E. Mathieu, C. Le Lan, C. Maddison, R. Tomioka, Y.W Teh

Hyperbolic Geometry

Spherical: c>0

Euclidean: c=0

Hyperbolic: c<0

Euclidean: c=0

Spherical: c>0 Euclidean: c=0

Spherical: c>0

Euclidean: c=0

Hyperbolic: c<0

Poincaré Ball: A model of Hyperbolic geometry

Poincaré Ball: A model of Hyperbolic geometry

Model

$$\log p(oldsymbol{x}) \ \geq \int_{\mathcal{M}} \ln \left(rac{p_{oldsymbol{ heta}}(oldsymbol{x}|oldsymbol{z})p(oldsymbol{z})}{q_{oldsymbol{\phi}}(oldsymbol{z}|oldsymbol{x})}
ight) \ q_{oldsymbol{\phi}}(oldsymbol{z}|oldsymbol{x}) \ d\mathcal{M}(oldsymbol{z}).$$

$$\log p(\boldsymbol{x}) = \ln \int_{\mathcal{M}} p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) p(\boldsymbol{z}) d\mathcal{M}(\boldsymbol{z})$$

$$\geq \mathcal{L}_{\mathcal{M}}(\boldsymbol{x}; \theta, \phi) \triangleq \int_{\mathcal{M}} \ln \left(\frac{p_{\theta}(\boldsymbol{x}|\boldsymbol{z}) p(\boldsymbol{z})}{q_{\phi}(\boldsymbol{z}|\boldsymbol{x})} \right) q_{\phi}(\boldsymbol{z}|\boldsymbol{x}) d\mathcal{M}(\boldsymbol{z})$$

$$\approx \sum_{k} \ln p_{\theta}(\boldsymbol{x}|\boldsymbol{z}^{k}) + \ln p(\boldsymbol{z}^{k}) - \ln q_{\phi}(\boldsymbol{z}^{k}|\boldsymbol{x})$$

Decoder: From latents to observations

$$f_{\boldsymbol{a},\boldsymbol{b}}(\boldsymbol{x}) = \langle \boldsymbol{a}, \boldsymbol{x} - \boldsymbol{b} \rangle$$

$$f_{\boldsymbol{a},\boldsymbol{b}}(\boldsymbol{x}) = \operatorname{sign}(\langle \boldsymbol{a}, \boldsymbol{x} - \boldsymbol{b} \rangle) \|\boldsymbol{a}\| d_E(\boldsymbol{x}, H_{\boldsymbol{a},\boldsymbol{b}}^c)$$

 $f_{\boldsymbol{a},\boldsymbol{b}}^{c}(\boldsymbol{x}) = \operatorname{sign}(\langle \boldsymbol{a}, \log_{\boldsymbol{x}}^{c}(\boldsymbol{b}) \rangle_{\boldsymbol{b}}) \left\| \boldsymbol{a} \right\|_{\boldsymbol{b}} d_{p}^{c}(\boldsymbol{x}, H_{\boldsymbol{a},\boldsymbol{b}}^{c})$

Generalizing the Normal distribution

Riemannian Normal

$$\frac{d
u^{\mathrm{R}}(m{x}|m{\mu},\sigma^2)}{d\mathcal{M}(m{x})} \propto \exp\left(-\frac{d_p^c(m{\mu},m{x})^2}{2\sigma^2}\right)$$

Generalizing the Normal distribution

Riemannian Normal

$$\frac{d
u^{
m R}(m{x}|m{\mu},\sigma^2)}{d\mathcal{M}(m{x})} \propto \exp\left(-rac{d_p^c(m{\mu},m{x})^2}{2\sigma^2}
ight)$$

Wrapped Normal

$$oldsymbol{x} = \exp^c_{oldsymbol{\mu}} \left(rac{oldsymbol{v}}{\lambda^c_{oldsymbol{\mu}}}
ight) \, \, oldsymbol{v} \sim \mathcal{N}(\cdot | oldsymbol{0}, \sigma^2)$$

Reparametrization "trick"

Riemannian Normal

$$rac{d
u^{
m R}(m{x}|m{\mu},\sigma^2)}{d\mathcal{M}(m{x})} \propto \exp\left(-rac{d_p^c(m{\mu},m{x})^2}{2\sigma^2}
ight)$$

Wrapped Normal

$$oldsymbol{x} = \exp^c_{oldsymbol{\mu}} \left(rac{oldsymbol{v}}{\lambda^c_{oldsymbol{\mu}}}
ight) \, \, oldsymbol{v} \sim \mathcal{N}(\cdot | oldsymbol{0}, \sigma^2)$$

Reparametrization
$$m{x} = \exp^c_{m{\mu}} \left(rac{r}{\lambda^c_{m{\mu}}} m{lpha}
ight)$$
 with $r = d^c_p(m{\mu}, m{x})$

Reparametrization "trick"

Riemannian Normal

$$rac{d
u^{
m R}(m{x}|m{\mu},\sigma^2)}{d\mathcal{M}(m{x})} \propto \exp\left(-rac{d_p^c(m{\mu},m{x})^2}{2\sigma^2}
ight)$$

$$x = \exp_{\mu} \left(\frac{1}{\lambda} \right)$$

$$\rho^{\mathrm{R}}(r) \propto \mathbb{1}_{\mathbb{R}_+}(r)e^{-\frac{r^2}{2\sigma^2}} \left(\frac{\sinh(\sqrt{c}r)}{\sqrt{c}}\right)^{d-1}$$

Wrapped Normal

$$oldsymbol{x} = \exp^c_{oldsymbol{\mu}} \left(rac{oldsymbol{v}}{\lambda^c_{oldsymbol{\mu}}}
ight) \ oldsymbol{v} \sim \mathcal{N}(\cdot | oldsymbol{0}, \sigma^2)$$

Reparametrization
$$m{x} = \exp^c_{m{\mu}} \left(rac{r}{\lambda^c_{m{\mu}}} m{lpha}
ight)$$
 with $r = d^c_p(m{\mu}, m{x})$

$$\rho^{W}(r) \propto \mathbb{1}_{\mathbb{R}_{+}}(r) e^{-\frac{r^{2}}{2\sigma^{2}}} r^{d-1}$$

Experiments

Synthetic dataset: Branching diffusion trees

$$oldsymbol{y}_i \sim \mathcal{N}\left(\cdot | oldsymbol{y}_{\pi(i)}, \sigma_0^2
ight) \quad orall i \in 1, \dots, N$$

		Models									
	σ	$\overline{\mathcal{N}}$ -VAE	$\mathcal{P}^{0.1}$ -VAE	$\mathcal{P}^{0.3}$ -VAE	$\mathcal{P}^{0.8}$ -VAE	$\mathcal{P}^{1.0}$ -VAE	$\mathcal{P}^{1.2}$ -VAE				
$\overline{\mathcal{L}_{ ext{IWAE}}}$	1	$57.14 \pm .20$	$57.10 \pm .18$	$57.16 \pm .18$	$56.88 \pm .20$	$56.71 \pm .19$	$56.58 \pm .22$				
$\overline{\mathcal{L}_{ ext{IWAE}}}$	1.3	$57.03 \pm .20$	$56.91 \pm .18$	$56.91 \pm .18$	$56.39 \pm .19$	$56.21 \pm .20$	$56.07 \pm .22$				
$\overline{\mathcal{L}_{ ext{IWAE}}}$	1.7	$57.00 \pm .18$	$56.77 \pm .18$	$56.62 \pm .16$	$55.90 \pm .22$	$55.70 \pm .19$	$\overline{55.60\pm.18}$				

MNIST: Handwritten digits

		Dimensionality						
	c	2	5	10	20			
\mathcal{N} -VAE	(0)	$144.51 \pm .37$	$114.66 \pm .08$	$100.16 \pm .08$	$97.64 \pm .04$			
$\mathcal{P} ext{-VAE}$ (Wrapped)	0.1 0.2 0.7 1.4	$143.87 \pm .47$ $144.22 \pm .54$ $143.82 \pm .56$ $143.97 \pm .61$	$115.49 \pm .27$ $115.29 \pm .28$ $115.08 \pm .31$ $114.73 \pm .16$	$100.22 \pm .06$ $100.06 \pm .13$ $100.19 \pm .11$ $100.69 \pm .13$	$97.22 \pm .05$ $97.15 \pm .04$ $97.49 \pm .04$ $97.99 \pm .06$			
P-VAE (Riemannian)	$0.1 \\ 0.2 \\ 0.7 \\ 1.4$	$143.67 \pm .59$ $143.77 \pm .42$ $143.05 \pm .41$ $142.46 \pm .40$	$115.18 \pm .20$ $114.69 \pm .25$ $114.13 \pm .21$ $115.48 \pm .32$	$99.90 \pm .14$ $99.68 \pm .15$ $101.16 \pm .18$ *	$96.97 \pm .05$ $97.43 \pm .12$ *			

MNIST: Handwritten digits

		Dimensionality						
	c	2	5	10	20			
\mathcal{N} -VAE	(0)	$144.51 \pm .37$	$114.66 \pm .08$	$100.16 \pm .08$	$97.64 \pm .04$			
P-VAE (Wrapped)	0.1 0.2 0.7 1.4	$143.87 \pm .47$ $144.22 \pm .54$ $143.82 \pm .56$ $143.97 \pm .61$	$115.49 \pm .27$ $115.29 \pm .28$ $115.08 \pm .31$ $114.73 \pm .16$	$100.22 \pm .06$ $100.06 \pm .13$ $100.19 \pm .11$ $100.69 \pm .13$	$97.22 \pm .05$ $97.15 \pm .04$ $97.49 \pm .04$ $97.99 \pm .06$			
P-VAE (Riemannian)	$0.1 \\ 0.2 \\ 0.7 \\ 1.4$	$143.67 \pm .59$ $143.77 \pm .42$ $143.05 \pm .41$ $142.46 \pm .40$	$115.18 \pm .20$ $114.69 \pm .25$ $\mathbf{114.13 \pm .21}$ $115.48 \pm .32$	$99.90 \pm .14$ $99.68 \pm .15$ $101.16 \pm .18$ *	96.97 ± .05 97.43 ± .12 *			

Digits	0	1	2	3	4	5	6	7	8	9	Avg
$\overline{\mathcal{N}}$ -VAE	89	97	81	75	59	43	89	78	68	57	73.6
$\mathcal{P}^{1.4}$ -VAE	94	97	82	79	69	47	90	77	68	53	75.6

Conclusion

 Deep generative model for hierarchical data

Make use of Hyperbolic geometry

Currently experimenting with biological data

Thank you! Questions?

