Алгебра 10

Igor Engel

1

Определение 1.1. Отображение $f: G \times X \mapsto X, \langle g, x \rangle \to gx$ называется действием G на x, если:

- 1. $\forall x \in X \quad (e, x) \to x$
- 2. $\forall g_1, g_2 \in G$ $f(g_1, f(g_2, x)) = f(g_1g_2, x)$

Определение 1.2. Группа действует на множестве, если существует действие этой группы на это множесетсво.

Обозначается $G \curvearrowright X$

Лемма 1.2.1. Если $G \curvearrowright X$.

- 1. $\forall n > 0 \quad G \curvearrowright X^n$
- 2. $G \curvearrowright 2^X$
- 3. $G \curvearrowright \{f \mid f : X \mapsto A\}$
- 4. Пусть $H \leq G$, тогда $H \curvearrowright X$
- 5. Если существует гомоморфизм $H\mapsto G$, то $H\curvearrowright X$

Теорема 1.1. G - группа, X - множество. Тогда есть биекция между действиями $G \curvearrowright X$ и гомоморфизмами $G \mapsto S_X$.

Доказательство. Действие по гомоморфизму тривиально: $S_X \curvearrowright X$, ограничим S_X на образ G.

Построим гомоморфизм $T_g:G\mapsto S_X$ по действию:

$$T_q(x) = gx$$
.

 T_g - биекция, так-как $T_{g^{-1}}\left(T_g(x)
ight) = g^{-1}gx = x.$

 T_g - гомоморфизм, так-как $T_{g_1}\left(T_{g_2}(x)\right)=g_1g_2x=T_{g_1g_2}(x).$ Покажем что построение T_g обратно ограничению на образ:

$$\langle g, x \rangle \to T_g(x) = g \cdot x.$$

$$\langle g, x \rangle \to \varphi_g(x) = g \cdot x.$$

Лемма 1.1.1. G - все изометрии, сохраняющие правильный тетраэдр. $G \cong S_4$.

Доказательство. Заметим, что любая изометрия пространства определяется образом четырёх точек, не лежащих в одной плоскости.

Гомоморфизм существует, так-как $G \curvearrowright$ множество вершин.

Если все 4 вершины остались на месте, то G - тождественная перестановка. Значит, гомоморфизм инъективен.

Заметим, что перестановки (12) и (1234) входят в образ G, как симметрия и поворот на 120° .

 $S_4 = \langle 12, 1234 \rangle$, значит гомоморфизм сюръективен, а значит он изоморфизм. \square

Лемма 1.1.2 (Теорема Кэли). Любая группа G, |G| = n вкладывается в S_n .

Доказательство. Зададим действие $G \curvearrowright G$: f(g,h) = gh.

Получили $\varphi: G \mapsto S_G$, докажем что он инъективен:

Путь $g \neq e$, тогда $\varphi(g)(1) = g$. Значит, ядро тривиально.

Теорема 1.2. $G \curvearrowright X, Y \subset X.$ $G \curvearrowright Y \iff \forall g \in G \quad g(Y) \subset Y.$

Y называется инвариантным подмножеством, если $G \curvearrowright Y$.

Определение 1.3. $G \curvearrowright X, x \in X$, орбитой элемента x назывется $Gx = O_x = \{gx \mid g \in G\}$.

Лемма 1.3.1. $G \curvearrowright X, \, x \sim y := y \in O_x$ - отношение эквивалентности.

Доказательство.

$$x = ex$$
.

$$y = gx \implies x = g^{-1}x.$$

y = gx $z = hy \implies z = hgx$.

Определение 1.4. $G \curvearrowright X, x \in X, G_x = \operatorname{Stab}_x - \{g \in G \mid gx = x\}.$

Лемма 1.4.1. $\forall x \in X \quad \operatorname{Stab}_x \leq G$.

Теорема 1.3. $G \curvearrowright X$, $x \in X$, есть биекция $f : y \in O_x \mapsto g \operatorname{Stab}_x \in G/\operatorname{Stab}_x$.

Доказательство. Пусть y=gx. Тогда $y=gx\to_f g\operatorname{Stab}_x\to_{f^{-1}} gx=y$ Докажем корректность:

 $h \in \text{Stab}_x, g_2 = g_1 h$. Тогда $g_2 x = g_1 h x = g_1 x$.

Обратимость тривиальна.

Лемма 1.3.1. $G \curvearrowright X, x \in X$. Тогда $|G| = |\operatorname{Stab}_x| |O_x|$.

Лемма 1.3.2 (Лемма Шрайера). $\langle g_1,\dots,g_n\rangle=G,\,G\curvearrowright X,\,x\in X.$ При этом $g_i^{-1}\in\{g_1,\dots,g_n\}$. Для каждого $y\in O_x$, зафиксируем h_y , такое, что $h_y(x)=y$. При этом $h_x=e$ Тогда $\mathrm{Stab}_x=\left\langle h_{g_iy}^{-1}g_ih_{g_iy}\right\rangle$

Доказательство. Возьмём $g \in \operatorname{Stab}_x$.

$$g = g_{i_s} \dots g_{i_1}.$$

 $x \to^{g_{i_1}} x_1 \to^{g_{i_2}} \to \dots \to^{g_{i_s}} x.$
Тогда $x = (h_{x_i}^{-1} x_i h_{x_i})(x).$