Influência da radiação ambiente nas contagens

As contagens efetuadas vêm afetadas da deteção de radiação de fundo presente no laboratório. Por esse motivo, torna-se necessário corrigir os valores brutos de modo a não contabilizar o que não deve ser contabilizado.

A tabela seguinte apresenta os valores obtidos para contagem de radiação de fundo, em 4 ensaios:

Contagens	Taxa de Contagens (contagens/s)
19 <u>±</u> 5	0.317±0.083
27 <u>±</u> 6	0.450±0.100
20 <u>±</u> 5	0.300±0.083
31 <u>±</u> 6	0.517±0.100
Média =24.25±6.00	Média =0.396±0.109

Tabela 1: Contagens bruta e por unidade de tempo relativas à radiação ambiente. Medições efetuadas com um Preset Δt = 60 s e V=620 V.

De notar que as incertezas foram calculadas com recurso às seguintes expressões:

- Incerteza do número de contagens (N): $\sigma_N = \sqrt{N}$
- Incerteza na taxa de contagens (designaremos por S): $\sigma_S = \frac{\sigma_N}{\Lambda t}$

Os valores de incerteza para contagem bruta foram majorados à unidade e os da taxa de contagem majorados à milésima.

Para o cálculo da média, a incerteza é apenas metade da amplitude do intervalo de valores medido.

Estudo da eficiência do detetor

De forma a estudar a eficiência do detetor para as diferentes radiações ($\beta \in \gamma$), realizaram-se 4 medições do número de contagens, 2 para cada uma das fontes (tálio-204 e césio-137) com e sem tampa de plástico como forma de absorver e, dessa forma, bloquear a radiação β ou deixá-la passar. Começando por apresentar algumas das fórmulas relevantes para esta e outras secções da análise:

- Incerteza do número de contagens (N): $\sigma_N = \sqrt{N}$
- Incerteza na taxa de contagens (designaremos por S): $\sigma_S = \frac{\sigma_N}{\Lambda t}$
- Incerteza no número de contagens corrigido (N'): $\sigma'_N = \sigma_N + \Delta t \, \sigma_{S_{ambiente}}$
- Incerteza na taxa de contagens corrigida (designaremos por S_{corr}): $\sigma_{S_{corr}}=~\sigma_S+~\sigma_{S_{ambiente}}$

Seguem-se os dados obtidos das respetivas medições:

Fonte	Preset Δt [s]	Contagens N	Contagens Corrigidas N'
Tálio-204 s/ tampa	90	7708 ± 88	7672.36 ± 95.18
Tálio-204 c/ tampa	90	42 ± 6	6.36 ± 13.87
Césio-137 s/tampa	90	34519 ± 186	34483.36 ± 193.18
Césio-137 c/tampa	90	722 ± 27	683.36 ± 34.26

Tabela 2: Valores recolhidos do número de contagens e respetiva correção para as fontes Tálio -204 e Césio-137, com e sem tampa de plástico no detetor

As desintegrações da fonte de Tálio-204 levam apenas à emissão de radiação β , enquanto as da fonte de Césio-137 desencadeiam emissões de radiação β e γ . **85.1%** das desintegrações desta última fonte originam emissão de radiação γ . Dadas estas características, o estudo da eficiência do detetor para a radiação β será feita com os dados do Tálio-204 s/tampa e a eficiência para a radiação γ com os dados do Césio-137 c/ tampa. A tampa de plástico tem como função a filtração de radiação \beta e a sua eficiência pode ser confirmada com os dois primeiros conjuntos de dados da Tabela 1- a percentagem de radiação beta absorvida é de ϵ_{tampa} = 99,9171 \pm (METER) %.

Estas medidas serão comparadas com as que seriam esperadas obter caso fosse possível detetar a totalidade de radiação emitida pelas fontes. Para isso convém saber a atividade, i.e, o número médio de desintegrações por segundo das fontes radioativas utilizadas:

$$A(t) = A_0 e^{-\lambda t}$$
, com $\lambda = \frac{ln2}{t_{1/2}}$

sendo A_0 a atividade da fonte radioativa no momento da sua aquisição, $t_{1\!\!/2}$ a semi-vida da mesma e λ a probabilidade de decaímento de um núcleo da fonte. Os dois primeiros valores estão tabelados, e sabendo que o mês de aquisição das fontes foi em Setembro de 2015, podemos também calcular o instante t que devemos usar para a obtenção da atividade da fonte para o dia em que a experiência foi realizada — 7 de Outubro de 2021. A t e a A_0 vêm associados erros de 20%. Obtemos, assim, os seguintes resultados:

$$t = (6.083 \pm 1.217)$$
 anos

Fonte	t_½ (anos)	$\lambda (anos^{-1})$	A_0 (μ Ci)	A(t) (μ Ci)	A(t) (desintegrações/s)
Tálio-204	3.78	0.1834	1.0 ± 0.2	0.327746 ± (METER)	12127.364 ± 5130.975
Césio-137	30.1	0.0231	1.0 ± 0.2	0.869281 ± (METER)	32163.675 ± 7333.834

Tabela 3: Valores recolhidos do número de contagens e respetiva correção para as fontes Tálio-204 e Césio-137, com e sem tampa de plástico no detetor

Por fim, para o estudo das eficiências convém ter em conta as definições de eficiência total, ϵ_{total} , eficiência geométrica, ϵ_{qeom} e de eficiência intrínseca, ϵ_{intr} .

$$\epsilon_{total} = \frac{\text{n\'umero de eventos detetados}}{\text{n\'umero de eventos emitidos pela fonte}}$$

$$\epsilon_{geom} = \frac{\textit{n\'umero de eventos a atingir o detetor}}{\textit{n\'umero de eventos emitidos pela fonte}}$$

$$\epsilon_{intr} = \frac{\text{n\'umero de eventos detetados}}{\text{n\'umero de eventos a atingir o detetor}}$$

Claramente temos que:

$$\epsilon_{total} = \epsilon_{intr} \times \epsilon_{geom}$$

A eficiência geométrica depende essencialmente da distância a que a fonte se encontra do detetor, mais especificamente do ângulo sólido que o detetor realiza tendo como ponto de observação a fonte radioativa, assim como a distribuição angular da radiação emitida pela mesma, a qual se considera isotrópica. Como o ângulo sólido Ω representa a área que o objeto observado ocuparia na superfície da esfera unitária em torno do ponto de observação, temos que a eficiência geométrica

$$\epsilon_{geom} = \frac{\Omega}{4\pi'} \operatorname{com} \Omega = 2\pi \left(1 - \frac{d}{\sqrt{d^2 + a^2}} \right)$$

sendo

FÓRMULAS QUE AINDA NÃO TENS E SÃO IMPORTANTES:

$$\Omega = 2\pi \left(1 - \frac{d}{\sqrt{d^2 + l^2}} \right)$$

$$\sigma_{\Omega} = \frac{2\pi l^2}{(d^2 + l^2)^{\frac{3}{2}}} \sigma_d + \frac{2\pi dl}{(d^2 + l^2)^{\frac{3}{2}}} \sigma_l$$

Quanto à fração de intensidade incidente no detetor, corresponde ao quociente entre o ângulo sólido para a distância considerada e 4π (esferorradianos).

$$\eta = \frac{\Omega}{4\pi}$$

$$\sigma_{\eta} = \frac{\sigma_{\Omega}}{4\pi}$$

Explica também o porquê das eficiências intrínsecas para a radiação \beta serem maiores (tem a ver com a cena da radiação \beta ser causada pelo movimento de partículas carregadas que interagem muito com a matéria, o que implica que há maior facilidade em ionizar o gás inerte do detetor quando comparado com a radiação \gamma):

Analisando os dados da tabela anterior, facilmente verificamos um "fenómeno": para uma mesma distância, a fonte de tálio-204 tem uma eficiência (isto é, um rácio entre a taxa de contagens verificadas e a taxa de contagens estimada pelo ângulo sólido) superior à fonte de césio-137. Isto foi explicado na secção anterior (foi?), e tem como principal justificação a radiação emitida por cada uma das fontes. Para a fonte de césio-137, colocando a fonte de plástico, i.e., "livrando-nos" de toda a radiação β proveniente do decaimento da fonte, resta-nos apenas radiação γ a chegar à entrada do detetor. Nesse sentido, e tendo em conta que a radiação γ tem, apesar de ser ionizante, um nível de interação com a matéria muito baixo, a probabilidade desta conseguir ionizar o gás inerte contido no detetor é reduzida, o que se traduz numa taxa de contagens registada muito inferior à taxa de contagens prevista e que de facto incide no detetor. Por outro lado, para a fonte de tálio-204, que emite principalmente β , um tipo de radiação causada pelo movimento de partículas carregadas (geralmente eletrões) e que, por isso, leva muito facilmente à interação e ionização do gás inerte da câmara do detetor, esperava-se a obtenção de eficiências e taxas de contagem superiores como de facto se verificou.

Estudo da variação da taxa de contagem com a distância

Para se estudar a evolução da taxa de contagens para cada uma das fontes com a distância e se comparar os resultados previstos com os resultados previstos pelos cálculos do ângulo sólido, procedeu-se à medição do número de contagens para cada uma das fontes a diferentes distâncias.

Começando por apresentar algumas das fórmulas relevantes para esta secção de análise, tem-se:

- Incerteza no número de contagens (N): $\sigma_N = \sqrt{N}$
- Incerteza na taxa de contagens (designaremos por S): $\sigma_{S} = \frac{\sigma_{N}}{\Delta t}$
- Incerteza na taxa de contagens corrigida (designaremos por S_{corr}): $\sigma_{S_{corr}} = \sigma_S + \sigma_{S_{ambiente}}$

Para a fonte de césio-137, em que se utilizou uma tampa de plástico a tapar o detetor por forma a bloquear radiação β (método utilizado já que a radiação β interage bastante com a matéria, não conseguindo atravessar, na sua esmagadora maioria, a tampa de plástico):

Distância [cm]	Preset [s]			Taxa de Contagens corrigida [contagens/s]
5 ± 0.6	20	71 ± 8	3.55 ± 0.42	3.154 ± 0.529
7.5 ± 0.6	20	34 ± 6	1.70 ± 0.29	1.304 ± 0.399
10 ± 0.6	20	28 ± 5	1.40 ± 0.26	1.004 ± 0.369
15 ± 0.6	20	13 ± 4	0.65 ± 0.18	0.254 ± 0.289
20 ± 0.6	20	10 ± 3	0.50 ± 0.16	0.104 ± 0.269
30 ± 0.6	20	9 ± 3	0.45 ± 0.15	0.054 ± 0.259

Tabela 4: Valores recolhidos para o estudo com a fonte de césio-137, a uma tensão fixa de V=620V e com uma tampa de plástico no detetor

Para a fonte de tálio-204 e de forma inteiramente análoga (ainda que sem colocar a tampa de plástico no detetor, o que se justifica pelo facto do tálio-204 ter unicamente radiação β na sua *decay chain* e, como tal, temos assim uma forma de verificar o comportamento de interação e deflexão dos eletrões como previsto).

Distância [cm]	Preset [s]	Contagens	Taxa de Contagens [contagens/s]	Taxa de Contagens corrigida [contagens/s]
5 ± 0.6	20	1118 ± 33	55.90 ± 1.67	55.504 ± 1.779
7.5 ± 0.6	20	505 ± 22	25.25 ± 1.12	24.854 ± 1.229
10 ± 0.6	20	329 ± 18	16.45 ± 0.91	16.054 ± 1.019
15 ± 0.6	20	116 ± 11	5.80 ± 0.54	5.404 ± 0.649
20 ± 0.6	20	62 ± 8	3.10 ± 0.39	2.704 ± 0.499
30 ± 0.6	20	12 ± 3	0.60 ± 0.17	0.204 ± 0.279

Tabela 5: Valores recolhidos para o estudo com a fonte de tálio-204, a uma tensão fixa de V=620V

Posto isto, de seguida iremos proceder à comparação destes resultados obtidos para a variação da distância entre o detetor e a fonte com os resultados que seriam previstos, para as diferentes distâncias, pelo ângulo sólido. Assim sendo, a função que se irá *plotar* juntamente com os pontos experimentais recolhidos para cada fonte é expressa por:

$$taxa\ de\ contagens\ =\ A\ \epsilon_{tot}\ =\ A\epsilon_{int}\epsilon_{geo}\ = \frac{A\epsilon_{int}\Omega}{4\pi} = \frac{A\epsilon_{int}}{2}\cdot \left(1-\frac{d}{\sqrt{d^2+a^2}}\right) \quad (1)$$

Em que iremos utilizar os valores de eficiência intrínseca do detetor para cada radiação obtidos na secção anterior (a expressão é trabalhada para se explicitar a dependência da taxa de contagens da distância ao detetor e para se usar os valores da eficiência intrínseca já que esta não varia com a distância entre a fonte e o detetor).

Para além disso, e tendo em conta que o *plot* com a função anterior é efetuado sem quaisquer parâmetros livres, optou-se por se fazer um *plot* deixando o valor da eficiência intrínseca como parâmetro livre. O objetivo deste procedimento é o de compreender que valor de eficiência intrínseca faria a função adaptar-se melhor aos pontos experimentais, comparar o valor obtido no *fit* com o valor obtido "matematicamente" e tirar possíveis conclusões quanto a erros que possam ter afetado as medições e, consequentemente, a eficiência intrínseca obtida.

Assim sendo, obteve-se, para a fonte de césio-137:

Evolução da taxa de contagens com a dist ância para o Cs-137

Figura x: Plots obtidos para a fonte de césio-137

Sendo que o fit retornou os seguintes valores para a eficiência intrínseca do detetor (para a radiação γ):

Parâmetro	Valor	Valor [%]
ϵ_{int}	0.00504 ± 0.00076	0.504 ± 0.076

Tabela x: Valores obtidos do *fit* da equação (1) com a eficiência intrínseca enquanto parâmetro livre para a fonte de césio-137. Obteve-se um valor de χ^2 = 1.40388

Evolução da taxa de contagens com a dist ância para o TI-204

Figura x: Plots obtidos para a fonte de tálio-204

Sendo que o *fit* retornou os seguintes valores para a eficiência intrínseca do detetor (para a radiação β):

Parâmetro	Valor [%]	
ϵ_{int}	0.1696 ± 0.0088	16.96 ± 0.88

Tabela x: Valores obtidos do *fit* da equação (1) com a eficiência intrínseca enquanto parâmetro livre para a fonte de tálio-204. Obteve-se um valor de χ^2 = 49.3809

Da análise dos dados acima, verificamos que o resultado obtido a partir da previsão do ângulo sólido e do valor de eficiência intrínseca obtido na secção anterior (curva azul) é, de maneira geral, bastante satisfatório. Com efeito, as curvas obtidas coadunam-se bastante bem com os pontos experimentais recolhidos, o que demonstra a validade da previsão efetuada (i.e., da utilização do ângulo sólido com base na assunção de que as fontes radioativas emitem isotropicamente).

Quanto aos ajustes realizados, para a fonte de césio-137, obteve-se um valor de 0.504% para a eficiência intrínseca do detetor para a radiação γ (considera-se que com a fonte de césio-137 se mediu a eficiência intrínseca do detetor para radiação γ devido à colocação da tampa de plástico no detetor que absorveu a radiação β), valor que "foge" muito pouco do valor obtido na secção anterior de $\approx 0.38\%$. Para a fonte de tálio-204 em que a eficiência intrínseca mede a eficiência do detetor em detetar radiação β , verificou-se também algum desfasamento (neste caso um pouco mais notório) para os valores obtidos. Com efeito, na secção anterior obteve-se uma previsão de $\approx 9.76\%$ para a eficiência intrínseca sendo que o *fit* retornou um valor de 16,96%. Tais desfasamentos como os que se verificaram não são, de todo, preocupantes. Com efeito, a análise da tabela Y da secção anterior mostra que as eficiências intrínseca do detetor para os dois tipos de radiação têm

uma elevada incerteza que engloba os valores obtidos no fit.

NOTA: Os valores de atividade utilizados na equação (1) e, seguidamente, nos *plots* acima foram devidamente corrigidos, multiplicando o seu valor pela percentagem dos decaimentos correspondentes à emissão da radiação em estudo. Da análise da cadeia de decaimentos do césio-137, por exemplo, verificamos que "apenas" 85.1% dos decaimentos registados correspondem à emissão de radiação γ (assim sendo, utilizou-se $A_{plot}=A\cdot 0.851$). Analogamente, para o tálio-204, verifica-se que a emissão de radiação β dá-se em 97.1% dos decaimentos registados.

Estudo da Estatística das Contagens

Nesta secção do trabalho desenvolvido, fizeram-se 50 contagens, durante intervalos de tempo iguais, neste caso de $\Delta t=10s$. Utilizou-se a fonte de Cs-137, por permitir obter um maior número de contagens num menor intervalo de tempo, comparativamente com a fonte de Tl-204.

Para fazer o tratamento estatístico destes dados, começou-se por pegar nas contagens e calcular a taxa das mesmas, de modo a obter um rácio ao qual fosse possível retirar a taxa de contagens obtida para a radiação de fundo. Relativamente às incertezas das contagens em si, são dadas simplesmente por \sqrt{N} . Como o erro do Δt é baixo comparado com o das contagens, que por sua vez estão ligadas com o facto de que temos dois tipos de radiações, nomeadamente a β , que tem uma grande incerteza associada, podemos dizer que a incerteza da taxa de contagens é simplesmente $\frac{\sqrt{N}}{10}$. Após se obterem os rácios, como foi dito, subtraiu-se o valor da taxa de contagem obtido para a radiação de fundo. O erro é dado pela soma dos erros de ambas. O erro da taxa de contagens de fundo é calculado como o maior desvio às várias medições feitas, dando $\epsilon_{r_0}=0.121$.

Excluir-se-á qualquer efeito devido ao tempo morto, como indicado pelos docentes na aula teórica. Ainda assim, dada a avalanche de Townsend, não se deixa de realçar que tem um efeito importante no tratamento de estatístico.

Depois disso, utiliza-se o Teorema do Limite Central (TLC) para aproximar a nossa distribuição, uma vez que esta é composta por um grande número de contagens e, acima de tudo, na assunção de que os erros não têm correlação nenhuma entre si e de que a fonte se manteve aproximadamente no mesmo estado durante as contagens, o que implica que todas as contagens são igualmente distribuídas e que, portanto, podemos incluir esta parte da experiência nas condições do TLC. Desta forma, fez-se uma média das contagens, corrigida com a radiação de fundo, $\bar{X}=3928.02~Cts$, revertendo-se todos os rácios para contagens uma vez mais. Para calcular o erro, fez-se o inverso que se fez há um bocado, multiplicou-se por Δt .

Por fim, para colocar os dados no estado do TLC, subtraiu-se a média a cada um dos dados e dividiu-se pelo respetivo $\sigma=\sqrt{N}$ (cujos valores se encontram registados, para cada medição, na coluna "Normalizado"). Os erros para esta parte final são desnecessários uma vez que a divisão por bins é grande o suficiente para cobrir uma região muito mais abrangente do que a dos erros. Neste caso, optou-se por ter 7 bins, após testar com várias outras quantidades. Fez-se o fit da gaussiana ao histograma, utilizando o ROOT e o método dos mínimos quadrados, obtendo-se:

$$\mu = (0.1 \pm 0.2)Cts$$
 $\sigma = (1.09 \pm 0.16)Cts$

Parece que, efetivamente, se pode considerar a distribuição estatística (ver. Fig. 1) como uma distribuição normal padrão, uma vez que a média se pode considerar suficientemente próxima de 0 e o desvio padrão perto de 1. De notar que as incertezas associadas a cada parâmetro incluem estes valores.

A descrição obtida acima do tratamento de dados está explicada na tabela abaixo.

Nº	Contage ns	Erro	Taxa de contagen s	Erro	Taxa de contagens corrigida	Erro	Contagen s Corrigida s	Erro	Normali zado
1	3945	63	394,5	6,3	394,1	6,4	3941	64	0,207
2	3906	62	390,6	6,2	390,2	6,4	3902	64	-0,416
3	3956	63	395,6	6,3	395,2	6,4	3952	64	0,382
4	3924	63	392,4	6,3	392,0	6,4	3920	64	-0,127
5	4013	63	401,3	6,3	400,9	6,5	4009	65	1,280
6	3964	63	396,4	6,3	396,0	6,4	3960	64	0,509
7	3846	62	384,6	6,2	384,2	6,3	3842	63	-1,387
8	4063	64	406,3	6,4	405,9	6,5	4059	65	2,056
9	3897	62	389,7	6,2	389,3	6,4	3893	64	-0,561
10	3993	63	399,3	6,3	398,9	6,4	3989	64	0,966
11	3954	63	395,4	6,3	395,0	6,4	3950	64	0,350
12	3949	63	394,9	6,3	394,5	6,4	3945	64	0,271
13	4039	64	403,9	6,4	403,5	6,5	4035	65	1,685
14	3876	62	387,6	6,2	387,2	6,3	3872	63	-0,900
15	3998	63	399,8	6,3	399,4	6,4	3994	64	1,045
16	3908	63	390,8	6,3	390,4	6,4	3904	64	-0,384
17	3967	63	396,7	6,3	396,3	6,4	3963	64	0,556
18	3901	62	390,1	6,2	389,7	6,4	3897	64	-0,496
19	3885	62	388,5	6,2	388,1	6,4	3881	64	-0,754
20	4003	63	400,3	6,3	399,9	6,4	3999	64	1,123
21	3989	63	398,9	6,3	398,5	6,4	3985	64	0,903
22	3999	63	399,9	6,3	399,5	6,4	3995	64	1,060
23	3888	62	388,8	6,2	388,4	6,4	3884	64	-0,706
24	3990	63	399	6,3	398,6	6,4	3986	64	0,919
25	3895	62	389,5	6,2	389,1	6,4	3891	64	-0,593
26	3924	63	392,4	6,3	392,0	6,4	3920	64	-0,127
27	3980	63	398	6,3	397,6	6,4	3976	64	0,762
28	3839	62	383,9	6,2	383,5	6,3	3835	63	-1,501
29	4048	64	404,8	6,4	404,4	6,5	4044	65	1,824
30	3778	61	377,8	6,1	377,4	6,3	3774	63	-2,506
31	3958	63	395,8	6,3	395,4	6,4	3954	64	0,414
32	3957	63	395,7	6,3	395,3	6,4	3953	64	0,398
33	3969	63	396,9	6,3	396,5	6,4	3965	64	0,588
34	3943	63	394,3	6,3	393,9	6,4	3939	64	0,176
35	3952	63	395,2	6,3	394,8	6,4	3948	64	0,319
36	3976	63	397,6	6,3	397,2	6,4	3972	64	0,698
37	3927	63	392,7	6,3	392,3	6,4	3923	64	-0,080
38	3915	63	391,5	6,3	391,1	6,4	3911	64	-0,272
39	3869	62	386,9	6,2	386,5	6,3	3865	63	-1,013
40	3914	63	391,4	6,3	391,0	6,4	3910	64	-0,288
41	3775	61	377,5	6,1	377,1	6,3	3771	63	-2,556
42	3819	62	381,9	6,2	381,5	6,3	3815	63	-1,829
43	3851	62	385,1	6,2	384,7	6,3	3847	63	-1,306

44	4022	63	402,2	6,3	401,8	6,5	4018	65	1,420
45	3874	62	387,4	6,2	387,0	6,3	3870	63	-0,932
46	3869	62	386,9	6,2	386,5	6,3	3865	63	-1,013
47	3885	62	388,5	6,2	388,1	6,4	3881	64	-0,754
48	4035	64	403,5	6,4	403,1	6,5	4031	65	1,623
49	3898	62	389,8	6,2	389,4	6,4	3894	64	-0,545
50	3874	62	387,4	6,2	387,0	6,3	3870	63	-0,932

Tabela 10 – Tabela com a correção dos dados e propagação de erros. A coluna dos erros associados a uma medição é a imediatamente a seguir à coluna daquilo sobre o qual os erros estão a ser calculados.

Fig. 3 – Histograma com os valores da última tabela na Tab. 1, divididos por bins, onde no eixo dos y's temos a quantidade de eventos que se insere no respetivo bin. A vermelho temos o fit da distribuição gaussiana, feito com recurso ao método dos mínimos quadrados.