EE288 Data Conversions/Analog Mixed-Signal ICs Spring 2018

Lecture 10: SC and Bootstrapped Clock Circuits

Prof. Sang-Soo Lee sang-soo.lee@sjsu.edu ENG-259

Course Schedule – Subject to Change

Date	Topics
24-Jan	Course introduction and ADC architectures
29-Jan	Converter basics: AAF, Sampling, Quantization, Reconstruction
31-Jan	ADC dynamic performance metrics, Spectrum analysis using FFT
5-Feb	ADC & DAC static performance metrics, INL and DNL
7-Feb	OPAMP and bias circuits review
12-Feb	SC circuits review
14-Feb	Sample and Hold Amplifier - Reading materials
19-Feb	Flash ADC and Comparators: Regenerative Latch
21-Feb	Comparators: Latch offset, preamp, auto-zero
26-Feb	Finish Flash ADC
28-Feb	DAC Architectures - Resistor, R-2R
5-Mar	DAC Architectures - Current steering, Segmented
7-Mar	DAC Architectures - Capacitor-based
12-Mar	SAR ADC with bottom plate sampling
14-Mar	SAR ADC with top plate sampling
19-Mar	Midterm Review
21-Mar	Midterm exam
26-Mar	Spring break
28-Mar	Spring break
2-Apr	Pipelined ADC stage - comparator, MDAC, x2 gain
4-Apr	Pipelined ADC bit sync and alignment using Full adders
9-Apr	Pipelined ADC 1.5bit vs multi-bit structures
11-Apr	Fully-differential OPAMP and Switched-capacitor CMFB
16-Apr	Single-slope ADC
18-Apr	Oversampling & Delta-Sigma ADCs
23-Apr	Second- and higher-order Delta-Sigma Modulator.
25-Apr	Hybrid ADC - Pipelined SAR
30-Apr	Hybrid ADC - Time-Interleaving
2-May	ADC testing and FoM
7-May	Project presentation 1
8-May	Project presentation 2
14-May	Final Review
20-May	Project Report Due by 6 PM

S&H and Bootstrap circuits

*Midterm Exam dates are approximate and subject to change with reasonable notice.

Basic Building Blocks of Switched-Capacitor Circuits

- OPAMP (OTA)
- Capacitor
- Switch
- Clock

Bottom Plate

General Considerations

- Switched-capacitor amplifiers operate in two phases:
 Sampling and Amplification
- Clock needed in addition to analog input V_{in}

SC Amplifier

 S_1 , S_2 on, S_3 off

Sampling Phase

 S_1 , S_2 off, S_3 on

Amplifying Phase

SC Amplifier

Ø1

 $\emptyset 2 \qquad c_1 \qquad c_2 \qquad v_{out}$

$$\begin{split} Q_{1} &= C_{1}(0 - V_{in}) \\ Q_{2} &= (C_{1} + C_{in})V_{x} + C_{2}(V_{x} - V_{out}) \\ V_{x} &= \frac{V_{out}}{-A} \\ Q_{1} &= Q_{2} \\ C_{1}(0 - V_{in}) &= (C_{1} + C_{in})V_{x} + C_{2}(V_{x} - V_{out}) = (C_{1} + C_{in})\left(\frac{V_{out}}{-A}\right) + C_{2}\left(\frac{V_{out}}{-A} - V_{out}\right) \\ &- C_{1}V_{in} &= -C_{1}\frac{V_{out}}{A} - C_{in}\frac{V_{out}}{A} - C_{2}\frac{V_{out}}{A} - C_{2}V_{out} \\ C_{1}V_{in} &= \left(\frac{C_{1} + C_{in} + C_{2}}{A} + C_{2}\right)V_{out} = C_{2}\left(\frac{C_{1} + C_{in} + C_{2}}{C_{2}A} + 1\right)V_{out} = C_{2}\left(\frac{1}{\beta A} + 1\right)V_{out} \\ &\frac{V_{out}}{V_{in}} &= \frac{C_{1}}{C_{2}\left(\frac{1}{\beta A} + 1\right)} \approx \frac{C_{1}}{C_{2}}\left(1 - \frac{1}{\beta A}\right) \end{split}$$

Sample and Hold Amplifier – Flip Around S/H

Sample

Flip Around S/H

Precision Considerations:

Output in amplification mode

Flip Around Sample & Hold

$$V_{out} = \frac{V_0}{1 + \frac{1}{A_{v1}} \left(\frac{C_{in}}{C_H} + 1 \right)}$$
 Derive this using charge conservation
$$\approx V_0 \left[1 - \frac{1}{A_{v1}} \left(\frac{C_{in}}{C_H} + 1 \right) \right]$$

Flip Around S/H

Charge conservation during Ø1 and Ø2

During \emptyset 1, total charge at node X is Q1 = $C_H(0-V_{in})$

During \emptyset 2, total charge at node X is Q2 = $C_{in}V_x + C_H(V_x-V_{out})$

Let
$$Q1 = Q2$$

$$-V_{in}C_{H} = C_{in}V_{x} + C_{H}(V_{x}-V_{out}) = (C_{in} + C_{H})V_{x} - C_{H}V_{out}$$

$$V_x(-A_{v1}) = V_{out}$$

$$-V_{in}C_{H} = (C_{in} + C_{H}) (-V_{out}/A_{v1}) - C_{H}V_{out}$$

$$V_{in}C_{H} = (C_{in} + C_{H}) (V_{out}/A_{v1}) + C_{H}V_{out}$$

$$V_{in}C_{H} = [(C_{in} + C_{H}) / A_{v1} + C_{H}] V_{out}$$

$$V_{in} = [(C_{in} + C_{H}) / (C_{H} A_{v1}) + 1] V_{out}$$

$$V_{out}/V_{in} = 1 / [(C_{in} + C_{H}) / (C_{H}A_{v1}) + 1] = 1 / [1 + 1/(\beta A_{v1})]$$

Bottom-Plate Sampling

- AC-ground switch opens slightly earlier than input switches
- Signal-independent CF and CI of switch Φ_e to the first order!
- Input switch can be further bootstrapped
- Typical for applications of more than 8-bit resolution
- Less tracking bandwidth due to more switches in series
- Signal swing at node X is not entirely zero!

SHA Timing for Bottom Plate Sampling

Fully Differential S/H

Recap: Signal-Dependent Switch Ron

$$R_{on}^{-1} = \mu C_{ox} \frac{W}{L} (V_{DD} - V_{th} - V_{i})$$

- Signal-dependent R_{on} → signal-dependent TBW → extra waveform distortion
- Neither signal-dependent R_{on} nor dispersion is of concern if TBW is sufficiently large (>> f_{in} , depending on the target accuracy)

Recap: CMOS Switch

- R_{on} still depends on V_{in} and is sensitive to N/P mismatch
- Large parasitic cap due to PMOS switch for symmetric R_{on}
- Clock rising/falling edge alignment

- Constant gate overdrive voltage $V_{GS} = V_{DD}$ for the switch
- R_{on} is not dependent on V_{in} to the first order (body effect?)
- NMOS device only with less parasitic capacitance

Nakagome Charge Pump Y. Nakagome et al., "An experimental 1.5 V 64 Mb dram," IEEE J. Solid-State Circuits, vol. 26, pp. 465–472, Apr. 1991 V_{DD} M_5 M_6 M_2 M_4 M_3 C_1 : Φ ┢-Ф Φ Out M_1 $\overline{\Phi}$ ln V_{SS}

Ref: A. M. Abo and P. R. Gray, "A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline ADC," *IEEE Journal of Solid-State Circuits*, vol. 34, issue 5, pp. 599-606, 1999.

Clock Bootstrapping (Φ =0)

Clock Bootstrapping ($\Phi=1$)

Another Clock Bootstrap Circuit

Mohamed Dessouky and Andreas Kaiser, "Very Low-Voltage Digital-Audio $\Delta\Sigma$ Modulator with 88-dB Dynamic Range Using Local Switch Bootstrapping," *IEEE J. Solid-State Circuits*, vol. 36, pp. 349–355, Mar. 2001

Another Clock Bootstrap Circuit

M. Waltari, et.al., "A Self-Calibrated Pipeline ADC with 200 MHz IF-Sampling Frontend," *Analog Integrated Circuits and Signal Processing*, vol. 37, pp. 201–213, 2003

Homework #3 on 10-bit S/H

SW types

- Bootstrapped nmos2v & pmos2v

VDD = 1.8V

- Sampling clock ϕ , fs = 100 MHz with 1.8V square wave.
- ideal_clock in ee288lib
- Input sine wave signal range 0.4V ~ 1.4V
- Input signal frequency at fin = (cycles/N) * fs where cycles=7 and N=64 for 64-point FFT

Summary of what you need to submit electronically:

- 1. Schematics of your design use white background
- 2. Transient simulation results showing all relevant signal waveforms
- 3. FFT spectrum plots for different switch types
- 4. Summary table showing the ENOB, SNR, SFDR for all cases
- 5. Summary of what you learned on this homework problem