MAT 455 Midterm Formula Sheet

Poisson Pdf, μ , σ^2 : $\frac{e^{-\lambda}\lambda^x}{x!}$, λ , λ Uniform Pdf, μ , σ^2 : $\frac{1}{b-a}$, $\frac{b+a}{2}$, $\frac{(b-a)^2}{12}$ Binomial Pdf, μ , σ^2 : $\binom{n}{x}p^x(1-p)^{n-x}$, np, np(1-p) Geometric Pdf, μ , σ^2 : $(1-p)^{x-1}p$, $\frac{1}{p}$, $\frac{1-p}{p^2}$

Normal Pdf, μ , σ^2 : $\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$, μ , σ^2

Gamma Pdf, μ , σ^2 : $\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}$, $\frac{\alpha}{\beta}$, $\frac{\alpha}{\beta^2}$

Exponentia dist. with parameter λ :

1) density function $f(x) = \lambda e^{-\lambda x}$. $\mu = 1/\lambda$, $\sigma^2 = 1/\lambda^2$ $P(X > x) = e^{-\lambda x}$

- 2) Memoryless: P(X > t + s | X > s) = P(X > t).
- 3) Minimum of independent Exp r.v.s: Let $X_1, ..., X_n$ be indep. exp. r.v.s with parameters $\lambda_1, ..., \lambda_n$. Let $M = \min(X_1, ..., X_n)$. Then $M \sim Exp(\lambda_1 + ... + \lambda_n)$ and $P(M = X_k) = \lambda_k/(\lambda_1 + ... + \lambda_n)$.

Law of Total Probability: $P(A) = \sum P(A|B_i)P(B_i)$

Law of Total Expectation: $E(Y) = \sum E(Y|X=x)P(X=x)$ or $E(Y) = \int E(Y|X=x)f_X(x)dx$

Law of Total Variance: Var(Y) = E(Var(Y|X)) + Var(E(Y|X))

Random Sums of Random Variables: If your random variable has mean, μ_x , and variance, σ_x^2 , and you have a sum of N values where $E(N) = \mu_N$ and $Var(N) = \sigma_N^2$. Then $E(T) = \mu_x \mu_N$ and $Var(T) = \sigma_X^2 \mu_N + \sigma_N^2 \mu_X^2.$

Markov Chain: $P(X_{n+1} = j | X_0 = i_0, ..., X_{n-1} = i_{n-1}, X_n = i) = P(X_{n+1} = j | X_n = i) = (P(X_1 = j | X_0 = i))$

Chapman-Kolmogorov Relationship: $P^{m+n} = P^m P^n$, OR $P_{ij}^{m+n} = \sum_k P_{ik}^m P_{kj}^n$ for all i, j.

Limiting Distribution: The prob. dist. λ with the property that for all $i, j: \lim_{n\to\infty} \mathbb{P}_{ij}^n = \lambda_j$.

Stationary Distribution: $\pi \mathbb{P} = \pi$ and $\pi_i = \sum_i \pi_i \mathbb{P}_{ij}$, for all j.

First passage time to j: $T_j = min\{n > 0 : X_n = j\}, f_j = P(T_j < \infty | X_0 = j)$

Recurrent: State j is recurrent if a MC started in j eventually revisits j, $f_j = 1$.

Transient: State j is transient if $f_j < 1$.

j Recurrent: $\iff \sum_{n=0}^{\infty} P_{jj}^n = \infty;$ j Transient: $\iff \sum_{n=0}^{\infty} P_{jj}^n < \infty$

Period: $d(i) = gcd(n > 0; P_{ij}^n > 0)$ and Aperiodic: d(i) = 1 and $d(i) = \infty$ if no return

Ergodic Markov Chains: A MC is ergodic if it is irreducible, aperiodic, and all states have finite return times (all finite MC's have finite return times).

Lemma: Assume that π is the limiting dist. of a M.C., then π is a stationary dist.

Limit Theorem for Regular Markov Chain: A M.C. whose transition matrix, P, is regular has a limiting distribution, which is the unique, positive, stationary distribution of the chain.

Limit Theorem for Finite Irreducible MCs: Given a finite, irreducible MC, for each state j, let $\mu_j = E(T_j|X_0 = j)$ be the expected return time to j. Then μ_j is finite, and there exists a unique stationary distribution π , such that $\pi_j = \frac{1}{\mu_j}$ and $\pi_j = \lim_{n \to \infty} \frac{1}{n} \sum_{m=0}^{n-1} P_{ij}^m$

Ergodic Chains and Regular Matrices: The Markov chain is ergodic \iff P is regular

Lemma: If i is an aperiodic state, there exists a pos. integer N such that $P_{ii}^n > 0$ for all $n \ge N$

Poisson process with λ : 1) $N_0 = 0$. 2) For all t > 0, $N_t \sim Poisson(\lambda t)$.

- 3) Stationary increment: $P(N_{t+s} N_s)$ has the same distribution as N_t .
- 4) Independent increment: For $0 < q < r \le s < t, N_t N_s$ and $N_r N_q$ are independent.

Inter-arrival time between (i-1)th arrival and ith arrival X_i : $X_i \sim Exp(\lambda)$. All inter-arrival times are independent.

Arrival times $S_i = X_1 + ... + X_i$:

- 1) S_i has a gamma distribution with parameters n and λ .
- 2) Conditional on $N_t = n$, the joint dist. of $(S_1, ..., S_n)$ is the same as $(U_{(1)}, ..., U_{(n)})$, where the latter are order statistics of n i.i.d. uniform r.v.s on [0, t], i.e., the density function is $f(s_1, ..., s_n) = \frac{n!}{t^n}$, for $0 < s_1 < ... < s_n < t$.

Thinned Poisson process: Let N_t be a Poisson process with λ . Assume each arrival, independent of other arrivals, can be marked as a type k event with prob. p_k , k = 1, ..., K, where $p_1 + ... + p_K = 1$. Then $N_t^{(k)}$, the number of type k events until time t, is a Poisson process with parameter λp_k .

Superposition process: Assume that $N_t^{(1)}, ..., N_t^{(K)}$ are K indep. Poisson processes with $\lambda_1, ..., \lambda_K$. Then $N_t = N_t^{(1)} + ... + N_t^{(K)}$ is a Poisson process with parameter $\lambda_1 + ... + \lambda_K$.

Continuous-time Markov property:

$$P(X_{t+s} = j | X_s = i, X_u = x_u, 0 \le u < s) = P(X_{t+s} = j | X_s = i) = P(X_t = j | X_0 = i).$$

Chapman-Kolmogorov Relationship: $\mathbb{P}(s+t) = \mathbb{P}(s)\mathbb{P}(t)$.

Holding time: For a C.M.C., the holding time at state i has an exponential distribution with parameter $q_i = \sum_k q_{ik}$, q_{ik} are transition rates from state i to state k.

Transition probability: Given transition rates q_{ij} , transition prob. $p_{ij} = \frac{q_{ij}}{q_i}$.

Kolmogorov equation: Forward: $\mathbb{P}'(t) = \mathbb{P}(t)Q$. Backward: $\mathbb{P}'(t) = Q\mathbb{P}(t)$.

Limiting Distribution: The prob. dist. π with the property that for all i, j: $\lim_{t\to\infty} \mathbb{P}_{ij}(t) = \lambda_j$. **Stationary Distribution:** $\pi\mathbb{P}(t) = \pi$ for all $t \geq 0$. $\iff \pi Q = 0$.

Limit theorem: If X_t is a finite, irreducible C.M.C. with $\mathbb{P}(t)$. Then X_t has a unique stationary dist. which is the limiting dist.

Stationary dist. for Birth-and-Death process: For a B-and-D process with birth rates λ_i and death rates μ_i , the unique stationary dist. π is

$$\pi_k = \pi_0 \prod_{i=1}^k \frac{\lambda_{i-1}}{\mu_i}$$
, for $k = 1, 2, ...$ where $\pi_0 = \left(1 + \sum_{k=1}^\infty \prod_{i=1}^k \frac{\lambda_{i-1}}{\mu_i}\right)^{-1}$, given $\pi_0 > 0$.

Little's Formula: In a queueing system, $L = \lambda W$, where L is the long-term average number of customers in the system, λ is the arrival rate and W is the long-term average time that a customer is in the system.