Activité 3.7 – Utilisation de la radioactivité en médecine

Objectifs:

- Comprendre la notion de dose absorbée.
- Comprendre la notion de dose équivalente.
- Connaître quelques utilisation médicale diagnostique et curative.

Contexte : La radioactivité est utilisée tous les jours en médecine pour diagnostiquer ou pour soigner des maladies.

→ Quelles sont les doses radioactives utilisées pour diagnostiquer ou guérir des maladies?

Document 1 – Dose absorbée et dose équivalente

La dose absorbée D se mesure en Gray noté Gy

$$D = \frac{\text{Énergie reçue pendant la désintégration (J)}}{\text{masse du corps recevant l'énergie (kg)}}$$

La dose absorbée mesure l'irradiation brute reçue, mais certaines particules sont plus dangereuses que d'autres à cause de leur masse. C'est pour ça qu'on introduit la dose équivalente H.

La dose équivalente H se mesure en sievert noté Sv

$$H = w_R \times D$$

où w_R est un facteur de pondération. w_R vaut 1 pour les radioactivités β^- , β^+ et γ . w_R vaut 20 pour la radioactivité α .

Yttrium β^-

Radiothérapie

métabolique

2,7 jours

Document 3 - Réglementation française

prostate, sein

Foie

En France, une dose efficace annuelle H est préconisé pour le grand public, en plus de la radioactivité naturelle et médicale.

Grand public	Personne travaillant avec des sources radioactives
$1\mathrm{mSv/an}$	$20\mathrm{mSv/an}$

Document 4 - Utilisation des radioéléments en médecine Cible Radioélément Dose Demi-vie Application Technétium : γ Peu Spécifique $1 \stackrel{.}{a} 10 \text{ mSv}$ 6 h Scintigraphie Gallium : γ Colon, poumons $30~\mathrm{mSv}$ 78 h Détection des PET par détection Fluor : β^+ et γ 7 mSvcellules cancéreuses. 110 min des rayon γ de haute Neurologie. énergie Os, poumon, Samarium β^- 1,9 jours

2 Sv/séance

	On considère qu'une source radioactive est inoffensive passé 20 demi-vie. Calculer 20 fois la pour chaque radioélément utilisé.
	Pourquoi utilise-t-on des éléments avec de courtes demi-vie en médecine?
3 –	Est-ce que les examens utilisant des radioéléments sont dangereux?
4 -	Comparer les doses reçues lors d'un examen diagnostique et pendant une radiothérapie.
5 -	Chercher comment le personnel médical se protège des radiations.