多元分析: 第十二周作业

蒋翌坤 20307100013

《实用多元统计分析》P412: 9.8

解方程

$$\begin{cases} l_{11}^2 + \psi_1 = 1 & l_{11}l_{21} = 0.4 & l_{11}l_{31} = 0.9 \\ & l_{21}^2 + \psi_2 = 1 & l_{21}l_{31} = 0.7 \\ & l_{31}^2 + \psi_3 = 1 \end{cases}$$

得到

$$\begin{bmatrix} l_{11} \\ l_{21} \\ l_{31} \end{bmatrix} = \pm \begin{bmatrix} \sqrt{\frac{36}{70}} \\ \sqrt{\frac{28}{90}} \\ \sqrt{\frac{63}{40}} \end{bmatrix} \qquad \begin{bmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{bmatrix} = \begin{bmatrix} \frac{34}{70} \\ \frac{62}{90} \\ -\frac{23}{40} \end{bmatrix}$$

这里 $\psi_3 = -\frac{23}{40} < 0$, 但是 ψ_3 为特殊方差, 应该大于 0, 所以这个选择是不能接受的。

《实用多元统计分析》P412: 9.19

 \mathbf{a}

利用极大似然方法,可以分别得到 m=2 和 m=3 时公共因子的极大似然解,如表 1 所示。

变量	m=2			m=3			
	$\overline{F_1}$	F_2	$\overline{\psi_i}$	$\overline{F_1}$	F_2	F_3	ψ_i
x_1 : 销售增长	0.95	0.03	0.07	-0.89	-0.28	-0.26	0.04
x_2 : 销售利润	0.95	-0.02	0.07	-0.82	-0.15	-0.50	0.03
x ₃ : 新客户销售额	0.90	0.12	0.12	-0.93	-0.14	-0.09	0.09
x_4 : 创造力	0.57	0.77	0.06	-0.83	0.52	0.14	0.01
x_5 : 机械推理	0.67	0.28	0.45	-0.72	0.01	-0.16	0.44
x ₆ : 抽象推理	0.57	-0.17	0.63	-0.59	-0.74	0.28	0.01
x ₇ : 数学能力	0.96	-0.19	0.02	-0.77	-0.32	-0.49	0.04

表 1: m=2 与 m=3 的极大似然解

b

使用 varimax 方法求解 m=2 与 m=3 时的旋转载荷,可得表 2。

从表中可以发现,m=2 时,销售增长、销售利润、新客户销售额、数学能力在第一个因子上高载荷,创造力在第二个因子上高载荷;m=3 时,创造力在第一个因子上高载荷,抽象推理在第二个因子上高载荷,销售增长、销售利润、数学能力在第三个因子上高载荷。

变量	m:	=2	m=3		
	$\overline{F_1}$	F_2	F_1	F_2	F_3
	0.88	0.37	-0.36	-0.44	-0.78
x ₂ : 销售利润	0.9	0.33	-0.31	-0.19	-0.9
x ₃ : 新客户销售额	0.77	0.52	-0.53	-0.44	-0.64
x ₄ : 创造力	0.25	0.92	-0.95	-0.03	-0.26
x ₅ : 机械推理	0.53	0.5	-0.46	-0.21	-0.54
x ₆ : 抽象推理	0.59	0.05	-0.04	-0.94	-0.29
x ₇ : 数学能力	0.96	0.17	-0.17	-0.3	-0.91

表 2: m=2 与 m=3 的旋转载荷

 \mathbf{c}

m=2 时,共性方差为 $\begin{pmatrix} 0.91 & 0.91 & 0.86 & 0.92 & 0.53 & 0.35 & 0.96 \end{pmatrix}'$, 特殊方差为 $\begin{pmatrix} 0.07 & 0.07 & 0.12 & 0.06 & 0.45 & 0.63 & 0.02 \end{pmatrix}'$ 。 $\hat{\boldsymbol{L}}\hat{\boldsymbol{L}}'+\hat{\boldsymbol{\Psi}}$ 的估计为

$$\hat{\boldsymbol{L}}\hat{\boldsymbol{L}}^{'} + \hat{\boldsymbol{\Psi}} = \begin{bmatrix} 0.98 & 0.98 & 0.99 & 0.63 & 1.1 & 1.16 & 0.93 \\ 0.98 & 0.98 & 0.98 & 0.59 & 1.09 & 1.17 & 0.94 \\ 0.94 & 0.93 & 0.98 & 0.74 & 1.12 & 1.1 & 0.85 \\ 0.63 & 0.6 & 0.8 & 0.98 & 1.05 & 0.82 & 0.42 \\ 0.72 & 0.71 & 0.78 & 0.66 & 0.98 & 0.96 & 0.62 \\ 0.61 & 0.62 & 0.6 & 0.25 & 0.79 & 0.98 & 0.6 \\ 0.98 & 0.99 & 0.95 & 0.47 & 1.05 & 1.21 & 0.98 \end{bmatrix}$$

m=3 时,共性方差为 $\begin{pmatrix} 0.94 & 0.95 & 0.89 & 0.97 & 0.54 & 0.97 & 0.94 \end{pmatrix}'$, 特殊方差为 $\begin{pmatrix} 0.04 & 0.03 & 0.09 & 0.01 & 0.44 & 0.01 & 0.04 \end{pmatrix}'$ 。 $\hat{\boldsymbol{L}}\hat{\boldsymbol{L}}'+\hat{\boldsymbol{\Psi}}$ 的估计为

$$\hat{\boldsymbol{L}}\hat{\boldsymbol{L}}' + \hat{\boldsymbol{\Psi}} = \begin{bmatrix} 0.98 & 0.94 & 0.98 & 0.57 & 1.12 & 0.67 & 0.94 \\ 0.94 & 0.98 & 0.92 & 0.54 & 1.1 & 0.47 & 0.97 \\ 0.93 & 0.86 & 0.98 & 0.69 & 1.12 & 0.64 & 0.85 \\ 0.6 & 0.56 & 0.77 & 0.98 & 1.01 & 0.16 & 0.44 \\ 0.72 & 0.7 & 0.77 & 0.59 & 0.98 & 0.39 & 0.67 \\ 0.7 & 0.49 & 0.71 & 0.15 & 0.81 & 0.98 & 0.59 \\ 0.94 & 0.96 & 0.9 & 0.41 & 1.07 & 0.57 & 0.98 \end{bmatrix}$$

可以计算得到 R

$$R = \begin{bmatrix} 1.0 & 0.93 & 0.88 & 0.57 & 0.71 & 0.67 & 0.93 \\ 0.93 & 1.0 & 0.84 & 0.54 & 0.75 & 0.47 & 0.94 \\ 0.88 & 0.84 & 1.0 & 0.7 & 0.64 & 0.64 & 0.85 \\ 0.57 & 0.54 & 0.7 & 1.0 & 0.59 & 0.15 & 0.41 \\ 0.71 & 0.75 & 0.64 & 0.59 & 1.0 & 0.39 & 0.57 \\ 0.67 & 0.47 & 0.64 & 0.15 & 0.39 & 1.0 & 0.57 \\ 0.93 & 0.94 & 0.85 & 0.41 & 0.57 & 0.57 & 1.0 \end{bmatrix}$$

m=3 时 R 与 $\hat{m{L}}\hat{m{L}}^{'}+\hat{m{\Psi}}$ 差距较小,所以选 m=3 比较好。

\mathbf{d}

m=2 时,检验统计量 $(1-u)M=2.97\times 10^5>\chi_3^2(0.01)=11.3;\ m=3$ 时,检验统计量 $(1-u)M=2.12\times 10^5>\chi_3^2(0.01)=11.3$ 。所以都拒绝原假设 $H_0:\mathbf{\Sigma}=\hat{\mathbf{L}}\hat{\mathbf{L}}^{'}+\hat{\mathbf{\Psi}}$ 。

从 (b)、(c) 结果看,选择 m=3 较好;而从检验结果看,虽然 m=2,3 都拒绝了原假设,但是 m=3 的检验统计量更小,所以选择 m=3 更好。综上所述,选择 m=3 最好。