Подобие

Определение 1. Два треугольника ABC и $A_1B_1C_1$ называются подобными, если $\angle A = \angle A_1, \angle B = \angle B_1, \angle C = \angle C_1$ и

$$\frac{AB}{A_1B_1} = \frac{CB}{C_1B_1} = \frac{AC}{A_1C_1}.$$

Задача 1. Докажите, что если для треугольников ABC и $A_1B_1C_1$ выполнено, что:

- а) $\angle A = \angle A_1$ и $\frac{AB}{A_1B_1} = \frac{AC}{A_1C_1}$; б) $\angle A = \angle A_1, \angle B = \angle B_1, \angle C = \angle C_1$; в) $\frac{AB}{A_1B_1} = \frac{CB}{C_1B_1} = \frac{AC}{A_1C_1}$, То треугольники подобны.

Задача 2. В остроугольном треугольнике ABC проведены высоты AA_1 и BB_1 . Докажите, что $A_1C \cdot BC = B_1C \cdot AC$.

Задача 3. Основания трапеции равны a, b. Найдите длину отрезка, высекаемого прямой, проведённой через точку пересечения диагоналей, параллельно основаниям.

Задача 4. Докажите, что в трапеции ABCD точка пересечения диагоналей и середины оснований AD и BC лежат на одной прямой.

Задача 5. Дан треугольник ABC такой, что $\angle A = 2\angle B$. Докажите, что $a^2 =$ $b^2 + bc.ec$ ли есть такое равенство углов, то не провести ли нам...

 ${f 3a}_{f A}{f a}_{f a}$ 6. На стороне AC треугольника ABC выбрана точка D таким образом, что $\angle ABD = \angle ACB$. Докажите, что $AB^2 = AD \cdot AC$.

Задача 7. На сторонах AB и AC треугольника взяты соответственно точки M и N так, что BM=MN=NC. Отрезки MM_1 и NN_1 — биссектрисы треугольника AMN. Докажите, что прямые M_1N_1 и BC параллельны.