Quantum-enhanced machine learning: Implementing a quantum k-nearest neighbour algorithm

Bachelor thesis defense 19. January 2017

Mark Fingerhuth

Maastricht Science Programme, Maastricht University, The Netherlands Thesis work at the Centre for Quantum Technology, UKZN, South Africa

Table of contents

- 1. Introduction
- 2. Machine Learning
- 3. Quantum Computing
- 4. Quantum-enhanced Machine Learning
- 5. Results: Amplitude-based quantum k-nearest neighbour algorithm
- 6. Outlook
- 7. Conclusion

Introduction

Enhancing machine learning with quantum mechanics

Machine learning
Enable computers to
learn from data

Source: IEEE Spectrum

- ML algorithms often involve¹
 - solving large systems of linear equations
 - inverting large matrices
 - distance computations
- Performing these computations on large data sets gets increasingly difficult²

¹Bishop, C. M. (2006). Pattern recognition. Machine Learning, 128.

²Bekkerman, R., Bilenko, M., & Langford, J. (2011). Scaling up machine learning: Parallel and distributed approaches. Cambridge University Press.

Enhancing machine learning with quantum mechanics

Sources: DWave, IBM

- Quantum mechanics is about vectors in complex Hilbert spaces
- Quantum computers are performing linear operations on qubits
- Many-qubit systems are described by large vectors that can be manipulated in parallel on quantum computers
- Machine learning involves manipulation of large vectors and matrices

Quantum computingBuild computer hardware based on quantum physics

Enhancing machine learning with quantum mechanics

Machine Learning

Supervised machine learning

The problem statement

Given a dataset of inputs and their corresponding outputs, predict the output of a new unknown input.

Input	Output
heartbeat	healthy or sick
last year's oil prices	tomorrow's oil price
message of a users	intention of text content
search history of a user	chance of clicking on a particular ad

Supervised machine learning: concrete example

ID	Colour	Class label
1		red
2		red
3		red
4		blue
5		blue
6		blue

Table 1: Example training dataset.

ID	Colour	Class label
1		?
2		?

Table 2: Example input dataset.

•

Classical k-nearest neighbour

Transferring the colours into vectors

In the case of 9-bit RGB colours:

000 000 000

3 bits for red, 3 bits for green and 3 bits for blue.

Classical k-nearest neighbour

- kNN is a non-parametric classifier
- k is a positive integer, usually chosen small

Given training dataset:

 $D_T = v_0, v_1, ..., v_{16}$ $v_i \in \{red, blue\}$ Given a new vector \tilde{x} (black halfcircle):

- consider k nearest neighbours

- classify $\tilde{\boldsymbol{x}},$ based on majority vote,

as red or blue

Classification \rightarrow **RED**

Classification \rightarrow **BLUE**

Classical k-nearest neighbour with distance-weighting

- kNN is a non-parametric classifier
- k is a positive integer, usually chosen small

Given training dataset:

$$D_T = v_0, v_1, ..., v_{16}$$

 $v_i \in \{red, blue\}$

Given a new vector \tilde{x} (black halfcircle):

- consider k nearest neighbours
- classify \tilde{x} , based on majority vote, as red or blue

Input vector will simply be classified as the class with the most members.

Classification \rightarrow **BLUE**

Assign distance-dependent weights e.g. $\frac{1}{\text{distance}}$ to increase the influence of close vectors over more distant ones!

Classification \rightarrow **RED**

L

Quantum Computing

Classical vs. quantum bits (qubits)

Source: Wikipedia

Classical bit:

- Usually implemented through MOSFETs
- 2 definite states (0,1)
- Can be either 0 OR 1

Classical vs. quantum bits (qubits)

Quantum bit (qubit):

- Can be $|0\rangle$ OR $|1\rangle$
- ullet But it can also be |0
 angle AND |1
 angle o quantum superposition

Source: RF Wireless World

Qubits

Mathematically, a qubit state is expressed as:

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle ,$$
 (2)

where $\alpha, \beta \in \mathbb{C}$ and they are called amplitudes.

 $|0\rangle$ and $|1\rangle$ can be represented as the 2-D vectors:

$$|0\rangle \doteq \begin{pmatrix} 1\\0 \end{pmatrix} \quad \text{and} \quad |1\rangle \doteq \begin{pmatrix} 0\\1 \end{pmatrix} \,. \tag{3}$$

Substituting into Eq. 2 yields the vector representation of $|\psi\rangle$:

$$|\psi\rangle \doteq \alpha \begin{pmatrix} 1\\0 \end{pmatrix} + \beta \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} \alpha\\\beta \end{pmatrix}.$$
 (4)

This object is called the **amplitude vector**.

The Bloch sphere

Figure 1: Arbitrary two-dimensional qubit $|\psi\rangle$ visualized on the Bloch sphere 1

Most general form of a 2-D qubit:

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle ,$$
 (5)

where $\alpha, \beta \in \mathbb{C}$.

Can also be visualized in spherical polar coords on the unit or Bloch sphere as follows:

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$$
 , (6)

where $0 \le \theta \le \pi$ and $0 \le \phi \le 2\pi$

¹Reprinted from Wikipedia, n.d., Retrieved September 7, 2016, from https://en.wikipedia.org/wiki/Bloch_Sphere. Copyright 2012 by Glosser.ca. Reprinted with permission.

Single-qubit quantum logic gates

Any single-qubit quantum logic gates can be represented by a unitary 2×2 matrix whose action on a qubit is defined as:

$$U|\psi\rangle \doteq \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} a\alpha + b\beta \\ c\alpha + d\beta \end{pmatrix}. \tag{7}$$

- Quantum computers perform linear (unitary) operations on qubits
- A quantum computation is the manipulation of an amplitude vector with a matrix representing a quantum logic gate

Single-qubit quantum logic gates: Hadamard gate

A very important single-qubit quantum logic gate is the **Hadamard** gate. It is represented by the matrix:

$$H \doteq \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} . \tag{8}$$

Consider acting the H gate on the $|0\rangle$ state:

$$H|0\rangle \doteq \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \doteq \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle . \tag{9}$$

ightarrow creates an equal superposition of $|0\rangle$ and $|1\rangle$!

Single-qubit quantum logic gates: Hadamard gate

$$H|0\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle . \tag{10}$$

Multi-qubit systems

Tensor products are required when combining several qubits.

For example, the tensor product of two $|0\rangle$ kets is defined as:

$$|0\rangle \otimes |0\rangle = |00\rangle \doteq \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \tag{11}$$

And for three $|0\rangle$ kets:

$$|00\rangle \otimes |0\rangle = |000\rangle \doteq \begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix} \otimes \begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix} = \begin{pmatrix} 1\cdot \begin{pmatrix} 1\\0\\0\\0\\0\\0\\0\\0\\0\\0 \end{pmatrix} = \begin{pmatrix} 1\\0\\0\\0\\0\\0\\0\\0\\0 \end{pmatrix}$$
(12)

Multi-qubit systems

- It follows, that an n-qubit system has 2^n amplitudes.
 - \rightarrow can be used to store huge amounts of information!
- Equivalently, to simulate an n-qubit quantum computer one needs to store the value of all 2ⁿ amplitudes:
 - \rightarrow requires $2^n \cdot 64$ classical bits of random-access memory (RAM).

For example:

- 25 qubits can be simulated with just 2 gigabytes of RAM.
- However, 50 qubits require ∼8000 terabytes of RAM
- Lastly, 275 qubits have $2^{275}\approx 6\times 10^{82}$ amplitudes which is roughly equal to the number of atoms in our universe

*p*₈

Probability	Quantum state
p_1	$ 000\rangle$
p_2	010 angle
<i>p</i> ₃	$ 001\rangle$
p_8	111 angle

Prob.	Combination	Prob.	Amplitude	Quantum state
$p_1 = \frac{1}{8}$	000	$p_1 = a_1 ^2$	a_1	000>
$p_2 = \frac{1}{8}$	010	$p_2 = a_2 ^2$	a ₂	010⟩
$p_3 = \frac{1}{8}$	001	$p_3 = a_3 ^2$	a ₃	001⟩
$p_8 = \frac{1}{8}$	111	$p_8 = a_8 ^2$	a ₈	$ 111\rangle$

001

111

 $p_3 = \frac{1}{8}$

 $p_3 = \frac{1}{8}$

 $p_8 = \frac{1}{8}$

\rightarrow In quantum	mechanics	amplitudes	can	he i	nterferred	with	each	otherl

 \rightarrow This is impossible to do on a classical computer!

 $|001\rangle$

 $|111\rangle$

Applying an H gate to the first qubit leads to quantum interference such that:

Prob.	Amplitude	Quantum state
$p_1 = a_1 + a_5 ^2$	$a_1 + a_5$	000⟩
$p_2 = a_2 + a_6 ^2$	$a_2 + a_6$	010⟩
$p_3 = a_3 + a_7 ^2$	$a_3 + a_7$	001⟩
$p_4 = a_4 + a_8 ^2$	$a_4 + a_8$	$ 011\rangle$
$p_5 = a_1 - a_5 ^2$	$a_1 - a_5$	100⟩
$p_6 = a_2 - a_6 ^2$	$a_2 - a_6$	$ 110\rangle$
$p_7 = a_3 - a_7 ^2$	$a_3 - a_7$	$ 101\rangle$
$p_8 = a_4 - a_8 ^2$	$a_4 - a_8$	$ 111\rangle$

For example, substituting the values for $a_1 = \frac{1}{2\sqrt{2}}$ and $a_5 = \frac{1}{2\sqrt{2}}$ yields:

Prob.	Amplitude	Quantum state
$p_1 = a_1 + a_5 ^2$	$\frac{1}{\sqrt{2}}(\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{2}})$	000⟩
$p_2 = a_2 + a_6 ^2$	$a_2 + a_6$	010⟩
$p_3 = a_3 + a_7 ^2$	$a_3 + a_7$	001⟩
$p_4 = a_4 + a_8 ^2$	$a_4 + a_8$	$ 011\rangle$
$p_5 = a_1 - a_5 ^2$	$\frac{1}{\sqrt{2}}(\frac{1}{2\sqrt{2}}-\frac{1}{2\sqrt{2}})$	100⟩
$p_6 = a_2 - a_6 ^2$	$a_2 - a_6$	$ 110\rangle$
$p_7 = a_3 - a_7 ^2$	a ₃ − a ₇	$ 101\rangle$
$p_8 = a_4 - a_8 ^2$	a₄ − a ₈	$ 111\rangle$

For example, substituting the values for $a_1=\frac{1}{2\sqrt{2}}$ and $a_5=\frac{1}{2\sqrt{2}}$ yields:

Prob.	Amplitude	Quantum state	
$p_1 = \frac{1}{2} ^2 = \frac{1}{4}$	$\frac{1}{2}$	000⟩	ightarrow constructive interference
$p_2 = a_2 + a_6 ^2$	$a_2 + a_6$	$ 010\rangle$	"
$p_3 = a_3 + a_7 ^2$	$a_3 + a_7$	$ 001\rangle$	11
$p_4 = a_4 + a_8 ^2$	$a_4 + a_8$	011 angle	11
$p_5 = 0 ^2 = 0$	0	$ 100\rangle$	ightarrow destructive interference
$p_6 = a_2 - a_6 ^2$	$a_2 - a_6$	110 angle	21
$p_7 = a_3 - a_7 ^2$	a₃ − a ₇	$ 101\rangle$	11
$p_8 = a_4 - a_8 ^2$	a ₄ — a ₈	111 angle	11

Quantum-enhanced Machine Learning

Encoding classical data into qubits

There are two fundamentally different ways for state preparation:

Data encoded into qubits

k-dimensional probability vector requires 4k classical bits which are encoded one-to-one into 4k qubits, e.g.

$$\begin{pmatrix} 0.6 \\ 0.4 \end{pmatrix} * 10 \rightarrow \begin{pmatrix} 6 \\ 4 \end{pmatrix} \rightarrow \begin{pmatrix} 0110 \\ 0100 \end{pmatrix} \rightarrow n = 01100100 \rightarrow |n\rangle = |01100100\rangle$$

Data encoded into amplitudes

k-dimensional probability vector is encoded into $log_2(k)$ qubits, e.g.

$$\begin{pmatrix} 0.6 \\ 0.4 \end{pmatrix} \quad \rightarrow \quad |n\rangle = \sqrt{0.6} \, |0\rangle + \sqrt{0.4} \, |1\rangle$$

Encoding classical data into amplitudes

There are two fundamentally different ways for state preparation:

Data encoded into qubits

k-dimensional probability vector requires 4k classical bits which are encoded one-to-one into 4k qubits, e.g.

$$\begin{pmatrix} 0.6 \\ 0.4 \end{pmatrix} * 10 \rightarrow \begin{pmatrix} 6 \\ 4 \end{pmatrix} \rightarrow \begin{pmatrix} 0110 \\ 0100 \end{pmatrix} \rightarrow n = 01100100 \rightarrow |n\rangle = |01100100\rangle$$

Data encoded into amplitudes

k-dimensional probability vector is encoded into $log_2(k)$ qubits, e.g.

$$\begin{pmatrix} 0.6 \\ 0.4 \end{pmatrix} \quad \rightarrow \quad |n\rangle = \sqrt{0.6} \, |0\rangle + \sqrt{0.4} \, |1\rangle$$

Calculating distances with interference

Prob.	Amplitude	Quantum state
$p_1 = 0.22$	$\frac{0.2}{\sqrt{0.18}}$	000⟩
$p_2 = 0.055$	$\frac{0.1}{\sqrt{0.18}}$	$ 010\rangle$
$p_3 = 0$	0	001 angle
$p_4 = 0$	0	011 angle
$p_5 = 0.5$	$\frac{0.3}{\sqrt{0.18}}$	100 angle
$p_6 = 0.22$	$\frac{0.2}{\sqrt{0.18}}$	110 angle
$p_7 = 0$	0	101 angle
$p_8 = 0$	0	111 angle

Calculating distances with interference

Prob.	Amplitude	Quantum state
$p_1 = \frac{(0.2 + 0.3)^2}{0.18}$	$\frac{0.2+0.3}{\sqrt{0.18}}$	000⟩
$p_2 = \frac{(0.1 + 0.2)^2}{0.18}$	$\frac{0.1+0.2}{\sqrt{0.18}}$	010⟩
$p_3 = 0$	0	$ 001\rangle$
$p_4 = 0$	0	$ 011\rangle$
$p_5 = \frac{(0.2 - 0.3)^2}{0.18}$	$\frac{0.2-0.3}{\sqrt{0.18}}$	100⟩
$p_6 = \frac{(0.1 - 0.2)^2}{0.18}$	$\frac{0.1-0.2}{\sqrt{0.18}}$	$ 110\rangle$
$p_7 = 0$	0	$ 101\rangle$
$p_8 = 0$	0	111 angle

The amplitude-based kNN algorithm

- 1. $|\psi_0\rangle = \frac{1}{\sqrt{2M}} \sum_{m=1}^{M} (|0\rangle |\Psi_{\tilde{x}(\star)}\rangle + |1\rangle |\Psi_{x^m}\rangle) |y^m\rangle |m\rangle$ [Initial quantum state]
- 2. $|\psi_1\rangle = \frac{1}{2\sqrt{M}} \sum_{m=1}^{M} (|0\rangle [|\Psi_{\tilde{x}}\rangle + |\Psi_{x^m}\rangle] + |1\rangle [|\Psi_{\tilde{x}}\rangle |\Psi_{x^m}\rangle]) |y^m\rangle |m\rangle$ [Distance computations with quantum interference]
- 3. $|\psi_2\rangle = \frac{1}{2\sqrt{M}} \sum_{m=1}^{M} \sum_{i=1}^{N} (\tilde{x}_i + x_i^m) |0\rangle |i\rangle |y^m\rangle |m\rangle$ [Conditional measurement]
- 4. Prob($|y^m\rangle = |1\rangle$) = $\sum_{m|y^m=1} 1 \frac{1}{4M} |\tilde{x} x^m|^2$ [Probability to measure a certain class]

$$5. \ y = \begin{cases} 0, & \text{if } \operatorname{Prob}(|y^0\rangle) > \operatorname{Prob}(|y^1\rangle) \\ 1, & \text{if } \operatorname{Prob}(|y^1\rangle) > \operatorname{Prob}(|y^0\rangle) \\ -, & \text{otherwise} \end{cases} \quad \text{[Classification]}$$

Calculating distances with interference

Methods

Methods: IBM Quantum Experience

Figure 2: IBM's quantum composer¹

- Accessible to the public
- Allows for ideal + real simulations

- 5 superconducting qubits
- 40 gates (39 gates + 1 measurement)

Screenshot taken from https://quantumexperience.ng.bluemix.net/qstage/#/editor

Methods: Liqui|>

Remember: Small quantum computers can still be simulated!

 $Liqui|\rangle...$

- stands for Language-Integrated Quantum Operations.
- is a quantum simulation toolsuite written in F# .
- was developed by Microsoft Research.
- allows for simulations of up to 30 qubits with 16GB RAM.

Results: Amplitude-based kNN

algorithm

Illustrate the problems with IBMQE?

Show Bloch vector classification simulation results here

1

Simple binary classification case

Figure 3: Simple binary classification problem of a quantum state

$$\frac{1}{\sqrt{2M}} \sum_{m=1}^{M} (|0\rangle | \Psi_{\bar{x}}(\star) \rangle + |1\rangle | \Psi_{x}^{m} \rangle) | y^{m} (A \text{ or } B) \rangle | m \rangle$$
(13)

Procedure to load the input vector \tilde{x} :

$$|\Psi_0\rangle = \frac{1}{2} \sum_{m=1}^{2} (|0\rangle |0\rangle + |1\rangle |0\rangle) |y^m\rangle |m\rangle \qquad (14)$$

Apply controlled rotation ${}_{0}^{1}CR_{y}(\frac{\pi}{4})$ s.t.

$${}_{0}^{1}CR_{y}(\frac{\pi}{4})|\Psi_{0}\rangle = |\Psi_{1}\rangle = \frac{1}{2}\sum_{m=1}^{2}(|0\rangle|0\rangle + |1\rangle|\Psi_{\tilde{x}}\rangle)|y^{m}\rangle|m\rangle$$
(15)

Flip the ancilla qubit in the first register

$$(X \otimes \mathbb{1} \otimes \mathbb{1} \otimes \mathbb{1}) |\Psi_1\rangle = |\Psi_2\rangle = \frac{1}{2} \sum_{m=1}^{2} (|0\rangle |\Psi_{\overline{x}}\rangle + |1\rangle |0\rangle) |y^m\rangle |m\rangle$$
(16)

IBM's universal gate set

Figure 4: IBM's universal gate set

How can we implement the ${}_0^1CR_y(\frac{\pi}{4})$ gate?

Controlled U gate

 $|q_0\rangle \longrightarrow \begin{bmatrix} 1 & 0 \\ 0 & e^{i\alpha} \end{bmatrix}$ $|q_1\rangle \longrightarrow C \longrightarrow B \longrightarrow A$

Figure 5: Controlled U-gate

Figure 6: Decomposition of a controlled U-gate¹

Choose A,B,C and α s.t.

$$e^{i\alpha} * A * X * B * X * C = U$$
 and $A * B * C = 1$ (17)

Need to solve the following equation¹

$$U = \begin{pmatrix} e^{i(\alpha - \frac{\beta}{2} - \frac{\delta}{2})} \cos \frac{\gamma}{2} & -e^{i(\alpha - \frac{\beta}{2} + \frac{\delta}{2})} \sin \frac{\gamma}{2} \\ e^{i(\alpha + \frac{\beta}{2} - \frac{\delta}{2})} \sin \frac{\gamma}{2} & e^{i(\alpha + \frac{\beta}{2} + \frac{\delta}{2})} \cos \frac{\gamma}{2} \end{pmatrix}$$
(18)

¹Nielsen, M. A., & Chuang, I. L. (2010). Quantum computation and quantum information. Cambridge University Press.

²Jat, R. N., & Ruhela, D. S. (2011). Comparative study of complexity of algorithms for iterative solution of non-linear equations. Journal of International Academy Of Physical Sciences, 15(4).

Problems with universal gate sets

In our case we need to find A, B, C and α for ${}^1_0CR_y(\frac{\pi}{4})$:

Using a root finding algorithm for non-linear equations we find:

$$\alpha = \pi; \quad \beta = 2\pi; \quad \delta = \frac{7}{8}\pi; \quad \gamma = 0$$
 (19)

Then,

$$A = R_z(\beta)R_y(\frac{\gamma}{2}) = R_z(2\pi) = 1$$
 (20)

$$B = R_{y}(-\frac{\gamma}{2})R_{z}(-\frac{\delta+\beta}{2}) = R_{z}(-\frac{23}{16}\pi) = ???$$
 (21)

$$C = R_z(\frac{\delta - \beta}{2}) = R_z(-\frac{9}{16}\pi) = ???$$
 (22)

$$\begin{pmatrix} 1 & 0 \\ 0 & e^{i\alpha} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi} \end{pmatrix} = Z \qquad (23)$$

The Solovay-Kitaev theorem

$$B = R_z(-\frac{23}{16}\pi) = ???$$

$$C = R_z(-\frac{9}{16}\pi) = ???$$
(24)

$$C = R_z(-\frac{9}{16}\pi) = ???$$
 (25)

The Solovay-Kitaev theorem guarantees that given a set of single-qubit quantum gates which generates a dense subset of SU(2), then that set is guaranteed to fill SU(2) quickly.¹

- \rightarrow Hence, given any universal gate set it is possible to obtain good approximations to any desired gate.
- → But needs to be computed classically!

The Solovay-Kitaev algorithm

Fowler distance¹:

Booth Jr, J. (2012). Quantum compiler optimizations. arXiv preprint arXiv:1206.3348.

(26)

The Solovay-Kitaev algorithm

d = 0.22739 (27)

d = 0.15165 (28)

d = 0.10722 (29)

d = 0.02086 (30) d = 0.00156 (31)

Figure 7: Various Fowler distances visualized on Bloch sphere

The Solovay-Kitaev algorithm

IBM's quantum computer needs 130ns for single-qubit gates and 500ns for CNOT gates.

IBM qubit decoherence times:

$$49.5 \, \mu s \le T_1 \le 85.3 \, \mu s$$
 "amplitude damping" $56.0 \, \mu s \le T_2 \le 139.7 \, \mu s$ "phase damping"

Approx. Gate	Distance	Gate count	Execution time
$R_z(-\frac{23}{16}\pi)$	0.15165	25	\sim 3 μ s
	0.10722	109	\sim 14 μ s
	0.02086	2997	\sim 390 μ s
	0.01494	14721	\sim 1914 μ s
	0.003327	74009	$\sim\!9621\mu s$
	0.001578	370813	\sim 48 206 μ s

 Table 3:
 SK algorithm results

$Liqui|\rangle$ simulations

Currently impossible to implement the quantum algorithm on IBM's quantum computer! \to can only simulate the algorithm with Liqui| \rangle

In Liqui $|\rangle$, one can directly implement the controlled R_y rotation!

Vector representation	Prob(CM)	$ ext{Prob} \ (c angle = 0 angle)$	$ig egin{array}{c} \operatorname{Prob} \ (c angle = 1 angle) \end{array}$	Expected class
$e^{-i\frac{\pi}{8}} \begin{pmatrix} 0.92388 \\ 0.38268 \end{pmatrix}$	0.8266*	0.5818*	0.4182*	0>
$e^{-i\frac{\pi}{16}} \begin{pmatrix} 0.98079 \\ 0.19509 \end{pmatrix}$	0.7940*	0.6237*	0.3763*	0>

Conclusion

Summary

- Initial state preparation is non-trivial! (even for very simple examples)
- In this case, state preparation dominates the overall algorithmic complexity
- Solovay-Kitaev yields long gate sequences for good approximations
- Some universal gate sets are only useful when combined with long qubit lifetimes
- Need for better quantum compiling and more general state preparation algorithms!

Taking it further

- · Complexity analysis of the qubit-based kNN algorithm
- Classification of gaussian probability distributions
- Implementing more general state preparation algorithms
- Waiting for IBM QASM 2.0 ...

References

Bekkerman, R., Bilenko, M., & Langford, J. (2011). Scaling up machine learning: Parallel and distributed approaches. Cambridge University Press.

Booth Jr, J. (2012). Quantum compiler optimizations. arXiv preprint arXiv:1206.3348.

Dawson, C. M., & Nielsen, M. A. (2005). The Solovay-Kitaev algorithm. arXiv preprint quant-ph/0505030.

IBM. (2016). What is big data? $\label{lem:https://www-01.ibm.com/software/data/bigdata/what-is-big -data.html. (Accessed: 2016-09-08)$

Jat, R. N., & Ruhela, D. S. (2011). Comparative study of complexity of algorithms for iterative solution of non-linear equations. Journal of International Academy Of Physical Sciences, 15(4).

Nielsen, M. A., & Chuang, I. L. (2010). Quantum computation and quantum information. Cambridge University Press.

Results: Qubit-based kNN

algorithm

Quantum Computing & Qubits

Figure 8: Arbitrary two-dimensional qubit $|\psi\rangle$ visualized on the Bloch sphere¹

Most general form of a 2-D qubit:

$$|q\rangle = \alpha |0\rangle + \beta |1\rangle$$
 (32)

where $\alpha, \beta \in \mathbb{C}$.

Can also be visualized in spherical polar coords on the unit or Bloch sphere as follows:

$$|q\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$$
 (33)

where $0 \le \theta \le \pi$ and $0 \le \phi \le 2\pi$

¹Reprinted from Wikipedia, n.d., Retrieved September 7, 2016, from https://en.wikipedia.org/wiki/Bloch_Sphere. Copyright 2012 by Glosser.ca. Reprinted with permission.

Machine Learning

- Approximately 2.5 quintillion (10¹⁸) bytes of digital data are created every day¹
- Need for advanced algorithms that can make sense of data content, retrieve patterns and reveal correlations → Machine learning (ML)
- ML algorithms often involve
 - solving large systems of linear equations
 - inverting large matrices
 - distance computations
- Performing these computations on large data sets gets increasingly difficult²

Quantum Machine Learning

- 1. ML involves manipulation of large vectors and matrices
- 2. Quantum mechanics is about vectors \in complex Hilbert spaces
- 3. Quantum computers are performing linear operations on qubits
- \rightarrow Hence, we can manipulate large vectors in parallel on quantum computers

So can we use QC to improve classical ML algorithms??

- Classical ML is a very practical topic
- BUT, QML has been of almost entirely theoretical nature

Quantum data encoding

There are two fundamentally different ways for state preparation:

Data encoded into qubits

k-dimensional probability vector requires 4k classical bits which are encoded one-to-one into 4k qubits, e.g.

$$\begin{pmatrix} 0.6 \\ 0.4 \end{pmatrix} * 10 \rightarrow \begin{pmatrix} 6 \\ 4 \end{pmatrix} \rightarrow \begin{pmatrix} 0110 \\ 0100 \end{pmatrix} \rightarrow n = 01100100 \rightarrow |n\rangle = |01100100\rangle$$

Data encoded into amplitudes

k-dimensional probability vector is encoded into $log_2(k)$ qubits, e.g.

$$\begin{pmatrix} 0.6 \\ 0.4 \end{pmatrix} \quad \rightarrow \quad |n\rangle = \sqrt{0.6} |0\rangle + \sqrt{0.4} |1\rangle$$

Quantum data encoding

There are two fundamentally different ways for state preparation:

Data encoded into qubits

k-dimensional probability vector requires 4k classical bits which are encoded one-to-one into 4k qubits, e.g.

$$\begin{pmatrix} 0.6 \\ 0.4 \end{pmatrix} * 10 \rightarrow \begin{pmatrix} 6 \\ 4 \end{pmatrix} \rightarrow \begin{pmatrix} 0110 \\ 0100 \end{pmatrix} \rightarrow n = 01100100 \rightarrow |n\rangle = |01100100\rangle$$

Data encoded into amplitudes

k-dimensional probability vector is encoded into $log_2(k)$ qubits, e.g.

$$\begin{pmatrix} 0.6 \\ 0.4 \end{pmatrix} \quad \rightarrow \quad |n\rangle = \sqrt{0.6} |0\rangle + \sqrt{0.4} |1\rangle$$

Classical k-nearest neighbour

- kNN is a non-parametric classifier
- k is a positive integer, usually chosen small

Given training data set: Given a new vector \tilde{x} (red star):

 $D_T = v_0, v_1, ..., v_{10}$

- consider k nearest neighbours

 $v_i \in \{A, B\}$

- classify \tilde{x} , based on majority vote, as A or B

Figure 9: Visualization of a kNN classifier¹

 $^{{}^{1}\}text{Reprinted from GitHub, Burton de Wilde, Retrieved September 13, 2016, from http://bdewilde.github.io/blog/blogger/2012/10/26/classification-of-hand-written-digits-3/. Copyright 2012 by Burton de Wilde. Reprinted with permission.}$

The algorithm

$$\frac{1}{\sqrt{2M}} \sum_{m=1}^{M} (|0\rangle | \Psi_{\tilde{x}}(\star) \rangle + |1\rangle | \Psi_{x^{m}} \rangle) | y^{m}(A \text{ or } B) \rangle | m \rangle$$
 (34)

where

$$|\Psi_{\tilde{\mathbf{x}}}(\star)\rangle = \sum_{i=1}^{N} \tilde{\mathbf{x}}_{i} |i\rangle \qquad |\Psi_{\mathbf{x}^{m}}\rangle = \sum_{i=1}^{N} \mathbf{x}_{i}^{m} |i\rangle$$
 (35)

e.g.
$$\begin{pmatrix} 0.6\\0.4 \end{pmatrix} \rightarrow |n\rangle = \sqrt{0.6}|0\rangle + \sqrt{0.4}|1\rangle$$
 (36)

Figure 10: Visualization of a kNN classifier¹

The algorithm

Applying the **Hadamard gate** interferes the input and the training vectors:

$$\frac{1}{2\sqrt{M}} \sum_{m=1}^{M} (|0\rangle [|\Psi_{\tilde{\mathbf{x}}}\rangle + |\Psi_{\mathbf{x}^{m}}\rangle] + |1\rangle [|\Psi_{\tilde{\mathbf{x}}}\rangle - |\Psi_{\mathbf{x}^{m}}\rangle]) |y^{m}(A \text{ or } B)\rangle |m\rangle$$
 (37)

 \rightarrow Perform conditional measurement on ancilla qubit. Successful if $|0\rangle$ state is measured.

The algorithm

After successful conditional measurement, the state is proportional to

$$\frac{1}{2\sqrt{M}} \sum_{m=1}^{M} \sum_{i=1}^{N} (\tilde{\mathbf{x}}_{i} + \mathbf{x}_{i}^{m}) |0\rangle |i\rangle |y^{m}(A \text{ or } B)\rangle |m\rangle$$
 (38)

Probability to measure class B:

$$p(|y^m\rangle = |1(B)\rangle) = \sum_{m|y^m = 1(B)} 1 - \frac{1}{4M} |\tilde{\mathbf{x}} - \mathbf{x}^m|^2$$
 (39)

Overall algorithmic complexity

 $\mathcal{O}(\frac{1}{p_{acc}})$ where p_{acc} is the probability of measuring ancilla in the $|0\rangle$ state

Simple binary classification case

Figure 11: Simple binary classification problem of a quantum state

$$\frac{1}{\sqrt{2M}} \sum_{m=1}^{M} (|0\rangle | \Psi_{\tilde{\mathbf{x}}}(\star) \rangle + |1\rangle | \Psi_{\mathbf{x}}^{m} \rangle) | y^{m} (A \text{ or } B) \rangle | m \rangle$$
(40)

Procedure to load the input vector \tilde{x} :

$$|\Psi_0\rangle = \frac{1}{2} \sum_{m=1}^{2} (|0\rangle |0\rangle + |1\rangle |0\rangle) |y^m\rangle |m\rangle \qquad (41)$$

Apply controlled rotation ${}_{0}^{1}CR_{y}(\frac{\pi}{4})$ s.t.

$${}_{0}^{1}CR_{y}(\frac{\pi}{4})|\Psi_{0}\rangle = |\Psi_{1}\rangle = \frac{1}{2}\sum_{m=1}^{2}(|0\rangle|0\rangle + |1\rangle|\Psi_{\bar{x}}\rangle)|y^{m}\rangle|m\rangle$$

$$(42)$$

Flip the ancilla qubit in the first register

$$(X \otimes \mathbb{1} \otimes \mathbb{1} \otimes \mathbb{1}) |\Psi_1\rangle = |\Psi_2\rangle = \frac{1}{2} \sum_{m=1}^{2} (|0\rangle |\Psi_{\bar{x}}\rangle + |1\rangle |0\rangle) |y^m\rangle |m\rangle$$

$$(43)$$

Implementation with IBM's quantum computer

Figure 12: IBM's quantum composer

- Accessible to the public
- Allows for ideal + real simulations

- 5 superconducting qubits
- 40 gates (39 gates + 1 measurement)

IBM's universal gate set

Figure 13: IBM's universal gate set

How can we implement the ${}_0^1CR_y(\frac{\pi}{4})$ gate?

Controlled U gate

Figure 14: Controlled U-gate

Figure 15: Decomposition of a controlled U-gate¹

Choose A,B,C and α s.t.

$$e^{i\alpha} * A * X * B * X * C = U$$
 and $A * B * C = 1$ (44)

Need to solve the following equation¹

$$U = \begin{pmatrix} e^{i(\alpha - \frac{\beta}{2} - \frac{\delta}{2})} \cos \frac{\gamma}{2} & -e^{i(\alpha - \frac{\beta}{2} + \frac{\delta}{2})} \sin \frac{\gamma}{2} \\ e^{i(\alpha + \frac{\beta}{2} - \frac{\delta}{2})} \sin \frac{\gamma}{2} & e^{i(\alpha + \frac{\beta}{2} + \frac{\delta}{2})} \cos \frac{\gamma}{2} \end{pmatrix}$$
(45)

Overall algorithmic complexity

 $O(\frac{1}{p_{acc}}) + O(k)$ where k is number of root finding iterations²

¹ Nielsen, M. A., & Chuang, I. L. (2010). Quantum computation and quantum information. Cambridge University Press.
² Jat, R. N., & Ruhela, D. S. (2011). Comparative study of complexity of algorithms for iterative solution of non-linear equations. Journal of International Academy Of Physical Sciences, 15(4).

Problems with universal gate sets

In our case we need to find A, B, C and α for ${}_{0}^{1}CR_{y}(\frac{\pi}{4})$:

Using a root finding algorithm for non-linear equations we find:

$$\alpha = \pi; \quad \beta = 2\pi; \quad \delta = \frac{7}{8}\pi; \quad \gamma = 0$$
 (46)

Then,

$$A = R_z(\beta)R_y(\frac{\gamma}{2}) = R_z(2\pi) = 1$$
 (47)

$$B = R_{y}(-\frac{\gamma}{2})R_{z}(-\frac{\delta+\beta}{2}) = R_{z}(-\frac{23}{16}\pi) = ???$$
 (48)

$$C = R_z(\frac{\delta - \beta}{2}) = R_z(-\frac{9}{16}\pi) = ???$$
 (49)

$$\begin{pmatrix} 1 & 0 \\ 0 & e^{i\alpha} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi} \end{pmatrix} = Z \qquad (50)$$

¹Dawson, C. M., & Nielsen, M. A. (2005). The Solovay-Kitaev algorithm. arXiv preprint quant-ph/0505030.

The Solovay-Kitaev theorem

$$B = R_z(-\frac{23}{16}\pi) = ???$$

$$C = R_z(-\frac{9}{16}\pi) = ???$$
(51)

$$C = R_z(-\frac{9}{16}\pi) = ???$$
 (52)

The Solovay-Kitaev theorem guarantees that given a set of single-qubit quantum gates which generates a dense subset of SU(2), then that set is guaranteed to fill SU(2) quickly.¹

- \rightarrow Hence, given any universal gate set it is possible to obtain good approximations to any desired gate.
- \rightarrow But needs to be computed classically!

The Solovay-Kitaev algorithm

Fowler distance¹:

$$dist(U, U_{approx}) = \sqrt{\frac{2 - |tr(U \cdot U_{approx}^{\dagger})|}{2}}$$

$$0.15$$

$$R_z(-\frac{9}{16}\pi)$$

$$R_z(-\frac{23}{16}\pi)$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

$$0.1$$

(53)

Booth Jr, J. (2012). Quantum compiler optimizations. arXiv preprint arXiv:1206.3348.

The Solovay-Kitaev algorithm

d = 0.22739 (54)

d = 0.15165 (55)

d = 0.10722 (56)

d = 0.02086 (57)

d = 0.00156 (58)

Figure 16: Various Fowler distances visualized on Bloch sphere

The Solovay-Kitaev algorithm

IBM's quantum computer needs 130ns for single-qubit gates and 500ns for CNOT gates.

IBM qubit decoherence times:

$$49.5\,\mu s \le T_1 \le 85.3\,\mu s$$
 "amplitude damping" $56.0\,\mu s \le T_2 \le 139.7\,\mu s$ "phase damping"

Approx. Gate	Distance	Gate count	Execution time
$R_z(-\frac{23}{16}\pi)$	0.15165	25	\sim 3 μ s
	0.10722	109	\sim 14 μ s
	0.02086	2997	\sim 390 μ s
	0.01494	14721	\sim 1914 μ s
	0.003327	74009	$\sim\!9621\mu\mathrm{s}$
	0.001578	370813	\sim 48 206 μ s

Table 4: SK algorithm results

Adding complexities

Executing the SK algorithm adds to our overall algorithmic complexity:

Overall algorithmic complexity

$$O(\frac{1}{p_{acc}}) + O(k) + O(m * log^{2.71}(\frac{m}{\epsilon}))$$
 for ϵ -approximations of m gates¹

Due to state preparation we went from

$$O(\frac{1}{p_{acc}})\tag{59}$$

suddenly to

$$O(m * log^{2.71}(\frac{m}{\epsilon})) \tag{60}$$

where m is the number of gates that need approximation to ϵ -accuracy

Dawson, C. M., & Nielsen, M. A. (2005). The Solovay-Kitaev algorithm. arXiv preprint quant-ph/0505030.

Liqui| simulations

Currently impossible to implement the quantum algorithm on IBM's quantum computer! \to can only simulate it with i.e. Liqui| \rangle

In Liqui $|\rangle$ we can directly implement the controlled R_{ν} rotation!

Conclusion

Summary

- Initial state preparation is non-trivial! (even for very simple examples)
- In this case, state preparation dominates the overall algorithmic complexity
- Solovay-Kitaev yields long gate sequences for good approximations
- Some universal gate sets are only useful when combined with long qubit lifetimes
- Need for better quantum compiling and more general state preparation algorithms!

Taking it further

- Complexity analysis of the qubit-based kNN algorithm
- Classification of gaussian probability distributions
- Implementing more general state preparation algorithms
- Waiting for IBM QASM 2.0 ...

References

Bekkerman, R., Bilenko, M., & Langford, J. (2011). Scaling up machine learning: Parallel and distributed approaches. Cambridge University Press.

Booth Jr, J. (2012). Quantum compiler optimizations. arXiv preprint arXiv:1206.3348.

Dawson, C. M., & Nielsen, M. A. (2005). The Solovay-Kitaev algorithm. arXiv preprint quant-ph/0505030.

IBM. (2016). What is big data? https://www-01.ibm.com/software/data/bigdata/what-is-big -data.html. (Accessed: 2016-09-08)

Jat, R. N., & Ruhela, D. S. (2011). Comparative study of complexity of algorithms for iterative solution of non-linear equations. Journal of International Academy Of Physical Sciences, 15(4).

Nielsen, M. A., & Chuang, I. L. (2010). Quantum computation and quantum information. Cambridge University Press.

Backup slide: Qubit decoherence times

We expect exponential decay:

$$e^{t/T_i} (61)$$

T_1 : Longitudinal coherence time (amplitude damping)

- Prepare $|0\rangle$ state
- Apply the X (NOT) gate s.t. qubit is in $|1\rangle$ state
- Wait for time t
- Measure the probability of being in $|1\rangle$ state

T_2 : Transversal coherence time (phase damping)

- Prepare $|0\rangle$ state
- Apply Hadamard $ightarrow \ \frac{|0
 angle + |1
 angle}{\sqrt{2}}$
- Wait for time t
- Apply Hadamard again
- Measure the probability of being in $|0\rangle$ state

We expect this probability to go to $0.5 o ext{qubit lost quantum behaviour}$

Backup Slide II: Experimental realizations

Only few experimental verifications of QML algorithms:

- Li, Liu, Xu, and Du (2015) successfully distinguished a handwritten six from a nine using a quantum support vector machine on a four-qubit nuclear magnetic resonance test bench¹
- Cai et al. (2015) were first to experimentally demonstrate quantum machine learning on a photonic QC and showed that the distance between two vectors and their inner product can indeed be computed quantum mechanically 2
- Rist et al. (2015) solved a learning parity problem with five superconducting qubits and found that a quantum advantage can already be observed in non error-corrected systems³

Machine Learning

Machine learning can be subdivided into three major fields.

Supervised ML

- Based on input and output data
 - "I know how to classify this data but I need the algorithm to do the computations for me."

Unsupervised ML

- Based on input data only
 - "I have no clue how to classify this data, can the algorithm create a classifier for me?"

Reinforcement learning

- Based on input data only
- "I have no clue how to classify this data, can the algorithm classify this data and I'll give it a reward if it's correct or I'll punish it if it's not."

Machine Learning

Machine learning can be subdivided into three major fields.

Supervised ML

- Based on *input* and *output* data
 - "I know how to classify this data but I need the algorithm to do the computations for me."

Unsupervised ML

- Based on input data only
 - "I have no clue how to classify this data, can the algorithm create a classifier for me?"

Reinforcement learning

- Based on *input* data only
- "I have no clue how to classify this data, can the algorithm classify this data and I'll give it a reward if it's correct or I'll punish it if it's not."

Figure 17: Representation of hamming distance on 3D cube

Applying the following matrix

$$\begin{pmatrix}
\sqrt{\delta} & 1 - \sqrt{\delta} \\
1 - \sqrt{\delta} & -\sqrt{\delta}
\end{pmatrix}$$
(62)

to all qubits in the data register leads to a gaussian distribution over the "Hamming distance" cube:

Figure 19: Representation of gaussian diffusion on 3D cube

Figure 20: Representation of gaussian diffusion on 3D cube

Backup slide II I

IBM.

What is big data?

https://www-01.ibm.com/software/data/bigdata/what-is-big-data.html, 2016.

Accessed: 2016-09-08.

algorithm

Qubit-based kNN quantum

Typography

The theme provides sensible defaults to \emph{emphasize} text, \alert{accent} parts or show \textbf{bold} results.

becomes

The theme provides sensible defaults to *emphasize* text, accent parts or show **bold** results.

Font feature test

- Regular
- Italic
- SmallCaps
- Bold
- Bold Italic
- Bold SmallCaps
- Monospace
- Monospace Italic
- Monospace Bold
- Monospace Bold Italic

Lists

Items

- Milk
- Eggs
- Potatos

Enumerations

- 1. First,
- 2. Second and
- 3. Last.

Descriptions

PowerPoint Meeh.

Beamer Yeeeha.

• This is important

- This is important
- Now this

- This is important
- Now this
- And now this

- This is really important
- Now this
- And now this

Figures

Figure 21: Rotated square from texample.net.

Tables

Table 5: Largest cities in the world (source: Wikipedia)

City	Population	
Mexico City	20,116,842	
Shanghai	19,210,000	
Peking	15,796,450	
Istanbul	14,160,467	

Blocks

Three different block environments are pre-defined and may be styled with an optional background color.

Default

Block content.

Alert

Block content.

Example

Block content.

Default

Block content.

Alert

Block content.

Example

Block content.

Math

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Line plots

Bar charts

Quotes

Veni, Vidi, Vici