I Questions de cours

- 1 Exercice 14 banque CCINP:
- a) Soient a et b deux réels donnés avec a < b et $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions continues sur [a;b] à valeurs réelles.

Démontrer que si la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur [a;b] vers une fonction f, alors la suite $\left(\int_a^b f_n(t) dt\right)_{n\in\mathbb{N}}$ converge vers $\int_a^b f(t) dt$.

- b) Justifier comment ce résultat peut être utilisé dans le cas des séries de fonctions.
- 2 Exercice 15 banque CCINP:

Soit X une partie de $\mathbb R$ ou $\mathbb C.$

a) Soit $\sum f_n$ une série de fonctions définies sur X et à valeurs dans \mathbb{R} ou \mathbb{C} .

Rappeler la définition de la convergence normale de $\sum f_n$ sur X, puis celle de la convergence uniforme $\sum f_n$ sur X.

- b) Démontrer que toute série de fonctions, à valeurs dans $\mathbb R$ ou $\mathbb C$, normalement convergente sur X est uniformément convergente sur X.
 - 3 Exercice 49 banque CCINP:

Soit $\sum a_n$ une série absolument convergente à termes complexes. On pose $M = \sum_{n=0}^{+\infty} |a_n|$.

On pose: $\forall n \in \mathbb{N}, \ \forall t \in [0; +\infty[, \ f_n(t) = \frac{a_n t^n}{n!} e^{-t}.$

- a) Justifier que la suite $(a_n)_{n\in\mathbb{N}}$ est bornée.
- b) Justifier que la série de fonctions $\sum f_n$ converge simplement sur $[0; +\infty[$.

On admettra, pour la suite de l'exercice, que $f: t \longmapsto \sum_{n=0}^{+\infty} f_n(t)$ est continue sur $[0; +\infty[$.

c) Justifier que, pour tout $n \in \mathbb{N}$, la fonction $g_n : t \stackrel{n=0}{\longmapsto} t^n e^{-t}$ est intégrable sur $[0; +\infty[$ et calculer $\int_{-\infty}^{+\infty} g_n(t) dt$.

En déduire la convergence et la valeur de $\int_0^{+\infty} |f_n(t)| dt$.

d) Prouver que $\int_0^{+\infty} \left(\sum_{n=0}^{+\infty} \frac{a_n t^n}{n!} e^{-t} \right) = \sum_{n=0}^{+\infty} a_n.$

II Exercices

Exercice 1:

Montrer que $\int_0^{+\infty} \frac{x^2}{e^x - 1} dx = 2 \sum_{n=1}^{+\infty} \frac{1}{n^3}.$

Exercice 2 :

Montrer que $\int_0^{+\infty} \frac{t}{\text{ch}(t)} dt = 2 \sum_{n=1}^{+\infty} \frac{(-1)^n}{(2n+1)^2}$.

Exercice 3:

Pour $n \in \mathbb{N}^*$ et $x \in [0; +\infty[$, on pose :

$$f_n(x) = \frac{x^n}{n^2(1+x^n)}$$

En cas de convergence, on notera $S(x) = \sum_{n=1}^{+\infty} f_n(x)$.

- 1 Montrer que S est continue sur [0; 1].
- 2 Montrer que pour $x \geq 1$, la série $\sum_{n \geq 1} f_n(x)$ converge et donner une relation entre

$$S\left(\frac{1}{x}\right)$$
, $S(x)$ et $S(1)$.

- 3 Montrer que S est continue sur $[0; +\infty[$ et déterminer la limite de S en $+\infty$.
- 4 Pouvait-on retrouver les résultats de la question précédente autrement?

Exercice 4:

Sur $I =]-1; +\infty[$, on pose $S(x) = \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+x}\right)$.

- 1 Montrer que S est définie et continue sur I.
- 2 Étudier la monotonie de S.
- 3 Calculer S(x+1) S(x).
- 4 Déterminer un équivalent de S(x) en -1^+ .
- 5 Établir que, pour tout $n \in \mathbb{N}$, $S(n) = \sum_{k=1}^{n} \frac{1}{k}$
- 6 En déduire un équivalent de S(x) en $+\infty$.

Exercice 5:

Pour $n \in \mathbb{N}$ et $x \in [0; +\infty[$, on pose : $u_n(x) = \frac{e^{-nx}}{1+n^2}$. En cas de convergence, on notera

$$f(x) = \sum_{n=0}^{+\infty} u_n(x).$$

- 1 Montrer que f est définie et continue sur $[0; +\infty[$ et préciser $\lim_{x\to +\infty} f(x)$.
- 2 Montrer que f est dérivable sur $]0; +\infty[$.
- 3 Montrer que f est deux fois dérivable sur $]0;+\infty[$ et que :

$$\forall x > 0, \ f''(x) + f(x) = \frac{1}{1 - e^{-x}}$$

Exercice 6:

Pour un réel x, on notera sous réserve de convergence : $f(x) = \sum_{n=0}^{+\infty} e^{-x\sqrt{n}}$.

- 1 Déterminer le domaine $\mathcal D$ de définition de f.
- 2 f est-elle continue sur \mathcal{D} ?
- 3 Déterminer la limite de f en $+\infty$.
- 4 Déterminer un équivalent de f en 0^+ .

Indication: On utilisera une comparaison série-intégrale.