

Introduction to High Performance Machine Learning

About PRACE

PRACE: Partnership for Advanced Computing in Europe

- Aims to enable high-impact scientific discovery and engineering research and development across all disciplines to enhance European competitiveness for the benefit of society.
- 26 Member countries.

- Missions:
 - Research Infrastructure
 - HPC Access
 - Training and Education
 - Mark Surveillance

About SURF

About SURF

High performance computing
Supercomputing
Clustercomputing
Machine learning
HPC cloud

Data analytics
Grid services
Visualization
HPC cloud

Mass online storage
PID service
Data management
Data preservation

Objectives of the Workshop

- → Understand the fundamental theories of machine learning and the intuitions/ideas behind the algorithms
- → Work with a high-level machine learning API (tf.keras)
- ⇒ Explore hyperparameter space to improve a neural network
- → Understand the pitfalls of classic machine learning algorithms
- → Upscale large machine learning models with parallel training on a supercomputer

Schedule (17 June 2021)

What	When	Who
Welcome & Introduction	09:00 - 09:15	Maxwell Cai
Introduction to neural networks	09:15 - 09:45	Maxwell Cai
Hands-on: Neural Networks (with MNIST)	09:45 - 10:30	Maxwell Cai
Coffee Break	10:30 - 11:00	
Neural Networks: knobs and dials	11:00 - 11:30	Joris Mollinga
Hands-on: Hyperparameter tuning for optimizing the MNIST prediction	11:30 - 12:00	Joris Mollinga
Lunch Break	12:00 - 13:30	
Introduction to CNNs, RNNs, and generative models	13:30 - 14:30	Maxwell Cai
Hands-on: CNNs with CIFAR	14:30 - 15:15	Maxwell Cai
Coffee Break	15:15 - 15:45	
DNN inspection and result Interpretation	15:45 - 16:30	Maxwell Cai
Open Discussion	16:30 - 17:00	

Schedule (18 June 2021)

What	When	Who
Introduction to Parallel Computing	09:00 - 09:30	Caspar van Leeuwen
Parallel Computing for Deep Learning: basic ideas, algorithms, frameworks, and hardware bottleneck.	09:30 - 10:30	Caspar van Leeuwen
Coffee Break	10:30 - 11:00	
Structure of Deep Learning Frameworks: computational graph, autodiff, and optimizers	11:00 - 11:30	Joris Mollinga
Hands-on: Profiling TensorFlow with TensorBoard	11:30 - 12:30	Caspar van Leeuwen
Lunch Break	12:30 - 14:00	
Hands-on: Data Parallelism with Horovod (CIFAR10)	14:00 - 15:00	Joris / Maxwell
Coffee Break	15:00 - 15:30	
Introduction to hybrid parallelism	15:30 - 16:15	Caspar van Leeuwen
Open Discussion	16:15 - 17:00	

Slack channel

https://app.slack.com/client/T01CDNDSFMG/C0257M0163C

"Hop in, hop off"