

Machine Learning with Graphs (MLG)

HW3: Model Design & Comparison for Recommendation Models

Deadline: **2023.05.14 (Sun.)** 23:59

Submission: Code (.py/.ipynb) and Report (PDF)

The Main Expected Performance Table

	MovieLens		Yelp			Douban Book			
	RMSE	Recall@10	NDCG@10	RMSE	Recall@10	NDCG@10	RMSE	Recall@10	NDCG@10
UCF-s									
UCF-p									
ICF-s									
ICF-p									
MF			10 T	ypica	l Recs	Svs IV	letho	ds T	
FM			•	/ U		•			
BPR-MF									
BPR-FM									
GBDT+LR									
XGB+LR									
FNN									
IPNN									
OPNN									
PIN									
ССРМ		1 - 1	ONN	-base	ed Re	cSys	Meth	ods	
NeuMF						•			
WD									
DeepCross									
NFM		-	2 Poc	ont N	IN-ba	cod I	/loth	ode	
DeepFM) NEC	ent iv	m-va	seu i	vietii	Jus I	
5選3 (自行加rows)			1/17		設計的	54 NIN	一十二	-	
Your own NN model					又口口	יועוען	ノノノノ	A	

RecSys Models to be Compared

- **10** Typical Approaches
- 1) User-based CF [**UCF-s**] (cosine as similarity)
- 2) User-based CF [**UCF-p**] (Pearson correlation as similarity)
- 3) Item-based CF [ICF-s] (cosine as similarity)

Lecture 6

- 4) Item-based CF [ICF-p] (Pearson correlation as similarity)
- 5) Matrix Factorization [MF] (varying k-dim latent factor)
- 6) Factorization Machine [FM] (varying k-dim late at factor)
- 7) Matrix Factorization with BPR [BPR-MF]
- 8) Factorization Machine with BPR [BPR-FM]
- 9) Pre-training via GBDT for LR [GBDT-LR]
- 10) Pre-training via XGBoost for LR [XGB-LR]

Lecture 7

RecSys Models to be Compared

- 10 NN-based approaches
- 1) FM-supported Neural Networks [FNN]
- 2) Product-based Neural Networks
 - Inner-Product NN [IPNN]
 - Outer-Product NN [OPNN]
 - Product-network in Network [PIN]
- 3) Convolutional Click Prediction Model [CCPM]
- 4) NCF Neural Matrix Factorization [NeuMF]
- 5) Wide&Deep [**WD**]
- 6) Deep Crossing [DeepCross]
- 7) Neural Factorization Machine [NFM]
- 8) Deep Factorization Machine [DeepFM]

Lecture 8

RecSys Models to be Compared

Select 3 from 5 Recent NN-based approaches:

- 1) Attentional Factorization Machines (AFM)
 Learning the Weight of Feature Interactions via Attention Networks (IJCAI 2017)
- 2) Collaborative Memory Networks (CMN)

 Collaborative Memory Network for Recommendation Systems (SIGIR 2018)
- 3) xDeepFM Combining Explicit and Implicit Feature Interactions for RecSys (KDD 2018)
- 4) Deep Interest Network (DIN)

 Deep Interest Network for Click-Through Rate Prediction (AAAI 2019)

5) DeepGBM

A Deep Learning Framework Distilled by GBDT for Online Prediction Tasks (KDD 2019)

Dataset 1: MovieLens 100K

Entity	#Entity
User	943
Age	8
Occupation	21
Movie	1,682
Genre	18

Relation	#Relation
User - Movie	100,000
User - User (KNN)	47,150
User - Age	943
User - Occupation	943
Movie - Movie (KNN)	82,798
Movie - Genre	2,861

Dataset 2: Yelp

Entity	#Entity		
User	16,239		
Business	14,284		
Compliment	11		
Category	511		
City	47		

Relation	#Relation
User - Business	198,397
User - User	158,590
User - Compliment	76,875
Business - City	14,267
Business - Category	40,009

Dataset 3: Douban Book

Entity	#Entity
User	13,024
Book	22,347
Group	2,936
Location	38
Author	10,805
Publisher	1,815
Year	64

Relation	#Relation
User - Book	792,062
User - Group	1,189,271
User - User	169,150
User - Location	10,592
Book - Author	21,907
Book - Publisher	21,773
Book - Year	21,192

Evaluation Settings

- Evaluation metrics:
 - (1) RMSE (real-valued), (2) Recall@10 (binary),
 - (3) NDCG@10 (binary)
- Data filtering: remove users whose #interactions < 3
- Data splitting: 5-Fold Cross Evaluation
 - Test data: Randomly select 20% user-item interactions
 - Randomly split the remaining data into training (70%) and validation (10%) sets
 - Validation set is used for hyperparameter tuning
 - Report the average scores of RMSE, Recall, NDCG over 5 testing sets
- For Recall & NDCG, transform the ratings into binary implicit feedback as ground truth, indicating whether the user has interacted with the specific item
- [Important!] Be sure to fairly do all comparisons under the same experimental settings

Task Requirements

- Q1: Compared with the typical methods, can our NN-based approaches achieve comparable accuracy? Why?
 - Are recent NN-based methods even better? Why?
- Q2: Are there any hyperparameters in each model that significantly affect the performance?
 - You may need to conduct hyperparameter studies for some modes, find the best hyperparameters, and explain why such settings are good
- Q3: Can you create a new end-to-end NN that combine the advantages of nicely-performed methods to beat all methods?
 - You MUST at least design one novel NN-based method by yourself, and have it compared with all methods
 - No matter you beat them or fail, explain the possible reasons
- Q4: What if I cannot successfully complete some (e.g., 8, 7, 2) of 10 typical, 10 NN-based, 3/5 recent method?
 - Just try your best to have 13 compared method. Do as many as you can.
 - You own method is definitely required

Reference Packages (but not limited)

- Surprise https://github.com/NicolasHug/Surprise
- Spotlight https://github.com/maciejkula/spotlight
- LightFM https://github.com/lyst/lightfm/
- DeepCTR https://github.com/shenweichen/DeepCTR
- NeuRec https://github.com/wubinzzu/NeuRec
- RecQ https://github.com/Coder-Yu/RecQ
- Bonus: implement all required models by yourself using deep learning packages like Tensorflow/PyTorch
- We recommend you to read the original papers of all required models so that you can understand to come up with your own method, and make systematic and correct comparison
 - At least you can find the key hyperparameters in the papers

Submission

- Report + Code submission via Moodle
 - Deadline: May 14 (Sun) 2023, 23:59
 - Submit your code: .py or .ipynb (preferred)
 - Submit report (PDF): ≥ 10 pages (you cannot include code in report)
- Content in the report
 - 1) Introduction
 - 2) Methodology: briefly describe all of the compared methods, and describe the details of your own method
 - 3) Experimental analysis, along with analysis and insights
 - Report your experimental settings, hyperparameter setting of each method
 - Compare and report the required methods and your own method
 - Explain WHY your prediction is so GOOD or so BAD!
 - Present any insights based on your results
 - Do hyperparameter analysis
 - Refer to the slide "Task Requirements"
 - 4) Conclusions
 - Explain the **novelty** of your method, summarize your findings
 - □ Point out how to improve in the future
 - 5) Citations (if you use any methods or papers)