高等代数习题集

AUGPath

2023年3月7日

第一章 数域

1.1 数域

问题 1.1.1. 设 p_1, p_2, \dots, p_n 为不同的素数, $n \ge 2$, 证明, $\sqrt[n]{p_1 \dots p_k}$ 是无理数.

证明. 由题意, 假设

$$p_1 p_2 \dots p_k = (a/b)^n, \gcd(a, b) = 1, a, b \in \mathbb{Z},$$

那么有 $b^n p_1 p_2 \cdots p_= a^n$, 由于 p_1, \cdots, p_n 都是质数, a, b 互质, 且 $n \ge 2$, 最终可以写成如下形式:

$$\prod_{i=1}^{n_1} q_i^{\alpha_i} \prod_{i=1}^{n_2} p_i = \prod_{i=1}^{n_2} r_i^{\beta_i}$$

分类讨论:

- 如果 p_i 不与相同, 等式不可能成立.
- 如果 p_i 与 q_i 部分相同, 那么 p_i 的次数只有 1, 与剩余部分的 n 次 $(n \ge 2)$ 不同, 因此也不成立.

综上, $p_1p_2...p_k \neq (a/b)^n$, 意味着 $\sqrt[n]{p_1 \cdots p_k}$ 是无理数, 在 p_1, p_2, \cdots, p_n 为不同的素数的条件下.

问题 1.1.2. 试求所有 $\{t \in \mathbb{C}\}$ 使得 $\{a + bt | a, b \in \mathbb{Q}\}$ 是数域.

解答: 假设有 $x_1 = a + bt$, $x_2 = c + dt$, $x_1x_2 = (a + bt)(c + dt) = t(ad + bc) + ac + bdt^2 \in \mathbb{Q}$. 这就要求 t 是二次有理方程系数的根.

问题 1.1.3. 证明: 真包含 ℝ 的数域只有复数域 C.

证明. 考虑反证法: 假设存在一个数域 \mathbb{F} 使得 $\mathbb{R} \subseteq \mathbb{F} \subseteq \mathbb{C}$.

取得 $x=a+bi\in\mathbb{F}$, 且要求 b=0. 由于 $R\subseteq\mathbb{F}$, $a\in P$. 注意到加法不具有封闭性. 因此与假设矛盾.

问题 1.1.4. 设 \mathbb{E}, \mathbb{F} 为数域, 称映射 $\varphi : \mathbb{E} \to \mathbb{F}$ 为 \mathbb{E} 到 \mathbb{F} 的自同态, 如果

$$\varphi(1) = 1, \varphi(a+b) = \varphi(a) + \varphi(b), \varphi(ab) = \varphi(a)\varphi(b)$$

特别的, 若 $\mathbb{F} = \mathbb{E}$, 称 φ 为 \mathbb{E} 的自同构. 证明: 同态 φ 一定是单射.

4

证明. 考虑使用反证法, 假设 φ 不是一个单射, 也就是 $\exists x_1, x_2, x_1 \neq x_2, \varphi(x_1) = \varphi(x_2)$. 由题意, 我们可以表达 x_1 为

$$\varphi(x_1) = \varphi(x_2 + (x_1 - x_2)) = \varphi(x_2) + \varphi(x_1 - x_2)$$

同样可以表达 x2 为

$$\varphi(x_2) = \varphi(x_1 + (x_2 - x_1)) = \varphi(x_1) + \varphi(x_2 - x_1)$$

由于 $\varphi(x_1) = \varphi(x_2)$, 那么 $\varphi(x_2) + \varphi(x_1 - x_2) = \varphi(x_1) + \varphi(x_2 - x_1)$. 也就是 $\varphi(x_2 - x_1) = 0$. 如果 $p = (x_2 - x_1) \neq 0$, 那么 $1 = \varphi(1) = \varphi(p \cdot 1/p) = \varphi(p)\varphi(1/p) = 0$, 矛盾. 因此假设不成立.

问题 1.1.5. 设 \mathbb{E}, \mathbb{F} 为数域, 称 \mathbb{E}, \mathbb{F} 同构, 如果存在可逆映射 $\varphi : \mathbb{E} \to \mathbb{F}$ 使得

$$\varphi(\alpha + \beta) = \varphi(\alpha) + \varphi(\beta), \quad \varphi(\alpha\beta) = \varphi(\alpha)\varphi(\beta).$$

称 φ 为 \mathbb{E} 到 \mathbb{F} 的同构. 特别地, 若 $\mathbb{F} = \mathbb{E}$, 称 φ 为 \mathbb{E} 的自同构.

- (1) 证明: 存在无穷多个不同构的数域;
- (2) 设 $\varphi: \mathbb{E} \to \mathbb{F}$ 为同构, 证明对任意 $\alpha \in Q$, 有 $\varphi(\alpha) = \alpha$.
- (3) 试求 $F = Q(\sqrt{2})$ 的所有自同构

证明.

第二章 行列式

2.1 行列式

第二章 行列式

第三章 矩阵

3.1 矩阵