Ensemble Learning

Data Scientist 안건이

목차

- Ensemble Overview
- Bagging
 - Random Forest
- Boosting
 - Adaboost
 - XGBoost
 - LightGBM
- 데이터 실습

• Ensemble (앙상블)

• 2인 이상에 의한 가창이나 연주

• 조화 또는 통일을 의미함

• 어떤 데이터를 학습할 때, 여러 개의 모델을 조화롭게 학습시켜 그 모델들의 예측 결과들을 이용하여 더 정확한 예측 값

을 구할 수 있음

- Ensemble (앙상블)
 - 2인 이상에 의한 가창이나 연주
 - 조화 또는 통일을 의미함

• 어떤 데이터를 학습할 때, 여러 개의 모델을 조화롭게 학습시켜 그 모델들의 예측 결과들을 이용하여 더 정확한 예측 값을 구할 수 있음

✓ Ensembles almost always work better

- Why Ensemble works?
 - ✓ True functions, estimations, and the expected error

$$y_m(\mathbf{x}) = f(\mathbf{x}) + \epsilon_m(\mathbf{x}). \quad \mathbb{E}_{\mathbf{x}}[\{y_m(\mathbf{x}) - f(\mathbf{x})\}^2] = \mathbb{E}_{\mathbf{x}}[\epsilon_m(\mathbf{x})^2]$$

✓ The average error made by M individual models vs. Expected error of the ensemble

$$E_{Avg} = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{\mathbf{x}} \left[\epsilon_m(\mathbf{x})^2 \right]$$

$$E_{Ensemble} = \mathbb{E}_{\mathbf{x}} \left[\left\{ \frac{1}{M} \sum_{m=1}^{M} y_m(\mathbf{x}) - f(\mathbf{x}) \right\}^2 \right]$$

$$= \mathbb{E}_{\mathbf{x}} \left[\left\{ \frac{1}{M} \sum_{m=1}^{M} \epsilon_m(\mathbf{x}) \right\}^2 \right]$$

✓ Ensembles almost always work better

- Why Ensemble works?
 - ✓ True functions, estimations, and the expected error

$$y_m(\mathbf{x}) = f(\mathbf{x}) + \epsilon_m(\mathbf{x}). \quad \mathbb{E}_{\mathbf{x}}[\{y_m(\mathbf{x}) - f(\mathbf{x})\}^2] = \mathbb{E}_{\mathbf{x}}[\epsilon_m(\mathbf{x})^2]$$

✓ The average error made by M individual models vs. Expected error of the ensemble

$$E_{Ensemble} = \frac{1}{M} E_{Avg}$$

✓ In reality (errors are correlated), by the Cauchy's inequality

$$\left[\sum_{m=1}^{M} \epsilon_m(\mathbf{x})\right]^2 \le M \sum_{m=1}^{M} \epsilon_m(\mathbf{x})^2 \Rightarrow \left[\frac{1}{M} \sum_{m=1}^{M} \epsilon_m(\mathbf{x})\right]^2 \le \frac{1}{M} \sum_{m=1}^{M} \epsilon_m(\mathbf{x})^2$$

$$E_{Ensemble} \le E_{Avg}$$

- Ensemble (앙상블) 종류
 - Bagging : Reduce the Variance
 - Stacking: Use another prediction model
 - Boosting : Reduce the Bias

- Ensemble (앙상블) 종류
 - Bagging : Reduce the Variance
 - Stacking: Use another prediction model
 - Boosting : Reduce the Bias

• Ensemble (앙상블) 종류

Bagging : Reduce the Variance

Stacking: Use another prediction model

Boosting : Reduce the Bias

- Bagging: <u>B</u>ootstrap <u>Agg</u>regat<u>ing</u>
 - Each member of the ensemble is constructed from a different training dataset
 - Each member is generated by sampling from the total N data examples, choosing N items uniformly at random with replacement
 - Each dataset sample is known as a bootstrap

Original Dataset

χl	yl
x ²	y ²
x³	y ³
x ⁴	y ⁴
× ⁵	y ⁵
× ⁶	y ⁶
x ⁷	y ⁷
X ₈	λ ₈
x ⁹	y ⁹
×10	y ¹⁰

Bootstrap I

׳	y ³
× ⁶	y ⁶
x ²	y ²
x ¹⁰	y ¹⁰
X ₈	y ₈
x ⁷	y ⁷
x ⁷	y ⁷
x³	y ³
x ²	y ²
x ⁷	y ⁷

Bootstrap 2

x ⁷	y ⁷
χ ^l	yΙ
x ¹⁰	y ¹⁰
χI	уl
x ₈	λ ₈
x ⁶	y ⁶
x ²	y ²
x ⁶	y ⁶
× ⁴	y ⁴
x ⁹	y ⁹

Bootstrap B

X'	y'
× ⁵	y ⁵
x ²	y ²
X ⁴	y ⁴
x ⁷	y ⁷
x ²	y ²
x ⁵	y ⁵
x ¹⁰	y ¹⁰
X ₈	λ ₈
x ²	y ²

- Bagging: <u>B</u>ootstrap <u>Agg</u>regat<u>ing</u>
 - √ For classification problem
 - Majority voting

$$\hat{y}_{Ensemble} = arg \max_{i} \left(\sum_{j=1}^{n} \delta(\hat{y}_{j} = i), i \in \{0, 1\} \right)$$

Training Accuracy	Ensemble population	P(y=1) for a test instance	Predicted class label	
0.80	Model I	0.90	I	$\sum_{i=1}^{n} s(x_i - x_i)$
0.75	Model 2	0.92	1	$\sum \delta(\hat{y}_j = 0) = 4$
0.88	Model 3	0.87	1	j = 1
0.91	Model 4	0.34	0	
0.77	Model 5	0.41	0	$\sum_{i=1}^{n} s(x_i, x_i)$
0.65	Model 6	0.84	1	$\sum \delta(\hat{y}_j = 1) = 6$
0.95	Model 7	0.14	0	$\overline{j=1}$
0.82	Model 8	0.32	0	
0.78	Model 9	0.98	1	$\hat{y}_{Ensemble} = 1$
0.83	Model 10	0.57	1	

- Bagging : **B**ootstrap **Agg**regat**ing**
 - √ For classification problem
 - Weighted voting (weight = training accuracy of individual models)

$$\hat{y}_{Ensemble} = arg \max_{i} \left(\frac{\sum_{j=1}^{n} (TrnAcc_{j}) \cdot \delta(\hat{y}_{j} = i)}{\sum_{j=1}^{n} (TrnAcc_{j})}, \quad i \in \{0, 1\} \right)$$

	5				
	Predicted class label		P(y=1) for a test instance	Ensemble population	Training Accuracy
$\frac{\sum_{j=1}^{n} (TrnAcc_j) \cdot \delta(\hat{y}_j = 0)}{\sum_{j=1}^{n} (TrnAcc_j)} = 0.424$	I		0.90	Model I	0.80
${\sum_{j=1}^{n} (TrnAcc_j)} = 0.424$	1		0.92	Model 2	0.75
·	- 1		0.87	Model 3	0.88
_	0		0.34	Model 4	0.91
$\frac{\sum_{j=1}^{n} (TrnAcc_j) \cdot \delta(\hat{y}_j = 1)}{\sum_{j=1}^{n} (TrnAcc_j)} = 0.576$	0		0.41	Model 5	0.77
$\sum_{j=1}^{n} (TrnAcc_j) = 0.570$	1		0.84	Model 6	0.65
	0		0.14	Model 7	0.95
	0		0.32	Model 8	0.82
$\hat{y}_{Ensemble} = 1$	1		0.98	Model 9	0.78
	1	12	0.57	Model 10	0.83

- Bagging: <u>B</u>ootstrap <u>Agg</u>regat<u>ing</u>
 - √ For classification problem
 - Weighted voting (weight = predicted probability for each class)

$$\hat{y}_{Ensemble} = arg \max_{i} \left(\frac{1}{n} \sum_{j=1}^{n} P(y=i), \quad i \in \{0, 1\} \right)$$

Training Accuracy	Ensemble population	P(y=1) for a test instance	Predicted class label	
0.80	Model I	0.90	1	$1\sum_{n=1}^{\infty} \mathbf{p}(n)$
0.75	Model 2	0.92	I	$\frac{1}{n}\sum_{j=1}P(y=0)=0.375$
0.88	Model 3	0.87	I	j=1
0.91	Model 4	0.34	0	\boldsymbol{a} \boldsymbol{n}
0.77	Model 5	0.41	0	$\frac{1}{2}\sum_{i}P(i=1)=0.625$
0.65	Model 6	0.84	1	$\frac{1}{n}\sum_{j=1}P(y=1) = 0.625$
0.95	Model 7	0.14	0	j-1
0.82	Model 8	0.32	0	^ 1
0.78	Model 9	0.98		$\hat{y}_{Ensemble} = 1$
0.83	Model 10	0.57	₃ I	

Bagging : <u>B</u>ootstrap <u>Agg</u>regat<u>ing</u>

- Bagging : <u>B</u>ootstrap <u>Agg</u>regat<u>ing</u>
 - Out of Bag error
 - Use the training instances that are not sampled for validation
 - % of Not Sampled : 36.8%
 - √ Probability that an instance is not included in a bootstrap

$$p = \left(1 - \frac{1}{N}\right)^N \rightarrow \lim_{N \to \infty} \left(1 - \frac{1}{N}\right)^N = e^{-1} = 0.368$$

Bagged Trees vs Single Tree

Regression CART Bagged CART

Friedman1

Friedman2

Friedman3

Ozone

Boston Housing

- Ensemble (앙상블) 종류
 - Bagging : Reduce the Variance
 - Stacking: Use another prediction model
 - Boosting : Reduce the Bias

- Random Forest
 - A specialized bagging for decision tree algorithms
 - Two ways to increase the diversity of ensemble
 - Bagging
 - Randomly chosen predictor variables

- Random Forest
 - A specialized bagging for decision tree algorithms
 - Two ways to increase the diversity of ensemble
 - Bagging
 - Randomly chosen predictor variables

```
Algorithm 1: Pseudo code for the random forest algorithm
To generate c classifiers:
for i = 1 to c do
  Randomly sample the training data D with replacement to produce D,
  Create a root node, N_i containing D_i
 Call BuildTree (N_i)
end for
BuildTree(N):
if N contains instances of only one class then
  return
else
  Randomly select x% of the possible splitting features in N
  Select the feature F with the highest information gain to split on
  Create f child nodes of N, N_1, ..., N_f, where F has f possible values (F_1, ..., F_f)
  for i = 1 to f do
     Set the contents of N_i to D_i, where D_i is all instances in N that match
     F_{i}
     Call BuildTree (N_i)
  end for
end if
```

- Random Forest
 - A specialized bagging for decision tree algorithms
 - Two ways to increase the diversity of ensemble
 - Bagging
 - Randomly chosen predictor variables → Why Random?

Generalization Error

- ❖ Tree는 작은 Bias와 큰 Variance를 갖기 때문에, 매우 깊이 성장한(Depth가 깊은) 트리는 훈련 데이터에 대해 Overfitting 하게 됨
- ❖ 한 개의 Tree의 경우 훈련 데이터에 있는 Noise에 대해 매우 민감함
 - ❖ Tree들이 서로 상관화(correlated)되어 있지 않다면 여러 Tree들의 평균은 Noise에 대해 강인해짐
 - ❖ 상관화를 줄이는 방법은 → Randomly Chosen (N & P 모두)
 - ❖ 반면, Forest를 구성하는 모든 Tree들을 동일한 데이터 셋으로만 훈련시키게 되면, Tree들의 상관성은 커짐
- ❖ 따라서 Bagging은 서로 다른 데이터 셋들에 대해 훈련 시킴으로써, Tree들을 비상관화 시켜줌
 - ❖ Bias는 유지하면서 Variance를 낮춤

- Random Forest
 - Variable Importance
 - Step 1 : Compute the OOB(Out of bag) error for the original dataset
 - Step 2 : Compute the OOB error for the dataset in which the variable x_i is permuted p_i
 - Step 3 : Compute the variable importance based on the mean and standard deviation of over all trees in the population

- Random Forest
 - Variable Importance
 - Step 1 : Compute the OOB(Out of bag) error for the original dataset
 - Step 2 : Compute the OOB error for the dataset in which the variable x_i is permuted p_i
 - Step 3 : Compute the variable importance based on the mean and standard deviation of over all trees in the population

- Random Forest
 - Variable Importance
 - Step 1 : Compute the OOB(Out of bag) error for the original dataset
 - Step 2 : Compute the OOB error for the dataset in which the variable x_i is permuted p_i
 - Step 3 : Compute the variable importance based on the mean and standard deviation of over all trees in the population

✓ 랜덤 포레스트에서 변수의 중요도가 높다면

- I) Random permutation 전-후의 OOB Error 차이가 크게 나타나야 하며,
- 2) 그 차이의 편차가 적어야 함
- m번째 tree에서 변수 i에 대한 Random permutation 전후 OOB error의 차이

$$d_i^m = p_i^m - e_i^m$$

■ 전체 Tree들에 대한 OOB error 차이의 평균 및 분산

$$\overline{d}_i = \frac{1}{m} \sum_{i=1}^m d_i^m, \quad s_i^2 = \frac{1}{m-1} \sum_{i=1}^m (d_i^m - \overline{d}_i)^2$$

• i번째 변수의 중요도:
$$v_i = \frac{d_i}{s_i}$$

- Random Forest
 - Variable Importance
 - Step 1 : Compute the OOB(Out of bag) error for the original dataset
 - Step 2 : Compute the OOB error for the dataset in which the variable x_i is permuted p_i
 - Step 3 : Compute the variable importance based on the mean and standard deviation of over all trees in the population

• Ensemble (앙상블) 종류

Bagging : Reduce the Variance

Stacking: Use another prediction model

Boosting : Reduce the Bias

- AdaBoost = Adaptive + Boosting
 - Boosting: An iterative procedure to adaptively change distribution of training data by focusing more on previously mis-classified records
 - Parallel한 과정이 아니라 <u>Sequential한 과정</u>
 - Strong Classifier vs Weak Classifier
 - Strong Classifier : 개별 약분류기들에 각각 가중치를 적용, 조합하여 얻을 수 있음
 - Weak Classifier : 개별 약분류기

- AdaBoost = Adaptive + Boosting
 - Boosting: An iterative procedure to adaptively change distribution of training data by focusing more on previously mis-classified records
 - Parallel한 과정이 아니라 Sequential한 과정
 - Strong Classifier vs Weak Classifier
 - Strong Classifier : 개별 약분류기들에 각각 가중치를 적용, 조합하여 얻을 수 있음
 - Weak Classifier : 개별 약분류기

Algorithm 2 Adaboost

```
Input: Required ensemble size T
Input: Training set S = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}, where y_i \in \{-1, +1\}
Define a uniform distribution D_1(i) over elements of S.
for t = 1 to T do
  Train a model h_t using distribution D_t.
  Calculate \epsilon_t = P_{D_t}(h_t(x) \neq y)
```

Calculate
$$\epsilon_t = P_{D_t}(h_t(x) \neq 0.5)$$

If
$$\epsilon_t \ge 0.5$$
 break
Set $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$

Update
$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is a normalization factor so that D_{t+1} is a valid distribution.

end for

For a new testing point (x', y'),

$$H(x') = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x')\right)$$

- AdaBoost = Adaptive + Boosting
 - Round 1

- 3 misclassifications out of IO: $\epsilon_i=0.30$
- Model confidence: $\alpha_i = \frac{1}{2}\log\left(\frac{1-\epsilon_i}{\epsilon_i}\right) = \frac{1}{2}\log\frac{1-0.3}{0.3} = 0.42$

- AdaBoost = Adaptive + Boosting
 - Round 1

 \checkmark The selection probability of x_i for the next training dataset

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

$$\checkmark$$
 Case I: $y_i = 1, h_t(x_i) = 1 \rightarrow y_i h_t(x_i) = 1 \rightarrow -\alpha_t y_i h_t(x_i) < 0 \rightarrow \text{decrease p}$

$$\checkmark$$
 Case 2: $y_i = -1, h_t(x_i) = -1 \rightarrow y_i h_t(x_i) = 1 \rightarrow -\alpha_t y_i h_t(x_i) < 0 \rightarrow \text{decrease p}$

$$\checkmark$$
 Case 3: $y_i=1, h_t(x_i)=-1 \rightarrow y_i h_t(x_i)=-1 \rightarrow -\alpha_t y_i h_t(x_i)>0 \rightarrow \text{increase p}$

 \checkmark α_t is the confidence of the current model that controls the magnitude of change

- AdaBoost = Adaptive + BoostingRound 2

- AdaBoost = Adaptive + BoostingRound 3

- AdaBoost = Adaptive + Boosting
 - Final Classifier = Strong Classifier

- AdaBoost = Adaptive + Boosting
 - Round 1

Summary

• Single vs Bagging vs Boosting

https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/

Q & A