Multiscale analysis in image processing Proximal algorithms

Barbara Pascal[†] and Nelly Pustelnik[‡]

bpascal-fr.github.io/talks

June 2025

- † Nantes Université, École Centrale Nantes, CNRS, LS2N, F-44000 Nantes, France
- [‡] CNRS, ENSL, Laboratoire de physique, F-69342 Lyon, France

Proximal algorithms

→ Minimisation problem :

$$\widehat{\mathbf{x}} \in \underset{\mathbf{x}}{\operatorname{Argmin}} \ f_1(\mathbf{x}) + f_2(\mathbf{x})$$

with f_1 and f_2 either diff. with Lipschitz gradient or proximable.

→ Design of a recursive sequence of the form:

$$(\forall k \in \mathbb{N}) \qquad \mathbf{x}^{[k+1]} = \mathbf{T}\mathbf{x}^{[k]},$$

Gradient descent $\mathbf{T} = \mathrm{Id} - \tau (\nabla f_1 + \nabla f_2)$

Proximal point $\mathbf{T} = \operatorname{prox}_{\tau(f_1 + f_2)}$

Forward-Backward $\mathbf{T} = \operatorname{prox}_{\tau f_2}(\operatorname{Id} - \tau \nabla f_1)$

Peaceman-Rachford $\mathbf{T} = (2\operatorname{prox}_{\tau f_2} - \operatorname{Id}) \circ (2\operatorname{prox}_{\tau f_1} - \operatorname{Id})$

Douglas-Rachford $\mathbf{T} = \text{prox}_{\tau f_2}(2\text{prox}_{\tau f_1} - \text{Id}) + \text{Id} - \text{prox}_{\tau f_1}$

Fixed point algorithm: zeros and fixed points

Let \mathcal{H} be a Hilbert space. Let $\Phi \colon \mathcal{H} \to 2^{\mathcal{H}}$ and $\mathbf{T} \colon \mathcal{H} \to 2^{\mathcal{H}}$. The set of **fixed points** of \mathbf{T} is : $\mathrm{Fix}\mathbf{T} = \{\mathbf{x} \in \mathcal{H} \, | \, \mathbf{x} \in \mathbf{T}\mathbf{x} \}$. The set of **zeros** of Φ is : $\mathrm{zer}\Phi = \{\mathbf{x} \in \mathcal{H} \, | \, 0 \in \Phi\mathbf{x} \}$.

Minimisation problem and Fermat rule

$$\widehat{\mathbf{x}} \in \underset{\mathbf{x} \in \mathbb{R}^N}{\operatorname{Argmin}} \ f(\mathbf{x}) \ \Leftrightarrow \ \nabla f(\widehat{\mathbf{x}}) = 0 \ \Leftrightarrow \ \widehat{\mathbf{x}} \in \mathsf{zer} \nabla f$$

Fixed point algorithm: zeros and fixed points

Let \mathcal{H} be a Hilbert space. Let $\Phi \colon \mathcal{H} \to 2^{\mathcal{H}}$ and $\mathbf{T} \colon \mathcal{H} \to 2^{\mathcal{H}}$.

The set of fixed points of T is : $\operatorname{Fix} \textbf{T} = \{x \in \mathcal{H} \,|\, x \in \textbf{T} x\}.$

The set of **zeros** of Φ is : $\operatorname{\sf zer}\Phi = \{x \in \mathcal{H} \,|\, 0 \in \Phi x\}.$

Minimisation problem and Fermat rule

$$\widehat{\mathbf{x}} \in \underset{\mathbf{x} \in \mathbb{R}^N}{\operatorname{Argmin}} \ f(\mathbf{x}) \ \Leftrightarrow \ \nabla f(\widehat{\mathbf{x}}) = 0 \ \Leftrightarrow \ \widehat{\mathbf{x}} \in \mathsf{zer} \nabla f$$

Fix point and zeros for gradient descent:

$$\widehat{\mathbf{x}} \in \mathsf{Fix}(\mathrm{Id} - \nabla f) \ \Leftrightarrow \ \widehat{\mathbf{x}} = (\mathrm{Id} - \nabla f)\widehat{\mathbf{x}} \ \Leftrightarrow \ \widehat{\mathbf{x}} \in \mathsf{zer} \nabla f$$

Remark: $\mathbf{T} = \mathrm{Id} - \nabla f$ and $\mathbf{\Phi} = \nabla f$

Fixed point algorithm: convergence

Let \mathcal{H} be a Hilbert space, $(\mathbf{x}^{[k]})_{k \in \mathbb{N}}$ be a sequence in \mathcal{H} and $\widehat{\mathbf{x}} \in \mathcal{H}$.

• $(\mathbf{x}^{[k]})_{k \in \mathbb{N}}$ converges strongly to $\widehat{\mathbf{x}}$ if

$$\lim_{k \to} \|\mathbf{x}^{[k]} - \widehat{\mathbf{x}}\| = 0.$$

It is denoted by $\mathbf{x}^{[k]} \to \widehat{\mathbf{x}}$.

ullet $(\mathbf{x}^{[k]})_{k\in\mathbb{N}}$ converges weakly to $\widehat{\mathbf{x}}$ if

$$(\forall \mathsf{u} \in \mathcal{H}) \qquad \lim_{n \to \inf} \langle \mathsf{u}, \mathsf{x}^{[k]} - \widehat{\mathsf{x}} \rangle = 0.$$
 It is denoted by $\mathsf{x}^{[k]} \, \rightharpoonup \, \widehat{\mathsf{x}}.$

Remark: In a finite dimensional Hilbert space, strong and weak convergences are equivalent.

Banach-Picard theorem

$$\begin{split} \mathbf{T} \colon \mathcal{H} &\to \mathcal{H} \text{ is } \omega - \mathbf{Lipschitz} \text{ continuous for some } \omega > 0 \text{ if} \\ &(\forall \mathbf{x} \in \mathcal{H})(\forall \mathbf{u} \in \mathcal{H}) \qquad \|\mathbf{T}\mathbf{x} - \mathbf{T}\mathbf{u}\| \leq \omega \|\mathbf{x} - \mathbf{u}\|. \end{split}$$

T is **nonexpansive** if it is 1–Lipschitz continuous.

Banach-Picard theorem:

Let $\omega \in [0,1[$, $\mathbf{T} \colon \mathcal{H} \to \mathcal{H}$ be a $\omega-\text{Lipschitz continuous}$ operator, and $\mathbf{x}^{[0]} \in \mathcal{H}.$ Set

$$(\forall k \in \mathbb{N}) \quad \mathbf{x}^{[k+1]} = \mathbf{T}\mathbf{x}^{[k]}.$$

Then, $\mathrm{Fix} \textbf{T} = \{\widehat{x}\}$ for some $\widehat{x} \in \mathcal{H}$ and we have

$$(\forall k \in \mathbb{N}) \quad \|\mathbf{x}^{[k]} - \widehat{\mathbf{x}}\| \le \omega^k \|\mathbf{x}_0 - \widehat{\mathbf{x}}\|.$$

Moreover, $(\mathbf{x}^{[k]})_{k\in\mathbb{N}}$ converges strongly to $\widehat{\mathbf{x}}$ with linear convergence rate ω .

4

Averaged nonexpansive operator

An operator $\mathbf{T} \colon \mathcal{H} \to \mathcal{H}$ is μ -averaged nonexpansive for some $\mu \in]0,1]$ if, for every $\mathbf{x} \in \mathcal{H}$ and $\mathbf{u} \in \mathcal{H}$,

$$\|\mathbf{T}x - \mathbf{T}u\|^2 \le \|x - u\|^2 - \left(\frac{1-\mu}{\mu}\right) \|(\mathrm{Id} - \mathbf{T})x - (\mathrm{Id} - \mathbf{T})u\|^2,$$

T is **firmly nonexpansive** if it is 1/2-averaged.

T is **nonexpansive** if and only if **T** is 1-averaged.

Theorem:

Let $\mu \in]0,1[$, let $\mathbf{T}\colon \mathcal{H} \to \mathcal{H}$ be a $\mu-$ averaged nonexpansive operator such that $\mathrm{Fix}\mathbf{T} \neq \varnothing$, and let $\mathrm{x}^{[0]} \in \mathcal{H}.$ Set $(\forall k \in \mathbb{N}) \quad \mathrm{x}^{[k+1]} = \mathbf{T}\mathrm{x}^{[k]}.$

Then $(\mathbf{x}^{[k]})_{k\in\mathbb{N}}$ converges weakly to a point in $\mathrm{Fix}\mathbf{T}$.

Nonlinear operators

Properties of f	Т	ω -Lipschitz	μ -averaged
f convex	$\mathrm{Id} - \tau \nabla f$	$\omega = 1$	$\mu = \frac{\tau \beta}{2}$
∇f β -Lipschitz	$\tau \in (0, 2\beta^{-1})$		
$f \rho$ -strongly convex	$\mathrm{Id} - \tau \nabla f$	$\omega = \max\{(1 - \tau \rho), (\tau \beta - 1)\}$	$\mu = \frac{1+\omega}{2}$
∇f β -Lipschitz	$\tau \in (0, 2\beta^{-1})$		
$f \in \Gamma_0$	$\operatorname{prox}_{\tau f}$	$\omega = 1$	$\mu = \frac{1}{2}$
	$\tau > 0$		
f ρ -strongly convex	$\operatorname{prox}_{\tau f}$	$\omega = (1 + \tau \rho)^{-1}$	$\mu = \frac{1+\omega}{2}$
	au > 0		

[Taylor, J. M. Hendrickx, and F. Glineur, 2017] [Bauschke, Combettes, 2017]

6

Strong convexity

Let $f \in \Gamma_0(\mathcal{H})$. f is ρ -strongly convex with $\rho > 0$ if $f - \frac{\rho}{2} \| \cdot \|_2^2$ is convex.

Properties:

• If f is ρ -strongly convex then

$$(\forall x, y \in \mathcal{H})$$
 $(\nabla f(x) - \nabla f(y)|x - y) \ge \rho ||x - y||^2$

• If f is twice differentiable, then f is ρ -strongly convex if and only if all the eigenvalues of the Hessian matrix of f are at most equal to ρ .

7

$$\mathbf{T} := \mathrm{Id} - \tau \nabla f$$

 $\bullet \ \ \text{Iterations:} \ (\forall k \in \mathbb{N}) \quad \mathbf{x}^{[k+1]} = \mathbf{x}^{[k]} - \tau \nabla f(\mathbf{x}^{[k]}).$

$$\mathbf{T} := \mathrm{Id} - \tau \nabla f$$

- Iterations: $(\forall k \in \mathbb{N}) \quad \mathbf{x}^{[k+1]} = \mathbf{x}^{[k]} \tau \nabla f(\mathbf{x}^{[k]})$.
- For every $\tau > 0$, $zer \nabla f = Fix \mathbf{T}$.

$$\mathbf{T} := \mathrm{Id} - \tau \nabla f$$

- Iterations: $(\forall k \in \mathbb{N}) \quad \mathbf{x}^{[k+1]} = \mathbf{x}^{[k]} \tau \nabla f(\mathbf{x}^{[k]}).$
- For every $\tau > 0$, $zer\nabla f = Fix T$.
- $\mathbf{T} = \mathrm{Id} \tau \nabla f$ is a $\tau \beta/2$ -averaged operator.
 - → cf. Proposition 4.39 in [Bauschke-Combettes, 2017]

$$\mathbf{T} := \mathrm{Id} - \tau \nabla f$$

- Iterations: $(\forall k \in \mathbb{N}) \quad \mathbf{x}^{[k+1]} = \mathbf{x}^{[k]} \tau \nabla f(\mathbf{x}^{[k]})$.
- For every $\tau > 0$, $zer\nabla f = Fix T$.
- $\mathbf{T} = \mathrm{Id} \tau \nabla f$ is a $\tau \beta/2$ -averaged operator.
 - → cf. Proposition 4.39 in [Bauschke-Combettes, 2017]
- Convergence: For every $\tau \in]0, 2\beta^{-1}[$, the gradient method converges to a point in $\operatorname{zer} \nabla f$.

Let
$$f \in \Gamma_0(\mathbb{R}^N)$$
. We set, for some $\tau > 0$,

$$T := \operatorname{prox}_{\tau f}$$

• Iterations: $(\forall k \in \mathbb{N}) \quad \mathbf{x}^{[k+1]} = \mathbf{prox}_{\gamma f}(\mathbf{x}^{[k]})$.

Let
$$f \in \Gamma_0(\mathbb{R}^N)$$
. We set, for some $\tau > 0$,

$$T := \operatorname{prox}_{\tau f}$$

- Iterations: $(\forall k \in \mathbb{N})$ $\mathbf{x}^{[k+1]} = \mathbf{prox}_{\gamma f}(\mathbf{x}^{[k]})$.
- For every $\tau > 0$, $\mathrm{Fix} \mathbf{T} = \mathrm{zer} \partial f$. Proof:

$$\begin{split} \mathbf{x} &= \mathbf{prox}_{\tau f} \mathbf{x} \Leftrightarrow \mathbf{x} \in (\mathbf{I} + \tau \partial f) \mathbf{x} \\ &\Leftrightarrow \mathbf{x} \in \mathbf{x} + \tau \partial f(\mathbf{x}) \\ &\Leftrightarrow \mathbf{0} \in \partial f \end{split}$$

Let $f \in \Gamma_0(\mathbb{R}^N)$. We set, for some $\tau > 0$,

$$T := \operatorname{prox}_{\tau f}$$

- Iterations: $(\forall k \in \mathbb{N}) \quad \mathbf{x}^{[k+1]} = \mathbf{prox}_{\gamma f}(\mathbf{x}^{[k]})$.
- For every $\tau > 0$, $\operatorname{Fix} \mathbf{T} = \operatorname{zer} \partial f$.
- For every $\tau > 0$ and any $f \in \Gamma_0(\mathcal{H})$, $\operatorname{prox}_{\tau f}$ is 1/2-averaged.
 - \rightarrow cf. s.10 or Proposition 23.8 in [Bauschke-Combettes, 2017]

Let $f \in \Gamma_0(\mathbb{R}^N)$. We set, for some $\tau > 0$,

$$T := \operatorname{prox}_{\tau f}$$

- Iterations: $(\forall k \in \mathbb{N})$ $\mathbf{x}^{[k+1]} = \mathbf{prox}_{\gamma f}(\mathbf{x}^{[k]})$.
- For every $\tau > 0$, $\operatorname{Fix} \mathbf{T} = \operatorname{zer} \partial f$.
- For every $\tau > 0$ and any $f \in \Gamma_0(\mathcal{H})$, $\mathrm{prox}_{\tau f}$ is 1/2-averaged.
 - \rightarrow cf. s.10 or Proposition 23.8 in [Bauschke-Combettes, 2017]
- The **PPA method converges** to a point in $zer \partial f$.

$$\widehat{\mathbf{x}} \in \operatorname{Argmin}_{\mathbf{x} \in \mathbb{R}^N} \left\{ f(\mathbf{x}) = f_1(\mathbf{x}) + f_2(\mathbf{x}) \right\}$$

$$\mathbf{T} := \operatorname{prox}_{\tau f_2} \circ (\operatorname{Id} - \tau \nabla f_1)$$

• Iterations: $(\forall k \in \mathbb{N})$ $\mathbf{x}^{[k+1]} = \mathbf{prox}_{\tau f_2}(\mathbf{x}^{[k]} - \tau \nabla f_1(\mathbf{x}^{[k]}))$.

$$\widehat{\mathbf{x}} \in \operatorname{Argmin}_{\mathbf{x} \in \mathbb{R}^N} \left\{ f(\mathbf{x}) = f_1(\mathbf{x}) + f_2(\mathbf{x}) \right\}$$

$$\mathbf{T} := \operatorname{prox}_{\tau f_2} \circ (\operatorname{Id} - \tau \nabla f_1)$$

- Iterations: $(\forall k \in \mathbb{N})$ $\mathbf{x}^{[k+1]} = \mathbf{prox}_{\tau f_2}(\mathbf{x}^{[k]} \tau \nabla f_1(\mathbf{x}^{[k]}))$.
- Roots in projected gradient method [Levitin 1966] when $g = \iota_C$ for some closed convex set C.

$$\widehat{\mathbf{x}} \in \operatorname{Argmin}_{\mathbf{x} \in \mathbb{R}^N} \left\{ f(\mathbf{x}) = f_1(\mathbf{x}) + f_2(\mathbf{x}) \right\}$$

$$\mathbf{T} := \operatorname{prox}_{\tau f_2} \circ (\operatorname{Id} - \tau \nabla f_1)$$

- Iterations: $(\forall k \in \mathbb{N})$ $\mathbf{x}^{[k+1]} = \mathbf{prox}_{\tau f_2}(\mathbf{x}^{[k]} \tau \nabla f_1(\mathbf{x}^{[k]}))$.
- For every $\tau > 0$, $zer(\nabla f_1 + \partial g) = Fix T$.

$$\mathbf{x} \in \operatorname{Fix} \mathbf{T} \Leftrightarrow (\operatorname{Id} - \tau \nabla f_1)\mathbf{x} \in (\operatorname{Id} + \tau \partial f_2)\mathbf{x}$$

 $\Leftrightarrow 0 \in \nabla f_1(\mathbf{x}) + \partial f_2(\mathbf{x}).$

$$\widehat{\mathbf{x}} \in \operatorname{Argmin}_{\mathbf{x} \in \mathbb{R}^N} \left\{ f(\mathbf{x}) = f_1(\mathbf{x}) + f_2(\mathbf{x}) \right\}$$

$$\mathbf{T} := \operatorname{prox}_{\tau f_2} \circ (\operatorname{Id} - \tau \nabla f_1)$$

- Iterations: $(\forall k \in \mathbb{N})$ $\mathbf{x}^{[k+1]} = \mathbf{prox}_{\tau f_2}(\mathbf{x}^{[k]} \tau \nabla f_1(\mathbf{x}^{[k]}))$.
- For every $\tau > 0$, $zer(\nabla f_1 + \partial g) = Fix T$.
- $\operatorname{prox}_{\tau f_2}(\operatorname{Id} \tau \nabla f_1)$ is μ -averaged nonexpansive where $\mu = \frac{\mu_1 + \mu_2 2\mu_1 \mu_2}{1 \mu_1 \mu_2}$ with $\mu_2 = \tau \beta/2$ and $\mu_1 = 1/2$ leading to $\mu = \frac{1}{2 \tau \beta/2} \in]0,1[$ and $\tau < 2/\beta$.

$$\mathbf{T} := \operatorname{prox}_{\tau f_2} \circ (\operatorname{Id} - \tau \nabla f_1)$$

- Iterations: $(\forall k \in \mathbb{N})$ $\mathbf{x}^{[k+1]} = \mathbf{prox}_{\tau f_2}(\mathbf{x}^{[k]} \tau \nabla f_1(\mathbf{x}^{[k]}))$.
- For every $\tau > 0$, $zer(\nabla f_1 + \partial g) = Fix T$.
- $\operatorname{prox}_{\tau f_2}(\operatorname{Id} \tau \nabla f_1)$ is μ -averaged nonexpansive where $\mu = \frac{\mu_1 + \mu_2 2\mu_1 \mu_2}{1 \mu_1 \mu_2}$ with $\mu_2 = \tau \beta/2$ and $\mu_1 = 1/2$ leading to $\mu = \frac{1}{2 \tau \beta/2} \in]0,1[$ and $\tau < 2/\beta.$
- For every $\tau \in]0,2/\beta[$, the FBS converges to a point in $\operatorname{zer}(\nabla f_1 + \partial f_2).$

$$\widehat{\mathbf{x}} \in \operatorname{Argmin}_{\mathbf{x} \in \mathbb{R}^N} \left\{ f(\mathbf{x}) = f_1(\mathbf{x}) + f_2(\mathbf{x}) \right\}$$

$$\mathbf{T} := \operatorname{prox}_{\tau f_2} \circ (\operatorname{Id} - \tau \nabla f_1)$$

$$\widehat{\mathbf{x}} \in \operatorname{Argmin}_{\mathbf{x} \in \mathbb{R}^N} \left\{ f(\mathbf{x}) = f_1(\mathbf{x}) + f_2(\mathbf{x}) \right\}$$

$$\mathbf{T} := \operatorname{prox}_{\tau f_2} \circ (\operatorname{Id} - \tau \nabla f_1)$$

Theorem [Combettes & Wajs, 2005]: Let $(\mathbf{x}^{[k]})_{k\in\mathbb{N}}$ be a sequence generated by the FB algorithm. Let $0<\tau<2\beta^{-1}$. Then

- ullet $(\mathbf{x}^{[k]})_{k\in\mathbb{N}}$ converges to a minimiser $\widehat{\mathbf{x}}$ of f
- $(f(\mathbf{x}^{[k]}))_{k \in \mathbb{N}}$ is a non-increasing sequence converging to $f(\widehat{\mathbf{x}})$.

$$\widehat{\mathbf{x}} \in \operatorname{Argmin}_{\mathbf{x} \in \mathbb{R}^N} \left\{ f(\mathbf{x}) = f_1(\mathbf{x}) + f_2(\mathbf{x}) \right\}$$

$$\mathbf{T} := \operatorname{prox}_{\tau f_2} \circ (\operatorname{Id} - \tau \nabla f_1)$$

Theorem [Briceño-Arias & Pustelnik, 2005]:

If additionally, f_1 is ρ -strongly convex. Suppose that $\tau \in [0, 2\beta^{-1}]$. Then **T** is $\omega(\tau)$ -Lipschitz continuous with

$$\omega(\tau) := \max\{|1 - \tau \rho|, |1 - \tau \beta|\} \in [0, 1].$$

$$\omega(\tau) := \max\left\{|1 - \tau \rho|, |1 - \tau \beta|\right\} \in \left]0, 1$$

$$\widehat{\mathbf{x}} \in \operatorname{Argmin}_{\mathbf{x} \in \mathbb{R}^N} \left\{ f(\mathbf{x}) = f_1(\mathbf{x}) + f_2(\mathbf{x}) \right\}$$

$$\mathbf{T} := \operatorname{prox}_{\tau f_2} \circ (\operatorname{Id} - \tau \nabla f_1)$$

Theorem [Briceño-Arias & Pustelnik, 2005]:

If additionally, f_1 is ρ -strongly convex. Suppose that $\tau \in [0, 2\beta^{-1}]$. Then **T** is $\omega(\tau)$ -Lipschitz continuous with

$$\omega(\tau) := \max\{|1 - \tau \rho|, |1 - \tau \beta|\} \in [0, 1].$$

$$\omega(\tau) := \max\left\{|1 - \tau \rho|, |1 - \tau \beta|\right\} \in \left]0, 1$$

$$\widehat{\mathbf{x}} \in \operatorname{Argmin}_{\mathbf{x} \in \mathbb{R}^N} \left\{ f(\mathbf{x}) = f_1(\mathbf{x}) + f_2(\mathbf{x}) \right\}$$

$$\mathbf{T} := \operatorname{prox}_{\tau f_2} \circ (\operatorname{Id} - \tau \nabla f_1)$$

Theorem [Briceño-Arias & Pustelnik, 2005]:

If additionally, f_1 is ρ -strongly convex . Suppose that $\tau \in \left]0, 2\beta^{-1}\right[$. Then ${\bf T}$ is $\omega(\tau)$ -Lipschitz continuous with

$$\omega(\tau) := \max\{|1 - \tau \rho|, |1 - \tau \beta|\} \in [0, 1].$$

In particular, the minimum is achieved at

$$au^* = rac{2}{
ho + eta}$$
 and $\omega(au^*) = rac{eta -
ho}{eta +
ho}$.

$$\widehat{\mathbf{x}} \in \operatorname{Argmin}_{\mathbf{x} \in \mathbb{R}^N} \left\{ f(\mathbf{x}) = f_1(\mathbf{x}) + f_2(\mathbf{x}) \right\}$$

$$\mathbf{T} := \operatorname{prox}_{\tau f_2} \circ (\operatorname{Id} - \tau \nabla f_1)$$

Theorem [Briceño-Arias & Pustelnik, 2023][Briceño-Arias , 2025]:

If additionally, f_2 is ρ -strongly convex . Suppose that $\tau \in \left]0, 2\beta^{-1}\right]$.

Then **T** is
$$\omega(\tau)$$
-Lipschitz continuous with
$$\omega(\tau):=\frac{1}{1+\tau\rho}\in \left]0,1\right[.$$

$$\widehat{\mathbf{x}} \in \operatorname{Argmin}_{\mathbf{x} \in \mathbb{R}^N} \left\{ f(\mathbf{x}) = f_1(\mathbf{x}) + f_2(\mathbf{x}) \right\}$$

$$\mathbf{T} := \operatorname{prox}_{\tau f_2} \circ (\operatorname{Id} - \tau \nabla f_1)$$

Theorem [Beck & Teboulle, 2009]:

Suppose that $\tau\in\left]0,\beta^{-1}\right]$ and let $(\mathbf{x}^{[k]})_{k\in\mathbb{N}}$ the sequence generated by $\mathbf{x}^{[k+1]}=\mathbf{T}\mathbf{x}^{[k]}.$ Then,

$$f(\mathbf{x}^{[k]}) - f(\widehat{\mathbf{x}}) \le \frac{\beta}{2k} \|\mathbf{x}^{[0]} - \widehat{\mathbf{x}}\|^2$$

$$\widehat{\mathbf{x}} \in \operatorname{Argmin}_{\mathbf{x} \in \mathbb{R}^N} \left\{ f(\mathbf{x}) = f_1(\mathbf{x}) + f_2(\mathbf{x}) \right\}$$

$$\mathbf{T} := \operatorname{prox}_{\tau f_2} \circ (\operatorname{Id} - \tau \nabla f_1)$$

- Convergence may be slow in practice...
 - Use Nesterov acceleration (inertia)
 - Use second order information (preconditioning)
 - Use multilevel strategy
- What if $\operatorname{prox}_{\gamma_{l},g}$ does not have a closed form?
 - Use sub-iterations (e.g. dual FB algorithm)
 - Use more advanced methods (e.g. primal-dual algorithms)

What is inertia?

Goal: Inertia aims to use information from the **previous iterate(s)** $(\mathbf{x}^{[k']})_{k' \leq k}$ to build the next iterate $\mathbf{x}^{[k+1]}$.

Why? Use memory to go faster!

For FB we have:

$$(\forall k \in \mathbb{N}) \quad \mathbf{x}^{[k+1]} = \mathbf{T}_k(\mathbf{x}^{[k]}) \text{ where } \mathbf{T}_k = \mathrm{prox}_{\tau f_2} \circ (\mathrm{Id} - \tau \nabla f_1)$$

Introducing inertia would lead to

$$(\forall k \in \mathbb{N}) \quad \mathbf{x}^{[k+1]} = \widetilde{\mathbf{T}}_k(\mathbf{x}_1, \dots, \mathbf{x}^{[k]})$$

QUESTION: How to choose $\widetilde{\mathsf{T}}_k$?

REMARK: In general $\widetilde{\mathsf{T}}_k$ only depends on $(\mathbf{x}^{[k]},\mathbf{x}_{k-1})$ to avoid memory issues

Particular case: Inertia for GD algorithm

Let $f_2 \equiv 0$. In this case $\operatorname{prox}_{f_2} = \operatorname{Id}$.

The path taken by the iterates $(\mathbf{x}^{[k]})_{k\in\mathbb{N}}$ is determined by the opposite of the gradient direction:

$$(\forall k \in \mathbb{N}) \quad \mathbf{x}^{[k+1]} = \mathbf{x}^{[k]} - \tau_k \nabla f_1(\mathbf{x}^{[k]})$$

Acceleration: Nesterov-type accelerated GD algorithm [Nesterov, 83]

$$(\forall k \in \mathbb{N}) \qquad \mathbf{x}^{[k+1]} = \mathbf{y}^{[k]} - \tau \nabla f_1(\mathbf{y}^{[k]}) \quad \text{with } \tau \in]0, 1/\beta]$$
$$\mathbf{y}_{k+1} = \mathbf{x}^{[k+1]} + \frac{\alpha_k}{\alpha_k}(\mathbf{x}^{[k+1]} - \mathbf{x}_k)$$

Particular case: Inertia for GD algorithm

Let $f_2 \equiv 0$. In this case $\text{prox}_{f_2} = \text{Id}$.

The path taken by the iterates $(\mathbf{x}^{[k]})_{k \in \mathbb{N}}$ is determined by the opposite of the gradient direction:

$$(\forall k \in \mathbb{N}) \quad \mathbf{x}^{[k+1]} = \mathbf{x}^{[k]} - \tau_k \nabla f_1(\mathbf{x}^{[k]})$$

Acceleration: Nesterov-type accelerated GD algorithm [Nesterov, 83]

$$(\forall k \in \mathbb{N}) \qquad \mathbf{x}^{[k+1]} = \mathbf{y}^{[k]} - \tau \nabla f_1(\mathbf{y}^{[k]}) \quad \text{with } \tau \in]0, 1/\beta]$$
$$\mathbf{y}_{k+1} = \mathbf{x}^{[k+1]} + \alpha_k(\mathbf{x}^{[k+1]} - \mathbf{x}_k)$$

- Each iteration takes nearly the same computational cost as GD
- ullet not a $\emph{descent}$ method (i.e. we may not have $f_1(\mathrm{x}^{[k+1]}) \leq f_1(\mathrm{x}^{[k]})$)

Inertial FB

$$\begin{bmatrix} \text{Inertial FB} \\ \text{For } k = 0, 1, \dots \\ \text{Let } \gamma_k \in]0, 1/\beta] \\ \mathbf{x}^{[k+1]} = \mathbf{prox}_{\tau_k f_2} \Big(\mathbf{y}^{[k]} - \tau_k \nabla f_1(\mathbf{y}^{[k]}) \Big) \\ \mathbf{y}^{[k+1]} = \mathbf{x}^{[k+1]} + \pmb{\alpha_k} (\mathbf{x}^{[k+1]} - \mathbf{x}^{[k]}) \\ \end{bmatrix}$$

• [Beck and Teboulle, 2009]

Adopt the inertia (momentum) strategy proposed by Nesterov

$$\alpha_k = \frac{\theta_k - 1}{\theta_{k+1}}$$
 with $\theta_{k+1} = \frac{1 + \sqrt{1 + 4\theta_k^2}}{2}$

[Chambolle and Dossal, 2015]

$$\frac{\alpha_k}{\theta_{k+1}} = \frac{\theta_k-1}{\theta_{k+1}} \quad \text{with} \quad \theta_{k+1} = \left(\frac{k+a}{a}\right)^d$$
 with $d\in]0,1]$ and $a>\max\{1,(2d)^{1/d}\}.$

Convergence of Inertial FB

Let $(\mathbf{x}^{[k]})_{k \in \mathbb{N}}$ be generated by FB iterations with $\tau \in]0,\beta^{-1}[$. $(f(\mathbf{x}^{[k]}))_{k\in\mathbb{N}} \text{ converges to } f(\widehat{\mathbf{x}}) \text{ at the rate } O(1/k) \colon$ $f(\mathbf{x}^{[k]}) - f(\widehat{\mathbf{x}}) \leq \frac{\beta}{2k} \|\mathbf{x}^{[0]} - \widehat{\mathbf{x}}\|^2$

$$f(\mathbf{x}^{[k]}) - f(\widehat{\mathbf{x}}) \le \frac{\beta}{2k} \|\mathbf{x}^{[0]} - \widehat{\mathbf{x}}\|$$

Let
$$(\mathbf{x}^{[k]})_{k \in \mathbb{N}}$$
 be generated by Inertial FB .
$$(f(\mathbf{x}^{[k]}))_{k \in \mathbb{N}} \text{ converges to } f(\widehat{\mathbf{x}}) \text{ at the rate } O(1/k^2) \colon$$

$$f(\mathbf{x}^{[k]}) - f(\widehat{\mathbf{x}}) \leq \frac{2\beta}{(k+1)^2} \|\mathbf{x}^{[0]} - \widehat{\mathbf{x}}\|^2$$

Convergence of Inertial FB

Let $(\mathbf{x}^{[k]})_{k \in \mathbb{N}}$ be generated by FB iterations with $\tau \in]0, \beta^{-1}[$. $(f(\mathbf{x}^{[k]}))_{k \in \mathbb{N}}$ converges to $f(\widehat{\mathbf{x}})$ at the rate O(1/k): $f(\mathbf{x}^{[k]}) - f(\widehat{\mathbf{x}}) \leq \frac{\beta}{2k} \|\mathbf{x}^{[0]} - \widehat{\mathbf{x}}\|^2$

Let
$$(\mathbf{x}^{[k]})_{k \in \mathbb{N}}$$
 be generated by Inertial FB .
$$(f(\mathbf{x}^{[k]}))_{k \in \mathbb{N}} \text{ converges to } f(\widehat{\mathbf{x}}) \text{ at the rate } O(1/k^2) \text{:} \\ f(\mathbf{x}^{[k]}) - f(\widehat{\mathbf{x}}) \leq \frac{2\beta}{(k+1)^2} \|\mathbf{x}^{[0]} - \widehat{\mathbf{x}}\|^2$$

Proof: A complete proof is provided in [Beck and Teboulle, 2009].

Convergence of Inertial FB

Let $(\mathbf{x}^{[k]})_{k\in\mathbb{N}}$ be generated by FB iterations with $\tau\in]0,\beta^{-1}[$. $(f(\mathbf{x}^{[k]}))_{k\in\mathbb{N}}$ converges to $f(\widehat{\mathbf{x}})$ at the rate O(1/k): $f(\mathbf{x}^{[k]}) - f(\widehat{\mathbf{x}}) \leq \frac{\beta}{2k} \|\mathbf{x}^{[0]} - \widehat{\mathbf{x}}\|^2$

Let
$$(\mathbf{x}^{[k]})_{k \in \mathbb{N}}$$
 be generated by Inertial FB .
$$(f(\mathbf{x}^{[k]}))_{k \in \mathbb{N}} \text{ converges to } f(\widehat{\mathbf{x}}) \text{ at the rate } O(1/k^2) \text{:} \\ f(\mathbf{x}^{[k]}) - f(\widehat{\mathbf{x}}) \leq \frac{2\beta}{(k+1)^2} \|\mathbf{x}^{[0]} - \widehat{\mathbf{x}}\|^2$$

- Improved convergence speed:
 - FB: $f(x^{[k]}) f(\widehat{x}) \approx O(1/k)$ • FISTA: $f(x^{[k]}) - f(\widehat{x}) \approx O(1/k^2)$
- (Almost) Same computational complexity per iteration as FB
- Issue : Convergence guarantees of the sequence $(\mathbf{x}^{[k]})_{k\in\mathbb{N}}$?

Convergence of Inertial FB

Let $(\mathbf{x}^{[k]})_{k\in\mathbb{N}}$ be generated by FB iterations with $\tau\in]0,\beta^{-1}[.$ $(f(\mathbf{x}^{[k]}))_{k\in\mathbb{N}}$ converges to $f(\widehat{\mathbf{x}})$ at the rate O(1/k): $f(\mathbf{x}^{[k]}) - f(\widehat{\mathbf{x}}) \leq \frac{\beta}{2k} \|\mathbf{x}^{[0]} - \widehat{\mathbf{x}}\|^2$

Let
$$(\mathbf{x}^{[k]})_{k \in \mathbb{N}}$$
 be generated by Inertial FB .
$$(f(\mathbf{x}^{[k]}))_{k \in \mathbb{N}} \text{ converges to } f(\widehat{\mathbf{x}}) \text{ at the rate } O(1/k^2) \colon$$

$$f(\mathbf{x}^{[k]}) - f(\widehat{\mathbf{x}}) \leq \frac{2\beta}{(k+1)^2} \|\mathbf{x}^{[0]} - \widehat{\mathbf{x}}\|^2$$

Let
$$(\mathbf{x}^{[k]})_{k\in\mathbb{N}}$$
 be generated by Inertial FB with Chambolle-Dossal rule $\alpha_k=\frac{\theta_k-1}{\theta_{k+1}}$ with $\theta_{k+1}=\left(\frac{k+a}{a}\right)^d$ with $d\in]0,1]$ and $a>\max\{1,(2d)^{1/d}\}$ Then the sequence $(\mathbf{x}^{[k]})_{k\in\mathbb{N}}$ converges to a minimiser of f .

Duality

Minimization problem

Find

$$\hat{\mathbf{x}} \in \operatorname{Argmin}_{\mathbf{x} \in \mathbb{R}^N} f_1(\mathbf{x}) + f_2(\mathbf{x}) + g(\mathbf{L}\mathbf{x})$$

- $f_1\colon\mathbb{R}^N\to\mathbb{R}$ is convex and β -Lipschitz differentiable $f_2\in\Gamma_0(\mathbb{R}^N)$

 - $g \in \Gamma_0(\mathbb{R}^M)$ and $\mathbf{L} \in \mathbb{R}^{M \times N}$

Use FB algorithm ?

For $k = 0, 1, \dots$ $\begin{vmatrix} \mathbf{x}^{[k+1]} = \mathbf{prox}_{\tau(f_2 + g \circ \mathbf{L})} (\mathbf{x}^{[k]} - \tau \nabla f_1(\mathbf{x}^{[k]})) \end{vmatrix}$

How to compute $\text{prox}_{\tau(f_2+q\circ \mathbf{L})}$?

➤ Use primal-dual methods

The conjugate of a function $f \colon \mathbb{R}^N \to]-\infty, +\infty]$ is the function f^* defined as

$$f^* \colon \quad \mathbb{R}^N \quad \to \quad [-\infty, +\infty]$$

$$u \quad \mapsto \quad \sup_{\mathbf{x} \in \mathbb{R}^N} \langle \mathbf{x} \mid \mathbf{u} \rangle - f(\mathbf{x})$$

Graphical illustration: $f^*(\mathbf{u})$ is the supremum of the signed vertical distance between the graph of f and that of the continuous linear functional $\cdot \mathbf{u}$

The conjugate of a function $f\colon \mathbb{R}^N \to]-\infty, +\infty]$ is the function f^* defined as

$$f^* \colon \mathbb{R}^N \to [-\infty, +\infty]$$

$$u \mapsto \sup_{\mathbf{x} \in \mathbb{R}^N} \langle \mathbf{x} \mid \mathbf{u} \rangle - f(\mathbf{x})$$

The conjugate of a function $f\colon \mathbb{R}^N \to]-\infty, +\infty]$ is the function f^* defined as

$$\begin{array}{cccc} f^* \colon & \mathbb{R}^N & \to & [-\infty, +\infty] \\ & \mathbf{u} & \mapsto & \sup_{\mathbf{x} \in \mathbb{R}^N} \langle \mathbf{x} \mid \mathbf{u} \rangle - f(\mathbf{x}) \end{array}$$

The conjugate of a function $f\colon \mathbb{R}^N \to]-\infty, +\infty]$ is the function f^* defined as

$$f^* \colon \quad \mathbb{R}^N \quad \to \quad [-\infty, +\infty]$$

$$u \quad \mapsto \quad \sup_{\mathbf{x} \in \mathbb{R}^N} \langle \mathbf{x} \mid \mathbf{u} \rangle - f(\mathbf{x})$$

The conjugate of a function $f\colon \mathbb{R}^N \to]-\infty, +\infty]$ is the function f^* defined as

$$f^* \colon \mathbb{R}^N \to [-\infty, +\infty]$$

$$u \mapsto \sup_{\mathbf{x} \in \mathbb{R}^N} \langle \mathbf{x} \mid \mathbf{u} \rangle - f(\mathbf{x})$$

The conjugate of a function $f \colon \mathbb{R}^N \to]-\infty, +\infty]$ is the function f^* defined as

$$f^* : \mathbb{R}^N \to [-\infty, +\infty]$$

 $u \mapsto \sup_{\mathbf{x} \in \mathbb{R}^N} \langle \mathbf{x} \mid \mathbf{u} \rangle - f(\mathbf{x})$

Examples:

•
$$f = \frac{1}{2} \| \cdot \|^2 \Rightarrow f^* = \frac{1}{2} \| \cdot \|^2$$

$$\begin{split} & \underline{\mathsf{Proof}} : \ \mathsf{For} \ \mathsf{every} \ (\mathbf{x},\mathbf{u}) \in \mathcal{H}^2, \\ & \langle \mathbf{x} \mid \mathbf{u} \rangle - \tfrac{1}{2} \|\mathbf{x}\|^2 = \tfrac{1}{2} \|\mathbf{u}\|^2 - \tfrac{1}{2} \|\mathbf{u} - \mathbf{x}\|^2 \ \mathsf{is} \ \mathsf{maximum} \ \mathsf{at} \ \mathbf{x} = \mathbf{u}. \\ & \mathsf{Consequently}, \ f^*(\mathbf{u}) = \tfrac{1}{2} \|\mathbf{u}\|^2. \end{split}$$

The conjugate of a function $f\colon \mathbb{R}^N \to]-\infty, +\infty]$ is the function f^* defined as

$$f^* \colon \quad \mathbb{R}^N \quad \to \quad [-\infty, +\infty]$$

$$u \quad \mapsto \quad \sup_{\mathbf{x} \in \mathbb{R}^N} \langle \mathbf{x} \mid \mathbf{u} \rangle - f(\mathbf{x})$$

Moreau-Fenchel theorem

Let \mathcal{H} be a Hilbert space and $f \colon \mathcal{H} \to]-\infty, +\infty]$ be a proper function.

f is l.s.c. and convex $\Leftrightarrow f^{**} = f$.

Conjugate: properties

Fenchel-Young inequality: If f is proper, then

1.
$$(\forall (x, u) \in \mathcal{H}^2)$$
 $f(x) + f^*(u) \ge \langle x \mid u \rangle$

1.
$$(\forall (\mathbf{x}, \mathbf{u}) \in \mathcal{H}^2)$$
 $f(\mathbf{x}) + f^*(\mathbf{u}) \ge \langle \mathbf{x} \mid \mathbf{u} \rangle$
2. $(\forall (\mathbf{x}, \mathbf{u}) \in \mathcal{H}^2)$ $\mathbf{u} \in \partial f(\mathbf{x}) \Leftrightarrow f(\mathbf{x}) + f^*(\mathbf{u}) = \langle \mathbf{x} \mid \mathbf{u} \rangle$.

If
$$f \in \Gamma_0(\mathcal{H})$$
, then

If
$$f\in\Gamma_0(\mathcal{H})$$
, then
$$\left(\forall (\mathbf{x},\mathbf{u})\in\mathcal{H}^2\right) \qquad \mathbf{u}\in\partial f(\mathbf{x}) \ \Leftrightarrow \ \mathbf{x}\in\partial f^*(\mathbf{u}).$$

Conjugate: Moreau decomposition

Moreau decomposition formula

Let $\mathcal H$ be a Hilbert space, $f\in \Gamma_0(\mathcal H)$ and $\gamma>0.$

$$(\forall \mathbf{x} \in \mathcal{H}) \qquad \mathrm{prox}_{\gamma f^*} \mathbf{x} = \mathbf{x} - \gamma \mathrm{prox}_{\gamma^{-1} f} (\gamma^{-1} \mathbf{x}).$$

Proof:

$$\begin{split} \mathbf{p} &= \mathbf{prox}_{\gamma f^*} \mathbf{x} \Leftrightarrow \mathbf{x} - \mathbf{p} \in \gamma \partial f^*(\mathbf{p}) \\ &\Leftrightarrow \mathbf{p} \in \partial f \Big(\frac{\mathbf{x} - \mathbf{p}}{\gamma} \Big) \\ &\Leftrightarrow \frac{\mathbf{x}}{\gamma} - \frac{\mathbf{x} - \mathbf{p}}{\gamma} \in \frac{1}{\gamma} \partial f \Big(\frac{\mathbf{x} - \mathbf{p}}{\gamma} \Big) \\ &\Leftrightarrow \frac{\mathbf{x} - \mathbf{p}}{\gamma} = \mathbf{prox}_{\gamma^{-1} f}(\gamma^{-1} \mathbf{x}) \\ &\Leftrightarrow \mathbf{p} = \mathbf{x} - \gamma \mathbf{prox}_{\gamma^{-1} f}(\gamma^{-1} \mathbf{x}). \end{split}$$

Conjugate: Moreau decomposition

Moreau decomposition formula

Let $\mathcal H$ be a Hilbert space, $f\in\Gamma_0(\mathcal H)$ and $\gamma>0.$

$$(\forall \mathbf{x} \in \mathcal{H}) \qquad \mathrm{prox}_{\gamma f^*} \mathbf{x} = \mathbf{x} - \gamma \mathrm{prox}_{\gamma^{-1} f} (\gamma^{-1} \mathbf{x}).$$

$$\begin{split} & \underline{\text{Example:}} \text{ If } \mathcal{H} = \mathbb{R}^N, \ f = \frac{1}{q} \| \cdot \|_q^q \text{ with } q \in]1, +\infty[, \text{ then} \\ & f^* = \frac{1}{q^*} \| \cdot \|_{q^*}^q \text{ with } 1/q + 1/q^* = 1, \text{ and} \\ & (\forall \mathbf{x} \in \mathbb{R}^N) \qquad \text{prox}_{\frac{\gamma}{q^*} \| \cdot \|_q^{q^*}} \mathbf{x} = \mathbf{x} - \gamma \text{prox}_{\frac{1}{\gamma_q} \| \cdot \|_q^q} (\gamma^{-1} \mathbf{x}). \end{split}$$

Let $\mathcal C$ be a subset of $\mathbb R^N$. The support function of $\mathcal C$, denoted by $\sigma_{\mathcal C}$, is

$$(\forall \mathbf{u} \in \mathbb{R}^N) \quad \sigma_{\mathcal{C}}(\mathbf{u}) = \sup_{\mathbf{x} \in \mathcal{C}} \langle \mathbf{x}, \mathbf{u} \rangle$$

Let \mathcal{C} be a subset of \mathbb{R}^N . The support function of \mathcal{C} , denoted by $\sigma_{\mathcal{C}}$, is

$$(\forall \mathbf{u} \in \mathbb{R}^N) \quad \sigma_{\mathcal{C}}(\mathbf{u}) = \sup_{\mathbf{x} \in \mathcal{C}} \langle \mathbf{x}, \mathbf{u} \rangle$$

Graphical illustration: $\mathcal{C} = [\underline{\delta}, \overline{\delta}]$

Let \mathcal{C} be a subset of \mathbb{R}^N . The support function of \mathcal{C} , denoted by $\sigma_{\mathcal{C}}$, is

$$(\forall \mathbf{u} \in \mathbb{R}^N) \quad \sigma_{\mathcal{C}}(\mathbf{u}) = \sup_{\mathbf{x} \in \mathcal{C}} \langle \mathbf{x}, \mathbf{u} \rangle$$

Graphical illustration: $C = [\underline{\delta}, \overline{\delta}]$

Let \mathcal{C} be a subset of \mathbb{R}^N . The support function of \mathcal{C} , denoted by $\sigma_{\mathcal{C}}$, is

$$(\forall \mathbf{u} \in \mathbb{R}^N) \quad \sigma_{\mathcal{C}}(\mathbf{u}) = \sup_{\mathbf{x} \in \mathcal{C}} \langle \mathbf{x}, \mathbf{u} \rangle$$

Graphical illustration: $C = [\underline{\delta}, \overline{\delta}]$

Let $\mathcal C$ be a subset of $\mathbb R^N$. The support function of $\mathcal C$, denoted by $\sigma_{\mathcal C}$, is

$$(\forall \mathbf{u} \in \mathbb{R}^N) \quad \sigma_{\mathcal{C}}(\mathbf{u}) = \sup_{\mathbf{x} \in \mathcal{C}} \langle \mathbf{x}, \mathbf{u} \rangle$$

Graphical illustration: $\mathcal{C} = [\underline{\delta}, \overline{\delta}]$

Let \mathcal{C} be a subset of \mathbb{R}^N . The support function of \mathcal{C} , denoted by $\sigma_{\mathcal{C}}$, is

$$(\forall \mathbf{u} \in \mathbb{R}^N) \quad \sigma_{\mathcal{C}}(\mathbf{u}) = \sup_{\mathbf{x} \in \mathcal{C}} \langle \mathbf{x}, \mathbf{u} \rangle$$

Graphical illustration: $\mathcal{C} = [\underline{\delta}, \overline{\delta}]$

Let \mathcal{C} be a subset of \mathbb{R}^N . The support function of \mathcal{C} , denoted by $\sigma_{\mathcal{C}}$, is

$$(\forall \mathbf{u} \in \mathbb{R}^N) \quad \sigma_{\mathcal{C}}(\mathbf{u}) = \sup_{\mathbf{x} \in \mathcal{C}} \langle \mathbf{x}, \mathbf{u} \rangle$$

Remarks:

- We have $\sigma_{\mathcal{C}} = \iota_{\mathcal{C}}^*$
- If $\mathcal C$ is a closed, convex, non-empty subset of $\mathbb R^N$, then $\sigma_{\mathcal C}^*=\iota_{\mathcal C}^{**}=\iota_{\mathcal C}$
- Let $-\infty \leq \underline{\delta} < \overline{\delta} \leq +\infty$, and $\mathcal{C} = [\underline{\delta}, \overline{\delta}]$. Then $(\forall \mathsf{x} \in \mathbb{R}) \quad \sigma_{\mathcal{C}}(\mathsf{x}) = \begin{cases} \underline{\delta} \mathsf{x} & \text{if } \mathsf{x} < 0 \\ 0 & \text{if } \mathsf{x} = 0 \\ \overline{\delta} \mathsf{x} & \text{if } \mathsf{x} > 0 \end{cases}$

As a consequence we have $(\forall \delta>0)(\forall \mathbf{x}\in\mathbb{R})$ $f(\mathbf{x})=\delta|\mathbf{x}|=\sigma_{[-\delta,+\delta]}(\mathbf{x})$ and $f^*=\iota_{[-\delta,+\delta]}=\iota_{\mathcal{B}_\infty(0,\delta)}$

More generally, for $f = \delta \| \cdot \|_1$, we have $f^* = \iota_{\mathcal{B}_{\infty}(\mathbf{0},\delta)}$

Dual methods

Primal problem

Let ${\mathcal H}$ and ${\mathcal G}$ be two real Hilbert spaces.

Let
$$f \colon \mathcal{H} \to]-\infty, +\infty]$$
, $g \colon \mathcal{G} \to]-\infty, +\infty]$. Let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$.

We want to

$$\underset{x \in \mathcal{H}}{\text{minimize}} \ f(\mathbf{x}) + g(\mathbf{L}\mathbf{x}).$$

Dual problem

Let ${\mathcal H}$ and ${\mathcal G}$ be two real Hilbert spaces.

Let
$$f \colon \mathcal{H} \to]-\infty, +\infty]$$
, $g \colon \mathcal{G} \to]-\infty, +\infty]$. Let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$.

We want to

$$\underset{\mathbf{u} \in \mathcal{G}}{\mathsf{minimize}} \ f^*(-\mathbf{L}^*\mathbf{u}) + g^*(\mathbf{u}).$$

Weak duality

Let ${\mathcal H}$ and ${\mathcal G}$ be two real Hilbert spaces.

Let f be a proper fonction from $\mathcal H$ to $]-\infty,+\infty]$, g be a proper function from $\mathcal G$ to $]-\infty,+\infty]$, and $\mathrm L\in\mathcal B(\mathcal H,\mathcal G)$. Let

$$\mu = \inf_{\mathbf{x} \in \mathcal{H}} f(\mathbf{x}) + g(\mathbf{L}\mathbf{x}) \quad \text{and} \quad \mu^* = \inf_{\mathbf{u} \in \mathcal{G}} f^*(-\mathbf{L}^*\mathbf{u}) + g^*(\mathbf{u}).$$

We have $\mu \geq -\mu^*$. If $\mu \in \mathbb{R}$, $\mu + \mu^*$ is called the **duality gap**.

Weak duality

Let ${\mathcal H}$ and ${\mathcal G}$ be two real Hilbert spaces.

Let f be a proper fonction from $\mathcal H$ to $]-\infty,+\infty]$, g be a proper function from $\mathcal G$ to $]-\infty,+\infty]$, and $\mathrm L\in\mathcal B(\mathcal H,\mathcal G)$. Let

$$\boxed{\mu} = \inf_{\mathbf{x} \in \mathcal{H}} f(\mathbf{x}) + g(\mathbf{L}\mathbf{x}) \quad \text{and} \quad \boxed{\mu^*} = \inf_{\mathbf{u} \in \mathcal{G}} f^*(-\mathbf{L}^*\mathbf{u}) + g^*(\mathbf{u}).$$

We have $\mu \geq -\mu^*$. If $\mu \in \mathbb{R}$, $\mu + \mu^*$ is called the **duality gap**.

<u>Proof</u>: According to Fenchel-Young inequality,

$$f(\mathbf{x}) + g(\mathbf{L}\mathbf{x}) + f^*(-\mathbf{L}^*\mathbf{u}) + g^*(\mathbf{u}) \ge \langle \mathbf{x} \mid -\mathbf{L}^*\mathbf{u} \rangle + \langle \mathbf{L}\mathbf{x} \mid \mathbf{u} \rangle = 0.$$

Strong duality

Let $\mathcal H$ and $\mathcal G$ be two real Hilbert spaces. Let $f\in \Gamma_0(\mathcal H)$, $g\in \Gamma_0(\mathcal G)$, and $\mathrm L\in \mathcal B(\mathcal H,\mathcal G)$.

If $(\mathrm{dom}g)\cap\mathrm{L}(\mathrm{dom}f)\neq\emptyset$ or $\mathrm{dom}g\cap\left(\mathrm{L}(\mathrm{dom}f)\right)\neq\emptyset$, then

$$\mu = \inf_{\mathbf{x} \in \mathcal{H}} f(\mathbf{x}) + g(\mathbf{L}\mathbf{x}) = -\min_{\mathbf{u} \in \mathcal{G}} f^*(-\mathbf{L}^*\mathbf{u}) + g^*(\mathbf{u}) = -\mu^*.$$

Duality theorem (1)

Let ${\mathcal H}$ and ${\mathcal G}$ be two real Hilbert spaces.

Let $f \in \Gamma_0(\mathcal{H})$, $g \in \Gamma_0(\mathcal{G})$, and $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$.

$$\operatorname{zer}(\partial f + \operatorname{L}\partial g\operatorname{L}^*) \neq \emptyset \quad \Leftrightarrow \quad \operatorname{zer}((-L)\partial f^*(-\operatorname{L}^*) + \partial g^*) \neq \emptyset.$$

Duality theorem (1)

Let
$$\mathcal H$$
 and $\mathcal G$ be two real Hilbert spaces. Let $f\in \Gamma_0(\mathcal H),\ g\in \Gamma_0(\mathcal G),\ \text{and}\ \mathrm L\in \mathcal B(\mathcal H,\mathcal G).$
$$\mathrm{zer}(\partial f+\mathrm L\partial g\mathrm L^*)\neq\emptyset\quad\Leftrightarrow\quad \mathrm{zer}\big((-L)\partial f^*(-\mathrm L^*)+\partial g^*\big)\neq\emptyset.$$

Proof:

$$(\exists x \in \mathcal{H}) \quad 0 \in \partial f(\mathbf{x}) + \mathbf{L}^* \partial g(\mathbf{L}\mathbf{x})$$

$$\Leftrightarrow \quad (\exists \mathbf{x} \in \mathcal{H})(\exists u \in \mathcal{G}) \qquad \begin{cases} -\mathbf{L}^* \mathbf{u} \in \partial f(\mathbf{x}) \\ \mathbf{u} \in \partial g(\mathbf{L}\mathbf{x}) \end{cases}$$

$$\Leftrightarrow \quad (\exists \mathbf{x} \in \mathcal{H})(\exists \mathbf{u} \in \mathcal{G}) \qquad \begin{cases} \mathbf{x} \in \partial f^*(-\mathbf{L}^* \mathbf{u}) \\ \mathbf{L}\mathbf{x} \in \partial g^*(\mathbf{u}) \end{cases}$$

$$\Leftrightarrow \quad (\exists \mathbf{u} \in \mathcal{G}) \qquad 0 \in -\mathbf{L}\partial f^*(-\mathbf{L}^* \mathbf{u}) + \partial g^*(\mathbf{u}).$$

Duality theorem (2)

Let $\mathcal H$ and $\mathcal G$ be two real Hilbert spaces.

Let $f \in \Gamma_0(\mathcal{H})$, $g \in \Gamma_0(\mathcal{G})$, and $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$.

- If there exists $\widehat{\mathbf{x}} \in \mathcal{H}$ such that $0 \in \partial f(\widehat{\mathbf{x}}) + \mathbf{L}^* \partial g(\mathbf{L}\widehat{\mathbf{x}})$, then $\widehat{\mathbf{x}}$ is a solution to the primal problem. Moreover, there exists a solution $\widehat{\mathbf{u}}$ to the dual problem such that $-\mathbf{L}^*\widehat{\mathbf{u}} \in \partial f(\widehat{\mathbf{x}})$ and $\widehat{\mathbf{L}}\widehat{\mathbf{x}} \in \partial g^*(\widehat{\mathbf{u}})$.
- If there exists $(\widehat{\mathbf{x}}, \widehat{\mathbf{u}}) \in \mathcal{H} \times \mathcal{G}$ such that $-L^*\widehat{\mathbf{u}} \in \partial f(\widehat{\mathbf{x}})$ and $L\widehat{\mathbf{x}} \in \partial g^*(\widehat{\mathbf{u}})$ then $\widehat{\mathbf{x}}$ (resp. $\widehat{\mathbf{u}}$) is a solution to the primal (resp. dual) problem.

If $(\widehat{\mathbf{x}}, \widehat{\mathbf{u}}) \in \mathcal{H} \times \mathcal{G}$ is such that $-\mathbf{L}^*\widehat{\mathbf{u}} \in \partial f(\widehat{\mathbf{x}})$ and $\widehat{\mathbf{Lx}} \in \partial g^*(\widehat{\mathbf{u}})$, then $(\widehat{\mathbf{x}}, \widehat{\mathbf{u}})$ is called a **Kuhn-Tucker point**.

Proof:

$$0 \in \partial f(\widehat{\mathbf{x}}) + \mathbf{L}^* \partial g(\mathbf{L}\widehat{\mathbf{x}}) \subset \partial (f + g \circ \mathbf{L})(\widehat{\mathbf{x}}).$$

Then, according to Fermat rule, $\widehat{\mathbf{x}}$ is a solution to the primal problem.

In addition, there exists $\widehat{u} \in \mathcal{G}$ such that

$$\begin{cases} 0 \in \partial f(\widehat{\mathbf{x}}) + \mathbf{L}^* \widehat{\mathbf{u}} \\ \widehat{\mathbf{u}} \in \partial g(\mathbf{L} \widehat{\mathbf{x}}) \end{cases} \Leftrightarrow \begin{cases} -\mathbf{L}^* \widehat{\mathbf{u}} \in \partial f(\widehat{\mathbf{x}}) \\ \mathbf{L} \widehat{\mathbf{x}} \in \partial g^* (\widehat{\mathbf{u}}). \end{cases}$$

We have also $\widehat{\mathbf{x}} \in \partial f^*(-L^*\widehat{\mathbf{u}})$, which implies that

$$0 \in -L\partial f^*(-L^*\widehat{\mathbf{u}}) + \partial g^*(\widehat{\mathbf{u}}).$$

On the other hand,

$$0 \in -L\partial f^*(-L^*\widehat{\mathbf{u}}) + \partial g^*(\widehat{\mathbf{u}}) \subset \partial (f^* \circ (-L^*) + g^*)(\widehat{\mathbf{u}})$$

 $\Rightarrow \widehat{u}$ solution to the dual problem.

The second assertion is shown in a similar manner.

Particular case:

If
$$f = \varphi + \frac{1}{2} \| \cdot -z \|^2$$
 where $\varphi \in \Gamma_0(\mathcal{H})$ and $z \in \mathcal{H}$, then

$$-L^* \widehat{\mathbf{u}} \in \partial f(\widehat{\mathbf{x}}) \Leftrightarrow -L^* \widehat{\mathbf{u}} \in \partial \varphi(\widehat{\mathbf{x}}) + \widehat{\mathbf{x}} - \mathbf{z}$$
$$\Leftrightarrow 0 \in \widehat{\mathbf{x}} + L^* \widehat{\mathbf{u}} - \mathbf{z} + \partial \varphi(\widehat{\mathbf{x}}).$$

Hence,

$$\widehat{\mathbf{x}} = \operatorname{prox}_{\varphi}(-\mathbf{L}^*\widehat{\mathbf{u}} + \mathbf{z}).$$

Let $z \in \mathbb{R}^N$, $g \in \Gamma_0(\mathbb{R}^M)$ and $L \in \mathbb{R}^{M \times N}$.

Primal problem: $\widehat{\mathbf{x}} = \underset{\mathbf{x} \in \mathbb{R}^N}{\arg\min} \ \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|^2 + g(\mathbf{L}\mathbf{x})$

Dual problem:

 $\widehat{\mathbf{u}} \in \underset{\mathbf{u} \in \mathbb{R}^M}{\operatorname{Argmin}} \frac{1}{2} \|\mathbf{z} - \mathbf{L}^* \mathbf{u}\| + g^*(\mathbf{u})$

Choose $\mathrm{u}^{[0]} \in \mathbb{R}^M$ and $au \in]0,2/\|\mathrm{L}\|^2[.$

For $k = 0, 1, \dots$ $\begin{vmatrix} \mathbf{x}^{[k]} = \mathbf{z} - \mathbf{L}^* \mathbf{u}^{[k]} \\ \mathbf{u}_{k+1} = \mathbf{prox}_{\tau g^*} \left(\mathbf{u}^{[k]} + \tau \mathbf{L} \mathbf{x}^{[k]} \right) \end{vmatrix}$

[Combettes, Dung, Vũ, 2011]

- \bullet The sequence $(\mathbf{u}^{[k]})_{k\in\mathbb{N}}$ converges to a solution to the dual problem $\widehat{\mathbf{u}}.$
- ullet The sequence $(\mathbf{x}^{[k]})_{k\in\mathbb{N}}$ converges to a solution to the primal problem

$$\widehat{x} = z - L^* \widehat{u}.$$

Let $\mathbf{z} \in \mathbb{R}^N$, $f \in \Gamma_0(\mathbb{R}^N)$, $\mathbf{g} \in \Gamma_0(\mathbb{R}^M)$ and $\mathbf{L} \in \mathbb{R}^{M \times N}$.

Primal problem

$$\widehat{\mathbf{x}} = \arg\min_{\mathbf{x} \in \mathbb{R}^N} f(\mathbf{x}) + \frac{1}{2} ||\mathbf{x} - \mathbf{z}||^2 + g(\mathbf{L}\mathbf{x})$$

Dual problem:

$$\widehat{\mathbf{u}} \in \operatorname{Argmin}_{\mathbf{u} \in \mathbb{R}^M} \widetilde{f^*}(\mathbf{z} - \mathbf{L}^*\mathbf{u}) + g^*(\mathbf{u})$$

Let $z \in \mathbb{R}^N$, $f \in \Gamma_0(\mathbb{R}^N)$, $g \in \Gamma_0(\mathbb{R}^M)$ and $L \in \mathbb{R}^{M \times N}$.

Primal problem:

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x} \in \mathbb{R}^N} f(\mathbf{x}) + \frac{1}{2} ||\mathbf{x} - \mathbf{z}||^2 + g(\mathbf{L}\mathbf{x})$$

Dual problem:

$$\widehat{\mathbf{u}} \in \operatorname{Argmin}_{\mathbf{u} \in \mathbb{R}^M} \widetilde{f^*}(\mathbf{z} - \mathbf{L}^*\mathbf{u}) + g^*(\mathbf{u})$$

REMARK: [(Lem. 2.5) Combettes et al, 2010]

Let
$$\varphi = f + \frac{1}{2} \|\cdot -\mathbf{z}\|^2$$
. Then $\varphi^* = \widetilde{f^*}(\cdot + \mathbf{z}) - \frac{1}{2} \|\mathbf{y}\|^2$

Where $\widetilde{f^*}$ is the Moreau enveloppe of f^* : $\widetilde{f^*}(v) = \min_y f^*(y) + \frac{1}{2} \|y - v\|^2$

Dual problem: Find $\widehat{\mathbf{u}} \in \operatorname{Argmin}_{\mathbf{u} \in \mathbb{R}^M} \widetilde{f^*}(\mathbf{z} - \mathbf{L}^*\mathbf{u}) + g^*(\mathbf{u})$

- $\widetilde{f^*}$ is differentiable and $\nabla \widetilde{f^*} = \mathrm{prox}_f = -\mathrm{prox}_{f^*}$ [Moreau, 1965]
- Use FB on the dual problem!

Let $z \in \mathbb{R}^N$, $f \in \Gamma_0(\mathbb{R}^N)$, $g \in \Gamma_0(\mathbb{R}^M)$ and $L \in \mathbb{R}^{M \times N}$. **Primal problem:**

em:
$$\widehat{\mathbf{x}} = \arg\min_{\mathbf{x} \in \mathbb{R}^N} f(\mathbf{x}) + \frac{1}{2} \|\mathbf{x} - \mathbf{z}\|^2 + g(\mathbf{L}\mathbf{x})$$

Dual problem:

$$\widehat{\mathbf{u}} \in \operatorname{Argmin}_{\mathbf{u} \in \mathbb{R}^M} \widetilde{f^*}(\mathbf{z} - \mathbf{L}^*\mathbf{u}) + g^*(\mathbf{u})$$

Choose $\mathbf{u}_0 \in \mathbb{R}^M$ and $\tau \in]0, 2/\|\mathbf{L}\|^2[$.

$$\begin{cases} \text{For } k = 0, 1, \dots \\ \mathbf{x}^{[k]} = \mathbf{prox}_f \Big(\mathbf{z} - \mathbf{L}^* \mathbf{u}^{[k]} \Big) \\ \mathbf{u}^{[k+1]} = \mathbf{prox}_{\tau g^*} \Big(\mathbf{u}^{[k]} + \tau \mathbf{L} \mathbf{x}^{[k]} \Big) \end{cases}$$

[Combettes, Dung, Vũ, 2011]

The sequence $(\mathbf{u}^{[k]})_{k\in\mathbb{N}}$ converges to a solution to the dual problem $\widehat{\mathbf{u}}$.

The sequence $(x^{[k]})_{k\in\mathbb{N}}$ converges to a solution to the primal problem

 $\widehat{\mathbf{x}} = \operatorname{prox}_f(\mathbf{z} - \mathbf{L}^*\widehat{\mathbf{u}}).$

Primal-dual methods

Augmented Lagrangian method

ADMM algorithm (Alternating-direction method of multipliers)

 $\Rightarrow \textbf{Lagrangian interpretation}$

• Lagrange function : $\mathcal{L}(x, u, v) = f(x) + g(u) + \langle v \mid Lx - u \rangle$ $\Rightarrow v \in \mathcal{G}$ denotes the Lagrange multiplier.

Augmented Lagrangian method

ADMM algorithm (Alternating-direction method of multipliers) ⇒ **Lagrangian interpretation**

$$\underset{\mathbf{x} \in \mathcal{H}}{\text{minimize}} \ f(\mathbf{x}) + g(\mathbf{L}\mathbf{x}) \quad \Leftrightarrow \quad \underset{\mathbf{x} \in \mathcal{H}, \mathbf{u} \in \mathcal{G}}{\text{minimize}} \ f(\mathbf{x}) + g(\mathbf{u})$$

- Lagrange function : $\mathcal{L}(x, u, v) = f(x) + g(u) + \langle v \mid Lx u \rangle$ $\Rightarrow v \in \mathcal{G}$ denotes the Lagrange multiplier.
- Idea: iterations for finding a saddle point $(\widehat{x}, \widehat{u}, \widehat{v})$:

$$\begin{aligned} & \left\{ \mathbf{x}^{[k]} \in \operatorname{Argmin} \mathcal{L}(\cdot, \mathbf{u}^{[k]}, \mathbf{v}^{[k]}) \\ \mathbf{u}^{[k+1]} \in \operatorname{Argmin} \mathcal{L}(\mathbf{x}^{[k]}, \cdot, \mathbf{v}^{[k]}) \\ \mathbf{v}^{[k+1]} \text{ such that } \mathcal{L}(\mathbf{x}^{[k]}, \mathbf{u}^{[k+1]}, \mathbf{v}^{[k+1]}) \geq \mathcal{L}(\mathbf{x}^{[k]}, \mathbf{y}^{[k+1]}, \mathbf{v}^{[k]}). \end{aligned} \right. \end{aligned}$$

But the convergence is not guaranteed in general!

Augmented Lagrangian method

ADMM algorithm (Alternating-direction method of multipliers)

 $\Rightarrow \textbf{Lagrangian interpretation}$

$$\underset{\mathbf{x} \in \mathcal{H}}{\text{minimize}} \ f(\mathbf{x}) + g(\mathbf{L}\mathbf{x}) \quad \Leftrightarrow \quad \underset{\mathbf{x} \in \mathcal{H}, \mathbf{u} \in \mathcal{G}}{\text{minimize}} \ f(\mathbf{x}) + g(\mathbf{u})$$

- Lagrange function : $\mathcal{L}(\mathbf{x}, \mathbf{u}, \mathbf{v}) = f(\mathbf{x}) + g(\mathbf{u}) + \langle \mathbf{v} \mid \mathbf{L}\mathbf{x} \mathbf{u} \rangle$ $\Rightarrow \mathbf{v} \in \mathcal{G}$ denotes the Lagrange multiplier.
- Solution : introduce an **Augmented Lagrange function**:

$$\widetilde{\mathcal{L}}(\mathbf{x}, \mathbf{u}, \mathbf{w}) = f(\mathbf{x}) + g(\mathbf{u}) + \gamma \left\langle \mathbf{w} \mid \mathbf{L}\mathbf{x} - \mathbf{u} \right\rangle + \frac{\gamma}{2} \|\mathbf{L}\mathbf{x} - \mathbf{u}\|^2$$

 \Rightarrow The Lagrange multiplier is $v = \gamma w$ with $\gamma > 0$.

Alternating-direction method of multipliers

Algorithm for finding a saddle point:

$$(\forall k \in \mathbb{N}) \qquad \begin{cases} \mathbf{x}^{[k]} \in \underset{\mathbf{x} \in \mathcal{H}}{\operatorname{Argmin}} \ \widetilde{\mathcal{L}}(\mathbf{x}, \mathbf{y}^{[k]}, \mathbf{w}^{[k]}) \\ \mathbf{y}^{[k+1]} \in \underset{\mathbf{y} \in \mathcal{G}}{\operatorname{Argmin}} \ \widetilde{\mathcal{L}}(\mathbf{x}^{[k]}, \mathbf{y}, \mathbf{w}^{[k]}) \\ \mathbf{w}^{[k+1]} \text{ such that } \widetilde{\mathcal{L}}(\mathbf{x}^{[k]}, \mathbf{y}^{[k+1]}, \mathbf{w}^{[k+1]}) \geq \widetilde{\mathcal{L}}(\mathbf{x}^{[k]}, \mathbf{y}^{[k+1]}, \mathbf{w}^{[k]}). \end{cases}$$

By performing a gradient ascent on the Lagrange multiplier,

$$\left\{ \begin{aligned} \mathbf{x}^{[k]} &\in \operatorname{Argmin}_{\mathbf{x} \in \mathcal{H}} f(\mathbf{x}) + \gamma \left\langle \mathbf{w}^{[k]} \mid \operatorname{Lx} - \mathbf{y}^{[k]} \right\rangle + \frac{\gamma}{2} \|\operatorname{Lx} - \mathbf{y}^{[k]}\|^2 \\ \mathbf{y}^{[k+1]} &\in \operatorname{Argmin}_{\mathbf{y} \in \mathcal{G}} g(\mathbf{y}) + \gamma \left\langle \mathbf{w}^{[k]} \mid \operatorname{Lx}^{[k]} - \mathbf{y} \right\rangle + \frac{\gamma}{2} \|\operatorname{Lx}^{[k]} - \mathbf{y}\|^2 \\ \mathbf{w}^{[k+1]} &= \mathbf{w}^{[k]} + \frac{1}{\gamma} \nabla_{\mathbf{w}} \widetilde{\mathcal{L}}(\mathbf{x}^{[k]}, \mathbf{y}^{[k+1]}, \mathbf{w}^{[k]}) \\ &\Leftrightarrow \quad (\forall k \in \mathbb{N}) \end{aligned} \right. \\ \left\{ \begin{aligned} \mathbf{x}^{[k]} &\in \operatorname{Argmin}_{\mathbf{x} \in \mathcal{H}} \frac{1}{2} \left\| \operatorname{Lx} - \mathbf{y}^{[k]} + \mathbf{w}^{[k]} \right\|^2 + \frac{1}{\gamma} f(\mathbf{x}) \\ \mathbf{y}^{[k+1]} &= \operatorname{prox}_{\frac{\mathcal{G}}{\gamma}} \left(\mathbf{w}^{[k]} + \operatorname{Lx}^{[k]} \right) \\ \mathbf{w}^{[k+1]} &= \mathbf{w}^{[k]} + \operatorname{Lx}^{[k]} - \mathbf{y}^{[k+1]}. \end{aligned} \right.$$

Augmented Lagrange method

ADMM algorithm (Alternating-direction method of multipliers)

Let $f\in\Gamma_0(\mathcal{H})$ et $g\in\Gamma_0(\mathcal{G})$. Let $L\in\mathcal{B}(\mathcal{H},\mathcal{G})$ such that L^*L is an isomorphism and let $\gamma>0$.

$$(\forall k \in \mathbb{N}) \begin{cases} \mathbf{x}^{[k]} \in \operatorname{Argmin} \frac{1}{2} \| \mathbf{L}\mathbf{x} - \mathbf{y}^{[k]} + \mathbf{w}^{[k]} \|^2 + \frac{1}{\gamma} f(\mathbf{x}) \\ \mathbf{s}^{[k]} = \mathbf{L}\mathbf{x}^{[k]} \\ \mathbf{y}^{[k+1]} = \operatorname{prox}_{\frac{g}{\gamma}} \left(\mathbf{w}^{[k]} + \mathbf{s}^{[k]} \right) \\ \mathbf{w}^{[k+1]} = \mathbf{w}^{[k]} + \mathbf{s}^{[k]} - \mathbf{y}^{[k+1]}. \end{cases}$$

Augmented Lagrange method

 ${\bf ADMM\ algorithm\ } ({\it Alternating-direction\ method\ of\ multipliers})$

Let $f \in \Gamma_0(\mathcal{H})$ et $g \in \Gamma_0(\mathcal{G})$

Let $L \in \mathcal{B}(\mathcal{H},\mathcal{G})$ such that L^*L is an isomorphism and let $\gamma > 0$.

We assume that $(\operatorname{dom} g) \cap L(\operatorname{dom} f) \neq \emptyset$ or $\operatorname{dom} g \cap (L(\operatorname{dom} f)) \neq \emptyset$ and that $\operatorname{Argmin}(f + g \circ L) \neq \emptyset$. Let

$$\left\{ \begin{aligned} \mathbf{x}^{[k]} &\in \mathop{\rm Argmin}_{\mathbf{x} \in \mathcal{H}} \frac{1}{2} \left\| \mathbf{L} \mathbf{x} - \mathbf{y}^{[k]} + \mathbf{w}^{[k]} \right\|^2 + \frac{1}{\gamma} f(\mathbf{x}) \\ \mathbf{s}^{[k]} &= \mathbf{L} \mathbf{x}^{[k]} \\ \mathbf{y}^{[k+1]} &= \mathop{\rm prox}_{\frac{g}{\gamma}} \left(\mathbf{w}^{[k]} + \mathbf{s}^{[k]} \right) \\ \mathbf{w}^{[k+1]} &= \mathbf{w}^{[k]} + \mathbf{s}^{[k]} - \mathbf{y}^{[k+1]}. \end{aligned} \right.$$

We have:

- $\mathbf{x}^{[k]} \
 ightharpoonup \ \hat{\mathbf{x}} \ \text{where} \ \hat{\mathbf{x}} \in \mathrm{Argmin}(f + g \circ \mathbf{L})$
- $\gamma \mathbf{w}^{[k]} \rightharpoonup \widehat{\mathbf{v}}$ where $\widehat{\mathbf{v}} \in \operatorname{Argmin}(f^* \circ (-\mathbf{L}^*) + g^*)$.

Augmented Lagrange method

 ${\bf ADMM\ algorithm\ } ({\it Alternating-direction\ method\ of\ multipliers})$

Let $f \in \Gamma_0(\mathcal{H})$ et $g \in \Gamma_0(\mathcal{G})$

Let $L \in \mathcal{B}(\mathcal{H},\mathcal{G})$ such that L^*L is an isomorphism and let $\gamma > 0$.

We assume that $(\operatorname{dom} g) \cap L(\operatorname{dom} f) \neq \emptyset$ or $\operatorname{dom} g \cap (L(\operatorname{dom} f)) \neq \emptyset$ and that $\operatorname{Argmin}(f + g \circ L) \neq \emptyset$. Let

$$\left\{ \begin{aligned} \mathbf{x}^{[k]} &\in \mathop{\rm Argmin}_{\mathbf{x} \in \mathcal{H}} \frac{1}{2} \left\| \mathbf{L} \mathbf{x} - \mathbf{y}^{[k]} + \mathbf{w}^{[k]} \right\|^2 + \frac{1}{\gamma} f(\mathbf{x}) \\ \mathbf{s}^{[k]} &= \mathbf{L} \mathbf{x}^{[k]} \\ \mathbf{y}^{[k+1]} &= \mathop{\rm prox}_{\frac{g}{\gamma}} \left(\mathbf{w}^{[k]} + \mathbf{s}^{[k]} \right) \\ \mathbf{w}^{[k+1]} &= \mathbf{w}^{[k]} + \mathbf{s}^{[k]} - \mathbf{y}^{[k+1]}. \end{aligned} \right.$$

We have:

- $\mathbf{x}^{[k]} \
 ightharpoonup \ \hat{\mathbf{x}} \ \text{where} \ \hat{\mathbf{x}} \in \mathrm{Argmin}(f + g \circ \mathbf{L})$
- $\gamma \mathbf{w}^{[k]} \rightharpoonup \widehat{\mathbf{v}}$ where $\widehat{\mathbf{v}} \in \operatorname{Argmin}(f^* \circ (-\mathbf{L}^*) + g^*)$.

Let $f_1 \in \Gamma_0(\mathbb{R}^N)$, $f_2 \in \Gamma_0(\mathbb{R}^N)$, $g \in \Gamma_0(\mathbb{R}^M)$ and $L \in \mathbb{R}^{M \times N}$.

Primal problem: $\widehat{\mathbf{x}} \in \operatorname{Argmin}_{\mathbf{x} \in \mathbb{R}^N} f_1(\mathbf{x}) + f_2(\mathbf{x}) + g(\mathbf{L}\mathbf{x})$

Dual problem: $\widehat{\mathbf{u}} \in \operatorname{Argmin}_{\mathbf{u} \in \mathbb{R}^M} (f_1 + f_2)^* (\mathbf{L}^* \mathbf{u}) + g^* (\mathbf{u})$

Let $f_1 \in \Gamma_0(\mathbb{R}^N)$, $f_2 \in \Gamma_0(\mathbb{R}^N)$, $g \in \Gamma_0(\mathbb{R}^M)$ and $L \in \mathbb{R}^{M \times N}$.

Primal problem: $\widehat{\mathbf{x}} \in \underset{\mathbf{x} \in \mathbb{R}^N}{\operatorname{Argmin}} f_1(\mathbf{x}) + f_2(\mathbf{x}) + g(\mathbf{L}\mathbf{x})$

Dual problem: $\widehat{\mathbf{u}} \in \operatorname{Argmin}_{\mathbf{u} \in \mathbb{R}^M} (f_1 + f_2)^* (\mathbf{L}^* \mathbf{u}) + g^* (\mathbf{u})$

Lagrangian formulation Another formulation of the Primal-Dual problem is to combine them into the search of a **saddle point of the Lagrangian**:

$$(\widehat{\mathbf{x}}, \widehat{\mathbf{u}}) \in \underset{\mathbf{x} \in \mathbb{R}^N}{\operatorname{argmin}} \max_{\mathbf{u} \in \mathbb{R}^M} f_1(\mathbf{x}) + f_2(\mathbf{x}) - g^*(\mathbf{u}) + \langle \mathbf{L}\mathbf{x}, \mathbf{u} \rangle$$

Let $f_1 \in \Gamma_0(\mathbb{R}^N)$, $f_2 \in \Gamma_0(\mathbb{R}^N)$, $g \in \Gamma_0(\mathbb{R}^M)$ and $L \in \mathbb{R}^{M \times N}$.

Primal problem: $\widehat{\mathbf{x}} \in \underset{\mathbf{x} \in \mathbb{R}^N}{\operatorname{Argmin}} \ f_1(\mathbf{x}) + f_2(\mathbf{x}) + g(\mathbf{L}\mathbf{x})$

Dual problem: $\widehat{\mathbf{u}} \in \operatorname{Argmin}_{\mathbf{u} \in \mathbb{R}^M} (f_1 + f_2)^* (\mathbf{L}^* \mathbf{u}) + g^* (\mathbf{u})$

Lagrangian formulation Another formulation of the Primal-Dual problem is to combine them into the search of a **saddle point of the Lagrangian**:

$$(\widehat{\mathbf{x}}, \widehat{\mathbf{u}}) \in \underset{\mathbf{x} \in \mathbb{R}^N}{\operatorname{Argmin}} \max_{\mathbf{u} \in \mathbb{R}^M} f_1(\mathbf{x}) + f_2(\mathbf{x}) - g^*(\mathbf{u}) + \langle \mathbf{L}\mathbf{x}, \mathbf{u} \rangle$$

REMARK: Recall that, for $\psi \in \Gamma_0(\mathbb{R}^N)$, $\widehat{\mathbf{x}} \in \operatorname{Argmin} \psi \Leftrightarrow \mathbf{0} \in \partial \psi(\widehat{\mathbf{x}})$

- Do we have similar conditions for the primal-dual problem?
- \longrightarrow Look at the Lagrangian saddle point problem and derive optimal conditions for \widehat{x} , and for \widehat{u} alternatively
- → These are called KKT conditions

Let $f_1 \in \Gamma_0(\mathbb{R}^N)$, $f_2 \in \Gamma_0(\mathbb{R}^N)$, $g \in \Gamma_0(\mathbb{R}^M)$ and $L \in \mathbb{R}^{M \times N}$.

Primal problem: $\hat{\mathbf{x}} \in \operatorname{Argmin} f_1(\mathbf{x}) + f_2(\mathbf{x}) + g(\mathbf{L}\mathbf{x})$ $\mathbf{x} \in \mathbb{R}^N$

Dual problem: $\widehat{\mathbf{u}} \in \operatorname{Argmin}(f_1 + f_2)^*(\mathbf{L}^*\mathbf{u}) + q^*(\mathbf{u})$

Lagrangian formulation Another formulation of the Primal-Dual problem is to combine them into the search of a saddle point of the Lagrangian:

$$(\widehat{\mathbf{x}}, \widehat{\mathbf{u}}) \in \underset{\mathbf{x} \in \mathbb{R}^N}{\operatorname{argmin}} \max_{\mathbf{u} \in \mathbb{R}^M} f_1(\mathbf{x}) + f_2(\mathbf{x}) - g^*(\mathbf{u}) + \langle \mathbf{L}\mathbf{x}, \mathbf{u} \rangle$$

Karush-Kuhn-Tucker conditions

Assume that $domg \cap L(domf) \neq \emptyset$ and f_2 differentiable.

$$(\widehat{\mathbf{x}},\widehat{\mathbf{u}}) \in \mathbb{R}^N \times \mathbb{R}^M \text{ is a solution to the Primal-Dual problem if and only if } \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix} \in \begin{pmatrix} \partial f_1(\widehat{\mathbf{x}}) + \mathbf{L}^* \widehat{\mathbf{u}} + \nabla f_2(\widehat{\mathbf{x}}) \\ -\mathbf{L} \widehat{\mathbf{x}} + \partial q^*(\widehat{\mathbf{u}}) \end{pmatrix}$$

$\begin{cases} \mathbf{KKT:} \\ \mathbf{0} \in \partial f_1(\widehat{\mathbf{x}}) + \mathbf{L}^* \widehat{\mathbf{u}} + \nabla f_2(\widehat{\mathbf{x}}) \\ \mathbf{0} \in -\mathbf{L} \widehat{\mathbf{x}} + \partial g^*(\widehat{\mathbf{u}}) \end{cases}$

KKT:

$$\begin{cases} \mathbf{0} \in \partial f_1(\widehat{\mathbf{x}}) + \mathbf{L}^* \widehat{\mathbf{u}} + \nabla f_2(\widehat{\mathbf{x}}) \\ \mathbf{0} \in -\mathbf{L} \widehat{\mathbf{x}} + \partial g^*(\widehat{\mathbf{u}}) \end{cases}$$

Multiply by $\tau > 0$ the first equation and $\sigma > 0$ the second equation:

$$\begin{cases} -\boldsymbol{\tau} \big(\mathbf{L}^* \widehat{\mathbf{u}} + \nabla f_2(\widehat{\mathbf{x}}) \big) \in \boldsymbol{\tau} \partial f_1(\widehat{\mathbf{x}}) \\ \boldsymbol{\sigma} \mathbf{L} \widehat{\mathbf{x}} \in \boldsymbol{\sigma} \partial g^*(\widehat{\mathbf{u}}) \end{cases}$$

```
KKT:
 \begin{cases} \mathbf{0} \in \partial f_1(\widehat{\mathbf{x}}) + \mathbf{L}^* \widehat{\mathbf{u}} + \nabla f_2(\widehat{\mathbf{x}}) \\ \mathbf{0} \in -\mathbf{L} \widehat{\mathbf{x}} + \partial q^*(\widehat{\mathbf{u}}) \end{cases}
Multiply by \tau > 0 the first equation and \sigma > 0 the second equation:
\begin{cases} -\tau \left( \mathbf{L}^* \widehat{\mathbf{u}} + \nabla f_2(\widehat{\mathbf{x}}) \right) \in \tau \partial f_1(\widehat{\mathbf{x}}) \\ \sigma \mathbf{L} \widehat{\mathbf{x}} \in \sigma \partial q^*(\widehat{\mathbf{u}}) \end{cases}
Since \hat{x} - \hat{x} = 0, and \hat{u} - \hat{u} = 0, the last equations are equivalent to
\begin{cases} \widehat{\mathbf{x}} - \tau (\mathbf{L}^* \widehat{\mathbf{u}} + \nabla f_2(\widehat{\mathbf{x}})) - \widehat{\mathbf{x}} \in \tau \partial f_1(\widehat{\mathbf{x}}) \\ \\ \widehat{\mathbf{u}} + \sigma \mathbf{L} \widehat{\mathbf{x}} - \widehat{\mathbf{u}} \in \sigma \partial g^*(\widehat{\mathbf{u}}) \end{cases}
```

KKT: $\begin{cases} \mathbf{0} \in \partial f_1(\widehat{\mathbf{x}}) + \mathbf{L}^* \widehat{\mathbf{u}} + \nabla f_2(\widehat{\mathbf{x}}) \\ \mathbf{0} \in -\mathbf{L} \widehat{\mathbf{x}} + \partial q^*(\widehat{\mathbf{u}}) \end{cases}$ Multiply by $\tau > 0$ the first equation and $\sigma > 0$ the second equation: $\begin{cases} -\tau \left(\mathbf{L}^* \widehat{\mathbf{u}} + \nabla f_2(\widehat{\mathbf{x}}) \right) \in \tau \partial f_1(\widehat{\mathbf{x}}) \\ \sigma \mathbf{L} \widehat{\mathbf{x}} \in \sigma \partial q^*(\widehat{\mathbf{u}}) \end{cases}$ Since $\hat{x} - \hat{x} = 0$, and $\hat{u} - \hat{u} = 0$, the last equations are equivalent to $\begin{cases} \widehat{\mathbf{x}} - \tau \left(\mathbf{L}^* \widehat{\mathbf{u}} + \nabla f_2(\widehat{\mathbf{x}}) \right) - \widehat{\mathbf{x}} \in \tau \partial f_1(\widehat{\mathbf{x}}) \\ \\ \widehat{\mathbf{u}} + \sigma \mathbf{L} \left(2\widehat{\mathbf{x}} - \widehat{\mathbf{x}} \right) - \widehat{\mathbf{u}} \in \sigma \partial g^*(\widehat{\mathbf{u}}) \end{cases}$

KKT:

$$\begin{cases} \mathbf{0} \in \partial f_1(\widehat{\mathbf{x}}) + \mathbf{L}^* \widehat{\mathbf{u}} + \nabla f_2(\widehat{\mathbf{x}}) \\ \mathbf{0} \in -\mathbf{L} \widehat{\mathbf{x}} + \partial g^*(\widehat{\mathbf{u}}) \end{cases}$$

Multiply by $\tau > 0$ the first equation and $\sigma > 0$ the second equation:

$$\begin{cases} -\boldsymbol{\tau} \big(\mathbf{L}^* \widehat{\mathbf{u}} + \nabla f_2(\widehat{\mathbf{x}}) \big) \in \boldsymbol{\tau} \partial f_1(\widehat{\mathbf{x}}) \\ \boldsymbol{\sigma} \mathbf{L} \widehat{\mathbf{x}} \in \boldsymbol{\sigma} \partial g^*(\widehat{\mathbf{u}}) \end{cases}$$

Since $\hat{x} - \hat{x} = 0$, and $\hat{u} - \hat{u} = 0$, the last equations are equivalent to

$$\begin{cases} \underbrace{\widehat{\mathbf{x}} - \tau \left(\mathbf{L}^* \widehat{\mathbf{u}} + \nabla f_2(\widehat{\mathbf{x}}) \right)}_{\overline{\mathbf{x}}} - \underbrace{\widehat{\mathbf{x}}}_{\overline{\mathbf{p}}} \in \tau \partial f(\underbrace{\widehat{\mathbf{x}}}_{\overline{\mathbf{p}}}) & \leadsto \operatorname{prox}_{\tau f_1} \\ \underbrace{\widehat{\mathbf{u}} + \sigma \mathbf{L}(2\widehat{\mathbf{x}} - \widehat{\mathbf{x}})}_{\overline{\mathbf{p}}} - \underbrace{\widehat{\mathbf{u}}}_{\overline{\mathbf{p}}} \in \sigma \partial g^*(\underbrace{\widehat{\mathbf{u}}}_{\overline{\mathbf{p}}}) & \leadsto \operatorname{prox}_{\sigma g^*} \end{cases}$$

Prox characterisation: $\overline{\mathbf{x}} - \overline{\mathbf{p}} \in \gamma \partial \psi(\overline{\mathbf{p}}) \Leftrightarrow \overline{\mathbf{p}} = \mathrm{prox}_{\gamma \psi}(\overline{\mathbf{x}})$

$$\begin{cases} \mathbf{0} \in \partial f_1(\widehat{\mathbf{x}}) + \mathbf{L}^* \widehat{\mathbf{u}} + \nabla f_2(\widehat{\mathbf{x}}) \\ \mathbf{0} \in -\mathbf{L} \widehat{\mathbf{x}} + \partial g^*(\widehat{\mathbf{u}}) \end{cases}$$

Multiply by ${f au}>0$ the first equation and ${f \sigma}>0$ the second equation:

$$\begin{cases} -\boldsymbol{\tau} \big(\mathbf{L}^* \widehat{\mathbf{u}} + \nabla f_2(\widehat{\mathbf{x}}) \big) \in \boldsymbol{\tau} \partial f_1(\widehat{\mathbf{x}}) \\ \boldsymbol{\sigma} \mathbf{L} \widehat{\mathbf{x}} \in \boldsymbol{\sigma} \partial g^*(\widehat{\mathbf{u}}) \end{cases}$$

Since $\widehat{x} - \widehat{x} = 0$, and $\widehat{u} - \widehat{u} = 0$, the last equations are equivalent to

$$\begin{cases} \widehat{\mathbf{x}} - \tau \left(\mathbf{L}^* \widehat{\mathbf{u}} + \nabla f_2(\widehat{\mathbf{x}}) \right) - \underbrace{\widehat{\mathbf{x}}}_{\overline{\mathbf{p}}} \in \tau \partial f(\widehat{\mathbf{x}}) & \leadsto \operatorname{prox}_{\tau f_1} \\ \widehat{\mathbf{u}} + \sigma \mathbf{L}(2\widehat{\mathbf{x}} - \widehat{\mathbf{x}}) - \underbrace{\widehat{\mathbf{u}}}_{\overline{\mathbf{p}}} \in \sigma \partial g^*(\widehat{\mathbf{u}}) & \leadsto \operatorname{prox}_{\sigma g^*} \end{cases}$$

$$\Leftrightarrow \begin{cases} \widehat{\mathbf{x}} = \operatorname{prox}_{\tau f_1} \left(\widehat{\mathbf{x}} - \tau \left(\mathbf{L}^* \widehat{\mathbf{u}} + \nabla f_2(\widehat{\mathbf{x}}) \right) \right) \\ \widehat{\mathbf{u}} = \operatorname{prox}_{\sigma g^*} \left(\widehat{\mathbf{u}} + \sigma \mathbf{L} (2\widehat{\mathbf{x}} - \widehat{\mathbf{x}}) \right) \end{cases}$$

$$\begin{cases} \mathbf{0} \in \partial f_1(\widehat{\mathbf{x}}) + \mathbf{L}^* \widehat{\mathbf{u}} + \nabla f_2(\widehat{\mathbf{x}}) \\ \mathbf{0} \in -\mathbf{L} \widehat{\mathbf{x}} + \partial g^*(\widehat{\mathbf{u}}) \end{cases}$$

Multiply by ${m au}>0$ the first equation and ${m \sigma}>0$ the second equation:

$$\begin{cases} -\boldsymbol{\tau} \big(\mathbf{L}^* \widehat{\mathbf{u}} + \nabla f_2(\widehat{\mathbf{x}}) \big) \in \boldsymbol{\tau} \partial f_1(\widehat{\mathbf{x}}) \\ \boldsymbol{\sigma} \mathbf{L} \widehat{\mathbf{x}} \in \boldsymbol{\sigma} \partial g^*(\widehat{\mathbf{u}}) \end{cases}$$

Since $\widehat{x} - \widehat{x} = 0$, and $\widehat{u} - \widehat{u} = 0$, the last equations are equivalent to

$$\begin{cases} \underbrace{\widehat{\mathbf{x}} - \tau \left(\mathbf{L}^* \widehat{\mathbf{u}} + \nabla f_2(\widehat{\mathbf{x}})\right)}_{\overline{\mathbf{x}}} - \underbrace{\widehat{\mathbf{x}}}_{\overline{\mathbf{p}}} \in \tau \partial f(\underbrace{\widehat{\mathbf{x}}}_{\overline{\mathbf{p}}}) & \leadsto \operatorname{prox}_{\tau f_1} \\ \underbrace{\widehat{\mathbf{u}} + \sigma \mathbf{L}(2\widehat{\mathbf{x}} - \widehat{\mathbf{x}})}_{\overline{\mathbf{p}}} - \underbrace{\widehat{\mathbf{u}}}_{\overline{\mathbf{p}}} \in \sigma \partial g^*(\underbrace{\widehat{\mathbf{u}}}_{\overline{\mathbf{p}}}) & \leadsto \operatorname{prox}_{\sigma g^*} \end{cases}$$

$$\Leftrightarrow \begin{cases} \widehat{\mathbf{x}} = \mathrm{prox}_{\tau f_1} \Big(\widehat{\mathbf{x}} - \tau \big(\mathbf{L}^* \widehat{\mathbf{u}} + \nabla f_2(\widehat{\mathbf{x}}) \big) \Big) \\ \widehat{\mathbf{u}} = \mathrm{prox}_{\sigma g^*} \Big(\widehat{\mathbf{u}} + \sigma \mathbf{L} (2\widehat{\mathbf{x}} - \widehat{\mathbf{x}}) \Big) \end{cases}$$
 \(\times \text{Fixed-point equations}

Fixed-point algorithm

From the fixed-point equations:

$$\begin{cases} \widehat{\mathbf{x}} = \operatorname{prox}_{\tau f_1} \left(\widehat{\mathbf{x}} - \tau \left(\widehat{\mathbf{L}}^* \widehat{\mathbf{u}} + \nabla f_2(\widehat{\mathbf{x}}) \right) \right) \\ \widehat{\mathbf{u}} = \operatorname{prox}_{\sigma g^*} \left(\widehat{\mathbf{u}} + \sigma \mathbf{L} (2\widehat{\mathbf{x}} - \widehat{\mathbf{x}}) \right) \end{cases}$$

We can derive a fixed-point algorithm:

Remarks:

This algorithm is known as the Condat-Vũ algorithm

Step-size and convergence of Condat-Vu algorithm

Let $f_1 \in \Gamma_0(\mathbb{R}^N)$, $f_2 \in \Gamma_0(\mathbb{R}^N)$, $g \in \Gamma_0(\mathbb{R}^M)$ and $L \in \mathbb{R}^{M \times N}$.

Primal problem: $\widehat{\mathbf{x}} \in \operatorname{Argmin} f_1(\mathbf{x}) + f_2(\mathbf{x}) + g(\mathbf{L}\mathbf{x})$ $\mathbf{x} \in \mathbb{R}^N$

Dual problem: $\widehat{\mathbf{u}} \in \operatorname{Argmin}(f_1 + f_2)^*(\mathbf{L}^*\mathbf{u}) + g^*(\mathbf{u})$

Choose $\tau > 0$ and $\sigma > 0$ such that $\frac{1}{\tau} - \sigma \|L\|^2 > \frac{\beta}{2}$ with f_2 β -Lipschitz gradient.

$$\begin{vmatrix} \mathbf{x}^{[k+1]} = \operatorname{prox}_{\tau f_1} \left(\mathbf{x}^{[k]} - \tau \left(\nabla f_2(\mathbf{x}^{[k]}) + \mathbf{L}^* \mathbf{u}^{[k]} \right) \right) \\ \mathbf{u}^{[k+1]} = \operatorname{prox}_{\sigma g^*} \left(\mathbf{u}^{[k]} + \sigma \mathbf{L} (2\mathbf{x}^{[k+1]} - \mathbf{x}^{[k]}) \right) \end{vmatrix}$$

$$u^{[k+1]} = \text{prox}_{\sigma g^*} \left(u^{[k]} + \sigma L(2x^{[k+1]} - x^{[k]}) \right)$$

The sequence $(\mathbf{x}^{[k]})_{k \in \mathbb{N}}$ converges to a solution to the primal problem.

The sequence $(\mathbf{u}^{[k]})_{k\in\mathbb{N}}$ converges to a solution to the dual problem.

Particular cases

Condat-Vũ algorithm: [Vũ, 2013][Condat, 2013]

 $\begin{array}{|c|c|c|}\hline \text{Problem:} & \operatorname{Find} \, \widehat{\mathbf{x}} \in \operatorname{Argmin}_{\mathbf{x} \in \mathbb{R}^N} f_1(\mathbf{x}) + f_2(\mathbf{x}) + g(\mathbf{L}\mathbf{x}) \\ & \operatorname{Choose} \, \tau > 0 \, \text{and} \, \sigma > 0 \, \text{such that} \, \frac{1}{\tau} - \sigma \|\mathbf{L}\|^2 > \frac{\beta}{2} \, \text{with} \, f_2 \, \beta \text{-Lipschitz.} \\ & \operatorname{For} \, k = 0, 1, \dots \\ & \mathbf{x}^{[k+1]} = \operatorname{prox}_{\tau f_1} \Big(\mathbf{x}^{[k]} - \tau \big(\nabla f_2(\mathbf{x}^{[k]}) + \mathbf{L}^* \mathbf{u}^{[k]} \big) \Big) \\ & \mathbf{u}^{[k+1]} = \operatorname{prox}_{\sigma g^*} \Big(\mathbf{u}^{[k]} + \sigma \mathbf{L} (2\mathbf{x}^{[k+1]} - \mathbf{x}^{[k]}) \Big) \end{array}$

Particular cases

Condat- $V\tilde{\mathbf{U}}$ algorithm: [Vũ, 2013][Condat, 2013]

$$\begin{split} & \text{Problem:} \quad \text{Find } \widehat{\mathbf{x}} \in \operatorname{Argmin}_{\mathbf{x} \in \mathbb{R}^N} f_1(\mathbf{x}) + f_2(\mathbf{x}) + g(\mathbf{L}\mathbf{x}) \\ & \text{Choose } \tau > 0 \text{ and } \sigma > 0 \text{ such that } \frac{1}{\tau} - \sigma \|\mathbf{L}\|^2 > \frac{\beta}{2} \text{ with } f_2 \text{ } \beta\text{-Lipschitz.} \\ & \text{For } k = 0, 1, \dots \\ & \mathbf{x}^{[k+1]} = \operatorname{prox}_{\tau f_1} \Big(\mathbf{x}^{[k]} - \tau \big(\nabla f_2(\mathbf{x}^{[k]}) + \mathbf{L}^* \mathbf{u}^{[k]} \big) \Big) \\ & \mathbf{u}^{[k+1]} = \operatorname{prox}_{\sigma g^*} \Big(\mathbf{u}^{[k]} + \sigma \mathbf{L} \big(2\mathbf{x}^{[k+1]} - \mathbf{x}^{[k]} \big) \Big) \end{split}$$

Chambolle-Pock algorithm: $f_2 \equiv 0$ [Chambolle & Pock, 2011]

PROBLEM: Find $\widehat{\mathbf{x}} \in \operatorname{Argmin}_{\mathbf{x} \in \mathbb{R}^N} f_1(\mathbf{x}) + g(\mathbf{L}\mathbf{x})$ Choose $\tau > 0$ and $\sigma > 0$ such that $\sigma \tau \|\mathbf{L}\|^2 < 1$.

For $k = 0, 1, \dots$

Particular cases

Condat- $V\tilde{\mathrm{U}}$ algorithm: [Vũ, 2013][Condat, 2013]

```
\begin{split} & \text{Problem: } \text{Find } \widehat{\mathbf{x}} \in \operatorname{Argmin}_{\mathbf{x} \in \mathbb{R}^N} f_1(\mathbf{x}) + f_2(\mathbf{x}) + g(\mathbf{L}\mathbf{x}) \\ & \text{Choose } \tau > 0 \text{ and } \sigma > 0 \text{ such that } \frac{1}{\tau} - \sigma \|\mathbf{L}\|^2 > \frac{\beta}{2} \text{ with } f_2 \text{ } \beta\text{-Lipschitz.} \\ & \text{For } k = 0, 1, \dots \\ & \mathbf{x}^{[k+1]} = \operatorname{prox}_{\tau f_1} \Big( \mathbf{x}^{[k]} - \tau \big( \nabla f_2(\mathbf{x}^{[k]}) + \mathbf{L}^* \mathbf{u}^{[k]} \big) \Big) \\ & \mathbf{u}^{[k+1]} = \operatorname{prox}_{\sigma g^*} \Big( \mathbf{u}^{[k]} + \sigma \mathbf{L} (2\mathbf{x}^{[k+1]} - \mathbf{x}^{[k]}) \Big) \end{split}
```

Douglas-Rachford algorithm: $f_2 \equiv 0$, L = Id and $\tau = 1/\sigma$

```
\begin{split} & \text{Problem:} \quad \text{Find } \widehat{\mathbf{x}} \in \operatorname{Argmin}_{\mathbf{x} \in \mathbb{R}^N} f_1(\mathbf{x}) + g(\mathbf{x}) \\ & \text{Choose } \sigma > 0. \\ & \text{For } k = 0, 1, \dots \\ & \quad \quad \left[ \begin{array}{c} \mathbf{x}^{[k+1]} = \operatorname{prox}_{\sigma^{-1}f_1} \big( \mathbf{s}_k \big) \\ & \quad \quad \mathbf{s}_{k+1} = \mathbf{s}_k - \mathbf{x}^{[k+1]} - \operatorname{prox}_{\sigma^{-1}g} \big( 2\mathbf{x}^{[k+1]} - \mathbf{s}_k \big) \\ \end{split} \right] \end{split}
```

Chambolle-Pock algorithm and strong convexity

CHAMBOLLE-POCK ALGORITHM: [Chambolle & Pock, 2011]

```
\begin{split} & \text{Problem:} \quad \text{Find } \widehat{\mathbf{x}} \in \operatorname{Argmin}_{\mathbf{x} \in \mathbb{R}^N} f_1(\mathbf{x}) + g(\mathbf{L}\mathbf{x}) \\ & \text{Choose } \tau > 0 \text{ and } \sigma > 0 \text{ such that } \sigma \tau \|\mathbf{L}\|^2 < 1. \\ & \text{For } k = 0, 1, \dots \\ & \mathbf{x}^{[k+1]} = \operatorname{prox}_{\tau f_1} \big( \mathbf{x}^{[k]} - \tau \mathbf{L}^* \mathbf{u}^{[k]} \big) \\ & \mathbf{u}^{[k+1]} = \operatorname{prox}_{\sigma g^*} \big( \mathbf{u}^{[k]} + \sigma \mathbf{L} (2\mathbf{x}^{[k+1]} - \mathbf{x}^{[k]}) \big) \end{split}
```

Accelerated version: f_1 ho-strongly convex [Chambolle & Pock, 2011]

```
\begin{split} & \text{Choose } \tau_0 > 0 \text{ and } \sigma_0 > 0 \text{ such that } \sigma_0 \tau_0 \| \mathbf{L} \|^2 < 1. \\ & \text{For } k = 0, 1, \dots \\ & \mathbf{x}^{[k+1]} = \mathrm{prox}_{\tau_k f_1} \big( \mathbf{x}^{[k]} - \tau_k \mathbf{L}^* \mathbf{u}^{[k]} \big) \\ & \alpha_k = \big( 1 + 2\rho \tau_k \big)^{-1/2} \\ & \tau_{k+1} = \alpha_k \tau_k \\ & \sigma_k = \sigma_k \alpha_k^{-1/2} \\ & \mathbf{y}^{[k+1]} = \mathbf{x}^{[k+1]} + \alpha_k \big( \mathbf{x}^{[k+1]} - \mathbf{x}^{[k]} \big) \\ & \mathbf{u}^{[k+1]} = \mathrm{prox}_{\sigma_{k+1} g^*} \big( \mathbf{u}^{[k]} + \sigma \mathbf{L} \mathbf{y}^{[k+1]} \big) \end{split}
```

Optimization algorithms

Forward-Backward	$f_1 + f_2$	f_1 grad. Lipschitz	[Combettes,Wajs,2005]
		$\operatorname{prox}_{f_2}$	
ISTA	$f_1 + f_2$	f_1 grad. Lipschitz	[Daubechies et al, 2003]
		$f_2 = \lambda \ \cdot \ _1$	
Douglas-Rachford	$f_1 + f_2$	$\operatorname{prox}_{f_1}$	[Combettes,Pesquet, 2007]
		$\operatorname{prox}_{f_2}$	
PPXA	$\sum_{i} f_{i}$	$\operatorname{prox}_{f_i}$	[Combettes,Pesquet, 2008]
PPXA+	$\sum_i g_i \circ L_i$	$prox_{g_i}$	[Pesquet, Pustelnik, 2012]
		$\left(\sum_{i=1}^{m} \mathbf{L}_{i}^{*} \mathbf{L}_{i}\right)^{-1}$	
ADMM	$f + g \circ L$	prox_f	[Eckstein, Yao, 2015]
		$(L^*L)^{-1}$	
Chambolle-Pock	$f + g \circ L$	prox_f	[Chambolle, Pock, 2011]
		prox_q	
Condat-Vũ	$f_1 + f_2 + g \circ L$	prox_f	[Condat, 2013][Vũ, 2013]
		prox_g	
		f_2 grad. Lipschitz	