

Centro Federal de Educação Tecnológica de Minas Gerais

Informática _ INFO1

Lista 7 Energia Eólica no Brasil

Disciplina: Laboratório de Fundamentos de Informática

Professor: Geraldo Magela

Nome: Felipe Augusto do

Nascimento

Objetivo: Fazer a atividade proposta

na página 115 da apostila

Contagem

Março / 2021

Energia Eólica no Brasil

A energia eólica já é a segunda maior fonte da matriz energética brasileira. De acordo com a Associação Brasileira de Energia Eólica (ABEEólica), a capacidade instalada no país chegou à marca de 16 GW no primeiro semestre de 2020. São 637 parques eólicos e 7.738 aerogeradores.

Em 2019, a indústria eólica investiu R\$ 13,6 bilhões no Brasil, dados da Bloomberg New Energy Finance (BNEF). A infraestrutura gerou 55,9 TWh de energia, 15% a mais em relação a 2018.

Na média mensal, é o suficiente para abastecer 28,8 milhões de residências por mês em 12 estados. Isso equivale a uma população de 86,3 milhões de pessoas, considerando três habitantes por casa.

1.O que é a energia eólica

A energia eólica é produzida a partir das massas de ar em movimento, ou seja, o vento. É aproveitada por meio da conversão da energia cinética de translação em energia cinética de rotação.

2. Vantagens da energia eólica

Os benefícios socioeconômicos e ambientais da energia eólica vêm do fato dela ser renovável e causar baixo impacto nos locais da sua instalação e operação.

Como parques eólicos não emitem CO2, somente em 2019, foram evitadas as emissões de 22,85 milhões de toneladas de gás carbônico. Segundo a ABEEólica, o montante equivale à emissão anual de cerca de 21,7 milhões de automóveis.

Além disso, gera renda e melhoria de vida para proprietários de terra com o pagamento de arrendamentos, que são tributados, para colocação das mais de 7 mil torres em operação.

A produção coexiste com outras atividades e permite que o proprietário da terra siga com plantações ou criação de animais. Desta forma, também auxilia na permanência no campo e na capacitação de mão de obra local.

3. Setor em expansão no Brasil

A matriz elétrica brasileira é formada por hidrelétrica (59,6%), eólica (9,3%), biomassa (8,7%), gás natural (8,6%), petróleo (5,2%), PCH e CGH (3,5%), carvão (2,1%), fotovoltaica (1,7%) e nuclear (1,2%).

Este balanço reúne dados da ABEEólica e da Agência Nacional de Energia Elétrica (Aneel), de junho de 2020.

O desenvolvimento da indústria eólica no Brasil pode ser explicado pela qualidade dos ventos brasileiros. São estáveis, com a intensidade certa e sem mudanças bruscas de velocidade ou de direção.

Possuem fator de capacidade - dado que mede a produtividade dos ventos - acima da média mundial. Em 2019, o fator de capacidade médio mundial foi de 34%; no Brasil foi de 42,7%. Durante a "safra dos ventos", período de junho até o final do ano, houve mês com média de 59%.

Com cada vez mais parques eólicos operando, em 2020, o Brasil chegou à 7ª posição no Ranking Mundial do Global Wind Energy Council (GWEC). A estimativa do setor é de que o país terá cerca de 24,2 GW de capacidade instalada até 2024, considerando leilões já realizados e contratos firmados no mercado livre.

Em entrevista ao site oficial da Associação, a presidente Executiva da ABEEólica, Elbia Gannoum, analisou como a pandemia da Covid-19 afetou o setor.

"É claro que haverá um impacto, porque a queda de demanda foi grande e isso deve impactar os próximos leilões do mercado regulado, mas ainda acho cedo para falar em números deste impacto, porque o mercado livre se movimenta rápido e tem crescido muito".

Conforme o Boletim Anual de Geração Eólica de 2019, considerando representatividade e abastecimento, a geração por fonte eólica foi responsável por 9,71% - atingindo 14,17% no pico da safra dos ventos, em agosto - na média de toda a geração injetada no Sistema Interligado Nacional (SIN).

Na tabela abaixo, estão os estados que mais se destacam nesta geração.

3.1 Estados com maior geração em 2019

Estados com maior fator de capacidade médio em 2019

- Bahia (16,83 TWh)
- Maranhão (49,7%)
- Rio Grande do Norte (14,09 TWh)
- Bahia (49,1%)
- Piauí (6,34 TWh)
- Pernambuco (47,1%)
- Ceará (6,02 TWh)
- Piauí (44%)
- Rio Grande do Sul (5,26 TWh)
- Rio Grande do Norte (39,6%)

De acordo com a Empresa de Pesquisa Energética (EPE), o consumo médio residencial no Brasil, no ano de 2019, foi de 162 kWh por mês. Representou crescimento de 12,6% em relação ao ano anterior, quando a energia eólica abasteceu 76,7 milhões de pessoas.

4.A captação da energia eólica

A energia mecânica da rotação da turbina eólica, ou aerogeradores, aciona um gerador de energia elétrica por um eixo e, então, é convertida em eletricidade por meio de indução eletromagnética que resulta numa corrente alternada.

Para colocar em prática os projetos para instalação de um parque eólico, é necessário produzir Estudos de Impacto Ambiental (EIA), que embasam o Relatório de Impacto Ambiental (Rima).

Nestes documentos são detalhadas as ações definidas para minimizar os possíveis impactos negativos da atividade.

Um exemplo é o fato de os aerogeradores mudarem a paisagem local, e ainda poderem afetar os comportamentos migratórios de aves, causando acidentes com pássaros atingindo as pás dos rotores.

Também deve ser considerado o seu impacto sonoro porque o vento, ao atingir as pás da turbina, produz um ruído constante. Por isso, devem ser instaladas a, pelo menos, 200 metros de moradias ou zonas residenciais.

5.Comissionamento: prevenir - e resolver - possíveis problemas

A fase de comissionamento é essencial para garantir a melhor performance do parque eólico. Nessa as instalações e aerogeradores precisam passar por testes de carga. Ao simular o consumo da energia gerada pela usina, é possível verificar se o parque entrega o prometido dentro do melhor padrão de qualidade, e detectar possíveis pontos de instabilidade e potenciais falhas no processo.

É comum que as empresas façam o aluguel de bancos de carga para prevenção de potenciais falhas no fornecimento de energia nessa etapa anterior à conexão da rede, quando de fato o parque terá conexão ao grid.

Há empresas especializadas que fornecem não somente bancos de carga para testes em fase de comissionamento, mas também soluções em energia temporária com a locação de geradores de energia para as fases iniciais da obra.

Esses serviços contribuem para a entrega de um parque seguro e apto para iniciar a geração de eletricidade.

1. Ir para Energia Solar

A energia solar é uma energia alternativa, renovável e sustentável que funciona utilizando a luz solar como fonte de energia e pode ser aproveitada e utilizada por diferentes tecnologias, como: aquecimento solar, energia solar fotovoltaica e energia hipotérmica.

O conceito de energia solar é comumente associado à energia fotovoltaica, que é a geração de energia elétrica usando a luz do sol como fonte de energia. Portanto, pode-se dizer que energia solar e energia fotovoltaica são a mesma coisa.

Na energia solar fotovoltaica, quando a luz do sol é captada por painéis solares, ocorre a transformação da corrente elétrica para utilização em residências, comércios e indústrias.

Tipo de Energia	Vantagens	Desvantagens	
	Baixo custo para seu	Maior possibilidade de geração de	
Energia da biomassa	desenvolvimento	material particulado para a atmosfera	
	Não emite dióxido de enxofre	Dificuldade no estoque e armazenamento	
	Não é uma energia poluente	As condições climáticas podem causar	
Energia solar	Os equipamentos de captação	oscilação na produção	
	precisam de uma manutenção	Locais com altas latitude sofrem com alta	
	mínima	queda na produção da energia durante os	
		períodos de inverno	
	É renovável	Causa impacto sonoro	
Energia eólica	Não emite gases poluentes	Causa impacto sobre as aves do local	
	O aparelho que produz a		
Lifergia eolica	energia é móvel, podendo ser		
	reinstalado em qualquer outro		
	lugar.		

2. Energia Solar

O sol pode funcionar como fonte de energia para geração de energia elétrica por meio da energia fotovoltaica; no aquecimento de líquidos com a energia solar térmica; e em usinas solares de grande porte.

A energia fotovoltaica utiliza placas solares para captar a luz do sol, gerando eletricidade, enquanto a energia solar térmica utiliza o sol como fonte de energia para aquecer líquidos.

2.1 Características da energia solar

As principais características da energia solar são:

- Proveniente da energia luminosa do Sol;
- Ser uma energia renovável, alternativa e sustentável;
- Não gerar resíduos, sendo considerada uma energia limpa;
- Possuir uma fonte de energia gratuita, tornando a energia gerada mais barata;
 - Gerar economia de até 95% na conta de luz;
- Possuir uma vida útil de mais de 20 anos, com baixa necessidade de manutenção.

2.2 Para que serve a energia solar?

A energia solar serve para diversas funções, pois utiliza o sol como fonte de energia, portanto é uma forma limpa e sem danos à natureza de se gerar energia elétrica com um grande aproveitamento, sendo o calor e a luz solar como umas das fontes mais aproveitáveis e promissoras energias no mundo.

Sumário

1. Ir para Energia Solar	1
2. Energia Solar	2
2.1 Características da energia solar	2
2.2 Para que serve a energia solar	. 2