Systems for Secure Computation

1. End-To-End Data protection

2. Use Cases: Secure Collaborative Analytics

- 3. Approaches to secure Collaborative analytics
 - a. Fully Homomorphic Encryption (FHE)

c. Security via homomorphic encryption (very high computational cost)

d. Secure Multi-Party Computation (MPC)

Collective computation on encoded data

e.

- f. Security via decentralized trust (high communication cost)
- g. Trusted Execution Environments (TEEs)

h.

- . Security via physically protected HW (prone to side-channel attacks)
- 4. Secure Multi-party Computation (MPC)

a.

- b. Any number of parties
- c. Protection against external adversaries
- d. Protection against malicious parties
- e. Arbitrary computations
- f. Easy to explain
 - i. But not easy to make it practical

5. Example: Secure Addition

a. Arithmetic sharing: $x = x1 + x2 + x3 \pmod{2^64}$

b.

c.

e.

f.

d. 3 parties

6. Example: Secure multiplication

b.

a. Arithmetic sharing: $x = x1 + x2 + x3 \pmod{2^64}$

Party 2

 $m_2 = (s_2 \cdot t_2) + (s_2 \cdot t_3) + (s_3 \cdot t_2)$

(111)

-104

Query

 $m_3 = 111$

7. Example: Secure XOR

d.

b.

c.

Query

a. Boolean Sharing: x = x1 XOR x2 XOR x3

Party 3

 $m_3 = (s_3 \cdot t_3) + (s_3 \cdot t_1) + (s_1 \cdot t_3)$

13

(111)

Data Owner B $t = t_1 \quad t_2 \quad t_3$ $t_3 \quad t_4 \quad t_4 \quad t_5$ random data shares

8. Example: Secure AND

a. Boolean Sharing: x = x1 AND x2 AND x3

9. From Secure Primitives to Complex Computations

10. Oblivious Computation

- a. To prevent information leakage, the computing parties perform an identical computation that is data-independent
 - i. Data access patterns do not depend on the actual shares
 - ii. No conditionals (if-then-else)
 - iii. No data reduction

nbers: $a:a_2a_1a_0$ $b:b_2b_1b_0$ "Else, a is greater than b when the second most $(a_2\oplus b_2)\wedge a_2$ significant bits are not the same and a_1 is set" \oplus $(a_2\oplus b_2\oplus 1)\wedge (a_1\oplus b_1)\wedge a_1$

$$\phi = a \stackrel{?}{>} b = (a_2 \oplus b_2) \land a_2$$
 "Else, a is greater than b when a_0 is set and b_0 is not set"
$$\oplus (a_2 \oplus b_2 \oplus 1) \land (a_1 \oplus b_1) \land a_1$$

$$\oplus (a_2 \oplus b_2 \oplus 1) \land (a_1 \oplus b_1 \oplus 1) \land ((b_0 \oplus 1) \land a_0)$$

d.

b.

	Employee	Salary
R	Kim	2000
	Jane	1500
	Alex	4500

 $\sigma(Salary > 3000)$

 $R^{'}$

Employee	Salary	φ
Kim	2000	0
Jane	1500	0
Alex	4500	1

11. The Security project @BU - secrecy as a service

c.

Secrecy
computing party

aws

b. Secrecy s_1, s_2 s_2, s_3 s_3, s_1 s_4 Send secret shares to parties Data owners

Arithmetic sharing: $s = s_1 + s_2 + s_3 \pmod{2^k}$ Boolean sharing: $s = s_1 \oplus s_2 \oplus s_3$ (for k-bit strings)

d.

Secrecy
Secrecy
computing party

aws

Semi-honest model

Honest majority

(parties are "honest but curious")

(can tolerate one compromised party)

f.