CNN 기초 분류기 구조 구현하기

이 프로젝트는 LeNet-5, AlexNet, GoogLeNet을 직접 구현하는 프로젝트입니다.

구현해보는 것의 목적은 초심자 입장에서 클래식한 CNN 구조들 더 잘 이해하기 위해서 입니다.

- 1. 데이터 셋은 LeNet-5는 MNIST, AlexNet과 GoogLeNet은 Kaggle의 Dogs vs. Cats을 사용하겠습니다.
- 2. 성능 평가 방법은 정확도를 사용하겠습니다.
- 3. 러닝 모델은 LeNet-5, AlexNet, GoogLeNet을 사용하겠습니다.
- 4. 러닝 알고리즘은 Adam을 쓰도록 하겠습니다.

기본 설정

```
import numpy as np
import os
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
import scipy.misc
import tensorflow as tf
import matplotlib.image as mpimg
from sklearn.model_selection import train_test_split

def reset_graph(seed=42):
    tf.reset_default_graph()
    tf.set_random_seed(seed)
    np.random.seed(seed)

matplotlib.rc('font', family='NanumBarunGothic')
plt.rcParams['axes.unicode_minus'] = False
```

1. LeNet-5

LeNet-5은 MNIST 숫자 이미지 데이터를 이용하겠습니다. LeNet-5 구조는 가장 널리 알려진 CNN 구조로서 손글씨 숫자 인식에 널리 사용되었습니다.

LeNet-5의 기본 구조 확인하기

층	종류	특성 맵	크기	커널 크기	스트라이드	활성화 함수
출력	완전 연결	-	10	-	-	RBF
F6	완전 연결	-	84	-	-	tanh
C5	합성곱	120	1× 1	5×5	1	tanh
S4	평균 풀링	16	5×5	2×2	2	tanh
C3	합성곱	16	10×10	5×5	1	tanh
S2	평균 풀링	6	14×14	2×2	2	tanh
C1	합성곱	6	28×28	5×5	1	tanh
입력	입력	1	32×32	-	-	-

- MNIST 이미지는 28×28 픽셀이지만 제로 패딩되어 32×32 가 되고 네트워크에 주입되기 전에 정규화됩니다. 네트워크의 나머지 부분은 패딩을 사용하지 않습니다.
- 평균 풀링층의 각 뉴런은 입력의 평균을 계산한 다음, 그 값에 학습되는 계숫값을 곱하고 학습되는 값인 편향을 더합니다. 그리고 활성화 함수를 적용합니다.
- C3에 있는 대부분의 뉴런은 S2의 3개 또는 4개 맵에 있는 뉴런에만 연결됩니다(이 부분은 나중에 더 정확하게 구현하겠습니다).

MNIST 데이터를 불러와 보겠습니다.

```
reset_graph()
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)

x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10])

x_image = tf.reshape(x, [-1, 28, 28, 1])
```

LeNet-5 구조 만들기

가중치를 표준편차 0.1을 갖는 난수로 초기화하는 함수와 바이어스를 0.1로 초기화하는 함수를 정의합니다.

```
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)
```

stride는 1로 하고 패딩은 0으로 하는 합성곱층을 만드는 함수와 2×2 평균 풀링 레이어를 위한 함수를 정의합니다.

```
def conv2d(x, W, padding="VALID"):
    return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding=padding)

def avg_pool_2x2(x):
    return tf.nn.avg_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding="VALID")
```

첫 번째 합성곱층을 만들기 위해 가중치와 바이어스 텐서를 만들고, 활성화함수는 tanh 함수를 사용합니다. 그리고 합성곱층 뒤에 평균 풀링층을 추가합니다.

```
W_conv1 = weight_variable([5,5,1,6])
## 수용장 너비, 수용장 높이, 컬러, 특성 맵 개수
b_conv1 = bias_variable([6])
h_conv1 = tf.nn.tanh(conv2d(x_image, W_conv1,padding="SAME") + b_conv1)
h_pool1 = avg_pool_2x2(h_conv1)
```

두 번째 합성곱층을 만들기 위해 가중치와 바이어스 텐서를 만들고, 활성화함수는 tanh 함수를 사용합니다. 그리고 합성곱층 뒤에 평균 풀링층을 추가합니다.

```
W_conv2 = weight_variable([5,5,6,16]) ## 수용장 너비, 수용장 높이, 컬러, 특성 맵 개수 b_conv2 = bias_variable([16])
h_conv2 = tf.nn.tanh(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = avg_pool_2x2(h_conv2)
```

세 번째 합성곱층을 만들기 위해 가중치와 바이어스 텐서를 만듭니다.

```
W_conv3 = weight_variable([5,5,16,120]) ## 수용장 너비, 수용장 높이, 컬러, 특성 맵 개수 b_conv3 = bias_variable([120])
h_conv3 = tf.nn.tanh(conv2d(h_pool2, W_conv3) + b_conv3)
h_conv3.get_shape()

## 결과
TensorShape([Dimension(None), Dimension(1), Dimension(1), Dimension(120)])
```

RBF 층에 연결하기 위해 완전연결 층을 추가합니다. 이전 합성곱층의 결과를 1차원 텐서로 변환하여 tanh 활성화함수에 전달합니다.

```
W_fc1 = weight_variable([1 * 1 * 120, 84]) ## 84는 뉴런 개수
b_fc1 = bias_variable([84])
h_conv3_flat = tf.reshape(h_conv3, [-1, 1 * 1 * 120])
h_fc1 = tf.nn.tanh(tf.matmul(h_conv3_flat, W_fc1) + b_fc1)
```

마지막으로 RBF 층 레이어를 추가해야 하지만, 정확한 RBF 함수의 하이퍼파라미터를 구체적으로 설정하기 어려워 Linear 활성화 함수를 사용하겠습니다.

```
W_fc2 = weight_variable([84, 10])
b_fc2 = bias_variable([10])
logits = tf.matmul(h_fc1, W_fc2) + b_fc2
```

이제 비용함수를 정의하고 최적화알고리즘, 평가를 위한 연산을 정의하겠습니다.

```
cross_entropy = tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_, logits=logits)
loss_operation = tf.reduce_mean(cross_entropy)

optimizer = tf.train.AdamOptimizer(learning_rate=0.001)
train_step = optimizer.minimize(loss_operation)

correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
```

이제 훈련시켜보겠습니다.

```
init = tf.global_variables_initializer()
saver = tf.train.Saver()
with tf.Session() as sess:
     init.run()
     for i in range(20000):
         batch = mnist.train.next_batch(50)
        if i % 1000 == 0:
             train_accuracy = sess.run(accuracy, feed_dict={
                 x:batch[0], y_: batch[1]
             })
             print("step %d, training accuracy %g" %(i, train_accuracy))
         sess.run(train_step, feed_dict={x: batch[0], y_: batch[1]})
     ## 최종결과
     print("test accuracy %g" % sess.run(
             accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
     save_path = saver.save(sess, "./cnn_lenet.ckpt")
step 0, training accuracy 0.16
step 1000, training accuracy 1
step 2000, training accuracy 0.98
step 3000, training accuracy 0.98
step 4000, training accuracy 1
step 5000, training accuracy 0.98
step 6000, training accuracy 0.98
step 7000, training accuracy 1
step 8000, training accuracy 0.96
step 9000, training accuracy 0.98
step 10000, training accuracy 1
step 11000, training accuracy 1
step 12000, training accuracy 1
step 13000, training accuracy 0.98
step 14000, training accuracy 1
step 15000, training accuracy 1
step 16000, training accuracy 1
step 17000, training accuracy 1
step 18000, training accuracy 1
step 19000, training accuracy 1
test accuracy 0,9857
```

매우 정확하게 맞추는 모습을 볼수 있습니다.

2. AlexNet

AlexNet은 개와 고양이 이미지 데이터를 이용하겠습니다. AlexNet 구조는 2012년 이미지넷 대회에서 큰 차이로 우승했습니다. 이 구조는 더 크고 깊을 뿐 LeNet-5와 매우 비슷하며, 처 음으로 합성곱층 위에 풀링층을 쌓지 않고 바로 합성곱층끼리 쌓았습니다. 원래는 주어진 이미지를 랜덤하게 여러 간격으로 이동하거나 수평으로 뒤집고 조명을 바꾸는 식으로 데이터 증식을 수행했습니다. 하지만 이 프로젝트에서는 구현하지 않았습니다.

AlexNet의 기본 구조 확인하기

층	종류	특성 맵	크기	커널 크기	스트라이드	패딩	활성화 함수
출력	완전 연결	-	1000	-	-	-	Softmax
F9	완전 연결	-	4096	-	-	-	ReLu
F8	완전 연결	-	4096	-	-	-	ReLu
C7	합성곱	256	13× 13	3×3	1	SAME	ReLU
C6	합성곱	384	13× 13	3×3	1	SAME	ReLU
C5	합성곱	384	13× 13	3×3	1	SAME	ReLU
S4	최대 풀링	256	13× 13	3×3	2	VALID	-
C3	합성곱	256	27×27	5×5	1	SAME	ReLU
S2	최대 풀링	96	27×27	3×3	2	VALID	-
C1	합성곱	96	55×55	11×11	4	SAME	ReLU
입력	입력	3(RGB)	224× 224	-	-	-	-

과대적합을 줄이기 위해 드롭아웃 규제 기법을 사용했습니다.

• 훈련하는 동안 F8과 F9의 출력에 드롭아웃(50% 드랍아웃 비율)을 적용했습니다.

AlexNet은 C1과 C3 층의 ReLU 단계 후에 바로 LRN(local response normalization)이라 부르는 정규화 단계를 사용했습니다. 이 정규화는 가장 강하게 활성화된 뉴런이 다른 특성 맵에 있는 같은 위치의 뉴런을 억제하는 형태입니다(생물학적 뉴런에서 관측된 모습입니다).

AlexNet에서 LRN 하이퍼파라미터는 r=2, $\alpha=0.00002$, $\beta=0.75$, k=1로 설정되었습니다. 이 단계는 텐서플로의 tf.nn.local_response_normalization() 연산을 사용하여 구현할 수 있습니다.

Kaggle Dogs vs. Cats 데이터 전처리

Dogs vs. Cats 데이터의 경우, 주어진 데이터가 이미지 데이터이기 때문에 전처리가 조금 필요합니다.

```
TRAIN_DIR = 'datasets/cat_dog/train'
train_image_file_names = [TRAIN_DIR + '/' + i for i in os.listdir(TRAIN_DIR)][12000:13000]
```

제 컴퓨터의 경우 많은 이미지를 처리하기엔 사양이 부족하므로, train 데이터에서는 2000개의 데이터만 가져오겠습니다.

주어진 데이터를 확인해보겠습니다.

```
import matplotlib.image as mpimg

data = [mpimg.imread(i) for i in train_image_file_names]

width = []
height = []
for image in data:
    h, w, d = np.shape(image)
    width.append(w)
    height.append(h)

plt.plot(width, height, '.r')
plt.show()
```



```
print("number of images which have width over 500:", np.sum(np.array(width) > 500))
print("number of images which have width over 500:", np.sum(np.array(height) > 500))
```

```
## 결과
number of images which have width over 500: 0
number of images which have width over 500: 0
```

전체 데이터 기준으로, 높이와 너비가 500을 넘는 객체는 2개가 있습니다. 2 객체를 지우고, 나머지 이미지의 사이즈를 (500,500)으로 만들겠습니다.

```
for i in range(2):
    tmp = np.argmax(np.array(width))
    if width[tmp] > 500:
        data.pop(tmp)
        width.pop(tmp)
        height.pop(tmp)
        train_image_file_names.pop(tmp)
```

이제 데이터 전처리가 거의 끝났습니다. 이제 이 데이터들을 numpy 배열로 만들고, 사이즈를 줄이겠습니다.

```
def create_data(image_file_names, width=500,
              height=500, final_width=214, final_height=214):
    def resize_width_height(image, width=width,
               height=width, final_width=final_width, final_height=final_height):
        tmp = np.zeros((width,height,3))
        tmp[:image.shape[0], :image.shape[1], :] = image
        tmp = scipy.misc.imresize(tmp, (final_width,final_height))
       tmp = tmp/255
        return tmp.reshape(-1, final_width, final_height, 3)
        ## batch, width, height, channel
    data = np.zeros((1, final_width, final_height, 3))
    for i in image_file_names:
       tmp = mpimg.imread(i)
       data = np.r_[data, resize_width_height(tmp)]
    return data[1:,:,:,:]
train_data0 = create_data(train_image_file_names[:500])
  ## train image file은 이미지 주소가 있는 str입니다.
train_data1 = create_data(train_image_file_names[500:])
  ## train image file은 이미지 주소가 있는 str입니다.
train_data = np.r_[train_data0, train_data1]
labels = np.array([[1., 0.] if 'dog' in name[23:]
       else [0., 1.] for name in train_image_file_names])
train, test, train_labels, test_labels = train_test_split(train_data, lables,
     0.2, random state=42)
```

완료되었습니다. 이제 이 데이터를 가지고 AlexNet을 훈련시켜보겠습니다.

AlexNet 구조 구성하기

```
reset_graph()

X_image = tf.placeholder("float", shape=[None, 214, 214, 3])
y = tf.placeholder("float", shape=[None, 2])
```

가중치를 표준편차 0.1을 갖는 난수로 초기화하는 함수와 바이어스를 0.1로 초기화하는 함수를 정의합니다.

```
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)
```

stride는 1로 하고 패딩은 0으로 하는 합성곱층을 만드는 함수와 2×2 최대 풀링 레이어를 위한 함수를 정의합니다.

```
def conv2d(x, W, strides=[1,1,1,1], padding="SAME"):
    return tf.nn.conv2d(x, W, strides=strides, padding=padding)

def max_pool_3x3(x):
    return tf.nn.max_pool(x, ksize=[1,3,3,1], strides=[1,2,2,1], padding="VALID")
```

첫 번째 합성곱층을 만들기 위해 가중치와 바이어스 텐서를 만들고, 활성화함수는 ReLU 함수를 사용합니다. 그리고 합성곱층 뒤에 최대 풀링층을 추가합니다.

두 번째 합성곱층을 만들기 위해 가중치와 바이어스 텐서를 만들고, 활성화함수는 ReLU 함수를 사용합니다. 그리고 합성곱층 뒤에 최대 풀링층을 추가합니다.

세 번째 합성곱층부터 다섯 번째 합성곱층을 쌓아보겠습니다. 활성화함수는 ReLU 함수를 사용합니다.

```
## 세 번째
 W_conv3 = weight_variable([3,3,256,384]) ## 수용장 너비, 수용장 높이, 컬러, 특성 맵 개수
 b_conv3 = bias_variable([384])
 h_conv3 = tf.nn.relu(conv2d(h_pool2, W_conv3) + b_conv3)
   ## 네 번째
 W_conv4 = weight_variable([3,3,384,384]) ## 수용장 너비, 수용장 높이, 컬러, 특성 맵 개수
 b_conv4 = bias_variable([384])
 h conv4 = tf.nn.relu(conv2d(h conv3, W conv4) + b conv4)
   ## 다섯 번째
 W_conv5 = weight_variable([3,3,384,256]) ## 수용장 너비, 수용장 높이, 컬러, 특성 맵 개수
 b_conv5 = bias_variable([256])
 h_conv5 = tf.nn.relu(conv2d(h_conv4, W_conv5) + b_conv5)
 h_conv5.get_shape()
   ## 결과
 TensorShape([Dimension(None), Dimension(12), Dimension(12), Dimension(256)])
ReLU 완전 연결 층을 두 번 추가합니다.
 W_fc1 = weight_variable([12 * 12 * 256, 4096]) ## 4096는 뉴런 개수
 b fc1 = bias variable([4096])
 h_conv5_flat = tf.reshape(h_conv5, [-1, 12 * 12 * 256])
 h_fc1 = tf.nn.relu(tf.matmul(h_conv5_flat, W_fc1) + b_fc1)
 keep_prob = tf.placeholder("float")
 h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
 h_fc1_drop.get_shape()
   ## 결과
 TensorShape([Dimension(None), Dimension(4096)])
```

```
W_fc2 = weight_variable([4096, 4096]) ## 4096는 뉴런 개수
b_fc2 = bias_variable([4096])
h_fc2 = tf.nn.relu(tf.matmul(h_fc1, W_fc2) + b_fc2)
h_fc2_drop = tf.nn.dropout(h_fc2, keep_prob)
h_fc2_drop.get_shape()
## 결과
TensorShape([Dimension(None), Dimension(4096)])
```

Softmax 활성화 함수를 가지고 있는 출력층을 만들겠습니다.

```
W_fc3 = weight_variable([4096, 2])
b_fc3 = bias_variable([2])
k = tf.matmul(h_fc2_drop, W_fc3) + b_fc3
y_conv = tf.nn.softmax(k)
```

제가 쓰는 GPU에서는 OOM 에러가 문제가 되어, 뉴런 개수를 줄여야 했습니다.

```
w_fc1 = weight_variable([12 * 12 * 256, 300]) ## 300은 뉴런 개수
b_fc1 = bias_variable([300])

h_conv5_flat = tf.reshape(h_conv5, [-1, 12 * 12 * 256])
h_fc1 = tf.nn.relu(tf.matmul(h_conv5_flat, W_fc1) + b_fc1)

keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

W_fc2 = weight_variable([200, 200]) ## 200은 뉴런 개수
b_fc2 = bias_variable([200])

h_fc2 = tf.nn.relu(tf.matmul(h_fc1, W_fc2) + b_fc2)

h_fc2_drop = tf.nn.dropout(h_fc2, keep_prob)

W_fc3 = weight_variable([200, 2])
b_fc3 = bias_variable([2])

k = tf.matmul(h_fc2_drop, W_fc3) + b_fc3
y_conv = tf.nn.softmax(k)
```

다시 돌아와서...

손실함수는 cross entropy로 하겠습니다.

X_batch, y_batch = X[batch_idx], y[batch_idx]

yield X_batch, y_batch

```
## 결과
 epoch 0 인 데이터 정확도: 0.518797
 epoch 10 인 데이터 정확도: 0.5300752
 epoch 20 인 데이터 정확도: 0.49624062
 epoch 30 인 데이터 정확도: 0.5714286
 epoch 40 인 데이터 정확도: 0.56766915
 epoch 50 인 데이터 정확도: 0.5488722
 epoch 60 인 데이터 정확도: 0.50751877
 epoch 70 인 데이터 정확도: 0.5488722
 epoch 80 인 데이터 정확도: 0.5112782
 epoch 90 인 데이터 정확도: 0.5150376
 epoch 100 인 데이터 정확도: 0.5
 epoch 110 인 데이터 정확도: 0.5263158
 epoch 120 인 데이터 정확도: 0.5263158
 epoch 130 인 데이터 정확도: 0.5488722
 epoch 140 인 데이터 정확도: 0.575188
 epoch 150 인 데이터 정확도: 0.5488722
 epoch 160 인 데이터 정확도: 0.56390977
 epoch 170 인 데이터 정확도: 0.5601504
 epoch 180 인 데이터 정확도: 0.53759396
 epoch 190 인 데이터 정확도: 0.5263158
 epoch 200 인 데이터 정확도: 0.50751877
 epoch 210 인 데이터 정확도: 0.5601504
 epoch 220 인 데이터 정확도: 0.5150376
 epoch 230 인 데이터 정확도: 0.5150376
 epoch 240 인 데이터 정확도: 0.52255636
 epoch 250 인 데이터 정확도: 0.53759396
 epoch 260 인 데이터 정확도: 0.56766915
 epoch 270 인 데이터 정확도: 0.5112782
 epoch 280 인 데이터 정확도: 0.5451128
 epoch 290 인 데이터 정확도: 0.518797
with tf.Session() as sess:
   saver.restore(sess, './cnn_alexnet.ckpt')
   print('test accuracy %g' % sess.run(accuracy,feed dict={X image: test,
      y:test_labels, keep_prob: 1.}))
 ## 결과
test accuracy 0.51
```

결과가 좋게 나오지는 않습니다. 아마 드랍아웃 층이 2개 있기 때문에 각 가중치들이 적절하게 훈련되지 못한 것 같습니다. 혹은 데이터가 2000 * 0.8개 밖에 없어서 훈련이 잘되지 못했을 수도 있습니다.

3. GoogLeNet

GoogLeNet의 가장 큰 특징은 인셉션 모듈이라는 서브 네트워크를 가지고 있다는 것입니다. GoogLeNet은 이전 구조들보다 훨씬 효과적으로 파라미터를 사용합니다. 실제로 GoogLeNet은 AlexNet보다 10배나 적은 파라미터를 가집니다.

GoogLeNet의 기본 구조 확인하기

인셉션 모듈의 구조는 다음과 같습니다.

여기서 $3\times3+1(S)$ 는 3×3 커널, 스트라이드 1, SAME 패딩을 사용한다는 뜻입니다. 처음 신호가 복사되어 네 개의 다른 층에 주입됩니다. 모든 합성곱층은 ReLU 활성화 함수를 사용합니다. 두 번째 합성곱층은 각기 다른 커널 크기($1\times1,3\times3,5\times5$)를 사용하여 다른 크기의 패턴을 잡습니다. 모든 층은 스트라이드 1과 SAME 패딩을 사용하므로 출력의 높이와 너비가 모두 입력과 같습니다. 이 다음 출력을 깊이 연결 층(Depth Concat Layer)에서 특성 맵 쌓듯이 쌓을 수 있습니다. 이 연결 층은 텐서플로의 axis=3 매개변수로 tf.concat() 연산을 사용하여 구현할 수 있습니다.

인셉션 모듈에서 1×1 커널의 합성곱층은 두 개의 목적을 가지고 있습니다.

- 입력의 채널보다 더 적은 특성 맵을 출력합니다. 차원을 줄이는 효과를 볼 수 있습니다.
- 합성곱층의 쌍([1 \times 1, 3 \times 3]과 [1 \times 1, 5 \times 5])이 복잡한 패턴을 감지할 수 있는 한 개의 합성곱층처럼 작동합니다.

Note.

각 합석곱층의 합성곱 커널의 수는 하이퍼파라미터입니다. 인셉션 모듈을 추가하면 6개의

하이퍼파라미터를 조율해야 합니다.

이제 GoogLeNet CNN의 구조를 살펴보겠습니다.

- 합성곱층과 풀링층에서 출력되는 특성 맵의 수는 앞에 있는 숫자입니다.
- 인셉션 모듈에 있는 숫자는 합성곱층에서 출력하는 특성 맵의 수입니다.
- 합성곱층은 ReLU 활성화 함수를 사용합니다.

이제 이 네트워크를 살펴보겠습니다.

- 처음 두 층은 계산의 양을 줄이기 위해 만든 층입니다.
- LRN 층은 여기서도 쓰입니다(다양한 특성을 학습하도록 합니다).
- 이어지는 두 개의 합성곱층은 병목층처럼 작용합니다(차원을 줄인다는 이야기입니다).
- 다시 한번 LRN 층을 씁니다.
- 그다음 최대 풀링층이 이미지의 높이와 너비를 줄입니다.
- 9개의 인셉션 모듈이 이어지고, 차원 감소와 속 도 향상을 위해 최대 풀링층을 몇개 넣어 놓습니다.

- 그 다음에 평균 폴링층이 특성 맴 크기의 커널을 VALID 패딩으로 적용해 1 × 1 특성 맵을 출력합니다. 이런 전략을 전역 평균 폴링이라고 합니다. 이 층은 CNN 위에 여러 개의 완전 연결 층을 놓는 것을 불필요하게 만듦으로 네트워크의 파라미터 수를 많이 줄여주고 과대적합의 위험을 줄여줍니다.
- 규제를 위한 드롭아웃과 클래스 확률 추정 값을 출력하기 위한 소프트맥스 활성화 함수 를 적용한 완전 연결 층입니다.

GoogLeNet 구조 구성하기

```
reset_graph()

X_image = tf.placeholder("float", shape=[None, 214, 214, 3])
y = tf.placeholder("float", shape=[None, 2])
```

가중치를 표준편차 0.1을 갖는 난수로 초기화하는 함수와 바이어스를 0.1로 초기화하는 함수를 정의합니다.

```
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)
```

stride는 1로 하고 패딩은 0으로 하는 합성곱층을 만드는 함수와 2×2 최대 풀링 레이어와 평균 풀링 레이어를 위한 함수를 정의합니다.

```
def conv2d(x, W, strides=[1,1,1,1], padding="SAME"):
    return tf.nn.conv2d(x, W, strides=strides, padding=padding)

def max_pool_3x3(x, padding="SAME"):
    return tf.nn.max_pool(x, ksize=[1,3,3,1], strides=[1,2,2,1], padding=padding)

def avg_pool_7x7(x, padding="VALID"):
    return tf.nn.avg_pool(x, ksize=[1,7,7,1], strides=[1,1,1,1], padding=padding)
```

첫 번째 합성곱층을 만들기 위해 가중치와 바이어스 텐서를 만들고, 활성화함수는 ReLU 함수를 사용합니다. 그리고 합성곱층 뒤에 최대 풀링층을 추가합니다.

```
W_conv1 = weight_variable([7,7,3,64]) ## 수용장 너비, 수용장 높이, 컬러, 특성 맵 개수 b_conv1 = bias_variable([64])
h_conv1 = tf.nn.relu(conv2d(X_image, W_conv1, strides=[1,2,2,1]) + b_conv1)
h_pool1 = max_pool_3x3(h_conv1)
lrn_conv1 = tf.nn.lrn(h_pool1, depth_radius=2, bias=1, alpha=0.00002, beta=0.75)
```

두 번째 합성곱층과 세 번째 합성곱층을 만들기 위해 가중치와 바이어스 텐서를 만들고, 활성화함수는 ReLU 함수를 사용합니다. 그리고 합성곱층 뒤에 정규화 함수를 추가한 후 최대 풀링층을 추가합니다.

이제 인셉션 모듈을 만들어보겠습니다. 인셉션 모듈을 편하게 사용하기위해 함수로 만들겠습니다.

```
def inception(x, in_channels, filter_count):
     # 1x1 1
     W_incep1 = weight_variable([1,1,in_channels, filter_count[0]])
     b_incep1 = bias_variable([filter_count[0]])
     one_by_one1 = tf.nn.relu(conv2d(x, W_incep1, strides=[1,1,1,1]) + b_incep1)
     # 1x1 2, 3x3
     W_incep2 = weight_variable([1,1,in_channels, filter_count[1]])
     b_incep2 = bias_variable([filter_count[1]])
     one_by_one2 = tf.nn.relu(conv2d(x, W_incep2, strides=[1,1,1,1]) + b_incep2)
     W_incep3x3 = weight_variable([3,3,filter_count[1], filter_count[2]])
     b_incep3x3 = bias_variable([filter_count[2]])
     three_by_three = tf.nn.relu(conv2d(one_by_one2,
             W_incep3x3, strides=[1,1,1,1]) + b_incep3x3)
     # 1x1 3, 5x5
     W_incep3 = weight_variable([1,1,in_channels, filter_count[3]])
     b_incep3 = bias_variable([filter_count[3]])
     one by one3 = tf.nn.relu(conv2d(x, W incep3, strides=[1,1,1,1]) + b incep3)
     W_incep5x5 = weight_variable([5,5,filter_count[3], filter_count[4]])
     b incep5x5 = bias variable([filter count[4]])
     five_by_five = tf.nn.relu(conv2d(one_by_one3,
             W_incep5x5, strides=[1,1,1,1]) + b_incep5x5)
     # max pool, 1x1 4
     max_pool = tf.nn.max_pool(x, ksize=[1,3,3,1], strides=[1,1,1,1], padding='SAME')
     W_incep4 = weight_variable([1,1,in_channels, filter_count[5]])
     b_incep4 = bias_variable([filter_count[5]])
     one_by_one4 = tf.nn.relu(conv2d(max_pool, W_incep4, strides=[1,1,1,1]) + b_incep4)
     x = tf.concat([one_by_one1, three_by_three, five_by_five, one_by_one4], axis=3)
     return tf.nn.relu(x)
1.2 번째 인셉션 모듈을 만들겠습니다. 그리고 최대 풀링층을 추가합니다.
 h_incep1 = inception(h_pool2, in_channels=192, filter_count=[64,96,128,16,32,32])
 h_incep2 = inception(h_incep1, in_channels=64+128+32+32,
     filter_count=[128,128,192,32,96,64])
 h_pool3 = max_pool_3x3(h_incep2)
 h_pool3.get_shape()
```

```
TensorShape([Dimension(None), Dimension(14), Dimension(14), Dimension(480)])
```

3.4.5.6.7 번째 인셉션 모듈을 추가하겠습니다. 그리고 최대 풀링층을 추가합니다.

```
h_incep3 = inception(h_pool3, in_channels=480,
       filter_count=[192,96,208,16,48,64])
 h_incep4 = inception(h_incep3, in_channels=192+208+48+64,
     filter_count=[160,112,224,24,64,64])
 h_incep5 = inception(h_incep4, in_channels=160+224+64+64,
     filter count=[128,128,256,24,64,64])
 h_incep6 = inception(h_incep5, in_channels=128+256+64+64,
     filter_count=[112,144,288,32,64,64])
 h_incep7 = inception(h_incep6, in_channels=112+288+64+64,
     filter_count=[256,160,320,32,128,128])
 h_pool4 = max_pool_3x3(h_incep7)
 h_pool4.get_shape()
   ## 결과
 TensorShape([Dimension(None), Dimension(7), Dimension(7), Dimension(832)])
8, 9 번째 인셉션 모듈을 추가하겠습니다. 그리고 평균 풀링층을 추가합니다.
 h incep8 = inception(h pool4, in channels=832, filter count=[256,160,320,32,128,128])
 h incep9 = inception(h incep8, in channels=256+320+128+128,
     filter_count=[384,192,384,48,128,128])
 h_pool5 = avg_pool_7x7(h_incep9)
 h_pool5.get_shape()
   ## 결과
 TensorShape([Dimension(None), Dimension(1), Dimension(1), Dimension(1024)])
드랍아웃 층을 추가하겠습니다.
 keep_prob = tf.placeholder("float")
 h_fc1_drop = tf.nn.dropout(h_pool5, keep_prob)
```

완전 연결층을 추가합니다.

```
W_fc1 = weight_variable([1 * 1 * 1024, 1000])
 b_fc1 = bias_variable([1000])
 h_fc1_drop_flat = tf.reshape(h_fc1_drop, [-1, 1 * 1 * 1024])
 h_fc1 = tf.nn.relu(tf.matmul(h_fc1_drop_flat, W_fc1) + b_fc1)
softmax층과 연결합니다.
 W_fc2 = weight_variable([1000, 2])
 b_fc2 = bias_variable([2])
 k = tf.matmul(h_fc1, W_fc2) + b_fc2
 y_conv = tf.nn.softmax(k)
손실함수는 cross entropy로 하겠습니다.
 xentropy = tf.nn.softmax_cross_entropy_with_logits(
        labels=y, logits=k)
 loss = tf.reduce_mean(xentropy, name="loss")
러닝 알고리즘을 정의하겠습니다.
 optimizer = tf.train.AdamOptimizer(learning_rate=0.001)
 train_step = optimizer.minimize(loss)
이제 정확도 함수를 정의하겠습니다.
 correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y, 1))
 accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
이제 신경망을 훈련시켜보겠습니다.
 def shuffle_batch(X, y, batch_size):
     rnd_idx = np.random.permutation(len(X))
     n_batches = len(X) // batch_size
     for batch_idx in np.array_split(rnd_idx, n_batches):
        X_batch, y_batch = X[batch_idx], y[batch_idx]
        yield X_batch, y_batch
```

```
init = tf.global_variables_initializer()

saver = tf.train.Saver()

n_epochs = 300

batch_size = 256

with tf.Session() as sess:
    init.run()

for epoch in range(n_epochs):
    for X_batch, y_batch in shuffle_batch(train_data, labels, batch_size):
        sess.run(train_step, feed_dict={X_image: X_batch, y: y_batch, keep_prob: 0.4})

if epoch % 10 == 0:
    acc_batch = accuracy.eval(feed_dict={X_image: train,
        y: train_labels, keep_prob: 0.4})
    print(num, "인 데이터 정확도:", acc_batch)

save_path = saver.save(sess, "./cnn_googlenet.ckpt")
```

```
## 결과
 epoch 0 인 데이터 정확도: 0.518797
 epoch 10 인 데이터 정확도: 0.5150376
 epoch 20 인 데이터 정확도: 0.52255636
 epoch 30 인 데이터 정확도: 0.52255636
 epoch 40 인 데이터 정확도: 0.575188
 epoch 50 인 데이터 정확도: 0.575188
 epoch 60 인 데이터 정확도: 0.8120301
 epoch 70 인 데이터 정확도: 0.83082706
 epoch 80 인 데이터 정확도: 0.90225565
 epoch 90 인 데이터 정확도: 0.9398496
 epoch 100 인 데이터 정확도: 0.65037596
 epoch 110 인 데이터 정확도: 0.7443609
 epoch 120 인 데이터 정확도: 0.9511278
 epoch 130 인 데이터 정확도: 0.55263156
 epoch 140 인 데이터 정확도: 0.9736842
 epoch 150 인 데이터 정확도: 1.0
 epoch 160 인 데이터 정확도: 1.0
 epoch 170 인 데이터 정확도: 0.5338346
 epoch 180 인 데이터 정확도: 0.5864662
 epoch 190 인 데이터 정확도: 0.56766915
 epoch 200 인 데이터 정확도: 0.7105263
 epoch 210 인 데이터 정확도: 0.5451128
 epoch 220 인 데이터 정확도: 0.64285713
 epoch 230 인 데이터 정확도: 0.63909775
 epoch 240 인 데이터 정확도: 0.7443609
 epoch 250 인 데이터 정확도: 0.6052632
 epoch 260 인 데이터 정확도: 0.7180451
 epoch 270 인 데이터 정확도: 0.58270675
 epoch 280 인 데이터 정확도: 0.7368421
 epoch 290 인 데이터 정확도: 0.6766917
with tf.Session() as sess:
   saver.restore(sess, './cnn_googlenet.ckpt')
   print('test accuracy %g' % sess.run(accuracy,feed dict={X image: test,
      y:test_labels, keep_prob: 1.}))
 ## 결과
test accuracy 0.65
```

중간에 colab의 런타임이 끊겼었습니다. 그래도 160 에포크 정도에서는 정확도가 1까지 올라갔었습니다.

개선 방향

- 1. AlexNet과 GoogLeNet을 실행할 때 하드웨어의 한계가 많이 있었습니다. 이미지 데이터를 2000개와 배치 사이즈가 25를 넘기엔 수용하기에 RAM이 많이 힘들어했습니다.
- 다행히도 Colaboratory를 사용해서 딥러닝을 돌릴 수는 있었지만, 큰 데이터를 돌리기에 는 구글에서 제공하는 램의 크기가 충분하지 않았습니다.
- 2. 이미지 사이즈를 조절하는 과정을 세세하게 하지 못했습니다. 이미지의 크기를 500으로 맞추고 214로 줄이는 과정에서 214보다 작은 이미지들은 커졌다 작아져서 이미지 손실이 있었습니다.
- 이미지 전처리를 처음 시도봤습니다. 그래서 이런 일이 일어날 것이라고 예상하지 못하고 전처리를 하였습니다. 다음에는 최종 픽셀을 기준으로 데이터셋을 분리한 후 처리해야겠습니다.
- 3. 텐서보드를 활용하지 못했습니다. 변수들을 캡슐화하지 못해서 텐서보드가 직관적이지 못했습니다.
- tf.variable_scope를 사용해서 변수들을 캡슐화해야겠습니다.
- 4. 특성맵을 전부 다 연결하는 것이 아니라 3개 또는 4개 맵만 연결하는 것을 구현하지 못했습니다.
- 인터넷을 더 찾아봐서 구현하는 방식을 익혀야합니다.