

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{20} + u^{19} + \dots - 2u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 20 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{array}{l} \text{I. } I_1^u = \langle u^{20} + u^{19} - 5u^{18} - 6u^{17} + 11u^{16} + 16u^{15} - 10u^{14} - 22u^{13} - 2u^{12} + \\ 13u^{11} + 13u^{10} + 4u^9 - 9u^8 - 10u^7 + 4u^5 + 3u^4 + u^3 - u^2 - 2u - 1 \rangle \end{array}$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{6} - u^{4} + 1 \\ u^{6} - 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{14} + 3u^{12} - 4u^{10} + u^{8} + 2u^{6} - 2u^{4} + 1 \\ -u^{14} + 4u^{12} - 7u^{10} + 6u^{8} - 2u^{6} + u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{14} + 3u^{12} - 4u^{10} + u^{8} + 2u^{6} - 2u^{4} + 1 \\ -u^{16} + 4u^{14} - 8u^{12} + 8u^{10} - 4u^{8} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{14} + 3u^{12} - 4u^{10} + u^{8} + 2u^{6} - 2u^{4} + 1 \\ -u^{16} + 4u^{14} - 8u^{12} + 8u^{10} - 4u^{8} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$4u^{19} - 24u^{17} - 4u^{16} + 64u^{15} + 20u^{14} - 84u^{13} - 44u^{12} + 36u^{11} + 44u^{10} + 44u^{9} - 8u^{8} - 60u^{7} - 24u^{6} + 16u^{5} + 16u^{4} + 12u^{3} - 8u - 14$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_5,c_9	$u^{20} + u^{19} + \dots - 2u - 1$
c_2, c_8	$u^{20} + 3u^{19} + \dots + 12u + 1$
c_3, c_7	$u^{20} + u^{19} + \dots - 2u - 1$
C4	$u^{20} - 3u^{19} + \dots + 2u + 5$
c_6	$u^{20} + 11u^{19} + \dots + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_9	$y^{20} - 19y^{19} + \dots - 2y + 1$
c_2, c_8	$y^{20} + 17y^{19} + \dots - 62y + 1$
c_{3}, c_{7}	$y^{20} - 11y^{19} + \dots - 2y + 1$
c_4	$y^{20} - 7y^{19} + \dots - 274y + 25$
<i>c</i> ₆	$y^{20} - 3y^{19} + \dots - 6y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.912041 + 0.514968I	-2.98499 + 4.84109I	-7.63163 - 6.37981I
u = -0.912041 - 0.514968I	-2.98499 - 4.84109I	-7.63163 + 6.37981I
u = 1.06181	-6.53321	-13.9000
u = 0.774874 + 0.460321I	1.25618 - 1.94645I	-1.05320 + 4.81876I
u = 0.774874 - 0.460321I	1.25618 + 1.94645I	-1.05320 - 4.81876I
u = -0.113113 + 0.821783I	-6.78373 - 4.79919I	-8.69810 + 3.09464I
u = -0.113113 - 0.821783I	-6.78373 + 4.79919I	-8.69810 - 3.09464I
u = -1.170970 + 0.421653I	-4.43833 + 2.14390I	-9.45592 - 0.24308I
u = -1.170970 - 0.421653I	-4.43833 - 2.14390I	-9.45592 + 0.24308I
u = -0.529602 + 0.535861I	-1.94274 - 0.58469I	-5.20205 + 0.00910I
u = -0.529602 - 0.535861I	-1.94274 + 0.58469I	-5.20205 - 0.00910I
u = -0.733657	-0.976841	-10.9390
u = 1.174860 + 0.481002I	-4.01054 - 6.27316I	-8.10015 + 6.54347I
u = 1.174860 - 0.481002I	-4.01054 + 6.27316I	-8.10015 - 6.54347I
u = 0.092790 + 0.716473I	-0.91595 + 1.80448I	-4.82463 - 3.70058I
u = 0.092790 - 0.716473I	-0.91595 - 1.80448I	-4.82463 + 3.70058I
u = 1.224930 + 0.393654I	-10.81800 + 0.63661I	-12.96035 + 0.16989I
u = 1.224930 - 0.393654I	-10.81800 - 0.63661I	-12.96035 - 0.16989I
u = -1.205800 + 0.505812I	-10.02010 + 9.64430I	-11.65468 - 6.20543I
u = -1.205800 - 0.505812I	-10.02010 - 9.64430I	-11.65468 + 6.20543I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1,c_5,c_9	$u^{20} + u^{19} + \dots - 2u - 1$
c_2, c_8	$u^{20} + 3u^{19} + \dots + 12u + 1$
c_3, c_7	$u^{20} + u^{19} + \dots - 2u - 1$
<i>C</i> ₄	$u^{20} - 3u^{19} + \dots + 2u + 5$
<i>c</i> ₆	$u^{20} + 11u^{19} + \dots + 2u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_9	$y^{20} - 19y^{19} + \dots - 2y + 1$
c_2, c_8	$y^{20} + 17y^{19} + \dots - 62y + 1$
c_3, c_7	$y^{20} - 11y^{19} + \dots - 2y + 1$
C4	$y^{20} - 7y^{19} + \dots - 274y + 25$
<i>c</i> ₆	$y^{20} - 3y^{19} + \dots - 6y + 1$