CODE FOR ASTHMA PROJECT

Eve Rodler

2024-11-05

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

Clean Up Data

County level summary data: average asthma_pctl per county

It is important to consider impact of census tracts within counties

```
asthma_measures_df4 <- asthma_measures_df2 %>% arrange(county, desc(asthma_pctl))

# Reduce observations from 8035 to 803
# by subsetting highest percentile (asthma > = 90th percentile)

asthma_measures_df5 <- asthma_measures_df2 %>%
filter(asthma_pctl >= 90) %>%
arrange(county, desc(asthma_pctl))

# 25 out of 58 counties are represented in asthma top 10 percentile (90 - 100)
# which means certain census tracts within multiple counties have the highest
# distribution of asthma cases. This needs to be considered for
# county level interventions.

unique(asthma_measures_df5$county)
```

```
## [1] "Alameda" "Amador" "Contra Costa" "Fresno"
```

```
[5] "Humboldt"
                          "Imperial"
                                            "Kern"
                                                             "Kings"
## [9] "Lake"
                                            "Madera"
                                                             "Mendocino"
                          "Los Angeles"
## [13] "Merced"
                          "Modoc"
                                            "Monterey"
                                                             "Plumas"
## [17] "Riverside"
                          "Sacramento"
                                            "San Bernardino" "San Diego"
## [21] "San Francisco"
                          "San Joaquin"
                                            "Santa Clara"
                                                             "Solano"
## [25] "Stanislaus"
# [1] "Solano"
                                                           "San Bernardino"
                                          "Alameda"
                        "San Joaquin"
# "Santa Clara"
                    "Sacramento"
# [7] "Contra Costa"
                       "Kern"
                                          "Los Angeles"
                                                           "Imperial"
# "Fresno"
                   "Merced"
# [13] "Lake"
                        "San Francisco"
                                          "Modoc"
                                                             "Kings"
# "Stanislaus"
                    "San Diego"
# [19] "Amador"
                        "Riverside"
                                           "Humboldt"
                                                             "Mendocino"
# "Monterey"
                    "Plumas"
# [25] "Madera"
```

If restrict dataset to top 5% of asthma then 16 counties are represented

with 402 observations.

```
asthma_measures_df6 <- asthma_measures_df2 %>%
filter(asthma_pctl >= 95) %>%
  arrange(county, desc(asthma_pctl))
unique(asthma_measures_df6$county)
  [1] "Alameda"
                         "Contra Costa"
                                           "Fresno"
                                                             "Imperial"
##
##
  [5] "Kern"
                         "Kings"
                                           "Lake"
                                                             "Los Angeles"
                                           "Sacramento"
## [9] "Merced"
                         "Modoc"
                                                             "San Bernardino"
## [13] "San Francisco"
                        "San Joaquin"
                                           "Santa Clara"
                                                             "Solano"
# [1] "Alameda"
                       "Contra Costa"
                                         "Fresno"
                                                           "Imperial"
                                                                            "Kern"
                                                                                              "Kings"
# [7] "Lake"
                       "Los Angeles"
                                         "Merced"
                                                           "Modoc"
                                                                            "Sacramento"
                                                                                              "San Bernard
# [13] "San Francisco" "San Joaquin"
                                          "Santa Clara"
                                                           "Solano"
# If restrict dataset tp top 1% of asthma, then 10 counties are
# represented with 81 observations.
asthma_measures_df9 <- asthma_measures_df2 %>%
  filter(asthma_pctl >= 99) %>%
  arrange(county, desc(asthma_pctl))
unique(asthma_measures_df9$county)
## [1] "Alameda"
                                                             "Kern"
                          "Contra Costa"
                                           "Imperial"
   [5] "Los Angeles"
                          "Sacramento"
                                           "San Bernardino" "San Joaquin"
## [9] "Santa Clara"
                          "Solano"
# [1] "Alameda"
                       "Contra Costa"
                                         "Imperial"
                                                           "Kern"
# "Los Angeles"
                   "Sacramento"
# [7] "San Bernardino" "San Joaquin"
                                         "Santa Clara"
                                                           "Solano"
# Reorder the columns to move asthma_pctl to 3rd position.
asthma_measures_df8 <- asthma_measures_df6 %>%
```

```
select(1:2, asthma_pctl, 3:6, 8:ncol(asthma_measures_df6))
```

Will keep dataset with top 5% of asthma percentile and compare to other variables.

For comparison to other variables, will categorize the Pollution and Population Characteristic variables into Very High, High, Medium, Low categories.

```
asthma_measures_compare1 <- asthma_measures_df8 %>%
  mutate(pm2.5_pctl_cat =
           case_when(pm2.5_pct1 < 50 ~ "Low", pm2.5_pct1 < 90 ~ "Medium",</pre>
                      pm2.5_pctl < 95 ~ "High", TRUE ~ "Very High"))</pre>
asthma_measures_compare2 <- asthma_measures_compare1 %>%
  mutate(diesel_pm_pctl_cat =
           case_when(diesel_pm_pctl < 50 ~ "Low", diesel_pm_pctl < 90 ~ "Medium",</pre>
                      diesel_pm_pctl < 95 ~ "High", TRUE ~ "Very High"))</pre>
asthma_measures_compare3 <- asthma_measures_compare2 %>%
  mutate(traffic_pctl_cat =
           case_when(traffic_pctl < 50 ~ "Low", traffic_pctl < 90 ~ "Medium",</pre>
                      traffic pctl < 95 ~ "High", TRUE ~ "Very High"))</pre>
asthma_measures_compare4 <- asthma_measures_compare3 %>%
  mutate(tox._release_pctl_cat =
           case_when(tox._release_pctl < 50 ~ "Low", tox._release_pctl < 90 ~ "Medium",</pre>
                      tox._release_pctl < 95 ~ "High", TRUE ~ "Very High"))</pre>
asthma_measures_compare5 <- asthma_measures_compare4 %>%
  mutate(housing_burden_pctl_cat =
           case_when(housing_burden_pctl < 50 ~ "Low", housing_burden_pctl < 90 ~ "Medium",</pre>
                      housing_burden_pctl < 95 ~ "High",
                      housing_burden_pctl <=100 ~ "Very High", TRUE ~ NA))
asthma measures compare6 <- asthma measures compare5 %>%
  mutate(education_pctl_cat =
           case_when(education_pctl < 50 ~ "Low", education_pctl < 90 ~ "Medium",</pre>
                      education pctl < 95 ~ "High",
                      education pctl <=100 ~ "Very High", TRUE ~ NA))
asthma_measures_compare7 <- asthma_measures_compare6 %>%
  mutate(unemployment_pctl_cat =
           case_when(unemployment_pctl < 50 ~ "Low",</pre>
                      unemployment_pctl < 90 ~ "Medium",
                      unemployment_pctl < 95 ~ "High",
                      unemployment_pctl <=100 ~ "Very High", TRUE ~ NA))
asthma_measures_compare8 <- asthma_measures_compare7 %>%
  mutate(poverty_pctl_cat =
           case when (poverty pctl < 50 ~ "Low", poverty pctl < 90 ~ "Medium",
                      poverty_pctl < 95 ~ "High",</pre>
                      poverty_pctl <=100 ~ "Very High", TRUE ~ NA))</pre>
```

Exploring correlation between asthma and pollution variables in asthma 90 percentile.

Strength of correlations, for the absolute value of correlation coefficients (based on Pearson's correlation):

```
0.00 - 0.19: Very weak or negligible correlation
0.20 - 0.39: Weak correlation
0.40 - 0.59: Moderate correlation 0.60 - 0.79: Strong correlation 0.80 - 1.00: Very strong correlation
cor matrix <-
  cor(asthma_measures_df2[, c("asthma_pctl", "pm2.5_pctl", "diesel_pm_pctl",
                              "traffic_pctl", "tox._release_pctl")],
      use = "complete.obs")
                 #asthma_pctl pm2_5_pctl diesel_pm_pctl traffic_pctl tox_release_pctl
# asthma_pctl
                    1.000000000 -0.1606919
                                               0.0213816 -0.07081408
# Running the code assuming data set of 95 asthma_pctl,
# also no correlations other than a weak correlation with PM.2.5 percentile:
cor_matrix_95_pctl <-</pre>
  cor(asthma_measures_df6[, c("asthma_pctl", "pm2.5_pctl", "diesel_pm_pctl",
                              "traffic_pctl", "tox._release_pctl")],
      use = "complete.obs")
                  #asthma_pctl pm2_5_pctl diesel_pm_pctl traffic_pctl tox_release_pctl
# asthma_pctl
                    1.0000000000 -0.3451474 -0.0001463002 -0.1452523
# ggplot to explore relationship between county and asthma percentile
ggplot(asthma_measures_df9,
       aes(x = fct_reorder(county, asthma_pctl), y = asthma_pctl)) +
  geom_boxplot() +
 labs(title = "California Highest Density of Asthma by County", x = "County",
       y = "Asthma 99 Percentile") + scale_y_continuous()
```


California Highest Density of Asthma by County

Summary county-level asthma correlation with pollution variable pm2.5_pctl

```
asthma_measures_compare10<- asthma_measures_compare8 %>%
  filter(pm2.5_pctl_cat %in% c("Very High", "High"))
unique(asthma_measures_compare10$county)
## [1] "Fresno" "Kern"
                         "Kings"
# [1] "Kern" "Fresno" "Kings"
asthma_measures_compare10_sum <- asthma_measures_compare10 %>%
  select(census_tract, county, asthma_pctl, pm2.5_pctl_cat) %>%
  group_by(county) %>% ungroup()
print(asthma_measures_compare10_sum)
## # A tibble: 56 x 4
##
      census_tract county asthma_pctl pm2.5_pctl_cat
##
             <dbl> <chr>
                                <dbl> <chr>
        6019003302 Fresno
                                 98.6 Very High
##
   1
       6019008502 Fresno
   2
                                 98.6 Very High
##
##
        6019003702 Fresno
                                 98.5 Very High
##
       6019004704 Fresno
                                 98.5 Very High
##
   5
        6019000700 Fresno
                                 98.2 Very High
        6019001000 Fresno
##
   6
                                 98.2 Very High
        6019000300 Fresno
##
                                 98.2 Very High
```

```
## 8 6019000902 Fresno 98.2 Very High
## 9 6019000901 Fresno 98.2 Very High
## 10 6019000800 Fresno 98.2 High
## # i 46 more rows
```

Summary county-level asthma correlation with pollution variable

```
traffic pctl
asthma_measures_compare11<- asthma_measures_compare8 %>%
  filter(traffic_pctl_cat %in% c("Very High", "High"))
unique(asthma_measures_compare11$county)
                       "Contra Costa" "Fresno"
## [1] "Alameda"
                                                        "Los Angeles"
## [5] "Sacramento"
                       "San Francisco" "Solano"
# [1] "Alameda"
                      "Solano"
                                       "Los Angeles"
                                                       "Sacramento"
                                                                        "Fresno"
# "San Francisco" "Contra Costa"
asthma_measures_compare11_sum <- asthma_measures_compare11 %>%
  select(census_tract, county, asthma_pctl, traffic_pctl_cat) %>%
  group_by(county) %>% ungroup()
print(asthma_measures_compare11_sum)
```

```
## # A tibble: 29 x 4
##
      census tract county
                                asthma_pctl traffic_pctl_cat
##
             <dbl> <chr>
                                      <dbl> <chr>
##
   1
       6001409100 Alameda
                                       99.9 Very High
##
  2
       6001408300 Alameda
                                       99.6 High
##
       6001401700 Alameda
                                       97.2 High
##
       6001409200 Alameda
                                       96.5 Very High
##
       6001425101 Alameda
                                       95.8 Very High
##
  6
       6013315000 Contra Costa
                                       95.7 High
  7
       6019002400 Fresno
                                       97.0 High
##
## 8
       6019002502 Fresno
                                       95.9 High
##
  9
       6037900605 Los Angeles
                                       99.1 Very High
        6037900803 Los Angeles
                                       99.0 Very High
## 10
## # i 19 more rows
```

Summary county-level asthma correlation with pollution variable

```
diesel_pm_pctl
```

```
asthma_measures_compare12 <- asthma_measures_compare8 %>%
  filter(diesel_pm_pctl_cat %in% c("Very High", "High"))
unique(asthma_measures_compare12$county)
  [1] "Alameda"
                         "Contra Costa"
                                           "Fresno"
                                                             "Kern"
   [5] "Los Angeles"
                          "Merced"
                                           "San Bernardino" "San Francisco"
##
  [9] "San Joaquin"
                          "Santa Clara"
# [1] "San Joaquin"
                        "Alameda"
                                         "Santa Clara"
                                                           "Contra Costa"
                                                                            "Kern"
# "San Bernardino"
# [7] "Los Angeles"
                        "Merced"
                                         "Fresno"
                                                           "San Francisco"
```

```
asthma_measures_compare12_sum <- asthma_measures_compare12 %>%
 select(census_tract, county, asthma_pctl, diesel_pm_pctl_cat) %>%
 group_by(county) %>% ungroup()
print(asthma_measures_compare12_sum)
## # A tibble: 74 x 4
     census_tract county asthma_pctl diesel_pm_pctl_cat
##
##
            <dbl> <chr>
                                <dbl> <chr>
       6001409100 Alameda
                               99.9 High
## 1
## 2
       6001409500 Alameda
                               99.7 High
## 3 6001409000 Alameda
                                99.5 High
## 4
       6001402200 Alameda
                                99.0 Very High
## 5
       6001410500 Alameda
                                 99.0 High
## 6
       6001402500 Alameda
                                99.0 Very High
## 7
       6001401800 Alameda
                                99.0 Very High
## 8
       6001402400 Alameda
                                99.0 High
## 9
       6001983200 Alameda
                                99.0 Very High
## 10
       6001981900 Alameda
                                99.0 Very High
## # i 64 more rows
Summary county-level asthma correlation with pollution variable
tox._release_pctl
asthma measures compare13 <- asthma measures compare8 %>%
 filter(tox._release_pctl_cat %in% c("Very High", "High"))
unique(asthma_measures_compare13$county)
## [1] "Contra Costa" "Fresno"
                                    "Los Angeles"
# [1] "Los Angeles" "Contra Costa" "Fresno
asthma_measures_compare13_sum <- asthma_measures_compare13 %>%
 select(census_tract, county, asthma_pctl, tox._release_pctl_cat) %>%
 group_by(county) %>% ungroup()
print(asthma_measures_compare13_sum)
## # A tibble: 83 x 4
##
     census_tract county
                              asthma_pctl tox._release_pctl_cat
##
            <dbl> <chr>
                                   <dbl> <chr>
## 1
     6013314103 Contra Costa
                                     97.9 Very High
       6013378000 Contra Costa
                                     97.2 High
## 3
       6019001100 Fresno
                                      97.2 High
## 4
       6019001304 Fresno
                                      95.2 High
## 5
       6037900806 Los Angeles
                                      99.3 High
## 6
       6037900703 Los Angeles
                                      99.3 High
## 7
                                      99.1 Very High
       6037900505 Los Angeles
## 8
       6037900605 Los Angeles
                                      99.1 High
## 9
       6037900608 Los Angeles
                                      99.1 High
## 10
       6037900609 Los Angeles
                                      99.1 High
## # i 73 more rows
```

Summary county-level asthma correlation with population characteristic variable

housing burden pctl asthma measures compare14 <- asthma measures compare8 %>% filter(housing_burden_pctl_cat %in% c("Very High", "High")) unique(asthma_measures_compare14\$county) [1] "Alameda" "Contra Costa" "Fresno" "Imperial" [5] "Kern" "Merced" "Sacramento" "Los Angeles" ## "San Joaquin" "Solano" [9] "San Bernardino" "San Francisco" # [1] "San Joaquin" "Sacramento" "Alameda" "Solano" # "Contra Costa" # [7] "Los Angeles" "Fresno" "Merced" "Imperial" # "San Francisco" "San Bernardino" asthma_measures_compare14_sum <- asthma_measures_compare14 %>% select(census_tract, county, asthma_pctl, housing_burden_pctl_cat) %>% group_by(county) %>% ungroup() print(asthma_measures_compare14_sum) ## # A tibble: 110 x 4 ## census_tract county asthma_pctl housing_burden_pctl_cat ## <dbl> <chr> <dbl> <chr> ## 1 6001409100 Alameda 99.9 Very High ## 6001409500 Alameda 99.7 High ## 3 6001408900 Alameda 99.7 High ## 4 6001408400 Alameda 99.6 Very High ## 5 6001409400 Alameda 99.6 High ## 6 6001408600 Alameda 99.2 Very High ## 7 6001408700 Alameda 99.2 High 6001408500 Alameda 99.2 High ## 6001406202 Alameda ## 9 97.2 High 6001403000 Alameda 96.5 High ## 10 ## # i 100 more rows

Summary county-level asthma correlation with population characteristic

```
variable education pctl
```

```
asthma_measures_compare15 <- asthma_measures_compare8 %>%
  filter(education_pctl_cat %in% c("Very High", "High"))
unique(asthma_measures_compare15$county)
## [1] "Alameda"
                        "Contra Costa"
                                          "Fresno"
                                                           "Kern"
## [5] "Los Angeles"
                        "Merced"
                                          "San Bernardino" "San Joaquin"
# [1] "San Joaquin"
                       "Alameda"
                                         "San Bernardino" "Los Angeles"
# "Fresno"
                   "Contra Costa"
# [7] "Merced"
                       "Kern"
asthma_measures_compare15_sum <- asthma_measures_compare15 %>%
  select(census_tract, county, asthma_pctl, education_pctl_cat) %>%
```

```
group_by(county) %>% ungroup()
print(asthma_measures_compare15_sum)
## # A tibble: 72 x 4
##
     census_tract county
                               asthma_pctl education_pctl_cat
##
            <dbl> <chr>
                                     <dbl> <chr>
       6001408800 Alameda
##
                                      99.7 High
## 2
       6001409500 Alameda
                                      99.7 High
## 3
       6001409400 Alameda
                                      99.6 High
## 4
       6001407200 Alameda
                                      97.2 High
## 5
       6013365002 Contra Costa
                                      98.6 High
       6013314200 Contra Costa
## 6
                                      97.9 High
## 7
       6019008502 Fresno
                                      98.6 Very High
## 8
       6019000700 Fresno
                                      98.2 High
## 9
       6019001000 Fresno
                                      98.2 High
## 10
       6019000902 Fresno
                                      98.2 Very High
## # i 62 more rows
Summary county-level asthma correlation with population characteristic
variable unemployment pctl
asthma_measures_compare16 <- asthma_measures_compare8 %>%
 filter(unemployment pctl cat %in% c("Very High", "High"))
unique(asthma_measures_compare16$county)
   [1] "Alameda"
                        "Contra Costa"
                                         "Fresno"
                                                          "Imperial"
  [5] "Kern"
                        "Lake"
##
                                         "Los Angeles"
                                                          "Merced"
## [9] "Modoc"
                        "Sacramento"
                                         "San Bernardino" "San Francisco"
## [13] "San Joaquin"
                        "Solano"
# [1] "Solano"
                      "San Joaquin"
                                                         "San Bernardino"
                                        "Alameda"
# "Sacramento"
                   "Contra Costa"
# [7] "Kern"
                      "Los Angeles"
                                        "Imperial"
                                                         "Merced"
# "Fresno"
                  "Lake"
# [13] "San Francisco" "Modoc"
asthma_measures_compare16_sum <- asthma_measures_compare16 %>%
 select(census_tract, county, asthma_pctl, unemployment_pctl_cat) %>%
 group_by(county) %>% ungroup()
```

```
## # A tibble: 120 x 4
                               asthma_pctl unemployment_pctl_cat
##
      census_tract county
            <dbl> <chr>
##
                                     <dbl> <chr>
## 1
       6001410300 Alameda
                                      99.9 High
## 2
       6001408300 Alameda
                                      99.6 High
## 3
       6001410500 Alameda
                                      99.0 Very High
       6001402500 Alameda
## 4
                                      99.0 Very High
## 5
       6001407200 Alameda
                                      97.2 High
## 6
       6001407400 Alameda
                                      97.2 High
       6001407500 Alameda
                                      95.6 High
```

print(asthma_measures_compare16_sum)

```
##
       6013307205 Contra Costa
                                       99.5 High
## 9
       6013305000 Contra Costa
                                       99.4 Very High
## 10
       6013307202 Contra Costa
                                       99.4 Very High
## # i 110 more rows
```

Summary county-level asthma correlation with population characteristic

variable poverty pctl

```
asthma measures compare17 <- asthma measures compare8 %>%
  filter(poverty_pctl_cat %in% c("Very High", "High"))
unique(asthma_measures_compare17$county)
##
   [1] "Alameda"
                         "Contra Costa"
                                          "Fresno"
                                                            "Imperial"
   [5] "Kern"
                         "Lake"
                                                            "Merced"
##
                                          "Los Angeles"
  [9] "Sacramento"
                         "San Bernardino" "San Francisco"
                                                           "San Joaquin"
## [13] "Solano"
# [1] "San Joaquin"
                       "San Bernardino" "Solano"
                                                          "Alameda"
# "Sacramento"
                   "Kern"
# [7] "Contra Costa" "Los Angeles"
                                        "Fresno"
                                                          "Merced"
                   "Lake"
# "Imperial"
# [13] "San Francisco"
asthma_measures_compare17_sum <- asthma_measures_compare17 %>%
  select(census_tract, county, asthma_pctl, poverty_pctl_cat) %>%
  group_by(county) %>% ungroup()
print(asthma_measures_compare17_sum)
## # A tibble: 122 x 4
##
                                asthma_pctl poverty_pctl_cat
      census_tract county
             <dbl> <chr>
                                      <dbl> <chr>
##
                                       99.7 Very High
##
   1
       6001408800 Alameda
       6001409500 Alameda
                                       99.7 High
## 3
       6001410500 Alameda
                                       99.0 High
##
   4
       6001402500 Alameda
                                       99.0 Very High
##
  5
       6001402600 Alameda
                                       97.6 High
##
   6
       6001407500 Alameda
                                       95.6 Very High
       6013307202 Contra Costa
                                       99.4 High
##
  7
##
  8
       6019003302 Fresno
                                       98.6 High
## 9
       6019008502 Fresno
                                       98.6 Very High
## 10
       6019004704 Fresno
                                       98.5 Very High
## # i 112 more rows
```

Top ten counties having highest density of asthma (99th percentile) include: Los Angeles, Imperial, Kern, Sacramento, Contra Costa, Alameda, San Joaquin, Santa Clara, Solano, San Bernadino.

Explore association between these counties and other potential Pollution and Population risk factors for asthma

```
# ggplot to explore relationship between counties with highest distribution of
# asthma and pm2.5_pctl
```

California Counties with Highest Density of Asthma Association with PM2.5

Los Ang Sess Bernardin Adameda Contra Costalmperial Sacrament Santa Clara Solano San Joaquin Kern County

California Counties with Highest Density of Asthma Association with Diesel


```
# selecting variables of interest, (11 variables, 8035 obs.)
asthma_measures_df2a <- asthma_measures_df1 %>%
  select(census_tract, county, pm2.5, diesel_pm,
         traffic, tox._release, asthma, housing_burden,
         education, unemployment, poverty)
# Analysis of NA missing data from variables of interest before subsetting.
# Total NA = 1408 all occurring in population characteristics;
# none in pollution burden.
sum(is.na(asthma_measures_df2a$census_tract))
## [1] 0
# [1] 0
sum(is.na(asthma_measures_df2a$county))
## [1] 0
# [1] 0
sum(is.na(asthma_measures_df2a$pm2.5))
## [1] 0
# [1] 0
```

```
sum(is.na(asthma_measures_df2a$diesel_pm))
## [1] 0
# [1] 0
sum(is.na(asthma_measures_df2a$tox._release))
## [1] 0
# [1] 0
sum(is.na(asthma_measures_df2a$traffic))
## [1] 35
# [1] 35
sum(is.na(asthma_measures_df2a$asthma))
## [1] 11
# [1] 11
sum(is.na(asthma_measures_df2a$education))
## [1] 103
# [1] 103
sum(is.na(asthma_measures_df2a$unemployment))
## [1] 335
# [1] 335
sum(is.na(asthma_measures_df2a$housing_burden))
## [1] 145
# [1] 145
sum(is.na(asthma_measures_df2a$poverty))
## [1] 75
# [1] 75
```

County level summary data: median level of asthma per county

```
# Remove rows with NA values in columns
asthma_measures_df2a_clean <- asthma_measures_df2a[!is.na(asthma_measures_df2a$asthma) & !is.na(asthma_measures_df2a$clean %>%
group_by(county) %>%
summarize(
   asthma_median_by_county = median(asthma, na.rm = TRUE),
   pm2.5_median_by_county = median(pm2.5, na.rm = TRUE),
   diesel_pm_median_by_county = median(diesel_pm, na.rm = TRUE),
```

```
traffic_median_by_county = median(traffic, na.rm = TRUE),
   tox._release_median_by_county = median(tox._release, na.rm = TRUE),
    .groups = "drop"
  ) %>%
  ungroup()
asthma_measures_df3a <- asthma_measures_df3a %>%
  arrange(desc(asthma_median_by_county))
asthma_measures_df3b <- asthma_measures_df2a_clean %>%
  group by(county) %>%
  summarize(
   asthma_median_by_county = median(asthma, na.rm = TRUE),
   housing_burden_median_by_county = median(housing_burden, na.rm = TRUE),
   education_median_by_county = median(education, na.rm = TRUE),
   unemployment_median_by_county = median(unemployment, na.rm = TRUE),
   poverty_median_by_county = median(poverty, na.rm = TRUE),
    .groups = "drop"
  ) %>%
  ungroup()
asthma_measures_df3b <- asthma_measures_df3b %>%
  arrange(desc(asthma_median_by_county))
ggplot(asthma_measures_df3a, aes(x = asthma_median_by_county, y = pm2.5_median_by_county)) +
  geom_point() + # Scatter plot points
 geom_text(aes(label = county), hjust = 0.5, vjust = -0.5, size = 1.85) + # Labels each point with th
 labs(
   x = "Asthma Median by County",
   y = "PM2.5 Median by County",
   title = "Scatter Plot of Asthma vs PM2.5 by County"
  theme_minimal() # Minimal theme for a clean look
```

Scatter Plot of Asthma vs PM2.5 by County


```
asthma_measures_df13a <- asthma_measures_df3a %>%
  mutate(county = factor(county, levels = county[order(asthma_median_by_county)]))

# Plotting
ggplot(asthma_measures_df13a, aes(x = county, y = asthma_median_by_county)) +
  geom_point() + # Scatter plot points
  labs(
    x = "County",
    y = "Asthma Median",
    title = "Scatter Plot of Asthma Median per County"
  ) +
  theme_minimal() +
  theme(
    axis.text.x = element_text(angle = 90, hjust = 1) # Rotate x-axis labels
  )
```

Scatter Plot of Asthma Median per County

It is important to consider impact of census tracts within counties

```
# Reduce observations from 8035 to 803
# by subsetting highest percentile (asthma > = 90th percentile)
asthma_measures_df5 <- asthma_measures_df2 %>%
  filter(asthma pctl >= 90) %>%
  arrange(county, desc(asthma_pctl))
# 25 out of 58 counties are represented in asthma top 10 percentile (90 - 100)
# which means certain census tracts within multiple counties have the highest
# distribution of asthma cases. This needs to be considered for
# county level interventions.
unique(asthma_measures_df5$county)
    [1] "Alameda"
                          "Amador"
                                           "Contra Costa"
                                                             "Fresno"
##
    [5] "Humboldt"
                                           "Kern"
                          "Imperial"
                                                             "Kings"
    [9] "Lake"
                                           "Madera"
                                                             "Mendocino"
                          "Los Angeles"
                          "Modoc"
## [13] "Merced"
                                           "Monterey"
                                                             "Plumas"
                          "Sacramento"
                                           "San Bernardino" "San Diego"
## [17] "Riverside"
## [21] "San Francisco"
                          "San Joaquin"
                                           "Santa Clara"
                                                             "Solano"
## [25] "Stanislaus"
# [1] "Solano"
                        "San Joaquin"
                                         "Alameda"
                                                           "San Bernardino"
# "Santa Clara"
                   "Sacramento"
# [7] "Contra Costa"
                        "Kern"
                                         "Los Angeles"
                                                           "Imperial"
```

```
# "Fresno"
                   "Merced"
# [13] "Lake"
                    "San Francisco" "Modoc"
                                                          "Kings"
# "Stanislaus"
                   "San Diego"
# [19] "Amador"
                    "Riverside"
                                       "Humboldt"
                                                          "Mendocino"
# "Montereu"
                   "Plumas"
# [25] "Madera"
library(ggplot2)
library(dplyr)
library(ggrepel) # Optional for better label positioning
# Ensure counties are ordered by asthma median
asthma_measures_df3a <- asthma_measures_df3a %>%
  arrange (asthma median by county) %>% # Order by asthma median
 mutate(county = factor(county, levels = county)) # Set factor levels by this order
  theme(axis.text.x = element_blank(), # Remove x-axis text (counties)
       axis.ticks.x = element_blank()) # Remove x-axis ticks
## List of 2
## $ axis.text.x : list()
## ..- attr(*, "class")= chr [1:2] "element_blank" "element"
## $ axis.ticks.x: list()
   ..- attr(*, "class")= chr [1:2] "element_blank" "element"
## - attr(*, "class")= chr [1:2] "theme" "gg"
## - attr(*, "complete")= logi FALSE
## - attr(*, "validate")= logi TRUE
library(kableExtra)
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
##
       group_rows
library(dplyr)
# Selecting only numeric columns
correlations <- asthma_measures_df3a %>%
  select(asthma_median_by_county, pm2.5_median_by_county, diesel_pm_median_by_county,
         traffic_median_by_county, tox._release_median_by_county) %>%
  cor(use = "complete.obs") # Use complete cases to avoid NA issues
# Display correlations only involving `asthma_median_by_county`
correlations["asthma_median_by_county", ]
##
                                       pm2.5_median_by_county
         asthma_median_by_county
##
                      1.00000000
                                                   0.16820601
##
      diesel_pm_median_by_county
                                     traffic_median_by_county
##
                     -0.08258447
                                                  -0.19643727
## tox._release_median_by_county
                    -0.07230597
```

Table 1: Correlation Matrix of Asthma and Pollution Factors by County

	Asthma	pm 2.5	Diesel	Traffic	Tox. Release
Asthma	1.000	0.168	-0.083	-0.196	-0.072
pm 2.5	0.168	1.000	0.423	0.438	0.435
Diesel	-0.083	0.423	1.000	0.682	0.349
Traffic	-0.196	0.438	0.682	1.000	0.434
Tox. Release	-0.072	0.435	0.349	0.434	1.000

Table 2: Correlation Matrix of Asthma and Socioeconomic Factors by County

	Asthma	Housing Burden	Education	Unemployment	Poverty
Asthma	1.000	0.168	-0.083	-0.196	-0.072
Housing Burden	0.168	1.000	0.423	0.438	0.435
Education	-0.083	0.423	1.000	0.682	0.349
Unemployment	-0.196	0.438	0.682	1.000	0.434
Poverty	-0.072	0.435	0.349	0.434	1.000

```
correlations <- round(correlations, 3)</pre>
# Rename columns and row names for readability
colnames(correlations) <- c("Asthma", "pm 2.5", "Diesel", "Traffic", "Tox. Release")</pre>
rownames(correlations) <- c("Asthma", "pm 2.5", "Diesel", "Traffic", "Tox. Release")
kable(correlations, caption = "Correlation Matrix of Asthma and Pollution Factors by County")
# Compute the correlation matrix
correlations1 <- asthma_measures_df3b %>%
  select(asthma_median_by_county, housing_burden_median_by_county, education_median_by_county,
         unemployment_median_by_county, poverty_median_by_county) %>%
  cor(use = "complete.obs") # Use complete cases to avoid NA issues
# Display correlations only involving `asthma_median_by_county`
correlations1["asthma_median_by_county", ]
##
           asthma_median_by_county housing_burden_median_by_county
##
                        1.00000000
                                                        -0.04073784
##
        education_median_by_county
                                     unemployment_median_by_county
##
                        0.53216114
                                                         0.43151174
##
          poverty_median_by_county
                        0.55769216
correlations1 <- round(correlations, 3)</pre>
# Rename columns and row names for readability
colnames(correlations1) <- c("Asthma", "Housing Burden", "Education", "Unemployment", "Poverty")</pre>
rownames(correlations1) <- c("Asthma", "Housing Burden", "Education", "Unemployment", "Poverty")
# Display the correlation matrix as a kable table
kable(correlations1, caption = "Correlation Matrix of Asthma and Socioeconomic Factors by County")
```