2D Conditional averaging

Given 2D imaging data, select a reference pixel on which:

- Find all events where the signal is over a **threshold**.
- For each event:
 - Define the **peak** as the event maximum
 - Register and save the data centered in the peak with a fixed window size
 - Optionally, discard the event if any neighbour pixels at a distance lower than check argument have a higher value at the time the peak occurs.
 - Optionally, discard events with overlapping windows with preference for higher amplitude events.
- Return list of events and average over all events

Arguments

Name	Description
dataset	The 2D imaging data to process
reference pixel	Pixel to base events on
threshold	Minimum signal value for events
window_size	Size of data window around peaks
check_max	Distance to check neighboring peaks
single_counting	Avoid overlapping event windows

Synthetic data

Simulated 5x5 data with 1000 blobs:

$$lx/ly = 1/3$$
, theta = $-\pi/4$, v = 1, w = -1

Result

Averaged output after conditional averaging:

Parameter estimation

Fit to a rotated ellipse to estimate sizes ℓ_x and ℓ_y and rotation heta

$$\ell_x = 1.57, \ell_y = 0.62, heta = 0.78$$

Results: I mode

Results: L mode

