ASEN 6060 ADVANCED ASTRODYNAMICS Computing Periodic Orbit Families, part 2

Objectives:

 Define and formulate continuation schemes for effectively computing families of periodic orbits

Credit: these notes were developed in collaboration with Dr. Ian Elliott in 2020, and have since been updated

- Periodic orbits exist in continuous oneparameter families of orbits in the CR3BP
- Computing orbit families is useful for exploring solution space
- Continuation methods use a periodic orbit to calculate a nearby member, repeating the process along a family of orbits
- More efficient than generating distinct new initial guesses for multiple members along a family

Continuing Along Periodic Orbit Family

Fundamental steps of continuation:

Multiple approaches for implementing continuation, including:

Multiple approaches for implementing continuation, including:

Natural Parameter Continuation

Step along the family by

Apply a corrections scheme, augmented with an additional constraint

Example parameters:

Natural Parameter Continuation

Constrain difference between current value of parameter, p, and its value along the previous solution, p^* , with specified step Δp :

$$ar{H}(ar{V}) = \left[egin{array}{ccc} F_1 \ dots \ F_m \end{array} \right]$$

Example: Natural Parameter Cont. in T

$$\bar{V} = \begin{bmatrix} \bar{x}_0 \\ T \end{bmatrix} \quad \bar{F}(\bar{V}) = \begin{bmatrix} x_f - x_0 \\ y_f - y_0 \\ z_f - z_0 \\ \dot{x}_f - \dot{x}_0 \\ \dot{z}_f - \dot{z}_0 \\ y_0 \end{bmatrix} \longrightarrow \bar{H}(\bar{V}) = \begin{bmatrix} x_f - x_0 \\ y_f - y_0 \\ z_f - z_0 \\ \dot{x}_f - \dot{x}_0 \\ \dot{z}_f - \dot{z}_0 \\ y_0 \end{bmatrix}$$

$$D\bar{F}(\bar{V}) \longrightarrow D\bar{H}(\bar{V})$$

$$\bar{V}_{i+1} = \bar{V}_i - D\bar{F}(\bar{V}_i)^T \left[D\bar{F}(\bar{V}_i)D\bar{F}(\bar{V}_i)^T \right]^{-1} \bar{F}(\bar{V}_i) \longrightarrow \bar{V}_{i+1} = \bar{V}_i - D\bar{H}(\bar{V}_i)^{-1} \bar{H}(\bar{V}_i)$$

E.g.: Distant Prograde Orbit (DPO) Family

Solutions along DPO orbit family found via natural parameter continuation using the orbit period

E.g.: Distant Prograde Orbit (DPO) Family

Same initial orbit, continuing along decreasing x_0

Multiple approaches for implementing continuation, including:

Pseudo-Arclength Continuation

Predict nearby member of the family via gradient of solution curve

Image credit: Adapted from Bosanac 2016

Pseudo-Arclength Continuation

Formulate single shooting algorithm to produce 1-parameter family (n - m = 1). Consider one formulation:

Consider one formulation:
$$\bar{V} = \begin{bmatrix} \bar{x}_0 \\ T \end{bmatrix} \qquad \bar{F}(\bar{V}) = \begin{bmatrix} x_f - x_0 \\ y_f - y_0 \\ z_f - z_0 \\ \dot{x}_f - \dot{x}_0 \\ \dot{z}_f - \dot{z}_0 \\ y_0 \end{bmatrix}$$

Apply update equation to initial guess until first solution computed:

$$\bar{V}_{i+1} = \bar{V}_i - D\bar{F}(\bar{V}_i)^T \left[D\bar{F}(\bar{V}_i) D\bar{F}(\bar{V}_i)^T \right]^{-1} \bar{F}(\bar{V}_i)$$

Pseudo-Arclength Continuation

Select an appropriate step size Δs . The initial guess of next orbit is calculated as:

Construct new constraint vector to limit distance between subsequent solutions via projection onto tangent space:

$$\bar{H}(\bar{V}) = \begin{bmatrix} x_f - x_0 \\ y_f - y_0 \\ z_f - z_0 \\ \dot{x}_f - \dot{x}_0 \\ \dot{z}_f - \dot{z}_0 \\ y_0 \end{bmatrix}$$

Iterate the following update equation until next solution is computed:

E.g.: Southern L₂ Halo Orbit Family

Pseudo-arclength continuation performs well despite turning points in natural parameters along the family as orbits approach the Moon.

Pseudo-Arclength Implementation Notes