Algoritmi e Strutture Dati

a.a. 2016/17

Compito del 16/01/2018

Cognome:	Nome:
Matricola:	E-mail:

Parte I

(30 minuti; ogni esercizio vale 2 punti)

1. Dato il seguente albero

Eseguire una visita in preordine, una visita in ordine simmetrico, una visita in postordine e una visita in ampiezza elencando nei quattro casi la sequenza dei nodi incontrati.

2. Per un certo problema sono stati trovati due algoritmi risolutivi (A₁ e A₂) con i seguenti tempi di esecuzione:

$$A_1$$
: $T(n) = 4n^2 + 7\log n^2$

$$A_2$$
: $T(n) = 4 \cdot T(n/2) + \log n$

Si dica, giustificando tecnicamente la risposta, quale dei due algoritmi è preferibile per input di dimensione sufficientemente grande.

3. Si completi la tabella sottostante, specificando le complessità degli algoritmi indicati in funzione del numero *n* dei vertici del grafo:

	Grafo sparso	Grafo denso
Bellman-Ford		
Dijkstra (array)		
Dijkstra (heap)		

Algoritmi e Strutture Dati a.a. 2016/17

Compito del 16/01/2018

Cognon	ne: Nome:
Matrico	la: E-mail:
	Parte II (2.5 ore; ogni esercizio vale 6 punti)
1.	Scrivere una funzione efficiente , di nome simmetrico , che, dato un albero binario, ritorna I se l'albero è speculare , sia dal punto di vista strutturale che nel contenuto dei nodi, altrimenti ritorna 0 .
	Specificare la chiamata della funzione nel main. Analizzare la complessità della funzione.
	Per l'esame da 12 CFU , deve essere fornita una funzione C . Per l'esame da 9 CFU , è sufficiente specificare lo pseudocodice.
2.	Sia BST^+ la struttura dati che si ottiene aggiungendo ad ogni nodo x di un albero binario di ricerca un nuovo attributo diff che contiene la differenza fra il numero di nodi nel sottoalbero sinistro e quelli nel sottoalbero destro di x .
	Modificando la procedura Tree-insert si definisca una procedura BST ⁺ -insert per l'inserimento di una nuova chiave in un BST ⁺ . Il prototipo della procedura è: BST ⁺ -insert(TreeConDiff t, NodeConDiff z)
	Si assuma che il nodo z sia così inizializzato: z.p = z.left = z.right = NULL z.key = k (nuova chiave) z.diff = 0
	Analizzare la complessità della procedura.
3.	Si enunci e si dimostri il teorema fondamentale degli alberi di copertura minimi e lo si utilizzi per mostrare la correttezza degli algoritmi di Kruskal e Prim.
4.	Sia $G = (V, E)$ un grafo orientato con funzione peso $w : E \to \mathbb{R}$ e vertici numerati da 1 a $n : V = \{1, 2,, n\}$. Si scriva un algoritmo che, per ogni coppia di vertici $i, j \in V$, determini la lunghezza del cammino minimo tra $i \in J$ i cui vertici intermedi non superino un valore dato k $(1 \le k \le n)$. Si dimostri la correttezza dell'algoritmo proposto e si determini la sua complessità.