Escritura del problema de secuencia creciente en una matriz cuadrada

María Camila Aguirre Collante¹ Jessica Tatiana Naizaque Guevara¹

¹Departamento de Ingeniería de Sistemas, Pontificia Universidad Javeriana Bogotá, Colombia

{aguirrec.mcamila, j.naizaque}@javeriana.edu.co

29 de septiembre de 2022

Resumen

En este documento se presenta la formalización del problema de hallar una secuencia creciente dentro de una matriz cuadrada, junto con la descripción de los algoritmos que lo solucionan, los cuales surgen a partir de la estrategia de "programación dinámica". Adicionalmente, se presenta un análisis experimental para cada uno de los algoritmos. **Palabras clave:** matriz cuadrada, secuencia, elementos únicos, algoritmo, formalización.

Índice

1.	Introducción
2.	Formalización del problema 2.1. Definición del problema de "secuencia creciente en una matriz cuadrada"
3.	Algoritmos de solución 3.1. Algoritmo "evidente"
4.	Análisis experimental 4.1. Matrices ingresadas
5.	Conclusiones

1. Introducción

En una matriz que contiene elementos únicos, es posible encontrar desde un punto, un camino de vecinos adyacentes que cumplan la condición de ser consecutivos. Sin embargo, una matriz podría tener más de un camino, por lo tanto, se buscaría conocer el más largo de estos. A lo largo de este informe se evidencia: la formalización del problema (sección 2), la escritura formal de los algoritmos (sección 3) y un análisis experimental de cada algoritmo (sección 4).

2. Formalización del problema

Dada una matriz cuadrada natural $A : \mathbb{R}^{n \times n}$ donde n es el orden de la misma y donde A contiene los números únicos en el rango $[1, n^2]$, encontrar la secuencia más larga de vecinos que están ordenados y los elementos adyacentes en la matriz tienen una diferencia de +1.

2.1. Definición del problema de "secuencia creciente en una matriz cuadrada"

Así, el problema de secuencia creciente en una matriz cuadrada se define a partir de:

- 1. Una matriz $A = [a_{ij}],$
- 2. donde $i = 1, ..., n \land j = 1, ..., n$, es decir, A es de orden n,
- 3. además, $a_{ij} \in \mathbb{N} \land 1 \leq a_{ij} \leq n \times n$

encontrar la secuencia creciente más larga de elementos adyacentes en la matriz A, los cuales están ordenados y tienen una diferencia de 1.

■ Entradas:

•
$$A = [a_{ij}] \mid (i = 1, ..., n) \land (j = 1, ..., n) \land (1 \le a_{ij} \le n \times n)$$

■ Salidas:

•
$$L = \langle e_k \in A_n \rangle \mid (e_k \in \mathbb{N}) \land (e_{k+1} - e_k = 1) \land (e_k < e_{k+1})$$

3. Algoritmos de solución

3.1. Algoritmo "evidente"

La idea de este algoritmo es: encontrar la longitud de la mayor secuencia con la cantidad de elementos consecutivos y adyacentes utilizando recurrencia para revisar cada una de las posiciones en la matriz.

Algoritmo 1 Algoritmo "evidente"

```
1: procedure LongestSequence(matriz, i, j)
       recursion \leftarrow 0
2:
3:
       n \leftarrow matriz.length
       if matriz[i,j] - matriz[i-1,j] = 1 \land i > 1 then
 4:
           recursion \leftarrow LongestSequence(matriz, i - 1, j)
 5:
       end if
 6:
       if matriz[i, j] - matriz[i, j + 1] = 1 \land j + 1 < n then
 7:
           recursion \leftarrow \text{LongestSequence}(matriz, i, j + 1)
 8:
9:
       if matriz[i, j] - matriz[i + 1, j] = 1 \land i + 1 < n then
10:
           recursion \leftarrow LongestSequence(matriz, i + 1, j)
11:
       end if
12:
       if matriz[i, j] - matriz[i, j - 1] = 1 \land j > 1 then
13:
           recursion \leftarrow \text{LongestSequence}(matriz, i, j - 1)
14:
       end if
15:
       return recursion + 1
17: end procedure
```

Algoritmo 2 Algoritmo "evidente"

```
procedure LongestSequence_Aux(matriz)
2:
        actual \leftarrow 0
       n \leftarrow matriz.length
       for i \leftarrow 1 to n do
4:
           for j \leftarrow 1 to n do
               len \leftarrow LongestSequence(matriz, i, j)
6:
               if len > actual then
                   actual \leftarrow len
8:
               end if
           end for
10:
        end for
12:
        return actual
   end procedure
```

3.2. Algoritmo "memoización"

La idea de este algoritmo es: llenar una tabla de memoización en la que en cada una de las posiciones almacene la longitud de la mayor secuencia con la cantidad de elementos consecutivos y adyacentes que termine en esta posición, esto, además de utilizar una tabla, presenta el uso de recurrencia para evaluar cada posición en la matriz.

Algoritmo 3 Algoritmo "memoización"

```
1: procedure LongestSequence(matriz, i, j, M)
        recursion \leftarrow 0
2:
 3:
        n \leftarrow matriz.length
        if M[i,j] \neq 0 then
 4:
 5:
            return M[i,j]
        end if
 6:
        if matriz[i, j] - matriz[i - 1, j] = 1 \land i > 1 then
 7:
            recursion \leftarrow \text{LongestSequence}(matriz, i - 1, j, M)
 8:
9:
        if matriz[i, j] - matriz[i, j + 1] = 1 \land j + 1 < n then
10:
11:
            recursion \leftarrow \text{LongestSequence}(matriz, i, j + 1, M)
        end if
12:
        if matriz[i, j] - matriz[i + 1, j] = 1 \land i + 1 < n then
13:
            recursion \leftarrow \text{LongestSequence}(matriz, i + 1, j, M)
14:
15:
        end if
16:
        if matriz[i, j] - matriz[i, j - 1] = 1 \land j > 1 then
            recursion \leftarrow \text{LongestSequence}(matriz, i, j - 1, M)
17:
        end if
18:
        M[i,j] \leftarrow recursion + 1
19:
20:
        return M[i, j]
21: end procedure
```

3.3. Algoritmo con "backtracking"

La idea de este algoritmo es: llenar una tabla de memoización en la que en cada una de las posiciones almacene la longitud de la mayor secuencia con la cantidad de elementos consecutivos y adyacentes que termine en esta posición. Además, hacer uso de una tabla de backtracking que almacene inicialmente una tupla con dos elementos primordiales: la columna y la fila de dicha posición. Y, que adicionalmente, durante el recorrido de las revisiones para cada una de las posiciones de la matriz, si se encuentra algún dato adyacente

Algoritmo 4 Algoritmo "memoización"

```
procedure LongestSequence_Aux(matriz, M)
       actual \leftarrow 0
       n \leftarrow matriz.lenght
       for i \leftarrow 1 to n do
4:
           for j \leftarrow 1 to n do
               len \leftarrow LongestSequence(matriz, i, j, M)
6:
               if len > actual then
                   actual \leftarrow len
8:
               end if
           end for
10:
       end for
12:
       return actual
   end procedure
```

con un valor menor en 1, se almacene su "dirección" o su posición con la tupla mencionada anteriormente.

4. Análisis experimental

En esta sección se presentarán algunos de los experimentos para confirmar la efectividad de los algoritmos presentados en la sección 3. Para realizar la prueba de cada uno de estos, se decidió probar los siguientes casos, con sus respectivos resultados esperados:

4.1. Matrices ingresadas

■ Dada la matriz $A_{4\times4}$

$$\begin{vmatrix}
10 & 16 & 15 & 12 \\
9 & 8 & 7 & 13 \\
2 & 5 & 6 & 14 \\
3 & 4 & 1 & 11
\end{vmatrix}$$
(1)

se espera obtener la secuencia: [2, 3, 4, 5, 6, 7, 8, 9, 10]

■ Dada la matriz $A_{8\times8}$

$$[htb!] \begin{bmatrix} 1 & 42 & 43 & 20 & 19 & 16 & 15 & 12 \\ 5 & 2 & 44 & 21 & 18 & 17 & 14 & 13 \\ 6 & 45 & 3 & 22 & 23 & 59 & 60 & 61 \\ 7 & 29 & 28 & 4 & 24 & 58 & 63 & 62 \\ 8 & 30 & 27 & 26 & 25 & 57 & 41 & 64 \\ 9 & 31 & 32 & 54 & 55 & 56 & 40 & 39 \\ 10 & 53 & 33 & 34 & 35 & 36 & 37 & 38 \\ 11 & 52 & 51 & 50 & 49 & 48 & 47 & 46 \end{bmatrix}$$

se espera obtener la secuencia: [12, 13, 14, 15, 16, ..., 35, 36, 37, 38, 39, 40, 41]

Algoritmo 5 Algoritmo "backtracking"

```
1: procedure LongestSequence(matriz, i, j, M, B)
        recursion \leftarrow 0
 3:
       maximo \leftarrow 0
       n \leftarrow matriz.length
 4:
       if M[i,j] \neq 0 then
 5:
           return M[i,j]
 6:
        end if
 7:
       if matriz[i, j] - matriz[i - 1, j] = 1 \land i > 1 then
 8:
           recursion \leftarrow LongestSequence(matriz, i - 1, j, M, B)
9:
10:
           if maximo < recursion then
               maximo \leftarrow recursion
11:
12:
           end if
13:
           if maximo = M[i-1,j] then
               coordenada \leftarrow (i-1,j)
14:
               B[i,j] \leftarrow coordenada
15:
           end if
16:
        end if
17:
18:
        if matriz[i, j] - matriz[i, j + 1] = 1 \land j + 1 < n then
           recursion \leftarrow LongestSequence(matriz, i, j + 1, M, B)
19:
           if maximo < recursion then
20:
               maximo \leftarrow recursion
21:
           end if
22:
23:
           if maximo = M[i-1, j] then
24:
               coordenada \leftarrow (i, j+1)
               B[i,j] \leftarrow coordenada
25:
           end if
26:
        end if
27:
        if matriz[i, j] - matriz[i + 1, j] = 1 \land i + 1 < n then
28:
29:
           recursion \leftarrow LongestSequence(matriz, i + 1, j, M, B)
           if maximo < recursion then
30:
31:
               maximo \leftarrow recursion
           end if
32:
           if maximo = M[i+1, j] then
33:
               coordenada \leftarrow (i+1, j)
34:
35:
               B[i,j] \leftarrow coordenada
           end if
36:
        end if
37:
       if matriz[i, j] - matriz[i, j - 1] = 1 \land j > 1 then
38:
39:
           recursion \leftarrow LongestSequence(matriz, i, j - 1, M, B)
40:
           if maximo < recursion then
41:
               maximo \leftarrow recursion
           end if
42:
           if maximo = M[i, j-1] then
43:
44:
               coordenada \leftarrow (i, j-1)
               B[i,j] \leftarrow coordenada
45:
           end if
46:
        end if
47:
        M[i,j] \leftarrow recursion + 1
48:
        return M[i, j]
49:
50: end procedure
```

Algoritmo 6 Algoritmo "backtracking"

```
\mathbf{procedure} \ \mathtt{LongestSequence\_Aux}(\overline{matriz}, \overline{M, B})
2:
         actual \leftarrow 0
         n \leftarrow matriz.lenght
         for i \leftarrow 0 to n do
4:
              for j \leftarrow 0 to n do
                  len \leftarrow \text{LongestSequence}(matriz, i, j, M, B)
6:
                  \mathbf{if}\ len > actual\ \mathbf{then}
                       coordenadaFin \leftarrow (i,j)
8:
                       actual \leftarrow len
                  end if
10:
              end for
         end for
12:
         {\bf return}\ actual
14: end procedure
```

■ Dada la matriz $A_{16\times16}$

[1	2	49	71	111	112	113	114	115	116
117	118	119	120	81	52				
109	3	73	72	193	194	195	196	197	198
199	200	201	202	82	53				
110	4	5	137	249	250	251	252	253	254
255	256	248	247	83	54				
8	7	6	138	139	140	141	142	143	144
145	146	147	148	84	55				
9	10	11	12	13	14	15	16	227	226
221	220	59	58	57	56				
130	149	74	75	76	77	80	17	228	225
222	219	60	242	85	246				
131	150	180	203	79	78	19	18	229	224
223	218	61	243	244	245				
132	151	181	204	207	21	20	101	102	103
104	105	62	106	107	108				
133	152	182	205	206	22	23	24	25	26
27	217	63	230	231	232				
134	153	183	184	185	121	208	211	212	215
28	216	64	239	240	233				
135	154	190	189	186	122	209	210	213	214
29	30	31	238	241	234				
136	155	191	188	187	123	38	37	36	35
34	33	32	237	236	235				
90	91	192	99	100	124	39	40	41	42
43	44	45	46	47	48				
89	92	93	98	51	125	167	168	169	172
173	176	65	177	178	179				
88	87	94	97	129	126	157	158	170	171
174	175	66	67	68	69				
50	86	95	96	128	127	156	159	160	161
162	163	164	165	166	70				

(3)

se espera obtener la secuencia: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ..., 41, 42, 43, 44, 45, 46, 47, 48]

■ Dada la matriz $A_{18\times18}$

[1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18		
86	87	100	101	102	103	104	105	106	107
108	109	110	111	112	113	114	19		
85	88	99	204	205	206	207	208	209	210
211	212	213	214	145	144	115	20		
84	89	98	203	244	243	242	241	240	239
238	237	236	215	146	143	116	21		
83	90	97	202	245	292	293	294	295	296
271	270	235	216	147	142	117	22		
82	91	96	201	246	291	312	313	324	297
272	269	234	217	148	141	118	23		
81	92	95	200	247	290	311	314	323	298
273	268	233	218	149	140	119	24		
80	93	94	199	248	289	310	315	322	299
274	267	232	219	150	139	120	25		
79	78	77	198	249	288	309	316	321	300
275	266	231	220	151	138	121	26		
60	61	76	197	250	287	308	317	320	301
276	265	230	221	152	137	122	27		
59	62	75	196	251	286	307	318	319	302
277	264	229	222	153	136	123	28		
58	63	74	195	252	285	306	305	304	303
278	263	228	223	154	135	124	29		
57	64	73	194	253	284	283	282	281	280
279	262	227	224	155	134	125	30		
56	65	72	193	254	255	256	257	258	259
260	261	226	225	156	133	126	31		
55	66	71	192	191	190	189	188	187	186
185	184	183	182	157	132	127	32		
54	67	70	171	172	173	174	175	176	177
178	179	180	181	158	131	128	33		
53	68	69	170	169	168	167	166	165	164
163	162	161	160	159	130	129	34		
52	51	50	49	48	47	46	45	44	43
42	41	40	39	38	37	36	35		

(4)

se espera obtener la secuencia: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ..., 321, 322, 323, 324]

4.2. Matrices creadas de manera aleatoria

En este caso, el usuario es quien ingresa el tamaño de la matriz que se va a generar de manera aleatoria. A continuación, se presentan los tamaños ingresados:

- $\blacksquare A_{20\times 20}$
- $\bullet \ A_{50\times 50}$
- \bullet $A_{100 \times 100}$

4.3. Resultados obtenidos para cada caso

De acuerdo con lo descrito al inicio de esta sección, se ejecutaron los casos en el algoritmo bottom-up con backtracking, obteniendo así los siguientes resultados:

4.3.1. Matrices ingresadas

• Considerando la Figura 1, es posible decir que para este caso, el algoritmo funciona correctamente.

```
La secuencia creciente más larga de la matriz es: [2, 3, 4, 5, 6, 7, 8, 9, 10]
```

Figura 1: Resultados para la matriz ingresada $A_{4\times4}$

■ Considerando la Figura 2, es posible decir que para este caso, el algoritmo funciona correctamente.

```
La secuencia creciente más larga de la matriz es: [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41]
```

Figura 2: Resultados para la matriz ingresada $A_{8\times8}$

• Considerando la Figura 3, es posible decir que para este caso, el algoritmo funciona correctamente.

```
La secuencia creciente más larga de la matriz es: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]
```

Figura 3: Resultados para la matriz ingresada $A_{16\times16}$

• Considerando la Figura 4, es posible decir que para este caso, el algoritmo funciona correctamente.

```
La secuencia creciente más larga de la matriz es: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 60, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324]
```

Figura 4: Resultados para la matriz ingresada $A_{18\times18}$

4.3.2. Matrices creadas de manera aleatoria

 \blacksquare Para la matriz A de orden 20, se obtuvo:

```
La secuencia creciente más larga de la matriz es: [331, 332]
```

Figura 5: Resultados para la matriz ingresada $A_{20\times20}$

 \blacksquare Para la matriz A de orden 50, se obtuvo:

```
La secuencia creciente más larga de la matriz es: [2102, 2103]
```

Figura 6: Resultados para la matriz ingresada $A_{50\times50}$

 \blacksquare Para la matriz A de orden 100, se obtuvo:

La secuencia creciente más larga de la matriz es: [9162, 9163]

Figura 7: Resultados para la matriz ingresada $A_{100\times100}$

Teniendo en cuenta las figuras 5, 6 y 7 se puede evidenciar que al generar de manera aleatoria cada matriz el camino más largo que se produce tiene una longitud de dos.

5. Conclusiones

De acuerdo con los resultados obtenidos es posible indicar que el algoritmo funciona correctamente, pues en cada uno de los casos encuentra la secuencia y la muestra en el orden correcto. Además, cumple con las restricciones de diferencia de +1 entre los elementos y de asegurar que esta sea la secuencia más larga.

Adicional a esto, es posible identificar que el algoritmo funciona tanto para matrices propuestas por el usuario como para las que se crean aleatoriamente. Sin embargo, en estas últimas, la probabilidad de que salga un camino que pueda considerarse "largo" es bastante baja. Por lo tanto, la efectividad se puede evaluar realmente mediante las matrices propuestas por las estudiantes.

Finalmente, es posible decir que sin importar el tamaño de la matriz, el algoritmo responde correctamente y logra identificar la secuencia creciente más larga, por lo que podría decirse que tiene una alta eficacia y, del mismo modo, una alta eficiencia.