Critical Properties, Normal Boiling Temperature, and Acentric Factor of Another 200 Ionic Liquids

José O. Valderrama,*,^{†,‡} Wilson W. Sanga,^{†,§} and Juan A. Lazzús^{†,⊥}

Center for Technological Information (CIT), Casilla 724, La Serena, Chile, Department of Mechanical Engineering, Faculty of Engineering, University of La Serena, Casilla 554, La Serena, Chile, Faculty of Chemical Engineering, Universidad Nacional del Altiplano, Av. Floral 1153, Puno, Perú, and Department of Physics, Faculty of Sciences, University of La Serena, Casilla 554, La Serena, Chile

The critical properties, the normal boiling temperature, and the acentric factor of 200 ionic liquids have been determined using an extended group contribution method, which is based on the well-known concepts of Lydersen and Joback and Reid, that was developed by the authors. The method does not require any additional data besides knowledge of the structure of the molecule and its molecular mass. Because experimental critical properties of ionic liquids are not available, the accuracy of the method is checked by calculating the liquid density of the ionic liquids considered in the study for which experimental data are available in the literature. The results show that the values determined for the critical properties, the normal boiling temperature, and the acentric factor are sufficiently accurate for engineering calculations, generalized correlations, and equation of state methods, among other applications.

Introduction

The authors have recently presented a procedure to estimate the critical properties (temperature $(T_{\rm C})$, pressure $(P_{\rm C})$, and volume $(V_{\rm C})$), the normal boiling temperature $(T_{\rm b})$, and the acentric factor (ω) of ionic liquids using a group contribution method that unifies the best characteristics of two of the most used simplest techniques: Lydersen¹ and Joback and Reid.² The accuracy of the estimated values were tested by determining the density of the ionic liquids using an independent equation that was not applied in determining the critical properties. The tests proved that the predicted values seem to be reasonable, considering the relatively low deviations between experimental and calculated densities.³

Ionic liquids recently have attracted special attention from the scientific community, and hundreds of studies that involve different aspects of ionic liquids have been presented in the literature. However, the critical properties that are required to estimate other properties for the modeling, simulation, and design of processes involving ionic liquids are not available. One reason for this is because the critical properties of ionic liquids cannot be experimentally determined, since most of these compounds start to decompose at low temperature and, in many cases, at temperatures approaching T_b . The estimated properties are useful approximations that must be interpreted as "these would be the values of T_C , P_C , T_b and ω , if the properties were possible to be measured". Because of the fact that experimental data do not exist and there is no reasonable and generally accepted theory yet available to estimate these properties for ionic liquids, the group contribution method recently presented by Valderrama and Robles³ is considered to give reasonable estimates.

In addition to the aforementioned arguments, the critical properties ($T_{\rm C}$, $P_{\rm C}$, and $V_{\rm C}$), normal boiling temperature ($T_{\rm b}$), and acentric factor (ω) are widely used in correlations and predictive methods to estimate a series of thermophysical and transport properties (such as vapor pressure, liquid density, viscosity, and thermal conductivity, among others).⁴ The corresponding state principle, which is based on equations of state or other methods of molecular nature, also makes use of the critical properties.⁵ In the case of ionic liquids, our previous studies indicate that extending estimation procedures originally derived for organic substances to ionic liquids, instead of developing complete new procedures for treating these new fluids, is a reasonable way to obtain these hypothetical properties, which are needed for other calculations.³

Among the several proposals presented in the literature, the approach developed by Lydersen¹ is perhaps the most widely used group contribution method to estimate critical properties. Later, Joback and Reid² developed a method that is frequently mentioned in the literature and used in several applications. In all these methods, the property of a compound is calculated by summing the contributions of certain defined groups of atoms, while simultaneously considering the number frequency of each group that is present in the molecule. Although all these methods have been questioned in the literature, ⁴ they have the advantage of providing quick estimates without requiring sophisticated computational calculations.

Alvarez and Valderrama⁶ combined the best results of Lydersen's method with the best results of the Joback—Reid method to proposed a "modified Lydersen—Joback—Reid" method that proved to give good results for molecules with high molecular mass. The method considers the equations of the Lydersen method for the critical pressure and critical volume, and the equations of the Joback—Reid method for the normal boiling temperature and the critical temperature. The authors modified the parameters involved in the different equations for the critical properties. The equation for the normal boiling point was the same as that given in the original method.

This modified Lydersen-Joback-Reid method was used by Valderrama and Robles³ to estimate the critical properties of 50 ionic liquids. Because there are no experimental critical

^{*}To whom correspondence should be addressed. Tel.: 56-51-204260. Fax: 56-51-551158: E-mail address: jvalderr@userena.cl.

[†] Center for Technological Information (CIT).

[‡] Faculty of Engineering, Department of Mechanical Engineering, University of La Serena.

[§] Faculty of Chemical Engineering, Universidad Nacional del Altiplano.

[⊥] Faculty of Sciences, Department of Physics, University of La Serena.

Table 1. Modified Group Contribution Methoda

Model Equations	Constants
$T_{\rm b} = 198.2 + \sum n\Delta T_{\rm bM}$	$A_{\rm M} = 0.5703$
$T_{\rm c} = \frac{T_{\rm b}}{\left[A_{\rm M} + B_{\rm M} \sum n\Delta T_{\rm M} - \left(\sum n\Delta T_{\rm M}\right)^2\right]}$	$B_{\rm M} = 1.0121$
$P_{\rm c} = \frac{1}{\left(C_{\rm M} + \sum n\Delta P_{\rm M}\right)^2}$	$C_{\rm M} = 0.2573$
$V_{\rm c} = E_{\rm M} + \sum n\Delta V_{\rm M}$	$E_{\rm M} = 6.75$

^a Data taken from ref 5. In the equations, M is given in units of g/mol, $T_{\rm b}$ and $T_{\rm c}$ are given in Kelvin, $P_{\rm c}$ is given in bars, and $V_{\rm c}$ is given in units of (cm³/mol).

properties available to evaluate the accuracy of the estimates, these values were tested for accuracy and consistency by determining the density of the ionic liquids, for which experimental data are available. For this, an independent equation that was not applied in determining the critical properties was used. The deviations found between the experimental and calculated densities are within the experimental errors shown by the authors. However, the method has been questioned by Jones et al. in a recent communication.⁷ These authors compared 8 of the 50 estimated boiling temperatures with values derived from experimentally determined heats of vaporization. According to Jones et al.,⁷ the boiling temperatures of ionic liquids are not predicted well by the method used by Valderrama and Robles and, by inference, the critical properties and acentric factors also are likely to be erroneous. To reach this conclusion, Jones et al.⁷ extrapolated their heat of vaporization data using a constant value for the heat capacity difference $[CP_L - CP_G] =$ 94 J K⁻¹ mol⁻¹ for the 8 ionic liquids and then used Trouton's Law: $[\Delta H^{\text{vap}}(\text{at } 298 \text{ K}) - 94(T_b - 298 \text{ K})]/(T_b) = 85.$

In another communication, Valderrama and Robles⁸ discussed their own calculated values and extensively explained why those values seem to be reasonable and can be accepted for correlation and other calculations in which critical properties are required. These authors demonstrated that the heat capacity difference $[CP_L - CP_G]$ that Jones et al.⁷ assumed to be constant (94 J K⁻¹ mol⁻¹) may vary from 15 J K⁻¹ mol⁻¹ to 287 J K⁻¹ mol^{−1} for many fluids, and certainly this variation for ionic liquids is unknown. Also, Trouton's constant, which was assumed by Jones et al.7 to be 85 J K⁻¹ mol⁻¹ ranges from 20 J K⁻¹ mol⁻¹ to 181 J K⁻¹ mol⁻¹ for many fluids. Also, in this case, the value of this constant, if it is constant, is unknown for ionic liquids. Therefore, assuming values of $[CP_L - CP_G] =$ 94 J K⁻¹ mol⁻¹ and $[\Delta H^{\text{vap}}(\text{at 298 K}) - 94(T_b - 298 K)]/T_b =$ 85 are simply rough approximations that cannot be used for all ionic liquids without further analysis.

Because experimental data do not exist and there is no reasonable and generally accepted theory yet available to estimate these properties for ionic liquids, the extension of standard methods such as group contribution seems to be reasonable. Also, the independent test of using the estimated critical properties to calculate the density of ionic liquids gives an indication of the consistency of the estimated values.

The Group Contribution Method

Details of the group contribution method has been given by Valderrama and Robles;3 therefore, it is only summarized in Tables 1 and 2. Table 1 shows the main equations for the normal

Table 2. Groups Considered in the Modified Lydersen-Joback-Reid Methoda

group	ΔT_{bM}	$\Delta T_{ m M}$	$\Delta P_{ m M}$	$\Delta V_{ m M}$
	Witho	out Rings		
$-CH_3$	23.58	0.0275	0.3031	66.81
$-CH_2-$	22.88	0.0159	0.2165	57.11
>CH-	21.74	0.0002	0.1140	45.70
>C< [>C-]_	18.18	-0.0206	0.0539	21.78
$=CH_2$	24.96	0.0170	0.2493	60.37
=CH $-$	18.25	0.0182	0.1866	49.92
=C<	24.14	-0.0003	0.0832	34.90
$-O [-O]^{-}$	22.42	0.0051	0.1300	15.61
>C=O	94.97	0.0247	0.2341	69.76
-COO-	81.10	0.0377	0.4139	84.76
>N- [$>N<$] ⁺	11.74	-0.0028	0.0304	26.70
-N=	74.60	0.0172	0.1541	45.54
-CN	125.66	0.0506	0.3697	89.32
$-F$ [F $^{-}$]	-0.03	0.0228	0.2912	31.47
-Cl [Cl ⁻]	38.13	0.0188	0.3738	62.08
-I [I-]	93.84	0.0148	0.9174	100.79
	With	n Rings		
$-CH_2-$	27.15	0.0116	0.1982	51.64
=CH $-$	26.73	0.0114	0.1693	42.55
>C<	21.32	-0.0180	0.0139	17.62
=C<	31.01	0.0051	0.0955	31.28
>N- [>N<]+	68.16	0.0063	0.0538	25.17
$-N = [>N =]^+$	57.55	-0.0011	0.0559	42.15
	New	Groups		
-B	-24.56	-0.0264	0.0348	22.45
-P	34.86	0.0067	0.1776	67.01
$-S- [>S-]^+$	117.52	-0.0004	0.6901	184.67
$-SO_2-*$	147.24	-0.0563	-0.0606	112.19

^a Data taken from ref 3. * Value determined in this work.

boiling temperature and the critical properties, whereas Table 2 lists the groups used to estimate the properties of the selected 200 ionic liquids.

As a test of the "consistency" of the predicted properties, the liquid density of the ionic liquids has been estimated using a generalized correlation. In this work, a more flexible correlation that was proposed by one of the current authors have been used.9 This correlation has been shown to give accurate predictions for many fluids and is based on the equation of Shah and Yaws. 10 It requires only the normal boiling temperature, the molecular mass, and the critical properties:

$$\rho_{\rm L} = \left(0.01256 + \frac{0.9533M}{V_{\rm C}}\right) \left[\left(\frac{0.0039}{M} + \frac{0.2987}{V_{\rm C}}\right) V_{\rm C}^{1.033} \right]^{\Psi} \quad (1)$$

where

$$\Psi = -\left[\frac{1 - T_{\rm R}}{1 - T_{\rm bR}}\right]^{2/7}$$

In these equations, ρ_L is the liquid density (given in units of g/cm³), T_R is the reduced temperature ($T_R = T/T_C$), and T_{bR} is the reduced temperature at the normal boiling point (T_{bR} =

The acentric factors (ω) of the ionic liquids were estimated as described by Valderrama and Robles,³ using the calculated critical properties and the calculated normal boiling temperature:

$$\omega = \frac{(T_{b} - 43)(T_{c} - 43)}{(T_{c} - T_{b})(0.7T_{c} - 43)} \log \left(\frac{P_{c}}{P_{b}}\right) - \left(\frac{T_{c} - 43}{T_{c} - T_{b}}\right) \log \left(\frac{P_{c}}{P_{b}}\right) + \log \left(\frac{P_{c}}{P_{b}}\right) - 1 \quad (2)$$

Table 3. Critical Properties of Ionic Liquids Calculated by Group Contribution, Densities Calculated with the Generalized Correlation (eq 1), and Comparison with Literature Values^a

global formula IUPAC name
1,1-dimethylpyrrolidinium
(2,2,2-unnoio-r-tunnoiomeny) sunony) acetamine (2,2,2,2-unnoio-r-tunnoiomeny) (2,2,2,2-unnoiomeny) (2,2,2,2-unnoiomeny)
(5,2,,-thinolo-7-(thinological) sunonyl)acetalmue raethylammonium, (4,5,0,0,0,0,0,0,0)
(5,2,,-timtoto-7-(timtotomeny) sunony) acetamine nethylalylammonium nethylalylammonium (tittoromothyl sulfond) socioni 30
(*,52,2-unnoio2-r-(unnoioment) sunoity)acciannee nethylethylammonium 7.3. +rifluoromethyl sulfonylbacetamide
trimethylisopropylammonium (2) 4-41-27 - (1-11-11-11-11-11-11-11-11-11-11-11-11-1
IIIcui
(2,2,,-thinoid-n-(thinoidoneny) sunony) acetamine outyl-3-methylidimazolium's culfaneto
1,1,2,2-Ectamonocuano sunonare 1-dodecyl-3-methylidimazolium 1 1 2 2 tetrafinoroathana sulfonata
thyl-3-methylidimazolium 1 2 2 tetrafluoroathane sulfonate
¥ :
1,1,2,2-tettanuoroemane sunonate outyl-3-methylidimazolium
1,1,2,3,3,3-nexalituolopiopane suronate outyl(tetradecyl) phosphonium 1,1,2,2,3,4,3,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1,1,2,3,3,3-nexamoropropare suronare outyl-3-methylidimazolium 1 1 2 friftnerg 2 (norfluencetherri)athan
1,1,2-uniuoro-2-(periuoroetnoxy)etnane sunonate radecyl(trihexyl) phosphonium 1 1 2 triffuoro 2 (parfluoroethoxy)athana culfonate
11.52-u muoto-2-(permuorocuroxy) curane surromate utyl-3-nethylidimazolium 11.7 erifilozo / defilozomashowyshong culforado
1, 1, z-un noto-z-(un notomentox) utyl-3-methylidimazolium 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
Ť,
bis (pentatiuoloetii) isuuonyi)iinide sutyl-3-methylidimazolium his (pentafiuoroothyleulfonyl)imide
bis (pentartuoloetnyisutionyi)innue nethyl-n-octylpyridinium
diethyl methyl (quaternary)ammonium
dimethyl isopropyl (quaternary)ammonium
bis(bishexylamino)methylene]dimethylammonium bis[(trifluoromethyl)sulfonyl]imide

	Ę	
	(Continue	
	٠٠,	
ı	9	

V %		-1.0	-2.7	-8.3	-1.0	-7.5	-3.4	-2.1	6.1	9.9-	1.8	4.2	6.0-	-4.3	-3.3	-3.1	2.8	-5.4	-1.5	-3.2	-0.1	-1.9	-4.1	-4.6	13.4	18.5	18.2
ρ^{calc}		1.3468	1.4177	1.3679	1.4177	1.4417	1.3810	1.3821	1.3489	1.4341	1.3679	1.3535	1.3907	1.3978	1.4270	1.3986	1.3057	1.3996	1.3500	1.3647	1.3383	1.4675	1.3900	1.3912	1.1795	1.3034	1.3119
ρ^{lit}	(g/ciiir)7	1.360019	1.456716	1.4910^{20}	1.4320^{20}	1.5590^{16}	1.4300^{20}	1.4120^{12}	1.2710^{20}	1.5360^{16}	1.3440^{20}	1.2990^{20}	1.4030^{20}	1.4600^{20}	1.4750^{20}	1.4440^{12}	1.2700^{20}	1.4802^{16}	1.3700^{20}	1.4100^{20}	1.3400^{20}	1.4960^{20}	1.4490^{20}	1.4590^{20}	1.0400^{20}	1.1000^{20}	1.1100^{20}
T(K)	J (N)	298.15	295.15	298.15	295.15	295.15	293.15	298.15	298.15	298.15	298.15	298.15	298.15	293.15	298.15	298.15	293.15	298.15	293.15	293.15	293.15	298.15	298.15	293.15	298.15	298.15	298.15
3	8 200	0.7803	0.3226	0.4349	0.3226	0.1418	0.3220	0.3160	0.5741	0.1671	0.4349	0.5276	0.3442	0.2783	0.2573	0.2723	0.6653	0.2447	0.3777	0.3334	0.4228	0.2694	0.2505	0.2754	0.4734	0.9913	0.9857
V _C	(CIII*/IIIOI)	1481.8	988.6	1161.5	988.6	835.8	1017.8	1038.8	1332.8	869.0	1161.5	1275.7	1047.2	2.096	933.0	981.7	1408.9	948.4	1012.6	955.5	1069.7	948.6	983.3	8.696	2840.1	2154.8	1926.4
P _c (har)	rc(Dal)	15.6	27.5	22.3	27.5	35.8	25.1	25.5	18.7	32.7	22.3	19.8	25.6	27.0	29.9	27.5	16.1	29.7	24.1	25.9	22.5	29.0	27.7	26.7	7.0	7.6	11.0
$T_{c}(K)$	1071 O	1271.0	1269.7	1305.0	1269.7	1235.7	1208.8	1240.5	1345.1	1207.9	1305.0	1331.2	1281.1	1196.5	1259.3	1228.9	1176.6	1254.1	1054.3	1038.7	1070.1	1285.2	1229.1	1196.9	1831.8	1449.6	1353.0
T. (K)	7 POO	987.5	867.4	931.1	867.4	783.2	832.9	852.0	7.666	778.4	931.1	976.8	885.3	810.0	839.6	829.1	897.6	833.9	738.3	715.4	761.2	862.0	824.2	810.4	1470.5	1195.9	1104.4
IIIDAC nama		[bis/butylethylamino)methylene]dimethylammonium 537 bis[(triflioromethyl)sulfonyllimide	2. dinethyl-3-propylmidazolium kieldinethyl-3-propylmidazolium	ots (turnuo one culy 1) sunony 1 juniue dibutylimidazolium 461	bis((trifluoromethyl)sulfonyl)imide 1,3-diethyl-4-methylidimazolium 419	bis((trifluoromethyl)sulfonyl]imide 1,3-dimethylidimazolium	bis[(trifluoromethyl)sulfonyl]imide 1-butyl-2-methylpyrrolidinium 421	bis[(trifluoromethyl)sulfonyl]imide 1-butyl-3-methylpyridinium 430	bis ((tritluoromethyl)sulfonyl]imide 1-decyl-3-methylidimazolium	bis[(tritluoromethyl)sulfonyl]imide 388	bts/(trituorometry)/surionyl/made bts/(trituorometry)/surionyl/made	bis (trituoromethy) suitonyl-imide 1-nonyl-3-methylidimazolium 490	bis (tritluoromethy) sulfonyljimide 1-pentyl-3-methylidimazolium 433	bis[(trifluoromethyl)sulfonyl]imide 1-propyl-2-methylpyrrolidinuim 407	bis[(trifluoromethyl)sulfony]]imide 1-propyl-3-methylidimazolium 405	bis (tritluoromethyl)sultonyl jimide 3-methyl-1-propyl pyridinium	bis ((tritluoromethyl)sulfonyl jimide di(iso)propylethylheptylammonium 509	bis (trifluoromethyl)sulfonyl jimide dimethyl-3-ethylimidazolium	bis (tritluoromethyl)sulfonyl inmde dimethylethylbutylammonium	bis ((trifluoromethyl)sulfonyl]imide dimethylethylpropylammonium 396	bis (tritiuoromethyl)sulfonyl jimide dimethyl propylbutylammonium 424	bis (tritluoromethyl)sulfonyl jimide ethyymethyl-3-methylidimacolium	bis(terituoromethyl)sulfonyl]imide bis(terituoromethyl)sulfonyl]imide 416	bis (tritluoromethy) sulfony] jimide n-methy—propy]pyrrolidinium 408	bas(tarituorometnyl)sutionyljimide stadecylammonium 859	bis[(trifluoromethyl)sulfonyl]mude trahepiylammonium	bis[(trifluoromethyl)sulfonyl]imide rahexylammonium 635
5			1,2	1,3	1,3	1,3	17	1-1	1-0	1-e	1-1	1-1	1-1	1-p	1-p	3-1	di(din	din	dir	dir	eth	n-l	n-r	tet	tetı	teti
alumal formula		m] $C_{17}H_{34}N_4F_6S_2O_4$	$C_{10}H_{15}F_6N_3O_4S_2$	$C_{13}H_{21}N_3F_6S_2O_4$	$H] \qquad C_{10}H_{15}N_3F_6S_2O_4$	$\mathrm{C_7H_9N_3F_6S_2O_4}$	$\mathrm{C_{11}H_{18}N_{2}F_{6}S_{2}O_{4}}$	$C_{12}H_{16}N_2F_6S_2O_4$	$C_{16}H_{27}N_3F_6S_2O_4$	$\mathrm{C_9H_{10}F_6N_2O_4S_2}$	$C_{13}H_{21}N_3F_6S_2O_4$	$C_{15}H_{25}N_3F_6S_2O_4$	$C_{11}H_{17}N_3F_6S_2O_4$	$C_{10}H_{16}N_2F_6S_2O_4$	$C_9H_{13}N_3F_6S_2O_4$	$C_{11}H_{14}N_2F_6S_2O_4$	$^{\prime}$] $C_{17}H_{34}N_{2}F_{6}S_{2}O_{4}$	$\mathrm{C_9H_{16}N_3F_6S_2O_4}$	$C_{10}H_{20}N_2F_6S_2O_4$	$\mathrm{C_9H_{18}N_2F_6S_2O_4}$	$C_{11}H_{22}N_2F_6S_2O_4$	$C_9H_{13}N_3F_6S_2O_5$	$] \qquad C_{11}H_{14}N_2F_6S_2O_4$	$] \qquad C_{10}H_{18}N_2F_6S_2O_4$	$C_{42}H_{84}N_2F_6S_2O_4$	$C_{30}H_{60}N_2F_6S_2O_4$	$C_{26}H_{52}N_2F_6S_2O_4$
ionic		C15guan] [hti]				[bti] [dmim]	[bti] [MP4]	[bti] [bmpy]	[btɪ] [decmim]							[btɪ] [pmpy]						[btɪ] [eomim]					[btɪ] [tha]
2	- 1 -	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	4	45	46	47	48	49	50	51	52

Table 3. (Continued)

	ionic							$V_{\rm C}$			ρ ^{lit}	pcalc	
No.	liquid	global formula	IUPAC name	M	$T_{\rm b}({ m K})$	$T_{\rm C}\left({ m K}\right)$	P _C (bar)	(cm ³ /mol)	ω	T(K)	$(g/cm^3)^a$	(g/cm ³)	$^{\%}\Delta\rho$
53	[tpa]	$C_{22}H_{44}N_2F_6S_2O_4$	tetramylammonium hiel/frifluoromethyl)enIfonyllimide	579	1012.9	1267.0	12.8	1697.9	0.8923	298.15	1.1600^{20}	1.3100	12.9
54	[toa]	$C_{34}H_{68}N_2F_6S_2O_4$	tetracetylammonium	747	1287.4	1559.2	8.6	2383.2	0.8960	298.15	1.0600^{20}	1.2782	20.6
55	[bti] [S444]	$\mathrm{C}_{14}\mathrm{H}_{27}\mathrm{NF}_6\mathrm{S}_3\mathrm{O}_4$	bis[(trifluoromethyl)sulfonyl]imide tributylsulfonium	484	934.9	1269.2	15.6	1389.3	0.4263	298.15	1.2900^{20}	1.2200	-5.4
56	[bti] [N7444]	$C_{21}H_{42}F_6N_2O_4S_2$	bis[(trifluoromethyl)sulfonyl]imide tributylheptylammonium	595	0.066	1247.0	13.3	1640.8	0.8585	293.15	1.1700^{20}	1.3115	12.1
57	[bti] [N6444] [bei]	$C_{20}H_{40}F_6N_2O_4S_2$	bis[(trifluoromethyl)sulfonyl]imide tributylhexylammonium	551	967.1	1227.4	13.9	1583.7	0.8216	293.15	1.1500^{20}	1.3106	14.0
58	[bu] [N1444]	$C_{15}H_{30}F_6N_2O_4S_2$	tributylmethylammonium	481	852.7	1136.3	17.7	1298.1	0.6068	296.9	1.2660^{16}	1.3114	3.6
59	[bti] [N8444]	$C_{22}H_{44}F_6N_2O_4S_2$	bis[(trifluoromethyl)sulfonyl]imide tributyloctylammonium	579	1012.9	1267.0	12.8	1697.9	0.8923	293.15	1.1200^{20}	1.3126	17.2
09	[bti] [N7222] [144:1	$C_{15}H_{30}N_2F_6S_2O_4\\$	bis[(trifluoromethyl)sulfonyl]imide triethylheptylammonium	481	852.7	1136.3	17.7	1298.1	0.6068	293.15	1.2600^{20}	1.3136	4.3
61	[N6222]	$C_{14}H_{28}N_2F_6S_2O_4$	triethylhexylammonium	467	829.8	1119.2	18.7	1241.0	0.5608	293.15	1.2700^{20}	1.3171	3.7
62	[N8222]	$C_{16}H_{32}N_2F_6S_2O_4$	us[(trifluoromethyl)sulfonyl]imide triethyloctylammonium	495	875.6	1153.7	16.8	1355.3	0.6522	293.15	1.2500^{20}	1.3113	4.9
63	[S222]	$\mathrm{C_8H_{15}NF_6S_3O_4}$	triethylsulfonium	399	9.767	1189.9	21.9	1046.6	0.1603	298.15	1.4600^{20}	1.2435	-14.8
64	[bti] [N1114]	$C_9H_{18}N_2F_6S_2O_4$	bis[(trifluoromethyl)sulfonyl]imide trimethylbutylammonium	396	715.4	1038.7	25.9	955.5	0.3334	293.15	1.4100^{20}	1.3647	-3.2
65	[bti] [N7111]	$C_{12}H_{24}N_2F_6S_2O_4$	bis[(trifluoromethyl)sulfonyl]imide trimethylheptylammonium	438	784.1	1086.1	21.1	1126.8	0.4685	293.15	1.2800^{20}	1.3292	3.8
99	[bti] [N6111]	$C_{11}H_{22}N_2F_6S_2O_4$	bis[(trifluoromethyl)sulfonyl]imide trimethylhexylammonium	424	761.2	1070.1	22.5	1069.7	0.4228	293.15	1.3300^{20}	1.3383	9.0
29	[bti] [N111C20]	$C_7H_{14}N_2F_6S_2O_5$	bis[(trifluoromethyl)sulfonyl]imide trimethylmethoxymethylammonium	384	692.1	1035.7	29.5	856.9	0.2599	298.15	1.5100^{20}	1.4469	-4.2
89	[bti] [N8111]	$C_{13}H_{26}N_2F_6S_2O_4$	bis[(trifluoromethyl)sulfonyl]imide trimethyloctylammonium	452	807.0	1102.5	19.8	1183.9	0.5146	293.15	1.2700^{20}	1.3222	4.1
69	[bti] [tmpa]	$C_8H_{16}N_2F_6S_2O_4$	bis[(trifluoromethyl)sulfonyl]imide trimethylpropylammonium	382	692.6	1023.4	28.0	898.4	0.2900	298.15	1.4400^{20}	1.3797	-4.2
70	[bu] [S111]	$\mathrm{C_5H_9NF_6S_3O_4}$	bis[(trifluoromethyl)sulfonyl]imide trimethylsulfonium	357	729.0	1156.5	27.3	875.3	0.0384	318.15	1.5800^{20}	1.2758	-19.3
71	[btɪ] [Ph(CH2)mim]	$C_{13}H_{13}N_3O_4S_2F_6\\$	1-(1-phenylalkyl)-3-methylidimazolium	453	948.1	1429.7	28.1	1039.5	0.2139	298.15	1.4910^{21}	1.4395	-3.5
72	[Ph(CH2)2mim]	$C_{14}H_{15}N_3O_4S_2F_6\\$	1-(2-phenylalkyl)-3-methylidimazolium	467	971.0	1436.9	26.1	1096.6	0.2573	298.15	1.4700^{21}	1.4227	-3.2
73	[btɪ] [Ph(CH2)3mim]	$C_{15}H_{17}N_3O_4S_2F_6$	bis[(trifluoromethyl)sulfonyl]imide 1-(3-phenylalkyl)-3-methylidimazolium	481	993.8	1444.9	24.3	1153.7	0.3018	298.15	1.4550^{21}	1.4089	-3.2
74	[btɪ] [dmeim]	$C_8H_{12}N_3O_4S_2F_6$	bis[(tritluoromethyl)sultonyl]imide 1,2-dimethyl-3-ethylimidazolium	392	817.8	1235.8	31.6	888.9	0.2492	293.15	1.5100^{22}	1.4457	-4.3
75	[dmpim]	$C_{10}H_{15}N_3F_6S_2O_4\\$	1,2-dimethyl-3-propylimidazolium	419	867.4	1269.7	27.5	988.6	0.3226	299.15	1.4810^{12}	1.4157	4.4
92	[bdu] [bdmim]	$C_{11}H_{17}N_3F_6S_2O_4\\$	1-butyl-2,3-dimethylidimazolium	433	890.3	1281.1	25.5	1045.7	0.3669	298.15	1.4200^{23}	1.3999	4.1-
77	[btt] [mbpyr]	$C_{12}H_{16}N_2O_4S_2F_6$	1-butyl-4-methylpyridinium	430	852.0	1240.5	25.5	1038.8	0.3160	298.15	1.3500^{24}	1.3821	2.4
78	[bu] [bmpyr] [bti]	$C_{10}H_{17}N_2F_6S_2O_4\\$	os/(trinuoromenyi)sunonyi]innae 1-butyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide	422	833.3	1209.2	24.8	1026.9	0.3191	298.15	1.394016	1.3724	-1.6

9	2
3	
۲	_
3	_
3	-
3	
3	
3	
	:
2	
~	;
~	;
~	;
~	;
~	;
~	;
~	;
~	;
~	;
	;

No.	ionic Iiquid	global formula	IUPAC name	M	$T_{\rm b}({ m K})$	$T_{\rm C}({ m K})$	$P_{\rm C}$ (bar)	$V_{\rm C}$ (cm ³ /mol)	8	T(K)	$ ho^{ m lit}$ $({ m g/cm}^3)^a$	$ ho^{\rm calc}$ (g/cm ³)	
62	[bpyr]	$C_{11}H_{14}F_6N_2O_4S_2$	1-butylpyridinium	416	824.2	1229.1	27.7	983.3	0.2505	298.10	1.4990^{16}	1.3901	-7.3
80	[bti] [C12mim]	$C_{18}H_{31}N_{3}O_{4}S_{2}F_{6}$	bis[(trifluoromethy))sulfonyl]imide 1-dodecyl-3-methylimidazolium	532	1045.5	1374.6	16.8	1447.0	0.6662	293.15	1.2460^{25}	1.3459	8.0
81	[btɪ] [memim]	$C_{8}H_{12}N_{3}O_{4}S_{2}F_{6}$	bis(trituoromethy)sutronyljimide 1-methyl-3-ethyl-4-methylimidaeolium 1-10-10-10-10-10-10-10-10-10-10-10-10-10	392	817.8	1235.8	31.6	888.9	0.2492	293.15	1.4700^{22}	1.4457	-1.7
82	[btt] [mmim]	$C_7H_9N_3F_6S_2O_4$	1-methyl-3-methylidimazolium	377	793.8	1239.9	35.8	818.8	0.1752	295.15	1.5590^{26}	1.4827	-4.9
83	[btɪ] [pdmim] [bɨː]	$C_{10}H_{15}N_{3}F_{6}S_{2}O_{4}$	bis(tritluoromethy))sulfonyljmide 1-propyl-2,3-dimethylidimazolium bisferejluoromethylysulfonylimide	419	867.4	1269.7	27.5	988.6	0.3226	295.15	1.4567 ²⁷	1.4177	-2.7
28	[C2F3mim]	$\mathrm{C}_7\mathrm{H}_6\mathrm{N}_3\mathrm{O}_4\mathrm{S}_2\mathrm{F}_9$	1-trifluoroethyl-3-methylidimazolium	431	788.8	1202.7	29.2	871.5	0.1879	293.15	1.6600^{22}	1.6092	-3.1
85	[btt] [4MOPY]	$C_{16}H_{24}N_{2}O_{4}S_{2}F_{6}$	bis[(tritluoromethyl)sulfonyl]imide 4-methyl-n-octylpyridinium	487	943.5	1292.0	19.7	1267.2	0.4983	298.15	1.2900^{17}	1.3439	4.2
98	[bti] [C23guan] rbei]	$C_{25}H_{50}N_4O_4S_2F_6$	bis-lexyl-aminomethylene dimethylammonium bis-hexyl-aminomethylene dimethylammonium bis-fixtiga.	649	1170.5	1432.1	11.2	1938.7	1.0159	298.15	1.2000^{20}	1.3437	12.0
87	[8224]	$\mathrm{C}_{10}\mathrm{H}_{19}\mathrm{NO}_{4}\mathrm{S}_{3}\mathrm{F}_{6}$	ots[tuttuotoinentyl)sutronyljinnae diethylutylsulfonoium kiet/teit	427	843.4	1214.5	19.3	1160.9	0.2465	298.15	1.3100^{28}	1.2288	-6.2
88	[bu] [NH221] [bei]	$C_7 H_{14} N_2 O_4 S_2 F_6$	dieth/lumuoometty/sunonymmue dieth/lumuethyl(quaternary)sunmonium kirk/triftn.comethyl)sunforavilimida	368	707.4	1061.1	31.9	883.8	0.2805	298.15	1.4300^{18}	1.3442	-6.0
68	[S221]	C7H13NO4S3F ₆	diethylsulonium	385	774.8	1178.3	23.4	5.686	0.1186	298.15	1.4300^{28}	1.2544	-12.3
06	[8225]	$C11H_{21}NO_4S_3F_6$		441	866.3	1227.5	18.2	1218.0	0.2908	298.15	1.3000^{28}	1.2244	-5.8
91	[S223]	$\mathrm{C_9H_{17}NO_4S_3F_6}$	diethylpusylsulfonium	413	820.5	1202.0	20.5	1103.8	0.2030	298.15	1.3400^{28}	1.2351	-7.8
92	[bu] [NH114] r.e.:	$C_8H_{16}N_2O_4S_2F_6$	bis (trituoromenty) surronyl imnae dinethylbisty (quaternary) ammonium tietististististististististististististist	382	730.3	1075.3	29.3	940.9	0.3229	298.15	1.3900^{18}	1.3265	-4.6
93	[8114] [8114] [bei]	$C_8H_{15}NO_4S_3F_6$	## All the property of the pro	399	9.767	1189.9	21.9	1046.6	0.1603	298.15	1.5500^{28}	1.2435	-19.8
94	[S112]	$C_6H_{11}NO_4S_3F_6$	dinglethylaldprium tiffeith	371	751.9	1167.2	25.2	932.4	0.0779	298.15	1.5600^{28}	1.2683	-18.7
95	[bu] [NH11(i-3)] [bet]	$C_7 H_{14} N_2 O_4 S_2 F_6$	ots (turinoromeny) surrony immae dimely also propy (quaternary) ammonium ticiti et	368	707.4	1061.1	31.9	883.8	0.2805	298.15	1.4200^{18}	1.3442	-5.3
96	[8115]	$\mathrm{C_9H_{17}NO_4S_3F_6}$	dinethylpentylaulonium tirkijentylaulonium	413	820.5	1202.0	20.5	1103.8	0.2030	298.15	1.3500^{28}	1.2351	-8.5
76	[bu] [S113] r.e.:	$\mathrm{C}_7\mathrm{H}_{13}\mathrm{NO}_4\mathrm{S}_3\mathrm{F}_6$		385	774.8	1178.3	23.4	989.5	0.1186	298.15	1.3900^{28}	1.2544	-9.8
86	[8124]	$\mathrm{C_9H_{17}NO_4S_3F_6}$	methyletylbutysulfonium methyletylbutysulfonium	413	820.5	1202.0	20.5	1103.8	0.2030	298.15	1.2600^{28}	1.2351	-2.0
66	[8125]	$\mathrm{C}_{10}\mathrm{H}_{19}\mathrm{NO}_{4}\mathrm{S}_{3}\mathrm{F}_{6}$	nethylehylpentylsulfonium methylehylpentylsulfonium	427	843.4	1214.5	19.3	1160.9	0.2465	298.15	1.2600^{28}	1.2288	-2.5
100	[S123]	$C_8H_{15}NO_4S_3F_6$	nethylethylpropylsulfonium methylethylpropylsulfonium	399	9.767	1189.9	21.9	1046.6	0.1603	298.15	1.3400^{28}	1.2435	-7.2
101	louj [DEME] rktij	$C_{10}H_{20}N_2O_5S_2F_6$	## Proceedings of the process of the	426	7.097	1080.7	23.5	1028.2	0.3915	293.15	1.4200^{29}	1.3911	-2.0
102	[bu.] [BMP]	$C_{12}H_{22}N_{2}O_{4}S_{2}F_{6}$	Val(untuo)omenytysunonythmue N-buty-V-methypiperidinium Listviita.	436	860.5	1233.4	23.4	1078.5	0.3472	298.15	1.3800^{23}	1.3632	-1.2
103	[844] [844]	$C_{14}H_{27}NO_4S_3F_6$	tributy sulforium tributy sulformus tributy sulforium tributy sulforium tributy sulformus sulfor	484	934.9	1269.2	15.6	1389.3	0.4263	298.00	1.2900^{30}	1.2200	-5.4
104	[bu] [N222(201)] [bti]	$C_{11}H_{22}N_2O_5S_2F_6$	ustumnoromeny)suronyjmnoe triethyl(2-methoxyethyl)ammonium bis[(trifluoromethyl)sulfonyl]imide	440	783.6	1096.3	22.0	1085.3	0.4370	298.15	1.4000^{31}	1.3753	-1.8

anore.	(manusca)												
No.	ionic liquid	global formula	IUPAC name	M	$T_{\rm b}\left({ m K} ight)$	$T_{\mathrm{C}}(\mathrm{K})$	$P_{\rm C}({ m bar})$	$V_{\rm C}$ (cm ³ /mol)	ω	T(K)	$ ho^{ m lit}$ $({ m g/cm}^3)^a$	$ ho^{ m calc}$ (g/cm ³)	$\phi \nabla \%$
105	[P222(201)]	C ₁₁ H ₂₂ NO ₅ S ₂ F ₆	triethyl(2-methoxyethyl)phosphonium	457	806.7	1134.6	21.4	1125.6	0.3980	298.15	1.3900^{31}	1.3747	-1.1
106	[bu] [N222(101)] [Let]	$C_{10}H_{20}N_2O_5S_2F_6$	ots [trinuorometry])surronyllimae trien/(methoxymetry)ammonium trien/(methoxymetry)ammonium	426	7.097	1080.7	23.5	1028.2	0.3915	298.15	1.4400^{31}	1.3880	-3.6
107	[bu] [P222(101)]	$\mathrm{C}_{10}\mathrm{H}_{20}\mathrm{NO}_5\mathrm{S}_2\mathrm{F}_6$	etricularionemylysuronylymace tricklinethorylymace tricklinethoxymethylybosphonium	443	783.9	1119.8	22.8	1068.5	0.3525	298.15	1.4200^{31}	1.3865	-2.4
108	[bu] [NH222] [Let]	$C_8H_{16}N_2O_4S_2F_6$	etricularionemy lysurony lymae tricklautenny lymae tricklautenny lysumonium	382	730.3	1075.3	29.3	940.9	0.3229	298.15	1.3600^{18}	1.3265	-2.5
109	[bu] [N222(12)] [bti]	$C_{20}H_{40}N_2O_4S_2F_6$	os (trituos omeny) suriony ilimae trietyldodecy llammonium his (trifuos omethy) su fonvilimi de	551	967.1	1227.4	13.9	1583.7	0.8216	298.15	1.2200^{31}	1.3079	7.2
110	[P222(12)] [P522(12)]	$\mathrm{C}_{20}\mathrm{H}_{40}\mathrm{NO}_4\mathrm{S}_2\mathrm{F}_6$	trickfordecyllosophonium hielfordecyllosophonium	268	990.2	1260.3	13.7	1624.0	0.7861	298.15	1.2100^{31}	1.3122	8.4
111	[N2228]	$C_{16}H_{32}N_2O_4S_2F_6$	trickley amonium	495	875.6	1153.7	16.8	1355.3	0.6523	298.15	1.2800^{31}	1.3085	2.2
112	[bu] [P2228] [bet]	$C_{16}H_{32}NO_4S_2F_6$	ots [trinuorometry] surony ljimae trietory propositiva se	512	7.868	1188.7	16.4	1395.6	0.6140	298.15	1.2600^{31}	1.3117	4.1
113	[bu] [N2225] [beti]	$C_{13}H_{26}N_2O_4S_2F_6$	trichipentylamnonium kiriforeit och stationale kiriforeit och sentilistista	452	807.0	1102.5	19.8	1183.9	0.5146	298.15	1.3300^{31}	1.3193	-0.8
114	[bu] [P2225]	$\mathrm{C}_{13}\mathrm{H}_{26}\mathrm{NO}_4\mathrm{S}_2\mathrm{F}_6$	triedpentylphosphonium	469	830.1	1139.5	19.3	1224.2	0.4757	298.15	1.3200^{31}	1.3214	0.1
115	[bu] [bmim]	$C_8H_{15}BrN_2$	ots [trinuorometry], surrony, jimide -buty -2-methylidimazolium	219	8.985	834.9	29.8	583.3	0.4891	298.40	1.2990^{32}	1.2327	-5.1
116	[Dr] [C27guan]	$C_{27}H_{58}N_3C1$	oronide [bis(bis-hexyl-amino)methylene]dimethylammonium	460	927.6	1158.9	9.2	1745.7	0.9692	298.15	0.9000^{19}	1.0530	17.0
117	[C35guan]	C ₃₅ H ₇₄ N ₃ C1	chloride [bis(bis-ctyl-amino)methylene]dimethylammonium	572	1140.7	1411.1	7.4	2202.6	0.5680	298.15	0.9600^{19}	1.0105	5.3
118	[moeemim]	$C_9H_{17}N_2O_2Cl$	1-[2-1] 1-3-methoxyethoxy)ethyl]-3-methylidimazolium	221	625.8	863.6	24.8	657.1	0.5707	298.15	1.1400^{20}	1.1322	-0.7
119	[bmim]	$C_8H_{15}N_2Cl$	chonde 1-buti-13-methylidimazolium -buti-13-	175	558.0	789.0	27.8	568.8	0.4908	298.15	1.0800^{20}	0.9998	7.4
120	[bmim]	$\mathrm{C}_{10}\mathrm{H}_{19}\mathrm{N}_2\mathrm{C}\mathrm{I}$	choride 1-hexyl-3-methylidimazolium - http://di	203	603.8	829.2	23.5	683.0	0.5725	298.15	1.0300^{20}	0.9944	-3.5
121	[Omim]	$C_{12}H_{23}CIN_2$	choride 1-octyl-3-methylidimazolium 	231	649.6	869.4	20.3	797.2	0.6566	298.1	1.0000^{16}	0.9968	-0.3
122	[C1] [Bemim]	$C_{11}H_{13}ClN_2$	Liborate Liborates Allocidas	209	653.4	921.3	28.4	631.8	0.5145	298.15	1.1930^{14}	1.1066	-7.2
123	[C12mim]	$C_{16}H_{31}N_2C1$	L-dodecyl-3-methylidimazolium	287	741.1	951.5	16.0	1025.6	0.8212	298.15	0.8806^{32}	1.0153	15.3
124	[cuim]	$C_6H_{11}CIN_2$	cinoride 1-ethyl-3-methylidimazolium -kthori-3-	147	512.3	748.6	34.2	454.5	0.4165	294.65	1.1860^{16}	1.0260	-13.5
125	[mmim]	$C_5H_9N_2CI$	I-methyl-3-methylidimazolium	133	489.4	728.2	38.5	397.4	0.3825	298.15	1.1399^{20}	1.0446	-8.4
126		$C_4H_7N_2CI$	choride I-medidimazolium	119	461.1	7.789	48.2	316.1	0.4564	353.15	1.1832^{15}	1.1121	-6.0
127	[CIBenmim]	$C_{11}H_{12}N_2Cl_2$	chorde 1-p-chorobenzyl-3-methylidimazolium	243	8.569	9.696	26.8	682.6	0.5521	298.15	1.2670^{14}	1.2126	-4.3
128	[FBenMim]	$C_{11}H_{12}N_2CIF$	1-p-cliotobenzyl-3-methylidimazolium	227	9.759	913.1	26.4	652.0	0.5660	298.15	1.2830^{14}	1.1779	-8.2
129	[C23guan]	$C_{23}H_{50}N_3C1$	chloride bis-har-amino-methylenedimethylammonium	404	866.1	1052.1	10.5	1517.3	1.0428	298.15	0.9000^{20}	1.0491	16.6
130	[dbim]	$C_{11}H_{21}N_2C1$	canonne 1,3-dutylimidazolium chloride	217	626.7	849.2	21.8	740.1	0.6144	298.15	1.0082^{20}	0.9948	-1.3
	F)												

ζ	
Confinite	
_	
_	
_	
	֡
~	
~	
~	
~	
~	
~	
~	
~	
~	
 ~	
~	

No.	ionic Iiquid	global formula	IUPAC name	M	$T_{\rm b}({ m K})$	<i>T</i> _C (K)	$P_{\rm C}({ m bar})$	$V_{\rm C}$ (cm ³ /mol)	8	T (K)	$ ho^{\mathrm{lit}}$ $(\mathrm{g/cm}^3)^a$	$ ho^{\rm calc}$ $({ m g/cm}^3)$	$^{\prime\prime}$
131	[bmim]	C ₁₀ H ₁₅ N ₅	1-butyl-3-methylidimazolium	205	783.0	1035.8	24.4	712.0	0.8419	297.15	1.0580^{16}	1.0406	-1.6
132	[dca] [emim]	$C_8H_{11}N_5$	dicyanamide 1-ethyl-3-methylidimazolium	177	737.2	0.666	29.1	597.8	0.7661	298.15	1.0600^{26}	1.0451	-1.4
133	[dca] [omim]	$C_{14}H_{23}N_5$	drcyanamide 1-octy1-3-methylidimazolium	261	863.9	1103.9	18.4	957.4	0.9543	298.15	1.0000^{24}	1.0229	2.3
134	[dca] [4MOPY]	$C_{16}H_{24}N_4$	- dreftyl-n-octylpyridinium	272	864.1	1094.3	17.2	989.1	0.9923	298.15	0.9800^{17}	1.0422	6.3
135	[dca] [emim]	$C_8H_{11}N_5$	arcyanamae 1-ethyl-3-methyldimazolium disonomidyl	177	737.2	0.666	29.1	597.8	0.7661	298.15	1.0600^{20}	1.0451	-1.4
136	[mbpyr]	$C_{11}H_{20}N_4$	mcyanoannues n-methyl-n-butylpyrrolidinium i:	208	753.8	988.3	21.3	748.8	0.8316	298.15	0.9500^{20}	1.0042	5.7
137	[dca] [mhpyr]	$C_{13}H_{24}N_4$	deyanoamides n-methyl-n-hexylpyrrolidinium	236	9.662	1028.0	18.6	863.0	0.9087	298.15	0.9200^{20}	1.0123	10.0
138	[dca] [mppyr]	$\mathrm{C}_{10}\mathrm{H}_{18}\mathrm{N}_4$	dicyanoamides n-meth/-n-propylpyrrolidinium	194	730.9	8.896	22.9	691.7	0.7920	298.15	0.9200^{20}	1.0018	8.9
139	[dca] [emim]	$C_{11}H_{22}N_2O_6S$	ucyanoannues 1-ethyl-3-methylidinazolium diethyleneglycol	310	826.2	1162.9	28.1	862.3	0.5176	298.15	1.2365^{34}	1.2331	-0.3
140	[dmim]	$\mathrm{C}_7\mathrm{H}_{15}\mathrm{N}_2\mathrm{O}_4\mathrm{P}$	1,3-dimethyllamazolium	222	623.0	880.4	28.6	598.4	0.5065	303.15	1.2530^{16}	1.2322	-1.7
141	[py]	$C_9H_{15}NO_5S$	pyridinium	248	696.1	1065.4	41.8	658.8	0.2994	298.15	1.2810^{16}	1.2188	-4.9
142	[EOESO4] [edmim]	$\mathrm{C_9H_{18}N_2O_4S}$	ethoxyethyl sulfate 1-eth/1-2,3-dimethylidimazolium	250	740.5	1082.6	35.8	715.3	0.4341	353.15	1.1970^{15}	1.1327	-5.4
143	[emim]	$C_8H_{16}N_2O_4S$	1-ethyl sun ae I-ethyl sun ac i ethylidimazolium	236	712.7	1067.5	40.5	8.659	0.3744	298.15	1.238835	1.1699	-5.6
144	[moim]	$\mathrm{C}_{12}\mathrm{H}_{23}\mathrm{N}_{2}\mathrm{PF}_{6}$	etnyl sunate 1-octyl-3-methylidimazolium	340	635.5	800.1	14.0	1007.9	0.9069	298.15	1.2360^{16}	1.2216	-1.1
145	[FF6] [moeemim]	$\mathrm{C_9H_{17}N_2O_2PF_6}$	nexariuorophosphate 1-[2-(2-methoxyethoxy)ethy]]-3-methylidimazolium	330	622.3	795.3	16.1	850.8	0.8676	298.15	1.3200^{20}	1.3869	5.1
146	[Pro] [bdmim]	$\mathrm{C_9H_{17}F_6N_2P}$	nexautorophosphate 1-butyl-2,3-dimethylidimazolium	298	582.4	746.3	16.2	818.0	0.8526	295.65	1.2416^{16}	1.2832	3.4
147	[FF0] [hpmim]	$\mathrm{C_{11}H_{21}N_{2}PF_{6}}$	nexatiuorophosphate 1-heypt/3-med-hylidimazolium	326	623.2	787.8	14.7	933.8	0.9055	298.15	1.2620^{20}	1.2577	-0.3
148	[nmim]	$\mathrm{C}_{13}\mathrm{H}_{25}\mathrm{N}_{2}\mathrm{PF}_{6}$	l-moyl-amethylidimazolium	354	0.699	834.1	13.4	1048.1	0.9680	298.15	1.2120^{20}	1.2499	3.1
149	[PF0] [oprim] [DE6]	$\mathrm{C}_{14}\mathrm{H}_{27}\mathrm{N}_{2}\mathrm{PF}_{6}$	nexattuorophosphate 1-oct3-propylimidazolium haveftuorophosphote	368	691.9	857.6	12.8	1105.2	0.9937	298.15	1.1182^{20}	1.2473	11.5
150	[pmim]	$\mathrm{C_9H_{17}F_6N_2P}$	1-pentyl-3-methylidimazolium	298	577.5	742.1	16.3	819.6	0.8316	294.1	1.3330^{16}	1.2757	-4.3
151	[PF6] [eommim]	$\mathrm{C}_7\mathrm{H}_{13}\mathrm{N}_2\mathrm{OPF}_6$	nexatluorophosphate ethoxymethyl-3-methylidimazolium	286	554.1	723.7	18.2	721.0	0.7692	298.15	1.4000^{20}	1.3595	-2.9
152	[PF6] [mommim]	$C_6H_{11}N_2OPF_6$	nexatluorophosphate methyloxymethyl-3-methylidimazolium	272	531.2	701.2	19.3	663.9	0.7274	298.15	1.4800^{20}	1.3815	-6.7
153	[N-bupy]	$\mathrm{C_9H_{14}NPF_6}$	nexartuoropinospiiate n-buylpyridinium h-bused-u-cochocaloste	281	516.3	674.4	17.3	755.6	0.7381	298.15	1.2144^{20}	1.2487	2.8
154	[Ph(CH2)3mim]	$C_{13}H_{17}N_2F_6P$	1-(3-phosphae 1-(3-phosphae) 1-(3-methylidimazolium	346	0.989	883.8	16.3	926.1	0.8053	298.15	1.4070^{21}	1.3452	4.4
155	[prmim]	$\mathrm{C_7H_{13}F_6N_2P}$	I-propyl-achtophiae I-propyl-achtophiae Powed uses and propyledimazolium	270	531.7	2.969	18.3	705.4	0.7504	293.00	1.3330^{30}	1.3018	-2.3
156	[rro] [C2C6I] [PF6]	$\mathrm{C}_{11}\mathrm{H}_{21}\mathrm{N}_{2}\mathrm{F}_{6}\mathrm{P}$	lexariuoropiospiaae 1-hexyl-3-ethylimidazolium hexafluorophosphate	326	623.2	787.8	14.7	933.8	0.9055	298.15	1.2622^{20}	1.2577	-0.4

	ionic							$V_{ m C}$			ρ ^{lit}	pcalc	
No.	liquid	global formula	IUPAC name	M	$T_{\rm b}({ m K})$	$T_{\rm C}({ m K})$	P _C (bar)	(cm ³ /mol)	ω	T(K)	$(g/cm^3)^a$	(g/cm ³)	$^{\prime\prime} \nabla \%$
157	[C2C8I]	$C_{13}H_{25}N_2F_6P$	1-octyl-3-ethylimidazolium	354	0.699	834.1	13.4	1048.1	0.9680	298.15	1.2118^{20}	1.2499	3.1
158	[Pro] [bmim]	$C_8H_{16}N_2O_4S$	nexafluorophosphate 1-butyl-3-metyylidimazolium	235	782.4	1103.8	43.2	664.9	0.7017	298.15	1.2770^{15}	1.2161	-4.8
159	[HSO4] [emim]	$C_6H_{12}N_2O_4S$	hydrogen sulfate 1-ethyl-3-methylidimazolium	207	736.7	1073.8	57.4	550.7	0.6394	298.15	1.3673^{15}	1.2656	7.4
160	[HSO4] [mim]	$C_4H_8N_2SO_4$	hydrogen sulfate 1-methylidimazolium	179	685.5	1019.6	91.7	412.2	0.7158	298.15	1.483515	1.4488	-2.3
161	[HSO4] [bmim]	$C_8H_{15}N_2I$	hydrogen sulfate 1-butyl-3-methylidimazolium	266	613.7	871.2	28.6	607.5	0.4831	298.15	1.4400^{20}	1.4500	0.7
162	[I] [TMG]	$\mathrm{C_8H_{19}N_3O_3}$	notide 1,1,3,3-tetramethyl guanidine	204	632.7	816.9	27.1	639.1	1.1160	298.15	1.2220^{14}	1.1461	-6.2
163	[Lac] [bmim]	$\mathrm{C_9H_{18}N_2O_3S}$	lactate 1-butyl-3-methylidimazolium	234	713.1	1054.8	37.4	701.3	0.3990	373.15	1.1284^{15}	1.0581	-6.2
164	[mesy] [emim]	$C_7H_{14}N_2O_3S$	methane sulfonate 1-ethyl-3-methylidimazolium	206	667.4	1026.0	48.1	587.1	0.3307	298.15	1.2437 ³⁶	1.1275	-9.3
165	[mesy] [dmim]	$\mathrm{C_8H_{16}N_2O_5S}$	methane sulfonate 1,3-dimethylidimazolium	252	735.1	1094.4	38.9	675.4	0.3854	298.15	1.3140^{16}	1.2286	-6.5
166	[dmim]	$C_6H_{12}N_2O_4S$	metroxyemyi sunate 1,3-dimetrylidimazolium	208	6.999	1040.0	52.9	545.6	0.3086	298.15	1.3280^{16}	1.2208	-8.1
167	[MSO4] [bmim]	$\mathrm{C_9H_{18}N_2O_4S}$	methyl sulfate 1-butyl-2-methylidimazolium	250	735.6	1081.6	36.1	716.9	0.4111	298.15	1.2124^{16}	1.1534	-4.9
168	[MMMPZ]	$\mathrm{C}_7\mathrm{H}_{14}\mathrm{N}_2\mathrm{O}_4\mathrm{S}$	metnyl sunate 1,2,4-trimethylpyrazolium	222	694.8	1054.2	45.4	601.1	0.3627	353.15	1.2500^{37}	1.1702	-6.4
169	[MSO4] [MTEOA]	$C_8H_{21}NO_7S$	methylsulfate tris(cytoxyethyl)methylammonium	273	865.1	1093.4	34.9	744.3	1.5130	353.15	1.3100^{37}	1.3770	5.1
170	[bmim]	$C_{12}H_{15}N_2F_9SO_3\\$	metnyl sunate 1-butyl-3-methylidimazolium	438	762.3	1028.8	17.3	1004.8	0.5150	295.15	1.4730^{20}	1.5249	3.5
171	[omim]	$C_{16}H_{23}N_2O_3SF_9$	notariuoroottane surionate 1-octyl-3-methylidimazolium	494	843.2	1094.2	14.2	1250.2	0.6591	298.15	1.3300^{24}	1.4408	8.3
172	[bmim]	$C_{16}H_{32}N_2O_4S$	notatiuorobutane surionate 1-butyl-3-methylidimazolium	349	895.7	1189.8	20.2	1116.7	0.7042	298.15	0.9971^{38}	1.1204	12.4
173	[C8S] [tibmp]	$C_{20}H_{37}O_{3}PS$	octyl suifate triisobutylmethyl phosphonium	389	874.8	1176.4	18.2	1249.9	0.5628	298.15	1.0690^{16}	1.0941	2.3
174	[p1SO3] [Ch]	$C_{12}H_{19}NO_4$	<i>p</i> -toluene sulfonate choline salicylate	240	762.2	950.5	23.7	726.4	1.3953	353.15	1.1467 ³⁷	1.2288	7.2
175	[Sa] [C27guan]	$C_{27}H_{58}N_3BF_4$	[bis(bis-hexylamino)methylene]dimethylammonium	512	894.8	1100.3	8.2	1832.0	0.7076	298.15	0.9700^{19}	1.0751	10.8
176	[BF4] [C15guan]	$C_{15}H_{34}N_3BF_4$	leivaluoroooraae [bis(butyl-ethylamino)methylene]dimethylammonium	343	620.3	755.9	12.2	1146.7	1.1454	298.15	1.0500^{19}	1.1164	6.3
177	[Br4] [moeoemim]	$\mathrm{C_9H_{17}N_2O_2BF_4}$	1-[2-(2 methoxyethoxy)ethyl]-3-methylidimazolium	272	562.9	720.2	18.8	743.3	0.9644	298.15	1.2200^{20}	1.2824	5.1
178	[bfmim]	$\mathrm{C_9H_{17}N_2BF_4}$	tetranluoroporate 1-butyl-2,3-dimethylidimazolium	240	523.1	671.0	18.9	710.5	0.9476	300.15	1.0935^{16}	1.1565	5.8
179	[Br4] [dmim]	$C_{14}H_{27}N_2BF_4$	1-decyl-3-methylidimazolium	310	632.5	784.6	14.5	<i>1.</i> 766	1.0817	298.15	1.0400^{20}	1.1444	10.0
180	[N-epy]	$\mathrm{C}_7\mathrm{H}_{10}\mathrm{BF}_4\mathrm{N}$	Lethylpyridinium	195	411.2	549.9	23.5	533.9	0.7495	293.1	1.3020^{16}	1.1412	-12.4
181	[br4] [prmim]	$\mathrm{C}_7\mathrm{H}_{13}\mathrm{N}_2\mathrm{BF}_4$	tetraliu07000rate 1-propyl-3-methylidimazolium	212	472.3	619.7	21.8	597.9	0.8479	298.15	1.2400^{20}	1.1642	-6.1
182	[BF4]	$\mathrm{C_7H_{13}N_2OBF_4}$	tetantorootaate ethyloxymethyl-3-methylidimazolium tetrafluoroborate	228	494.8	647.0	21.7	613.5	0.8686	298.15	1.2600^{20}	1.2404	-1.6

	Cutting I	
•		

	(
Ž	ionic	alohal formula	HIDAC nome	N	T. (K)	$T_{c}(K)$	$D_{c}(\mathbf{har})$	$V_{\rm C}$	3	T(K)	ρ^{lit}	ρ^{calc}	V %
INO.	nınbır	gional iolillula	TO FAC HAIRE	M	16(N)	IC(N)	rc (bal)	(CIII-/IIIOI)	8	7 (N)	(g/cIII-) ²	(g/cm²)	42.0%
183	[mommim] [BF4]	$\mathrm{C_6H_{11}N_2OBF_4}$	methyloxymethyl-3-methylidimazolium tetrafluoroborate	214	471.9	623.7	23.3	556.4	0.8291	298.15	1.3300^{20}	1.2599	-5.3
184	[bpyr] [BF4]	$C_9H_{14}BF_4N$	1-butylpyridinium tetrafluoroborate	223	456.9	597.6	20.3	648.1	0.8307	298.20	1.2144 ³⁹	1.1174	-8.0
185	[4MOPY] [BF4]	$C_{14}H_{24}BF_4N$	4-methyl-n-octylpyridinium tetrafluoroborate	293	576.3	720.8	15.1	932.1	1.0289	298.15	1.0800^{17}	1.1237	4.0
186	[C23guan] [BF4]	$\mathrm{C}_{23}\mathrm{H}_{50}\mathrm{N}_3\mathrm{F}_4\mathbf{B}$	bis-hexyl-amino-methylene dimethylammonium tetrafluoroborate	455	803.3	975.1	9.2	1603.5	0.9385	298.15	0.9700^{20}	1.1050	13.9
187	[DEME] [BF4]	$\mathrm{C_8H_{20}NOF_4B}$	<i>N</i> , <i>N</i> -diethyl- <i>N</i> -methyl- <i>N</i> -(2-methoxyethyl)ammonium tetrafluoroborate	233	393.5	501.4	17.1	693.1	0.9465	293.15	1.1800^{29}	1.0539	-10.7
188	[bmim] [tca]	$C_9H_{15}N_3S$	1-butyl-3-methylidimazolium thiocyanate	197	763.1	1047.4	19.4	780.7	0.4781	298.15	1.0696^{15}	0.8738	-18.3
189	[emim] [SCN]	$C_7H_{11}N_3S$	1-ethyl-3-methylidimazolium thiocyanate	169	717.3	1013.6	22.3	666.4	0.3931	298.15	1.1140^{15}	0.8573	-19.0
190	[N-epy] [ta]	$\mathrm{C_9H_{10}F_3NO_2}$	1-ethylpyridinium trifluoroacetate	221	535.1	739.9	24.2	586.5	0.5483	293.1	1.2730^{16}	1.2409	-2.5
191	[emim] [ta]	$\mathrm{C_8H_{11}N_2F_3O_2}$	1-ethyl-3-methylidimazolium trifluoroacetate	224	562.8	775.7	24.2	610.4	0.5664	298.15	1.3900^{16}	1.2180	-12.4
192	[mpmi] [TfO]	$C_{12}H_{13}N_2F_3SO_4\\$	1-(4-methoxyphenyl)-3-methylidimazolium trifluoromethane sulfonate	338	830.4	1184.7	28.0	827.7	0.4481	323.15	1.3200^{20}	1.3778	4.4
193	[dbim] [TfO]	$C_{12}H_{21}N_2F_3SO_3$	1,3-dibutylimidazolium trifluoromethane sulfonate	330	776.4	1072.0	23.2	922.0	0.5325	303.15	1.3000^{20}	1.2295	-5.4
194	[N8444] [TfO]	$\mathrm{C}_{21}\mathrm{H}_{44}\mathrm{NF}_{3}\mathrm{SO}_{3}$	tributyloctylammonium trifluoromethane sulfonate	448	858.2	1066.7	12.6	1458.4	0.9461	293.15	1.0200^{20}	1.1737	15.1
195	[Bemim] [TfO]	$C_{12}H_{13}N_2O_3SF_3$	1-benzyl-3-methylidimazolium trifluoromethane sulfonate	322	803.0	1158.0	29.0	813.7	0.4118	303.15	1.3000^{40}	1.3313	2.4
196	[mbpyr] [TfO]	$C_{11}H_{16}NO_3F3$	1-buty1-4-methy1pyridinium trifluoromethane sulfonate	299	697.3	8.766	26.9	799.3	0.4153	298.15	1.1700^{24}	1.2441	6.3
197	[omim] [TfO]	$C_{13}H_{23}F_3N_2O_3S$	1-octyl-3-methylidimazolium trifluoromethane sulfonate	344	799.2	1088.7	21.6	979.1	0.5766	298.15	1.1200^{24}	1.2248	9.4
198	[4MÓPY] [TfO]	$C_{15}H_{24}NO_3SF_3$	4-methyl-n-octylpyridinium trifluoromethane sulfonate	355	788.8	1065.7	20.1	1027.8	0.5898	298.15	1.1700^{17}	1.2079	3.2
199	[dmpim] [TMEM]	$C_{12}H_{15}F_{9}N_{2}O_{6}S_{3}$	1,2-dimethyl-3-propylimidazolium tris(trifluoromethylsulfonyl)methide	550	1039.3	1568.6	23.9	1212.0	0.1526	298.15	1.5970^{12}	1.5007	0.9-
200	[bmim] [TMEM]	$C_{12}H_{15}F_9N_2O_6S_3\\$	1-butyl-3-methylimidazolium tris(trifluoromethylsulfonyl)methide	550	1034.4	1571.4	24.0	1213.6	0.1320	297.65	1.5630^{27}	1.4913	-4.6

^a The reference (noted as a superscript) corresponds to the source from which the literature density value was obtained.

Table 4. Average, Absolute and Maximum Deviations Found between Predicted and Experimental Densities for the 200 Ionic Liquids

parameter	value
number of ionic liquids with $\%\Delta\rho > 10\%$	36
number of ionic liquids with $\%\Delta\rho \le 10\%$	164
number of ionic liquids with $\%\Delta\rho$ <5%	109
maximum absolute deviation, $\%\Delta\rho_{\rm max}$	20.6%
average deviation, $\sqrt[8]{\Delta\rho}$	-0.4%
average absolute deviation, $ \overline{\%\Delta\rho} $	5.9%

^a The symbol $\%\Delta\rho$ represents deviation.

In this equation, T_b is the boiling temperature at the normal boiling pressure ($P_b = 1.01325$ bar).

Results and Discussion

The calculated critical properties, the normal boiling temperature (T_b for $P_b = 1.01325$ bar), and the acentric factors are presented in Table 3. The molecular mass is also included in Table 3; this value is needed in the density calculations (see ea 1).

As explained previously, the calculation of the density is done as a global test of the consistency of the estimated critical properties. In fact, the 200 ionic liquids considered in this study are those for which density values are available in the literature, so that the test could be performed. As observed in Table 3, the predicted densities, using exclusively the calculated critical properties and the calculated normal boiling temperature, are within acceptable margins of errors for the purpose of the test.

Although other additional tests could be done, there is not much information available in the literature to perform such tests. One approach that could be done if data were available is to determine the vapor pressure using one of the several correlations to estimate this property. However, few data are available, in regard to the vapor pressure of ionic liquids, and some of the data are calculated values with unknown uncertainty.41,42

Table 4 summarizes some statistical values, such as the average, absolute, and maximum deviations found between predicted and experimental densities. As observed, the overall average deviations are less than -0.40% and the overall absolute deviations are less than 5.9%, whereas deviations greater than 10% are observed for only 36 of the 200 ionic liquids. The deviations between calculated and experimental densities are randomly distributed, and no relationship between the errors and some of the characteristics or properties of the ionic liquids has been observed. For instance, there is a group of tetra alkyl ammonium [bti] compounds (Nos. 50–54 in Table 3) for which deviations are close to 20%, but other compounds of the same group show lower deviations (Nos. 64–69 in Table 3).

Note that these deviations are relatively small if we consider the deviations between some experimental data published in the open literature. Table 5 shows the experimental densities that have been published by different authors for two ionic liquids. Deviations up to 17% are observed between some values. Finally, it should be mentioned that the generalized correlation used to estimate the density of ionic liquids (eq 1) was derived totally independent from the group contribution method used to estimate the critical properties (Table 3). Therefore, the density calculation is a reliable independent test to show that the values of the critical properties of ionic liquids are acceptable and can be used in other applications where these properties are needed.

Table 5. Deviations between Experimental Density Data Published by Different Authors for Some Ionic Liquids at 298 K

r	$\%\Delta ho$	reference		
[bmin][BF4]				
1.12	*a	Huddleson et al. ⁴³		
1.12	0	Visser et al. ⁴⁴		
1.19	6.3	Wu et al. ⁴⁵		
1.21	8.0	Nishida et al.46		
1.26	12.5	Branco et al.47		
[omim][PF6]				
1.19	*a	Branco et al.47		
1.22	2.5	Huddleson et al. ⁴³		
1.23	2.9	Gu and Brennecke ³⁹		
1.24	3.9	Chun et al. ⁴⁸		
1.40	17.6	Wu et al. ⁴⁵		

^a The value with an asterisk (*) was used as a reference to determine the deviations for the other values.

Conclusions

A consistent group contribution method has been extended to evaluate the critical properties of 200 ionic liquids. In addition, estimated values for the normal boiling temperatures and the acentric factors of these substances were determined. The consistency of the method has been checked using literature values of ionic liquid densities and comparing them with calculated values, using a generalized correlation that makes use of those estimated critical properties. The values provided for the critical properties, the normal boiling temperature, and the acentric factors are believed to be sufficiently accurate for use in engineering calculations, generalized correlations, and equation of state methods, among other applications. The values provided, plus the results previously presented by the authors,³ represent the most complete database on the critical properties of ionic liquids available in the open literature.

Nomenclature

 $A_{\rm M}, B_{\rm M}, C_{\rm M}, D_{\rm M}, E_{\rm M} = \text{coefficients in the modified Lydersen}$ Joback-Reid method

M =molecular mass

No. = number of ionic liquids

N = number of times that a group appears in a molecule (number frequency)

 $P_{\rm b} = \text{normal boiling pressure} = 1.01325 \text{ bar}$

 $P_{\rm c}$ = critical pressure

T = temperature

 $T_{\rm b}$ = normal boiling temperature

 $T_{\rm bR}$ = reduced temperature at the normal boiling point

 $T_{\rm c} = {\rm critical\ temperature}$

 $T_{\rm R} = {\rm reduced\ temperature}$

 $V_{\rm c} = {\rm critical\ volume}$

Abbreviations

eq = equation

log = base 10 logarithm

Greek Letters

 $\rho_{\rm L} = {\rm liquid\ density}$

 ρ^{calc} = liquid density calculated using the proposed method

 ρ^{lit} = liquid density from the literature

 $\%\Delta\rho$ = percent relative deviation between calculated and literature values for the liquid density

 $\omega = acentric factor$

 $\Delta T_{\rm M}$, $\Delta P_{\rm M}$, $\Delta V_{\rm M}$ = contribution to the critical properties in the modified Lydersen-Joback-Reid method

Acknowledgment

The authors thank the support of the Direction of Research of the University of La Serena, of the Center for Technological Information of La Serena-Chile, and of the National Council for Scientific and Technological Research (CONICYT), through the research grant FONDECYT 1070025.

Literature Cited

- (1) Lydersen, A. L. Estimation of Critical Properties of Organic Compounds. Report 3, Engineering Experimental Station, College of Engineering, University of Wisconsin, Madison, WI, 1955.
- (2) Joback, K. K.; Reid, R. Estimation of Pure Component Properties from Group Contribution. Chem. Eng. Commun. 1987, 57, 233-247.
- (3) Valderrama, J. O.; Robles, P. A. Critical Properties, Normal Boiling Temperatures, and Acentric Factors of Fifty Ionic Liquids. Ind. Eng. Chem. Res. 2007, 46, 1338-1344.
- (4) Poling, B. E.; Prausnitz, J. M.; O'Connell, J. P. The Properties of Gases and Liquids, 5th Edition, McGraw-Hill: New York, 2001.
- (5) Valderrama, J. O. The State of the Cubic Equations of State. Ind. Eng. Chem. Res. 2003, 42 1603-1618.
- (6) Alvarez, V. H.; Valderrama, J. O. A modified Lydersen-Joback-Reid method to estimate the critical properties of biomolecules. Alimentaria **2004**, 254, 55-66.
- (7) Jones, R. G.; Licence, P.; Lovelock, K. R. J.; Villar-Garcia, I. J. Comment on Critical Properties, Normal Boiling Temperatures, and Acentric Factors of Fifty Ionic Liquids. Ind. Eng. Chem. Res. 2007, 46, 6061-6062.
- (8) Valderrama, J. O.; Robles, P. A. Reply to 'Comment on "Critical Properties, Normal Boiling Temperature, and Acentric Factor of Fifty Ionic Liquids". Ind. Eng. Chem. Res. 2007, 46, 6063-6064.
- (9) Valderrama, J. O; Abu-Shark, B. Generalized Correlations for the Calculation of Density of Saturated Liquids and Petroleum Fractions. Fluid Phase Equilib. 1989, 51, 87-100.
- (10) Shah, P. N.; Yaws, C. L. Densities of liquids. Chem. Eng. 1976, 83, 131-135.
- (11) Matsumoto, H.; Kageyama, H.; Miyazaki, Y. Room temperature ionic liquids based on small aliphatic ammonium cations and asymmetric amide anions. Chem. Commun. 2002, 16, 1726-1727.
- (12) Shiflett, M. B.; Harmer, M. A.; Junk, C. P.; Yokozeki, A. Solubility and Diffusivity of Difluoromethane in Room-Temperature Ionic Liquids. J. Chem. Eng. Data 2006, 51, 483-495.
- (13) Shiflett, M. B.; Harmer, M. A.; Junk, C. P.; Yokozeki, A. Solubility and Diffusivity of 1,1,1,2-tetrafluoroethane in Room-Temperature Ionic Liquids. Fluid Phase Equilib. 2006, 242, 220-232.
- (14) Green Solutions Chemicals, S. L., http://www.greensolutions.es (accessed on July 2007).
- (15) Sigma-Aldrich, http://www.sigmaaldrich.com (accessed on July
- (16) NIST (National Institute of Standards and Technology), Ionic Liquids Database-ILThermo, http://ilthermo.boulder.nist.gov/IL and Thermo/ mainmenu.uix (accessed on July 2007).
- (17) Papaiconomou, N.; Salminen, J.; Lee, J.-M.; Prausnitz, J. M. Physicochemical Properties of Hydrophobic Ionic Liquids Containing 1-Octylpyridinium, 1-Octyl-2-methylpyridinium, or 1-Octyl-4-methylpyridinium Cations. J. Chem. Eng. Data 2007, 52, 833-840.
- (18) Luo, H.; Dai, S.; Bonnesen, P. V.; Buchanan, A. C. Roomtemperature ionic liquids based on quaternary ammonium and their use for solvent extractions, Report for EMSP Program Project 81929, Chemical Sciences Division, Oak Ridge National Laboratory, U.S. Department of Energy, 2006.
- (19) Mateus, N. M. M.; Branco, L. C.; Lourenço, N. M. T.; Afonso, C. A. M. Synthesis and properties of tetra-alkyl-dimethylguanidinium salts as a potential new generation of ionic liquids. Green Chem. 2003, 5, 347-
- (20) Zhang, S.; Sun, N.; He, X.; Lu, X.; Zhang, X. Physical Properties of Ionic Liquids: Database and Evaluation. J. Phys. Chem. Ref. Data 2006, *35*, 1475–1517.
- (21) Dzyuba, S. V.; Bartsch, R. A. Influence of Structural Variations in 1-Alkyl(aralkyl)-3-ethylimidazolium Hexafluorophosphates and Bis(trifluoromethylsulfonyl)imides on Physical Properties of the Ionic Liquids. Chem. Phys. Chem. 2002, 3, 161-166.

- (22) Carda-Broch, S.; Berthod, A.; Armstrong, D. W. Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid. Anal. Bioanal. Chem. 2003, 375, 191-199.
- (23) Bazito, F. C.; Kawano, Y.; Torresi, R. M. Synthesis and characterization of two ionic liquids with emphasis on their chemical stability towards metallic lithium. Electrochim. Acta 2007, 52, 6427-6437.
- (24) Papaiconomou, N.; Yakelis, N.; Salminen, J.; Bergman, R.; Prausnitz, J. M. Synthesis and Properties of Seven Ionic Liquids Containing 1-Methyl-3-octylimidazolium or 1-Butyl-4-methylpyridinium Cations. J. Chem. Eng. Data 2006, 51, 1389-1393.
- (25) Glasser, L. Lattice and phase transition thermodynamics of ionic liquids. Thermochim. Acta 2004, 421, 87-93.
- (26) Galinski, M.; Lewandowski, A.; Stepniak, I. Ionic liquids as electrolytes. Electrochim. Acta 2006, 51, 5567-5580.
- (27) Fredlake, C. P.; Crosthwaite, J. M.; Hert, D. G.; Aki, Brennecke, S. N. V. K., J. F. Thermophysical Properties of Imidazolium-Based Ionic Liquids. J. Chem. Eng. Data 2004, 49, 954-964.
- (28) Fang, S.; Yang, L.; Wei, C.; Peng, C.; Tachibana, K.; Kamijima, K. Low-viscosity and low-melting point asymmetric trialkylsulfonium based ionic liquids as potential electrolytes. Electrochem. Commun. 2007, 9, 2696 - 2702
- (29) Sato, T.; Masuda, G.; Takagi, K. Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim. Acta 2004, 49, 3603-3611.
- (30) Wasserscheid, P.; Welton, T. Ionic Liquids in Synthesis; Wiley-VCH Verlag GmbH & Co.: Weinheim, Federal Republic of Germany, 2002.
- (31) Tsunashima, K.; Sugiya, M. Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochem. Commun. 2007, 9, 2353-2358.
- (32) Kima, K.-S.; Shin, B.-K.; Lee, H.; Ziegler, F. Ionic Liquids as new working fluids for use in absorption heat pumps or chillers: Their thermodynamic properties. Presented at the Fifteenth Symposium on Thermophysucal Properties, Boulder, CO, 2003.
- (33) Domanska, U.; Mazurowska, L. Solubility of 1,3-dialkylimidazolium chloride or hexafluorophosphate or methylsulfonate in organic solvents: effect of the anions on solubility. Fluid Phase Equilib. 2004, 221,
- (34) Deenadayalu, N.; Kumar, S.; Bhujrajh, P. Liquid densities and excess molar volumes for (ionic liquids + methanol + water) ternary system at atmospheric pressure and at various temperatures. J. Chem. Thermodyn. **2007**, 39, 1318-1324.
- (35) Arce, A.; Pobudkowska, A.; Rodriguez, O.; Soto, A. Citrus essential oil terpenless by extraction using 1-ethyl-3-methylimidazolium ethylsulfate ionic liquid: Effect of the temperature. Chem. Eng. J. 2007, 133, 213-
- (36) Arce, A.; Rodriguez, H.; Soto, A. Effect of anion fluorination in 1-ethyl-3-methylimidazolium as solvent for the liquid extraction of ethanol from ethyl tert-butyl ether. Fluid Phase Equilib. 2006, 242, 164-168.
 - (37) Sigma-Aldrich. Ionic Liquids. Chemfiles 2006, 6 (9).
- (38) Orchilles, A. V.; Gonzalez-Alfaro, V.; Miguel, P. J.; Vercher, E.; Martinez-Andreu, A. Volumetric properties of binary mixtures of ionic liquid 1-butyl-3-methylimidazolium octylsulfate with water or propanol in the temperature range of 278.15 K to 328.15 K. J. Chem. Thermodyn. 2006, 38, 1124-1129.
- (39) Z. Gu and Brennecke, J. F. Volume Expansivities and Isothermal Compressibilities of Imidazolium and Pyridinium-Based Ionic Liquids. J. Chem. Eng. Data. 2002, 47, 339-345.
- (40) Anderson, J. L.; Armstrong, D. W. High-Stability Ionic Liquids. A New Class of Stationary Phases for Gas Chromatography. Anal. Chem. **2003**, 75, 4851-4858.
- (41) Paulechka, Y. U.; Zaitsau, D. H.; Kabo, G. J.; Strechan, A. A. Vapor pressure and thermal stability of ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Thermochim. Acta 2005, 439, 158-160.
- (42) Paulechka, Y. U.; Kabo, G. J.; Blokhin, A. V.; Vydrov, O. A.; Magee. J. W.; Frenkel, M. Thermodynamic Properties of 1-Butyl-3methylimidazolium Hexafluorophosphate in the Ideal Gas State. J. Chem. Eng. Data 2003, 48, 457-462.
- (43) Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D.; Broker, G. A.; Rogers, R. D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 2001, 3, 156-164.
- (44) Visser, A. E.; Reichert, W. M.; Swatloski, R. P.; Willauer, H. D.; Huddleston, J. G.; Rogers, R. D. Characterization of Hydrophilic and Hydrophobic Ionic Liquids: Alternatives to Volatile Organic Compounds for Liquid-Liquid Separations. In Ionic Liquids: Industrial Applications to Green Chemistry; Rogers, R. D., Seddon, K. R., Eds.; ACS Symposium Series Vol. 818; American Chemical Society: Washington, DC, 2002; pp 289 - 308.

- (45) Wu, B. Q.; Reddy, R. G.; Rogers, R. D. Solar Energy: The Power to Choose; Proceedings of Solar Forum, Washington, DC, 2001.
- (46) Nishida, T.; Tashiro, Y.; Yamamoto, M. Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte. *J. Fluorine Chem.* **2003**, *120*, 135–141.
- (47) Branco, L. C.; Rosa, J. N.; Ramos, J. J. M.; Afonso, C. A. M. Preparation and characterization of new room temperature ionic liquids. *Chem. Eur. J.* **2002**, *8*, 3671–3677.
- (48) Chun, S.; Dzyuba, S. V.; Bartsch, R. A. Influence of structural variations in room-temperature ionic liquids on the selectivity and efficiency

of competitive alkali metal salt extraction by a crown ether. *Anal. Chem.* **2001**, *73*, 3737–3741.

Received for review August 2, 2007 Revised manuscript received November 17, 2007 Accepted November 27, 2007

IE071055D