Outline Introducción Modelado del problema Implementación del algoritmo genético Resultados Conclusiones

Algoritmos Geneticos Sistemas de Inteligencia Artificial

De Santi Pereyra Pintos

10 de Junio de 2013

- Introducción
 - Problema propuesto
- 2 Modelado del problema
 - Representación de un individuo
- 3 Implementación del algoritmo genético
 - Flujo del algoritmo
 - Función de Fitness
 - Métodos de reemplazo
 - Métodos de selección
 - Criterios de corte
- Resultados
- Conclusiones

- 1 Introducción
 - Problema propuesto
- 2 Modelado del problema
 - Representación de un individuo
- Implementación del algoritmo genético
 - Flujo del algoritmo
 - Función de Fitness
 - Métodos de reemplazo
 - Métodos de selección
 - Criterios de corte
- Resultados
- Conclusiones

Problema propuesto

El problema propuesto fue la estimación de los mejores pesos para la red neuronal que busca la estimación de puntos de una serie temporal:

$$x_t = f(x_{t-1}, x_{t-2}, ...)$$

- 1 Introducción
 - Problema propuesto
- 2 Modelado del problema
 - Representación de un individuo
- 3 Implementación del algoritmo genético
 - Flujo del algoritmo
 - Función de Fitness
 - Métodos de reemplazo
 - Métodos de selección
 - Criterios de corte
- Resultados
- Conclusiones

Representación de un individuo

Se decidió representar a la **población** como un arreglo de redes neuronales. Cada red es inicializada con pesos alteatorios. Un **cromosoma** es representador por un array con todos los pesos de la red neuronal y un **locus** es un peso puntual de la red.

- Introducción
- Problema propuesto
- 2 Modelado del problema
 - Representación de un individuo
- 3 Implementación del algoritmo genético
 - Flujo del algoritmo
 - Función de Fitness
 - Métodos de reemplazo
 - Métodos de selección
 - Criterios de corte
- 4 Resultados
- Conclusiones

Implementación del algoritmo genético

El algoritmo implementado sigue el siguiente flujo:

- Inicializar población
- Mientras no se haya alcanzado la condición de corte:
 - Evaluar la función de fitness
 - Seleccionar individuos y aparear
 - Recombinar y mutar
 - Reemplazar

Función de Fitness

Inicial

$$f(x) = \frac{1}{x}$$

Brindaba resultados aceptables, pero no penalizaba errores cercanos a 1 comparados con otros cercanos a 0.5.

Función final

$$f(x) = \frac{1}{x^2}$$

Brindó resultados más favorables, ya que los errores menores eran aún mejor puntuados.

Métodos de reemplazo

Se implementaron los 3 métodos de reemplazo que reciben la población, la evolución del fitness de cada uno, y retornan una nueva población

- Método 1: Selecciona dos, aparea, recombina, muta y los entrena con backpropagation y así hasta generar N.
- Método 2: Selecciona N-k y realiza lo mismo que el método 1.
 Los k restantes no sufren modificaciones.
- Método 3: Se realiza lo mismo que el método 1 hasta lograr k hijos. Se suman a los N y de los N+k se eligen N.

Métodos de selección

Reciben un arreglo con las evaluaciones de los inviduos y retornan otro con los índices de aquellos seleccionados:

- Elite
- Ruleta
- Selección universal estocástica
- Boltzman
- Torneo
- Rank
- Método mixto

Criterios de corte

Se implementaron los siguientes criterios de corte:

- Generaciones: Máxima cantdad de generaciones n.
- Estructura: Gran porcentaje p de la población no cambia de generación en generación.
- Contenido: Estancamiento en la mejor función de fitness al pasar las generaciones.
- Entorno al óptimo: Cuando la función de fitness alcanza un valor aceptable o deseable.

Mutación

Se implementaron los siguientes criterios de corte:

- Probabilidad de que un individuo mute.
- Permite variaciones en la población.
- No debe ser tan frecuente para no arruinar los avances logrados.
- Método implementado: Se itera por todos los locus y se decide segun p si este muta o no. Si muta se lo reemplaza por un valor al azar.

- Introducción
 - Problema propuesto
- 2 Modelado del problema
 - Representación de un individuo
- 3 Implementación del algoritmo genético
 - Flujo del algoritmo
 - Función de Fitness
 - Métodos de reemplazo
 - Métodos de selección
 - Criterios de corte
- Resultados
- Conclusiones

- Realizamos 30 pruebas distintas basandonos en las mejores configuraciones que detectamos en el desarrollo.
- Intentamos variar la mayor cantidad posible de métodos de selección, reemplazo y probabilidad de mutación.
- Utilizamos la función de fitness $1/x^2$ anteriormente mencionada.

- Inicialmente se pensó que el método de selección elite sería el más óptimo.
- Brindó mejores resultados utilizarlo mezclado con selección mixta, ruleta+elite.
- También brindó buenos resultados la selección mixta universal+elite.

- El método de crossover de un punto resultó ser el mejor para nuestras pruebas.
- El método de reemplazo 1 no nos brindó mejoras significativas, ya que se perdían los individuos más aptos.
- El método de reemplazo 3, por el contrario, tendía a darnos una población muy parecida.

Método de reem- plazo	Pro- bab. de muta- ción	Método de selección 1	Método de selección 2	Crossover	k	k mix- to	E.C.M serie no utilizada	E.C.M cjto de testeo	E.C.M cjto testeo
Reem- plazo 2	0.001	Ruleta	Mixto	1point	20	10	0.019557	0.017298	0.018241
Reem- plazo 2	0.003	Elite	Mixto	1point	20	10	0.031663	0.032657	0.022719
Reem- plazo 2	0.003	Elite	Mixto 2	1point	20	10	0.027122	0.027984	0.027551

- 1 Introducción
 - Problema propuesto
- 2 Modelado del problema
 - Representación de un individuo
- Implementación del algoritmo genético
 - Flujo del algoritmo
 - Función de Fitness
 - Métodos de reemplazo
 - Métodos de selección
 - Criterios de corte
- Resultados
- Conclusiones

Conclusiones

- Los algoritmos genéticos requieren de una etapa de calibración importante.
- Nuestros resultados generalizaron mejor, y mejoraron al algoritmo de backpropagation.
- Podrían haber sido mejor si hubiesemos podido explorar más combinaciones.
- La función de fitness debe considerarse como un parámetro más.