SIEMENS

PLL with I²C Bus for AM/FM Receivers

SDA 2121-2

Preliminary Data

CMOSIC

Features

- High input sensitivity (50 mV_{rms} on FM and 30 mV_{rms} on AM)
- High input frequencies (150 MHz on FM and 25 MHz on AM)
- Extremely fast phase detector with very short anti-backlash pulses
- I²C bus

Large divider rations:

- 16 Bit N divider

- 16 Bit R divider

Divider factor without vacancy

OSC IN 2-65535 AM IN 2-65535 FM IN /2 2-65535

- Adjustable raster width (< 1 kHz for AM, < 12.5 kHz for FM)*
- Two-pin oscillator provides connection of a piezoelectric crystal for reference frequency generation
- Switchable phase detector polarity
- Switchable phase detector current
- One phase detector output each for FM and AM with the corresponding analog phase detector outputs
- Open drain switching outputs for 10 V

Туре	Ordering Code	Package		
SDA 2121-2	Q67100-H5025	P-DIP-20		
SDA 2121-2X	Q67100-H5026	P-DSO-20		

Raster width = Input frequency / divider factor
[On FMIN input frequency / 2 is to be used due to the prescaler]

01.90

The SDA 2121-2 is an integrated circuit in CMOS technology which has been especially designed for application in radio equipment.

The SDA 2121-2 is a complex PLL component in CMOS technology for processor controlled frequency synthesis.

Function and dividing ratios are selected via an I²C bus interface (licensed by Philips) at pins SCL, SDA and A0. The chip address is set via address input A0. Thus it is possible to address two components via the I²C bus. The reference frequency can be applied at input OSC IN or it can be generated internally by a piezoelectric crystal. Its maximum value is 15 MHz. The VCO frequency is applied at input FM or AM respectively. Its maximum value is 150 MHz at the FM input and 25 MHz at the AM input. The FM input signal is divided by two by an asynchronous prescaler.

Outputs PDFM and PDAM supply the phase detector signal with especially short anti-backlash pulses to neutralize even the smallest phase deviations. Polarity and current of the PD outputs can be switched. The component also has corresponding analog phase detector outputs and lock-detect output (LD).

Additional outputs are the open-drain switching outputs (SA 1, 2, 3, AM/FM) with a dielectric strength of 10 V and a port output (PRT).

Pin Configuration

(top view)

Pin Definitions and Functions

Pin No.	Symbol	Function
1	V DD	Supply voltage
2	SCL	I ² C bus clock
3	SDA	I ² C bus data input and acknowledge output
4	A0	Address input
5	PRT	Port output
6	SA 1	Switch output (open drain output for 10 V)
7	SA 2	Switch output (open drain output for 10 V)
8	SA 3	Switch output (open drain output for 10 V)
9	AM/FM	Switch output (open drain output, 10 V) switching AM/FM operation
10	FM1	FM input
11	GND2	Ground connection for AM and FM input amplifier
12	AMI	AM input
13	PDFMA	Analog output corresponding to the phase detector output, in test operation open drain output of FRN and FVN signal
14	PDFM	Phase detector output for AM or FM active or tristate de- pending on operating mode
15	PDAM	Phase detector output for AM or FM active or tristate de- pending on operating mode
16	PDAMA	Analog output corresponding to the phase detector output, in test operation open drain output of FRN and FVN signal
17	LD	Lock-detect output
18	OSCI	Connection for reference oscillator input and output
19	OSCQ	Connection for reference oscillator input and output
20	GND1	Ground

Block Diagram

Absolute Maximum Ratings

Parameter	Symbol		Limit Values			
		min.	typ.	max.		
Supply voltage	V_{DD}	- 0.3		6	٧	
Input voltage	Vı	- 0.3		V _{DD} + 0.3	٧	
Power dissipation per output	Pa			10	mW	
Total power dissipation	P _{tot}			300	mW	
Storage temperature	Tstg	- 40		125	°C	
Output voltage switch outputs	Vон			10.5	V	
		1				

Operating Range

Supply voltage	V_{DD}	4.5	5	5.5	V
Supply current	IDD		6	10	mA
Ambient temperature	TA	-25		85	°C
Output voltage switch outputs	VQH			10	V

Test conditions for supply voltage

- $V_{DD} = 5.5 \text{ V}$
- T_A = 25 °C outputs not connected
- No test operation
- Max. permissible operating frequency on AM, FM, OSC IN = 15 MHz
- V_{IFM} , V_{IAM} , $V_{\text{IOSCIN}} = 100 \text{ mVrms}$
- Minimal divider ratios
- PLL in in-lock condition

Characteristics

 $T_A = 25$ °C; all voltages referenced to GND

Parameter Symbol	Symbol	Limit Values			Unit	Test Condition
	min.	typ.	max.			
Input Signals SC	N 004 40					

Input Signals SCL, SDA, A0

H-input voltage	Vıн	0.7×V DD	V_{DD}	V	
L-input voltage	VIL	0	1.5	V	
Input capacitance	C1		10	pF	
Input current	II		10	μ A	VI = V DD

Input Signal OSC IN

		MHz	$V_{DD} = 4.5 \text{ V}$
Input voltage V_{\perp} 100		mVrms	(sine wave)
Input capacitance C1	10	pF	,
Input current I1	30	μ A	$V_{I} = V_{DD}$

Input Signal AM

Input frequency Input voltage	f_{V_1}	0.5 30	25	MHz mVrms	$V_{DD} = 4.5 \text{ V}$ (sine wave)
Input capacitance	,	30	10	pF	(Sine wave)
Input current	I		30	μА	$V_{\parallel} = V_{\text{DD}}$

Input Signal FM

Input frequency	f	10	150	MHz	$V_{DD} = 4.5 \text{ V}$
Input voltage	V_1	50		mVrms	(sine wave)
Input capacitance	C_{\perp}		10	рF	,
Input current	I_1		30	μA	$V_{I} = V_{DD}$

Characteristics (cont'd)

 $T_A = 25$ °C; all voltages referenced to GND

Parameter	Symbol		Limit Val	ues	Unit	Test Condition
		min.	typ.	max.		
Output signal PDFM	(tristate o	utput)				
PD current value A	Ia	340	± 570	800	μА	<i>V</i> _{DD} = 5 V
PD current value B	IQ	85	± 145	205	μ Α	$T_A = -25^{\circ}C \dots 60^{\circ}C$
PD leakage current	I _Q		± 50	500	nA	
PD current value B	/a	70	± 115	160	μ Α	$V_{DD} = 5 \text{ V}$ $T_{A} = -25^{\circ} \text{ C}$ 60° C
PD current value A PD current value B	Ia Ia	70 15	± 115 ± 30	160 45	μ Α μ Α	$V_{DD} = 5 \text{ V}$ $T_{A} = -25^{\circ} \text{ C} \dots 60^{\circ} \text{ C}$
PD leakage current	Ia		± 50	500	nA	no load at the output
Output Signal PDAN		(analog	output)			
H-output current L-output current	IQH I QL	0.1	1 0.5	2.5	mA mA	$V_{PD} = V_{DD} = 5 \text{ V}$ $V_{PD} = \text{GND}$

Characteristics (cont'd)

TA = 25 °C; all voltages referenced to GND

Parameter	Symbol	Limit Values			Unit	Test Condition
		min. typ. max	max.			
Output Signal LD (or	en drain o	utput)				
L-output signal	VaL			0.4	V	IQL = 3 mA VDD = 5 V
L-output pulse width	t QWL		30		ns	$C_L = 20pF$

Output Signal PRT

V _{QH}	$V_{\text{DD}} - 0.4$	0.4	V	I _{QH} = 1 mA I _{QL} = 1 mA
V QL V QL		0.4	V	$I_{OL} = 1 \text{ mA}$ $I_{OL} = 0.1 \text{ mA}$
	V_{QL}	Val	Val 0.4	Val 0.4 V

L-output voltage	V_{QL}	0.4	V	IQL = 1 mA
				$V_{DD} = 5 \text{ V}$
	VQL	0.1	٧	$I_{QL} = 0.1 \text{ mA}$

Output Signal SDA

L-output voltage	VQL		0.4	٧	IQL = 3 mA
					$V_{\text{DD}} = 5 \text{ V}$
					<i>C</i> ∟ = 400 pF

Test Circuit

Application Circuit

Diagram Status Programming Table

Status Bit

Bit		0	1
1	PRT	L	Н
2	SA 1	L	H
3	SA 2	L	H
4	SA 3	L	H
5	AM/FM	L (FM operation)	H (AM operation)*
6	PD analog/test	PD analog	test**
7	PD polarity	neg.	pos.
8	PD current	value B	value A (AM or FM operation)

^{*}When the switch output FM is switched from "H" to "L" via bit 5 (FM), operation is switched from AM to FM

PDAM is in tristate and vice versa

^{**}In test operation PDFMA and PDAMA outputs are switched as FVN and FRN outputs respectively

I²C Bus Transfer Protocol

Programming Example

Transfer Protocol for I2C Bus

I²C Bus Timing, PRT, SA, AM/FM

Parameter	Symbol	Limi	Unit	
		min.	max.	
Clock frequency	fscL	0	100	kHz
Hold time data to SCL _{LOW}	<i>t</i> HD;DAT	0		μS
Inactive time prior to next transfer	<i>t</i> BUF	4.7		μS
Hold time during start condition (first CLOCK pulse is generated after this time period)	t́HD;STA	4.0		μS
LOW clock phase	tLOW	4.7		μS
HIGH clock phase	<i>t</i> HIGH	4.0		μS
Set-up time for DATA	₹SU;DAT	250		nS
Rise time for SDA and SCL signal	<i>t</i> R		1	μS
Fall time for SDA and SCL signal	<i>t</i> F		300	nS
Set-up time for SCL clock during STOP condition	fsu;sto	4.7		μS
PRT delay time relative to STOP condition	<i>t</i> D		500	μS

All values are referenced to specified input levels $V \bowtie$ and $V \bowtie$.

Pulse Diagram

Phase Detector/Lock Detector

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.