Amendments to the Claims

1. (Original) A method for preparing a compound of formula (I)

$$\begin{array}{c|c} R_1 & CH_3 & H \\ \hline & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

wherein each of R_1 , R_2 , R_3 , R_4 , independently, is hydrogen, halogen or C_1 - C_6 alkyl, the method comprising:

reacting a compound of formula (II)

$$\begin{array}{c|c} R_1 & CH_3 & C$$

wherein R_1 , R_2 , R_3 , R_4 are as defined above and R is alkylene, with a deprotonating agent and a compound of the formula R_5SO_2X wherein R_5 is C_1 - C_5 alkyl and X is halogen so as to obtain a compound of formula (III)

$$R_1$$
 R_3
 R_2
 R_3
 R_3
 R_4
 R_3

wherein R_1 , R_2 , R_3 , R_4 , R_5 are as defined above; and reacting the compound of formula (III) with a base.

- 2. (Original) The method of claim 1 wherein: wherein each of R_1 , R_2 , R_3 , R_4 is hydrogen.
- 3. (Original) The method of claim 1 wherein: R is methylene.
- 4. (Original) The method of claim 1 wherein: the deprotonating agent is an amine.
- 5. (Original) The method of claim 1 wherein: the deprotonating agent is a tertiary amine.
- 6. (Original) The method of claim 1 wherein: the deprotonating agent is a trialkyl amine.
- 7. (Original) The method of claim 1 wherein: R_5 is methyl.
- 8. (Original) The method of claim 1 wherein: R_5 is methyl and X is chlorine.

- 9. (Original) The method of claim 1 wherein: wherein each of R_1 , R_2 , R_3 , R_4 is hydrogen, R is methylene, the deprotonating agent is a trialkyl amine, R_5 is methyl, and X is chlorine.
- 10. (Original) The method of claim 1 wherein: the base is an alkali metal hydroxide.
- 11. (Original) The method of claim 1 wherein: the base is potassium hydroxide.
- 12. (Original) The method of claim 1 wherein: the compound of formula (III) is reacted with the base in a solvent.
- 13. (Original) The method of claim 1 wherein: the solvent is an alkanol.

14. (Original) A method for preparing a compound of formula

the method comprising:

reacting a compound of formula (V)

with a deprotonating agent and a compound of the formula R_5SO_2X wherein R_5 is C_1 - C_5 alkyl and X is halogen so as to obtain a compound of formula (VI)

and then reacting the compound of formula (VI) with a base in a solvent.

- 15. (Original) The method of claim 14 wherein: R_5 is methyl and X is chlorine.
- 16. (Original) The method of claim 15 wherein: the base is an alkali metal hydroxide, and the solvent is an alkanol.

17. (Withdrawn) A compound of the formula (IV):

$$\bigcap_{R_2}^{R_1} \bigcap_{R_3}^{R_4} (N)$$

wherein each of R_1 , R_2 , R_3 , R_4 , independently, is hydrogen, halogen or C_1 - C_8 alkyl, and R_8 is a substituent other than hydrogen.

- 18. (Withdrawn) The compound of claim 17 wherein each of $R_1,\,R_2,\,R_3,\,R_4$ is hydrogen.
 - 19. (Withdrawn) The compound of claim 17 wherein R₆ is methyl.
- $\label{eq:20.20} \mbox{20.} \quad \mbox{(Withdrawn)} \quad \mbox{The compound of claim 17 wherein each of R_1, R_2, R_3, R_4 is hydrogen, and R_6 is SO_2R_5 wherein R_5 is $C_1\text{-}C_5$ alkyl.}$
 - 21. (Withdrawn) The compound of claim 19 wherein R_5 is methyl.