Data Mining and Machine Learning

Assignment Project Exam Help

Statistical

https://eduassistpro.github.jo/quences (1)

Add WeChat edu_assist_pro

Peter Jančovič

Objectives

- Extension of dynamic programming to statistical modelling of sequences
- Introduction to Markov models through example
- Calculation https://eduassistpro.githedpiedce
- State distribution WeChat edu_assist_pro
- Relationship to Page Rank

Sequence retrieval using DP

Corpus of sequential data

Assignment Project Exam Help

AAGDTDTDTDD

AABBCBDAAAAAAA

BABABABBCCDF

GGGGDDGDGDGDGDTDTD

DGDGDGDGD

AABCDTAABCDTAABCDTAAB

CDCDCDTGGG

GGAACDTGGGGGAAA

https://eduassistpro.github.iQquence Q

Add Wechat edu_assist_proposogogogocotcottoccc...

Dista

Calculation

Calculate ad(S,Q) for each sequence S in corpus

'query'

$$\hat{S} = \arg\min_{S} ad(S, Q)$$

UNIVERSITY OF BIRMINGHAM

Limitations of 'template matching'

- This type of analysis is sometimes referred to as template matching
- The 'templates' are the sequences in the corpus
- Can think of https://eduassistpro.githutinig/a 'class'
- Problem: determine which edu_assistite query
- Performance will depend on precisely which template is used to represent the class

Markov Chains

- Discussed briefly in the lecture on Page Rank
- Suppose that you want to understand the habits of Assignment Project Exam Help shoppers on a High Street
- Suppose thathttps://eduassistpro.github.io/
 - There are Acharedu_assist_pro
 - Probability that the next shop that a shopper visits is S_j depends only on the shop S_i that the shopper is currently visiting this is the Markov Property

Markov Chains (continued)

In other words, if x_n is the n^{th} shop visited: $P(x_n = S_i | x_{n-1} = S_i, x_{n-2}, x_{n-3}, ..., x_0) = P(x_n = S_i | x_{n-1} = S_i)$

- In a Markgyighainer Profescare called states
- The behavio described by https://eduassistpro.github.io/state probability vector P_0 and state with the distributed by the state of the state of

$$P_{0} = \begin{bmatrix} P_{0}(1) \\ P_{0}(2) \\ \vdots \\ P_{0}(N) \end{bmatrix}, A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1N} \\ a_{21} & a_{22} & \dots & a_{2N} \\ \vdots & \vdots & a_{ij} & \vdots \\ a_{N1} & a_{N2} & \dots & a_{NN} \end{bmatrix}$$

Markov Chains (continued)

- $P_0(n)$ is the probability that the first shop that a shopper visits is S_n
- a_{ij} is the probability that the n^{th} (next) shop that is visited is S_j given that the n^{th} (current) shop visited is S_i https://eduassistpro.github.io/
- Or (better) a_{i} $A = R_{i} \times R_$
- The Markov assumption is not really appropriate for this application it is made because it simplifies the mathematical theory and computation

Example

• Suppose:
$$\begin{bmatrix} 0.5 \\ N = 3 \end{bmatrix}$$
 $\begin{bmatrix} 0.5 \\ 0.2 \\ Assignment Project Exam Help \\ 0.4 \\ 0 \end{bmatrix}$

- This means (https://eduassistpro.github.io/
 - Half of all Aldplac State du_assist_pro
 - Half of all shoppers return to S_1 immediately after leaving it (!?)
 - Shoppers never visit S_2 immediately after S_3

Transition network representation

A simple probability calculation

- Suppose that $x = x_1, ..., x_T$ is a sequence of states (shops)
- Then the probability P(x) is given by: $P(x) = P(x_T|x) \times P(x) \times P(x) \times P(x_1|x) \times P(x_2|x_1) \times P(x_1|x) \times P(x_1|x_1) \times P(x_2|x_1) \times P(x_1|x_1) \times P(x_1|x_1)$
- Example: giventhe edu_assist_arkov model, suppose

$$x = S_1 S_3 S_1 S_1 S_2$$

$$P(x) = a_{12} \times a_{11} \times a_{31} \times a_{13} \times P_0(1)$$

$$= 0.2 \times 0.5 \times 0.4 \times 0.3 \times 0.5 = 0.006$$

State distribution at time t

- Suppose that the state occupancy at time t is P_t
- i.e. $P_t(n)$ is the probability that the state at time t is state n. $P_t(n) = \Pr{ob(x_t = S_n)}$ Project Exam Help
- Then $P_{t+1} = A^T R_t tps://eduassistpro.github.io/$
- To see this consider the Chatatelexannle: pro $P_{t+1}(2) = P_t(1) \times a_{12} + P_t(2) \times a_{22} + P_t(3) \times a_{32}$
- This is just the dot product of the 2^{nd} column of A and P_t , and the result follows.

State distribution at time t (cont.)

- In particular $P_1 = A^T P_0$
- Hence $P_2 = A^T P_1 = A^T (A^T P_0) = (A^T)^2 P_0$ Assignment Project Exam Help
 In general P_t
- Example: Fohttps://eduassistpro.github.io/

$$P_{0} = \begin{bmatrix} 0.5 \\ 0.2 \\ 0.3 \end{bmatrix}, P_{1} = A^{T} P_{0} = \begin{bmatrix} 0.2 & 0.1 & 0 \\ 0.3 & 0.8 & 0.6 \end{bmatrix} \begin{bmatrix} 0.2 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0.49 \end{bmatrix}$$

Page Rank revisited

- In our discussion on Page Rank
 - N is the number of webpages
 - S, is the ninement Project Exam Help
 - $-a_{ij}$ is the probability of visiting for the surfer is currently at S_i

- Add WeChat edu_assist_pro

 The Page Rank is a vector $P = \begin{bmatrix} P_1 \\ P_2 \end{bmatrix}$ such that $P = A^T P$,
 - in other words an eigenvector of A^T with eigenvalue 1
- P is an equilibrium distribution for the Markov process

Hidden Markov Models (HMMs)

- Let's go back to our original shopping example
- Suppose that when a shopper visits a shop he or she makes a single purchase from a set of M possible items I_1 , \dots I_M
- Suppose that hitpstelded that sist pring the sequence of purchases shops, we observe the sequence of purchases Add We Chat edu_assist_pro
- Because different shops may sell the same item it is in general not possible to know the shop sequence unambiguously from the purchase sequence

This is an example of a Hidden Markov process

Summary

- Markov processes and Markov models Assignment Project Exam Help
- Hidden Mar https://eduassistpro.github.io/

Add WeChat edu_assist_pro

