Identificação e Classificação de Componentes de Interface

Visão Computacional Clássica Deep Learning

https://github.com/magcid/visaoComputacional

Angélica Siqueira de Souza

Marcelo Fernando Rauber

Objetivo

Detectar automaticamente os componentes de UI para identificar a posição, tamanho e o tipo do componente de UI nos screenshots de apps.

Exemplos de Screenshots de Apps da Galeria do App Inventor e do Contexto da Iniciativa Computação na Escola

BLINE LOCALINE LOCALI
ıvançada Pesquisa mul
odos os campos ▼
Não Sim

Lista de Componentes de Ul

Button
CheckBox
DatePicker
Image
BackgroundImage
Label
ListPicker

ListView
PasswordTextBox
Slider
Spinner
Switch
TextBox

Notifier
TimePicker
WebViewer
Map
ImagePicker
VideoPlayer

Exemplos dos Componentes de Ul

Etapas das Soluções

Dataset

- Apps da iniciativa computação na escola.
- Apps da galeria App Inventor.

Total: 364 Screenshot (291 para treino e 73 para validação)

Visão Clássica - HOG

- Já prevendo uso de CNN, os rótulos marcados com LabelMe foram automaticamente recortados para novas imagens.
- As imagens foram redimensionadas, convertidas para escala de cinza
- Foi utilizado HOG (Histograma de Gradientes orientados) para as imagens.
- Foram criadas amostras para os componentes de UI de interesse
- Identificação foi feita com SVM Suport Vector Machine (sklearn)

Visão Clássica - HOG

Visão Clássica - HOG

Visão Clássica - HOG - Resultado

	precision	recall	fl-score	support
BackgroundImage	0.00	0.00	0.00	5
Button	0.65	0.65	0.65	26
CheckBox	1.00	0.80	0.89	15
EmailPicker	1.00	0.25	0.40	4
Image	0.41	0.81	0.54	16
ImagePicker	0.00	0.00	0.00	2
Label	0.74	0.85	0.79	20
ListPicker	0.00	0.00	0.00	3
ListView	0.75	0.50	0.60	6
Мар	0.00	0.00	0.00	2
PasswordTextBox	0.00	0.00	0.00	3
Spinner	0.50	1.00	0.67	4
Switch	0.00	0.00	0.00	2
TextBox	0.62	0.95	0.75	19
TimePicker	0.00	0.00	0.00	6
WebViewer	0.00	0.00	0.00	2
accuracy			0.63	135
macro avg	0.35	0.36	0.33	135
weighted avg	0.56	0.63	0.57	135

Deep Learning

https://github.com/facebookresearch/detectron2

- É uma biblioteca do Facebook Al Research's
- Se coloca como state-of-the-art para detecção e segmentação

Deep Learning

Deep Learning

DataSet de Treinamento:

Images

291

① 0 missing annotations

Ø 0 null examples

Annotations

2,421

🖫 8.3 per image (average)

across 9 classes

Average Image Size

2.07 mp

Q from **0.92 mp**

⊕ to 2.07 mp

Class Balance

- CNN Redes Neurais Convolucionais
- Seleção do modelo: faster_rcnn_X_101_32x8d_FPN_3x

Detailed architecture of Base-RCNN-FPN. Source: https://medium.com/@hirotoschwert/digging-into-detectron-2-47b2e794fabd

Aprendizado por transferência, 600 épocas.

```
total loss: 1.211 loss cls: 0.4711 loss box reg: 0.4964 loss rpn cls: 0.0372
eta: 0:24:46
              iter: 179
                                                                                                        loss rpn loc: 0.1916
                         total loss: 1.14 loss cls: 0.4345 loss box reg: 0.4705 loss rpn cls: 0.02849
eta: 0:23:33
             iter: 199
eta: 0:22:21 iter: 219
                         total loss: 1.008 loss cls: 0.397 loss box reg: 0.4356 loss rpn cls: 0.02955
                                                                                                        loss rpn loc: 0.1836
                                           loss cls: 0.4057 loss box reg: 0.4427 loss rpn cls: 0.0303
                         total loss: 1.103
eta: 0:21:09 iter: 239
                                                                                                        loss rpn loc: 0.1994
eta: 0:19:56 iter: 259
                         total loss: 1.014
                                           loss cls: 0.3849 loss box req: 0.4114 loss rpn cls: 0.0278
                                                                                                        loss rpn loc: 0.1641
eta: 0:18:46 iter: 279
                         total loss: 1.024
                                            loss cls: 0.4048
                                                             loss box reg: 0.4186 loss rpn cls: 0.02784
                                                                                                         loss rpn loc: 0.1694
                                                              loss box reg: 0.3484 loss rpn cls: 0.03013
eta: 0:17:36 iter: 299
                                            loss cls: 0.3662
eta: 0:16:25 iter: 319
                                            loss cls: 0.3677
                                                              loss box reg: 0.3497 loss rpn cls: 0.02462 loss rpn loc: 0.172
                         total loss: 0.968
eta: 0:15:15 iter: 339
                                            loss cls: 0.3842
                                                             loss box reg: 0.363 loss rpn cls: 0.02773 loss rpn loc: 0.202
eta: 0:14:04 iter: 359
                         total loss: 0.8399 loss cls: 0.3252
                                                              loss box reg: 0.3124 loss rpn cls: 0.01972
                                                                                                         loss rpn loc: 0.1654
eta: 0:12:54 iter: 379
                         total loss: 0.827 loss cls: 0.3052
                                                             loss box reg: 0.3234 loss rpn cls: 0.0168 loss rpn loc: 0.175
eta: 0:11:44 iter: 399
                         total loss: 0.7641 loss cls: 0.2853
                                                              loss box reg: 0.2863
                                                                                   loss rpn cls: 0.02341
                                                                                                          loss rpn loc: 0.164
eta: 0:10:33 iter: 419
                         total loss: 0.8657
                                            loss cls: 0.3672
                                                              loss box reg: 0.3191 loss rpn cls: 0.02774
                                                                                                         loss rpn loc: 0.1881
eta: 0:09:23 iter: 439
                         total loss: 0.6819
                                            loss cls: 0.2576
                                                              loss box reg: 0.265 loss rpn cls: 0.01737
                                                                                                         loss rpn loc: 0.1504
eta: 0:08:13
                         total loss: 0.642 loss cls: 0.2378
                                                             loss box reg: 0.2442
                                                                                   loss rpn cls: 0.01447 loss rpn loc: 0.1335
eta: 0:07:02 iter: 479
                         total loss: 0.7116 loss cls: 0.2537
                                                              loss box req: 0.2822
                                                                                    loss rpn cls: 0.01981
                                                                                                         loss rpn loc: 0.163
eta: 0:05:52 iter: 499
                         total loss: 0.6882
                                             loss cls: 0.2287
                                                              loss box reg: 0.2733
                                                                                    loss rpn cls: 0.01539
                                                                                                          loss rpn loc: 0.1728
eta: 0:04:41 iter: 519
                         total loss: 0.5978
                                             loss cls: 0.1878
                                                              loss box reg: 0.2278
                                                                                                          loss rpn loc: 0.1647
eta: 0:03:31 iter: 539
                         total loss: 0.6473
                                                              loss box reg: 0.2493
                                                                                    loss rpn cls: 0.01473
                                                                                                          loss rpn loc: 0.1619
eta: 0:02:20 iter: 559
                         total loss: 0.6609
                                            loss cls: 0.218 loss box reg: 0.2668
                                                                                   loss rpn cls: 0.01428
                                                                                                          loss rpn loc: 0.131
eta: 0:01:10 iter: 579 total loss: 0.5194 loss cls: 0.1848 loss box reg: 0.206 loss rpn cls: 0.01794
                                                                                                         loss rpn loc: 0.1401
eta: 0:00:00 iter: 599 total loss: 0.5108 loss cls: 0.1505 loss box reg: 0.2085 loss rpn cls: 0.01573 loss rpn loc: 0.1528
Overall training speed: 598 iterations in 0:36:59 (3.7108 s / it)
Total training time: 0:37:01 (0:00:02 on hooks)
```


Aprendizado por transferência, 600 épocas.

Deep Learning - Detectron2 - Resultado

Resultado - Validação

Para análise e validação dos resultados: CocoEvaluator Daset distinto do treinamento.

Figure 1. Ground truth bounding box and predicted bounding box in object detection.

2. Metrics

The following 12 metrics are used for characterizing the performance of an object detector on COCO:

```
Average Precision (AP):
                     % AP at IoU=.50:.05:.95 (primary challenge metric)
  APIOU=.50
                     % AP at IoU=.50 (PASCAL VOC metric)
  ApIOU=.75
                     % AP at IoU=.75 (strict metric)
AP Across Scales:
  Apsmall
                     % AP for small objects: area < 322
  Apmedium
                     % AP for medium objects: 322 < area < 962
  Aplarge
                     % AP for large objects: area > 962
Average Recall (AR):
  ARmax=1
                     % AR given 1 detection per image
  ARmax=10
                      % AR given 10 detections per image
  ARmax=100
                      % AR given 100 detections per image
AR Across Scales:
  ARSmall
                     % AR for small objects: area < 322
  ARmedium
                      % AR for medium objects: 322 < area < 962
  ARlarge
                      % AR for large objects: area > 962
```

https://debuggercafe.com/evaluation-metrics-for-object-detection/ https://cocodataset.org/#detection-eval

Resultado - Validação

```
[03/17 18:05:07 d2.data.datasets.coco]: Loaded 73 images in COCO format from ./valid/ annotations.coco.json
[03/17 18:05:07 d2.data.build]: Distribution of instances among all 10 categories:
                              | category | #instances
   category
                | #instances
                                                              category | #instances
  GUI-compone..
                                   Botão
     Label
                 224
                                  TextBox
                                             99
    Slider
                                  CheckBox
                                                               Switch
  ListPicker
```

```
[03/17 18:05:22 d2.evaluation.coco evaluation]: Evaluation results for bbox:
           AP50 | AP75
                            APs
                                     APm
                                              AP1
 :----:|:----:|:-----:|:-----:|
 30.374 | 49.073 | 32.635 | 18.058 | 33.733 | 24.725 |
[03/17 18:05:22 d2.evaluation.coco evaluation]: Per-category bbox AP:
 category
                l AP
                           category
                                      AP
                                                category
                                                           I AP
 GUI-components | nan
                          Botão
                                       61.935
                                              | Mapa
                                                            0.000
                                       39.052
 Label
                  36.480 I
                                                            30.200
                          TextBox
                                               Imagem
 Slider
                                      59.402 | Switch
                                                            15.986
                1 30.309 1
                          CheckBox
 ListPicker
                1 0.000
OrderedDict([('bbox', {'AP': 30.373853611965725, 'AP50': 49.07306140599386,
```

```
Average Precision (AP) @[ IoU=0.50:0.95 | area = all | maxDets=100 ] = 0.304
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.491
Average Precision (AP) @[ IoU=0.75
                                       | area= all | maxDets=100 ] = 0.326
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.181
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.337
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.247
Average Recall
                  (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.344
Average Recall
Average Recall
                  (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.353
Average Recall
                  (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.213
Average Recall
                  (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.377
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.305
```

Average Precision (AP)

Conclusão

- A utilização de Faster r-CNN levou a resultados satisfatórios com Deep Learning, sendo que o conjunto de treinamento atingiu 93% de acurácia.
- O conjunto de validação de dados mostrou uma precisão média de 30,37% seguindo o padrão CocoEvaluator;
- Nos experimentos a utilização da abordagem clássica mostrou-se viável para classificar os componentes individuais, mas é difícil identificação dos componentes (potencial trabalho futuro);
- Trabalho futuros e melhorias:
 - Testar com outros modelos CNN, visando comparar e melhorar a precisão
 - Ampliação e melhoria do dataset e da sua rotulação pode levar a melhores resultados.

Obrigado!

Identificação e Classificação de Componentes de Interface

Visão Computacional Clássica Deep Learning

https://github.com/magcid/visaoComputacional

Angélica Siqueira de Souza Marcelo Fernando Rauber

