MATH 217 - W24 - LINEAR ALGEBRA HOMEWORK 2, SOLUTIONS

Part A (10 points)

Solve the following problems from the book:

Section 1.3: 26, 34, 48; Section 2.1: 6, 38, 44, 46.

Solution.

[1.3.26] Since Ax = b has a unique solution, the rank of A must be m = 3 (Example 3c in Section 1.3). Thus, Ax = c has either exactly one solution or no solutions (Example 4d in Section 1.3).

[1.3.34] (a)
$$A\vec{e_1} = \begin{bmatrix} a \\ d \\ g \end{bmatrix}$$
. $A\vec{e_2} = \begin{bmatrix} b \\ e \\ h \end{bmatrix}$. $A\vec{e_3} = \begin{bmatrix} c \\ f \\ k \end{bmatrix}$. (b) $B\vec{e_1} = \vec{v_1}$. $B\vec{e_2} = \vec{v_2}$. $B\vec{e_3} = \vec{v_3}$.

[1.3.48] (a) Assume \vec{x}_h is a solution of $A\vec{x} = \vec{0}$. Then, $A(\vec{x}_1 + \vec{x}_h) = A\vec{x}_1 + A\vec{x}_h$ using algebraic rules for $A\vec{x}$. Hence by assumption and algebraic rules for vectors,

$$A(\vec{x}_1 + \vec{x}_h) = A\vec{x}_1 + A\vec{x}_h = \vec{b} + \vec{0} = \vec{b}.$$

We can conclude that $\vec{x}_1 + \vec{x}_h$ is a solution to $A\vec{x} = \vec{b}$.

(b) Assume \vec{x}_2 is a solution of $A\vec{x} = \vec{b}$. Then, $A(\vec{x}_2 - \vec{x}_1) = A\vec{x}_2 - A\vec{x}_1$ using algebraic rules for $A\vec{x}$. Hence by assumption and algebraic rules for vectors,

$$A(\vec{x}_2 - \vec{x}_1) = A\vec{x}_2 - A\vec{x}_1 = \vec{b} - \vec{b} = \vec{0}.$$

We can conclude that $\vec{x}_2 - \vec{x}_1$ is a solution to $A\vec{x} = \vec{0}$.

Solution. [2.1.6] Consider the matrix

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

For any vector $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ we have

$$T\vec{x} = T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} x_1 + 4x_2 \\ 2x_1 + 5x_2 \\ 3x_1 + 6x_2 \end{bmatrix} = A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = A\vec{x} .$$

Thus, there exists a matrix A satisfying Definition 2.1.1. We conclude that T is linear.

$$[\mathbf{2.1.38}] \ T \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} v_1 & v_2 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = 2v_1 - v_2.$$

$$[\mathbf{2.1.44}] \text{ Let } \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}, \ \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \text{ and }$$

$$A = \begin{bmatrix} 0 & -v_3 & v_2 \\ v_3 & 0 & -v_1 \\ -v_2 & v_1 & 0 \end{bmatrix} .$$

Note that

$$T(\vec{x}) = \vec{v} \times \vec{x} = \begin{bmatrix} -v_3 x_2 + v_2 x_3 \\ v_3 x_1 - v_1 x_3 \\ -v_2 x_1 + v_1 x_2 \end{bmatrix} = A\vec{v}$$

so T is linear.

$$[\mathbf{2.1.46}] \ T(\vec{e_1}) = \begin{bmatrix} p & q \\ r & s \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} p & q \\ r & s \end{bmatrix} \begin{bmatrix} a \\ c \end{bmatrix} = \begin{bmatrix} ap + cq \\ ar + cs \end{bmatrix}, \text{ and }$$

$$T(\vec{e_2}) = \begin{bmatrix} p & q \\ r & s \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} p & q \\ r & s \end{bmatrix} \begin{bmatrix} b \\ d \end{bmatrix} = \begin{bmatrix} bp + dq \\ br + ds \end{bmatrix},$$

so the matrix of the linear transformation $T(\vec{x}) = B(A\vec{x})$ is $\begin{bmatrix} ap + cq & bp + dq \\ ar + cs & br + ds \end{bmatrix}$

Part B (25 points)

Let X and Y be sets. Recall that a **function** f **from** X **to** Y is a rule which assigns a unique element $f(x) \in Y$ to each element $x \in X$. We call X the **domain** or **source** of f, we call Y the **codomain** or **target space** of f, and we write $f: X \to Y$ to indicate that f is a function from X to Y. The **image** of f is defined to be the set $\operatorname{im}(f) = \{f(x) \mid x \in X\}$. (Note that the codomain and the image of f are not necessarily equal.) We say that the function $f: X \to Y$ is:

- surjective or onto if for all $y \in Y$, there exists at least one $x \in X$ such that f(x) = y;
- injective or one-to-one if for all $y \in \text{im}(f)$ there exists at most one $x \in X$ such that f(x) = y;
- **bijective** if f is both injective and surjective.

Problem 1. In parts (a) - (d) below, determine whether the given function is injective, surjective, both, or neither. Justify your answers.

- (a) the function $f:[0,4] \to [0,18]$ defined by $f(x) = x^2 + 2$;
- (b) the function $g: \mathbb{R} \to \mathbb{R}$ defined by g(x) = 2x 5;
- (c) the function $h: \mathbb{R}^2 \to \mathbb{R}$ defined by $h(x,y) = 2x^2 + 5y^2$;
- (d) the function $q: \mathbb{N} \to \mathbb{N}$ defined by $q(n) = \begin{cases} n, & \text{if } n \text{ is odd} \\ n/2 & \text{if } n \text{ is even.} \end{cases}$

Solution.

(a) It is injective but not surjective. Suppose f(x) = f(y) for some $x, y \in [0, 4]$. Then $x^2 + 2 = y^2 + 2$. This implies $x^2 = y^2$, and x = y since $x, y \in [0, 4]$. So, f is injective.

We have $0 \in [0, 18]$, but there exists no $x \in [0, 4]$ such that f(x) = 0. The equation $x^2 + 2 = 0$ has no real solutions. So, f is not surjective.

- (b) The function is both injective and surjective. Suppose g(x)=g(y) for some $x,y,\in\mathbb{R}$. Then 2x-5=2y-5. This gives x=y. So, g is injective. Let $z\in\mathbb{R}$. Consider $\frac{z+5}{2}\in\mathbb{R}$. Since $g(\frac{z+5}{2})=z$, we see that every real number is in the mage of g. So, g is onto.
- (c) The function is not injective since h(1,1) = h(-1,-1) = 7. It is not surjective either since there are no $x,y \in \mathbb{R}$ such that h(x,y) = -1. The equation $2x^2 + 5y^2 = -1$ has no solutions in real numbers since left hand side is greater than or equal to zero.
- (d) The function is not injective since q(3) = q(6). It is surjective since given $n \in \mathbb{N}$ we have $2n \in \mathbb{N}$ and q(2n) = n. So, every element in \mathbb{N} is in the image of q.

Given a function $f: X \to Y$ and a subset $A \subseteq X$, we define the **direct image** or **forward image** of A under f to be the set

$$f[A] = \{ f(x) \mid x \in A \}.$$

Similarly, if $B \subseteq Y$ then we define the **preimage** or **inverse image** of B under f to be the set

$$f^{-1}[B] = \{ x \in X \mid f(x) \in B \}.$$

Note that $f[X] = \operatorname{im}(f)$.

Problem 2. Determine whether each statement is true or false. If it is true, prove it. If it is false, prove this by giving a counterexample.

- (a) For every function $f: X \to Y$ and all $A, B \subseteq X$, if $A \cap B = \emptyset$, then $f[A] \cap f[B] = \emptyset$.
- (b) For every function $f: X \to Y$ and all $A, B \subseteq X$, if $f[A] \cap f[B] = \emptyset$, then $A \cap B = \emptyset$.
- (c) For every function $f: X \to Y$ and all $A \subseteq X$, we have $f^{-1}[f[A]] = A$.
- (d) For every function $f: X \to Y$ and all $A \subseteq X$, we have $f[X \setminus A] = Y \setminus f[A]$.
- (e) For every bijective function $f: X \to Y$ and all $A, B \subseteq X$, we have $f[A \cap B] = f[A] \cap f[B]$.

Solution.

- (a) False. Let $f : \mathbb{Z} \to \mathbb{Z}$ be defined as $f(x) = x^2$. Let $A = \{1, 2, 3, \dots\}$ and $B = \{-1, -2, -3, \dots\}$. We have $A \cap B = \emptyset$, but $f[A] \cap f[B] = \{1, 4, 9, 16, 25, \dots\}$.
- (b) True. Let $f: X \to Y$ be a function such that $A, B \subseteq X$ and $f[A] \cap f[B] = \emptyset$. Suppose now that $A \cap B \neq \emptyset$. Then there exists $x \in A \cap B$, so $f(x) \in f[A]$ and $f(x) \in f[B]$. This gives us $f(x) \in f[A] \cap f[B]$, which gives a contradiction. So, we must have $A \cap B = \emptyset$.

$$B = \{-1, -2, -3, \cdots\}.$$

(c) False. Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined as $f(x) = x^2$. Let $A = \{1, 2, 3, \dots\}$. Then, $f^{-1}[f[A]] = A \cup B \neq A$, where $B = \{-1, -2, -3, \dots\}$.

- (d) False. Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined as $f(x) = x^2$. Let $A = \{1, 2, 3, \dots\}$. Then, $4 \in f[X \setminus A]$ but $4 \notin Y \setminus f[A]$.
- (e) True. Let $z \in f[A] \cap f[B]$. Then z = f(x), z = f(y) for some $x \in A, y \in B$. We have z = f(x) = f(y). Since f is injective this gives us x = y. So, $x \in A \cap B$. Hence $z = f(x) \in f[A \cap B]$. This shows $f[A] \cap f[B] \subseteq f[A \cap B]$. Let $z \in f[A \cap B]$. Then there exists $x \in A \cap B$ such that z = f(x). Since $x \in A$ we have $z \in f[A]$. Similarly, since $x \in B$ we have $z \in f[B]$. So, $z \in f[A] \cap f[B]$. This shows $f[A \cap B] \subseteq f[A] \cap f[B]$. Hence, $f[A \cap B] = f[A] \cap f[B].$

We call a function $T: \mathbb{R}^m \to \mathbb{R}^n$ a linear transformation if it satisfies:

- (1) $T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y})$ for all vectors $\vec{x}, \vec{y} \in \mathbb{R}^m$; and
- (2) $T(k\vec{x}) = kT(\vec{x})$ for all vectors $\vec{x} \in \mathbb{R}^m$ and all scalars $k \in \mathbb{R}$.

(Note that this definition differs from the one given in Section 2.1 of the textbook.)

Problem 3.

- (a) Prove that for every function $f: \mathbb{R} \to \mathbb{R}$, if f(cx) = cf(x) for all $c \in \mathbb{R}$ and $x \in \mathbb{R}$, then f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. (In other words, prove that every function $f:\mathbb{R}\to\mathbb{R}$ that preserves scalar multiplication is a linear transformation from \mathbb{R} to \mathbb{R} .)
- (b) Give an example to show that the argument you gave in part (a) cannot work in 2 dimensions. That is, explicitly describe a function $f: \mathbb{R}^2 \to \mathbb{R}^2$ that is not a linear transformation but has the property that $f(c\vec{x}) = cf(\vec{x})$ for all $\vec{x} \in \mathbb{R}^2$ and $c \in \mathbb{R}$. Remember to prove that your example works!

Solution.

(a) Let $x,y \in \mathbb{R}$. Since f(cx) = cf(x) for all $c \in \mathbb{R}$ and $x \in \mathbb{R}$, we have f(x+y) = $(x+y)f(1) = xf(1) + yf(1) = f(x) + f(y). \text{ So, } f(x+y) = f(x) + f(y) \text{ for all } x, y \in \mathbb{R}.$ **(b)** Let $f((x,y)) = \begin{cases} (y,0), & \text{if } y \neq 0; \\ (x,0), & \text{if } y = 0. \end{cases}$

(b) Let
$$f((x,y)) = \begin{cases} (y,0), & \text{if } y \neq 0; \\ (x,0), & \text{if } y = 0. \end{cases}$$

If c = 0, then $f(c\vec{x}) = f(\vec{0}) = \vec{0} = 0$, then $f(c\vec{x}) = cf(\vec{x})$ for all $\vec{x} \in \mathbb{R}^2$.

Let
$$c \in \mathbb{R} \setminus \{0\}$$
. Then $cy = 0 \iff y = 0$. So, $f(c(x,y)) = f(cx,cy) = \begin{cases} (cy,0), & \text{if } y \neq 0; \\ (cx,0), & \text{if } y = 0. \end{cases}$

We also have
$$cf((x,y)) = \begin{cases} (cy,0), & \text{if } y \neq 0; \\ (cx,0), & \text{if } y = 0. \end{cases}$$

So, $f(c\vec{x}) = cf(\vec{x})$ for all $\vec{x} \in \mathbb{R}^2$ and $c \in \mathbb{R}$. On the other hand, since f((1,0)) + $f((-1,-2)) = (1,0) + (-2,0) = (-1,0) \neq (-2,0) = f((0,-2)), f \text{ does not preserve vec-}$ tor addition, and therefore is not a linear transformation.

(b) (Alternate Solution): Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be the function defined by

$$f(\vec{x}) = \begin{cases} (0,0) & \text{if } \vec{x} = \vec{0}; \\ (\|\vec{x}\|, \|\vec{x}\|) & \text{if } \vec{x} \neq \vec{0} \text{ and } 0 \leq \theta < \pi; \\ (-\|\vec{x}\|, -\|\vec{x}\|) & \text{if } \vec{x} \neq \vec{0} \text{ and } \pi \leq \theta < 2\pi, \end{cases}$$

where θ is the angle \vec{x} makes with the positive x-axis. One can check that this function also preserves scalar multiplication but not vector addition.

(b) (Another Alternate Solution): Define $f: \mathbb{R}^2 \to \mathbb{R}^2$ by $f(\vec{x}) = \vec{x}$ if $x_1 = x_2$, and $f(\vec{x}) = \vec{0}$ otherwise. One can check that this function also works. [There are many possible solutions to this problem].

Problem 4. Let $f: \mathbb{R} \to \mathbb{R}$ be a function, and suppose that f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. (In other words, suppose that f preserves addition).

- (a) Prove that f(0) = 0.
- (b) Prove that for all $x \in \mathbb{R}$, f(-x) = -f(x).
- (c) Use induction to prove that for all $n \in \mathbb{N}$ and $x \in \mathbb{R}$, f(nx) = nf(x).
- (d) Prove that for all $m \in \mathbb{Z}$ and $x \in \mathbb{R}$, f(mx) = mf(x).
- (e) (**RECREATIONAL**) Prove that for all $q \in \mathbb{Q}$ and $x \in \mathbb{R}$, f(qx) = qf(x).

Remark: It will perhaps come as a surprise that the property in (c)-(e) cannot be extended to include arbitrary real scalars. That is, there exist functions $f: \mathbb{R} \to \mathbb{R}$ such that f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$ but also $f(cx) \neq cf(x)$ for some $c, x \in \mathbb{R}$. Put yet another way, there exist functions $f: \mathbb{R} \to \mathbb{R}$ that preserve addition but not scalar multiplication. This fact is actually rather difficult to prove!)

Solution.

- (a) We have f(0) = f(0+0) = f(0) + f(0). By subtracting f(0) from both sides, we get f(0) = 0.
 - (b) Let $x \in \mathbb{R}$. We have 0 = f(0) = f(x + (-x)) = f(x) + f(-x). Hence, f(-x) = -f(x).
- (c) For n = 1 the statement is obvious. Let $k \ge 1$, and suppose f(kx) = kf(x) for all $x \in \mathbb{R}$. Let $x \in \mathbb{R}$, and consider f((k+1)x). We have f((k+1)x) = f(kx+x) = f(kx) + f(x). By substituting f(kx) = kf(x), we get f((k+1)x) = kf(x) + f(x) = (k+1)f(x). This means the statement is true for k+1. Hence, by induction the statement is true for every integer $n \ge 1$.
- (d) In part (c) we proved the claim for positive integers. For n=0, the statement follows from (a) easily. Let m be a negative integer. Then -m is a positive integer and by (c) we have f((-m)x) = -mf(x) for all $x \in \mathbb{R}$. Then 0 = f(0) = f(mx + (-m)x) = f(mx) + f((-m)x) = f(mx) mf(x) for all $x \in \mathbb{R}$. This gives f(mx) = mf(x) for all $x \in \mathbb{R}$. So, the statement is true for every negative integer m as well. Hence, f(mx) = mf(x) for all $x \in \mathbb{R}$ and for all $m \in \mathbb{Z}$.