Hw8: MATH30165h 2030/100005

Problem 1

f is convex so $f(\theta x + (1-\theta)y) = \theta f(x) + (1-\theta) f(y)$ $\forall x, y \in dom(f), \theta \in [0,1]$ Ω is convex so $\theta x + (1-\theta)y \in \Omega$, $\forall x, y \in dom(f), \theta \in [0,1]$ If x^{*} is a local solution of m in f(x) :

There exists a neighbourhood N of x^* , such that $f(x^*) = f(x)$, $\forall x \in N \cap \Omega$

And if x^* is not a global solution : $\exists x \in \Omega$, such that $f(x) < f(x^*)$

 $\forall O \in [0,1)$, Let $x_0 = 0 \times^* + (1-0)\overline{x}$ $\therefore \Omega is usex, x_0 \in \Omega$

 $(f)(x) = f(x) + (1-0)f(x) < f(x^*)$

Since $0 \in (0,1)$, $0 \in \mathbb{N}$ can be arbitrarily close to x^* . Therefore, $\exists x o \in \mathbb{N} \cap \mathbb{N}$, such that $f(xo) = f(x^*)$. This contradicts with $x^* \mid S = (ocal solution)$.

L'Any local solution to min fix) is a global solution

If xi*, xx* is two local solutions (and + hus
two global solutions):

Let $x_0 = \theta x_1^* + (1-\theta) x_2^*$, $\forall \theta \in [0,1]$ $f(x_0) = \theta f(x_1^*) + (1-\theta) f(x_2^*) = f^*$ Since $f^* = \min_{x \in n} f(x)$, $f(x_0) = f^*$ =) $\forall \theta \in [0,1]$ $f(x_0) = f^*$ $f(x_0) = f^*$ The set of all global solution is convex

Problem 2 The problem can be reformulated as: min rer, teir S.t. $V_i(x) St$ H1=1,2,000,m - Vi(x) 5+ Visa smooth veetor function $(x) - t \quad and \quad -v(x) = t \quad is \quad smooth$ And tis smooth. Thus the reformulated problem is a smooth constrained optimization problem.