Отчёт о выполнении лабораторной работы 1.1.4.

Рачков Михаил Васильевич Б01-201

13.09.2022

Измерение интенсивности радиационного фона

Цель работы

Применение методов обработки экспериментальных данных для изучения статистических закономерностей при измерении интенсивности радиоактивного фона.

Оборудование

Счётчик Гейгера-Мюллера (СТС-6), блок питания. компьютер.

Теоретическая справка

Среднеквадратичная ошибка числа отчетов, измеренного за некоторый интервал времени равна:

$$\sigma = \sqrt{n} \tag{1}$$

Тогда результат измерения запишется так:

$$n_0 = n \pm \sqrt{n} \tag{2}$$

При N измерениях среднее значение числа посчитанных за одно измерение частиц может быть посчитано по формуле:

$$\bar{n} = \frac{1}{N} \sum_{i=1}^{N} n_i \tag{3}$$

А стандартная ошибка отдельного измерения может быть оценена по формуле:

$$\sigma_{\text{отд}} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (n_i - \bar{n})^2} \tag{4}$$

В соответствии с формулой (1) следует ожидать, что это ошибка будет близка к $\sqrt{n_i}$. Поскольку n_i различны, мы будем получать различные оценки для $\sigma_{\text{отд}}$. Какие-то из них

будут лучше, какие-то – хуже. Ближе всего к значению $\sigma_{\text{отд}}$ будет корень из усредненного измерения, т.е.

$$\sigma_{\text{отд}} \approx \sqrt{\bar{n}}$$
 (5)

Величина \bar{n} из формулы (3) тоже является случайной, ее отклонение от истинного значения может быть определено по формуле:

$$\sigma_{\bar{n}} = \frac{1}{N} \sqrt{\sum_{i=1}^{N} (n_i - \bar{n})^2} = \frac{\sigma_{\text{отд}}}{\sqrt{N}}$$

$$(6)$$

Обычно наибольший интерес представляет относительная погрешность. Для рассмотрения серии из N экспериментов по 20 с. относительная ошибка отдельного измерения (т.е. ожидаемое отличие n_i от n_0) равна:

$$\varepsilon_{\text{отд}} = \frac{\sigma_{\text{отд}}}{n_i} \approx \frac{1}{\sqrt{n_i}}$$
(7)

Аналогичным образом определяется относительная ошибка в определении среднего по всем измерениям значения $\bar{n}.$

$$\varepsilon_{\bar{n}} = \frac{\sigma_{\bar{n}}}{\bar{n}} = \frac{\sigma_{\text{отд}}}{\bar{n}\sqrt{N}} \approx \frac{1}{\sqrt{\bar{n}N}}$$
(8)

Ход работы

- 1. Включаем компьютер. (Запускается измерение данных для демонстрационного эксперимента)
- 2. В результате демонстрационного эксперимента убеждаемся, что при увеличении числа измерений:
 - (а) измеряемая величина флуктуирует;
 - (b) флуктуации среднего значения измеряемой величины уменьшаются, и с ростом количества измерений среднее значение выходит на постоянную величину;
 - (c) флуктуации величины погрешности отдельного измерения уменьшаются, и с ростом количества измерений погрешность отдельного измерения (погрешность метода) выходит на постоянную величину
 - (d) флуктуации величины погрешности среднего значения уменьшаются, а сама величина убывает.
- 3. Переходим к основному эксперименту: измерение плотности потока космического излучения за 20 с. На компьютере проведем обработку, аналогичную сделанной в демонстрационном эксперименте. Результаты приведем в таблицы 1 и 2. Примечание: таблица 1 устроена так, что, например, результат 123-го опыта лежит на пересечении строки, обозначенной 120 и столбца с номером 3.
- 4. Разобьем результаты из таблицы 1 в порядке их получения на группы по 2 и сложим числа в каждой группе. Это будет соответствовать $N_2=100$ измерениям по 40 с каждое. Резльтаты сведем в таблицу 3

№ опыта	1	2	3	4	5	6	7	8	9	110
0	21	21	24	32	26	19	33	25	19	24
10	29	24	28	30	28	24	31	23	27	24
20	26	16	18	22	32	22	18	30	25	24
30	24	28	21	17	22	25	27	18	26	30
40	24	21	26	24	19	26	35	33	20	22
50	27	23	30	27	32	20	24	31	13	22
60	16	30	23	23	23	22	23	25	29	32
70	30	24	25	23	24	29	19	22	15	18
80	24	21	14	25	24	29	24	34	26	20
90	21	28	22	43	29	19	22	21	25	22
100	26	24	30	22	40	22	28	25	20	28
110	22	22	28	27	22	27	35	20	24	22
120	23	22	29	30	32	39	27	20	21	36
130	16	27	30	22	25	22	27	20	29	15
140	25	20	35	20	28	34	23	22	22	22
150	28	17	26	27	19	19	26	24	23	24
160	14	26	18	28	32	26	19	32	27	18
170	28	19	22	21	17	22	24	26	25	25
180	32	25	20	23	26	31	28	31	24	32
190	28	29	20	15	27	20	19	24	23	28

Таблица 1: Число срабатываний счетчика за 20 секунд

Число импульсов n_i	Число случаев	Доля случаев w_n
4	1	0.0025
5	3	0.0075
6	7	0.0175
7	26	0.0650
8	29	0.0725
9	22	0.0550
10	35	0.0875
11	52	0.1300
12	42	0.1050
13	38	0.0950
14	38	0.0950
15	27	0.0675
16	27	0.0675
17	21	0.0525
18	16	0.0400
19	5	0.0125
20	5	0.0125
21	2	0.0050
22	2	0.0050
23	2	0.0050

Таблица 2: Данные для построения гистограммы распределения числа срабатываний счетчика за $10~\mathrm{c}$.

№ опыта	1	2	3	4	5	6	7	8	9	10
0	42	56	45	58	43	53	58	52	54	51
10	42	40	54	48	49	52	38	47	45	56
20	45	50	45	68	42	50	57	52	55	35
30	46	46	45	48	61	54	48	53	41	33
40	45	39	53	58	46	49	65	48	43	47
50	50	52	62	53	48	44	55	49	55	46
60	45	59	71	47	57	43	52	47	47	44
70	45	55	62	45	44	45	53	38	50	47
80	40	46	58	51	45	47	43	39	50	50
90	57	43	57	59	56	57	35	47	43	51

Таблица 3: Число срабатываний счетчика за 40 с.

5. Представим результаты из таблицы 3 в виде, удобном для построения гистограммы. Результаты занесем в таблицу 4. Гистограммы распределений среднего числа отсчетов за 10 и 40 с. строим на одном графике (рис 1). При этом для второй гистограммы увеличиваем шкалу деления оси абсцисс в 4 раза, чтобы максимумы гистограмм совпали.

Рис. 1: Гистограмма для $\tau=10~c$ и $\tau=40~c$

Используя формулу 3, определим среднее значение срабатывания счетчика за 10 и 40 с. соответственно:

$$\bar{n}_{10} = \frac{1}{N_1} \sum_{i=1}^{N_1} n_i = \frac{4934}{400} = 12.335$$

$$\bar{n}_{40} = \frac{1}{N_2} \sum_{i=1}^{N_2} n_i = \frac{4934}{100} = 49.34$$

Число импульсов n_i	Число случаев	Доля случаев w_n
33	1	0.005
34	0	0
35	2	0.010
36	0	0
37	0	0
38	2	0.010
39	2	0.010
40	2	0.010
41	1	0.005
42	3	0.015
43	6	0.030
44	3	0.015
45	11	0.055
46	5	0.025
47	8	0.040
48	5	0.025
49	3	0.015
50	6	0.030
51	3	0.015
52	5	0.025
53	5	0.025
54	3	0.015
55	4	0.020
56	3	0.015
57	5	0.025
58	4	0.020
59	2	0.010
60	0	0
61	1	0.005
62	2	0.010
63	0	0
64	0	0
65	1	0.005
66	0	0
67	0	0
68	1	0.005
69	0	0
70	0	0
71	1	0.005
39	1	0.005

Таблица 4: Данные для построения гистограммы распределения числа срабатываний счетчика за $40~\mathrm{c}.$

Найдем среднеквадратичную ошибку отдельного измерения (для 10 с подсчитыва-

ется автоматически) по формуле (4)

$$\sigma_{\text{отд}_{10}} = \sqrt{\frac{1}{N_1} \sum_{i=1}^{N_1} (n_i - \bar{n})^2} = 3.5601$$

$$\sigma_{\text{отд}_{40}} = \sqrt{\frac{1}{N_2} \sum_{i=1}^{N_2} (n_i - \bar{n})^2} = 7.0342$$

Убедимся в верности формулы (5). Действительно:

$$\sigma_{\text{отд}_{10}} = 3.5601 \approx \sqrt{12.335} = 3.5121$$

$$\sigma_{\text{отд}_{40}} = 7.0342 \approx \sqrt{49.34} = 7.0242$$

Определим долю случаев, когда отклонение от среднего значения не превышают $\sigma_{\text{отд}}$ и $2\sigma_{\text{отд}}$ и занесем результат в таблицу 5.

	Ошибка	Число случаев	Доля случаев, %	Теоретическая оценка
Для $\tau = 10 \ c$.	$\pm \sigma_{\text{отд}_{10}}$	259	64.75	68
$\perp \Delta M R I - 10 C$	$\pm 2\sigma_{\text{отд}_{10}}$	385	96.25	95
Для $\tau = 40 \ c$.	$\pm \sigma_{\text{отд}_{40}}$	69	69	68
$\Delta M T = 40 C.$	$\pm 2\sigma_{\text{отд}_{40}}$	0.0	93	95

Таблица 5: Сравнение доли значений внутри интервалов с теоретическими значениями

Сравним среднеквадратичные ошибки отдельных измерений для двух распределений: $\bar{n}_{10}=12.335;\;\sigma_{\text{отд}_{10}}=3.5601;\;\bar{n}_{40}=49.34;\;\sigma_{\text{отд}_{40}}=7.0342.$ Отсюда видно, что хоть $\sigma_{\text{отд}_{40}}>\sigma_{\text{отд}_{10}},\;$ полуширина второго распределения меньше:

$$\frac{\sigma_{{
m ot} \pi_{10}}}{\bar{n}_{10}} pprox 28.86\% > \frac{\sigma_{{
m ot} \pi_{40}}}{\bar{n}_{40}} pprox 14.26\%$$

Кстати, тот же вывод можно сделать, посмотрев на гистограммы на рисунке 1.

Определмим стандартную ошибку величин \bar{n}_{10} и \bar{n}_{40} и относительную ошибку тех же величин для $N_1=400$ и $N_2=100$ соответственно. По формуле (6):

$$\sigma_{\bar{n}_{10}} = \frac{\sigma_{\text{отд}_{10}}}{\sqrt{N_1}} \approx 0.178$$

Аналогично для \bar{n}_{40}

$$\sigma_{\bar{n}_{40}} = \frac{\sigma_{\text{отд}_{40}}}{\sqrt{N_2}} \approx 0.703$$

Найдем относительную ошибку по первому равенству (8)

Для \bar{n}_{10} :

$$\varepsilon_{\bar{n}_{10}} = \frac{\sigma_{\bar{n}_{10}}}{\bar{n}_{10}} \cdot 100\% \approx 1.443\%$$

И аналогично для \bar{n}_{40} :

$$\varepsilon_{\bar{n}_{40}} = \frac{\sigma_{\bar{n}_{40}}}{\bar{n}_{40}} \cdot 100\% \approx 1.425\%$$

Окончательный результат:

$$n_{ au=10c.}=ar{n}_{10}\pm\sigma_{ar{n}_{10}}=12.335\pm0.178$$
 (частиц)

$$n_{\tau=40c.}=\bar{n}_{40}\pm\sigma_{\bar{n}_{40}}=49.34\pm0.71$$
 (частиц)

6. Заключение. В работе были построены гистограммы распределения числа отсчетов за 10 и 40 с. соответственно, найдены относительные и абсолютные погрешности вычислений, определен итоговый результат: среднее количество частиц за 10 и 40 с., а также количество и процент измерений, находящихся в σ – и 2σ – интервалах относительно среднего значения. Все это позволило продемонстрировать навыки математической обработки полученных данных.