SQL

HARI PRASATH S

225229110

LAB 4 Retail sales analytics part 1

1).

SQL> desc store_data;		
Name	Null?	Туре
STORE ID		
STORE_ID	NOT NOLL	NUMBER(38)
TYPE		VARCHAR2(26)
SIZE36		NUMBER(38)
SQL> desc sales_data;		
Name	Null?	Туре
SALES_ID		LL NUMBER(38)
STORE_ID		NUMBER(38)
DEPT		NUMBER(38)
DATE36		DATE
WEEKLY_SALES		NUMBER(38,2)
ISHOLIDAY		VARCHAR2(26)
SQL> desc features_data;		
Name	Null?	Гуре
STORE_ID	1	NUMBER(38)
DATE36	ſ	DATE

TEMPERATURE NUMBER(38,2)

FUEL_PRICE NUMBER(38,3) MARKDOWN1

NUMBER(38,2)

MARKDOWN2 NUMBER(38,2)

MARKDOWN3 NUMBER(38,2)

MARKDOWN4 NUMBER(38,2)

MARKDOWN5 NUMBER(38,2)

CPI NUMBER(38,7)

UNEMPLOYMENT NUMBER(38,3)

ISHOLIDAY VARCHAR2(26)

2).

SQL> alter table store_data add primary key(store_id);

Table altered.

SQL> alter table features_data add foreign key(store_id) references store_data(store_id);

Table altered.

SQL> alter table sales_data add foreign key(store_id) references store_data(store_id);

Table altered.

3).

SQL> select sales_id,dept from sales_data where sales_id<=30 order by sales_id;

SALES_ID	DEPT

1 1

2 1

- 3 1
- 4 1
- 5 1
- 6 1
- 7 1
- 8 1
- 9 1
- 10 1
- 11 1

SALES_ID DEPT

- 12 1
- 13 1
- 14 1
- 15 1
- 16 1
- 17 1
- 18 1
- 19 1
- 20 1
- 21 1
- 22 1

SALES_ID DEPT

- 23 1
- 24 1
- 25 1
- 26 1
- 27 1

28	1
29	1
30	1

30 rows selected.

SQL> select sales_id,dept,weekly_sales from sales_data where weekly_sales<10 group by sales_id,dept,weekly_sales order by weekly_sales;

SALES_ID	DEPT	WEEKLY_SALES
267731	6	-4988.94
336496	47	-3924
417802	47	-1750
153917	47	-1699
271301	32	-1321.48
16292	47	-1098
16296	47	-1098
16298	47	-1098
24831	32	-1008.96
35562	47	-898
6049	47	-863
SALES_ID	DEPT	WEEKLY_SALES
93574	47	-798
93582	47	-798
93592	47	-798
193326	47	-798
193321	47	-778.5
332895	16	-771.9
273031	47	-705

```
6050 47 -698
54836 47 -698
```

6727 rows selected.

NOSQL Database Management Lab Lab5. Retail Sales Analytics Part-II

Question1: Write 3 queries with at least 1 join per query.

SQL> select stores.store_id,stores.type,sales.dept from stores left join sales on stores.store_id=sales_id where stores.store_id<=2;

STORE_ID	TYPE	DEPT
1	Α	1
2	Α	1

SQL> select stores.store_id,stores.type,sales.dept from stores inner join sales on stores.store_id=sales_id where stores.store_id<=2 and sales_id<=2;

STORE_ID	TYPE	DEPT
1	Α	1
2	Α	1

SQL> select stores.store_id,stores.type,sales.dept from stores inner join sales on stores.store_id=sales_id where stores.type='B';

STORE_ID	TYPE	DEPT
3	В	1
5	В	1
7	В	1
9	В	1
10	В	1

12	В	1
15	В	1
16	В	1
17	В	1
18	В	1
21	В	1
22	В	1
23	В	1
25	В	1
29	В	1
35	В	1
45	В	1

Question2: Write at least 3 queries that must use outer joins.

SQL> select sales.sales_id,weekly_sales from sales full outer join stores on stores.store_id=sales_id where sales_id<=2 and stores.store_id<=2;

SALES_ID	WEEKLY_SALES
1	24924.5
2	46039.49

SQL> select sales.sales_id,weekly_sales from sales full outer join stores on dept=stores.store_id where sales_id<=2 and stores.type='A';

SALES_ID	WEEKLY_SALES
1	24924.5
2	46039.49

SQL> select sales.sales_id,weekly_sales from sales full outer join stores on sales_id=stores.store_id where isholiday='TRUE' and sales_id<=10;

```
SALES_ID WEEKLY_SALES 2 46039.49
```

Lab 6: NoSQL Database Management Lab

Question: Develop aggregate queries in SQL on Retail dataset as follows

- Write 6 SQL queries with aggregation.
- At least 1 aggregate function per query.

- At least 2/5 aggregate functions among the 6 queries.
- At least 4 GROUP BY clauses among the 6 queries.
- At least 3 HAVING clauses among the 6 queries.

SQL> select count(store id),count(sales id),count(dept) from sales;

COUNT(STORE_ID) COUNT(SALES_ID) COUNT(DEPT)

421570 421570 421570

SQL> select store_id,max(temperature),min(temperature) from features where store_id=5 group by store_id;

STORE_ID MAX(TEMPERATURE) MIN(TEMPERATURE)

5 91.07 37.74

SQL> select avg(weekly_sales),count(store_id) from sales group by store_id having store_id=5;

AVG(WEEKLY_SALES) COUNT(STORE_ID)

5053.41581 8999

SQL> select avg(temperature),avg(fuel_price) from features group by store_id having store_id=5;

AVG(TEMPERATURE) AVG(FUEL_PRICE)

68.2245055 3.25924176

SQL> select max(fuel_price),min(fuel_price) from features group by store_id having store_id=5;

MAX(FUEL_PRICE) MIN(FUEL_PRICE)

3.907 2.514

SQL> select avg(size),max(size),min(size) from stores;

AVG(SIZE_) MAX(SIZE_) MIN(SIZE_) 130287.6 219622 34875