Unitary Bijections From Strictly Increasing Functions On The Real Line

BY STEPHEN CROWLEY
August 11, 2025

July 30, 2025

Table of contents

1	Introduction	1
2	Bijective Transformations on Unbounded Domains	1
3	L^2 Norm Preservation	2
4	Unitary Operators and Measure Preservation	4
5	Invariant Measures	5
6	Conclusion	5
$\mathbf{B}^{:}$	ibliography	5

1 Introduction

This document establishes the fundamental relationship between unitary bijections in L^2 spaces and measure-preserving transformations in ergodic theory. The central result demonstrates that L^2 norm preservation under bijective transformations of unbounded domains necessarily involves specific scaling factors derived from the transformation's differential structure.

2 Bijective Transformations on Unbounded Domains

Theorem 1. [Bijectivity of Strictly Increasing Functions on Unbounded Domains]Let $g: I \to \mathbb{R}$ be a strictly increasing function where $I \subseteq \mathbb{R}$ is an unbounded interval. Then g is bijective onto its range J = g(I), and J is also an unbounded interval.

Proof. Since g is strictly increasing, injectivity is immediate. For any $x_1, x_2 \in I$ with $x_1 < x_2$, one has $g(x_1) < g(x_2)$.

For surjectivity onto J = g(I), let $y \in J$. By definition, there exists $x \in I$ such that g(x) = y. The uniqueness of such x follows from injectivity.

To establish that J is unbounded, consider two cases:

- 1. If $I = (a, \infty)$ or $I = [a, \infty)$ for some $a \in \mathbb{R}$, then as $x \to \infty$, since g is strictly increasing, either $g(x) \to \infty$ or g(x) approaches some finite supremum. If the latter held, then by the intermediate value theorem and strict monotonicity, g would map (a, ∞) to some bounded interval, contradicting the strict increase property over an unbounded domain.
- 2. If $I = (-\infty, b)$ or $I = (-\infty, b]$, a similar argument shows J extends to $-\infty$.
- 3. If $I = \mathbb{R}$, then J must be unbounded in both directions.

Therefore, $g: I \to J$ is bijective with both I and J unbounded intervals.

Theorem 2. [Differentiable Bijections with Positive Derivative]Let $g: I \to J$ be a C^1 bijection between unbounded intervals $I, J \subseteq \mathbb{R}$ such that g'(y) > 0 for all $y \in I$ except possibly on a set of measure zero. Then g is a well-defined change of variables for Lebesgue integration.

Proof. The condition g'(y) > 0 almost everywhere ensures that g is locally invertible almost everywhere. Since g is already assumed bijective and C^1 , the standard change of variables formula applies:

$$\int_{J} f(x) \ dx = \int_{I} f(g(y))|g'(y)| \ dy = \int_{I} f(g(y)) \ g'(y) \ dy \tag{1}$$

where the last equality uses g'(y) > 0 almost everywhere. The points where g'(y) = 0 form a set of measure zero and do not affect the integral.

3 L^2 Norm Preservation

Definition 3. [Scaled Transformation Operator]Let $g: I \to J$ be a C^1 bijection between unbounded intervals with g'(y) > 0 almost everywhere. For $f \in L^2(J, dx)$, define the scaled transformation operator T_g by:

$$(T_q f)(y) = f(g(y))\sqrt{g'(y)}$$
(2)

Theorem 4. [L² Norm Preservation for Unbounded Domains] Under the conditions of Definition 3, the operator $T_g: L^2(J, dx) \to L^2(I, dy)$ is an isometric isomorphism. Specifically:

$$||T_g f||_{L^2(I,dy)} = ||f||_{L^2(J,dx)}$$
(3)

Proof. For $f \in L^2(J, dx)$, compute directly:

$$||T_g f||_{L^2(I,dy)}^2 = \int_I |f(g(y))\sqrt{g'(y)}|^2 dy$$
(4)

$$= \int_{I} |f(g(y))|^{2} g'(y) dy$$
 (5)

By the change of variables formula from Theorem 2 with x = g(y):

$$\int_{I} |f(g(y))|^{2} g'(y) \ dy = \int_{J} |f(x)|^{2} \ dx = ||f||_{L^{2}(J, dx)}^{2}$$
 (6)

Since both I and J are unbounded, the change of variables is justified by approximating with bounded subintervals and applying the monotone convergence theorem.

Therefore:

$$||T_q f||_{L^2(I,dy)} = ||f||_{L^2(J,dx)} \tag{7}$$

The fact that $T_g f \in L^2(I, dy)$ follows immediately from equation (7) and the assumption $f \in L^2(J, dx)$.

Theorem 5. [Necessity of Square Root Scaling]Let $g: I \to J$ be as in Theorem 4. If $\phi: I \to \mathbb{R}^+$ is any measurable function such that $f(g(y)) \phi(y) \in L^2(I, dy)$ and

$$||f(g(\cdot))\phi(\cdot)||_{L^{2}(I,dy)} = ||f||_{L^{2}(J,dx)}$$
(8)

for all $f \in L^2(J, dx)$, then $\phi(y) = \sqrt{g'(y)}$ almost everywhere.

Proof. From the norm condition in equation (8):

$$\int_{I} |f(g(y))|^{2} \phi(y)^{2} dy = \int_{I} |f(x)|^{2} dx$$
(9)

Using the change of variables x = g(y) on the right side:

$$\int_{I} |f(g(y))|^{2} \phi(y)^{2} dy = \int_{I} |f(g(y))|^{2} g'(y) dy$$
(10)

This gives:

$$\int_{I} |f(g(y))|^{2} (\phi(y)^{2} - g'(y)) dy = 0$$
(11)

Since this holds for all $f \in L^2(J, dx)$ and the composition $f(g(\cdot))$ generates a dense subspace of $L^2(I, g'(y) dy)$, the fundamental lemma of calculus of variations implies:

$$\phi(y)^2 = g'(y)$$
almost everywhere (12)

Taking $\phi(y) > 0$, one obtains $\phi(y) = \sqrt{g'(y)}$ almost everywhere.

4 Unitary Operators and Measure Preservation

Definition 6. [Koopman Operator]Let (X, \mathcal{B}, μ) be a probability space and $T: X \to X$ be a measure-preserving bijection. The Koopman operator $U_T: L^2(X, \mu) \to L^2(X, \mu)$ is defined by:

$$(U_T f)(x) = f(T(x)) \tag{13}$$

Theorem 7. [Unitarity of Koopman Operator] The Koopman operator U_T defined in Definition 6 is unitary on $L^2(X, \mu)$.

Proof. For $f, h \in L^2(X, \mu)$:

$$\langle U_T f, U_T h \rangle = \int_X f(T(x)) \overline{h(T(x))} \, d\,\mu(x) \tag{14}$$

$$= \int_{X} f(y) \overline{h(y)} \, d\, \mu(T^{-1}(y)) \tag{15}$$

$$= \int_{X} f(y) \overline{h(y)} \, d\,\mu(y) \tag{16}$$

$$=\langle f, h \rangle \tag{17}$$

where equation (15) uses the change of variables y = T(x), and equation (16) follows from the measure-preserving property of T.

Since T is bijective and measure-preserving, U_T is surjective, completing the proof of unitarity.

Corollary 8. [Equivalence of Unitary Bijection and Measure Preservation] A bijective transformation T on a probability space induces a unitary operator on L^2 if and only if T is measure-preserving.

Proof. This follows directly from Theorem 7 and the fact that the Koopman operator construction is reversible. \Box

5 Invariant Measures

Definition 9. [Invariant Measure]A measure μ on a measurable space (X, \mathcal{B}) is invariant under a transformation $T: X \to X$ if $\mu(T^{-1}(A)) = \mu(A)$ for all $A \in \mathcal{B}$.

Theorem 10. [Uniqueness of Finite Invariant Measures for Ergodic Systems]Let $T: X \to X$ be an ergodic transformation on a measurable space. If finite invariant measures μ_1 and μ_2 exist for T, then $\mu_1 = c \mu_2$ for some constant c > 0.

Proof. The proof follows from the ergodic theorem and the fact that ergodic systems admit at most one invariant probability measure up to scaling [petersen1989ergodic]. \Box

6 Conclusion

The results establish that unitary bijections in L^2 spaces correspond precisely to measurepreserving transformations. The scaling factor $\sqrt{g'(y)}$ in Theorem 4 is both necessary and sufficient for norm preservation, providing the connection between differential geometry and functional analysis in the context of ergodic theory.

Bibliography

[petersen1989ergodic] K. Petersen, *Ergodic Theory*, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1989.

[halmos1956lectures] P. R. Halmos, Lectures on Ergodic Theory, Chelsea Publishing Company, 1956.
[walters1982introduction] P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, Springer-Verlag, 1982.

[reed1980functional] M. Reed and B. Simon, Methods of Modern Mathematical Physics I: Functional Analysis, Academic Press, 1980.