Trigonometric Functions 6D

- 1 **a** Use $1 + \tan^2 \theta = \sec^2 \theta$ with θ replaced with $\frac{1}{2}\theta$ $1 + \tan^2 (\frac{1}{2}\theta) = \sec^2 (\frac{1}{2}\theta)$
 - **b** $(\sec \theta 1)(\sec \theta + 1)$ (multiply out) $= \sec^2 \theta - 1$ $= (1 + \tan^2 \theta) - 1$ $= \tan^2 \theta$
 - $\cot^2 \theta (\csc^2 \theta 1)$ $= \tan^2 \theta ((1 + \cot^2 \theta) 1)$ $= \tan^2 \theta \cot^2 \theta$ $= \tan^2 \theta \times \frac{1}{\tan^2 \theta}$ = 1
 - $\mathbf{d} \quad (\sec^2 \theta 1)\cot \theta$ $= \tan^2 \theta \cot \theta$ $= \tan^2 \theta \times \frac{1}{\tan \theta}$ $= \tan \theta$
 - $\mathbf{e} \quad (\csc^2 \theta \cot^2 \theta)^2$ $= \left((1 + \cot^2 \theta) \cot^2 \theta \right)^2$ $= 1^2 = 1$
 - $f \quad 2 \tan^2 \theta + \sec^2 \theta$ $= 2 \tan^2 \theta + (1 + \tan^2 \theta)$ $= 2 \tan^2 \theta + 1 + \tan^2 \theta$ = 3
 - $\mathbf{g} \quad \frac{\tan \theta \sec \theta}{1 + \tan^2 \theta}$ $= \frac{\tan \theta \sec \theta}{\sec^2 \theta}$ $= \frac{\tan \theta}{\sec \theta}$ $= \tan \theta \cos \theta$ $= \frac{\sin \theta}{\cos \theta} \times \cos \theta$ $= \sin \theta$

- $\mathbf{h} \quad (1 \sin^2 \theta)(1 + \tan^2 \theta)$ $= \cos^2 \theta \times \sec^2 \theta$ $= \cos^2 \theta \times \frac{1}{\cos^2 \theta}$ = 1
 - $i \frac{\csc\theta \cot\theta}{1+\cot^2\theta}$ $= \frac{\csc\theta \cot\theta}{\csc^2\theta}$ $= \frac{1}{\csc\theta} \times \cot\theta$ $= \frac{\sin\theta}{1} \times \frac{\cos\theta}{\sin\theta}$ $= \cos\theta$
 - $\mathbf{j} \quad \sec^4 \theta 2\sec^2 \theta \tan^2 \theta + \tan^4 \theta$ $= (\sec^2 \theta \tan^2 \theta)^2 \qquad \text{(factorise)}$ $= ((1 + \tan^2 \theta) \tan^2 \theta)^2$ $= 1^2 = 1$
 - $k \quad 4\csc^2 2\theta + 4\csc^2 2\theta \cot^2 2\theta$ $= 4\csc^2 2\theta (1 + \cot^2 2\theta)$ $= 4\csc^2 2\theta \csc^2 2\theta$ $= 4\csc^4 2\theta$
- 2 $\csc x = \frac{k}{\csc x}$ $\Rightarrow \csc^2 x = k$ $\Rightarrow 1 + \cot^2 x = k$ $\Rightarrow \cot^2 x = k - 1$ $\Rightarrow \cot x = \pm \sqrt{k - 1}$

3 a
$$\cot \theta = \sqrt{3}$$
 $90^{\circ} < \theta < 180^{\circ}$

$$\Rightarrow \cot^2 \theta = 3$$

$$\Rightarrow 1 + \cot^2 \theta = 1 + 3 = 4$$

$$\Rightarrow$$
 cosec² $\theta = 4$

$$\Rightarrow \sin^2 \theta = \frac{1}{4}$$

$$\Rightarrow \sin \theta = \frac{1}{2}$$

(as θ is in 2nd quadrant, $\sin \theta$ is positive)

b Using
$$\sin^2 \theta + \cos^2 \theta = 1$$

$$\Rightarrow \cos^2\theta = 1 - \sin^2\theta = 1 - \frac{1}{4} = \frac{3}{4}$$

$$\Rightarrow \cos \theta = -\frac{\sqrt{3}}{4}$$

(as θ is in 2nd quadrant, $\cos \theta$ is negative)

4
$$\tan \theta = \frac{3}{4}$$
 $180^{\circ} < \theta < 270^{\circ}$

Draw a right-angled triangle where $\tan \varphi = \frac{3}{4}$

Using Pythagoras' theorem, x = 5

So
$$\cos \varphi = \frac{4}{5}$$
 and $\sin \varphi = \frac{3}{5}$

As θ is in the 3rd quadrant, both $\sin \theta$ and $\cos \theta$ are negative.

$$\mathbf{a} \quad \sec \theta = \frac{1}{\cos \theta} = -\frac{1}{\cos \varphi} = -\frac{5}{4}$$

b
$$\cos \theta = -\cos \varphi = -\frac{4}{5}$$

$$\mathbf{c} \quad \sin \theta = -\sin \varphi = -\frac{3}{5}$$

5
$$\cos \theta = \frac{24}{25}$$
, θ reflex

As $\cos \theta$ is positive and θ reflex, θ is in the 4th quadrant.

Use right-angled triangle where $\cos \varphi = \frac{24}{25}$

Using Pythagoras' theorem,

$$25^2 = x^2 + 24^2$$

$$\Rightarrow x^2 = 25^2 - 24^2 = 49$$

$$\Rightarrow x = 7$$

So
$$\tan \varphi = \frac{7}{24}$$
 and $\sin \varphi = \frac{7}{25}$

As θ is in the 4th quadrant, both $\tan \theta$ and $\sin \theta$ are negative

$$\mathbf{a} \quad \tan \theta = -\frac{7}{24}$$

b
$$\csc \theta = \frac{1}{\sin \theta} = -\frac{1}{\frac{7}{25}} = -\frac{25}{7}$$

6 a LHS
$$\equiv \sec^4 \theta - \tan^4 \theta$$

 $\equiv (\sec^2 \theta - \tan^2 \theta)(\sec^2 \theta + \tan^2 \theta)$
(difference of two squares)
 $\equiv (1)(\sec^2 \theta + \tan^2 \theta)$
(as $1 + \tan^2 \theta \equiv \sec^2 \theta$
 $\Rightarrow \sec^2 \theta - \tan^2 \theta \equiv 1$)
 $\equiv \sec^2 \theta + \tan^2 \theta \equiv RHS$

b LHS
$$\equiv \csc^2 x - \sin^2 x$$

 $\equiv (1 + \cot^2 x) - (1 - \cos^2 x)$
 $\equiv 1 + \cot^2 x - 1 + \cos^2 x$
 $\equiv \cot^2 x + \cos^2 x \equiv \text{RHS}$

6 c LHS
$$\equiv \sec^2 A(\cot^2 A - \cos^2 A)$$

$$\equiv \frac{1}{\cos^2 A} \left(\frac{\cos^2 A}{\sin^2 A} - \cos^2 A \right)$$

$$\equiv \frac{1}{\sin^2 A} - 1 \equiv \csc^2 A - 1$$
(use $1 + \cot^2 \theta = \csc^2 \theta$)

$$\equiv 1 + \cot^2 A - 1$$

$$\equiv \cot^2 A \equiv \text{RHS}$$

d RHS =
$$(\sec^2 \theta - 1)(1 - \sin^2 \theta)$$

= $\tan^2 \theta \times \cos^2 \theta$
(use $1 + \tan^2 \theta = \sec^2 \theta$ and $\cos^2 \theta + \sin^2 \theta = 1$)
= $\frac{\sin^2 \theta}{\cos^2 \theta} \times \cos^2 \theta = \sin^2 \theta$
= $1 - \cos^2 \theta = \text{LHS}$

e LHS
$$\equiv \frac{1 - \tan^2 A}{1 + \tan^2 A} \equiv \frac{1 - \tan^2 A}{\sec^2 A}$$
$$\equiv \frac{1}{\sec^2 A} (1 - \tan^2 A)$$
$$\equiv \cos^2 A \left(1 - \frac{\sin^2 A}{\cos^2 A} \right)$$
$$\equiv \cos^2 A - \sin^2 A$$
$$\equiv (1 - \sin^2 A) - \sin^2 A$$
$$\equiv 1 - 2\sin^2 A \equiv \text{RHS}$$

f RHS
$$\equiv \sec^2 \theta \csc^2 \theta$$

 $\equiv \sec^2 \theta (1 + \cot^2 \theta)$
 $\equiv \sec^2 \theta + \frac{1}{\cos^2 \theta} \times \frac{\cos^2 \theta}{\sin^2 \theta}$
 $\equiv \sec^2 \theta + \frac{1}{\sin^2 \theta}$
 $\equiv \sec^2 \theta + \csc^2 \theta \equiv \text{LHS}$

Alternatively

LHS
$$\equiv \sec^2 \theta + \csc^2 \theta \equiv \frac{1}{\cos^2 \theta} + \frac{1}{\sin^2 \theta}$$

 $\equiv \frac{\sin^2 \theta + \cos^2 \theta}{\cos^2 \theta \sin^2 \theta} \equiv \frac{1}{\cos^2 \theta \sin^2 \theta}$
 $\equiv \sec^2 \theta \csc^2 \theta \equiv \text{RHS}$

g LHS
$$\equiv \csc A \sec^2 A$$

 $\equiv \csc A (1 + \tan^2 A)$
 $\equiv \csc A + \frac{1}{\sin A} \times \frac{\sin^2 A}{\cos^2 A}$
 $\equiv \csc A + \frac{\sin A}{\cos^2 A}$
 $\equiv \csc A + \frac{\sin A}{\cos A} \times \frac{1}{\cos A}$
 $\equiv \csc A + \tan A \sec A \equiv RHS$

h LHS
$$\equiv (\sec \theta - \sin \theta)(\sec \theta + \sin \theta)$$

 $\equiv \sec^2 \theta - \sin^2 \theta$
 $\equiv (1 + \tan^2 \theta) - (1 - \cos^2 \theta)$
 $\equiv 1 + \tan^2 \theta - 1 + \cos^2 \theta$
 $\equiv \tan^2 \theta + \cos^2 \theta \equiv \text{RHS}$

7
$$3 \tan^2 \theta + 4 \sec^2 \theta = 5$$

 $\Rightarrow 3 \tan^2 \theta + 4(1 + \tan^2 \theta) = 5$
 $\Rightarrow 3 \tan^2 \theta + 4 + 4 \tan^2 \theta = 5$
 $\Rightarrow 7 \tan^2 \theta = 1$
 $\Rightarrow \tan^2 \theta = \frac{1}{7}$
 $\Rightarrow \cot^2 \theta = 7$
 $\Rightarrow \csc^2 \theta - 1 = 7$
 $\Rightarrow \csc^2 \theta = 8$
 $\Rightarrow \sin^2 \theta = \frac{1}{8}$

As θ is obtuse (in the 2nd quadrant), $\sin \theta$ is positive.

So
$$\sin \theta = \sqrt{\frac{1}{8}} = \frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4}$$

8 a
$$\sec^2 \theta = 3 \tan \theta$$
 $0 \le \theta \le 360^\circ$

$$\Rightarrow 1 + \tan^2 \theta = 3 \tan \theta$$

$$\Rightarrow \tan^2 \theta - 3 \tan \theta + 1 = 0$$

$$\tan\theta = \frac{3 \pm \sqrt{5}}{2}$$

(equation does not factorise)

For
$$\tan \theta = \frac{3 + \sqrt{5}}{2}$$
,

calculator value is 69.1° (3 s.f.)

Solutions are 69.1°, 249°

For
$$\tan \theta = \frac{3 - \sqrt{5}}{2}$$
,

calculator value is 20.9° (3 s.f.)

Solutions are 20.9°, 201° Set of solutions: 20.9°, 69.1°, 201°, 249° (3 s.f.)

b
$$\tan^2 \theta - 2\sec \theta + 1 = 0$$
 $-\pi \le \theta \le \pi$
 $\Rightarrow (\sec^2 \theta - 1) - 2\sec \theta + 1 = 0$
 $\Rightarrow \sec^2 \theta - 2\sec \theta = 0$
 $\Rightarrow \sec \theta (\sec \theta - 2) = 0$
 $\Rightarrow \sec \theta = 2$ (as $\sec \theta$ cannot be 0)
 $\Rightarrow \cos \theta = \frac{1}{2}$
 $\Rightarrow \theta = -\frac{\pi}{3}, \frac{\pi}{3}$

$$\mathbf{c}$$
 $\csc^2 \theta + 1 = 3 \cot \theta$ $-180^\circ \le \theta \le 180^\circ$

$$\Rightarrow (1 + \cot^2 \theta) + 1 = 3 \cot \theta$$

$$\Rightarrow \cot^2 \theta - 3 \cot \theta + 2 = 0$$

$$\Rightarrow (\cot \theta - 1)(\cot \theta - 2) = 0$$

$$\Rightarrow \cot \theta = 1 \text{ or } \cot \theta = 2$$

$$\Rightarrow \tan \theta = 1 \text{ or } \tan \theta = \frac{1}{2}$$

$$\tan \theta = 1 \implies \theta = -135^{\circ}, 45^{\circ}$$

$$\tan \theta = \frac{1}{2} \implies \theta = -153^{\circ}, \ 26.6^{\circ} \ (3 \text{ s.f.})$$

8 d
$$\cot \theta = 1 - \csc^2 \theta$$
 $0 \le \theta \le 2\pi$

$$\Rightarrow \cot \theta = 1 - (1 + \cot^2 \theta)$$

$$\Rightarrow \cot \theta = -\cot^2 \theta$$

$$\Rightarrow \cot^2 \theta + \cot \theta = 0$$

$$\Rightarrow \cot \theta (\cot \theta + 1) = 0$$

$$\Rightarrow \cot \theta = 0 \text{ or } \cot \theta = -1$$

For
$$\cot \theta = 0$$
 refer to graph: $\theta = \frac{\pi}{2}, \frac{3\pi}{2}$

For
$$\cot \theta = -1$$
, $\tan \theta = -1$

So
$$\theta = \frac{3\pi}{4}, \frac{7\pi}{4}$$

Set of solutions:
$$\frac{\pi}{2}$$
, $\frac{3\pi}{4}$, $\frac{3\pi}{2}$, $\frac{7\pi}{4}$

e
$$3\sec{\frac{1}{2}}\theta = 2\tan^2{\frac{1}{2}}\theta$$
 $0 \le \theta \le 360^\circ$

$$\Rightarrow 3\sec{\frac{1}{2}\theta} = 2(\sec^2{\frac{1}{2}\theta} - 1)$$

(use
$$1 + \tan^2 A \equiv \sec^2 A$$
 with $A = \frac{1}{2}\theta$)

$$\Rightarrow 2\sec^2\frac{1}{2}\theta - 3\sec\frac{1}{2}\theta - 2 = 0$$

$$\Rightarrow (2\sec{\frac{1}{2}\theta}+1)(\sec{\frac{1}{2}\theta}-2)=0$$

$$\Rightarrow \sec \frac{1}{2}\theta = -\frac{1}{2} \text{ or } \sec \frac{1}{2}\theta = 2$$

Only $\sec \frac{1}{2}\theta = 2$ applies as

$$\sec A \le -1 \text{ or } \sec A \ge 1$$

$$\Rightarrow \cos \frac{1}{2}\theta = \frac{1}{2}$$

As
$$0 \le \theta \le 360^{\circ}$$
 so $0 \le \frac{1}{2}\theta \le 180^{\circ}$

Calculator value is 60°

This is the only value in the interval.

So
$$\frac{1}{2}\theta = 60^{\circ}$$

$$\Rightarrow \theta = 120^{\circ}$$

f
$$(\sec \theta - \cos \theta)^2 = \tan \theta - \sin^2 \theta$$
 $0 \le \theta \le \pi$

$$\Rightarrow \sec^2 \theta - 2\sec \theta \cos \theta + \cos^2 \theta$$

$$= \tan \theta - \sin^2 \theta$$

$$\Rightarrow \sec^2 \theta - 2 + \cos^2 \theta = \tan \theta - \sin^2 \theta$$

$$\left(\sec\theta\cos\theta = \frac{1}{\cos\theta} \times \cos\theta = 1\right)$$

$$\Rightarrow (1 + \tan^2 \theta) - 2 + (\cos^2 \theta + \sin^2 \theta)$$

$$\Rightarrow 1 + \tan^2 \theta - 2 + 1 = \tan \theta$$

$$\Rightarrow \tan^2 \theta - \tan \theta = 0$$

$$\Rightarrow \tan \theta (\tan \theta - 1) = 0$$

$$\Rightarrow \tan \theta = 0 \text{ or } \tan \theta = 1$$

$$\tan \theta = 0 \implies \theta = 0, \pi$$

$$\tan \theta = 1 \implies \theta = \frac{\pi}{4}$$

Set of solutions: $0, \frac{\pi}{4}, \pi$

$$\mathbf{g} \quad \tan^2 2\theta = \sec 2\theta - 1 \quad 0 \le \theta \le 180^\circ$$

$$\Rightarrow \sec^2 2\theta - 1 = \sec 2\theta - 1$$

$$\Rightarrow \sec^2 2\theta - \sec 2\theta = 0$$

$$\Rightarrow \sec 2\theta (\sec 2\theta - 1) = 0$$

$$\Rightarrow$$
 sec $2\theta = 0$ (not possible)
or sec $2\theta = 1$

$$\Rightarrow \cos 2\theta = 1 \qquad 0 \le 2\theta \le 360^{\circ}$$

Refer to graph of
$$y = \cos \theta$$

$$\Rightarrow 2\theta = 0^{\circ}, 360^{\circ}$$

$$\Rightarrow \theta = 0^{\circ}, 180^{\circ}$$

8 h
$$\sec^2 \theta - (1 + \sqrt{3}) \tan \theta + \sqrt{3} = 1$$

for
$$0 \le \theta \le 2\pi$$

$$\Rightarrow (1 + \tan^2 \theta) - (1 + \sqrt{3}) \tan \theta + \sqrt{3} = 1$$

$$\Rightarrow \tan^2 \theta - (1 + \sqrt{3}) \tan \theta + \sqrt{3} = 0$$

$$\Rightarrow (\tan \theta - \sqrt{3})(\tan \theta - 1) = 0$$

$$\Rightarrow \tan \theta = \sqrt{3} \text{ or } \tan \theta = 1$$

First answer for $\tan \theta = \sqrt{3}$ is $\frac{\pi}{3}$

Second solution is
$$\pi + \frac{\pi}{3} = \frac{4\pi}{3}$$

First answer for $\tan \theta = 1$ is $\frac{\pi}{4}$

Second solution is
$$\pi + \frac{\pi}{4} = \frac{5\pi}{4}$$

Set of solutions: $\frac{\pi}{4}$, $\frac{\pi}{3}$, $\frac{5\pi}{4}$, $\frac{4\pi}{3}$

9 a
$$\tan^2 k = 2 \sec k$$

$$\Rightarrow (\sec^2 k - 1) = 2 \sec k$$

$$\Rightarrow \sec^2 k - 2\sec k - 1 = 0$$

$$\Rightarrow \sec k = \frac{2 \pm \sqrt{8}}{2} = \frac{2 \pm 2\sqrt{2}}{2} = 1 \pm \sqrt{2}$$

As $\sec k$ has no values between -1 and 1

$$\sec k = 1 + \sqrt{2}$$

b
$$\cos k = \frac{1}{1+\sqrt{2}} = \frac{\sqrt{2}-1}{\left(1+\sqrt{2}\right)\left(\sqrt{2}-1\right)}$$
$$= \frac{\sqrt{2}-1}{2-1} = \sqrt{2}-1$$

$$\tan^2 k = 2 \sec k, \ 0 \le k \le 360^\circ$$

are solutions of
$$\cos k = \sqrt{2} - 1$$

Calculator solution is 65.5° (1 d.p.)

$$\Rightarrow k = 65.5^{\circ}, 360^{\circ} - 65.5^{\circ}$$

= 65.5°, 294.5° (1 d.p.)

10 a As
$$a = 4 \sec x$$

$$\Rightarrow \sec x = \frac{a}{4}$$

$$\Rightarrow \cos x = \frac{4}{a}$$

As
$$\cos x = b$$

$$\Rightarrow b = \frac{4}{a}$$

b
$$c = \cot x$$

$$\Rightarrow c^2 = \cot^2 x$$

$$\Rightarrow \frac{1}{c^2} = \tan^2 x$$

$$\Rightarrow \frac{1}{c^2} = \sec^2 x - 1$$

(use
$$1 + \tan^2 x \equiv \sec^2 x$$
)

$$\Rightarrow \frac{1}{c^2} = \frac{a^2}{16} - 1 \qquad \left(\sec x = \frac{a}{4}\right)$$

$$\Rightarrow 16 = a^2c^2 - 16c^2$$
 (multiply by $16c^2$)

$$\Rightarrow c^2(a^2-16)=16$$

$$\Rightarrow c^2 = \frac{16}{a^2 - 16}$$

11 a $x = \sec \theta + \tan \theta$

$$\frac{1}{x} = \frac{1}{\sec \theta + \tan \theta}$$

$$= \frac{\sec \theta - \tan \theta}{(\sec \theta + \tan \theta)(\sec \theta - \tan \theta)}$$

$$= \frac{\sec \theta - \tan \theta}{\sec^2 \theta - \tan^2 \theta}$$

$$= \sec \theta - \tan \theta$$

$$(as 1 + tan^2 \theta \equiv sec^2 \theta$$

$$\Rightarrow \sec^2 \theta - \tan^2 \theta \equiv 1$$

11 b
$$x + \frac{1}{x} = \sec \theta + \tan \theta + \sec \theta - \tan \theta$$

 $= 2 \sec \theta$

$$\Rightarrow \left(x + \frac{1}{x}\right)^2 = 4 \sec^2 \theta$$

$$\Rightarrow x^2 + 2x \times \frac{1}{x} + \frac{1}{x^2} = 4 \sec^2 \theta$$

$$\Rightarrow x^2 + \frac{1}{x^2} + 2 = 4 \sec^2 \theta$$

12
$$2 \sec^2 \theta - \tan^2 \theta = p$$

$$\Rightarrow 2(1 + \tan^2 \theta) - \tan^2 \theta = p$$

$$\Rightarrow 2 + 2 \tan^2 \theta - \tan^2 \theta = p$$

$$\Rightarrow \tan^2 \theta = p - 2$$

$$\Rightarrow \cot^2 \theta = \frac{1}{p - 2} \quad (p \neq 2)$$

$$\csc^2 \theta = 1 + \cot^2 \theta = 1 + \frac{1}{p - 2}$$

$$= \frac{(p - 2) + 1}{p - 2} = \frac{p - 1}{p - 2}, p \neq 2$$