

Introduction Research

Goals

Results

Low litter

Spectroscopy

Optical Guiding

Summary

Dr. Amir Capua and Prof. Arie Zigler

The Hebrew University of Jerusalem

Creating low jitter plasma channel in a 3D-printed capillary, filled with gas

Towards a Plasma Particle Accelerator

Ehud Behar

Supervisors:

Table of Contents

Introduction Research

Low Jitter

Spectroscopy Optical Guiding

Summary

Background to plasma

Preformed Plasma channel

Characterisation of the plasma

Today's Particle Accelerators

Introduction

2/35

Goals

Results

Introduction

Introduction Research

Goals

Results

Low Jitter

Spectroscopy

Optical Guiding

Summary

. . .

Applications:

• Experiments on the behaviour of nuclear matter

The goal: design a low-jitter plasma channel for a meter-scale particle

accelerator.

Creating radiation sources for medical use

Linear accelerators

Introduction

Research Goals

Results

Low Jitter

Spectroscopy

Optical Guiding

Summary

At present, all high energy accelerators run into limits.

- The accelerating electric fields must be less than 100 MV/m, to avoid electrical breakdown.
- Each GeV of energy requires \sim 100 m of acceleration length.

Laser Wake–Field Acceleration (LWFA)

A plasma-based charged particles accelerator

Introduction

Research Goals

 ${\sf Results}$

Low Jitter
Spectro-

scopy

Optical Guiding

Summary

Electrical breakdown is part of the design.

The power source is a laser beam or a charged particle beam.

Same as CERN, but in smaller scale.

Limitations of LWFA

Laser defocusing

Laser derocusing

µm in diameter.

Introduction Acceleration is achieved only when the laser beam is focused to \sim tens of

Goals Results

Research

Low Jitter

Spectroscopy

Optical Guiding

Summary

-

Waveguide

Basic concept

Introduction

Research Goals

Results

Low Jitter

Spectro-

scopy

Optical Guiding

Summary

Light confined in core, cladding with a smaller refractive index.

Construct a plasma waveguide

Capillary Discharge

Research

Goals Results

Generate a plasma channel by means of electrical discharge.

Optical Guiding

Low Jitter Spectroscopy

Summary

Ablated capillary

Gas—filled capillary

Apply voltage (\sim kV) on the capillary ends to start a discharge.

The Plasma state

Ionised gas, electrically neutral.

Characteristic quantities:

Defined by N_e (cm⁻³) and T_e (eV).

Introduction Research

Goals

Results

Low Jitter
Spectro-

scopy Optical

Optical Guiding

Summary

Debye length $\lambda_D = \sqrt{rac{arepsilon_0 k_B T_e}{N_e e^2}}$

Plasma Frequency $\omega_{\it p} = \sqrt{\frac{N_{\it e} e^2}{m_{\it e} arepsilon_0}} {
m rad/\,sec}$

Parabolic density profile

Introduction

Research

Goals

Plasma dispersion relation:

Results Low Jitter

Spectro-

Guiding

Summary

SCODY

The index of refraction \tilde{n} is

Optical

where

$$M = \frac{\omega_L^2 arepsilon_0}{2}$$

 $\omega^2 = \omega_p^2 + c^2 k^2$

 $ilde{n} = rac{ck}{\omega} = \sqrt{1 - rac{\omega_p^2}{\omega_t^2}} pprox 1 - rac{\omega_p^2}{2\omega_t^2} = 1 - rac{ extsf{N}_e}{2 extsf{N}_{
m cr}}$

is the critical plasma density.

Parabolic density profile

Introduction

Research Goals

Results

Low Jitter

Spectro-

Scopy

Guiding

Summary

To achieve guiding, we need variation in \tilde{n} . Ideally, the radial density profile (RDP) is parabolic:

$$N_{\rm e}(r) = N_{\rm e}(0) + \Delta N_{\rm e} \left(\frac{r}{r_{\rm ch}}\right)^2$$

Characterisation of the plasma

Hydrogen Spectrum

Introduction

Research Goals

Results

Low Jitter

Spectro-

Optical Guiding

scopy

Summary

Hot plasma emits light.

The emitted spectra can give information about N_e and T_e .

$$H_{\alpha}: \lambda = 656.28 \,\mathrm{nm}$$

Stark Broadening

Introduction Research

Goals

Results

Low Jitter

Spectroscopy

Optical Guiding Summary Plasma is a charged medium.

Electric micro-fields perturb the atomic energy levels.

Averaging over different neighbours converts the Stark splitting to Stark

broadening.

Stark Broadening

Research

Results

Goals

Low Jitter

Spectro-

Guiding

Optical

SCODY

Summary

Intensity

 H_{α}

Relation between N_e and $\Delta \lambda_{1/2}$ is

tabulated:

 $N_{\rm e} = \left(\frac{\Delta \lambda_{1/2}}{2 \left(N_{\rm e} T_{\rm e}\right)}\right)^{3/2}$.

periment:
$$N_e\left[10^{18}\,{\rm cm}^{-3}\right] = \left(\frac{\Delta\lambda_{1/2}\left[{\rm nm}\right]}{5.4}\right)^{3/2}.$$

Table of Contents

Introduction Research

Goals

Results

Low litter

Spectroscopy

Optical Guiding

Summary

Research Goals

Research Goals

Introduction

Research Goals

Results

Low Jitter

Spectro-

Scopy

Guiding

Summary

- 1. Study of discharge evolution, low jitter of discharge ignition
- 2. Characterisation of the discharge, utilizing Stark broadening
- 3. Demonstration of optical guiding

Experiment Scheme

Introduction

Research Goals

Results

Low Jitter

Spectro-

scopy Optical

Guiding

Summary

Capillary inside a vacuum chamber, maintained at 10^{-4} torr.

Table of Contents

Introduction

Research Today's Particle Accelerators

Goals Results

Low Jitter

Spectro-

scopy Optical

Guiding

Summary

Spectroscopy measurement

Results

Low Jitter

Optical Guiding

Results

Low Jitter

Introduction Research

Goals

Results

Low Jitter

Spectroscopy

Optical Guiding

Summary

Plasma is generated, but not in a stable regime.

Use a laser pulse to ignite the plasma

High

Voltage

IIILIOGUCLIC

Research Goals

Results

Low Jitter

Spectro-

Scopy

Guiding

Summary

The Nd:Yag laser pulse ionizes matter and detaches electrons.

Valve

Photo
Detector

Nd:Yag
1.064 µm
Lens
laser

Charging resistor

Storing

capacitor

Oscilloscope

Rogowsky

Coil

Research Goals

Results

Low Jitter

Spectro-

scopy

Optical

Guiding Summary

Experimental Results

Low Jitter

ביוושלים Introduction

12 consecutive capillary discharges. Demonstrating low ignition jitter.

_

── Md:Yag laser pulse── Rogowsky coil reading

ading $extstyle jitter pprox 1 \pm 0.36$ ns

Spectroscopy measurements

Introduction

Research Goals

Results

Low Jitter

Spectroscopy

Optical Guiding

Summary

- Plasma channel depth and density measurement
- Radial and longitudinal density profile
- ► Means: A spectrometer and a fast camera

Radial density profile

Introduction

Research Goals

Results

Low Jitter

Spectro-

scopy

Optical Guiding

Summary

Imaging system — $\times 5$ magnification.

iCCD camera 40 ns gate-on time.

Data Analysis

Introduction

Research Goals

Results

Low Jitter

Spectroscopy

Optical Guiding

Summary

Data Analysis

cont.

Introduction

Research Goals

Results

Low Jitter

LOW JILLE

Spectroscopy

Optical Guiding

Summary

Fit a Lorentzian to each row of the data.

Stark Broadening on the order of 3 nm.

Spectroscopy measurements

Radial density profile

Introduction

Research Goals

Results

.

Low Jitter

Spectroscopy

Optical Guiding

Summary

Density minimum on the axis of the capillary.

$$\Delta N_e \sim 4 imes 10^{17} \, cm^{-3}$$

with $r_{\rm ch} \approx 50\,\mu{\rm m}$ and $N_{\rm e}\left(0\right) \approx 4 \times 10^{17}\,{\rm cm}^{-3}$.

Longitudinal density profile

System setup

Verify longitudinal homogeneity of the plasma density.

Results

Goals

Research

Low Jitter

Scopy
Optical
Guiding

Spectro-

Guiding Summary

The entire capillary length was imaged.

iCCD camera 1 µs gate—on time.

Longitudinal density profile

Result

Introduction

Research Goals

Results

Low Jitter

scopy Optical

Spectro-

Guiding

Summary

Optical guiding

System setup

Introduction

Research Goals

Results

Low Jitter

Spectroscopy

Optical Guiding

Summary

System setup as before, but now adding an oscillator laser.

Beam aligned through the capillary, to a fast photo-diode.

Optical Guiding

Introduction

Research Goals

Results

Low Jitter

Spectroscopy

Optical Guiding

Summary

Upon plasma discharge, we look for an increase in the detected amplitude — optical guiding.

transmission ratio =
$$\frac{A_{t<0}}{A_{max}}$$

The explanation:

A plasma lens forms, the radiation is focused and trapped by the plasma.

Optical guiding

Rogowsky coil readingdetected oscillator signal

Results

Optical Guiding

Summary

Optical Guiding

Higher voltage difference

- Nd:Yag laser pulse
 - Rogowsky coil reading
 - detected oscillator signal

 $A_{\underline{t<0}} \approx 8$

Duration of the plasma channel

Introduction

Research Goals

Results

Low Jitter

Spectroscopy

Optical Guiding

Summary

Correlation between applied voltage and the transmission ratio:

Duration of the plasma channel:

$$\Delta t_{\sf channel} = 50 - 100 \; \sf ns.$$

Research Goals Results

Low litter

Spectroscopy Optical Guiding Summary

Table of Contents

Introduction

Summary

Summary

Introduction

Research Goals

Results

Low Jitter

Spectroscopy

Optical Guiding

Summary

A long lasting, working set—up to produce plasma channels generated in gas filled—capillaries.

- ▶ Produce jitter controlled plasma discharges, on the time scale of 1 ns
- ▶ Verification of conditions for optical guiding by spectroscopy means
- ightharpoonup Demonstration of optical guiding, to last for 50 100 ns

Future work —

Incorporating our system and knowledge in a LWFA experiment, on purpose for compact particle accelerator.