

Intriguing properties of neural networks. Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, Rob Fergus. In ICLR, 2014

Why do we care?

- Security
- Safety
- Hint to malfunction?

Minimize $||r||_2$ subject to:

1.
$$f(x+r) = l$$

2.
$$x + r \in [0, 1]^m$$

Adversarial examples for linear classifiers

$$h(x) = w^{T}x$$

$$\hat{x} = x + \eta$$

$$w^{T}\hat{x} = w^{T}x + w^{T}\eta$$

$$-\epsilon \leq \eta \leq \epsilon$$

$$\eta = \epsilon \operatorname{sgn}(w)$$

$$w^{T}\eta = ||w||_{1}$$

Adversarial examples for convolutional networks

$$L(\theta, x + \eta, y) \approx L(\theta, x, y) + \eta^T \nabla_x L(\theta, x, y)$$

$$\max_{\eta} L(\theta, x + \eta, y)$$
s.t.
$$-\epsilon \leq \eta \leq \epsilon$$

$$\eta = \epsilon \operatorname{sgn}(\nabla_x L(\theta, x, y))$$

$$L(\theta, x + \eta, y) = L(\theta, x, y) + \epsilon \|\nabla_x L(\theta, x, y)\|_1$$

Adversarial examples for convolutional networks

- Convolutional networks w/ RELU are differentiable almost everywhere
- Are linear almost everywhere
- Slope for a given x = gradient at x
- Can use gradient to generate an adversarial example

More fun with adversarial examples

- Transferable across models
- Resilient to printing and photographing

	Photos				Source images			
Adversarial	Clean images		Adv. images		Clean images		Adv. images	
method	top-1	top-5	top-1	top-5	top-1	top-5	top-1	top-5
fast $\epsilon = 16$	79.8%	91.9%	36.4%	67.7%	85.3%	94.1%	36.3%	58.8%
fast $\epsilon = 8$	70.6%	93.1%	49.0%	73.5%	77.5%	97.1%	30.4%	57.8%
fast $\epsilon = 4$	72.5%	90.2%	52.9%	79.4%	77.5%	94.1%	33.3%	51.0%
fast $\epsilon = 2$	65.7%	85.9%	54.5%	78.8%	71.6%	93.1%	35.3%	53.9%

Adversarial examples in the physical world. Alexey Kurakin, Ian Goodfellow, Samy Bengio. ICLR Workshop (2017)

Adversarial turtle

Synthesizing robust adversarial examples. Anish Athalye, Logan Engstrom, Andrew Ilyas, Kevin Kwok.

Adversarial turtle

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}'} \mathbb{E}_{\mathbf{t} \sim \mathbf{T}} [-\log \mathbf{P}(\mathbf{y} | \mathbf{t}(\mathbf{x}')) + \lambda || \mathbf{LAB}(\mathbf{t}(\mathbf{x}) - \mathbf{t}(\mathbf{x}')) ||_{\mathbf{2}}^{\mathbf{2}}]$$

Resilience to adversaries

$$\eta = \epsilon \operatorname{sgn}(\nabla_x L(\theta, x, y))$$
$$\alpha L(\theta, x, y) + (1 - \alpha)L(\theta, x + \epsilon \operatorname{sgn}(\nabla_x L(\theta, x, y)))$$

89.4% \rightarrow 17.9%

Kinds of adversarial perturbations

- "White-box" vs "black-box"
 - Does adversary have access to the model?
- "Untargeted" vs "Targeted"
 - Should the new output be incorrect in a particular way?

Integrity attack, functionality attack, privacy attack

Training-time attack, inference-time attack