Written Exercises

Exercises 1-4 deal with figures in a plane. Draw a diagram showing the locus. Then write a description of the locus.

- A 1. Given two points A and B, what is the locus of points equidistant from A and B?
 - 2. Given a point P, what is the locus of points 2 cm from P?
 - 3. Given a line h, what is the locus of points 2 cm from h?
 - **4.** Given $\odot O$, what is the locus of the midpoints of all radii of $\odot O$?

In Exercises 5-8 begin each exercise with a square *ABCD* that has sides 4 cm long. Draw a diagram showing the locus of points on or inside the square that satisfy the given conditions. Then write a description of the locus.

- 5. Equidistant from \overline{AB} and \overline{CD}
- **6.** Equidistant from points B and D
- 7. Equidistant from \overline{AB} and \overline{BC}
- 8. Equidistant from all four sides

Exercises 9-12 deal with figures in space.

- 9. Given two parallel planes, what is the locus of points equidistant from the two planes?
- 10. Given a plane, what is the locus of points 5 cm from the plane?
- 11. Given point E, what is the locus of points 3 cm from E?
- 12. Given points C and D, what is the locus of points equidistant from C and D?

Exercises 13-17 deal with figures in a plane. (Note: If a point in a segment or in an arc is not included in the locus, indicate the point by an open dot.)

- **B** 13. a. Draw an angle *HEX*. Construct the locus of points equidistant from the sides of $\angle HEX$.
 - **b.** Draw two intersecting lines j and k. Construct the locus of points equidistant from j and k.
 - 14. Draw a segment \overline{DE} and a line n. Construct the locus of points whose distance from n is DE.
 - 15. Draw a segment \overline{AB} . Construct the locus of points P such that $\angle APB$ is a right angle.
 - 16. Draw a segment \overline{CD} . Construct the locus of points Q such that $\triangle CQD$ is isosceles with base \overline{CD} .
 - 17. Draw a segment \overline{EF} . Construct the locus of points G such that $\triangle EFG$ is isosceles with leg \overline{EF} .