Problem 1 (Hatcher 1.3:10): Find all the connected 2-sheeted and 3-sheeted covering spaces of $S^1 \vee S^1$ up to isomorphism of covering spaces (without basepoints).

Proof. There are three 2-sheeted coverings

and seven 3-sheeted coverings; three of them are the 2-sheeted coverings with another copy of $S^1 \vee S^1$, and the remaining four are below:

Problem 2 (Hatcher 1.3:11): Construct finite graphs X_1 and X_2 having a common finite-sheeted covering space $\tilde{X}_1 = \tilde{X}_2$, but such that there is no space which X_1 and X_2 both cover.

Proof. Consider the two graphs A and B pictured below:

Both have valence 3, but they cannot both cover any other graph: suppose that both cover some graph G. Because A covers G, G has a loop. But because G covers G, there can be no loop unless G has only one vertex. If G is a single vertex, then all its edges are loops, but then it cannot have valence 3 (since 3 is odd), so this is impossible.

On the other hand, they can both be covered by the same graph. To see how, consider the two coverings below:

Problem 3 (Hatcher 1.3:13): Determine the covering space of $S^1 \vee S^1$ corresponding to the subgroup of $\pi_1(S^1 \vee S^1)$ generated by the cubes of all elements. The covering space is 27-sheeted and can be drawn on a torus so that the complementary regions are nine triangles with edges labeled aaa, nine triangles with edges labeled bbb, and nine hexagons with edges ababab.

Proof. The answer is given below. Red denotes a, blue denotes b, and opposite edges of the square are identified (making it a torus). Note that the covering is 27-sheeted because there are 27 vertices and they all have the same valence:

The red and blue triangles indicate that a^3, b^3 are in this fundamental group, the hexagons give loops for $(ab^{-1})^3$, and the torus structure gives loops for $(ab)^3$.

In fact for any word w, w^3 is a loop: let w be some word in a, b, a^{-1}, b^{-1} . Since a^2, a^{-1} have the same start and endpoints, we can consider the case where w is just a string $a^{\pm}b^{\pm}a^{\pm}\dots b^{\pm}$. Geometrically, each ab^{-1} or $b^{-1}a$ denotes a right turn while each ba^{-1} or $a^{-1}b$ denotes a left turn, and $ab, a^{-1}b^{-1}, ba, b^{-1}a^{-1}$ are straight. Thus each word w has some "net rotation" that is either two right turns, two left turns, or straight (this is not hard to show).

In the cases where w is not straight, w^3 forms a path with threefold rotational symmetry, and is therefore a loop. When w is straight, w must have an even number of letters, so w^3 has a multiple of 6 letters, and thus it cycles around the torus to form a loop.

Problem 4 (Hatcher 1.3:18): For a space X that is path-connected, locally path-connected, and semilocally simply-connected, call a covering space $\hat{X} \to X$ abelian if it is normal and has abelian deck transformation group. Show that X has a 'universal' abelian covering space (i.e. one that covers every other abelian covering space of X) and it is unique up to isomorphism. Describe this covering space explicitly for $X = S^1 \vee S^1$ and $X = S^1 \vee S^1$.

Proof. The universal abelian covering space is the one whose fundamental group is the Abelianization of $\pi_1(X,x)$. The Deck transformation group is $\pi_1(X,x)/p_*(\pi_1(\hat{X},\hat{x}))$, and if this is Abelian then $p_*(\pi_1(\hat{X},\hat{x}))$ must include the commutator subgroup of $\pi_1(X,x)$, and in the maximal case it must be exactly the commutator subgroup.

For $S^1 \vee S^1$, the covering space is an infinite square grid, and the deck group is the translation group $\mathbb{Z} \times \mathbb{Z}$; for $S^1 \vee S^1 \vee S^1$ it is an infinite triangle grid.

Problem 5 (Hatcher 1.3:23): Show that if a group G acts freely (no fixed points) and properly discontinuously (i.e. every $x \in X$ has a neighborhood U with only finitely-many g s.t. $U \cap g(U) \neq \emptyset$) on a Hausdorff space X, then the action is a covering space action.

Proof. First, I claim that if G acts on X freely, then for every $g \in G$ and $x \in X$ there is some neighborhood U_g of x such that $x \notin g(U_g)$. To get this neighborhood, let V_1, V_2 be neighborhoods of x, g(x) which are disjoint (X is Hausdorff) and take $U_g = V_1 \cap g^{-1}(V_2)$.

Using this fact, if U is such that only finitely many a finite subset $G' \subset G$ has $g(U) \cap U \neq \emptyset$, then take the intersection of U_g for $g \in G'$ to get a neighborhood U_G of x for which $x \notin g(U_G)$ for any $g \in G$. Then by Hausdorff again, take a neighborhood $U' \subset U_G$ of x disjoint from $g(U_G)$ for $g \in G'$, and thus for all $g \in G$. The fact that this U' exists for all x shows that G is a covering space action.

Problem 6 (Hatcher 1.3:25): Let $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation $\varphi(x,y) = (2x,y/2)$. Let $X := \mathbb{R}^2 - \{0\}$. \mathbb{Z} acts on X by $n : (x,y) \mapsto \varphi^n(x,y)$. Show that this action is a covering space action and compute $\pi_1(X/\mathbb{Z})$. Show that the orbit space X/\mathbb{Z} is non-Hausdorff and describe how it is a union of four subspaces homeomorphic to $S^1 \times \mathbb{R}$, coming from the complementary components of the x-axis and y-axis.

Proof. First, this is a covering space action. One can check that the open square $(\frac{1}{2}x, 2x) \times (\frac{1}{2}y, 2y)$ is disjoint from its image under φ^n for $n \neq 0$.

Knowing that this is a covering space action, it implies that $p: X \to X/\mathbb{Z}$ by $(x,y) \mapsto \varphi^{\mathbb{Z}}(x,y)$ is a normal covering. And X is both path-connected and locally path-connected, so we have

$$\mathbb{Z} = \pi_1(X/\mathbb{Z})/p_*(\pi_1(X)) = \pi_1(X/\mathbb{Z})/\mathbb{Z}$$

using the fact that $p_*(\mathbb{Z}) = \mathbb{Z}$, since φ has positive determinant and thus preserves orientation. This produces the short exact sequence

$$1 \to \mathbb{Z} \to \pi_1(X/\mathbb{Z}) \to \mathbb{Z} \to 1$$

which, because $\pi_1(X/\mathbb{Z})$ is Abelian, is a splitting, which gives $\pi_1(X/\mathbb{Z}) = \mathbb{Z}^2$. To show that $\pi_1(X/\mathbb{Z})$ is Abelian, it suffices to give two generators and show that they commute. These generators can be the projections of paths $\alpha, \beta : [0,1] \to X$ given by

$$\alpha(t) = (\cos(t), \sin(t))$$
 and $\beta(t) = (t+1, 0)$

 $(\beta \text{ is a loop because } (1,0) \sim (2,0) \text{ mod the action of } \varphi)$. These commute up to homotopy, so the group is Abelian.

 X/\mathbb{Z} is not Hausdorff: consider the points (0,1) and (1,0). If U_1,U_2 are any open neighborhoods of these points in X, then in X/\mathbb{Z} they correspond to $\varphi^{\mathbb{Z}}(U_1)$ and $\varphi^{\mathbb{Z}}(U_2)$. Because these neighborhoods are open, for some $N\gg 0$, U_1 contains $(2^{-N},1)$ and U_2 contains $(1,2^{-N})$. But then $\varphi^{N/2}(U_1)$ and $\varphi^{-N/2}(U_2)$ both contain $(2^{-N/2},2^{-N/2})$. Thus, U_1,U_2 intersect in X/\mathbb{Z} .

Finally, for every point $(x,y) \in X$ with x > 0, we can find a unique representative of its equivalence class in $[1,2] \times \mathbb{R}$, with the right and left edges identified so that $(1,y) \sim (2,y/2)$, so that this part of X/\mathbb{Z} is identified with $S^1 \times \mathbb{R}$. Taking the union of these cylinders corresponding to the four half planes x > 0, y > 0, x < 0, y < 0 gives us the four components.

Problem 7 (Hatcher 1.A:6): Let F be the free group on two generators and let F' be its commutator subgroup. Find a set of free generators of F' by considering the covering space of the graph corresponding to F'.

Proof. One set of free generators is the commutators of the form $a^nb^ma^{-n}b^{-m}$ for $n,m\in\mathbb{N}$. The commutator subgroup is the fundamental group of the infinite square grid with a on one axis and b on the other. To find its generators, we can quotient by a maximal spanning tree. One such tree is the one consisting of the vertical line x=0 and the horizontal lines y=n for $n\in\mathbb{Z}$. Upon taking the quotient, we get a wedge of infinitely-many loops, each of which is represented by an edge not present in the tree. These are exactly $a^nb^ma^{-n}b^{-m}$ for $n,m\in\mathbb{N}$.

Problem 8 (Hatcher 1.A:13): Let x be a nontrivial element of a finitely-generated free group F. Show that there is a finite-index subgroup $H \subset F$ in which x is part of a basis.

Proof. Let G be a graph whose fundamental group is F (i.e. a wedge of finitely-many loops). x is a product of these loops in some order. We can make a finite-sheeted covering space \hat{G} which has x as a loop; an example is shown for $x = ab^{-1}ccaaab$, but the same method will work in general:

The fundamental group $p_*(\pi_1(\hat{G})) \subset G$ will be a finite index subgroup (because the covering has finitely-many sheets) and has x as part of a basis because it is a loop in \hat{G} (one can take a maximal spanning tree consisting of all but one edge in the loop representing x).