

Supplementary Figure 1. Trichomes on sweet basil leaf surface and composition of sweet basil essential oil. (A) Scanning electron microscope image of sweet basil leaf showing three types of trichomes, a, Non glandular hairy trichome; b, Peltate glandular trichome (PGT); c, Capitate glandular trichome. (B) Isolated PGT of sweet basil stained with DAPI. (C) Process of secretion by PGT, a, presecretory stage; b, formation of storage cavity; c, secretion into the storage cavity. (D) GC-MS analysis of sweet basil leaf showing the presence of monoterpenes, 1, α -pinene, 2, β -pinene, 3, Eucalyptol, 4,linalyl acetate, phenylpropene 5, Eugenol, and sesquiterpene, 6, α -bermagotene, 7, germacrene-D, 8, γ -muurolene, 9, β -copaene.

Overview of quality of deep sequencing

Sample	Total Bases	Read Count	N (%)	GC (%)	Q20 (%)	Q30 (%)
Leaf	18,449,677,272	182,670,072	0.007	48.3	93.99	85.84
Root	19,013,829,942	188,255,742	0.007	46.46	94.38	86.62
Trichome	17,198,322,218	170,280,418	0.030	44.18	96.11	89.85
Leaf-Trichome	20,491,806,170	202,889,170	0.029	48.17	95.18	87.96

Statistics of deep sequencing

Supplementary Figure 2. Quality of reads and statistics of sequencing

Supplementary Figure 3. Heat map representing differential expression pattern of five BAHD acyltransferases along various tissues [root (R), leaf (L), leaf stripped of PGTs (L-T) and PGTs (T)]

Supplementary Figure 4 A: *In planta* functional characterization of ObCAAT1 and ObCAAT2. GC-MS analysis of products formed by ObCAAT1 and ObCAAT2 in-planta in *N.benthamiana* leaves. **A** (1, 2) Hexyl acetate was not observed in hexanol and

ObCAAT1 and ObCAAT2 infiltrated *N. benthamiana* respectively (3) Hexyl acetate was not observed in ObCAAT1 and ObCAAT2 infiltrated *N. benthamiana* (4) Hexyl acetate was not observed in hexanol infiltrated *N. benthamiana* (5) Hexyl acetate standard, (6) Mass spectrogram of hexyl acetate standard. **B** (1) Cinnamyl acetate was not observed in cinnamyl alcohol and ObCAAT1 infiltrated *N. benthamiana* leaves, (2) Cinnamyl

acetate was observed in cinnamyl alcohol and ObCAAT2 infiltrated *N. benthamiana* leaves (3) Cinnamyl acetate was not observed in ObCAAT1 and ObCAAT2 infiltrated *N. benthamiana*, (4) Cinnamyl acetate was not observed in cinnamyl alcohol infiltrated *N. benthamiana*, (5) Cinnamyl acetate standard, (6) Mass spectrogram of cinnamyl acetate produced by ObCAAT2 in N. benthamiana, (7) Mass spectrogram of cinnamyl acetate standard. **C** (1) Phenylethyl acetate was observed in phenylethyl alcohol and ObCAAT1 infiltrated *N. benthamiana* leaves, (2) Phenylethyl acetate in phenylethyl alcohol and

standard. **C** (1) Phenylethyl acetate was observed in phenylethyl alcohol and ObCAAT1 infiltrated *N. benthamiana* leaves, (2) Phenylethyl acetate in phenylethyl alcohol and ObCAAT2 infiltrated *N. benthamiana* leaves (3) Phenylethyl acetate was not observed in ObCAAT1 and ObCAAT2 infiltrated *N. benthamiana*, (4) Phenylethyl acetate was not observed in phenylethyl alcohol infiltrated *N. benthamiana*, (5) Phenylethyl acetate standard, (6) Mass spectrogram of phenylethyl acetate produced by ObCAAT1 in N. benthamiana, (7) Mass spectrogram of phenylethyl acetate standard. **D** (1) Benzyl acetate was observed in benzyl alcohol and ObCAAT1 infiltrated *N. benthamiana*

standard, (6) Mass spectrogram of phenylethyl acetate produced by ObCAAT1 in N. benthamiana, (7) Mass spectrogram of phenylethyl acetate standard. **D** (1) Benzyl acetate was observed in benzyl alcohol and ObCAAT1 infiltrated *N. benthamiana* leaves, (2) Benzyl acetate was observed in benzyl alcohol and ObCAAT2 infiltrated *N. benthamiana* leaves (3) Benzyl acetate was not observed in ObCAAT1 and ObCAAT2 infiltrated *N. benthamiana*, (4) Benzyl acetate was not observed in benzyl alcohol infiltrated *N. benthamiana*, (5) Benzyl acetate standard, (6) Mass spectrogram of benzyl acetate produced by ObCAAT1 in *N. benthamiana*, (7) Mass spectrogram of benzyl acetate produced by ObCAAT2 in *N. benthamiana*, (8) Mass spectrogram of benzyl acetate standard.

Supplementary Figure 5. Southern blot and phenotypic analysis of *ObCAAT1*-RNAi sweet basil lines. (A) Southern blot of *ObCAAT1*-RNAi sweet basil lines showing different T-DNA insertions. 20µg of DNA was digested with *Ndel* enzyme. (B) No phenotypic change was observed in *ObCAAT*-RNAi lines with respect to wild type.

Supplementary Figure 6. Total lignin quantification of *ObCAAT*-RNAi sweet basil lines by thioglycolic acid method. Unaltered lignin content in (A) leaf and (B) trichomes of *ObCAAT1*-RNAi lines when compared to WT. Values are mean \pm SE (n = 6).

Supplementary Figure 7. MS spectrum with fragmentation peak at m/z 179 for coniferyl alcohol. Fragmentation peak at m/z 179 for coniferyl alcohol was present in (A) coniferyl alcohol standard, (B) CAAT1-RNAi1, (C) CAAT1-RNAi4, (D) CAAT1-RNAi5 and absent in (E) wild type. (Reference: Predicted GCMS spectrum (non-derivatized) of coniferyl alcohol from Pubchem Database).

Supplementary Table 1. List of primers used in present study

Name	Sequence (5'-3')	Purpose	
ObCAAT1_F	CACCATGGGCGAAGTAGCAAAAGATGA	Full length primer	
ObCAAT1_R	TCAAGCCTCCATCAAGAAGTCCTT	Full length primer	
ObCAAT2_F	CACCATGTATATTTTCCCACCTCCACTCCT	Full length primer	
ObCAAT2_R	CTAAGGTAGGTTGAAAGAGTGAAATGA	Full length primer	
ObCAAT1_q_F	AAGATGAGAAGAAATTAGTT	qPCR	
ObCAAT1_q_R	TCAAAATCGTGGCCTCCTTTGT	qPCR	
ObCAAT2_q_F	AGGAATATAATCCAGCTGTCGG	qPCR	
ObCAAT2_q_R	AGGAACAAGTCTGGCATGAACAGA	qPCR	
ObEF1α- F	AATGGCAAAAAGCTCGAAGA	qPCR	
ObEF1α- R	TCGCAGACATGACAGACACA	qPCR	
ObEGS1_F	CACCATGGAGGAAAATGGGATGAAAAG	Full length primer	
ObEGS1_R	TTAAAATGCTGCTGAAGCCGGCGGTGGA	Full length primer	
ObCAAT1_LOC_F	CACCATGGGCGAAGTAGCAAAAGATGA	Subcellular localization	
ObCAAT1_LOC_R	AGCCTCCATCAAGAAGTCCTTGTCTT	Subcellular localization	
ObCAAT2_LOC_F	CACCATGTATATTTTCCCACCTCCACTCCT	Subcellular localization	
ObCAAT2_LOC_R	AGGTAGGTTGAAAGAGTGAAATGA	Subcellular localization	
35S(591)-F	CTCAGAAGACCAAAGGGCTATT	Southern blot probe	
35S(-34)-R	TGTTTGTTGTGGTATTG	Southern blot probe	
ObCAAT1_SphI	CGCATGCACAAAGGAGGCCACGATT	RNAi	
ObCAAT1_NotI	C <u>GCGGCCGC</u> TTGGTGCGCTCCAGGAAT	RNAi	
ObCAAT1_Ndel	CCATATGACAAAGGAGGCCACGATT	RNAi	
ObCAAT1_Xbal	CTCTAGATTGGTGCGCTCCAGGAAT	RNAi	