Logic in Computer Science(Homework 1)

10175101148 Junjie Chen

September 19, 2019

1 Prove the following Theorems with nature deduction.

1.1 $\neg (p \land q) \dashv \vdash \neg q \lor \neg p$

Proof:

Left to right:

$$\neg (p \land q)$$
 premise

$$p \lor \neg p$$
 LEM

3	p	assumption
4	q	assumption
5	$p \wedge q$	$\wedge i \ 3,4$
6	\perp	$\neg e 1, 5$
7	$\neg q$	$\neg i \ 4-6$
8	$\neg q \vee \neg p$	$\vee i_1$ 7

$$_{9}$$
 $\neg p$ assumption $_{10}$ $\neg q \lor \neg p$ $\lor i_{2}$ 9

$$\neg q \lor \neg p \quad \lor \text{e } 2, 3-8, 9-10$$

Right to left:

$$\neg q \lor \neg p$$
 premise

2	$\neg q$	assumption
3	$p \wedge q$	assumption
4	q	$\wedge e_2$ 3
5	Τ	$\neg e 2, 4$
6	$\neg(p \land q)$	$\neg i \ 3-5$

7	$\neg p$	assumption
8	$p \wedge q$	assumption
9	p	∧e ₁ 8
10		$\neg e 7,9$
11	$\neg(p \land q)$	¬i 8 − 10

$$\neg (p \land q) \quad \forall e \ 1, 2 - 6, 7 - 11$$

So $\neg (p \land q) \dashv \vdash \neg q \lor \neg p$.

$\mathbf{1.2} \quad p \to q \dashv \vdash \neg q \to \neg p$

Proof:

Left to right:

1	$p \to q$	premise
2	$\neg q$	assumption
3	$\neg p$	MT 1, 2
4	$\neg q \to \neg p$	\rightarrow i $2-3$

Right to left:

$$\begin{array}{cccc}
 & \neg q \rightarrow \neg p & \text{premise} \\
\hline
 & 2 & p & \text{assumption} \\
 & 3 & \neg \neg p & \neg \neg i \ 2 \\
 & 4 & \neg \neg q & \text{MT 1, 3} \\
 & 5 & q & \neg \neg e \ 4 \\
\hline
 & 6 & p \rightarrow q & \rightarrow i \ 2 - 5
\end{array}$$

So $p \to q \dashv \vdash \neg q \to \neg p$.

1.3 $p \land q \rightarrow p + r \lor \neg r$

Proof:

Left to right:

$$_{\scriptscriptstyle 1}$$
 $r \vee \neg r$ LEM

Right to left:

1	$p \wedge q$	assumption
2	p	$\wedge e_1 1$
	$p \wedge q \rightarrow p$	\rightarrow i 1 – 2

So $p \wedge q \rightarrow p + r \vee \neg r$.