Contents

Lis	st of 1	Figures			13
Lis	st of	Tables			17
Lis	st of a	abbrevi	ations .		19
1	Intr	oductio	n		23
	1.1	Quant	itative dyı	namical modelling in synthetic biology	23
	1.2	Conte	nts of this	thesis	23
		1.2.1	Outline		23
		1.2.2	Publicati	ions	23
2	Bacl	kgroun	d		25
	2.1	Introd	uction to	synthetic biology	25
	2.2	Introd	uction to l	Biochemical Modelling	26
		2.2.1	Represer	ntation of transcription networks	26
			2.2.1.1	Coupled chemical reactions and the law of mass	
				action	26
			2.2.1.2	Graphical representation of biochemical systems .	27
			2.2.1.3	Systems Biology Markup Language (SBML)	28
		2.2.2	Modellir	ng promoter regulation	28
			2.2.2.1	Hill formalism	28
			2.2.2.2	Shea-Ackers formalism	29
		2.2.3	Simulati	on of dynamical systems	30
			2.2.3.1	Ordinary differential equation (ODE)	30
			2.2.3.2	Assumptions of deterministic modelling	31
		2.2.4	Stochast	ic modelling of dynamical systems	32
			2.2.4.1	Simulating stochastic models	32

8 Contents

			2.2.4.2 The Gillespie algorithm	32
		2.2.5	Phase plane analysis	32
		2.2.6	Steady state and stability	32
	2.3	Feedba	ack loops and autoregulation	33
	2.4	Param	eter Inference	33
	2.5	Bioche	emical system robustness	33
	2.6	Introd	uction to Bayesian statistics	33
		2.6.1	Bayes' theorem	34
		2.6.2	Bayesian inference	34
		2.6.3	Model checking	34
		2.6.4	Prior selection	34
		2.6.5	Model parametric Robustness	34
	2.7	Appro	ximate Bayesian Computation (ABC)	36
		2.7.1	ABC algorithms	36
		2.7.2	Particle sampling	38
		2.7.3	Perturbation	38
		2.7.4	Particle simulation	39
		2.7.5	Weight calculation	39
	2.8	The ge	enetic toggle switch	41
		2.8.1	Importance in natural systems	41
		2.8.2	Uses in synthetic biology	42
		2.8.3	Modelling the genetic toggle switch	42
	2.9	Flow (Cytometry	45
3	Post	ive fee	edback loops can increase the robustness of a genetic	
			ch	47
	3.1		uction	47
	3.2		round	
		3.2.1	The bistable genetic toggle switch	49
		3.2.2	Phase space and bifurcation analysis	49
	3.3	Design	ning a simple synthetic switch	51
		3.3.1	Parameter scan for model stability	51
		3.3.2	Toggle switch parameter inference	56
		3.3.3	Design specifications	57
		0.0.0	3.3.3.1 Distance function	57
		3.3.4	Results	58
	3.4		ning a more robust genetic toggle switch	60
	J.T	Design	inig a more robust genetic toggic switch	O.C

		3.4.1	Models o	of the genetic toggle switch 60	0
			3.4.1.1	Autoregulation switches phase space and bifurca-	
				tion analysis	2
		3.4.2	ABC for	model selection	5
	3.5	Discus	ssion		9
	3.6	Summ	ary		1
4	Dyn	amics	of multi-s	table switches	3
	4.1	Introd	uction		3
	4.2	Contri	ibutions to	this Chapter	3
	4.3	Backg	round		3
	4.4	Stabili	ty Finder a	algorithm	5
		4.4.1	Algorith	m overview	5
		4.4.2	Initial co	ndition sampling	7
		4.4.3	Clusterir	ng methods	8
		4.4.4	Distance	function	8
		4.4.5	Model ch	necking	0
	4.5	Calcul	ating robu	stness	1
		4.5.1	Case stu	dy 1: Infectious diseases	3
		4.5.2	Case stu	dy 2: Population growth	4
	4.6	Applic	cations of S	Stability Finder	7
		4.6.1	Testing S	StabilityFinder	7
		4.6.2	Lu toggle	e switch models	1
			4.6.2.1	Extending the Lu models 92	3
			4.6.2.2	Multistability in the Lu models 9	7
			4.6.2.3	Extending the Lu switch to three nodes 10	1
		4.6.3	Mass act	ion switches	3
			4.6.3.1	Multistability in the MA switches 10	8
			4.6.3.2	Robustness prior dependence	0
	4.7	Discus	ssion		4
	4.8	Summ	ary		5
5	Bay	esian n	nodel fitti	ng applied to flow cytometry data 11	7
	5.1	Introd	uction		7
	5.2	Contri	ibutions to	this Chapter	7
	5.3	Flow o	ytometry	and model fitting	7
	5.4	ABC-I	Flow algori	ithm development	8

	5.4.1	Intensity	calculation
	5.4.2	Distance	Calculations
		5.4.2.1	Kernel distance
		5.4.2.2	Kolmogorov-Smirnov distance 126
		5.4.2.3	Wald-Wolfowitz distance
5.5	ABC-F	low mode	l fitting to simulated data
5.6	Toggle	switch da	ta collection
	5.6.1	Circuit o	verview
	5.6.2	Methods	
		5.6.2.1	<i>Escherichia coli</i> culturing conditions 138
		5.6.2.2	Glycerol stock preparation
		5.6.2.3	Revival
		5.6.2.4	Plasmid construction
		5.6.2.5	Polymerase Chain Reaction 139
		5.6.2.6	Digestion
		5.6.2.7	Agarose gel electrophoresis
		5.6.2.8	Ligation
		5.6.2.9	Transformation
		5.6.2.10	Colony PCR
		5.6.2.11	Sequencing
		5.6.2.12	Inducers
		5.6.2.13	Growth rate measurement
		5.6.2.14	Flow cytometry
		5.6.2.15	Concentration assays
		5.6.2.16	Time course assays
	5.6.3	Results .	
		5.6.3.1	pKDL071 plasmid alteration 146
		5.6.3.2	Control plasmids construction 146
		5.6.3.3	Growth rate investigation 147
		5.6.3.4	Toggle switch concentration assays 150
		5.6.3.5	Toggle switch time course assay 154
5.7	ABC-F	low used	on experimental data
	5.7.1	Toggle sv	witch model developed to fit to experimental data $$. 157
	5.7.2	Model fit	ting to the genetic toggle switch post ATc induction 160
	5.7.3	Model fit	ting to the genetic toggle switch post IPTG induction 162 $$
5.8	Discus	sion	165

	5.9	Summa	ry			
6	Desi	gning n	new switches			
	6.1	Introduction				
	6.2	Cloning	g overview			
		-	Resulting switches			
	6.3		nental design			
		•	Stage 1 - Construction of pKDL071-plac/ara-araC 171			
			Stage 2 - Construction of pKDL071-pluxtet-luxR 174			
			Stage 3 - Construction of pKDL0713a			
	6.4		sion			
	6.5		ry			
			-,			
7	Con	clusions	5			
	7.1	Evaluat	ion			
	7.2	Future	work			
וים	1.	1	404			
Bit	oliogr	apny .				
Ap	pend	lices				
A	Bioc	hemical	l kinetic models			
	Λ 1					
	A.1	Ordinai	ry differential equations			
	A.1		ry differential equations			
	A.1	A.1.1				
	A.1	A.1.1 A.1.2	Standard toggle switch with inducers 191			
	A.1	A.1.1 A.1.2 A.1.3	Standard toggle switch with inducers			
	A.1	A.1.1 A.1.2 A.1.3	Standard toggle switch with inducers			
В	Prim	A.1.1 A.1.2 A.1.3 A.1.4	Standard toggle switch with inducers			
В	Prim	A.1.1 A.1.2 A.1.3 A.1.4	Standard toggle switch with inducers			
_	Prim B.1	A.1.1 A.1.2 A.1.3 A.1.4 ners	Standard toggle switch with inducers			
В	Prim B.1 Algo	A.1.1 A.1.2 A.1.3 A.1.4 hers Primers	Standard toggle switch with inducers			
_	Prim B.1	A.1.1 A.1.2 A.1.3 A.1.4 ners Primers orithms Cluster	Standard toggle switch with inducers			
_	Prim B.1 Algo	A.1.1 A.1.2 A.1.3 A.1.4 Primers Orithms Cluster C.1.1	Standard toggle switch with inducers			
_	Prim B.1 Algo C.1	A.1.1 A.1.2 A.1.3 A.1.4 hers Primers crithms Cluster: C.1.1 C.1.2	Standard toggle switch with inducers191Positive autoregulation on A and B with inducers197CS-MA198DP-MA200203s used during PCR and sequencing203205ing algorithms205Deterministic case205Stochastic case205			
_	Prim B.1 Algo	A.1.1 A.1.2 A.1.3 A.1.4 Primers Orithms Cluster: C.1.1 C.1.2 K-mean	Standard toggle switch with inducers			