Statistical Methods in AI (CSE/ECE 471)

Lecture-2: ML Workflow, Data Representations, Basic Data Transformations, Data Visualization

Ravi Kiran (ravi.kiran@iiit.ac.in)

Vineet Gandhi (v.gandhi@iiit.ac.in

Center for Visual Information Technology (CVIT)

IIIT Hyderabad

Announcements

- IMPORTANT: All assignments/projects will need to be in Python.
- Tutorial on Python, Pandas, Jupyter notebook,
 Plotting tools. Bring your laptops.
- Ask questions.

Lecture Outline

- ML Workflow
- Data Representations
- Basic Data Transformations
- Data Visualization

Machine Learning

Algorithmic methods that use data to improve their knowledge of a task

Task: Detect spam email

Data: Labelled emails (in inboxes of other users as well!)

Knowledge:

Improve → 85% reduction of spam emails in Inbox over 3 months

Algorithmic method: Decision Tree

Workflow of a Machine Learning Problem

- Detect spam email
- Predict value of a stock
- Predict effect of advertising on sales
- Drive car 'safely' without human intervention
- Translate text from one language to another
- Sentiment Analysis

- ...

Workflow of a Machine Learning Problem

No Data, no ML!

- Detect spam email

Business Email Sample

. We are excited to

this month. You will

To: "Anna Jones" <annajones@buzzle.com.>

CC: All Staff

- Predict value of a stock

- Predict effect of advertising on sales

- Drive car safely without human intervention

- Translate text from one language to another

Two fundamental questions

- What data to collect ?
- How to collect ?

May be too little in quantity

- May be too much in quantity
 - Limitations on system end (compute, storage)

Not all of it relevant

```
The state of the s
      Received: "by luna.mailgun.net with HTTP; Fri, 26 Feb 2016 20:12:03 +0000",
      stripped-signature: "",
      Message-Id: "<20160226201203.54979.26875@mailgun.com>",
      from: "Sample Email <me@mailgun.com>",
      sender: "me@mailgun.com",
      recipients: "anton@mailgunhq.com",
      Subject: "Test Message",
      Content-Transfer-Encoding: "7bit",
      attachments: [ ],
      To: "anton@mailgunhq.com",
      stripped-html: "Testing some Mailgun awesomness!",
      content-id-map: { },
      stripped-text: "Testing some Mailgun awesomness!",
      From: "Sample Email <me@mailgun.com>",
+ message-headers: [...],
      Mime-Version: "1.0",
      Content-Type: "text/plain; charset="ascii"",
      body-plain: "Testing some Mailgun awesomness!",
      subject: "Test Message"
```

- Often not directly usable
 - Filter (needed data)
 - Transform (to numerical data)

```
C https://api.mailgun.net/v2/domains/mailgun.com/messages/WyJlMTFiZ
 Received: "by luna.mailgun.net with HTTP; Fri, 26 Feb 2016 20:12:03 +0000",
 stripped-signature: "".
 Message-Id: "<20160226201203.54979.26875@mailgun.com>",
 from: "Sample Email <me@mailgun.com>",
 sender: "me@mailgun.com",
 recipients: "anton@mailgunhq.com",
 Subject: "Test Message",
 Content-Transfer-Encoding: "7bit".
 attachments: [ ],
 To: "anton@mailgunhq.com",
 stripped-html: "Testing some Mailgun awesomness!",
 content-id-map: { },
 stripped-text: "Testing some Mailgun awesomness!",
 From: "Sample Email <me@mailgun.com>",
+ message-headers: [...],
 Mime-Version: "1.0",
 Content-Type: "text/plain: charset="ascii"".
 body-plain: "Testing some Mailgun awesomness!",
 subject: "Test Message"
```

Two fundamental questions

- What data to collect ?
- How (much) to collect ?

The Research Method

The Research Method

The Research Method

Are our samples 'nice'?

Sampling Techniques

https://research-methodology.net/sampling-in-primary-data-collection/

Workflow of a Machine Learning Problem

Taxonomy of data variables

QUANTITATIVE DATA:

- # of CPU cores
- # of courses taken in a semester
- # of times word 'sale' appears in a doc

Samples and Features

Ultimately, all data needs to be quantitative

Taxonomy of data: Qualitative → Quantitative

Taxonomy of data: Qualitative → Quantitative

Numerical encoding of categorical variables

Original data:	
id	Color
1	White
2	Red
3	Black
4	Purple
5	Gold

Numerical encoding of categorical variables

Orig	inal data:	One-hot encoding format:					
id	Color	id	White	Red	Black	Purple	Gold
1	White	1	1	0	0	0	(
2	Red	2	0	1	0	0	(
3	Black	3	0	0	1	0	(
4	Purple	4	0	0	0	1	(
5	Gold	5	0	0	0	0	•

Numerical encoding of categorical variables

```
Rome Paris word V

Rome = [1, 0, 0, 0, 0, 0, 0, ..., 0]

Paris = [0, 1, 0, 0, 0, 0, ..., 0]

Italy = [0, 0, 1, 0, 0, 0, ..., 0]

France = [0, 0, 0, 1, 0, 0, ..., 0]
```


Example: Contact Lenses dataset

No patient id

Age is not a number!

Age	Spectacle prescription	Astigmatism	Tear production rate	Recommended lenses
Young	Myope	No	Reduced	None
Young	Myope	No	Normal	Soft
Young	Myope	Yes	Reduced	None
Young	Myope	Yes	Normal	Hard
Young	Hypermetrope	No	Reduced	None
Young	Hypermetrope	No	Normal	Soft
Young	Hypermetrope	Yes	Reduced	None
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Myope	No	Reduced	None
Pre-presbyopic	Myope	No	Normal	Soft
Pre-presbyopic	Myope	Yes	Reduced	None
Pre-presbyopic	Myope	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	No	Reduced	None
Pre-presbyopic	Hypermetrope	No	Normal	Soft
Pre-presbyopic	Hypermetrope	Yes	Reduced	None
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Myope	No	Reduced	None
Presbyopic	Myope	No	Normal	None
Presbyopic	Myope	Yes	Reduced	None
Presbyopic	Myope	Yes	Normal	Hard
Presbyopic	Hypermetrope	No	Reduced	None
Presbyopic	Hypermetrope	No	Normal	Soft
Presbyopic	Hypermetrope	Yes	Reduced	None
Presbyopic	Hypermetrope	Yes	Normal	None

Example: PlayTennis dataset

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	Normal	False	Yes
	***	***	***	***

Outlook	Temperature	Humidity	Windy	Play
Sunny	85	85	False	No
Sunny	80	90	True	No
Overcast	83	86	False	Yes
Rainy	75	80	False	Yes
***		***	***	***

Sometimes data can be missing

Outlook	Temperature	Humidity	Windy	Play
Sunny	85	85	False	No
Sunny	80		True	No
Overcast	83	86	False	Yes
Rainy	75	80	False	Yes
***	***	444	***	(800)

→ Unknown or unrecorded

... or incorrect

		DBAName	AKAName	Address	City	State	Zip		
	t1	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60608	X	Conflicts
	t2	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	L	60609		Commoto
	t3	John Veliotis Sr.	Johnnyo's	3465 S Morgan ST	Chicago	IL	60609		
	t4	Johnnyo's	Johnnyo's	3465 S Morgan ST	Cicago	IL	60608		
_		•	Does not obe	∋y	1	Cor	nflict		
	→ data distribution								

Data imputation

- Approaches that aim to estimate missing data
- Options
 - Remove sample
 - Fill with 0
 - Fill with constant
 - Fill with a statistical measure (mean, median, mode)
 - Do nothing. Use a learning method which can handle missing data.

Lecture Outline

- ML Workflow
- Data sample Representations
- Basic Data Transformations
- Data Visualization

Samples, Features, Labels

Data Sample Representations

Data Representations

Feature Extraction (FE)

Def: Feature Extraction (FE) is any algorithm that transformation raw data into features that can be used as an input for a learning algorithm.

The Bag of Words Representation

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!

15

Feature-based, Hierarchical Data Representations

Data – a probability-based perspective

The basis for Statistical Learning Theory

- Domain described by random variables (r.v.)
 - X = {apple, grape}
 - $b_i \in [1,5]$
- Data = Instantiation of some or all r.v.'s in the domain

Data: a probabilistic perspective

Proposed Cleaned Dataset

	DBAName	Address	City	State	Zip
t1	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60608
t2	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60608
t3	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60608
t4	John Veliotis Sr.	3465 S Morgan ST	Chicago	IL	60608

Marginal Distribution of Cell Assignments

Cell	Possible Values	Probability
10 7'-	60608	0.84
t2.Zip	60609	0.16
	Chicago	0.95
t4.City	Cicago	0.05
AA DDANI	John Veliotis Sr.	0.99
t4.DBAName	Johnnyo's	0.01

Other important aspects of data

- Mode of collection
 - Passive ('sense')
 - Active ('explore, sense, repeat')

- Statistical assumptions on data
 - i.i.d (independent and identically distributed)
 - Online (e.g. time-series data)

Lecture Outline

- ML Workflow
- Data Representations
- Basic Data Transformations
- Data Visualization

Quantization

1. Continuous → Discrete ('Rounding off')

2. Binary Quantization ('Thresholding')

Data Normalization

	Class label	Alcohol	Malic acid
0	1	14.23	1.71
1	1	13.20	1.78
2	1	13.16	2.36
3	1	14.37	1.95
4	1	13.24	2.59

Popular normalization approaches

$$X_{norm} = \frac{X - X_{min}}{X_{max} - X_{min}}$$

MinMax Scaling

$$z = \frac{x - \mu}{\sigma}$$

$$\mu = \frac{1}{N} \sum_{i=1}^{N} (x_i)$$

	Class label	Alcohol	Malic acid
0	1	14.23	1.71
1	1	13.20	1.78
2	1	13.16	2.36
3	1	14.37	1.95
4	1	13.24	2.59

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

Standardization (Unit Normal Scaling)

Data Normalization (applied to each feature)

	Class label	Alcohol	Malic acid
0	1	14.23	1.71
1	1	13.20	1.78
2	1	13.16	2.36
3	1	14.37	1.95
4	1	13.24	2.59

After standardization

Workflow of a Machine Learning Problem

Lecture Outline

- ML Workflow
- Data Representations
- Basic Data Transformations
- Data Visualization

Gazing at Data: Data visualization data exploration data presentation

Data visualization

treemap

leaderboard

In good information visualization, there are no rules, no guidelines, no templates, no standard technologies, no stylebooks ... You must simply do whatever it takes.

—Edward Tufte

Resources

 https://towardsdatascience.com/5-quick-and-easy-datavisualizations-in-python-with-code-a2284bae952f

https://twitter.com/storyby data/status/116633764834 1991424