Integrantes	Clave única
Ricardo Muñoz	171784
Oswaldo de la Cruz	162818
Janet de la O Angulo	157842
Itzama Delgadillo García	181081

Tarea No. 1 - Simulación

1. Problema 5

Probar que la parte fraccional de la suma de uniformes en (0,1) se distribuye también uniforme en (0,1)

Demostración. Sea $(x) = x - \lfloor x \rfloor$ la parte fraccionaria de x. Demostraremos primero que si z_1, z_2 son dos reales no negativos, entonces:

$$(z_1 + z_2) = ((z_1) + z_2)$$

Supongamos primero que $(z_1) + (z_2) < 1$

entonces

$$(z_1) + z_2 = (z_1) + (z_2) + |z_2|$$

e forma que $\lfloor (z_1) + z_2 \rfloor = \lfloor z_2 \rfloor$.

De forma similar

$$z_1 + z_2 = (z_1) + (z_2) + \lfloor z_1 \rfloor + \lfloor z_2 \rfloor$$

Y entonces $\lfloor z_1 + z_2 \rfloor = \lfloor z_1 \rfloor + \lfloor z_2 \rfloor$.

Finalmente obtenemos que

$$(z_1 + z_2) = z_1 + z_2 - \lfloor z_1 + z_2 \rfloor$$

$$= z_1 + z_2 - \lfloor z_1 \rfloor - \lfloor z_2 \rfloor$$

$$= (z_1) + z_2 - \lfloor z_2 \rfloor$$

$$= (z_1) + z_2 - \lfloor (z_1) + z_2 \rfloor$$

$$= ((z_1) + z_2)$$

Ahora si $(z_1) + (z_2) > 1$

entonces

$$(z_1) + z_2 = (z_1) + (z_2) + |z_2| = |z_2| + 1 + \zeta$$

 $con\zeta \in (0,1)$

por lo que $\lfloor (z_1) + z_2 \rfloor = \lfloor z_2 \rfloor + 1$.

Con un proceso similar obtenemos que

$$\lfloor z_1 + z_2 \rfloor = \lfloor z_1 \rfloor + \lfloor z_2 \rfloor + 1$$

Finalmente

$$(z_1 + z_2) = z_1 + z_2 - \lfloor z_1 + z_2 \rfloor$$

$$= z_1 + z_2 - \lfloor z_1 \rfloor - \lfloor z_2 \rfloor - 1$$

$$= (z_1) + z_2 - \lfloor z_2 \rfloor - 1$$

$$= (z_1) + z_2 - \lfloor (z_1) + z_2 \rfloor$$

$$= ((z_1) + z_2)$$

Ahora, sean U_1,U_2 variables aleatorias independientes con distribución uniforme en el intervalo (0,1). Definamos $Z = U_1 + U_2$; es claro que Z toma valores en (0,2). Calculemos su función de densidad, f_z .

a) Notar que $z \in (0,1)$ y 0 < z - u < 1 con $u \in (0,1)$ si y solo si -1 < z - 1 < 0 < u < z < 1. Entonces

$$f_z(z) = \int_0^z \mathbb{1}_{(0,1)}(u) \mathbb{1}_{(0,1)}(z-u) du$$

= z

Si $z \in (0,1)$

b) Notar que $z \in (1,2)$ y 0 < z - u < 1 con $u \in (0,1)$ si y solo si 0 < z - 1 < u < 1 < z < 1. Entonces

$$f_z(z) = \int_{z-1}^1 \mathbb{1}_{(0,1)}(u) \mathbb{1}_{(0,1)}(z-u) du$$

= 2 - z

Si
$$z \in (0,1)$$

De forma que la función de densidad de Z tiene la forma $f(z) = z \mathbbm{1}_{(0,1)}(z) + (2-z) \mathbbm{1}_{(1,2)}(z)$

Ahora calculemos la función de distribución acumulada de $(Z) = (U_1 + U_2)$. Como Z toma valores en (0,2), el evento $\{(Z) \le z\}$ ocurre si y solo si $\{Z \le z\}$ o $\{1 \le Z \le 1 + z\}$ ocurren, por supuesto, con $z \in (0,1)$.

$$F_{(z)}(z) = \int_0^z f_z(t) dt + \int_1^{1+z} f_z(t) dt$$

$$= \int_0^z t dt + \int_1^{1+z} (2-t) dt$$

$$= \frac{t^2}{2} \Big|_0^z + \frac{(t-2)^2}{2} \Big|_{1+z}^1$$

$$= \frac{z^2}{2} + \frac{1}{2} - \frac{z^2 - 2z + 1}{2}$$

$$= z$$

De forma que $(Z) \sim U(0,1)$, este es nuestro caso base.

Ahora supongamos que $(U_1 + ... + U_n)$ se distribuye uniformemente en el intervalo (0,1). Entonces, por lo demostrado en la primera página

$$(U_1 + \dots + U_n + U_{n+1}) = ((U_1 + \dots + U_n) + U_{n+1})$$

y por hipótesis de inducción sabemos que $(U_1 + ... + U_n) \sim U(0,1)$, además $(U_1 + ... + U_n)$ es independiente de U_{n+1} pues todas lo son. De forma que $(U_1 + ... + U_n + U_{n+1}) = ((U_1 + ... + U_n) + U_{n+1})$

es la parte fraccionaria de la suma de dos variables independientes distribuidas uniformemente en el intervalo (0,1) y, por lo tanto, se distribuye uniforme en el intervalo U(0,1).