Distributed by:

JAMECO

ELECTRONICS

www.Jameco.com + 1-800-831-4242

The content and copyrights of the attached material are the property of its owner.

Jameco Part Number 889461

L78S00 series

2A Positive voltage regulators

Feature summary

- Output current to 2A
- Output voltages of 5; 7.5; 9; 10; 12; 15; 18; 24V
- Thermal overload protection
- Short circuit protection
- Output transition SOA protection

Description

The L78S00 series of three-terminal positive regulators is available in TO-220 and TO-3 packages and with several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shutdown and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 2A output

current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

Schematic diagram

Contents

1	Pin configuration
2	Maximum ratings
3	Test circuits
4	Electrical characteristics 6
5	Typical performance
6	Package mechanical data 30
7	Order code
8	Revision history

L78S00 series Pin configuration

1 Pin configuration

Figure 1. Pin connections (top view)

Figure 2. Schematic diagram

Maximum ratings L78S00 series

2 Maximum ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V	DC Input voltage	for V _O = 5 to 18V	35	V
V _I	DC Input voltage	for V _O = 24V	40	V
Io	Output current		Internally Limited	
P _D	Power dissipation		Internally Limited	
T _{STG}	Storage temperature range		-65 to 150	°C
т	Operating junction temperature range	for L78S00	-55 to 150	°C
T _{OP}	Operating junction temperature range	for L78S00C	0 to 150	

Note: Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 2. Thermal Data

Symbol	ol Parameter		TO-3	Unit
R _{thJC}	Thermal resistance junction-case	5	4	°C/W
R _{thJA}	Thermal resistance junction-ambient	50	35	°C/W

Figure 3. Application circuits

L78S00 series Test circuits

3 Test circuits

Figure 4. DC Parameter

Figure 5. Load regulation

Figure 6. Ripple rejection

4 Electrical characteristics

Table 3. Electrical characteristics of L78S05 (refer to the test circuits, $T_J = 25^{\circ}C$, $V_I = 10V$, $I_O = 500$ mA, unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		4.8	5	5.2	V
V _O	Output voltage	I _O = 1A, V _I = 7V	4.75	5	5.25	٧
A\/	ΔV_{O} Line regulation	V _I = 7 to 25V			100	mV
ΔνΟ		V _I = 8 to 25V			50	IIIV
ΔV _O	Load regulation	I _O = 20 mA to 2A			100	mV
I _d	Quiescent current				8	mA
41	Quippoent current change	I _O = 20mA to 1A			0.5	m A
Δl _d	Quiescent current change	V _I = 7 to 25 V, I _O = 20mA			1.3	mA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5mA, T _J = -55°C to 150°C		-1.1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz		40		μV
SVR	Supply voltage rejection	f = 120Hz	60			dB
V _d	Dropout voltage	I _O ≤1A	8			V
R _O	Output resistance	f = 1 KHz		17		mΩ
I _{sc}	Short circuit current	V _I = 27V		500		mA
I _{scp}	Short circuit peak current			3		Α

Table 4. Electrical characteristics of L78S75 (refer to the test circuits, $T_J = 25$ °C, $V_I = 12.5$ V, $I_O = 500$ mA, unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		7.15	7.5	7.9	V
Vo	Output voltage	I _O = 1A, V _I = 9.5V	7.1	7.5	7.95	V
4)/	Line regulation	V _I = 9.5 to 25V			120	mV
ΔV _O	ΔV _O Line regulation	V _I = 10.5 to 20V			60	IIIV
ΔV _O	Load regulation	I _O = 20 mA to 2A			120	mV
I _d	Quiescent current				8	mA
Al	Quiescent current change	I _O = 20mA to 1A			0.5	mΛ
$\Delta l_{\sf d}$		I _O = 20mA, V _I = 9.5 to 25V			1.3	mA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_{O} = 5$ mA, $T_{J} = -55$ °C to 150°C		-0.8		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz		52		μV
SVR	Supply voltage rejection	f = 120Hz	54			dB
V _d	Dropout voltage	I _O ≤1.5A	10.5			V
R _O	Output resistance	f = 1 KHz		16		mΩ
I _{sc}	Short circuit current	V _I =27V		500		mA
I _{scp}	Short circuit peak current			3		Α

Table 5. Electrical characteristics of L78S09 (refer to the test circuits, $T_J = 25$ °C, $V_I = 14V$, $I_O = 500$ mA, unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		8.65	9	9.35	V
V _O	Output voltage	I _O = 1A, V _I = 11V	8.6	9	9.4	V
41/	ΔV _O Line regulation	V _I = 11 to 25V			130	mV
ΔνΟ		V _I = 11 to 20V			65	IIIV
ΔV_{O}	Load regulation	I _O = 20 mA to 2A			130	mV
I _d	Quiescent current				8	mA
41	Quiescent current change	I _O = 20mA to 1A			0.5	mA
$\Delta l_{\sf d}$		V _I = 11 to 25 V, I _O = 20mA			1.3	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_{O} = 5$ mA, $T_{J} = -55$ °C to 150°C		-1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz		60		μV
SVR	Supply voltage rejection	f = 120Hz	53			dB
V _d	Dropout voltage	I _O ≤1.5A	12			V
R _O	Output resistance	f = 1 KHz		17		mΩ
I _{sc}	Short circuit current	V _I = 27V		500		mA
I _{scp}	Short circuit peak current			3		Α

Table 6.Electrical characteristics of L78S10 (refer to the test circuits, $T_J = 25^{\circ}C$, $V_I = 15V$, $I_O = 500$ mA, unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		9.5	10	10.5	V
V _O	Output voltage	I _O = 1A, V _I = 12.5V	9.4	10	10.6	V
41/	Line regulation	V _I = 12.5 to 30V			200	mV
ΔV_{O}	Line regulation	V _I = 14 to 22V			100	IIIV
ΔV_{O}	Load regulation	I _O = 20 mA to 2A			150	mV
I _d	Quiescent current				8	mA
Al	Quiescent current change $ \frac{I_O = 20 \text{mA to 1A}}{V_I = 12.5 \text{ to 30 V, } I_O = 20 \text{mA}} $	I _O = 20mA to 1A			0.5	mA
Δl _d				1	IIIA	
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_{O} = 5$ mA, $T_{J} = -55$ °C to 150°C		-1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz		65		μV
SVR	Supply voltage rejection	f = 120Hz	53			dB
V _d	Dropout voltage	I _O ≤1.5A	13			V
R _O	Output resistance	f = 1 KHz		17		mΩ
I _{sc}	Short circuit current	V _I = 27V		500		mA
I _{scp}	Short circuit peak current			3		Α

Table 7. Electrical characteristics of L78S12 (refer to the test circuits, $T_J = 25^{\circ}\text{C}$, $V_I = 19\text{V}$, $I_O = 500$ mA, unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{O}	Output voltage		11.5	12	12.5	V
V _O	Output voltage	I _O = 1A, V _I = 14.5V	11.4	12	12.6	V
AV.	Line regulation	V _I = 14.5 to 30V			240	mV
ΔV _O	Line regulation	V _I = 16 to 22V			120	IIIV
ΔV_{O}	Load regulation	I _O = 20 mA to 2A			160	mV
I _d	Quiescent current				8	mA
Al	Quiescent current change	I _O = 20mA to 1A			0.5	mA
$\Delta l_{\sf d}$	Quiescent current change	V _I = 14.5 to 30 V, I _O = 20mA			1	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5mA, T _J = -55°C to 150°C		-1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz		75		μV
SVR	Supply voltage rejection	f = 120Hz	53			dB
V _d	Dropout voltage	I _O ≤1.5A	15			V
R _O	Output resistance	f = 1 KHz		18		mΩ
I _{sc}	Short circuit current	V _I = 27V		500		mA
I _{scp}	Short circuit peak current			3		Α

Table 8.Electrical characteristics of L78S15 (refer to the test circuits, $T_J = 25^{\circ}C$, $V_I = 23V$, $I_O = 500$ mA, unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		14.4	15	15.6	V
V _O	Output voltage	I _O = 1A, V _I = 17.5V	14.25	15	15.75	V
AV.	Line regulation	V _I = 17.5 to 30V			300	mV
ΔV_{O}	Line regulation	V _I = 20 to 26V			150	IIIV
ΔV_{O}	Load regulation	I _O = 20 mA to 2A			180	mV
I _d	Quiescent current				8	mA
Al	Quiescent current change	I _O = 20mA to 1A			0.5	mA
Δl _d	Quiescent current change	$V_I = 17.5 \text{ to } 30 \text{ V}, I_O = 20 \text{mA}$			1	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_{O} = 5mA, T_{J} = -55^{\circ}C \text{ to } 150^{\circ}C$		-1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz		90		μV
SVR	Supply voltage rejection	f = 120Hz	52			dB
V _d	Dropout voltage	I _O ≤1.5A	18			V
R _O	Output resistance	f = 1 KHz		19		mΩ
I _{sc}	Short circuit current	V _I = 27V		500		mA
I _{scp}	Short circuit peak current			3		Α

Table 9. Electrical characteristics of L78S18 (refer to the test circuits, $T_J = 25$ °C, $V_I = 26$ V, $I_O = 500$ mA, unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		17.1	18	18.9	V
V _O	Output voltage	I _O = 1A, V _I = 20.5V	17	18	19	V
41/	Line regulation	V _I = 20.5 to 30V			360	mV
ΔV_{O}	Line regulation	V _I = 22 to 28V			180	IIIV
ΔV_{O}	Load regulation	I _O = 20 mA to 2A			200	mV
I _d	Quiescent current				8	mA
41	Quiescent current change	I _O = 20mA to 1A			0.5	mA
$\Delta l_{\sf d}$	Quiescent current change	V _I = 20.5 to 30 V, I _O = 20mA			1	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_{O} = 5$ mA, $T_{J} = -55$ °C to 150°C		-1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz		110		μV
SVR	Supply voltage rejection	f = 120Hz	49			dB
V _d	Dropout voltage	I _O ≤1.5A	21			V
R _O	Output resistance	f = 1 KHz		22		mΩ
I _{sc}	Short circuit current	V _I = 27V		500		mA
I _{scp}	Short circuit peak current			3		Α

Table 10. Electrical characteristics of L78S24 (refer to the test circuits, $T_J = 25^{\circ}\text{C}$, $V_I = 33\text{V}$, $I_O = 500$ mA, unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V_{O}	Output voltage		23	24	25	V	
V _O	Output voltage	I _O = 1A, V _I = 27V	22.8	24	25.2	V	
41/	ΔV _O Line regulation	V _I = 27 to 38V			480	mV	
ΔνΟ		V _I = 30 to 36V			240	IIIV	
ΔV_{O}	Load regulation	I _O = 20 mA to 2A			250	mV	
I _d	Quiescent current				8	mA	
41	Quiescent current change	I _O = 20mA to 1A			0.5	mA	
∆l _d	Quiescent current change	$V_I = 27 \text{ to } 38 \text{ V}, I_O = 20 \text{mA}$	V _I = 27 to 38 V, I _O = 20mA			1	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	I _O = 5mA, T _J = -55°C to 150°C		-1.5		mV/°C	
eN	Output noise voltage	B =10Hz to 100KHz		170		μV	
SVR	Supply voltage rejection	f = 120Hz	48			dB	
V _d	Dropout voltage	I _O ≤1.5A	27			V	
R _O	Output resistance	f = 1 KHz		23		mΩ	
I _{sc}	Short circuit current	V _I = 27V		500		mA	
I _{scp}	Short circuit peak current			3		Α	

Table 11. Electrical characteristics of L78S05C (refer to the test circuits, $T_J = 25^{\circ}C$, $V_I = 10V$, $I_O = 500$ mA, unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		4.8	5	5.2	V
V _O	Output voltage	I _O = 1A, V _I = 7V	4.75	5	5.25	٧
A\/		V _I = 7 to 25V			100	mV
ΔV_{O}	Line regulation	V _I = 8 to 25V			50	IIIV
AV.	Load regulation	I _O = 20 mA to 1.5A			100	mV
ΔV_{O}	Load regulation	I _O = 2A		80		7 mv
I _d	Quiescent current				8	mA
41	Quiceant ourrent change	I _O = 20mA to 1A			0.5	mA
Δl _d	Quiescent current change	V _I = 7 to 25 V, I _O = 20mA			1.3	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ °C to 70 °C		-1.1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz		40		μV
SVR	Supply voltage rejection	f = 120Hz	54			dB
V _d	Dropout voltage	I _O ≤1A	8			٧
R _O	Output resistance	f = 1 KHz		17		mΩ
I _{sc}	Short circuit current	V _I = 27V		500		mA
I _{scp}	Short circuit peak current			3		Α

Table 12. Electrical characteristics of L78S75C (refer to the test circuits, $T_J = 25$ °C, $V_I = 12.5$ V, $I_O = 500$ mA, unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		7.15	7.5	7.9	V
V _O	Output voltage	I _O = 1A, V _I = 9.5V	7.1	7.5	7.95	V
41/	Line regulation	V _I = 9.5 to 25V			120	m\/
ΔV_{O}	Line regulation	V _I = 10.5 to 20V			60	- mV
41/	Load regulation	I _O = 20 mA to 1.5A			140	mV
ΔV_{O}	Load regulation	I _O = 2A		100		IIIV
I _d	Quiescent current				8	mA
41	Al Orienzant summer telegrape	I _O = 20mA to 1A			0.5	mA
Δl_{d}	Quiescent current change	V _I = 9.5 to 25 V, I _O = 20mA			1.3	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ °C to 70 °C		-0.8		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz		52		μV
SVR	Supply voltage rejection	f = 120Hz	48			dB
V _d	Dropout voltage	I _O ≤1A	10.5			V
R _O	Output resistance	f = 1 KHz		16		mΩ
I _{sc}	Short circuit current	V _I = 27V		500		mA
I _{scp}	Short circuit peak current			3		Α

Table 13. Electrical characteristics of L78S09C (refer to the test circuits, $T_J = 25^{\circ}C$, $V_I = 14V$, $I_O = 500$ mA, unless otherwise specified)

Symbol	Parameter	arameter Test conditions		Тур.	Max.	Unit
V _O	Output voltage		8.65	9	9.35	V
Vo	Output voltage	I _O = 1A, V _I = 11V	8.6	9	9.4	٧
A\/	Line regulation	V _I = 11 to 25V			130	mV
ΔV_{O}	Line regulation	V _I = 11 to 20V			65	IIIV
A\/	Load regulation	I _O = 20 mA to 1.5A			170	- mV
ΔV_{O}	Load regulation	I _O = 2A		100		IIIV
I _d	Quiescent current				8	mA
41	N. Code and the control of the code	I _O = 20mA to 1A			0.5	mA
$\Delta l_{\sf d}$	Quiescent current change	V _I = 11 to 25 V, I _O = 20mA			1.3	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ °C to 70 °C		-1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz		60		μV
SVR	Supply voltage rejection	f = 120Hz	47			dB
V _d	Dropout voltage	I _O ≤1A	12			٧
R _O	Output resistance	f = 1 KHz		17		mΩ
I _{sc}	Short circuit current	V _I = 27V		500		mA
I _{scp}	Short circuit peak current			3		Α

Table 14. Electrical characteristics of L78S10C (refer to the test circuits, $T_J = 25^{\circ}\text{C}$, $V_I = 15\text{V}$, $I_O = 500$ mA, unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage		9.5	10	10.5	V
Vo	Output voltage	I _O = 1A, V _I = 12.5V	9.4	10	10.6	V
A\/	Line regulation	V _I = 12.5 to 30V			200	mV
ΔV_{O}	Line regulation	V _I = 14 to 22V			100	IIIV
A\/	Load regulation	I _O = 20 mA to 1.5A			240	m\/
ΔV_{O}	Load regulation	I _O = 2A		150	mV	
I _d	Quiescent current				8	mA
Al	Al Original Annual Annual Annual	I _O = 20mA to 1A			0.5	mA
Δl _d	Quiescent current change	V _I = 12.5 to 30 V, I _O = 20mA			1	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ °C to 70 °C		-1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz		65		μV
SVR	Supply voltage rejection	f = 120Hz	47			dB
V _d	Dropout voltage	I _O ≤1A	13			٧
R _O	Output resistance	f = 1 KHz		17		mΩ
I _{sc}	Short circuit current	V _I = 27V		500		mA
I _{scp}	Short circuit peak current			3		Α

Table 15. Electrical characteristics of L78S12C (refer to the test circuits, $T_J = 25^{\circ}C$, $V_I = 19V$, $I_O = 500$ mA, unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		11.5	12	12.5	V
Vo	Output voltage	I _O = 1A, V _I = 14.5V	11.4	12	12.6	٧
4)/	Line regulation	V _I = 14.5 to 30V			240	mV
ΔνΟ	ΔV_{O} Line regulation	V _I = 16 to 22V			120	IIIV
AV.	Load regulation	I _O = 20 mA to 1.5A			240	mV
ΔV _O	Load regulation	I _O = 2A		150		IIIV
I _d	Quiescent current				8	mA
Al	Quiescent current change	I _O = 20mA to 1A			0.5	mA
Δl _d	Quiescent current change	V _I = 14.5 to 30 V, I _O = 20mA			1	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ °C to 70 °C		-1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz		75		μV
SVR	Supply voltage rejection	f = 120Hz	47			dB
V _d	Dropout voltage	I _O ≤1A	15			V
R _O	Output resistance	f = 1 KHz		18		mΩ
I _{sc}	Short circuit current	V _I = 27V		500		mA
I _{scp}	Short circuit peak current			3		Α

Table 16. Electrical characteristics of L78S15C (refer to the test circuits, $T_J = 25^{\circ}\text{C}$, $V_I = 23\text{V}$, $I_O = 500 \text{ mA}$, unless otherwise specified)

Symbol	Parameter	Test conditions		Тур.	Max.	Unit
V _O	Output voltage		14.4	15	15.6	V
V _O	Output voltage	I _O = 1A, V _I = 17.5V	14.25	15	15.75	V
4)/	Line regulation	V _I = 17.5 to 30V			300	m\/
ΔV_{O}	Line regulation	V _I = 20 to 26V			150	mV
41/	Load regulation	I _O = 20 mA to 1.5A			300	mV
ΔV_{O}	Load regulation	I _O = 2A		150		IIIV
I _d	Quiescent current				8	mA
41	Al Ouissant suggest shares	I _O = 20mA to 1A			0.5	mA
$\Delta l_{\sf d}$	Quiescent current change	V _I = 17.5 to 30 V, I _O = 20mA			1	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ °C to 70 °C		-1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz		90		μV
SVR	Supply voltage rejection	f = 120Hz	46			dB
V _d	Dropout voltage	I _O ≤1A	18			V
R _O	Output resistance	f = 1 KHz		19		mΩ
I _{sc}	Short circuit current	V _I = 27V		500		mA
I _{scp}	Short circuit peak current			3		Α

Table 17. Electrical characteristics of L78S18C (refer to the test circuits, $T_J = 25^{\circ}\text{C}$, $V_I = 26\text{V}$, $I_O = 500$ mA, unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		17.1	18	18.9	V
Vo	Output voltage	I _O = 1A, V _I = 20.5V	17	18	19	V
A\/	Line regulation	V _I = 20.5 to 30V			360	m\/
ΔVO	ΔV _O Line regulation	V _I = 22 to 28V			180	mV
41/	Load regulation	I _O = 20 mA to 1.5A			360	mV
ΔV_{O}	Load regulation	I _O = 2A		200		IIIV
I _d	Quiescent current				8	mA
41	N. Code and the control of the code	I _O = 20mA to 1A			0.5	mΛ
∆l _d	Quiescent current change	V _I = 20.5 to 30 V, I _O = 20mA			1	- mA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ °C to 70 °C		-1		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz		110		μV
SVR	Supply voltage rejection	f = 120Hz	43			dB
V _d	Dropout voltage	I _O ≤1A	21			V
R _O	Output resistance	f = 1 KHz		22		mΩ
I _{sc}	Short circuit current	V _I = 27V		500		mA
I _{scp}	Short circuit peak current			3		Α

Table 18. Electrical characteristics of L78S24C (refer to the test circuits, $T_J = 25^{\circ}\text{C}$, $V_I = 33\text{V}$, $I_O = 500$ mA, unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		23	24	25	V
V _O	Output voltage	I _O = 1A, V _I = 27V	22.8	24	25.2	V
41/	Line regulation	V _I = 27 to 38V			480	m\/
ΔV_{O}	Line regulation	V _I = 30 to 36V			240	mV
41/	Load regulation	I _O = 20 mA to 1.5A			480	m\/
ΔV_{O}	Load regulation	I _O = 2A		300		mV
I _d	Quiescent current				8	mA
41		I _O = 20mA to 1A			0.5	mA
Δl_{d}	Quiescent current change	V _I = 27 to 38 V, I _O = 20mA			1	IIIA
$\Delta V_{O}/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ °C to 70 °C		-1.5		mV/°C
eN	Output noise voltage	B =10Hz to 100KHz		170		μV
SVR	Supply voltage rejection	f = 120Hz	42			dB
V _d	Dropout voltage	I _O ≤1A	27			V
R _O	Output resistance	f = 1 KHz		28		mΩ
I _{sc}	Short circuit current	V _I = 27V		500		mA
I _{scp}	Short circuit peak current			3		Α

5 Typical performance

Typical performance L78S00 series

Figure 15. Quiescent current vs input voltage

Figure 16. Fixed output regulator

- 1. To specify an output voltage, substitute voltage value for "XX".
- 2. Although no output capacitor is need for stability, it does improve transient response.
- 3. Required if regulator is locate an appreciable distance from power supply filter.

Figure 17. Constant current regulator

Figure 18. Circuit for increasing output voltage

Typical performance L78S00 series

Figure 19. Adjustable output regulator (7 to 30V)

Figure 20. 0.5 to 10V Regulator

Figure 21. High current voltage regulator

Figure 22. High output current with short circuit protection

Typical performance L78S00 series

Figure 23. Tracking voltage regulator

Figure 24. Positive and negative regulator

L78S00 series Typical performance

Figure 25. Negative output voltage circuit

Figure 26. Switching regulator

Figure 27. High input voltage circuit

Figure 28. High input voltage circuit

Figure 29. High output voltage regulator

Figure 30. High input and output voltage

Figure 31. Reducing power dissipation with dropping resistor

Figure 32. Remote shutdown

Figure 33. Power AM modulator (unity voltage gain, $I_0 \le 1A$)

Note: The circuit performs well up to 100 KHz.

Typical performance L78S00 series

Figure 34. Adjustable output voltage with temperature compensation

Note: Q_2 is connected as a diode in order to compensate the variation of the Q_1 V_{BE} with the temperature. C allows a slow rise time of the V_O .

Figure 35. Light controllers $(V_{Omin} = V_{XX} + V_{BE})$

L78S00 series Typical performance

V₁ O V₀ L78SXX

Figure 36. Protection against input short-circuit with high capacitance loads

1. Application with high capacitance loads and an output voltage greater than 6 volts need an external diode (see fig. 32) to protect the device against input short circuit. In this case the input voltage falls rapidly while the output voltage decrease slowly. The capacitance discharges by means of the Base-Emitter junction of the series pass transistor in the regulator. If the energy is sufficiently high, the transistor may be destroyed. The external diode by-passes the current from the IC to ground.

6 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

TO-3 MECHANICAL DATA

DIM.		mm.			inch	
DIWI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α		11.85			0.466	
В	0.96	1.05	1.10	0.037	0.041	0.043
С			1.70			0.066
D			8.7			0.342
E			20.0			0.787
G		10.9			0.429	
N		16.9			0.665	
Р			26.2			1.031
R	3.88		4.09	0.152		0.161
U			39.5			1.555
V		30.10			1.185	

TO-220 MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
Е	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

L78S00 series Order code

7 Order code

Table 19. Order code

Dort numbers		Packaging						
Part numbers	TO-220	T0-3	Output voltage					
L78S05		L78S05T ⁽¹⁾	5 V					
L78S05C	L78S05CV	L78S05CT (1)	5 V					
L78S75		L78S75T ⁽¹⁾	7.5 V					
L78S75C	L78S75CV	L78S75CT ⁽¹⁾	7.5 V					
L78S09		L78S09T (1)	9 V					
L78S09C	L78S09CV		9 V					
L78S10		L78S10T ⁽¹⁾	10 V					
L78S10C	L78S10CV	L78S10CT (1)	10 V					
L78S12		L78S12T ⁽¹⁾	12 V					
L78S12C	L78S12CV	L78S12CT	12 V					
L78S15		L78S15T ⁽¹⁾	15 V					
L78S15C	L78S15CV	L78S15CT	15 V					
L78S18		L78S18T ⁽¹⁾	18 V					
L78S18C	L78S18CV		18 V					
L78S24		L78S24T ⁽¹⁾	24 V					
L78S24C	L78S24CV	L78S24CT (1)	24 V					

^{1.} Available on request.

Revision history L78S00 series

8 Revision history

Table 20. Revision history

Date	Revision	Changes
07-Sep-2006	2	Order Codes has been updated and new template.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

