

BALANCING DATA UTILITY AND PRIVACY: EVALUATING COMPUTER SCIENCE AND STATISTICAL APPROACHES TO CREATING SYNTHETIC DATA

Statistische Woche Dortmund, Deutschland 11. September, 2023

Jonathan Latner, PhD Prof. Dr. Jörg Drechsler

SECTIONS

- 1. Introduction
- 2. Data
- 3. Methods
- 4. Results
- 5. Conclusion

Section 1: Introduction Balancing data utility and privacy // Slide 3

OVERVIEW

- **Definition:** Synthetic data are data that mimic the characteristics of original or 'real' data.
- Goal: High utility + privacy protection = more knowledge
 - Utility: any analysis using synthetic data should provide approximately the same answers as analysis using the original data.
 - Privacy: Synthetic data look like real data, but without any of the threats to privacy contained in real data (theoretically).
 - More knowledge is created if more data can be released with no (or little) risk to privacy, and accessed more easily.
- The problem: Trade off between utility and privacy
 - Different approaches for the generation of synthetic data have been developed.
 - In statistics: formal guarantee of statistical utility, but no formal guarantee for privacy
 - In computer science: formal guarantee of privacy, but no guarantee for statistical utility
- Hard to evaluate which approach is correct or even better
 - No one, single definition of utility or privacy protection
 - Different approaches (data packages) solve different data problems

THE GOAL

- Evaluate (compare and contrast) how different approaches to the creation of synthetic data balance the twin goals of data utility and data privacy.
- For now, we focus on utility (next steps: privacy)
- In this talk, we will present some first results from this project.

LITERATURE REVIEW

- Not many papers that compare and contrast
- Most papers are often written by the package authors
 - In these papers, their package is often the 'winner'
 - May be biased, but not necessarily wrong
 - Different data packages solve different data problems
 - Different data packages have different strengths and weaknesses
- Few 'independent' papers
 - Little et al., 2021/2023 (Working paper)
 - They don't tune the packages (defined later)
 - Low dimensional data/majority categorical data
 - Dankar and Ibrahim (2021)
 - 15 data sets (categorical, continuous, mixed)
 - Low dimensional data

PREVIEW RESULTS

- 3 data packages (CTGAN, Datasynthesizer, Synthpop)
- 3 types of data
- Focus on utility (next step: privacy)
- Synthpop is the 'winner' (similar to both Little et al., 2021/2023 and Dankar and Ibrahim, 2021)
- Results are not surprising
 - Synthpop emphasizes utility over privacy protection
 - Packages are evaluated on data with low dimensionality (observations/variables), where Synthpop performs better

Section 2: Data

3 DATA SETS

- 2 Simulated data sets Examine differences in a controlled environment
 - 1. Simulated categorical data
 - 1 000 observations
 - 4 bivariate categorical variables ('Y', 'N')
 - 2. Simulated continuous data
 - 1 000 observations
 - 3 continuous variables ('income', 'wealth', 'age')
- 1 Real data set
 - UK 1991: Individual Sample of Anonymised Records (SAR) for the British Census, subsetted on the region of West Midlands
 - 20% sample (≈ 20.000)
 - 12 variables: 1 numerical and 11 categorical, includes missing values
 - Benchmark our results to Little et al., 2021/2023:

Section 3: Methods

COMPARE 3 PACKAGES FOR CREATING SYNTHETIC DATA

- We choose these three because they are commonly compared (Little et al., 2021/2023; Dankar and Ibrahim, 2021)
 - 1. CTGAN (Conditional Tabular Generative Adversarial Network) in Synthetic Data Vault (SDV) package (Patki et al., 2016)
 - 2. Datasynthesizer (Ping et al., 2017)
 - 3. Synthpop (Nowak et al., 2016)

Table 1: Comparison of data synthesis packages

Variable/data	CTGAN (GANs)	Datasynthesizer (PrivBayes)	es) Synthpop (CART	
,	(2.1.1.)		/	
Continuous variables	√		√	
Categorical variables			✓	
Mixed data		\checkmark	\checkmark	
Privacy protection	√ *	✓	√ †	
High dimensional datasets	✓	\checkmark		

^{*} In theory, GANs (Synthpop) offer no formal privacy protection. In reality, one can adjust the training procedure of the discriminator to satisfy a formal guarantee (Beaulieu-Jones, et al., 2019; Neunhoffer, et al., 2021).

[†] Parameters can be used to adjust privacy.

MEASURING UTILITY (2 'SPECIFIC' MEASURES)

- 1. Descriptive (non-parametric): Ratio of estimates (ROE)*
 - The average difference between the values (i.e. proportion/total) of a given categorical variable (or binned continuous variable) between synthetic and original data
 - Higher is better utility. Max = 1, min = 0.
 - The ROE is calculated over univariate and bivariate values of a given variable(s).
- 2. Parametric: Difference/overlap in the estimate/confidence interval
 - Apply the same regression model to original and synthetic data
 - Research choice: Theoretical/athoeretical models
 - Standardized difference in the β The average difference between each point estimate. Lower is better utility (closer to 0).
 - Confidence interval overlap (CIO) The percent overlap in the 95% confidence interval. Higher is better utility. Max = 1, negative value indicating no overlap (here, negative = 0).
- 3. Others ('Universal' measures: next steps)

^{*} https://github.com/clairelittle/psd2022-comparing-utility-risk/blob/main/code/ROC_Ratio_of_Counts_Estimates.R

[†] https://github.com/clairelittle/psd2022-comparing-utility-risk/blob/main/code/CIO_Confidence_Interval_Overlap.R

TUNING

- **Definition:** Adjusting the data packages to create synthetic data that are more representative of the original data
- Data packages can be tuned to various levels using hyperparameters
 - Authors of data packages state that tuning the packages are important
 - One should not simply use the default values
- Tuning is a time consuming process (described later)
 - Not 100% clear on how to best tune the data
 - No one, single measure for utility or privacy protection
- For each package (Datasynthesizer, CTGAN, Synthpop), estimate the effect of each categorical hyperparameter value (h_i) on each utility measure (y_i) (ROE_u, ROE_b, Std. Diff, and CIO).

$$y_i = \beta_0 + \sum_{h=1, j=1}^{H, J} \beta_{h, j} x_{h, j, i} + \epsilon$$
 (1)

Section 4: Results

Section 4a): Simulated categorical data

DESCRIPTIVE STATISTICS - CATEGORICAL DATA

Figure 1:

COMPARE FREQUENCY COUNTS BETWEEN BASELINE AND TUNED

Figure 2:

COMPARE REGRESSION OUTPUT BETWEEN BASELINE AND TUNED

Figure 3:

MEASURING UTILITY FOR SIMULATED CATEGORICAL DATA

Figure 4:

SUMMARY: SYNTHPOP HAS HIGHEST UTILITY

Table 2: Comparison of Results

Data	ROE univar	ROE bivar	Std. Diff	CIO
Simulated categorical variables	=	=	SP	SP

- CTGAN/Datasynthesizer requires tuning (not Synthpop)
- Unexpectedly, CTGAN performs 2nd best for categorical data

Section 4: Results

Section 4b): Simulated continuous data

DESCRIPTIVE STATISTICS - CONTINUOUS VARIABLES

Table 3:

number	variable	min	max	mean	std	median
1	age	16.00	94.00	55.65	22.56	57.00
2	income	624.00	349355.00	35721.10	41455.86	22421.50
3	wealth	-19560.00	89975356.00	659520.71	3165853.95	127616.00

MEASURING UTILITY FOR SIMULATED CONTINUOUS DATA

Figure 5:

SUMMARY: SYNTHPOP HAS HIGHEST LEVELS OF UTILITY

Table 4: Comparison of Results

Data	ROE univar	ROE bivar	Std. Diff	CIO
Simulated continuous variables	SP	=	SP	SP

• CTGAN has similar level of CIO but higher Std. Diff

Section 4: Results

Section 4c): Individual Sample of Anonymised Records (SAR) for the British Census, subsetted on the region of West Midlands (UK 1991)

DESCRIPTIVE STATISTICS - UK 1991

Figure 7: Ratio of estimates

MEASURING UTILITY

COMPARING DURATION TO CREATE 1 SYNTHETIC DATA SET $(\times 5)$

Table 5: UK 1991 data, 12 variables (1 continuous), and \approx 20.000 observations

synthesizer	baseline	tuned
Synthpop	1 Min 48.0 Sec	1 Min 23.0 Sec
Datasynthesizer	2 Min 0.0 Sec	0 Min 54.0 Sec
CTGAN	6 Min 30.0 Sec	41 Min 9.0 Sec

SUMMARY: THINGS BECOME MORE COMPLICATED IN 'REAL' DATA

Table 6: Comparison of Results

Data	ROE univar	ROE bivar	Std. Diff	CIO
UK1991	DS/SP	DS/SP		
DV: MSTATUS			CTGAN	CTGAN
DV: TENURE			SP	SP

Section 5: Conclusion

Table 7: Comparison of Results

Data	ROE univar	ROE bivar	Std. Diff	CIO
Simulated categorical variables	=	=	SP	SP
Simulated continuous variables	SP	=	SP	SP
UK1991	DS/SP	DS/SP		
DV: MSTATUS			CTGAN	CTGAN
DV: TENURE			SP	SP

SUMMARY OF RESULTS

- Results a reflection of low dimensional data and focus on data utility
- Main message: Synthpop is the 'winner'
 - However, it is not always the 'best'
 - Easy little tuning required
 - Fastest (data dimensionality)
 - No privacy protection[†]
- Datasynthesizer/CTGAN
 - Requires tuning
- CTGAN
 - Slowest

QUESTIONS

- Where is Synthpop not right?
- Where is CTGAN right? Is it worth it?
- What are the right utility measures to use and when do we use them?

NEXT STEPS

- Privacy protection
- High dimensional data
- Assumption is that CTGAN/Datasynthesizer will perform better

Thank you