

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

	CANDIDATE NUMBER	
		0620/21
		May/June 2014
		1 hour 15 minutes
wer on the Question Paper.		
laterials are required		
	ewer on the Question Paper.	NUMBER wer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 20.

You may lose marks if you do not show your working or if you do not use appropriate units.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

1 (a) Choose from the list of substances below to answer the following questions.

calcium oxide
carbon dioxide
carbon monoxide
copper
hydrogen
magnesium
methane
oxygen
water

Each substance may be used once, more than once or not at all.

	(i)	releases hydrogen w	hen it reacts with s	team,		
	(ii)	is produced at the ca	athode when concer	ntrated aqueou		electrolysed,
(iii)	is a product of the in	complete combustion	on of carbon,		
(iv)	is used in electrical v				[1]
	(v)	is manufactured by h				[1]
						[1]
(b)		nplete the following society.	entences about the	Periodic Table	of elements using w	ords from the
		argon	colour	density	sodium	
		one	similarity	trend	seven	
	Chlo	orine, bromine and io	dine are elements i	n Group	of the Perio	odic Table.
	The	se elements show a .	in .		down the group.	
	The	y all react rapidly with	ı tc	form ionic con	npounds.	[4]

[Total: 9]

2 In 1904, J. J. Thomson suggested a model of the atom. He called this the 'plum pudding' model. This model of an atom, containing 14 electrons, is shown below.

(a)		scribe how Thomson's model of the atom differs from our present ideas of the structure atom.	of
			[3]
(b)	Lith	nium has two naturally-occurring isotopes. These can be written as: ${}_{3}^{6}\text{Li} \text{and} {}_{3}^{7}\text{Li}$	
	(i)	Describe the difference between these isotopes.	
	(ii)	Isotopes can be radioactive or non-radioactive. State one industrial use of radioactive isotopes.	[1]
			[1]

(c) Lithium is in Group I of the Periodic Table.

The table shows some properties of the Group I elements.

metal	melting point/°C	atomic radius / nm
lithium		0.157
sodium	98	0.191
potassium	63	
rubidium	39	0.250
caesium	29	0.272

Deduce:

(d) Lith	ium reacts	with water. A	n alkaline solu	tion and a colo	urless gas are formed.	
(i)	Complete	the word equ	ation for this r	eaction.		
li	thium +	water \rightarrow			+	[2]
(ii)		•	pH of the alkal orrect answer.	line solution?		
		pH 2	pH 5	pH 7	pH 13	[1]
(e) Dra	w the elect	ronic structur	e of a potassiu	ım atom.		

[2]

[Total: 12]

3 The table shows some fractions obtained from the distillation of petroleum.

fraction	number of carbon atoms	boiling point of the fraction/°C
refinery gas	1-4	under 40
gasoline	5-10	40-160
kerosene	10-16	160-250
diesel	16-20	250-300
fuel oil	20-30	300-350

(a)	What is the relationship between the number of carbon atoms and the boiling points of fractions?	the
		[1]
(b)	State the names of two petroleum fractions not given in the table.	
	and	[2]

- (c) Two of the compounds present in refinery gas are methane and ethane.
 - (i) Draw the structure of ethane. Show all atoms and bonds.

[1]

(ii) Complete the dot and cross diagram of methane to show all the electrons.

(d)		inery gas also contains propane. pane can be cracked in the presence of a catalyst to form hydrogen.
	(i)	Complete the symbol equation for this reaction.
		$C_3H_8 \rightarrow \dots + H_2$

 $C_3H_8 \rightarrow \dots + H_2$ [1] (ii) A catalyst is one condition needed to crack an alkane. State **one** other condition needed to crack an alkane. [1]

(a) F.	tin vapour	<u> </u>	liquid solidification tin (freezing)	solid tin
(a) ⊏x	kpiairi Wriat i	паррепѕ ю п	ne arrangement and motion of the atoms	during triese changes.
				[4
••••				[
			of the Periodic Table. tin have in its outer shell?	
	ow many ore	30110110 0000	an nave in the eater enem.	[1
(c) Sta	ate one phy	sical propert	y of tin.	
				[1
 (d) Th	ne table belo	ow describes	the reaction of some metals with dilute h	-
 (d) Th	ne table belo	ow describes	the reaction of some metals with dilute h	ydrochloric acid.
 (d) Th	Γ.	ow describes		ydrochloric acid.
 (d) Th	i		the reaction of some metals with dilute h	ydrochloric acid. re
 (d) Th	i	ron	the reaction of some metals with dilute h bubbles of gas produced and temperatu of the mixture rises slowly many bubbles of gas produced rapidly a	ydrochloric acid.
 (d) Th	r	ron magnesium	the reaction of some metals with dilute h bubbles of gas produced and temperatu of the mixture rises slowly many bubbles of gas produced rapidly a temperature of the mixture rises rapidly no bubbles of gas given off and no	ydrochloric acid. ire ind
	r s	ron magnesium silver	the reaction of some metals with dilute h bubbles of gas produced and temperatu of the mixture rises slowly many bubbles of gas produced rapidly a temperature of the mixture rises rapidly no bubbles of gas given off and no temperature change a few bubbles of gas given off slowly an	ydrochloric acid. ire ind
Pu	r s	ron magnesium silver	bubbles of gas produced and temperature of the mixture rises slowly many bubbles of gas produced rapidly a temperature of the mixture rises rapidly no bubbles of gas given off and no temperature change a few bubbles of gas given off slowly an temperature of the mixture rises very slow	ydrochloric acid. ire ind
Pu	r s t these met	ron magnesium silver	bubbles of gas produced and temperature of the mixture rises slowly many bubbles of gas produced rapidly a temperature of the mixture rises rapidly no bubbles of gas given off and no temperature change a few bubbles of gas given off slowly an temperature of the mixture rises very slow	ydrochloric acid. ire ind d bwly

(e)	Tin	n is extracted by heating $tin(IV)$ oxide with carbon.		
	(i)	Complete the symbol equation for this reaction.		
		SnO_2 +C \rightarrow Sn +CO	[2]	
	(ii)	State one adverse effect of carbon monoxide on health.		
			[1]	

[Total: 11]

5 The diagram shows a blast furnace for extracting iron.

- (a) On the diagram above, write:
 - the letter **A** to show where the air blast enters the furnace,
 - the letter **W** to show where the waste gases exit the furnace.

fluorite

[2]

(b) Which **one** of the following is an ore of iron? Put a ring around the correct answer.

calcite

			[1]
(c)	In t	he furnace, the coke burns to form carbon dioxide. This reaction is exothermic.	
	(i)	What is meant by the term exothermic?	
			[1]
	(ii)	Describe a test for carbon dioxide.	

hematite

halite

(d) In the blast furnace, carbon dioxide reacts with more coke to form carbon monoxide. The carbon monoxide reduces iron(III) oxide to iron.

$$\text{Fe}_2\text{O}_3$$
 + 3CO \rightarrow 2Fe + 3CO $_2$

How does this equation show that iron(III) oxide is being reduced?

.....[1]

result[2]

[Total: 7]

6 The structure of ethanol is shown below.

- (a) On the structure above, put a ring around the alcohol functional group.
- (b) Ethanol can be made by fermentation.
 - (i) Complete the word equation for fermentation.

(ii) What type of catalysts are used in fermentation? Put a ring around the correct answer.

acids carbonates enzymes metals [1]

(c) Ethanol can also be made by hydration. Complete the symbol equation for this reaction.

..... +
$$H_2O \rightarrow C_2H_5OH$$
 [1]

[1]

(d) The diagram below shows how the rate of fermentation changes with temperature.

rescribe now the rate of fermentation changes with temperature.	

(e) The table shows some properties of different alcohols.

alcohol	formula	melting point /°C	boiling point /°C	density in g/cm³
methanol	CH₄O	-94	65	
ethanol	C ₂ H ₆ O	-117	79	0.789
propanol	C ₃ H ₈ O	-126	98	0.804
butanol	C ₄ H ₁₀ O	-89	117	0.810
pentanol	C ₅ H ₁₂ O	-79	138	0.815

(1)	Describe how density changes with the number of carbon atoms in the alcohol.
	[1]
(ii)	Which one of these alcohols has the lowest melting point?
	[1]
(iii)	Is pentanol a solid, liquid or gas at room temperature? Explain your answer.
	[1]
	[Total: 10]

7 A student used chromatography to separate the dyes in the blue ink from a ball-point pen. She used the equipment shown in the diagrams below.

(a) Complete the diagram below to show how she set up the apparatus.

(b)	Describe how chromatography could be used by the student to separate the dyes.	
(c)	The student used water as a solvent. Suggest a different solvent that she could use.	[1]

[3]

(d) The diagram below shows the results of the chromatography using the blue ink, **B**, and several pure dyes, **W**, **X**, **Y** and **Z**.

((1)) Which	of the	dyes,	W,	X , '	Y and	Z,	were	in	the	blue	ink?

(e) The diagram shows the ball-point pen used in the experiment.

- (i) The cap of the pen is made of poly(ethene).

 Describe the formation of poly(ethene) from ethene. In your answer, include the words:
 - monomer,

	no	lvm	Δ r
•	L)()		

[2	2]
----	----

(ii) The tip of the pen is made from an alloy. What is meant by the term *alloy*?

(f) The table shows some properties of four alloys.

alloy	strength /GPa	density in g/cm³	thermal conductivity in W/m/K
low strength steel	250	7.70	60
high strength steel	300	7.90	56
low strength aluminium	70	2.72	170
high strength aluminium	220	2.80	100

i) How does the strength of the steel and aluminium alloys vary with their therm conductivity?	al
[[1]
i) Which one of these alloys is the best one to use to make the body of an aircraft? Give two reasons for your answer.	
[3]
[Total: 1	6]

- 8 Zinc can be extracted from zinc sulfide ore in three steps.
 - (a) In the first step, zinc sulfide is heated in air to produce zinc oxide.
 - (i) Complete the symbol equation for this reaction.

2ZnS +
$$O_2 \rightarrow 2ZnO +SO_2$$
 [2]

(ii) The product sulfur dioxide, SO_2 , is harmful to the environment. Explain why it is harmful to the environment and state **one** effect it has on buildings.

.....[2]

(b) In the second step, zinc oxide reacts with sulfuric acid to form zinc sulfate.

zinc oxide + sulfuric acid → zinc sulfate + water

Zinc sulfate is soluble in water.

Some insoluble impurities in the zinc oxide do not react with the sulfuric acid.

Suggest how these insoluble impurities are removed from the zinc sulfate solution.

.....[1]

(c) In the third step, zinc is extracted from zinc sulfate by electrolysis using the cell shown below.

(i) Which word best describes the aluminium rod? Put a ring around the correct answer.

anion anode cathode cation electrolyte product [1]

(ii)	Suggest which statement about this electrolysis is Tick one box.	completely correct.	
	Zinc is formed at the positive electrode and hydrogen at the negative electrode.		
	Zinc is formed at the positive electrode and oxygen at the negative electrode.		
	Zinc is formed at the negative electrode and hydrogen at the positive electrode.		
	Zinc is formed at the negative electrode and oxygen at the positive electrode.		[1]
		[То	tal: 7]

BLANK PAGE

BLANK PAGE

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

	0	He lium	20 Neon 10	40 Ar Argon	84 Kr Krypton 36	131 Xe Xeron Xeron	Radon 86		Lutetium 71	L
			19 Fluorine	35.5 C1 Chlorine	80 Br Bromine 35		At Astatine 85		173 Yb Ytterbium 70	Nobelium
	I>		16 Oxygen 8	32 S Sulfur	79 Selenium 34	128 Te Tellurium 52	Po Polonium 84		169 Tm Thulium	Md Mendelevium
	^		14 N itrogen 7	31 P Phosphorus 15	75 AS Arsenic 33		209 Bi Bismuth 83		167 Er Erbium 68	Fermium
	2		12 C Carbon 6	28 Si Silicon	73 Ge Germanium 32	Sn Tn 50	207 Pb Lead 82		165 Ho Holmium 67	Es Einsteinium
	=		11 Boron 5	27 A1 Aluminium 13	70 Ga Gallium 31	115 In Indium	204 T 1 Thallium 81		162 Dy Dysprosium 66	Cf Californium
					65 Zn Zinc 30	Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	
					64 Cu Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Carium
Group					S9 Nickel	Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am
ອັ					59 Co Cobalt 27	Rhodium 45	192 Ir Iridium		Sm Samarium 62	Pu Plutonium
		T Hydrogen			56 Fe Iron	Ru Ruthenium 44			Pm Promethium 61	Neptunium
					Manganese	Tc Technetium	186 Re Rhenium 75		144 Nd Neodymium 60	238 C
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium 59	Pa Protactinium
					51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum 73		140 Ce Cerium	232 Th
					48 T itanium 22	91 Zr Zirconium 40	178 Hf Hafnium 72		1	nic mass lbol
					Scandium 21	89 ×	139 La Lanthanum *	227 Ac Actinium 89	d series series	a = relative atomic mass X = atomic symbol
	=		9 Beryllium 4	24 Mg Magnesium	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series	« × ¬
	_		7 Li Lithium	23 Na Sodium	39 K Potassium	Rb Rubidium	133 Cs Caesium 55	Francium 87	*58-71 L	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.