Ι. Λ. ΒομβορίδηςΚαθηγητής Ε. Μ. Πολυτεχνείου

ΤΥΠΟΛΟΓΙΟ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΠΕΔΙΩΝ

ПЕРІЕХОМЕНА

Μονάδες Διεθνούς Συστήματος (SI)	1
Ηλεκτρικά φορτία και ρεύματα, Νόμος διατήρησης ηλεκτρικού φορτίου	6
Στατικά ηλεκτρικά πεδία, Νόμος του <i>Gauss</i>	8
Στατικά μαγνητικά πεδία, Νόμος του Ampere, Νόμος του Faraday	10
Χρονομεταβλητά πεδία, Εξισώσεις Maxwell	12
Ενέργεια και Ισχύς, Δυνάμεις και Ροπές	14
Πεδία σε μη συνήθη υλικά	15
Δυναμικά $m{\Phi}$, Α και $m{\Phi}_m$	17
Διατάξεις οριακών τιμών, Κατοπτρισμός, Αριθμητικές μέθοδοι	20
Χωρισμός μεταβλητών	25
Διανύσματα	28
Συστήματα συντεταγμένων	29
Διαφορικοί τελεστές	33

Μονάδες SI Ηλεκτρομαγνητισμού και Μηχανικής

Μονάδες SI Ηλεκτρομαγνητισ Ονομασία	Σύμβολο	Μονάδες	Ισοδύναμες μονάδες	Ονομασία μονάδων
Θέση	r	m		metre
Απόσταση, εν γένει	ℓ, a, b, h	m		metre
», κατά μήκος άξονα	x, y, z	m		
», από άξονα z, μεταξύ αξόνων	r_T , R_T	m		
», από αρχή αξόνων, από σημείο	r, R	m		
Εμβαδό	S	m^2		
Όγκος	V	m^3		
Μήκος κύματος	λ	m		
Κυματαριθμός, σταθερά διάδοσης	β, k	m^{-1}		
Χρόνος	t	sec		second
Περίοδος, Χαρακτηριστικός χρόνος	T	sec		second
Συχνότητα	f, v	Hz		Hertz
», κυκλική	ω	sec^{-1}		
Μάζα	m	kg	$10^{3} {\rm g}$	kilogram
Ταχύτητα	V	m/sec		
», Φωτός στο κενό, σε υλικό	c, c_{ε}	m/sec		
Δύναμη	F	N	kgm/sec ²	Newton
Ροπή (μηχανική)	T	Nm	J	
Πίεση	р	Pa	$N/m^2 = 10^{-5} bar$	Pascal
Ενέργεια, Έργο	\overline{W}	J	Nm = Wsec	Joule
Ισχύς	P	W	J/sec	Watt
Ηλεκτρικό φορτίο, Σημειακό	q	С	sec	Coulomb
», Χωρική πυκνότητα	ρ	C/m ³		
», Επιφανειακή πυκνότητα	σ	C/m ²		
», Γραμμική πυκνότητα	λ	C/m		
», Ολικό	Q	С		Coulomb
Ηλεκτρικό ρεύμα, Νηματοειδές	i	A	C/sec	Ampere
», Χωρική πυκνότητα	J	A/m^2		1
», Επιφανειακή πυκνότητα	K	A/m		
», Ολικό	I	A		Ampere
Ένταση ηλεκτρικού πεδίου	E	V/m		1
Ένταση μαγνητικού πεδίου	Н	A/m		
Πυκνότητα ηλεκτρικής ροής	D	C_{1}		
ή, Διηλεκτρική μετατόπιση	D	C/m ²		
Πυκνότητα μαγνητικής ροής,	D	Wb/m ²		
ή, Μαγνητική επαγωγή	В	=T		Tesla
Αγωγιμότητα, Ειδική	g	S/m		
Ηλεκτρική διπολική ροπή, Σημειακή	р	Cm		
», Χωρική πυκνότητα, Πόλωση	P	C/m ²		
», Επιφανειακή πυκνότητα	\mathbf{p}_S	C/m		
», Γραμμική πυκνότητα	\mathbf{p}_{ℓ}	С		Coulomb
Επιτρεπτότητα, Κενού	ε_0	F/m		
», Υλικού	ε	F/m		
», Σχετική (διηλεκτρική σταθερά)	\mathcal{E}_r	_		

(Συνεχίζεται)

(Μονάδες SI Ηλεκτρομαγνητισμού και Μηχανικής: Συνέχεια Πίνακα)

Ονομασία	Σύμβολο	Μονάδες	Ισοδύναμες μονάδες	Ονομασία μονάδων
Μαγνητική διπολική ροπή, Σημειακή	m	Am ²	•	
», Χωρική πυκνότητα, Μαγνήτιση	M	A/m		
», Επιφανειακή πυκνότητα	\mathbf{m}_S	A		Ampere
», Γραμμική πυκνότητα	\mathbf{m}_ℓ	Am		
Μαγνητική διαπερατότητα, Κενού	μ_0	H/m		
», Υλικού	μ	H/m		
», Σχετική	μ_r	_		
Ηλεκτρική ροή	Ψ_e	С		Coulomb
Μαγνητική ροή	Ψ_m	Wb	Vsec	Weber
Ηλεκτρεγερτική δύναμη	e_e	V		Volt
Μαγνητεγερτική δύναμη	e_m	Α		Ampere
Τάση	U	V	J/C = W/A	Volt
Αντίσταση	R	Ω	V/A	Ohm
», Σύνθετη κενού	Z_0	Ω		Ohm
Αγωγιμότητα	G	S	$1/\Omega$	Siemens
Χωρητικότητα	С	F		Farad
Αυτεπαγωγή	L	Н		Henri
Ενέργεια ηλεκτρομαγνητική	W_{em}	J	Nm =Wsec	Joule
», Χωρική πυκνότητα	W_{em}	J/m ³		
Ισχύς ηλεκτρομαγνητική	P_{em}	W	J/sec = VA	Watt
», Πυκνότητα ή, Διάνυσμα <i>Poynting</i>	N	W/m ²		
Μετατρεπόμενη ισχύς	$P_{\mu ext{et}}$	W		Watt
», Χωρική πυκνότητα	$p_{\mu arepsilon au}$	W/m ³		
Δύναμη, Ηλεκτρομαγνητική	\mathbf{F}_{em}	N		Newton
», Χωρική πυκνότητα	\mathbf{f}_{em}	N/m ³		
Ηλεκτρομαγνητική τάση	T	N/m^2		
(στοιχείο <i>i</i> , <i>j</i>)	$T_{em,ij}$	18/111		
Ηλεκτροστατικό δυναμικό,	Φ	V		Volt
Βαθμωτό δυναμικό	Ψ			v Oii
Διανυσματικό δυναμικό	A	Wb/m	T⋅m	
Βαθμωτό μαγνητικό δυναμικό	Φ_m	A		Ampere

Για τις ακόλουθες ποσότητες χρησιμοποιείται το ίδιο σύμβολο, αλλά με διαφορετικό περιεχόμενο:

- ο *m* Μάζα (βαθμωτή ποσότητα)
 - **m** Μαγνητική διπολική ροπή (διανυσματική ποσότητα)
- ο Τ Περίοδος, ή, Χαρακτηριστικός χρόνος (βαθμωτή ποσότητα)
 - Τ Ροπή (διανυσματική ποσότητα)

 $T_{em,ij}$ Ηλεκτρομαγνητική τάση (τανυστική ποσότητα)

[Επίσης, με Τ συμβολίζεται και η απόλυτος θερμοκρασία, σε Κ (Kelvin).]

- ο λ Μήκος κύματος [m] (βαθμωτή ποσότητα)
 - λ Γραμμική πυκνότητα ηλεκτρικού φορτίου [C/m] (επίσης βαθμωτή ποσότητα)
- ο p Πίεση [Pa] (βαθμωτή ποσότητα)
 - p Χωρική πυκνότητα ισχύος [W/m³] (π.χ., $p_{μετ}$, επίσης βαθμωτή ποσότητα)
 - p Ηλεκτρική διπολική ροπή (διανυσματική ποσότητα)

Ι. Λ. Βομβορίδης

Προθέματα μονάδων

Υποπο	Υποπολλαπλάσια προθέματα				
Ονομασία	Σύμβολο	Τιμή			
deci	d	10^{-1}			
centi	c	10^{-2}			
milli	m	10^{-3}			
micro	μ	10^{-6}			
nano	n	10^{-9}			
pico	p	10^{-12}			
femto	f	10^{-15}			
atto	a	10^{-18}			

Πολλαπλάσια προθέματα			
Ονομασία	Σύμβολο	Τιμή	
deca	D	10 ⁺¹	
hecto	Н	10 ⁺²	
kilo	k	10 ⁺³	
mega	M	10 ⁺⁶	
giga	G	10 ⁺⁹	
tera	Т	10 ⁺¹²	

- Μόνο ένα πρόθεμα το πολύ μπορεί να χρησιμοποιηθεί πριν από μία μονάδα.
- Η μονάδα μάζας (kg) ορίζεται με ενσωματωμένο το πρόθεμα kilo, και συνδέεται με τη μονάδα gram (θεμελιώδη στο σύστημα cgs), με 10^{-3} kg = 1 g.
- Τυχόν εκθέτες στις μονάδες αναφέρονται στο σύμπλεγμα (πρόθεμα + μονάδα), και όχι μόνο στη μονάδα.
- Τα σύμβολα m και T, όταν ακολουθούνται από μονάδες, αντιπροσωπεύουν τα προθέματα milli και tera, αντίστοιχα (και όχι τις μονάδες metre και Tesla).

Τιμές παγκόσμιων σταθερών (στο σύστημα SI)

Μαγνητική διαπερατότητα κενού	$ μ_0 = 4π × 10^{-7} \text{ H/m (ορισμός)} \approx 1,256 637 × 10^{-6} \text{ H/m} $
Επιτρεπτότητα κενού	$\varepsilon_0 = 1/\mu_0 c^2 \approx 8,854185 \times 10^{-12} \mathrm{F/m}$
Ταχύτητα φωτός στο κενό	$c = (\varepsilon_0 \mu_0)^{-\frac{1}{2}} \approx 2,997925 \times 10^8 \text{ m/sec}$
Σύνθετη αντίσταση κενού	$Z_0 = (\mu_0/\varepsilon_0)^{1/2} = \mu_0 c \approx 3,767304 \times 10^2 \ \Omega \approx 120\pi \ \Omega$
Στοιχειώδες ηλεκτρικό φορτίο	$e \approx 1,602192 \times 10^{-19}\mathrm{C}$
Μάζα ηρεμίας ηλεκτρονίου	$m_e \approx 9,109558 \times 10^{-31} \text{ kg}$
Μάζα ηρεμίας πρωτονίου	$m_p \approx 1,672614 \times 10^{-27}\mathrm{kg}$
Μάζα ηρεμίας νετρονίου	$m_n \approx 1,674920 \times 10^{-27}\mathrm{kg}$
Μονάδα μαζικού αριθμού	$u \approx 1,660531 \times 10^{-27}\mathrm{kg}$
Σταθερά του Avogadro	$N_A \approx 6,022\ 169 \times 10^{23}\ \text{mol}^{-1}$
Παγκόσμια σταθερά των αερίων	$R \approx 8.31434 \times 10^{23} \text{ JK}^{-1} \text{mol}^{-1}$
Σταθερά του Boltzmann	$K_B = R/N_A \approx 1,380 622 \times 10^{-23} \text{ JK}^{-1} \approx 1 \text{ eV}/(11 605 \text{ K})$
Σταθερά του Planck	$h \approx 6,626196 \times 10^{-34}\text{J/Hz}$ $\hbar = h/2\pi = 1,054592 \times 10^{-34}\text{Jsec}$
Σταθερά παγκόσμιας έλξης	$G \approx 6,673.2 \times 10^{-11} \text{ Nm}^2 \text{kg}^{-2}$

Άλλες μονάδες

	$1 \text{ Å} (Angström) = 10^{-10} \text{ m}$
	1 in (<i>inch</i>) = 25,4 mm
Másoc	1 ft (foot) = 12 in = 0,304 8 m
Μήκος	1 yd (yard) = 3 ft = 0.9144 m
	1 st. mile = 1 760 yd = 1,609 344 km
	1 naut. mile = 1,852 km
Vahuas	1 min = 60 sec
Χρόνος	1 hr = 60 min = 3 600 sec
Μάζα	1 lb (<i>pound</i>) = 0,453 592 37 kg
Δώνουσ	1 kp (<i>kilopond</i>) = 9,806 65 N
Δύναμη	$1 \text{ dyn} = 10^{-5} \text{ N}$
Пост	1 atm = 1,013 25 bar
Πίεση	1 att = $1 \text{ kp/cm}^2 = 0.980 665 \text{ bar}$
Ευόργοια	1 kcal = 4,1868 kJ
Ενέργεια	$1 \text{ erg} = 10^{-7} \text{ J}$
Learnic	1 kcal/h = 1,163 W
Ισχύς	1 PS = 75 kpm/sec = 0,735 498 75 kW
Μαγνητική ροή	$1 M (Maxwell) = 10^{-8} Wb$
Μαγνητική επαγωγή	$1 \text{ Gs } (Gauss) = 10^{-4} \text{ T}$
Ένταση μαγνητικού πεδίου	1 Oe (<i>Oerstedt</i>) = $(1/4\pi) \times 10^3$ A/m

Μετατροπή μονάδων

Απαλοιφή μονάδων, ως αλγεβρικών ποσοτήτων, π.χ.

1 mile
$$\approx 1609 \text{ m} \implies 1 \approx \frac{1609 \text{ m}}{1 \text{ mile}},$$

1 hr = 3600 sec $\implies 1 = \frac{1 \text{ hr}}{3600 \text{ sec}},$

75 $\frac{\text{mile}}{\text{hr}} \approx 75 \frac{\text{mile}}{\text{hr}} \times \frac{1609 \text{ m}}{1 \text{ mile}} \times \frac{1 \text{ hr}}{3600 \text{ sec}} = \frac{75 \times 1609 \text{ m}}{3600 \text{ sec}} \approx 33,52 \frac{\text{m}}{\text{sec}}.$

Ι. Λ. Βομβορίδης

Βασικές εξισώσεις Ηλεκτρομαγνητισμού στα πέντε διαφορετικά συστήματα μονάδων

Εξίσωση	Διεθνές σύστημα (SI)	Ηλεκτροστατικό	Ηλεκτρομαγνητικό	Σύστημα Gauss	Heaviside – Lorentz
Διατήρηση φορτίου	$\nabla \cdot \mathbf{J} = -(\partial/\partial t)\rho$	$\nabla \cdot \mathbf{J} = -(\partial/\partial t)\rho$	$\nabla \cdot \mathbf{J} = -(\partial/\partial t)\rho$	$\nabla \cdot \mathbf{J} = -(\partial/\partial t) \rho$	$\nabla \cdot \mathbf{J} = -(\partial/\partial t)\rho$
Δ ύναμη $Lorentz$	$\mathbf{f} = ho \mathbf{E} + \mathbf{J} imes \mathbf{B}$	$\mathbf{f} = \rho \mathbf{E} + \mathbf{J} \times \mathbf{B}$	$\mathbf{f} = \rho \mathbf{E} + \mathbf{J} \times \mathbf{B}$	$\mathbf{f} = \rho \mathbf{E} + c^{-1} \mathbf{J} \times \mathbf{B}$	$\mathbf{f} = \rho \mathbf{E} + c^{-1} \mathbf{J} \times \mathbf{B}$
Νόμος <i>Gauss</i>	$\nabla \cdot \mathbf{D} = \rho$	$\nabla \cdot \mathbf{D} = 4\pi ho$	$\nabla \cdot \mathbf{D} = 4\pi ho$	$ abla \cdot \mathbf{D} = 4\pi ho$	$ abla \cdot \mathbf{D} = abla $
Νόμος <i>Gauss</i>	$\nabla \cdot \mathbf{B} = 0$	$\nabla \cdot \mathbf{B} = 0$			
Nóμος <i>Faraday</i>	$\nabla \times \mathbf{E} = -(\partial/\partial t)\mathbf{B}$	$\nabla \times \mathbf{E} = -(\partial/\partial t)\mathbf{B}$	$\nabla \times \mathbf{E} = -(\partial/\partial t)\mathbf{B}$	$c\nabla \times \mathbf{E} = -(\partial/\partial t)\mathbf{B}$	$c\nabla \times \mathbf{E} = -(\partial/\partial t)\mathbf{B}$
Nóµoς Ampere	$\nabla \mathbf{H} = \mathbf{J} + (\partial/\partial t)\mathbf{D}$	$\nabla \times \mathbf{H} = 4\pi \mathbf{J} + (\partial/\partial t)\mathbf{D}$	$\nabla \times \mathbf{H} = 4\pi \mathbf{J} + (\partial/\partial t)\mathbf{D}$	$c\nabla \times \mathbf{H} = 4\pi \mathbf{J} + (\partial/\partial t)\mathbf{D}$	$c\nabla \times \mathbf{H} = \mathbf{J} + (\partial/\partial t)\mathbf{D}$
$Σχ$ έση $\mathbf{D}(\mathbf{E})$	$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$	$\mathbf{D} = \mathbf{E} + 4\pi \mathbf{P}$	$\mathbf{D} = c^{-2}\mathbf{E} + 4\pi\mathbf{P}$	$\mathbf{D} = \mathbf{E} + 4\pi \mathbf{P}$	$\mathbf{D} = \mathbf{E} + \mathbf{P}$
$Σχέση \mathbf{B}(\mathbf{H})$	$\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M})$	$\mathbf{B} = c^{-2}(\mathbf{H} + 4\pi\mathbf{M})$	$\mathbf{B} = \mathbf{H} + 4\pi\mathbf{M}$	$\mathbf{B} = \mathbf{H} + 4\pi\mathbf{M}$	$\mathbf{B} = \mathbf{H} + \mathbf{M}$
Διάνυσμα <i>Poynting</i>	$\mathbf{N} = \mathbf{E} \mathbf{\times} \mathbf{H}$	$\mathbf{N} = (1/4\pi)\mathbf{E} \times \mathbf{H}$	$\mathbf{N} = (1/4\pi)\mathbf{E} \times \mathbf{H}$	$\mathbf{N} = (c/4\pi)\mathbf{E} \times \mathbf{H}$	$\mathbf{N} = c\mathbf{E} \mathbf{\times} \mathbf{H}$
Ηλεκτρική ενέργεια	$w_e = \int \mathbf{E}(\mathbf{D}^{\prime}) \cdot d\mathbf{D}^{\prime}$	$w_e = (1/4\pi)[\mathbf{E}(\mathbf{D}') \cdot d\mathbf{D}']$	$w_e = (1/4\pi)[\mathbf{E}(\mathbf{D}') \cdot d\mathbf{D}']$	$w_e = (1/4\pi)[\mathbf{E}(\mathbf{D}') \cdot d\mathbf{D}']$	$w_e = \int \mathbf{E}(\mathbf{D}^{\prime}) \cdot d\mathbf{D}^{\prime}$
Μαγνητική ενέργεια	$W_m = \int \mathbf{H}(\mathbf{B}') \cdot d\mathbf{B}'$	$w_m = (1/4\pi) \int \mathbf{H}(\mathbf{B}') \cdot d\mathbf{B}'$	$w_m = (1/4\pi) \mathbf{J} \mathbf{H}(\mathbf{B}') \cdot d\mathbf{B}'$	$w_m = (1/4\pi)[\mathbf{H}(\mathbf{B}') \cdot d\mathbf{B}']$	$W_m = \int \mathbf{H}(\mathbf{B}') \cdot d\mathbf{B}'$
Ορισμός δυναμικού Α	$\mathbf{B} = \nabla \times \mathbf{A}$	$\mathbf{B} = \nabla \times \mathbf{A}$			
Ορισμός δυναμικού Φ	$\mathbf{E} = -\nabla \boldsymbol{\Phi} - (\partial/\partial t) \mathbf{A}$	$\mathbf{E} = -\nabla \boldsymbol{\Phi} - (\partial/\partial t) \mathbf{A}$	$\mathbf{E} = -\nabla \boldsymbol{\Phi} - (\partial/\partial t) \mathbf{A}$	$\mathbf{E} = -\nabla \boldsymbol{\Phi} - \boldsymbol{c}^{-1} (\partial/\partial t) \mathbf{A}$	$\mathbf{E} = -\nabla \boldsymbol{\Phi} - c^{-1} (\partial/\partial t) \mathbf{A}$
Σ υνθήκη $Lorentz$	$\nabla \cdot \mathbf{A} + c^{-2} (\partial/\partial t) \boldsymbol{\Phi} = 0$	$\nabla \cdot \mathbf{A} + c^{-2} (\partial/\partial t) \boldsymbol{\Phi} = 0$	$ abla \cdot \mathbf{A} + c^{-2}(\partial/\partial t)\boldsymbol{\Phi} = 0$	$\nabla \cdot \mathbf{A} + c^{-1} (\partial/\partial t) \boldsymbol{\Phi} = 0$	$\nabla \cdot \mathbf{A} + c^{-1} (\partial/\partial t) \boldsymbol{\Phi} = 0$
Εξίσωση δυναμικού ${f A}$	$_{\square}^{2}\mathbf{A}=-\mu_{0}\mathbf{J}$	$\Box^2 \mathbf{A} = -4\pi c^{-2} \mathbf{J}$	$\Box^2 \mathbf{A} = -4\pi \mathbf{J}$	$\Box^2 \mathbf{A} = -4\pi c^{-1} \mathbf{J}$	$\Box^2 \mathbf{A} = -c^{-1} \mathbf{J}$
Εξίσωση δυναμικού $oldsymbol{\phi}$	$\Box^2 \boldsymbol{\Phi} = -(1/\varepsilon_0) \boldsymbol{\rho}$	$\Box^2 \Phi = -4\pi \rho$	$\Box^2 \Phi = -4\pi c^2 \rho$	$\Box^2 \Phi = -4\pi\rho$	$\Box^2 \Phi = -\rho$

Ηλεκτρικά φορτία και ρεύματα, Νόμος διατήρησης ηλεκτρικού φορτίου

Κατανομές φορτίου

 ρ , σ , λ (χωρική, επιφανειακή, γραμμική πυκνότητα) και q (σημειακό φορτίο).

<u>Στοιχειώδη φορτία</u>: $dQ = \{\rho dV, \sigma dS, \lambda d\ell, q\}$, στο στοιχείο $dV, dS, d\ell$, ή σε σημείο.

Ολικό φορτίο: $Q = \int_V dQ$. Ολοκλήρωση στα dV, dS και $d\ell$ που περιέχονται στο V (και μόνο όπου είναι ρ , σ , ή $\lambda \neq 0$). Επιπλέον, στο Q περιλαμβάνονται τα σημειακά q που βρίσκονται στο V.

Κατανομές ρεύματος

J, **K** (χωρική, επιφανειακή πυκνότητα) και *i* (νηματοειδές ρεύμα).

Στοιχειώδη ρεύματα: $dI = \{\mathbf{J} \cdot d\mathbf{S}, \mathbf{K} \cdot \mathbf{i}_{\perp \ell} d\ell, i\}$, που διέρχονται από τα $d\mathbf{S}$, $d\ell$ (με $d\ell$ και $\mathbf{i}_{\perp \ell}$ στη ρευματοφόρο επιφάνεια και κάθετα μεταξύ τους), ή τη ρευματοφόρο γραμμή.

Ολικό ρεύμα: $I = \int_S dI$. Ολοκλήρωση στα $d\mathbf{S}$ και $d\ell$ που ανήκουν στην S (και μόνο όπου είναι \mathbf{J} , ή $\mathbf{K} \neq 0$). Επιπλέον, στο I περιλαμβάνονται τα νηματοειδή i που τέμνουν την S.

Νόμος διατήρησης ηλεκτρικού φορτίου (ολοκληρωτικά)

$$\oint_{S} dI = -\frac{d}{dt} \int_{V} dQ$$
, όπου:

S: κλειστή επιφάνεια (επιφάνεια Gauss),

V: χώρος στο εσωτερικό της S,

 $dS = i_n dS$: κάθετα στην S, με φορά από το χώρο V προς τα έξω.

Χρήση: Επανειλημμένη εφαρμογή νόμου, με κατάλληλο κάθε φορά σχήμα, μέγεθος και θέση της S, με (κατά το δυνατό) κριτήρια τον εύκολο υπολογισμό των ολοκληρωμάτων και η εξίσωση να εμπλέκει μόνο έναν άγνωστο.

Νόμος διατήρησης ηλεκτρικού φορτίου (σημειακά)

• Σε κάθε σημείο του χώρου, εκτός από επιφάνειες, γραμμές ή σημεία με ιδιαιτερότητες:

 $\nabla \cdot \mathbf{J} = -\frac{\partial}{\partial t} \rho$, όπου ανάλογα με το σύστημα συντεταγμένων, η απόκλιση είναι:

$$\begin{split} \nabla \cdot \mathbf{J} &= \frac{\partial}{\partial x} J_x + \frac{\partial}{\partial y} J_y + \frac{\partial}{\partial z} J_z \\ &= \frac{1}{r_T} \frac{\partial}{\partial r_T} (r_T J_T) + \frac{1}{r_T} \frac{\partial}{\partial \varphi} J_{\varphi} + \frac{\partial}{\partial z} J_z \\ &= \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 J_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (J_{\theta} \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi} J_{\varphi} \,. \end{split}$$

Σε κάθε σημείο μιας επιφάνειας S, εκτός από γραμμές ή σημεία με ιδιαιτερότητες:

$$\mathbf{i}_n \cdot (\mathbf{J}_+ - \mathbf{J}_-) = -\nabla \cdot \mathbf{K} - \frac{\partial}{\partial t} \sigma$$
, όπου:

±: οι δύο όψεις της S

 \mathbf{i}_n : κάθετο στην S, με φορά από όψη - προς όψη +

 J_+ : τιμή του J, οριακά κοντά στην S, στην όψη \pm .

Σε κάθε σημείο μιας γραμμής ℓ (ιδίως με λ ή i, ή στην τομή ιδιαζουσών επιφανειών, ή όπου η απόκλιση δεν συγκλίνει):
 Εφαρμογή ολοκληρωτικού νόμου, σε επιμήκη μικρή επιφάνεια Gauss (κύλινδρο, πρίσμα κλπ.).

Σε κάθε σημείο Σ (ιδίως με q, ή στην τομή ιδιαζουσών γραμμών, ή όπου η απόκλιση δεν συγκλίνει):
 Εφαρμογή ολοκληρωτικού νόμου, σε μικρή επιφάνεια Gauss (σφαίρα, κύβο κλπ.).

Ηλεκτρικά δίπολα

Σημειακό δίπολο: $\mathbf{p} = q\mathbf{d}|_{q\to\infty,\mathbf{d}\to0}$, και γενικότερα $\mathbf{p}(t) = \int_V \mathbf{r} \rho(\mathbf{r},t) dV$.

 $\mathbf{d} = \alpha \pi$ όσταση μεταξύ πόλων, με φορά από αρνητικό (με $-q_i$) προς θετικό πόλο (με $+q_i$).

<u>Στοιχειώδη δίπολα</u>: $d\mathbf{p} = \{\mathbf{P}dV, \, \mathbf{p}_S dS, \, \mathbf{p}_\ell d\ell, \, \mathbf{p}\}$, στο στοιχείο $dV, \, dS, \, d\ell$, ή σε σημείο.

Ισοδύναμες κατανομές φορτίου προς τη χωρική πυκνότητα ${\bf P}$ (σε V, S, ℓ και Σ):

$$\rho_{p} = -\nabla \cdot \mathbf{P}, \ \sigma_{p} = -\mathbf{i}_{n} \cdot \left(\mathbf{P}_{+} - \mathbf{P}_{-}\right), \ \lambda_{p} = -2\pi r_{T} \left\langle \mathbf{i}_{T} \cdot \mathbf{P}(r_{T} \rightarrow 0) \right\rangle_{\varphi}, \ q_{p} = -4\pi r^{2} \left\langle \mathbf{i}_{r} \cdot \mathbf{P}(r \rightarrow 0) \right\rangle_{\theta, \varphi}.$$

Ειδικές κατανομές: (Ανάγονται σε αντίθετα ζεύγη κατανομών σ , λ , q με άπειρη τιμή.)

Διπολικό στρώμα $p_{S\perp} = \sigma d$, Διπολική ταινία $\mathbf{p}_{\ell\perp} = \lambda \mathbf{d}$, Σημειακό δίπολο $\mathbf{p} = q\mathbf{d}$.

Μαγνητικά δίπολα

<u>Σημειακό δίπολο</u>: $\mathbf{m} = i\mathbf{S}\big|_{i\to\infty,\,\mathbf{S}\to 0}$, και γενικότερα $\mathbf{m}(t) = \frac{1}{2}\int_V \mathbf{r} \times \mathbf{J}(\mathbf{r},t) dV$.

S = επιφάνεια με όριο το ρευματοφόρο βρόχο, με φορά δεξιόστροφη σε σχέση με ρεύμα <math>i.

Στοιχειώδη δίπολα: $d\mathbf{m} = \{\mathbf{M}dV, \mathbf{m}_S dS, \mathbf{m}_\ell d\ell, \mathbf{m}\}$, στο στοιχείο $dV, dS, d\ell$, ή σε σημείο.

<u>Ισοδύναμες κατανομές ρεύματος</u> προς τη χωρική πυκνότητα \mathbf{M} (σε V, S και ℓ):

$$\mathbf{J}_{M} = \nabla \times \mathbf{M} , \quad \mathbf{K}_{M} = \mathbf{i}_{n} \times \left(\mathbf{M}_{+} - \mathbf{M}_{-}\right), \quad i_{M} = 2\pi r_{T} \left\langle \mathbf{i}_{\varphi} \cdot \mathbf{M}(r_{T} \rightarrow 0) \right\rangle_{\sigma}.$$

Ειδικές κατανομές: (Ανάγονται σε κατανομές ρεύματος με άπειρη τιμή.)

Διπολικό στρώμα $\mathbf{m}_{S\perp} = (\mathbf{i}_n d) \times \mathbf{K}_+$, Διπολική ταινία $\mathbf{m}_{\ell\perp} = \mathbf{d} \times (\mathbf{i}_\ell i_+)$,

Σωληνοειδές $m_{\ell \parallel} = KS$, Σημειακό δίπολο $\mathbf{m} = i\mathbf{S}$.

Στατικά ηλεκτρικά πεδία, Νόμος του Gauss

Ένταση ηλεκτρικού πεδίου \mathbf{E} (V/m): Ορισμός από την ηλεκτρική δύναμη, $\mathbf{F}_e = q\mathbf{E}$.

Πυκνότητα ηλεκτρικής ροής, ή, Διηλεκτρική μετατόπιση \mathbf{D} (C/m²)

Ορισμός: $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$, όπου η πόλωση \mathbf{P} περιέχει τη δράση από τα δέσμια φορτία.

 ${f D} = \varepsilon {f E}$ σε γραμμικά και ισοτροπικά υλικά με ακαριαία απόκριση, όπου ε (F/m) είναι η επιτρεπτότητα του υλικού.

Εξισώσεις

Ολοκληρωτικές		Σημ	μειακές σχέσεις		
σχέσεις	στο χώρο	σε επιφάνεια S	σ ε γραμμή ℓ	σε σημείο Σ	
$ \oint_{S} \mathbf{D} \cdot d\mathbf{S} = \int_{V} dQ $ σε κλειστή επιφάνεια S , όριο του χώρου V	$\nabla \cdot \mathbf{D} = \rho$	$\mathbf{i}_n \cdot (\mathbf{D}_+ - \mathbf{D}) = \sigma$	$\left \left(r_T \langle D_T \rangle_{\varphi} \right) \right _{r_T \to 0} = \frac{\lambda}{2\pi}$	$\left \left(r^2 \langle D_r \rangle_{\varphi,\theta} \right) \right _{r \to 0} = \frac{q}{4\pi}$	
$\oint_{\ell} \mathbf{E} \cdot d\mathbf{r} = 0$ σε βρόχο ℓ	$\nabla \times \mathbf{E} = 0$	$\mathbf{i}_n \times (\mathbf{E}_+ - \mathbf{E}) = 0$	$\left \left(r_T \left\langle E_{\varphi} \right\rangle_{\varphi} \right) \right _{r_T \to 0} = 0$		
$S \stackrel{dS}{\longrightarrow} V$	$d\mathbf{r}$	$dS = i_n dS$ + S	ℓ $r_{T}\mathbf{i}_{T}$ \mathbf{i}_{φ}	Σ	

Προσανατολισμός πεδίου: Αν είναι παντού $\partial/\partial s=0$, όπου $s=\{x,y,z,\varphi\}$, τότε για την αντίστοιχη πεδιακή συνιστώσα είναι $E_s=0$, επίσης παντού.

Βασικές γεωμετρίες

Σφαιρική δομή $(\partial/\partial \varphi_1 = \partial/\partial \varphi_2 = 0)$	Κυλινδρική δομή $(\partial/\partial\varphi=0,\partial/\partial z=0)$	Καρτεσιανή δομή* $(\partial/\partial x = \partial/\partial y = 0)$
S: Σφαιρική επιφάνεια	S: Επιφάνεια κυλίνδρου, με μήκος L	S : Επιφάνεια πρίσματος (ή κυλίνδρου), με διατομή S_0
$\mathbf{D}(r) = \mathbf{i}_r \frac{1}{4\pi r^2} \int_V dQ'$	$\mathbf{D}(r_T) = \mathbf{i}_T \frac{1}{2\pi r_T L} \int_V dQ'$	$\mathbf{D}(r_T) = \mathbf{i}_z \left(D(z = -\infty) + \frac{1}{S_0} \int_V dQ' \right)$
dQ': φορτία σε θέσεις $r' < r$	dQ' : φορτία σε θέσεις $r_T' < r_T$ και σε μήκος L	dQ' : φορτία σε θέσεις $z' < z$ και σε διατομή με εμβαδό S_0

^{*} Η τιμή του $D(z=-\infty)$ προσδιορίζεται από συμπληρωματικές πληροφορίες, όπως π.χ. από τη διάταξη των φορτίων στο άπειρο.

Ι. Λ. Βομβορίδης

Επαλληλία: Αν τεθεί $dQ = \sum_j dQ_j$ και τα φορτία dQ_j παράγουν τα πεδία $\mathbf{D}_j(\mathbf{r})$ και $\mathbf{E}_j(\mathbf{r})$, τότε τα πεδία της συνολικής αρχικής διάταξης είναι $\mathbf{D}(\mathbf{r}) = \sum_j \mathbf{D}_j(\mathbf{r})$ και $\mathbf{E}(\mathbf{r}) = \sum_j \mathbf{E}_j(\mathbf{r})$.

Κυρίως εξυπηρετεί για τη διάσπαση διατάξεων με ανεπαρκείς συμμετρίες σε συμμετρικές επιμέρους διατάξεις.

Η επιτρεπτότητα δεν είναι αντικείμενο επαλληλίας.

(Σε κάθε επιμέρους διάταξη, $\varepsilon_i(\mathbf{r}) = \varepsilon(\mathbf{r})$, όπως στην αρχική διάταξη.)

Αγώγιμα υλικά: Συντακτική σχέση J = gE (μικροσκοπικός νόμος Ohm), όπου g (S/m) είναι η ειδική αγωγιμότητα του υλικού.

Χαλάρωση: Έχει τη χαρακτηριστική χρονική εξάρτηση π.χ. $\mathbf{E}(\mathbf{r},t>0)=\mathbf{E}(\mathbf{r},t=0)\exp(-gt/\varepsilon)$ για τα πεδία \mathbf{E} , \mathbf{D} και \mathbf{J} , καθώς και τις κατανομές φορτίου ρ , σ , λ και q, **μόνο** στο εσωτερικό αγώγιμου υλικού με σταθερά ε και g.

Στα όρια του αγώγιμου υλικού αναπτύσσεται φορτίο $\sigma = \mathbf{i}_n \cdot (\mathbf{D}_+ - \mathbf{D}_-)$ [και το ολικό φορτίο παραμένει σταθερό].

Καλός αγωγός: Εκείνος με $g \gg \varepsilon/T$, όπου T είναι ο χαρακτηριστικός χρόνος που ενδιαφέρει.

Φορτία σε μη ομογενές αγώγιμο υλικό (σε μόνιμη κατάσταση)

$$\label{eq:definition} \Sigma \varepsilon \ \text{ omalh metabolh tou } \varepsilon/g \colon \ \rho = \left(\mathbf{J} \cdot \nabla\right) \! \left(\frac{\varepsilon}{g}\right) \! = J(\mathbf{i}_J \cdot \nabla) \! \left(\frac{\varepsilon}{g}\right).$$

$$\Sigma \varepsilon \ \text{ bhmatikh asunéces tou } \varepsilon/g \colon \ \sigma = \left(\frac{\varepsilon_+}{g_+} - \frac{\varepsilon_-}{g_-}\right) \! \left(\mathbf{i}_n \cdot \mathbf{J}\right).$$

Στοιχεία κυκλωμάτων με μη μηδενική ένταση ηλεκτρικού πεδίου Ε

<u>Αντιστάτης</u>: Μόνο στοιχείο με $g \neq 0, \infty$, στο οποίο $\mathbf{J} = g\mathbf{E}$.

Ρεύμα
$$I_{\scriptscriptstyle R} = \int_{\scriptscriptstyle S_{\scriptscriptstyle R}} {\bf J} \cdot d{\bf S}_{\scriptscriptstyle R}$$
 , Τάση $U_{\scriptscriptstyle R} = \int_{\scriptscriptstyle +}^{\scriptscriptstyle -} {\bf E} \cdot d{\bf r}$, Αντίσταση/Αγωγιμότητα $R = 1/G = U_{\scriptscriptstyle R}/I_{\scriptscriptstyle R}$.

<u>Πυκνωτής</u>: Μόνο στοιχείο, όπου ηλεκτρικό φορτίο Q παράγει ηλεκτρική ροή, με $\mathbf{D} = \varepsilon \mathbf{E}$.

Φορτίο
$$Q_C = \int_{S_C} \mathbf{D} \cdot d\mathbf{S}_C$$
, Τάση $U_C = \int_+^- \mathbf{E} \cdot d\mathbf{r}$, Ρεύμα $I_C = dQ_C/dt$, Χωρητικότητα $C = Q_C/U_C$.

Πηγή Τάσης: Μόνο στοιχείο, όπου (μη ηλεκτρική) δύναμη \mathbf{F}_s προκαλεί μετακίνηση φορτίων.

HEΔ =
$$e = \frac{1}{a} \int_{-}^{+} \mathbf{F}_{s} \cdot d\mathbf{r}$$
 = Tάση = $U_{s} = \int_{+}^{-} \mathbf{E} \cdot d\mathbf{r}$.

Σε αντιστάτη και πυκνωτή, ο ακροδέκτης "+" αντιστοιχεί συμβατικά σε εισερχόμενο ρεύμα και ο ακροδέκτης "-" σε εξερχόμενο. Σε πηγή τάσης εφαρμόζεται η αντίθετη σύμβαση.

Στατικά μαγνητικά πεδία, Νόμος του Ampere, Νόμος του Faraday

Πυκνότητα μαγνητικής ροής (ή, Μαγνητική επαγωγή) \mathbf{B} (Wb/m² = T):

Ορισμός από τη μαγνητική δύναμη, $\mathbf{F}_m = q\mathbf{v} \times \mathbf{B}$.

Ένταση μαγνητικού πεδίου Η (A/m)

Ορισμός: $\mathbf{H} = (1/\mu_0)\mathbf{B} - \mathbf{M}$, όπου η μαγνήτιση \mathbf{M} περιέχει τη δράση από τα δέσμια ρεύματα.

B = μ**H** σε γραμμικά και ισοτροπικά υλικά με ακαριαία απόκριση, όπου μ (H/m) είναι η μαγνητική διαπερατότητα του υλικού.

Εξισώσεις:

Ολοκληρωτικές		Σημειακές σχέσεις		
σχέσεις	στο χώρο	σε επιφάνεια S	σε γραμμή ℓ	σε σημείο Σ
$\oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0$ σε κλειστή επιφ. S , όριο του χώρου V	$\nabla \cdot \mathbf{B} = 0$	$\mathbf{i}_n \cdot \left(\mathbf{B}_+ - \mathbf{B} \right) = 0$	$\left. \left(r_T \langle B_T \rangle_{\varphi} \right) \right _{r_T \to 0} = 0$	$\left \left(r^2 \langle B_r \rangle_{\varphi,\theta} \right) \right _{r \to 0} = 0$
$ \oint_{\ell} \mathbf{H} \cdot d\mathbf{r} = \int_{S} dI $ σε βρόχο ℓ , όριο της επιφ. S	$\nabla \times \mathbf{H} = \mathbf{J}$	$\mathbf{i}_{n} \times (\mathbf{H}_{+} - \mathbf{H}_{-}) = \mathbf{K}$	$\left. \left(r_T \left\langle H_{\varphi} \right\rangle_{\varphi} \right) \right _{r_T \to 0} = \frac{i}{2\pi}$	
S V dS dS dS	dr S	$d\mathbf{S} = \mathbf{i}_n dS + S$	ℓ \mathbf{i}_{φ}	\mathcal{E}

Περιστροφή: Ανάλογα με το σύστημα συντεταγμένων, είναι:

$$\nabla \times \mathbf{H} = \begin{vmatrix} \mathbf{i}_{x} & \mathbf{i}_{y} & \mathbf{i}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ H_{x} & H_{y} & H_{z} \end{vmatrix} = \frac{1}{r_{T}} \begin{vmatrix} \mathbf{i}_{T} & r_{T} \mathbf{i}_{\varphi} & \mathbf{i}_{z} \\ \frac{\partial}{\partial r_{T}} & \frac{\partial}{\partial \varphi} & \frac{\partial}{\partial z} \\ H_{T} & r_{T} H_{\varphi} & H_{z} \end{vmatrix} = \frac{1}{r^{2} \sin \theta} \begin{vmatrix} \mathbf{i}_{r} & r \mathbf{i}_{\theta} & r \sin \theta \mathbf{i}_{\varphi} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \varphi} \\ H_{r} & r H_{\theta} & r \sin \theta H_{\varphi} \end{vmatrix}$$

Η **Ροή ρεύματος** πρέπει να ικανοποιεί $\oint_S dI = 0$ (δηλ. $\nabla \cdot \mathbf{J} = 0$ κλπ.).

Συγνά, είναι δυνατό να υπολογισθεί το πεδίο Η

χωρίς να έχει προηγουμένως επιλυθεί πλήρως το πρόβλημα ροής ηλεκτρικού ρεύματος, και ύστερα να προσδιορισθούν τα λοιπά ρεύματα από τις σημειακές σχέσεις $\mathbf{J} = \nabla \times \mathbf{H}$ κλπ.

Προσανατολισμός πεδίου

Με $s = \{x, y, z, \varphi\}$, αν παντού $\partial/\partial s = 0$ και επίσης για κάθε κατανομή ηλεκτρικού ρεύματος:

- παντού $J_{s,\kappa\lambda\pi} = 0$, τότε είναι παντού $\mathbf{H}_{\perp s} = 0$, δηλ., μόνο μία συνιστώσα, η H_s είναι $\neq 0$.
- παντού $\mathbf{J}_{\perp s,\kappa\lambda\pi} = 0$, τότε είναι παντού $H_s = 0$, δηλ., γενικά οι δύο συνιστώσες $\mathbf{H}_{\perp s}$ είναι ≠ 0.

Βασικές γεωμετρίες

Δ ομή τόρου $(\partial/\partial \varphi=0 \; \mathrm{kat} \; J_{\varphi}=0)$	Δ ομή πηνίου (με άπειρο μήκος) $(\partial/\partial z=0 \mathrm{kal} J_z=0)$
Ο βρόχος ℓ είναι περιφέρεια κύκλου, με $r_T = \sigma \tau \alpha \theta$., $z = \sigma \tau \alpha \theta$.	Ο βρόχος ℓ είναι ορθογώνιο, με πλευρές \parallel (με μήκος L) και \perp στον άξονα.
i_0 στο $r_T=0$: $\mathbf{H}=\mathbf{i}_{\varphi}i_0/2\pi r_T$	$\mathbf{i}_{\varphi}K_0$ στο $r_T = a$: $\mathbf{H}(r_T < a) = \mathbf{i}_z K_0$, $\mathbf{H}(r_T > a) = 0$
$\mathbf{i}_z K_0$ στο $r_T = a$: $\mathbf{H}(r_T < a) = 0$, $\mathbf{H}(r_T > a) = \mathbf{i}_{\varphi} K_0 a / r_T$	$\mathbf{i}_x K_0$ στο $y = 0$: $\mathbf{H} = \mathbf{i}_z [H_0 + (K_0/2) \operatorname{sgn}(y)]$
Τόρος με $I_{o\lambda}$: $\mathbf{H}(μέσα) = \mathbf{i}_{\varphi}I_{o\lambda}/2\pi r_T$, $\mathbf{H}(έξω) = 0$	H_0 : Εξαρτάται από την επιστροφή του K_0 στο $\pm\infty$

Επαλληλία: Αν τεθεί $dI = \sum_j dI_j$ και τα αυτοτελή dI_j παράγουν τα πεδία $\mathbf{H}_j(\mathbf{r})$ και $\mathbf{B}_j(\mathbf{r})$, τότε τα πεδία της συνολικής αρχικής διάταξης είναι $\mathbf{H}(\mathbf{r}) = \sum_j \mathbf{H}_j(\mathbf{r})$ και $\mathbf{B}(\mathbf{r}) = \sum_j \mathbf{B}_j(\mathbf{r})$.

Η μαγνητική διαπερατότητα δεν είναι αντικείμενο επαλληλίας.

(Σε κάθε επιμέρους διάταξη, $\mu_i(\mathbf{r}) = \mu(\mathbf{r})$, όπως στην αρχική διάταξη.)

Κάθε επιμέρους διάταξη πρέπει να είναι αυθυπόστατη, με $\oint_S dI_j = 0$ (δηλ. $\nabla \cdot \mathbf{J}_j = 0$ κλπ.).

Πηνίο: Μόνο στοιχείο, όπου ηλεκτρικό ρεύμα παράγει μαγνητική ροή Ψ_m , με $\mathbf{B} = \mu \mathbf{H}$.

Μαγνητική Ροή
$$\Psi_m = \int_{S_L} \mathbf{B} \cdot d\mathbf{S}_L$$
, Ολική Μαγν. Ροή $\Psi = N\Psi_m$ (με $N = \pi \lambda \dot{\eta} \theta$ ος ελιγμάτων)

Ρεύμα
$$I_L = \frac{1}{N} \oint_\ell \mathbf{H} \cdot d\mathbf{r}$$
 , Τάση $U_L = d\Psi/dt$, Αυτεπαγωγή $L = \Psi/I_L$.

Γραμμικά μαγνητικά κυκλώματα

<u>Κλάδοι</u> i: Μαγνητική ροή $\Psi_{m,i} = \int_{S_i} \mathbf{B}_i \cdot d\mathbf{S}_i$ και μαγνητική τάση $U_{m,i} = \int_{L_i} \mathbf{H}_i \cdot d\mathbf{r}_i$ συνδέονται με μαγνητική αντίσταση $R_{m,i} = 1/G_{m,i} = U_{m,i}/\Psi_{m,i}$.

Διεγέρσεις: Τα ελίγματα παράγουν ΜΕΔ $e_{m,i} = N_i I_i$.

<u>Nόμοι Kirchhoff:</u>

Σε κάθε κόμβο
$$j \sum_{i \in j} (\pm)_{ij} \Psi_{\text{m},i} = 0$$
 , σε κάθε βρόχο $\ell \sum_{i \in \ell} (\pm)_{i\ell} U_{\text{m},i} = \sum_{i \in \ell} (\pm)_{i\ell} e_{\text{m},i}$.

Επαγωγικό ηλεκτρικό πεδίο: Αναπτύσσεται όταν είναι $(d/dt)\int_{S} \mathbf{B} \cdot d\mathbf{S} \neq 0$, με εξισώσεις:

$$\oint_{\ell} \mathbf{E}_{\varepsilon\pi} \cdot d\mathbf{r} = -(d/dt) \int_{S} \mathbf{B} \cdot d\mathbf{S}, \ \dot{\mathbf{\eta}} \ \nabla \times \mathbf{E}_{\varepsilon\pi} = -(\partial/\partial t) \mathbf{B} \ \kappa \lambda \pi., \quad \kappa \alpha \iota \oint_{S} \mathbf{D}_{\varepsilon\pi} \cdot d\mathbf{S} = 0, \ \dot{\mathbf{\eta}} \ \nabla \cdot \mathbf{D}_{\varepsilon\pi} = 0 \ \kappa \lambda \pi.$$

Προσανατολισμός επαγωγικού πεδίου:

Mε $s = \{x, y, z, \varphi\}$, αν παντού $\partial/\partial s = 0$ και επίσης:

- παντού $\partial B_s/\partial t=0$, τότε είναι παντού $\mathbf{E}_{\epsilon\pi,\perp s}=0$, δηλ., μόνο η μία συνιστώσα $E_{\epsilon\pi,s}\neq 0$.
- lacktriangle παντού $\partial \mathbf{B}_{\perp s}/\partial t=0$, τότε είναι παντού $E_{\epsilon\pi,s}=0$, δηλ., γενικά οι δύο συνιστώσες $\mathbf{E}_{\epsilon\pi,\perp s}\neq 0$.

<u>Επίλυση</u>, όταν είναι γνωστή η μαγνητική επαγωγή $\mathbf{B}(\mathbf{r}, t)$:

Όπως για το στατικό μαγνητικό πεδίο, με τις αντικαταστάσεις $\mathbf{H} \to \mathbf{E}_{\text{ep}}$, $\mathbf{J} \to -(\partial/\partial t)\mathbf{B}$ κλπ.

Χρονομεταβλητά πεδία, Εξισώσεις Maxwell

Εξισώσεις Maxwell: [Η απόκλιση $\nabla \cdot$ και η περιστροφή $\nabla \times$, καθώς και οι επιφάνειες S (κλειστή και ανοικτή) και ο βρόχος ℓ , όπως παρουσιάζονται προηγουμένως.]

Ολοκληρωτικές		Σημεισ	ικές σχέσεις	
σχέσεις	στο χώρο	σε επιφάνεια S	σε γραμμή ℓ	σε σημείο Σ
σε κλειστή επιφάνεια S , όριο του χώρου V				
$\oint_{S} \mathbf{D} \cdot d\mathbf{S} = \int_{V} dQ$	$\nabla \cdot \mathbf{D} = \rho$	$\mathbf{i}_n \cdot (\mathbf{D}_+ - \mathbf{D}) = \sigma$	$\left. \left(r_T \langle D_T \rangle_{\varphi} \right) \right _{r_T \to 0} = \frac{\lambda}{2\pi}$	$\left \left(r^2 \left\langle D_r \right\rangle_{\varphi,\theta} \right) \right _{r \to 0} = \frac{q}{4\pi}$
$\oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0$	$\nabla \cdot \mathbf{B} = 0$	$\mathbf{i}_n \cdot \left(\mathbf{B}_+ - \mathbf{B} \right) = 0$	$\left \left(r_T \langle B_T \rangle_{\varphi} \right) \right _{r_T \to 0} = 0$	$\left. \left(r^2 \langle B_r \rangle_{\varphi,\theta} \right) \right _{r \to 0} = 0$
σε βρόχο ℓ , όριο της επιφάνειας S		1		
$\oint_{\ell} \mathbf{E} \cdot d\mathbf{r} = -\frac{d}{dt} \int_{S} \mathbf{B} \cdot d\mathbf{S}$	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	$\mathbf{i}_n \times (\mathbf{E}_+ - \mathbf{E}) = 0$	$\left \left(r_T \left\langle E_{\varphi} \right\rangle_{\varphi} \right) \right _{r_T \to 0} = 0$	
$\oint_{\ell} \mathbf{H} \cdot d\mathbf{r}$ $= \int_{S} dI + \frac{d}{dt} \int_{S} \mathbf{D} \cdot d\mathbf{S}$	$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$	$\mathbf{i}_{n} \times (\mathbf{H}_{+} - \mathbf{H}_{-}) = \mathbf{K}$	$\left. \left(r_T \left\langle H_\varphi \right\rangle_\varphi \right) \right _{r_T \to 0} = \frac{i}{2\pi}$	

Προσανατολισμός πεδίου: Με $s=\{x, y, z, \varphi\}$, αν παντού και πάντοτε είναι $\partial/\partial s=0$ και επίσης

- lacktriangle παντού και πάντοτε $J_{s,\kappa\lambda\pi}=0$, τότε είναι $E_s=0$ και $\mathbf{H}_{\perp s}=0$.
- lacktriangle παντού και πάντοτε ${f J}_{\perp s,\kappa\lambda\pi}=0$ και $ho_{\kappa\lambda\pi}=0$, τότε είναι παντού $H_s=0$ και ${f E}_{\perp s}=0$.

[Η χρησιμότητα των ιδιοτήτων περιορίζεται, επειδή τα J_{klp} και ρ_{klp} είναι ελλιπώς γνωστά.]

Κυματικές εξισώσεις: Αν είναι $(\varepsilon, \mu) = \sigma \tau \alpha \theta$., τότε:

$$\nabla^{2}\mathbf{E} - \varepsilon\mu \frac{\partial^{2}}{\partial t^{2}}\mathbf{E} = \frac{1}{\varepsilon}\nabla\rho + \mu \frac{\partial}{\partial t}\mathbf{J}, \quad \mu\varepsilon \mathbf{B} = -\int \nabla \times \mathbf{E}dt',$$

$$\nabla^{2}\mathbf{H} - \varepsilon\mu \frac{\partial^{2}}{\partial t^{2}}\mathbf{H} = -\nabla \times \mathbf{J}, \quad \mu\varepsilon \mathbf{D} = \int (\nabla \times \mathbf{H} - \mathbf{J})dt',$$

όπου η διανυσματική Λαπλασιανή είναι:

Γενικά π.χ.
$$\nabla^2 \mathbf{E} = \nabla (\nabla \cdot \mathbf{E}) - \nabla \times (\nabla \times \mathbf{E}),$$

Ειδικά μόνο για Καρτεσιανές συνιστώσες π.χ. $\mathbf{i}_x \cdot \nabla^2 \mathbf{E} = \nabla^2 E_x$.

Οι λύσεις έχουν μορφή κύματος, που απομακρύνεται από τα αίτια $(\rho, \mathbf{J})_{\text{klp.}}$. Συνεπώς:

- Αν τα αίτια είναι στον πεπερασμένο χώρο, τα κύματα κατευθύνονται προς το άπειρο,
- Τα κύματα προέρχονται από το άπειρο, μόνο αν υπάρχουν αίτια στο άπειρο.

Ι. Λ. Βομβορίδης

Επίπεδα κύματα

Σε επίπεδα κύματα (με διεύθυνση διάδοσης \mathbf{i}_z), διαδιδόμενα σε μέσο με $\{\varepsilon, \mu, c_\varepsilon = (\varepsilon\mu)^{-1/2}\}$, τα πεδία συνδέονται με δεξιά τρισορθογωνιότητα:

$$\mathbf{H} = \frac{1}{Z_{\varepsilon}} \mathbf{i}_{z} \times \mathbf{E} , \text{ spon } Z_{\varepsilon} = \mu c_{\varepsilon} = (\varepsilon c_{\varepsilon})^{-1} = (\mu/\varepsilon)^{\frac{1}{2}}. \text{ [Se kend, } Z_{0} = = (\mu_{0}/\varepsilon_{0})^{\frac{1}{2}} = 120\pi \ \Omega. \text{]}$$

- Κύματα σε απέραντο χώρο, παραγόμενα από $\mathbf{K} = \mathbf{i}_y K_0 f(t)$ στο επίπεδο z=0: $\mathbf{E} = -\mathbf{i}_y \frac{1}{2} \mu c_\varepsilon K_0 f(t-|z|/c_\varepsilon)$, $\mathbf{H} = \mathbf{i}_x \frac{1}{2} K_0 f(t-|z|/c_\varepsilon) \operatorname{sgn}(z)$.
- Pυθμοί TEM σε γραμμή μεταφοράς (= με τουλάχιστο δύο εγκάρσια αγώγιμα όρια): Έχουν $E_z = 0$ και (με πηγή στο $z = -\infty$) $\mathbf{H} = \mathbf{H}_{\perp z}(\mathbf{r}_{\perp z})f(t - z/c_{\varepsilon})$, $\mathbf{E} = -\mathbf{i}_z \times (\mu c_{\varepsilon}\mathbf{H})$. Στα εγκάρσια όρια αναπτύσσονται σ και $\mathbf{K} = \mathbf{i}_z c_{\varepsilon}\sigma$.

Χαρακτηρίζονται από χωρητικότητα και αυτεπαγωγή ανά μονάδα μήκους, με $C_\ell L_\ell = \varepsilon \mu$.

Φασιθέτες: Η χρονική εξάρτηση $\mathbf{A}(\mathbf{r},t)$ υποκαθίσταται από τον φασιθέτη $\mathbf{\mathring{A}}(\mathbf{r})$,

 $\mathbf{A}(\mathbf{r},t) = \text{Re}\{\mathbf{\mathring{A}}(\mathbf{r})\exp(j\omega t)\},$ οπότε στις εξισώσεις $\partial/\partial t \rightarrow j\omega$.

Συχνή η απλοποίηση στη γραφή, $\mathring{\mathbf{A}}(\mathbf{r}) \to \mathbf{A}(\mathbf{r}, \omega) \to \mathbf{A}(\mathbf{r})$.

Για διάδοση προς το $z = +\infty$, είναι $\mathbf{\mathring{A}}(\mathbf{r}) = \mathbf{\mathring{A}}(\mathbf{r}_{\perp})\exp(-j\beta z)$.

Εξισώσεις Maxwell (σημειακά): $\nabla \cdot \mathbf{D} = \rho$, $\nabla \cdot \mathbf{B} = 0$, $\nabla \times \mathbf{E} = -j\omega \mathbf{B}$, $\nabla \times \mathbf{H} = \mathbf{J} + j\omega \mathbf{D}$.

Κυματικές εξισώσεις:
$$\nabla^2 \mathbf{E} + k^2 \mathbf{E} = \frac{1}{\varepsilon} \nabla \rho + \mu \frac{\partial}{\partial t} \mathbf{J}$$
, $\nabla^2 \mathbf{H} + k^2 \mathbf{H} = -\nabla \times \mathbf{J}$, με $k^2 = \varepsilon \mu \omega^2$.

Κυματοδηγούμενοι ρυθμοί, σε κυματοδηγό με σταθερή διατομή:

Διαμήκεις συνιστώσες: Έχουν μορφή $E_z=E_0e_z(\mathbf{r}_\perp)\exp(-j\beta z), \quad H_z=H_0h_z(\mathbf{r}_\perp)\exp(-j\beta z),$ Προκύπτουν από $\nabla_\perp^2e_z(\mathbf{r}_\perp)+h^2e_z(\mathbf{r}_\perp)=0, \quad \nabla_\perp^2h_z(\mathbf{r}_\perp)+h^2h_z(\mathbf{r}_\perp)=0$, με $h^2=k^2-\beta^2$. Οι συνθήκες $e_z=0$ και $\mathbf{i}_n\cdot\nabla_\perp h_z=0$ σε ιδανικά αγώγιμο όριο δίνουν τις τιμές του h.

Εγκάρσιες συνιστώσες: Προκύπτουν από τις διαμήκεις συνιστώσες

$$\mathbf{E}_{\perp} = -j \frac{1}{h^2} \left[\beta E_0 \left(\nabla_{\perp} e_z \right) - \mu \omega H_0 \mathbf{i}_z \times \left(\nabla_{\perp} h_z \right) \right] \exp(-j \beta z),$$

$$\mathbf{H}_{\perp} = -j \frac{1}{h^2} \left[\beta H_0 \left(\nabla_{\perp} h_z \right) + \varepsilon \omega E_0 \mathbf{i}_z \times \left(\nabla_{\perp} e_z \right) \right] \exp(-j\beta z).$$

Ρυθμοί διάδοσης (σε ιδανικό μονοστρωματικό κυματοδηγό):

Διακρίνονται σε ρυθμούς TM (με $H_z = 0$) και TE (με $E_z = 0$).

$$TM: \mathbf{H}_{\perp} = \frac{1}{Z_{\scriptscriptstyle TM}} \mathbf{i}_z \times \mathbf{E}_{\perp}, \ \ \text{me} \ Z_{\scriptscriptstyle TM} = \beta/\varepsilon\omega < Z_{\varepsilon}. \quad TE: \mathbf{E}_{\perp} = -Z_{\scriptscriptstyle TE} \mathbf{i}_z \times \mathbf{H}_{\perp}, \ \ \text{me} \ Z_{\scriptscriptstyle TE} = \mu\omega/\beta > Z_{\varepsilon}.$$

Χαρακτηριστική εξίσωση: $(\omega/c_{\varepsilon})^2 - \beta^2 = h^2$ (με $h = h_{nm}$, από σχήμα/μέγεθος διατομής).

Συχνότητες (κυκλικές) αποκοπής $\omega_{c,\mathit{nm}} = h_{\mathit{nm}} c_{\varepsilon} = \omega(\beta = 0)$. Διάδοση μόνο με $\omega \geq \omega_{c}$.

Σε υψηλές συχνότητες ($\omega >> \omega_c$), {TM, TE} $\rightarrow TEM (\omega \rightarrow \beta c_\varepsilon, Z_{TM} \rightarrow Z_\varepsilon, Z_{TE} \rightarrow Z_\varepsilon$).

Ενέργεια και Ισχύς, Δυνάμεις και Ροπές

Νόμος Διατήρησης ΗΜ ενέργειας

■ Ολοκληρωτικά:
$$\oint_{S} \mathbf{N} \cdot d\mathbf{S} + \frac{d}{dt} \int_{V} w_{em} dV = -\int_{V} \mathbf{E} \cdot \left(\mathbf{J} dV + \mathbf{K} dS_{I} + i d\ell_{I} \mathbf{i}_{\ell} \right)$$

$$\mu\epsilon \mathbf{N} = \mathbf{E} \times \mathbf{H} \text{ (διάνυσμα Poynting)}, w_{em} = w_{e} + w_{m} \text{ (πυκν. HM} = Hλ. + Mαγν. ενέργειας)},$$

$$w_{e} = \int_{0}^{\mathbf{D}(\mathbf{r},t)} \mathbf{E}(\mathbf{D}') \cdot d\mathbf{D}' \xrightarrow{\mathbf{D}=\epsilon\mathbf{E}} \frac{1}{2} \epsilon E^{2}, \qquad w_{m} = \int_{0}^{\mathbf{B}(\mathbf{r},t)} \mathbf{H}(\mathbf{B}') \cdot d\mathbf{B}' \xrightarrow{\mathbf{B}=\mu\mathbf{H}} \frac{1}{2} \mu H^{2}$$

■ Σημειακά: $\nabla \cdot \mathbf{N} + (\partial/\partial t)w_{em} = -\mathbf{E} \cdot \mathbf{J}$, $\mathbf{i}_n \cdot (\mathbf{N}_+ - \mathbf{N}_-) = -\mathbf{E} \cdot \mathbf{K}$, κλπ.

Ενέργεια σε στοιχεία κυκλωμάτων

- Αντιστάτης: Αναλώνει ΗΜ ενέργεια, απορροφώντας ισχύ $P_{\alpha\pi\circ\rho}=\int \mathbf{E}\cdot\mathbf{J}dV=I_RU_R$. Όταν $R,~G=\sigma\tau\alpha\theta$., $P_{\alpha\pi\circ\rho}\to RI_R^2=GU_R^2$.
- Πυκνωτής: Αποθηκεύει ηλεκτρική ενέργεια, $W_e = \int w_e dV$, με ρυθμό $dW_e/dt = I_C U_C$. Όταν $C = \sigma \tau \alpha \theta$., $W_e \rightarrow \frac{1}{2}CU_C^2 = \frac{1}{2}C^{-1}Q_C^2$.
- Πηνίο: Αποθηκεύει μαγνητική ενέργεια, $W_m = \int w_m dV$, με ρυθμό $dW_m/dt = I_L U_L$. Όταν $L = \sigma \tau \alpha \theta$., $W_m \to \frac{1}{2} L I_L^2 = \frac{1}{2} L^{-1} \Psi^2$.
- Πηγή Τάσης: Προσδίδει ΗΜ ενέργεια, παρέχοντας ισχύ $P_{\pi\alpha\rho} = -\int \mathbf{E} \cdot \mathbf{J} dV = eI_s$.

Δύναμη Lorentz: $\mathbf{F}_{em} = \int d\mathbf{F}_{em}$. (Στην ολοκλήρωση, υπ' όψιν ότι είναι \mathbf{i}_T , \mathbf{i}_{φ} , \mathbf{i}_r , $\mathbf{i}_{\theta} \neq \sigma \tau \alpha \theta$.)

- lacktriangle Σε χωρικές κατανομές $d\mathbf{F}_{em} = (\rho \mathbf{E} + \mathbf{J} \times \mathbf{B}) dV$.
- lacktriangle Σε επιφανειακές κατανομές $d\mathbf{F}_{em} = \left(\sigma \frac{\mathbf{E}_{+} + \mathbf{E}_{-}}{2} + \mathbf{K} \times \frac{\mathbf{B}_{+} + \mathbf{B}_{-}}{2}\right) dS$.
- $lackbreak \mathbf{E}$ Σε γραμμικές κατανομές $d\mathbf{F}_{em} = \lambda d\ell \left(\mathbf{E} \mathbf{i}_T \frac{\lambda}{2\pi\varepsilon r_T}\right)_{r_T o 0} + id\ell \mathbf{i}_\ell \times \left(\mathbf{B} \mathbf{i}_{\varphi} \frac{\mu i}{2\pi r_T}\right)_{r_T o 0}.$
- $\mathbf{F}_{em} = q \left(\mathbf{E} \mathbf{i}_r \frac{q}{4\pi \varepsilon r^2} \right)_{r o 0}.$

Δεν εφαρμόζεται σε δέσμια φορτία και ρεύματα, ούτε σε διηλεκτρικά και μαγνητικά σώματα.

Ενεργειακός προσδιορισμός δύναμης (σε διατάξεις στατικές ή με αργές μεταβολές)

Δύναμη, που τείνει να μεταβάλει το μήκος ℓ (να το αυξήσει, αν $F_{e,\ell} > 0$ ή $F_{m,\ell} > 0$):

$$F_{e,\ell} = -\frac{\partial}{\partial \ell} W_e(\ell, \dots, Q) = +\frac{\partial}{\partial \ell} W_e(\ell, \dots, U), \quad F_{m,\ell} = -\frac{\partial}{\partial \ell} W_m(\ell, \dots, \Psi_m) = +\frac{\partial}{\partial \ell} W_m(\ell, \dots, I).$$

Pοπή, που τείνει να μεταβάλει τη γωνία χ (να την αυξήσει, αν $T_{e_{\chi}} > 0$ ή $T_{m,\chi} > 0$):

$$T_{e,\chi} = -\frac{\partial}{\partial \chi} W_e(\chi, \dots, Q) = +\frac{\partial}{\partial \chi} W_e(\chi, \dots, U), \quad T_{m,\chi} = -\frac{\partial}{\partial \chi} W_m(\chi, \dots, \Psi_m) = +\frac{\partial}{\partial \chi} W_m(\chi, \dots, I).$$

• Πίεση, που τείνει να μεταβάλει τον όγκο V (να τον αυξήσει, αν $p_{e,V} > 0$ ή $p_{m,V} > 0$):

$$p_{e,V} = -\frac{\partial}{\partial V} W_e(V, \dots, Q) = +\frac{\partial}{\partial V} W_e(V, \dots, U), \quad p_{m,V} = -\frac{\partial}{\partial V} W_m(V, \dots, \Psi_m) = +\frac{\partial}{\partial V} W_m(V, \dots, I).$$

Πεδία σε μη συνήθη υλικά

Πόλωση: Λόγω στοιχειωδών ηλεκτρικών διπόλων \mathbf{p}_i από δράση πεδίου \mathbf{E} σε χρόνους t' < t,

$$\mathbf{P}(\mathbf{r},t) = \frac{1}{\Delta V} \sum_{j \in \Delta V} \mathbf{p}_{j} = \mathbf{P}_{0}(\mathbf{r},t) + \int_{-\infty}^{t} \mathbf{G}_{p}(\mathbf{r},t',\mathbf{E}(\mathbf{r},t')) dt' = \mathbf{P}(\mathbf{E}').$$

Μαγνήτιση: Λόγω στοιχειωδών μαγνητικών διπόλων \mathbf{m}_i από δράση πεδίου \mathbf{B} σε χρόνους t' < t,

$$\mathbf{M}(\mathbf{r},t) = \frac{1}{\Delta V} \sum_{j \in \Delta V} \mathbf{m}_{j} = \mathbf{M}_{0}(\mathbf{r},t) + \int_{-\infty}^{t} \mathbf{G}_{M}(\mathbf{r},t,\mathbf{B}(\mathbf{r},t')dt') = \mathbf{M}(\mathbf{B}').$$

Ρεύμα αγωγιμότητας: Λόγω ταχυτήτας \mathbf{v}_i φορτίων q_i από δράση πεδίου \mathbf{E} σε χρόνους t' < t,

$$\mathbf{J}(\mathbf{r},t) = \frac{1}{\Delta V} \sum_{j \in \Delta V} q_j \mathbf{v}_j = \mathbf{J}_0(\mathbf{r},t) + \int_0^t \mathbf{G}_J(\mathbf{r},t',\mathbf{E}(\mathbf{r},t')) dt' = \mathbf{J}(\mathbf{E}').$$

Συντακτικές σχέσεις: Γενικά, $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}(\mathbf{E}')$, $\mathbf{H} = \mu_0^{-1} \mathbf{B} - \mathbf{M}(\mathbf{B}') \Leftrightarrow \mathbf{B} = \mu_0 [\mathbf{H} + \mathbf{H}(\mathbf{E}')]$, $\mathbf{J} = \mathbf{J}(\mathbf{E}')$.

Ισοτροπικά υλικά: $\mathbf{P} = P(E)\mathbf{i}_E$, $\mathbf{M} = M(H)\mathbf{i}_H$, $\mathbf{J} = J(E)\mathbf{i}_E$.

 $\underline{\Gamma\rho\alpha\mu\mu\kappa\dot{\alpha}\;\nu\lambda\kappa\dot{\alpha}}\colon\;\mathbf{P}=\varepsilon_0\ddot{\mathbf{z}}_e\cdot\mathbf{E}\;\Rightarrow\;\mathbf{D}=\ddot{\mathbf{z}}\cdot\mathbf{E}\;,\quad\mathbf{M}=\ddot{\mathbf{z}}_m\cdot\mathbf{H}\;\Rightarrow\;\mathbf{B}=\ddot{\mathbf{\mu}}\cdot\mathbf{H}\;,\quad\mathbf{J}=\ddot{\mathbf{g}}\cdot\mathbf{E}\;,$

με: $\ddot{\mathbf{z}} = \varepsilon_0 (\ddot{\mathbf{I}} + \ddot{\mathbf{\chi}}_e) =$ τανυστής επιτρεπτότητας ($\ddot{\mathbf{\chi}}_e =$ τανυστής ηλεκτρικής δεκτικότητας),

 $\ddot{\mathbf{\mu}} = \mu_0 \left(\ddot{\mathbf{I}} + \ddot{\mathbf{\chi}}_m \right) =$ τανυστής μαγν. διαπερατότητας ($\ddot{\mathbf{\chi}}_m =$ τανυστής μαγν. δεκτικότητας),

 $\ddot{\mathbf{g}} = \tau \alpha v \upsilon \sigma \tau \dot{\eta} \varsigma$ ειδικής αγωγιμότητας.

<u>Γραμμικά και ισοτροπικά υλικά</u>: $\mathbf{P} = \varepsilon_0 \chi_e \mathbf{E} \Leftrightarrow \mathbf{D} = \varepsilon \mathbf{E}, \ \mathbf{M} = \chi_m \mathbf{H} \Leftrightarrow \mathbf{B} = \mu \mathbf{H}, \ \mathbf{J} = g \mathbf{E}$.

Υλικά με μόνιμη πόλωση ή μαγνήτιση:

$$\mathbf{B} = \mu_0 \mathbf{M}_0 + \ddot{\mathbf{\mu}}_{\Delta} \cdot \mathbf{H}$$
, $\dot{\mathbf{\eta}}$, $\mathbf{B} = \mu_0 \mathbf{M}_0 + \mu_{\Delta} \mathbf{H}$ (ótan $\ddot{\mathbf{\mu}}_{\Delta} = \mu_{\Delta} \ddot{\mathbf{I}}$),

$$\label{eq:definition} \boldsymbol{D} = \boldsymbol{P}_0 + \boldsymbol{\ddot{\epsilon}}_\Delta \cdot \boldsymbol{E} \;, \qquad \quad \dot{\boldsymbol{\eta}}, \;\; \boldsymbol{D} = \boldsymbol{P}_0 + \boldsymbol{\epsilon}_\Delta \boldsymbol{E} \;\; (\text{\'atan} \;\; \boldsymbol{\ddot{\epsilon}}_\Delta = \boldsymbol{\epsilon}_\Delta \boldsymbol{\ddot{I}} \;).$$

με: ε_{Δ} = διαφορική επιτρεπτότητα, μ_{Δ} = διαφορική μαγνητική διαπερατότητα.

Μη γραμμικά υλικά:

P, ή M P_{\max} , ή M_{\max} Σ κληρή Δ ιέγερση M αλακή P_{\max} , ή M_{\max} $P = \varepsilon_0 \chi_e E$, ή $M = \chi_m H$, $E_{\rm cr}$, ή $H_{\rm cr}$ E, ή H

Υλικά με Υστέρηση:

Ηλεκτρήτης: Συντακτική σχέση $\mathbf{D} = \mathbf{P}_0 + \varepsilon_\Delta \mathbf{E}$.

Επίλυση ως προς το πεδίο Ε:

$$\nabla \cdot (\varepsilon_{\Lambda} \mathbf{E}) = \rho - \nabla \cdot \mathbf{P}_{0} \triangleq \rho_{\text{1500}}, \quad \nabla \times \mathbf{E} = 0$$
 κλπ. σε επιφάνεια, γραμμή ή σημείο,

$$\label{eq:posterior} \acute{\mathbf{\eta}}, \quad \oint_{\mathcal{S}} \varepsilon_{\Delta} \mathbf{E} \cdot d\mathbf{S} = \int_{V} dQ - \oint_{\mathcal{S}} \mathbf{P}_{0} \cdot d\mathbf{S} = \int_{V} dQ_{\text{too}\delta}, \quad \oint_{\ell} \mathbf{E} \cdot d\mathbf{r} = 0 \; .$$

⇒ Εξισώσεις ηλεκτροστατικής (για πεδίο E).

<u>Επίλυση ως προς το πεδίο</u> \mathbf{D}_2 (με $\rho_{\kappa\lambda\pi} = 0$, από επαλληλία $\mathbf{D} = \mathbf{D}_1 + \mathbf{D}_2$):

$$\nabla \cdot \mathbf{D}_2 = 0$$
, $\nabla \times \frac{\mathbf{D}_2}{\varepsilon_\Delta} = \nabla \times \frac{\mathbf{P}_0}{\varepsilon_\Delta} \triangleq \mathbf{J}_m$ κλπ. σε επιφάνεια, γραμμή ή σημείο,

$$\dot{\mathbf{\eta}}, \quad \oint_{S} \mathbf{D}_{2} \cdot d\mathbf{S} = 0, \quad \oint_{\ell} \frac{\mathbf{D}_{2}}{\varepsilon_{\Lambda}} \cdot d\mathbf{r} = \int_{S} dI_{m}.$$

 \Rightarrow Εξισώσεις με δομή μαγνητοστατικής (για πεδίο $\mathbf{D}_2 \leftarrow \mathbf{H}$).

Μόνιμος μαγνήτης: Συντακτική σχέση $\mathbf{B} = \mu_0 \mathbf{M}_0 + \mu_\Delta \mathbf{H}$

Επίλυση ως προς το πεδίο Β:

$$\nabla \cdot \mathbf{B} = 0$$
, $\nabla \times \frac{\mathbf{B}}{\mu_{\Delta}} = \mathbf{J} + \mu_0 \nabla \times \frac{\mathbf{M}_0}{\mu_{\Delta}} = \mathbf{J}_{\text{1σοδ}}$ κλπ. σε επιφάνεια, γραμμή ή σημείο,

$$\acute{\mathbf{\eta}}, \quad \oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0, \quad \oint_{\ell} \frac{\mathbf{B}}{\mu_{\Lambda}} \cdot d\mathbf{r} = \int_{S} dI_{\text{1500}} .$$

⇒ Εξισώσεις μαγνητοστατικής (για πεδίο Β)

<u>Επίλυση ως προς το πεδίο</u> \mathbf{H}_2 (με $\mathbf{J}_{\kappa\lambda\pi} = 0$, από επαλληλία $\mathbf{H} = \mathbf{H}_1 + \mathbf{H}_2$):

$$\nabla \cdot \left(\mu_{\scriptscriptstyle \Delta} \mathbf{H}_2 \right) = -\mu_{\scriptscriptstyle 0} \nabla \cdot \mathbf{M}_{\scriptscriptstyle 0} \triangleq \rho_{\scriptscriptstyle m}, \quad \nabla \times \mathbf{H}_2 = 0 \quad \text{κλπ. σε επιφάνεια, γραμμή ή σημείο,}$$

$$\acute{\mathbf{\eta}}, \quad \oint_{S} \mu_{\Delta} \mathbf{H}_{2} \cdot d\mathbf{S} = \int_{V} dQ_{m}, \quad \oint_{\ell} \mathbf{H}_{2} \cdot d\mathbf{r} = 0.$$

 \Rightarrow Εξισώσεις με δομή ηλεκτροστατικής (για πεδίο $\mathbf{H}_2 \leftarrow \mathbf{E}$).

Μη γραμμικά υλικά: Επίλυση κατά περίπτωση.

Διηλεκτρικά υλικά: $\mathbf{D} = \mathbf{D}(\mathbf{E})$ [= $\mathbf{i}_E D(E)$ για ισοτροπικά υλικά] στις εξισώσεις

$$\oint_{S} \mathbf{D} \cdot d\mathbf{S} = \int_{V} dQ \quad \text{και} \quad \oint_{\ell} \mathbf{E} \cdot d\mathbf{r} = 0 \,, \quad \text{ή τις σημειακές σχέσεις.}$$

Μαγνητικά υλικά: $\mathbf{B} = \mathbf{B}(\mathbf{H})$ [= $\mathbf{i}_H B(H)$ για ισοστροπικά υλικά] στις εξισώσεις

$$\oint_{S} \mathbf{B} \cdot d\mathbf{S} = 0$$
 και $\oint_{\ell} \mathbf{H} \cdot d\mathbf{r} = \int_{S} dI$, ή τις σημειακές σχέσεις.

Μαγνητικό κύκλωμα με ένα μη γραμμικό κλάδο (μήκος L, διατομή S) με $B(H) \leftrightarrow H(B)$:

- Προσδιορισμός ισοδύναμου κυκλώματος Thevenin για γραμμικό μέρος,
- lacktriangle Εφαρμογή νόμου Ampere και συντακτικής σχέσης, $(NI)_{\mathrm{Th}} = R_{m,\mathrm{Th}} \Psi_m + LH \big(B = \Psi_m/S \big)$.

Ι. Λ. Βομβορίδης

Δυναμικά Φ, A και $Φ_m$

Ορισμοί:

Ηλεκτρικό δυναμικό Φ:

Όταν
$$\nabla \times \mathbf{E} = 0$$
, τότε $\mathbf{E} = -\nabla \Phi \iff \Phi(\mathbf{r}) - \Phi(\mathbf{r}_0) = -\int_{\mathbf{r}_0}^{\mathbf{r}} \mathbf{E}(\mathbf{r}') \cdot d\mathbf{r}' \ (\to \tau \acute{\alpha} \sigma \eta).$

Διαδρομή ολοκλήρωσης: Αδιάφορη (αν όμως $\mathbf{E} = \mathbf{E}_{\text{ep}}$, να μη τέμνει επιφάνεια ασυνέχειας).

Διανυσματικό δυναμικό **A**:

Επειδή
$$\nabla \cdot \mathbf{B} = 0 \implies \mathbf{B} = \nabla \times \mathbf{A}$$
 (με προσαρτημένη τη συνθήκη $\nabla \cdot \mathbf{A} = 0$).
$$\oint_{\mathbf{A}} \mathbf{A} \cdot d\mathbf{r} = \Psi_{m}$$
 (= μαγνητική ροή που διέρχεται από το εσωτερικό του βρόχου).

$<u>Βαθμωτό μαγνητικό δυναμικό</u> <math>Φ_m$:

Όπου είναι
$$\mathbf{J} = 0 \iff \nabla \times \mathbf{H} = 0$$
, εκεί $\mathbf{H} = -\nabla \Phi_m \iff \Phi_m(\mathbf{r}) = \Phi_m(\mathbf{r}_0) - \int_{\mathbf{r}_0}^{\mathbf{r}} \mathbf{H}(\mathbf{r}') \cdot d\mathbf{r}'$.

Διαδρομή ολοκλήρωσης: Να μη τέμνει επιφάνεια ασυνέχειας.

Ηλεκτρομαγνητικά δυναμικά {Α, Φ}:

$$\{\nabla \cdot \mathbf{B} = 0, \ \nabla \times \mathbf{E} = -\partial \mathbf{B}/\partial t\} \implies \mathbf{B} = \nabla \times \mathbf{A}, \ \mathbf{E} = -\nabla \Phi - \frac{\partial}{\partial t} \mathbf{A}$$

Συμβολισμοί για ολοκληρώματα επαλληλίας

$$\mathbf{R} = \mathbf{r} - \mathbf{r}', \qquad \mathbf{R}_0 = \mathbf{r}_0 - \mathbf{r}',$$

$$R = |\mathbf{R}| = |\mathbf{r} - \mathbf{r}'|, R_0 = |\mathbf{R}_0| = |\mathbf{r}_0 - \mathbf{r}'|.$$

$$\mathbf{R} = (x - x')\mathbf{i}_x + (y - y')\mathbf{i}_y + (z - z')\mathbf{i}_z$$

$$= r_T\mathbf{i}_T - r_T'\mathbf{i}_T' + (z - z')\mathbf{i}_z$$

$$= r\mathbf{i}_r - r'\mathbf{i}_r',$$

$$R = \sqrt{(x - x')^{2} + (y - y')^{2} + (z - z')^{2}}$$

$$= \sqrt{r_{T}^{2} + r_{T}^{\prime 2} - 2r_{T}r_{T}^{\prime}\cos(\varphi - \varphi') + (z - z')^{2}}$$

$$= \sqrt{r_{T}^{2} + r_{T}^{\prime 2} - 2r_{T}r_{T}^{\prime}\cos(\varphi - \varphi') + (z - z')^{2}}$$

$$= \sqrt{r_{T}^{2} + r_{T}^{\prime 2} - 2r_{T}r_{T}^{\prime}\cos(\varphi - \varphi')}$$

$$= \sqrt{r_{T}^{2} + r_{T}^{\prime 2} - 2r_{T}r_{T}^{\prime}\cos(\varphi - \varphi')},$$

$$\begin{bmatrix} \mathbf{i}_T' \\ \mathbf{i}_{\varphi}' \end{bmatrix} = \begin{bmatrix} \cos(\varphi' - \varphi) & \sin(\varphi' - \varphi) \\ -\sin(\varphi' - \varphi) & \cos(\varphi' - \varphi) \end{bmatrix} \cdot \begin{bmatrix} \mathbf{i}_T \\ \mathbf{i}_{\varphi} \end{bmatrix},$$

$$\begin{bmatrix} \mathbf{i}_r' \\ \mathbf{i}_\theta' \\ \mathbf{i}_\varphi' \end{bmatrix} = \begin{bmatrix} \cos\theta' \cos\theta + \sin\theta' \sin\theta \cos\xi & -\cos\theta' \sin\theta + \sin\theta' \cos\theta \cos\xi & \sin\theta' \sin\xi \\ -\sin\theta' \cos\theta + \cos\theta' \sin\theta \cos\xi & \sin\theta' \sin\theta + \cos\theta' \cos\theta \cos\xi & \cos\theta' \sin\xi \\ -\sin\theta \sin\xi & -\cos\theta \sin\xi & \cos\xi \end{bmatrix} \begin{bmatrix} \mathbf{i}_r \\ \mathbf{i}_\theta \\ \mathbf{i}_\varphi \end{bmatrix}$$

$$\mu\epsilon \ \xi = \varphi' - \varphi.$$

[Σημείο αναφοράς]

Ολοκληρώματα επαλληλίας (με το σημείο αναφοράς στο άπειρο) και συγγενείς σχέσεις

<u>Ηλεκτροστατικό δυναμικό</u> Φ, σε άπειρο χώρο με ε = σταθ, παραγόμενο από:

$$\begin{split} dQ' &= \{ \rho(\mathbf{r}') dV', \, \sigma(\mathbf{r}'_S) dS', \, \lambda(\ell') d\ell' \} \, \, \dot{\mathbf{\eta}} \, q_j : \qquad \Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon} \int \frac{dQ'}{R} + \frac{1}{4\pi\varepsilon} \sum_j \frac{q_j}{R_j} \,, \\ d\lambda' &= \{ \rho(\mathbf{r}'_\perp) dS', \, \sigma(\ell') d\ell' \} \, \, \dot{\mathbf{\eta}} \, \lambda_j : \qquad \qquad \Phi(\mathbf{r}_T) = -\frac{1}{4\pi\varepsilon} \int d\lambda' \ln \left(\frac{R_T^2}{R_{T0}^2} \right) - \frac{1}{4\pi\varepsilon} \sum_j \lambda_j \ln \left(\frac{R_T^2}{R_{T0}^2} \right) \,, \end{split}$$

$$d\mathbf{p}' = \{\mathbf{P}(\mathbf{r}')dV', \, \mathbf{p}_{S}(\mathbf{r}'_{S})dS', \, \mathbf{p}_{\ell}(\ell')d\ell'\} \, \, \dot{\mathbf{\eta}} \, \, \mathbf{p}_{j} \colon \, \, \boldsymbol{\Phi}(\mathbf{r}) = \frac{1}{4\pi\varepsilon} \int \frac{d\mathbf{p}' \cdot \mathbf{R}}{R^{3}} + \frac{1}{4\pi\varepsilon} \sum_{j} \frac{\mathbf{p}_{j} \cdot \mathbf{R}}{R^{3}} \, ,$$

$$\mathbf{p}_{\ell\perp} = p_{\ell\perp0}\mathbf{i}_x$$
 στην αρχή των αξόνων:
$$\Phi(\mathbf{r}_\perp) = \frac{p_{\ell\perp0}}{2\pi\varepsilon} \frac{x}{x^2 + y^2} = \frac{p_{\ell\perp0}}{2\pi\varepsilon} \frac{\cos\varphi}{r_r},$$

$$p_{S\perp 0}$$
 σε επιφάνεια S , με $\mathbf{i}_n'dS'$:
$$\Phi(\mathbf{r}) = \frac{p_{S\perp 0}}{4\pi\varepsilon} \int_S dS' \frac{\mathbf{i}_n' \cdot \mathbf{R}}{R^3} = -\frac{p_{S\perp 0}}{4\pi\varepsilon} \Omega .$$

<u>Ηλεκτροστατικό δυναμικό</u> Φ, σε άπειρο χώρο με g = σταθ, παραγόμενο από:

$$\begin{split} d\dot{Q}' &= \{\dot{\rho}(\mathbf{r}')dV', \dot{\sigma}(\mathbf{r}'_S)dS, \dot{\lambda}(\ell')d\ell'\}, \, \dot{\eta} \, \dot{q} : \, \Phi(\mathbf{r}) = \frac{1}{4\pi g} \int \frac{d\dot{Q}'}{R}, \\ \text{me} \quad \dot{q} &= I_{\pi\rho\sigma\sigma\gamma} \, \kappa\lambda\pi. \end{split}$$

Επαγωγικό ηλεκτρικό δυναμικό $\Phi_{\varepsilon\pi}$, σε άπειρο χώρο με $\varepsilon = \sigma \tau \alpha \theta$, παραγόμενο από:

Βρόχο με μαγνητική ροή
$$\Psi_m(t)$$
:
$$\Phi_{\varepsilon\pi}(\mathbf{r},t) = -\frac{1}{4\pi} \frac{d\Psi_m}{dt} \int_{S} \frac{d\mathbf{S}' \cdot \mathbf{R}}{R^3} = \frac{\Omega}{4\pi} \frac{d\Psi_m}{dt},$$

με $d\mathbf{S}' = \Sigma$ τοιχείο της (νοητής) επιφάνειας ασυνέχειας S (= με όριο στο βρόχο), $\Omega = -\int_S (dS' \cdot \mathbf{R})/R^3 = \Sigma$ τερεά γωνία, με την οποία φαίνεται η αρνητική όψη της S.

<u>Βαθμωτό μαγνητικό δυναμικό</u> Φ_m , σε άπειρο χώρο με $\mu = \sigma \tau \alpha \theta$, παραγόμενο από:

Βρόχο με ρεύμα
$$i$$
:
$$\Phi_m(\mathbf{r}) = \frac{1}{4\pi} i \int_S \frac{d\mathbf{S}' \cdot \mathbf{R}}{R^3} = -\frac{\Omega}{4\pi} i.$$

Διανυσματικό δυναμικό **A**, σε άπειρο χώρο με $\mu = \sigma \tau \alpha \theta$, όταν $\partial/\partial t = 0$, παραγόμενο από:

$$[\mathbf{J}(\mathbf{r}')dV']_{\kappa\lambda\pi} = \{\mathbf{J}(\mathbf{r}')dV', \mathbf{K}(\mathbf{r}'_S)dS', i(\ell')d\mathbf{r}'\}: \qquad \mathbf{A}(\mathbf{r}) = \frac{\mu}{4\pi} \int_{V}^{\infty} \frac{\left[\mathbf{J}(\mathbf{r}')dV'\right]_{\kappa\lambda\pi}}{R},$$

$$d\mathbf{m}' = \{ \mathbf{M}(\mathbf{r}')dV', \, \mathbf{m}_{S}(\mathbf{r}'_{S})dS', \, \mathbf{m}_{\ell}(\ell')d\ell' \} \, \dot{\mathbf{\eta}} \, \mathbf{m}_{j} : \qquad \mathbf{A}(\mathbf{r}) = \frac{\mu}{4\pi} \int \frac{d\mathbf{m}' \times \mathbf{R}}{R^{3}} \, .$$

18

<u>Μαγνητικό πεδίο</u>, σε άπειρο χώρο με $\mu = \sigma \tau \alpha \theta$ (νόμος *Biot-Savart*) , παραγόμενο από:

$$[\mathbf{J}(\mathbf{r}')dV']_{\kappa\lambda\pi} = \{\mathbf{J}(\mathbf{r}')dV', \mathbf{K}(\mathbf{r}'_S)dS', i(\ell')d\mathbf{r}'\}: \qquad \mathbf{H} = \frac{1}{4\pi} \int_{\mathcal{X}} \frac{\left[\mathbf{J}(\mathbf{r}')dV'\right]_{\kappa\lambda\pi}}{R^3} \times \mathbf{R}.$$

<u>Αλληλεπαγωγή δύο βρόχων</u> i, j, σε άπειρο χώρο με $\mu = \sigma \tau \alpha \theta$ (τύπος του Neumann):

$$L_{ij} = \frac{\varPsi_{m,ij}}{i_i} = \frac{\mu}{4\pi} \oint_{\ell_i} \oint_{\ell_j} \frac{d\mathbf{r}_i \cdot d\mathbf{r}_j}{R_{ij}} \quad (\varPsi_{m,ij} = \text{magn. poń pow diérxetai apó bróco } j, \text{ lógw reúmatog } i_i).$$

Ι. Λ. Βομβορίδης

<u>Χρονομεταβλητά δυναμικά</u> $\{A, \Phi\}$, σε άπειρο χώρο με ε_0, μ_0 :

$$\Phi(\mathbf{r},t) = \frac{1}{4\pi\varepsilon_0} \int \frac{\left[\rho(\mathbf{r}', t')dV'\right]_{\kappa\lambda\pi}}{R}, \quad \mathbf{A}(\mathbf{r},t) = \frac{\mu_0}{4\pi} \int \frac{\left[\mathbf{J}(\mathbf{r}', t')dV'\right]_{\kappa\lambda\pi}}{R},$$

με τις τιμές των αιτίων κατά τις προγενέστερες χρονικές στιγμές t' = t - R/c.

Σημείο αναφοράς \mathbf{r}_0 (= θέση όπου το δυναμικό τίθεται ίσο με μηδέν)

Μπορεί να επιλεγεί οπουδήποτε, εκτός από:

- Μεμονωμένα σημεία με συγκεντρωμένο αίτιο,
- Σημεία σε γραμμές με συγκεντρωμένο αίτιο,
- Σημεία σε επιφάνειες με συγκεντρωμένο αίτιο με διπολική φυσιογνωμία
 (με διπολικό στρώμα ή επιφάνεια ασυνέχειας),
- Στο άπειρο, αν το αίτιο εκτείνεται ως το άπειρο με πεπερασμένη τιμή.

Προτιμάται να επιλεγεί στο άπειρο, αν είναι αποδεκτό.

Προσαρμογή ολοκληρωμάτων επαλληλίας, ώστε να είναι $\mathbf{r}_0 \neq \infty$, π.χ.:

$$\int \frac{dQ'}{R} \to \int dQ' \left(\frac{1}{R} - \frac{1}{R_0}\right), \quad \int \frac{d\mathbf{p}' \cdot \mathbf{R}}{R^3} \to \int d\mathbf{p}' \cdot \left(\frac{\mathbf{R}}{R^3} - \frac{\mathbf{R}_0}{R_0^3}\right), \quad \int \frac{d\mathbf{m}' \times \mathbf{R}}{R^3} \to \int d\mathbf{m}' \times \left(\frac{\mathbf{R}}{R^3} - \frac{\mathbf{R}_0}{R_0^3}\right).$$

Διαφορικές εξισώσεις

Σε διηλεκτρικό:
$$\nabla \cdot \left(\varepsilon(\mathbf{r}) \nabla \Phi \right) = -\rho(\mathbf{r}) + \nabla \cdot \mathbf{P}_0 \underset{\nabla \cdot \mathbf{P}_0 = 0}{\Longrightarrow} \nabla^2 \Phi = -\frac{1}{\varepsilon} \rho(\mathbf{r}) \,,$$

Για το επαγωγικό δυναμικό:
$$\nabla \cdot \left(\varepsilon(\mathbf{r}) \nabla \varPhi_{\varepsilon\pi} \right) = 0 \underset{\nabla_{\varepsilon\pi}}{\Longrightarrow} \nabla^2 \varPhi_{\varepsilon\pi} = 0 \; .$$

Σε αγώγιμο υλικό:
$$\nabla \cdot \left(g(\mathbf{r}) \nabla \Phi \right) = -\dot{\rho}(\mathbf{r}) \underset{\stackrel{\nabla g=0}{\dot{\rho}=0}}{\Longrightarrow} \nabla^2 \Phi = 0 \ .$$

Σε μαγνητικό υλικό (με
$$\partial/\partial t = 0$$
): $\nabla \times \left[\frac{1}{\mu}(\nabla \times \mathbf{A})\right] = \mathbf{J} \underset{\nabla \mu = 0}{\Longrightarrow} \nabla^2 \mathbf{A} = -\mu \mathbf{J}$,

Για το βαθμωτό δυναμικό:
$$\nabla \cdot \left(\mu(\mathbf{r}) \nabla \varPhi_{\scriptscriptstyle m} \right) = 0 \underset{\nabla \mu = 0}{\Longrightarrow} \nabla^2 \varPhi_{\scriptscriptstyle m} = 0 \, .$$

Συνθήκες σε επιφάνεια

Μεταξύ διηλεκτρικών:
$$\varepsilon_{+} \frac{\partial \Phi_{+}}{\partial n} \Big|_{-\varepsilon_{-}} \frac{\partial \Phi_{-}}{\partial n} \Big|_{-\varepsilon_{-}} = -\sigma(\mathbf{r}_{S}) + \mathbf{i}_{n} \cdot (\mathbf{P}_{0+} - \mathbf{P}_{0-}), \ \Phi_{+} - \Phi_{-} = \frac{p_{S\perp}(\mathbf{r}_{S})}{\varepsilon_{-}},$$

Για το επαγωγικό δυναμικό:
$$\varepsilon_{+} \frac{\partial \Phi_{\varepsilon\pi^{+}}}{\partial n} \Big|_{\perp} - \varepsilon_{-} \frac{\partial \Phi_{\varepsilon\pi^{-}}}{\partial n} \Big|_{\perp} = 0$$
, $\Phi_{\varepsilon\pi^{+}} - \Phi_{\varepsilon\pi^{-}} = -\frac{d}{dt} \Psi_{m}$.

Μεταξύ αγώγιμων υλικών:
$$g_{+} \frac{\partial \varPhi_{+}}{\partial n} \bigg|_{-} - g_{-} \frac{\partial \varPhi_{-}}{\partial n} \bigg|_{-} = -\dot{\sigma}(\mathbf{r}_{S}) \,, \; \varPhi_{+} - \varPhi_{-} = 0 \,,$$

Μεταξύ μαγνητικών υλικών:
$$\mathbf{i}_{n} \times \left(\frac{1}{\mu_{+}} \nabla \times \mathbf{A}_{+} - \frac{1}{\mu_{-}} \nabla \times \mathbf{A}_{-}\right) = \mathbf{K} , \ \mathbf{i}_{n} \times \left(\mathbf{A}_{+} - \mathbf{A}_{-}\right) = \mu_{m} \mathbf{m}_{S\parallel},$$

Για το βαθμωτό δυναμικό:
$$\mu_{+} \left. \frac{\partial \varPhi_{\scriptscriptstyle m+}}{\partial n} \right|_{\scriptscriptstyle +} - \mu_{-} \left. \frac{\partial \varPhi_{\scriptscriptstyle m-}}{\partial n} \right|_{\scriptscriptstyle -} = 0 \; , \; \varPhi_{\scriptscriptstyle m+} - \varPhi_{\scriptscriptstyle m-} = i \; .$$

Διατάξεις οριακών τιμών, Κατοπτρισμός, Αριθμητικές μέθοδοι

Λαπλασιανή

Bαθμωτή:
$$\nabla^2 \Phi = \nabla \cdot (\nabla \Phi),$$

Διανυσματική:
$$\nabla^2 \mathbf{A} = \nabla(\nabla \cdot \mathbf{A}) - \nabla \times (\nabla \times \mathbf{A})$$
,

με
$$\mathbf{i}_s \cdot (\nabla^2 \mathbf{A}) = \nabla^2 (\mathbf{i}_s \cdot \mathbf{A}) = \nabla^2 A_s$$
 μόνο όταν $s = \{x, y, z\}$.

$$\nabla^{2} \Phi = \frac{\partial^{2} \Phi}{\partial x^{2}} + \frac{\partial^{2} \Phi}{\partial y^{2}} + \frac{\partial^{2} \Phi}{\partial z^{2}}$$

$$= \frac{1}{r_{T}} \frac{\partial}{\partial r_{T}} \left(r_{T} \frac{\partial \Phi}{\partial r_{T}} \right) + \frac{1}{r_{T}^{2}} \frac{\partial^{2} \Phi}{\partial \varphi^{2}} + \frac{\partial^{2} \Phi}{\partial z^{2}}$$

$$= \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial \Phi}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Phi}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} \Phi}{\partial \varphi^{2}}$$

Καλά διατυπωμένο πρόβλημα για τον τελεστή του Laplace

Me
$$\Phi = {\Phi, \Phi_{\varepsilon\pi}, A_x, A_y, A_z, \Phi_m, \Phi_{\perp}, \Phi_{m\perp}}$$
:

- Στο χώρο V, διαφορική εξίσωση: $\nabla^2 \Phi = -f$,
- **Σ**την κλειστή επιφάνεια S, όριο του V, οριακή συνθήκη $\mathcal{L}\Phi = \gamma(\mathbf{r}_S)$:

Dirichlet,
$$\mathcal{L}\Phi = \Phi(\mathbf{r}_s) = \Phi_s(\mathbf{r}_s)$$
,

Neumann,
$$\mathcal{L}\Phi = \frac{\partial \Phi}{\partial n}\Big|_{S} = \Phi_{nS}(\mathbf{r}_{S}),$$

με
$$\oint_{S} \Phi_{nS}(\mathbf{r}_{S}) dS = -\int_{V} f(\mathbf{r}) dV$$
,

Μικτή, $\mathcal{L}\Phi = \alpha\lambda\lambdaού$ Dirichlet, αλλού Neumann,

Γενική,
$$\mathcal{L}\Phi = \Phi(\mathbf{r}_S) + \ell(\mathbf{r}_S) \frac{\partial \Phi}{\partial n} \Big|_S = \Phi^*(\mathbf{r}_S),$$
με $\ell(\mathbf{r}_S) > 0.$

Dirichlet: Για το Φ όταν $g_c >> g$ ή $\varepsilon_c >> \varepsilon$, για το Φ_m όταν $\mu_c >> \mu$, για το \mathbf{A} όταν $\mu_c << \mu$,

Neumann: Για το Φ όταν $g_c \ll g$ ή $\varepsilon_c \ll \varepsilon$, για το Φ_m όταν $\mu_c \ll \mu$.

Ειδική και συμπληρωματική λύση

Στο πρόβλημα $\nabla^2 \Phi = -f$ στο V, $\mathcal{L}\Phi = \Phi^*$ στην $S \implies \Phi = \Phi_{\text{ειδ}} + \Phi_{\text{συμ}}$, με:

$$Φ_{\text{ειδ}}$$
: Μόνη απαίτηση: $\nabla^2 Φ_{\text{ειδ}} = -f(\mathbf{r}) \implies Φ_{\text{ειδ}}(\mathbf{r}) = \frac{1}{4\pi} \left| \int_V \frac{1}{R} f(\mathbf{r}') dV' + \int_{V_c} \frac{1}{R_c} f_c(\mathbf{r}'_c) dV'_c \right|.$

$$\Phi_{\text{sum}}$$
: $\nabla^2 \Phi_{\text{sum}} = 0$ sto V kai $\mathcal{L}\Phi = \Phi^* - \mathcal{L}\Phi_{\text{eid}}$ sthy S .

Μονοδιάστατες λύσεις

Με $s = \{x, y, z, r_T, \varphi, r, \theta\}$, το πρόβλημα με $\nabla^2 \Phi = -f$ έχει λύση με μορφή $\Phi = \Phi(s)$, όταν:

- $f = (1/h_s^2)f_1(s)$, $6\pi ov h_x = h_v = h_z = h_T = h_r = 1$, $h_{\varphi} = r_T = r\sin\theta$, $h_{\theta} = r$,
- **•** Η επιφάνεια S έχει δύο βάσεις με $s = s_{1,2}$ και εκεί είτε $\Phi = \sigma \tau \alpha \theta$ είτε $\partial \Phi / \partial n = \sigma \tau \alpha \theta / h_s$,
- Το υπόλοιπο τμήμα της S έχει $\mathbf{i}_n \perp \mathbf{i}_s$ και $\partial \Phi / \partial n = 0$.

Κατοπτρισμός σε επίπεδο με $\Phi = 0$ ή $\partial \Phi/\partial n = 0$

Ολος ο χώρος με ιδιότητες: ε , g ή μ (του χώρου V).

Είδωλα αρχικών αιτίων: συμμετρικές θέσεις, συμμετρική διεύθυνση, ίδιο μέτρο (σε σχέση με αρχικά αίτια).

Πρόσημα ειδώλων:

 $\frac{\text{Ομόσημα}}{g_c << g, \varepsilon_c << \varepsilon, \mu_c >> \mu,}$ $\frac{\text{Ετερόσημα}}{g_c >> g, \varepsilon_c >> \varepsilon, \mu_c << \mu.}$

Κατοπτρισμός σε επίπεδο μεταξύ υλικών με μικρές διαφορές

Αρχική διάταξη

Βοηθητική διάταξη Ι

Όλος ο χώρος με ε_1 , g_1 ή μ_1

Αίτια περιοχής Ι: αμετάβλητα.

Είδωλα αιτίων περιοχής Ι: συμμετρικές θέσεις, συμμετρική διεύθυνση (σε σχέση με αρχικά αίτια).

Είδωλα αιτίων περιοχής ΙΙ: αρχικές θέσεις, αρχική διεύθυνση.

Είδωλα αιτίων περιοχής Ι:

$$dQ_{1c} = \frac{\varepsilon_1 - \varepsilon_2}{\varepsilon_1 + \varepsilon_2} dQ_1, \quad d\dot{Q}_{1c} = \frac{g_1 - g_2}{g_1 + g_2} d\dot{Q}_1, \quad i_{1c} = \frac{\mu_2 - \mu_1}{\mu_1 + \mu_2} i_1,$$

Είδωλα αιτίων περιοχής ΙΙ:

$$dQ_{2c} = \frac{2\varepsilon_1}{\varepsilon_1 + \varepsilon_2} dQ_2, \quad d\dot{Q}_{2c} = \frac{2g_1}{g_1 + g_2} d\dot{Q}_2, \quad i_{2c} = \frac{2\mu_2}{\mu_1 + \mu_2} i_2.$$

<u>Βοηθητική διάταξη ΙΙ:</u> Με εναλλαγή $1 \leftrightarrow 2$.

Κατοπτρισμός σε σφαίρα (με ακτίνα α)

Ηλεκτροστατική:

Εσωτερικό πρόβλημα

Αρχικό:

Βοηθητικό:

Εξωτερικό πρόβλημα

Αρχικό:

Βοηθητικό:

Κατοπτρισμός κατανομής φορτίου, σε γειωμένη σφαιρικά επιφάνεια:

$$\Phi(\mathbf{r}) = \frac{1}{4\pi\varepsilon} \int dQ' \left(\frac{1}{R(\mathbf{r}',\mathbf{r})} - \frac{1}{R^*(\mathbf{r}',\mathbf{r})} \right), \, \mu\varepsilon:$$

$$R^2 = r'^2 - 2r'r \left[\cos\theta' \cos\theta + \sin\theta' \sin\theta \cos\left(\varphi' - \varphi\right) \right] + r^2,$$

$$R^{*2} = \left(\frac{r}{a} \right)^2 r'^2 - 2r'r \left[\cos\theta' \cos\theta + \sin\theta' \sin\theta \cos\left(\varphi' - \varphi\right) \right] + a^2.$$

Μόνιμη ροή ρεύματος:

Όπως σε διηλεκτρικό, με τις αντικαταστάσεις $\dot{Q} \leftrightarrow Q, g \leftrightarrow \varepsilon$.

Μαγνητοστατική:

Προϋποθέσεις:

- ο Ρευματοφόρος βρόχος (ρεύμα i), εξ ολοκλήρου σε επιφάνεια $r' = \sigma \tau \alpha \theta$. $(r' < a, \acute{\eta} r' > a)$.
- ο Οριακή συνθήκη $\mathbf{i}_n \cdot \mathbf{H} = H_n = 0$ στη σφαιρική επιφάνεια r = a

Βοηθητικό πρόβλημα:

- ο Παντού μ (όσο αρχικά στο χώρο V),
- ο Αρχικός βρόχος με *i*, αμετάβλητα,
- ο Είδωλο στην επιφάνεια $r_c' = a^2/r'$, με ρεύμα $i_c = -(r'/a)i$.

Κατοπτρισμός σε κύλινδρο (με ακτίνα α)

Φορτία σε διηλεκτρικό:

Αρχική διάταξη: Φορτίο λ στη θέση $(r_T' = \ell, \varphi' = \varphi_{\lambda}')$, ή κατανομή $d\lambda'$, σε περιοχή με ε .

Than $\Phi|_a = 0$:

Παντού ε , αρχικό φορτίο αμετάβλητο, είδωλο $\lambda_c = -\lambda$ στη θέση $(r_{Tc}' = \ell_c = a^2/\ell, \varphi_c' = \varphi_\lambda')$.

Για κατανομή γραμμικού φορτίου: $\Phi(r_T, \varphi) = -\frac{1}{4\pi\varepsilon} \int d\lambda' \ln\left(\frac{R_T^2(\mathbf{r}_T; \mathbf{r}_T')}{R_T^{*2}(\mathbf{r}_T; r_T')}\right)$,

με
$$R_T^2(\mathbf{r}_T; \mathbf{r}_T') = r_T'^2 - 2r_T'r_T \cos(\varphi' - \varphi) + r_T^2$$
, $R_T^{*2}(\mathbf{r}_T; \mathbf{r}_T') = \left(\frac{r_T}{a}\right)^2 r_T'^2 - 2r_T'r_T \cos(\varphi' - \varphi) + a^2$.

Όταν $\left. \left(\partial \varPhi / \partial n \right) \right|_a = 0$ και $\ell \leq a$ (εσωτερικό πρόβλημα):

Παντού ε , αρχικό φορτίο αμετάβλητο, είδωλο $\lambda_c = +\lambda$ στη θέση $(r_{Tc}' = \ell_c = a^2/\ell, \, \varphi_c' = \varphi_a')$.

Όταν $(\partial \Phi/\partial n)|_a = 0$ και $\ell > a$ (εξωτερικό πρόβλημα):

Παντού ε , αρχικό φορτίο αμετάβλητο, είδωλο $\lambda_c = +\lambda$ στη θέση $(r'_{Tc} = \ell_c = a^2/\ell, \varphi'_c = \varphi'_\lambda)$, και επιπρόσθετο είδωλο $\lambda_0 = -\lambda$ στον άξονα $r'_{T0} = 0$.

Όταν $(\partial \Phi/\partial n)|_{a} = 0$ και κατανομή $d\lambda'$:

$$\Phi(r_T, \varphi) = -\frac{1}{4\pi\varepsilon} \int d\lambda' \ln\left(\frac{R_T^2(\mathbf{r}_T; \mathbf{r}_T') R_T^{*2}(\mathbf{r}_T; r_T')}{r_T^2 L^2}\right), \text{ με } R_T^2 = ..., \quad R_T^{*2} = ... \text{ ως ανωτέρω}.$$

Όταν $\varepsilon(r_T < a) = \varepsilon_1$ και $\varepsilon(r_T > a) = \varepsilon_2$:

$$\lambda \text{ sto } \ell_1 \leq a \text{ kai } -\lambda \text{ sto } 0 \implies \lambda_{1c} = \frac{\varepsilon_1 - \varepsilon_2}{\varepsilon_1 + \varepsilon_2} \lambda \text{ kai } \lambda_{2c} = \frac{2\varepsilon_2}{\varepsilon_1 + \varepsilon_2} \lambda \text{, sto } \ell_2 = a^2/\ell_1.$$

$$\lambda$$
 στο $\ell_2 > a \implies \lambda_{1c} = \frac{2\varepsilon_1}{\varepsilon_1 + \varepsilon_2} \lambda$, και $\lambda_{2c} = \frac{\varepsilon_2 - \varepsilon_1}{\varepsilon_1 + \varepsilon_2} \lambda$, στο $\ell_1 = a^2/\ell_2$, και $-\lambda_{2c}$ στο 0

Μόνιμη ροή ρεύματος και Μαγνητοστατική: Με βάση τις αντιστοιχίες του Πίνακα

Ηλεκτροστατική	E	Φ	D	3	q	λ	σ	ρ	dQ	dλ
Μόνιμη ροή ρεύματος	E	Φ	J	g	\dot{q}	λ	$\dot{\sigma}$	$\dot{ ho}$	dQ	$d\dot{\lambda}$
Μαγνητοστατική, με $\partial/\partial z = 0$	$\mathbf{B} \times \mathbf{i}_z$	A_z	$\mathbf{H} \times \mathbf{i}_z$	μ^{-1}		i	K_z	J_z		dI

Αριθμητική επίλυση με πεπερασμένες διαφορές

Αρχικές εκτιμήσεις:

Με στόχο τη βαθύτερη διείσδυση των οριακών τιμών στο εσωτερικό της διάταξης,

Αποδεκτή η εφαρμογή αλγορίθμου με μεγάλη ακτίνα κύκλου/σφαίρας.

Διαδοχικές προσεγγίσεις:

Μέθοδος Jacobi:

$$\begin{split} \boldsymbol{\Phi}_{i,j}^{(n)} &= \frac{1}{4} \Big(\boldsymbol{\Phi}_{i-1,j}^{(n-1)} + \boldsymbol{\Phi}_{i+1,j}^{(n-1)} + \boldsymbol{\Phi}_{i,j-1}^{(n-1)} + \boldsymbol{\Phi}_{i,j+1}^{(n-1)} \Big), \\ \boldsymbol{\Phi}_{i,j,k}^{(n)} &= \frac{1}{6} \Big(\boldsymbol{\Phi}_{i-1,j,k}^{(n-1)} + \boldsymbol{\Phi}_{i+1,j,k}^{(n-1)} + \boldsymbol{\Phi}_{i,j-1,k}^{(n-1)} + \boldsymbol{\Phi}_{i,j,k-1}^{(n-1)} + \boldsymbol{\Phi}_{i,j,k-1}^{(n-1)} + \boldsymbol{\Phi}_{i,j,k-1}^{(n-1)} \Big). \end{split}$$

Μέθοδος Gauss-Seidel (ταχύτερη):

$$\Phi_{i,j}^{(n)} = \frac{1}{4} \Big(\Phi_{i-1,j}^{(n)} + \Phi_{i,j-1}^{(n)} + \Phi_{i+1,j}^{(n-1)} + \Phi_{i,j+1}^{(n-1)} \Big),
\Phi_{i,j,k}^{(n)} = \frac{1}{6} \Big(\Phi_{i-1,j,k}^{(n)} + \Phi_{i,j-1,k}^{(n)} + \Phi_{i,j,k-1}^{(n)} + \Phi_{i+1,j,k}^{(n-1)} + \Phi_{i,j+1,k}^{(n-1)} + \Phi_{i,j,k+1}^{(n-1)} \Big).$$

Διαδοχική υπερχαλάρωση:

$$\Phi_{i,j}^{(n)} = \frac{1}{4} \left[\left(1 + \delta \right) \left(\Phi_{i-1,j}^{(n)} + \Phi_{i,j-1}^{(n)} + \Phi_{i+1,j}^{(n-1)} + \Phi_{i,j+1}^{(n-1)} \right) - \delta \left(\Phi_{i-1,j}^{(n-1)} + \Phi_{i,j-1}^{(n-1)} + \Phi_{i+1,j}^{(n-1)} + \Phi_{i,j+1}^{(n-1)} \right) \right].$$

Προσεγγιστική επίλυση με μέθοδο Rayleigh-Ritz

Προσέγγιση δυναμικού από $\tilde{\Phi}(\mathbf{r};\alpha_1,\alpha_2,\alpha_3,...) = f_0(\mathbf{r}) + \sum_n \alpha_n f_n(\mathbf{r})$, με:

$$\begin{split} &f_0\big(\mathbf{r}\!=\!\mathbf{r}_{\!S}\big)\!=\!\boldsymbol{\varPhi}\big(\mathbf{r}\!=\!\mathbf{r}_{\!S}\big),\\ &f_n\big(\mathbf{r}\!=\!\mathbf{r}_{\!S}\big)\!=\!0\,,\;\; \text{kai}\;(\text{gia}\;n,\,n'\neq0)\;\int_V \!\left(\nabla\!f_n\right)\!\cdot\!\left(\nabla\!f_{n'}\right)\!dV=0\,,\,\text{stan}\;n'\neq n. \end{split}$$

Οι συντελεστές είναι:
$$\alpha_{\scriptscriptstyle n} = -\frac{\displaystyle \int_{\scriptscriptstyle V} \! \left(\nabla f_{\scriptscriptstyle n} \right) \! \cdot \! \left(\nabla f_{\scriptscriptstyle 0} \right) \! dV}{\displaystyle \int_{\scriptscriptstyle V} \! \left| \nabla f_{\scriptscriptstyle n} \right|^2 dV} \, .$$

Χωρισμός μεταβλητών

Διδιάστατες Καρτεσιανές διατάξεις

Me
$$\Phi = \sum X(x)Y(y)$$
, $\nabla^2 \Phi = 0 \implies X'' = K_x X$, $Y'' = K_y Y$, $\mu \in K_x + K_y = 0$

Συναρτήσεις *X*(*x*):

$$K_x = 0 \implies X(x) = \{x, 1\},$$

$$K_x = -k^2 < 0 \implies X(x) = \{\sin(kx), \cos(kx)\},\$$

$$K_x = k^2 > 0 \implies X(x) = \{\exp(kx), \exp(-kx)\}, \, \text{if } X(x) = \{\sinh(kx), \cosh(kx)\}.$$

Συμβολισμός: {...} = γραμμικός συνδυασμός περικλειόμενων συναρτήσεων, Σύμβαση: k > 0.

$$K_x = 0$$

$$K_{\rm r} = -k^2 < 0$$

$$K_r = +k^2 > 0$$

Παράγωγοι:

Αθροίσματα/Διαφορές

 $\sin(\xi \pm \eta) = \sin \xi \cos \eta \pm \cos \xi \sin \eta,$

 $\cos(\xi \pm \eta) = \cos\xi\cos\eta \mp \sin\xi\sin\eta$

$$(\sin \xi)' = \cos \xi, \qquad (\cos \xi)' = -\sin \xi,$$

$$(s\,\xi)' = -\sin\xi,$$

$$(\exp \xi)' = \exp \xi, \quad (\exp(-\xi))' = -\exp \xi,$$

$$(\sinh \xi)' = \cosh \xi, \quad (\cosh \xi)' = \sinh \xi.$$

$$\exp(\xi \pm \eta) = \exp \xi \exp(\pm \eta),$$

 $\sinh(\xi \pm \eta) = \sinh \xi \cosh \eta \pm \cosh \xi \sinh \eta$,

$$\cosh(\xi \pm \eta) = \cosh \xi \cosh \eta \pm \sinh \xi \sinh \eta.$$

Γραμμικοί συνδυασμοί με μηδενισμό:

$$X = x - x_0$$
, $\dot{\eta} X = \sin[k(x - x_0)]$, $\dot{\eta} X = \sinh[k(x - x_0)]$.

o
$$\frac{d}{dx}X(x)\Big|_{x=x_0}=0$$
, ótan:

$$X=1, \, \dot{\eta} \ X = \cos[k(x-x_0)], \, \dot{\eta} \ X = \cosh[k(x-x_0)].$$

o
$$X(x = +\infty) = 0$$
, όταν:

$$X = \exp(-kx) = \cosh(kx) - \sinh(kx).$$

o
$$X(x = -\infty) = 0$$
, όταν:

$$X = \exp(+kx) = \cosh(kx) + \sinh(kx).$$

Συναρτήσεις Y(y): Οι ίδιες συναρτήσεις, αλλά με $K_y = -K_x$ (\Rightarrow με το ίδιο k).

Αναγκαίες προϋποθέσεις για επίλυση με λίγους όρους:

Οριακές συνθήκες δεν επιβάλλουν ασυνέχεια,

Εμφάνιση αποδεκτών συναρτήσεων στις οριακές συνθήκες.

Διάταξη με μία μη ομογενή οριακή συνθήκη

(π.χ. στο y = b):

- ο $X_n(x)$ και k_n από ομογενείς οριακές συνθήκες αντιμέτωπων πλευρών (x = 0, x = a),
- ο $Y_n(y)$ από τρίτη ομογενή οριακή συνθήκη,

$$\circ \quad \mathcal{L}\Phi = f \Rightarrow \sum_{n} A_{n} (\mathcal{L}Y_{n}) \big|_{y=b} X_{n}(x) = f(x),$$

- ο Ορθογωνιότητα των $X_n(x)$: $\int_0^a X_n(x) X_{n'}(x) dx = \begin{cases} 0 & (n' \neq n), \\ \frac{1+\delta_{n,0}}{2} a & (n'=n), \end{cases}$
- ο Εξίσωση για A_n : $A_n(\mathcal{L}Y_n)\big|_{y=b} \int_0^a dx X_n^2(x) = \int_0^a dx f(x) X_n(x)$.

Τριδιάστατες Καρτεσιανές διατάξεις

Me
$$\Phi = \sum \Phi(x, y, z) = \sum X(x)Y(y)Z(z)$$
,

$$\nabla^2 \Phi = 0 \implies X'' - K_x X = 0, Y'' - K_y Y = 0 \text{ Ket } Z'' - K_z Z = 0, \text{ He } \overline{K_x + K_y + K_z = 0}$$

Συναρτήσεις X(x), Y(y), Z(z): Όπως στις διδιάστατες διατάξεις, αλλά π.χ. $K_z = -(K_x + K_y)$.

Διάταξη με μία μη ομογενή οριακή συνθήκη, π.χ στην έδρα z = c, όπου $\mathcal{L}\Phi = f(x, y)$.

Me
$$\Phi = \sum_{nm} A_{nm} X_n(x) Y_m(y) Z_{nm}(z) \Rightarrow$$

26

$$A_{nm}\left(\int_{0}^{a}X_{n}^{2}(x)dx\right)\left(\int_{0}^{b}Y_{m}^{2}(y)dy\right)(\mathcal{L}Z_{nm})\Big|_{z=c}=\int_{0}^{a}dxX_{n}(x)\left(\int_{0}^{b}dyY_{m}(y)f(x,y)\right).$$

Διδιάστατες κυλινδρικές διατάξεις

$$\operatorname{Me} \Phi = \sum R_{T}(r_{T})F(\varphi), \ \nabla^{2}\Phi = 0 \ \Rightarrow \ r_{T}\frac{d}{dr_{T}}\left(r_{T}\frac{dR_{T}}{dr_{T}}\right) = K_{T}R_{T} \ \operatorname{kal} \ \frac{d^{2}F}{d\varphi^{2}} = K_{\varphi}F \ , \ \operatorname{me} \ \underline{K_{T} + K_{\varphi} = 0}.$$

Συναρτήσεις $F(\varphi)$:

$$K_{\varphi} = 0 \implies F(\varphi) = \{\varphi, 1\},$$

$$K_{\varphi} = -m^2 < 0 \implies F(\varphi) = \{\sin(m\varphi), \cos(m\varphi)\},\$$

$$K_{\varphi} = m^2 > 0 \implies F(\varphi) = \{\exp(m\varphi), \exp(-m\varphi)\}, \, \dot{\eta} F(\varphi) = \{\sinh(m\varphi), \cosh(m\varphi)\}.$$

Συμπεριφορά και ιδιότητες όπως οι συναρτήσεις $X\!(x)$ των Καρτεσιανών διατάξεων,

Σύμβαση: m > 0,

m = ακέραιος σε διατάξεις με περιοδικότητα, $\Phi(r_T, \varphi + 2\pi) = \Phi(r_T, \varphi)$.

Συναρτήσεις $R_T(r_T)$: Με $\rho_T = r_T/a$, a = τυχόν,

$$K_T = -K_{\varphi} = 0 \implies R_T(\rho_T) = \{1, \ln \rho_T\},$$

$$K_T = -K_{\varphi} = m^2 > 0$$
 $\Rightarrow R_T(\rho_T) = \{\rho_T^m, \rho_T^{-m}\},$

$$K_T = -K_\varphi = -m^2 < 0 \implies R_T(\rho_T) = \{\sin(m \ln \rho_T), \cos(m \ln \rho_T)\}.$$

Ιδιότητες:

$$\ln \rho_T = \infty \text{ sta } r_T = 0, \infty,$$

$$ho_T^{-m} = \infty$$
 sto $r_T = 0$, $ho_T^{+m} = \infty$ sto $r_T = \infty$,

 $sin(m ln \rho_T)$, $cos(m ln \rho_T)$ αποκλίνουν στα $r_T = 0$, ∞ ,

 $R_T(r_T-a)$ δεν είναι γραμμικός συνδυασμό συναρτήσεων R_T .

Γραμμικοί συνδυασμοί με μηδενισμό:

 $R_T(r_T = r_{T0}) = 0,$ όταν:

$$R_T\left(r_T\right) = \ln\left(\frac{r_T}{r_{T0}}\right), \ R_T\left(r_T\right) = \left(\frac{r_T}{r_{T0}}\right)^m - \left(\frac{r_{T0}}{r_T}\right)^m, \ R_T\left(r_T\right) = \sin\left[m\ln\left(\frac{r_T}{r_{T0}}\right)\right].$$

ο $(d/dr_T)R_T|_{r_T=r_{T0}}=0$, όταν:

$$R_T(r_T) =$$
, $R_T(r_T) = \left(\frac{r_T}{r_{T0}}\right)^m + \left(\frac{r_{T0}}{r_T}\right)^m$, $R_T(r_T) = \cos\left[m\ln\left(\frac{r_T}{r_{T0}}\right)\right]$.

Διάταξη με περιοδικότητα: Υποχρεωτικά $K_{\varphi} = -m^2 \le 0$ και $m = \alpha$ κέραιος.

$$m = 0 \implies F_0 = 1, R_{T0}(\rho_T) = \{1, \ln \rho_T\},$$

$$m = 1, 2, 3, ... \Rightarrow F_m(\varphi) = \{\sin(m\varphi), \cos(m\varphi)\}, R_{Tm}(\rho_T) = \{\rho_T^m, \rho_T^{-m}\}.$$

Ορθογωνιότητα:
$$\int_0^{2\pi} d\varphi F_j(\varphi) F_k(\varphi) = 0 \text{ όταν } F_j \neq F_k.$$

$$\mu\varepsilon \int_0^{2\pi} 1^2 d\varphi = 0, \quad \int_0^{2\pi} \sin^2\left[m(\varphi - \varphi_0)\right] d\varphi = \int_0^{2\pi} \cos^2\left[m(\varphi - \varphi_0)\right] d\varphi = \pi.$$

Διάταξη χωρίς περιοδικότητα:

Τιμές του m (όχι υποχρεωτικά ακέραιες) από ομογενείς οριακές συνθήκες σε απέναντι πλευρές.

Διανύσματα

Πρόσθεση και αφαίρεση:

$$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A},$$

$$\mathbf{A} - \mathbf{B} = \mathbf{A} + (-\mathbf{B}),$$

$$\mathbf{A} + (-\mathbf{A}) = 0,$$

$$A + (B + C) = (A + B) + C$$
.

Γινόμενο με βαθμωτή ποσότητα:

$$B = kA$$
, ώστε:

- ο Διεύθυνση του **B** ίδια με του **A**,
- ο Μέτρο B = |k|A,
- ο Φορά του **B** ίδια με του **A**, αν k > 0,
- ο Φορά του **B** αντίθετη με του **A**, αν k < 0.

$$k(\mathbf{A} + \mathbf{B}) = k\mathbf{A} + k\mathbf{B},$$

$$(k_1+k_2)\mathbf{A}=k_1\mathbf{A}+k_2\mathbf{B}.$$

Εσωτερικό (βαθμωτό) γινόμενο:

$$\Gamma = \mathbf{A} \cdot \mathbf{B} = AB \cos \alpha$$
, όπου α η γωνία μεταξύ \mathbf{A} και \mathbf{B} ,

$$\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A},$$

$$\mathbf{A} \cdot (k\mathbf{B}) = k(\mathbf{A} \cdot \mathbf{B}) = k\mathbf{A} \cdot \mathbf{B}$$
 (η παρένθεση είναι περιττή),

i·A = προβολή του A σε άξονα συγγραμμικό με το μοναδιαίο i.

Εξωτερικό (διανυσματικό) γινόμενο:

$$C = A \times B = -B \times A$$
, $\mu\epsilon$:

- ο Μέτρο $C = AB |\sin \alpha|$ (όπου $\alpha = \eta$ γωνία μεταξύ **A** και **B**),
- ο Διεύθυνση κάθετη στο επίπεδο των Α και Β,

Τριπλό γινόμενο:

$$(\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C} = (\mathbf{B} \times \mathbf{C}) \cdot \mathbf{A} = (\mathbf{C} \times \mathbf{A}) \cdot \mathbf{B} = -(\mathbf{B} \times \mathbf{A}) \cdot \mathbf{C} = -(\mathbf{C} \times \mathbf{B}) \cdot \mathbf{A} = -(\mathbf{A} \times \mathbf{C}) \cdot \mathbf{B}.$$

Άλλα γινόμενα:

$$(\mathbf{A} \times \mathbf{B}) \times \mathbf{C} = (\mathbf{A} \cdot \mathbf{C})\mathbf{B} - (\mathbf{B} \cdot \mathbf{C})\mathbf{A}.$$

$$(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{C} \times \mathbf{D}) = (\mathbf{A} \cdot \mathbf{C})(\mathbf{B} \cdot \mathbf{D}) - (\mathbf{B} \cdot \mathbf{C})(\mathbf{A} \cdot \mathbf{D})$$

$$= [(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}] \cdot \mathbf{D} = -[(\mathbf{B} \times \mathbf{C}) \times \mathbf{D}] \cdot \mathbf{A} = [(\mathbf{C} \times \mathbf{D}) \times \mathbf{A}] \cdot \mathbf{B}, \ \kappa \lambda \pi.$$

Συστήματα συντεταγμένων

Γεωμετρικός ορισμός Καρτεσιανών, κυλινδρικών, και σφαιρικών συντεταγμένων

Συντεταγμένες και λοιπές χαρακτηριστικές ποσότητες στα τρία βασικά συστήματα συντεταγμένων

ΠΟΣΟΤΗΤΑ	Γενικές	Σ	YNTETAFMENI	ΕΣ
подотита	Εκφράσεις	Καρτεσιανές	Κυλινδρικές	Σφαιρικές
* Συντεταγμένες (πεδίο ορισμού), [διαστάσεις]	s_1, s_2, s_3	$x (-\infty, \infty), [m]$ $y (-\infty, \infty), [m]$ $z (-\infty, \infty), [m]$	$r_T(0, \infty), [m]$ $\varphi(0, 2\pi), [rad]$ $z(-\infty, \infty), [m]$	$r(0, \infty)$, [m] $\theta(0, \pi)$, [rad] $\varphi(0, 2\pi)$, [rad]
** Είδος επιφανειών $s_j = \sigma \tau \alpha \theta$.		x: επίπεδο y: επίπεδο z: επίπεδο	r _T : κύλινδρος φ: ημιεπίπεδο z: επίπεδο	r: σφαίρα θ: κώνος φ: ημιεπίπεδο
*** Μοναδιαία διανύσματα	i ₁ , i ₂ , i ₃	$\mathbf{i}_x,\mathbf{i}_y,\mathbf{i}_z$	\mathbf{i}_T , \mathbf{i}_{φ} , \mathbf{i}_z	$\mathbf{i}_r,\mathbf{i}_ heta,\mathbf{i}_arphi$
Διάνυσμα θέσης r =		$x\mathbf{i}_x + y\mathbf{i}_y + z\mathbf{i}_z$	$r_T\mathbf{i}_T+z\mathbf{i}_z$	r i $_r$
Συντελεστές μήκους h_j	h_1, h_2, h_3	1, 1, 1	$1, r_T, 1$	$1, r, r \sin\theta$
Στοιχειώδης μετατόπιση $d\mathbf{r} = \mathbf{i}_1 d\ell_1 + \mathbf{i}_2 d\ell_2 + \mathbf{i}_3 d\ell_3$	$\mathbf{i}_1 h_1 ds_1 \\ + \mathbf{i}_2 h_2 ds_2 \\ + \mathbf{i}_3 h_3 ds_3$	$ \mathbf{i}_{x}dx \\ + \mathbf{i}_{y}dy \\ + \mathbf{i}_{z}dz $	$\mathbf{i}_T dr_T$ + $\mathbf{i}_{\varphi} r_T d\varphi$ + $\mathbf{i}_z dz$	$ \mathbf{i}_{r} dr \\ + \mathbf{i}_{\theta} r d\theta \\ + \mathbf{i}_{\varphi} r \sin \theta d\varphi $
Στοιχειώδης επιφάνεια dS =	$ \mathbf{i}_1 h_2 h_3 ds_2 ds_3 + \mathbf{i}_2 h_3 h_1 ds_3 ds_1 + \mathbf{i}_3 h_1 h_2 ds_1 ds_2 $	$ \mathbf{i}_{x}dydz \\ + \mathbf{i}_{y}dzdx \\ + \mathbf{i}_{z}dxdy $	$\mathbf{i}_T r_T d\varphi dz$ + $\mathbf{i}_{\varphi} dz dr_T$ + $\mathbf{i}_z r_T dr_T d\varphi$	$\mathbf{i}_{r}r^{2}\sin\theta d\theta d\varphi$ $+\mathbf{i}_{\theta}r\sin\theta d\varphi dr$ $+\mathbf{i}_{\varphi}rdrd\theta$
Στοιχειώδης όγκος dV =	$h_1h_2h_3ds_1ds_2ds_3$	dxdydz	$r_T dr_T d\varphi dz$	$r^2 \sin\theta dr d\theta d\varphi$

^{*} Η γωνία φ μπορεί να ορισθεί σε οποιοδήποτε διάστημα με πλάτος 2π , αντί του $(0, 2\pi)$.

^{***} Τα μοναδιαία διανύσματα \mathbf{i}_x , \mathbf{i}_y και \mathbf{i}_z είναι σταθερά. Στα λοιπά μοναδιαία διανύσματα η διεύθυνση εξαρτάται από το σημείο, στο οποίο αναφέρονται. Ειδικότερα, είναι:

$\mathbf{i}_T(\varphi)$ και $\mathbf{i}_{\varphi}(\varphi)$, με	$\partial \mathbf{i}_T/\partial \varphi = \mathbf{i}_{\varphi}$	$\partial \mathbf{i}_{\varphi}/\partial \varphi = -\mathbf{i}_{T}$	
$i(\theta, \alpha) i_{\alpha}(\theta, \alpha) \times \alpha i_{\alpha}(\alpha) \cup \alpha$	$\partial \mathbf{i}_r / \partial \theta = \mathbf{i}_{\theta}$	$\partial \mathbf{i}_{\theta}/\partial \theta = -\mathbf{i}_{r}$	
$\mathbf{i}_r(\theta,\varphi),\mathbf{i}_{\theta}(\theta,\varphi)$ kai $\mathbf{i}_{\varphi}(\varphi),\mu\epsilon$	$\partial \mathbf{i}_r / \partial \varphi = \mathbf{i}_{\varphi} \sin \theta$	$\partial \mathbf{i}_{\theta}/\partial \varphi = \mathbf{i}_{\varphi} \cos \theta$	$\partial \mathbf{i}_{\varphi}/\partial \varphi = -(\mathbf{i}_r \sin \theta + \mathbf{i}_{\theta} \cos \theta)$

30

 $^{^{**}}$ Ειδικές τιμές των $r_{\it T}, r$ και θ , που αντιστοιχούν σε εκφυλισμένες επιφάνειες, είναι:

[•] r_T = 0: Ο άξονας x = 0, y = 0. (Δεν ορίζεται η γωνία φ , ούτε τα \mathbf{i}_T και \mathbf{i}_{φ} .)

[•] r=0: Το σημείο x=0, y=0, z=0. (Δεν ορίζονται οι γωνίες θ και φ , ούτε τα \mathbf{i}_r , \mathbf{i}_θ και \mathbf{i}_φ .)

[•] θ =0: Ο ημιάξονας x=0, y=0, z>0. (Δεν ορίζεται η γωνία φ , ούτε τα \mathbf{i}_{θ} και \mathbf{i}_{φ} .)

 $[\]theta = \pi$: Ο ημιάξονας x = 0, y = 0, z < 0. (Δεν ορίζεται η γωνία φ , ούτε τα \mathbf{i}_{θ} και \mathbf{i}_{φ} .)

Μετασχηματισμοί συντεταγμένων

Καρτεσιανές συντεταγμένες	Κυλινδρικές συντεταγμένες	Σφαιρικές συντεταγμένες	y Επίπεδο $z = \sigma \tau \alpha \theta$.
<i>x</i> =	$r_T \cos \varphi =$	$r \sin\theta \cos\varphi$	y Σ'
<i>y</i> =	$r_T \sin \varphi =$	$r \sin \theta \sin \varphi$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
z =	z =	$r\cos\theta$	φ x
$(x^2 + y^2)^{1/2} =$	$r_T =$	$r \sin \theta$	0 2
** $\operatorname{arctan}_2(y/x) =$	$\varphi =$	arphi	z Ημιεπίπεδο $\varphi = \sigma \tau \alpha \theta$.
z =	z =	$r\cos\theta$	Σ
$(x^2 + y^2 + z^2)^{1/2} =$	$(r_T^2 + z^2)^{1/2} =$	r	z
* arctan[$(x^2 + y^2)^{1/2}/z$] =	* $arctan(r_T/z) =$	heta	θ r
** $\operatorname{arctan}_2(y/x) =$	$\varphi =$	arphi	0 r_T

Η συνάρτηση arctan επιστρέφει το αποτέλεσμα στο διάστημα $(0, \pi)$, το πεδίο ορισμού για τη γωνία θ .

Μετασχηματισμοί μοναδιαίων διανυσμάτων

Μεταξύ Καρτεσιανών και κυλινδρικών συντεταγμένων:

$$\begin{bmatrix} \mathbf{i}_z \\ \mathbf{i}_T \\ \mathbf{i}_{\varphi} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & \sin \varphi \\ 0 & -\sin \varphi & \cos \varphi \end{bmatrix} \cdot \begin{bmatrix} \mathbf{i}_z \\ \mathbf{i}_x \\ \mathbf{i}_y \end{bmatrix},$$

$$\begin{bmatrix} \mathbf{i}_z \\ \mathbf{i}_x \\ \mathbf{i}_y \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{bmatrix} \cdot \begin{bmatrix} \mathbf{i}_z \\ \mathbf{i}_T \\ \mathbf{i}_\varphi \end{bmatrix}$$

Μεταξύ κυλινδρικών και σφαιρικών συντεταγμένων:

$$\begin{bmatrix} \mathbf{i}_r \\ \mathbf{i}_{\theta} \\ \mathbf{i}_{\varphi} \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{i}_z \\ \mathbf{i}_T \\ \mathbf{i}_{\varphi} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{i}_z \\ \mathbf{i}_T \\ \mathbf{i}_{\varphi} \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{i}_r \\ \mathbf{i}_{\theta} \\ \mathbf{i}_{\varphi} \end{bmatrix}$$

Η συνάρτηση $arctan_2$ λαμβάνει υπ' όψιν τα πρόσημα αριθμητή και παρονομαστή αυτοτελώς, ώστε να επιστρέφει το αποτέλεσμα στο διάστημα (0, 2π), ή οποιοδήποτε είναι το πεδίο ορισμού (με πλάτος 2π) για τη γωνία φ.

Στροφή μοναδιαίων διανυσμάτων

Τα μοναδιαία διανύσματα \mathbf{i}_T και \mathbf{i}_{φ} , όταν αναφέρονται σε διαφορετικές γωνίες (φ_1, φ_2) στρέφονται κατά γωνία $(\varphi_2 - \varphi_1)$ περί τον (κοινό) άξονα z, και είναι:

$$\begin{bmatrix} \mathbf{i}_{T2} \\ \mathbf{i}_{\varphi 2} \end{bmatrix} = \begin{bmatrix} \cos(\varphi_2 - \varphi_1) & \sin(\varphi_2 - \varphi_1) \\ -\sin(\varphi_2 - \varphi_1) & \cos(\varphi_2 - \varphi_1) \end{bmatrix} \cdot \begin{bmatrix} \mathbf{i}_{T1} \\ \mathbf{i}_{\varphi 1} \end{bmatrix}.$$

Αντίστοιχα, για τα μοναδιαία διανύσματα \mathbf{i}_r , \mathbf{i}_θ και \mathbf{i}_φ , όταν αναφέρονται σε διαφορετικές γωνίες (φ_1, φ_2) και (θ_1, θ_2) , είναι:

$$\begin{bmatrix} \mathbf{i}_{r2} \\ \mathbf{i}_{\theta 2} \\ \mathbf{i}_{\varphi 2} \end{bmatrix} = \begin{bmatrix} \cos\theta_2 \cos\theta_1 + \sin\theta_2 \sin\theta_1 \cos(\varphi_2 - \varphi_1) & -\cos\theta_2 \sin\theta_1 + \sin\theta_2 \cos\theta_1 \cos(\varphi_2 - \varphi_1) & \sin\theta_2 \sin(\varphi_2 - \varphi_1) \\ -\sin\theta_2 \cos\theta_1 + \cos\theta_2 \sin\theta_1 \cos(\varphi_2 - \varphi_1) & \sin\theta_2 \sin\theta_1 + \cos\theta_2 \cos\theta_1 \cos(\varphi_2 - \varphi_1) & \cos\theta_2 \sin(\varphi_2 - \varphi_1) \\ -\sin\theta_1 \sin(\varphi_2 - \varphi_1) & -\cos\theta_1 \sin(\varphi_2 - \varphi_1) & \cos(\varphi_2 - \varphi_1) \end{bmatrix} \begin{bmatrix} \mathbf{i}_{r1} \\ \mathbf{i}_{\theta 1} \\ \mathbf{i}_{\varphi 1} \end{bmatrix}$$

Κάθε στοιχείο των πινάκων δίνει το συνημίτονο μεταξύ των αντίστοιχων διανυσμάτων, π.χ., $\mathbf{i}_{r2} \cdot \mathbf{i}_{\theta 1} = -\cos\theta_2 \sin\theta_1 + \sin\theta_2 \cos\theta_1 \cos(\varphi_2 - \varphi_1).$

Σχέσεις σε τρισορθογώνιο δεξιό συστήμα

Εσωτερικά γινόμενα μοναδιαίων διανυσμάτων:	$\mathbf{i}_{j}\cdot\mathbf{i}_{j}=1, \mathbf{i}_{j}\cdot\mathbf{i}_{j\pm1}=0$ Με κυκλική επέκταση των
Εξωτερικά γινόμενα μοναδιαίων διανυσμάτων:	$\mathbf{i}_{j} \times \mathbf{i}_{j} = 0$, $\mathbf{i}_{j} \times \mathbf{i}_{j\pm 1} = \pm \mathbf{i}_{j\pm 2}$ $\begin{cases} δεικτών \\ (\mathbf{i}_{4} = \mathbf{i}_{1}, \acute{\mathbf{\eta}} \mathbf{i}_{0} = \mathbf{i}_{3}) \end{cases}$
Ανάλυση διανύσματος στις συνιστώσες του:	$\mathbf{A} = \mathbf{i}_1 A_1 + \mathbf{i}_2 A_2 + \mathbf{i}_3 A_3, \qquad \mu \varepsilon A_j = \mathbf{i}_{j} \cdot \mathbf{A}$
Εσωτερικό γινόμενο δύο διανυσμάτων:	$\mathbf{A} \cdot \mathbf{B} = A_1 B_1 + A_2 B_2 + A_3 B_3$
Μέτρο διανύσματος:	$A = \mathbf{A} = \sqrt{\mathbf{A} \cdot \mathbf{A}} = \sqrt{A_1^2 + A_2^2 + A_3^2}$
Συγγραμμικό μοναδιαίο διάνυσμα:	$\mathbf{i}_A = \frac{\mathbf{A}}{A}$
Εξωτερικό γινόμενο δύο διανυσμάτων:	$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i}_1 & \mathbf{i}_2 & \mathbf{i}_3 \\ A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \end{vmatrix}$
Σχετική απόσταση $R_{1,2} = {\bf r}_1 - {\bf r}_2 $ δύο σημείων:	
$R_{1,2} = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$	(Καρτεσιανές)

$$\begin{split} R_{1,2} &= \sqrt{\left(x_1 - x_2\right)^2 + \left(y_1 - y_2\right)^2 + \left(z_1 - z_2\right)^2} & \text{(Καρτεσιανές)} \\ &= \sqrt{r_{T1}^2 + r_{T2}^2 - 2r_{T1}r_{T2}\cos\left(\varphi_1 - \varphi_2\right) + \left(z_1 - z_2\right)^2} & \text{(κυλινδρικές)} \\ &= \sqrt{r_1^2 + r_2^2 - 2r_1r_2\left[\cos\theta_1\cos\theta_2 + \sin\theta_1\sin\theta_2\cos\left(\varphi_1 - \varphi_2\right)\right]} & \text{(σφαιρικές)} \end{split}$$

32

Διαφορικοί τελεστές

Διπλή εφαρμογή διαφορικών τελεστών

$\nabla \times (\nabla f) = 0$
$\nabla \cdot (\nabla \times \mathbf{F}) = 0$
$\nabla \cdot (\nabla f) = \nabla^2 f$ (ορισμός)
$\nabla(\nabla \cdot \mathbf{F}) - \nabla \times (\nabla \times \mathbf{F}) = \nabla^2 \mathbf{F}$ (ορισμός)
$\Box^2 = \nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}$ (ορισμός)

Διαφορικοί τελεστές γινομένων πεδιακών συναρτήσεων

$$\nabla (fg) = f \nabla g + g \nabla f$$

$$\nabla \cdot (\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot (\nabla \times \mathbf{F}) - \mathbf{F} \cdot (\nabla \times \mathbf{G})$$

$$\nabla \cdot (f\mathbf{F}) = \mathbf{F} \cdot (\nabla f) + f(\nabla \cdot \mathbf{F})$$

$$\nabla \times (f\mathbf{F}) = (\nabla f) \times \mathbf{F} + f(\nabla \times \mathbf{F})$$

$$\nabla^2 (fg) = f \nabla^2 g + 2(\nabla f) \cdot (\nabla g) + g \nabla^2 f$$

Διδιάστατη απόκλιση $\nabla \cdot \mathbf{K}$ εφαπτομενικού διανύσματος $\mathbf{K} = \mathbf{i}_1 K_1(s_1, s_2) + \mathbf{i}_2 K_2(s_1, s_2)$

Καρτεσιανές	Κυλινδρικές	Σφαιρικές
Επίπεδο $x = \sigma \tau \alpha \theta$.:	Κύλινδρος $r_T = \sigma \tau \alpha \theta$. = a :	Σφαίρα r = σταθ. = a:
$\frac{\partial}{\partial y}K_{y} + \frac{\partial}{\partial z}K_{z}$	$\frac{1}{a}\frac{\partial}{\partial\varphi}K_{\varphi} + \frac{\partial}{\partial z}K_{z}$	$\frac{1}{a\sin\theta} \left(\frac{\partial}{\partial\theta} \left(K_{\theta}\sin\theta \right) + \frac{\partial}{\partial\varphi} K_{\varphi} \right)$
Επίπεδο y = σταθ.:	Ημιεπίπεδο φ = σταθ.:	K ώνος $\theta = \sigma \tau \alpha \theta$. $= \theta_0$:
$\frac{\partial}{\partial z}K_z + \frac{\partial}{\partial x}K_x$	$\frac{\partial}{\partial z}K_z + \frac{\partial}{\partial r_T}K_T$	$\frac{1}{r\sin\theta_0}\frac{\partial}{\partial\varphi}K_{\varphi} + \frac{1}{r}\frac{\partial}{\partial r}(rK_r)$
Επίπεδο $z = \sigma \tau \alpha \theta$.:	Επίπεδο z = σταθ.:	Ημιεπίπεδο φ = σταθ.:
$\frac{\partial}{\partial x}K_x + \frac{\partial}{\partial y}K_y$	$\frac{1}{r_T} \left(\frac{\partial}{\partial r_T} (r_T K_T) + \frac{\partial}{\partial \varphi} K_{\varphi} \right)$	$\frac{1}{r} \left(\frac{\partial}{\partial r} (rK_r) + \frac{\partial}{\partial \theta} K_{\theta} \right)$

Διδιάστατη περιστροφή = $i_3 \cdot (\nabla \times K)$.

Διδιάστατη κλίση = ∇k , με $\partial/\partial s_3 = 0$.

Θεώρημα του Gauss:

$$\int_{V} (\nabla \cdot \mathbf{F}) dV = \oint_{S} \mathbf{F} \cdot d\mathbf{S}, \qquad \int_{V} (\nabla f) dV = \oint_{S} f d\mathbf{S}, \qquad \int_{V} (\nabla \times \mathbf{F}) dV = -\oint_{S} \mathbf{F} \times d\mathbf{S} .$$

Θεώρημα του Stokes:

$$\int_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \oint_{\ell} \mathbf{F} \cdot d\mathbf{r}, \qquad \int_{S} (\nabla f) \times d\mathbf{S} = -\oint_{\ell} f d\mathbf{r}.$$

Ταυτότητες του Green:

$$\oint_{S} f(\nabla g) \cdot d\mathbf{S} = \int_{V} \left[f \nabla^{2} g + (\nabla f) \cdot (\nabla g) \right] dV , \quad \oint_{S} \left(f \nabla g - g \nabla f \right) \cdot d\mathbf{S} = \int_{V} \left(f \nabla^{2} g - g \nabla^{2} f \right) dV$$

Διαφορικοί τελεστές στα τρία κύρια συστήματα συντεταγμένων

Τελεστής	Καστεσιανές	Κυλινδοικές	Σφαιρικές
$ ext{Kλίση, } extstyle extstyle$	$\mathbf{i}_{x} \frac{\partial f}{\partial x} + \mathbf{i}_{y} \frac{\partial f}{\partial y} + \mathbf{i}_{z} \frac{\partial f}{\partial z}$	$\mathbf{i}_{T} \frac{\partial f}{\partial r_{T}} + \mathbf{i}_{\varphi} \frac{1}{r_{T}} \frac{\partial f}{\partial \varphi} + \mathbf{i}_{z} \frac{\partial f}{\partial z}$	$\mathbf{i}_{r}\frac{\partial f}{\partial r} + \mathbf{i}_{\theta}\frac{1}{r}\frac{\partial f}{\partial \theta} + \mathbf{i}_{\theta}\frac{1}{r}\frac{\partial f}{\sin\theta}\frac{\partial f}{\partial \varphi}$
$A\pi$ óklah, $\nabla \cdot \mathbf{F} =$	$\frac{\partial}{\partial x}F_x + \frac{\partial}{\partial y}F_y + \frac{\partial}{\partial z}F_z$	$\frac{1}{r_T} \frac{\partial}{\partial r_T} (r_T F_T) + \frac{1}{r_T} \frac{\partial}{\partial \varphi} F_\varphi + \frac{\partial}{\partial z} F_z$	$\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 F_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (F_{\theta} \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \varphi} F_{\varphi}$
Περιστροφή, ∇×F =	$ \begin{vmatrix} \mathbf{i}_{x} & \mathbf{i}_{y} & \mathbf{i}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial x} & F_{y} & F_{z} \end{vmatrix} $	$\frac{1}{r_T} \begin{vmatrix} \mathbf{i}_T & r_T \mathbf{i}_{\varphi} & \mathbf{i}_z \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \varphi} & \frac{\partial}{\partial z} \\ F_T & r_T F_{\varphi} & F_z \end{vmatrix}$	$\frac{1}{r^2 \sin \theta} \begin{vmatrix} \mathbf{i_r} & r\mathbf{i_\theta} & r \sin \theta \mathbf{i_\phi} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \varphi} \\ F_r & rF_\theta & r \sin \theta F_\varphi \end{vmatrix}$
$ \text{Βαθμωτή} $ $ \text{Λαπλασιανή,} $ $ \nabla^2 f = $	$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$	$\frac{1}{r_T} \frac{\partial}{\partial r_T} \left(r_T \frac{\partial f}{\partial r_T} \right) + \frac{1}{r_T^2} \frac{\partial^2 f}{\partial \varphi^2} + \frac{\partial^2 f}{\partial z^2}$	$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \varphi^2}$
Συνιστώσες Διανυσματικής Λαπλασιανής,	$\mathbf{i}_x \cdot \nabla^2 \mathbf{F} = \nabla^2 F_x$ $\mathbf{i}_y \cdot \nabla^2 \mathbf{F} = \nabla^2 F_y$	$\mathbf{i}_T \cdot \nabla^2 \mathbf{F} = \nabla^2 F_T - \frac{2}{r^2} \frac{\partial F_{\varphi}}{\partial \varphi} - \frac{F_T}{r^2}$ $\mathbf{i}_{\varphi} \cdot \nabla^2 \mathbf{F} = \nabla^2 F_{\varphi} + \frac{2}{r^2} \frac{\partial F_T}{\partial \varphi} - \frac{F_{\varphi}}{r^2}$	$\mathbf{i}_{r} \cdot \nabla^{2} \mathbf{F} = \nabla^{2} F_{r} - \frac{2}{r^{2} \sin \theta} \left[F_{r} \sin \theta + \frac{\partial}{\partial \theta} (F_{\theta} \sin \theta) + \frac{\partial F_{\varphi}}{\partial \varphi} \right]$ $\mathbf{i}_{\theta} \cdot \nabla^{2} \mathbf{F} = \nabla^{2} F_{\theta} + \frac{2}{r^{2} \sin^{2} \theta} \left[\sin^{2} \theta \frac{\partial F_{r}}{\partial \theta} - \frac{1}{2} F_{\theta} - \cos \theta \frac{\partial F_{\varphi}}{\partial \theta} \right]$
$\mathbf{i}_s {\cdot} \nabla^2 \mathbf{F} =$	$\mathbf{i}_z \cdot \nabla^2 \mathbf{F} = \nabla^2 F_z$		$\mathbf{i}_{\varphi} \cdot \nabla^{2} \mathbf{F} = \nabla^{2} F_{\varphi} + \frac{2}{r^{2} \sin^{2} \theta} \left[\sin \theta \frac{\partial F_{r}}{\partial \varphi} + \cos \theta \frac{\partial F_{\theta}}{\partial \varphi} - \frac{1}{2} F_{\varphi} \right]$
) in the second	$\mathbf{i}_x (\mathbf{A} \cdot \nabla) F_x$	$\mathbf{i}_T \left[\left(\mathbf{A} \cdot abla ight) F_T - rac{1}{r_{ au}} A_{arphi} F_{arphi} ight]$	$\mathbf{i}_r igg[(\mathbf{A} \cdot abla) F_r - rac{1}{r} A_ heta F_ heta - rac{1}{r} A_\phi F_\phi igg]$
$\cot \beta \cot \beta \cot \alpha$ $\cot \beta \cot \beta \cot \beta \cot \alpha$ $(A \cdot \nabla)F =$	$+\mathbf{i}_{\scriptscriptstyle \mathcal{V}} ig(\mathbf{A} \cdot abla ig) F_{\scriptscriptstyle \mathcal{V}}$	$+\mathbf{i}_{arphi}igg[(\mathbf{A}\cdot abla)F_{arphi}+rac{1}{r}A_{arphi}F_{T}igg]$	$+\mathbf{i}_{ heta}igg[(\mathbf{A}\cdot abla)F_{ heta}+rac{1}{r}A_{ heta}F_{r}-rac{1}{r}A_{\phi}F_{\phi}\cot hetaigg]$
	$+\mathbf{i}_z(\mathbf{A}\cdot abla)F_z$	$+\mathbf{i}_zig(\mathbf{A}\!\cdot\! ablaig)F_z$	$+\mathbf{i}_{arphi}igg[ig(\mathbf{A}\cdot ablaig)F_{arphi}+rac{1}{r}A_{arphi}F_{r}+rac{1}{r}A_{arphi}F_{ heta}\cot hetaigg]$