CONDATIS TRAINING WORKSHOP

Wednesday 28th November 2018 Institut Pertanian Bogor, Java

TIME	CONTENT	SESSION
08:30 - 09:00	REGISTRATION + REFRESHMENTS	
09:00 - 09:30	Introduction to Condatis	1
09:30 - 10:00	Data requirements for Condatis	2
10:00 – 10:30	BREAK	
10:30 - 11:15	Running a FLOW analysis	3
11:15 - 12:00	Running a DROPPING analysis	4
12:00 - 12:30	Discussion on Condatis outputs; Q&A	5
12:30 - 13:00	Introduction to TNGHS project & presentation of results	6
13:00	MEETING CLOSE	

Data requirements for Condatis

LYDIA COLE, JENNY HODGSON & KATHERINE ALLEN

INSTITUT PERTANIAN BOGOR, JAVA • 28TH NOVEMBER 2018

Key Conservation Questions

What **species** need to move in this landscape?

Between which sources and targets?

What constitutes **habitat** for those species?

Where is additional potential habitat that they could move through?

Case study example: movement of a large-winged invertebrate in response to climatic change, from a lowland Protected Area (PA) to higher elevation habitat in Mount Kinabalu National Park.

Species Data

What is the **species/taxa** of interest?

REPRODUCTIVE RATE:

How many emigrants could the species produce in one generation, in one km² of habitat?

DISPERSAL DISTANCE:

How far can an individual travel in one generation?

Generating Species Data

REPRODUCTIVE RATE: How many emigrants could the species produce in one generation, in one km² of habitat?

- Number of offspring per individual
- Number of reproductive individuals per km²

DISPERSAL DISTANCE:

How far can an individual travel in one generation?

- Mark-recapture experiments
- Ecological surveys
- Observations of vagrants
- Anecdotal information

Movement direction – Source/Target

Where is the species of interest moving from, i.e. the **source**?

Where is it moving to, i.e. the **target**?

Source – label 1 Target – label 2

Movement direction

Example SourceTarget.tif raster file in QGIS

Habitat Data

What is the **habitat** of the species of interest?

What **proportion** of each grid cell does that habitat cover?

= 0.76 =

What is the **quality** of the habitat in that cell?

Ensure all raster layers have the same pixel/cell size & geospatial extent

Prioritisation Layer (for Dropping analysis)

CONSERVATION: Where is **additional habitat** that your species could move through, e.g. unprotected forest? Which of these potential habitat patches are a **conservation priority** to ensure future connectivity as species shift their ranges?

...OR...

RESTORATION: Does habitat need to be **restored** in order to enhance movement pathways along key routes?

Prioritise conservation or restoration of additional habitat to enhance connectivity

Conservation prioritisation

Choosing unprotected habitat to **conserve** for connectivity

Restoration prioritisation

Choosing where to **restore** habitat to enhance connectivity

Data inputs for Condatis

Data/files	Name	
Reproductive rate	Number of individuals per km ² per generation	
Dispersal distance	km travelled per individual per generation	
Source/target raster	Source cells labelled 1; target cells labelled 2	
Habitat raster	Proportion of habitat per grid cell (0-1)	
Prioritisation raster	Proportion of habitat per grid cell (0-1)	

Now ready to go.....

Condatis - www.webapp.condatis.org.uk