Programa: Morfologia matemática - Representação e descrição Reconhecimento de padrões Momentos São propriedades numéricas (quantidades escalares) usadas para caracterizar uma função (região) ou descrever suas características significativas. Serão abordados: Momentos simples Momentos centrais Momentos centrais normalizados Momentos de Hu

Momentos

São quantidades escalares usadas para caracterizar uma função (um objeto) ou capturar suas características significativas.

Representando por M_{pq} o momento de uma imagem, sendo p e q inteiros não regativos, e $\mathbf{r} = \mathbf{p} + \mathbf{q}$ é a *ordem* do momento.

-> Ex: $\rm m_{30}$, $\rm m_{03}$, $\rm m_{21}$ e $\rm m_{12}$ são momentos de terceira ordem.

Sendo f(x,y) função contínua bidimensional, o momento de ordem p+q é definido como:

$$\mathbf{M}_{\mathbf{P}_{\mathbf{q}}} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^p y^q f(x, y) \, \mathrm{d}x \, \mathrm{d}y$$

Para uma função discreta piulitiensional (1,1).

$$\mathit{M}_{\mathit{pq}} \, = \sum_{i=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} i^p j^q \, {}_{I}(i,j) \quad \boxed{\hspace{1cm}} \quad \mathit{M}_{pq} = \quad \sum_{i} \quad \sum_{j} \ i^p j^q \, {}_{I}\left(i,j\right)$$

Momentos centrais

Momentos geométricos não são invariantes à translação, à escala e à rotação.

- -> Deseja-se obter momentos invariantes a tais fatores. O primeiro passo consiste em obter os momentos centrais m_{pq} para então calcular os momentos centrais normalizados η_{pq} .
- . Os momentos centrais podem ser expressos como

$$\mu_{pq} = \sum_{i} \sum_{j} (i - \overline{x})^{p} (j - \overline{y})^{q} \quad I(i,j)$$

Onde o centróide da imagem é obtido através de

$$\overline{x} = \frac{m_{10}}{m_{00}}$$
 e $\overline{y} = \frac{m_{01}}{m_{00}}$

$$\begin{aligned} &\text{Momentos centrais:} \quad \mu_{pq} = \sum_{i} \sum_{j} (\mathbf{i} - \overline{x})^{p} (\mathbf{j} - \overline{y})^{q} \quad \mathbf{I}(\mathbf{i}, \mathbf{j}) \\ &\mu_{00} = \sum_{i} \sum_{j} (\mathbf{i} - \overline{x})^{0} (\mathbf{j} - \overline{y})^{0}. \mathbf{I}(\mathbf{i}, \mathbf{j}) \\ &\mu_{01} = \sum_{i} \sum_{j} (\mathbf{i} - \overline{x})^{0} (\mathbf{j} - \overline{y})^{1}. \mathbf{I}(\mathbf{i}, \mathbf{j}) \\ &\mu_{10} = \sum_{i} \sum_{j} (\mathbf{i} - \overline{x})^{1} (\mathbf{j} - \overline{y})^{0}. \mathbf{I}(\mathbf{i}, \mathbf{j}) \\ &\mu_{11} = \sum_{i} \sum_{j} (\mathbf{i} - \overline{x})^{1} (\mathbf{j} - \overline{y})^{1}. \mathbf{I}(\mathbf{i}, \mathbf{j}) \\ &\mu_{20} = \sum_{i} \sum_{j} (\mathbf{i} - \overline{x})^{2} (\mathbf{j} - \overline{y})^{0}. \mathbf{I}(\mathbf{i}, \mathbf{j}) \\ &\mu_{20} = \sum_{i} \sum_{j} (\mathbf{i} - \overline{x})^{2} (\mathbf{j} - \overline{y})^{0}. \mathbf{I}(\mathbf{i}, \mathbf{j}) \\ &\mu_{20} = \sum_{i} \sum_{j} (\mathbf{i} - \overline{x})^{0} (\mathbf{j} - \overline{y})^{2}. \mathbf{I}(\mathbf{i}, \mathbf{j}) \\ &\mu_{21} = \sum_{i} \sum_{j} (\mathbf{i} - \overline{x})^{1} (\mathbf{j} - \overline{y})^{2}. \mathbf{I}(\mathbf{i}, \mathbf{j}) \\ &\mu_{21} = \sum_{i} \sum_{j} (\mathbf{i} - \overline{x})^{1} (\mathbf{j} - \overline{y})^{2}. \mathbf{I}(\mathbf{i}, \mathbf{j}) \\ &\mu_{03} = \sum_{i} \sum_{j} (\mathbf{i} - \overline{x})^{1} (\mathbf{j} - \overline{y})^{2}. \mathbf{I}(\mathbf{i}, \mathbf{j}) \\ &\mu_{03} = \sum_{i} \sum_{j} (\mathbf{i} - \overline{x})^{1} (\mathbf{j} - \overline{y})^{2}. \mathbf{I}(\mathbf{i}, \mathbf{j}) \\ &\mu_{03} = \sum_{i} \sum_{j} (\mathbf{i} - \overline{x})^{1} (\mathbf{j} - \overline{y})^{2}. \mathbf{I}(\mathbf{i}, \mathbf{j}) \\ &\mu_{03} = \sum_{i} \sum_{j} (\mathbf{i} - \overline{x})^{1} (\mathbf{j} - \overline{y})^{2}. \mathbf{I}(\mathbf{i}, \mathbf{j}) \\ &\mu_{03} = \sum_{i} \sum_{j} (\mathbf{i} - \overline{x})^{1} (\mathbf{j} - \overline{y})^{3}. \mathbf{I}(\mathbf{i}, \mathbf{j}) \\ &\mu_{03} = \sum_{i} \sum_{j} (\mathbf{i} - \overline{x})^{2} (\mathbf{j} - \overline{y})^{1}. \mathbf{I}(\mathbf{i}, \mathbf{j}) \\ &\mu_{03} = \sum_{i} \sum_{j} (\mathbf{i} - \overline{x})^{2} (\mathbf{j} - \overline{y})^{3}. \mathbf{I}(\mathbf{i}, \mathbf{j}) \\ &\mu_{03} = \sum_{i} \sum_{j} (\mathbf{i} - \overline{x})^{2} (\mathbf{j} - \overline{y})^{3}. \mathbf{I}(\mathbf{i}, \mathbf{j}) \\ &\mu_{03} = \sum_{i} \sum_{j} (\mathbf{i} - \overline{x})^{3} (\mathbf{j} - \overline{y})^{3}. \mathbf{I}(\mathbf{i}, \mathbf{j}) \\ &\mu_{03} = \sum_{i} \sum_{j} (\mathbf{i} - \overline{x})^{3} (\mathbf{j} - \overline{y})^{3}. \mathbf{I}(\mathbf{i}, \mathbf{j}) \\ &\mu_{03} = \sum_{i} \sum_{j} (\mathbf{i} - \overline{x})^{3} (\mathbf{j} - \overline{y})^{3}. \mathbf{I}(\mathbf{i}, \mathbf{j}) \\ &\mu_{03} = \sum_{i} \sum_{j} (\mathbf{i} - \overline{x})^{3} (\mathbf{j} - \overline{y})^{3}. \mathbf{I}(\mathbf{i}, \mathbf{j}) \\ &\mu_{03} = \sum_{i} \sum_{j} (\mathbf{i} - \overline{x})^{3} (\mathbf{j} - \overline{y})^{3}. \mathbf{I}(\mathbf{i}, \mathbf{j}) \\ &\mu_{03} = \sum_{i} \sum_{j} (\mathbf{i} - \overline{x})^{3} (\mathbf{i} - \overline{y})^{3}. \mathbf{I}(\mathbf{i}, \mathbf{j}) \\ &\mu_{03} = \sum_{i} \sum_{j} (\mathbf{i} - \overline{x})^{3} (\mathbf{i} - \overline{y})^{3}. \mathbf{I}(\mathbf{i}, \mathbf{j}) \\ &\mu_{03} = \sum_{i} \sum_{j} (\mathbf{i} - \overline{x})^{3} (\mathbf{i} - \overline{y})^{3}. \mathbf{I}(\mathbf{$$

Implementação (1) em Matlab dos momentos centrais até a ordem 3:

$$\begin{array}{lll} \mu_{00} = m_{00} & \text{mi}_00 = \text{M}_00; \\ \mu_{01} = 0 & \text{mi}_0 = m_{10} - \frac{m_{10}}{m_{00}}(m_{00}) = 0 \\ \mu_{11} = m_{11} - \frac{m_{10}m_{01}}{m_{00}} & \text{mi}_10 = 0; \\ \mu_{20} = m_{20} - \frac{2m_{10}^2}{m_{00}} + \frac{m_{10}^2}{m_{00}} = m_{20} - \frac{m_{10}^2}{m_{00}} \\ \mu_{20} = m_{20} - \frac{m_{61}^2}{m_{00}} & \text{mi}_11 = \text{M}_11 - (\text{M}_10 * \text{M}_01) / \text{M}_00; \\ \mu_{02} = m_{02} - \frac{m_{61}^2}{m_{00}} & \text{mi}_20 = \text{M}_20 - (\text{M}_10 ^2) / \text{M}_00; \\ \mu_{30} = m_{30} - 3\bar{x}m_{20} + 2\bar{x}^2m_{10} & \text{mi}_30 = \text{M}_30 - 3*xm*\text{M}_20 + 2*(xm^2)*\text{M}_10; \\ \mu_{12} = m_{12} - 2\bar{y}m_{11} - \bar{x}m_{02} + 2\bar{y}^2m_{10} & \text{mi}_12 = \text{M}_12 - 2*ym*\text{M}_11 - xm*\text{M}_02 + 2*(ym^2)*\text{M}_10; \\ \mu_{21} = m_{21} - 2\bar{x}m_{11} - \bar{y}m_{20} + 2\bar{x}^2m_{01} & \text{mi}_21 = \text{M}_21 - 2*xm*\text{M}_11 - ym*\text{M}_20 + 2*(xm^2)*\text{M}_01; \\ \mu_{03} = m_{03} - 3\bar{y}m_{02} + 2\bar{y}^2m_{01} & \text{mi}_03 = \text{M}_03 - 3*ym*\text{M}_02 + 2*(ym^2)*\text{M}_01; \\ \end{array}$$

Implementação (2) dos momentos centrais até a ordem 3:

```
% momentos centrais de ordens 2 e 3:
% fazendo
                                           for i = 1:m
x = x - xm;
                                           for j = 1:n
y = y - ym;
                                               T3(i,j) = y(i,1)*I(i,j)*x(1,j);
                                               T4(i,j) = I(i,j)*(x(1,j)^2);
                                               T5(i,j) = (y(i,1)^2)^1(i,j);
% momentos centrais de ordens 0 e 1:
                                               T6(i,j) = (y(i,1))*I(i,j)*x(1,j)^2;
mi_00 = M_00;
                                               T7(i,j) = (y(i,1)^2)^*I(i,j)^*x(1,j);
mi_01 = 0;
mi_10 = 0;
                                               T8(i,j) = I(i,j)*(x(1,j)^3);
                                               T9(i,j) = (y(i,1)^3)*I(i,j);
                                           end
                                           end
                                           mi_11 = sum(sum(T3))
                                           mi_20 = sum(sum(T4))
                                           mi_02 = sum(sum(T5))
                                           mi_21 = sum(sum(T6))
                                           mi_12 = sum(sum(T7))
                                           mi_30 = sum(sum(T8))
                                           mi_03 = sum(sum(T9))
```

Exercício:

Calcule os momentos centrais para as chaves.

$$\eta_{pq} = \frac{\mu_{pq}}{\mu_{00}^{\gamma}} \qquad \text{para} \quad \gamma = \frac{p+q}{2} + 1$$

$$p = 1, q = 1 \rightarrow \eta_{11} = \frac{\mu_{11}}{\mu_{00}^{2}} \qquad \Rightarrow \frac{\mu_{21}}{\mu_{00}^{2}} \qquad \Rightarrow \frac{\mu_{21$$

Momentos invariantes afins

 $\phi_3 = (\eta_{30} - 3\eta_{12})^2 + (3\eta_{21} - \eta_{03})^2$

- foram introduzidos por Flusser e Suk em1993.

Hu 3=(eta 30 - 3*eta 12)^2 + (3*eta 21 - eta 03)^2;

- são obtidos a partir dos momentos centrais:

$$\begin{split} I_1 &= \frac{\mu_{20} \cdot \mu_{02} - \mu_{11}^2}{\mu_{00}^4} \\ I_2 &= \frac{\mu_{20}^2 \cdot \mu_{03}^2 - 6 \cdot \mu_{30} \cdot \mu_{21} \cdot \mu_{12} \cdot \mu_{03} + 4 \cdot \mu_{30} \cdot \mu_{12}^3 + 4 \cdot \mu_{21}^3 \cdot \mu_{03} - 3 \cdot \mu_{21}^2 \cdot \mu_{12}^2}{\mu_{00}^{10}} \\ I_3 &= \frac{\mu_{20} \cdot \left(\mu_{21} \cdot \mu_{03} - \mu_{12}^2\right) - \mu_{11} \cdot \left(\mu_{30} \cdot \mu_{03} - \mu_{21} \cdot \mu_{12}\right) + \mu_{02} \cdot \left(\cdot \mu_{30} \cdot \mu_{12} - \mu_{21}^2\right)}{\mu_{00}^7} \\ I_4 &= \frac{1}{\mu_{00}^{11}} \left(\mu_{20}^3 \cdot \mu_{03}^2 - 6 \cdot \mu_{20}^2 \cdot \mu_{11} \cdot \mu_{12} \cdot \mu_{03} - 6 \cdot \mu_{20}^2 \cdot \mu_{02} \cdot \mu_{21} \cdot \mu_{03} \right. \\ &\quad + 9 \cdot \mu_{20}^2 \cdot \mu_{02} \cdot \mu_{12}^2 + 12 \cdot \mu_{20} \cdot \mu_{11}^2 \cdot \mu_{21} \cdot \mu_{03} + 6 \cdot \mu_{20} \cdot \mu_{11} \cdot \mu_{02} \cdot \mu_{30} \cdot \mu_{03} \\ &\quad - 18 \cdot \mu_{20} \cdot \mu_{11} \cdot \mu_{02} \cdot \mu_{21} \cdot \mu_{12} - 8 \cdot \mu_{11}^3 \cdot \mu_{03} \cdot \mu_{03} - 6 \cdot \mu_{20} \cdot \mu_{22}^2 \cdot \mu_{30} \cdot \mu_{12} \\ &\quad + 9 \cdot \mu_{20} \cdot \mu_{20}^2 \cdot \mu_{21}^2 + 12 \cdot \mu_{11}^2 \cdot \mu_{02} \cdot \mu_{30} \cdot \mu_{12} - 6 \cdot \mu_{11} \cdot \mu_{02}^2 \cdot \mu_{30} \cdot \mu_{21} + \mu_{02}^3 \cdot \mu_{30}^2 \right) \end{split}$$

```
% momentos invariantes afins
I1 = (mi_20*mi_02 - mi_11^2) / (mi_00^4);

I2 = ( (mi_30^2)*(mi_03^2) - 6* mi_30*mi_21*mi_12*mi_03 + 4*mi_30*(mi_12^3) + 4*(mi_21^3)*mi_03 - 3*(mi_21^2)*(mi_12^2) )/(mi_00^10);

I3 = ( mi_20*(mi_21*mi_03-mi_12^2) - mi_11*(mi_30*mi_03-mi_21*mi_12) + mi_02*(mi_30*mi_12-mi_21^2) ) / (mi_00^7)
```

Exercício 2

Calcule os três primeiros momentos invariantes afins para os objetos:

Momento	Quadrado 1b	Quadrado 2b	Quadrado 3b
Hu_1			
Hu_2			
Hu_3			
l,			
l ₃			

Calcule os três primeiros momentos invariantes afins para os objetos:

Momento	Quadrado 1	Quadrado 2	Quadrado 3
Hu_1	0.000654	0.000654	0.000981
Hu_2	0	0	0
Hu_3	0	0	0
I,	1.068 x 10 ⁻⁷	1.068 x 10 ⁻⁷	1.068 x 10 ⁻⁷
l ₂	0	0	0
I ₃	0	0	0

Exercício 4

Calcule os três primeiros momentos invariantes afins para os objetos:

Momento invariante afim	Letra 1	Letra 2	Letra 3
I ₁			
I ₃			