

STAT011 Statistical Methods I

Lecture 10 Central Limit Theorem

Lu Chen Swarthmore College 2/21/2019

Review

- ▶ Population, sample, parameter and statistic
 - We use sample statistics (change from sample to sample) to estimate population parameters (fixed and unknown)
- ▶ Statistical inference uses a fact about a sample to estimate the truth about the whole population.
- Sampling variability
 - The value of a statistic varies in repeated random sampling.
- Sampling distribution
- Bias and variability
 - Bias concerns the center; variability concerns the spread.
 - To reduce bias, use random sampling; to reduce variability, increase sample size.
- Sampling distribution of a sample mean
 - If population distribution is $X \sim N(\mu, \sigma)$, the sampling distribution of the sample mean is $\bar{x} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$.

Review - Sampling distribution by simulation

Simulation: 1000 samples

Outline

- ▶ Sampling distribution of a sample mean
 - When population distribution is Normal
 - When population distribution is not Normal
- ▶ Central Limit Theorem (CLT)
 - Definition
 - Examples
 - Sampling distribution of a proportion
 - Normal approximation
 - Examples

- Population distribution: $X \sim N(0, 1)$.
- ▶ 1000 samples with size 25 are generated from this population. Mean \bar{x} is calculated for each sample.
- Sampling distribution of \bar{x} is?

Sampling distribution simulation

 $X \sim N(0, 1)$. n = 25. 1000 samples.

Let \bar{x} be the mean of an SRS of size n from a population having Normal distribution with mean μ and standard deviation σ . The mean and standard deviation of \bar{x} are

$$\mu_{\bar{x}} = \mu,$$

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}.$$

And \bar{x} has the $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$ distribution.

This says that if $X \sim N(\mu, \sigma)$, then

$$\bar{x} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$


```
mean(mean_x)

## [1] -0.006801407

sd(mean_x)

## [1] 0.202523
```

- Population distribution: $X \sim N(0, 1)$
- Sampling distribution of \bar{x} (by **theory**): $\bar{x} \sim N\left(0, \frac{1}{\sqrt{25}}\right) = N(0, 0.2)$
- Sampling distribution of \bar{x} (by simulation): $\bar{x} \sim N(-0.007, 0.203)$
- The results from simulation are very close to the theoretical results.

- When population distribution is **Normal** $X \sim N(\mu, \sigma)$, the distribution of mean \bar{x} is also Normal.
 - The center of $\bar{\chi}$ is the same as the center of the population: $\mu_{\bar{\chi}} = \mu$
 - Simple random sampling assures this.
 - The spread of \bar{x} is related to both the spread of the population and the sample size: $\sigma_{\bar{x}} = \sigma/\sqrt{n}$
 - If the population data has large variability, the sample mean also has large variability.
 - Larger sample size leads to smaller variability.
- ▶ What if the population distribution is **NOT Normal**?
- Will the shape of the sample mean \bar{x} still the same as the shape of the population distribution?
- ▶ How about center and spread? Sampling distribution simulation

When **population distribution is NOT Normal** even highly skewed, the distribution of the sample mean \bar{x} is still approximately Normal!

Q-Q Plot of mean_x

Theoretical Quantiles

When **population distribution is NOT Normal** even highly skewed, the distribution of the sample mean \bar{x} is still approximately Normal!

Q-Q Plot of mean_x

Theoretical Quantiles

Central Limit Theorem

Draw an SRS of size n from **any population** with mean μ and finite standard deviation σ . When n **is large**, the sampling distribution of the sample mean \bar{x} is approximately Normal:

$$\bar{x}$$
 is approximately $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$

$$\bar{x} \stackrel{approx.}{\sim} N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

- Central limit theorem holds for data with any population distribution.
- Amazing Fact!

Central Limit Theorem

Sample size for CLT to hold

Population distribution	Sample size n	Sampling distribution of \bar{x}
Exactly Normal	Any	Exactly Normal
Close to Normal	n > 20	Approximately Normal
Highly skewed	<i>n</i> > 60	Approximately Normal

- ▶ These suggestions for samples size are only rules of thumb.
- ▶ The appropriate sample size always depends on each specific problem.
- Generally, as sample size n increases, the sampling distribution of mean \bar{x} will become **less variable** and **more Normal**.

Example 1 - Female height

US population female height (not necessarily Normal): Mean 64 inches, SD 3 inches (assume these are true population parameter values).

STAT011 female height (n = 58): Mean 64.9 inches, SD 3.4 inches.

Is the STAT011 female height the same as the US population female height?

- $\mu = 64, \sigma = 3, n = 58, \bar{x} = 64.9$
- Applying CLT, $\bar{x} \stackrel{approx.}{\sim} N(64, \frac{3}{\sqrt{58}}) = N(64, 0.4)$
- ▶ 68% of the sample mean \bar{x} should fall between 63.6 and 64.4 inches.
- ▶ 95% of the sample mean \bar{x} should fall between 63.2 and 64.8 inches.
- The chance is quite low that we get a sample of size 58 from the US population and the mean is 64.9 inches.
- Therefore, STAT011 female height is quite different from (somewhat larger than) the US population female height.

The history of left-handedness

Rate of left-handedness among Americans, by year of birth

- After 1960's, the proportion of left-handedness in US population stays around 11.8%.
- The proportion of left-handedness in STAT 11
 2016 class: 10/122 = 0.082
 2017 class: 7/94 = 0.074
 2019 class: 4/112 = 0.036
- Is the proportion of lefthandedness in STAT 11 the same as the US population—proportion?

WAPO.ST/WONKBLOG

Source: Survey data reported in "The History and Geography of Human Handedness" (2009)

Survey\$Handedness

```
##
    [1] Right Right Right Right Right Right Right Right Right Right
##
   [13] Right Right Right Right Right Right Right Right Right Right
##
   [25] Right Right
##
   [37] Right Right
   [49] Right Right Right Right Right Right Right Right Right Left Right
##
##
   [61] Right Right Right Right Right Right Right Right Right Right
##
   [73] Right Right
   [85] Right Right Right Right Right Right Right Right Right Right
##
   [97] Left Right Right Right Right Right Right Right Right Right Left
## [109] Right Right Right
## Levels: Left Right
```

- ▶ *Handedness* is a binary variable with two categories: *Left* and *Right*.
- It is not even a quantitative variable and thus far away from a Normal distribution or any skewed/bimodal distribution we have seen.
- ▶ Since the values are qualitative, we do not use mean and SD to describe the data.
- ▶ How to solve the problem?

2019 Class	Left	Right	Total
Count	4	108	112
Proportion	3.6%	96.4%	100%

Barplot of Handedness

- Any binary variable can be transformed to a **dummy variable** with values 0 and 1.
- Transform *Handedness* to a dummy variable: Assign value 1 to *Left* and value 0 to *Right*.
- ▶ This new *Handedness* variable has 4 1's and 108O's all become numerical values.
- We can now calculate its mean

$$\bar{x} = \frac{0 + \dots + 0 + 1 + 1 + 1 + 1}{112} = \frac{4}{112} = 0.036,$$

which is the proportion of left-handedness.

The question becomes "is the sample mean/proportion 0.036 the same as the population mean/proportion 0.118?"

Bernoulli Distribution

• Denote population proportion as p and sample proportion as \hat{p} .

	Mean	Standard deviation	Proportion
Population Parameter	μ	σ	p
Sample Statistic	\bar{x}	S	\hat{p}

- A dummy variable X with values 0 and 1 follows a **Bernoulli distribution** $X \sim Bernoulli(p)$
- The proportion of X = 1 (usually called success) is p.
- The proportion of X = 0 (usually called failure) is 1 p.
- The mean of X is p.
- The SD of *X* is $\sqrt{p(1-p)}$.

Normal distribution vs. Bernoulli distribution

	Normal distribution	Bernoulli distribution
Form	$X \sim N(\mu, \sigma)$	$X \sim Bernoulli(p)$
Values	Quantitative	1 or 0
Parameter(s)	μ , σ	p
Sample statistic(s)	$\bar{\chi}$, S	\hat{p}
Mean	μ	p
Standard deviation	σ	$\sqrt{p(1-p)}$

[•] According to CLT, the sample mean $\bar{x} \sim N(\mu, \sigma/\sqrt{n})$

• What is the distribution of \hat{p} ?

Sampling distribution of a proportion

Normal approximation for proportions

Draw an SRS of size n from a large population having population proportion p of successes. Let \hat{p} be the sample proportion of successes. When n is large, the sampling distribution of \hat{p} is approximately Normal with mean p and standard deviation $\sqrt{\frac{p(1-p)}{n}}$:

$$\hat{p} \stackrel{approx.}{\sim} N\left(p, \sqrt{\frac{p(1-p)}{n}}\right)$$

As a rule of thumb, we will use this approximation for values of n and p that satisfy $np \ge 10$ and $n(1-p) \ge 10$.

Bernoulli distribution - Example

$$X \sim Bernoulli(p)$$

A classic example of Bernoulli distribution is **coin toss**. Suppose we have a fair coin. The probability of getting a head or tail is p = 0.5. Denote the outcome as X, where X = 1 for head and 0 for tail. The coin is tossed for 20 times and we get a total of 7 heads. Is this coin fair or not?

- $X \sim Bernoulli(0.5)$, population proportion p = 0.5, sample size n = 20, sample proportion $\hat{p} = 7/20 = 0.35$.
- Mean of *X* is p = 0.5; SD of *X* is $\sqrt{p(1-p)} = \sqrt{0.5 \times 0.5}$.
- Applying CLT, $\hat{p} \stackrel{approx.}{\sim} N\left(p, \sqrt{\frac{p(1-p)}{n}}\right) = N\left(0.5, \sqrt{\frac{0.5 \times 0.5}{20}}\right) = N(0.5, 0.11)$
- If the coin is fair, 68% of the proportions of head should fall within [0.39, 0.61] and 95% fall within [0.28, 0.72]. The chance of getting $\hat{p} = 0.35$ is somewhat high. This is mostly likely a fair coin.

Bernoulli distribution - Example

What if we toss the coin for **100** times and get 35 heads?

- $X \sim Bernoulli(0.5), p = 0.5, n = 100, \hat{p} = 35/100 = 0.35$
- When n = 100 instead of 20,

$$\hat{p} \stackrel{approx.}{\sim} N\left(p, \sqrt{\frac{p(1-p)}{n}}\right) = N\left(0.5, \sqrt{\frac{0.5 \times 0.5}{100}}\right) = N(0.5, 0.05)$$

- ▶ 68% of the proportions of head should fall within [0.45, 0.55] and 95% fall within [0.4, 0.6].
- The chance of getting $\hat{p} = 0.35$ is very low. This is mostly likely an unfair coin.

- ▶ Proportion of left-handedness in the US population is 0.118.
- ▶ Proportion of left-handedness in STAT 11
 - **2016 class**: 10/122 = 0.082
 - \sim 2017 class: 7/94 = 0.074
 - 2019 class: 4/112 = 0.036
- Is the proportion of left-handedness in STAT 11 the same as the US population proportion?
- $X \sim Bernoulli(0.118), p = 0.118$
- 2016 class: n = 122, $\hat{p} \stackrel{approx.}{\sim} N(0.118, \sqrt{\frac{0.118(1-0.118)}{122}}) = N(0.118, 0.029)$
- The 95% interval [0.060, 0.176] contains $\hat{p} = 0.082$.
- The proportion of left-handedness in STAT 11 2016 class is quite similar as the US population proportion.

- ▶ Proportion of left-handedness in the US population is 0.118.
- ▶ Proportion of left-handedness in STAT 11
 - **2**016 class: 10/122 = 0.082
 - **2017 class:** 7/94 = 0.074
 - 2019 class: 4/112 = 0.036
- ▶ Is the proportion of left-handedness in STAT 11 the same as US population?
- $X \sim Bernoulli(0.118), p = 0.118$
- 2017 class: n = 94, $\hat{p} \stackrel{approx.}{\sim} N(0.118, \sqrt{\frac{0.118(1-0.118)}{94}}) = N(0.118, 0.033)$
- The 95% interval [0.052, 0.184] contains $\hat{p} = 0.074$.
- ▶ The proportion of left-handedness in STAT 11 2017 class is quite similar as the US population proportion.

- ▶ Proportion of left-handedness in the US population is 0.118.
- Proportion of left-handedness in STAT 11
 - 2016 class: 10/122 = 0.082
 - \sim 2017 class: 7/94 = 0.074
 - **2019 class:** 4/112 = 0.036
- ▶ Is the proportion of left-handedness in STAT 11 the same as US population?
- $X \sim Bernoulli(0.118), p = 0.118$
- 2019 class: n = 112, $\hat{p} \stackrel{approx.}{\sim} N(0.118, \sqrt{\frac{0.118(1 0.118)}{112}}) = N(0.118, 0.030)$
- ▶ The 95% interval [0.058, 0.178] does NOT contain $\hat{p} = 0.036$.
- ▶ The proportion of left-handedness in STAT 11 2019 class is quite different from the US population proportion.

Summary

- ▶ Sampling distribution of a sample mean
 - When population distribution is Normal
 - When population distribution is not Normal
- ▶ Central Limit Theorem (CLT)
 - Definition
 - Examples
 - Sampling distribution of a proportion
 - Normal approximation
 - Examples