

AFRL-RW-EG-TP-2008-7408

POSITRONS, QUANTUM CRYSTALS, AND NANOPARTICLES (OH MY!) – QUANTUM MECHANICS IN ACTION AT THE USAF (BRIEFING CHARTS)

C. Michael Lindsay
Air Force Research Laboratory
Munitions Directorate
AFRL/RWME
Eglin AFB, FL 32542-6810

APRIL 2008

BRIEFING CHARTS

This briefing was presented at the Department of Chemistry Seminar, University of Akron, in Ohio on 12 March 2008. The author is a U.S. Government employee working within the scope of his/her position. Therefore, this is a work of the U.S. Government and is not subject to copyright in the United States.

This paper is published in the interest of the scientific and technical information exchange. Publication of this paper does not constitute approval or disapproval of the ideas or findings.

DISTRIBUTION A: Approved for public release; distribution unlimited.
Approval Confirmation # 96 ABW/PA 03-10-08-127; dated 10 March 2008.

AIR FORCE RESEARCH LABORATORY, MUNITIONS DIRECTORATE

■ Air Force Material Command ■ United Air States Force ■ Eglin Air Force Base

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)		
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER		
		5b. GRANT NUMBER		
		5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)		5d. PROJECT NUMBER		
		5e. TASK NUMBER		
		5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)	
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT				
13. SUPPLEMENTARY NOTES				
14. ABSTRACT				
15. SUBJECT TERMS				
16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
a. REPORT	b. ABSTRACT	c. THIS PAGE		19b. TELEPHONE NUMBER (Include area code)

Positrons, Quantum Crystals, and Nanoparticles (Oh My!) - Quantum Mechanics in action at the USAF

C. Michael Lindsay
Energetic Materials Branch
Air Force Research Laboratory

DISTRIBUTION A: Approved for public release;
distribution unlimited. ABW/PA 03-10-08-127

Predicting Future Technologies

- “Nothing is less predictable than the development of an active scientific field.”
- Charles Francis Richter (1980)
- “Trying to predict the future is like trying to drive down a country road at night with no lights while looking out the back window.”
- Peter Drucker

Case 1: Quantum Mechanics of Atoms (1937)

Isidor Isaac Rabi

Phys. Rev. 55, 1176 - 1181 (1939)

Energy Level Diagram

^{133}Cs

The first method for accurately measuring hyperfine frequencies by molecular beam resonance was developed by I.I. Rabi and his associates in 1937 at Columbia University

Hyperfine structure of Cesium-133

- 9.192 631 770 GHz (Cs-133 Hyperfine Beat)

Precision of ~ 1 part in 10^{12} !

Enabling Technology - GPS!

- 20,000 km - 300,000 km per second
- Four satellites required to pinpoint 3-D location
- Each of the 24 GPS satellites holds four atomic clocks, which every day get an accurate time transfusion from the Air Force, which "borrows" time from the United States Naval Observatory.
- Requires 1 part in 10^{12} temporal precision in order to predict position within 1 meter

*(I. I. Rabi won the Nobel Prize in Physics 1944
N.F. Ramsey won the Nobel Prize in Physics 1989)*

LEAD I DISCOVER I DEVELOP I DELIVER

Case 2: Quantum Mechanics of Molecules (1953)

Charles Townes

- Research stimulated by DoD's attempts at 1 1/4 cm RADAR

The Ammonia MASER

Scanned at the American Institute of Physics

Description: L-R: C.H. Townes, J. P. Gordon, and T. C. Wang. Wang stands next to the first ammonia-beam maser. The second ammonia-beam maser is in front center with side removed so that internal structure can be seen. Columbia University.

FIG. 1. Simplified diagram of the essential parts of the maser.

Gordon, Zeiger, and Townes, Nature 318 162 (1985)

Approved for Public Release; Distribution Unlimited. ABW/PA 03-10-08-127

Extend MASER technique to IR and Visible

- Schawlow (Bell Labs) and Townes (consulting with Bell) realized that extending infrared or visible would be an even more powerful tool for spectroscopy.
- In 1957-58 they worked out the details on extending the MASER to the visible and applied for a patent. They were awarded a patent in 1960 and that same year Theodore Maiman (Hughes Aircraft Company) built a pulsed Ruby Laser.

Charlie Townes – Nobel Prize in Physics – 1964 (Maser/laser amplifier)
Arthur Schawlow – Nobel Prize in Physics – 1981 (develop. of laser)

Military Applications of Lasers

- Laser guided munitions
- Laser machining
- Laser sights
- Airborne laser
- Laser ranging
- ...

Case 3: Unidentified Spectra in Interstellar Clouds

Richard Smalley

Harry Kroto

Robert Curl

Proposed that carbon clusters were a source of interstellar spectral features

Carbon Cluster Apparatus

Diffuse Interstellar Bands

Unidentified Infrared Bands

C₆₀: Buckminsterfullerene

Figure 6. Time-of-flight mass spectrum carbon clusters produced by laser vaporization of graphite under the optimum conditions for observation of a dominant C₆₀ cluster signal.³ Note also the prominence of C₇₀.

MOLECULAR PERFECTION: THE FULLERENE IDEAL

1. The strongest fiber that will be ever made
2. Electrical Conductivity of Copper or Silicon
3. Thermal Conductivity of Diamond
4. The Chemistry of Carbon
5. The size and perfection of DNA

(Near-Future) Applications of Carbon Nanotubes

- Fuel storage (H_2 , CH_4 , etc...)
- Structural composite materials
- Ultra-high conductivity electronics
- Ultra efficient field induced electron emitters
- Conductive plastics

More Serendipitous Discoveries...

Chemistry

- **Polyethylene** by Hans von Pechmann, who prepared it by accident in 1898 while heating diazomethane
- **Teflon**, by Roy J. Plunkett, who was trying to develop a new gas for refrigeration and got a slick substance instead, which was used first for lubrication of machine parts
- **Cyanoacrilate** glue(a.k.a. Superglue) was accidentally twice discovered by Dr. Harry Coover, first when he was developing a clear plastic for gun sights and later, when he was trying to develop a heat-resistant polymer for jet canopies.
- **Aspartame** (a.k.a. NutraSweet) was also accidentally ingested by G.D. Searle chemist James Schlatter, who was trying to develop a test for an anti-ulcer drug.

Physics

- **Radioactivity**, by Henri Becquerel. While trying to investigate phosphorescent materials using photographic plates, he stumbled upon uranium.
- **X rays**, by Wilhelm Roentgen. Interested in investigating cathodic ray tubes, he noted that some fluorescent papers in his lab were illuminated at a distance
- **Electromagnetism**, by Hans Christian Oersted. While he was setting up his materials for a lecture, he noticed a compass needle deflecting from magnetic north when the electric current from the battery he was using was switched on and off.
- The **thermoelectric effect** was discovered accidentally by Estonian physicist Thomas Seebeck, in 1821, who found that a voltage developed between the two ends of a metal bar when it was submitted to a difference of temperature.

Technology

- Discovery of the principle behind **inkjet printers** by a Canon engineer. After putting his hot soldering iron by accident on his pen, ink was ejected from the pen's point a few moments later.
- The **microwave oven** was invented by Percy Spencer while testing a magnetron for radar sets at Raytheon, he noticed that a peanut candy bar in his pocket had melted when exposed to radar waves.
- **Post-it Notes** by Spencer Silver and Arthur Fry. They tried to develop a new glue at 3M, but it would not dry. So they devised a new use for it.

Air Force Research Laboratory

- Eglin AFB / Munitions Directorate/ Energetic Materials Branch

LEAD I DISCOVER I DEVELOP I DELIVER

AFRL/RWMER – LASSEM Lab

Laboratory for Applied Spectroscopy of Energetic Materials

New Basic and Applied
Research Team at Eglin
AFB (~ 4 years old)

Team Members (but
expanding)

- PI's (Physical Chemists)
- NRC Post docs
(Materials and Physical chemists)
- Military Officers (A-Chemist, P-Chemist and a Physicist)
- Technicians
- (3-4 Open Postdoc Positions)

AFRL/RWMER – LASSEM Lab

Laboratory for Applied Spectroscopy of Energetic Materials

Research Areas

- Explosives
- Reactive composite materials
- Thermite and inter-metallic materials
- Energetic thin films
- Cryogenic matrices
- Energetic core-shell nanoparticles
- Positron/plasma/positronium storage

Diagnostics

- Vis, FIR, MIR, NIR spectroscopy
- γ -ray spectroscopy
- Positron spectroscopy
- Matrix isolation spectroscopy
- TOF/QMS – mass spectrometry
- XRF/XRD
- SEM, optical microscopy
- Radiographic imaging

Cryogenic Matrices – Basic Research Interests

- Ultra-low temperature chemistry – synthesize systems under different conditions than ambient
- Energy dissipation – stabilize pre-reactive systems
- Quantum Condensed Phases – unusual properties
 - Powerful annealing behavior
 - Unprecedentedly sharp transitions
 - Superfluidity
 - liquid helium, solid parahydrogen
- New regime for exploration – many surprises

LEAD I DISCOVER I DEVELOP I DELIVER

Introduction - Antimatter Giggle Factor

One vision of
bulk antimatter
storage in the
23rd century.

Star Trek
Episode # 47
“Obsession”
(Paramount,
1967).

Skepticism of near-term practical energy storage is justified.

Approved for Public Release; Distribution Unlimited. ABW/PA 03-10-08-127

Introduction - Reality Check

Annihilation energy:
 $E = 2 N_{e^+} m_e c^2$

Brillouin ($B \sim 1$ T) and
Space Charge ($V \sim 100$ kV) →
limits on
bare e^+ storage in ~ 1 m³

e^+ = positron; Ps = positronium (e^+/e^- bound pair);

PEC = Positron Energy Conversion Project; BEC = BoseEinstein Condensation

Introduction - Positron Moderation

Generic positron production scheme:

- (1) nascent fast e^+ ($E \sim 100$ keV)
- (2) moderation ($E \sim 1$ eV)
- (3) e^+ and/or Ps trapping

Solid Ne is best known moderator
 $\varepsilon \approx 0.5\%$; so 99.5 % are wasted

Slow e^+ scatter, trap, and annihilate at defects \Rightarrow lost to moderation process

High quality parahydrogen (pH_2) solids should permit slow positrons to emerge from deeper within moderator

Moderation efficiency increases as L / ℓ

[E.M. Gullikson and A.P. Mills, Jr.,
Phys. Rev. Lett. **57**, 376 (1986)]

Ultra-low Temperature Chemistry

- Reactions occur in a dissipative environment

- Steric effects

- Large “reaction” cross-sections

About solid parahydrogen

Solid parahydrogen features:

- Weak intermolecular interactions
- Slow relaxation timescales
- Quantum crystal: self-annealing via tunneling
- Homogeneous environment
- Large intermolecular distance, 3.78 Å

Parahydrogen as a matrix:

- Very small matrix shifts, predictable (-0.5 %)
- Nearly free rotation for small molecules
- High impurity mobility
- Narrow spectral linewidths (<100 MHz possible)
- Dopants induce infrared activity in matrix

Close packing crystal structure

- **Symmetry:** *h.c.p.* – D_{3h} ; *f.c.c.* – O_h
- **Reduced symmetry in *h.c.p.* provides directionality to the crystal and thus enables polarization sensitive measurements to be performed.**
- **Relative stability of *f.c.c.* and *h.c.p.* structures depends on many-body long-range interactions.**
- **Most stable structure in rare gas solids (RGS) is *f.c.c.* ***

* Excluding solid helium

Adapted from P. C. Souers, *Hydrogen Properties for Fusion Energy*, (1986)

f.c.c versus h.c.p.

- Unlike RGS, solid parahydrogen ($J=0$) has h.c.p. as the lowest energy crystal structure.
- h.c.p more stable than f.c.c. by ~1 mK per molecule.
- Solid parahydrogen synthesized by rapid vapor deposition at low temperature produces a mixture of f.c.c. and h.c.p. phases. Nearly exclusive h.c.p. structure produced upon annealing above ~4.5 K.

P. C. Souers, *Hydrogen Properties for Fusion Energy*, (1986).

J. Van Kranendonk, *Solid Hydrogen*, (1983).

Rapid Vapor Deposition

1st Generation RVD machine

- Original machine built at Edwards AFB in 1995.
- Optical path normal to substrate.
- Rotating molecules:
 $\Delta m = 0$ transitions suppressed relative to
 $\Delta m = \pm 1$

M.E. Fajardo and S. Tam, *J. Chem. Phys.* **108**, 4237 (1998).
S. Tam and M.E. Fajardo, *Rev. Sci. Instrum.* **70**, 1926 (1999).

Eglin AFB Rapid Vapor Deposition Instrument

- Reflection based set-up (FTIR).
- $[o\text{-H}_2] < 100 \text{ ppm}$.
- $p\text{-H}_2$ deposition rate $\sim 150 \text{ mmol/hr} \rightarrow 2\text{-}3 \text{ mm/hr thickness}$.
- Deposition at 2.3 K. Sample annealed at 4.3 K for 15-30 min.

2nd Generation RVD machine

Optical Geometry: Reflection Versus Transmission

P (1), split by crystal field

Significant change in
the intensity of \perp and
 \parallel transitions.

Reflection data shifted
by -0.25 cm^{-1} for clarity

8 ppm CO in $\rho\text{-H}_2$

Polarization Spectroscopy

Polarization analysis provides:

- An assignment of the perpendicular and parallel components to the crystal field perturbed rotational structure (i.e. Δm)
- $\text{Abs}_{\text{s-pol}} - \text{Abs}_{\text{p-pol}} = \frac{1}{2} \mu_{\perp}^2 - \frac{1}{2} \mu_{\parallel}^2$

Polarization Spectroscopy

Polarization analysis provides:

- An assignment of the perpendicular and parallel components to the crystal field perturbed rotational structure (*i.e.* Δm)
- $\text{Abs}_{\text{s-pol}} - \text{Abs}_{\text{p-pol}} = \frac{1}{2} \mu_{\perp}^2 - \frac{1}{2} \mu_{\parallel}^2$

LEAD I DISCOVER I DEVELOP I DELIVER

Rotation of “Large” Molecules in Solid Parahydrogen

Rotation in the Solid Matrices

- Rare gas matrices and traditional molecular matrices:
 - Small hydrides: HX, H₂O, NH₂, NH₃, CH₃, CH₄
 - *Perhaps* ClF, CN (ESR and IR spectra conflict)
- Solid parahydrogen:
 - Very low angular anisotropy, and weak intermolecular interactions
 - Small hydrides: HX, H₂O, NH₃, CH₃, CH₄
 - “Large” molecules: N₂, O₂, CO, NO, HCN, ... *more?*

Narrow spectral lines widths and the ability to examine the rotation of larger molecules allows us to examine the impurity-matrix interactions with remarkable clarity

CO and HCN in parahydrogen

* $\rho\text{-H}_2$ clustering

Simulation uses theory of: Devonshire, Proc. Roy. Soc. London A 153, 601 (1936);
Bowers and Flygare, J. Chem. Phys., 44, 1389 (1966).

Simulation:
Linear molecule in *h.c.p* crystal field

CO and HCN in parahydrogen

Interpretation of the Rotational Fine Structure- HCN

Crystal field theory (linear molecule in HCP lattice) *

$$H = H_{r,v} + V_{\text{cry}}$$

$$V_{\text{cry}} = \varepsilon_2 C_{2,0}(\Omega_{\text{HCN}}) + \varepsilon_3 [C_{3,-3}(\Omega_{\text{HCN}}) - C_{3,3}(\Omega_{\text{HCN}})]$$

$$\text{where } C_{l,m}(\Omega) = \left(\frac{4\pi}{2l+1} \right)^{\frac{1}{2}} Y_{l,m}(\Omega)$$

“Fitting” Results in cm^{-1} : (10 levels, 9 parameters)

	$p\text{-H}_2$	Gas
B	1.475(5)	1.478
ΔB	-0.005(5)	-0.010
D	0.0675(5)	2.910×10^{-6}
ΔD	0.0032(5)	0.025×10^{-6}
v_0	3302.989(5)	3311.4770
ε_2	-1.274(5)	-
$\Delta \varepsilon_2$	-0.193(5)	-
ε_3	6.850(5)	-
$\Delta \varepsilon_3$	0.767(5)	-

} Identical!
 } $\times 20,000!$
 } very large!

NOTE: Above perturbation does not converge for large D !
 Treatment was modified to incorporate centrifugal distortion after crystal field calculation to avoid this problem.

Devonshire, Proc. Roy. Soc. London A 153, 601 (1936); Bowers and Flygare, J. Chem. Phys., 44, 1389 (1966).

Prediction of Crystal Field Parameters: Truncation

$\text{H}_2\text{-CO}$ pair potential *

+

H_2 – *h.c.p.* lattice

Rotational PES for CO
in *h.c.p* H_2 lattice (Rigid)

* SAPT/MC⁺BS, P. Jankowski and K. Szalwicz, *J. Chem. Phys.* **108**, 3554 (1998).

Prediction of Crystal Field Parameters: Truncation

Rotational PES for CO

$$V_{\text{cry}} = \varepsilon_2 C_{2,0}(\Omega) + \varepsilon_3 [C_{3,-3}(\Omega) - C_{3,3}(\Omega)]$$

CFT –up to $C_{12,12}(\Omega)$

(2.52)*

ε (cm^{-1})	Term	ε (cm^{-1})	Term
1.39	$C_{3,3}(\Omega)$	0.07	$C_{9,3}(\Omega)$
1.23	$C_{5,3}(\Omega)$	0.04	$C_{12,6}(\Omega)$
0.74	$C_{4,0}(\Omega)$	0.04	$C_{8,0}(\Omega)$
-0.57	$C_{6,6}(\Omega)$	0.03	$C_{12,12}(\Omega)$
-0.43	$C_{6,0}(\Omega)$	0.03	$C_{12,0}(\Omega)$
0.35	$C_{7,3}(\Omega)$	-0.03	$C_{11,3}(\Omega)$
0.13	$C_{8,6}(\Omega)$	-0.03	$C_{2,0}(\Omega)$

(1.03)*

* Experimentally fitted values.

Estimation of Crystal Field Parameters: Simulated Spectrum for CO

- Underestimates crystal field splittings.
 - $S(0)$ transition too weak.
- ↓
- Mixing underestimated
 - First order perturbation insufficient?

NO in Solid Parahydrogen

Rotors Within Parahydrogen

Data from the groups of M. E. Fajardo, Y.-P. Lee, and T. Momose (1995-2006).

Rotors Within Parahydrogen

Preliminary C₂H₂ in parahydrogen

	$E_{R(0)} - E_{P(1)}$ (4B)		$p\text{H}_2$	
	Gas		$p\text{H}_2$	
	Wavenumber	Relative	Wavenumber	Relative
HCCH	4.71 cm ⁻¹	1.00	3.35 cm ⁻¹	1
DCCH	3.97 cm ⁻¹	0.84	2.74 cm ⁻¹	0.82
DCCD	3.39 cm ⁻¹	0.72	2.47 cm ⁻¹	0.74

- Acetylene IR spectrum 'ages'... timescale of 30 minutes. Aging appears to be acetylene-acetylene clustering.
- "Rotational spectrum" disappears fairly quickly (but not with annealing!)

Y.P. Lee and collaborators *Chem. Phys. Lett.* **435** 247-251 (2007) – no rotation at 'high' [o-H₂]

LEAD I DISCOVER I DEVELOP I DELIVER

Dopant Cluster Formation in Solid Parahydrogen

$o\text{-H}_2$ – HCN Clustering

Orthohydrogen Dependence

o-H_2 – HCN Clustering

* Moore, Ishiguro, and Miller, JCP 115, 5144 (2001)

LEAD I DISCOVER I DEVELOP I DELIVER

HCl dimer

See Mario Fajardo's Poster for more details

HCN Clustering in $p\text{-H}_2\text{(s)}$ – linear assembly in the solid state?

LEAD I DISCOVER I DEVELOP I DELIVER

Crystallite Orientation and the Annealing Behavior of Doped Solid Parahydrogen

Orientation of Crystal Axis

- Lab frame versus crystal frame of reference.
- 's' – 'p' polarization provides moment relative to surface normal.
- Spectral fine structure sensitive to the local crystallite orientation.

Correlation between crystal axis and surface normal?

Polarization analysis provides:

- An assignment of the perpendicular and parallel components to the crystal field perturbed rotational structure (i.e. Δm)
- $\text{Abs}_{\text{s-pol}} - \text{Abs}_{\text{p-pol}} = \frac{1}{2} \mu_{\perp}^2 - \frac{1}{2} \mu_{\parallel}^2$

As Deposited Versus Annealed

- Before annealing, less than 5% of the HCP features are oriented normal to the substrate.
- After annealing, ~90% of the HCP features are oriented normal to substrate!!
- Upon deposition, HCP lattices randomly oriented, but upon annealing gain a macroscopic orientation to the laboratory frame.

Multiple samples – HCN, CO, NO

8 ppm HCN in parahydrogen

As deposited

Annealed

8 ppm NO in parahydrogen

As deposited

Annealed

8 ppm CO in parahydrogen

As deposited

Annealed

- All exhibit virtually no alignment in as deposited samples

- All exhibit more than 90% alignment of crystal axis after annealing.

CH₄ in parahydrogen

Sample 1

Sample 2

Sample 3

- Essentially no orientation in as deposited.
- Degree of polarization in annealed samples fluctuates for CH₄ from sample to sample.
- Dopant helps establish macroscopic orientation?

Mixed CH₄ and HCN (3.5 ppm/3.8 ppm)

- % orientation agrees in mixed samples
- HCN more influential than CH₄?

Conclusions

- Solid parahydrogen produced by Rapid Vapor Deposition is amenable to Polarization Spectroscopy:
 - Facilitates the assignment of the crystal field fine structure in the spectra of rotating dopants.
 - Sheds light on cluster formation in doped parahydrogen samples.
 - Provides new insight into the annealing behavior of the solid parahydrogen produced by RVD.

Electron and Positron irradiation of solid hydrogen presently underway

Acknowledgements:

Takamasa Momose, U. British Colombia (Crystal Field Theory)

David Anderson, U. Wyoming (NO and $(\text{HCl})_2$ work)

David Moore, Lehigh U. (H_2 -HCN *ab initio* potential)

Basic Research in Military

... It's alive and active

- Great job opportunities for recent grads
- Good, fundamental research efforts underway
- Opportunities for academia to help! The real challenge is in “selling” your work and providing a valid, realistic path towards an application... (more than just lip service is required)

A few final thoughts...

*"Scientists do a great job with the details of the science.
Scientists must learn the art of the sound bite!"*

- Bill Nye (the science guy)

Interview with C&E News, 2006

"In this Worldwide economy our ability to create wealth is not/no longer bounded by physical limits/natural resources but by our ability to come up with KEY "new ideas"/Inventions. The More Education, the more Ideas and the More WEALTH, Education is THE KEY"

- Dennis Bushnell (2002)

Chief Scientist, NASA Langley

"The best way to predict the future is to invent it."

- Alan Kay

Computer Scientist, 1991)

QUESTIONS?

LEAD I DISCOVER I DEVELOP I DELIVER

Back-up Slides

Spectral Assignments Tools

Temperature Dependence

Orthohydrogen Dependence

Combination Differences

Spectrum was interpreted by its:

- Temperature dependence
- Orthohydrogen concentration dependence
- Transition frequency combination differences
- **Polarization dependence!**

NO in solid parahydrogen

