S/N 09/679,906

- 30. (New) The assembly of claim 1, wherein the tubular members comprise
- 2 structural supports.

A1 Cort.

- 1 31. (New) The method of claim 8, wherein the tubular members comprise
- wellbore casings.
- 1 32. (New) The method of claim 8, wherein the tubular members comprise
- 2 pipes.

P

- 33. (New) The method of claim 8, wherein the tubular members comprise
- 2 structural supports.
- 3 34. (New) The apparatus of claim 18, wherein the tubular members comprise
- 4 wellbore casings.
- 35. (New) The apparatus of claim 18, wherein the tubular members comprise
- 2 pipes.

り

- 1 36. (New) The apparatus of claim 18, wherein the tubular members comprise
- 2 structural supports./
- 1 37. (New) An expandable tubular assembly, comprising:
- a pair of tubular members having threaded portions coupled to one
- 3 another; and
- a quantity of a sealant within the threaded portions of the tubular
- 5 members;

S/N 09/679,906

6	wherein the sealant is selected from the group consisting of epoxies,
7	thermosetting sealing compounds, curable sealing compounds,
8	and sealing compounds having polymerizable materials;
9	wherein the sealant includes an initial cure cycle and a final cure cycle;
10	wherein the sealant can be stretched up to about 30 to 40 percent
11	without failure;
12	wherein the sealant is resistant to conventional wellbore fluidic
13	materials;
14	wherein the material properties of the sealant are substantially stable
15	for temperatures ranging from about 0 to 450 $^{\circ}F$; and
16	wherein the threaded portions of the tubular members include a primer
17	for improving the adhesion of the sealant to the threaded
18	portions.
	,
1	38. A method of coupling an expandable tubular assembly including a
2	plurality of tubular members having threaded portions to a preexisting
3	structure, comprising:
4	applying a primer to the threaded portions of the tubular members prior
5	to coating the threaded portions of the tubular members with a
6	sealant;
7	coupling the threaded portions of the tubular members;
8	initially curing the sealant;
9	positioning the tubular members within a preexisting structure;
10	radially expanding the tubular members into contact with the
11	preexisting structure; and
12	finally curing the sealant after radially expanding the tubular members;

Page 3 of 8

H-240695.1

S	/N	09/	'67	9.	.90)6

DIM	09/019,	,
13		wherein the sealant is selected from the group consisting of epoxies,
14		thermosetting sealing compounds, curable sealing compounds,
15		and sealing compounds having polymerizable materials;
16		wherein the primer includes a curing catalyst;
17		wherein the sealant can be stretched up to about 30 to 40 percent after
18		curing without failure;
19		wherein the sealant is resistant to conventional wellbore fluidic
20		materials; and
21		wherein the material properties of the sealant are substantially stable
22		for temperatures ranging from about 0 to 450 °F.
1	39.	A method of coupling an expandable tubular assembly including a
2	plura	ality of tubular members having threaded portions to a preexisting
3	struc	eture, comprising:
4		applying a primer to the threaded portions of a first group of the tubular
5		members;
6		applying a sealant to the threaded portions of a second group of the
7		tubular members;
8		coupling the threaded portions of the first and second groups of tubular
9		members;
10		initially curing the sealant;
11		positioning the tubular members within a preexisting structure;
12		radially expanding the tubular members into contact with the
13		preexisting structure; and
14		finally curing the sealant after radially expanding the tubular members;
		· ·

S/N 09/679,906	S/N	09	67	9	.9	0	6
----------------	-----	----	----	---	----	---	---

		1
15		wherein the sealant is selected from the group consisting of epoxies,
16		thermosetting sealing compounds, curable sealing compounds,
17		and sealing compounds having polymerizable materials;
18		wherein the primer includes a curing catalyst;
19		wherein the sealant can be stretched up to about 30 to 40 percent after
20		curing without failure
21		wherein the sealant is resistant to conventional wellbore fluidic
22		materials; and / A
23		wherein the material properties of the sealant are substantially stable
24		for temperatures ranging from about 0 to 450 °F.
1	40.	An apparatus, comprising:
2		a preexisting structure; and
3		a plurality of tubular members having threaded portions coupled to the
4		preexisting structure by the process of:
5		applying a primer to the threaded portions of the tubular
6	•	members prior to coating the threaded portions of the
7		tubular members with a sealant;
8		coupling the threaded portions of the tubular members;
9		initially curing the sealant;
10		positioning the tubular members within the preexisting
11		structure; b
12		radially expanding the tubular members into contact with the
13		preexisting structure; and
14		finally curing the sealant after radially expanding the tubular
15		members;

Page 5 of 8

H-240695.1

S/N	09/67	9,90

		/
16		wherein the sealant is selected from the group consisting of
17		epoxies, thermosetting sealing compounds, curable sealing
18		compounds, and sealing compounds having polymerizable
19		materials;
20		wherein the primer includes a curing catalyst;
21		wherein the sealant can be stretched up to about 30 to 40 percent
22		after curing without failure;
23		wherein the sealant is resistant to conventional wellbore fluidic
24		materials; and
25		wherein the material properties of the sealant are substantially
26		stable for temperatures ranging from about 0 to 450 °F.
1	41.	An apparatus, comprising:
2		a preexisting structure; and
3		a plurality of tubular members having threaded portions coupled to the
4		preexisting structure by the process of:
5		applying a primer to the threaded portions of a first group of the
6		tubular members;
7		applying a sealant to the threaded portions of a second group of
8		the tubular members;
9		coupling the threaded portions of the first and second groups of
10		tubular/members;
11		initially curing the sealant;
12		positioning t_{μ}^{\prime} tubular members within a preexisting structure;
13		radially expanding the tubular members into contact with the
14		preexisting structure; and

15 finally curing the sealant after radially expand	ing the tubular
16 members;	
wherein the sealant is selected from the group	consisting of
epoxies, thermosetting sealing compoun	ds, curable sealing
compounds, and seafing compounds have	ring polymerizable
compounds, and sealing compounds have materials;	
wherein the primer includes a curing catalyst;	
wherein the sealant can be stretched up to abo	out 30 to 40 percent
23 after curing without failure;	
wherein the sealant is resistant to conventiona	al wellbore fluidic
25 materials; and	
wherein the material properties of the sealant	are substantially
stable for temperatures ranging from ab	oout 0 to 450 °F.

S/N 09/559,122

Applicant authorizes the Commissioner to charge any fees or credit any overpayments to Deposit Account No.08-1394 of Haynes and Boone, L.L.P.

Date: 2/2/2001

HAYNES AND BOONE, L.L.P. 1000 Louisiana Street, Suite 4300

Houston, Texas 77002-5012 Telephone: 713-547-2301

Facsimile: 713-547-2300 Docket No. 25791.7.02 Respectfully submitted,

Todd Mattingly

Registration No. 40,298

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Box NON-FEE AMENDMENT, Assistant Commissioner for Patents, Washington, D.C. 20231 on February 13, 200/