PROJECT REPORT

IOT BASED SMART CROP PROTECTION SYSTEM FOR AGRICULTURE

PROJECT TITLE	IoT Based Smart Crop Protection System		
	for Agriculture		
TEAM ID	PNT2022TMID21685		
TEAM MEMBERS	Rahul Raj		
	Kanuparthi Saranya		
	D.Manoranjani		
	Kasireddy Prakash		
	D.N.Karthikeyan		
BRANCH	Computer Science		
	and Engineering		

1. INTRODUCTION

- 1. Project Overview
- 2. Purpose

2. LITERATURE SURVEY

- **1.** Existing problem
- 2. References
- 3. Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- **1.** Empathy Map Canvas
- 2. Ideation & Brainstorming
- 3. Proposed Solution
- 4. Problem Solution fit

4. REQUIREMENT ANALYSIS

- **1.** Functional requirement
- **2.** Non-Functional requirements

5. PROJECT DESIGN

- 1. Data Flow Diagrams
- 2. Solution & Technical Architecture
- 3. User Stories

6. PROJECT PLANNING & SCHEDULING

- **1.** Sprint Planning & Estimation
- 2. Sprint Delivery Schedule
- **3.** Reports from JIRA
- 7. **CODING & SOLUTIONING** (Explain the features added in the project along with code)
 - **1.** Feature 1
 - 2. Feature 2
 - 3. Database Schema (if Applicable)

8. TESTING

- 1. Test Cases
- **<u>2.</u>** User Acceptance Testing

9. RESULTS

1. Performance Metrics

10.ADVANTAGES & DISADVANTAGES

- 11. CONCLUSION
- 12. FUTURE SCOPE

13.APPENDIX

Source Code

GitHub & Project Demo Link

1.INTRODUCTION:

PROJECT OVERVIEW:

The problem of crop vandalization by wild animals has become a major social problem. Crops in farms are frequently devastated by local animals such as buffaloes, cows, goats, birds, and so on. Various types of species such as birds and animals come to the cultivation field according to the crop that is being cultivated and also according to the season of cultivation. Some wild animals enter the field during night times when the field is near a forest region or when the farm cultivates some fruits and other crops that attract animals. This results massive losses for the farmer.

However, according to nature's rules, every living creature on this planet plays an important role in the eco-system. Elephants and other animals that come into touch with humans have a negative impact in a variety of ways, including agricultural depredation, damage to grain stores, water supply, dwellings and other assets, and human injury and death.

PURPOSE:

The main objective of this project was to design a small scale irrigated system that would use water in more well-organized way in order to prevent excess water loss and minimize the cost of labor. The following aspects were considered in the choice of design solution - Installation cost, Water saving, Human intervention, Reliability, Power consumption, Maintenance, Expandability A critical Consideration in the segment costs, since cost define the viability and feasibility of a project.

Before Electric fences were used to control livestock in the United States in the early 1930s, and electric fencing technology developed in both the United States and New Zealand. An early application of the electric fence for livestock control was developed in 1936–1937 by New Zealand inventor Bill Gallagher. One of the major disadvantages of having an electric fence installed is that it requires regular maintenance. Scarecrow:

Scarecrow genealogy is rooted in a rural life style. The Egyptians used the first scarecrows in recorded history to use to protect wheat fields along the Nile River fromflocks of quail. Egyptian farmers installed wooden frames in their fields and covered them with nets. While traditional, motionless scarecrows do work against "pest birds" (e.g., crows and blackbirds), the effect is almost always temporary. Over time, the birdsget used to stationary dummies and resume their destructive habits.

<u>2.</u>

LITERATURE SURVEY:

AUTHOR NAME	YEAR	TOPIC
Artur Frankiewicz;	2013 IECON 2013-39 th	Smart passive infrared
RafalCupek	annual conference of the	sensor-Hardware
1	IEEE industrial electronics	platform
	society pages:7543-	
	7547	
Discant, A. Rogozan,	2007-30th International	Sensors for
C. Rusuand A.	SpringSeminar on	Obstacle Detection
Bensrhair	Electronics Technology	
	(ISSE), Cluj- Napoca, 2007,	
	pp. 100-105. doi:	
	10.1109/ISSE.2007.4432828	
	Volume:01 Pages:859-862,	
	DOI:10.1109/ICCSNT.2015.749	
	0876,	
	IEEE Conference Publications.	
Mustapha, Baharuddin,	Artificial Intelligence,	Ultrasonic And
AladinZayegh, and	Modelling and Simulation	Infrared Sensors
Rezaul K. Begg.	(AIMS), 2013 1st	Performance in A
	International Conference on.	Wireless
	IEEE, 2013	Obstacle
		Detection
		System
Padmashree S.	International Journal of	Embedded
Dhake, Sumedha	Advanced Technology in	Surveillance System
S. Borde	Engineering and Science,	Using PIR Sensor
	www.ijates.com_Volume	
	No.02, Issue No. 03, March	
	2014.	
DR. R. Bulli Babu,	India Global Journal of	GSM based Agriculture
CH. JonathanSoumith,	Computer Science and	Monitoring and
T. Cherishma Sri	Technology: A Hardware &	Controlling System
Lakshmi & R. Keshav	Computation Volume 15 Issue	
Rao	2 Version 1.0 Year 2015	
Kluniversity	Туре	
Dugyala Karthik,	International Journal of	Smart Crop Protection
R.Ramesh Babu	Advanced Information Science	System with Image
	and Technology (IJAIST),	Captureover IOT
	ISSN:	

2319:2682 Vol.6, No.11,	
November 2017	

EXISTING PROBLEM:

Farmers use a variety of conventional techniques, such as scarecrows, electric fences, etc. In some places, farmers burn elephant dung or other items that produce thick smoke to keep their farmland from being destroyed. However, they are not very good at keeping animals away from farms. Consequently, we created this affordable system to surveillance and to protect the farm effectively.

1.IOT Based Smart Agriculture System:

In today materialistic society, smart agriculture systems are a hot topic. This essay explains the idea of showcasing and maintaining an online agribusiness platform. The most crucial aspect of human life is agriculture, which may be improved utilizing IoT technology. IoT technology makes it possible to increase the effectiveness of agricultural automation systems. Smart agriculture system that makes use of the benefits of cutting-edge technology like Wireless Sensor Network and Arduino. The construction of a system that can track temperature, humidity, moisture, and even the movement of animals that can destroy crops in agricultural fields using sensors and an Arduino board is a feature of this study. The device has the

potential to be helpful in water-scarce, remote places thanks to its low cost and energy independence.

ADVANTAGES:

- Efficiency, Expansion, Reduced resources.
- Clean process, Agility, Improved product quality.

2. Smart Crop protection system from living objects and fireusing Arduino:

Farmers can no longer block entire fields or prepare a field for 24 hours of protection. Therefore, we are presenting this computerised crop safety system against fire and animals. This is a microcontroller- based device that is mostly based on the Arduino Uno. This method uses a motion sensor to find animals approaching the sphere and a smoke sensor to find the hearth. The sensor informs the microcontroller to take action in such a situation. The microcontroller now sounds an alert to further entice the animals away from the area while also calling the farmer and sending an SMS so that he can

understandthe situation and visit the scene in case the animals don't go despite the noise. If smoke is detected, it quickly turns the motor ON.

3. Development of IOT based Smart Security and Monitoring Devices for Agriculture:

Since agriculture is the foundation of the Indian economy, it demands protection. Agriculture products need protection and safety at a very early stage, such as protection from rodent or insect attacks in fields or grain storage, and security is no longer just a matter of sources. Even so, these difficulties should be taken into account. Today's security systems don't seem to be intelligent enough to send out real-time notifications when they detect a problem. Agriculture can become more modernised by combining traditional methods with current technologies like wireless sensor networks and the internet of things. With this situation in mind, we developed, tested, and examined a "Internet of Things"-based device that can analyse the sensed data before transferring it to the user. This study aims to improve ways for resolving issues such rodent identification, crop hazards, and turning in real-time notifications backed records evaluation and processing in addition to human intervention. The sensors and digital units used in this gadget are integrated using Python program. With support from attempted test cases, we were successfulin 84.8% of test cases.

REFERENCE:

- 1. Damini Kalra, Praveen Kumar, K. Singh, Apurva Soni "Sensor Based Crop Protection System with IoT monitored Automatic Irrigation" 2nd International conference on Advances in Computing, Communication Control and Networking, 2020.
- 2. Padmashree S. Dhake, Sumedha S. Borde, "Embedded Surveillance System UsingPIR Sensor", International Journal of Advanced Technology in Engineering and Science, www.ijates.com Volume No.02, Issue No. 03, March 2014
- 3. Wang, Z., Wang, H., Liu, L., Song, W., & Lu, J. (2015, December). Community alarm system design based on MCU and GSM. In 2015 4th International Conference on Computer Science and Network Technology (ICCSNT) (Vol. 1, pp. 859-862). IEEE.
- 4. Shende, P. Y., Raut, S. M., Ingale, P. S., Nagose, A. K., Katakpur, P. S., & Kathane,
 - S. S. Solar Electric Fencing for Irrigation of Animal Man Conflict
- 5.Mohammad, T. (2009). Using ultrasonic and infrared sensors for distance measurement. World Academy of Science, Engineering and Technology, 51, 293-299
- 6.Volume:01 Pages:859-862, DOI:10.1109/ICCSNT.2015.7490876, IEEE Conference Publications.
- 7.T. Day and R. Mac Gibbon, "Multiple-Species Exclusion Fencing and Technology for Mainland Sites.",

Project Report published by National Wildlife Research Centre, 2007.

8. R. Padula and W. Head, "Fencing System" Project Report published by University of Minnesota, 2003.

PROBLEM STATEMENT DEFINITION:

Crops in farms are many times ravaged by local animals like buffaloes, cows, goats, birds etc. This leads to huge losses for the farmer. Due to over population, it occurs a deforestation this results in shortage of food, water and shelter in forest areas.

So, to avoid this we proposed Smart crop protection system from animals. This is a system which uses a motion sensor to detect wild animals approaching near the field. Here the sensor signals the microcontroller to take action. The microcontroller triggers an alarm in the field by detecting the presence of animals so that farmer may know about the issue and come to the spot.

Problem	I am	I'm trying to	Because	Which makesmefeel
Statement (PS)	(Cus			
	tom			
	er)			
PS-1	Cost	To create an	Involv	Instead of using general
Develop a system	effective,	app- based	esmore	recommendations, forecast
for predicting	small size	forecastin g	require	the cotton crop yield
cotton crop		system that	ments	production for farmers in
production and		canforecast		the Vidarbha region using
probable pest,		potential pest,		farm historical data, local
disease and insect		disease,and		terrain, weather scenarios,
attacks		insect attacks		and numerous sensor inputs
(before atleas t 15		on cotton		
days and more).		crops.		
(Technology				
Bucket: Satellite				
images, Cloud				
computing.				
BigData ,In-field				
sensor data, drone				
imagery, and other				
Iot data.				

PS-2	Eco-	1.Identify and	Coverag	Crop protection needs
	friendly,c	evaluate risk	e area is	particularly cautious
	ustomer	possessed by	larger	approach
	satisfactio	wild and		
	n	domestic		
		animals.		
Wild animals like		2. Monitor and		
elephant, wild		document		
pigs, deer, wild		animal activity		
dogs ,bison may		on the farm.		
enter into the field		3.Conduct field		
which in turn		assessment		
destroy the field		before harvest		
which in turn				
destroy the crop				
and reduce the				
farming.				

3. <u>IDEATION AND PREPOSED SOLUTION</u>

EMPATHY MAP CANVAS:

IDEATION AND BRAINSTROMING:

PRIORITIZATION:

Proposed Solution:

Project team shall fill the following information in proposed solution template.

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	Usually crops in the fields are protected against birds and other unknown disturbances by humans. This take an enormous amount of time. Creating a smart automatic system will benefit the farmers in many different ways.
2.	Idea / Solution description	Smart Farming has enabled farmers to reduce waste and enhance productivity with the help of sensors (light, humidity, temperature, soil moisture, etc) . Further with the help of these sensors, farmers can monitor the field conditions from anywhere.
3.	Novelty / Uniqueness	Role of SENSORS: IOT smart agriculture products are designed to help monitor crop fields using sensors and by automating irrigation systems. As a result, farmers and associated brands can easily monitor the field conditions from anywhere without any hassle.
4.	Social Impact / Customer Satisfaction	Water conservation. Saves lot of time. Increased quality of production. Real time data and production insight. Remote monitoring.
5.	Business Model (Revenue Model)	24.3 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
6.	Scalability of the Solution	Scalability in smart farming refers to the adaptability of a system to increase the capacity, the number of technology devices such as sensors and fluctuators.

PROBLEM SOLUTION FIT:

4. REQUIREMENT ANALYSIS

FUNCTIONAL REQUIREMENTS:

Performance Analysis:

- 1. Response
 - 90% for user interactions ,
 - response time < 2secs,
 - timeout message should be shown after 15secs

Functional Requirements:

- 1.Size =small and compact
- 2.Cost= should be of reasonable cost

Non-FunctionalRequirements:

- 1.Security
- 2. Maintainability

Business Requirements

To Submit the water availability

To submit the fodder and cattle details

NON-FUNCTIONAL REQUIREMENTS:

the non-functional requirements of the proposed solution.

FR No	Non-	Description
	Functional	
	Requiremen	
	t	
NFR-1	Usability	Mobile support. Users must be able to interact
		in the same roles & tasks on computers &
		mobile devices where practical, given mobile
		capabilities.
NFR-2	Security	Data requires secure access to must register
		and communicate securely on devices and
		authorized users of the system who exchange
		information must be able to do.
NFR-3	Reliability	It has a capacity to recognize the disturbance
		Near the field and doesn't give a false caution
		signal.
NIED 4	D. C	
NFR-4	Performance	Must provide acceptable response times to
		users regardless of the volume of data that is
		stored and the analytics that occurs in
		background.
		Bidirectional, near real-time communications
		must be supported. This requirement is related
		to the
		requirement to support industrial and device
NED 5	A '1 1 '1'	protocols at the edge.
NFR-5	Availability	IoT solutions and domains demand highly
		available systems for 24x7 operations. Isn't a
		critical production application, which means
		that operations or production don't go down if
NED 6	C1-1-1114	the IoT solution is down.
NFR-6	Scalability	System must handle expanding load and data
		retention needs that are based on the upscaling
		of the solution scope, such as extra
		manufacturing facilities and extra buildings.

5. PROJECT DESIGN

Data Flow Diagrams:

Solution & Technical Architecture:

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goals are to:

- Find the best tech solution to solve existing business problems.
- Describe the structure, characteristics, behavior, and other aspects of the software to project stakeholders.
- Define features, development phases, and solution requirements.
- Provide specifications according to which the solution is defined, managed, and delivered.

Explanation for the Architecture Diagram:

- ❖ The device will detect the animals and birds using the Clarifai service.
- ❖ If any animal or bird is detected the image will be captured and stored in the IBM Cloud object storage.
- ❖ It also generates an alarm and avoid animals from destroying the crop.
- ❖ It also generates an alarm and avoid animals from destroying the crop.
- ❖ The image URL will be stored in the IBM Cloudant DB service.
- ❖ The device will also monitor the soil moisture levels, temperature, and humidity values and send them to the IBM IoT Platform.
- ❖ The image will be retrieved from Object storage and displayed in the web application.
- ❖ A web application is developed to visualize the soil moisture, temperature, and humidity values.
- ❖ Users can also control the motors through web applications.

User Stories:

User type	Functional Requirement	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
User	Data collecting	USN-1	Smart farming based IOT	Sensing of Agriculture data and storing.	High	Sprint-4
		USN-2	As an user, I will inform the farmer to protect the crops.	I can inform the farmer.	Medium	Sprint-2
		USN-3	Extract data from source.	Management of data through expert and investigation method	High	Sprint-2
User 2	Login	USN-4	As an co-user, I can send the alert message to the farmers.	I can alert farmers.	High	Sprint-1
Farmer	Login	USN-5	As a farmer, I will follow the route to the crop which can avoid are detect animal intrusion.	l	High	Sprint-2
Crop Protector		USN-6	A an crop protector.	In can protect the crop.	Medium	Sprint-2
Farmer	Login	USN-7	As a supervisior, I can Supervise the crop an ensure the hygiene proces	I can manage all these sprocess going good.	High	Spirit-1
Crop yielder	Register	USN-8	As a crop yielder,I can yield more crop.	I can register smart crop.	Medium	Spirit-3
Crop Monitor		USN-9	As a crop monitor,I check the quality of IIOTdevice's quality.	I can check the IOT device.	Medium	Spirit-3

CHAPTER – 6

PROJECT PLANNING & SCHEDULING

Sprint Planning & Estimation:

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1		US-1	Create the IBM Cloud services which are being used in this project.	6	High	Arshad Parvez G Lavanya M Kishore Kumar K Mathuprakas R
Sprint-1		US-2	Configure the IBM Cloud services which are being used in completing this project.	4	Medium	Arshad Parvez G Lavanya M Kishore Kumar K Mathuprakas R
Sprint-2		US-3	IBM Watson IoT platform acts as the mediator to connect the web application to IoT devices, so create the IBM Watson IoT platform.	5	Medium	Arshad Parvez G Lavanya M Kishore Kumar K Mathuprakas R
Sprint-2		US-4	In order to connect the IoT device to the IBM cloud, create a device in the IBM Watson IoT platform and get the device credentials.	5	High	Arshad Parvez G Lavanya M Kishore Kumar K Mathuprakas R
Sprint-3		US-1	Configure the connection security and create API keys that are used in the Node-RED service for accessing the IBM IoT Platform.	10	High	Arshad Parvez G Lavanya M Kishore Kumar K Mathuprakas R
Sprint-3		US-2	Create a Node-RED service.	10	High	Arshad Parvez G Lavanya M Kishore Kumar K Mathuprakas R

Sprint-3	US-1	Develop a python script to publish random sensor data such as temperature, moisture, soil and humidity to the IBM IoT platform		High	Arshad Parvez G Lavanya Kishore Kumar K Mathuprakas R
Sprint-3	US-2	After developing python code, commands are received just print the statements which represent the control of the devices.	5	Medium	Arshad Parvez G Lavanya M Kishore Kumar K Mathuprakas R
Sprint-4	US-3	Publish Data to The IBM Cloud	8	High	Arshad Parvez G Lavanya M Kishore Kumar K Mathuprakas R
Sprint-4	US-1	Create Web UI in Node- Red	10	High	Arshad Parvez G Lavanya M Kishore Kumar K Mathuprakas R
Sprint-4	US-2	Configure the Node-RED flow to receive data from the IBM IoT platform and also use Cloudant DB nodes to store the received sensor data in the cloudant DB	10	High	Arshad Parvez G Lavanya M Kishore Kumar K Mathuprakas R

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Sprint Delivery Schedule:

TITLE	DESCRIPTION	DATE
Literature Survey on The Selected Project and Information Gathering	A Literature Survey is a compilat ion summary of research done previously in the given topic. Literature survey can be taken from books, research paper online or from any source.	19 September 2022
Prepare Empathy Map	Empathy Map is a visualization tool which can be used to get a better insight of the customer	19 September 2022
Ideation-Brainstorming	Brainstorming is a group problem solving session where ideas are shared, discussed and organized among the team members.	19 September 2022
Define Problem Statement	A Problem Statement is a concise description of the problem or issues a project seeks to address. The problem statement identifies the current state, the desired future state and any gaps between the two.	19 September 2022
Problem Solution Fit	This helps us to understand the thoughts of the customer their likes, behaviour, emotions etc.	12 October 2022
Proposed Solution	Proposed solution shows the current solution and it helps is going towards the desired result until it is achieved.	12 October 2022
Solution Architecture	Solution Architecture is a very complex process I.e it has a lot of sub-processes and branches. It helps in understanding the components and features to complete our project.	12 October 2022
Customer Journey	It helps us to analyse from the perspective of a customer, who uses our project.	15 October 2022
Functional Requirement	Here functional and nonfunctio na l requirements are briefed. It has specific features like usability, security, reliabil it y, performance, availability and scalability.	15 October 2022
Data Flow Diagrams	Data Flow Diagram is a graphical or visual representation using a standardized set of symbols and notations to describe a business's operations through data movement.	15 October 2022

Technology Architecture	Technology Architecture is a more well defined version of solution architecture. It helps us analyze and understand various technologies that needs to be impleme nted in the project.	15 October 2022
Prepare Milestone & Activity List	It helps us to understand and evaluate our own progress and accuracy so far.	29 October 2022
Spring Delivery Plan	Sprint planning is an event in scrum that kicks off the sprint. The purpose of sprint planning is to define what can be delivered in the sprint and how that work will be achieved.	In Progress

CHAPTER -7

CODING & SOLUTIONING

Feature 1:

Coding for Animals or pests enter into the field from pygame

```
import mixer
class SoundPlayer:
   def init (self, sound_file):
   mixer.init(44100, -16, 2, 2048)
   self.sound = mixer.Sound(sound_file)
   def play(self): self.sound.pla y()
   import time
    class FPS:
   def init
   (self):
       self.frame\_count = 0
       self.elapsed\_time = 0
       def start(self):
       self.start_time = time.time() def stop(self):
       self.stop time
                         = time.time()
       self.frame_count += 1
       self.elapsed_time += (self.stop_time-self.start_time)
        def count(self):
return
   self.frame_count
   def elapsed(self):
return
   self.elapsed_time def fps(self):
   if
   self.elapsed_time==0:
return 0
else:
   return
self.frame_count/self.elapsed_time
```

Feature 2: coding for moisture level checking

Feature 3: Detect The PH Level of Crops

```
import io # used to create file streams
import fcntl # used to access I2C parameters like addresses
import time # used for sleep delay and timestamps class Ezo:
long\_timeout = 1.5
# the timeout needed to query readings and #calibrations short_timeout = .5
# timeout for regular commands default_bus = 1
# the default bus for I2C on the newer Raspberry Pis,
# certain older boards use bus 0 default address = 99
# the default address for the pH sensor
def init (self, address=default_address, bus=default_bus):
# open two file streams, one for reading and one for writing
# the specific I2C channel is selected with bus
# it is usually 1, except for older revisions where its 0
# wb and rb indicate binary read and write self.file read = io.open("/dev/i2c-" + str(bus),
"rb", buffering=0) self.file_write = io.open("/dev/i2c-" + str(bus), "wb", buffering=0)
# initializes I2C to either a user specified or default address self.set_i2c_address(address)
def set i2c address(self, addr):
# set the I2C communications to the slave specified by the address
# The commands for I2C dev using the ioctl functions are specified in
# the i2c-dev.h file from i2c-tools I2C_SLAVE = 0x703
```

```
fcntl.ioctl(self.file_read, I2C_SLAVE, addr) fcntl.ioctl(self.file_write, I2C_SLAVE, addr)
def write(self, string):
# appends the null character and sends the string over I2C string += "\00"
self.file_write.write(bytes(string, 'UTF-8'))
def read(self, num_of_bytes=31):
# reads a specified number of bytes from I2C,
# then parses and displays the result res = self.file_read.read(num_of_bytes)
# read from the board
# remove the null characters to get the response response = [x for x in res if x != '\x00'] if
response[0] == 1:
# if the response isnt an error
# change MSB to 0 for all received characters except the first
# and get a list of characters
char_list = [chr(x \& \sim 0x80) \text{ for } x \text{ in } list(response[1:])]
# NOTE: having to change the MSB to 0 is a glitch in the
# raspberry pi, and you shouldn't have to do this!
# convert the char list to a string and returns it
#return "Command succeeded " +
return".join(char_list)
else:
  return "Error " + str(response[0])
def query(self, string):
# write a command to the board, wait the correct timeout,
# and read the response self.write(string)
```

```
# the read and calibration commands require a longer timeout
if((string.upper().startswith("R"))
or
    (string.upper().startswith("CAL"))):
time.sleep(self.long_timeout)
elif((string.upper().startswith("SLEEP"))):
return
   "sleep mode"
else:
time.sleep(self.short_timeout)
return self.read() def close(self):
self.file_read.close()
self.file_write.close()
#ph = Ezo()
#phvalue = ph.query('R')
#ph1 = str(phvalue)
#ph2 = round(phvalue)
#print (ph.query('R'))
#print (round(ph.query('R'),2))
```

8. **TESTING:**

TEST CASES:

sno	parameter	Values	Screenshot
1	Model summary	-	
2	accuracy	Training	
		accuracy-	
		95%	
		Validation	
		accuracy-	
		72%	
3	Confidence score	Class	
		detected-	
		80%	
		Confidence	
		score-80%	

USER ACCEPTANCE TESTING:


```
node-red
                                  [info] Node-RED version: v3.0.2

[info] Node.js version: v18.12.0

[info] Mindows.NT 10.0.19044 x64 LE

[info] Loading palette nodes

[info] Settings file : C:\Users\ELCOT\.node-red\settings.js

[info] Context store : 'default' [module-memory]

[info] User directory : \Users\ELCOT\.node-red

[warn] Projects disabled : editorTheme.projects.enabled-false

[info] Flows file : \Users\ELCOT\.node-red\flows.json

[info] Creating new flow file
   Nov 18:48:85 -
  Nov 18:48:85
  Nov 18:48:05
   Nov 18:48:26
  Nov 18:48:44
  Nov 18:48:45
Nov 18:48:45
  Nov 18:48:45
  Nov 18:48:45
   Nov 18:48:45
  Nov 18:48:45
Your flow credentials file is encrypted using a system-generated key.
If the system-generated key is lost for any reason, your credentials 
file will not be recoverable, you will have to delete it and re-enter 
your credentials.
You should set your own key using the 'credentialSecret' option in
your settings file. Node-REO will then re-encrypt your credentials
 ile using your chosen key the next time you deploy a change.
                                  [warn] Encrypted credentials not found
[info] Starting flows
[info] Started flows
[info] Server now running at http://127.8.8.1:1888/
  Nov 18:48:45 -
  Nov 18:48:45 -
   Nov 18:48:46
   Nov 18:48:46
```

9. **RESULTS:**

Crop vandalism caused by wild animals and fire is currently a significant social issue.

Given that there is currently no working remedy for this issue, it needs urgent attention. As a result, this project has significant social significance because it seeks to solve this issue. This project will assist farmers in safeguarding their orchards and fields, save them from suffering major financial losses, and spare them from making futile efforts to safeguard their fields. They will also benefit from higher crop yields, which will improve their economic situation.

10.ADVANTAGES & DISADVANTAGES:

ADVANTAGE:

The main benefit is that it keeps animals away from the crops on farmland. The ultrasonic sensor primarily picks up on temperature, humidity, and soil moisture. It also picks up on birds entering fields. This technology will constantly monitor the field's soil properties.

DISADVANTAGE:

controlled access to food. If you are cultivating the crops and breeding them to be more resilient, you have a better chance of avoiding droughts or floods. It enables farmers to increase yields while utilising the least amount of water and fertiliser.

11. CONCLUSION:

In India's rural areas, farmers face serious dangers like animal and bird damage. Therefore, in order to solve this problem, a system that plays frightening noises to make animals and birds flee automatically was created. As a result, the developed system is cost-effective and beneficial to farmers. The system is safe for people and animals to use, and also safeguards farmland.

12.FUTURE SCOPE:

The application of this system will have a broad range in the future. Information is collected using IR and ultrasonic sensors, which are then communicated over GSM. Wi-Fi sensor networks further improve this idea. The kind of sensors that can measure the soil's moisture content, a crop's growth, and its nutritional value. These sensors collect information that helps farmers and allow them to monitor farmland from anywhere in the world.

13.APPENDIX:

SOURCE CODE:

'interval'") interval = cmd.data['interval']elif

cmd.command == "print":

if 'message' not in cmd.data:

import time importsys import ibmiotf.application # toinstallpipinstall ibmiotf importibmiotf.device

Provide your IBM Watson Device Credentials organization = "8gyz7t" # replace the ORG ID deviceType = "weather_monitor" #replace the Device type deviceId = "b827ebd607b5" # replace Device ID authMethod = "token" authToken = "LWVpQPaVQ166HWN48f" # Replace the authtoken def myCommandCallback(cmd): # function for Callbackif cm.data['command'] == 'motoron': print("MOTOR ON IS RECEIVED") elif cmd.data['command'] == 'motoroff':print("MOTOR OFF IS RECEIVED")if cmd.command == "setInterval": else: if 'interval' not in cmd.data: print("Error - command is missing requiredinformation:

print("Error - commandis missing requiredinformation: 'message'")else:output =
cmd.data['message']

pri	nt(output)
try	:
	<pre>deviceOptions = {"org": organization, "type": deviceType, "id":</pre>
	deviceId,"authmethod":authMethod, "auth-token": authToken} deviceCli
	= ibmiotf.device.Client(deviceOptions)#
	exceptException as e:
	print("Caught exception connecting device: %s" % str(e))sys.exit()
	# Connect and send a datapoint "hello" with value "world" into the cloud as an event oftype
	"greeting" 10 times deviceCli.connect()
	while True:
	deviceCli.commandCallback = myCommandCallback
	# Disconnect the device and application from the cloud deviceCli.disconnect()

SENSOR.PY

import time import

sysimport

ibmiotf.application

importibmiotf.device

```
import random
# Provide your IBM Watson Device Credentials organization = "8gyz7t" # replace the ORG
ID deviceType = "weather_monitor" #replace the Device type deviceId = "b827ebd607b5" #
replace Device ID authMethod = "token" authToken = "LWVpQPaVQ166HWN48f" #
Replace the authtoken
def myCommandCallback(cmd):
print("Command received: %s" % cmd.data['command'])print(cmd)
try:
deviceOptions = { "org": organization, "type": deviceType, "id": deviceId,
"auth-method": authMethod, "auth-token": authToken}deviceCli =
ibmiotf.device.Client(deviceOptions)#....
exceptException as e:
print("Caught exception connecting device: %s" % str(e))sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an event oftype
"greeting" 10 times deviceCli.connect()
```

while True:
temp=random.randint
(0,100)
pulse=random.randint(0,100) soil=random.randint(0,100)

```
data = { 'temp' : temp, 'pulse': pulse ,'soil':soil}#print
data
                                                 de
fmyOnPublishCallback():
print ("Published Temperature = %s C" % temp, "Humidity = %s %%" %pulse, "Soil
Moisture = %s %%" % soil, "to IBM Watson")
success = deviceCli.publishEvent("IoTSensor", "json", data,
qos=0,on_publish=myOnPublishCallback)
                                                                                if
not success: print("Not connected to
IoTF")time.sleep(1)
deviceCli.commandCallback = myCommandCallback
# Disconnect the device and application from the cloud deviceCli.disconnect()
Node-RED FLOW:
"type":"ibmiotout", "z":"630c8601c5ac3295","eventCommandType":"data",
"format": "json", "data": "data", "qos":0, "name": "IBM IoT",
```

```
"service":"registered","x":680, "y":220,

"wires":[]
},
{
"id":"4cff18c3274cccc4","type":"ui_button","z":"630c8601c5ac3295",

"name":"",

"group":"716e956.00eed6c","o

rder":2,
```

```
"width":"0",
"height":"0",
"passthru":false,
"label": "MotorON",
"tooltip":"",
"color":"",
"bgcolor":"",
"className":"",
"icon":"",
"payload":"{\"command\":\"motoron\"}","payloadType":"str",
"topic":"motoron",
"topicType":"str","x":360,
"y":160, "wires":[["625574ead9839b34"]]},
"type":"ui_button",
"z":"630c8601c5ac3295","name":"",
"group":"716e956.00eed6c","order":3,
"width":"0",
"height":"0", "passthru":true,
"label":"MotorOFF", "tooltip":"",
"color":"",
"bgcolor":"",
"className":"",
"icon":"",
"payload":"{\"command\":\"motoroff\"}","payloadType":"str",
"topic": "motoroff",
"topicType":"str","x":350,
```

"y":220, "wires":[["625574ead9839b34"]]},

```
"name":"weather_monitor","keepalive":"60","serverName":"",
"cleansession":true, "appId":"",
"shared":false},
{"id":"716e956.00eed6c",
"type":"ui_group",
"name": "Form",
"tab":"7e62365e.b7e6b8","order":1,
"disp":true,
"width":"6", "collapse":false},
{"id":"7e62365e.b7e6b8",
"type":"ui_tab",
"name":"contorl", "icon":"dashboard", "order":
1, "disabled":false,
"hidden":false}
]
"type":"ibmiotin","z":"03acb6ae05a0c712",
"inputType":"evt", "logicalInterface":"", "ruleId":"",
"deviceId": "b827ebd607b5", "applicationId": "",
"deviceType":"weather_monitor",
```

```
"eventType":"+",
"commandType":"",
"format": "json",
"name":"IBMIoT", "service":"registered", "allDevices":"",
"allApplications":"", "allDeviceTypes":"",
"allLogicalInterfaces":"", "allEvents":true, "allCommands":"", "allFormats
"qos":0,
"x":270,
"y":180,
"wires":[["50b13e02170d73fc","d7da6c2f5302ffaf","a949797028158f3f","a71f164bc3
78bcf1"]]
},
"type":"function",
"z":"03acb6ae05a0c712","name":"Soil
Moisture",
"func": "msg.payload = msg.payload.soil; \nglobal.set('s', msg.payload); \nreturn
msg;", "outputs":1, "noerr":
0,
"initialize":"",
"finalize":"",
"libs":[],
"x":490,
"y":120,
"wires":[["a949797028158f3f","ba98e701f55f04fe"]]
},
```

```
"name":"Humidity",
"func":"msg.payload =
msg.payload.pulse;\nglobal.set('p',msg.payload)\nreturn msg;", "outputs":1,
"noerr":
0.
"initialize":"",
"finalize"
"libs":[
],
"x
":
48
0,
"y":260, "wires":[["a949797028158f3f","70a5b076eeb80b70"]]
},
{ "id": "a949797028158f3f",
"type": "debug",
"z":"03acb6ae05a0c712","name":"IBMo/p", "active":true, "tosidebar":true,
"console":false, "tostatus":false, "complete":"payload", "targetType":"msg",
"statusVal":"",
"statusType":"auto","x
":780, "y":180,
"wires":[]
},
```

```
{
"id":"70a5b076eeb80b70", "type":"ui_gauge", "z":"03acb6ae05a0c712", "name":"",
"group":"f4cb8513b95c98a4", "order":6,
"width":"0",
"height":"0",
"gtype":"gage",
"title": "Humidity",
"label": "Percentage(%)",
"format":"{{value}}
","min":0,
"max":"100", "colors":["#00b500","#e6e600","#ca3838"], "seg1":"", "seg2":"",
"className":"","x"
:86 0, "y":260,
"wires":[]
},
"id":"a71f164bc378bcf1","type":"function","z":"03acb6ae05a0c712",
"name":"Temperature",
"func": "msg.payload=msg.payload.temp;\nglobal.set('t',msg.payload);\nreturn
msg;","outputs":1, "noerr": 0,
"initialize":"",
"finalize"
:"",
"libs":[
],
```

```
"x":
49
0, "y":360,
"wires":[["8e8b63b110c5ec2d","a949797028158f3f"]]
},
"id":"8e8b63b110c5ec2d", "type":"ui_gauge", "z":"03acb6ae05a0c712", "name":"",
"group":"f4cb8513b95c98a4", "order":11,
"width":"0",
"height":"0",
"gtype": "gage", "title": "Temperature", "label": "DegreeCelcius", "format": "{{value}}",
"min":0,
"max":"100", "colors":["#00b500","#e6e600","#ca3838"],"seg1":"", "seg2":"",
"className
"x":790,
"y":360,
"wires":[]
},
"id":"ba98e701f55f04fe", "type":"ui_gauge", "z":"03acb6ae05a0c712", "name":"",
"group":"f4cb8513b95c98a4", "order":1,
```

```
"width":"0",
"height":"0",
"gtype":"gage",
"title": "Soil Moisture",
"label":"Percentage(%)",
"format":"{{value}}
","min":0,
"max":"100", "colors":["#00b500","#e6e600","#ca3838"],"seg1":"", "seg2":"",
"className
":"",
"x":790,
"y":120,
"wires":[]
},
"id":"a259673baf5f0f98","type":"httpin",
"z":"03acb6ae05a0c712","name":"", "url":"/sensor",
"method": "get", "upload": fals e, "swaggerDoc"
:"","x":370,"y":500,
"wires":[["18a8cdbf7943d27a"]]
 },
"id":"18a8cdbf7943d27a","type":"function","z":"03acb6ae05a0c712",
"name": "httpfunction",
"func": "msg.payload{\"pulse\":global.get('p'), \"temp\":global.get('t'), \"soil\":global.get('t'), \"soil\":global.get(
al.get( 's')};\nreturn msg;",
```

```
"outputs":1,
"noerr":0,
```

"initialize":"",

"finalize":"

","libs

```
]:"
],
"X
":
63
0,
"y":500, "wires":[["5c7996d53a445412"]]
},
{ "id": "5c7996d53a445412",
"type":"httpresponse",
"z":"03acb6ae05a0c712","na
me":"", "statusCode":"",
"headers":
{},
"x":870,
"y":500,
"wires":[]
},
"id":"ef745d48e395ccc0", "type":"ibmiot",
"name":"weather_monitor","keepalive":"60", "serverName":"",
"cleansession":true,"appId":
"", "shared":false},
{
"id":"f4cb8513b95c98a4","type":"ui_group","name":"monitor",
"tab": "1f4cb829.2fdee8", "order": 2,
```

```
"disp":
true, "width":"6",

"collapse":false, "className":""
},
{
```

"id":"1f4cb829.2fdee8",	
"type":"ui_tab",	
"name":"Home",	
"icon":"dashboard","order":3,	"disabled":false, "hidden":false }
GitHub & Project Demo Link	
https://drive.google.com/file/d/1z	fnoiLrGQFc5gkl4Ruko19t3mhN7wpka/view?usp=sharing
IBM-EPBL/IBM-Project-11977-1659364387	

