UNIVERSITE de VERSAILLES - Master 1 Info.

Module Recherche Opérationnelle et algorithmes randomisés Controle Continu - Décembre 2017

Durée: 1h 15 - Tous documents autorisés - Téléphones et ordinateurs interdits

Ordonnancements (8 points)

Résoudre par la méthode PERT le problème d'ordonnancement suivant et indiquez quelles sont les tâches critiques:

Code de la tache	Durée (en j)	Antériorités
A	4	-
В	7	- 11
C	8	-
D	14	A et B
Е	5	В
F	6	С
G	3	C
Н	2	E et G
I	8	F et H
J	6	F

Programmation linéaire (12 points)

Soit le Programme Linéaire suivant:

Maximize Obj = $15 x_1 + 22 x_2 + 31 x_3 + 40 x_4$

Subject To:

c1: $x_1 + 2x_2 + 3x_3 + 4x_4 \le 100$

c2: $2x_1 + 3x_2 + 4x_3 + 5x_4 \le 140$

c3: $3x_1 + 5x_2 + 8x_3 + 10x_4 \le 240$

Bounds : $0 \le x_1$, $0 \le x_2$, $0 \le x_3$, $0 \le x_4$

- Proposer une heuristique simple permettant de trouver rapidement une solution réalisable à ce problème.
 Donner la solution obtenue et sa valeur.
- Mettre le problème sous forme standard.
- Le résoudre par la méthode du simplexe.
- Indiquer clairement quelle est la solution optimale. Quelles sont les variables de base de cette solution optimale ? La solution optimale est-elle unique ?