Lesson 6: Quadratic Models (using the factored form of a quadratic)

To find an equation of "good fit" from a table of data, we must first determine our equation in factored form. From that equation, we can expand to find our standard form.

<u>Curve of good fit:</u> Curve that is very close to the distribution of points in a scatter point.

Example1:

Data from the journey of a golf ball are given in the table. If the maximum height of the ball is 30m, determine an equation for the curve of good fit.

Horizontal distance (m)	X	0	30	60	80	90
Height (m)	Ч	0.0	22.0	30.0	27.0	22.5

Horizontal distance (m)	0	30	60	80	90
Height (m)	0.0	22.0	30.0	27.0	22.5

Plot the data on a graph. Be sure to use graph paper for this, because if you don't your graph may not be accurate, resulting in the wrong equation!

* remember that the question told you the maximum height of the ball is 30 m.

Use the factored form to find your equation from the graph:

$$y = a(x-r)(x-s)$$
 * just plug in your zeros
 $Y = a(x-0)(x-120)$
 $Y = a(x)(x-120)$

Now find the value of a (you know several other points on the graph, you just need to use one). Try using the Vertex. (60,30)

$$30 = a(60)(60-120)$$

 $30 = a(60)(-60)$
 $30 = -3600 a$
 -3600
 -3600
 $-0.0083 = a$

Equation in factored form:
$$y = -0.0083(x)(x-120)$$

Expand to change equation to standard form:

$$y = -0.0083(x^2 - 120x)$$

 $y = -0.0083x^2 + 0.996x$

Check by substituting a value of x into the equation.

What is the value of y, when
$$x=0$$

$$y = -0.0083(0)^{2} + 0.996(0)$$

$$y = 0$$

The values should be very close to those in the table. If they are, you know your equation is a good approximation of the data (close fit).

Therefore, the equation of good fit for the data is: