Machine Learning

Linear Models

Fabio Vandin

October 29th, 2020

Linear Predictors and Affine Functions

Consider $\mathcal{X} = \mathbb{R}^d$

"Linear" (affine) functions:

$$L_d = \{h_{\mathbf{w},b} : \mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}\}$$

where

$$h_{\mathbf{w},b}(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + b = \left(\sum_{i=1}^{d} w_i x_i\right) + b$$

Note:

- each member of L_d is a function $\mathbf{x} \to \langle \mathbf{w}, \mathbf{x} \rangle + b$
- b: bias

Linear Models

Hypothesis class $\mathcal{H}: \phi \circ L_d$, where $\phi: \mathbb{R} \to \mathcal{Y}$

- $h \in \mathcal{H}$ is $h : \mathbb{R}^d \to \mathcal{V}$
- ϕ depends on the learning problem

Example

- binary classification, $\mathcal{Y} = \{-1, 1\} \Rightarrow \phi(z) = \operatorname{sign}(z)$
- regression, $\mathcal{Y} = \mathbb{R} \Rightarrow \phi(z) = z$

Equivalent Notation

Given $\mathbf{x} \in \mathcal{X}$, $\mathbf{w} \in \mathbb{R}^d$, $b \in \mathbb{R}$, define:

- $\mathbf{w}' = (b, w_1, w_2, \dots, w_d) \in \mathbb{R}^{d+1}$
- $\mathbf{x}' = (1, x_1, x_2, \dots, x_d) \in \mathbb{R}^{d+1}$

Then:

$$h_{\mathbf{w},b}(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + b = \langle \mathbf{w}', \mathbf{x}' \rangle$$
 (1)

 \Rightarrow we will consider bias term as part of **w** and assume $\mathbf{x} = (1, x_1, x_2, \dots, x_d)$ when needed, with $h_{\mathbf{w}}(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle$

Linear Regression

$$\mathcal{X} = \mathbb{R}^d$$
, $\mathcal{Y} = \mathbb{R}$

Hypothesis class:

$$\mathcal{H}_{reg} = L_d = \{ \mathbf{x} \to \langle \mathbf{w}, \mathbf{x} \rangle + b : \mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R} \}$$

Note: $h \in H_{reg} : \mathbb{R}^d \to \mathbb{R}$

Commonly used loss function: squared-loss

$$\ell(h,(\mathbf{x},y)) \stackrel{\text{def}}{=} (h(\mathbf{x})-y)^2$$

⇒ empirical risk function (training error): Mean Squared Error

$$L_S(h) = \frac{1}{m} \sum_{i=1}^{m} (h(\mathbf{x}_i) - y_i)^2$$

Linear Regression - Example

d = 1

Least Squares

How to find a ERM hypothesis? Least Squares algorithm

Best hypothesis:

$$\arg\min_{\mathbf{w}} L_{\mathcal{S}}(h_{\mathbf{w}}) = \arg\min_{\mathbf{w}} \frac{1}{m} \sum_{i=1}^{m} (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2$$

Equivalent formulation: \mathbf{w} minimizing Residual Sum of Squares (RSS), i.e.

$$\arg\min_{\mathbf{w}} \sum_{i=1}^{m} (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2$$

RSS: Matrix Form

Let

$$\mathbf{X} = \begin{bmatrix} \cdots & \mathbf{x}_1 & \cdots \\ \cdots & \mathbf{x}_2 & \cdots \\ \cdots & \vdots & \cdots \\ \cdots & \mathbf{x}_m & \cdots \end{bmatrix}$$

X: design matrix

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

⇒ we have that RSS is

$$\sum_{i=1}^{m} (\langle \mathbf{w}, \mathbf{x}_i \rangle - y_i)^2 = (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})$$

Want to find **w** that minimizes RSS (=objective function):

$$\underset{\mathbf{w}}{\operatorname{arg \, min}} \, RSS(\mathbf{w}) = \underset{\mathbf{w}}{\operatorname{arg \, min}} \, (\mathbf{y} - \mathbf{X}\mathbf{w})^T \, (\mathbf{y} - \mathbf{X}\mathbf{w})$$

How?

Compute gradient $\frac{\partial RSS(\mathbf{w})}{\partial \mathbf{w}}$ of objective function w.r.t \mathbf{w} and compare it to 0.

$$\frac{\partial RSS(\mathbf{w})}{\partial \mathbf{w}} = -2\mathbf{X}^T(\mathbf{y} - \mathbf{X}\mathbf{w})$$

Then we need to find w such that

$$-2\mathbf{X}^{T}(\mathbf{y}-\mathbf{X}\mathbf{w})=0$$

$$-2\mathbf{X}^T(\mathbf{y} - \mathbf{X}\mathbf{w}) = 0$$

is equivalent to

$$\mathbf{X}^T \mathbf{X} \mathbf{w} = \mathbf{X}^T \mathbf{y}$$

If $\mathbf{X}^T\mathbf{X}$ is invertible \Rightarrow solution to ERM problem is:

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Complexity Considerations

We need to compute

$$(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$

Algorithm:

- ① compute $\mathbf{X}^T \mathbf{X}$: product of $(d+1) \times m$ matrix and $m \times (d+1)$ matrix
- 2 compute $(\mathbf{X}^T\mathbf{X})^{-1}$ inversion of $(d+1)\times(d+1)$ matrix
- 3 compute $(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$: product of $(d+1)\times(d+1)$ matrix and $(d+1)\times m$ matrix
- **4** compute $(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$: product of $(d+1)\times m$ matrix and $m\times 1$ matrix

Most expensive operation? Inversion!

$$\Rightarrow$$
 done for $(d+1) \times (d+1)$ matrix

$$\mathbf{X}^T\mathbf{X}$$
 not invertible?

How do we get w such that

$$\mathbf{X}^T \mathbf{X} \mathbf{w} = \mathbf{X}^T \mathbf{y}$$

if $\mathbf{X}^T \mathbf{X}$ is not invertible? Let

$$\mathbf{A} = \mathbf{X}^T \mathbf{X}$$

Let A^+ be the generalized inverse of A, i.e.:

$$AA^+A = A$$

Proposition

If $\mathbf{A} = \mathbf{X}^T \mathbf{X}$ is not invertible, then $\hat{w} = \mathbf{A}^+ \mathbf{X}^T \mathbf{y}$ is a solution to $\mathbf{X}^T \mathbf{X} \mathbf{w} = \mathbf{X}^T \mathbf{y}$.

Computing the Generalized Inverse of A

Note $\mathbf{A} = \mathbf{X}^T \mathbf{X}$ is symmetric \Rightarrow eigenvalue decomposition of \mathbf{A} :

$$A = VDV^T$$

with

- D: diagonal matrix (entries = eigenvalues of A)
- V: orthonormal matrix $(\mathbf{V}^T\mathbf{V} = \mathbf{I}_{d\times d})$

Define **D**⁺ diagonal matrix such that:

$$\mathbf{D}_{i,i}^{+} = \begin{cases} 0 & \text{if } \mathbf{D}_{i,i} = 0\\ \frac{1}{\mathbf{D}_{i,i}} & \text{otherwise} \end{cases}$$

Let
$$\mathbf{A}^+ = \mathbf{V}\mathbf{D}^+\mathbf{V}^T$$

Then

$$\mathbf{A}\mathbf{A}^{+}\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^{T}\mathbf{V}\mathbf{D}^{+}\mathbf{V}^{T}\mathbf{V}\mathbf{D}\mathbf{V}^{T}$$

$$= \mathbf{V}\mathbf{D}\mathbf{D}^{+}\mathbf{D}\mathbf{V}^{T}$$

$$= \mathbf{V}\mathbf{D}\mathbf{V}^{T}$$

$$= \mathbf{A}$$

 \Rightarrow **A**⁺ is a generalized inverse of **A**.

In practice: the Moore-Penrose generalized inverse \mathbf{A}^{\dagger} of \mathbf{A} is used, since it can be efficiently computed from the Singular Value Decomposition of \mathbf{A} .