CS224 Lab - 04

Preliminary Report

Mert Fidan - 22101734 - Section 3

• PART I

a-) Machine Instructions in imem module

Machine Code	PC Value	<u>Instruction</u>
0x2014fff6	0x00	addi \$s4 \$zero 0xFFF6
0x20090007	0x04	addi \$t1 \$zero 0x0007
0x22820003	80x0	addi \$v0 \$s4 0x0003
0x01342025	0x0c	or \$a0 \$t1 \$s4
0x00822824	0x10	and \$a1 \$a0 \$v0
0x00a42820	0x14	add \$a1 \$a1 \$a0
0x1045003d	0x18	beq \$v0 \$a1 0x003D
0x0054202a	0x1c	slt \$a0 \$v0 \$s4
0x10040001	0x20	beq \$zero \$a0 0x0001
0x00002820	0x24	add \$a1 \$zero \$zero
0x0289202a	0x28	slt \$a0 \$s4 \$t1
0x00853820	0x2c	add \$a3 \$a0 \$a1
0x00e23822	0x30	sub \$a3 \$a3 \$v0
0xac470057	0x34	sw \$a3 0x0057 \$v0

0x8c020050	0x38	lw \$v0 0x0050 \$zero
0x08000011	0x3c	j 0x0000011
0x20020001	0x40	addi \$v0 \$zero 0x0001
0x2282005a	0x44	addi \$v0 \$s4 0x005A
0x08000012	0x48	j 0x0000012

Instruction	Opcode	RegWrite	RegDst	ALUSrc	Branch	MemWrite	MemToReg	ALUOp	Jump
R-type	000000	1	1	0	0	0	0	10	0
lw	100011	1	0	1	0	0	1	00	0
sw	101011	0	X	1	0	1	X	00	0
beq	000100	0	X	0	1	0	X	01	0
addi	001000	1	0	1	0	0	0	00	0
j	000010	0	X	X	X	0	X	XX	1

Table 1: Main Decoder for Original 10

ALUOp	Funct	ALUControl
00	X	010 (add)
01	X	110 (subtract)
1X	100000 (add)	010 (add)
1X	100010 (sub)	110 (subtract)
1X	100100 (and)	000 (and)
1X	100101 (or)	001 (or)
1X	101010 (slt)	111 (set less than)

Table 2: ALU Decoder for Original 10

Name	Value	0 ns		10 ns	1	20 ns	<u> </u>	30 ns		40 ns	1	50 ns		60 ns			70 ns	
™ clk	1																	
™ reset	1															\Box		
🍱 memwrite	0																	
> 😼 write1:0]	XXXXXXXXX			xxx	XXXXX			fffff	ff6	fff	ffff9	fffi	ffff7	fı	ffffe8	$\equiv \!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	ffff	fff6
> 🧺 dataa1:0]	ffffff6	ff	fffff6	000	00007	ffff	fff9	fffff	ff7	fff	ffffl	fffi	fffe8	00	000011	$\equiv \!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $		
> 😼 pc[31:0]	00000000	000	000000	000	00004	0000	0008	00000	00c	000	00010	0000	00014	00	000018	$\equiv \!\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	0000	001c
> 😼 instr[31:0]	2014fff6	20:	l4fff6	200	90007	2282	0003	01342	025	008	22824	00a4	12820	10	45003d	$=$ $\!$	0054	202a
> 🥦 read1:0]	XXXXXXXXX													х	XXXXXX			
90 ma	lan na		100 ma		1110 mg		 120 ma		1120 -		1140	20.5	11	FO 200		lı c	0 25	1.
80 ns	90 ns		100 ns		110 ns		120 ns		130 n	٠٠٠	1 170	ns	., .	50 ns		140	0 ns	
		_														+		
											_					+		
	V								\vdash							⇟		
00000000	000000	07	fffff	fe8	ffff	fff9	fff	fffef	ff	ffffff9	_{	0000000	<u> </u>	ffff	ffef	<u></u> ∦_	00000	0000
00000000			fffff	fe8	ffff	ffef	X	0000	0050		X'	0000000	<u> </u>	0000	0050	<u></u> ∦_	00000	0000
00000020	000000	28	00000	02c	0000	0030	000	00034	00	000038	X	0000003	<u>- X</u>	0000	0044	Х_	00000	048
10040001	028920	2a)	00853	820	00e2	3822	ac4	70057	80	020050	X	0800001	1 /	2282	005a	Ж.	08000	012
									ff	ffffef		XXXXXXXX	x (ffff	ffef	χ	XXXXX	XXX

e-) Questions

- i) In an R-type instruction what does writedata correspond to?
 - It corresponds to rt field of the instruction
- ii) Why is writedata undefined for some of the early instructions in the program?
 - Since the first three instructions are I-type, ALUSrc is 1 and SrcB of ALU is chosen as SignExtImm. Thus, writedata receives no input for these instructions.
- iii) In which instructions memwrite becomes 1?

In sw instruction and new instruction spc

iv) Why is dataaddr 0xffffffe8 when PC is 0x14?

- Since dataadr corresponds to the ALU result and the result of addition for the values in \$a1 and \$a0 is Oxffffffe8, dataadr becomes Oxffffffe8 for the instruction in PC = 0x14, which is add \$a1 \$a1 \$a0
- v) In the example program, when is the output of readdata defined and why?
 - It is defined for the instructions that read data from the data memory, in this case for the occurrences of *lw* instruction. Since the first *lw* appears at *PC* = 0x38, readdata is firstly defined at that instance.

f-) Modified ALU Module

```
module alu(input logic [31:0] a, b,
           input logic [4:0] shamt,
           input logic [2:0] alucont,
           output logic [31:0] result,
           output logic zero);
    always_comb
        case (alucont)
            3'b010: result = a + b;
            3'b011: result = a ^ b; // a XOR b
            3'bl00: result = (a << shamt) | (a >> (32 - shamt)); // for ROL
            3'b110: result = a - b;
            3'b000: result = a & b;
            3'b001: result = a | b;
            3'b111: result = (a < b) ? 1 : 0;
            default: result = {32{1'bx}};
        endcase
    assign zero = (result == 0) ? l'bl : l'b0;
endmodule
```

PART II

a-) RTL Expressions for spc and rol

IM[PC]

rol: RF[rd] ← [(RF[rs] << shamt) OR (RF[rs] >> 32 - shamt)]
$$PC \leftarrow PC + 4$$

IM[PC]

b-) Datapath Changes

c-) Main Decoder and ALU Decoder Changes

Instruction	<u>Opcode</u>	RegWrite	RegDst	ALUSrc	Branch	<u>MemWrite</u>	MemToReg	ALUOp	<u>Jump</u>
R-type	000000	1	1	0	0	0	0	10	0
<u>lw</u>	100011	1	0	1	0	0	1	00	0
<u>sw</u>	101011	0	X	1	0	1	X	00	0
beq	000100	0	X	0	1	0	X	00	0
<u>addi</u>	001000	1	0	1	0	0	0	01	0
i	000010	0	X	X	0	X	X	XX	1
spc	000001	0	Х	1	0	1	X	11	0

ALUOp	<u>Funct</u>	<u>ALUControl</u>	WDSelect
00	X	010 (add)	0
01	X	110 (subtract)	0
10	100000 (add)	010 (add)	0
10	100010 (sub)	110 (subtract)	0
10	100100 (and)	000 (and)	0
10	100101 (or)	001 (or)	0
10	101010 (slt)	111 (set less than)	0
10	000000(rol)	100(rol)	0
11	X	010(add for spc)	1