Innovations in Design for Manufacturing

Let's walk through the Innovation in Design for manufacturing using real life product case:

The ultrasonic room diffuser and humidifier. These diffusers don't use heat, so the steam they produce is a vapor or water mist. Ultrasonic vibrations hit the water at a frequency that humans can't hear, creating a cold, concentrated vapor. The vibrations carry upwards toward the essential oil, which is floating on top, and vaporize it into steam.

To implement Innovations in Design for Manufacturing, we need to:

First Step – Explore Design Second Step – Identify Manufacturing Process Identify Gap in Design and Manufacturing Third Step -Implement Innovation in Design for Manufacturing Fourth Step –

Explore Design

For design exploration (or Product Teardown) we will follow this flow chart:

Identify Manufacturing Process

Manufacturing processes are the primary determinants of the blueprint of the final design. To understand the rationale behind a specific manufacturing process, the following steps are undertaken:

Fixed unshared platform products are generally seen with mass production. The diffuser in this case is also high-volume product. The Product Architecture of diffuser gives insights about the type of manufacturing process and material selection. Using reference from the book "Selection of Materials and Processes" the following can be identified about the materials and adopted manufacturing process.

Part	Material	Manufacturing Process
Diffuser Base	ABS (Acrylonitrile Butadiene Styrene)	Injection Molding
Diffuser Top	ABS (Acrylonitrile Butadiene Styrene)	Injection Molding
Ultrasonic Speaker Mount	Nylon6,6	Injection Molding
Core Base	High-Density polyethylene (HDPE)	Injection Molding

Identify Gap in Design and Manufacturing

So far, we have gained a comprehensive understanding of the product design and its architecture. Moving forward, our focus is to refine the design and optimize the manufacturing process in alignment with lean design principles. The initial step in this process will be conducting a Boothroyd Analysis. This analysis will enable us to quantify the design parameters, forming the foundational basis for our proposed design modifications.

1	2	3	4	5	6	7	8	9	10	11	12	Name	Description		
ID	# op:	H code	H time	H Cost (\$)	I code	I time	Cost (\$)	Op Time	Op cost (\$)	Material Cost (\$)	Min				
16	1	H00	1.13	0.003139	199	12	0.033333	13.13	0.0364722		2	LED Board	Glue required to secured the part		
15	1	H00	1.13	0.003139	130	2	0.005556	3.13	0.0086944		2	Fan	S>15, T>2, No tool, No screwing required		
													Screwing required after insertion, Size is also		
14	1	H00	1.13	0.003139	138	6	0.016667	7.13	0.0198056		3	Circuit Board	big.S>15		
												Ultrasonic Speaker + Silicion	Speaker Cover come from the supplier only.		
,1	1	H00	1.13	0.003139	106	5.5	0.015278	6.63	0.0184167		2	cover	No removal needed during disaasembly.		With
7	1	H00	1.13	0.003139	138	6	0.016667	7.13	0.0198056		4	Ultrasonic Speaker Mount	S>15, T>2, Screwing After insertion		VVILII
5	1	H00	1.13	0.003139	138	6	0.016667	7.13	0.0198056		5	Base Cover	S>15, T>2, Screwing After insertion		
3	4	H09	2.98	0.008278	199	12	0.033333	59.92	0.1664444		4	Silicon Bottoms Pad	Glue required to secured the part		بالماريم المما
2	1	H03	1.69	0.004694	131	5	0.013889		0.0185833		1	Spray Cover	S>15, T<2, No tools required		calculate
1	1	H00	1.13	0.003139	130	2	0.005556	3.13	0.0086944		1	Diffuser Top Cover	S>15, T>2, No tools required.		Jacoatati
								TM	CM		NM	EM = 3*(NM/TM)			. —
								114.02	0.3167222		24	0.631468163			/Efficio
															(Efficie
															•
												Assumptions and			N/ a + .: a \
												Abbreviation	B. I.	V	Metric) va
) ~		ᆂᇈ	-			۸ 👝	~ 1	/sis		Alpha (α)	: Rotation perpendicular to insertion,		1.104110710
		5()	()	\mathbf{H}		\	() /	4 N	\mathbf{an}	/SIS		Beta (β)	: Rotation parallel to insertion : T: Thickness (mm),		
	-			C 1 1 1	. –	y	u ,	\\ I I	$\boldsymbol{\omega}$	010			: Size (mm),		63.29
												Declare Hourly Wage in	. Size (mm),		00.2
			\perp $\boldsymbol{\iota}$: + '	: ~		ر م ا	.:~			Dollar/hr	5		
		- () I	111	11	12	11 (165	sig			Total Hourly Wage in			
		\ \ \	– .			. u		100	9'5	•		Dollar/sec	0.002777778		
												NM	Number of Movements		
												TM	Time for Movements		
												CM	Cost of Movements		
												FM	Efficiency Metrix or Efficiency Measure		

Our current objective is to implement strategic design changes that will enhance the Efficiency Metric. Additionally, we need to conduct a **cost** analysis of the existing design to better understand its objectives and identify any gans

identify any gaps.			
Part	Procurement or Manufactured	Cost / Unit	Cost Analysis of Diffuser
LED Board	Procured	0.12\$	Logistic Cost
Fan	Procured	0.18\$	(11\$) + Risk (0.5\$) +
Circuit Board	Procured	0.91\$	Assembly Cost (0.32\$) + Profit
Ultrasonic Speaker	Procured	0.30\$	(5.2\$) = Total Cost 20\$
Diffuser Base + Diffuser Top + Core Base + Speaker Mount	Manufactured	1.5\$	

Implement Innovation in Design for Manufacturing

Three innovative design changes were proposed and subsequently implemented, each anchored to core principles: **Design** for Quality, Cost Minimization, and Design for Disassembly. In addition, two more design modifications were put forward to promote modularity and to integrate Design for Manufacturing and Assembly (DFMA) for informed material selection. Following a thorough review of all prior steps and principles, a series of design changes have been introduced:

Motive Behind adopting these changes:

1	2	3	4	5	6	7	8	9	10	11	12	Name	Description
ID	# ops	H code	H time	H Cost (\$)	I code	I time	I Cost (\$)	Op Time	Op cost (\$)	Material Cost (\$)	Min.		
16	1	H00	1.13	0.003139	199	12	0.033333	13.13	0.0364722		2	LED Board	Glue required to secured the part
15	1	H00	1.13	0.003139	130	2	0.005556	3.13	0.0086944		2	Fan	S>15, T>2, No tool, No screwing required
												2.5	Screwing required after insertion, Size is also
14	1	H00	1.13	0.003139	138	6	0.016667	7.13	0.0198056		3	Circuit Board	big.S>15
												Ultrasonic Speaker + Silicion	Speaker Cover come from the supplier only.
9,10	1	H00	1.13	0.003139	106	5.5	0.015278	6.63	0.0184167		2	cover	No removal needed during disaasembly.
7	1	H00	1.13	0.003139	138	6	0.016667	7.13	0.0198056		4	Ultrasonic Speaker Mount	S>15, T>2, Screwing After insertion
5	1	H00	1.13	0.003139	138	6	0.016667	7.13	0.0198056		5	Base Cover	S>15, T>2, Screwing After insertion
3	4	H09	2.98	0.008278	199	12	0.033333	59.92	0.1664444		4	Silicon Bottoms Pad	Glue required to secured the part
2	1	H03	1.69	0.004694	l31	5	0.013889	6.69	0.0185833		1	Spray Cover	S>15, T<2, No tools required
1	1	H00	1.13	0.003139	130	2	0.005556	3.13	0.0086944		1	Diffuser Top Cover	S>15, T>2, No tools required.
								TM	CM		NM	EM = 3*(NM/TM)	
								114.02	0.3167222		24	0.631468163	

In the Original Design Boothroyd analysis, the cells highlighted for their lengthy Op Time draw our attention to that components necessitate design alterations.

Improved Innovative Design:

1	2	3	4	5	6	7	8	9	10	11	12	Name	Description
ID	# ops	H code	H time	H Cost (\$)	I code	I time	I Cost (\$)	Op Time	Op cost (\$)	Material Cost (\$)	Min.		
16	1	H00	1.13	0.003139	l31	5	0.013889	6.13	0.0170278		1	LED Board	Snap fit to Core Base
16.1	1	H00	1.13	0.003139	l31	5	0.013889	6.13	0.0170278		1	Diffuser Pod Storage	Snap fit to LED Board
15	1	H00	1.13	0.003139	130	2	0.005556	3.13	0.0086944		2	Fan	S>15, T>2, No tool, No screwing required
													Screwing required after insertion, Size is also
14	1	H00	1.13	0.003139	130	2	0.005556	3.13	0.0086944		3	Circuit Board	big.S>15
												Ultrasonic Speaker + Silicion	Speaker Cover come from the supplier only.
9,10	1	H00	1.13	0.003139	106	5.5	0.015278	6.63	0.0184167		2	cover	No removal needed during disaasembly.
7	1	H00	1.13	0.003139	138	6	0.016667	7.13	0.0198056		4	Ultrasonic Speaker Mount	S>15, T>2, Screwing After insertion
5	1	H00	1.13	0.003139	138	6	0.016667	7.13	0.0198056		5	Base Cover	S>15, T>2, Screwing After insertion
3	4	H09	2.98	0.008278	l31	5	0.013889	31.92	0.0886667		4	Silicon Bottoms Pad	Glue required to secured the part
2	1	H03	1.69	0.004694	l31	5	0.013889	6.69	0.0185833		1	Spray Cover	S>15, T<2, No tools required
1	1	H00	1.13	0.003139	130	2	0.005556	3.13	0.0086944		1	Diffuser Top Cover	S>15, T>2, No tools required.
								TM	CM		NM	EM = 3*(NM/TM)	
								81.15	0.2254167		24	0.887245841	

In the New Design Boothroyd analysis, the cell highlighted shows a significant drop-in Op time and great improvement in Efficiency Metric i.e. 88.72 % from 63.2 %.

Prepared by: Shubhendra Pratap Singh Prepared for: Mechanical Engineering Department