

ROTE OF CALLS SOUNDS

```
FORM 1 (cDNA sequence provided):
   1 ATGGACAGAG TTTATGAAAT TCCTGAGGAG CCAAATGTGG ATCCGGTTTC
  51 ATCTCTGGAG GAAGATGTCA TCCGTGGAGC CAACCCCCGA TTTACTTTTC
  101 CATTTAGCAT CCTTTTCTCC ACCTTTTTGT ACTGTGGGGA GGCTGCATCT
  151 GCTTTGTACA TGGTTAGAAT CTATCGAAAG AATAGTGAAA CTTACCGGAT
  201 GACATACACC TTTTCTTTCT TTATGTTTTC ATCCATTATG GTCCAGTTGA
  251 CCCTCATTTT TGTCCACAGA GATCTAGCCA AAGATAAACC GCTATCATTA
 301 TTTATGCATC TAATCCTCTT GGGACCTGTT ATCAGATGTT TGGAGGCCAT
 351 GATTAAGTAC CTCACACTGT GGAAGAAGA GGAGCAGGAG GAGCCCTATG
  401 TCAGCCTCAC CCGAAAGAAG ATGCTAATAG ATGGCGAGGA GGTGCTGATA
  451 GAATGGGAGG TGGGCCACTC CATCCGGACC CTGGCTATGC ACCGCAATGC
  501 CTACAAACGT ATGTCACAGA TCCAAGCCTT CCTGGGCTCA GTGCCCCAGC
  551 TGACCTATCA GCTCTATGTG AGCCTGATCT CTGCAGAGGT TCCCCTGGGT
  601 AGAGTTGTGC TAATGGTATT TTCCCTGGTA TCTGTCACCT ATGGGGCCAC
  651 CCTTTGCAAT ATGTTGGCTA TCCAGATCAA GTACGATGAC TACAAGATTC
  701 GCCTTGGGCC ACTAGAAGTC CTCTGCATCA CCATCTGGCG GACATTGGAG
  751 ATCACTTCCC GCCTCCTGAT TCTGGTGCTC TTCTCAGCCA CTTTGAAATT
  801 GAAGGCTGTG CCCTTCCTAG TGCTCAACTT CCTGATCATC CTCTTTGAGC
  851 CCTGGATTAA GTTCTGGAGA AGTGGTGCCC AGATGCCCAA TAACATTGAG
  901 AAAAACTTCA GCCGGGTCGG CACTCTGGTG GTCCTGATTT CAGTCACCAT
  951 CCTCTATGCT GGCATCAACT TCTCTTGCTG GTCAGCTTTG CAGTTGAGGT
1001 TGGCAGACAG AGATCTCGTC GACAAAGGGC AGAACTGGGG ACATATGGGC
1051 CTGCACTATA GTGTGAGGTT GGTAGAGAAT GTGATCATGG TCTTGGTTTT
1101 TAAGTTCTTT GGAGTGAAAG TGTTACTGAA TTACTGTCAT TCCTTGATTG
1151 CCTTGCAGCT CATTATTGCT TATCTGATTT CCATTGACTT CATGCTCCTT
1201 TTCTTCCAGT ACTTGCATCC ATTGCGCTCA CTCTTCACCC ATAATGTAGT
1251 AGACTACCTC CATTGTGTCT GCTGTCACCA GCACCCTCGG ACCAGGGTTG
1301 AGAACTCAGA GCCACCCTTT GAGACTGAAG CAAGGCAAAG TGTTGTCTGA
 (SEQ ID NO:1)
```

FEATURES:

Start Codon: 1 Stop Codon: 1348 3'UTR: 1351

FORM 2 (transcript sequence provided):

••	~ \ C	ramouripe of	equence pro	Lucu, .		
	1	ATGAACACAA	GACCACAACA	TTCAGAAAGA	ACCTCGACAA	TGGACAGAGT
	51	TTATGAAATT	CCTGAGGAGC	CAAATGTGGA	TCCGGTTTCA	TCTCTGGAGG
	101	AAGATGTCAT	CCGTGGAGCC	AACCCCCGAT	TTACTTTTCC	ATTTAGCATC
	151	CTTTTCTCCA	CCTTTTTGTA	CTGTGGGGAG	GCTGCATCTG	CTTTGTACAT
	201	GGTTAGAATC	TATCGAAAGA	ATAGTGAAAC	TTACTGGATG	ACATACACCT
	251	TTTCTTTCTT	TATGTTTTCA	TCCATTATGG	TCCAGTTGAC	CCTCATTTTT
	301	GTCCACAGAG	ATCTAGCCAA	AGATAAACCG	CTATCATTAT	TTATGCATCT
	351	AATCCTCTTG	GGACCTGTTA	TCAGATGTTT	GGAGGCCATG	ATTAAGTACC
	401	TCACACTGTG	GAAGAAAGAG	GAGCAGGAGG	AGCCCTATGT	CAGCCTCACC
	451	CGAAAGAAGA	TGCTAATAGA	TGGCGAGGAG	GTGCTGATAG	AATGGGAGGT
	501	GGGCCACTCC	ATCCGGACCC	TGGCTATGCA	CCGCAATGCC	TACAAACGTA
	551	TGTCACAGAT	CCAAGCCTTC	CTGGGCTCAG	TGCCCCAGCT	GACCTATCAG
	601	CTCTATGTGA	GCCTGATCTC	TGCAGAGGTT	CCCCTGGGTA	GAGTTGTGCT
	651	AATGGTATTT	TCCCTGGTAT	CTGTCACCTA	TGGGGCCACC	CTTTGCAATA
	701	TGTTGGCTAT	CCAGATCAAG	TACGATGACT	ACAAGATTCG	CCTTGGGCCA
	751	CTAGAAGTCC	TCTGCATCAC	CATCTGGCGG	ACATTGGAGA	TCACTTCCCG
	801	CCTCCTGATT	CTGGTGCTCT	TCTCAGCCAC	TTTGAAATTG	AAGGCTGTGC
	851	CCTTCCTAGT	GCTCAACTTC	CTGATCATCC	TCTTTGAGCC	CTGGATTAAG
	901	TTCTGGAGAA	GTGGTGCCCA	GATGCCCAAT	AACATTGAGA	AAAACTTCAG
	951	CCGGGTCGGC	ACTCTGGTGG	TCCTGATTTC	AGTCACCATC	CTCTATGCTG
:	1001	GCATCAACTT	CTCTTGCTGG	TCAGCTTTGC	AGTTGAGGTT	GGCAGACAGA
	1051	GATCTCGTCG	ACAAAGGGCA	GAACTGGGGA	CATATGGGCC	TGCACTATAG
	1101	TGTGAGGTTG	GTAGAGAATG	TGATCATGGT	CTTGGTTTTT	AAGTTCTTTG
:	1151	GAGTGAAAGT	GTTACTGAAT	TACTGTCATT	CCTTGATTGC	CTTGCAGCTC
:	1201	ATTATTGCTT	ATCTGATTTC	CATTGGCTTC	ATGCTCCTTT	TCTTCCAGTA

FIGURE 1A

1251 CTTGCATCCA TTGCGCTCAC TCTTCACCCA TAATGTAGTA GACTACCTCC
1301 ATTGTGTCTG CTGTCACCAG CACCCTCGGA CCAGGGTTGA GAACTCAGAG
1351 CCACCCTTTG AGACTGAAGC AAGGCAAAGT GTTGTCTGA (SEQ ID NO:4)

HOMOLOGOUS PROTEINS:

Top BLAST Hits:

	Score	E
gi 6502963 gb AAF14527.1 AF155511_1 (AF155511) KX antigen [Mus	366	e-100
gi 10835267 ref NP 066569.1 Kell blood group precursor (McLeod	361	1e-98
gi 2135606 pir 139294 McLeod syndrome-associated protein XK	358	8e-98
gi 3183551 sp P51811 XK HUMAN MEMBRANE TRANSPORT PROTEIN XK (KX	358	1e-97
gi 4759330 ref NP_004668.1 Testis-specific XK-related protein	76	8e-13
BLAST to dbEST:		
	Score	E
gi 1891549 /dataset=dbest /taxon=9606	383	e-104

EXPRESSION INFORMATION FOR MODULATORY USE:

library source:

Expression information from BLAST dbEST hits:

gi 1891549 Germinal center B cells

Expression information from PCR-based tissue screening panels:

Mixed tissue


```
FORM 1:
```

- 1 MDRVYEIPEE PNVDPVSSLE EDVIRGANPR FTFPFSILFS TFLYCGEAAS
 51 ALYMVRIYRK NSETYRMTYT FSFFMFSSIM VQLTLIFVHR DLAKDKPLSL
 101 FMHLILLGPV IRCLEAMIKY LTLWKKEEQE EPYVSLTRKK MLIDGEEVLI
 151 EWEVGHSIRT LAMHRNAYKR MSQIQAFLGS VPQLTYQLYV SLISAEVPLG
 201 RVVLMVFSLV SVTYGATLCN MLAIQIKYDD YKIRLGPLEV LCITIWRTLE
 251 ITSRLLILVL FSATLKLKAV PFLVLNFLII LFEPWIKFWR SGAQMPNNIE
 301 KNFSRVGTLV VLISVTILYA GINFSCWSAL QLRLADRDLV DKGQNWGHMG
 351 LHYSVRLVEN VIMVLVFKFF GVKVLLNYCH SLIALQLIIA YLISIDFMLL
- 401 FFQYLHPLRS LFTHNVVDYL HCVCCHQHPR TRVENSEPPF ETEARQSVV (SEQ ID NO:2)

FORM 2:

1 MNTRPQHSER TSTMDRVYEI PEEPNVDPVS SLEEDVIRGA NPRFTFPFSI
51 LFSTFLYCGE AASALYMVRI YRKNSETYWM TYTFSFFMFS SIMVQLTLIF
101 VHRDLAKDKP LSLFMHLILL GPVIRCLEAM IKYLTLWKKE EQEEPYVSLT
151 RKKMLIDGEE VLIEWEVGHS IRTLAMHRNA YKRMSQIQAF LGSVPQLTYQ
201 LYVSLISAEV PLGRVVLMVF SLVSVTYGAT LCNMLAIQIK YDDYKIRLGP
251 LEVLCITIWR TLEITSRLLI LVLFSATLKL KAVPFLVLNF LIILFEPWIK
301 FWRSGAQMPN NIEKNFSRVG TLVVLISVTI LYAGINFSCW SALQLRLADR
351 DLVDKGQNWG HMGLHYSVRL VENVIMVLVF KFFGVKVLLN YCHSLIALQL
401 IIAYLISIGF MLLFFQYLHP LRSLFTHNVV DYLHCVCCHQ HPRTRVENSE
451 PPFETEARQS VV (SEQ ID NO:5)

FEATURES:

Functional domains and key regions:

[1] PDOC00001 PS00001 ASN_GLYCOSYLATION N-glycosylation site

Number of matches: 2

- 1 302-305 NFSR (SEQ ID NO: 7) 2 323-326 NFSC (SEQ ID NO: 8)
- [2] PDOC00004 PS00004 CAMP_PHOSPHO_SITE cAMP- and cGMP-dependent protein kinase phosphorylation site

Number of matches: 2

- 1 59-62 RKNS (SEQ ID NO: 9) 2 169-172 KRMS (SEQ ID NO: 10)
- [3] PDOC00005 PS00005 PKC_PHOSPHO_SITE Protein kinase C phosphorylation site

Number of matches: 6

- 1 64-66 TYR
- 2 137-139 TRK
- 3 157-159 SIR
- 4 252-254 TSR
- 5 264-266 TLK
- 6 354-356 SVR
- [4] PDOC00006 PS00006 CK2_PHOSPHO_SITE Casein kinase II phosphorylation site

Number of matches: 3

1 17-20 SSLE (SEQ ID NO: 11) 2 18-21 SLEE (SEQ ID NO: 12) 3 431-434 TRVE (SEQ ID NO: 13)

[5] PDOC00007 PS00007 TYR_PHOSPHO_SITE Tyrosine kinase phosphorylation site

126-133 KEEQEEPY (SEQ ID NO: 14)

[6] PDOC00008 PS00008 MYRISTYL N-myristoylation site

Number of matches: 4

1 215-220 GATLCN (SEQ ID NO: 15) 2 321-326 GINFSC (SEQ ID NO: 16) 3 343-348 GQNWGH (SEQ ID NO: 17) 4 350-355 GLHYSV (SEQ ID NO: 18)

[7] PDOC00029 PS00029 LEUCINE_ZIPPER Leucine zipper pattern

100-121 LFMHLILLGPVIRCLEAMIKYL (SEQ ID NO: 19)

Membrane	spann	ing str	ucture	and domains
Helix	Begin	End	Score	Certainty
1	36	56	1.443	Certain
2	74	94	2.084	Certain
3	102	122	0.920	Putative
4	181	201	0.811	Putative
5	208	228	1.744	Certain

6 273 293 1.234 Certain 7 312 332 1.785 Certain 8 366 386 0.828 Putative 9 389 409 1.497 Certain

FIGURE 2B

OIPE 0 3 2003 22

Application Serial No. 09/768,781 Inventors: Gennady MERKULOV et al. Title: ISOLATED HUMAN TRANSPORTER PROTEINS... Attorney Docket No. CL001057CIP

TECH ORCO STONED

BLAST Alignment to Top Hit: >qi|6502963|gb|AAF14527.1|AF155511 1 (AF155511) KX antigen [Mus musculus] Length = 446366 bits (930), Expect = e-106Identities = 179/411 (43%), Positives = 265/411 (63%), Gaps = 11/411 (2%) Query: 33 FPFSILFSTFLYCGEAASALYMVRIYRKNSETYRMTYTFSFFMFSSIMVQLTLIFVHRDL 92 T F + FP S++ S FL+ E A+ALY+ YR + +VQ TL+FVHRDL Sbjct: 3 ${\tt FPASVIASVFLFVAETAAALYLSSTYRSAGDRMWQVLTLLFSLMPCALVQFTLLFVHRDL~62}$ Query: 93 AKDKPLSLFMHLILLGPVIRCLEAMIKYLTLWKKEEQEEPYVSLTRKKMLI-DGEEVLIE 151 ++D+PL+L MHL+ LGP+ RC E Y + ++ EEPYVS+T+K+ + DG Sbjct: 63 SRDRPLALLMHLLQLGPLYRCCEVFCIYC---QSDQNEEPYVSITKKRQMPKDGLSEEVE 119 Query: 152 WEVGHSIRTLAMHRNAYKRMSQIQAFLGSVPQLTYQLYVSLISAEVPLGRVVLMVFSLVS 211 EVG + L HR+A+ R S IQAFLGS PQLT QLY++++ + GR +M SL+S Sbjct: 120 KEVGQAEGKLITHRSAFSRASVIQAFLGSAPQLTLQLYITVLEQNITTGRCFIMTLSLLS 179 Query: 212 VTYGATLCNMLAIQIKYDDYKIRLGPLEVLCITIWRTLEITSRLLILVLFSATLKLKAVP 271 + YGA CN+LAI+IKYD+Y++++ PL +CI +WR+ EI +R+++LVLF++ LK+ Sbjct: 180 IVYGALRCNILAIKIKYDEYEVKVKPLAYVCIFLWRSFEIATRVIVLVLFTSVLKIWVVA 239 Query: 272 FLVLNFLIILFEPWIKFWRSGAQMPNNIEKNFSRVGTLVVLISVTILYAGINFSCWSALQ 331 +++NF PWI FW SG+ P NIEK SRVGT +VL +T+LYAGIN CWSA+Q Sbjct: 240 VILVNFFSFFLYPWIVFWCSGSPFPENIEKALSRVGTTIVLCFLTLLYAGINMFCWSAVQ 299 Query: 332 LRLADRDLVDKGQNWGHMGLHYSVRLVENVIMVLVFKFFGVKVLLNYCHSLIALQLIIAY 391 L++ + +L+ K QNW + ++Y R +EN +++L++ FF + + C L+ LQL+I Y Sbjct: 300 LKIDNPELISKSQNWYRLLIYYMTRFIENSVLLLLWYFFKTDIYMYVCAPLLILQLLIGY 359 Query: 392 LISIDFMLLFFQYLHPLRSLFTHNVVD----YLHCVCCHQHPRTRVENSEP 438 I FML+F+Q+ HP + LF+ +V + LCC Sbjct: 360 CTGILFMLVFYQFFHPCKKLFSSSVSESFRALLRCACWSS---LRRKSSEP 407 (SEQ ID NO:6) ALIGNMENT OF FORM 1 AND FORM 2: >FORM 2 Length = 462 (Length of FORM 1 = 449) Score = 900 bits (2301), Expect = 0.0 Identities = 447/449 (99%), Positives = 447/449 (99%) FORM 1: 1 MDRVYEIPEEPNVDPVSSLEEDVIRGANPRFTFPFSILFSTFLYCGEAASALYMVRIYRK 60 MDRVYEIPEEPNVDPVSSLEEDVIRGANPRFTFPFSILFSTFLYCGEAASALYMVRIYRK FORM 2: 14 MDRVYEIPEEPNVDPVSSLEEDVIRGANPRFTFPFSILFSTFLYCGEAASALYMVRIYRK 73

ALIGNMENT OF FORM 1 AND FORM 2:

FORM 2

Length = 462 (Length of FORM 1 = 449)

Score = 900 bits (2301), Expect = 0.0

Identities = 447/449 (99%), Positives = 447/449 (99%)

FORM 1: 1 MDRVYEIPEEPNVDPVSSLEEDVIRGANPRFTFPFSILFSTFLYCGEAASALYMVRIYRK 60

MDRVYEIPEEPNVDPVSSLEEDVIRGANPRFTFPFSILFSTFLYCGEAASALYMVRIYRK 73

FORM 2: 14 MDRVYEIPEEPNVDPVSSLEEDVIRGANPRFTFPFSILFSTFLYCGEAASALYMVRIYRK 73

FORM 1: 61 NSETYRMTYTFSFFMFSSIMVQLTLIFVHRDLAKDKPLSLFMHLILLGPVIRCLEAMIKY 120

NSETY MTYTFSFFMFSSIMVQLTLIFVHRDLAKDKPLSLFMHLILLGPVIRCLEAMIKY 133

FORM 2: 74 NSETYWMTYTFSFFMFSSIMVQLTLIFVHRDLAKDKPLSLFMHLILLGPVIRCLEAMIKY 133

FORM 1: 121 LTLWKKEEQEEPYVSLTRKKMLIDGEEVLIEWEVGHSIRTLAMHRNAYKRMSQIQAFLGS 180

LTLWKKEEQEEPYVSLTRKKMLIDGEEVLIEWEVGHSIRTLAMHRNAYKRMSQIQAFLGS 193

FORM 1: 181 VPQLTYQLYVSLISAEVPLGRVVLMVFSLVSVTYGATLCNMLAIQIKYDDYKIRLGPLEV 240

VPQLTYQLYVSLISAEVPLGRVVLMVFSLVSVTYGATLCNMLAIQIKYDDYKIRLGPLEV 253

FORM 1: 241 LCITIWRTLEITSRLLILVLFSATLKLKAVPFLVLNFLIILFEPWIKFWRSGAQMPNNIE 300

LCITIWRTLEITSRLLILVLFSATLKLKAVPFLVLNFLIILFEPWIKFWRSGAQMPNNIE 300

FORM 1: 301 KNFSRVGTLVVLISVTILYAGINFSCWSALQLRLADRDLVDKGQNWGHMGLHYSVRLVEN 360

KNFSRVGTLVVLISVTILYAGINFSCWSALQLRLADRDLVDKGQNWGHMGLHYSVRLVEN

FORM 2: 314 KNFSRVGTLVVLISVTILYAGINFSCWSALQLRLADRDLVDKGQNWGHMGLHYSVRLVEN 373

 ${\tt FORM~1:~361~VIMVLVFKFFGVKVLLNYCHSLIALQLIIAYLISIDFMLLFFQYLHPLRSLFTHNVVDYL~420}$

VIMVLVFKFFGVKVLLNYCHSLIALQLIIAYLISI FMLLFFQYLHPLRSLFTHNVVDYL

FORM 2: 374 VIMVLVFKFFGVKVLLNYCHSLIALQLIIAYLISIGFMLLFFQYLHPLRSLFTHNVVDYL 433

FORM 1: 421 HCVCCHQHPRTRVENSEPPFETEARQSVV 449 (SEQ ID NO: 2)

HCVCCHQHPRTRVENSEPPFETEARQSVV

FORM 2: 434 HCVCCHQHPRTRVENSEPPFETEARQSVV 462 (Position 14 to 462 of SEQ ID NO:5)

Hmmer search results (Pfam):

Model	Description	Score	E-value	N
CE00306	E00306 Membrane transport protein XK	390.8	1.3e-113	1

Parsed for domains:

Model	Domain	seq-f	seq-t	hmm-f	hmm-t		score	<u>E-value</u>
CE00306	1/1	31	416	1	384	[.	390.8	1.3e-113

RECEIVED TO THE OF THE PROPERTY OF THE PROPERT

3 800 £ 0 380 1

Application Serial No. 09/768,781
Inventors: Gennady MERKULOV et al.
Title: ISOLATED HUMAN TRANSPORTER PROTEINS..
Attorney Docket No. CL001057CIP

RECEIVED

DEC 0 & 2003
TECH CENTER 1600/2900

FIGURE 3A

5051 TGAGCCAAGA TCGGTGCCAC TGCACTCCAG CCTGGGCGAT AGAGTGAGAC 3101 TCCATCTCAA AAAAAAAAA ATTTTTTTTG TAGAGACGGG ATCTCGTTAT 3151 GTAGACTGGG CTCAAGTGAT CTTCCTGCCT CAGCCTCCCA AAGTGAGCCA 3201 CCACGCCTGG TCTGAGTGTG TAATTTTGAC TCTACCTTTT TGGATGCTTT 3251 GTAAATTGGA TAAAAGTTTC TTTACCCTGA GCTGCTTGGG CTGGTGCTAC 3301 TGCCATTTC AAATTTTCCA GAGTAATGTG ACATCTGGAA ACTATTTTAA 3351 ACCATCTGTG GTAATCTGTA CCCCAACCCA ATATAGTTCA GTTCTCTGTC 3401 GGTTTATCAG TTTCCTATTT ATCTCTTTGT ATATTTCTGC AATAAAGATA 3451 CGAAGTTGGG AGGGGGCAAA GGAAGGCAGT TCATCTCTCT ATGTGGATGC 3501 AGTAGCACAA TTTAATAGTA TCAAGTATTT CCATTCAGAT TGCCTTGAAG 3551 TGGAAAGAAT GCACTTAATC CTAGCGAGAT AGGCACCTGT GTCAACAGTC 3601 TCATCTGGAT GCTATGGGGT TTTCAAGGTA GAGAGATGTT GCAAAACTTA 3651 TGAGTTCAGG AGTAAGGAAT GGACCAAGTT TGTCTTGATT GCGAGAGAGG 3701 CAGACAACTG CAGTCAGCCG AGGAATATGG GTCAGAGTGT TGCAATGGGA 3751 AGATACCTCA TCATTAGACA ACTAAAAAGT CTGTGAAACT AATTAAGGAT 3801 GGAACTCACT CCTTTATAAA ATTTCATATC TGTACACATG TATAATTTTT 3851 ATTTGTCACT TATACCTCAA TAAGGCCAAA AAAATTTTTT ATCAATAAAT 3901 TTTTAAGTGG GGAGGAATCG ATTAGGCTCT ATCAGAGAGA ATATGGGATA 3951 TCAATGGAAA CAGTGGCCTG AAATTTGGAG TCTAGTCTTC CGCCTGTCAT 4001 TGACTGGTTG TGTGTTCTTG GTAAAATCTC TGAAGATGGC TTCACAGGAA 4051 GGCATATAGA GTTCCCTCAT CTGTAAAGCA AATGGGTTAG TCTAAATCAT 4101 GGGTCTCAAA CTCAAACACT TGCAGGGACC AGGCAGGTAT CATAAATGAA 4151 TGAAGCAGGC CTAGTATAAG AAAAAACAGT AGCCTTGTGT GAGATGATAA 4201 ATGGAAACAA AGTCTCAGAG AAATACTGAG GAGTAGTGAG TACCATGGTA 4251 ATCTGAAATC TTCATGACCT GCCTGAAGGA GGTAGCCCCT CTAGAGCCCT 4301 GGCGCATTGT TTCCATGTTG GAATTCAGAC CCAGTATTGC CAGATCCACT 4351 AACTTTTCGG GAGATGCTCC CAAGACAGGA TTTTTATATG AAATGTCATG 4401 ATTTTAAATT TTCACAGCTG ACTAAAACAA TAACAACAAC AACACAGGAT 4451 GGACCAAACC ATATCTGTTG GTCAGATATA ACTCAGCTGG CCTATATGCA 4501 TCTTTGGACT GGGTGATGTA AAGGTCCTTT ACGGTTCTAA ATCTTTGAAG 4551 TTAAGCTGTA AAAGGAAGAC CTCATCTTGA CCTTGAAACC AAGAAATTTA 4601 AAGTTGTGAC TACAGGAGCA AATAAACCAT TCATCCCTCC TTTTTCAAAT 4651 ACAATATTT GAGTTAACCA ATCGAAAACT CTCAAGATAC AAATTTCAGA 4701 AAGTACCCAG CTGCACCCTC CCCTCTTTTT GACTTCCTTT GTTTGCTTTG 4751 TGAACCCTCT GTGTAGAGTG TTGAGTACTG TTTTTCATTT TTGTTGTTTA 4801 GCTTCCACTA GAAATGATTG GGAAGCATTT ATAACCTCAG GCAGCTTAGC 4851 CCACAGCAGA GAAAAGATAA AAACTCATAA ATTATACTCT GGATTCGCTT 4901 ATTTTCAAGG CCAATTACTT GTTAGATAGG TAGGAACTTG ATTAGTGTTA 4951 TCAGGCACAT GAAGGTGCTT GTAGAGTCTG GGTGCCTTAC ATGAAATGCA 5001 AGCATACTTC CGAAATGAAA ATGTACTCTA ATTTATTGAA GCTTATAAAT 5051 GGACAAACAC CCTTACTTAA ACCAGAAAAT AGCCCTGAGA ATAGAAACAG 5101 AACATTTATG TAAATGTAAA CGGAACATTT CATGCCACCA CCTTCTCCAA 5151 TACTGTTCTC CAATTTAGCA ATAGTACTGA TGGGTTGGGG TTAAAATCTA 5201 AAATTTTCA TTGAAAATGC ACTTATGCAG AACAAGAATA GGAAAAAAGT 5251 GTTGCTTTTT CTTCTCTGTT CTTTCTTTGC ATCTTTTCT TTCCCAGGTC 5301 TTAGAGTTTG TCCCTAGAAG GTGACAATTT CAAACTACAT GCTTCAGAGT 5351 GGTACACATG CATCAGTCTT AGGGTGATCT ATGGAGACTG GCAGCCAGCA 5401 TATGTTCCAA ATTTTCCTAT CAGGAACTAA AGGCTAGAGA GCATATCAAC 5451 CTCTGGGCTT GTCTTTGGTC TACTTTTCTG TTAAATTTCA TTGCTGTTAT 5501 TATTATCCTC TCCTCCCATA ATTGCTTACC CTGTATTATT TTCTTCCTTC 5551 TTATTCTTC ATTTACTCAG CAAATATTTC TCAAATACCT ACTAAGTGAT 5601 AAGAGCTGTA AACAAGATAA ATACAACCCT TGACCTCAGT CTCTTGGGCA 5651 AGACGTGTTA ATGTCCACTA CAAATGTTCT TACTAGTCAT AAGTAGTCCA 5701 CAGTTTTAT TCATTAAAGG TGAGTGGCGA AGTGGTAACT CAGGTGTTCC 5751 AGTAACAAGA ATGTTCTAGT TGCTTCTCTT CCACTTACCA CATCAGAACT 5801 GCTAAAGACT TCTGATTTGT ATGGGGGAGG TGGGAGGGGC AGAGCAGGAA 5851 ATGTCATCTT ACCCTTATTC CAAGGATGAT AGGCTTTCAT AAGGATGTTT 5901 TTCTCTTCGT AAAGAAAGAA TCCAGTTTAA AAGGCTTTTG TCCACAAACA 5951 GGACAAGAGG CACAAAAGT AACTATTACA GTGATCTTTC GAGGGCCTAG 6001 TTATGTAGTT CATTCAGGTT TGAGTTGTCG TCTTTTAAGT ACTTTTGTTG 6051 CTTTGATGGC TTCCTGTGTA TATGAGATAT TTTTTTTCCT CTGATCTGTC

RECEIVED
DEC 0 9 2003
TECH CENTER 1600/2900

FIGURE 3B

DEC 0 9 2003
TECH CENTER 1600/2900

FIGURE 3C

			•		
9151	AAGCCGAGGC	AGGTGGATCA	CCTGAGGTCA	GGAGGTTGAG	ACCAGCCTGG
9201	CCTGGCGAAA	CTCTGTCTCT	ACTAAAAATA	CAAAAATTAG	CCGGGTATGG
9251	TGGTGGATGC	TTATAATCCC	AGCTACTTGG	GAGGCTGATG	CATGAGAATC
9301	ACTTGAACCT	GGGAGCCGAG	ATCTCACCGT	TGCACTCCAG	CCTGGGCAAC
9351	AGAGCGAGAC	TCTGTCTCAA	AAAAAAATTC	AGCCAGGCGT	GGTGGTGGGT
9401	GCCTGTAATC	CCAGCTACTT	GGGAGGCTGA	AGCAGGAGAA	TTGCTTGAAC
9451	CTGGGAGGTG	GAGGTTGCAG	TGAGCTGAGA	CTGCACCACT	GCACCCCAGC
9501	CTGGGCGACA	GAGGGAGACT	CCCGTCTCAT	AAATAAATAA	ATAAATAACA
9551	AAAGTAATAC	ATGCACAAAA	TGACATATAA	GTAATTGTAT	TTGCACAGAA
9601	AATTTCTGGA	AACTATGCAA	GAAACTACCT	CTGCGGAGTG	GGAATGAAAA
9651	GTCAGCAGTC	TTACTTTTTA	AAATTCTTCT	GTATGGTTTG	AAAATTTTTT
9701	TTGTGATCAT	GCATTACTAG	TTTTGGTCTT	TATCTTTTTT	TAATTACAAA
9751	AGTCAGACAT	GGTTATAGTA	AAAATTAAAA	ACCATACAGA	ATAGATATAA
9801	AATAGGAAAC	GTAATCTCAC	TCCCCAAAGA	TAACCTCTGT	TAATCATCCA
9851	GTATATATCC	TTCTGGACTT	ATTTTTACTA	TGTAAACATA	AACATACATA
9901	CAATATATAT	TGTACATGTT	TTTGCCCCAA	AATGGACTGT	ATGAAACATT
9951	CTGTCAACAA	AGTATTTTTC	AAAAGTACAG	TATGCCAGTA	TGTCTTTTCT
10001	CAAGTTATTT	ATATATACAT	GTATAACAAT	AATAAATATA	TAATATACAT
10051	TTCCTTTATA	TGAATTAGAC	TATTTTTATT	CTCCTAATTT	TCTATTGATA
10101	GGATTCTATT	GATTGTCTCA	AAAAGGAAAA	AAAAAGGTAG	CACAACCTCC
10151	CCTAGTTATT	TTTTCCCCTC	ATTACAACCT	CCCTTCTCAG	GACAGCTTTA
10201	GTTAAGTTCC	CATGATGCTT	TACTTCTGCA	GATGTTTGGA	GGCCATGAGT
10251	AAGGACTTCA	CACTGTGGAA	GAAAGAGGGG	CAGCAGGAGC	CCTATGTCAG
10301	CCTCACAAAT	TTTAATTTTT	CACAAAAAAG	TTGTTTCCTA	ATTGCAAATT
10351	ATGCCACAGT	AAACATCTTT	ATAAATACCT	GTGTACATGA	ATGAGACTTT
10401	GTAGGATAAA	TTTATAGCAG	TAGAATTGCT	GGGTGGAAGG	ATATGTATGT
			CCAAATAACT		
10501	TTTATACTCT	CACCAACAGT	ATACAAATGT	GCCTGTTTCT	GTTTCTTCAT
	ATCTTAAACT		TATTTGTATA		
			ATAATTCGCT		
10651				TGTTCTGTGA	
10701	TATATATTTT			TGTCTTTTTC	
			CTTGTTATTA		
		ATATTTGTAT		TTGTACATAC	
			ACGTGTAATA		
10901			ATCTTCTGGC		
10951			TGCTTTTAGA		
11001			TGGTAGAACA		
11051			TTTTTTTAATT		
		CAGCAAAAGA		TCATTGAGAT	
			GTTATTTTGG	GAGAATTTAC	
11201			TGAAATGATA		
11251	-		TAAAATTGTA	-	
			GTCTTACATT TGACCTGATT		
			CTACCATACT		
			AGAAAGAGGA		
			AGGAAGAAGA		
			GCATTTCTCT		
			ACCCTATGAG		
			ACTGAGAGTT		
			TGGAATTCAG		
			GCATGAGTGT		
			GGAAGCATCA		
			TTCTAATGTA		
			TTCCCAGTTA		
			TTGAGAAAGA		
			AGATTCCAAC		
			TTGGGTTTAC		
			ATTAAGTTGA		

12151 CCCTACATCA AGTGTTTTAA TAGGAACAGA AAACTCCAGC TTTCCTTTTG

RECEIVED

DEC 0 9 2003

TECH GENIER 1600/2900

			·		
12201	GATGAGTATT	CCTCAGCCAT	CCCACTTCTC	TTGAGAGCAC	TGGATTTTTC
12251	TTAGTAATCA	GCATCCTTTG	ACATAAAGGA	AGAAAAGGAA	AGGGCCACCT
12301	GTGTCATCTA	TAGTTGAGGC	TTAGGTAGGT	TAGGGAGCAT	CCTGGCTCTT
12351	TAGGGCCACT	ACTCTAACAT	ATGGTTCCAT	GGATGTCATG	GGTGAGGCAA
12401	CAGGGTTTGG	AAATTTTTGA	ACTACTCTGC	TGCAAACTCA	GAGATTCCTA
12451	ACATATGGGG	GTAATGAATT	GACATTGCTG	ATGACAAATA	TAAGCAACTC
12501	TTGAGTATCT	CAGTGAATTG	AGAACTGAGG	TACATAGATA	TTCAGTGACT
12551	TCCAAAAGTT	CCCATACAGC	TGAACCAAGG	ATTTCTTTCT	TTCTTTCTTT
12601	CTTTCTTTCT	TTCTTTCTTT	CTTTCTTTCT	TTCTTTCTTT	CTTTCTTTCT
12651	TTCTTTTCTT	TCTTTCTTTC	TTTCTTTCTT	TCTTTCTTTC	TTTCTTCTTT
12701	CTTTCTCTTT	CTTTCTCTCT	TTTTCCTTTT	CTTTTTCTTT	CTTTTCTTTC
12751	TCTCTTTCTT	TCTCTCTCTC	TCTTTCTGTC	TTCCTCCCTT	CCTCCCTTTC
12801	TCTCTTTCTC	CCTTTCTTTC	TTCCCTTCCT	CCTTACAGGC	ATGCACCACC
12851	ATGCCCAGCT	AATTTTTGTA	TTTTTAGTAG	AGTACCGGGT	TTCACCATGT
12901	TGGTCAGGCT	GGTCTTGAAC	TCCTGACCTC	AGGTGATCCA	CCCACCTCAG
12951	CCCCGCAAAG	TGCTTGGGAT	TACAGGTGTG	AGCCACCGTG	TGCACGGCTG
13001	GAACCAAGGA	TTTCTAATTA	GTTTTATTTT	${\bf TTATTTTTTT}$	TCTTTTTGAG
13051	AAGGAGTCTC	ACTCTGTCAC	CCAGGCTGGA	GTGCAGTGGG	GCAATCTCAA
13101	CTCACTGCAA	CCTCTGCCTC	GTGGGTTCAA	GTGATTCTCG	TGCCTCAGCC
13151	TCCTGAGCAG	CTGGGATTAC	AGGCATGCCA	TCATGCCTGG	CTAATTTTTT
13201	TTTCTTTCTT	TTTGAGACAG	AGTCTCACTC	TGTTGCCCAG	GCTGGATCGC
13251	AGTGGTGCAA	TCACGGCCCA	CTATTACCTC	TGCCTCCCAG	GTTCAAGTAA
13301	TTCTCCTGCC	TCAGCATCCC	AGGTAGCTGG	GAATACAGGT	GCACGCCACC
13351	ACGCCTGACT	AATATTTGTA	TTTTTAGCGG	AGATGGGGTT	TCATCATGTT
13401	GGCCAGGCTG	GTCTCGAACT	CCTGACTTCA	GGTGATCCAT	CCGCCTTGGC
13451	CTCCCAATGT	GCTGGGATTA	CAGGCATGAG	TCACCGCGCC	CAGCCTAACT
13501	AGGTATTTTA	TGCACCTCTC	CTAATCTCAG	AAGTCTTCAT	TAATTCCACA
13551	AACATTTATT	GAGCACCTGC	TATGTTCCAG	GTAATATGTT	AGGCTATGGG
13601	AATACAGCAG	TGAAGAAAAC	ATGGTCCCTC	CTGCCTTCAT	GGAATTTTCA
13651	ATACACATTT	TGACACATCA	CTGAAGCTAA	GTGTTCTAGA	AACACACAAA
13701	CAATGTTAGT	TCCTTGAACA	AGATATACAT	CAAAGAAGGG	ACTTCTATTA
	GCAAGAGCGT				
13801	TTCTTTCCGC	CTTATTCAAT	GTTTGCTCCG	AAGCCTGCTT	CATCAGCAAA
13851	GTCTGCCTGA	TACCTTTATA	TGTACTCTTC	TCACGTTAGT	GACTTCTCAA
13901	TGTTCTAAGA	CCCATGCTTT	TTAAGGAAGT	TTATTTTGTA	TATTTATATG
	ATTATTAAAG				
14001	AGAAATGTAG	AGAAAAAGAT	TTCTAAAACT	GATATAAGAC	TATCACACAC
14051	AAAAAAAGAT	ATTTTGGTTC	ATTTTTTCAA	TTTTTTGTGC	ATCTATTTTG
14101	TTTTATTGTA	TATATTCAAG	GTGTACAATG	TGATGTTTCG	ATGTATGTAC
14151	ACATTGTGAA	ATGATTACCA	CAACCAAACT	AATTAACACA	TTCATCACCT
	CACATAGTTA				
	GGTAAAACTT				
	TATTGTCAAC				
	TATCTTATAA				
	CTAAATCCCC				
	TCAACTTTTT				
	TATGTGTCTA				
	GTTGTCACGG				
	TACACACACA				
	CACCAGATTT				
	CCATATCTTG				
	TATCTCTTTG				
	TATTTGATCG				
	GCTGTTTTCC				
	AAGGTCCTTT				
	CCATTCTAAC				
	TTTGTGATGA				
	TTGTATACCG				
	CATAGCTGTG				
	CACCCGTCAT				
15201	AACATTGACT	GATTGCCTGT	TITIGITIT	GITTITGTT	I TAACAGTTG

RECEIVED

DEC 0 9 2003

TECH CENTER 1600/2900

FEATURES:

Gene Structure

FORM 1:

Start: 2001 Exon: 2001-2335

FIGURE 3F

RECEIVED

DEC 0 9 2003

TECH CENTER 1600/2900

Intron: 2336-7242 Exon: 7243-7511 Intron: 7512-15247 Exon: 15248-15990

Stop: 15991

FORM 2:

Start: 1962 Exon: 1962-2335 Intron: 2336-7242 Exon: 7243-7511 Intron: 7512-15247 Exon: 15248-15993

Stop: 15991

CHROMOSOME MAP POSITION:

Chromosome 23

ALLELIC VARIANTS (SNPs):

DNA

Position	Major	Minor	Domain_
2584	G	С	Intron
2655	A	T	Intron
3693	G	A	Intron
3992	G	C	Intron
6285	-	A	Intron
7066	Α	T	Intron
14223	-	T G	Intron
16915	-	G T	Beyond ORF(3')

Context:

DNA

Position

2584

ATAAACCGCTATCATTATTTATGCATCTAATCCTCTTGGGACCTGTTATCAGGTGAGCAA CTTTTAAATCTTTTCCTTACCCCCCTAACCCCACCCCAGACTTGGGCAGAGAAAGATGAA AGATTTACAAGATGGATACTATGGCTCTAATCAATTCTCTCATTTCCTCCCACTCTCGGC TTCCCTGTCTACCATTCAGAAAACTTACCTGAAATCTTAAATGCCACCATGATGAACATG TGGTATGTACTTGTGTTCCAAAACAATGAACGATGCTATTTGGGCTGTGTAAACTAGAAT

(SEQ ID NO: 20)

2655 TTTCCTTACCCCCCTAACCCCACCCCAGACTTGGGCAGAGAAGATGAAAGATTTACAAG

[A,T]

(SEQ ID NO: 21)

RECEIVED

DEC 0 y 2003

TECH CENTER 1600/2000

FIGURE 3G

TCTCTGTCGGTTTATCAGTTTCCTATTTATCTCTTTGTATATTTCTGCAATAAAGATACG 3693 AAGTTGGGAGGGGCAAAGGAAGGCAGTTCATCTCTCTATGTGGATGCAGTAGCACAATT TAATAGTATCAAGTATTTCCATTCAGATTGCCTTGAAGTGGAAAGAATGCACTTAATCCT AGCGAGATAGGCACCTGTGTCAACAGTCTCATCTGGATGCTATGGGGTTTTCAAGGTAGA GAGATGTTGCAAAACTTATGAGTTCAGGAGTAAGGAATGGACCAAGTTTGTCTTGATTGC

> AGAGAGGCAGACAACTGCAGTCAGCCGAGGAATATGGGTCAGAGTGTTGCAATGGGAAGA TTATAAAATTTCATATCTGTACACATGTATAATTTTTATTTGTCACTTATACCTCAATAA GGCCAAAAAATTTTTTATCAATAAATTTTTAAGTGGGGAGGAATCGATTAGGCTCTATC AGAGAGAATATGGGATATCAATGGAAACAGTGGCCTGAAATTTGGAGTCTAGTCTTCCGC

(SEQ ID NO: 22)

3992 CGAGAGAGGCAGACACTGCAGTCAGCCGAGGAATATGGGTCAGAGTGTTGCAATGGGAA CTTTATAAAATTTCATATCTGTACACATGTATAATTTTTATTTGTCACTTATACCTCAAT AAGGCCAAAAAATTTTTTATCAATAAATTTTTAAGTGGGGAGGAATCGATTAGGCTCTA TCAGAGAGAATATGGGATATCAATGGAAACAGTGGCCTGAAATTTGGAGTCTAGTCTTCC [G,C]

> CCTGTCATTGACTGGTTGTGTTCTTGGTAAAATCTCTGAAGATGGCTTCACAGGAAGG CATATAGAGTTCCCTCATCTGTAAAGCAAATGGGTTAGTCTAAATCATGGGTCTCAAACT AAAACAGTAGCCTTGTGTGAGATGATAAATGGAAACAAAGTCTCAGAGAAATACTGAGGA (SEQ ID NO: 23)

6285 TCTTTCGAGGGCCTAGTTATGTAGTTCATTCAGGTTTGAGTTGTCGTCTTTTAAGTACTT GACTTTTTGGCTGAGATATGGTTGTGAGCCCTTTCTTGAAAAAGCAGAATCTGGCCAGGC GGTCAGGAGTTCAAGACCAGCCTGGCCAACATGGTGAAAACCCGTCTCTACTAAAAATAC [-,A]

AAAAAAAAAAACCTTAGCCGGACATGGTGGCACATGCCTGTAATCCCAGCTACTCAGG AGGCTGAGGCAGGAGATCGCTTGAACCCAGGAGGCAGAGGTTACAGTGAGCTGAGATCG AGAAAGAAAAAAAAAAAACCAGAATCTAAAACTTTGGTTATGGAGCTGAATGCTTTG AGGGAGGATGCTTTACCTCACGAATTTGAGGTAAGAAAACAGGGCCTTTGGAACCTTCA (SEQ ID NO: 24)

TTGTAGAAGGCATGATCCACCCTTTGACTTATGAGAAATGATCAGAACAGAAGAGAGAAA 7066 AAGACAAAAAGTAGTGCAGGCTGGCCATGGTGTCTCACACGTGTGATCCCAGCACTTTAG GATCCCAGCACTTTGGGTCAAGGCAGTAGGATTGCTTGAGCCCAGGAGTTTGAGACCAGT CTGGGCAACATGTCTAGATCTCCTCTACACAAATTAAAAATAGCTGGCATGGTGGCAT GCGCCTGTAGTCCTAGCTACTCAGAAGGCTGAGGTGGGAGGATCATTTGAGCCTAGGAGG [A.T]

> CTTGTCTCAAAAATAAAATAAAGTAGCACAACCTCCCCAAGTTATTTTTTTCCCTCACTA CAACCTCCCTTCCCAGGACAGCTTAGTTAAGTTTGCATGATGCTTTACTTCTGCAGATGT GTCAGCCTCACCCGAAAGAAGATGCTAATAGATGGCGAGGAGGTGCTGATAGAATGGGAG (SEQ ID NO: 25)

14223 AAGGAAGTTTATTTTGTATATTTATATGATTATTAAAGTGTTACAGTATATGTTCATCAT GAGAAATTTAGAAAATAGAGAAATGTAGAGAAAAAGATTTCTAAAACTGATATAAGACTA TCACACAAAAAAAGATATTTTGGTTCATTTTTTCAATTTTTTGTGCATCTATTTTGTT GATTACCACAACCAAACTAATTAACACATTCATCACCTCACATAGTTATCATTTTTGTAC [-,T,G]

> TGTGTGTGTGTGTGTGTGTGTGTGTGTAAAACTTAAGATCTACTCTCTTTAAAAATT TCAAGTACACAATACATTATTGTCAACTATAGTCATCATGTTGTACATTAGAGCTCTGAA ACTTATTATCTTATAACTCTAAATTTGTAGCCTTTGATCAAAATCCTTCTATTTCCCTA

FIGURE 3H

Attorney Docket No. CLOUTOS7 CIF

AATCCCCATCCCTGGTAACCACCCATTCTACTCTGTTGCTAGGTGTTCAACTTTTTTAG ATTCCACATATAAGTAAGACAATGCAGTATTTTTCTTTATGTGTCTAGCTCATTTCACTT (SEQ ID NO: 26)

ATAGGCACACTCTAAGGAGAAAGTGCAGAGTAGAATTCCTTCAGGGCATAAGCCAAAATG
ACTCTTTTTCTCAGGGACCTGCATGGGCCTCCAGCTTGTCTATTGGAATTGTTAAGTGAA
GCCTCTCACTTAGTGCCTCATTAGCAGAGATTTCCTCCAACCCAGCTTTTCTGTGCTCTT
GGTATTTTACTACTTGATGTGGACCTCAGAGAAGCTGAACTGTAATTGAAAATGTTTCCG
ATGTGTGGAAGAAATGAAGACTGCTTTGTGTCTGCTGTTGTCCTGAGTATTTCATTAATG

[-,G,T]

RECEIVED
DEC 0 y 2003
TECH CENTER 1600/2900