CS 224S / LINGUIST 281 Speech Recognition, Synthesis, and Dialogue

Dan Jurafsky

Lecture 1: Short introduction to the course, the ARPAbet, and Articulatory Phonetics

Today, Jan 6, Week 1

- Overview and very brief history
- Administration
 - Overview of course topics
 - Grading
- Articulatory Phonetics
- ARPAbet transcription

Applications of Speech Recognition/ Understanding (ASR/ASU)

- Dictation
- Telephone-based Information
 - Google voice search
 - Directions
 - Air travel, banking, etc
- Hands-free (in car)
- Second language ('L2') (accent reduction)
- Audio archive searching and aligning

Applications of Speech Synthesis/ Text-to-Speech (TTS)

- Games
- Telephone-based Information (directions, air travel, banking, etc)
- Eyes-free (in car)
- Reading/speaking for disabled
- Education (Reading tutors, L2)

Applications of Speaker/Lg Recognition

- Language recognition for call routing
- Speaker Recognition:
 - Speaker verification (binary decision)
 - Voice password, telephone assistant
 - Speaker identification (one of N)
 - Criminal investigation

One example: Extraction of Social Meaning from Speech

- Detection of student uncertainty in tutoring
 - Forbes-Riley et al. (2008)
- Emotion detection (annoyance)
 - Ang et al. (2002)
- Detection of deception
 - Newman et al. (2003)
- Detection of charisma
 - Rosenberg and Hirschberg (2005)
- Speaker stress, trauma
 - Rude et al. (2004), Pennebaker and Lay (2002)

Conversational style

- Given speech and text from a conversation
- Can we tell if a speaker is
 - Awkward?
 - Flirtatious?
 - Friendly?

- 1000 4-minute "speed-dates"
- Each subject rated their partner for these styles
- The following segment has been lightly signalprocessed:

History: foundational insights 1900s-1950s

- Automaton:
 - Markov 1911
 - Turing 1936
 - McCulloch-Pitts neuron (1943)
 - http://marr.bsee.swin.edu.au/~dtl/het704/lecture10/ann/node1.html
 - http://diwww.epfl.ch/mantra/tutorial/english/mcpits/html/
 - Shannon (1948) link between automata and Markov models
- Human speech processing
 - Fletcher at Bell Labs (1920's)
- Probabilistic/Information-theoretic models
 - Shannon (1948)

Synthesis precursors

- Von Kempelen mechanical (bellows, reeds) speech production simulacrum
- 1929 Channel vocoder (Dudley)

History: Early Recognition

1920's Radio Rex

- Celluloid dog with iron base held within house by electromagnet against force of spring
- Current to magnet flowed through bridge which was sensitive to energy at 500 Hz
- 500 Hz energy caused bridge to vibrate, interrupting current, making dog spring forward
- The sound "e" (ARPAbet [eh]) in Rex has 500 Hz component

History: early ASR systems

- 1950's: Early Speech recognizers
 - 1952: Bell Labs single-speaker digit recognizer
 - Measured energy from two bands (formants)
 - Built with analog electrical components
 - 2% error rate for single speaker, isolated digits
 - 1958: Dudley built classifier that used continuous spectrum rather than just formants
 - 1959: Denes ASR combining grammar and acoustic probability
- 1960's
 - FFT Fast Fourier transform (Cooley and Tukey 1965)
 - LPC linear prediction (1968)
 - 1969 John Pierce letter "Whither Speech Recognition?"
 - Random tuning of parameters,
 - Lack of scientific rigor, no evaluation metrics
 - Need to rely on higher level knowledge

ASR: 1970's and 1980's

- Hidden Markov Model 1972
 - Independent application of Baker (CMU) and Jelinek/Bahl/Mercer lab (IBM) following work of Baum and colleagues at IDA
- ARPA project 1971-1976
 - 5-year speech understanding project: 1000 word vocab, continous speech, multi-speaker
 - SDC, CMU, BBN
 - Only 1 CMU system achieved goal
- 1980's+
 - Annual ARPA "Bakeoffs"
 - Large corpus collection
 - TIMIT
 - Resource Management
 - Wall Street Journal

State of the Art

- ASR
 - speaker-independent, continuous, no noise, world's best research systems:
 - Human-human speech: ~10-20% Word Error Rate (WER)
 - Human-machine speech: ~3-5% WER
- TTS (demo next week)

LVCSR Overview

- Large Vocabulary Continuous (Speaker-Independent) Speech Recognition
 - Build a statistical model of the speech-towords process
 - Collect lots of speech and transcribe all the words
 - Train the model on the labeled speech
 - Paradigm: Supervised Machine Learning + Search

Unit Selection TTS Overview

- Collect lots of speech (5-50 hours) from one speaker, transcribe very carefully, all the syllables and phones and whatnot
- To synthesize a sentence, patch together syllables and phones from the training data.
- Paradigm: search

Requirements and Grading

- Readings:
 - Required Text:
 - Selected chapters from
 - Jurafsky & Martin, 2008. Speech and Language Processing.
 - Taylor, Paul. 2009. Text-to-Speech Synthesis.
 - Later in the course: a few conference and journal papers
- Grading
 - Homework: 45%
 - 7 assignments
 - Final Project: 45%
 - Group projects (3 people) are fine
 - Participation: 10%

Overview of the course

http://www.stanford.edu/class/cs224s

Phonetics

- ARPAbet
 - An alphabet for transcribing American English phonetic sounds.
- Articulatory Phonetics
 - How speech sounds are made by articulators (moving organs) in mouth.
- Acoustic Phonetics
 - Acoustic properties of speech sounds

ARPAbet Vowels

	b_d	ARPA		b_d	ARPA
1	bead	iy	9	bode	ow
2	bid	ih	10	booed	uw
3	bayed	ey	11	bud	ah
4	bed	eh	12	bird	er
5	bad	ae	13	bide	ay
6	bod(y)	aa	14	bowed	aw
7	bawd	ao	15	Boyd	oy
8	Budd(hist)	uh			

Note: Many speakers pronounce Buddhist with the vowel uw as in booed, So for them [uh] is instead the vowel in "put" or "book"

ARPAbet

 http://www.stanford.edu/class/cs224s/ arpabet.html

ARPAbet	IPA		ARPAbet
Symbol	Symbol	Word	Transcription
[p]	[p]	parsley	[p aa r s l iy]
[t]	[t]	tea	[t iy]
[k]	[k]	<u>c</u> ook	[k uh k]
[b]	[b]	<u>b</u> ay	[b ey]
[d]	[d]	<u>d</u> ill	[d ih 1]
[g]	[g]	garlic	[g aa r l ix k]
[m]	[m]	mint	[m ih n t]
[n]	[n]	<u>n</u> utmeg	[n ah t m eh g]
[ng]	[ŋ]	baking	[b ey k ix ng]
[f]	[f]	flour	[f l aw axr]
[v]	[v]	clo <u>v</u> e	[k 1 ow v]
[th]	[θ]	<u>th</u> ick	[th ih k]
[dh]	[ð]	<u>th</u> ose	[dh ow z]
[s]	[s]	<u>s</u> oup	[s uw p]
[z]	[z]	egg <u>s</u>	[eh g z]
[sh]	[ʃ]	squa <u>sh</u>	[s k w aa sh]
[zh]	[3]	ambro <u>s</u> ia	[ae m b r ow zh ax]
[ch]	[tʃ]	<u>ch</u> erry	[ch eh r iy]
[jh]	[dʒ]	jar	[jh aa r]
[1]	[1]	licorice	[l ih k axr ix sh]
[w]	[w]	ki <u>w</u> i	[k iy w iy]
[r]	[r]	rice	[r ay s]
[y]	[j]	yellow	[y eh 1 ow]
[h]	[h]	<u>h</u> oney	[h ah n iy]

Less commonly used phones and allophones

zess commonly used phones and anophones				
[q]	[3]	<u>uh</u> -oh	[q ah q ow]	7
[dx]	[1]	bu <u>tt</u> er	[b ah dx axr]	
[nx]	$[\tilde{\mathbf{r}}]$	wi <u>nn</u> er	[w ih nx axr]	
[e1]	[1]	tab <u>le</u>	[t ey b el]	

ARPAbet	IPA		ARPAbet
Symbol	Symbol	Word	Transcription
[iy]	[i]	lily	[1 ih 1 iy]
[ih]	[I]	l <u>i</u> ly	[1 ih 1 iy]
[ey]	[e _I]	daisy	[d ey z iy]
[eh]	[ε]	pen	[p eh n]
[ae]	[æ]	aster	[ae s t axr]
[aa]	[a]	_ р <u>о</u> рру	[p aa p iy]
[ao]	[c]	orchid	[ao r k ix d]
[uh]	[ช]	w <u>oo</u> d	[w uh d]
[ow]	[00]	lotus	[1 ow dx ax s]
[uw]	[u]	tulip	[t uw 1 ix p]
[ah]	[A]	b <u>u</u> tterc <u>u</u> p	[b ah dx axr k ah p]
[er]	[3,]	b <u>ir</u> d	[b er d]
[ay]	[aɪ]	<u>i</u> ris	[ay r ix s]
[aw]	[au]	sunfl <u>ow</u> er	[s ah n f l aw axr]
[oy]	[01]	s <u>oi</u> l	[s oy 1]

Reduced and uncommon phones

[ax]	[ə]	lot <u>u</u> s	[1 ow dx ax s]
[axr]	[34]	heath <u>er</u>	[h eh dh axr]
[ix]	[i]	tul <u>i</u> p	[t uw 1 ix p]
[ux]	[u]	d <u>u</u> de ¹	[d ux d]

The Speech Chain (Denes and Pinson)

Speech Production Process

Respiration:

 We (normally) speak while breathing out. Respiration provides airflow. "Pulmonic egressive airstream"

Phonation

- Airstream sets vocal folds in motion. Vibration of vocal folds produces sounds. Sound is then modulated by:
- Articulation and Resonance
 - Shape of vocal tract, characterized by:
 - Oral tract
 - Teeth, soft palate (velum), hard palate
 - Tongue, lips, uvula
 - Nasal tract

1/5/07

1/5/07

From Mark Liberman's Web Site, from Language Files (7th ed)

Vocal tract

Vocal tract movie (high speed x-ray)

Figure of Ken Stevens, labels from Peter Ladefoged's web site

USC's SAIL Lab Shri Narayanan

Larynx and Vocal Folds

- The Larynx (voice box)
 - A structure made of cartilage and muscle
 - Located above the trachea (windpipe) and below the pharynx (throat)
 - Contains the vocal folds
 - (adjective for larynx: laryngeal)
- Vocal Folds (older term: vocal cords)
 - Two bands of muscle and tissue in the larynx
 - Can be set in motion to produce sound (voicing)

The larynx, external structure, from front

Vertical slice through larynx, as seen from back

Voicing:

1/5/07

- •Air comes up from lungs
- •Forces its way through vocal cords, pushing open (2,3,4)
- •This causes air pressure in glottis to fall, since:
 - when gas runs through constricted passage, its velocity increases (Venturi tube effect)
 - this increase in velocity results in a drop in pressure (**Bernoulli principle**)
- •Because of drop in pressure, vocal cords snap together again (6-10)
- •Single cycle: $\sim 1/100$ of a second.

Voicelessness

- When vocal cords are open, air passes through unobstructed
- Voiceless sounds: p/t/k/s/f/sh/th/ch
- If the air moves very quickly, the turbulence causes a different kind of phonation: whisper

Vocal folds open during breathing

Vocal Fold Vibration

Consonants and Vowels

- Consonants: phonetically, sounds with audible noise produced by a constriction
- Vowels: phonetically, sounds with no audible noise produced by a constriction
- (it's more complicated than this, since we have to consider syllabic function, but this will do for now)

Place of Articulation

- Consonants are classified according to the location where the airflow is most constricted.
- This is called place of articulation
- Three major kinds of place articulation:
 - Labial (with lips)
 - Coronal (using tip or blade of tongue)
 - Dorsal (using back of tongue)

Places of articulation

Coronal place

Dorsal Place

Figure thanks to Jennifer Venditti

Manner of Articulation

- Stop: complete closure of articulators, so no air escapes through mouth
- Oral stop: palate is raised, no air escapes through nose. Air pressure builds up behind closure, explodes when released
 - p, t, k, b, d, g
- Nasal stop: oral closure, but palate is lowered, air escapes through nose.
 - m, n, ng

Oral vs. Nasal Sounds

More on Manner of articulation of consonants

Fricatives

- Close approximation of two articulators, resulting in turbulent airflow between them, producing a hissing sound.
 - f, v, s, z, th, dh
- Approximant
 - Not quite-so-close approximation of two articulators, so no turbulence
 - y, r
- Lateral approximant
 - Obstruction of airstream along center of oral tract, with opening around sides of tongue.

More on manner of articulation of consonants

- Tap or flap
 - Tongue makes a single tap against the alveolar ridge
 - dx in "butter"
- Affricate
 - Stop immediately followed by a fricative
 - ch, jh

Articulatory parameters for English consonants (in **ARPAbet**)

	PLACE OF ARTICULATION														
ION		bilabial		labio- dental		inter- dental		alveolar		palatal		velar		glottal	
MANNER OF ARTICULATION	stop	p	b					t	d			k	g	q	\times
	fric.			f	V	th	dh	s	Z	sh	zh			h	
	affric.									ch	jh				
	nasal		m						n				ng		X
	approx		W						l/r		y				
MAN	flap							dx					X		

VOICING: voiceless

voiced

Tongue position for vowels

Vowels

American English Vowel Space

[iy] vs. [uw]

Figure from Jennifer Venditti, from a lecture given by Rochelle Newman

[ae] vs. [aa]

Figure from Jennifer Venditti, from a lecture given by Rochelle Newman

More phonetic structure

Syllables

 Composed of vowels and consonants. Not well defined. Something like a "vowel nucleus with some of its surrounding consonants".

More phonetic structure

- Stress
 - Some syllables have more energy than others
 - Stressed syllables versus unstressed syllables
 - (an) 'INsult vs. (to) in'SULT
 - (an) 'OBject vs. (to) ob'JECT
- Simple model: every multi-syllabic word has one syllable with:
 - "primary stress"
 - We can represent by using the number "1" on the vowel (and an implicit unmarking on the other vowels)
 - "table": t ey1 b ax l
 - "machine: m ax sh iy1 n
 - Also possible: "secondary stress", marked with a "2"
 - ih-2 n f axr m ey-1 sh ax n
 - Third category: reduced: schwa:
 - ax

Where to go for more info

- Ladefoged, Peter. 1993. A Course in Phonetics
- Mark Liberman's site
 - http://www.ling.upenn.edu/courses/
 Spring_2001/ling001/phonetics.html
- John Coleman's site
 - http://www.phon.ox.ac.uk/%7Ejcoleman/ mst_mphil_phonetics_course_index.html

Summary

- Overview and very brief history
- Articulatory Phonetics
- Administration
 - Overview of course topics
 - Grading
- ARPAbet transcription
- NEXT TIME: Acoustic phonetics