Теория графов. HW#5

Тураев Тимур, 504 (SE)

6.3 Возьмем п вершин и расставим их равномерно по кругу. Зафиксируем некоторое четное натуральное число k и проведем из любой вершины k ребер, соединив эту вершину с k/2 вершинами слева по кругу от нее и с k/2 вершинами справа по кругу от нее. В результате получим k-регулярный граф, построенный на п вершинах. Доказать, что для такого графа $\kappa(G) = k$

Очевидно, что удаление k вершин-соседей какой-либо вершины сделаем граф несвязным. Докажем, что удаление любых k-1 вершины оставит граф связным. Выделим такие k-1 вершину в множество S: |S|=k-1.

Выделим какие-нибудь 2 вершины u и v в графе G-S. В изначальном графе между этими вершинами существовало 2 пути: по часовой стрелке по внешнему циклу и против часовой. Пусть P_1 и P_2 соответственно набор внутренних вершин в этих путях в изначальном графе.

Заметим, что по принципу Дирихле найдется такой путь $(P_1$ или $P_2)$ в котором S удалило меньше, чем k/2 вершин (действительно: предположив обратное, получим, что $|S| \ge k/2 + k/2 = k$. Противоречие с тем, что |S| = k - 1).

Так как в графе G из каждой вершины выходило по k/2 ребер в каждую сторону, то удаление менее k/2 ребер из какой-либо стороны не может удалить все возможные пути в эту сторону. А это значит, что мы можем найти путь между вершинами u и v в графе G-S через тот путь P_1 или P_2 , где S содержит меньше k/2 вершин.

- **6.6** Привести алгоритм построения графа G, у которого $\kappa(G) = \kappa, \lambda(G) = \lambda, \delta(G) = \delta$
 - Построим две копии графа $K_{\delta(G)+1}$ полные графы на $\delta(G)+1$ вершинах. Это сразу выполняет третье условие: $\delta(G)=\delta$
 - Выделим в левом полном графе κ вершин, а в правом полном графе λ вершин и проведем λ ребер так, чтобы каждая выделенная вершина была концом хотя бы одного нового ребра.

Граф построен. Тот факт, что $\kappa \leqslant \lambda \leqslant \delta$ не портит нам выполнение третьего условия: всегда найдутся вершины в полных подграфах, из которых мы не проводим новые ребра.

Очевидно, что удаление λ новых ребер, равно как и удаление κ выделенных вершин левом полном подграфе делает граф несвязным.

 $\dot{\text{И}}$ понятно, что меньших разделяющих множеств нет, так как слева и справа у нас полные подграфы, а для них все три числа $(\kappa(G), \lambda(G), \delta(G))$ равны δ . $\dot{\text{И}}$ если мы удалим меньшее число ребер (или вершин), то связи между двумя полными графами сохранятся, равно как и сохранятся связности в этих частях.

6.7 Определить значения $\kappa(G), \lambda(G), \delta(G)$

6.7a

Легко убедиться, что $\delta(G) = 4$.

Также легко убедиться, что $\kappa(G) > 1$. Приведем пример, показывающий, что $\kappa = 2$:

 $\lambda(G) = 4$ – надо выбрать вершину со степенью равной 4 и удалить все инцидентные ей ребра. Покажем, что реберная связность не меньше.

Попробуем нарушить связность, удалив 3 ребра. Очевидно, что если пытаться удалять средние ребра (покрашены в синий цвет), то потребуется удалить 5 ребер. Значит, их удалять смысла не имеет и следует пытаться нарушить связность внутри одного из пятиугольников. Т.к. граф симметричный – выберем левый пятиугольник. Рассмотрим нижние четыре вершины (три зеленые и одну оранжевую). Они образуют полный подграф K_4 . Его реберная связность равна 3. При этом каждая из зеленых вершин соединена ребром с пятой вершиной пятиугольника. Следовательно, удалять имеет только три ребра, ведущие к оранжевой вершине. Но тогда граф все равно останется связным. В силу симметрии то же верно и для верхних четырех вершин. Следовательно, удалив 3 ребра нарушить связность графа нельзя.

6.7b

Легко убедиться, что $\delta(G) = 4$.

Покажем, что $\kappa(G)=4$. Удалим некоторое множество вершин и рассмотрим получившийся граф. Рассмотрим в нем две несмежные вершины, значит они и в исходном графе были несмежны. Рассмотрим возможные случаи расположения вершин в исходном графе (пользуясь свойством симметрии графа):

Видно, что всегда существует четыре, непересекающихся по вершинам, пути. Следовательно, чтобы сделать граф несвязным, необходимо удалить не менее четырех вершин. Следовательно, $\kappa(G) = 4$.

Из цепочки неравенств $4 = \kappa(G) \leqslant \lambda(G) \leqslant \delta(G) = 4$ следует, что $\lambda(G) = 4$.

6.8 Доказать, что для любого 3-регулярного графа G реберная и вершинная связность совпадают.

Рассмотрим S - минимальное вершинное разделяющее множество: $|S| = \kappa(G)$. Так как $\kappa(G) \leqslant \lambda(G)$, достаточно указать такое F - реберно-разделяющее множество – чтобы |F| = |S|. Рассмотрим две компоненты связности G_1 и G_2 , которые получатся после удаления из графа G вершин из S.

Заметим, что так как множество S - минимальное, то каждая вершина в S должна быть соединена хотя бы с одной вершиной из G_1 и G_2 .

Так как граф 3-регулярный, то возможны несколько вариантов:

 \bullet Вершина v из S связана равно с одной вершиной из одной компоненты связности и ровно с двумя из другой (как верхняя вершина на рисунке)

Тогда удалим ребро, соединяющее вершину v и ее соседа из G_1 (то есть разрушим путь из G_1 через вершину v)

• Вершина v из S связана равно с одной вершиной из каждой компоненты связности и еще с одной вершиной $u \in S$ (нижняя вершинана рисунке).

В таком случае ясно, что ребра из вершины u идут так же, как из вершины v. Удалим два ребра из вершин u и v, идущие в одну из компонент связности, например G_1 .

Получается, что удалением ровно $\kappa(G)$ ребер мы нарушили все пути, ведущие из G_1 в G_2 , то есть предоставили реберно-разделяющее множество F, такое что $|F| = \kappa(G)$, то есть $\kappa(G) = \lambda(G)$

6.13 Доказать, что любой двусвязный граф G допускает разложение G на ручки, начинающиеся c произвольного цикла e этом графe.

Пусть G_0 - произвольный цикл C в графе.

Пусть G_i - подграф, полученный после добавления в него i ручек. Если еще $G_i \neq G$, то выберем какое-нибудь ребро (x,y), лежащее в графе G_i и ребро (u,v), в этом подграфе не лежащее. Так как граф двусвязный, то эти два ребра лежат в одном цикле C'. Выберем из этого цикла путь P, который содержит ребро (u,v) и ровно две вершины из G_i : они будут концами этого пути P. Теперь этот путь может быть добавлен к графу G_i – получим больший граф G_{i+1} , в котором P – это ручка.

Этот процесс обязательно закончится, причем тогда, когда он охватит все ребра в графе, так как на каждой итерации в G_k добавялется по крайней мере одно ребро.

6.16 Доказать, что граф допускает сильную ориентацию тогда и только тогда, когда он реберно-двусвязен.

• Необходимость.

Пусть граф допускает сильную ориентацию, тогда он, очевидно связен.

Предположим, в графе есть мост (u, v) которое ориентировано из u в v. Тогда в этой ориентации не существует пути из v в u.

Таким образом, граф должен быть связным и не содержать мостов, то есть быть реберно-двусвязным.

• Достаточность.

Пусть граф реберно-двусвязный. Тогда его можно разложить на ручки и замкнутые ручки начиная с произвольного цикла в этом графе.

Возьмем любой цикл в этом графе и ориентируем его «по кругу», превратив его в сильно связный граф. Далее, при добавлении любой ручки, будем ее ориентировать всегда в одну сторону, последовательно. Если мы докажем, что добавление ориентированной ручки к сильносвязному графу сохраняет его сильносвязность, то теорема доказана.

А это доказать просто: добавим ориентированную ручку к сильносвязному графу H. И пусть ручка «крепится» к графу H за вершины x и y. Рассмотрим 2 любые вершины u и v. Возможны следующие случаи:

- Обе вершины u и v лежат в графе H. Тогда они достижимы друг из друга в силу сильносвязности графа H.
- Обе вершины u и v лежат на ручке, причем направление от u к v. Тогда существует путь из v в u: $v \to y \to x \to u$. Первая и третья стрелочки в силу ориентации ручки, вторая в силу сильной связности графа H.
- Вершина u лежит на ручке, а вершина v в графе. Применяя аналогичные рассуждения приходим к выводу, что существует путь из v в u: $v \to x \to u$ и существует путь из u в v: $u \to y \to v$.

Значит, добавление ориентированной ручки к сильносвязному графу сохраняет его сильносвязность

Теорема доказана.