1	Класс EqualitySystem[T], представляющий систему равенств вида $a = b$, где a и b — имена переменных или значения типа Т. В классе должно быть реализовано две операции: добавление нового равенства; проверка, существует ли решение системы. В случае, если тип Т — числовой, дополнительно должна быть реализована операция, возвращающая значение переменной, возвращающая Орtion[T]. Значения должны назначаться переменным
2	произвольно, но так, чтобы система равенств не нарушалась. Класс MegaQueue[T], представляющий неизменяемую очередь с операциями enqueue, dequeue и empty, реализованную через два списка. В случае, если Т — числовой тип, для очереди должна быть
3	также доступна операция max, работающая за константное время. Класс Seq[T: Ordering], представляющий отсортированную последовательность значений типа T с операцией объединения двух последовательностей. В случае, если T — числовой тип, для последовательности должна быть также доступна операции умножения всех элементов на число, работающая за константное время.
4	Класс Permutation[T], представляющий неизменяемую перестановку подмножества значений типа T с двумя операциями: получение <i>i</i> -го элемента и транспозиция. В случае, если T — строковый тип, для Permutation[T] доступна дополнительная операция superStringSize, возвращающая длину минимальной суперстроки, в которую строки, содержащиеся в перестановке, входят в том порядке, в котором они расположены в перестановке.
5	Класс Formula[T], представляющий формулу, состоящую из имён переменных, констант типа Т и бинарных операций. Ассортимент операций зависит от типа Т: если определён Numeric[T], то должны присутствовать четыре базовых арифметических операций; если Т — это string, то должна присутствовать только операция сложения, обозначающая конкатенацию. Для создания объектов класса Formula[T] доступны два конструктора: первый принимает имя переменной и создаёт формулу, состоящую из единственной переменной; второй конструктор принимает значение типа Т и создаёт формулу, состоящую из единственной константы. Все остальные формулы возвращаются бинарными операциями. В классе Formula[T] должен быть определён метод, принимающий отображение имён переменных в их значения и считающий значение формулы.

6	Класс Range[T: Ordering], представляющий интервал на множестве значений типа T с операциями определения вхождения одного интервала в другой, пересечения двух интервалов и определения принадлежности значения интервалу. В случае, если тип T — числовой, дополнительно должна быть реализована операция вычисления длины интервала.
7	Класс SuperStack[T], представляющий неизменяемый стек с операциями push, pop и empty, реализованный через список. В случае, если T — числовой тип, для стека должны быть также доступны операции min и max, работающие за константное время.
8	Класс QuadraticEquation[T], представляющий квадратное уравнение с коэффициентами типа Т и оперцией solve, возвращающей список найденных корней типа Т. Операция solve должна быть доступна в случае, если Т — числовой тип из стандартной библиотеки языка Scala. Кроме того, эта операция должна быть реализована для класса комплексных чисел, написанного самостоятельно или найденного в Интернете.
9	Класс Circle[T], представляющий круг на плоскости, заданный координатами центра и радиусом. Координы центра и радиус заданы значениями числового типа Т. В классе должна быть реализована операция проверки, что один круг целиком помещается внутри другого круга, и, кроме того, в случае, если тип Т — не целый, операции вычисления длины окружности круга и площади.
10	Класс MegaStack[T], представляющий неизменяемый стек с операциями push, pop и empty, реализованный через список. В случае, если T — числовой тип, для стека должна быть также доступна операция average, возвращающая среднее арифметическое элементов стека и работающая за константное время.
11	Класс Fib[T], представляющий <i>i</i> -тый член последовательности Фибоначчи типа Т. Конструктор класса Fib[T] принимает два первых члена последовательности и создаёт объект, соответствующий первому члену. Метод next возвращает новый объект, соответствующий следующему члену. Если тип Т — целочисленный, то очередной член последовательности вычисляется как сумма двух предыдущих. Если тип Т — строка, то вместо сложения используется конкатенация.
12	Класс SuperNumber[T], представляющий число произвольной разрядности в системе счисления, цифрами которой выступают значения типа Т. Если Т — целочисленный тип Scala или Bool, то для SuperNumber[T] должна быть доступна операция сложения. Если Т — Bool, то дополнительно должны работать операции поразрядного И и ИЛИ.

13	Класс Polynom[T], представляющий полином с коэффициентами типа T и операцией, возвращающей степень полинома. В случае, если тип T – числовой, для Polynom[T] также должна быть доступна операция дифференцирования.
14	Класс KadaneStack[T], представляющий неизменяемый стек с операциями push, pop и empty, реализованный через список. В случае, если T — числовой тип, для стека должна быть также доступна операция maxSum, возвращающая максимальную сумму подряд идущих элементов стека и работающая за константное время.
15	Класс StackMachine[T], представляющий неизменяемый снимок состояния стековой машины, оперирующей значениями типа Т. В случае, если Т — числовой тип, в стековой машине должны быть реализованы арифметические операции. В StackMachine[Boolean] должны присутствовать логические операции.
16	Класс Polynom[T], представляющий полином с коэффициентами типа T и операцией вычисления значения в точке x . Полином должен быть задан списком коэффициентов. В качестве типа T может выступать числовой тип.
17	Класс Line[T], представляющий отрезок прямой на плоскости, заданный двумя точками с координатами числового типа Т. В классе должна быть реализована операция параллельного переноса отрезка, и, кроме того, в случае, если тип Т — не целый, операции вычисления длины отрезка и его поворота относительно заданной точки на указанный угол.
18	Класс LinEq[T], представляющий линейное неравенство вида $a_1x_1 + a_2x_2 + \ldots + a_nx_n < b$ с операцией, проверяющей, удовлетворяет ли заданный список значений переменных неравенству. Коэффициенты неравенства, а также значения переменных имеют тип T, который либо является числовым, либо булевским. Для булевского типа умножение — это конъюнкция, сложение — дизъюнкция, и порядок задан как false $<$ true.
19	Класс Shape [T: Ordering], представляющий бесконечное множество «точек» в пространстве Т×Т. Конструктор класса должен принимать две «точки», задающие вершины «прямоугольника» (тем самым конструируется множество, состоящее из всех точек прямоугольника). В классе должны быть реализованы операции: объединение двух множеств, пересечение двух множеств, определение принадлежности «точки» множеству. Кроме того, если тип Т — числовой, дополнительно должна быть реализована операция параллельного переноса всех точек множества на заданное расстояние.

20	Класс Bijection[T], представляющий неизменяемое взаимнооднозначное отображение заданного конечного подмножества значений типа T в себя с операциями применения отображения к значению (возвращает Option[T]) и обмена значений, в которые отображаются два элемента (swap). Конструктор класса должен получать в качестве параметра множество и порождать тождественное отображение. Для Bijection[String] должен быть доступен метод переворачивания всех строк в отображении, работающий за константное время. Для Bijection[Int] должен быть доступен метод прибавления заданного числа к каждому элементу множества, на котором определено отображение (он тоже должен работать за константное время).
21	Класс Triangle[T], представляющий треугольник на плоскости с вершинами, помеченными значениями типа Т. Треугольник должен быть задан координатами вершин и поддерживать операции вычисления периметра и площади. Кроме того, если тип Т — числовой, то метки вершин следует понимать как массы расположенных в вершинах материальных точек, и у треугольника должна дополнительно присутсвовать операция вычисления координат его центра масс.
22	Класс Powers[T], представляющий бесконечную последовательность степеней некоторого значения x типа T, для которой реализованы две операции: получение i -того члена последовательности, умножение всех элементов последовательности на x . В качестве типа T может выступать либо числовой тип, либо строка (в случае строки умножением является конкатенация).
23	Класс Vector[T <: Product], представляющий вектор в двух или трёхмерном пространстве. Если тип Т представляет пару или тройку, элементы которой имеют одинаковый числовой тип, то для Vector[T <: Product] должны быть доступны операции сложения и скалярного умножения. Дополнительно, для троек должна быть реализована операция векторного умножения.
24	Класс Matrix[T], представляющий неизменяемую квадратную матрицу с элементами типа T, для которой реализованы две операции: получение значения элемента на <i>i</i> -той строке в <i>j</i> -том столбце, а также перестановка двух строк матрицы. В случае, если T — числовой тип, для Matrix[T] должна быть доступна дополнительная операция power, возвращающая результат возведения матрицы в указанную степень.

25	Класс Circle[T: Numeric], представляющий окружность на плоскости, заданную координатами центра и радиусом. Координы центра и радиус заданы значениями числового типа Т. В классе должны быть реализованы две операции: вычисление площади и длины окружности (всегда возвращают Double). В случае, если тип Т — целый, в классе должна быть доступна операция, возвращающая список точек окружности, имеющих целые координаты.
26	Класс AntidiagonalMatrix[T: Numeric], представляющий неизменяемую антидиагональную матрицу с элементами числового типа Т. (Все элементы антидиагональной матрицы, кроме лежащих на диагонали, идущей от нижниго левого угла до верхнего правого угла, равны нулю.) В классе должны быть реализованы три операции: получение значения элемента на <i>i</i> -той строке в <i>j</i> -том столбце; сложение с другой антидиагональной матрицей; вычисление определителя. В случае, если тип Т — Float или Double, в классе должна быть доступна операция «нормализации» матрицы, т.е. деления всех элементов матрицы на её определитель.
27	Класс ArithProgression[T], представляющий арифметическую прогрессию с элементами типа Т и операцией вычисления <i>i</i> -го члена и суммы первых <i>n</i> членов. Арифметическая прогрессия должны быть задана начальным членом и разностью. В качестве типа Т может выступать числовой тип или строка. В случае строки сложение означает конкатенацию.
28	Класс Matrix[T], представляющий неизменяемую квадратную матрицу с элементами типа T, для которой реализованы две операции: получение значения элемента на <i>i</i> -той строке в <i>j</i> -том столбце, а также транспонирование матрицы. В случае, если T — числовой тип, для Matrix[T] должна быть доступна дополнительная операция square, возвращающая результат произведения матрицы на саму себя.
29	Класс Tree[K: Ordering, V], представляющий неизменяемое дерево поиска с ключами типа К и значениями типа V. Дерево должно поддерживать операции добавления словарной пары и поиска значения по ключу. Кроме того, в случае, еслиа V — булевский тип, у дерева должна дополнительно присутствовать операция замены всех true в вершинах на false, и наоборот, работающая за константное время.
30	Класс Matrix[T], представляющий матрицу размера $m \times n$ с элементами типа T и операциями сложения и умножения. В качестве типа T может выступать числовой тип или множество строк. В случае множества строк сложение означает объединение множеств, а умножение даёт множество, составленное из всех попарных конкатенаций строк, первая из которых взята из левого операнда, а вторая — из правого.

31	Класс Matrix[T], представляющий квадратную матрицу размера <i>n</i>
	с элементами типа Т и операцией удаления указанных строки и столбца. Кроме того, если тип Т — числовой, дополнительно должна
	быть реализована операция вычисления определителя матрицы.
32	Класс EquationSystem[T], представляющий систему из двух
	линейных уравнений от двух переменных с коэффициентами типа
	Т и оперцией solve, возвращающей решение уравнения в виде
	Option[(S, S)], где тип S зависит от типа Т. Эта зависимость
	задаётся следующими правилами: если Т – тип с плавающей
	точкой, то S совпадает с T; если T — целочисленный тип, то S —
	дробь, числитель и знаменатель которой имеют тип Т; в остальных
	случаях операция solve недоступна. Для представления дробей
	следует создать отдельный класс.