LAB A5 Report

TT0L - GROUP 0

Person 1	1111111111@student.mmu.edu.my
Person 2	1111111111@student.mmu.edu.my

1. Design a 3 input priority encoder circuit. The inputs are a3a2a1, with a3 having the lowest priority and a1 the highest. The outputs are y2y1, indicating the encoded highest-priority active input, and v, the valid output which indicates that at least one input is active. (Note: Priority input a3 is encoded as 11, a2 as 10 and a1 as 01) Perform the following:

I. Construct the truth table

аЗ	a2	a1	y2	y1	v
0	0	0	х	х	0
0	0	1	0	1	1
0	1	0	1	0	1
0	1	1	0	1	1
1	0	0	1	1	1
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	0	1	1

II. Simplify the Boolean expressions for y2, y1, and v using Karnaugh map techniques.

a3/a2a1	00	01	11	10
0	x	0	0	1
1	1	0	0	1

$$y2 = \overline{a1}$$

a3/a2a1	00	01	11	10
0	х	1	1	0
1	1	1	1	0

$$y1 = \overline{a2} + a1$$

a3/a2a1	00	01	11	10
0	0	1	1	1
1	1	1	1	1

$$v = a3 + a2 + a1$$

- III. Draw the logic diagram with necessary basic logic gates.
- IV. Verify your design experimentally

2. Design and construct a 3 to 8 decoder circuit using 2-line-to-4-line decoder and also other logic gates needed.

Perform the following:

I. Form the truth table for higher order decoder (3 to 8 decoder)

Х	Y	Z	D0	D1	D2	D3	D4	D5	D6	D7
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

А	В	D0	D1	D2	D3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

E	А	В	D0	D1	D2	D3
0	Х	X	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

- 3. Design a full adder circuit using
 - I. Two half adders

II. Using only NAND gates

III. Using Only NOR gates

4. Implement the following Boolean expression

$$F(W, X, Y, Z) = \sum m(1, 2, 4, 6, 7, 9, 11, 14, 15)$$

W	х	Y	Z	F
0	0	0	0	0
0	0	0	1	1 F=Z
0	0	1	0	1
0	0	1	1	0 F=Z'
0	1	0	0	1
0	1	0	1	0 F=Z'
0	1	1	0	1
0	1	1	1	1 F=1
1	0	0	0	0
1	0	0	1	1 F=Z
1	0	1	0	0
1	0	1	1	1 F=Z
1	1	0	0	0
1	1	0	1	0 F=0
1	1	1	0	1
1	1	1	1	1 F=1

I. Using 8×1 MUX and the needed logic gates

II. Using 16 ×1 MUX and the needed logic gates

III. Using a suitable decoder and an OR gate

5. Design code converter circuits for the following problems.

I. 3-bit Gray-to- binary code converter

Gray Code	Binary
000	000
001	001
011	010
010	011
110	100
111	101
101	110
100	111

g2/g1g0	00	01	11	10
0	0	0	0	0
1	1	1	1	1

$$b2 = g2$$

g2/g1g0	00	01	11	10
0	0	0	1	1
1	1	1	1	1

$$b1 = g1 \oplus b2$$

g2/g1g0	00	01	11	10
0	0	1	0	1
1	1	0	1	0

 $b0 = g0 \oplus b1$

II. 3-bit Binary-to-Gray code converter

Binary	Gray Code
b2b1b0	g2g1g0
000	000
001	001
010	011
011	010
100	110
101	111

110	101
111	100

b2/b0b1	00	01	11	10
0	0	0	0	0
1	1	1	1	1

g2 = b2

b2/b0b1	00	01	11	10
0	0	0	1	1
1	1	1	0	0

$$g1 = b1 \oplus g2$$

 $g0 = b0 \oplus b1$

b2/b0b1	00	01	11	10
0	0	1	0	1
1	0	1	0	1

III. (8 4 -2 -1) BCD code to (Excess 3) BCD code converter

INPUTS			OUTPUTS				
Α	В	С	D	W	X	Υ	Z
0	0	0	0	0	0	1	1
0	1	1	1	0	1	0	0
0	1	1	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	0	0	0	1	1	1
1	0	1	1	1	0	0	0
1	0	1	0	1	0	0	1
1	0	0	1	1	0	1	0
1	0	0	0	1	0	1	1
1	1	1	1	1	1	0	0

AB/CD	00	01	11	10
00	0	X	X	X
01	0	0	0	0
11	Х	X	1	X
10	1	1	1	1

W = A

AB/CD	00	01	11	10
00	0	X	X	X
01	1	1	1	1
11	Х	Х	1	Х
10	0	0	0	0

X = B

AB/CD	00	01	11	10
00	1	X	X	X
01	1	1	0	0
11	Х	Х	0	Х
10	1	1	0	0

Y = C'

AB/CD	00	01	11	10
00	1	X	X	X
01	1	0	0	1
11	Х	Х	0	Х

10	1	0	0	1

Z = D'

