A Data-Free Approach to Mitigate Catastrophic Forgetting in Federated Class Incremental Learning for Vision Tasks NEURAL INFORMATION PROCESSING SYSTEMS

<mark>Sara Babakniya¹,</mark> Zalan Fabian¹, Chaoyang He², Mahdi Soltanolkotabi¹, Salman Avestimehr¹ ¹University of Southern California ²FedML

FedML

Highlights

- In federated learning, clients' data can dynamically change.
- Continual learning targets this problem in centralized setting.
- Instead of relying on user's memory data, we propose using a generative model trained by the server in a data-free manner.
- Our method achieves good performance along with efficiency and privacy.

Background

Federated Learning

Federated Learning: Privacy preserving distributed training

Common Challenges:

- Efficiency
- Statistical Heterogeneity
 - Resource Heterogeneity

Continual Learning & Forgetting

Existing Solutions:

- Episodic Memory
- GANs
- Regularization

θ	Low Error for Task 2	
θ*	Low Error for Task 1	

Challenges	y Cannot share local information	rival Should not only rely on memory	arture Should not lose performance	Should not add significant overhead	on clients
	Privacy	Client arrival	Client departure	Decourse constraints	Nesource coms

Our Solution: MFCL

Server Side

Prediction Loss Gradients	$_{pr}\mathcal{L}_{pr}$
Image Teacher model (Frozen)	$\mathcal{L}_{BN} + w_{l}$
Synthetic Image concrative model Gradients (Training)	$\min_{\mathcal{G}} \mathcal{L}_{CE} + w_{div} \mathcal{L}_{div} + w_{BN} \mathcal{L}_{BN} + w_{pr} \mathcal{L}_{pr}$
Input Noise Generative z -N(0, 1) model (Training)	$+ w_{div} \mathcal{L}_d$
Data Free Knowledge Sistillation	$\min_{\mathcal{G}} \mathcal{L}_{CE}$

Client Side

$$\min_{\mathcal{F}_t} \mathcal{L}_{CE}^t + w_{FT} \mathcal{L}_{FT}^t + w_{KD} \mathcal{L}_{KD}^t$$

SuperimageNet Dataset

- The #clients in most works is between 5-20.
- · We propose SuperImageNert; a regrouping of ImageNet tailored for FL with enough data to scale the #clients.

We focus on Class Incremental Learning where the tasks do not overlap and the model is evaluated on all the classes

		COSCI ICE SO TEIL	. no rar.		
	Average Accuracy $\tilde{\mathcal{A}}$ (%)	Average Accuracy Average forgetting Training time (s) \tilde{A} (%) \tilde{f} (%) $(T > 1)$	Training time (s) $(T > 1)$	Server Runtime (s)	
FedAvg	22.27 ± 0.22	78.77 ± 0.83	≈ 1.2	≈ 1.8	
FedProx	22.00 ± 0.31	78.17 ± 0.33	≈ 1.98	≈1.8	
FedCIL	26.8 ± 0.44	38.19 ± 0.31	≈ 24.5	≈ 2.5 for $T=1, \approx 4.55$ for $T>1$	
FedLwF-2T	22.17 ± 0.13	75.08 ± 0.72	≈ 3.4	≈ 1.8	
MFCL (Ours)	44.98 ± 0.12	28.3 ± 0.78	≈ 3.7	≈ 330 (once per task), ≈ 1.8 O.W.	
Oracle	67.12 ± 0.4		$\approx 1.2 \times T$	≈ 1.8	

