

#Case 1: Choosing ordering goods under uncertainty

Applied Machine Learning and Optimization 6th May 2022 Team 4 Marc Fernández Fernando Camara Carla Torruella

1. Executive summary

Situation of the caserta warehouse

The results for 2021 were underwhelming. During the year, the service level at Caserta was 75.72% (or 276 out of 365 days), leaving 24.38% of the days with stock outs (89 out of 365 days). Not being able to satisfy the demand on 89 days translates into a large opportunity cost of 4,463,278 kgs of demand not satisfied. Furthermore, the Caserta Warehouse had an average stock of 359,941 kgs, and a redundant stock —over 10 days¹ worth of daily demand— on 38.63% of the days (141 out of 365), resulting in an average redundant stock of 356,018 kgs of coffee beans and the same amount in stagnant money. These results imply that, for 63% of the year, the warehouse had either too much stalled money in the form of stock, or too little stock to satisfy the demand.

A deeper analysis of the purchasing policy shows no consistency. The orders were made seemingly at random, and oftentimes there would be clustered around a date, while there were extensive periods of time without orders at other points throughout the year. For instance, may saw only 2 orders

During the study, we are going to assume a minimum desired service level of 95% to present the best possible policy. Using this strategy will help Beanie Limited sell more products and increase customers' satisfaction.

Under no restrictions on minimum order quantity (MOQ), and a fluctuating lead time, our study suggests that the best policy is buying once the stock is lower than 401,194 kgs (8 days of demand), and buys just enough so that if the order was to arrive on that same day² the stock would get to 902,686 (18 days of demand). This would maintain an average stock level of 315,315 kgs (44,626 kgs less than in 2021) with a service level of 95,77%. It would also be potentially beneficial to buy just enough so that the order would be 802,387 minus the current stock, which would mean a stock level of 260081 kgs, but would not guarantee a 95% service level.

With a MOQ restriction, the best policy would be to buy every time the stock level is below 8 days of demand (same as under no restrictions), and the order quantity would be 500,000 (enough to cover roughly 10 days of demand). This would yield a service level of 96% and an average stock of 298,226 kgs.

Lastly, we do not recommend accepting the offer to have a guaranteed lead time of 15 days with an MOQ restriction, as the best policy under these assumptions would translate into an average stock of 382,953 kgs, with a service level of 96%.

¹ The 10 day mark satisfies 95% of Diemen0s lead times and is consistent with the results of the optimal policy for this situation (Level 1 in the analysis of the results)

² See section "purchase policy", under "Methodology", for a better understanding on the proposed formula

2. Methodology

Simulation process

In order to work out a solution for the problem at hand, we run several simulations where we modeled the elements that take part in the choice of a purchasing policy: (i) the demand, (ii) the lead time from Diemen to Caserta, (iii) and different values for when to buy and which quantities.

Demand simulation

In order to simulate the demand we did some exploratory statistics to gain insights on how it behaved. On a close inspection, we realized that the periods are not correlated, and no stationality is present (the distribution is, thus, iid); indeed it behaves similarly to a N(50149.2, 14220.77), but it presents mesokurtic features (kurt 0.59), and slightly fat tailed to the right (skew 0.156). It is noticeable, however, that it is not a normal distribution at the 95% CI, but it is at the 99%. That happens probably because of the presence of the three outliers on the distribution.

QQplot and ECDF of a theoretical normal with the same Mean and SD as the observed distribution vs the empirical data.

QQplot: red is the theoretical quantiles and blue the observed values

ECDF: Light blue is the theoretical ECDF and orange is the empirical distribution

Given the outcome of this analysis, we decided to resample the empirical distribution, but forcing lower and upper limits to make sure no extreme values are present (for instance a negative demand); in this case, the lower bound is 1,000, and the upper bound is 11,000. The results of our demand generation *versus* the empirical data are quite similar:

	Simulated	Empirical
Count	365	365
Mean	49968.5	50149.2
Standard deviation	15295.05	14220.77
Min	2392.43	1380.99
25%	39358	40200.06
50%	51202.21	50873.13
75%	59796.67	59385.01
Мах	101505.51	107790.97

Lead time simulation

Same as with the demand generation function, for the lead time generator we did some data exploration to see how the variable behaved. In this case we cannot reject the null hypothesis of normality using a Jarque-Bera test at any of the standard confidence levels (p = 0.53). In this case, and because of the JB analysis, we decided to generate the data using a random normal distribution with the same mean and standard deviation as the empirical lead time (N[7.3, 1.84]) and restricted it to a lower and upper bound [4, 12], but this time we restricted the values to the nearest integer.

	Simulated	Empirical	
Count	60	60	
Mean	7.17	7.3	
Standard deviation	1.79	1.84	
Min	4	4	
25%	6	6	
50%	7	7	
75%	8	9	
Max	11	12	

Purchase Policy

The fact that the data is not autocorrelated for any lags implies that the best forecast we can create is to use the sample unconditional mean. Because of this restriction, the best purchasing policy we can create doesn't take into account past values of demand to make an estimate for any number of

periods ahead. On top of that, we assumed only one order can be made at a time, otherwise it could affect lead times at Diemen (more purchase orders translate into more workload, and possibly a bottleneck).

For the moving parameters of the purchase policy, we deemed best to estimate two values: a *trigger*, and a *goal*. The trigger refers to the point at which an order is made, while the *goal* makes reference to the amount of stock we would have at the end of the day if the lead time was 0. The reason why we set a goal, instead of a fixed value is quite simple: once the stock crosses the trigger point it ends up at some random value. The goal is simply a dynamic way of stating the amount to buy.

One last aspect to take into account is that we will be working in terms of *daily demand* instead of stock in absolute terms. This considerably simplifies the simulations, given that it provides more coherent steps to iterate over, and creates a better framework to think about the stock. Because the demand isn't autocorrelated at any lag, it is also consistent with the best forecast we can make (the unconditional mean). A unit of daily demand corresponds to 50,149 kgs of coffee beans.

Formula for the purchase policy amount once the stock crosses the trigger point:

$$Purchase\ amount = goal - stock_{i}$$

where:

stock;: Caserta's stock on day i

When the MOQ rule is applied, the formula is adjusted to account for it.

$$Purchase\ amount = max(goal - stock_i, stock_i + 500,000)$$

Simulation methodology

In order to evaluate each stock policy and find the one that maximizes the company's results, we have run several simulations where we changed the daily demand for the trigger and goal variables, which we have repeated randomly for 500 periods of one year each. Doing this, we can present results with a high confidence of their accuracy. The iterations go from 6 to 11 days of demand for the trigger parameter, and from 11 to 19 for the goal, with a 1 day step up for both parameters and a minimum difference (goal - trigger) of 4 days, which is the minimum lead time (values below that are irrelevant because we know for sure they wouldn't arrive on time). In the case of 15 day lead time, the iterations were changed to 14-19, and to 25-30 respectively.

To calculate the initial stock that we have used for the simulation we remove the first 21 days to be able to start with a random and positive stock but at the same time consistent with our purchasing policy.

After each simulation we compute the mean stock and the service level of the 500 years simulated in order to get the two metrics that will help us make the decision of our choice of policy.

Making the choice

There are two main ways to approach the results of the simulations in order to make the best choice. The first one is to set a minimum service level and choosing the policy that holds the least stock while satisfying that restriction; and the second is to (again) set a minimum service level and choosing the policy that is the most cost effective, that is, the one that yields the lowest stock level per % service level. Although the distinction is slim, it is worth considering as the two ways of looking at the problem don't necessarily lead us to the same conclusion and ranking of policies. For instance, consider the case where we have choice A, with a service level of 95% and an average stock of 10,000; but choice B had a service level of 98% with an average stock of 10,100. If we were to minimize stock levels, we would choose option A, as it would be lower in absolute terms, but if we wanted to optimize the cost per % of service level, option B we'd be better off choosing option B (105 €/SL vs 103 €/SL).

Throughout the analysis, we will assume a minimum service level of 95%, which satisfies the demand on 346 out of 365 days, leaving 19 days where there are stock outs.

3. Analysis of the results

LEVEL 1. Analyzing Lisa's situation

(See the executive summary)

LEVEL 2. Ordering policy

The two main rationales explained in the methodology section are consistent in this scenario –The policy choice that has the lowest absolute cost is also the most cost effective—. The chosen policy choice is to set a trigger on 8 days of demand, and a goal of 18 days. That translates into buying the day the stock dips below 401,194 kgs, with a goal of 902,686 kgs.

This policy would yield a service level around 95.87%. Note that, because of small deviations, the *observed* service level on a given year could be slightly higher, but also slightly lower −this is precisely the reason why the graph below differs slightly to the data on the appendix—. The policy suggested is best to ensure a minimum service level of 95% is guaranteed, although a policy could be as aggressive as a [8, 16] (trigger, goal), although it would not *guarantee* a service level above 95%, it is an observed value in some simulations, and it would save up around 55,234 € in stock.

LEVEL 3. Minimum Order Quantity of 500,000 kgs of beans.

In this paragraph we have a new restriction, a Minimum Order Quantity (MOQ) of 500,000 kgs of beans. This restriction affects the previously proposed policy.

The new policy we propose is ordering when there's 401,194 kgs of beans left, this is, stock to supply 8 days; and the goal will be 802,387 kgs, a stock to supply for 16 days. Same as with the first case, where no MOQ rule was present, the two decision criteria are consistent with each other.

Although we are suggesting [8,16] (trigger, goal), other equally efficient intervals will be those from [8,13] to [8,16]. The reason for the interval to be equally as good is that a MOQ of 500k translates into roughly 10 days of demand, so whenever goal minus trigger is less than 10 days, the MOQ rule forces it to buy the equivalent of 10 days of stock, thus in reality we are actually observing the same data and the same purchase amounts. It's also worth noticing that these intervals are not completely flat, but small deviations are present. This is, again, because of the randomness of the lead time and the demand, but seeing how small these variations are hints us towards how thin the confidence interval would be (thanks to having a sample size of 500 years).

LEVEL 4. 7 days target lead- time or 15- day lead time

In this section, Caserta is offered a choice between a lead time of exactly 15 days with 100% certainty or the previous scenario with a target lead time of 7 days. Here the MOQ rule mentioned before still applies.

After running the simulation, the optimum order policy is at the combination [15, 30], meaning, we have to place an order when we have 752,238 units of stock left, translated to a demand enough to cover for 15 days. Our goal is a quantity of 1,504,476 units, which translates to a demand of 30 days.

First level

TrackingIteration_	Availability_rate	Mean_stock	TrackingIteration_	Availability_rate	Mean_stock
[6, 11]	0,383972255	38805,75186	[8, 16]	0,92370193	260081,4578
[6, 12]	0,616027745	85191,1281	[8, 17]	0,948126517	288287,1967
[6, 13]	0,714487648	124900,8977	[8, 18]	0,958771867	315315,6657
[6, 14]	0,784643959	158059,7901	[8, 19]	0,963839777	341917,8709
[6, 15]	0,827871861	188217,0286	[9, 14]	0,970030846	190044,8317
[6, 16]	0,856405564	214661,3277	[9, 15]	0,88692808	236479,8533
[6, 17]	0,874036412	240650,0557	[9, 16]	0,934615743	276695,7105
[6, 18]	0,886484295	266295,5306	[9, 17]	0,961675643	309192,0221
[6, 19]	0,895754461	292098,8428	[9, 18]	0,975361739	339164,4854
[7, 12]	0,904186368	90801,17487	[9, 19]	0,981793876	364502,0883
[7, 13]	0,730222824	136327,5516	[10, 15]	0,984297697	241795,8342
[7, 14]	0,812344881	176074,8922	[10, 16]	0,93686206	285310,8791
[7, 15]	0,867976836	209184,5542	[10, 17]	0,96368637	324302,1849
[7, 16]	0,899847141	237914,3281	[10, 18]	0,981317218	359319,069
[7, 17]	0,917527298	265017,8752	[10, 19]	0,990269613	388916,4888
[7, 18]	0,92876984	290883,8346	[11, 16]	0,992663858	291380,1208
[7, 19]	0,936105982	315786,6689	[11, 17]	0,966047742	335605,8387
[8, 13]	0,940280844	140348,315	[11, 18]	0,982977301	373868,7189
[8, 14]	0,819335857	184477,6008	[11, 19]	0,992313213	410027,603
[8, 15]	0,880348015	225054,3508			

Second level

TrackingIteration	Availability_rate	Mean_stock	TrackingIteration_	Availability_rate	Mean_stock
[6,11]	0.8603831887837564	196517.26449649647	[8,16]	0.9602401915396037	298226.15356651036
[6,12]	0.8625747174297752	197953.52381186924	[8,17]	0.9622728343587861	301054.1968380475
[6,13]	0.8628431796889124	198733.95685874863	[8,18]	0.9637959467677691	314717.2346794477
[6,14]	0.8615994871822968	197220.42952754613	[8,19]	0.9688309838319974	340466.699468793
[6,15]	0.8645196991031169	199517.56745661725	[9,14]	0.9817610028435084	346795.8656864502
[6,16]	0.8723653716558643	213900.14299664737	[9,15]	0.9830868776743498	348980.622859357
[6,17]	0.8857830057911145	240245.9850298284	[9,16]	0.9838593915220715	349475.99485966103
[6,18]	0.8954202530119821	265755.042986297	[9,17]	0.9817719604867385	348237.35133667756
[6,19]	0.9034631631428712	291318.8121975601	[9,18]	0.9837662515546156	351566.6728876669
[7,12]	0.9204584677927471	247224.3762283075	[9,19]	0.9850537746341517	366431.8528605738
[7,13]	0.919981810312238	247348.14103409118	[10,15]	0.9935788210671649	398134.95850319264
[7,14]	0.9194174916858882	247136.09233850503	[10,16]	0.9934637658132489	398886.1028870583
[7,15]	0.922195254244717	249070.4574511378	[10,17]	0.9933322740944878	397989.31213667756
[7,16]	0.9237895913346957	251149.14053637336	[10,18]	0.9935349904942445	397620.953068489
[7,17]	0.9280521145512023	264641.1342901023	[10,19]	0.9933815834890232	400747.4724715327
[7,18]	0.935925181212025	291488.2029041052	[11,16]	0.9976769796352201	448099.0086185652
[7,19]	0.9399028057045491	315007.12396194367	[11,17]	0.9980769336131184	449946.5528380473
[8,13]	0.9611332394628563	298945.9148806666	[11,18]	0.9980111877537379	447816.6987506808
[8,14]	0.9603497679719046	298387.78089740913	[11,19]	0.9982303406183398	449508.3704660532
[8,15]	0.9603881197232099	298922.5321031926			

Third level

iteration_tracking	availability_rate	mean_stock	iteration_tracking	availability_rate	mean_stock
[14,25]	0,702549296	150444,7273	[16,36]	0,994121224	565332,1935
[14,26]	0,770623654	201488,3788	[16,37]	0,994554051	590058,8614
[14,27]	0,829959292	248357,9288	[16,38]	0,994362293	614686,3387
[14,28]	0,883142214	294924,7948	[16,39]	0,995047145	640800,0396
[14,29]	0,916305521	333317,2315	[17,28]	0,893102711	300670,4087
[14,30]	0,931284619	364510,715	[17,29]	0,940258929	349411,5002
[14,31]	0,935678634	389313,5675	[17,30]	0,973477025	399840,7685
[14,32]	0,939267262	413951,368	[17,33]	0,998685083	513331,6277
[14,33]	0,943283239	439741,7874	[17,34]	0,998833011	539508,8748
[14,34]	0,94476252	463873,4689	[17,35]	0,998860405	565845,4735
[14,35]	0,948466204	490262,8999	[17,36]	0,998926151	590205,3067
[14,36]	0,949803036	513672,5135	[17,37]	0,999167219	614690,485
[14,37]	0,95266846	540124,7448	[17,38]	0,999150783	640336,3615
[14,38]	0,954476471	565059,4073	[17,39]	0,999106952	665016,9374
[14,39]	0,955747558	589776,6289	[18,29]	0,941809436	350817,2997
[15,26]	0,76883208	200080,7497	[18,30]	0,974189271	401532,5437
[15,27]	0,833646539	250546,1844	[18,34]	0,999835635	563679,9293
[15,28]	0,890335907	298738,7947	[18,35]	0,999846593	590080,8457
[15,29]	0,936221038	344948,0185	[18,36]	0,999912339	615549,8951
[15,30]	0,961631812	382952,9983	[18,37]	0,999923296	639210,2979
[15,31]	0,970945809	413094,0958	[18,38]	0,999912339	665094,0809
[15,32]	0,974211187	439611,7031	[18,39]	0,999923296	689407,9243
[15,33]	0,975931537	465245,1664	[19,30]	0,973564686	401613,1012
[15,34]	0,976736923	489800,4686	[19,35]	0,999994521	613917,6328
[15,35]	0,977597098	515021,0815	[19,36]	1	639570,9466
[15,36]	0,979361279	540431,0414	[19,37]	0,999994521	665724,5967
[15,37]	0,979733839	565149,0678	[19,38]	0,999983564	690121,0632
[15,38]	0,98135557	590924,0877	[19,39]	0,999994521	715375,488
[15,39]	0,981919889	615869,2424	[20,36]	1	664471,1711
[16,27]	0,833054827	250068,2794	[20,37]	1	689820,5956
[16,28]	0,893447877	300400,378	[20,38]	1	715200,359
[16,29]	0,941431397	350262,5962	[20,39]	1	741217,0197
[16,30]	0,972375781	396294,8271	[21,37]	1	714629,1159
[16,32]	0,991568094	462463,4583	[21,38]	1	740497,9239
[16,33]	0,993217219	489230,7713	[21,39]	1	765461,5712
[16,34]	0,993765101	514158,5835	[22,38]	1	764298,1311
[16,35]	0,993945902	540315,4522	[22,39]	1	790050,118

In this paragraph, we will show some metrics that will explain Lisa's situation. Lisa made a total of 60 product orders. The lead time average is 7.3 days and 95% of the product orders were served within the first 10 days. Lisa had a negative stock on 24.4% of the days, this is, a service level of 75.6%. The demand had an average of 50,149 kgs/day and a standard deviation of 14,220 kgs/day.

In this histogram we can see the number of days in which the demand is between certain values throughout the year.

As it might be seen is a graph that approximates a normal distribution.

Different metrics have been performed to see if we can treat it as a normal distribution.

- The kurtosis is 0.59.
- The skew is 0.156
- The jarque bera has a p-value of 0.03. With a confidence level of 95% we reject the null hypothesis that this is a normal distribution but with a 99% of level we don't reject the null hypothesis and we assume that's a normal distribution.
- The orange is empirical data and the blue is a theoretical normal data with the same mean and standard deviation as the empirical distribution.

- It is not a normal distribution, the kurtosis is too low. But we will assume it behaves as one because it's fairly close. So, we assume it is a normal distribution.

We performed a CI for a normal distribution at 95% confidence and obtained the following interval: (48690, 51608). There's about 0.4 days (in average) between the bottom and top brackets, so using the mean will give us a fairly good approximation.

In the following graph, we can see the amount of stock in relation to the days of the year.

A green line has been drawn at 10 and a red line at 0. All stock below 0 is customers who want to buy but cannot. All stock above 10 is surplus stock.

The 10 day cutoff satisfies 95% of the POs served. This is why we think that all stock in excess of the 10-day demand is unnecessary. On average, the amount in \$ of overstock for the days that was stock surplus is 356,018\$ and the amount in \$ for the days that there were negative stock is 235,185\$.

