Аналитическая часть

1. Тригонометрический ряд Фурье

Для функции f(x), определенной на отрезке [0,4]:

$$f(x) = \begin{cases} x/2, & x \in [0, 2), \\ 1, & x \in [2, 4]. \end{cases}$$

Формула для вычисления суммы ряда Фурье общего вида

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos(\frac{\pi nx}{2}) + b_n \sin(\frac{\pi nx}{2}) \right)$$

Определение коэффициентов ряда Фурье

Функция f(x) периодична с периодом T=4. Коэффициенты тригонометрического ряда Фурье a_0, a_n и b_n определяются как:

$$a_0 = \frac{1}{4} \int_0^4 f(x) dx$$

$$a_n = \frac{1}{2} \int_0^4 f(x) \cos(\frac{2\pi nx}{4}) dx$$

$$b_n = \frac{1}{2} \int_0^4 f(x) \sin(\frac{2\pi nx}{4}) dx$$

Вычисление коэффициента a_0

$$a_0 = \frac{1}{4} \int_0^2 \frac{x}{2} dx + \frac{1}{4} \int_2^4 1 dx$$
$$a_0 = \frac{1}{4} \left[\frac{x^2}{4} \right]_0^2 + \frac{1}{4} [x]_2^4$$
$$a_0 = \frac{1}{4} + \frac{1}{4} \cdot 2 = \frac{3}{4}$$

Вычисление коэффициента a_n

$$a_n = \frac{1}{2} \int_0^2 \frac{x}{2} \cos(\frac{\pi nx}{2}) dx + \frac{1}{2} \int_2^4 \cos(\frac{\pi nx}{2}) dx$$
$$a_n = \frac{1}{4} \int_0^2 x \cos(\frac{\pi nx}{2}) dx + \frac{1}{2} \int_2^4 \cos(\frac{\pi nx}{2}) dx$$

Замена переменной:

$$t = \frac{x}{2} \qquad dt = \frac{1}{2} dx$$

$$a_n = \int_0^2 t \cos(\pi nt) dt + \frac{1}{2} \int_2^4 \cos(\frac{\pi nx}{2}) dx$$

1

Интегрирование по частям:

$$u = t du = dt$$

$$dV = \cos(\pi nt) dt V = \frac{\sin(\pi nt)}{\pi n}$$

$$a_n = \left(\left[\frac{t\sin(\pi nt)}{\pi n}\right]_0^2 - \int_0^2 \sin(\frac{\pi nt}{\pi n}) dt\right) + \frac{1}{2} \int_2^4 \cos(\frac{\pi nx}{2}) dx$$

Замена переменной:

$$m = \pi nt \qquad dm = \pi n dt$$

$$a_n = \left(\left[\frac{t \sin(\pi nt)}{\pi n} \right]_0^2 - \frac{1}{\pi^2 n^2} \int_0^2 \sin(m) dm \right) + \frac{1}{2} \int_2^4 \cos(\frac{\pi nx}{2}) dx$$

$$a_n = \left[\frac{t \sin(\pi nt)}{\pi n} + \frac{\cos(m)}{\pi^2 n^2} \right]_0^2 + \frac{1}{2} \int_2^4 \cos(\frac{\pi nx}{2}) dx$$

Замена переменной:

$$u = \frac{\pi nx}{2} \qquad du = \frac{\pi n}{2} dx$$

$$a_n = \left[\frac{t \sin(\pi nt)}{\pi n} + \frac{\cos(m)}{\pi^2 n^2} \right]_0^2 + \frac{1}{2} \cdot \frac{2}{\pi n} \int_2^4 \cos(u) du$$

$$a_n = \left[\frac{t \sin(\pi nt)}{\pi n} + \frac{\cos(m)}{\pi^2 n^2} \right]_0^2 + \left[\frac{\sin(u)}{\pi n} \right]_2^4$$

Обратная замена:

$$a_n = \left[\frac{\frac{x}{2} \sin(\pi n \frac{x}{2})}{\pi n} + \frac{\cos(\pi n \frac{x}{2})}{\pi^2 n^2} \right]_0^2 + \left[\frac{\sin(\frac{\pi n x}{2})}{\pi n} \right]_2^4$$
$$a_n = \frac{\cos(\pi n)}{\pi^2 n^2} - \frac{1}{\pi^2 n^2} + \frac{\sin(2\pi n)}{\pi n}$$

Для четных n:

$$a_n = 0$$

Для нечетных n:

$$a_n = -\frac{2}{\pi^2 n^2}$$

Вычисление коэффициента b_n

$$b_n = \frac{1}{2} \int_0^2 \frac{x}{2} \sin(\frac{\pi nx}{2}) dx + \frac{1}{2} \int_2^4 \sin(\frac{\pi nx}{2}) dx$$
$$b_n = \frac{1}{4} \int_0^2 x \sin(\frac{\pi nx}{2}) dx + \frac{1}{2} \int_0^4 \sin(\frac{\pi nx}{2}) dx$$

Замена переменной:

$$t = \frac{x}{2} \qquad dt = \frac{1}{2} dx$$

$$b_n = \int_0^2 t \sin(\pi nt) dt + \frac{1}{2} \int_2^4 \sin(\frac{\pi nx}{2}) dx$$

Интегрирование по частям:

$$u = t du = dt$$

$$dV = \sin(\pi nt) dt V = -\frac{\cos(\pi nt)}{\pi n}$$

$$b_n = \left(\left[-\frac{t\cos(\pi nt)}{\pi n}\right]_0^2 + \int_0^2 \cos(\frac{\pi nt}{\pi n}) dt\right) + \frac{1}{2} \int_2^4 \sin(\frac{\pi nx}{2}) dx$$

Замена переменной:

$$m = \pi nt dm = \pi n dt$$

$$b_n = \left(\left[-\frac{t \cos(\pi nt)}{\pi n} \right]_0^2 + \frac{1}{\pi^2 n^2} \int_0^2 \cos(m) dm \right) + \frac{1}{2} \int_2^4 \sin(\frac{\pi nx}{2}) dx$$

$$b_n = \left[-\frac{t \cos(\pi nt)}{\pi n} + \frac{\sin(m)}{\pi^2 n^2} \right]_0^2 + \frac{1}{2} \int_2^4 \sin(\frac{\pi nx}{2}) dx$$

Замена переменной:

$$u = \frac{\pi nx}{2} \qquad du = \frac{\pi n}{2} dx$$

$$b_n = \left[-\frac{t \cos(\pi nt)}{\pi n} + \frac{\sin(m)}{\pi^2 n^2} \right]_0^2 + \frac{1}{2} \cdot \frac{2}{\pi n} \int_2^4 \sin(u) du$$

$$b_n = \left[-\frac{t \cos(\pi nt)}{\pi n} + \frac{\sin(m)}{\pi^2 n^2} \right]_0^2 - \left[\frac{\cos(u)}{\pi n} \right]_2^4$$

Обратная замена:

$$b_{n} = \left[-\frac{\frac{x}{2}\cos(\pi n \frac{x}{2})}{\pi n} + \frac{\sin(\pi n \frac{x}{2})}{\pi^{2} n^{2}} \right]_{0}^{2} - \left[\frac{\cos(\frac{\pi n x}{2})}{\pi n} \right]_{2}^{4}$$
$$b_{n} = \frac{\sin(\pi n)}{\pi^{2} n^{2}} - \frac{\cos(2\pi n)}{\pi n}$$

Для четных n:

$$b_n = -\frac{1}{n\pi}$$

Для нечетных n:

$$b_n = -\frac{1}{n\pi}$$

Таким образом, ряд Фурье для функции f(x) будет выглядеть следующим образом Для четных $\mathbf n$:

$$f(x) = \frac{3}{4} + \sum_{n=2}^{\infty} \left(-\frac{1}{\pi n} \sin(\frac{\pi nx}{2}) \right)$$

Для нечетных n:

$$f(x) = \frac{3}{4} + \sum_{n=1}^{\infty} \left(-\frac{2}{\pi^2 n^2} \cos(\frac{\pi nx}{2}) - \frac{1}{\pi n} \sin(\frac{\pi nx}{2}) \right)$$

Можно объединить для всех n:

$$f(x) = \frac{3}{4} + \sum_{n=1}^{\infty} \left(\left((-1)^n \cdot \frac{1}{\pi^2 n^2} - \frac{1}{\pi^2 n^2} \right) \cos(\frac{\pi nx}{2}) - \frac{1}{\pi n} \sin(\frac{\pi nx}{2}) \right)$$

График суммы ряда

Рис. 1: Enter Caption

2. Четное продолжение функции и ряд Фурье по косинусам

Четное продолжение функции f(x):

$$f_c(x) = \begin{cases} x/2, & x \in [0,2), \\ 1, & x \in [2,4], \\ -x/2, & x \in [-2,0), \\ 1, & x \in [-4,-2). \end{cases}$$

Формула для вычисления суммы четного ряда Фурье по косинусам

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(\frac{\pi nx}{2}))$$

Функция $f_c(x)$ теперь четная и ее ряд Фурье содержит только косинусные члены:

$$a_0 = \frac{1}{4} \int_0^4 f_c(x) \, dx$$

$$a_n = \frac{1}{2} \int_0^4 f_c(x) \cos(\frac{\pi nx}{2}) dx$$

Для четных n:

$$a_n = 0$$

Для нечетных n:

$$a_n = -\frac{2}{\pi^2 n^2}$$

Таким образом, четный ряд Фурье по косинусам для функции $f_c(x)$ будет выглядеть следующим образом

Для четных n:

$$f(x) = \frac{3}{8} + \sum_{n=2}^{\infty} 0$$

Для нечетных n:

$$f(x) = \frac{3}{8} + \sum_{n=1}^{\infty} \left(-\frac{2}{\pi^2 n^2} \cos(\frac{\pi nx}{2}) \right)$$

Можно объединить для всех n:

$$f(x) = \frac{3}{8} + \sum_{n=1}^{\infty} \left(\left((-1)^n \cdot \frac{1}{\pi^2 n^2} - \frac{1}{\pi^2 n^2} \right) \cos\left(\frac{\pi nx}{2} \right) \right)$$

График четной суммы ряда Фурье по косинусам

Рис. 2: Enter Caption

3. Нечетное продолжение функции и ряд Фурье по синусам

Нечетное продолжение функции f(x):

$$f_s(x) = \begin{cases} x/2, & x \in [-2, 2), \\ 1, & x \in [2, 4], \\ -1, & x \in [-4, -2). \end{cases}$$

Формула для вычисления суммы нечетного ряда Фурье по синусам

$$f_s(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (b_n \sin(\frac{\pi nx}{2}))$$

Функция $f_s(x)$ теперь нечетная и ее ряд Фурье содержит только синусные члены:

$$a_0 = \frac{1}{4} \int_{0}^{4} f_s(x) dx$$

$$b_n = \frac{1}{2} \int_0^4 f_s(x) \sin(\frac{\pi nx}{2}) dx$$

Для четных n:

$$b_n = -\frac{1}{n\pi}$$

Для нечетных n:

$$b_n = -\frac{1}{n\pi}$$

Таким образом, нечетный ряд Фурье по синусам для функции $f_s(x)$ будет выглядеть следующим образом

Для четных n:

$$f(x) = \frac{3}{8} + \sum_{n=2}^{\infty} \left(-\frac{1}{n\pi} \sin(\frac{\pi nx}{2}) \right)$$

Для нечетных n:

$$f(x) = \frac{3}{8} + \sum_{n=1}^{\infty} \left(-\frac{1}{n\pi} \sin(\frac{\pi nx}{2}) \right)$$

Можно объединить для всех n:

$$f(x) = \frac{3}{8} + \sum_{n=1}^{\infty} \left(-\frac{1}{n\pi} \sin(\frac{\pi nx}{2})\right)$$

График нечетной суммы ряда Фурье по синусам

Рис. 3: Enter Caption

Графическая часть

График для каждой частичной суммы при разном количестве слагаемых

Рис. 6: При
 n=50

Отчет

В аналитической части, используя теоритические знания, были вычислены ряды Фурье общего вида, ряды Фурье по косинусам и ряды Фурье по синусам. Были построены соответствующие графики с помощью языка программирования python и библиотек numpy и matplotlib. В графической части были построены графики рядов Фурье с разным числом слогаемых. По построенным графикам видно, что, чем больше количество слогаемых используется в рядах Фурье, тем точнее получается график.