Geometry/Manifolds QUALIFYING EXAM Spring 1997 (Yetter and Wu)

Work out problem 1 and then choose 5 (and only 5) additional problems among the remaining ones. Start each problem on a new sheet of paper. Do not turn in more than 6 problems including the required number 1. A space always means a topological space below.

1. This one is required!

Answer the following questions and give a brief explanation or counterexample:

- i) (a) Give an examples of orientable, connected, simply-connected smooth 2-manifold with trivial tangent bundle.
 - (b) Give an examples of orientable, connected, simply-connected smooth 2-manifold with non-trivial tangent bundle.
- ii) What is the dimension of the total space of the exterior bundle $\Lambda^3(M)$ if M is a smooth 6-manifold?
- iii) Give an example of a compact non-orientable manifold.
- iv) Consider the vectorfield on $\mathbb{R}^2 \setminus \{(0,0)\}$ given in polar coordinates by $(r-1)d\theta$. Describe in detail its flows. Is this vectorfield complete?
- v) (a) What is the fundamental group of $S^1 \times S^1$?
 - (b) What is the fundamental group of $S^1 \times S^2$?
 - (c) What is the fundamental group of $\mathbb{R}^2 \setminus \{(0,1),(0,-1)\}$?
- vi) Define a connection on the tangent bundle of a manifold. Define the Levi-Civita connection.
- vii) Give an example of a space which is locally euclidean, but is not a manifold.

Choose 5 problems from below:

2. Let Γ be the ellipsoid $x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 1$ in \mathbb{R}^3 calculate

$$\int_{\Gamma} z dx \wedge dy - y dz \wedge dx$$

3.

- i) Describe the natural Lie algebra structure on the set of vectorfields on a smooth manifold M.
- ii) In the case where M is a Lie group, use the group law and the Lie algebra structure in i) to construct a Lie algebra structure on the tangent fibre at the identity $T_e(M)$.
- **4.** Suppose G is a connected compact Lie group. Show that the fundamental group of G, $\pi_1(G)$ is abelian.
- **5.** Find the scalar curvature of the surface $z = x^2 + y^2$ at (0,0,0).
- **6.** Show that every 1-form on \mathbb{R}^1 is *exact*. Show that every *closed* 1-form on \mathbb{R}^3 is *exact*.
- 7. Let $\varphi: M \to N$ be a (smooth) map. Then the vector field X on M and Y on N are said to be φ -related if $d\varphi_m(X_m) = Y_{\varphi(m)}$ for all $m \in M$.

Let X_1, X_2 be vector fields on M and Y_1, Y_2 vector fields on N. Assume that X_1 is φ -related to Y_1 and X_2 is φ -related to Y_2 . Show that $[X_1, X_2]$ is φ -related to $[Y_1, Y_2]$.

- **8.** Suppose $f: X^d \to \mathbb{R}^{d+1}$ is a (smooth) embedding of the d-dimensional manifold X into \mathbb{R}^{d+1} . A normal vector field along (X, f) is a smooth map $N: X \to T(\mathbb{R}^{d+1})$ such that for each $p \in X$, $N(p) \in T_{f(p)}\mathbb{R}^{d+1}$ and it (N(p)) is orthogonal to the subspace $df(T_pX) \subset T_{f(p)}\mathbb{R}^{d+1}$. Prove that the manifold X is orientable if and only if there is a smooth nowhere-vanishing normal vector field along (X, f).
- **9.** Prove that S^n $(n \ge 1)$ is orientable.
- **10.** Let $f: M \to N$ be a smooth map such that for all $m \in M$, $df_m: T_mM \to T_{f(m)}N$ is *surjective*. Show that for any $n \in N$, $f^{-1}(n) \subset M$ is a smooth submanifold of M. What is the dimension of $f^{-1}(n)$?