PadhAl: Variants of Gradient Descent

One Fourth Labs

Dissecting the update rule for momentum based gradient descent

Can we dissect the equations in more detail?

- 1. Let us further dissect the momentum based Gradient Descent
- 2. $v_t = \gamma * v_{t-1} + \eta \nabla \omega_t$ this variable is called the history.
- 3. $\omega_{t+1} = \omega_t v_t$ this variable represents the current movement to be made
- 4. Consider every instance in time denoted by the subscript, ranging from 0 to t
- 5. $v_0 = 0$
- 6. $v_1 = \gamma * v_0 + \eta \nabla \omega_1 = \eta \nabla \omega_1$
- 7. $v_2 = \gamma * v_1 + \eta \nabla \omega_2 = \gamma . \eta \nabla \omega_1 + \eta \nabla \omega_2$
- 8. $v_3 = \gamma * v_2 + \eta \nabla \omega_3 = \gamma (\gamma. \eta \nabla \omega_1 + \eta \nabla \omega_2) + \eta \nabla \omega_3$
 - a. $v_3 = \gamma^2 \cdot \eta \nabla \omega_1 + \gamma \cdot \eta \nabla \omega_2 + \eta \nabla \omega_3$
- 9. $v_4 = \gamma * v_3 + \eta \nabla \omega_4 = \gamma^3.\eta \nabla \omega_1 + \gamma^2.\eta \nabla \omega_2 + \gamma^1.\eta \nabla \omega_3 + \eta \nabla \omega_4$

.

10.
$$v_t = \gamma * v_{t-1} + \eta \nabla \omega_t = \gamma^{t-1}.\eta \nabla \omega_1 + \gamma^{t-2}.\eta \nabla \omega_2 + ... + \eta \nabla \omega_t$$
 t

- 11. Here, we take an Exponentially Decaying Weighted Sum, whereby as we move further and further into the series, the weight decays more.
- 12. The intuition behind this is as we progress further and further down a series/direction, we can place lesser and lesser importance to the later gradients as we move along the same direction.