Introduction

The Groceries dataset is a popular dataset used for market basket analysis, association rule learning, and frequent itemset mining. It consists of transactions from a grocery store, where each transaction is a list of items purchased together by a customer.

Key Characteristics:

Transactional Data: The dataset is a collection of transactions, where each transaction is a list of items.

Sparse Data: Typically, the dataset is sparse, meaning that most items do not appear in most transactions.

Categorical Data: Items are represented by categorical names or IDs.

Details of the dataset

The dataset has 38765 rows of the purchase orders of people from the grocery stores. These orders can be analysed and association rules can be generated using Market Basket Analysis by algorithms like Apriori Algorithm.

Association Rule Mining

Market Basket Analysis is one of the key techniques used by large retailers to uncover associations between items. It works by looking for combinations of items that occur together frequently in transactions. To put it another way, it allows retailers to identify relationships between the items that people buy.

Apriori Algorithm

Apriori is an algorithm for frequent itemset mining and association rule learning over relational databases. It proceeds by identifying the frequent individual

items in the database and extending them to larger and larger item sets as long as those item sets appear sufficiently often in the database. The frequent itemsets determined by Apriori can be used to determine association rules which highlight general trends in the database: this has applications in domains such as market basket analysis.

Source:

https://www.kaggle.com/datasets/heeraldedhia/groceries-dataset?

Importing Necessary Libraries

```
!pip install apyori #Installing apriori library

Collecting apyori
    Downloading apyori-1.1.2.tar.gz (8.6 kB)
    Preparing metadata (setup.py) ... done
Building wheels for collected packages: apyori
    Building wheel for apyori (setup.py) ... done
    Created wheel for apyori: filename=apyori-1.1.2-py3-none-any.whl size=5955 sha256=ade3
    Stored in directory: /root/.cache/pip/wheels/c4/1a/79/20f55c470a50bb3702a8cb7c94d8ada1
    Successfully built apyori
    Installing collected packages: apyori
    Successfully installed apyori-1.1.2
```

import numpy as np #NumPy is a powerful tool for numerical computations in Python. import pandas as pd #Pandas is a powerful library for data manipulation and analysis. import seaborn as sns #Seaborn is a statistical data visualization library based on Matplotlimport matplotlib.pyplot as plt #Matplotlib is a comprehensive library for creating static,

Loading the Dataset.

```
df = pd.read_csv('Groceries_dataset.csv')
```

We will now read the data from a CSV file into a Pandas DataFrame Let us have a look at how our dataset looks like using df.head()

df.head() #Displays the first 5 rows of the dataset.

→	Meml	ber_number	Date	itemDescription		
	0	1808	21-07-2015	tropical fruit	11.	
	1	2552	05-01-2015	whole milk		
	2	2300	19-09-2015	pip fruit		
	3	1187	12-12-2015	other vegetables		
	4	3037	01-02-2015	whole milk		
Next	steps:	Generate c	ode with df	● View recom	mended plots	
df.columns #Displays columns names of the dataset.						

```
Index(['Member_number', 'Date', 'itemDescription'], dtype='object')
```

df.shape #Displays the total count of the Rows and Columns respectively.

```
→ (38765, 3)
```

df.isnull().sum() # Displays the total count of the null values in the particular columns.

```
Member_number 0
Date 0
itemDescription 0
dtype: int64
```

There is no null or missing value in the dataset.

df.info() # Displays the total count of values present in the particular column along with t

Checking for the Duplicate values

```
# Check for duplicate rows
duplicate_rows = df[df.duplicated()]

if duplicate_rows.empty:
    print("No duplicate values found.")
else:
    print("Duplicate values found:")
    print(duplicate_rows)
```

→ Duplicate values found:

Dapireace varues round:						
itemDescription	Date	Member_number				
frankfurter	11-09-2015	2051	5015			
other vegetables	18-08-2015	3055	5022			
whole milk	11-03-2015	1994	5044			
pip fruit	25-06-2015	1682	5055			
sausage	05-01-2015	4324	5059			
• • •		• • •				
domestic eggs	26-02-2014	2027	38614			
newspapers	07-03-2014	2936	38684			
pot plants	13-03-2014	2311	38685			
salty snack	18-05-2014	3834	38722			
yogurt	23-05-2014	1146	38723			

[759 rows x 3 columns]

df.describe(include='all')

75%

max

4007.000000

5000.000000

→		Member_number	Date	itemDescription
	count	38765.000000	38765	38765
	unique	NaN	728	167
	top	NaN	21-01-2015	whole milk
	freq	NaN	96	2502
	mean	3003.641868	NaN	NaN
	std	1153.611031	NaN	NaN
	min	1000.000000	NaN	NaN
	25%	2002.000000	NaN	NaN
	50%	3005.000000	NaN	NaN

df['Date'] = pd.to_datetime(df['Date']) #Type-Conversion from Object to Dateime

NaN

NaN

NaN

NaN

```
\rightarrow
```

<ipython-input-11-dabe41c7ec21>:1: UserWarning: Parsing dates in %d-%m-%Y format when da df['Date'] = pd.to_datetime(df['Date']) #Type-Conversion from Object to Dateime

This code converts the data in the 'Date' column of the DataFrame df to datetime objects. This conversion is crucial for performing any time-series analysis or date-related operations such as filtering, extracting specific parts of the date (like year, month, day), and calculating date differences.

df.info() #checking if the date columns are in proper format so we can use the data for furt

```
<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 38765 entries, 0 to 38764
 Data columns (total 3 columns):
      Column
                        Non-Null Count
                                         Dtype
                        _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
  0
      Member number
                        38765 non-null
                                        int64
                                         datetime64[ns]
                        38765 non-null
  2
      itemDescription 38765 non-null
                                        object
 dtypes: datetime64[ns](1), int64(1), object(1)
 memory usage: 908.7+ KB
```

df.head()

	itemDescription	Date	Member_number	•	→
ılı	tropical fruit	2015-07-21	1808	0	
	whole milk	2015-01-05	2552	1	
	pip fruit	2015-09-19	2300	2	
	other vegetables	2015-12-12	1187	3	
	whole milk	2015-02-01	3037	4	

Next steps:

Generate code with df

View recommended plots

df.Member_number.nunique() #The df.Member_number.nunique() function is a Pandas method used

3898

df.itemDescription.nunique() #The df.itemDescription.nunique() function is a Pandas method ι

 \rightarrow 167 df.Date.nunique() #The df.Date.nunique() function is a Pandas method used to find the number

728

Creating Distribution of Item Sold

Item_distr = df.groupby(by = "itemDescription").size().reset_index(name='Frequency').sort_va Item_distr #Displays the result.

→		itemDescription	Frequency	=
	164	whole milk	2502	ılı
	102	other vegetables	1898	+//
	122	rolls/buns	1716	
	138	soda	1514	
	165	yogurt	1334	
	123	root vegetables	1071	
	156	tropical fruit	1032	
	12	bottled water	933	
	130	sausage	924	
	30	citrus fruit	812	

Next steps:

Generate code with Item_distr

View recommended plots

```
## Declaring variables
bars = Item_distr["itemDescription"]
height = Item_distr["Frequency"]
x_pos = np.arange(len(bars))
## Defining Figure Size
plt.figure(figsize=(16,9))
# Create bars
plt.bar(x_pos, height, color=(0.3, 0.4, 0.6, 0.6))
# Add title and axis names
plt.title("Top 10 Sold Items")
plt.xlabel("Item Name")
plt.ylabel("Number of Quantity Sold")
# Create names on the x-axis
plt.xticks(x_pos, bars)
# Shows graph
plt.show()
```


 $\label{lem:def_date} $$ df_date=df.set_index(['Date']) $$ \# Setting date as index for plotting purpose $$ df_date $$ date $$$

	itemDescription	Member_number	
11.			Date
+/	tropical fruit	1808	2015-07-21
_	whole milk	2552	2015-01-05
	pip fruit	2300	2015-09-19
	other vegetables	1187	2015-12-12
	whole milk	3037	2015-02-01
	sliced cheese	4471	2014-10-08
	candy	2022	2014-02-23
	cake bar	1097	2014-04-16
	fruit/vegetable juice	1510	2014-12-03
	cat food	1521	2014-12-26

38765 rows × 2 columns

Next steps: Generate code with df_date

View recommended plots

df_date.resample("M")['itemDescription'].count().plot(figsize = (20,8), grid = True, title =

 $\overline{\Rightarrow}$

[Text(0.5, 0, 'Date'), Text(0, 0.5, 'Number of Items Sold')]

Apriori is an algorithm for frequent itemset mining and association rule learning over relational databases. It proceeds by identifying the frequent individual items in the database and extending them to larger and larger item sets as long as those item sets appear sufficiently often in the database. The frequent itemsets determined by Apriori can be used to determine association rules which highlight general trends in the database: this has applications in domains such as market basket analysis.

Data Preparation

cust_level = df[["Member_number", "itemDescription"]].sort_values(by = "Member_number", asce cust_level['itemDescription'] = cust_level['itemDescription'].str.strip() #To remove any lea cust level

→		Member_number	itemDescription		
	3578	5000	soda	11.	
	34885	5000	semi-finished bread	+//	
	11728	5000	fruit/vegetable juice		
	9340	5000	bottled beer		
	19727	5000	root vegetables		
	13331	1000	whole milk		
	17778	1000	pickled vegetables		
	6388	1000	sausage		
	20992	1000	semi-finished bread		
	8395	1000	whole milk		
	38765 rows × 2 columns				

Generate code with cust_level Next steps:

View recommended plots

Creating Transaction list

transactions = [a[1]['itemDescription'].tolist() for a in list(cust_level.groupby(['Member_r

Train Model

from apyori import apriori #Importing apriori package

rules = apriori(transactions = transactions, min_support = 0.002, min_confidence = 0.05, mir

results = list(rules) #Storing results in list format for better visualisation.
results

FrelationRecord(items=frozenset({'UHT-milk', 'kitchen towels'}), support=0.002308876346844536, ordered_statistics= [OrderedStatistic(items_base=frozenset({'kitchen towels'}), items_add=frozenset({'UHTmilk'}), confidence=0.3000000000000004, lift=3.821568627450981)]), RelationRecord(items=frozenset({'potato products', 'beef'}), support=0.002565418163160595, ordered_statistics= [OrderedStatistic(items base=frozenset({'potato products'}), items_add=frozenset({'beef'}), confidence=0.4545454545454546, lift=3.8021849395239955)]), RelationRecord(items=frozenset({'coffee', 'canned fruit'}), support=0.002308876346844536, ordered statistics= [OrderedStatistic(items base=frozenset({'canned fruit'}), items_add=frozenset({'coffee'}), confidence=0.4285714285714286, lift=3.7289540816326534)]), RelationRecord(items=frozenset({'meat spreads', 'domestic eggs'}), support=0.0035915854284248334, ordered statistics= [OrderedStatistic(items base=frozenset({'meat spreads'}), items_add=frozenset({'domestic eggs'}), confidence=0.4, lift=3.0042389210019267)]), RelationRecord(items=frozenset({'mayonnaise', 'flour'}), support=0.002308876346844536, ordered statistics=[OrderedStatistic(items base=frozenset({'flour'}), items_add=frozenset({'mayonnaise'}), confidence=0.06338028169014086, lift=3.3385991625428253), OrderedStatistic(items base=frozenset({'mayonnaise'}), items add=frozenset({'flour'}). confidence=0.12162162162163.