Cyber Security Breaches using Temporal Analysis, Network Analysis, Categorical Analysis, Anomaly Detection and Heatmaps

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import sys
from sklearn.preprocessing import LabelEncoder
from sklearn import preprocessing
Dataset 1
df = pd.read_csv("df_1.csv")
df.head()
         Unnamed: 0
                                        Entity Year
                                                         Records Organization type
                                                                                           Method Sources
                                                                                                              \blacksquare
      0
                  0
                           21st Century Oncology 2016
                                                         2200000
                                                                           healthcare
                                                                                           hacked
                                                                                                      [5][6]
                                                                                                              ıl.
      1
                  1
                                         500px 2020
                                                        14870304
                                                                      social networking
                                                                                           hacked
                                                                                                        [7]
      2
                  2
                          Accendo Insurance Co. 2020
                                                          175350
                                                                           healthcare poor security
                                                                                                      [8][9]
      3
                  3 Adobe Systems Incorporated 2013 152000000
                                                                                tech
                                                                                           hacked
                                                                                                       [10]
                  4
                                     Adobe Inc. 2019
                                                         7500000
      4
                                                                                tech poor security
                                                                                                    [11][12]
df.shape
     (352, 7)
df.dtypes
     Unnamed: 0
                            int64
     Entity
                           object
     Year
                           object
     Records
                           object
     Organization type
                           object
     Method
                           object
     Sources
                           object
     dtype: object
df.drop(['Sources'], axis=1, inplace=True)
df.isnull().any()
     Unnamed: 0
                           False
     Entity
                           False
                           False
     Year
     Records
                            True
     Organization type
                           False
     Method
                            True
     dtype: bool
df.isnull().sum()
     Unnamed: 0
                           0
     Entity
                           0
     Year
     Records
     Organization type
     Method
     dtype: int64
df.columns = ['id', 'Entity', 'Year', 'Records', 'Organization type', 'Method']
```

df.head(10)

```
id
                            Entity Year
                                              Records Organization type
                                                                                        Method
                                                                                                  \overline{\Box}
    0
0
              21st Century Oncology
                                     2016
                                              2200000
                                                                  healthcare
                                                                                        hacked
                                                                                                  d.
                              500px 2020
                                             14870304
                                                                                        hacked
1
    1
                                                            social networking
2
    2
                                                                  healthcare
              Accendo Insurance Co. 2020
                                               175350
                                                                                   poor security
                                            152000000
3
    3
         Adobe Systems Incorporated 2013
                                                                                        hacked
                                                                        tech
    4
                                              7500000
4
                         Adobe Inc. 2019
                                                                        tech
                                                                                   poor security
5
    5
             Advocate Medical Group
                                     2017
                                              4000000
                                                                  healthcare
                                                                             lost / stolen media
6
    6
       AerServ (subsidiary of InMobi) 2018
                                                 75000
                                                                  advertising
                                                                                        hacked
    7
             Affinity Health Plan, Inc. 2013
                                                344579
                                                                  healthcare
                                                                             lost / stolen media
8
    8
                              Airtel 2019
                                            320000000
                                                         telecommunications
                                                                                   poor security
9
    9
                         Air Canada 2018
                                                 20000
                                                                                        hacked
                                                                    transport
```

```
table_year_df = df['Year'].value_counts()
table_year_df
     2011
                       34
     2020
                       31
     2019
                       30
     2015
                       28
                       28
     2013
     2018
                       26
     2014
                       25
     2012
                       23
     2016
                       22
     2010
                       19
     2008
                       16
     2021
                       13
     2009
                       13
     2007
                       12
     2017
                       9
                        7
     2006
     2005
                        6
     2022
                        5
     2004
                        2
     2019-2020
     2018-2019
     2014 and 2015
     Name: Year, dtype: int64
df['Year'] = df['Year'].astype(str)
df['Year'] = df['Year'].str[:4]
df['Year'] = df['Year'].astype(int)
df['Year'].head()
     0
          2016
          2020
     1
          2020
     2
     3
          2013
          2019
     4
     Name: Year, dtype: int64
df.dtypes
     id
                            int64
     Entity
                           object
                            int64
     Year
     Records
                           object
     Organization type
                           object
     Method
                           object
     dtype: object
table_year_df = df['Year'].value_counts()
table_year_df
     2011
             34
     2019
             31
```

```
2015
        28
2013
        28
2018
        27
2014
        26
2012
        23
2016
        22
2010
        19
2008
        16
2021
        13
2009
        13
2007
        12
2017
         9
         7
2006
2005
         6
2022
         5
2004
         2
Name: Year, dtype: int64
```

```
sns.countplot(x='Year', data=df);
plt.title('Data Breaches Per Year')
plt.xticks(rotation=90);
```


sns.countplot(x='Year', data=df, order=table_year_df.index.values);
plt.title('Data Breaches in Order Desc')
plt.xticks(rotation=90);

```
table1 = df['Method'].value_counts()
table1
```

hacked	192
poor security	43
lost / stolen media	33
accidentally published	21
inside job	19
lost / stolen computer	16
unknown	7
improper setting, hacked	2
poor security/inside job	2
intentionally lost	1
accidentally exposed	1
publicly accessible Amazon Web Services (AWS) server	1
hacked/misconfiguration	1
rogue contractor	1
ransomware hacked	1
misconfiguration/poor security	1
unprotected api	1
zero-day vulnerabilities	1
data exposed by misconfiguration	1
Poor security	1
poor security / hacked	1
accidentally uploaded	1
unsecured S3 bucket	1
inside job, hacked	1
social engineering	1
Name: Method, dtype: int64	

sns.countplot(x='Method', data=df,color="blue");
plt.title('Frequency of Methods')
plt.xticks(rotation=90);

df_nothacked = df.loc[df['Method'] != 'hacked']
df_nothacked.head()

=	Method	Organization type	Records	Year	Entity		
ıl.	poor security	healthcare	175350	2020	Accendo Insurance Co.	2	2
	poor security	tech	7500000	2019	Adobe Inc.	4	4
	lost / stolen media	healthcare	4000000	2017	Advocate Medical Group	5	5
	lost / stolen media	healthcare	344579	2013	Affinity Health Plan, Inc.	7	7
	poor security	telecommunications	320000000	2019	Airtel	8	8

```
sns.countplot(x='Method', data=df_nothacked,color="green");
plt.title('Frequency of Methods (Without Hacked)')
plt.xticks(rotation=90);
plt.ylim([0,20])
```


table2 = df['Organization type'].value_counts()

web 53
healthcare 47
financial 38
government 30
retail 27
tech 19
academic 13
telecoms 12

table2.head(23)

Method

```
gaming
                               12
     social network
                               8
     hotel
     transport
     military
                                4
     energy
     restaurant
                                3
     media
     mobile carrier
     social media
     government, military
     telecom
     tech, retail
     government, healthcare
     telecommunications
     Name: Organization type, dtype: int64
org_counts = df['Organization type'].value_counts().rename('org_counts')
df_org = df.merge(org_counts.to_frame(),
                                left_on='Organization type',
                                right_index=True)
org_counts.head()
     web
     healthcare
                   47
     financial
                   38
     government
                   30
     retail
                   27
     Name: org_counts, dtype: int64
```

df_org.head()

	id	Entity	Year	Records	Organization type	Method	org_counts	\blacksquare
0	0	21st Century Oncology	2016	2200000	healthcare	hacked	47	ılı
2	2	Accendo Insurance Co.	2020	175350	healthcare	poor security	47	
5	5	Advocate Medical Group	2017	4000000	healthcare	lost / stolen media	47	
7	7	Affinity Health Plan, Inc.	2013	344579	healthcare	lost / stolen media	47	
14	14	Ankle & Foot Center of Tampa Bay, Inc.	2021	156000	healthcare	hacked	47	

df_org_upper = df_org[df_org.org_counts > 2]

df_org_upper

	id	Entity	Year	Records	Organization type	Method	org_counts	\blacksquare
0	0	21st Century Oncology	2016	2200000	healthcare	hacked	47	11.
2	2	Accendo Insurance Co.	2020	175350	healthcare	poor security	47	
5	5	Advocate Medical Group	2017	4000000	healthcare	lost / stolen media	47	
7	7	Affinity Health Plan, Inc.	2013	344579	healthcare	lost / stolen media	47	
14	14	Ankle & Foot Center of Tampa Bay, Inc.	2021	156000	healthcare	hacked	47	
260	260	Starwoodincluding Westin Hotels & Resorts and \dots	2015	54 locations	hotel	hacked	8	
286	286	Trump Hotels	2014	8 locations	hotel	hacked	8	
211	211	Nippon Television	2016	430000	media	hacked	3	
251	251	Sony Pictures	2014	100 terabytes	media	hacked	3	
329	329	Washington Post	2011	1270000	media	hacked	3	

291 rows × 7 columns

```
sns.countplot(x='Organization type', data=df_org_upper);
plt.title('Number of data breaches per organization type')
plt.xticks(rotation=90);
```


sns.histplot(x='Organization type', stat='percent', data=df_org_upper,kde=True);
plt.title('Proportion of Data Breaches per Organization')
plt.xticks(rotation=90);


```
df_cleaned_records = df.drop(df[df.Records == 'unknown'].index, inplace=True)
df_cleaned_records = df.drop(df[df.Records == 'G20 world leaders'].index, inplace=True)
df_cleaned_records = df.drop(df[df.Records == 'tens of thousands'].index, inplace=True)
df_cleaned_records = df.drop(df[df.Records == '19 years of data'].index, inplace=True)
df_cleaned_records = df.drop(df[df.Records == '63 stores'].index, inplace=True)
df_cleaned_records = df.drop(df[df.Records == 'over 5,000,000'].index, inplace=True)
df_cleaned_records = df.drop(df[df.Records == 'unknown (client list)'].index, inplace=True)
df_cleaned_records = df.drop(df[df.Records == 'millions'].index, inplace=True)
df_cleaned_records = df.drop(df[df.Records == '235 GB'].index, inplace=True)
df_cleaned_records = df.drop(df[df.Records == '350 clients emails'].index, inplace=True)
df_cleaned_records = df.drop(df[df.Records == '9,000,000 (approx) - basic booking, 2208 (credit card details)'].index, inplace=True)
df_cleaned_records = df.drop(df[df.Records == 'Unknown'].index, inplace=True)
df_cleaned_records = df.drop(df[df.Records == '2.5GB'].index, inplace=True)
df cleaned records = df.drop(df[df.Records == '250 locations'].index, inplace=True)
df_cleaned_records = df.drop(df[df.Records == '500 locations'].index, inplace=True)
df_cleaned_records = df.drop(df[df.Records == '54 locations'].index, inplace=True)
df_cleaned_records = df.drop(df[df.Records == '51 locations'].index, inplace=True)
df_cleaned_records = df.drop(df[df.Records == '10 locations'].index, inplace=True)
df_cleaned_records = df.drop(df[df.Records == '8 locations'].index, inplace=True)
df_cleaned_records = df.drop(df[df.Records == '93 stores'].index, inplace=True)
df_cleaned_records = df.drop(df[df.Records == '200 stores'].index, inplace=True)
df_cleaned_records = df.drop(df[df.Records == 'undisclosed'].index, inplace=True)
df_cleaned_records = df.drop(df[df.Records == 'Source Code Compromised'].index, inplace=True)
df cleaned records = df.drop(df[df.Records == '100 terabytes'].index, inplace=True)
df_cleaned_records = df.drop(df[df.Records == 'TBC'].index, inplace=True)
df cleaned records = df.drop(df[df.Records == 'unknown'].index, inplace=True)
df_cleaned_records = df.dropna(subset=['Records'])
df_cleaned_records.shape
     (305, 6)
df_cleaned_records['Records'] = df_cleaned_records['Records'].astype(float)
     <ipvthon-input-69-0438403b26b0>:1: SettingWithCopvWarning:
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-cc
       df cleaned records['Records'] = df cleaned records['Records'].astype(float)
df_cleaned_records["Records"]
     0
              2200000.0
             14870304.0
     1
     2
               175350.0
            152000000.0
     3
              7500000.0
     4
     347
            173000000.0
            200000000.0
     348
     349
               391250.0
     350
              6400000.0
     351
                95000.0
     Name: Records, Length: 305, dtype: float64
df_total_records = df_cleaned_records.groupby('Year', sort=False)["Records"].sum().reset_index(name ='Total Records')
df_total_records
```

 ${\tt df_total_records_org_clean}$

```
\blacksquare
          Year Total Records
         2016
                 5.405824e+08
                                 ıl.
          2020
                 1.251422e+09
      2
         2013
                 3.469435e+09
         2019
                 3.824901e+09
      3
         2017
                 2.547669e+08
      4
      5
         2018
                 1.531850e+09
      6
         2005
                 4.682500e+07
      7
          2021
                 6.139627e+07
          2015
                 2.016545e+08
      8
      9
         2004
                 9.251000e+07
      4٨
         2006
                 7 126000-+07
plt.figure(figsize=(10,5))
sns.lineplot(data=df_total_records, x='Year', y='Total Records')
plt.xticks([2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018, 2020, 2022]);
```



```
df_total_records_org = df_cleaned_records.groupby('Organization type', sort=False)["Records"].sum().reset_index(name ='Total Records')

df_total_records_org = df_total_records_org.sort_values('Total Records', ascending=False, ignore_index=True)

df_total_records_org_clean = df_total_records_org.drop(df_total_records_org.index[21:])
```

	Organization type	Total Records	
0	web	5.203696e+09	ıl.
1	social network	1.238000e+09	
2	tech	1.000898e+09	
3	financial service company	8.850000e+08	
4	financial	8.185971e+08	
5	hotel	5.055630e+08	
6	telecommunications	4.200000e+08	
7	retail	3.721407e+08	
8	data broker	3.400000e+08	
9	Telephone directory	2.990550e+08	

sns.catplot(data=df_total_records_org_clean, x='Organization type', y='Total Records')
plt.title('Total Records per Organisation Type')
plt.xticks(rotation=90);


```
df_total_records_org_clean = df_total_records_org_clean.drop(df_total_records_org_clean.index[:1])
sns.catplot(data=df_total_records_org_clean, x='Organization type', y='Total Records')
plt.title('Total Records per Organisation Type')
plt.xticks(rotation=90);
```



```
df_total_records_Method = df_cleaned_records.groupby('Method', sort=False)["Records"].sum().reset_index(name ='Total Records')

df_total_records_Method = df_total_records_Method.sort_values('Total Records', ascending=False, ignore_index=True)

df_total_records_Method_clean = df_total_records_Method.drop(df_total_records_Method.index[21:])

df_total_records_Method_clean
```

	Method	Total Records	=
0	hacked	7.404780e+09	11.
1	poor security	3.610143e+09	
2	unknown	4.482339e+08	
3	poor security / hacked	4.122143e+08	
4	accidentally published	2.699175e+08	
5	data exposed by misconfiguration	2.500000e+08	
6	Poor security	2.010000e+08	
7	lost / stolen media	1.704345e+08	
8	unsecured S3 bucket	1.060000e+08	
9	unprotected api	1.000000e+08	
10	misconfiguration/poor security	1.000000e+08	
11	inside job, hacked	9.200000e+07	
12	inside job	7.642610e+07	
13	lost / stolen computer	4.139767e+07	
14	publicly accessible Amazon Web Services (AWS) \dots	3.800000e+07	
15	improper setting, backed	2 145775e+07	
	ot(data=df_total_records_Method_clean, x='Me	ethod', y='Total	Records')

sns.catplot(data=df_total_records_Method_clean, x='Method', y='Total Records')
plt.title('Total Records per Method')
plt.xticks(rotation=90);

Total Records per Method

	Method	Total Records	Method_counts	relative	E
0	poor security / hacked	4.122143e+08	1	4.122143e+08	•
1	data exposed by misconfiguration	2.500000e+08	1	2.500000e+08	
2	Poor security	2.010000e+08	1	2.010000e+08	
3	unsecured S3 bucket	1.060000e+08	1	1.060000e+08	
4	misconfiguration/poor security	1.000000e+08	1	1.000000e+08	
5	unprotected api	1.000000e+08	1	1.000000e+08	
6	poor security	3.610143e+09	39	9.256777e+07	
7	inside job, hacked	9.200000e+07	1	9.200000e+07	
8	unknown	4.482339e+08	5	8.964678e+07	
9	hacked	7.404780e+09	160	4.627988e+07	
10	publicly accessible Amazon Web Services (AWS) \dots	3.800000e+07	1	3.800000e+07	
11	accidentally published	2.699175e+08	19	1.420618e+07	
12	improper setting, hacked	2.145775e+07	2	1.072888e+07	
13	social engineering	6.054459e+06	1	6.054459e+06	
14	lost / stolen media	1.704345e+08	32	5.326079e+06	
15	inside job	7.642610e+07	18	4.245895e+06	
16	lost / stolen computer	4.139767e+07	15	2.759844e+06	
17	poor security/inside job	5.214200e+06	2	2.607100e+06	
18	ransomware hacked	1.648922e+06	1	1.648922e+06	
19	accidentally uploaded	1.500000e+06	1	1.500000e+06	
20	intentionally lost	9.600000e+05	1	9.600000e+05	

sns.catplot(data=df_Method, x='Method', y='relative')
plt.title('Total Records per Method')
plt.xticks(rotation=90);

df.head()

Ħ	Method	Organization type	Records	Year	Entity	id	
ıl.	hacked	healthcare	2200000	2016	21st Century Oncology	0	0
	hacked	social networking	14870304	2020	500px	1	1
	poor security	healthcare	175350	2020	Accendo Insurance Co.	2	2
	hacked	tech	152000000	2013	Adobe Systems Incorporated	3	3
	poor security	tech	7500000	2019	Adobe Inc.	4	4
					5		

plt.figure(figsize=(15,8))
sns.countplot(data = df, x = 'Year', hue = 'Method');


```
plt.figure(figsize=(10,5))
sns.boxplot(data=df, y = 'Method', x = 'Year');
```



```
df_heatmap = df.copy(deep=True)

le = LabelEncoder()
df_heatmap['Records'] = le.fit_transform(df_heatmap['Records'])
df_heatmap['Entity'] = le.fit_transform(df_heatmap['Entity'])
df_heatmap['Organization type'] = le.fit_transform(df_heatmap['Organization type'])
df_heatmap['Method'] = le.fit_transform(df_heatmap['Method'])

plt.figure(figsize=(10,5))
sns.heatmap(df_heatmap[['Year', 'Records', 'Organization type', 'Method']].corr(), cmap='Spectral_r', annot=True);
```


Dataset 2

```
df2 = pd.read_csv("Cyber Security Breaches.csv")
df2.head()
```

duals_Affected Dat	te_of_Breach	Type_of_Breach	Location_of_Breached_Information	Date_Posted_or_Updated	Summary	breach_start	breac
1000	10/16/2009	Theft	Paper	2014-06-30	A binder containing the protected health infor	2009-10-16	
1000	9/22/2009	Theft	Network Server	2014-05-30	Five desktop computers containing unencrypted 	2009-09-22	
501	10/12/2009	Theft	Other Portable Electronic Device, Other	2014-01-23	NaN	2009-10-12	
					A laptop was lost by		
3800	10/9/2009	Loss	Laptop	2014-01-23	an employee while in tran	2009-10-09	
					A shared		
'Type_of		cation_of_Breac	Business_Associate_Involved', 'Inc hed_Information', 'Date_Posted_or_				
df2.shape							
(1055, 14)							
df2.dtypes							
id Number Entity State Business_Associate Individuals_Affect Date_of_Breach Type_of_Breach Location_of_Breach Date_Posted_or_Upd Summary breach_start breach_end year dtype: object	ed ed_Informatic	int64 int64 object object int64 object object object object object object object object object int64					
df2.isnull().sum()							
id Number Entity State Business_Associate Individuals_Affect Date_of_Breach Type_of_Breach Location_of_Breach Date_Posted_or_Upd Summary breach_start breach_end year dtype: int64	ed ed_Information	0 0 0 784 0 0 0 0 913 0 910 0					
df2.head()							

	id	Number	Entity	State	Business_Associate_Involved	Individuals_Affected	Date_of_Breach	Type_of_Breach	Location_of_Breach
0	1	0	Brooke Army Medical Center	TX	NaN	1000	10/16/2009	Theft	
1	2	1	Mid America Kidney Stone Association, LLC	МО	NaN	1000	9/22/2009	Theft	
2	3	2	Alaska Department of Health and Social Services	AK	NaN	501	10/12/2009	Theft	Other Portable Electro
3	4	3	Health Services for Children with Special Need	DC	NaN	3800	10/9/2009	Loss	
4	E	4	L. Douglas	C^	AlaAl	5057	0/07/0000	That	-

df2.head()

	id	Entity	State	Individuals_Affected	Date_of_Breach	Type_of_Breach	Location_of_Breached_Information	year	
0	1	Brooke Army Medical Center	TX	1000	10/16/2009	Theft	Paper	2009	ılı
1	2	Mid America Kidney Stone Association, LLC	МО	1000	9/22/2009	Theft	Network Server	2009	
2	3	Alaska Department of Health and Social Services	AK	501	10/12/2009	Theft	Other Portable Electronic Device, Other	2009	
3	4	Health Services for Children with Special Need	DC	3800	10/9/2009	Loss	Laptop	2009	

df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1055 entries, 0 to 1054
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	id	1055 non-null	int64
1	Entity	1055 non-null	object
2	State	1055 non-null	object
3	<pre>Individuals_Affected</pre>	1055 non-null	int64
4	Date_of_Breach	1055 non-null	object
5	Type_of_Breach	1055 non-null	object
6	Location_of_Breached_Information	1055 non-null	object
7	year	1055 non-null	int64

dtypes: int64(3), object(5) memory usage: 66.1+ KB

sns.countplot(data=df2, x='year');
plt.title('Data Breaches per Year')
plt.xticks(rotation=90);

sns.countplot(data=df2, x='year', order = df2['year'].value_counts().index);
plt.title('Data Breaches per Year in Order Desc')
plt.xticks(rotation=90);


```
table_year_df2 = df2['year'].value_counts()
table_year_df2
```

```
2013
        254
2011
        229
2012
        227
2010
        211
2009
         56
2014
         56
2008
         13
2004
          2
2005
          2
1997
          1
2003
          1
2007
2006
          1
2002
Name: year, dtype: int64
```

sns.countplot(data=df2, x='Type_of_Breach', order = df2['Type_of_Breach'].value_counts().index);
plt.title('Frequency of Methods')
plt.xticks(rotation=90);

df2.head()

https://colab.research.google.com/drive/1ByP1z_aow5Rx7wCaf3ZlwGY8g0aniiqE#scrollTo=237rn717L_fG&printMode=true

	id	Entity	State	Individuals_Affected	Date_of_Breach	Type_of_Breach	Location_of_Breached_Information	year	
	0 1	Brooke Army Medical Center	TX	1000	10/16/2009	Theft	Paper	2009	ılı
		Mid America Kidnev Stone							
import plotly.express as px									
		Alaska Department of							

table4 = df2['State'].value_counts()
table4

CA 113 TX 83 FL 66 NY 58 49 ΙL PΑ 40 IN 40 ОН 33 TN 32 NC 32 MA 32 PR

```
11/21/23, 7:33 PM
```

```
GΑ
     ΚY
            26
     ΜI
            26
     МО
            25
     WA
            25
     ΑZ
            21
     MN
            21
     NJ
            20
     CO
            18
     VA
            18
     MD
            18
     СТ
            17
     OR
            15
     WI
            14
     SC
            13
     ΑL
            12
     AR
            11
     NM
            10
     NE
             9
     UT
             9
     DC
             9
     ΙA
             8
             7
7
     LA
     RΙ
     KS
             7
     OK
             6
     WV
             5
     MS
     NV
             5
     ΑK
             5
     WY
             4
     NH
     МТ
             4
     DE
             3
     ND
             3
     ID
             2
     ΗI
             1
     SD
             1
     ME
             1
     VT
             1
     Name: State, dtype: int64
State_counts = df2['State'].value_counts().rename('State_counts')
df2_State = df2.merge(State_counts.to_frame(),
```

plt.xticks(rotation=90);

```
left_on='State',
                                right_index=True)
df2_State_upper = df2_State[df2_State.State_counts >= 15]
plt.figure(figsize=(18,8))
sns.countplot(data=df2_State_upper, x='State', order = df2_State_upper['State'].value_counts().index);
plt.title('Data Breaches by US State')
```

Data Breaches by US State

```
df2_2006 = df2.loc[df2['year']>2006]
```

plt.figure(figsize=(10,5))
plt.scatter(data = df2_2006, y = 'Individuals_Affected', x = 'year', alpha=1/2);

plt.figure(figsize=(10,5))
plt.hist2d(data = df2_2006, y = 'Individuals_Affected', x = 'year', cmin=0.5, cmap = 'icefire')
plt.colorbar();

df2_2006_breach = df2_2006.loc[df2_2006['Type_of_Breach'].isin(df2_2006['Type_of_Breach'].value_counts().index[:11])]

```
plt.figure(figsize=(15,8))
sns.countplot(data = df2_2006_breach, x = 'year', hue = 'Type_of_Breach');
```


plt.figure(figsize=(10,5))
sns.boxplot(data=df2_2006_breach, y = 'Type_of_Breach', x = 'year');

ω.

Arima Code Starts

```
import statsmodels.api as sm

Q

df.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 307 entries, 0 to 351
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	id	307 non-null	int64
1	Entity	307 non-null	object
2	Year	307 non-null	int64
3	Records	305 non-null	object
4	Organization type	307 non-null	object
5	Method	306 non-null	object

dtypes: int64(2), object(4)
memory usage: 16.8+ KB

df2 = df_train.apply(pd.to_numeric,downcast="float")
df["Records"] = pd.to_numeric(df["Records"])

df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 307 entries, 0 to 351
Data columns (total 6 columns):

200	COTO / COCOT O C	010			
#	Column	Non-Null Count	Dtype		
0	id	307 non-null	int64		
1	Entity	307 non-null	object		
2	Year	307 non-null	int64		
3	Records	305 non-null	float64		
4	Organization type	307 non-null	object		
5	Method	306 non-null	object		
<pre>dtypes: float64(1), int64(2), object(3)</pre>					
memory usage: 16.8+ KB					

memory asage: 10.01 K

df.head()

```
id
                              Entity Year
                                                Records Organization type
                                                                                 Method
                                                                                          ▦
      0
         0
                  21st Century Oncology
                                      2016
                                              2200000.0
                                                                 healthcare
                                                                                 hacked
                                                                                          d.
      1
          1
                               500px 2020
                                             14870304.0
                                                            social networking
                                                                                 hacked
from statsmodels.tsa.stattools import adfuller
from numpy import log
result = adfuller(df.Year.dropna())
print('ADF Statistic: %f' % result[0])
print('p-value: %f' % result[1])
     ADF Statistic: -14.774299
     p-value: 0.000000
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
import matplotlib.pyplot as plt
plt.rcParams.update({'figure.figsize':(9,7), 'figure.dpi':120})
# Original Series
fig, axes = plt.subplots(3, 2, sharex=True)
axes[0, 0].plot(df.Records); axes[0, 0].set_title('Original Series')
plot_acf(df.Records, ax=axes[0, 1])
# 1st Differencing
axes[1, 0].plot(df.Records.diff()); axes[1, 0].set_title('1st Order Differencing')
plot_acf(df.Records.diff().dropna(), ax=axes[1, 1])
# 2nd Differencing
axes[2, 0].plot(df.Records.diff().diff()); axes[2, 0].set_title('2nd Order Differencing')
plot_acf(df.Records.diff().diff().dropna(), ax=axes[2, 1])
plt.show()
```

 $/usr/local/lib/python 3.10/dist-packages/matplotlib/axes/_base.py: 2503: \ UserWarning: \\$

Warning: converting a masked element to nan.


```
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
import matplotlib.pyplot as plt
plt.rcParams.update({'figure.figsize':(9,7), 'figure.dpi':120})

# Original Series
fig, axes = plt.subplots(3, 2, sharex=True)
axes[0, 0].plot(df.Year); axes[0, 0].set_title('Original Series')
plot_acf(df.Year, ax=axes[0, 1])

# 1st Differencing
axes[1, 0].plot(df.Year.diff()); axes[1, 0].set_title('1st Order Differencing')
plot_acf(df.Year.diff().dropna(), ax=axes[1, 1])

# 2nd Differencing
axes[2, 0].plot(df.Year.diff().diff()); axes[2, 0].set_title('2nd Order Differencing')
plot_acf(df.Year.diff().diff().dropna(), ax=axes[2, 1])

plt.show()
```



```
plt.rcParams.update({'figure.figsize':(9,3), 'figure.dpi':120})
fig, axes = plt.subplots(1, 2, sharex=True)
axes[0].plot(df.Year.diff()); axes[0].set_title('1st Differencing')
axes[1].set(ylim=(0,5))
plot_pacf(df.Year.diff().dropna(), ax=axes[1])
plt.show()
```

```
1st Differencing
                                                                                Partial Autocorrelation
                                                                1.00
        15
                                                                0.75
        10
                                                                0.50
                                                                0.25
         5
                                                                0.00
         0
                                                                -0.25
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
plt.rcParams.update({'figure.figsize':(9,3), 'figure.dpi':120})
fig, axes = plt.subplots(1, 2, sharex=True)
axes[0].plot(df.Year.diff()); axes[0].set_title('1st Differencing')
axes[1].set(ylim=(0,1.2))
plot_acf(df.Year.diff().dropna(), ax=axes[1])
plt.show()
```


from statsmodels.tsa.arima_model import ARIMA

-> 5902 return object._getattribute__(self, name)
5903
5904 def __setattr__(self, name: str, value) -> None:

model = sm.tsa.arima.ARIMA(df["Records"].value_count().index, order=(1,1,2))

AttributeError: 'Series' object has no attribute 'value_count'

SEARCH STACK OVERFLOW

df.head()

	id	Entity	Year	Records	Organization type	Method	\blacksquare
0	0	21st Century Oncology	2016	2200000.0	healthcare	hacked	11.
1	1	500px	2020	14870304.0	social networking	hacked	
2	2	Accendo Insurance Co.	2020	175350.0	healthcare	poor security	
3	3	Adobe Systems Incorporated	2013	152000000.0	tech	hacked	