Richiami di algebra lineare e geometria di \mathbb{R}^n

- combinazione lineare, conica e convessa
- spazi lineari
- ▶ insiemi convessi, funzioni convesse

rif. BT 1.5

Combinazione lineare, conica, affine, convessa

Definizione

Un vettore $y \in \mathbb{R}^n$ si dice *combinazione lineare* dei vettori x^1, \dots, x^k se esistono k moltiplicatori reali $\lambda_1, \dots, \lambda_k$ tali che

$$y = \sum_{i=1}^{k} \lambda_i x^i$$

Se $\lambda_i \geq 0$, $i=1,\ldots,k$ la combinazione è detta *conica* Se $\sum_{i=1}^k \lambda_i = 1$ la combinazione è detta *affine* Una combinazione conica ed affine si dice *convessa*

Esempio

Dati
$$x^1={7/2\choose 1}, x^2={1\choose 3/2}$$
 Il punto $y={-1\choose 1}$ è combinazione lineare di x^1,x^2 ?

Equivale a risolvere un sistema di equazioni lineari:

$$\begin{cases} 7/2\lambda_1 + \lambda_2 = -1\\ \lambda_1 + 3/2\lambda_2 = 1 \end{cases}$$

da cui:
$$\lambda_1=-10/17, \lambda_2=18/17$$
 quindi: $y=-10/17 {7/2 \choose 1}+18/17 {1 \choose 3/2}={-1 \choose 1}$

Geometricamente

$$x^{1} = \begin{pmatrix} 7/2 \\ 1 \end{pmatrix}, x^{2} = \begin{pmatrix} 1 \\ 3/2 \end{pmatrix}, y = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
$$\lambda_{1}x^{1} = \begin{pmatrix} -35/17 \\ -10/17 \end{pmatrix} \simeq \begin{pmatrix} -2.06 \\ -0.59 \end{pmatrix}, \ \lambda_{2}x^{2} = \begin{pmatrix} 18/17 \\ 27/17 \end{pmatrix} \simeq \begin{pmatrix} 1.06 \\ 1.59 \end{pmatrix}$$

Generare punti per combinazione lineare

$$\begin{array}{l} \text{Dati } x^1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, x^2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, x^3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \text{scegliendo } \lambda_1 = 1/2, \lambda_2 = 5/4, \lambda_3 = -1 \\ \text{otteniamo: } z = 1/2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 5/4 \begin{pmatrix} 0 \\ 1 \end{pmatrix} - 1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1/2 \\ 1/4 \end{pmatrix} \end{array}$$

Involucro lineare, sottospazi

Definizione

Sia $S\subseteq\mathbb{R}^n.$ Si dice involucro lineare di S o sottospazio generato da S linsieme lin(S) di tutte le combinazioni lineari di elementi di S

Definizione

Un insieme $L\subseteq\mathbb{R}^n$ è uno *spazio lineare* (o *sottospazio* di \mathbb{R}^n) se e solo se qualsiasi combinazione lineare di ogni sottoinsieme finito di L appartiene a L, cioè lin(L)=L

Proprietà Ogni spazio lineare contiene il vettore nullo.

Esempi

$$S = \{x^1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, x^2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}\}$$

$$x_2$$
, x^2 , x_1

$$S = \{x^1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, x^2 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}\}$$

$$y = \lambda_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}$$

$$\Rightarrow lin(S) = \mathbb{R}^2$$

$$y = \lambda_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 2 \\ 2 \end{pmatrix} = \begin{pmatrix} \lambda_1 + 2\lambda_2 \\ \lambda_1 + 2\lambda_2 \end{pmatrix}$$

$$\Rightarrow \lim(S) \text{ retta per } (0, 0) \ x^1 \ x^2$$

$$\Rightarrow lin(S) \text{ retta per } (0,0), x^1, x^2$$

Indipendenza lineare

Definizione

Un insieme $S=\{x^1,\ldots,x^k\}$ di punti di \mathbb{R}^n si dice *linearmente indipendente* se non esistono k numeri reali $\lambda_1,\ldots,\lambda_k$ non tutti nulli tali che $\sum_{i=1}^k \lambda_i x^i = 0_n$

Ovvero, S è indipendente se è possibile ottenere il vettore nullo solamente con tutti i lambda uguali a zero.

Un insieme $S=\{x^1,\ldots,x^k\}$ di punti di \mathbb{R}^n non linearmente indipendente si dice *dipendente*

Ovvero, S è dipendente se è possibile ottenere il vettore nullo, con almeno un lambda diverso da zero.

Proprietà

- ▶ Se $S \subseteq \mathbb{R}^n$ è linearmente indipendente, ogni suo sottoinsieme è linearmente indipendente (cioè, S non contiene alcun sottoinsieme linearmente dipendente)
- L'insieme $\{0_n\}$ è linearmente dipendente. Quindi, il vettore 0_n non appartiene ad alcun insieme linearmente indipendente

Esempi (continua)

$$S = \{x^1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, x^2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}\}$$

 $S = \{x^1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, x^2 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}\}$

$$\lambda_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \lambda_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 2 \\ 2 \end{pmatrix} = \begin{pmatrix} \lambda_1 + 2\lambda_2 \\ \lambda_1 + 2\lambda_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\iff \lambda_1 = \lambda_2 = 0$$
 $S \text{ lin. indipendente}$

$$\iff \lambda_1 = -2\lambda_2$$
 S lin. dipendente

Basi

Definizione

Dato un sottospazio $S\subseteq\mathbb{R}^n$, si definisce base di S una collezione B di vettori linearmente indipendenti tale che S=lin(B)

Proprietà Tutte le basi di un dato sottospazio $S \subseteq \mathbb{R}^n$ hanno lo stesso numero di elementi

Definizione

Il numero di elementi di una base di un sottospazio $S \subseteq \mathbb{R}^n$ detto dimensione del sottospazio (dim(S))

Nota

- $ightharpoonup dim(\mathbb{R}^n) = n$
- ▶ i sottospazi 1-dimensionali sono rette per l'origine, 2-dimensionali piani per l'origine, ...

Proprietà delle basi

- ▶ ogni sottospazio proprio $S \subset \mathbb{R}^n$ ha dim(S) < n
- ▶ Se S è un sottospazio proprio di \mathbb{R}^n allora $\exists \mathbf{a} \in \mathbb{R}^n$ ortogonale a tutti gli elementi di S (diciamo $\bot S$)
- se $dim(S)=m\leq n$ allora esistono n-m vettori linearmente indipendenti ortogonali a S

Teorema

questo è un insieme generico (e non una base)

Dati i vettori x^1,\dots,x^K , sia $S=lin(\{x^1,\dots,x^K\})$ tale che dim(S)=m. Allora:

- (i) esiste una base di S composta da m fra i vettori di x^1,\ldots,x^K
- (ii) se $k \leq m$ e x^1, \ldots, x^k sono linearmente indipendenti, possiamo formare una base di S scegliendo m-k fra i vettori x^{k+1}, \ldots, x^K e aggiungendoli a x^1, \ldots, x^k

Vale a dire, con $K = \{x1, ..., xk\}$, possiamo formare una base B di S unendo un qualsiasi sottoinsieme linearmente indipendente di K, avente numero di vettori minore della dimensione della base (dim(S)), con alcuni dei restanti vettori di K, fino ad avere $|B| = \dim(S)$.

Rappresentazione rispetto ad una base

Definizione

Data una base $B = \{x^1, \dots, x^r\}$ di un sottospazio S ed un generico vettore $y \in S$ si definisce rappresentazione di y rispetto a B il vettore $(\lambda_1, \dots, \lambda_r)$ tale che $y = \sum_{i=1}^r \lambda_i x^i$

Ovvero, se è possibile ottenere un vettore y appartenente ad S mediante combinazione lineare dei vettori della base B moltiplicati per un vettore qualsiasi V, V si definisce rappresentazione di y rispetto a B.

Funzioni lineari

Definizione

Dati due spazi lineari $S\subseteq\mathbb{R}^n$ e $T\subseteq\mathbb{R}^m$, si dice funzione lineare un funzione $f:S\to T$ tale che, per ogni coppia $x,y\in S$ ed un qualunque scalare $k\in\mathbb{R}$, soddisfi:

$$f(x + y) = f(x) + f(y)$$
$$f(kx) = kf(x)$$

Ogni funzione lineare f da \mathbb{R}^n a \mathbb{R}^m si può rappresentare con una matrice A dimensioni $m \times n$, cioè, $y = Ax, x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$.

Nel caso m=1: $f(x)=c^Tx$, con c vettore di \mathbb{R}^n

Involucro conico, affine, convesso

Si dice involucro conico [affine, convesso] di $S \subseteq \mathbb{R}^n$ l'insieme cone(S) [aff(S), conv(S)] di tutte le combinazioni coniche [affini, convesse] di elementi di S

Esempio.
$$x^1={7/2\choose 1}$$
 , $x^2={1\choose 3/2}$. si ha: $lin(S)=\mathbb{R}^2$

Insiemi convessi

Definizione

Un insieme $S\subset \mathbb{R}^n$ si dice $\emph{convesso}$ se, per ogni $x,y\in S$ ed ogni $\lambda\in [0,1]$ si ha

$$z = \lambda x + (1 - \lambda)y \in S$$

Esempi

convessi

non convesso

Intersezione di insiemi convessi

Teorema

[fix] S [fix] T

Siano $S,T\subset\mathbb{R}^n$ insiemi convessi. Allora $A\cap B$ un insieme convesso.

Dimostrazione Siano $x,y\in S\cap T.$ Comunque scelto un $\lambda\in [0,1]$ si ha che:

$$z=\lambda x+(1-\lambda)y\in S$$
, in quanto S convesso $z=\lambda x+(1-\lambda)y\in T$, in quanto T convesso Quindi, $z\in S\cap T$, ovvero $S\cap T$ convesso.

Funzioni convesse

Definizione

Una funzione $f:S\to\mathbb{R}$ definita su un insieme convesso $S\subseteq\mathbb{R}^n$, si dice convessa se per ogni $x,y\in S$ ed ogni $\lambda\in[0,1]$ si ha

$$f(z) \leq \lambda f(x) + (1-\lambda)f(y), \text{ con } z = \lambda x + (1-\lambda)y$$

