Scientific Communication: T_EX, RMarkdown Winter Institute in Data Science

Ryan T. Moore

2023 - 01 - 04

 \LaTeX

RMarkdown

Good scientific communication

▶ conveys ideas, procedures, and results clearly

- conveys ideas, procedures, and results clearly
- ▶ is replicable, portable

- ▶ conveys ideas, procedures, and results clearly
- ▶ is replicable, portable
- ▶ automates frequently-used or tedious operations

- conveys ideas, procedures, and results clearly
- ▶ is replicable, portable
- ▶ automates frequently-used or tedious operations
- (usually) separates content and formatting

- ▶ conveys ideas, procedures, and results clearly
- ▶ is replicable, portable
- ▶ automates frequently-used or tedious operations
- (usually) separates content and formatting
- ▶ allows the author control . . .

- conveys ideas, procedures, and results clearly
- ▶ is replicable, portable
- automates frequently-used or tedious operations
- ▶ (usually) separates content and formatting
- ▶ allows the author control ...
- but supplies legible defaults and structure that allow the reader (and author) to focus on content

A brief history of languages

▶ Plain T_EX (Knuth): 1978 (docs for any machine)

- ▶ Plain T_EX (Knuth): 1978 (docs for any machine)
- ► LATEX (Lamport): 1983 (easier TEX: \section{}, ...)

- ▶ Plain T_EX (Knuth): 1978 (docs for any machine)
- ► LATEX (Lamport): 1983 (easier TeX: \section{}, ...)
- ▶ Sweave: ≈ 2000 (integrate R and T_EX)

- ▶ Plain T_EX (Knuth): 1978 (docs for any machine)
- ► LATEX (Lamport): 1983 (easier TEX: \section{}, ...)
- ▶ Sweave: ≈ 2000 (integrate R and T_EX)
- ► Markdown (Gruber): 2004 (lightweight, legible)

- ▶ Plain T_EX (Knuth): 1978 (docs for any machine)
- ► LATEX (Lamport): 1983 (easier TeX: \section{}, ...)
- ▶ Sweave: ≈ 2000 (integrate R and T_EX)
- ► Markdown (Gruber): 2004 (lightweight, legible)
- ▶ knitr (Xie): 2012 (integrate R into anything)

- ▶ Plain T_EX (Knuth): 1978 (docs for any machine)
- ► LATEX (Lamport): 1983 (easier TeX: \section{}, ...)
- ▶ Sweave: ≈ 2000 (integrate R and T_EX)
- ► Markdown (Gruber): 2004 (lightweight, legible)
- ▶ knitr (Xie): 2012 (integrate R into anything)
- ► RMarkdown: (a knitr extension)

LATEX

LATEX

From the LATEX Project (https://www.latex-project.org):

LATEX is a high-quality typesetting system; it includes features designed for the production of technical and scientific documentation. LATEX is the defacto standard for the communication and publication of scientific documents. LATEX is available as free software.

Consider

(E_i ^100 x_i) / (x^2 + theta
$$sqrt(z)$$
)

Consider

```
(E_i ^100 x_i) / (x^2 + theta sqrt(z))
```

This is difficult to read.

Consider

$$(E_i ^100 x_i) / (x^2 + theta sqrt(z))$$

This is difficult to read.

On the other hand,

$$\frac{\sum_{i=1}^{100} x_i}{x^2 + \theta \sqrt{z}}$$

Consider

$$(E_i ^100 x_i) / (x^2 + theta sqrt(z))$$

This is difficult to read.

On the other hand,

$$\frac{\sum_{i=1}^{100} x_i}{x^2 + \theta \sqrt{z}}$$

▶ Historically: difficult, bad spacing, etc. on WYSIWYGs

Consider

$$(E_i ^100 x_i) / (x^2 + theta sqrt(z))$$

This is difficult to read.

On the other hand,

$$\frac{\sum_{i=1}^{100} x_i}{x^2 + \theta \sqrt{z}}$$

- ▶ Historically: difficult, bad spacing, etc. on WYSIWYGs
- ▶ Now, macOS's Pages requests your LATEX

Replicable, portable

LATEX is plain text. You can open it in any text editor.

Replicable, portable

LATEX is plain text. You can open it in any text editor.

You could open/compile the first LaTeX document.

Replicable, portable

LATEX is plain text. You can open it in any text editor.

You could open/compile the first LATEX document.

.doc is actually 4 different file formats!

Don't make a Table of Contents.

Don't make a Table of Contents.

Just \tableofcontents.

Don't make a Table of Contents.

Just \tableofcontents.

In LaTeX documents, the \ prefaces a command.

Don't make a Table of Contents.

Just \tableofcontents.

In LATEX documents, the \ prefaces a command.

In LaTeX, the $\{\ \}$ enclose arguments:

\command{arg1}

Don't make a Table of Contents.

Just \tableofcontents.

In \LaTeX documents, the \backslash prefaces a command.

In \LaTeX , the { } enclose arguments:

\command{arg1}

In LATEX, the [] enclose (opt) further params: $\command[param1,param2]{arg1}$

Don't compile a bibliography, or reformat it.

1. Create a .bib file of sources

- 1. Create a .bib file of sources
- 2. Each source has a citation key (E.g., moore15)

- 1. Create a .bib file of sources
- 2. Each source has a citation key (E.g., moore15)
- 3. Refer to the key to cite

- 1. Create a .bib file of sources
- 2. Each source has a citation key (E.g., moore15)
- 3. Refer to the key to cite
- 4. Include .bib file name, so LATEX/knitr finds refs

- 1. Create a .bib file of sources
- 2. Each source has a citation key (E.g., moore15)
- 3. Refer to the key to cite
- 4. Include .bib file name, so LATEX/knitr finds refs
- 5. (Include .bst to adjust reference style)

Don't compile a bibliography, or reformat it.

Don't compile a bibliography, or reformat it.

Write "One should read \cite{moore2015}.", then add

Don't compile a bibliography, or reformat it.

Write "One should read \cite{moore2015}.", then add

\bibliographystyle{apsa-leeper}
\bibliography{my_bib}

Don't compile a bibliography, or reformat it.

Write "One should read \cite{moore2015}.", then add

\bibliographystyle{apsa-leeper}
\bibliography{my_bib}

Which will render as "One should read Moore (2015)".
and

Moore, Ryan T. "Overcoming Barriers to Heterogeneous-Group Learning in the Political Science Classroom". PS: Political Science & Politics, 48(1):149–156, 2015.

LATEX

To build documents into .pdf, need an installation of T_EX . You need a T_EX engine for processing.

LATEX

To build documents into .pdf, need an installation of T_EX .

You need a TeX engine for processing.

Or tinytex.

Or Overleaf.

LATEX

To build documents into .pdf, need an installation of T_EX .

You need a TEX engine for processing.

Or tinytex.

Or Overleaf.

 $\mathtt{R} o \mathtt{RStudio} \ \mathrm{analogous} \ \mathrm{to} \ \mathtt{TeX} \ \mathtt{build} o \mathtt{TeX} \ \mathtt{editor}$

tinytex

If you don't have a TEX build, try tinytex. (See http://www.ryantmoore.org/files/ht/httinytex.pdf)

tinytex

```
If you don't have a TeX build, try tinytex. (See http://www.ryantmoore.org/files/ht/httinytex.pdf)
```

```
install.packages("rmarkdown")
install.packages("tinytex")
library(rmarkdown)
tinytex::install_tinytex()
```

tinytex

If you don't have a TeX build, try tinytex. (See http://www.ryantmoore.org/files/ht/httinytex.pdf)

```
install.packages("rmarkdown")
install.packages("tinytex")
library(rmarkdown)
tinytex::install_tinytex()
```

Or, just create .html files instead, and print to .pdf.

Resources

- ▶ "The Not So Short Introduction to LaTeX 2ε " (Oetiker, et al.)
- ► "The Comprehensive LATEX Symbol List" (Pakin $\approx 15{,}000!$)
- ► Detexify http://detexify.kirelabs.org/classify.html
- ➤ Overleaf (https://www.overleaf.com)

RMarkdown

First, a quick example!

- ► Create .Rmd file
 - ightharpoonup RStudio \leadsto File \leadsto New file \leadsto R Markdown
- ► Add name, title to preamble
- ► Compile
- ► Edit, compile

RMarkdown

RMarkdown is

- ► light
- ► legible
- ► literate
- ► LATEX

1. no huge build over R

- 1. no huge build over R
- 2. less "ink"

- 1. no huge build over R
- 2. less "ink"
- 1. Item 1
- 2. Item 2

- no huge build over R
 less "ink"
- 1. Item 1
- 2. Item 2

VS.

```
\begin{enumerate}
\item Item 1
\item Item 2
\end{enumerate}
```

RMarkdown: legible

```
I am **serious**
vs.
I am \bf{serious}
or
I am {\bf serious}
```

RMarkdown: legible

```
T am **serious**
VS.
I am \bf{serious}
or
I am {\bf serious}
(Better for tables, figures, etc. Harder to see/adjust aspects
of presentation)
```

▶ Code in these notes is run, output is recreated

- ▶ Code in these notes is run, output is recreated
- ▶ Programming (data analysis) is **in** the text document

- ▶ Code in these notes is run, output is recreated
- ▶ Programming (data analysis) is **in** the text document

- ▶ Code in these notes is run, output is recreated
- ▶ Programming (data analysis) is **in** the text document

Look, three plus four is 7.

- ▶ Code in these notes is run, output is recreated
- ▶ Programming (data analysis) is **in** the text document

Look, three plus four is 7.

What I typed above:

Look, three plus four is r 3 + 4.

This literacy is great for papers: analysis is in your paper. No copy-paste, update figure, etc.

This literacy is great for papers: analysis is *in* your paper. No copy-paste, update figure, etc.

Often want to *see* the code and the (somewhat more) raw results.

This literacy is great for papers: analysis is in your paper. No copy-paste, update figure, etc.

Often want to *see* the code and the (somewhat more) raw results.

That makes this literacy perfect for reports ("notebooks").

In a paper, format the math and do the calculation:

Look: 3 + 4 = 7.

In a paper, format the math and do the calculation:

Look: 3 + 4 = 7.

Above I typed:

Look: \$3 + 4 = r 3 + 4.

In a paper, format the math and do the calculation:

Look: 3 + 4 = 7.

Above I typed:

Look: \$3 + 4 = r 3 + 4.

(Warning: formatting the line above was a challenge.)

Valid LaTeX will almost always knit well.

RMarkdown

For more formatting and chunk options, download the full

http://www.ryantmoore.org/files/class/introPolResearch/PS_Rmd_template_full.Rmd

or the simpler

http://www.ryantmoore.org/files/class/introPolResearch/PS_Rmd_template_simple.Rmd

Rmd vs. the Console

Knit .Rmd file:

▶ R runs the code from top to bottom of .Rmd file

Rmd vs. the Console

Knit .Rmd file:

- ▶ R runs the code from top to bottom of .Rmd file
- ▶ Does not run other code; does not look in Console's workspace

Rmd vs. the Console

Knit .Rmd file:

- ▶ R runs the code from top to bottom of .Rmd file
- ➤ Does not run other code; does **not** look in Console's workspace

Rmd vs. the Console

Knit .Rmd file:

- ▶ R runs the code from top to bottom of .Rmd file
- ➤ Does not run other code; does **not** look in Console's workspace
- ▶ .Rmd file needs to be entirely self-contained

Rmd vs. the Console

Knit .Rmd file:

- ▶ R runs the code from top to bottom of .Rmd file
- ➤ Does not run other code; does **not** look in Console's workspace
- Rmd file needs to be entirely self-contained
- ▶ Set working directory, read data, create intermediate objects, etc. within the .Rmd file

▶ If you click, R looks in current workspace for objects, prints results to console or plotter, and reprints them in the confines of your .Rmd

- ▶ If you click, R looks in current workspace for objects, prints results to console or plotter, and reprints them in the confines of your .Rmd
- ▶ Behavior is "notebook-like". However, objects are not really in your .Rmd file, can be created out of order, are not part of the compiled/knit output

- ▶ If you click, R looks in current workspace for objects, prints results to console or plotter, and reprints them in the confines of your .Rmd
- ▶ Behavior is "notebook-like". However, objects are not really in your .Rmd file, can be created out of order, are not part of the compiled/knit output
- ▶ When you compile/knit to create an output file, only code that is run is code in your .Rmd file, from top to bottom

- ▶ If you click, R looks in current workspace for objects, prints results to console or plotter, and reprints them in the confines of your .Rmd
- ▶ Behavior is "notebook-like". However, objects are not really in your .Rmd file, can be created out of order, are not part of the compiled/knit output
- ▶ When you compile/knit to create an output file, only code that is run is code in your .Rmd file, from top to bottom
- ▶ This notebook-like feature is an aspect of RStudio that is not *inherent* in .Rmd (which could be compiled from a command line outside of RStudio, e.g.). To avoid confusion about the state, knit .Rmd file and look at output, rather than using green arrow.

Rmd + the Console: Love the Green Bar

Rmd + the Console: Love the Green Bar

"Run all chunks above" at Console.

LATEX

(I know, you're wondering ...)

LTEX

(I know, you're wondering ...)

How do I format LATEX in LATEX?

LTEX

(I know, you're wondering ...)

How do I format LATEX in LATEX?

\LaTeX

ATEX

(I know, you're wondering ...)

How do I format LaTeX in LaTeX?

\LaTeX

How to format "LATEX is great."?

$E\!\!\!\!/T_E\!\!\!\!X$

(I know, you're wondering ...)

How do I format LATEX in LATEX?

\LaTeX

How to format "LATEX is great."?

With a space in LATEX: \LaTeX~ is great.

With a space in RMarkdown: \LaTeX\ is great.

The Core Transformation Functions Quiz

Load the gss_cat data in the forcats package:

```
library(forcats)
data("gss_cat")
```

Create a .Rmd file, write code¹ in chunks to

- 1. Sort gss_cat by the values of tvhours (largest first). Store this as gss_cat, and show the first 10 rows.
- 2. Create a new var birthyear each resp's year minus age and attach it as column of gss_cat. Show summary(gss_cat\$birthyear) and dimensions of gss_cat.
- 3. Create df gss_cat_tv, which has only the rows of gss_cat where tvhours > 3?
- 4. Calculate the mean value of tvhours in gss_cat within categories of relig. Sort this summary.

¹filter(), arrange(), group_by(), ungroup(), select(), rename(),
mutate(), transmute(), summarise()