Collaborative Filtering Ensemble KDD Cup 2011 - Track 1 (2nd place)

Michael Jahrer, Andreas Töscher

commendo research & consulting GmbH

August 21^{th} , 2011

Approach Overview

- ullet Problem is similar to the Netflix Prize o ERROR = RMSE
- We had experience in optimizing the RMSE
- So our approach is:
 - use collaborative filtering → sparse matrix
 - use all the ideas from the Netflix Prize
 - re-write and optimize them
 - use the time information for data cleaning
 - apply models on residuals of others
 - blend them together using a neural network
- Sadly we do not exploit the full potential of the taxonomy source (like in Track 2) ⊗

The Dataset I

#ratings	262M
#users	1M
#items	625k
ightarrow #tracks	507k
ightarrow #albums	89k
ightarrow #artists	28k
ightarrow #genres	1k
rating date?	yes [⊙]

The Dataset II

- Ratings: 0, 30, 50, 70, 90 have highest occurence
- But we do not use this observation anyway

The Dataset III

approx. 10 years of data

Baselines

predictor	validation RMSE
global mean (μ =48.8)	38.2138
item mean	32.3941
user mean	27.6525

• Our best submission: RMSE=18.9092 on the validation set

Algorithms

First approach

• How can we clear the data?

Clear the data 1/5

- Introduce simple biases
- Learned by stochastic gradient descent

symbol	name	#parameters	
μ	global bias	1	
μ_u	user bias	1,000,990	
μ_i	item bias	624,961	
μ_{minute}	global minute bias	5,726,101	
μ_{hour}	global hour bias	95,436	
μ_{day}	global day bias	3,978	
$\mu_{u,day}$	user day bias	13,027,048	

$$\hat{r}_{ui}^{(0)} = \mu + \mu_u + \mu_i + \mu_{minute} + \mu_{hour} + \mu_{day} + \mu_{u,day}$$

Clear the data 2/5

- ullet user day bias $\mu_{u,day}$
- The bias is not predictive!
- ullet Ratings of the testset are in the "future" $ightarrow \mu_{u,day} = 0$
- ullet Only helps in estimating better values for e.g. μ_u , μ_i

Clear the data 3/5

- Introduce frequency biases
- ullet freq(u,day): #ratings from user u on the particular day
- ullet freq(i,day): #ratings of item i on the particular day
- ullet We limit the frequency to <10

$$\hat{r}_{ui}^{(0)} = \mu + \mu_u + \mu_i + \mu_{minute} + \mu_{hour} + \mu_{day} + \mu_{u,day} + \mu_{u,freq(u,day)} + \mu_{i,freq(i,day)}$$

Clear the data 4/5

- Introduce time factorization
- user x minute, user x hour, user x day, item x minute, ...
- F = # features

symbol	name	#parameters
$\mathbf{p}_u^{(0)}$	user feature	F x 1,000,990
$\mathbf{y}_{minute}^{(0)}$	minute feature	F x 5,726,101

ullet dot product = prediction: $\mathbf{p}_u^{(0)}^T \mathbf{y}_{minute}^{(0)}$

Clear the data 5/5

- ullet o The "Baseline model"
- Does not learn any "user item" interactions!
- Only clears the data from time effects

$$\hat{r}_{ui}^{(0)} = \mu + \mu_u + \mu_i + \mu_{minute} + \mu_{hour} + \mu_{day} + \mu_{u,day} + \mu_{u,freq(u,day)} + \mu_{i,freq(i,day)} + \mathbf{p}_{u}^{(0)T} \mathbf{y}_{minute}^{(0)} + \mathbf{p}_{u}^{(1)T} \mathbf{y}_{hour}^{(0)} + \mathbf{p}_{u}^{(2)T} \mathbf{y}_{day}^{(0)} + \mathbf{q}_{i}^{(0)T} \mathbf{y}_{minute}^{(1)} + \mathbf{q}_{i}^{(1)T} \mathbf{y}_{hour}^{(1)} + \mathbf{q}_{i}^{(2)T} \mathbf{y}_{day}^{(1)}$$

- RMSE=19.67 on the training set (50 features)
- RMSE=23.37 on the validation set
- RMSE=25.20 on the leaderboard

Second approach

 \bullet How can we factorize the rating matrix R ?

The sparse matrix

- ullet Small part of ${f R}$
- Fill rate: 0.04%
- Green dots: ratings
- users: 10100..10600
- items: 10100..10600

Basic SVD

- ${f R}$ has the size of 1,000,990 imes 624,961
- $\mathbf{R} \approx \mathbf{P}^T \cdot \mathbf{Q}$
- ullet P are the F-dim. user features ${f p}_u$
- ullet ${f Q}$ are the F-dim. item features ${f q}_i$
- ullet user/item prediction is a dot product $\hat{r}_{ui} = \mathbf{p}_u^T \mathbf{q}_i$

		70			80	
100						20
		90	${\sf R}$			
	50				10	
				0		

Basic SVD Training: SGD

```
Input: Sparse rating matrix \mathbf{R} \in \mathbb{R}^{|U|\mathbf{x}|I|} = [r_{ui}]
      Tunable: Learning rate \eta, Regularization \lambda, feature size F
     Initialize user weights \mathbf{p} \in \mathbb{R}^{F \times |U|} and item weights \mathbf{q} \in \mathbb{R}^{F \times |I|} with
      small random values
     while error on validation set decreases do
             forall u, i \in \mathbf{R} do
                    \hat{r}_{ui} \leftarrow \mathbf{p}_{u}^{T} \mathbf{q}_{i}
 5
                  e \leftarrow \hat{r}_{ui} - r_{ui}
 6
                    for k = 1...F do
                     c \leftarrow p_{uk}
p_{uk} \leftarrow p_{uk} - \eta \cdot (e \cdot q_{ik} + \lambda \cdot p_{uk})
                          q_{ik} \leftarrow q_{ik} - \eta \cdot (e \cdot c + \lambda \cdot q_{ik})
10
                    end
11
             end
12 end
```

Algorithm 1: Pseudo code for training a SVD on rating data.

Basic SVD: Performance

- 100 features
- small learning rate $\eta = 0.00025$
- large regularization $\lambda = 0.5$
- 30 epochs
- ullet 300[s] per epoch o 5[h] total time
- RMSE=22.03 on the validation set
- RMSE=23.92 on the leaderboard

AFM: The asymmetric idea

- The user is represented by its rated items
- The user feature is a sum of rated item features
- ullet o "virtual user feature" ${f v}_u$

This is used for normalization Assumption: values in $Q^{(0)}$ are normal distributed

AFM: The asymmetric idea

- "AFM" model
- Add item and user biases
- Trained with gradient descent

$$\hat{r}_{ui} = \mu_u + \mu_i + \underbrace{\mathbf{q}_i^T}_{item feature} \underbrace{\left(\frac{1}{\sqrt{|\mathbb{I}(u)|}} \sum_{j \in \mathbb{I}(u)} \mathbf{q}_j^{(0)}\right)}_{user feature}$$

RMSE=23.54 on the validation set (30 features)

ASVD: Combines AFM and SVD

- "ASVD" model
- user is represented by a user feature and the sum of rated item features

$$\hat{r}_{ui} = \mu_u + \mu_i + \underbrace{\mathbf{q}_i^T}_{itemfeature} \underbrace{\left(\mathbf{p}_u + \frac{1}{\sqrt{|\mathbb{I}(u)|}} \sum_{j \in \mathbb{I}(u)} \mathbf{q}_j^{(0)}\right)}_{userfeature}$$

• RMSE=21.92 on the validation set (30 features)

Enhance the SVD apporach

- All factor models are trained with gradient descent
- Easy to add different feature parts together
- Idea: Combine SVD + Baseline model

$$\hat{r}_{ui}^{(2)} = \hat{r}_{ui}^{(0)} + \hat{r}_{ui}^{(1)}$$

- RMSE=20.95 on the validation set (30 features)
 - \rightarrow RMSE=22.97 on leaderboard
 - ightarrow our best single model

Thinking different

- Flip the asymmetric idea
- Works well
- Approach: item = bag of rated users
 - "AFM flipped" model

$$\hat{r}_{ui} = \mu_u + \mu_i + \underbrace{\mathbf{p}_u^T}_{userfeature} \underbrace{\left(\frac{1}{\sqrt{|\mathbb{U}(i)|}} \sum_{j \in \mathbb{U}(i)} \mathbf{p}_j^{(0)}\right)}_{i \in \mathbb{U}(i)}$$

- "ASVD flipped" model $\hat{r}_{ui} = \mu_u + \mu_i + \mathbf{p}_u^T \left(\mathbf{q}_i + \frac{1}{\sqrt{|\mathbb{U}(i)|}} \sum_{j \in \mathbb{U}(i)} \mathbf{p}_j^{(0)} \right)$
- This models were helpful within the ensemble

Neighborhood models

- Based on similarity measure
- Item-Item similarity
- Precalculation ? → 781GB RAM ⊗

Item-Item similarity

- Precalculation: Would not fit in RAM
- On-the-Fly: Too slow (would take days)
- Solution: use the inverse euclidean feature distance $sim(i,j)=?\ (i,j)$ are items) Item features: \mathbf{q}_0 and \mathbf{q}_1

$$c_{ij} = \left(\frac{\sum_{k=1}^{F} (q_{ik} - q_{jk})^2}{\sqrt{\sum_{k=1}^{F} q_{ik}^2} \sqrt{\sum_{k=1}^{F} q_{jk}^2}}\right)^{-2}$$

Constant calculation time O(1)

Neighborhood model

"Item-Item KNN with SVD Features" model

$$\hat{c}_{ij} = 0.5 \cdot tanh(\sigma \cdot c_{ij} + \gamma) + 0.5$$

$$\hat{r}_{ui}^{(12)} = \frac{\sum_{j \in \mathbb{I}(u,i,K)} r_{uj} \hat{c}_{ij}}{\sum_{j \in \mathbb{I}(u,i,K)} |\hat{c}_{ij}|}$$

- ullet 3 meta parameters: K, σ and γ
- RMSE=21.6743 on the validation set (on residuals of SVD)

User-User similarity

- Flipped to the user side
- "User-User KNN" model
- Not helpful in the ensemble
- Neighborhood information is already covered by the Item-Item model

$$c_{uv} = \left(\frac{\sum_{k=1}^{F} (p_{uk} - p_{vk})^2}{\sqrt{\sum_{k=1}^{F} p_{uk}^2} \sqrt{\sum_{k=1}^{F} p_{vk}^2}}\right)^{-2}$$

Restricted Boltzmann Machines

- Algorithm template from: "Restricted Boltzmann Machines for Collaborative Filtering" from R.Salakhutdinov, A.Mnih, G.Hinton. In ICML 2007
- In the data: 101 discrete ratings
- We compress them to 11 and 2 ratings
- RBMs were helpful in the ensemble

Blending

Blending

- Huge difference in validation vs. leaderboard RMSE!
- ullet Approx. pprox 1.9 of the RMSE
- Why they are so far apart?
- Code bug?
- Maybe the leaderboard set is very small?

model	RMSE valid	RMSE leaderboard	leaderboard - valid
AFM	23.5492	25.1584	1.6092
AFM flipped	22.3234	24.2555	1.9321
ASVD	21.9202	23.8580	1.9378
ASVD + Baseline	21.1875	23.119	1.9315
ASVD flipped	22.817	24.6345	1.8175
Baseline	23.3766	25.2068	1.8302
Item-Item KNN SVD feat	21.6743	23.6730	1.9987
SVD + Baseline	20.9507	22.9765	2.0258

Blending Approaches

- Standard way: Use validation set to build the ensemble
- Netflix Prize Trick: Use leaderboard feedback to make a linear regression
 - We rejected it because of the huge difference of $RMSE_{leaderboard} RMSE_{validation}$
 - Also impractical in real environments, no leaderboard available

Blending

- 47 predictions in the ensemble
- Neural Network
- 2 hidden layers
- Gradient descent learning on validation set
- We do not clip the predictions before blending
 - Best single: RMSE=20.68 (leaderboard 22.80)
 - Blending: RMSE=18.90 (leaderboard 21.08)

Summary

- Apply different collaborative filtering models
- Train some of them on residuals of others
 - KNN for postprocessing
- Use the time for data cleaning
- Add basic statistics of the taxonomy
- Not explored: "taxonomy info" in models
 - Reason for 2nd place ⊚?!

and now ... Track 2

