Name

- 1. Let (X, ρ) be a compact metric space and $T: X \to X$, such that $\rho(T(u), T(v)) < \rho(u, v), u, v \in X$. Show that T has a unique fixed point.
- 2. Show that the unit ball $\{\mathbf{x} \in \ell^2 : ||\mathbf{x}||_{\ell^2} \le 1\}$ in the Banach space ℓ^2 is not compact.
- 3. Let X be a metric space and $\{f_n\}$ a sequence in C(X) that converges uniformly on X to some $f \in C(X)$. Show that $\{f_n\}$ is equicontinuous.
- 4. Show that if two continuous functions defined on a metric space X take the same values on a dense subset, then they are equal.
- 5. Show that the product of two separable metric spaces is again separable.
- 6. Let X be a totally bounded metric space, Y a metric space and $f: X \to Y$ uniformly continuous. Show that f(X) is totally bounded. Show that this doesn't necessarily hold if f is merely continuous.
- 7. Let X be a topological space and Y be a Hausdorff space. Let $f, g: X \to Y$ be continuous. Prove that $\{x: f(x) = g(x)\}$ is closed.
- 8. Let (X, \mathcal{T}) be completely regular. Then \mathcal{T} is the weak topology induced by the family of functions $\mathcal{F} = C(X)$.
- 9. Show that the metric space $(C(\mathbb{R}), \rho_{\infty})$ of bounded continuous functions is not separable.
- 10. The set of rationals is not completely metrizable. (Hint: Use Baire Category Theorem)