应用随机过程

离散马链的状态分类

授课教师: 赵毅

哈尔滨工业大学(深圳)理学院

可达互通的定义

闭类、可约的定义

具体示例

考虑如下随机过程的马尔科夫转移概率矩阵 (通常称其为随机游走) ,其中p+q=1,并且p>0, q>0。按照互通的等价关系,为其状态空间划分等价类。

	0	1	2			N-1	Ν
0	1	0	0	0	0	0 0 0 0 p 0	0
1	q	0	p	0	0	0	0
2	0	q	0	p	0	0	0
	0	0	q	0	p	0	0
	0	0	0	q	0	p	0
N-1	0	0	0	0	q	0	p
N	0	0	0	0	0	0	1_

解:该马氏链有三个类,分别 $\{0\}$, $\{N\}$ 和 $\{1, \dots N-1\}$,并且 $\{0\}$ 和 $\{N\}$ 是两个闭类。

首次到达时刻及概率分布

常返态、瞬态

推论

推论1: 若状态i是常返态,并且 $i \leftrightarrow j$,那么状态j也是常返的。

推论2: 若状态i是常返态,并且 $i \rightarrow j$,那么 $j \rightarrow i$ 。

具体示例

对于具有如下转移矩阵的马尔科夫链,其状态空间仅包含0,1,2,3四种状态,判断该马链是否具有常返态。

0	0	$\frac{1}{2}$	$\frac{1}{2}$
1	0	0	0
0	-1	0	0
0	1	0	0

方法一: 定理: 有限不可约马尔可夫链中的所有状态都是常返的。容易判断该马链是有限的, 并且每两个状态之间都是互通的, 故为不可约马尔科夫链。

方法二:推论1: 若状态i是常返态,并且 $i \odot j$,那么状态j也是常返态。

$$f_{00} = \sum_{n=1}^{\infty} f_{00}^{(n)} \ge f_{00}^{(3)} \ge P\{X_3 = 0, X_2 = 1, X_1 = 2 | X_0 = 0\} + P\{X_3 = 0, X_2 = 1, X_1 = 3 | X_0 = 0\} = \frac{1}{2} + \frac{1}{2} = 1.$$

故状态0是常返态。而且任意两状态互通,故所有状态均为常返态。

转移概率矩阵状态分解

转移概率矩阵状态分解

1 对于所有的状态i, 列出T(i), F(i), 并求出C(i)

2 列出闭类 E_n $(1 \le n \le m)$ 以及非闭类T

以 $E_1, E_2, \cdots E_m, T$ 的顺序,依次写出马链的转移概率矩阵

- 4 将每个闭类中的状态合并为一个状态,即每个闭类看作一个吸收态
- 5 写出转移概率矩阵的标准型, $P = \begin{bmatrix} I & 0 \\ R & Q \end{bmatrix}$

应用示例

1	$\lceil 1/2 \rceil$	0	1/2	0	0	0	0	0	0	0]	
2	0	1/3	0	0	0	0	2/3	0	0	0	
3	1	0	0	0	0	0	0	0	0	0	
4	0	0	0	0	1	0	0	0	0	0	
5	0	0	0	1/3	1/3	0	0	0	1/3	0	
6	0	0	0	0	0	1	0	0	0	0	
7	0	0	0	0	0	0	1/4	0	3/4	0	
8	0	0	1/4	1/4	0	0	0	1/4	0	1/4	
9	0	1	0	0	0	0	0	0	0	0	
10	0	1/3	0	0	1/3	0	0	0	0	1/3	

应用示例

状态空间划分为 闭类及非闭类

	1	3	2	7	9	6	4	5	8	10	
1	1/2	1/2									
3	1	0									
2			1/3	2/3	0						
7			0	1/4	3/4						
9			1	0	0						
6						1					
4	0	0	0	0	0	0	0	1	0	0	
5	0	0	0	0	1/3	0	1/3	1/3	0	0	
8	0	1/4	0	0	0	0	1/4	0	1/4	1/4	
10	0	0	1/3	0	0	0	0	1/3	0	1/3	

	E_1	E_2	E_3	4	5	8	10
E_1	1	0	0				
E_2	0	1	0				
E_3	0	0	1				
4	0	0	0	0	1	0	0
5	0	1/3	0	1/3	1/3	0	0
8	1/4	0	0	1/4	0	1/4	1/4
10	0	1/3	0	0	1/3	0	1/3

谢谢听课

授课教师

赵毅