Question 4 - Homework 1 - Sets, Series and Sequences

Let
$$A = \{\frac{n}{m} : n \in \mathbb{N}, m \in \mathbb{N}, m > n\}.$$

(a) Prove that $\inf A = 0$

Solution:

To show that 0 is a infimum of A, we must prove the following:

- (i) That 0 is a lower bound in A such that $\forall x \in A, x \geq 0$.
- (ii) That for all b, with b > 0, b is not a lower bound such that $\forall b, b > 0, \exists x \in A, b > x$.

So, for (i):

Take n=1 and $m\to\infty$ since m>n, then, $\frac{n}{m}\to 0$ which is the lowest possible value for A

Taking the maximum value of as $n \to \infty$, and m = n + 1, $\frac{m}{n} \to 1$.

So, A takes the values (0,1). Hence, 0 is always less than these values so condition (i) is satisfied and 0 is a lower bound.

For condition (ii):

Let $\epsilon > 0$ be given. By the Archimedean Property, we can find an $n \in \mathbb{N}$, such that

 $\frac{1}{n} < \epsilon$. As m > n, for all n > 0, we find that:

$$\frac{1}{m} < \frac{1}{n} < \epsilon \implies \frac{1}{m} < \epsilon$$

We know that when n = 1, $\frac{n}{m} = \frac{1}{m}$, so $\frac{1}{m} \in A$. So,

$$0 + \epsilon < x$$
, for $x \in A$

Thus, inf A = 0 as both condition (i) and (ii) are satisfied.

(b) Sup A = 1

Solution:

To show that 1 is a supremum of A, we must prove the following:

- (i) That 1 is an upper bound in A such that $\forall x \in A, x \leq 1$.
- (ii) That for all b, with b < 1, b is not an upper bound such that $\forall b, b < 1, \exists x \in A, b < x$. So, for (i):

Take n = 1 and $m \to \infty$ since m > n, then, $\frac{n}{m} \to 0$ which is the lowest possible value for

Taking the maximum value of as $n \to \infty$, and m = n + 1, $\frac{m}{n} \to 1$

So, we can conclude that A takes the values (0,1). Hence, 1 is always greater than these values, so condition (i) is satisfied and 1 is an upper bound.

For condition (ii):

Let $\epsilon > 0$ be given. By the Archimedean Property, we can find an $n \in \mathbb{N}$, such that $\frac{1}{n} < \epsilon$. As m > n, for all n > 0, we find that:

$$\frac{1}{m} < \frac{1}{n} < \epsilon \implies -\epsilon < -\frac{1}{m}$$

Adding 1 to both sides, we get:

$$1 - \epsilon < 1 - \frac{1}{m}$$

Then, when m = n + 1 because m > n, we get $\frac{n}{m} = 1 - \frac{1}{m}$, so $1 - \frac{1}{m} \in A$. Then,

$$1 - \epsilon < x \text{ for } x \in A$$

Thus, sup A=1 as both condition (i) and (ii) are satisfied.