

FACULDADE DE TECNOLOGIA SENAC RIO						
Curso: Análise e Desenvolvimento de Sistemas	Semestre letivo: 2024.1					
Unidade Curricular: Estatística Aplicada	Módulo: 3					
Professor: Agnaldo Cieslak	Data: 16.05.2024					
Competências a serem avaliadas:	Indicadores de Competência:					
 Desenvolver sistemas computacionais aplicando boas práticas de Qualidade de Software 	Aplica as técnicas de tratamento estatístico de dados e informações importantes para o processo de tomada de decisão.					
Aluno: Erick Calazães da SIlva	Conceito:					

Tarefa 6 – Workshop de exercícios revisórios

Orientação: os exercícios devem ser elaborados com o demonstrativo dos passos de sua resolução.

1. 21) Numa escola é adotado o seguinte critério: a nota da primeira prova é multiplicada por 1, a nota da segunda prova é multiplicada por 2 e a nota da última prova é multiplicada por 3. Os resultados, após somados, são divididos por 6. Se a média obtida por esse critério for maior ou igual a 6,5, o aluno é dispensado das atividades de recuperação. Suponha que um aluno tenha tirado 6,3 na primeira prova e 4,5 na segunda. Quanto precisará tirar na terceira para ser dispensado da recuperação?

R:
$$3x = (6.5*6)-(6.3*1)-(4.5*2) / x = 23.7/3 / x = 7.9$$

- 2. Quais são os tipos de amostragem utilizados em cada situação apresentada abaixo:
 - a) Ao escalar uma comissão para atuar em determinado projeto, uma empresa decidiu selecionar aleatoriamente 4 pessoas brancas, 3 pardas e 4 negras.

R: Amostragem Estratificada Proporcional

 b) Uma professora escreve o nome de todos os seus alunos em pedaços de papel e coloca em uma caixa. Depois de misturá-los, sorteia 10 nomes.

R: Amostragem Aleatória Simples

c) Um administrador de uma sala de cinema faz uma pesquisa com as pessoas que estão na fila de espera para comprar ingresso, entrevistando uma pessoa a cada 10 presentes na fila.

R: Amostragem por conveniência

d) Deseja-se selecionar uma amostra de domicílios da cidade de São Paulo. As ruas estão identificadas pelas letras de A a F. As casas de cada rua estão identificadas pelo nome da rua, seguido por um número. Primeiro foram sorteadas duas ruas (B e F) e depois, foram selecionados ao acaso 50% dos domicílios de cada rua.

R: Amostragem por Conglomerado

- 3. Imagine que você tem 500 cadastros arquivados em sua empresa e você quer uma amostra de 2% desses cadastros. Como você obteria uma amostra sistemática?
 - R: Ordenando os cadastros de forma aleatória e selecionando 1 elemento aleatoriamente a partir da tabela de números aleatórios a cada 50 (k=N/n; X(TNA), X+K, X+2K, ...) até que sejam selecionados 10 elementos (2% * 500).

4. Uma federação encomendou uma pesquisa na cidade de "Limas" sobre a formação escolar e técnica dos trabalhadores da indústria. A cidade tem cerca de 25000 pessoas trabalhando em 160 indústrias. As indústrias foram classificadas de acordo com o número de trabalhadores e mostrados na tabela abaixo:

Nº Trabalhadores	Porte da indústria	Nº de indústrias
1 a 50	pequena	100
51 a 400	média	40
Acima de 400	grande	20

As indústrias foram cadastradas de 001 a 160. O pesquisador deve entrevistar todos os trabalhadores de 5 indústrias.

Qual a característica desta população?

Qual técnica de amostragem deve ser utilizada?

Descreva sucintamente o passo a passo para obter a amostragem correta, apresentando o seu resultado. (quais empresas deveriam ser selecionadas)?

R: A característica da pupulação a ser estudado (parâmetro) é a formação escolar e técnica desses trabalhadores. A técnica a ser utilizada é a Amostragem Estratificada Proporcional, de modo que possa se garantir uma representação adequada da população. Selecionaria- se então indústrias aleatórias seguindo a amostragem abaixo:

Р	100	/160	0,625	*5	3,125	3 indústrias P
M	40	/160	0,25	*5	1,25	1 indústria M
G	20	/160	0,125	*5	0,625	1 indústria G

Total 160 Amostra **5**

9. Uma faculdade apresentava, no final do ano, o seguinte quadro:

PERÍODOS	MATRÍCULAS					
PERIODOS	MARÇO	NOVEMBRO				
10	480	475				
20	458	456				
30	436	430				
40	420	420				
Total	1.794	1.781				

- a. Calcule a taxa de evasão por período.
- b. Calcule a taxa de evasão da faculdade.

	Ma	atrículas				
Períodos	Março	Novembro				
1º	480	475	TxEvasão 1 = (480 -475) / 480 =	0,01	*100% =	1,04
2º	458	456	TxEvasão 2 = (458 -456) / 458 =	0,00	*100% =	0,44
3º	436	430	TxEvasão 3 = (436 -430) / 436 =	0,01	*100% =	1,38
4º	420	420	TxEvasão 4 = (420 -420) / 420 =	0,00	*100% =	0
Total	1794	1781	Txde Evasão Média = SomaTx / 4		=	0,71

10) Medidas as estaturas de 1.017 indivíduos, obtivemos X = 162,2 cm e s = 8,01 cm. O peso médio desses mesmos indivíduos é 52 kg, com um desvio padrão de 2,3 kg. Esses indivíduos apresentam maior variabilidade em estatura ou em peso?

%CV = (S / X) * 100	S	Х	%CV
Estatura	8,01	162,2	4,94
Peso	2,3	52	4,42

R: A estatura apresentou maior variabilidade que o peso.

17) Numa competição de salto triplo, três atletas disputavam apenas uma vaga para uma olimpíada entre faculdades de uma cidade. Para ser aprovado deveria descartar o pior resultado e obter a melhor média. Cada atleta fez 4 tentativas obtendo os seguintes resultados:

Atleta I	16,50 m	15,81 m	16,42 m	16,12 m
Atleta II	13,90 m	17,01 m	16,82 m	15,10 m
Atleta III	15,70 m	16,02 m	16,95 m	17,00 m

- a) Qual deles foi aprovado? R: O atleta III.
- b) Qual deles foi o mais regular nessas quatro tentativas? R: O atleta I.
- c) Considerando todas as medidas, calcule a média e desvio padrão de cada atleta e em conjunto de todos os atletas e compare através do cálculo do coeficiente de variação, comentando os resultados. R: Comparando os dados obtidos, entende-se que o atleta I foi o bastante consistente em seu desempenho, seguido do atleta III e do atleta II, respectivamente.

Atleta	Tentativa 1	Tentativa 2	Tentativa 3	ntativa Tentativa Média descartando 3 4 a menor		Média verdadeira
1	16,5	15,81	16,42	16,12	16,35	16,21
2	13,9	17,01	16,82	15,1	16,31	15,71
3	15,7	16,02	16,95	17	16,66	16,42

σ1^2=	0,08	0,16	0,04	0,01	0,074	σ1=	0,27
σ2^2=	3,27	1,70	1,24	0,37	1,643	σ2=	1,28
σ3^2=	0,51	0,16	0,28	0,34	0,324	σ3=	0,57

%CV1 = (σ1 / u) * 100 =	1,68
%CV2 = (σ2 / u) * 100 =	8,16
%CV3= (σ3 / u) * 100 =	3,47

8. Num laboratório de pesquisa foram medidos os pesos de 16 frutos que fazem parte de um estudo para aumento de produção. Os resultados em gramas foram apresentados na tabela abaixo:

Colheita		Frutos – peso em g						
	1	2	3	4	5	6	7	8
Primeira	648	595	668	580	672	585	675	680
Segunda	680	640	700	710	708	680	705	700

Determine, com uma casa decimal: a) Média b) Mediana c) Moda d) Separatriz (Q1, Q3, D6) e) Amplitude f) Variância g) Desvio-padrão h) Coeficiente de variação i) Faça a representação gráfica das medidas estatísticas (Box-Plot) j) Analise os resultados e registre suas conclusões.

Colheita	Média	Mediana	Moda	Q1	Q3	D6
Primeira	637,9	658	n/a	590	673,5	668
Segunda	690,4	700	680; 700	680	706,5	700

Colheita	Amplitude	Variância	Desvio padrão	Coeficiente de variação
Primeira	100	1902	43,6	6,8
Segunda	70	550	23,4	3,4

R: Analisando o gráfico podemos concluir que a colheita 2 foi muito mais consistente em termos de peso dos frutos analisados. Podemos concluir também que os frutos colhidos na colheita 2 foram mais pesados que os da colheita 1, o que provavelmente no caso demonstraria uma maior qualidade da colheita e da produção no geral.

Amplitude
$$R = X_{(n)} - X_{(1)}$$

Variância
$$s^2 = \sum_{i=1}^n \frac{(x_i - \overline{x})^2}{n-1}$$

Desvio Padrão
$$s=\sqrt{s^2}=\sqrt{\sum_{i=1}^n \frac{(x_i-\overline{x})^2}{n-1}}$$
 amostral

Coeficiente de variação
$$\%CV = \frac{S}{\overline{X}} \cdot 100$$

Coeficiente de variação % $CV = \frac{S}{\overline{X}} \cdot 100$ Indicador de homogeneidade de dados $CV \le 15\% \Rightarrow$ baixa dispersão em relação à média $15\% < CV < 30\% \Rightarrow$ média dispersão em relação à média $CV \ge 30\% \Rightarrow$ alta dispersão em relação à média