INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR DEPARTMENT OF CHEMICAL ENGINEERING

MID SEMESTER EXAMINATION 2015-16 (SPRING)

Computer Aided Process Engineering (CH30016)

Number of Students -80	FULL MARKS – 30 Answer all the ques	
NAME :	Roll No:	CH

Submit this Sheet duly filled in along with your Answer Book

- From the following stream table, design the MER heat exchanger network 1.
 - (a) Without Stream-splitting
 - (b) With Stream-splitting

Explain with a numerical example, how do you optimize the (c) stream splitting strategy?

Stream Type	CP (kW/°C)	T _s (°C)	T _t (°C)
1. Cold	10	150	450
2. Hot	30	470	270
3. Cold	10	130	430

Assume:

$$\Delta T_{\min} = 20 \, {}^{\circ}\mathbf{C}$$

Pinch temperature for the hot stream is 470°C.

3+2+3=8

- A multi-component non-ideal liquid stream is continuously "flashed" in a drum to get vapour and liquid from the top and bottom of the drum respectively. Develop a lumped parameter model for the system considering heat balance, component balance, VLE and any other relevant phenomena. Draw the Information Flow Diagram highlighting the convergence block. 5
- Develop the non-dimensional distributed parameter model for a counter current 3. double pipe heat exchanger where the hot fluid is flowing through the inner pipe. Comment on the method of solution you would deploy for the two resulting PDE.

P.T.O.

NOTE: Do not ask any question at the Examination Hall. If in doubt, make suitable assumptions and proceed. Handwriting and figures should be neat. Parts of a question should be answered together, in one place.

4. (a) What do you mean by the "Composite Graph" in Pinch Analysis of Heat Exchangers Network?

From a process flow-sheet, the following "Stream table" has been extracted.

Stream Type	CP (MW/ °C)	T _s (°C)	T _t
1. Cold	2	20	135
2. Hot	3	170	60
3. Cold	4	80	140
4. Hot	1.5	150	60

Using the "F $\Delta T_{min} = 20$	Problem table °C:	method" base	d on the ME	ER design, find	out assuming
(b) Pinch ten	nperature				
(c) Minimum	Cold & Hot	utilities require	ement		
(d) Draw th relevant data	e Heat Exchainto following	anger Networ	k (Grid repr	resentation) and	d fill up the
	T h,in	T h,out	T _{c,in}	T _{c,out}	ΔΗ
HE1	*			c,out	1
HE2					

	T h,in	T h,out	T c,in	T _{c,out}	ΔΗ
HE1			7	c,out	
HE2					
HE3					
HE4					
HE5					
Heater					
Cooler					

(e)	Based on the given cost data,	
	find out the Annual Cost of	
	Hot Utility and Cold Utility	

Cooling water: T_s = 20 °C, T_t = 30 °C, and Cost = 0.0075 Rs./kg Steam (saturated): T = 258 °C, Latent Heat = 1,676 kJ/kg and Cost = 0.03 Rs./kg Equipment operability 8,000 hr/yr.