ACP_Caractéristiques_Entreprises_Non_Agricoles

Michel TEVOEDJRE

2025-05-15

2025-05-15

2/15

```
packages <- c("kableExtra", "knitr", "dplyr", "FactoMineR", ";</pre>
installed <- rownames(installed.packages())</pre>
to install <- setdiff(packages, installed)
if (length(to_install) > 0) {
  install.packages(to install)
}
lapply(packages, library, character.only = TRUE)
## [[1]]
## [1] "kableExtra" "stats"
                                 "graphics" "grDevices"
                                                            "u1
## [6] "datasets" "methods"
                                 "base"
##
## [[2]]
## [1] "knitr"
                    "kableExtra" "stats"
                                              "graphics"
                                                            "g
## [6] "utils"
                    "datasets" "methods"
                                              "base"
##
## [[3]]
                                 "kableExtra" "stats"
   [1] "dplyr" "knitr"
                                                            " {
##
    [6] "grDevices" "utils"
                                                             "1
##
                                  "datasets" "methods"
```

ACP_Caractéristiques_Entreprises_Non_Agri

2025-05-15

3 / 15

Michel TEVOED IRE

Introduction

Ce document détaille les étapes de préparation des données et la réalisation d'une Analyse en Composantes Principales (ACP) sur les données SEN2018.

Chargement des bibliothèques et des données

```
library(haven)
library(dplyr)
library(FactoMineR)
library(factoextra)
library(stringr)

senegaldata <- "C:/Users/bmd-tech/Documents/ISEP2/Semestre 2/7
ma_base <- read_dta(pasteO(senegaldata, "s10_2_me_SEN2018.dta)</pre>
```

Inspection des variables

```
var_types_labels <- data.frame(
   Variable = names(ma_base),
   Type = sapply(ma_base, function(x) class(x)[1]),
   Label = sapply(ma_base, function(x) attr(x, "label"))
)
kable(head(var_types_labels), caption = "Aperçu des variables kable_styling(bootstrap_options = c("striped", "hover", "continue of the continue of the conti
```

Table 1: Aperçu des variables e

	Variable	Туре	Label
vague	vague	numeric	Vague
grappe	grappe	numeric	grappe
menage	menage	numeric	ldentifiant du ménage
s10q12a_1	s10q12a_1	numeric	10.12a.Lister entreprises possédées pa
s10q12a_2	s10q12a_2	character	10.12a.Lister entreprises possédées pa

Sélection et nettoyage des variables

```
vars_quant <- ma_base %>%
  select(where(is.numeric)) %>%
  select(where(~ mean(is.na(.)) < 0.3)) %>%
  select(where(~ sd(., na.rm = TRUE) > 0)) %>%
  select(-any_of(c("vague", "grappe", "menage")))
```

Imputation des valeurs manquantes

```
vars_imputed <- vars_quant %>%
  mutate(across(everything(), ~ ifelse(is.na(.), mean(., na.rr
```

Vérification des données

```
stopifnot(!any(is.na(vars_imputed)))
stopifnot(all(sapply(vars_imputed, sd) > 0))
```

Standardisation et ACP

```
vars_scaled <- scale(vars_imputed)
res_acp <- PCA(vars_scaled, graph = FALSE)</pre>
```

Visualisation des résultats : Valeurs propres

fviz_eig(res_acp, addlabels = TRUE, ylim = c(0, 50))

Visualisation: Variables

fviz_pca_var(res_acp, col.var = "cos2", gradient.cols = c("green")

Visualisation: Individus

fviz_pca_ind(res_acp, col.ind = "cos2", gradient.cols = c("green")

Résultats : Coordonnées des individus

```
coord_individus <- as.data.frame(res_acp$ind$coord)
coord_individus <- cbind(id = rownames(coord_individus), coord
kable(head(coord_individus), caption = "Coordonnées des individus)
kable_styling(bootstrap_options = c("striped", "hover", "condition")</pre>
```

Table 2: Coordonnées des individus (ACP)

id	Dim.1	Dim.2	Dim.3	Dim.4	Dim.5
1	2.1118065	-1.154083	2.1262173	0.1618884	-0.4785265
2	-0.0801687	-1.617607	1.4680542	0.4330290	-1.8265737
3	1.4070552	-1.609932	2.0917020	-0.0110245	-0.8015752
4	-4.0224312	-2.236942	-0.1002049	-0.1125851	-0.7713629
5	0.2281184	-1.471436	0.9641094	1.2906176	-1.2594238
6	0.9597069	-1.713737	1.6883380	0.5803354	-1.3317529

Résultats : Contribution des variables

```
contrib_variables <- as.data.frame(res_acp$var$contrib)
contrib_variables <- cbind(variable = rownames(contrib_variable)
kable(head(contrib_variables), caption = "Contribution des variable_styling(bootstrap_options = c("striped", "hover", "contribution")</pre>
```

Table 3: Contribution des variables aux axes principaux

	variable	Dim.1	Dim.2	Dim.3	Dir
s10q12a_1	s10q12a_1	0.0119412	0.0972148	0.1227384	4.1529
s10q13	s10q13	0.0000001	0.0000002	0.0000021	0.0003
s10q150	s10q150	0.0000002	0.0000010	0.0000056	0.00070
s10q151	s10q151	0.1608980	0.0075776	0.0335268	0.0728
s10q17a	s10q17a	0.9351112	9.3470472	14.7713536	1.4455
s10q17b	s10q17b	1.2542284	10.4340725	13.5770239	1.31693