Grupo 4

Caycho José¹ , Sahua Jaafar², Junco Frank³, Limache Ebert⁴, Oyola Renzo⁵, Rojas Carlos⁶

Universidad Nacional de Ingeniería

2021

Índice de la presentación

- 1 Solución 4
- 2 Solución 8
- 3 Solución 12
- 4 Solución 16
- 6 Solución 20

Problema N°4

En un aparcamiento hay 55 vehículos entre coches y motos. Si el total de ruedas es de 170. Determine el número de coches y motos que hay según el requerimiento siguente.

- Modele el problema.
- Determine la norma matricial de A.
- Determine el número de condicionamiento de A.
- Indique si está bien o mal condicionado.

Modelación del problema

Sea:

x: El número de coches

y: El número de motos

El sistema de ecuación es el siguiente:

$$x + y = 55$$

$$4x + 2y = 170$$

$$\underbrace{\begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}}_{A} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 55 \\ 85 \end{pmatrix}$$

Modelación del problema

Hallando el número de coches y motos mediante Gauss sin pivoteo:

$$\begin{pmatrix}
1 & 1 & | & 55 \\
0 & -1 & | & -25
\end{pmatrix}$$

$$y = 25$$
 $x = 30$

Determinando la norma matricial de A

Sea

$$||A||_1 = \max_{j=1,\dots,n} \sum_{i=1}^m |a_{ij}|$$

$$||A||_{\infty} = \max_{i=1,\dots,m} \sum_{j=1}^{n} |a_{ij}|$$

En el problema

$$||A||_1 = 3$$
 $||A||_{\infty} = 3$

Determinando el número de condicionamiento de A

hallando la inversa de la matriz A

$$A^{-1} = \begin{pmatrix} 1 & -1 \\ -2 & 1 \end{pmatrix}$$

$$||A^{-1}||_1 = 3$$
 $||A^{-1}||_{\infty} = 3$

$$\kappa_1(A) = ||A||_1 ||A^{-1}||_1 = 3 \times 3 = 9$$

$$\kappa_{\infty}(A) = ||A||_{\infty} ||A^{-1}||_{\infty} = 3 \times 3 = 9$$

Indicando si está bien o mal condicionado

El numero de condición según la norma $1(||.||_1)$ y la norma infinito $(||.||_{\infty})$ nos dan los mismos valores, además de ser mayores que 1 en consecuencia el sistema esta mal condicionado.

Problema N°8

Dos kilos de plátanos y tres de peras cuestan 8.80 soles. Cinco kilos de plátanos y cuatro de peras cuestan 16.40 soles. Determine el costo de kilo de plátano y de la pera según el requerimiento siguiente.

a) Modele el problema:

Sea (x_1) el costo de kilogramo de plátano y sea (x_2) el costo de kilogramo de pera

El sitema de ecuación en el problema es:

$$\begin{cases}
2x_1 + 3x_2 = 8.80 \\
5x_1 + 4x_2 = 16.40
\end{cases}$$

Entonces se tiene el siguiente sistema matricial:

$$\begin{pmatrix} 2 & 3 \\ 5 & 4 \end{pmatrix} \begin{pmatrix} \mathsf{x}_1 \\ \mathsf{x}_2 \end{pmatrix} = \begin{pmatrix} 8.80 \\ 16.40 \end{pmatrix} \tag{1}$$

b) Determine la norma matricial de A y A^{-1}

Sabemos que:

$$A = \begin{pmatrix} 2 & 3 \\ 5 & 4 \end{pmatrix} \qquad det(A) = -7 \tag{2}$$

Calculamos
$$A^{-1} = \frac{(Adj(A))^T}{det(A)}$$
 :

$$A^{-1} = \frac{1}{-7} \begin{pmatrix} 4 & -3 \\ -5 & 2 \end{pmatrix} \tag{3}$$

$$A^{-1} = \begin{pmatrix} -4/7 & 3/7 \\ 5/7 & -2/7 \end{pmatrix} \tag{4}$$

Hallamos ||A|| y $||A^{-1}||$:

$$||A||^{2} = a_{11}a_{11} + a_{12}a_{12} + a_{21}a_{21} + a_{22}a_{22}$$

$$||A||^{2} = a_{11}^{2} + a_{12}^{2} + a_{21}^{2} + a_{22}^{2}$$

$$||A||^{2} = 2^{2} + 3^{2} + 5^{2} + 4^{2} = 54$$

 $||A|| = \sqrt{54}$

Analogamente:

$$||A^{-1}|| = \frac{\sqrt{54}}{7}$$

c) Determine el condicionamiento de A

Calculamos el número de condición de la matriz A:

$$K(A) = ||A|| \ ||A^{-1}||$$

Entonces:

$$K(A) = \sqrt{54} \times \frac{\sqrt{54}}{7} = \frac{54}{7}$$

d)Resolver el sistema usando Eliminación de Gauss con Pivoteo Metodo de Pivoteo Parcial

Tenemos:

$$A = \begin{pmatrix} 2 & 3 \\ 5 & 4 \end{pmatrix} \qquad b = \begin{pmatrix} 8.80 \\ 16.40 \end{pmatrix} \tag{5}$$

Sea:

$$M = (A|b) = \begin{pmatrix} 2 & 3 & | & 8.80 \\ 5 & 4 & | & 16.40 \end{pmatrix}$$
 (6)

Elegimos el máximo valor absoluto de la primera columna de M: m_{21} =5 y realizamos la operación elemental: F_{12}

$$M = \begin{pmatrix} 5 & 4 & | & 16.40 \\ 2 & 3 & | & 8.80 \end{pmatrix} \tag{7}$$

Realizamos la operación elemental: $F_{21}(-2/5)$

$$M = \begin{pmatrix} 5 & 4 & | & 16.40 \\ 0 & 1.4 & | & 2.24 \end{pmatrix} \tag{8}$$

Ahora: Aplicamos Sustitución Regresiva

$$x_2 = \frac{2.24}{1.4} = 1.6$$

$$x_1 = \frac{16.40 - 4 * 1.6}{5} = 2$$

d) Resolver el sistema usando Eliminación de Gauss con Pivoteo

Tenemos:

Metodo de Eliminación de Gauss

$$A = \begin{pmatrix} 2 & 3 \\ 5 & 4 \end{pmatrix} \qquad b = \begin{pmatrix} 8.80 \\ 16.40 \end{pmatrix} \tag{9}$$

Sea:

$$M = (A|b) = \begin{pmatrix} 2 & 3 & | & 8.80 \\ 5 & 4 & | & 16.40 \end{pmatrix}$$
 (10)

Realizamos la operación elemental: $F_{21}(-5/2)$

$$M_1 = \begin{pmatrix} 2 & 3 & | & 8.80 \\ 0 & -3.5 & | & -5.60 \end{pmatrix} \tag{11}$$

Ahora: Aplicamos Sustitución Regresiva

$$x_2 = \frac{-5.60}{-3.5} = 1.6$$

$$x_1 = \frac{8.80 - 3 * 1.6}{2} = 2$$

Dada la sucesion de Fibonacci F_n definida por $F_0=F_1={\bf 1}$ y

a) Analice la propagacion de errores y clasifique el tipo de error

Si perturbamos F_n por $\hat{F}_n = F_n + \epsilon_n$ entonces :

$$\hat{F}_{n+1} = 1(F_n + \epsilon_n) + 1(F_{n-1} + \epsilon_{n-1})$$

Dando forma obtenemos:

su regla $F_{n+1} = F_n + F_{n-1}$

$$\hat{F}_{n+1} = F_n + F_{n-1} + \epsilon_n + \epsilon_{n-1}$$

$$\hat{F}_{n+1} = F_{n+1} + \epsilon_n + \epsilon_{n-1}$$

$$\epsilon_{n+1} = \epsilon_n + \epsilon_{n-1}, \ \epsilon_0 = \epsilon_1 = \epsilon$$

Asumo que en los valores iniciales no se producen errores de redondeo

Para resolver la ecuacion en diferencias asumo que $\epsilon_n=r^n$

Entonces:

$$r^{n+1} = r^n + r^{n-1}$$

$$r^2 - r - 1 = 0$$

Resolviendo la ecuación r^2 - r - 1= 0 obtengo las raices $\frac{1+\sqrt{5}}{2}$ y $1-\sqrt{5}$

$$\epsilon_n = A \left(\frac{1 + \sqrt{5}}{2} \right)^n + B \left(\frac{1 - \sqrt{5}}{2} \right)^n, A, B \in \mathbb{R}$$

$$\epsilon_n = \frac{\epsilon \left(1 + \sqrt{5} \right)}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{\epsilon \left(1 - \sqrt{5} \right)}{2\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n,$$

$$\epsilon_n = \frac{\epsilon}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^{n+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n+1} \right)$$

En una maquina de de 32 bits el error es cercano a 2^{-23}

$$\epsilon_n \approx \frac{\epsilon \left(1 + \sqrt{5}\right)}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2}\right)^n$$

De la misma forma se puede hallar F_n

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^{n+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n+1} \right)$$

n	F_n	\hat{F}_n	$F_n - \hat{F}_n$
0	1.00000000	1.00000000	0.00000000
1	1.00000000	1.00000000	0.00000000
2	2.00000000	1.99999977	0.00000023
3	3.00000000	2.99999963	0.00000037
4	5.00000000	4.99999941	0.00000059
5	8.00000000	7.99999904	0.00000096
6	13.00000000	12.99999845	0.00000155
7	21.00000000	20.9999975	0.00000250
8	34.00000000	33.99999595	0.00000405
9	55.00000000	54.99999344	0.00000656

$$\epsilon_n = \frac{\epsilon \left(1 + \sqrt{5}\right)}{2\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2}\right)^n$$

De la ecuacion se puede comprobar $\epsilon_n \approx K^n \epsilon$

Por lo tanto tenemos un error exponencial creciente pues K>1.

Problema N°16

Se define $\|A\|_2 = \sqrt{m \acute{a} x_{1 \leq i \leq n} |\lambda_i(A^TA)|}$,donde $(\lambda_i(A^TA))_{1 \leq i \leq n}$ es el conjunto de los valores propios de A^TA . Y definimos el condicionamiento $k_2(A) = \|A\|_2 \|A^{-1}\|_2$ Demostrar que:

• $k_2(A) = k_2(A^T)$

Recordatorio

- 1 Si A es una matriz cuadrada de orden n entonces A tiene n autovalores(no necesariamente diferentes)
- 2 Si A es una matriz cuadrada y λ un autovalor cualquiera de A, se cumple que A es invertible si y sólo sí λ es diferente de cero
- 3 Si A es una matriz cuadrada invertible entonces λ es un autovalor de A si y sólo sí $\frac{1}{\lambda}$ es un autovalor de A^{-1}
- $oldsymbol{4}$ λ es un autovalor de A si y sólo sí λ es un autovalor de A^T

Propiedades

- 1 Si A y B son matrices cuadradas del mismo orden, se cumple que AB y BA tiene los mismos autovalores.
- Si A es una matriz simétrica entonces todos sus autovalores son números reales

Demostración 3

Ordenamos los autovalores de A^TA : $\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq ... \leq \lambda_n$ Ordenamos los autovalores de AA^T : $\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq ... \leq \lambda_n$ Darnos cuenta también que A^TA y AA^T son matrices simétricas entonces $\lambda_i \in \mathbb{R} \ \forall \ i=1,2,3,...,n$

$$\begin{split} \bigstar \|A\|_2 &= \sqrt{m \acute{a} x_{1 \leq i \leq n} |\lambda_i(A^T A)|} = \sqrt{|\lambda_n|} \\ \bigstar \|A^{-1}\|_2 &= \sqrt{m \acute{a} x_{1 \leq i \leq n} |\theta_i[(A^{-1})^T A^{-1}]|} \\ &= \sqrt{m \acute{a} x_{1 \leq i \leq n} |\theta_i[AA^T]^{-1}|} \\ &= \sqrt{m \acute{a} x_{1 \leq i \leq n} |\frac{1}{\lambda_i} [AA^T]^{-1}|} = \frac{1}{\sqrt{|\lambda_1|}} \\ &\to k_2(A) = \|A\|_2 \|A^{-1}\|_2 = \frac{\sqrt{|\lambda_n|}}{\sqrt{|\lambda_1|}} \quad \text{QED Prop.3} \end{split}$$

Ahora se hallará $k_2(A^T)$:

$$\begin{split} k_{2}(A^{T}) &= \|A^{T}\|_{2} \|(A^{T})^{-1}\|_{2} = \frac{\sqrt{m\acute{a}x_{1 \leq i \leq n}|\theta_{i}[(A^{T})^{T}A^{T}]|}}{\sqrt{m\acute{n}_{1 \leq i \leq n}|\theta_{i}[(A^{T})^{T}A^{T}]|}} \\ &= \frac{\sqrt{m\acute{a}x_{1 \leq i \leq n}|\theta_{i}(AA^{T})|}}{\sqrt{m\acute{n}_{1 \leq i \leq n}|\lambda_{i}(AA^{T})|}} \\ &= \frac{\sqrt{m\acute{a}x_{1 \leq i \leq n}|\lambda_{i}(AA^{T})|}}{\sqrt{m\acute{n}_{1 \leq i \leq n}|\lambda_{i}(AA^{T})|}} \\ &= \frac{\sqrt{|\lambda_{n}|}}{\sqrt{|\lambda_{1}|}} \\ &\to k_{2}(A) = k_{2}(A^{T}) = \frac{\sqrt{|\lambda_{n}|}}{\sqrt{|\lambda_{1}|}} \quad \text{QED Ej.16} \end{split}$$

donde λ_n y λ_1 son respectivamente el mayor y menor autovalor de la matriz A

Problema N°20

return L

a)Implementar el método Cholesky en Python def cholesky(M): n=len(M)#Inicializa Matriz con Ceros L=np.zeros((n,n)) for i in range(n): for j in range (i+1): sumatoria=O for k in range(j): sumatoria=sumatoria+L[i][k]*L[j][k] if (i== i): L[i][j]=np.sqrt(M[i][i]-sumatoria) else: L[i][j] = (1.0/L[j][j] * (M[i][j] - sumatoria))

b) Se crean las matrices triangulares y luego las multiplicamos por su traspuesta para obtener las matrices simetricas definidas positivas, según el teorema 6 estudiado en clase.

Para ello se implementó el siguiente codigo:

```
def genera(n):
    L=np.zeros((n,n))
    for i in range(n):
        for j in range(i+1):
            L[i][j]=random.randint(1,9)
    Lt=np.transpose(L)
    A=L.dot(Lt)
    return A
```

c) Ahora se buscará calcular la complejidad del algoritmo de Cholesky.

Para ello iniciaremos con las operaciones que se realizan en el tercer for

for k in range(j):

sumatoria = sumatoria + L[i][k]*L[j][k]

Se tiene 1 comaparación, 2 asignaciones, 1 suma y 1 multiplicación, que se repiten:

$$1+2+3+\ldots+i=\sum_{1}^{i}=i(i+1)/2$$

Luego esto también se repite n veces

$$\sum_{i=n}^{i=n} ((i^2+i)/2)$$

$$\frac{1}{2}(\sum_{i=1}^{n}i^{2}+i)$$

$$\frac{1}{2}(\frac{n(n+1)(2n+1)}{6}+\frac{n(n+1)}{2})$$

$$\frac{1}{2}(\frac{n(n+1)(2n+1)}{6}+\frac{3n(n+1)}{6})$$

$$\frac{1}{2}(\frac{n(n+1)(2n+4)}{6})$$

$$\frac{n(n+1)(n+2)}{6}$$

$$\frac{n^3 + 3n^2 + 2n}{6}$$

Vemos que para la función, el máximo exponente es 3, por lo que ya en este punto podemos plantear la complejidad del algoritmo, la cual es

$$O(\frac{n^3}{6})$$

O también en general su complejidad es:

$$O(n^3)$$

d) En este ítem se pide hacer uso de las matrices generadas en el ítem b para el método Cholesky y obtener una gráfica de tiempo para cada orden.

```
Tiempo Usado para Matriz 3x3 : 2.659999999987745e-05
Tiempo Usado para Matriz 4x4 : 4.149999999972115e-05
Tiempo Usado para Matriz 5x5 : 4.89000000001837e-05
Tiempo Usado para Matriz 6x6 : 6.109999999998061e-05
Tiempo Usado para Matriz 7x7 : 7.89999999999574e-05
Tiempo Usado para Matriz 9x9 : 0.00013219999999997123
```

Con los tiempos obtenidos se procede a realizar la gráfica la cual queda de la siguiente forma:

