Last time

Annealing and Tempering Markov Chains

Scott C. Schmidler

Stat 863: Advanced Statistical Computing **Duke University** Fall 2018

Ising model

- Gibbs sampler/heatbath for Ising model
- Review basic convergence theory Markov chains

Bottlenecks in Gibbs sampler for Ising model

exponentially slow convergence

Markov chains for optimization: Simulated annealing

We can construct MC to sample from $\pi(x)$ known up to constant We can also use this for optimization.

Suppose we wish to find mode $x^* = \arg \max_{x \in \mathcal{X}} \pi(x)$.

Define

$$\pi_t(x) \propto \exp\left(rac{\ln(\pi(x))}{t}
ight) = \pi(x)^{rac{1}{t}}$$

with potential $U(x) = \ln \pi(x)$.

- $\pi_0(x) = \delta_{x^*}(x)$ is delta function at mode(s)
- $\pi_{\infty}(x)$ is uniform distn

Can we use MCMC to sample π_0 ? Initializing w/ pos density equivalent to finding mode! (And may be reducible if multi-modal.)

Simulated annealing

Take a sequence of decreasing temperatures (annealing schedule)

$$t_{\text{max}} = t_0 > t_1 > \ldots > t_n = 0$$

where $t_{\text{max}}\gg 1$.

Construct a time-inhomogeneous MCMC chain to simulate

$$x_1, \dots, x_k \sim \pi_{t_0}$$
 $x_{k+1}, \dots, x_{2k} \sim \pi_{t_1}$
 \vdots
 $x_{(n-1)k+1}, \dots, x_{nk} \sim \pi_{t_n}$

Lowering temp concentrates stationary distribution near mode(s) (convergence of MC generally slower at lower t's)

Simulated annealing

In limit as $nk \to \infty$ and $\Delta t \to 0$, guaranteed to obtain global min of U(x)

In practice, must empirically determine annealing schedule & restart many times.

Scott C. Schmidler Annealing and Tempering Markov Chains

Scott C. Schmidler Annealing and Tempering Markov Chains

Tempering

Can we use this idea to speed up sampling?

Suppose we our MCMC chain targets $\pi(x)$ but mixes slowly

"Energy barriers" /low density regions hard to cross at low temps; can be easier at high temps:

$$U(x) = -\ln(\pi(x))$$
 vs $\frac{U(x)}{t}$

Tempering raises the temperature to allow faster exploration of the state space.

Simulated tempering

Define augmented state space (X, T) with

$$\pi(x,t) \propto \pi_t(x) \gamma(t)$$

for finite set *T*, i.e. $t \in \{1 = t_0 < t_1 < ... < t_{max}\}$

Note that the conditional dist $\pi(x \mid t = 1) = \pi(x)$.

Construct MCMC chain to sample $\pi(x, t)$.

Then $\{(x^{(i)}, t^{(i)}): t^{(i)} = 1\}$ form a sample from $\pi(x)$

Mixing can be dramatically increased.

Simulated tempering

Where does $\gamma(x)$ come from?

Look more closely:

$$\pi_i(x) = Z_i^{-1} e^{-\frac{\ln(\pi(x))}{t_i}}$$
 $Z_i = \int_{\mathcal{X}} e^{-\frac{\ln(\pi(x))}{t_i}} = \int_{\mathcal{X}} \pi(x)^{\frac{1}{t_i}}$

Consider $\gamma(t) \propto 1$ so sampling from $\pi(x, t_i) \propto \pi(x)^{\frac{1}{t_i}}$. Then

$$\pi(t_i) = \frac{\int_{\mathcal{X}} \pi(x)^{\frac{1}{t_i}}}{\sum_i \int_{\mathcal{X}} \pi(x)^{\frac{1}{t_j}}} = \frac{Z_i}{\sum_j Z_j}$$

What will $\pi(1)$ be? Likely very small.

Simulated tempering

Instead prefer $\pi(x, t_i) \propto Z_i^{-1} \pi(x)^{\frac{1}{t_i}}$, so $\pi(t)$ uniform.

But then to accept/reject temp change $(x,t_i) o (x,t_j)$ we have

$$1 \wedge \frac{Z_i \pi(x)^{\frac{1}{t_j}}}{Z_j \pi(x)^{\frac{1}{t_i}}}$$

now two unknown norm constants, which don't cancel

One soln: instead of $\gamma(i) \propto c$, adaptively *estimate Z*_i's and set $\gamma(i) = \hat{Z}_i^{-1}$. (we'll revisit this)

Alternative: parallel tempering

Parallel tempering (aka replica-exchange)

- Simulate parallel MCMC chains at temps $t_0 = 1 < t_1 < \ldots < t_k$
- Intermittently attempt to swap configurations:

$$\min\left\{1, \frac{\pi_{t_j}(x_i)\pi_{t_i}(x_j)}{\pi_{t_i}(x_i)\pi_{t_j}(x_j)}\right\}$$

Note: preserves the joint measure on product space:

$$\pi(\mathbf{x}) = \prod_{i=1}^k \pi_{t_i}(x_i)$$
 $\mathbf{x} \in \mathcal{X}^{k+1}$

Easily seen that marginal distribution of X_1 is π .

Unlike simulated tempering, only one unknown norm constant.

Parallel tempering

Note: each chain performing something like random walk on t

(FIGURE)

Practical issues:

- ullet Choose $t_{
 m max}$ s.t. $\pi_{t_{
 m max}} pprox {
 m Unif}$, or at least mixes rapidly
- Overlap between neighboring t_i , t_{i+1} cruicial
 - Heuristic: space temps exponentially $t_i = t_0 \exp(\ln(\frac{t_{\max}}{t_{\min}})\frac{i}{k})$
 - Monitor acceptance rates of all neighboring pair swaps
 - Automated/adaptive temp placement methods exist

Important note: theory shows adequate swapping rates nec, but not sufficient1

Works well for many high-dimensional, multimodal problems.

¹see Woodard, Huber, Schmidler

Parallel tempering speedups

Intuition: chains move to higher temperatures, cross energy barriers between modes, return to lower temperatures. This should speed up convergence.

Question: Is this intuition correct? Is parallel tempering better than running a single chain kn steps?

Aside: generally speaking, researchers spend a lot of time coming up with "new" MC schemes, but little can be said about relative performance.

Answer: Yes. Compare convergence rates. (this is hard; let's talk a bit about how to do it)

MCMC can be slow

When $X_0, X_1, X_2, \dots, X_n$ come from a Markov chain, convergence of ergodic averages

$$\hat{\mu}_h = \frac{1}{n} \sum_{i=1}^n h(X_i)$$

can converge very slowly.

Mixing time

$$au_{\epsilon} = \sup_{\pi_0} \min\{n: \|\pi_{n'} - \pi\|_{\mathsf{TV}} < \epsilon \quad orall n' \geq n\}.$$

where

$$\|\pi_n - \pi\|_{\mathsf{TV}} = \sup_{A \subset \mathcal{X}} |\pi_n(A) - \pi(A)|$$

In problems with multimodality, high dimensions, or simply strong dependence, mixing times can be very long.

Scott C. Schmidler Annealing and Tempering Markov Chains

Rapid and slow mixing

One way to characterize this is rapid mixing.

Let $(\mathcal{X}^{(d)}, \mathcal{F}^{(d)}, \lambda^{(d)})$ a sequence of measure spaces, and $\pi^{(d)}$ densities wrt $\lambda^{(d)}$ for $d \in \mathbb{N}$ the problem size.

P is rapidly mixing if $\tau_{\epsilon}(d)$ is bounded above by a polynomial in d.

P is torpidly mixing if $\tau_{\epsilon}(d)$ bounded below by an exponential in d.

Even if the chain is "rapidly" mixing, τ_{ϵ} may be impractically large.

Example

Mean-field Ising model

$$\pi(x) = \frac{1}{Z} \exp \left\{ \frac{\alpha}{2M} \left(\sum_{i=1}^{M} x_i \right)^2 \right\} \qquad \mathcal{X} = \{-1, +1\}^M$$

Thm: Gibbs sampler (Glauber dynamics) is slowly mixing. Thm (WSH07a): Parallel tempering is rapidly mixing (see also).

Mean-field Potts

With $k \ge 3$ colors.

Thm (WSH07b): Tempering is torpidly mixing (see also BR06).

Examples

Mixtures of normals

$$\pi(z) = \frac{1}{2} N_d(z; -1_d, \sigma_1^2 I_d) + \frac{1}{2} N_d(z; 1_d, \sigma_2^2 I_d)$$

Upper/lower bounds on spectral gap (WSH07a,b) yield:

Thm: RW-MH is torpidly mixing.

Thm: Tempering is rapidly mixing for $\sigma_1 = \sigma_2$. Thm: Tempering is torpidly mixing for $\sigma_1 \neq \sigma_2$.