

BMIG 5003 Computational Methods for Biomedical Informatics
Horacio Gómez-Acevedo, PhD
Fall 2023
Final Test
Due day: Dec 11th, 12:00 pm CST

Submission:

All your answers should be placed in the Assigned Box Folder. I will accept only Python and text files, NOT jupyter notebooks. Feel free to use any following modules: numpy, pandas, plotly, scikit-learn, statsmodels, pytest, bnlearn, and regex.

- 1. Using pytest, generate a unit test for each of the functions in the program FSM_simple.py located in the teams folder. Submit your unit test file with the rest of your solutions.
- 2. A survey was conducted about the reliability of a new test for COVID-19. A precise medical testing classified the patients as healthy or sick and is encoded in the random variable *Status*. The area where the survey was conducted has 10% COVID positive prevalence during the survey time. The output of the test is encoded with the random variable X can have three outcomes: positive, negative, and inconclusive.

Status	X			
	Positive	Negative	Inconclusive	
Healthy	0.08	0.80	0.12	
Sick	0.82	0.09	0.09	

Table 1: Distribution of the prediction of new test

- (a) Using Bayes' theorem. Calculate P(Status = Healthy|X = Positive).
- (b) Implement a Python program in which the user provides the prior prevalence distribution, and returns the posterior probability P(Status = Healthy|X=x) for each value of x.
- 3. Consider the Bayesian belief network that classify fish (see Figure 1). The node A represents the time of the year and has four values: a_1 =Spring, a_2 =Summer, a_3 =Fall, and a_4 =Winter. The node B represents the location where the fish was caught and has values b_1 =North Atlantic, and b_2 = South Atlantic. The node X represents the type of fish and has values x_1 =Salmon, and x_2 =Sea bass. The node C represents the "lightness" of the fish and has values c_1 =light, c_2 =medium, and c_3 =dark. Finally, the node D represents the thickness and has values d_1 =wide, and d_2 =thin.
 - (a) Calculate the join probability of the event that the fish was caught in the Spring, in the South Atlantic, and the fish was salmon and was light and thin.
 - (b) Write a Python program that provides allows the user to give any event as in (a) and returns the joint probability for that event.
- 4. Suppose a terrain is represented by a two dimensional grid of elevation values. A peak is a grid point whose four neighboring cells (left, right, up and down) have strictly lower elevation values (see the corresponding graphical representation in figure 2). Write a Python program ask for the user for the size of the grid (say n by m), generates elevation randomly following a N(0, 10) distribution. The output would be the number of

Figure 1: Bayesian Belief Network

P(a)	a_1	a_2	a_3	a_4	P(b)	b_1	b_2
	0.25	0.25	0.25	0.25		0.6	0.4

P(x a,b)	$P(x_1 a_i,b_j)$	$P(x_2 a_i,b_j)$
a_1, b_1	0.5	0.5
a_2, b_1	0.7	0.3
a_3, b_1	0.6	0.4
a_4, b_1	0.8	0.2
a_1, b_2	0.4	0.6
a_2, b_2	0.1	0.9
a_3, b_2	0.2	0.8
a_4, b_2	0.3	0.7

P(c x)	$P(c_1 x_i)$	$P(c_2 x_i)$	$P(c_3 x_i)$
x_1	0.6	0.2	0.2
x_2	0.2	0.3	0.5

P(d x)	$P(d_1 x_i)$	$P(d_2 x_i)$
x_1	0.3	0.7
x_2	0.6	0.4

Table 2: Conditional Probability Tables

Figure 2: Peak and Sink points based on neighbors' values

Figure 3: McCulloch Pitts unit

peaks and the location of each one of them. Note. For the points located on the grid's border consider only the neighbors within the grid.

5. Write a Python program that fills up the table where G is the function defined by the McCulloch-Pitts depicted in figure 3

x_1	x_2	x_3	$G(x_1, x_2, x_3)$
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

6. Given a sequence of elements x_1, \ldots, x_n with a given (partial) order \leq , we want to increasingly reorder the

sequence as $x_{i_1}, x_{i_2}, \ldots, x_{i_n}$, where $x_{i_k} \leq x_{i_{k+1}}$ for $k \in \{1, \ldots, n-1\}$. For simplicity sake, you can think that we have a sequence consisting of numbers (say $\{17, 5, 8, 13, 3\}$) with the order given by \leq , thus the ordered sequence will be $\{3, 5, 8, 13, 17\}$ since $3 \leq 5, 5 \leq 8$ and so on.

A simple sorting algorithm to reorder such a sequence follows the pseudo code

```
a \leftarrow \text{given sequence}
while a is not sorted do

for i = 0, until i \leq length(a) - 1 do

if not a[i] \leq a[i+1] then

swap a[i], a[i+1]

else

continue

end if

end for
end while
```

You can define the sequence as a Python list a=[17,5,8,13,3], and the steps are described in Figure 4. Write a Python program that accepts a sequence of numbers and orders them using your implementation of the previous pseudo code.

7. (Bonus) Expand your implementation in Problem 6 to order a sequence of points in the plane. More specifically, given a list of tuples $A = [(x_1, y_1), \ldots, (x_n, y_n)]$ with the order $(x_i, y_i) \leq (x_j, y_j)$ if and only if $x_i \leq x_j$ and $y_i \leq y_j$. So, your program should return the ordered sequence. Note that not every sequence in the plane can be ordered, check your code with the sequence $[(9,9),(8,8),(7,7),\ldots,(1,1)]$. Hint. Do not overthink this problem, you just need to expand the tuple comparison and your swap function, the rest of the algorithm runs the same way.

Figure 4: Sorting example