MP: Suites et Séries de fonctions et Trigonalisation

Coralie RENAULT

14 novembre 2014

Exercice

Vérifier que la suite de terme général

$$u_n = \int_0^{+\infty} \frac{\sin(nt)}{nt + t^2} \, \mathrm{d}t$$

est bien définie et étudier sa convergence.

Exercice

Etudier la limite de

$$\int_0^1 f(t^n) \, \mathrm{d}t$$

où $f:[0,1]\to\mathbb{R}$ est continue.

Exercice

Pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$, on pose

$$f_n(x) = \frac{n}{\sqrt{\pi}} \left(1 - \frac{x^2}{2n^2} \right)^{2n^4}$$

Soit g une fonction continue sur \mathbb{R} et nulle en dehors d'un segment [a,b]. Montrer que

$$\lim_{n \to +\infty} \int_{\mathbb{R}} f_n(x)g(x) dx = g(0)$$

Exercice

Montrer que l'application

$$f: P(X) \mapsto (X^2 - 1)P''(X) + 2XP'(X)$$

est un endomorphisme de l'espace vectoriel réel $E = \mathbb{R}_n[X]$. Former la matrice de f relative à la base canonique de E. En déduire la diagonalisabilité de f ainsi que ses valeurs propres et la dimension des sous-espaces propres associés.

Exercice

On considère la matrice :

$$\left(\begin{array}{ccc}
8 & -1 & -5 \\
-2 & 3 & 1 \\
4 & -1 & -1
\end{array}\right)$$

- Déterminer les valeurs propres de A.
- A est-elle diagionalisable? Trigonalisable? Si oui le faire.

Exercice

On suppose qu'une suite de fonctions (f_n) de [a,b] vers \mathbb{R} converge uniformément vers f: $[a,b] \to \mathbb{R}$ continue et on considère une suite (x_n) d'éléments de [a,b] convergeant vers x. Montrer

$$f_n(x_n) \to f(x)$$

Exercice

Montrer que la limite uniforme d'une suite de fonctions uniformément continues d'un intervalle I de \mathbb{R} vers \mathbb{R} est elle-même une fonction uniformément continue. Soient $f:[0,1] \to \mathbb{R}$ continue et $f_n:[0,1] \to \mathbb{R}$ définie par

$$f_n(x) = x^n f(x)$$

Former une condition nécessaire et suffisante sur f pour que la suite de fonction (f_n) converge uniformément sur [0,1].

Exercice

Soit A une matrice carrée réelle d'ordre n.

Montrer que A est nilpotente si, et seulement si,

$$\forall p \in [1, n], \operatorname{tr} A^p = 0$$

Exercice

Etudier la convergence simple, uniforme et normale de la série des fonctions

$$f_n(x) = \frac{(-1)^n}{n+x^2}$$
 avec $n \geqslant 1$ et $x \in \mathbb{R}$

Exercice

a) Déterminer l'ensemble Ω des réels a tels que

$$A = \left(\begin{array}{ccc} 2 & 1 & -2 \\ 1 & a & -1 \\ 1 & 1 & -1 \end{array}\right)$$

2

n'est pas diagonalisable.

b) Pour $a \in \Omega$, trouver P inversible telle que $P^{-1}AP$ soit triangulaire supérieure.