Detecting Wildfire Areas: with

Convolutional Neural Networks

By: Paul Tanner

Project Relevancy:

- Each year the United
 States experiences 71,000
 wildfires.
- Approximately 6.9 million acres burn per year.

California Wildfires by the Year

Source: Cal Fire, https://www.fire.ca.gov/stats-events/

Project Goals:

 Build a Convolutional Neural Network that is able to distinguish between areas that have been burned by wildfires and areas that have not in Northern California.

Problem Space: Northern California (2016-2019)

- Images collected over N.
 California after referencing NASA's MODIS aqua/terra fire anomaly instances directory.
- 10,000+ "fire" images collected from Google Maps API from areas touched by wildfires.
- 10,000 additional non-fire images gathered by randomizing co-ordinated over the same area

Image Examples:

Model Architecture:

Model Performance:

0 = Wildfire Area 1= Non-Wildfire Area

Model accuracy = 51.67%

Model Loss = 79.11 %

Accuracy and Loss Metrics:

Evaluation:

- Model performed just about as well as performing a coin toss.
- We need a wider range of features and parameters to train on.
- Significant overlap between Wildfire Areas and Non-Wildfire Areas
- Model is likely finding that Wildfire Areas are just as combustible as Non-Wildfire Areas.

Evaluation (cont'd)

NASA Historical Satellite Images

Next Steps:

Source: Images are from a Google/ Standford University partnership study. https://arxiv.org/pdf/2010.07445v1.pdf

Surface Temperature

Worldview 2020-08-09

Vegetation Index

Contact info:

Github: github.com/ptanner925/wildfire_capstone

Email: ptanne925@gmail.com