第4讲 从多项式计算规则变化看自动计算 一规则与迭代

战渡臣

哈尔滨工业大学计算学部教学委员会主任 国家教学名师

18686783018, dechen@hit.edu.cn

自动计算要解决什么问题

两对象-三机制

两个对象:数据与计算规则

三个机制:表示-存储-执行

◆数据 的表示: 进位制与编码

◆计算规则 的表示:程序

◆数据与计算规则的 **自动存储**

◆计算规则/程序的 自动执行

计算规则

示例: 怎样计算多项式的值-差分法

用简单计算规则(如加减法运算)求解复杂计算问题(如乘方运算和多项式运算)

例如:求*n*²

$$(n+1)^2 = n^2 + \alpha_n + \beta_n$$

n	n²	一阶差分 $lpha_{\sf n} = {\sf n}^2 {\text -} ({\sf n} {\text -} { 1})^2$	二阶差分 $\beta_n = \alpha_n - \alpha_{n-1}$
0	0		
1	1	1	
2	4	3	2
3	9	5	→ 2
4	16	→ 7	→ 2
5	25	9,00	→ 2°

计算规则

示例: 怎样计算多项式的值-差分法

用简单计算规则(如加减法运算)求解复杂计算问题(如乘方运算和多项式运算)

例如: 求 $F(x) = x^2 + 2x + 3$

初始值不一样,可计算不同的多项式

$$F(n+1) = F(n) + \alpha_n + \beta_n$$

n	F(n)	一阶差分 α _n = F(n)-F(n-1)	二阶差分 $\beta_n = \alpha_n - \alpha_{n-1}$
0	3		
1	6	3	
2	11	5	2
3	18	7	→ 2
4	27	9	→ 2
5	38	→ 11	→ 2 0°

计算规则表达与执行

计算规则表达【程序】与计算规则执行【计算机器】

```
/*类C语言表达的计算规则—程序
Main()
 int k, n, F[], alpha[], beta[];
 input k;
 F[0]=3;
 F[1]=6;
                          入不同的初始
                       便可计算不同的·
 F[2]=11;
 alpha[1] = 3;
 for n=2 to k-1
                                            复进行
    alpha[n] = F[n] - F[n-1];
    beta[n] = alpha[n] - alpha[n-1];
                                       能够完
                                       成计算
    F[n+1] = F[n] + alpha[n] + beta[n];
 output F[k];
                             随K值增大而增
```

保存F(0)的值 F[0] 保存F(1)的值 F[1] 保存F(2)的值 F[2] F[3] F[4] F[5]

二阶差分

值可发生变化 的量

以按序号保存 多个值

一阶差分 $\alpha_n = F(n)-F(n-1)$ $\beta_n = \alpha_n - \alpha_{n-1}$

→ 11

计算规则表达与执行

怎样用更少的变量来实现自动计算一降低机器构造的复杂性?

```
/*类C语言表达的计算规则—程序
Main()
{ int k, n, F nminus1, F n, F nplus1,
 int alpha nminus1, alpha n, beta n;
 input k;
 F nminus1 = 1; F n = 4; alpha nminus1 = 1;
 for n=2 to k-1
    alpha n = F n - F_nminus1;
    beta_n = alpha_n - alpha_nminus1;
    F nplus1 = F n + alpha n + beta n;
    F nminus1 = F n;
                                  为下次计算保
    F n = F nplus1;
    alpha nminus1 = alpha n;
 output F nplus1;
                                K值变化而变化
```

nminus1 名,可任意命名,可保 保存F(0)的值 F[0] F[1] 保存F(1)的值 保存F(2)的值 F[2] F[3] F[4] F[5] 保存当前数值 占用n个变量 保存n个数值

计算规则表达与执行

迭代式方法的执行过程

```
/*类C语言表达的计算规则—程序
Main()
{ int k, n, F_nminus1, F_n, F_nplus1,
 int alpha_nminus1, alpha_n, beta_n;
 input k;
 F_nminus1 = 1; F_n = 4; alpha_nminus1 = 1;
 for n=2 to k-1
    alpha n = F n - F nminus 1;
    beta_n = alpha_n - alpha_nminus1;
    F_nplus1 = F_n + alpha_n + beta_n;
    F_{nminus1} = F_{n};
    F n = F nplus1;
    alpha_nminus1 = alpha_n;
 output F nplus1;
```

n	F_nplus1	F_n	F_nminus1	alpha_n	lpha_ nminus	beta_n
2	9	4	1	3	1	2
3	16 ⑤	9	4	5 @	3	2
4	25	16	9	7	5	2
5	36	25	16	9	7	2
		36	25	×	9	

自动计算的探索

由机械计算机到电子计算机

Pascal机械计算机: 第一台机械计算机-能够自动完成计算

莱布尼茨机械计算机: 自动计算--固定的计算规则

Babbage分析机: 特定程序 -- 可有限变化的计算规则

现代计算机:一般程序 --任意可变的计算规则

莱布尼兹, G. W.

巴贝奇

约翰·冯·诺伊曼

自动计算的探索

电子计算机的元件探索

电子管:可自动控制 0和1变化的元件

人类第一只电子管 (真空二极_管),1895

晶体管:可自动控制

0和1变化的元件

人类第一只晶体管 (点接触晶体管),1947

第一台晶体管计算机 TRADIC, 1953

集成电路: 可自动实现一定变换的元件

集成电路的发明,1959

第三代计算机 IBM360,1964

超大规模集成电路 (VLSI)

VLSI出现,1974

第四代计算机— 个人计算机,1981

电子管计算机ENIAC, 1946年,17468只电子管

计算机器

计算机器的探索思路

计算机器

计算机: 能够自动执行程序的机器

计算机器

概念计算机 与 现实中典型的个人计算机

如何降低计算机器制造难度

小结

两个对象:数据与计算规则

三个机制:表示-存储-执行

- ◆数据 的表示
- ◆计算规则 的表示:程序
- ◆数据与计算规则的 **自动存储**
- ◆计算规则/程序的 自动执行

计算规则要尽量简单。 可以由简单计算规则 来构造复杂规则。

选代可大幅度减少待` 保存的数据量,有利 于大规模问题的计算/