Lab10: Reducción de N-reinas a SAT

1. Explicación de la reducción

El problema de colocar n reinas en un tablero de ajedrez de $n \times n$, de forma que no se coman unas a otras, es un problema difícil. Por ejemplo, una solución para 4-reinas es la que se indica en el tablero de abajo.

Podemos reducir este problema a encontrar una asignación que haga cierta una determinada fórmula. A continuación explicamos cómo se transforma la instancia n-reinas en una instancia del problema SAT. Haremos todo el desarrollo para el caso 4-reinas.

La fórmula booleana φ_n en forma normal conjuntiva está formada por n^2 variables. En nuestro ejemplo son 4^2 variables.

$x_{1,1}$	$x_{1,2}$	$x_{1,3}$	$x_{1,4}$
$x_{2,1}$	$x_{2,2}$	$x_{2,3}$	$x_{2,4}$
$x_{3,1}$	$x_{3,2}$	$x_{3,3}$	$x_{3,4}$
$x_{4,1}$	$x_{4,2}$	$x_{4,3}$	$x_{4,4}$

En general, una variable $x_{i,j}$ con $1 \le i, j \le n$ se evalúa a 1 si, y sólo si, la posición (i,j) en el tablero está ocupada por una reina.

La fórmula φ_n está formada por las siguientes cláusulas:

(a) Un conjunto de cláusulas que expresan que en cada fila i debe haber una posición j ocupada por una reina y sólo una posición.

En una fila hay una reina:

$$(x_{i,1} \vee x_{i,2} \vee \cdots \vee x_{i,n-1} \vee x_{i,n})$$
 para cada i tal que $1 \leq i \leq n$

En nuestro ejemplo:

$$(x_{1,1} \lor x_{1,2} \lor x_{1,3} \lor x_{1,4}) \land (x_{2,1} \lor x_{2,2} \lor x_{2,3} \lor x_{2,4}) \land (x_{3,1} \lor x_{3,2} \lor x_{3,3} \lor x_{3,4}) \land (x_{4,1} \lor x_{4,2} \lor x_{4,3} \lor x_{4,4})$$

Una fila no puede albergar dos reinas:

$$\neg (x_{i,j} \land x_{i,k})$$
 para cada $1 \le i, j, k \le n$ con $j < k$

Para que la codificación sea una CNF hay que transformar las fórmulas anteriores a sus correspondientes CNFs:

$$(\neg x_{i,j} \lor \neg x_{i,k})$$
 para cada $1 \le i, j, k \le n$ con $j < k$

En nuestro ejemplo, para la fila 1:

$$(\neg x_{1,1} \lor \neg x_{1,2}) \land (\neg x_{1,1} \lor \neg x_{1,3}) \land (\neg x_{1,1} \lor \neg x_{1,4}) \land (\neg x_{1,2} \lor \neg x_{1,3}) \land (\neg x_{1,2} \lor \neg x_{1,4}) \land (\neg x_{1,3} \lor \neg x_{1,4})$$

Para la fila 4:

$$(\neg x_{4,1} \lor \neg x_{4,2}) \land (\neg x_{4,1} \lor \neg x_{4,3}) \land (\neg x_{4,1} \lor \neg x_{4,4}) \land (\neg x_{4,2} \lor \neg x_{4,3}) \land (\neg x_{4,2} \lor \neg x_{4,4}) \land (\neg x_{4,3} \lor \neg x_{4,4})$$

(b) Un conjunto de cláusulas que expresan que en cada columna j debe haber una posición i y sólo una ocupada por una reina.

En una columna hay una reina:

$$(x_{1,j} \vee x_{2,j} \vee \cdots \vee x_{n-1,j} \vee x_{n,j})$$
 para cada j tal que $1 \leq j \leq n$

En nuestro ejemplo:

$$(x_{1,1} \lor x_{2,1} \lor x_{3,1} \lor x_{4,1}) \land (x_{1,2} \lor x_{2,2} \lor x_{3,2} \lor x_{4,2}) \land (x_{1,3} \lor x_{2,3} \lor x_{3,3} \lor x_{4,3}) \land (x_{1,4} \lor x_{2,4} \lor x_{3,4} \lor x_{4,4})$$

Una columna no puede albergar dos reinas:

$$\neg (x_{i,j} \land x_{k,j})$$
 para cada $1 \leq j, i, k \leq n$ con $i < k$

Transformando las fórmulas anteriores a sus correspondientes CNFs:

$$(\neg x_{i,j} \lor \neg x_{k,j})$$
 para cada $1 \le j, i, k \le n$ con $i < k$

En nuestro ejemplo, para cada columna j:

$$(\neg x_{1,j} \lor \neg x_{2,j}) \land (\neg x_{1,j} \lor \neg x_{3,j}) \land (\neg x_{1,j} \lor \neg x_{4,j}) \land (\neg x_{2,j} \lor \neg x_{3,j}) \land (\neg x_{2,j} \lor \neg x_{4,j}) \land (\neg x_{3,j} \lor \neg x_{4,j})$$

(c) En las diagonales no puede haber dos reinas.

Hay dos tipos de diagonales: Las diagonales descendentes son las que van de una casilla a la casilla de la siguiente columna y siguiente fila. Las diagonales ascendentes son las que van de una casilla a la siguiente columna pero en una fila anterior.

Dos posiciones (i, j) e (i', j') están en una diagonal descendente siempre y cuando i - j = i' - j'. Dos posiciones (i, j) e (i', j') están en una diagonal ascendente siempre y cuando i + j = i' + j'.

no puede haber dos reinas en las diagonales descendentes:

$$(\neg x_{i,j} \lor \neg x_{i',j'})$$
 para cada $1 \le i,j,i',j' \le n$ con $i < i'$ y además $i - j = i' - j'$

En nuestro ejemplo las diagonales descendentes son:

$$[x_{1,3}, x_{2,4}], [x_{1,2}, x_{2,3}, x_{3,4}], [x_{1,1}, x_{2,2}, x_{3,3}, x_{4,4}], [x_{2,1}, x_{3,2}, x_{4,3}]$$
 y $[x_{3,1}, x_{4,2}]$

La cláusulas correspondientes son:

$$\begin{array}{c} (\neg x_{1,3} \vee \neg x_{2,4}) \wedge (\neg x_{1,2} \vee \neg x_{2,3}) \wedge (\neg x_{1,2} \vee \neg x_{3,4}) \wedge (\neg x_{2,3} \vee \neg x_{3,4}) \wedge \\ (\neg x_{1,1} \vee \neg x_{2,2}) \wedge (\neg x_{1,1} \vee \vee \neg x_{3,3}) \wedge (\neg x_{1,1} \vee \vee \neg x_{4,4}) \wedge \\ (\neg x_{2,2} \vee \vee \neg x_{3,3}) \wedge (\neg x_{2,2} \vee \vee \neg x_{4,4}) \wedge (\neg x_{3,3} \vee \vee \neg x_{4,4}) \wedge \\ (\neg x_{2,1} \vee \neg x_{3,2}) \wedge (\neg x_{2,1} \vee \vee \neg x_{4,3}) \wedge (\neg x_{3,2} \vee \neg x_{4,3}) \wedge (\neg x_{3,1} \vee \neg x_{4,2}) \end{array}$$

no puede haber dos reinas en las diagonales ascendentes:

$$(\neg x_{i,j} \lor \neg x_{i',j'})$$
 para cada $1 \le i,j,i',j' \le n$ con $i > i'$ y además $i+j=i'+j'$

Las diagonales ascendentes son:

$$[x_{2,1}, x_{1,2}], [x_{3,1}, x_{2,2}, x_{1,3}], [x_{4,1}, x_{3,2}, x_{2,3}, x_{1,4}], [x_{4,2}, x_{3,3}, x_{2,4}] y [x_{4,3}, x_{3,4}]$$

La cláusulas correspondientes son:

$$\begin{array}{c} (\neg x_{2,1} \vee \neg x_{1,2}) \wedge (\neg x_{3,1} \vee \neg x_{2,2}) \wedge (\neg x_{3,1} \vee \neg x_{1,3}) \wedge (\neg x_{2,2} \vee \neg x_{1,3}) \wedge \\ (\neg x_{4,1} \vee \neg x_{3,2}) \wedge (\neg x_{4,1} \vee \vee \neg x_{2,3}) \wedge (\neg x_{4,1} \vee \vee \neg x_{1,4}) \wedge \\ (\neg x_{3,2} \vee \vee \neg x_{2,3}) \wedge (\neg x_{3,2} \vee \vee \neg x_{1,4}) \wedge (\neg x_{2,3} \vee \vee \neg x_{1,4}) \wedge \\ (\neg x_{4,2} \vee \neg x_{3,3}) \wedge (\neg x_{4,2} \vee \vee \neg x_{2,4}) \wedge (\neg x_{3,3} \vee \neg x_{2,4}) \wedge (\neg x_{4,3} \vee \neg x_{3,4}) \end{array}$$

Esta es la construcción de φ_n . Observa que a partir de una interpretación que satisface la fórmula, se pueden colocar la n reinas en el tablero. Si la variable $x_{i,j}$ tiene asignado el valor 1, en la posición (i,j) habrá una reina.

2. Primera tarea a realizar

Debes implementar la función reduce_nqueens_to_SAT que dado un n devuelve la lista de cláusulas que codifica el problema de las n reinas. Esto es, φ_n , pero en formato DIMACS (para minisat). Para ello abre el fichero nqueensToSat.py

ATENCIÓN:

La lista que devuelve tu función debe estar en formato DIMACS. Por tanto la primera sublista debe ser: ["p", "cnf", num_vars, num_clauses]

donde num_vars es el número de variables de tu fórmula y num_clauses el número de cláusulas. Además las sublistas siguientes tienen que acabar con un 0 y estar formadas por literales que son números positivos o negativos.

Por tanto es necesario asociar a cada variable $x_{i,j}$ un único número $cod(x_{i,j})$. Una codificación sencilla puede ser:

$$cod(x_{i,j}) \equiv (i-1)n+j$$

donde n es el número de reinas a colocar.

En nuestro ejemplo:

$x_{1,1}$	1	$x_{1,2}$	2	$x_{1,3}$	3	$x_{1,4}$	4
$x_{2,1}$	5	$x_{2,2}$	6	$x_{2,3}$	7	$x_{2,4}$	8
$x_{3,1}$	9	$x_{3,2}$	10	$x_{3,3}$	11	$x_{3,4}$	12
$x_{4,1}$	13	$x_{4,2}$	14	$x_{4,3}$	15	$x_{4,4}$	16

3. Segunda tarea a realizar

Hay preparados unos juegos de prueba para comparar tiempos de ejecución de varios programas que solucionan el problema de la n reinas:

- Una solución hecha con bactracking nqueens_backtracking.py.
- La solución dada por minisat a partir de tu codificación.
- La solución dada por tu sat_solver a partir de tu codificación. Recuerda que has hecho un 3sat_solver para solucionar 3SAT. Las instancias para el problema de las n reinas contienen cláusulas con más de tres literares. Por lo tanto, tienes que actualizar tu 3sat_solver para que sea un nsat_solver.

Cambia tu función solve_3SAT por otra que admita cláusulas con cualquier número de literales. Llama a esta nueva función solve_nSAT. Nombra el fichero que contiene solve_nSAT como nsat_solver.py y cópialo en la carpeta Code for Students del laboratorio 10.

Ahora ya puedes ejecutar los juegos de prueba. Ejecútalos uno a uno. Cada juego genera un fórmula aleatoria con un determinado número de variables y llama a la función reduce_nqueens_to_SAT que devuelve tu codificación φ_n . A continuación llama a minisat con φ_n . Después llama a la función nqueens_backtracking.py y por último llama a tu solve_nSAT. Para cada llamada muestra la solución encontrada en la ventana plots.

Mira los tiempos de cada llamada en la carpeta myresults donde se habrá creado un fichero n_queens_times.csv