

- 静态查找
- 动态查找
- 散列

• 散列函数

• 散列冲突

在随机存储中:

	学号	姓名	年龄	
01	200302	张三	19	
02	200305	李四	21	
03	200301	王五	20	- Jij

查找某一条记录需要进行一系列的"比较"。

查找的效率依赖于比较的次数。

能否在记录的关键字和存储地址之间构造这样一种关系 f,

使得关键字和存储地址一一对应?

此对应关系 f 称为散列函数。

• 把关键码值(key)映射到存储位置(Address)的函数,通常用 Hash 来表示:

Address = Hash (key)

构造散列函数时的几点要求:

- 散列函数的定义域必须包括需要存储的全部关键码,如果散列表允许有m个地址时,其值域必须在0到m-1之间。
- 散列函数计算出来的地址应能均匀分布在整个地址空间中: 若 key 是从关键码集合中随机抽取的一个关键码, 散列函数应能以同等概率取0到 *m*-1 中的每一个值。
- 散列函数应是简单的,能在较短的时间内计算出结果。

- 负载因子 α=n/m
 - 散列表的空间大小为m
 - 填入表中的结点数为n

冲突

- 基个散列函数对于不相等的关键码计算出了相同的散列 地址
- 在实际应用中,不产生冲突的散列函数极少存在
- 同义词
 - 发生冲突的两个关键码

- •除留余数法
- •折叠法
- •平方取中法
- •基数转换法
- •直接定址法

• 除留余数法

H(key) = key % p或 H(key) = key % p + c 这里 $p \le m$; 余数总在 $0 \sim p-1$ 之间。

- 示例: 有一个关键码 key = 962148, 散列表大小 m = 25, 即 HT[25]。取 质数 p= 23。散列函数 hash (key) = key % p。则散列地址为 hash (962148) = 962148 % 23 = 12。
- 可以按计算出的地址存放记录。需要注意的是,使用上面的散列函数计算出来的地址范围是 0到 22,因此,从23到24这几个散列地址实际上在一开始是不可能用散列函数计算出来的,只可能在处理冲突时达到这些地址。

选取 p 为质数的理由:

- · 设 key 值都为奇数,选 p 为偶数;则 H(key) = key % p,结果为奇数,一半单元被浪费掉。
- · 设 key 值都为 5 的倍数,选 p 为 95;则 H(key) = key % p,结果为: 0、5、10、15、..... 90。4/5 的单元被浪费掉。

• 折叠法 (移位法、分界法)

例如: key = 381412975, m=1000

选取 768 或 570 作为散列地址。

 381
 975

 412
 214

 975
 381

 1 768
 1570

移位叠加

边界叠加

• 平方取中法

例如: (4731) ² = 223 82 361 选取 82 (在 m = 100 情况下)

- 此方法在词典处理中使用十分广泛。它先计算构成关键码的标识符的内码的平方,然后按照散列表的大小取中间的若干位作为散列地址。
- 设标识符可以用一个计算机字长的内码表示。因为内码平方数的中间几位一般 是由标识符所有字符决定,所以即使其中有些字符相同,对不同的标识符计算 出的散列地址大多不相同。

标识符	内码	内码的平方 散列	地址
\boldsymbol{A}	01	<u>01</u>	001
A1	0134	2 <u>042</u> 0	042
A9	0144	23420	342
B	02	4	004
DMAX	04150130	21526 <u>443</u> 617100	443
DMAX1	0415013034	526447 <u>352</u> 2151420	352
AMAX	01150130	1354 <u>236</u> 17100	236
AMAX1	0115013034	345424 <u>652</u> 2151420	652

标识符的八进制内码表示及其平方值

• 基数转换法

· 将关键字k转换为另外一种数字基数,再对表的大小取模。

例如: k=(345)₁₀ → (423)₉ % 表的大小

 $4x9^{2}+2x9+3=345$

• 直接定址法

例如: key₁, key₂分别有值 10 、1000, 可以选10 、1000 作为存放地址。

• 在实际工作中应根据关键码的特点,选用适当的方法。有人曾用"轮盘赌"的统计分析方法对它们进行了模拟分析,结论是平方取中法最接近于"随机化"。

