SABANCI UNIVERSITY

Faculty of Engineering and Natural Sciences CS 302 Automata Theory Fall 2017

Midterm Answers

Answer 1 (35 points)

(a) (10 pts) E = (1.(0+1)*.0)*

(b) (25 pts)

q	σ	q'	
1=A	а	2	
1	b	Ø	
2=B	а	2	
2	b	1,2,3	
1,2,3=C	а	2	
1,2,3	b	1,2,3	
$\emptyset = D$	а	Ø	
Ø	b	Ø	

	Α	В	С	D
Α		1	2	1
В			1	2
С				1
D				

Hence the DFA **B** above is already a minimal state machine.

Question 2 (30 points)

(a)
$$(15 \text{ pts}) L = \{w \in (0+1)^* \mid \#0s \text{ in } w > \#1s \text{ in } w\}$$

L is a not regular language and we prove this using the pumping lemma (PL).

Let n be given by the PL and choose $w = 0^{n+1} 1^n$. Then $w \in L$ and $|w| \ge n$ therefore by the PL: w = xyz, $|xy| \le n$, $|y| \ge 1$ and $xy^jz \in L$ for all j = 0,1,...

But by the choice of $w: x = 0^p$, $y = 0^q$ where $p+q \le n$ and $q \ge 1$ and $z = 0^{n+1-p-q} 1^n$ and therefore for j=0, $xy^jz = xz = 0^p 0^{n+1-p-q} 1^n = 0^{n+1-q} 1^n \notin L$, a contradiction to the PL since $n+1-q \le n$ using $q \ge 1$.

(b)
$$(15 \text{ pts}) L = \{w \in (0+1)^* \mid \#0s \text{ in } w + \#1s \text{ in } w = an \text{ even number}\}$$

The following NFA accepts L

Question 3 (35 pts)

Eliminate state 2:

Eliminate state 3:

where P := a(a+b)*b and since (P*.P.P*.P)* = P* answer is:

$$E = (a(a+b)*b)*$$