实验一 Quartus II 软件的基本操作、译码器

班级 计科 1903 姓名 陈旭 学号 201914020128

一、实验目的

- 1. 熟悉译码器的工作原理。
- 2. 熟悉 Quartus II 软件的基本操作,了解各种设计方法(原理图涉及,文本设计、波形设计)。

二、实验内容

使用原理图和 VHDL 语言两种方式,完成以下内容,并验证其功能的正确性。

- 1. 用逻辑图和 VHDL 语言设计一个异或门。
- 2. 用逻辑图和 VHDL 语言设计一个 3-8 译码器。
- 3. 用 VHDL 语言设计模型机指令译码器。

三、实验方法

1、实验方法

采用基于 FPGA 进行数字逻辑电路设计的方法。

采用基本逻辑门电路实现异或门和 3-8 译码器。

采用的软件工具是 Quartus II。

2、实验软件操作步骤

● 异或门

- 1、新建,编写源代码。
 - (1) 选择保存项和芯片类型:【File】-【new project wizard】-【next】(设置文件路径为C:\Users\86150\Desktop\mylearn\vscodec++\logicandcomputerdesignfundamentals\experiment\twoin_xor设置project name为twoin_xor)-【next】(设置文件名twoin_xor)-【next】(设置芯片类型为【cyclone-EP1CT144C8】-【finish】
 - (2). 新建:【file】-【new】(第二个 VHDL File)-【OK】
- 2、写好源代码,保存文件(twoin xor.vhd)。
- 3、编译与调试。确定源代码文件为当前工程文件,点击【processing】-【start compilation】进行文件编译,编译结果有警告,编译成功。
- 4、波形仿真及验证。新建一个 vector waveform file。按照程序所述插入 a,b,c 三个节点(a、b 为输入节点,c 为输出节点)。(操作为:右击 【insert】- 【insert node or bus】- 【node finder】(pins=all; 【list】)- 【>>】- 【ok】 【ok】)。任意设置 a,b 的输入波形…点击保存按钮保存。(操作为:点击 name(如:enable))-右击- 【value】 【count】(如设置 binary; startvalue=0; count value=5.0ns),同理设置 name b(如 0, 1, 5),保存)。然后【start simulation】,出 name C 的输出图。
- 5、时序仿真和功能仿真。
- 6、 查看 RTL Viewer:【Tools】-【netlist viewer】-【RTL viewer】。

● 3-8 译码器

- 1. 新建,编写源代码。
 - (1) 选择保存项和芯片类型:【File】-【new project wizard】-【next】(设置文件路径为C:\Users\86150\Desktop\mylearn\vscodec++\logicandcomputerdesignfundamentals\experiment1\three_eightdecoder 设置 project name 为 three_eightdecoder)-【next】(设置文件名 three_eightdecoder)-【next】(设置 芯片类型为【cyclone-EP1CT144C8】)-【finish】
 - (2). 新建:【file】-【new】(第二个 VHDL File)-【OK】
- 2. 写好源代码,保存文件(three eightdecoder.vhd)。
- 3. 编译与调试。确定源代码文件为当前工程文件,点击【processing】-【start compilation】进行文件编译,编译结果有警告,编译成功。
- 4. 波形仿真及验证。新建一个 vector waveform file。按照程序所述插入节点 enable 和两个节点向量 inputs, x。(enable 和 inputs 为输入节点(向量), x 为输出节点向量)。(操作为:右击一【insert】-【insert node or

- bus】-【node finder】(pins=all;【list】)-【>>】-【ok】-【ok】)。任意设置 inputs 和 enable 的输入波形…点 击保存按钮保存。(操作为: 点击 name (如: enable))-右击-【value】-【count】(如设置 binary; startvalue=000; endvalue=111;count value=2.0ns),同理设置 name b(如 000, 1, 10),保存)。然后【start simulation】,出 name C 的输出图。
- 5. 功能仿真判断代码的实现无误后时序仿真。
- 6. 查看 RTL Viewer: 【Tools】-【netlist viewer】-【RTL viewer】。

● 指令译码器

- 1. 新建,编写源代码。
 - (1) 选择保存项和芯片类型:【File】-【new project wizard】-【next】(设置文件路径为C:\Users\86150\Desktop\mylearn\vscodec++\logicandcomputerdesignfundamentals\experiment1\cmddecoder设置project name为cmddecoder)-【next】(设置文件名cmddecoder)-【next】(设置芯片类型为【cyclone-EP1CT144C8】)-【finish】
 - (2). 新建:【file】-【new】(第二个 VHDL File)-【OK】
- 2. 写好源代码,保存文件(cmddecoder.vhd)。
- 3. 编译与调试。确定源代码文件为当前工程文件,点击【processing】-【start compilation】进行文件编译,编译结果有警告,编译成功。
- 4. 波形仿真及验证。新建一个 vector waveform file。按照程序所述插入节点 mov1, mov2, mov3, add, sub, or1, not1, rsr, rsl, jmp, jz, jc, in1, out1, nop, halt enable cmdar_code。(enable cmdar_code 为输入节点(向量),mov1, mov2, mov3, add, sub, or1, not1, rsr, rsl, jmp, jz, jc, in1, out1, nop, halt 为输出节点向量)。(操作为:右击 【insert】—【insert node or bus】—【node finder】(pins=all;【list】)—【>>】—【ok】)。按顺序设置 cmdar_code 和 enable 的输入波形…点击保存按钮保存。(操作为:点击 name(如:enable))—右击—【value】—【count】(如设置 binary; startvalue=000; endvalue=111; count value=2.0ns),同理设置 name b(如 000000000,1, 10),保存)。然后【start simulation】,出 name C 的输出图。
- 5. 功能仿真判断代码的实现无误后时序仿真。
- 6. 查看 RTL Viewer:【Tools】-【netlist viewer】-【RTL viewer】

四、实验过程

- 1、编译过程
- a) 源代码 (VHDL 设计) 和原理图如图
- 异或门

```
library ieee;
use ieee.std_logic_1164.all;

entity twoin_xor is
    port(
        a,b: in std_logic;
        c: out std_logic
    );
end entity twoin_xor;

architecture twoin_xor of twoin_xor is
    begin
        c <= a xor b;
end architecture twoin_xor;</pre>
```


● 3-8译码器

```
library ieee;
use ieee.std_logic_1164.all;
entity three_eightdecoder is
    port(
         inputs: in std_logic_vector(2 downto 0);
        enable: in std_logic;
        x: out std_logic_vector(7 downto 0)
    );
end entity three_eightdecoder;
architecture three_eightdecoder of three_eightdecoder is
    signal temps: std_logic_vector (2 downto 0);
    begin
        temps(0) <= not inputs(0);</pre>
        temps(1) <= not inputs(1);</pre>
        temps(2) <= not inputs(2);</pre>
        x(7) \leftarrow inputs(2) and inputs(1) and inputs(0) and enable;
        x(6) \leftarrow inputs(2) and inputs(1) and temps(0) and enable;
        x(5) \leftarrow inputs(2) and temps(1) and inputs(0) and enable;
        x(4) \leftarrow inputs(2) and temps(1) and temps(0) and enable;
        x(3) \leftarrow temps(2) and inputs(1) and inputs(0) and enable;
        x(2) \leftarrow temps(2) and inputs(1) and temps(0) and enable;
        x(1) \leftarrow temps(2) and temps(1) and inputs(0) and enable;
        x(0) \leftarrow temps(2) and temps(1) and temps(0) and enable;
end architecture three_eightdecoder;
```


● 指令译码器

```
library ieee;
use ieee.std_logic_1164.all;
entity cmddecoder is
    port(
        cmdar_code: in std_logic_vector(7 downto 0);
        enable: in std_logic;
        mov1, mov2, mov3, add, sub, or1, not1, rsr, rsl, jmp, jz, jc, in1, out1, nop, h
alt: out std_logic
    );
end entity cmddecoder;
architecture cmddecoder of cmddecoder is
    signal cmdcode, tempcmd: std_logic_vector(3 downto 0);
    signal r1code, r2code, tempr1, tempr2: std_logic_vector(1 downto 0);
    signal r1, r2: std_logic;
    begin
             r1 <= not (cmdar_code(4) and cmdar_code(5) and enable);</pre>
             r2 <= not (cmdar_code(6) and cmdar_code(7) and enable);</pre>
             cmdcode(0) <= cmdar_code(0);</pre>
             cmdcode(1) <= cmdar_code(1);</pre>
             cmdcode(2) <= cmdar_code(2);</pre>
             cmdcode(3) <= cmdar_code(3);</pre>
             r1code(0) <= cmdar_code(4);</pre>
             r1code(1) <= cmdar_code(5);</pre>
             r2code(0) <= cmdar_code(6);</pre>
             r2code(1) <= cmdar_code(7);</pre>
             tempcmd <= not cmdcode;</pre>
```

```
tempr1 <= not r1code;</pre>
                           tempr2 <= not r2code;</pre>
                           mov1 <= cmdcode(0) and cmdcode(1) and cmdcode(2) and cmdcode(3) and tempr1(</pre>
                                     0) and r1 and r2 and enable;
                           mov2 <= cmdcode(0) and cmdcode(1) and cmdcode(2) and cmdcode(3) and r1code(</pre>
                                     0) and r1code (1) and r2 and enable;
                           mov3 <= cmdcode(0) and cmdcode(1) and cmdcode(2) and cmdcode(3) and r1 and
                                     r2code(0) and r2code(1) and enable;
                           add \leftarrow cmdcode(0) and tempcmd(1) and tempcmd(2) and cmdcode(3) and r1 and r
                                     2 and enable;
                           sub \leftarrow tempcmd(0) and cmdcode(1) and cmdcode(2) and tempcmd(3) and r1 and r
                                     2 and enable;
                           or1 <= cmdcode(0) and tempcmd(1) and cmdcode(2) and cmdcode(3) and r1 and r
                                     2 and enable;
                           not1 <= tempcmd(0) and cmdcode(1) and tempcmd(2) and cmdcode(3) and r1 and</pre>
                                     enable;
                           rsr \leftarrow cmdcode(0) and tempcmd(1) and cmdcode(2) and tempcmd(3) and r1 and t
                                     empr2(0) and tempr2(1) and enable;
                           rsl \leftarrow cmdcode(0) and tempcmd(1) and cmdcode(2) and tempcmd(3) and r1 and r
                                     2code(0) and r2code(1) and enable;
                           imp \le imp \le impcmd(0) and impcmd(1) and impcmd(2) and impcmd(2) and impcmd(3) and 
                                     ) and tempr1 (1) and tempr2(0) and tempr2(1) and enable;
                           jz \leftarrow tempcmd(0) and tempcmd(1) and cmdcode(2) and cmdcode(3) and tempr1(0)
                                       and tempr1 (1) and tempr2(0) and r2code(1) and enable;
                           jc <= tempcmd(0) and tempcmd(1) and cmdcode(2) and cmdcode(3) and tempr1(0)</pre>
                                       and tempr1 (1) and r2code(0) and tempr2(1) and enable;
                           in1 <= tempcmd(\emptyset) and tempcmd(1) and cmdcode(2) and tempcmd(3) and r1 and e
                                     nable;
                           out1 \leftarrow tempcmd(0) and cmdcode(1) and tempcmd(2) and tempcmd(3) and r1 and
                                     enable;
                           nop \le tempcmd(0) and cmdcode(1) and cmdcode(2) and cmdcode(3) and tempr1(0)
                                     ) and tempr1(1) and tempr2(0) and tempr2(1) and enable;
                           halt <= cmdcode(0) and tempcmd(1) and tempcmd(2) and tempcmd(3) and tempr1(
                                     0) and tempr1(1) and tempr2(0) and tempr2(1) and enable;
end architecture cmddecoder;
b)编译、调试过程
             Message
     Type
               Warning: Can't analyze file -- file C:/Users/86150/Desktop/mylearn/vscode-c++/logic and computer design fundamentals/experimentl/xor/three_eightdecoder.vhd is missing Warning: Can't analyze file -- file C:/Users/86150/Desktop/mylearn/vscode-c++/logic and computer design fundamentals/experimentl/xor/cmddecoder.vhd is missing Warning: Feature LogicLock is not available with your current license Warning: No exact pin location assignment(s) for 3 pins of 3 total pins
    ±
               Warning: Some pins have incomplete I/O assignments, Refer to the I/O Assignment Warnings report for details
Warning: Found 1 output pins without output pin load capacitance assignment
Warning: The Reserve All Unused Pins setting has not been specified, and will default to 'As output driving ground'.
```


- 三者编译器均给出警告,但均能够编译通过。
- 三者资源消耗基本都趋近于 0.
- c) RTL 视图
- 异或门

3-8 译码器

● 指令译码器

d)结果分析及结论

● 异或门

当输入a, b为 0 1时输出为 1 当输入a, b为 1 0时输出为 1 当输入a, b为 1 1时输出为 0 当输入a, b为 0 0时输出为 0

● 3-8 译码器

当使能 enable 为 0 时,输出恒为 0. 当使能 enable 为 1 时

当输入为 000 时,输出为 10000000 当输入为 001 时,输出为 01000000 当输入为 010 时,输出为 00100000 当输入为 100 时,输出为 00001000 当输入为 101 时,输出为 00000100 当输入为 110 时,输出为 00000010 当输入为 111 时,输出为 00000001

● 指令译码器

当使能 enable 为 0 时,所有输出恒为 0.

当使能 enable 为 1 时,有:

当输入为 1111 R1 R2 mov1 输出为1, 其他指令输出为 0 当输入为 1111 11 R2 mov2 输出为1 其他指令输出为 0 当输入为 1111 R1 11 mov3输出为1 其他指令输出为 0 当输入为 1001 R1 R2 add 输出为1 其他指令输出为 0

当输入为 0110 R1 R2 sub 输出为1 其他指令输出为 0 当输入为 1011 R1 R2 or1 输出为1 其他指令输出为 0 当输入为 0101 R1 XX not1 输出为1 其他指令输出为 0 当输入为 1010 R1 00 rsr 输出为1 其他指令输出为 0 当输入为 1010 R1 11 rsl 输出为1 其他指令输出为 0 当输入为 0011 00 00 jmp 输出为1 其他指令输出为 0

当输入为 0011 00 01 jz 输出为1 其他指令输出为 0 当输入为 0011 00 10 jc 输出为1 其他指令输出为 0

当输入为 0010 R1 XX in1 输出为1 其他指令输出为 0 当输入为 0100 R1 XX out1输出为1 其他指令输出为 0 当输入为 0111 00 00 nop 输出为1 其他指令输出为 0 当输入为 1000 00 00 halt输出为1 其他指令输出为 0

2、波形仿真

enable 调为1时

● 异或门

a)波形仿真过程(过程详见实验步骤)

b)波形仿真波形图

c)结果分析及结论

enable 调为 1,

0-10 ns 时 a, b 输入均为 1, c 输出为 0 10-20ns 时 a, b 输入均为 0, c 输出为 0 20-30ns 时 a, b 输入为 1 0, c 输出为 1 30-40ns 时 a, b 输入为 0 1, c 输出为 1 结果正确

● 3-8 译码器

a)波形仿真过程(过程详见实验步骤)

■ 0	enable	À									
i 1	inputs	В 0	000	001	\subset	010	011	100	101	110	111
- 2	2]	В١									
■ 3	1]	В			$\overline{}$						
i 4	L0]	В١			∟						
5 5	± x	A [-	[1]	[2]	\subset	[4]	[8]	[16]		(e	[128]

b)波形仿真波形图

c)结果分析及结论

enable 调为 1,

0-80 ns 中,每隔 10ns 三位输入码变化一次,而相应的八位输出码也随之变化,呈现阶梯 状,如 0-10ns 输入为 000,输出为 100000000; 10-20ns 输入为 010000000…… 结果正确

● 指令译码器

a)波形仿真过程(过程详见实验步骤)

b)波形仿真波形图

c)结果分析及结论

enable调为1, 当输入从00000000-

11111111变化时,每隔2ns即变化一个周期时,如果产生对应的指令码则对应指令为

1, 其他为0。如图中, 当输入为 0011 00 01时, jz 输出为1 其他指令输出为 0, 以此类推其他仍如此, 故结果正确

enable 调为0时

如下图知不论输入如何其指令译码器和 3-8 译码器输出均为 0

结果正确

3、 时序仿真(enable 为 1 时)

- 异或门
 - a) 时序仿真过程

做好上述步骤后,编译【classic timing analysis】-在 compilation report 中选择【timing analysis】 - 【tpd】(引脚到引脚的延时)

b) 时序仿真图

tp	pd								
	Slack	Required P2P Time	Actual P2P Time	From	To				
1	N/A	None	12.900 ns	А	С				
2	N/A	None	12.400 ns	В	С				
П									

c) 结果分析及结论

A引脚到C引脚的实际 p2p 时间为 12.900ns,二B引脚到C引脚的实际 p2p 时间为 12.400ns。A 比 B 慢 0.5ns,可由于结果是由时间长的那个决定,故整体为 12.900ns。tpd (引脚到引脚的延时)

● 3-8译码器

a) 时序仿真过程

做好上述步骤后,编译【classic timing analysis】-在 compilation report 中选择【timing analysis】

-【tpd】(引脚到引脚的延时)

b) 时序仿真图

в)	h/l)-	アル 貝 E Slack	P2P Time	Time	From	To	
	1	N/A	None	10.789 ns	inputs[0]	×[4]	
	2	N/A	None	10.593 ns	inputs[0]	x[2]	
lobal	3	N/A	None	10.524 ns	enable	x[4]	
	4	N/A	None	10.297 ns	enable	x[2]	
	5	N/A	None	10.246 ns	inputs[0]	x[7]	
	6	N/A	None	10.235 ns	inputs[0]	x[6]	
;	7	N/A	None	10.001 ns	inputs[0]	x[0]	
	8	N/A	None	9.970 ns	enable	x[6]	
	9	N/A	None	9.967 ns	inputs[0]	x[5]	
	10	N/A	None	9.950 ns	enable	x[7]	
	11	N/A	None	9.892 ns	inputs[1]	x[4]	
	12	N/A	None	9.735 ns	enable	x[0]	
.	13	N/A	None	9.671 ns	enable	x[5]	
tion	14	N/A	None	9.571 ns	inputs[1]	x[2]	
	15	N/A	None	9.554 ns	inputs[2]	x[4]	
	16	N/A	None	9.362 ns	inputs[2]	x[2]	
Inalyz	17	N/A	None	9.347 ns	inputs[0]	x[1]	
	18	N/A	None	9.346 ns	inputs[1]	x[7]	
	19	N/A	None	9.335 ns	inputs[1]	x[6]	
	20	N/A	None	9.106 ns	inputs[1]	x[0]	
	21	N/A	None	9.070 ns	inputs[1]	x[5]	
	22	N/A	None	9.050 ns	enable	x[1]	
	23	N/A	None	9.012 ns	inputs[2]	x[7]	
	24	N/A	None	9.001 ns	inputs[2]	x[6]	
	25	N/A	None	8.769 ns	inputs[2]	x[0]	
	26	N/A	None	8.732 ns	inputs[2]	x[5]	
	27	N/A	None	8.490 ns	inputs[0]	x[3]	
	28	N/A	None	8.452 ns	inputs[1]	x[1]	
	29	N/A	None	8.193 ns	enable	x[3]	
	30	N/A	None	8.116 ns	inputs[2]	x[1]	
	31	N/A	None	7.596 ns	inputs[1]	x[3]	
	32	N/A	None	7.259 ns	inputs[2]	x[3]	

c) 结果分析及结论

每个引脚只间相互传递产生的延时各不相同,挑选其中 p2p 时间的最大值,为 inputs[0]传递给 x[4]。为 10.789ns,故整体延时为 10.789ns。

tpd (引脚到引脚的延时)

- 指令译码器
 - a) 时序仿真过程

做好上述步骤后,编译【classic timing analysis】-在 compilation report 中选择【timing analysis】

- -【tpd】(引脚到引脚的延时)
 - b) 时序仿真图

		Slack	Required P2P Time	Actual P2P Time	From	То
	1	N/A	None	10.181 ns	cmdar_code[6]	mov1
d	2	N/A	None	9.942 ns	cmdar_code[7]	mov1
"	3	N/A	None	9.866 ns	cmdar_code[4]	not1
	4	N/A	None	9.814 ns	cmdar_code[0]	mov1
	5	N/A	None	9.735 ns	cmdar_code[3]	mov1
	6	N/A	None	9.665 ns	cmdar_code[4]	121
	7	N/A	None	9.613 ns	cmdar_code[5]	not1
	8	N/A	None	9.515 ns	cmdar_code[6]	add
	9	N/A	None	9.394 ns	cmdar_code[5]	ısı
	10	N/A	None	9.354 ns	cmdar_code[2]	mov1
	11	N/A	None	9.308 ns	cmdar_code[3]	ısı
	12	N/A	None	9.280 ns	cmdar_code[6]	121
	13	N/A	None	9.278 ns	cmdar_code[0]	rsr
	14	N/A	None	9.276 ns	cmdar_code[7]	add
	15	N/A	None	9.249 ns	cmdar_code[2]	ısı
	16	N/A	None	9.195 ns	cmdar_code[0]	not1
72	17	N/A	None	9.189 ns	cmdar_code[1]	ısı
	18	N/A	None	9.148 ns	cmdar_code[0]	add
	19	N/A	None	9.141 ns	cmdar_code[4]	add
	20	N/A	None	9.135 ns	cmdar_code[4]	jmp
	21	N/A	None	9.135 ns	cmdar_code[2]	not1
	22	N/A	None	9.117 ns	cmdar_code[2]	mov3
	23	N/A	None	9.099 ns	cmdar_code[1]	not1
	24	N/A	None	9.089 ns	cmdar_code[1]	mov1
	25	N/A	None	9.081 ns	cmdar_code[1]	mov3
	26	N/A	None	9.069 ns	cmdar_code[3]	add
	27	N/A	None	9.049 ns	cmdar_code[4]	mov1
	28	N/A	None	9.036 ns	cmdar_code[2]	jmp
	29	N/A	None	9.020 ns	cmdar_code[3]	jmp
	30	N/A	None	9.011 ns	cmdar_code[0]	mov3
	31	N/A	None	8.995 ns	cmdar_code[4]	sub
	32	N/A	None	8.916 ns	cmdar_code[4]	in1
	33	N/A	None	8.903 ns	cmdar_code[6]	mov3
	34	N/A	None	8.891 ns	cmdar_code[5]	jmp

第 14 页 共 18 页

tpd					
	Slack	Required P2P Time	Actual P2P Time	From	То
35	N/A	None	8.888 ns	cmdar_code[5]	add
36	N/A	None	8.866 ns	cmdar_code[7]	121
37	N/A	None	8.831 ns	cmdar_code[2]	add
38	N/A	None	8.805 ns	cmdar_code[0]	jmp
39	N/A	None	8.795 ns	cmdar_code[3]	not1
40	N/A	None	8.783 ns	cmdar_code[4]	mov3
41	N/A	None	8.778 ns	cmdar_code[3]	mov3
42	N/A	None	8.767 ns	cmdar_code[6]	mov2
43	N/A	None	8.750 ns	cmdar_code[1]	add
44	N/A	None	8.724 ns	cmdar_code[5]	sub
45	N/A	None	8.687 ns	cmdar_code[4]	jz
46	N/A	None	8.661 ns	cmdar_code[7]	mov3
47	N/A	None	8.645 ns	cmdar_code[5]	in1
48	N/A	None	8.638 ns	cmdar_code[3]	sub
49	N/A	None	8.588 ns	cmdar_code[2]	jz
50	N/A	None	8.587 ns	cmdar_code[4]	rsl
51	N/A	None	8.579 ns	cmdar_code[2]	sub
52	N/A	None	8.572 ns	cmdar_code[3]	jz
53	N/A	None	8.559 ns	cmdar_code[3]	in1
54	N/A	None	8.539 ns	cmdar_code[5]	mov3
55	N/A	None	8.528 ns	cmdar_code[7]	mov2
56	N/A	None	8.500 ns	cmdar_code[2]	in1
57	N/A	None	8.500 ns	cmdar_code[1]	jmp
58	N/A	None	8.476 ns	cmdar_code[6]	halt
59	N/A	None	8.474 ns	cmdar_code[0]	halt
60	N/A	None	8.464 ns	cmdar_code[0]	in1
61	N/A	None	8.445 ns	cmdar_code[6]	or1
62	N/A	None	8.443 ns	cmdar_code[5]	jz
63	N/A	None	8.441 ns	cmdar_code[4]	jc
64	N/A	None	8.400 ns	cmdar_code[0]	mov2
65	N/A	None	8.399 ns	cmdar_code[4]	out1
66	N/A	None	8.385 ns	cmdar_code[1]	halt
67	N/A	None	8.375 ns	cmdar_code[1]	in1
68	N/A	None	8.357 ns	cmdar_code[0]	jz

		Slack	Required P2P Time	Actual P2P Time	From	То
	68	N/A	None	8.357 ns	cmdar_code[0]	jz
	69	N/A	None	8.342 ns	cmdar_code[2]	jc
al	70	N/A	None	8.336 ns	cmdar_code[4]	nop
	71	N/A	None	8.326 ns	cmdar_code[3]	jc
	72	N/A	None	8.321 ns	cmdar_code[3]	mov2
	73	N/A	None	8.316 ns	cmdar_code[5]	rsl
	74	N/A	None	8.314 ns	cmdar_code[4]	or1
	75	N/A	None	8.301 ns	cmdar_code[6]	rsl
	76	N/A	None	8.289 ns	cmdar_code[6]	jmp
	77	N/A	None	8.251 ns	cmdar_code[7]	jmp
	78	N/A	None	8.237 ns	cmdar_code[2]	nop
	79	N/A	None	8.236 ns	cmdar_code[4]	mov2
	80	N/A	None	8.230 ns	cmdar_code[3]	rsl
	81	N/A	None	8.221 ns	cmdar_code[3]	nop
	82	N/A	None	8.206 ns	cmdar_code[7]	or1
	83	N/A	None	8.197 ns	cmdar_code[5]	jc
y2	84	N/A	None	8.171 ns	cmdar_code[2]	rsl
	85	N/A	None	8.146 ns	cmdar_code[5]	out1
	86	N/A	None	8.140 ns	cmdar_code[0]	rsl
	87	N/A	None	8.111 ns	cmdar_code[0]	jc
	88	N/A	None	8.097 ns	cmdar_code[7]	sub
	89	N/A	None	8.092 ns	cmdar_code[5]	nop
	90	N/A	None	8.078 ns	cmdar_code[0]	or1
	91	N/A	None	8.062 ns	cmdar_code[7]	halt
	92	N/A	None	8.062 ns	cmdar_code[7]	rsl
	93	N/A	None	8.061 ns	cmdar_code[5]	or1
	94	N/A	None	8.037 ns	cmdar_code[0]	sub
	95	N/A	None	8.006 ns	cmdar_code[0]	nop
	96	N/A	None	7.999 ns	cmdar_code[3]	or1
	97	N/A	None	7.983 ns	cmdar_code[5]	mov2
	98	N/A	None	7.956 ns	cmdar_code[6]	sub
	99	N/A	None	7.940 ns	cmdar_code[2]	mov2
	100	N/A	None	7.924 ns	cmdar_code[1]	jz
>	101	N/A	None	7.920 ns	cmdar_code[1]	

_						-
	tpd					
		Slack	Required P2P Time	Actual P2P Time	From	То
	104	N/A	None	7.855 ns	cmdar_code[0]	out1
	105	N/A	None	7.842 ns	cmdar_code[2]	out1
al	106	N/A	None	7.840 ns	cmdar_code[1]	sub
	107	N/A	None	7.807 ns	cmdar_code[1]	jc
	108	N/A	None	7.797 ns	cmdar_code[2]	or1
	109	N/A	None	7.770 ns	cmdar_code[3]	halt
	110	N/A	None	7.716 ns	cmdar_code[1]	or1
	111	N/A	None	7.709 ns	cmdar_code[3]	out1
	112	N/A	None	7.708 ns	cmdar_code[6]	įΖ
	113	N/A	None	7.666 ns	cmdar_code[7]	jz
	114	N/A	None	7.640 ns	cmdar_code[1]	mov2
	115	N/A	None	7.629 ns	cmdar_code[5]	halt
	116	N/A	None	7.590 ns	cmdar_code[6]	jc
	117	N/A	None	7.583 ns	cmdar_code[7]	nop
	118	N/A	None	7.550 ns	cmdar_code[7]	jc
	119	N/A	None	7.500 ns	cmdar_code[2]	halt
y2	120	N/A	None	7.440 ns	cmdar_code[6]	nop
	121	N/A	None	7.394 ns	cmdar_code[1]	nop
	122	N/A	None	6.813 ns	enable	mov1
	123	N/A	None	6.683 ns	enable	not1
	124	N/A	None	6.284 ns	enable	121
	125	N/A	None	6.147 ns	enable	add
	126	N/A	None	5.875 ns	enable	jmp
	127	N/A	None	5.614 ns	enable	sub
	128	N/A	None	5.535 ns	enable	in1
	129	N/A	None	5.522 ns	enable	mov3
	130	N/A	None	5.427 ns	enable	jz
	131	N/A	None	5.399 ns	enable	mov2
	132	N/A	None	5.216 ns	enable	out1
	133	N/A	None	5.206 ns	enable	ısl
	134	N/A	None	5.181 ns	enable	jc
	135	N/A	None	5.077 ns	enable	or1
	136	N/A	None	5.076 ns	enable	nop
>	137	N/A	None	4.611 ns	enable	halt

c) 结果分析及结论

每个引脚只间相互传递产生的延时各不相同,挑选其中 p2p 时间的最大值,为 cmdar_code[6]传递给 mov1。为 10.181ns,故整体延时为 10.181ns。

tpd (引脚到引脚的延时)

五、实验结论

1、思考题

1) 首先,发光二极管数码管是用发光二极管构成显示数码的笔划来显示数字,由于发二极管会发光,故 LED 数码管适用于各种场合。其次,液晶显示数码管是利用液晶材料在交第 17 页 共 18 页

变电压的作用下晶体材料会吸收光线,而没有交变电场作用下有笔划不会听吸光,这样就可以来显示数码。再者,译码器可以用于内存寻址,程序计数器中保存了 CPU 将要执行的指令,通过译码器可以将其发送给相应的执行指令的组成部分中。

2) VHDL语言描述译码器电路常用的方法有条件语句判断、逻辑表达式赋值信号。

两者都要用到的语句有

库引入、实体声明、端口方向、结构体、库,程序包的调用、进程语句

前者常用的语句有

选择赋值语句(when-s-select 语句)

条件信号赋值语句(**赋值目标信号** <= 表达式 1 WHEN **赋值条件** 1 ELSE) if 语句

后者常用的语句有

基本逻辑关系(and, or, not)等

3) 原理图实现更加直观,实现起来简单易上手,步骤和方法就是根据基础的逻辑关系画出对应的逻辑门电路,但是可用程度较低,仅仅起到直观的效果,而且可以被 VHDL 语句实现中的查看 RTL 视图功能所取代。

VHDL 代码实现的步骤和方法即为根据逻辑关系设计 VHDL 程序,然后进行波形仿真,查看 RTL 视图等。VHDL 实现起来较为困难,需要一定的代码知识,直接实现起来可能显得不那么直观,并且出错率可能较大。但是功能强大,在生产生活应用的大背景下更有实际价值。

2、实验总结与实验心得

本次实验学习了译码器的实现。需要的能力有 VHDL 的简单编程能力, VHDL 的简单 仿真能力,逻辑表达式设计与化简能力,基础电路的设计绘制能力,实验报告的设计能力,实验过程分析总结能力。通过使用软件实现硬件,既培养了编码能力,又增加了硬件设计能力和社会实践能力。该次实验使我对数字电路与逻辑设计有了更深刻的认识,巩固了译码器相关的知识点。我因此受益良多。