Αριστότελειο Πανεπίστημιο Θεσσαλονίκης Πολυτεχνική Σχολή Τμημα Ηλεκτρολογών Μηχανικών και Μηχανικών Υπολογίστων

Εργαστηριακές Ασκήσεις

47 - Ηλεκτρονική III

Καπετάνιος Αντώνιος [AEM 10417] (kapetaat@ece.auth.gr)Χαλκιάς Νικόλαος Μάριος [AEM] (@ece.auth.gr)

Περιεχόμενα

1	Γεννήτρια τριγωνικών παλμών			
	α΄ Θεωρητική μελέτη & προσομοίωση			
		α΄.1	Περιγραφή της λειτουργίας του κυκλώματος	
		$\alpha'.2$	Προσομοίωση με PSpice	
		$\alpha'.3$	Μέγιστη συχνότητα λειτουργίας	
		$\alpha'.4$	Ρύθμιση του πλάτους τους σήματος	
	β´	Εργασ	τηριακή εφαρμογή	
2 Προσαρμογή - διπλός παράλληλος κλαδωτής		:		
A۱	Αναφορές			

Άσκηση 1

Γεννήτρια τριγωνικών παλμών

Κύκλωμα 1.1: Γεννήτρια τριγωνικής παλμοσειράς.

Στην πρώτη άσκηση μελετάται το κύκλωμα 1.1 το οποίο αποτελείται από δύο τελεστικούς ενισχυτές 741. Για την τροφοδοσία των τελεστικών ενισχυτών είναι $V_{CC}=15$ V και $V_{EE}=15$ V. Οι δύο δίοδοι Zener (1N750) έχουν τάση Zener $V_Z=7.5$ V και τάση στην ορθή πόλωση $V_D=0.7$ V.

Βάσει των οδηγιών για την εύρεση των τιμών R_1,R_f και C προκύπτει $R_1=50$ k Ω , $R_1=35$ k Ω και C=4nF. Ωστόσο, επιλέχθηκαν οι πλησιέστερες τιμές που εμφανίζονται στα τυποποιημένα εξαρτήματα. Τελικα, το κύκλωμα υλοποιήθηκε με $R_1=47$ k Ω , $R_f=33$ k Ω και C=4.7nF.

α΄ Θεωρητική μελέτη & προσομοίωση

- α΄.1 Περιγραφή της λειτουργίας του κυκλώματος
- α΄.2 Προσομοίωση με PSpice
- α΄.3 Μέγιστη συχνότητα λειτουργίας
- α΄.4 Ρύθμιση του πλάτους τους σήματος

β΄ Εργαστηριακή εφαρμογή

Οι κυματομορφές $V_{\rm out}$, V_1 και V_2 του κυκλώματος Ι.Ι σε διάστημα 1.184ms για $R_1=47$ k Ω , $R_2=4.7$ k Ω , $R_v=39.4$ k $\Omega\to R=40.4$ k Ω , $R_f=33$ k Ω και C=4.7nF δίδονται στο διάγραμμα Ι.Ι.

Διάγραμμα 1.1: Οι τάσεις V_1,V_2 και $V_{\rm out}$ όπως μετρήθηκαν χρήσει του παλμογράφου στο εργαστήριο.

Άσκηση 2

Προσαρμογή - διπλός παράλληλος κλαδωτής