Exercises 7.4.5 — Problem 7

Problem. Compute the power-series expansion of the $f(x) = x^2/(1-x^2)$ about x=0.

Proof. We wish to find the power series expansion for $x^2/(1-x^2)$ about x=0. Let $u=x^2$. Then

$$\frac{x^2}{1-x^2} = \frac{u}{1-u} = u\frac{1}{1-u}$$

Now we know the power series for $1/(1-u) = \sum_{n=0}^{\infty} u^n$ so

$$u\frac{1}{1-u} = u\sum_{n=0}^{\infty} u^n = \sum_{n=0}^{\infty} u^{n+1}$$

Since, we have $u=x^2$, $\sum_{n=0}^{\infty}u^{n+1}=\sum_{n=0}^{\infty}(x^2)^{n+1}=\sum_{n=0}^{\infty}x^{2n+2}$ so we have the power expansion for $f(x)=x^2/(1-x^2)$ about x=0. Note this is valid only for $|u|=|x^2|=x^2<1$.