Den naturlige eksponentialfunktion og logaritme

Den naturlige eksponentialfunktion

Én eksponentialfunktion har så pæne egenskaber, at den fortjener et særligt navn; den naturlige eksponentialfunktion. Vi definerer den her.

Definition 1.1 (Den naturlige eksponentialfunktion). Den naturlige eksponentialfunktion defineres som funktionen f givet ved

$$f(x) = e^x$$

hvor $e \approx 2.718281$ kaldes for Eulers tal.

Denne eksponentialfunktion vil vi arbejde med særligt i 2. og 3.g. Den har begyndelsesværdi 1 og opfylder, at hældningen af funktionen alle steder er lig funktionsværdien, hvilket vi dog først vil præcisere næste år.

Vi kan bruge Eulers tal e til at repræsentere alle eksponentialfunktioner. Vi vil dog først præsentere den naturlige logaritme.

Den naturlige logaritme

På samme måde som vi sidst eksempelvis brugte \log_2 i forbindelse med eksponentialfunktionen 2^x og \log_{10} i forbindelse med eksponentialfunktionen 10^x vil vi her definere den naturlige logaritme, der er den inverse funktion til den naturlige eksponentialfunktion.

Definition 2.1 (Den naturlige logaritme). Den naturlige logaritme defineres som logaritmen med grundtal e, altså

$$\log_e(x)$$
.

Denne skrives ofte

$$ln(x)$$
.

Denne opfylder som bekendt, at

$$ln(e^x) = x$$

og

$$e^{\ln(x)} = x$$
.

Side 1 af 6

1.h

Eksempel 2.2. Det gælder eksempelvis, at $\ln(e^{10}) = 10$ og $e^{\ln(4)} = 4$.

Vi kan bruge den naturlige logaritme og den naturlige eksponentialfunktion til at omskrive alle eksponentialfunktioner. Har vi en eksponentialfunktion f givet ved

$$f(x) = b \cdot a^x$$

så kan vi udnytte, at

$$a = e^{\ln(a)}$$

samt regnereglen

$$(a^y)^x = a^{x \cdot y}.$$

Derfor kan vi skrive a^x som

$$a^x = (e^{\ln(a)})^x = e^{\ln(a) \cdot x}.$$

Vi kalder nu $\ln(a) = k$ og indsætter dette i forskriften for f. Vi får derfor

$$f(x) = b \cdot a^x = b \cdot e^{kx}.$$

Enhver eksponentialfunktion kan altså omskrives til formen

$$f(x) = b \cdot e^{kx},$$

hvor $k = \ln(a)$.

Eksempel 2.3. Vi ønsker at omskrive eksponentialfunktionen f givet ved

$$f(x) = 10 \cdot 1.32^x$$

til formen

$$f(x) = b \cdot e^{kx}.$$

Vi udnytter, at $k = \ln(a) = \ln(1.32) = 0.278$ og får, at f kan skrives som

$$f(x) = 10e^{0.278x}$$

Vi kan også være i situationen, hvor vi ønsker at gå den anden vej. Lad os betragte tilfældet, hvor vi har fået en eksponentialfunktion q givet ved

$$g(x) = 14 \cdot e^{-0.11x}.$$

Vi kan i denne situation ikke umiddelbart aflæse hverken fremskrivningsfaktor eller vækstrate. For at gøre dette skal vi omskrive g til formen

$$g(x) = b \cdot a^x.$$

Da $k = \ln(a)$, så må det gælde, at $e^k = e^{\ln(a)} = a$, så vi kan altså finde fremskrivningsfaktoren a ved at bestemme $a = e^{-0.11} = 0.896$, og g lyder derfor

$$g(x) = 14 \cdot 0.896^x$$
.

Grafer

Da logaritmer gør det omvendte af eksponentialfunktioner (de er inverse til eksponentialfunktioner), må deres grafer være eksponentialfunktioner spejlet i linjen y = x. (Hvis dette ikke er klart, så kommer vi til at vende tilbage til det senere). Grafen for e^x samt $\ln(x)$ kan ses af Figur 1

Figur 1: Grafer for funktionerne e^x og $\ln(x)$.

Opgave 1

En tabel med funktionsværdier for e^x er givet.

\boldsymbol{x}	-4	-3	-2	-1	0	1	2	3	4	5
e^x	0.018	0.049	0.135	0.368	1	2.718	7.389	20.085	54.598	148.413

Brug tabellen til at bestemme følgende.

1)	$\ln(20.085)$	2)	$\ln(54.598)$
3)	ln(1)	4)	ln(0.018)
5)	ln(0.049)	6)	ln(148.413)

Opgave 2

Bestem følgende udtryk

1) $ln(e^3)$

2) $\ln(e^{17})$

3) $\ln(e^{\sqrt{4}})$

4) ln(e)

5) ln(1)

6) $\ln(e^{-0.157})$

Opgave 3 (Med Maple)

Omskriv følgende eksponentialfunktioner til formen

$$f(x) = be^{kx}.$$

- 1) $f(x) = 2 \cdot 1.2^x$
- 2) $f(x) = 10 \cdot 0.75^x$
- 3) $f(x) = 1.93 \cdot 2^x$
- 4) $f(x) = 510 \cdot 1.13^x$
- 5) $f(x) = \sqrt{2} \cdot 0.9^x$
- 6) $f(x) = 9 \cdot (e^{-1.5})^x$

Opgave 4

I Opgave 3 havde k forskellige fortegn. Kan du gennemskue, hvad fortegnet for k betyder for eksponentialfunktionen?

Opgave 5 (Med Maple)

i) En eksponentialfunktion f er givet ved

$$f(x) = 5 \cdot e^{-0.05x}.$$

Bestem fremskrivningsfaktoren og vækstraten for f.

ii) En eksponentialfunktion f er givet ved

$$f(x) = 17 \cdot e^{0.8x}.$$

Bestem fremskrivningsfaktoren og vækstraten for f.

iii) En eksponentialfunktion f er givet ved

$$f(x) = 9.11 \cdot e^{-0.17x}.$$

Afgør, hvor mange procent f stiger med, hver gang x øges med 1.

Opgave 6 (Med Maple)

I en by er indbyggertallet i år 2000 på $15\,621$ personer. I år 2010 er der $20\,217$ personer. Det antages, at indbyggertilvæksten kan beskrives ved en eksponentiel sammenhæng.

i) Bestem en sammenhæng $f(x) = b \cdot e^{kx}$, der beskriver udviklingen af befolkningen i byen. x skal beskrive år efter år 2000 og f skal beskrive befolkningsantallet i byen.

Opgave 7

Følgende er en graf for den naturlige eksponentialfunktion $f(x) = e^x$.

Figur 2: Graf for funktionen e^x .

Brug grafen for $f(x) = e^x$ til at løse følgende opgaver. Aflæs efter bedste evne.

- i) Bestem e^2 .
- ii) Bestem e^3 .
- iii) Bestem $e^{2.6}$.
- iv) Bestem e^0 .
- v) Bestem ln(10).
- vi) Bestem ln(20).

vii) Bestem ln(26).

Opgave 8 (Med Maple)

Løs følgende ligninger både ved brug af ln og ved brug af solve.

1)
$$e^{x-4} = 403.43$$

2)
$$e^{x/2-6} = 54.59$$

3)
$$ln(x+2) = 0.5$$

4)
$$\ln(4x-1) = 3.7$$