Homework 5

- 1. Prove that every monoid in the category of groups is an internal group. (Hint: use the Eckmann-Hilton argument.)
- 2. Let C be a category with pullbacks.
 - (a) Show that an arrow $m: M \to X$ in ${\bf C}$ is monic if and only if the diagram below is a pullback.

Thus as an object in \mathbb{C}/X , m is monic iff $m \times m \cong m$.

(b) Show that the pullback along an arrow $f:Y\to X$ of a pullback square over X,

is again a pullback square over Y. (Hint: draw a cube and use the 2-pullbacks Lemma). Conclude that the pullback functor f^* preserves products.

(c) Conclude from the foregoing that in a pullback square

if m is monic, then so is m'.

- 3. (Pushouts)
 - (a) Dualize the definition of a pullback to define the "copullback" (called the "pushout") of two arrows with common domain.
 - (b) Indicate how to construct pushouts using coproducts and coequalizers (proof "by duality").
 - (c) What is the pushout in posets of the two maps $0, 1 : \{*\} \rightarrow [0, 1]$, where $\{*\}$ is a one-element poset, and [0, 1] is the unit interval.
- 4. *(Partial maps) For any category **C** with pullbacks, define the category $\mathbf{Par}(\mathbf{C})$ of partial maps in **C** as follows: the objects are the same as those of **C**, but an arrow $f: A \to B$ is a pair $(|f|, U_f)$ where $U_f \rightarrowtail A$ is a subobject (an equivalence class of monomorphisms) and $|f|: U_f \to B$ (take a suitably-defined equivalence class of arrows), as indicated in the diagram:

Composition of $(|f|, U_f): A \to B$ and $(|g|, U_g): B \to C$ is given by taking a pullback and then composing to get $(|g \circ f|, |f|^*(U_g), as$ suggested by the follow diagram.

Check to see that this really does define a category.