Gaussian Mixture Model

He He

CDS, NYU

April 27, 2021

Probabilistic Model for Clustering

- Problem setup:
 - There are *k* clusters (or **mixture components**).
 - We have a probability distribution for each cluster.
- Generative story of a mixture distribution:
 - **1** Choose a random cluster $z \in \{1, 2, ..., k\}$.
 - Choose a point from the distribution for cluster z.

Example:

- Choose $z \in \{1, 2, 3\}$ with $p(1) = p(2) = p(3) = \frac{1}{3}$.
- **2** Choose $x \mid z \sim \mathcal{N}(X \mid \mu_z, \Sigma_z)$.

Gaussian mixture model (GMM)

Generative story of GMM with k mixture components:

- Choose cluster $z \sim \text{Categorical}(\pi_1, \dots, \pi_k)$.
- **2** Choose $x \mid z \sim \mathcal{N}(\mu_z, \Sigma_z)$.

Probability density of x:

• Sum over (marginalize) the **latent variable** z.

$$p(x) = \sum_{z} p(x, z) \tag{1}$$

$$=\sum_{z}p(x\mid z)p(z) \tag{2}$$

$$=\sum_{k}\pi_{k}\mathcal{N}(\mu_{k},\Sigma_{k})\tag{3}$$

He He (CDS, NYU) DS-GA 1003 April 27, 2021 3 / 14

Learning GMMs

How to learn the parameters π_k , μ_k , Σ_k ?

- MLE (also called maximize marginal likelihood).
- Log likelihood of data:

$$L(\theta) = \sum_{i=1}^{n} \log p(x_i; \theta)$$
 (4)

$$=\sum_{i=1}^{n}\log\sum_{z}p(x,z;\theta)$$
 (5)

4/14

- Cannot push log into the sum... z and x are coupled.
- No closed-form solution for GMM—try to compute the gradient yourself!

He He (CDS, NYU) DS-GA 1003 April 27, 2021

Learning GMMs: observable case

Suppose we observe cluster assignments z. Then MLE is easy:

$$n_z = \sum_{i=1}^n 1(z_i = z)$$
 # examples in each cluster (6)

$$\hat{\pi}(z) = \frac{n_z}{n}$$
 fraction of examples in each cluster (7)

$$\hat{\pi}(z) = \frac{n_z}{n}$$
 fraction of examples in each cluster (7)
$$\hat{\mu}_z = \frac{1}{n_z} \sum_{i: z_i = z} x_i$$
 empirical cluster mean (8)

$$\hat{\Sigma}_{z} = \frac{1}{n_{z}} \sum_{i:z_{i}=z} (x_{i} - \hat{\mu}_{z}) (x_{i} - \hat{\mu}_{z})^{T}.$$
 empirical cluster covariance (9)

DS-GA 1003 5 / 14 He He (CDS, NYU) April 27, 2021

The inference problem: observe x, want to know z.

$$p(z = j \mid x_i) = p(x, z = j)/p(x)$$
 (10)

$$= \frac{p(x \mid z = j)p(z = j)}{\sum_{k} p(x \mid z = k)p(z = k)}$$
(11)

$$= \frac{\pi_j \mathcal{N}(x_i \mid \mu_j, \Sigma_j)}{\sum_k \pi_k \mathcal{N}(x_i \mid \mu_k, \Sigma_k)}$$
(12)

- $p(z \mid x)$ is a soft assignment.
- If we know the parameters μ , Σ , π , this would be easy to compute.

Let's compute the cluster assignments and the parameters iteratively.

The expectation-minimization (EM) algorithm:

- **1** Initialize parameters μ , Σ , π randomly.
- 2 Run until convergence:
 - E-step: fill in latent variables by inference.
 - compute soft assignments $p(z | x_i)$ for all i.
 - **2** M-step: standard MLE for μ , Σ , π given "observed" variables.
 - Equivalent to MLE in the observable case on data weighted by $p(z \mid x_i)$.

M-step for GMM

• Let $p(z \mid x)$ be the soft assignments:

$$\gamma_i^j = \frac{\pi_j^{\text{old}} \mathcal{N}\left(x_i \mid \mu_j^{\text{old}}, \Sigma_j^{\text{old}}\right)}{\sum_{c=1}^k \pi_c^{\text{old}} \mathcal{N}\left(x_i \mid \mu_c^{\text{old}}, \Sigma_c^{\text{old}}\right)}.$$

Exercise: show that

$$\mu_c^{\text{new}} = \frac{1}{n_c} \sum_{i=1}^n \gamma_i^c x_i$$

$$\Sigma_c^{\text{new}} = \frac{1}{n_c} \sum_{i=1}^n \gamma_i^c (x_i - \mu_c^{\text{new}}) (x_i - \mu_c^{\text{new}})^T$$

$$\pi_c^{\text{new}} = \frac{n_c}{n}.$$

Initialization

• First soft assignment:

• First soft assignment:

• After 5 rounds of EM:

• After 20 rounds of EM:

EM for GMM: Summary

- EM is a general algorithm for learning latent variable models.
- Key idea: if data was fully observed, then MLE is easy.
 - E-step: fill in latent variables by computing $p(z \mid x, \theta)$.
 - M-step: standard MLE given fully observed data.
- Simpler and more efficient than gradient methods.
- Can prove that EM monotonically improves the likelihood and converges to a local minimum.
- k-means is a special case of EM for GMM with hard assignments, also called hard-EM.

He He (CDS, NYU) DS-GA 1003 April 27, 2021 14/14