

A reference point: Non-Cooperative Games

A **non-cooperative** game is defined by

- \blacktriangleright a set of agents (players) $N = \{1, ..., n\}$
- for each agent $i \in N$, a set of actions S_i
- ▶ for each agent $i \in N$, a utility function u_i : $S_1 \times \times S_n \rightarrow R$

A reference point: Non-Cooperative Games

A **non-cooperative** game is defined by

- \blacktriangleright a set of agents (players) $N = \{1, ..., n\}$
- \blacktriangleright for each agent $i \in N$, a set of actions S_i
- ▶ for each agent $i \in N$, a utility function $u_i : S_1 \times ... \times S_n \to \mathbb{R}$

Observe that an agent's utility depends not just on her action, but on actions of other agents.

Thus, for agent i finding the best action involves deliberating about what others will do.

Prisoners' dilemma: the rational outcome

- ► P1's reasoning:
 - ▶ if P2 stays quiet, then I should confess
 - ► if P2 confesses, then I should confess, too
- ► P2 reasons in the same way

Prisoners' dilemma: the rational outcome

- ▶ P1's reasoning:
 - ▶ if P2 stays quiet, then I should confess
 - ▶ if P2 confesses, then I should confess, too
- ► P2 reasons in the same way

Result: both confess and get 3 years in prison

However, if they chose to cooperate and stay quiet, they could get away with 1 year each

Duicono

Prisoners' dilemma: the rational outcome

- ▶ P1's reasoning:
 - ▶ if P2 stays quiet, then I should confess
 - ▶ if P2 confesses, then I should confess, too
- ► P2 reasons in the same way

Result: both confess and get 3 years in prison

However, if they chose to cooperate and stay quiet, they could get away with 1 year each

So, why do they not cooperate?

■ Beyond Non-Cooperative Games

- Cooperation does not occur in prisoners' dilemma, because players cannot make binding agreements
- ▶ But, what if binding agreements are possible?
- ► This is exactly the class of scenarios studied by cooperative game theory (and the topic of this lesson)

Coalitions in Cooperative Game Theory

- ▶ Task Allocation
- ▶ Resource allocation
- Complementary agent expertise

Construction Workers (agents):

- p:plumbers
- c: carpenters
- e : electricians

Agents have to decide:

who to join

Coalition
structure
$$CS=,
 C_2 , $C_3>$$$

Agents have to decide:

- who to join
- how to act

Coalition structure
$$CS = \langle C_1, C_2, C_3 \rangle$$

Action vector: $\mathbf{a} = \langle a_{C1}, a_{C2}, a_{C3} \rangle$

Agents have to decide:

- who to join
- how to act
- how to share profit

Coalition
structure
$$CS=,
 C_2 , $C_3>$$$

Action vector: $\mathbf{a} = \langle a_{C1}, a_{C2}, a_{C3} \rangle$

$$u(C_3 | a_{C3}) = 30$$

Agents have to decide:

- who to join
- how to act
- how to share profit

Coalition structure CS=<C₁,

Action vector: $\mathbf{a} = \langle a_{C1}, a_{C2}, a_{C3} \rangle$

$$u(C_3 | a_{C3}) = 30$$

Allocation: $< p_1 = 12, c_2 = 3, e_1 = 15 >$

Coalitional Games

- ► Players form *coalitions*
- ► Each coalition is associated with a worth
- ► A total worth has to be distributed

Coalitional Games

- ► Players form *coalitions*
- ► Each coalition is associated with a worth
- ► A total worth has to be distributed

- ▶ What can selfish agents expect to get out of joining a coalition?
- ► What does it mean to have stable coalitions?
- ► How do coalitions emerge?
- ► How can coalitional stability be achieved?
- ► How much does one lose by decentralization?
- ► How can a designer achieve optimality in task execution by forming necessary coalitions?

A taxonomy of Coalitional Games

Cooperative games model scenarios, where

- agents can benefit from cooperation
- ▶ binding agreements are possible
- ▶ actions are taken by groups of agents

A taxonomy of Coalitional Games

Cooperative games model scenarios, where

- agents can benefit from cooperation
- ▶ binding agreements are possible
- ▶ actions are taken by groups of agents

Transferable utility games:

payoffs are given to the group and then divided among its members

Non Transferable utility games:

group actions result in payoffs to individual group members

■NTU Games: Writing Papers

N researchers working at N different universities can form groups to write papers.

- ► Each group of researchers can work together:
 - ► The composition of a group determines the quality of the papers they produce.

■NTU Games: Writing Papers

N researchers working at N different universities can form groups to write papers.

- ► Each group of researchers can work together:
 - ► The composition of a group determines the quality of the papers they produce.
- ► Each author receives a payoff from their own university
 - promotion
 - bonus
 - teaching load reduction

Payoffs are non-transferable

TU Games: Buying Ice-Cream

N children, each has some amount of money: the i-th child has b_i dollars

Three types of ice-cream tubs are for sale:

- ► Type 1 costs \$7, contains 500g
- ► Type 2 costs \$9, contains 750g
- ➤ Type 3 costs \$11, contains 1kg

TU Games: Buying Ice-Cream

N children, each has some amount of money: the i-th child has b; dollars

Three types of ice-cream tubs are for sale:

- ► Type 1 costs \$7, contains 500g
- Type 2 costs \$9, contains 750g
 Type 3 costs \$11, contains 1kg

- ► Children have utility for ice-cream, and do not care about money
- ► The payoff of each group is the maximum quantity of ice-cream the members of the group can buy by pooling their money
- ► The ice-cream can be shared arbitrarily within the group

Characteristic Function Games

In general TU games, the payoff obtained by a coalition depends on the actions chosen by other coalitions. These games are also known as partition function games (PFG).

Characteristic Function Games

In general TU games, the payoff obtained by a coalition depends on the actions chosen by other coalitions. These games are also known as partition function games (PFG).

Characteristic function games (CFG):

- ► The payoff of each coalition only depends on the action of that coalition
- ► In such games, each coalition can be identified with the profit it obtains by choosing its best action (Ice Cream game is a CFG)

Classes of Cooperative Games

- Any TU game can be represented as an NTU game with a continuum of actions
- each payoff division outcome in the TU game can be interpreted as an action in the NTU game

Classes of Cooperative Games

- Any TU game can be represented as an NTU game with a continuum of actions
- each payoff division outcome in the TU game can be interpreted as an action in the NTU game

Classes of Cooperative Games

- ► Any TU game can be represented as an NTU game with a continuum of actions
- ► each payoff division outcome in the TU game can be interpreted as an action in the NTU game

Characteristic function games are often simply called "TU Games"

Formalization of TU Games

A transferable utility game is a pair (N, v), where:

- $N = \{1, ..., n\}$ is the set of players (also called grand coalition)
- \triangleright v: $2^{N} \rightarrow \mathbb{R}$ is the characteristic function
 - for each subset of players C, v(C) is the amount that the members of C can earn by working together

Formalization of TU Games

A transferable utility game is a pair (N, v), where:

- \triangleright $N = \{1, ..., n\}$ is the set of players (also called grand coalition)
- \triangleright v: $2^{N} \rightarrow \mathbb{R}$ is the characteristic function
 - ▶ for each subset of players C, v(C) is the amount that the members of C can earn by working together

Usually it is assumed that v is

- ightharpoonup normalized: $v(\emptyset) = 0$
- ▶ non-negative: $v(C) \ge 0$ for any $C \subseteq N$
- ightharpoonup monotone: $v(C) \le v(D)$ for any C, D such that $C \subseteq D$

Ice-cream game: characteristic function

C: €6

M: €4

P: **€**4

w = 500p = €7

w = 750p = €9

w = 1000p = €11

Ice-cream game: characteristic function

C: €6

M: €4

P: **€**4

w = 500p = €7

w = 750p = **€**9

w = 1000p = €11

$$v(\emptyset) = v(\{C\}) = v(\{M\}) = v(\{P\}) = 0$$

 $v(\{C, M\}) = 750, v(\{C, P\}) = 750, v(\{M, P\}) = 500$
 $v(\{C, M, P\}) = 1000$

Transferable Utility Games: Outcomes

An outcome of a TU game G = (N, v) is a pair (CS, x), where:

- $ightharpoonup CS = (C_1, ..., C_k)$ is a coalition structure, i.e., a partition of N:
 - $ightharpoonup U_i C_i = N, C_i \cap C_i = \emptyset \text{ for } i \neq j$
- $ightharpoonup \underline{\mathbf{x}} = (\mathbf{x}_1, ..., \mathbf{x}_n)$ is a payoff vector, which distributes the value of each coalition in CS:
 - \triangleright $\Sigma_{i \in C} x_i = v(C)$ for each C is CS (*Efficiency*)

Outcomes: Example

Suppose $v(\{1, 2, 3\}) = 9$, $v(\{4, 5\}) = 4$

Then, (({1, 2, 3}, {4, 5}), (3, 3, 3, 3, 1)) is an outcome

Outcomes: Example

Suppose $v(\{1, 2, 3\}) = 9$, $v(\{4, 5\}) = 4$

Then, (({1, 2, 3}, {4, 5}), (3, 3, 3, 3, 1)) is an outcome

Instead, (({1, 2, 3}, {4, 5}), (2, 3, 2, 3, 3)) is **not** an outcome. *Transfers* between coalitions are not allowed

Outcomes: Minimum requirement

Suppose $v(\{1, 2, 3\}) = 9$, $v(\{4, 5\}) = 4$

Then, (({1, 2, 3}, {4, 5}), (3, 3, 3, 3, 1)) is an outcome

Instead, (({1, 2, 3}, {4, 5}), (2, 3, 2, 3, 3)) is **not** an outcome. *Transfers* between coalitions are not allowed

An outcome (CS, <u>x</u>) is called an imputation if it satisfies individual rationality:

$$x_i \ge v(\{i\})$$
 for all $i \in N$

Superadditive Games

A TU game G = (N, v) is called **superadditive** if $v(C \cup D) \ge v(C) + v(D)$ for any two disjoint coalitions C and D.

Example: $v(C) = |C|^2$: $v(C \cup D) = (|C|+|D|)^2 \ge |C|^2+|D|^2 = v(C) + v(D)$

Superadditive Games

A TU game G = (N, v) is called **superadditive** if $v(C \cup D) \ge v(C) + v(D)$ for any two disjoint coalitions C and D.

Example:
$$v(C) = |C|^2$$
: $v(C \cup D) = (|C|+|D|)^2 \ge |C|^2 + |D|^2 = v(C) + v(D)$

In superadditive games, two coalitions can always merge without losing money; hence, we can assume that players form the grand coalition

Superadditive Games

A TU game G = (N, v) is called **superadditive** if $v(C \cup D) \ge v(C) + v(D)$ for any two disjoint coalitions C and D.

Example:
$$v(C) = |C|^2$$
: $v(C \cup D) = (|C|+|D|)^2 \ge |C|^2 + |D|^2 = v(C) + v(D)$

$$v(\emptyset) = v(\{C\}) = v(\{M\}) = v(\{P\}) = 0$$

 $v(\{C, M\}) = 750, v(\{C, P\}) = 750, v(\{M, P\}) = 500$
 $v(\{C, M, P\}) = 1000$

Superadditive Games

<u>Convention</u>: in superadditive games, we identify outcomes with payoff vectors for the grand coalition

 \blacktriangleright i.e., an outcome is simply a vector $\underline{\mathbf{x}} = (\mathbf{x}_1, ..., \mathbf{x}_n)$ with $\Sigma_{i \in \mathbb{N}} \mathbf{x}_i = \mathbf{v}(\mathbb{N})$

<u>Caution</u>: many papers define outcomes in this way even if the game is not superadditive

Consider the ice-cream game with the following characteristic function

$$v(\emptyset) = v(\{C\}) = v(\{M\}) = v(\{P\}) = 0$$

 $v(\{C, M\}) = 750, v(\{C, P\}) = 750, v(\{M, P\}) = 500$
 $v(\{C, M, P\}) = 1000$

Consider the ice-cream game with the following characteristic function

$$v(\emptyset) = v(\{C\}) = v(\{M\}) = v(\{P\}) = 0$$

 $v(\{C, M\}) = 750, v(\{C, P\}) = 750, v(\{M, P\}) = 500$
 $v(\{C, M, P\}) = 1000$

This is a superadditive game: outcomes are payoff vectors (ways to divide 1000). How should the players share the ice-cream?

Consider the ice-cream game with the following characteristic function

$$v(\emptyset) = v(\{C\}) = v(\{M\}) = v(\{P\}) = 0$$

 $v(\{C, M\}) = 750, v(\{C, P\}) = 750, v(\{M, P\}) = 500$
 $v(\{C, M, P\}) = 1000$

This is a superadditive game: outcomes are payoff vectors (ways to divide 1000). How should the players share the ice-cream?

▶ If they share as (200, 200, 600), Charlie and Marcie can get more icecream by buying a 750g tub on their own, and splitting it equally

Consider the ice-cream game with the following characteristic function

$$v(\emptyset) = v(\{C\}) = v(\{M\}) = v(\{P\}) = 0$$

 $v(\{C, M\}) = 750, v(\{C, P\}) = 750, v(\{M, P\}) = 500$
 $v(\{C, M, P\}) = 1000$

This is a superadditive game: outcomes are payoff vectors (ways to divide 1000). How should the players share the ice-cream?

- ▶ If they share as (200, 200, 600), Charlie and Marcie can get more icecream by buying a 750g tub on their own, and splitting it equally
- ► The outcome (200, 200, 600) is not **stable**!

Transferable Utility Games: Stability

<u>Definition</u>: the core of a game is the set of all stable outcomes, i.e., outcomes that no coalition wants to deviate from.

$$core(G) = \{(CS, \mathbf{x}) \mid \Sigma_{i \in C} x_i \ge v(C) \text{ for any } C \subseteq N\}$$

That is, each coalition earns at least as much as it would earn on its own.

Transferable Utility Games: Stability

<u>Definition</u>: the core of a game is the set of all stable outcomes, i.e., outcomes that no coalition wants to deviate from.

$$core(G) = \{(CS, \mathbf{x}) \mid \Sigma_{i \in C} x_i \ge v(C) \text{ for any } C \subseteq N\}$$

Suppose

- \triangleright $v(\{1, 2, 3\}) = 9,$
- \triangleright $v(\{4, 5\}) = 4,$
- \triangleright $v(\{2, 4\}) = 7$

(({1, 2, 3}, {4, 5}), (3, 3, 3, 3, 1)) is NOT in the core

Transferable Utility Games: Stability

<u>Definition</u>: the core of a game is the set of all stable outcomes, i.e., outcomes that no coalition wants to deviate from.

$$core(G) = \{(CS, \mathbf{x}) \mid \Sigma_{i \in C} x_i \ge v(C) \text{ for any } C \subseteq N\}$$

Suppose

- \triangleright $v(\{1, 2, 3\}) = 9,$
- \triangleright $v(\{4, 5\}) = 4,$
- \triangleright $v(\{2, 4\}) = 7$

 $((\{1, 2, 3\}, \{4, 5\}), (3, 3, 3, 1))$ is NOT in the core $v(\{2, 4\}) = 7$

lce-cream game: Core

Consider the ice-cream game with the following characteristic function

$$v(\emptyset) = v(\{C\}) = v(\{M\}) = v(\{P\}) = 0$$

 $v(\{C, M\}) = 750, v(\{C, P\}) = 750, v(\{M, P\}) = 500$
 $v(\{C, M, P\}) = 1000$

- ➤ (200, 200, 600) is not in the core:
 - $V(\{C, M\}) > x_C + x_M$
- ► (500, 250, 250) is in the core:
 - no subgroup of players can deviate so that each member of the subgroup gets more

Ice-cream game: Core Stability

Consider the ice-cream game with the following characteristic function

$$v(\emptyset) = v(\{C\}) = v(\{M\}) = v(\{P\}) = 0$$

 $v(\{C, M\}) = 750, v(\{C, P\}) = 750, v(\{M, P\}) = 500$
 $v(\{C, M, P\}) = 1000$

 (x_C,x_M,x_P) is in the core if, and only if:

- \rightarrow $X_P + X_M \ge V(\{P, M\})$

$$x_C \ge v(\{C\})$$

► $x_C \ge v(\{C\})$ ► $x_P \ge v(\{P\})$ (individual rationality)

$$\rightarrow$$
 $x_M \ge v((M))$

The core is a very attractive solution concept However, some games have empty cores

$$G = (\{1, 2, 3\}, v), v(C) = 1 \text{ if } |C| > 1 \text{ and } v(C) = 0 \text{ otherwise}$$

The core is a very attractive solution concept However, some games have empty cores

$$G = (\{1, 2, 3\}, v), v(C) = 1 \text{ if } |C| > 1 \text{ and } v(C) = 0 \text{ otherwise}$$

- ightharpoonup Assume CS = ({1}, {2}, {3})
- ► Then, the grand coalition can deviate

$$X_1 + X_2 + X_3 = v(\{1\}) + v(\{2\}) + v(\{3\}) < v(\{1,2,3\})$$

The core is a very attractive solution concept

However, some games have empty cores

$$G = (\{1, 2, 3\}, v), v(C) = 1 \text{ if } |C| > 1 \text{ and } v(C) = 0 \text{ otherwise}$$

- ightharpoonup Assume CS = ({1,2}, {3})
- ► Then, either 1 or 2 gets less than 1, so can deviate with 3
 - \blacktriangleright X1+ X3= X1+ 0 < 1 < $v(\{1,3\})$

The core is a very attractive solution concept

However, some games have empty cores

$$G = (\{1, 2, 3\}, v), v(C) = 1 \text{ if } |C| > 1 \text{ and } v(C) = 0 \text{ otherwise}$$

- ightharpoonup Assume CS = ({1,2}, {3})
- ► Then, either 1 or 2 gets less than 1, so can deviate with 3 ► $X_1 + X_3 = X_1 + 0 < 1 < v(\{1,3\})$
- ➤ Same argument for CS = ({1, 3}, {2}) or CS = ({2, 3}, {1})

The core is a very attractive solution concept

However, some games have empty cores

$$G = (\{1, 2, 3\}, v), v(C) = 1 \text{ if } |C| > 1 \text{ and } v(C) = 0 \text{ otherwise}$$

- Assume $CS = (\{1,2,3\})$
- Then, $x_i > 0$ holds for some i, (say 3)
 - ightharpoonup so $x(\{1,2\}) < 1$, yet $v(\{1,2\}) = 1$

If the core is empty, then we may want to find approximately stable outcomes

Need to relax the notion of the core:

```
core: (CS, \mathbf{x}): x(C) \ge v(C) for all C \subseteq N
```

$$\epsilon$$
-core: (CS, $\underline{\mathbf{x}}$): $\mathbf{x}(C) \ge \mathbf{v}(C) - \epsilon$ for all $C \subseteq N$

It is usually defined for superadditive games only

If the core is empty, then we may want to find approximately stable outcomes

Need to relax the notion of the core:

```
core: (CS, \underline{x}): x(C) \ge v(C) for all C \subseteq N
```

$$\epsilon$$
-core: (CS, x): x(C) ≥ v(C) - ϵ for all C \subseteq N

It is usually defined for superadditive games only

```
G = (\{1, 2, 3\}, v), with v(C) = 1 if |C| > 1, v(C) = 0 otherwise
```

- ▶ 1/3-core is non-empty: $(1/3, 1/3, 1/3) \in 1/3$ -core
- \triangleright ε-core is empty for any ϵ < 1/3:
 - ► $x_i \ge 1/3$ for some i = 1, 2, 3; so $x(N\{i\}) \le 2/3$, $v(N\{i\}) = 1$

ε-Core and the Least Core

Let $\varepsilon^*(G) = \inf \{ \varepsilon \mid \varepsilon \text{-core of } G \text{ is not empty} \}$

 \blacktriangleright it can be shown that $\epsilon^*(G)$ -core is not empty

Definition: $\varepsilon^*(G)$ -core is the least core of G

 \triangleright $\epsilon^*(G)$ is called the value of the least core

```
G = (\{1, 2, 3\}, v), with v(C) = 1 if |C| > 1, v(C) = 0 otherwise
```

- ▶ 1/3-core is non-empty: $(1/3, 1/3, 1/3) \in 1/3$ -core
- \triangleright ε-core is empty for any ϵ < 1/3:
 - ► $x_i \ge 1/3$ for some i = 1, 2, 3; so $x(N\{i\}) \le 2/3$, $v(N\{i\}) = 1$

Advanced Solution Concepts

There are many solution concepts:

- Nucleolus
- Bargaining set
- Kernel

more sophisticated stability considerations

- Shapley value
- ▶ Banzhaf index

based on the concept of fairness

Advanced Solution Concepts

There are many solution concepts:

- Nucleolus
- ▶ Bargaining set
- Kernel

more sophisticated stability considerations

- Shapley value
- ▶ Banzhaf index

based on the concept of fairness

How can stability be measured?

$$e(S,x) = v(S) - x(S)$$

The excess is a measure of the dissatisfaction of the coalition S

How can stability be measured?

$$e(S, x) = v(S) - x(S)$$

The excess is a measure of the dissatisfaction of the coalition S _ _ _ _ _

$$egin{aligned} v(\{1\}) &= v(\{2\}) = v(\{3\}) = 0 \ v(\{1,2\}) &= v(\{1,3\}) = v(\{2,3\}) = 1 \ v(\{1,2,3\}) &= 3 \end{aligned}$$

How can stability be measured?

$$e(S, x) = v(S) - x(S)$$

The excess is a measure of the dissatisfaction of the coalition S_{----}

$$egin{aligned} x &= (0,0,3) \Longrightarrow e(\{1,2\},x) = v(\{1,2\}) - (x_1 + x_2) = 1 - 0 = 1 \ & x &= (1,2,0) \Longrightarrow e(\{1,2\},x) = v(\{1,2\}) - (x_1 + x_2) = 1 - 3 = -2 \end{aligned}$$

$$egin{aligned} v(\{1\}) &= v(\{2\}) = v(\{3\}) = 0 \ v(\{1,2\}) &= v(\{1,3\}) = v(\{2,3\}) = 1 \ v(\{1,2,3\}) &= 3 \end{aligned}$$

How can stability be measured?

$$e(S,x) = v(S) - x(S)$$

The excess is a measure of the dissatisfaction of the coalition S_____

$$x = (0,0,3) \Longrightarrow e(\{1,2\},x) = v(\{1,2\}) - (x_1 + x_2) = 1 - 0 = 1$$

$$x=(1,2,0)\Longrightarrow e(\{1,2\},x)=v(\{1,2\})-(x_1+x_2)=1-3=-2$$

$$egin{aligned} v(\{1\}) &= v(\{2\}) = v(\{3\}) = 0 \ v(\{1,2\}) &= v(\{1,3\}) = v(\{2,3\}) = 1 \ v(\{1,2,3\}) &= 3 \end{aligned}$$

Let's arrange excess values in a non-increasing order

$$x = (1, 2, 0) \Longrightarrow heta(x) = \{0, -0, -1, -1, -2, -2\}$$

$$\begin{split} v(\{1\}) &= v(\{2\}) = v(\{3\}) = 0 \\ v(\{1,2\}) &= v(\{1,3\}) = v(\{2,3\}) = 1 \\ v(\{1,2,3\}) &= 3 \end{split}$$

Let's arrange excess values in a non-increasing order

Core imputation

$$x = (1, 2, 0) \Longrightarrow \theta(x) = \{0, -0, -1, -1, -2, -2\}$$

$$egin{aligned} v(\{1\}) &= v(\{2\}) = v(\{3\}) = 0 \ v(\{1,2\}) &= v(\{1,3\}) = v(\{2,3\}) = 1 \ v(\{1,2,3\}) &= 3 \end{aligned}$$

Let's arrange excess values in a non-increasing order

$$x^* = (1, 1, 1) \Longrightarrow heta(x^*) = \{-1, -1, -1, -1, -1, -1\}$$
 $x = (1, 2, 0) \Longrightarrow heta(x) = \{0, -0, -1, -1, -2, -2\}$

 $egin{aligned} v(\{1\}) &= v(\{2\}) = v(\{3\}) = 0 \ v(\{1,2\}) &= v(\{1,3\}) = v(\{2,3\}) = 1 \ v(\{1,2,3\}) &= 3 \end{aligned}$

Let's arrange excess values in a non-increasing order

$$x^* = (1, 1, 1) \Longrightarrow heta(x^*) = \{-1, -1, -1, -1, -1, -1\}$$

 $x = (1, 2, 0) \Longrightarrow heta(x) = \{0, -0, -1, -1, -2, -2\}$

$$egin{aligned} v(\{1\}) &= v(\{2\}) = v(\{3\}) = 0 \ v(\{1,2\}) &= v(\{1,3\}) = v(\{2,3\}) = 1 \ v(\{1,2,3\}) &= 3 \end{aligned}$$

Let's arrange excess values in a non-increasing order

<u>Definition</u> [Schmeidler]: The nucleolus ${}^{\mathscr{N}(\mathcal{G})}$ of a game ${}^{\mathscr{G}}$ is the set

$$\mathscr{N}(\mathcal{G}) = \{x \in X(\mathcal{G}) \, |
ot \exists y \in X(\mathcal{G}) \, \mathrm{s.t.} \, heta(y) \prec heta(x) \}$$

$$x^* = (1,1,1) \Longrightarrow heta(x^*) = \{-1,-1,-1,-1,-1,-1\} \ x = (1,2,0) \Longrightarrow heta(x) = \{0,-0,-1,-1,-2,-2\}$$

$$egin{aligned} v(\{1\}) &= v(\{2\}) = v(\{3\}) = 0 \ v(\{1,2\}) &= v(\{1,3\}) = v(\{2,3\}) = 1 \ v(\{1,2,3\}) &= 3 \end{aligned}$$

Advanced Solution Concepts

There are many solution concepts:

- Nucleolus
- Bargaining set
- Kernel

more sophisticated stability considerations

- Shapley value
- ▶ Banzhaf index

based on the concept of fairness

Objections and counterobjections

An outcome is not in the core if some coalition objects to it; but is the objection itself **plausible**?

Fix an imputation \underline{x} for a superadditive game G=(N, v)

A pair (\underline{y}, S) , where \underline{y} is an imputation and $S \subseteq N$, is an objection of player i against player j to \underline{x} if

- ightharpoonup $i \in S, j \notin S, y(S) = v(S)$
- \triangleright $y_k > x_k$ for all $k \in S$

A pair (\underline{z}, T) , where \underline{z} is an imputation and $T \subseteq N$, is a counterobjection to the objection (\underline{y}, S) if

- ightharpoonup $j \in T$, $i \notin T$, z(S) = v(S), $T \cap S \neq \emptyset$
- $ightharpoonup z_k \ge x_k$ for all $k \in T \setminus S$
- $\triangleright z_k^n \ge y_k^n$ for all $k \in T \cap S$

Bargaining Set

An objection is said to be justified if it does not admit a counterobjection

<u>Definition</u>: the **bargaining set** of a game G consists of all imputations that do not admit a justified objection

However, they may admit unjustified objections

The core is the set of all imputations that do not admit an objection.

core ⊆ bargaining set

Advanced Solution Concepts

There are many solution concepts:

- Nucleolus
- Bargaining set
- Kernel

more sophisticated stability considerations

- ▶ Shapley value
- Banzhaf index

based on the concept of fairness

Stability vs. Fairness

Consider the game $G = (\{1, 2\}, v)$

- ▶ where $v(\emptyset) = 0$, $v(\{1\}) = v(\{2\}) = 5$, $v(\{1, 2\}) = 20$
- \triangleright (15, 5) is in the core
 - player 2 cannot benefit by deviating

The question is: Is (15, 5) fair?

Stability vs. Fairness

Consider the game $G = (\{1, 2\}, v)$

- ▶ where $v(\emptyset) = 0$, $v(\{1\}) = v(\{2\}) = 5$, $v(\{1, 2\}) = 20$
- \triangleright (15, 5) is in the core
 - player 2 cannot benefit by deviating

The question is: Is (15, 5) fair?

No! Since 1 and 2 are symmetric

Outcomes in the core may be unfair!

How do we divide payoffs in a fair way?

■ Marginal contribution

A fair outcome would reward each agent according to their contribution.

First attempt:

```
Given a game G = (N, v), set x_i = v(\{1, ..., i-1, i\}) - v(\{1, ..., i-1\})
```

- ► That is, the payoff to each player is their marginal contribution to the coalition of their predecessors
- ► We have $x_1 + ... + x_n = v(N)$; \underline{x} is a payoff vector.

■ Marginal contribution

A fair outcome would reward each agent according to their contribution.

First attempt:

Given a game G = (N, v), set $x_i = v(\{1, ..., i-1, i\}) - v(\{1, ..., i-1\})$

- ► That is, the payoff to each player is their marginal contribution to the coalition of their predecessors
- ► We have $x_1 + ... + x_n = v(N)$; \underline{x} is a payoff vector.

This does not work, as the payoff to each player depends on the order

- ► $G = (\{1, 2\}, v)$, with $v(\emptyset) = 0$, $v(\{1\}) = v(\{2\}) = 5$, $v(\{1, 2\}) = 20$
- \rightarrow $x_1 = v(1) v(\emptyset) = 5, x_2 = v(\{1, 2\}) v(\{1\}) = 15$

Average Marginal Contribution

<u>Idea</u>: to remove the dependence on ordering, we can average over all possible orderings.

By example:

$$G = (\{1, 2\}, v)$$
, where $v(\emptyset) = 0$, $v(\{1\}) = v(\{2\}) = 5$, $v(\{1, 2\}) = 20$

▶ 1, 2:
$$x_1 = v(1) - v(\emptyset) = 5$$
, $x_2 = v(\{1, 2\}) - v(\{1\}) = 15$

▶ 2, 1:
$$y_2 = v(2) - v(\emptyset) = 5$$
, $y_1 = v(\{1, 2\}) - v(\{2\}) = 15$

$$z_1 = (x_1 + y_1)/2 = 10$$
, $z_2 = (x_2 + y_2)/2 = 10$
the resulting outcome is fair!

Generalization: Shapley Value

A permutation of {1,..., n} is a one-to-one mapping from {1,..., n} to itself

Let P(N) denote the set of all permutations of N

Let $S_{\pi}(i)$ denote the set of predecessors of i in a permutation $\pi \in P(N)$

For $C \subseteq N$, let $\delta_i(C) = v(C \cup \{i\}) - v(C)$ be the marginal contribution of player i to C

The **Shapley value** of player i in a game G = (N, v) with |N| = n is

$$\varphi_i(G) = 1/n! \sum_{\pi: \pi \in P(N)} \delta_i(S_{\pi}(i))$$

Shapley value: probabilistic interpretation

Suppose that we choose a permutation of players uniformly at random, among all possible permutations of N

Then, φ_i is the expected marginal contribution of player i to the coalition of their predecessors.

Shapley value: properties (1)

Proposition:

in any game G, $\phi_1 + ... + \phi_n = v(N)$

Shapley value: properties (2)

Definition:

a player i is a dummy if $v(C) = v(C \cup \{i\})$ for any $C \subseteq N$

Proposition:

if a player i is a dummy, then $\varphi_i = 0$

Shapley value: properties (3)

Definition:

```
two players i and j are symmetric if v(C \cup \{i\}) = v(C \cup \{j\}) for any C \subseteq N\setminus\{i, j\}
```

Proposition:

if i and j are symmetric, then $\varphi_i = \varphi_i$

Shapley value: properties (4)

Definition:

Let $G_1 = (N, u)$ and $G_2 = (N, v)$ be two games with the same set of players. Then $G = G_1 + G_2$ is the game with the set of players N and characteristic function w given by

$$w(C) = u(C) + v(C)$$
 for all $C \subseteq N$

Proposition:

$$\varphi_i(G_1+G_2) = \varphi_i(G_1) + \varphi_i(G_2)$$

Axiomatic characterization

Consider the following properties:

- 1. Efficiency: $\varphi_1 + ... + \varphi_n = V(N)$
- 2. Dummy: if i is a dummy, $\varphi_i = 0$
- 3. Symmetry: if i and j are symmetric, $\varphi_i = \varphi_i$
- 4. Additivity: $\varphi_i(G_1 + G_2) = \varphi_i(G_1) + \varphi_i(G_2)$

<u>Theorem</u>: The Shapley value is the only payoff distribution scheme which satisfies the properties 1-4

Axiomatic characterization

Consider the following properties:

- 1. Efficiency: $\varphi_1 + ... + \varphi_n = v(N)$
- 2. Dummy: if i is a dummy, $\varphi_i = 0$
- 3. Symmetry: if i and j are symmetric, $\varphi_i = \varphi_j$ 4. Additivity: $\varphi_i(G_1+G_2) = \varphi_i(G_1) + \varphi_i(G_2)$

Theorem: The Shapley value is the only payoff distribution scheme which satisfies the properties 1-4

Theorem: The Shapely value can be also written as

$$\sum_{C \subseteq N} \frac{(|N| - |C|)!(|C| - 1)!}{|N|!} (\varphi(C) - \varphi(C \setminus \{i\}))$$

Slides based on

- ► Gianluigi Greco, Francesco Lupia, Francesco Scarcello: The Tractability of the Shapley Value over Bounded Treewidth Matching Games. IJCAI 2017
- ► Georgios Chalkiadakis, Gianluigi Greco, Evangelos Markakis: Characteristic function games with restricted agent interactions: Core-stability and coalition structures. Artif. Intell. 232: 76-113 (2016)
- ► Gianluigi Greco, Francesco Lupia, Francesco Scarcello: Structural Tractability of Shapley and Banzhaf Values in Allocation Games. IJCAI 2015
- ► Gianluigi Greco, Enrico Malizia, Luigi Palopoli, Francesco Scarcello: **The Complexity of the Nucleolus in Compact Games**. TOCT 7(1): 3:1-3:52 (2014)
- ► Gianluigi Greco, Enrico Malizia, Luigi Palopoli, Francesco Scarcello: On the complexity of core, kernel, and bargaining set. Artif. Intell. 175(12-13): 1877-1910 (2011)
- Material from tutorials given by Gergios Chalkiadakis, Edith Elkind, Michael Wooldridge and their textbook on «Computational Aspects of Cooperative Game Theory»