#01. 작업준비

패키지 참조

예제 (1) - 사슴의 다리 길이 비교

데이터 가져오기

Case 1

결과 해석

Case 2

결과 해석

Case 3

결과 해석

예제 (2) - 자동차 첨가제가 주행 거리에 미치는 영향

데이터 가져오기

Case 1

결과 해석

Case 2

결과 해석

Case 3

결과 해석

대응 표본 T-검정 (Paired T-test)

표본의 각 사례마다 대응하는 2개의 관측치를 통해 판단

한 집단에 어떤 작용이 가해졌을 때에 대한 before, after를 비교

#01. 작업준비

패키지 참조

```
from scipy import stats
from pandas import read_excel
```

예제 (1) - 사슴의 다리 길이 비교

사슴의 왼쪽 뒷다리와 왼쪽 앞다리의 길이를 측정한 자료를 통해 두 다리의 길이(cm)가 같은지 다른지 알고 싶다.

이 경우 한 사슴에 대하여 두 다리 길이를 측정하였으므로 사슴은 독립이지만 한 마리의 사슴의 일부인 두 다리는 독 립이 아니다.

데이터 가져오기

```
df = read_excel("https://data.hossam.kr/E02/deer.xlsx", index_col="사台"
```

#01. 작업준비

패키지 참조

예제 (1) - 사슴의 다리 길이 비교

데이터 가져오기

Case 1

결과 해석

Case 2

결과 해석

Case 3

결과 해석

예제 (2) - 자동차 첨가제가 주행 거리에 미치는 영향

데이터 가져오기

Case 1

결과 해석

Case 2

결과 해석

Case 3

결과 해석

df

	뒷다리	앞다리
사슴		
1	142	138
2	140	136
3	144	147
4	144	139
5	142	143
6	146	141
7	149	143
8	150	145
9	142	136
10	148	146

Case 1

가설	내용	
귀무가설	사슴의 앞다리와 뒷다리 길이에는 차이가 없다	
대립가설	사슴의 앞다리와 뒷다리 길이에는 차이가 있다	

#01. 작업준비

패키지 참조

예제 (1) - 사슴의 다리 길이 비교

데이터 가져오기

Case 1

결과 해석

Case 2

결과 해석

Case 3

결과 해석

예제 (2) - 자동차 첨가제가 주행 거리에 미치는 영향

데이터 가져오기

Case 1

결과 해석

Case 2

결과 해석

Case 3

결과 해석

stats.ttest_rel(df['앞다리'], df['뒷다리'], alternative='two-sided')

TtestResult(statistic=-3.413793103448276, pvalue=0.007703223347263766, c

결과 해석

차이값에 대한 t 통계량의 값이 3.41, 대응되는 유의확률이 0.0077 로 0.05 보다 작으므로 유 의수준 0.05 에서 앞다리와 뒷다리의 길이는 같지 않다고 결론 내릴 수 있다.

Case 2

가설	내용
귀무가설	사슴의 앞다리는 뒷다리보다 길지 않다
대립가설	사슴의 앞다리는 뒷다리보다 길다

stats.ttest_rel(df['앞다리'], df['뒷다리'], alternative='greater')

TtestResult(statistic=-3.413793103448276, pvalue=0.9961483883263681, df=

결과 해석

차이값에 대한 t 통계량의 값이 3.41, 대응되는 유의확률이 0.99 로 0.05 보다 크므로 유의수 준 0.05 에서 앞다리는 뒷다리보다 길지 않다고 결론 내릴 수 있다.

#01. 작업준비

패키지 참조

예제 (1) - 사슴의 다리 길이 비교

데이터 가져오기

Case 1

결과 해석

Case 2

결과 해석

Case 3

결과 해석

예제 (2) - 자동차 첨가제가 주행 거리에 미치는 영향

데이터 가져오기

Case 1

결과 해석

Case 2

결과 해석

Case 3

결과 해석

Case 3

가설	내용
귀무가설	사슴의 앞다리는 뒷다리보다 짧지 않다
대립가설	사슴의 앞다리는 뒷다리보다 짧다

stats.ttest_rel(df['앞다리'], df['뒷다리'], alternative='less')

TtestResult(statistic=-3.413793103448276, pvalue=0.003851611673631883, c

결과 해석

차이값에 대한 t 통계량의 값이 $\begin{bmatrix} 3.41 \end{bmatrix}$ 대응되는 유의확률이 $\begin{bmatrix} 0.0038 \end{bmatrix}$ 로 $\begin{bmatrix} 0.05 \end{bmatrix}$ 보다 작으므로 유의수준 $\begin{bmatrix} 0.05 \end{bmatrix}$ 에서 앞다리는 뒷다리보다 짧다고 결론 내릴 수 있다.

예제 (2) - 자동차 첨가제가 주행거리에 미치는 영향

다섯 종류의 새 차에 대하여 같은 종류의 차 두 대 중에서 한 대를 랜덤하게 선택하여 첨가제를 사용하고, 다른 한 대에는 첨가제를 사용하지 않고 같은 운전자가 같은 장소에서 운전한 결과 다음과 같은 자료를 얻었다.

첨가제를 사용하면 주행거리가 늘어난다고 할 수 있는지 유의수준 5%에서 검정하여 보라.

그룹A: 첨가제를 사용한 경우, 그룹B: 첨가제를 사용하지 않은 경우

데이터 가져오기

#01. 작업준비

패키지 참조

예제 (1) - 사슴의 다리 길이 비교

데이터 가져오기

Case 1

결과 해석

Case 2

결과 해석

Case 3

결과 해석

예제 (2) - 자동차 첨가제가 주행 거리에 미치는 영향

데이터 가져오기

Case 1

결과 해석

Case 2

결과 해석

Case 3

결과 해석

df = read_excel("https://data.hossam.kr/E02/oil.xlsx")
df

	그룹A	그룹B
0	11.8	11.4
1	13.9	13.1
2	16.3	16.1
3	11.6	10.9
4	8.4	8.3

Case 1

가설	내용
귀무가 설	그룹A와 그룹B의 주행거리에는 차이가 없다. 실험에 사용된 첨가제는 주행거리에 영향을 주지 않는다.
대립가 설	그룹A와 그룹B의 주행거리에는 차이가 있다. 실험에 사용된 첨가제는 주행거리에 영향을 준다.

stats.ttest_rel(df['□룹A'], df['□룹B'], alternative='two-sided')

TtestResult(statistic=3.226236530469768, pvalue=0.03208991550156059, df=

#01. 작업준비

패키지 참조

예제 (1) - 사슴의 다리 길이 비교

데이터 가져오기

Case 1

결과 해석

Case 2

결과 해석

Case 3

결과 해석

예제 (2) - 자동차 첨가제가 주행 거리에 미치는 영향

데이터 가져오기

Case 1

결과 해석

Case 2

결과 해석

Case 3

결과 해석

결과 해석

대응표본 검정결과에서 검정통계량 값이 3.226 이고 유의확률 p값이 0.032 로 유의수준 0.05 보다 작으므로 차이가 없다는 귀무가설을 기각한다. 따라서 첨가제를 사용하는 경우 주행거리에 차이가 있다고 판단된다.

Case 2

가설	내용
귀무가설	그룹A의 주행거리는 그룹B의 주행거리보다 짧지 않다.
대립가설	그룹A의 주행거리는 그룹B의 주행거리보다 짧다.

stats.ttest_rel(df['□룹A'], df['□룹B'], alternative='less')

TtestResult(statistic=3.226236530469768, pvalue=0.9839550422492197, df=4

결과 해석

대응표본 검정결과에서 검정통계량 값이 3.226 이고 유의확률 p값이 0.98 로 유의수준 0.05 보다 크므로 첨가제를 넣은 그룹의 주행거리가 첨가제를 넣지 않은 그룹의 주행거리 보다 짧지 않다는 귀무가설을 기각할 수 없다.

Case 3

#01. 작업준비

패키지 참조

예제 (1) - 사슴의 다리 길이 비교

데이터 가져오기

Case 1

결과 해석

Case 2

결과 해석

Case 3

결과 해석

예제 (2) - 자동차 첨가제가 주행 거리에 미치는 영향

데이터 가져오기

Case 1

결과 해석

Case 2

결과 해석

Case 3

결과 해석

가설	내용
귀무가 설	그룹A의 주행거리는 그룹B의 주행거리보다 길지 않다. 첨가제는 주행거리를 늘리는데 효과가 없다.
대립가 설	그룹A의 주행거리는 그룹B의 주행거리보다 길다. 첨가제는 주행거리를 늘리는데 효과가 있다.

stats.ttest_rel(df['□룹A'], df['□룹B'], alternative='greater')

TtestResult(statistic=3.226236530469768, pvalue=0.016044957750780294, df

결과 해석

대응표본 검정결과에서 검정통계량 값이 3.226 이고 유의확률 p값이 0.016 로 유의수준 0.05 보다 작으므로 첨가제를 넣은 그룹의 주행거리가 첨가제를 넣지 않은 그룹의 주행거리보다 길지 않다는 귀무가설을 기각하고 대립가설을 채택한다. 즉, 첨가제는 주행거의 연장에 효과가 있다.