Patrick M. Virtue

pvirtue@cs.cmu.edu	(412) 268-2569
EDUCATION	
University of California, Berkeley , Berkeley, California, U.S.A. Ph.D. Electrical Engineering & Computer Sciences Advisors: Michael Lustig and Stella X. Yu	August 2019
University of Notre Dame, Notre Dame, Indiana, U.S.A. B.S. Computer Science Engineering, Summa Cum Laude Advisor: Jesus Izaguirre	May 2002
PROFESSIONAL APPOINTMENTS	
Carnegie Mellon University Assistant Teaching Professor, Computer Science and Machine Learning	2018 – Present
GE Healthcare Senior Software Engineer, Clinical Software Engineering Software Engineer, Surgical Navigation Software Engineer, Global Software Platforms Engineer, Edison Engineering Development Program	2007 - 2010 2007 2004 - 2007 2002 - 2004
TEACHING EXPERIENCE	
Carnegie Mellon University	
 Instructor, Introduction to Machine Learning (Undergrad SCS Majors) (10-315) 160 students, 10 TAs 140 students, 8 TAs 	Spring 2023 Spring 2020
 Instructor, Fundamentals of Programming and Computer Science (15-112) ■ 475 students, 41 TAs, with co-instructor Mike Taylor 	Fall 2022
Instructor, Demystifying AI (15-181) ■ Pilot version, 8 students	Spring 2022
Instructor, Practical Data Science (15-388/15-688) ■ 30 students	Spring 2022
Instructor, Mathematical Foundations for Machine Learning (10-606) ■ 20 students, 2 TAs	Fall 2021
<u>Instructor</u> , Computational Foundations for Machine Learning (10-606) ■ 40 students, 2 TAs	Fall 2021
Instructor, Introduction to Machine Learning (PhD) (10-701) ■ 140 students, 8 TAs, with co-instructor Ziv Bar-Joseph	Fall 2021
 Instructor, Al: Representation and Problem Solving (15-281) 110 students, 8 TAs 85 students, 9 TAs, with co-instructor Stephanie Rosenthal 115 students, 8 TAs, with co-instructor Fei Fang 100 students, 8 TAs, with co-instructor Stephanie Rosenthal 	Spring 2021 Spring 2020 Fall 2019 Spring 2019

Instructor, Machine Learning: Fundamentals and Algorithms	
■ Online Executive Education, with co-instructor Matt Gormley	Summer 2021
Instructor, Introduction to Machine Learning (Undergrad/Master's) (10-301/10	-601)
■ 320 students, 16 TAs	Fall 2020
■ 35 students, 4 TAs	Summer 2020
	_
Instructor & Curriculum Developer, AI Scholars (previously AI4ALL) Pre-College	9
30 students27 students	Summer 2023 Summer 2022
30 students	Summer 2021
■ 39 students	Summer 2019
Instructor, Principles of Imperitive Programming (15-122)	П 11 0040
 450 students, 39 TAs, with co-instructor Iliano Cervesato 	Fall 2018
University of California, Berkeley	
Instructor, Introduction to Artificial Intelligence (CS 188)	
■ 400 students, 9 TAs, with co-instructor Stuart Russell	Fall 2015
■ 70 students, 3 TAs	Summer 2015
VI 1 T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	g
Head Teaching Assistant, Introduction to Machine Learning (CS 189/289) ■ 380 students, 8 TAs, with instructors Peter Bartlett and Alexei Efros	Spring 2015
- Sou students, o TAS, with instructors Peter Dartiett and Alexei Erros	
Teaching Assistant, Introduction to Artificial Intelligence (CS 188)	Fall 2014
■ Instructor Stuart Russell	
Guest Lecturer, The Beauty and Joy of Computing (CS 10)	2015 - 2017
Topic: Artificial Intelligence, 6 terms	
Guest Lecturer, Teaching Techniques for Computer Science (CS 375)	Summer 2016, Summer 2017
Topic: Peer Instruction	
Tutor, The Structure and Interpretation of Computer Programs (CS 61A)	Summer 2017
Marquette University & GE Healthcare	
Instructor, Advanced Course In Engineering	2004 - 2010
Graduate-level certified, multidisciplinary course for leadership-tracked engine	
 Defined curriculum for all image processing and image reconstruction relationships 	
 Taught 2D & 3D medical image processing, visualization, and post-processing. 	
University of Notre Dame	
Too shing Assistant Data Churchinas (CCF 20221)	E-11 2004
<u>Teaching Assistant</u> , <i>Data Structures</i> (CSE 30331) ■ Instructor Jesus Izaguirre	Fall 2001
<u>Tutor</u> , Minority Engineering Program	2001 - 2002
Tutor, Academic Services for Student Athletes	1999 - 2002

PUBLICATIONS

Journal Publications

- M. Demant, <u>P. Virtue</u>, A. Kovvali, S. X. Yu, S. Rein. Learning quality rating of as-cut mc-Si wafers via convolutional regression networks, *Journal of Photovoltaics*, Volume 9, Issue 4, 1064-1072, 2019.
- M. Demant, <u>P. Virtue</u>, A. Kovvali, S. X. Yu, S. Rein. Visualizing material quality and similarity of mc-Si wafers learned by convolutional regression networks, *Journal of Photovoltaics*, Volume 9, Issue 4, 1073-1080, 2019.
- <u>P. Virtue</u>, M. Lustig. On the Empirical Effect of Gaussian Noise in Undersampled MRI Reconstruction, *Tomography*, Volume 3, Issue 4, 2017, 211-221.
- M. Uecker, P. Lai, M. J. Murphy, <u>P. Virtue</u>, M. Elad, J. M. Pauly, M. Lustig. ESPIRiT—an Eigenvalue Approach to Autocalibrating Parallel MRI: Where SENSE Meets GRAPPA. *Magnetic Resonance in Medicine*, *71*(3), 990-1001, 2014.
- L. Barber, M. Koff, <u>P. Virtue</u>, J. Lipman, R. Hotchkiss, H. Potter. The Use of MRI Modeling to Enhance Osteochondral Transfer in Segmental Kienböck's Disease. *Cartilage*, Volume 3, Issue 2, 188-193, 2012.
- M. Koff, L. Chong, <u>P. Virtue</u>, L. Ying, L. Foo, H. Potter. Correlation of MRI and Histological Examination of Physeal Bars in a Rabbit Model. *Journal of Pediatric Orthopaedics*, Volume 30, Issue 8, 928-935, 2010.
- M. Koff, L. Chong, <u>P. Virtue</u>, D. Chen, T. Wright, H. Potter. Validation of Cartilage Thickness Calculations Using Indentation Analysis. *Journal of Biomechanical Engineering*, Volume 132, Issue 4, 041007, 2010.
- R. Chaturvedi, J.A. Izaguirre, C. Huang, T. Cickovski, <u>P. Virtue</u>, G. Thomas, G. Forgacs, M. Alber, G. Hentschel, S.A. Newman, J.A. Glazier. Multi-model simulations of chicken limb morphogenesis, *Lecture Notes in Computer Science*, Volume 2659, Springer-Verlag, New York, 39-49, 2003.

Refereed Conference Proceedings

- <u>P. Virtue</u>. GANs Unplugged, *Proceedings of the 11th Symposium on Educational Advances in Artificial Intelligence (EAAI)*, 75, 2021.
- <u>P. Virtue</u>, J. I. Tamir, M. Doneva, S. X. Yu, M. Lustig. Learning Contrast Synthesis from MR Fingerprinting, *Proceedings of the 26th Scientific Meeting, International Society for Magnetic Resonance in Medicine (ISMRM)*, Paris, 2018.
- J. P. Dougherty, <u>P. Virtue</u>, and S. A. Wolfman. SIGCSE Filk Circle: CS Parody Songs for Learning, Engagement, and Fun, *Proceedings of the 2018 ACM SIGCSE Technical Symposium on Computer Science Education*, Baltimore, Maryland, 2018.
- <u>P. Virtue</u>, S. X. Yu, M. Lustig. Better than Real: Complex-valued Neural Networks for MRI Fingerprinting, *International Conference on Image Processing*, Beijing, 3953-3957, 2017.
- M. Uecker, F. Ong, J. I. Tamir, D. Bahri, <u>P. Virtue</u>, J. Y. Cheng, T. Zhang, and M. Lustig. Berkeley Advanced Reconstruction Toolbox, *Proceedings of the 23rd Scientific Meeting, International Society for Magnetic Resonance in Medicine (ISMRM)*, Toronto, 2015.
- <u>P. Virtue</u>, M. Uecker, M. Elad, M. Lustig. Predicting Image Quality of Under-Sampled Data Reconstruction in the Presence of Noise. *Proceedings of the 21st Scientific Meeting, International Society for Magnetic Resonance in Medicine (ISMRM)*, Salt Lake City, Utah, 2013.
- M. Koff, L. Chong, <u>P. Virtue</u>, D. Chen, T. Wright, H. Potter. Validation of Cartilage Thickness Calculations Using Indentation Analysis. *Proceedings of the 17th Scientific Meeting, International Society for Magnetic Resonance in Medicine (ISMRM)*, Honolulu, Hawaii, 2009.

M. Koff, L. Chong, <u>P. Virtue</u>, L. Ying, L. Foo, H. Potter. Correlation of MRI and Histological Examination of Physeal Bars in a Rabbit Model. *Proceedings of the 55th Annual Meeting, Orthopaedic Research Society*, Las Vegas, 2009.

Refereed Workshop Proceedings

<u>P. Virtue</u>, J. I. Tamir, M. Doneva, S. X. Yu, M. Lustig. Direct Contrast Synthesis for Magnetic Resonance Fingerprinting, *Proceedings of the ISMRM Workshop on Machine Learning*, Pacific Grove, California, 2018.

M. Uecker, <u>P. Virtue</u>, F. Ong, M. J. Murphy, M. T. Alley, S. Vasanawala, M. Lustig. Software Toolbox and Programming Library for Compressed Sensing and Parallel Imaging. *Proceedings of the ISMRM Workshop on Data Sampling and Reconstruction*, Sedona, Arizona, 2013.

PATENTS

M. Profio, S. W. Lee, D. Littlejohn, S. Zimmerman, H. McDaniel, S. Stuebe, <u>P. Virtue</u>, S. Robinson, A. C. Hole, C. Proctor. Diagnostic Imaging Simplified User Interface Methods and Apparatus. US Patent 9,514,275, issued 2016.

Z. Lin, G. Avinash, and <u>P. Virtue</u>. Method for Navigating, Segmenting, and Extracting a 3-D Image. US Patent 8,907,944, issued 2014.

<u>P. Virtue</u>, G. Avinash, and A. Budde. Systems and Methods for Segmenting Three Dimensional Image Volumes. US Patent 8,754,888, issued 2014.

<u>P. Virtue</u>, G. Avinash, and Z. Lin. Apparatus and Method for Isolating a Region in an Image. US Patent 8,588,486, issued 2013.

Z. Lin, G. Avinash, and <u>P. Virtue</u>. Method for Navigating, Segmenting, and Extracting a 3-D Image. US Patent 8,477,153, issued 2013.

P. Virtue. 3D Graphical Prescription of a Medical Imaging Volume. US Patent 8,199,168, issued 2012.

G. Avinash and <u>P. Virtue</u>. Semi-Automated Registration of Data Based on a Hierarchical Mesh. US Patent 8,068,652, issued 2011.

<u>P. Virtue</u>, K. Littlejohn, K. Phillips, D. Littlejohn, D. Miesbauer, and A. Van Nuffel. Real-time Volume Fusion in Diagnostic Imaging. US Patent 7,991,450, issued 2011.

INVITED TALKS

Plenary Talk, Musculoskeletal Image Analysis and Measurement Validation, 33rd Annual Great Lakes Biomedical Conference, Milwaukee, Wisconsin, April 2010.

SELECT RESEARCH PROJECTS

Deep Learning for Magnetic Resonance Fingerprinting

2016 - 2019

UC Berkeley and International Computer Science Institute

- Magnetic resonance fingerprinting is a revolutionary means to produce quantitative medical images from a single pseudorandom magnetic resonance imaging (MRI) scan
- Researching deep learning techniques to make MR fingerprinting more accurate, efficient, and versatile

Complex-valued Neural Networks

UC Berkeley and International Computer Science Institute

- Enabling deep learning for applications with complex-valued data by researching novel complex-valued components for neural network architectures
- Extended deep learning software toolkits by implementing complex-valued neural network components and optimization calculus on CPU and GPU

Reconstruction Methods for Fast MRI

2010 - 2019

2015 - 2019

UC Berkeley, Stanford University, Technion - Israeli Institute of Technology, and GE Healthcare

- Developed reconstruction algorithms and analysis for compressed sensing and parallel imaging algorithms
- Enabled widespread research and development of advanced MRI reconstruction by creating an open source toolkit with efficient implementations of image reconstruction and optimization algorithms

MRI Cartilage Analysis

2007 - 2010

GE Healthcare and Hospital for Special Surgery

- Designed algorithms to analyze MRI images to characterize the health of a patient's cartilage
- Produced clinically viable orthopedic software application by decreasing processing time 75% and increasing accuracy 30% over previous image analysis method
- Validated orthopedic software measurements against animal models as part of research collaboration with Hospital for Special Surgery in New York City

HONORS & AWARDS

EECS Outstanding Graduate Student Instructor Award, University of California, Berkeley	2015
UC Berkeley Outstanding Graduate Student Instructor Award, University of California, Berkeley	2014
National Defense Science and Engineering Graduate (NDSEG) Fellowship	2010

SERVICE

To the Professional Community

Co-Chair, Educational Advances in Artificial Intelligence	2023
Authors Chair, Consortium for Computer Science in Colleges, Southwest Region Conference	2018
Participant, CS Education Summit: Addressing the Challenges of Increasing Interest in Computing at the	
Undergraduate Level through Institutional Transformation, Pittsburgh, Pennsylvania	2017

To the University

Undergraduate AI Major Advisor	2021 - Present
SCS Teaching Continuity Committee	2020 - Present
Artificial Intelligence Curriculum Review Committee	2018 - Present
Teaching & Learning Summit Advisory Board	2020
Faculty Senator	2019 - 2021
Workshop Lead, UC Berkeley Conference for New Student Instructors	2016 - 2018
Mentor, Machine Learning at Berkeley Student Organization	2016 - 2017
Peer Counselor, UC Berkeley EECS Peers Program	2014 - 2016
Student Reviewer, UC Berkeley EECS Department Graduate Admissions Committee	2013 - 2014

To the Community

Co-Curriculum Developer and Instructor, CMU AI Short Course for High School Teachers	2021 - Present
Curriculum Consultant, CMU CS Academy	2020 - Present
Curriculum Developer and Instructor, CMU AI Scholars (previously AI4ALL) Summer Camp	2019 - Present
Co-Curriculum Developer, AI Programs, Boys & Girls Club	2019 - Present
Curriculum Consultant, CMU TechNights	2019 - Present