MarchenkoSA 23122024-171042

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

$$s_{21} = 0.17888 - 0.45276i, s_{31} = -0.46916 - 0.18536i.$$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь верхняя боковая составляющая при преобразовании частоты вверх?

Варианты ОТВЕТА:

1) -33 дБн 2) -35 дБн 3) -37 дБн 4) -39 дБн 5) -41 дБн 6) -43 дБн 7) -45 дБн 8) -47 дБн 9) 0 дБн

На рисунке 1 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1=r_4$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 1 – Двойной балансный смеситель

Частота гетеродина 148 МГц, частота ПЧ 42 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

Варианты ОТВЕТА:

- 1) 190 MΓ_{II}
- 2) 592 МГц
- 3) 486 МГц
- 4) 232 MΓ_{II}.

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 2. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi \Psi}|$ Какой комбинацией $\{n; m\}$ нельзя было бы объяснить наличие в спектре составляющей, отмеченной маркером 4? (Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 2 – Экран анализатора спектра

Варианты ОТВЕТА:

$$1) \ \{12; -43\} \ \ 2) \ \{18; -71\} \ \ 3) \ \{12; -43\} \ \ 4) \ \{18; -71\} \ \ 5) \ \{6; -15\} \ \ 6) \ \{6; -15\} \ \ 7) \ \{18; -71\}$$

8) {18; -29} 9) {15; -57}

Для полного подавления **нижней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный Т-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная минус 30 градусов.

Чему равна индуктивность компонента фазовращателя, если частота $\Pi \Psi$ равна 145 $M\Gamma_{\rm H}$?

Варианты ОТВЕТА:

1) 95.1 нГн 2) 63.4 нГн 3) 47.5 нГн 4) 31.7 нГн

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой $1458~\mathrm{M}\Gamma\mathrm{_{II}}$ с внутренним сопротивлением $50~\mathrm{Om}$ и доступной мощностью плюс $6~\mathrm{д}\mathrm{Б}\mathrm{m}$.

Колебание ПЧ формируется с помощью генератора меандра частотой 325 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 4 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 3280 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 1748 МГц до 1782 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра?

Варианты ОТВЕТА:

1) -60 дБм 2) -63 дБм 3) -66 дБм 4) -69 дБм 5) -72 дБм 6) -75 дБм 7) -78 дБм 8) -81 дБм 9) -84 дБм

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью плюс 1.3 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 28 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность колебания промежуточной частоты измерена с помощью анализатора спектра с входным сопротивлением 50 Ом, и получено значение минус 13.6 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 3.)

Рисунок 3 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА:

1) 8 дБ 2) 8.6 дБ 3) 9.2 дБ 4) 9.8 дБ 5) 10.4 дБ 6) 11 дБ 7) 11.6 дБ 8) 12.2 дБ 9) 12.8 дБ