Basic EDA

March 27, 2025

1 Membrane Technology Data Analysis Project

1.0.1 Step 1: Import Required Libraries and Load Dataset

In this step, we will: - Import all the necessary Python libraries. - Load the .xlsx Excel dataset into a pandas DataFrame. - View the first few rows of the data to understand its structure.

[12]:		T	ype Size	e (nm)	Shap	e Pore si	ze (Å) Bond	-ing*	Char-ge	\
	0	NaN		NaN	Na	ıN	NaN		NaN	(+, -, 0)	
	1	NaA zeolite		100.0	Spherica	1	4.0		0.0	_	
	2	NaA zeol	ite	100.0	Spherica	1	4.	0	0.0	_	
	3	NaA zeolite		100.0	Spherica	1	4.0		0.0	_	
	4	NaA zeolite		100.0	Spherica	1	4.0		0.0	_	
		Phase**,	Loading	RR	RCA	CWP	CSP	RWP	RSP		
	0	A or O	NaN	NaN	NaN	(LMH/bar)	(%)	NaN	NaN		
	1	A	0.00004	1.015	0.903	0.767	6.5	1.023	0.892		
	2	A	0.00010	0.956	0.857	0.767	6.5	1.174	0.908		
	3	A	0.00040	0.931	0.824	0.767	6.5	1.343	0.892		
	4	A	0.00100	0.952	0.713	0.767	6.5	1.488	0.969		

1.0.2 Step 2: Dataset Overview and Initial Cleaning

- Check column names for any irregularities or unnecessary characters.
- Check for missing values.

• Review data types to ensure they are appropriate.

```
[15]: # View the column names
    data.columns

# Check for missing values
    data.isnull().sum()

# Check data types of each column
    data.dtypes
```

```
[15]: Type
                         object
      Size (nm)
                        float64
      Shape
                         object
      Pore size (Å)
                        float64
      Bond-ing*
                        float64
      Char-ge
                         object
      Phase**,
                         object
      Loading
                        float64
      RR
                        float64
      RCA
                        float64
      CWP
                         object
      CSP
                         object
      R.WP
                        float64
      RSP
                        float64
      dtype: object
```

1.0.3 Step 3: Clean Column Names and Data Types

- We will clean the column names by removing special characters and spaces.
- Convert columns CWP and CSP to numeric (if they contain unwanted characters).
- Re-check the data.

```
[18]: # Clean column names
data.rename(columns={
    'Type': 'Type',
    'Size (nm)': 'Size_nm',
    'Shape': 'Shape',
    'Pore size (Å)': 'Pore_size_A',
    'Bond-ing*': 'Bonding',
    'Char-ge': 'Charge',
    'Phase**,': 'Phase',
    'Loading': 'Loading',
    'RR': 'RR',
    'RCA': 'RCA',
    'CWP': 'CWP',
    'CSP': 'CSP',
    'RWP': 'RWP',
```

```
'RSP': 'RSP'
}, inplace=True)

# If CWP and CSP are strings with commas or other characters, convert to numeric
data['CWP'] = pd.to_numeric(data['CWP'], errors='coerce')
data['CSP'] = pd.to_numeric(data['CSP'], errors='coerce')

# Check again
data.info()
data.head()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 189 entries, 0 to 188
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	Туре	188 non-null	object
1	Size_nm	188 non-null	float64
2	Shape	188 non-null	object
3	Pore_size_A	188 non-null	float64
4	Bonding	188 non-null	float64
5	Charge	189 non-null	object
6	Phase	189 non-null	object
7	Loading	188 non-null	float64
8	RR	78 non-null	float64
9	RCA	134 non-null	float64
10	CWP	188 non-null	float64
11	CSP	188 non-null	float64
12	RWP	188 non-null	float64
13	RSP	188 non-null	float64

dtypes: float64(10), object(4)

memory usage: 20.8+ KB

[18]:		Type S:		ize_nm	Shape		Pore_size_A B		Bonding	Charge	Phase	\
	0		NaN	NaN	NaN		NaN		NaN	(+, -, 0)	A or O	
	1	NaA zeol	ite	100.0	Spherical		4.0		0.0	_	A	
	2	NaA zeolite NaA zeolite		100.0	Spherical Spherical		4.0 0.0 4.0 0.0		_	A		
	3			100.0					_	Α		
	4	NaA zeolite		100.0	Spheric	al	4.0		0.0	-	A	
		Loading	RR	RCA	CWP	CSP	RWP	RS	P			
	0	NaN	NaN	NaN	NaN	NaN	NaN	Na	N			
	1	0.00004	1.015	0.903	0.767	6.5	1.023	0.89	2			
	2	0.00010	0.956	0.857	0.767	6.5	1.174	0.90	8			
	3	0.00040	0.931	0.824	0.767	6.5	1.343	0.89	2			
	4	0.00100	0.952	0.713	0.767	6.5	1.488	0.96	9			

1.1 Step 4: Data Cleaning & Initial Exploratory Data Analysis (EDA)

- Remove the first row with NaNs (artifact row).
- Check missing values.
- Plot distributions of outputs (CWP and CSP).
- Plot correlation matrix to understand relationships.

```
[21]: # Remove row with all NaNs (index 0)
      data_cleaned = data.drop(index=0).reset_index(drop=True)
      # Check missing values
      missing_values = data_cleaned.isnull().sum()
      print("Missing values in each column:\n", missing_values)
      # Plot distribution of outputs
      import matplotlib.pyplot as plt
      import seaborn as sns
      plt.figure(figsize=(12,5))
      plt.subplot(1,2,1)
      sns.histplot(data_cleaned['CWP'], kde=True, color='skyblue')
      plt.title('Distribution of CWP (LMH/bar)')
      plt.subplot(1,2,2)
      sns.histplot(data_cleaned['CSP'], kde=True, color='orange')
      plt.title('Distribution of CSP (%)')
      plt.show()
      # Correlation heatmap (for numeric columns only)
      plt.figure(figsize=(10,8))
      numeric_data = data_cleaned.select_dtypes(include=['float64'])
      sns.heatmap(numeric_data.corr(), annot=True, cmap='coolwarm', fmt=".2f")
      plt.title('Correlation Matrix (Numeric Factors & Outputs)')
      plt.show()
```

Missing values in each column:

```
Type
                  0
Size_nm
Shape
                  0
Pore_size_A
                  0
Bonding
                  0
Charge
                  0
Phase
                  0
Loading
                  0
RR
                110
RCA
                 54
CWP
                  0
```

CSP 0 RWP 0 RSP 0

dtype: int64

