Aggregate Data

Chris Conlon

Saturday $4^{\rm th}$ October, 2025

 ${\rm Grad}\ {\rm IO}$

Aggregate Data

- ▶ Now we want to have both price endogeneity and flexible substitution in the same model.
- ▶ We are ultimately going with the random coefficients logit model, but we will start with the logit and nested logit.
- ▶ We will explore a technique that works with aggregate data.

Each individual's choice $y_{ij} \in \{0,1\}$ and $\sum_{j \in J} d_{ij} = 1$.

Choices follow a Multinomial distribution with m = 1:

$$(d_{i1},\ldots,d_{iJ},d_{i0}) \sim \text{Mult}(1,s_{i1},\ldots,s_{iJ},s_{i0})$$

If each individual faces the same $s_{ij}=s_j$ the the sum of Multinomials is itself Multinomial:

$$(q_1^*,\ldots,q_J^*,q_0^*) \sim \operatorname{Mult}(M,s_1,\ldots,s_J,s_0)$$

where $q_j^* = \sum_{i=1}^M d_{ij}$ is a sufficient statistic.

Multinomial: Aggregation Property (Likelihood)

We can write the likelihood as $L((y_{i1}, ..., y_{iJ}, y_{i0}) \mid \mathbf{x_i}, \theta)$ where $\mathbf{x_i}$ is a J vector that includes all relevant product characteristics interacted with all relevant individual characteristics.

$$\begin{split} &= \left(\begin{array}{c} M \\ q_{i1}, \dots, q_{iJ}, q_{i0} \end{array} \right) \prod_{i=1}^M s_{i1}(\mathbf{x_i}, \theta)^{d_{i1}} \cdots s_{iJ}(\mathbf{x_i}, \theta)^{d_{iJ}} s_{i0}(\mathbf{x_i}, \theta)^{d_{i0}} \\ &\rightarrow \ell(\mathbf{x_i}, \theta) = \sum_{i=1}^M \sum_{j \in \mathbf{J}} d_{ij} \log s_{ij}(\mathbf{x_i}, \theta) + \log C(\mathbf{q}) \end{split}$$

If all individuals face the same (x_i) and J they will have the same $s_{ij}(x_i, \theta)$ and we can aggregate outcomes into sufficient statistics.

$$\to \ell(\theta) = \sum_{j \in \mathcal{J}} q_j^* \log s_j(\theta)$$

Aggregation is probably the most important property of discrete choice:

- ▶ Instead of individual data, or a single group we might have multiple groups: if prices only change once per week, we can aggregate all of the week's sales into one "observation".
- ▶ Likewise if we only observe that an individual is within one of five income buckets

 there is no loss from aggregating our data into these five buckets.
- ▶ All of this depends on the precise form of $s_{ij}(\mathbf{x_i}, \theta)$. When it doesn't change across observations: we can aggregate.
- ▶ Notice I didn't need anything to follow a logit/probit.

$$s_{ij}(\mathbf{x_i}, \theta) = \int \frac{\exp[x_{ij}\beta_{\iota}]}{1 + \sum_{k} \exp[x_{ik}\beta_{\iota}]} f(\beta_{\iota}|\theta) \partial \beta_{\iota} = \sum_{\iota=1}^{S} w_{\iota} \frac{\exp[x_{ij}\beta_{\iota}]}{1 + \sum_{k} \exp[x_{ik}\beta_{\iota}]}$$

- \blacktriangleright Notice that while *i* subscripts "individuals" with different characteristics x_i
- $\blacktriangleright \iota$ is the dummy index of integration/summation.
 - Even though we sometimes call these "simulated individuals"
 - Everyone with the same $\mathbf{x_i}$ still has the same $s_{ij}(\mathbf{x_i}, \theta)$
- \blacktriangleright Most papers will abuse notation and i will serve double duty!

Multinomial Logit: Estimation with Aggregate Data

Now suppose we have aggregate data: (q_1,\ldots,q_J,q_0) where $M=\sum_{j\in\mathcal{J}}q_j.$

- ▶ If M gets large enough then $(\frac{q_1}{M}, \dots, \frac{q_J}{M}, \frac{q_0}{M}) \to (\mathfrak{s}_1, \dots, \mathfrak{s}_J, \mathfrak{s}_0)$
 - Idea: Observe $(\mathfrak{s}_1(\mathbf{x_i}),\dots,\mathfrak{s}_J(\mathbf{x_i}),\mathfrak{s}_0(\mathbf{x_i}))$ without sampling variance.
 - Challenges: We probably don't really observe q_0 and hence M.
- ▶ Idea: Equate observed market shares to the conditional choice probabilities $(s_1(\mathbf{x_i}, \theta), \dots, s_J(\mathbf{x_i}, \theta), s_0(\mathbf{x_i}, \theta)).$
- \blacktriangleright Choose θ that minimizes distance: MLE? MSM? Least Squares? etc.

Inversion: IIA Logit

Add unobservable error for each \mathfrak{s}_{jt} labeled ξ_{jt} .

$$u_{ijt} = x_{jt}\beta - \alpha p_{jt} + \xi_{jt} + \varepsilon_{ijt}, \quad s_{jt} = \frac{\exp[x_{jt}\beta - \alpha p_{jt} + \xi_{jt}]}{1 + \sum_{k} \exp[x_{kt}\beta - \alpha p_{kt} + \xi_{kt}]}$$

- ▶ The idea is that ξ_{jt} is observed to the firm when prices are set, but not to us the econometricians.
- ▶ Potentially correlated with price $Corr(\xi_{jt}, p_{jt}) \neq 0$
- ▶ But not characteristics $E[\xi_{jt}|x_{jt}] = 0$.
 - This allows for products j to better than some other product in a way that is not fully explained by differences in x_j and x_k .
 - Something about a BMW makes it better than a Peugeot but is not fully captured by characteristics that leads higher sales and/or higher prices.
 - Consumers agree on its value (vertical component).

Inversion: IIA Logit

Taking logs:

$$\begin{split} \ln s_{0t} &= -\log \left(1 + \sum_k \exp[x_{kt}\beta + \xi_{kt}]\right) \\ \ln s_{jt} &= [x_{jt}\beta - \alpha p_{jt} + \xi_{jt}] - \log \left(1 + \sum_k \exp[x_{kt}\beta + \xi_{kt}]\right) \\ \underbrace{\ln s_{jt} - \ln s_{0t}}_{Data!} &= x_{jt}\beta - \alpha p_{jt} + \xi_{jt} \end{split}$$

Exploit the fact that:

- 1. $\ln s_{jt} \ln s_{0t} = \ln \mathfrak{s}_{jt} \ln \mathfrak{s}_{0t}$ (with no sampling error)
- 2. We have one ξ_{jt} for every share s_{jt} (one to one mapping)

IV Logit Estimation (Berry 1994)

- 1. Transform the data: $\ln \mathfrak{s}_{jt} \ln \mathfrak{s}_{0t}$.
- 2. IV Regression of: $\ln \mathfrak{s}_{jt} \ln \mathfrak{s}_{0t}$ on $x_{jt}\beta \alpha p_{jt} + \xi_{jt}$ with IV z_{jt} .

Was it magic?

- ▶ No. It was just a nonlinear change of variables from $s_{jt} \to \xi_{jt}$.
- ▶ Our (conditional) moment condition is just that $E[\xi_{jt}|x_{jt},z_{jt}]=0$.
- ▶ We moved from the space of shares and MLE for the logit to the space of utilities and an IV model.
 - We are losing some efficiency but now we are able to estimate under weaker conditions.
 - But we need aggregate data and shares without sampling variance.

Did we need to do change of variables? Imagine we work with:

$$\begin{split} s_{jt} &= \frac{\exp[x_{jt}\beta - \alpha p_{jt}]}{1 + \sum_{k} \exp[x_{kt}\beta - \alpha p_{kt}]} \\ \eta_{jt} &\equiv (s_{jt}(\theta) - \mathfrak{s}_{jt}) \end{split}$$

- ▶ Each share depends on all prices (p_{1t}, \dots, p_{Jt}) and characteristics $\mathbf{x_t}$.
- ▶ Harder to come up with IV here.

Inversion: Nested Logit (Berry 1994 / Cardell 1991)

This takes a bit more algebra but not much

$$\underbrace{\frac{\ln s_{jt} - \ln s_{0t} - \rho \log(s_{j|gt})}_{\text{data!}}}_{} = x_{jt}\beta - \alpha p_{jt} + \xi_{jt}$$

$$\frac{\ln \mathfrak{s}_{jt} - \ln \mathfrak{s}_{0t}}{} = x_{jt}\beta - \alpha p_{jt} + \rho \log(\mathfrak{s}_{j|gt}) + \xi_{jt}$$

- ▶ Same as logit plus an extra term $\log(s_{j|g})$ the within group share.
 - We now have a second endogenous regressor.
 - If you don't see it realize we are regressing Y on a function of Y. This should always make you nervous.
- ▶ If you forget to instrument for ρ you will get $\rho \to 1$ because of attenuation bias.
- \blacktriangleright A common instrument for ρ is the number of products within the nest. Why?

BLP 1995/1999 and Berry Haile (2014)

Think about a generalized inverse for $\sigma_j(\mathbf{x}_t, \theta_2) = \mathfrak{s}_{jt}$ so that

$$\sigma_{jt}^{-1}(\mathbf{S}_{\cdot t}, \tilde{\theta}_2) = x_{jt}\beta - \alpha p_{jt} + \xi_{jt}$$

- ▶ After some transformation of data (shares $S_{\cdot t}$) we get mean utilities δ_{jt} .
 - We assume $\delta_{jt}=h(x_{jt},v_{jt},\theta_1)-\alpha p_{jt}+\xi_{jt}$ follows some parametric form (often linear).
- ▶ Same IV-GMM approach after transformation
- ▶ Examples:
 - Plain Logit: $\sigma_j^{-1}(S_{\cdot t}) = \ln \mathfrak{s}_{jt} \ln \mathfrak{s}_{0t}$
 - Nested Logit: $\sigma_j^{-1}(\mathbf{S}_{.t}, \rho) = \ln \mathfrak{s}_{jt} \ln \mathfrak{s}_{0t} + \rho \ln \mathfrak{s}_{j|gt}$

Inversion: BLP (Random Coefficients)

We can't solve for δ_{jt} directly this time.

$$\sigma_j(\delta_t, \tilde{\theta}_2) = \int \frac{\exp[\delta_{jt} + \mu_{ijt}]}{1 + \sum_k \exp[\delta_{kt} + \mu_{ikt}]} f(\mu_{it} | \tilde{\theta}_2)$$

- ▶ This is a $J \times J$ system of equations for each t.
- ▶ It is diagonally dominant (with outside good).
- ▶ There is a unique vector δ_t that solves it for each market t.
- \blacktriangleright If you can work out $\frac{\partial s_{jt}}{\partial \delta_{kt}}$ (easy) you can solve this using Newton's Method.

Contraction: BLP

BLP actually propose an easy solution to find δ_t . Fix $\widetilde{\theta_2}$ and solve for δ_t . Think about doing this one market at a time:

$$\boldsymbol{\delta_t}^{(k)}(\tilde{\boldsymbol{\theta}}_2) = \boldsymbol{\delta_t}^{(k-1)}(\tilde{\boldsymbol{\theta}}_2) + \left[\log(\mathfrak{s}_j) - \log(s_j(\boldsymbol{\delta_t}^{(k-1)}, \tilde{\boldsymbol{\theta}}_2)\right]$$

- ▶ They prove (not easy) that this is a contraction mapping.
- ▶ If you keep iterating this equation enough $\|\delta_t^{(k)}(\theta) \delta_t^{(k-1)}(\theta)\| < \epsilon_{tol}$ you can recover the δ 's so that the observed shares and the predicted shares are identical.
- ▶ Practical tip: ϵ_{tol} needs to be as small as possible. (≈ 10⁻¹³).
- ▶ Practical tip: Contraction isn't as easy as it looks: $s_j(\delta_t^{(k-1)}, \tilde{\theta}_2)$ requires computing the numerical integral each time (either via quadrature or monte carlo).

BLP Pseudocode

From the outside, in:

 \blacktriangleright Outer loop: search over nonlinear parameters θ to minimize GMM objective:

$$\widehat{\theta_{BLP}} = \arg\min_{\theta_2}(Z'\hat{\xi}(\theta_2))W(Z'\hat{\xi}(\theta_2))'$$

- ▶ Inner Loop:
 - Fix a guess of $\tilde{\theta}_2$.
 - Solve for $\delta_t(\mathbf{S}_t, \tilde{\theta}_2)$ which satisfies $\sigma_{jt}(\delta_t, \tilde{\theta}_2) = \mathfrak{s}_{jt}$.
 - Computing $s_{jt}(\delta_t, \tilde{\theta}_2)$ requires numerical integration (quadrature or monte carlo).
 - We can do IV-GMM to recover $\hat{\alpha}(\tilde{\theta}_2), \hat{\beta}(\tilde{\theta}_2), \hat{\xi}(\tilde{\theta}_2)$.

$$\delta_t(\mathbf{S}_t, \tilde{\theta}_2) = x_{jt}\beta - \alpha p_{jt} + \xi_{jt}$$

- Use $\hat{\xi}(\theta)$ to construct sample moment conditions $\frac{1}{N} \sum_{j,t} Z'_{jt} \xi_{jt}$
- lackbox When we have found $\hat{\theta}_{BLP}$ we can use this to update $W \to W(\hat{\theta}_{BLP})$ and do 2-stage GMM.

Coming Up

- ▶ Extensions and Variants
- \blacktriangleright Supply Side Restrictions
- ▶ Instruments
- ightharpoonup Implementation Details