu} \lesssim 2\sigma \pmod{c_{\nu}},$
 - $-z_e \lesssim 2\sigma$ (по $m_e^{\rm pred}$ с 1% модельной σ),
 - и глобальный $z \lesssim 2\sigma$.

• Технические замечания:

- не использовать $c_{\ell}^{\rm exp}$ при оптимизации, если цель **предсказать** m_e ;
- выбор триплета уровней фиксированный (например, «три нижних»);
- массы кварков сопоставлять при фиксированном $\overline{ ext{MS}}$ -масштабе.

8 Набор уравнений ZFSC (минимальная «система» с комментариями)

- 1. Собственные моды: $\Lambda \mathbf{v}_k = \lambda_k^{\mathrm{eff}} \mathbf{v}_k$.
- 2. Масса моды: $m_k = \frac{\hbar}{c^2} \sqrt{\lambda_k^{\text{eff}}}$.
- 3. Смешивание: $U_{\alpha i} \sim \langle \alpha | \mathbf{v}_i \rangle$.
- 4. Лестница: $\mu = \{0, \varepsilon, c\varepsilon\}, m_i^2 \propto \lambda_0 + \mu_i$.
- 5. Коэффициент иерархии (3×3): $c = \frac{2\sqrt{\delta^2 + 4(g_L^2 + r^2)}}{\sqrt{\delta^2 + 4(g_L^2 + r^2)} \delta} \simeq \frac{\delta^2}{g_L^2 + r^2} + 2.$
- 6. Предсказание лёгкой массы: $m_{ ext{light}}^2 = m_\mu^2 (m_ au^2 m_\mu^2)/(c-1).$
- 7. Энтропийная динамика: $\frac{d\Lambda}{d\tau} = -\frac{\delta S_{\rm spec}}{\delta \Lambda}, \ t(\tau) = \int \zeta(S) \ d\tau.$
- 8. Зазор–масштабный фактор: $a \propto 1/\sqrt{\lambda_1}, \ H = -\frac{1}{2}\frac{\dot{\lambda}_1}{\lambda_1}.$
- 9. Вакуумная энергия: $\rho_{\text{vac}} = \frac{\hbar}{2V} \sum_k \tilde{\omega}_k F(\tilde{\omega}_k, S) \Theta(k_c k)$.
- 10. Гравитационная «жёсткость»: $G_{ ext{eff}}^{-1} \sim \sum \hbar \tilde{\omega}_k W_k$.
- 11. Линейная гравитация моды: $\delta R^{(k)}_{\mu\nu} \simeq {8\pi G \over c^4} T^{(k)}_{\mu\nu}$.
- 12. Спектральная размерность: $K(s) = \text{Tr } e^{-s\Lambda} \sim (4\pi s)^{-d_s/2}$.

Каждый коэффициент:

- \hbar, c фундаментальные константы (масштабируют связь «частота \to масса»).
- $\delta, r, g_L, g_R, h_{1,2,3}$ **геометрия связей** в пред-геометрической сети (определяют форму спектра и, следовательно, c, массы и смешивания).
- ε, λ_0 «шаг» и базовый сдвиг в лестничной аппроксимации уровня.
- $F(\tilde{\omega}, S)$, $k_c(a)$ феноменологические подавления УФ-вклада (энтропия и масштаб), подлежащие калибровке.
- W_k вес вклада мод в «жёсткость» геометрии (зависит от нормировки спектрального действия).

9 Наблюдаемые следствия и тесты

- 1. **Нейтринные иерархии:** c_{ν} крупный (\sim 34), устойчивый к деталям; диапазон $m_{\beta\beta}$ для $0\nu\beta\beta$ (мелкий \sim мЭв).
- 2. **Лептоны:** предсказание m_e из (μ, τ) при **общих** параметрах B с нейтрино (через shared-режимы).
- 3. **Калибровочные константы:** через субструктуры Λ возможность соотнести феноменологические константы с «средней связностью» подграфов (общая логика спектрального действия).

- 4. **Инфляция:** малый тензорный сигнал r и слабый running, выражаемые через $d \ln \lambda_1/dt$.
- 5. **Тёмная энергия:** $w \approx -1$ с микродрейфом $w+1 \sim -d \ln F/d \ln a$.
- 6. **Незаметные измерения:** отсутствие развёртывания прочих измерений проявляется как **малые**, **но коллективные** поправки к массам и константам.

10 Дорожная карта исследований

- (A) Зафиксировать архитектуру B (малое число параметров) и **одно правило** выбора триплета.
- (В) Калибровать минимально (например, Δm^2 для ν и μ, τ для ℓ), предсказывать остальное ($m_e, m_{\beta\beta}$, углы PMNS/CKM, m_W/m_Z).
- (C) Считать χ^2 , **z-уровни** по независимым наблюдаемым, **Global z** с учётом числа параметров.
- (D) Проверить стабильность к вариациям диапазонов/сеток (без «скрытой подгонки триплетом»).
- (E) Если нужно, **одна** новая ручка (например, слабая асимметрия) и снова тест на предсказательность.

11 Заключение

ZFSC предлагает цельную картину, где **один спектр** $\Lambda = L + M$ на нулевом вероятностном поле последовательно порождает:

- массы (через $\sqrt{\lambda_k^{\text{eff}}}$),
- смешивания (через собственные векторы),
- гравитацию (через суммарную «жёсткость» мод),
- инфляцию (через экспоненциальное падение спектрального зазора),
- малую тёмную энергию (энтропийное подавление нулевых мод),
- 3D-пространство + время (из спектральной минимальности),
- и оставляет «прочие измерения» в компактных блоках Λ , где они тонко влияют на константы.

```
url_orcid = {https://orcid.org/0009-0003-1773-5476},
  organization = {https://voscom.online/}
}
```