SVM Soft Margin Classification

Nipun Batra

IIT Gandhinagar

August 1, 2025

"SLIGHTLY" NON - SEPARABLE DATE

Quick Question!

Why might we need a "soft margin" SVM?

• a) Data is perfectly linearly separable

Quick Question!

- a) Data is perfectly linearly separable
- b) Data has some noise and outliers

Quick Question!

- a) Data is perfectly linearly separable
- b) Data has some noise and outliers
- c) We want smaller margins

Quick Question!

- a) Data is perfectly linearly separable
- b) Data has some noise and outliers
- c) We want smaller margins
- d) To avoid using kernels

Quick Question!

- a) Data is perfectly linearly separable
- b) Data has some noise and outliers
- c) We want smaller margins
- d) To avoid using kernels

Quick Question!

Why might we need a "soft margin" SVM?

- a) Data is perfectly linearly separable
- b) Data has some noise and outliers
- c) We want smaller margins
- d) To avoid using kernels

Answer: b) Data has some noise and outliers - soft margin allows controlled violations.

Soft-Margin SVM

 Can we learn SVM for "slightly" non-separable data without projecting to a higher space?

Soft-Margin SVM

- Can we learn SVM for "slightly" non-separable data without projecting to a higher space?
- Introduce some "slack" (ξ_i) or loss or penalty for samples allow some samples to be misclassified

" CONTIN" NON- SCHARABLE DATE

$$\frac{Z \circ NE 2}{Y_i^* \left(\overrightarrow{\omega}, \overrightarrow{z_i} + b \right) = 1}$$

$$Loss_i = 0$$

$$(Ay_i = 0)$$

y; (13. 71 + b) < 1 Loss; ≠0 (0<41;<1 POINT CORRECTLY (BUT WRONG SIDE OF MARGIN

ZONE 4 y: (w. xi+b) <1 INCORRECTLY CLASSI FIED Loss; × 0

ZONE 4 y: (w. xi+b) <1 INCORRECTLY CLASSI FIED みで、また= 1-41 L035; > 0

Soft-Margin SVM

Change Objective

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$

s.t. $y_i(\mathbf{w} \cdot \mathbf{x}_i + \mathbf{b}) \ge 1 - \xi_i$

Soft-Margin SVM

Change Objective

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$

s.t. $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i$

In Dual:

$$\operatorname{minimize} \sum_{i=1}^{n} \alpha_i - \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$$

s.t.

$$0 \le \alpha_i \le C$$
 & $\sum_{i=1}^n \alpha_i y_i = 0$

BIAS - VARIANCE TRADE-OFT

BIAS - VARIANCE TRADE - OFF

LOW PENALTY FOR VIOLATI
HIGH TRAIN ERROR
HIGH BIAS

BIAS- VARIANCE TRADE-OFF

HIGH TRAIN ERROR
HIGH BIAS
BIA MARGIN

HIGH PENALTY HIGH VARIANCE SMALL MARGIN

Quick Question!

What happens when the regularization parameter *C* is very large?

 a) The model becomes more tolerant to misclassifications

Quick Question!

- a) The model becomes more tolerant to misclassifications
- b) The model tries to classify all training points correctly

Quick Question!

- a) The model becomes more tolerant to misclassifications
- b) The model tries to classify all training points correctly
- · c) The margin becomes larger

Quick Question!

- a) The model becomes more tolerant to misclassifications
- b) The model tries to classify all training points correctly
- · c) The margin becomes larger
- · d) Regularization increases

Quick Question!

- a) The model becomes more tolerant to misclassifications
- b) The model tries to classify all training points correctly
- · c) The margin becomes larger
- · d) Regularization increases

Quick Question!

What happens when the regularization parameter *C* is very large?

- a) The model becomes more tolerant to misclassifications
- b) The model tries to classify all training points correctly
- · c) The margin becomes larger
- d) Regularization increases

Answer: b) The model tries to classify all training points correctly - high variance!

Bias Variance Trade-off for Soft-Margin SVM

Low C ⇒ Higher train error (higher bias)

High $C \implies Very$ sensitive to datasete (high variance)

Soft-Margin SVM

```
If C \to 0 Objective \to \text{minimize } \frac{1}{2} \|\mathbf{w}\|^2 \Longrightarrow Choose large margin (without worrying for \xi_is)
```

Recall: Margin =
$$\frac{2}{\|\mathbf{w}\|}$$

If $C \to \infty$ (or very large) Objective $\to \min \mathbb{Z} C \sum \xi_i$ or choose w, b, s.t. ξ_i is small!

Quick Question!

What is the equivalent of hard margin?

• a) $\mathbf{C} \to 0$

Quick Question!

What is the equivalent of hard margin?

- a) $\mathbf{C} \to 0$
- b) $C \to \infty$

Quick Question!

What is the equivalent of hard margin?

- a) $\mathbf{C} \to 0$
- b) $C \to \infty$

Quick Question!

What is the equivalent of hard margin?

- a) $\mathbf{C} \to 0$
- b) $C \to \infty$

Answer: b) $C \to \infty$ - No violations allowed!

Quick Question!

For a support vector with slack variable $\xi_i=1.5$, this point is:

• a) On the margin boundary

Quick Question!

For a support vector with slack variable $\xi_i = 1.5$, this point is:

- a) On the margin boundary
- · b) Correctly classified but within margin

Quick Question!

For a support vector with slack variable $\xi_i=1.5$, this point is:

- a) On the margin boundary
- b) Correctly classified but within margin
- · c) Misclassified

Quick Question!

For a support vector with slack variable $\xi_i = 1.5$, this point is:

- a) On the margin boundary
- b) Correctly classified but within margin
- c) Misclassified
- d) Outside both margins

Quick Question!

For a support vector with slack variable $\xi_i = 1.5$, this point is:

- a) On the margin boundary
- b) Correctly classified but within margin
- c) Misclassified
- d) Outside both margins

Quick Question!

For a support vector with slack variable $\xi_i = 1.5$, this point is:

- a) On the margin boundary
- · b) Correctly classified but within margin
- · c) Misclassified
- d) Outside both margins

Answer: c) Misclassified - since $\xi_i > 1!$

Soft-Margin SVM

Types of support vectors:

• Zone 2: $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$

∴ As C increases, # support vectors decreases

Notebook: SVM-soft-margin

Soft-Margin SVM

Types of support vectors:

- Zone 2: $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$
- Zone 3: $0 < \xi_i < 1$ (correctly classified)

∴ As C increases, # support vectors decreases

Notebook: SVM-soft-margin

Soft-Margin SVM

Types of support vectors:

- Zone 2: $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$
- Zone 3: $0 < \xi_i < 1$ (correctly classified)
- Zone 4: $\xi_i > 1$ (Misclassified)

.: As C increases, # support vectors decreases

Notebook: SVM-soft-margin

SVM Formulation in the Loss + Penalty Form

Objective:

$$\text{minimize } \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{N} \xi_i$$

Now:

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1 - \xi_i$$

 $\xi_i \ge 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b)$

But $\xi_i \geq 0$

$$\therefore \xi_i = \max \left[0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + \mathbf{b})\right]$$

Quick Question!

The hinge loss function $\max[0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b)]$ is:

• a) Convex and differentiable everywhere

Quick Question!

- a) Convex and differentiable everywhere
- b) Convex but not differentiable at one point

Quick Question!

- a) Convex and differentiable everywhere
- b) Convex but not differentiable at one point
- · c) Non-convex but differentiable

Quick Question!

- a) Convex and differentiable everywhere
- b) Convex but not differentiable at one point
- c) Non-convex but differentiable
- d) Neither convex nor differentiable

Quick Question!

- a) Convex and differentiable everywhere
- b) Convex but not differentiable at one point
- c) Non-convex but differentiable
- d) Neither convex nor differentiable

Quick Question!

The hinge loss function $\max[0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b)]$ is:

- a) Convex and differentiable everywhere
- b) Convex but not differentiable at one point
- · c) Non-convex but differentiable
- d) Neither convex nor differentiable

Answer: b) Convex but not differentiable at $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1!$

SVM Formulation in the Loss + Penalty Form

... Objective is:

$$\min \operatorname{riminize} C \sum_{i=1}^{N} \left\| \mathbf{w} \right\|^{2}$$

$$\Rightarrow \min \operatorname{riminize} C \sum_{i=1}^{N} \max \left[0, 1 - y_{i}(\mathbf{w} \cdot \mathbf{x}_{i} + b) \right] + \frac{1}{2} \|\mathbf{w}\|^{2}$$

$$\Rightarrow \min \operatorname{riminize} \sum_{i=1}^{N} \max \left[0, 1 - y_{i}(\mathbf{w} \cdot \mathbf{x}_{i} + b) \right] + \underbrace{\frac{1}{2C} \|\mathbf{w}\|^{2}}_{\text{Regularisation}}$$

HINGE LOSS

Loss Function for Sum (Hinge Loss)

```
Loss function is \sum_{i=1}^{N} \max [0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b)]
```

• Case I $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$ Lies on Margin: $Loss_i = 0$

Loss Function for Sum (Hinge Loss)

Loss function is
$$\sum_{i=1}^{N} \max [0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b)]$$

- Case I $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$ Lies on Margin: $Loss_i = 0$
- Case II $y_i(\mathbf{w} \cdot \mathbf{x}_i + \mathbf{b}) > 1$ $Loss_i = 0$

Loss Function for Sum (Hinge Loss)

Loss function is
$$\sum_{i=1}^{N} \max [0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b)]$$

- Case I $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$ Lies on Margin: $Loss_i = 0$
- Case II $y_i(\mathbf{w} \cdot \mathbf{x}_i + \mathbf{b}) > 1$ $Loss_i = 0$
- Case III $y_i(\mathbf{w} \cdot \mathbf{x}_i + \mathbf{b}) < 1$ $Loss_i \neq 0$

Hinge Loss Continued

Q) Is hinge loss convex and differentiable?

Convex: ✓

Differentiable: X

Subgradient: ✓

SVM Loss is Convex

Hinge Loss $\sum (\max[0, (1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b))]$ is convex

Penalty $\frac{1}{2}\|\mathbf{w}\|^2$ is convex

.: SVM loss is convex