

Data Analysis and Filter Optimization for Online Pulse-Amplitude Measurement

A Case Study on High-Resolution X-ray Spectroscopy

Andres Cicuttin

ICTP - Multidisciplinary Laboratory

Trieste, Italy

United Nations Educational, Scientific and Cultural Organization

Trieste

Main Areas of Expertise

- Read-out electronics and high performance Digital Signal Processing.
- Advanced FPGA Design and Programmable Systems-on-Chip.
- Reconfigurable virtual instrumentation for **Particle Detectors**.
- Novel architectures for Supercomputing Based on FPGA.
- •Instruments and methods for X-Ray Imaging and Analytical Techniques.

Outline

- Introduction
- Pulsed signals: Description levels
- Processing chain: Detector/Sensor, Preamplification, Pulse shaping, Data acquisition, transmission, . . .
- Digital Pulse Processor (DPP): Main functional blocks, Features extraction, Dead times,
 Pattern recognition, . . .
- DPP Optimization
 - Data analysis
 - Pulse modeling
 - Digital Penalized Least Mean Squares (DPLMS) method for filtering optimization
- Discussion and Conclusions

More technical details in

Pulsed signals: Description levels

Processing chain

Detector, CSA, Pulse Shaper

Pulse Processing Chain

Digital Pulse Processor (DPP)

Main functional blocks, Features extraction, Dead times, Pattern recognition, . . .

Digital Pulse Processing Strategy for High-Resolution and High-Performance Amplitude Measurement

$$y_j = \sum_{i=0}^{k-1} c_i \, x_{j-i}$$

A typical experimental pulse

Pulse amplitude measurement

A simple trapezoidal shaper

After some algebra . . .

$$D = \sum_{i=0}^{f_R-1} -6\left(\frac{1+t_R-2i}{t_R^3-t_R}\right) \left(\frac{1}{2}t_R + t_{FT} + \frac{1}{2}t_F\right) x_i$$

$$A = \frac{1}{t_F} \sum_{i=t_R+t_{FT}}^{t_R+t_{FT}+t_F-1} x_i - \frac{1}{t_R} \sum_{i=0}^{t_R-1} x_i - \sum_{i=0}^{t_R-1} -6\left(\frac{1+t_R-2i}{t_R^3-t_R}\right) \left(\frac{1}{2}t_R+t_{FT}+\frac{1}{2}t_F\right) x_i$$

$$A = \sum_{i=t_R+t_{FT}}^{t_R+t_{FT}+t_F-1} \frac{1}{t_F} x_i + \sum_{i=0}^{t_R-1} \left[-\frac{1}{t_R} + 6 \left(\frac{1+t_R-2i}{t_R^3-t_R} \right) \left(\frac{1}{2} t_R + t_{FT} + \frac{1}{2} t_F \right) \right] x_i \qquad \qquad - \text{Linear combination}$$

$$c_{i} = \begin{cases} \frac{1}{t_{F}}, & 0 \leq i < t_{F}; \\ 0, & t_{F} \leq i < t_{F} + t_{FT}; \\ -\frac{1}{t_{R}} + 6\left(\frac{1+t_{R}-2i}{t_{R}^{3}-t_{R}}\right)\left(\frac{1}{2}t_{R} + t_{FT} + \frac{1}{2}t_{F}\right), & t_{F} + t_{FT} \leq i < t_{F} + t_{FT} + t_{R}; \end{cases}$$

Geometrically Derived FIR Filter

$$c_{i} = \begin{cases} \frac{1}{t_{F}}, & 0 \leqslant i < t_{F}; \\ 0, & t_{F} \leqslant i < t_{F} + t_{FT}; \\ -\frac{1}{t_{R}} + 6\left(\frac{1+t_{R}-2i}{t_{R}^{3}-t_{R}}\right)\left(\frac{1}{2}t_{R} + t_{FT} + \frac{1}{2}t_{F}\right), & t_{F} + t_{FT} \leqslant i < t_{F} + t_{FT} + t_{R}; \end{cases}$$

DPP Optimization

Pulse modeling

$$V(t) = egin{cases} 0, & t \leqslant t_0; \ A(1 - e^{rac{-(t - t_0)}{ au}}), & t > t_0; \end{cases}$$

$$V(t) = \begin{cases} B_0 + B_1 t + n(t), & t \leq t_0; \\ A(1 - e^{\frac{-(t - t_0)}{\tau}}) + B_0 + B_1 t + n(t), & t > t_0; \end{cases}$$

$$x_i = \begin{cases} B_0 + B_1 i + n_i, & i \leq t_0; \\ A(1 - e^{\frac{-(i - t_0)}{\tau}}) + B_0 + B_1 i + n_i, & i > t_0; \end{cases}$$

DPP Optimization

Pulse modeling

Deterministic component (ideal pulse)

 $S_{i} = \begin{cases} B_{0} + iB_{1} + n_{i}, & i \leq t_{0} \\ A\left(1 - e^{-(i - t_{0})}/\tau\right) + B_{0} + iB_{1} + n_{i}, & i > t_{0} \end{cases}$

$$S_{i} = \begin{cases} B_{0} + iB_{1}, & i \leq t_{0} \\ A\left(1 - e^{-(i - t_{0})}/\tau\right) + B_{0} + iB_{1}, & i > t_{0} \end{cases}$$

 $S_{i} = \begin{cases} 0, & i \leq t_{0} \\ A(1 - e^{-(i - t_{0})}/\tau), & i > t_{0} \end{cases}$

$$i \leq t_0$$

$$i > t_0$$

$$S_i = \begin{cases} 0, & i \le t_0 \\ A, & i > t_0 \end{cases}$$

Deterministic component

Stochastic component

Digital Pulse Processing: Detecting Arrival Time

A short FIR can compute different discrete derivatives

FIR Design and Optimization

Input signal analysis

FIR Design and Optimization

Input pulse modeling I

The ideal case corresponding to a single photon detection is represented by the step function S_i

$$S_i = \begin{cases} 0, & i \le t_0 \\ A, & i > t_0 \end{cases}$$

finite frequency response of the determines a limited rise time that could be modeled (1st aprox) as an exponential growth

$$S_i = \begin{cases} 0, & i \le t_0 \\ A(1 - e^{-(i - t_0)/\tau}), & i > t_0 \end{cases}$$

A constant detector leakage current determines a baseline with a steady slope and a variable offset on top of which the signal segment must be processed

$$S_{i} = \begin{cases} B_{0} + iB_{1}, & i \leq t_{0} \\ A\left(1 - e^{-(i - t_{0})/\tau}\right) + B_{0} + iB_{1}, & i > t_{0} \end{cases}$$

Several sources of noise will contribute with an additive spurious signal n_i that degrades the voltage step measurement

$$S_{i} = \begin{cases} B_{0} + iB_{1}, & i \leq t_{0} \\ A\left(1 - e^{-(i-t_{0})/\tau}\right) + B_{0} + iB_{1}, & i > t_{0} \end{cases}$$

$$S_{i} = \begin{cases} B_{0} + iB_{1} + n_{i}, & i \leq t_{0} \\ A\left(1 - e^{-(i-t_{0})/\tau}\right) + B_{0} + iB_{1} + n_{i}, & i > t_{0} \end{cases}$$

FIR Design and Optimization Input noise characterization

Some statistic results from the extracted parameters after fitting 1447 segments with the special bi-exponential function.

The proposed signal model has five (quite independent) parameters

FIR Design and Optimization Input noise characterization

Pulse models comparison

	Exponential Model	Bi-Exponential Model
Mean quadratic residuals	6201	5914
Mean peak-to-peak residuals	13.7	6.6
Mean Akaike information criterion	1720	1397

Autocorrelation model

$$ACF(i, a_0, a_1) = \begin{cases} 1 & , & i = 0 \\ {a_0}^i + a_1 & , & i \ge 1 \end{cases}$$

In this case the average normalized ACF can be approximated with a_0 =0.965 and a_1 =-0.2

Histograms of fitting parameters corresponding to the bi-exponential model.

They looks nice but . . .

... scattered plots and correlation distances between pair of parameters may reveal non idealities of the DAQ system.

A. Cicuttin, Nov. 2023 27

Non linearity: Amplification gain depends on offset (!)

Detection arrival time depends on pulse amplitude (!)

$$y_j = \sum_{i=0}^{k-1} c_i \, x_{j-i}$$

$$\sigma_y^2 = \left\langle (y - \langle y \rangle)^2 \right\rangle = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} c_i c_j \underbrace{\left\langle x_i - \langle x_i \rangle \right\rangle \left\langle x_j - \left\langle x_j \right\rangle \right\rangle}_{\text{Covariance Matrix } V_{i,j}}$$

$$\sigma_y^2 = \sum_{i=0}^{k-1} \sum_{j=0}^{k-1} c_i c_j ACF(|i-j|)$$

$$ACF(j) = \frac{\sum_{i=1}^{N-j} x_i x_{i+j}}{\sum_{i=1}^{N-j} x_i^2}$$

DPP: Digital Penalized LMS Method for filtering optimization Normalized average ACF

$$\sum_{i=0}^{k-1} c_i = 0$$

Offset rejection

$$\sum_{i=0}^{k-1} c_i \, i = 0$$

Slope rejection

Ideal requirements

$$\sigma_y^2 = \sum_{i=0}^{k-1} \sum_{j=0}^{k-1} c_i c_j ACF(|i-j|)$$

Output noise

$$y_j = \sum_{i=0}^{k-1} c_i x_{j-i} = A, \quad j \in [t_R, t_R + t_{FT} - 1]$$

Output flat top

$$\Psi(c_0, c_1, \dots, c_{k-1}) = \alpha_1 \left(\sum_{i=0}^{k-1} c_i\right)^2 + \alpha_2 \left(\sum_{i=0}^{k-1} c_i i\right)^2 + \alpha_3 \sum_{j=t_R}^{t_R + t_{FT} - 1} \left(\sum_{i=0}^{k-1} c_i x_{k+j-i} - A\right)^2 + \alpha_4 \sum_{i=0}^{k-1} \sum_{j=0}^{k-1} c_i c_j A C F_{|i-j|}$$

$$y_j = \sum_{i=0}^{k-1} c_i x_{j-i} = A, \quad j \in [t_R, t_R + t_{FT} - 1]$$

$$\{c_0, c_1, \dots, c_{k-1}\}_{opt} = \underset{\{c_0, c_1, \dots, c_{k-1}\}}{argmin} \Psi(c_0, c_1, \dots, c_{k-1})$$

$$\{c_0, c_1, \dots, c_{k-1}\}_{opt} = \underset{\{c_0, c_1, \dots, c_{k-1}\}}{argmin} \Psi(c_0, c_1, \dots, c_{k-1})$$

Table 3. Comparison of energy resolutions with different methods to estimate the energy spectrum.

Method	FWHM K_{α} [eV]	FWHM K_{β} [eV]	Slope-Error Correction
GD FIR	286 ± 4	316 ± 16	yes
Fitting [†]	267 ± 4	288 ± 17	yes
Trapezoidal FIR	207 ± 3	247 ± 17	no
DPLMS FIR	202 ± 2	233 ± 12	no

[†] These results correspond to the histogram of the amplitudes obtained by fitting all available photon traces.

Conclusions

- High-resolution pulse amplitude measurement can be achieved by considering concrete experimental noise and accurate pulse modeling.
- DPP can be optimized through DPLMS method allowing satisfactory trade-off among competing requirements that cannot be all simultaneously satisfied.
- An appropriate data analysis provides the necessary information to apply the DPLMS method, and it may also provide information about the quality the frontend electronics and data acquisition system.

Tank you!

Backup slides: X-Ray Photon detection with Silicon Drift Detectors (SDD)

Backup slides: Pile up (1)

Pile up: Being a Poissonian process, two or more photons could be absorbed in the SDD within any arbitrary small time window. The superposition of two photons absorbed at times t_0 and t_1 and respectively with amplitudes A_0 and A_1 is then given by

$$S_{i} = \begin{cases} B_{0} + iB_{1} + n_{i}, & i \leq t_{0} \\ A_{0} \left(1 - e^{-(i-t_{0})/\tau} \right) + B_{0} + iB_{1} + n_{i}, & t_{0} < i \leq t_{1} \\ A_{0} \left(1 - e^{-(i-t_{0})/\tau} \right) + A_{1} \left(1 - e^{-(i-t_{1})/\tau} \right) + B_{0} + iB_{1} + n_{i}, & i > t_{1} \end{cases}$$

Backup slides: Pile up (2)

... and in general for *m+1* photons

$$S_{i} = \begin{cases} B_{0} + iB_{1} + n_{i}, & i \leq t_{0} \\ A_{0} (1 - e^{-(i-t_{0})/\tau}) + B_{0} + iB_{1} + n_{i}, & t_{0} < i \leq t_{1} \\ A_{0} (1 - e^{-(i-t_{0})/\tau}) + A_{1} (1 - e^{-(i-t_{1})/\tau}) + B_{0} + iB_{1} + n_{i}, & t_{1} < i \leq t_{2} \end{cases}$$

$$\vdots$$

$$\vdots$$

$$\sum_{j=0}^{m} A_{j} (1 - e^{-(i-t_{j})/\tau}) + B_{0} + iB_{1} + n_{i}, & i > t_{m}$$

Backup slides: Pileup rejection

Backup slides: Uncertainty relation between Energy and Time

$$\sigma_t \sigma_{\Delta V} = \frac{2T}{\Delta V} \sigma_x^2$$