Sequences and series 3A

1 a i
$$u_n = 5n + 2$$

 $n = 1 \rightarrow u_1 = 5(1) + 2 = 7$
 $n = 2 \rightarrow u_2 = 5(2) + 2 = 12$
 $n = 3 \rightarrow u_3 = 5(3) + 2 = 17$
 $n = 4 \rightarrow u_4 = 5(4) + 2 = 22$

ii
$$a = 7$$
 and $d = 5$

b i
$$u_n = 9 - 2n$$

 $n = 1 \rightarrow u_1 = 9 - 2(1) = 7$
 $n = 2 \rightarrow u_2 = 9 - 2(2) = 5$
 $n = 3 \rightarrow u_3 = 9 - 2(3) = 3$
 $n = 4 \rightarrow u_4 = 9 - 2(4) = 1$

ii
$$a = 7$$
 and $d = -2$

c i
$$u_n = 7 + 0.5n$$

 $n = 1 \rightarrow u_1 = 7 + 0.5(1) = 7.5$
 $n = 2 \rightarrow u_2 = 7 + 0.5(2) = 8$
 $n = 3 \rightarrow u_3 = 7 + 0.5(3) = 8.5$
 $n = 4 \rightarrow u_4 = 7 + 0.5(4) = 9$

ii
$$a = 7.5$$
 and $d = 0.5$

d
$$\mathbf{i} u_n = n - 10$$

 $n = 1 \rightarrow u_1 = 1 - 10 = -9$
 $n = 2 \rightarrow u_2 = 2 - 10 = -8$
 $n = 3 \rightarrow u_3 = 3 - 10 = -7$
 $n = 4 \rightarrow u_4 = 4 - 10 = -6$

ii
$$a = -9$$
 and $d = 1$

2 a
$$5 \rightarrow 7 \rightarrow 9 \rightarrow 11$$

10th term =
$$5 + 9 \times 2 = 5 + 18 = 23$$

nth term = $5 + (n - 1) \times 2$
= $5 + 2n - 2$
= $2n + 3$

b
$$5 \to 8 \to 11 \to 14$$

10th term =
$$5 + 9 \times 3 = 5 + 27 = 32$$

nth term = $5 + (n - 1) \times 3$
= $5 + 3n - 3$
= $3n + 2$

c
$$24 \rightarrow 21 \rightarrow 18 \rightarrow 15$$

10th term =
$$24 + 9 \times (-3)$$

= $24 - 27 = -3$
nth term = $24 + (n - 1) \times (-3)$
= $24 - 3n + 3$
= $27 - 3n$

d
$$-1 \rightarrow 3 \rightarrow 7 \rightarrow 11$$

10th term =
$$-1 + 9 \times 4$$

= $-1 + 36 = 35$
nth term = $-1 + (n - 1) \times 4$
= $-1 + 4n - 4$
= $4n - 5$

$$\mathbf{e} \quad x \to 2x \to 3x \to 4x$$

10th term =
$$x + 9 \times x = 10x$$

 n th term = $x + (n - 1)x = nx$

$$\mathbf{f}$$
 $a \xrightarrow{d} a + d \xrightarrow{d} a + 2d \xrightarrow{d} a + 3d$

10th term =
$$a + 9d$$

 n th term = $a + (n - 1)d$

3 a
$$3 \xrightarrow{}_{+4} 7 \xrightarrow{}_{+4} 11 \dots 83 \xrightarrow{}_{+4} 87$$

number of jumps = $\frac{87 - 3}{4} = 21$

so number of terms =
$$21 + 1 = 22$$

3 **b**
$$5 \xrightarrow{+3} 8 \xrightarrow{+3} 11 \dots 119 \xrightarrow{+3} 122$$

number of jumps $= \frac{122 - 5}{3} = 39$
therefore number of terms $= 40$

c
$$90 \xrightarrow{2} 88 \xrightarrow{2} 86 \dots 16 \xrightarrow{2} 14$$

number of jumps $= \frac{90 - 14}{2} = 38$
therefore number of terms $= 39$

d
$$4 \xrightarrow{9} \xrightarrow{14} 14 \dots 224 \xrightarrow{229} 229$$

number of jumps $= \frac{229 - 4}{5} = 45$
therefore number of terms $= 46$

e
$$x \xrightarrow{3} 3x \xrightarrow{5} 5x \dots 35x$$

number of jumps = $\frac{35x - x}{2x} = 17$
therefore number of terms = 18

f
$$a \xrightarrow{d} a + d \xrightarrow{d} a + 2d \dots a + (n-1)d$$

number of jumps $= \frac{a + (n-1)d - a}{d}$
 $= \frac{(n-1)d}{d} = n - 1$
therefore number of terms $= n$

4
$$u_1 = 14$$
 and $u_4 = 32$
 $d = (32 - 14) \div 3$
 $d = 6$

5
$$u_n = pn + q$$

 $u_6 = 9$, so $6p + q = 9$ (1)
 $u_9 = 11$, so $9p + q = 11$ (2)
(2) - (1) gives:
 $3p = 2$
 $p = \frac{2}{3}$

Substitute
$$p = \frac{2}{3}$$
 in (1):

$$6\left(\frac{2}{3}\right) + q = 9$$

$$q = 5$$
Constants are $p = \frac{2}{3}$ and $q = 5$

6
$$u_3 = 30$$
 and $u_9 = 9$
 $d = (9 - 30) \div 6 = -3.5$
 $u_{10} = 5.5$, $u_{11} = 2$, $u_{12} = -1.5$
The first negative term is -1.5

7
$$u_{20} = 14$$
 and $u_{40} = -6$
 $d = (-6 - 14) \div 20 = -1$
 $u_{10} = 14 - 10(-1) = 24$

8
$$u_1 = 5p$$
, $u_2 = 20$ and $u_3 = 3p$
 $d = 20 - 5p$ and $d = 3p - 20$
 $20 - 5p = 3p - 20$
 $8p = 40$
 $p = 5$
 $d = 20 - 5 \times 5 = -5$
 $u_{20} = 5 \times 5 - 5(20 - 1) = -70$

9
$$u_1 = -8$$
, $u_2 = k^2$ and $u_3 = 17k$
 $d = k^2 + 8$ and $d = 17k - k^2$
 $k^2 + 8 = 17k - k^2$
 $2k^2 - 17k + 8 = 0$
 $(2k - 1)(k - 8) = 0$
 $k = \frac{1}{2}$ or $k = 8$

10
$$a = k^2$$
, $d = k$, $u_5 = 41$
 $u_5 = k^2 + (5-1)k = 41$
 $k^2 + 4k - 41 = 0$
Using the formula:

$$k = \frac{-4 \pm \sqrt{4^2 - 4 \times (1) \times (-41)}}{2 \times 1}$$

$$k = \frac{-4 \pm \sqrt{180}}{2}$$

$$k = \frac{-4 \pm 6\sqrt{5}}{2}$$

$$k = -2 \pm 3\sqrt{5}$$
As $k > 0$, $k = -2 + 3\sqrt{5}$

Challenge

Channel Be
$$u_n = \ln a + (n-1)\ln b$$

$$u_3 = \ln 16 \text{ and } u_7 = \ln 256$$

$$d = \ln b$$

$$d = \frac{1}{4}(\ln 256 - \ln 16)$$

$$\ln b = \frac{1}{4}(\ln 256 - \ln 16)$$

$$\ln b = \ln 256^{\frac{1}{4}} - \ln 16^{\frac{1}{4}}$$

$$\ln b = \ln 4 - \ln 2$$

$$\ln b = \ln \left(\frac{4}{2}\right)$$

$$\ln b = \ln 2$$

$$b = 2$$

$$u_3 = \ln 16$$

$$= \ln a + (3 - 1)\ln 2$$

$$= \ln a + \ln 2^2$$
So $\ln 16 = \ln a + \ln 4 = \ln 4a$

$$a = 4, b = 2$$