CS 103: Mathematical Foundations of Computing Problem Set #6

Quang Nguyen May 30, 2022

Due Friday, November 5 at 2:30 pm Pacific

Do not put your answers to Problems 1, 2, and 7 in this file. You'll submit those separately on Gradescope. Here's a quick reference of symbols you may want to use in this problem set.

- Alphabets are written as Σ .
- The set of all strings over Σ is denoted Σ^*
- The empty string is written as ε . The "var" here refers to a "variant" of the letter epsilon; that's the one we use in this class.
- Subscripts are done as is q_{137} ; superscripts are done as a^{137} .
- You can make text render like a typewriter in text mode or in math mode.
- The Greek letter ρ appears in Q6.
- The Greek letter δ appears in Q7.

Problem Three: $\wp(\Sigma^*)$

The set of all subsets of the set of all strings composed from letters in Σ .

Problem Four: Much Ado About Nothing, Part II

i.

Yes. For example, L is the set of palindromes over the alphabet.

ii.

Yes. For example, L is the set of strings s ending in a.

iii.

No. This is not defined because ε is a string, whereas L is a set.

iv.

No. This is not defined because ε is a string, whereas L is a set.

v.

No. This is not defined because ε is a string, whereas \emptyset is a set.

vi.

No. Because \emptyset is a set containing no element, whereas $\{\varepsilon\}$ is a set containing one element which is an empty string ε .

Problem Five: Hard Resets

Fill in the table and blank to Problem Five below.

state	а	b
$\star \{q_s, q_0, q_1, q_2\}$	$\{q_1,q_2\}$	$\{q_0,q_1,q_2\}$
$^{\star}\{q_0, q_1, q_2\}$	$\{q_1,q_2\}$	$\{q_0,q_1,q_2\}$
$\{q_1,q_2\}$	$\{q_1,q_2\}$	$\{q_0,q_2\}$
$^{\star}\{q_0,q_2\}$	$\{q_1,q_2\}$	$\{q_0,q_1\}$
$^{\star}\{q_0,q_1\}$	$\{q_1\}$	$\{q_1,q_2\}$
$\{q_1\}$	$\{q_1\}$	$\{q_2\}$
$\{q_2\}$	$\{q_2\}$	$\{q_0\}$
*{q ₀ }	$\{q_1\}$	$\{q_1\}$

Sample hard reset string: abbabb.

Problem Six: Induction on Strings

i. Fill in the blanks to Problem Six, part i. below.

```
1. \rho(\mathbf{r}) = \mathbf{r}.

2. \rho(\mathbf{sr}) = \mathbf{rs}.

3. \rho(\mathbf{rrs}) = \mathbf{srr}.

4. \rho(\mathbf{r}^{100}\mathbf{s}^{100}) = \mathbf{s}^{100}\mathbf{r}^{100}.
```

ii. Fill in the blanks to Problem Six, part ii. below.

Theorem: For any string $w \in \Sigma^*$, we have $|\rho(w)| = |w|$.

Proof: Let P(w) be the statement " $|\rho(w)| = |w|$." We will prove by induction that P(w) holds for all $w \in \Sigma^*$, from which the theorem follows.

As a base case, we prove $P(\varepsilon)$, namely, that $|\rho(\varepsilon)| = |\varepsilon|$. This is true because we know, by definition, that $\rho(\varepsilon) = \varepsilon$.

For our inductive step, pick some $x \in \Sigma^*$ and $a \in \Sigma$ and assume P(x) is true, meaning that $|\rho(x)| = |x|$. We need to show P(xa) is true, that $|\rho(xa)| = |xa|$. To see this, note that

$$|\rho(xa)| = |a\rho(x)|$$

$$= |\rho(x)| + 1$$

$$= |x| + 1 \qquad \text{(by our IH)}$$

$$= |xa|.$$

This means that $|\rho(xa)| = |xa|$, so P(xa) holds, completing the induction.

iii.

Because they're equivalent. We've put the universal quantifier for all $w \in \Sigma^*$ to make a predicate.

iv.

Theorem: For all strings $w, z \in \Sigma^*$, we have $\rho(zw) = \rho(w)\rho(z)$.

Proof: Let P(w) be the statement "for any $z \in \Sigma^*$, we have $\rho(zw) = \rho(w)\rho(z)$ " We will prove by induction that P(w) holds for all $w \in \Sigma^*$, from which the theorem follows.

As a base case, we prove $P(\varepsilon)$, namely, that for any $z \in \Sigma^*$, we have $\rho(z\varepsilon) = \rho(\varepsilon)\rho(z)$. Pick an arbitrary $t \in \Sigma^*$, we have to show that $\rho(t\varepsilon) = \rho(\varepsilon)\rho(t)$. This is true because $\rho(t\varepsilon) = \rho(t)$ and $\rho(\varepsilon)\rho(t) = \varepsilon\rho(t) = \rho(t)$.

For our inductive step, assume for some arbitrary $k \in \Sigma^*$ that P(k) is true, meaning that for any $z \in \Sigma^*$, we have $\rho(zk) = \rho(k)\rho(z)$. Pick an arbitrary $a \in \Sigma$. We need to show P(ka), meaning that for any $z \in \Sigma^*$, we have $\rho(zka) = \rho(ka)\rho(z)$. Pick an arbitrary $u \in \Sigma^*$. We have to show that $\rho(uka) = \rho(ka)\rho(u)$. Notice that

$$\rho(uka) = a\rho(uk)$$

$$= a\rho(k)\rho(u)$$

$$= \rho(ka)\rho(u).$$

Therefore, P(ka) holds, completing the induction.

Problem Eight: Concatenation, Kleene Stars, and Complements

i.

Lemma: If L_1 and L_2 are nonempty, finite languages, then $|L_1L_2| = |L_1||L_2|$.

Theorem: If L is nonempty, finite language and k is a positive natural number, then $|L|^k = |L^k|$ **Proof:** Pick an arbitrary nonempty, finite language L. Let P(k) be a statement $|L|^k = |L^k|$. We will prove by induction that P(k) holds for all natural numbers k, from which the theorem follows.

As our base case, we prove P(0), meaning that $|L|^0 = |L^0|$. This is true because $|L|^0 = 1$ and $|L^0| = |\{\varepsilon\}| = 1$.

For our inductive step, assume for some arbitrary natural number t that P(t) is true, meaning that $|L|^t = |L^t|$. We need to show P(t+1), meaning that $|L|^{t+1} = |L^{t+1}|$. Notice that

$$\begin{split} |L|^{t+1} &= |L||L|^t \\ &= |L||L^t| \\ &= |LL^t| \\ &= |L^{t+1}|. \end{split}$$

Therefore, P(t+1) holds, completing the induction.