Graded Problems

- **Problem 1** (a) Suppose $f: \mathbb{R}^3 \to \mathbb{R}$ is a smooth function. Prove that $f_{xyzx} = f_{zxxy}$, where these are fourth-order partial derivatives. You are free to use Theorem 4.3 for this problem, but not Theorem 4.5.
 - (b) Verify the result of (a) for the function $f(x, y, z) = x^3y^2z$.

Problem 2 Suppose we have differentiable functions $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}^2$ and $\mathbf{g}: \mathbb{R}^2 \to \mathbb{R}^2$ such that

$$\begin{split} \mathbf{g}(1,2) &= (3,0),\\ D\mathbf{f}(x,y) &= \left(\begin{array}{cc} xe^y & x^2y \\ 0 & yx^2+1 \end{array} \right),\\ D(\mathbf{f} \circ \mathbf{g})(1,2) &= \left(\begin{array}{cc} 1 & 4 \\ 2 & -1 \end{array} \right). \end{split}$$

Find $D\mathbf{g}(1,2)$.

Professional Problem

Problem 3 (a) Consider differentiable functions $g : \mathbb{R} \to \mathbb{R}$ and $f : \mathbb{R}^2 \to \mathbb{R}$ such that f(x,y) = 0 when y = g(x). Prove that if $\partial f/\partial y \neq 0$, then

$$\frac{dg}{dx} = -\frac{\partial f/\partial x}{\partial f/\partial y}.$$

- (b) Consider the equation $\sin(x) + \cos(y) = 0$. Make a suitable choice of f, and use the result of (a) to compute $\frac{dy}{dx}$ in terms of x and y.
- (c) Use implicit differentiation to verify your answer to (b).

Completion Packet

Problem 4 Consider the functions $\mathbf{f}(x,y) = (x^2+y, xy-\sin(xy))$ and $\mathbf{g}(x,y) = (e^{xy}, x^2y)$. Compute $D(\mathbf{f} + \mathbf{g})$ in two ways:

- (a) By computing the derivative of $\mathbf{f} + \mathbf{g}$
- (b) By computing the derivatives of \mathbf{f} and \mathbf{g} , and using the sum rule.

Problem 5 Consider the functions $f(x, y, z) = xy^2z^3$ and g(x, y, z) = xyz.

(a) Verify that

$$D(fg)(\mathbf{a}) = g(\mathbf{a})Df(\mathbf{a}) + f(\mathbf{a})Dg(\mathbf{a}).$$

(b) Verify that

$$D(f/g)(\mathbf{a}) = \frac{g(\mathbf{a})Df(\mathbf{a}) - f(\mathbf{a})Dg(\mathbf{a})}{g(\mathbf{a})^2}$$

Problem 6 Find all second-order partial derivatives of the function $f(x,y) = \ln(xy)$.

Problem 7 Find all second-order partial derivatives of the function $g(u,v) = e^{u^2+v^2}$.

Problem 8 Find all second-order partial derivatives of the function $h(x, y, z) = xy^2z^3$.

Problem 9 Consider the functions $y(s,t) = e^s + e^{st} + e^t$ and $\mathbf{x}(t) = (t,t^2)$. Compute $D(\mathbf{x} \circ y)$ in two ways:

- (a) Determining a formula for the composition $\mathbf{x} \circ y$, then computing the total derivative.
- (b) Computing total derivatives of \mathbf{x} and y, and using the chain rule.

Problem 10 Consider functions $\mathbf{f}: \mathbb{R}^3 \to \mathbb{R}^2$ and $\mathbf{g}: \mathbb{R}^2 \to \mathbb{R}^3$ such that $\mathbf{f}(x,y,z) = (x^2y + e^z, e^x + y)$ and $D\mathbf{g}(x,y) = \begin{pmatrix} y & x \\ 0 & 1 \\ 0 & xy \end{pmatrix}$. For each of the given total derivatives, either explain why they do not exist, compute them, or explain what additional information we would need to compute them.

Homework 9: Properties of Derivatives

- (a) $D(\mathbf{f} \circ \mathbf{g})$
- (b) $D(\mathbf{g} \circ \mathbf{f})$

Problem 11 Consider functions $\mathbf{f}: \mathbb{R}^3 \to \mathbb{R}^2$ and $\mathbf{g}: \mathbb{R}^2 \to \mathbb{R}^2$ such that $\mathbf{f}(x,y,z) = (\sin(xyz),\cos(xyz))$ and $D\mathbf{g}(x,y) = \begin{pmatrix} e^{xy} & 0 \\ 0 & e^{xy} \end{pmatrix}$. For each of the given total derivatives, either explain why they do not exist, compute them, or explain what additional information we would need to compute them.

- (a) $D(\mathbf{f} \circ \mathbf{g})$
- (b) $D(\mathbf{g} \circ \mathbf{f})$

Problem 12 Consider the function $\mathbf{g}: \mathbb{R}^3 \to \mathbb{R}^3$ given by $\mathbf{g}(\rho, \theta, \phi) = (\rho \cos \theta \sin \phi, \rho \sin \theta \sin \phi, \rho \cos \phi)$, which changes spherical coordinates to Cartesian coordinates. For any differentiable function $f: \mathbb{R}^3 \to \mathbb{R}$, compute $\partial f/\partial \rho$, $\partial f/\partial \theta$, and $\partial f/\partial \phi$ in terms of $\partial f/\partial x$, $\partial f/\partial y$, and $\partial f/\partial z$.