International Islamic University Chittagong

Department of Computer Science and Engineering

Lesson Plan

Part A

ISCED Code: 0613
 Course Code: CSE-2322

3. Course Title: Data Structures Lab4. Type: Core, Engineering

5. Semester: 3rd
 6. Credit Hours: 1.5

7. Contact Hours: 2 lab hours per week

8. CIE Marks: 509. SEE Marks: 5010. Total marks: 100

11. Prerequisite: CSE-1121 (Computer Programming 1)

12. Co-requisite: CSE-2321 (Data Structures)

13. Academic Session: Spring 2024

14. Instructor's and Class Schedule and Locations

Instructor: Md. Mahiuddin

Office Location: Room # C405, CSE Academic Building

Email: mmuict@iiuc.ac.bd

- 15. Course Rationale / Summary: This course is a continuation to the introduction to computer science and is a study of the different types of data structures, their design, implementation, efficiency and effective use in solving problems. It introduces students to new types of data structures such as arrays, linked list, trees, graphs, heaps, stacks and queues. Students will also learn how to design algorithms for each new data structure studied, create and perform simple operations such as insertion, deletion, merging, sorting, and traversing on data structures. It describes and implements common algorithms for working with advanced data structures and recognizes which data structure is the best to use to solve a particular problem. To take this course, students should be able to program in a standard programming language preferably in C/C++. Some mathematical maturity will also be helpful for the students.
- **16. Course Objective:** Upon completion of the course, students will be able to:
 - 1. Impart a thorough understanding of linear data structures such as linked list, arrays, stacks, queues and their applications
 - 2. Learn a thorough understanding of non-linear data structures such as trees, graphs and their applications.
 - 3. Familiarize with various sorting, searching and hashing techniques and their performance comparison
 - 4. Design and analyze recursive algorithms in data structures

17. Course Outcomes (COs):

Upon successful completion of this course, students will be able to:

#	CO Description	Weightage
1.	Apply the basic concepts of linear data structures for solving different	50%
	problems	
2.	Apply the basic concepts of non-linear data structures for manipulating	30%
	hierarchical and connected data	
3.	Develop an application addressing several data structures	20%

18. Mapping of CO-PO-WK-WP-WA:

#	COs	POs	DL	KP	EP	EA	Teaching Learning Strategy (TLS)	Assessment Strategy (AS)
CO1	Apply the basic concepts of linear data structures for solving different problems	PO1	C3	K3	-	-	Lecture, Class discussion, Lab work, Note	Assignment, Class performanc e, Exam
CO2	Apply the basic concepts of non-linear data structures for manipulating hierarchical and connected data	PO1	C3	К3	-	-	Lecture, Class discussion, Lab work, Note	Assignment, Class performanc e, Exam
CO3	Develop an application addressing several data structures	PO5	C3	K3	P1	-	Demo interview, Presentation	Project, Presentation , Report

Note: DL: Domain/level of learning taxonomy, **KP:** Knowledge Profile, **EP:** Attribute of Complex Engineering Problems, **EA:** Attribute of Complex Engineering Activities **Learning Domains** (C: Cognitive, A: Affective, P: Psychomotor)

Part B

19. Course Content

#	Content	Duration	CLOs					
	Mid-Term (30 Marks)							
1	Introduction: Elementary Data organization, Information; Data types; Data Structure, Data Structure operations; Algorithm; Time-Space tradeoff of Algorithms. Mathematical notation & Functions; Algorithmic Notation; Control structures; Subalgorithms. String; String operations; Pattern matching algorithms	06	CLO1					
2	Array: Linear Array (LA) & its representation in memory; Traversing LA, Insertion & Deletion in LA, Bubble Sort, Linear Search & binary Search. 2D Array & its representation in memory; Matrices; Algebra of matrices; sparse matrices	06	CLO1					
3	Linked list - Linked list & its representation in memory; Traversing, Searching, Insertion & Deletion operation on Linked list; Header linked lists; two way lists.	06	CLO1					
	Final Exam: 50 Marks Group-A (20 Marks)							

4	Stack: its representation & applications; PUSH and POP operation on stack. Polish Notation, reverse polish notation; Evaluation of a postfix expression; Transforming infix expression into postfix expression.	03	CLO1
5	Queue – its representation; Insertion & deletion in Queue; Deques; Priority Queues. Recursion [Factorial function, Fibonacci sequence, Ackermann function, Towers of Hanoi]	06	CLO1
	Group-B (30 Marks)		
6	Complexity of algorithms, Rate of growth: Big O, Ω and Θ notations; Complexity of Linear Search, Binary search & Bubble sort algorithm. Sorting - Insertion sort, selection sort, quick sort, merge sort; Searching & data modification; Hashing: Hash function, collision resolution	06	CLO3
7	Tree - Tree terminology; representation of binary trees in memory; Traversing binary tree; Binary search tree; Insertion & deletion on binary search tree; Heap; Insertion & deletion on heap; Heapsort; B trees; General tree; Balanced binary search tree (AVL tree, red-black tree)	06	CLO2
8	Graph – graph terminology; representation of graphs – adjacency matrix, path matrix, adjacency list; Traversing a graph – BFS & DFS	06	CLO2

20. Weekly Activity Plan:

Week	Topic	TLS AS	CLOs
Week 1	1. Write a program to create an array of elements and then display all the element of the list.	ts	CLO1
	2. Write a program to find the largest numb from a given list of integers.	er	
	3. Write a program to calculate the roots the quadratic equation $ax^2 + bx + c =$ where a, b and c are known.		
Week 2	 Write a program to create a array of n elements to read the marks of n students and the count how many student passed [pass marks ≥ 40] in the examination. Write a program to create an array of elements and then insert an element to the list. Write a program to create an array of elements and then delete an element from the list. Write a program to sort n numbers using Bubble Sort algorithm. 	Assignment Assignment Assignment an an n n m m	CLO1

Week		Topic	TLS	AS	CLOs
Week 3	1.	Write a program to search an element from	Lab work	Lab work,	CLO1
		a list of n numbers using Linear Search		Lab test	
		algorithm.			
	2.	Write a program to search an element from			
		a list of n numbers using Binary Search			
	2	algorithm. Write a program to determine whether a			
	٥.	number n is prime or not where $1 < n < 2^{15}$			
		by using sieve method.			
	4.	Write a program to write 100 randomly			
		generated integer to a file called			
		RAND.DAT. And then read the contents of			
		the file and display them on the screen.			
Week 4	1.		Lab work	Lab work,	CLO1
		text T so that S begins in position K of T.		Assignment	
	2.	A text T and a pattern P are in memory. Write a program to delete first occurrence			
		of P in T.			
	3.	Write a program that will read a string (S)			
		and find the index of the first occurrence of			
		a pattern (P) in the string S.			
	4.	Write a program which calculates the no. of			
	_	occurrence of each letter of an input text.			
	5.	A text T and patterns P and Q are given.			
		Write a program to replace the first occurrence of a pattern (P) in T by Q.			
	6.				
	0.	following string operation without using			
		any built in functions related to string.			
		a) Find the length of a string S			
		b) Copy string S2 to S1.			
		c) Concatenate string S2 to S1.			
		d) Compare two strings S1 and S2			
XX 1 5	1	e) Reverse a string S.	T 1 1	T 1	CI O1
Week 5	1.	Write a program to interchange the row and column of a matrix.	Lab work	Lab test,	CLO1
	2	Write a program to add two matrices.		Assignment	
		Write a program to calculate the			
		multiplication of two matrices.			
	4.	Write a program to calculate the row sum			
		and column sum of a matrix.			
	5.	Write a program to check if a Matrix is a			
W 1 6	1	Sparse Matrix.	T 1 1	T 1	CI O1
Week 6	1.	Write a program to create a Linked List of n elements and then display the list.	Lab work	Lab test,	CLO1
	2	Write a program to create a Linked List of		Assignment	
	2.	n elements and then search an element from			
		the list.			
	3.	Write a program to create a Linked List of			
		n elements and then insert an element to the			
	<u> </u>	list.			

Week		Торіс	TLS	AS	CLOs
Week 7	1.	Write a program to create a Linked List of	Lab work	Assignment,	CLO1
		n elements and then delete an element from		Lab work	
		the list.			
	2.	Write a program to create a Circular			
		Header Linked List of n elements and then			
		display the list.			
	3.	Write a program to create a Two way			
		Linked List of n elements and then display			
		the list.			
Week 8	1.	Write a program to implement the push and	Lab work	Assignment,	CLO1
		pop operation of a stack		Lab test	
	2.	Write a program to evaluate a Postfix			
		expression.			
	3.	Write a program to convert an Infix			
		expression into its equivalent Postfix			
		expression.			
	4.	Write a program to implement the			
		Euclidean Algorithm for finding the			
		Greatest Common Divisor (GCD) of two			
		given positive integers.			
	5.	Write a program that will read a positive			
		integer in base b (2<=b<=16) and convert it			
W 1.0	1	into base d (2<=d<=16).	T 1 1	A .	CI O1
Week 9	1.	Write a program to show the insert and	Lab work	Assignment,	CLO1
	2	delete operations of a circular queue.		Lab test	
	۷.	Write a program to show the insert and			
Week	1	delete operations of a priority queue.	I ab vyanla	I ob tost	CLO1
10	1.	Write a program to calculate the Factorial	Lab work	Lab test, Lab work	CLOI
10		of a number using recursive and non- recursive method		Lab work	
	2.				
	\ ² ·	the Fibonacci sequence using recursive and			
		non-recursive method.			
	3	Write a program to move n disks for			
	٥.	Tower of Hanoi problem.			
Week	1.	Write a program to sort n numbers using	Lab work	Assignment,	CLO1
11	**	Insertion Sort algorithm.	200	Lab test	
	2.	Write a program to sort n numbers using			
		Selection Sort algorithm.			
	3.	Write a program to sort n numbers using			
		Quick Sort algorithm.			
	4.	Write a program to sort n numbers using			
		Merge sort algorithm.			

Week	Topic	TLS	AS	CLOs
Week	1. Write a program to create a Binary Search	Lab work	Class work,	CLO2
12	Tree of n elements and then display the		Assignment	
	elements (preorder, inorder and postorder)			
	of the tree.			
	2. Write a program to create a Binary Search Tree of n elements and then search an			
	element from the tree.			
	3. Write a program to create a Binary Search			
	Tree of n elements and then delete an			
	element from the tree.			
	4. Write a program to create a Maxheap of n			
	elements and then display the elements of			
	the heap.			
	5. Write a program to create a Maxheap of n			
	elements and then delete an element from			
	the heap.			
	6. Write a program to sort n numbers using Heap sort algorithm.			
Week	Write a program to display the adjacency	Lab work	Assignment,	CLO2
13	matrix of a graph.	Luo work	Lab test	CLO2
	2. Write a program to display the adjacency			
	list of a graph.			
	3. Write a program to display the path matrix			
	of a graph from an adjacency matrix			
	4. Write a program to display the path matrix			
	of a graph using Warshall's algorithm			
	5. Write a program to traverse a graph using			
	Breadth First Search. 6. Write a program to traverse a graph using			
	Depth First Search.			
Week	Write a program to find the 100!	Lab work	Assignment,	CLO1
14	2. Write a program to determine the value of		presentation	
	the n th Fibonacci number F_n where		•	
	$F_{n} = F_{n-1} + F_{n-2}$ and $F_{1} = F_{2} = 1$ and			
	n<=500.			
Week	Project	Demo	Project,	CLO3
15		Presentatio	Presentation	
		n, Demo Project	, Report	
		Troject		

Part C

21. Assessment Strategy:

The assessment and evaluation strategies for the course are given as follows:

Assessment	Description
Strategies	
Class	Students' individual in-class responses, attention, and sense of
Participation:	discipline, morality will be judged on the basis of 10 (ten) marks.
Lab Test/Quiz:	Students will sit for only 1 (one) class test/quiz during the semester. The test/quiz will be taken before midterm. Class test/quiz marks will be assessed in 5 (five). No makeup class test will be taken. Students are strongly recommended not to miss any test.

Assessment Strategies	Description
Project	The students will have to form groups consisting of a maximum of 3 members. There will be 1 projects consisting of 15 (Marks) marks. The topics or case studies will be given as assignments in groups during the class which they have to prepare at home and will submit on or before the due date.
Lab Assignment:	Students will be given four (4) lab assignments. Each assignment will consist of 10 to 15 problems and will be worth 10 marks. After submission, students will be evaluated based on their submitted source codes and a viva voce. Late submissions will not be accepted.
Oral Presentation:	Students, in groups, will have to present the report of their project. Oral presentations will be assessed for 5 marks. No late presentation will be accepted
Viva-vocé	Students will have to appear for viva-vocé during their Midterm (5 marks) and Final examination (5 marks).
Midterm Exam:	Midterm exam will be held according to the Academic Calendar published by the university. Midterm assessment marks will be 15 (Fifteen).
Final Exam:	Final exams will be held according to the Academic Calendar published by the university. Final assessment marks will be 35 (Fifteen).
Make-up Procedure:	No late submission and/or make-up assignment/presentation/quiz will be allowed without prior permission and adequate and reasonable proof of absence.

22. Marks Distribution:

Course Assessment Pattern (Theory courses):

Bloom's Category		Evaluations out of 100 marks					
		CIE (50 marks)			SEE (50 marks)		
Cognitive	Affectiv	Attendan	Assignment	Mid	Project/Viva	Fina Exam	
learning	e	ce	/	Lab/Viva	(20)	(30)	
	learning	Marks	Lab Test	(20)	, ,	` '	
		(10)	(20)				
Remember				5	5		
Understand			5				
Apply			5	15	10	30	
Analyze			10		5		
Evaluation							
Create	Create						
	Respond	10					
	ing						
Total all	Total allocated		20	20	20	30	
mar	ks						

Note: CIE=Continuous Internal Evaluation, SEE= Semester End Examination

Delivery methods & activities: Lecture, White Board Writing, Questions and Answers,

Discussions Powerpoint Presentation,

Assessment tools: Class Attendance, Quiz, Lab Assignments, Mid-Term & Final Exam, Project evaluation & Viva-voce.

23. Grading Policy: As per IIUC grading policy

24. Code of Conduct:

- a. It is mandatory for all the students to participate in the class regularly and maintain proper discipline in the class.
- b. If a student fails to attend any class test, term exams, or final examination, he/she will get a zero in that class test, term, or final examination.
- c. Adopting unfair means in the exams will be considered as a serious crime and the student shall be placed to the university disciplinary committee.
- d. All the assignments, class test and exam copies should be neat and clear and demonstrate professionalism.
- e. No student is allowed to duplicate other student's work directly or with minor changes.
- f. Plagiarism is strictly restricted. One needs to provide a reference while using someone else's words, ideas, or research in assignments/exams.

Part D

25. Learning Materials:

Text Books:

#	Name of	Title of	Edition	Publisher's Name	Year	ISBN
	Authors	Book				
1	Seymour	Data	Special	Tata McGraw-Hill	2014	ISBN-13:
	Lipschutz	Structures	Indian			978-0-07-
			Edition			060168-0

Reference Books:

#	Name of	Title of Book	Edition	Publisher's Name	Year	ISBN
	Authors					
1.	Y. Langsam,	Data Structures	2 nd	Prentice Hall India	2014	ISBN:13
	Augenstein, A.	Using C and	Edition			978-
	M. Tanenbaum	C++				0387202778
2.	Edward M.	Data Structures	1 st	CBS Publishers and	1983	ISBN-
	Reingold,		Edition	Distributors		13: 978-
	Wilfred J.					0316739511
	Hansen					
3.	Robert	Algorithms in C	3 rd	Pearson Education,	2001	<i>ISBN</i> -13:
	Sedgewick			Inc		978-
						0321573513
4.	D. Samanta	Classic Data	2 nd	Prentice Hall of	2003	<i>ISBN</i> -10:
		Structures		India		8120318749