# SORTING

Struktur Data

# **Definisi Sorting**

- Sorting adalah proses pengurutan data yang sebelumnya disusun secara acak sehingga menjadi secara teratur menurut suatu aturan tertentu.
- 2 jenis pengurutan : Ascensding (naik)Descending (turun)
- Contoh:

| Data acak          | : 10  | 15 | 3 | 8  | 2  |
|--------------------|-------|----|---|----|----|
| Terurut Ascending  | : 2   | 3  | 8 | 10 | 15 |
| Terurut Descending | g: 15 | 10 | 8 | 3  | 2  |

# **Metoda Sorting**

- Buble / Exchange Sort
- Selection Sort
- Insertion Sort
- Quick Sort

## Buble / Exchange Sort

- Membandingkan elemen yang sekarang dengan elemen berikutnya, jika elemen sekarang > elemen berikutnya (untuk ascending), maka dilakukan proses penukaran.
- Proses sorting dapat dimulai dari data awal atau data akhir
- Contoh : (JUMMAX-1=6-1=5)

| <b>IterasiKe</b> | <b>A[1]</b> | A[2] | <b>A</b> [3] | A[4]   | A[5]         | <b>A</b> [6] |
|------------------|-------------|------|--------------|--------|--------------|--------------|
| Awal             | 22          | 10   | 15           | 3      | 2            | 8            |
| 1.               | 10          | 22   | ①5<br>②2     | 3      | 2            | 8            |
|                  | 10          | 15   | 22           | 3      | 2 2          | 8            |
|                  | 10          | 15   | 3            | 22     | 1            | 8            |
|                  | 10          | 15   | 3            | 2      | 22           | 8            |
|                  | 10          | 15   | 3            | 2      | 8            | 22           |
| 2.               | 10          | 15   | 3            | 2<br>2 | 8            | 22           |
|                  | 10          | 3    | 15)          | 2      | 8            | 22           |
|                  | 10          | 3    | 2            | 15     | 8            | 22           |
|                  | 10          | 3    | 2            | 8      | (15)         | 22           |
|                  | $\bigcirc$  | 3    | 2            | 8      | 15           | 22           |
| 3.               | 3           | 10   | 2            | 8      | 15           | 22           |
|                  | 3           | 2    | 10           | 8      | 15           | 22           |
|                  | 3           | 2    | 8            | 10     | (15)<br>(15) | 22           |
|                  | 3           | 2    | 8            | 10     | 15           | 22           |
|                  | 3           | 2    | 8            | 10     | 15           | 22           |
| 4.               | 2           | 3    | 8            | 10     | 15           | 22           |
|                  | 2           | 3    | 8            | 10     | 15           | 22           |
|                  | 2           | 3    | 8            | 10     | 15           | 22           |
|                  | 2           | 3    | 8            | 10     | 15           | 22           |
|                  | 2           | 3    | 8            | 10     | 15           | 22           |
| 5.               | 2           | 3    | 8            | 10     | 15           | 22           |
|                  | 2           | 3    | 8            | 10     | 15           | 22           |
|                  | 2           | 3    | 8            | 10     | 15           | 22           |
|                  | 2           | 3    | 8            | 10     | 15           | 22           |
| Akhir            | 2           | 3    | 8            | 10     | 15           | 22           |

- Disini terlihat ketidak efisienan dari Buble Sort yaitu harus menyelesaikan JUMMAX-1 dari data
- Pada table diatas iterai ke-4 saja data sudah terurut dan harusnya pada saat itu proses sudah berhenti, tapi dengan buble sort proses harus dilakukan sampai looping selesai.

### **Selection Sort**

- Cara kerja metode ini didasarkan pada pencarian elemen dengan nilai terkecil, kemudian dilakukan penukaran dengan elemen ke-I
- Contoh:

| IterasiKe | A[1]      | A[2]      | A[3]      | A[4]      | A[5]      | A[6] |
|-----------|-----------|-----------|-----------|-----------|-----------|------|
| Awal      | <u>22</u> | 10        | 15        | 3         | 2         | 8    |
| I=1 Lok=5 | 2         | <u>10</u> | 15        | 3         | 22        | 8    |
| I=2 Lok=4 | 2         | 3         | <u>15</u> | 10        | 22        | 8    |
| I=3 Lok=6 | 2         | 3         | 8         | <u>10</u> | 22        | 15   |
| I=4 Lok=4 | 2         | 3         | 8         | 10        | <u>22</u> | 15   |
| I=5 Lok=6 | 2         | 3         | 8         | 10        | 15        | 22   |
| Akhir     | 2         | 3         | 8         | 10        | 15        | 22   |

### **Insertion Sort**

- Pengurutan dilakukan dengan cara membandingkan data ke-I (dimana I dimulai dari data ke-2 sampai dengan data terakhir) dengan data berikutnya. Jika ditemukan data yang lebih kecil maka data tersebut disisipkan kedepan sesuai posisi yang seharusnya.
- Contoh:

#### LANGKAH 1

$$i = 1$$
 2 3 4 5 6  
 $22$  10 15 3 8 2  
temp Cek Geser  
10 temp<22 data ke-1  $\rightarrow$  posisi 2  
Temp menempatiposisi ke-1  
10 22 15 3 8 2

temp Cek Geser

15 temp<22 data ke-2 → posisi 3 temp>10

Temp menempati posisi ke-2

3

8

6

2

6

2

#### • LANGKAH 3

$$i = 1$$
234510152238tempCekGeser3temp<22data ke-3  $\rightarrow$  posisi 4temp<15data ke-2  $\rightarrow$  posisi 3temp<10data ke-1  $\rightarrow$  posisi 2

Temp menempatiposisi ke-1

#### LANGKAH 4

$$i = 1$$

15

Temp menempati posisi ke-2

5

<u>22</u>

#### LANGKAH 5

$$i = 1$$

temp

2

Cek

data ke-5 
$$\rightarrow$$
 posisi 6

data ke-31
$$\rightarrow$$
posisi 2

Temp menempatiposisi ke-1

## **Quick Sort**

- Membandingkan suatu elemen (disebut pivot) dengan elemen yang lain dan menyusunnya sedemikian rupa sehingga elemen-elemen yang lain <u>lebih kecil dari pada pivot</u> tersebut <u>terletak di sebelah kiri</u> dan elemen-elemen lain yang <u>lebih</u> <u>besar daripada pivot</u> tersebut <u>terletak disebelah kanannya</u>,
- Sehingga dengan demikian telah terbentuk <u>dua sublist</u>, yang terletak di sebelah kiri dan kanan dari pivot.
- Lalu pada <u>sublist kiri</u> dan <u>sublist kanan</u> kita anggap sebuah list baru dan kita kerjakan proses yang sama seperti sebelumnya.
- Demikian seterusnya sampai tidak terdapat sublist lagi.
   Sehingga didalamnya telah terjadi proses rekursif.

- Contoh:
- Bilangan yang didalam kurung merupakan pivot
- Persegi Panjang yang digambarkan dengan garis putus-putus menunjukan sublist
- i bergerak dari sudut kiri kekanan sampai mendpatkan nilai yang >= pivot
- j bergerak dari sudut kanan kekiri sampai menemukan nilai yang < pivot</li>

• Index = 1 2 3 4 5



- i berhenti pada index ke-1 karena langsung mendapatkan nilai yang >dari pivot (15)
- j berhenti pada index ke-6 karena juga langsung mendapatkan nilai yang <dari pivot
- Karena i > j maka data yang ditunjuk oleh i ditukar dengan data yang ditunjuk oleh j sehingga menjadi :
  - 2 10 15 3 8 22

• Index = 1 2 3 4 5 6



- i berhenti pada index ke-3 karena langsung mendapatkan nilai yang >=dari pivot (15)
- j berhenti pada index ke-5 karena juga langsung mendapatkan nilai yang <br/> <br/>dari pivot
- Karena i > j maka data yang ditunjuk oleh i ditukar dengan data yang ditunjuk oleh j sehingga menjadi :
  - 2 10 8 3
- 15
- 22

• Index = 1 2 3 4 5 6



- i berhenti pada index ke-2 karena langsung mendapatkan nilai yang > dari pivot (8)
- j berhenti pada index ke-4 karena juga langsung mendapatkan nilai yang <br/> dari pivot
- Karena i > j maka data yang ditunjuk oleh i ditukar dengan data yang ditunjuk oleh j sehingga menjadi :
  - 2
- 3

8

- 10
- 15

22

#### • Latihan:

Lakukan pengurutan menggunakan ke-4 metode diatas untuk data : 9 2 10 4 7 20 3 8