

#### Ders İçeriği

- Basit İterasyon Yöntemi
- Yarılama (Bisection) Yöntemi
- Kiriş (secant) Yöntemi
- Örnekler

BSM

6. Hafta

2. Sayfa



SAÜ YYurtaY

2

#### DENKLEMLERİN KÖKLERİ

#### **TEOREM**

Eğer f(x), x=a ve x= b aralığında sürekli ve f(a) ile f(b) ters işaretli ise a, b aralığında en az bir kök vardır.



BSM

6. Hafta

2. Sayfa



f(a) ve f(b) ters işaretli olmasına karşın fonksiyon süreksiz olduğundan bu aralıkta kök yoktur.



f(x) f.nu hiç x eksenini kesmediğinden kök yoktur



a, b arasında üç kök vardır

6. Hafta

BSM

#### **TEOREM**

Eğer f(x), x=a ve x=b aralığında sürekli ve aynı zamanda x değeri arttığında f.da artıyorsa veya x değeri azaldığında f.da azalıyorsa f(x)=0 değerini sağlayan bir kök vardır.



x arttığında fonksiyonda artıyor, fakat sürekli değil. Buna rağmen iki adet kök vardır.



BSM

6. Hafta

#### ÖRNEK

Bu f.nun kökleri grafik yöntemle iki şekilde bulunabilir.

- a) x ekseni kestiği yerdeki kök
- b) Bileşen f.larının kesiştiği yerdeki kök.

$$e^{-x} - x = 0$$

$$x = e^{-x} =$$

$$y_1 = x$$

b)

$$e^{-x} - x = 0$$
 ,  $x = e^{-x} = y_1 = x$  ve  $y_2 = e^{-x}$ 



6. Hafta

2. Sayfa



6

#### Basit iterasyonun yakınsamasının ve ıraksamasının gösterimi



Kök X<sub>0</sub>

Iraksak

BSM

6. Hafta

2. Sayfa Yakınsama ve ıraksama şartı

$$y_1 = x \rightarrow y_1^1 = 1 \text{ (E§im)}$$

$$y_2 = g(x) \rightarrow |g(x_0)| < 1$$
 ise yakınsak  
 $|g(x_0)| > 1$  ise ıraksak

Burada  $y_2 = g(x)$  f.nun eğiminin mutlak değeri  $y_1 = x$  f.nun eğiminden küçük olması halinde yakınsama olmaktadır.

### ÖRNEK

 $y = x^2 - x - 3$  denkleminin  $x_0 = 1$  noktasında yakınsak mıdır?

BSM

6. Hafta

2. Sayfa Çözüm:

$$x = x^2 - 3 \cdot den$$

$$y_1 = x$$

$$y_2 = x^2 - 3 = g(x) \rightarrow |g(x_0)| = 2x = 2 > 1$$

olduğundan ıraksaktır

#### Lineer Olmayan Denklem Sistemlerinin Çözüm Yöntemleri

#### Basit İterasyon Yöntemi:

f(x) fonksiyonunun köklerini bulmak için f(x)=0 denkliği x=g(x) durumuna getirilir. Bu eşitliğin anlamı y=x doğrusu ile y=g(x) fonksiyonunun kesişim noktasını bulmaktır.  $x=x_0$  başlangıç değeri için  $g(x_0)$  değerini bularak işlem yapılırsa ;







6. Hafta

**BSM** 

 $\mathbf{X}$ ' in yeni değeri olarak  $\mathbf{X}_1 = \mathbf{g}(\mathbf{x}_0)$  alınır. İşlemler tekrarlanırsa

$$X_1 = g(x_0)$$

$$X_2 = g(x_1)$$

9. Sayfa

 $X_n=g(x_{n-1})$  her bir işlem sonunda yeni bir **X** değeri elde edilir.

#### Lineer Olmayan Denklem Sistemlerinin Çözüm Yöntemleri

#### Örnek:

 $f(x) = 3e^{-0.5x} - x$  denkleminin kökünü x<sub>0</sub>=8 başlangıç değeri için  $\varepsilon$  = 0.07 mutlak hata ile bulunuz.

Verilen f(x) fonksiyonu  $\mathbf{x}=\mathbf{g}(x)$  şekline sokulursa  $\mathbf{x}=3e^{-0.5x}$  elde edilir.

 $\mathbf{g}(\mathbf{x}) = 3e^{-0.5x}$ ,  $\mathbf{x}_0 = 8$ ,  $\mathbf{\epsilon} = 0.07$  verileri ile İterasyon işlemleri gerçekleştirildiğinde;

**BSM** 

13. iterasyondan sonra  $\varepsilon = 0.07$ hata ile kök değeri **x=1.4** elde edilir. (Yakınsak iterasyon)

6. Hafta

| iterasyon<br>sayısı | x           | g(x)        | $h =  x_n - x_{n-1} $ |
|---------------------|-------------|-------------|-----------------------|
| 1                   | 8           | 0,054946917 | 7,945053083           |
| 2                   | 0,054946917 | 2,918701514 | 2,863754597           |
| 3                   | 2,918701514 | 0,697161304 | 2,221540209           |
| 4                   | 0,697161304 | 2,117066992 | 1,419905688           |
| 5                   | 2,117066992 | 1,040892786 | 1,076174206           |
| 6                   | 1,040892786 | 1,782765652 | 0,741872867           |
| 7                   | 1,782765652 | 1,230264839 | 0,552500813           |
| 8                   | 1,230264839 | 1,621707926 | 0,391443087           |
| 9                   | 1,621707926 | 1,333435008 | 0,288272918           |
| 10                  | 1,333435008 | 1,540173057 | 0,206738049           |
| 11                  | 1,540173057 | 1,388919019 | 0,151254038           |
| 12                  | 1,388919019 | 1,498032798 | 0,109113779           |
| 13                  | 1,498032798 | 1,418494205 | 0,079538593           |
| 14                  | 1,418494205 | 1,476043484 |                       |

#### Lineer Olmayan Denklem Sistemlerinin Çözüm Yöntemleri

#### Örnek:

 $f(x) = 3 \ln(x) - x$  denkleminin kökünü x<sub>0</sub>=2 başlangıç değeri için  $\varepsilon$  = 0.09 mutlak hata ile bulunuz.

Verilen f(x) fonksiyonu  $\mathbf{x}=\mathbf{g}(x)$  şekline sokulursa  $\mathbf{x}=3\ln(x)$  elde edilir.

 $\mathbf{g}(\mathbf{x}) = 3\ln(x)$ ,  $x_0=2$ ,  $\varepsilon = 0.09$  verileri ile iterasyon işlemleri gerçekleştirildiğinde;

BSM

6. Hafta

| x           | g(x)        | h= x <sub>n</sub> -x <sub>n-1</sub> |
|-------------|-------------|-------------------------------------|
| 2           | 2,079441542 | 0,079441542                         |
| 2,079441542 | 2,196298104 | 0,116856563                         |
| 2,196298104 | 2,36031979  | 0,164021685                         |
| 2,36031979  | 2,576391342 | 0,216071552                         |
| 2,576391342 | 2,839169145 | 0,262777804                         |
| 2,839169145 | 3,130534365 | 0,291365219                         |
| 3,130534365 | 3,423611141 | 0,293076776                         |
| 3,423611141 | 3,692087649 |                                     |

(Iraksak iterasyondur)

11. Sayfa İterasyon yapılan bölgede, iterasyonun yakınsak olabilmesi için  $|\mathbf{g}'(x)| < \mathbf{1}$  Iraksak olabilmesi için  $|\mathbf{g}'(x)| > \mathbf{1}$  eşitsizliğini sağlaması gerekir.

# ÖRNEK

 $f(x)= x^3-x-1=0$  denkleminin  $x_o=1.3$  civarında kökü olduğu bilindiğine göre, gerçek kökü  $\epsilon=0.0000001$  hassasiyetle basit iterasyon yöntemiyle bulunuz.

Bu denklemin  $x_o=1.3$  civarında kökü olduğu bilindiğine göre önce şartları sağlayıp sağlamadığına bakalım.

#### BSM

## Çözüm:

Denklemi; x=g(x) şeklinde yazılım. (Yani x=g(x) dönüşümü yapılır)

6. Hafta

a)  $x=x^3-1 \rightarrow g(x)=x^3-1$ ve  $g^1(x)=3x^2$  olur.  $|g^1(x_0)| = |3x^2| = 5.07 > 1$ 

2. Sayfa

olduğu için yaklaşım çok zordur. Yani kök yoktur. 12

b)  $f(x) = x(x^2 - 1) - 1 = 0$ ' dan

$$x = \frac{1}{x^2 - 1} \longrightarrow g^{1}(x) = \frac{-2x}{(x^2 - 1)^2} = 5.46 > 1$$

$$|g^{1}(x_0)| = 5.46 > 1$$
olduğu için yaklaşım çok zor.

c)  $x^3=x+1$ , den

$$x = (x+1)^{1/3} \rightarrow g^{1}(x) = \frac{1}{3}(x+1)^{-2/3} = 0.19 < 1$$

Olduğu için yaklaşım vardır. Yani köke ulaşılır.

c) şıkkı yakınsama şartını yerine getirdiğinden iterasyon bu şekilde başlatılır.

 $X_{k+1} = g(x_k)$  yaklaşımıyla köke ulaşılmaya çalışılır.  $X_1 = g(x_o)$  olacaktır.

BSM

6. Hafta

2. Sayfa

13

k=0 için

$$x_1 = g(x_0) = (x+1)^{1/3} = (1.3+1)^{1/3} \rightarrow x_1 = 1.3200061$$

Mutlak hata

$$Et = x_1 - x_0$$

$$= 1.3200061 - 1.3$$

$$= 0.0200061$$

 $|\epsilon_t| < \epsilon_k$  şartı sağlanmadığı için iterasyona devam edilir.

Bağıl hata

$$\varepsilon_{t} = E_{t} / X_{1}$$

$$= 0.0200061/1.3200061$$

$$=0.015156 \rightarrow \% 1,5156$$

BSM

6. Hafta

$$k=1 \text{ için} \rightarrow x_2 = g(x_1) = (x1+1)^{1/3} = (1.320006+1)^{1/3} \\ = 1.323822$$
 
$$E_t = x_2 - x_1 = 1.323822 - 1.320006 = 0.003816$$
 
$$\varepsilon_t = E_t / x_2 = 0.003816 / 1.323822 = 0.002882$$
 
$$|\varepsilon_t| < \varepsilon_k \text{ şartı sağlanmadığı için iterasyona devam edilir}$$

BSM

6. Hafta

2. Sayfa

k= 2 için 
$$\rightarrow$$
 x<sub>3</sub>= g(x<sub>2</sub>) = (x<sub>2</sub>+1)<sup>1/3</sup> = (1.323822+1)<sup>1/3</sup>  
= 1.324547

$$E_t = x_3 - x_2 = 1.324547 - 1.323822 = 0.0007254$$
  
 $\varepsilon_t = E_t / _{x3} = 0.000547$ 

 $\mid \epsilon_t \mid < \epsilon_k$  şartı sağlanmadığı için iterasyona devam edilir

|           |                   | $\mathrm{E_{t}}$ | $\boldsymbol{\mathcal{E}}_{t}$ |
|-----------|-------------------|------------------|--------------------------------|
| k= 3 için | $x_4 = 1.3246856$ | 0.0001378        | 0.00010                        |
| k= 4 için | $x_5 = 1.3247118$ | 0.0000261        | 0.000019                       |
| k= 5 için | $x_6 = 1.3247168$ | 0.0000049        | 0.0000037                      |
| k= 6 için | $x_7 = 1.3247177$ | 0.00000094       | 0.00000071                     |
| k= 7 için | $x_8 = 1.3247179$ | 0.00000017       | 0.00000013                     |
| k= 8 için | $x_9 = 1.3247179$ | 0.00000003       | 0.00000002                     |

BSM

6. Hafta

2. Sayfa 9 iterasyon sonunda 0.0000001 hassasiyetle köke yaklaşılmıştır.

İterasyonu sonlandırmak için  $|\epsilon_t| < \epsilon_k$  şartına bakılır ( $\epsilon_k$  daha önce anlatılmıştı).  $\epsilon_k$  problemi çözen kişi tarafından belirlenen çok küçük bir sayıdır. Köke yaklaşma hassasiyeti ne ölçüde isteniyorsa  $\epsilon_k$  ona göre seçilir.

#### ÖRNEK

 $f(x)= 2x^4-3x-2=0$  fks.nun xo= 1.3 ve  $x_o= -0.5$  civarında kökleri olduğu bilindiğine göre  $\epsilon_k=$ 0.0000001 hassasiyetle basit iterasyon yöntemiyle denklemin köklerini bulunuz



BSM

6. Hafta

2. Sayfa

#### Çözüm:

Denklem; x=g(x) şeklinde yazılım. (Yani x=g(x) dönüşümü yapılır)

6. Hafta Öncelikle  $x_0 = 1.3$  civarındaki kökü arayalım.

1. Adım 
$$3x = (2x^4 - 2)$$

$$x = \frac{(2x^4 - 2)}{3} \rightarrow g^{||}(x) = \frac{8}{3}x^3 \rightarrow g^{||}(1.3) = |-4.506| > 1 \text{ ol.dan uygun değ}$$

2. Adım

BSM 
$$x(2x^3-3)-2=0$$
  
 $x = \frac{2}{2x^3-3} \rightarrow g^{1}(x) = \frac{-12x^2}{(2x^3-3)^2} \rightarrow g^{1}(1.3) = |-10.43| > 1 \text{ ol.dan uygun degildir}$ 

3. Adım

2. Sayfa 
$$x = \left(\frac{3x+2}{2}\right)^{\frac{1}{4}} \rightarrow g^{||}(x) = \frac{1}{4} \left(\frac{3x+2}{2}\right)^{-\frac{3}{4}} \left(\frac{3}{2}\right) \rightarrow g^{||}(1.3) = |0.167| < 1 \text{ ol.dan uygundur}$$

 $X_{k+1} = g(x_k)$  yaklaşımıyla köke ulaşılmaya çalışılır.  $X_1 = g(x_0)$  olacak.

$$x_0 = 1.3$$

$$x_1 = 1.3105558$$

$$x_2 = 1.3123108$$

$$x_3 = 1.3126019$$

$$x_4 = 1.3126502$$

$$x_5 = 1.3126582$$

$$x_6 = 1.3126595$$

$$x_7 = 1.3126597$$

6. Hafta

**BSM** 

2. Sayfa  $x_7 = 1.3126597$ 

8 iterasyon sonucunda 0.0000001 hassasiyetle kök bulunmuştur.

Iterasyona son vermek için  $|\mathbf{\varepsilon}_{t}| < \mathbf{\varepsilon}_{k}$  şartı aranır.

ε <sub>k</sub> problemi çözen tarafından saptanır. Ne kadar küçük olursa iterasyon sayısı o kadar artar. ε<sub>k</sub> seçiminde köke yaklaşma hassasiyetine göre karar verilir.

x<sub>o</sub>=-0.5 yakınlarındaki kök için

1) 
$$x = \frac{(2x^4 - 2)}{3} \rightarrow g^{||}(x) = \frac{8}{3}x^3 \rightarrow g^{||}(0.5) = |-0.33| < 1 \text{ ol.dan uygundur}$$

$$x_0 = -0.5$$
  $x_1 = -0.6250$   
 $x_2 = -0.5649$   $x_3 = -0.5988$   
 $x_4 = -0.5810$   $x_5 = -0.5967$   
 $x_6 = -0.5855$   $x_7 = -0.5883$ 

 $x_8 = -0.5868$   $x_9 = -0.5876$ 

 $\mathbf{x}_{10} = -0.5872$   $\mathbf{x}_{11} = -0.5874$ 

12 iterasyon sonucunda 0.0000001 hassasiyetle kök bulunmuştur.

2. Sayfa

**BSM** 

6. Hafta

20

#### ÖDEV

 $f(x) = x^3 - 4.Sin(x)$  denkleminin

 $x_o$ =1.5 civarında bir kökünün olduğu bilindiğine göre kökü  $\epsilon_k$  =0.0000001 yaklaşımla basit iterasyon yöntemini kullanarak bulunuz.

(x radyan alınacak)

BSM

6. Hafta

#### Lineer Olmayan Denklem Sistemlerinin Çözüm Yöntemleri

#### Yarılama (Bisection) Yöntemi:

 $X_a$ ,  $X_b$  başlangıç değerleri için  $f(X_a)$  ve  $f(X_b)$  değerleri zıt işaretli, böyle başlangıç noktaları bulunabiliyorsa kökün  $X_a$  ve  $X_b$  arasında olacağı açıktır.

Bir bilinmeyenli bir denklem f(x) = 0 biçiminde yazılabilir. Denkleminin kökleri  $l_0 = [a, b]$  aralığında ve bu aralıkta f fonksiyonu sürekli olsun.

Aralığı ikiye bölme yöntemi ardışık olarak kökün bulunduğu aralığın uzunluğunu ikiye bölerek kökü içeren aralık uzunluğunu istenildiği kadar daraltan bir yöntemdir.

 $X_a$  ile  $X_b$  aralığını küçülterek  $x_1 = \frac{x_a + x_b}{2}$  ile yeni bir  $x_1$  ve  $f(x_1)$  değerleri bulunur.  $f(x_1)$ ,  $f(x_a)$  ile aynı işaretli  $f(x_b)$ e zıt işaretli olduğundan kök  $X_1$  ile  $X_b$  arasındadır.

BSM

6. Hafta



SAÜ YYurtaY

#### Lineer Olmayan Denklem Sistemlerinin Çözüm Yöntemleri

#### Yarılama (İkiye Bölme veya Bisection) Yöntemi :



O halde yönteme göre bu iki aralığı daraltmalıyız.

BSM

Yani  $\mathbf{x_2} = \frac{\mathbf{x_1} + \mathbf{x_b}}{2}$  ile yeni  $\mathbf{x}$  ve  $\mathbf{f}(\mathbf{x_2})$  değerlerini bulalım.

6. Hafta Grafikten $f(x_1)$  ile  $f(x_2)$  nin zıt işaretli olduğu görülür. Dolayısıyla kök  $X_1$  ile  $X_2$  arasındadır, bu aralık ikiye bölünerek köke bir adım daha yaklaşılacaktır.

İşlemler son iki x değerinin farkının mutlak değeri verilen bir **ɛ** değerine eşit veya küçük olana kadar devam eder.

23. Sayfa İşlemler  $|\mathbf{x}_{n} - \mathbf{x}_{n-1}| \le \varepsilon$  olduğunda işlem sonlandırılır ve kök değerin  $\mathbf{x}_{n}$  olduğu kabul edilir.

# Lineer Olmayan

Denklem Sistemlerinin Çözüm Yöntemleri

24.

Sayfa

 $f(x)=x^3-6.5x^2+13x-9$  fonksiyonunu [a=1,75, b=2.5] aralığında  $\varepsilon=0.8$  hata ile yarılama metodu ile çözünüz.

nüz. 
$$f(a) = f(1,75) = 0,078125$$
 
$$f(b) = f(2,5) = -0,25$$

Zıt işaretli olduğundan kök mevcuttur.

$$c_1 = \frac{a+b}{1} = \frac{1,75+2,5}{1,75+2,5} = \frac{1}{1,75+2,5}$$

$$c_1 = \frac{a+b}{2} = \frac{1,75+2,5}{2} = 2,125$$
  $f(c_1) = f(2,125) = -1,13086$ 

$$c_2 = \frac{a + c_1}{2} = \frac{1,75 + 2,125}{2} = 1,9375$$
  $f(c_2) = f(1,9375) = -0,93970$ 

$$f(c_2) = f(1,9375) = -0,93970$$

| BSM         |                                                                              |
|-------------|------------------------------------------------------------------------------|
| 6.<br>Hafta | İşlemlere devam edildiğinde $\mathbf{x}_{k\"ok}$ = <b>1,99975586 bulunur</b> |

|   | \         |         | \ /          |
|---|-----------|---------|--------------|
|   |           | 1,75    | 0,078125     |
|   |           | 2,5     | -0,25        |
| 1 | 2,125     | 2,125   | -0,068359375 |
| 2 | 1,9375    | 1,9375  | 0,029052734  |
| 3 | 2,03125   | 2,03125 | -0,016082764 |
| 4 | 1,984375  | 1,98438 | 0,007686615  |
| 5 | 2,0078125 | 2.00781 | -0.003936291 |

1,99609375 1,99609

2,001953125 2,00195

1,999023438 1,99902

f(x)

0,001945436

-0,000978462

0,000487803 2,000488281 2,00049 -0,00024426 **1,99975586** 1,9998 0,00012204

#### Lineer Olmayan Denklem Sistemlerinin Çözüm Yöntemleri

#### Örnek:

f(x) = x3 + 2x2 + 6x + 3 = 0 denkleminin -1 < x < 0 aralığında bir köke sahip olduğu bilinmektedir.

Bu kök bu aralıkta yarılama yöntemiyle  $\varepsilon$  = 0:06 hata ile hesaplayınız.

BSM

6. Hafta

#### Lineer Olmayan Denklem Sistemlerinin Çözüm Yöntemleri

#### $\ddot{C}\ddot{o}z\ddot{u}m$ :

$$x_L = -1$$
  $x_U = 0$  ve

$$f(x_L) = f(-1) = -2$$
  $f(x_U) = f(0) = 3$  Buradan,

$$f\left(x_L\right)f\left(x_U\right) < 0$$
 olduğundan  $-1 < x_k < 0$  olacak şekilde bir kök vardır.

Hafta

• 
$$x_k = \frac{x_L + x_U}{2} = \frac{-1+0}{2} = -0.5$$
,  $f(x_k) = f(-0.5) = 0.375 \Rightarrow x_L = -1$ ,

$$x_U = x_k = -0.5$$

$$f(-0.5) = 0.375$$
  $f(-1) = -2.0$ 

| 
$$|x_k - x_L| = |-1 + 0.5| = 0.5 > \varepsilon$$
 olduğundan işleme devam edilir.

#### Lineer Olmayan Denklem Sistemlerinin Çözüm Yöntemleri

• 
$$x_k = \frac{-1 - 0.5}{2} = -0.75$$
  $f(x_k) = f(-0.75) = -0.796\,88 \Rightarrow x_L = x_k = -0.75,$   
 $x_U = -0.5$   $f(-0.75) = -0.796\,875$   $f(-0.5) = 0.375$ 

$$|-0.5 + 0.75| = 0.25 > \varepsilon$$
 olduğundan işleme devam edilir.

• 
$$x_k = \frac{-0.75 - 0.5}{2} = -0.625$$
  $f(x_k) = f(-0.625) = -0.21289 \Rightarrow 10^{-1}$ 

$$x_L = x_k = -0.625, x_U = -0.5$$

$$f(-0.625) = -0.212891$$
  $f(-0.5) = 0.375$ 

$$|-0.625+0.5|=0.125\,>\varepsilon$$
olduğundan işleme devam edilir.

27. Sayfa

**BSM** 

6. Hafta

#### Lineer Olmayan Denklem Sistemlerinin Çözüm Yöntemleri

• 
$$x_k = \frac{-0.625 - 0.5}{2} = -0.5625$$
  $f(x_k) = f(-0.5625) = 0.0798 \Rightarrow x_L = -0.625,$   $x_U = x_k = -0.5625$ 

$$f(-0.625) = -0.212891$$
  $f(-0.5625) = 0.0798340$ 

$$|-0.625 + 0.5625| = 0.062\,5 > \varepsilon$$
olduğundan işleme devam edilir.

• 
$$x_k = \frac{-0.625 - 0.5625}{2} = -0.59375$$
  $f(x_k) = f(-0.59375) = -0.0667 \Rightarrow x_L = -0.59375$ ,

• 
$$x_k = \frac{}{2} = -0.59375$$
  $f(x_k) = f(-0.59375) = -0.0667 \Rightarrow x_L = -0.59375$ 

$$f(-0.59375) = -0.0667419$$
  $f(-0.5625) = 0.0798340$ 

$$|-0.59375 + 0.5625| = 0.03125 < \varepsilon$$
 olduğundan

 $x_U = x_k = -0.5625$ 

28. Sayfa

6.

Hafta

#### Lineer Olmayan Denklem Sistemlerinin Çözüm Yöntemleri

verilen denklemin yaklaşık kökü  $\varepsilon=0.05$  hata ile  $x_k=-0.59375$  dir.

| $\boldsymbol{x}$ | f(x)     |
|------------------|----------|
| -1               | -2       |
| 0                | 3        |
| -0.5             | 0.375    |
| -0.75            | -0.79688 |
| -0.625           | -0.21289 |
| -0.5625          | 0.0798   |
| -0.59375         | -0.0667  |

BSM

6. Hafta

#### Lineer Olmayan Denklem Sistemlerinin Çözüm Yöntemleri

 $\ddot{O}rnek: f(x) = \exp(x) - x - 2 = 0$  denkleminin 1 < x < 1.8 aralığında bir köke sahip olduğu bilinmektedir. Bu kökü aralık yarılama yöntemiyle  $\varepsilon = 0.06$  hata ile hesaplayınız.

BSM

6. Hafta

30. Sayfa

SAÜ YYurtaY

#### Lineer Olmayan Denklem Sistemlerinin Çözüm Yöntemleri

$$\label{eq:continuous} \textit{G\"{o}z\"{u}m} \colon f(1) = -0.281\,718\,172 \qquad f\left(1.8\right) = 2.\,249\,647\,46$$

$$f(1)f(1.8) < 0$$
 olduğundan

f(x) fonksiyonunun 1 < x < 1.8 aralığında bir kökü vardır.

• 
$$x_k = \frac{1+1.8}{2} = 1.4$$
  $f(1.4) = 0.655199967 \Rightarrow x_L = 1$ ,  $x_U = x_k = 1.4$   $f(1) = -0.281718172$   $f(1.4) = 0.655199967$   $|x_k - x_L| = |1.4 - 1| = 0.4 > \varepsilon$  olduğundan işleme devam edilir.

BSM

• 
$$x_k = \frac{1+1.4}{2} = 1.2$$
  $f(1.2) = 0.120\,116\,923 \Rightarrow x_L = 1$ ,  $x_U = x_k = 1.2$   $f(1) = -0.281\,718\,172$   $f(1.2) = 0.120\,116\,923$   $|x_k - x_L| = |1.2 - 1| = 0.2 > \varepsilon$  olduğundan işleme devam edilir.

6. Hafta

• 
$$x_k = \frac{1+1.2}{2} = 1.1$$
  $f(1.1) = -0.0958339761 \Rightarrow x_L = x_k = 1.1$ ,  $x_U = 1.2$ 

$$|x_k - x_L| = |1.2 - 1.1| \, = 0.1 > \varepsilon$$
olduğundan işleme devam edilir.

f(1.1) = -0.0958339761 f(1.2) = 0.120116923

#### Lineer Olmayan Denklem Sistemlerinin Çözüm Yöntemleri

• 
$$x_k = \frac{1.2 + 1.1}{2} = 1.15$$
  $f(1.15) = 0.00819290969 \Rightarrow x_L = 1.1$ ,  $x_U = x_k = 1.15$ 

$$f(1.1) = -0.0958339761$$
  $f(1.15) = 0.00819290969$ 

$$|x_k - x_L| = |1.1 - 1.15| = 0.05 > \varepsilon$$
 olduğundan işleme devam edilir.

• 
$$x_k = \frac{1.1 + 1.15}{2} = 1.125$$
  $f(1.125) = -0.0447831511 \Rightarrow x_L = x_k = 1.125$ ,  $x_U = 1.15$ 

$$f(1.125) = -0.0447831511$$
  $f(1.15) = 0.00819290969$ 

$$|x_k - x_L| = |1.125 - 1.15| = 0.025 < \varepsilon = 0.06$$
 olduğundan

verilen denklemin yaklaşık kökü x=1.125 tir.

BSM

6. Hafta

#### Lineer Olmayan Denklem Sistemlerinin Çözüm Yöntemleri

#### Örnek

x-2sinx=0 denkleminin köklerini  $\varepsilon$ =0.001 den daha küçük mutlak hata ile bulmaya çalışalım.

x-2sinx=0 denklemini x=2sinx biçiminde yazalım. Bu denklemin kökleri y=sinx eğrisi ile y=x doğrusunun kesiştiği noktalardır. Aşağıdaki grafikten görüldüğü gibi üç tane kök söz konusudur. Bunlardan biri  $x_1$ =0, diğer ikisinden pozitif olanı  $x_2 \in [1,3]$  dır. Üçüncü kök  $x_3 = -x_2$  dir.



Kökleri ve yerlerini fonksiyonunun grafiğini çizerek de tespit edebiliriz. [-4,4] aralığında fonksiyonunun grafiği aşağıdadır.

BSM

6. Hafta Pozitif kök  $x_2 \in I_0 = [1, 3]$  dir.

$$\varepsilon_{\bar{x}_2} = \frac{a_n - b_n}{2} = \frac{b_0 - a_0}{2^{n+1}} = \frac{2}{2^{n+1}} \le 0.001$$

olması için  $n \ge 10$  olmalıdır.



Lineer Olmayan Denklem Sistemlerinin Çözüm Yöntemleri



SAÜ YYurtaY

#### Lineer Olmayan

#### Denklem Sistemlerinin Çözüm Yöntemleri

```
Aralığı İkiye Bölme Yöntemi
 2 - clear all:
     % f(x) = k1 * x^2 + k2 * x + k3 olmak üzere:
 4 - k1 = 1; k2 = -7; k3 = 10;
     % [a , b] aralığına ait değerler giriliyor
 6 - a(1) = 1; b(1) = 4;
     %İlk yarılama işlemi yapılıyor
 8 - x(1) = (a(1) + b(1)) / 2;
 9 - f x = k1 * x(1)^2 + k2 * x(1) + k3;
10 - epsilon = 0.03;
     k = 1; % İterasyon başlangıç değeri veriliyor.
11 -
12 -
     while abs(f x) >= epsilon
13 -
         x(k+1) = (a(k) + b(k)) / 2;
14 -
             f x = k1 * x(k+1)^2 + k2 * x(k+1) + k3;
15 -
             f b = k1 * b(k)^2 + k2 * b(k) + k3;
16 -
             if f x * f b < 0
17 -
                 a(k+1) = x(k+1); b(k+1) = b(k);
18 -
           else
19 -
                 a(k+1) = a(k); b(k+1) = x(k+1);
20 -
             end
     k = k + 1;
21 -
22 -
     end
23 -
     k = k-1;
24 -
     disp(['iterasyon sayisi:']);
25 - disp(k);
26 - disp(['Yaklaşık kök degeri: ']);
27 - disp(int2str(x(k)));
```

35. Sayfa

**BSM** 

6.

Hafta

#### Lineer Olmayan Denklem Sistemlerinin Çözüm Yöntemleri

#### Kiriş (secant) Yöntemi:

Grafikteki A ve B noktaları arasındaki kirişin denklemini yazalım,

$$y - y_0 = \frac{y_0 - y_1}{x_0 - x_1} (x - x_0)$$

A ve B noktalarının oluşturduğu kirişin eksenini kestiği nokta bu denklemde ;

$$y - y_0 = \frac{y_0 - y_1}{x_0 - x_1} (x - x_0)$$



BSM

Böylece  $\mathbf{x_0}$  ve  $\mathbf{x_1}$  gibi bilinen başlangıç noktalarıyla gerçek kök  $\mathbf{x_{k\bar{o}k}}$  'e daha yakın bir kökü  $f(\mathbf{x})$  fonksiyonunun türevine gerek kalmadan bulabiliriz.

6. Hafta

İşlemlere devam ederek yeni kiriş noktaları bularak bunların x eksenini kestiği noktalarından gerçek köke daha da yaklaşabiliriz.

#### Lineer Olmayan Denklem Sistemlerinin Çözüm Yöntemleri

A ve C noktalarını oluşturan kirişe göre;

$$x_3 = x_0 - \frac{(x_2 - x_0)y_0}{y_2 - y_0}$$

olur.

İşlemler benzer şekilde devam ettirildiğinden, genel ifadeyi aşağıdaki gibi ifade edebiliriz;

BSM

$$x_{n+1} = x_0 - \frac{(x_n - x_0)y_0}{y_n - y_0}$$

6. Hafta Önceki yöntemlerle olduğu gibi burada da mutlak hatanın verilen bir **&** değerinden küçük olana kadar işlemlere devam edilir.

37. Sayfa Yöntem her zaman yakınsak olması nedeniyle **A** noktasındaki  $f(x_0)$  noktasına karşılık gelen **B,C,D** gibi hesaplanan noktalardaki değerleri ile zıt işaretli olması gerekir.

Lineer Olmayan Denklem Sistemlerinin Çözüm Yöntemleri

Kiriş yöntemi

$$x_{i+1} = x_i - \frac{(x_i - x_{i-1})}{(y_i - y_{i-1})} y_i$$

BSM

6. Hafta

#### Lineer Olmayan Denklem Sistemlerinin Çözüm Yöntemleri

$$\ddot{O}rnek: f(x) = e^{-x} - x = 0$$

denkleminin köklerini (0,1) aralığında Kiriş Yöntemi ile hesaplayınız.

#### Çözüm:

$$f(0) = 1.0$$
  $f(1) = -0.632120559 \Rightarrow f(0)f(1) < 0$ 

olduğundan bu aralıkta bir kök vardır.

$$x_0 = 0,$$
  $y_0 = f(x_0) = 1$   $x_1 = 1$   $y_1 = f(x_1) = -0.632120559$ 

• 
$$x_2 = x_1 - \frac{x_1 - x_0}{y_1 - y_0} y_1 = 1 - \frac{1 - 0}{-0.632120559 - 1} (-0.632120559) = 0.612699$$
,

$$f(0.612699) = y_2 = -0.0708127$$

$$|x_3 - x_2| = |0.563838 - 0.612699| = 0.048861$$

$$f(0.563838) = y_3 = 0.00518297,$$

**BSM** 

#### Lineer Olmayan Denklem Sistemlerinin Çözüm Yöntemleri

• 
$$x_4 = 0.567170$$

$$|x_4 - x_3| = |0.567170 - 0.563838| = 0.003332$$

• 
$$x_5 = 0.567143$$

$$|x_5 - x_4| = |0.567143 - 0.567170| = 2.7 \times 10^{-5}$$

• 
$$x_6 = 0.567143$$

$$|x_6 - x_5| = |0.567143 - 0.567143| = 0$$

O halde verilen denklemin yaklaşık kökü x=0.567143 dir.

BSM

6. Hafta Not : Bulunan yeni kök değerleri her zaman ayrı yönde olmak zorunda değil, Önemli olan kökler arasındaki yakınsamanın devam etmesidir.

#### Lineer Olmayan Denklem Sistemlerinin Çözüm Yöntemleri



Sayfa

41.

BSM

6.

Hafta

SAÜ YYurtaY

Kaynaklar



SAÜ YYurtaY