Wireline Transceiver Circuits

Dr. Mohamed Salah Mobarak
Email: mohamedmobarak@eng.cu.edu.eg
Department of Electronics and Electrical
Communications Engineering
Cairo University

Oscillators

Oscillation: an effect that repeatedly and regularly fluctuates about the mean value

Oscillator: circuit that produces oscillation

Characteristics: wave-shape, frequency, amplitude, distortion, stability

Oscillators

Application of Oscillators

- Oscillator applications:
 - ➤ Used to generate clocks in digital systems
 - ➤ Used as a local oscillator in receiver and transmitter systems
 - ➤ Used in test equipment

Oscillator feedback loop

A linear oscillator contains:

- a frequency selection feedback network
- an amplifier to maintain the loop gain at unity

Basic Linear Oscillator

$$V_o = AV_\varepsilon = A(V_s + V_f)$$
 and $V_f = \beta V_o$
$$\Rightarrow \frac{V_o}{V_s} = \frac{A}{1 - A\beta}$$

If $V_s = 0$, the only way that V_o can be nonzero is that loop gain $A\beta=1$ which implies that

$$|A\beta|=1$$
 (Barkhausen Criterion)
 $\angle A\beta=0$

LC Oscillators

Voltage swing in ideal LC tank is sustained

•
$$Z = \frac{V}{I} = j\omega L - \frac{j}{\omega C}$$

- At $\omega_0 Z = \infty$
- Output voltage is finite even if the current is zero

LC Oscillators

Real inductor has loss that can be represented by series resistant

$$\begin{split} R+j\omega L &= \frac{1}{1/R_p+1/j\omega L_p}, hence \ \frac{1}{R_p} + \frac{1}{j\omega L_p} = \frac{1}{R+j\omega L} = \frac{R-j\omega L}{R^2+(\omega L)^2} = \frac{1}{R(1+Q^2)} + \frac{1}{j\omega L(1+1/Q^2)} \\ R_p &= R(1+Q^2), L_p = L\left(1+\frac{1}{Q^2}\right), Q = \omega_0 L \end{split}$$

• IF R = 0, oscillation is sustained

LC Oscillators

- The frequency selection network $(Z_1, Z_2 \text{ and } Z_3)$ provides a phase shift of 180°
- The amplifier provides an addition shift of 180°

Two well-known Oscillators: Colpitts Oscillator Hartley Oscillator

Hartley Oscillator

$$\omega_o = \frac{1}{\sqrt{(L_1 + L_2)C}}$$

$$g_m = \frac{L_1}{RL_2}$$

Colpitts Oscillator

$$\omega_o = \frac{1}{\sqrt{LC_T}} \qquad C_T = \frac{C_1 C_2}{C_1 + C_2}$$

$$g_m = \frac{C_2}{RC_1}$$

Colpitts oscillator circuit

• L_{∞} and C_{∞} are used for biasing

Colpitts Oscillator

In the equivalent circuit, it is assumed that:

- Linear small signal model of transistor is used
- The transistor capacitances are neglected
- Input resistance of the transistor is large enough

At node 1,

$$V_1 = V_{\pi} + i_1(j\omega L)$$

where,

$$i_1 = j\omega C_2 V_{\pi}$$

$$\Rightarrow V_1 = V_{\pi} (1 - \omega^2 L C_2)$$

Apply KCL at node 1, we have

$$j\omega C_{2}V_{\pi} + g_{m}V_{\pi} + \frac{V_{1}}{R} + j\omega C_{1}V_{1} = 0$$

$$j\omega C_{2}V_{\pi} + g_{m}V_{\pi} + V_{\pi}(1 - \omega^{2}LC_{2})\left(\frac{1}{R} + j\omega C_{1}\right) = 0$$

For Oscillator V_{π} must not be zero, therefore it enforces,

$$\left(g_{m} + \frac{1}{R} - \frac{\omega^{2}LC_{2}}{R}\right) + j\left[\omega(C_{1} + C_{2}) - \omega^{3}LC_{1}C_{2}\right] = 0$$

$$\left(g_{m} + \frac{1}{R} - \frac{\omega^{2}LC_{2}}{R}\right) + j\left[\omega(C_{1} + C_{2}) - \omega^{3}LC_{1}C_{2}\right] = 0$$

Imaginary part = 0, we have

$$\omega_o = \frac{1}{\sqrt{LC_T}} \qquad C_T = \frac{C_1 C_2}{C_1 + C_2}$$

Real part = 0, yields

$$g_m = \frac{C_2}{RC_1}$$

Frequency can be tuned by changing capacitor value (use of varactor)

Cross Coupled Oscillator

- $V_{out} = -g_m Z_L V_{in}$
- Using single stage oscillator phase shift cannot reach 360°
- Use of multiple stages is required to achieve the oscillation

Cross Coupled Oscillator

- Loop Gain= $(g_m Z_I)^2$
- Loop Gain =1, imaginary part of $Z_L=0$, real part = R_p
- $g_m R_p > 1$ for oscillation to start

Cross Coupled Oscillator

•
$$I_x = -g_{m1}v_1 = g_{m2}v_2 \Rightarrow v_1 = -I_x/g_{m1}$$
, $v_2 = I_x/g_{m2}$

•
$$v_x = v_1 - v_2 = -\left(\frac{I_x}{g_{m1}} + \frac{I_x}{g_{m2}}\right)$$

•
$$v_x = v_1 - v_2 = -\left(\frac{I_x}{g_{m1}} + \frac{I_x}{g_{m2}}\right)$$

• $\frac{V_x}{I_x} = -\left(\frac{1}{g_{m1}} + \frac{1}{g_{m2}}\right) = -\frac{2}{g_m} for \ g_{m1} = g_{m2}$

Differential Oscillator

Maximum voltage amplitude is given by

$$>V_p = \frac{2}{\pi}I_{SS}R_p$$

Varactor design

- Varactors have two important properties
 - Capacitor range, or ratio between max and min capacitance values that can be achieved
 - The quality factor which depends on series resistor
- Reverse bias diodes and MOSFET transistors can be used as varactors

PN junction Varactor

$$C_j = \frac{C_{j0}}{\left(1 + \frac{V_D}{V_0}\right)^m}$$

- Since supply is limited, tuning range is limited
- \rightarrow At $V_D = 0$ $C_j = C_{j0}$
- $At V_D = 1.5 V C_j = 0.7 C_{j0}$

CMOS Varactor

- Behavior of MOS capacitance is divided into three regions
 - \triangleright Accumulation mode, for V_{GS} <0
 - ➤ Depletion mode

$$0 < V_{GS} < V_{TH}$$

>Inversion mode

$$V_{GS} > V_{TH}$$

CMOS Varactor

- Accumulation mode
 - ➤ Holes form other side of varactor
- Depletion mode
 - Total capacitance is the series equivalent of two caps
- Inversion mode
 - Electrons form the other side of varactor

MOS Varactor

- NMOS in nwell
 - Accumulation mode and depletion mode only
 - ➤ No sign inversion in the varactor gain

Quality Factor of MOS Varactor

- Maximum resistance that any electron will see when it is in the middle of the channel $(R_{ch}/2||R_{ch}/2=R_{ch}/4)$
- $R_{ch} \approx \frac{L}{\mu C_{ox} W(V_{GS} V_t)}$

Quality Factor of MOS Varactor

Consider the input impedance from half the structure

- Consider the input impedance from half the structure
- $Z_{in} = \frac{Z_0}{\tanh(\gamma l)} = \frac{\sqrt{Z_1/Y_1}}{\tanh(\sqrt{Z_1Y_1d^2})}$, where Z_1 and Y_1 are the impedance and admittance per unit length ($Z_1 = R_{tot}/2d$, $Y_1 = sC_{tot}/2d$)
- $\tanh(\varepsilon) \approx \frac{\varepsilon}{1+\varepsilon^2/3}$, then $Z_{in} = \frac{1}{sC_{tot}/2} + \frac{R_{tot}}{6}$ (half structure)
- $Z_{in,tot} = \frac{1}{sC_{tot}} + \frac{R_{tot}}{12}$ (of the whole structure)

VCO Gain

•
$$\omega = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{L(C_0 + C(v))}} = \frac{1}{\sqrt{LC_0}\sqrt{1 + C(v)/C_0}}$$

•
$$\omega = \frac{1}{\sqrt{LC_0}} \left(1 - \frac{C(v)}{2C_0} \right)$$

•
$$\omega = \omega_0 + K_{vco}V_c$$

Introduction to Phase Noise

- Phase step
- $v(t) = \sin(\omega t + \Delta \emptyset u(t))$

Introduction to Phase Noise

Introduction to Phase Noise

Voltage Noise

- Noise is a time varying random signal
 - Frequency domain representation of noise is Fourier transform of autocorrelation function of noise
 - > Autocorrelation of white noise is delta function
 - ➤ What is the definition of SNR

White Noise and Flicker Noise

- Transistor noise consists of two parts
 - \triangleright White noise modeled as current $i_n^2 = 4KT\gamma g_m$
 - Flicker noise modeled as voltage at gate $v_n^2 = \frac{K}{WLC_{ox}f}$

Phase Noise

- Oscillator ideal output signal is given by $V_{out} = ACos(\omega t)$
- Real output signal contains noise and hence zero crossing changes randomly
- $V_{out} = ACos(\omega t + \phi_n)$
 - > Frequency of real oscillator is not constant
 - Amplitude noise is not important in oscillator since it is removed when it is converted to digital signal

Phase Noise

- Phase noise is varying with time
 - > Frequency spectrum of phase noise is Fourier transform of phase noise autocorrelation function

Relationship Between Phase Noise and Jitter

- Jitter is the time domain representation of phase noise
- For a periodic signal, period time T is equivalent to 2π
- A signal with frequency f_0 and phase noise ϕ_n , the jitter is simply given by

- Jitter is typically used for square waves
- Integral of jitter is called rms jitter

Phase Noise

 Noise added to sinusoidal signal will cause phase noise

Phase Noise

- Spectrum of real oscillator is broadened
- Note that the spectrum of PLL output will contain spurs in addition to phase noise

Amplitude and Phase Noise

- Amplitude noise is most common form of noise
- $V_{out} = (A + aCos(\Delta\omega t))Cos(\omega t)$

•
$$V_{out} = ACos(\omega t) + \frac{a}{2}Cos((\omega + \Delta \omega)t) + \frac{a}{2}Cos((\omega - \Delta \omega)t)$$

Amplitude and Phase Noise

•
$$V_{out} = ACos\left(\omega t - \frac{a}{A}Sin(\Delta\omega t)\right)$$

•
$$V_{out} = ACos(\omega t)Cos\left(-\frac{a}{A}Cos(\Delta\omega t)\right) + ASin(\omega t)Sin\left(-\frac{a}{A}Sin(\Delta\omega t)\right)$$

- $V_{out} \approx ACos(\omega t) aSin(\omega t)Sin(\Delta \omega t)$
- $V_{out} = ACos(\omega t) + \frac{a}{2}Cos((\omega + \Delta \omega)t) \frac{a}{2}Cos((\omega \Delta \omega)t)$

Phase Noise Spectrum

• $V_{out} = V_0 Cos(\omega_0 t + \phi_n(t)) \approx V_0 Cos(\omega_0 t) - V_0 \phi_n(t) Sin(\omega_0 t)$

Phase Noise

- Phase noise is measured in dBc/Hz
 - Total noise is integrated in 1Hz BW at a certain offset and then divided by the carrier power

Phase Noise

- At small frequency offset, phase noise is large and previous approximation doesn't hold
- Spectrum of real oscillator is broadened

$$S_{out}(f) = \frac{V_0^2(\eta/4)}{(\omega_0 - \omega)^2 + \eta^2/16}.$$

Effect of Phase Noise

 Oscillator phase noise may cause interferer to distort desired channel

Effect of Phase Noise

 Also transmitting outside the allocated band might distort signals to nearby receivers

Effect of Jitter

