Improved Autoregressive Modeling with Distribution Smoothing

Mikhail Kuznetsov

CMC MSU

February 8, 2021

Let $\{x_1, x_2, \dots, x_N\}$ — D-dimensional i.i.d samples from a continuous data distribution $p_{\text{data}}(x)$

Property

An autoregressive model decomposes a joint distribution into univariate conditionals [2]:

$$p(\mathbf{x}) = \prod_{i=1}^{D} p(x_i \mid \mathbf{x}_{< i})$$

Goal

Find θ — parameters of the model such that $p_{\theta}(\mathbf{x}) \approx p_{\mathsf{data}}(\mathbf{x})$

A commonly used approach for density estimation is maximum likelihood estimation (MLE), i.e., by maximizing

$$L(\theta) \triangleq \frac{1}{N} \sum_{i=1}^{N} \log p_{\theta}(\mathbf{x}_i)$$

General idea

Figure: Overview of the method $(\tilde{x}-\text{the smoothed data},\ q(\tilde{x}\mid x)-\text{the smoothing distribution})\ [1]$

Problem 1: Manifold hypothesis

Many real world data distributions (e.g.natural images) may lie in the vicinity of a low-dimensional manifold and can often have complicated densities with sharp transitions (i.e. high Lipschitz constants) that are difficult to model.

Figure (a): The 300 most frequent words of the Brown corpus represented in the spectral domain.

Figure (b): Fragments labeled by arrows: (left) infinitives of verbs, (middle) prepositions, and (right) mostly modal and auxiliary verbs.

Source: (Belkin M., Niyogi P., 2003) [3]

Problem 1: Manifold hypothesis

Figure: Ring distribution (almost a unit circle) formed by rotating the 1-d Gaussian distribution $\mathcal{N}\left(1,0.01^2\right)$ around the origin. The data location for each figure is $(\sqrt{0.5}+c,\sqrt{0.5}+c)$, where c is the number below each figure and $(\sqrt{0.5},\sqrt{0.5})$ is the upper right intersection of the trajectory with the unit circle. [1]

Problem 2: Compounding errors

$$p(\mathbf{x}) = \prod_{i=1}^{D} p(x_i \mid \mathbf{x}_{< i})$$

Compounding errors comes from the inaccurate approximation of the conditional distributions.

The reasons for this may be:

- Curse of dimensionality + very limited amount of training data (in some cases)
- The current state is based on the values of the previous states
- Adversarial attacks

Theorem 1 Let:

- $\mathbf{1}$ p(x) a continuous 1-d distribution that is supported on \mathbf{R}
- $q(\tilde{x} \mid x) 1$ -d distribution that is:
 - symmetric (i.e. $q(\tilde{x} \mid x) = q(x \mid \tilde{x})$)
 - stationary (i.e. translation invariant)
 - $\lim_{x\to\infty} p(x)q(x\mid \tilde{x}) = 0$ for any given \tilde{x}

Then: $Lip(q(\tilde{x})) \leq Lip(p_{data}(x)),$ where $q(\tilde{x}) \triangleq \int q(\tilde{x} \mid x) p(x) dx$ and L

where $q(\tilde{x}) \triangleq \int q(\tilde{x} \mid x) p(x) dx$ and $Lip(\cdot)$ denotes the Lipschitz constant of the given 1 - d function.

Figure: Illustration of the Theorem 1 [1]

Proposition 1 (Informal) Let:

- $\mathbf{I} q(\tilde{\mathbf{x}} \mid \mathbf{x})$ is such that:
 - symmetric
 - stationary
 - has small variance
 - has negligible higher order moments (i.e. very small)

Then:

$$\boldsymbol{\textit{E}}_{\textit{p}_{\mathsf{data}}\left(\boldsymbol{x}\right)}\boldsymbol{\textit{E}}_{\textit{q}\left(\tilde{\boldsymbol{x}}|\boldsymbol{x}\right)}\left[\log p_{\theta}(\tilde{\boldsymbol{x}})\right] \approx \boldsymbol{\textit{E}}_{\textit{p}_{\mathsf{data}}\left(\boldsymbol{x}\right)}\left[\log p_{\theta}(\boldsymbol{x}) + \frac{\eta}{2}\sum_{i}\frac{\partial^{2}\log p_{\theta}}{\partial x_{i}^{2}}\right]$$

for some constant η .

Since the samples from $p_{\rm data}$ should be close to a local maximum of the model, this encourages the second order gradients computed at a data point x to become closer to zero (if it were positive then x will not be a local maximum), creating a smoothing effect.

- Sing-step recovering
- Obtaining ELBO

- [1] Improved autoregressive modeling with distribution smoothing. https://openreview.net/pdf?id=rJA5Pz71HKb, 2021.
- [2] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma. Pixelcnn++: Improving the pixelcnn with discretized logistic mixture likelihood and other modifications.

arXiv:1701.05517, 2017.

[3] Mikhail Belkin, Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation.

```
https:
```

//www2.imm.dtu.dk/projects/manifold/Papers/Laplacian.pdf,
2003.