6.6 A forward PWM converter is supplied by a European single-phase rectified utility line voltage, $V_O = 12 \text{ V}$, and $n_1 = n_3 = 8$. Find the minimum, nominal, and maximum duty cycle.

$$V_0 = |2V | |_1 = |_3 = 8$$

 $V_{2mm} = (22 - 0 - (x22)) \times \sqrt{2} = 260V$
 $V_{2mm} = \sqrt{2} \times 220 = 31W$
 $V_{2mm} = \sqrt{2} \times 220V = \sqrt{2} \times 220V$
 $= 342V$

$$MV_{DLU,m} = \frac{V_0}{V_{ZM}\chi} = \frac{12}{342} = \frac{1}{285}$$

6.11 A forward PWM converter has $V_O = 12$ V, $I_O = 4-40$ A, $n_1 = n_3 = 8$, L = 20 μ H, $V_{Imax} = 342$ V, $D_{min} = 0.3119$, and $f_s = 75$ kHz. Find the magnetizing inductance such that its peak current is less than 12% of the maximum peak current of the primary of the ideal transformer.

Imx= ID Mmax/N1 = 42.753/8=5344A Dilun= 2/2I | mx = 612x5344=0.64/A Lunuin) = D min V2max/fs Di Lunuax)=2219m H We Pick Lun=2-3m H

6.14 Design a PWM forward converter that will meet the following specifications: the CCM, V_I is the European single-phase rectified line voltage with V_{rms} = 220 V±10%, V_O = 14 V, I_{Omin} = 2 A, I_{Omax} = 20 A, and V_r/V_O ≤ 1%. Assume r_{DS} = 1 Ω, V_F = 0.56 V, R_F = 25 mΩ, r_{L(dc)} = 20 mΩ, r_{T1} = 100 mΩ, r_{T2} = 25 mΩ, C_O = 100 pF, L_m = 5 mH, and f_S = 100 kHz. Find component values, component stresses, and converter efficiency.

Vr/105/00 Pan 2 1/0 / The Pan = 242 = 0.0579 O1= Van = 14 = 0.0707

7.6 A half-bridge converter has $V_{Imin} = 280$ V, $V_{Imax} = 342$ V, $V_O = 12$ V, $I_O = 1-20$ A, L = 25 μ H, n = 9, $\Delta i_{Lmax} = 1.513$, and $f_s = 50$ kHz. Determine the minimum magnetizing inductance at which its peak-to-peak current is less than 10% of the maximum peak current of the ideal transformer primary.

We pick Lus-JuH

7.8 Design a half-bridge converter operating in CCM to meet the following specifications: V_I is the single-phase rectified European line voltage with V_{rms} is 220 V \pm 10%, $V_O = 5$ V, $I_{Omin} = 2$ A, $I_{Omax} = 20$ A, and $V_r/V_O \le 1\%$. Assume $r_{DS} = 1$ Ω , $r_{T1} = 150$ m Ω , $r_{T2} = r_{T3} = 40$ m Ω , $r_L = 9$ m Ω , $r_C = 35$ m Ω , $r_{Cb} = 350$ m Ω , $R_F = 10$ m Ω , $V_F = 0.3$ V, and $C_O = 80$ pF. Assume initially the converter efficiency $\eta = 85\%$.

Poux 2 Vo · Zmax = 20XJ=100 W Pauin= 12 Innin= 2 x5=10W Ruin = 10 = 0-2552 21/0 = 50 = 2.JS MMC = 1/2 = 5 = 6 - 0255 MMC Canyin - 1/2 = 5 = 0-207 MV 100 Mon - 100 - 5 - 5 - 50227 $1 - \frac{11 \text{ ponk}}{\text{MVNx}} - \frac{959 \times 04}{5-7253} - 13.44$ Dun = nmpuny = 0-3273

ſ

- 1.633A

A full-bridge PWM converter has $V_{Imin} = 127 \text{ V}$, $V_{Imax} = 187 \text{ V}$, n = 2, $V_O = 48 \text{ V}$, $P_O = 1-2.5 \text{ kW}$, and $f_s = 35 \text{ kHz}$. Find the current stresses of the transistors and the diodes.

Smi Ionn = 2500 (W/40V=52A 27 Lenos Vo (1-1/4) = > (J42 VA &jh,(max)= 01/X Z/0x=9.3/8 A $n = \frac{11 \text{ pax}}{\text{min}} = \frac{n \times \text{nm}}{\text{order}} = 2$ $m = \frac{1}{\text{order}} = \frac{1}{\text{order}} = 2$ $I_{SMS} = \frac{70m}{n} + \frac{0ilm}{2n} + \frac{0ilm}{2n}$ $-\frac{52}{2} + \frac{31544}{2x^2} + \frac{2300}{2}$ = 35- 6A

Inmx = Imx + Dirm -12 +31.6 = 67.8 A