************	********

MONTE CARLO EXPERIMENT # ************************************	4.000

**************************************	********
****************	********
Values of the structural parameters	
Fixed cost firm 1 =	-1.900
Fixed cost firm $2 =$	-1.800
Fixed cost firm 3 =	-1.700
Fixed cost firm $4 =$	-1.600
Fixed cost firm 5 =	-1.500
Parameter of market size (theta_rs) =	1.000
Parameter of market size (theta_rs) = Parameter of competition effect (theta_rn) = Entry cost (theta_ec) =	1.000 0.0000
Discount factor =	0.9500
Std. Dev. epsilons =	1.000
	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
BEST RESPONSE MAPPING ITERATIONS Best response mapping iteration =	
Convergence criterion = 1000.	•
Best response mapping iteration = Convergence criterion = 0.9412	2.000
Best response mapping iteration = Convergence criterion = 0.2406	
Best response mapping iteration = Convergence criterion = 0.07843	4.000
Best response mapping iteration = Convergence criterion = 0.02782	
Best response mapping iteration = Convergence criterion = 0.01126	6.000
Best response mapping iteration = Convergence criterion = 0.004470	7.000
Best response mapping iteration = Convergence criterion = 0.001788	8.000
Best response mapping iteration = Page 1	9.000

Convergence criterion	= 0.0007131	
Best response mapping Convergence criterion		10.00
Best response mapping Convergence criterion		11.00
Best response mapping Convergence criterion		12.00
Best response mapping Convergence criterion		13.00
Best response mapping Convergence criterion		14.00

CONVERGENCE		15.00 BES	T RESPONSE ITERATIONS
	PROBABILITIES		
0.1880	0.2052	0.2236	0.2434
0.2644 0.1880	0.2052	0.2236	0.2434
0.2644 0.1880	0.2052	0.2236	0.2434
0.2644 0.1880	0.2052	0.2236	0.2434
0.2644 0.1880	0.2052	0.2236	0.2434
0.2644 0.1880	0.2052		0.2434
0.2644			
0.1880 0.2644	0.2052		
0.1880 0.2644	0.2052		
0.1880 0.2644	0.2052	0.2236	0.2434
0.1880 0.2644	0.2052	0.2236	0.2434
0.1880 0.2644	0.2052	0.2236	0.2434
0.1880 0.2644	0.2052	0.2236	0.2434
0.1880	0.2052	0.2236	0.2434
0.2644 0.1880	0.2052	0.2236	0.2434
0.2644 0.1880	0.2052	0.2236	0.2434
0.2644 0.1880	0.2052	0.2236	0.2434
		Page 2	

0.0644			
0.2644	0.2052	0.2236	0.2434
0.2644	0.2052	0.2236	0.2434
0.2644	0.2052	0.2236	0.2434
0.2644 0.1880	0.2052	0.2236	0.2434
0.2644 0.1880	0.2052	0.2236	0.2434
0.2644 0.1880	0.2052	0.2236	0.2434
0.2644 0.1880	0.2052	0.2236	0.2434
0.2644 0.1880	0.2052	0.2236	0.2434
0.2644 0.1880	0.2052	0.2236	0.2434
0.2644 0.1880	0.2052	0.2236	0.2434
0.2644 0.1880	0.2052	0.2236	0.2434
0.2644 0.1880	0.2052	0.2236	0.2434
0.2644 0.1880	0.2052	0.2236	0.2434
0.2644 0.1880	0.2052	0.2236	0.2434
0.2644 0.1880	0.2052	0.2236	0.2434
0.2644 0.1880	0.2052	0.2236	0.2434
0.2644 0.3213	0.3458	0.3713	0.3977
0.4249 0.3213	0.3458	0.3713	0.3977
0.4249 0.3213	0.3458	0.3713	0.3977
0.4249 0.3213	0.3458	0.3713	0.3977
0.4249 0.3213	0.3458	0.3713	0.3977
0.4249 0.3213	0.3458	0.3713	0.3977
0.4249 0.3213	0.3458	0.3713	0.3977
0.4249 0.3213	0.3458	0.3713	0.3977
0.4249 0.3213	0.3458	0.3713	0.3977
0.4249 0.3213	0.3458	0.3713	0.3977
0.4249		, 	

Page 3

0.3213 0.4249	0.3458	0.3713	0.3977
0.4249 0.3213 0.4249	0.3458	0.3713	0.3977
0.3213	0.3458	0.3713	0.3977
0.4249 0.3213	0.3458	0.3713	0.3977
0.4249 0.3213	0.3458	0.3713	0.3977
0.4249 0.3213	0.3458	0.3713	0.3977
0.4249 0.3213	0.3458	0.3713	0.3977
0.4249 0.3213	0.3458	0.3713	0.3977
0.4249 0.3213	0.3458	0.3713	0.3977
0.4249 0.3213	0.3458	0.3713	0.3977
0.4249 0.3213	0.3458	0.3713	0.3977
0.4249 0.3213	0.3458	0.3713	0.3977
0.4249 0.3213	0.3458	0.3713	0.3977
0.4249 0.3213	0.3458	0.3713	0.3977
0.4249 0.3213	0.3458	0.3713	0.3977
0.4249 0.3213	0.3458	0.3713	0.3977
0.4249 0.3213	0.3458	0.3713	0.3977
0.4249 0.3213	0.3458	0.3713	0.3977
0.4249 0.3213	0.3458	0.3713	0.3977
0.4249 0.3213	0.3458	0.3713	0.3977
0.4249 0.3213	0.3458	0.3713	0.3977
0.4249 0.3213	0.3458	0.3713	0.3977
0.4249 0.4944	0.5217	0.5489	0.5759
0.6024 0.4944	0.5217	0.5489	0.5759
0.6024 0.4944	0.5217	0.5489	0.5759
0.6024 0.4944	0.5217	0.5489	0.5759
0.6024 0.4944	0.5217	0.5489	0.5759
	Page	e 4	

Page 4

0 6004			
0.6024 0.4944	0.5217	0.5489	0.5759
0.6024 0.4944	0.5217	0.5489	0.5759
0.6024 0.4944	0.5217	0.5489	0.5759
0.6024 0.4944	0.5217	0.5489	0.5759
0.6024 0.4944	0.5217	0.5489	0.5759
0.6024 0.4944	0.5217	0.5489	0.5759
0.6024 0.4944	0.5217	0.5489	0.5759
0.6024		0.5489	
0.4944 0.6024	0.5217		0.5759
0.4944 0.6024	0.5217	0.5489	0.5759
0.4944 0.6024	0.5217	0.5489	0.5759
0.4944 0.6024	0.5217	0.5489	0.5759
0.4944 0.6024	0.5217	0.5489	0.5759
0.4944 0.6024	0.5217	0.5489	0.5759
0.4944 0.6024	0.5217	0.5489	0.5759
0.4944 0.6024	0.5217	0.5489	0.5759
0.4944	0.5217	0.5489	0.5759
0.6024 0.4944	0.5217	0.5489	0.5759
0.6024 0.4944	0.5217	0.5489	0.5759
0.6024 0.4944	0.5217	0.5489	0.5759
0.6024 0.4944	0.5217	0.5489	0.5759
0.6024 0.4944	0.5217	0.5489	0.5759
0.6024 0.4944	0.5217	0.5489	0.5759
0.6024 0.4944	0.5217	0.5489	0.5759
0.6024 0.4944	0.5217	0.5489	0.5759
0.6024 0.4944	0.5217	0.5489	0.5759
0.6024 0.4944	0.5217	0.5489	0.5759
0.6024	J. J21 /	3.3103	0.0700

Page 5

0.4944 0.6024	0.5217	0.5489	0.5759
0.6810 0.7655	0.7037	0.7254	0.7460
0.6810 0.7655	0.7037	0.7254	0.7460
0.6810 0.7655	0.7037	0.7254	0.7460
0.6810 0.7655	0.7037	0.7254	0.7460
0.6810 0.7655	0.7037	0.7254	0.7460
0.6810 0.7655	0.7037	0.7254	0.7460
0.6810 0.7655	0.7037	0.7254	0.7460
0.6810 0.7655	0.7037	0.7254	0.7460
0.6810 0.7655	0.7037	0.7254	0.7460
0.6810 0.7655	0.7037	0.7254	0.7460
0.6810 0.7655	0.7037	0.7254	0.7460
0.6810 0.7655	0.7037	0.7254	0.7460
0.6810 0.7655	0.7037	0.7254	0.7460
0.6810 0.7655	0.7037	0.7254	0.7460
0.6810 0.7655	0.7037	0.7254	0.7460
0.6810 0.7655	0.7037	0.7254	0.7460
0.6810 0.7655	0.7037	0.7254	0.7460
0.6810 0.7655	0.7037	0.7254	0.7460
0.6810 0.7655	0.7037	0.7254	0.7460
0.6810 0.7655	0.7037	0.7254	0.7460
0.6810 0.7655	0.7037	0.7254	0.7460
0.6810 0.7655	0.7037	0.7254	0.7460
0.6810 0.7655	0.7037	0.7254	0.7460
0.6810 0.7655	0.7037	0.7254	0.7460
0.6810 0.7655	0.7037	0.7254	0.7460
0.6810	0.7037 Page	0.7254	0.7460

Page 6

0 8655			
0.7655 0.6810	0.7037	0.7254	0.7460
0.7655 0.6810	0.7037	0.7254	0.7460
0.7655 0.6810	0.7037	0.7254	0.7460
0.7655 0.6810	0.7037	0.7254	0.7460
0.7655 0.6810	0.7037	0.7254	0.7460
0.7655 0.6810 0.7655	0.7037	0.7254	0.7460
0.7635 0.8344 0.8839	0.8482	0.8610	0.8729
0.8344 0.8839	0.8482	0.8610	0.8729
0.8334	0.8482	0.8610	0.8729
0.8334	0.8482	0.8610	0.8729
0.8334	0.8482	0.8610	0.8729
0.8344 0.8839	0.8482	0.8610	0.8729
0.8344 0.8839	0.8482	0.8610	0.8729
0.8344 0.8839	0.8482	0.8610	0.8729
0.8344 0.8839	0.8482	0.8610	0.8729
0.8334	0.8482	0.8610	0.8729
0.8334	0.8482	0.8610	0.8729
0.8334	0.8482	0.8610	0.8729
0.8344	0.8482	0.8610	0.8729
0.8344	0.8482	0.8610	0.8729
0.8344	0.8482	0.8610	0.8729
0.8344	0.8482	0.8610	0.8729
0.8344	0.8482	0.8610	0.8729
0.8344 0.8839	0.8482	0.8610	0.8729
0.8344 0.8839	0.8482	0.8610	0.8729
0.8344 0.8839	0.8482	0.8610	0.8729
0.0000			

Page 7

0.83		0.8482	0.8610	0.8729	
0.88 0.83		0.8482	0.8610	0.8729	
0.88		0.8482	0.8610	0.8729	
0.88	339				
0.83		0.8482	0.8610	0.8729	
0.83	344	0.8482	0.8610	0.8729	
0.88 0.83		0.8482	0.8610	0.8729	
0.88	339				
0.83 0.88		0.8482	0.8610	0.8729	
0.83	344	0.8482	0.8610	0.8729	
0.88		0.8482	0.8610	0.8729	
0.88		0.0402	0.0010	0.0129	
0.83		0.8482	0.8610	0.8729	
0.88 0.83		0.8482	0.8610	0.8729	
0.88	339				
0.83		0.8482	0.8610	0.8729	
BASED ON TABLE 2 OF	5.000e+004 THE PAPER AGU	FROM THE EQUIL OBSERVATIONS JIRREGABIRIA A	ND MIRA (2007)	******	*****
(1)	Average numbe	er of active f	irms = 	2.735	
(2)	Std. Dev. num	mber of firms	=	1.513	
(3)	Regression N	[t] on N[t-1]	=	0.5322	
 (4) 	Average numbe	er of entrants	=	0.9948	
(5)	Average numbe	er of exits	=	0.9890	

```
(6) Excess turnover (in # of firms) = 0.8696
      (7) Correlation entries and exits =
      (8) Frequencies of being active =
         0.5035
         0.5266
         0.5483
         0.5658
         0.5913
*****************************
      MONTE CARLO EXPERIMENT #
******************************
    Replication =
                           1.000
               Simulations of x's and a's
        (a)
        (b.1)
               Estimation of initial CCPs (Non-Parametric)
        (b, 2)
               NPL algorithm using frequency estimates as initial CCPs
               Estimation of initial CCPs (Semi-Parametric: Logit)
        (c.1)
               NPL algorithm using Logit estimates as initial CCPs
        (c.2)
               Estimation of initial CCPs (Completely Random)
        (d.1)
        (d.2)
               NPL algorithm using U(0,1) random draws as initial CCPs
        (e)
               NPL algorithm using true values as initial CCPs
    Replication =
                         2.00000
               Simulations of x's and a's
        (a)
        (b.1)
               Estimation of initial CCPs (Non-Parametric)
        (b.2)
               NPL algorithm using frequency estimates as initial CCPs
               Estimation of initial CCPs (Semi-Parametric: Logit)
        (c.1)
        (c.2)
               NPL algorithm using Logit estimates as initial CCPs
        (d.1)
               Estimation of initial CCPs (Completely Random)
        (d.2)
               NPL algorithm using U(0,1) random draws as initial CCPs
               NPL algorithm using true values as initial CCPs
        (e)
    Replication =
                         999.000
        (a)
               Simulations of x's and a's
        (b.1)
               Estimation of initial CCPs (Non-Parametric)
        (b.2)
               NPL algorithm using frequency estimates as initial CCPs
        (c.1)
               Estimation of initial CCPs (Semi-Parametric: Logit)
        (c.2)
               NPL algorithm using Logit estimates as initial CCPs
               Estimation of initial CCPs (Completely Random)
        (d.1)
               NPL algorithm using U(0,1) random draws as initial CCPs
        (d.2)
        (e)
               NPL algorithm using true values as initial CCPs
    Replication =
                         1000.00
        (a)
               Simulations of x's and a's
```

- (b.1) Estimation of initial CCPs (Non-Parametric)
- (b.2) NPL algorithm using frequency estimates as initial CCPs
- (c.1) Estimation of initial CCPs (Semi-Parametric: Logit)
- (c.2) NPL algorithm using Logit estimates as initial CCPs
- (d.1) Estimation of initial CCPs (Completely Random)
- (d.2) NPL algorithm using U(0,1) random draws as initial CCPs
- (e) NPL algorithm using true values as initial CCPs

Number of Re-drawings due to Multicollinearity = 0.000000

EMPIRICAL MEANS AND STANDARD ERRORS

S.E. NPL-Freq

TABLE 4 OF THE PAPER AGUIRREGABIRIA AND MIRA (2007)

	theta_fc_1	theta_rs	theta_rn	theta_ec
TRUE VALUES		1.00000	1.00000	0.000000
MEAN 2step-True				
MEDIAN 2step-True	-1.90959	1.00340	0.991762	0.00121757
S.E. 2step-True	0.516520	0.331523	1.35003	0.111337
MEAN 2step-Freq	-0.916849	0.330050	0.102813	0.237531
MEDIAN 2step-Freq	-0.915114	0.331320	0.0949388	0.236495
	0.238733			
	-1.90888			
MEDIAN NPL-Freq	-1.95455	0.979689	0.849147	0.000351669

0.536969 0.318883 1.32343

0.108562

MEAN 2step-Logit	-2.08042	0.889536	0.525217	-0.00344358
MEDIAN 2step-Logit	-2.09910	0.881133	0.500104	0.000126992
<u>.</u> 5	0.439715		1.07328	
MEAN NPL-Logit	-1.90649			-0.00268923
MEDIAN NPL-Logit	-1.94298	0.986571	0.915117	0.000867003
5	0.490378		1.20559	
MEAN 2step-Random				-0.00344358
MEDIAN 2step-Rando	-2.09910	0.881133	0.500104	0.000126992
S.E. 2step-Random	0.439715	0.263955	1.07328	0.110223
MEAN NPL-Random	-1.90466			-0.00269832
MEDIAN NPL-Random	-1.94198	0.988743	0.923940	0.000568465
S.E. NPL-Random	0.481617	0.284053	1.16735	0.108016

SQUARE-ROOT MEAN SQUARE ERRORS

RATIOS OVER THE SQUARE-ROOT MSE OF THE 2-STEP PML USING THE TRUE CCPs

TABLE 5 OF THE PAPER AGUIRREGABIRIA AND MIRA (2007)

	theta_fc_1	theta_rs	theta_rn	theta_ec
Q-MSE 2-step-TRUE	0.516522	0.331578	1.35010	0.111373
RATIO: 2step-Freq				
RATIO: NPL-Freq	1.03973	0.961836	0.980383	0.975113
ATIO: 2step-Logit	0.920176	0.862956	0.869273	0.990153
RATIO: NPL-Logit	0.949468	0.886348	0.893007	0.973094
ATIO: 2step-Rando	0.891265	0.777017	0.769342	1.00646
RATIO: NPL-Random	0.932467	0.856722	0.864687	0.97015