Challenge Problems - Part 1

仇羿彤

2025年10月14日

此解答尚未完工, 7, 8 两题会补充其他解法。

- 1. 鼓励进行讨论。若你的解答得益于与他人的讨论,请在提交时明确列出所有合作讨论者的姓名。
- 2. 允许查阅参考资料。任何非原创的内容(包括但不限于定理,性质,甚至是题目的直接解答)均须清晰注明来源,并明确标识引用部分。
- 3. 严禁使用任何生成式 AI 工具 (如 ChatGPT, Gemini, Deepseek 等)。
- 4. 第八题难度稍大,完成前两问即可获得该题全部分数。

1 题目

题目 1

设 n 阶矩阵 $\mathbf{A} = (a_{ij})$, 它的 (i,j) 元的代数余子式记作 A_{ij} 。把 \mathbf{A} 的每个元素都加上同一个数 t, 得到的矩阵记作 $\mathbf{A}(t) = (a_{ij} + t)$ 。证明:

$$|\mathbf{A}(t)| = |\mathbf{A}| + t \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}$$

解答

设矩阵 A 的列向量为 $\alpha_1, \alpha_2, \ldots, \alpha_n$, 即

$$A = (\alpha_1, \alpha_2, \dots, \alpha_n)$$

令 j 为所有元素都为 1 的 n 维列向量,即 $j=(1,1,\ldots,1)^T$ 。根据题意,矩阵 $A(t)=(a_{ij}+t)$ 的第 k 个列向量可以表示为 α_k+tj 。因此,矩阵 A(t) 可以写作:

$$A(t) = (\alpha_1 + tj, \alpha_2 + tj, \dots, \alpha_n + tj)$$

我们要计算的行列式就是

$$|A(t)| = |\alpha_1 + tj, \alpha_2 + tj, \dots, \alpha_n + tj|$$

行列式对其每一列都是线性的。我们可以逐列应用这个性质,将 |A(t)| 展开成 2^n 个行列式的和。展开后的每一项都是从原行列式的第 k 列选择 α_k 或 tj 组合而成的。我们可以根据 t 的幂次来对这些展开项进行分类:

1. t^0 的项(常数项)这对应于展开时,每一列都选择 α_k 的情况。这种情况只有一项:

$$|\alpha_1, \alpha_2, \dots, \alpha_n| = |A|$$

2. t^1 的项(一次项)这对应于展开时,有且仅有一列选择 tj ,而其他 n-1 列都选择 α_k 的情况。我 们将 t 从行列式中提出来,并将所有这些项相加:

$$t\sum_{k=1}^{n} |\alpha_1, \dots, \alpha_{k-1}, j, \alpha_{k+1}, \dots, \alpha_n|$$

现在,我们来计算其中的任意一项 $|\alpha_1,\ldots,\alpha_{k-1},j,\alpha_{k+1},\ldots,\alpha_n|$ 。这个行列式表示的是将矩阵 A 的第 k 列替换为全 1 向量 j 后得到的矩阵的行列式。我们对这个行列式按第 k 列进行代数余子式展开。由于第 k 列的元素全都是 1 ,其展开式为:

$$\sum_{i=1}^{n} 1 \cdot A_{ik} = \sum_{i=1}^{n} A_{ik}$$

其中 A_{ik} 是原始矩阵 A 的元素 (i,k) 的代数余子式。因此, t^1 的所有项加起来的总和为:

$$t\sum_{k=1}^{n} \left(\sum_{i=1}^{n} A_{ik}\right) = t\sum_{i=1}^{n} \sum_{k=1}^{n} A_{ik}$$

3. t^k 的项(当 $k \geq 2$ 时)这对应于展开时,至少有两列选择了 tj 的情况。例如,对于 t^2 的项,我们选择了第 j_1 列和第 j_2 列($j_1 \neq j_2$)为 tj 。该项的形式为 $t^2|\dots,j,\dots,j,\dots|$ 。根据行列式的一个基本性质,若一个行列式中有两列(或两行)完全相同,则该行列式的值为 0 。由于在这些项中,都至少包含两个相同的列向量 j ,所以这些行列式的值全部为 0 。因此,所有 t^k (当 $k \geq 2$)的项的系数都为 0 。

将以上所有项相加, 我们得到 |A(t)| 的完整表达式:

$$|A(t)| = |A| + t \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}$$

题目 2

给定整数 $n \ge 2$, 令 T 为所有元素取自集合 $S = \{1, 2, ..., 2025\}$ 的 $n \times n$ 矩阵的集合。求

$$\sum_{A \in T} \det(A).$$

解答

一个 $n \times n$ 矩阵 $A = (a_{ij})$ 的行列式定义:

$$\det(A) = \sum_{\sigma \in S_{-}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} a_{i,\sigma(i)}$$

其中 S_n 是集合 $\{1,2,\ldots,n\}$ 上的所有置换的集合, $\mathrm{sgn}(\sigma)$ 是置换 σ 的逆序数(对于偶置换为 +1,对于 奇置换为 -1)。我们要求的总和是 $\sum_{A\in T}\det(A)$ 。将行列式公式代人,得到:

$$\sum_{A \in T} \left(\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)} \right)$$

由于这两个和都是有限和,我们可以交换求和的顺序:

$$\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \left(\sum_{A \in T} \prod_{i=1}^n a_{i,\sigma(i)} \right)$$

现在, 我们来分析内部的和, 对于一个固定的置换 σ :

$$\sum_{A \in T} \prod_{i=1}^{n} a_{i,\sigma(i)}$$

这个和是对集合 T 中所有可能的矩阵 A 进行的。一个矩阵 A 由其 n^2 个元素 a_{ij} 定义,其中每个元素都独立地从集合 $S=\{1,2,\ldots,2025\}$ 中选取。因此,我们可以将对所有矩阵 A 的求和分解为对每个矩阵元素 a_{ij} 的独立求和:

$$\sum_{a_{11} \in S} \sum_{a_{12} \in S} \cdots \sum_{a_{nn} \in S} \left(\prod_{i=1}^{n} a_{i,\sigma(i)} \right)$$

在这个表达式中,乘积 $\prod_{i=1}^n a_{i,\sigma(i)}$ 只涉及 n 个特定的矩阵元素: $a_{1,\sigma(1)},a_{2,\sigma(2)},\ldots,a_{n,\sigma(n)}$ 。而其他的 n^2-n 个矩阵元素并没有出现在这个乘积中。我们可以把和式重新分组,将与乘积相关的项和无关的项分开:

$$\left(\sum_{a_{1,\sigma(1)}\in S}\cdots\sum_{a_{n,\sigma(n)}\in S}\prod_{i=1}^n a_{i,\sigma(i)}\right)\times\left(\sum_{\underset{}{\not\equiv}\underset{}{\not\equiv}\atop}1\right)$$

由于涉及的 n 个元素 $a_{i,\sigma(i)}$ 的求和是相互独立的,第一部分可以写成:

$$\prod_{i=1}^{n} \left(\sum_{a_{i,\sigma(i)} \in S} a_{i,\sigma(i)} \right)$$

令 $K = \sum_{s \in S} s = 1 + 2 + \dots + 2025$ 。 这是一个等差数列的和。

$$K = \frac{2025 \times (2025 + 1)}{2} = 2025 \times 1013$$

因此,第一部分的值是 $K \times K \times \cdots \times K$ (共 n 次),即 K^n 。对于第二部分,它包含了对所有不属于乘 积项的 n^2-n 个元素的求和。对每一个这样的元素 a_{ij} , $\sum_{a_{ij} \in S} 1 = |S| = 2025$ 。因为有 n^2-n 个这样的元素,所以第二部分的值是 2025^{n^2-n} 。将两部分相乘,我们得到对于任何一个固定的置换 σ ,内部和的值都是:

$$\sum_{A \in T} \prod_{i=1}^{n} a_{i,\sigma(i)} = K^{n} \cdot 2025^{n^{2}-n}$$

现在我们回到交换顺序后的总和表达式:

$$\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \left(K^n \cdot 2025^{n^2 - n} \right) = \left(K^n \cdot 2025^{n^2 - n} \right) \left(\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \right)$$

由于偶置换的数量是 $\frac{n!}{2}$, 奇置换的数量也是 $\frac{n!}{2}$ 。因此,

$$\sum_{\sigma \in S_{-}} \operatorname{sgn}(\sigma) = \left(\frac{n!}{2}\right) \times (+1) + \left(\frac{n!}{2}\right) \times (-1) = \frac{n!}{2} - \frac{n!}{2} = 0$$

所以最终答案也是0。

题目 3

令 $s_k = \sum_{i=1}^n x_i^k$,求如下矩阵的行列式:

$$S = \begin{pmatrix} s_0 & s_1 & s_2 & \cdots & s_{n-1} \\ s_1 & s_2 & s_3 & \cdots & s_n \\ s_2 & s_3 & s_4 & \cdots & s_{n+1} \\ \vdots & \vdots & \vdots & & \vdots \\ s_{n-1} & s_n & s_{n+1} & \cdots & s_{2n-2} \end{pmatrix}$$

解答

首先,我们观察矩阵 S 的任意一个元素 S_{ij} (第 i 行,第 j 列)。根据矩阵的构造, $S_{ij}=s_{i+j-2}$ 。根据 s_k 的定义,我们有:

$$S_{ij} = s_{i+j-2} = \sum_{k=1}^{n} x_k^{i+j-2}$$

我们可以将指数拆开:

$$S_{ij} = \sum_{k=1}^{n} x_k^{i-1} \cdot x_k^{j-1}$$

这个求和的形式强烈暗示了矩阵乘法。让我们定义一个 $n \times n$ 的范德蒙德矩阵 V 如下:

$$V = V(x_1, x_2, \dots, x_n) = \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{pmatrix}$$

这个矩阵的元素可以表示为 $V_{ij}=x_i^{j-1}$ 。现在,我们来看它的转置矩阵 V^T :

$$V^{T} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_{1} & x_{2} & \cdots & x_{n} \\ x_{1}^{2} & x_{2}^{2} & \cdots & x_{n}^{2} \\ \vdots & \vdots & & \vdots \\ x_{1}^{n-1} & x_{2}^{n-1} & \cdots & x_{n}^{n-1} \end{pmatrix}$$

这个矩阵的元素可以表示为 $\left(V^T\right)_{ij} = V_{ji} = x_j^{i-1}$ 。那么简单的计算可以得到:

$$\left(V^TV\right)_{ij} = \sum_{k=1}^n \left(x_k^{i-1}\right) \left(x_k^{j-1}\right) = \sum_{k=1}^n x_k^{i-1+j-1} = \sum_{k=1}^n x_k^{i+j-2}$$

从而 $S = V^T V$, 那么:

$$\det(S) = \left(\prod_{1 \le i < j \le n} (x_j - x_i)\right)^2 = \prod_{1 \le i < j \le n} (x_j - x_i)^2$$

这个结果也被称为与变量 x_1, \ldots, x_n 相关的判别式 (Discriminant)。

题目 4

设 $S_1, S_2, \ldots, S_{2^n-1}$ 为集合 $\{1, 2, \ldots, n\}$ 的所有非空子集 (按某种顺序排列), 令 M 为 $(2^n-1) \times (2^n-1)$ 矩阵, 其 (i, j) 元素定义为

计算 M 的行列式。

解答

首先,我们注意到矩阵 M_n 的定义不依赖于子集 S_i 的具体排列顺序。改变子集的顺序相当于对矩阵的行和列应用相同的置换,因此行列式的值与子集的排列顺序无关。这允许我们为了方便计算而选择一个特定的顺序。

接下来我们使用数学归纳法,这要求我们把 M_n 与 M_{n-1} 联系起来,我们对 X_n 的非空子集进行如下划分:

- 1. A 类: X_{n-1} 的所有非空子集。有 $N_{n-1} = 2^{n-1} 1$ 个。
- 2. B 类: 单元素集合 {n}。只有 1 个。
- 3. C 类: 形如 $S' \cup \{n\}$ 的集合, 其中 S' 是 X_{n-1} 的一个非空子集。有 $N_{n-1} = 2^{n-1} 1$ 个。

我们按照 (A,B,C) 的顺序来排列 X_n 的子集,以此来构建 M_n 的分块矩阵形式。令 $N'=2^{n-1}-1$ 。

$$M_n = \left(\begin{array}{ccc} A & B & C \\ D & E & F \\ G & H & I \end{array}\right)$$

现在我们分析每个分块:

- 1. A 块 $(N' \times N')$: $A_{ij} = 1 \iff S'_i \cap S'_j \neq \emptyset$ (其中 S'_i, S'_j 属于 A 类)。这正好是 M_{n-1} 的定义。所以 $A = M_{n-1}$ 。
- 2. B 块 $(N' \times 1)$: $B_{i1} = 1 \iff S'_i \cap \{n\} \neq \emptyset$ 。因为 $S'_i \subset X_{n-1}$,它不包含元素 n,所以交集永远是 空集。因此 B 是一个全零列向量 0。
- 3. C 块 $(N' \times N')$: $C_{ij} = 1 \iff S'_i \cap (S'_j \cup \{n\}) \neq \emptyset$ 。这个交集等于 $S'_i \cap S'_j$ 。所以这块也等于 M_{n-1} 。 $C = M_{n-1}$ 。
- 4. D 块 $(1 \times N')$: $(B 类与 A 类) D 是 B 的转置,所以是全零行向量 <math>0^T$ 。
- 5. E 块 (1×1) : (B 类与 B 类) $E_{11} = 1 \iff \{n\} \cap \{n\} \neq \emptyset$ 。这为真,所以 E = (1)。
- 6. F 块 $(1 \times N')$: (B 类与 C 类) $F_{1j} = 1 \iff \{n\} \cap (S'_j \cup \{n\}) \neq \emptyset$ 。交集为 $\{n\}$,非空。所以 F 是 全一行向量 1^T 。
- 7. G 块 $(N' \times N')$: $(C 类与 A 类) G 是 C 的转置, <math>G = M_{n-1}^T = M_{n-1}$.
- 8. H 块 $(N' \times 1)$: (C 类与 B 类) $H \neq F$ 的转置, H = 1.
- 9. I 块 $(N' \times N')$: (C 类与 C 类) $I_{ij} = 1 \Longleftrightarrow (S'_i \cup \{n\}) \cap (S'_j \cup \{n\}) \neq \emptyset$ 。这个交集是 $(S'_i \cap S'_j) \cup \{n\}$,它永远包含元素 n,所以永远非空。因此 I 是全一矩阵,记为 J。

综上, 我们得到分块矩阵:

$$M_n = \left(egin{array}{cccc} M_{n-1} & \mathbf{0} & M_{n-1} \\ \mathbf{0}^T & 1 & \mathbf{1}^T \\ M_{n-1} & \mathbf{1} & J \end{array}
ight)$$

为了计算其行列式, 我们进行行变换。将第一行(块)从第三行(块)中减去(即 $R_3 \leftarrow R_3 - R_1$):

$$\det(M_n) = \det \begin{pmatrix} M_{n-1} & \mathbf{0} & M_{n-1} \\ \mathbf{0}^T & 1 & \mathbf{1}^T \\ \mathbf{0} & \mathbf{1} & J - M_{n-1} \end{pmatrix}$$

这是一个上三角分块矩阵, 其行列式等于对角分块的行列式的乘积:

$$\det(M_n) = \det(M_{n-1}) \cdot \det \begin{pmatrix} 1 & \mathbf{1}^T \\ \mathbf{1} & J - M_{n-1} \end{pmatrix}$$

而

$$\det \begin{pmatrix} 1 & \mathbf{1}^T \\ \mathbf{1} & J - M_{n-1} \end{pmatrix} = \det(1) \cdot \det \left((J - M_{n-1}) - \mathbf{1}(1)^{-1} \mathbf{1}^T \right)$$

注意到 $1 \cdot 1^T$ 正是全一矩阵 J 。

$$= \det (J - M_{n-1} - J) = \det (-M_{n-1})$$

矩阵 $-M_{n-1}$ 的大小是 $N' \times N' = (2^{n-1} - 1) \times (2^{n-1} - 1)$ 。因此:

$$\det(-M_{n-1}) = (-1)^{2^{n-1}-1} \det(M_{n-1})$$

将此结果代回, 我们得到一个递推关系:

$$\det(M_n) = \det(M_{n-1}) \cdot (-\det(M_{n-1})) = -(\det(M_{n-1}))^2$$

结合所有情况,我们得到最终答案:

$$\det(M) = \begin{cases} 1 & \nexists n = 1\\ -1 & \nexists n \ge 2 \end{cases}$$

题目 5

方阵

$$C = \begin{pmatrix} \frac{1}{s_1 - t_1} & \frac{1}{s_1 - t_2} & \cdots & \frac{1}{s_1 - t_n} \\ \frac{1}{s_2 - t_1} & \frac{1}{s_2 - t_2} & \cdots & \frac{1}{s_2 - t_n} \\ \vdots & \vdots & \cdots & \vdots \\ \frac{1}{s_n - t_1} & \frac{1}{s_n - t_2} & \cdots & \frac{1}{s_n - t_n} \end{pmatrix}$$

称为 Cauchy 方阵。计算 C 的行列式。

解答

考虑将第 j 列 (C_j) 减去第 n 列 (C_n) ,其中 $j=1,2,\ldots,n-1$ 。行列式的值保持不变。新矩阵的元素

 C'_{ij} 为:

$$C'_{ij} = \frac{1}{s_i - t_i} - \frac{1}{s_i - t_n} = \frac{(s_i - t_n) - (s_i - t_j)}{(s_i - t_i)(s_i - t_n)} = \frac{t_n - t_j}{(s_i - t_i)(s_i - t_n)}$$

对于 $j=1,2,\ldots,n-1$ 。第 n 列保持不变。现在行列式变为:

$$\det(C) = \begin{pmatrix} \frac{t_n - t_1}{(s_1 - t_1)(s_1 - t_n)} & \cdots & \frac{t_n - t_{n-1}}{(s_1 - t_{n-1})(s_1 - t_n)} & \frac{1}{s_1 - t_n} \\ \frac{t_n - t_1}{(s_2 - t_1)(s_2 - t_n)} & \cdots & \frac{t_n - t_{n-1}}{(s_2 - t_{n-1})(s_2 - t_n)} & \frac{1}{s_2 - t_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{t_n - t_1}{(s_n - t_1)(s_n - t_n)} & \cdots & \frac{t_n - t_{n-1}}{(s_n - t_{n-1})(s_n - t_n)} & \frac{1}{s_n - t_n} \end{pmatrix}$$

提取公因式:

$$\det(C) = \left(\prod_{j=1}^{n-1} (t_n - t_j)\right) \left(\prod_{i=1}^n \frac{1}{s_i - t_n}\right) \begin{vmatrix} \frac{1}{s_1 - t_1} & \cdots & \frac{1}{s_1 - t_{n-1}} & 1\\ \frac{1}{s_2 - t_1} & \cdots & \frac{1}{s_2 - t_{n-1}} & 1\\ \vdots & \cdots & \vdots & \vdots\\ \frac{1}{s_n - t_1} & \cdots & \frac{1}{s_n - t_{n-1}} & 1 \end{vmatrix}$$

现在我们对行进行类似的操作,以简化最后一列。将第n 行 (R_n) 减去其他各行 (R_i) ,其中 $i=1,2,\ldots,n-1$ 。这不会改变行列式的值。对于 $i=1,\ldots,n-1$,新矩阵的元素 $C_{ij}^{\prime\prime}$ (对于 $j=1,\ldots,n-1$)为:

$$C_{ij}^{"} = \frac{1}{s_i - t_j} - \frac{1}{s_n - t_j} = \frac{(s_n - t_j) - (s_i - t_j)}{(s_i - t_j)(s_n - t_j)} = \frac{s_n - s_i}{(s_i - t_j)(s_n - t_j)}$$

最后一列的元素(除了最后一个)都变为0。行列式变为:

继续提取公因式并与之前提出的因子合并:

$$\det(C) = \frac{\prod_{j=1}^{n-1} (t_n - t_j) \cdot \prod_{i=1}^{n-1} (s_n - s_i)}{\prod_{i=1}^{n} (s_i - t_n) \cdot \prod_{j=1}^{n-1} (s_n - t_j)} \times \begin{vmatrix} C'_{n-1} & \mathbf{0} \\ \mathbf{v} & 1 \end{vmatrix}$$

其中 C'_{n-1} 是一个 $(n-1) \times (n-1)$ 的矩阵,其元素为 $\frac{1}{s_i-t_j}(i,j=1,\ldots,n-1)$,这正是一个 (n-1) 阶的柯西矩阵。对这个分块矩阵的行列式进行展开,我们得到:

$$\det(C) = \frac{\prod_{j=1}^{n-1} (t_n - t_j) \cdot \prod_{i=1}^{n-1} (s_i - s_n)}{\prod_{i=1}^{n} (s_i - t_n) \cdot \prod_{i=1}^{n-1} (t_i - s_n)} \cdot \det(C_{n-1})$$

根据归纳法可以得到:

$$\det(C) = \frac{\prod_{1 \leq i < j \leq n} \left(s_j - s_i\right) \left(t_j - t_i\right)}{\prod_{i=1}^n \prod_{j=1}^n \left(s_i - t_j\right)}$$

题目 6

复数方阵

$$C = \begin{pmatrix} c_0 & c_1 & \cdots & c_{n-1} \\ c_{n-1} & c_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & c_1 \\ c_1 & \cdots & c_{n-1} & c_0 \end{pmatrix}$$

称为循环方阵。计算 det(C)。

解答

由循环矩阵第一行的元素 $c_0, c_1, \ldots, c_{n-1}$, 定义多项式:

$$f(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{n-1} x^{n-1}$$

令 $\omega = e^{2\pi i/n}$ 为本原 n 次单位根,则所有 n 次单位根为:

$$\omega^k = e^{2\pi i k/n}, \quad k = 0, 1, \dots, n - 1,$$

定义 $n \times n$ 范德蒙德矩阵 V 如下:

$$V = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & \omega & \cdots & \omega^{n-1} \\ 1 & \omega^2 & \cdots & (\omega^{n-1})^2 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{n-1} & \cdots & (\omega^{n-1})^{n-1} \end{pmatrix}.$$

其第 (i,j) 项为 $\omega^{(i-1)(j-1)}$ (行、列从 1 开始计数)。考虑矩阵乘积 CV 的第 (i,j) 项。由于 C 是循环矩阵,其第 i 行为 $(c_{-i+1},c_{-i+2},\ldots,c_{-i+n})$ (下标模 n),因此:

$$(CV)_{ij} = \sum_{k=0}^{n-1} c_{(k-i+1) \bmod n} \cdot \omega^{(j-1)k}.$$

通过变量替换并利用 $\omega^n = 1$, 可得:

$$(CV)_{ij} = \omega^{(i-1)(j-1)} f(\omega^{j-1}).$$

因此,整个乘积矩阵为:

$$CV = \begin{pmatrix} f(1) & f(\omega) & \cdots & f(\omega^{n-1}) \\ f(1) & \omega f(\omega) & \cdots & \omega^{n-1} f(\omega^{n-1}) \\ \vdots & \vdots & \ddots & \vdots \\ f(1) & \omega^{n-1} f(\omega) & \cdots & (\omega^{n-1})^{n-1} f(\omega^{n-1}) \end{pmatrix}.$$

注意到该矩阵可分解为:

$$CV = V \cdot D$$
,

其中 D 是对角矩阵:

$$D = \operatorname{diag}\left(f(1), f(\omega), f\left(\omega^{2}\right), \dots, f\left(\omega^{n-1}\right)\right).$$

对等式 CV = VD 两边取行列式,利用行列式的乘法性质:

$$\det(C) \cdot \det(V) = \det(V) \cdot \det(D)$$

由于范德蒙德矩阵 V 的行列式为:

$$\det(V) = \prod_{0 \le i < j \le n-1} \left(\omega^j - \omega^i \right) \ne 0,$$

故可两边同时除以 det(V) , 得到:

$$\det(C) = \det(D) = \prod_{k=0}^{n-1} f(\omega^k).$$

题目 7

设 M 为如下定义的 $n \times n$ 阶系数矩阵:

$$M = \begin{pmatrix} c_{0,1} & c_{1,1} & \cdots & c_{n-1,1} \\ c_{0,2} & c_{1,2} & \cdots & c_{n-1,2} \\ \vdots & \vdots & \ddots & \vdots \\ c_{0,n} & c_{1,n} & \cdots & c_{n-1,n} \end{pmatrix},$$

其中对于 i = 0, 1, ..., n - 1 且 k = 1, 2, ..., n,有

$$c_{i,k} = \frac{1}{(i+1)(i+2)\cdots(i+k)}.$$

求 M 的行列式。

解答

解法一(整理自吴宇轩同学的解答): 注意到 $c_{i,k}$:

$$|M| = \begin{vmatrix} \frac{1}{1} & \frac{1}{2} & \cdots & \frac{1}{n} \\ \frac{1}{1 \cdot 2} & \frac{1}{2 \cdot 3} & \cdots & \frac{1}{n \cdot (n+1)} \\ \frac{1}{1 \cdot 2 \cdot 3} & \frac{1}{2 \cdot 3 \cdot 4} & \cdots & \frac{1}{n \cdot (n+1) \cdot (n+2)} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{1 \cdot 2 \cdots n} & \frac{1}{2 \cdot 3 \cdots (n+1)} & \cdots & \frac{1}{n(n+1) \cdots (2n-1)} \end{vmatrix}$$

$$= \frac{1}{(n-1)!} \begin{vmatrix} \frac{1}{1} & \frac{1}{2} & \cdots & \frac{1}{n} \\ \frac{1}{1} - \frac{1}{2} & \frac{1}{2} - \frac{1}{3} & \cdots & \frac{1}{n} - \frac{1}{n+1} \\ \frac{1}{1 \cdot 2} - \frac{1}{2 \cdot 3} & \frac{1}{2 \cdot 3} - \frac{1}{3 \cdot 4} & \cdots & \frac{1}{n(n+1)} - \frac{1}{(n+1)(n+2)} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{1 \cdot 2 \cdots (n-1)} - \frac{1}{2 \cdot 3 \cdots n} & \cdots & \cdots & \frac{1}{n \cdots (2n-2)} - \frac{1}{(n+1) \cdots (2n-1)} \end{vmatrix}$$

观察这个公式,第 2 行及之后的行中的元素是两项相减,并且前面一项(被减数)恰好是该元素上方的元素,这意味着如果我们用 k+1 行减去第 k 行,就会留下剩下那一部分。于是,从最后一行开始,依次用该行减去它上面的那一行,得到:

$$|M| = \frac{(-1)^{n-1}}{(n-1)!} \begin{vmatrix} \frac{1}{1} & \frac{1}{2} & \cdots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{(n+1)} \\ \frac{1}{2 \cdot 3} & \frac{1}{3 \cdot 4} & \cdots & \frac{1}{(n+1)(n+2)} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{2 \cdot 3 \cdots n} & \cdots & \cdots & \frac{1}{(n+1) \cdots (2n-1)} \end{vmatrix}$$

接下来,我们对从第三行开始的元素重复上述的过程,即裂项,提取公因式,相邻行相减,提取负号,最

后可以得到:

$$|M| = \frac{(-1)^{n-1} \cdot (-1)^{n-2} \cdots (-1)^1}{(n-1)! \cdot (n-2)! \cdots (1)!} \begin{vmatrix} \frac{1}{1} & \frac{1}{2} & \cdots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{n} & \frac{1}{n+1} & \cdots & \frac{1}{2n-1} \end{vmatrix}$$

最后需要计算的方阵恰好是一个 Cauchy 方阵,直接使用结论可以得到:

$$|M| = (-1)^{\frac{n(n-1)}{2}} \frac{\prod_{k=0}^{n-1} (k!)^2}{\prod_{k=0}^{2n-1} (k!)}$$

题目 8

对于一个序列 $\{a_k\}_{k=0}^\infty$,其第 n 阶汉克尔矩阵(Hankel Matrix) H_n 是一个 $n\times n$ 的方阵,其元素由 $(H_n)_{i,j}=a_{i+j}$ 给出(其中 $0\leq i,j\leq n-1$)。即:

$$H_n = \begin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_{n-1} \\ a_1 & a_2 & a_3 & \cdots & a_n \\ a_2 & a_3 & a_4 & \cdots & a_{n+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_n & a_{n+1} & \cdots & a_{2n-2} \end{pmatrix}$$

设 $C_n = \frac{1}{n+1} \binom{2n}{n}$ 为第 n 个卡特兰数。请解决如下几个问题:

- 1. 对于序列 $\{C_k\}_{k=0}^{\infty} = \{1,1,2,5,\ldots\}$,其任意 n 阶汉克尔矩阵的行列式均为 1。
- 2. 对于 "左移一位" 的序列 $\{C_{k+1}\}_{k=0}^{\infty} = \{1,2,5,14,\ldots\}$, 其任意 n 阶汉克尔矩阵的行列式也均为 1。
- 3. 求所有满足以下两个条件的实数序列 $\{a_n\}_{n=0}^{\infty}$:
 - (a) 对于任意整数 $n \ge 0$,由该序列生成的 $(n+1) \times (n+1)$ 阶汉克尔矩阵 $(a_{i+j})_{0 \le i,j \le n}$,其行列式为 1。
 - (b) 对于任意整数 $n \geq 1$,由序列 $\{a_{k+1}\}_{k=0}^{\infty}$ (即原序列左移一位)生成的 $n \times n$ 阶汉克尔矩阵 $(a_{i+j+1})_{0 \leq i,j \leq n-1}$,其行列式为 1 。