一、填空题

1.
$$n$$
 阶行列式
$$\begin{vmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ -1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & 1 \end{vmatrix} = \underline{\qquad}$$

- 2. 设n阶方阵A满足 $3A^2-2A=10I$,则 $(A-2I)^{-1}=$ _____。
- 3. $\[\] \alpha = (1,2,3)^T, \beta = (1,-1,1)^T, A = \alpha \beta^T, \] M A^{100} =$
- 5. 设 A 是 5×4 矩 阵, $r(A) = 2, \xi_1 = (1, 2, 0, 1)^T, \xi_2 = (2, 1, 1, 3)^T$ 是 方程组 Ax = b 的两个解,

 $\xi_3 = (1,0,1,0)^T$ 是对应齐次线性方程组 Ax = 0 的一个解,则 Ax = b 的一般解为_____。

6.设3阶实对称方阵 A 满足 $A^2 = A$, 且 r(A) = 2,则 A 的特征值为_____, $|A+I| = _____$ 。

二、选择题

- 1. 齐次线性方程组 Ax = 0有非零解的充要条件是()
- (A) A 的列向量组线性相关
- (B) A 的行向量组线性相关
- (C) A的行向量中有一个为零向量 (D) A 为方阵且其行列式为零
- 2. 已知向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,向量 β_1 可由 $\alpha_1,\alpha_2,\alpha_3$ 线性表出,向量 β_2 不能由 $\alpha_1,\alpha_2,\alpha_3$ 线性 表出,则对于任意常数k必有()
- (A) $\alpha_1,\alpha_2,\alpha_3,k\beta_1+\beta_2$ 线性无关 (B) $\alpha_1,\alpha_2,\alpha_3,k\beta_1+\beta_2$ 线性相关
- (C) $\alpha_1, \alpha_2, \alpha_3, \beta_1 + k\beta_2$ 线性无关 (D) $\alpha_1, \alpha_2, \alpha_3, \beta_1 + k\beta_2$ 线性相关
- 3. 设 A 为 3 阶方阵,将 A 的第二列加到第一列得 B,再交换 B 的第二行与第三行得单位矩阵 I,记

(A) P_1P_2 (B) $P_1^{-1}P_2$ (C) P_2P_1 (D) $P_2P_1^{-1}$

4. 设矩阵
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & t \\ 0 & 1 & 1 \end{pmatrix}$$
, 若存在矩阵 $B \neq O$ 使得 $AB = O$,则 $t = ($)

(A) 0(B) 1 (C) 2 (D) -2

5. 设 λ_1 , λ_2 是矩阵 A 的两个不同的特征值,对应的特征向量分别为 α_1 , α_2 , 则 α_1 , $A(\alpha_1 + \alpha_2)$ 线性无 关的充要条件是()

(A) $\lambda_1 \neq 0$ (B) $\lambda_2 \neq 0$ (C) $\lambda_1 = 0$ (D) $\lambda_2 = 0$

(A) 合同且相似 (B) 合同但不相似 (C) 不合同,但相似 (D) 既不合同,也不相似

注: 以下两题均为多选题

7. 设A、B均是n阶可逆方阵,则下列叙述正确的是()

(A) |AB| = |B||A| (B) $(AB)^T = A^T B^T$ (C) $|A^*| = |A|^{n-1}$

(D) $(AB)^* = B^*A^*$ (E) A + B 也可逆 (F) $(AB)^{-1} = A^{-1}B^{-1}$

8. 设 $A \neq m \times n$ 矩阵, r(A) = m(m < n) , $B \neq n$ 阶方阵,下列哪些成立? ()

(A) A 中任一m 阶子式不等于 0 (B) A 中存在m 列线性无关

(C) $|A^T A| = 0$

(D) 若 AB = O,则 B = O

(E) 若 r(B) = n , 则 r(AB) = m (F) Ax = 0 仅有零解

三、计算题

1. 设向量组 $\alpha_1 = (2,1,1,2)^T$, $\alpha_2 = (1,0,1,0)^T$, $\alpha_3 = (1,1,0,2)^T$, $\alpha_4 = (1,1,1,1)^T$, $\alpha_5 = (-1,1,0,0)^T$ 求向量组的秩及其一个极大线性无关组,并将其余向量用极大线性无关组线性表出。

2. 已知 R^3 的两组基为 $B_1 = \{\alpha_1, \alpha_2, \alpha_3\}$ 及 $B_2 = \{\beta_1, \beta_2, \beta_3\}$, 其中

 $\alpha_1 = (1,1,1)^T, \alpha_2 = (0,1,1)^T, \alpha_3 = (0,0,1)^T$

 $\beta_1 = (1,0,1)^T$, $\beta_2 = (0,1,-1)^T$, $\beta_3 = (1,2,0)^T$

(1) 求从基 B_1 到基 B_2 ,的过渡矩阵 A_3 ;

(2) 已知 α 在基 B_1 下的坐标为 $(1,-2,-1)^T$,求 α 在基 B_2 下的坐标。

3.
$$(6 分)$$
已知 $A = \begin{pmatrix} 1 & -1 & 1 \\ a & 4 & b \\ -3 & -3 & 5 \end{pmatrix}$ 是可对角化的, $\lambda = 2$ 是 A 的二重特征值,求 a,b 。

四、证明题

设 $\alpha_1, \cdots, \alpha_p$ 是齐次线性方程组 Ax=0 的一个基础解系, α_0 不是 Ax=0 的解,证明:向量组 $\alpha_0, \alpha_1, \cdots, \alpha_n$ 线性无关。

五、设
$$A = \begin{pmatrix} 1 & a & 0 & 0 \\ 0 & 1 & a & 0 \\ 0 & 0 & 1 & a \\ a & 0 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix},$$

- (1)求|A|;
- (2) 已知线性方程组 Ax = b 有无穷多解,求a 并求 Ax = b 的通解。

六、已知
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & a \\ 0 & a & -1 \end{pmatrix}$$
,且 $r(A) = 2$,二次型 $f(x_1, x_2, x_3) = x^T (A^T A) x$,

- (1) 求实数 a 的值;
- (2)用正交变换法将 f 化为标准型,并写出相应的正交矩阵 Q;
- (3) 写出规范型。