RL Assignment-2

Ashish Sethi MT-18024

Question - 2	3
Results	3
Initial Value Function	3
Value Function after policy iteration	3
Question - 4	4
Results	4
Initial Value Function	4
Value Function after policy iteration	4
Question - 6	5
Policy Improvment	5
Intial Random Policy	5
Final Policy	5
Value Iteration	6
Intial Policy	6
Final Policy	6

Question - 2

Results

Initial Value Function

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

Value Function after policy iteration

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.7	-0.4
-1	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

Question - 4

Results

Initial Value Function

0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

Value Function after policy iteration

22	24.4	22.	19.4	17.5
19.8	22.	19.8	17.8	16
17.8	19.8	17.8	16	14.4
16	17.8	16	14.4	13.0
14.4	16.0	14.4	13.0	11.7

Question - 6

Policy Improvment

Intial Random Policy

3	2	3	3
2	2	3	2
0	1	2	3
3	0	0	0

Final Policy

0	0	0	0
1	0	0	3
1	0	2	3
1	2	2	0

Value Iteration

Intial Policy

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

Final Policy

0	0	0	0
1	0	0	3
1	0	2	3
1	2	2	0

RL Assignment-2 classmate · Ashish seth? Page . MT 18024 Question-1 a p(s'|sa) | * (sasi) 5 **s** / P(dr | 5a) hight high Sparch 0.1 of rsearch Ysearch Ligh Search low 1-4 -0.1 (1-9) Franch rseorch low Search high 1-13 -3 low search low Osearch -0.13 rs high Wart high Twain 0.1 In high wait low 0 low wait high low Wort low Thoran f 0.120 low recharge high low socher & Jow As we know that $r(sa,s') = \sum_{i=1}^{n} r p(s',r|s,a)$ rer p(s/s_a) $p(s'|s|s|a) = \gamma(s|a|s') p(s|s|a)$ E Y

93 Exercise 3.15

we know that

V * (s) = ET SR St = 3 }

- E S S 7 | S = 5]

Add constant in reword.

Potker = Petker + C

 $V^{r}(s) = E_{r} \left[\sum_{k=0}^{\infty} Y^{r} Y_{t+k+1} \right] S_{0} = S_{0}^{r}$

= ET S & r r r | S = sy

+ Fr Extc Stesy

grestion -5

$$V_{r}(s) = \mathcal{E}_{r}\left[R_{t+1} + \gamma V_{r}(s_{t+1})\right] S_{t} = s$$

classmate.

Question 4.

Non linear Solution of bellmon equation using linear programming

 $V(s) \geq R(s) + \gamma \max_{q \in A} \leq P(s, |s, a) V(s)$

vient (A) i'a linear constraints.

 $V(s) \geq R(s) + \gamma \leq p(s'|sa) V(s)$

+.a €A

Now using linear program.

s. + to V(=) > R(s) + Y \le p(0//s_a) V(s)

YafA ses

Reporter

Support

V(s) = R(s) + Mora > P(d sa) V(s)

ath s'Es

In objective we can optimize any positive linear function of v(s) of and result above will be true

minimiz & d(s) V(s)

suf $V(s) \ge R(s) + Y \le P(s|s,a) V(s)$ $4 af A = s \in S.$

d(s) is distribution over states

Adding dual variables el (2 a)

Maximize ER(s) & U(Sa). SES AGA

S+ $\leq u'(s')d(s')+Y \leq \leq p(c'|sa)$ $a \in A$ $s \in A$ u(sa)

A S (P

U (S_a)