Semantics of Functional Programming: Sample Solution

Liang-Ting Chen and Tyng-Ruey Chuang

11 July 2014

	1.	(20%)	Which	of the	following	posets	are	coos?	Why	7?
--	----	-------	-------	--------	-----------	--------	-----	-------	-----	----

(a) The set (\mathbb{N}, \leq) of natural numbers with the natural ordering.

Proof. No. The set \mathbb{N} of all natural numbers is directed, because for every two elements x and y, either $x \leq y$ or $y \leq x$. However, there is no upper bound of \mathbb{N} in \mathbb{N} .

(b) $(\mathbb{N} \cup \{\infty\}, \leq')$ with the natural ordering i.e. $n \leq' \infty$ for every $n \in \mathbb{N} \cup \{\infty\}$ and $n \leq' m$ if $n \leq m$ for $m \in \mathbb{N}$.

Proof. Yes.

- i. 0 is the element satisfying $0 \le n$ with $n \in \mathbb{N} \cup \{\infty\}$, i.e. the bottom element.
- ii. We claim that every directed subset has the least upper bound. Let D be a directed subset. If D is finite, then by induction there is an upper bound z of D in D so that z is the least upper bound. If D is infinite, then every element $x \in \mathbb{N}$ is not an upper bound. Otherwise D is finite, since there are only finitely many elements below x. By definition, ∞ is the upper bound of D, and any element x with $\infty \leq x$ must be ∞ .

2. (30%) Evaluate the following terms using \rightarrow step by step without formal derivations.

(a) $(\lambda x. \lambda y. \lambda z. z)$ $(\forall n. n) 31$

Answer.
$$(\lambda x. \lambda y. \lambda z. z)$$
 $(Yn. n)$ 3 1 \rightsquigarrow $(\lambda y. \lambda z. z)$ 3 1 \rightsquigarrow $(\lambda z. z)$ 1 \rightsquigarrow 1

(b) $(\lambda z. \lambda n. ifz(n; z; x. x)) ifz(\underline{0}; \underline{1}; m. suc m)$

Answer.

$$(\lambda z. \lambda n. ifz(n; z; x. x)) ifz(\underline{0}; \underline{1}; m. suc m)$$

 $\rightsquigarrow (\lambda n. ifz(n; ifz(\underline{0}; \underline{1}; m. suc m); x. x)$

3. (30%) Find the denotation of the following terms.

(a)
$$z: \sigma \vdash \lambda x. \lambda y. x: \sigma_1 \rightarrow \sigma_2 \rightarrow \sigma_1$$

Answer.

$$\begin{split} & \llbracket z: \sigma \vdash \lambda x. \, \lambda y. \, x: \sigma_1 \to \sigma_2 \to \sigma_1 \rrbracket \\ &= \Lambda \llbracket z: \sigma, x: \sigma_1 \vdash \lambda y. \, x: \sigma_2 \to \sigma_1 \rrbracket \\ &= \Lambda (\Lambda \llbracket z: \sigma, x: \sigma_1, y: \sigma_2 \vdash x: \sigma_1 \rrbracket) = \Lambda (\Lambda \pi_2) \end{split}$$

where $\pi_2: 1 \times D_{\sigma} \times D_{\sigma_1} \times D_{\sigma_2}$ maps $(*, d, d_1, d_2) \in 1 \times D_{\sigma} \times D_{\sigma_1} \times D_{\sigma_2}$ to d_1 .

(b) $x : \mathtt{nat}, y : \sigma, z : \sigma \vdash \mathtt{ifz}(x; y; m. z) : \sigma$

Answer. For every $(*, d_1, d_2, d_3) \in 1 \times D_{\text{nat}} \times D_{\sigma} \times D_{\sigma}$, we have

$$[\![x:\mathtt{nat},y:\sigma,z:\sigma \vdash \mathtt{ifz}(x;y;m.z):\sigma]\!] \ (*,d_1,d_2,d_3) = ifz(d_1,d_2,const_{d_3})$$

or equivalently

$$\llbracket x: \mathtt{nat}, y: \sigma, z: \sigma \vdash \mathtt{ifz}(x; y; m.z): \sigma \rrbracket \ (*, d_1, d_2, d_3) = \begin{cases} \bot & \text{if } d_1 = \bot \\ d_2 & \text{if } d_1 = 0 \\ d_3 & \text{if } d_1 > 0 \end{cases}$$

4. (10%) Show that there is no term V satisfying $Yx.x \downarrow V$. Hint. Use the agreement of the one-step reduction and the big-step reduction, and the fact that \leadsto is deterministic, i.e. if $M \leadsto M_1$ and $M \leadsto M_2$ then $M_1 = M_2$.

Proof. Suppose that there is a term V with $Yx.x \Downarrow V$. By the agreement, $Yx.x \leadsto^* V$ and V is a value. By $(\leadsto\text{-fix})$, $Yx.x \leadsto Yx.x$ and by determinacy every term V with $Yx.x \leadsto V$ must be Yx.x By induction, every term V with $Yx.x \leadsto^* V$ must be Yx.x.

However, Yx. x is not a value, so we reach a contradiction.

Proof. Alternatively, we do induction on the derivation of $Yx.x \Downarrow V$, and the only case is (\Downarrow -fix), i.e. to have $Yx.x \Downarrow V$ we must have $x[Yx.x/x] \Downarrow V$ as a premise satisfying the induction hypothesis. That is, there is no term V satisfying $Yx.x \Downarrow V$.

5. (10%) Find a monotonic function $f: \mathbb{N} \cup \{\infty\} \to \mathbb{N} \cup \{\infty\}$ which is *not* continuous. You have to give an example such that $f(\Box S) \neq \Box_{x \in S} f(x)$.

Answer. Let f(n) = 0 for $n < \infty$ and $f(\infty) = \infty$. It is clear that f is a monotonic function. Since ∞ is the greatest element of \mathbb{N} , $\square \mathbb{N} = \infty$. Thus, $f(\square \mathbb{N}) = \infty \neq 0 = \square_{n \in \mathbb{N}} f(n)$.