Pontifícia Universidade Católica de Minas Gerais

Curso: Ciência da Computação

Disciplina: Fundamentos Teóricos da Computação

Nome do Aluno: Axell Brendow Batista Moreira

As questões de 1 a 3 devem ser marcadas no seguinte gabarito (2 pontos cada):

Questão	1	2	3
Resposta	d	С	a

Questão 1. Considere as seguintes linguagens.

$$L_1 = \{ x \in \{ a, b \}^* \mid \text{em } x \text{ todo } a \text{ precede pelo menos um } b \}$$

 $L_2 = \{ x \in \{ a, b, c \}^* \mid \text{em } x \text{ o número de } a$'s é o dobro de b 's que é o triplo de c 's $\}$

Qual da seguinte afirmativa é válida para L1 e L2?

- a) Nem L₁, nem L₂ são regulares.
- b) Ambas são linguagens regulares.
- C) L_2 é regular mas L_1 não é.
- d) L₁ é regular mas L₂ não é.

Questão 2. Qual da seguinte afirmativa é válida, sabendo que L₁ e L₂ são linguagens regulares:

- a) $L_3 = L_1 U L_2$ não é necessariamente regular.
- b) $L_3 = L_1 \times L_2$ (L_1 cartesiano L_2) nunca será regular.
- c) $L_3 = L_1 \cap L_2$ é regular.
- d) Todo subconjunto de L₁ será regular.

Questão 3. Qual da seguinte afirmativa é válida:

- a) Dado L = $\{0^n y \mid y \in \{0, 1\}^* e \mid y \mid \le n\}$, não existe um AFD-M tal que L(M) = L.
- b) Dado L = $\{xba^n \mid x \in \{a, b\}^*, n \ge 0 \ e \ x \ tem um numero par de a's \}$, não existe um AFD-M tal que L(M) = L.
- C) Dado $L = \{ w \in \{ a, b \}^* \mid w \text{ tem no máximo uma ocorrência de aa e no máximo uma ocorrencia de bb}, não existe um AFD-M tal que <math>L(M) = L$.
- d) Dado L = { $w \in \{0, 1\}^* \mid 00 \text{ não aparece nos 4 últimos símbolos de } w$ }, não existe um AFD-M tal que L(M) = L.

Questão 4. Forneça a gramática regular para a seguinte linguagem (6 pontos):

L = { $w \in \{a, b\}^* \mid w \text{ possui um número de } \mathbf{b}'\text{s divisível por } 3 \}$

 $S \rightarrow bA \mid aS \mid \lambda$

 $A \,\to\, aA \mid bB$

 $B \to aB \mid bS$

Questão 5. Gere o AFD correspondente ao AFN-M. Mostre o conjunto de estados gerado **a cada passo**. **NÃO** renomeie os estados obtidos (6 pontos).

autômato original autômato novo estado\entrada 0 estado\entrada 1 1 0 0 (inicial) 0,1 0 (inicial) 0,1 0 0 1 2 0,1 2 0,2 0,1,2 2 3 3 0,2 0,3 0,1,3 3 (final) 3 3 0,1,2 0,1,2,3 0,2,3 0,3 (final) 0,1,3 0,3 0,1,3 (final) 0,1,2,3 0,2,3 0,2,3 (final) 0,1,3 0,3 0,1,2,3 (final) 0,2,3 0,1,2,3

Questão 6. A seguinte linguagem L é regular? Se a resposta for afirmativa, dê o AFD-M que reconheça strings desta linguagem (ou seja L(M) = L). Se a resposta for negativa, prove formalmente (7 pontos).

$$L = \{ ww | w \in \{ a, b \}^* \}$$

Vamos ao pumping lemma (lema do bombeamento):

Se L é regular, então existe um AFD-M de k estados tal que L(M) = L.

Considere $m = a^k a^k \in L$, |w| = 2k > k

1) m = p v q onde p v tem tamanho k e |v| > 0

Para generalizar o número de bombeamentos em v, seja j \in N*, p = a^{k-j}, v = a^j, q = a^k então m = a^{k-j} a^j a^k

Pelo lema do bombeamento, $pv^iq \in L$ para todo $i \ge 0$. Considerando i = 0, temos:

$$m = a^{k-j} (a^j)^0 a^k = a^{k-j} a^k$$

Porém $a^{k\cdot j}$ a^k é uma string que não pertence a L pois fica sobrando ao concatenar $a^{k\cdot j}$ com $a^{k\cdot j}$. $a^{k\cdot j}$ a^k não pode ser o resultado de w concatenado com w.