Tect 2

Α.

- **1.** На множестве \mathbb{R} определено отношение R: $(x,y) \in R$, если $x^3 x = y^3 y$.
 - (a) Проверьте, что R является отношением эквивалентности.
 - (b) Определите класс эквивалентности [1].
- 2. Нарисуйте или обоснуйте, почему не существует непересекающий-ся(планарный) граф с 5 вершинами, степени всех вершин которого равны d(v)=2.
- **3.** Пусть у нас есть двудольный граф $G = (V, E), V = A \cup B, |A| = |B| = n.$
 - (a) Каково максимально возможное число рёбер, которые может иметь граф G?
 - (b) Каково минимально возможное число рёбер, которые может иметь граф G?

В.

- **1.** На множестве \mathbb{N} задано отношение $R: (m, n) \in R$, если $|m n| \leq 2$.
 - (a) Выясните, является ли R отношением эквивалентности.
 - (b) Определите все $n \in \mathbb{N}$, для которых $(1, n) \in R \circ R$.
- 2. Существует ли простой граф с 5 вершинами и суммой степеней всех вершин 22. Если да, нарисуйте его. В противном случае обоснуйте ответ.
- **3.** Пусть у нас есть полный граф K_n с вершинами $V = \{1, 2, \dots, n\}$. Сколько смежных подграфов графа K_n имеют ровно два ребра?

- **1.** На потенциальном множестве $\mathcal{P}(\mathbb{N})$ мы имеем отношение R: $(A,B) \in R$, если $A \subset B \cup \{1\}$.
 - (a) Определите, является ли R рефлексивным или транзитивным.
 - **(b)** Положим $B = \{2, 4\}$. Сколько множеств A удовлетворяет $(B, A) \in \mathbb{R}^{-1}$?
- **2.** Нарисуйте или обоснуйте, почему не существует непересекающийся граф с 6 вершинами, в котором степени всех вершин равны d(v) = 3.
- 3. Пусть у нас есть полный граф K_n с вершинами $V = \{1, 2, \dots, n\}$. Сколько путей длины 3 ведёт между вершинами 1 и 4?

\mathbf{D} .

- **1.** На множестве \mathbb{N} рассмотрим отношение R, определённое следующем образом: $(m,n) \in R, \ m \cdot n^4$ нечётное число.
 - (a) Определите, является ли R рефлексивным или симметричным.
 - (b) Выясните, какие числа $n \in \mathbb{N}$ удовлетворяют $(n, 1) \in \mathbb{R}^{-1}$.
- **2.** Нарисуйте или объясните, почему не существует простого графа с шестью вершинами, для которого справедливо: две вершины имеют степень d=0, две вершины имеют степень d=2, и две другие вершины имеют степени $d \notin \{1,2\}$.
- **3.** Пусть у нас есть полный граф K_n с вершинами $V = \{1, 2, \dots, n\}$. Сколько подграфов графа K_n , имеющих максимум одно ребро?