Dérivation

Définitions. La pente (ou coefficient directeur) d'une droite non verticale, est <u>le nombre</u> m qui indique de combien d'unités la droite monte (ou descend si m < 0) lorsqu'on avance d'<u>une</u> unité vers la droite. La pente d'une droite d'équation « y = mx + p » est m. p s'appelle l'ordonnée à l'origine de d.

Exemple. La droite y = 5x + 3 a pour pente 5 et pour ordonnée à l'origine 3.

Exemple. La droite y = -2x a pour pente -2 et pour ordonnée à l'origine 0.

Propriété. Etant donnés $A=(x_A;y_A)$ et $B=(x_B;y_B)$ deux points du plan d'abscisses distinctes $(x_A \neq x_B)$, alors la pente de la droite (AB) est $m=\frac{\Delta y}{\Delta x}=\frac{y_B-y_A}{x_B-x_A}$

Exemple. Donner la pente de la droite passant par A = (3, 9) et B = (6, 12).

La pente de cette droite est $\frac{12-9}{6-3} = \frac{3}{3} = 1$. m = 1.

Idée : La dérivée d'une fonction en un point (de sa courbe) est la pente de la fonction en ce point. C'est <u>un nombre</u> qui mesure la vitesse de variation de la fonction au point considéré.

La dérivée généralise la notion de pente à une fonction. Elle dépend du point. Elle n'existe pas toujours.

Dérivées usuelles.							
f(x)	Conditions	f'(x)					
С	$c \in \mathbb{R}$	0					
X		1					
$a \times x$	$a \in \mathbb{R}$	а					
$a \times x + b$	$a,b \in \mathbb{R}$	а					
x^2		2 <i>x</i>					
<i>x</i> ³		$3x^2$					
x ⁴		$ \begin{array}{c c} 3x \\ 4x^3 \\ nx^{n-1} \end{array} $					
χ^n	$n \ge 1$	nx^{n-1}					

Operations suries derivees.							
f	Conditions	f'					
u + v	$u, v: I \to \mathbb{R}$	(u+v)'=u'+v'					
u - v	$u, v: I \to \mathbb{R}$	(u-v)'=u'-v'					
$a \times u$	$a \in \mathbb{R}, \ u: I \to \mathbb{R}$	$(a \times u)' = a \times u'$					

Exemples.

$$(3x^2 + 5x)' = (3x^2)' + (5x)' = 3(x^2)' + 5(x)'$$
$$(3x^2 + 5x)' = 3 \times (2x) + 5 \times (1) = 6x + 5$$

Opérations sur les dérivées

$$(2x - 3x^3)' = (2x)' - (3x^3)' = 2(x)' - 3(x^3)'$$
$$(2x - 3x^3)' = 2 \times (1) - 3 \times (3x^2) = 2 - 9x^2$$

Théorème (admis). Etudier les variations d'une fonction f, c'est étudier le signe de sa dérivée.

f est croissante sur I si et seulement si, $f' \ge 0$ sur I.

f est décroissante sur I si et seulement si, pour tout $x \in I$, $f' \le 0$ sur I.

f est constante sur I si et seulement si, pour tout $x \in I$, f' = 0 sur I.

Exemple. Soit f la fonction définie par $f(x) = 5x^2 - 3x + 9$.

Pour étudier les variations de f on détermine le signe de f'(x).

On calcule $f'(x) = 5 \times 2x - 3 \times 1 + 0 = 10x - 3$.

x	-8	$\frac{3}{10} = -\frac{b}{a}$	+∞
Signe de $f'(x)$	_	0 +	
Variations de <i>f</i>		81 10	•

Rappel. La fonction affine définie par $f(x) = a \times x + b$ s'annule et change de signe une fois en $x = -\frac{b}{a}$.

