Feature-Aware Pruning in MLPs

Tanishq Kumar

Levels of pruning

- 1) Before training, at init (SNIP, GraSP, SynFlow) [1, 2, 3]
- 2) During training (lottery tickets) [4]
- 3) After training, before inference (magnitude-based pruning) [5]

Lottery Ticket Hypothesis

30 seconds of ML theory: lazy and rich training regimes

- Networks are powerful *nonlinear* models.

- ML theorists have discovered ways to modify any neural network to continuously linearize it [6, 7].
 - One such way, by tuning a parameter "alpha," is given on the right
 - Highly nonlinear (small alpha) = "rich training,"
 vs highly linearized (large alpha) = "lazy training"
 - Amount of feature learning = deviation from linearized model (tuned by alpha)

Under review as a conference paper at ICLR 2024

GROKKING AS THE TRANSITION FROM LAZY TO RICH TRAINING DYNAMICS

Anonymous authors
Paper under double-blind review

Toy model

Feature-Learning Networks Are Consistent Across Widths At Realistic Scales

Nikhil Vyas^{1*} Alexander Atanasov^{2,3,4*} Blake Bordelon^{1,3,4*} Cengir Pehlevan^{1,3,4} Cengir Pehlevan^{1,3,4} SEAS ²Department of Physics ³Kempare Institute Harvard University

(nikhil atanasov hlake hordelon dinorvani

{nikhil,atanasov,blake_bordelon,dmorwani, sabarish sainathan.cpehlevan}@g.harvard.edu

- One hidden-layer MLP student-teacher task [8, 9]
- Find lottery ticket on this model, then train lottery ticket and full network
- Compare preactivation matrices for lottery ticket and full net during training
 - Visual way to compare "learned features"

Take-away from toy model

LTH:

- 1. Pruned networks reach same end-time test error as full network
- 2. (Stronger) Pruned networks reach same end-time *features* as full network
- 3. (Strongest) Pruned networks have same feature dynamics as full network

Conjecture: LTH paper shows (1). Toy model suggests (3). This property *does not hold for pruning with random rewinding or no rewinding!*

Hypothesis: sweeping over rate of feature learning should change performance of lottery tickets *uniformly*, but performance of random/no rewind in a complicated, *messy* way (features are not necessarily the same over sweep).

Testing conjecture on MNIST

Punchline: we can beat the state of the art in pruning by using tricks from theory.

Left (orange) is MLP on MNIST from LTH paper. Purple is (ours).

References

Before Training, at Initialization:

- [1] Lee, Namhoon, et al. "SNIP: Single-shot network pruning based on connection sensitivity." *International Conference on Learning Representations*. 2018. Link
- [2] Wang, Chaoqi, et al. "Picking Winning Tickets Before Training by Preserving Gradient Flow." *International Conference on Learning Representations*. 2020. Link
- [3] Tanaka, Hidenori, et al. "Pruning neural networks without any data by iteratively conserving synaptic flow." NeurlPS. 2020. Link

During Training:

• [4] Frankle, Jonathan, and Michael Carbin. "The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks." *International Conference on Learning Representations*. 2019. Link

After Training, Before Inference:

[5] Han, Song, et al. "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding."
 International Conference on Learning Representations. 2016. Link

Modifying Neural Networks to Continuously Linearize:

- [6] Jacot, Arthur, et al. "Neural Tangent Kernel: Convergence and Generalization in Neural Networks." NeurIPS. 2018. Link
- [7] Lee, Jaehoon, et al. "Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent." NeurIPS. 2019. Link

Theory for One Hidden-layer MLP Student-Teacher Task:

- [8] Saxe, Andrew M., et al. "Exact solutions to the nonlinear dynamics of learning in deep linear neural networks." *International Conference on Learning Representations*. 2014. Link
- [9] Mei, Song, et al. "Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit." Berkeley. 2019. Link

Appendix: additional experiments (explained in report)

