

b.

Vout(max) = 1,86v y Vout(min) = -1,38v

Vamos a calcular los valores de $V\gamma$ a partir de los obtenidos para Vout.

Para Vout (max):

Si D1 conduce y D2 corte, entonces 1,86 = 1,2 + $V\gamma$. Despejando, obtenemos $V\gamma$ = 0,66v. Además, la corriente que atraviesa el diodo es positiva.

Si D1 corte y D2 conduce, entonces la intensidad que pasa por el diodo es -0,87mA, que es < 0 y esto es contradictorio con las condiciones, por lo tanto, no vale esta suposición.

D1 y D2 no pueden estar simultáneamente en conducción porque entonces $V\gamma$ tendría que tomar el mismo valor para ambos diodos, y eso es imposible en este circuito.

D1 y D2 no pueden estar simultáneamente en corte porque Vout saldría 0 y eso es imposible, no concuerda con los valores máximo y mínimo obtenidos.

Para Vout (min):

Si D1 corte y D2 conduce, entonces -1,38 = -0,7 - $V\gamma$. Despejando, obtenemos $V\gamma$ = 0,68v. Además, la corriente que atraviesa el diodo es positiva.

Si D1 conduce y D2 corte, entonces la intensidad que pasa por el diodo es < 0 y esto es contradictorio con las condiciones, por lo tanto, no vale esta suposición.

D1 y D2 no pueden estar simultáneamente en conducción porque entonces $V\gamma$ tendría que tomar el mismo valor para ambos diodos, y eso es imposible en este circuito.

D1 y D2 no pueden estar simultáneamente en corte porque Vout saldría 0 y eso es imposible, no concuerda con los valores máximo y mínimo obtenidos.

c.

A continuación vemos la salida del circuito para valores de V2 y V3 grandes:

La máxima amplitud son 2,5v. Esto tiene sentido porque si las fuentes V2 y V3 toman valores muy grandes, las corrientes por esas ramas van a ser muy grandes, pero en sentidos contrarios, así que se "cancelarían". Entonces, quedaría un circuito con la fuente de tensión V1, y dos resistencias de 1K: R y RLoad. Simulando este circuito, vemos que produce una onda sinusoidal de amplitud 2,5v, que coincide con el valor obtenido previamente y teóricamente.

d.

e.

Rload (Kohm)	Voutmax (v)	Voutmin (v)
0,22	4,26	8,61m
0,47	4,28	197m
1	4,30	928m
2,2	4,32	2,06
4,7	4,33	3,01
10	4,34	3,65
22	4,35	4,01