- 1. Discuss the inertial confinment technique used in nuclear fusion reactions. (Give your answer in terms of 10-15 points, with brief mathematics as required. Maximum length one A4 size page).
- 2. What is phase stability and how it can be achieved in particle accelerators. (Give your answer in terms of 10-15 points, with brief mathematics as required. Maximum length one A4 size page).
- 3. Give the quark content of hadrons given below (e.g. proton = p(u,u,d))
 - (a) Hadrons: (p,n), $(\Sigma^+, \Sigma^0, \Sigma^-)$, $(\Delta^{++}, \Delta^+, \Delta^0, \Delta^-)$ and Ω^-
 - (b) Mesons: (π^+, π^0, π^-) , (K^+, K^0) and (D^+, D^0) .
- 4. (a) Define what is Strangeness (the Strange quantum number) and give its value for each of the above hadrons.
 - (b) Arrange these hadrons given above in the Isospin multiplets and specify both the Isospin and the third component I_3 of the Isospin for each of the above hadrons.
- 5. Using the four vector notation, calculate $F_{\mu\nu}$ $F^{\mu\nu}$ in terms of the time and spatial derivatives of the electric scalar and magnetic vector potentials. Here, $F_{\mu\nu}$ is the field strength tensor.
- 6. For a $2 \to 2$ process given in terms of their four momenta $p_1 + p_2 = p_3 + p_4$ (where incoming particles are massless $m_1 = m_2 = 0$ and outgoing particles are massive $m_3 = m_4 = m$), calculate the following in terms of the angle θ between $\vec{p_1}$ and $\vec{p_3}$:
 - (a) $s = (p_1 + p_2)^2$
 - (b) $t = (p_1 p_3)^2$
 - (c) $u = (p_1 p_4)^2$
 - (d) M2 = $\frac{(t^2 + u^2)}{s^2}$.

(Hint: For the above question, first write the individual components of each of the four vectors p_1, p_2, p_3, p_4 . It can be assumed that the entire scattering phenomenon to occur in xz- plane, and z-axis can be taken as the direction of the incoming particles.)

$$x^{\mu} = (ct, \vec{x}) \text{ and } x_{\mu} = (ct, -\vec{x})$$

$$\partial_{\mu} = \frac{\partial}{\partial x^{\mu}} = (\frac{\partial}{c\partial t}, \vec{\nabla}), \partial^{\mu} = \frac{\partial}{\partial x_{\mu}} = (\frac{\partial}{c\partial t}, -\vec{\nabla})$$

$$A^{\mu}(x) = (\phi(x)/c, \vec{A}(x))$$

$$F_{\mu\nu} = (\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu})$$