Meccano pentagons

https://github.com/heptagons/meccano/penta

Abstract

We construct two types of meccano¹ regular pentagons. We use five equal rods to build the polygon perimeter and then we attach **internal diagonals** to make the polygon regular and rigid.

For each type we will change several **meccano rods** diagonals positions by moving several "bolts". All except one diagonal, the last one, have integer length always. When the iterations found the last diagonal is an integer too we have a solution. Simple floating number calculations miss a lot of solutions due to the rounding errors accumulation. So is necessary to express algebraically the last diagonal in function of the rest of variables in a closed form.

Several programs use the algebraic conditions and formulas to iterate over a given range of pentagons sizes to store and print the solutions preventing the repetitions by scaling.

From the two types of pentagons and the results obtained two conjectures emerges. **First conjecture** is that the first type of pentagon seems to have a **unique** solution after testing pentagons sides somehow large.

Second conjecture appears in second type of pentagon. For this type we got apparently infinite solutions but by the numeric value of the last diagonal called e seems to be always in the form 10x + 1 for x = 1, 2, 3...

1 Regular pentagon type 1

1.1 Type 1 equations

Figure 1 show the layout of the meccano regular pentagon of type 1. Let define the side of the pentagon as a and define other three variables b, c and d:

$$a = \overline{BC}$$

$$b = \overline{BF}$$

$$c = \overline{FI}$$

$$d = \overline{CI}$$

By the figure the angles $\angle LBC$ and $\angle JFI$ are equal to $\frac{2\pi}{5}$ so:

$$\alpha = \frac{2\pi}{5}$$

$$\overline{BL} = a\cos\alpha$$

$$\overline{CL} = a\sin\alpha$$

$$\overline{FJ} = c\cos\alpha$$

$$\overline{IJ} = c\sin\alpha$$

¹ Meccano mathematics by 't Hooft

Figure 1: Pentagon of type 1.

For type 1 we have four variables and one angle. Let calculate d in function of a, b and c:

$$\begin{split} d^2 &= (\overline{CI})^2 \\ &= (\overline{CK})^2 + (\overline{IK})^2 \\ &= (\overline{BL} + \overline{BF} + \overline{FJ})^2 + (\overline{CL} - \overline{IJ})^2 \\ &= (a\cos\alpha + b + c\cos\alpha)^2 + (a\sin\alpha - c\sin\alpha)^2 \\ &= ((a+c)\cos\alpha + b)^2 + ((a-c)\sin\alpha)^2 \\ &= (a+c)^2\cos^2\alpha + 2(a+c)b\cos\alpha + b^2 + (a-c)^2\sin^2\alpha \\ &= (a^2+c^2)(\cos^2\alpha + \sin^2\alpha) + 2ac(\cos^2\alpha - \sin^2\alpha) + 2(a+c)b\cos\alpha + b^2 \\ &= (a^2+c^2) + 2ac(\cos^2\alpha - \sin^2\alpha) + 2(a+c)b\cos\alpha + b^2 \end{split}$$

For $\alpha = 2\pi/5$ we will use the following common pentagon identities:

$$cos\alpha = \frac{-1 + \sqrt{5}}{4}$$
$$cos^{2}\alpha = \frac{3 - \sqrt{5}}{8}$$
$$sin^{2}\alpha = \frac{5 + \sqrt{5}}{8}$$
$$cos^{2}\alpha - sin^{2}\alpha = -\frac{1 + \sqrt{5}}{4}$$

Applying the identities to the last equation of d we get:

$$\begin{split} d^2 &= a^2 + c^2 - (\frac{1+\sqrt{5}}{2})ac + (\frac{-1+\sqrt{5}}{2})(a+c)b + b^2 \\ &= a^2 + c^2 - \frac{ac}{2} - \frac{(a+c)b}{2} + b^2 + [-\frac{ac}{2} + \frac{(a+c)b}{2}]\sqrt{5} \\ &= a^2 + b^2 + c^2 - \frac{ac + (a+c)b}{2} + [\frac{-ac + (a+c)b}{2}]\sqrt{5} \end{split}$$

Let define two variables p and q such that $d^2 = p + q\sqrt{5}$ so we have:

$$\begin{split} d^2 &= p + q\sqrt{5} \\ q &= \frac{-ac + (a+c)b}{2} \\ p &= a^2 + b^2 + c^2 - \frac{ac + (a+c)b}{2} \\ &= a^2 + b^2 + c^2 - \frac{-ac + (a+c)b}{2} - ac \\ &= a^2 + b^2 + c^2 - q - ac \end{split}$$

For a meccano pentagon we need d to be an integer. If we let the integer q > 0 then $d = \sqrt{p + q\sqrt{5}}$ will never be an integer for p and q integers. If we force q to be zero then $d = \sqrt{p}$ and d will have possibilities to be an integer.

So before calculating d, we **need** to force the condition q=0 which is equivalent to make -ac+(a+c)b=

$$a > b$$

$$a > c$$

$$ac = (a+c)b$$

$$d = \sqrt{a^2 + b^2 + c^2 + ac}$$

1.2 Type 1 program

First we write a **go** struct called **Sols** to store and print solutions eventually found. The function **Add** prevents duplicated solutions by scaling, comparing a prospect with the already collected:

```
type Sols struct {
1
2
     sols [][]int
3
   }
4
5
   func (s *Sols) Add(rods ...int) {
6
     if len(rods) < 0 {
7
        return
8
     }
9
     const RODS = "abcdefhijkl"
10
     for _, s := range s.sols {
11
        a := rods[0]
        if a % s[0] != 0 {
12
13
          continue
14
15
        // new a is a factor of previous a
16
        f := a / s[0]
17
        cont := false
        for r := 1; r < len(rods); r++ {
18
          if s[r] == 0 {
19
20
            continue
21
22
          b := rods[r]
23
          if t := b \% s[r] == 0 && b / s[r] == f; !t {
24
            cont = true
25
            break
          }
26
27
        }
28
        if cont {
29
          continue // scaled solution already found (reject)
30
        }
31
        return
32
     }
33
     // solution!
34
     if s.sols == nil {
35
        s.sols = make([][]int, 0)
36
37
     s.sols = append(s.sols, rods)
38
     fmt.Printf("%3d ", len(s.sols))
39
     for i, r := range rods {
        fmt.Printf(" %c=%3d", RODS[i], r)
40
41
     }
42
     fmt.Println()
43
```

The following function called pentagons_type_1 iterate over three variables $a \leq max$, $1 \leq b \leq a$, $0 \leq c \leq a$ (lines 15, 16 and 17). The q = 0 condition mentioned above, is tested (in line 18) and only when the condition holds we check whether d is an integer (internal function called check at line 5). When d is an integer we call function sols.Add (line 11) to print and store the solution.

```
func pentagons_type_1(max int) {
 2
3
     sols := &Sols{}
4
5
      check := func(a, b, c int) {
6
        f := float64(a*a + b*b + c*c - a*c)
7
        if f < 0 {
8
          return
9
10
        if d := int(math.Sqrt(f)); math.Pow(float64(d), 2) == f {
11
          sols.Add(a, b, c, d)
12
     }
13
14
15
     for a := 1; a < max; a++ \{
        for b := 1; b \le a; b++ {
16
17
          for c := 0; c <= a; c++ {
            if a*c == (a + c)*b {
18
19
              check(a, b, c)
20
21
          }
22
        }
     }
23
24
```

1.3 Type 1 results

After serching for values of $a \le 5000$ we found a single result:

```
1  a= 12 b= 3 c= 4 d= 11
```

Figure 2 shows the first (unique?) pentagon of type 1 with values a = 12, b = 3, c = 4 and d = 11.

1.4 Type 1 conjecture

There is only a single case for the type 1 with values a = 12, b = 3, c = 4 and d = 11.

2 Regular pentagon type 2

2.1 Type 2 equations

Figure 3 show the layout of the meccano regular pentagon of type 2. Let define the side of the pentagon as a and define other four variables b, c, d and e:

$$a = \overline{AB}$$

$$b = \overline{AH}$$

$$c = \overline{BK}$$

$$d = \overline{HL}$$

$$e = \overline{KL}$$

Figure 2: The smallest and maybe unique pentagons of type 1. Is composed of 6 rods of length a=12 in color red, two rods of length d=11 in green and one rod of size a-b=9 in blue.

Figure 3: Pentagon of type 2.

From the figure the angles $\angle NBC$ and $\angle MAH$ are equal to $2\pi/5$ and angle $\angle PLH$ is equal to $\pi/5$ so:

$$\alpha = \frac{2\pi}{5}$$

$$\overline{BN} = b\cos\alpha$$

$$\overline{KN} = b\sin\alpha$$

$$\overline{AM} = c\cos\alpha$$

$$\overline{HM} = c\sin\alpha$$

$$\beta = \frac{\pi}{5}$$

$$\overline{LP} = d\cos\beta$$

$$\overline{HP} = d\sin\beta$$

Our goal is to find e as integer as funcion of variables a, b, c and d. e^2 equals $(\overline{KO})^2 + (\overline{LO})^2$ so we first calculate \overline{KO} and \overline{LO} . From figure 3:

$$\overline{KO} = \overline{AM} + \overline{AB} + \overline{BN} - \overline{LP}$$

$$= b\cos\alpha + a + c\cos\alpha - d\cos\beta$$

$$= (b+c)\cos\alpha + a - d\cos\beta$$

$$\overline{LO} = \overline{KN} - \overline{HM} - \overline{HP}$$

$$= c\sin\alpha - b\sin\alpha - d\sin\beta$$

$$= (c-b)\sin\alpha - d\sin\beta$$

So by adding the squares we get:

$$\begin{split} e^2 &= (\overline{KO})^2 + (\overline{LO})^2 \\ &= ((b+c)\cos\alpha)^2 + 2(b+c)\cos\alpha(a-d\cos\beta) + (a-d\cos\beta)^2 \\ &\quad + ((c-b)\sin\alpha)^2 - 2(c-b)\sin\alpha d\sin\beta + (d\sin\beta)^2 \\ &= (b^2+c^2)(\cos^2\alpha + \sin^2\alpha) + 2bc(\cos^2\alpha - \sin^2\alpha) \\ &\quad + 2a(b+c)\cos\alpha - 2(b+c)d\cos\alpha\cos\beta - 2(c-b)d\sin\alpha\sin\beta \\ &\quad + a^2 - 2ad\cos\beta + d^2(\cos^2\beta + \sin^2\beta) \end{split}$$

We will use the following pentagon identities for angles $\alpha = 2\pi/5$ and $\beta = \pi/5$:

$$\cos^2 \alpha - \sin^2 \alpha = -\frac{1 + \sqrt{5}}{4}$$
$$\cos \alpha = \frac{-1 + \sqrt{5}}{4}$$
$$\cos \alpha \cos \beta = \frac{1}{4}$$
$$\sin \alpha \sin \beta = \frac{\sqrt{5}}{4}$$
$$\cos \beta = \frac{1 + \sqrt{5}}{4}$$

Replace the identities:

$$\begin{split} e^2 &= (b^2 + c^2)(1) + 2bc(-\frac{1+\sqrt{5}}{4}) \\ &+ 2a(b+c)(\frac{-1+\sqrt{5}}{4}) - 2(b+c)d(\frac{1}{4}) - 2(c-b)d(\frac{\sqrt{5}}{4}) \\ &+ a^2 - 2ad(\frac{1+\sqrt{5}}{4}) + d^2(1) \\ &= b^2 + c^2 - bc(\frac{1+\sqrt{5}}{2}) \\ &+ a(b+c)(\frac{-1+\sqrt{5}}{2}) - (b+c)d(\frac{1}{2}) - (c-b)d(\frac{\sqrt{5}}{2}) \\ &+ a^2 - ad(\frac{1+\sqrt{5}}{2}) + d^2 \\ &= a^2 + b^2 + c^2 + d^2 - (b+c)d(\frac{1}{2}) \\ &- (ad+bc)(\frac{1+\sqrt{5}}{2}) + a(b+c)(\frac{-1+\sqrt{5}}{2}) - (c-b)d(\frac{\sqrt{5}}{2}) \\ &= a^2 + b^2 + c^2 + d^2 - \frac{(b+c)d}{2} \\ &- \frac{(ad+bc)(1+\sqrt{5})}{2} + \frac{a(b+c)(-1+\sqrt{5})}{2} - \frac{(c-b)d\sqrt{5}}{2} \end{split}$$

Let define two variables p and q such that $e^2 = p + q\sqrt{5}$:

$$\begin{split} p &= a^2 + b^2 + c^2 + d^2 - \frac{(b+c)d}{2} - \frac{ad+bc}{2} + \frac{-a(b+c)}{2} \\ &= a^2 + b^2 + c^2 + d^2 - \frac{bd+cd+ad+bc+ab+ac}{2} \\ &= a^2 + b^2 + c^2 + d^2 - \frac{(a+b)(c+d)+ab+cd}{2} \\ q &= -\frac{ad+bc}{2} + \frac{a(b+c)}{2} - \frac{(c-b)d}{2} \\ &= \frac{-ad-bc+ab+ac-cd+bd}{2} \\ &= \frac{(a-b)(c-d)+ab-cd}{2} \end{split}$$

For a meccano pentagon we need e to be an integer. If we let the integer q > 0 then $e = \sqrt{p} + q\sqrt{5}$ will never be an integer for p and q integers. If we force q to be zero then $e = \sqrt{p}$ has possibilities to be an integer. So before calculating e we **need** to force the condition that q = 0 or that is the same cd = (a - b)(c - d) + ab:

$$a > b$$

$$a > c$$

$$cd = (a - b)(c - d) + ab$$

We can use this cd value to simplify p:

$$p = a^{2} + b^{2} + c^{2} + d^{2} - \frac{(a+b)(c+d) + ab + cd}{2}$$

$$= a^{2} + b^{2} + c^{2} + d^{2} - \frac{(a+b)(c+d) + ab + (a-b)(c-d) + ab}{2}$$

$$= a^{2} + b^{2} + c^{2} + d^{2} - ac - bd - ab$$

So finally, when q=0 we calculate $e=\sqrt{p}$ expecting to be an integer:

$$e = \sqrt{a^2 + b^2 + c^2 + d^2 - ac - bd - ab}$$

Another solution is:

$$e = \sqrt{a^2 + b^2 + c^2 + d^2 - ad - bc - cd}$$

2.2 Type 2 first program

With the type 2 equations ready, we use the next function to search the solutions. Is called pentagons_type_2, iterates over the integer values of rods a (line 15), b (line 16), c (line 17) and d (line 18) to discover a rod e with integer length too. First we check condition q == 0 is true (line 19) and square root is integer (line 10):

```
func pentagons_type_2(max int) {
1
 2
3
      sols := &Sols{}
4
      check := func(a, b, c, d int) {
5
6
        f := float64(a*a + b*b + c*c + d*d - a*c - b*d - a*b)
7
          if f < 0 {
8
            return
          }
9
10
        if e := int(math.Sqrt(f)); math.Pow(float64(e), 2) == f {
11
          sols.Add(a, b, c, d, e)
12
13
     }
14
15
        for a := 1 ; a < max; a++ {
          for b := 1; b < a; b++ {
16
17
              for c := 0; c < a; c++ \{
                   for d := 1; d < a; d++ {
18
19
                     if ((a - b)*(c - d) + a*b == c*d) {
20
                         check(a, b, c, d)
21
                     }
22
23
                }
            }
24
25
        }
26
   }
```

2.3 Type 2 first results

The program found 19 pentagons of type 2 for $a \le 100$. While we found a single solution for type 1, type 2 has several.

```
1
               12 b=
                         2 c =
                                 9 d=
                                         6
                                                11
 2
       2
               12
                         3
                          c=
                                 0 d =
                                         4
 3
                                 3
                                   d = 10
       3
                         6
                           c=
 4
               31
                           c=
                               28
                                   d =
                                       16
                                                31
                   b =
                         4
                                        27
 5
                       15
                                 3
                                   d=
 6
       6
                       12
                           c=
                              18 d=
                                       21
 7
                           c=
                               20
                                   d =
                                       26
 8
                               24
                                       21
       8
               48
                         8
                                   d=
                           c=
 9
                       12
                           c=
                                 9
                                   d =
                                       20
10
                       27
      10
                           c =
                               24
                                   d=
                                        40
11
      11
                       28
                           c =
                               39
                                   d =
                                       36
12
      12
                       21
                           c =
                               48
                                   d=
                                       40
13
                       24
                               16
                           c =
14
                       32
                               24
      14
                          c =
                                   d=
                                       51
15
                       33
                               56
                                   d=
      15
                           c =
                                       48
16
      16
                       27
                           c =
                                 4
                                   d=
                                       42
17
      17
                       36
                           c=
                              74
                                   d=
                                       51
18
                       28
                               36 d = 48
      18
               87
                           c =
19
                           c = 51 d = 59
      19
                      39
```

2.4 Type 2 simpler program

Figure 4: Pentagon of type 2 has a symmetry where pair bars green and blue can be switched leaving the rod e lengths and positions unmodified. This symmetry appears in the first program when two solutions have same e and same e.

Figure 4 show what happens when the first program reports two solutions with the same a and the same e. The type 2 symmetry can be taken into account to simplify the first program to reduce the search space and report only the half of symmetries. Next go function called pentagons_type_2_half first iterates over $1 \le a \le max$ (line 4), then over $1 \le b < a$ (line 6), then over $1 \le d < (a - b)$ (line 8) and finally over $0 \le c < a$ (line 10).

```
5
        aa = a*a
6
        for b := 1; b < a; b++ {
7
          a_b, ab, bb = a - b, a*b, b*b
8
          for d := 1; d < (a-b); d++ \{
            dd, ad = d*d, a*d
9
10
            for c := 0; c < a; c++ \{
11
              bc, c_d, cd, cc = b*c, c - d, c*d, c*c
              if a_b * c_d + ab == cd {
12
                if f := float64(aa + bb + cc + dd - ad - bc - cd); f > 0 {
13
14
                  if e := int(math.Sqrt(f)); math.Pow(float64(e), 2) == f {
15
                     sols.Add(a, b, c, d, e)
                  }
16
17
                }
18
              }
19
            }
20
         }
21
       }
22
     }
23
   }
```

2.5 Type 2 simpler results

The secont type 2 program found 139 solutions iterating over $1 \le a \le 1000$:

```
1
                    2 c=
                          9 d=
                                 6 e = 11
         a = 12 b =
 2
     2
         a = 12 b =
                    3 c=
                          0 d =
                                 4 e = 11
3
     3
         a = 31 b =
                   4 c= 28 d= 16 e= 31
4
        a= 38 b= 12 c= 18 d= 21 e= 31
5
     5
         a = 48 b =
                   8 c= 24 d= 21 e= 41
6
     6
         a = 48 b = 12 c =
                          9 d = 20 e = 41
7
     7
         a= 72 b= 21 c= 48 d= 40 e= 61
8
     8
         a= 72 b= 24 c= 16 d= 39 e= 61
9
         a = 78 b = 27 c =
     9
                          4 d= 42 e= 71
10
    10
         a= 87 b= 28 c= 36 d= 48 e= 71
11
         a=111 b= 39 c= 99 d= 67 e=101
12
         a=121 b= 33 c= 33 d= 57 e=101
    12
13
    13
         a=128 b=
                   8 c= 89 d= 56 e=121
14
        a=138 b=12 c=54 d=47 e=121
    14
15
         a=145 b= 45 c= 39 d= 75 e=121
16
    16
         a=147 b= 43 c= 51 d= 75 e=121
17
    17
         a=151 b= 19 c= 73 d= 61 e=131
18
         a=156 b= 43 c= 96 d= 84 e=131
    18
19
         a=165 b= 36 c=132 d= 88 e=151
    19
20
         a=179 b= 15 c=177 d= 93 e=191
    20
21
    21
         a=183 b= 66 c= 62 d=108 e=151
22
    22
         a=201 b= 9 c= 13 d= 21 e=191
23
         a=204 b= 21 c=112 d= 84 e=181
    23
24
    24
         a=216 b= 48 c=111 d=104 e=181
25
    25
         a=236 b= 80 c= 20 d=125 e=211
26
    26
         a=249 b= 45 c= 75 d= 95 e=211
27
    27
         a=264 b= 76 c=
                          3 d=108 e=241
28
         a=285 b= 73 c= 27 d=111 e=251
    28
29
    29
         a=296 b=104 c=128 d=173 e=241
30
    30
        a=303 b= 51 c= 29 d= 81 e=271
31
         a=304 b= 76 c=133 d=148 e=251
    31
32
    32
         a=312 b= 36 c= 93 d=100 e=271
   33
        a=315 b= 24 c=160 d=120 e=281
```

```
34
        a=324 b= 64 c=204 d=159 e=281
35
        a=343 b= 7 c=115 d= 91 e=311
        a=352 b= 3 c=240 d=144 e=341
36
    36
37
        a=354 b= 53 c= 60 d=102 e=311
        a=368 b= 36 c=219 d=156 e=331
38
    38
39
        a=369 b= 37 c= 27 d= 63 e=341
    39
40
        a=370 b= 1 c=172 d=118 e=341
    40
41
    41
        a=375 b= 15 c=191 d=135 e=341
42
        a=378 b= 21 c= 84 d= 86 e=341
    42
43
    43
        a=384 b=120 c=312 d=223 e=341
44
        a=390 b=84 c=50 d=135 e=341
        a=390 b= 87 c=228 d=194 e=331
45
    45
46
    46
        a=392 b=119 c=296 d=224 e=341
47
        a=392 b=128 c=56 d=203 e=341
    47
48
        a=393 b= 98 c= 54 d=156 e=341
49
        a=396 b=138 c=73 d=222 e=341
    49
50
    50
        a=399 b= 70 c=210 d=180 e=341
        a=403 b= 78 c=114 d=156 e=341
51
    51
52
        a=404 b= 89 c=104 d=164 e=341
        a=408 b= 16 c=312 d=183 e=401
53
    53
54
    54
        a=408 b= 84 c=167 d=180 e=341
55
    55
        a=411 b=123 c=243 d=227 e=341
        a=435 b= 96 c=400 d=240 e=421
56
        a=450 b= 92 c=438 d=249 e=451
57
    57
58
        a=468 b=173 c=24 d=276 e=431
    58
59
        a=480 b= 80 c= 75 d=144 e=421
    59
60
    60
        a=486 b=180 c=18 d=287 e=451
        a=488 b= 72 c= 15 d= 96 e=451
61
    61
62
    62
        a=488 b=132 c=423 d=276 e=451
63
        a=488 b=152 c=269 d=272 e=401
64
        a=495 b=135 c=415 d=279 e=451
    64
        a=502 b= 93 c= 36 d=138 e=451
65
66
        a=507 b= 18 c=366 d=220 e=491
    66
67
        a=507 b= 60 c= 84 d=128 e=451
68
    68
        a=509 b=150 c=42 d=228 e=451
69
    69
        a=516 b=114 c=169 d=222 e=431
70
        a=520 b= 36 c=225 d=180 e=461
    70
71
    71
        a=525 b=185 c=399 d=315 e=451
72
        a=525 b=189 c=105 d=305 e=451
    72
73
    73
        a=528 b= 80 c=171 d=192 e=451
74
        a=540 b=150 c=321 d=290 e=451
    74
75
        a=543 b=123 c=221 d=249 e=451
    75
76
        a=546 b=135 c=228 d=262 e=451
    76
77
    77
        a=552 b=179 c=288 d=312 e=451
78
    78
        a=553 b=180 c=276 d=312 e=451
79
        a=560 b=200 c=344 d=335 e=461
    79
80
        a=565 b= 69 c=153 d=177 e=491
    80
81
        a=588 b=104 c=12 d=135 e=541
    81
82
        a=600 b= 65 c=240 d=216 e=521
83
    83
        a=600 b=120 c= 96 d=205 e=521
84
    84
        a=617 b= 89 c=533 d=317 e=601
85
        a=632 b=113 c=152 d=224 e=541
    85
86
        a=652 b= 58 c=235 d=214 e=571
    86
87
        a=661 b=109 c= 37 d=157 e=601
    87
88
    88
        a=684 b=237 c=192 d=388 e=571
89
    89
        a=699 b= 84 c=564 d=344 e=671
90
        a=701 b=254 c=698 d=428 e=671
    90
```

```
91
      91
           a=713 b=234 c=582 d=420 e=631
 92
      92
           a = 715
                   b=211 c=655 d=415
 93
      93
                   b = 216
                          c=712 d=423
                                           e = 701
           a = 720
                   b=147 c=72 d=228
 94
      94
                       21 c=192 d=168
 95
      95
           a = 728
                   b=
                                           e = 661
                          c = 428
                                  d=288
 96
      96
           a = 729
                   b =
                       36
                                           e = 671
 97
      97
           a = 732
                      18
                          c = 681 d = 358
98
      98
           a = 732
                   b=
                       42
                          c=111 d=134
 99
      99
           a = 744
                   b = 228
                          c = 155 d = 372
100
     100
           a = 746
                   b = 164
                           c = 38 d = 233
                                           e = 671
                   b=123
                                  d=291 e=641
101
     101
                          c = 267
102
     102
                       69
                          c=168 d=196
           a = 756
                   b=
                                          e = 671
103
     103
           a = 762
                   b=
                       73
                          c = 372 d = 294
                                          e = 671
     104
                          c = 354 d = 260
                                          e = 691
104
           a = 765
                   b=
                       30
105
     105
                   b = 234
                          c=118 d=372
106
                   b=108
                          c=348 d=312
     106
           a = 781
107
     107
           a = 784
                   b = 192
                          c = 189
                                   d = 336
                           c = 263
108
     108
           a = 800
                   b = 164
                                  d = 332
                                           e = 671
109
     109
                   b = 177
                          c = 272
                                  d = 348
                   b=202 c=238
                                  d = 364
110
     110
           a = 805
                                           e = 671
111
     111
           a = 810
                   b = 276
                          c = 510
                                  d = 475
                                           e = 671
           a=819 b=136 c=216 d=288
112
     112
                                          e = 701
113
     113
           a = 824
                   b = 276
                          c = 363 d = 468
                                          e = 671
114
     114
           a = 826
                   b = 315
                          c = 420 d = 510
                                           e = 671
                          c = 777
115
     115
           a = 840
                   b = 196
                                   d = 468
                                           e = 811
                  b=285
                          c = 465 d = 489
116
     116
           a = 845
117
     117
           a = 859
                   b=130 c=502 d=388
118
                   b=126 c= 66 d=196
     118
           a=861
                                          e = 781
119
     119
           a=863
                   b=303 c=711 d=519
                                          e = 761
120
                      24 c=349 d=264 e=781
     120
           a = 864 b =
121
     121
                   b=137 c=453 d=381
           a = 873
122
     122
           a = 879
                   b=231 c= 63 d=343
123
     123
                   b=206
                          c = 642
                                  d=468
           a = 885
                                           e = 781
124
     124
                   b=309
                          c = 13
                                  d = 477
125
     125
           a = 892
                   b=112 c=196
                                   d = 259
                                           e = 781
126
     126
           a = 896
                   b = 144
                          c = 528
                                   d = 411
127
     127
           a=896 b=332 c=725
                                   d = 548
                                          e = 781
128
     128
           a = 904
                   b = 328
                          c = 640
                                  d = 547
129
                   b=161 c=185 d=305
     129
           a = 905
                                          e = 781
130
     130
           a = 912
                   b = 168
                          c = 507
                                   d = 424
                                           e = 781
           a=915 b=135
                          c = 345 d = 349
131
     131
                                           e = 781
           a=928 b=319
                          c = 232 d = 520
132
     132
                   b=252 c=270 d=441
133
     133
           a = 938
134
     134
           a = 947
                   b = 306
                          c = 558 d = 540
                                          e = 781
135
     135
           a=948 b=342 c=589 d=570 e=781
136
     136
           a = 949
                   b=273 c=495 d=507
                                          e = 781
                          c = 760 d = 504
137
     137
                   b = 195
           a=961 b=249
                          c = 633 d = 513
138
     138
                                          e = 821
139
     139
                   b=350 c=594 d=588 e=811
```

2.6 Type 2 conjecture

The last report of 139 pentagons shows all e values have the form 10x + 1 for x integer. So the conjecture is that e always is of the form 10x + 1 for x integer.

Next go function called pentagons_type_2_half_with_conjecture is an adaptation of the previous one and instead checking for a square root to be an integer, only checks for $e^2 = (10x+1)^2$ for small x > 1. The

results of this program is exactly the same result of the program checking the square root, up to $a \le 1000$.

```
func pentagons_type_2_half_with_conjecture(max int) {
 1
 2
     sols := &Sols{}
 3
     aa, a_b, ab, bb, dd, ad, bc, c_d, cd, cc := 0,0,0,0,0,0,0,0,0
 4
     for a := 1; a <= max; a++ {
 5
       aa = a*a
6
       for b := 1; b < a; b++ {
 7
          a_b, ab, bb = a - b, a*b, b*b
8
          for d := 1; d < (a-b); d++ {
9
            dd, ad = d*d, a*d
            for c := 1; c < a; c++ {
10
              bc, c_d, cd, cc = b*c, c - d, c*d, c*c
11
12
              if a_b * c_d + ab == cd {
13
14
                e2 := aa + bb + cc + dd - ad - bc - cd
15
                x := 1
16
17
                for {
                  if e := 10*x + 1; e*e == e2 {
18
19
                    sols.Add(a, b, c, d, e)
20
                    break
21
                  } else if e*e > e2 {
22
                    break
23
                  }
24
                  x++
25
                }
              }
26
27
            }
         }
28
29
       }
30
31
   }
```

2.7 Type 2 examples

Figures 5, 6 and 7 show the first 18 pentagons of type 2 found.

Figure 5: Pentagons 1-6 of type 2 with diagonals 11, 31 and 41.

Figure 6: Pentagons 7-12 of type 2 with diagonals 61, 71 and 101.

Figure 7: Pentagons 13-18 of type 2 with diagonals 121 and 131.