LPC82X 培训资料

模数转换器ADC

MAY, 2016

内容

- ADC特征及电气特性
- ADC功能模块及配置

ADC特征及电气特性

ADC特征

- 12位逐次比较型模数转换器
- 转换速率高达1.2Msample/s
- 两个独立触发可配置的转换序列
- 自动采样结果"过零"比较检测
- 具有power-down模式和low-power操作模式
- 支持单/多通道突发(burst)转换模式
- 支持DMA功能
- 支持硬件校准模式
- 电压的测量范围为V_{REFN} ~ V_{REFP}
- 不同封装的的ADC通道数不一样

Package	ADC channels available
TSSOP20	ADC_2, ADC_3, ADC_9, ADC_10, ADC_11
HVQFN33	ADC_0 to ADC_11

ADC电气特性-1

• ADC在正常工作状态下,主频是12MHz和30MHz的时候,典型的电流分别是1990uA和2070uA。

Peripheral	Typical	supply current in	uA			
	Main clo	ock frequency =		Notes		
	n/a	12MHZ	30MHZ			
ADC	_	57	141	Digtial controller only. Analog portion of the ADC disabled in the PDRUNCFG register.		
	-	57	141	Combined analog and digital logic, ADC enabled in the PDRUNCFG register and LPWRMODE bit set to 1 in the ADC CTRL register (ADC in low-power mode).		
	-	1990	2070	Combined analog and digital logic. ADC enabled in the PDRUNCFG register and LPWRMODE bit set to 0 in the ADC CTRL register (ADC powered).		

ADC电气特性-2

- 有关ADC的输入电压、参考电压、时钟频率、采样时钟等静态特性请参考下表。
- $T_{amb} = -40$ °C to +105°C unless noted otherwise; $V_{DD} = 2.4$ V to 3.6V; VREFP = V_{DD} ; VREFN= V_{SS} .

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{IA}	Analog input voltage		0	-	V_{DD}	V
V_{ref}	Reference voltage	On pin VREFP	2.4	-	V_{DD}	V
C _{ia}	Analog input capacitance		-	-	0.32	pF
F _{clk(ADC)} ADO	ADC alook fraguency	$2.7V \le V_{DD} \le 3.6V$	-	-	30	MHz
	ADC clock frequency	$2.4V \le V_{DD} \le 2.7V$	-	-	25	MHz
F _s Sa	Sampling frequency	$2.7V \le V_{DD} \le 3.6V$	-	-	1.2	Msamples/s
		$2.4V \le V_{DD} \le 2.7V$	-	-	1	Msamples/s
E _D	Differential linearity error	$T_{amb} = 105$ °C	-	+/-2.5	-	LSB
E _{L(ad)}	Integral non-linearity	T _{amb} = 105°C	-	+/-2.5	-	LSB
Eo	Offset error	$T_{amb} = 105$ °C	-	+/-4.5	-	LSB
$V_{err(fs)}$	Full-scale error voltage	1.2Msamples/s; T _{amb} = 105°C	-	+/-0.5	-	%
Z _i	Input impedance	F _s = 1.2Msamples/s	0.1	-	-	ΜΩ

ADC功能模块及配置

ADC引脚配置-1

- ADC参考电源引脚
 - -参考电源的供电要求(V_{REFP} V_{REFN}) /2 + V_{REFN} = V_{DD} /2,为了达到最好的效果, V_{REFP} 和 V_{REFN} 与 V_{DD} 和 V_{SS} 的电压相同
 - -ADC外设不使用的情况下, V_{REFP}连接到V_{DD}, V_{REFN}连接到V_{SS}

Function	Description
V_{REFP}	Positive voltage reference. The VREFP voltage level must be between 2.4V and V_{DDA} . For best performance, select VREFP= V_{DDA} and VREFN= V_{SSA} .
V_{REFN}	Negative voltage reference.
$V_{DDA} = V_{DD}$	The analog supply voltage is internally connected to V _{DD} .
$V_{SSA} = V_{SS}$	ADC ground is internally connected to VSS.

ADC引脚配置-2

- ADC采样引脚
 - -确保测量信号的电压应低于VDD
 - -IOCON寄存器配置ADC采样引脚,应禁能内部上拉和下拉电阻

Function	Direction	Туре	Connect to	Use register	Description
ADC_0	Al	external to pin	PIO0_7	PINENABLE0	Analog input channel 0.
ADC_1	Al	external to pin	PIO0_6	PINENABLE0	Analog input channel 1.
ADC_2	Al	external to pin	PIO0_14	PINENABLE0	Analog input channel 2.
ADC_3	Al	external to pin	PIO0_23	PINENABLE0	Analog input channel 3.
ADC_4	Al	external to pin	PIO0_22	PINENABLE0	Analog input channel 4.
ADC_5	Al	external to pin	PIO0_21	PINENABLE0	Analog input channel 5.
ADC_6	Al	external to pin	PIO0_20	PINENABLE0	Analog input channel 6.
ADC_7	Al	external to pin	PIO0_19	PINENABLE0	Analog input channel 7.
ADC_8	Al	external to pin	PIO0_18	PINENABLE0	Analog input channel 8.
ADC_9	Al	external to pin	PIO0_17	PINENABLE0	Analog input channel 9.
ADC_10	Al	external to pin	PIO0_13	PINENABLE0	Analog input channel 10.
ADC_11	Al	external to pin	PIO0_4	PINENABLE0	Analog input channel 11.
ADC_PINTRIG0	I	external to pin	Any GPIO	PINASSIGN10	ADC pin trigger 0.
ADC_PINTRIG1	1	external to pin	Any GPIO	PINASSIGN11	ADC pin trigger 1.

ADC功能模块

- ADC全精度的采样转换需要25个ADC clock
- ADC的时钟来源于系统时钟,最大ADC的时钟频率为30MHz

ADC寄存器描述

- ADC的寄存器可以分为四类:
 - -全局控制及数据寄存器:CTRL、SEQA_CTRL、SEQB_CTRL、 SEQA_GDAT、TRIM和SEQB_GDAT
 - -数据寄存器: DAT0 ~ DAT11
 - -采样结果进行比较相关的寄存器:THR0_LOW、THR1_LOW、THR0_HIGH和THR1_HIGH
 - -中断相关的寄存器:INTEN、FLAGS

ADC基本配置

第一步

- 使能ADC外设电源
 - Chip_SYSCTL_PowerUp(SYSCTL_SLPWAKE_ADC_PD);

第二步

- 使能ADC外设时钟
 - Chip_Clock_EnablePeriphClock(SYSCTL_CLOCK_ADC);

第三步

- 使能ADC外设的中断,共4个(可选)
 - NVIC_EnableIRQ(ADC_SEQA_IRQn); NVIC_EnableIRQ(ADC_SEQB_IRQn);
 - NVIC_EnableIRQ(ADC_THCMP_IRQn); NVIC_EnableIRQ(ADC_OVR_IRQn);

第四步

• 使能ADC外设输入引脚

第五步

- 每次上电或者Deep power-down模式下唤醒,都需要校准ADC
 - Chip_ADC_StartCalibration(LPC_ADC);
 - while (!(Chip_ADC_IsCalibrationDone(LPC_ADC))) {}

第六步

- 设置ADC的采样率(可选)
 - Chip_ADC_SetClockRate(LPC_ADC, ADC_MAX_SAMPLE_RATE);

SECURE CONNECTIONS FOR A SMARTER WORLD