Optical Flow - Final Project

Team 7 朱祐葳 蘇莙傑 吳宜凡

Outline

- Optical Flow introduction
- Kernel Architecture
- Optimization
- Timing & Resource Utilization
- Result

Optical Flow introduction

Optical Flow introduction

Optical flow or **optic flow** is the pattern of **apparent motion** of objects, surfaces, and edges in a visual scene caused by the **relative motion** between an observer and a scene.

Method

- Lucas-Kanade algorithm
 - The Lucas-Kanade optical flow algorithm is a simple technique which can provide an estimate of the movement of interesting features in successive images of a scene.
 - Sparse (some pixels) or dense (all pixels)
 - No longer state-of-the-art but still widely referenced

LK Optical Flow

Unknown motion vector in horizontal/vertical direction

$$I_x v_x + I_y v_y + I_t = 0$$

Spatial derivative Temporal image brightness derivative

Weighted least-square fit, assuming constant velocity in each section

$$\sum_{\mathbf{W}} W^{2} [I_{x} v_{x} + I_{y} v_{y} + I_{t}]^{2} = 0$$

$$\sum_{\mathbf{W}} W^{2} I_{x} I_{y} \sum_{\mathbf{W}} W^{2} I_{y} I_{y} = -\begin{bmatrix} \sum_{\mathbf{W}} W^{2} I_{x} I_{t} \\ \sum_{\mathbf{W}} W^{2} I_{y} I_{t} \end{bmatrix}$$
Window function

Constraint

- 1. The pixel intensity of the object between consecutive frames is constant
- 2. Similar motion between adjacent pixels

Kernel Architecture

Hardware diagram(8 stage)

Stage1: Unpack

Stage2: Gradient xyz

Stage3: weight_y

Stage4 : wright_x

Stage5: outer product

Stage6: Tensor_y

Stage7: Tensor_x

Stage8: Compute flow

Inputs and Outputs

- Input : 5 Consecutive Frame
 - o 1024 x 428 Pixel
- Output : Optical flow Result
 - Motion of X and Y
 - o FLO file

mp4 ->ppm -> kernel -> flo ->mp4

Optimization

Analysis

• Resource Utilization

■ Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-		-		
Expression	2	4	0	402	-
FIFO	1+3	-		-	(*)
Instance	116	60	7848	8121	0
Memory	34816	-	190	0	0
Multiplexer	-		-	715	1.7
Register	-	-	316	-	12
Total	34932	64	8354	9238	0
Available	280	220	106400	53200	0
Utilization (%)	12475	29	7	17	0

Latency

■ Summary

ycle	/cles)	Latency (Latency (absolute)		l (cycles)	
m	max	min	max	min	max	Туре
952	5280241	0.810 sec	2.953 sec	80958081	295280241	none

Target

- Memory customization
- Memory bandwidth
- Improve latency

Image line buffer and window buffer

The kernels in optical flow have sliding window access patterns. As a result, line buffer and window buffer are introduced to exploit data reuse and reduce accesses to the next-level memory

Streaming dataflow optimization

After using line buffer and window buffer, the kernels in optical flow have perfectly balanced throughput, and access data in strict sequential order. As a result, execution of all stages can be perfectly overlapped to form a very deep image processing pipeline

Data packing

The hardware function kernel takes in five consecutive image frames. The corresponding pixels in the five frames are packed into a 64-bit integer for fast off-chip data transfer

Pragma

- 1. pragma HLS array_partition
- 2. pragma HLS pipeline
- 3. pragma HLS dependence
- 4. pragma HLS data_pack
- 5. pragma HLS dataflow
- 6. pragma HLS STREAM

Array Partition

- Line Buffer and Window Buffer
- Array Partition
 - Multiple registers instead of one large memory
 - Improves the throughput

```
// calculate gradient in x and y directions
void gradient_xy_calc(input_t frame[MAX_HEIGHT][MAX_WIDTH],
    pixel_t gradient_x[MAX_HEIGHT][MAX_WIDTH],
    pixel_t gradient_y[MAX_HEIGHT][MAX_WIDTH])

{
    // line buffer
    static pixel_t buf[5][MAX_WIDTH];
    #pragma HLS array_partition variable=buf complete dim=1

    // small buffer
    pixel_t smallbuf[5];
    #pragma HLS array_partition variable=smallbuf complete dim=0

    // window buffer
    hls::Window<5,5,input_t> window;
```

Pipeline

- Read one pixel from input
- Pipeline

```
#pragma HLS pipeline II=1
for (int i = 0; i < 4; i ++ )
    smallbuf[i] = buf[i+1][c];

if (r<MAX_HEIGHT && c<MAX_WIDTH)
    smallbuf[4] = (pixel_t)(frame[r][c]);
else if (c < MAX_WIDTH)
    smallbuf[4] = 0;</pre>
```

False Dependence

```
#pragma HLS pipeline II=1
#pragma HLS dependence variable=buf inter false
if(r<MAX HEIGHT)</pre>
  buf.shift pixels up(c);
  gradient t tmp;
  tmp.x = gradient x[r][c];
  tmp.y = gradient_y[r][c];
  tmp.z = gradient_z[r][c];
  buf.insert bottom row(tmp,c);
else
  buf.shift pixels up(c);
  gradient t tmp;
  tmp.x = 0;
  tmp.y = 0;
  tmp.z = 0;
  buf.insert bottom row(tmp,c);
```


Data Pack

```
#pragma HLS data pack variable=out product
#pragma HLS data pack variable=tensor y
#pragma HLS data pack variable=tensor
#pragma HLS data pack variable=outputs
  gradient_xy_calc(frame3_a, gradient_x, gradient_y);
  gradient z calc(frame1 a, frame2 a, frame3 b, frame4 a, frame5 a, gradient z);
  gradient weight y(gradient x, gradient y, gradient z, y filtered);
  gradient weight x(y filtered, filtered gradient);
  outer product(filtered gradient, out product);
  tensor_weight_y(out_product, tensor_y);
  tensor weight x(tensor y, tensor);
  flow calc(tensor, outputs);
```

Pipeline II Violation

```
#pragma HLS pipeline II=1
gradient_t grad = gradient[r][c];
outer_pixel_t x = (outer_pixel_t) grad.x;
outer_pixel_t y = (outer_pixel_t) grad.y;
outer_pixel_t z = (outer_pixel_t) grad.z;
outer_t out;
out.val[0] = (x*x);
out.val[1] = (y*y);
out.val[2] = (z*z);
out.val[3] = (x*y);
out.val[4] = (x*z);
out.val[5] = (y*z);
out.val[5] = (y*z);
outer_product[r][c] = out;
```


Dataflow

Operation\Control Step	0		1	2		3	4		5	6		7		8	9	10		11	12		13		14
Loop_FRAMES_CP_OUTER(function)		-	H		H		li .	11		H	- 11	- 1	ĺ	- 11	- 1		11	- 1	Ī	- 11		H	- 11
gradient_xy_calc(function)		П	- 11).):							- []			- 11	i		11					П	- 11
gradient_z_calc(function)		H	- 11		1			Ш			- 11			- 11			H			- 11		Н	- 11
gradient_weight_y(function)		H	- 11		H			i			- 11			- 11			11	į				П	- 11
gradient_weight_x(function)		11	- 11		11						- :			- 11	- 1					- 11		П	- 11
outer_product(function)		H	- 11		H			H			- 11			-	il		H			- 11		Н	- 11
tensor_weight_y(function)		Н	- 11		11						- 11	3		$-\Pi$	- 11		1					Н	- 11
tensor_weight_x(function)		il .	- 11		11			- []			- 11	- 1		- 11	- 11							Ш	- 11
flow_calc(function)			- 11		11	3					- []			- 11	- 1		11			- 1			111
		11	- 11		11			- 11			- 11	1		- 11	- 1		11	1		- 11			

Stream

FIFO instead of RAM
 more efficient communication

```
gradient_xy_calc(frame3_a, gradient_x, gradient_y);
gradient_z_calc(frame1_a, frame2_a, frame3_b, frame4_a, frame5_a, gradient_z);
gradient_weight_y(gradient_x, gradient_y, gradient_z, y_filtered);
gradient_weight_x(y_filtered, filtered_gradient);
outer_product(filtered_gradient, out_product);
tensor_weight_y(out_product, tensor_y);
tensor_weight_x(tensor_y, tensor);
flow_calc(tensor, outputs);
```

```
#pragma HLS STREAM variable=gradient_x depth=default_depth
#pragma HLS STREAM variable=gradient_y depth=default_depth
#pragma HLS STREAM variable=gradient_z depth=max_width*4
#pragma HLS STREAM variable=y_filtered depth=default_depth
#pragma HLS STREAM variable=filtered_gradient depth=default_depth
#pragma HLS STREAM variable=out_product depth=default_depth
#pragma HLS STREAM variable=tensor_y depth=default_depth
#pragma HLS STREAM variable=tensor_depth=default_depth
```

Timing & Resource Utilization

Pipelined Latency

Pipeline Optimization

+ Latency:

* Summary:

	Latency ((cycles)	Latency	absolute)	Inter	rval	Pipeline
	min	max	min	max	min	max	Туре
_	76958050	280098074	0.770 sec	2.801 sec	76958050	280098074	none

+ Latency:

* Summary:

1	Latency (cycles) max	Latency min	absolute) max	Inte min	rval max	Pipeline Type
	4027072	4027072	40.271 ms	40.271 ms	4027072	4027072	none

Dataflow Optimization

+ Latency:

```
* Summary:
                                  absolute)
  Latency (cycles)
                        Latency
                                                     Interval
                                                                     Pipeline|
   min
                         min
                                                  min
              max
                                      max
                                                            max
                                                                       Type
   40270721
             4027072| 40.271 ms
                                   40.271 ms
                                                 4027072|
                                                           4027072|
                                                                       none
```

+ Late	ency: Summary:					
1	Latency (cycle		(absolute) max	Inter	val max	Pipeline Type
+-	449645 449	9645 4.496 ms	4.496 ms	449544	449544	dataflow

Stream Optimization

+ Latency:

* Summary:

1	Latency (c	ycles) max	Latency min	(absolute) max	Inter min	val max	Pipeline Type
l	4030144	4030144	40.301 ms	40.301 ms	899081	899081	dataflow

+ Latency:

* Summary:

	tency (in	cycles) max	Latency min	absolute) max	Intermin	rval max	Pipeline Type
4	49645	449645	4.496 ms	4.496 ms	449544	449544	dataflow

Timming

Pragma Type	Latency (Absolute Max)	Timming(100 MHz)	(200 MHz)
None	1.169 (sec)	8.690 ns	
Pipeline	40.271(ms)	8.657 ns	
w/o Stream	35.806 (ms)	8.510 ns	
w/o Datapack	26.851 (ms)	8.657 ns	
Optimization	4.496 (ms)	8.657 ns	5.527

Compare

Utilization	Unoptimized	Optimization	Available
BRAM	16770	135	280
DPS48E	78	196	220
FF	5388	33066	106400
LUT	7376	26023	53200

BRAM Utilization

Memory	Module	BRAM_18K	FF	LUT	URAM	Words	Bits	Banks	W*Bits*Banks
frame1 a V U	optical flow framEe0	256	0	0	0	446464	8	2	7143424
frame2 a V U	optical flow framEe0	256	01	0	0 [446464	8	21	7143424
frame3 a V U	optical flow framEe0	256	01	0	01	446464	81	21	7143424
frame4 a V U	optical flow framEe0	256	01	0	01	446464	81	21	7143424
frame5 a V U	optical flow framEe0	2561	01	0	0	446464	81	21	7143424
gradient x V U	optical flow gradJf0	1024	01	0	01	446464	32	21	28573696
gradient y V U	optical flow gradJf0	1024	01	0	01	446464	32	21	28573696
filtered gradient x s U	optical flow gradJf0	1024	01	0	01	446464	32	21	28573696
filtered gradient y s U	optical flow gradJf0	1024	01	0	0	446464	32	21	28573696
filtered gradient z s U	optical flow gradJf0	1024	01	0	01	446464	32	21	28573696
gradient z V U	optical flow gradLf8	1024	01	0	01	446464	321	21	28573696
y filtered x V U	optical flow gradLf8	1024	0	0	01	446464	32	2	28573696
y filtered y V U	optical flow gradLf8	1024	01	0	01	446464	32	21	28573696
y filtered z V U	optical flow gradLf8	1024	01	0	01	446464	32	21	28573696
out product val V U	optical flow out Shg	6112	382	0	01	446464	191	21	170549248
tensor y val V U	optical flow tensThq	6144	384	0	0	446464	192	2	171442176
tensor_val_V_U	optical_flow_tensThq	6144	384	01	0 [446464	192	21	17144217
 Total	- +	288961	1150	0	0	7589888	903	34	806313984
		100000000000000000000000000000000000000	100000000000000000000000000000000000000	0.000		TOTAL SECTION STATE	The second second	0.0000	

======================================	imates
* Summary:	
Name	BRAM_18K
DSP	-
Expression	-1
FIFO	-
Instance	721
Memory	288961
Multiplexer	-1
Register	-
+	++
Total	28968
+	++
Available	280
+ Utilization (%)	10345
OCTITIZACION (%)	10343

Stream FIFO

Name	BRAM_18K	FF	LUT	URAM	Depth	Bits	Size:D*B
filtered gradient x s U	2	66	0		1024	32	32768
filtered gradient y s U	2	661	01	-1	1024	32	32768
filtered gradient z s U	2	66	01	-1	1024	32	32768
frame1 a V U	1	43	01	-1	1024	8	8192
frame2 a V U	1	43	01	-1	1024	8	8192
frame3 a V U	1	43	01	-1	1024	8	8192
frame3 b V U	1	43	01	- 1	1024	8	8192
frame4 a V U	1	43	01	-1	1024	8	8192
frame5 a V U	1	43	01	-	1024	81	8192
gradient x V U	2	661	01	-1	1024	32	32768
gradient y V U	2	661	01	- 1	1024	32	32768
gradient z V U	8	901	01	-1	40961	32	131072
out product val V U	11	225	01	-1	1024	191	195584
tensor val V U	11	226	01	-1	1024	192	196608
tensor y val V U	11	226	01	-1	1024	192	196608
y filtered x V U	2	661	01	-1	1024	32	32768
y filtered y V U	2	661	01	-1	1024	32	32768
y_filtered_z_V_U	2	661	0	-1	1024	32	32768
Total	63	1553	+ 0	0	21504	911	1031168

Stream FIFO

* Summary:					
Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-		 -l	+ -	
Expression	-	-[0	4	_
FIFO	63	[1553	2355	_
Instance	72	196	31656	24073	0
Memory	-		-1	-1	_
Multiplexer	-	-[-1	-	_
Register	-	-1	-	-1	-
Total	135	1961	332091	26432	0
Available	280	220	106400	53200	0
Utilization (%)	48	89	+- 31	49	0

Resource

func/Utlis	BRAM	DSP48E	FF	LUT
gradient_xy	8	8	835	1234
gradient_y	42	42	2981	2200
gradient_x	0	42	2203	1936
outer_product	0	6	333	190
tensor_x	0	36	1923	1748
tensor_y	22	36	1960	1649
flow_calc	0	24	21050	14358

Result

- 31.2 ms / frame
- Blue: x direction
- Purple : y direction

Reference

- [1] Wiki Lucas-Kanade method
- [2] Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software Programmable FPGAs, 2018
- [3] Optical Flow Estimation
- [4] Introduction To Optical Flow

Github Link

https://github.com/yuweitt/Final-Project-Optical-Flow