

Numerical Representation and Codes

Exercises Digital Design

Solution vs. Hints:

While not every response provided herein constitutes a comprehensive solution, some serve as helpful hints intended to guide you toward discovering the solution independently. In certain instances, only a portion of the solution is presented.

1 NUM - Number systems

- 1.1 Determine up to what value you can count with numbers coded on:
 - a) 0 to 15
 - b) 0 to 255
 - c) 0 to 1023

- d) 0 to 65535
- e) 0 to 4'294'967'295 (4 Gbit)

num/number-systems-01

- 1.2 Determine up to which value can be counted, with hexadecimal numbers encoded on:
 - a) 0 to 65535

b) 0 to 4'294'967'295 (4 Gbit)

 $num/number\hbox{-} systems\hbox{-} 02$

NUM - Converting from one numbering system to another

2.1	Perform the conversion of the following pure binary numbers in decimal
fori	mat:

a)	6_{10}
b)	15_{10}

c) 74₁₀

e) 255₁₀

d) 11₁₀

num/conversion-01

2.2 Perform the conversion of the following decimal numbers in binary format:

a) 111 1101₂

c) 1111 1110 0101 1001₂

e) 1001₂

d) 1 0000 0000₂ b) 1 0000₂

num/conversion-02

2.3 Perform the conversion of the following hexadecimal numbers in binary format:

a) 1110₂

c) 1010 1011 0011 1101 $_2$ e) 10 0011 0100 0110 $_2$

b) 1 0101 1100₂

d) 1001 1111 0111₂

num/conversion-03

2.4 Perform the conversion of the following binary numbers in hexadecimal format:

a) A_{16}

c) EB_{16}

e) C_{16}

b) 6₁₆

d) $2F_{16}$

num/conversion-04

2.5 Perform the conversion of the following hexadecimal numbers in decimal format:

a) 13₁₀

c) 564_{10}

e) 42681₁₀

b) 348₁₀

d) 254₁₀

num/conversion-05

2.6 Perform the conversion of the following decimal numbers in hexadecimal format:

1. 80₁₆

3. $FE59_{16}$

5. 9₁₆

2. 10₁₆

4. D1₁₆

num/conversion-06

3 NUM - Operation on logical numbers

3.1 Perform the following additions in the binary system:

 $1.\ \ 0010\ \ 1010_2$

 $3. 1011 0011_2$

2. 0110 1001₂

4. 1000 00002

num/operation-01

3.2 Perform the following subtractions in the binary system:

 $1. \ 0011 \ 1010_2$

3. 0000 1100₂

 $2. \ 0011 \ 1010_2$

4. 0111 1111₂

num/operations-02

3.3 Perform the following multiplications in binary:

1. 0011 1100₂

3. 0011 0000₂

 $2. \ 0011 \ 1100_2$

4. $0110\ 0010_2$

num/operation-03

3.4 Perform the following additions in the hexadecimal system:

1. 1300₁₆

3. 1333₁₆

 2.8984_{16}

4. 13534₁₆

num/operation-04

3.5 Determine the binary value of:

1. 1001₂

3. 11100001₂

2. 110001₂

4. 111110000001_2 ; $(2^{n-1}-1)*2^{n+1}+1$

num/operation-05

4 NUM - Codes

- 4.1 Perform the following additions on BCD encoded numbers:
 - 1. 0100 0100 0100 $_{\rm BCD}$

3. $1001\ 0010_{\mathrm{BCD}}$

2. $0110\ 0011\ 0011_{\mathrm{BCD}}$

4. 0001 0000 0000_{BCD}

num/codes-01

4.2 Perform the conversion of the Gray code $1001_{\rm Gray}$ using the recursion formula in the script.

 1110_2

num/codes-02

5 | NUM - Representation of signed numbers

5.1 Represent the following decimal and pure binary numbers encoded to 8 bits using the sign-size, one's complement, and two's complement methods:

1. 00	$01 0010_s$	4.	0001	1010_{s}
00	$01\ 0010_{1cl}$		0001	$1010_{\rm 1cl}$
00	$01\ 0010_{ m 2cl}$		0001	1010_{2cl}
2. 10	$00 0011_s$	5.	0000	1010_{s}
11	$11 1100_{1 \mathrm{cl}}$		0000	$1010_{\rm 1cl}$
11	$11 1101_{ m 2cl}$		0000	1010_{2cl}
3. 00	$00\ 0000_s; 1000\ 0000_s$	6.	1110	0100_{s}
00	$00\ 0000_{\mathrm{1cl}};1111\ 1111_{\mathrm{1cl}}$		1001	$1011_{\rm 1cl}$
00	$00\ 0000_{ m 2cl}$		1001	$1100_{\rm 2cl}$

num/representation-01

1. 1111 1111₂ 2. 1000 1000₂ $3. 0001 0000_2$

5. BC₁₆

4. FF₁₆

6. $7F_{16}$

num/representation-02

5.2 Given the numbers 0001_2 and 1001_2 expressed as two's complement encoded on 4 bits. Represent the same numbers encoded as two's complement on 8 bits.

0000 0001;1111 1001

num/representation-03