Recommending for a Three-Sided Food Delivery Marketplace: A Multi-Objective Hierarchical Approach

Yuyan Wang¹, Long Tao², Xian Xing Zhang³

*Work done at Uber.

Google Research

¹Google Brain*, USA

² Uber Technologies, Inc., USA

³ Pinterest*, USA

Motivation

Recommending for a food-delivery marketplace

Recommender Systems

- Number of decisions an average person makes in average day: 35,000
- Recommender Systems (Recsys):
 - Facilitates information acquisition for the users
 - Helps user targeting for the content providers

Food Recommender Systems

Challenge 1: Multi-sided trade-off

Three-sided marketplace...

Challenge 1: Multi-sided trade-off

Three-sided marketplace...

Challenge 2: Heterogeneous and hierarchical items

A <u>recommendation item</u> can be:

A single restaurant: a restaurant presented as a row;

A carousel: a collection of restaurants belonging to a theme (e.g. Fast delivery, same cuisine) presented as a row.

The Homepage is a two-dimensional grid consisting of **heterogeneous** and **hierarchical** contents.

Off-the-shelf recommender systems are **NOT** directly applicable as they focus on ranking items of the same type in a one-dimensional list.

Google Research

Research Objective

Can we build a recommender system for a food-delivery platform that simultaneously tackles these two challenges?

In particular, it should be able to:

- Address the multi-sided trade-off in a principled way
- Handle **heterogeneous and hierarchical recommendation items** in a holistic framework

Method

MOHR: Multi-Objective
Hierarchical Recommender

MOHR: Multi-objective hierarchical recommender

MO-step

Machine learning models for multiple objectives

H-step

A probabilistic **hierarchical model** for hierarchical recommendation

R-step

Scalable **constrained optimization** for multi-sided ranking

MO-step: Multi-objective prediction

We build ML models for four objectives for the three-sided food delivery marketplace:

- **User conversion**: whether the user places an order
- **User retention**: whether the user returns to the platform and orders **again** within the next X days
- Basket value: dollar amount of the order
- Marketplace fairness: exposure that the new restaurants receive on the platform

For every *(user, restaurant, source)* triplet, where *source* is the hierarchy information of the restaurant (e.g. belongs to "Italian food" carousel)

-> Different from the usual recsys setting where prediction is done on (user, restaurant) pairs.

H-step: Hierarchical recommendation

Users have **limited patience**, at each position inside a carousel, she:

- orders from the current restaurant,
- continues browsing the next restaurant inside the carousel, or
- abandon the whole carousel.

We define a **user browsing model** for this:

 $p_{l,l+1} = \mathbf{P}$ (the user scrolls to position l+1 | currently at position l).

H-step: Hierarchical recommendation

Therefore, carousel-level objectives can be expressed as

Carousel-level
$$c(i,k) = \sum_{l=1}^{n} \left[\mathbf{P}(\text{user } i \text{ orders from restaurant } j_l \text{ at position } l \mid \text{user } i \text{ scrolls to position } l) \right]$$

$$\times \mathbf{P}(\text{user } i \text{ scrolls to position } l) \right]$$

$$= \sum_{l=1}^{n} \left[c(i,j_l,k) \prod_{l'=1}^{l} \mathbf{P}(\text{user } i \text{ did not order at position } l'-1, \text{ and scrolls to position } l') \right]$$

$$= \sum_{l=1}^{n} \left[c(i,j_l,k) \prod_{l'=1}^{l} (1-c(i,j_{l'-1},k)) \cdot p_{l'-1,l'} \right],$$

An interpretable aggregation of restaurant-level objectives

R-step: Multi-objective optimization for ranking

Maximize one of the objectives while constraining on the amount of **tolerable** sacrifice on other objectives:

s.t.
$$Objective_2 \ge (1 - \alpha_2) \cdot objective_2^{opt}$$

$$Objective_3 \ge (1 - \alpha_3) \cdot objective_3^{opt}$$

$$Objective_4 \ge (1 - \alpha_4) \cdot objective_4^{opt}$$

MOHR: Putting everything together

Results

Offline and live experiments at Uber Eats

Offline: counterfactual Pareto frontiers

Generated by the offline replay method [1], using **random ranking data** where restaurants are randomly shuffled and presented to the users.

Marketplace fairness objective

(Top and right is better)

Live experiment at Uber Eats

To understand the contribution of each part separately, we experimented with

- Multi-objective recommender ("MOR"): only MO-step + R-step
- **Hierarchical single-objective recommender ("H")**: only H-step with conversion as single-objective.
- Multi-objective hierarchical recommender ("MOHR"): the full MOHR framework.

Data and Experiment setup:

- Online controlled experiment (a.k.a "A/B testing")
- 2% of Uber Eats' global user traffic from 06/01/2019 06/28/2019

Results on MOR

	Basket value	User retention	Marketplace fairness	Combined
Conversion rate	-	-	-	-
Basket value per order	+0.5%	-	-	+0.5%
Retention rate	-	+0.7%	÷	+0.7%
Orders per user	-	+0.8%	-	+0.8%
New restaurants impression ratio	-	-	+150%	+150%
New restaurants order ratio	-	-	+108%	+108%

Table 4 Results on multi-objective recommendation ("MOR"). Metric differences that are statistically significant at 95% confidence interval are reported, in the form of relative changes over the control group.

MOR is able to achieve **Pareto improvements** on the individual objectives.

Results on H

Metric	Conversion rate	Average vertical order position	Search rate
Relative change over control	+1.5%**	-5.7%***	-0.9%***

Table 5 Results on hierarchical single-objective recommendation ("H"). Metric are reported as relative changes over the control group. ***p < 0.01, **p < 0.05.

The hierarchical modeling component not only improves user conversion, but also **reduces the search effort** from the users.

Results on the full MOHR

Metric	Conversion rate	Basket value per order	Retention rate
Relative change	+0.5%**	+0.5%***	+0.7%***
Metric	Orders per user	New restaurants impression ratio	New restaurants order ratio
Relative change	0.9%***	+150%***	+108%***
Metric	Average vertical order position	Search rate	
Relative change	-3.2%***	-0.8%**	

Table 6 Results on the full multi-objective hierarchical recommender ("MOHR"). Metric are reported as relative changes over the control group. ***p < 0.01, **p < 0.05.

MOHR effectively pushes forward the Pareto frontier for the three-sided marketplace.

Key Takeaways

- Recommending for a three-sided food-delivery marketplace faces two prominent challenges: multi-objective trade-off and heterogeneity of recommendation items.
- We propose MOHR, a model-based three-step recommendation framework combining machine learning, structural modeling and multi-objective optimization for recommending restaurants and aggregation of restaurants on food-delivery platforms.
- Live experiment results demonstrate that MOHR effectively **pushes forward the Pareto frontier** for the three-sided marketplace.

Yuyan Wang

Google Research, Brain Team

yuyanw@google.com

