Intelligent Systems - Re-take Exam (Block 2): Test (1.75 points)

ETSINF, Universitat Politècnica de València, January 24th, 2025

Group, surname(s) and name: 2,

Tick only one choice among the given options. Score: $\max(0, (\text{correct_answers-wrong_answers}/3) \cdot 1.75/6)$.

1 Given the following probability distributions for the random variables:

	-	P(A=0)	(B, C)		P(B, C)			
В	0	0	1	1	0	0	1	1
С	0	1	0	1	0	1	0	1
	0.049	0.431	0.022	0.842	0.038	0.292	0.462	0.208

Which is the value of $P(A = 1, B = 1 \mid C = 1)$?

A)
$$P(A = 1, B = 1 \mid C = 1) \le 0.25$$

B)
$$0.25 < P(A = 1, B = 1 \mid C = 1) \le 0.50$$

C)
$$0.50 < P(A = 1, B = 1 \mid C = 1) \le 0.75$$

D)
$$0.75 < P(A = 1, B = 1 \mid C = 1) \le 1.00$$

- 2 For a four-class classification problem of objects of type $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, we have the probability distributions shown in the table. Show the interval of the Bayes probability of error, ε^* :
 - A) $\varepsilon^* < 0.40$.
 - B) $0.40 \le \varepsilon^* < 0.45$.
 - C) $0.45 \le \varepsilon^* < 0.50$.
 - D) $0.50 \le \varepsilon^*$.

2	ĸ	_			
x_1	x_2	c=1	c=2	c=3	$P(\mathbf{x})$
0	0	0.3	0.3	0.1	0.2
0	1	0.1	0.2	0.2	0.2
1	0	0.3	0.1	0.3	0.1
1	1	0.1	0.2	0.2	0.5

- 3 Let \mathbf{x} be a object that we want to classify in one among C classes. Which expression is a minimum error classifier (or choose the last option if all three classifiers are of minimum error)?
 - A) $c(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{arg max}} \log p(c \mid \mathbf{x}) + \log p(\mathbf{x})$
 - B) $c(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{arg max}} \log p(c \mid \mathbf{x}) \log p(\mathbf{x})$
 - C) $c(\mathbf{x}) = \underset{c=1,...,C}{\operatorname{arg\,max}} \frac{\log p(c|\mathbf{x})}{\log p(\mathbf{x})}$
 - D) All three classifiers are of minimum error.

- 4 Let's suppose that we are applying the Perceptron algorithm, to a set of 3 bidimensional learning samples for a problem of 2 classes. After processing the first 2 samples, the weight vectors $\mathbf{w}_1 = (0, -4, 1)^t$, $\mathbf{w}_2 = (0, 4, -1)^t$ were obtained. Next, the sample $(\mathbf{x}_3 = (1, 5), c_3 = 1)$ is processed, which of the following values of margin b is the minimum needed to update the weights with this sample?
 - A) 0.0
 - B) 0.1
 - C) 1.0
 - D) 10.0
- 5 The figure on the right represents the decision boundary and the two regions of a binary classifier. Which of the following weight vectors (in homogeneous notation) defines a **non-equivalent** classifier to the one of the figure?

- A) $\mathbf{w}_1 = (0, -1, 0)^t$ and $\mathbf{w}_2 = (0, 0, -1)^t$.
- B) $\mathbf{w}_1 = (0, 0, 1)^t$ and $\mathbf{w}_2 = (0, 1, 0)^t$.
- C) $\mathbf{w}_1 = (0, 1, 0)^t$ and $\mathbf{w}_2 = (0, 0, 1)^t$.
- D) All the above weight vectors define non-equivalent classifiers to the one of the figure.
- 6 The figure below shows a dataset of 8 two-dimensional points:

What is the number of clusters that minimizes the sum of squared errors (SEC) of this dataset?

- A) 1
- B) 4
- C) 5
- D) 8

Intelligent Systems - Re-take Exam (Block 2): Problem (2 points) ETSINF, Universitat Politècnica de València, January 24th, 2025

Group, surname(s) and name: 2,

Problem: Logistic regression

The following table shows per rows a training set of 2 samples with 2 dimensions that belong to 2 classes:

$$\begin{array}{c|ccccc} n & x_{n1} & x_{n2} & c_n \\ \hline 1 & 0 & 0 & 1 \\ 2 & 1 & 1 & 2 \\ \end{array}$$

In addition, the following table represents an initial weight matrix with the weights of each class per columns:

\mathbf{w}_1	\mathbf{w}_2
0.	0.
-0.25	0.25
-0.25	0.25

Answer the following questions:

- 1. (0.5 points) Compute the vector of logits for each training sample.
- 2. (0.25 points) Apply the softmax function to the vector of logits for each training sample.
- 3. (0.25 points) Classify every training sample. In case of a tie, choose any class.
- 4. (0.5 points) Compute the gradient of the function NLL at the point of the initial weight matrix.
- 5. (0.5 points) Update the initial weight matrix applying gradient descent with learning rate $\eta = 1.0$.