MDCCINT_EL1, Monitor DCC Interrupt Enable Register

The MDCCINT EL1 characteristics are:

Purpose

Enables interrupt requests to be signaled based on the DCC status flags.

Configuration

AArch64 System register MDCCINT_EL1 bits [31:0] are architecturally mapped to AArch32 System register DBGDCCINT[31:0].

Attributes

MDCCINT EL1 is a 64-bit register.

Field descriptions

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

	02 01	00 33		, , , , , , , , , , , , , , , , , , , 				<u> </u>	0 13			10	<u> </u>		, , _		<u></u>			<u> </u>			<u> </u>		
	RESO																								
RESC	RXTX										RI	FSC)												
	, , , , , ,																								
31	30 29	28 27	262	5 24	232	221	20	191	817	16	15	141	3 1	211	10	9	8	7	6	5	4	3	2	1	0

Bits [63:31]

Reserved, res0.

RX, bit [30]

DCC interrupt request enable control for DTRRX. Enables a common **COMMIRQ** interrupt request to be signaled based on the DCC status flags.

RX	Meaning
0b0	No interrupt request generated by DTRRX.
0b1	Interrupt request will be generated on $RXfull == 1$.

If legacy **COMMRX** and **COMMTX** signals are implemented, then these are not affected by the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

TX, bit [29]

DCC interrupt request enable control for DTRTX. Enables a common **COMMIRQ** interrupt request to be signaled based on the DCC status flags.

TX	Meaning
0d0	No interrupt request generated by DTRTX.
0b1	Interrupt request will be generated on TXfull $== 0$.

If legacy **COMMRX** and **COMMTX** signals are implemented, then these are not affected by the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bits [28:0]

Reserved, res0.

Accessing MDCCINT EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MDCCINT EL1

op0	op1	CRn	CRm	op2
0b10	0b000	0b0000	0b0010	0b000

```
'1' && boolean IMPLEMENTATION DEFINED "EL3 trap
priority when SDD == '1'" && MDCR EL3.TDA == '1' then
        UNDEFINED;
    elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = MDCCINT EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && MDCR EL3.TDCC == '1' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR EL3.TDA == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && MDCR EL3.TDCC == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = MDCCINT\_EL1;
elsif PSTATE.EL == EL3 then
    X[t, 64] = MDCCINT\_EL1;
```

MSR MDCCINT_EL1, <Xt>

op0	op1	CRn	CRm	op2
0b10	0b000	0b0000	0b0010	0b000

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif Halted() &&
ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG)
```

```
then
    MDCCINT EL1 = X[t, 64];
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && MDCR EL3.TDCC == '1' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
        UNDEFINED;
    elsif EL2Enabled() && MDCR EL2.TDCC == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR EL2.<TDE, TDA> != '00'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        MDCCINT EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && MDCR_EL3.TDCC == '1' then
        UNDEFINED;
    elsif Halted() && HaveEL(EL3) && EDSCR.SDD ==
'1' && boolean IMPLEMENTATION DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
        UNDEFINED;
    elsif HaveEL(EL3) && MDCR EL3.TDCC == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        MDCCINT\_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
    MDCCINT\_EL1 = X[t, 64];
```

	28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d9	
С	opyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. Th document is Non-Confidentia	is
	document is ivon-confidentic	11.