CH_7

CH_7

7.1 Plane Stress

Transformation Equations for Plane Stress

Special Cases of Plane Stress

Uniaxial Stress

Pure Shear

Biaxial Stress

7.2 Principal Stresses and Maximum Shear Stresses

Principal Stresses

Principle Angles

Shear Stresses

Special Cases

Maximum Shear Stresses

7.1 Plane Stress

bars in tension and compression, shafts in torsion, and beams in bending are examples of a state of stress called **plane stress**

- **Normal Stress**: has a subscript that identifies the face on which the stress acts. For example: σ_x and σ_y
- **Shear Stress**: has two subscripts: the first denotes the face on which the stress acts, and the second gives the direction on that face. For example: τ_{xy} and τ_{yx}
- **Sign Convention for Shear Stresses**: a shear stress is positive when the directions associated with its subscripts are plus-plus or minus-minus; the stress is negative when the directions are plus-minus or minus-plus.

$$au_{xy} = au_{yx}$$

Transformation Equations for Plane Stress

(a) Stresses

$$egin{aligned} \sigma_{x1} &= rac{\sigma_x + \sigma_y}{2} + rac{\sigma_x - \sigma_y}{2} \cos 2 heta + au_{xy} \sin 2 heta \ & \ \sigma_{y1} &= rac{\sigma_x + \sigma_y}{2} - rac{\sigma_x - \sigma_y}{2} \cos 2 heta - au_{xy} \sin 2 heta \ & \ au_{x_1y_1} &= -rac{\sigma_x - \sigma_y}{2} \sin 2 heta + au_{xy} \cos 2 heta \end{aligned}$$

Special Cases of Plane Stress

Uniaxial Stress

$$\sigma_{x_1} = rac{\sigma_x}{2}(1+\cos 2 heta) \qquad au_{x_1y_1} = -rac{\sigma_x}{2}\sin 2 heta$$

Element in uniaxial stress

Pure Shear

$$\sigma_{x_1} = au_{xy} \sin 2 heta \qquad au_{x_1y_1} = au_{xy} \cos 2 heta$$

Element in pure shear

Biaxial Stress

$$\sigma_{x_1} = rac{\sigma_x + \sigma_y}{2} + rac{\sigma_x - \sigma_y}{2} \cos 2 heta$$
 $au_{x_1y_1} = -rac{\sigma_x - \sigma_y}{2} \sin 2 heta$

7.2 Principal Stresses and Maximum Shear Stresses

Principal Stresses

$$egin{aligned} rac{\mathrm{d}\sigma_{x_1}}{\mathrm{d} heta} &= -(\sigma_x - \sigma_y)\sin2 heta + 2 au_{xy}\cos2 heta = 0 \ an2 heta_p &= rac{2 au_{xy}}{\sigma_x - \sigma_y} \end{aligned}$$

Define
$$R=\sqrt{\left(rac{\sigma_x-\sigma_y}{2}
ight)^2+ au_{xy}^2}$$
 , then $\cos 2 heta_p=rac{\sigma_x-\sigma_y}{2R}$ $\sin 2 heta_p=rac{ au_{xy}}{R}$

then σ_1 is denoted as:

$$egin{aligned} \sigma_1 &= rac{\sigma_x + \sigma_y}{2} + rac{\sigma_x - \sigma_y}{2} \cos 2 heta_p + au_{xy} \sin 2 heta_p \ &= rac{\sigma_x + \sigma_y}{2} + rac{\sigma_x - \sigma_y}{2} rac{\sigma_x - \sigma_y}{2R} + au_{xy} rac{ au_{xy}}{R} \ &= rac{\sigma_x + \sigma_y}{2} + \sqrt{\left(rac{\sigma_x - \sigma_y}{2}
ight)^2 + au_{xy}^2} \end{aligned}$$

and $\sigma_1+\sigma_2=\sigma_x+\sigma_y$, then σ_2 is denoted as

$$egin{aligned} \sigma_2 &= \sigma_x + \sigma_y - \sigma_1 \ &= rac{\sigma_x + \sigma_y}{2} - \sqrt{\left(rac{\sigma_x - \sigma_y}{2}
ight)^2 + au_{xy}^2} \end{aligned}$$

where σ_1 and σ_2 are the principle stresses

Principle Angles

$$\cos 2 heta_{p1} = rac{\sigma_x - \sigma_y}{2R} \qquad \sin 2 heta_{p1} = rac{ au_{xy}}{R}$$

the value is unique for θ_{p1} , and the angle for θ_{p2} is perpendicular to the previous one, which is 90 degree larger or less than θ_{p1}

Shear Stresses

shear stresses are zero on the principle planes

Special Cases

- ullet uniaxial stress (biaxial stress): $an 2 heta_p = 0$
- ullet pure shear: $an 2 heta_p = \infty$, stresses come to $\sigma_1 = au_{xy}$ and $\sigma_2 = - au_{xy}$

Maximum Shear Stresses

similar to the principle stresses

$$rac{\mathrm{d} au_{xy}}{\mathrm{d} heta} = -(\sigma_x - \sigma_y)\cos 2 heta + 2 au_{xy}\sin 2 heta = 0
onumber \ an 2 heta_s = -rac{\sigma_x - \sigma_y}{2 au_{xy}}$$

since
$$an 2 heta_p = rac{2 au_{xy}}{\sigma_x - \sigma_y}$$
, then $\cos(2 heta_s - 2 heta_p) = 0$

$$egin{align} heta_s &= heta_p \pm 45^\circ \ &\sigma_{s_1} &= heta_{p_1} - 45^\circ \ & au_{max} &= \sqrt{\left(rac{\sigma_x - \sigma_y}{2}
ight)^2 + au_{xy}^2} = rac{\sigma_1 - \sigma_2}{2} \ &\sigma_{aver} &= rac{\sigma_x + \sigma_y}{2} \ \end{gathered}$$