UNIT-W

Linear Systems With Random Enputs

Response of Linear Systems for landom inputs: -

Consider a continuous LTI system with impulse response hlt.).

Assume that the system is always causal and stable. When a continuous time random process XH) is applied to LTI system, the ouput response is also a continuous time random process Y(H). If the random processes X and Y are discrete time signals. Then the linear system is called a discrete time system.

System Response: — Let a random process *(t) be applied to a Continuous LTI system whose impulse response is Ht), then the output besponse Y(t) is also a random process. It can be expressed by the convolution integral, Y(t) = h(t) * X(t).

i.e, the output response is $y(t) = \int_{-\infty}^{\infty} h(u) \cdot x(t-v) dv$.

Mean and Mean-Squared value of System Response;

consider the random process X(t) is wide sense stationary (WSS) process.

Mean Value of system response = E[Y(t)] = Y

$$\overline{Y} = E[Y(t)] = E[h(t) * X(t)]$$

$$= E[\int_{-\infty}^{\infty} h(t') \cdot X(t-t') dt']$$

$$= \int_{-\infty}^{\infty} h(t') \cdot E[X(t-t')] \cdot dt'$$

But E[x(t-o)] = x = constant, strice xts) is WSS.

Also, if H(w) is the Fourier transfer of h(t), Then

H(w) = \int h(t) \cdot \equiv \dt.

at $\omega=0$, $H(0)=\int_{-\infty}^{\infty}h(t)$ at is called the zero-frequency response of the system. Substituting this we set

Thus the mean value of the system susponse (os) output susponse Y(t) of a WSS landown process is equal to the product of the mean value of the input process and the 3000-frequency susponse of the system.

$$\begin{split} & = \left[\int_{-\infty}^{\infty} h(y_1) \times (t-y_1) dy, \cdot \int_{-\infty}^{\infty} h(y_2) \cdot \times (t-y_2) dy_2 \right] \\ & = \left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \times (t-y_1) \cdot \times (t-y_2) \cdot h(y_1) \cdot h(y_2) \cdot dy, \cdot dy_2 \right] \\ & = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\times (t-y_1) \cdot \times (t-y_2) \cdot h(y_1) \cdot h(y_2) \cdot dy, \cdot dy_2 \right] \\ & = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\times (t-y_1) \cdot \times (t-y_2) \cdot h(y_1) \cdot h(y_2) \cdot dy, \cdot dy_2 \right] \\ & = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\times (t-y_1) \cdot \times (t-y_2) \cdot h(y_1) \cdot h(y_2) \cdot dy, \cdot dy_2 \right] \\ & = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\times (t-y_1) \cdot \times (t-y_2) \cdot h(y_1) \cdot h(y_2) \cdot dy, \cdot dy_2 \right] \\ & = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\times (t-y_1) \cdot \times (t-y_2) \cdot h(y_1) \cdot h(y_2) \cdot dy, \cdot dy_2 \right] \\ & = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\times (t-y_1) \cdot \times (t-y_2) \cdot h(y_1) \cdot h(y_2) \cdot dy, \cdot dy_2 \right] \\ & = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\times (t-y_1) \cdot \times (t-y_2) \cdot h(y_1) \cdot h(y_2) \cdot dy, \cdot dy_2 \right] \\ & = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\times (t-y_1) \cdot \times (t-y_2) \cdot h(y_1) \cdot h(y_2) \cdot dy, \cdot dy_2 \right] \\ & = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\times (t-y_1) \cdot \times (t-y_2) \cdot h(y_1) \cdot h(y_2) \cdot dy, \cdot dy_2 \right] \\ & = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\times (t-y_1) \cdot \times (t-y_2) \cdot h(y_1) \cdot h(y_2) \cdot dy, \cdot dy_2 \right] \\ & = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\times (t-y_1) \cdot \times (t-y_2) \cdot h(y_1) \cdot h(y_2) \cdot dy, \cdot dy_2 \right] \\ & = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\times (t-y_1) \cdot \times (t-y_2) \cdot h(y_1) \cdot h(y_2) \cdot dy, \cdot dy_2 \right] \\ & = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\times (t-y_1) \cdot \times (t-y_2) \cdot h(y_1) \cdot h(y_2) \cdot dy_1 \right] \\ & = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\times (t-y_1) \cdot \times (t-y_2) \cdot h(y_1) \cdot h(y_2) \cdot dy_1 \right] \\ & = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\times (t-y_1) \cdot h(y_2) \cdot dy_1 \right] \\ & = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\times (t-y_1) \cdot h(y_2) \cdot dy_1 \right] \\ & = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\times (t-y_1) \cdot h(y_2) \cdot dy_1 \right] \\ & = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\times (t-y_1) \cdot h(y_2) \cdot dy_1 \right] \\ & = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\times (t-y_1) \cdot h(y_2) \cdot dy_2 \right] \\ & = \int_{-\infty}^{\infty} \left[\times (t-y_1) \cdot h(y_2) \cdot dy_2 \right] \\ & = \int_{-\infty}^{\infty} \left[\times (t-y_1) \cdot h(y_2) \cdot dy_2 \right] \\ & = \int_{-\infty}^{\infty} \left[\times (t-y_1) \cdot h(y_2) \cdot dy_2 \right]$$

Where of and of one shifts in time intervals.

If unput X(t) is a WSS landom process, then

$$\cdot \cdot \left[E[\gamma'(t)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_{xx}(y_{1} - y_{2}) \cdot h(y_{1}) \cdot h(y_{2}) \cdot dy_{1} \cdot dy_{2} \right]$$

This expression is independent of time t. And it represents the output power.

Autocarrelation function of system response;

The autocollelation function of Y(t) is

$$R_{yy}(tt_1,t_2) = E[y(t_1)y(t_2)]$$

$$= E[gh(t_1)*x(t_1)] \{h(t_2)*x(t_2)\}$$

$$= E[\int_{-\infty}^{\infty} h(t_1)\cdot x(t_1-t_1) dt_1 \cdot \int_{-\infty}^{\infty} h(t_2) x(t_2-t_2) dt_2$$

$$= E[\int_{-\infty}^{\infty} (x(t_1-t_1))x(t_2-t_2) h(t_1) h(t_2) dt_1 dt_2$$

$$= \int_{-\infty}^{\infty} (x(t_1-t_1))x(t_2-t_2) h(t_1) h(t_2) dt_1 dt_2$$

We know that
$$E[x(t_1-\gamma_1)x(t_2-\gamma_2)] = R_{xx}(t_2-t_1+\gamma_1-\gamma_2)$$

Ef input x(t) is WSS-RP, Let the time difference $N=t_2t_1$, and $t=t_1$, then $E[X(t-7),X(t+7-72)]=R_{xx}(Y+7,-72)$

· · ·
$$R_{yy}(t, t+\sigma') = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_{xx}(\sigma'+\sigma', -\sigma'_2) h(\sigma', h(\sigma'_2) \cdot d\sigma', d\sigma'_2$$

$$\int R_{x} J(\sigma) = R_{x}(\sigma) + H(-\sigma) + H(\sigma)$$

Two facts result from above expressions

- 1. Y(t) is wss, if X(t) is wss because Rylor) does not depend ont' and E[Y(t)] is a constant.
- 2. Ryy(v) is the twofold convolution of the injut autocollelation function with the network's impulse response.

Cross-Collelation functions between input and output of the system!

The cross-correlation function of X(t) and Y(t) is

$$R_{XY}(t,t+\sigma) = E[X(t)Y(t+\sigma)]$$

$$= E[X(t)]_{\alpha}^{\alpha} h(x_1) \times (t+\sigma-x_1) d\sigma_1]$$

$$= \int_{\alpha}^{\infty} E[X(t)X(t+\sigma-x_1)] \cdot H_{\alpha}^{\alpha} \cdot d\sigma_1$$

If X(E) is WSS, then

$$R_{xy}(\sigma) = \int_{-\infty}^{\infty} R_{xx}(r-r) \cdot h(r) dr$$
, which is the convolution $R_{xx}(\sigma) = R_{xx}(\sigma) + h(r)$

A similar development shows that

$$R_{yx}(v) = \int_{-\infty}^{\infty} R_{xx}(v-v_1) H(-v_1) dv_1$$

Et is clear that the cross-cohelation functions depend on Y and on absolute time t. As a consequence of this fact x(t) and Y(t) are jointly WSS, if x(t) is WSS, because already Y(t) to be WSS. Autocohelation function and cross-cohelation functions are seen to be related by

(d)
$$\left[R_{yy}(y) = R_{xy}(y) + H(y)\right]$$
 (d) $h(-y) + R_{xy}(y)$

(d)
$$[R_{yy} \forall] = R_{yx} (\forall) * h(Y) * h(Y) * R_{yy} (\forall)$$

Spectral characteristics of System's Response: -

consider that the random process X(t) is a WSS-RP with the autocorrelation function RX(N) applied through an LTT system. The off response Y(t) is also a WSS-RP and the processes X(t) and Y(t) are jointly WSS. Now, we can obtain power spectral characteristics of the off process Y(t) by taking the Fourier transform of the correlations functions.

Power density spectrum of response:

Consider that a landom process X(t) is applied on an LTI system having a transfer function $H(\omega)$. The olf response is Y(t). If the power spectrum of the ilp process is $S_{XX}(\omega)$, then the power spectrum of the olp response is given by $S_{YV}(\omega) = [H(\omega)]^2 S_{XV}(\omega)$

 $S_{yy}(\omega) = |H(\omega)|^2 S_{xx}(\omega)$ $S_{xx}(\omega) = |H(\omega)|^2 S_{xx}(\omega)$ $S_{xx}(\omega) = |H(\omega)|^2 S_{yy}(\omega)$ $S_{xx}(\omega) = |H(\omega)|^2 S_{yy}(\omega)$

Proof: - Let Ryy(r) be the autocollecation of the olp susponse Y(t).

Then the power spectrum of the sesponse is the FI of Ryy(or).

$$Syy(\omega) = F[Ryy(\sigma)]$$

$$= \int_{-\infty}^{\infty} Ryy(\sigma) \cdot e^{j\omega \tau} d\tau$$

we know that Ry(0) = [] ~ Rxx(12+0,-72) · h(1,) h(1,2) dr, do_2

Let $\sigma + \sigma_1 - \sigma_2 = t$ =) $d\sigma = dt$ $\sigma = t - \sigma_1 + \sigma_2$

 $(\cdot, S_{yy}(\omega)) = \int_{-\infty}^{\infty} h(y_1) \cdot e^{j\omega y_1} dy_1 \cdot \int_{-\infty}^{\infty} h(y_2) \cdot e^{j\omega y_2} dy_2 \cdot \int_{-\infty}^{\infty} R_{xx}(x) e^{j\omega t} dt$

= $H(-\omega) \cdot H(\omega) \cdot S_{xx}(\omega) = H^{*}(\omega) \cdot H(\omega) \cdot S_{xx}(\omega)$

$$S_{XX}^{(\omega)} = |H(\omega)|^{2} S_{XX}^{(\omega)}$$

Cross-power density spectrums of Engut and output:

The cross-power density spectrum of 1/P 40/P is

$$S_{XY}(\omega) = S_{XX}(\omega) \cdot H(\omega)$$
 and

=
$$H(\omega)$$
. $S_{XX}(\omega)$

$$S_{XY}(\omega) = S_{XX}(\omega) \cdot H(\omega)$$

EX1:- A sandom process X(t) is applied as input to a system whose impulse sesponse is h(t) = 3 u(t). P. exp(-8t). If E[X(t)]:2, what is the mean value of the system sesponse Y(t)?

581:-

Mean value of the system esponse is E[Y(t)] = V

$$E[Y(t)] = E[h(t) + X(t)]$$

$$= E[\int_{\infty}^{\infty} h(t') \times (t-t') dt']$$

$$= \int_{\infty}^{\infty} h(t') \cdot E[X(t-t')] \cdot dt' \quad : E[X(t-t')] = 2$$

$$= 2 \int_{\infty}^{\infty} 3 \cdot u(t') \cdot t' \cdot e^{8t'} dt'$$

$$= 6 \int_{\infty}^{\infty} 0^{3} \cdot e^{80} dt'$$

$$= 6 \left[0 - 0 + 2 \cdot (e^{3} - e^{0})\right]$$

$$= 6 \left[\frac{1}{8^{3}}\right] = \frac{3}{256} = constant$$

Ex 2:- Let X(t) be a 3ero-mean WSS process with $R_{X}(N) = e^{|N|}$ X(t) is input to an LTI system with $|H(w)| = \int \overline{|H(w)|^2}$, $|w| < 4\pi$ Let Y(t) be the ordered.

a) find E[Y(t)], b) E[Y'(t)], c) $R_{Y}(Y')$

58]:- Note that X(t) is wss, X(t) by (t) are solutly wss, and threefole Y(t) is wss.

a)
$$E[Y(t)] = \overline{X} \cdot H(0)$$

= 0.1 '. $\overline{X} = 0$, $H(\omega) = \sqrt{1 + (\mathbf{p} \omega)^2}$
= 0 $H(0) = 1$

where
$$S_{yy}(\omega) = S_{xx}(\omega) \cdot [H(\omega)]^{2}$$

$$S_{xx}(\omega) = F[R_{xx}(\omega)] = \int_{-\infty}^{\infty} R_{xx}(\omega) \cdot \overline{e}^{j\omega} d\omega$$

$$= \int_{-\infty}^{\infty} e^{-j\omega} d\omega + \int_{0}^{\infty} e^{-j\omega} d\omega$$

$$= \int_{-\infty}^{\infty} e^{-j\omega} d\omega + \int_{0}^{\infty} e^{-j\omega} d\omega$$

$$= \int_{0}^{\infty} \frac{e^{-\lambda(1+i\omega)}}{e^{-\lambda(1+i\omega)}} dx + \int_{0}^{\infty} \frac{e^{-\lambda(1+i\omega)}}{e^{-\lambda(1+i\omega)}} dx$$

$$= \underbrace{\frac{\gamma(1-j\omega)}{1-j\omega}}_{1-j\omega} \underbrace{\frac{-\gamma(1+j\omega)}{-(1+j\omega)}}_{0}$$

$$=\frac{1}{1-j\omega}+\frac{1}{1+j\omega}=\frac{2}{1+\omega^{2}}$$

$$S_{y}(\omega) = \frac{2}{1+\omega^{2}} \times 1+\omega^{2} = 2$$
, $|\omega| < 4\pi$

$$Ryy(T) = F'\left(S_{7}(\omega)\right) = \frac{1}{2\pi} \int_{-4\pi}^{4\pi} \frac{1}{2} e^{-1} d\omega = 8 \sin(4\pi\tau)$$

Scallicu willi cal

Band pass, Band-Limited and Naegowband processes and their Properties:

Band pass random processes: — A random process X(t) is called a band pass process, if its power spectral density SX(w) has significant components within a bandwidth 'w' that does not include w=0. But in practice, the spectrum may have a small amount of power spectrum at w=0. The spectrum components outside the band 'w' are very small and can be neglected.

ASX(w)

Band-limited landom process: — A random process X(t) is Said to be band limited, if its power spectrum components are 30,0 out side the frequency band of width 'W' that does not include w=0. The power density spectrum of the band-limited band pass is

Narrowband landom processes: — A band limited landom;
Process is said to be a narrowband process, if the bandwidth

iv is very small compared to the band centre frequency, ie Weck;
where we bandwidth and us is the frequency at which the power

Representation of a narrowband process: — Is any arbitrary wss random process N(t), the quadrature form of narrowband Process can be represented as N(t) = X(t) cosyst - Y(t) sinust. Where X(t) and Y(t) are called the in-phase 4 quadrature phase components of N(t).

They can be expressed as

and the relationship between the processes A(+) 4 O(+) are given by

AH)=
$$\int x(t)+y(t)$$
 4
OH)= $tan'(\frac{y(t)}{x(t)})$

Properties of Band-limited Random processes:

Let N(t) be any band-united MSS-RP with zero mean value and a power spectral density, $S_N(\omega)$. If the RP is supresented by N(t) = X(t) cosust -Y(t) sinust.

- 1. If N(t) is wss, then X(t) & Y(t) are Jointly Wss.
- 2. If N(t) has zero mean. I've E[N(t)] =0, then E[x(t)] = E[y(t)] =0.
- 3. The mean-square values of the processes are equal i.e E[N(t)] = E[N(t)] = E[N(t)].
- 4. Both processes x(t) & Y(t) have the same autocollelation functions. i.e. $R_{xx}(v) = R_{yy}(v)$
- 5. The cross-correlation functions of x(t) & y(t) are given by $R_{yx}(r) = R_{xy}(r') \cdot if$ the processes are of thosoner, then $R_{xy}(r') = R_{yx}(r') = 0$
- 6. Both X(t) 4 Y(t) have the same power spectral densities. $S_{yy}(w) = S_{xx}(w) = \left(S_{N}(w-w_0) + S_{N}(w+w_0), |w| \le w_0$ 0, otherwise
- 7. The cross-power spectours are Sxy(w) = Syx(w)
- 8. If N(+) is a faussian-RP, then X(+) 4 Y(+) are jointly faussian
- 9. The selationship between autocosselation y power spectrum $S_{NN}(w)$ is $R_{XX}(v) = \frac{1}{H} \int_{0}^{\infty} S_{NN}(w) \cdot cos(w-w)v^{2} dw = R_{YY}(v)$ $R_{XY}(v) = \frac{1}{H} \int_{0}^{\infty} S_{NN}(w) Sin(w-w)v^{2} dw = -R_{YY}(v)$
- 10. If Mt) is zero-mean Gowsian and its Pdf, SNN(W) is symmetric about two, then X(t) 44(t) are S.I.