利用Egroff 定理证明定理17.1

叶卢庆 杭州师范大学理学院,学号:1002011005 Email:h5411167@gmail.com 2013. 12. 17

定理 (17.1). 设 f(x,y) 在矩形 [a,b;c,d] 上连续,则

$$I(y) = \int_{a}^{b} f(x, y) dx$$

是 [c,d] 上的连续函数.

证明. 我们证明,函数 I(y) 在任意给定的 $y_0 \in [c,d]$ 上连续.构造函数列

$$f(x,y_0+\Delta y),\cdots,f(x,y_0+\frac{\Delta y}{2^n}),\cdots$$

其中 $\Delta y > 0$. 易得如上函数列在区间 [a,b] 上逐点逼近函数 $f(x,y_0)$. 根据 Egroff 定理,对于任意给定的 $\varepsilon > 0$,都存在任意小的 $\delta > 0$,使得除去 [a,b] 上的一个测度为 δ 的 Lebesgue 可测集 M,如上函数列在 $[a,b]\setminus M$ 上的任意一点 x' 处,都与 $f(x',y_0)$ 的差距小于 ε . 因此数列

$$\int_a^b f(x,y_0+\Delta y),\cdots,\int_a^b f(x,y_0+\frac{\Delta y}{2^n}),\cdots$$

收敛于 $\int_a^b f(x,y_0)$.因此 I(y) 在 [c,d] 上连续.