Modele obliczeń kwantowych

Jakub Zieliński

Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Aparat matematyczny

Notacja Diraca, "bra-ket"

Używana do opisu wektorów z tzw. przestrzeni Hilberta ($\langle bra|$ jest hermitowskim sprzężeniem $|ket\rangle$).

Jeżeli | ket > jest wektorem kolumnowym

$$(\alpha_1 \quad \alpha_2 \quad \cdots \quad \alpha_{n-1} \quad \alpha_n)^T$$

to $\langle bra|$ jest wektorem w postaci rzędu

$$(\beta_1 \quad \beta_2 \quad \cdots \quad \beta_{n-1} \quad \beta_n)$$

Aparat matematyczny

Podstawowe opercje

- iloczyn skalarny $\langle bra|ket \rangle$
- 2 rzutowanie na wektor $|v_1\rangle\langle v_1|v_2\rangle$ (rzut v_2 na v_1)
- zapis wektora w bazie

$$|V\rangle = \sum_{i=1}^{n} \alpha_{i} |v_{i}\rangle$$

Przykład nr 1 - Rozkład w bazie

Wektor w bazie o wymiarze n=3 możemy zapisać w następujący sposób:

$$|\psi\rangle = \alpha |001\rangle + \beta |010\rangle + \gamma |100\rangle$$

 $|001\rangle, |010\rangle, |100\rangle$ są wyłącznie etykietami.

Przykład nr 2 - Rzutowanie

Weźmy wektor $|V\rangle = \sum_{i=1}^n \alpha_i |v_i\rangle$.

Rzutujmy wektor $|V\rangle$ na ortonormalny wektor bazowy $|v_1\rangle$.

$$|v_1\rangle\langle v_1||V\rangle = \alpha_1|v_1\rangle\overbrace{\langle v_1|v_1\rangle}^1 + \alpha_2|v_1\rangle\overbrace{\langle v_1|v_2\rangle}^0 + \dots + \alpha_n|v_1\rangle\overbrace{\langle v_1|v_n\rangle}^0$$

Otrzymujemy $|v_1\rangle\langle v_1||V\rangle = \alpha_1|v_1\rangle\langle v_1|v_1\rangle = \alpha_1|v_1\rangle$

Czym jest kubit?

Opis matematyczny

Układ opisany dwuwymiarową przestrzenią Hilberta. Kubit jest superpozycją 2 podstawowych stanów własnych $|0\rangle$ i $|1\rangle$.

$$|\psi_0\rangle = \alpha|0\rangle + \beta|1\rangle$$

Gdzie α^2 i β^2 są prawdopodobieństwami wystąpienia odpowiednich stanów własnych oraz

$$\|\alpha\|^2 + \|\beta\|^2 = 1$$

Sfera Blocha

Kubit może być również przy pomocy funkcji trygonometrycznych.

$$|\psi_0
angle=\cosrac{ heta}{2}|0
angle+e^{i\phi}\sinrac{ heta}{2}|1
angle$$

 $\mathsf{gdzie}\ \mathsf{0} \leq \phi \leq \pi\ \mathsf{i}\ \mathsf{0} \leq \theta \leq 2\pi$

Pozwala to na przedstawienie kubitu jako sfery Blocha.

Pomiar stanu kubitu

Na wynik pomiaru stanu kubitu wpływa jego opis w przestrzeni Hilberta, tzn. wartości współczynników α i β . Co więcej, pomiar powoduje zmianę stanu układu. Następuje *collapse* i stan układu przyjmuj wartość pomiaru. $np.|\phi\rangle \longrightarrow |1\rangle$

Pomiar stanu kubitu

Jeżeli jako fizyczny model naszego kubitu uznamy foton, to pomiar stanu możemy sobie wyobrazić jako przepuszczenie przez polaryzator.

Podstawowe operacje na kubitach

Zdefiniujmy wektory własne $|0\rangle$ i $|1\rangle$ odpowiednio jako $\begin{pmatrix} 1\\0 \end{pmatrix}$ i $\begin{pmatrix} 0\\1 \end{pmatrix}$

Łatwo sprawdzić, że wektory są ortonormalne, czyli

$$\langle 0|0\rangle = 1$$

$$\langle 1|1\rangle = 1$$

$$\langle 0|0 \rangle = 1$$
 $\langle 1|1 \rangle = 1$ $\langle 1|0 \rangle = 0$ $\langle 0|1 \rangle = 0$

$$\langle 0|1\rangle = 0$$

Bramka Hadamarda

Jedno-kubitowa bramka oznaczana \hat{H} , opisana macierzą

$$\begin{array}{ll} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} & \qquad \hat{H}|0\rangle = \frac{1}{\sqrt{2}} \big(|0\rangle + |1\rangle \big) \\ \hat{H}|1\rangle = \frac{1}{\sqrt{2}} \big(|0\rangle - |1\rangle \big) \end{array}$$

Alternatywna baza

 $\hat{H}|0\rangle$ oznaczamy przez $|+\rangle$,a $\hat{H}|1\rangle$ przez $|-\rangle$. $|+\rangle$ i $|-\rangle$ są ortogonalne, więc również wyznaczają bazę.

Bramka NOT, \hat{X}

Bramka neguje stan kwantowy, podobnie jak klasyczny NOT.

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad \hat{X} \big(\alpha | 0 \rangle + \beta | 1 \rangle \big) = \alpha | 1 \rangle + \beta | 0 \rangle$$

Warto zauważyć że $\hat{X}\hat{X}$ jest macierzą I.

Bramka \hat{Y}

$$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\hat{Y}(\alpha|0\rangle + \beta|1\rangle) = -i\beta|0\rangle + i\alpha|1\rangle$$

 $\hat{Y}\hat{Y}$ jest macierzą I.

Bram<u>ka *Ž*</u>

Bramka zmiany fazy o π .

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\hat{Z}(\alpha|0\rangle + \beta|1\rangle) = \alpha|0\rangle - \beta|1\rangle$$

 $\hat{Z}\hat{Z}$ jest macierzą I.

Stany wielokubitowe

Notacja Diraca opisuje też stany wielokubitowe.

<u>llocz</u>yn tensorowy

Przy jego pomocy można złożyć dwa stany w jeden wypadkowy.

$$|\psi_{AB}\rangle = |\psi_{A}\rangle \otimes |\psi_{B}\rangle = \begin{pmatrix} \alpha_{A} \\ \beta_{A} \end{pmatrix} \otimes |\psi_{B}\rangle = \begin{pmatrix} \alpha_{A}|\psi_{B}\rangle \\ \beta_{A}|\psi_{B}\rangle \end{pmatrix} = \begin{pmatrix} \alpha_{A}\alpha_{B} \\ \alpha_{A}\beta_{B} \\ \beta_{A}\alpha_{B} \\ \beta_{A}\beta_{B} \end{pmatrix}$$

Układy wielokubitowe

Stany dwukubtitowe

Przy pomocy iloczynu tensorowego możemy wyznaczyć wektory reprezentujące stany własne układu.

$$|00\rangle = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} |01\rangle = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} |10\rangle = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} |11\rangle = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$$

Bramka CNOT

Bramka dwukubitowa. Wyróżniamy kubit control i target. Control decyduje o negacji target.

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \qquad \begin{array}{c} C\hat{NOT}|00\rangle = |00\rangle \\ C\hat{NOT}|01\rangle = |01\rangle \\ C\hat{NOT}|10\rangle = |11\rangle \\ C\hat{NOT}|11\rangle = |10\rangle \\ \end{array}$$

Splątanie kwantowe

Stan splątany

- Stanu układu nie da się "rozsupłać".
- Zmiana jednego z kubitów wpływa na drugi.
- 3 Wystarczy zmierzyć jeden z kubitów, by poznać stan obu.

Splątanie kwantowe

Jak splątać kubity?

Przepuśćmy stan |00 przez poniższy obwód kwantowy.

$$|00\rangle \xrightarrow{H} \tfrac{1}{\sqrt{2}} |0\rangle \big(|0\rangle + |1\rangle \big) \xrightarrow{\text{CNOT}} \tfrac{1}{\sqrt{2}} \big(|00\rangle + |11\rangle \big)$$

Wszystkie przypadki "wejścia"

$$\begin{array}{l} |00\rangle \longrightarrow \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \\ |01\rangle \longrightarrow \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle) \\ |10\rangle \longrightarrow \frac{1}{\sqrt{2}} (|00\rangle - |11\rangle) \\ |11\rangle \longrightarrow \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle) \end{array}$$

Splątanie kwantowe

Stany Bell'a

Tworzą alternatywną bazę dla układów 2 kubitowych.

$$\begin{split} |\phi^{+}\rangle &= \tfrac{1}{\sqrt{2}} \big(|00\rangle + |11\rangle \big) \\ |\psi^{+}\rangle &= \tfrac{1}{\sqrt{2}} \big(|01\rangle + |10\rangle \big) \\ \end{split} \qquad \begin{aligned} |\phi^{-}\rangle &= \tfrac{1}{\sqrt{2}} \big(|00\rangle - |11\rangle \big) \\ |\psi^{-}\rangle &= \tfrac{1}{\sqrt{2}} \big(|01\rangle - |10\rangle \big) \end{aligned}$$

Dowód splątania

$$|\phi^{+}\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) = (\alpha|0\rangle + \beta|1\rangle) (\gamma|0\rangle + \delta|1\rangle) = \alpha\gamma|00\rangle + \alpha\delta|01\rangle + \beta\gamma|10\rangle + \beta\delta|11\rangle$$

Aby zachodziła równość, $\alpha\gamma=\beta\delta=\frac{1}{\sqrt{2}}$, a $\alpha\delta=\beta\gamma=0$ Ten warunek jest nie do spełnienia. Analogicznie dla reszty przypadków.

Cel procedury

Zakodowanie dwu-bitowej informacji w jednym kubicie.

Procedura

- Przygotowanie splątanego układu
- 2 Kodowanie w A
- Przesył kubitu z A do B
- Dekodowanie w B

Krok nr 1

Splątanie kubitów $|0_{_{A}}\rangle$ i $|0_{_{B}}\rangle$ w laboratorium i przekazanie ich do punktów A i B.

Krok nr 2

W punkcie A wykonujemy jedną z 4 operacji. Które kodujemy klasycznie.

Informacja	Operacja	Stan układu
00	ĵ	$\frac{1}{\sqrt{2}}(00\rangle+ 11\rangle)$
01	Ŷ	$\frac{1}{\sqrt{2}}(10\rangle+ 01\rangle)$
10	Ź	$\frac{1}{\sqrt{2}}(00\rangle- 11\rangle)$
11	Χ̂Ζ	$\begin{array}{c} \frac{1}{\sqrt{2}} \left(00\rangle + 11\rangle \right) \\ \frac{1}{\sqrt{2}} \left(10\rangle + 01\rangle \right) \\ \frac{1}{\sqrt{2}} \left(00\rangle - 11\rangle \right) \\ \frac{1}{\sqrt{2}} \left(01\rangle - 10\rangle \right) \end{array}$

Krok nr 3

Przekazanie kubitu z A do B i wykonanie dekodowania obwodem odwrotnym do obwodu splątującego.

Krok nr 4

Wykonanie pomiaru na kubitach w punkcie B.

Funkcja opisująca kubit jest postaci $|AB\rangle$, co daje 100% szansę na odczytanie zakodowanej wiadomości.

Cel procedury

Transport informacji o kubicie, czyli jego stanu kwantowego, do wskazanego miejsca.

Procedura

- Umieszczenie splątanych kubitów w A i B.
- 2 Wykonanie pomiaru w bazie Bella, na kubitach z A.
- Klasyczny transport informacji o wyniku pomiaru do B.
- Dekodowanie kubitu w B.

Krok 1

Splątaną parę kubitów rozdzielamy do punktów A i B. W punkcie A znajduje się również kubit $|\psi\rangle$, którego stan przeniesiemy do B.

Stan układu:

$$\left(\alpha|0\rangle+\beta|1\rangle\right)\frac{1}{\sqrt{2}}\left(|00\rangle+|11\rangle\right)\!=\!\frac{1}{\sqrt{2}}\left(\alpha|000\rangle+\alpha|011\rangle+\beta|100\rangle+\beta|111\rangle\right)$$

Krok 2

Przedstawmy stan 2 kubitów z A (2 pierwsze) w bazie Bell'a.

$$|00\rangle = |\phi^{+}\rangle + |\phi^{-}\rangle |01\rangle = |\psi^{+}\rangle + |\psi^{-}\rangle |10\rangle = |\psi^{+}\rangle - |\psi^{-}\rangle |11\rangle = |\phi^{+}\rangle - |\phi^{-}\rangle$$

Przy pomocy powyższych zależności otrzymujemy:

$$\left(\frac{1}{\sqrt{2}}\right)^{2} \left[|\phi^{+}\rangle \left(\alpha |0\rangle + \beta |1\rangle\right) + |\psi^{+}\rangle \left(\alpha |1\rangle + \beta |0\rangle\right) + |\phi^{-}\rangle \left(\alpha |0\rangle - \beta |1\rangle\right) + |\psi^{-}\rangle \left(\alpha |1\rangle - \beta |0\rangle\right) \right]$$

Krok 3

W zależności o wyniku pomiaru do B zostaje przekazana informacja o sposobie przywrócenia informacji o $|\psi\rangle$ na kubicie pozostającym w B.

Krok 4

Dzięki informacji z A, wiemy w jakim stanie jest układ po pomiarze. Na kubicie z B wykonujemy jedną z operacji $\hat{I}, \hat{X}, \hat{Z}, \hat{X}\hat{Z}$.

Załóżmy, że pomiar w A dał wynik $|\psi^-\rangle$. Zachodzi collapse funkcji falowej do postaci : $|\psi^-\rangle(\alpha|1\rangle-\beta|0\rangle)$

Krok 4

Dzięki informacji z A, wiemy w jakim stanie jest układ po pomiarze. Na kubicie z B wykonujemy jedną z operacji $\hat{I}, \hat{X}, \hat{Z}, \hat{X}\hat{Z}$.

Zauważmy, że $|\psi^{-}\rangle(\alpha|1\rangle - \beta|0\rangle)$ to nic innego jak $\hat{Z}\hat{X}|\psi\rangle$.

Podsumowanie

Operacja $\hat{X}\hat{Z}$ ustawia stan $|\psi\rangle$, tym samym kończąc protokół.

Sformułowanie problemu

Istnieje funkcja postaci $f: N o \{0,1\}$, dana wzorem

$$f(x) = \begin{cases} 0, & x \neq x_s \\ 1, & x = x_s \end{cases}$$

Chcemy poznać wartość x_s .

Podejście klasyczne

Iterujemy po wszystkich możliwych wartościach x i sprawdzamy czy $f(x_i)$ jest równe 1.

Złożoność oczywiście : O(N)

Podejście "kwantowe"

Algorytm bazuje na iteracyjnym "wzmacnianiu amplitudy" prawdopodobieństwa szukanego stanu $|x_s\rangle$. Proces osiągamy poprzez odpowiednie manipulowanie rejestrem kwantowym.

Krok 1 - Przygotowanie rejestru

Niech rejestr kwantowy będzie dany funkcją falową:

$$|\phi_0\rangle = \frac{1}{\sqrt{N}} \sum_{i=1}^{N-1} |\omega_i\rangle$$

gdzie $N = 2^n$, a n to ilość kubitów.

Wybieramy taką postać wejściową, ponieważ nie faworyzuje żadnego ze stanów.

Krok 2 - Manipulacje na rejestrze

Korzystamy z dwóch operacji (bramek). Nazwijmy je \mathcal{A} i \mathcal{B} .

Po każdej iteracji stan rejestru to:

$$|\phi_{n+1}\rangle = \mathcal{B}\mathcal{A}|\phi_n\rangle$$

gdzie:

$$\mathcal{A} = \mathcal{I} - 2|\omega_0\rangle\langle\omega_0|$$

$$\mathcal{B} = 2|\phi_0\rangle\langle\phi_0| - \mathcal{I}$$

Powtarzamy odpowiednią ilość razy.

Operacja ${\cal A}$ - "oracle"

Działanie operatora \mathcal{A} na stan bazowy $|\omega_i\rangle$:

$$\mathcal{A}|\omega_{i}\rangle = (\mathcal{I} - 2|\omega_{0}\rangle\langle\omega_{0}|)|\omega_{i}\rangle = |\omega_{i}\rangle - 2|\omega_{0}\rangle \cdot \begin{cases} 0, & \omega_{i} \neq \omega_{0} \\ 1, & \omega_{i} = \omega_{0} \end{cases}$$

$$\mathcal{A}|\omega_{i}\rangle = \begin{cases} |\omega_{i}\rangle, & \omega_{i} \neq \omega_{0} \\ -|\omega_{i}\rangle, & \omega_{i} = \omega_{0} \end{cases}$$

Operacja ${\cal A}$ - "oracle"

Działanie operatora ${\cal A}$ na rejestr kwantowy:

$$\mathcal{A}|\phi\rangle = \mathcal{A}\Big(\sum_{\omega=0}^{N-1} \alpha_{\omega}|\omega\rangle\Big) = -\alpha_{\omega_0}|\omega_0\rangle + \sum_{\substack{\omega=0\\\omega\neq\omega_0}}^{N-1} \alpha_{\omega}|\omega\rangle$$

Operacja ${\cal B}$

Działanie operatora \mathcal{B} na stan bazowy $|\omega_i\rangle$:

$$\mathcal{B}|\omega_{i}\rangle = \left(2|\phi_{0}\rangle\langle\phi_{0}| - \mathcal{I}\right)|\omega_{i}\rangle = 2|\phi_{0}\rangle\underbrace{\langle\phi_{0}|\omega_{i}\rangle}_{=\frac{1}{\sqrt{N}}} - |\omega_{i}\rangle = \frac{2}{\sqrt{N}}|\phi_{0}\rangle - |\omega_{i}\rangle$$
$$\langle\phi_{0}|\omega_{i}\rangle = \left(\frac{1}{\sqrt{N}} \quad \frac{1}{\sqrt{N}} \quad \cdots \quad \frac{1}{\sqrt{N}} \quad \frac{1}{\sqrt{N}}\right) \cdot \left(0 \quad 1 \quad \cdots \quad 0 \quad 0\right)^{T} = \frac{1}{\sqrt{N}}$$

Operacja ${\cal B}$

Działanie operatora $\mathcal B$ na rejestr kwantowy:

$$\begin{split} \mathcal{B}|\phi\rangle &= \mathcal{B}\big(\sum_{\omega=0}^{N-1}\alpha_{\omega}|\omega\rangle\big) = \sum_{\omega=0}^{N-1}\alpha_{\omega}\big(\frac{2}{\sqrt{N}}|\phi_{0}\rangle - |\omega\rangle\big) \\ &= \frac{2}{\sqrt{N}} = \sum_{\omega=0}^{N-1}\alpha_{\omega}\Big(\frac{1}{\sqrt{N}}\sum_{\omega=0}^{N-1}|\omega\rangle\Big) - \sum_{\omega=0}^{N-1}\alpha_{\omega}|\omega\rangle \\ &= \underbrace{\frac{2}{N}\sum_{\omega=0}^{N-1}\alpha_{\omega}}_{\alpha_{\text{avg}}} \sum_{\omega=0}^{N-1}|\omega\rangle - \sum_{\omega=0}^{N-1}\alpha_{\omega}|\omega\rangle \\ &= \underbrace{\sum_{\omega=0}^{N-1}(2\alpha_{\text{avg}} - \alpha_{\omega})|\omega\rangle}_{\omega=0} = \sum_{\omega=0}^{N-1}\Big(\alpha_{\text{avg}} + (\alpha_{\text{avg}} - \alpha_{\omega})\Big)|\omega\rangle \end{split}$$

Podsumowanie i implementacja

llość operacji \mathcal{BA} to: $\lfloor \frac{\pi}{4} \sqrt{N} - \frac{1}{2} \rfloor \implies \mathcal{O}(\sqrt{N})$

Po wykonanych operacjach algorytm kończy się pomiarem.

Prawdopodobieństwo sukcesu $P(\checkmark) pprox 1 - rac{1}{N}$

Praktyczne zastosowanie

Praktyczne zastosowanie

Bibliografia

- skrypt "kubity.pdf", dr inż. Tomasz Gradowski
- a nagrania YT "Wszechnica CFT PAN: Części 1-12", mgr K. Kowalczyk-Murynka
- Wikipedia
- "Algorytm Grovera", Dr Robert Nowotniak

Koniec

Dziękuję za uwagę. Proszę o **Proste** pytania.