RESULT LIST

2 results found in the Worldwide database for: **JP2000268964** (priority or application number or publication number) (Results are sorted by date of upload in database)

1 Hydraulic control apparatus for a vehicular automatic transmission

Inventor: TOTSUKA HIROHIKO (JP); OHYAMA EIJI (JP); Applicant: HONDA MOTOR CO LTD (US)

(+2)

EC: F16H57/04P; F16H61/00K

IPC: F16H57/04; F16H61/00; F16H61/662 (+4)

Publication info: US2002028725 - 2002-03-07

2 ORGANIC ELECTROLUMINESCENT ELEMENT

Inventor: INOUE TETSUJI; TOKURA TOMOJI; (+1)

Applicant: TDK CORP

IPC: CO9K11/06; H05B33/14; H05B33/22 (+6)

Publication info: JP2000268964 - 2000-09-29

Data supplied from the **esp@cenet** database - Worldwide

THIS PAGE BLANK (USPTO)

ORGANIC ELECTROLUMINESCENT ELEMENT

Patent number:

JP2000268964

Publication date:

2000-09-29

Inventor:

INOUE TETSUJI; TOKURA TOMOJI; FUJITA TETSUJI

Applicant:

TDK CORP

Classification:
- international:

C09K11/06; H05B33/14; H05B33/22; C09K11/06;

H05B33/14; H05B33/22; (IPC1-7): H05B33/14;

C09K11/06; H05B33/22

- european:

Application number: JP19990074891 19990319 Priority number(s): JP19990074891 19990319

Report a data error here

Abstract of JP2000268964

PROBLEM TO BE SOLVED: To provide an organic electroluminescent(EL) element capable of attaining light emittance of sufficient brightness and long wavelength in particular and of holding light emitting performance for a long time. SOLUTION: This organic EL element contains a compound, which a light emitting band is shown in a formula. In the formula, respective R1 and R2 represent an aryl group, amino group, aryloxy group, arylalkyl group or arylalkynyl group and respective R3-R6 represent an aryl group, alkyl group or hydrogen atom. A hole injection transport band and/or light emitting band contain a triarylamine derivative. Or a negative electrode is formed by a sputtering method.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-241629

(43)公開日 平成9年(1997)9月16日

(51) Int.CL⁶

識別記号

庁内整理番号

FΙ

技術表示箇所

C09K 11/06 H05B 33/14 C09K 11/06 H05B 33/14 Z

審査請求 未請求 請求項の数7 OL (全 21 頁)

(21)出願番号

特願平8-51171

(71) 出願人 000183646

出光興産株式会社

(22)出願日

平成8年(1996)3月8日

東京都千代田区丸の内3丁目1番1号

(72)発明者 弘中 義雄

千葉県袖ケ浦市上泉1280番地 出光興産株

式会社内

(72)発明者 池田 秀嗣

千葉県袖ケ浦市上泉1280番地 出光興産株

式会社内

(74)代理人 弁理士 大谷 保

(54) 【発明の名称】 有機エレクトロルミネッセンス素子

(57)【要約】

【課題】 長時間駆動しても発光色の変化が少ない等長 寿命を有し、かつ高効率の有機エレクトロルミネッセン ス素子(有機EL素子)を提供すること。

【解決手段】 正孔と電子とが再結合する再結合領域及び該再結合に応答して発光する発光領域を少なくとも有する有機化合物層と、この有機化合物層を挟持する一対の電極とを備えた有機エレクトロルミネッセンス素子において、上記再結合領域及び/又は発光領域に、蛍光性ドーパントとして、母骨格の縮合多環炭化水素が4つ以上の芳香環から構成され、且つ、それぞれが炭素数1~10のアルキル基又はシクロアルキル基である1~4の置換基のみを有する化合物等の特定の化合物群から選ばれた少なくとも一種を、0.1~8重量%の割合で含有させたことを特徴とする有機エレクトロルミネッセンス素子である。

【特許請求の範囲】

【請求項1】 正孔と電子とが再結合する再結合領域及び該再結合に応答して発光する発光領域を少なくとも有する有機化合物層と、この有機化合物層を挟持する一対の電極とを備えた有機エレクトロルミネッセンス素子において、上記再結合領域及び/又は発光領域に、母骨格の縮合多環炭化水素が4つ以上の芳香環から構成され、且つ、それぞれが炭素数1~10のアルキル基又はシクロアルキル基である1~4の置換基のみを有する化合物から選ばれた少なくとも一種を、蛍光性ドーパントとして0.1~8重量%の割合で含有させたことを特徴とする有機エレクトロルミネッセンス素子。

【請求項2】 正孔と電子とが再結合する再結合領域及び該再結合に応答して発光する発光領域を少なくとも有

する有機化合物層と、この有機化合物層を挟持する一対の電極とを備えた有機エレクトロルミネッセンス素子において、上記再結合領域及び/又は発光領域に、母骨格の縮合多環炭化水素が3つ以上の芳香環及び炭素からなる五員環から構成され、且つ、それぞれが炭素数1~10のアルキル基又はシクロアルキル基である1~4の置換基のみを有する化合物から選ばれた少なくとも一種を、蛍光性ドーパントとして0.1~8重量%の割合で含有させたことを特徴とする有機エレクトロルミネッセンス素子。

【請求項3】 蛍光性ドーパントとして含有される化合物の母骨格の縮合多環炭化水素が、下記構造式 【化1】

【化2】

【化4】

【化3】

(21) ダベンソ (b, an) グリセン タベンソ (de, qr) ナフタセン (23) ダベンソ (c, an) クリセン タベンソ (opq, stu) ピセン (25) ハキサセン (26) トリベンソ (a, e, i) ピレン (27) トリベンソ (b, e, h) ピレン (28) ゲベンソ (e, l) ピレン (29) ピレン (30) ベンソ (e) ピレン

の内いずれかで表されることを特徴とする請求項1又は 2記載の有機エレクトロルミネッセンス素子。

【請求項4】 蛍光性ドーパントとして含有される化合物の置換基が、炭素数3~10であり、且つ、2級又は3級炭化水素であることを特徴とする請求項1~3のいずれかに記載の有機エレクトロルミネッセンス素子。

【請求項5】 下記式 【化6】

【化5】

で表されるジフェニルベンゾフルオランテンを蛍光性ドーバントとして0.1~8重量%の割合で含有させたことを特徴とする請求項1又は2記載の有機エレクトロルミネッセンス素子。

【請求項6】 蛍光性ドーパントを発光層に含有させて

なる請求項1~5のいずれかに記載の有機エレクトロル ミネッセンス素子。

【請求項7】 素子構成が、陽極/正孔注入層/発光層/電子注入層/陰極、又は、陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極である請求項1~6のいずれかに記載の有機エレクトロルミネッセンス素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は有機エレクトロルミネッセンス(以下、ELと略記する)素子に関し、さらに詳しくは、長時間駆動しても発光色の変化が少ないなど、長寿命を有し、かつ高効率の有機EL素子に関するものである。

[0002]

【従来の技術】電界発光を利用したEL素子は、自己発 光のため視認性が高く、かつ完全固体素子であるため、 耐衝撃性に優れるなどの特徴を有することから、各種表 示装置における発光素子としての利用が注目されてい る。このEL素子には、発光材料に無機化合物を用いてなる無機EL素子と有機化合物を用いてなる有機EL素子とがあり、このうち、有機EL素子は、印加電圧を大幅に低くしうるために、次世代の表示素子としてその実用化研究が積極的になされている。

【0003】ところで、この有機EL素子においては、 長寿命かつ高効率の青色発光索子を開発するため、これ まで青色発光材料に関する研究に力が注がれ、種々の青 色発光材料、例えば高輝度、高効率のジスチリルアリー レン系青色発光材料 (特開平2-247278号公 報),高輝度のキレート系骨色発光材料(特開平5-1 98378号公報),高輝度のジアミン系青色発光材料 (特開平6-220437号公報)などが開示されてい る。しかしながら、これらの青色発光材料は、通常陽極 /正孔注入輸送層/発光層/電子注入輸送層/陰極の構 成で利用され、性能が発揮されていたが、寿命の点では 必ずしも満足しうるものではなく、例えば(1)駆動時 間が経過するとともに、色が緑色化し、発光色が変化す る、(2)初期輝度100cd/m2の時の半減寿命が 1000時間程度と短い (実用上は数千時間以上が要求 される)、などの問題がある。

【0004】他方、本発明における蛍光性ドーパントに 類似した置換基の異なるペリレン構造を有する化合物を 発光層の材料とする素子が提案されているが (特開平3 -791号公報,特開平3-162485号公報)、微 量添加された蛍光性ドーパントの機能については何ら言 及していない。また、特開平6-9953号公報及び国 際特許公開94-6157号には、発光層に添加させる 電荷注入補助剤であるジスチリルアリーレン系材料が開 示されている。この材料は蛍光性ドーパントとしても働 くものであるが、このものを用いた素子の半減寿命は1 000時間程度(初期輝度100cd/m²)と短く、 改善が求められていた。さらに、特開平5-21433 2号公報においては、縮合多環炭化水素化合物を(R5-Q)₂AI-O-Lで表されるアルミニウムキレートに 含有させる技術が開示され、特開平5-198377号 公報には、同様の縮合多環炭化水素化合物を(R5-Q) 2A1-O-A1 (Q-R⁵)2 で表されるアルミニウム キレートに含有させる技術が開示されている。これらは 無置換の縮合多環炭化水素をドーピングすることにより 青色発光を行っているが、これらの最も良い組み合わせ

であっても、半減寿命は2000時間以下であり、また 効率も11m/W程度と低い為に改良が求められていた。 【0005】

【発明が解決しようとする課題】本発明は、このような 従来の有機EL素子がもつ欠点を改良し、長時間駆動し ても発光色の変化が少ないなど、長寿命を有し、かつ高 効率の有機EL素子を提供することを目的とするもので ある。

[0006]

【課題を解決するための手段】本発明者らは、長寿命か つ高効率の有機EL素子を開発すべく鋭意研究を重ねた 結果、素子の正孔と電子との結合領域又は発光領域の少 なくともいずれかに、蛍光性ドーパントとして、特定の 化合物を所定の割合で含有させることにより、その目的 を達成しうることを見出した。本発明は、かかる知見に 基づいて完成したものである。すなわち、本発明は、正 孔と電子とが再結合する再結合領域及び該再結合に応答 して発光する発光領域を少なくとも有する有機化合物層 と、この有機化合物層を挟持する一対の電極とを備えた 有機エレクトロルミネッセンス素子において、上記再結 合領域及び/又は発光領域に、母骨格の縮合多環炭化水 素が4つ以上の芳香環から構成され、且つ、それぞれが 炭素数1~10のアルキル基又はシクロアルキル基であ る1~4の置換基のみを有する化合物から選ばれた少な くとも一種を、蛍光性ドーパントとして0.1~8重量% の割合で含有させたことを特徴とする有機エレクトロル ミネッセンス素子を提供するものである。また、本発明 は、母骨格の縮合多環炭化水素が3つ以上の芳香環及び 炭素からなる五員環から構成され、且つ、それぞれが炭 素数1~10のアルキル基又はシクロアルキル基である 1~4の置換基のみを有する化合物から選ばれた少なく とも一種を、蛍光性ドーパントとして0.1~8重量%の 割合で含有させたことを特徴とする有機エレクトロルミ ネッセンス素子をも提供するものである。以下、本発明 についてさらに詳細に説明する。

[0007]

【発明の実施の形態】本発明の蛍光性ドーパントとしては、母骨格が下記一般式(1)~(30)

[0008]

【化7】

(29) ピレン

【0013】の内いずれかで表され、1以上の置換基Rでのみ置換された構造である化合物の中から選ばれた少なくとも一種を0.1~8重量%の割合で含有させることが好ましい。上記一般式(1)~(30)の母骨格構造を有する化合物において、置換基Rはそれぞれ炭素数1~10のアルキル基又はシクロアルキル基である。ここで、炭素数1~10のアルキル基の具体例としては、例えばメチル基、エチル基、n一プロピル基、イソプロピル基、nーブチル基、イソブチル基、secーブチル

基, tーブチル基, イソオクチル基などが挙げられる。 また、シクロアルキル基の具体例としては、例えばシクロヘキシル基, シクロペンチル基などが挙げられる。前記一般式(1)~(30)の母骨格構造を有する化合物の具体例としては、例えば以下に示す構造の化合物が挙げられる。

[0014]

【化12】

[0015]

【化13】

【0019】上記化合物において、置換基の数nは1~6の整数であることが好ましく、またこれら置換基の位置は特に限定されない。従って、構造異性体やnが1~6の混合物であってもよい。

【0020】本発明においては、蛍光性ドーパントとし

て、これらの化合物を一種用いてもよく、二種以上を組み合わせて用いてもよい。なお、本発明における蛍光性ドーパントとは、有機EL素子の再結合領域又は発光領域において、正孔と電子の再結合に応答して光を発する化合物のことであり、再結合領域又は発光領域を形成す

る物質(ホスト材料)に微量含有させるものである。ここで、再結合領域とは、素子中にあって、正孔と電子とが出会い、結合して励起状態を形成する場所のことである。また、発光領域とは、再結合領域で形成された励起状態は、場合によっては移動し、拡散するが、その拡散する範囲を指定する場所のことである。

【0021】本発明においては、上記蛍光性ドーパント は、再結合領域及び発光領域の少なくともいずれか、即 ち、再結合領域のみに、発光領域のみに、あるいは両領 域に、0.1~8重量%の割合で含有させることが必要で ある。この含有量が0.1重量%未満では蛍光性ドーパン トの効果が充分に発揮されず、本発明の目的が達せられ ない。一方、8重量%を超えると蛍光性ドーパント間の 会合により、消失現象が生じ、充分に効果が発揮されな い場合がある。素子の長寿命化及び高効率化の点から、 蛍光性ドーパントの好ましい含有量は0.3~4重量%の 範囲であり、特に0.8~3重量%の範囲が好適である。 この蛍光性ドーパントを、再結合領域又は発光領域に含 有させる方法については特に制限はないが、例えば再結 合領域又は発光領域を形成する材料 (ホスト材料) との 共蒸着法を採用するのが好ましい。この方法において は、ホスト材料と蛍光性ドーパントを、それぞれが収容 された別々のボートから真空蒸着し、再結合領域や発光 領域を形成する。本発明の有機EL素子においては、有 機化合物層として、再結合領域及び発光領域を少なくと も有するものが用いられる。この再結合領域及び発光領 域は、通常発光層に存在するため、本発明においては、 有機化合物層として発光層のみを用いてもよいが、必要 に応じ、発光層以外に、例えば正孔注入層、電子注入 層、有機半導体層、電子障壁層、付着改善層なども用い ることができる。

【0022】次に、本発明の有機EL素子の代表的な構成例を示す。もちろん、これに限定されるものではない。

- ◎陽極/正孔注入層/発光層/陰極
- ②陽極/正孔注入層/発光層/電子注入層/陰極
- 3陽極/発光層/電子注入層/陰極
- ◆陽極/有機半導体層/発光層/陰極
- 5陽極/有機半導体層/電子障壁層/発光層/陰極
- 60陽極/正孔注入層/発光層/付着改善層/陰極
- これらの中で、通常②の構成が好ましく用いられる。

$$Y \stackrel{!}{\sim} C = C H - A r - C H = C \stackrel{Y}{\sim} Y \stackrel{!}{\sim} \cdots$$

【0028】で表されるジスチリルアリーレン系化合物が好ましく用いられる。この化合物は、特開平2-247278号公報に開示されている。

【0029】上記一般式 (I)において、Y1 ~Y4 はそ

【0023】本発明の素子における再結合領域及び発光 領域は、前記したように通常発光層に存在する。したがって、蛍光性ドーパントは、通常発光層に含有される。 しかし、場合によっては、他の層、例えば正孔注入層, 電子注入層,有機半導体層,電子障壁層,付着改善層な ども、再結合や発光に関与することがある。この場合、 これらの層にも含有させるのが好ましい。

【0024】本発明の有機EL素子は、上記有機化合物層が一対の電極、すなわち陽極と陰極とによって挟持された構造を有しており、該陽極としては、仕事関数の大きい(4 e V以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、A u などの金属、C u I,I T O,S n O2, Z n O などの誘電性透明材料が挙げられる。該陽極は、これらの電極物質を蒸着やスパッタリングなどの方法により、薄膜を形成させることにより作製することができる。この電極より発光を取り出す場合には、透過率を 10% 力表とが望ましく、また、電極としてのシート抵抗は数百 2 口以下が好ましい。さらに膜厚は材料にもよるが、通常 2 0 n m

【0025】一方、陰極としては、仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム・カリウム合金、マグネシウム、リチウム・マグネシウム・銀合金、A1/A1O2、アルミニウムーリチウム合金、インジウム、希土類金属などが挙げられる。該陰極はこれらの電極物質を蒸着やスパッタリングなどの方法により、薄膜を形成させることにより、作製することができる。また、電極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~1μm、特に50~200nmの範囲が好ましい。なお、本発明の素子においては、特に規定しないが、該陽極又は陰極のいずれか一方が透明若しくは半透明であることが発光を透過し、取り出す効率がよいので好ましい。

【0026】本発明の素子における発光層においては、 発光材料(ホスト材料)として、一般式(I)

[0027]

【化17】

れぞれ水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数7~8のアラルキル基、置換あるいは無置換の炭素数6~18のアリール基、置換あるいは無置換のシクロヘキシル基、置換あるいは無置

操の炭素数6~18のアリールオキシ基、炭素数1~6のアルコキシ基を示す。ここで、置換基は炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数7~8のアラルキル基、炭素数6~18のアリールオキシ基、炭素数1~6のアシル基、炭素数1~6のアシルオキシ基、カルボキシル基、スチリル基、炭素数6~20のアリールカルボニル基、炭素数6~20のアリールオキシカルボニル基、炭素数1~6のアルコキシカルボニル基、ビニル基、アニリノカルボニル基、カルバモイル基、フェニル基、ニトロ基、水酸基あるいはハロゲンを示す。これらの置換基は単一でも複数でもよい。また、Y¹~Y⁴は同一でも、また互いに異なっていてもよく、Y¹とY²及びY³とY⁴は互いに置換している基

と結合して、置換あるいは無置換の飽和五員環又は置換あるいは無置換の飽和六員環を形成してもよい。Arは置換あるいは無置換の炭素数6~20のアリーレン基を表し、単一置換されていても、複数置換されていてもよく、また結合部位は、オルト、パラ、メタいずれでもよい。但し、Arが無置換フェニレン基の場合、Y¹~Y¹はそれぞれ炭素数1~6のアルコキシ基、炭素数7~8のアラルキル基、置換あるいは無置換のナフチル基、ビフェニル基、シクロヘキシル基、アリールオキシ基より選ばれたものである。 このようなジスチリルアリーレン系化合物としては、例えば、

【0030】 【化18】

$$C = CH \xrightarrow{CH_8} -CH = C$$

(t-Bu:t-ブチル基)

$$C = CH - C - CH = C$$

などが挙げられる。

【0032】また、別の好ましい発光材料(ホスト材料)として、8-ヒドロキシキノリン、又はその誘導体の金属錯体を挙げることができる。具体的には、オキシン(一般に8-キノリノールまたは8-ヒドロキシキノリン)のキレートを含む金属キレートオキシノイド化合

物である。このような化合物は高水準の性能を示し、容易に薄膜形態に成形される。このオキシノイド化合物の 例は下記構造式を満たすものである。

【0033】 【化20】

【0034】(式中、Mtは金属を表し、nは1~3の整数であり、Zはそのそれぞれの位置が独立であって、少なくとも2以上の縮合芳香族環を完成させるために必要な原子を示す。)

ここで、M t で表される金属は、一価, 二価又は三価の 金属とすることができるものであり、例えばリチウム, ナトリウム, カリウムなどのアルカリ金属、マグネシウ ムやカルシウムなどのアルカリ土類金属、あるいはホウ 素又はアルミニウムなどの土類金属である。一般に、有用なキレート化合物であると知られている一価,二価又は三価の金属はいずれも使用することができる。

【0035】また、Zは、少なくとも2以上の縮合芳香 族環の一方がアゾール又はアジンからなる複素環を形成 させる原子を示す。ここで、もし必要であれば、上記縮 合芳香族環に他の異なる環を付加することが可能であ る。また、機能上の改善がないまま嵩ばった分子を付加 することを回避するため、2で示される原子の数は18 以下に維持することが好ましい。さらに、具体的にキレ ート化オキシノイド化合物を例示すると、トリス(8-キノリノール) アルミニウム, ビス (8-キノリノー ル) マグネシウム、ビス (ベンゾー8-キノリノール) 亜鉛、ビス(2-メチル-8-キノリラート)アルミニ ウムオキシド, トリス (8-キノリノール) インジウ ム, トリス (5-メチル-8-キノリノール) アルミニ ウム, 8-キノリノールリチウム, トリス (5-クロロ -8-キノリノール) ガリウム, ビス (5-クロロ-8 ーキノリノール) カルシウム, 5, 7ージクロルー8ー キノリノールアルミニウム,トリス(5,7ージブロモ -8-ヒドロキシキノリノール) アルミニウムなどがあ

【0036】さらに、特開平5-198378号公報に 記載されているフェノラート置換8-ヒドロキシキノリ ンの金属錯体は、青色発光材料として、好ましいもので る。このフェノラート置換8-ヒドロキシキノリンの金 属錯体の具体例としては、 ビス (2-メチル-8-キノ リノラート) (フェノラート) アルミニウム (III), ビ ス(2-メチル-8-キノリノラート)(o-クレゾラ ート) アルミニウム (III), ビス (2-メチル-8-キ ノリノラート)(m-クレゾラート)アルミニウム (!! I), ビス (2-メチル-8-キノリノラート) (p-ク レゾラート) アルミニウム (III), ビス (2-メチルー 8-キノリノラート)(0-フェニルフェノラート)ア ルミニウム (III), ビス (2-メチル-8-キノリノラ ート)(m-フェニルフェノラート)アルミニウム(II I), ビス (2-メチル-8-キノリノラート) (p-フ ェニルフェノラート) アルミニウム (III), ビス (2-メチルー8ーキノリノラート)(2,3ージメチルフェ ノラート) アルミニウム (III), ビス (2-メチル-8 ーキノリノラート)(2,6-ジメチルフェノラート) アルミニウム (III), ビス (2-メチル-8-キノリノ ラート) (3, 4ージメチルフェノラート) アルミニウ ム (III), ビス (2-メチル-8-キノリノラート) (3, 5-ジメチルフェノラート) アルミニウム (II 1), ピス(2-メチル-8-キノリノラート)(3,5 ージー t ーブチルフェノラート) アルミニウム (III), ビス(2-メチル-8-キノリノラート)(2,6-ジ フェニルフェノラート) アルミニウム (III), ビス (2 ーメチルー8ーキノリノラート)(2,4,6ートリフ

ェニルフェノラート)アルミニウム (III)などが挙げられる。これらの発光材料は一種用いてもよく、二種以上を組み合わせて用いてもよい。

【0037】本発明の素子における発光層の形成方法と しては、例えば蒸着法、スピンコート法、キャスト法、 LB法などの公知の方法により薄膜化することにより形 成することができるが、特に分子堆積膜であることが好 ましい。ここで、分子堆積膜とは、該化合物の気相状態 から沈着され形成された薄膜や、該化合物の溶融状態又 は液相状態から固体化され形成された膜のことである。 通常、この分子堆積膜はLB法により形成された薄膜 (分子累積膜)と凝集構造、高次構造の相違や、それに 起因する機能的な相違により区別することができる。ま た、この発光層は樹脂などの結着材と共に溶剤に溶かし て溶液とした後、これをスピンコート法などにより薄膜 化して形成することができる。このようにして形成され た発光層の膜厚については特に制限はなく、適宜状況に 応じて選ぶことができるが、好ましくは1 nm~10 u m、特に好ましくは5nm~5μmの範囲がよい。

【0038】次に、正孔注入層は、必ずしも本発明の素子に必要なものではないが、発光性能の向上のために用いた方が好ましいものである。この正孔注入層は、発光層への正孔注入を助ける層であって、正孔移動度が大きく、イオン化エネルギーが、通常 $5.5\,\mathrm{eVU}$ 下と小さい。このような正孔注入層としては、より低い電界で正孔を発光層に輸送する材料が好ましく、さらに正孔の移動度が、例えば $10^4\sim10^6\,\mathrm{V/c}$ mの電界印加時に、少なくとも $10^{-6}\,\mathrm{cm}^2\,\mathrm{/V}$ ・秒であればなお好ましい。このような正孔注入材料については、前記の好ましいとこのような正孔注入材料については、前記の好ましい性質を有するものであれば特に制限はなく、従来、光導伝材料において、正孔の電荷輸送材として慣用されているものやEL素子の正孔注入層に使用される公知のものの中から任意のものを選択して用いることができる。

【0039】該正孔注入材料としては、例えばトリアゾ ール誘導体(米国特許第3,112,197号明細書等参照), オキサジアゾール誘導体 (米国特許第3,189,447 号明細 書等参照)、イミダゾール誘導体(特公昭37-160 96号公報等参照),ポリアリールアルカン誘導体(米 国特許第3,615,402 号明細書, 同3,820,989 号明細書, 同3,542,544 号明細書,特公昭45-555号公報,同 51-10983号公報, 特開昭51-93224号公 報,同55-17105号公報,同56-4148号公 報,同55-108667号公報,同55-15695 3号公報, 同56-36656号公報等参照), ピラゾリ ン誘導体およびピラゾロン誘導体(米国特許第3,180,72 9 号明細書, 同4,278,746 号明細書, 特開昭55-88 064号公報, 同55-88065号公報, 同49-1 05537号公報,同55-51086号公報,同56 -80051号公報, 同56-88141号公報, 同5

7-45545号公報, 同54-112637号公報, 同55-74546号公報等参照), フェニレンジアミ ン誘導体 (米国特許第3,615,404 号明細書,特公昭51 -10105号公報,同46-3712号公報,同47 -25336号公報、特開昭54-53435号公報、 同54-110536号公報,同54-119925号 公報等参照),アリールアミン誘導体(米国特許第3,56 7,450 号明細書,同3,180,703 号明細書,同3,240,597 号明細書, 同3,658,520 号明細書, 同4,232,103 号明細 書, 同4,175,961 号明細書, 同4,012,376 号明細書,特 公昭49-35702号公報,同39-27577号公 報,特開昭55-144250号公報,同56-119 132号公報,同56-22437号公報,西独特許第 1,110,518 号明細書等参照), アミノ置換カルコン誘導 体 (米国特許第3,526,501 号明細書等参照), オキサゾ ール誘導体 (米国特許第3,257,203 号明細書などに記載 のもの),スチリルアントラセン誘導体(特開昭56-46234号公報等参照),フルオレノン誘導体(特開 昭54-110837号公報等参照), ヒドラゾン誘導 体 (米国特許第3,717,462 号明細書,特開昭54-59 143号公報,同55-52063号公報,同55-5 2064号公報, 同55-46760号公報, 同55-85495号公報, 同57-11350号公報, 同57 -148749号公報等参照),スチルベン誘導体(特 開昭61-210363号公報, 同61-228451 号公報, 同61-14642号公報, 同61-7225 5号公報,同62-47646号公報,同62-366 74号公報, 同62-10652号公報, 同62-30 255号公報,同60-93445号公報,同60-9 4462号公報,同60-174749号公報,同60 -175052号公報等参照)などを挙げることができ る。さらに、シラザン誘導体(米国特許第4,950,950号 明細書),ポリシラン系(特開平2-204996号公 報), アニリン系共重合体(特開平2-282263号 公報), 導電性高分子オリゴマー(特開平1-2113 99号公報),特に含チオフェンオリゴマーなどが挙げ Sha.

【0040】本発明においては、これらの化合物を正孔注入材料として使用することができるが、次に示すポリフィリン化合物(特開昭63-2956965号公報などに記載のもの)、芳香族第三級アミン化合物およびスチリルアミン化合物(米国特許第4,127,412号明細書、特開昭53-27033号公報、同54-58445号公報、同54-149634号公報、同54-64299号公報、同55-79450号公報、同55-144250号公報、同56-119132号公報、同61-295558号公報、同61-98353号公報、同63-295695号公報等参照)、特に該芳香族第三級アミン化合物を用いることが好ましい。

【0041】該ポリフィリン化合物の代表例としては、

ポルフィン、1、10、15、20ーテトラフェニルー21H、23Hーポルフィン銅(II);1、10、15、20ーテトラフェニル21H、23Hーポルフィン亜鉛(II);5、10、15、20ーテトラキス(ペンタフルオロフェニル)ー21H、23Hーポルフィンジックコンフタロシアニンオキシド;アルミニウムフタロシアニンクロリド;フタロシアニン(無金属);ジリチウムフタロシアニン;銅アトラメチルフタロシアニン;銅フタロシアニン;チタニウムフタロシアニンがオキシド;マグネシウムフタロシアニン;銅オクタメチルフタロシアニンなどが挙げられる。

【0042】また該芳香族第三級アミン化合物及びスチ リルアミン化合物の代表例としては、N,N,N', N' - \mathcal{F} - \mathcal{F} N' - \mathcal{F} - \mathcal{F} N. N' -ジフェニル-N. N' -ジ(3-メチルフェ ニル) -4, 4' -ジアミノビフェニル, 2, 2-ビス (4-ジーpートリルアミノフェニル)プロパン、1、 1-ビス (4-ジーp-トリルアミノフェニル) シクロ ヘキサン, N, N, N', N'-テトラーpートリルー 4, 4'ージアミノビフェニル, 1, 1ービス (4ージ -p-トリルアミノフェニル) -4-フェニルシクロへ キサン, ビス (4-ジメチルアミノ-2-メチルフェニ ル) フェニルメタン、ビス (4-ジ-p-トリルアミノ フェニル)フェニルメタン、N, N'ージフェニルー N, N' -ジ (4-メトキシフェニル) -4, 4' -ジ アミノビフェニル, N, N, N', N'-テトラフェニ ルー4,4'ージアミノジフェニルエーテル,4,4' ービス (ジフェニルアミノ) クオードリフェニル, N, N, N-トリ (P-トリル) アミン, 4-(ジーp-ト リルアミノ) -4' - [4 (ジーp-トリルアミノ)ス チリル) スチルベン、4-N、N-ジフェニルアミノー (2-ジフェニルビニル) ベンゼン, 3-メトキシー 4'-N, N-ジフェニルアミノスチルベンゼン, N-フェニルカルバゾール、芳香族ジメチリディン系化合物 などが挙げられる。

【0043】本発明のEL素子における該正孔注入層は、上記化合物を、例えば真空蒸着法,スピンコート法,LB法などの公知の薄膜法により製膜して形成することができる。この正孔注入層の膜厚は、特に制限はないが、通常は5 nm~5 μmである。この正孔注入層は、上記正孔注入材料一種又は二種以上からなる一層で構成されていてもよいし、あるいは、前記正孔注入層とは別種の化合物からなる正孔注入層を積層したものであってもよい。また、有機半導体層は、発光層への正孔注入又は電子注入を助ける層であって、10⁻¹⁰ S/cm以上の導電率を有するものが好適である。このような有機半導体層の材料としては、含チオフェンオリゴマーや含アリールアミンオリゴマーなどの導電性オリゴマー、含アリールアミンデンドリマーなどの導電性デンドリマ

一などを用いることができる。

【0044】一方、電子注入層は、発光層への電子の注 入を助ける層であって、電子移動度が大きく、また付着 改善層は、この電子注入層の中で、特に陰極との付着が 良い材料からなる層である。電子注入層に用いられる材 料としては、例えば8-ヒドロキシキノリン又はその誘 導体の金属錯体、あるいはオキサジアゾール誘導体が好 ましく挙げられる。また、付着改善層に用いられる材料 としては、特に8ーヒドロキシキノリン又はその誘導体

の金属錯体が好適である。上記8-ヒドロキシキノリン 又はその誘導体の金属錯体の具体例としては、オキシン (一般に8-キノリノール又は8-ヒドロキシキノリ ン)のキレートを含む金属キレートオキシノイド化合物 が挙げられる。一方、オキサジアゾール誘導体として は、一般式(II)、(III)及び(IV) [0045]

【化21】

$$A r'' \stackrel{N-N}{\longrightarrow}_{0} \stackrel{N-N}{\longrightarrow}_{A} r'' \qquad \cdots \qquad (11)$$

$$A r'' \stackrel{N-N}{\longrightarrow}_{0} \stackrel{N-N}{\longrightarrow}_{A} r'' \stackrel{N-N}{\longrightarrow}_{0} \stackrel{N-N}{\longrightarrow}_{0}$$

【0046】(式中Ar¹⁰~Ar¹³はそれぞれ置換又は 無置換のアリール基を示し、Ar10とAr11及びAr12 とAr13はそれぞれにおいてたがいに同一であっても異 なっていてもよく、Ar14は置換又は無置換のアリーレ ン基を示す。)で表される電子伝達化合物が挙げられ る。ここで、アリール基としてはフェニル基、ビフェニ ル基,アントラニル基,ペリレニル基,ピレニル基など が挙げられ、アリーレン基としてはフェニレン基、ナフ

チレン基、ピフェニレン基、アントラセニレン基、ペリ レニレン基、ピレニレン基などが挙げられる。また、置 換基としては炭素数1~10のアルキル基、炭素数1~ 10のアルコキシ基又はシアノ基などが挙げられる。こ の電子伝達化合物は、薄膜形成性のものが好ましい。上 記電子伝達化合物の具体例としては、

[0047] 【化22】

$$\bigcirc N - N \longrightarrow C (C H_3)_3 \cdots (P B D)$$

$$\bigcirc -\bigcirc -\bigcirc -\bigcirc -\bigcirc -\bigcirc -\bigcirc -\bigcirc -\bigcirc -\bigcirc -\bigcirc$$

などが挙げられる。

【0048】本発明で用いられるドーパントの製造法で は、母骨格としてピレン、ペリレン、ベンゾペリレン、

ペンタセン、フルオランテンなどを縮合多環炭化水素環 に選び、イソプロピル基、セーブチル基あるいはシクロ ヘキシル基などの嵩高いアルキル基を導入する。嵩高い アルキル基を導入することによって、ホストとの相互作 用を避け、エキシマー発光しないようになる。また、ア ルキル基を導入すれば、昇華温度が上がり、索子作製の 際ドーピング速度が制御しやすくなるという長所もあ る。アルキル基の導入はフリーデルクラフツ (Friedel-Crafts) アルキル化反応は、カルボニウムカチオンが中 間体として生じる反応であるから、一級のハロゲン化物 などの転移する可能性のあるアルキル基は導入できな い。一級アルキル基を導入するには、グリニヤール(Gr ignard) カップリング反応を用いなければならない。フ リーデルクラフツアルキル化反応は一般に反応の制御が 困難であり、ポリアルキル化が起こる。また、カルボニ ウムカチオン中間体から生じたオレフィンが重合して、 ポリオレフィンが副生成物として大量に生じるため、一 般に量論反応が困難であり、ハロゲン化物は溶媒として 大過剰に用いなければならない。

【0049】また、導入するアルキル基の大きさによって、置換基の位置が異なることも多い。例えば、ペリレ

ン系の化合物は下記式において3位の位置が最も反応性が高く、アシル基などの導入を行うと3位に置換基が入るが、tーブチル基は嵩高いために2位にしか置換基が入らないなどの選択性の傾向がある。

[0050]

【化23】

ピレン系の化合物は下記式において1位の位置が最も反応性が高く、イソプロピル基などの導入を行うと1位に置換基が入るが、tーブチル基は嵩高いために2位にしか置換基が入らないなどの選択性の傾向がある。

【0051】 【化24】

$$+\bigcirc\bigcirc\bigcirc+ \qquad - \uparrow \circ \bigcirc\bigcirc\bigcirc^{\dagger}_{5} \circ \bigcirc^{\dagger}_{2} \qquad - \bigcirc\bigcirc\bigcirc$$

フリーデルクラフツアルキル化反応の触媒としては、特 に制限はないが、塩化アルミニウムなどの固体酸を用い ることができる。

[0052]

【実施例】次に、本発明を実施例によりさらに詳しく説明するが、本発明はこれらの例によってなんら限定されるものではない。また、製造例においては、本発明の代表的な骨格を有する化合物を原料として、アルキル化、フェニル化反応を用いた合成の例を挙げるが、他の化合物についても同様の方法により合成ができる。

【0053】製造例1 〔2,5,8-トリーtーブチルフルオランテンの合成(IK-2)〕

フルオランテン3.0g(15ミリモル)をセーブチルクロリド100ミリリットルに溶かし、粉砕した塩化アルミニウム1.0g(7.5ミリモル)を加えて、室温で10分間撹拌し、2時間還流した。反応混合物に水100ミリリットルを加え、有機層を分取し、飽和炭酸水素ナトリウム水溶液60ミリリットルで洗浄して、硫酸マグネシウムで乾燥し、溶媒留去して黄色液体を得た。これを減圧蒸留して、無色の液体(沸点38~74℃/5Torr)を除き、残渣をカラムクロマトグラフィー(シリカゲル/ヘキサン)により2度精製を行い、目的の淡黄色アモルファス固体2.8g((IK-2)の収率:50%)を得た。得られた固体の物性は、以下のようであった。

1H-NMR (CDC13, TMS)

1.45 (9H, s)

1.49 (9H, s)

1.50 (9H, s)

7.39 (1H, dd) 7.8~8.0(1H, dd)

また、製造例1の反応の概略を以下の反応式に示す。

[0054]

【化25】

【0055】製造例2 〔ヘキサブチルデカシクレンの 合成(IK-11) 〕

デカシクレン1.0g (2.2ミリモル)をtーブチルクロリド100ミリリットルに懸濁し、粉砕した塩化アルミニウム0.3g (2.2ミリモル)を加えて、2時間還流した。不溶物を沪別し、沪液を水60ミリリットルで洗浄し、硫酸マグネシウムで乾燥、溶媒を留去して黄色液体を得た。これを減圧蒸留して、無色の液体(沸点38~70℃/5Torr)を除き、残渣をカラムクロマトグラフィー(シリカゲル/ヘキサン+5%ジクロロメタン、シリカゲル/ヘキサン+5%ジクロロメタン)により2度精製を行い、黄色板状晶20mg((IK-11)の収率:1%)を得た。得られた板状晶の物性は、以下のようであった。

融点 : 215~219℃ ¹H-NMR (CDCl₃, TMS)

1.66 (54H, s)

7.92 (6H, s)

8.96 (6H, s)

また、製造例2の反応の概略を以下の反応式に示す。

【0057】製造例3 〔ジフェニルベンゾフルオラン テンの合成(IK-17) 〕

ジフェニルイソベンゾフラン1.5g(5.5ミリモル)、アセナフチレン0.8g(5.3ミリモル)をキシレン15ミリリットルに溶かし、7時間還流した。反応混合物から溶媒を留去して褐色オイルを得た。フラスコの壁をこすると結晶化したので、これを沪別しヘキサンで洗浄して、淡黄色固体1.8g(中間体の収率:80%)を得た。得られた固体を酢酸8ミリリットルに懸濁し、47%臭化水素酸1ミリリットルを加えて、2時間還流し

た。固体を沪別し、酢酸60ミリリットルから再結晶して淡褐色針状晶1.1g((IK-17)の収率:83%)を得た。得られた針状晶の物性は、以下のようであった。

融点 : 270~271℃

¹H-NMR (CDC 1₃, TMS)

6.61 (2H, d)

 $7.92 \sim 7.7 (18H, m)$

また、製造例3の反応の概略を以下の反応式に示す。 【0058】

【化27】

【0059】製造例4 〔トリブチルジフェニルベンゾフルオランテンの合成(IK-12)〕

ジフェニルベンゾフルオランテン1.1g (2.7ミリモル)をtーブチルクロリド100ミリリットルに懸濁し、粉砕した塩化アルミニウム0.4g (3.0ミリモル)を加えて2時間還流した。反応混合物を水60ミリリットル、飽和炭酸水素ナトリウム水溶液60ミリリットルで洗浄し、硫酸マグネシウムで乾燥、溶媒留去して淡褐色液体を得た。これを一晩放置すると固体が生じたので、これを沪別し、少量のジクロロメタンを含むヘキサンから再結晶して白色固体0.4g ((IK-12)の収率:26%)を得た。得られた固体の物性は、以下のようであった。

融点 : 300℃以上

¹H-NMR (CDC1₃, TMS)

1.19 (18H, s)

1.30 (9H, s)

6.64 (2H, d)

 $7.4 \sim 7.7$ (15H, m)

また、製造例4の反応の概略を以下の反応式に示す。【0060】

【化28】

【0061】実施例1~6及び比較例1,2

25mm×75mm×1.1mmのガラス基板上に、IT 〇を蒸着法にて100 nmの厚さで製膜したもの (ジオ マティック社製)を透明支持基板とした。なお、この基 板は、イソプロピルアルコール中で5分間超音波洗浄 後、窒素を吹きつけて乾燥し、UVオゾン洗浄(UV3 00, サムコインターナショナル社製)を30分間行っ たものである。この透明支持基板を市販の蒸着装置 (日 本真空技術(株)製)の基板ホルダーに固定し、モリブ デン製抵抗加熱ボートにMTDATA200mgを入 れ、他のモリブデン製抵抗加熱ボートにDPVBi20 Omgを入れ、別のモリブデン製抵抗加熱ボートに正孔 輸送材であるNPD200mgを入れ、さらに他のモリ ブデン製抵抗加熱ボートに第1表に示す種類の蛍光性ド ーパント〔化合物(A)〕200mgを入れ、真空槽を 1×10-4 Paまで減圧した。その後MTDATAの入 った前記ボートを215~220℃まで加熱し、蒸着速 度0.1~0.3 nm/秒で透明支持基板上に蒸着して、膜 厚60 nmの正孔注入層を製膜させた。

【0062】次に、真空槽より基板を取り出すことな

く、NPDの入ったボートを加熱し、膜厚20nmの正 孔輸送層を正孔注入層の上に製膜した。このとき、基板の温度は室温であった。これを真空槽より取り出すことなく、NPD層上にDPVBiをホスト材料として40nm積層した。このとき同時に化合物(A)のボートを加熱し、発光層に化合物(A)を混合した。このときの蒸着速度はDPVBiの蒸着速度(第1表に示す

(B))に対して、化合物(A)の蒸着速度を(C)

(第1表に示す)とした。したがって、混合比〔ホスト 材料に対する化合物 (A) の割合〕は (D) (第1表に 示す)となった。その後、真空槽を大気圧に戻し、新た にモリブデン製抵抗加熱ボートに電子注入層の材料であ る8-ヒドロキシキノリン・アルミニウム錯体を入れ、 さらにモリブデン製抵抗加熱ボートにマグネシウムリボ ン1gを入れ、タングステン製バスケットに銀ワイヤー を500mg入れて、真空槽を1×10-4Paまで減圧 した。次いで、蒸着速度0.01~0.03 nm/秒で8-ヒドロキシキノリン・アルミニウム錯体を蒸着し電子注 入層を20 nm形成した。さらに、銀を蒸着速度0.1 n m/秒, マグネシウムを蒸着速度1.4 n m/秒で同時蒸 着して銀:マグネシウム混合電極を陰極とした。膜厚は 150 nmであった。得られた素子に、電圧8 Vを印加 し、電流量、素子の輝度を測定して発光効率を算出し た。得られた結果を第2表に示す。なお、MTDAT A, DPVBi及びNPDの構造は次のとおりである。 [0063]

【化29】 MTDATA

DPVBi

$$C = C H - C - C H = C$$

NPD

【0064】 【表1】

無 1 表

	蛍光性 (゚ーパン) [化合物(A)]	(B) (nu/秒)	(C) (nm/秒)	(D) 混合比 (%)
実施例1	1 K - 1	2.4 ~ 3.2	0.10	約 3.4
実施例 2	I K - 2	3.0 ~ 4.0	0. 07	約 2.0
実施例3	I K – 5	3.0 ~ 4.0	0.09	約 2.5
実施例 4	I K — 9	2.5 ~ 3.0	0.12	約 4.2
実施例 5	I K - 10	2.5 ~ 3.0	0.10	約 2.6
実施例 6	I K - 10	3.0 ~ 4.0	0.07	約 2.0
実施例7	I K - 11	3.0 ~ 4.0	0.09	約 2.5
実施例8	I K - 12	3.0 ~ 4.0	0.10	約 2.8
実施例 9	I K - 13	2.5 ~ 3.5	0. 10	約 3.2
実施例10	I K - 17	2.5 ~ 3.0	0.10	約 3.6
比較例 1	ペリレン	3.0 ~ 4.0	0.06	約 1.7
比較例 2	イング(ghi)イリレン	2.5 ~ 3.0	0.08	約 2.8

第 2 表 ..

	電流量	輝度	発光効率	発光色
実施例 1	3.8	86	0.89	肯 色
実施例 2	3, 2	98	1.20	育色
実施例3	3.0	110	1.44	青色
実施例 4	3.4	90	1.04	青色
実施例 5	4.1	90	0.90	青色
実施例 6	4.2	114	1.07	青色
実施例7	3.3	114	1.36	青色
実施例8	4.2	100	1.26	青色
実施例 9	7.0	120	0.67	緑味青色 -
実施例10	4.9	116	0.93	緑味青色
比較例1	6. 7	90	0.52	緑味青色
比較例 2	8.0	86	0.42	青色

【0066】以上の結果、本発明の素子は、蛍光性ドーパントとしてペリレン(特開平5-198378号公報記載の蛍光性ドーパント)を用いた比較例1及び比較例2のものに比べて、発光効率が優れていることが分かる。次に各素子を初期輝度300cd/m²にて乾燥窒素雰囲気下で駆動し、半減寿命(初期輝度が半分になる時間)を求めた。結果を第3表に示す。尚、初期輝度1

 $00 \, \mathrm{cd/m^2}$ で試験した結果は、第3表の約3.5倍程度の寿命が得られている。従って、本発明の素子は初期輝度 $100 \, \mathrm{cd/m^2}$ の条件では2500時間 ~ 110 0時間の寿命が得られるものである。

【0067】 【表3】

第 3 表

	No are the A. A man the A.				
	半減寿命(時間)				
	初期輝度 300cd/m²	初期輝度 100cd/m³			
実施例1	7 0 0	2 4 5 0			
実施例 2	7 6 0	2700			
実施例3	7 5 0	2600			
実施例 4	7 6 0	2700			
実施例 5	770	2800			
実施例 6	7 2 0	2 5 0 0			
実施例7	6 4 0	2 2 0 0			
実施例8	6 6 0	2 3 0 0			
実施例 9	6 7 0	2 3 5 0			
実施例10	7 5 0	2 2 0 0			
比較例1	150	5 2 0			
比較例 2	1 7 0	- 6 0 0			

【0068】第3表から分かるように、本発明の素子は、比較例1及び比較例2のものに比べて寿命が大幅に

改善されている。 【0069】

【発明の効果】本発明の有機EL索子は、正孔と電子と が再結合する再結合領域又は該再結合に応答して発光す る発光領域の少なくともいずれかに、特定の構造の蛍光 性ドーパントを含有させたものであって、長時間駆動し

ても発光色の変化が少ないなど、長寿命を有し、かつ発 光効率が高く、例えば情報産業機器のディスプレイなど に好適に用いられる。

THIS PAGE BLANK (USPTO)