

JianYan Testing Group Shenzhen Co., Ltd.

Report No:

SPECTRUM REPORT

Applicant: Nebra Ltd

Address of Applicant: Unit 4 Bells Yew Green Business Court, Bells Yew Green,

Tunbridge Wells TN3 9BJ

Equipment Under Test (EUT)

Product Name: Nebra Smart Indoor LoRa Gateway / Nebra HNT Indoor Hotspot

Miner

Model No.: HNTIN-470-G, HNTIN-868-G, HNTIN-915-G, HNTIN-433-G,

HNTIN-470, HNTIN-868, HNTIN-915, HNTIN-433

Applicable standards: ETSI EN 300 220-1 V3.1.1 (2017-02)

ETSI EN 300 220-2 V3.2.1 (2018-06)

Date of sample receipt: 12 Mar., 2021

Date of Test: 13 Mar., to 19 Apr., 2021

Date of report issue: 23 Apr., 2021

Test Result: PASS*

*In the configuration tested, the EUT complied with the standards specified above.

The UKCA mark as shown below can be used, under the responsibility of the manufacturer, after completion of an UKCA Declaration of Conformity and compliance with all relevant UK Radio Equipment Regulations (SI 2017/1206) Directives. The protection requirements with respect to electromagnetic compatibility contained in UK Radio Equipment Regulations (SI 2017/1206) are considered.

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	23 Apr., 2021	Original
		_

Page 2 of 23

Contents

		Page
1	COVER PAGE	1
2	2 VERSION	2
3	B CONTENTS	3
4	TEST SUMMARY	4
5	GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	
	5.2 GENERAL DESCRIPTION OF E.U.T.	
	5.3 TEST ENVIRONMENT AND MODE, AND TEST SAMPLES PLANS	
	5.4 DESCRIPTION OF SUPPORT UNITS.	6
	5.5 MEASUREMENT UNCERTAINTY	
	5.6 LABORATORY FACILITY	
	5.7 LABORATORY LOCATION	
	5.8 TEST INSTRUMENTS LIST	
6		
•	6.1 OPERATING FREQUENCY	
	6.1 OPERATING PREQUENCY 6.2 DUTY CYCLE	
	6.3 ADJACENT CHANNEL POWER	
	6.4 ADAPTIVE POWER CONTROL	
	6.5 FHSS EQUIPMENT.	
	6.6 SHORT TERM BEHAVIOUR	
	6.7 EFFECTIVE RADIATED POWER	
	6.8 OCCUPIED BANDWIDTH	
	6.9 TX OUT OF BAND EMISSIONS	12
	6.10 TRANSIENT POWER	
	6.11 TX BEHAVIOUR UNDER LOW-VOLTAGE CONDITIONS	
	6.12 UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN	
	6.13 RECEIVER REQUIREMENTS	
	6.13.1 RX sensitivity	
	6.13.2 Blocking	
	6.14 POLITE SPECTRUM ACCESS REQUIREMENTS	
	6.14.1 Clear Channel Assessment threshold	
	6.14.2 Polite spectrum access timing parameters	
	6.14.3 Adaptive Frequency Agility	
7	TEST SETUP PHOTO	22
0	THE CONCEDUCTIONAL DETAIL O	

Test Summary

Test Items	Test Requirement	Test method	Result		
Transmitter Part					
Operating frequency	EN 300 220-2	EN 300 220-1	PASS*		
oporating nequency	Clause 4.2.1	Clause 5.1.2	17100		
Effective Radiated Power	EN 300 220-2	EN 300 220-1	PASS*		
	Clause 4.3.1	Clause 5.2.2	. ,		
Maximum e.r.p. spectral density	EN 300 220-2	EN 300 220-1	PASS*		
	Clause 4.3.2	Clause 5.3.2			
Duty Cycle	EN 300 220-2	EN 300 220-1	PASS*		
,	Clause 4.3.3	Clause 5.4,2			
Occupied Bandwidth	EN 300 220-2	EN 300 220-1	PASS*		
	Clause 4.3.4	Clause 5.6.3			
Tx Out of Band Emissions	EN 300 220-2	EN 300 220-1	PASS*		
TA Gut of Build Emileoione	Clause 4.3.5	Clause 5.8.3	7,100		
Transient power	EN 300 220-2	EN 300 220-1	PASS*		
Transient perior	Clause 4.3.6	Clause 5.10.3	,,,,,,		
Adjacent Channel Power	EN 300 220-2	EN 300 220-1	N/A		
-	Clause 4.3.7	Clause 5.11.3			
TX behaviour under Low Voltage	EN 300 220-2	EN 300 220-1	PASS*		
Conditions	Clause 4.3.8	Clause 5.12.3	. ,		
Adaptive Power Control	EN 300 220-2	EN 300 220-1	N/A		
, tapare i ener eemier	Clause 4.3.9	Clause 5.13.3	14// (
FHSS equipment	EN 300 220-2	EN 300 220-2	N/A		
Tribo oquipment	Clause 4.3.10	Clause 4.3.10.3	1477		
Short term behaviour	EN 300 220-2	EN 300 220-1	N/A		
Chort term behaviour	Clause 4.3.11	Clause 5.5.2	14/74		
Unwanted emissions in the	EN 30 <mark>0 220-</mark> 2	EN 300 220-1	PASS*		
spurious domain	Clause 4.2.2	Clause 5.9.3	17100		
	Receiver Part				
RX sensitivity	EN 300 220-2	EN 300 220-1	N/A		
RA Sensitivity	Clause 4.4.1	Clause 5.14.3	IN/A		
	EN 300 220-2	EN 300 220-1	DA 00		
Blocking	Clause 4.4.2	Clause 5.18.6	PASS		
Polite's	pectrum access conform	ance requirement			
Clear Channel Assessment	EN 300 220-2	EN 300 220-1			
threshold	Clause 4.5.2	Clause 5.21.2.3	N/A		
Polite spectrum access timing	EN 300 220-2	EN 300 220-1			
parameters	Clause 4.5.3	Clause 5.21.2.3	N/A		
paramotoro	EN 300 220-2	EN 300 220-1			
Adaptive Frequency Agility	Clause 4.5.4	Clause 5.21.4.2	N/A		
	Clause 4.5.4	CiduSt 5.21.4.2			

Remark:

- Pass: Meet the requirement.
- 2. N/A: Not Applicable for Non-adaptive equipment.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).
- Pass*: refer to the Report No.: SZAWW180830005-04W

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5 General Information

5.1 Client Information

Applicant:	Nebra Ltd
Address:	Unit 4 Bells Yew Green Business Court, Bells Yew Green, Tunbridge Wells TN3 9BJ
Manufacturer:	Nebra Ltd
Address:	Unit 4 Bells Yew Green Business Court, Bells Yew Green, Tunbridge Wells TN3 9BJ
Factory:	SUNSOAR TECH CO., LIMITED
Address:	4/F, Block E, Fengze Building, Huafeng No.2 Industrial Park, Hangkong Road, XiXiang Town, BaoAn District, Shenzhen, China

5.2 General Description of E.U.T.

Product Name:	Nebra Smart Indoor LoRa Gateway / Nebra HNT Indoor Hotspot Miner
Model No.:	HNTIN-470-G, HNTIN-868-G, HNTIN-915-G,HNTIN-433-G, HNTIN-470,HNTIN-868, HNTIN-915,HNTIN-433
Operation Frequency:	868.1MHz~868.5MHz
Hardware version:	V12-15-2020-1614
Software version:	a98bfc8
Modulation:	OOK
Antenna type:	Cylindrical Antenna
Antenna Gain:	3 dBi
Power supply:	DC 12V
Adapter:	Model: TM-K018VP-01201500PE-Z Input: 100-240V~50/60Hz 0.45A Output: 12.0V, 1.5A
Remark:	Model No.: HNTIN-470-G, HNTIN-868-G, HNTIN-915-G,HNTIN-433-G, HNTIN-470,HNTIN-868, HNTIN-915,HNTIN-433 has the same internal circuit design, layout, components and internal wiring. The difference is that the ones with the -G suffix have GPS function, while those without the suffix do not. Each model has two appearances, except for the appearance, the interior is exactly the same. In addition, the corresponding frequency of each model of LoRa module is different, as follows: The Nebra HNT Indoor Hotspot is available in 4 variants to support multiple region. It is available in the following frequency variants: 433 MHz (HNTIN-433) 470 Mhz (HNTIN-470)
	868 Mhz (HNTIN-868) 915 Mhz (HNTIN-915)

915 Mhz (HNTIN-915)

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.3 Test environment and mode, and test samples plans

Transmitting mode:	Keep the TX unit in transmitting mode with modulation.
Receiving mode:	Keep the RX unit in receiving mode.
Operating Environment:	
Temperature:	Normal: 15°C ~ 35°C, Extreme: -20°C ~ +55°C
Humidity:	20 % ~ 75 % RH
Atmospheric Pressure:	1008 mbar
Voltage:	Normal: 12.0Vdc, Extreme: Low 10.8Vdc, High 13.2Vdc

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Radio frequency	±0.5 ppm
RF output power, conducted	±1,5 dB
Conducted spurious emission of transmitter, valid up to 6 GHz	±3.0 dB
Conducted emission of receivers	±3.0 dB
RF level uncertainty for a given BER	±1.5 dB
Occupied BandWidth	±5 %
Temperature	±3 °C
Humidity	±10 %
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282. Fax:+86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	01-19-2021	01-18-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-03-2021	03-02-2022
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-18-2020	06-17-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2021	03-02-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-18-2020	06-17-2021
EMI Test Software	AUDIX	E3	Version: 6.110919b		
Pre-amplifier	HP	8447D	2944A09358	03-03-2021	03-02-2022
Pre-amplifier	CD	PAP-1G18	11804	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-03-2021	03-02-2022
Signal Generator	R&S	SMR20	1008100050	03-03-2021	03-02-2022
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2021	03-02-2022
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

6 Radio Technical Requirements Specification in EN 300 220-2

6.1 Operating Frequency

Declared by the manufacturer operarting frequency for 433.92MHz and OCW for 100kHz.

6.2 Duty Cycle

The manufacturer has declared that due to the time between transmissions by the devices, the duty cycle is less than 10%.

6.3 Adjacent Channel Power

Not applicable, only applies to transmitters with OCW \leq 25 kHz.

6.4 Adaptive Power Control

Not applicable, only applies to EUT with adaptive power control using annex C band AF.

6.5 FHSS equipment

Not applicable, since the test applies to FHSS equipment.

6.6 Short term behaviour

Not applicable, only applies to EUT using annex C bands AD, AE, AF, AG, AH, or AI.

Page 8 of 23

6.7 Effective Radiated Power

Test Requirement:	ETSI EN300 220-2 clause 4.3.1	
Test Method:	ETSI EN300 220-1 clause 5.2.2.2	
Receiver Setup:	RBW=100 kHz, VBW=300 kHz, Detector= peak	
Limit:	10dBm (Refer to ETSI EN300 220-2 Annex B)	
Test Setup:	Antenna Tower 1.50m (Turntable) Tost Receiver	
Test Procedure:	Substitution method was performed to determine the actual ERP emission levels of the EUT. The following test procedure as below:	
	 The following test procedure as below: On the test site as test setup graph above, the EUT shall be placed at the 1,5m support on the turntable and in the position closest to normal use as declared by the provider. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver. Repeat step 4 for test frequency with the test antenna polarized horizontally. Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At the lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the 	
	 ground. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output. Repeat step 7 with both antennas horizontally polarized for each test 	

Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	frequency. 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula: ERP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBd) where: Pg is the generator output power into the substitution antenna.
Test Instruments:	Refer to section 5.8 for details
Test Mode:	Refer to section 5.3 for details
Test Results:	Refer to the Report No.: SZAWW180830005-04W

6.8 Occupied Bandwidth

The state of the s			
Test Requirement:	EN300 220-2 Clause 4.3.4		
Test Method:	EN 300 220-1 Clause 5.6.3		
Limit:	Within of 433.05MHz to 434.79MHz		
Test Procedure:	The spectrum analyser shall be configured as appropriate for the parameters shown in Table 12. Table 12: Test Parameters for Max Occupied Bandwidth Measurement		
	Setting Value Notes		
	Centre frequency The nominal Operating Frequency the manufacturer 1 % to 3 % of OCW without being below 100 Hz		
	VBW 3 x RBW Nearest available analyser setting to 3 x RBW		
	Span At least 2 x Operating Span should be large enough to include all major components of the signal and its side bands		
	Detector Mode RMS		
	Trace Max hold		
	2. Step 1: Operation of the EUT shall be started, on the highest operating frequency as declared by the manufacturer, with the appropriate test signal. The signal attenuation shall be adjusted to ensure that the signal power envelope is sufficiently above the noise floor of the analyser to avoid the noise signals on either side of the power envelope being included in the measurement. Step 2: When the trace is completed the peak value of the trace shall be located and the analyser marker placed on this peak. Step 3: The 99 % occupied bandwidth function of the spectrum analyser shall be used to measure the occupied bandwidth of the signal.		
Test Instruments:	Refer to section 5.8 for details		
Test Mode:	Refer to section 5.3 for details		
Test Results:	Refer to the Report No.: SZAWW180830005-04W		

Page 11 of 23

6.9 Tx Out of Band Emissions

Test Requirement:	EN300 220-2 Clause 4.3.5
Test Method:	EN 300 220-1 Clause 5.8.3
Limit:	Refer to ETSI EN300 220-1 Clause 5.8.2

Test Procedure:

Table 16: Test Parameters for Out Of Band for Operating Channel Measurement

Spectrum Analyser Setting	Value	Notes
Centre frequency	Operating Frequency	
Span	6 x Operating Channel width	
RBW	1 kHz (see note)	Resolution bandwidth for Out Of Band domain measurements
Detector Function	RMS	
Trace Mode	Linear AVG	Applies only for EUT generating D-M2 test signal. An appropriate number of samples should be averaged to give a stable reading
	Max Hold	Applies only for EUT generating D-M2a or D-M3 test signal.
NOTE: If the value of RB	W used is different fro	om RBW _{REF} in clause 5.8.2, use the bandwidth
correction in clau	se 4 3 10 1	

The test equipment shall be configured as appropriate for the parameters shown in Table 16.

Step 1:

Operation of the EUT shall be started, on the highest operating frequency as declared by the manufacturer, with the appropriate test signal.

The signal shape is recorded when stable and shall be below the spectrum mask Out Of Band for operating channel.

Step 2:

The test equipment shall be reconfigured as appropriate for the parameter shown in Table 17.

Table 17: Test Parameter Setting for Lower Out Of Band Measurement

Spectrum Ar	alyser Sett	ing	Value	Notes
Centre frequen	су		fc _{low}	The lowest Operating Frequency in the band
Span			2 x (500 kHz + fc _{low} - f _{low_OFB})	Ensures that the left most mask specification remains within the span
NOTE: f _{low OFB} is the lower edge of the Operational Frequency Band.				

Operation of the EUT is restarted, with the appropriate test signal, on the lowest operating frequency as declared by the manufacturer.

If the equipment is using only one operating Frequency in the operational Frequency Band, measurement shall be performed the nominal operating frequency.

The signal shape is recorded when stable; and shall be below the spectrum mask for operating channel and the spectrum mask for operational frequency band.

Step 3:

The test equipment shall be reconfigured as appropriate for the parameter shown in Table 18.

Table 18: Test Parameter Setting for upper Out Of Band Measurement

Spectrum Analyser Setting	Value	Notes	
Centre frequency	fc _{high}	the highest Operating Frequency	
		in the band	
Span	2 x (500 kHz + f _{hiah OFB} - fc _{hiah})	Ensures that the rightmost mask	
		specification remains within the	
		span	
NOTE: f _{high OFB} is the higher edge of the operational frequency Band.			

Operation of the EUT is restarted, with the appropriate test signal, on the highest Operating Frequency as declared by the manufacturer.

If the equipment is using only one Operating Frequency in the Operational Frequency Band, measurement shall be performed at the nominal Operating Frequency.

The signal shape is recorded when stable and shall be below the spectrum mask for Out Of Band emissions for operating channel and for operational

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	Frequency Band. Step 4: For frequency agile devices, the measurement shall be repeated in each Operational Frequency Band. Step 5: Where required (see clause 5.8.3.1 condition 1), the measurements in step 1 to step 5 shall be repeated under extreme test conditions.
Test Instruments:	Refer to section 5.8 for details
Test Mode:	Refer to section 5.3 for details
Test Results:	Refer to the Report No.: SZAWW180830005-04W

6.10 Transient power

Test Requirement:	EN300 220-2 Clause 4.3	3.6		
Test Method:	EN 300 220-1 Clause 5.10.3			
Limit:	Table 23: Transmitter Transient Power limits			
	Absolute offset from centre frequency	RBW _{REF}	Peak power lii	mit applicable at measurement points
	≤ 400 kHz > 400 kHz	1 kHz 1 kHz		0 dBm -27 dBm
Test Procedure:	centre frequency. These configurations are listed	uipment. be undert ncy shall t offset val in Table 2 able 24: RBW fo	aken in ze be set to a lues and th	ro span mode. The n offset from the operating neir corresponding RBW
	implemented 1, 3, 1 EXAMPLE: If OCW is 25 3 kHz. The r then the RB\	Max (R 1, 3, 10 kHz) mear 0 kHz RBW filter to kHz then the RBV with the RBV will the result of the analyses of the analyses will walke correspond	BW pattern 1, 3, 10 frequency/6 (see 100 kHz 300 kHz as the maximum barandwidth increment value correspond r settings are listed it	1kHz 1kHz 1 kHz 1 kHz
	The used modulation sha settings of Table 25 and frequency. The EUT sha peak value shall be reco each offset frequency manager	500 Gau R May Continue number of sweep seep points is used all be D-M a measur all transmit rded and entioned i ues shall b	13. The and rement shat at least firthe measure at Table 24 pe converte	all be started for each offset ve D-M3 test signal. The urement shall be repeated at l. ed to power values measured
Test Instruments:	Refer to section 5.8 for details			
Test Mode:	Refer to section 5.3 for details			
Test Results:	Refer to the Report No.:	SZAWW	180830005	5-04W

Page 14 of 23

6.11 TX behaviour under Low-voltage Conditions

Test Requirement:	EN 300 220-2 Clause 4.3.8
Test Method:	EN 300 220-1 Clause 5.12.3
Limit:	The equipment shall either: a) remain in the Operating Channel OC without exceeding any applicable limits (e.g. Duty Cycle); or b) reduce its effective radiated power below the Spurious Emission limits without exceeding any applicable limits (e.g. Duty Cycle); or c) shut down, (ceasing function); as the voltage falls below the manufacturers declared operating voltage.
Test Procedure:	Step 1: Operation of the EUT shall be started, on Operating Frequency as declared by the manufacturer, with the appropriate test signal and with the EUT operating at nominal operating voltage. The centre frequency of the transmitted signal shall be measured and noted. Step 2: The operating voltage shall be reduced by appropriate steps until the voltage reaches zero. The centre frequency of the transmitted signal shall be measured and noted. Any abnormal behaviour shall be noted.
Test Instruments:	Refer to section 5.8 for details
Test Mode:	Refer to section 5.3 for details
Test Results:	Refer to the Report No.: SZAWW180830005-04W

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.12 Unwanted emissions in the spurious domain

Operating Mode Transmit mode Transmit mode NOTE 1: f is the measurement frequency. f _c is the Operating Frequency. m is 10 x OCW or 500 kHz, which is 4 x OCW or 100 kHz, which p is 2,5 x OCW. NOTE 2: If the value of RBW used for mer clause 4.3.10.1.	chever is the greater. ever is	RBW _{REF} (see note 2) 1 kHz 10 kHz 100 kHz 1100 kHz 11 kHz 11 kHz 11 kHz 11 kHz 11 kHz 12 three transporters to the second seco
Operating Mode Transmit mode Transmit mode NOTE 1: f is the measurement frequency. f _c is the Operating Frequency. m is 10 x OCW or 500 kHz, which p is 2.5 x OCW. NOTE 2: If the value of RBW used for merclause 4.3.10.1. Table 19: S Frequency 47 MHz to 87,5 MHz to 174 MHz to 175	Frequency Range 9 kHz \leq f $<$ 150 kHz 150 kHz \leq f $<$ 30 MHz 30 MHz \leq f $<$ 50 MHz 30 MHz \leq f $<$ 6- m f _c -m \leq f f _c -m f _c -n \leq f f _c -p f _c +p $<$ f \leq f _c +m f _c +m $<$ f \leq f $<$ th fc+m $<$ f \leq f $<$ th fc+m $<$ f \leq f $<$ f	RBW _{REF} (see note 2) 1 kHz 10 kHz 100 kHz 1100 kHz 11 kHz 11 kHz 11 kHz 11 kHz 11 kHz 12 three transporters to the second seco
NOTE 1: f is the measurement frequency. f _c is the Operating Frequency. m is 10 x OCW or 500 kHz, which n is 4 x OCW or 100 kHz, which p is 2,5 x OCW. NOTE 2: If the value of RBW used for mer clause 4.3.10.1. Table 19: S Frequency 47 MHz to 87,5 MHz to 174 MHz to 175 dB HHz to 4GHz W 1GHz	9 kHz \leq f < 150 kHz 150 kHz \leq f < 30 MHz 30 MHz \leq f < 70 MHz 30 MHz \leq f < 70 m $f_c - m \leq$ f < $f_c - m$ $f_c - m \leq$ f < $f_c - m$ $f_c + m \leq$ f $f_c - m$ $f_c + m \leq$ f $f_c + m$ $f_c + m <$ f \leq f GHz 1 GHz	(see note 2) 1 kHz 10 kHz 100 kHz 100 kHz 1 kHz 1 kHz 1 kHz 100 kHz 100 kHz 100 kHz 100 kHz 100 kHz 100 kHz 1 MHz 3 MHz 4 MHz -30 dBm -47 dBm
NOTE 1: f is the measurement frequency. f _c is the Operating Frequency. m is 10 x OCW or 500 kHz, which is 3 x 0 CW or 100 kHz, which is 2,5 x OCW. NOTE 2: If the value of RBW used for meaclause 4.3.10.1. Table 19: S Frequency 47 MHz to 87,5 MHz to 174 MHz to 175 MHz	$ \begin{array}{c} 150 \text{ kHz} \leq \text{f} < 30 \text{ MHz} \\ 30 \text{ MHz} \leq \text{f} < \text{f}_c \text{-m} \\ \hline f_c \text{-m} \leq \text{f} < f_c \text{-n} \\ \hline f_c \text{-m} \leq \text{f} < f_c \text{-p} \\ \hline f_c \text{+n} \leq \text{f} \leq f_c \text{+n} \\ \hline f_c \text{+n} \leq \text{f} \leq f_c \text{+m} \\ \hline f_c \text{+m} \leq \text{f} \leq f_c \text{+m} \\ \hline f_c \text{+m} \leq \text{f} \leq 6 \text{ GHz} \\ \hline $	1 kHz 10 kHz 100 kHz 100 kHz 11 kHz 1 kHz 1 kHz 1 kHz 100 kHz 100 kHz 100 kHz 100 kHz 1 MHz 3 MHz 4 MHz -30 dBm -47 dBm
f _c is the Operating Frequency. m is 10 x OCW or 500 kHz, which in is 4 x OCW or 100 kHz, which is 2,5 x OCW. NOTE 2: If the value of RBW used for merclause 4.3.10.1. Table 19: S Frequency 47 MHz to 87,5 MHz to 174 MHz to 175	$30 \text{ MHz} \le f < f_c - m$ $f_c - m \le f < f_c - n$ $f_c - m \le f < f_c - n$ $f_c - n \le f < f_c - p$ $f_c + p < f \le f_c + m$ $f_c + m < f \le f_c + m$ $f_c + m < f \le f \text{ GHz}$ $1 \text{ GHz} < f \le 6 \text{ GHz}$ $The proposition of the proposition o$	100 kHz 10 kHz 1 kHz 1 kHz 10 kHz 100 kHz 100 kHz 100 kHz 100 MHz The state of the
f _c is the Operating Frequency. m is 10 x OCW or 500 kHz, which in is 4 x OCW or 100 kHz, which is 2,5 x OCW. NOTE 2: If the value of RBW used for merclause 4.3.10.1. Table 19: S Frequency 47 MHz to 87,5 MHz to 174 MHz to 175	$f_c \cdot n \le f \le f_c \cdot p$ $f_c \cdot p < f \le f_c \cdot m$ $f_c \cdot n < f \le f_c \cdot m$ $f_c \cdot n < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f \le f_c \cdot m$ $f_c \cdot m < f_c \cdot $	1 kHz 1 kHz 10 kHz 100 kHz 100 kHz 1 MHz dwidth correction from Frequencies above 1 000 MHz -30 dBm -47 dBm
f _c is the Operating Frequency. m is 10 x OCW or 500 kHz, which in is 4 x OCW or 100 kHz, which is 2,5 x OCW. NOTE 2: If the value of RBW used for merclause 4.3.10.1. Table 19: S Frequency 47 MHz to 87,5 MHz to 174 MHz to 175		1 kHz 10 kHz 100 kHz 100 kHz 1 MHz twidth correction from Frequencies above 1 000 MHz -30 dBm -47 dBm
f _c is the Operating Frequency. m is 10 x OCW or 500 kHz, which in is 4 x OCW or 100 kHz, which is 2,5 x OCW. NOTE 2: If the value of RBW used for merclause 4.3.10.1. Table 19: S Frequency 47 MHz to 87,5 MHz to 174 MHz to 175	$f_c + n < f \le f_c + m$ $f_c + m < f \le 1 \text{ GHz}$ $1 \text{ GHz} < f \le 6 \text{ GHz}$ The content of the greater. The presence of the greater of the greater. The presence of the greater of the greater of the greater. The presence of the greater of the	10 kHz 100 kHz 1 MHz 1 MHz dwidth correction from Frequencies above 1 000 MHz -30 dBm -47 dBm
f _c is the Operating Frequency. m is 10 x OCW or 500 kHz, which in is 4 x OCW or 100 kHz, which is 2,5 x OCW. NOTE 2: If the value of RBW used for merclause 4.3.10.1. Table 19: S Frequency 47 MHz to 87,5 MHz to 174 MHz to 175	thever is the greater. lever is the greater. lever is the greater. leasurement is different from RBW _{REF} , use band Spurious domain emission limits 74 MHz 230 MHz 230 MHz 3m -36 dBm 3m -57 dBm	1 MHz dwidth correction from Frequencies above 1 000 MHz -30 dBm -47 dBm
f _c is the Operating Frequency. m is 10 x OCW or 500 kHz, which in is 4 x OCW or 100 kHz, which is 2,5 x OCW. NOTE 2: If the value of RBW used for merclause 4.3.10.1. Table 19: S Frequency 47 MHz to 87,5 MHz to 174 MHz to 175	chever is the greater. ever is	Frequencies above 1 000 MHz -30 dBm -47 dBm
Frequency 47 MHz to 87,5 MHz to 174 MHz to 174 MHz to 2470 MHz to 175 MHz to	74 MHz 118 MHz 230 MHz 230 MHz 3m 3m -36 dBm -57 dBm Astenna Touce	-30 dBm -47 dBm
State 174 MHz to 174 MHz to 174 MHz to 2470 MHz to 3470 MHz to 347	118 MHz 230 MHz 790 MHz 3m -36 dBm -57 dBm	-30 dBm -47 dBm
and all other modes -57 dB	-57 dBm	-47 dBm
ow 1GHz	Antenna Towe	
	Antenna Towe	
(Turntable)	Ground Reference Plane Test Receiver	
Ve 1GHz	Horn Antenna Towe	
	Test Receiver Angular Controller	
ne EUT. following test procedure as bw 1GHz test procedure:	below: etup graph above,the EUT sh	nall be placed at the
	stitution method was performe EUT. following test procedure as pw 1GHz test procedure: On the test site as test set	stitution method was performed to determine the actual Ene EUT. following test procedure as below:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	 The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
	4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
	 Repeat step 4 for test frequency with the test antenna polarized horizontally. Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At the lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground.
	7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
	 8. Repeat step 7 with both antennas horizontally polarized for each test frequency. 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula: ERP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBd) where: Pg is the generator output power into the substitution antenna.
	Above 1GHz test procedure:
	Different between above is the test site, change from Semi- Anechoic
	Chamber to fully Anechoic Chamber, and the test antenna do not need to
	raise from 1 to 4m, just test in 1.5m height.
Test Instruments:	Refer to section 5.8 for details
Test Mode:	Refer to section 5.3 for details
Test Results:	Refer to the Report No.: SZAWW180830005-04W

Page 17 of 23

6.13 Receiver Requirements

Receiver Classification, Table 1 of EN 300 220-1. Table 1: Receiver categories			
Receiver category	Description		
1	Category 1 is a high performance level of receiver. In particular to be used where the operation of a SRD may have inherent safety of human life implications.		
1.5	Category 1.5 is an improved performance level of receiver category 2.		
2	Category 2 is standard performance level of receiver.		

6.13.1 RX sensitivity

Not applicable, since the test applied to with polite spectrum access facility only.

6.13.2 Blocking

Test Requirement:	EN 300 220-2 Clause 4.4.2		
Test Method:	EN 300 220-1 Clause 5.18.6		
Limit:	Table 40: Blocking leve	el parameters for RX category 3	
	Requirement	Limits Receiver category 3	
	Blocking at ±2 MHz from OC edge f _{high} and f _{low}	≥ -80 dBm	
	Blocking at ±10 MHz from OC edge f _{high} and f _{low} Blocking at ±5 % of Centre Frequency or 15 MHz,	≥ -60 d βm	
	whichever is the greater	≥ 60 dBm	
Test Setup:	Signal Generator A Signal Generator B	ombiner EUT	
	Figure 10: Blocking r	neasurement arrangement	
Test Procedure:	to the minimum level which gives to EUT or the reference level in Table output level of generator A shall the otherwise specified in technical redictions and the otherwise specified in technical redictions. Step 2: Signal generator B is powered on a operating frequency - offset	en be increased by 3 dB unless quirement. and set to operate at the nominal ency. d on and the signal amplitude is which the wanted performance criterion enchanged, the receiver shall be measuring equipment. The power into measured and noted. Sucted power received from generator e antenna connector for conducted test see clause C.5.4). For equal to the blocking power level enent clause. Shall be repeated with signal offsets at eshall be recorded in the test report for the signal offset. Recorded in the Test Report Notes Nominal centre frequency of the receiver Power level of signal generator A Power level of signal generator B er is the receiver category, steps 1 to 4 reator A level adjusted +13 dB higher	

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test Instruments:	Refer to section 5.8 for details
Test Mode:	Refer to section 5.3 for details
Test Results:	Pass

Measurement Data:

Requirement	blocking level	Limits	Test Result
·	(dBm)	Receiver category 2	
Blocking at ±2 MHz from OC edge fhigh and flow	-65	≥ -69 dBm	Pass
Blocking at ±10 MHz from OC edge fhigh and flow	-46	≥ -44 dBm	Pass
Blocking at ±5 % of Centre Frequency or 15 MHz, whichever is the greater	-45	≥ -44 dBm	Pass

6.14 Polite spectrum access requirements

6.14.1 Clear Channel Assessment threshold

Not applicable, since the test applied to with polite spectrum access facility only.

6.14.2 Polite spectrum access timing parameters

Not applicable, since the test applied to with polite spectrum access facility only.

6.14.3 Adaptive Frequency Agility

Not applicable, since the test applied to with polite spectrum access facility only.

Test Setup Photo

Radiated Emission Above 1GHz

8 EUT Constructional Details

Reference to the test report No. JYTSZB-R01-2100195

