Computer Communication Networks

TCP Flow Control

Review: TCP basics

- Services offered by TCP
 - use services offered by IP
 - TCP protocol mechanisms
 - to fill the gap
- TCP connection management
 - TCP connection establishment
 - TCP connection release

TCP packet header

TCP flow control

Purpose

- avoid a fast sender to overflow a slow receiver
 - overflow: exceed receiver's available buffer space

Approach

- let the receiver tell
 - how much available space I have
- receiver window size (16-bit) in TCP header
 - advertised window size
 - in bytes!

TCP receiver's view

Sequence space

to be read by

- acknowledgment number
 - the next *continuous* byte to receive from the sender
- receiver window

to receive

available buffer space at receiver

total buffer space (receiver)

application from sender

available buffer space sequence

TCP sender's view

- Sequence space
 - sequence number
 - the first byte in the payload
 - sender window
 - min {receiver window, total buffer space}

Between sender and receiver

- Window control
 - sliding window
 - acknowledgment
 - variable window
 - window size

Window and sequence space

- Window space (16-bit)
 - maximum window size 2¹⁶-1: ∼64K bytes!
 - achievable throughput limit: win/rtt
- Sequence space (32-bit)
 - $-t_1$: time to consume the sequence space
 - t_2 : time a packet can "live" in the network
 - $-t_1 > t_2$: no reuse; $t_1 > 2$ t_2 : always ordered
- Explore further: TCP large window

Summary

- TCP flow control
 - purpose
 - mechanism
 - sliding variable window: seqno, ackno, win
- Explore further
 - TCP large window
 - in tcpdump (or Ethereal/Wireshark)
 - time sip:spt > dip:dpt: P **144**:192 (48) **ack** 321 **win** 16022

Next

• TCP error control