a) Zeige, dass für jedes $\xi > -1$ das Anfangswertproblem

$$x' = \frac{1}{x+t} - 1 \quad , \quad x(1) = \xi \tag{1}$$

eine eindeutige maximale Lösung $\lambda_{\xi}:I_{\xi}\to\mathbb{R}$ besitzt.

- b) Bestimme für $\xi > -1$ die maximale Lösung λ_{ξ} von (??). Gib auch deren Definitionsbereich (mit Begründung) explizit an. Hinweis: Die Substitution y(t) := x(t) + t kann hier helfen.
- c) Zeige, dass $\lambda_0: I_0 \to \mathbb{R}$ eine asymptotisch stabile Lösung von $x' = \frac{1}{x+t} 1$ ist.

Zu a):

Definiere $V:=\{(t,x)\in\mathbb{R}^2\mid x+t>0\}$. Es handelt sich hierbei gerade um den Bereich, der oberhalb der Gerade x(t)=-t im t-x-Diagramm ist. Insbesondere ist V ein Gebiet. Die Funktion $f: V \to \mathbb{R}$ ist damit nicht nur wohldefiniert, sondern auch stetig differenzierbar und damit lokal Lipschitz-stetig in der zweiten Variablen. Nach dem globalen Existenz- und Eindeutigkeitssatz gibt es also für jedes $(1,\xi)\in V$ eine eindeutige maximale Lösung $\lambda_\xi:I_\xi\to\mathbb{R}$ auf einem offenen Intervall I_ξ mit $1\in I_\xi$. Die Bedingung $(1,\xi)\in V$ ist dabei äquivalent zur Bedingung $1+\xi>0\Leftrightarrow \xi>-1$. Also gibt es für jedes $\xi>-1$ eine solche eindeutige maximale Lösung.

Zu b):

Wir folgen dem Hinweis und definieren y(t) := x(t) + t. Dann ist:

$$y'(t) = x'(t) + 1 = \frac{1}{x(t) + t} = \frac{1}{y(t)}, \quad y(1) = x(1) + 1 = \xi + 1 > 0$$

Da wir vermuten, dass dieses Anfangswertproblem für y(t) durch den Ansatz $\mu: [1,\infty[\to \mathbb{R}]] \longrightarrow \sqrt{2(t-1)+(\xi+1)^2}$ gelöst wird, stellen wir die Behauptung auf, dass $\lambda:]a,\infty[\to \mathbb{R}] \longrightarrow \sqrt{2(t-1)+(\xi+1)^2}-t$ mit noch zu bestimmendem $a\in\mathbb{R}$ die maximale Lösung zu $(\ref{eq:total_state})$ ist. Die Funktion λ ist genau dann wohldefiniert, wenn

$$2(t-1) + (\xi+1)^2 \ge 0 \quad \Leftrightarrow \quad t \ge -\frac{(\xi+1)^2}{2} + 1.$$

Wir setzen also $a:=-\frac{(\xi+1)^2}{2}+1$. Wegen $\xi+1>0$ ist a<1 und damit der Anfangszeitpunkt 1 im offenen Intervall $]a,\infty[$ enthalten. Auf diesem Intervall ist

 λ dann auch stetig differenzierbar mit:

$$\lambda'(t) = \frac{2}{2\sqrt{2(t-1) + (\xi+1)^2}} - 1 = \frac{1}{\lambda(t) + t} - 1.$$

Wegen $\lambda(1) = \xi + 1 - 1 = \xi$ ist λ also Lösung von (??). Es bleibt noch nachzuweisen, dass λ auch die maximale Lösung ist. Wir stellen hierzu fest, dass die obere Intervallgrenze ∞ ist und für die untere Intervallgrenze a gilt:

$$\lim_{t \to a} (t, \lambda(t)) = \left(a, \sqrt{2(a-1) + (\xi+1)^2} - a \right) = (a, -a) \in \partial V,$$

wobei $\partial V = \{(t, x) \in \mathbb{R} \mid x + t = 0\} = \{(t, -t) \mid t \in \mathbb{R}\}$ verwendet wurde. Da V der maximal mögliche zusammenhängende Definitionsbereich von f mit $(1, \xi) \in V$ ist, handelt es sich bei λ also um die gesuchte maximale Lösung und bei $]a, \infty[$ um das Intervall I_{ξ} .

Zu c):

(Wir können das δ aus der Definition beliebig wählen.)

Für $\xi > -1$ mit $|\xi - 0| < 1$ sei λ_{ξ} die maximale Lösung, die auch schon in Teil a) berechnet wurde. Dann gilt für alle t > 2 (wie in a) bemerkt, ist t damit in jedem Fall in den Intervallen I_0, I_{ξ} enthalten):

$$|\lambda_{\xi}(t) - \lambda_{0}(t)| = \left| \sqrt{2(t-1) + (\xi+1)^{2}} - t - \left(\sqrt{2(t-1) + (0+1)^{2}} - t \right) \right|$$

$$= \left| \sqrt{2(t-1) + (\xi+1)^{2}} - \sqrt{2(t-1) + (0+1)^{2}} \right|$$

$$= \left| \int_{1}^{(\xi+1)^{2}} \left(\frac{\partial}{\partial \eta} \sqrt{2(t-1) + \eta} \right) d\eta \right|$$

$$= \left| \int_{1}^{((\xi+1)^{2})} \frac{1}{2\sqrt{2(t-1) + \eta}} d\eta \right| \le \left| \int_{1}^{(\xi+1)^{2}} \frac{1}{2\sqrt{2(t-1)}} d\eta \right|$$

$$= \frac{1}{2\sqrt{2(t-1)}} \underbrace{\left| (\xi+1)^{2} - 1 \right|}_{t \to \infty} 0.$$

Also ist die Lösung λ_0 attraktiv und weil wir hier eine skalare Differentialgleichung betrachten, für die der globale Existenz- und Eindeutigkeitssatz anwendbar ist, auch stabil.