Math 4330 Homework Set 9

Due Monday, November 16, 2015

Keith Dennis Malott 524 255-4027 math4330@rkd.math.cornell.edu

TA: Gautam Gopal Krishnan 120 Malott Hall gk379@cornell.edu

NOTE: Late homework not accepted.

Read: "The Matrix of a Linear Transformation" "Dual Spaces" and the three handouts on Rings and Modules.

Problems marked by box or * are more challenging and may be turned in anytime during the semester. There will be several such problems assigned during the term. Please turn in *separately* from routine assignments – if incorrect or incomplete, they will be returned to you to complete correctly. Final deadline is Monday, Nov. 30, no exceptions.

Do the following problems from the handouts:

DualSpace 7

DualSpace 8

DualSpace 16

DualSpace 25

DualSpace 33

DualSpace 34

DualSpace 36

Ex09 1. Let F be an arbitrary field.

- a. Show that the intersection of an arbitrary number of ideals in F[x] is an ideal in F[x].
- b. Let $f_1, \ldots, f_k \in F[x]$. The ideal generated by these is

$$(f_1, \dots, f_k) = \{g_1 f_1 + \dots + g_k f_k \mid g_i \in F[x]\}$$
,

the set of all F[x]-linear combinations of f_1,\ldots,f_k . Show that this ideal is precisely the intersection of the ideals which contain all f_i , $1 \le i \le k$.

Ex09 2 (Exact Sequence of a Pair in a PID). Let R be a principal ideal domain (PID). Let $a, b \in R$, not both of which are 0. Define $f: R \times R \longrightarrow R$ by f(s,t) = sa + tb. Note that $R \times R$ is also a commutive ring with 1 when addition and multiplication are defined coordinate-wise:

(1)
$$(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$$

(2)
$$(a_1, b_1) \cdot (a_2, b_2) = (a_1 a_2, b_1 b_2)$$

Further note that $R \times R$ is an R-module with scalar multiplication defined by

(3)
$$r \cdot (a,b) = (ra,rb)$$

- a. Show that f satisfies
 - (i) f(x+y) = f(x) + f(y) for all $x, y \in R \times R$.
 - (ii) f(rx) = rf(x) for $r \in R$, $x \in R \times R$.

Hence f is an R-module homomorphism.

- b. Show that im $f \subseteq R$ is non-empty and is closed under addition and scalar multiplication; that is, im f is an R-submodule of R.
- c. Compute $\operatorname{im} f$.
- d. Show that $\ker f \subseteq R \times R$ is an R-submodule of $R \times R$.
- e. Determine $\ker f$ explicitly: Show that there exists a function $g: R \longrightarrow R \times R$ of the form $g(r) = (r\alpha, r\beta)$ for some $\alpha, \beta \in R$ such that $\operatorname{im} g = \ker f$. Note that g satisfies the analogue of (i) and (ii) above (i.e., is an R-module homomorphism).
- f. Show that there exists an exact sequence of R-modules

$$0 \longrightarrow X \xrightarrow{i} R \times R \xrightarrow{f} R \xrightarrow{p} Y \longrightarrow 0 \ .$$

What are X, i, Y, p?

g. Determine precisely all solutions (s,t), $s,t \in R$ of the equation $sa+tb = \gcd(a,b)$ where $\gcd(a,b)$ denotes the greatest common divisor of a and b.

Ex09 3. Let R be a PID and let $a, b \in R$ be two non-zero elements. Show that there exist elements $r, s, u, v \in R$ such that

$$a. \quad (a,b) = au + bv \,,$$

b.
$$a = (a,b)r$$
, $b = (a,b)s$, $[a,b] = (a,b)rs$,

c. the matrices $A, B \in \mathbb{R}^{2 \times 2}$

$$A = \left[\begin{array}{cc} u & v \\ -s & r \end{array} \right]$$

and

$$B = \left[\begin{array}{cc} 1 & -vs \\ 1 & ur \end{array} \right]$$

are invertible and $\det A = \det B = 1$,

d. and further the following holds:

$$A\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} B = \begin{bmatrix} (a,b) & 0 \\ 0 & [a,b] \end{bmatrix}.$$

		1	
			!
•			