MOBILE ROBOTICS

INTRODUCTION

Introduction

• "A robot is a machine with perception, decision and action abilities. It allows the machine to act autonomously in its environments."

Quick History

• "Rossum's Universal Robots" - 1920, a Karel Capek play

1950 - Grey Walter "Turtle" robot

1960 - John Hopkins "Beast" robot

1970 – Stanford "Shakey" robot

Nowadays

Polytech Angers - 4A SAGI

The considered robot

- UGV: Unmanned Ground Vehicle
 - UAV: Unmanned Aerial Vehicle
 - UUV: Unmanned Underwater Vehicle
- Robot pose

$$\mathbf{q}(t) = (\mathbf{x}(t), \mathbf{\theta}(t))^{T}$$

 $\mathbf{x}(t) = (\mathbf{x}(t), \mathbf{z}(t))^{T}$

The considered robot

• Differential robot (nonholonomic robot)

The considered robot

The differential equations

$$\dot{x}(t) = \frac{r}{2}.(ul(t) - ur(t)).\cos(\theta(t))$$

$$\dot{z}(t) = \frac{r}{2}.(ul(t) - ur(t)).\sin(\theta(t))$$

$$\dot{\theta}(t) = \frac{r}{L}.(ul(t) - ur(t))$$

r : radius of the wheels (m)

L: distance between the wheels (m)

ul: angular speed of left wheel (rad/s)

ur : angular speed of the right wheel (rad/s)

MOBILE ROBOTICS

LOCALIZATION PROBLEM

Localization problems

Pose tracking

Environments

- Environment types
 - Indoor vs outdoor
 - Static vs dynamic
- Environment representations
 - Topological
 - Metric
 - Hybrid

EE BLDG GROUND FLOOR

Environments

- Metric map
 - Landmark map
 - Occupancy grid

Sensors

- Proprioceptive vs Exteroceptive
- Odometry
- Inertial sensors
- Distance sensors
 - US
 - LiDAR (Light Detection And Ranging)
- Camera
- •

LiDAR sensor

• Distance and range

Global localization

Objective

Global localization

Objective

Belief of the robot by a set of particles

$$X_t = \{x_t^{[1]}, x_t^{[2]}, \dots, x_t^{[M]}\}$$

• Steps:
$$x_t^{[m]} = \langle q_{t,m}, w_{t,m} \rangle$$

- - [] Initialization
 - **Evaluation**
 - Re-sampling
 - Process Odometry

Belief of the robot by a set of particles

$$X_t = \{x_t^{[1]}, x_t^{[2]}, \dots, x_t^{[M]}\}$$

• Steps:
$$x_t^{[m]} = \langle \boldsymbol{q}_{t,m}, w_{t,m} \rangle$$

- - **Initialization**
 - [] Evaluation
 - Re-sampling
 - Process Odometry

Belief of the robot by a set of particles

$$X_t = \{x_t^{[1]}, x_t^{[2]}, \dots, x_t^{[M]}\}$$

• Steps:
$$x_t^{[m]} = \langle \boldsymbol{q}_{t,m}, w_{t,m} \rangle$$

- - Initialization
 - Evaluation
 - Re-sampling
 - Process Odometry

Belief of the robot by a set of particles

$$X_t = \{x_t^{[1]}, x_t^{[2]}, \dots, x_t^{[M]}\}$$

• Steps:
$$x_t^{[m]} = \langle \boldsymbol{q}_{t,m}, w_{t,m} \rangle$$

- - Initialization
 - Evaluation
 - Re-sampling
 - Process Odometry

Work to do

- Files to upload in Moodle
 - tp_mcl/monte_carlo.py
 - tp_mcl/cost_map.py
- Warnings
 - Test your code functions after functions, you can use the "Test" button as you want
 - Do not modify the other files
 - You may however modify the btn_test_event() function in tp_mcl/simulator.py for your tests
 - Do not add any library (numpy for instance...)
- You should use run_mcl_tests to run unit tests

1. compute_cost_map()

Cost Map

5	6	6	5	5	4	3	2	1	0
4	5	5	4	4	4	3	2	1	0
3	4	4	3	3	3	3	2	1	0
2	3	3	2	2	2	2	2	1	0
1	2	2	1	1	1	1	1	1	0
0	1	1	0	0	0	0	0	1	1
0	1	2	1	1	1	1	1	2	2
0	1	2	2	2	2	2	2	3	3
0	1	2	3	3	3	3	3	4	4
0	1	2	3	4	4	4	4	5	5

1. compute_cost_map()

• Ease the evaluation of a particle weight

5	6	6	5	5	4	3	2	1	0
4	5	5	4	4	4	3	2	1	0
3	4	4	3	3	3	3	2	1	0
2	3	3	2	2	2	2	2	1	0
1	2	2	1	1	1	1	1	1	0
0	1	1	•	0	0	0	0	1	1
0	1	2		1		1	1	2	2
0	1	N	2	2	2	1	2	3	3
0	1	2	9	3	3	™	3	4	4
0	1	2	3		4	4	4	5	5

$$Cost = 1+0+1+2+3 = 7$$

1. compute_cost_map()

- Four loops over the grid:
 - West to East
 - East to West
 - South to North
 - North to South
- Take the min of the current
 value and the previous one + 1

Update max_cost, it is used to display the cost map

- Example:
 - Environment

- Example:
 - Environment
 - Initialization

- Example:
 - Environment
 - Initialization
 - W-E

- Example:
 - Environment
 - Initialization
 - W-E
 - E-W

| ∞ |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 6 | 5 | 4 | 3 | 2 | 1 | 0 | 1 | 2 | 3 |
| 6 | 5 | 4 | 3 | 2 | 1 | 0 | 1 | 2 | 3 |
| 6 | 5 | 4 | 3 | 2 | 1 | 0 | 1 | 2 | 3 |
| 6 | 5 | 4 | 3 | 2 | 1 | 0 | 1 | 2 | 3 |
| 0 | 1 | 2 | 3 | 2 | 1 | 0 | 1 | 2 | 3 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

1. compute_cost_map()

• Example:

- Environment
- Initialization
- W-E
- E-W
- S-N

5	6	5	4	3	2	1	2	3	4
4	5	4	3	2	1	0	1	2	3
3	4	4	3	2	1	0	1	2	3
2	3	4	3	2	1	0	1	2	3
1	2	3	3	2	1	0	1	2	3
0	1	2	3	2	1	0	1	2	3
0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9

1. compute_cost_map()

• Example:

- Environment
- Initialization
- W-E
- E-W
- S-N
- N-S

5	6	5	4	3	2	1	2	3	4
4	5	4	3	2	1	0	1	2	3
3	4	4	3	2	1	0	1	2	3
2	3	4	3	2	1	0	1	2	3
1	2	3	3	2	1	0	1	2	3
0	1	2	3	2	1	0	1	2	3
0	1	2	3	3	2	1	2	3	4
0	1	2	3	4	3	2	3	4	5
0	1	2	3	4	4	3	4	5	6
0	1	2	3	4	5	4	5	6	7

- Remark:
 - max_cost needs to be set to be able to display the costmap!

2. evaluate_cost()

- Evaluate the cost of a measurement set according to a pose (x, z, theta)
- Each measurement **m** corresponds to a LiDARMeasurement

object

- m.distance
- m.angle

5	6	6	5	5	4	3	2	1	0
4	5	5	4	4	4	3	2	1	0
3	4	4	3	3	3	3	2	1	0
2	3	3	2	2	2	2	2	1	0
1	2	2	1	1	1	1	1	1	0
0	1	1		0	0	0	0	1	1
0	7	2		1		1	1	2	2
0	1	2	2	2	2	1	2	3	3
0	1	2	9	3	3	3	3	4	4
0	1	2	3		4	4	4	5	5

$$Cost = 1+0+1+2+3 = 7$$

Polytech Angers - 4A SAGI

31/39

evaluate_cost()

Remarks:

- When computing the position of an obstacle in the costmap you should test if the obstacle is in the costmap...
- If the detected obstacle is outside the environment (i.e. the costmap) the cost of it should be maxcost
- When displaying the costmap, infinity values are drawn in yellow color (for debugging purpose)

3. init_particles()

Initialization of each particles (M particles in total):

$$x_0^{[m]} = \langle \boldsymbol{q_{0,m}}, w_{0,m} \rangle$$

$$\boldsymbol{q_{0,m}} = (x_{0,m}, z_{0,m}, \theta_{0,m})$$

$$x_{0,m} \sim U(0, width)$$

$$z_{0,m} \sim U(0, height)$$

$$\theta_{0,m} \sim U(0, 2.\pi)$$

$$w_{0,m} = 1/M$$

- A particle must be in an empty cell (obstacle free)
- Update the max_weight, used to display the particles

4. evaluate_particles()

- Evaluate the cost for each particle (using the costmap and the evaluate_cost function)
 - Cost => sum of distances
 - Weight => value between 0 and 1
 - The higher the cost the lower the weight
- Normalize the particle weights

$$\forall x_t^{[m]}, w_{t,m} \in [0,1]$$

The sum of the weights must be 1

$$\sum w_{t,m} = 1$$

Update max_weight and bestParticle

4. evaluate_particles()

- To find the weight of a particle, you first have to compute its cost (with the cost of all the particles) and then normalize it so that:
 - The addition of all the particles weight must be 1
 - O means a O probability for the robot to have the same state as the particle
 - 1 means a 100% probability that the robot has the same state as the particle

5. re_sampling()

Randomly re-sample particles around the best ones

according to a Gaussian distribution

$$x_{new} \sim N(x_t, \sigma_{x,z}^2),$$

$$z_{new} \sim N(z_t, \sigma_{x,z}^2),$$

$$\theta_{new} \sim N(\theta_t, \sigma_{\theta}^2),$$

$$w_{new} = 0,$$
with $\sigma_{x,z}^2 = 0.05$ and $\sigma_{\theta}^2 = \% \frac{pi}{180}$.

The best particle has to be kept to stabilize the robot's pose evaluation

5. re_sampling()

• Systematic re-sampling

i	1	2	3	4	5	6	7	8	9	10
wt[i]	0.025	0.05	0.1	0.15	0.025	0.05	0.2	0.3	0.05	0.05
ci	0.025	0.075	0.175	0.325	0.350	0.4	0.6	0.9	0.95	1

Polytech Angers - 4A SAGI

6. estimate_from_odometry()

Move the particles according to the odometry data

odometry data =
$$\{\Delta_{dst}, \Delta_{\theta}\}\$$
 $\forall x_{t}^{[m]},\$
 $x_{t+1,m} = x_{t,m} + \cos(\theta_{t,m}).\Delta_{dst}$
 $z_{t+1,m} = z_{t,m} + \sin(\theta_{t,m}).\Delta_{dst}$
 $\theta_{t+1,m} = \theta_{t,m} + \Delta_{\theta}$

7. add_random_particles()

- To handle a kidnapping recovery
- Should not modify the total number of particles
 - Randomly modify some particles of the set
 - Should avoid to change the best particle as a random particle

