Hive to Spark – Journey and Lessons Learned

William Lau, Kent Buenaventura Unity Technologies

Agenda

- Our journey moving our data pipeline to use Spark
- Key factors that made the migration successful
- Walkthrough of how we use Spark in our data pipeline

Analytics @ Unity

- The leading game development platform
 - 3D Engine, Tools, and Services (Analytics, Ads)
 - 34% of top 1000 games are made with Unity
- Analytics for game developers
- We are hiring!

Made with Unity

SPARK SUMMIT EUROPE 2016

Unity Analytics

Q1 2016:

SPARK SUMMIT EUROPE 2016

Unity Analytics

Activity Data populates as of page load (8/15/16 4:50 PM PDT)

SPARK SUMMIT EUROPE 2016

Background

Legacy Data Pipeline (Hive based)

- Scaling and Performance issues
- Operational challenges
- Overly complex

Migrating to Spark

Key decision points:

- Invest in next generation technology stack
- Spark's ecosystem community, libraries, tools
- Case studies show solid scaling/performance
- Single stack for batch and streaming

Architecture with Legacy Pipeline

SPARK SUMMIT EUROPE 2016

Architecture with New Pipeline

SPARK SUMMIT EUROPE 2016

Spark Development

- Spark 1.6.0 on Cloudera 5.7.x
- Directly on RDDs with Scala/Java
 - -control with lower level operators
 - –easy for unit testing
 - -strongly typed case classes
 - Why not DataSet/SparkSQL?
 - –interested, waiting for stable Spark 2.0

Development Approach

- What?
 - Fast Iterations
- Why?
 - Catch bugs and integration issues early
 - Scaling and Performance tuning
 - Feedback

Development Approach

- How?
 - Unit and Parity Tests
 - E2E pipeline in Dev environment
 - Staging environment
 - realistic cluster size and workload
 - use production data early
 - run repeatable tests consistent and stable environment

Analytics Data Pipeline

SPARK SUMMIT EUROPE 2016

Pipeline Principle

- What?
 - Idempotent
- Why?
 - Fault Tolerance retry at run and stage level
 - Backtrack and start from older run
- How?
 - Immutable input and output
 - Parquet for persistent read-only data

Import

Import

- What?
 - Snapshot data needed for the pipeline run
 - Example: metadata stored in MySQL
- Why?
 - Ensure idempotence on retries
- How?
 - Example: use Spark JDBC to read from MySQL
 - sqlContext.read.format("jdbc").options(jdbcOptions).load()
 - on large datasets use: "partitionColumn"
 - do the filtering on the DataFrame side when using partitionColumn (dbtable->TABLE_NAME not dbtable->SELECT *... WHERE...)

ETL

SPARK SUMMIT EUROPE 2016

ETL

- What?
 - -Sanitize, transforming, grouping of data
- Why?
 - -Consistency and quality of data for subsequent stages
- How?
 - -Converting input JSON (json4s) to Case Classes
 - -Transformations (RDD)
 - –Save to Parquet (SparkSQL)
- Tips:
 - -Avoid Nulls
 - -Repartition output RDDs to remove skews

- What?
 - Computing user level and aggregate metrics
- Why?
 - Metrics consume by front-end or internally
- How?
 - Single Spark job
 - Advantage: reuse of cached RDDs
 - Disadvantage: complex DAGs, recompute tree on failure, cached RDDs spill to disks

- Handling Skews
 - Prefer Union-ReduceByKey over Join-Aggregate pattern
 - Broadcast variables for Map Join
 - Skew-Join (by Tresata)
- Reduce shuffles
 - Partition aware ops
 - Piggyback repartition with prior Shuffle operations reduceByKey()

- Partition memory size
 - Fewer large partitions can cause OOM
 - Too many small partitions has high shuffle overhead cost
 - Collect and use dataset statistics:
 - Control partition sizes via controlling number of partitions
 - Adjust partition sizes that works for your Executor memory allocation
 - As data grows, scale with more number of partitions and executors

- Partitioner matters
 - Resulting number of partitions on Joins depends on input RDD's partitioners
 - Joins mostly use the DefaultPartitioner Logic
 - Takes partitioner with largest number
 - if no partitioner, takes the largest RDD partitioner number
 - RDD has partitions but not necessarily a partitioner
 - Reading from parquet does not give a partitioner
 - Some operations remove the partitioner e.g map, keyBy

Hive Differences

- Memory:
 - -Spark RDD operations are sensitive to partition size and often hit OOM
 - -Hive/MapReduce can run with larger reducer dataset but will be slow
- Skew Handling Joins
 - Spark has Broadcast Join
 - Hive has bucket map join and other special skew handling Joins

Export

Export

- What?
 - -exporting computed metrics to external store e.g. MySQL
 - Why?
 - -make it easy to consume analytics data
- How?
 - –LOAD INFILE command with CSV
 - –Batch to larger CSV files (coalesce and spark-csv)
 - -Sort by Primary Key
 - -Parallelize

Backup

Backup

- What?
 - –Backing up processed data to S3 (Parquet-S3-Backup)
- Why?
 - –HDFS for co-located working dataset
 - -S3 for long term backup
- How?
 - -Coalesce parquet files locally before saving
 - -Use s3a:// uri
 - –Use DirectParquetOutputCommitter to skip writing to temp folder
 - Default requires a S3 copy and delete (SLOW)
 - •Set "spark.speculation=false" to prevent data loss
 - •Deprecated* in Spark 2.0, use "mapreduce.fileoutputcommitter. algorithm.version, 2" instead for Spark 2.0+

Airflow

- What?
 - Pipeline workflow management
 - Schedule and backfill
- Why?
 - Simple to setup and easy to use
 - Fits our short/mid term needs
- How?
 - BashOperators, PythonOperators, MySqlOperators
 - spark-submit

Hive Data Migration

- One-off Spark Job
- Read Legacy Hive tables in S3 using ORC format
- Spark can load hive table directly

Validate, Sanitize, Transform (like ETL)

Results

- Highlights our success with migrating to new architecture using Spark
- Not representative of Hive vs Spark
 - we made optimizations along the way
- Both systems have same total EC2 instances cost
 - Different instance types

	Old	New	New (2x workers)
Complete Run	12 hrs	2.5 hrs	1.5 hrs
Analysis Stage	8 hrs	2 hrs	1.25 hrs

Links

- Block/Skew Join
 - -https://github.com/tresata/spark-skewjoin
- Parquet S3 Backup
 - -https://github.com/UnityTech/parquet-s3-backup
- MySQL Uploader
 - -https://github.com/UnityTech/mysql-uploader

THANK YOU.

williaml@unity3d.com kentb@unity3d.com

