EDA - Assesment #1 - Telecom

```
In [145... ## First, let's import the libraries
    import numpy as np
    import matplotlib.pyplot as plt
    import csv
    import dataprep
    from dataprep.eda import plot
    import matplotlib.pyplot as plt
    import seaborn as sns
    import statsmodels.api as sm
    from scipy.stats import pointbiserialr
    import scipy.stats as ss
```

Data Reading & General Overview - Variable Definition

```
In [146... # Load the dataset with semicolon as the delimiter
         marketing = pd.read_csv('TeleCom_Data-1.csv', sep=';')
         # Display the first few rows of the dataframe
         marketing.head()
Out[146...
            age;"job";"marital";"education";"default";"housing";"loan";"contact";"month";"day_o
          0
          1
          2
          3
          4
In [147... # lets find a different way to process the data reading because pd.read_csv
          cleaned data = []
         with open('TeleCom_Data-1.csv', mode='r', encoding='utf-8') as file:
              reader = csv.reader(file, delimiter=';')
              for row in reader:
                  cleaned_data.append(row)
          # Manually split each row by semicolon and handle the quotes
          split_data = [line[0].split(';') for line in cleaned_data]
          # Convert the split data to a DataFrame
         marketing = pd.DataFrame(split_data[1:], columns=split_data[0])
```

```
# Clean the column names and data by removing extra quotation marks
marketing.columns = [col.strip().replace('"', '').strip() for col in marketi
marketing = marketing.applymap(lambda x: x.strip().replace('"', '').strip())

original_data = marketing.copy()

# Display the first few rows of the cleaned DataFrame
marketing.head()
```

Out [147...

	age	job	marital	education	default	housing	loan	contact	mont
0	40	admin.	married	basic.6y	no	no	no	telephone	ma
1	56	services	married	high.school	no	no	yes	telephone	ma
2	45	services	married	basic.9y	unknown	no	no	telephone	ma
3	59	admin.	married	professional.course	no	no	no	telephone	ma
4	41	blue- collar	married	unknown	unknown	no	no	telephone	ma

5 rows × 21 columns

In [148... marketing.shape

Out[148... (41180, 21)

Variable dictionary definitions

```
In [149... ## I want to have here the dictionary of the columns and their data types
    dict_market = pd.read_excel('Data_dictionary-1.xlsx')
    dict_market
```

Out[149		Variable Name	Description
	0	age	Age
	1	job	Type of job
	2	marital	Marital status
	3	education	Level of education
	4	default	Has credit in default
	5	balance	Average yearly balance
	6	housing	Has a housing loan
	7	loan	Has a personal loan
	8	contact	Contact communication type
	9	day	Day of contact
	10	month	Month of contact
	11	duration	Last contact duration, in seconds (numeric). I
	12	campaign	Number of contacts performed during this campa
	13	pdays	Number of days that passed by after the client
	14	previous	Number of contacts performed before this campa
	15	poutcome	Outcome of the previous marketing campaign
	16	emp.var.rate	employment variation rate - quarterly indicato
	17	cons.price.idx	consumer price index - monthly indicator (nume
	18	cons.conf.idx	consumer confidence index - monthly indicator
	19	euribor3m	euribor 3 month rate - daily indicator (numeric)
	20	nr.employed	number employed - quarterly indicator (numeric)
	21	у	Did the client subscribe to a Telecom plan?

In [150... marketing.shape

Out[150... (41180, 21)

Information of dataset variables

In [151... marketing.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 41180 entries, 0 to 41179
Data columns (total 21 columns):

```
Column
                   Non-Null Count Dtype
    _____
                   41180 non-null object
0
    age
                   41180 non-null object
1
    job
2
                   41180 non-null object
    marital
 3
                   41180 non-null object
    education
4
    default
                   41180 non-null object
5
    housing
                   41180 non-null object
6
    loan
                   41180 non-null object
    contact
7
                   41180 non-null object
8
    month
                   41180 non-null object
    day_of_week
9
                   41180 non-null object
10 duration
                   41180 non-null object
11 campaign
                   41180 non-null object
 12 pdays
                   41180 non-null object
 13 previous
                   41180 non-null object
 14 poutcome
                   41180 non-null object
15 emp.var.rate
                   41180 non-null object
16 cons.price.idx 41180 non-null object
                   41180 non-null object
17 cons.conf.idx
18 euribor3m
                   41180 non-null object
19 nr.employed
                   41180 non-null object
20 y
                   41180 non-null object
dtypes: object(21)
memory usage: 6.6+ MB
```

```
In [152... duplicate_rows = marketing.duplicated().sum()

# Display number of duplicate rows
print("\nNumber of duplicate rows:", duplicate_rows)
```

Number of duplicate rows: 12

However, these duplicates can be different entries because there is nothing that separates one client from another client. They can coincide in the same features

> <class 'pandas.core.frame.DataFrame'> RangeIndex: 41180 entries, 0 to 41179 Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	age	41180 non-null	int64
1	job	41180 non-null	object
2	marital	41180 non-null	object
3	education	41180 non-null	object
4	default	41180 non-null	object
5	housing	41180 non-null	object
6	loan	41180 non-null	object
7	contact	41180 non-null	object
8	month	41180 non-null	object
9	day_of_week	41180 non-null	object
10	duration	41180 non-null	int64
11	campaign	41180 non-null	int64
12	pdays	41180 non-null	int64
13	previous	41180 non-null	int64
14	poutcome	41180 non-null	object
15	emp.var.rate	41180 non-null	float64
16	cons.price.idx	41180 non-null	float64
17	cons.conf.idx	41180 non-null	float64
18	euribor3m	41180 non-null	float64
19	nr.employed	41180 non-null	float64
20	У	41180 non-null	object
dtyp	es: float64(5),	int64(5), object	(11)

memory usage: 6.6+ MB

Summary Statistics

In [154... ## lets check the general description of the data using the describe methodo marketing.describe()

Out [154...

	age	duration	campaign	pdays	previous	emp.
count	41180.000000	41180.000000	41180.000000	41180.000000	41180.000000	41180
mean	40.021710	258.280427	2.567800	962.516707	0.172705	C
std	10.419593	259.299856	2.770225	186.809028	0.493719	
min	17.000000	0.000000	1.000000	0.000000	0.000000	-3.
25%	32.000000	102.000000	1.000000	999.000000	0.000000	-1.
50%	38.000000	180.000000	2.000000	999.000000	0.000000	1
75%	47.000000	319.000000	3.000000	999.000000	0.000000	1.
max	98.000000	4918.000000	56.000000	999.000000	7.000000	1.

In [155... ## lets check the statistics for the categorical variables marketing.describe(include='object')

Out[155		job	marital	education	default	housing	loan	contact	month	di
	count	41180	41180	41180	41180	41180	41180	41180	41180	
	unique	12	4	8	3	3	3	2	10	
	top	admin.	married	university.degree	no	yes	no	cellular	may	
	freq	10422	24921	12166	32581	21571	33943	26140	13765	

Data Cleaning & Processing

```
In [156... # Check for missing values
         missing_values = marketing.isnull().sum()
         # Display columns with missing values
         missing_values[missing_values > 0]
Out[156... Series([], dtype: int64)
In [157... | # Function to display unique values for a specific column
         def inspect_column(column_name):
             print(f"Unique values in column '{column_name}':")
             print(marketing[column_name].unique())
             print("\n")
         # Call this function for each column you're interested in inspecting
         inspect_column('age')
         inspect_column('job')
         inspect_column('marital')
         inspect_column('education')
         inspect column('default')
         inspect column('housing')
         inspect_column('loan')
```

```
Unique values in column 'age':
        [40 56 45 59 41 24 25 29 57 35 54 46 39 30 55 37 49 34 52 58 32 38 44 42
         60 53 50 47 51 48 33 31 43 36 28 27 26 22 23 20 21 61 19 18 70 66 76 67
         73 88 95 77 68 75 63 80 62 65 72 82 64 71 69 78 85 79 83 81 74 17 87 91
         86 98 94 84 92 891
        Unique values in column 'job':
        ['admin.' 'services' 'blue-collar' 'technician' 'housemaid' 'retired'
         'management' 'unemployed' 'self-employed' 'unknown' 'entrepreneur'
         'student'l
        Unique values in column 'marital':
        ['married' 'single' 'divorced' 'unknown']
        Unique values in column 'education':
        ['basic.6y' 'high.school' 'basic.9y' 'professional.course' 'unknown'
         'basic.4y' 'university.degree' 'illiterate']
        Unique values in column 'default':
        ['no' 'unknown' 'yes']
        Unique values in column 'housing':
        ['no' 'yes' 'unknown']
        Unique values in column 'loan':
        ['no' 'yes' 'unknown']
In [158... inspect column('contact')
         inspect_column('month')
         inspect column('day of week')
         inspect column('duration')
         inspect_column('campaign')
         inspect column('pdays')
```

```
Unique values in column 'contact':
['telephone' 'cellular']
Unique values in column 'month':
['may' 'jun' 'jul' 'aug' 'oct' 'nov' 'dec' 'mar' 'apr' 'sep']
Unique values in column 'day_of_week':
['mon' 'tue' 'wed' 'thu' 'fri']
Unique values in column 'duration':
[ 151 307 198 ... 1246 1556 1868]
Unique values in column 'campaign':
[ 1 2 3 4 5 6 7 8 9 10 11 12 13 19 18 23 14 22 25 16 17 15 20 56
39 35 42 28 26 27 32 21 24 29 31 30 41 37 40 33 34 43]
Unique values in column 'pdays':
[999 6 4 3 5 1 0 10
                               7
                                    8
                                        9 11 2 12 13 14 15 16
 21 17 18 22 25 26 19 27 20]
```

```
inspect_column('previous')
inspect_column('poutcome')
inspect_column('emp.var.rate')
inspect_column('cons.price.idx')
inspect_column('cons.conf.idx')
inspect_column('euribor3m')
inspect_column('nr.employed')
inspect_column('y')
```

```
Unique values in column 'previous':
[0 1 2 3 4 5 6 7]
Unique values in column 'poutcome':
['nonexistent' 'failure' 'success']
Unique values in column 'emp.var.rate':
[ 1.1  1.4 -0.1 -0.2 -1.8 -2.9 -3.4 -3. -1.7 -1.1]
Unique values in column 'cons.price.idx':
[93.994 94.465 93.918 93.444 93.798 93.2 92.756 92.843 93.075 92.893
 92.963 92.469 92.201 92.379 92.431 92.649 92.713 93.369 93.749 93.876
 94.055 94.215 94.027 94.199 94.601 94.767]
Unique values in column 'cons.conf.idx':
[-36.4 - 41.8 - 42.7 - 36.1 - 40.4 - 42. - 45.9 - 50. - 47.1 - 46.2 - 40.8 - 33.6]
 -31.4 -29.8 -26.9 -30.1 -33. -34.8 -34.6 -40. -39.8 -40.3 -38.3 -37.5
 -49.5 -50.81
Unique values in column 'euribor3m':
[4.857 4.856 4.855 4.859 4.86 4.858 4.864 4.865 4.866 4.967 4.961 4.959
 4.958 4.96 4.962 4.955 4.947 4.956 4.966 4.963 4.957 4.968 4.97 4.965
 4.964 5.045 5.
                  4.936 4.921 4.918 4.912 4.827 4.794 4.76 4.733 4.7
 4.663 4.592 4.474 4.406 4.343 4.286 4.245 4.223 4.191 4.153 4.12 4.076
 4.021 3.901 3.879 3.853 3.816 3.743 3.669 3.563 3.488 3.428 3.329 3.282
 3.053 1.811 1.799 1.778 1.757 1.726 1.703 1.687 1.663 1.65 1.64 1.629
 1.614 1.602 1.584 1.574 1.56 1.556 1.548 1.538 1.531 1.52 1.51 1.498
 1.483 1.479 1.466 1.453 1.445 1.435 1.423 1.415 1.41 1.405 1.406 1.4
 1.392 1.384 1.372 1.365 1.354 1.344 1.334 1.327 1.313 1.299 1.291 1.281
 1.266 1.25 1.244 1.259 1.264 1.27 1.262 1.26 1.268 1.286 1.252 1.235
 1.224 1.215 1.206 1.099 1.085 1.072 1.059 1.048 1.044 1.029 1.018 1.007
 0.996 0.979 0.969 0.944 0.937 0.933 0.927 0.921 0.914 0.908 0.903 0.899
 0.884 0.883 0.881 0.879 0.873 0.869 0.861 0.859 0.854 0.851 0.849 0.843
 0.838 0.834 0.829 0.825 0.821 0.819 0.813 0.809 0.803 0.797 0.788 0.781
 0.778 0.773 0.771 0.77 0.768 0.766 0.762 0.755 0.749 0.743 0.741 0.739
 0.75  0.753  0.754  0.752  0.744  0.74  0.742  0.737  0.735  0.733  0.73  0.731
 0.728 0.724 0.722 0.72 0.719 0.716 0.715 0.714 0.718 0.721 0.717 0.712
 0.71 0.709 0.708 0.706 0.707 0.7 0.655 0.654 0.653 0.652 0.651 0.65
 0.649 0.646 0.644 0.643 0.639 0.637 0.635 0.636 0.634 0.638 0.64 0.642
 0.645 0.659 0.663 0.668 0.672 0.677 0.682 0.683 0.684 0.685 0.688 0.69
 0.692 0.695 0.697 0.699 0.701 0.702 0.704 0.711 0.713 0.723 0.727 0.729
 0.732 0.748 0.761 0.767 0.782 0.79 0.793 0.802 0.81 0.822 0.827 0.835
 0.84 0.846 0.87 0.876 0.885 0.889 0.893 0.896 0.898 0.9 0.904 0.905
 0.895 0.894 0.891 0.89 0.888 0.886 0.882 0.88 0.878 0.877 0.942 0.953
 0.956 0.959 0.965 0.972 0.977 0.982 0.985 0.987 0.993 1.
 1.025 1.032 1.037 1.043 1.045 1.047 1.05 1.049 1.046 1.041 1.04 1.039
 1.035 1.03 1.031 1.028]
Unique values in column 'nr.employed':
```

Unique values in column 'nr.employed': [5191. 5228.1 5195.8 5176.3 5099.1 5076.2 5017.5 5023.5 5008.7 4991.6

4963.6]

```
Unique values in column 'y':
['no' 'yes']
```

In [160 plot(marketing, 'y')								
0% 0/76 [00:00 </th <th>?, ?it/s</th> <th>]</th> <th></th> <th></th> <th></th>	?, ?it/s]						
Out [160 Stats Bar Chart Pie Chart Word	Stats Bar Chart Pie Chart Word Cloud V							
Overview				Sample				
Approximate Distinct Count		2		1st row	no			
Approximate Unique (%)	0.09	6		2nd row	no			
Missing		0		3rd row	no			
Missing (%)	0.09	6		4th row	no			
Memory Size	276369	8		5th row	no			
Length				Letter				
Mean	2.112	6		Count	86998			
Standard Deviation	0.316	1	Le	owercase Letter	86998			
Median		2	5	Space Separator	0			
Minimum		2	U	ppercase Letter	0			
Maximum		3	Da	ash Punctuation	0			
		_	С	Decimal Number	0			

EDA Analysis

Target Variable

```
plt.xlabel('Subscription Status')
plt.ylabel('Count')

# Show plot
plt.tight_layout()
plt.show()
```


It is necessary to check variable by vvariable and analyze them individually and then what they relate with the y variable/

Heatmap for the numerical values

```
In [162... corr_matrix = marketing.corr()

In [163... ## generate a heatmap of the correlation matrix
    plt.figure(figsize=(12, 10))
    sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt=".2f")
    plt.title('Correlation Matrix')
Out[163... Text(0.5, 1.0, 'Correlation Matrix')
```


Biserial correlation (Binary vs numerical values)

```
In [164... # Initialize LabelEncoder
label_encoder = LabelEncoder()

# Encode 'y' (target variable)
marketing['y'] = label_encoder.fit_transform(marketing['y'])

# Check the encoded values
print(marketing['y'].unique()) # Should output: [0, 1]

[0 1]

In [165... # Calculate Point-Biserial Correlation for each numerical column
correlations = {}
for col in numeric_columns:
    corr, _ = pointbiserialr(marketing[col], marketing['y'])
    correlations[col] = corr

# Create a DataFrame for easy plotting
correlation_df = pd.DataFrame(list(correlations.items()), columns=['Variable
```

```
# Plot the results with values on the bars
plt.figure(figsize=(10, 6))
ax = plt.barh(correlation_df['Variable'], correlation_df['Point-Biserial Cor
# Annotate the values on the bars
for index, value in enumerate(correlation_df['Point-Biserial Correlation']):
    plt.text(value, index, f'{value:.2f}', va='center', ha='left')

# Labels and title
plt.xlabel('Point-Biserial Correlation')
#plt.title('Point-Biserial Correlation Between Target Variable and Numerical
# Show plot
plt.show()
```



```
In [213... # Cramér's V calculation for categorical variables
def cramers_v(x, y):
    contingency_table = pd.crosstab(x, y)
    chi2 = ss.chi2_contingency(contingency_table)[0]
    n = contingency_table.sum().sum()
    r, k = contingency_table.shape
    return np.sqrt(chi2 / (n * (min(r - 1, k - 1))))

categorical_features = ['job', 'marital', 'education', 'default', 'housing',

# Calculate Cramér's V for each categorical feature
    cramers_v_scores = {feature: cramers_v(marketing[feature], marketing['y']) f

# Convert results into DataFrame and plot heatmap
    cramers_v_df = pd.DataFrame.from_dict(cramers_v_scores, orient='index', coluplt.figure(figsize=(8, 6))
    sns.heatmap(cramers_v_df, annot=True, cmap='Blues', cbar=False)
```

plt.title('Cramér\'s V Correlation between Categorical Features and Subscrip plt.show()

Cramér's V Correlation between Categorical Features and Subscription Status

Age

Univariate Analysis

```
In [166... plot(marketing, 'age')

0%| | 0/122 [00:00<?, ?it/s]
```

Out[166	Stats Histogram F		KDE Plot	Normal Q-Q Plot	Box Plo	ot Value Table
		Overview		Quantile Statistics	5	Descriptive Statisti
	Approxim	ate Distinct Count	78	Minimum	17	Mean
	Appro	ximate Unique (%)	0.2%	5-th Percentile	26	Standard Deviation
		Missing	0	Q1	32	Variance
		Missing (%)	0.0%	Median	38	Sum 1.64
		Infinite	0	Q3	47	Skewness
		Infinite (%)	0.0%	95-th Percentile	58	Kurtosis
		Memory Size	658880	Maximum	98	Coefficient of Variation
		Mean	40.0217	Range	81	
		Minimum	17	IQR	15	
		Maximum	98			
		Zeros	0			
		Zeros (%)	0.0%			
		Negatives	0			
		Negatives (%)	0.0%			

```
In [167... | def analyze_column(df, column_name, chart_type='bar'):
             Analyze and visualize a specific column in the DataFrame.
             Parameters:
             df (pd.DataFrame): The DataFrame containing the data.
             column_name (str): The name of the column to analyze.
             chart_type (str): The type of chart to display ('bar' or 'pie'). Default
             # Summary of the column
             print(f"Summary of '{column_name}':\n{df[column_name].describe()}\n")
             # Unique values in the column
             print(f"Unique values in '{column_name}':\n{df[column_name].unique()}\n"
             # Visualization of the column distribution
             plt.figure(figsize=(10, 5))
             if df[column_name].dtype in ['int64', 'float64']:
                  sns.histplot(df[column name], kde=True, bins=20)
                 plt.title(f'Distribution of {column_name}')
             else:
                 if chart_type == 'bar':
                      sns.countplot(y=df[column_name], order=df[column_name].value_col
                     plt.title(f'Distribution of {column_name} - Bar Chart')
```

```
elif chart_type == 'pie':
        df[column_name].value_counts().plot.pie(autopct='%1.1f%', start
        plt.title(f'Distribution of {column name} - Pie Chart')
        plt.ylabel('') # Hide the y-label for pie charts
plt.xlabel(column name)
plt.ylabel('Frequency')
plt.show()
```

```
In [168... # Example usage with the 'age' column
         analyze_column(marketing, 'age')
```

```
Summary of 'age':
count
         41180.000000
mean
            40.021710
            10.419593
std
min
            17,000000
25%
            32.000000
50%
            38,000000
75%
            47.000000
            98.000000
max
Name: age, dtype: float64
Unique values in 'age':
[40 56 45 59 41 24 25 29 57 35 54 46 39 30 55 37 49 34 52 58 32 38 44 42
 60 53 50 47 51 48 33 31 43 36 28 27 26 22 23 20 21 61 19 18 70 66 76 67
 73 88 95 77 68 75 63 80 62 65 72 82 64 71 69 78 85 79 83 81 74 17 87 91
 86 98 94 84 92 891
```


BIvariate Analysis

In [169... def bivariate_analysis(df, independent_var, target_var='y', chart_type='stac Perform bivariate analysis between an independent variable and the targe including multiple plots to visualize the relationship.

```
Parameters:
df (pd.DataFrame): The DataFrame containing the data.
independent_var (str): The name of the independent variable to analyze.
target_var (str): The name of the target variable (default is 'y').
chart_type (str): The type of chart to display for categorical variables
                  ('stacked_bar', 'bar', 'pie'). Default is 'stacked_bar
exclude_unknown (bool): Whether to exclude 'unknown' categories. Default
# Exclude 'unknown' values if required
if exclude_unknown:
    df = df[df[independent var] != 'unknown']
print(f"Bivariate Analysis of '{independent_var}' and '{target_var}'\n")
if df[independent_var].dtype in ['int64', 'float64']:
    # Numerical variable analysis
    # Boxplot
    plt.figure(figsize=(10, 5))
    sns.boxplot(x=target_var, y=independent_var, data=df)
    plt.title(f'{independent_var} vs. {target_var} - Boxplot')
    plt.xlabel(target_var)
    plt.ylabel(independent_var)
    plt.show()
    # Violin Plot
    plt.figure(figsize=(10, 5))
    sns.violinplot(x=target_var, y=independent_var, data=df)
    plt.title(f'{independent_var} vs. {target_var} - Violin Plot')
    plt.xlabel(target var)
    plt.ylabel(independent_var)
    plt.show()
    # Histogram with KDE
    plt.figure(figsize=(10, 5))
    sns.histplot(df, x=independent_var, hue=target_var, kde=True, elemer
    plt.title(f'{independent var} vs. {target var} - Histogram with KDE'
    plt.xlabel(independent_var)
    plt.ylabel('Density')
    plt.show()
    # Strip Plot
    plt.figure(figsize=(10, 5))
    sns.stripplot(x=target_var, y=independent_var, data=df, jitter=True)
    plt.title(f'{independent_var} vs. {target_var} - Strip Plot')
    plt.xlabel(target var)
    plt.ylabel(independent_var)
    plt.show()
else:
    # Categorical variable analysis
    if chart_type == 'stacked_bar':
        # Stacked Bar plot of proportions
        prop df = (df.groupby([independent var, target var]).size() /
```

```
df.groupby([independent_var]).size()).unstack()
    prop_df.plot(kind='bar', stacked=True, figsize=(10, 5))
    plt.title(f'{independent var} vs. {target var} - Stacked Proport
    plt.xlabel(independent_var)
    plt.ylabel('Proportion')
    plt.show()
elif chart_type == 'bar':
    # Countplot
    plt.figure(figsize=(10, 5))
    sns.countplot(x=independent_var, hue=target_var, data=df)
    plt.title(f'{independent var} vs. {target var} - Count Plot')
    plt.xlabel(independent var)
    plt.ylabel('Count')
    plt.show()
elif chart_type == 'pie':
    # Pie chart of proportions
    prop_df = df[target_var].groupby(df[independent_var]).value_cour
    for idx, row in prop_df.iterrows():
        plt.figure(figsize=(7, 7))
        row.plot(kind='pie', autopct='%1.1f%%', startangle=90)
        plt.title(f'{independent_var}: {idx}')
        plt.ylabel('')
        plt.show()
```

```
In [170... # Example usage with the 'age' column
bivariate_analysis(marketing, 'age')
```

Bivariate Analysis of 'age' and 'y'

Using categorical units to plot a list of strings that are all parsable as f loats or dates. If these strings should be plotted as numbers, cast to the a ppropriate data type before plotting.

Using categorical units to plot a list of strings that are all parsable as f loats or dates. If these strings should be plotted as numbers, cast to the a ppropriate data type before plotting.


```
In [171... plt.figure(figsize=(12, 6))
         # Subplot 1: nr.employed vs y
         plt.subplot(1, 2, 1)
         sns.boxplot(x='y', y='nr.employed', data=marketing, palette="Set2")
         plt.title('nr.employed vs y')
         plt.xlabel('Subscription Status (y)')
         plt.ylabel('Number of Employees')
         # Subplot 2: emp.var.rate vs y
         plt.subplot(1, 2, 2)
         sns.boxplot(x='y', y='emp.var.rate', data=marketing, palette="Set2")
         plt.title('emp.var.rate vs y')
         plt.xlabel('Subscription Status (y)')
         plt.ylabel('Employment Variation Rate')
         # Show the combined plots
         plt.tight_layout()
         plt.show()
```


In [172... ## lets plot euoribor3m vs
bivariate_analysis(marketing, 'euribor3m')

Bivariate Analysis of 'euribor3m' and 'y'

Using categorical units to plot a list of strings that are all parsable as f loats or dates. If these strings should be plotted as numbers, cast to the a ppropriate data type before plotting.

Using categorical units to plot a list of strings that are all parsable as f loats or dates. If these strings should be plotted as numbers, cast to the a ppropriate data type before plotting.

euribor3m vs. y - Strip Plot


```
In [173... ## lets analyze nr.employed
analyze_column(marketing, 'nr.employed')
```

```
Summary of 'nr.employed':
         41180.000000
count
mean
          5167.053344
std
            72.230334
min
          4963.600000
25%
          5099.100000
50%
          5191.000000
75%
          5228.100000
max
          5228.100000
```

Name: nr.employed, dtype: float64

Unique values in 'nr.employed': [5191. 5228.1 5195.8 5176.3 5099.1 5076.2 5017.5 5023.5 5008.7 4991.6 4963.6]

In [174... ## bivariate for nr.employed
bivariate_analysis(marketing, 'nr.employed')

Using categorical units to plot a list of strings that are all parsable as f loats or dates. If these strings should be plotted as numbers, cast to the a ppropriate data type before plotting.

Using categorical units to plot a list of strings that are all parsable as f loats or dates. If these strings should be plotted as numbers, cast to the a ppropriate data type before plotting.

JOB

Univariate

Out [175...

```
In [176... # Analyze the 'job' variable
analyze_column(marketing, 'job')
```

```
Summary of 'job':

count 41180

unique 12

top admin.

freq 10422

Name: job, dtype: object

Unique values in 'job':
['admin.' 'services' 'blue-collar' 'technician' 'housemaid' 'retired'
  'management' 'unemployed' 'self-employed' 'unknown' 'entrepreneur'
  'student']
```


Bivariate

In [210... # Bivariate analysis of 'job' and 'y'
bivariate_analysis(marketing, 'job')

Bivariate Analysis of 'job' and 'y'

In [178... # Example usage with the 'job' column and a pie chart
bivariate_analysis(marketing, 'job', chart_type='bar')

Bivariate Analysis of 'job' and 'y'


```
In [179... | def generate_summary_table(df, independent_var, target_var='y'):
             Generate a summary table with counts and percentages of the target varia
             of the independent variable, sorted by the 'Yes percent' in descending of
             Parameters:
             df (pd.DataFrame): The DataFrame containing the data.
             independent_var (str): The name of the independent variable to analyze.
             target var (str): The name of the target variable (default is 'y').
             Returns:
             pd.DataFrame: A DataFrame with counts and percentages for each category
                            sorted by the 'Yes_percent'.
             .....
             # Calculate counts
             count df = df.groupby([independent var, target var]).size().unstack(fill
             # Calculate percentages
             percentage df = count df.div(count df.sum(axis=1), axis=0) * 100
             # Combine counts and percentages
             summary_df = count_df.join(percentage_df, lsuffix='_count', rsuffix='_pe
             # Rename columns for clarity
             summary_df.columns = ['No_count', 'Yes_count', 'No_percent', 'Yes_percer
             # Sort by 'Yes_percent' in descending order
             summary_df = summary_df.sort_values(by='Yes_percent', ascending=False)
             return summary_df
```

```
# Example usage with the 'job' column
job_summary = generate_summary_table(marketing, 'job')
# Display the summary table
job_summary
```

Out[179...

	No_count	Yes_count	No_percent	Yes_percent
job				
student	600	275	68.571429	31.428571
retired	1285	433	74.796275	25.203725
unemployed	870	144	85.798817	14.201183
admin.	9070	1352	87.027442	12.972558
management	2595	328	88.778652	11.221348
unknown	293	37	88.787879	11.212121
technician	6013	729	89.187185	10.812815
self-employed	1272	149	89.514426	10.485574
housemaid	953	106	89.990557	10.009443
entrepreneur	1332	124	91.483516	8.516484
services	3644	323	91.857827	8.142173
blue-collar	8615	638	93.104939	6.895061

Marital

Out[180...

Stats	Bar Chart	Pie Chart	Word Cloud	Wo	ord Frequency	Word Length	Value Table
		Overview				Sample	
	Approxima	te Distinct Co	unt	4		1st row	married
	Approxi	imate Unique	(%) 0.0	0%		2nd row	married
		Miss	ing	0		3rd row	married
		Missing	(%) 0.0	0%		4th row	married
		Memory S	Size 29580	003		5th row	married
		Length				Letter	
		Mea	ın 6.83	311		Count	281303
	Star	ndard Deviatio	on 0.60	36	Lo	wercase Letter	281303
		Media	ın	7	s	pace Separator	0
		Minimu	m	6	Uį	ppercase Letter	0
		Maximu	m	8	Da	sh Punctuation	0
					D	ecimal Number	0

```
In [181... # Example usage with the 'marital' column and a pie chart
    analyze_column(marketing, 'marital', chart_type='pie')
```

```
Summary of 'marital':

count 41180

unique 4

top married

freq 24921

Name: marital, dtype: object

Unique values in 'marital':
['married' 'single' 'divorced' 'unknown']
```

Distribution of marital - Pie Chart

marital

In [182... # Bivariate analysis of 'marital' and 'y'
bivariate_analysis(marketing, 'marital', chart_type='bar')

Bivariate Analysis of 'marital' and 'y'

single marital divorced

```
In [183... # Generate summary table for 'marital' and 'y'
marital_summary = generate_summary_table(marketing, 'marital')

# Display the summary table
marital_summary
```

Out [183... No_count Yes_count No_percent Yes_percent

married

marital

unknown	68	12	85.000000	15.000000
single	9948	1620	85.995851	14.004149
divorced	4135	476	89.676860	10.323140
married	22391	2530	89.847919	10.152081

```
import matplotlib.pyplot as plt

def generate_pie_charts_per_category(df, column, target_var='y', exclude_unk
    """

Generate pie charts showing the relationship between each category of a

Parameters:
    df (pd.DataFrame): The DataFrame containing the data.
        column (str): The name of the column to generate pie charts for.
        target_var (str): The target variable, typically 'y'. Default is 'y'.
        exclude_unknown (bool): Whether to exclude 'unknown' categories from the
        colors (list of str): A list of colors to use for the pie chart. Default
    """

# Filter out 'unknown' values if needed
    if exclude_unknown:
        df = df[df[column] != 'unknown']

categories = df[column].unique()
```


Not gigantic but single people are most common to say Yes.

Education

Out[185...

Overview Sample Approximate Distinct Count 8 1st row basic.6y Approximate Unique (%) 0.0% 2nd row high.school Missing (%) 0.0% 4th row professional.cours Memory Size 3200129 5th row unknown Length Letter Mean 12.7108 Count 471487 Standard Deviation 4.3889 Lowercase Letter 471487 Median 11 Space Separator 0 Minimum 7 Uppercase Letter 0 Maximum 19 Dash Punctuation 0 Decimal Number 12511	Stats	Bar Chart	Pie Chart	Word	Cloud	Wo	rd Frequency	Word Length	Value Table
Approximate Unique (%) 0.0% 2nd row high.school Missing 0 3rd row basic.9y Missing (%) 0.0% 4th row professional.cours Memory Size 3200129 5th row unknown Length Letter Count 471487 Standard Deviation 4.3889 Lowercase Letter 471487 Median 11 Space Separator 0 Minimum 7 Uppercase Letter 0 Maximum 19 Dash Punctuation 0			Overview					Sample	
Missing 0 3rd row basic.9y Missing (%) 0.0% 4th row professional.cours Memory Size 3200129 5th row unknown Length Letter Count 471487 Mean 12.7108 Count 471487 Standard Deviation 4.3889 Lowercase Letter 471487 Median 11 Space Separator 0 Minimum 7 Uppercase Letter 0 Maximum 19 Dash Punctuation 0		Approxima	te Distinct C	ount		8	1st row		basic.6y
Missing (%) 0.0% 4th row professional.cours Memory Size 3200129 5th row unknown Length Letter Mean 12.7108 Count 471487 Standard Deviation 4.3889 Lowercase Letter 471487 Median 11 Space Separator 0 Minimum 7 Uppercase Letter 0 Maximum 19 Dash Punctuation 0	Approximate Unique (%)				0.0)%	2nd row		high.school
Memory Size 3200129 5th row unknown Length Letter Mean 12.7108 Count 471487 Standard Deviation 4.3889 Lowercase Letter 471487 Median 11 Space Separator 0 Minimum 7 Uppercase Letter 0 Maximum 19 Dash Punctuation 0		sing		0	3rd row		basic.9y		
Length Letter Mean 12.7108 Count 471487 Standard Deviation 4.3889 Lowercase Letter 471487 Median 11 Space Separator 0 Minimum 7 Uppercase Letter 0 Maximum 19 Dash Punctuation 0	Missing (%)				0.0)%	4th row	profess	sional.cours
Mean 12.7108 Count 471487 Standard Deviation 4.3889 Lowercase Letter 471487 Median 11 Space Separator 0 Minimum 7 Uppercase Letter 0 Maximum 19 Dash Punctuation 0		Memory Size			32001	29	5th row		unknown
Standard Deviation4.3889Lowercase Letter471487Median11Space Separator0Minimum7Uppercase Letter0Maximum19Dash Punctuation0			Length					Letter	
Median 11 Space Separator 0 Minimum 7 Uppercase Letter 0 Maximum 19 Dash Punctuation 0			Mea	n	12.71	08		Count	471487
Minimum 7 Uppercase Letter 0 Maximum 19 Dash Punctuation 0		Stand	dard Deviatio	n	4.38	89	Lov	wercase Letter	471487
Maximum 19 Dash Punctuation 0			Media	n		11	Sp	ace Separator	0
			Minimur	m		7	Up	percase Letter	0
Decimal Number 12511			Maximur	n		19	Das	sh Punctuation	0
							De	ecimal Number	12511


```
In [187... # Bivariate analysis of 'education' and 'y'
bivariate_analysis(marketing, 'education', chart_type='stacked_bar')
# Generate summary table for 'education' and 'y'
education_summary = generate_summary_table(marketing, 'education')
# Display the summary table
education_summary
```

Bivariate Analysis of 'education' and 'y'

Out[187...

	_		 -	 -
education				
illiterate	14	4	77.77778	22.22222
unknown	1480	251	85.499711	14.500289
university.degree	10497	1669	86.281440	13.718560
professional.course	4647	594	88.666285	11.333715
high.school	8482	1031	89.162199	10.837801
basic.4y	3747	428	89.748503	10.251497
basic.6y	2104	188	91.797557	8.202443
basic.9y	5571	473	92.174057	7.825943

No_count Yes_count No_percent Yes_percent

Loan

```
In [188... # Analyze the 'housing' variable
    analyze_column(marketing, 'housing', chart_type='bar')
```

Summary of 'housing': count 41180 unique 3 top yes freq 21571

Name: housing, dtype: object

Unique values in 'housing':
['no' 'yes' 'unknown']


```
In [189... # Bivariate analysis of 'housing' and 'y'
bivariate_analysis(marketing, 'housing', chart_type='stacked_bar')

# Generate summary table for 'housing' and 'y'
housing_summary = generate_summary_table(marketing, 'housing')

# Display the summary table
housing_summary
```

Bivariate Analysis of 'housing' and 'y'

Out [189... No_count Yes_count No_percent Yes_percent

nousing				
yes	19065	2506	88.382551	11.617449
no	16594	2025	89.124013	10.875987
unknown	883	107	89.191919	10.808081

Loan

```
In [190... # Analyze the 'loan' variable
analyze_column(marketing, 'loan', chart_type='bar')
```

```
Summary of 'loan':

count 41180

unique 3

top no

freq 33943

Name: loan, dtype: object

Unique values in 'loan':
['no' 'yes' 'unknown']
```


In [191... # Bivariate analysis of 'loan' and 'y'
bivariate_analysis(marketing, 'loan', chart_type='pie')

Bivariate Analysis of 'loan' and 'y'

loan: no

No influence in the main variable...

Contact

Out[192...

d Cloud V	Vord Frequency	Word Length	Value Table
		Sample	
2	15	st row	telephone
0.0%	2n	d row	telephone
0	3r	d row	telephone
0.0%	4t	h row	telephone
3021180	5t	h row	telephone
		Letter	
8.3652		Count	344480
0.4815	Lo	wercase Letter	344480
8	Sı	pace Separator	0
8	Up	percase Letter	0
9	Da	sh Punctuation	0
	De	ecimal Number	0
	2 0.0% 0 0.0% 3021180 8.3652 0.4815 8	0.0% 2n 0 3r 0.0% 4t 3021180 5t 8.3652 0.4815 Lo 8 Si 8 Up	Sample 2 1st row

```
In [193... # Analyze the 'contact' variable
    analyze_column(marketing, 'contact', chart_type='bar')
```

Summary of 'contact': count 41180 unique 2 top cellular freq 26140

Name: contact, dtype: object

Unique values in 'contact':
['telephone' 'cellular']

In [194... # Bivariate analysis of 'contact' and 'y'
generate_pie_charts_per_category(marketing, 'contact', colors=plt.cm.Paired.

Better to contact them by cellular than telephone definitely.

Default

```
In [195... # Analyze the 'default' variable
analyze_column(marketing, 'default', chart_type='bar')
```

```
Summary of 'default':
count 41180
unique 3
top no
freq 32581
Name: default, dtype: object
Unique values in 'default':
['no' 'unknown' 'yes']
```

Distribution of default - Bar Chart


```
In [196... bivariate_analysis(marketing, 'default')# Generate summary table for 'default
default_summary = generate_summary_table(marketing, 'default')

# Display the summary table
print(default_summary)
```

Bivariate Analysis of 'default' and 'y'

Previous Outcome result

```
In [197... plot(marketing, 'poutcome')

0%| | 0/76 [00:00<?, ?it/s]
```

Out[197...

rd Cloud	Wor	d Frequency	Word Length	Value Table
			Sample	
;	3	1st	row	nonexistent
0.0%	%	2nd	row	nonexistent
	0	3rd	row	nonexistent
0.09	%	4th	row	nonexistent
310719	6	5th	row	nonexistent
			Letter	
10.45	4		Count	430496
1.373	3	Lo	wercase Letter	430496
1	1	Sp	ace Separator	0
	7	Up	percase Letter	0
1	1	Das	sh Punctuation	0
		De	ecimal Number	0
	0.09 0.09 310719 10.45 1.373	3 0.0% 0 0.0% 3107196 10.454 1.3733	3 1st 0.0% 2nd 0 3rd 0.0% 4th 3107196 5th 10.454 1.3733 Lov 11 Sp 7 Up	Sample 3 1st row

```
In [198... # Analyze the 'poutcome' variable
analyze_column(marketing, 'poutcome', chart_type='bar')
```

Summary of 'poutcome': count 41180 unique 3 top nonexistent freq 35559

Name: poutcome, dtype: object

Unique values in 'poutcome':
['nonexistent' 'failure' 'success']

Distribution of poutcome - Bar Chart

In [199... # Bivariate analysis of 'poutcome' and 'y'
bivariate_analysis(marketing, 'poutcome', chart_type='bar')

Bivariate Analysis of 'poutcome' and 'y'

In [200... # Bivariate analysis of 'poutcome' and 'y'
generate_pie_charts_per_category(marketing, 'poutcome', colors=plt.cm.Paired


```
In [201... # Generate summary table for 'poutcome' and 'y'
poutcome_summary = generate_summary_table(marketing, 'poutcome')

# Display the summary table
print(poutcome_summary)
```

	No_count	Yes_count	No_percent	Yes_percent
poutcome				
success	479	892	34.938001	65.061999
failure	3645	605	85.764706	14.235294
nonexistent	32418	3141	91.166793	8.833207

A little check to see if the values are representative

```
In [202... df = marketing.copy()
    df['y'] = df['y'].map({'yes': 1, 'no': 0}) # Convert 'y' to binary

# Create dummy variables for 'poutcome'
poutcome_dummies = pd.get_dummies(df['poutcome'], drop_first=True)

# Add an intercept column for the regression
X = sm.add_constant(poutcome_dummies)
y = df['y']

# Fit the logistic regression model
model = sm.Logit(y, X).fit()

# Print the summary of the model
print(model.summary())

# Check the p-values of the poutcome categories
print("\nP-values for poutcome categories:\n", model.pvalues)
```

```
ValueError
                                           Traceback (most recent call last)
Cell In [202], line 12
      9 y = df['y']
     11 # Fit the logistic regression model
---> 12 model = sm.Logit(y, X).fit()
     14 # Print the summary of the model
     15 print(model.summary())
File /usr/local/lib/python3.10/site-packages/statsmodels/discrete/discrete m
odel.py:479, in BinaryModel.__init__(self, endog, exog, offset, check_rank,
**kwarqs)
    477 if not issubclass(self.__class__, MultinomialModel):
            if not np.all((self.endog >= 0) & (self.endog <= 1)):</pre>
    478
                 raise ValueError("endog must be in the unit interval.")
    481 if offset is None:
            delattr(self, 'offset')
    482
ValueError: endog must be in the unit interval.
```

Month

```
In [48]: # Analyze the 'month' variable
    analyze_column(marketing, 'month', chart_type='bar')

Summary of 'month':
    count    41180
    unique    10
    top         may
    freq    13765
    Name: month, dtype: object

Unique values in 'month':
    ['may' 'jun' 'jul' 'aug' 'oct' 'nov' 'dec' 'mar' 'apr' 'sep']
```



```
In [49]: import matplotlib.pyplot as plt
         month_order = ['mar', 'apr', 'may', 'jun', 'jul', 'aug', 'sep', 'oct', 'nov'
         # Generate the proportion DataFrame for stacked bar plot
         prop_df = (marketing.groupby(['month', 'y']).size() / marketing.groupby(['mc
         # Order the DataFrame by the specified month order
         prop_df = prop_df.loc[month_order]
         # Plot the stacked bar plot
         ax = prop_df.plot(kind='bar', stacked=True, figsize=(10, 5), color=['orange'
         plt.title('Month vs. Subscription - Stacked Proportion Bar Plot')
         plt.xlabel('Month')
         plt.ylabel('Proportion')
         plt.xticks(rotation=45)
         # Annotate the bars with the percentages
         for i in range(len(prop df)):
             for j in range(len(prop df.columns)):
                 value = prop df.iloc[i, j]
                 # Set color based on the section of the bar: white for blue ('no') a
                 text color = 'white' if j == 1 else 'black'
                 # Display percentages with respective color
                 ax.text(i, value / 2 if j == 0 else 1 - (value / 2),
                         f'{value * 100:.1f}%', ha='center', va='center', color=text_
         plt.show()
         # Generate and display the summary table
         month_summary = generate_summary_table(marketing, 'month')
         print(month_summary)
```


	No_count	Yes_count	No_percent	Yes_percent
month				
mar	270	276	49.450549	50.549451
dec	93	89	51.098901	48.901099
sep	314	256	55.087719	44.912281
oct	403	315	56.128134	43.871866
apr	2093	539	79.521277	20.478723
aug	5523	655	89.397863	10.602137
jun	4759	559	89.488530	10.511470
nov	3683	414	89.895045	10.104955
jul	6525	649	90.953443	9.046557
may	12879	886	93.563385	6.436615

Day of Week

```
In [50]: # Analyze the 'day_of_week' variable
    analyze_column(marketing, 'day_of_week', chart_type='bar')

Summary of 'day_of_week':
    count    41180
    unique    5
    top         thu
    freq    8622
Name: day_of_week, dtype: object

Unique values in 'day_of_week':
    ['mon' 'tue' 'wed' 'thu' 'fri']
```



```
In [51]: # Define the correct order for the days of the week
day_order = ['mon', 'tue', 'wed', 'thu', 'fri']

# Generate the proportion DataFrame for stacked bar plot
prop_df = (marketing.groupby(['day_of_week', 'y']).size() / marketing.groupb
# Order the DataFrame by the specified day order
```

```
prop_df = prop_df.loc[day_order]

# Plot the stacked bar plot
prop_df.plot(kind='bar', stacked=True, figsize=(10, 5), color=['orange', 'bl
plt.title('Day of Week vs. Subscription - Stacked Proportion Bar Plot')
plt.xlabel('Day of Week')
plt.ylabel('Proportion')
plt.xticks(rotation=45)
plt.show()
```


Duration

[151 307 198 ... 1246 1556 1868]

```
In [52]: # Analyze the 'duration' variable
         analyze_column(marketing, 'duration')
        Summary of 'duration':
                 41180.000000
        count
        mean
                   258.280427
        std
                   259.299856
        min
                      0.000000
        25%
                   102.000000
        50%
                   180,000000
        75%
                   319.000000
                  4918.000000
        max
        Name: duration, dtype: float64
        Unique values in 'duration':
```


In [203... # Bivariate analysis of 'duration' and 'y'
bivariate_analysis(marketing, 'duration')

Using categorical units to plot a list of strings that are all parsable as f loats or dates. If these strings should be plotted as numbers, cast to the a ppropriate data type before plotting.

Using categorical units to plot a list of strings that are all parsable as f loats or dates. If these strings should be plotted as numbers, cast to the a ppropriate data type before plotting.


```
In [204... # Option 1: Separate Histograms for Each Group
         fig, axes = plt.subplots(1, 2, figsize=(14, 6), sharey=True)
         sns.histplot(marketing[marketing['y'] == 'no']['duration'], kde=True, bins=5
         axes[0].set title('No Subscription')
         axes[0].set_xlabel('Duration')
         axes[0].set ylabel('Density')
         sns.histplot(marketing[marketing['y'] == 'yes']['duration'], kde=True, bins=
         axes[1].set_title('Subscription')
         axes[1].set xlabel('Duration')
         plt.tight_layout()
         plt.show()
         # Option 2: Log Transformation
         marketing['log_duration'] = np.log1p(marketing['duration']) # Log transform
         plt.figure(figsize=(10, 6))
         sns.histplot(data=marketing, x='log_duration', hue='y', kde=True, bins=50)
         plt.title('Log-Transformed Duration vs. Subscription')
         plt.xlabel('Log(Duration)')
         plt.ylabel('Density')
         plt.show()
         # Option 3: Faceted Histogram
         g = sns.FacetGrid(marketing, hue='y', aspect=2, height=5)
         g.map(sns.histplot, 'duration', bins=50, kde=True)
         g.add_legend()
         plt.show()
         # Option 4: Boxen Plot
         plt.figure(figsize=(10, 6))
         sns.boxenplot(data=marketing, x='y', y='duration', palette=['orange', 'blue']
         plt.title('Duration by Subscription Status - Boxen Plot')
         plt.xlabel('Subscription')
         plt.ylabel('Duration')
         plt.show()
```


Campaign

```
In [55]: # Analyze the 'campaign' variable
         analyze_column(marketing, 'campaign')
        Summary of 'campaign':
                 41180.000000
        count
        mean
                     2.567800
                     2.770225
        std
        min
                     1.000000
        25%
                     1.000000
        50%
                     2.000000
        75%
                     3.000000
                    56.000000
        max
        Name: campaign, dtype: float64
        Unique values in 'campaign':
        [ 1 2
               3 4 5 6 7 8 9 10 11 12 13 19 18 23 14 22 25 16 17 15 20 56
         39 35 42 28 26 27 32 21 24 29 31 30 41 37 40 33 34 43]
```



```
In [56]: # Option 2: Binning
         bins = [0, 1, 3, 5, 10, 20, np.inf]
         labels = ['1', '2-3', '4-5', '6-10', '11-20', '21+']
         marketing['campaign binned'] = pd.cut(marketing['campaign'], bins=bins, labe
         plt.figure(figsize=(10, 6))
         sns.countplot(x='campaign_binned', hue='y', data=marketing, palette=['blue',
         plt.title('Binned Campaign vs. Subscription')
         plt.xlabel('Number of Contacts (Binned)')
         plt.ylabel('Count')
         plt.show()
         # Limit the range of 'campaign' to focus on the more typical values (e.g., 1
         plt.figure(figsize=(10, 6))
         sns.boxplot(data=marketing[marketing['campaign'] <= 10], x='y', y='campaign'</pre>
         plt.title('Campaign (1-10 Contacts) vs. Subscription - Boxplot')
         plt.xlabel('Subscription')
         plt.ylabel('Number of Contacts')
         plt.show()
```



```
In [57]: # Generate summary statistics for the 'campaign' variable for each subscript
    campaign_summary = marketing.groupby('y')['campaign'].describe()

# Display the summary statistics
    print(campaign_summary)
```

In [59]: # Analyze the 'campaign' variable

analyze_column(marketing, 'pdays')

```
count mean std min 25% 50% 75% max y no 36542.0 2.633271 2.873621 1.0 1.0 2.0 3.0 56.0 yes 4638.0 2.051962 1.666532 1.0 1.0 2.0 2.0 23.0
```

P-Days

In [58]:	plot(marketing	, 'pdays	s')				
	0%	0/122	[00:00 ,</th <th>?it/s]</th> <th></th> <th></th> <th></th>	?it/s]			
Out[58]:	Stats Histog	gram	KDE Plot	Normal Q-Q Plot	Box Plot	t Value Table	
	Ove	rview		Quantile Statistic	cs	Descriptive Sta	ntist
	Approximate Distir	ct Count	27	Minimum	0	Mean	
	Approximate U	nique (%)	0.1%	5-th Percentile	999	Standard Deviation	
		Missing	0	Q1	999	Variance	3
	Mi	ssing (%)	0.0%	Median	999	Sum	3.9
		Infinite	0	Q3	999	Skewness	
	In	finite (%)	0.0%	95-th Percentile	999	Kurtosis	
	Men	nory Size	658880	Maximum	999	Coefficient of Variation	
		Mean	962.5167	Range	999		
		Minimum	0	IQR	0		
	P	/laximum	999				
		Zeros	15				
	2	Zeros (%)	0.0%				
		legatives	0				
	Nega	itives (%)	0.0%				

```
Summary of 'pdays':
         41180.000000
count
           962.516707
mean
           186.809028
std
min
             0.000000
25%
           999.000000
50%
           999,000000
75%
           999.000000
           999.000000
max
Name: pdays, dtype: float64
Unique values in 'pdays':
[999
       6
               3
                   5
                       1
                           0
                              10
                                   7
                                             11
                                                    2 12 13 14 15 16
  21
      17
          18
              22 25
                      26
                          19 27
                                  20]
```



```
In [60]: # Create a new column for pdays categories
    marketing['pdays_category'] = marketing['pdays'].apply(lambda x: 'Not Contac
    # Display the counts of each category
    print(marketing['pdays_category'].value_counts())
```

Contacted Previously 41180
Name: pdays_category, dtype: int64

The value for 999 seems to be the -1 which explains when there is no call we should analyze it differently

```
In [62]: marketing['pdays_category'] = marketing['pdays'].apply(lambda x: 'Not Contac
```

```
# Display the counts of each category
print(marketing['pdays_category'].value_counts())
```

Not Contacted (999) 39667 Contacted Previously 1498 Contacted Recently (0) 15 Name: pdays_category, dtype: int64

```
In [63]: # Filter out 'pdays = 999' and possibly 'pdays = 0'
filtered_pdays = marketing[(marketing['pdays'] > 0) & (marketing['pdays'] <

# Re-plot the box plot after filtering out 'pdays = 999'
plt.figure(figsize=(10, 6))
sns.boxplot(data=filtered_pdays, x='y', y='pdays', palette=['blue', 'orange'
plt.title('pdays (Excluding 999) vs. Subscription - Boxplot')
plt.xlabel('Subscription')
plt.ylabel('pdays')
plt.show()</pre>
```



```
In [64]: plt.figure(figsize=(10, 6))
    sns.countplot(x='pdays_category', hue='y', data=marketing, palette=['blue',
    plt.title('pdays Categories vs. Subscription')
    plt.xlabel('pdays Category')
    plt.ylabel('Count')
    plt.show()
```



```
In [65]: # Group the data by 'pdays_category' and 'y', and calculate the count
summary_table = marketing.groupby(['pdays_category', 'y']).size().unstack(fi

# Rename the columns for better understanding
summary_table.columns = ['No_count', 'Yes_count']

# Calculate percentages for 'yes' and 'no' in each category
summary_table['No_percent'] = summary_table['No_count'] / (summary_table['No_summary_table['Yes_percent'] = summary_table['Yes_count'] / (summary_table['Yes_percent'] = summary_table['Yes_count'] / (summary_table['Yes_percent'] / (summary_table['Yes_percent'] / (summary_table['Yes_percent'] / (summary_table['Yes_percent'] / (summary_table['Yes_percent'] / (summary_table]
```

Out[65]:		pdays_category	No_count	Yes_count	No_percent	Yes_percent
	0	Contacted Previously	543	955	36.248331	63.751669
	1	Contacted Recently (0)	5	10	33.333333	66.666667
	2	Not Contacted (999)	35994	3673	90.740414	9.259586

Previous

Out[66]:

Stats	Bar Chart	Pie Chart	Word Cloud	l Wo	ord Frequency	Word Length	Value Table
		Overview				Sample	
	Approxima	te Distinct Co	ount	8		1st ro	w 0
	Approx	imate Unique	(%)	0.0%		2nd ro	w 0
		Miss	sing	0		3rd ro	w 0
		Missing	(%)	0.0%		4th ro	w 0
		Memory 9	Size 271	7880		5th ro	w 0
		Length				Letter	
			Mean	1		Count	0
		Standard	Deviation	0	L	owercase Letter	0
			Median	1	•	Space Separator	0
			Minimum	1	L	Jppercase Letter	0
			Maximum	1	D	ash Punctuation	0
					ı	Decimal Number	41180

```
In [209... # Group the data by 'previous' and 'y', count the occurrences, and normalize
grouped_data = marketing.groupby(['previous', 'y']).size().unstack(fill_valu

# Calculate percentages
grouped_data_percentage = grouped_data.div(grouped_data.sum(axis=1), axis=0)

# Plot the stacked bar chart with percentages
grouped_data_percentage.plot(kind='bar', stacked=True, figsize=(10, 6), colc
#plt.title('Number of Previous Contacts vs. Subscription Status (Percentage)
plt.xlabel('Number of Previous Contacts')
plt.ylabel('Percentage')
plt.legend(title='Subscription Status', labels=['No', 'Yes'])
plt.show()
```


In [68]: # Group the data by 'previous' and 'y' and calculate counts
previous_summary = marketing.groupby(['previous', 'y']).size().unstack(fill_

Rename the columns for better understanding
previous_summary.columns = ['No_count', 'Yes_count']

Calculate percentages for 'yes' and 'no' in each 'previous' category
previous_summary['No_percent'] = previous_summary['No_count'] / (previous_suprevious_summary['Yes_percent'] = previous_summary['Yes_count'] / (previous_suprevious_summary.reset_index(inplace=True))

Display the summary table
previous_summary

0.000000

100.000000

Out[68]:		previous	No_count	Yes_count	No_percent	Yes_percent
	0	0	32418	3141	91.166793	8.833207
	1	1	3593	966	78.811143	21.188857
	2	2	404	350	53.580902	46.419098
	3	3	88	128	40.740741	59.259259
	4	4	31	38	44.927536	55.072464
	5	5	5	13	27.777778	72.22222
	6	6	2	2	50.000000	50.000000

```
In [69]: marketing['y'].unique()
Out[69]: array(['no', 'yes'], dtype=object)
In [69]: ## lets drop log duration column
         marketing.drop('log duration', axis=1, inplace=True)
In [70]: from sklearn.preprocessing import LabelEncoder
         label_encoder = LabelEncoder()
         marketing['y'] = label_encoder.fit_transform(marketing['y'])
         corr_matrix = marketing.corr()
         # lets filter only the target variable correlations and sort it
         corr_target = corr_matrix['y'].sort_values(ascending=False)
         corr_target
Out[70]: y
                           1.000000
         duration
                           0.405304
                           0.351018
         log duration
         previous
                           0.229952
         cons.conf.idx
                           0.055200
                           0.030324
         age
         campaign
                          -0.066340
                          -0.136490
         cons.price.idx
         emp.var.rate
                          -0.298297
         euribor3m
                          -0.307672
         pdays
                          -0.324478
         nr.employed
                         -0.354541
         Name: y, dtype: float64
In [71]: ## generate a heatmap of the correlation matrix
         plt.figure(figsize=(12, 10))
         sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt=".2f")
         plt.title('Correlation Matrix')
Out[71]: Text(0.5, 1.0, 'Correlation Matrix')
```


In []: