MAB298-Elements of Topology: Problem Sheet 4

Compactness

- 1. Let the topology on \mathbb{R} be defined by the collection of subsets $\{\emptyset, \mathbb{R}, (a, +\infty), a \in \mathbb{R}\}$ (see Example 5 in Lecture Notes). Is \mathbb{R} with this topology compact?
- 2. Prove by definition that [0,1) is not compact
- 3. Prove by definition that \mathbb{Z} as a subset of \mathbb{R} is not compact.
- 4. Let X be compact and C_i , $i \in \mathbb{N}$ be a collection of closed sets such that any finite intersection $\bigcap_{i=1}^{N} C_i$ is not empty. Prove that $\bigcap_{i=1}^{\infty} C_i \neq \emptyset$.
- 5. Let A and B be two compact subsets of a space X. Does it follow that $A \cup B$ is compact?
- 6. Which of the topological spaces listed below are compact:
 - 1) [0, 1] with the discrete topology
 - 2) \mathbb{Z} with the discrete topology
 - 3) \mathbb{R} with the indiscrete topology
 - 4) closed half plane $\{(x,y): y > 0\}$
 - 5) sphere $\{x^2 + y^2 + z^2 = 1\}$
 - 6) open disc $\{x^2 + y^2 < 1\}$ in \mathbb{R}^2
 - 7) annulus $\{1 < x^2 + y^2 < 4\}$
 - 8) punctured sphere $\{x^2 + y^2 + z^2 = 1\} \setminus \{(0,0,1)\}$
 - 9) \mathbb{Q} as a subset in \mathbb{R}
 - 10) $\{(x^4 + y^4)(1 + x^2 + y^2) = 10\}$ in \mathbb{R}^2
 - 11) $\left\{ \frac{x^4 + y^4}{1 + x^2 + y^2} \le 10 \right\}$ in \mathbb{R}^2
 - 12) $\{\sin^4 x + \cos^4 y = 1\}$ in \mathbb{R}^2
 - 13) $\{(x + \sin y)^2 + (y + \sin x)^2 = 100\}$ in \mathbb{R}^2
 - 14) $[0,1] \cap \mathbb{Q}$

- 7. Prove that if $f:[0,1] \to \mathbb{R}$ is a continuous function, then f([0,1]) is a segment (i.e., closed interval). More generally, if $X \subset \mathbb{R}^n$ is compact and connected and $f:X \to \mathbb{R}$ is a continuous function, then f(X) is a segment.
- 8. Let A be a subset of \mathbb{R}^n . Prove that A is compact iff each continuous numerical function on A is bounded.
- 9. In the space $C^0([0,1])$ of continuous functions on [0,1] with the standard distance $d(f,g) = \max_{x \in [0,1]} |f(x) g(x)|$, consider the closed ball B of radius 1 centered at zero (i.e., at the zero function):

$$B = \{ f \in C^0([0,1]) : |f(x)| \le 1 \}$$

Is B compact?