

Ejercitación N.º 5: Ajuste de datos

Ejercicios de implementación y aplicación

Ejercicio 1

Escriba una subrutina que implemente un ajuste lineal por mínimos cuadrados para un conjunto de \mathbb{N} datos utilizando n_{param} parámetros.

- La subrutina debe tomar como argumentos de entrada el conjunto de datos, el número de parámetros a ajustar n_param. Si coloca la subrutina en un módulo no será necesario pasar el número de datos N, en caso contrario también debe ser un argumento de entrada.
- Los argumentos de salida deben ser los parámetros de ajustes (contenidos en un arreglo) y el valor del error en el ajuste.
- El cálculo de la matriz Z y el vector Y debe implementarse en procedimientos separados.
- Para el cálculo de la inversa de la matriz Z puede utilizar el método de Gauss-Jordan.

En los ejercicios siguientes grafique los datos y la función de ajuste obtenida.

Ejercicio 2

Utilice la rutina desarrollada en el ejercicio 1 para ajustar los siguientes puntos:

mediante una función cuadrática $f(x) = c_1 + c_2 x$

Ejercicio 3

Utilice la rutina desarrollada en el ejercicio 1 para ajustar los siguientes puntos:

mediante una función cuadrática $f(x) = c_1 + c_2 x + c_3 x^2$

Ejercicio 4

Ajuste los datos contenidos en el archivo $p5_{ej}04.dat$ mediante una función cuadrática análoga al ejercicio anterior.

El resultado esperado es: $y = 1,7632 - 0.97286x + 0.19933x^2$

Ejercicio 5

Ajuste los datos contenidos en el archivo p5_ej05. dat. Utilice como funciones base para el ajuste el conjunto de funciones $\{1, \cos(x), \log(x)\}$.

Ejercicio 6

Escriba una subrutina que implemente el método iterativo de Gauss-Newton para ajuste no lineal por mínimos cuadrados para un conjunto de $\mathbb N$ datos utilizando n_param parámetros.

Ejercicio 7

Utilice la rutina desarrollada en el ejercicio 6 para ajustar los siguientes puntos:

Para el ajuste, proponga una función de la forma $f(x) = a_1 \left[1 - \exp\left(-a_2 x \right) \right]$ donde a_1 y a_2 son los parámetros a determinar.

Ejercicio 8

La ley de Paschen, llamada así en honor del físico alemán Friedrich Paschen (1865-1947) que fue el primero en establecerla en 1889. Estudió la tensión disruptiva de láminas paralelas envueltas de gas como función de la presión y la distancia entre ellas.

La expresión matemática de dicha ley es:

$$V = \frac{A(p\,d)}{\ln(p\,d) + B} \tag{1}$$

donde V es la tensión disruptiva en voltios, p la presión del gas, d la distancia entre las láminas, y A y B, constantes que dependen de la composición del gas.

El archivo p5_ej08.dat contiene datos de mediciones de tensión disruptiva para diferentes valores de presión para electrodos planos a una distancia de 2.8 cm. Ajuste los datos utilizando el método de Gauss-Newton para obtener los parámetros A y B.

AYUDA: Para elegir valores iniciales apropiados para A y B puede seguir el siguiente procedimiento.

- Calcule analíticamente la derivada $\frac{dV}{d(pd)}$, halle el valor de pd para el cual dicha derivada se anula y observe que dicho valor depende sólo de B. Dicho valor de pd corresponde al mínimo de V.
- Haga una gráfica de V en función de pd. Elija un punto que esté próximo al mínimo y con dicho valor de pd, calcule B utilizando la expresión que derivó en el punto anterior.
- Elija un punto (pd, V), y utilizando el valor estimado anteriormente para B, calcule el valor de A.

Ejercicio 9

Escriba una función o subrutina que implemente la interpolación polinómica de Lagrange para un conjunto de N+1 datos $\{(x_i, y_i)\}_{i=0,\dots,N}$.

2

Lic. Física

$$P_n(x) = \sum_{i=0}^{N} L_i(x) y_i \quad \text{donde} \quad L_i(x) = \frac{A_i(x)}{A_i(x_i)} = \frac{\prod_{\substack{j=0 \ j \neq i}}^{N} (x - x_j)}{\prod_{\substack{j=0 \ j \neq i}}^{N} (x_i - x_j)}$$
 (2)

- Los argumentos de entrada deben ser: el conjunto de datos, el valor de X donde quiere evaluar el polinomio $P_n(X)$, y en caso de ser necesario la cantidad de datos N.
- El argumento de salida debe ser el valor del polinomio evaluado en X: $P_n(X)$.

Ejercicio 10

Escriba un programa que utilice la función del ejercicio anterior para interpolar con 101 puntos el conjunto de datos (no ordenado) del archivo p5_ej10.dat.

- Tenga en cuenta que los datos no están ordenados, ya que no es necesario para el método. Por lo tanto debe generar una grilla uniforme de 101 valores entre $\min(\{x_i\})$ y $\max(\{x_i\})$. Para hallar el máximo y mínimo de un arreglo puede utilizar las funciones intrínsecas MAXVAL y MINVAL, respectivamente.
- Haga una gráfica de los puntos datos y los puntos obtenidos por interpolación y verifique que ambos conjuntos coinciden exactamente en los puntos dato.
- Grafique ahora también la función $f(x) = 1/(1+12x^2)$, que es la que se ha utilizado para generar los datos. Observe que en algunas regiones el polinomio interpolador difiere considerablemente de la función generatriz.

Ejercicio 11

Escriba un código que utilice las subrutinas de interpolación por splines cúbicos para interpolar con 101 puntos los datos del archivo p5_ej11.dat. Utilice la aproximación de splines naturales.

- Lea la subrutina spline.f90 que calcula los valores de $y''(x_i)$ del polinomio interpolante. Verifique cuales deben ser los argumentos de entrada y salida y las dimensiones de los arreglos necesarios.
- Lea la subrutina splint.f90 que calcula el valor del polinomio interpolante un x dado. Estudie cuales deben ser los argumentos de entrada y sus dimensiones y el argumento de salida.

Los pasos a seguir en el programa son:

- → Declaración de variables y arreglos
- → Abrir archivo y leer numero de datos
- → Alojar arreglos
- → Leer datos y cerrar archivo
- → Llamar a spline una vez para generar el arreglo de valores de la derivada segunda en los nodos interiores

3

Lic. Física

- → Dentro de un DO, calcular el valor de cada uno de los valores de x de la grilla de interpolación, llamar a splint para cada uno de esos valores para obtener el valor del polinomio interpolante y escribir el resultado.
- → Desalojar arreglos

Ejercicios de integración de conocimientos

Ejercicio 12

Dada la función bidimensional:

$$f(x_i, y_i) = e^{-0.5((x_i - 1)^2 + (y_i - 3)^2)}$$
(3)

Genere los siguientes arreglos de datos:

- Arreglo X de dimensión ndatx=11 valores en el intervalo [0, 5].
- Arreglo Y de dimensión ndaty=15 valores en el intervalo [0, 7].
- Arreglo Fxy de 11×15 evaluando la función 3 en todos los pares (X(i), Y(j)).

Utilizando el esquema mostrado en la teoría, escriba un código que implemente **Splines bilineales** para realizar una interpolación en 2 dimensiones.

Lic. Física 4