Linear Model Simulations: Varying the Propensity Score

Kellie Ottoboni

April 1, 2016

Suppose $Y = X_1 + X_2 + \epsilon$, where X_1, X_2 , and ϵ are all mutually independent, standard normal random variables. There is no effect of treatment.

Let treatment assignment T be Bernoulli conditional on X_1 , so that $\mathbb{P}(T=1\mid X_1>=0)=p_1$ and $\mathbb{P}(T=1\mid X_1<0)=p_2$. We'll vary p_1 and p_2 .

Estimate \hat{Y} using OLS with X_1 and X_2 as predictors.

We have N=100 individuals. Suppose we use two strata, defined by whether $\hat{Y} \geq 0$ or $\hat{Y} < 0$. We'll do the model-based matching permutation test using the difference in means as our statistic 5000 times to get a distribution of p-values under the null hypothesis of no treatment effect. The simulations are done **conditionally on** X **and** ϵ : we draw X_1 , X_2 , and ϵ once to generate the potential outcomes Y, then randomly assign treatment for each simulation.

1 Constant propensity score

This is like a randomized experiment where treatment is assigned by flipping an unbiased coin for everybody.

$$\mathbb{P}(T=1 \mid X_1 >= 0) = \mathbb{P}(T=1 \mid X_1 < 0) = 0.5$$

Table 1: Proportion of tests rejected at level 0.05

2 Non-constant propensity score

Now, we have vastly different propensity scores:

$$\mathbb{P}(T = 1 \mid X_1 >= 0) = 0.1$$

$$\mathbb{P}(T = 1 \mid X_1 < 0) = 0.9$$

Table 2: Proportion of tests rejected at level 0.05

3 Non-constant propensity score, inconsistent fit

Assume the propensity scores from the previous section. Now, suppose instead of fitting the correct model for Y, we estimate \hat{Y} using only X_2 .

Unadjusted Permutation Test	0.998
Model-based Matching	1.000

Table 3: Proportion of tests rejected at level 0.05