

Data Provided: useful definitions and equations at end of paper (after Q4)

DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

Spring Semester 2009 - 2010 (2 hours)

ANALOGUE CIRCUITS 1

Answer **THREE** questions. Solutions will be considered in the order in which they are presented in the answer book and **no marks will be awarded for an attempt at a fourth question.** Trial answers will be ignored if they are clearly crossed out. **The numbers given after each section of a question indicate the relative weighting of that section.**

- 1 (i) Sketch the waveshapes you would expect to observe for V_S , V_O and I_C in the circuit of figure 1a. Why is this type of power supply unattractive from the electricity supply industry's point of view? $\{5\}$
 - (ii) Using a suitable model, estimate the minimum value of C that can be used to give a ripple voltage of less than 2V peak to peak. You should state any assumptions or approximations that you use and formulae should be justified by appropriate reference to the model. {5}

Figure 1

A zener diode regulator circuit is to be used to derive a 9V supply from the output of figure 1 which has been smoothed as described in part (ii). The load for the 9V supply may draw a current anywhere between 5mA and 15mA and the zener diode specifications recommend a minimum current through the diode of 5mA.

- (iii) What is the largest value of series resistance that can be used in the regulator circuit? You should state any assumptions or approximations used in arriving at your answer. {5}
- (iv) What ripple voltage would you expect to measure at the output of the regulator if $r_Z = 5\Omega$ and the input ripple to the regulator circuit is 2V peak to peak? {3}
- (v) What power rating should the resistor have if it must survive a worst case condition of the regulator output being short circuited to ground? {2}

Assume in all parts of the question that the transformer and the 50Hz main supply are perfect and that the diode has zero series resistance.

2a

- 2 (a) (i) For the circuit of figure 2a, find the value of V that will put the diode on the point of conduction. (ie, $V_D = 0.7 \text{ V}$ and $I_D = 0$) {2}
 - (ii) Work out I_D and V_D for V = +5 and V = -5. {4}
 - (iii) With the help of the results of parts 2 (a) (i) and (ii) or by other means, sketch a graph of I_R as a function of V for V=+5 to V=-5. Label all the main features of your graph. $\{4\}$

Figure 2b

1 m/s

Figure

(ii) An ideal diode D and resistor R_3 are now added to the circuit as shown in figure 2c. Sketch the I_C that you would expect to observe from figure 2c in response to the input shown in figure 2b. Label your sketch with peak values and time constants. $\{6\}$

responses of the input pulse and label peak values and time

constants. $\{4\}$

- 3 (a) Figure 3a shows a MOSFET switching circuit. The switch is controlled by VGS which is 10 V for an "on" state and 0 V for an "off" state. The "off" state drain current is approximately zero and $r_{DS(ON)}$ is 0.1 Ω .
 - (i) Calculate the "on" state I_D . $\{1\}$
 - (ii) What is the "on" state power dissipation in the MOSFET? {3}
 - (iii) Explain briefly how any inductance in the load would affect the switch. Draw a circuit diagram to show how a diode can be used to prevent damage to the switch under inductive load conditions. {4}
 - (b) (i) Work out the dc conditions V_B , V_C and I_C for the circuit of figure 3b. Assume that $V_{BE} = 0.7$ V and that β for T_1 is 400. {4}
 - (ii) Redraw the circuit to include the coupling and decoupling capacitors that would be necessary to achieve a high voltage gain. Indicate which capacitors are for decoupling. {4}
 - (iii) Draw a small signal equivalent circuit of figure 3b assuming that the capacitors of part (b)(ii) have been added and that the source is a voltage source with a series resistance R_S . {4}

Figure 3a

Figure 3b

EEE 103

(b)

(i)

4 (a) (i) In the amplifier circuit of figure 4a, V_1 is a voltage source and V_O is the resulting output voltage. Write down the gain, V_O/V_1 of the amplifier assuming that $A_v \Rightarrow \infty$. Suggest resistor values that would be suitable to get a gain magnitude of 10 using a typical op-amp. {3}

Figure 4a

(ii) If A_{ν} is finite, show that

$$\frac{V_O}{V_1} = -\frac{\frac{R_2}{R_1 + R_2}}{\frac{1}{A_v} + \frac{R_1}{R_1 + R_2}} \quad \{6\}$$

- **(b)** For the circuit of figure 4b
 - (i) Find V_O/V_1 when V_2 , V_3 and $V_4 = 0$. {1.5}
 - (ii) Find V_0/V_2 when V_1 , V_3 and $V_4 = 0$. {1.5}
 - (iii) Find V_0/V_3 when V_1 , V_2 and $V_4 = 0$. {1.5}
 - (iv) Find VO/V_4 when V_1 , V_2 and $V_3 = 0$. {1.5}

Figure 4b

(v) If $V_1 = 3$ V, $V_2 = 2 \sin \omega t$ V, $V_4 = (5-3 \sin \omega t)$ V and V_3 is of the form $(a+b\sin \omega t)$, by using the results of (b) (i) to (iv) or by other means find the values of a and b necessary to make $V_O = 0$ V. {5}

4RCT/DAS

END OF PAPER

You may find some of the following relationships and definitions useful:

$$g_m = \frac{eI_C}{kT}$$
 $r_{be} = \frac{\beta}{g_m}$ $h_{FE} = \frac{I_C}{I_B}$ $\beta = \frac{\Delta I_C}{\Delta I_B} = \frac{i_c}{i_b}$ $\tau = RC$

$$I = C \frac{dV}{dt}$$
 $\omega = 2\pi f$ $V(t) = (V_{START} - V_{FINISH}) \exp\left(\frac{-t}{\tau}\right) + V_{FINISH}$

$$V_{AVE} = \frac{V_P}{\pi}$$
 for a half wave rectified sinusoid $V_{rms} = \frac{V_P}{\sqrt{2}}$ for a sinusoid

$$v_o = A_v (v^+ - v^-)$$
 $\frac{kT}{e} = 0.026 \text{V}$ $V = IR$

unit multipliers:
$$p = x10^{-12}$$
, $n = x10^{-9}$, $\mu = x10^{-6}$, $m = x10^{-3}$, $k = x10^{3}$, $M = x10^{6}$ $G = x10^{9}$

All the symbols have their usual meanings