PHOENIX & CERBERUS We haz botnets!

HackInBO, Bologna, 23 May 2015

Stefano Schiavoni, Edoardo Colombo Federico Maggi Lorenzo Cavallaro **Stefano Zanero**

Politecnico Di Milano & Royal Holloway, University of London

\$ WHOAMI

\$ WHOAMI

► Frequent traveller

- ▶ Frequent traveller
- ► Assistant professor (NECST @ POLIMI)

\$

- ▶ Frequent traveller
- Assistant professor (NECST @ POLIMI)

► Founder, Secure Network

- ▶ Frequent traveller
- Assistant professor (NECST @ POLIMI)
- ► Founder, Secure Network
- Volunteerism workaholic (IEEE, ISSA)

\$

- Frequent traveller
- Assistant professor (NECST @ POLIMI)
- ► Founder, Secure Network
- Volunteerism workaholic (IEEE, ISSA)
- ▶ Black Hat Review Board

BOTNETS > REMINDER OF DEFINITIONS

CENTRALIZED BOTNETS > C&C CHANNEL

CENTRALIZED BOTNETS > C&C CHANNEL

botmaster \rightarrow **bot** commands to execute, attacks to launch

CENTRALIZED BOTNETS > C&C CHANNEL

 $botmaster \rightarrow bot$ commands to execute, attacks to launch $bot \rightarrow botmaster$ harvested information, feedbacks

CENTRALIZED BOTNETS > MITIGATION

- ► C&C channel: single point of failure.
- ▶ Rallying Mechanisms: the countermeasure.

DGA > BENEFITS FOR THE BOTMASTERS

- Asymmetry Botmasters Vs Defenders
 - → Thousands of domain names,
 - \rightarrow only one is the right one.
- ► Blacklists do not work well

Limitations of current **research approaches**:

Limitations of current research approaches:

► Supervised: require labeled data

Limitations of current research approaches:

- Supervised: require labeled data
 - → "That domain name is known to be DGA generated",
 - ightarrow "That other domain is not".

Limitations of current research approaches:

- Supervised: require labeled data
 - → "That domain name is known to be DGA generated",
 - \rightarrow "That other domain is not".
- Work at the lower levels of the DNS hierarchy:
 - \rightarrow not so easy to deploy,
 - $\,\rightarrow\,$ privacy (visibility of the hosts' IP addresses).

STATE OF THE ART > PHOENIX

Phoenix clusters
DGA-generated domains from a list of of domains known to be used by botnets.

The core of Phoenix is its ability to separate DGA from non-DGA domains, using linguistic features.

(in a few slides)

PHOENIX > DISCOVERING DGA-GENERATED DOMAINS

Sources of malicious domains:

- ► EXPOSURE http://exposure.iseclab.org
- MLD http://www.malwaredomainlist.com
- ...and of course some reversing :-)

PHOENIX > DGA VS. NON-DGA

Meaningful Word Ratio (English dict)

$$d = {\tt facebook.com}$$

$$d = \mathtt{pub03str.info}$$

$$R(d) = \frac{|\mathtt{face}| + |\mathtt{book}|}{|\mathtt{facebook}|} = 1 \qquad R(d) = \frac{|\mathtt{pub}|}{|\mathtt{pub03str}|} = 0.375.$$

$$R(d) = \frac{|\text{pub}|}{|\text{pub03str}|} = 0.375$$

likely non-DGA generated

likely **DGA** generated

PHOENIX > DGA VS. NON-DGA

N-gram Popularity (English dict)

$$d = {\tt facebook.com}$$
 fa ac ce eb bo oo ok 109 343 438 29 118 114 45

$$d = \mathtt{aawrqv.com}$$

mean:
$$S_2 = 170.8$$

mean:
$$S_2 = 13.2$$

likely non-DGA generated

likely DGA generated

PHOENIX > DGA VS NON-DGA

First principal component

PHOENIX > BOTNETS

PHOENIX > RESULTS (1 WEEK)

Cluster f105c		Cluster 0f468	
IPs:	176.74.176.175 208.87.35.107	IPs:	217.119.57.22 91.215.158.57 178.162.164.24 94.103.151.195
Domains:	<pre>cvq.com epu.org bwn.org</pre>	Domains:	jhhfghf7.tk faukiijjj25.tk pvgvy.tk
(Botnet:	Palevo)	(Botnet:	Sality)

PHOENIX > TRACKING MIGRATIONS

PHOENIX > TRACKING MIGRATIONS

PHOENIX > SHORTCOMINGS

Leverages historical DNS data:

- ► Unable to deal with new DGAs
- ▶ Unseen "domain→IP" mapping are simply **discarded**.

Insight a malicious domain automatically generated will not become popular.

Alexa Top 1M Whitelist

We whitelist the domains that appear in the Alexa Top 1M.

Insight a malicious domain automatically generated will not belong to a CDN r4---sn-a5m7lnes.example.com.

CDN Whitelist

We whitelist the domains that belong to the most popular CDN networks (e.g., YouTube, Google, etc.) and advertisement services.

Insight an attacker will register a domain with a TLD that does not require clearance.

TLD Whitelist

We whitelist the domains featuring a Top Level Domain that requires authorization by a third party authority before registration (e.g. .gov, .edu, .mil).

Insight How fast is fast?

- ▶ 2-3 years ago: TTL < 100.</p>
- ▶ Nowadays: TTL > 300 seconds.

Why? To save money :-) See BH-US 2013 talk¹.

TTL

We filter out all those domains featuring a Time To Live outside this bound.

¹https://media.blackhat.com/us-13/ US-13-Xu-New-Trends-in-FastFlux-Networks-Slides.pdf

Insight we are looking for DGA-generated domains.

Phoenix's DGA Filter

We filter out domains likely to be generated by humans.

Insight the attacker will register the domain just a few days before the communication will take place.

Whois

We query the Whois server and discard the domains that were registered more than Δ days before the DNS query.

RECAP ON FILTERING

```
Starting with 50,000 domains:

20,000 TTL > 300 seconds;

19,000 not in the Alexa Top 1M list;

15,000 not in the most popular CDNs;

800 likely to be DGA generated;

700 no previous authorization;

300 younger than △ days ← suspicious.
```


Cluster A

69.43.161.180

379.ns4000wip.com 418.ns4000wip.com 285.ns4000wip.com

Cluster B

69.43.161.180

391.wap517.net

251.wap517.net 340.wap517.net

Cluster C

. . .

576.wap517.net 69.43.161.180

Cluster A

69.43.161.180

379.ns4000wip.com 418.ns4000wip.com 285.ns4000wip.com

Cluster B

69.43.161.180

391.wap517.net 251.wap517.net

340.wap517.net

Cluster C

576.wap517.net 69.43.161.180

Cluster A

69.43.161.180

379.ns4000wip.com 418.ns4000wip.com 285.ns4000wip.com

Cluster B

69.43.161.180

391.wap517.net 251.wap517.net

340.wap517.net

Cluster C

. . .

Cluster A

69.43.161.180

379.ns4000wip.com 418.ns4000wip.com 285.ns4000wip.com

Cluster B

69.43.161.180

391.wap517.net 251.wap517.net 340.wap517.net

Cluster C

. . .

Cluster A

69.43.161.180

379.ns4000wip.com 418.ns4000wip.com 285.ns4000wip.com

Cluster B

69.43.161.180

391.wap517.net 251.wap517.net 340.wap517.net

Cluster C

. . .

Train the Classifier on A, B

Cluster A

69.43.161.180

379.ns4000wip.com 418.ns4000wip.com 285.ns4000wip.com

Cluster B

69.43.161.180

391.wap517.net 251.wap517.net 340.wap517.net

Cluster C

CLASSIFIER > SUBSEQUENCE STRING KERNEL

Developed at Royal Holloway in 2002, by Lodhi et al.

	c-a	c-t	a-t	c-r	a-r
$\phi(cat)$	λ^2	λ^3	λ^2	0	0
$\phi(car)$	λ^2	0	0	λ^3	λ^2

How many substrings of size k = 2?

$$\begin{split} & \ker(car,cat) = \lambda^4 \\ & \ker(car,car) = \ker(cat,cat) = 2\lambda^4 + \lambda^6 \\ & \ker_n(car,cat) = \frac{\lambda^4}{(2\lambda^4 + \lambda^6)} = \frac{1}{(2+\lambda^2)} \in [0,1] \end{split}$$

CLASSIFIER > SUPPORT VECTOR MACHINES

SVM: find one hyperplane or a set of them that has the largest distance to the nearest training data point of any class

RESULTS > EXPERIMENTS

RESULTS

on passive DNS data from https://farsightsecurity.com/Services/SIE/

CLASSIFICATION > RESULTS

Training 1000, Testing 100 Overall Accuracy \simeq 0.95

	а	b	С	d
а	100	0	0	0
b	1	92	6	1
С	2	0	98	0
d	3	0	6	91

```
a
caaa89e...d4ca925b3e2.co.cc
f1e01ac...51b64079d86.co.cc
b
kdnvfyc.biz
wapzzwvpwq.info
C
jhhfghf7.tk
faukiijjj25.tk
d
cvq.com
```

epu.org

CLASSIFICATION > PAIRWISE DISTANCES

The **Time Detective** discovers new botnets.

Every Δ the bots **contact** the C&C Server, on a **new domain**.

Botmaster 131.175.65.1

131.175.65.1: {

Every Δ the bots **contact** the C&C Server, on a **new domain**.

Every Δ the bots **contact** the C&C Server, on a **new domain**.

Every Δ the bots **contact** the C&C Server, on a **new domain**.

131.175.65.1: { evq.org , akh.org , spq.org }

TIME DETECTIVE > STEPS

TIME DETECTIVE > GROUPING

We assume a **lazy attacker** behavior: If (s)he finds an obliging AS, (s)he will buy a few IPs in there.

We group together the domains that point to IPs within the same AS.

TIME DETECTIVE > STEPS

TIME DETECTIVE > CLUSTERING

DBSCAN

SSK as the distance

automatic tuning:

- ▶ minPts domains per cluster,
- ightharpoonup ε distance threshold.

CLUSTERING > TUNING MINPTS

minPts = 7 domains per cluster

Observation period in days.

Rationale: the bots will contact the C&C server at least **once a day**.

CLUSTERING > THRESHOLD

 $\frac{\text{intra-cluster distances}}{\text{inter-cluster distances}} \rightarrow 0 \text{ (minimize)}$

What if a new cluster is actually a **known botnet** that **migrated** the C&C server somewhere else?

What t' h3ck!

What t' h3ck!

TIME DETECTIVE > STEPS

$$A = \begin{bmatrix} \operatorname{dom}_1 & \cdots & \operatorname{dom}_m \\ \operatorname{dom}_2 & \begin{pmatrix} d_{1,1} & \cdots & d_{1,m} \\ d_{2,1} & \cdots & d_{2,m} \\ \vdots & \ddots & \vdots \\ \operatorname{dom}_m & \begin{pmatrix} d_{m,1} & \cdots & d_{m,m} \end{pmatrix} \end{bmatrix}$$

$$A = \begin{bmatrix} \operatorname{dom}_1 & \cdots & \operatorname{dom}_m & \operatorname{dom}_1 & \cdots & \operatorname{dom}_n \\ \operatorname{dom}_1 & d_{1,1} & \cdots & d_{1,m} \\ \operatorname{dom}_2 & d_{2,1} & \cdots & d_{2,m} \\ \vdots & \ddots & \vdots \\ \operatorname{dom}_m & d_{m,1} & \cdots & d_{m,m} \end{bmatrix} \quad B = \begin{bmatrix} \operatorname{dom}_1 & \cdots & \operatorname{dom}_n \\ \operatorname{dom}_1 & d_{1,1} & \cdots & d_{1,n} \\ \operatorname{dom}_2 & d_{2,1} & \cdots & d_{2,n} \\ \vdots & \ddots & \vdots \\ \operatorname{dom}_n & d_{m,1} & \cdots & d_{m,n} \end{bmatrix}$$

$$A = \begin{bmatrix} \operatorname{dom}_1 & \cdots & \operatorname{dom}_m & \operatorname{dom}_1 & \cdots & \operatorname{dom}_n \\ \operatorname{dom}_1 & d_{1,1} & \cdots & d_{1,m} \\ \operatorname{dom}_2 & d_{2,1} & \cdots & d_{2,m} \\ \vdots & \ddots & \vdots \\ \operatorname{dom}_m & d_{m,1} & \cdots & d_{m,m} \end{bmatrix} \quad B = \begin{bmatrix} \operatorname{dom}_1 & \cdots & \operatorname{dom}_n \\ \operatorname{dom}_2 & d_{1,1} & \cdots & d_{1,n} \\ \operatorname{dom}_2 & d_{2,1} & \cdots & d_{2,n} \\ \vdots & \ddots & \vdots \\ \operatorname{dom}_n & d_{m,1} & \cdots & d_{m,n} \end{bmatrix}$$

$$A \sim B = \begin{pmatrix} \operatorname{dom}_1 & \operatorname{dom}_2 & \cdots & \operatorname{dom}_n \\ \operatorname{dom}_1 & d_{1,1} & d_{1,2} & \cdots & d_{1,n} \\ d_{2,1} & d_{2,2} & \cdots & d_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{dom}_m & d_{m,1} & d_{m,2} & \cdots & d_{m,n} \end{pmatrix}$$

TIME DETECTIVE > WELCH TEST

Stats to the rescue!

TIME DETECTIVE > WELCH TEST

Stats to the rescue!

$$A = \begin{bmatrix} & \operatorname{dom}_1 & \cdots & \operatorname{dom}_m \\ \operatorname{dom}_1 & \begin{pmatrix} d_{1,1} & \cdots & d_{1,m} \\ d_{2,1} & \cdots & d_{2,m} \\ \vdots & \ddots & \vdots \\ \operatorname{dom}_m & \begin{pmatrix} d_{m,1} & \cdots & d_{m,m} \\ d_{m,1} & \cdots & d_{m,m} \end{pmatrix} \\ & A \sim B = \begin{bmatrix} & \operatorname{dom}_1 & \operatorname{dom}_2 & \cdots & \operatorname{dom}_n \\ \operatorname{dom}_2 & \begin{pmatrix} d_{1,1} & d_{1,2} & \cdots & d_{1,n} \\ d_{2,1} & d_{2,2} & \cdots & d_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{dom}_m & \begin{pmatrix} d_{m,1} & d_{m,2} & \cdots & d_{m,n} \end{pmatrix} \end{bmatrix}$$

TIME DETECTIVE > WELCH TEST

Stats to the rescue!

Welch test: do A and $A \sim B$ have different intra-cluster distance distributions?

69.43.161.180

Day 7

382.ns4000wip.com 379.ns4000wip.com 380.ns4000wip.com 381.ns4000wip.com 391.wap517.net 391.wap517.net 391.wap517.net 69.43.161.16>

388.ns768.com 389.ns768.com 390.ns768.com 391.ns768.com 392.ns768.com

69.43.161.174

383.ns4000wip.com 384.ns4000wip.com 385.ns4000wip.com 386.ns4000wip.com

AS 22489

Merge

388.ns768.com 389.ns768.com 390.ns768.com 391.ns768.com 392.ns768.com

382.ns4000wip.com 379.ns4000wip.com 380.ns4000wip.com 381.ns4000wip.com 391.wap517.net 391.wap517.net 391.wap517.net

383.ns4000wip.com 384.ns4000wip.com 385.ns4000wip.com 386.ns4000wip.com

388.ns768.com 382.ns4000wip.com 391.wap517.net 379.ns4000wip.com 391.wap517.net 389.ns768.com Cluster 380.ns4000wip.com 391.wap517.net 390 ns768 com 381.ns4000wip.com 391 ns768 com 392.ns768.com 383.ns4000wip.com 384.ns4000wip.com 385.ns4000wip.com 386.ns4000wip.com

New clusters produced

Cluster 1 388.ns768.com 389.ns768.com 390.ns768.com 391.ns768.com 392.ns768.com

Cluster 2 382.ns4000wip.com 379.ns4000wip.com 380.ns4000wip.com 381.ns4000wip.com

383.ns4000wip.com 384.ns4000wip.com 385.ns4000wip.com 386.ns4000wip.com

Cluster 3

391.wap517.net 391.wap517.net 391.wap517.net

RESULTS > EXPERIMENTS

RESULTS

on passive DNS data from https://farsightsecurity.com/Services/SIE/

TIME DETECTIVE > LABELING (1 WEEK)

187 domains classified as malicious and labeled.

Labeled 07e21

Botnet: Conficker

Domains: hhdboqazof.biz

poxqmrfj.biz hcsddszzzc.ws tnoucgrje.biz gwizoxej.biz

jnmuoiki.biz

TIME DETECTIVE > CLUSTERING

3,576 domains were considered **suspicious** by Cerberus and **stored**, together with their IP address.

Then we ran the clustering routine to **discover new botnets**.

TIME DETECTIVE > CLUSTERING

62.116.181.25 199.59.243.118 69.43.161.180 69.43.161.174	26 40 173
69.43.161.180	
	173
69.43.161.174	
69.43.161.180	37
69.43.161.167	47
69.43.161.167	24
82.98.86.171	142
82.98.86.176	
82.98.86.175	
69.58.188.49	73
82.98.86.169	57
82.98.86.162	
82.98.86.178	
82.98.86.163	
	69.43.161.180 69.43.161.167 69.43.161.167 82.98.86.171 82.98.86.176 82.98.86.175 69.58.188.49 82.98.86.169 82.98.86.162 82.98.86.178

TIME DETECTIVE > CLUSTERING

Cluster	IP	Sample Domains
Jadtre*	69.43.161.180 69.43.161.174	379.ns4000wip.com 418.ns4000wip.com 285.ns4000wip.com
Jadtre**	69.43.161.180	391.wap517.net 251.wap517.net 340.wap517.net
Jadtre***	69.43.161.167	388.ns768.com 353.ns768.com 296.ns768.com

Cluster a ((Old)	Cluster b (New)
IPs:	176.74.76.175 208.87.35.107	IPs:	82.98.86.171 82.98.86.176 82.98.86.175 82.98.86.167 82.98.86.168 82.98.86.165
Domains	<pre>cvq.com epu.org bwn.org lxx.net</pre>	Domains	knw.info rrg.info nhy.org ydt.info

Cluster a (Old)	Cluster b (New)
IPs:	176.74.76.175 208.87.35.107	IPs:	82.98.86.171 82.98.86.176 82.98.86.175 82.98.86.167 82.98.86.168 82.98.86.165
Domains	<pre>cvq.com epu.org bwn.org lxx.net</pre>	Domains	knw.info rrg.info nhy.org ydt.info

Both belonging to the Palevo botnet.

▶ 187 malicious domains detected and labeled

- ▶ 187 malicious domains detected and labeled
- ▶ 3,576 suspicious domains collected

- ▶ 187 malicious domains detected and labeled
- ▶ 3,576 suspicious domains collected
- ▶ 47 clusters of DGA-generated domains discovered

- ▶ 187 malicious domains detected and labeled
- 3,576 suspicious domains collected
- ▶ 47 clusters of DGA-generated domains discovered
- ▶ 319 new domains detected in the next 24 hours

CONCLUSIONS

- discovers and characterizes unknown DGA-based activity,
- ▶ unsupervised,
- ► easy to deploy,
- privacy preserving.

FUTURE WORK

FUTURE WORK

 $\verb|this-is-an-easy-way-to-evade-the-linguistic-filter.com|\\$

FUTURE WORK

Release Cerberus as a web service. Hopefully!

THANK YOU

stefano.zanero@polimi.it @raistolo