M 431: Assignment 3

Nathan Stouffer

Page 48 — Problem 29

Problem. Let G be a finite, nonempty set with an operation * such that:

- 1. G is closed under *
- 2. * is associative
- 3. Given $a, b, c \in G$ with a * b = a * c, then b = c
- 4. Given $a, b, c \in G$ with b * a = c * a, then b = c

Prove that G must be a group under *.

Proof.

Page 54 — Problem 3

Problem. Let S_3 be the symmetric group of degree 3. Find all the subgroups of S_3 .

Proof.

Page 55 — Problem 12

Problem. Prove that a cyclic group is abelian.

Proof.

Heisenberg group problem

Problem. Recall the general linear group $\mathbb{GL}_3(\mathbb{R})$ of 3×3 invertible matrices with real entries (taken with the matrix product). Verify that the following subset, called the Heisenberg group, is a subgroup of $\mathbb{GL}_3(\mathbb{R})$:

$$\mathbb{H}_3(\mathbb{R}) := \left\{ \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \mid x, y, z \in \mathbb{R} \right\}$$

Proof.

Cube subgroups problem

Problem. Recall the group Sym(Q) of the rigid symmetries of the cube $Q := [-1, 1]^3$ in \mathbb{R}^3 . Describe in words/pictures the following:

a subgroup of order 4

a subgroup of order 12

a subgroup of order 3

a subgroup of order 6

a subgroup of order 8

Proof.