Feuille d'exercices 2 : Nombres complexes

1 Forme algébrique

Exercice 1. Donner la forme algébrique des nombres complexes suivants :

$$z_1 = \frac{(5-i)(3-2i)}{(1+i)} \qquad z_2 = (2-i)(1+3i)^2 \qquad z_3 = (i-1)^5$$
$$z_4 = \left(\frac{1+i}{2-i}\right)^4 \qquad z_5 = \frac{(1+i)^5 - 1}{(1+i)^5 + 1} \qquad z_6 = (1+i)^{2014}$$

Exercice 2. Donner l'expression algébrique du conjugué de chacun des nombres complexes suivants :

$$z_1 = i(2-i)^2 z_2 = \frac{\sqrt{2}}{2+i}$$

Exercice 3. Soit $z \in \mathbb{C}^*$. Calculer : $\operatorname{Re}\left(\frac{1}{z}\right)$ Im $\left(\frac{1}{z}\right)$

Exercice 4. Résoudre dans \mathbb{C} : 1. $2z + 3\overline{z} = 1$ 2. $2z + 6\overline{z} = 3 + 2i$

Exercice 5. 1. Soit $\theta \in]-\pi,\pi[$, déterminer la forme algébrique de :

$$z_1 = (2+i)e^{3i\theta}$$
 $z_2 = (1-2i)e^{-i\theta}$ $z_3 = \frac{e^{2i\theta}}{1-i}$

2. Soit $\theta \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$, déterminer la forme algébrique de :

$$z_4 = \frac{1 + i \tan \theta}{1 - i \tan \theta}, \ \theta \in \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$$

3. Soit $n \in \mathbb{N}$ et $\theta \in \mathbb{R}$, déterminer la forme algébrique de :

$$z_5 = (1 + e^{i\theta})^n$$

2 Module

Exercice 6. Soit $z \in \mathbb{C} \setminus \{1\}$. Montrer que $Z = \frac{z+1}{z-1} \in i\mathbb{R} \iff |z| = 1$

Exercice 7. Montrer que :

$$\forall (a, b, c) \in \mathbb{C}^3, |1 + a| + |a + b| + |b + c| + |c| \ge 1$$

Exercice 8. Soit $z \in \mathbb{C}$ tel que $|z| \neq 1$. Montrer que pour tout $n \in \mathbb{N}^*$

$$\left|\frac{1-z^n}{1-z}\right| \le \frac{1-|z|^n}{1-|z|}.$$

Exercice 9. Soit $n \in \mathbb{N}^*$, soient $a_1, \ldots, a_n, b_1, \ldots, b_n$ des complexes tels que , pour tout $k \in [1, n], |a_k| \le 1$ et $|b_k| \le 1$. Montrer que :

$$\left| \prod_{k=1}^{n} a_k - \prod_{k=1}^{n} b_k \right| \le \sum_{k=1}^{n} |a_k - b_k|$$

Exercice 10. (*) Soit $n \geq 2$ et soient $z_1, \ldots, z_n \in \mathbb{C}$.

Montrer que $\left|\sum_{k=1}^{n} z_k\right| = \sum_{k=1}^{n} |z_k|$ si et seulement si tous les z_k sont nuls, ou bien s'il existe $k_0 \in [1, n]$ tel que $z_{k_0} \neq 0$ et pour tout $k \in [0, n]$, z_k est de la forme $\lambda_k z_{k_0}$, où $\lambda_k \in \mathbb{R}^+$.

Trigonométrie - Linéarisation - Sommes 3

Exercice 11. Soit $n \in \mathbb{R}$. Linéariser $\cos^2 x$, $\sin^4 x$ et $\cos^2 x \sin^3 x$.

Exercice 12. Soit $\theta \in \mathbb{R}$. Exprimer $\sin(5\theta)$ en fonction de $\sin \theta$ et en déduire la valeur de $\sin \frac{\pi}{5}$ et $\cos(\frac{\pi}{10})$.

Exercice 13. Soit $n \in \mathbb{N}$, soit $(a, b) \in \mathbb{R}^2$. Calculer les sommes suivantes :

$$A_n = \sum_{k=0}^n \cos(a+kb) \qquad B_n = \sum_{k=0}^n \sin(a+kb) \qquad C_n = \sum_{k=0}^n \binom{n}{k} \cos(a+kb)$$

Exercice 14. Soit $n \in \mathbb{N}^*$, soit $x \in \mathbb{R}$. Calculer les sommes : $S_1 = \sum_{k=0}^n \frac{1}{2^k} \cos\left(\frac{k\pi}{3}\right)$ et $S_2 = \sum_{k=0}^n \cos^k(x) \sin(kx)$

Exercice 15. Soit $n \in \mathbb{N}$, calculer les sommes :

$$A_n = \sum_{0 \le 2k \le n} \binom{n}{2k} (-1)^k \qquad B_n = \sum_{0 \le 2k+1 \le n} \binom{n}{2k+1} (-1)^k \qquad C_n = \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} \frac{\cos(ka)}{\cos(a)^k}$$

On pourra regarder $A_n + iB_n$ pour calculer A_n et B_n .

Exercice 16. Résoudre dans \mathbb{R} l'équation $\sum_{k=0}^{n} \frac{\cos(kx)}{\cos^{k}(x)} = 0$ où $n \in \mathbb{N}^{*}$

1. Pour $x \in \mathbb{R}$ et $n \in \mathbb{N}$, calculer $S_n(x) = \sum_{k=0}^n \cos^2(kx)$.

2. En déduire que
$$\cos^2\left(\frac{\pi}{9}\right) + \cos^2\left(\frac{2\pi}{9}\right) + \cos^2\left(\frac{3\pi}{9}\right) + \cos^2\left(\frac{4\pi}{9}\right)$$
 est un rationnel.

Forme trigonométrique

Exercice 18. Soit $\theta \in \mathbb{R}$. On pose $z = e^{i\theta}$, déterminer la forme trigonométrique de : \overline{z} , -z, iz, z^2 , |z| + z

1. Déterminer un argument de 1 + i.

2. Donner la forme cartésienne de $(1+i)^{2014}$.

Exercice 20. Déterminer le module et un argument de $1 + e^{i\theta}$ pour $\theta \in]-\pi, \pi[$ et pour $\theta \in]\pi, 2\pi[$

Exercice 21. Trouver les modules et arguments de

1.
$$z_{1} = \frac{1+i}{\sqrt{3}-i}$$
2. $z_{2} = -2i(2+2i)$
3. $z_{3} = \frac{\sqrt{3}+2}{\sqrt{6}+i\sqrt{2}}$
4. $z_{4} = 1+i\tan\theta$ où $\theta \in \mathbb{R} \setminus \left\{\frac{\pi}{2}+k\pi, k \in \mathbb{Z}\right\}$
5. $z_{5} = \frac{1+\cos\theta+i\sin\theta}{1-\cos\theta-i\sin\theta}$ où $\theta \in \mathbb{R}$
6. $z_{6} = (1+i)^{n}$ où $n \in \mathbb{Z}$

Exercice 22. Soit $a \in \mathbb{R}$. Déterminer la forme trigonométrique de :

$$z_1 = -\sin a + i\cos a$$
 $z_2 = \sin a + i\cos a$ $z_3 = -\cos a - i\sin a$ $z_4 = \left(\frac{1-i}{1+i\sqrt{3}}\right)^{10}$

Exercice 23. Déterminer tous les entiers naturels n tels que $z_n = (1 + i\sqrt{3})^n \in \mathbb{R}^+$

Exercice 24. On pose : $z_1 = 1 + i\sqrt{3}$, $z_2 = 1 - i$ et $z_3 = \frac{z_1}{z_2}$.

1. Déterminer la forme trigonométrique et la forme algébrique de z_3 . 2. En déduire les valeurs de $\cos\left(\frac{7\pi}{12}\right)$ et $\sin\left(\frac{7\pi}{12}\right)$

Exercice 25. Résoudre dans $\mathbb{C}: 1.$ $z^5 = \overline{z}$

Exercice 26. Résoudre l'équation d'inconnue $x \in \mathbb{R} : \sqrt{3}\cos x - \sin x = 1$.

Exercice 27. Montrer qu'il existe $A \in \mathbb{R}_+^*$, $\omega \in \mathbb{R}$ tel que chaque fonction s'écrive sous la forme $x \mapsto A\cos(x - \omega)$:

1.
$$x \mapsto \cos(x) + \sin(x)$$
 2. $x \mapsto \cos(x) - \sqrt{3}\sin(x)$

Equations de second degré 5

Exercice 28. Déterminer les racines carrées de 1+i. En déduire la valeur de :

$$\cos\left(\frac{\pi}{8}\right)$$
 et $\sin\left(\frac{\pi}{8}\right)$

Exercice 29. Déterminer les racines carrées de 1 + 6i et 24i - 7

Exercice 30. Résoudre dans \mathbb{C} :

1.
$$z^2 - 2\cos\theta z + 1 = 0$$
 où $\theta \in \mathbb{R}$ où $\theta \in \mathbb{R}$ et $n \in \mathbb{N}^*$ 6. $z^6 + (2i - 1)z^3 - 1 - i = 0$
2. $(2+i)z^2 + (5-i)z + 2 - 2i = 0$ 4. $z^2 - 2(2+i)z + 6 + 8i = 0$
3. $z^{2n} - 2z^n\cos(n\theta) + 1 = 0$ 5. $z^4 + (3-6i)z^2 - 2(4+3i) = 0$

2.
$$(2+i)z^2 + (5-i)z + 2 - 2i = 0$$
 4. $z^2 - 2(2+i)z + 6 + 8i = 0$

3.
$$z^{2n} - 2z^n \cos(n\theta) + 1 = 0$$
 5. $z^4 + (3 - 6i)z^2 - 2(4 + 3i) = 0$

1. Soit l'équation d'inconnue $z \in \mathbb{C} : 2z^3 - (3+4i)z^2 - (4-7i)z + 4 + 2i = 0$. Exercice 31.

- (a) Montrer qu'elle a une racine z_0 réelle.
- (b) En déduire toutes les solutions de l'équation.
- 2. Soit l'équation d'inconnue $z \in \mathbb{C}$: $z^3 + (1-2i)z^2 + (1-i)z 2i = 0$
 - (a) Montrer qu'elle a une racine z_0 imaginaire pure.
 - (b) En déduire toutes les solutions de l'équation.

Exercice 32. Résoudre de deux manières différentes l'équation $z^4 + z^3 + z^2 + z + 1 = 0$ (dans l'une d'entre elles, on posera $Z = z + z^{-1}$).

En déduire la valeur de $\cos\left(\frac{2\pi}{5}\right)$.

Exercice 33. Résoudre $\begin{cases} xy = 2 \\ x + y = 4 \end{cases}$

Exercice 34. Déterminer tous les couples (x,y) de complexes vérifiant $\begin{cases} x+y=1+i \\ xy=2-i \end{cases}$

6 Racines n-ième

Exercice 35. Déterminer les racines sixièmes de : $\frac{-4}{1+i\sqrt{3}}$.

Exercice 36. Résoudre l'équation $(z+i)^n = (z-i)^n$ d'inconnue $z \in \mathbb{C}$.

Exercice 37. Soit $\theta \in \mathbb{R}$ et $n \in \mathbb{N}^*$, résoudre dans \mathbb{C} :

1.
$$z^3 = 4\sqrt{2}(1+i)$$
 (on suppose ici $\frac{n\theta}{2\pi} \notin \mathbb{Z}$) 5. $(z+1)^n = (z-1)^n$
2. $z^5 = -i$ 4. $\left(\frac{z+1}{z-1}\right)^n + \left(\frac{z-1}{z+1}\right)^n = 2\cos(n\theta)$

3.
$$\left(\frac{z+1}{z-1}\right)^n = e^{in\theta}$$
 4.
$$\left(\frac{z+1}{z-1}\right)^n + \left(\frac{z-1}{z+1}\right)^n = 2\cos(n\theta)$$

6. $4(z+i)^4 - (z+1)^4 = 0$ (on donnera les expressions algébriques des solutions de cette équation)

Exercice 38. On pose $z=e^{\frac{2i\pi}{7}}$, $u=z+z^2+z^4$ et $v=z^3+z^5+z^6$. 1. Calculer u+v puis u^2 en fonction de u.

2. En déduire la valeur de $\sin\left(\frac{2\pi}{7}\right) + \sin\left(\frac{4\pi}{7}\right) + \sin\left(\frac{8\pi}{7}\right)$.

Exercice 39. Montrer que :

$$\cos\left(\frac{\pi}{11}\right) + \cos\left(\frac{3\pi}{11}\right) + \cos\left(\frac{5\pi}{11}\right) + \cos\left(\frac{7\pi}{11}\right) + \cos\left(\frac{9\pi}{11}\right) = \frac{1}{2}$$

3

On pourra considérer les solutions de $z^{11} = -1$.

Exercice 40. Soit \mathbb{U}_n l'ensemble des racines n-ième de l'unité. 1. Calculer $\sum_{\omega\in\mathbb{U}_n}\omega^p$ où $p\in\mathbb{N}.$

- 2. Soit $\omega = e^{\frac{2i\pi}{n}}$, calculer $\sum_{k=0}^{n-1} \omega^{kp}$ et $\sum_{k=0}^{n-1} (1 + \omega^k)^n$.
- 3. Soit $n \in \mathbb{N}^*$ et $\omega \in \mathbb{U}_n$, calculer $\sum_{k=0}^{n-1} (k+1)\omega^k$.

Exercice 41. Soient $n \in \mathbb{N}^*$ et $a \in \mathbb{R}$.

- 1. Résoudre l'équation d'inconnue $z \in \mathbb{C}$: $(z+1)^n = e^{2ina}$
- 2. En déduire la valeur de : $\prod_{k=0}^{n-1} \sin\left(a + \frac{k\pi}{n}\right)$

7 Exponentielle complexe

Exercice 42. Résoudre dans \mathbb{C} les équations suivantes d'inconnue $z \in \mathbb{C}$:

1.
$$e^z = 3$$

3.
$$e^z = 3i$$

$$2. \ e^z = i$$

3.
$$e^z = 3i$$

4. $e^z = 1 + i\sqrt{3}$

Nombres complexes et géométrie plane

Exercice 43. Déterminer l'ensemble des points M d'affixe z tels que le nombre complexe $\frac{2iz-1}{z+1}$ ait un module égal à 1.

1. (a) À quelle condition les points d'affixes a, b et c forment-ils un triangle équilatéral? Exercice 44.

- (b) À quelle condition les points d'affixes a, b et c forment-ils un triangle rectangle en A?
- 2. Déterminer les nombres $z \in \mathbb{C}$ tels que :
 - (a) 1, z et z² forment un triangle rectangle.
 (b) z, 1/z et -i sont alignés.
 (c) z, z² et z⁴ sont alignés.

Exercice 45. Déterminer l'ensemble des points M du plan d'affixe z tels que :

- 1. |z+i|=|z-1|2. $z, \frac{1}{z}$ et 1+z aient le même module.

Exercice 46. Le plan est rapporté à un repère orthonormal direct $(O, \overrightarrow{u}, \overrightarrow{v})$.

On pose $a = \sqrt{3} - i$. On note A sont image.

- 1. Calculer les module et argument du nombre complexe a.
- 2. On considère la rotation r de centre O et d'angle $\frac{\pi}{4}$. Soit f l'application qui, à l'affixe z de M, associe l'affixe z'de M' = r(M). Exprimer f(z) à l'aide de z.
- 3. On note B=r(A). Déterminer l'affixe b de B sous forme algébrique puis sous forme trigonométrique. 4. En déduire les valeurs exactes de $\cos\frac{\pi}{12}$ et $\sin\frac{\pi}{12}$

Exercice 47. Déterminer l'écriture complexe de chacune des transformations suivantes :

- 1. L'homothétie f de centre A d'affixe 4i et de rapport $-\frac{1}{3}$.
- 2. La rotation g de centre A d'affixe -2 et d'angle $\frac{3\pi}{4}$.
- 3. La translation h de vecteur d'affixe 4-2i.

Fonctions à valeurs complexes 9

Exercice 48. Déterminer la dérivée n-ième de $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto e^x \sin(\sqrt{3}x)$.

1. Soit $n \in \mathbb{N}^*$. Calculer les dérivées $n^{\text{ièmes}}$ de cos et sin. Exercice 49.

2. Calculer les dérivées $n^{\text{ièmes}}$ de \cos^3 et \sin^3 .

- **Exercice 50.** Soit $P = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ et $D = \{z \in \mathbb{C} : |z| < 1\}$. 1. Montrer que $z \mapsto \frac{z-i}{z+i}$ est une bijection de $\mathbb{C} \setminus \{-i\}$ dans une ensemble E que l'on précisera. 2. Montrer que $z \mapsto \frac{z-i}{z+i}$ est une bijection de P sur D.