Linguagens Formais e Autômatos

Aula 3:

Alfabetos, Palavras, Linguagens e Gramática

Prof. Dr. Rodrigo Xavier de Almeida Leão Cientista de Dados e Big Data

ALFABETO

Um Alfabeto é um conjunto finito de Símbolos.

Portanto, um conjunto vazio também é considerado um alfabeto. Um símbolo (ou caractere) é uma entidade abstrata básica a qual não é definida formalmente. Letras e dígitos são exemplos de símbolos frequentemente usados.

ALFABETO

Um alfabeto (chamado também de vocabulário) é um conjunto finito não vazio de símbolos.

ALFABETO

O alfabeto latino moderno é o seguinte conjunto de 26 símbolos: {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z}. É comum representarmos o alfabeto pela letra Σ . Outros exemplos de alfabeto são:

$$\Sigma_1 = \{\alpha, \beta, \gamma, \delta, \dots, \omega\}$$

$$\Sigma_2 = \{0, 1\}$$

Com o primeiro você pode escrever palavras gregas e com o segundo você pode escrever palavras binárias (números na base 2).

Uma Palavra, Cadeia de Caracteres ou Sentença sobre um alfabeto é uma sequência finita de símbolos (do alfabeto) justapostos.

A palavra vazia, representada pelo símbolo ε , é uma palavra sem símbolo. Se Σ representa um alfabeto, então Σ^* denota o conjunto de todas as palavras possíveis sobre Σ . Analogamente, Σ^+ representa o conjunto de todas as palavras sobre Σ excetuando-se a palavra vazia, ou seja, $\Sigma^+ = \Sigma^* - \{\varepsilon\}$.

Uma cadeia de símbolos de um dado alfabeto (também chamada de string, palavra ou sentença) é uma sequência finita de símbolos deste alfabeto.

Para o alfabeto $\Sigma_1 = \{\alpha, \beta, \gamma, \delta, ..., \omega\}$ podemos escrever a cadeia " $\psi\omega$ ".

Para o alfabeto $\Sigma_2 = \{0,1\}$ podemos escrever a cadeia "10001".

A cadeia formada por uma sequência com nenhum símbolo é conhecida como a cadeia vazia. Representamos a cadeia vazia com o símbolo ϵ . Note que a cadeia vazia é uma cadeia, ou palavra, sobre qualquer alfabeto. Cadeias de símbolos, ou palavras, sendo sempre uma sequência finita de símbolos, possuem comprimento, que ϵ a quantidade de símbolos que ocorrem na mesma.

A palavra vazia, representada pelo símbolo ε , é uma palavra sem símbolo. Se Σ representa um alfabeto, então Σ^* denota o conjunto de todas as palavras possíveis sobre Σ . Analogamente, Σ^+ representa o conjunto de todas as palavras sobre Σ excetuando-se a palavra vazia, ou seja, $\Sigma^+ = \Sigma^* - \{\varepsilon\}$.

Qualquer cadeia de símbolos tem um comprimento. Por exemplo, a cadeia "10001" tem comprimento 5. A cadeia vazia é normalmente representada em linguagens de programação como "".

O Tamanho ou Comprimento de uma palavra w, representado por |w|, é o número de símbolos que compõem a palavra.

A Concatenação é uma operação binária, definida sobre uma linguagem, a qual associa a cada par de palavras uma palavra formada pela justaposição da primeira com a segunda. Uma concatenação é denotada pela justaposição dos símbolos que representam as palavras componentes. A operação de concatenação satisfaz às seguintes propriedades (suponha v, w, t palavras):

a) Associatividade.

$$\int v(wt) = (vw)t$$

b) Elemento Neutro à Esquerda e à Direita.

$$3W = W = W8$$

Uma operação de concatenação definida sobre uma linguagem L não é, necessariamente, fechada sobre L, ou seja, a concatenação de duas palavras de L não é, necessariamente, uma palavra de L.

Considere a linguagem L de palíndromos sobre {a, b}. A concatenação das palavras aba e bbb resulta na palavra ababbb a qual não é palíndromo. Portanto, a operação de concatenação não é fechada sobre L.

A Concatenação Sucessiva de uma palavra (com ela mesma), representada na forma de um expoente wⁿ onde w é uma palavra e n indica o número de concatenações sucessivas, é definida indutivamente a partir da concatenação binária, como segue:

- a) $Caso 1. W \neq \varepsilon$ $W^0 = \varepsilon$ $W^n = W^{n-1}W, para n > 0$
- b) Caso 2. $w = \varepsilon$ $w^n = \varepsilon$, para n > 0 w^n é indefinida para n = 0

Note-se que a concatenação sucessiva é indefinida para ε^0 .

EXEMPLO 21 Concatenação Sucessiva.

Sejam w uma palavra e a um símbolo. Então:

 $w^3 = www$

 $w^1 = w$

 $a^5 = aaaaa$

aⁿ = aaa...a (o símbolo a repetido n vezes)

Dadas duas cadeias, definimos sua concatenação como a justaposição de seus valores. Por exemplo, se ω_1 ="101" e ω_2 ="000", sua concatenação é "101000". Representamos a concatenação como ω_1 $^o\omega_2$ ou simplesmente $\omega_1\omega_2$.

Definição 1.23 Prefixo, Sufixo, Subpalavra.

Um *Prefixo* (respectivamente, *Sufixo*) de uma palavra é qualquer sequência de símbolos inicial (respectivamente, final) da palavra. Uma *Subpalavra* de uma palavra é qualquer sequência de símbolos contígüa da palavra.

EXEMPLO 18 Palavra, Prefixo, Sufixo.

- a) abcb é uma palavra sobre o alfabeto {a, b, c}
- b) Se $\Sigma = \{a, b\}$, então $\Sigma^+ = \{a, b, aa, ab, ba, bb, aaa,...\}$ e $\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa,...\}$
- c) $|abcb| = 4 e |\epsilon| = 0$
- d) ε, a, ab, abc, abcb são os prefixos da palavra abcb e ε, b, cb, bcb, abcb são os respectivos sufixos;
- e) Qualquer prefixo ou sufixo de uma palavra é uma subpalavra.

Dadas duas cadeias, ω_1 e ω_2 , dizemos que ω_1 é prefixo de ω_2 se existe uma cadeia ω_1 tal que ω_1 ° $\omega_3=\omega_2$.

A cadeia "101" possui os seguintes prefixos: $oldsymbol{\epsilon}$, "1", "10" e "101".

Os sufixos de uma cadeia são definidos de forma análoga, porém tomando as subsequências do final da cadeia. Deixamos a definição como exercício para o leitor. A cadeia "100" possui os seguintes sufixos: ϵ , "0", "00" e "100".

Dadas duas cadeias, ω_1 e ω_2 , dizemos que ω_1 é prefixo de ω_2 se existe uma cadeia ω_1 tal que ω_1 ° $\omega_3=\omega_2$.

A cadeia "101" possui os seguintes prefixos: ϵ , "1", "10" e "101".

Os sufixos de uma cadeia são definidos de forma análoga, porém tomando as subsequências do final da cadeia. Deixamos a definição como exercício para o leitor. A cadeia "100" possui os seguintes sufixos: ϵ , "0", "00" e "100".

Uma Linguagem Formal é um conjunto de palavras sobre um alfabeto.

EXEMPLO 19 Linguagem.

Suponha o alfabeto $\Sigma = \{a, b\}$. Então:

- a) O conjunto vazio e o conjunto formado pela palavra vazia são linguagens sobre Σ (obviamente { } ≠ {ε});
- b) O conjunto de palíndromos (palavras, que têm a mesma leitura da esquerda para a direita e vice-versa) sobre Σ é um exemplo de linguagem infinita. Assim, ε, a, b, aa, bb, aaa, aba, bab, bbb, aaaa,... são palavras desta linguagem.

Assimile

Dado um alfabeto definimos uma linguagem sobre este alfabeto como um conjunto de cadeias sobre este alfabeto.

Para o alfabeto $\Sigma_2 = \{0,1\}$ temos infinitas linguagens possíveis, entre elas:

$$L_1 = \varnothing$$

$$L_2 = \{ \epsilon \}$$

$$L_3 = \{ \epsilon, 0, 1, 00, 01, 10, 11, 000, \ldots \}$$

A primeira linguagem não possui cadeia. A segunda linguagem possui apenas a cadeia vazia, enquanto a última possui todas as cadeias possíveis com símbolos do alfabeto Σ_2 . Observe que a linguagem vazia, \varnothing , e a linguagem que só tem a palavra vazia, $\{\epsilon\}$, são diferentes, por quê?

Sabemos que podemos concatenar duas cadeias. Esta operação pode ser estendida para uma linguagem. Definimos a concatenação de duas linguagens como a linguagem cujas cadeias são todas as possíveis concatenações entre cadeias da primeira linguagem com cadeias da segunda linguagem.

Dadas as linguagens L_1 e L_2 , definimos sua concatenação como a linguagem L_1 ° $L_2=\{\omega_1$ ° $\omega_2\mid \omega_1\in L_1$ e $\omega_2\in L_2\}$.

Se $L_{\rm l}$ é uma linguagem finita com n cadeias e $L_{\rm l}$ é uma linguagem finita com m cadeias, então quantos elementos possui $L_{\rm l}$ ° $L_{\rm l}$?

Quando repetimos a operação de concatenação com a mesma linguagem usamos a notação de potência. Por exemplo, $L_1^2=L_1^\circ L_1$ e $L_1^3=L_1^\circ L_1^\circ L_1$.

Definimos
$$L^0 = \emptyset$$
 e $L^{n+1} = L^n \circ L$.

Se fizermos a união de todas as potências de L , de $L^{^{0}}$ em diante, obtemos o fecho de Kleene da linguagem L , representado por $L^{^{*}}$.

Definimos $L^* = L^0 \cup L^1 \cup L^2 \cup \dots$

Para o alfabeto $L = \{0,1\}$ temos:

$$L^* = \{ \epsilon, 0, 1, 00, 01, 10, 11, 000, \ldots \}$$

Usando a concatenação de conjuntos, a união e o fecho de Kleene, podemos especificar algumas linguagens simples.

 $L=\{$ números na base 2 que são múltiplos de 4 (terminam com 00) $\}=\{0,1\}^o\{00\}$ $L=\{\text{ todos os números na base 2, sem permitir 0's desnecessários à sesquerda }\}=\{\{1\}^o\{0,1\}^*\}\cup\{0\}\}$

Uma variação do fecho de Kleene é usar o símbolo +. Definimos $L^+ = L^1 \cup L^2 \cup L^3 \cup \ldots$

Podemos definir o operador * usando o operador + e vice-versa. Podemos definir L^* como a união de L^0 com L^+ , enquanto que L^+ , por sua vez, pode ser definida como $L^\circ L^*$.

Vamos pensar no alfabeto $\Sigma = \{n, +, \times\}$. Vamos entender n como representando um número qualquer, + como a soma, e \times como a multiplicação. Queremos definir uma linguagem L sobre Σ como sendo a linguagem de todas as 'expressões' bem formadas usando-se essas duas operações:

$$L = \{n, n+n, n \times n, n+n+n, n+n \times n, n \times n + n, n \times n \times n, \dots\}$$

Descrição da situação-problema

O sistema de numeração originário na Roma antiga, aproximadamente no século VIII a.C., é aquele baseado nas letras I, V, X, L, C, D e M. Este sistema foi amplamente utilizado desde a sua criação até o século XIV d.C. Ainda hoje existem usos modernos deste sistema para representar quantidades ou itens em uma ordenação, como a denominação dos séculos no ocidente. Sabe-se que o sistema caiu em desuso e foi substituído pelo sistema posicional com zero (Hindu-Arábico) por este ser uma representação que facilita em muito a aplicação de algoritmos de adição e multiplicação. No sistema romano, a justaposição

LINGUAGENS

de símbolos é mais complexa que no sistema decimal hinduarábico. No sistema decimal, os símbolos 0,1,2,3,4,5,6,7,8 e 9 podem ser justapostos lado a lado em qualquer ordem e livres de quaisquer restrições, a exceção dos zeros à esquerda, que devem ser evitados, por razões de ordem prática. Qualquer sequência de algarismos é um número decimal. Outra propriedade interessante

dos numerais decimais é a sua capacidade de representar qualquer número. O mesmo não acontece com os numerais romanos. Em primeiro lugar não é qualquer sequência de letras I, V, X, L, C, D e M que é um numeral romano válido. Por exemplo, a sequência IIIV não é um numeral romano válido. Além disso, é sabido que os numerais romanos tradicionais não conseguem representar mais que MMMCMXLIX números naturais distintos. Existiram extensões do sistema romano que conseguiam passar disso, mas não chegavam a representação de bilhões. Neste livro vamos nos limitar ao número MMMCMXLIX mesmo.

Nesta seção, você aprendeu que qualquer conjunto de palavras sobre um alfabeto é uma linguagem formal. Assim, tanto a linguagem dos numerais decimais quanto a dos numerais romanos são linguagens formais. Uma é uma linguagem infinita e outra é uma linguagem finita. Se não levarmos em consideração os "zeros à esquerda" que devem ser evitados na notação decimal, podemos dizer que os numerais decimais são a linguagem definida pelo conjunto $\{0,1,2,3,4,5,6,7,8,9,\}^+$. Ou seja, usamos um dos operadores aprendidos, o chamado fecho de Kleene, para definir o conjunto de todos os numerais decimais de uma forma compacta. Lembre-se que a linguagem em questão é infinita.

NGUAGENS

Você consegue representar a restrição de não haver zeros à esquerda através de conjuntos de símbolos e as operações entre linguagens formais apresentadas nesta seção?

$$DECIMAIS = (\{1, 2, 3, 4, 5, 6, 7, 8, 9\}^{\circ}\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, \}^{+}) \cup (\{1, 2, 3, 4, 5, 6, 7, 8, 9\})$$

E temos então incluído a restrição de não haver zeros à esquerda. Note que o conjunto acima também pode ser especificado como

$$DECIMAIS = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}^{\circ}\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}^{*}$$

Como relação aos numerais romanos, vamos estruturar nosso conhecimento: (1) as palavras I, II e III são as únicas que podem ser escritas só com I; (2) imediatamente à esquerda de um V só pode ocorrer um I; (3) À direita de um V podem ocorrer até no máximo 3 ls; (4) À direita de um X podem ocorrer no máximo 3 ls e à sua esquerda somente um I; (5) a regra 4 também vale em relação a L, C, D e M. Em resumo, todo numeral romano tem um núcleo de maior valor, por exemplo o núcleo de MMXVII é MM, o núcleo de CDXXIV é CD. Antes do núcleo pode ocorrer um, e somente um, símbolo de menor valor e depois do núcleo de maior valor pode aparecer um núcleo de valor menor.

LINGUAGENS

Observe que a explicação em linguagem natural, mesmo organizada, fica complicada. Vamos fazer usando as operações entre conjuntos. Para facilitar a leitura vamos denotar cada novo conjunto especificado.

$$NI = \{I, II, III, IV, V, VI, VII, VIII, IX\}$$
 $AX = \{X, XX, XXX, XL, L, LX, LXX, LXXX, XC\}$
 $AC = \{C, CC, CCC, CD, D, DC, DCC, DCCC, CM$
 $NX = AX \cup (AX^{\circ}NI)$
 $NC = AC \cup (AC^{\circ}NX)$
 $AM = \{M, MM, MMM\}$
 $NM = AM \cup (AM^{\circ}NC)$

O conjunto NM é a linguagem das cadeias que são numerais romanos até a numeração de 3999.

1. Considere a linguagem $L = \{aab, a\}$ sobre o alfabeto $\Sigma = \{a, b\}$. Marque a alternativa correta:

- a) $L^0 = \emptyset$
- b) $L^2 = \{aabaab, aa\}$
- c) $L^3 = \{aaa, aaaab, aaabaab, aabaabaab, aabaabaab, aabaabaaba\}$
- d) $L^4 \subset L^5$
- e) $L^4 \subset L^*$

2. Suponha que L_1 e L_2 sejam linguagens sobre o alfabeto $\Sigma = \{a,b\}$. Assinale a alternativa verdadeira:

- a) Se $L_1 \circ L_2 = \emptyset$, então $L_1 = \emptyset$.
- b) Se $L_1 \circ L_2 = \emptyset$, então $L_1 = \emptyset$.
- c) Se $L_1 = \{\epsilon\}$, então $L_1 \circ L_2 = \{\epsilon\}$.
- d) Se $L_1 = \{\epsilon\}$, então $L_1 \circ L_2 = \emptyset$.
- e) Se $L_1 \subseteq L_2$, então $L_1^* = L_2^*$.

3. Considere a cadeia $\omega = ababa$.

Assinale a cadeia que pode ser formada concatenando-se dois prefixos

- de ω :
- a) *abba*
- b) abaabb
- c) *bb*
- d) ba
- e) a