Where we are

- last lecture: types
 - primitive and composite types
 - types for primitive and composite blocks
- last lecture: triangular-shaped architectures
 - tree-shaped array
 - triangular array
- today: grid components and combinators
 - beside and below
 - transposed conjugate
 - row and column

Grid components

- connections on four sides, type always $\langle X, Y \rangle \sim \langle U, V \rangle$
- convention: from bottom left,
 - count domain connections clockwise
 - count <u>range</u> connections anticlockwise
- example

Beside and below

•
$$a \xrightarrow{Q} \xrightarrow{S} \xrightarrow{R} r$$
 $\langle a, \langle b, c \rangle \rangle (Q \leftrightarrow R) \langle \langle p, q \rangle, r \rangle$ $\Leftrightarrow \exists s . \langle a, b \rangle Q \langle p, s \rangle \land \langle s, c \rangle R \langle q, r \rangle$

- below: $Q \updownarrow R = (Q^{-1} \leftrightarrow R^{-1})^{-1}$
- R $R = R \leftrightarrow swap$
- also fstv R, sndh R, sndv R
- Rebecca: Q <-> R, Q <|> R

Grid structures

 $R \setminus [id, id]$

 π_1 ; inv; π_2^{-1}

Laws

$$(P \updownarrow Q) \leftrightarrow (R \updownarrow S)$$

$$= (P \leftrightarrow R) \updownarrow (Q \leftrightarrow S)$$

Transposed conjugate


```
• R \setminus (fst Q) = R \setminus [Q, id]
= [id, Q^{-1}]; R; [Q, id]
= snd Q^{-1}; R; fst Q
```

• (fstv R) \leftrightarrow (sndv S) = ((sndv S) \leftrightarrow (fstv R)) \\ (fst swap) = snd swap⁻¹; (sndv s) \leftrightarrow (fstv R); fst swap

Useful definitions

• create list with one element

$$x [-] < x >$$

infix append

$$< a,b,c > ^ < d,e,f,g > = < a,b,c,d,e,f,g >$$

append left

$$\langle a, \langle b, c, d \rangle \rangle$$
 apl₃ $\langle a, b, c, d \rangle$
 $\langle x, xs \rangle$ apl_n $\langle x \rangle^{\wedge} xs$, $\# xs = n$ (there are n elements in xs)

append right

$$<< a,b,c,d>, e> apr_4 < a,b,c,d,e>$$

 $< xs, x> apr_n xs^< x>, #xs = n$

Row: repeated beside

$$row_3 R$$
 $col_n R = ?$ $grid_{m n} R = ?$

Comparison: repeated parallel composition

- recursive description:
 - base case: $map_0 R = []$
- induction

What do they do?

Answer to Unassessed Coursework 2

```
1. (a) mac = fst mult; add.
    (b) twoadd = rsh ; fst add ; add.
2. R: X \sim X, Q: X \sim Y, (R \setminus Q): Y \sim Y
   append m n: \langle\langle X\rangle m, \langle X\rangle n> \sim \langle X\rangle (m+n)
   R: X \sim X, /\ n R: < X > n \sim < x > n
3. For polynomial evaluation y = \sum a_i \times x^i
 wpe n = fst (mfork n) ; zip n.
 pecell = fst fork ; lsh ; snd mult.
  pe n = wpe n; / \ n pecell;
            map n pi2; btree (n $log 2) add.
btree n R = IF (n \$eq 1) THEN R
              ELSE (half (2 $exp (n-1));
               [btree (n-1) R, btree (n-1) R]; R).
```

Unassessed Coursework 3

1. Describe the following without \$rel. What are the types?

2. Describe and simulate the following design:

