Definitionen

- **1. Abbildung:** Unter einer Abbildung f von einer Menge A in einer Menge B versteht man eine Vorschrift, die jedem $a \in A$ eindeutig ein bestimmtes $b = f(a) \in B$ zuordnet.
 - Schreibweise: $f: A \to B$.
 - Für die Elementzuordnung verwendet man die Schreibweise $a \rightarrow b = f(a)$
 - ullet Man bezeichnet b als das Bild von a.
 - \bullet a ist ein Urbild von b
- **2. Abbildung:** Sei $F \subseteq A \times B$ eine linksvollständige und rechtseindeutige Relation.
- 1. F ist linksvollständig: Für alle $a \in A$ gilt: Es existiert ein $b \in B$, so dass $(a,b) \in R$ 2. F ist rechtseindeutig: Für alle $a \in A$ und alle $b_1,b_2 \in B$ gilt: $(a,b_1) \in R$ und $(a,b_2) \in R$, dann $b_1 = b_2$.

Das Tripel f = (A, B, F) heißt Abbildung von A nach B.

- F heißt Graph der Abbildung
- \bullet A ist der Definitioinsbereich
- \bullet B ist der Bildbereich

Zu jedem $a \in A$ wird das eindeutig bestimmte $b \in B$ mit aFb als Bild von f bei a bezeichnet. Notation: f(a)

- **3. Bild:** Sei $f: A \to B$ und $M \subseteq A$.
- Das Bild von M unter f ist die Menge: $f(M) := \{f(x) | x \in M\}$
- Insbesondere heißt Bild(f) := f(A) das (volle) Bild von f (auch Wertebereich).
- Das Urbild einer Teilmenge $N\subseteq B$ ist definiert durch: $f^{-1}(N):=\{a\in A|f(a)\in N\}$
- **4. Einschränkung:** Sei f = (A, B, F) eine Abbildung und $M \subseteq A$.

Die Abbildung $f|_m = (M, B, F \cap (M \times B))$ heißt Einschränkung von f auf M.

- **5. Komposition:** Kompositionen von Funktionen ist hier definiert als: $a \mapsto (g \circ f)(a) = g(f(a)), a \in A$
- **6. Injektiv:** Wenn für alle $a, a' \in A$ mit $a \neq a'$ gilt $f(a) \neq f(a')$.
- 7. surjektiv: Falls es für jedes $b \in B$ ein $a \in A$ gibt mit f(a) = b.
- 8. bijektiv: Falls f sowohl injektiv als auch surjektiv ist.
- **9. Inverse Abbildung:** Sei $f: A \to B$ eine bijektive Abbildung. Da existiert zu f stets eine Abbildung g mit $g \circ f = id_A$ und $f \circ g = id_B$. g heißt die zu f inverse Abbildung oder Umkehrabbildung. Notation: f^{-1} .
- 10. Gleichmächtig: Seien M und N zwei Mengen. M und N heißen gleichmächtig (oder umfangsgleich) genau dann, wenn es eine bijektive Abbildung $f: M \to N$ gibt. Notation M = N. (|M| = |N|)
- **11. endlich:** Eine Menge M heißt endlich genau dann, wenn $M=\emptyset$ oder es für ein $n\in\mathbb{N}$ eine bijektive Abbildung $b:M\to\mathbb{N}_n$ gibt.

- 12. unendlich: Eine Menge M heißt unendlich genau dann, wenn M nicht endlich ist.
- 13. abzählbar: Eine Menge M heißt abzählbar genau dann, wenn M endlich ist oder es eine bijektive Abbildung $b:M\to\mathbb{N}$ gibt.
- 14. abzählbar unendlich: Eine Menge M heißt abzählbar unendlich genau dann, wenn M abzählbar und unendlich ist.
- 15. überabzählbar: Eine Menge heißt überabzählbar genau dann, wenn M nicht abzählbar ist.
- **16. Folge:** Eine Folge Reeller Zahlen ist eine Funktion $f: \mathbb{N} \to \mathbb{R}$.
- 17. konvergenz: Eine Folge (a_n) konvergiert gegen $a \in \mathbb{R}$, wenn gilt: Zu jedem $\epsilon > 0$ existiert ein $N \in \mathbb{R}$, so dass gilt:

 $|a_n - a| < \epsilon$ für alle n > N

Die Zahl a heißt Grenzwert (Limes) der Folge (a_n) . Eine Folge (a_n) mit Grenzwert heißt konvergent. Man schreibt: $\lim_{n\to\infty}a_n=a$ oder auch $a_n\to a$ für $n\to\infty$. Eine Folge, die gegen a=0 konvergiert, heißt Nullfolge.

- **18. Reihe:** Sei (a_n) eine Folge. Die Reihe (s_n) ergibt sich aus (a_n) durch Summation: $s_n := \sum_{k=0}^n a_k$
- 19. beschränkt(e Folge): Eine Folge (a_n) heißt beschränkt, wenn es eine Zahl s gibt, so dass $|a_n| \leq s$ für alle n gilt.
- **20. monoton wachsend:** Eine Folge (a_n) heißt monoton wachsend, wenn $a_n \leq a_{n+1}$ für alle n gilt.
- **21. monoton fallend:** Eine Folge (a_n) heißt monoton fallend, wenn $a_n \geq a_{n+1}$ für alle n gilt.
- **22. supremum:** Eine Zahl s heißt Suprmum einer Menge $M\subseteq \mathbb{R}$, wenn s die kleinste obere Schranke von M ist, d.h:
 - s ist obere Schranke von M ($\forall m \in M : m \leq s$)
 - jede Zahl x < s ist keine obere Schranke von M
- **23. infimum:** Eine Zahl i heißt Infimum einer Menge $M \subseteq \mathbb{R}$, wenn i die größte untere Schranke von M ist.
- **24.** Häufungspunkt: h heißt Häufungspunkt einer Folge (a_n) , wenn jede Umgebung $K_{\epsilon}(h)$ von h undendlich viele Folgeglieder enthält. Also:

 $|h - a_n| < \epsilon$ für unendlich viele n

- **25.** Cauchy-Folge: Eine Folge (a_n) heißt Cauchy-Folge, wenn es zu jedem $\epsilon > 0$ ein n gibt so dass gilt: $|a_n a_m| < \epsilon$, falls n und m > N sind.
- **26.** Asymptotisch: Zwei Folgen (a_n) und (b_n) mit $b_n \neq 0$ heißen asymptotisch gleich, falls die Folge $(\frac{a_n}{b_n})$ gegen 1 konvergiert. Notation: $a_n b_n$.
- **27. O-Notation:** Sei $g : \mathbb{N} \to \mathbb{R}$. Eine Funktion $f : \mathbb{N} \to \mathbb{R}$ gehört zu der Menge O(g), wenn es eine Konstante $c \in \mathbb{R}^+$ gibt, $sodass|f(n)| \leq c \circ |g(n)|$ für fast alle n gilt.

Rechenregeln Folgen

- $\lim_{n\to\infty}\frac{1}{n^s}=0$ für jedes positive $s\in\mathbb{Q}$.
- $\lim_{n\to\infty} \sqrt[n]{a} = 1$ für jedes reelle a > 0.
- $\lim_{n\to\infty} \sqrt[n]{n} = 1$.
- $\lim_{n\to\infty}q^n=0$ für jedes reelle q mit |q|<1.