

Pertemuan 2

Taksonomi Pembelajaran Mesin

Dalam mempelajari teori machine learning maka diperlukan pemahaman tentang

- 1. Vektor dan Matrix
- 2. Operasi pada Vektor dan Matrix
- 3. Teori Probabilitas
- 4.Bayes Rule
- 5. Maksimum Likelihood

Vektor

Vektor adalah matriks yang hanya memiliki satu kolom saja atau hanya memiliki satu baris saja. Vektor dinotasikan dengan huruf kecil dan dicetak tebal. Penulisan vektor adalah sebagai berikut.

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

Vektor tersebut dapat ditulis juga dalam bentuk transpose vektor yaitu

$$\mathbf{x}' = \begin{pmatrix} x_1 & x_2 & \dots & x_n \end{pmatrix}$$

atau bisa juga ditulis dalam bentuk

$$\mathbf{x}' = (x_1, x_2, ..., x_n)$$

Berikut ini adalah beberapa buah contoh vektor.

$$\mathbf{a} = \begin{pmatrix} 5 \\ 6 \\ 6 \\ 9 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 8 \\ 1 \\ 9 \end{pmatrix} \qquad \mathbf{c} = \begin{pmatrix} 1 \\ 0 \\ 5 \\ 4 \\ 5 \end{pmatrix}$$

MATRIKS

Matriks adalah susunan angka-angka dalam bentuk bujur sangkar atau persegi panjang yang diapit oleh tanda kurung. Semua bilangan yang ada dalam matriks adalah bilangan real. Matriks dinotasikan dengan huruf kapital dan dicetak tebal.

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{np} \end{pmatrix}$$

Matriks **A** di atas memiliki n baris dan p kolom. Matriks **A** biasa disebut juga dengan matriks yang berukuran $n \times p$. Notasi a_{ij} dalam matriks menunjukkan elemen matriks baris ke-i dan kolom ke-j.

Di bawah ini adalah beberapa buah contoh matriks.

$$\mathbf{B} = \begin{pmatrix} 6 & 5 & 4 & 9 \\ 3 & 7 & 3 & 5 \\ 4 & 4 & 6 & 1 \end{pmatrix} \quad \mathbf{C} = \begin{pmatrix} 3 & 4 & 8 \\ 7 & 6 & 5 \\ 4 & 6 & 4 \end{pmatrix} \quad \mathbf{D} = \begin{pmatrix} 4 & 6 & 4 \\ 8 & 4 & 6 \\ 5 & 3 & 5 \\ 8 & 5 & 1 \end{pmatrix}$$

Matriks **B** merupakan matriks berukuran 3×4 , matriks **C** berukuran 3×3 dan matriks **D** berukuran 4×3 .

Taksonomi Pembelajaran Mesin

Taksonomi diambil dari Bahasa Yunani, *tassein* yang berarti mengelompokkan dan *nomos* yang berarti aturan.

Sehingga taksonomi dapat diartikan sebagai pengelompokkan suatu hal berdasarkan aturan tertentu.

Dalam konteks pembelajaran mesin, pembelajaran mesin dapat dikelompokan menjadi 2 kelompok berdasarkan cara atau Teknik pembelajarannya, yaitu:

- 1. Pembelajaran tanpa supervisi (unsupervised learning)
- 2. Pembelajaran dengan supervisi (supervised learning)

Pembelajaran tanpa Supervisi (unsupervised learning)

- Sebuah pendekatan dimana tidak terdapat data latih, dan tidak memiliki atribut target
- Tujuan dari pendekatan ini adalah mengelompokkan suatu data kedalam beberapa kelompok baru
- Algoritma digunakan untuk mencari pola dari semua atribut
- Kumpulan data atau dataset yang digunakan tidak memiliki atribut target
- Clustering merupakan contoh dari unsupervised learning

Pembelajaran tanpa Supervisi (unsupervised learning)

Dataset tanpa target

Attribute/Feature

	Sepal (cm)	Sepal Width (cm)	Petal Length (cm)	Petal Width (cm)				
1	5.1	3.5	1.4	0.2				
2	4.9	3.0	1.4	0.2				
3	4.7	3.2	1.3	0.2				
4	4.6	3.1	1.5	0.2				
5	5.0	3.6	1.4	0.2				
51	7.0	3.2	4.7	1.4				
52	6.4	3.2	4.5	1.5				
53	6.9	3.1	4.9	1.5				
54	5.5	2.3	4.0	1.3				
55	6.5	2.8	4.6	1.5				
101	6.3	3.3	6.0	2.5				
102	5.8	2.7	5.1	1.9				
103	7.1	3.0	5.9	2.1				

Algoritma unsupervised learning

Salah satu Teknik *unsupervised learning* adalah *clustering*. *Clustering* dapat dilakukan menggunakan beberapa algoritma diantaranya:

- 1. k-means
- 2. K-medoids
- 3. Self-organizing map
- 4. Fuzzy c means

Pembelajaran dengan Supervisi (supervised learning)

- Sebuah pendekatan dimana sudah terdapat data yang dilatih, dan terdapat atribut target (nilai yang akan diprediksi)
- Tujuan dari pendekatan ini adalah mengelompokkan suatu data kedalam kelompok data yang sudah ada
- Kumpulan data atau dataset yang digunakan sudah memiliki atribut target
- Klasifikasi dan Regresi (Prediksi dan Estimasi) merupakan contoh dari supervised learning

Pembelajaran dengan Supervisi (supervised learning)

Dataset dengan target

Attribute/Feature

Class/Label/Target

	Sepal ¿	Sepal Width (cm)	Petals Length (cm)	Petal Width (cm)	Туре	
1	5.1	3.5	1.4	0.2	Iris setosa	
2	4.9	3.0	1.4	0.2	Iris setosa	
3	4.7	3.2	1.3	0.2	Iris setosa	
4	4.6	3.1	1.5	0.2	Iris setosa	
5	5.0	3.6	1.4	0.2	Iris setosa	
					F.	
51	7.0	3.2	4.7	1.4	Iris versicolor	
52	6.4	3.2	4.5	1.5	Iris versicolor	
53	6.9	3.1	4.9	1.5	Iris versicolor	
54	5.5	2.3	4.0	1.3	Iris versicolor	
55	6.5	2.8	4.6	1.5	Iris versicolor	
101	6.3	3.3	6.0	2.5	Iris virginica	
102	5.8	2.7	5.1	1.9	Iris virginica	
103	7.1	3.0	5.9	2.1	Iris virginica	

Algoritma supervised learning

Salah satu Teknik *supervised learning* adalah *estimasi, prediksi* dan *klasifikasi*. Dapat dilakukan menggunakan beberapa algoritma diantaranya:

- 1. Estimasi
 - Linear Regression, Neural Network dan Support Vector Machine
- 2. Prediksi
 - Linear Regression, Neural Network dan Support Vector Machine
- 3. Klasifikasi
 - Naïve Bayes, k-nearest neighbours, decision tree, neural network dan support vector machine