[SREES] Seminarski - SystemModel Dokumentacija

Generated by Doxygen 1.9.4

1 Namespace Index	1
1.1 Namespace List	1
2 Class Index	3
2.1 Class List	3
2 File Index	5
3 File Index 3.1 File List	5
CATAIN EIGHT.	Ü
4 Namespace Documentation	7
4.1 SystemModel Namespace Reference	7
4.1.1 Typedef Documentation	7
4.1.1.1 AdmittanceMatrix	8
4.1.1.2 Branch	8
4.1.1.3 dfidx	8
4.1.1.4 fi	8
4.1.2 Enumeration Type Documentation	8
4.1.2.1 ThreePhaseLoadConfigurationsType	8
4.1.2.2 TypeOfBranch	8
4.1.2.3 TypeOfBus	9
4.1.3 Function Documentation	9
4.1.3.1 operator<<()	9
5 Class Documentation	11
5.1 SystemModel::Bus Class Reference	11
5.1.1 Constructor & Destructor Documentation	12
5.1.1.1 Bus()	12
5.1.2 Member Function Documentation	12
	12
5.1.2.1 getActivePower()	13
5.1.2.2 getReactivePower()	
5.1.2.3 getTypeOfBus()	13
5.1.2.4 getVoltageMagnitude()	14
5.1.2.5 getVoltagePhase()	14
5.1.2.6 setActivePower()	15
5.1.2.7 setReactivePower()	15
5.1.2.8 setVoltageMagnitude()	16
5.1.2.9 setVoltagePhase()	16
5.2 SystemModel::SystemModel Class Reference	17
5.2.1 Constructor & Destructor Documentation	18
5.2.1.1 SystemModel()	18
5.2.2 Member Function Documentation	18
5.2.2.1 addBus()	18
5.2.2.2 addCapacitorBank()	19
5.2.2.3 addGenerator()	19

5.2.2.4 addLine()	20
5.2.2.5 addLoad()	20
5.2.2.6 addSlackGenerator()	21
5.2.2.7 addTransformer()	21
5.2.2.8 changeCapacitorBank()	22
5.2.2.9 changeLine()	22
5.2.2.10 changeTransformer()	23
5.2.2.11 getAdmittanceMatrix()	23
5.2.2.12 getBranches()	24
5.2.2.13 getBus()	24
5.2.2.14 getBusFunctions()	25
5.2.2.15 getCapacitorBanks()	26
5.2.2.16 getDerivativesOfBusFunctions()	26
5.2.2.17 getNumberOfBuses()	27
5.2.2.18 hasSlackBeenAssigned()	27
5.2.2.19 removeBranch()	28
5.2.2.20 removeBus()	28
5.2.2.21 removeCapacitorBank()	28
5.2.3 Friends And Related Function Documentation	28
5.2.3.1 operator <<	28
	0.
6 File Documentation	31
6.1 export.cpp File Reference	
6.1.1 Function Documentation	
6.1.1.1 exportToHTML()	
6.1.1.2 exportToLatex()	
6.1.1.3 exportToTxt()	
6.1.2 Variable Documentation	
6.1.2.1 eps	
6.2 export.h File Reference	
6.2.1 Function Documentation	
6.2.1.1 exportToHTML()	
6.2.1.2 exportToLatex()	
6.2.1.3 exportToTxt()	
6.3 export.h	
6.4 import.cpp File Reference	
6.4.1 Function Documentation	
6.4.1.1 importFromTxt()	
6.5 import.h File Reference	
6.5.1 Function Documentation	
6.5.1.1 importFromTxt()	46
6.6 import.h	48

69

6.7 main.cpp File Reference	48
6.7.1 Function Documentation	48
6.7.1.1 main()	49
6.7.2 Variable Documentation	49
6.7.2.1 eps	49
6.8 newtonRaphson.cpp File Reference	50
6.8.1 Function Documentation	51
6.8.1.1 absVector()	51
6.8.1.2 adjoint()	51
6.8.1.3 cofactor()	52
6.8.1.4 determinant()	53
6.8.1.5 inverseMatrix()	54
6.8.1.6 newtonRaphson()	55
6.8.1.7 operator*()	56
6.8.1.8 operator-()	56
6.9 newtonRaphson.h File Reference	57
6.9.1 Function Documentation	58
6.9.1.1 absVector()	58
6.9.1.2 adjoint()	58
6.9.1.3 cofactor()	59
6.9.1.4 determinant()	60
6.9.1.5 inverseMatrix()	61
6.9.1.6 newtonRaphson()	62
6.9.1.7 operator*()	63
6.9.1.8 operator-()	63
6.10 newtonRaphson.h	64
6.11 systemModel.cpp File Reference	64
6.11.1 Macro Definition Documentation	64
6.11.1.1 PI	65
6.12 systemModel.h File Reference	65
6.13 systemModel.h	66

Index

Chapter 1

Namespace Index

1.1 Namespace List

lere is a list of all namespaces with brief descriptions:				
SystemModel				

2 Namespace Index

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Systemiviodel::Bus		 	 	 	- 11
SystemModel::Syste	mModel	 	 	 	17

4 Class Index

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

export.cpp	31
export.h	37
mport.cpp	43
mport.h	45
nain.cpp	48
newtonRaphson.cpp	50
newtonRaphson.h	57
ystemModel.cpp	64
ystemModel.h	65

6 File Index

Chapter 4

Namespace Documentation

4.1 SystemModel Namespace Reference

Classes

- class Bus
- · class SystemModel

Typedefs

- using fi = std::pair< std::function< double(std::vector< double>)>, std::function< double(std::vector< double)
- using dfidx = std::pair< std::vector< std::function< double(std::vector< double >)> >, std::vector< std
 ::function< double(std::vector< double >)> >>
- using AdmittanceMatrix = std::vector < std::tuple < uint8 t, uint8 t, std::complex < double >> >
- using Branch = std::tuple < TypeOfBranch, uint8_t, uint8_t, double, double, double, double >

Enumerations

- enum class TypeOfBus { Slack , PV , PQ }
- enum class ThreePhaseLoadConfigurationsType { Star , GroundedStar , Delta }
- enum class TypeOfBranch { Line , Transformer }

Functions

std::ostream & operator << (std::ostream & stream, const SystemModel & systemModel)
 Output stream operator overload

4.1.1 Typedef Documentation

4.1.1.1 AdmittanceMatrix

 $\label{lem:systemModel::AdmittanceMatrix = typedef std::vector < std::tuple < uint 8_t, uint 8_t, std \\ :: complex < double > >>$

4.1.1.2 Branch

using SystemModel::Branch = typedef std::tuple<TypeOfBranch, uint8_t, uint8_t, double, double,
double, double>

4.1.1.3 dfidx

using SystemModel::dfidx = typedef std::pair<std::vector<std::function<double(std::vector<double>)>
>, std::vector<std::function<double(std::vector<double>)> >>

4.1.1.4 fi

 $\label{lem:systemModel::fi} $$ using $$ SystemModel::fi = typedef std::pair<std::function<double(std::vector<double>)>, std$$::function<double(std::vector<double>)>> $$ $$ $$$

4.1.2 Enumeration Type Documentation

4.1.2.1 ThreePhaseLoadConfigurationsType

enum class SystemModel::ThreePhaseLoadConfigurationsType [strong]

Enumerator

Star	
GroundedStar	
Delta	

4.1.2.2 TypeOfBranch

enum class SystemModel::TypeOfBranch [strong]

Enumerator

Line	
Transformer	

4.1.2.3 TypeOfBus

```
enum class SystemModel::TypeOfBus [strong]
```

Enumerator

Slack	
PV	
PQ	

4.1.3 Function Documentation

4.1.3.1 operator<<()

Output stream operator overload

Parameters

stream	Output stream object
systemModel	SystemModel object to be printed to the stream

Returns

Chapter 5

Class Documentation

5.1 SystemModel::Bus Class Reference

#include <systemModel.h>

Collaboration diagram for SystemModel::Bus:

SystemModel::Bus

- + Bus()
- + getTypeOfBus()
- + setVoltageMagnitude()
- + setVoltagePhase()
- + setActivePower()
- + setReactivePower()
- + getVoltageMagnitude()
- + getVoltagePhase()
- + getActivePower()
- + getReactivePower()

Public Member Functions

- Bus (TypeOfBus typeOfBus)
- TypeOfBus getTypeOfBus () const
- void setVoltageMagnitude (double voltageMagnitude)

Sets the value at which the voltage amplitude for the given bus should be maintained.

void setVoltagePhase (double voltagePhase)

Sets the value at which the voltage phase for the given bus should be maintained.

• void setActivePower (double activePower)

Sets the value at which the active power for the given bus should be maintained.

void setReactivePower (double reactivePower)

Sets the value at which the rective power for the given bus should be maintained.

• std::optional< double > getVoltageMagnitude () const

Gets the value at which the voltage magnitude for the given bus should be maintained.

std::optional < double > getVoltagePhase () const

Gets the value at which the voltage phase for the given bus should be maintained.

• std::optional< double > getActivePower () const

Gets the value at which the active power for the given bus should be maintained.

std::optional < double > getReactivePower () const

Gets the value at which the rective power for the given bus should be maintained.

5.1.1 Constructor & Destructor Documentation

5.1.1.1 Bus()

5.1.2 Member Function Documentation

5.1.2.1 getActivePower()

```
std::optional< double > SystemModel::Bus::getActivePower ( ) const
```

Gets the value at which the active power for the given bus should be maintained.

Returns

Value of active power for the bus

5.1.2.2 getReactivePower()

```
std::optional< double > SystemModel::Bus::getReactivePower ( ) const
```

Gets the value at which the rective power for the given bus should be maintained.

Returns

Value of reactive power for the bus

Here is the caller graph for this function:

5.1.2.3 getTypeOfBus()

```
TypeOfBus SystemModel::Bus::getTypeOfBus ( ) const [inline]
```


5.1.2.4 getVoltageMagnitude()

std::optional< double > SystemModel::Bus::getVoltageMagnitude () const

Gets the value at which the voltage magnitude for the given bus should be maintained.

Returns

Value of voltage magnitude of the bus

Here is the caller graph for this function:

5.1.2.5 getVoltagePhase()

std::optional< double > SystemModel::Bus::getVoltagePhase () const

Gets the value at which the voltage phase for the given bus should be maintained.

Returns

Value of voltage phase of the bus

5.1.2.6 setActivePower()

Sets the value at which the active power for the given bus should be maintained.

Parameters

activePower	Value of active power for the bus
-------------	-----------------------------------

Here is the caller graph for this function:

5.1.2.7 setReactivePower()

Sets the value at which the rective power for the given bus should be maintained.

Parameters

reactivePower	Value of reactive power for the bus
	Tanada at tanada

5.1.2.8 setVoltageMagnitude()

```
\begin{tabular}{ll} \begin{tabular}{ll} void & SystemModel::Bus::setVoltageMagnitude & ( \\ & double & voltageMagnitude & ) \end{tabular}
```

Sets the value at which the voltage amplitude for the given bus should be maintained.

Parameters

```
voltageMagnitude  Value of voltage magnitude of the bus
```

Here is the caller graph for this function:

5.1.2.9 setVoltagePhase()

Sets the value at which the voltage phase for the given bus should be maintained.

Parameters

voltagei	Phase	Value of voltage phase of the bus]
----------	-------	-----------------------------------	---

Here is the caller graph for this function:

The documentation for this class was generated from the following files:

- systemModel.h
- systemModel.cpp

5.2 SystemModel::SystemModel Class Reference

#include <systemModel.h>

Collaboration diagram for SystemModel::SystemModel:

SystemModel::SystemModel

- + SystemModel()
- + getAdmittanceMatrix()
- + getNumberOfBuses()
- + getBus()
- + addBus()
- + addLoad()
- + addLine()
- + addGenerator()
- + addSlackGenerator()
- + hasSlackBeenAssigned()
- + addTransformer()
- + addCapacitorBank()
- + getBusFunctions()
- + getDerivativesOfBusFunctions()
- + removeBranch()
- + changeLine()
- + changeTransformer()
- + getBranches()
- + removeBus()
- + removeCapacitorBank()
- + changeCapacitorBank()
- + getCapacitorBanks()

Public Member Functions

- SystemModel (uint8_t maxNumberOfBuses)
- AdmittanceMatrix getAdmittanceMatrix () const
- uint8_t getNumberOfBuses () const
- Bus & getBus (uint8 t busNumber)

Gets the bus with the given bus number

void addBus (TypeOfBus typeOfBus)

Adds a bus to the system

• void addLoad (uint8_t busNumber, double activePower, double reactivePower)

Adds a load to a bus

• void addLine (uint8_t busNumber1, uint8_t busNumber2, double r, double x, double b)

Adds a line between buses

void addGenerator (uint8 t busNumber, double voltageMagnitude, double activePower)

Adds a generator to a bus

void addSlackGenerator (uint8_t busNumber, double voltageMagnitude, double voltagePhase)

Adds a generator to the slack bus

bool hasSlackBeenAssigned () const

Check whether the slack bus has been assigned

• void addTransformer (uint8 t busNumber1, uint8 t busNumber2, double r, double x, double g, double b)

Adds a transformer between buses

void addCapacitorBank (uint8_t busNumber, double b, ThreePhaseLoadConfigurationsType configuration
 —
 Type)

Adds a capacitor bank to a bus

• fi getBusFunctions (uint8_t busNumber) const

Gets the bus functions (fi_P and fi_Q) for the desired bus

• dfidx getDerivativesOfBusFunctions (uint8 t busNumber) const

Gets the derivates of the bus functions (dfi_Q/dx) for the desired bus (two rows of the Jacobian associated with the given bus functions)

void removeBranch (uint8_t busNumber1, uint8_t busNumber2)

Removes a line or transformer between buses

• void changeLine (uint8 t busNumber1, uint8 t busNumber2, double r, double x, double b)

Changes the parameters of the line between buses

• void changeTransformer (uint8_t busNumber1, uint8_t busNumber2, double r, double x, double g, double b)

Changes the parameters of the transformer between buses

- std::vector< Branch > getBranches () const
- void removeBus (uint8_t busNumber)

Removes the given bus from the system

void removeCapacitorBank (uint8 t busNumber)

Removes the capacitor bank that is connected to the given bus

Changes the parameters of the capacitor bank connected to the given bus

• std::vector< std::tuple< uint8_t, double, ThreePhaseLoadConfigurationsType > > getCapacitorBanks ()

Friends

std::ostream & operator<< (std::ostream &stream, const SystemModel)

5.2.1 Constructor & Destructor Documentation

5.2.1.1 SystemModel()

5.2.2 Member Function Documentation

5.2.2.1 addBus()

Adds a bus to the system

Parameters

Here is the caller graph for this function:

5.2.2.2 addCapacitorBank()

Adds a capacitor bank to a bus

Parameters

busNumber	Ordinal number of the desired bus	
b	One phase susceptance of the bank	
configurationType	Three phase load configuration type (delta, star, grounded star) of the bank	

Here is the caller graph for this function:

5.2.2.3 addGenerator()

```
double voltageMagnitude,
double activePower )
```

Adds a generator to a bus

Parameters

busNumber	Ordinal number of the desired bus
voltageMagnitude	Voltage magnitude on which the given bus should be maintained

<param name="activePower"Active power on which the given bus should be maintained>

5.2.2.4 addLine()

```
void SystemModel::SystemModel::addLine (
          uint8_t busNumber1,
          uint8_t busNumber2,
          double r,
          double x,
          double b)
```

Adds a line between buses

Parameters

busNumber1	Ordinal number of the first bus
busNumber2	Ordinal number of the second bus
r	Series resistance of the transmission line PI equivalent
X	Series reactance of the transmission line PI equivalent
b	Shunt susceptance of the transmission line PI equivalent

Here is the caller graph for this function:

5.2.2.5 addLoad()

Adds a load to a bus

Parameters

busNumber	Ordinal number of the desired bus
activePower	Active power drawn by the load
reactivePower	Reactive power drawn by the load

5.2.2.6 addSlackGenerator()

Adds a generator to the slack bus

Parameters

busNumber	Ordinal number of the desired bus
voltageMagnitude	Voltage magnitude on which the given bus should be maintained
voltagePhase	Voltage phase on which the given bus should be maintained

5.2.2.7 addTransformer()

Adds a transformer between buses

Parameters

busNumber1	Ordinal number of the first bus
busNumber2	Ordinal number of the second bus
r	Series resistance of the transformer PI equivalent
X	Series reactance of the transformer PI equivalent
g	Shunt conductance of the transformer PI equivalent
b	Shunt susceptance of the transformer PI equivalent

Here is the caller graph for this function:

5.2.2.8 changeCapacitorBank()

Changes the parameters of the capacitor bank connected to the given bus

Parameters

busNumber	Ordinal number of the desired bus	
b	One phase susceptance of the bank	
configurationType	Three phase load configuration type (delta, star, grounded star) of the bank	

5.2.2.9 changeLine()

Changes the parameters of the line between buses

Parameters

busNumber1	Ordinal number of the first bus
busNumber2	Ordinal number of the second bus
r	Series resistance of the transmission line PI equivalent
X	Series reactance of the transmission line PI equivalent
Ь	Shunt susceptance of the transmission line PI equivalent

5.2.2.10 changeTransformer()

Changes the parameters of the transformer between buses

Parameters

busNumber1	Ordinal number of the first bus
busNumber2	Ordinal number of the second bus
r	Series resistance of the transformer PI equivalent
X	Series reactance of the transformer PI equivalent
g	Shunt conductance of the transformer PI equivalent
b	Shunt susceptance of the transformer PI equivalent

5.2.2.11 getAdmittanceMatrix()

```
AdmittanceMatrix SystemModel::SystemModel::getAdmittanceMatrix ( ) const [inline]
```


5.2.2.12 getBranches()

```
std::vector< Branch > SystemModel::SystemModel::getBranches ( ) const [inline]
```

Here is the caller graph for this function:

5.2.2.13 getBus()

Gets the bus with the given bus number

Parameters

busNumber	Ordinal number of the desired bus

Returns

Bus with the given bus number

Here is the caller graph for this function:

5.2.2.14 getBusFunctions()

Gets the bus functions (fi_P and fi_Q) for the desired bus

Parameters

busNumber	Ordinal number of the desired bus
-----------	-----------------------------------

Returns

Bus functions for the given bus in the form of std::pair of functions, where both functions have a std::vector of doubles as parameters and return a double

5.2.2.15 getCapacitorBanks()

```
\label{thm:continuity:continuity:equal} $$ std::vector < std::tuple < uint8_t, double, ThreePhaseLoadConfigurationsType >> SystemModel \leftrightarrow ::SystemModel::getCapacitorBanks ( ) const [inline]
```

Here is the caller graph for this function:

5.2.2.16 getDerivativesOfBusFunctions()

Gets the derivates of the bus functions (dfi_P/dx and dfi_Q/dx) for the desired bus (two rows of the Jacobian associated with the given bus functions)

Parameters

husNumber	Ordinal number of the desired bus
Dusivallibel	Ordinal number of the desired bus

Returns

Derivatives of the bus functions for the given bus in the form of std::pair of std::vector-s of functions, where both functions have a std::vector of doubles as parameters and return a double

Here is the caller graph for this function:

5.2.2.17 getNumberOfBuses()

uint8_t SystemModel::getNumberOfBuses () const [inline]

Here is the caller graph for this function:

5.2.2.18 hasSlackBeenAssigned()

bool SystemModel::SystemModel::hasSlackBeenAssigned () const

Check whether the slack bus has been assigned

Returns

True if the slack bus has been assigned and false otherwise

5.2.2.19 removeBranch()

Removes a line or transformer between buses

Parameters

busNumber1	Ordinal number of the first bus
busNumber2	Ordinal number of the second bus

5.2.2.20 removeBus()

Removes the given bus from the system

Parameters

ousNumber Ordinal number of the desired but	JS
---	----

5.2.2.21 removeCapacitorBank()

Removes the capacitor bank that is connected to the given bus

Parameters

```
busNumber Ordinal number of the desired bus
```

5.2.3 Friends And Related Function Documentation

5.2.3.1 operator<<

The documentation for this class was generated from the following files:

- systemModel.h
- systemModel.cpp

Chapter 6

File Documentation

6.1 export.cpp File Reference

```
#include "export.h"
#include "systemModel.h"
#include <algorithm>
#include <iostream>
#include <fstream>
#include <tuple>
```

Include dependency graph for export.cpp:

Functions

void exportToLatex (SystemModel::SystemModel s)

Exports SystemModel to the main.tex file

• void exportToHTML (SystemModel::SystemModel s)

Exports SystemModel to the main.html file

• void exportToTxt (const char *filename, SystemModel::SystemModel s)

Exports SystemModel to the .tex file

Variables

• const double eps { 1e-10 }

6.1.1 Function Documentation

6.1.1.1 exportToHTML()

```
void exportToHTML ( {\tt SystemModel::SystemModel}\ s\ )
```

Exports SystemModel to the main.html file

Parameters

SystemModel::SystemModel	System model
--------------------------	--------------

Returns

Here is the call graph for this function:

6.1.1.2 exportToLatex()

```
void exportToLatex ( {\tt SystemModel::SystemModel}\ s\ )
```

Exports SystemModel to the main.tex file

Parameters

SystemModel::SystemModel System model

Returns

Here is the call graph for this function:

6.1.1.3 exportToTxt()

Exports SystemModel to the .tex file

Parameters

const char*	Name of the file
SystemModel::SystemModel	System model

Returns

Here is the call graph for this function:

6.1.2 Variable Documentation

6.1.2.1 eps

const double eps { 1e-10 }

6.2 export.h File Reference

```
#include <fstream>
#include <iostream>
#include "systemModel.h"
Include dependency graph for export.h:
```


This graph shows which files directly or indirectly include this file:

Functions

- void exportToLatex (SystemModel::SystemModel s)
 - Exports SystemModel to the main.tex file
- void exportToHTML (SystemModel::SystemModel s)
 - Exports SystemModel to the main.html file
- void exportToTxt (const char *filename, SystemModel::SystemModel s)

Exports SystemModel to the .tex file

6.2.1 Function Documentation

6.2.1.1 exportToHTML()

```
void exportToHTML ( {\tt SystemModel::SystemModel}\ s\ )
```

Exports SystemModel to the main.html file

Parameters

SystemModel::SystemModel System model

Returns

Here is the call graph for this function:

6.2.1.2 exportToLatex()

```
void exportToLatex ( {\tt SystemModel::SystemModel}\ s\ )
```

Exports SystemModel to the main.tex file

Parameters

SystemModel::SystemModel System model

Returns

Here is the call graph for this function:

6.2.1.3 exportToTxt()

Exports SystemModel to the .tex file

Parameters

const char*	Name of the file
SystemModel::SystemModel	System model

Returns

Here is the call graph for this function:

6.3 export.h

Go to the documentation of this file.

```
1 #pragma once
2 #include <fstream>
3 #include <iostream>
4 #include "systemModel.h"
5
6 void exportToLatex(SystemModel::SystemModel s);
7
8 void exportToHTML(SystemModel::SystemModel s);
9
10 void exportToTxt(const char* filename, SystemModel::SystemModel s);
```

6.4 import.cpp File Reference

```
#include <algorithm>
#include <iostream>
#include <fstream>
#include <tuple>
#include "systemModel.h"
Include dependency graph for import.cpp:
```


Functions

• void importFromTxt (const char *filename, SystemModel::SystemModel &systemModel)

Imports SystemModel from the .txt file

6.4.1 Function Documentation

6.4.1.1 importFromTxt()

Imports SystemModel from the .txt file

Parameters

const char*	Name of the file
SystemModel::SystemModel	System model

Returns

Here is the call graph for this function:

Here is the caller graph for this function:

6.5 import.h File Reference

#include "systemModel.h"
Include dependency graph for import.h:

This graph shows which files directly or indirectly include this file:

Functions

void importFromTxt (const char *filename, SystemModel::SystemModel &s)
 Imports SystemModel from the .txt file

6.5.1 Function Documentation

6.5.1.1 importFromTxt()

Imports SystemModel from the .txt file

Parameters

const char*	Name of the file
SystemModel::SystemModel	System model

Returns

Here is the call graph for this function:

Here is the caller graph for this function:

6.6 import.h

Go to the documentation of this file.

```
1 #pragma once
2
3 #include "systemModel.h"
4
5
6 void importFromTxt(const char* filename, SystemModel::SystemModel& s);
```

6.7 main.cpp File Reference

```
#include <iostream>
#include "systemModel.h"
#include "newtonRaphson.h"
#include "export.h"
#include "import.h"
Include dependency graph for main.cpp:
```


Functions

• int main ()

Variables

• const double eps { 1e-10 }

6.7.1 Function Documentation

6.7.1.1 main()

```
int main ( )
```

Here is the call graph for this function:

6.7.2 Variable Documentation

6.7.2.1 eps

```
const double eps { 1e-10 }
```

6.8 newtonRaphson.cpp File Reference

```
#include "systemModel.h"
#include "newtonRaphson.h"
#include <math.h>
#include <algorithm>
#include <iostream>
#include <vector>
```

Include dependency graph for newtonRaphson.cpp:

Functions

template < typename T >
 std::vector < T > operator* (const std::vector < t > > &matrix, const std::vector < T > &vector)

Matrix and vector product operator overloadtemplate<typename T >

std::vector < std::vector < T >> operator- (const std::vector < std::vector < T >> &matrix)

Unary minus sign matrix operator overload

• std::vector< double > absVector (const std::vector< double > &vec)

Absolute value of vector

void cofactor (const std::vector < std::vector < double > > &matrix, std::vector < std::vector < double > > &t, int p, int q, int n)

Cofactor of the matrix

double determinant (std::vector< std::vector< double >> matrix, int n)

Determinant of matrix

void adjoint (const std::vector< std::vector< double > > &matrix, std::vector< std::vector< double > > &adj)

Adjoint matrix

• std::vector< std::vector< double >> inverseMatrix (const std::vector< std::vector< double >> &matrix, double eps=1e-10)

Inverse matrix

• int newtonRaphson (SystemModel::SystemModel sm, int maxNumberOflter, double eps, std::vector< double > x0, std::vector< double &err, int &iter)

Newton Raphson method

6.8.1 Function Documentation

6.8.1.1 absVector()

Absolute value of vector

Parameters

std::vector <double></double>	Vector of double elements
-------------------------------	---------------------------

Returns

Absolute value of elements in the argument vector

Here is the caller graph for this function:

6.8.1.2 adjoint()

Adjoint matrix

Parameters

std::vector <std::vector<double>></std::vector<double>	Matrix to get adjoint from
std::vector <std::vector<double>></std::vector<double>	Referece to adjoint matrix

Returns

Here is the call graph for this function:

Here is the caller graph for this function:

6.8.1.3 cofactor()

Cofactor of the matrix

Parameters

std::vector <std::vector<double>></std::vector<double>	Matrix to get cofactor from
std::vector <std::vector<double>></std::vector<double>	Cofactor matrix
int	Row of the cofactor that needs to be found
int	Column of the cofactor that needs to be found
int	Size of square matrix

Returns

Here is the caller graph for this function:

6.8.1.4 determinant()

```
double determinant (  \mbox{std::vector} < \mbox{ std::vector} < \mbox{ double } > \mbox{ \textit{matrix,}}  int n )
```

Determinant of matrix

Parameters

std::vector <std::vector<double>></std::vector<double>	Matrix to get determinant from
int	Size of square matrix

Returns

Double value of determinant

Here is the call graph for this function:

Here is the caller graph for this function:

6.8.1.5 inverseMatrix()

Inverse matrix

Parameters

std::vector <std::vector<double>></std::vector<double>	Matrix to get inverse from
double	Sinuglarity check

Returns

Matrix that is inverse from the first argument

Here is the call graph for this function:

Here is the caller graph for this function:

6.8.1.6 newtonRaphson()

Newton Raphson method

Parameters

SystemModel::SystemModel	System model
int	Maximum number of iterations
double	Maximum tolerance
std::vector <double></double>	Starting solution vector
std::vector <double></double>	Reference to solution vector
double	Reference to tolerance achieved
int	Reference to number of iterations preformed

Returns

Int value that shows if the system converges or not. Returns 1 if converges, returns 0 if it does not

Here is the call graph for this function:

Here is the caller graph for this function:

6.8.1.7 operator*()

Matrix and vector product operator overload

Parameters

std::vector <std::vector<t>></std::vector<t>	Vector of vector type
std::vector <t></t>	Vector type

Returns

Vector that is the result of matrix and vector product

6.8.1.8 operator-()

```
template<typename T > std::vector< std::vector< T > > operator- ( const std::vector< std::vector< T > > & matrix )
```

Unary minus sign matrix operator overload

Parameters

std::vector <std::vector<t>></std::vector<t>	Matrix of type

Returns

Reverse sign elements of matrix

6.9 newtonRaphson.h File Reference

```
#include "systemModel.h"
#include <vector>
#include <math.h>
#include <algorithm>
```

Include dependency graph for newtonRaphson.h:

This graph shows which files directly or indirectly include this file:

Functions

```
    template < typename T >
        std::vector < T > operator* (const std::vector < to > % matrix, const std::vector < T > & vector)
        Matrix and vector product operator overload
```

template < typename T >
 std::vector < std::vector < T > > operator- (const std::vector < std::vector < T > > &matrix)
 Unary minus sign matrix operator overload

- std::vector< double > absVector (const std::vector< double > &vec)

Absolute value of vector

void cofactor (const std::vector< std::vector< double > > &matrix, std::vector< std::vector< double > > &t, int p, int q, int n)

Cofactor of the matrix

- double determinant (std::vector< std::vector< double >> matrix, int n)

Determinant of matrix

void adjoint (const std::vector< std::vector< double > > &matrix, std::vector< std::vector< double > > &adj)

Adjoint matrix

std::vector< std::vector< double > > inverseMatrix (const std::vector< std::vector< double > > &matrix, double eps)

Inverse matrix

• int newtonRaphson (SystemModel::SystemModel sm, int maxNumberOflter, double eps, std::vector< double > x0, std::vector< double &err, int &iter)

Newton Raphson method

6.9.1 Function Documentation

6.9.1.1 absVector()

Absolute value of vector

Parameters

Returns

Absolute value of elements in the argument vector

Here is the caller graph for this function:

6.9.1.2 adjoint()

Adjoint matrix

Parameters

std::vector <std::vector<double>></std::vector<double>	Matrix to get adjoint from
std::vector <std::vector<double>></std::vector<double>	Referece to adjoint matrix

Returns

Here is the call graph for this function:

Here is the caller graph for this function:

6.9.1.3 cofactor()

Cofactor of the matrix

Parameters

std::vector <std::vector<double>></std::vector<double>	Matrix to get cofactor from
std::vector <std::vector<double>></std::vector<double>	Cofactor matrix
int	Row of the cofactor that needs to be found
int	Column of the cofactor that needs to be found
Generated by Doxygen Int	Size of square matrix

Returns

Here is the caller graph for this function:

6.9.1.4 determinant()

```
double determinant (  \mbox{std::vector} < \mbox{ std::vector} < \mbox{ double } > \mbox{ \textit{matrix,}}  int n )
```

Determinant of matrix

Parameters

std::vector <std::vector<double>></std::vector<double>	Matrix to get determinant from
int	Size of square matrix

Returns

Double value of determinant

Here is the call graph for this function:

Here is the caller graph for this function:

6.9.1.5 inverseMatrix()

Inverse matrix

Parameters

std::vector <std::vector<double>></std::vector<double>	Matrix to get inverse from
double	Sinuglarity check

Returns

Matrix that is inverse from the first argument

Here is the call graph for this function:

Here is the caller graph for this function:

6.9.1.6 newtonRaphson()

Newton Raphson method

Parameters

SystemModel::SystemModel	System model
int	Maximum number of iterations
double	Maximum tolerance
std::vector <double></double>	Starting solution vector
std::vector <double></double>	Reference to solution vector
double	Reference to tolerance achieved
int	Reference to number of iterations preformed

Returns

Int value that shows if the system converges or not. Returns 1 if converges, returns 0 if it does not

Here is the call graph for this function:

Here is the caller graph for this function:

6.9.1.7 operator*()

Matrix and vector product operator overload

Parameters

std::vector <std::vector<t>></std::vector<t>	Vector of vector type
std::vector <t></t>	Vector type

Returns

Vector that is the result of matrix and vector product

6.9.1.8 operator-()

```
template<typename T > std::vector< std::vector< T > > operator- ( const std::vector< std::vector< T > > & matrix )
```

Unary minus sign matrix operator overload

Parameters

std::vector <std::vector<t>></std::vector<t>	Matrix of type

Returns

Reverse sign elements of matrix

6.10 newtonRaphson.h

Go to the documentation of this file.

```
#pragma once
#include "systemModel.h"
3 #include <vector>
4 #include <math.h>
5 #include <algorithm>
7 template <typename T>
8 std::vector<T> operator *(const std::vector<std::vector<T>& matrix, const std::vector<T>& vector);
10 template <typename T>
11 std::vector<std::vector<T> operator -(const std::vector<std::vector<T> matrix);
13 std::vector<double> absVector(const std::vector<double>& vec);
14
15 void cofactor(const std::vector<std::vector<double»& matrix, std::vector<std::vector<double»& t, int p,
       int q, int n);
16
17 double determinant(std::vector<std::vector<double» matrix, int n);
19 void adjoint (const std::vector<std::vector<double>& matrix, std::vector<std::vector<double>& adj);
20
21 std::vector<std::vector<double» inverseMatrix(const std::vector<std::vector<double»& matrix, double eps);
23 int newtonRaphson(SystemModel::SystemModel sm, int maxNumberOfIter, double eps, std::vector<double> x0,
       std::vector<double>& x, double& err, int& iter);
```

6.11 systemModel.cpp File Reference

```
#include "systemModel.h"
#include <stdexcept>
#include <algorithm>
#include <iomanip>
#include <cmath>
```

Include dependency graph for systemModel.cpp:

Macros

#define PI 4 * std::atan(1.0)

6.11.1 Macro Definition Documentation

6.11.1.1 PI

```
#define PI 4 * std::atan(1.0)
```

6.12 systemModel.h File Reference

```
#include <vector>
#include <complex>
#include <optional>
#include <functional>
#include <utility>
#include <tuple>
```

Include dependency graph for systemModel.h:

This graph shows which files directly or indirectly include this file:

Classes

- class SystemModel::Bus
- class SystemModel::SystemModel

Namespaces

• namespace SystemModel

Typedefs

- using SystemModel::fi = std::pair< std::function< double(std::vector< double >)>, std::function
 double(std::vector< double >)>>
- using SystemModel::dfidx = std::pair< std::vector< std::function< double(std::vector< double >)> >, std
 ::vector< std::function< double(std::vector< double >)> >
- using SystemModel::AdmittanceMatrix = std::vector< std::tuple< uint8_t, uint8_t, std::complex< double >
- using SystemModel::Branch = std::tuple < TypeOfBranch, uint8 t, uint8 t, double, double, double, double

Enumerations

- enum class SystemModel::TypeOfBus { SystemModel::Slack , SystemModel::PV , SystemModel::PQ }
- enum class SystemModel::ThreePhaseLoadConfigurationsType { SystemModel::Star , SystemModel::GroundedStar , SystemModel::Delta }
- enum class SystemModel::TypeOfBranch { SystemModel::Line , SystemModel::Transformer }

Functions

std::ostream & SystemModel::operator<<< (std::ostream &stream, const SystemModel &systemModel)
 Output stream operator overload

6.13 systemModel.h

Go to the documentation of this file.

```
1 #pragma once
2 #include <vector>
3 #include <complex>
4 #include <optional>
5 #include <functional>
6 #include <utility>
7 #include <tuple>
10
11 namespace SystemModel {
12
       enum class TypeOfBus { Slack, PV, PQ };
13
14
15
16
       enum class ThreePhaseLoadConfigurationsType { Star, GroundedStar, Delta };
18
19
       enum class TypeOfBranch { Line, Transformer };
20
21
23
24
       using fi = std::pair<std::function<double(std::vector<double>)>,
       std::function<double(std::vector<double>)»;
25
26
       using dfidx = std::pair<std::vector<std::function<double(std::vector<double>)»,
28
       std::vector<std::function<double(std::vector<double>) >>;
29
30
31
       using AdmittanceMatrix = std::vector<std::tuple<uint8_t, uint8_t, std::complex<double>>;
33
35
36
       using Branch = std::tuple<TypeOfBranch, uint8_t, uint8_t, double, double, double, double>;
38
```

6.13 systemModel.h

```
40
            class Bus {
                   TypeOfBus typeOfBus;
41
42
                   std::optional<double> voltageMagnitude;
43
                   std::optional<double> voltagePhase;
44
                   std::optional<double> activePower;
                   std::optional<double> reactivePower;
45
46
            public:
47
                  Bus(TypeOfBus typeOfBus) : typeOfBus{ typeOfBus } {}
48
49
                   TypeOfBus getTypeOfBus() const {
50
                          return typeOfBus;
51
                   }
52
53
                   void setVoltageMagnitude(double voltageMagnitude);
54
55
                   void setVoltagePhase(double voltagePhase);
56
                   void setActivePower(double activePower);
57
58
59
                   void setReactivePower(double reactivePower);
60
61
                   std::optional<double> getVoltageMagnitude() const;
62
                   std::optional<double> getVoltagePhase() const;
6.3
64
65
                   std::optional<double> getActivePower() const;
66
67
                   std::optional<double> getReactivePower() const;
68
            };
69
70
71
72
            class SystemModel {
73
                   AdmittanceMatrix admittanceMatrix;
74
                   uint8_t numberOfBuses{};
75
                   std::vector<Bus> buses;
                   const uint8 t maxNumberOfBuses;
76
                   bool checkForConnectionBetweenToBuses(uint8_t busNumber1, uint8_t busNumber2) const;
78
                   std::vector<Branch> branches;
79
                   void addBranchToAdmittanceMatrix(uint8_t busNumber1, uint8_t busNumber2, double r, double x,
            double g, double b);
80
                   std::vector<std::tuple<uint8_t, double, ThreePhaseLoadConfigurationsType» capacitorBanks;
81
                   void addCapacitorBankToAdmittanceMatrix(uint8_t busNumber, double b,
            ThreePhaseLoadConfigurationsType configurationType);
                   void recalculateAdmittanceMatrix();
            public:
83
84
                   SystemModel(uint8_t maxNumberOfBuses) : maxNumberOfBuses{ maxNumberOfBuses } {}
8.5
                  AdmittanceMatrix getAdmittanceMatrix() const {
86
                          return admittanceMatrix;
87
88
89
90
                   uint8_t getNumberOfBuses() const {
91
                          return numberOfBuses;
92
93
                   Bus& getBus(uint8_t busNumber);
95
                   void addBus(TypeOfBus typeOfBus);
96
97
98
                   void addLoad(uint8 t busNumber, double activePower, double reactivePower);
99
100
                    void addLine(uint8_t busNumber1, uint8_t busNumber2, double r, double x, double b);
101
102
                     friend std::ostream& operator «(std::ostream& stream, const SystemModel& systemModel);
103
104
                    void addGenerator(uint8_t busNumber, double voltageMagnitude, double activePower);
105
106
                    void addSlackGenerator(uint8 t busNumber, double voltageMagnitude, double voltagePhase);
107
108
                     bool hasSlackBeenAssigned() const;
109
110
                     \verb|void| addTransformer(uint8_t busNumber1, uint8_t busNumber2, double r, double x, double g, double | void addTransformer(uint8_t busNumber1, uint8_t busNumber2, double r, double x, double g, double void addTransformer(uint8_t busNumber1, uint8_t busNumber1, uint8
            b);
111
112
                     void addCapacitorBank(uint8_t busNumber, double b, ThreePhaseLoadConfigurationsType
            configurationType);
113
114
                     fi getBusFunctions(uint8_t busNumber) const;
115
116
                    dfidx getDerivativesOfBusFunctions(uint8_t busNumber) const;
117
118
                     void removeBranch(uint8_t busNumber1, uint8_t busNumber2);
119
120
                    \label{thm:cond} \mbox{void changeLine(uint8\_t busNumber1, uint8\_t busNumber2, double r, double x, double b);} \\
121
122
                     void changeTransformer(uint8 t busNumber1, uint8 t busNumber2, double r, double g,
```

```
double b);
123
124
             std::vector<Branch> getBranches() const {
             return branches;
}
125
126
127
128
             void removeBus(uint8_t busNumber);
129
             void removeCapacitorBank(uint8_t busNumber);
130
131
132
        \label{thm:condition} \verb|void changeCapacitorBank(uint8\_t busNumber, double b, ThreePhaseLoadConfigurationsType configurationType);\\
133
134
              std::vector<std::tuple<uint8_t, double, ThreePhaseLoadConfigurationsType» getCapacitorBanks()</pre>
        const {
135
136
137
                  return capacitorBanks;
         };
138
139
140
141
142 }
         std::ostream& operator «(std::ostream& stream, const SystemModel& systemModel);
```

Index

absVector	eps, 36
newtonRaphson.cpp, 51	exportToHTML, 32
newtonRaphson.h, 58	exportToLatex, 33
addBus	exportToTxt, 34
SystemModel::SystemModel, 18	export.h, 37
addCapacitorBank	exportToHTML, 37
SystemModel::SystemModel, 19	exportToLatex, 39
addGenerator	exportToTxt, 40
SystemModel::SystemModel, 19	exportToHTML
addLine	export.cpp, 32
SystemModel::SystemModel, 20	export.h, 37
addLoad	exportToLatex
SystemModel::SystemModel, 20	export.cpp, 33
addSlackGenerator	export.h, 39
SystemModel::SystemModel, 21	exportToTxt
addTransformer	export.cpp, 34
SystemModel::SystemModel, 21	export.h, 40
adjoint	
newtonRaphson.cpp, 51	fi
newtonRaphson.h, 58	SystemModel, 8
AdmittanceMatrix	and all the
SystemModel, 7	getActivePower
	SystemModel::Bus, 12
Branch	getAdmittanceMatrix
SystemModel, 8	SystemModel::SystemModel, 23
Bus	getBranches
SystemModel::Bus, 12	SystemModel::SystemModel, 23
	getBus
changeCapacitorBank	SystemModel::SystemModel, 24
SystemModel::SystemModel, 22	getBusFunctions
changeLine	SystemModel::SystemModel, 25
SystemModel::SystemModel, 22	getCapacitorBanks
changeTransformer	SystemModel::SystemModel, 25
SystemModel::SystemModel, 23	getDerivativesOfBusFunctions
cofactor	SystemModel::SystemModel, 26
newtonRaphson.cpp, 52	getNumberOfBuses
newtonRaphson.h, 59	SystemModel::SystemModel, 27
Delta	getReactivePower
SystemModel, 8	SystemModel::Bus, 12
determinant	getTypeOfBus
newtonRaphson.cpp, 53	SystemModel::Bus, 13
newtonRaphson.h, 60	getVoltageMagnitude
dfidx	SystemModel::Bus, 13
SystemModel, 8	getVoltagePhase
Systemiologe, o	SystemModel::Bus, 14
eps	GroundedStar
export.cpp, 36	SystemModel, 8
main.cpp, 49	hasSlackBeenAssigned
export.cpp, 31	SystemModel::SystemModel, 27
الماد والمالات الماد	SystemividuelSystemividuel, 27

70 INDEX

import.cpp, 43	SystemModel::SystemModel, 27
importFromTxt, 43	removeBus
import.h, 45	SystemModel::SystemModel, 28
importFromTxt, 46	removeCapacitorBank
importFromTxt	SystemModel::SystemModel, 28
import.cpp, 43	
import.h, 46	setActivePower
inverseMatrix	SystemModel::Bus, 14
newtonRaphson.cpp, 54	setReactivePower
newtonRaphson.h, 61	SystemModel::Bus, 15
,	setVoltageMagnitude
Line	SystemModel::Bus, 15
SystemModel, 9	setVoltagePhase
	SystemModel::Bus, 16
main	Slack
main.cpp, 48	SystemModel, 9
main.cpp, 48	Star
eps, 49	SystemModel, 8
main, 48	SystemModel, 7
	AdmittanceMatrix, 7
newtonRaphson	Branch, 8
newtonRaphson.cpp, 55	Delta, 8
newtonRaphson.h, 62	dfidx, 8
newtonRaphson.cpp, 50	fi, 8
absVector, 51	GroundedStar, 8
adjoint, 51	Line, 9
cofactor, 52	
determinant, 53	operator<<, 9
inverseMatrix, 54	PQ, 9
newtonRaphson, 55	PV, 9
operator*, 56	Slack, 9
operator-, 56	Star, 8
newtonRaphson.h, 57	SystemModel::SystemModel, 18
absVector, 58	ThreePhaseLoadConfigurationsType, 8
adjoint, 58	Transformer, 9
cofactor, 59	TypeOfBranch, 8
determinant, 60	TypeOfBus, 9
inverseMatrix, 61	systemModel.cpp, 64
newtonRaphson, 62	PI, 64
	systemModel.h, 65
operator*, 63	SystemModel::Bus, 11
operator-, 63	Bus, 12
operator<<	getActivePower, 12
SystemModel, 9	getReactivePower, 12
SystemModel; 3 SystemModel::SystemModel, 28	getTypeOfBus, 13
•	getVoltageMagnitude, 13
operator*	getVoltagePhase, 14
newtonRaphson.cpp, 56	setActivePower, 14
newtonRaphson.h, 63	setReactivePower, 15
operator-	setVoltageMagnitude, 15
newtonRaphson.cpp, 56	setVoltagePhase, 16
newtonRaphson.h, 63	SystemModel::SystemModel, 17
PI	addBus, 18
	addCapacitorBank, 19
systemModel.cpp, 64	addGenerator, 19
PQ	addLine, 20
SystemModel, 9	addLine, 20 addLoad, 20
PV	addSlackGenerator, 21
SystemModel, 9	
removeBranch	addTransformer, 21
ICHIOVEDIANUI	changeCapacitorBank, 22

INDEX 71

```
changeLine, 22
    changeTransformer, 23
    getAdmittanceMatrix,\, \color{red}{\textbf{23}}
    getBranches, 23
    getBus, 24
    getBusFunctions, 25
    getCapacitorBanks, 25
    getDerivativesOfBusFunctions, 26
    getNumberOfBuses, 27
    hasSlackBeenAssigned, 27
    operator <<, 28
    removeBranch, 27
    removeBus, 28
    removeCapacitorBank, 28
     SystemModel, 18
Three Phase Load Configurations Type\\
    SystemModel, 8
Transformer
    SystemModel, 9
TypeOfBranch
     SystemModel, 8
TypeOfBus
     SystemModel, 9
```