# $12n_{0057} (K12n_{0057})$



#### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$\begin{split} I_1^u &= \langle 769u^{16} - 3605u^{15} + \dots + 4864d - 844, \ 161u^{16} - 983u^{15} + \dots + 4864c + 3868, \\ & 191u^{16} - 846u^{15} + \dots + 4864b + 776, \ 161u^{16} - 983u^{15} + \dots + 4864a + 3868, \\ & u^{17} - 5u^{16} + \dots - 11u^2 + 4 \rangle \\ I_2^u &= \langle d - u - 1, \ c, \ b - u - 1, \ a, \ u^2 + u + 1 \rangle \\ I_3^u &= \langle d + 2u + 1, \ c + u, \ b - u, \ a - u, \ u^2 + u + 1 \rangle \\ I_4^u &= \langle da + a^2 + au + a - 1, \ c + a, \ b - a - u - 1, \ u^2 + u + 1 \rangle \\ I_1^v &= \langle a, \ d - 1, \ c + a - 1, \ b + 1, \ v - 1 \rangle \end{split}$$

- \* 4 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 22 representations.
- \* 1 irreducible components of  $\dim_{\mathbb{C}} = 1$

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $<sup>^2</sup>$  All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.  $I_1^u = \langle 769u^{16} - 3605u^{15} + \cdots + 4864d - 844, \ 161u^{16} - 983u^{15} + \cdots + 4864c + 3868, \ 191u^{16} - 846u^{15} + \cdots + 4864b + 776, \ 161u^{16} - 983u^{15} + \cdots + 4864a + 3868, \ u^{17} - 5u^{16} + \cdots - 11u^2 + 4 \rangle$ 

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_6 = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_6 = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -0.0331003u^{16} + 0.202097u^{15} + \dots + 4.36842u - 0.795230 \\ -0.0392681u^{16} + 0.173931u^{15} + \dots + 1.37253u - 0.159539 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.0331003u^{16} + 0.202097u^{15} + \dots + 4.36842u - 0.795230 \\ -0.158100u^{16} + 0.741160u^{15} + \dots - 0.475329u + 0.173520 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0.0246711u^{16} - 0.0435855u^{15} + \dots + 4.48355u - 0.167763 \\ -0.125822u^{16} + 0.625411u^{15} + \dots - 0.166118u + 0.268092 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u^2 + 1 \\ -u^4 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} u^4 + u^2 + 1 \\ u^4 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0.0246711u^{16} - 0.0435855u^{15} + \dots + 4.48355u - 0.167763 \\ -0.164474u^{16} + 0.808799u^{15} + \dots - 0.0674342u + 0.587171 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.0764803u^{16} - 0.397615u^{15} + \dots - 2.61349u + 1.50493 \\ 0.0542763u^{16} - 0.265419u^{15} + \dots - 0.489309u + 0.0715461 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.0618832u^{16} - 0.294613u^{15} + \dots - 1.74178u + 1.47451 \\ 0.0807977u^{16} - 0.432977u^{15} + \dots - 0.311678u + 0.136513 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes =  $\frac{409}{1216}u^{16} \frac{1133}{608}u^{15} + \dots \frac{4283}{304}u \frac{37}{152}u^{16} + \dots + \frac{37}{1$

#### (iv) u-Polynomials at the component

| Crossings     | u-Polynomials at each crossing             |
|---------------|--------------------------------------------|
| $c_1$         | $u^{17} + 15u^{16} + \dots + 88u - 16$     |
| $c_2, c_5$    | $u^{17} + 5u^{16} + \dots + 11u^2 - 4$     |
| $c_3$         | $u^{17} - 14u^{16} + \dots + 6768u - 2592$ |
| $c_4, c_8$    | $u^{17} - u^{16} + \dots - 1024u - 512$    |
| $c_6, c_{12}$ | $u^{17} + 8u^{16} + \dots - 8u - 16$       |
| $c_7, c_9$    | $u^{17} - 8u^{16} + \dots - 8u - 16$       |
| $c_{10}$      | $u^{17} + 34u^{16} + \dots + 6176u + 256$  |
| $c_{11}$      | $u^{17} + 6u^{16} + \dots + 32u - 256$     |

#### (v) Riley Polynomials at the component

| Crossings             | Riley Polynomials at each crossing                |
|-----------------------|---------------------------------------------------|
| $c_1$                 | $y^{17} - 21y^{16} + \dots + 36640y - 256$        |
| $c_2, c_5$            | $y^{17} + 15y^{16} + \dots + 88y - 16$            |
| <i>c</i> <sub>3</sub> | $y^{17} - 66y^{16} + \dots + 36764928y - 6718464$ |
| $c_4, c_8$            | $y^{17} + 81y^{16} + \dots - 524288y - 262144$    |
| $c_6, c_{12}$         | $y^{17} + 6y^{16} + \dots + 32y - 256$            |
| $c_7, c_9$            | $y^{17} - 34y^{16} + \dots + 6176y - 256$         |
| $c_{10}$              | $y^{17} - 94y^{16} + \dots + 7397888y - 65536$    |
| $c_{11}$              | $y^{17} + 66y^{16} + \dots + 2613760y - 65536$    |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape           |
|---------------------------|---------------------------------------|----------------------|
| u = -0.589168 + 0.828507I |                                       |                      |
| a = -0.334446 + 0.242523I |                                       |                      |
| b = 0.034957 + 0.580654I  | 0.79868 - 2.33972I                    | -0.33078 + 5.26516I  |
| c = -0.334446 + 0.242523I |                                       |                      |
| d = -0.698979 - 0.215129I |                                       |                      |
| u = -0.589168 - 0.828507I |                                       |                      |
| a = -0.334446 - 0.242523I |                                       |                      |
| b = 0.034957 - 0.580654I  | 0.79868 + 2.33972I                    | -0.33078 - 5.26516I  |
| c = -0.334446 - 0.242523I |                                       |                      |
| d = -0.698979 + 0.215129I |                                       |                      |
| u = -0.403846 + 0.948035I |                                       |                      |
| a = -0.05430 + 1.74034I   |                                       |                      |
| b = 0.19668 + 1.84724I    | -0.77904 - 2.74622I                   | 2.48507 + 7.16740I   |
| c = -0.05430 + 1.74034I   |                                       |                      |
| d = 0.10664 + 2.23981I    |                                       |                      |
| u = -0.403846 - 0.948035I |                                       |                      |
| a = -0.05430 - 1.74034I   |                                       |                      |
| b = 0.19668 - 1.84724I    | -0.77904 + 2.74622I                   | 2.48507 - 7.16740I   |
| c = -0.05430 - 1.74034I   |                                       |                      |
| d =  0.10664 - 2.23981I   |                                       |                      |
| u = 0.329450 + 1.030540I  |                                       |                      |
| a = -0.533679 - 0.078695I |                                       |                      |
| b = -1.17048 + 1.30416I   | 0.72956 + 1.37071I                    | 0.698150 - 0.213889I |
| c = -0.533679 - 0.078695I |                                       |                      |
| d = -2.21402 + 0.44981I   |                                       |                      |
| u = 0.329450 - 1.030540I  |                                       |                      |
| a = -0.533679 + 0.078695I |                                       |                      |
| b = -1.17048 - 1.30416I   | 0.72956 - 1.37071I                    | 0.698150 + 0.213889I |
| c = -0.533679 + 0.078695I |                                       |                      |
| d = -2.21402 - 0.44981I   |                                       |                      |

| Solutions to $I_1^u$     | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|--------------------------|---------------------------------------|---------------------|
| u = 1.349370 + 0.320500I |                                       |                     |
| a = -0.41610 - 1.64751I  |                                       |                     |
| b = -0.40657 + 1.44659I  | -15.3110 - 5.6503I                    | 2.10303 + 1.68119I  |
| c = -0.41610 - 1.64751I  |                                       |                     |
| d = 0.216006 + 0.318534I |                                       |                     |
| u = 1.349370 - 0.320500I |                                       |                     |
| a = -0.41610 + 1.64751I  |                                       |                     |
| b = -0.40657 - 1.44659I  | -15.3110 + 5.6503I                    | 2.10303 - 1.68119I  |
| c = -0.41610 + 1.64751I  |                                       |                     |
| d = 0.216006 - 0.318534I |                                       |                     |
| u = 0.76686 + 1.31677I   |                                       |                     |
| a = -1.25346 - 0.81948I  |                                       |                     |
| b = -3.59718 - 0.72270I  | -18.4182 + 12.9335I                   | 1.01650 - 5.27491I  |
| c = -1.25346 - 0.81948I  |                                       |                     |
| d = -2.85722 - 1.77893I  |                                       |                     |
| u = 0.76686 - 1.31677I   |                                       |                     |
| a = -1.25346 + 0.81948I  |                                       |                     |
| b = -3.59718 + 0.72270I  | -18.4182 - 12.9335I                   | 1.01650 + 5.27491I  |
| c = -1.25346 + 0.81948I  |                                       |                     |
| d = -2.85722 + 1.77893I  |                                       |                     |
| u = 0.249371 + 0.383586I |                                       |                     |
| a = 0.211561 + 0.671412I |                                       |                     |
| b = 0.189849 + 0.372765I | -1.75773 + 0.71028I                   | -3.71531 + 0.02644I |
| c = 0.211561 + 0.671412I |                                       |                     |
| d = 0.330805 - 1.044730I |                                       |                     |
| u = 0.249371 - 0.383586I |                                       |                     |
| a = 0.211561 - 0.671412I |                                       |                     |
| b = 0.189849 - 0.372765I | -1.75773 - 0.71028I                   | -3.71531 - 0.02644I |
| c = 0.211561 - 0.671412I |                                       |                     |
| d = 0.330805 + 1.044730I |                                       |                     |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape           |
|---------------------------|---------------------------------------|----------------------|
| u = -0.275145             |                                       |                      |
| a = -2.98224              |                                       |                      |
| b = -0.717882             | 1.13318                               | 9.61860              |
| c = -2.98224              |                                       |                      |
| d = -0.605476             |                                       |                      |
| u = 0.30683 + 1.77436I    |                                       |                      |
| a = -0.324822 - 0.574504I |                                       |                      |
| b = -1.79861 - 3.25766I   | -9.63429 + 3.26152I                   | -0.10201 - 1.44169I  |
| c = -0.324822 - 0.574504I |                                       |                      |
| d = -0.852724 + 0.332528I |                                       |                      |
| u = 0.30683 - 1.77436I    |                                       |                      |
| a = -0.324822 + 0.574504I |                                       |                      |
| b = -1.79861 + 3.25766I   | -9.63429 - 3.26152I                   | -0.10201 + 1.44169I  |
| c = -0.324822 + 0.574504I |                                       |                      |
| d = -0.852724 - 0.332528I |                                       |                      |
| u = 0.62871 + 1.82695I    |                                       |                      |
| a = 1.196370 + 0.402403I  |                                       |                      |
| b = 4.91030 - 0.58153I    | 17.4865 + 1.7702I                     | 0.036073 - 0.657690I |
| c = 1.196370 + 0.402403I  |                                       |                      |
| d = 2.77223 + 0.28963I    |                                       |                      |
| u = 0.62871 - 1.82695I    |                                       |                      |
| a = 1.196370 - 0.402403I  |                                       |                      |
| b = 4.91030 + 0.58153I    | 17.4865 - 1.7702I                     | 0.036073 + 0.657690I |
| c = 1.196370 - 0.402403I  |                                       |                      |
| d = 2.77223 - 0.28963I    |                                       |                      |

II. 
$$I_2^u = \langle d-u-1, \ c, \ b-u-1, \ a, \ u^2+u+1 \rangle$$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u+1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u+1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ u+1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u+1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4u + 11

#### (iv) u-Polynomials at the component

| Crossings                     | u-Polynomials at each crossing |  |  |
|-------------------------------|--------------------------------|--|--|
| $c_1,c_3,c_5$                 | $u^2 - u + 1$                  |  |  |
| $c_2$                         | $u^2 + u + 1$                  |  |  |
| $c_4, c_7, c_8$ $c_9, c_{10}$ | $u^2$                          |  |  |
| $c_6,c_{11}$                  | $(u+1)^2$                      |  |  |
| $c_{12}$                      | $(u-1)^2$                      |  |  |

## (v) Riley Polynomials at the component

| Crossings                     | Riley Polynomials at each crossing |  |  |
|-------------------------------|------------------------------------|--|--|
| $c_1, c_2, c_3$ $c_5$         | $y^2 + y + 1$                      |  |  |
| $c_4, c_7, c_8$ $c_9, c_{10}$ | $y^2$                              |  |  |
| $c_6, c_{11}, c_{12}$         | $(y-1)^2$                          |  |  |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_2^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|---------------------------|---------------------------------------|--------------------|
| u = -0.500000 + 0.866025I |                                       |                    |
| a = 0                     |                                       |                    |
| b = 0.500000 + 0.866025I  | 1.64493 - 2.02988I                    | 9.00000 + 3.46410I |
| c = 0                     |                                       |                    |
| d = 0.500000 + 0.866025I  |                                       |                    |
| u = -0.500000 - 0.866025I |                                       |                    |
| a = 0                     |                                       |                    |
| b = 0.500000 - 0.866025I  | 1.64493 + 2.02988I                    | 9.00000 - 3.46410I |
| c = 0                     |                                       |                    |
| d = 0.500000 - 0.866025I  |                                       |                    |

III. 
$$I_3^u = \langle d+2u+1, \ c+u, \ b-u, \ a-u, \ u^2+u+1 \rangle$$

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ -2u-1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ -u-1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

- $a_4 = \begin{pmatrix} 0 \\ u \end{pmatrix}$
- $a_9 = \begin{pmatrix} 0 \\ -u 1 \end{pmatrix}$
- $a_{12} = \begin{pmatrix} -u \\ -u \end{pmatrix}$
- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4u 1

#### (iv) u-Polynomials at the component

| Crossings                         | u-Polynomials at each crossing |  |  |
|-----------------------------------|--------------------------------|--|--|
| $c_1, c_3, c_5$                   | $u^2 - u + 1$                  |  |  |
| $c_2$                             | $u^2 + u + 1$                  |  |  |
| $c_4, c_6, c_8 \\ c_{11}, c_{12}$ | $u^2$                          |  |  |
| c <sub>7</sub>                    | $(u-1)^2$                      |  |  |
| $c_9,c_{10}$                      | $(u+1)^2$                      |  |  |

## (v) Riley Polynomials at the component

| Crossings                         | Riley Polynomials at each crossing |  |  |
|-----------------------------------|------------------------------------|--|--|
| $c_1, c_2, c_3$ $c_5$             | $y^2 + y + 1$                      |  |  |
| $c_4, c_6, c_8 \\ c_{11}, c_{12}$ | $y^2$                              |  |  |
| $c_7, c_9, c_{10}$                | $(y-1)^2$                          |  |  |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_3^u$                                   | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape                                          |
|--------------------------------------------------------|---------------------------------------|-----------------------------------------------------|
| u = -0.500000 + 0.866025I                              |                                       |                                                     |
| a = -0.500000 + 0.866025I<br>b = -0.500000 + 0.866025I | -1.64493 - 2.02988I                   | $\begin{bmatrix} -3.00000 + 3.46410I \end{bmatrix}$ |
| c = 0.500000 + 0.866025I                               | -1.04493 - 2.029001                   | -3.00000 + 3.404101                                 |
| d = -1.73205I                                          |                                       |                                                     |
| u = -0.500000 - 0.866025I                              |                                       |                                                     |
| a = -0.500000 - 0.866025I                              |                                       |                                                     |
| b = -0.500000 - 0.866025I                              | -1.64493 + 2.02988I                   | -3.00000 - 3.46410I                                 |
| c = 0.500000 + 0.866025I                               |                                       |                                                     |
| d = 1.73205I                                           |                                       |                                                     |

IV.  $I_4^u = \langle da + a^2 + au + a - 1, c + a, b - a - u - 1, u^2 + u + 1 \rangle$ 

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u+1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} a \\ a+u+1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -a \\ d \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ d+a+u+1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ d+a+u+1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a \\ a+1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a \\ a+u+1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes =  $-d^2u + 2a^2u + a^2 + 2d + 3u + 5$
- (iv) u-Polynomials at the component : It cannot be defined for a positive dimension component.
- (v) Riley Polynomials at the component : It cannot be defined for a positive dimension component.

## (iv) Complex Volumes and Cusp Shapes

| Solution to $I_4^u$ | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape         |
|---------------------|---------------------------------------|--------------------|
| $u = \cdots$        |                                       |                    |
| $a = \cdots$        |                                       |                    |
| $b = \cdots$        | 2.02988I                              | 2.36062 + 3.50810I |
| $c = \cdots$        |                                       |                    |
| $d = \cdots$        |                                       |                    |

V. 
$$I_1^v = \langle a, \ d-1, \ c+a-1, \ b+1, \ v-1 \rangle$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

#### (iv) u-Polynomials at the component

| Crossings                          | u-Polynomials at each crossing |
|------------------------------------|--------------------------------|
| $c_1, c_2, c_3$<br>$c_4, c_5, c_8$ | u                              |
| $c_{6}, c_{7}$                     | u-1                            |
| $c_9, c_{10}, c_{11} \\ c_{12}$    | u+1                            |

## (v) Riley Polynomials at the component

| Crossings                                | Riley Polynomials at each crossing |
|------------------------------------------|------------------------------------|
| $c_1, c_2, c_3$<br>$c_4, c_5, c_8$       | y                                  |
| $c_6, c_7, c_9$ $c_{10}, c_{11}, c_{12}$ | y-1                                |

## (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^v$ | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|----------------------|---------------------------------------|------------|
| v = 1.00000          |                                       |            |
| a = 0                |                                       |            |
| b = -1.00000         | 0                                     | 0          |
| c = 1.00000          |                                       |            |
| d = 1.00000          |                                       |            |

#### VI. u-Polynomials

| Crossings             | u-Polynomials at each crossing                                   |
|-----------------------|------------------------------------------------------------------|
| $c_1$                 | $u(u^{2} - u + 1)^{2}(u^{17} + 15u^{16} + \dots + 88u - 16)$     |
| $c_2$                 | $u(u^{2} + u + 1)^{2}(u^{17} + 5u^{16} + \dots + 11u^{2} - 4)$   |
| $c_3$                 | $u(u^{2} - u + 1)^{2}(u^{17} - 14u^{16} + \dots + 6768u - 2592)$ |
| $c_4, c_8$            | $u^5(u^{17} - u^{16} + \dots - 1024u - 512)$                     |
| <i>C</i> <sub>5</sub> | $u(u^{2} - u + 1)^{2}(u^{17} + 5u^{16} + \dots + 11u^{2} - 4)$   |
| <i>C</i> <sub>6</sub> | $u^{2}(u-1)(u+1)^{2}(u^{17}+8u^{16}+\cdots-8u-16)$               |
|                       | $u^{2}(u-1)^{3}(u^{17}-8u^{16}+\cdots-8u-16)$                    |
| <i>c</i> <sub>9</sub> | $u^{2}(u+1)^{3}(u^{17}-8u^{16}+\cdots-8u-16)$                    |
| $c_{10}$              | $u^{2}(u+1)^{3}(u^{17}+34u^{16}+\cdots+6176u+256)$               |
| $c_{11}$              | $u^{2}(u+1)^{3}(u^{17}+6u^{16}+\cdots+32u-256)$                  |
| $c_{12}$              | $u^{2}(u-1)^{2}(u+1)(u^{17}+8u^{16}+\cdots-8u-16)$               |

#### VII. Riley Polynomials

| Crossings      | Riley Polynomials at each crossing                                              |
|----------------|---------------------------------------------------------------------------------|
| $c_1$          | $y(y^2 + y + 1)^2(y^{17} - 21y^{16} + \dots + 36640y - 256)$                    |
| $c_2, c_5$     | $y(y^2 + y + 1)^2(y^{17} + 15y^{16} + \dots + 88y - 16)$                        |
| $c_3$          | $y(y^2 + y + 1)^2(y^{17} - 66y^{16} + \dots + 3.67649 \times 10^7 y - 6718464)$ |
| $c_4, c_8$     | $y^5(y^{17} + 81y^{16} + \dots - 524288y - 262144)$                             |
| $c_6, c_{12}$  | $y^{2}(y-1)^{3}(y^{17}+6y^{16}+\cdots+32y-256)$                                 |
| $c_{7}, c_{9}$ | $y^{2}(y-1)^{3}(y^{17}-34y^{16}+\cdots+6176y-256)$                              |
| $c_{10}$       | $y^{2}(y-1)^{3}(y^{17}-94y^{16}+\cdots+7397888y-65536)$                         |
| $c_{11}$       | $y^{2}(y-1)^{3}(y^{17}+66y^{16}+\cdots+2613760y-65536)$                         |