64.7

0.0 0.0

Análise Exploratória de Dados

Imports

```
In []: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from statsmodels.tsa.seasonal import seasonal_decompose

sns.set(style='darkgrid')
palette = 'mako'
sns.set_theme(style="ticks", rc={"axes.spines.right": False, "axes.spines")
```

Análise inicial

2018-01-01

01:15:00

Visão inicial dos dados

```
In [ ]: | df = pd.read_pickle('../datasets/processed.pkl')
          df.head()
Out[]:
                   data consumo_energia corrente_atrasada corrente_principal co2 potencia_atrasad
             2018-01-01
                                                        2.95
                                                                                0.0
                                                                                                 73.2
                                     3.17
                                                                           0.0
               00:15:00
             2018-01-01
                                     4.00
                                                        4.46
                                                                           0.0
                                                                                0.0
                                                                                                 66.7
               00:30:00
             2018-01-01
                                                                                                 70.2
                                     3.24
                                                        3.28
                                                                           0.0
                                                                                0.0
               00:45:00
             2018-01-01
                                                        3.56
                                     3.31
                                                                                0.0
                                                                                                 68.0
                                                                           0.0
               01:00:00
```

Os dados já foram entregues tratados, sem valores null

3.82

```
In [ ]: df.info()
```

4.50

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 35040 entries, 0 to 35039
Data columns (total 11 columns):
     Column
                                  Non-Null Count Dtype
     -----
- - -
                                  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
                                                  ----
 0
     data
                                  35040 non-null datetime64[ns]
 1
     consumo_energia
                                  35040 non-null float64
                                  35040 non-null float64
 2
     corrente_atrasada
                                  35040 non-null float64
 3
     corrente_principal
 4
     co2
                                  35040 non-null float16
 5
     potencia_atrasado
                                  35040 non-null float64
 6
    potencia_principal
                                  35040 non-null float64
 7
     segundos_depois_meia_noite 35040 non-null int32
 8
     estado_semana
                                  35040 non-null category
```

tipo_carga 35040 non-null category dtypes: category(3), datetime64[ns](1), float16(1), float64(5), int32(1)memory usage: 1.9 MB

35040 non-null category

Observação dos dados numéricos

dia_semana

9

10

Foram desconsideradas as variáveis referente a data e segundos depois da meia noite, por serem medidas de tempo

```
df.drop(columns=['data', 'segundos_depois_meia_noite']).describe().T.drop
In [ ]:
                                                      25%
                                                             50%
                                                                         75%
Out[]:
                               mean
                                            std min
                                                                                    max
          consumo_energia 27.386892 33.444380
                                                 0.0
                                                      3.20
                                                                    51.237500 157.180000
                                                             4.57
                                                      2.30
          corrente_atrasada 13.035384 16.306000
                                                 0.0
                                                             5.00
                                                                   22.640000
                                                                               96.910000
          corrente_principal
                            3.870949
                                      7.424463
                                                 0.0
                                                      0.00
                                                             0.00
                                                                    2.090000
                                                                               27.760000
                            0.011520
                                     0.016144
                                                0.0
                                                      0.00
                                                             0.00
                                                                    0.020004
                                                                                0.070007
                      co2
                                                0.0 63.32
          potencia_atrasado 80.578056 18.921322
                                                            87.96
                                                                    99.022500 100.000000
                                                 0.0 99.70 100.00 100.000000 100.000000
          potencia principal 84.367870 30.456535
```

Observação dos dados categóricos

```
df.describe(exclude=[np.number, np.datetime64]).T.drop('count', axis=1)
                        unique
                                         top
                                              freq
Out[]:
         estado_semana
                             2 Dia da Semana
                                             25056
            dia_semana
                             7
                                Segunda-feira
                                              5088
                             3
                                   Carga leve 18072
             tipo_carga
```

Analisando a quantidade de dados unicos

```
df.nunique()
In [ ]:
```

```
35040
Out[]: data
        consumo_energia
                                      3343
        corrente_atrasada
                                       1954
        corrente_principal
                                       768
                                          8
                                       5079
        potencia_atrasado
                                      3366
        potencia_principal
        segundos_depois_meia_noite
                                       96
                                         2
        estado_semana
                                          7
        dia_semana
                                          3
        tipo_carga
        dtype: int64
```

A partir do site do governo foi adquirido as datas referentes as estações do ano

- Verão: 21 dezembro, às (14h28) de 2017 a 20 de março de 2018 (13h14);
- Verão: de 21 de dezembro (20h22) a 20 de março de 2019 (18h58);
- Outono: de 20 de março (13h14) a 21 de junho de 2018 (7h07);
- Inverno: de 21 de junho (7h07) a 22 de setembro de 2018 (22h53);
- Primavera: de 22 de setembro (22h53) a 21 de dezembro de 2018 (20h22).

```
In [ ]: def estacao_do_ano(data):
            verao_2018_inicio = pd.Timestamp('2017-12-21 14:28:00')
            verao_2018_fim = pd.Timestamp('2018-03-20 13:14:00')
            verao_2019_inicio = pd.Timestamp('2018-12-21 20:22:00')
            verao_2019_fim = pd.Timestamp('2019-03-20 18:58:00')
            outono_inicio = pd.Timestamp('2018-03-20 13:14:00')
            outono_fim = pd.Timestamp('2018-06-21 07:07:00')
            inverno_inicio = pd.Timestamp('2018-06-21 07:07:00')
            inverno_fim = pd.Timestamp('2018-09-22 22:53:00')
            primavera_inicio = pd.Timestamp('2018-09-22 22:53:00')
            primavera_fim = pd.Timestamp('2018-12-21 20:22:00')
            if verao_2018_inicio <= data < verao_2018_fim or verao_2019_inicio <=</pre>
                 return 'Verão'
            elif outono_inicio <= data < outono_fim:</pre>
                return 'Outono'
            elif inverno_inicio <= data < inverno_fim:</pre>
                 return 'Inverno'
            elif primavera_inicio <= data < primavera_fim:</pre>
                 return 'Primavera'
            else:
                 return 'Fora do intervalo'
        df['estacao'] = df['data'].apply(estacao_do_ano)
        del estacao_do_ano
```

Observação da variável target em ordem crescente e decrescente

Apesar dos dados não possuirem valores null, foi observado uma linha completamente nula, podendo ser considerado um outlier, ou um erro na medição

In []:	<pre>df.sort_values('consumo_energia', ascending=True).head(10)</pre>						
Out[]:		data	consumo_energia	corrente_atrasada	corrente_principal	co2 pot	encia_atra
	29855	2018-07-11 00:00:00	0.00	0.00	0.0	0.0	
	25848	2018-09-27 06:15:00	2.45	4.93	0.0	0.0	
	25847	2018-09-27 06:00:00	2.45	4.97	0.0	0.0	
	26234	2018-01-10 06:45:00	2.45	4.36	0.0	0.0	
	25851	2018-09-27 07:00:00	2.45	5.08	0.0	0.0	
	26018	2018-09-29 00:45:00	2.45	4.00	0.0	0.0	
	25820	2018-09-26 23:15:00	2.45	4.64	0.0	0.0	
	25822	2018-09-26 23:45:00	2.45	4.61	0.0	0.0	
	25821	2018-09-26 23:30:00	2.45	4.61	0.0	0.0	
	23733	2018-05-09 05:30:00	2.48	5.00	0.0	0.0	
T. F. 1.							
in i i:	df.so	rt values	''consumo enera	ia' ascending=	False), head (10)		
In []:	df.so				False).head(10)	co2	potenci
In []: Out[]:		data 2018-11-22	consumo_energia	corrente_atrasada	corrente_principal		potenci
	31238	data	consumo_energia	corrente_atrasada	corrente_principal	0.070007	potenci
		data 2018-11-22 09:45:00 2018-01-15 13:45:00	consumo_energia	corrente_atrasada	corrente_principal		potenci
	31238	data 2018-11-22 09:45:00 2018-01-15	consumo_energia	corrente_atrasada	corrente_principal 0.0 0.0	0.070007	potenci
	31238	data 2018-11-22	consumo_energia 157.18 153.14	corrente_atrasada 77.72 70.45	corrente_principal 0.0 0.0 0.0	0.070007	potenci
	31238 1398 31723	data 2018-11-22	consumo_energia 157.18 153.14 151.67	77.72 70.45 69.73	0.0 0.0 0.0 0.0	0.070007 0.070007 0.070007	potenci
	31238 1398 31723 7812	data 2018-11-22	consumo_energia 157.18 153.14 151.67 151.31	77.72 70.45 69.73 65.20	0.0 0.0 0.0 0.0 0.0 0.0	0.070007 0.070007 0.070007 0.070007	potenci
	31238 1398 31723 7812 1701	data 2018-11-22	consumo_energia 157.18 153.14 151.67 151.31 149.65	77.72 70.45 69.73 65.20 64.87	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.070007 0.070007 0.070007 0.070007	potenci
	31238 1398 31723 7812 1701 33848	data 2018-11-22	consumo_energia 157.18 153.14 151.67 151.31 149.65 149.18	77.72 70.45 69.73 65.20 64.87 74.56	corrente_principal 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.070007 0.070007 0.070007 0.070007 0.070007	potenci
	31238 1398 31723 7812 1701 33848 162	data 2018-11-22	consumo_energia 157.18 153.14 151.67 151.31 149.65 149.18 147.46	corrente_atrasada 77.72 70.45 69.73 65.20 64.87 74.56 65.27	corrente_principal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.070007 0.070007 0.070007 0.070007 0.070007 0.070000	potenci
	31238 1398 31723 7812 1701 33848 162 6111	data 2018-11-22 09:45:00 2018-01-15 13:45:00 2018-11-27 11:00:00 2018-03-23 09:15:00 2018-01-18 17:30:00 2018-12-19 14:15:00 2018-02-01 16:45:00 2018-05-03 16:00:00 2018-01-18	consumo_energia 157.18 153.14 151.67 151.31 149.65 149.18 147.46 146.88	corrente_atrasada 77.72 70.45 69.73 65.20 64.87 74.56 65.27 70.49	corrente_principal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.070007 0.070007 0.070007 0.070007 0.070007 0.000000 0.070007	potenci

Análise referente aos meses

Out[]:		consumo	_energia	corrente_	atrasada	corrente_	principal		co2	р
		mean	median	mean	median	mean	median	mean	median	
	data									
	January	33.876300	13.68	15.136035	5.18	4.520719	0.00	0.014759	0.010002	85
	February	29.330588	5.15	12.377035	4.86	4.434911	0.00	0.011741	0.000000	83
	March	27.107282	4.46	11.852571	4.57	3.993380	0.00	0.011476	0.000000	81
	April	25.923153	4.12	12.074792	4.28	4.427858	0.00	0.010879	0.000000	81
	May	28.636166	4.21	13.803901	5.15	3.579778	0.00	0.012218	0.000000	78
	June	25.909760	4.21	12.484104	5.18	3.726187	0.00	0.010903	0.000000	78
	July	27.497762	4.05	12.963784	5.08	3.508673	0.00	0.011698	0.000000	80
	August	28.021788	4.43	14.766176	5.47	2.888901	0.00	0.011912	0.000000	76
	September	20.581271	3.42	11.048615	5.11	3.855295	0.00	0.008431	0.000000	76
	October	27.564022	4.46	14.895481	5.98	3.486727	0.00	0.011573	0.000000	76
	November	30.867705	5.11	14.681601	5.15	3.175757	0.00	0.013087	0.000000	81
	December	23.312893	4.25	10.217043	3.31	4.898138	0.04	0.009550	0.000000	85

Apenas com esse agrupamento foi observada uma forte correlação referente ao consumo de energia e a corrente atrasada, então ordenamos os meses referentes as duas variaveis e comparamos

```
In [ ]:
              # Mean
              pd.DataFrame(data=[consumo_energia[0], corrente_atrasada[0]], index=['consumo_energia[0], corrente_atrasada[0]]
                    consumo_energia corrente_atrasada
Out[]:
                0
                                 January
                                                          January
                1
                              November
                                                          October
                2
                                February
                                                            August
                3
                                                        November
                                     May
                4
                                  August
                                                               May
                5
                                 October
                                                               July
                6
                                     July
                                                              June
                7
                                   March
                                                         February
                8
                                     April
                                                               April
                9
                                     June
                                                             March
              10
                              December
                                                       September
                                                        December
              11
                              September
In [ ]:
              # Median
              pd.DataFrame(data=[consumo_energia[1], corrente_atrasada[1]], index=['consumo_energia[1], corrente_atrasada[1]], index=['consumo_energia[1], corrente_atrasada[1]], index=['consumo_energia[1], corrente_atrasada[1]], index=['consumo_energia[1], corrente_atrasada[1]], index=['consumo_energia[1], corrente_atrasada[1]]]
                    consumo_energia corrente_atrasada
Out[]:
                0
                                                          October
                                 January
                1
                                February
                                                            August
                2
                              November
                                                          January
                3
                                   March
                                                              June
                4
                                 October
                                                               May
                5
                                  August
                                                        November
                6
                              December
                                                       September
                7
                                     May
                                                               July
                8
                                     June
                                                         February
                9
                                                             March
                                     April
              10
                                     July
                                                               April
                              September
                                                        December
              11
```

Análise gráfica

Histograma

Inicialmente vamos observar o histograma desses dados, assim observando como sua distribuição se comporta.

Para tal foram desconsiderados elementos:

- categóricos
 - Estado da semana
 - Dia da semana
 - Tipo de carga
- temporais
 - Data
 - Estação
 - Segundos após a meia noite

Foi observado que apesar do seu valor flutuante a variável co2 se comporta de maneira categórica, por possuir apenas 8 elementos únicos.

```
In [ ]: df.head(1)
                data consumo energia corrente atrasada corrente principal co2 potencia atrasad
Out[]:
           2018-01-01
                               3.17
                                              2.95
                                                               0.0 0.0
                                                                                 73.2
             00:15:00
In [ ]: columns
Out[]: Index(['consumo energia', 'corrente atrasada', 'corrente principal', 'co2
                'potencia_atrasado', 'potencia_principal'],
              dtype='object')
In [ ]: def plot_histograms(df: pd.DataFrame, columns: list, n_rows: int, n_cols:
            fig = plt.figure(figsize=(20, 16))
            for i, column in enumerate(columns):
                if column == 'co2':
                     df.co2 = df.co2 * 100
                     df.co2 = df.co2.astype(int)
                ax = fig.add_subplot(n_rows, n_cols, i + 1)
                sns.histplot(data=df, x=column, ax=ax, bins=20, kde=True, color=';
                for value in ax.containers:
                     ax.bar_label(value, label_type='edge', fontsize=9, family='mor
                ax.set_xlabel(None)
                ax.set_ylabel('Contagem', fontsize='large', family='monospace')
                ax.set_title(title[i], fontsize='large', fontweight='bold', style:
            fig.tight_layout()
In [ ]: columns = df.drop(['data', 'estado_semana', 'dia_semana', 'tipo_carga', '
        title=['Consumo de Energia (kWh)', 'Corrente Atrasada (kVarh)', 'Corrente
        plot histograms(df=df, columns=columns, n rows=3, n cols=2, title=title)
        plt.show()
```


Gráficos de Barra

Iremos agora analisar o comportamento das variáveis referentes a média de consumo energético

```
In [ ]: def create_bar(df_: pd, columns: list, n_rows: int, n_cols: int, rot=45):
            y_ = 'consumo_energia'
            fig = plt.figure(figsize=(20, 30))
            for i, column in enumerate(columns):
                for j in range (0, 2):
                    ax = fig.add_subplot(n_rows, n_cols, 2*i + j + 1)
                        df = df_.groupby(by=column, as_index=False, sort=False)[y]
                    else:
                        df = df_.groupby(by=column, as_index=False, sort=False)[y]
                        df[column] = df[column].str.capitalize()
                    except:
                        pass
                    sns.barplot(data=df, x=column, y=y_, palette=palette, ax=ax)
                    for value in ax.containers:
                        ax.bar_label(value)
                    ax.tick_params(axis='x', labelrotation=rot, size=12)
                    ax.tick_params(axis='y', size=12)
                    ax.set_xlabel(column.capitalize(), fontsize='large', family='r
                    ax.set_ylabel("Consumo de Energia (kWh)", fontsize='large', fa
                        ax.set_title(f"Mediana de Consumo de Energia por {column.c
                                      style='italic', family='monospace')
                    else:
                        ax.set_title(f"Média de Consumo de Energia por {column.car
                                     style='italic', family='monospace')
            fig.tight_layout()
```

Para tal observação foi considerada as variáveis categóricas

- Co2 (Por possuir comportamento categórico)
- Estação do ano
- Dia da semana
- Estado da semana
- Tipo de carga

Algumas observações com os gráficos de barra

Em ordem de plotagem

- 1. Co2
 - O consumo de energia cresce conforme a emissão de Co2
- 2. Estações do ano
 - O agrupamento a partir das estações do ano deu-se por conta da hipótese de que em épocas mais quentes (verão) seria necessário mais energia que em épocas mais frias (inverno);
 - Apesar dessa hipótese se mostrar verdadeira, a diferença representada pela média é baixa.
- 3. Dia da semana e Estado da semana
 - Uma grande fábrica produtora de aço necessita de funcionamento diário, porém a carga dos funcionários aos fins de semana seria diminuida.
- 4. Tipo de carga
 - Temos um ponto importante a salientar, apesar da baixa demanda energética para objetos com carga leve, a quantidade de elementos contabilizados como carga leve são exponencialmente maiores.
 - Um dos fatores pode ser que o tempo para processar uma carga seja proporcional ao seu tamanho

Gráficos de caixa

Novamente iremos observar as variáveis categóricas

Algumas observações com os gráficos de caixa

Conforme aumentamos as observações temos maiores outliers, também podemos notar as diferenças entre os ranges de consumo energético.

Agora iremos ver na prática a quantidade de outliers a partir do intervalo interquantil.

Nos casos analisados existe apenas outlier em um dos lados (superior ou inferior).

```
In []: def calculate_outliers(x: pd.Series) -> list:
    q1 = x.quantile(.25)
    q3 = x.quantile(.75)
    iqr = q3 - q1
    lower_bound = q1 - 1.5 * iqr
    upper_bound = q3 + 1.5 * iqr
    return x[(x < lower_bound)].index.tolist(), x[(x > upper_bound)].index

for column in df.drop(['data', 'estado_semana', 'dia_semana', 'segundos_de lower, upper = calculate_outliers(df[column])
    column = column.replace('_', '')
    column = column.capitalize()
    print(f"{column}: Lower = {len(lower)}, Upper = {len(upper)}, Total = del calculate_outliers
Consumo energia: Lower = 0, Upper = 328, Total = 328
Corrente atrasada: Lower = 0, Upper = 7759, Total = 1059
Corrente principal: Lower = 0, Upper = 7759, Total = 7759
```

```
Consumo energia: Lower = 0, Upper = 328, Total = 328

Corrente atrasada: Lower = 0, Upper = 1059, Total = 1059

Corrente principal: Lower = 0, Upper = 7759, Total = 7759

Co2: Lower = 0, Upper = 437, Total = 437

Potencia atrasado: Lower = 1, Upper = 0, Total = 1

Potencia principal: Lower = 8327, Upper = 0, Total = 8327
```

Analisaremos também a amplitude desses dados:

```
In []: def calculate_amplitude(x: pd.Series) -> float:
    return x.max() - x.min()

for column in df.drop(['data', 'estado_semana', 'dia_semana', 'segundos_de
    amplitude = calculate_amplitude(df[column])
    column = column.replace('_', ' ')
    column = column.capitalize()
    print(f"{column}: Amplitude = {amplitude:.2f}")

del calculate_amplitude
```

```
Consumo energia: Amplitude = 157.18

Corrente atrasada: Amplitude = 96.91

Corrente principal: Amplitude = 27.76

Co2: Amplitude = 7.00

Potencia atrasado: Amplitude = 100.00

Potencia principal: Amplitude = 100.00
```

Gráfico de dispersão

Algumas observações

- Confirmação da alta correlação (linear) positiva entre o consumo de energia e a corrente atrasada
- 2. Observada uma correlação (linear) negativa entre corrente principal e potencia principal
- 3. Correlação (não linear) positiva entre potencia principal e corrente atrasada

```
In [ ]: sns.pairplot(df, hue="estado_semana", palette=palette, markers=["o", "s"]
    plt.show()
```


Matriz de correlação

Agora para confirmar as observações das correlações lineares foi plotado a matriz de correlação utilizando os três métodos:

- Pearson (linear)
- Kendall (não linear)
- Spearman (não linear)

```
In [ ]: for item in df.select_dtypes(include='category').columns:
            df[item] = df[item].cat.codes
        def plot_correlation_matrix(df: pd, columns: list, n_rows: int, n_cols: in
            fig = plt.figure(figsize=(20, 16))
            result = []
            for i, method in enumerate(columns):
                ax = fig.add_subplot(n_rows, n_cols, i + 1)
                corr = df.corr(numeric_only=True, method=method)
                result.append(corr)
                sns.heatmap(corr, cmap="crest", vmax=.3, center=0,
                    square=True, linewidths=.5, cbar_kws={"shrink": .5}, annot=Tru
                ax.set_title(f'Método: {method.capitalize()}', fontsize='large',
            fig.tight_layout()
            return result
        plt.show()
       for item in df.select_dtypes(include='category').columns:
In [ ]:
            df[item] = df[item].cat.codes
        matrix_of_corr = plot_correlation_matrix(df, ['pearson', 'kendall', 'spea:
        plt.show()
```



```
In [ ]: corr_to_analysis = []
         for i, corr in enumerate(matrix_of_corr):
             match i:
                 case 0:
                      method = 'Pearson'
                  case 1:
                      method = 'Kendall'
                  case 2:
                      method = 'Spearman'
             for item in corr.columns:
                  strong_corr = zip(corr[item].abs().sort_values(ascending=False)[1
                  for index, value in strong_corr:
                      if (value >= 0.75) and ((method, item, index, value) not in co
                          corr_to_analysis.append((method, item, index, value))
In [ ]: corr_to_analysis = pd.DataFrame(corr_to_analysis, columns=['Método', 'Var:
In [ ]: corr_to_analysis.sort_values(by='Correlação', ascending=False)
             Método
                           Variável 1
                                           Variável 2 Correlação
Out[]:
         0
             Pearson consumo_energia
                                                co2
                                                      0.988180
         8
           Spearman
                                    potencia_principal
                                                      0.967206
                    corrente_principal
         3
             Pearson corrente_principal
                                    potencia_principal
                                                      0.944039
         5
              Kendall
                     corrente_principal
                                     potencia_principal
                                                      0.910076
         1
             Pearson
                     consumo_energia
                                    corrente_atrasada
                                                      0.896150
         2
             Pearson corrente_atrasada
                                                      0.886948
           Spearman consumo_energia
                                               co2
                                                      0.881514
              Kendall consumo_energia
                                               co2
                                                      0.776822
           Spearman corrente atrasada
                                                co2
                                                      0.774188
         9 Spearman corrente_principal potencia_atrasado
                                                      0.755688
        corr.consumo_energia.abs().sort_values(ascending=False)[1:5]
In [ ]:
Out[]: co2
                                0.881514
         corrente_atrasada
                                0.644937
                                0.591642
         tipo_carga
         potencia_atrasado
                                0.375158
         Name: consumo_energia, dtype: float64
In [ ]: corr.consumo_energia.abs().sort_values(ascending=True)[:4]
Out[]: corrente_principal
                                 0.131703
         potencia_principal
                                 0.193501
         dia_semana
                                 0.200803
         estado_semana
                                 0.313772
         Name: consumo_energia, dtype: float64
```

Análise temporal

Apenas por curiosidade foi feita uma análise básica temporal

Conclusão

Foram realizadas diversas análises para compreender melhor a distribuição dos dados, identificar possíveis anomalias e outliers. Além disso, foram exploradas as relações entre as variáveis e como elas se correlacionam com a variável alvo.

Durante o processo de análise, foi possível identificar algumas questões importantes que precisam ser levadas em consideração durante a criação do modelo. Se duas variáveis estão altamente correlacionadas, isso pode indicar que elas estão medindo essencialmente a mesma coisa.

Correlações fortes (>=0.9)

Variável 1	Variável 2	Tipo de Correlação		
Consumo de Energia	Corrente atrasada	Linear Positiva		
Consumo de Energia	Co2	Linear Positiva		
Co2	Corrente atrasada	Linear Positiva		
Potência principal	Corrente atrasada	Não Linear Positiva		
Corrente principal	Potência principal	Não Linear Negativa		

Portanto as variáveis que não possuem uma alta correlação com a variável target podem ser eliminadas para criação do modelo, deve-se entretanto observar a performance por conta do problema de multicolinearidade.

• Potência principal

Outro ponto importante é o outlier presente no index = 29855, deve-se entender o motivo de sua aparição, afinal caso o medidor esteja enviesado será necessário avaliar melhor os dados.

É importante levar em consideração todos os insights e padrões identificados, bem como as questões que precisam ser tratadas, a fim de desenvolver um modelo preciso e eficiente.