Yaman Sanghavi

Junior Undergraduate, IIT Kanpur

yamansan@iitk.ac.in

Education

2019 Bachelor of Science, IIT Kanpur

Major: Physics Expected

CPI: 8.8

2014 Shiv Iyoti School, Kota

RBSE Board: 75.20/100

New Look Central School, Sagwara

CBSE Board: 9.4/10

Achievements

2015	Secured an All India Rank of 231 in JEE Advanced, 2015 given by about 200,000 students.
2015	Secured an All India Rank of 1066 in JEE Mains, 2015 given by about 1,500,000 students.
2015	Secured an All India Rank of 118 in VITEEE, 2015 given by about 200,000 students.

2014 Secured an All India Rank of 599 in NEST, 2014 given by about 20,000 students.

Projects

May-July 2017

Quantum Optics

Summer Project under Prof. A.K. Jha

- Sharpened the concepts of Fourier optics.
- Attempted to theoretically calculate the efficiency of coupling efficiency independent of the radial index of a Single Mode Optical Fibre.
- Familiarized with the workings of Spatial Light Modulators.

Oct-Nov 2017 | Acousto-Optics: Speed of Sound in Different Liquids Using Diffraction of light Course Project under Prof. Rajeev Gupta

- Using the idea of Raman-Nath model to produce ultrasonic sound waves in a liquid column to produce a phase grating which diffracts incoming light.
- Deducing the speed of light in different liquids like water, glycerol, ethanol etc. using the diffraction patterns obtained.

Oct 2016

Fresnel Zone Plates

Course Project under Prof. S.A. Ramakrishnan

- Demonstrated the working of Fresnel Zone Plates i.e. focussing of a light beam at multiple locations without any lens but only zone plate i.e. by means of pure diffraction effects.
- Verified the theoretical relation between focal lengths and radii of rings of the plate.

Theoretical Research Works

May-Jul 2017

Developed Calculus of Variations Independently

- Developed some special integrals to work on kinematics of continuum objects, which could be further extended in optimization of functions.
- Used the above idea to push the idea of derivatives for calculating the derivative of a functional with respect to a function and found out a one more approach using Dirac Delta functions to calculate the derivative of functionals.
- Solved the Brachistochrone problem and generalized the idea into something, which is known as Euler-Lagrange Equation.

Jul-Sep 2016

Magnetic Fields: Pseudo Vector to a Real Tensor

- Constructed a real mathematical object instead of a pseudo vector for dealing with magnetic field in all dimensions using a concept, which I call Field of Presence
- Came up independently with a theorem, which is called as Reynold's Transport Theorem, in fluid mechanics, which I used later to prove Ampere's Circuital Law.
- Derived a law analogous to Ampere's Circuital Law for this new magnetic field tensor using the concept of Lagrangian perspective on fluids and using Reynold's Transport Theorem.

Jun-Jul 2016

Geometric Elements in Tensor Notations & Generalization of Vector Calculus

- Redefined area vector to area tensor to deal in all dimensions; because area can't be dealt as a vector in 4 or higher dimensions.
- Generalized length, area, volume, hyper-volume etc. in two different and consistent ways in tensor forms.
- Extended the concept of cross product to all dimensions and not only for vectors but for any rank tensors using the idea of determinants and converted them to operators.
- Generalized fundamental theorems of vector calculus into tensor calculus using the newly defined geometric elements in all dimensions.

Nov-Dec 2015 | Special Integrals of Curves, Surfaces & Volumes

- Developed some methods and propositions to solve many scalar, vector and tensor integrals on curves (both planar and non-planar), curved surfaces and volumes using static & dynamic problems on fluids.
- Made a proposition, which I am not able to prove yet, about inverse powered electrostatic field to explain whether a 1, 2 or 3-Dimensional (or perhaps generalized n-Dimensional) charged dielectric object can hold forces of its own charges that are distributed irrespective of the strength of dielectric material.

Special Differential Equations of Scalars & Vectors

- Came up independently for some methods for solving linear first order partial differential equations, which is called as method of characteristics, using concept of electric field lines & potentials.
- Developed some methods to solve some special vector differential equations inspired from the concept of motion of charges in magneto-static field.

Relevant Coursework:

Special Theory of Relativity Mathematical Methods I * Quantum Mechanics I * Thermal Physics Thermodynamics Modern Physics Experiments * Physics Laboratory

* ≡ Ongoing

Mechanics Classical Mechanics * Electrodynamics Linear Algebra & ODE Fluid Mechanics & Rate Processes Quantum Physics

Calculus & Real Analysis Linear Algebra II * Mechanics of Solids Probability & Statistics Quantum Chemistry

Extra-Curricular:

- 1st Position in Duathlon (5km running+ 10km cycling), among fresher students.
- 1st Position in 10 x 400m relay race held on Udghosh, a sports festival.
- Made two robots with four bar gripping mechanism for gripping boxes and collecting them at a spot in a competition called Maneuver, held a technical festival Techkriti.