jee-main-maths-05-09-2020-shift-1

EE24BTECH11030 - J.KEDARANANDA

1) If the four complex numbers z, \bar{z} , \bar{z} - 2Re(\bar{z}) and z - 2Re(z) represent the vertices

c) $4\sqrt{2}$ d) $2\sqrt{2}$

of a square of side 4 units in the Argand plane, then |z| is equal to:

b) 4

a) 2

	$-e^{-x} - 1)e^{(e^x + e^{-x})} dx$ a g(0) is equal to :	$G = g(x)e^{(e^x+e^{-x})} + c$, where c is a constant of
a) 2	b) e	c) 1	d) e^2
3) The negation of the Boolean expression $x \leftrightarrow \sim y$ is equivalent to :			
a) $(x \wedge y) \wedge (\sim x)$ b) $(x \wedge y) \vee (\sim x)$ c) $(x \wedge \sim y) \vee (\sim x)$ d) $(\sim x \wedge y) \vee (\sim x)$	$x \land \sim y)$ $\sim x \land y)$ $\sim x \land \sim y)$		
4) If α is positive is equal to:	root of the equation	$p(x) = x^2 - x - 2 = x^2 - x - x - x - x - x - x - x - x - x - $	0, then $\lim_{x\to a^+} \frac{\sqrt{1-\cos(p(x))}}{x+\alpha-4}$
a) $\frac{1}{2}$	b) $\frac{3}{\sqrt{2}}$	c) $\frac{3}{2}$	d) $\frac{1}{\sqrt{2}}$
5) If the co-ordinates of two points A and B are $(\sqrt{7},0)$ and $(-\sqrt{7},0)$ respectively and P is any point on the conic, $9x^2 + 16y^2 = 144$, then PA+PB is equal to:			
a) 6	b) 16	c) 9	d) 8
6) The natural nu $\left(x^m + \frac{1}{x^2}\right)^{22}$ is 1		he coefficient of x in	n the binomial expansion of
	are thrown indepen wo dice show up a th	•	en the expected number of
8) Let $f(x) = x$. $\left[\frac{x}{2}\right]$, for -10 < x < 10, where [t] denotes the greatest integer function. Then the number of points of discontinuity of f is equal to \cdots			

- 9) The number of words, with or without meaning, that can be formed by taking 4 letters at a time from the letters of the word 'SYLLABUS' such that two letters are distinct and two letters are alike, is
- 10) If the line, 2x y + 3 = 0 is at a distance $\frac{1}{\sqrt{5}}$ and $\frac{2}{\sqrt{5}}$ from the lines $4x 2y + \alpha = 0$ and $6x 3y + \beta = 0$, respectively, then the sum of all possible values of α and β is