8 клас

Задача	Отговор	Решение						
1	-4	С проверка, започвайки от -1 , -2 , -3 и -4 , достигаме до отговора -4 .						
2	4	$\sqrt{0}$, $\sqrt{1}$, $\sqrt{4}$, $\sqrt{9}$ са рационалните числа. Търсеният брой е 4.						
3	0	$\sqrt{(1-\sqrt{2})^2}: (1-\sqrt{2}) + 1 = 1-\sqrt{2} : (1-\sqrt{2}) = (\sqrt{2}-1): (1-\sqrt{2}) = 0$						
4	6	Нека търсеното число е $x \Rightarrow (16^{16})^x = 64^{64} \Rightarrow ((4^2)^{16})^x = (4^3)^{64} \Rightarrow$ $4^{32x} = 4^{3.64} \Rightarrow 32x = 3.64 \Rightarrow x = 6$						
5	24	Разполагаме точките две по две така, че да са краища на диаметър.						
		Така се получават по 6 правоъгълни триъгълника с обща хипо						
		за всеки диаметър. Окончателно 4.6=24 правоъгълни триъгълника.						
		•						
6	6	П.,	A	В				
		Преди 3 години	х	$\frac{\frac{\lambda}{3}}{3}$				
		Преди 2 години	x+1	$\frac{3}{3}+1$	L	Уравнение $x + 1 = 26^{2}$	etto e $\frac{x}{3} + 1$ $\Rightarrow x = 3 \Rightarrow 6$	
		Сега	x + 3			$\frac{x+1-2\zeta_{i}}{2}$	3 1 1) 72 - 3 70	
7	-1	Or $\frac{6n+1}{3n+2} = 2 - \frac{3}{3n+2} \implies 3n+2 = \pm 1; \pm 3 \implies n = -1.$						
8	3	$3 + (3^2 + 3^3 + 3^4) + (3^5 + 3^6 + 3^7) + \dots + (3^{2018} + 3^{2019} + 3^{2020}) =$						
		$= 3 + 3^2 \times (1 + 3 + 3^2) + \dots + 3^{2018} \times (1 + 3 + 3^2)$						
		$= 3 + 3 \times 13 + \dots + 3^{2018} \times 13$						
		Остатъкът при на $3 + 3^2 + 3^3 + \dots + 3^{2019} + 3^{2020}$						
		деление на 13 е 3.						
9	3	Нека броят на бутилките от 1 и от 3 литра са съответно x и y . Тогава					гно <i>х</i> и <i>у</i> . Тогава	
		бутилките от 5 литра са $10 - x - y$. От $1 \times x + 3 \times y + (10 - x - y) \times 5 = 26 \Rightarrow 2x + y = 12$. С помощта на $2x + y = 12$ попълваме таблица:						
		1 л	3 л	5	Л			
		6 бутилки	<mark>0</mark> бутилкі	4	бутил	тки		
		5	2	3				
		4	4	2				
		3	6	1				
		2	8	0				

		От таблицата се вижда, че търсеният брой е 3.
10	1994	$a^2 + 2a + 9b^2 + 30b + 2020 = (a+1)^2 + (3b+5)^2 + 1994 \ge$
		1994.
		Тогава най- малката стойност на израза е 1994.
11	3	$N\sqrt{2} - \sqrt{8} + M = 1 \Leftrightarrow (N-2)\sqrt{2} + M = 1$
		, , ,
		Ако $N \neq 2 \Rightarrow (N-2)\sqrt{2} + M$ е ирационално число. Тогава $N=2$.
		Вече не е трудно да получим, че M=1. Тогава M+N=3.
12	2	Нека цената на една ябълка е х, тогава цената на една круша е
		9x - 13.
		От второто условие получаваме, че цената на една круша е $\frac{6+x}{15}$.
		Достигаме до уравнението $\frac{6+x}{15} = 9x - 13 \Rightarrow x = 1,5.$
		Тогава $y=0,5$.
		Tогава $x + y = 2$.
13	25	Нека <i>ABCD</i> е трапеца, О е пресечна точка на диагоналите му,
		AB > CD.
		От равенството на лицата на триъгълниците ADO и BCO. Следва, че
		възможните лица на четирите триъгълника са 4, 4, 6, 9; 4, 6, 6, 9; 4, 6,
		9,9.
		От $S_{ABO} > S_{DCO}$ и $\frac{AO}{OC} = \frac{S_{AOD}}{S_{COD}}$ и $\frac{AO}{OC} = \frac{S_{AOB}}{S_{COB}}$
		Следва, че лицата на триъгълниците са 4, 6, 6 и 9.
		Тогава лицето на трапеца е $6 + 6 + 9 + 4 = 25$.
1.4		
14	2	$ x^3 + x = 0 \Rightarrow$
		$x^3 + x = 0$, ако $x \ge 0$. Корен е числото 0.
		$x^3 - x = 0$, ако $x < 0$. Корен е числото -1 .
15		Подреждаме по степените на <i>x</i> :
		$(y-z)x^2 - (z^2 - y^2)x + yz(z-y) = (z-y)(x^2 - (z+y)x + yz)$ = $(z-y)(x-z)(x-y)$.

16	16	Търсим естествено число, по-голямо от 11, което дели и 187 – 11 и 219 – 1. Това е числото 16.
17	8	Задачата се свежда до подреждането на двойките X и Y, съставени съответно от A и B, C и D. X и Y можем да подредим по 2 начина, а всяко едно от X и Y можем да подредим също по 2 начина. Общо 2.2.2=8 начина.
18	2	$a = \sqrt{2} - 1 \Rightarrow \frac{1}{a} = \sqrt{2} + 1, -a = 1 - \sqrt{2} \Rightarrow \frac{1}{a} + (-a) = 2.$
19	90	Известно е, че сборът от ъглите на всеки четириъгълник е 360 градуса. Нека ъглите са x, y, z и $t \Rightarrow 3x = y + z + t \Rightarrow x + y + z + t = 4x \Rightarrow 360^{\circ} = 4x \Rightarrow x = 90^{\circ}$. по същия начин получаваме, че $y = z = 90^{\circ}$. За t получаваме $y = 2 = 90^{\circ}$.
20	30	Тъждеството $x^2 + 5x + 6 = A$. $(x - 2)^2 + B$. $(x - 2) + C$ е изпълнено и за $x = 3$. Тогава $3^2 + 5 \times 3 + 6 = A \times (3 - 2)^2 + B \times (3 - 2) + C \Rightarrow A + B + C = 30.$