MATH 271 – Summer 2016 Assignment 3 – Hints

Problem 1.

 \bullet For any sets X and Y, note that

$$x \in X \triangle Y$$
 if and only if $(x \in X \text{ and } x \notin Y)$ or $(x \in Y \text{ and } x \notin X)$

- For part (c), to prove that $A \subseteq B$, you need to use cases.
- The proof that $B \subseteq A$ is almost the same as the proof that $A \subseteq B$.

Problem 2.

- The product of the elements of $\{7\}$ is 7. The product of the elements of $\{7,10\}$ is 70.
 - How many nonempty subsets are there total?
 - How many of those nonempty subsets have the property that the product of their elements is odd?

Problem 3. Plot both f and g on the range $-5 \le x \le 5$ to get an idea of what the functions look like.

- (a) Any real number x can be written as $x = \lfloor x \rfloor + r$ for some real number $0 \le r < 1$.
- (b) What value of x do you need to pick so that f(x) = 1.2? What value of x do you need to pick so that f(x) = 2.7? Try other values as well. Do you see a pattern? For an arbitrary $y \in \mathbb{R}$, find a formula for x as a function of y so that f(x) = y.
 - You may use the fact that |z+n|=|z|+n for all integers n and all real numbers z.
 - Furthermore, prove and use the fact that $\lfloor -z \rfloor = -\lceil z \rceil$ for all $z \in \mathbb{R}$.