Counting Sort

Ju-Won Seo 2019.07.31

Table of Contents

1. Introduction

2. Counting Sort

3. Radix Sort

4. Conclusion

1. Introduction

Different types of sorting

Algorithm	Average Case Worst Case	
Bubble Sort	$O(n^2)$	$O(n^2)$
Merge Sort	$O(n \log n)$	$O(n \log n)$
Quick Sort	$\theta(n \log n)$	$O(n^2)$

Decision Tree

Assumption

- 1. All the input elements are distinct.
- 2. All comparisons have the form $a_i \leq a_j$ about an input sequence $\langle a_1, a_2, a_3, \dots, a_n \rangle$

Lower bound for the worst Case

Lemma

- 1. Each of n! Permutations on n elements must appear as one of the leaf nodes.
- 2. Decision tree has this trait that $l \leq 2^h$ (l = leaf node, h = height of binary tree)
- 3. The worst-case number of comparisons equals the height of its decision tree.

Lower bound for the worst Case

Lemma

- 1. Each of n! Permutations on n elements must appear as one of the leaf nodes.
- 2. Binary tree has this trait that $l \leq 2^h$ (l = leaf node, h = height of binary tree)
- 3. The worst-case number of comparisons equals the height of its decision tree.
- 4. $\log n! = \Omega(n \log n)$ by Stirling approximation

```
n! \le l \le 2^h (using lemma 1 and 2)
```

$$n! \leq 2^h$$

$$\log_2 n! \le h$$

$$h \ge \log n!$$

= $\Omega(n\log n)$ (using lemma 3 and 4)

 $\Omega(nlogn)$ comparisons in the worst case.

2. Counting Sort

- Counting Sort

- A method of sort by counting how many elements each appears
- No comparison between elements.
- Assumption
- 1. Each of the n input elements is an integer in the range 0 to k (k is positive integer)
- 2. We know k integer

```
COUNTING-SORT(A, B, k)
 1 let C[0...k] be a new array
 2 for i = 0 to k
        C[i] = 0
 4 for j = 1 to A.length
        C[A[j]] = C[A[j]] + 1
   // C[i] now contains the number of elements equal to i.
 7 for i = 1 to k
        C[i] = C[i] + C[i-1]
    // C[i] now contains the number of elements less than or equal to i.
   for j = A. length downto 1
    B[C[A[j]]] = A[j]
    C[A[j]] = C[A[j]] - 1
```

Step

- 1. Initialize Array C[0..k]
- 2. Counting the number of each element from input array A and store them in array C
- 3. For each element x in array C, calculate the number of elements less than or equal to x
- 4. Use Step 3, place element x directly into its position in the output array B.

Algorithm - we need

Array A -> Input array[1...n]

 1
 2
 3
 4
 5
 6
 7
 8

 A
 2
 5
 3
 0
 2
 3
 0
 3

Array B -> Sorted array[1...n]

1 2 3 4 5 6 7 8 B

Array C -> Counting array[0...k]

K = 5 (range is 0 to 5)

```
1 let C[0..k] be a new array
```

2 **for** i = 0 **to** k

$$3 C[i] = 0$$

Initialize Array C

Input array

Counting array

4 **for**
$$j = 1$$
 to $A.length$
5 $C[A[j]] = C[A[j]] + 1$

Counting the number of each element from input array A

7 **for**
$$i = 1$$
 to k
8 $C[i] = C[i] + C[i-1]$

Calculate the number of elements less than or equal to C[i]

Counting array


```
for j = A.length downto 1
   B[C[A[j]]] = A[j]
11
                                  Place element A[j] directly into its position in array B
   C[A[j]] = C[A[j]] - 1
12
                                                                        8
         Input array
                                                   3
                                              2
                                                              5
       Counting array
                                              3
                                                             6
                                                                        8
         Sorted array
                             В
```

Analysis

```
COUNTING-SORT(A, B, k)
    let C[0..k] be a new array
    for i = 0 to k
                                                                                \theta(k)
        C[i] = 0
    for j = 1 to A.length
                                                                                \theta(n)
         C[A[j]] = C[A[j]] + 1
    // C[i] now contains the number of elements equal to i.
    for i = 1 to k
                                                                                \theta(k)
        C[i] = C[i] + C[i-1]
     // C[i] now contains the number of elements less than or equal to i.
    for j = A. length downto 1
        B[C[A[j]]] = A[j]
                                                                                \theta(n)
        C[A[j]] = C[A[j]] - 1
```

$$\therefore \theta(n+k)$$

Property of counting sort

1. Trough step 3, when we sorted, We can see where each element should be located.

2. If $k \le n$, we can use only $\theta(n)$ time for sorting.

3. If $k \gg n$, it can consume memory too much. (ex. 1, 10000000, 3, 2)

4. Counting sort is stable sort algorithm.

What is stable?

Numbers with the same value appear in the output array in the same order as they do in the input array.

Stability of counting sort

```
COUNTING-SORT(A, B, k)
    let C[0..k] be a new array
    for i = 0 to k
        C[i] = 0
    for j = 1 to A.length
        C[A[j]] = C[A[j]] + 1
    // C[i] now contains the number of elements equal to i.
    for i = 1 to k
        C[i] = C[i] + C[i-1]
 9 // C[i] now contains the number of elements less than or equal to i.
    for j = A.length downto 1
        B[C[A[j]]] = A[j]
        C[A[j]] = C[A[j]] - 1
```

	1	2	3	4	5
Α	1	1	0	2	1

Stability of counting sort

Stability of counting sort

1. By using this property that stability, we can make radix sort.

3. Radix Sort

- Radix Sort

- No comparison between elements.
- Use a stable sort like counting sort.
- Assumption
- 1. Each element in the n-element array A has d digits(d is the highest-order digit).
- 2. All elements are integers not negative and decimal.

```
The highest digit

Counting Sort

RADIX-SORT(A,d)

1 for i = 1 to d

2 use a stable sort to sort array A on digit i
```

```
1 void countingSort(int digit) {
       for (int i = 1; i <= n; i++) {
           c[(input[i] / digit) % 10]++;
       for (int i = 1; i < 10; i++) {
           c[i] = c[i] + c[i - 1];
10
11
       for (int i = n; i >= 1; i--) {
           tmp[c[(input[i] / digit) % 10]] = input[i];
12
           c[(input[i] / digit) % 10]--;
13
14
       }
15
16
       for (int i = 1; i <= n; i++) {
           input[i] = tmp[i];
17
18
19 }
```

Input Input array[1..n] **Temporary array[1..n] Tmp Counting array**[10] C

```
3
                                                                                         5
1 void radixSort() {
                                                      Input
                                                                                  839
                                                                329
                                                                      457
                                                                            657
                                                                                        436
       // For get the highest digit
4
5
6
7
8
9
10
11 }
       for (int i = 1; i <= n; i++) {
           mx = max(mx, input[i]);
                                                      MAX : 839
       for (int i = 1; mx / i > 0; i = i * 10) {
                                                      The highest digit: 3
           countingSort(i);
```

6

720

7

355

now digit is 1

```
1 void countingSort(int digit)
 2
       for (int i = 1; i <= n; i++) {
 4
           c[(input[i] / digit) % 10]++;
 5
 6
7
       for (int i = 1; i < 10; i++) {
 8
           c[i] = c[i] + c[i - 1];
9
11
       for (int i = n; i >= 1; i--) {
12
           tmp[c[(input[i] / digit) % 10]] = input[i];
           c[(input[i] / digit) % 10]--;
13
14
15
16
       for (int i = 1; i <= n; i++) {
           input[i] = tmp[i];
17
18
19 }
```


now digit is 1

```
1 void countingSort(int digit)
       for (int i = 1; i <= n; i++) {
           c[(input[i] / digit) % 10]++;
 5
 6
       for (int i = 1; i < 10; i++) {
           c[i] = c[i] + c[i - 1];
9
11
       for (int i = n; i >= 1; i--) {
12
           tmp[c[(input[i] / digit) % 10]] = input[i];
           c[(input[i] / digit) % 10]--;
13
14
15
16
       for (int i = 1; i <= n; i++) {
           input[i] = tmp[i];
17
18
19 }
```


Analysis

```
1 void radixSort() {
2
3
4
5
6
7
8
9
10
11 }
        // For get the highest digit
        for (int i = 1; i <= n; i++) {
                                                                             \theta(n)
             mx = max(mx, input[i]);
        for (int i = 1; mx / i > 0; i = i * 10) {
                                                                           \bullet \theta(d(n+k))
             countingSort(i);
                                       if d is constant and k = O(n)
                                                    \therefore O(n)
```

4. Conclusion

Summary

- 1. Comparison sort algorithm requires $\Omega(nlogn)$ time.
- 2. Counting sort is not comparison sort and requires $\theta(n+k)$ time.
- 3. If k(number of range)is bigger than n, be careful about overspending memory
- 4. Radix sort requires O(n) time.
- 5. Radix sort uses counting sort's property such as stability.

Q & A

Thank you!