IOB-SoC

A RISC-V-based System on Chip

José T. de Sousa

IObundle Lda

July 21, 2020

Outline

- Introduction
- Project setup
- Create an IP core to instantiate in your SoC
- Edit the ./system.mk configuration file to declare a new peripheral
- Edit file firmware.c to drive the new peripheral
- Run the firmware in internal SRAM
- Run the firmware in external DDR
- Simulate and implement the system
- Implement in FPGA
- Implement in ASIC (WIP)
- Implement in RTL simulation
- Conclusions and future work

Introduction

- Building processor-based systems from scratch is challenging
- The IOB-SoC template eases this task
- Provides a base Verilog SoC equipped with
 - a RISC-V CPU
 - a memory system including boot ROM, RAM and AXI4 interface to DDR
 - a UART communications module
- Users can add IP cores and software to build more complex SoCs
- Here, the addition of a timer IP and its software driver is exemplified

Project setup

- Use a Linux machine or VM
- Install the latest stable version of the open source lcarus Verilog simulator (iverilog.icarus.com)
- Make sure you can access github.com using an ssh key
- At github.com create your SoC repository by cloning github.com/IObundle/iob-soc
- Follow the instructions in the README file to clone the repository in your Linux machine

Create an IP core to instantiate in your SoC

- Create a timer IP core repository or, alternatively, use the one at www.github.com/IObundle/iob-timer.git
- An IP core can be integrated in an IOb-SoC if it provides the following 2 files:
 - hardware/hardware.mk
 - software/embedded/embedded.mk
- Add the IP core repository as a git submodule of your IOb-SoC repository:

```
\verb|git submodule add https://github.com/IObundle/iob-timer.git submodules/TIMER|\\
```

 To configure the system to host the IP core, edit the ./system.mk file as in the next slide

Edit the ./system.mk configuration file to declare a new peripheral

```
#FIRMWARE
FIRM_ADDR_W:=13
#SRAM
SRAM_ADDR_W=13
#DDR
USE DDR:=0
RUN_DDR:=0
DDR ADDR W:=30
CACHE ADDR W:=24
#R OM
BOOTROM ADDR W:=12
#Init memory (only works in simulation or FPGA not running DDR)
INIT MEM:=1
#Peripheral list (must match respective submodule name)
PERIPHERALS: = UART TIMER
```


Edit the firmware.c file to drive the new peripheral

./software/firmware/firmware.c

```
#include "system.h"
#include "periphs.h"
#include "iob-uart.h"
#include "iob timer.h"
int main()
 unsigned long long elapsed;
 unsigned int elapsedu;
 //read current timer count, compute elapsed time
 elapsed = timer_get_count(TIMER_BASE);
 elapsedu = timer_time_us(TIMER_BASE);
 //init uart
 uart_init(UART_BASE, FREQ/BAUD);
 uart printf("\nHello world!\n"):
 uart txwait():
 uart_printf("\nExecution time: %d clocks in %dus @%dMHz (%d MBaud)\n\n",
             (unsigned int)elapsed, elapsedu, FREQ/1000000, BAUD/1000000);
 uart_txwait();
 return 0;
```


Run the firmware in internal SRAM

- Run the firmware in internal RAM and disable (re)programming
 - Assign USE_DDR=0 and INIT_MEM=0
 - Loading programs after the FPGA is programmed is disabled: if the firmware is modified the FPGA must be recompiled
 - This option is only valid for FPGA which permits memory initialisation
- 2 Run the firmware in internal RAM and enable (re)programming
 - Assign USE_DDR=0 INIT_MEM=1
 - Loading programs after the FPGA is programmed is enabled
 - This option is valid for FPGA and ASIC
 - Firmware is (re)loaded via UART

Run the firmware in external DDR

- Run the firmware in external DDR and disable (re)programming
 - Assign USE_DDR=1 and INIT_MEM=0
 - This option is only allowed in simulation which permits memory initialisation
 - An FPGA or ASIC implementation will not work
- Question Run the firmware in external DDR memory and enable (re)programming
 - Define USE_DDR=1 INIT_MEM=1
 - This option is valid for FPGA and ASIC
 - Firmware is (re)loaded via UART
 - Third party DDR controller IP core is required

Simulate and implement the system

- To simulate the system just type make
- The firmware, bootloader and system verilog description are compiled as you can see from the printed messages
- The last prints should look like the following

```
IOb-SoC Bootloader:

Reboot CPU and run program...

Hello world!

Execution time: 6583 clocks in 66us @100MHz (30 MBaud)
```


Implement in FPGA

- Add your FPGA folder in ./hardware/fpga. Use the other folders in there as examples
- In the file ./system.mk:
 - Add your FPGA board name in FPGA_BOARD
 - Add your server URL connected to the board in FPGA_BOARD_SERVER
 - 3 Add further server info such as username and work directories
- To implement and load the hardware design in the FPGA, type make fpga-load
- To load and run your firmware in the FPGA, type make run-firmware

Implement in ASIC (WIP)

- Add your ASIC folder in ./hardware/asic. Use the other folders in there as examples
- In the file ./system.mk:
 - Add your ASIC node name in ASIC_NODE
 - Add your server URL connected to the microcontroller in ASIC_SERVER
 - 3 Add further server info such as username and work directories
- To implement and run the ASIC, type make asic

Implement in RTL simulation

- Add your simulation folder in ./hardware/simulation. Use the other folders in there as examples
- In the file ./system.mk:
 - Add your simulator name in SIMULATOR
 - Add your server URL with the RTL simulator in SIM_SERVER
 - 3 Add further server info such as username and work directories
- To implement and run the RTL simulator, type make

Conclusions and future work

- Conclusions
 - A tutorial on SoC creation using IOb-SoC is presented
 - The addition of a peripheral IP core (timer) is illustrated
 - A simple software driver for the IP core is exemplified
 - How to compile and run the system is explained
 - Options for implementing the main memory are presented
 - Implementation of FPGA and ASIC is explained
- Future work
 - Non-volatile (flash) external memory support
 - Real Time Operating System (RTOS)

