ESCOLA BRASILEIRA DE ECONOMIA E FINANÇAS - EPGE

Luciano Fabio Busatto Venturim

Econometrics 1 - Problem Set 4

Rio de Janeiro 4th Quarter - 2021

Question 1:

1 . We want to show that the distribution of $Y_{ij}|\mu_j$ given $\overline{Y}_j = 1/N \sum_{i=1}^N Y_{ij}$ does not depend of μ_j . First, since $\epsilon_{ij}|\mu_j \sim N(0,\sigma_\epsilon^2)$, $Y_{ij}|\mu_j \sim N(\mu_j,\sigma_\epsilon^2)$. Second, since $\{\epsilon_{ij}|\mu_j\}_{i=1}^N$ are independent,

$$f(Y_{j}|\mu_{j}) = \prod_{i=1}^{N} f(Y_{ij}|\mu_{j}) = (2\pi\sigma_{\epsilon}^{2})^{-\frac{n}{2}} exp\left(\frac{-\sum_{i=1}^{N} (Y_{ij} - \mu_{j})^{2}}{2\sigma_{\epsilon}^{2}}\right)$$

$$= (2\pi\sigma_{\epsilon}^{2})^{-\frac{n}{2}} exp\left(\frac{-\sum_{i=1}^{N} (Y_{ij} - \overline{Y}_{j} + \overline{Y}_{j} - \mu_{j})^{2}}{2\sigma_{\epsilon}^{2}}\right)$$

$$= (2\pi\sigma_{\epsilon}^{2})^{-\frac{n}{2}} exp\left(\frac{-\sum_{i=1}^{N} (Y_{ij} - \overline{Y}_{j})^{2} + (\overline{Y}_{j} - \mu_{j})^{2} + 2(Y_{ij} - \overline{Y}_{j})(\overline{Y}_{j} - \mu_{j})}{2\sigma_{\epsilon}^{2}}\right)$$

$$= (2\pi\sigma_{\epsilon}^{2})^{-\frac{n}{2}} exp\left(\frac{-\sum_{i=1}^{N} (Y_{ij} - \overline{Y}_{j})^{2}}{2\sigma_{\epsilon}^{2}}\right) exp\left(\frac{-N(\overline{Y}_{j} - \mu_{j})^{2}}{2\sigma_{\epsilon}^{2}}\right)$$

Last, by independence of the $\epsilon_{ij}|\mu_j$, $\overline{Y}_j|\mu_j\sim N(\mu_j,\sigma^2_\epsilon/N)$, with pdf

$$g(\overline{Y}_j|\mu_j) = N^{\frac{1}{2}} (2\pi\sigma_{\epsilon}^2)^{-\frac{1}{2}} exp\left(\frac{-N(\overline{Y}_j - \mu_j)^2}{2\sigma_{\epsilon}^2}\right)$$

Thus, if we let

$$h(Y_j) = N^{-\frac{1}{2}} (2\pi\sigma_{\epsilon}^2)^{-\frac{n-1}{2}} exp\left(\frac{-\sum_{i=1}^{N} (Y_{ij} - \overline{Y}_j)^2}{2\sigma_{\epsilon}^2}\right)$$

a function that does not depend on μ_j , we have $f(Y_j|\mu_j) = h(Y_j)g(\overline{Y}_j|\mu_j)$. Therefore, by the Factorization Theorem, $\overline{Y}_j|\mu_j$ is a sufficient statistic for μ_j

2~ . By independence of the $\epsilon_{ij}|\mu_j,\overline{Y}_j|\mu_j\sim N(\mu_j,\sigma^2_\epsilon/N).$ Moreover, we have

$$\begin{split} f(\mu_{j}|\overline{Y}_{j})f(\overline{Y}_{j}) &= f(\overline{Y}_{j},\mu_{j}) = g(\overline{Y}_{j}|\mu_{j})f(\mu_{j}) \\ &= N^{\frac{1}{2}}(2\pi\sigma_{\epsilon}^{2})^{-\frac{1}{2}}exp\left(\frac{-N(\overline{Y}_{j}-\mu_{j})^{2}}{2\sigma_{\epsilon}^{2}}\right) \cdot (2\pi\sigma_{\mu}^{2})^{-\frac{1}{2}}exp\left(\frac{-(\mu_{j}-\mu_{0})^{2}}{2\sigma_{\mu}^{2}}\right) \\ &= (2^{2}\pi^{2}N^{-1}\sigma_{\epsilon}\sigma_{\mu}^{2})^{-\frac{1}{2}}exp\left(\frac{-1}{2}\left(\frac{\sigma_{\mu}^{2}(\overline{Y}_{j}-\mu_{j})^{2}+N_{-1}\sigma_{\epsilon}(\mu_{j}-\mu_{0})^{2}}{\sigma_{\mu}^{2}N^{-1}\sigma_{\epsilon}^{2}}\right)\right) \\ &= (2^{2}\pi^{2}N^{-1}\sigma_{\epsilon}\sigma_{\mu}^{2})^{-\frac{1}{2}}exp\left(\frac{-1}{2}\left(\frac{(\mu_{j}-\frac{\sigma_{\mu}^{2}\overline{Y}_{j}+N^{-1}\sigma_{\epsilon}^{2}\mu_{0}}{\sigma_{\mu}^{2}+N^{-1}\sigma_{\epsilon}^{2}}\right)^{2}}{\frac{\sigma_{\mu}^{2}N^{-1}\sigma_{\epsilon}}{\sigma_{\mu}^{2}+N^{-1}\sigma_{\epsilon}^{2}}} + \frac{(\overline{Y}_{j}-\mu_{0})^{2}}{\sigma_{\mu}^{2}+N^{-1}\sigma_{\epsilon}^{2}}\right)\right) \\ &= (2\pi(\sigma_{\mu}^{2}+N^{-1}\sigma_{\epsilon}^{2}))^{-\frac{1}{2}}exp\left(\frac{-1}{2}\left(\frac{(\overline{Y}_{j}-\mu_{0})^{2}}{\sigma_{\mu}^{2}+N^{-1}\sigma_{\epsilon}^{2}}\right)\right) \\ &\times \left(2\pi\left(\frac{\sigma_{\mu}^{2}N^{-1}\sigma_{\epsilon}}{\sigma_{\mu}^{2}+N^{-1}\sigma_{\epsilon}^{2}}\right)\right)^{-\frac{1}{2}}exp\left(\frac{-1}{2}\left(\frac{(\mu_{j}-\frac{\sigma_{\mu}^{2}\overline{Y}_{j}+N^{-1}\sigma_{\epsilon}^{2}\mu_{0}}{\sigma_{\mu}^{2}+N^{-1}\sigma_{\epsilon}^{2}}\right)^{2}}{\frac{\sigma_{\mu}^{2}N^{-1}\sigma_{\epsilon}}{\sigma_{\mu}^{2}+N^{-1}\sigma_{\epsilon}^{2}}}\right)\right) \end{split}$$

See that the first term of the multiplication is the pdf of a $N(\mu_0, (\sigma_\mu^2 + N^{-1}\sigma_\epsilon^2))$ distribution, while the second term is the pdf of a $N\left(\frac{\sigma_\mu^2 \overline{Y}_j + N^{-1}\sigma_\epsilon^2 \mu_0}{\sigma_\mu^2 + N^{-1}\sigma_\epsilon^2}, \frac{\sigma_\mu^2 N^{-1}\sigma_\epsilon}{\sigma_\mu^2 + N^{-1}\sigma_\epsilon^2}\right)$. Thus we get that

$$\overline{Y}_j \; \sim \; N(\mu_0, (\sigma_\mu^2 + N^{-1} \sigma_\epsilon^2))$$

and

$$\mu_j | \overline{Y}_j \sim N \left(\frac{\sigma_\mu^2 \overline{Y}_j + N^{-1} \sigma_\epsilon^2 \mu_0}{\sigma_\mu^2 + N^{-1} \sigma_\epsilon^2}, \frac{\sigma_\mu^2 N^{-1} \sigma_\epsilon}{\sigma_\mu^2 + N^{-1} \sigma_\epsilon^2} \right)$$

3 . As seen in item 2,

$$\mu_j | \overline{Y}_j \sim N \left(\frac{\sigma_\mu^2 \overline{Y}_j + N^{-1} \sigma_\epsilon^2 \mu_0}{\sigma_\mu^2 + N^{-1} \sigma_\epsilon^2}, \frac{\sigma_\mu^2 N^{-1} \sigma_\epsilon}{\sigma_\mu^2 + N^{-1} \sigma_\epsilon^2} \right)$$

See that $\mathbb{E}[\mu_j|\overline{Y}_j] = \frac{\sigma_\mu^2 \overline{Y}_j + N^{-1} \sigma_\epsilon^2 \mu_0}{\sigma_\mu^2 + N^{-1} \sigma_\epsilon^2} = \frac{\sigma_\mu^2}{\sigma_\mu^2 + N^{-1} \sigma_\epsilon^2} \overline{Y}_j + \frac{N^{-1} \sigma_\epsilon^2}{\sigma_\mu^2 + N^{-1} \sigma_\epsilon^2} \mu_0$, i.e, the expectation if a weighted mean of \overline{Y}_j and μ_0 , with more weight given to \overline{Y}_j , the sample mean, when the unconditional variance of μ_j is bigger.

.

Question 2:

- 1 . Let d_i be an $n \times 1$ vector of dummy variables that indicates the individual, i.e., d_i is a vector with 1 in the ith element and 0 in the others. Consider the model $Y_{it} = \alpha d_i + \beta X_{it} + \epsilon_{it}$. Applying the FWL theorem, we first regress Y_{it} on d_i to get $Y_{it} = \tilde{\alpha} d_i + \tilde{\epsilon}_{it}$. Since $\tilde{\alpha}_i = d_i \overline{Y}_i$, we have that $\tilde{\epsilon}_{it} = Y_{it} \overline{Y}_i$. Second, we regress X_{it} on d_i , and get $X_{it} = \tilde{\delta} d_i + \tilde{u}_{it}$, and have $\tilde{u}_{it} = X_{it} \overline{X}_i$. Finally, we regress $\tilde{\epsilon}_{it} = Y_{it} \overline{Y}_i$ on $\tilde{u}_{it} = X_{it} \overline{X}_i$, i.e. we regress the model $Y_{it} \overline{Y}_i = (X_{it} \overline{X}_i)\beta + \eta_{ij} \Rightarrow Y_{it} \overline{Y}_i = (X_{it} \overline{X}_i)\beta + \epsilon_{it} \overline{\epsilon}_i$. Since we assumed strict exogeneity, $E(\epsilon_{it} \overline{\epsilon}_i | X_{it} \overline{X}_i) = 0$, which implies that the LSDV estimator of β is consistent.
- 2. We simulate a model with $X_{it} \sim N(2,4)$, $\epsilon_{it} \sim N(0,1)$, $\alpha_i \sim N(0,1)$, and $Y_{it} = \alpha_i + 3 \cdot X_{it} + \epsilon_{it}$. As we see in the code, the estimators are identical.
- 3 . By item 1, we have that $\hat{\beta}_{LSDV}$ comes from the regression of $Y_{it} \overline{Y}_i$ on $(X_{it} \overline{X}_i)$, so $\hat{\beta}_{LSDV} = \frac{\hat{\text{cov}}(X_{it} \overline{X}_i, Y_{it} \overline{Y}_i)}{\hat{\text{var}}(X_{it} \overline{X}_i)}.$

Now, consider the model

$$Y_{it} = a_0 + a_1 \overline{X}_i + \beta X_{it} + u_{it}$$

where $u_{it}=v_i+\epsilon_{it}$. Consider first the regression of $X_{it}=\lambda_0+\lambda_1\overline{X}_i+\gamma_{it}$. We have that $\hat{\lambda_1}=\frac{\sum_i\sum_t(X_{it}-\overline{\overline{X}})(\overline{X}_i-\overline{\overline{X}})}{\sum_i(\overline{X}_i-\overline{\overline{X}})^2}=1$, and $\hat{\lambda_0}=\overline{\overline{X}}-\overline{\overline{X}}\hat{\lambda_1}=0$. Thus, $\tilde{\gamma}_{it}=X_{it}-\hat{\lambda}_0-\hat{\lambda}_1\overline{X}_i=X_{it}-\overline{X}_i$

Consider also the linear projection $Y_{it} = \tau_0 + \tau_1 \overline{X}_i + \zeta_{it}$ and let $\tilde{\zeta}_{it} = Y_{it} - \hat{\tau}_0 + \hat{\tau}_1 \overline{X}_i$. By

the FWL theorem, we have that

$$\begin{split} \hat{\beta} &= \frac{\hat{\operatorname{cov}}(\tilde{\gamma}_{it}, \tilde{\zeta}_{it})}{\hat{\operatorname{var}}(\tilde{\gamma}_{it})} \\ &= \frac{\hat{\operatorname{cov}}(X_{it} - \overline{X}_i, Y_{it} - \hat{\tau}_0 - \hat{\tau}_1 \overline{X}_i)}{\hat{\operatorname{var}}(X_{it} - \overline{X}_i)} \\ &= \frac{\hat{\operatorname{cov}}(X_{it} - \overline{X}_i, (Y_{it} - \overline{Y}) - \hat{\tau}_1 (\overline{X}_i - \overline{X}))}{\hat{\operatorname{var}}(X_{it} - \overline{X}_i)} \\ &= \frac{\hat{\operatorname{cov}}(X_{it} - \overline{X}_i, Y_{it} - \overline{Y})}{\hat{\operatorname{var}}(X_{it} - \overline{X}_i)} \\ &= \frac{\hat{\operatorname{cov}}(X_{it} - \overline{X}_i, Y_{it})}{\hat{\operatorname{var}}(X_{it} - \overline{X}_i)} \\ &= \frac{\hat{\operatorname{cov}}(X_{it} - \overline{X}_i, Y_{it} - \overline{Y}_i)}{\hat{\operatorname{var}}(X_{it} - \overline{X}_i)} \\ &= \hat{\beta}_{LSDV} \end{split}$$

4 . To test for correlation between the person effect and X_{it} , we can test $\tilde{\delta} = 0$ in the regression of X_{it} in d_i , like in item 1, using a t-statistic.

For $Var(v_i)$, we can assume a random effects model to estimate α_i . With these estimates, we can estimate $Var(v_i)$ as we would usually do in the regression $\hat{\alpha}_i = a_0 + a_1 \overline{X}_i + v_i$. With $Var(\alpha_i)$ in hands, we can estimate $Var(\alpha_i) = a_1^2 Var(\overline{X}_i) + Var(v_i)$.