Feedback - VIII. Neural Networks: Representation

Help Center

You submitted this quiz on **Tue 7 Apr 2015 10:24 AM CEST**. You got a score of **5.00** out of **5.00**.

Question 1

Consider the following neural network which takes two binary-valued inputs $x_1, x_2 \in \{0, 1\}$ and outputs $h_{\Theta}(x)$. Which of the following logical functions does it (approximately) compute?

Your Answer		Score	Explanation
○ XOR (exclusive OR)			
AND			
OR			
NAND (meaning "NOT AND")	~	1.00	This network outputs approximately 1 as long as one of the two inputs is 0.
Total		1.00 / 1.00	

Question 2

Consider the neural network given below. Which of the following equations correctly computes the activation $a_1^{(3)}$? Note: g(z) is the sigmoid activation function.

Your Answer	Score	Explanation
$a_1^{(3)} = g(\Theta_{1,0}^{(1)} a_0^{(2)} + \Theta_{1,1}^{(1)} a_1^{(2)} + \Theta_{1,2}^{(1)} a_2^{(2)})$		
$ \bullet a_1^{(3)} = g(\Theta_{1,0}^{(2)} a_0^{(2)} + \Theta_{1,1}^{(2)} a_1^{(2)} + \Theta_{1,2}^{(2)} a_2^{(2)}) $	1.00	This correctly uses the first row of $\Theta^{(2)}$ and includes the "+1" term of $a_0^{(2)}$.
\bigcirc The activation $a_1^{(3)}$ is not present in this network.		
$ \bigcirc a_1^{(3)} = g(\Theta_{1,0}^{(1)} a_0^{(1)} + \Theta_{1,1}^{(1)} a_1^{(1)} + \Theta_{1,2}^{(1)} a_2^{(1)}) $		
Total	1.00 / 1.00	

Question 3

You have the following neural network:

You'd like to compute the activations of the hidden layer $a^{(2)} \in \mathbb{R}^3$. One way to do so is the following Octave code:

```
% Theta1 is Theta with superscript "(1)" from lecture
% ie, the matrix of parameters for the mapping from layer 1 (input) to laye
r 2
% Theta1 has size 3x3
% Assume 'sigmoid' is a built-in function to compute 1 / (1 + exp(-z))

a2 = zeros (3, 1);
for i = 1:3
    for j = 1:3
        a2(i) = a2(i) + x(j) * Theta1(i, j);
    end
        a2(i) = sigmoid (a2(i));
end
```

You want to have a vectorized implementation of this (i.e., one that does not use for loops). Which of the following implementations correctly compute $a^{(2)}$? Check all that apply.

Your Answer		Score	Explanation
a2 = sigmoid (Thet a2 * x);	~	0.25	$\boldsymbol{\Theta}^{(2)}$ specifies the parameters from the second to third layers, not first to second.
a2 = sigmoid (x * T heta1);	~	0.25	The order of the multiplication is important, this will not work as x is a vector of size 3×1 while Theta1 is a matrix of size $3x3$.
z = sigmoid(x); a2 = sigmoid (Theta1 * z);	~	0.25	You do not need to apply the sigmoid function to the inputs.
z = Theta1 * x; a2 = sigmoid (z);	~	0.25	This version computes $a^{(2)}=g(\Theta^{(1)}x)$ correctly in two steps, first the multiplication and then the sigmoid activation.
Total		1.00 / 1.00	

Question 4

You are using the neural network pictured below and have learned the parameters

$$\Theta^{(1)} = \begin{bmatrix} 1 & 1 & 2.4 \\ 1 & 1.7 & 3.2 \end{bmatrix} \text{ (used to compute } a^{(2)} \text{) and } \Theta^{(2)} = \begin{bmatrix} 1 & 0.3 & -1.2 \end{bmatrix} \text{ (used to compute } a^{(3)} \text{) as a function of } a^{(2)} \text{). Suppose you swap the parameters for the first hidden layer}$$

between its two units so $\Theta^{(1)}=\begin{bmatrix}1&1.7&3.2\\1&1&2.4\end{bmatrix}$ and also swap the output layer so

 $\Theta^{(2)} = \begin{bmatrix} 1 & -1.2 & 0.3 \end{bmatrix}$. How will this change the value of the output $h_{\Theta}(x)$?

Your Answer		Score	Explanation
It will stay the same.	~	1.00	Swapping $\Theta^{(1)}$ swaps the hidden layers output $a^{(2)}$. But the swap of $\Theta^{(2)}$ cancels out the change, so the output will remain unchanged.
Insufficient			
information to tell: it may			
increase or decrease.			
It will increase.			
It will decrease			
Total		1.00 /	
		1.00	

Question 5

Which of the following statements are true? Check all that apply.

Your Answer		Score	Explanation
Suppose you have a multi-class classification problem with three classes, trained with a 3 layer network. Let $a_1^{(3)} = (h_{\Theta}(x))_1$ be the activation of the first output unit, and	~	0.25	The outputs of a neural network are not probabilities, so their sum need not be 1.

similarly $a_2^{(3)} = (h_\Theta(x))_2$ and $a_3^{(3)} = (h_\Theta(x))_3$. Then for any input x , it must be the case that $a_1^{(3)} + a_2^{(3)} + a_3^{(3)} = 1$.			
☐ A two layer (one input layer, one output layer; no hidden layer) neural network can represent the XOR function.	*	0.25	We must compose multiple logical operations by using a hidden layer to represent the XOR function.
Any logical function over binary-valued (0 or 1) inputs x_1 and x_2 can be (approximately) represented using some neural network.	~	0.25	Since we can build the basic AND, OR, and NOT functions with a two layer network, we can (approximately) represent any logical function by composing these basic functions over multiple layers.
If a neural network is overfitting the data, one solution would be to increase the regularization parameter λ .	•	0.25	A larger value of λ will shrink the magnitude of the parameters Θ , thereby reducing the chance of overfitting the data.
Total		1.00 / 1.00	