

Grundlagen der Informationstechnik - Nachrichtentechnik

Vorlesung: Eduard A. Jorswieck

Übung: Dr. Bile Peng

Wintersemester 2023-2024, 7. Dezember 2023

Kanal-Decodierung I

Im Kanal tritt der Fehlervektor e auf und wir empfangen den Vektor

$$\mathbf{y} = \mathbf{c} + \mathbf{e}$$
.

Wir berechnen das Syndrom

$$\mathbf{H} \cdot \mathbf{y}^T = \mathbf{H} \cdot \mathbf{c}^T + \mathbf{H} \cdot \mathbf{e}^T = \mathbf{H} \cdot \mathbf{e}^T = \mathbf{s}^T.$$

- Das Syndrom enthält nur Informationen zum Fehler und kann deshalb zur Decodierung verwendet werden.
- Bei der Fehlererkennung: Wenn der Fehler kein Codewort ist, können wir ihn mit s ≠ 0 erkennen. Wenn kein Fehler auftritt oder der Fehler ein Codewort ist, entscheiden wir falsch.

Kanal-Decodierung II

 Bei der Fehlerkorrektur: Der Decodierer trifft eine Entscheidung für das (wahrscheinlichste) Codewort ĉ.

Satz

Ein Code $\mathcal{C}(n,k,d)\subseteq \mathbb{F}_2^n$ mit der Mindestdistanz d kann beliebige $0\leqslant t\leqslant d-1$ Fehler sicher erkennen. Man kann $0\leqslant t\leqslant \lfloor\frac{d-1}{2}\rfloor$ Fehler eindeutig korrigieren.

Kanal-Decodierung III

Satz: Hamming-Schranke, Sphere packing bound

Für die Parameter eines Codes $\mathcal{C}(n,k,d)\subseteq\mathbb{F}_2^n$ muss gelten

$$2^k \sum_{l=0}^{\lfloor \frac{d-1}{2} \rfloor} \binom{n}{l} \leqslant 2^n.$$

Kanal-Decodierung IV

Definition: MAP Decodierung von Codeworten

Die optimale MAP Decodierentscheidung unter der Annahme, dass die bedingten Wahrscheinlichkeiten des Kanals und die Quellenstatistik exakt bekannt sind, ergibt sich als

$$\hat{\mathbf{c}} = \arg\max_{\mathbf{c} \in \mathcal{C}} f(\mathbf{c}|\mathbf{y}) = \arg\max_{\mathbf{c} \in \mathcal{C}} f(\mathbf{y}|\mathbf{c}) f(\mathbf{c}).$$

Ist das Maximum nicht eindeutig, so wird eins zufällig davon gewählt.

ML Decodierung ist

$$\hat{c} = \arg \max_{c \in \mathcal{C}} f(y|c).$$

Kanal-Decodierung V

 Man kann die Entscheidung auch symbolweise treffen, berücksichtigt aber trotzdem, dass ein Code benutzt wird.

Definition: Symbolweise MAP Decodierung

Die optimale s-MAP Decodierentscheidung für die Stelle i, unter der Annahme, dass die bedingten Wahrscheinlichkeiten des Kanals exakt bekannt sind, ergibt sich als

$$\hat{c}_i = \arg\max\{\sum_{c \in \mathcal{C}, c_i = 0} f(y|c)f(0), \sum_{c \in \mathcal{C}, c_i = 1} f(y|c)f(1)\}.$$

Dies wird für alle *n* Codestellen durchgeführt.

Kanal-Decodierung VI

 Beachte, dass die n Decodierergebnisse nicht notwendigerweise ein gültiges Codewort ergeben müssen.

Satz: Blockfehlerwahrscheinlichkeit bei der Decodierung

Die Blockfehlerwahrscheinlichkeit P_B von ML, MAP, und BMD-Decodierern für einen Code $\mathcal{C}(n,k,d)$ kann abgeschätzt werden durch:

$$P_B \leqslant \sum_{i=e+1}^n \binom{n}{i} p^i (1-p)^{n-i} = 1 - \sum_{i=0}^e \binom{n}{i} p^i (1-p)^{n-i}.$$

Kanal-Decodierung VII

Fehlerwahrscheinlichkeit bei Fehlererkennung

Die Fehlerwahrscheinlichkeit bei Fehlererkennung für einen Code $\mathcal{C}(n, k, d)$ mit Gewichtsverteilung $A = [A_0, A - 1, ..., A_n]$ ist

$$P_F = \sum_{i=d}^n A_i p^i (1-p)^{n-i}.$$

Kanalcodierungstheorem I

- Das Kanalcodierungstheorem von Shannon besagt, dass Codes mit Coderate R existieren, bei denen die Blockfehlerwahrscheinlichkeit P_B gegen 0 geht, falls R kleiner als die Kanalkapazität C ist. Die Codelänge n geht dabei gegen unendlich.
- Falls $R \ge C$ ist, ist die Blockfehlerwahrscheinlichkeit P_B gleich 1.
- Shannons Beweis ist leider nicht-konstruktiv und beschreibt somit weder Codekonstruktionen noch Decodierverfahren, die praktisch einsetzbar sind.
- Trotzdem handelt es sich um ein bahnbrechendes Ergebnis.
- Es hat Generationen von Codiertheoretikern motiviert, Codeklassen und Decoderverfahren zu finden, die immer n\u00e4her an die Kanalkapazit\u00e4t herankamen.

Kanalcodierungstheorem II

Heute kann die Kapazität praktisch erreicht werden.

Erinnere 4. Vorlesung letzte Folie

Für einen diskreten gedächtnislosen Kanal (DMC) ist die Kanalkapazität die maximal erreichbare wechselseitige Information

$$C = \max_{f_X(x)} I(X; Y) = \max_{f_X(x)} \{H(X) - H(X|Y)\} = \max_{f_X(x)} \{H(Y) - H(Y|X)\}.$$

Kanalcodierungstheorem III

Shannons Kanalcodierungstheorem und Rückrichtung

C sei die Kanalkapazität eines Kanals und $\mathcal{C}(n, k, d)$ ein Blockcode.

- a) Ist R < C, so existieren Blockcodes der Rate R und Länge n für die gilt $\lim_{n \to \infty} P_B^n \to 0$.
- b) Ist $R \geqslant C$, so gilt für alle Codes $\lim_{n\to\infty} P_B^n = 1$.
 - ullet Kapazität für BSC mit Bitflip-Wahrscheinlichkeit ϵ gilt

$$C_{BSC} = 1 - H_b(\epsilon).$$

■ Für den BEC ist die Kapazität

$$C_{BEC} = 1 - \epsilon$$
.

Kanalcodierungstheorem IV

 Für den AWGN mit Sendeleistung P und Rauschleistung N ist die Kapazität

$$C_{AWGN} = \log_2(1 + P/N).$$

 Wir werden später weitere komplexere Kanäle und deren Kapazität besprechen.

Faltungscodes I

- Faltungscodes sind eine große Klasse von Codes, die auf diskreten linearen zeitinvarianten Systemen basieren.
- Analytische Aussagen bei Faltungscodes sind schwierig, deshalb wird Faltungscodierung an einem Beispiel eingeführt.

Abbildung 1: Faltungscodierer

Faltungscodes II

- Ein Faltungscodierer besteht aus Schieberegistern und linearen Verknüpfungen der Register.
- In dem Beispiel werden aus einem Informationsbit zwei Codebits.
- Codiere die Bitfolge 1011|00
- Zur Decodierung verwendet man die Darstellung eines Faltungscodes durch ein so genanntes Trellis.
- Die Codefolge am Ausgang hängt nur vom Eingang und dem Speicherinhalt ab.
- Im Beispiel gibt es nur vier mögliche Zustände: 00, 01, 10, 11.
- Je nachdem in welchem der vier Zustände man ist, kann man in zwei nachfolgende Zustände übergehen (für 0 und 1 am Eingang).

Faltungscodes III

• Es bietet sich ein Zustandsdiagramm an:

Abbildung 2: Zustandsdiagramm des Faltungscodierers.

Faltungscodes IV

- Ein *Trellis* ist ein sogenannter Graph, in dem die vier Zustände als Knoten und die Zustandsübergänge als Zweige bezeichnet werden.
- An die Zweige schreiben wir die Codefolge.
- Gestrichelte Zweige bedeuten, dass eine 0 am Eingang liegt, durchgezogene Zweige sind eine 1.

Abbildung 3: Trellis des Faltungscodierers.

Faltungscodes V

- Jede mögliche Codefolge ist ein Pfad durch das Trellis.
- Durch das Anhängen der beiden Nullen an die Informationssequenz erzwingen wir, dass jedes gültige Codewort im Zustand 00 enden muss.

Faltungscodes VI

Abbildung 4: Codeworte der Länge 12 des Faltungscodierers.

Faltungscodes VII

- In GSM wird ein Faltungscode der Rate 1/2 verwendet.
- Bei k = 185 Informationsbits existieren $2^{185} = 4.9 \cdot 10^{55}$ Codewörter.
- Der Codierer hat vier Schieberegister und der Trellis damit 16 Zustände.
- Das Trellis besitzt eine Länge von 185, also müssen 16 · 185 = 2960 Zustände gespeichert werden.
- Dazu müssen noch doppelt so viele Zweige gespeichert werden.
- In diesem aus ca. 3000 Zuständen und 6000 Zweigen bestehenden Trellis sind dann alle 4.9 · 10⁵⁵ Codeworte enthalten.

Faltungscodes VIII

Wir wollen nun den Viterbi-Algorithmus zur Fehlerkorrektur an dem Beispiel beschreiben:

gesendet 111000010111, \rightarrow empfangen 1**0**10000**0**0111.

- Ziel der Decodierung ist es, aus der empfangenen Folge ein gültiges Codewort zu berechnen.
- Für die Erklärung des Viterbi-Decodierers benötigen wir folgende Notation:
- Teile die empfangenen Bits in Symbole aus zwei Bits auf:

$$y_1 = 10, y_2 = 10, y_3 = 00, y_4 = 00, y_5 = 01, y_6 = 11.$$

 Wir benötigen ein Maß, mit dem wir die Abweichung der empfangenen Folge von einer gültige Codefolge messen.

Faltungscodes IX

- Wir verwenden die Zahl der Übereinstimmungen einer gültigen Codefolge c mit der empfangenen Folge y.
- Immer Teilfolgen mit 2 Bits: $\lambda_i = 2 \text{dist}(c_i, y_i)$.
- Das Maß für einen Pfad aus m Teilfolgen ist

$$\Lambda_m = \sum_{i=1}^m \lambda_i.$$

Der Codepfad startet im Zustand 00.

Faltungscodes X

Abbildung 5: Viterbi-Decodierung erster Schritt.

Faltungscodes XI

Abbildung 6: Viterbi-Decodierung zweiter Schritt.

Faltungscodes XII

Abbildung 7: Viterbi-Decodierung dritter Schritt.

 Bei der dritten Teilfolge entsteht zum ersten Mal das Problem, dass in jedem Zustand zwei Pfade enden.

Faltungscodes XIII

- Die beiden Pfadmaße sind als Zahl und Zahl in Klammern angegeben.
- Wir wollen den besten Pfad finden, d.h., wir entscheiden uns in jedem Zustand nur für einen, den wahrscheinlicheren Pfad, den Survivor.

Faltungscodes XIV

Abbildung 8: Viterbi-Decodierung letzter Schritt.

■ Die letzte Teilfolge $y_6 = 11$ muss wegen der zwei angehängten Nullen im Zustand 00 enden.

Faltungscodes XV

- Es konnten beide Fehler decodiert werden und die Informationsfolge wird korrekt abgelesen: 111000010111 → 1011.
- Der Algorithmus wird auch in Ihrem Handy verwendet (allerdings mit Soft-Informationen).

