AutoML: Beyond AutoML

Overview: Algorithm Configuration

Bernd Bischl Frank Hutter Lars Kotthoff <u>Marius Lindauer</u> Joaquin Vanschoren

• hyperparameter optimization (HPO) is not limited to ML

- hyperparameter optimization (HPO) is not limited to ML
- in fact, you can optimize the performance of any algorithm by means of HPO if

- hyperparameter optimization (HPO) is not limited to ML
- in fact, you can optimize the performance of any algorithm by means of HPO if
 - the algorithm at hand has parameters that influence its performance

- hyperparameter optimization (HPO) is not limited to ML
- in fact, you can optimize the performance of any algorithm by means of HPO if
 - 1 the algorithm at hand has parameters that influence its performance
 - 2 you care about the empirical performance of an algorithm

- hyperparameter optimization (HPO) is not limited to ML
- in fact, you can optimize the performance of any algorithm by means of HPO if
 - the algorithm at hand has parameters that influence its performance
 - 2 you care about the empirical performance of an algorithm
- a limitation of HPO is that we assume that we care only about a single task (i.e., dataset or input to the algorithm)

- hyperparameter optimization (HPO) is not limited to ML
- in fact, you can optimize the performance of any algorithm by means of HPO if
 - 1 the algorithm at hand has parameters that influence its performance
 - you care about the empirical performance of an algorithm
- a limitation of HPO is that we assume that we care only about a single task (i.e., dataset or input to the algorithm)
- Can we find an algorithm's configuration that performs well and robustly across a set of tasks?

- hyperparameter optimization (HPO) is not limited to ML
- in fact, you can optimize the performance of any algorithm by means of HPO if
 - the algorithm at hand has parameters that influence its performance
 - you care about the empirical performance of an algorithm
- a limitation of HPO is that we assume that we care only about a single task (i.e., dataset or input to the algorithm)
- Can we find an algorithm's configuration that performs well and robustly across a set of tasks?
 - ▶ A hyperparameter configuration for a set of datasets

- hyperparameter optimization (HPO) is not limited to ML
- in fact, you can optimize the performance of any algorithm by means of HPO if
 - the algorithm at hand has parameters that influence its performance
 - you care about the empirical performance of an algorithm
- a limitation of HPO is that we assume that we care only about a single task (i.e., dataset or input to the algorithm)
- Can we find an algorithm's configuration that performs well and robustly across a set of tasks?
 - ▶ A hyperparameter configuration for a set of datasets
 - A parameter configuration of a SAT solver for a set of SAT instances

- hyperparameter optimization (HPO) is not limited to ML
- in fact, you can optimize the performance of any algorithm by means of HPO if
 - 1 the algorithm at hand has parameters that influence its performance
 - you care about the empirical performance of an algorithm
- a limitation of HPO is that we assume that we care only about a single task (i.e., dataset or input to the algorithm)
- ∼→ Can we find an algorithm's configuration that performs well and robustly across a set of tasks?
 - ▶ A hyperparameter configuration for a set of datasets
 - A parameter configuration of a SAT solver for a set of SAT instances
 - ▶ A parameter configuration of an AI planning solver for a set of planning problems
 - **.**...

- hyperparameter optimization (HPO) is not limited to ML
- in fact, you can optimize the performance of any algorithm by means of HPO if
 - 1 the algorithm at hand has parameters that influence its performance
 - you care about the empirical performance of an algorithm
- a limitation of HPO is that we assume that we care only about a single task (i.e., dataset or input to the algorithm)
- Can we find an algorithm's configuration that performs well and robustly across a set of tasks?
 - ▶ A hyperparameter configuration for a set of datasets
 - A parameter configuration of a SAT solver for a set of SAT instances
 - ▶ A parameter configuration of an AI planning solver for a set of planning problems
- → Algorithm configuration

Algorithm Configuration Visualized

Definition

Given a parameterized algorithm ${\mathcal A}$ with possible (hyper-)parameter settings ${\pmb \Lambda}$,

Definition

Given a parameterized algorithm A with possible (hyper-)parameter settings Λ , a set of training problem instances \mathcal{I} ,

Definition

Given a parameterized algorithm $\mathcal A$ with possible (hyper-)parameter settings Λ , a set of training problem instances $\mathcal I$, and a cost metric $c: \Lambda \times \mathcal I \to \mathbb R$,

Definition

Given a parameterized algorithm $\mathcal A$ with possible (hyper-)parameter settings Λ , a set of training problem instances $\mathcal I$, and a cost metric $c:\Lambda\times\mathcal I\to\mathbb R$, the algorithm configuration problem is to find a parameter configuration $\lambda^*\in\Lambda$ that minimizes c across the instances in $\mathcal I$.

Definition

An instance of the algorithm configuration problem is a 5-tuple $(\mathcal{A}, \mathbf{\Lambda}, \mathcal{D}, \kappa, c)$ where:

- \bullet \mathcal{A} is a parameterized algorithm;
- ullet Λ is the (hyper-)parameter configuration space of ${\cal A}$;
- ullet ${\cal D}$ is a distribution over problem instances with domain ${\cal I}$;

Definition

An instance of the algorithm configuration problem is a 5-tuple $(\mathcal{A}, \mathbf{\Lambda}, \mathcal{D}, \kappa, c)$ where:

- \bullet \mathcal{A} is a parameterized algorithm;
- Λ is the (hyper-)parameter configuration space of A;
- \mathcal{D} is a distribution over problem instances with domain \mathcal{I} ;
- \bullet $\kappa < \infty$ is a cutoff time, after which each run of $\mathcal A$ will be terminated if still running

Definition

An instance of the algorithm configuration problem is a 5-tuple $(\mathcal{A}, \mathbf{\Lambda}, \mathcal{D}, \kappa, c)$ where:

- \bullet \mathcal{A} is a parameterized algorithm;
- Λ is the (hyper-)parameter configuration space of A;
- \mathcal{D} is a distribution over problem instances with domain \mathcal{I} ;
- ullet $\kappa < \infty$ is a cutoff time, after which each run of ${\cal A}$ will be terminated if still running
- $c: \mathbf{\Lambda} \times \mathcal{I} \to \mathbb{R}$ is a function that measures the observed cost of running $\mathcal{A}(\mathbf{\lambda})$ on an instance $i \in \mathcal{I}$ with cutoff time κ

Definition

An instance of the algorithm configuration problem is a 5-tuple $(\mathcal{A}, \mathbf{\Lambda}, \mathcal{D}, \kappa, c)$ where:

- \bullet \mathcal{A} is a parameterized algorithm;
- Λ is the (hyper-)parameter configuration space of A;
- \mathcal{D} is a distribution over problem instances with domain \mathcal{I} ;
- ullet $\kappa < \infty$ is a cutoff time, after which each run of ${\cal A}$ will be terminated if still running
- $c: \mathbf{\Lambda} \times \mathcal{I} \to \mathbb{R}$ is a function that measures the observed cost of running $\mathcal{A}(\lambda)$ on an instance $i \in \mathcal{I}$ with cutoff time κ

The cost of a candidate solution $\lambda \in \Lambda$ is $f(\lambda) = \mathbb{E}_{i \sim \mathcal{D}}(c(\lambda, i))$.

The goal is to find $\lambda^* \in \arg\min_{\lambda \in \Lambda} f(\lambda)$.

Distribution of Instances

We usually have a finite number of instances from a given application

- We want to do well on that type of instances
- Future instances of this type should be solved well

Distribution of Instances

We usually have a finite number of instances from a given application

- We want to do well on that type of instances
- Future instances of this type should be solved well

Like in machine learning

- We split the instances into a training set and a test set
- We configure algorithms on the training instances
- We only use the test instances afterwards
 - → unbiased estimate of generalization performance for unseen instances

- Structured high-dimensional parameter space
 - categorical vs. continuous parameters
 - conditionals between parameters

- Structured high-dimensional parameter space
 - categorical vs. continuous parameters
 - conditionals between parameters
- Stochastic optimization
 - Randomized algorithms: optimization across various seeds
 - ► Distribution of benchmark instances (often wide range of hardness)
 - Subsumes so-called multi-armed bandit problem

- Structured high-dimensional parameter space
 - categorical vs. continuous parameters
 - conditionals between parameters
- Stochastic optimization
 - Randomized algorithms: optimization across various seeds
 - Distribution of benchmark instances (often wide range of hardness)
 - Subsumes so-called multi-armed bandit problem
- Generalization across instances
 - apply algorithm configuration to homogeneous instance sets
 - ► Instance sets can also be heterogeneous, i.e., no single configuration performs well on all instances
 - → combination of algorithm configuration and selection

- Structured high-dimensional parameter space
 - categorical vs. continuous parameters
 - conditionals between parameters
- Stochastic optimization
 - Randomized algorithms: optimization across various seeds
 - Distribution of benchmark instances (often wide range of hardness)
 - Subsumes so-called multi-armed bandit problem
- Generalization across instances
 - apply algorithm configuration to homogeneous instance sets
 - ► Instance sets can also be heterogeneous, i.e., no single configuration performs well on all instances
 - → combination of algorithm configuration and selection
- \rightsquigarrow Hyperparameter optimization is a subproblem of algorithm configuration

[Eggensperger et al. 2019]