GATE 2023[IN]-36

EE23BTECH11066 - Yakkala Amarnath Karthik

Question:

The impulse response of an LTI system is h(t)= $\delta(t) + 0.5\delta(t-4)$, where $\delta(t)$ is continuoustime unit impulse signal.if the input signal $x(t) = \cos\left(\frac{7\pi t}{4}\right)$, the output is (GATE IN 2023)

Solution:

Variable	Description	value
$\delta\left(t\right)$	continuous-time unit impulse signal	1 if $t=0$;
		0 in other cases
$h\left(t\right)$	impulse response	$\delta(t) + 0.5\delta(t-4)$
x(t)	input signal	$x(t) = cos\left(\frac{7\pi t}{4}\right)$
$y\left(t\right)$	output signal	x(t)* h(t)
$y\left(s\right)$	Laplace of $y(t)$	$\frac{0.5s}{s^2+30.2257}$
$x\left(s\right)$	Laplace of $x(t)$	$\frac{s}{s^2+30.2257}$
	TABLE I	·

A TABLE WITH INPUT PARAMETERS

from Table I

$$y(t) = x(t) * h(t)$$
(1)
= $x(t) * (\delta(t) + 0.5\delta(t - 4))$ (2)
= $x(t) + 0.5x(t - 4)$ (3)
= $\cos\left(\frac{7\pi t}{4}\right) + 0.5\cos\left(\frac{7\pi(t - 4)}{4}\right)$ (4)
= $\cos\left(\frac{7\pi t}{4}\right) + 0.5\cos\left(\frac{7\pi t}{4} - 7\pi\right)$ (5)

$$=0.5\cos\left(\frac{7\pi t}{4}\right) \tag{6}$$

Transform function
$$(H(s)) = \frac{y(s)}{x(s)}$$
 (7)

$$= \frac{\frac{0.5s}{s^2 + 30.2257}}{\frac{+s}{s^2 + 30.2257}}$$
 (8)

$$= 0.5$$
 (9)

Fig. 1. Graph showing x(t) and y(t)

(5)