ESP32FORTH COSINE WAVE GENERATOR

To quickly experiment with new ESP32forth Cosine wave generator words follow the instructions given below.

1. Replace the existing section of the ESP32forth INO file with the following code and recompile. I used Version v7.0.6.8 but other previous versions should also work.

```
#ifndef ENABLE DAC SUPPORT
# define OPTIONAL DAC SUPPORT
# else
# include <driver/dac.h>
# include <driver/dac common.h>
# include <soc/rtc io reg.h>
# include <soc/rtc cntl reg.h>
# include <soc/sens reg.h>
# include <soc/rtc.h>
# define OPTIONAL_DAC_SUPPORT \
Y(dac output enable, n0 = dac output enable( (dac channel t) n0 ) )
Y(dac output disable, n0 = dac output disable( (dac channel t) n0 ) ) \
Y(dac output voltage, n0 = dac output voltage((dac channel t) n1, (gpio num t) n0); NIP)\
Y(dac cw generator enable, PUSH dac cw generator enable ())
Y(dac cw generator disable, PUSH dac cw generator disable ())
Y(dac i2s enable, PUSH dac i2s enable())
Y(dac_i2s_disable, PUSH dac_i2s_disable()) \
Y(rtc_freq_div_set, REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DIV_SEL, n0 ); DROP )
\ Y(dac_freq_step_set, SET_PERI_REG_BITS(SENS_SAR_DAC_CTRL1_REG, SENS_SW_FSTEP, n0,
SENS SW FSTEP S); DROP ) \ Y(dac1 scale set, SET PERI REG BITS(SENS SAR DAC CTRL2 REG,
SENS_DAC_SCALE1, 0, SENS_DAC_SCALE1_S); ) \ Y(dac2_scale_set,
SET PERI REG BITS(SENS SAR DAC CTRL2 REG, SENS DAC SCALE2, 0, SENS DAC SCALE2 S); )\
Y(dac1 offset set, SET PERI REG BITS(SENS SAR DAC CTRL2 REG, SENS DAC DC1, n0,
SENS DAC DC1 S); DROP ) \ Y(dac2 offset set, SET PERI REG BITS(SENS SAR DAC CTRL2 REG,
SENS_DAC_DC2, n0, SENS_DAC_DC2_S); DROP ) \ Y(dac1_invert_set,
SET_PERI_REG_BITS(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_INV1, n0, SENS_DAC_INV1_S); DROP ) \
Y(dac2_invert_set, SET_PERI_REG_BITS(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_INV2, n0,
SENS_DAC_INV2_S); DROP ) \ Y(dac1_cosine_enable,
SET PERI REG MASK(SENS SAR DAC CTRL2 REG, SENS DAC CW EN1 M); )\ Y(dac2 cosine enable,
SET_PERI_REG_MASK(SENS_SAR_DAC_CTRL2_REG, SENS_DAC_CW_EN2_M); ) \ Y(dacWrite,
```

dacWrite(n1, n0); DROPn(2))
#endif

- 2. Connect pin 25 to a PC speaker in series with a 200-1Kohm resistor. The sound will be weak but otherwise the pin is overloaded and the signal is distorted.
- 3. Execute the following ESP32forth words to obtain a 476.5Hz sine wave tone totally generated by the ESP32 hardware. You will need an oscilloscope to confirm the sine wave shape. I included a picture for the curious ones!

1 rtc_freq_div_set \ Set the RTC frequency for no division.
dac_cw_generator_enable \ Enable the CW generator.
dac1_cosine_enable \ Connect CW to DAC channel 1 on pin 25.
0 dac1_scale_set \ Set DAC channel 1 for full scale signal.
2 dac1_invert_set \ Set the DAC channel 1 for no inversion.
0 dac1_offset_set \ Set the DAC channel 1 for no DC offset.
7 dac freq step set \ Set DAC frequency step for a 476.5Hz signal.

0 dac_output_enable \ Enable DAC channel 1 signal output to pin 25.

476.5Hz signal with a 1Kohm resistor instead of the PC speaker

If you want the whole beginners adventure with the ESP32 Cosine Wave generator go to this link https://esp32.forth2020.org/projects-6

and download the PDF file [ESP32FORTH COSINE WAVE GENERATOR 69] .

Have fun with ESP32forth!