$T(n) = O(f(n))$ such that $T(n) \le c \cdot f(n)$	for all $n \ge n_0$	$log(n)$ n $n \cdot log(n)$ n^{2} n^{3} 2^{n} c^{n} $n!$	logarithmic linear linearithmic quadratic cubic exponential exponential factorial	Typically good Pretty good Meh Ok Bad Very bad Very very bad Doesn't get worse
$5n + 10log(n) - 12 \leq 5n + 10log(n) - 12$ $\leq 5n + 10log(n)$ $\leq 5n + 10n$ $\leq 15n$	$n \ge 1$ $n \ge 1$ $c = 15$ $n_0 = 1$ $T(n) \in O(n)$	$\Omega(n)$	Worst case Best case Average case	Never goes slower Never goes faster
$T(n)$ is $\Theta(f(n))$ iff $T(n) \in O(f(n))$ AND $T(n) \in \Omega(n)$				

Best

constant

T(n) is $\Theta(f(n))$ iff $T(n) \in O(f(n))$ AND $T(n) \in \Omega(n)$