

SPECIAL RIGHT TRIANGLES

RIGHT TRIANGLES

prepared by:

Gyro A. Madrona

........

Electronics Engineer

TOPIC OUTLINE

The Unit Circle

45-45-90 Triangle

30-60-90 Triangle

UNIT CIRCLE

UNIT CIRCLE

A <u>unit circle</u> is a circle with radius <u>1 unit</u>, centered at the origin of the *xy*-plane.

Equation

$$x^2 + y^2 = 1$$

Unit Circle

TERMINAL POINTS

The <u>terminal point</u> is a point on the unit circle that corresponds to a given <u>angle</u> measured from the positive x-axis.

Terminal Point on the Unit Circle

45° ANGLE

(0,1)90° $45^{\circ} \frac{\pi}{4}$ 0° (-1,0)(1,0)0.7 $\frac{3\pi}{2}$ 270° (0, -1)

<u>Trigonometric function values for 45°</u>

30° ANGLE

<u>Trigonometric function values for 30°</u>

60° ANGLE

(0, 1) $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ 90° $60^{\circ} \frac{\pi}{3}$ 0° (-1,0)(1,0)0.5 $\frac{3\pi}{2}$ 270°

(0, -1)

<u>Trigonometric function values for 60°</u>

Evaluate the expression without using a calculator.

- $a. \sin 30^{\circ} \csc 30^{\circ}$
- $b. \sin\frac{\pi}{6} + \cos\frac{\pi}{6}$
- $c. \sin 30^{\circ} \cos 60^{\circ} + \sin 60^{\circ} \cos 30^{\circ}$

SPECIAL RIGHT TRIANGLES

45-45-90 TRIANGLE

30-60-90 TRIANGLE

Find the side labeled x.

Find *x* correct to one decimal place.

Find *x* correct to one decimal place.

SEATWORK

