Types Of Time Complexity:

- 1. **Best Time Complexity:** Define the input for which algorithm takes less time or minimum time. In the best case calculate the lower bound of an algorithm. Example: In the linear search when search data is present at the first location of large data then the best case occurs.
- 2. **Average Time Complexity:** In the average case take all random inputs and calculate the computation time for all inputs.
 - And then we divide it by the total number of inputs.
- 3. **Worst Time Complexity:** Define the input for which algorithm takes a long time or maximum time. In the worst calculate the upper bound of an algorithm. Example: In the linear search when search data is present at the last location of large data then the worst case occurs.

Following are the complexity values for sorting algorithms:

Algorithm	Tin	ne Complex	Space Complexity	
	Best	Average	Worst	Worst
Selection Sort	Ω(n^2)	θ(n^2)	O(n^2)	O(1)
Bubble Sort	$\Omega(n)$	θ(n^2)	O(n^2)	O(1)
Insertion Sort	$\Omega(n)$	θ(n^2)	O(n^2)	O(1)
Quick Sort	$\Omega(n \log(n))$	$\theta(n \log(n))$	O(n^2)	O(n)
Merge Sort	$\Omega(n \log(n))$	$\theta(n \log(n))$	O(n log(n))	O(n)

Following are the complexity values for searching algorithms:

Algorithm	Best Time Complexity	Average Time Complexity	Worst Time Complexity	Worst Space Complexity
Linear Search	O(1)	O(n)	O(n)	O(1)
Binary Search	O(1)	O(log n)	O(log n)	O(1)

Common Data Structure Operations

Data Structure	Time Complexity					Space Complexity			
	Average				Worst				Worst
	Access	Search	Insertion	Deletion	Access	Search	Insertion	Deletion	
<u>Array</u>	Θ(1)	Θ(n)	Θ(n)	Θ(n)	0(1)	0(n)	0(n)	0(n)	0(n)
<u>Stack</u>	Θ(n)	Θ(n)	Θ(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)
<u>Queue</u>	Θ(n)	Θ(n)	Θ(1)	0(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Singly-Linked List	Θ(n)	Θ(n)	Θ(1)	Θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Doubly-Linked List	Θ(n)	Θ(n)	Θ(1)	Θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Skip List	Θ(log(n))	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	0(n)	0(n)	0(n)	0(n)	O(n log(n))
Hash Table	N/A	Θ(1)	Θ(1)	Θ(1)	N/A	0(n)	0(n)	0(n)	0(n)
Binary Search Tree	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	0(n)	0(n)	0(n)	0(n)	0(n)
Cartesian Tree	N/A	$\Theta(\log(n))$	$\Theta(\log(n))$	$\Theta(\log(n))$	N/A	0(n)	0(n)	0(n)	0(n)
B-Tree	Θ(log(n))	$\Theta(\log(n))$	Θ(log(n))	$\Theta(\log(n))$	0(log(n))	0(log(n))	O(log(n))	0(log(n))	0(n)