Concours National Commun - Session 2002

Corrigé de l'épreuve des mathématiques II Filière MP

Étude de l'équation matricielle $Z-M^*ZM=S$ où ho(M)<1.

Corrigé par M.TARQI

$1^{\grave{e}re}$ partie

- 1. Soient $A=(a_{ij})_{1\leq i,j\leq n}$ et $B=(b_{ij})_{1\leq i,j\leq n}$ deux matrices de $\mathcal{M}_n(\mathbb{C})$ et $\lambda\in\mathbb{C}$.
 - On a $N_{\infty}(A) = 0$ si et seulement si $a_{ij} = 0$ pour tout couple (i, j), ou encore si et seulement si A = 0,

•
$$N_{\infty}(\lambda A) = \max_{1 \le i \le n} \sum_{j=1}^{n} |\lambda a_{ij}| = |\lambda| \max_{1 \le i \le n} \sum_{j=1}^{n} a_{ij}| = |\lambda| N_{\infty}(A),$$

• et on a aussi

$$\max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij} + b_{ij}| \le \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| + \max_{1 \le i \le n} \sum_{j=1}^{n} |b_{ij}|.$$

D'où

$$N_{\infty}(A+B) \le N_{\infty}(A) + N_{\infty}(B)$$

Donc N_{∞} est une norme sur $\mathcal{M}_n(\mathbb{C})$.

De même on a:

- N(A) = 0 si et seulement si $a_{ij} = 0$ pour tout couple (i, j), donc N(A) = 0 si et seulement si A = 0,
- $N(\lambda A) = \max_{1 \le i, j \le n} |\lambda a_{ij}| = |\lambda| \max_{1 \le i, j \le n} |a_{ij}| = |\lambda| N(A),$
- et l'inégalité :

$$\max_{1 \le i,j \le n} |a_{ij} + b_{ij}| \le \max_{1 \le i,j \le n} |a_{ij}| + \max_{1 \le i,j \le n} |b_{ij}|$$

entraîne

$$N(A+B) \leq N(A) + N(B)$$

Donc N est une norme sur $\mathcal{M}_n(\mathbb{C})$.

2. (a) Les composantes de AX sont $\sum_{i=1}^{n} a_{ij}x_j$ pour $1 \le i \le n$, donc

$$||AX||_{\infty} = \max_{1 \le i \le n} \left| \sum_{j=1}^{n} a_{ij} x_j \right| \le \max_{1 \le i \le n} |x_i| \max_{1 \le i \le n} \sum_{i=1}^{n} |a_{ij}| = N_{\infty}(A) ||X||_{\infty}.$$

(b) Soit
$$C = AB = (c_{ij})_{1 \le i,j \le n}$$
, on a $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$, et

$$N_{\infty}(C) = \max_{1 \le i \le n} \sum_{j=1}^{n} \left| \sum_{k=1}^{n} a_{ik} b_{kj} \right| \le \max_{1 \le i \le n} \sum_{j=1}^{n} \sum_{k=1}^{n} |a_{ik}| |b_{kj}|$$

$$\le \max_{1 \le i \le n} \sum_{k=1}^{n} \sum_{j=1}^{n} |a_{ik}| |b_{kj}| \le \max_{1 \le i \le n} \sum_{k=1}^{n} |a_{ik}| \sum_{j=1}^{n} |b_{kj}|$$

$$\le \max_{1 \le i \le n} \sum_{k=1}^{n} |a_{ik}| \max_{1 \le j \le n} \sum_{j=1}^{n} |b_{kj}| = N_{\infty}(A) N_{\infty}(B).$$

Cette inégalité n'est pas valable pour la norme N, comme le montre l'exemple des matrices $A=B=\left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right)$, en effet, on a :

$$N(AB) = N\left(\left(\begin{array}{cc} 2 & 2 \\ 2 & 2 \end{array}\right)\right) = 2 > N(A)N(B) = 1 \times 1.$$

3. (a) Puisque toutes les normes sont équivalentes dans $\mathcal{M}_n(\mathbb{C})$, il suffit de montrer que la suite $(BA_kC)_{k\in\mathbb{N}}$ converge vers BAC pour la norme N_∞ , en effet, pour tout $k\in\mathbb{N}$, on a :

$$N_{\infty}(BA_kC - BAC) = N_{\infty}(B(A_k - A)C) \le N_{\infty}(B)N_{\infty}(A_k - A)N_{\infty}(C),$$

comme la suite $(A_k)_{k\in\mathbb{N}}$ tend vers la matrice A, la suite $(BA_kC)_{k\in\mathbb{N}}$ tend vers la matrice BAC.

(b) Nous avons pour tout couple (i, j),

$$|a_{ij}^{(k)} - a_{ij}| \le N(A_k - A),$$

et on a aussi

$$N_{\infty}(A_k - A) \le n \max_{1 \le i,j \le n} \left| a_{ij}^{(k)} - a_{ij} \right|,$$

donc la suite $(A_k)_{k\in\mathbb{N}}$ converge vers A si et seulement si pour tout couple (i,j), la suite $(a_{ij}^{(k)})_{k\in\mathbb{N}}$ converge vers a_{ij} .

- (c) Il existe $D=\operatorname{diag}(\lambda_1,\lambda_2,...,\lambda_n)$ une matrice diagonale et P une matrice inversible telles que $M=PDP^{-1}$ et par suite suite pour tout $k\in\mathbb{N}$, $M^k=P\operatorname{diag}(\lambda_1^k,\lambda_2^k,...,\lambda_n^k)P^{-1}$, donc la suite $(M^k)_{k\in\mathbb{N}}$ converge si et seulement si pour i=1,2,..,n $|\lambda_i|<1$ ou encore $\rho(M)<1$.
- 4. (a) On a $T = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix} + \begin{pmatrix} 0 & \beta \\ 0 & 0 \end{pmatrix} = \alpha I_2 + N$ avec $N = \begin{pmatrix} 0 & \beta \\ 0 & 0 \end{pmatrix}$. Comme $I_2N = NI_2$, et $N^2 = 0$ alors la formule de binôme s'applique et pour tout

Comme $I_2N=NI_2$, et $N^2=0$ alors la formule de binôme s'applique et pour tout $k \in \mathbb{N}$,

$$T^{k} = \sum_{i=0}^{k} C_{k}^{i} \alpha^{k-i} N^{i} = \alpha^{k} I_{2} + k \alpha^{k-1} N = \begin{pmatrix} \alpha^{k} & k \alpha^{k-1} \beta \\ 0 & \alpha^{k} \end{pmatrix}.$$

Donc la suite $(T^k)_{k\in\mathbb{N}}$ converge si et seulement si $|\alpha|<1$ ou bien $\alpha=1$ et $\beta=0$.

(b) Si $M \in \mathcal{M}_2(\mathbb{C})$ est non diagonalisable, alors M admet une seule valeur propre α et il existe un scalaire $\beta \neq 0$ et une matrice inversible tels que

$$\forall k \in \mathbb{N}, \ M^k = P \begin{pmatrix} \alpha & \beta \\ 0 & \alpha \end{pmatrix}^k P^{-1},$$

donc la suite M^k converge si et seulement si $|\alpha|<1$, c'est-à-dire $\rho(M)<1$ et dans ce cas elle converge vers la matrice nulle.

- (c) D'après ce qui précède la suite $(M^k)_{k\in\mathbb{N}}$ converge vers la matrice nulle si et seulement si $\rho(M)<1$.
- 5. (a) Soit $X \in \mathcal{M}_{n,1}(\mathbb{C})$. On a $\|M^k X\|_{\infty} \leq N_{\infty}(M^k)\|X\|_{\infty}$, donc si la suite $(M^k)_{k \in \mathbb{N}}$ converge vers la matrice nulle, alors la suite de vecteurs $(M^k X)_{k \in \mathbb{N}}$ converge vers le vecteur nul.
 - (b) Soit $\lambda \in \operatorname{Sp}(M)$, alors il existe une vecteur X, non nul, tel que $MX = \lambda X$ et par conséquent pour tout $k \in \mathbb{N}$, $M^k X = \lambda^k X$, ainsi si $(M^k)_{k \in \mathbb{N}}$ converge vers la matrice nulle, la suite $(M^k X)_{k \in \mathbb{N}}$ converge vers le vecteur nul et par conséquent la suite géométrique de scalaires $(\lambda^k)_{k \in \mathbb{N}}$ converge vers 0 et donc $|\lambda| < 1$, d'où $\rho(M) < 1$.

$2^{\grave{e}me}$ partie

- 1. Il est clair que $(C^*SC)^* = C^*SC$ et que pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$, $X^*C^*SCX = (CX)^*S(CX) \ge 0$, donc la matrice C^*SC est symétrique et positive.
- 2. (a) On a $(UU^*)^* = UU^*$ pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$, $X^*UU^*X = \langle U^*X, U^*X \rangle \geq 0$, donc la matrice UU^* est symétrique et positive.
 - (b) Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$. Si $UU^*X=0$, alors $X^*UU^*X=$
 $U^*X,U^*X>=0$, et donc $U^*X=0$.

La réciproque est claire.

- (c) Si $UU^* = VV^*$, alors pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$, $UU^*X = VV^*X$, donc < U, X > U = < V, X > V et par la suite U et V sont colinéaires. Inversement si $V = \lambda U$, alors la condition $UU^* = VV^*$ entraı̂ne $|\lambda| = 1$, ainsi $UU^* = VV^*$ si et seulement si V = U ou V = -U.
- 3. (a) La matrice A étant symétrique à coefficients réels, donc elle est diagonalisable dans $\mathcal{M}_n(\mathbb{R})$. Le polynôme caractéristique A est $(X-a)(X^2-11x+24)$ donc les valeurs sont $\lambda_1=3$, $\lambda_2=8$ et $\lambda_3=a$.
 - (b) Notons E_{λ_i} le souse espace propre associé à la valeur propre λ_i (i=1,2,3). On a évidement $E_{\lambda_3}=\mathrm{Vect}\{U_3\}$ avec $U_3=\begin{pmatrix}0\\0\\1\end{pmatrix}$. Le vecteur $\begin{pmatrix}x\\y\\z\end{pmatrix}\in E_{\lambda_1}$ si et seulement si $\left\{ \begin{array}{l} 4x+2y=3x\\2x+7y=3y \end{array} \right.$, donc $E_3=\mathrm{Vect}\{U_1\}$ avec $U_1=\begin{pmatrix}\frac{-2}{\sqrt{5}}\\1\\0 \end{array} \right.$, de même le

$$\operatorname{vecteur} \left(\begin{array}{c} x \\ y \\ z \end{array} \right) \in E_{\lambda_2} \text{ si et seulement si } \left\{ \begin{array}{c} 4x + 2y = 8x \\ 2x + 7y = 8y \end{array} \right. \text{, donc } E_3 = \operatorname{Vect}\{U_2\} \text{ avec}$$

$$U_2 = \left(\begin{array}{c} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \\ 0 \end{array} \right).$$

On vérifie que la base $\mathcal{B} = (U_1, U_2, U_3)$ est bien orthonormée.

- (c) Posons $S = \lambda_1 U_1 U_1^* + \lambda_2 U_2 U_2^* + \lambda_3 U_3 U_3^*$, alors $S(U_i) = \lambda_i U_i$ pour i = 1, 2, 3, donc R et S coincident dans la base \mathcal{B} , donc elles sont égales.
- (d) A est positive si et seulement si ses valeurs propres sont positives c'est-à-dire $a \ge 0$, et elle est définie positive si et seulement si a > 0.
- 4. (a) D'après le théorème spectrale toute matrice symétrique à coefficients réels est daigonalisable dans une base orthonomée de vecteurs propres, d'où l'existence d'une telle base.

Posons $S = \sum_{i=1}^{n} \lambda_i \varepsilon_i \varepsilon_i$, alors pour tout j de $\{1, 2, ..., n\}$,

$$S\varepsilon_j = \sum_{i=1}^n \lambda_i \varepsilon_i \varepsilon_i^* \varepsilon_j = \sum_{i=1}^n \lambda_i < \varepsilon_i, \varepsilon_j > \varepsilon_i = \lambda_j < \varepsilon_j, \varepsilon_j > \varepsilon_j = \lambda_j \varepsilon_j = R\varepsilon_j$$

et donc S = R.

- (b) Les λ_i sont les valeurs propres de R et les ε_i sont les vecteurs propres respectivement associés aux λ_i .
- (c) La matrice A est positive si et seulement si ses valeurs propres sont positives, c'està-dire $\forall i, \lambda_i \geq 0$, et elle est définie positive si et seulement si $\forall i, \lambda_i > 0$.

5. D'après la question précédente il existe une base orthonormée $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_n)$ et des scalaires $\lambda_i \geq 0$ tels que $R = \sum_{i=1}^n \lambda_i \varepsilon_i \varepsilon_i^*$, donc si on pose $U = \sqrt{\lambda_i} \varepsilon_i$, on obtient l'égalité :

$$R = \sum_{i=1}^{n} U_i U_i^*.$$

6. Il est clair que si RX = 0, $X^*RX = 0$. Inversement, soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$ tel que $XRX^* = 0$, alors en utilisant la question précédente on obtient

$$XRX^* = \sum_{i=1}^n X^*U_iU_i^*X = \sum_{i=1}^n \langle U_i^*X, U_i^*X \rangle = 0,$$

donc pour tout i, $U_i^*X = 0$ est donc $U_iU_i^*X = 0$ et par suite $RX = \sum_{i=1}^n U_iU_i^*X = 0$.

$$3^{\grave{e}me}$$
 partie

A-

1. Soient $Z, Z' \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{R}$, alors

$$\varphi(Z + \lambda Z') = Z + \lambda Z' - M^*(Z + \lambda Z')M = \varphi(Z) + \lambda \varphi(Z'),$$

donc φ est un endomorphisme de $\mathcal{M}_n(\mathbb{K})$.

2. Soit $Z \in \ker \varphi$, alors $Z = M^*ZM$, donc l'égalité en question est vérifiée pour p = 1, supposons $Z = (M^*)^p ZM^p$ et en tenant compte de la relation $Z = M^*ZM$, on obtient

$$Z = (M^*)^p (M^* Z M) M^p = (M^*)^{p+1} Z M^{p+1},$$

d'où le résultat.

- 3. (a) M et M^* ont le même ensemble de valeurs propres et par conséquent $\rho(M^*) = \rho(M)$.
 - (b) Soit $Z \in \ker \varphi$. On a $\forall p \in \mathbb{N}$, $Z = (M^*)^p Z M^p$, et comme $\rho(M^*) = \rho(M) < 1$, alors les suites $(M^p)_{p \in \mathbb{N}^*}$ et $((M^*)^p)_{p \in \mathbb{N}^*}$ convergent vers 0, donc

$$Z = \lim_{p \to \infty} (M^*)^p Z M^p = 0,$$

ainsi φ est injective.

4. (a) φ est un endomorphisme de $\mathcal{M}_n(\mathbb{K})$ injective, donc il est surjective et par conséquent il existe une unique matrice $A \in \mathcal{M}_n(\mathbb{K})$ telle que

$$\varphi(Z) = Z - M^* Z M = B.$$

(b) L'égalité est vraie pour k=0, car $A-M^*AM=B$, supposons qu'elle est vraie pour k et montrons la pour k+1, en effet, on a :

$$(M^*)^k A M^k - (M^*)^{k+1} A M^{k+1} = (M^*)^k B M^k$$

en multipliant à gauche par M^{*} et à droite par M, on obtient l'égalité demandée pour k+1.

(c) L'égalité précédente montre que, pour tout $p \in \mathbb{N}$,

$$\sum_{k=0}^{p} \left[(M^*)^k A M^k - (M^*)^{k+1} A M^{k+1} \right] = \sum_{k=0}^{p} (M^*)^k B M^k$$

d'où

$$A - (M^*)^{p+1} A M^{p+1} = \sum_{k=0}^{p} (M^*)^k B M^k.$$

(d) D'après la question précédente, on a :

$$A - \sum_{k=0}^{p} (M^*)^k B M^k = (M^*)^{p+1} A M^{p+1}.$$

Cette égalité montre que la série $\sum_{k\in\mathbb{N}}(M^*)^kBM^k$ converge et de somme A, puisque on a $\lim_{p\to\infty}(M^*)^{p+1}BM^{p+1}=0$.

B-

- 1. (a) On a $\triangle M^* \triangle M = S$, donc par transposition $\triangle^* M^* \triangle^* M = S^* = S$ et par unicité $\triangle^* = \triangle$, donc \triangle est symétrique.
 - (b) On sait que $\triangle = \sum_{p=0}^{\infty} (M^*)^p SM^p$, donc pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$,

$$X^* \triangle X = \sum_{p=0}^{\infty} X^* (M^*)^p S M^p X = \sum_{p=0}^{\infty} ((M^p X)^*) S M^p X \ge 0.$$

Donc \triangle est une matrice positive.

(c) D'après la deuxième partie, on sait que $\triangle X=0$ si et seulement si $X^*\triangle X=0$. Soit maintenant $X\in\mathcal{M}_{n,1}(\mathbb{R})$ tel que $X^*\triangle X=0$, donc l'égalité

$$\triangle - M^* \triangle M = S$$

entraîne que

$$-(MX)^* \triangle MX = X^* \triangle X - (MX)^* \triangle MX = X^* SX \ge 0$$

et par conséquent $(MX)^* \triangle MX = 0$, donc $X^*SX = 0$ ou encore SX = 0. On fait le même raisonnement mais cette fois pour MX, puisque $(MX)^* \triangle MX = 0$, on obtient ainsi SMX = 0 et on poursuit le raisonnement par récurrence sur k.

Inversement, supposons que $\forall k \in \{0,1,...,n-1\}$ $SM^kX=0$, mais le théorème de Cayly-Hamilton montre que $M^n \in \text{Vect}\{I_n,M,...,M^{n-1}\}$, donc $SM^nX=0$, puis par récurrence on montre que pour tout entier naturel $k \geq n$, $SM^kX=0$. D'autre part, on a

$$\triangle X = \sum_{k=0}^{\infty} (M^*)^k S M^k X = 0.$$

D'où l'équivalence demandée.

- 2. (a) D'après la dernière question RX = 0 si et seulement si pour tout $k \in \{0, 1, ..., n-1\}$, $UU^*M^kX = 0$ ou encore $U^*M^kX = 0$, c'est-à-dire $< (M^*)^kU, X >= 0$.
 - (b) D'après ce qui précède R est positive. Supposons que $(U, M^*U, ..., M^{n-1}U)$ est libre et soit $X \in \mathcal{M}_n(\mathbb{R})$ tel que RX = 0, alors les conditions $< (M^*)^k U, X >= 0$ (k = 0, 1, ..., n 1) montrent que $X \in (\mathcal{M}_{n,1}(\mathbb{R}))^{\perp} = \{0\}$, donc X = 0 et par suite R est définie positive.

Inversement, soit $X \in (\operatorname{Vect}\{U, M^*U, ..., M^{n-1}U\})^{\perp}$, alors pour tout entier naturel $k \in \{0, 1, ..., n-1\}$, $<(M^*)^k U, X>=0$, donc X=0 car R est définie positive et par conséquent $(\operatorname{Vect}\{U, M^*U, ..., M^{n-1}U\})^{\perp} = \{0\}$, c'est-à-dire $\mathcal{M}_{n,1}(\mathbb{R}) = \operatorname{Vect}\{U, M^*U, ..., M^{n-1}U\}$ et ceci montre que la famille $\{U, M^*U, ..., M^{n-1}U\}$ est une base de $\mathcal{M}_{n,1}(\mathbb{R})$.

3. (a) i. Soit $k \in \{1, 2, ..., n\}$. On a d'abord $C^*E_1 = a_0E_n$ et pour tout $k \ge 2$, on a :

ii. $C^*E_n - E_{n-1} = E_{n-1} + a_{n-1}E_n - E_{n-1} = a_{n-1}E_n \in \text{Vect}\{E_n\}$. Supposons la propriété est vraie à l'ordre k avec $p \le n-2$, alors $(C^*)^pE_n - E_{n-p} = \sum_{i=1}^p \alpha_i E_{n-i+1}$, donc

$$(C^*)^{p+1}E_n - E_{n-p-1} = C^* \left[\sum_{i=1}^p \alpha_i E_{n-i+1} + E_{n-p} \right] - E_{n-p-1}$$

$$= \sum_{i=1}^p \alpha_i C^* E_{n-i+1} + C^* E_{n-p} - E_{n-p-1}$$

$$= \sum_{i=1}^p \alpha_i (E_{n-i} + a_{n-i}E_n) + E_{n-p-1} + a_{n-p-1}E_n - E_{n-p-1}$$

$$= \sum_{i=1}^p \alpha_i (E_{n-i} + a_{n-i}E_n) + a_{n-p-1}E_n$$

Donc $\mathcal{B} = (U_1, U_2, U_3) \in \text{Vect}\{E_{n-p}, ..., E_n\}.$

iii. La matrice représentant le système de vecteurs $(E_n, C^*E_n, ..., (C^*)^{n-1}E_n)$ dans la base \mathcal{B} s'écrit sous la forme

$$\begin{pmatrix} 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & \dots & 1 & * \\ & & & & \vdots \\ 1 & * & * & * \\ 1 & * & \dots & * & * \end{pmatrix}$$

donc elle est inversible et par conséquent la famille $(E_n, C^*E_n, ..., (C^*)^{n-1}E_n)$ est une base de $\mathcal{M}_{n,1}(\mathbb{R})$.

(b) D'après la question **B-2.(b)** de cette partie Ω est définie positive.

(c) On a
$$U \in \mathcal{M}_{n,1}(\mathbb{R}) = \operatorname{Vect}\{E_n, C^*E_n, ..., (C^*)^{n-1}E_n\}$$
, donc il existe des scalaires $\alpha_0, \alpha_1, ..., \alpha_n$ tels que $U = \sum\limits_{i=0}^{n-1} \alpha_i(C^*)^i E_n$, donc $U = Q(C^*)E_n = (Q(C))^*E_n$ avec $Q(X) = \sum\limits_{i=0}^{n-1} \alpha_i X^i$.

Nous avons $UU^*=(Q(C))^*E_nE_n^*Q(C)$, donc en multipliant l'égalité $\Omega-C^*\Omega C=E_nE_n^*$, à gauche par $(Q(C))^*$ et à droite par Q(C), on obtient

$$(Q(C))^*\Omega Q(C) - (Q(C))^*C^*\Omega CQ(C) = (Q(C))^*E_nE_n^*Q(C) = UU^*$$

et comme C et Q(C) commutent alors :

$$(Q(C))^*\Omega Q(C) - C^*[(Q(C))^*\Omega Q(C)]C = (Q(C))^*E_nE_n^*Q(C)C = UU^*$$
 donc par unicité, on a nécessaiteemnt $R = (Q(C))^*\Omega Q(C)$.

(d) Il est clair que si $\triangle = \sum_{i=1}^{n} (Q_i(C))^* \Omega Q_i(C)$, alors $\triangle - C^* \triangle C$ est symétrique et positive.

Inversement, Supposons $S=\Delta-C^*\Delta C$ est symétrique et positive, posons alors $S=\sum\limits_{i=1}^n U_iU_i^*$. Pour chaque $i\in\{1,2,...,n\}$ il existe un polynôme Q_i de degré inférieure ou égal à n-1 tel que $R_i=(Q_i(C))^*\Omega Q_i(C)$ et $R_i-C^*R_iC^*=U_iU_i$. Donc $\sum\limits_{i=1}^n R_i-C^*(\sum\limits_{i=1}^n R_i)C=\sum\limits_{i=1}^n U_iU_i^*=S$, donc, toujours par l'unicité de Δ , on a

$$\Delta = \sum_{i=1}^{n} R_i = \sum_{i=1}^{n} (Q_i(C))^* \Omega Q(C).$$

• • • • • • • • • • •

M.Tarqi-Centre Ibn Abdoune des classes préparatoires-Khouribga. Maroc E-mail : medtarqi@yahoo.fr