Internship Program Report

By

CHINIMILLI GANESH LAKSHMI NARASIMHA 18481A0218

In association with

ROLL NO: 18481A0218

Contents

Introduction	3
Program organiser	3
Courtesy	3
Program details	3
Internship program	3
3 rd May2021: Introduction to EPC Industry	4
4 th May2021: Engineering documentation for EPC projects	5
5 th May2021: Engineering documentation for commands and formulae	6
7 th May2021: Engineering documentation for Electrical system design	7
10 th May2021: Engineering documentation for Typical diagrams	8
11th May2021: Classification of Transformers and Generators	9
12th May2021: Classification of Switchgare construction and power factor improvement	10
17th May2021: Detailing about UPS system and Busducts	11
18th May2021: Detailing about Motor Starters and Sizing of motors.	12
19th May2021: Discribing about Earthing system and Lighting Protection	13
20th May2021: Lighting or illumination systems and calculations.	14
21th May2021: Lighting or illumination systems using DIALUX software	15
24 th May2021: Cabling and their calculations and types	
25 th May2021: Cabling calculations and Cable gland selection	17
28 th May2021: Load calculations and Transformer sizing calculations	18
29th May2021: DG set calculations	19
2nd june2021: Caluculations of Earthing and Lighting protection	20
5 th june 2021: Cable sizing and cable tray sizing calculations	21
Conclusion	22
Foodback:	22

Introduction

Internship program arranged by GUDLAVALLERU ENGINEERING COLLEGE in association with Smart Internz, Hyderabad for the benefit of 3rd year EEE batch 2018-2022 on Electrical Detailed design Engineering for Oil& Gas, Power and Utility industrial sectors.

Program organiser

Smart Bridge, Hyderabad.

Pioneer in organising Internships, knowledge workshops, debates, hackathons, Technical sessions and Industrial Automation projects.

Courtesy

Dr. Sri B. Dasu – HOD – EEE, GEC

Dr.G.Srinivasa Rao-Coordinator

Mr. Ramesh V - Mentor

Mr. Vinay Kumar - System Support

Mr. Harikanth – Softwar/Technical Support

Program details

Smart Internz program schedule: 4 weeks starting from 3rd May 2021

Daily schedule time shall be 4PM to 6.30PM

Mode of Classes: Online through ZOOM

Presenter: Mr Ramesh V

Internship program

We have been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

3rd May2021: Introduction to EPC Industry

1	EPC Industry &	EPC Industry	Introduction
	Electrical Detailed	Engineering	Types of Engineering
	Engineering	Procurement	Engineering role in procurement
		Construction	Engineering role during construction

Topic details:

1A. INTRODUCTION TO EPC INDUSTRY

- ➤ EPC Engineering, procurement & construction
- ➤ EPC companies Engineering, Procurement & Construction (TECHNIP, TOYO, L&T, JACOBS, JGC, PUNJ LLOYD, TCE)
- > Industry: Oil & gas, Power, Fertilizer, Chemical, Textile, Food & beverage, Utility sectors.
- Projects: Green Field & Brown Field.
- Engineering Basic engineering, FEED (Front End Engineering & Design), Detailed engineering. Detailed Engineering
 Engineering (for Procurement) & detailed design (for Construction)

Engineering phases, Engineering deliverables (drawings & documents) list, Design Engineer role at various phases of project.

4th May2021: Engineering documentation for EPC projects

2	Electrical Design	Engineering Deliverables list	Sequence of deliverables
	Documentation	Detailed Engineering work flow	Detailed engineering process
		Document transmission	Document submission and info exchange
		Deliverables types	Different types of deliverables

Topic details:

SEQUENCE OF DELIVERABLES

On this day I have learned the Deliverable list of details and work flow in electrical design. And after sequence of deliverables, Detailed engineering process, Document submission and exchange process, and at last I learned about different types of deliverables.

5th May2021: Engineering documentation for commands and formulae

3 Electrical Design Ms word commands
Documentation Ms excel formulae
Auto cad basic commands

Topic details:

MS Word, Excel and Auto cad COMMANDS.

Word Shortcut Keys

Command Name	Keys	
All Caps	Ctrl+Shift+A	
Apply List Bullet	Ctrl+Shift+L	
Auto Format	Alt+Ctrl+K	
Auto Text	F3	
Bold	Ctrl+B	
Cancel	ESC	
Center Para	Ctrl+E	
Change Case	Shift+F3	
Clear	Del	
Close or Exit	Alt+F4	
Copy	Ctrl+C	
Create Auto Text	Alt+F3	
Cut	Ctrl+X	
Double Underline	Ctrl+Shift+D	
Find	Ctrl+F	
Help	F1	
Hyperlink	Ctrl+K	
Indent	Ctrl+M	
Italic	Ctrl+I	
Justify Para	Ctrl+J	
Merge Field	Alt+Shift+F	
New Document	Ctrl+N	
Open	Ctrl+O	
Outline	Alt+Ctrl+O	
Overtype	Insert	
Page	Alt+Ctrl+P	
Page Break	Ctrl+Return	
Paste	Ctrl+V	
Paste Format	Ctrl+Shift+V	
Print	Ctrl+P	
Print Preview	Ctrl+F2	
Redo	Alt+Shift+Backspace	
Redo or Repeat	Ctrl+Y	
Save	Ctrl+S	
Select All	Ctrl+A	
Small Caps	Ctrl+Shift+K	
Style	Ctrl+Shift+S	
Subscript	Ctrl+=	
Superscript	Ctrl+Shift+=	
Task Pane	Ctrl+F1	
Time Field	Alt+Shift+T	

Underline	Ctrl+U	
Undo	Ctrl+Z	
Update Fields	F9	
Word Count List	Ctrl+Shift+G	

Function Keys	
F1	Get Help or visit Microsoft Office Online.
F2	Move text or graphics.
F3	Insert an AutoText (AutoText: A storage location for text or graphics you want to use again, such as a standard contract clause or a long distribution list. Each selection of text or graphics is recorded as an AutoText entry and is assigned a unique name.) entry (after Microsoft Word displays the entry).
F4	Repeat the last action.
F5	Choose the Go To command (Edit menu).
F6	Go to the next pane or frame.
F7	Choose the Spelling command (Tools menu).
F8	Extend a selection.
F9	Update selected fields.
F10	Activate the menu bar.
F11	Go to the next field.
F12	Choose the Save As command (File menu).

Here we need to check the Page setup, spelling, Grammer, Punctuation, Paragraphs, Overall prasentations, Tables & pictures to be numbered and titled at last we check the Document name & date of versions.

7th May2021: Engineering documentation for Electrical system design

4 Electrical system Overall plant description design for a small small project Sequence of approach Approach to detailed design

Topic details: Overall plant description, approach to detailed design.

Here we observed that how to do a project and Sequence of approach, Approach to detail design and Overall plant distribution system.

10th May2021: Engineering documentation for Typical diagrams

5 Electrical system
design for typical Load lists shedule Power flow diagram
diagrams Single line diagram Typical schematic diagram

Topic details: Typical diagrams and Load calculations.

		EQUIPMENT	, i		la fi	E P	Absorbed load	Equipment	Load factor		load	Power factor at	kW =		Consume				KVAz = 1		1	
9. S	Equipment	Description	A A	le a	esse lent	tartii	KORO A	ranng	=A/B or H		tor C Id	oad factor		Continuous		Intermitte	nt and spares		Stan	id-by	Remarks	
٠,	No.		Aldding	>	ESS N	Res	KW	kW	In decima		cimats	Cos q	90. KW	8VAI	No.	- XW	KVAr	No.	kW	NVAr		
	PROCESS LOADS			_	++-	\vdash		-		-												
1	PD-3431	Portable MEG Injection Pump Package	LEWA	_	-	H	27.00	37.00	0.73	0.0	01	0.83		_	1	29.67	19.94	\vdash			Portable Skid (Please refer Note-d)	
2	34-PMB401A	Liquid Return Pump Motor	LEWA		x		25.45	31.00	0.82			0.81		_	1		19.81	\Box			Totaldo ona (Fieldo Foto Holo dy	
3	34-PM8401B	Liquid Return Pump Motor	LEWA		X		25.45	31.00			.93	0.81						1	27.37	19.81		
4	34-PM8402A	Booster Pump Motor (LRP Package)	LEWA	-	X	ш	1.40	2.20	0.64		.78	0.84			1	1.79	1.16					
5	34-PM8402B 34-PM7902A	Booster Pump Motor (LRP Package) Corrosion Inhibitor Injection Pump Motor	LEWA		X	Н	1.40	2.20	0.64		.78	0.84	1 7.1	7 5.94	-			1	1.79	1.16		
7	34-PM7902A 34-PM7902B	Corrosion Inhibitor Injection Pump Motor	LEWA		1 A	\vdash	6.45	11.00	0.59		90	0.77	7.1	0.84				1	7 17	5.94		
8	34-PM7903A	Batch Corrosion Inhibitor Injection Pump Motor	RAM		×	\Box	133.50	160.00	0.83	0.5	.96	0.80						1	139.06	104.30		
9	34-PM7903B	Batch Corrosion Inhibitor Injection Pump Motor	RAM		X		133.50	160.00			.96	0.80						1	139.06	104.30		
10	34-PM7904A	KHI Inhibitor Injection Pump Motor	LEWA		X	Н	6.45	11.00	0.59			0.77	1 7.1	7 5.94							VSD for speed control	
11	34-PM7904B 34-PM7905A	KHI Inhibitor Injection Pump Motor Scale Inhibitor Injection Pump Motor	LEWA		×	-	6.45	11.00	0.59	0.0		0.77	1 3.5	3 2.56	_			1	7.17	5.94	VSD for speed control Future	
13	34-PM7905B	Scale Inhibitor Injection Pump Motor	FUTURE		ı x	\vdash	3.00	4.00	0.75		.85	0.81	1 0.0	2.00				1	3.53	2.56	Future	
14	34-KM9602A	Nitrogen Compressor Motor	GENERO	NC	X		30.00	37.50	0.80		.90	0.80	1 33.3									
15	34-KM9602B	Nitrogen Compressor Motor	GENERO		X		30.00	37.50	0.80	0.5			1 33.3	3 25.00	1							
16 17	34-KM9602C 34-FM9602A	Nitrogen Compressor Motor	GENERO		X	\vdash	30.00	37.50	0.80		.90	0.80		_	1	1.47	1.11	1	33.33	25.00		
18	34-EM9602B	Aftercooler for Nitrogen Compressor Aftercooler for Nitrogen Compressor	GENERO		- A	\vdash	1.15	2.50	0.46	0.		0.80		_	1		1.11	\vdash				
19	34-EM9602C	Aftercooler for Nitrogen Compressor	GENERO		X	\Box	1.15	2.50	0.46			0.80		_	-	11-41		1	1.44	1.08		
20	34-H9602	Nitrogen Heater					6.20	1.00	6.20	0.5		1.00										
21	34-PM9701A 34-PM9701B	Hydraulic Fluid Pump - Wellhead HPU - Very H	gh Pressure FRAME:		X	П	0.19	0.55	0.35		.80 .80	0.70			1	0.24	0.24					
22	34-PM9701B 34-PM9702A	Hydraulic Fluid Pump - Welhead HPU - Very H Hydraulic Fluid Pump - Welhead HPU - Mediur	gh Pressure FRAME:		X		5.80	7.50	0.35		.80	0.70		_		0.24 7.25	4.30	\vdash				
24	34-PM9702A 34-PM9702B	Hydraulic Fluid Pump - Welhead HPU - Mediur	High Pressure FRAME:		X X	\forall	5.80	7.50	0.77	0.		0.86			1	7.25	4.30	\vdash				
25	34-A9704A	Hydraulic Fluid Pump -IOPPS Valves HPU	LEDEE	N	x	Ħ	5.42	5.50	0.99	0.	.80	0.86			1	6.78	4.02					
16	34-A9704B	Hydraulic Fluid Pump -IOPPS Valves HPU	LEDEE		X	П	5.42	5.50	0.99		.80	0.86			1		4.02					
27 28	34-PM9705A 34-PM9705B	Hydraulic Fluid Pump - ESDV's HPU	LEDEE		X	H	5.42 5.42	5.50	0.99		.80	0.86			1		4.02	\Box				
28 29	34-PM9705B AC-3435	Hydraulic Fluid Pump - ESDV's HPU Crane motor	LEDEE		X	\vdash	112.00	140.00	0.99	0.	.95	0.96		_		6.78		\vdash				
30	34-XZM8303	Lifeboat Recovery Starter Panel	SCHAT HAR		- x		8.74	9.39	0.93			0.82		_	+	117.09	37.10	1	9.60	6.70		
31	CP34302	Flare Knock Out Drum Heater Control Panel	CHROMAL	.OX	×		35.00	35.00	1.00		.90	0.90			1	38.89	18.83					
	HVAC LOADS				П	П						0										
32	34-YH4201ACCU01	Air Cooled Condensing Unit - 01	CCTC		x	т	37.25	42,90	0.87	0.	.82	0.80	1 45.4	3 34.07								
33	34-YH4201ACCU02	Air Cooled Condensing Unit - 02	CCTC		х	П	37.25	60.00	0.62	0.		0.80						1	45.43	34.07		
34	34-YH4201AHU01	Air Handling Unit - 01	CCTC		X		8.85	10,00					1 11.0	6 8.30								
35 36	34-YH4201AHU02 34-YH4201FF01	Air Handling Unit - 02 Fresh Air Fan - 01	CCTC	-	X	-	8.85	10.00	1.00		.80	0.80	1 8.8	6.67			_	1	11.06	8.30		
37	34-YH4201FF02	Fresh Air Fan - 01	CCTC	_	×	-	8.00	8.00	1.00		.90	0.80	1 8.8	9 0.07			_	1	8.89	6.67		
38	34-YH4201EF01	Exhaust Fan - Tollet	CCTC		x	\vdash	1.00	1.00	1.00		.90	0.80			1	1.11	0.83	<u> </u>	0.00	0.01		
39	34-YH4201EDH01	Duct heater - 01	CCTC		х		9.78	9.78	1.00		.00	1.00			1		0.00					
40	34-YH4201EDH02	Duct heater - 02	CCTC		Х		4.69	4.69	1.00		.00	1.00			1	4.69	0.00					
41	34-YH4201EDH03 34-YH4201EDH04	Duct heater - 03 Duct heater - 04	CCTC		X		0.90 4.98	0.90 4.98	1.00		.00	1.00		_		0.90 4.98	0.00					
92	ELECTRICAL LOADS	Duct riedior - 04	CCIC	_	×	-	4.90	4.90	1.00	12	.00	1.00		_	-	4.90	0.00					
43	AC-3431	Power Distribution Board	MASSEEI	DA .	×	Н	41.00	51.50	0.00	0.5	00	0.80	1 41.8	4 31.38				\vdash			No. of the second secon	
43	UPS-3441/3442/3443	UPS- Main/Bypass	GUTOR		×		24.00		1.00				1 29.2			_					Inclusive of MOV, Choke valve, Control valve and heat tracing loan	
45	BC-3442	Switchgear 24 V DC UPS	SAFT	`	x	$\overline{}$	1,20	1.20	1.00		.80	0.80	1 1.5									
46	LTR-3431	Lighting Transformer for LP-3431	SCHNEID		x		27.00	27.00	1.00	0.9	.98		1 27.5								Inclusive of lighting load, convenience outlets and small power loa	
47	ELTR-3431	Lighting Transformer for ELP-3431	SCHNEID		х	П	27.00	27.00					1 27.5	5 13.34							Inclusive of lighting load, convenience outlets and small power loa	
48 49	WD-3431A	Welding Socket Outlet 1 - Upper Deck	STAHL	-	X	Н	33.00	33.00	1.00	0.9		0.80						1	33.67	25.26		
49 50	WD-3431B WD-3432A	Welding Socket Outlet 2 - Upper Deck Welding Socket Outlet 1 - Lower Deck	STAHL STAHL	-	1 X		33.00	33.00	1.00		.98	0.80						1	33.67	25.26 25.26		
51	WD-3432B	Welding Socket Outlet 2 - Lower Deck	STAHL		X X		33.00	33.00	1.00		.98	0.80						1	33.67	25.26		
52	WD-3433A	Welding Socket Outlet 1 - Mezz Deck	STAHL		X		33.00	33.00	1.00		.98	0.80						1	33.67	25.26		
53	WD-3433B	Welding Socket Outlet 2 - Mezz Deck	STAHL		×		33.00	33.00				0.80						1	33.67	25.26		
54	WD-3434	Welding Socket Outlet - Cellar Deck	STAHL	-	X	₩	33.00	33.00	1.00	0.9	.98	0.80		_	-			1	33.67	25.26		
_	May, of normal running plant load	: 353 kW, 232	KVAr.	-\$54e-0	423	-	(VA	¥ *	100	_								Н			Power factor without compensation [Cos φ] 0.836	
	Max. of normal running plant load (Est. x %E + y %F)							у •	30		TOTA	4	278	195		252	125		671	503	Power factor with compensation [Cos ϕ_1]	
	Peak load: (Est. x %E + y %F + z%G)	420 kW, 282	kVAr, $v'(kW^2 + k$	EF24r-7)	506	5 k	κVA	Z:	10	AP:	V.4= √(\$.H*\	+A554r9		339		:	282		83	38	Reqd capacitor rat: [=kW(ten \varphi - ten \varphi,)] KVA	
15 -	(ESC X 76E + Y 76F + Z76G)	b) Absorbed loads:		_	_	c) (Consume	d loads:	_	_				G -	Stand	- by": loa	ds required	in				
n)	Load classification/restarting:	- for pumps, shaft is	and on duty point.			-/-	E - "O	ontinuous	"; all loads	s that m	ney						y, such as		ater			
	For definitions of "Vital", "Essenti		n, computers, communication, & air	ir			co	ntinuously	be requi	ired for	normal	operation			pumps	or those	of not norm	nally				
	Non - Essential*, services and ap		red load during full operation of pla	ant.					cluding lig								illy driven u				QATARGAS 3&4 OFFSHORE FACILITIES PROJECT	
	of "Restarting", see DEP 33.64.1											equired fo					by for non				WELLHEAD PLATFORM 7	
	Electrical engineering guidelines.	- for workshops, the operation.	average total load in normal full						pumping spares of			ing, etc, ar	ď		running	steam -	driven one: ed pumps)	s (e.g.	cnarge			
ď	The Panel shall feed Injection Pu						aı	ewcurcal	அளவ 01	- canc(l)	roany dri	well units.			Amps.	SCHOT 10	ou pumps)				1	
		d as standby load during normal running condition	based on operating philosophy																			
		, and an ing contain	J. January P. Loudy 19.																			
																					MCDEA.	
	01	24-Jun-07	AK		_							PPROVED										
	00	22-Aug-07	PJ							-	APPROV	/ED FOR 0	CONSTRU	CTION WIT	TH HOL	.D						
	00 B	22-Aug-07 18-Jul-07	PJ PJ								APPROV	/ED FOR O	CONSTRU	CTION WIT	TH HOL	.D					E SOL	
	00	22-Aug-07	PJ							,	APPROV IS	ED FOR O	CONSTRU R COMPA UED FOR	CTION WIT	TH HOL	.D					The state of the s	

We conclude here how to do load calculations and Typical diagrams and inernal structure and also about the power flow diagram.

11th May2021: Classification of Transformers and Generators

6 Classification of Transformers and Generators

Different types of Transformers Different types of Generators

Topic Details: Classification of Transformers and Generators.

1 Ph. Pad mounted 3 Ph Pole mounted Commercial/ 3 Ph Oil filled (ONAN) Distribution Residential lighting Residential/ street lighting type for industrial & commercial.

415V Diesel generator sets for standby / 240V 1 ph diseal generator set for lighting and & small power only Emergency power supply.

Transformer shall include a primary disconnect on the incoming power source. The disconnect means shall be either a breaker or a load break primary switch that is fused. Transformers are sized to carry the peak running load of all busses connected to them. In addition, feeders to and from power transformers shall be rated to carry full current at the maximum rating.

The packaged combination of a diesel engine, an alternator and various ancillary devices such as base, canopy, sound attenuation, control systems, circuit breakers, jacket water heaters, starting systems etc., is referred to as a Diesel Generating Set or a DG Set in short.

12th May2021: Classification of Switchgare construction and power factor improvement

7 Classification of Switchgare construction and power factor improvement

Different types of Switchgare assembles

Power factor improvement

Topic details: Classifiaction of Switchgare contruction and Power Factor Improvement.

Switchgear includes switching & protecting devices like fuses, switches, CTs, VTs, relays, circuit breakers, etc. This device allows operating devices like electrical equipment, generators, distributors, transmission lines, etc.

Power factor defined as the ratio of real power to volt-amperes and is the cosine of the phase angle between the voltage and current in an AC circuit.

17th May2021: Detailing about UPS system and Busducts.

8	Detailing about		
	UPS system and	Uninterruptible power supply	Busduts of the system
	Busducts	system	

Topic details: Power distribution of UPS system and Busducts.

UPS systems are designed to provide continuous power to a load, even with an interruption or loss of utility supply power. UPS generally involves a balance of cost Vs need.

Busducts are classified into various types depending on its application viz phase separated Busducts, segregated phase busducts, non-segregated phase busducts.

18th May 2021: Detailing about Motor Starters and Sizing of motors.

9 Detailing about Motor starters and drives Sizing and selection of motors Motor Starters and Sizing of motors

Topic details: Detailing about Motor Starter and Sizing of motors and their selection.

The principal function of a motor starter is to start and stop the respective motor connected with specially designed electromechanical switches which are similar in some ways to relays. The main difference between a relay and a starter is that a starter has overload protection for the motor that is missing in a relay.

Different types of motor starters are as follows:

- Direct-On-Line Starter
- Rotor Resistance Starter
- Stator Resistance Starter
- Auto Transformer Starter
- Star Delta Starter

- Starting method soft starter, Auto transformer, Star/Delta
- Speed variation Constant speed, variable speed for VFD
 - Frame Size 56 to 280
- Insulation class & Temp rise A, E, B, F & H
- Protection Protection based on voltage & KW rating
- Cable entry, size & termination Cable sizing based on staring/running voltage drop and short circuit current Vibration monitoring based on KW rating.

19th May2021: Discribing about Earthing system and Lighting Protection.

10	Discribing about	Plant Earthing system	Lighting Protection materials
	Earthing system		
	and Lighting		
	Protection.		

Topic details: Discribing about Earthing system and Lighting Protection.

The purpose of earthing is to prevent damage to people and prevent or limit plant damage. Various earthing systems are provided with each earthing system is isolated from the other.

Lightning protection required for high rise structures and important buildings against lightning currents during thunder storms. Primarily Lightning protection system calculations are done based on soil resistivity, conductor material, coverage structure / Building to determine whether lightning protection is required or not.

20th May2021: Lighting or illumination systems and calculations.

Illumination Lighting or illumination systems systems and Calculations	Lighting calculations
--	-----------------------

Topic details: Lighting or Illumination systems and Calculations.

All outdoor lighting fittings shall be connected with armoured PVC cable of suitable no. of cores and size. Necessary type and no. of junction boxes shall be provided for branch connections. Indoor light fittings shall be connected with FRLS PVC wires laid in cable trunks or conduits.

Inputs required: Equipment and cable routing layouts, lighting calculations, Design basis for type of light fittings to be used, required lux levels

Lighting calculations software: Dialux, Chalmlite, Calculux, Relux, Luxicon, CG Lux

Applicable Standards: IS 6665: Code of practice for industrial lighting, IS 3646: Code of practice for interior illumination, IEC 60598: Luminaires, IEC 62493: Assessment of lighting equipment related to human exposure to electromagnetic field

Deliverables: Indoor Lighting layouts, socket outlet layouts, Street lighting and area lighting layouts. BOQ.

Types of light fittings: Industrial, flame proof type (EX d), increased safety type (Ex e).

21th May2021: Lighting or illumination systems using DIALUX software.

12 Lighting or Illumination using DIALUX software

Lighting or illumination systems

Operation of dialux software

Topic details: Lighting or Illumination Calculations using DIALUX software.

Here we are using this Dialux evo 5.9.2 software windows to construct the power plant and we can perform the operation from this software.

We have the indoor calculations and outdoor calculations too.

Indoor calculation

outdoor calculations

24th May2021: Cabling and their calculations and types.

13	Cabling and their
	types and
	claculations

Cabling calculations

Types of cabling materials

Topic details: Cabling and their types and claculations.

Electrical cables must be properly supported to relieve mechanical stresses on the conductors, and protected from harsh conditions such as abrasion which might degrade the insulation.

Cables generally laid in the cable trays above ground, direct buried underground and in metallic or PVC conduits. Derating factors may be applicable for each type of cable laying conditions.

Cable trays shall be generally loaded 60 to 70% leaving space for future use. Underground cabling shall be done in concrete cable trenches with cable trays in paved areas and directly buried with mandatory gap of 300mm between different systems of cables.

25th May2021: Cabling calculations and Cable gland selection.

14	Cabling		
	claculations and cable gland selection	Cabling calculations	Cable gland selection

Topic details: Cable sizing calculation and cable gland selection.

Inputs required: Load List, Design basis, Electrical equipment layout, cable schedule, vendor catalogues for cable tray.

Cable tray sizing shall be performed for each branch of cable tray routing up to the load point.

Results shall be checked with specified limits mentioned in design basis.

Cable gland:

Cable Gland Selection Table
Refer to illustration at the top of the page.

Cable Gland Size	(Alternat	Entry Threads "C" te Metric Thread hs Available)	Cable Bedding Diameter "A"	Overall Cable Diameter "B"	Armou	r Range	Across Flats "D"	Across Corners "D"	Protrusion
Size	Metric	Thread Length (Metric) "E"	Max	Max	Min	Max	Max	Max	Length "F"
20516	M20	10.0	8.7	13.2	0.8	1.25	24.0	26.4	35.2
205	M20	10.0	11.7	15.9	0.8	1.25	24.0	26.4	32.2
20	M20	10.0	14.0	20.9	0.8	1.25	30.5	33.6	30.6
25	M25	10.0	20.0	26.2	1.25	1.6	36.0	39.6	36.4
32	M32	10.0	26.3	33.9	1.6	2.0	46.0	50.6	32.6
40	M40	15.0	32.2	40.4	1.6	2.0	55.0	60.5	36.6
50\$	M50	15.0	38.2	46.7	2.0	2.5	60.0	66.0	39.6
50	M50	15.0	44.1	53.1	2.0	2.5	70.1	77.1	39.1
635	M63	15.0	50.0	59.4	2.0	2.5	75.0	82.5	52.0
63	M63	15.0	56.0	65.9	2.0	2.5	80.0	88.0	49.8
755	M75	15.0	62.0	72.1	2.0	2.5	90.0	99.0	63.7
75	M75	15.0	68.0	78.5	2.5	3.0	100.0	110.0	57.3
90	M90	24.0	80.0	90.4	3.15	4.0	114.3	125.7	66.6

28 th May2021: Load calculations and Transformer sizing calculations

15 Load calculations and TR Load calculations TR calculations calculations

Topic details:

List of electrical load calculations.

14-A 14-B 15 15 08 13	Equipment De Silica (filter feed pump Absorbers (filter and oil pump (fil) Absorbers (filter and oil pump (fil) Feed Pump (Sperator) MODER (VI)	cription	Breaker Rating	Breaker Type	Breaker No. of Poles	ELCB Rating mA	Absorbed Load [A]	Motor / Load Rating	Load Factor [A]/[B] [C]	Efficiency at Load Factor [C]	Power Factor at Load Factor [C]	Continue		Intermit	ttent	Stand-b	Ьу
14-A 14-B 15 15 08 13	Absorbesht/Neutral oil pump (W) Absorbesht/Neutral oil pump (S) Feed Pump (Seperator) MIXER (W)		Α			mA						500					
14-A 14-B 15 15 08 13	Absorbesht/Neutral oil pump (W) Absorbesht/Neutral oil pump (S) Feed Pump (Seperator) MIXER (W)		_ A			mA	kW.	L/W									
14-A 14-B 15 15 08 13	Absorbesht/Neutral oil pump (W) Absorbesht/Neutral oil pump (S) Feed Pump (Seperator) MIXER (W)								decimal	decimal	cos d	kW	kVAR	kW.	KVAR	kW	RVAF
14-A 14-B 15 15 08 13	Absorbesht/Neutral oil pump (W) Absorbesht/Neutral oil pump (S) Feed Pump (Seperator) MIXER (W)						12.47	15.00	0.83	0.85	0.73	14.67	13.74				
14 -B 15 15 08 13	Absorbesnt/Neutral oil pump (S) Feed Pump (Seperator) MIXER (W)						3.62	4.70	0.77		0.73	4.3	4.0				
05 05 08 13	Feed Pump (Seperator) MIXER (W)						3.11	3.70	0.84		0.73	4.3	71.01			3.7	3
05 08 13	MIXER (W)						12.58	15.00	0.84		0.73	14.8	13.9				
08 13							12.68	15.00	0.85		0.73	14.9	14.0				
13	MIXER(S)			·			12.68	15.00	0.85		0.73	14.0	17.0			14.9	14.
	Blower						5.45	7.50	0.73	0.85	0.73	6.4	6.0				
	TK 2313B (II)			· · · · · · · · · · · · · · · · · · ·			0.53	0.75	0.71		0.73			0.6	0.6		
	Screw conveyor (I)						1.23		0.82		0.73			145	1.35		•
244				t			0.91					107	100				
24B							0.91									11	1 1
												3.93	3.68	,			
														·	·		
							121							·			
							2 12										***************************************
	DOSE NO DOSE TORRESTOR DE			t			160.760	3,00						,	tt		
_			4								_		-	ř –	- 1		
um of norm <e+y%f)< td=""><td>al running plant load :</td><td>66.0 kW</td><td></td><td>61.8</td><td>KVAR</td><td></td><td>sqn</td><td>kW' +kVAR') =</td><td>90.4</td><td>kVA</td><td>TOTAL</td><td>65.40</td><td>61.23</td><td>2.07</td><td>1.94</td><td>19.65</td><td>18.3</td></e+y%f)<>	al running plant load :	66.0 kW		61.8	KVAR		sqn	kW' +kVAR') =	90.4	kVA	TOTAL	65.40	61.23	2.07	1.94	19.65	18.3
oad:		68.0 kW		63.7	EVAR		sgrt	kW*+kVAR*)=	93.1	kVA	kVA	89.55		2.8	4	26.91	1
4E + 9%F +	z%G)																_
nptions																	
factor, Eff	iciency and Power factor.																
	> 2U - <= 45 > 4E - 2 4E0		0.	91													
	>= 150		0.5	94		0.02											
	24A 24B 25 25 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	Citica exist on a grateor (V) Citica desid and agrateor (V) Citica desid and agrateor (S) Citica desident agrateor (S) Citica desident agrateor Citica desident agrateor M. Soap Addrotham Tarik Agrateor Soap Addrotham Tarik Agrateor and foormal running plant load (E + y/CF) coad cit + y/CF + ±/CG)	Carlo acid on agration (V)	Chris acid fam agration (W)	24A	Clinic section angitector (W)	26A	Ost Ost	24A	Ceric and tan againster (V)	Chris acid san agridator (V) 0.91 130 0.03 0.05	Chric acid san agridator M 0.51 130 0.65 0.75	Clinic acid san agripator (M) 0.91 130 0.83 0.85 0.75 107	Clinic acid tain againster (W)	Clinic and ten against relative (5)	Clinic acid tan againstant (b)	Clinic acid ten agridator (W) Clinic acid ten agridator (W

TR sizing calculations:

Calculation for Transformer Capacity

Example of calculation for Transformer Capacity Calculation for consumed load Consumed loads used for this example are as follows:

	kV	k∀ar	kVA	
a. Continuous load	65.4	61.2	89.57	(i)
b. Intermittent load / Diversity Factor	2.07	1.9	2.81	(ii)
 Stand-by load required as consumed load 	19.65	18.4	26.92	(iii)
Max. Consumed load = ((i) + 30% (ii) + 10% (iii)) =	66.0	61.8	90.42	
Future expansion load (20% capacity)	13.2	12.4	18.08	
Total Load =	79.2	74.2	108.50	

1.2 Calculation for 3.3kV / 0.433 kV transformer capacity

Max. Consumed load Spare capacity Required capacity Transformer rated capacity

During starting or reacceleration of max.capacity motor (3400 kW), while all the other loads running, the voltage regulation is as follows:

Result During starting of max. capacity motor, while all other loads are running, the voltage regulation at Transformer secondary terminals is appro: 6.90%

29th May2021: DG set calculations.

DG set calculations

Topic details:

Transformer and DG set calculations, types, sizing or selections

2nd june2021: Caluculations of Earthing and Lighting protection.

17 Calculation of
Earthing and
Lighting protection
calculations

Earthing calculations

Lighting protection calculation

Topic details:

Calculation of Earthing and Lighting protection calculations

	2		
Location	Bangalore		
Building	Srtuctural, Industrial		
Type of Building	Triangle Roofs (c)		
Building Length (L)	18		
Building breadth (W)	8		
Building Height (H)	6		
Risk Factor Calculation			
Collection Area (A _c)			
A _c		-	(3.14*H*H)+(2*H*W)
			209.04
Probability of Being Struck (P)			
P		-	Ac * Ng * 10-6
			0.000585312
Overall weighing factor			
a) Use of structure (A)		366	1.0
b) Type of construction (B)		366	0.8
c) Contents or consequential effects (C)		200	0.8
d) Degree of isolation (D)		=	1.0
e) Type of country (E)		=	0.3
Wo - Overall weighing factor		_	A * B * C * D * E
		=	0.192
Overall Risk Factor	Po	-	P * Wo
	Po	_	0.00011238
	Pa		10-5
As per clause no. 9.7 of BS-6651, suggest	ted acceptable risk factor (Po) ha	s been taken as 10 ⁻⁵
Since Po > Pa lightning protection require	d.		

Earthing calculations:

	2	
Maximum line-to-ground fault in kA for 1 sec	14	
Earthing material (Earth rod & earth strip)	GI	
Depth of earth flat burrial in meter	0.5	
Average depth / length of Earth rod in meters	4.5	
Soil resistivity Ω-meter	13	
Ambient temperature in deg C	55	
Plot dimensions (earth grid) L x B in meters	75	135
Number of earth rods in nos.	6	
Earth electrode sizing: Ac - Required conductor cross section in sq.mm		
$I_{lg} = A_{c}x \sqrt{\left[\frac{TCAPx10^{-4}}{t_{c}x\alpha_{r}x\rho_{r}}\right]}xl_{n}\left[\frac{K_{0} + T_{m}}{K_{0} + T_{a}}\right]$		
αr - Thermal co-efficient of resistivity, at 20 oC	0.0032	
pr - Resistivity of ground conductor at 20 oC	20.10	
Ta - Ambient Temperature is °C	55	
I _{I-g} - RMS fault current in kA = 50 KA	14	
tc - Short circuit current duration sec	1	
Thermal capacity factor, TCAP J/(cm3.oC)	3.93	
Tm - Maximum allowable temperature for copper conductor, in oC	419	
KO - Factor at oC	293	

5 th june 2021: Cable sizing and cable tray sizing calculations.

Cable sizing and cable tray sizing Cable sizing calculations Cable tray calculation calculations

Topic details: Cable sizing and cable tray sizing calculations for LV cables and MV/HV cables.

Description	Consume d Load KW	Load Ratin g KW	Voltag e (V)	No of ph	Full Load Curre nt (A)	Startin g Curren t	Load P.F. Runnin g	SIN 0 Runnin g	Motor P.F Staring	SIN 0 Starin g	Туре	No. of Runs	No. of Cores	Size (mm2)	Current Rating (A)	Derating factor k1	Derating factor k2	Derating factor k3	Derating factor k4	Overall Derating factor k	Derated Current (A)	Cable Length (M)	Cable Resistan ce (Ohms/k M)	Cable Reactance (Ohms/kM	Voltage drop (Runnin g) (V)	Voltage drop (Runnin g) (%)	Voltage drop (Startin g) (V)	drop (starting	Cable
Dia Steriotypa	2.0		415	3	21.7	130.12	0.8	0.6	0.8	0.5	2	1	4.0	10	66	0.98	0.9	1	1	0.882	58.2	95	2.3400	0.0852	6.86	165	40.99	9.88	DK
Nicoless/Verledai/pag/0]	3.62	,	415	3	6.3	37.77	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	95	9.4800	0.1007	7.92	191	47.45	11.43	DK
Nandona (Yestesta) pag (2)	3.11	1	415	3	5.4	32.45	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	60	9.4800	0.1007	4.30	104	25.75	6.20	DK
teritas jūgendas	250	6	415	3	21.9	131.26	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	85	3.9400	0.0902	10.33	249	61.78	14.89	DK
HIERINI	240	6	415	3	221	13231	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	75	3.9400	0.0902	9.18	221	54.95	13.24	DK
ния	24	6	415	3	221	13231	0.8	0.6	0.8	0.5	2	1	4.0	10	66	0.98	0.9	1	1	0.882	58.2	105	2.3400	0.0852	7.71	186	46.07	11.10	DK
Value .	5.6	7.	415	3	9.5	56.87	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	100	3.9400	0.0902	5.26	127	31.49	7.59	DK
ncassil	0.53		415	3	0.9	5.53	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	100	3.9400	0.0902	0.51	0.12	3.06	0.74	DK
ioremoje	123	,	415	3	21	12.83	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	75	3.9400	0.0902	0.89	0.21	5.33	128	DK
Christilla ajldo:M	1,91	,	415	3	1.6	9.50	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	110	9.4800	0.1007	2.30	0.56	13.81	3.33	DK
Christian Bulling	1,91	,	415	3	16	9.50	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	75	3.9400	0.0902	0.66	0.16	3.94	0.95	DK
Chinales Cananal adula	334	,	415	3	5.8	34.85	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	105	3.9400	0.0902	3.39	0.82	20.26	4.88	DK
lg all malacene lajida	121		415	3	21	1263	0.8	0.6	0.8	0.5	2	1	4.0	25	28	0.98	0.9	1	1	0.882	24.7	85	9.4800	0.1007	2.37	0.57	14.19	3.42	DK
igral malas municipleis	121	,	415	3	21	1263	0.8	0.6	0.8	0.5	2	1	4.0	25	28	0.98	0.9	1./	1	0.882	24.7	95	9.4800	0.1007	2.65	0.64	15.86	3.82	OK
Lag Minorkeel Task Myllular	2.12	1	415	3	3.7	22.12	0.8	0.6	0.8	0.5	2	1	4.0	25	28	0.98	0.9	1/	1	0.882	24.7	65	9,4800	0.1007	3.17	0.76	19.01	4.58	OK
								8 4		V		- 8					1	4											
				-	-				-		-				1						-					-			
			-		-			2 -		1								-			0 7		-	0	-	-			
1 2							8				- 40										0 3		3						
											- 4	- 10	100																

<u>Cable</u> Tray calculations:

Sr. No.	Cable Route (From-To)	Type & Cable Size	Size of Cable (mm2)	No. of Cable	Overall Diameter of each Cable (mm)	Sum of Cable OD (mm)	Self Weight of Cable (Kg/Mt)	Total Weight of Cable (Kg/Mt)	Remarks
1	LVMCC	4	10	1	18	18	3.95	0.9	
	PU2315- VFD	4	10	1	18	18	0.37	0.9	
3	PU2315- VFD	5	1.5	1	15	15	3.95	0.4	
4	LV MCC	4	2.5	1	16	16	0.37	0.5	
5	LV MCC	5	1.5	1	15	15	3.95	0.4	
6	LV MCC	4	2.5	1	16	16	0.37	0.5	
7	PU 2314 -B- VFD	4	2.5	1	16	16	0.9	0.5	
8	PU 2314 -B- VFD	5	1.5	1	15	15	0.9	0.4	
9	LVMCC	4	6	1	18	18	2.9	0.7	
10	PU2305- VFD	4	6	1	18	18	1.2	0.7	
11	PU2305- VFD	5	1.5	1	15	15	1.2	0.4	
	LVMCC	4	6	1	18	18	1.2	0.7	
13	LV MCC	5	1.5	1	15	15	1.45	0.4	
14	LV MCC	4	10	1	18	18	2	0.9	
15	LV MCC	5	1.5	1	15	15	2.4	0.4	
16	LV MCC	4	6	1	18	18	2.4	0.7	
17	BW2313- VFD	4	6	1	18	18	0.85	0.7	
18	BW2313- VFD	5	1.5	1	15	15	0.85	0.4	
	LV MCC	4	6	1	18	18	0.85	0.7	
	LV MCC	5	1.5	1	15	15	1	0.4	
21	LVMCC	4	6	1	18	18	0.85	0.7	
	Total			21		348	33.91	12.3	
alc	ulation					Result			
laxi	mum Cable Diameter:		18	mm		Selected Cab	le Tray width:	O.K	
ons	ider Spare Capacity of Cable Tra	ıy:	30%			Selected Cal	ole Tray Depth:	O.K	
ista	nce between each Cable:		0	mm		Selected Cab	le Tray Weight:	O.K	Including Spare Capacity
alc	ulated Width of Cable Tray:		452	mm			ole Tray Size:	O.K	Including Spare Capacity
	ulated Area of Cable Tray:		8143	Sq.mm			,		
	f Layer of Cables in Cable Tray:		2	_ 4		Required Cal	ole Trav Size:	300 x 50	mm
	cted No of Cable Tray:		ī	Nos.			of Cable Tray:	1	No
	cted Cable Tray Width:		300	mm			ole Tray Weight:	150.00	Kq/Meten/Tray
	cted Cable Tray Depth:		50	mm		Type of Cable		Ladder	
	cted Cable Tray Weight Capacity	:	150	Ko/Mete	er	. , , , , , , , , , , , , , , , , , , ,	,-		
	of Cable Tray:	-	Ladder		-	Cable Trav W	idth Area Reman	25%	
	Area of Cable Tray:		15000	Sq.mm			rea Remaning:	46%	

Conclusion:

We have been taught many aspects of engineering activities during the EPC stages for all electrical and related other disciplines also.

Feedback:

Smart Bridge

They conduct summer internships, work shops, debates, hackthons, technical sessions.

Method of conducting program

Online virtual program with presentation slides and explanation on the topic and practical usage of topic and with some examples.

Program highlights

It is for the detailed design of any industrial sectors.

Material

The material was good.

Benefits

It has been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

Assignment-1 ELECTRICAL LOAD CALCULATIONS LV MCC

0.	Equipment No.	Equipment Description	Breaker Rating	Breaker Type	Breaker No. of Poles	ELCB Rating	Absorbed Load	Motor / Load Rating	Load Factor [A] / [B]	Eff ciency at Load Factor [C]	Power Factor at Load Factor [C]	kW = [A] / [D] Continuo		Consumed I		kVAR = kW Stand-l		Remarks
			A			mA	[A] kW	kM [R]	[C] decimal	[D] decimal	cos φ	kW	kVAR	kW	kVAR	kW	kVAR	
\dashv			Α			IIIA	K V V	KVV	uecimai	uecimai	cos ψ	KVV	KVAN	N V V	KVAN	NVV	KVAN	
1 1	PU2315	Silica filter feed pump					12.47	15.00	0.83	0.85	0.73	14.67	13.74					
	PU 2314-A	Absorbesnt/Neutral oil pump (W)					3.62	4.70	0.77	0.85	0.73	4.3	4.0					
	PU 2314 -B	Absorbesnt/Neutral oil pump (S)					3.11	3.70	0.84	0.85	0.73					3.7	3.4	
	PU2305	Feed Pump (Seperator)					12.58		0.84		0.73	14.8	13.9					
	MX2305	MIXER (W)					12.68		0.85	0.85	0.73	14.9	14.0					
	MX 2308	MIXER (S)					12.68		0.85	0.85						14.9	14.0	
	BW2313	Blower					5.45	7.50	0.73		0.73	6.4	6.0					
3 1	Rotary valve	TK 2313B (I)					0.53	0.75	0.71	0.85	0.73			0.6				
	SC2314	Screw conveyor (I)					1.23		0.82	0.85	0.73	4.0-	4.00	1.45	1.35			
	AG 2324A	Citric acid tan agitator (W)					0.91	1.10	0.83		0.73	1.07	1.00					
1 /	AG 2324B	Citric acid tank agitator (S)					0.91	1.10	0.83		0.73	2.02	2.00			1.1	1.0	
	AG 2305	Citric oil rection vessol agitator					3.34		0.90			3.93	3.68					
	AG 2309 AG 2310	Lye oil reaction vessel agitator					1.21 1.21	1.50 1.50	0.81 0.81	0.85 0.85	0.73	1.42	1.33 1.33					
	AG 2310 AG 2314	Lye oil reaction vessel agitator Soap Adsorbant Tank Agitator					2.12	3.00	0.81		0.73 0.73	1.42 2.49	2.34					
3 /	AG 2314	Soap Ausorbant Tank Agitator					2.12	3.00	0.71	0.65	0.73	2.49	2.34					
-																		
	Maximum of norn (Est. x%E + y%F	nal running plant load : 66.0 kW		61.8	kVAR		sqrt (kW² +kVAR²) =	90.4	kVA	TOTAL	65.40	61.23	2.07	1.94	19.65	18.39	
	Peak Load : (Est_x%E + v%E	68.0 kW		63.7	kVAR		sqrt (kW² +kVAR²) =	93.1	kVA	kVA	89.59)	2.8	4	26.91		
	Peak Load : (Est. x%E + y%F			63.7	kVAR		sqrt (kW² +kVAR²) =	93.1	kVA	kVA	89.59)	2.8	4	26.91		
	Assumptions 1) Load factor, Et	fficiency and Power factor. Load Rating (kW) <= 20	Effici 0.8			Power ta												
		> 20 - <= 45	0.0			0.78												
		> 45 - < 150	2.0	93		0.82												
		>= 150	0.9	94		0.91												
:	2) Coincidence fa	actors x= 1.0, y= 0.3, and z=0.1 considered for contnious, intermittent and	standby load.															

Calculation for Transformer Capacity

1.0 Example of calculation for Transformer Capacity

1.1 Calculation for consumed load

Consumed loads used for this example are as follows:

	kW	kVar	kVA	
a. Continuous load	65.4	61.2	89.57	(i)
b. Intermittent load / Diversity Factor	2.07	1.9	2.81	(ii)
c. Stand-by load required as consumed load	19.65	18.4	26.92	(iii)
Max. Consumed load = ((i) + 30% (ii) + 10% (iii)) =	66.0	61.8	90.42	
Future expansion load (20% capacity)	13.2	12.4	18.08	
Total Load =	79.2	74.2	108.50	

1.2 Calculation for 3.3kV / 0.433 kV transformer capacity

 Max. Consumed load
 =
 90.4 kVA

 Spare capacity
 =
 18.1 kVA

 Required capacity
 =
 108.5 kVA

 Transformer rated capacity
 =
 120 kVA

1.3 Voltage regulation check

During starting or reacceleration of max. capacity motor (3400 kW), while all the other loads running, the voltage regulation is as follows:

Result: During starting of max. capacity motor, while all other loads are running, the voltage regulation at Transformer secondary terminals is approx 6.90%

1.4 Selection of rated capacity

120 kVA transformer selected.

	Assignment-3		
	DG SIZING CALCULATIONS		
	Design Data		
	Rated Volatge	415	KV
	Power factor (CosØ)	0.73	Avg
	Efficiency	0.85	Avg
	Total operating load on DG set in kVA at 0.73 power factor	90.4	
	Largest motor to start in the sequence - load in KW	15	KW
	Running kVA of last motor (CosØ= 0.91)	24	KVA
		6	(Considering starting
	Starting current ratio of motor	145	method as Soft starter) KVA
	Starting KVA of the largest motor (Running kVA of last motor X Starting current ratio of motor)	- 10	NV/
		66	KVA
	Base load of DG set in KVA (Total operating load in kVA – Running kVA of last motor)	86	KVA
	(Total operating local in No. 1 (all lings of the local in the local i		
Α	Continous operation under load -P1		
	Capacity of DG set based on continuous operation under load P1	66	KVA
В	Transient Voltage dip during starting of Last motor P2		
	Total momentary load in KVA	211	KVA
	(Starting KVA of the last motor+Base load of DG set in KVA		
	Subtransient Reactance of Generator (Xd'')	7.91%	(Assumed)
	Transient Reactance of Generator (Xd')	10.065%	(Assumed)
		0.089875	(Assumed)
	Xd''' =(Xd"+Xd')/2		
	Transient Voltage Dip	15%	(Max)
	Transient Voltage dip during Soft starter starting of Last motor P2 = Total momentary load in KVA x Xd''' x (1-Transient Voltage Dip)	108	KVA
	(Transient Voltage Dip)		NVA
С	Overload capacity P3		
	Capacity of DG set required considering overload capacity		
	Total momentary load in KVA	211	KVA
		/	
	overcurrent capacity of DG (K) (Ref: IS/IEC 60034-1, Clause 9.3.2)	150%	
	Capacity of DG set required considering overload capacity		
	(P3) = Total momentary load in KVA overcurrent capacity of DG (K)	141	KVA
	Considering the last value amongst P1, P2 and P3		
	Continous operation under load -P1	66	KVA
		108	KVA
	Transient Voltage dip during Soft starter starting of Last motor P2		
	Overload capacity P3	141	KVA
	Considering the last value amongst P1, P2 and P3	141	KVA
	starting capacity Hence, DG set is 150 KVA is adequated and catch	150	KVA
	Tience, 20 Sec is 130 KVA is adequated and catch		

Earthing calculations

Maximum line-to-ground fault in kA for 1 sec	14	
Earthing material (Earth rod & earth strip)	GI	
Depth of earth flat burrial in meter	0.5	
Average depth / length of Earth rod in meters	4.5	
Soil resistivity Ω-meter	13	
Ambient temperature in deg C	55	
Plot dimensions (earth grid) L x B in meters	75	135
Number of earth rods in nos.	6	

Earth electrode sizing:

Ac - Required conductor cross section in sq.mm

$$I_{lg} = A_c x \sqrt{\left[\frac{TCAPx10^{-4}}{t_c x \alpha_r x \rho_r}\right] x l_n \left[\frac{K_0 + T_m}{K_0 + T_a}\right]}$$

αr - Thermal co-efficient of resistivity, at 20 oC	0.0032
pr - Resistivity of ground conductor at 20 oC	20.10
Ta - Ambient Temperature is °C	55
I_{l-g} - RMS fault current in kA = 50 KA	14
tc - Short circuit current duration sec	1
Thermal capacity factor, TCAP J/(cm3.oC)	3.93
Tm - Maximum allowable temperature for copper conductor, in oC	419
KO - Factor at oC	293
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod:	
14 = Ac *	0.123
Ac - Required conductor cross section in sq.mm	114
Earth rod dia in mm	12
Earth rod dia (including 25% corrosion allowance) in mm	15

Earth flat sizing:

Ac - Required conductor cross section in sq.mm

$$I_{lg} = A_c x \sqrt{\left[\frac{TCAPx10^{-4}}{t_c x \alpha_r x \rho_r}\right] x l_n \left[\frac{K_0 + T_m}{K_0 + T_a}\right]}$$

αr - Thermal co-efficient of resistivity, at 20 oC	0.0032
ρr - Resistivity of ground conductor at 20 oC	20.10
Ta - Ambient Temperature is °C	55
I_{l-g} - RMS fault current in kA = 50 KA	14
tc - Short circuit current duration sec	1
Thermal capacity factor, TCAP J/(cm3.oC)	3.93
Tm - Maximum allowable temperature for copper conductor, in oC	419
KO - Factor at oC	293
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod:	
14 = Ac *	0.123
Ac - Required conductor cross section in sq.mm	114
Earth flat area in mm	12
Earth flat area (including 25% corrosion allowance) in mm	15
Selected flat size W * Thk in sq mm	20

Rq - Grid resistance

Grid resistance can be calculated using Eq. 52 of IEEE 80

$$R_{g} = \rho \, \left[\begin{array}{ccc} 1 & & & & \\ & 1 & & \\ \hline \end{array} \right] + \, \frac{1}{\sqrt{20 \times A}} \, \left[\begin{array}{ccc} 1 & & & \\ \hline \end{array} \right] + \, \frac{1}{1 + h \, \sqrt{20 \, /A}} \, \left[\begin{array}{ccc} \\ \hline \end{array} \right]$$

ρ - Soil resistivity in Ω -meter=	13
L - Total buried length of ground conductor in meter	420
h - Depth of burial in meter	0.5
A - Grid area in sq. meter	10125

Rg - Grid resistance 0.088

Rr - Earth Electrode resistance

Grid resistance can be calculated using Eq. 55 of IEEE 80

$$R = \frac{\rho}{r} \frac{1}{2 \times \pi \times n_{r} \times L_{r}} \frac{1}{2 \times n} \frac{4 \times L_{r}}{b} \frac{1}{2} \frac{1}{1} + \frac{2 \times k_{\underline{1}} \times L_{r}}{\sqrt{A}} \sqrt{n_{r}} - 1^{2}$$

ρ - Soil resistivity in Ω -meter, 16.96	13
n - No of earth electrodes	6
Lr - Length of earth electrode in meter	4.5
b - Diameter of earth electrode in meter	0.020
k1 - co-efficient	1
A - Area of grid in square metre	10125

Rr - Earth Electrode resistance 4.7747

Grounding system resistance

Grounding system resistance can be calculated using equation 53 of IEEE 80 as follows:

$$R_{s} = \frac{R_{g} \times R_{2} \ \ \square \ \, {R_{m}}^{2}}{R_{g} + R_{2} - 2R_{m}}$$

 R_m - Mutual ground resistance between the group of ground conductors, R_g and group of electrodes, R_r in $\Omega.$ Neglected R_m , since this is for homogenous soil

Rs - Total earthing system resistance 0.087 Ohms

The calculated resistance grounding system is less than the allowable 1 Ω value.

Lighting Protection Caculations

Location Building Type of Building Building Length (L) Building breadth (W)	Bangalore Srtuctural, Industrial Triangle Roofs (c) 18 8		
Building Height (H)	6		
Risk Factor Calculation 1 Collection Area (A _c)			
Ac		=	(3.14*H*H)+(2*H*W) 209.04
2 Probability of Being Struck (P)			
Р		=	A _c * N _g * 10 ⁻⁶ 0.000585312
3 Overall weighing factor			
a) Use of structure (A)		=	1.0
b) Type of construction (B)		=	0.8
c) Contents or consequential effects (C)		=	0.8
d) Degree of isolation (D)		=	1.0
e) Type of country (E)		=	0.3
Wo - Overall weighing factor		=	A * B * C * D * E
		=	0.192
4 Overall Risk Factor	Po	=	P * Wo
	Po	=	0.00011238
	_		

As per clause no. 9.7 of BS- 6651, suggested acceptable risk factor (Po) has been taken as 10^{-5} Since Po > Pa lightning protection required.

5 Air Terminations

=	2(L+W)	
=	52	Mts.
=	52	Mts.
=	3	Nos.
	=	= 52

Hence 3 nos. of Down conductors have been selected.

Size of Down conductor = 20 X 2.5 mm Galvanized Steel Strip

(As per BS6651, lightning currents have very short duration, therefore thermal factors are of little consequence in deciding the cross-section of the conductor. The minimum size of Down conductors - 20mm X 2.5 mm Galvanized Steel Strip)

Cable Sizing Calculations

S.NO.	Description	Equipment No.	Description	Consumed Load KW	Load Rating KW	Voltage (V)		Motor Starting nt Current (A)	Load P.F. Running	SIN Φ Mot Running Sta	or P.F S pring SI	SIN Φ taring	No. of Runs	No. of Cores	Size (mm2)	Current Rating (A)	Derating factor k1	Derating factor k2	Derating factor k3	Derating factor k4	Overall Derating factor k	Derated Current (A)		,	(Ohms/kM)	Voltage drop (Running) (V)	Voltage drop (Running) (%)	drop (Starting) (V)	Voltage drop (starting) (%)	size	OD of Cable (mm)	Gland size
3	LV MCC	PU2315	Silicatibe feed pump	12.47	15.00		3 21.7					0.5 2	1	4.0	10	66	0.98	0.9	1	1	0.882	58.2	95	2.3400	0.0852	6.86	1.65	40.99	9.88	OK	18	20
4	LV MCC	PU 2314-A	AbsorberntNeutral oil pump (W)	1.62	4.70	415		37.77	0.8			0.5 2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	95	9.4800	0.1007	7.92	1.91	47.45	11.43	OK	16	20s
5	LV MCC	PU 2314 - B	Absorbernt Neutral of pump (5)	3.11	170	415		32.45				0.5 2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	60	9.4800	0.1007	4.30	1.04	25.75	6.20	OK	16	20s
6	LV MCC	PU2305	Feed Pump (Seperator)	12.58	15.00		3 21.9			0.6	0.8	0.5 2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	85	3.9400	0.0902	10.33	2.49	61.78	14.89	OK	18	20s
7	LV MCC	M0(2305	MIXER (W)	12.68	15.00	415	3 22.1				8.0	0.5 2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	75	3.9400	0.0902	9.18	2.21	54.95	13.24	OK	18	20s
8	LV MCC	MEX 2308	MOXER (5)	12.68	15.00	415	3 22.1	132.31	0.8	0.6	0.8	0.5 2	1	4.0	10	66	0.98	0.9	1	1	0.882	58.2	105	2.3400	0.0852	7.71	1.86	46.07	11.10	OK	18	20s
9	LV MCC	BW2313	Diower	5.45	7.50	415	3 9.5	56.87	0.8	0.6	0.8	0.5 2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	100	3.9400	0.0902	5.26	1.27	31.49	7.59	OK	18	20s
10	LV MCC	Rotary valve	TK 2313B (I)	0.53	0.75	415	3 0.9	5.53	0.8	0.6	0.8	0.5 2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	100	3.9400	0.0902	0.51	0.12	3.06	0.74	OK	18	20s
11	LV MCC	902314	Screwconveyor (I)	1.23	1.50	415	3 2.1	12.83	0.8	0.6	0.8	0.5 2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	75	3.9400	0.0902	0.89	0.21	5.33	1.28	OK	18	20
12	LV MCC	AG 2301A	Citric acid tan agitator (W)	0.91	1.10	415	3 1.6	9.50	0.8	0.6	0.8	0.5 2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	110	9.4800	0.1007	2.30	0.56	13.81	3.33	OK	16	20s
13	LV MCC	AG 23248	Otric acid tank agitator (S)	0.91	1.10	415	3 1.6	9.50	0.8	0.6	0.8	0.5 2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	75	3.9400	0.0902	0.66	0.16	3.94	0.95	OK	18	20
14	LV MCC	AG 2305	Ctric oil rection vessol agitator	134	3.70	415	3 5.8	34.85	0.8	0.6	0.8	0.5 2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	105	3.9400	0.0902	3.39	0.82	20.26	4.88	OK	18	20
15	LV MCC	AG 2309	Lye of reaction vessel agitator		1.50	415	3 2.1	12.63	0.8	0.6	0.8	0.5 2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	85	9.4800	0.1007	2.37	0.57	14.19	3.42	OK	16	32
16	LV MCC	AG 2310	Lye of reaction vessel agitator	1,21	1.50		3 2.1	12.63	0.8			0.5 2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	95	9.4800	0.1007	2.65	0.64	15.86	3.82	OK	16	20s
17	LV MCC	AG 2314	Scap Adsorbant Tank Agitator	2.12	300	415	3 3.7	22.12	0.8	0.6	0.8	0.5 2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	65	9.4800	0.1007	3.17	0.76	19.01	4.58	OK	16	20s
18																																
20																						_			-	-						
21											-											_										
22																																
23																																
24																																
25 26																																
											_					-		1		1			-	1	1	1	1					
27								-												1					1	1						
-				-	-						_				1	1		1		1			-	1	1	1	1			-		
																							ļ									
									1			1	l		1	1	1	1	1		l	1			1					1 1		

Basis:

1. Overall derating factor k = k1 x k2 x k3 x k4

K1=Rating factor for variation in air/ground temperature

K2=Rating factor for depth of laying

K3=Rating factor for spacing between two circuits

K4=Rating factor for variation in thermal resistivity of the soil

2. LT Motors : Running Voltage Drop = 3%, Starting Voltage Drop = 15%

3. Cable type:

TYPE 1: Al Conductor, XLPE Insulated, Armoured, PVC outer sheathed

TYPE 2: Cu Conductor, XLPE Insulated, Armoured, PVC outer sheathed

4. Effect of Frequency Variation ± 5%

5. Combined Effect of Voltage & Frequency Variation ±10%

Cable Tray Sizing calculations

	CABLES								
AB	LETRAY: FROM	LT-4		TO	L	T-5			
Sr. No.	Cable Route (From-To)	Type & Cable Size	Size of Cable (mm2)	No. of Cable	Overall Diameter of each Cable (mm)	Sum of Cable OD (mm)	Self Weight of Cable (Kg/Mt)	Total Weight of Cable (Kg/Mt)	Remarks
1	LV MCC	4	10	1	18	18	3.95	0.9	
2	PU2315- VFD	4	10	1	18	18	0.37	0.9	
3	PU2315- VFD	5	1.5	1	15	15	3.95	0.4	
4	LV MCC	4	2.5	1	16	16	0.37	0.5	
5	LV MCC	5	1.5	1	15	15	3.95	0.4	
6	LV MCC	4	2.5	1	16	16	0.37	0.5	
7	PU 2314 -B- VFD	4	2.5	1	16	16	0.9	0.5	
8	PU 2314 -B- VFD	5	1.5	1	15	15	0.9	0.4	
9	LV MCC	4	6	1	18	18	2.9	0.7	
10	PU2305- VFD	4	6	1	18	18	1.2	0.7	
11	PU2305- VFD	5	1.5	1	15	15	1.2	0.4	
12	LV MCC	4	6	1	18	18	1.2	0.7	
13	LV MCC	5	1.5	1	15	15	1.45	0.4	
14	LV MCC	4	10	1	18	18	2	0.9	
15	LV MCC	5	1.5	1	15	15	2.4	0.4	
16	LV MCC	4	6	1	18	18	2.4	0.7	
17	BW2313- VFD	4	6	1	18	18	0.85	0.7	
18	BW2313- VFD	5	1.5	1	15	15	0.85	0.4	
19	LV MCC	4	6	1	18	18	0.85	0.7	
20	LV MCC	5	1.5	1	15	15	1	0.4	
21	LV MCC	4	6	1	18	18	0.85	0.7	
	Total			21		348	33.91	12.3	
alc	culation		•	•		Result			·
	mum Cable Diameter:		18	mm		Selected Cable T	rav width:	O.K	ı
	ider Spare Capacity of Cable Tray:		30%			Selected Cable T		0.K	
	nce between each Cable:		0	mm		Selected Cable T		0.K	Including Spare Capacity
	ulated Width of Cable Tray:		452	mm		Selected Cable T		0.K	Including Spare Capacity
	ulated Area of Cable Tray:		8143	Sq.mm		General Capie I	iay oize.	J.K	morading opare capacity
	Layer of Cables in Cable Tray:		2	oq.amı		Required Cable 1	ray Size	300 x 50	mm
	ted No of Cable Tray:		1	Nos.		Required Nos of		1	No
	cted Cable Tray Width:		300	mm		Required Cable 1		150.00	Kg/Meter/Tray
	cted Cable Tray Width:		50	mm		Type of Cable Tra		Ladder	· · · · · · · · · · · · · · · · · · ·
	cted Cable Tray Weight Capacity:		150	Kg/Meter		. , po o. Gable III	-,-	Luddei	
	of Cable Tray:		Ladder	. tg, meter		Cable Tray Width	Area Remaning	25%	
	Area of Cable Tray:		15000	Sq.mm		Cable Tray Area		46%	