(21(a) Let up be the mean percentage of body fat in the treatment group and let up be the mean percentage of body feet in the placebo group. Test He: UT=Up against H, : UT + Up pooled sample variance $5p^2 = (26-1) \times 0.078^2 + (13-1) \times 0.043^2$ 26+13-2 = 0-00471 Test statistic t = (0.368 - 6.327) - 0JO-00471 J 1/26 + 1/3 2 1-759 p-value = .2 x min & P (T37 > 1-759), P (T37 < 1.759)} = 2 x 0.0434 = 0.0869 (tcdf (1.759, 37, 'upper') in matlab) or using T-table with 30 degrees of freedom gives a p-value of 2xP(T30 > 1-759) which is between 0-05 and 0-1. There is weak evidence against the null hypothesis, Suggesting there is a difference in mean percentage of body feit between treatment & placebo group. (b) Let u be the mean decrease in fashing insulin. Test Ho: u=0 segainst M: u>0 Test statistic t = 5.7 - 0 = 1.0886 26.7/126'

$$P(T_{25} > 0.684) = 0.25$$
 and $P(T_{25} > 1.316) = 0.10$

(b)
$$\frac{496}{1248} - \frac{406}{1057} \approx 0.0133$$

$$\hat{p}_1 - \hat{p}_2 \pm 1.96 \times |\hat{p}_1(1-\hat{p}_1)| + \hat{p}_2(1-\hat{p}_2)$$

$$n_1 = 1248$$
 $\hat{p}_1 = 496 = 0.397$ $n_2 = 1057$ $\hat{p}_1 = 406 = 0.384$

As the CI covers O, there does not appear to be a difference in the accidental poisoning rates due to household cleaning products between the two hospitals at the 5% significance level.

(d) Test Ho! 'Hospital' and 'Discharge category' are independent.

against H.: some association between 'Hospital' and 'Discharge category'.

Expected Counts

Usual Residence Admitted Transfer

Clayton 678×1248 = 367.1 1350×1248 = 730.9 277×1248 = 150 1248

2305 2305 2305

Casey: 678 × 1057 = 310.9 1350 × 1057 = 619.1 271×1057 = 127 1057 2305 2305

 $X^{2} = \frac{7}{2} \frac{(e_{1}-o_{1})^{2}}{e_{1}} = \frac{(367.1-317)^{2}}{367.1} + \frac{(310.9-361)^{2}}{310.9} + \frac{(730.9-596)^{2}}{730.9}$

 $+ (619.1 - 754)^2 + (150 - 144)^2 + (127 - 133)^2 \approx 5.99$

Under Ho X2 has approximately X215 distribution where

df = (#rows -1) x (# columns -1) = (2-1) x (3-1) = 2

p-value = P(X2 > 5.99) = 0.05

There is mild/weak cuidence against the null hypothesis, suggesting an association between Hospital + Discharge Category.

(b)
$$5p = \sqrt{\frac{(10-1)\times 2^{4}56^{2}}{10+15-2}} = \frac{2-715}{10+15-2}$$

(c) Test stechstic
$$t = (74.2 - 70.3) - 0 = 3.518$$

 $2.715 \sqrt{1/0 + 1/15}$

$$P(T_{23} > 3.485) = 0.001$$
 and $P(T_{23} > 3.768) = 0.0005$

The prudue is between 0.0005 and 0.001 (0.000921 using MATLAB).

This is strong evidence against the null hypothesis, suggesting a higher mean weight gain with the new diet.

(b) Test statistic
$$t = 6.1 - 0 = 1.56$$

$$12.36/\sqrt{10}$$

The p-value is between 0.05 and 0.1.

There is weak evidence against Ho, suggesting a learning effect is present.

$$X^{2} = \frac{(456.4 - 360)^{2}}{456.4} + \frac{(1991.6 - 2088)^{2}}{1991.6} + \frac{(202.6 - 229)^{2}}{202.6} + \frac{(844.4 - 788)^{2}}{844.4}$$

2 31-67 81.329

There is (sieny) strong evidence against the null hypothesis, suggestion there is some association between Fish intake and asthma status.

$$Q6(\alpha)$$
 $Sp^2 = (51-1) \times 26^2 + (67-1) \times 19^2 = 377.81$

(b) Let 12013 be the mean length of bluefin tuna in 2013, and
" 12014." " 2014.

Test Ho: 112013 = 112014 against H,: 112013 > 112014

Test statistic
$$t = (180 - 175) - 0 = 1.384$$

$$\sqrt{377.81} \sqrt{1/511/67}$$

p-value = P(TH6 > 1.384) is between 0.05 and 0.1

There is weak evidence against the null hypothesis, suggesting a decline in the mean length of Bluefin tuna.

(c) t116;0.975 ~ 1,96 so

95% CI is (180-175) ± 1.96 × \377.81 \1/51+1/67

= 5 ± 7.08 (cm).

Q7 Let p, = proportion of smokers who get pregnant in first cycle
p2 * proportion of non-smokers who get pregnant in first cycle.

Test Ho: P1=P2 against Hi:p1<p2

 $\hat{p}_1 = \frac{29}{100} = 0.29$ $\hat{p}_2 = \frac{198}{198 + 288} = 6.407$

(pooled) $\hat{p} = 29 + 198 = 227 = 6-387$ 29+71+198+258 = 586

test statistic = (0.407 - 0.29) - 0 $\sqrt{0.387 \times (1-0.387)} \sqrt{\frac{1}{486}} + \frac{1}{100}$

= 2.195

p-value = P(Z > 2.195) = 0.614

This is moderate evidence against the null hypothesis, suggesting that there is a higher proportion of non-smokers who fall pregnant in first cycle.

Q8 a) CI estimate ± (critical value) * s.e. (estimate)

19.6 ± t 89:0-995 × 8.2

190'

Either use $t_{80;0.995} = 2.639$ from tables or $t_{89;0.955} = 9.2.6322$ using MATLAB. So, using the $t_{89;0.955}$ value, the CI is

19.6 ± 2.6322 × 8.2 / J90' = 19.6 ± 2.275

We are 99% confident the true mean number of polyester particles per 250ml of beach sectionent to between 17.32 and 21.87

b) Let My be the mean number of polyester micropathicles per 250ml of beach sediment in Victoria and let Ma be the corresponding mean for North Queensland.

Test Ho: Ma=MV against H: Ma #MV

test statistic = <u>estimate</u> - hypothesis s.e.(estimate)

We need the pooled variance estimate to get the see.

 $5p^2 = (45-1) \cdot 8.54^2 + (45-1) \cdot 9.82^2 = 84.682$ 45+45-2

test statistic t = (16.67 - 21.22) - 0 = -4.55 = -2.345 $\sqrt{84.682} \sqrt{\frac{1}{45} + \frac{1}{45}} = 9.2023 \times 0.2168$

compare to a tos-distribution to get the p-value.

p-value = 2 × mm {P(TES > -2.345), P(TES <-2.345)}

By symmetry of the t-distribution

P(T88 < -2.345) = P(T88 > 2.345)

Using MATLAB, p-value = 20.0106 = 0.0213

Approximation using tables:

 $P(T_{80} > 1.990) = 0.025$ and $P(T_{80} > 2.374) = 0.01$ So the p-value is between 0.02 and 0.05.

There is moderate evidence against the null hypothesis, suggesting a difference in the mean number of microparticles in 250ml of beach sediment between North Queensland and Victoria.

Q9(a) CI estimate + (critical value) x S.e. (estimate)

p=0.43 S.e.(p)=10.43x(1-0.43)/1000 =0.01566

critical value from normal distribution Zo-95 = 1-645

0.43 ± 1.645 × 0.01566

= 0.43 ± 0.0257

We are 90% confident that the proportion of adult australians who didn't pay with cash in the post 7 days is between 0.404 and 0.456.

(b) let pover and punder be the respective proportion of over 35 and under 35 who made no cook transactions in the past seven days.

Test Ho: Pover = Punder against Hi: Pover + Punder

Power = 198/566 =0-3498 Punder = 232/434 =0.5346

pooled estimate $\hat{p} = 430/1000 = 0.43$

Test statistic $t = \frac{(\hat{p}_{over} - \hat{p}_{under}) - 0}{\sqrt{\hat{p}_{over} + \hat{p}_{under}}}$

= (0.3498-0.5346)-0 10.43(1-0.43) / 1/566 + 1/434

= - 5.85

P-value = 2x min {P(Z5-5.85), P(Z>5.85)}

\$2x0-0001

The p-value is less than 0.0002. This is very strong evidence against the null hypothesis, suggesting a difference in the proportion of people who made no cash transaction between the two age groups.

Q10 We test				
Ho: 'Relapse' and 'Treatme	nt dn	ig are iv	dependent	
against H.: There is some a		~	٠,,	
Treatment drug!				
Observed Courts			Expected	counts
Relapse Did not relapse		Transport		Dud not relapse
Placebo 20 4	24	1 .		8
Lithium 18 6	24			8
Desipramine 10 14	24		16	8
48 24	72		ANNOUNCE CONTROL OF THE SECOND	
E, = 48×24 = 16			<u>.</u> •	
72	X ² =	Z (E1 -0)	i)	
F ₁₂ = 24 ×24 = 8		i ti		
72		$(16-20)^2$	+ (8-4)2	, (16-18)2
72 expected (all other counts similar)		(16-20) ²	8	16
		,437 +13		
	+	(8-6)2+	$(16-10)^2$	1 (8-14)2
degrees of freedom		8	16	E S
= (1000s - 1) x (columns - 1)				
= (3-1) × (2-1) = 2	nama unito	10.5		
				е
p-value = P(X2 > 10.5)	Para Para Para Para Para Para Para Para		7/11/20 1/20/20 1/20/20	
As P(x2 > 9-210) = 0.01	Ass	d P(x2, 2	= 10.60) =	0005. H.
	Cor (· · · · · · · · · · · · · · · · · · ·		3) 1

This is strong evidence against the null hypothesis, suggesting some association between treatment along and whether or not the patient relapses.

p-value is between 0.005 and 0.01.

Q11 (a) Let UA and UB be the mean PCB concentrations in fish caught in Lakes A and B, respectively.

Test Ho: UA = UB against HI: UA \$ MB.

test statistic t = estimate - hypothesis s-e. (estimate)

 $= \frac{(11.170 - 11.988) - 0}{5p \sqrt{1/10 + 1/8}}$

pooled voriance estimate $5p^2 = (10-1) \times 6 \cdot 860^2 + (8-1) \times 0.738^2$ 10+8-2

= 0.656244 Sp = 0.810

 $t = \frac{-0.818}{0.810\sqrt{1/0+1/8}} = -2.1288$

P-value = 2 × min {P(T16 > -2-1288), P(T16 < -2-1288)}

Note. That $P(T_{16} \le -2.1288) = P(T_{16} \ge 2.1288)$ by symmetry of the t-distribution

As $P(T_{16} > 2.120) = 0.025$ and $P(T_{16} > 2.583) = 0.01, the p-value is between 0.02 and 0.05$

This is moderate evidence against the null hypothesis, suggesting a difference in the mean PCB concentration in fish between lakes A and B:

(b) CI estimate ± (critical value) × 8. e. (estimate)

from part (a)

-0.818 ± 2.120× 0.810 × 1/10 + 1/8

We are 95% confident the true difference in mean PCB concentration in fish between lakes A and B is between -1.633 and -0.6034. This suggest a difference in the true means at the 5% significance level.

Q12 (a) Let u be the mean difference in profit between row-planted crop and broadcast planted crop.

Test Holy = 0 against Hill #0

Test statistic t = estimate - hypothesis S. e. (estimate)

 $= \frac{-1.0143 - 0}{1.6067 / \sqrt{7}} = -1.6702$

p-value = 2, min (P(T6 > -1.6702), P(T6 5-1.6702))

As the t-distribution is symmetric P(To <-1.6702)=P(To >1.6702)

P(T₆ > 1.440) = 0.1 and P(T₆ > 1.943) = 0.05. So The p-value is between 0.1 and 0.2.

There is no evidence against the null hypothesis, suggesting no difference in the mean profit from the two methods of sowing.

b) CI estimate ± (critical value) x S. E. (estimate)

critical value is $t_{6:0-975} = 2.447$. We have s.e. (edimale) from part (a) so

-1-614 ± 2.447 × 1-6067

= -1,014 ± 1.486

We are 95% confident the difference in mean profit from the two sowing methods is between -2.500 (units) and 0.4717 (with).

Q13 a) Let PG and Pp be the proportion of the population who would have heart-attacks being treated with Gentibrozil and the placebo, respectively.

Test Ho: PG = Pp against Hi = PG < Pp

 $\beta_{c} = 56 = 0.0273$ $\beta_{p} = 84 = 0.04138$

(pooled) $\hat{p} = 56 + 84 = 0.03431$ 1995+56+1946+84

test statistic t = estimate - hypothesis s.e. (estimate)

$$t = (0.0273 - 0.04138) - 0$$

$$\int_{0.03431} \sqrt{1 - 0.03431} \sqrt{\frac{1}{2051}} + \frac{1}{2030}$$

= -2-47609

p-verlue = P(Z & -2.47009) (As alternative is PG-(PP)

The p-value is between 0.005 and 0.01. This is strong evidence against the null hypothesis, suggesting the proportion of the population that would have a heart attack with the Genfibrozil treatement is smaller than the proportion with placebo.

b) CI estimate ± (critical value) x & e. (estimate)

critical value is Zoogs = 1.645. So the CI is

 $(0.0273-0.04138) \pm 1.645 \times \frac{0.0273(1-0.0273)}{2051} + \frac{0.04733(1-0.04)}{2050}$

= -0.01408 ± 0-00821

We are 90% confident the true reduction in the proportion of heart attacks is between 6.065867 and 6.02228 under the Genfibrozil treatment relative to the placebo.

G14 Let p be the proportion of students who sit at the front of a lecture who are shorter than 150cm

 $\hat{p} = 10 = 0.2$ CI estimate ± (critical value) × Se. (estimate)

Critical value is 1-960

 $CI = 0.2 \pm 1.960 \times 0.2 \times (1-0.2)$

0.2 1 0.1109

We are 95% confident the proportion of students who sit at the front of a leature who are shorter Than 150cm is between 0.089 and 0.311.