CMOS Operational Amplifier (1): DC Analysis

Objectives

To make sure all the MOS of the circuit are able to *enter saturation region* so that the circuit can be applied to be an operational amplifier.

Overview

Fig. 1 Two-stage CMOS operational amplifier

In Fig. 1, (Q_5, Q_7, Q_8) is a current mirror which provides the essential current to the differential pair (Q_1,Q_2) and common-source amplifier Q_6 . Additionally, (Q_3, Q_4) is another current mirror of the circuit, which is the active load of the differential pair (Q_1,Q_2) . The main function of R_2 and C_2 is to compensate the frequency response.

Components and Instrumentation

Instrument	Quantity	Components	Quantity
Oscilloscope	1	CD 4007	3
Multi-meter	1	VR (可變電阻) (1 kΩ)	1
Power supplier	1	10 kΩ	1
Function Gen.	1	1 kΩ	1
All the second	- 4	18 kΩ	2

Instrument confirmation

Before you proceed to any part of the experiment, please remember to do the **Instrument Examinations** to the instruments before performing any experiment. The examining procedures are shown in experiment 1.

Lab Work

1. CD4007-PINOUT

****Note**: Always supply voltage $-V_{SS} = -8V$ in pin 7 and $V_{DD} = +8V$ in pin 14 for every chip of CD4007. The experimental results will be unreasonable if the above notice has not been followed.

2. Circuit implementation

Fig. 2 Circuit implementation of Two-stage OP-Amp

- (1) Employ CD4007 Chip #A to implement (Q_5, Q_7, Q_8) , Chip #B to implement (Q_1, Q_2) , and Chip #C for (Q_3, Q_4, Q_6)
- (2) Supply voltage $-V_{SS} = -8V$ (pin 7) and $V_{DD} = +8V$ (pin 14) for CD4007 chips.

3. DC Analysis of CD4007

- (1) The condition of entering saturation region of NMOS: $V_{GD} \le V_T (1.8 \text{V})$.
- (2) The condition of entering saturation region of PMOS: $V_{GD} \ge V_T$ (-1.8V).
- (3) Supply voltage $-V_{SS} = -8V$ and $V_{DD} = +8V$ to the circuit.
- (4) Use digital multi-meter to confirm whether all of the MOS components are able to enter saturation region as adjusting VR 1 k Ω .
- (5) If it is so, go to step 6, else go to next step.

4. Detail procedure of DC Analysis of the Two-stage OP-Amp circuit

- (1) DC Analysis of the current mirror (Q_5, Q_7, Q_8)
- a. In Fig. 3, adjust VR (R_2) 10 k Ω and check whether (Q_5, Q_7, Q_8) are all able to enter saturation region, that is, $V_{GD5,7,8} \ge V_T$ (-1.8V). If one of them is not so, change the chip of CD4007 #A and recheck again.
- b. Use multi-meter (三用電錶) to measure $V_{GD5}, V_{GD7}, V_{GD8}$

Analysis

Fig. 3 DC Analysis of the current mirror (Q_5, Q_7, Q_8)

- (2) DC Analysis of the differential pair (Q_1,Q_2)
- a. In Fig. 4, adjust VR (R_2) 10 k Ω and check whether (Q_1, Q_2) are both able to enter saturation region, that is, $V_{GD1,2} \ge V_T(-1.8V)$. If one of them is not so, change the chip of CD4007 #B and recheck again.
- b. Use multi-meter (三用電錶) to measure V_{GD1} , V_{GD2} .

Analysis

If eq. (2) cannot be true, that means $I_{D1} \times R_2$ can not be small enough. It is possibly that R_2 is too big or (Q_1,Q_2) mismatch, try to change smaller R_2 or change a new chip#B.

Fig. 4 DC Analysis of the differential pair (Q_1, Q_2)

Fig. 5 DC Analysis of the active load (Q_3, Q_4)

a. In Fig. 5, Use multi-meter (三用電銀) to check whether (Q_3 , Q_4) are both able to enter saturation region, that is, $V_{GD3,4} \ge V_T$ (-1.8V). If one of them is not so, change the chip of CD4007 #C and recheck again.

b. Record
$$V_{GD1} =$$
_____V, $V_{GD2} =$ ____V, $V_{GD3} =$ ____V, $V_{GD4} =$ ____V.

c. Record
$$V_C = ____V$$
, $V_D = ___V$, $V_E = ___V$.

Analysis

If eq. (3) can not be true, that means there is something wrong with Q_{4C} . Try to change a new chip#C.

5. DC Analysis of the Two-stage OP-Amp circuit

Fig. 6 DC Analysis of Two-stage OP-Amp circuit

- a. In Fig. 6, adjust VR (R_3) 1 $k\Omega$ and use multi-meter to measure V_A and V_E , and check whether V_E is adjustable. If it not so, trouble shoot the circuit. Check whether there is any wrong layout in your breadboard and whether the VR (R_3) is functional by multimeter.
- b. Referenced value of V_A is around (-0.25V, 0.25V), V_E is around (0.25V,

-7.5V). Record
$$V_A = (_V, _V)$$
 and $V_E = (_V, _V)$.

6. Circuit implementation

Fig. 2 DC Analysis of Two-stage OP-Amp circuit

- a. In Fig. 2, adjust VR (R_3) 1 $k\Omega$ and use multi-meter to measure V_A , V_D , V_E .
- b. Referenced value of V_A is around (-0.25V, 0.25V), V_E is around (0.25V, -7.5V), and V_F is around (-7.5V, 7.5V)
- c. Adjust VR (R_3) , and record V_A , V_E , V_F in the following table.

$V_A(V)$	$V_{E}\left(\mathbf{V}\right)$	$V_F(V)$	$V_A(V)$	$V_E(V)$	$V_F(V)$
100				1.57	Care I
16076					

	5235		- 18	600	6.100
	- 100			7	
44.0					

Homework #1: Apply the measured data from the above table to the editing software such as EXCEL and MATLAB, and illustrate the *DC-sweep diagram* similar to Fig. 7 with marking the corresponding voltage. Try to calculate the *slope rate* of the diagram in the transition region.

- 7. If the remaining time is allowed to do Exp 4 right away, go directly to the next chapter. Strongly suggest that you perform Exp. 4 right after this experiment.
- 8. If it is not so, it will be rather time-wasting to restart all the procedures shown in the experiment as you perform Exp. 4 next week, which is mainly to make sure all the MOS components are able to enter saturation region.

Fig. 7 DC-Sweep diagram

Reference

- 1. A.S. Sedra and K.C. Smith, *Microelectronic Circuits*, 6th ed., Oxford University Press publishing, New York, August 2011.
- 2. A.S. Sedra and K.C. Smith, *Laboratory Manual for Microelectronic Circuits*, 3rd ed., Oxford University Press publishing, New York, 1997.