ECE421 Homework 6
Name: Mark Qi
Student ID: 1006764645
Question 1,
X=2, $Y=1$
$tanhx = \frac{sinhx}{coshx} = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} \times \frac{e^{x}}{e^{x}}$
$sinhx = \frac{e^{x} - e^{-x}}{2}$ $= \frac{e^{2x} - e^{0}}{e^{2x} + e^{0}} = \frac{e^{2x} - 1}{e^{2x} + 1}$
$conx = e^x + e^{-x}$
Formard Propagation
Formard Propagation Compute C(1) ((1))
Formard Propogration Compute $S^{(1)} = (S_1^{(1)}, S_2^{(1)})$ $X^{(1)} = (X_1^{(1)}, X_2^{(1)})$
Formard Propagation Compute $S^{(i)} = (S^{(i)}_1, S^{(i)}_2)$ $X^{(i)} = (X^{(i)}_1, X^{(i)}_2)$
Formard Propagation Compute $S^{(i)} = (S^{(i)}_1, S^{(i)}_2)$ $X^{(i)} = (X^{(i)}_1, X^{(i)}_2)$ $S^{(2)}$
Formard Propagation Compute $S^{(i)} = (S_{1}^{(i)}, S_{2}^{(i)})$ $X^{(i)} = (X_{1}^{(i)}, X_{2}^{(i)})$ $S^{(i)}$ $S^{(i)}$
Compute $S^{(1)} = (S^{(1)}_1, S^{(1)}_2)$ $X^{(1)} = (X^{(1)}_1, X^{(1)}_2)$ $X^{(2)}$ $X^{(3)}$ $X^{(3)}$
Compute $S^{(1)} = (S^{(1)}_{1}, S^{(1)}_{2})$ $X^{(2)} = (X^{(1)}_{1}, X^{(1)}_{2})$ $S^{(3)}$ $X^{(3)}$
Compute $S^{(1)} = (S^{(1)}_1, S^{(1)}_2)$ $X^{(1)} = (X^{(1)}_1, X^{(1)}_2)$ $X^{(2)}$ $X^{(3)}$ $X^{(3)}$

W ⁽²⁾ =	=	(2) Wo, 1 (2) W,) (2) W ₂ , 1		=		3		Ma		Mr.	3) (5		1 2				
(0)		\ \		1			2x2			2x1							
		WC1) T			=	(0-)		0-3		2	=	0.7					
X _C () =		tonh(C)	(7.0	=	D-6						3×	l					
5(2) =	_	M(5) T	Xc	") _	0-3		X3 \		-3		0 - (50	こ	-\-	48		
X(G) :		tonh	<u> </u>	48	3)		-0.										
						17	2			·90			0-8				
X(3) -	_	0(5	(3)		ton		(3)		tan	hC-	- ()	.80))=	-() · 6	6	

		nts	stor	y50.	rinte	eme	edici	tele	NJ E	rs								
SCI		6	CU		\bigcirc	(50		0	M	Ltı)	50	(t1)	J GCr)					_
For	tar	nh h	idd	en l	aye	rs c	ml)										_
Θ_{j}	Sci))=			X (1)	•	$\times_{c_{i_{j_{1}}}}$	9 GCr)			_ (X_{α}						_
								'		1	- (\\fu; \\cr)2					_
10)er		2		llcul													
(0)	_	0,0	50			M	271)	800	- (Its	d ⁽²⁾								_
				((8)	(G(S)		-		-\-	855		9(5)	= 2		_
		,		-0.9		900 -00		ı		2	q ₍₅₎	1 -	000		1			_
				0.81		1	•	-3	· 855 3 - 7) 								_
	_	— (D-7	05														
																		_
	er	(=	Ι,	Cal	cula	ite	801	()	lan									
20,		0,(S C ()		cula	WC	(I+1)) (1+1)	Iq _C									_
									1	q _{c1)}			0.	. <u>)</u>				90)
	_) ·	60	•	O .	60			80			- 1	(-0).705))	
				0-	76		0 -	76						3)

							Gcı)		-0	.14	1	9(1)					
	_)		0 .	36			•	-0	07.	5						
				0.5	176		١		2.	115		(
			64	•	- ()		_	- 0	.4	512						
		0.4.	224		2	1 -	5			396	(6						
7	0		~(o)	<u>ς</u> (ι)		2x1				x2		_		-0.	45	8, 0	9
91	$\mathcal{N}_{C(I)}$	_	χ	0		2		-0	. 45		\bigcirc .	89		-0,		1.7	
9	e	_	× ⁽¹⁾	(3)	7 _							_	- (.70	5		
91	(C2)		/ \	<u> </u>			60	(-	. 0 .	705			-0),4	23		
						\(\rangle\).	76						-(35		
2	(3) W		X(2)	(3)	7_	-(`	.40		- 1.8	55.)	_	- - 6	1.8	55 75		
		g Gi	adi	ent			()) - (30			
(O(I)			0(01)														

Question 2,
Input (X, y) $X = (X_1^{(0)}, X_2^{(0)}, X_3^{(0)}) \in \mathbb{R}^3$
$X = (X_1^{(0)}, X_2^{(0)}, X_3^{(0)}) \in \mathbb{R}^3$
Y and w are shared weights
O(-) is some arbitraryadration function
$e(-2) = (\hat{y} + y)^2$
$\frac{\text{Ca)} de - de}{dy} \times \frac{d\hat{y}}{dx^{(2)}} \times \frac{dx^{(2)}}{dy}$
$\frac{d}{dy} \times_3^{(2)} = \frac{d}{dy} \left(\times_3^{(1)} + \times \times_2^{(2)} \right) = \frac{d}{dy} \left(\times_3^{(1)} + \times \times_2^{(1)} + \times \times_2^{(1)} \right)$
$= \chi_2^{(1)} + 2\chi_1^{(C_1)}$
$de = 2(\hat{y} - y)(1)(\hat{x}^{(1)} + 2y \hat{x}^{(0)})$
QV ZCO DICTION
$=2(\hat{y}-y)(1)(\chi_{2}^{(1)}+\chi_{1}^{(1)})+\chi_{1}^{(1)})$
$=2\Delta(x_{2}^{(2)}+x_{1}^{(0)})$
Product Rule
$\frac{dG(G(x)g(x))}{dG(x)} = \frac{1}{2}G(x)\frac{dg(x)}{dx} + \frac{1}{2}G(x)\frac{dg(x)}{dx} + \frac{1}{2}G(x)\frac{dg(x)}{dx}$
$\frac{\partial}{\partial x_{1}}\left(\chi \times \chi_{2}^{(2)}\right) = \chi \times \chi_{1}^{(1)} + \chi_{2}^{(2)}$

(b) de dx ₂ ⁽³⁾	$ \begin{array}{c} - & de \\ - & d\hat{y} \\ = & 20 \\ = & 20 \end{array} $	(x,y)	1)(h) × 9x3 × 9x3					
de dx(") de	$= \frac{de}{dx^{\alpha}}$	$\begin{array}{c} \times \\ \times $	= (24	(Y)	= 2			
$\frac{d\chi_{2}^{(1)}}{de}$	$= \frac{1}{\sqrt{2}}$ $= \frac{1}{\sqrt{2}}$	× dx3	$\begin{array}{c} \times & (X_{(1)}^3) \\ \times & (X_{(2)}^3) \end{array}$	(A)(I) = 2(= 2v.	() =) <u>/</u>		
(c) de _	dex	9x1, +	de x	dx(1) +	de	dx3)		
	(2y ² / ₄)	O Cw×ı	(0)) \(\(\(\(\) \) -	
(d)		(NX ³ (0))						
de = dx, (i) = de = dx, (ii) = de = dx, (iii) = dx, (i		$\frac{dX_{1}^{(1)}}{dX_{1}^{(0)}} = \frac{dX_{2}^{(1)}}{dX_{2}^{(0)}} = 0$						

$$\frac{de}{dx^{3}} = \frac{de}{dx^{3}} \times \frac{dx^{3}}{dx^{3}} = 2\pi)\theta^{1}(wx^{3})^{3}W$$
(e)
$$x^{6} = C_{1}, t_{1}, 1) \text{ and } y = 1$$

$$\theta(s) = max(0, s)$$

$$e(\Omega) = (\Theta(wx^{3})) + V\Theta(wx^{3}) + V^{2}\Theta(wx^{(0)}) - y)^{2}$$

$$= E(wx^{3}) + V(E(wx^{3})) + V(E(wx^{3})) + V(E(wx^{3}))$$

$$= E(wx^{3}) + V(E(wx^{3})) + V^{2}\Theta(wx^{(0)})$$

$$= E(wx^{3}) + V(E(wx^{3})) + V^{2}\Theta(wx^{(0)})$$

$$= (2)(2-1)(0+2) = (2)(1)(2) = 4$$

$$\frac{\partial e}{\partial v} = 2(\Theta(wx^{3})) + V(E(wx^{3})) + V^{2}\Theta(wx^{(0)}) - y)$$

$$= (2)(2-1)(0+2) = (2)(1)(2) = 4$$

$$\frac{\partial e}{\partial v} = 2(\Theta(wx^{3})) + V(E(wx^{3})) + V^{2}\Theta(wx^{(0)}) - y)$$

$$= (2)(2-1)(0+2) = (2)(1)(2) = 4$$

$$\frac{\partial e}{\partial v} = 2(\Theta(wx^{3})) + V(E(wx^{3})) + V^{2}\Theta(wx^{(0)}) - y)$$

$$= (2)(2-1)(1+1) = (2)(1)(2) = 4$$

