Predviđanje ponašanja klijenata banke

Predaja rješenja u sklopu kolegija Strojno učenje

Tim Petty

Prirodoslovno-matematički fakultet – Matematički odsjek Sveučilište u Zagrebu

Zagreb, lipanj 2019.

Natjecanje Mozgalo 2019. godine

 predviđanje eventualnog prijevremenog raskida ugovora o kreditu/depozitu (RBA) — binarna klasifikacija

- predviđanje eventualnog prijevremenog raskida ugovora o kreditu/depozitu (RBA) — binarna klasifikacija
- 12 značajki

- predviđanje eventualnog prijevremenog raskida ugovora o kreditu/depozitu (RBA) — binarna klasifikacija
- 12 značajki
 - 2 identifikacijske značajke

- predviđanje eventualnog prijevremenog raskida ugovora o kreditu/depozitu (RBA) — binarna klasifikacija
- 12 značajki
 - 2 identifikacijske značajke
 - 5 kategorijskih značajki

- predviđanje eventualnog prijevremenog raskida ugovora o kreditu/depozitu (RBA) — binarna klasifikacija
- 12 značajki
 - 2 identifikacijske značajke
 - 5 kategorijskih značajki
 - 5 numeričkih odnosno vremenskih značajki

- predviđanje eventualnog prijevremenog raskida ugovora o kreditu/depozitu (RBA) — binarna klasifikacija
- 12 značajki
 - 2 identifikacijske značajke
 - 5 kategorijskih značajki
 - 5 numeričkih odnosno vremenskih značajki
- $5 \cdot 10^6$ primjera za treniranje prije *spljoštenja*

Distribucije značajki

Slika: Ugovoreni iznos

Distribucije značajki

Slika: Visina kamate

Distribucije značajki

Slika: Planirani datum zatvaranja

spljoštenje

• svi primjeri s istom oznakom partije spljošte se u 1 primjer

- svi primjeri s istom oznakom partije spljošte se u 1 primjer
- pamte se prva i zadnja varirajuća značajka

- svi primjeri s istom oznakom partije spljošte se u 1 primjer
- pamte se prva i zadnja varirajuća značajka
- makroekonomske značajke (BDP, inflacija, nezaposlenost, cijena nafte)

- spljoštenje
 - svi primjeri s istom oznakom partije spljošte se u 1 primjer
 - pamte se prva i zadnja varirajuća značajka
- makroekonomske značajke (BDP, inflacija, nezaposlenost, cijena nafte)
- 8 kombinacije značajki

- svi primjeri s istom oznakom partije spljošte se u 1 primjer
- pamte se prva i zadnja varirajuća značajka
- makroekonomske značajke (BDP, inflacija, nezaposlenost, cijena nafte)
- 8 kombinacije značajki
 - trajanje, trajanje u krizi, promjene značajki

- svi primjeri s istom oznakom partije spljošte se u 1 primjer
- pamte se prva i zadnja varirajuća značajka
- makroekonomske značajke (BDP, inflacija, nezaposlenost, cijena nafte)
- 8 kombinacije značajki
 - trajanje, trajanje u krizi, promjene značajki
 - kamatni račun

- svi primjeri s istom oznakom partije spljošte se u 1 primjer
- pamte se prva i zadnja varirajuća značajka
- makroekonomske značajke (BDP, inflacija, nezaposlenost, cijena nafte)
- skombinacije značajki
 - trajanje, trajanje u krizi, promjene značajki
 - kamatni račun
 - matematički račun nad značajkama baziran na statistici i intuiciji

 CatBoostClassifier — ansambl stabala odlučivanja razvijen jačanjem (eng. boosting)

- CatBoostClassifier ansambl stabala odlučivanja razvijen jačanjem (eng. boosting)
- 3 modela

- CatBoostClassifier ansambl stabala odlučivanja razvijen jačanjem (eng. boosting)
- 3 modela
 - za kredite do 6. listopada 2016.

- CatBoostClassifier ansambl stabala odlučivanja razvijen jačanjem (eng. boosting)
- 3 modela
 - za kredite do 6. listopada 2016.
 - za depozite do 6. listopada 2016.

- CatBoostClassifier ansambl stabala odlučivanja razvijen jačanjem (eng. boosting)
- 3 modela
 - za kredite do 6. listopada 2016.
 - za depozite do 6. listopada 2016.
 - za ostale ugovore

- CatBoostClassifier ansambl stabala odlučivanja razvijen jačanjem (eng. boosting)
- 3 modela
 - za kredite do 6. listopada 2016.
 - za depozite do 6. listopada 2016.
 - za ostale ugovore
- svi su modeli konstruirani simetričnim stablima interpretabilnost

Hiperparametri

Kôd 1: Primjer konstrukcije modela

```
model = cb.CatBoostClassifier(
    iterations = 1000,
    learning_rate = 0.873.
    depth = 9,
    12 \text{ leaf reg} = 743.5,
    border_count = 168,
    od type = 'Iter',
    leaf estimation method = 'Newton',
    random seed = 934,
    random_strength = 1.419,
    bagging_temperature = 0.415,
    task_type = 'GPU',
    sampling_unit = 'Group'
```

Hiperparametri

Kôd 2: Primjer treniranja modela

```
model.fit(
    train_pool,
    eval_set = test_pool,
    verbose = False,
    plot = True,
    early_stopping_rounds = 50
)
```

Hyperopt

• Python biblioteka za optimizaciju

- Python biblioteka za optimizaciju
- pogodna za kompleksne prostore pretraživanja

- Python biblioteka za optimizaciju
- pogodna za kompleksne prostore pretraživanja
- realne, diskretne i uvjetne domene

- Python biblioteka za optimizaciju
- pogodna za kompleksne prostore pretraživanja
- realne, diskretne i uvjetne domene
- Bayesovska optimizacija

Konfuzijske tablice

Tablica: Model A

Stvarno

		₹	1	
Predikcija	N	7408	2349	9757
Fredikcija	Y	2833	12143	14976
		10 241	14 492	24733

 \overline{N}

Konfuzijske tablice

Tablica: Model L

Stvarno

 \overline{Y}

 \overline{N}

Konfuzijske tablice

Tablica: Ostali

Stvarno

		N	$oldsymbol{Y}$	
Predikcija	N	10748	3700	14 448
	Y	2598	7154	9752
		13 346	10854	24200

Konfuzijske tablice

Tablica: Ukupno

Stvarno

Predikcija

	N	\boldsymbol{Y}	
N	26222	7559	33 781
Y	7861	34097	41958
	34 083	41656	75739

Vlastiti validacijski dataset

Tablica: Evaluacijske mjere modela

Model	Točnost	Preciznost	Odziv	F_1
Α	85,3 %	85,9%	90,7 %	88,3 %
L	74,0%	73,4%	66,0 %	69,4%
Ostali	79,0%	81,1%	83,8 %	82,4%
Ukupno	$79,\!6\%$	81,3 %	81,9 %	81,6 %

Mozgalo 2019. – evaluacijski i validacijski dataset

Tablica: Rezultati na natjecanju

+	Točnost	F_1	Ostvareni bodovi
Evaluacija	71%	77%	14/15
Validacija	69%	70%	17/20
			31/35

Ukupni plasman

Nismo ušli u finale — bili smo 8., a 6 je finalista

Ukupni plasman

Nismo ušli u finale — bili smo 8., a 6 je finalista

Komentari i pitanja

Programska realizacija

Implementacija

Literatura I

- Tomislav Šmuc, Tomislav Lipić i Matija Piškorec. *Materijali za strojno učenje*. 2019. URL: http://web.math.pmf.unizg.hr/nastava/su/materijali/
 - http://web.math.pmf.unizg.hr/nastava/su/materijali/ (pogledano 9.6.2019).
- Trevor Hastie, Robert Tibshirani i Jerome Harold Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York: Springer, 2009.
- Hrvatska narodna banka. Statistics HNB. 2019. URL: http://www.hnb.hr/statistika (pogledano 9.6.2019).
- International Monetary Fund. *IMF Data*. 2019. URL: http://www.imf.org/en/Data (pogledano 9.6.2019).

Literatura II

- Andrew Ng. *Machine Learning*. 2019. URL: http://www.coursera.org/learn/machine-learning (pogledano 9.6.2019).
 - Republika Hrvatska. *Državni zavod za statistiku*. 2019. URL: http://www.dzs.hr/ (pogledano 9.6.2019).