

https://img.devrant.com/devrant/rant/r_307878_RGc57.jpg

III Funktionsweise eines Rechners

1 Aufbau eines Computersystems

Aus welchen Geräten besteht ein Computersystem?

Hauptkomponenten (Zentraleinheit):

- Prozessor (Central Processing Unit = CPU)
- Arbeitsspeicher (Random Access Memory = RAM)
 (temporäres Speichern von Programmen und Daten)

Peripheriegeräte:

- Eingabegeräte: Tastatur, Maus, Scanner, Mikrofon, ...
- Ausgabegeräte: Monitor, Drucker, Lautsprecher, ...
- Datenspeichergeräte: Festplatte, CD, DVD, USB-Stick, ...
 (Hintergrundspeicher)
- Kommunikationsgeräte: Netzwerkkarte, WLAN-Karte, ...

2 Von-Neumann-Rechner

ca. 1945: fest vorgegebene Programme

John von Neumann (1903-1957):

Programme befinden sich wie die zu bearbeitenden Daten im Speicher des Rechners.

→ Universalrechner: von-Neumann-Rechner

Der von-Neumann-Rechner besteht aus 5 Grundeinheiten:

- Rechenwerk (Arithmetic Logic Unit = ALU)
 führt einfache arithmetische und logische Operationen auf den Daten durch.
- Steuerwerk (Leitwerk, Control Unit)
 steuert den Ablauf der Befehle eines Programms.
- Speicherwerk (Arbeitsspeicher, Hauptspeicher) speichert sowohl Programme, als auch die zu bearbeitenden Daten.
- Eingabewerk
 steuert Eingabe von Programmen und Daten in den
 Speicher.
- Ausgabewerk
 steuert Ausgabe von Daten aus dem Speicher nach
 außen.

Bus-System:

- paralleler Bus:
 viele Einzelleitungen (z.B. Adressbus)
- serieller Bus: aufeinanderfolgende Signale (z.B. USB)

Beispiel: Kommunikation CPU – Arbeitsspeicher

früher:

Rechen- und Steuerwerk langsam, d.h. Datenbereitstellung durch Bus unproblematisch

schnellere Prozessoren: Verbindungsystem wird zum Engpass (von Neumannscher Flaschenhals)

Lösung des Problems:

- schneller zugreifbarer Speicher (Cache)
- Parallelverarbeitung

Speicherhierarchie des "von-Neumann-Rechners"

AB: Binärsystem und Codierung

1.1 Kein Stellenwertsystem:

- römische Zahlen: I, II, III, IV,...
- Hieroglyphen

1.2 Hexadezimalsystem

- Basis: 16
- Ziffern: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A (=10), B (= 11),
 C (= 12), D (= 13), E (= 14), F (= 15)

2.1 a)
$$1011_2 = 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 =$$

= $1 \cdot 8 + 0 \cdot 4 + 1 \cdot 2 + 1 \cdot 1 = 8 + 2 + 1 = 11$
b) $110110_2 = 1 \cdot 2^5 + 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 =$
= $32 + 16 + 4 + 2 = 54$

c) LOOLLO =
$$32 + 4 + 2 = 38$$

d) LLLLLLL =
$$128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255$$

2.2.1 a)
$$21 = 16 + 4 + 1 = 2^4 + 2^2 + 2^0 =$$

= $1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 10101_2$

- b) $65 = 1000001_2$
- c) $135 = 10000111_2$
- d) $543 = 10000111111_2$

2.2.2 Resteverfahren

$$67:2 = 33 R1$$

$$16:2 = 8 R0$$

$$8:2=4$$
 R**0**

$$4 : 2 = 2 R0$$

$$2 : 2 = 1 R0$$

$$1 : 2 = 0 R1$$

$$2 \cdot 2 \cdot 2 = 2^3 = 8$$

Mögliche Kombinationen:

000; 001; 010; 100; 011; 101; 110; 111

```
3.2 a) 2 Byte = 16 bit: 2^{16} = 65536

4 Byte = 32 bit: 2^{32} = 4294967296

8 Byte = 64 bit: 2^{64} \approx 1.8 \cdot 10^{19}

b) 2^{n}
```

Signal in zwei Längen:

- kurz.
- lang –

$$z.B. A = . -$$

Pausen verschiedener Länge zwischen Signalen, Zeichen, Worten.

4.2 ASCII-Code

7-Bit-Zeichencodierung (128 Zeichen)

Tabelle: z.B. $A = 65 = 1000001_2$

4.3 Codierung ganzer Zahlen

• Versuch: 1 Byte, 1. Bit für Vorzeichen $(+ \rightarrow 0, - \rightarrow 1)$:

$$+5$$
 = 0000 0101₂
 -5 = 1000 0101₂
 $+5-5$ = 1000 1010₂ = -10

• Gesucht: Binärzahl, die zu 0000 0101₂ addiert 0 ergibt

$$+5$$
 = 0000 0101₂
 -5 = 1111 1011₂
 $+5-5 = 0000 0000_2 = 0$

Gesucht: Binärdarstellung von –19

$$19 = 0001 \ 0011_2$$

Komplement von 19: 1110 1100₂

Addiere 1 zum Komplement: $-19 = 1110 \ 1101_2$

Welcher Zahlbereich kann mit 1 Byte bei der Codierung ganzer Zahlen abgedeckt werden?

Größte positive Zahl: $0111 1111_2 = 127$

Kleinste negative Zahl: $10000000_2 = -128$

Arbeitsauftrag:

Überprüfe die Abbildung:

Stelle die Zahlen von 0 bis 7 binär mit 4 Bit dar und ermittle jeweils das Zweierkomplement, also die Binärdarstellung von -0, ..., -7.

Darstellung von Gleitkommazahlen: http://de.wikipedia.org/wiki/Gleitkommazahl

```
S. 99 / 3a)
153 = 128 + 16 + 8 + 1 = 2^7 + 2^4 + 2^3 + 2^0 = 10011001_2
87 = 64 + 16 + 4 + 2 + 1 = 2^6 + 2^4 + 2^2 + 2^1 + 2^0 = 1010111_2
3b)
              1 0 0 1 1 0 0 1
                 1 0 1 0 1 1 1
                       1 1 1 1
              1 1 1 1 0 0 0 0
3c) 11110000_{2} = 128 + 64 + 32 + 16 = 240
3d)
        1 0 0 1 1 0 0 1
           1 1 0 1 1 1 1
                                   153 + 111 = 264
                                        =256 + 8
           1 1 1 1 1 1
              0 0 1 0 0
```

Benutze im folgenden jeweils eine 8-Bit-Darstellung:

- Stelle drei Dezimalzahlen als Binärzahlen dar und umgekehrt. Überprüfe dein Ergebnis mit dem Taschenrechner.
 Verwende auch das Resteverfahren.
- Stelle -12, -98, -101 binär dar (mit Zweierkomplement).
- Führe jeweils drei binäre Additionen und Subtraktionen durch.
 Vergleiche mit dem Taschenrechner.