1 Non-dimensional Forms

The IAPWS-95 document possesses a table the summarizes the Helmholtz free energy function's relationships to a number of thermodynamic properties. These relationships, as programmed into the WP, are a bit different from those documented since constant, scalar non-dimensional properties are preferable and desired. The table below summarizes the relations from the IAPWS and those used in the WP.

	Table 1:	WAND D. I
Property	IAPWS-95 Relation	WP Relation
Pressure	$\frac{P}{R\rho T} = 1 + \delta \frac{\partial \phi^{\mathrm{r}}}{\partial \delta}$	$\frac{P}{R\rho_{\rm c}T_{\rm c}} = \left[1 + \delta \frac{\partial \phi^{\rm r}}{\partial \delta}\right] \frac{\delta}{\tau}$
Internal Energy	$\frac{i}{RT} = \tau \frac{\partial \phi}{\partial \tau}$	$\frac{i}{R T_{\rm c}} = \frac{\partial \phi}{\partial \tau}$
Entropy	$\frac{s}{R} = \tau \frac{\partial \phi}{\partial \tau} - \phi$	$\frac{s}{R} = \tau \frac{\partial \phi}{\partial \tau} - \phi$
Enthalpy	$\frac{h}{RT} = 1 + \tau \frac{\partial \phi}{\partial \tau} + \delta \frac{\partial \phi^{\mathbf{r}}}{\partial \delta}$	$\frac{h}{RT_{\rm c}} = \frac{1}{\tau} \left[1 + \tau \frac{\partial \phi}{\partial \tau} + \delta \frac{\partial \phi^{\rm r}}{\partial \delta} \right]$