Dominik Szot. 4.05.2023

Laboratorium 08

Rozwiązywanie równań nieliniowych

Dla danego równania:

$$f(x) = x^2 - 3x + 2 = 0$$

Każda następujących funkcji definiuje równoważny schemat iteracyjny

$$g_1(x) = \frac{(x^2 + 2)}{3}$$
$$g_2(x) = \sqrt{3x - 2}$$
$$g_3(x) = 3 - \frac{2}{x}$$
$$g_4(x) = \frac{(x^2 - 2)}{(2x - 3)}$$

a) Przeanalizuj zbieżność oraz rząd zbieżności schematów iteracyjnych $g_i(x)$ dla pierwiastka x=2 badając wartość $|g_i'(2)|$

Aby sprawdzić rząd zbieżności badam wartość $|g_i'(2)|$ dla każdego schematu iteracyjnego

```
g1 = lambda x: (x**2 + 2)/3
g2 = lambda x: sympy.sqrt(3*x-2)
g3 = lambda x : 3-2/x
g4 = lambda x : (x**2 - 2)/(2*x - 3)

x = sympy.symbols('x')
g1_diff = sympy.diff(g1(x), x)
g2_diff = sympy.diff(g2(x), x)
g3_diff = sympy.diff(g3(x), x)
g4_diff = sympy.diff(g4(x), x)
```

```
print(f"g1'(2) = {sympy.N(g1_diff.subs(x, 2))}")
print(f"g2'(2) = {sympy.N(g2_diff.subs(x, 2))}")
print(f"g3'(2) = {sympy.N(g3_diff.subs(x, 2))}")
print(f"g4'(2) = {sympy.N(g4_diff.subs(x, 2))}")
```

$g_{1}'(2)$	1.33
$g_{2}'(2)$	0.75
$g_{3}'(2)$	0.5
$g'_{4}(2)$	0

Z twierdzenia o zbieżności procesu iteracyjnego schematy $g_2'(2)$ $g_3'(2)$ są zbieżne do pierwiastka x=2. Funkcja $g_4'(2)$ posiada rząd zbieżności równy co najmniej 2 ponieważ wartość $g_4'(2)=0$. Ponieważ $g_1'(2)>1$ schemat ten nie jest zbieżny.

Powyższe wykresy błędu względnego w zależności od numeru iteracji wykazują że wartość błędu względnego spada najszybciej dla schematu $g_4(x)$. Jest to zgodne z naszymi obliczeniami teoretycznymi, dla którego zbieżność tego schematu była największa - wynosiła no najmniej 2.

Zadanie 2. Napisz schemat iteracji wg metody Newtona dla każdego z następujących równań nieliniowych:

(a)
$$x^3 - 2x - 5 = 0$$

(b)
$$e^{-x} = x$$

(c)
$$x \sin(x) = 1$$
.

Jako kryterium stopu ustalam dokładność obliczeń (wartość bezwzględną różnicy kolejnych iteracji)

$$\varepsilon = 10^{-6}$$

Z wykresu wynika że nasz pierwiastek będzie znajdować się w przedziale [1, 3] Sprawdzam, czy rzeczywiście tak jest sprawdzając znak wyrażenia $f(1) \cdot f(3)$

$$f(1) \cdot f(3) = -96 < 0$$

Warunek jest spełniony więc funkcja ma pierwiastek w przedziale [1, 3] Następnie obliczam pochodne funkcji

$$f'(x) = 3x^2 - 2$$
$$f''(x) = 6x$$

Sprawdzam znak wyrażenia $f'(x) \cdot f''(x)$ dla punktów brzegowych

$$f'(1) \cdot f''(1) = 6$$

 $f'(3) \cdot f''(3) = 450$

Widać, że wynik zawsze jest dodatni

Następnie sprawdzam warunek zbieżności

$$\frac{f''(x)\cdot f(x)}{(f'(x))^2}$$

Dla $x_0 = 3: 0.46 < 1$, zatem ustalam $x_0 = 3$ jako punkt startowy

Numer Iteracji	Wartość poprzednia	Wartość aktualna	Dokładność	
0	1	3	2	
1	3	2.36	0.64	
2	2.36	36 2.1271968		
3	2.1271968	2.0951360	0.0320607	
4	2.0951360	2.0945517	0.0005844	
5	2.0945517	2.0945515	0.0000002	

Dla iteracji numer warunek dokładności obliczeń został spełniony, zatem miejscem zerowym funkcji z dokładnością $\varepsilon=10^{-6}$ jest 2.09455148

Z wykresu wynika że nasz pierwiastek będzie znajdować się w przedziale [0, 2]

Podobnie jak w poprzednim przypadku sprawdzam czy nasze przypuszczenia są poprawne obliczając znak $f(0) \cdot f(2)$

$$f(0) \cdot f(2) = -1.8646647167633872 < 0$$

Warunek jest spełniony więc funkcja ma pierwiastek w przedziale [0, 2]

Następnie obliczam pochodne funkcji

$$f'(x) = -1 - \frac{1}{e^x}$$
$$f''(x) = \frac{1}{e^x}$$

Sprawdzam znak wyrażenia dla punktów brzegowych $f'(x) \cdot f''(x)$

$$f'(0) \cdot f''(0) = -2.0$$

$$f'(2) \cdot f''(2) = -0.153650922125347$$

Widać, że wynik zawsze jest ujemny

Sprawdzam warunek zbieżności

$$\frac{f''(x)\cdot f(x)}{(f'(x))^2}$$

Dla $x_0 = 2$: 0.195777834188402 < 1 zatem ustalam jako punkt startowy $x_0 = 2$

Numer Iteracji	Wartość poprzednia	Wartość aktualna	Dokładność obliczeń
0	0	2	2
1	2	0.3576088	1.6423912
2	0.3576088	0.5587083	0.2010996
3	0.5587083	0.5671304	0.0084221
4	0.5671304	0.5671433	0.0000129
5	0.5671433	0.5671433	0.0000000

Dla iteracji numer warunek dokładności obliczeń został spełniony, zatem miejscem zerowym funkcji z dokładnością $\varepsilon=10^{-6}$ jest 0.5671433

Funkcja okresowa z nieskończona ilością pierwiastków! Obliczam dwa pierwsze pierwiastki.

Przedział dla pierwszego pierwiastka [1, 2]

Przedział dla drugiego pierwiastka [2, 3]

Sprawdzam znak wyrażenia $f(a) \cdot f(b)$ dla naszych sprawdzanych przedziałów

$$f(1) \cdot f(2) = -0.129771035990675$$

$$f(2) \cdot f(3) = -0.472034516616225$$

Funkcja posiada pierwiastki w tych przedziałach.

Obliczam pochodne funkcji

$$f'(x) = x\cos(x) + \sin(x)$$

$$f''(x) = -x\sin(x) + 2\cos(x)$$

Następnie sprawdzam wartość $f'(x) \cdot f''(x)$ dla punktów brzegowych obu przedziałów

$$f'(1) \cdot f''(1) = 0.33042845859212707$$

$$f'(2) \cdot f''(2) = -0.2041283672829$$

$$f'(2) \cdot f''(2) = -0.2041283672829$$

$$f'(3) \cdot f''(3) = 6.79872053362289$$

Pierwsza i druga pochodna nie ma tego samego znaku dla obu przedziałów.

Będę więc sprawdzać warunek zbieżności dla obu punktów skrajnych obu przedziałów.

$$\phi'(x) = \frac{f''(x) \cdot f(x)}{(f'(x))^2}$$

 $\phi'(1) = 0.0198552712865168$

 $\phi'(2) = 365.962581675656$

 $\phi'(2) = 365.962581675656$

 $\phi'(3) = 0.173180397338601$

Warunek zbieżności spełniony dla x = 1, x = 3

Zatem dla $x \in [1, 2]$ $x_0 = 1, x \in [2, 3]$ $x_0 = 3$

Numer Iteracji	Wartość poprzednia	Wartość aktualna	Dokładność obliczeń
0	0.0000000	1.0000000	1.0000000
1	1.0000000	1.1147287	0.1147287
2	1.1147287	1.1141571	0.0005715
3	1.1141571	1.1141571	0.0000000

Numer Iteracji	Wartość poprzednia	Wartość aktualna	Dokładność obliczeń
0	0	3.0000000	3.0000000
1	3.0000000	2.7961580	1.6423912
2	2.7961580	2.7729485	0.2010996
3	2.7729485	2.7726048	0.0003437
4	2.7726048	2.7726047	0.0000001

Zatem możemy za pierwiastki tej funkcji uznać x = 1.1141571, oraz x = 2.7726047

Ile iteracji należy wykonać aby osiągnąć:

- * 24-bitową dokładność
- * 53-bitową dokładność

Metoda Newtona-Raphsona jest metodą o zbieżności kwadratowej, rzędzie zbieżności równym 2, oraz współczynniku zbieżności $\frac{M}{2m}$

Oznacza to, że błąd maleje kwadratowo wraz z ilością iteracji.

Zakładając że x_0 jest przybliżeniem pierwiastka z dokładnością 4 bitową należy więc wykonać:

- 3 iteracje na 24-bitową dokładność
- 4 iteracje na 53-bitową dokładność

Zadanie 3. Napisz schemat iteracji wg metody Newtona dla następującego układu równań nieliniowych:

$$\begin{aligned} x_1^2 + x_2^2 &= 1 \\ x_1^2 - x_2 &= 0. \end{aligned}$$

Korzystając z faktu, że dokładne rozwiązanie powyższego układu równań to:

$$x_1 = \pm \sqrt{\frac{\sqrt{5}}{2} - \frac{1}{2}} \tag{7a}$$

$$x_2 = \frac{\sqrt{5}}{2} - \frac{1}{2} \tag{7b}$$

oblicz błąd względny rozwiązania znalezionego metodą Newtona.

Jako punkt początkowy wybieram punkt $x_0 = (-1, 1)$

Wiemy że dla układu dwóch równań wartość przybliżana w każdej kolejnej iteracji ma postać:

$$y_2 = y_1 + \Delta y$$

$$x_2 = x_1 + \Delta x$$

Gdzie

$$\begin{cases}
\Delta x = \frac{-f_1(x_1, y_1) \frac{\partial f_2}{\partial y} \Big|_{x_1, y_1} + f_2(x_1, y_1) \frac{\partial f_1}{\partial y} \Big|_{x_1, y_1}}{J(f_1(x_1, y_1), f_2(x_1, y_1))} \\
\Delta y = \frac{-f_2(x_1, y_1) \frac{\partial f_1}{\partial x} \Big|_{x_1, y_1} + f_1(x_1, y_1) \frac{\partial f_2}{\partial x} \Big|_{x_1, y_1}}{J(f_1(x_1, y_1), f_2(x_1, y_1))}
\end{cases}$$

Na tej postawie wyznaczam funkcję która będzie obliczać przybliżenia pierwiastka

```
jakobian = lambda x,y: np.array([[2*x, 2*y], [2*x, -1]])

x0 = [-1, 1]
for i in range(10):
    s = np.linalg.solve(jakobian(x0[0], x0[1]), -f_x(x0[0], x0[1]))
    x0 = x0 + s
    print(f"Iteracja {i} Wartość: {x0}")

print(f"Błąd względny {np.abs((x0 - x1)/x1)}")
```

Jako warunek stopu ustalam ilość iteracji wynoszącą 10

Iteracja 9 Wartość: [-0.78615138 0.61803399]

Błąd względny [0.00000000e+00 1.79637859e-16]

Jak widać wartość błędu względnego po 10 iteracjach jest praktycznie niezauważalna, co potwierdza poprawność obliczeń.

Bibliografia

- Katarzyna Rycerz: Wykład z przedmiotu Metody Obliczeniowe w Nauce i Technice
- Materiały do zajęć
- https://pl.wikipedia.org/wiki/Metoda_Newtona
- Włodzimierz Funika: Pierwiastki równań nieliniowych: https://home.agh.edu.pl/~funika/mownit/lab7/RF.pdf