Transformer model

Byte pair encoding

Sentence embeddings

BERT

Transformer models evaluation

Transformer model

• Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." In Advances in neural information processing systems, pp. 5998-6008. 2017.

Encoder-decoder without RNN

- Encoder-decoder without RNN
- New layer: multi-head self-attention
- Outstanding results in both learning speed and translation quality

- Both encoder and decoder consist of 6 identical blocks
- The blocks are organised sequentially
- Each block has its own weights

Encoder

- First block input word embeddings, other blocks take previous block's output as input
- Each block consists of two parts: self-attention and feed forward layer

Encoder

Self-attention: each input embedding is transformed

3 times:

```
query: q_i = W^Q x_i

key: k_i = W^K x_i

value: v_i = W^V x_i
```

Matrices W^Q, W^K, W^V are trainable.

Encoder

Self-attention in matrix form:

$$Z = softmax \frac{(QK^{\top})}{\sqrt{d_k}} V$$

Several self-attention heads:

$$Z_1, ..., Z_8$$

 Concatenate self-attention embeddings:

$$Z = W^0[Z_1, \dots, Z_8]$$

Attention weights

Decoder

Encoder transforms input words into matrices:
 O^{enc}, K^{enc}, V^{enc}

• Encoder passes matrices K^{enc} , V^{enc} into the decoder

 Decoder transforms input words into matrix Q^{dec}

Output Probabilities

Decoder

Decoder translates word by word

 Masked attention mechanism prevents looking at the following words (by setting their weights to -∞

 Masked attention is applied only during training process

Attention mechanism in Transformer

Attention mechanism in encoder Attention mechanism in decoder

 Word order is taken into account using positional encoding:

$$x_i = x_i + pe_i$$

 It encapsulates information about words mutual distance in the sentence

 Trainable positional encoding is trained with the model

 Word order is taken into account using positional encoding:

$$x_i = x_i + pe_i$$

 Trigonometric positional encoding:

Trigonometric positional embeddings

- Dominant architecture since mid-2018 in most automated word processing tasks
- Surpasses previous architectures in speed and quality

Byte pair encoding

- Combining frequent character pairs
- Perform a fixed number of merge operations

- Combining frequent character pairs
- Perform a fixed number of merge operations

Iteration	BPE
0	_грёзоблаженствующий
1 000	
3 000	
5 000	
10 000	
25 000	
50 000	
100 000	
200 000	

- Combining frequent character pairs
- Perform a fixed number of merge operations

Iteration	BPE
0	_грёзоблаженствующий
1 000	_г,р,ё,зо,б,ла,же,н,ству,ющи, й,
3 000	
5 000	
10 000	
25 000	
50 000	
100 000	
200 000	

- Combining frequent character pairs
- Perform a fixed number of merge operations

Iteration	BPE
0	_грёзоблаженствующий
1 000	_г,р,ё,зо,б,ла,же,н,ству,ющи, й,
3 000	_г, рё, зо, б, ла, жен, ству, ющий,
5 000	
10 000	
25 000	
50 000	
100 000	
200 000	

- Combining frequent character pairs
- Perform a fixed number of merge operations

Iteration	BPE
0	_грёзоблаженствующий
1 000	_г,р,ё,зо,б,ла,же,н,ству,ющи, й,
3 000	_г, рё, зо, б, ла, жен, ству, ющий,
5 000	_г, рё, зо, б, ла, жен, ству, ющий,
10 000	
25 000	
50 000	
100 000	
200 000	

- Combining frequent character pairs
- Perform a fixed number of merge operations

Iteration	BPE
0	_грёзоблаженствующий
1 000	_г,р,ё,зо,б,ла,же,н,ству,ющи, й,
3 000	_г, рё, зо, б, ла, жен, ству, ющий,
5 000	_г, рё, зо, б, ла, жен, ству, ющий,
10 000	_г, рё, зоб, ла, жен, ству, ющий,
25 000	
50 000	
100 000	
200 000	

- Combining frequent character pairs
- Perform a fixed number of merge operations

Iteration	BPE
0	_грёзоблаженствующий
1 000	_г,р,ё,зо,б,ла,же,н,ству,ющи, й,
3 000	_г, рё, зо, б, ла, жен, ству, ющий,
5 000	_г, рё, зо, б, ла, жен, ству, ющий,
10 000	_г, рё, зоб, ла, жен, ству, ющий,
25 000	_г, рё, зоб, ла, жен, ствующий,
50 000	
100 000	
200 000	

- Combining frequent character pairs
- Perform a fixed number of merge operations

Iteration	BPE
0	_грёзоблаженствующий
1 000	_г,р,ё,зо,б,ла,же,н,ству,ющи, й,
3 000	_г, рё, зо, б, ла, жен, ству, ющий,
5 000	_г, рё, зо, б, ла, жен, ству, ющий,
10 000	_г, рё, зоб, ла, жен, ству, ющий,
25 000	_г, рё, зоб, ла, жен, ствующий,
50 000	_г, рё, зоб, ла, жен, ствующий,
100 000	
200 000	

- Combining frequent character pairs
- Perform a fixed number of merge operations

Iteration	BPE
0	_грёзоблаженствующий
1 000	_г,р,ё,зо,б,ла,же,н,ству,ющи, й,
3 000	_г, рё, зо, б, ла, жен, ству, ющий,
5 000	_г, рё, зо, б, ла, жен, ству, ющий,
10 000	_г, рё, зоб, ла, жен, ству, ющий,
25 000	_г, рё, зоб, ла, жен, ствующий,
50 000	_г, рё, зоб, ла, жен, ствующий,
100 000	_грё , зоб , ла , жен , ствующий ,
200 000	

- Combining frequent character pairs
- Perform a fixed number of merge operations

Iteration	BPE
0	_грёзоблаженствующий
1 000	_г,р,ё,зо,б,ла,же,н,ству,ющи, й,
3 000	_г, рё, зо, б, ла, жен, ству, ющий,
5 000	_г, рё, зо, б, ла, жен, ству, ющий,
10 000	_г, рё, зоб, ла, жен, ству, ющий,
25 000	_г, рё, зоб, ла, жен, ствующий,
50 000	_г, рё, зоб, ла, жен, ствующий,
100 000	_грё , зоб , ла , жен , ствующий ,
200 000	_грё , зобла , жен , ствующий

Representation by symbols, subwords and words Symbols

Representation by symbols, subwords and words Symbols

Representation by symbols, subwords and words

Symbols

dictionary size

Representation by symbols, subwords and

words Symbols

dictionary size

Representation by symbols, subwords and

words

Symbols

dictionary size

Words

Representation by symbols, subwords and

words

Symbols

dictionary size

Words

Symbols, subwords or words?

Translation by symbols

- + better transliteration
- + better morphology understanding
- requires difficult computations

Translation by subwords

- + grammatically correct
- + supports richer dictionary
- + understand syntax better
- + performs better

Sentence embeddings

Sentence embeddings

- Small vector (~ 300 components)
- The dimension of the vector does not depend on the number of words in the sentence
- Each sentence corresponds to one vector
- The closer the sentences are in meaning, the closer the sentence vectors

Averaging word embeddings

sentence embedding

Averaging word embeddings

Advantages:

- quick
- pre-trained word embeddings can be used

Problems:

- words' impact is equal (can be solved by adding tf-idf weights)
- · all word embedding problems remain

Skip-thought model

model is based on encoder-decoder architecture

 Ryan Kiros, Yukun Zhu, Russ R. Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Torralba, Sanja Fidler. "Skip-thought vectors." NeurIPS, 2015.

Skip-thought model

- model is based on encoder-decoder architecture
- predict previous and next sentence based on the current

 Ryan Kiros, Yukun Zhu, Russ R. Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Torralba, Sanja Fidler. "Skip-thought vectors." NeurIPS, 2015.

Universal sentence encoder

- model is based on encoder-decoder architecture
- encoder consists of Transformer blocks
- Several decoders for:
- Semi-supervised training: predict the next sentence
- Supervised training: natural language inference, NLI

 Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John, Noah Constant . "Universal sentence encoder for English". EMNLP, 2018

Universal sentence encoder

Transfer learning:

- Suppose the encoder is already trained
- Let's add a new decoder 3 to determine the sentiment of the sentence
- Decoders 1 and 2 played a supporting role in training the encoder

Encoder Decoder 1 Decoder 2 New Decoder 3

 Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John, Noah Constant . "Universal sentence encoder for English". EMNLP, 2018

Universal sentence encoder

Transfer learning

- Decoder 3 is used to solve a practical problem
- As a rule, it gives an increase in quality compared to training from scratch.

 Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St John, Noah Constant . "Universal sentence encoder for English". EMNLP, 2018

BERT model

BERT model

 Appeared at the end of 2018 and made a real breakthrough, setting new records in most of the NLP tasks

- New paradigm in word processing: tuning a large pre-trained model for particular problems
- The pre-trained model already knows a lot about the language
- The use of pre-trained models opens up new perspectives: less data, higher quality indicators, less tuning time
- However, pre-training can take several weeks
- Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." NAACL-HLT, 2019

Transformer architecture

 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, Illia Polosukhin. "Attention is all you need." NeurIPS, 2017.

BERT

- model is based on encoder
- two configurations: base and large

BERT

- model is based on encoder
- two configurations: base and large

- Two types of tokens: subwords and special tokens
- [CLS] token is always at the first position

[CLS] Help Prince Mayuko

BERT

• Вектор токена [CLS] - векторное представление предложения

BERT

• Остальные токены - векторные представления подслов

Masked language model

Predict a token hidden by [MASK]

1. Masked language model

2. Next sentence prediction

Predict if one sentence follows another, the sentences are connected by the [sep] token

Input [CLS] the man went to the [MASK] store [SEP] he bought a gallon [MASK] milk [SEP]

Tag IsNext

[CLS] the man went to the [MASK] store [SEP] penguin [MASK] are flight ##less birds [SEP]

Tag NotNext

Input size: 512 Input Special tokens [SEP] dog likes ##ing [SEP] is cute he play Input Tokens E likes E play E_{dog} Eis E_{cute} E he E_{##ing} $E_{[CLS]}$ E_[SEP] E_[SEP] Segment E_B E_A E_A E_A E_A E_A E_{B} E_B E_{B} E_B E_6 Positions Εı E_2 E_3 E_4 E_5 E_{7} E₈ E_9 E_{10}

Subwords

Byte pair encoding, BPE

- We count the frequencies of the pairs of symbols
- We glue the most frequent pair of symbols and turn it into a new symbol
- We continue to repeat the operation a fixed number of times

 Benjamin Heinzerling, Michael Strube. "BPEmb: Tokenization-free Pre-trained Subword Embeddings in 275 Languages." LREC, 2018

Input

Input size: 512

General scheme

Text classification

(Optional) Tune language model

Text classification

 Add new fully connected layer, layer input - sentence embedding ([CLS] token embedding)

Text classification

Tune the model or several last layers

Sentence embeddings from BERT model

- [CLS] embedding at the last layer
- •[MEAN] word embeddings at the last layer
- [MAX] component-wise maximum of word embeddings at the last layer

Transformer models evaluation

General Natural Language Understanding, GLUE

- 10 tasks that require a deep understanding of the text
- Sentence classification
 - CoLA: evaluate grammatical correctness
 - SST-2: sentiment prediction
- Classification of a pair of sentences
 - MRPC, QQP, STS-B: find a paraphrase
 - MNLI, QNLI, RTE, WNLI: determine the logical connection between the premise and the conclusion
- Diagnostic test: a wide range of linguistic phenomena
- Comparison with the human evaluation
- Wang, Alex, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
 "Glue: A multi-task benchmark and analysis platform for natural language understanding." arXiv preprint arXiv:1804.07461 (2018).

SuperGLUE

8 tasks that require an even deeper understanding of the text

- Classification of a pair of sentences
 - BoolQ: determine the answer to a binary question by the relevant paragraph
 - CommitmentBank: determine if there is a logical connection between the user's text and the question
- Wang, Alex, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. "Superglue: A stickier benchmark for general-purpose language understanding systems." In Advances in Neural Information Processing Systems, pp. 3261-3275. 2019.

SuperGLUE

8 tasks that require an even deeper understanding of the text

- Classification of a pair of sentences
 - WiC: determine if a polysemantic word is used in the same sense in given contexts
 - COPA: choose a conclusion from two options for a given hypothesis

 Wang, Alex, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. "Superglue: A stickier benchmark for general-purpose language understanding systems." In Advances in Neural Information Processing Systems, pp. 3261-3275. 2019.

SuperGLUE

8 tasks that require an even deeper understanding of the text

- Reading comprehension
 - MultiRC, ReCoRD: paragraph and multiple choice question
- Intersection with GLUE: WNLI, RTE

 Wang, Alex, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. "Superglue: A stickier benchmark for general-purpose language understanding systems." In Advances in Neural Information Processing Systems, pp. 3261-3275. 2019.

Leaderbords

- Leaderboards GLUE, SuperGlue, DecaNLP allow to compare language models
- More parameters and data the language model is higher in the leaderboard
- Costs for speed, memory and resources are not taken into account
- A high rating of the language model does not mean good results in practice

