Artificial Intelligence BCA, Elective

Course	Obj	ectiv	es
--------	-----	-------	----

In this course the students will learn the basic knowledge of artificial intelligence.

$C \cap$	urse	Cor	ntar	te:
-	นเจต	CUI	ILCI	ILO.

1.	intro	2 nours		
			ion to Artificial Intelligence	
			on of Artificial Intelligence	
	1.3 I	History o	f Artificial Intelligence	
2.	Problem solving			14 hours
		Problen		
		2.1.1	Problem formulation	
		2.1.2	Problem types	
		2.1.3	Well-defined problems	
		2.1.4	Measuring problems-solving performance	
	2.2		Strategies	
		2.2.1	Breadth -first search	
		2.2.2	Depth-first search	
		2.2.3	Bi-directional search	
		2.2.4	Comparing search strategies	
	2.3	Informe	ed Search	
		2.3.1	Best first search	
		2.3.2	Greedy search	
		2.3.3	Heuristic Functions	
		2.3.4	Iterative deepening A* search	
		2.3.5	Hill climbing	
	2.4	Game F	Playing	
3.	Kno	wledge	and Reasoning	14 hours
٠.	3.1		entation, Reasoning and Logic	14 110410
	5.1	3.1.1	Representation and Mappings	
		3.1.2	Approaches to knowledge Representation	
		3.1.3	Issues in Knowledge Representation	
		3.1.4	Inference, Logic, syntax, semantics	
			tional Logic	
		3.2.1	Computable function and predicates	
		3.2.2	Resolution	
		3.2.3	Natural Deduction	
	3.3	Knowle	edge representation using Rules	
		3.3.1	Procedural knowledge	
		3.3.2	Declarative knowledge	
		3.3.3	Logic Programming	
		3.3.4	Forward versus backward chaining	
			Matching	
	3.4	•	ic Reasoning	
		3.4.1	No monotonic reasoning	
		3.4.2	Logics of No monotonic reasoning	
	a -	3.4.3	Implementation Issues	
	3.5		cal Reasoning	
		3.5.1	Probability and Bayes' theorem	
		3.5.2	Bayesian Network	

4. Learning 12 hours

- 4.1 Learning from observation
 - 4.1.1 Prior Knowledge
 - 4.1.2 Inductive learning
 - 4.1.3 Hypothesis
- 4.2 Learning in neural and belief network
 - 4.2.1 Brain comparison
 - 4.2.2 Neural net and notation
 - 4.2.3 Perceptron model
 - 4.2.4 Multi-layer feed-forward networks
 - 4.2.5 Back-propagation learning
- 4.3 Reinforcement Learning
 - 4.3.1 Passive learning in a known environment
 - 4.3.2 Passive learning in a known environment
 - 4.3.3 Active learning in a unknown environment
 - 4.3.4 Genetic Algorithms

5. Application 3 hours

- 5.1. Neural Network
- 5.2. Expert System
- 5.3. Natural Language processing

Laboratory

Any Programming language like LIIP, Prolong, Python, Java that can support the AI content and issues should be chosen and each student should practice to cover the course content topics

Reference Books:

- 1. Stuart Russel and Peter Norvig: Artificial Intelligence A Modern Approach, Pearson.
- 2. Patrick Henry Winston: Artificial Intelligence, Pearson.
- 3. Elaine Rich and Kevin Knight: Artificial Intelligence, MeGraw Hill