Homework 1

Sirui Tan st2957

February 4, 2016

1 Problem 1

1.1 Part 1

1.1.1 (a)

$$L = \prod_{i=1}^{N} P(x_i|\pi)$$

1.1.2 (b)

Apply logarithm trick:

$$\log(L) = \sum_{i=1}^{N} \log(P(x_i|\pi))$$

Calculate gradient:

$$\Delta \log(L) = \sum_{i=1}^{N} \frac{P(x_i|\pi)'}{P(x_i|\pi)} = 0$$

Because

$$\frac{P(x|\pi)'}{P(x_i|\pi)} = \begin{cases} \frac{1}{\pi} & (x=1)\\ \frac{-1}{1-\pi} & (x=0) \end{cases}$$

Taken into gradient equation yields:

$$\frac{k}{\pi} = \frac{N - k}{1 - \pi}$$

where k represents the number of 1s in $\{x_1, \dots x_N\}$. Therefore

$$\hat{\pi}_{ML} = \frac{k}{N}$$

1.1.3 (c)

We can regard the observation set as taken from a sample space, where the definition of Bernoulli distribution indicates a portion π of the samples are 1s. The i.i.d nature of the observations shows they are randomly taken from the sample space, so πN of them are 1s is the most probable outcome.

1.2 Part 2

1.2.1 (a)

$$L = \prod_{i=1}^{N} P(x_i|\lambda)$$

1.2.2 (b)

Apply logarithm trick:

$$\log(L) = \sum_{i=1}^{N} \log(P(x_i|\lambda))$$

Calculate gradient:

$$\Delta \log(L) = \sum_{i=1}^{N} \frac{P(x_i|\lambda)'}{P(x_i|\lambda)} = 0$$

Because

$$\frac{P(x|\lambda)'}{P(x_i|\lambda)} = \frac{x-\lambda}{\lambda}$$

Taken into gradient equation yields:

$$\sum_{i=1}^{N} \frac{x_i - \lambda}{\lambda} = 0$$

Therefore

$$\hat{\lambda}_{ML} = \frac{\sum_{i=1}^{N} x_i}{N}$$

1.2.3 (c)

From the definition of Poisson distribution, x represents the number of events happen in a unit amount of time, and λ represents the average number of event occurrences in that amount of time. Clearly the estimation is reasonable given the nature that samples are randomly taken.

2 Problem 2

2.1 (a)

Using Bayesian rule:

$$p(\lambda|x_1, \dots, x_N) \propto p(x_1, \dots, x_N|\lambda)p(\lambda)$$

$$\propto \prod_{i=1}^{N} p(x_i|\lambda)p(\lambda)$$

$$\propto \lambda^{\sum x} e^{-\lambda} \lambda^{a-1} e^{-b\lambda}$$

$$\propto \lambda^{(\sum x+a)-1} e^{-(b+N)\lambda}$$

Clearly, the posterior of λ is also a Gamma distribution.

$$\lambda \sim Gam(\sum x + a, N + b)$$

2.2 (b)

According to the definition of Gamma distribution:

$$E(\lambda) = \frac{\sum x + a}{N + b}$$
$$var(\lambda) = \frac{\sum x + a}{(N + b)^2}$$

We can see here the mean and variance of the posterior distribution are both smoothed by factor a in numerator and b in denominator. So this relates to Part 2 of Problem 1 as being a normalized version of ML estimate.

3 Problem 3

3.1 Part 1

3.1.1 (a)

Label	Value
intercept term	23.5473136163
number of cylinders	-0.53624543
displacement	1.27906133
horsepower	-0.05922578
weight	-6.19362742
acceleration	0.24448757
model year	2.83663356

Here, positive sign means input is proportional to output, negative sign means input is inverse proportional to output.

3.1.2 (b)

$$\mu_{MAE} = 2.67044377205$$

$$\sigma_{MAE} = 0.480117507216$$

3.2 Part 2

3.2.1 (a)

p	μ	σ
1	3.3875118672114795	0.68638502743433716
2	2.7864791778065361	0.66563803353712114
3	2.6891000472522428	0.6158636996172675
4	2.7235048725782884	0.61841079752286376

Clearly, p=3 has the best performance.

3.2.2 (b)

Figure 1: Histograms for each p value

3.2.3 (c)

The maximum likelihood values of mean μ and variance σ are calculated as

$$\mu = \frac{\sum_{i=1}^{20000} Err_i}{20000}$$
$$\sigma^2 = \frac{\sum_{i=1}^{20000} (Err_i - \mu)^2}{20000}$$

The log-likelihoods are

p value	log likelihood
1	-53292.1185271
2	-49240.2680536
3	-48466.7455654
4	-49428.5843529

The results here agrees with that of part2(a) in that both show the optimal order is p=3. The assumption that the log likelihood of errors is also a measure of the spread of the error range is satisfied. Meaning the larger the log likelihood is, the more concentrated the RMSE errors are, and the better the p value is.