Combinatorial Reciprocity for Monotone Triangles

Lukas Riegler joint work with Ilse Fischer

University of Vienna

July 31, 2012 FPSAC'12, Nagoya University, Japan

Definition (Monotone Triangle)

- weak increase along North-East diagonals and South-East diagonals
- strict increase along rows

Definition (Monotone Triangle)

- weak increase along North-East diagonals and South-East diagonals
- strict increase along rows

Definition (Monotone Triangle)

- weak increase along North-East diagonals and South-East diagonals
- strict increase along rows

Example (The seven MTs with bottom row (1,2,3))

How many MTs with bottom row $k_1 < k_2 < \ldots < k_n$ are there?

Example

n=2: # Monotone Triangles with bottom row (k_1, k_2)

?
$$\Rightarrow k_2 - k_1 + 1 \text{ MTs}$$

$$k_1 \leq k_2$$

How many MTs with bottom row $k_1 < k_2 < \ldots < k_n$ are there?

Example

n=2: # Monotone Triangles with bottom row (k_1,k_2)

$$k_1$$
 ? $\Rightarrow k_2 - k_1 + 1 \text{ MTs}$

How many MTs with bottom row $k_1 < k_2 < \ldots < k_n$ are there?

Example

n=2: # Monotone Triangles with bottom row (k_1,k_2)

$$k_1$$
 k_2 k_2 k_2 k_3

Theorem (I. Fischer (2005))

For each $n \ge 1$, there exists a polynomial $\alpha(n; k_1, k_2, \dots, k_n)$ of degree n-1 in each of the n variables satisfying

$$\alpha(n; k_1, k_2, \dots, k_n) = \#MTs \text{ with bottom row } (k_1, k_2, \dots, k_n),$$

whenever $k_1 < k_2 < \cdots < k_n$

Example $(\alpha(3; 1, 2, 3) = 7)$

Theorem (I. Fischer (2005))

For each $n \ge 1$, there exists a polynomial $\alpha(n; k_1, k_2, \dots, k_n)$ of degree n-1 in each of the n variables satisfying

$$\alpha(n; k_1, k_2, \dots, k_n) = \#MTs$$
 with bottom row (k_1, k_2, \dots, k_n) ,

whenever $k_1 < k_2 < \cdots < k_n$.

Example $(\alpha(3; 1, 2, 3) = 7)$

Theorem (I. Fischer (2005))

For each $n \ge 1$, there exists a polynomial $\alpha(n; k_1, k_2, \dots, k_n)$ of degree n-1 in each of the n variables satisfying

$$\alpha(n; k_1, k_2, \dots, k_n) = \#MTs$$
 with bottom row (k_1, k_2, \dots, k_n) ,

whenever $k_1 < k_2 < \cdots < k_n$.

Example $(\alpha(3; 1, 2, 3) = 7)$

What does
$$\alpha(n; k_1, k_2, \dots, k_n)$$
 count for $k_1 \geq k_2 \geq \dots \geq k_n$?

Definition (Decreasing Monotone Triangle)

- weak decrease along NE- and SE-diagonals
- each row contains an entry at most twice
- two consecutive rows do not contain the same entry exactly once

What does $\alpha(n; k_1, k_2, \dots, k_n)$ count for $k_1 \geq k_2 \geq \dots \geq k_n$?

Definition (Decreasing Monotone Triangle)

- weak decrease along NE- and SE-diagonals
- each row contains an entry at most twice
- two consecutive rows do not contain the same entry exactly once

What does $\alpha(n; k_1, k_2, \dots, k_n)$ count for $k_1 \geq k_2 \geq \dots \geq k_n$?

Definition (Decreasing Monotone Triangle)

- weak decrease along NE- and SE-diagonals
- each row contains an entry at most twice
- two consecutive rows do not contain the same entry exactly once

What does $\alpha(n; k_1, k_2, \dots, k_n)$ count for $k_1 \geq k_2 \geq \dots \geq k_n$?

Definition (Decreasing Monotone Triangle)

- weak decrease along NE- and SE-diagonals
- each row contains an entry at most twice
- two consecutive rows do not contain the same entry exactly once

What does $\alpha(n; k_1, k_2, \dots, k_n)$ count for $k_1 \geq k_2 \geq \dots \geq k_n$?

Definition (Decreasing Monotone Triangle)

- weak decrease along NE- and SE-diagonals
- each row contains an entry at most twice
- two consecutive rows do not contain the same entry exactly once

Definition (Decreasing Monotone Triangle)

Triangular array of integers with

- weak decrease along NE- and SE-diagonals
- each row contains an entry at most twice
- two consecutive rows do not contain the same entry exactly once

Example (The five DMTs with bottom row (6,3,3,2,1))

					2				
				2		2			
			3		2		2		
		3		3		2		2	
1	6		3		3		2		1

				3				
			_		_			
			3		3			
		2		2		2		
		3		3		2		
	3		3		2		2	
	J		J		_		_	
6		3		3		2		1
_								_
	6	3	-	3 3	3 3	3 3 3 3 2	3 3 3 2 3 3 2	3 3 2 3 3 2 2

			3				
		3		3			
	3		3		2		
4	4	3		2		2	
6	3		3		2		1

```
2 2
4 2 2
5 3 2 2
6 3 3 2 1
```


Definition (Duplicate-Descendant)

A duplicate-descendant is a pair (x, x), which is either

- in the bottom row, or
- the row below contains the same pair (x, x).

Example (The five DMTs with bottom row (6,3,3,2,1))

Definition (Duplicate-Descendant)

A duplicate-descendant is a pair (x, x), which is either

- in the bottom row, or
- the row below contains the same pair (x, x).

Example (The five DMTs with bottom row (6,3,3,2,1))

				2				
			2		2			
		4		2		2		
	5		3		2		2	
6		3		3		2		1

				3				
			3		3			
		3		3		2		
	3		3		2		2	
6		3		3		2		1

Theorem 1 (I. Fischer, R. (2011))

Let $k_1 \ge k_2 \ge \cdots \ge k_n$ and $\mathcal{D}_n(k_1, \ldots, k_n)$ denote the set of DMTs with bottom row (k_1, \ldots, k_n) .

Then

$$\alpha(n; k_1, \ldots, k_n) = (-1)^{\binom{n}{2}} \sum_{A \in \mathcal{D}_n(k_1, \ldots, k_n)} (-1)^{\operatorname{dd}(A)},$$

where dd(A) is the number of duplicate-descendants in A.

Theorem 1 (I. Fischer, R. (2011))

Let $k_1 \ge k_2 \ge \cdots \ge k_n$ and $\mathcal{D}_n(k_1, \ldots, k_n)$ denote the set of DMTs with bottom row (k_1, \ldots, k_n) .

Then

$$\alpha(n; k_1, \ldots, k_n) = (-1)^{\binom{n}{2}} \sum_{A \in \mathcal{D}_n(k_1, \ldots, k_n)} (-1)^{\operatorname{dd}(A)},$$

where dd(A) is the number of duplicate-descendants in A.

$$\alpha(n; k_1, \ldots, k_n) = (-1)^{\binom{n}{2}} \sum_{A \in \mathcal{D}_n(k_1, \ldots, k_n)} (-1)^{\operatorname{dd}(A)}$$

Example $(\mathcal{D}_5(6,3,3,2,1))$

$$\alpha(5;6,3,3,2,1) = (-1)^{\binom{5}{2}} \sum_{A \in \mathcal{D}_5(6,3,3,2,1)} (-1)^{\mathsf{dd}(A)} = 3$$

$$\alpha(2n; n, n, n-1, n-1, \dots, 1, 1) = ?$$

$$n = 1$$
: 1
 $n = 2$: 2
 $n = 3$: 7
 $n = 4$: 42
 $n = 5$: 429

$$\alpha(2n; n, n, n-1, n-1, \dots, 1, 1) = ?$$

$$n = 1$$
: 1
 $n = 2$: 2
 $n = 3$: 7
 $n = 4$: 42
 $n = 5$: 429

$$\alpha(2n; n, n, n-1, n-1, \dots, 1, 1) = ?$$

$$n = 1$$
: 1
 $n = 2$: 2
 $n = 3$: 7
 $n = 4$: 42
 $n = 5$: 429

$$\alpha(2n; n, n, n-1, n-1, \dots, 1, 1) = ?$$

$$n = 1$$
: 1
 $n = 2$: 2
 $n = 3$: 7
 $n = 4$: 42
 $n = 5$: 429

$$\alpha(2n; n, n, n-1, n-1, \dots, 1, 1) = ?$$

$$n = 1$$
: 1
 $n = 2$: 2
 $n = 3$: 7
 $n = 4$: 42

$$\alpha(2n; n, n, n-1, n-1, \dots, 1, 1) = ?$$

$$n = 1 : 1$$

 $n = 2 : 2$
 $n = 3 : 7$
 $n = 4 : 42$
 $n = 5 : 429$

$$\alpha(2n; n, n, n - 1, n - 1, \dots, 1, 1) = ?$$

$$n = 1$$
: 1
 $n = 2$: 2
 $n = 3$: 7
 $n = 4$: 42
 $n = 5$: 429

Definition (Alternating Sign Matrix of size n)

- $(n \times n)$ -matrix
- entries in $\{0, 1, -1\}$
- in each row/column: non-zero entries alternate in sign and sum up to 1

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$

Definition (Alternating Sign Matrix of size n)

- $(n \times n)$ -matrix
- entries in $\{0, 1, -1\}$
- in each row/column: non-zero entries alternate in sign and sum up to 1

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$

Definition (Alternating Sign Matrix of size n)

- $(n \times n)$ -matrix
- entries in $\{0, 1, -1\}$
- in each row/column: non-zero entries alternate in sign and sum up to 1

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$

Definition (Alternating Sign Matrix of size n)

- $(n \times n)$ -matrix
- entries in $\{0, 1, -1\}$
- in each row/column: non-zero entries alternate in sign and sum up to 1

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$

Connection between ASMs and MTs

Correspondence (Mills, Robbins, Rumsey, 1983):

ASMs of size $n \Leftrightarrow \text{MTs}$ with bottom row (1, 2, ..., n)

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \iff \begin{matrix} 2 & & & & \\ 1 & 4 & & & \\ & 1 & 3 & 5 & \\ & 1 & 2 & 4 & 5 \\ & 0 & 0 & 1 & 0 & 5 \end{matrix}$$

Connection between ASMs and MTs

Correspondence (Mills, Robbins, Rumsey, 1983):

ASMs of size $n \Leftrightarrow MTs$ with bottom row (1, 2, ..., n)

$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix} \iff \begin{matrix} 2 & & & & \\ 1 & 4 & & & \\ & 1 & 3 & 5 & \\ & 1 & 2 & 4 & 5 \\ & 1 & 2 & 3 & 4 & 5 \end{matrix}$

$$\alpha(2n; n, n, n-1, n-1, \dots, 1, 1) = ?$$

$$n = 1 : 1$$

$$n = 2 : 2$$

$$n = 3 : 7$$

$$n = 4 : 42$$

$$n = 5 : 429$$

$$\alpha(2n; n, n, n-1, n-1, \dots, 1, 1) = \alpha(n; 1, 2, \dots, n)$$

Towards a combinatorial proof

$$\alpha(2n; n, n, n-1, n-1, \ldots, 1, 1) \stackrel{!}{=} \alpha(n; 1, 2, \ldots, n)$$

$$(-1)^{\binom{2n}{2}} \sum_{A \in \mathcal{D}_{2n}(n,n,n-1,n-1,\dots,1,1)} (-1)^{\operatorname{dd}(A)}$$

$$\stackrel{!}{=} \# \operatorname{MTs} \text{ with bottom row } (1,2,\dots,n)$$

 \rightarrow find suitable partition of $\mathcal{D}_{2n}(n, n, n-1, n-1, \dots, 1, 1)$

Towards a combinatorial proof

$$\alpha(2n; n, n, n-1, n-1, \ldots, 1, 1) \stackrel{!}{=} \alpha(n; 1, 2, \ldots, n)$$

$$(-1)^{\binom{2n}{2}} \sum_{A \in \mathcal{D}_{2n}(n,n,n-1,n-1,\dots,1,1)} (-1)^{\operatorname{dd}(A)}$$

$$\stackrel{!}{=} \# \operatorname{MTs} \text{ with bottom row } (1,2,\dots,n)$$

 \rightarrow find suitable partition of $\mathcal{D}_{2n}(n, n, n-1, n-1, \dots, 1, 1)$

Example 2 2 2

Open problem

Sign-reversing involution on the remaining set of DMTs?

Open problem:

Sign-reversing involution on the remaining set of DMTs?

Overview of involved combinatorial objects

Monotone Triangles with bottom row
$$(1, 2, ..., n)$$

1

$$(n \times n)$$
-ASMs

DMTs with bottom row
$$(n, n, n-1, n-1, \ldots, 1, 1)$$

?

Alternating Sign Matrices

Definition (Alternating Sign Matrix of size n)

- $(n \times n)$ -matrix
- ullet entries in $\{0,1,-1\}$
- in each row/column: non-zero entries alternate in sign and sum up to
 1

Figure: Machine generating rows and columns of ASMs

2-ASMs

Definition (2-ASM of size n)

- $(2n) \times n$ -matrix
- rows generated by ASM-machine
- columns generated by

2-ASMs

Definition (2-ASM of size n)

- $(2n) \times n$ -matrix
- rows generated by ASM-machine
- columns generated by

2-ASMs

Definition (2-ASM of size n)

- $(2n) \times n$ -matrix
- rows generated by ASM-machine
- columns generated by

Example (DMT \Leftrightarrow 2-ASM)

$$\Leftrightarrow \left(\begin{array}{ccccc} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & -1 & 1 \\ 1 & -1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right)$$

Theorem

The set $\mathcal{D}_{2n}(n, n, n-1, n-1, \dots, 1, 1)$ is in bijection with the set of 2-ASMs of size n.

Monotone Triangles with bottom row (1, 2, ..., n)

$$(n \times n)$$
-ASMs

DMTs with bottom row $(n, n, n-1, n-1, \ldots, 1, 1)$

2-ASMs of size *n*

Theorem 2 (I. Fischer, R. (2011))

Let $A_{n,i}$ denote the number of ASMs with the first row's unique 1 in column i. Then

$$\alpha(2n-1; n-1+i, n-1, n-1, \dots, 1, 1) = (-1)^{n-1}A_{n,i}$$

holds for $i = 1, \ldots, 2n - 1$, $n \ge 1$.

Corollary

$$\alpha(2n; n, n, n-1, n-1, \ldots, 1, 1) = \alpha(n; 1, 2, \ldots, n)$$

Theorem 2 (I. Fischer, R. (2011))

Let $A_{n,i}$ denote the number of ASMs with the first row's unique 1 in column i. Then

$$\alpha(2n-1; n-1+i, n-1, n-1, \dots, 1, 1) = (-1)^{n-1}A_{n,i}$$

holds for $i = 1, ..., 2n - 1, n \ge 1$.

Corollary

$$\alpha(2n; n, n, n-1, n-1, \ldots, 1, 1) = \alpha(n; 1, 2, \ldots, n)$$

$$\alpha(2n; n, n, n-1, n-1, \ldots, 1, 1) = \alpha(n; 1, 2, \ldots, n)$$

$$\alpha(n; 1, 2, \dots, n) = A_{n+1,1}$$

$$\stackrel{\text{Th.2}}{=} (-1)^n \alpha(2n+1; n+1, n, n, n-1, n-1, \dots, 1, 1)$$

$$\stackrel{\text{Th.1}}{=} \sum_{A \in \mathcal{D}_{2n+1}(n+1, n, n, \dots, 1, 1)} (-1)^{\text{dd}(A)}$$

$$= \sum_{A \in \mathcal{D}_{2n}(n, n, \dots, 1, 1)} (-1)^{\text{dd}(A)+n}$$

$$\stackrel{\text{Th.1}}{=} \alpha(2n; n, n, n-1, n-1, \dots, 1, 1).$$

$$\alpha(2n; n, n, n-1, n-1, \ldots, 1, 1) = \alpha(n; 1, 2, \ldots, n)$$

$$\alpha(n; 1, 2, ..., n) = A_{n+1,1}$$

$$\stackrel{\mathsf{Th}.2}{=} (-1)^n \alpha(2n+1; n+1, n, n, n-1, n-1, ..., 1, 1)$$

$$\stackrel{\mathsf{Th}.1}{=} \sum_{A \in \mathcal{D}_{2n+1}(n+1, n, n, ..., 1, 1)} (-1)^{\mathrm{dd}(A)}$$

$$= \sum_{A \in \mathcal{D}_{2n}(n, n, ..., 1, 1)} (-1)^{\mathrm{dd}(A)+n}$$

$$\stackrel{\mathsf{Th}.1}{=} \alpha(2n; n, n, n-1, n-1, ..., 1, 1).$$

$$\alpha(2n; n, n, n-1, n-1, \ldots, 1, 1) = \alpha(n; 1, 2, \ldots, n)$$

$$\alpha(n; 1, 2, \dots, n) = A_{n+1,1}$$

$$\stackrel{\mathsf{Th}.2}{=} (-1)^n \alpha(2n+1; n+1, n, n, n-1, n-1, \dots, 1, 1)$$

$$\stackrel{\mathsf{Th}.1}{=} \sum_{A \in \mathcal{D}_{2n+1}(n+1, n, n, \dots, 1, 1)} (-1)^{\mathsf{dd}(A)}$$

$$= \sum_{A \in \mathcal{D}_{2n}(n, n, \dots, 1, 1)} (-1)^{\mathsf{dd}(A)+n}$$

$$\stackrel{\mathsf{Th}.1}{=} \alpha(2n; n, n, n-1, n-1, \dots, 1, 1).$$

$$\alpha(2n; n, n, n-1, n-1, \ldots, 1, 1) = \alpha(n; 1, 2, \ldots, n)$$

$$\alpha(n; 1, 2, ..., n) = A_{n+1,1}$$

$$\stackrel{\mathsf{Th}.2}{=} (-1)^n \alpha(2n+1; n+1, n, n, n-1, n-1, ..., 1, 1)$$

$$\stackrel{\mathsf{Th}.1}{=} \sum_{A \in \mathcal{D}_{2n+1}(n+1, n, n, ..., 1, 1)} (-1)^{\mathsf{dd}(A)}$$

$$= \sum_{A \in \mathcal{D}_{2n}(n, n, ..., 1, 1)} (-1)^{\mathsf{dd}(A)+n}$$

$$\stackrel{\mathsf{Th}.1}{=} \alpha(2n; n, n, n-1, n-1, ..., 1, 1).$$

$$\alpha(2n; n, n, n-1, n-1, \ldots, 1, 1) = \alpha(n; 1, 2, \ldots, n)$$

$$\alpha(n; 1, 2, \dots, n) = A_{n+1,1}$$

$$\stackrel{\mathsf{Th}.2}{=} (-1)^n \alpha(2n+1; n+1, n, n, n-1, n-1, \dots, 1, 1)$$

$$\stackrel{\mathsf{Th}.1}{=} \sum_{A \in \mathcal{D}_{2n+1}(n+1, n, n, \dots, 1, 1)} (-1)^{\mathsf{dd}(A)}$$

$$= \sum_{A \in \mathcal{D}_{2n}(n, n, \dots, 1, 1)} (-1)^{\mathsf{dd}(A)+n}$$

$$\stackrel{\mathsf{Th}.1}{=} \alpha(2n; n, n, n-1, n-1, \dots, 1, 1).$$

By Theorem 1, if n = 2m, then

$$\alpha(n; n, n-1, \ldots, 1) = 0:$$

Conjecture

For n = 2m + 1, $m \ge 1$, the equation

$$lpha(n;n,n-1,\ldots,1) = (-1)^m lpha(m;2,4,\ldots,2m)$$

= $(-1)^m \ \# \ vertically \ symmetric \ ASMs \ of \ size \ 2m+1$

seems to hold

By Theorem 1, if n = 2m, then

$$\alpha(n; n, n-1, \ldots, 1) = 0:$$

Conjecture

For n = 2m + 1, $m \ge 1$, the equation

$$\alpha(n; n, n-1, ..., 1) = (-1)^m \alpha(m; 2, 4, ..., 2m)$$

= $(-1)^m \# vertically symmetric ASMs of size 2m + 1$

seems to hold.

R. E. Behrend, P. Di Francesco, and P. Zinn-Justin.

On the weighted enumeration of alternating sign matrices and descending plane partitions.

arXiv:1103.1176v1, 2011.

I. Fischer.

The number of monotone triangles with prescribed bottom row. *Adv. Appl. Math., no.2,* 37:249–267, 2006.

I. Fischer.

A new proof of the refined alternating sign matrix theorem.

J. Comb. Theory Ser. A, 114:253-264, 2007.

R.L. Graham, D.E. Knuth, and O. Patashnik.

Concrete Mathematics.

Addison-Wesley, 1989.