# **UDapter:** Language Adaptation for Truly Universal Dependency Parsing

Ahmet Üstün, Arianna Bisazza, Gosse Bouma, Gertjan van Noord



#### Curse of Multilinguality: Transfer-Interference Trade-Off



#### Our solution:

- Learn to adapt parameters of multilingual model for each language instead of training separate modules
- Increase per-language capacity by adapters
- Conditioning the adaptation to language typology features (zero-shot transfer)



Novel multilingual adaptation:

- Combining language-specific and multilingual adaptation with contextul parameter generator approach based on mBERT
- Learning adapters via language embeddings
- Learning language embeddings from typological features



- \* Language-typology features are obtained from URIEL database for each language.
- \* All syntactic, phonological and inventory features are used (289 features in total).



- \* Language embedding (L) is learned from typological feature vector (F) for each language
- \* A MLP is trained with the full model that is used to generate language embeddings for zero-shot languages in test time



- \* Parameter Generator Network takes lang. embedding (L) and generates model parameters from shared parameter table.
- \* Parameter generation is defined as **simple linear transform** (dot product)



<sup>\*</sup> Only biaffine attention and adapters' parameters are generated/modified instead of full model by Parameter Generator



- \* **Adapters** are small bottleneck layers that are injected into BERT transformer layers.
- \* When fine-tuning with adapters, original model's weights are not updated.



<sup>\*</sup> Adapters only includes down- and up-projections with nonlinearity to fit in dimensionality of the pretrained model.



<sup>\*</sup> Adapters only includes down- and up-projections with nonlinearity to fit in dimensionality of the pretrained model.

### Results on High-Resource Languages



<sup>\*</sup> **Training:** 13 <u>typologically diverse</u> (language-family, word-order, script) high-resource languages

### Results on High-Resource Languages



<sup>\*</sup> **Training:** 13 <u>typologically diverse</u> (language-family, word-order, script) high-resource languages

#### Results on Low-Resource Languages



<sup>\*</sup> **Zero-shot:** 30 genuinely low-resource languages from different language families

#### Impact of Language Typology Features



#### Lang. Embeddings <u>with or w/o</u> Typology Features:

- Training languages can have good adaptation w/o typology features
- For zero-shot transfer,
   typological features are crucial
   for UDapter.

# Check the paper for more analysis

https://ahmetustun.github.io/udapter

Paper, Code and Slides

#### **Experiments and Data**

| Language | Code | Treebank  | Family                | Word Order | Train | Test<br>680 |  |
|----------|------|-----------|-----------------------|------------|-------|-------------|--|
| Arabic   | ar   | PADT      | Afro-Asiatic, Semitic | VSO        | 6.1k  |             |  |
| Basque   | eu   | BDT       | Basque                | SOV        | 5.4k  | 1799        |  |
| Chinese  | zh   | GSD       | Sino-Tibetan          | SVO        | 4.0k  | 500         |  |
| English  | en   | EWT       | IE, Germanic          | SVO        | 12.5k | 2077        |  |
| Finnish  | fi   | TDT       | Uralic, Finnic        | SVO        | 12.2k | 1555        |  |
| Hebrew   | he   | HTB       | Afro-Asiatic, Semitic | SVO        | 5.2k  | 491         |  |
| Hindi    | hi   | HDTB      | IE, Indic             | SOV        | 13.3k | 1684        |  |
| Italian  | it   | ISDT      | IE, Romance           | SVO        | 13.1k | 482         |  |
| Japanese | ja   | GSD       | Japanese              | SOV        | 7.1k  | 551         |  |
| Korean   | ko   | GSD       | Korean                | SOV        | 4.4k  | 989         |  |
| Russian  | ru   | SynTagRus | IE, Slavic            | SVO        | 15k*  | 6491        |  |
| Swedish  | sv   | Talbanken | IE, Germanic          | SVO        | 4.3k  | 1219        |  |
| Turkish  | tr   | IMST      | Turkic, Southwestern  | SOV        | 3.7k  | 975         |  |

- **Training:** 13 <u>typologically diverse</u>
  (language-family, word-order, script)
  high-resource languages
- Zero-shot: 30 genuinely low-resource languages from different language families

| Language      | Code | Treebank(s)    | Family                           | Test |
|---------------|------|----------------|----------------------------------|------|
| Akkadian      | akk  | PISANDUB       | Afro-Asiatic, Semitic            | 1074 |
| Amharic       | am   | ATT            | Afro-Asiatic, Semitic            | 101  |
| Assyrian      | aii  | AS             | Afro-Asiatic, Semitic            | 57   |
| Bambara       | bm   | CRB            | Mande                            | 1026 |
| Belarusian    | be   | HSE            | IE, Slavic                       | 253  |
| Bhojpuri      | bho  | ВНТВ           | IE, Indic                        | 254  |
| Breton        | br   | KEB            | IE, Celtic                       | 888  |
| Buryat        | bxr  | BDT            | Mongolic                         | 908  |
| Cantonese     | yue  | HK             | Sino-Tibetan                     | 1004 |
| Erzya         | myv  | JR             | Uralic, Mordvin                  | 1550 |
| Faroese       | fo   | OFT            | IE, Germanic                     | 1207 |
| Karelian      | krl  | KKPP           | Uralic, Finnic                   | 228  |
| Kazakh        | kk   | KTB            | Turkic, Northwestern             | 1047 |
| Komi Permyak  | koi  | UH             | Uralic, Permic                   | 49   |
| Komi Zyrian   | kpv  | LATTICE, IKDP  | Uralic, Permic                   | 210  |
| Kurmanji      | kmr  | MG             | IE, Iranian                      | 734  |
| Livvi         | olo  | KKPP           | Uralic, Finnic                   | 106  |
| Marathi       | mr   | UFAL           | IE, Indic                        | 47   |
| Mbya Guarani  | gun  | THOMAS, DOOLEY | Tupian                           | 98   |
| Moksha        | mdf  | JR             | Uralic, Mordvin                  | 21   |
| Naija         | pcm  | NSC            | Creole                           | 948  |
| Sanskrit      | sa   | UFAL           | IE, Indic                        | 230  |
| Swiss G.      | gsw  | UZH            | IE, Germanic                     | 100  |
| Tagalog       | tl   | TRG            | Austronesian, Central Philippine | 55   |
| Tamil         | ta   | TTB            | Dravidian, Southern              | 120  |
| Telugu        | te   | MTG            | Dravidian, South Central         | 146  |
| Upper Sorbian | hsb  | UFAL           | IE, Slavic                       | 623  |
| Warlpiri      | wbp  | UFAL           | Pama-Nyungan                     | 54   |
| Welsh         | cy   | CCG            | IE, Celtic                       | 956  |
| Yoruba        | yo   | YTB            | Niger-Congo, Defoid              | 100  |

## How well the model represent languages?

|                                              | ar                          | en                          | eu     | fi                   | he                          | hi                   | it                          | ja                          | ko                          | ru   | sv                          | tr                          | zh   | hr-avg                      | lr-avg                      |
|----------------------------------------------|-----------------------------|-----------------------------|--------|----------------------|-----------------------------|----------------------|-----------------------------|-----------------------------|-----------------------------|------|-----------------------------|-----------------------------|------|-----------------------------|-----------------------------|
| Previous work:                               |                             |                             |        |                      |                             |                      |                             |                             |                             |      |                             |                             |      |                             |                             |
| uuparser-bert [1]<br>udpipe [2]<br>udify [3] | 81.8<br>82.9<br>82.9        | 87.6<br>87.0<br>88.5        | 82.9   | 83.9<br>87.5<br>82.1 | 85.9<br>86.9<br>88.1        | 90.8<br>91.8<br>91.5 | 91.7<br>91.5<br><b>93.7</b> | 92.1<br><b>93.7</b><br>92.1 | 84.2<br>84.2<br>74.3        | -    | 86.9<br>86.6<br>89.1        | 64.9<br>67.6<br>67.4        | 00.0 | 84.9<br>85.8<br>85.2        | 34.1                        |
| Monolingually tr                             | ained                       | (one                        | nodel  | per la               | nguag                       | re):                 |                             |                             |                             |      |                             |                             |      |                             |                             |
| mono-udify                                   | 83.5                        | 89.4                        | 81.3   | 87.3                 | 87.9                        | 91.1                 | 93.1                        | 92.5                        | 84.2                        | 91.9 | 88.0                        | 66.0                        | 82.4 | 86.0                        | -                           |
| Multilingually tr                            | ained                       | (one n                      | nodelj | for all              | langu                       | ages).               |                             |                             |                             |      |                             |                             |      |                             |                             |
| multi-udify<br>adapter-only<br>udapter       | 80.1<br>82.8<br><b>84.4</b> | 88.5<br>88.3<br><b>89.7</b> | 80.2   | 86.9                 | 84.4<br>86.2<br><b>88.8</b> | 90.6                 | 92.0<br>93.1<br>93.5        | 90.0<br>91.6<br>92.8        | 78.0<br>81.3<br><b>85.9</b> |      | 86.2<br>88.4<br><b>90.3</b> | 62.9<br>66.0<br><b>69.6</b> | 79.4 | 83.0<br>85.0<br><b>87.3</b> | 35.3<br>32.9<br><b>36.5</b> |

Table 1: Labelled attachment scores (LAS) on high-resource languages for baselines and UDapter. Last two columns show average LAS of 13 high-resource ('hr-avg') and 30 low-resource ('lr-avg') languages respectively. Previous work results are reported from (Kulmizev et al., 2019) [1] and (Kondratyuk and Straka, 2019a) [2,3].

#### Results on Low-Resource Languages

|               | be   | br*  | bxr* | cy   | fo*  | gsw* | hsb* | kk   | koi* | krl* | mdf* | mr   | olo* | pcm* | sa*  | tl   | yo*  | yue* | avg  |
|---------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| multi-udify   | 80.1 | 60.5 | 26.1 | 53.6 | 68.6 | 43.6 | 53.2 | 61.9 | 20.8 | 49.2 | 24.8 | 46.4 | 42.1 | 36.1 | 19.4 | 62.7 | 41.2 | 30.5 | 45.2 |
| udapter-proxy | 69.9 | _    | _    | -    | 64.1 | 23.7 | 44.4 | 45.1 | -    | 45.6 | -    | 29.6 | 41.1 | _    | 15.1 | _    | _    | 24.5 | _    |
| udapter       | 79.3 | 58.5 | 28.9 | 54.4 | 69.2 | 45.5 | 54.2 | 60.7 | 23.1 | 48.4 | 26.6 | 44.4 | 41.7 | 36.7 | 22.2 | 69.5 | 42.7 | 32.8 | 46.2 |

Table 2: Labelled attachment scores (LAS) on a subset of 30 low-resource languages. Languages with '\*' are not included in mBERT training corpus. (Results for all low-resource languages, together with the chosen proxy, are given in Appendix B.)

<sup>\*</sup> **UDapter-Proxy** is trained without typological features (w/ language one-hot encodings), a language from the same family in the training set is used as proxy for LR languages.

#### Difference on High-Resource Languages



#### How well the model represent languages?



#### Impact of Language Typology Features





#### Impact of Different UDapter Components



#### Parameter Cost for Models

| Parameter Cost                 |
|--------------------------------|
| 191M                           |
| 9.4M                           |
| 7.8 <b>M</b>                   |
| x32 (Regardless of the #Langs) |
| x13                            |
|                                |

<sup>\*</sup> Platanios et al. (2018) also suggest to apply parameter grouping, which allows to learn separate low-rank projections of language embeddings (with lower dimensions) for the adapters, the biaffine parameters groups.