Order of elements modulo m

Learning Objectives. By the end of class, students will be able to:

- \bullet Define the order of an element modulo m
- \bullet Find the order of an element modulo m
- Prove basic facts about the order of an element modulo m.

Review of ϕ -function

Remark 1. From before break, ?? states if (m,n) = 1 for positive integers m and n, then $\phi(mn) = \phi(m)\phi(n)$.

Thus,
$$\phi(63) = \phi(9(7)) = \phi(9)\phi(7) = 6(6)$$
.

Homework Problem 1 Using ?? and the ??

(a) Let n be an integer not divisible by 3. Prove that $n^7 \equiv n \pmod{63}$.

Proof Let n be an integer that is not divisible by 3. By the ??,

$$x \equiv n^7 \pmod{7}$$

 $x \equiv n^7 \pmod{9}$

has a unique solution modulo 63. By ??, $n^7 \equiv n \pmod{7}$.

Since (n,9) = 1 and $\phi(9) = 6$, ?? says that $n^6 \equiv 1 \pmod{9}$. Multiplying both sides of the congruence by $n \pmod{9}$ gives $n^7 \equiv n \pmod{9}$. Thus, $7 \mid n^7 - n$ and $9 \mid n^7 - n$ by definition. Since (7,9) = 1, $63 \mid n^7 - n$, so $n^7 \equiv n \pmod{63}$.

(b) Let n be an integer divisible by 9. Prove that $n^7 \equiv n \pmod{63}$.

Remark 2. Reviewing the proof of part (a): ?? only requires the modulus is prime. ?? does require (n, m) = 1, so you cannot use it for this problem, but $n \equiv 0 \pmod{9}$.

Order of a modulo m

Definition 1 (order of a modulo m). Let $a, m \in \mathbb{Z}$ with m > 0 and (a, m) = 1. Then the order of a modulo m, denoted $\operatorname{ord}_m a$, is the smallest positive integer n such that $a^n \equiv 1 \pmod{m}$.

a^1	a^2	a^3	a^4	a^5	a^6	$\operatorname{ord}_7 a$
1	1	1	1	1	1	1
2	4	1	2	4	1	3
3	2	6	$\boxed{4}$	5	1	6
4	2	1	$\boxed{4}$	2	1	3
5	4	6	2	3	1	6
6	1	6	1	6	1	2

Table 1: Table of exponents modulo 7

There are many patterns in this table that we will talk about in the future, but the first is that $\operatorname{ord}_m a \mid \phi(m)$.

Proposition 1. Let $a, m \in \mathbb{Z}$ with m > 0 and (a, m) = 1. Then $a^n \equiv 1 \pmod{m}$ for some positive integer n if and only if $\operatorname{ord}_m a \mid n$. In particular, $\operatorname{ord}_m a \mid \phi(m)$.

Proof Let $a, m \in \mathbb{Z}$ with m > 0 and (a, m) = 1.

 (\Rightarrow) We want to show if $a^n \equiv 1 \pmod{m}$ for some positive integer n, then $\operatorname{ord}_m a \mid n$.

By the ??, there exist unique integers q, r such that $n = (\operatorname{ord}_m a)q + r$ and $0 \le r < \operatorname{ord}_m a$. Thus,

$$1 \equiv a^n \equiv a^{(\operatorname{ord}_m a)q+r} \equiv (a^{(\operatorname{ord}_m a)})^q a^r \equiv a^r \pmod{m}$$

since $a^{(\operatorname{ord}_m a)} \equiv 1 \pmod{m}$ by definition of order of a modulo m. Since $a^r \equiv 1 \pmod{m}$ and $0 \le r < \operatorname{ord}_m a$, if must be that r = 0, otherwise $\operatorname{ord}_m a$ is not the smallest positive integer where $a^k \equiv 1 \pmod{m}$.

(\Leftarrow) We want to show if ord_m $a \mid n$ for some positive integer n, then $a^n \equiv 1 \pmod{m}$.

If $\operatorname{ord}_m a \mid n$, then there exists an integer k such that $(\operatorname{ord}_m a)k = n$. Thus,

$$a^n \equiv (a^{\operatorname{ord}_m a})^k \equiv 1 \pmod{m}$$

by definition of order of a modulo m.

Proposition 2. Let $a, m \in \mathbb{Z}$ with m > 0 and (a, m) = 1. Then $a^i \equiv a^j \pmod{m}$ for nonnegative integers i, j if and and only if $i \equiv j \pmod{\operatorname{ord}_m a}$.

Example 1. Let a=2 and m=7. Since $\operatorname{ord}_7 2=3$, $2^i\equiv 2^j\pmod 7$ if and only if $i\equiv j\pmod 3$.

Sketch of Proof Let a=2 and m=7. Without loss of generality, assume that $i \geq j$.

(\Rightarrow) Assume that $2^i \equiv 2^j \pmod{7}$. Then by exponent rules, $2^j 2^{i-j} \equiv 2^j \pmod{7}$. Since $(2^i, 7) = 1$, there exists a multiplicative inverse of 2^i modulo 7 by ??, say $(2^j)'$. Multiplying both sides of the congruence by this inverse, we get,

$$2^{i-j} \equiv (2^j)' 2^j 2^{i-j} \equiv (2^j)' 2^j \equiv 1 \pmod{7}.$$

By, ord_m $a \mid i - j$. Thus, $i \equiv j \pmod{\operatorname{ord}_m a}$ by definition.

(\Leftarrow) Assume that $i \equiv j \pmod{3}$. Then $3 \mid i - j$ by definition. Since $\operatorname{ord}_7 2 = 3$, states that $2^{i-j} \equiv 1 \pmod{7}$. Multiplying both sides of the congruence by 2^j gives $2^i \equiv 2^j \pmod{7}$.

Proof of Proposition 2 Let $a, m \in \mathbb{Z}$ with m > 0 and (a, m) = 1. Without loss of generality, assume that $i \geq j$ for nonnegative integers i and j.

(\Rightarrow) Assume that $a^i \equiv a^j \pmod{m}$. Then by exponent rules, $a^j a^{i-j} \equiv a^j \pmod{m}$. Since $(a^i, m) = 1$ by assumption, there exists a multiplicative inverse of a^i modulo m by ??, say $(a^j)'$. Multiplying both sides of the congruence by this inverse, we get,

$$a^{i-j} \equiv (a^j)'a^ja^{i-j} \equiv (a^j)'a^j \equiv 1 \pmod{m}.$$

By , ord_m $a \mid i - j$. Thus, $i \equiv j \pmod{\operatorname{ord}_m a}$ by definition.

(\Leftarrow) Assume that $i \equiv j \pmod{\operatorname{ord}_m a}$. Then $\operatorname{ord}_m a \mid i - j$ by definition, and states that $a^{i-j} \equiv 1 \pmod{m}$. Multiplying both sides of the congruence by a^j gives $a^i \equiv a^j \pmod{m}$.

2