

Integrating the Current Sensing Signal Path

Scott Hill, Current Sensing Products

Current measurements are used in electronic systems to provide feedback verifying operation is within acceptable margins and to detect potential fault conditions. Analyzing a system's current level can diagnose unintended or unexpected operating modes allowing for adjustments to be made to improve reliability or to protect the system components from damage.

Current is a signal that is difficult to measure directly. However, there are several measurement methods that are capable of measuring the effect of flowing current. Current passing through a wire produces a magnetic field that can be detected by magnetic sensors (hall-effect and fluxgate for example). Current measurements can also be made by measuring the voltage developed across a resistor as current passes through. This type of resistor is called a current sensing, or shunt, resistor.

For current ranges reaching up to 100 amps on voltage rails below 100 volts, measuring current with shunt resistors are typically preferred. The shunt resistor approach commonly provides a physically smaller, more accurate and temperature stable measurement compared to a magnetic solution.

For the system's current information to be evaluated and analyzed, it must be digitized and sent to the system controller. There are many methods for measuring and converting the signal developed across the shunt resistor. The most common approach involves using an analog front-end to convert the current sensing resistor's differential signal to a single-ended signal. This single-ended signal is then connected to an analog to digital converter (ADC) that is connected to a microcontroller. Figure 1 illustrates the current sensing signal chain.

Figure 1. Current Sensing Signal Path

To optimize the current sensing signal chain, the shunt resistor value and amplifier gain must be appropriately selected for the current range and full-scale input range of the ADC. The selection of the shunt resistor is based on a compromise between measurement accuracy and power dissipation across the shunt resistor. A large value resistor will develop a larger differential voltage as the current passes through. The measurement errors will be smaller due to the fixed amplifier offset voltage. However, the larger signal creates a larger power dissipation across the shunt resistor (P = I2R). A smaller shunt resistor develops a smaller drop across the shunt resistor reducing the power dissipation requirements but also increases the measurement errors as the amplifier's fixed offset errors become a larger percentage of the signal.

The amplifier gain is selected to ensure that the amplifier's output signal will not exceed the ADCs full-scale input range at the full-scale input current level.

The INA210 is a dedicated current sense amplifier that integrates the external gain setting resistors as shown in Figure 2. Bringing these gain resistors internal to the device allows for increased matching and temperature drift stability compared to typical external gain setting resistors. Space saving QFN packages significantly reduce the board space requirements of an operational amplifier and external gain resistors. Current sense amplifiers are commonly available in multiple fixed gain levels to better optimize the pairing with shunt resistor values based on the input current and ADC full-scale input ranges.

Figure 2. INA210: Current Sensing Amplifier

Figure 1 shows the operational amplifier measuring the differential voltage developed across the shunt resistor and sending the amplified signal to the single ended ADC. A fully differential input ADC can monitor the differential voltage directly across the shunt resistor. One drawback to using a typical ADC is reduced input range used. The signal developed across a shunt resistor will be small to limit the power dissipation requirements of this component. Lower ADC resolutions will also impact the small signal measurement accuracy.

The ADC reference will also be an additional error source that must be evaluated in this signal path. A typical ADC will feature an input range that is based on the converter's reference voltage. The actual reference voltage range varies from device to device but is typically in the 2V to 5V range. The LSB (least significant bit) is based on the full-scale range and resolution of the converter. For example, a 16-bit converter with a full-scale input range of 2.5V, the LSB value is roughly $38\mu V$.

The INA226 is a specialized ADC designed specifically for bi-directional current sensing applications. Unlike typical ADCs, this 16-bit converter features a full-scale input range of +/- 80mV eliminating the need to amplify the input signal to maximize the ADC's full-scale input range. The INA226 is able to accurately measure small shunt voltages based on the device's maximum input offset voltage of $10\mu V$ and an LSB size of $2.5\mu V$. The INA226 provides 15 times more resolution than the equivalent standard 16-bit ADC with a full-scale input range of 2.5V. The specialization of the INA226 makes this device ideal for directly monitoring the voltage drop across the current sensing resistor as shown in Figure 3.

Figure 3. Digital Current/Power Monitor

In addition to the ability to directly measure voltage developed across the shunt resistor as current passes through, the INA226 can also measure the common-mode voltage. The INA226 has an input multiplexer allowing the ADC input circuitry to switch between the differential shunt voltage measurement and the single-ended bus voltage measurement.

The current sensing resistor value present in the system can be programmed into a configuration register on the INA226. Based on this current sensing resistor value and the measured shunt voltage, on-chip calculations convert of the shunt voltage back to current and can provide a direct readout of the corresponding power level of the system. Performing these calculations on-chip reduces processor resources that would normally be required to convert this information.

Alternate Device Recommendations

For applications with lower performance requirements, using the INA199 still takes advantage of the benefits of the dedicated current sense amplifier. For applications implementing over-current detection, the INA301 features an integrated comparator to allow for on-chip over-current detection as fast as 1µs. For applications with lower performance requirements, using the INA219 is able to take advantage of the specialized current sensing ADC.

Table 1. Alternative Device Recommendations

Device	Optimized Parameter	Performance Trade- Off
INA199	Lower Cost	Higher V _{OS} & Gain Error
INA301	Signal Bandwidth, On- Board Comparator	Larger Package: MSOP-8
INA219	Smaller Package Digital Monitor, Lower Cost	Higher V _{OS} & Gain Error

Table 2. Related TI TechNotes

SBOA162	Measuring Current To Detect Out-of-Range Conditions
SBOA165	Precision Current Measurement On High Voltage Power Rail
SBOA160	High Precision, Low-Drift In-Line Motor Current Measurements
SBOA161	Low-Drift, Low-Side Current Measurements for Three-Phase Systems

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

logic.ti.com

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Security

www.ti.com/security

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

Logic

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity