Homework 5

Problem 1:

a. The decision boundary for a voted perceptron algorithm is as follows (T=10):

The final decision boundary is non linear

- b. Pseudocode for voted perceptron with down-sampling:
 - $l = 0, c_l = 0, w_l = 0$
 - Repeat T times:
 - o Randomly permute the data points
 - o for i = 1 to n:
 - If $(x^{(i)}, y^{(i)})$ is missclassified by w_l :

 If l+1 > L:

 // Remove the (c, w) with the most minimum cminI = argmin(c)

 del c[minI], del w[minI]

 decrement l $w_{l+1} = w_l + y^{(i)}x^{(i)}$ $c_{l+1} = 1, l = l+1$ Else:

 $c_l = c_l + 1$

The decision boundary using down sampling is as follows (T=100, L=100):

- c. Pseudocode for averaged perceptron tracking at most 2 w's is as follows:
 - l = 0, = 0, $w_{\text{final}} = w_{\text{update}} = 0$
 - Repeat T times:
 - o Randomly permute the data points
 - o for i = 1 to n:
 - If $(x^{(i)}, y^{(i)})$ is missclassified by w_l :

$$w_{final} = w_{update} * c$$

$$w_{update} = w_{update} + y^{(i)}x^{(i)}$$

$$c = 1$$

• Else:
$$c = c + 1$$

The decision boundary is as follows:

Problem 2:Decision boundary obtained by quadratic kernels:

Decision boundary obtained by RBF kernels:

