CS 583: PROBABILISTIC GRAPHICAL MODELS

TOPIC: MAP INFERENCE

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

QUERYING A DISTRIBUTION

- \circ All variables: \mathcal{X} , evidence variables: \boldsymbol{E}
- Probability query
 - P(Y|e)
- MAP query
 - $W = X \setminus E$ (i.e., all the non-evidence variables)
 - MAP | $e = \operatorname{argmax}_{w} P(w, e)$
- Marginal MAP query
 - MAP(Y | e) = argmax_yP(y | e)
 - Let $Z = X \setminus E \cup Y$
 - MAP(Y | e) = argmax_y $\sum_{z} P(z, y | e)$

VARIABLE ELIMINATION FOR MAP

- Variable elimination works by multiplying and summing
- It's also called *sum-product* algorithm
- We can use the same technique for MAP, if we replace the sum operator with a max operator
- The algorithm is called *max-product*
- A few differences
 - Sum is replaced with max
 - All variables (except evidence) are eliminated
 - We need to trace back our steps to find the MAP assignment

EXAMPLES

- Two variables
- Student network
- Markov network

TWO VARIABLES

- Network
 - $A \rightarrow B$
- Parameters
 - P(A) = [0.4; 0.6]
 - P(B | A=t) = [0.8; 0.2]
 - P(B|A=f) = [0.3; 0.7]
- o MAP?
- o MAP|A=t?
- MAP|B=t?

MAP ON THE STUDENT NETWORK

U

WHAT IF MAP IS NOT UNIQUE?

- Network
 - $A \rightarrow B$
- Parameters I
 - P(A) = [0.5; 0.5]
 - P(B|A=t) = [0.4; 0.6]
 - P(B|A=f) = [0.6; 0.4]
- Parameters II
 - P(A) = [0.4; 0.6]
 - P(B|A=t) = [0.25; 0.75]
 - P(B|A=f) = [0.5; 0.5]

MAP ON A MARKOV NETWORK

COMPLEXITY

- All the arguments from the sum-product algorithm carry over
- Same variable ordering heuristics can be applied
- Message passing on a junction-tree structure can be done

MARGINAL MAP

Mex 2 Junt

- Marginal MAP query
 - $MAP(Y|e) = argmax_y P(y|e)$
 - Let $\mathbf{Z} = \mathcal{X} \setminus \mathbf{E} \cup \mathbf{Y}$
 - MAP(Y | e) = argmax_y $\sum_z P(z, y | e)$
- \circ We need to sum out Z
- Max-sum-product algorithm
 - First, eliminate **Z** using sum-product algorithm
 - Then, find MAP for **Y** using max-product algorithm
- Unfortunately, max and sum cannot be interleaved
- The variables are partitioned into three disjoint sets: E, Z, Y
- \circ This partitioning limits which orders we can choose, as we can order only within $oldsymbol{Z}$ and within $oldsymbol{Y}$

+ = max