CM042: Cálculo 2 (Prova 1)

Prof. Alberto Ramos Setembro de 2018

Nome:

Q:	1	2	3	4	5	Total
P:	20	25	15	20	20	100
N:						

Orientações gerais

- 1) As soluções devem conter o desenvolvimento e ou justificativa.
- 2) A interpretação das questões é parte importante do processo de avaliação. Organização e capricho também serão avaliados.
- 3) Não é permitido a consulta nem a comunicação entre alunos.

Considere a curva $\overrightarrow{\alpha}(t) = (e^t \cos t, e^t \sin t, \sqrt{3}t)$.

- (a) |5| Encontre a reta tangente à curva no ponto t=0;
- (b) |15| Encontre o plano osculador à curva que passa por (1,0,0). Para isso calcule o vetor binormal [10] e depois use esse vetor para definir o plano [5].

Questão 2

Calcule, se existe, os seguintes limites

(a)
$$\lim_{(x,y)\to(4,0)} \frac{x^2+y^2}{\sqrt{x^2+y^2+1}-1}$$
.

(b)
$$\lim_{(x,y)\to(1,1)} \frac{x-1}{x^2+y^2-2}$$

(b)
$$10 \lim_{(x,y)\to(1,1)} \frac{x-1}{x^2+y^2-2}$$
.
(c) $10 \lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$.

Para isso:

- (a) 10 Encontre o vetor normal ao plano, e um ponto do plano tangente requerido
- (b) | 5 | Use a informação anterior para encontrar o plano tangente.

em metros. Considere $P_0 = (0, \pi/4)$.

- (a) | 10 | Ache a razão de variação do potencial no ponto P_0 na direção unitária $(\cos \pi/6, \sin \pi/6)$.
- (b) |5| Encontre a direção da razão de variação máxima de V em P_0 .
- (c) $\boxed{5}$ Qual a magnitude da razão de variação máxima de V em P_0 ?

Seja $f: \mathbb{R} \to \mathbb{R}$ função duas vezes derivável em \mathbb{R} . Se z = xf(x+y) + yg(x+y), mostre que

$$\frac{\partial^2 z}{\partial^2 x} + \frac{\partial^2 z}{\partial^2 y} = 2 \frac{\partial^2 z}{\partial x \partial y}.$$

- (a) 10 Para isso calcule $\frac{\partial^2 z}{\partial^2 x}$ e $\frac{\partial^2 z}{\partial^2 y}$
- (b) 10 Calcule $\frac{\partial^2 z}{\partial x \partial y}$. Compare.