

Reconstruction of Local Energy Consumption

Dati, modelli ed indicatori per la valutazione dell'impatto dei cambiamenti climatici su cittadini e sulle imprese

Workshop-Università degli Studi della Campania
Pietro Colombo

University of Glasgow

02-04-2025

From Complex Phenomena to Data-Driven Insight

Motivation: Why Local Models?

Methods

Two-Layer Global Model

Reconciliation to Provinces

Results

Context.

- Socio-economic and environmental phenomena evolve in time and space.
- Variations relate to industrial policies, sectoral investments, and physical risk can be related to local variables.

Goal. Build models that:

- Capture changes across time and geography,
- Relate observed variation to structural and financial drivers.

Why We Need Local Models

Motivation: Why Local Models?

Methods

Two-Layer Global Model

Reconciliation to Provinces

Results

Challenge: Global models hide regional heterogeneity.

Need:

- Local models reveal provincial differences and sensitivities,
- Aggregation reconciles local forecasts to a coherent global view.

Key Idea: Model locally, reconcile globally.

From Complex Data to Aggregated Indicators

Motivation: Why Local Models?

Methods

Two-Layer Global Model

Reconciliation to Provinces

Results

Approach.

- Aggregate/reduce complex data by area/period,
- Train a dynamic ML impact indicator updated with new data,
- Provide interpretation aids for adaptation measures and key drivers.

Outcome. Dynamic monitoring tool by area highlighting high-impact factors.

Electricity Demand Forecasting & Local Impact

Motivation: Why Local Models?

Methods

Two-Layer Global Model

Reconciliation to Provinces

Results

Goal

Estimate electricity demand and its environmental sensitivity.

Data Limitation

Local load is not directly observed; only regional/global load is available.

Figure 1: Bidding Zones of Terna

Reconstructing Local Load Without Local Measurements

Motivation: Why Local Models?

Methods

Two-Layer Global Model

Reconciliation to Provinces

Results

Data

What do we have?

- 1 Local predictors (ERA5 weather, calendar covariates),
- 2 Regional/Global Load.

Problem

We miss a local response

Solution

- We developed a strategy.
- 2 A testing scheme.
- 3 An application.

The Model: Indices, Series, and Splits

Motivation: Why Local Models?

Methods

Two-Layer Global Model

Reconciliation to Provinces

Results

Indices. Time $t \in \mathcal{T}$ (hourly); province $i \in \mathcal{I}$; drivers $d \in \mathcal{D}$.

Observed. Global load y_t ; province drivers $x_{i,d,t}$.

Structural shares. $w_i \geq 0$, $\sum_i w_i = 1$.

$$\begin{split} \textbf{Splits.} \ \mathcal{T}_{\text{train}} &= \{t: t \leq \texttt{train_end}\}, \quad \mathcal{T}_{\text{val}} = \{t: \texttt{val_start} \leq t \leq \texttt{val_end}\}, \quad \mathcal{T}_{\text{test}} &= \{t: t \geq \texttt{test_start}\}. \end{split}$$

1. Forecasting Framework

Motivation: Why Local Models?

Methods

Two-Layer Global Model

Reconciliation to Provinces

- Objective: predict hourly electricity load y_t .
- Two layers:
 - **Calendar model** $f_{cal}(z_t)$ (deterministic patterns),
 - **Environmental model** $g_{\text{env}}(X_t)$ (meteorology on residuals).

$$\hat{y}_t^{\mathsf{glob}} = \hat{y}_t^{\mathsf{cal}} + \hat{r}_t$$

2. Calendar Model (Global)

Motivation: Why Local Models?

Methods

Two-Layer Global Model

Reconciliation to Provinces

Results

Calendar covariates:

 $z_t = \text{features from X_hourly (hour, weekday, holiday, season, } \ldots)$

Model:

$$y_t = f_{\mathrm{cal}}(z_t) + \varepsilon_t^{\mathrm{cal}}, \qquad \hat{y}_t^{\mathrm{cal}} = f_{\mathrm{cal}}(z_t)$$

Choices:

$$f_{\text{cal}} \in \begin{cases} \text{LM: } \beta_0 + \beta^\top z_t, \\ \text{GAM: } s(\text{hour}) + \beta^\top z_{\text{\hour}}, \\ \text{QBRT: quantile GBM at } \tau = 0.5. \end{cases}$$

3. Environmental Model on Residuals (Global)

Motivation: Why Local Models?

Methods

Two-Layer Global Model

Reconciliation to Provinces

Results

Residuals: $r_t = y_t - \hat{y}_t^{\text{cal}}$

Aggregate drivers:

$$X_{d,t} = \sum_{i} x_{i,d,t}, \qquad X_t = (X_{d,t})_{d \in \mathcal{D}}$$

Model:

$$r_t = g_{ ext{env}}(X_t) + \varepsilon_t^{ ext{env}}, \qquad \hat{r}_t = g_{ ext{env}}(X_t)$$

with $g_{\text{env}} \in \{\text{LM, GAM, QBRT}\}.$

4. Global Forecast Combination

Motivation: Why Local Models?

Methods

Two-Layer Global Model

Reconciliation to Provinces

$$\hat{y}_t^{\mathrm{glob}} = \hat{y}_t^{\mathrm{cal}} + \hat{r}_t = f_{\mathrm{cal}}(z_t) + g_{\mathrm{env}}(X_t)$$

- f_{cal} captures recurrent time structure,
- genv adjusts for short-term meteorological effects.

5. Province Reconciliation

Motivation: Why Local Models?

Methods

Two-Layer Global Model

Reconciliation to Provinces

Results

Calendar allocation (fixed):

$$\hat{y}_{i,t}^{\mathsf{cal}} = w_i \, \hat{y}_t^{\mathsf{cal}}, \qquad \sum_i w_i = 1$$

Residual allocation (two options):

(A) Shares:
$$\hat{y}_{i,t}^{\text{res}} = \alpha_i\,\hat{r}_t$$
 or (B) Derivative: $\hat{y}_{i,t}^{\text{res}} = \sum_d m_{d,t} x_{i,d,t} + w_i R_t$

Reconciliation:

$$\sum_{i} \hat{y}_{i,t} = \sum_{i} (\hat{y}^{\mathsf{cal}}_{i,t} + \hat{y}^{\mathsf{res}}_{i,t}) = \hat{y}^{\mathsf{cal}}_{t} + \hat{r}_{t} = \hat{y}^{\mathsf{glob}}_{t}$$

Interpretation of R_t and the Calendar–Environmental Solit

Motivation: Why Local Models?

Methods

Two-Layer Global Model

Reconciliation to Provinces

Results

Context. The global residual model:

$$r_t = g_{\mathsf{env}}(X_t)$$

is used to distribute the total residual \hat{r}_t across provinces.

Derivative-based allocation:

$$\hat{y}_{i,t}^{\text{res}} = \sum_{d} m_{d,t} \, x_{i,d,t} + w_{i} R_{t}, \qquad R_{t} = \hat{r}_{t} - \sum_{d} m_{d,t} X_{d,t}$$

- $m_{d,t}$ sensitivity (partial derivative) of the environmental model to driver d:
- \blacksquare $x_{i,d,t}$ local value of driver d for province i;
- **R**_t **unexplained residual share**, distributed according to structural weights w_i ;
- w_i structural weight of province i ($\sum_i w_i = 1$).

Interpretation:

- The explained part $\sum_{d} m_{d,t} x_{i,d,t}$ corresponds to the environmental effect;
- The term $w_i R_t$ represents the remaining structural (calendar-like) component not captured by the drivers.

6. Derivative-based Allocation (Local Gradient)

Motivation: Why Local Models?

Methods

Two-Layer Global Model

Reconciliation to Provinces

Results

From $r_t = g_{env}(X_t)$, approximate partial derivatives:

$$m_{d,t} \approx \frac{g_{\rm env}(X_t + \varepsilon e_d) - g_{\rm env}(X_t - \varepsilon e_d)}{2\varepsilon}$$

Allocate by exposure:

$$y_{i,t}^{\mathsf{res}} = \sum_{d} m_{d,t} \, x_{i,d,t} + w_i \Big(\hat{r}_t - \sum_{d} m_{d,t} X_{d,t} \Big) \quad \Rightarrow \quad \sum_{i} y_{i,t}^{\mathsf{res}} = \hat{r}_t$$

7. Final Province Forecasts

Motivation: Why Local Models?

Methods

Two-Layer Global Model

Reconciliation to Provinces

$$\hat{y}_{i,t} = w_i \, \hat{y}_t^{\mathsf{cal}} + y_{i,t}^{\mathsf{res}}, \qquad \sum_i \hat{y}_{i,t} = \hat{y}_t^{\mathsf{glob}}$$

- Interpretable decomposition (calendar vs environment),
- Sensitivity-aware local allocation,
- Exact coherence across aggregation levels.

Results: GAM-GAM Configuration

Motivation: Why Local Models?

Methods

Two-Layer Global Model

Reconciliation to Provinces

Figure 2: Both environmental and calendar models use GAM.

Results: LM-GAM Configuration

Motivation: Why Local Models?

Methods

Two-Layer Global Model

Reconciliation to Provinces

Figure 3: GAM for environment, LM for calendar.

Results: QBRT-GAM Configuration

Motivation: Why Local Models?

Methods

Two-Layer Global Model

Reconciliation to Provinces

Figure 4: GAM for environment, QBRT for calendar.

Models: Comparison

Motivation: Why Local Models?

Methods Two-Laver

Table 1: Performance metrics by province for different configurations.

Global Model
Reconciliation to

Provinces

Model	Province	RMSE	MAE	MAPE (%)	R²
GAM-GAM	Calabria	96.6	76.8	12.4	0.673
	South Italy	334.0	274.0	10.7	0.701
QBRT-GAM	Calabria	103.0	81.4	13.5	0.659
	South Italy	285.0	229.0	9.07	0.722
LM-QBRT	Calabria	129.0	105.0	16.8	0.412
	South Italy	506.0	423.0	16.0	0.370

Application — Province South Italy

Motivation: Why Local Models?

Methods

Two-Layer Global Model

Reconciliation to Provinces

Figure 5: Provincial map: Puglia, Basilicata, Molise.

Figure 6: Predicted November load by province.

Environmental Drivers — Impact Interpretation

Motivation: Why Local Models?

Methods

Two-Layer Global Model

Reconciliation to Provinces

Results

Table 2: Mean absolute and relative impact of environmental variables (tes	
period).	

Driver	Mean Abs. Impact [MW]	Mean Share
t2m sd	1329	0.227
w100 sd	715	0.149
w100_mean	685	0.116
t2m_mean	532	0.050
w10_sd	505	0.127
w10_mean	470	0.112
solar_mean	108	0.013
precip_sd	56	0.075
solar_sd	42	0.014
precip_mean	39	0.118

- Mean Abs. Impact $(|m_{d,t}X_{d,t}|)$: average magnitude of each driver's contribution, in megawatts.
- **Mean Share**: average proportion of total absolute variation in the residual load explained by each variable.
- Interpretation: Temperature variability (t2m_sd) dominates load fluctuations (≈ 23%), followed by wind variability at 100 m and 10 m. Solar and precipitation variables show limited, episodic influence.

Workshop-Università degli Studi della Campania Pietro Colombo Reconstruction of Local Energy

Impact overtime

Motivation: Why Local Models?

Methods

Two-Layer Global Model

Reconciliation to Provinces

Figure 7: The impact overtime of different environmental predictor

Province-wise Dominant Environmental Predictors

Motivation: Why Local Models?

Methods

Two-Layer Global Model

Reconciliation to Provinces

Table 3: Top-ranked	environmental	drivers	by prov	ince	(mean	absol	ute
impact in MW).							

Province	Driver	Mean Abs. [MW]	Mean Share
Bari	t2m sd	125	0.166
Barletta-Andria-Trani	t2m sd	201	0.177
Brindisi	w100 sd	78	0.094
Campobasso	t2m_sd	188	0.180
Foggia	t2m_sd	184	0.171
Isernia	w100_sd	85	0.115
Lecce	w100_sd	84	0.093
Matera	t2m_sd	221	0.183
Potenza	t2m_sd	148	0.171
Taranto	w100_sd	70	0.095

- t2m_sd: temperature variability dominates inland provinces (Calabria, Basilicata, Apulia).
- w100 sd: wind variability dominates coastal and open-area provinces.
- Mean absolute impacts are in megawatts (MW), while mean shares represent the fraction of total residual variation explained.

Wind driver and Wind Installed Capacity

Motivation: Why Local Models?

Methods

Two-Layer Global Model

Reconciliation to Provinces

Figure 8: Comparison between installed and modelled wind capacity.

Concluding Remarks

Motivation: Why Local Models?

Methods

Two-Layer Global Model

Reconciliation to Provinces

Results

Summary.

- Developed a **hierarchical modelling framework** combining a calendar model $f_{cal}(z_t)$ and an environmental model $g_{env}(X_t)$.
- Introduced a derivative-based residual allocation to ensure reconciliation between provincial and aggregate forecasts.
- Demonstrated good predictive performance and interpretability through sensitivity measures.

Empirical Insights.

- Temperature variability (t2m_sd) and wind intensity (w100_mean, w100_sd) are the key environmental drivers.
- The ranking of wind-related impacts is broadly consistent with Terna's installed wind capacity by province.
- This coherence validates the model's ability to capture physical exposure and infrastructure effects.

Next Steps.

- Extend the analysis to photovoltaic and hydro components.
- Incorporate uncertainty quantification via probabilistic forecasting.
- Use reconciled forecasts for policy evaluation and investment planning.

Workshop-Università degli Studi della Campania Pietro Colombo Reconstruction of Local Energy