DataSci 420

lesson 9: deep learning (part 1)

Seth Mottaghinejad

today's agenda

- Al vs ML vs DL
- what is **deep learning**?
- the advent of deep learning
- deep learning vs traditional ML
- deep learning applications
- tensors and deep learning frameworks

image source: towardsdatascience.com

Al vs ML vs DL for making guacamole

- you can hire experts to help you write a program that spits out a guac recipe based on available ingredients and quantities
- you can use ML to look at a data set of ingredients and their quantities and how the resulting guac was rated
- you can do **feature engineering** prior to ML and engineer features that make sense (to some extent based on expert know-how): e.g. ratios of particular ingredients
- you can use DL which does ML with feature engineering built-in (no experts needed)

image source: <u>neuralnetworksanddeeplearning.com</u>

ML / ML with FE / ML with automated FE

salt	• • •	avoc	onions	rating
2 tbs	• • •	1 lbs	3 oz	2/5

salt	• • •	avoc	onions	salt/pepp	• • •	avoc/onions	rating
2 tbs	• • •	1 lbs	3 oz	0.50	• • •	1.245	2/5

					• • • • • • • •		
2 tbs	• • •	1 lbs	3 oz	0.582	• • • • • • •	1.253	2/5

what makes learning deep?

- neural networks are a type of machine learning algorithms
- deep learning refers to using neural networks with many many hidden layers to solve problems where
- feature engineering is built into DL and hidden layers make it possible to engineer increasingly abstract features
- most ML concepts still apply to DL algos, but DL also has many concepts that are unique to it
- DL methods can be used in supervised, unsupervised, and reinforcement learning

advent of deep learning

- deep networks are neural networks with lots of hidden layers
- not a new idea, but it only recently became computationally feasible: better hardware and advances in optimization
 - GPUs (graphical processing units) are made to do array computations efficiently, big deal in rendering graphics but made its use to deep learning
 - TPUs (tensor processing units) are the next gen hardware made specifically for deep learning
- DL models also need a **lot of data**, which we now have

deep learning vs traditional ML

- traditional ML has a more limited number of parameters
 - for most applications less than 1000
 - for some applications with wide data sets 100K to 1M
- deep learning model can have millions of parameters
- more parameters \rightarrow more complex model \rightarrow prone to overfitting and hence
 - more data needed to compensate and
 - more fine-tuning of hyper-parameters needed

deep learning applications

- auto-encoders / encoder-decoder (unsupervised learning)
 - o dimensionality reduction, denoise images, remove watermarks
- convolutional networks for image segmentation
 - image localization and classification, description
- recurrent networks and attention networks for NLP
 - word / sentence completion, translation, entity extraction
- deep reinforcement learning
 - playing games, self-driving cars, kill all humans!

deep learning frameworks

- high-level and low-level library for training NNs
 - no need to build network from scratch
 - o auto-differentiation saves us from figuring out the math
 - focus on the architecture (number of hidden layers, hidden units, activation functions, connections)
- CPU vs GPU vs TPU (or FPGA) switch the context without having to change code

Online Job Listing Growth

image source: kdnuggets.com

image source: kdnuggets.com

the end