الجمهورية الجزائوية الديمقواطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2013

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

المدة: 04 سا و30 د

اختبار في مادة: التكنولوجيا (هندسة الطرائق)

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

التمرين الأول: (05 نقاط)

.78 g/mol وكتلته المولية C_nH_{2n-6} فحم هيدروجيني أروماتي A صيغته العامة -I

1) جد الصيغة نصف المفصلة للمركب A.

يعطى: H = 1g/mol ، C = 12g/mol

2) انطلاقا من المركب A، نجري سلسلة التفاعلات التالية:

1) A +
$$Cl_2$$
 $\xrightarrow{AlCl_3}$ B + HCl

3) C +
$$CO_2 \longrightarrow D$$

4) D +
$$H_2O \longrightarrow E + MgCl(OH)$$

- جد الصيغ نصف المفصلة للمركبات: E ،D ،C ،B.

، H_3C-CH_2 اكتب معادلات التفاعلات التي تسمح بالحصول على المركب NH_2 المركب انطلاقا من البنزن و الإيثانول وكواشف أخرى.

 $\mathrm{C_3H_8O}$ عبارة عن كحولين لهما نفس الصيغة المجملة F .

يتفاعل $0,1 \, \text{mol}$ من الإستر $0,1 \, \text{mol}$ من المركب E ، فينتج عند التوازن E من الإستر E دي الكتلة المولية E من الإستر E من الإستر E من الإستر E الكتلة المولية E من الإستر E من المركب E من الإستر E

- 1) احسب مردود تفاعل الأسترة، ثمّ استنتج صنف الكحول F.
 - 2) استنتج الصيغة نصف المفصلة للكحول F.
 - 3) اكتب معادلة تفاعل الأسترة.

الله التعلين التاليين: P انطلاقا من الكحول F نجري التفاعلين التاليين:

1)
$$F' = \frac{H_2SO_4}{170^{\circ}C} + H + H_2O$$

1) جد الصيغة نصف المفصلة لكل من المركبين F' و H، والصيغة العامة للبوليمير P.

 140° C عند H_2SO_4 عند بخمض الكبريت F' عند (2

- اكتب معادلة التفاعل المو افق.

التمرين الثاني: (05 نقاط)

1) نجري اختبار الونيا على الببتيدين A و B، فكانت النتائج كما هي مبيّنة في الوثيقة(1).

كاشف كز انتوبر وتييك	كاشف بيوري	الببتيد
لا يتفاعل	يتفاعل	A
يتفاعل	يتفاعل	В

الوثيقة (1)

أ- ما هي مكونات كاشف بيوري؟

ب- ما هي الاستنتاجات التي تستخلصها من هذا الاختبار اللوني بالنسبة لكل من A وB?

2) أعطى التحليل المائي للببتيد A الأحماض الأمينية التالية:

أ- إذا كانت صيغة الببتيد A هي: Ser-Val-Asp، اكتب صيغته نصف المفصلة.

ب- مثّل الصورة L للحمض الأميني (Val) حسب إسقاط فيشر.

ج- احسب pH_i للحمض الأميني (Asp)، إذا علمت أنّ:

 $pKa_1 = 1,88$ $pKa_2 = 9,60$ $pKa_R = 3,66$

د- اكتب الصيغ الأيونية للحمض الأميني (Asp) عند تغير قيمة pH من 1 إلى 12.

3) أعطى التحليل المائي للببتيد B مزيجا من عدة أحماض أمينية، تم الكشف عنها بطريقة الكروماتوغرافيا الورقية، فكانت النتائج كما هي مبينة في الوثيقة (2).

أ- ماذا يمثّل كل من الطور الثابت والطور المتحرك في تقنية الكروماتوغرافيا الورقية؟

ب- ما هو دور كاشف النينهيدرين في طريقة الفصل
 بالكروماتوغرافيا الورقية؟

ج- استنتج الأحماض الأمينية المكونة للببتيدB.

د- أكمل التفاعلين التاليين:

التمرين الثالث: (05 نقاط)

عند 25°C، لدينا التفاعلان التاليان:

1)
$$2NH_{3(g)} + \frac{3}{2}O_{2(g)} \longrightarrow N_{2(g)} + 3H_{2}O_{(\ell)} \Delta H_{1}$$

2) $N_{2(g)} + 3H_{2(g)} \longrightarrow 2NH_{3(g)} \Delta H_{2} = -92kJ$

- $\Delta H_{
 m f}^0({
 m NH}_{3(g)})$ استنتج أنطالبي تشكل غاز النشادر ($\Delta H_{
 m f}^0({
 m NH}_{3(g)})$
 - ΔH_1 الأنطالبي الأنطالبي (1).

$$\Delta H_f^0(H_2O_{(\ell)}) = -286 \text{ kJ.mol}^{-1}$$
 يعطى:

(3) احسب الفرق ($\Delta H - \Delta U$) بالنسبة للتفاعل (1) في الحالتين:

 $H_2O_{(\ell)}$ أ- إذا كان الماء الناتج في الحالة السائلة أ

 $H_2O_{(g)}$ ب- إذا كان الماء الناتج في الحالة الغازية

يعطى: R= 8,314 J.mol⁻¹.K⁻¹

4) احسب طاقة الرابطة (N-H) في NH_{3(g)}.

$$\Delta H_{dis}^{0}$$
 (N \equiv N) = 945 kJ.mol⁻¹ ...

$$\Delta H_{dis}^{0}(H - H) = 436 \text{ kJ.mol}^{-1}$$

 $^{\circ}$ کم تصبح قیمة $^{\circ}$ للتفاعل (2) عند $^{\circ}$ کم تصبح قیمة $^{\circ}$

$$Cp(H_2) = 27.25 + 3.2 \times 10^{-3} T$$
 J.K⁻¹.mol⁻¹:

$$Cp(N_2) = 27.84 + 4.2 \times 10^{-3} T$$
 J.K⁻¹.mol⁻¹

$$Cp(NH_3) = 29.72 + 2.5 \times 10^{-3} \text{T} \text{ J.K}^{-1}.\text{mol}^{-1}$$

التمرين الرابع: (05 نقاط)

يحضر النيلون 6-6 من تفاعل المركبين:

$$HOOC-(CH_2)_4-COOH$$
 $_{9}$ $H_2N-(CH_2)_6-NH_2$

- 1) سمِّ المجموعتين الوظيفيتين للمركبين.
- 2) ما نوع البلمرة التي تؤدي إلى تشكل النيلون 6-6؟
 - 3) اكتب معادلة تفاعل البلمرة.

II- لتحضير النيلون 6-6 في المخبر، استخدمنا المواد التالية:

$$O$$
 $CI-C-(CH2)4-C-C1 کلورید الأديبيل -$

- $H_2N-(CH_2)_6-NH_2$ مكسامثيلين ثنائي أمين -
 - رباعي كلور الكربون CCl₄
 - 1) ما هو دور رباعي كلور الكربون؟
 - 2) اكتب معادلة تفاعل البلمرة لتحضير النيلون 6-6.
- 3) أ- ما هي المجموعة الفعالة في الصبيغة العامة للنيلون 6-6؟

ب- مثّل مقطعا من النيلون 6-6 يحتوي على وحدتين بنائيتين.

- 4) اكتب معادلة التفاعل الذي يسمح بالحصول على كلوريد الأديبيل انطلاقا من حمض الأديبيك.
 - 5) ما هي الكتلة المولية المتوسطة للنيلون 6-6، إذا كانت درجة بلمرته 200 ما

C=12g/mol H=1g/mol O=16g/mol N=14g/mol : يعطى

6) برر تسمية هذا البوليمير بالنيلون 6

الموضوع الثاني

التمرين الأول: (07 نقاط)

مركبين A بالأوزون والمتبوعة بالإماهة، أعطت مركبين A بالأوزون والمتبوعة بالإماهة، أعطت مركبين (C_3H_6O) B ((C_2H_4O)) B و (C_2H_4O)

أ- ما طبيعة المركبين B و C?

ب- استنتج الصيغ نصف المفصلة للمركبات: C ،B ،A.

2) انطلاقا من المركب C، نجري التفاعلات التالية:

$$C \xrightarrow{\text{LiAlH}_4} D$$

$$D + PCl_5 \longrightarrow E + HCl + POCl_3$$

$$E + Mg \xrightarrow{\beta} F$$

$$F + CO_2 \longrightarrow G$$

$$G + H_2O \longrightarrow H + MgCl(OH)$$

أ- جد الصيغ نصف المفصلة للمركبات: H · G · F · E · D.

ب- أكمل التفاعل التالي:

$$E + (CH_3)_3N$$
 \longrightarrow

II- يمكن الحصول على البوليمير PVC (بولي كلوريد الفينيل) انطلاقا من الأسيتيلين.

- 1) اكتب التفاعلات التي تسمح بذلك.
- 2) ما نوع البلمرة التي ينتج عنها هذا البوليمير؟
- 3) احسب الكتلة المولية المتوسطة للبوليمير PVC، إذا علمت أنّ درجة بلمرته 1936. n =1936.

$$H = 1 \text{ g/mol}$$
 $C = 12 \text{ g/mol}$ $Cl = 35,5 \text{ g/mol}$

التمرين الثاني: (06 نقاط)

مختلفة، pH مختلفة، $\mathrm{H_2N-CH-COOH}$ في المجال الكهربائي عند قيم pH مختلفة، CH_3

تمّ وضع محلول من الألانين في منتصف شريط الهجرة الكهربائية، فتحصلنا على النتائج التالية:

نتائج الهجرة	рН
- • +	1
- +	pH_i
- +	11

- 1) فسر هجرة الألانين في الحالات الثلاث.
- 2) مثّل الصورتين D و L للألانين حسب إسقاط فيشر.

II نعاير II من محلول حمضي للألانين تركيزه (II 0,1II) بمحلول من هيدروكسيد الصوديوم NaOH تركيزه (II 0,1III) باستعمال جهاز II متر والنتائج مدونة في الجدول التالى:

V _{NaOH} (mL)	0	4	8	10	14	16	18	19,5	20,5	21	22	24	30
рН	1,4	1,7	2,1	2,3	2,8	3,1	3,5	4,1	7,6	8	8,6	9,2	9,9

- 1) اكتب التفاعلات التي تحدث أثناء المعايرة.
 - $\cdot pH = f(V_{NaOH})$ ارسم المنحنى (2
- استنتج من المنحنى قيمة كل من pH_i و pKa_1 للألانين.
 - 4) احسب قيمة pKa₂ (4
 - 5) اكتب الصيغ الأيونية للألانين عند قيم pH التالية:

$$pH = pKa_2$$
 ' $pH = pH_i$ ' $pH = pKa_1$

التمرين الثالث: (07 نقاط)

I- يحترق الميثانول السائل وفق التفاعل التالي:

$$CH_3OH_{(\ell)} + \frac{3}{2}O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(\ell)}$$

 $\Delta U = -724,76 \; \mathrm{kJ.mol^{-1}}$ ديث التغير في الطاقة الداخلية لهذا التفاعل عند $^{\circ}\mathrm{C}$ هو:

1) احسب أنطالبي احتراق الميثانول السائل.

$$R = 8.314 \text{ J.mol}^{-1}.\text{K}^{-1}$$

 $. CH_3OH_{(\ell)}$ احسب أنطالبي التشكل ΔH_f^0 التشكل (2

$$\Delta H_{\rm f}^0({\rm CO}_{2(g)}) = -393 \; {\rm kJ.mol}^{-1}$$
 يعطى:

$$\Delta H_{\rm f}^0(H_2O_{(\ell)}) = -286 \text{ kJ.mol}^{-1}$$

3) احسب طاقة الرابطة (C-O) في CH₃OH.

$$\Delta H_{\text{van}}^{0}(\text{CH}_{3}\text{OH}) = 35,4 \text{ kJ.mol}^{-1}$$
 يعطى:

$$\Delta H_{\text{sub}}^{0}(C_{(s)}) = 717 \text{ kJ.mol}^{-1}$$

$$\Delta H_{dis}^{0}(H - H) = 436 \text{ kJ.mol}^{-1}$$

$$\Delta H_{dis}^{0}(O = O) = 498 \text{ kJ.mol}^{-1}$$

$$E_{C-H} = -413 \text{ kJ.mol}^{-1}$$

$$E_{O-H} = -463 \text{ kJ.mol}^{-1}$$

يتعرض غاز مثالي حجمه $(V_1=24,5~L)$ إلى انضغاط وفق تحول عكوسي 1-II من $P_1=1$ إلى الله عدد درجة حرارة ثابتة تساوي $P_1=1$ عند درجة حرارة ثابتة تساوي $P_1=1$

أ- ما هو عدد مولات هذا الغاز؟

ب- ما هو حجم الغاز بعد انضغاطه؟

ج- احسب العمل (W) المطبق على الغاز.

د – استنتج قيمة التغير في الطاقة الداخلية (ΔU).

ه- ما هي قيمة كمية الحرارة (Q) المتبادلة أثناء الانضغاط؟

يتمدّد غاز مثالي من الحجم $V_1=0.9~L$ إلى الحجم عند ضغط خارجي (2 P=30~atm ثابت P=30~atm

- احسب العمل بالجول الذي يقدمه النظام أثناء تمدّد الغاز.

الإجابة النموذجية وسلم التنقيط

امتحان شهادة البكالوريا دورة: 2013

المادة: تكنولوجيا (هندسة الطرائق) الشعبة: تقني رياضي

دمة	العا		محاور
المجموع	مجزأة	عناصر الإجابة (الموضوع الأول)	الموضوع
		التمرين الأول: (05 نقاط) ا- 1) لدينا:	
	0,25	$M(C_nH_{2n-6}) = 12n + 2n-6 = 78$ $14n - 6 = 78$ $n = \frac{84}{14} = 6$	
0,5	0,25	و منه الصيغة المجملة للفحم الهيدروجيني الأروماتي A هي: C6H6	
1	0,25x4	2) الصيغ نصف المفصلة للمركبات: B: CI	
0,75	0,25x3	CH ₂ -CH ₃ + CH ₂ -CH ₃ + H ₂ SO ₄ + H ₂ SO ₄ + H ₂ SO ₄ + H ₂ O CH ₂ -CH ₃ + H ₂ O CH ₂ -CH ₃ + H ₂ O CH ₂ -CH ₃ + H ₂ O	
		+ 2H ₂ O H ₂ N + 2H ₂ O H ₂ N + 2H ₂ O ALAIH ₄ /H ₂ O في مكان LiAIH ₄ /H ₂ O ملاحظة: يمكن استعمال 14 LiAIH ₄ /H ₂ O	

رياضى		· ä .	211
رياصي	تعتی (ب.	النت

رمة ا	<u>سي ريا</u> العا	ب اعتواجي اعتواد اعتوادي اعتاد اعتوادي	دبع <i>ہ</i> ءِ محاور
المجموع	مجزأة	عناصر الإجابة (الموضوع الأول)	الموضوع
0,75	0,25 0,25	$n($ استر) = $\frac{m}{M} = \frac{9,84}{164} = 0,06 \text{ mol}$ = $\frac{m}{164} = 0,06 \text{ mol}$ = $\frac{n(\text{ester})}{n(\text{acide})} \times 100 = \frac{0,06}{0,1} \times 100 = 60\%$	
0,25	0,25 0,25	- صنف الكحول جهو كحول ثانوي F صنف الكحول الكحول 1: H3C—CH—OH (2	
0,5	0,5	(3 معادلة تفاعل الأسترة: O	
0,75	0,25x2	H : H ₃ C – CH ₂ –CH ₂ –OH	
0,73	0,25	- الصيغة العامة للبوليمير P: CH ₂ —CH - الصيغة العامة للبوليمير CH ₃ - الصيغة العامة للبوليمير	
0,5	0,5	2 CH $_3$ -CH $_2$ -CH $_2$ -OH $\frac{\text{H}_2\text{SO}_4}{140^{\circ}\text{C}}$ CH $_3$ -CH $_2$ -O-CH $_2$ -CH $_2$ -CH $_3$ + H $_2$ O	
	0,25	التمرين الثاني: (05 نقاط) التمرين الثاني: (05 نقاط) السود NaOH مكونات كاشف بيوري: محلول كبريتات النحاس (١١) ومحلول الصود المحالف المستخلصة:	
0,75	0,25 0,25	- بالنسبة أــ A: ببتيد لا يحتوي على أي حمض أروماتي - بانسبة أــ B: ببتيد يحتوي على حمض أميني أروماتي	
	0,5	Ser – Val - Asp أ- صيغة الببتيد (2 O O II H ₂ N—CH—C—NH—CH—COOH H ₂ C CH CH ₂ OH H ₃ C CH ₃ COOH	

رمة ا	<u>سي ري-</u> ااوا	ب الموربي المدد : مصوربي (مصد المحرابي) المداد : م	SERVE WY
المجموع	مجزأة مجزأة	عناصر الإجابة (الموضوع الأول)	محاور الموضوع
	50 APRIL	ب- تمثيل الصورة L للحمض الأميني Val حسب إسقاط فيشر:	
		COOH	
2	0,25	H ₂ N — H	
		CH CH ₃ C	
		ج- حساب pH _i للحمض الأميني Asp:	
	0,25	$pH_i = \frac{pKa_1 + pKa_R}{2} = \frac{1,88 + 3,66}{2} = 2,77$ c Compared to the image of the imag	
	0.05	pH=1 pKa ₁ =1,88 pH _i =2,77 pKa _R =3,66 pKa ₂ =9,6 pH=12	
	0,25x4	H ₃ N ⁺ -CH-COOH OH H ₃ N ⁺ -CH-COO OH H ₂ N + CH-COO OH H ₂ N - CH-COO OH COO	
	0,25x2 0,25	 (3) أ- يمثل الطور الثابت ورق الكروماتوغرافيا أما الطور المتحرك فيمثله المذيب. ب- دور كاشف النينهيدرين في طريقة الفصل بالكروماتوغرافيا الورقية هو 	
2,25	ŕ	إظهار مواقع الأحماض الأمينية بتلوينها بالأزرق البنفسجي.	
	0,5	ج- الأحماض الأمينية المكونة للببتيد B هي : Tyr ، Ala ، Lys دالت التفاعلات:	
	0,5	H_2N —CH—COOH + H_1NO_2 — HO—CH—COOH + N_2 + H_2O H_3C	
	0,5	H_2N —CH—COOH + 2HNO ₃ \longrightarrow H_2N —CH—COOH + 2H ₂ O H_2 C	
		O ₂ N NO ₂	

لمة		عناصر الإجابة (الموضوع الأول)	محاور
المجموع	مجزأة		الموضوع
		التمرين الثالث: (05 نقاط) (1) استقال (۱۲۷ میلا)	
		$\Delta H^0_{f}ig(NH_{3(g)}ig)$ استنتاج ($f 1$	
		بتطبيق قانون Hess :	
		$\Delta H_2 = \sum \Delta H_f^0 \left(\text{Pr oduits} \right) - \sum \Delta H_f^0 \left(\text{Re actifs} \right)$	
	0,25	$\Delta H_2 = 2\Delta H_f^0 \left(NH_{3(g)} \right) - \left[\Delta H_f^0 \left(N_{2(g)} \right) + 3\Delta H_f^0 \left(H_{2(g)} \right) \right]$	
		$-92 = 2\Delta H_f^0 \left(NH_{3(g)} \right) - \left(0 + 3 \times 0 \right)$	
0,5		$\Delta H_f^0(NH_{3(g)}) = -\frac{92}{2} = -46 \text{ kJ/mol}$	
	0,25	$\Delta H_f^0 \left(NH_{3(g)} \right) = -46 \ kJ / mol$	
		: ΔH_1 حساب (2	
	0,25	$\Delta H_{1} = \left[\Delta H_{f}^{0} \left(N_{2_{(g)}} \right) + 3\Delta H_{f}^{0} \left(H_{2} O_{(\ell)} \right) \right] - \left[2\Delta H_{f}^{0} \left(N H_{3_{(g)}} \right) + \frac{3}{2} \Delta H_{f}^{0} \left(O_{2(g)} \right) \right] $	
		$\Delta H_1 = 0 + 3(-286) - 2(-46) - \frac{3}{2}(0)$	
		$\Delta H_1 = -858 + 92 = -766 kJ$	
	0,25	$\Delta H_1 = -766 kJ$	
0,5			
	0,25	$\Delta H = \Delta U + \Delta nRT$: الدينا (3)	
		$H_2O_{(\ell)}$ الحالة السائلة $H_2O_{(\ell)}$:	
		$2NH_{3(g)} + \frac{3}{2}O_{2(g)} \to N_{2(g)} + 3H_2O_{(\ell)}$	
	0,25	$\Delta n = 1 - \left(2 + \frac{3}{2}\right) = -2,5 mol$	
		T = 25 + 273 = 298K	
		$\Delta H - \Delta U = \Delta nRT = -2.5 \times 8.314 \times 298$	
1.5	0,25	$\Delta H - \Delta U = -6193,93J = -6,194kJ$	
1,5		$H_2O_{(g)}$: الحالة الغازية	
	0,25	$2NH_{3(g)} + \frac{3}{2}O_{2(g)} \rightarrow N_{2(g)} + 3H_2O_{(g)}$	
	0,25	$\Delta n = (1+3) - \left(2 + \frac{3}{2}\right) = 0.5 mol$	
	0,25	$\Delta H - \Delta U = \Delta nRT = 0.5 \times 8.314 \times 298$ $\Delta H - \Delta U = 1238.786J = 1.239kJ$	

المجموع المج	ي	قني رياض	جابة النموذجية المادة: تكنولوجيا (هندسة الطرائق) الشعبة: ن	تابع الإ
الم الماقة الرابطة (الم-H) الماقة المرابطة (الم-H) الماقة الماقة المرابطة (الم-H) الماقة الماقة (الم-H) الماقة الماقة (الم-H) الماقة			عناصر الإجابة (الموضوع الأول)	محاور الموضوع
ابتطبیق قانون کرشوف حیث: $\Delta H_T = \Delta H_{T_0} + \int_{T_0}^{T} \Delta C_p dT$ $\Delta C_p = \sum_p C_p \left(\text{Pr oduits} \right) - \sum_p C_p \left(\text{Re actifs} \right)$ $\Delta C_p = 2C_p \left(NH_3 \right) - \left[C_p \left(N_2 \right) + 3C_p \left(H_2 \right) \right]$ $\Delta C_p = 2 \left(29, 72 + 2, 5 \times 10^{-3} T \right) - \left(27, 84 + 4, 2 \times 10^{-3} T \right) - 3 \left(27, 25 + 3, 2 \times 10^{-3} T \right)$ $C_p = -50, 15 - 8, 8 \times 10^{-3} T$ $T = 550 + 273 = 823K$ $T_0 = 25 + 273 = 298K$		0,5	$\frac{1}{2} N_{2(g)} + \frac{3}{2} H_{2(g)} \xrightarrow{\Delta H_{f}^{0}(NH_{3(g)})} NH_{3(g)}$ $\frac{1}{2} \Delta H_{dis}^{0}(N) \equiv N \qquad 3 \qquad$	اعتولطوح
$\Delta H_{823} = -92 \times 10^{3} - 50,15 (823 - 298) - 8,8 \times 10^{-3} \left(\frac{(823)^{2}}{2} - \frac{(298)^{2}}{2} \right)$ $\Delta H_{823} = -120918, 26J = -120,92 kJ$	1,5	0,25 0,25 0,25	$\Delta H_T = \Delta H_{T_0} + \int_{T_0}^T \Delta C_p dT$ $\Delta C_p = \sum_p C_p \left(\text{Pr oduits} \right) - \sum_p C_p \left(\text{Re actifs} \right)$ $\Delta C_p = 2C_p \left(NH_3 \right) - \left[C_p \left(N_2 \right) + 3C_p \left(H_2 \right) \right]$ $\Delta C_p = 2 \left(29, 72 + 2,5 \times 10^{-3} T \right) - \left(27,84 + 4,2 \times 10^{-3} T \right) - 3 \left(27,25 + 3,2 \times 10^{-3} T \right)$ $\Delta C_p = -50,15 - 8,8 \times 10^{-3} T$ $T = 550 + 273 = 823K$ $T_0 = 25 + 273 = 298K$ $\Delta H_T = \Delta H_{T_0} + \int_{T_0}^T \left(-50,15 - 8,8 \times 10^{-3} T \right) dT$ $\Delta H_T = \Delta H_{T_0} - 50,15 \left(T - T_0 \right) - 8,8 \times 10^{-3} \left(\frac{T^2}{2} - \frac{T_0^2}{2} \right)$ $\Delta H_{823} = -92 \times 10^3 - 50,15 \left(823 - 298 \right) - 8,8 \times 10^{-3} \left(\frac{\left(823 \right)^2}{2} - \frac{\left(298 \right)^2}{2} \right)$	

رمة ا	لي وي	(+ 501	محاور
المجموع	مجزأة	عناصر الإجابة (الموضوع الأول)	الموضوع
	3	التمرين الرابع: (05 نقاط)	
		1-1) تسمية المجموعتين الوظيفيتين:	
0,5	0,25	- المركب $H_2N-(CH_2)_6-NH_2$: المجموعة الأمينية	
	0,25	- المركب COOH-(CH ₂) ₄ —COOH : المجموعة الحمضية الكربوكسيلية	
0,25	0,25	2) نوع البلمرة: بلمرة بالتكاثف	
0,75	0,75	3) معادلة تقاعل البلمرة:	
		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
0,25	0,25	CCI ₄ يلعب CCI ₄ دور المذيب	
		2) معادلة تفاعل البلمرة:	
0,5	0,5	$n \text{ CIOC-}(CH_2)_4\text{-COCI} + n H_2N - (CH_2)_6 - NH_2 \longrightarrow \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	
0,75	0,25	3) أ- المجموعة الفعالة في الصيغة العامة للنيلون 6-6: هي المجموعة الأميدية O II I I I I I I I I I I I I I I I I I	
0,75		ب- تمثیل مقطع من النیلون 6-6 یحتوی علی وحدتین بنائیتین:	
	0,5	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
		4) كتابة معادلة التفاعل الذي يسمح بالحصول على كلوريد الأديبيل:	
1	4×0,25	$ HOOC-(CH_2)_4-COOH + 2PCI_5 - CIOC-(CH_2)_4-COCI + 2POCI_3 + 2HCI $	
		أو	
		$HOOC-(CH_2)_4-COOH + 2SOCI_2 \longrightarrow CIOC-(CH_2)_4-COCI + 2SO_2 + 2HCI$	
		5) الكتلة المولية المتوسطة للنيلون 6-6:	
	0,25	$n = \frac{M(Polymère)}{M(Monomère)} \longrightarrow M(Polymère) = n M(Monomère)$	
0,75	0,25	M(Monomère) = (12 x 12) + (22 x1) + (2 x 16) + (2 x 14)= 226 g/mol	
	0,25	M(Poly) = 200 x 226 = 45200 g/mol	
0,25	0,25	6) تبرير تسمية النيلون 6-6: يدخل في تركيب النيلون 6-6 حمض الأديبيك والهكسامثيلين ثنائي أمين الذين كل منهما يحتوي على ستة ذرات كربون.	
L			

- Z .	<u>. سي رب</u> ا لع لا	ب السوديي السادة السولوبي (مسلم السرامي)	محاور
المجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)	معاور الموضوع
2	2 x 0,25 3 x 0,5	التمرين الأول: (07 نقاط) التمرين الأول: (07 نقاط) التمرين الأول: (07 نقاط) التمرين الأول: (07 نقاط) التمرين الأول: (1-1 نقاط) التمرين الأول: (1-2 نقاط) التمرين الأول: (1-2 نقاط) التمرين الأول: (07 نقاط) التمرين الأول: (1-1 نقاط) التمرين ا	J
3	5 x 0,5	ا – الصيغ نصف المفصلة للمركبات: OH CI CI MgCI D: H ₃ C—CH—CH ₃ E: H ₃ C—CH—CH ₃ F: H ₃ C—CH—CH ₃ G: H ₃ C—CH—C—OMgCI CH ₃ H: H ₃ C—CH—C—OH CH ₃ H: H ₃ C—CH—C—OH CH ₃ CH	
1	0,5	$HC \equiv CH$ + HCI \longrightarrow $H_2C = CH - CI$ $N H_2C = CH$ CI CI CI CI CI	
0,25	0,25	2) نوع البلمرة: بلمرة بالضم.	
		3) حساب الكتلة المولية المتوسطة لــ PVC:	
0,75	0,25 0,25 0,25	$M_{monomère} = 2x12 + 3x1 + 35,5 = 62,5 \text{ g/mol}$ $n = \frac{M_{polymère}}{M_{monomère}} \Rightarrow M_{polymère} = nxM_{monomère}$ $M_{polymère} = 1936x62,5 = 121000\text{g/mol}$	

	· <u>سي ر</u> ټ	ب اسویب (مصنف اسرین)	ابع روا
المجموع المجموع	العلا مجزأة	عناصر الإجابة (الموضوع الثاني)	محاور الموضوع
	0,25	التمرين الثاني: (06 نقاط) 1-1) تفسير هجرة الألانين في الحالات التالية: - عند pH=1 (وسط حمضي) يكون الألانين على شكل أيون موجب - حد CH—COOH—+3N يهاجر نحو القطب السالب	
0,75	0,25	 عند pH=pHi یکون الألانین علی شکل أیون متعادل کهربائیا لا یهاجر H₃N⁺—CH—COO CH₃ 	
	0,25	- عند pH=11 (وسط قاعدي) يكون الألانين على شكل أيون سالب	
0,5	2 x 0,25	H ₂ N——CH—COO - CH ₃ (2) (2) (3) (4) (4) (5) (6) (7) (6) (7) (7) (8) (8) (9) (9) (1) (1) (1) (1) (1) (1	
1		* تعديل الحموضة الأولى: H ₃ N ⁺ —CH—COOH + HO	
	0,5	H_3N^{+} CH COO + HO	

	ي ريسي	المتواجب الم	اج الإجاب
لمة المجموع		عناصر الإجابة (الموضوع الثاني)	محاور الموضوع
1	1	2) رسم المنحنى: pH = f (V _{NaOH}))	
1		(3 تعیین قیمة کل من pH_i و pKa_1 بیانیا: $pH_i=6$ من البیان نجد: $pH_i=6$ و $pKa_1=2,3$	
1	2 x 0,5	4) حساب قيمة pKa ₂ للألانين:	
0,5	0,25	$pH_{i} = \frac{pKa_{1} + pKa_{2}}{2} \Rightarrow pKa_{2} = 2pH_{i} - pKa_{1}$	
	0,25	$pKa_2 = 2x6 - 2,3 = 9,7$ الصيغ الأيونية للألانين: (5)	
		 − عند pH= pKa₁ لدینا مزیجا من: 	
	2 x 0,25	H ₃ N ⁺ —CH—COO ⁻ 9 H ₃ N ⁺ —CH—COOH	
1,25	0,25	H ₃ N ⁺ —CH—COO - الدينا: pH=pH _i عند - الم	
		– عند pH= pKa ₂ لدينا مزيجا من:	
	2 x 0,25	H ₃ N ⁺ —CH—COO ⁻ 9 H ₂ N——CH—COO ⁻ CH ₃ CH ₃	

ه: نفني رياضي		وابه التمودجية الماده: تحتولوجيا (هندسه الطرابق) السعبة	
رمة المجموع	العلا مجزأة	عناصر الإجابة (الموضوع الثاني)	محاور الموضوع
1	0,25 0,25 0,5	التمرین الثالث: (70 نقاط) $\Delta H = \Delta U + \Delta nRT$ $\Delta n = 1 - \frac{3}{2} = -0,5$ mol $T = 25 + 273 = 298K$ $\Delta H = -724,76x10^3 - 0,5x8,314x298$ $\Delta H = -724760 - 1238,786 = -725998,786 J.mol^{-1}$ $\Delta H = -726kJ.mol^{-1}$ $\Delta H_f^0(CH_3OH_0)$ - $\Delta H_f^0(CH_3OH_0)$	الموصوع
0,75	0,5	:Hess بتطبیق قانون :Hess بتطبیق قانون $\Delta H = \sum \Delta H_f^0(\text{produits}) - \sum \Delta H_f^0(\text{reactifs})$ $\Delta H = \left[\Delta H_f^0(\text{CO}_{2(g)}) + 2\Delta H_f^0(\text{H}_2\text{O}_{(l)})\right] - \left[\Delta H_f^0(\text{CH}_3\text{OH}_{(l)}) + \frac{3}{2}\Delta H_f^0(\text{O}_{2(g)})\right]$ $-726 = -393 + 2(-286) - \Delta H_f^0(\text{CH}_3\text{OH}_{(l)}) - \frac{3}{2}(0)$ $\Delta H_f^0(\text{CH}_3\text{OH}_{(l)}) = 726 - 393 - 572$ $\Delta H_f^0(\text{CH}_3\text{OH}_{(l)}) = -239\text{kJ.mol}^{-1}$:C - 0 خاص طاقة الرابطة (3)	
	0,75	$C_{(s)} + 2 H_{2(g)} + 1/2 O_{2(g)} \xrightarrow{\Delta H_{f} \circ (CH_{3}OH_{(l)})} CH_{3}OH_{(l)}$ $\Delta H^{\circ}_{sub} (C_{(s)}) \left 2\Delta H^{\circ}_{dis}(H-H) \right 1/{}_{2}\Delta H^{\circ}_{dis}(O=O) \qquad \qquad -\Delta H^{\circ}_{vap}(CH_{3}OH)$ $C(g) + 4 H(g) + O(g) \xrightarrow{3E_{C-H} + E_{C-O} + E_{O-H}} CH_{3}OH_{(g)}$	
1,5	0,5 0,25	$\begin{split} \Delta H_{f}^{0}(CH_{3}OH_{(I)}) &= \Delta H_{sub}^{0}(C_{(s)}) + 2\Delta H_{dis}^{0}(H-H) + \frac{1}{2}\Delta H_{dis}^{0}(O=O) \\ &+ 3E_{C-H} + E_{C-O} + E_{O-H} - \Delta H_{vap}^{0}(CH_{3}OH) \\ -239 &= 717 + 2(436) + 1/2(498) + 3(-413) + E_{C-O} - 463 - 35, 4 \\ E_{C-O} &= -239 - 717 - 872 - 249 + 1239 + 463 + 35, 4 \\ E_{C-O} &= -339,6 \text{kJ.mol}^{-1} \end{split}$	
	,	ملاحظة: تقبل إجابة أخرى باستعمال مخطط تشكل (CH ₃ OH _(g)	

مة م	. <u>سي رب</u> العلا		محاه ر
المجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)	محاور الموضوع
	0,25	ا P_1 أ- حساب عدد مو لات المغاز: $P_1V_1 = nRT \Rightarrow n = \frac{P_1V_1}{RT}$	
	0,5	$P_{1} = 1atm = 1,013 \times 10^{5} Pa$ $V_{1} = 24,5L = 24,5 \times 10^{-3} m^{3}$ $T = 25 + 273 = 298K$ $n = \frac{1,013 \times 10^{5} \times 24,5 \times 10^{-3}}{8,314 \times 298} = 1 \text{ mol}$	
	0, 5	ب- حجم المغاز بعد انضىغاطه: $P_1V_1 = P_2V_2 \Rightarrow V_2 = \frac{P_1V_1}{P_2}$	
	0,25	$V_2 = \frac{1 \times 24,5}{10} = 2,45 \text{ L}$	
3		$W:= -PdV$ $dW = -PdV$ $PV = nRT \Rightarrow P = \frac{nRT}{V}$	
	0,5	$W = \int_{V_1}^{V_2} -nRT \frac{dV}{V} = -nRT \int_{V_1}^{V_2} \frac{dV}{V}$ $W = -nRT \ln \frac{V_2}{V_1}$	
	0,25	W = -1 x8,314x298 ln $\frac{2,45}{24,5}$ = 5704,82 J W = 5,705 kJ	
	0,25	د- استنتاج قيمة التغير في الطاقة الداخلية ΔU : عند درجة حرارة ثابتة يكون $\Delta U = 0$ هـــ كمية الحرارة المتبادلة أثناء الإنضغاط:	
	0,25	$\Delta U = Q + W$ ندينا	
	0,25	0 = Q + W => Q = -W = -5,705 kJ (2) حساب العمل W بالجول:	
	0,5	$W = -P_{\text{ext}}\Delta V = -P_{\text{ext}}(V_2 - V_1)$ عند ضغط ثابت یکون	
0,75	0,25	$W = -30x1,013x10^{5}(10^{-3} - 0.9x10^{-3})$ $W = -303.9 \text{ J}$	