

Kalman Filter

Grundlagen

P.Schön, C.Thein

26.05.2024

-----Inhaltsverzeichnis

Einleitung

Vereinfachte Erklärung

Joystick example

EXAMPLES

Zusammenfassung

----- Was ist das Kalman Filter?

Das Kalman Filter ist ein mathematisches Verfahren zur iterativen Schätzung von Parametern zur Beschreibung von Systemzuständen.

Dabei wird wiederholt eine Vorhersage über einen Parameterwert abgegeben, mit dem fehleranfälligen Messwert kombiniert, und erneut gnutzt um daraus eine Vorhersage zu treffen.

----- Ablauf des Kalman Filters

Vorhersage

- 1. Denn nächten Zustand darstellen: $\hat{x}_k = A\hat{x}_{k-1} + Bu_{k-1}$
- 2. Die Fehlerkovarianz vorausberechnen: $P_k = AP_{k-1}A^T + Q$

Korrektur

- 3. Den Kalman Gain berechnen: $K_k = P_k H^T (HP_k H^T + R)^{-1}$
- 4. Die Schätzung mit z_k aktualisieren: $\hat{x}_k = \hat{x}_k + K_k(z_k H\hat{x}_k)$
- 5. Die Fehlerkovarianz aktualisieren: $P_k = (I K_k H)P_k$

Fig.: Start Postion at t₀

Fig.: Calculated Postion at t_1

Fig.: Predicted Postion at t_1

Fig.: Messured Sensor Data of Postion at t_1

Kalman explained

Fig.: Correction of the Kalman Gain after Messurement at t_1

Takeaways

- The precision sinks with the prediction
- The precision grows with the correction

State Representation

We define the state vector x to include the position and velocity of the mouse in both x and y directions

$$\begin{bmatrix} x \\ y \\ v_x \\ v_y \end{bmatrix}$$

where:

- x is the position on the x-axis
- y is the postion on the y-axis
- v_x is the velocity in the x-direction
- v_v is the velocity in the y-direction

Formulate the Transtition Model

The state transition model describes how the state evolves from one time step to the next. If we assume a constant velocity model, the state transition can be expressed as:

$$x_{k+1} = Ax_k + w_k$$

where w_k represents the proces noise, assumed to be Gaussian with zero mean and covariance Q.

Create the Transition Matrix

The transition matrix A for a constant velocity Model is:

$$\left[\begin{array}{cccc} 1 & 0 & \Delta t & 0 \\ 0 & 1 & 0 & \Delta t \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right]$$

 Δt is the time intervall between mesurements.

Observation Model

The observation model realtes the state to the measurements:

$$z_k = Hx_k + v_k$$

where v_k represents the measurement noise, assumed to be Gaussian with zero mean and covariance R.

The observation matrix H for direct measurement of position is:

$$H = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]$$

Prediction Step

The prediction step estimates the next state and its uncertainty:

• Predict the state:

$$x_{k+1} = Ax_k$$

• Predict the error coavriance:

$$P_{k+1} = AP_kA^T + Q$$

Correction Step

The correction step updates the state estimate with the new measurement:

Compute the Kalman gain:

$$K_k = P_k H^T (H P_k H^T + R)^{-1}$$

Update the state estimate:

$$x_k = x_k + K_k(z_k - Hx_k)$$

Update the error covariance:

$$P_k = (I - K_k H) P_k$$

---- Kalman Filter

Prediction

Project the state ahead

$$X_{k+1} = AX_k + BU_k$$

Project the error covariance ahead

$$P_{k+1} = AP_kA^T + Q$$

Correction

Compute the Kalman Gain

$$K_{\nu} = P_{\nu}H^{T}(HP_{\nu}H^{T} + R)^{-1}$$

Update the estimate via measurement

$$X_k = X_k + K_k (z_k - H X_k)$$

Update the error covariance

$$\mathbf{P}_{k} = (I - K_{k}H)P_{k}$$

Initialize R, P, Q once

Fig.: Iterative Nature of the Kalman filter

Cheat Sheet - Math Symbols

Zeichen	Bedeutung
k	Zeitintervall der Messwerte / Iteration
z_k	gemessene Geschwindigkeit des Sensors
x_k	Wert der aktuellen Schätzung
x_k-1	Wert der vorherigen Schätzung
P_k	Wert der aktuellen Fehlerkovarianz
P_k-1	Wert der vorherigen Fehlerkovarianz
R	Varianz der Messergebnisse
Q	Process noise covariance
А	Transition Matrix
Н	Observation Matrix
B*u_k-1	Control signal

Ablauf des Kalman Filters

- Fettgedruckt
- Kursiv
- Unterstrichen
- Monospaced

----- Aufzählungen

- Erster Punkt
- Zweiter Punkt
- Dritter Punkt

Mathematische Ausdrücke

- Inline: $E = mc^2$
- Displayed:

$$\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

Bilder einfügen

Fig.: Ein Beispielbild

In dieser Präsentation haben wir die grundlegenden Elemente von LaTeX vorgestellt, darunter:

- Textformatierung
- Aufzählungen und Listen
- Mathematische Ausdrücke
- Bilder einfügen