

TABLE OF CONTENTS

01

RESEARCH MOTIVATION

03

DATA VISUALIZATION

DATA
COLLECTION
AND CLEANING

04

MACHINE LEARNING

Is it possible to predict the quality of a sunset?

2130

sunsets in 10 cities every day over 7 months

LOS ANGELES, SAN FRANCISCO, SAN DIEGO, SEATTLE, CHICAGO, MIAMI, PHILADELPHIA, NYC, BOSTON, WASHINGTON DC

Date

Los Angeles2015-11-01

Los_Angeles2015-11-02

Los_Angeles2015-11-03

Los_Angeles2015-11-04

Los_Angeles2015-11-05

Los Angeles2015-11-06

Los_Angeles2015-11-07

Los_Angeles2015-11-08

Los_Angeles2015-11-09

Los_Angeles2015-11-10

Los Angeles2015-11-11

Los_Angeles2015-11-12

Los_Angeles2015-11-13

Los Angeles2015-11-14

Los Angeles2015-11-16

Los Angeles2015-11-17

2015-11-01

2015-11-02

2015-11-03

2015-11-04

2015-11-05

2015-11-06

2015-11-07

2015-11-08

2015-11-09

2015-11-10

2015-11-11

2015-11-12

2015-11-13

2015-11-14

2015-11-16

2015-11-17

City

Los Angeles

Los_Angeles

Los_Angeles

Los_Angeles

Los_Angeles

Los Angeles

Los_Angeles

Los_Angeles

Los_Angeles

Los_Angeles

Los Angeles

Los_Angeles

Los_Angeles

Los Angeles

Los Angeles

Los Angeles

Raw Number of Posts Residual After Controlling for Time Good Sunset

365

625

610

505

376

391

45

623

330

333

360

385

318

451

316

347

-0.5107030775772110

0.4523763388675570

0.4930561177835950

0.23602293714068700

-0.026923240153921600

-0.08362969111648470

-0.8295262280920170

0.18667133909539700

-0.18596569239174900

-0.1057311005985000

-0.07072180408245570

0.007143898871248220

-0.23159992621471300

0.08325542285203370

-0.20444477981039600

-0.0626009924052332

0.0

1.0

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

	sunset	City	Date	Sunset Time
0	2015-11-01T18:01	Los Angeles	2015-11-01	18:01
1	2015-11-02T18:00	Los Angeles	2015-11-02	18:00
2	2015-11-03T17:59	Los Angeles	2015-11-03	17:59
3	2015-11-04T17:59	Los Angeles	2015-11-04	17:59
4	2015-11-05T17:58	Los Angeles	2015-11-05	17:58
208	2016-05-27T17:25	Washington DC	2016-05-27	17:25
000	0040 05 00747 00	W-11-1 DO	2042.05.00	47.00

WEATHER VARIABLES

CLOUDCOVER

OVERALL, LOW, MID, HIGH

HUMIDITY

RADIATION

SHORTWAVE, DIRECT, DIFFUSE, DIRECT NORMAL IRRADIANCE

DEWPOINT

WIND

WIND SPEED, WIND DIRECTION

SURFACE

SURFACE PRESSURE, MEAN SEA LEVEL PRESSURE

City	Hour	Date	vapor_pressure_deficit	et0_fao_evapotranspiration	winddirection_10m	windspeed_10m	direct_normal_irradiance
Washington DC	00:00	2015- 11-01	0.43	0.03	199	6.9	0.0
Washington DC	01:00	2015- 11-01	0.43	0.03	196	7.2	0.0
Washington DC	02:00	2015- 11-01	0.37	0.03	193	8.0	0.0
Washington DC	03:00	2015- 11-01	0.35	0.02	199	8.3	0.0
Washington DC	04:00	2015- 11-01	0.31	0.02	202	8.9	0.0
Los Angeles	19:00	2016- 05-31	1.33	0.17	211	6.0	655.6
Los Angeles	20:00	2016- 05-31	0.91	0.06	214	5.6	342.7
Los Angeles	21:00	2016- 05-31	0.66	0.02	212	4.2	0.0
Los Angeles	22:00	2016- 05-31	0.53	0.00	197	3.0	0.0
Los Angeles	23:00	2016- 05-31	0.45	0.00	172	3.2	0.0

	City	Date	Good Sunset	Sunset Time	Raw Number of Posts	relativehumidity_2m	dewpoint_2m	pressure_msl	surface_pressure	rain	 cloudcove
0	Los Angeles	2015- 11-01	0.0	18:01	365	36	47.6	1013.4	996.7	0.0	
1	Los Angeles	2015- 11-02	1.0	18:00	625	76	56.1	1007.8	990.8	0.2	
2	Los Angeles	2015- 11-03	1.0	17:59	610	38	38.6	1008.9	991.9	0.0	
3	Los Angeles	2015- 11-04	0.0	17:59	505	38	39.1	1013.8	996.8	0.0	
4	Los Angeles	2015- 11-05	0.0	17:58	376	14	17.8	1019.5	1002.5	0.0	
1786	Seattle	2016- 05-27	0.0	20:56	33	67	44.4	1019.6	1017.5	0.2	
1787	Seattle	2016- 05-28	0.0	20:57	74	80	49.4	1016.6	1014.5	0.3	
1788	Seattle	2016- 05-29	0.0	20:58	104	66	46.0	1022.1	1020.0	0.0	
1789	Seattle	2016- 05-30	0.0	20:59	66	57	46.2	1021.9	1019.9	0.0	
1790	Seattle	2016- 05-31	0.0	21:00	4	65	51.4	1013.6	1011.6	0.0	

MACHINE LEARNING

```
y bad = sunsetData["Raw Number of Posts"]
X train, X test, y train, y test = train test split(X, y bad, test size = .33)
scalers = [StandardScaler, MinMaxScaler, Normalizer]
for scaler in scalers:
  col transformer = make column transformer((scaler(), features),
                                            remainder="drop")
  pipeline = make pipeline(col transformer, KNeighborsRegressor(n neighbors=20, metric = "manhattan"))
  print(scaler, -cross val score(
      pipeline, X train, y train,
      scoring = "neg mean squared error",
      cv=5).mean())
  pipeline.fit(X train, y train)
  y pred = pipeline.predict(X test)
<class 'sklearn.preprocessing. data.StandardScaler'> 19402.8119395659
<class 'sklearn.preprocessing. data.MinMaxScaler'> 19842.92236593445
<class 'sklearn.preprocessing. data.Normalizer'> 22776.927956685846
```

X = sunsetData[features]

Angeles 11-02

goodSunsets

City Date

Los 2015-

Los 2015-

Angeles 11-03 Los 2015-

Angeles 11-28 Los 2015-

Angeles 12-07 Los 2015-

Angeles 12-08

Seattle

Seattle

1772 Seattle

1769

1770

1771

2016-

05-10 2016-

05-11

2016-05-12

2016-

05-13

goodSunsets = sunsetData[sunsetData["Good Sunset"] == 1.0]

Sunset

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Raw

Posts

625

610

697

893

812

155

164

174

relativehumidity 2m dewpoint 2m pressure msl surface pressure rain ... cloudcover mid cloudcover high

990.8

991.9

998.8

1000.1

998.7

1018.6

1010.9

1012.9

1008.8

0.2

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0 ...

67

36

0

0

0

0

0

46

0

0

97

39

0

23

8

1007.8

1008.9

1016.0

1016.8

1015.3

1020.6

1012.9

1014.9

1010.8

56.1

38.6

17.7

25.7

32.0

37.9

40.6

43.0

53.2

38

18

36

35

38

50

Sunset Number

Time

18:00

17:59

17:45

17:45

17:45

20:35

20:37

20:38

20:39

goodSunsets

City Date

Los 2015-

Angeles 11-02 Los 2015-

Angeles 11-03 Los 2015-

Angeles 11-28 Los 2015-

Angeles 12-07 Los 2015-

Angeles 12-08

Seattle

Seattle

Seattle

1772 Seattle

1769

1770

1771

2016-

05-10 2016-

05-11 2016-

05-12 2016-

05-13

goodSunsets = sunsetData[sunsetData["Good Sunset"] == 1.0]

Sunset

Time

18:00

17:59

17:45

17:45

17:45

20:35

20:37

20:38

20:39

Sunset

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Raw

relativehumidity 2m dewpoint 2m pressure msl surface pressure rain ... cloudcover mid cloudcover high

990.8

991.9

998.8

1000.1

998.7

1018.6

1010.9

1012.9

1008.8

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

67

36

0

0

0

0

0

0

46

0

0

97

39

0

23

8

1007.8

1008.9

1016.0

1016.8

1015.3

1020.6

1012.9

1014.9

1010.8

Number

Posts

76

38

18

36

35

38

50

56.1

38.6

17.7

25.7

32.0

37.9

40.6

43.0

53.2

```
X = sunsetData[features]
y_bad = sunsetData["Raw Number of Posts"]
```



```
X = sunsetData[features]
y = sunsetData["Good Sunset"]
```

```
[68] from sklearn.ensemble import RandomForestClassifier
    from sklearn.metrics import accuracy_score
    from sklearn.model_selection import RandomizedSearchCV
    from sklearn.metrics import classification_report

clf = RandomForestClassifier(n estimators = 100)
```

clf.fit(X train, y train)

y pred = clf.predict(X test)

print("Accuracy:", accuracy)

Accuracy: 0.8307952622673435

accuracy = accuracy score(y test, y pred)

```
X = sunsetData[features]
y = sunsetData["Good Sunset"]
X train, X test, y train, y test = train test split(X, y, test size = .33)
scalers = [StandardScaler, MinMaxScaler, Normalizer]
for scaler in scalers:
  col transformer = make column transformer((scaler(), features),
                                             remainder="drop")
  pipeline = make pipeline(col transformer, KNeighborsRegressor(n neighbors=20, metric = "manhattan"))
  print(scaler, -cross val score(
      pipeline, X train, y train,
      scoring = "neg mean squared error",
      cv=5).mean())
  pipeline.fit(X train, y train)
<class 'sklearn.preprocessing. data.StandardScaler'> 0.11304585076708507
```

<class 'sklearn.preprocessing._data.MinMaxScaler'> 0.11497058054393303
<class 'sklearn.preprocessing. data.Normalizer'> 0.11813473675034866

```
plt.plot(ks, train_mses, label = "Training MSEs")
plt.plot(ks, test_mses, label = "Test MSEs")
plt.legend(loc = "upper right")

<matplotlib.legend.Legend at 0x7f4214c66340>
```


[63]

```
y = sunsetData["Good Sunset"]
X train, X test, y train, y test = train test split(X, y, test size = .33)
col transformer = make column transformer((StandardScaler(), features),
                                            remainder="drop")
pipeline = make pipeline(col transformer, KNeighborsRegressor(n neighbors=18, metr
print(StandardScaler, -cross val score(
      pipeline, X train, y train,
      scoring = "neg mean squared error",
      cv=5).mean())
<class 'sklearn.preprocessing. data.StandardScaler'> 0.10710837551870792
```

X = sunsetData[features]

