The group G is isomorphic to the group labelled by [40, 5] in the Small Groups library. Ordinary character table of $G \cong C4 \times D10$:

	1a	2a	4a	2b	5a	4b	2c	4c	20a	10a	5b	4d	20b	20c	10b	20d
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	-1	1	1	1	-1	-1	-1	1	1	1	-1	-1	1	-1
χ_3	1	-1	1	1	1	-1	-1	1	1	1	1	-1	1	1	1	1
χ_4	1	1	-1	1	1	-1	1	-1	-1	1	1	-1	-1	-1	1	-1
χ_5	1	-1	-E(4)	-1	1	E(4)	1	E(4)	-E(4)	-1	1	-E(4)	E(4)	-E(4)	-1	E(4)
χ_6	1	-1	E(4)	-1	1	-E(4)	1	-E(4)	E(4)	-1	1	E(4)	-E(4)	E(4)	-1	-E(4)
χ_7	1	1	-E(4)	-1	1	-E(4)	-1	E(4)	-E(4)	-1	1	E(4)	E(4)	-E(4)	-1	E(4)
χ_8	1	1	E(4)	-1	1	E(4)	-1	-E(4)	E(4)	-1	1	-E(4)	-E(4)	E(4)	-1	-E(4)
χ_9	2	0	-2	2	$E(5)^2 + E(5)^3$	0	0	-2	$-E(5)^2 - E(5)^3$	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$	$E(5) + E(5)^4$	$-E(5) - E(5)^4$
χ_{10}	2	0	-2	2	$E(5) + E(5)^4$	0	0	-2	$-E(5) - E(5)^4$	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$	$E(5)^2 + E(5)^3$	$-E(5)^2 - E(5)^3$
χ_{11}	2	0	2	2	$E(5)^2 + E(5)^3$	0	0	2	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	$E(5) + E(5)^4$	$E(5) + E(5)^4$
χ_{12}	2	0	2	2	$E(5) + E(5)^4$	0	0	2	$E(5) + E(5)^4$	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$	$E(5)^2 + E(5)^3$
χ_{13}	2	0	-2 * E(4)	-2	$E(5)^2 + E(5)^3$	0	0	2 * E(4)	$-E(20)^{13} - E(20)^{17}$	$-E(5)^2 - E(5)^3$	$E(5) + E(5)^4$	0	$E(20)^{13} + E(20)^{17}$	$-E(20) - E(20)^9$	$-E(5) - E(5)^4$	$E(20) + E(20)^9$
χ_{14}	2	0	-2 * E(4)	-2	$E(5) + E(5)^4$	0	0	2 * E(4)	$-E(20) - E(20)^9$	$-E(5) - E(5)^4$	$E(5)^2 + E(5)^3$	0	$E(20) + E(20)^9$	$-E(20)^{13} - E(20)^{17}$	$-E(5)^2 - E(5)^3$	$E(20)^{13} + E(20)^{17}$
χ_{15}	2	0	2 * E(4)	-2	$E(5)^2 + E(5)^3$	0	0	-2*E(4)	$E(20)^{13} + E(20)^{17}$	$-E(5)^2 - E(5)^3$	$E(5) + E(5)^4$	0	$-E(20)^{13} - E(20)^{17}$	$E(20) + E(20)^9$	$-E(5) - E(5)^4$	$-E(20) - E(20)^9$
V10		0	2 * E(4)	-2	$E(5) + E(5)^4$	0	0	-2 * E(4)	$E(20) + E(20)^9$	$-E(5) - E(5)^4$	$E(5)^2 + E(5)^3$	0	$-E(20) - E(20)^9$	$E(20)^{13} + E(20)^{17}$	$-E(5)^2 - E(5)^3$	$-E(20)^{13} - E(20)^{17}$

Trivial source character table of $G \cong C4 \times D10$ at p = 2:

Trivial source character table of $G = C4$ x D10 at $p = 2$.													
Normalisers N_i		N_1			N_2		N_3	N_4	N_5		N_6	N_7	$\overline{N_8}$
p-subgroups of G up to conjugacy in G		P_1			P_2		P_3	P_4	P_5		P_6	P_7	$\overline{P_8}$
Representatives $n_j \in N_i$	1 <i>a</i>	5a	5b	1a	5a	5b	1 <i>a</i>	1 <i>a</i>	1a $5a$	5b	1a	1a	$\overline{1a}$
$\boxed{1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 $		8	8	0	0	0	0	0	0 0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0$			$4*E(5) + 4*E(5)^4$		0	0	0	0	0 0	0	0	0	0
	8	$4 * E(5) + 4 * E(5)^4$	$4*E(5)^2 + 4*E(5)^3$	0	0	0	0	0	0 0	0	0	0	0
$\boxed{1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 $	4	4	4	4	4	4	0	0	0 0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{19} + 0$	4	$2*E(5)^2 + 2*E(5)^3$	$2*E(5) + 2*E(5)^4$		$2*E(5)^2 + 2*E(5)^3$		0	0	0 0	0	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0$	4	$2*E(5) + 2*E(5)^4$	$2*E(5)^2 + 2*E(5)^3$	4	$2*E(5) + 2*E(5)^4$	$2*E(5)^2 + 2*E(5)^3$	0	0	0 0	0	0	0	0
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 $	4	4	4	0	0	0	4	0	0 0	0	0	0	0
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 $	4	4	4	0	0	0	0	4	0 0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$	2	2	2	2	2	2	0	0	2 2	2	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0$	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	2	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	0	$E(5) + E(5)^4$	$E(5)^2 + E(5)^3$	0	0	0
$ 0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0$	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	2	$E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	0	$2 E(5)^2 + E(5)^3$	$E(5) + E(5)^4$	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$	2	2	2	2	2	2	2	2	0 0	0	2	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$; 2	2	2	2	2	2	0	0	0 0	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16}$, 1	1	1	1	1	1	1	1	1 1	1	1	1	1

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,21)(16,23)(18,25)(20,27)(22,29)(24,31)(26,33)(28,35)(30,36)(32,38)(34,39)(37,40)]) \cong \mathbf{C2}$

 $P_3 = Group([(1,2)(3,6)(4,7)(5,32)(8,28)(9,13)(10,37)(11,38)(12,24)(14,34)(15,35)(16,20)(17,40)(18,30)(19,31)(21,39)(22,26)(23,27)(25,36)(29,33)]) \cong \mathbf{C2}$

 $P_4 = Group([(1,7)(2,4)(3,13)(5,38)(6,9)(8,35)(10,40)(11,32)(12,31)(14,39)(15,28)(16,27)(17,37)(18,36)(19,24)(20,23)(21,34)(22,33)(25,30)(26,29)]) \cong C2$

 $P_5 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,21)(16,23)(18,25)(20,27)(22,29)(24,31)(26,33)(28,35)(30,36)(32,38)(34,39)(37,40), \\ (1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,21)(12,18,19,25)(16,22,23,29)(20,26,27,33)(24,30,31,36)(28,34,35,39)(32,37,38,40)]) \cong C4$

 $P_6 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,21)(16,23)(18,25)(20,27)(22,29)(24,31)(26,33)(28,35)(30,36)(32,38)(34,39)(37,40), (1,2)(3,6)(4,7)(5,32)(8,28)(9,13)(10,37)(11,38)(12,24)(14,34)(15,35)(16,20)(17,40)(18,30)(19,31)(21,39)(22,26)(23,27)(25,36)(29,33)]) \cong C2 \times C2$

 $P_7 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,21)(16,23)(18,25)(20,27)(22,29)(24,31)(26,33)(28,35)(30,36)(32,38)(34,39)(37,40), (1,6,4,13)(2,3,7,9)(5,37,11,40)(8,34,15,39)(10,38,17,32)(12,30,19,36)(14,35,21,28)(16,26,23,33)(18,31,25,24)(20,22,27,29)]) \cong C4$

 $P_8 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,21)(16,23)(18,25)(20,27)(22,29)(24,31)(26,33)(28,35)(30,36)(32,38)(34,39)(37,40), \\ (1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,21)(12,18,19,25)(16,22,23,29)(20,26,27,33)(24,30,31,36)(28,34,35,39)(32,37,38,40), \\ (1,2,3,1)(12,13,12)(12,18,19,25)(16,22,23,29)(20,26,27,33)(24,30,31,36)(28,34,35)(30,36)(32,38)(34,39)(37,40), \\ (1,3,4,9)(2,6,7,13)(24,30,31,36)(28,34,35)(30,36)(32,38)(34,39)(37,40), \\ (1,3,4,9)(2,6,7,13)(24,30,31,36)(28,34,35)(30,36)(32,38)(34,39)(37,40), \\ (1,3,4,9)(2,6,7,13)(24,30,31,36)(28,34,35)(30,36)(32,38)(34,39)(37,40), \\ (1,3,4,9)(2,6,7,13)(24,30,31,36)(28,34,35)(30,36)(32,38)(34,39)(37,40), \\ (1,3,4,9)(2,6,7,13)(24,30,31,36)(28,34,35)(30,36)(32,38)(34,39)(37,40), \\ (1,3,4,9)(2,6,7,13)(24,30,31,36)(28,34,35)(30,36)(32,38)(34,39)(37,40), \\ (1,3,4,9)(2,6,7,13)(24,30,31,36)(28,34,35)(32,38)(34,39)(37,40), \\ (1,3,4,9)(2,6,7,13)(24,30,31,36)(28,34,35)(32,38)(34,39)(37,40), \\ (1,3,4,9)(2,6,7,13)(24,30,31,36)(28,34,35)(32,38)(34,39)(37,40), \\ (1,3,4,9)(2,6,7,13)(24,30,31,36)(28,34,35)(32,38)(34,39)(37,40), \\ (1,3,4,9)(2,6,7,13)(24,30,31,36)(28,34,35)(32,38)(34,39)(37,40), \\ (1,3,4,9)(2,6,7,13)(24,30,31,36)(28,34,35)(32,38)(34,39)(37,40), \\ (1,3,4,9)(2,6,7,13)(24,30,31,36)(28,34,35)(32,38)(34,39)(32,38)$

 $N_1 = Group([(1,2)(3,6)(4,7)(5,32)(8,28)(9,13)(10,37)(11,38)(12,24)(14,34)(15,35)(16,20)(17,40)(18,30)(19,31)(21,39)(22,26)(23,27)(25,36)(29,33), (1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,21)(12,18,19,25)(16,22,23,29)(20,26,27,33)(24,30,31,36)(28,34,35)(30,36)(32,38)(34,39)(37,40), (1,5,12,20,28)(2,8,16,24,32)(3,10,18,26,34)(4,11,19,27,35)(6,14,22,30,37)(7,15,23,31,38)(9,17,25,33,39)(13,21,29,36,40)]) \cong C4 \times D10$ $N_2 = Group([(1,2)(3,6)(4,7)(5,32)(8,28)(9,13)(10,37)(11,38)(12,24)(14,34)(15,35)(16,20)(17,40)(18,30)(19,31)(21,39)(22,26)(23,27)(25,36)(29,33), (1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,21)(12,18,19,25)(16,22,23,29)(20,26,27,33)(24,30,31,36)(28,34,35)(30,36)(32,38)(34,39)(37,40), (1,5,12,20,28)(2,8,16,24,32)(3,10,18,26,34)(4,11,19,27,35)(6,14,22,30,37)(7,15,23,31,38)(9,17,25,33,39)(13,21,29,36,40)]) \cong C4 \times D10$ $N_2 = Group([(1,2)(3,6)(4,7)(5,32)(8,28)(9,13)(10,37)(11,38)(12,24)(14,34)(15,35)(16,20)(17,40)(18,30)(19,31)(21,39)(22,26)(23,27)(25,36)(29,33), (1,3,4,9)(2,6,7,33)(24,30,31,36)(28,34,39)(37,40), (1,5,12,20,28)(28,34,35,39)(32,37,38,40), (1,4,12,23,33$

 $N_3 = Group([(1,2)(3,6)(4,7)(5,32)(8,28)(9,13)(10,37)(11,38)(12,24)(14,34)(15,35)(16,20)(17,40)(18,30)(19,31)(21,39)(22,26)(23,27)(25,36)(29,33), \\ (1,3,4,9)(2,4,31)(26,33)(28,35)(30,36)(28,34,35,39)(32,37,38,40), \\ (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,21)(16,23)(18,25)(20,27)(22,29)(24,31)(26,33)(28,35)(30,36)(32,38)(34,39)(37,40)]) \\ \cong C4 \times C2$

 $N_4 = Group([(1,7)(2,4)(3,13)(5,38)(6,9)(8,35)(10,40)(11,38)(12,21)(13,40)(25,23)(25$

 $N_6 = Group([(1,2)(3,6)(4,7)(5,32)(8,28)(9,13)(10,37)(11,38)(12,24)(14,34)(15,35)(16,20)(17,40)(18,30)(19,31)(21,39)(22,26)(23,27)(25,36)(29,33), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,21)(16,23)(18,25)(20,27)(22,29)(24,31)(26,33)(28,35)(30,36)(28,34,35)(30,36)(28,34,35)(30,36)(28,34,35)(30,36)(28,34,35)(30,36)(28,34,35)(30,36)(28,34,35)(30,36)(28,34,35)(30,36)(28,34,35)(30,36)(28,34,35)(30,36)(28,34,35)(30,36)(28,34,35)(30,36)(28,34,35)(30,36)(28,34,36)(30,36)(32,38$

 $N_7 = Group([(1,6,4,13)(2,3,7,9)(5,37,11,40)(8,34,15,39)(10,37)(11,38)(12,24)(14,34)(15,35)(16,20)(17,40)(18,30)(19,31)(21,39)(22,26)(23,27)(25,36)(29,33)]) \cong C4 \times C2$ $N_7 = Group([(1,6,4,13)(2,37,40)(18,30)(19,31)(21,39)(22,26)(23,27)(25,36)(29,33)(18,31,25,24)(20,22)(23,27)(25,36)(29,33)(18,31,25,24)(21,39)(22,29)(24,31)(26,33)(28,35)(30,36)(32,38)(34,39)(37,40)(18,32)(21,39)(21,39)(22,29)(24,31)(26,33)(28,35)(30,36)(32,38)(34,39)(37,40)(18,32)(21,39)(21,$

 $N_8 = Group([(1,2)(3,6)(4,7)(5,32)(8,28)(9,13)(10,37)(11,38)(12,24)(14,34)(15,35)(16,20)(17,40)(18,30)(19,31)(21,39)(22,26)(23,27)(25,36)(29,33), (1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,21)(12,18,19,25)(16,22,23,29)(20,26,27,33)(24,30,31,36)(28,34,35,39)(32,37,38,40), (1,4,4)(15,35)(16,20)(17,40)(18,30)(19,31)(21,39)(22,26)(23,27)(25,36)(29,33), (1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,21)(12,18,19,25)(16,22,23,29)(20,26,27,33)(24,30,31,36)(28,34,35,39)(32,37,38,40), (1,4,4)(15,35)(16,20)(17,40)(18,30)(19,31)(21,39)(22,26)(23,27)(25,36)(29,33), (1,3,4,9)(2,6,7,13)(5,10,11,17)(8,14,15,21)(12,18,19,25)(16,22,23,29)(20,26,27,33)(24,30,31,36)(28,34,35)(32,37,38,40), (1,4,4,5,21)(12,18,19,25)(16,22,23,29)(20,26,27,33)(24,30,31,36)(28,34,35,39)(32,37,38,40), (1,4,4,5,21)(12,18,19,25)(16,22,23,29)(20,26,27,33)(24,30,31,36)(28,34,35,39)(32,37,38,40), (1,4,4,5,21)(12,18,19,25)(16,22,23,29)(20,26,27,33)(24,30,31,36)(28,34,35,39)(32,37,38,40), (1,4,4,5,21)(12,18,19,25)(16,22,23,29)(20,26,27,33)(24,30,31,36)(28,34,35,39)(32,37,38,40), (1,4,4,5,21)(12,18,19,25)(16,22,23,29)(20,26,27,33)(24,30,31,36)(28,34,35,39)(32,37,38,40), (1,4,4,5,21)(12,18,19,25)(16,22,23,29)(20,26,27,33)(24,30,31,36)(28,34,35,39)(32,37,38,40), (1,4,4,5,21)(12,18,19,25)(16,22,23,29)(20,26,27,33)(24,30,31,36)(28,34,35,39)(32,37,38,40), (1,4,4,5,21)(24,34,35,39)(32,37,38,40), (1,4,4,5,21)(24,34,35,39)(32,37,38,40), (1,4,4,5,21)(24,34,35,39)(32,37,38,40), (1,4,4,5,21)(24,34,35,39)(32,37,38,40), (1,4,4,5,21)(24,34,35,39)(32,37,38,40), (1,4,4,5,21)(24,34,35,39)(32,37,38,40), (1,4,4,5,21)(24,34,35,39)(32,37,38,40), (1,4,4,5,21)(24,34,35,39)(32,37,38,40), (1,4,4,5,21)(24,34,35,39)(32,37,38,40), (1,4,4,5,21)(24,34,35,39)(32,37,38,40), (1,4,4,5,21)(24,34,35,39)(32,37,38,40), (1,4,4,5,21)(24,34,35,39)(32,37,38,40), (1,4,4,5,21)(24,34,35,39)(32,37,38,40), (1,4,4,5,21)(24,34,35,39)(32,37,38,40), (1,4,4,5,21)(24,34,35,39)(32,37,38,40), (1,4,4,5,21)(24,34,35,39)(32,37,38,40), (1,4,4,5,21)(24,34,35,39)(32,37,38,40), (1,4,4,5,21)(24,34,35,39)(32,34,34,39)(32,34,34,39$