

现代密码学

第二十讲 DES算法简介

信息与软件工程学院

第二十讲 DES算法简介

美国制定数据加密标准简况

DES的框架和主要参数

• 目的

通信与计算机相结合是人类步入信息社会的一个阶梯, 它始于六十年代末,完成于90年代初。计算机通信网的形成与发展,要求信息作业标准化,安全保密亦不例外。只有标准化,才能真正实现网的安全,才能推广使用加密手段,以便于训练、生产和降低成本。

- 美国NBS在1973年5月15公布了征求建议。1974年8月27日NBS再次出公告征求建议,对建议方案提出如下要求:
- (1)算法必须提供高度的安全性
- (2) 算法必须有详细的说明, 并易于理解
- (3)算法的安全性取决于密钥,不依赖于算法
- (4)算法适用于所有用户
- (5) 算法适用于不同应用场合
- (6) 算法必须高效、经济
- (7)算法必须能被证实有效
- (8) 算法必须是可出口的

- IBM公司在1971年完成的LUCIFER密码 (64 bit分组,代换-置换,128 bit密钥)的基础上,改进成为建议的DES体制
- 1975年3月17日NBS公布了这个算法,并说明要以它作为联邦信息处理标准, 征求各方意见。
- 1977年1月15日建议被批准为联邦标准[FIPS PUB 46],并设计推出DES芯片。
- 1981年美国ANSI 将其作为标准, 称之为DEA[ANSI X3.92]
- 1983年国际标准化组织(ISO)采用它作为标准,称作DEA-1

- NSA宣布每隔5年重新审议DES是否继续作为联邦标准,1988年(FIPS46-1)、1993年(FIPS46-2),1998年不再重新批准DES为联邦标准。
- 虽然DES已有替代的数据加密标准算法,但它仍是迄今为止得到最广泛应用的一种算法,也是一种最有代表性的分组加密体制。
- 1993年4月, Clinton政府公布了一项建议的加密技术标准, 称作密钥托管加密技术标准EES(Escrowed Encryption Standard)。算法属美国政府SECRET密级。

- DES发展史确定了发展公用标准算法模式,而EES的制定路线与DES的背道 而驰。人们怀疑有陷门和政府部门肆意侵犯公民权利。此举遭到广为反对。
- 1995年5月AT&T Bell Lab的M. Blaze博士在PC机上用45分钟时间使 SKIPJACK的 LEAF协议失败,伪造ID码获得成功。1995年7月美国政府宣布放弃用EES来加密数据,只将它用于语音通信。
- 1997年1月美国NIST着手进行AES(Advanced Encryption Standard)的研究,成立了标准工作室。2001年Rijndael被批准为AES标准。

- DES (Data Encryption Standard) 算法于1977年得到美国政府的正式许可, 是一种用56位密钥来加密64位数据的方法。这是IBM的研究成果。
- · DES是第一代公开的、完全说明细节的商业级现代算法,并被世界公认。

第二十讲 DES算法简介

美国制定数据加密标准简况

DES的框架和主要参数

DES 算法

- 分组长度为64 bits (8 bytes)
- ·密文分组长度也是64 bits。
- ·密钥长度为64 bits, 有8 bits奇偶校验, 有效密钥长度为56 bits。
- 算法主要包括:初始置换IP、16轮迭代的乘积变换、逆初始置换 IP-1以及16个子密钥产生器。

DES算法框图

DES算法流程

初始置换IP与逆初始置换

- 初始置换是将64 bit明文的位置进行置换,得到一个乱序的64 bit明文组。
- 逆初始置换*IP*-1。将16轮迭代后给出的64 bit组进行置换, 得到输出的密文组。输出为阵中元素按行读得的结果。
- IP和IP-1在密码意义上作用不大,它们的作用在于打乱原来输入x的ASCII码字划分的关系。

初值置换IP

(a) 初始置换 IP

#	

Ⅎ									
	58	50	42	34	26	18	10	2	
	60	52	44	36	28	20	12	4	
	62	54	46	38	30	22	14	6	
	64	56	48	40	32	24	16	8	
	57	49	41	33	25	17	9	1	
	59	51	43	35	27	19	11	3	
	61	53	45	37	29	21	13	5	
	63	55	47	39	31	23	15	7	

逆初值置换IP-1

(b) 逆初始置换 IP-1

40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

IP与IP-1

1	2	3	4	5	6	7	8														
9	10	11	12	13	14	15	16			58 60	50 52	42 44		26 28		10 12					
17	18	19	20	21	22	23	24			62	54	46			22	14		M	_	$\rightarrow M$	<i>[</i> '
25	26	27	28	29	3 0	31	32	TD	1	64	56	48		32	24		8	171	20	/ 1/1	14
33	34	35	36	37	38	39	40	IP	√	57 59	49 51	41 43	33 35	25 27	17 19	9 11	1 3				
41	42	43	44	45	46	47	48			61	53	45		29	21	13	5				
49	50	51	52	53	54	55	56			63	55	47	39	31	23	15	7				
57	58	59	60	61	62	63	64			40	8	48	16	56	24	64	32				
1	2	3	4	5	6	7	8			39	7	47	15	55	23	63	31				
9	10	11	12	13	14	15	16			38	6	46	14	54	22	62	30	M'	\rightarrow	M''_2	10
17	18	19	20	21	22	23	24	IP-		>37	5	45	13	53	21	61	29]	14	2	20
25	26	27	28	29	30	31	32			36 25	4 3	44	12 11	52 51	20	60 so	28				
33	34			37		3 9				35 34	נ	43 42	10	50 50	19 18	59 58	27 26				
										33	1	41	9	49	17	57	25				
41	42	43	44	45		47															
49 57	50 58	51 59	52 60	53 61	54 62	55 63															
91	00	00		OI	02	0.0	O I														

IP和IP-1

1	2	3	4	5	6	7	8													
0	10	11	10	12	1.4	15	16			58	50	42	34	26	18	10	2			
9	10	11	12	13	14	15	16			60	52	44	36	28	20	12	4			
17	18	19	20	21	22	23	24			62	54	46	38	30	22	14	6	M	$\rightarrow M$	<i>7</i> '
25	26	27	28	29	30	31	32	TD		64	56			32	24		8	171 20	/ 171	14
33	34	35	36	37	38	39	40	IP		> 57 59	4 <u>9</u> 51	41 43	33 35	25 27	17 19	9 11	1 3			
41	42	43	44	45	46	47	48			61	53	45	37	29	21	13	5			
										63	55	47	39	31	23	15	7			
49	50	51	52	53	54	55	56													
57	58	59	60	61	62	63	64			40	8	48	16	56	24	64	32			
1.	2	3	4	5	6	7	8			39	7	47	15	55	23	63	31			
9	10	11	12	13	14	15	16			38	6	46	14	54	22	62	30	M'	$\rightarrow M''_2$	
17	18	19	20	21	2.2	23	24	ΙP	-1	>37	5	45	13	53	21	61	29	14	, 1,1	20
1506	N. S. A. S.	5.5	illuser velocit	2.772.72	3 <u>5.00.000</u>	0 000.00 46	1 100 21	— 1	$\overline{}$	36	4	44	12	52	20	60	28			
25	26	27	28	29	30	31	32		·	35	3	43	11	51	19	59	27			
33	34	35	36	37	38	39	40			34	2	42	10	50	18	58	26			
41	42	43	44	45	46	47	48			33	1	41	9	49	17	57	25			
49	50	51	52	53	54	55	56													
57	58	59	60	61	62	63	64													

感谢聆听! xynie@uestc.edu.cn