MAPF Project

D. Andreev¹ P. Moek²

Bachelor of Computer Science University of Potsdam

Multi-Agent Path Finding Project, 2022

- What Is MAPF?
- 2 Our Goals For This Project
- What Is Constraint-Based Search?
 - High-Level Search
 - Low-Level Search
 - Cost Functions
- 4 Benchmarking
 - Benchmarking Our Own Results
 - Comparing With Other Groups

MAPF

Multi-Agent Path Finding

- Automized robots moving in a warehouse
- Plan routes while avoiding collisions

Figure: Example of an automated Amazon-warehouse.²

²source: https://fba.help/wp-content/uploads/2019/05/Amazon-automated-warehouses-FB.jpg

Goals For The Project

- Solution should be complete
- ullet Optimal solution slow oadditional suboptimal algorithm
- Compare both + more choices

Figure: An easy instance shown in the asprilo visualizer.

- 1 What Is MAPF?
- Our Goals For This Project
- What Is Constraint-Based Search?
 - High-Level Search
 - Low-Level Search
 - Cost Functions
- 4 Benchmarking
 - Benchmarking Our Own Results
 - Comparing With Other Groups

CBS (Constraint-Based Search): High-Level Search

- 1: ROOT = node containing initial plan
- 2: Enqueue ROOT
- 3: while queue not empty do
- 4: CURRENT = dequeue node with lowest cost
- 5: if CURRENT has no conflicts then
 - CURRENT is the solution
- 7: **end if**

6:

- 8: FC = first conflict in CURRENT
- 9: create two children for CURRENT:
- 10: each child makes one of the robots avoid FC
- 11: calculate plans, conflicts and costs for children (low-level search)
- 12: enqueue children
- 13: end while
- 14: since queue is empty with no conflict found, initial problem is unsolvable

- 1 What Is MAPF?
- 2 Our Goals For This Project
- What Is Constraint-Based Search?
 - High-Level Search
 - Low-Level Search
 - Cost Functions
- 4 Benchmarking
 - Benchmarking Our Own Results
 - Comparing With Other Groups

CBS (Constraint-Based Search): Low-Level Search

- 1: ROB = robot restricted by the new constraint
- 2: calculate new shortest path for ROB that satisfies given constraints
- 3: if there is no possible path then
- 4: no solution, disable child
- 5: **else**
- 6: substitute the old path of ROB with the new path in the plan
- 7: calculate all conflicts for the new plan
- 8: return the new plan and conflicts
- 9: end if

- What Is MAPF?
- Our Goals For This Project
- What Is Constraint-Based Search?
 - High-Level Search
 - Low-Level Search
 - Cost Functions
- 4 Benchmarking
 - Benchmarking Our Own Results
 - Comparing With Other Groups

Cost Functions

- Makespan
- Sum of movement-times (SOMT)
- Sum of lastmoves (SOL)
- Number of conflicts (NOC)

Cost Functions and Greedy CBS

- Non-greedy CBS uses SOL (sum of lastmoves) cost function
- Greedy CBS → NOC (number of conflicts)

Cost Functions and Greedy CBS

- SOL not equal to makespan
- Makespan here: 4,
 Makespan above: 4
- SOL here: 1 + 4 = 5, SOL above: 4 + 4 = 8

Figure: Makespan \neq SOL

- 1 What Is MAPF?
- 2 Our Goals For This Project
- What Is Constraint-Based Search?
 - High-Level Search
 - Low-Level Search
 - Cost Functions
- 4 Benchmarking
 - Benchmarking Our Own Results
 - Comparing With Other Groups

How did we gather our data?

- What did we measure?
 - time: runtime
 - #nodes: amount of nodes traversed in the search tree
 - pathlength: depth of solution in search tree
 - horizon: makespan of solution
 - #moves: sum of moves of all robots
 - init_conflicts: initial amount of conflicts in instance

How did we gather our data?

- Test instances
 - Generated automatically
 - Square shaped, all nodes enabled
 - Robots cannot be generated on their shelf
 - Timeout 5 min per instance
 - Benchmarking by running (greedy) CBS on folder (data set) of instances

How did we gather our data?

Design of data sets

- Different sizes and robot-densities
 - Sizes: (5x5, 6x6, 7x7, 8x8)
 - Densities: (20%, 25%, 30%, 35%, 40%)
 - For each size/density combination ten examples
- Incrementally increasing number of robots
 - Size set as 7x7
 - Robots ranging from 2 to 19 (\sim 40% density)
 - Greedy CBS not challenged ightarrow up to 35 robots ($\sim 70\%$ density)

How does the data look?

Figure: Solving speeds for densities of differently sized instances with non-greedy CBS

4 D > 4 A > 4 B > 4 B >

How does the data look?

Figure: Solving speeds for densities of differently sized instances with greedy CBS

Speed greedy vs. non-greedy CBS

Figure: Runtime of CBS on incrementally increasing robot number

Figure: Runtime of greedy CBS on incrementally increasing robot number

Optimality greedy vs. non-greedy CBS

Figure: Move-sum on 5x5 instance with 40% robot-density

Figure: Move-sum on 7x7 instance with 25% robot-density

- 1 What Is MAPF?
- Our Goals For This Project
- What Is Constraint-Based Search?
 - High-Level Search
 - Low-Level Search
 - Cost Functions
- 4 Benchmarking
 - Benchmarking Our Own Results
 - Comparing With Other Groups

Comparing with other groups

Groups	Instances provided	Benchmark provided	Runs on their own instances	Runs on other instances
Alexander Benjamin Glätzer, Mert Akil	√	✓	✓	no
Jan Behrens	✓	no	-	-
Philomena Moek, Denis Andreev	√	✓	✓	✓
Andrés Córdova, Aleksandra Khatova	√	no	-	-
Nico Sauerbrei, Paul Raatschen	√	✓	✓	✓
Amade Nemes, Ryan Kepler Murphy	no	no	-	-
Steven Pan	✓	✓	✓	partially

Results (1)

	file	time	horizon	#moves	program	soc
0	AndreevMoek/14robs.lp	122.600684	9.0	67.0	AndreevMoek CBS	NaN
1	AndreevMoek/14robs.lp	6.133282	9.0	71.0	AndreevMoek greedyCBS	NaN
2	AndreevMoek/14robs.lp	3.247514	9.0	63.0	RaatschenSauerbrei CBS	65.0
3	AndreevMoek/14robs.lp	1.043049	15.0	77.0	RaatschenSauerbrei IS	210.0
4	AndreevMoek/14robs.lp	0.445551	10.0	71.0	RaatschenSauerbrei PP	73.0
5	AndreevMoek/ex8.lp	117.700398	10.0	94.0	AndreevMoek CBS	NaN
6	AndreevMoek/ex8.lp	8.839043	10.0	102.0	AndreevMoek greedyCBS	NaN
7	AndreevMoek/ex8.lp	6.359438	10.0	94.0	RaatschenSauerbrei CBS	94.0
8	AndreevMoek/ex8.lp	0.584755	10.0	96.0	RaatschenSauerbrei PP	98.0
9	Behrens/mix.lp	19.002301	11.0	182.0	AndreevMoek greedyCBS	NaN
10	Behrens/small_room.lp	8.696061	12.0	33.0	AndreevMoek CBS	NaN
11	Behrens/small_room.lp	3.617692	16.0	41.0	AndreevMoek greedyCBS	NaN
12	Behrens/small_room.lp	1.421336	11.0	29.0	RaatschenSauerbrei CBS	30.0
13	Behrens/small_room.lp	0.209429	12.0	29.0	RaatschenSauerbrei IS	36.0
14	Behrens/small_room.lp	0.175655	11.0	29.0	RaatschenSauerbrei PP	30.0
15	GlätzerAkil/mini_maze.lp	0.432578	14.0	29.0	AndreevMoek CBS	NaN
16	GlätzerAkil/mini_maze.lp	0.615183	22.0	52.0	AndreevMoek greedyCBS	NaN
17	GlätzerAkil/mini_maze.lp	0.582606	NaN	NaN	Pan	60.0
18	GlätzerAkil/mini_maze.lp	0.391481	NaN	NaN	Pan	48.0

Results (2)

	file	time	horizon	#moves	program	soc
19	GlätzerAkil/mini_maze.lp	0.750859	15.0	56.0	RaatschenSauerbrei CBS	58.0
20	GlätzerAkil/mini_maze.lp	0.459576	15.0	56.0	RaatschenSauerbrei PP	58.0
21	GlätzerAkil/warehouse.lp	0.049554	17.0	60.0	AndreevMoek CBS	NaN
22	GlätzerAkil/warehouse.lp	0.049498	17.0	60.0	AndreevMoek greedyCBS	NaN
23	GlätzerAkil/warehouse.lp	0.756851	17.0	60.0	RaatschenSauerbrei CBS	60.0
24	KhatovaCordova/24_merged_plans.lp	105.608239	15.0	247.0	AndreevMoek greedyCBS	NaN
25	KhatovaCordova/24_merged_plans.lp	266.851197	16.0	235.0	RaatschenSauerbrei CBS	236.0
26	KhatovaCordova/24_merged_plans.lp	2.663130	15.0	239.0	RaatschenSauerbrei PP	263.0
27	KhatovaCordova/30_merged_plans.lp	43.134053	19.0	309.0	AndreevMoek greedyCBS	NaN
28	KhatovaCordova/30_merged_plans.lp	14.133932	19.0	303.0	RaatschenSauerbrei CBS	303.0
29	KhatovaCordova/30_merged_plans.lp	3.614463	19.0	307.0	RaatschenSauerbrei PP	316.0
30	Pan/x6_y11_r16_fo1_cmw1_cx4_cy4_rom2_instance	14.716154	NaN	NaN	Pan	332.0
31	Pan/x6_y11_r32_fo2_cmw1_cx4_cy4_rom2_instance	87.124829	NaN	NaN	Pan	177.0
32	RaatschenSauerbrei/Plan-Sauerbrei-Raatschen-1.lp	3.872790	NaN	NaN	Pan	119.0
33	RaatschenSauerbrei/Plan-Sauerbrei-Raatschen-1.lp	4.185371	31.0	133.0	RaatschenSauerbrei IS	279.0
34	RaatschenSauerbrei/Plan-Sauerbrei-Raatschen-1.lp	2.329662	23.0	129.0	RaatschenSauerbrei PP	153.0
35	RaatschenSauerbrei/Plan-Sauerbrei-Raatschen-2.lp	7.305222	12.0	48.0	AndreevMoek greedyCBS	NaN
36	RaatschenSauerbrei/Plan-Sauerbrei-Raatschen-2.lp	0.426617	NaN	NaN	Pan	47.0
37	RaatschenSauerbrei/Plan-Sauerbrei-Raatschen-2.lp	19.908878	12.0	44.0	RaatschenSauerbrei CBS	45.0
38	RaatschenSauerbrei/Plan-Sauerbrei-Raatschen-2.lp	0.242980	8.0	46.0	RaatschenSauerbrei PP	49.0

Figure: Results of comparing with other groups (Part 2).

Conclusion

- Both CBS implementations slower on bigger/denser instances
- Non-greedy CBS slower than other CBS implementations
- Greedy CBS can compete
- Outlook
 - Compare to different cost function(s)
 - Compare with other groups more in depth
 - Explore different approaches (instead of m-domain)