TECHNISCHE UNIVERSITÄT MÜNCHEN

Andreas Wörfel Aufgaben Montag FERIENKURS ANALYSIS 2 FÜR PHYSIKER SS 2012

Aufgabe 1 Gradient und Tangente (*)

Bestimmen Sie zur Funktion $f(x,y) = x^2y^3 + xy^2 + 2y$ die partiellen Ableitungen, den Gradienten bei (x,y) und (0,1) sowie die Tangente (in vektorieller Darstellung) an f bei (0,1)

Aufgabe 2 Gradient und Tangentialebene (**)

Sei $f(x, y, z) = x \cdot e^{y \cdot \sin(xz)}$.

Bestimmen Sie $\nabla f(x,y,z)$, $\nabla f(\pi/2,1,1)$ sowie die Tangentialebene E an den Punkt $(\pi/2,1,1)$

Hinweis: Es ist hier sinnvoll, die Koordinatendarstellung der Ebene (E: ax + by + cz = d) zu wählen anstelle der vektoriellen Darstellung. So sparen Sie sich das Suchen von Tangentialvektoren. Erinnern Sie sich an die lineare Algebra.

Aufgabe 3 "Problemkind" partielle Ableitung (**)

Man bestimme die partiellen Ableitungen von f sowie $\nabla f(x,y)$ und $\nabla f(1,1)$ für die folgende Funktion:

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} & \text{für } (x,y) \neq (0,0) \\ 1 & \text{für } (x,y) = (0,0) \end{cases}$$

Aufgabe 4 Jacobi-Matrix der Kugelkoordinaten (*)

Die Kugelkoordinaten werden durch folgende Parametrisierung bestimmt: $f(r, \vartheta, \varphi) = \begin{pmatrix} r \cdot \sin \vartheta \cos \varphi \\ r \cdot \sin \vartheta \sin \varphi \\ r \cdot \cos \vartheta \end{pmatrix}$

Bestimmen Sie die Jacobi-Matrix dieser Abbildung.

Aufgabe 5 Richtungsableitung und Gradient (*)

Bestimmen Sie die Richtungsableitung von $f(x, y, z) = x^3 + e^y \sin z$ im Punkt $(1, \ln 3, \frac{\pi}{3})$ nach dem Vektor $\vec{v} = (3, -2, 6)$ sowie die Ableitung in Richtung \vec{v} .

Aufgabe 6 Mehrdimensionale Taylorentwicklung I(*)

Bestimmen Sie die Taylorreihe bis zur 2. Ordnung von $f(x,y) = \cos(xy) + xe^{y-1}$ an der Stelle $(x_0,y_0) = (\pi,1)$

Aufgabe 7 Mehrdimensionale Taylorentwicklung II (**)

Oft ist es viel einfacher, bekannte Potenzreihen zu verwenden, um eine Taylorreihe hinzuschreiben. Benutzen Sie diese für die folgenden Aufgaben:

- a) Taylorreihe in 3. Ordnung für $f(x, y, z) = \cos(x)\sin(y)e^z$ an der Stelle (0, 0, 0). Bestimmen Sie den Konvergenzradius der gesamten Reihe.
- b) Taylorreihe in 3. Ordnung für $f(x, y, z) = \frac{1}{1 + x + y}$ an der Stelle (0, 0). Bestimmen Sie den Konvergenzbereich der gesamten Reihe.

Hinweis: Hier erhalten Sie durch eine einfache Umformung eine bekannte Reihe.

Aufgabe 8 Produktregel bei Matrixfunktionen (**)

Zeigen Sie für die Funktion $f(A) = g(A) \cdot h(A)$ die Produktregel für Matrixfunktionen:

$$f'(A)(B) = g(A) \cdot h'(A)(B) + g'(A)(B) \cdot h(A)$$

Hinweis: Verwenden Sie die Definition der Ableitung: $f'(A)(B) = \lim_{t\to 0} \frac{f(A+tB)-f(A)}{t}$

Aufgabe 9 Kettenregel bei Matrixfunktionen (**)

Zeigen Sie für die Funktion $f(A) = (g \circ h)(A)$ die Kettenregel für Matrixfunktionen:

$$f'(A)(B) = (g \circ h)'(A)(B) = g'(h(A))(h'(A)(B))$$

Hinweis: Verwenden Sie die Definition der Ableitung.

Aufgabe 10 Ableitung einer Matrixfunktion (Klausuraufgabe) (***)

Zeigen Sie, dass sich der Ableitung der Funktion $f(A) = (A^T A)^{-1}$ mit A invertierbar gegeben ist durch:

$$f'(A)(B) = -A^{-1}((BA^{-1})^T + BA^{-1})(A^T)^{-1}$$

Hinweis: Verwenden Sie die Kettenregel, Produktregel und dass für $g(A) = A^{-1}$ gilt: $g'(A)(B) = -A^{-1}BA^{-1}$ Es ist hilfreich, wenn Sie f als Verkettung von zwei Funktionen darstellen.