Introduction to metagenome-based pathogen identification

Sahar Abdelrazek, M.Sc., Ph.D.
Department of Biomedical Sciences and Pathobiology
VA-MD College of Veterinary Medicine
Virginia Tech

Genome/metagenome-based pathogen identification

Methods for Pathogen Identification

Culture-based Methods

Time-consuming some bacteria are difficult to culture

Molecular Methods

Only pathogens with known sequence data can be detected

Sequencing Methods

Can detect newly emerging pathogens as well as non-culturable pathogens

Metagenome-based pathogen identification

Metagenomics is the sequencing of a whole community of microorganism DNA as opposed to sequencing just the individual microbes.

Reasons for choosing metagenomics

- No need of culturing the pathogen
 - Higher resolution
- Can detect pathogens from newly emerging diseases

Metagenome-based pathogen identification pipeline

1 Sample Collection

Planning & Preparation

Sample Collection

Storage & Transport

Define Objectives: Study purpose (e.g., disease diagnosis, pathogen diversity, epidemiology).

Select Plant and Tissue Type: Choose specific tissues (e.g., leaves, roots, stems) based on where the pathogen is likely to be present.

Timing: Collect samples at the right stage of disease development.

Tools and Materials: Sterile gloves, scissors or scalpels and sterile bags or tubes.

Transport: Ensure samples remain cool during transport to the lab (ice packs or a portable refrigerator if possible).

Immediate Storage: (-80)

2 DNA extraction

/prepare/extraction_protocols

- 25 sample types
- 72 protocole
- DNA and RNA
- Sample handling & storage advice

Role # 1: You can't sequence what you don't have?

Sample Preparation: In the lab, further clean the samples if needed. Use sterile conditions to prevent contamination.

Extraction Kit: Use a DNA extraction kit suitable for your sample. (modifications to handle each type of sample).

Purity Check: Use Nanodrop to check the DNA purity (A260/A280 ratio should be ~1.8).

Quantification: Use Qubit for accurate DNA quantification.

3 Library preparation

Role # 2: Trade-off between sequencing output and read length

Long Reads Portability Real-Time Data Versatility

Any fragment length libraries 20 bases to 4 Mb+

Rapid prep in just 10 minutes

PCR-free protocols to elimate bias

	Output optimised	Speed optimised	Ultra-long reads optimised
	Ligation Sequencing Kit	Rapid Sequencing Kit	Ultra-long DNA Sequencing Kit
Preparation time	60 minutes	10 minutes	200* mins + 1x O/N incubation
Input recommendation	~1000 ng gDNA or 100-200 fmol for amplicons	~100 ng gDNA	6M cells
Fragmentation	Optional	Transposase-based	Transposase-based
Amplification	No	No	No
Barcode options	Native Barcoding Kit 24 Native Barcoding Kit 96	Rapid Barcoding Kit 24 Rapid Barcoding Kit 96	-
Typical output	•••	••0	•••
Adaptive sampling	Yes	Yes	Yes

https://nanoporetech.com/products/prepare/dna-librarypreparation

Protocol builder

Provides a range of end to end workflows to help select the best library prep solution

Which DNA library prep kit do I choose?

Let our tools help you choose the best solution

The Protocol Builder provides a range of end-to-end workflows to help select the best library prep solution: community.nanoporetech.com/knowledge/protocol_builder

3 Library preparation workflow

Native Barcoding Kit 24 V14

3 Sequencing

3 Real-time data analysis

EPI2ME WIMP rapid species EPI2ME identification and quantification from metagenomic samples

Example for real-time data analysis using WIMP

Tomato sample with wilt symptoms

Sample ID	22-263	
Collect Date	October-12-2022	
Virginia District	Southwestern	
County	Buckingham, Virginia	
Host Common Name	Tomato	
Variety	Red Morning	
Host Genus	Solanum	
Host Species	lycopersicum	
Oxford Nanopore Technologies	PromethION	
Samples run per flow cell	20	

1 Sample Collection 2 DNA extraction

3 Sequencing & Data analysis

4 Pathogen identification

SHOWING TAXA WITH READS 4 Pathogen NCBI Taxonomy Tree

identification

HIDE FILTERS =

Cumulative Reads -

MINIMUM ABUNDANCE CUTOFF 3% 1% 0.5% 0.1% 0%

Agrobacterium tumefaciens

10 20 30 100 200

Taxon :

1,088,000 520,840

567,160

Lineage Taxa - Not Classified Taxa - Classified

Ralstonia solanacearum

EPI2ME

Tomato sample with wilt symptoms

Ralstonia solanacearum 288,732 48.735 Homo sapiens Stenotrophomonas maltophilia 30.867 20,110 Bordetella petrii Enterobacter sp. ODB01 14,977 11,183 Acinetobacter baumannii 9,931 Agrobacterium tumefaciens 8.891 Enterobacter kobei 4.436 Pseudomonas aeruginosa 3.227 Clostridium tetani 3,089 Enterobacter cloacae

Genome based pathogen identification

Run Kraken2 using PlusPF Kraken2 database Classified species within our sample were then sorted by z-score, with the species having the highest z-score considered as the pathogen

Extract Ralstonia reads using Kraken

Assemble pathogen genome using Flye

positive CDS

negative CDS tRNA rRNA GC content genomeR\vec{\vec{8}}iv

Metabolism

[S]

[G]

Genome/metagenome-based pathogen identification

Virginia-Maryland College of Veterinary Medicine / Research / (Meta)Genomics-Based Pathogen Identification Center

Explore

(Meta)Genomics-Based Pathogen Identification Center for Animal and Plant Disease Diagnostics, Biosecurity, and

Pandemic Prevention

Kevin Lahmers, DVM, PhD. DACVP-Anatomic Pathology

Clinical Professor of Anatomic Pathology 205 Duck Pond Drive Blacksburg, VA 24061

klahmers@vt.edu

Boris Vinatzer, PhD Professor of Plant Pathology

551 Latham Hall Blacksburg, VA 24061 vinatzer@vt.edu

Lina Rodriguez Salamanca, PhD

Instructor and Plant Disease Clinic Manager and Diagnostician 114 Price Hall 170 Drillfield Drive

Sahar Abdelrazek, PhD

Research Assistant Professor

Project Manager 205 Duck Pond Drive

Blacksburg, VA 24061 abdelrazek@vt.edu

linar@vt.edu

Blacksburg, VA 24061

Available Services

Comprehensive and Rapid Pathogen Screening

Custom Metagenomic Analysis

Research & Collaboration

Next: genomeRxiv

Questions

