Seconde scientifique

Contexte:

M. TCHIKE est un professeur principal d'une classe de Terminale C d'effectif 13 dans un établissement privé. Le Directeur du collège lui informe que la présentation statistique des moyennes du premier trimestre dans un tableau rectangulaire ABCD de dimensions $AB=4;\ BC=2$ qu'il avait déposé est presque vide et la détermination des deux nombres a et b du tableau suffit pour compléter le tableau.

M. TCHIKE ayant pris acte de l'information, souvient que dans le plan muni du repère $(A; \overrightarrow{i}, \overrightarrow{j})$ avec $\overrightarrow{i} = \frac{1}{4}\overrightarrow{AB}$ et $\overrightarrow{j} = \frac{1}{2}\overrightarrow{AD}$, les nombres a et b sont tels que les vecteurs $\overrightarrow{u}(a;3)$ et $\overrightarrow{v}(b;1)$ soient colinéaires, le vecteur $\overrightarrow{w}(a-1;b)$ soit orthogonal à la droite $(\Delta): x-2y+3=0$, puis le point G est le centre de gravité du triangle BCD.

Victoria, une élève en classe de 2^{nde} scientifique très impressionnée par la scène se donne la tâche de déterminer les nombres a et b, la position du point G.

<u>Tâche</u>: Toi aussi en classe de 2^{nde} scientifique, fais comme Victoria en résolvant les trois problèmes suivants.

Problème 1

- 1. (a) Démontre que $(\overrightarrow{i}, \overrightarrow{j})$ une base orthonormée du plan vectoriel.
 - (b) Démontre que pour tout point M du plan; on a: $\overrightarrow{MA} + \overrightarrow{MB} \overrightarrow{DM} = 3\overrightarrow{MG}$.
 - (c) Détermine les coordonnées des vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AG} dans la base $(\overrightarrow{i}, \overrightarrow{j})$.
- 2. (a) Donne un vecteur normal $\overrightarrow{u'}$ et un repère $(A; \overrightarrow{v'})$ de la droite (Δ) .
 - (b) Calcule le déterminant des vecteurs \overrightarrow{u} et \overrightarrow{v} , puis celui des vecteurs $\overrightarrow{u'}$ et \overrightarrow{w} .
 - (c) Montre que les nombres a et b vérifient le système (S) d'équations suivant, puis déduis-en leurs valeurs.

$$(S): \begin{cases} a - 3b = 0 \\ a - 2b = 1 \end{cases}$$

- 3. (a) Justifie à présent que $(\overrightarrow{v}, \overrightarrow{w})$ est une base du plan vectoriel.
 - (b) Un point M(x,y) dans le repère $(A; \overrightarrow{i}, \overrightarrow{j})$ a pour coordonnées (x',y') dans le repère $(A; \overrightarrow{v}, \overrightarrow{w})$.

Exprime x' et y' en fonction de x et y.

- 4. Détermine dans le repère $(A; \overrightarrow{v}, \overrightarrow{w})$
- 5. (a) les coordonnées du point G.
 - (b) une représentation paramétrique de la droite (Δ) .

Problème 2

M. TCHIKE souvient aussi que le nombre a du tableau est le seul entier élément de l'ensemble solution des inéquations de l'expression $(I): \frac{x-2}{x-1} \leqslant \frac{1}{x-2} - \frac{1}{x-1} \leqslant \frac{x-1}{x-2}.$

- 6. Déterminé l'ensemble de validité D de (I).
- 7. Démontre que pour tout réel x élément de D.

(a)
$$\frac{x-2}{x-1} \le \frac{1}{x-2} - \frac{1}{x-1} \iff \frac{x-3}{x-1} \le 0.$$

(b)
$$\frac{1}{x-2} - \frac{1}{x-1} \le \frac{x-1}{x-2} \iff \frac{x}{1-x} \le 0.$$

- 8. (a) Étudie les signes de $\frac{x-3}{x-1}$ et $\frac{x}{1-x}$ dans même tableau.
 - (b) Déduis-en l'ensemble solution E dans \mathbb{R} de (I); puis retrouve la valeur de a.

Problème 3

On considère les fonctions suivantes :

$$f: \mathbb{R} \to \mathbb{R} \qquad g: \mathbb{R} \to \mathbb{R} \qquad h: \mathbb{R} \to \mathbb{R} \qquad x \mapsto x^2 - x - 6 \qquad x \mapsto \frac{2x - 3}{x - 1} \qquad x \mapsto \frac{x + 1}{\sqrt{|2x - 3| - 5}}$$

$$k: \mathbb{R} \to \mathbb{R} \qquad l: \mathbb{R} \to \mathbb{R} \qquad m: \mathbb{R} \to \mathbb{R} \qquad x \mapsto x - 2 \qquad x \mapsto \frac{x^2 - 4}{x + 2} \qquad x \mapsto 2x^2 - \frac{1}{x + 1}.$$

- 9. (a) Calcule f(0), f(-2) et f(3) puis déduis que f n'est pas une injection.
 - (b) Justifie que g est une application bijective puis définis sa réciproque g^{-1} .
- 10. (a) Détermine l'ensemble de définition des fonctions h, k et l.
 - (b) Justifie que les fonctions k et l ne sont pas égales puis détermine le plus grand ensemble sur lequel elles coïncident.
- 11. (a) Pour tous nombres réels α et β éléments de l'intervalle $[0; +\infty[$ tels que $\alpha < \beta;$ compare $2\alpha^2$ et $2\beta^2$ puis $\frac{1}{\alpha+1}$ et $\frac{1}{\beta+1}$.
 - (b) Déduis le sens de variation de la fonction m sur l'intervalle $[0; +\infty[$.

Fin