Uvod v univerzalno algebro in Mal'cev pogoj

Andraž Kukovičič Mentorica: izr. prof. dr. Ganna Kudryavtseva

Fakulteta za matematiko in fiziko

2. 12. 2024

Definicija algebre

Tip ali *jezik* algebre **A** je množica funkcij oziroma operacij \mathcal{F} , $f \in \mathcal{F}, f : \mathbf{A}^n \to \mathbf{A}$. Vsaka funcija $f \in \mathcal{F}$ ima prirejeno nenegativno celo število n, ki ga imenujemo *arnost* ali $rang\ f$.

Definicija algebre

Tip ali *jezik* algebre $\bf A}$ je množica funkcij oziroma operacij ${\cal F}$, $f\in {\cal F}, f: {\bf A}^n \to {\bf A}$. Vsaka funcija $f\in {\cal F}$ ima prirejeno nenegativno celo število n, ki ga imenujemo *arnost* ali $rang\ f$.

Algebra $\bf A$ tipa $\cal F$ je urejeni par (A,F), kjer je A neprazna množica in $\cal F$ družina operacij s končnim številom argumentov na A, indeksirana s tipom $\cal F$ tako, da je vsakemu n-arnemu funkcijskemu simbolu f iz $\cal F$ prirejena n-arna operacija $f^{\bf A}$ na A, ki jo imenujemo fundamentalna operacija algebre $\bf A$.

Definicija algebre

Tip ali *jezik* algebre $\bf A}$ je množica funkcij oziroma operacij ${\cal F}$, $f\in {\cal F}, f: {\bf A}^n \to {\bf A}$. Vsaka funcija $f\in {\cal F}$ ima prirejeno nenegativno celo število n, ki ga imenujemo *arnost* ali $rang\ f$.

Algebra $\bf A$ tipa $\cal F$ je urejeni par (A,F), kjer je A neprazna množica in $\cal F$ družina operacij s končnim številom argumentov na A, indeksirana s tipom $\cal F$ tako, da je vsakemu n-arnemu funkcijskemu simbolu f iz $\cal F$ prirejena n-arna operacija $f^{\bf A}$ na A, ki jo imenujemo fundamentalna operacija algebre $\bf A$.

Množico A imenujemo univerzalna množica algebre $\mathbf{A} = (A, F)$.

Primeri algeber

• Grupa **G** je algebra $(G, \cdot, ^{-1}, 1)$ v kateri veljajo naslednje identitete:

G1
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

G2
$$x \cdot 1 = 1 \cdot x = x$$

G3
$$x \cdot x^{-1} = x^{-1} \cdot x = 1$$
.

Primeri algeber

• Grupa **G** je algebra $(G, \cdot, ^{-1}, 1)$ v kateri veljajo naslednje identitete:

G1
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

G2 $x \cdot 1 = 1 \cdot x = x$
G3 $x \cdot x^{-1} = x^{-1} \cdot x = 1$.

- Polgrupe so algebre (G, \cdot)
- Monoidi so algebre $(M, \cdot, 1)$
- Mreže so algebre (L, \vee, \wedge)

Mreže

Neprazna množica M z dvema binarnima operacijama, ki ju označimo z \vee in \wedge je mreža, če zadošča:

M1
$$x \lor y = y \lor x$$

M2
$$x \lor (y \lor z) = (x \lor y) \lor z$$

M3
$$x \lor x = x$$

M4
$$x = x \lor (x \land y)$$
.

Mreže

Neprazna množica M z dvema binarnima operacijama, ki ju označimo z \vee in \wedge je mreža, če zadošča:

$$M1 \ x \lor y = y \lor x$$

$$M2 \ x \lor (y \lor z) = (x \lor y) \lor z$$

M3
$$x \lor x = x$$

M4
$$x = x \lor (x \land y)$$
.

Ekvivalentno:

Delno urejena množica M je mreža natanko takrat, ko za vsaka $a, b \in M$ obstajata $sup\{a, b\}$ in $inf\{a, b\}$.

Primer:

 $M=\mathbb{N}$, z \vee označimo najmanjši skupni večkratnik, z \wedge pa največji skupni delitelj števil. Potem je (\mathbb{N},\vee,\wedge) mreža.

Kongruence

Naj bo **A** algebra tipa \mathcal{F} in naj bo θ ekvivalenčna relacija na A. Tedaj je θ kongruenca na **A**, če zadošča naslednjemu pogoju: za vsak n-arni funkcijski simbol $f \in \mathcal{F}$ in elemente $a_i, b_i \in A$, če velja $a_i\theta b_i$ za vse $1 \le i \le n$, potem velja $f^{\mathbf{A}}(a_1, \ldots, a_n) \theta f^{\mathbf{A}}(b_1, \ldots, b_n)$.

Z ConA označimo množico vseh kongruenc algebre A.

Kongruence

Naj bo **A** algebra tipa \mathcal{F} in naj bo θ ekvivalenčna relacija na A. Tedaj je θ kongruenca na **A**, če zadošča naslednjemu pogoju: za vsak n-arni funkcijski simbol $f \in \mathcal{F}$ in elemente $a_i, b_i \in A$, če velja $a_i\theta b_i$ za vse $1 \leq i \leq n$, potem velja $f^{\mathbf{A}}(a_1, \ldots, a_n) \theta f^{\mathbf{A}}(b_1, \ldots, b_n)$.

Z $Con\mathbf{A}$ označimo množico vseh kongruenc algebre \mathbf{A} . Če $Con\mathbf{A}$ opremimo z operacijama \wedge in \vee , ki sta definirani:

$$\theta_1 \wedge \theta_2 = \theta_1 \cap \theta_2$$
 in

$$\theta_1 \vee \theta_2 = \theta_1 \cup (\theta_1 \circ \theta_2) \cup (\theta_1 \circ \theta_2 \circ \theta_1) \cup (\theta_1 \circ \theta_2 \circ \theta_1 \circ \theta_2) \cup \dots$$

postane ConA mreža.

Pri tem je $\theta_1 \vee \theta_2$ najmanjša kongruenca, ki vsebuje θ_1 in θ_2 .

Primer:

Naj bo **G** grupa.

Če je $\theta \in Con\mathbf{G}$ potem z $[1]_{\theta}$ označimo ekvivalenčni razred enote 1.

 $[1]_{\theta}$ je univerzalna množica podgrupe edinke grupe **G**.

Za poljubna $a, b \in G$ velja $(a, b) \in \theta \Leftrightarrow a \cdot b^{-1} \in [1]_{\theta}$.

Če je $\mathbf{N} \lhd \mathbf{G}$, potem je relacija na G definirana z:

 $(a,b) \in \theta \Leftrightarrow a \cdot b^{-1} \in N$ kongruenca na **G** in $[1]_a = N$.

Preslikava s predpisom $\theta\mapsto [1]_{\theta}$ je bijekcija med kongruencami na ${\bf G}$ in edinkami grupe G.

Identiteta

Identiteta tipa \mathcal{F} nad X je izraz oblike $p \approx q$, kjer sta $p, q \in \mathcal{T}(X)$.

T(X) je množica vseh termov tipa $\mathcal F$ nad X. Kjer je X množica spremenljivk.

Algebra **A** tipa \mathcal{F} zadošča $p(x_1,\ldots,x_n)\approx q(x_1,\ldots,x_n)$, če za vsako izbiro $a_1,\ldots,a_n\in A$ velja: $p^{\mathbf{A}}(a_1,\ldots,a_n)\approx q^{\mathbf{A}}(a_1,\ldots,a_n)$. Oznaka: $\mathbf{A}\models p\approx q$.

Razred algeber K zadošča $p\approx q$, če vsaka članica K zadošča $p\approx q$. Oznaka: $K\models p\approx q$.

Mal'cev izrek

Algebra **A** je *kongruenčno-permutabilna*, če vsak par kongruenc komutira: $\theta_1 \circ \theta_2 = \theta_2 \circ \theta_1$.

Neprazen razred K algeber tipa $\mathcal F$ imenujemo $\mathit{raznoterost}$, če je zaprt za podalgebre, slike homomorfizmov in direktne produkte.

Mal'cev izrek

Algebra **A** je *kongruenčno-permutabilna*, če vsak par kongruenc komutira: $\theta_1 \circ \theta_2 = \theta_2 \circ \theta_1$.

Neprazen razred K algeber tipa $\mathcal F$ imenujemo $\mathit{raznoterost}$, če je zaprt za podalgebre, slike homomorfizmov in direktne produkte.

Izrek: Naj bo V raznoterost tipa F. Raznoterost V je kongruenčno-permutabilna natanko takrat, ko obstaja term p(x, y, z), da:

$$V \models p(x, x, y) \approx y$$

in

$$V \models p(x, y, y) \approx x$$
.

Primera: Grupe, kolobarji.