Logic Optimization Heuristic Based

Virendra Singh

Professor

Department of Electrical Engineering & Dept. of Computer Science & Engineering Indian Institute of Technology Bombay http://www.ee.iitb.ac.in/~viren/

E-mail: viren@{ee, cse}.iitb.ac.in

EE-677: Foundations of VLSI CAD

Lecture 29 on 18 Oct 2021

CADSL

Heuristic logic minimization

- Provide irredundant covers with "reasonably small" sizes
- Fast and applicable to many functions
 - Much faster than exact minimization → ØM +
- Avoid bottlenecks of exact minimization
 - Prime generation and storage
 - Covering
- Motivation
 - Use as internal engine within multi-level synthesis tools

Heuristic minimization -- principles

- Start from initial cover
 - Provided by designer or extracted from hardware language model
- Modify cover under consideration
 - Make it prime and irredundant
 - Perturb cover and re-iterate until a small irredundant cover is obtained
- Typically the size of the cover decreases
 - Operations on limited-size covers are fast

Heuristic minimization - operators

- Expand
 - ➤ Make implicants prime
 - Removed covered implicants
- Reduce \checkmark
 - Reduce size of each implicant while preserving cover
- Reshape ✓
 - Modify implicant pairs: enlarge one and reduce the other
- Irredundant
 - Make cover irredundant

Rough comparison of minimizers

- MINI
 - Iterate EXPAND, REDUCE, RESHAPE

- Espresso
 - Iterate EXPAND, IRREDUNDANT, REDUCE
- Espresso guarantees an irredundant cover
 - Because of the irredundant operator
- MINI may return irredundant covers, but can guarantee only minimality w.r.t. single implicant containment

Expand: Naïve implementation

- For each implicant
 - For each care literal
 - Raise it to don't care if possible
 - Remove all implicants covered by expanded implicant
- Issues
 - Validity check of expansion
 - Order of expansion

Validity check

- Espresso, MINI
 - Check intersection of expanded implicant with
 OFF-set
 - Requires complementation
- Presto
 - Check inclusion of expanded implicant in the union of the ON-set and DC-set
 - Reducible to recursive tautology check

Ordering heuristics ¹

- Expand the cubes that are unlikely to be covered by other cubes
- Selection:
 - Compute vector of column sums
 - Weight: inner product of cube and vector
 - Sort implicants in ascending order of weight
- Rationale:
 - Low weight correlates to having few 1s in densely populated columns

Example

• f = a'b'c' + ab'c' + a'bc' + a'b'c

$$f = a'b'c' + ab'c' + a'bc' + a'b'c$$

$$DC-set = abc'_{a} \qquad b \qquad c$$

$$\frac{\bar{a}b\bar{c}}{\bar{a}b\bar{c}} = \frac{10}{10} \quad \frac{10}{10} \quad \frac{10}{10} \quad \frac{10}{10} \quad \frac{10}{\bar{a}b\bar{c}} = \frac{10}{10} \quad \frac{10}{10} \quad \frac{10}{10} \quad \frac{10}{10} \quad \frac{10}{\bar{a}b\bar{c}} = \frac{10}{10} \quad \frac{10}{10} \quad \frac{10}{10} = \frac{10}{10} \quad \frac{10}{10} = \frac{10}{10} \quad \frac{10}{10} = \frac{10}{1$$

• Ordering:

- Vector: $[3\ 1\ 3\ 1\ 3\ 1]^T$

– Weights: (9, 7, 7, 7)

Select second implicant.

Example (2)

α 10 10 10

β 01 10 10

y 10 01 10

δ 10 10 01

Example (3)

• OFF-set:

Update cover to:

CAD@IITB

Example (4)

- Expand 10 10 01:
 - 11 10 01 invalid.
 - − 10 11 01 invalid.
 - 10 10 11 valid.
- Expand cover:

	-	V01°	01	10	01	
	•		-00	11	01	χ
c			10			

CADSL

Example (5)

Fredundant

Expand -> [RREDUNDAND

Pursturdo

Expand heuristics in ESPRESSO

- Special heuristic to choose the order of literals
- Rationale:
 - Raise literals to that expanded implicant
 - Covers a maximal set of cubes
 - Overlaps with a maximal set of cubes
 - The implicant is as large as possible
- Intuitive argument
 - Pair implicant to be expanded with other implicants, to check the fruitful directions for expansion

Expand in Espresso

- Compare implicant with OFF-set.
 - Determine possible and impossible directions of expansion
- Detection of feasibly covered implicants
 - \triangleright If there is an implicant β whose supercube with α is feasible, expand α to that supercube and remove β
- Raise those literals of α to overlap a maximum number of implicants
 - ➤ It is likely that the uncovered part of those implicant is covered by some other expanded cube
- Find the largest prime implicant
 - Formulate a covering problem and solve it heuristically

Reduce

Sort implicants

- ab≠ → 25 C (reduction)
- Heuristics: sort by descending weight
- Opposite to the heuristic sorting for expand
- Maximal reduction can be determine exactly
- Theorem:
 - Let α be in F and Q = F U D { α } Then, the maximally reduced cube is: $\dot{\alpha} = \alpha \cap \text{supercube } (Q'_{\alpha})$

Example

. 50

• Expand cover: 🗷 💆

- Cannot be reduced.
- Select second implicant:
 - Reduced to 10 10 01
- Reduced cover:

Irredundant cover

α 10 10 11

B 11 10 01

y 01 11 01

δ 01 01 11

ε 11 01 10

Irredundant cover

- Relatively essential set E^r
 - Implicants covering some minterms of the function not covered by other implicants
 - Important remark: we do not know all the primes!
- Totally redundant set R^t
 - Implicants covered by the relatively essentials
- Partially redundant set Rp
 - Remaining implicants

Irredundant cover

- Find a subset of R^p that, together with E^r covers the function
- Modification of the tautology algorithm
 - Each cube in R^p is covered by other cubes
 - Find mutual covering relations
- Reduces to a covering problem
 - Apply a heuristic algorithm.
 - Note that even by applying an exact algorithm, a minimum solution may not be found, because we do not have all primes.

Example

α	10	10	11
β	11	10	01
γ	01	11	01
δ	01	01	11
3	11	01	10

Development of

2- level.

haip

haip

hordindant >

ledua.

•
$$R^t = \emptyset$$

•
$$R^p = \{ \beta, \gamma, \delta \}$$

Example (2)

- Covering relations:
 - β is covered by $\{\alpha, \gamma\}$.
 - γ is covered by $\{\beta, \delta\}$.
 - δ is covered by $\{\gamma, \epsilon\}$.
- Minimum cover: YU E^r

ESPRESSO algorithm in short

- Compute the complement
- Extract essentials
- Iterate
 - Expand, irredundant and reduce
- Cost functions:
 - Cover cardinality ϕ_1
 - Weighted sum of cube and literal count ϕ_2

ESPRESSO algorithm in detail

```
espresso(F,D) {
     R = complement(F \cup D);
     F = expand(F,R);
     F = irredundant(F,D);
     E = essentials(F,D);
     F = F - E; D = D \cup E;
     repeat {
           \phi_2 = cost(F);
           repeat {
                \phi_1 = |F|;
                F = reduce(F,D);
                F = expand(F,R);
                F = irredundant(F,D);
          } until (|F| \ge \phi_1);
           F = last\_gasp(F,D,R);
     } until ( | F | \geq \phi_1);
     F = F \cup E; D = D - E;
     F = make \ sparse(F,D,R);
```


Heuristic two-level minimization Summary

- Heuristic minimization is iterative
- Few operators are applied to covers
- Underlying mechanism
 - Cube operation
 - Unate recursive mechanism
- Efficient algorithms

Thank You

