Cryptography & Encryption:6G7Z1011: Lab Questions

Keith Yates

February 1, 2019

Cryptography & Encryption:6G7Z1011: Euclid, and the Fast Powering Algorithm

1 Cryptography & Encryption:6G7Z1011: Euclid, and the Fast Powering Algorithm

1.0.1 ⇔:

Please code the following in JAVA.

1.1 problem:Introduction to Blocks

- This problem introduces some of the ideas used in the DES algorithm which we will meet later.
- 1. Create a string with some plain text in, we will use the plain text 'abcdefghijklmnopqr'
- 2. Split the string into an array of strings, each string in the array being of size n^2 , in our example n=3 so we are slitting on 9.
- 3. Write each string in the array into a $n \times n$ matrix.
- 4. Encrypt each matrix as shown in table 2.
- 5. Write out the encrypted string, in the example this is 'adfbehcfijmpknglor'.
- 6. Write the decryption algorithm

For example if the string is 'abcdefghijklmnopqr' and n=3 then the array has two elements:

- 1. the first is 'abcdefghi'
- 2. the second is 'jklmnopqr'.

Store each string in the array in a square array of size $n \times n$ so we have the situation in table 1. Encrypting each string gives table 1, and the strings are joined to give the encrypted message 'adfbehcfijmpknqlor'. \Box

1.2 problem:Euclid

Code Euclid's algorithm in JAVA. Fix a large integer a and let $1 \le b \le a$. Plot b against the number of divisions required to evaluate gcd(b, a), and overlay the function from the notes to see how well they agree. \Box

a	b	c		j	k	l
d	е	f		m	n	О
g	h	i		р	q	r
irst	t str	ing	S	econ	d st	tring

Table 1: The encryption involves making the first row the first column, the second row the second column and the third row the third column.

	a	d	g				j	m	р	
	b	е	h				k	n	q	
	С	f	i				l	О	r	
first string encrypted					second string encrypted					rypted

Table 2: Encrypting the array strings, the rows become columns.

1.3 problem:Fast Power

□ Evaluate, on paper first if you wish, using the fast powering algorithm

$$x = 3^{123456} \mod 17 \tag{1}$$

┙

1.4 problem:

Find all the solutions to

$$x^2 + x = 1 \mod 19$$
 and $11^x = 21 \mod 71$. (2)

There is no need to construct a fast algorithm, any algorithm that works is fine. \Box

1.5 problem:

 $^{\sim}$ Looking ahead, we need some ideas from the theory of matrices. I am sure you have all meet matrices before, they are simply square arrays of numbers. For now, write code that takes two 3 × 3 matrices matrices and evaluates their product. $^{\sim}$

1.6 problem:

 \lceil Solve the above problem by creating a function that takes two matrices and returns (if possible) their product. \lrcorner