

Beauty is truth, truth beauty.

John Kea John Keats

592653589 91494459 9086513287 109756659 10975669 10975669 10975669 10975669 10975669 10975669 1097569

Chap.9 定积分习题课 2022-03

定积分精选练习 2022-03

1.(1).(教材P214/Ex.7)若函数f(x)在[0,1]上连续.

证明:
$$\int_0^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) dx.$$

- 证明: $\int_0^{\pi} xf(\sin x)dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x)dx$.

 (2). 计算 $(A) \cdot \int_0^{\pi} x \sin^2 x dx$, $(B) \cdot \int_0^{\pi} x \sin^4 x dx$.
- 2.(1).(教材 P214/Ex.6)设f(x)是R上以T(T>0)为周

期的连续函数,证明: $I = \int_{a}^{a+T} f(x) dx$ 的值与a无关.

- (1).计算 $\int_0^{2022\pi} |\sin x \cos x| dx$.
- (2).(教材 P220/Ex.4) 设f(x)是 \mathbb{R} 上以 T(T>0) 为周

期的连续函数,证明: $\lim_{x\to +\infty} \frac{1}{x} \int_0^x f(t) dt = \frac{1}{T} \int_0^T f(t) dt$.

(1).
$$\int_{-\pi/2}^{\pi/2} \frac{\sin x + \cos x}{1 + \sin x}$$

ま 3. 计算积分
$$(1). \int_{-\pi/2}^{\pi/2} \frac{\sin x + \cos x}{1 + \sin^2 x} dx.$$

$$(2). \int_{-1}^{1} \left(1 + x^{2022} \ln \frac{2 + x}{2 - x}\right) dx.$$

$$(3). \int_{0}^{2} x (x - 1)^{n} (2 - x) dx, n \in \mathbb{N}.$$

$$\int_{0}^{2} x(x-1)^{n} (2-x) dx, n \in \mathbb{N}$$

4.积分计算问题

(1).(P192/Ex.3)若f(x)在[a,b]上可积,

F(x)在[a,b]上连续,且除有限多个点

外有F'(x) = f(x),则有

$$\int_a^b f(x)dx = F(b) - F(a).$$

$$(2).计算 \int_0^{\pi} \frac{1}{2 + \cos 2x} dx .$$

(3).计算
$$\int_{-1}^{1} \frac{1}{1+x^4} dx$$
.

5.
$$f(x)$$
, $g(x)$ 在 $[-a,a]$ 上连续, $g(x)$ 为偶函数,且 $f(x)$ 满足 $f(x)+f(-x)=A$,A为常数.

且
$$f(x)$$
满足 $f(x) + f(-x) = A, A$ 为常数

求证
$$\int_{-a}^{a} f(x)g(x)dx = A \int_{0}^{a} g(x)dx$$
, 并由此计算 $\int_{-\pi/2}^{\pi/2} \left(\operatorname{arctan} e^{x} \cdot \cos x\right) dx$.

并由此计算
$$\int_{-\pi/2}^{\pi/2} (\arctan e^x \cdot \cos x) dx$$

$$f : \int_0^{\pi} e^{\sin^2 x} dx \ge \frac{3}{2} \pi.$$

7.证明:
$$\int_0^{\sqrt{2\pi}} \sin(x^2) dx > 0.$$
 (与 $P214/Ex.12$ 同)
8.设 $f \in C[0,1], f(x) > 0.$ 证明:
$$\ln \int_0^1 f(x) dx \ge \int_0^1 \ln f(x) dx.$$
 (与 $P220/Ex.1,8$ 类同)

8.设
$$f \in C[0,1], f(x) > 0$$
.证明:

$$\ln \int_0^1 f(x) dx \ge \int_0^1 \ln f(x) dx$$

(1).
$$\lim_{x\to 0} \frac{\left(\int_0^x e^{t^2} dt\right)^2}{\int_0^x e^{2t^2} dt}$$

$$(2). \lim_{x \to +\infty} \frac{\left(\int_0^x e^{t^2} dt\right)^2}{\int_0^x e^{2t^2} dt}.$$

(3).
$$\lim_{x \to +\infty} \frac{\sqrt{x^2 + 1}}{\int_0^x (\operatorname{arctan} t)^2 dt}$$

$$= 10.$$
设 $f(x)$ 在 $[a,b]$ 上连续,且 $f(x) > 0$,

$$\Phi(x) = \int_a^x f(t)dt + \int_b^x \frac{dt}{f(t)}, x \in [a,b].$$

证明:
$$(1).\Phi'(x) \ge 2$$
; $(2).方程\Phi(x) = 0$ 在 (a,b)

内有唯一的实根.

$$+$$
 11.设函数 $f(x)$ 在 $(-\infty,+\infty)$ 上连续,

证明:
$$\int_0^x (x-u)f(u)du = \int_0^x \left[\int_0^u f(x)dx \right] du.$$

$$12.(P214/Ex.9)$$
设函数 $f(x)$ 在 $(0,+\infty)$ 上连

$$\frac{1}{4}$$
 续, $\forall a,b \in (0,+\infty)$, $I = \int_a^{ab} f(x) dx$ 与a无关.

证明:
$$f(x) = \frac{C}{x}$$
, C 为常数.

13. $(P214/Ex.13)$ 若 $x > 0$, $c > 0$, 则有
$$\left| \int_{x}^{x+c} \sin(t^2) dt \right| \le \frac{1}{x} .$$

$$13.(P214/Ex.13)$$
若 $x > 0, c > 0$,则有

$$\left| \int_{x}^{x+c} \sin\left(t^{2}\right) dt \right| \leq \frac{1}{x}$$

14.设函数f(x)和g(x)证明: (1).若在[a,b]则在[a,b]上 f(x) (2).若在[a,b]上f(x)则 $\int_a^b f(x)dx > 0$. 同样地有: (3).若在[a,b]上f(x)则在[a,b]上f(x)则在[a,b]上f(x)则,[a,b]上[a,b]上[a,b]0. 14.设函数f(x)和g(x)在[a,b]上均连续,

证明:(1).若在
$$[a,b]$$
上 $f(x) \ge 0$ 且 $\int_a^b f(x)dx = 0$,

则在[a,b]上 $f(x) \equiv 0$.

(2).若在[a,b]上f(x) ≥ 0且不恒等于零,

(3).若在[
$$a$$
, b]上 $f(x) \le g(x)$ 且 $\int_a^b f(x)dx = \int_a^b g(x)dx$,

则在[a,b]上 $f(x) \equiv g(x)$.

(4).若在
$$[a,b]$$
上 $f(x) \leq g(x)$ 但 $f(x),g(x)$ 不恒相等.

$$\iiint_a^b f(x)dx < \int_a^b g(x)dx.$$

15.(1).设
$$f(x)$$
, $g(x)$ 在 $[a,b]$ 上可积,则有:

$$\left[\int_a^b f(x)g(x)dx\right]^2 \le \int_a^b f^2(x)dx \int_a^b g^2(x)dx.$$

(Cauchy – Schwarz – Bunijiakovsky 不等式)

15.(2).设f(x),g(x)在[a,b]上连续,则有:

$$\left[\int_a^b f(x)g(x)dx\right]^2 \le \int_a^b f^2(x)dx \int_a^b g^2(x)dx.$$

16.(1).设函数f(x)在[a,b]上连续,

求证:
$$\left(\int_a^b f(x)dx\right)^2 \leq \left(b-a\right)\int_a^b f^2(x)dx.$$

16.(1).设函数
$$f(x)$$
在 $[a,b]$ 上连续,求证:

$$\left(\int_a^b f(x)dx\right)^2 \le \left(b-a\right)\int_a^b f^2(x)dx.$$

16.(2).设f(x) 在[a,b]上连续,且f(x) > 0.求证:

$$\int_a^b f(x)dx \cdot \int_a^b \frac{dx}{f(x)} \ge (b-a)^2.$$

17.设f(x)在[a,b]上有连续的导函数,且f(a) = 0,

$$|f'(x)| \leq M, x \in [a,b]. \text{ \mathbb{R} is: } \left| \int_a^b f(x) dx \right| \leq \frac{1}{2} M \left(b-a\right)^2.$$

18.设f(x),g(x)在区间[a,b]上连续且同为单调增加或

单调减少,则有

$$\int_a^b f(x)dx \int_a^b g(x)dx \le (b-a) \int_a^b f(x)g(x)dx.$$

19. 岩
$$f(x)$$
是 $[a,b]$ 上连续的凸函数,

$$= 19.(P205/Ex.11) 若 f(x) 在 [a,b] 上$$

于二阶可导,且
$$f''(x) > 0$$
.求证:
$$\int_a^b f(x)dx \ge (b-a)f\left(\frac{a+b}{2}\right).$$

- 20.设函数f(x)在[a,b]上连续且单调递增,

证明
$$(a+b)\int_a^b f(x)dx \le 2\int_a^b xf(x)dx$$
.

定积分精选练习 2022-03

微积分基本定理:(1).若f(x)在区间[a,b]上连续,

则 $\int_a^x f(t)dt$ 是f(x)在区间[a,b]上的一个原函数,即

$$\left(\int_a^x f(t)dt\right)'=f(x).$$

(2).若F(x)是连续函数f(x)在区间[a,b]上的一个

原函数,则 $\int_a^b f(x)dx = F(b) - F(a)$.

命题(调头变换or区间再现)

设f(x)是[a,b]上的连续函数,则有

$$\int_a^b f(x)dx = \int_a^b f(a+b-x)dx,$$

$$\Rightarrow \int_a^b f(x)dx = \frac{1}{2} \int_a^b \left[f(x) + f(a+b-x) \right] dx.$$

1.(1).(教材 P214/Ex.7)若函数f(x)在[0,1]上连续.

证明:
$$\int_0^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) dx.$$

(2). 计算
$$(A)$$
. $\int_0^{\pi} x \sin^2 x dx$, (B) . $\int_0^{\pi} x \sin^4 x dx$.

$$(2).(B).\int_0^{\pi} x \sin^4 x dx = \frac{\pi}{2} \int_0^{\pi} \sin^4 x dx = \frac{\pi}{2} \int_0^{\pi} \left(\frac{1 - \cos 2x}{2} \right)^2 dx$$

$$= \frac{\pi}{8} \int_0^{\pi} \left(1 - 2\cos 2x + \frac{1 + \cos 4x}{2} \right) dx$$

$$= \frac{\pi}{8} \left(\frac{3}{2} - \sin 2x + \frac{1}{8} \sin 4x \right)_0^{\pi} = \frac{3\pi^2}{16}.$$

或者由
$$\int_0^{\pi} \sin^4 x dx = 2 \int_0^{\pi/2} \sin^4 x dx = 2 \cdot \frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{\pi}{2} = \frac{3\pi}{8} \cdots$$

(T>0)为周期的连续函数,

证明: $I = \int_a^{a+T} f(x) dx$ 的值与a无关.

(1).计算 $\int_0^{2022\pi} |\sin x \cos x| dx$.

 $\int_0^{2022\pi} |\sin x \cos x| dx = 2022 \int_0^{\pi} |\sin x \cos x| dx$

 $= 2022 \int_{-\pi/2}^{\pi/2} |\sin x \cos x| dx = 4044 \int_{0}^{\pi/2} |\sin x \cos x| dx$

 $= 4044 \int_0^{\pi/2} \sin x \cos x dx = 2022 \sin^2 x \Big|_0^{\pi/2} = 2022.$

$$2.(2).($$
教材 $P220/Ex.4)$ 设 $f(x)$ 是 \mathbb{R} 上以 $T(T>0)$ 为周

期的连续函数,证明:
$$\lim_{x\to +\infty} \frac{1}{x} \int_0^x f(t) dt = \frac{1}{T} \int_0^T f(t) dt$$
.

分析 ::
$$\lim_{x \to +\infty} \frac{\left(\int_0^x f(t)dt\right)'}{\left(x\right)'} = \lim_{x \to +\infty} f(x)$$
未知其存在性,

证明 记
$$x = nT + l, l \in [0,T)$$
,

$$0 \le \left| \int_0^t f(s) ds \right| \le \int_0^t |f(s)| ds \le \int_0^T |f(s)| ds.$$

$$\therefore \lim_{x \to +\infty} \frac{1}{x} \int_0^x f(t)dt = \lim_{n \to \infty} \frac{n \int_0^T f(t)dt + \int_0^l f(t)dt}{nT + l}$$

2.(2).(教材
$$P220/Ex.4$$
) 设 $f(x)$ 是聚上以 $T(T>$ 期的连续函数,证明: $\lim_{x\to +\infty} \frac{1}{x} \int_0^x f(t)dt = \frac{1}{T} \int_0^T f(t)dt$ 分析 $\lim_{x\to +\infty} \frac{\left(\int_0^x f(t)dt\right)'}{\left(x\right)'} = \lim_{x\to +\infty} f(x)$ 未知其有故不能使用 $L'Hopital$ 法则. 证明 记 $x = nT + l, l \in [0,T]$,
$$\int_0^x f(t)dt = \int_0^{nT} f(t)dt + \int_{nT}^{nT+l} f(t)dt \stackrel{t=nT+s}{=} = n \int_0^T f(t)dt + \int_0^l f(nT+s)ds = n \int_0^T f(t)dt + \int_0^l f(s)ds$$
 $\therefore \lim_{x\to +\infty} \frac{1}{x} \int_0^x f(t)dt = \lim_{n\to \infty} \frac{n \int_0^T f(t)dt + \int_0^l f(t)dt}{nT+l} = \lim_{n\to \infty} \frac{\int_0^T f(t)dt + \frac{1}{n} \int_0^l f(t)dt}{T + \frac{l}{n}} = \frac{1}{T} \int_0^T f(t)dt$.

$$(1).\int_{-\pi/2}^{\pi/2} \frac{\sin x + \cos x}{1 + \sin^2 x} dx.$$

$$\int_{-\pi/2}^{\pi/2} \frac{\sin x + \cos x}{1 + \sin^2 x} dx.$$

$$(2). \int_{-1}^{1} \left(1 + x^{2022} \ln \frac{2 + x}{2 - x}\right) dx.$$

$$x(x-1)^n(2-x)dx,n\in\mathbb{N}.$$

$$\int_{0}^{2} x(x-1)^{n} (2-x) dx, n \in \mathbb{N}.$$

$$I = \int_{0}^{x-1=t} \int_{0}^{2} x(x-1)^{n} (2-x) dx$$

4.积分计算问题

$$(1).(P192/Ex.3)$$
若 $f(x)$ 在 $[a,b]$ 上可积,

F(x)在[a,b]上连续,且除有限多个点

外有F'(x) = f(x),则有

$$\int_a^b f(x)dx = F(b) - F(a)$$

这叫作拓广的Newton - Leibniz公式.

证明 取[a,b]的一个划分 $T = \{x_0, x_1, \dots, x_n\}, a = x_0, x_n = b,$

使得使F'(x) = f(x)不成立的点成为划分T的部分分点,

• $\pm \Delta_k = [x_{k-1}, x_k]$ 上由Lagrange微分中值定理得

$$F(x_k) - F(x_{k-1}) = F'(\xi_k) \Delta x_k = f(\xi_k) \Delta x_k,$$

則
$$F(b)-F(a)=\sum_{k=1}^{n}\left[F(x_k)-F(x_{k-1})\right]=\sum_{k=1}^{n}f(\xi_k)\Delta x_k,$$

$$\therefore f(x)$$
在 $[a,b]$ 上可积, $\therefore \lim_{\|T\|\to 0} \sum_{k=1}^n f(\xi_k) \Delta x_k = \int_a^b f(x) dx$.证毕

解 在
$$(-\infty, +\infty)$$
上, $\arctan x$ 是 $\frac{1}{1+x^2}$ 的一个原函数

$$\therefore \int_{-1}^{1} \frac{1}{1+x^2} dx = \left[\arctan x\right]_{-1}^{1} = \frac{\pi}{4} - \left(-\frac{\pi}{4}\right) = \frac{\pi}{2}$$

$$x \neq 0$$
时, $\left(-\arctan\frac{1}{x}\right)' = \frac{1}{1+x^2}$,但是 $-\arctan\frac{1}{x}$ 在 $x = 0$ 时没有定义,

例如,计算积分:
$$\int_{-1}^{1} \frac{1}{1+x^2} dx$$
.

解 在 $(-\infty, +\infty)$ 上, $\arctan x$ 是 $\frac{1}{1+x^2}$ 的一个原函数,

$$\therefore \int_{-1}^{1} \frac{1}{1+x^2} dx = \left[\arctan x\right]_{-1}^{1} = \frac{\pi}{4} - \left(-\frac{\pi}{4}\right) = \frac{\pi}{2}.$$
 $x \neq 0$ 时, $\left(-\arctan \frac{1}{x}\right)' = \frac{1}{1+x^2}$, 但是 $-\arctan \frac{1}{x}$ 在 $x = 0$ 时没有定义,

所以 $-\arctan \frac{1}{x}$ 不是 $\frac{1}{1+x^2}$ 在 $\left[-1,1\right]$ 上的一个原函数.稍作改造,

$$\frac{-\arctan \frac{1}{x}}{x} < 0$$

$$\frac{\pi}{2} \quad , \quad x = 0 \quad , \Phi(x)$$
在 $\left[-1,1\right]$ 上连续, 且 $x \neq 0$ 时 $\Phi'(x) = \frac{1}{1+x^2}$,
$$\frac{\pi}{-\arctan \frac{1}{x}}, x > 0$$

于是, $\int_{-1}^{1} \frac{1}{1+x^2} dx = \Phi(1) - \Phi(-1) = \pi - \arctan 1 - \left(-\arctan \frac{1}{(-1)}\right) = \frac{\pi}{2}.$

于是,
$$\int_{-1}^{1} \frac{1}{1+x^2} dx = \Phi(1) - \Phi(-1) = \pi - \arctan 1 - \left(-\arctan \frac{1}{(-1)}\right) = \frac{\pi}{2}$$

4.积分计算(2).
$$I = \int_0^{\pi} \frac{1}{2 + \cos 2x} dx$$
.
$$\int \frac{1}{2 + \cos 2x} dx = \int \frac{1}{1 + 2\cos^2 x} dx = \int \frac{\sec^2 x}{2 + \sec^2 x} dx$$

$$= \int \frac{(\tan x)'}{3 + \tan^2 x} dx = \int \frac{1}{(\sqrt{3})^2 + \tan^2 x} d(\tan x)$$

$$= \frac{1}{\sqrt{3}} \arctan \frac{\tan x}{\sqrt{3}} + C.$$

$$\int_{0}^{\pi} \frac{1}{2 + \cos 2x} dx = \int_{0}^{\pi} \frac{1}{1 + 2\cos^{2} x} dx = \int_{0}^{\pi$$

尚由
$$\int \frac{1}{2 + \cos 2x} dx = \frac{1}{\sqrt{3}}$$

$$\pi$$
]上 $\frac{1}{2+\cos 2x} \ge \frac{1}{3} > 0$,我们知道错了!

4.积分计算(2).
$$I = \int_0^{\pi} \frac{1}{2 + \cos 2x} dx$$
.

倘由 $\int \frac{1}{2 + \cos 2x} dx = \frac{1}{\sqrt{3}} \arctan \frac{\tan x}{\sqrt{3}} + C$

得 $I = \int_0^{\pi} \frac{1}{2 + \cos 2x} dx = \frac{1}{\sqrt{3}} \arctan \frac{\tan x}{\sqrt{3}} \Big|_0^{\pi} = 0$,

在 $[0,\pi]$ 上 $\frac{1}{2 + \cos 2x} \ge \frac{1}{3} > 0$,我们知道错了!

由 $\frac{1}{2 + \cos 2x}$ 在 $[0,\pi]$ 上连续,因而其原函数也

必须是连续的.故 $\frac{1}{\sqrt{3}}$ arctan $\frac{\tan x}{\sqrt{3}}$ 不是 $\frac{1}{2 + \cos 2x}$ 在 $[0,\pi]$ 上的原函数.

$$\frac{1}{1}$$
 4.积分计算(2). $I = \int_0^{\pi} \frac{1}{2 + \cos 2x} dx$.
正解 : — 是以 π 为周期的连续函数,

正解
$$\because \frac{1}{2 + \cos 2x}$$
 是以 π 为周期的连续函数,
$$\therefore I = \int_0^{\pi} \frac{1}{2 + \cos 2x} dx = \int_{-\pi/2}^{\pi/2} \frac{1}{2 + \cos 2x} dx$$

$$\stackrel{\text{奇偶性}}{====} 2 \int_0^{\pi/2} \frac{1}{2 + \cos 2x} dx = 2 \lim_{u \to \frac{\pi}{2} \to 0} \int_0^u \frac{1}{2 + \cos 2x} dx$$

$$\frac{1}{1} = \frac{2}{\sqrt{3}} \lim_{u \to \frac{\pi}{2} - 0} \arctan \frac{\tan x}{\sqrt{3}} \Big|_{0}^{u} = \frac{2}{\sqrt{3}} \cdot \frac{\pi}{2} = \frac{\pi}{\sqrt{3}}.$$

4.积分计算(2).
$$I = \int_0^{\pi} \frac{1}{2 + \cos 2x} dx$$

$$: \frac{1}{2 + \cos 2r} \mathbb{E}(-\infty, +\infty)$$
上的连续函数,

$$\therefore \int_0^u \frac{1}{2 + \cos 2x} dx = \Phi(u) \div \left(-\infty, +\infty\right)$$
上连续,

$$D\left(\frac{\pi}{2}\right) = \lim_{u \to \frac{\pi}{2} - 0} \Phi(u), \mathbb{P}$$

法二
$$\int_0^{\pi} \frac{1}{2 + \cos 2x} dx = \int_0^{\pi} \frac{1}{1 + 2\cos^2 x} dx$$

$$= \int_{0}^{\pi/4} \frac{1}{1 + 2\cos^{2} x} dx + \int_{\pi/4}^{3\pi/4} \frac{1}{1 + 2\cos^{2} x} dx + \int_{3\pi/4}^{\pi} \frac{1}{1 + 2\cos^{2} x} dx + \int_{3\pi/4}^{\pi} \frac{1}{1 + 2\cos^{2} x} dx + \int_{\pi/4}^{\pi} \frac{1}{1 +$$

$$= \int_{0}^{\pi/4} \frac{dx}{2 + \sec^{2} x} dx + \int_{\pi/4}^{\pi/4} \frac{\csc^{2} x + 2\cot^{2} x}{\csc^{2} x + 2\cot^{2} x} dx + \int_{3\pi/4}^{3\pi/4} \frac{2 + \sec^{2} x}{2 + \sec^{2} x} dx$$

$$= \int_{0}^{\pi/4} \frac{d(\tan x)}{(\sqrt{3})^{2} + \tan^{2} x} + \int_{\pi/4}^{3\pi/4} \frac{-d(\cot x)}{1 + (\sqrt{3}\cot x)^{2}} dx + \int_{3\pi/4}^{\pi} \frac{d(\tan x)}{(\sqrt{3})^{2} + \tan^{2} x}$$

法二
$$\int_{0}^{\pi} \frac{1}{2 + \cos 2x} dx = \int_{0}^{\pi} \frac{1}{1 + 2\cos^{2}x} dx$$

$$= \int_{0}^{\pi/4} \frac{1}{1 + 2\cos^{2}x} dx + \int_{\pi/4}^{3\pi/4} \frac{1}{1 + 2\cos^{2}x} dx + \int_{3\pi/4}^{\pi} \frac{1}{1 + 2\cos^{2}x} dx$$

$$= \int_{0}^{\pi/4} \frac{\sec^{2}x}{2 + \sec^{2}x} dx + \int_{\pi/4}^{3\pi/4} \frac{\csc^{2}x}{\csc^{2}x + 2\cot^{2}x} dx + \int_{3\pi/4}^{\pi} \frac{\sec^{2}x}{2 + \sec^{2}x} dx$$

$$= \int_{0}^{\pi/4} \frac{d(\tan x)}{(\sqrt{3})^{2} + \tan^{2}x} + \int_{\pi/4}^{3\pi/4} \frac{-d(\cot x)}{1 + (\sqrt{3}\cot x)^{2}} dx + \int_{3\pi/4}^{\pi} \frac{d(\tan x)}{(\sqrt{3})^{2} + \tan^{2}x}$$

$$= \frac{1}{\sqrt{3}} \arctan \frac{\tan x}{\sqrt{3}} \Big|_{0}^{\pi/4} - \frac{1}{\sqrt{3}} \arctan (\sqrt{3}\cot x) \Big|_{\pi/4}^{3\pi/4} + \frac{1}{\sqrt{3}} \arctan \frac{\tan x}{\sqrt{3}} \Big|_{3\pi/4}^{\pi}$$

$$= \cdots = \frac{\pi}{\sqrt{3}}.$$

$$(2 : \cancel{\pm} \cdot \cancel$$

$$\left(0,\frac{\pi}{2}\right)$$
内的点即可;同样, $\frac{3\pi}{4}$ 亦如此.

$$\int_{0}^{\pi} \frac{1}{2 + \cos 2x} dx.$$

$$\sqrt{3}$$

法三 由
$$\int \frac{1}{2 + \cos 2x} dx = \frac{1}{\sqrt{3}} \arctan \frac{\tan x}{\sqrt{3}} + C,$$
 据拓广的Newton – Leibniz公式,取
$$\frac{1}{\sqrt{3}} \arctan \frac{\tan x}{\sqrt{3}}, 0 \le x < \frac{\pi}{2}$$

$$\frac{\pi}{2\sqrt{3}}, x = \frac{\pi}{2}, \Phi(x) \div [0,\pi] \bot$$
连续,

$$\frac{\pi}{2\sqrt{3}}, \quad x = \frac{\pi}{2}, \quad \Phi(x) \text{ 在}[0,\pi] \text{ 上连续},$$

$$\frac{1}{\sqrt{3}} \arctan \frac{\tan x}{\sqrt{3}} + \frac{\pi}{\sqrt{3}}, \frac{\pi}{2} < x \le \pi$$

$$: I = \int_0^{\pi} \frac{1}{2 + \cos 2x} dx = \Phi(\pi) - \Phi(0) = \frac{\pi}{\sqrt{3}}.$$

$$\Re \int \frac{1}{1+x^4} dx = \frac{1}{2\sqrt{2}} \int \left(\frac{x+\sqrt{2}}{x^2+\sqrt{2}x+1} - \frac{x-\sqrt{2}}{x^2-\sqrt{2}x+1} \right) dx$$

$$= \frac{1}{4\sqrt{2}} \ln \left| \frac{x^2 + \sqrt{2}x + 1}{x^2 - \sqrt{2}x + 1} \right| + \frac{1}{2\sqrt{2}} \left[\arctan \left(\sqrt{2}x + 1 \right) + \arctan \left(\sqrt{2}x - 1 \right) \right] + C.$$

4. 表 分 計算(3)
$$J = \int_{-1}^{1} \frac{1}{1+x^4} dx$$
 .

$\int \frac{1}{1+x^4} dx = \frac{1}{2\sqrt{2}} \int \left(\frac{x+\sqrt{2}}{x^2+\sqrt{2}x+1} - \frac{x-\sqrt{2}}{x^2-\sqrt{2}x+1} \right) dx$

$$= \frac{1}{4\sqrt{2}} \ln \left| \frac{x^2+\sqrt{2}x+1}{x^2-\sqrt{2}x+1} \right| + \frac{1}{2\sqrt{2}} \left[\arctan\left(\sqrt{2}x+1\right) + \arctan\left(\sqrt{2}x-1\right) \right] + C.$$

$$\therefore I = \int_{-1}^{1} \frac{1}{1+x^4} dx = \begin{cases} \frac{1}{4\sqrt{2}} \ln \left| \frac{x^2+\sqrt{2}x+1}{x^2-\sqrt{2}x+1} \right| \\ + \frac{1}{2\sqrt{2}} \left[\arctan\left(\sqrt{2}x+1\right) + \arctan\left(\sqrt{2}x-1\right) \right] \end{cases}$$

$$= \frac{1}{\sqrt{2}} \left[\ln \left(\sqrt{2}+1\right) + \frac{\pi}{2} \right] = A.$$

解二
$$\int \frac{1}{1+x^4} dx = \frac{1}{2} \left(\int \frac{1+x^2}{1+x^4} dx + \int \frac{1-x^2}{1+x^4} dx \right)$$

$$\frac{1}{2} = \frac{1}{2} \int \frac{1 + \frac{1}{x^2}}{x^2 + \frac{1}{x^2}} dx - \frac{1}{2} \int \frac{1 - \frac{1}{x^2}}{x^2 + \frac{1}{x^2}} dx = \frac{1}{2} \int \frac{d\left(x - \frac{1}{x}\right)}{\left(x - \frac{1}{x}\right)^2 + 2} - \frac{1}{2} \int \frac{d\left(x + \frac{1}{x}\right)}{\left(x + \frac{1}{x}\right)^2 - 2} dx = \frac{1}{2\sqrt{2}} \arctan \frac{x - \frac{1}{x}}{\sqrt{2}} - \frac{1}{4\sqrt{2}} \ln \left| \frac{x + \frac{1}{x} - \sqrt{2}}{x + \frac{1}{x} + \sqrt{2}} \right| + C_1$$

$$= \frac{1}{4\sqrt{2}} \ln \left| \frac{x^2 + \sqrt{2}x + 1}{x^2 - \sqrt{2}x + 1} \right| + \frac{1}{2\sqrt{2}} \arctan \frac{x^2 - 1}{x\sqrt{2}} + C_1,$$

$$\left| \frac{x^2 + \sqrt{2}x + 1}{x^2 - \sqrt{2}x + 1} \right| + \frac{1}{2\sqrt{2}} \arctan \frac{x^2 - 1}{x\sqrt{2}} + C_1,$$

$$\int_{-1}^{1} \frac{1}{1+x^4} dx.$$

$$\int \frac{1}{1+x^4} dx = \frac{1}{4\sqrt{2}} \ln \left| \frac{x^2 + \sqrt{2}x + 1}{x^2 - \sqrt{2}x + 1} \right| + \frac{1}{2\sqrt{2}} \arctan \frac{x^2 - 1}{x\sqrt{2}} + C_1,$$

$$\text{We } \exists A \text{ (2)} \exists k \not \in \text{ in the parties}$$

$$\int \frac{1}{4\sqrt{2}} \ln \left| \frac{x^2 + \sqrt{2}x + 1}{x^2 - \sqrt{2}x + 1} \right| + \frac{1}{2\sqrt{2}} \arctan \frac{x^2 - 1}{x\sqrt{2}}, x < 0$$

$$\int \frac{1}{1+x^4} dx = \frac{1}{4\sqrt{2}} \ln \left| \frac{x^2 + \sqrt{2}x + 1}{x^2 - \sqrt{2}x + 1} \right| + \frac{1}{2\sqrt{2}} \arctan \frac{x^2 - 1}{x\sqrt{2}} + C_1,$$
作与4.(2)同样的改造,
$$G(x) = \begin{cases} \frac{1}{4\sqrt{2}} \ln \left| \frac{x^2 + \sqrt{2}x + 1}{x^2 - \sqrt{2}x + 1} \right| + \frac{1}{2\sqrt{2}} \arctan \frac{x^2 - 1}{x\sqrt{2}}, x < 0 \\ \frac{\pi}{4\sqrt{2}}, x = 0 \end{cases}$$

$$\int_{-1}^{1} \frac{1}{4\sqrt{2}} \ln \left| \frac{x^2 + \sqrt{2}x + 1}{x^2 - \sqrt{2}x + 1} \right| + \frac{1}{2\sqrt{2}} \arctan \frac{x^2 - 1}{x\sqrt{2}} + \frac{\pi}{2\sqrt{2}}, x > 0$$

$$\iiint \int_{-1}^{1} \frac{1}{1+x^4} dx = G(1) - G(-1) = \frac{1}{\sqrt{2}} \left[\ln \left(\sqrt{2} + 1 \right) + \frac{\pi}{2} \right] = A.$$

$$\iiint_{-1}^{1} \frac{1}{1+x^4} dx = G(1) - G(-1) = \frac{1}{\sqrt{2}} \left[\ln\left(\sqrt{2} + 1\right) + \frac{\pi}{2} \right] = A$$

$$5.f(x),g(x)$$
在 $[-a,a]$ 上连续, $g(x)$ 为偶函数,且 $f(x)$ 满足

$$f(x) + f(-x) = A, A$$
为常数.求证 $\int_{-a}^{a} f(x)g(x)dx = A\int_{0}^{a} g(x)dx$.
并由此计算 $\int_{-\pi/2}^{\pi/2} \left(\operatorname{arctan} e^{x} \cdot \cos x\right) dx$.
证明 $L = \int_{-a}^{0} f(x)g(x)dx + \int_{0}^{a} f(x)g(x)dx$

并由此计算
$$\int_{-\pi/2}^{\pi/2} (\arctan e^x \cdot \cos x) dx$$

证明
$$L = \int_{-a}^{0} f(x)g(x)dx + \int_{0}^{a} f(x)g(x)dx$$

$$= -\int_{a}^{0} f(-t)g(-t)dt + \int_{0}^{a} f(x)g(x)dx$$

$$= -\int_{a}^{0} f(-t)g(-t)dt + \int_{0}^{a} f(x)g(x)dx$$

$$= \int_{0}^{a} f(-x)g(-x)dx + \int_{0}^{a} f(x)g(x)dx$$

$$= \int_{0}^{a} f(-x)g(x)dx + \int_{0}^{a} f(x)g(x)dx$$

$$f(-x)g(x)dx + \int_0^a f(x)g(x)dx$$

$$= \int_0^a [f(x) + f(-x)]g(x)dx = R.$$

$$\overrightarrow{m} \arctan e^x + \arctan e^{-x} \equiv \frac{\pi}{2} \cdots$$

$$\pi$$
 arctan $e^x + \arctan e^{-x} \equiv \frac{\pi}{2} \cdots$

$$\int_0^{\pi} e^{\sin^2 x} dx \geq \frac{3}{2}\pi.$$

 $Hint: \forall t \in \mathbb{R}, e^t \geq 1+t.$

函数
$$\frac{\sin x}{\sqrt{x}}$$
在区间 $(0,\pi]$ 上有界,我们取

$$\varphi(x) = \begin{cases} \frac{\sin x}{\sqrt{x}}, & x \neq 0 \\ 0, & x = 0 \end{cases}, \varphi(x)$$
在[0, π]上连续,

通常我们将 $\int_0^{\pi} \varphi(x) dx$ 表示为 $\int_0^{\pi} \frac{\sin x}{\sqrt{r}} dt$.

证明
$$I = \int_0^{x^2 = t} \int_0^{2\pi} \sin t \cdot \frac{1}{2\sqrt{t}} dt = \int_0^{\pi} \frac{\sin t}{2\sqrt{t}} dt + \int_{\pi}^{2\pi} \frac{\sin t}{2\sqrt{t}} dt$$

$$= \int_0^{\pi} \frac{\sin t}{2\sqrt{t}} dt + \int_0^{\pi} \frac{\sin(\pi + s)}{2\sqrt{\pi + s}} ds$$

$$==\int_{0}^{\pi} \frac{\sin t}{2\sqrt{t}} dt + \int_{0}^{\pi} \frac{\sin(\pi + s)}{2\sqrt{\pi + s}} ds$$

$$= \int_0^\pi \frac{\sin t}{2\sqrt{t}} dt + \int_0^\pi \frac{\sin(\pi + s)}{2\sqrt{\pi + s}} ds$$

$$= \int_0^\pi \frac{\sin t}{2\sqrt{t}} dt - \int_0^\pi \frac{\sin s}{2\sqrt{\pi + s}} ds = \frac{1}{2} \int_0^\pi \left(\frac{1}{\sqrt{t}} - \frac{1}{\sqrt{\pi + t}} \right) \sin t dt \ge 0,$$
再根据14题结论,…>0.

8.设
$$f \in C[0,1], f(x) > 0.$$

证明
$$\ln \int_0^1 f(x)dx \ge \int_0^1 \ln f(x)dx$$
.
 $\left(\frac{\exists P220/Ex.1,8}{\exists F(x)} \right)$
 证明 $\ln \left[0,1 \right] \perp f(x) > 0$ $\ln \int_0^1 f(x)dx = A > 0$.
 $\forall t > -1, \ln \left(1+t \right) \le t$. $\forall x \in [0,1]$,

正明 由[0,1]上
$$f(x) > 0$$
 知 $\int_0^1 f(x)dx = A > 0$

$$\because \forall t > -1, \ln(1+t) \leq t. \quad \therefore \forall x \in [0,1]$$

$$\ln f(x) = \ln A + \ln \left(1 + \frac{f(x)}{A} - 1 \right) \le \ln A + \frac{f(x)}{A} - 1,$$

$$\therefore R \le \int_0^1 \left[\ln A + \frac{f(x)}{A} - 1 \right] dx = \ln A + \int_0^1 \frac{f(x)}{A} dx - 1$$

$$= \ln A = L.$$

9. 求极限(1).
$$\lim_{x\to 0} \frac{\left(\int_0^x e^{t^2} dt\right)^2}{\int_0^x e^{2t^2} dt}$$

9. 求极限(1).
$$\lim_{x\to 0} \frac{\left(\int_0^x e^{t^2} dt\right)^2}{\int_0^x e^{2t^2} dt}$$
.

解 由积分中值定理知, $x\to 0$ 时 $\int_0^x e^{t^2} dt = xe^{\xi^2} \to 0$,

这是 $\frac{0}{0}$ 形未定型,用 $L'Hopital$ 法则
$$\lim_{x\to 0} \frac{\left(\int_0^x e^{t^2} dt\right)^2}{\int_0^x e^{2t^2} dt} = \lim_{x\to 0} \frac{2\int_0^x e^{t^2} dt \cdot e^{x^2}}{e^{2x^2}} = \lim_{x\to 0} \frac{2\int_0^x e^{t^2} dt}{e^{x^2}} = 0.$$

9.(2).
$$\lim_{x \to +\infty} \frac{\left(\int_0^x e^{t^2} dt\right)^2}{\int_0^x e^{2t^2} dt}.$$
解 $s \ge 0$ 时, $e^s \ge 1 \Rightarrow \int_0^x e^{2t^2} dt \ge \int_0^x 1 dt = x$,

$$\lim_{x \to +\infty} \int_0^x e^{2t^2} dt \ge \lim_{x \to +\infty} x = +\infty, : \text{ if } \text{ if }$$

$$\frac{1}{x} = 0.$$

9.(3).
$$\lim_{x \to +\infty} \frac{\sqrt{x^2 + 1}}{\int_0^x (\arctan t)^2 dt}.$$

$$\lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{2x} = \lim_{x \to \infty} \frac{x}{2x}$$

$$\lim_{x \to +\infty} \frac{\sqrt{x+1}}{\int_0^x (\arctan t)^2 dt} = \lim_{x \to +\infty} \frac{x}{\int_0^x (\arctan t)^2 dt}$$

$$\lim_{x \to +\infty} \frac{1}{\int_0^x (\arctan t)^2 dt} = \lim_{x \to +\infty} \frac{x}{\int_0^x (\arctan t)^2 dt}$$

9.(3).
$$\lim_{x \to +\infty} \frac{\sqrt{x^2 + 1}}{\int_0^x (\arctan t)^2 dt}$$
.

$$\pm :: \lim_{x \to +\infty} \frac{\int_0^x (\arctan t)^2 dt}{\sqrt{x^2 + 1}}$$

$$= \lim_{x \to +\infty} \frac{\int_0^x (\arctan t)^2 dt}{x}$$

$$\lim_{x \to +\infty} \frac{\left(\arctan x\right)^2}{1} = \frac{\pi^2}{4} \cdots$$

10.设
$$f(x)$$
在 $[a,b]$ 上连续,且 $f(x) > 0$,

士 证明:(1).
$$\Phi'(x) \ge 2$$
; (2).方程 $\Phi(x) = 0$ 在 (a,b)

工 内有唯一的实根.

11.设函数
$$f(x)$$
在 $(-\infty,+\infty)$ 上连续,

证明:
$$\int_0^x (x-u)f(u)du = \int_0^x \left[\int_0^u f(x)dx \right] du.$$

证明
$$\Phi(u) = \int_0^u f(t)dt$$
,则

$$= x\Phi(x) - \int_0^x uf(u)du = x \int_0^x f(u)du - \int_0^x uf(u)du$$

$$= \int_0^x (x - u) f(u) du = L$$

11.设函数
$$f(x)$$
在 $(-\infty,+\infty)$ 上连续,

证明:
$$\int_0^x (x-u)f(u)du = \int_0^x \left[\int_0^u f(x)dx \right] du.$$

法二 记
$$g(x) = \int_0^x (x-u)f(u)du$$
, $h(x) = \int_0^x \left[\int_0^u f(x)dx \right] du$,

$$g'(x) = \left[\int_0^x (x - u) f(u) du \right]' = \left[x \int_0^x f(u) du - \int_0^x u f(u) du \right]'$$
$$= \int_0^x f(u) du = \Phi(x) ,$$

$$h'(x) = \left[\int_0^x \left[\int_0^u f(x) dx \right] du \right]' = \left[\int_0^x \Phi(u) du \right]'$$

$$= \int_0^x f(u)du = \Phi(x) ,$$

$$\therefore g'(x) = h'(x), \therefore g(x) = h(x) + C$$

$$12.(P214/Ex.9)$$
设函数 $f(x)$ 在 $(0,+\infty)$ 上连

续,
$$\forall a,b \in (0,+\infty), I = \int_a^{ab} f(x) dx$$
与a无关.

证明:
$$f(x) = \frac{C}{r}$$
, C 常数.

证明
$$\int_a^{ab} f(x)dx \equiv Const., \forall a,b \in (0,+\infty),$$

$$\Rightarrow \forall a,b \in (0,+\infty), \left[\int_a^{ab} f(x)dx\right]_a' = 0,$$

$$\therefore bf(ab) = f(a), \Leftrightarrow abf(ab) = af(a),$$

由a,b ∈ (0,+∞)的任意性,

$$∴ \forall x > 0, xf(x) = C 常数.$$

$$13.(P214/Ex.13)$$
若 $x > 0, c > 0$,则有

$$\left|\int_{x}^{x+c} \sin(t^2) dt\right| \leq \frac{1}{x} .$$

证明 证明方法比较独特.此题缺乏营养.
$$\int_{x}^{x+c} \sin(t^{2}) dt = \int_{x}^{x+c} \frac{\sin(t^{2})}{2t} dt^{2} = \frac{-\cos(t^{2})}{2t} \bigg|_{x}^{x+c} + \int_{x}^{x+c} \frac{\cos(t^{2})}{-2t^{2}} dt,$$

$$= \frac{\cos(x^{2})}{2x} - \frac{\cos(x+c)^{2}}{2(x+c)} - \int_{x}^{x+c} \frac{\cos(t^{2})}{2t^{2}} dt,$$

$$\therefore \left| \int_{x}^{x+c} \sin(t^{2}) dt \right| \le \left| \frac{\cos(x^{2})}{2x} \right| + \left| \frac{\cos(x+c)^{2}}{2(x+c)} \right| + \left| \int_{x}^{x+c} \frac{\cos(t^{2})}{2t^{2}} dt \right|$$

$$\leq \frac{1}{2x} + \frac{1}{2(x+c)} + \int_{x}^{x+c} \left| \frac{\cos(t^2)}{2t^2} \right| dt \leq \frac{1}{2x} + \frac{1}{2(x+c)} + \int_{x}^{x+c} \frac{dt}{2t^2} = \frac{1}{x}.$$

14.设函数f(x)和g(x)证明: (1).若在[a,b]则在[a,b]上 f(x) (2).若在[a,b]上f(x)则 $\int_a^b f(x)dx > 0$. 同样地有: (3).若在[a,b]上f(x)则在[a,b]上f(x)则在[a,b]上f(x)则,[a,b]上[a,b]上[a,b]0. 14.设函数f(x)和g(x)在[a,b]上均连续,

证明:(1).若在
$$[a,b]$$
上 $f(x) \ge 0$ 且 $\int_a^b f(x)dx = 0$,

则在[a,b]上 $f(x) \equiv 0$.

(2).若在[a,b]上f(x) ≥ 0且不恒等于零,

(3).若在[
$$a$$
, b]上 $f(x) \le g(x)$ 且 $\int_a^b f(x)dx = \int_a^b g(x)dx$,

则在[a,b]上 $f(x) \equiv g(x)$.

(4).若在
$$[a,b]$$
上 $f(x) \leq g(x)$ 但 $f(x),g(x)$ 不恒相等.

$$\iiint_a^b f(x)dx < \int_a^b g(x)dx.$$

14.设函数f(x)和g(x)在[a,b]上均连续,

证明:(1).若在
$$[a,b]$$
上 $f(x) \ge 0$ 且 $\int_a^b f(x)dx = 0$,

• 则在[a,b]上 $f(x) \equiv 0$.

工证明(1). 反证法 假设结论不成立,

$$| \hat{\mathbf{T}} | f(x) - f(x_0) | \le \frac{1}{2} f(x_0), \text{即} f(x) \ge \frac{1}{2} f(x_0),$$

$$= \int_{x_0 - \delta_0}^{x_0 + \delta_0} \frac{1}{2} f(x_0) dx = \delta_0 \cdot f(x_0) > 0,$$

一 而这与
$$\int_a^b f(x)dx = 0$$
矛盾,::假设不成立.

= 14.设函数f(x)和g(x)在[a,b]上均连续,

证明:(1).若在
$$[a,b]$$
上 $f(x) \ge 0$ 且 $\int_a^b f(x)dx = 0$,

则在[a,b]上 $f(x) \equiv 0$.

二 法二 :在[a,b]上函数f(x)连续、非负,

14.设函数f(x)和g(x)在[a,b]上均连续,

证明:(1).若在[a,b]上 $f(x) \ge 0$ 且 $\int_a^b f(x)dx = 0$,

则在[a,b]上 $f(x) \equiv 0$.

(2).若在[a,b]上 $f(x) \ge 0$ 且不恒等于零,则 $\int_a^b f(x)dx > 0$. 设函数f(x)在[a,b]上连续,则 "(1)若在[a,b]上 $f(x) \ge 0$ 且 $\int_a^b f(x)dx = 0$,

二 则在[a,b]上 $f(x) \equiv 0''$ 与''(2)若在[a,b]

上 $f(x) \ge 0$ 且不恒等于零,则 $\int_a^b f(x)dx > 0$ "

上 是互为逆否命题的两个命题,故而(2)成立.

15.(1).设
$$f(x)$$
, $g(x)$ 在 $[a,b]$ 上可积,则有:

$$\left[\int_a^b f(x)g(x)dx\right]^2 \le \int_a^b f^2(x)dx \int_a^b g^2(x)dx.$$

【 (Cauchy – Schwarz – Bunijiakovsky 不等式)

证明 据离散形式的
$$Cauchy$$
不等式 $\left(\sum_{i=1}^{n}a_{i}b_{i}\right)^{2} \leq \left(\sum_{i=1}^{n}a_{i}^{2}\right)\left(\sum_{i=1}^{n}b_{i}^{2}\right)$

由积分定义可证得…

法二
$$\forall x \in [a,b], \forall \lambda \in \mathbb{R}, (\lambda f(x) + g(x))^2 \ge 0 \Rightarrow$$

$$\int_a^b [\lambda f(x) + g(x)]^2 dx \ge 0, \therefore \forall \lambda \in \mathbb{R}, \hat{q}$$

$$\int_{a}^{b} \left[\lambda f(x) + g(x) \right]^{2} dx \ge 0, :: \forall \lambda \in \mathbb{R}, \tilde{\eta}$$

$$\int_a^b \int_a^b f^2(x)dx + 2\lambda \int_a^b f(x)g(x)dx + \int_a^b g^2(x)dx \ge 0,$$

$$\Rightarrow \Delta \leq \mathbf{0} \Leftrightarrow \int_a^b f^2(x) dx \int_a^b g^2(x) dx \geq \left[\int_a^b f(x) g(x) dx \right]^2.$$

15.(2).设f(x),g(x)在[a,b]上连续,则有:

$$\left[\int_a^b f(x)g(x)dx\right]^2 \le \int_a^b f^2(x)dx \int_a^b g^2(x)dx.$$

证明 设
$$\varphi(u) = \int_a^u f^2(x) dx \int_a^u g^2(x) dx - \left[\int_a^u f(x)g(x) dx \right]^2$$
,

$$\phi'(u) = f^{2}(u) \int_{a}^{u} g^{2}(x) dx + g^{2}(u) \int_{a}^{u} f^{2}(x) dx - 2f(u)g(u) \int_{a}^{u} f(x)g(x) dx$$

$$= \int_{a}^{u} f^{2}(u)g^{2}(x) dx + \int_{a}^{u} g^{2}(u)f^{2}(x) dx - 2\int_{a}^{u} f(x)g(x)f(u)g(u) dx$$

$$= \int_{a}^{a} \int_{a}^{b} (u)g(x)ux + \int_{a}^{b} g(u)J(x)ux - 2\int_{a}^{b} \int_{a}^{b} (x)g(x)J(u)g(u)$$

$$= \int_{a}^{u} \left[f^{2}(u)g^{2}(x) - 2f(x)g(x)f(u)g(u) + f^{2}(x)g^{2}(u) \right] dx$$

$$= \int_a^u \left[f(u)g(x) - f(x)g(u) \right]^2 dx \ge 0,$$

即
$$u \in [a,b]$$
时 $\varphi(u)$ 单调增加, $\varphi(a) = 0$,故 $b > a$ 时 $\varphi(b) \ge \varphi(a) = 0$.

16.(1).设函数
$$f(x)$$
在 $[a,b]$ 上连续,求证:
$$\left(\int_a^b f(x)dx\right)^2 \leq (b-a)\int_a^b f^2(x)dx.$$

16.(2).设
$$f(x)$$
 在 $[a,b]$ 上连续,且 $f(x) > 0$.求证:
$$\int_{a}^{b} f(x)dx \cdot \int_{a}^{b} \frac{dx}{f(x)} \ge (b-a)^{2}.$$

$$\int_{a}^{b} f(x)dx \cdot \int_{a}^{b} \frac{dx}{f(x)} \ge (b-a)^{2}.$$
17.设 $f(x)$ 在 $[a,b]$ 上有连续的导函数,且 $f(a) = 0$,

$$|f'(x)| \le M, x \in [a,b]. \Re \mathbb{H} : \left| \int_a^b f(x) dx \right| \le \frac{1}{2} M (b-a)^2.$$

18.设f(x),g(x)在区间[a,b]上连续且同为单调增加或单调减少,则有 $\int_a^b f(x)dx \int_a^b g(x)dx \le (b-a) \int_a^b f(x)g(x)dx$.

注意,18题中区间
$$[a,b]$$
变为 $[0,1]$,则结论变为
$$\int_0^1 f(x)dx \int_0^1 g(x)dx \leq \int_0^1 f(x)g(x)dx$$
. 那么证明起来要难得多了.

19. 若
$$f(x)$$
是 $[a,b]$ 上连续的凸函数,

求证:
$$\int_a^b f(x)dx \ge (b-a)f\left(\frac{a+b}{2}\right).$$

由命题(调头变换or区间再现)

设f(x)是[a,b]上的连续函数,则有

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx, \Rightarrow$$

$$\int_a^b f(x)dx = \frac{1}{2} \int_a^b \left[f(x) + f(a+b-x) \right] dx.$$

19. 岩
$$f(x)$$
是 $[a,b]$ 上连续的凸函数,

求证:
$$\int_a^b f(x)dx \ge \left(b-a\right)f\left(\frac{a+b}{2}\right)$$

$$\therefore \frac{1}{2} \Big[f(x) + f(a+b-x) \Big]$$

$$f\left(\frac{x+(a+b-x)}{2}\right)=f\left(\frac{a+b}{2}\right),$$

$$\therefore \int_a^b f(x)dx = \frac{1}{2} \int_a^b \left[f(x) + f(a+b-x) \right] dx$$

求证:
$$\int_a^b f(x)dx \ge (b-a)f\left(\frac{a+b}{2}\right)$$
.
证明 : 函数 $f(x)$ 是 $[a,b]$ 上连续的凸函数,

$$\vdots \frac{1}{2}[f(x)+f(a+b-x)]$$

$$\ge f\left(\frac{x+(a+b-x)}{2}\right) = f\left(\frac{a+b}{2}\right),$$

$$\vdots \int_a^b f(x)dx = \frac{1}{2}\int_a^b [f(x)+f(a+b-x)]dx$$

$$\ge \int_a^b f\left(\frac{x+(a+b-x)}{2}\right)dx = \int_a^b f\left(\frac{a+b}{2}\right)dx$$

$$= (b-a)f\left(\frac{a+b}{2}\right).$$
结论成立.

$$=(b-a)f\left(\frac{a+b}{2}\right)$$
.结论成立.

19.
$$(P205/Ex.11)$$
若 $f(x)$ 在 $[a,b]$ 上

二阶可导,且
$$f''(x) > 0$$
.求证:

$$\int_a^b f(x)dx \ge \left(b-a\right)f\left(\frac{a+b}{2}\right).$$

证明 设
$$\varphi(u) = \int_a^u f(x)dx - (u-a)f\left(\frac{a+u}{2}\right),$$

$$u \in [a,b], \varphi(a) = 0.$$

$$\varphi'(u) = f(u) - f\left(\frac{a+u}{2}\right) - \frac{1}{2}(u-a)f'\left(\frac{a+u}{2}\right)$$

$$= \left(u - \frac{a+u}{2}\right)f'(\xi) - \frac{1}{2}(u-a)f'\left(\frac{a+u}{2}\right)$$

$$= \frac{1}{2}(u-a)\left[f'(\xi)-f'\left(\frac{a+u}{2}\right)\right], a \leq \frac{a+u}{2} < \xi < u \leq b.\dots$$

20.设函数f(x)在[a,b]上连续且单调递增,

证明
$$(a+b)$$
 $\int_a^b f(x)dx \le 2\int_a^b x f(x)dx$.

证明 设
$$\varphi(u) = 2\int_a^u xf(x)dx - (a+u)\int_a^u f(x)dx$$
 显然, $\varphi(u)$ 在 $[a,b]$ 上连续,
$$\varphi'(u) = 2uf(u) - (a+u)f(u) - \int_a^u f(x)dx$$

$$\varphi'(u) = 2uf(u) - (a+u)f(u) - \int_a^u f(x)dx$$

$$= (u-a)f(u) - \int_a^u f(x)dx = \int_a^u f(u)dx - \int_a^u f(x)dx$$

$$= \int_a^u [f(u) - f(x)] dx, a \le x \le u \le b,$$

$$::$$
函数 $f(x)$ 在 $[a,b]$ 上连续且单调递增

:函数
$$f(x)$$
在 $[a,b]$ 上连续且单调递增,

$$:: u \in [a,b], \varphi'(u) \ge 0 \Rightarrow b > a f \varphi(b) \ge \varphi(a) = 0.$$

20.设函数f(x)在[a,b]上连续且单调递增,

证明
$$(a+b)$$
 $\int_a^b f(x)dx \le 2\int_a^b x f(x)dx$.

法二 ::函数f(x)在[a,b]上连续且单调递增,

$$\therefore \forall x, t \in [a,b] \hat{\pi}(x-u) (f(x)-f(u)) \ge 0,$$

$$\int_{a}^{b} (x-u) (f(x)-f(u)) dx \ge 0, \hat{\eta}$$

$$\int_{a}^{b} [xf(x)+uf(u)-xf(u)-uf(x)] dx \ge 0,$$

$$\int_{a}^{b} (x-u)(f(x)-f(u))dx \ge 0,$$

$$\int_{a}^{b} \left[xf(x) + uf(u) - xf(u) - uf(x) \right] dx \ge 0,$$

$$\int_{a}^{b} x f(x) dx + u f(u) (b-a) - f(u) \cdot \frac{1}{2} (b^{2} - a^{2}) - u \int_{a}^{b} f(x) dx \ge 0, \dots (1)$$

再在(1)式两边对变量u积分,得
$$(b-a)\int_a^b xf(x)dx + (b-a)\int_a^b uf(u)du - \frac{1}{2}(b^2-a^2)\int_a^b f(u)du - \frac{1}{2}(b^2-a^2)\int_a^b f(x)dx \ge 0,$$

$$\therefore 2(b-a)\int_{a}^{b} xf(x)dx \ge (b^{2}-a^{2})\int_{a}^{b} f(x)dx, \ a \le b,$$

$$\mathbb{P} 2\int_{a}^{b} xf(x)dx \ge (a+b)\int_{a}^{b} f(x)dx.$$

$$\mathbb{P} 2\int_a^b x f(x) dx \ge (a+b) \int_a^b f(x) dx$$

20.设函数
$$f(x)$$
在 $[a,b]$ 上连续且单调递增

证明
$$(a+b)$$
 $\int_a^b f(x)dx \le 2\int_a^b x f(x)dx$.

法三 利用
$$\int_{-a}^{a} f(x)dx = \int_{-a}^{a} f(-x)dx = \frac{1}{2} \int_{-a}^{a} [f(x) + f(-x)]dx$$

$$\mathbb{Q}\left(a+b\right)\int_{a}^{b}f(x)dx \leq 2\int_{a}^{b}xf(x)dx \Leftrightarrow \int_{a}^{b}\left(x-\frac{a+b}{2}\right)f(x)dx \geq 0$$

20.设函数
$$f(x)$$
在 $[a,b]$ 上连续且单调递增,证明 $(a+b)\int_a^b f(x)dx \le 2\int_a^b xf(x)dx$. 定积分的问题处理起来往往会富有技巧性. 法三 利用 $\int_{-a}^a f(x)dx = \int_{-a}^a f(-x)dx = \frac{1}{2}\int_{-a}^a [f(x)+f(-x)]dx$ 这一结论,将积分区间中心化:令 $x = \frac{a+b}{2}+t$,记 $\frac{b-a}{2}=c$. 则 $(a+b)\int_a^b f(x)dx \le 2\int_a^b xf(x)dx \Leftrightarrow \int_a^b \left(x-\frac{a+b}{2}\right)f(x)dx \ge 0$
$$\longleftrightarrow \sum_a^{a+b+f=x} \int_a^b \left(x-\frac{a+b}{2}\right)f(x)dx = \int_{-\frac{b-a}{2}}^{\frac{b-a}{2}}tf\left(\frac{a+b}{2}+t\right)dt = \int_{-c}^c tf\left(\frac{a+b}{2}+t\right)dt \ge 0,$$
 而 $\int_{-c}^c tf\left(\frac{a+b}{2}+t\right)-f\left(\frac{a+b}{2}+t\right)-f\left(\frac{a+b}{2}-t\right)dt$ 而 tau 而 tau 而 tau 而 tau 是 tau 的 tau 是 ta

$$\overline{\prod} \int_{-c}^{c} t f\left(\frac{a+b}{2}+t\right) dt = \frac{1}{2} \int_{-c}^{c} t \left[f\left(\frac{a+b}{2}+t\right) - f\left(\frac{a+b}{2}-t\right) \right] dt$$

$$= \int_0^c t \left[f\left(\frac{a+b}{2} + t\right) - f\left(\frac{a+b}{2} - t\right) \right] dt$$

而在
$$[0,c]$$
上显然有 $f\left(\frac{a+b}{2}+t\right)-f\left(\frac{a+b}{2}-t\right) \ge 0$

$$\therefore \int_0^c t \left[f\left(\frac{a+b}{2}+t\right) - f\left(\frac{a+b}{2}-t\right) \right] dt \ge 0...$$

