TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – MỨC 9-10 ĐIỂM

<u>DẠNG 1. BẤT P</u>HƯƠNG TRÌNH LOGARIT CHỨA THAM SỐ

Câu 1. (Chuyên Lam Sơn Thanh Hóa 2019) Cho a là số thực dương, $a \ne 1$. Biết bất phương trình $2\log_a x \le x - 1$ nghiệm đúng với mọi x > 0. Số a thuộc tập hợp nào sau đây?

D.
$$(8; +\infty)$$

Lời giải

Chon A

Ta có: với x = 1 thì $2 \log_a 1 = 0 = 1 - 1$

Ta sẽ tìm a để đường thẳng y = x - 1 nhận làm tiếp tuyến của đồ thị hàm số $y = 2 \log_a x$ tại điểm x = 1

Có
$$y' = \frac{2}{x \ln a} \Rightarrow y'(1) = \frac{2}{\ln a}$$

Phương trình tiếp tuyến $y = \frac{2}{\ln a}(x-1)$

Vậy để đường thẳng y = x - 1 nhận làm tiếp tuyến của đồ thị hàm số $y = 2\log_a x$ thì

$$\frac{2}{\ln a} = 1 \Leftrightarrow \ln a = 2 \Leftrightarrow a = e^2$$

Thử lại $a = e^2$ ta sẽ chứng minh $2\log_{e^2} x \le x - 1 \Leftrightarrow \ln x \le x - 1 \\ \Leftrightarrow f(x) = \ln x - x + 1 \le 0 \ \forall x > 0$

Có
$$f'(x) = \frac{1}{x} - 1 = \frac{1 - x}{x} \Rightarrow f'(x) = 0 \Leftrightarrow x = 1$$

Bảng biến thiên

Từ bảng biến thiên suy ra $f(x) \le 0 \Leftrightarrow \ln x \le x - 1 \ \forall x > 0$

Câu 2. (**THPT Cẩm Giàng 2 2019**) Cho a là số nguyên dương lớn nhất thỏa mãn $3\log_3\left(1+\sqrt{a}+\sqrt[3]{a}\right)>2\log_2\sqrt{a}$. Giá trị của $\log_2\left(2017a\right)$ xấp xỉ bằng:

A. 19.

B. 26.

C. 25.

D. 23.

Lời giải

Từ giả thiết $3\log_3\left(1+\sqrt{a}+\sqrt[3]{a}\right) > 2\log_2\sqrt{a}$.

Đặt $\log_2 \sqrt{a} = 3x \Leftrightarrow a = 64^x$.

Ta được bất phương trình: $3\log_3(1+8^x+4^x)>6x \Leftrightarrow 1+8^x+4^x>9^x$.

$$\Leftrightarrow \left(\frac{1}{9}\right)^x + \left(\frac{8}{9}\right)^x + \left(\frac{4}{9}\right)^x > 1.$$

Đặt
$$f(x) = \left(\frac{1}{9}\right)^x + \left(\frac{8}{9}\right)^x + \left(\frac{4}{9}\right)^x$$
.

$$\Rightarrow f'(x) = \left(\frac{1}{9}\right)^x \ln\left(\frac{1}{9}\right) + \left(\frac{8}{9}\right)^x \ln\left(\frac{8}{9}\right) + \left(\frac{4}{9}\right)^x \ln\left(\frac{4}{9}\right) < 0, \ \forall x \in \mathbb{R}.$$

Vậy f(x) là hàm số nghịch biến trên \mathbb{R} . Và ta lại có f(2) = 1.

$$\operatorname{Tr}\left(\frac{1}{9}\right)^{x} + \left(\frac{8}{9}\right)^{x} + \left(\frac{4}{9}\right)^{x} > 1 \Leftrightarrow f(x) > f(2) \Leftrightarrow x < 2.$$

Suy ra $a < 64^2 = 4096$ mà a là số nguyên dương lớn nhất thỏa mãn suy ra a = 4095.

Vậy $\log_2(2017a) = \log_2(2017 \cdot 4095) \approx 22.97764311 \approx 23$.

Câu 3. (Chuyên Hưng Yên 2019) Tìm tất cả các giá trị thực của tham số m để bất phương trình $\log_{0,02} \left(\log_2 \left(3^x + 1\right)\right) > \log_{0,02} m$ có nghiệm với mọi $x \in (-\infty; 0)$

$$\underline{\mathbf{A}}$$
. $m \ge 1$.

B.
$$0 < m < 1$$
.

C.
$$m > 1$$

D.
$$m < 2$$
.

Lời giải

Đk: x ∈ \mathbb{R} ; m > 0.

Ta có:
$$\log_{0.02} (\log_2 (3^x + 1)) > \log_{0.02} m, \forall x \in (-\infty; 0).$$

$$\Leftrightarrow \log_2(3^x + 1) < m, \forall x \in (-\infty; 0).$$

$$\Leftrightarrow 3^x + 1 < 2^m, \forall x \in (-\infty, 0).$$

Xét hàm
$$f(x) = 3^x + 1$$
 trên $(-\infty; 0)$. Ta có $f'(x) = 3^x \cdot \ln 3 > 0, \forall x \in (-\infty; 0)$.

Bảng biến thiên:

Để phương trình có nghiệm với mọi $x \in (-\infty, 0)$ ta phải có $2^m \ge 2 \iff m \ge 1$.

Câu 4. (KTNL GV Thuận Thành 2 Bắc Ninh 2019) Gọi S là tổng tất cả các giá trị nguyên của m để bất phương trình $\ln(7x^2+7) \ge \ln(mx^2+4x+m)$ nghiệm đúng với mọi S thuộc \mathbb{R} . Tính S.

A.
$$S = 14$$
.

B.
$$S = 0$$
.

C.
$$S = 12$$
.

D.
$$S = 35$$
.

Lời giải

Chọn C

Ta có:

$$\ln\left(7x^{2}+7\right) \ge \ln\left(mx^{2}+4x+m\right) \Leftrightarrow \begin{cases} 7x^{2}+7 \ge mx^{2}+4x+m \\ mx^{2}+4x+m>0 \end{cases} \Leftrightarrow \begin{cases} \left(7-m\right)x^{2}-4x+7-m \ge 0 \right. \left(1\right) \\ mx^{2}+4x+m>0 \right. \left(2\right)$$

Bất phương trình đã cho đúng với mọi $x \in \mathbb{R}$ khi và chỉ khi các bất phương trình (1),(2) đúng với mọi

 $x \in \mathbb{R}$.

Xét
$$(7-m)x^2-4x+7-m \ge 0$$
 (1).

+ Khi m = 7 ta có (1) trở thành $-4x \ge 0 \Leftrightarrow x \le 0$. Do đó m = 7 không thỏa mãn.

+ Khi $m \neq 7$ ta có (1) đúng với mọi $x \in \mathbb{R}$

$$\Leftrightarrow \begin{cases} 7 - m > 0 \\ \Delta' \le 0 \end{cases} \Leftrightarrow \begin{cases} m < 7 \\ 4 - (7 - m)^2 \le 0 \end{cases} \Leftrightarrow \begin{cases} m < 7 \\ m \le 5 \lor m \ge 9 \end{cases} \Leftrightarrow m \le 5 \ (*).$$

Xét $mx^2 - 4x + m > 0$ (2).

+ Khi m = 0 ta có (2) trở thành $-4x > 0 \Leftrightarrow x < 0$. Do đó m = 0 không thỏa mãn.

+ Khi $m \neq 0$ ta có (2) đúng với mọi $x \in \mathbb{R}$

$$\Leftrightarrow \begin{cases} m > 0 \\ \Delta' < 0 \end{cases} \Leftrightarrow \begin{cases} m > 0 \\ 4 - m^2 < 0 \end{cases} \Leftrightarrow \begin{cases} m > 0 \\ m < -2 \lor m > 2 \end{cases} \Leftrightarrow m > 2 \ (**).$$

Từ (*) và (**) ta có $2 < m \le 5$. Do $m \in \mathbb{Z}$ nên $m \in \{3; 4; 5\}$. Từ đó S = 3 + 4 + 5 = 12.

Câu 5. (Chuyên Bắc Giang 2019) Có bao nhiều giá trị nguyên dương của m để bất phương trình $\log_2(7x^2+7) \ge \log_2(mx^2+4x+m)$ nghiệm đúng với mọi x.

<u>D</u>. 3

Lời giải

Chọn D

Cách 1:

Bpt:
$$\log_2(7x^2 + 7) \ge \log_2(mx^2 + 4x + m) \Leftrightarrow \begin{cases} 7x^2 + 7 \ge mx^2 + 4x + m \\ mx^2 + 4x + m > 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} f(x) = (m-7)x^2 + 4x + m - 7 \le 0 \\ g(x) = mx^2 + 4x + m > 0 \end{cases}$$

Bpt đã cho nghiệm đúng với mọi $x \in \mathbb{R} \iff \begin{cases} f(x) \le 0, \ \forall x \in \mathbb{R} \\ g(x) > 0, \ \forall x \in \mathbb{R} \end{cases}$

• Trường họp 1: m = 7

$$\begin{cases} f(x) \le 0 \\ g(x) > 0 \end{cases} \Leftrightarrow \begin{cases} 4x \le 0 \\ 7x^2 + 4x + 7 > 0 \end{cases}$$

Vậy $m=7\,$ không thỏa yêu cầu bài toán.

• Trường hợp 2: m = 0

$$\begin{cases} f(x) \le 0 \\ g(x) > 0 \end{cases} \Leftrightarrow \begin{cases} -7x^2 + 4x - 7 \le 0 \\ 4x > 0 \end{cases}$$

Vậy m=0 không thỏa yêu cầu bài toán.

• Trường hợp 3: $m \neq 0$; $m \neq 7$

$$\text{Khi đó: } \begin{cases} f(x) \leq 0, \ \forall x \in \mathbb{R} \\ g(x) > 0, \ \forall x \in \mathbb{R} \end{cases} \Leftrightarrow \begin{cases} a_f < 0 \\ \Delta_f' \leq 0 \\ a_g > 0 \\ \Delta_g' < 0 \end{cases} \Leftrightarrow \begin{cases} m - 7 < 0 \\ 4 - (m - 7)^2 \leq 0 \\ m > 0 \\ 4 - m^2 < 0 \end{cases} \Leftrightarrow \begin{cases} m < 7 \\ m \leq 5 \lor m \geq 9 \\ m > 0 \\ m < -2 \lor m > 2 \end{cases} \Leftrightarrow 2 < m \leq 5$$

Do $m \in \mathbb{Z}$ nên $m \in \{3; 4; 5\}$.

NGUYĒN <mark>BĂO</mark> VƯƠNG - 0946798489

Cách 2:

$$\log_2(7x^2 + 7) \ge \log_2(mx^2 + 4x + m) \Leftrightarrow \begin{cases} 7x^2 + 7 \ge mx^2 + 4x + m \\ mx^2 + 4x + m > 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} (m-7)x^2 + 4x + m - 7 \le 0 \\ mx^2 + 4x + m > 0 \end{cases} \Leftrightarrow \begin{cases} 7x^2 - 4x + 7 \ge m(x^2 + 1) \\ m(x^2 + 1) > -4x \end{cases}$$

$$\Leftrightarrow \begin{cases} \frac{7x^2 - 4x + 7}{x^2 + 1} \ge m \\ m > \frac{-4x}{x^2 + 1} \end{cases} \Leftrightarrow \begin{cases} 7 + \frac{-4x}{x^2 + 1} \ge m \\ m > \frac{-4x}{x^2 + 1} \end{cases} \Leftrightarrow \begin{cases} m - 7 \le \frac{-4x}{x^2 + 1} \\ m > \frac{-4x}{x^2 + 1} \end{cases}$$
 (*)

Xét hàm số $g(x) = \frac{-4x}{x^2 + 1}$ trên \mathbb{R} .

$$g'(x) = \frac{-4(x^2+1)+4x(x^2+1)'}{(x^2+1)^2} = \frac{4x^2-4}{(x^2+1)^2}$$

$$g'(x) = 0 \Leftrightarrow \begin{bmatrix} x = -1 \\ x = 1 \end{bmatrix}$$

Bảng biến thiên

Vậy đk (*)
$$\Leftrightarrow$$

$$\begin{cases} m-7 \le -2 \\ m>2 \end{cases} \Leftrightarrow 2 < m \le 5$$

Do $m \in \mathbb{Z}$ nên $m \in \{3, 4, 5\}$.

Câu 6. (Chuyên Quang Trung Bình Phước 2019) Tìm tất cả các giá trị thực của tham số m để bất phương trình $\log_{\frac{1}{2}}(x-1) > \log_{\frac{1}{2}}(x^3 + x - m)$ có nghiệm.

$$\underline{\mathbf{A}}$$
. $m \leq 2$.

B.
$$m \in \mathbb{R}$$

C.
$$m < 2$$
.

D. Không tồn tại m.

Lời giải

Chọn A

Điều kiện
$$\begin{cases} x > 1 \\ x^3 + x - m > 0 \end{cases}$$

Phương trình tương đương

$$\log_{\frac{1}{2}}(x-1) > \log_{\frac{1}{2}}(x^3 + x - m) \Leftrightarrow x - 1 < x^3 + x - m \Leftrightarrow x^3 + 1 > m$$

Khi đó ta có

$$f(x) = x^3 + 1 > m, (x > 1) \Leftrightarrow m < \min_{(1, +\infty)} f(x)$$

Ta có

$$f'(x) = 3x^2 = 0 \Rightarrow x = 0 \notin (1; +\infty)$$

Bảng biến thiên

X	1 +∞
f'(x)	+
f(x)	2 ────────────────────────────────────

Dưa vào bảng biến thiên và đề bài hỏi "có nghiệm" nên ta chon $m \in \mathbb{R}$.

(THPT Chuyên Thái Bình - 2019) Có tất cả bao nhiều giá trị của tham số m để bất phương Câu 7. trình $\log_2(x^2 + mx + m + 2) \ge \log_2(x^2 + 2)$ nghiệm đúng với mọi $x \in \mathbb{R}$.

<u>D</u>. 1.

Lời giải

Chọn D

Ta thấy $x^2 + 2 > 0 \ \forall x \in \mathbb{R}$

Do đó bất phương trình

 $\log_2(x^2 + mx + m + 2) \ge \log_2(x^2 + 2) \iff x^2 + mx + m + 2 \ge x^2 + 2 \iff mx + m \ge 0$.

Bất phương trình $\log_2(x^2 + mx + m + 2) \ge \log_2(x^2 + 2)$ nghiệm đúng với mọi $x \in \mathbb{R}$ khi và chỉ khi $mx + m \ge 0 \ \forall x \in \mathbb{R} \iff m = 0$

(Chuyên Vĩnh Phúc - 2019) Tìm tập S tất cả các giá trị thực của số m để tồn tại duy nhất cặp Câu 8. $\text{số}\left(x;y\right) \text{ thỏa mãn } \log_{x^2+y^2+2}\left(4x+4y-6+m^2\right) \geq 1 \text{ và } x^2+y^2+2x-4y+1=0 \; .$

A.
$$S = \{-5; -1; 1; 5\}$$
. **B.** $S = \{-1; 1\}$.

B.
$$S = \{-1, 1\}$$

C.
$$S = \{-5, 5\}$$
.

C.
$$S = \{-5, 5\}$$
. **D.** $S = \{-7, -5, -1, 1, 5, 7\}$.

Lời giải

Chọn A

Nhận thấy $x^2 + y^2 + 2 > 1$ với mọi $x, y \in \mathbb{R}$ nên:

$$\log_{x^2+y^2+2} \left(4x + 4y - 6 + m^2 \right) \ge 1 \iff 4x + 4y - 6 + m^2 \ge x^2 + y^2 + 2$$

$$\Leftrightarrow x^2 + y^2 - 4x - 4y + 8 - m^2 \le 0 \Leftrightarrow (x - 2)^2 + (y - 2)^2 \le m^2$$
 (*).

Khi m = 0 thì (*) \Leftrightarrow $\begin{cases} x = 2 \\ y = 2 \end{cases}$. Cặp (2;2) không là nghiệm của phương trình

$$x^2 + y^2 + 2x - 4y + 1 = 0.$$

Khi $m \neq 0$, tập hợp các điểm (x, y) thỏa mãn (*) là hình tròn tâm J(2, 2), bán kính là |m|. Trường họp này, yêu cầu bài toán trở thành tìm m để đường tròn tâm I(-1;2), bán kính 2 và hình tròn tâm J(2;2), bán kính |m| có đúng một điểm chung (hình vẽ)

Điều này xảy ra khi
$$\begin{bmatrix} |m|=1\\ |m|=5 \end{bmatrix} \Leftrightarrow \begin{bmatrix} m=\pm 1\\ m=\pm 5 \end{bmatrix}$$
 (thỏa mãn $m\neq 0$). Vậy $S=\left\{ -5;-1;1;5\right\}$.

(Bình Giang-Hải Dương 2019) Xét bất phương trình $\log_2^2(2x) - 2(m+1)\log_2 x - 2 < 0$. Tìm tất Câu 9. cả các giá trị của tham số m để bất phương trình có nghiệm thuộc khoảng $(\sqrt{2};+\infty)$.

A.
$$m \in \left(-\frac{3}{4}; 0\right)$$
.

B.
$$m \in (0; +\infty)$$
.

C.
$$m \in (-\infty; 0)$$
.

B.
$$m \in (0; +\infty)$$
. $\mathbf{C} \cdot m \in (-\infty; 0)$. $\mathbf{\underline{D}} \cdot m = \in \left(-\frac{3}{4}; +\infty\right)$.

Chọn D

Bất phương trình $\log_2^2(2x) - 2(m+1)\log_2 x - 2 < 0 \Leftrightarrow \log_2^2 x - 2m\log_2 x - 1 < 0$ (1).

Đặt
$$t = \log_2 x$$
, vì $x \in \left(\sqrt{2}; +\infty\right) \Rightarrow t \in \left(\frac{1}{2}; +\infty\right)$.

Bất phương trình trở thành $t^2 - 2mt - 1 < 0 \Leftrightarrow 2mt > t^2 - 1 \Leftrightarrow 2m > \frac{t^2 - 1}{t} (2)$.

Đặt
$$f(t) = \frac{t^2 - 1}{t}$$
 với $t \in \left(\frac{1}{2}; +\infty\right)$.

Bất phương trình (1) có nghiệm thuộc khoảng $(\sqrt{2};+\infty)$ khi và chỉ khi bất phương trình (2) có nghiệm thuộc khoảng $\left(\frac{1}{2}; +\infty\right)$.

Ta có
$$f'(t) = 1 + \frac{1}{t^2} > 0 \ \forall t \in \left(\frac{1}{2}; +\infty\right)$$
.

Bảng biến thiên

x	$\frac{1}{2}$ $+\infty$
f'(x)	+
f(x)	$-\frac{3}{2}$

Từ bảng biến thiên suy ra bất phương trình đã cho có nghiệm thuộc khoảng $\left(\sqrt{2};+\infty\right)$ khi và chỉ

khi
$$2m > -\frac{3}{2} \Leftrightarrow m > -\frac{3}{4}$$
.

Câu 10. Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình $m^2\left(x^5-x^4\right)-m\left(x^4-x^3\right)+x-\ln x-1\geq 0$ thỏa mãn với mọi x>0. Tính tổng các giá trị trong tập hợp S.

A. 2.

B. 0.

D. -2.

Chọn C

Đặt $f(x) = m^2(x^5 - x^4) - m(x^4 - x^3) + x - \ln x - 1$. Ta có f(x) liên tục, có đạo hàm trên $(0; +\infty)$ và $f'(x) = m^2(5x^4 - 4x^3) - m(4x^3 - 3x^2) + 1 - \frac{1}{2}$.

Bất phương trình đã cho viết thành $f(x) \ge 0$. Giả sử y = f(x) có đồ thị là (C).

 $f(x) \ge 0$ với mọi x > 0 khi và chỉ khi đồ thị (C) không nằm phía dưới trục Ox.

Mặt khác (C) và Ox có điểm chung là A(1;0). Nên điều kiện cần để đồ thị (C) không nằm phía dưới trục Ox là Ox tiếp xúc với (C) tại A(1;0).

Suy ra,
$$f'(1) = 0 \Leftrightarrow m^2 - m \Leftrightarrow \begin{bmatrix} m = 0 \\ m = 1 \end{bmatrix}$$
.

Với m = 0 ta có bất phương trình đã cho trở thành $f(x) = x - \ln x - 1 \ge 0$.

$$f'(x) = 0 \Leftrightarrow x = 1$$
.

Bảng biến thiên của hàm số f(x)

$$\begin{array}{c|ccccc}
x & 0 & 1 & +\infty \\
\hline
f'(x) & - & 0 & + \\
\hline
f(x) & & & & \\
\end{array}$$

Dựa vào bảng biến thiên ta có $f(x) \ge 0, \forall x > 0$. Suy ra m = 0 thỏa mãn điều kiện.

Với m = 1 ta có bất phương trình đã cho trở thành $f(x) = x^5 - 2x^4 + x^3 - \ln x + x - 1 \ge 0$.

$$f'(x) = 5x^4 - 8x^3 + 3x^2 - \frac{1}{x} + 1 = \frac{5x^5 - 8x^4 + 3x^3 + x - 1}{x} = \frac{(x - 1)(5x^4 - 3x^3 + 1)}{x}$$

Ta có
$$5x^4 - 3x^3 + 1 = \left(2x^2 - \frac{3}{4}x\right)^2 + \left(x^2 - \frac{9}{32}\right)^2 + 1 - \left(\frac{9}{32}\right)^2 > 0$$
.

Suy ra $f'(x) = 0 \Leftrightarrow x = 1$. Bảng biến thiên của hàm số f(x) như sau

$$\begin{array}{c|ccccc}
x & 0 & 1 & +\infty \\
\hline
f'(x) & - & 0 & + \\
\hline
f(x) & & & & \\
\end{array}$$

Dựa vào bảng biến thiên ta có $f(x) \ge 0, \forall x > 0$. Suy ra m = 1 thỏa mãn điều kiện.

Vậy $S = \{0;1\}$.

Câu 11. (Chuyên Thái Bình - 2020) Cho bất phương trình $\log_7(x^2 + 2x + 2) + 1 > \log_7(x^2 + 6x + 5 + m)$.

Có tất cả bao nhiều giá trị nguyên của m để bất phương trình có tập nghiệm chứa khoảng (1;3)?

A. 36.

B. 34.

C. 35.

D. Vô số.

Lời giải

Chọn A

$$\log_7(x^2+2x+2)+1 > \log_7(x^2+6x+5+m), \forall x \in (1,3)$$

$$\Leftrightarrow \log_7(7x^2 + 14x + 14) > \log_7(x^2 + 6x + 5 + m), \ \forall x \in (1,3)$$

$$\Leftrightarrow \begin{cases} x^2 + 6x + 5 + m > 0, \forall x \in (1;3) \\ 6x^2 + 8x + 9 > m, \forall x \in (1;3) \end{cases} \Leftrightarrow \begin{cases} m > -(x^2 + 6x + 5), \forall x \in (1;3) (1) \\ 6x^2 + 8x + 9 > m, \forall x \in (1;3) \end{cases}$$

Xét
$$g(x) = -(x^2 + 6x + 5), x \in (1,3), \text{ có } g(x) = -(x+3)^2 + 4 < -(1+3)^2 + 4 = -12, \forall x \in (1,3)$$

Do đó $(1) \Leftrightarrow m \ge -12$.

Xét
$$h(x) = 6x^2 + 8x + 9, x \in (1,3)$$
, có $h(x) > 6.1^2 + 8.1 + 9 = 23, \forall x \in (1,3)$.

Do đó $(2) \Leftrightarrow m \leq 23$.

Do $m \in \mathbb{Z}$ và $m \in [-12;23]$ nên ta được tập các giá trị của m là $\{-12;-11;-10;...;23\}$.

Vậy có tổng cộng 36 giá trị của *m* thỏa yêu cầu bài toán.

(Chuyên Bắc Ninh - 2020) Gọi m_0 là giá trị nhỏ nhất để bất phương trình Câu 12.

$$1 + \log_2\left(2 - x\right) - 2\log_2\left(m - \frac{x}{2} + 4\left(\sqrt{2 - x} + \sqrt{2x + 2}\right)\right) \le -\log_2\left(x + 1\right) \quad \text{c\'o nghiệm. Chọn đáp án}$$

đúng trong các khẳng đinh sau

A.
$$m_0 \in (9;10)$$
.

B.
$$m_0 \in (8,9)$$
.

$$\underline{\mathbf{C}}$$
. $m_0 \in (-10; -9)$. \mathbf{D} . $m_0 \in (-9; -8)$.

D.
$$m_0 \in (-9; -8)$$

Lời giải

Chọn C

+ Điều kiện xác định:
$$\begin{cases} -1 < x < 2 \\ m - \frac{x}{2} + 4\left(\sqrt{2 - x} + \sqrt{2x + 2}\right) > 0 \end{cases} \Leftrightarrow \begin{cases} -1 < x < 2 \\ m > \frac{x}{2} - 4\left(\sqrt{2 - x} + \sqrt{2x + 2}\right) \end{cases}$$
 (*).

+ Với điều kiên trên bất phương trình:

$$1 + \log_2(2 - x) - 2\log_2\left(m - \frac{x}{2} + 4\left(\sqrt{2 - x} + \sqrt{2x + 2}\right)\right) \le -\log_2(x + 1)$$

$$\Leftrightarrow \log_2 \left[2(2-x)(x+1) \right] \leq \log_2 \left[m - \frac{x}{2} + 4\left(\sqrt{2-x} + \sqrt{2x+2}\right) \right]^2$$

$$\Leftrightarrow \sqrt{(2-x)(2x+2)} \le m - \frac{x}{2} + 4\left(\sqrt{2-x} + \sqrt{2x+2}\right)$$

$$\Leftrightarrow m \ge \frac{x}{2} + \sqrt{(2-x)(2x+2)} - 4\left(\sqrt{2-x} + \sqrt{2x+2}\right) (1).$$

+ Ta thấy các nghiệm của (1) trong khoảng (-1;2) luôn thỏa mãn (*).

+ Đặt
$$t = \sqrt{2-x} + \sqrt{2x+2}, (t > 0)$$
 với $x \in (-1,2)$.

Xét
$$f(x) = \sqrt{2-x} + \sqrt{2x+2}$$
 với $x \in (-1;2)$

$$f'(x) = \frac{-1}{2\sqrt{2-x}} + \frac{1}{\sqrt{2x+2}} = \frac{2\sqrt{2-x} - \sqrt{2x+2}}{2\sqrt{(2-x)(2x+2)}}.$$

$$f'(x) = 0 \Leftrightarrow 2\sqrt{2-x} = \sqrt{2x+2} \Leftrightarrow x = 1$$
.

Bảng biến thiên:

Suy ra khi $x \in (-1,2)$ thì $t \in (\sqrt{3},3]$.

+ Ta có
$$t^2 = 4 + x + 2\sqrt{(2-x)(2x+2)} \Leftrightarrow \frac{x}{2} + \sqrt{(2-x)(2x+2)} = \frac{t^2-4}{2}$$
.

+ (1) trở thành
$$m \ge \frac{t^2 - 4}{2} - 4t \Leftrightarrow 2m \ge t^2 - 8t - 4$$
 (2).

$$+$$
 (1) có nghiệm $x \in (-1,2) \Leftrightarrow (2)$ có nghiệm $t \in (\sqrt{3},3]$.

+ Xét hàm số
$$y = g(t) = t^2 - 8t - 4$$
 trên $(\sqrt{3}; 3]$.

Bảng biến thiên:

+ Do đó bất phương trình (2) có nghiệm $t \in (\sqrt{3};3]$ khi và chỉ khi $2m \ge -19 \Leftrightarrow m \ge -\frac{19}{2}$.

Suy ra
$$m_0 = -\frac{19}{2} \in (-10; -9)$$
.

- **Câu 13.** (**Lương Thế Vinh Hà Nội 2020**) Gọi S là tập hợp tất cả các điểm M(x;y) trong đó x,y là các số nguyên thoả mãn điều kiện $\log_{x^2+y^2+1}(2x+2y+m) \ge 1$, với m là tham số. Có bao nhiêu số nguyên m thuộc đoạn [-2020;2019] để tập S có không quá 5 phần tử?
 - **A.** 1.

- **B.** 2020.
- <u>C</u>. 2021.
- **D.** 2019.

Lời giải

Chọn C

$$\log_{x^2+y^2+1}(2x+2y+m) \ge 1 \Leftrightarrow 2x+2y+m \ge x^2+y^2+1$$

 \Leftrightarrow $(x-1)^2 + (y-1)^2 \le m+1$ Để bất phương trình có 5 phần tử thì $\sqrt{m+1} < \sqrt{2} \Leftrightarrow m < 1$ Vậy có 2021 số nguyên m thuộc đoạn [-2020; 2019] để tập S có không quá 5 phần tử.

- **Câu 14.** (Chuyên Thái Bình Lần 3 2020) Cho bất phương trình $\log_7(x^2+2x+2)+1>\log_7(x^2+6x+5+m)$. Có tất cả bao nhiều giá trị nguyên của tham số m để bất phương trình trên có tập nghiệm chứa khoảng (1;3)?
 - **A**. 36.

- **B.** 35.
- **C.** 34.

Lời giải

D. Vô số.

Chon A

Điều kiện xác định $x^2 + 6x + 5 + m > 0$.

$$\log_7(x^2 + 2x + 2) + 1 > \log_7(x^2 + 6x + 5 + m) \iff \log_7(7x^2 + 14x + 14) > \log_7(x^2 + 6x + 5 + m)$$

$$\Leftrightarrow 7x^2 + 14x + 14 > x^2 + 6x + m + 5$$

$$\Leftrightarrow 6x^2 + 8x + 9 - m > 0$$
.

Khi đó
$$ycbt \Leftrightarrow \begin{cases} 6x^2 + 8x + 9 - m > 0 \\ x^2 + 6x + 5 + m > 0 \end{cases}, \forall x \in (1;3) \Leftrightarrow \begin{cases} 6.1^2 + 8 + 9 - m \ge 0 \\ 1^2 + 6 + 5 + m \ge 0 \end{cases} \Leftrightarrow -12 \le m \le 23.$$

Vậy có 36 giá trị nguyên của m thỏa ycht.

(Chuyên Lê Hồng Phong - 2018) Xét bất phương trình $\log_2^2 2x - 2(m+1)\log_2 x - 2 < 0$. Tìm tất Câu 15. cả các giá trị của tham số m để bất phương trình có nghiệm thuộc khoảng $\left(\sqrt{2};+\infty\right)$.

A.
$$m \in (0; +\infty)$$
.

B.
$$m \in \left(-\frac{3}{4}; 0\right)$$
.

B.
$$m \in \left(-\frac{3}{4}; 0\right)$$
. $\underline{\mathbf{C}}$. $m \in \left(-\frac{3}{4}; +\infty\right)$. \mathbf{D} . $m \in \left(-\infty; 0\right)$.

D.
$$m \in (-\infty; 0)$$
.

Lời giải

Điều kiên: x > 0

$$\log_2^2 2x - 2(m+1)\log_2 x - 2 < 0$$

$$\Leftrightarrow (1 + \log_2 x)^2 - 2(m+1)\log_2 x - 2 < 0$$
 (1)

Đặt
$$t = \log_2 x$$
. Vì $x > \sqrt{2}$ nên $\log_2 x > \log_2 \sqrt{2} = \frac{1}{2}$. Do đó $t \in \left(\frac{1}{2}; +\infty\right)$

(1) thành
$$(1+t)^2 - 2(m+1)t - 2 < 0 \Leftrightarrow t^2 - 2mt - 1 < 0$$
 (2)

Cách 1: Yêu cầu bài toán tương đương tìm m để bpt (2) có nghiệm thuộc $\left(\frac{1}{2}; +\infty\right)$.

Xét bất phương trình (2) có: $\Delta' = m^2 + 1 > 0$, $\forall m \in \mathbb{R}$.

 $f(t) = t^2 - 2mt - 1 = 0$ có ac < 0 nên (2) luôn có 2 nghiệm phân biệt $t_1 < 0 < t_2$.

Khi đó cần
$$\frac{1}{2} < t_2 \iff m + \sqrt{m^2 + 1} > \frac{1}{2} \iff m > -\frac{3}{4}$$
.

Cách 2:
$$t^2 - 2mt - 1 < 0 \iff f(t) = \frac{t^2 - 1}{2t} < m(t > \frac{1}{2})$$

Khảo sát hàm số f(t) trong $(0;+\infty)$ ta được $m \in \left(-\frac{3}{4};+\infty\right)$.

(Chuyên Vinh - 2018) Gọi a là số thực lớn nhất để bất phương trình Câu 16. $x^2 - x + 2 + a \ln(x^2 - x + 1) \ge 0$ nghiệm đúng với mọi $x \in \mathbb{R}$. Mệnh đề nào sau đây **đúng**?

A.
$$a \in (2;3]$$
.

B.
$$a \in (8; +\infty)$$
.

C.
$$a \in (6;7]$$
.

D.
$$a \in (-6; -5]$$
.

Lời giải

Đặt
$$t = x^2 - x + 1 = \left(x - \frac{1}{2}\right)^2 + \frac{3}{4}$$
 suy ra $t \ge \frac{3}{4}$

Bất phương trình
$$x^2 - x + 2 + a \ln(x^2 - x + 1) \ge 0 \Leftrightarrow t + a \ln t + 1 \ge 0 \Leftrightarrow a \ln t \ge -t - 1$$

Trường hợp 1:
$$t=1$$
 khi đó $a \ln t \ge -t -1$ luôn đúng với mọi a .

Trường hợp 2:
$$\frac{3}{4} \le t < 1$$

Ta có
$$a \ln t \ge -t - 1$$
, $\forall t \in \left[\frac{3}{4}; 1\right) \Leftrightarrow a \le \frac{-t - 1}{\ln t}, \forall t \in \left[\frac{3}{4}; 1\right)$

Xét hàm số
$$f(t) = \frac{-t-1}{\ln t} \Rightarrow f'(t) = -\frac{\ln t - 1 - \frac{1}{t}}{\ln^2 t} \ge 0, \forall t \in \left[\frac{3}{4}; 1\right] \text{ do đó}$$

$$a \le \frac{-t-1}{\ln t}, \forall t \in \left[\frac{3}{4};1\right) \Leftrightarrow a \le \frac{-7}{4\ln\frac{3}{4}}$$

Trường hợp 3: t > 1

Ta có $a \ln t \ge -t - 1$, $\forall t \in (1; +\infty) \Leftrightarrow a \ge \frac{-t - 1}{\ln t}$, $\forall t \in (1; +\infty)$

Xét hàm số
$$f(t) = \frac{-t-1}{\ln t} \Rightarrow f'(t) = -\frac{\ln t - 1 - \frac{1}{t}}{\ln^2 t}, \forall t \in (1; +\infty).$$

Xét hàm số
$$g(t) = \ln t - 1 - \frac{1}{t} \Leftrightarrow g'(t) = \frac{1}{t} + \frac{1}{t^2} > 0$$

Vậy g(t) = 0 có tối đa một nghiệm.

Vì
$$g(1) = -2$$
; $\lim_{t \to +\infty} g(t) = +\infty$ vậy $g(t) = 0$ có duy nhất một nghiệm trên $(1; +\infty)$

Do đó f'(t) = 0 có duy nhất một nghiệm là t_0 . Khi đó $\ln t_0 = \frac{t_0 + 1}{t_0}$ suy ra $f(t_0) = -t_0$

Bảng biến thiên

$$\begin{array}{c|ccccc}
t & 1 & t_0 & +\infty \\
\hline
f' & \parallel & + & 0 & - \\
\hline
f & \parallel & -\infty \nearrow & -t_0 & \searrow & -\infty
\end{array}$$

Vậy
$$a \ge \frac{-t-1}{\ln t}$$
, $\forall t \in (1; +\infty) \Leftrightarrow a \ge -t_0$.

Vậy
$$-t_0 \le a \le \frac{-7}{4 \ln \frac{3}{4}}$$
.

Vậy số thực a thỏa mãn yêu cầu bài toán là: $a \in (6,7]$.

Câu 17. (**THPT Lê Xoay - 2018**) Giả sử S = (a,b] là tập nghiệm của bất phương trình $5x + \sqrt{6x^2 + x^3 - x^4} \log_2 x > (x^2 - x) \log_2 x + 5 + 5\sqrt{6 + x - x^2}$. Khi đó b - a bằng

$$\underline{\mathbf{A}} \cdot \frac{1}{2}$$
.

B.
$$\frac{7}{2}$$

C.
$$\frac{5}{2}$$
.

Lời giải

Điều kiện:
$$\begin{cases} x > 0 \\ 6 + x - x^2 \ge 0 \end{cases} \Leftrightarrow \begin{cases} x > 0 \\ -2 \le x \le 3 \end{cases}$$

$$D = (0;3]$$

$$5x + \sqrt{6x^2 + x^3 - x^4} \log_2 x > (x^2 - x) \log_2 x + 5 + 5\sqrt{6 + x - x^2}$$

$$\Leftrightarrow 5x + x\sqrt{6 + x - x^2} \log_2 x > x(x - 1) \log_2 x + 5 + 5\sqrt{6 + x - x^2}$$

$$\Leftrightarrow$$
 $(x-1)(5-x\log_2 x)+\sqrt{6+x-x^2}(x\log_2 x-5)>0$

$$\Leftrightarrow$$
 $(5-x\log_2 x)(x-1-\sqrt{6+x-x^2})>0$

$$\Leftrightarrow \begin{cases} 5 - x \log_2 x > 0 \\ x - 1 - \sqrt{6 + x - x^2} > 0 \end{cases} (I) \\ \begin{cases} 5 - x \log_2 x < 0 \\ x - 1 - \sqrt{6 + x - x^2} < 0 \end{cases} (II)$$

☐ Giải hệ (I).

$$\begin{cases} 5 - x \log_2 x > 0(1) \\ x - 1 - \sqrt{6 + x - x^2} > 0(2) \end{cases}$$

Giải (1)
$$5 - x \log_2 x > 0$$

Xét hàm số
$$f(x) = x\left(\frac{5}{x} - \log_2 x\right) = xg(x)$$
 với $x \in (0,3]$

Ta có
$$g'(x) = -\frac{5}{x^2} - \frac{1}{x \ln 2} < 0 \forall x \in (0,3].$$

Lập bảng biến thiên

Vậy
$$f(x) = x\left(\frac{5}{x} - \log_2 x\right) > 0 \forall x \in (0,3].$$

Xét bất phương trình (2):
$$\sqrt{6+x-x^2} < x-1 \Leftrightarrow \begin{cases} 6+x-x^2 < \left(x-1\right)^2 \\ x > 1 \end{cases} \Leftrightarrow \begin{cases} 2x^2-3x-5 > 0 \\ x > 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} \begin{bmatrix} x < -1 \\ x > \frac{5}{2} \iff x > \frac{5}{2} \end{cases}.$$

$$x > 1$$

Vậy nghiệm của hệ (I) là $D = \left(\frac{5}{2};3\right]$.

 \square Hệ (II) vô nghiệm.

Vậy
$$S = \left(\frac{5}{2}, 3\right]$$
.

$$b-a=3-\frac{5}{2}=\frac{1}{2}.$$

- **Câu 18.** (Chuyên Hà Tĩnh 2018) Cho bất phương trình $\log_7(x^2 + 2x + 2) + 1 > \log_7(x^2 + 6x + 5 + m)$. Có bao nhiều giá trị nguyên của tham số m để bất phương trình trên có tập ngiệm chứa khoảng (1;3)?
 - **A.** 35.

- **B.** 36.
- <u>C</u>. 34
- **D.** 33.

Lời giải

$$bpt \Leftrightarrow \begin{cases} x^{2} + 6x + 5 + m > 0 \\ \log_{7} \left[7(x^{2} + 2x + 2) \right] > \log_{7} (x^{2} + 6x + 5 + m) \end{cases} \Leftrightarrow \begin{cases} m > -x^{2} - 6x - 5 \\ 6x^{2} + 8x + 9 > m \end{cases}$$
$$\Leftrightarrow \begin{cases} m > \max_{(1;3)} f(x) \\ m < \min_{(1;3)} g(x) \end{cases}, \text{ v\'oi } f(x) = -x^{2} - 6x - 5; \ g(x) = 6x^{2} + 8x + 9 \end{cases}$$

Xét sự biến thiên của hai hàm số f(x) và g(x)

- O $f'(x) = -2x 6 < 0, \forall x \in (1,3) \Rightarrow f(x)$ luôn nghịch biến trên khoảng (1,3)
- $\Rightarrow \max_{(1,3)} f(x) = f(1) = -12$
- $O(g'(x) = 12x + 8 > 0, \forall x \in (1,3) \Rightarrow g(x)$ luôn đồng biến trên khoảng (1,3)
- $\Rightarrow \min_{(1,3)} g(x) = g(1) = 23$

Khi đó -12 < m < 23

Mà $m \in \mathbb{Z}$ nên $m \in \{-11; -10; ...; 22\}$

Vậy có tất cả 34 giá trị nguyên của *m* thỏa mãn yêu cầu bài toán.

- **Câu 19.** (Sở Quảng Nam 2018) Có bao nhiều giá trị nguyên thuộc khoảng (-9;9) của tham số m để bất phương trình $3\log x \le 2\log\left(m\sqrt{x-x^2}-(1-x)\sqrt{1-x}\right)$ có nghiệm thực?
 - **A.** 6.

B. 7

- **C.** 10
- **D.** 11.

Lời giải

Điều kiện
$$\begin{cases} 0 < x < 1 \\ m\sqrt{x - x^2} - (1 - x)\sqrt{1 - x} > 0 \end{cases} \Leftrightarrow \begin{cases} 0 < x < 1 \\ m\sqrt{x} - (1 - x) > 0 \end{cases} \Leftrightarrow \begin{cases} 0 < x < 1 \\ m > \frac{(1 - x)}{\sqrt{x}} > 0 \end{cases}.$$

Bất phương trình đã cho tương đương

$$\log x^3 \le \log \left(m\sqrt{x - x^2} - \left(1 - x\right)\sqrt{1 - x} \right)^2$$

$$\Leftrightarrow x^3 \le \left(m\sqrt{x-x^2} - (1-x)\sqrt{1-x}\right)^2$$

$$\Leftrightarrow x\sqrt{x} \le \left(m\sqrt{x-x^2} - (1-x)\sqrt{1-x}\right)$$

$$\Leftrightarrow m \ge \frac{x\sqrt{x} + (1-x)\sqrt{1-x}}{\sqrt{x-x^2}} = \frac{x}{\sqrt{1-x}} + \frac{1-x}{\sqrt{x}}.$$

Áp dụng bất đẳng thức cô si ta có

$$\left(\frac{x}{\sqrt{1-x}} + \sqrt{1-x}\right) + \left(\frac{1-x}{\sqrt{x}} + \sqrt{x}\right) \ge 2\sqrt{x} + 2\sqrt{1-x}.$$

Vì vậy $m \ge \sqrt{x} + \sqrt{1-x}$.

Khảo sát hàm số $f(x) = \sqrt{x} + \sqrt{1-x}$ trên (0;1) ta được $f(x) \ge \sqrt{2} \approx 1,414$.

Vậy m có thể nhận được các giá trị 2,3,4,5,6,7,8.

(Yên Phong 1 - 2018) Có bao nhiều số nguyên m sao cho bất phương trình $\ln 5 + \ln \left(x^2 + 1 \right) \ge \ln \left(mx^2 + 4x + m \right)$ có tập nghiệm là $\mathbb R$.

Lời giải

Ta có bất phương trình $\ln 5 + \ln (x^2 + 1) \ge \ln (mx^2 + 4x + m) \Leftrightarrow \ln (5x^2 + 5) \ge \ln (mx^2 + 4x + m)$

$$\Leftrightarrow \begin{cases} 5x^{2} + 5 \ge mx^{2} + 4x + m \\ mx^{2} + 4x + m > 0 \end{cases} \Leftrightarrow \begin{cases} 5x^{2} + 5 - 4x \ge m(x^{2} + 1) \\ m(x^{2} + 1) > -4x \end{cases} \Leftrightarrow \begin{cases} m \le \frac{5x^{2} + 5 - 4x}{x^{2} + 1} = f(x) \\ m > \frac{-4x}{x^{2} + 1} = g(x) \end{cases}.$$

Hàm số f(x) có bảng biến thiên:

x	$-\infty$		-1		1		$+\infty$
f'(x)		+	0	_	0	+	
f	5	/	7		× 3 -	/	5

Hàm số g(x) có bảng biến thiên:

x	$-\infty$		-1		1		$+\infty$
f'(x)		+	0	_	0	+	
f	0	/	2		-2		0

Từ bảng biến thiên suy ra để bất phương trình có tập nghiệm là \mathbb{R} khi $2 < m \le 3$. Vậy có 1 giá trị nguyên của m.

DẠNG 2. BẤT PHƯƠNG TRÌNH MŨ CHỨA THAM SỐ

(VTED 2019) Cho a > 1. Biết khi $a = a_0$ thì bất phương trình $x^a \le a^x$ đúng với mọi $x \in (1; +\infty)$. Câu 1. Mệnh đề nào dưới đây đúng?

A.
$$1 < a_0 < 2$$

B.
$$e < a_0 < e^2$$

C.
$$2 < a_0 < 3$$

C.
$$2 < a_0 < 3$$
 D. $e^2 < a_0 < e^3$

Lời giải

Chọn C

$$x^{a} \le a^{x} \Leftrightarrow a \cdot \ln x \le x \cdot \ln a \Leftrightarrow \frac{a}{\ln a} \le \frac{x}{\ln x}$$

Đặt
$$f(x) = \frac{x}{\ln x}, x \in (1; +\infty)$$

$$f'(x) = \frac{\ln x - 1}{\ln^2 x}$$

$$f'(x) = 0 \Leftrightarrow x = e$$
.

Bảng biến thiên:

x	1		e		$+\infty$
f'(x)		_	0	+	
f(x)	+∞		e /		+∞

Bất phương trình nghiệm đúng $\forall x \in (1; +\infty) \Leftrightarrow \frac{a}{\ln a} \leq e \Leftrightarrow a \leq e. \ln a \Leftrightarrow a - e. \ln a \leq 0$

* Xét hàm số

$$g(x) = x - e \cdot \ln x; g'(x) = 1 - \frac{e}{x} \Leftrightarrow \frac{x - e}{x}$$

Vậy $a - e \cdot \ln a \ge 0$

Theo bảng biến thiên, ta có: $a - e \cdot \ln a \le 0 \Leftrightarrow a = e$

Vậy $a = a_0 = e \in (2;3)$

Câu 2. (Chuyên Hạ Long 2019) Tìm m để hàm số sau xác định trên \mathbb{R} : $y = \sqrt{4^x - (m+1) \cdot 2^x - m}$

A. Đáp án khác.

B. m > -1.

C. m < 0.

D.
$$-3 - 2\sqrt{2} \le m \le -3 + 2\sqrt{2}$$
.

Lời giải

Hàm số $y = \sqrt{4^x - (m+1) \cdot 2^x - m}$ xác định trên \mathbb{R} khi và chỉ khi $4^x - (m+1) \cdot 2^x - m \ge 0 \quad \forall x \in \mathbb{R}$.

Đặt
$$t=2^x$$
 $(t>0)$. Khi đó: $t^2-(m+1).t-m\geq 0 \quad \forall t>0 \Leftrightarrow \frac{t^2-t}{t+1}\geq m \quad \forall t>0$.

Xét hàm số: $f(t) = \frac{t^2 - t}{t + 1}$ với t > 0.

Ta có: $f'(t) = \frac{t^2 + 2t - 1}{(t+1)^2}$ khi đó: $f'(t) = 0 \iff t^2 + 2t - 1 = 0 \implies t = -1 + \sqrt{2}$ do t > 0.

Lập bảng biến thiên ta tìm được $\min_{(0;+\infty)} f(t) = f(-1+\sqrt{2}) = -3+2\sqrt{2}$.

Để bất phương trình $\frac{t^2-t}{t+1} \ge m \quad \forall t > 0 \text{ thì } m \le -3 + 2\sqrt{2}$.

Bất phương trình $4^x - (m+1)2^{x+1} + m \ge 0$ nghiệm đúng với mọi $x \ge 0$. Tập tất cả các giá trị của mCâu 3.

A.
$$(-\infty;12)$$
.

B.
$$(-\infty; -1]$$
. **C.** $(-\infty; 0]$. **D.** $(-1; 16]$.

C.
$$(-\infty;0]$$
.

Lời giải

Chọn B

Đặt $t = 2^x$. ĐK: $t \ge 1$

BPT
$$\Leftrightarrow t^2 - 2(m+1)t + m \ge 0 \Leftrightarrow (2t-1)m \le t^2 - 2t \Leftrightarrow m \le \frac{t^2 - 2t}{2t-1} = g(t) \Leftrightarrow m \le \min g(t)$$

Ta có
$$g'(t) = \frac{2t^2 - 2t + 2}{(2t - 1)^2} > 0, \forall t \ge 1 \Rightarrow Min g(t) = g(1) = -1 \Rightarrow m \in (-\infty; -1]$$

(Chuyên Nguyễn Tất Thành Yên Bái 2019) Tìm tất cả các giá trị của tham số m để bất phương Câu 4. trình $4^{x-1} - m(2^x + 1) > 0$ nghiệm đúng với mọi $x \in \mathbb{R}$.

A.
$$m \in (-\infty; 0) \cup (1; +\infty)$$
.

B. $m \in (-\infty; 0]$.

C. $m \in (0; +\infty)$.

D. $m \in (0; 1)$.

Lòi giải

$$\underline{\mathbf{B}}$$
. $m \in (-\infty; 0]$.

C.
$$m \in (0; +\infty)$$

D.
$$m \in (0;1)$$
.

Bất phương trình $4^{x-1} - m(2^x + 1) > 0$ (1)

Đặt $t = 2^x$, t > 0.

Bất phương trình (1) trở thành: $\frac{1}{4}t^2 - m(t+1) > 0 \Leftrightarrow t^2 - 4mt - 4m > 0$ (2).

 $\text{Dặt } f(t) = t^2 - 4mt - 4m.$

Đồ thị hàm số y = f(t) có đồ thị là một Parabol với hệ số a dương, đỉnh $I(2m; -4m^2 - 4m)$.

Bất phương trình (1) nghiệm đúng với mọi $x \in \mathbb{R} \iff$ Bất phương trình (2) nghiệm đúng với mọi t > 0 hay $f(t) > 0, \forall t > 0.$

TH1: $m \le 0 \Rightarrow f(0) = -4m \ge 0 \Rightarrow m \le 0$ thỏa mãn.

TH2: $m > 0 \Rightarrow -4m^2 - 4m < 0$ nên m > 0 không thỏa mãn.

Vây $m \le 0$.

(Chuyên Nguyễn Trãi Hải Dương 2019) Bất phương trình $4^x - (m+1)2^{x+1} + m \ge 0$ nghiệm Câu 5. đúng với mọi $x \ge 0$. Tập tất cả các giá trị của m là

A.
$$(-\infty;12)$$
.

$$\underline{\mathbf{B}}$$
. $(-\infty;-1]$.

C.
$$(-\infty; 0]$$
. **D.** $(-1;16]$.

Lời giải

$$4^{x} - (m+1)2^{x+1} + m \ge 0, \ \forall x \ge 0.$$

$$\Leftrightarrow (2^x)^2 - 2(m+1)2^x + m \ge 0, \forall x \ge 0$$
 (1).

Đặt
$$t = 2^x$$
, $(t > 0)$.

(1) trở thành $t^2 - 2(m+1)t + m \ge 0$, $\forall t \ge 1$ (2).

Cách 1:

$$(2) \Leftrightarrow m \le \frac{t^2 - 2t}{2t - 1}, \ \forall t \ge 1 \ (3).$$

Xét hàm số $y = f(t) = \frac{t^2 - 2t}{2t - 1}$. Ta có hàm số y = f(t) liên tục trên $[1; +\infty)$.

$$f'(t) = \frac{(2t-2)(2t-1)-2(t^2-2t)}{(2t-1)^2} = \frac{2t^2-2t+2}{(2t-1)^2} > 0, \forall t \ge 1.$$

Suy ra hàm số f(t) đồng biến trên $[1;+\infty) \Rightarrow f(t) \ge f(1) = -1$, $\forall t \ge 1$.

Do đó (3) $\Leftrightarrow m \le \min_{[1;+\infty)} f(t) \Leftrightarrow m \le -1$.

Cách 2:

 $t^2 - 2(m+1)t + m \ge 0$ là một bất phương trình bậc hai.

Tam thức bậc hai ở vế trái luôn có $\Delta' = m^2 + m + 1 > 0$, $\forall m$ nên tam thức luôn có hai nghiệm là $t = m + 1 - \sqrt{m^2 + m + 1}$ và $t = m + 1 + \sqrt{m^2 + m + 1}$.

Suy ra bất phương trình $t^2 - 2(m+1)t + m \ge 0$ có tập nghiệm là

$$\left(-\infty; m+1-\sqrt{m^2+m+1}\right] \cup \left[m+1+\sqrt{m^2+m+1}; +\infty\right).$$

$$(2) \Leftrightarrow m+1+\sqrt{m^2+m+1} \leq 1 \Leftrightarrow \sqrt{m^2+m+1} \leq -m \Leftrightarrow \begin{cases} m \leq 0 \\ m^2+m+1 \leq m^2 \end{cases} \Leftrightarrow m \leq -1.$$

Câu 6. (THPT Hàm Rồng Thanh Hóa 2019) Có bao nhiều giá trị nguyên của tham số $m \in [-10;10]$ để

bất phương trình sau nghiệm đúng với $\forall x \in \mathbb{R} : \left(6 + 2\sqrt{7}\right)^x + \left(2 - m\right)\left(3 - \sqrt{7}\right)^x - \left(m + 1\right)2^x \ge 0$

Lời giải

Ta có:

$$(6+2\sqrt{7})^{x} + (2-m)(3-\sqrt{7})^{x} - (m+1)2^{x} \ge 0 \Leftrightarrow 2^{x}(3+\sqrt{7})^{x} + (2-m)(3-\sqrt{7})^{x} > (m+1)2^{x}$$

$$\Leftrightarrow (3+\sqrt{7})^{x} + (2-m)\left(\frac{3+\sqrt{7}}{2}\right)^{x} > m+1$$

Đặt $t = (3 + \sqrt{7})^x$, $t > 0 \implies \left(\frac{3 - \sqrt{7}}{2}\right)^x = \frac{1}{t}$. Bất phương trình đã cho trở thành:

$$t+(2-m)\cdot\frac{1}{t}>m+1 \iff \frac{t^2-t+2}{t+1}>m$$
.

Xét hàm số $f(t) = \frac{t^2 - t + 2}{t + 1}$ trên khoảng $(0; +\infty)$, ta có $f'(t) = \frac{t^2 + 2t - 3}{(t + 1)^2}$

 $f'(t) = 0 \iff \begin{bmatrix} t = -3 \\ t = 0 \end{bmatrix}$. Khi đó, ta có bảng biến thiên sau:

Từ bảng biến thiên trên ta suy ra để bất phương trình đã cho nghiệm đúng thì m < 1. Suy ra trong đoạn [-10;10] có tất cả 11 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

Câu 7. (THPT Lê Quý Đôn Đà Nẵng 2019) Tìm m để bất phương trình $2^x + 3^x + 4^x + 5^x \ge 4 + mx$ có tập nghiệm là \mathbb{R} .

A. ln120.

B. ln10.

C. ln 30.

D. ln14.

Lời giải

+ Với
$$a > 1$$
 ta có $\lim_{x \to 0} \frac{a^x - 1}{x} = \lim_{x \to 0} \left(\frac{e^{x \ln a} - 1}{x \ln a} \right) . \ln a = \ln a$.

+ Với
$$a > 1$$
 xét hàm số $f(x) = \frac{a^x - 1}{x} (x \neq 0)$, ta có $f'(x) = \frac{xa^x \ln a - a^x + 1}{x^2}$.

Xét hàm số $g(x) = xa^x \ln a - a^x + 1 \Rightarrow g'(x) = a^x \ln a + xa^x \ln^2 a - a^x \ln a = xa^x \ln^2 a$.

Với
$$x > 0$$
 ta có $g'(x) > 0$ suy ra $g(x) > g(0) \Leftrightarrow g(x) > 0 \Rightarrow f'(x) > 0, \forall x > 0$.

Với
$$x < 0$$
 ta có $g'(x) < 0$ suy ra $g(x) > g(0) \Leftrightarrow g(x) > 0 \Rightarrow f'(x) > 0, \forall x > 0$.

Do đó hàm số $f(x) = \frac{a^x - 1}{x} (a > 1)$ đồng biến trên các khoảng $(-\infty; 0)$ và $(0; +\infty)$.

Trở lại bài toán:

 $+ X \acute{e}t x = 0$ bất phương trình thỏa mãn.

+ Xét
$$x > 0$$
 ta có: $2^x + 3^x + 4^x + 5^x \ge 4 + mx \Leftrightarrow m \le \frac{2^x - 1}{x} + \frac{3^x - 1}{x} + \frac{4^x - 1}{x} + \frac{5^x - 1}{x} = h(x)$.

Từ nhận xét trên ta có h(x) đồng biến trên $(0; +\infty)$. Do đó yêu cầu của bài toán tương đương với $m \le \lim_{x \to 0^+} h(x) = \ln 2 + \ln 3 + \ln 4 + \ln 5 = \ln 120$.

+ Xét
$$x < 0$$
 ta có: $2^x + 3^x + 4^x + 5^x \ge 4 + mx \Leftrightarrow m \ge \frac{2^x - 1}{x} + \frac{3^x - 1}{x} + \frac{4^x - 1}{x} + \frac{5^x - 1}{x} = h(x)$.

Từ nhận xét trên ta có h(x) đồng biến trên $(-\infty;0)$. Do đó yêu cầu của bài toán tương đương với $m \ge \lim_{x \to 0^+} h(x) = \ln 2 + \ln 3 + \ln 4 + \ln 5 = \ln 120$.

Kết hợp lại ta có $m = \ln 120$.

Câu 8. (Đề Tham Khảo 2019) Cho hàm số y = f(x). Hàm số y = f'(x) có bảng biến thiên như sau:

Bất phương trình $f(x) < e^x + m$ đúng với mọi $x \in (-1,1)$ khi và chỉ khi.

A.
$$m > f(-1) - \frac{1}{e}$$

A.
$$m > f(-1) - \frac{1}{e}$$
 B. $m \ge f(-1) - \frac{1}{e}$ **C.** $m > f(1) - e$ **D.** $m \ge f(1) - e$

C.
$$m > f(1) - e$$

D.
$$m \ge f(1) - \epsilon$$

Lời giải

Chọn B

Ta có $f(x) < e^x + m \Leftrightarrow m > f(x) - e^x$.

Xét hàm số $g(x) = f(x) - e^x$; $g'(x) = f'(x) - e^x < 0 \forall x \in (-1,1)$.

Suy ra hàm số g(x) nghịch biến trên (-1;1).

Yêu cầu bài toán $\Leftrightarrow m \ge \max g(x) = g(-1) = f(-1) - \frac{1}{a}$, chọn C.

(Chuyên Sơn La 2019) Cho hàm số y = f'(x) liên tục trên $\mathbb R$ và có bảng xét dấu đạo hàm như Câu 9. sau

x		-2		0		2		+∞
f'(x)	_	0	+	0	_	0	+	

Bất phương trình $f(x) < e^{x^2} + m$ đúng với mọi $x \in (-1,1)$ khi và chỉ khi

A.
$$m \ge f(0) - 1$$
.

A.
$$m \ge f(0) - 1$$
. **B.** $m > f(-1) - e$. **C.** $m > f(0) - 1$. **D.** $m \ge f(-1) - e$.

C.
$$m > f(0) - 1$$
.

D.
$$m \ge f(-1) - e$$

Lời giải

$$f(x) < e^{x^2} + m \Leftrightarrow f(x) - e^{x^2} < m$$

Xét hàm số:
$$g(x) = f(x) - e^{x^2}$$
; $g'(x) = f'(x) - 2xe^{x^2}$.

Trên khoảng
$$(-1;0)$$
 ta có
$$\begin{cases} f'(x) > 0 \\ -2x > 0 \end{cases} \Rightarrow g'(x) > 0, \ \forall x \in (-1;0).$$

Trên khoảng (0;1) ta có
$$\begin{cases} f'(x) < 0 \\ -2x < 0 \end{cases} \Rightarrow g'(x) < 0, \ \forall x \in (0;1).$$

Tại điểm
$$x = 0$$
 ta có
$$\begin{cases} f'(x) = 0 \\ -2xe^{x^2} = 0 \end{cases} \Rightarrow g'(x) = 0.$$

Suy ra bảng biến thiên của g'(x):

х	-1	0		1
g'(x)	+	0	_	
g(x)		> f(0)−1		^

Từ bảng biến thiên ta có: $\max_{(-1;1)} g(x) = f(0) - 1$.

Do đó bất phương trình m > g(x) đúng với mọi $x \in (-1,1)$ khi và chỉ khi $m > \max_{(-1,1)} g(x) = f(0) - 1$.

Câu 10. (**Phú Thọ 2019**) Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ

Tổng tất cả các giá trị nguyên của tham số m để bất phương trình

$$9.6^{f(x)} + (4 - f^2(x)).9^{f(x)} \le (-m^2 + 5m).4^{f(x)}$$
 đúng $\forall x \in \mathbb{R}$ là

A. 10

B. 4

C. 5

D. 9

Lời giải

Chọn B

Ta có

$$9.6^{f(x)} + (4 - f^2(x)).9^{f(x)} \le (-m^2 + 5m).4^{f(x)}$$

$$\Leftrightarrow (4-f^2(x)).(\frac{3}{2})^{2f(x)} + 9;(\frac{3}{2})^{f(x)} \le -m^2 + 5m$$
 (1)

Từ đồ thị hàm số suy ra $f(x) \le -2, \forall x \in \mathbb{R}$

$$\text{Do } \text{d\'o} \left(4-f^2\left(x\right)\right) \left(\frac{3}{2}\right)^{2f(x)} \leq 0, \ \forall x \in \mathbb{R} \ \text{ và } 9. \left(\frac{3}{2}\right)^{f(x)} \leq 9. \left(\frac{3}{2}\right)^{-2} = 4, \forall x \in \mathbb{R} \ .$$

Suy ra
$$(4-f^2(x)).(\frac{3}{2})^{2f(x)} + 9.(\frac{3}{2})^{f(x)} \le 4, \ \forall x \in \mathbb{R}$$
.

Để (1) có nghiệm đúng $\forall x \in \mathbb{R}$ thì $4 \le -m^2 + 5m \Leftrightarrow 1 \le m \le 4$.

Do m là số nguyên nên $m \in \{1, 2, 3, 4\}$.

Câu 11. (VTED 2019) Cho hàm số y = f(x). Hàm số y = f'(x) có bảng biến thiên như sau:

Bất phương trình $f(x) < 3.e^{x+2} + m$ có nghiệm $x \in (-2,2)$ khi và chỉ khi:

A.
$$m \ge f(-2) - 3$$

A.
$$m \ge f(-2) - 3$$
 B. $m > f(-2) - 3e^4$ **C.** $m \ge f(2) - 3e^4$ **D.** $m > f(-2) - 3$

C.
$$m \ge f(2) - 3e^4$$

D.
$$m > f(-2) - 3$$

Bất phương trình tương đương với $m > g(x) = f(x) - 3.e^{x+2}$.

Ta có
$$g'(x) = f'(x) - 3 \cdot e^{x+2} < 3 - 3 \cdot e^{-2+2} = 0, \forall x \in (-2, 2).$$

Do đó
$$g(x) > g(2) = f(2) - 3.e^4, \forall x \in (-2,2).$$

Vậy $m > f(2) - 3.e^4$ thì phương trình có nghiệm trên khoảng (-2,2).

(THPT-Thang-Long-Ha-Noi- 2019) Cho hàm số f(x) có đồ thị như hình vẽ bên. Câu 12.

Bất phương trình $f(e^x) < m(3e^x + 2019)$ có nghiệm $x \in (0;1)$ khi và chỉ khi

A.
$$m > -\frac{4}{1011}$$

A.
$$m > -\frac{4}{1011}$$
. **B.** $m \ge -\frac{4}{3e + 2019}$. **C.** $m > -\frac{2}{1011}$. **D.** $m > \frac{f(e)}{3e + 2019}$.

D.
$$m > \frac{f(e)}{3e + 2019}$$
.

Đặt $t = e^x$ (t > 0). Bất phương trình có dạng: $f(t) < m(3t + 2019) \Leftrightarrow \frac{f(t)}{3t + 2019} < m$.

Ta có: $x \in (0;1) \Leftrightarrow t = e^x \in (1;e)$.

NGUYĒN <mark>BẢO</mark> VƯƠNG - 0946798489

Xét hàm
$$g(t) = \frac{f(t)}{3t + 2019}$$
 có $g'(t) = \frac{f'(t)(3t + 2019) - 3f(t)}{(3t + 2019)^2}$.

Dựa vào đồ thị hàm số f(x), ta thấy: f(x) đồng biến trên khoảng (1;e) và f(x) < 0

$$\forall x \in (1;e) \Rightarrow \begin{cases} f(x) < 0 \\ f'(x) > 0 \end{cases} \forall x \in (1;e).$$

 $\Rightarrow g'(t) > 0 \ \forall t \in (1;e) \Rightarrow g(t) \text{ dồng biến trên khoảng } (1;e) \Rightarrow g(1) < g(e) \ \forall t \in (1;e).$

Vậy bất phương trình $f(e^x) < m(3e^x + 2019)$ có nghiệm $x \in (0,1)$

$$\Leftrightarrow$$
 Bất phương trình $\Leftrightarrow \frac{f(t)}{3t + 2019} < m$ có nghiệm $t \in (1; e) \Leftrightarrow m > g(1) = -\frac{4}{2022} = -\frac{2}{1011}$.

Câu 13. (THPT Yên Khánh - Ninh Bình - 2019) Cho hàm số y = f(x) liên tục trên đoạn [-1;9] và có đồ thị là đường cong trong hình vẽ dưới đây

Có bao nhiều giá trị nguyên của tham số m để bất phương trình $16.3^{f(x)} - \left[f^2(x) + 2f(x) - 8\right].4^{f(x)} \ge \left(m^2 - 3m\right).6^{f(x)}$ nghiệm đúng với mọi giá trị thuộc $\left[-1;9\right]$?

A. 32.

B. 31

C. 5.

D. 6.

Lời giải

Dễ thấy
$$-4 \le f(x) \le 2$$
, $\forall x \in [-1;9]$ (1) nên $-[f(x)+4].[f(x)-2] \ge 0$, $\forall x \in [-1;9]$.

Do đó
$$- [f^2(x) + 2f(x) - 8] \ge 0, \forall x \in [-1; 9]$$
 (2).

Ta có
$$16.3^{f(x)} - [f^2(x) + 2f(x) - 8].4^{f(x)} \ge (m^2 - 3m).6^{f(x)}$$
 nghiệm đúng với mọi $x \in [-1; 9]$

$$\Leftrightarrow 16. \left(\frac{1}{2}\right)^{f(x)} - \left[f^2(x) + 2f(x) - 8\right] \cdot \left(\frac{2}{3}\right)^{f(x)} \ge m^2 - 3m \text{ nghiệm đúng với mọi } x \in [-1;9]$$

$$\Leftrightarrow \alpha = \min_{x \in [-1; 9]} \left\{ 16 \cdot \left(\frac{1}{2}\right)^{f(x)} - \left[f^{2}(x) + 2f(x) - 8\right] \cdot \left(\frac{2}{3}\right)^{f(x)} \right\} \ge m^{2} - 3m (3).$$

Từ (1) và (2) ta có
$$\left(\frac{1}{2}\right)^{f(x)} \ge \left(\frac{1}{2}\right)^2$$
 và $-\left[f^2(x) + 2f(x) - 8\right] \cdot \left(\frac{2}{3}\right)^{f(x)} \ge 0, \forall x \in [-1; 9].$

Suy ra
$$16.\left(\frac{1}{2}\right)^{f(x)} - \left[f^2(x) + 2f(x) - 8\right].\left(\frac{2}{3}\right)^{f(x)} \ge 4, \ \forall x \in [-1; 9].$$

Dấu "=" xảy ra khi và chỉ khi
$$f(x) = 2 \Leftrightarrow x = -1 \lor x = a \ (7 < a < 8)$$
.

Do đó
$$\alpha = 4$$
 và (3) $\Leftrightarrow 4 \ge m^2 - 3m \Leftrightarrow -1 \le m \le 4$. Vì m nguyên nên $m \in \{-1, 0, 1, 2, 3, 4\}$.

Câu 14. (Sở Cần Thơ - 2019) Tất cả giá trị của tham số thực m sao cho bất phương trình $9^{x}-2(m+1).3^{x}-3-2m>0$ có nghiệm đúng với mọi số thực x là

$$\underline{\mathbf{A}}. \ m \le -\frac{3}{2}. \qquad \qquad \mathbf{B}. \ m \ne 2.$$

C. $m < -\frac{3}{2}$. **D.** $m \in \emptyset$.

Lời giải

Chọn A

Ta có: $9^x - 2(m+1) \cdot 3^x - 3 - 2m > 0$

$$\Leftrightarrow (3^x)^2 - 2.3^x - 3 > (3^x + 1).2m$$

$$\Leftrightarrow (3^x + 1)(3^x - 3) > (3^x + 1).2m$$

$$\Leftrightarrow 3^x - 3 > 2m \Leftrightarrow 3^x > 3 + 2m$$

Vậy, để $9^x - 2(m+1) \cdot 3^x - 3 - 2m > 0, \forall x \in \mathbb{R}$ khi $3 + 2m \le 0 \iff m \le -\frac{3}{2}$.

(Sở Nam Định - 2019) Có bao nhiều giá trị nguyên dương của tham số m để tập nghiệm của bất phương trình $(3^{x+2} - \sqrt{3})(3^x - 2m) < 0$ chứa không quá 9 số nguyên?

A. 3281.

B. 3283.

C. 3280.

D. 3279.

Lời giải

Chon C

Do *m* là số nguyên dương nên $2m > 1 = \log_3 2m > 0$.

$$3^{x+2} - \sqrt{3} = 0 \Leftrightarrow 3^{x+2} = 3^{\frac{1}{2}} \Leftrightarrow x = -\frac{3}{2}$$

$$3^x - 2m = 0 \Leftrightarrow x = \log_3 2m$$

Lập bảng biến thiên, ta kết luận: tập nghiệm bất phương trình này là $\left(-\frac{3}{2}; \log_3 2m\right)$

Suy ra, $\log_3 2m \le 8 \Leftrightarrow 2m \le 3^8 \Leftrightarrow m \le \frac{6561}{2} = 3280.5 = 9$

(THPT Cẩm Bình Hà Tỉnh 2019) Có mấy giá trị nguyên dương của m để bất phương trình Câu 16. $9^{m^2x} + 4^{m^2x} \ge m.5^{m^2x}$ có nghiệm?

A. 10.

B. Vô số.

C. 9.

D. 1.

Lời giải

Chon B

Từ giả thiết, ta chỉ xét $m \in \mathbb{Z}^+$

Ta có:
$$9^{m^2x} + 4^{m^2x} \ge m.5^{m^2x} \Leftrightarrow \left(\frac{9}{5}\right)^{m^2x} + \left(\frac{4}{5}\right)^{m^2x} \ge m \ (1)$$

$$C\acute{o} \left(\frac{9}{5}\right)^{m^2x} + \left(\frac{4}{5}\right)^{m^2x} \ge 2\sqrt{\left(\frac{9}{5}\right)^{m^2x} \cdot \left(\frac{4}{5}\right)^{m^2x}} = 2\left(\frac{6}{5}\right)^{m^2x}.$$

Do đó nếu có x_0 là nghiệm của bất phương trình $2\left(\frac{6}{5}\right)^{m} \ge m$

thì x_0 cũng là nghiệm của $\left(\frac{9}{5}\right)^{m^{-x}} + \left(\frac{4}{5}\right)^{m^{-x}} \ge m$.

Ta xét các giá trị $m \in \mathbb{Z}^+$ làm cho bất phương trình $2\left(\frac{6}{5}\right)^{m^*x} \ge m$ (2) có nghiệm.

$$\text{Vi } 2\left(\frac{6}{5}\right)^{m^2x} \ge m \Leftrightarrow \left(\frac{6}{5}\right)^{m^2x} \ge \frac{m}{2}, \ m \in \mathbb{Z}^+$$

$$\Leftrightarrow m^2 x \geq \log_{\frac{6}{5}} \left(\frac{m}{2} \right) \iff x \geq \frac{1}{m^2} \log_{\frac{6}{5}} \left(\frac{m}{2} \right), \text{ v\'oi } m \in \mathbb{Z}^+.$$

Vậy với $m \in \mathbb{Z}^+$ thì bất phương trình (2) có nghiệm tương ứng là $x \ge \frac{1}{m^2} \log_{\frac{6}{2}} \left(\frac{m}{2} \right)$.

Suy ra có vô số giá trị $m \in \mathbb{Z}^+$ làm cho bất phương trình (1) có nghiệm.

(Chuyên Nguyễn Trãi Hải Dương 2019) Bất phương trình $4^x - (m+1)2^{x+1} + m \ge 0$ nghiệm Câu 17. đúng với mọi $x \ge 0$. Tập tất cả cá giá trị của m là

A.
$$(-\infty;12)$$
.

$$\underline{\mathbf{B}}.\ (-\infty;-1].$$

$$\mathbf{C}.\ \left(-\infty;0\right].$$

D.
$$(-1;16]$$
.

Lời giải

Bất phương trình $4^x - (m+1)2^{x+1} + m \ge 0$ $(1) \Leftrightarrow 4^x - 2(m+1)2^x + m \ge 0$

Đặt $2^x = t$ bất phương trình trở thành $t^2 - 2(m+1)t + m \ge 0$ (2).

Bất phương trình (1) nghiệm đúng với mọi $x \ge 0$ khi và chỉ khi bất phương trình (2) nghiệm đúng với mọi $t \ge 1$.

$$(2) \Leftrightarrow (2t-1)m \le t^2 - 2t \Leftrightarrow m \le \frac{t^2 - 2t}{2t-1} \text{ (do } t \ge 1\text{)}.$$

Đặt
$$f(t) = \frac{t^2 - 2t}{2t - 1}$$
 với $t \ge 1$.

$$\Rightarrow f'(t) = \frac{2t^2 - 2t + 2}{(2t - 1)^2} > 0 \ \forall t \ge 1.$$

Bảng biến thiên

Từ bảng biến thiên ta có $f(t) \ge m \quad \forall t \in [1; +\infty) \iff m \le -1$. Vậy chọn **B**

(THPT Phan Bội Châu - Nghệ An 2019) Cho hàm số $f(x) = \cos 2x$. Bất phương trình Câu 18. $f^{(2019)}(x) > m$ đúng với mọi $x \in \left(\frac{\pi}{12}; \frac{3\pi}{8}\right)$ khi và chỉ khi

A.
$$m < 2^{2018}$$
.

B.
$$m \le 2^{2018}$$

B.
$$m \le 2^{2018}$$
. **C.** $m \le 2^{2019}$.

D.
$$m < 2^{2019}$$
.

Chon B

Xét hàm số $f(x) = \cos 2x$, TXĐ: R.

Ta có
$$f'(x) = -2\sin 2x$$
, $f''(x) = -2^2\cos 2x$, $f'''(x) = 2^3\sin 2x$, $f^{(4)}(x) = 2^4\cos 2x$.

Suy ra
$$f^{(2016)}(x) = 2^{2016}\cos 2x \implies f^{(2017)}(x) = -2^{2017}\sin 2x$$

$$\Rightarrow f^{(2018)}(x) = -2^{2018}\cos 2x$$

$$\Rightarrow f^{(2019)}(x) = 2^{2019} \sin 2x$$
.

$$\text{Vi } x \in \left(\frac{\pi}{12}; \frac{3\pi}{8}\right) \text{ nên } \frac{1}{2} < \sin 2x < \frac{\sqrt{2}}{2} \text{ hay } f^{(2019)}(x) > 2^{2018}, \ \forall \ x \in \left(\frac{\pi}{12}; \frac{3\pi}{8}\right).$$

Vậy
$$f^{(2019)}(x) > m$$
 đúng với mọi $x \in \left(\frac{\pi}{12}; \frac{3\pi}{8}\right)$ khi và chỉ khi $m \le 2^{2018}$.

(Chuyên Lê Quý Đôn – Điện Biên 2019) Cho hàm số y = f(x). Hàm số y = f'(x) có bảng Câu 19. biến thiên như sau:

Bất phương trình $f(x) > 2^x + m$ đúng với mọi $x \in (-1,1)$ khi và chỉ khi:

A.
$$m > f(1) - 2$$

$$\underline{\mathbf{B}}$$
. $m \leq f(1) - 2$

A.
$$m > f(1) - 2$$
. **B.** $m \le f(1) - 2$. **C.** $m \le f(-1) - \frac{1}{2}$. **D.** $m > f(-1) - \frac{1}{2}$

D.
$$m > f(-1) - \frac{1}{2}$$

Chọn B

$$f(x) > 2^x + m$$
, $\forall x \in (-1;1) \Leftrightarrow f(x) - 2^x > m \Leftrightarrow f(x) - 2^x > m$

Xét hàm số
$$g(x) = f(x) - 2^x$$
 trên $(-1;1)$.

Ta có:
$$g'(x) = f'(x) - 2^x \cdot \ln 2$$
.

Ta thấy:
$$\forall x \in (-1,1)$$
 thì $f'(x) \le 0$ và $2^x \cdot \ln 2 > 0$.

Do đó
$$g'(x) = f'(x) - 2^x \cdot \ln 2 < 0, \forall x \in (-1,1).$$

Bảng biến thiên

x	-1 1
g'(x)	_
g(x)	g(-1)
	→ g(1)

Từ bảng biến thiên ta có: $m \le g(1) \Leftrightarrow m \le f(1) - 2$.

Câu 20. (Bình Giang-Hải Dương 2019) Số giá trị nguyên dương của tham số m để bất phương trình $9^{\sqrt{x^2-3x+m}} + 2.3^{\sqrt{x^2-3x+m}-2+x} < 3^{2x-3}$ có nghiệm là

A. 4

R. 8

C. 1.

D. 6.

Lời giải

Chọn C

Đặt $t = 3^{\sqrt{x^2 - 3x + m} - x}$ với t > 0, bất phương trình đã cho trở thành $t^2 + \frac{2}{9}t - \frac{1}{27} < 0 \Leftrightarrow -3 < t < \frac{1}{9}$.

Do đó $0 < t < \frac{1}{9} \Leftrightarrow \sqrt{x^2 - 3x + m} - x < -2 \Leftrightarrow \sqrt{x^2 - 3x + m} < x - 2$

$$\Leftrightarrow \begin{cases} x > 2 \\ x^2 - 3x + m \ge 0 \\ x^2 - 3x + m < x^2 - 4x + 4 \end{cases} \Leftrightarrow \begin{cases} x > 2 \\ x^2 - 3x + m \ge 0 \end{cases}$$
 (I)

Để bất phương trình đề bài cho có nghiệm thì hệ bất phương trình (I) có nghiệm ta đặt

$$\begin{cases} x > 2 & (1) \\ x^2 - 3x + m \ge 0 & (2) \\ x < 4 - m & (3) \end{cases}$$

Điều kiện cần: Từ (1) và (3) ta có $4-m > 2 \Leftrightarrow m < 2$.

Do m là số nguyên dương nên m=1.

Điều kiện đủ: Với m=1, hệ bất phương trình (I) trở thành $\begin{cases} x>2\\ x^2-3x+1\geq 0\\ x<3 \end{cases}$

$$\Leftrightarrow \begin{cases} 2 < x < 3 \\ x < \frac{3 - \sqrt{5}}{2} \lor x > \frac{3 + \sqrt{5}}{2} \end{cases} \Leftrightarrow \frac{3 + \sqrt{5}}{2} < x < 3. \text{ Vậy hệ bất phương trình (I) có nghiệm.}$$

Vậy m=1.

Câu 21. (**Hậu Lộc 2-Thanh Hóa- 2019**) Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình $m^2(x^4-x^3)-m(x^3-x^2)-x+e^{x-1}\geq 0$ đúng với mọi $x\in\mathbb{R}$. Số tập con của S là

A. 2.

B. 4.

C.3

D. 1.

Lời giải

Chọn B

Xét hàm số $f(x) = m^2(x^4 - x^3) - m(x^3 - x^2) - x + e^{x-1}$ trên \mathbb{R} .

Ta có $f'(x) = m^2 (4x^3 - 3x^2) - m(3x^2 - 2x) - 1 + e^{x-1}$ liên tục trên \mathbb{R} .

Do f(1) = 0 nên từ giả thiết ta có $f(x) \ge f(1)$, $\forall x \in \mathbb{R} \implies \min_{\mathbb{R}} f(x) = f(1)$.

$$\Rightarrow f'(1) = 0 \Rightarrow m^2 - m = 0 \Rightarrow \begin{bmatrix} m = 1 \\ m = 0. \end{bmatrix}$$

 \Box Với m = 0 ta có $f(x) = e^{x-1} - x \Rightarrow f'(x) = e^{x-1} - 1$. Cho $f'(x) = 0 \Leftrightarrow x = 1$.

Bảng biến thiên của f(x):

x	-∞		1		+∞
f'(x)		-	0	+	
f(x)			• 0		

Trường hợp m = 0, yêu cầu bài toán được thỏa mãn.

$$\Box$$
 Với $m=1$ ta có $f(x)=x^4-x^3-x^3+x^2+e^{x-1}=(x-1)^2x^2+e^{x-1}-x\geq 0, \ \forall x\in\mathbb{R}.$

Trường hợp m=1 yêu cầu bài toán cũng được thỏa mãn.

Bắc Ninh 2019) Cho Câu 22. Nhân Tông phương trình $m.3^{x+1} + (3m+2)(4-\sqrt{7})^x + (4+\sqrt{7})^x > 0$, với m là tham số thực. Tìm tất cả các giá trị thực của tham số m để bất phương trình đã cho nghiệm đúng với mọi $x \in (-\infty, 0]$.

A.
$$m \ge -\frac{2-2\sqrt{3}}{3}$$
. **B.** $m \ge \frac{2-2\sqrt{3}}{3}$. **C.** $m > \frac{2-2\sqrt{3}}{3}$. **D.** $m > \frac{2+2\sqrt{3}}{3}$.

B.
$$m \ge \frac{2 - 2\sqrt{3}}{3}$$

C.
$$m > \frac{2 - 2\sqrt{3}}{3}$$
.

D.
$$m > \frac{2 + 2\sqrt{3}}{3}$$

Chọn C

$$\text{Ta c\'o } m.3^{x+1} + \left(3m+2\right).\left(4-\sqrt{7}\right)^x + \left(4+\sqrt{7}\right)^x > 0 \Leftrightarrow \left(\frac{4+\sqrt{7}}{3}\right)^x + \left(3m+2\right)\left(\frac{4-\sqrt{7}}{3}\right)^x + 3m > 0 \; .$$

Đặt
$$t = \left(\frac{4+\sqrt{7}}{3}\right)^x$$
. Ta có $x \in (-\infty; 0] \iff 0 < t \le 1$.

Ta tìm tham số m sao cho $t^2 + 3mt + 3m + 2 > 0$ đúng với mọi $0 < t \le 1$

$$\Leftrightarrow m > \frac{-t^2 - 2}{3t + 3}, \forall t \in (0;1].$$

Xét hàm số $f(t) = -\frac{t^2 + 2}{3t + 3}$ trên (0;1].

Ta có
$$f'(t) = 0 \Leftrightarrow -\frac{1}{3} \cdot \frac{t^2 + 2t - 2}{(t+1)^2} = 0 \Rightarrow \begin{bmatrix} t = -1 - \sqrt{3} \\ t = -1 + \sqrt{3} \end{bmatrix}$$

Lập bảng biến thiên:

Vậy
$$m > f(t), \forall t \in (0;1] \Leftrightarrow m > \frac{2-2\sqrt{3}}{3}.$$

- Câu 23. (Chuyên Hưng Yên - 2020) Có bao nhiều giá trị nguyên dương của tham số m để tập nghiệm của bất phương trình $(3^{x+2} - \sqrt{3})(3^x - 2m) < 0$ chứa không quá 9 số nguyên?
 - **A.** 1094.
- **B.** 3281.
- **C.** 1093.
- **D.** 3280.

Lời giải.

Chon D

Đặt $t = 3^x$, (t > 0) bất phương trình $(3^{x+2} - \sqrt{3})(3^x - 2m) < 0(1)$ trở thành $(9t - \sqrt{3})(t - 2m) < 0(2)$.

Nếu $2m \le \frac{\sqrt{3}}{2} \iff m \le \frac{\sqrt{3}}{12} < 1$ thì không có số nguyên dương m nào thỏa mãn yêu cầu bài toán.

Nếu $2m > \frac{\sqrt{3}}{\Omega} \iff m > \frac{\sqrt{3}}{\Omega}$ thì bất phương trình $(2) \iff \frac{\sqrt{3}}{\Omega} < t < 2m$.

Khi đó tập nghiệm của bất phương trình (1) là $S = \left(-\frac{3}{2}; \log_3(2m)\right)$.

Để S chứa không quá 9 số nguyên thì $\log_3(2m) \le 8 \Leftrightarrow 0 < m \le \frac{3^8}{2}$

Vậy có 3280 số nguyên dương m thỏa mãn.

(Chuyên Hùng Vương - Phú Tho - 2020) Có bao nhiều m nguyên dương để bất phương trình Câu 24. $3^{2x+2} - 3^x (3^{m+2} + 1) + 3^m < 0$ có không quá 30 nghiệm nguyên?

Lời giải

$$3^{2x+2} - 3^{x} (3^{m+2} + 1) + 3^{m} < 0 \Leftrightarrow 9.3^{2x} - 9.3^{x}.3^{m} - 3^{x} + 3^{m} < 0$$
$$\Leftrightarrow 9.3^{x} (3^{x} - 3^{m}) - (3^{x} - 3^{m}) < 0$$
$$\Leftrightarrow (3^{x} - 3^{m})(9.3^{x} - 1) < 0$$

Ta có $3^x - 3^m = 0 \Leftrightarrow x = m$.

$$9.3^{x} - 1 = 0 \Leftrightarrow x = -2.$$

Bảng xét dấu

		15	>			
x	 -2,11			m		$+\infty$
VT	+	0	-	0	+	

Ta có tập nghiệm S = (-2; m).

Tập hợp các nghiệm nguyên là $\{-1; 0; 1; ...; m-1\}$.

Để có không quá 30 nghiệm nguyên thì $m-1 \le 28 \Leftrightarrow m \le 29$.

(ĐHQG Hà Nội - 2020) Điều kiện của *m* Câu 25. đê hệ bât phương trình $\begin{cases} 7^{2x+\sqrt{x+1}} - 7^{2+\sqrt{x+1}} + 2020x \le 2020 \\ x^2 - (m+2)x + 2m + 3 \ge 0 \end{cases}$ có nghiệm là :

A.
$$m \ge -3$$
.

B.
$$-2 \le m \le 1$$
.

C.
$$-1 \le m \le 2$$
. **D.** $m \ge -2$.

D.
$$m > -2$$
.

Lời giải

$$7^{2x+\sqrt{x+1}} - 7^{2+\sqrt{x+1}} + 2020x \le 2020 \Leftrightarrow 7^{2x+\sqrt{x+1}} + 1010.\left(2x+\sqrt{x+1}\right) \le 7^{2+\sqrt{x+1}} + 1010.\left(2+\sqrt{x+1}\right) \quad (*)$$

Hàm số $f(t) = 7^t + 1010.t$ đồng biến trên \mathbb{R} .

$$(*) \Leftrightarrow f(2x+\sqrt{x+1}) \leq f(2+\sqrt{x+1})$$

Suy ra:
$$2x + \sqrt{x+1} \le 2 + \sqrt{x+1} \Rightarrow -1 \le x \le 1$$
.

$$x \in [-1;1]: x^2 - (m+2)x + 2m + 3 \ge 0 \iff m \ge \frac{x^2 - 2x + 3}{x - 2}.$$

Ycbt
$$\Leftrightarrow \exists x \in [-1;1]: m \ge \frac{x^2 - 2x + 3}{x - 2}$$
 (**)

х	-1	$2 - \sqrt{3}$	1
$\frac{x^2-4x+1}{\left(x-2\right)^2}$	+	- 0	-
$\frac{x^2 - 2x + 3}{x - 2}$	-2	2-2√3 <	

Từ bảng biến thiên ta có, $(**) \Leftrightarrow m \ge -2$.

(Sở Hà Nội - Lần 2 - 2020) Có bao nhiều giá trị nguyên của tham số m để bất phương trình $(3^{x^2-x}-9)(2^{x^2}-m) \le 0$ có 5 nghiệm nguyên?

A. 65021.

B. 65024

C. 65022.

D. 65023.

Lời giải

$$(3^{x^2-x}-9)(2^{x^2}-m) \le 0 (1)$$

Th1: Xét $3^{x^2-x} - 9 = 0 \Leftrightarrow x^2 - x = 2 \Leftrightarrow \begin{bmatrix} x = -1 \\ x = 2 \end{bmatrix}$ là nghiệm của bất phương trình (1).

Th2: Xét
$$3^{x^2-x} - 9 > 0 \Leftrightarrow x^2 - x > 2 \Leftrightarrow \begin{bmatrix} x < -1 \\ x > 2 \end{bmatrix}$$
.

Khi đó, (1) $\Leftrightarrow 2^{x^2} \le m \Leftrightarrow x^2 \le \log_2 m$ (2)

Nếu m < 1 thì (2) vô nghiệm.

Nếu $m \ge 1$ thì (2) $\Leftrightarrow -\sqrt{\log_2 m} \le x \le \sqrt{\log_2 m}$.

Do đó, (1) có 5 nghiệm nguyên $\Leftrightarrow ((-\infty;-1)\cup(2;+\infty))\cap [-\sqrt{\log_2 m};\sqrt{\log_2 m}]$ có 3 giá trị nguyên $\sqrt{\log_2 m} \in [3;4) \Leftrightarrow 512 \le m < 65536$ (thỏa đk $m \ge 1$). Suy ra có 65024 giá trị m nguyên thỏa mãn.

Th3: Xét $3^{x^2-x} - 9 < 0 \Leftrightarrow x^2 - x < 2 \Leftrightarrow -1 < x < 2$. Vì (-1;2) chỉ có hai số nguyên nên không có giá trị m nào để bất phương trình (1) có 5 nghiệm nguyên.

Vậy có tất cả 65024 giá trị *m* nguyên thỏa yebt.

2018) - ĐBSH -Câu 27. (Cum Cho $m.3^{x+1} + (3m+2)(4-\sqrt{7})^x + (4+\sqrt{7})^x > 0$, với m là tham số. Tìm tất cả các giá trị của tham số mđể bất phương trình đã cho nghiệm đúng với mọi $x \in (-\infty, 0)$.

A.
$$m > \frac{2 + 2\sqrt{3}}{3}$$

B.
$$m > \frac{2 - 2\sqrt{3}}{2}$$

C.
$$m \ge \frac{2 - 2\sqrt{3}}{3}$$

A.
$$m > \frac{2 + 2\sqrt{3}}{3}$$
. **B.** $m > \frac{2 - 2\sqrt{3}}{3}$. **C.** $m \ge \frac{2 - 2\sqrt{3}}{3}$. **D.** $m \ge -\frac{2 - 2\sqrt{3}}{3}$.

$$m.3^{x+1} + (3m+2).(4-\sqrt{7})^x + (4+\sqrt{7})^x > 0$$

$$\Leftrightarrow 3m + (3m+2) \cdot \left(\frac{4-\sqrt{7}}{3}\right)^x + \left(\frac{4+\sqrt{7}}{3}\right)^x > 0$$

$$\text{D} \check{\text{a}} t \ t = \left(\frac{4 + \sqrt{7}}{3}\right)^x$$

Khi x < 0 thì 0 < t < 1

BPT trở thành $3m + \frac{3m+2}{t} + t > 0$, $\forall t \in (0;1)$.

$$\Leftrightarrow 3m > \frac{-t^2 - 2}{t + 1}, \ \forall t \in (0; 1)$$

Xét
$$f(t) = \frac{-t^2 - 2}{t + 1}, \forall t \in (0;1)$$

$$f'(t) = \frac{-t^2 - 2t + 2}{t + 1} = 0 \Leftrightarrow t = \sqrt{3} - 1$$

Vậy yebt
$$\Leftrightarrow 3m > \frac{2\sqrt{3} - 6}{\sqrt{3}} \Leftrightarrow m > \frac{2 - 2\sqrt{3}}{3}$$
.

(THPT Thái Phiên - Hải Phòng - 2018) Tìm tất cả các giá trị thực của tham số m để bất Câu 28. phương trình $\sqrt{2^x + 3} + \sqrt{5 - 2^x} \le m$ nghiệm đúng với mọi $x \in (-\infty; \log_2 5)$.

$$\underline{\mathbf{A}}$$
. $m \ge 4$

B.
$$m \ge 2\sqrt{2}$$
.

C.
$$m < 4$$
.

D.
$$m < 2\sqrt{2}$$
.

Đặt
$$2^x = t$$
. Vì $x < \log_2 5 \Rightarrow 0 < 2^x < 2^{\log_2 5} \Rightarrow 0 < t < 5$

Yêu cầu bài toán trở thành $\sqrt{t+3} + \sqrt{5-t} \le m$, $\forall t \in (0,5)$.

Xét hàm số $f(t) = \sqrt{t+3} + \sqrt{5-t}$ với $t \in (0,5)$.

Có
$$f'(t) = \frac{1}{2\sqrt{t+2}} - \frac{1}{2\sqrt{5-t}}$$
.

$$f'(t) = 0 \Rightarrow \frac{1}{2\sqrt{t+3}} - \frac{1}{2\sqrt{5-t}} = 0 \Rightarrow \sqrt{t+3} = \sqrt{5-t} \Rightarrow t+3 = 5-t \Rightarrow t = 1.$$

Bảng biến thiên

$$\begin{array}{c|cccc}
t & 0 & \frac{3}{2} & 5 \\
\hline
f' & + & 0 & - \\
\hline
f(t) & \sqrt{5} + \sqrt{3} & 2\sqrt{2}
\end{array}$$

Dựa vào bảng biến thiên ta có: $m \ge 4$.

(THPT Ngô Quyền - Hải Phòng - 2018) Tìm tất cả các giá trị của m để bất phương trình Câu 29. $m.4^{x^2-2x-1}-(1-2m).10^{x^2-2x-1}+m.25^{x^2-2x-1} \le 0$ nghiệm đúng với mọi $x \in \left[\frac{1}{2}; 2\right]$.

A.
$$m < 0$$
.

B.
$$m \ge \frac{100}{841}$$
. $C. m \le \frac{1}{4}$.

C.
$$m \le \frac{1}{4}$$
.

D.
$$m \le \frac{100}{841}$$
.

$$m.4^{x^2-2x-1}-(1-2m).10^{x^2-2x-1}+m.25^{x^2-2x-1} \le 0$$

$$\Leftrightarrow m - (1 - 2m) \cdot \left(\frac{5}{2}\right)^{x^2 - 2x - 1} + m \cdot \left(\frac{5}{2}\right)^{2 \cdot (x^2 - 2x - 1)} \le 0 \quad (1)$$

Đặt
$$t = \left(\frac{5}{2}\right)^{x^2 - 2x - 1}$$
, Xét $u(x) = x^2 - 2x - 1$, $\forall x \left[\frac{1}{2}; 2\right]$.

$$u'(x) = 2x - 2$$
; $u'(x) = 0 \Leftrightarrow x = 1$

$$u\left(\frac{1}{2}\right) = -\frac{7}{4}; \ u\left(1\right) = -2; u\left(2\right) = -1 \Rightarrow \min_{\left[\frac{1}{2}; 2\right]} u\left(x\right) = -2, \ \max_{\left[\frac{1}{2}; 2\right]} u\left(x\right) = -1.$$

$$\Rightarrow \frac{4}{25} \le t \le \frac{2}{5}$$

$$(1) \Leftrightarrow m - (1 - 2m) \cdot t + m \cdot t^2 \le 0$$

$$\Leftrightarrow mt^2 - (1 - 2m)t + m \le 0$$

$$\Leftrightarrow m(t^2+2t+1) \le t$$

$$\Leftrightarrow m \le \frac{t}{t^2 + 2t + 1}$$

Xét hàm số
$$f(t) = \frac{t}{t^2 + 2t + 1}, t \in \left[\frac{4}{25}; \frac{2}{5}\right]$$

$$f'(t) = \frac{-t^2 + 1}{(t^2 + 2t + 1)}; f'(t) = 0 \Leftrightarrow -t^2 + 1 = 0 \Leftrightarrow \begin{bmatrix} t = -1(l) \\ t = 1 \end{bmatrix}$$

$$f\left(\frac{4}{25}\right) = \frac{100}{841}; \ f\left(\frac{2}{5}\right) = \frac{10}{49}.$$

$$\Rightarrow \min_{\left[\frac{4}{25}, \frac{2}{5}\right]} f(t) = \frac{100}{841}.$$

Vậy $m \le \frac{100}{841}$ thì bất phương trình nghiệm đúng với mọi $x \in \left[\frac{1}{2}; 2\right]$.

DẠNG 3. BẤT PHƯƠNG TRÌNH NHIỀU ẨN

Câu 1. (**Mã 101 - 2020 Lần 1**) Có bao nhiều số nguyên x sao cho ứng với mỗi x có không quá 728 số nguyên y thỏa mãn $\log_4(x^2+y) \ge \log_3(x+y)$?

A. 59.

- **B.** 58.
- <u>C</u>. 116.

Lời giải

D. 115.

Chọn C.

Với moi $x \in \mathbb{Z}$ ta có $x^2 \ge x$.

Xét hàm số
$$f(y) = \log_3(x+y) - \log_4(x^2 + y)$$

Tập xác định $D = (-x; +\infty)$ (do $y > -x \Rightarrow y > -x^2$).

$$f'(y) = \frac{1}{(x+y)\ln 3} - \frac{1}{(x^2+y)\ln 4} \ge 0, \ \forall x \in D \ (\text{do } x^2+y \ge x+y > 0, \ln 4 > \ln 3)$$

 $\Rightarrow f$ tăng trên D.

Ta có
$$f(-x+1) = \log_3(x-x+1) - \log_4(x^2-x+1) \le 0$$
.

Có không quá 728 số nguyên y thỏa mãn $f(y) \le 0$

$$\Leftrightarrow f(-x+729) > 0 \Leftrightarrow \log_3 729 - \log_4(x^2 - x + 729) > 0$$

$$\Leftrightarrow x^2 - x + 729 - 4^6 < 0 \Leftrightarrow x^2 - x - 3367 < 0$$

$$\Leftrightarrow$$
 -57,5 \leq x \leq 58,5

Mà $x \in \mathbb{Z}$ nên $x \in \{-57, -56, ..., 58\}$.

Vậy có 58-(-57)+1=116 số nguyên *x* thỏa.

- **Câu 2.** (**Mã 102 2020 Lần 1**) Có bao nhiều số nguyên x sao cho ứng với mỗi x có không quá 242 số nguyên y thỏa mãn $\log_4(x^2+y) \ge \log_3(x+y)$?
 - **A.** 55.

- **B.** 28.
- **C.** 29.
- **D.** 56.

Lời giải

Chọn D

Điều kiện:
$$\begin{cases} x^2 + y > 0 \\ x + y > 0 \end{cases}$$
.

Đặt
$$\log_3(x+y) = t$$
, ta có
$$\begin{cases} x^2 + y \ge 4^t \\ x + y = 3^t \end{cases} \Leftrightarrow \begin{cases} \boxed{x^2 - x \ge 4^t - 3^t} \\ y = 3^t - x \end{cases}$$

Nhận xét rằng hàm số $f(t) = 4^t - 3^t$ đồng biến trên khoảng $(0; +\infty)$ và f(t) > 0 với mọi t > 0

Gọi
$$n \in \mathbb{Z}$$
 thỏa $4^n - 3^n = x^2 - x$, khi đó $\binom*{} \Leftrightarrow \boxed{t \le n}$

Từ đó, ta có $-x < y = 3^t - x \le 3^n - x$.

Mặt khác, vì có không quá 242 số nguyên y thỏa mãn đề bài nên $3^n \le 242 \Leftrightarrow n \le \log_3 242$.

Từ đó, suy ra
$$x^2 - x \le 4^{\log_3 242} - 242 \Leftrightarrow -27, 4 \le x \le 28, 4$$
.

Mà $x \in \mathbb{Z}$ nên $x \in \{-27, -26, ..., 27, 28\}$.

Vậy có 56 giá trị nguyên của x thỏa yêu cầu đề bài.

- **Câu 3.** (**Mã 103 2020 Lần 1**) Có bao nhiều số nguyên x sao cho ứng với mỗi x có không quá 127 số nguyên y thỏa mãn $\log_3(x^2 + y) \ge \log_2(x + y)$?
 - **A.** 89.
- **B.** 46.
- **C.** 45.
- **D.** 90.

Lời giải

<u>C</u>họn <u>D</u>

Ta có
$$\log_3(x^2 + y) \ge \log_2(x + y)(1)$$

Đặt
$$t = x + y \in \mathbb{N} * (\text{do } x, y \in \mathbb{Z}, x + y > 0)$$

$$(1) \Leftrightarrow \log_3\left(x^2 - x + t\right) \ge \log_2 t \Leftrightarrow g(t) = \log_2 t - \log_3\left(x^2 - x + t\right) \le O(2)$$

Đạo hàm $g'(t) = \frac{1}{t \ln 2} - \frac{1}{\left(x^2 - x + t\right) \ln 3} > 0$ với mọi y. Do đó g(t) đồng biến trên $\left[1; +\infty\right)$

Vì mỗi x nguyên có không quá 127 giá trị $t \in \mathbb{N}^*$ nên ta có

$$g(128) > 0 \Leftrightarrow \log_2 128 - \log_3 (x^2 - x + 128) > 0$$

$$\Leftrightarrow x^2 - x + 128 < 3^7 \Leftrightarrow -44, 8 \le x \le 45, 8$$

Như vậy có 90 giá trị thỏa yêu cầu bài toán

Câu 4. (**Mã 104 - 2020 Lần 1**) Có bao nhiều số nguyên x sao cho ứng với mỗi x có không quá 255 số nguyên y thỏa mãn $\log_3(x^2 + y) \ge \log_2(x + y)$?

Lời giải

Chon D

Ta có:
$$\log_3(x^2 + y) \ge \log_2(x + y) \iff x^2 + y \ge 3^{\log_2(x+y)} \iff x^2 + y \ge (x + y)^{\log_2 3} (1)$$

Đk:
$$x + y \ge 1$$
 (do $x, y \in \mathbb{Z}, x + y > 0$)

Đặt
$$t = x + y \ge 1$$
, nên từ $(1) \Rightarrow x^2 - x \ge t^{\log_2 3} - t$ (2)

Để (1) không có quá 255 nghiệm nguyên y khi và chỉ khi bất phương trình (2) có không quá 255 nghiệm nguyên dương t.

Đặt
$$M = f(255)$$
 với $f(t) = t^{\log_2 3} - t$.

Vì
$$f$$
 là hàm đồng biến trên $[1,+\infty)$ nên $(2) \Leftrightarrow 1 \le t \le f^{-1}(x^2-x)$ khi $x^2-x \ge 0$.

Vậy (2) có không quá 255 nghiệm nguyên
$$\Leftrightarrow f^{-1}(x^2 - x) \le 255 \Leftrightarrow x^2 - x \le 255 \Leftrightarrow -78 \le x \le 79$$
 $(x \in \mathbb{Z})$.

Vậy có 158 số nguyên x thỏa mãn yêu cầu bài toán.

Câu 5. (**Mã 102 - 2020 Lần 2**) Xét các số thực thỏa mãn $2^{x^2+y^2+1} \le (x^2+y^2-2x+2)4^x$. Giá trị lớn nhất của biểu thức $P = \frac{8x+4}{2x-y+1}$ gần với giá trị nào sau đây nhất?

Lời giải

D. 8.

Chon C

$$2^{x^2+y^2+1} \le (x^2+y^2-2x+2).4^x$$

$$2^{x^2+y^2-2x+1} \le x^2 + v^2 - 2x + 2$$

$$2^{(x-1)^2+y^2} - \left[(x-1)^2 + y^2 \right] - 1 \le 0(1)$$

Đặt
$$t = (x-1)^2 + y^2$$

$$(1) \Leftrightarrow 2^t - t - 1 \le 0 \Leftrightarrow 0 \le t \le 1 \Leftrightarrow (x - 1)^2 + y^2 \le 1$$

$$P = \frac{8x+4}{2x-y+1} \Rightarrow (2P-8).x-P.y+(P-4) = 0$$

Yêu cầu bài toán tương đương:

$$\frac{\left|2P - 8 + P - 4\right|}{\sqrt{\left(2P - 8\right)^2 + P^2}} \le 1 \iff \left|3P - 12\right| \le \sqrt{\left(2P - 8\right)^2 + P^2} \iff 5 - \sqrt{5} \le P \le 5 + \sqrt{5}$$

(**Mã 103 - 2020 Lần 2**) Xét các số thực x, y thỏa mãn $2^{x^2+y^2+1} \le (x^2+y^2-2x+2).4^x$. Giá trị nhỏ Câu 6. nhất của biểu thức $P = \frac{8x+4}{2x-v+1}$ **gần nhất** với số nào dưới đây

Lời giải

Chon C

Nhận xét
$$x^2 + y^2 - 2x + 2 > 0 \forall x; y$$

Bất phương trình
$$2^{x^2+y^2+1}$$

Bất phương tr
$$2^{x^2+y^2+1} \le \left(x^2+y^2-2x+2\right).4^x \Leftrightarrow \frac{2^{x^2+y^2+1}}{2^{2x}} \le \left(x^2+y^2-2x+2\right) \Leftrightarrow 2^{x^2+y^2-2x+1} \le \left(x^2+y^2-2x+2\right).$$

Đặt
$$t = x^2 + y^2 - 2x + 1$$

Bất phương trình
$$\Leftrightarrow 2^t \le t+1 \Leftrightarrow 2^t-t-1 \le 0$$

Đặt
$$f(t) = 2^t - t - 1$$
. Ta thấy $f(0) = f(1) = 0$.

Ta có
$$f'(t) = 2^t \ln 2 - 1$$

$$f'(t) = 0 \Leftrightarrow 2^t \ln 2 = 1 \Leftrightarrow t = \log_2\left(\frac{1}{\ln 2}\right) \approx 0,52$$

Quan sats BBT ta thấy $f(t) \le 0 \Leftrightarrow 0 \le t \le 1$

$$0 \le x^2 + y^2 - 2x + 1 \le 1 \Leftrightarrow (x - 1)^2 + y^2 \le 1$$
 (1)

Xét
$$P = \frac{8x+4}{2x-y+1} \Leftrightarrow 2Px - Py + P = 8x+4$$

$$\Leftrightarrow P-4=(8-2P)x+Py$$

$$\Leftrightarrow P-4+2P-8=(8-2P)x+2P-8+Py$$

$$\Leftrightarrow 3P-12 = (8-2P)(x-1) + Py$$

$$\Leftrightarrow (3P-12)^{2} = \left[(8-2P)(x-1) + Py \right]^{2} \le \left[(8-2P)^{2} + P^{2} \right] \left[(x-1)^{2} + y^{2} \right]$$

Thế (1) vào ta có
$$(3P-12)^2 \le \left[(8-2P)^2 + P^2 \right] \Leftrightarrow 4P^2 - 40P + 80 \le 0 \Leftrightarrow 5 - \sqrt{5} \le P \le 5 + \sqrt{5}$$
.

Vậy giá trị nhỏ nhất của P là $5-\sqrt{5}\approx 2,76$ gần giá trị 3 nhất.

Câu 7. (**Mã 101 - 2020 Lần 2**) Xét các số thực x, y thỏa mãn $2^{x^2+y^2+1} \le (x^2+y^2-2x+2)4^x$. Giá trị nhỏ nhất của biểu thức $P = \frac{4y}{2x+y+1}$ gần nhất với số nào dưới đây?

A.
$$-2$$
.

Lời giải

Chọn B

Ta có
$$2^{x^2+y^2+1} \le (x^2+y^2-2x+2)4^x \Leftrightarrow 2^{x^2+y^2+1-2x} \le x^2+y^2-2x+2$$

$$\Leftrightarrow 2^{(x-1)^2+y^2} \le (x-1)^2+y^2+1$$
. Đặt $t=(x-1)^2+y^2$ $(t \ge 0)$, ta được BPT: $2^t \le t+1$.

Đồ thị hàm số $y = 2^t$ và đồ thị hàm số y = t + 1 như sau:

Từ đồ thị suy ra $2^t \le t+1 \Leftrightarrow 0 \le t \le 1 \Rightarrow (x-1)^2 + y^2 \le 1$. Do đó tập hợp các cặp số (x;y) thỏa mãn thuộc hình tròn (C) tâm I(1;0), R=1.

Ta có $P = \frac{4y}{2x+y+1} \Leftrightarrow 2Px + (P-4)y + P = 0$ là phương trình của đường thẳng d.

Do d và (C) có điểm chung $\Leftrightarrow d(I,(d)) \le R \Leftrightarrow \frac{|3P|}{\sqrt{4P^2 + (P-4)^2}} \le 1 \Leftrightarrow 4P^2 + 8P - 16 \le 0$

 $\Leftrightarrow -1 - \sqrt{5} \le P \le -1 + \sqrt{5}$, suy ra giá trị nhỏ nhất của P **gần nhất** với -3.

Câu 8. (**Mã 104 - 2020 Lần 2**) Xét các số thực x và y thỏa mãn $2^{x^2+y^2+1} \le (x^2+y^2-2x+2)4^x$. Giá trị lớn nhất của biểu thức $P = \frac{4y}{2x+y+1}$ gần nhất với số nào dưới đây?

D. 2.

Lời giải

Chon A

Ta có:
$$2^{x^2+y^2+1} \le (x^2+y^2-2x+2)4^x \Leftrightarrow 2^{x^2-2x+1+y^2} \le (x^2-2x+1)+y^2+1$$
.

Đặt
$$t = x^2 - 2x + 1 + y^2 \Rightarrow t \ge 0$$
. Khi đó ta có $2^t \le t + 1$, $\forall t \ge 0$.

Đặt
$$f(t) = 2^{t} - t - 1$$
, $\forall t \ge 0$, ta có: $f'(t) = 2^{t} \ln 2 - 1$, cho $f'(t) = 0$.

Ta nhận thấy phương trình f'(t) = 0 có một nghiệm nên phương trình f(t) = 0 có tối đa hai

Mặt khác ta có f(0) = f(1) = 0. Suy ra phương trình f(t) = 0 có hai nghiệm t = 1 và t = 0.

Khi đó ta có bảng xét dấu của hàm số f(t) như sau:

t	0		1		$+\infty$
f(t)	0	-	0	+	

Khi đó $f(t) \le 0 \Leftrightarrow t \in [0;1]$. Suy ra $x^2 - 2x + 1 + y^2 \le 1 \Leftrightarrow (x-1)^2 + y^2 \le 1$.

Khi đó tập hợp các điểm M(x; y) là một hình tròn (S) tâm I(1; 0), bán kính R = 1.

Ta có:
$$P = \frac{4y}{2x + y + 1} \Leftrightarrow 2Px + (P - 4)y + P = 0$$
.

Khi đó ta cũng có tập hợp các điểm M(x;y) là một đường thẳng $\Delta: 2Px + (P-4)y + P = 0$.

Để Δ và (S) có điểm chung, ta suy ra $d(I, \Delta) \leq 1$.

$$\Leftrightarrow \frac{|2P+P|}{\sqrt{(2P)^2+(P-4)^2}} \le 1 \Leftrightarrow 3|P| \le \sqrt{5P^2-8P+16}$$

$$\Leftrightarrow 4P^2 + 8P - 16 \le 0 \Leftrightarrow -1 - \sqrt{5} \le P \le -1 + \sqrt{5}$$
.

Ta suy ra $P_{\text{max}}=-1+\sqrt{5}$. Dấu "=" xảy ra khi $\begin{cases} x=\frac{1}{3}\\ y=-\frac{\sqrt{5}}{3} \end{cases}$

(Mã 101 - 2020 Lần 1) Xét các số thực không âm x và y thỏa mãn $2x + y \cdot 4^{x+y-1} \ge 3$. Giá trị Câu 9. nhỏ nhất của biểu thức $P = x^2 + y^2 + 4x + 6y$ bằng

A.
$$\frac{33}{4}$$
.

B.
$$\frac{65}{8}$$
.

B.
$$\frac{65}{8}$$
. **C.** $\frac{49}{8}$.

D.
$$\frac{57}{8}$$
.

Lời giải

<u>B</u>. Chọn Cách 1:

Nhận xét: Giá trị của x, y thỏa mãn phương trình $2x + y \cdot 4^{x+y-1} = 3(1)$ sẽ làm cho biểu thức Pnhỏ nhất. Đặt a = x + y, từ (1) ta được phương trình

$$4^{a-1} + \frac{2}{y} \cdot a - 2 - \frac{3}{y} = 0.$$

Nhận thấy $y = 4^{a-1} + \frac{2}{v} \cdot a - 2 - \frac{3}{v}$ là hàm số đồng biến theo biến a, nên phương trình trên có

nghiệm duy nhất $a = \frac{3}{2} \Rightarrow x + y = \frac{3}{2}$.

Ta viết lại biểu thức $P = (x+y)^2 + 4(x+y) + 2(y-\frac{1}{4}) - \frac{1}{8} = \frac{65}{8}$. Vậy $P_{\min} = \frac{65}{8}$.

Cách 2:

Với mọi x, y không âm ta có

$$2x + y \cdot 4^{x+y-1} \ge 3 \iff x + y \cdot 4^{x+y-\frac{3}{2}} \ge \frac{3}{2} \iff \left(x + y - \frac{3}{2}\right) + y \cdot \left(4^{x+y-\frac{3}{2}} - 1\right) \ge 0 \tag{1}$$

Nếu
$$x + y - \frac{3}{2} < 0$$
 thì $\left(x + y - \frac{3}{2}\right) + y \cdot \left(4^{x + y - \frac{3}{2}} - 1\right) < 0 + y \cdot \left(4^0 - 1\right) = 0$ (vô lí)

$$V \hat{a} y \ x + y \ge \frac{3}{2}.$$

Áp dung bất đẳng thức Bunhyakovski ta được

$$P = x^2 + y^2 + 4x + 6y = (x+3)^2 + (y+2)^2 - 13$$

$$\geq \frac{1}{2}(x+y+5)^2 - 13 \geq \frac{1}{2}(\frac{3}{2}+5)^2 - 13 = \frac{65}{8}$$

Đẳng thức xảy ra khi
$$\begin{cases} x+y=\frac{3}{2} \\ x+3=y+2 \end{cases} \Leftrightarrow \begin{cases} y=\frac{5}{4} \\ x=\frac{1}{4} \end{cases}.$$

Vậy min
$$P = \frac{65}{8}$$
.

(Mã 102 - 2020 Lần 1) Xét các số thực không âm x và y thỏa mãn $2x + y \cdot 4^{x+y-1} \ge 3$. Giá trị nhỏ Câu 10. nhất của biểu thức $P = x^2 + y^2 + 6x + 4y$ bằng

$$\underline{\mathbf{A}} \cdot \frac{65}{8}$$
.

B.
$$\frac{33}{4}$$

B.
$$\frac{33}{4}$$
. **C.** $\frac{49}{8}$.

D.
$$\frac{57}{8}$$
.

Chon A

Ta có
$$2x + y \cdot 4^{x+y-1} \ge 3 \Leftrightarrow y \cdot 2^{2x+2y-2} \ge 3 - 2x \Leftrightarrow \boxed{2y \cdot 2^{2y} \ge (3-2x) \cdot 2^{3-2x}}$$
 (*)

Hàm số
$$f(t) = t.2^t$$
 đồng biến trên \mathbb{R} , nên từ (*) ta suy ra $2y \ge 3 - 2x \Leftrightarrow \boxed{2x + 2y - 3 \ge 0}$ (1)

Ta thấy (1) bất phương trình bậc nhất có miền nghiệm là nửa mặt phẳng có bờ là đường thẳng d: 2x + 2y - 3 = 0 (phần không chứa gốc tọa độ O), kể cả các điểm thuộc đường thẳng d.

Xét biểu thức
$$P = x^2 + y^2 + 6x + 4y \Leftrightarrow (x+3)^2 + (y+2)^2 = P+13$$
 (2)

Để P tồn tai thì ta phải có $P+13 \ge 0 \Leftrightarrow P \ge -13$.

Trường hợp 1: Nếu P = -13 thì x = -3; y = -2 không thỏa (1). Do đó, trường hợp này không thể xảy ra.

Trường hợp 2: Với P > -13, ta thấy (2) là đường tròn (C) có tâm I(-3;-2) và bán kính $R = \sqrt{P+13}$.

Để
$$d$$
 và (C) có điểm chung thì $d(I;d) \le R \Leftrightarrow \frac{13}{2\sqrt{2}} \le \sqrt{P+13} \Leftrightarrow \boxed{P \ge \frac{65}{8}}$.

$$V_{\text{ay}} = \frac{65}{8}$$

Câu 11. (**Mã 103 - 2020 Lần 1**) Xét các số thực không âm x và y thỏa mãn $2x + y.4^{x+y-1} \ge 3$. Giá trị nhỏ nhất của biểu thức $P = x^2 + y^2 + 2x + 4y$ bằng

A.
$$\frac{33}{8}$$
.

B.
$$\frac{9}{8}$$
.

C.
$$\frac{21}{4}$$
.

D.
$$\frac{41}{8}$$
.

Lời giải

Chọn D

Ta có
$$2x + y \cdot 4^{x+y-1} \ge 3 \Leftrightarrow (2x-3) \cdot 4^{-x} + y \cdot 4^{y-1} \ge 0 \Leftrightarrow 2y \cdot 2^{2y} \ge (3-2x) 2^{3-2x} (1)$$

Xét TH:
$$3-2x \le 0 \Leftrightarrow x \ge \frac{3}{2}$$
. (1) đúng với mọi giá trị
$$\begin{cases} x \ge \frac{3}{2} \Rightarrow P = x^2 + y^2 + 2x + 4y \ge \frac{21}{4} \end{cases}$$
 (2)

$$X \text{ \'et TH: } 3 - 2x > 0 \Leftrightarrow 0 \le x < \frac{3}{2}.$$

Xét hàm số
$$f(t) = t \cdot 2^t$$
 với $t \ge 0$

$$\Rightarrow f'(t) = 2^t + t \cdot 2^t \cdot \ln 2 > 0$$
 với mọi $t \ge 0$

(1)
$$\Leftrightarrow f(2y) \ge f(3-2x) \Leftrightarrow 2y \ge 3-2x \Leftrightarrow y \ge \frac{3}{2}-x$$
. Khi đó:

$$P = x^{2} + y^{2} + 2x + 4y \ge x^{2} + \left(\frac{3}{2} - x\right)^{2} + 2x + 2\left(3 - 2x\right) = 2x^{2} - 5x + \frac{33}{4} = 2\left(x - \frac{5}{4}\right)^{2} + \frac{41}{8} \ge \frac{41}{8}$$
 (3)

So sánh (2) và (3) ta thấy GTNN của P là $\frac{41}{8}$ khi $x = \frac{5}{4}$, $y = \frac{1}{4}$.

Câu 12. (**Mã 104 - 2020 Lần 1**) Xét các số thực không âm x và y thỏa mãn $2x + y.4^{x+y-1} \ge 3$. Giá trị nhỏ nhất của biểu thức $P = x^2 + y^2 + 4x + 2y$ bằng

A.
$$\frac{33}{8}$$
.

B.
$$\frac{9}{8}$$
.

C.
$$\frac{21}{4}$$
.

D.
$$\frac{41}{8}$$
.

Lời giải

<u>C</u>họn <u>D</u>

Ta có
$$2x + y \cdot 4^{x+y-1} \ge 3 \Leftrightarrow (2x-3) \cdot 4^{-x} + y \cdot 4^{y-1} \ge 0 \Leftrightarrow 2y \cdot 2^{2y} \ge (3-2x) \cdot 2^{3-2x} (1)$$

Xét TH
$$3-2x \le 0 \Leftrightarrow x \ge \frac{3}{2}$$
. (1) đúng với mọi giá trị
$$\begin{cases} x \ge \frac{3}{2} \Rightarrow P = x^2 + y^2 + 4x + 2y \ge \frac{33}{4} \\ y \ge 0 \end{cases}$$
 (2)

$$X\acute{e}t TH 3 - 2x > 0 \Leftrightarrow 0 \le x < \frac{3}{2}.$$

Xét hàm số
$$f(t) = t.2^t$$
 với $t \ge 0$

$$\Rightarrow f'(t) = 2^t + t \cdot 2^t \cdot \ln 2 > 0 \text{ với mọi } t \ge 0$$

$$(1) \Leftrightarrow f(2y) \ge f(3-2x)$$

$$\Leftrightarrow 2y \ge 3 - 2x$$

$$\Leftrightarrow y \ge \frac{3}{2} - x$$

$$\Rightarrow P = x^2 + y^2 + 4x + 2y \ge x^2 + \left(\frac{3}{2} - x\right)^2 + 4x + \left(3 - 2x\right) = 2x^2 - x + \frac{21}{4}$$

$$\Rightarrow P = 2\left(x - \frac{1}{4}\right)^2 + \frac{41}{8} \ge \frac{41}{8}$$
 (3)

So sánh (2) và (3) ta thấy GTNN của P là $\frac{41}{8}$ khi $x = \frac{1}{4}$, $y = \frac{5}{4}$

Câu 13. (**Diệu Hiền - Cần Thơ - 2018**) Trong các nghiệm (x;y) thỏa mãn bất phương trình $\log_{x^2+2y^2}(2x+y) \ge 1$. Giá trị lớn nhất của biểu thức T=2x+y bằng:

A.
$$\frac{9}{4}$$
.

B.
$$\frac{9}{2}$$

C.
$$\frac{9}{8}$$
.

D. 9.

Lời giải

Trường hợp 1: $x^2 + 2y^2 > 1$. Đặt $\sqrt{2}y = z$. Suy ra $\Leftrightarrow x^2 + z^2 > 1$ (1)

$$\log_{x^2+2y^2} (2x+y) \ge 1 \iff 2x+y \ge x^2+2y^2 \iff 2x+\frac{z}{\sqrt{2}} \ge x^2+z^2$$

$$\Leftrightarrow (x-1)^2 + \left(z - \frac{1}{2\sqrt{2}}\right)^2 \le \frac{9}{8} (2)$$

Tập hợp các điểm M(x;z) là miền (H) bao gồm miền ngoài của hình tròn $(C_1): x^2 + z^2 = 1$ và miền trong của hình tròn $(C_2): (x-1)^2 + \left(z - \frac{1}{2\sqrt{2}}\right)^2 = \frac{9}{8}$.

$$\text{Hệ} \begin{cases} T = 2x + \frac{z}{\sqrt{2}} \\ \left(x-1\right)^2 + \left(z - \frac{1}{2\sqrt{2}}\right)^2 \leq \frac{9}{8} \text{ có nghiệm khi đường thẳng } d: 2x + \frac{z}{\sqrt{2}} - T = 0 \text{ có điểm chung với } \\ x^2 + z^2 > 1 \end{cases}$$

miền (H).

Để T đạt giá trị lớn nhất thì đường thẳng $d:2x+\frac{z}{\sqrt{2}}-T=0$ tiếp xúc với đường tròn (C_2)

$$\Leftrightarrow d\left(I;d\right) = \frac{3}{2\sqrt{2}} \text{ với } I\left(1;\frac{1}{2\sqrt{2}}\right) \text{ là tâm của đường tròn } \left(C_2\right).$$

$$\Leftrightarrow \frac{\left|2 + \frac{1}{4} - T\right|}{\sqrt{4 + \frac{1}{2}}} = \frac{3}{2\sqrt{2}} \Leftrightarrow \left|T - \frac{9}{4}\right| = \frac{9}{4} \Leftrightarrow \begin{bmatrix} T = 0 & (l) \\ T = \frac{9}{2} \end{bmatrix}$$

Trường hợp 2: $0 < x^2 + 2y^2 < 1$.

$$\log_{x^2+2y^2}\left(2x+y\right) \ge 1 \Leftrightarrow 2x+y \le x^2+2y^2 \Leftrightarrow T=2x+y<1 \text{ (loại)}.$$

Vậy giá trị lớn nhất của biểu thức T = 2x + y là $\max T = \frac{9}{2}$.

Câu 14. (Chuyên Lê Hồng Phong - Nam Định - 2020) Có bao nhiều bộ (x,y) với x,y nguyên và

$$1 \le x, y \le 2020 \ \text{ thỏa mãn} \left(xy + 2x + 4y + 8 \right) \log_3 \left(\frac{2y}{y+2} \right) \le \left(2x + 3y - xy - 6 \right) \log_2 \left(\frac{2x+1}{x-3} \right) ?$$

A. 2017.

B. 4034

C. 2

D. 2017×2020 .

Lời giải

Chọn B

$$+ \, \text{Diều kiện} \, \begin{cases} x,y \in \mathbb{N}^* : x,y \leq 2020 \\ \frac{2x+1}{x-3} > 0, \frac{2y}{y+2} > 0 \end{cases} \Leftrightarrow \begin{cases} x,y \in \mathbb{N}^* : x,y \leq 2020 \\ x > 3,y > 0 \end{cases}.$$

BPT cho có dạng
$$(x-3)(y-2)\log_2\left(\frac{x+4}{x-3}+1\right)+(x+4)(y+2)\log_3\left(\frac{y-2}{y+2}+1\right) \le 0$$
 (*).

+ Xét
$$y = 1$$
 thì (*) thành $-(x-3)\log_2\left(\frac{x+4}{x-3}+1\right) + 3(x+4)\log_3\frac{2}{3} \le 0$, rõ ràng BPT này nghiệm

đúng với mọi
$$x > 3$$
 vì $-(x-3) < 0$, $\log_2\left(\frac{x+4}{x-3}+1\right) > \log_2\left(0+1\right) = 0$, $3(x+4) > 0$, $\log_3\frac{2}{3} < 0$.

Như vậy trường hợp này cho ta đúng 2017 bộ (x;y)=(x;1) với $4 \le x \le 2020, x \in \mathbb{N}$.

+ Xét y=2 thì (*) thành $4(x+4)\log_3 1 \le 0$, BPT này cũng luôn đúng với mọi x mà $4 \le x \le 2020, x \in \mathbb{N}$.

Trường hợp này cho ta 2017 cặp (x; y) nữa.

+ Với
$$y > 2, x > 3$$
 thì $VT(*) > 0$ nên (*) không xảy ra.

Vậy có đúng 4034 bộ số (x; y) thỏa mãn yêu cầu bài toán.

(THPT Quỳnh Lưu 3 Nghệ An 2019) Cho hai số thực a,b>0 $\log_2(a+1) + \log_2(b+1) \ge 6$. Giá trị nhỏ nhất của biểu thức a+b là.

A. 12.

D. 8.

Lời giải

Ta có $\log_2(a+1) + \log_2(b+1) \ge 6 \Leftrightarrow \log_2[(a+1)(b+1)] \ge 6 \Leftrightarrow (a+1)(b+1) \ge 64$.

Áp dụng bất đẳng thức Cô-si cho hai số dương a+1 và b+1, ta được

$$(a+1)+(b+1) \ge 2\sqrt{(a+1)(b+1)} \ge 2\sqrt{64} = 16 \Leftrightarrow a+b+2 \ge 16 \Leftrightarrow a+b \ge 14$$

Dấu "=" xảy ra khi $a+1=b+1 \Leftrightarrow a=b$.

Vây min (a+b) = 14 khi a = b = 7.

Câu 16. (Liên Trường Thọt Tp Vinh Nghệ An 2019) Trong các nghiệm (x; y) thỏa mãn bất phương trình $\log_{x^2+2y^2}(2x+y) \ge 1$. Khi đó giá trị lớn nhất của biểu thức T=2x+y là

A. $\frac{9}{4}$

 $\underline{\mathbf{C}}$. $\frac{9}{2}$

D. $\frac{9}{8}$

Lời giải

- TH1: $x^2 + 2v^2 > 1$

Bất phương trình $\log_{x^2+3y^2}(2x+y) \ge 1 \Leftrightarrow 2x+y \ge x^2+2y^2$

 \Rightarrow 2x + $y \ge x^2 + 2y^2 > 1$

Áp dụng bất đẳng thức Bunhia-CopSky ta có

$$\left(2^{2} + \left(\frac{1}{\sqrt{2}}\right)^{2}\right)\left(x^{2} + 2y^{2}\right) \ge \left(2x + y\right)^{2}$$

$$\Rightarrow x^2 + 2y^2 \ge \frac{2(2x + y)^2}{9} \Rightarrow 2x + y \ge \frac{2(2x + y)^2}{9} \Leftrightarrow (2x + y)\left(2x + y - \frac{9}{2}\right) \le 0 \Rightarrow 2x + y \in \left(1; \frac{9}{2}\right)$$

Giá trị lớn nhất của $T = 2x + y = \frac{9}{2}$. Dấu bằng xảy ra khi x = 2; $y = \frac{1}{2}$

- TH2: $0 < x^2 + 2v^2 < 1$

Bất phương trình $\log_{x^2+2y^2} (2x+y) \ge 1 \Leftrightarrow 2x+y \le x^2+2y^2 < 1 < \frac{9}{2}$.

Vậy giá trị lớn nhất của $T = 2x + y = \frac{9}{2}$.

(Chuyên Vĩnh Phúc 2019) Tìm tập S tất cả các giá trị thực của tham số m để tồn tại duy nhất Câu 17. cặp số (x; y) thỏa mãn $\log_{x^2+y^2+2} (4x+4y-6+m^2) \ge 1$ và $x^2+y^2+2x-4y+1=0$.

A.
$$S = \{-1,1\}$$
 B. $S = \{-5,-1,1,5\}$

C. $S = \{-5, 5\}$ **D.** $S = \{-7, -5, -1, 1, 5, 7\}$

Lời giải.

$$\begin{split} \log_{x^2+y^2+2}\left(4x+4y-6+m^2\right) \geq 1 & \Leftrightarrow 4x+4y-6+m^2 \geq x^2+y^2+2 \Leftrightarrow x^2+y^2-4x-4y+8-m^2 \leq 0 \\ & \Leftrightarrow \left(x-2\right)^2+\left(y-2\right)^2 \leq m^2 \text{ là một hình tròn } \left(C_1\right) \text{ tâm } I\left(2;2\right), \text{ bán kính } R_1=\left|m\right| \text{ với } m\neq 0 \text{ hoặc } 1 \\ & \Leftrightarrow \left(x-2\right)^2+\left(x-2\right)^2 \leq m^2 \text{ là một hình tròn } \left(C_1\right) \text{ tâm } I\left(2;2\right), \text{ bán kính } R_2=\left|m\right| \text{ với } m\neq 0 \\ & \Leftrightarrow \left(x-2\right)^2+\left(x-2\right)^2 \leq m^2 \text{ là một hình tròn } \left(C_1\right) \text{ tâm } I\left(2;2\right), \text{ bán kính } R_2=\left|m\right| \text{ với } m\neq 0 \\ & \Leftrightarrow \left(x-2\right)^2+\left(x-2\right)^2 \leq m^2 \text{ là một hình tròn } \left(C_1\right) \text{ tâm } I\left(2;2\right), \text{ bán kính } R_2=\left|m\right| \text{ với } m\neq 0 \\ & \Leftrightarrow \left(x-2\right)^2+\left(x-2\right)^2+\left(x-2\right)^2 \leq m^2 \text{ là một hình tròn } \left(C_1\right) \text{ tâm } I\left(2;2\right), \text{ bán kính } R_1=\left|m\right| \text{ với } m\neq 0 \\ & \Leftrightarrow \left(x-2\right)^2+\left(x-2\right)^2+\left(x-2\right)^2 \leq m^2 \text{ là một hình tròn } \left(C_1\right) \text{ tâm } I\left(2;2\right), \text{ bán kính } R_1=\left|m\right| \text{ với } m\neq 0 \\ & \Leftrightarrow \left(x-2\right)^2+\left(x$$

là điểm I(2;2) với m = 0 và $x^2 + y^2 + 2x - 4y + 1 = 0 \iff (x+1)^2 + (y-2)^2 = 4$ là một đường tròn (C_2) tâm J(-1;2), bán kính $R_2 = 2$.

TH1: Với m = 0 ta có: $I(2;2) \notin (C_2)$ suy ra m = 0 không thỏa mãn điều kiện bài toán.

TH2: Với $m \neq 0$.

Để hệ
$$\begin{cases} \log_{x^2+y^2+2} \left(4x+4y-6+m^2\right) \ge 1 \\ x^2+y^2+2x-4y+1=0 \end{cases}$$
 tồn tại duy nhất cặp số $\left(x;y\right)$ thì hình tròn $\left(C_1\right)$ và đường

tròn (C_2) tiếp xúc ngoài với nhau $\Leftrightarrow IJ = R_1 + R_2 \Leftrightarrow \sqrt{3^2 + 0^2} = |m| + 2 \Leftrightarrow |m| = 1 \Leftrightarrow m = \pm 1$.

Tìm tham số m để tồn tại **duy nhất** cặp số (x;y) thỏa mãn đồng thời các điều kiện sau $\log_{2019}(x+y) \le 0$ và $x+y+\sqrt{2xy+m} \ge 1$

A.
$$m = -\frac{1}{2}$$
. **B.** $m = 0$. **C.** $m = 2$. **D.** $m = -\frac{1}{3}$.

B.
$$m = 0$$

C.
$$m = 2$$

D.
$$m = -\frac{1}{3}$$

Lời giải

Chọn A

Xét hệ bất phương trình:
$$\begin{cases} \log_{2019}(x+y) \le 0 & (1) \\ x+y+\sqrt{2xy+m} \ge 1 & (2) \end{cases}$$

(x;y) là nghiệm hệ bất phương trình thì (y;x) cũng là nghiệm của hệ bất phương trình. Do đó hệ có nghiệm duy nhất $\Rightarrow x = y$.

Khi đó: (1) $\Leftrightarrow 0 < 2x \le 1 \Leftrightarrow 0 < x \le \frac{1}{2}$.

Với
$$0 < x \le \frac{1}{2}$$
; (2) $\Leftrightarrow 2x + \sqrt{2x^2 + m} \ge 1$

$$\Leftrightarrow \sqrt{2x^2 + m} \ge 1 - 2x$$

$$\Leftrightarrow 2x^2 + m \ge 1 - 4x + 4x^2$$

$$\Leftrightarrow 2x^2 - 4x + 1 \le m$$

Đặt
$$f(x) = 2x^2 - 4x + 1$$

$$f(x)$$
 nghịch biến trên $\left(0; \frac{1}{2}\right)$ nên $f(x) \ge f\left(\frac{1}{2}\right) = -\frac{1}{2} \ \forall x \in \left(0; \frac{1}{2}\right]$.

Do đó hệ có nghiệm **duy nhất** $\Leftrightarrow m = -\frac{1}{2}$.

Câu 19. Trong tất cả các cặp (x;y) thỏa mãn $\log_{x^2+y^2+2}(4x+4y-4) \ge 1$. Tìm m để tồn tại duy nhất cặp (x; y) sao cho $x^2 + y^2 + 2x - 2y + 2 - m = 0$.

A.
$$m = (\sqrt{10} - \sqrt{2})^2$$
. **B.** $m = \sqrt{10} \pm \sqrt{2}$. **C.** $m = \sqrt{10} - \sqrt{2}$. $\underline{\mathbf{D}}$. $m = (\sqrt{10} \pm \sqrt{2})^2$.

B.
$$m = \sqrt{10} \pm \sqrt{2}$$

C.
$$m = \sqrt{10} - \sqrt{2}$$
.

$$\mathbf{\underline{D}}. \ m = \left(\sqrt{10} \pm \sqrt{2}\right)^2$$

Lời giải

Chọn D

Với mọi $x, y \in \mathbb{R}$, ta luôn có $x^2 + y^2 + 2 \ge 2 > 1$ nên BPT

$$\log_{x^2+y^2+2} \left(4x + 4y - 4 \right) \ge 1 \iff 4x + 4y - 4 \ge x^2 + y^2 + 2 \iff \left(x - 2 \right)^2 + \left(y - 2 \right)^2 \le 2 \quad (1).$$

BPT (1) mô tả hình tròn tâm I(2;2) và bán kính $R_1 = \sqrt{2}$.

Mặt khác, phương trình $x^2 + y^2 + 2x - 2y + 2 - m = 0 \Leftrightarrow (x+1)^2 + (y-1)^2 = m$ (2) nên để (2) có nghiệm thì $m \ge 0$.

- TH1: m = 0. Khi đó, $(2) \Leftrightarrow \begin{cases} x = -1 \\ y = 1 \end{cases}$ không thỏa (1) nên loại m = 0.
- TH2: m>0. Khi đó, (2) là phương trình đường tròn (C_2) tâm J(-1;1) và bán kính $R_2=\sqrt{m}$. Do đó, yêu cầu đề bài \Leftrightarrow Hệ BPT $\begin{cases} (x-2)^2+(y-2)^2\leq 2\\ (x+1)^2+(y-1)^2=m \end{cases}$ có nghiệm duy nhất \Leftrightarrow (C_2) tiếp xúc với đường tròn (C_1) : $(x-2)^2+(y-2)^2=2$ cũng có tâm I(2;2) và bán kính $R_1=\sqrt{2}$. Vì $IJ=\sqrt{10}>\sqrt{2}=R_1$ nên (C_1) hoặc tiếp xúc ngoài, hoặc tiếp xúc trong với (C_2) .
- $\begin{array}{l} {\color{red} \succeq} \ \underline{\text{TH2a:}} \ \left(C_1 \right) \ \text{ti\'ep} \ \text{x\'uc} \ \text{ngo\`ai} \ \text{v\'oi} \ \left(C_2 \right) \Leftrightarrow IJ = R_1 + R_2 \Leftrightarrow \sqrt{10} = \sqrt{2} + \sqrt{m} \\ \\ \Leftrightarrow \sqrt{m} = \sqrt{10} \sqrt{2} \Leftrightarrow m = \left(\sqrt{10} \sqrt{2} \right)^2. \end{array}$
- > TH2b: (C_1) tiếp xúc trong với $(C_2) \Leftrightarrow IJ = R_2 R_1 \Leftrightarrow \sqrt{10} = \sqrt{m} \sqrt{2}$ $\Leftrightarrow \sqrt{m} = \sqrt{2} + \sqrt{10} \Leftrightarrow m = \left(\sqrt{10} + \sqrt{2}\right)^2$. Vậy $m = \left(\sqrt{10} \pm \sqrt{2}\right)^2$.

BẠN HỌC THAM KHẢO THÊM DẠNG CÂU KHÁC TẠI

https://drive.google.com/drive/folders/15DX-hbY5paR0iUmcs4RU1DkA1-70pKlG?usp=sharing

Theo dõi Fanpage: Nguyễn Bảo Vương Fhttps://www.facebook.com/tracnghiemtoanthpt489/

Hoặc Facebook: Nguyễn Vương 🏲 https://www.facebook.com/phong.baovuong

Tham gia ngay: Nhóm Nguyễn Bào Vương (TÀI LIÊU TOÁN) # https://www.facebook.com/groups/703546230477890/

Ân sub kênh Youtube: Nguyễn Vương

* https://www.youtube.com/channel/UCQ4u2J5gIEI1iRUbT3nwJfA?view as=subscriber

Tải nhiều tài liệu hơn tại: http://diendangiaovientoan.vn/

ĐỀ NHẬN TÀI LIỆU SỚM NHẤT NHÉ!

Agy to Bid What le