

TUTORIAL 4 BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION

PDS0101: INTRODUCTION TO DIGITAL SYSTEMS TRI 2, 2022-2023

1.
$$A + 0 = A$$

2. $A + 1 = 1$
3. $A \cdot 0 = 0$
4. $A \cdot 1 = A$
5. $A + A = A$
6. $A + \overline{A} = 1$
7. $A \cdot A = A$
8. $A \cdot \overline{A} = 0$
9. $\overline{A} = A$
10. $A + A$
 $\overline{A} + A$
11. $A + \overline{A}$
12. $A + \overline{A}$
13. $A = A$
14. $A + \overline{A}$

9.
$$\bar{A} = A$$

10. $A + AB = A$
11. $A + \bar{A}B = A + B$
 $\bar{A} + AB = \bar{A} + B$
12. $(A + B) (A + C) = A + BC$
13. $\bar{A}B = \bar{A} + \bar{B}$

OR GATE

1.
$$A + 0 = A$$

2. $A + A = A$
3. $A + 1 = 1$
4. $A + \overline{A} = 1$

Λ	1	\wedge
H	Т	U

Input		Output
A	0	
0	0	0
1	0	Ţ

A+1	
Input	Output

Шрот		Colpoi
A	1	
0	_	1
1	1	l

$\Delta + \Delta$

<u>Input</u>		Output
A	A	
0	0	0
7	_	H

A	+ 7	4	

mpui		Oulpui
A	14	
0	-	1
ļ	0	

AND GATE

1. $A \cdot A = A$ 2. $A \cdot 1 = A$ 3. $A \cdot 0 = 0$ 4. $A \cdot \overline{A} = 0$

$\mathbf{A} \cdot \mathbf{A}$

Input		Output
A	A	
0	0	0
1	1	-

A . C

Input		Output
A	D	
٥	۵	0
J	٥	0

A.

Input		Output
A	1	
0	1	0
1	ı	1

A. A

Input		Output
A	Ā	
0	1	0
1	0	O

Q)
$$A + AB = A$$

(4) $A + \overline{AB} = \overline{A}$

AND-OR gate

$$Rule 2$$

$$A+1 = 1$$

$$B+1 = 1$$

$$Rule 4$$

$$A = A(1)$$

$$A + \overline{A}B = \overline{A}(1+B) \text{ rule } 2$$

$$A = \overline{A}(1)$$

$$A + AB = A+B$$

b)
$$\overline{A} + AB = \overline{A} + B$$

a)
$$A + \overline{AB} = A + AB + \overline{AB}$$

$$= A + B(A + \overline{A})$$

$$= A + B(1)$$

Rule 6
$$A + \overline{A} = 1$$

$$\frac{\text{Rule 4}}{A(1) = A}$$

$$B(1) = B$$

6)
$$\bar{A} + AB = \bar{A} + \bar{A}B + AB$$

$$= \bar{A} + B(\bar{A} + \bar{A})$$

$$= \bar{A} + B(1) \text{ rule } 4$$

$$= \bar{A} + B \times 8$$

Rule 12 OR - AND gate
$$(A+B)(A+C)=A+BC$$

$$(A+B)(A+C) = AA + AC + AB + BC$$

$$= A + AC + AB + BC$$

$$= A(1+C+B) + BC$$

$$= A(1) + BC$$

$$= A+BC$$

Rule 2
$$A+1=1$$

$$C+B+1=1$$

AND & OR GATE

1.
$$A + AB = A$$

2. $A + \overline{A}B = A + B$
 $\overline{A} + AB = \overline{A} + B$
3. $(A+B)(A+C)=A+BC$

DE MORGAN'S THEOREM

Question 1(a): Write the **BOOLEAN EXPRESSIONS** for the outputs from the following **logic circuits**

Question 1(b): Write the **BOOLEAN EXPRESSIONS** for the outputs from the following **logic circuits**

Question 1(b): Simplify BOOLEAN EXPRESSIONS from the following ADDITIONAL logic circuits

Method 1

$$Y = (\overline{A} + AB) + \overline{B}(C + D)$$

$$(\bar{A} + AB) + \bar{B} (C + D)$$

$$= \bar{A} + AB + \bar{B}C + \bar{B}D$$

$$= \bar{A} + B + \bar{B}C + \bar{B}D$$

$$= \bar{A} + B + C + \bar{B}D$$

$$= \bar{A} + B + C + B + D$$

$$= \bar{A} + B + C + D \times$$

$$\frac{\text{rule II}}{\bar{A} + AB} = \bar{A} + B$$

$$A + \bar{A}B = A + B$$

$$B + \bar{B}C = B + C$$

$$B + \bar{B}D = B + D$$

Question 1(b): Simplify BOOLEAN EXPRESSIONS from the following ADDITIONAL logic circuits

Method 2

$$Y = \overline{A} + AB + \overline{B}(C + D)$$

rule II
$$\overline{A} + AB = \overline{A} + B$$

$$A + \overline{A}B = A + B$$

$$B + B(C+D)$$

$$A + B + B + C + D$$

Question 1(c): Write the **BOOLEAN EXPRESSIONS** for the outputs from the following **logic circuits**

Question 1(c): Simplify BOOLEAN EXPRESSIONS from the following ADDITIONAL logic circuits

$$Y = \overline{(W \oplus Z) + (W + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline{(W \oplus Z) (\overline{W} + X + Z)}$$

$$= \overline$$

$$\frac{XOR}{W\oplus Z} = W\overline{Z} + WZ$$
a)
$$\frac{\overline{WZ} + \overline{WZ}}{WZ} = (W\overline{Z})(\overline{WZ})$$
one term
$$\frac{\overline{WZ}}{WZ} = (W\overline{Z})(\overline{WZ})$$
one term
$$\frac{\overline{WZ}}{WZ} = (W\overline{Z})(\overline{WZ})$$

$$\frac{\overline$$

Question 1(d): Write the **BOOLEAN EXPRESSIONS** for the outputs from the following **logic circuits**

Question 1(d): Simplify **BOOLEAN EXPRESSIONS** from the following **ADDITIONAL** logic circuits

$$Y = \overline{(\overline{A} + C)(\overline{B} + C)}$$
NOR = $(\overline{\overline{A} + C}) + (\overline{\overline{B} + C})$

$$= AC + B + C$$

A+B+C *

rule 9
$$\overline{\overline{A}} = A$$

$$\overline{B+C} = B+C$$

Question 1(e): Write the **BOOLEAN EXPRESSIONS** for the outputs from the following logic circuits rule 9

END DISCUSSION PART 1 ANY QUESTIONS ??

