Problème 1

La suite de Fibonacci (F_n) est définie par : $F_0 = 0$, $F_1 = 1$ et $\forall n \in \mathbb{N}$, $F_{n+2} = F_{n+1} + F_n$. La suite de Lucas (L_n) est définie par : $L_0 = 2$, $L_1 = 1$ et $\forall n \in \mathbb{N}$, $L_{n+2} = L_{n+1} + L_n$. On pose pour tout le problème, $w = \frac{1+\sqrt{5}}{2}$ et $w' = \frac{1-\sqrt{5}}{2}$.

Partie I : Quelques propriétés arithmétiques de (F_n)

- **Q1)** a) Montrer que $\forall n \in \mathbb{N}, F_n \in \mathbb{N}$ et que $F_{n+1}^2 F_n F_{n+2} = (-1)^n$.
 - b) En déduire que F_n et F_{n+1} sont premiers entre eux.
- **Q2)** a) Soit $n \in \mathbb{N}^*$, montrer que pour tout entier p, on a $F_{n+p} = F_{n-1}F_p + F_nF_{p+1}$.
 - b) En déduire que $pgcd(F_{n+p}, F_n) = pgcd(F_n, F_p)$.
 - c) Montrer que $\forall n, k, p \in \mathbb{N}$ on a $pgcd(F_{kn+p}, F_n) = pgcd(F_n, F_p)$.
- **Q3)** À l'aide de l'algorithme d'Euclide, montrer que :

$$\forall n, m \in \mathbb{N}, \operatorname{pgcd}(F_n, F_m) = F_d \operatorname{avec} d = \operatorname{pgcd}(n, m).$$

- **Q4)** Exemples d'applications :
 - a) Montrer que si F_n est premier, alors soit n = 4, soit n = 4,
 - b) Vérifier que F_8 est le premier terme divisible par 7. Justifier l'équivalence : $7 \mid F_n \iff 7 \mid F_{\gcd(n,8)}$. En déduire que 7 divise F_n si et seulement si n est un multiple de 8.
 - c) Déterminer tous les termes F_n divisibles par 4, puis tous les termes F_n divisibles par 28.

Partie II : Quelques propriétés de (L_n)

- **Q5)** Soit *n* un entier naturel.
 - a) Exprimer F_n et L_n , en fonction de n, de w et de w'.
 - b) Montrer que $L_{2n} L_n^2 = 2(-1)^{n+1}$.
 - c) En déduire que L_{2n} ne peut pas être le carré d'un entier.
- **Q6)** Déterminer en fonction de n, le reste de la division euclidienne de L_n par 4.
- **Q7)** Soient m et k deux entiers naturels.
 - a) Montrer que $2L_{2k+m} = 5F_mF_kL_k + L_mL_{2k}$.
 - b) En déduire que $2L_{2k+m} \equiv 2(-1)^{k+1}L_m \pmod{L_k}$.
- **Q8)** Soit q un entier impair ≥ 5 .
 - a) Montrer qu'il existe un unique triplet d'entiers (c, k, r) tel que : $c \in \{1; 3\}$, k congru à 2 ou 4 modulo 6, et $q = c + 2k3^r$.
 - b) Avec les mêmes notations que ci-dessus, montrer que $L_k \mid 2L_{3k}$, puis $L_k \mid 2^rL_{k3^r}$, et $L_k \mid L_{k3^r}$.
 - c) En déduire que soit $L_q \equiv -1 \pmod{L_k}$, soit $L_q \equiv -4 \pmod{L_k}$.

Partie III : les carrés de (L_n) (John H.E. Cohn)

- **Q9)** Soit p un nombre premier et a un entier non divisible par p.
 - a) Rappeler et démontrer le petit théorème de Fermat.
 - b) En déduire que $a^{p-1} \equiv 1 \pmod{p}$.
- **Q10)** a) Soit p un nombre premier congru à 3 modulo 4. Montrer qu'il n'existe pas d'entier x tel que $x^2 \equiv -1 \pmod{p}$. **NB**: on remarquera que $\frac{p-1}{2}$ est impair.
 - b) Soit n un entier naturel congru à 3 modulo 4. Montrer qu'il n'existe pas d'entier x tel que $x^2 \equiv -1 \pmod{n}$.

 ${\bf NB}$: on commencera par justifier qu'il existe au moins un nombre premier p congru à 3 modulo 4 qui divise n.

Q11) Montrer que les seuls entiers n pour lesquels L_n est un carré, sont n = 1 et n = 3. De la même manière, on pourrait montrer que les seuls entiers n pour lesquels F_n est un carré, sont n = 0, 1, 2 et n = 12.

Problème 2

On note \mathscr{E} l'ensemble des fonctions $f : \mathbb{R} \to \mathbb{R}$ qui vérifient :

 $\begin{cases} \bullet f \text{ est } \underline{\text{continue}} \text{ sur } \mathbb{R} \\ \bullet f \text{ s'annule au moins une fois sur } \mathbb{R} \\ \bullet \ \forall x, y \in \mathbb{R}, \ f(x+y) + f(x-y) = 2f(x)f(y) \end{cases}$

Le but du problème est déterminer les éléments de &.

- **Q1)** a) Montrer que la fonction nulle est dans \mathscr{E} .
 - b) Montrer que la fonction cos est dans \mathscr{E} .
 - c) Si f est dans \mathscr{E} et si $\omega \in \mathbb{R}^*$, montrer que la fonction $f_{\omega} : x \mapsto f(\omega x)$ est dans \mathscr{E} .
- **Q2)** On considère une fonction $f \in \mathcal{E}$. En donnant à x et à y des valeurs particulières, prouver que :
 - a) f(0) vaut 0 ou 1.
 - b) Si f(0) = 0, alors f est identiquement nulle.
 - c) Si f(0) = 1, alors f est une fonction paire.
 - d) Si f(0) = 1, alors $\forall x \in \mathbb{R}$, $f(x) = 2 \left[f(\frac{x}{2}) \right]^2 1$.
 - e) Si f s'annule en $a \in \mathbb{R}^*$, alors $\forall x \in \mathbb{R}$, f(2a x) = -f(x). En déduire que f est 4a-périodique. Dans la suite, f est un élement de $\mathscr E$ avec f(0) = 1.
- **Q3)** a) Montrer que f s'annule au moins une fois sur \mathbb{R}_+^* .
 - b) Soit A = $\{x > 0 / f(x) = 0\}$, montrer que A admet une borne inférieure.

On pose dans la suite du problème, $a = \inf(A)$.

- c) Montrer que pour tout entier $n \in \mathbb{N}^*$, il existe $t_n \in A$ tel que $a \le t_n < a + \frac{1}{n}$. En considérant la suite $(f(t_n))$, prouver que f(a) = 0. En déduire que a > 0.
- d) Montrer que $\forall x \in [0; a[, f(x) > 0.$

Dans la suite, on pose $g : \mathbb{R} \to \mathbb{R}$ définie par $g(x) = \cos(\omega x)$ avec $\omega = \frac{\pi}{2a}$.

Q4) a) Soit $q \in \mathbb{N}$, montrer que $f\left(\frac{a}{2^q}\right) = 2\left[f\left(\frac{a}{2^{q+1}}\right)\right]^2 - 1$. En déduire que $\forall q \in \mathbb{N}, f\left(\frac{a}{2^q}\right) = g\left(\frac{a}{2^q}\right)$ [récurrence sur q].

- b) Montrer que $\forall p, q \in \mathbb{N}, f\left(\frac{pa}{2^q}\right) = g\left(\frac{pa}{2^q}\right)$ [récurrence sur $p \ge 1$].
- c) Soit $x \in \mathbb{R}$, montrer que la suite u définie par $u_q = \frac{a\left\lfloor 2^q \frac{x}{a}\right\rfloor}{2^q}$ [où E désigne la partie entière] converge vers x et que $f(u_q) = g(u_q)$.
- d) En déduire que $\forall x \in \mathbb{R}, f(x) = \cos\left(\frac{\pi x}{2a}\right)$.

-FIN-