Let $X = \{(x,y) \in \mathbb{R}^2 | y = \pm 1\}$, and we define the equivalence relation \sim where $(x,1) \sim (x,-1)$ for $x \neq 0$. Then $Y = X / \sim$ is the set of equivalence classes of x values and two zeros, (0,-1) and (0,+1).

We first see that X is a topological space by the relative topology. To see that X is also Hausdorff, consider $(x_1, y_1), (x_2, y_2) \in X$ distinct. Then, suppose $U_1, U_2 \subset X$ as open sets. By the relative topology of \mathbb{R}^2 , we can always choose open balls in \mathbb{R}^2 small enough so that the intersection of X with that open set is not disjoint. In particular, this means that the open set will be an open interval on either the line y = 1 or y = -1.

Then, if $y_1 \neq y_2$, we have that $U_1 \cap U_2 = \emptyset$ by construction. Suppose that $y_1 = y_2$, then we need to consider only the distinct points x_1 and x_2 on \mathbb{R} , but since the relative topology here will just be the standard topology of \mathbb{R} , we get Hausdorff for free. So X is Hausdorff for sure.

Now consider Y. In particular, to see that Y is not Hausdorff, we choose the distinct points (0, -1) and (0, +1). We note that open sets are defined in Y by the quotient topology, and we use open sets in X under the equivalence relation to get our topology, $\bar{\tau}$.

In particular, suppose again we can pick open balls small enough in \mathbb{R}^2 around the two points so that the intersection of the open ball with X is restricted to a single line. Call these two open sets $U_1 = B_r((0,1)) \cap X$ and $U_2 = B_r((0,-1)) \cap X$, where r < 2. Suppose that $p_1 \in U_1$, then $\exists x \in \mathbb{R} \setminus \{0\}$ such that $p_1 = (x,1) \sim (x,-1) \in U_2$. So, in Y, the open sets will never be disjoint around (0,1) and (0,-1).

Thus Y is not Hausdorff.

(a) Suppose $x \in \mathbb{S}^n \setminus \{N\}$, then we can parameterize the line connecting x and N by the following equation,

$$y = t(x - N) + N$$
 $t \in \mathbb{R}$

In particular, we can find the t for which this line intersects the subspace defined by $x_{n+1} = 0 \subset \mathbb{R}^{n+1}$,

$$(y_1, \dots, y_n, 0) = tx + N(1 - t) = (tx_1, \dots, tx_n, tx_{n+1} + 1 - t)$$

 $\implies t(x_{n+1} - 1) + 1 = 0 \iff t = \frac{1}{1 - x_{n+1}}$

Hence, we see that the intersection of the line connecting N and x with the subspace setting $x_{n+1} = 0$ is just,

$$\frac{(x_1,\ldots,x_n,0)}{1-x_{n+1}} = (u,0) = (\sigma(x),0)$$

as expected. We do the same for S, and we see that

$$y = t(x - S) + S$$

and again, for the subspace defined by $x_{n+1} = 0$, we get,

$$(y_1, \dots, y_n, 0) = (tx_1, \dots, tx_n, tx_{n+1} - 1 + t)$$

 $\implies tx_{n+1} - 1 + t = 0 \iff t = \frac{1}{1 + x_{n+1}}$

Hence, the intersection point will be,

$$\frac{(x_1,\ldots,x_n,0)}{1+x_{n+1}} = -\frac{(-x_1,\ldots,-x_n,0)}{1-(-x_{n+1})} = (-\sigma(-x),0) = (\tilde{\sigma}(x),0)$$

again as we would expect.

(b) First we show injection. To see this, suppose that $x, y \in \mathbb{S}^n \setminus \{N\}$. Then, as we showed in (a), we can relate the image under σ of these points to the intersection of the line connecting the point and N with the subspace that sets the $n^{th} + 1$ component to 0. That is to say, if $\sigma(x) = \sigma(y)$, then $(\sigma(x), 0) = (\sigma(y), 0)$, which is to say that the two lines would intersect at that point in the plane defined by setting the $n^{th} + 1$ component to 0. Yet, these two lines necessarily intersect at N aswell, so they must be the same line.

Then, we have that this line intersects \mathbb{S}^n at N, by necessity, and both x and y. But this is impossible, since a straight line in \mathbb{R}^{n+1} will only intersect a sphere at most twice. Further, by supposition, $x \neq N$ and $y \neq N$, and hence it must be that x = y. Thus we have that σ is injective.

Now we check surjection. The image lies in \mathbb{R}^n , so suppose $u \in \mathbb{R}^n$. In particular, we can again use the fact that σ is simply the intersection of the line connecting N and a point on \mathbb{S}^n with the plane defined by setting the last component to 0. In particular, we then associate u with (u, 0). Then, the line connecting this point and N is defined by,

$$y = t((u,0) - N) + N = (tu,0) + N(1-t) = (tu,1-t)$$

for $t \in \mathbb{R}$. To find the point $y \in \mathbb{S}^n \setminus \{N\}$ with which this line intersects, we use the definition of \mathbb{S}^n

$$1 = \sum_{i=1}^{n+1} y_i^2 = \sum_{i=1}^n (tu_i) + (1-t)^2$$
$$1 - (1-2t+t^2) = t^2 |u|^2$$
$$2 - t = t|u|^2 \iff t = \frac{2}{|u|^2 + 1}$$

Thus, we have that

$$y = \left(\frac{2u}{|u|^2 + 1}, 1 - \frac{2}{|u|^2 + 1}\right) = \frac{(2u_i, \dots, 2u_n, |u|^2 - 1)}{|u|^2 + 1}$$

Hence we have that every $u \in \mathbb{R}^n$ has a preimage on $\mathbb{S}^n \setminus \{N\}$, and thus σ is surjective.

We can now conclude that σ is a bijection, with the inverse stated above.

(c) We note that $\tilde{\sigma} \circ \sigma^{-1} : \mathbb{R}^n \to \mathbb{R}^n$, since both stereographic projections are bijective. Then, suppose that $u \in \mathbb{R}^n$, and from the inverse computed in (b) we see

$$\tilde{\sigma}(\sigma^{-1}(u)) = \tilde{\sigma}\left(\frac{(2u_i, \dots, 2u_n, |u|^2 - 1)}{|u|^2 + 1}\right)$$

and by definition, we recall that $\tilde{\sigma}(x) = -\sigma(-x)$, thus,

$$\tilde{\sigma}(\sigma^{-1}(u)) = -\sigma\left(-\frac{(2u_i, \dots, 2u_n, |u|^2 - 1)}{|u|^2 + 1}\right) = -\sigma\left(\frac{(-2u_i, \dots, -2u_n, -|u|^2 + 1)}{|u|^2 + 1}\right)$$

and applying the definition of σ we see,

$$\tilde{\sigma}(\sigma^{-1}(u)) = -\sigma\left(\frac{(-2u_i, \dots, -2u_n, -|u|^2 + 1)}{|u|^2 + 1}\right) = -\frac{(-2u_i, \dots, -2u_n)}{(|u|^2 + 1)(1 + |u|^2 - 1)} = \frac{(2u_i, \dots, 2u_n)}{(|u|^2 + 1)|u|^2}$$

Which is smooth except at the origin, which makes sense considering the stereographic projections get the origin from opposite poles. Further, we recall that both σ and $\tilde{\sigma}$ are invertible, and inverse will thus also be smooth. Then, we have a diffeomorphism and hence the two charts are smoothly compatible, and hence the atlas $\{(\sigma, \mathbb{S}^n \setminus \{N\}), (\tilde{\sigma}, \mathbb{S}^n \setminus \{S\})\}$ is a smooth atlas and gives a smooth structure on \mathbb{S}^n .

(d) FINISH ME

(a)