Data Scientist – Home Assignment

Aviad Baram

https://github.com/aviadba/Aviad_Baram_home_assignment.git

Problem outline

Build a binary classification model to predict the outcome of test **TLJYWBE** using a dataset that contains a history of testing results.

Source data - home_assignment.feather

Data - exploratory

Raw data:

Samples: 726288

Features: 881

NaN ratio: 12.47%

Data dtypes

Float: 794

Categorical: 44

Integer: 43

Total test FAIL: 64

Total test PASS: 726224

100000

True

Test FAIL

Data - exploratory

Observations:

- Data set in highly imbalanced with PASS/FAIL ratio > 10⁴. Classifications based on a lot of features with few samples are prone to overfitting ('curse of dimensionality').
- Number of FAIL samples is small. Challenge is high recall of test FAIL.
- Float64 is the majority dtype class

Decision:

- Drop all samples with a NaN response
- Drop all columns with NaN's (no need for imputation reduces model bias)
- Build model based on numerical features only.
 - Majority class
 - Easier to manipulate
 - Categorical features often increase dimensionality
- Under sample majority class (PASS) and over-sample minority class (FAIL) to create a balanced dataset
- Split into Train/Test sets with at a 0.2 ratio

Implemented in: Pipe.imbalance_split_train_test followed by Pipe.rawDataProcess methods Feature dimensions reduced to: 68. Cons - may influence model generalization

Pipeline

- Standardise data
- Reduce dimensionality by PCA maintain 95% variance
- Standardise PCA features

Implemented in Pipe.pca fit transform method

- Train on Random Forest Classifier
 - Set hyperparameters: n_trees, max_depth and max_samples_split by cross-validation (3-fold)
 - Hyperparameters tuned to max FAIL-recall
- Predict Test data

Implemented in Pipe.predict method

RFC method was selected because it works well on small imbalanced datasets.

Cons - limited interpretability (especially after PCA), does not support RoC AUC tuning (i.e. does not generate a classification 'probability'. Other alternatives are One-class SVM, logistic regression

Results

Train

	Predicted FAIL	Predicted PASS
Actual FAIL	101	2
Actual PASS	3	92

Precision: 0.97, **Recall: 0.98**, F1:0.98

Test

	Predicted FAIL	Predicted PASS
Actual FAIL	23	2
Actual PASS	9	18

Precision: 0.72, Recall: 0.92, F1:0.81

Summary - the model generalises in identifying FAIL tests. Overfits PASS test as evident by PASS tests miss-classification.