

AD-A269 694

2

WL-TR-93-4076

THE MECHANICAL PROPERTY DATA BASE FROM AN
AIR FORCE/INDUSTRY COOPERATIVE TEST PROGRAM ON ADVANCED
ALUMINUM ALLOYS (WELDALITEtm 049 RX815 PLATE (2095-T8))

MARY ANN PHILLIPS and STEVEN R. THOMPSON
Materials Engineering Branch
Systems Support Division

May 1993

Interim Report for Period February 1991 - December 1992

Approved for public release; distribution is unlimited.

Materials Directorate
Wright Laboratory
Air Force Materiel Command
Wright-Patterson Air Force Base, Ohio 45433-7734

93-21216

93 9 13 012

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This Technical report has been reviewed and is approved for publication.

MARY ANN PHILLIPS, Project Engineer
Engineering and Design Data
Materials Engineering Branch

STEVEN R. THOMPSON, Project Engineer
Engineering and Design Data
Materials Engineering Branch

THEODORE J. REINHART, Chief
Materials Engineering Branch
Systems Support Division
Materials Directorate

THOMAS D. COOPER, Chief
Systems Support Division
Materials Directorate
Wright Laboratory

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization, please notify WL/MLSE, WPAFB, OH 45433-7734 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.			
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DATES COVERED	
May 1993	Interim 2/91 to 12/92		
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
The Mechanical Property Data Base from an Air Force/ Industry Cooperative Test Program on Advanced Aluminum Alloys (Weldalite TM 049 RX815 Plate (2095-T8))			62102F 2418 07 03
6. AUTHOR(S)			
Mary Ann Phillips and Steven R. Thompson (513) 255-5063			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER
Materials Directorate Wright Laboratory Air Force Materiel Command Wright-Patterson Air Force Base OH 45433-7734			WL-TR-93-4076
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSORING/MONITORING AGENCY REPORT NUMBER
Materials Directorate Wright Laboratory Air Force Materiel Command Wright-Patterson Air Force Base OH 45433-7734			WL-TR-93-4076
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION/AVAILABILITY STATEMENT		12b. DISTRIBUTION CODE	
Approved for Public Release; distribution unlimited			
13. ABSTRACT (Maximum 200 words)			
This report contains the development of mechanical property data base on aluminum-lithium alloy Weldalite TM 049 0.5-inch plate. Basic mechanical property data consist of tension, compression, bearing, shear, and fracture toughness properties. Fatigue data were developed for both smooth and notched specimens. Constant amplitude fatigue crack growth rate data and spectrum fatigue test data were generated. Other tests performed on the material were ballistic, hardness, and conductivity.			
14. SUBJECT TERMS			15. NUMBER OF PAGES
Weldalite TM 049 8090 Tensile Bearing Spectrum Aluminum-Lithium AL905XL Compression Fatigue Crack Growth 2095 2091 IN905XL Shear Fracture Toughness			55
16. PRICE CODE			
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
Unclassified	Unclassified	Unclassified	UL

TABLE OF CONTENTS

<u>SECTION</u>	<u>PAGE</u>
I INTRODUCTION	1
II MATERIALS AND TESTS	3
III PRESENTATION	4
IV RESULTS AND DISCUSSION	5
V CONCLUSIONS	55

Accession For	
NTIS	CRA&I
DTIC	TAB
Unannounced	
Justification _____	
By _____	
Distribution / _____	
Availability Codes	
Dist	Avail and/or Special
A-1	

LIST OF ILLUSTRATIONS

<u>FIGURE</u>		<u>PAGE</u>
I1	Hardness Profile through 2095-T8 Plate	23
I2	Ballistic Limit vs Armor Demand Data for 2095-T8 Plate	24
I3	Fatigue Results for 2095-T8 0.5 Inch Plate ($R = -1$, $K_t = 1.0$ and $K_t = 3.0$)	25
I4	Fatigue Results for 2095-T8 0.5 Inch Plate ($R = 0.1$ and $K_t = 1.0$)	28
I5	Fatigue Results for 2095-T8 0.5 Inch Plate ($R = 0.1$ and $K_t = 3$)	30
I6	Fatigue Crack Growth Data for 2095-T8 Plate (LT-LT Orientation, Specimen W45-1) Air Force	32
I7	Fatigue Crack Growth Data for 2095-T8 Plate (LT-LT Orientation, Specimen W45-2) Air Force	34
I8	Fatigue Crack Growth Data for 2095-T8 Plate (L-T and T-L Orientations), Northrop	36
I9	Fatigue Crack Growth Data for 2095-T8 Plate (L-T Orientation, KGRAD - 4.00 and 2.50), Northrop	37
I10	Fatigue Crack Growth Data for 2095-T8 Plate (L-T Orientation, KGRAD 2.50), Northrop	42
I11	Fatigue Crack Growth Data for 2095-T8 Plate (T-L Orientation, KGRAD - 4.00 and 2.50), Northrop	45
I12	Fatigue Crack Growth Data for 2095-T8 Plate (T-L Orientation, KGRAD 2.50), Northrop	49
I13	T-38 LIF Spectrum Fatigue Crack Growth Data for 2095-T8 Plate (Max Stress = 38 ksi, Flaw = 0.01 inch), Northrop	52
I14	T-38 LIF Spectrum Fatigue Crack Growth Data for 2095-T8 Plate (Max Stress = 38 ksi, Flaw = 0.05 inch), Northrop	53
I15	T-38 LIF Spectrum Fatigue Crack Growth da/dFH vs a Data for 2095-T8 Plate, Northrop	54

LIST OF TABLES

<u>TABLE</u>		<u>PAGE</u>
I1	Tensile Results for 2095-T8 Plate, Longitudinal Orientation	6
I2	Tensile Results for 2095-T8 Plate, Long Transverse Orientation	7
I3	Tensile Results for 2095-T8 Plate, 45 Degree Orientation	8
I4	Tensile Results for 2095-T8 Plate, Variable Temperatures	8
I5	Tensile Results for 2095-T8 Plate, 1000 HR Exposure at 350° F	9
I6	Compression Results for 2095-T8 Plate, Longitudinal Orientation	10
I7	Compression Results for 2095-T8 Plate, Long Transverse Orientation	11
I8	Compression Results for 2095-T8 Plate, 45 Degree Orientation	12
I9	Compression Ultimate Strength Results for 2095-T8 Plate	12
I10	Pin Shear Results for 2095-T8 Plate, Longitudinal Orientation	13
I11	Rivit Shear Results for 2095-T8 Plate, Long Transverse Orientation	13
I12	Torsional Shear Results for 2095-T8 Plate, Longitudinal and Long Transverse Orientation	14
I13	Amsler Double Shear Results for 2095-T8 Plate, L-S and T-S Orientation	15
I14	Bearing Results for 2095-T8 Plate, Longitudinal Orientation, e/D = 1.5	16
I15	Bearing Results for 2095-T8 Plate, 45 Degree Orientation, e/D = 1.5	16
I16	Bearing Results for 2095-T8 Plate, Long Transverse Orientation, e/D = 1.5	17
I17	Bearing Results for 2095-T8 Plate, Longitudinal Orientation, e/D = 2.0	18
I18	Bearing Results for 2095-T8 Plate, 45 Degree Orientation, e/D = 2.0	18

<u>TABLE</u>		<u>PAGE</u>
I19	Bearing Results for 2095-T8 Plate, Long Transverse Orientation, e/D = 2.0	19
I20	Fracture Toughness Results for 2095-T8 Plate, L-T Orientation	20
I21	Fracture Toughness Results for 2095-T8 Plate, T-L Orientation	21
I22	Fracture Toughness Results for 2095-T8 Plate, 45 Degree Orientation	22
I23	Hardness & Conductivity Results for 2095-T8 Plate	23
I24	Fatigue Results with R = -1.0 and Kt = 1.0 for 2095-T8 Plate, Longitudinal Orientation	26
I25	Fatigue Results with R = -1.0 and Kt = 3.0 for 2095-T8 Plate, Longitudinal Orientation	26
I26	Fatigue Results with R = -1.0 and Kt = 3.0 for 2095-T8 Plate, Long Transverse Orientation	27
I27	Fatigue Results with R = 0.1 and Kt = 1.0 for 2095-T8 Plate, Longitudinal Orientation	29
I28	Fatigue Results with R = 0.1 and Kt = 3.0 for 2095-T8 Plate, Longitudinal Orientation	31
I29	Fatigue Crack Growth Data Associated with Figure I6	33
I30	Fatigue Crack Growth Data Associated with Figure I7	35
I31	Fatigue Crack Growth Data Associated with Figure I9 (Specimen F2GL1A)	38
I32	Fatigue Crack Growth Data Associated with Figure I9 (Specimen F2GL1B)	39
I33	Fatigue Crack Growth Data Associated with Figure I10 (Specimen F2GL2)	43
I34	Fatigue Crack Growth Data Associated with Figure I11 (Specimen F2GT1A)	46
I35	Fatigue Crack Growth Data Associated with Figure I11 (Specimen F2GT1B)	47
I36	Fatigue Crack Growth Data Associated with Figure I12 (Specimen F2GT2)	50

PREFACE

This report was prepared by the Materials Engineering Branch (WL/MLSE), Systems Support Division, Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, Ohio, under Project 2418, "Metallic Structural Materials," Task 241807, "Systems Support," Work Unit 24180703, "Engineering and Design Data."

The authors would like to thank the participants U.S. Army Material Technology Laboratory MA, General Dynamics CA, McDonnell Douglas Missile Systems MD, NASA Langley Research Center VA, Northrop CA, Sundstrand IL, and the U.S. Air Force Materials Directorate for submitting their data.

SECTION I

INTRODUCTION

High performance aerospace systems are dependent on materials that are lighter, have improved mechanical properties, and/or offer a cost savings. Aluminum alloys that met these criteria were the newly developed aluminum-lithium alloys and the second generation powder metallurgy alloys.

In 1985, the Air Force along with the aerospace community found it important to investigate the potential of these promising aluminum alloys. A cooperative program was formed by the Wright Laboratory Materials Directorate, Systems Support Division, and a number of aerospace industries. The Air Force would obtain the test material from the producers, compile the test data, and submit reports to the participants. The participants agreed to support the program by performing mechanical property tests which includes tension, compression, bearing, shear, fracture toughness, and fatigue related properties (S/N, da/dn). The Air Force elected to perform spectrum fatigue crack growth testing on most alloys. A list of participants is shown in the following table.

This interim report contains the aluminum-lithium alloy WeldaliteTM 049 RX815 0.5-inch-thick plate produced by Reynolds Metals Company. The WeldaliteTM 049 RX815 alloy has been registered as 2095 with the Aluminum Association. Comparisons to other materials, and ranking of materials are generally avoided since each potential application may be based on different evaluation criteria.

TABLE
Participants and Advanced Aluminum Alloys
in the Cooperative Test Program

ALUMINUM LITHIUM ALLOYS							P/M ALUMINUM ALLOYS	
PARTICIPANTS	PECHINEY	ALCAN	INCOMAP	ALCOA	REYNOLDS	KAI SER	ALCOA	
Air Force WPAFB, OH		x	2081-T3 Sheet (0.063") 2081-T351 Plate (0.420") 2081-T6 Forging 8090-T651/T Extrusion				x	7064-T74511 Extrusion
Army, MA			x					
AVCO, TN			x					
Boeing, WA	x x x x	x	8090-T651 Plate (1.75T)					
Douglas Aircraft, CA			x			x		
General Dynamics, CA	x x		x			x		
General Dynamics, TX	x x x x		x			x		
Grumman Aerospace, NY	x x	x	x			x		
Jet Propulsion, CA			x			x		
Lockheed, CA	x	x	x			x		
Lockheed, GA		x	x			x		
LTV, TX	x	x	x			x		
Martin Marietta, LA	x x x x	x x	x			x	x x x x	
McDonnell Douglas Astro, CA			x			x		
McDonnell Douglas Helicopter, AR			x			x		
McDonnell Douglas Missile Sys, MO			x			x		
McDonnell Aircraft, MO	x		x	x	x	x	x x	
NASA, VA			x	x	x	x		
Naval Air Development Center	x	x	x	x	x	x		
Northrop, CA	x x x	x x	x	x	x x x x	x	x	
Sikorsky, CT			x	x	x	x	x	
Sundstrand, IL								
Wyman-Gordon			x	x	x	x		

SECTION II

MATERIALS AND TESTS

The Weldalite™ C10 RX815 (2095) 0.5-inch-thick plate was received the first quarter of 1991. The 2095 was received in the T8 condition. This alloy is considered to be a damage tolerant, medium strength aluminum-lithium alloy. A chemical analysis was performed on the 2095 and the alloy chemistry is shown below.

<u>Element</u>	<u>Weight %</u>	<u>Element</u>	<u>Weight %</u>
Copper	4.17	Iron	0.057
Lithium	1.30	Nickel	0.0030
Magnesium	0.339	Titanium	0.028
Silicon	0.038	Zirconium	0.126
Silver	0.334	Aluminum	Balance

Basic mechanical properties (tension, compression, bearing, etc) were tested according to ASTM standards, unless otherwise specified. General Dynamics generated hardness and conductivity data. Constant amplitude fatigue crack growth tests were conducted according to ASTM E647 standard. Northrop Corporation performed constant amplitude fatigue crack growth test using K controlled methods. A T-38 LIF (lead-in-fighter) spectrum test was performed by Northrop Corporation. The spectrum specimen was not precracked but contained a countersunk hole to simulate a crack initiating from a fastener hole. The Army evaluated the ballistic performance of the material. The Army and Northrop Corporation have corrosion tests in process.

SECTION III

PRESENTATION

Each participant compiled a data package which contained the data they generated. Some of these data packages contain discussions, and in other cases, only the data were provided. The tensile, compression, bearing, shear, and fracture toughness data from each package were put in tabular form. Fatigue, fatigue crack growth, spectrum fatigue crack growth, hardness, and conductivity data were placed in tabular and graphical form. Ballistic performance data were put in text and graphical form.

SECTION IV

RESULTS AND DISCUSSION

The data generated by the participants on the 2095-T8 0.5 inch thick plate are shown in Tables I1 thru I36 and Figures I1 thru I15.

TABLE II
TENSILE RESULTS AT $t/2$ LOCATION FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

COMPANY	TEST TEMP (DEGREES F)	ORIENT- ATION	ULTIMATE STRENGTH (KSI)	YIELD STRENGTH (KSI)	ELONG (%)	RA (%)	E (MSI)
MCDONNELL DOUGLAS, MO	RT	LONG	89.7	85.7	12.0	23.7	10.9
			88.4	84.3	12.0	19.7	10.8
			86.8	81.1	12.0	26.4	11.4
SUNDSTRAND	RT	LONG	89.4	83.4	13.1	19.2	
			89.4	81.2	12.8	20.1	
			89.9	83.7	13.0	19.3	
ARMY-MTL	RT	LONG	88.6	81.9	12.9		10.8
			88.2	81.3	11.7		10.9
			87.7	80.4	12.9		10.4
GENERAL DYNAMICS	RT	LONG	88.1	82.5	10.7	17.1	11.0
			89.2	84.9	11.0	21.3	11.0
			89.1	84.6	10.0	17.6	11.2
NASA-LANGLEY	RT	LONG	88.0	81.2	12.3		11.2
			84.9	75.6	9.6		11.3
			85.0	77.2	9.6		11.3
NORTHROP	RT	LONG	89.7	83.6	13.9		11.5
			88.1	80.6	13.0		11.1
			89.0	81.8	13.6		11.0
AIR FORCE(*)	RT	LONG	89.4	83.1	7.4	27.0	
MCDONNELL DOUGLAS, CA	RT	LONG	84.0	77.9	12.0		
			82.5	76.0	13.0		
			82.7	77.1	10.0		
		AVERAGE	87.6	81.3	11.7	21.1	11.1
		STANDARD DEVIATION	2.1	2.9	1.6	3.5	0.3

(*) : TEST SECTION DIAMETER = 0.16"

TABLE I2

TENSILE RESULTS AT $t/2$ LOCATION FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

COMPANY	TEST TEMP (DEGREES F)	ORIENT- ATION	ULTIMATE STRENGTH (KSI)	YIELD STRENGTH (KSI)	ELONG (%)	RA (%)	E (MSI)		
MCDONNELL DOUGLAS, MO	RT	L TRANS	87.0	80.8	11.0	23.8	11.1		
			87.0	81.1	11.0	26.8	10.8		
			86.8	80.8	11.0	28.4	10.9		
SUNDSTRAND	RT	L TRANS	86.3	79.0	12.0	25.1			
			85.8	78.3	12.7	25.7			
			86.2	79.2	13.4	27.3			
ARMY-MTL	RT	L TRANS	84.7	75.4	14.1		10.8		
			85.6	76.8	13.6		10.2		
			84.9	75.7	15.0		10.7		
GENERAL DYNAMICS	RT	L TRANS	84.0	75.6	11.4	21.9	11.0		
			86.1	79.1	11.0	22.1	10.7		
			83.8	75.4	11.0	29.7	10.8		
NASA-LANGLEY	RT	L TRANS	84.8	76.4		13.1	11.3		
			87.2	80.1		9.1	11.1		
			87.3	80.3		14.5	11.2		
NORTHROP	RT	L TRANS	85.7	75.9	14.7		11.6		
			87.0	78.5	14.6		11.6		
			85.2	75.3	15.5		11.1		
AIR FORCE(*)	RT	L TRANS	88.9	82.4	8.8	31.0			
MCDONNELL DOUGLAS, CA	RT	L TRANS	81.2	71.7	14.5				
			80.5	71.0	14.5				
			81.8	73.0	14.0				
			AVERAGE	85.4	77.4	12.8	23.0		
			STANDARD DEVIATION	2.1	3.1	1.9	6.8		
							0.4		

(*) : TEST SECTION DIAMETER = 0.16"

TABLE I3
TENSILE RESULTS AT $t/2$ LOCATION FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

COMPANY	TEST TEMP (DEGREES F)	ORIENT- ATION	ULTIMATE STRENGTH (KSI)	YIELD STRENGTH (KSI)	ELONG (%)	RA (%)	E (MSI)
MCDONNELL	RT	45	77.0	70.6	14.0	36.6	11.4
DOUGLAS			77.2	70.1	16.0	39.1	10.9
			76.3	69.2	17.0	39.3	10.8
AIR FORCE(*)	RT	45	75.5	69.0	8.9	41.7	9.9
		AVERAGE	76.5	69.7	14.0	39.2	10.8
		STANDARD DEVIATION	0.8	0.8	3.6	2.1	0.6

(*): TEST SECTION DIAMETER = 0.16"

TABLE I4
TENSILE RESULTS AT $t/2$ LOCATION FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

COMPANY	TEST TEMP (DEGREES F)	ORIENT- ATION	ULTIMATE STRENGTH (KSI)	YIELD STRENGTH (KSI)	ELONG (%)	RA (%)	E (MSI)
AIR FORCE	-321(*)	LONG	108.0	97.5	22.0	12.0	
		L TRANS	104.0	93.8	9.6	26.0	11.7
	-150	45	95.4	89.9	12.6	25.0	11.0
	-100(*)	LONG	92.3	86.2	8.8	27.0	11.0
		45	78.7	71.5	11.4	21.6	11.5
		L TRANS	91.9	85.0	8.0	26.0	
	-40	45	90.2	83.1	12.3	25.3	10.1
	0	45	89.2	82.2	11.1	22.6	10.0
	150	45	87.5	82.9	11.4	29.2	11.4
			88.7	84.8	11.9	27.7	11.4
	200	45	78.9	78.1	16.4	47.3	10.7
			79.7	78.6	17.2	47.8	11.5

(*): TEST SECTION DIAMETER = 0.16"

TABLE 15

TENSILE RESULTS AT $t/2$ LOCATION FOR REYNOLDS
 2095-T8 PLATE (0.5" X 24" X 48")
 (1000 HR EXPOSURE @ 350F)

COMPANY	TEST TEMP (DEGREES F)	ORIENT- ATION	ULTIMATE STRENGTH (KSI)	YIELD STRENGTH (KSI)	ELONG (%)	RA (%)	E (MSI)
AIR FORCE	RT	45	70.4 70.1	58.3 58.0	8.1 8.2	22.9 23.8	11.2 11.3
		AVERAGE	70.3	58.1	8.2	23.3	11.2
		STANDARD DEVIATION	0.2	0.2	0.1	0.6	0.1

TABLE I6
COMPRESSION RESULTS AT $t/2$ LOCATION FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

COMPANY	TEST TEMPERATURE (DEGREES F)	ORIENTATION	COMPRESSIVE YIELD STRENGTH (KSI)	COMPRESSIVE MODULUS (MSI)
MCDONNELL DOUGLAS, MO	RT	LONG	73.8	11.1
			75.3	10.9
			76.1	11.1
SUNDSTRAND	RT	LONG	73.1	12.0
			73.3	11.8
			73.8	11.7
GENERAL DYNAMICS	RT	LONG	77.0	11.3
			79.0	11.6
			80.0	11.4
NASA-LANGLEY	RT	LONG	62.3	11.4
NORTHROP	RT	LONG	70.9	12.2
			72.2	12.1
			76.7	11.9
MCDONNELL DOUGLAS, CA	RT	LONG	68.1	11.0
			69.1	11.5
			69.6	11.7
		AVERAGE	73.1	11.6
		STANDARD DEVIATION	4.5	0.4

TABLE I7

**COMPRESSION RESULTS AT t/2 LOCATION FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")**

COMPANY	TEST TEMPERATURE (DEGREES F)	ORIENTATION	COMPRESSIVE			
			YIELD STRENGTH (KSI)	MODULUS (MSI)		
MCDONNELL DOUGLAS, MO	RT	L TRANS	79.5	11.8		
			78.5	11.8		
			79.1	11.6		
SUNDSTRAND	RT	L TRANS	79.4	11.6		
			79.0	11.5		
			77.6	12.7		
GENERAL DYNAMICS	RT	L TRANS	79.2	11.4		
			80.6	11.6		
			80.4	12.0		
NASA-LANGLEY	RT	L TRANS	75.1	11.4		
			77.0	11.5		
			76.0	11.4		
NORTHROP	RT	L TRANS	79.4	11.9		
			75.9	12.1		
			73.5	12.2		
MCDONNELL DOUGLAS, CA	RT	L TRANS	72.9	14.0		
			72.3	13.5		
			73.2	13.8		
AVERAGE			77.1	12.1		
STANDARD DEVIATION			2.8	0.8		

TABLE I8

COMPRESSION RESULTS AT $t/2$ LOCATION FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

COMPANY	TEST TEMPERATURE (DEGREES F)	ORIENTATION	COMPRESSIVE YIELD STRENGTH (KSI)	COMPRESSIVE MODULUS (MSI)
MCDONNELL DOUGLAS	RT	45	70.5 70.3 72.2	11.1 11.0 10.9
		AVERAGE	71.0	11.0
		STANDARD DEVIATION	1.0	0.1

TABLE I9

COMPRESSION RESULTS AT $t/2$ LOCATION FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

COMPANY	TEST TEMPERATURE (DEGREES F)	ORIENTATION	COMPRESSIVE YIELD STRENGTH (KSI)	COMPRESSIVE MODULUS (MSI)
ARMY-MTL	RT	LONG	111.2 107.2 110.7	
		AVERAGE	109.7	
		STANDARD DEVIATION	2.2	
ARMY-MTL	RT	L TRANS	115.4 119.0 114.7	
		AVERAGE	116.4	
		STANDARD DEVIATION	2.3	

TABLE I10

PIN SHEAR RESULTS FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

COMPANY	ORIENTATION	SHEAR STRENGTH (KSI)	
ARMY-MTL	LONG	49.5	
		48.8	
		49.7	
NORTHROP	LONG	45.7	
		46.6	
		46.0	
AVERAGE		47.7	
STANDARD DEVIATION		1.8	

TABLE I11

RIVET SHEAR RESULTS FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

COMPANY	ORIENTATION	SHEAR STRENGTH (KSI)	
ARMY-MTL	L TRANS	49.0	
		48.5	
		47.7	
AVERAGE		48.4	
STANDARD DEVIATION		0.7	

TABLE I12
TORSIONAL SHEAR RESULTS FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

COMPANY	ORIENTATION	SHEAR STRENGTH (KSI)
SUNDSTRAND	LONG	47.1
		46.4
		45.1
SUNDSTRAND	AVERAGE	46.2
	STANDARD DEVIATION	1.0
SUNDSTRAND	L TRANS	45.4
		45.1
		46.8
SUNDSTRAND	AVERAGE	45.8
	STANDARD DEVIATION	0.9

TABLE I13

**AMSLER DOUBLE SHEAR RESULTS FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")**

COMPANY	ORIENTATION	SHEAR STRENGTH (KSI)
NASA-LANGLEY	L-S	44.4 46.3 47.7
	AVERAGE STANDARD DEVIATION	46.1 1.7
NASA-LANGLEY	T-S	47.5 45.6 45.0
	AVERAGE STANDARD DEVIATION	46.0 1.3

TABLE I14
BEARING RESULTS FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

COMPANY	ORIENTATION	e/D	BEARING	BEARING		
			ULT. STR. (KSI)	YIELD STR. (KSI)		
MCDONNELL DOUGLAS, MO	LONG	1.5	128.0	106.0		
			119.0	100.0		
			122.0	103.0		
NASA-LANGLEY	LONG	1.5	123.1	99.2		
			119.4	98.4		
			120.6	100.3		
NORTHROP	LONG	1.5	156.4	116.5		
			154.3	114.3		
			153.6	113.7		
MCDONNELL DOUGLAS, CA	LONG	1.5	120.2	102.1		
			121.1	101.9		
			121.1	101.5		
AVERAGE			129.9	104.7		
STANDARD DEVIATION			15.2	6.4		

TABLE I15
BEARING RESULTS FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

COMPANY	ORIENTATION	e/D	BEARING	BEARING		
			ULT. STR. (KSI)	YIELD STR. (KSI)		
MCDONNELL DOUGLAS, MO	45	1.5	128.0	106.0		
			131.0	110.0		
			135.0	111.0		
AVERAGE			131.3	109.0		
STANDARD DEVIATION			3.5	2.6		

TABLE I16
BEARING RESULTS FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

COMPANY	ORIENTATION	e/D	BEARING		BEARING YIELD STR. (KSI)		
			ULT.	STR.			
MCDONNELL DOUGLAS, MO	L TRANS	1.5	125.0		106.0		
			129.0		105.0		
			131.0		107.0		
NASA-LANGLEY	L TRANS	1.5	122.2		98.4		
			124.2		101.6		
			124.7		99.4		
NORTHROP	L TRANS	1.5	158.7		121.1		
			160.4		120.6		
			160.2		128.5		
MCDONNELL DOUGLAS, CA	L TRANS	1.5	121.7		100.4		
			121.7		98.3		
			120.5		97.3		
AVERAGE			133.3		107.0		
STANDARD DEVIATION			16.3		10.6		

TABLE I17
BEARING RESULTS FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

COMPANY	ORIENTATION	e/D	BEARING ULT. STR. (KSI)	BEARING YIELD STR. (KSI)
MCDONNELL DOUGLAS, MO	LONG	2.0	164.0 159.0 158.0	128.0 131.0 130.0
NASA-LANGLEY	LONG	2.0	148.0 146.7	114.5 111.0 112.3
NORTHROP	LONG	2.0	183.1 183.6 182.5	120.6 123.1 122.7
MCDONNELL DOUGLAS, CA	LONG	2.0	157.5 156.5 157.4	119.6 124.1 120.2
		AVERAGE	163.3	121.4
		STANDARD DEVIATION	13.6	6.5

TABLE I18
BEARING RESULTS FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

COMPANY	ORIENTATION	e/D	BEARING ULT. STR. (KSI)	BEARING YIELD STR. (KSI)
MCDONNELL DOUGLAS, MO	45	2.0	172.0 166.0 169.0	141.0 136.0 138.0
		AVERAGE	169.0	138.3
		STANDARD DEVIATION	3.0	2.5

TABLE II9

BEARING RESULTS FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

COMPANY	ORIENTATION	e/D	BEARING	BEARING
			ULT. STR. (KSI)	YIELD STR. (KSI)
MCDONNELL DOUGLAS, MO	L TRANS	2.0	163.0	132.0
			160.0	137.0
			166.0	137.0
NASA-LANGLEY	L TRANS	2.0		116.4
			154.5	116.6
			154.5	116.1
NORTHROP	L TRANS	2.0	186.9	126.7
			188.5	131.2
			189.8	127.5
MCDONNELL DOUGLAS, CA	L TRANS	2.0	155.4	122.1
			158.9	124.6
			156.8	122.9
		AVERAGE	166.8	125.8
		STANDARD DEVIATION	14.4	7.5

TABLE I20
FRACTURE TOUGHNESS RESULTS FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

COMPANY	ORIENTATION	KIC (KSI in ^{0.5})	Kq (KSI in ^{0.5})	COMMENT
MCDONNELL DOUGLAS	L-T		26.3 22.8	(1) (2)
SUNDSTRAND	L-T	30.2 30.0		
ARMY-MTL	L-T	26.8	37.3 33.3 36.4 33.7	(2), (3) (2) (2), (3) (2)
GENERAL DYNAMICS	L-T		33.5 30.7 30.1	(2) (2) (2)
NASA-LANGLEY	L-T	27.0	25.3	(2)
NORTHROP	L-T		37.7 40.4 43.3	(3) (3) (3)
	AVERAGE	28.5	33.1	
	STANDARD DEVIATION	1.8	6.0	

(1): INVALID DUE TO SURFACE CRACK LENGTH MEASUREMENTS
EXCEEDED 10% OF AVERAGE CRACK LENGTH

(2): INVALID DUE TO Pmax/Pq > 1.10

(3): INVALID DUE TO a & B > 2.5(Kq/YS)**2

TABLE I21
FRACTURE TOUGHNESS RESULTS FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

COMPANY	ORIENTATION	KIC (KSI in ^{0.5})	Kq (KSI in ^{0.5})	COMMENT
MCDONNELL DOUGLAS	T-L	29.6	25.8	(1)
SUNDSTRAND	T-L	29.1 29.0		
ARMY-MTL	T-L		40.2 35.6 35.0 35.9 36.9 35.5	(2), (3) (3) (2), (3) (2), (3) (2), (3) (3)
GENERAL DYNAMICS	T-L	31.4	29.4 29.2	(2) (2)
NASA-LANGLEY	T-L	24.4		
NORTHROP	T-L		38.7 38.3 37.9	(3) (3) (3)
	AVERAGE	28.7	34.9	
	STANDARD DEVIATION	2.6	4.4	

(1): INVALID DUE TO SURFACE CRACK LENGTH MEASUREMENTS
EXCEEDED 10% OF AVERAGE CRACK LENGTH

(2): INVALID DUE TO P_{max}/P_q > 1.10

(3): INVALID DUE TO a & b > 2.5(K_q/Y_S)^{**2}

TABLE I22
FRACTURE TOUGHNESS RESULTS FOR REYNOLDS
2095-T8 PLATE (0.5" X 24" X 48")

COMPANY	ORIENTATION	KIC (KSI in ^{0.5})	Kq (KSI in ^{0.5})	COMMENT
MCDONNELL DOUGLAS	45	23.6	25.4	(1)

(1): INVALID DUE TO SURFACE CRACK LENGTH MEASUREMENTS
EXCEEDED 10% OF AVERAGE CRACK LENGTH

TABLE I23
Hardness & Conductivity Results for 2095-T8
0.5 Inch Plate. General Dynamics, CA

Alloy/Product Form	Hardness (R _B Scale)	Conductivity (% IACS)
Weldalite 2095-T8 0.50 Inch Plate	See Figure	22 (a) 17 (b)
(a) as received mill surface		
(b) machined surface		

**Figure II. Hardness profile through 2095-T8
0.5 Inch Plate. General Dynamics, CA.**

Both 8090 extrusions (Ex) and Weldalite plates (P) provided enhanced ballistic performance over 2519 and 5083 Al alloys. The V_{50} ballistic limits against AP and FSP projectiles at 0° obliquity are plotted versus Armor demand. The Armor demand is defined as the (density \times thickness) / projectile diameter. The ballistic data for different caliber projectiles superimpose on single curves for either AP or FSP projectiles when plotted against armor demand. This technique allows designers to evaluate ballistic performance as a function of projectile type rather than for individual munitions. The AP and FSP projectile diameters are included as inserts in the plot. Ballistic data for 2519 and 5083 are included as the high and low ends of aluminum alloys currently being considered for structural armor applications. The lower set of 8090 and Weldalite data points for both AP and FSP projectiles represent 0.5 inch ballistic targets. The second series of data points for each projectile type represent stacked plates to provide 1.0 inch thickness. The ballistic limits of both AL-Li alloys are attributed to the witness plate being perforated by spalling rather than by the projectile exiting the target.

Figure I2. Ballistic limit (V_{50}) verses Armor Demand at 0° obliquity against Armor Piercing (AP) and Fragment Simulating Projectiles (FSP). Army.

Figure I3. Fatigue Results for 2095-T8 0.5 Inch Plate ($R = -1$, $K_t = 1.0$ and $K_t = 3.0$) and 2095-T6 ($R = -1$ and $K_t = 3$)

TABLE I24

FATIGUE RESULTS WITH R=-1.0 AND Kt=1.0 FOR
REYNOLDS 2095-T8 PLATE (0.5" X 24" X 48")

COMPANY	ORIENTATION	STRESS (KSI)	CYCLES
SUNDSTRAND	LONG	65.0	7,500
		50.0	34,950
		40.0	73,820
		35.0	338,910
		30.0	1,240,950
		29.0	8,461,080
		28.0	3,489,830
		26.0	10,000,000 *

(*): RUN OUT

TABLE I25

FATIGUE RESULTS WITH R=-1.0 AND Kt=3.0 FOR
REYNOLDS 2095-T8 PLATE (0.5" X 24" X 48")

COMPANY	ORIENTATION	STRESS (KSI)	CYCLES
SUNDSTRAND	LONG	25.0	16,300
		20.0	29,460
		17.5	102,580
		15.0	133,920
		12.0	253,810
		11.0	11,796,000 *
		10.0	11,913,000 *
		9.0	10,000,000 *

(*): RUN OUT

TABLE I26

FATIGUE RESULTS WITH R=-1.0 AND Kt=3.0 FOR
REYNOLDS 2095-T8 PLATE (0.5" X 24" X 48")

COMPANY	ORIENTATION	STRESS (KSI)	CYCLES
<hr/>			
SUNDSTRAND	L TRANS	30.0	8,620
		25.0	19,690
		20.0	90,000
		17.0	254,530
		15.0	1,024,210
		14.0	943,790
		12.0	2,110,280
		10.5	1,715,500

Figure I4. Fatigue Results for 2095-T8 0.5 Inch Plate ($R = 0.1$ and $K_t = 1.0$)

TABLE I27

FATIGUE RESULTS WITH R=0.1 AND Kt=1.0 FOR
REYNOLDS 2095-T8 PLATE (0.5" X 24" X 48")

COMPANY	ORIENTATION	STRESS (KSI)	CYCLES
<hr/>			
ARMY-MTL	LONG	60.0	54,220
		60.0	67,580
		55.0	191,520
		50.0	1,205,760
		46.0	290,042
		46.0	10,026,880 *
		43.0	754,000
		40.0	10,010,000 *
NORTHROP	LONG	70.0	39,420
		60.0	70,550
		55.0	87,944
		50.0	247,950
		45.0	623,760
		40.0	511,870
		40.0	3,000,000 *
		40.0	2,135,840
MCDONNELL DOUGLAS, CA	LONG	55.0	106,010
		55.0	120,950
		50.0	149,620
		50.0	122,970
		45.0	398,910
		45.0	398,300
		40.0	1,000,000 *
		40.0	1,000,000 *
MCDONNELL DOUGLAS, CA	L TRANS	60.0	34,170
		55.0	53,870
		55.0	69,800
		50.0	101,060
		50.0	80,470
		48.0	153,080
		48.0	229,570
		45.0	1,000,000 *
		45.0	1,000,000 *

(*) : RUN-OUT

Figure I5. Fatigue Results for 2095-T8 0.5 Inch Plate ($R = 0.1$ and $K_t = 3$)

TABLE I28

FATIGUE RESULTS WITH R=0.1 AND Kt=3.0 FOR
REYNOLDS 2095-T8 PLATE (0.5" X 24" X 48")

COMPANY	ORIENTATION	STRESS (KSI)	CYCLES
GENERAL DYNAMICS	LONG	25.0	38,200
		15.0	120,600
		12.5	155,500
		12.0	281,900
		11.5	417,100
		11.3	10,240,300 *
		11.0	10,000,000 *
		10.0	32,313,000 *
NORTHROP	LONG	40.0	27,530
		35.0	84,820
		30.0	220,840
		25.0	20,830
		25.0	605,470
		25.0	1,535,480
		22.5	3,000,000 *
		20.0	3,000,000 *
MCDONNELL DOUGLAS, CA	LONG	25.0	28,540
		25.0	25,320
		20.0	78,410
		20.0	69,950
		15.0	1,000,000 *
		15.0	1,000,000 *
		10.0	1,000,000 *
		10.0	1,000,000 *
MCDONNELL DOUGLAS, CA	L TRANS	40.0	6,331
		25.0	28,860
		25.0	32,940
		20.0	60,520
		20.0	91,030
		15.0	348,180
		15.0	271,490
		10.0	1,000,000 *
		10.0	1,000,000 *

(*) : RUN-OUT

Figure I6. Fatigue Crack Growth Rate Data for 2095-T8 0.5 Inch Plate
(LT-LT orientation, Specimen W45-1). Air Force.

TABLE I29

Fatigue Crack Growth Data Associated with Figure I6

WAS-I-DAT	$N_{(t)}$	$N_{(t)}$ (diborohyd) ($\text{in}^{-1}\text{cycle}$)	dN/dN_t ($\text{in}^{-1}\text{cycle}$)	ΔK_t ($\text{psi}-\text{in}^{1/2}$)	P_{\max} (lb_in)	a_t (in)	N_t (cycles)	da/dN_t (in/cycle)	da/dN_t (in/cycle)
03339	0.0	0.0000	7.23	550	0.5339	0.0	7.36	0.3005	0.2249
03471	4.8	2.1053	7.31	550	0.5472	4.8	2.77E-03	4.29	2.41E-07
03572	10.1	1.8785	6.67	495	0.5074	10.1	1.82E-03	6.71	2.30E-07
03675	17.3	1.4382	6.08	446	0.5078	17.3	1.45E-03	6.13	2.15E-07
03775	28.7	0.8745	5.55	401	0.5780	28.7	8.30E-07	5.59	1.01E-07
03878	43.3	0.6907	5.06	361	0.5883	43.3	7.08E-07	5.10	1.02E-07
03977	68.6	0.3857	4.61	325	0.5888	60.6	4.00E-07	4.65	1.02E-07
04078	109.2	0.2544	4.20	282	0.6093	109.2	2.71E-07	4.24	1.00E-07
04178	144.6	0.2840	3.83	263	0.6201	144.6	2.94E-07	3.87	1.02E-07
04279	195.6	0.1968	3.50	237	0.6310	195.6	2.14E-07	3.54	1.01E-07
04379	261.4	0.1530	3.19	213	0.6421	261.4	1.80E-07	3.22	1.01E-07
04482	327.9	0.1539	3.07	202	0.6534	327.9	1.71E-07	3.10	1.02E-07
04582	381.9	0.1861	2.95	192	0.6843	381.9	2.01E-07	2.99	1.02E-07
04683	457.1	0.1534	2.99	192	0.6756	457.1	1.50E-07	3.03	1.02E-07
04784	541.6	0.1183	2.98	190	0.6870	541.6	1.35E-07	3.05	1.02E-07
04885	569.8	0.2101	2.99	187	0.6979	569.8	2.28E-07	3.04	1.02E-07
04985	641.6	0.1942	2.99	185	0.7087	641.6	2.09E-07	3.05	1.02E-07
05085	694.7	0.1883	2.98	182	0.7198	694.7	2.04E-07	3.04	1.02E-07
07187	754.2	0.1717	2.99	180	0.7307	754.2	1.87E-07	3.05	1.02E-07
07286	800.5	0.2168	2.98	178	0.7416	800.5	2.34E-07	3.06	1.02E-07
07386	872.9	0.1587	2.99	175	0.7527	872.9	1.54E-07	3.05	1.02E-07
07486	943.3	0.1420	2.99	173	0.7638	943.3	1.58E-07	3.06	1.02E-07
07586	985.6	0.1833	2.99	171	0.7748	985.6	2.09E-07	3.07	1.02E-07
07686	1054.6	0.1702	2.99	169	0.7857	1054.6	1.85E-07	3.08	1.02E-07
07786	1117.7	0.1568	2.99	167	0.7967	1117.7	1.74E-07	3.09	1.02E-07
07880	1191.2	0.1370	2.99	164	0.8060	1191.2	1.53E-07	3.06	1.02E-07
07981	1256.1	0.1548	3.03	164	0.8181	1256.1	1.72E-07	3.12	1.02E-07
08081	1337.3	0.1233	3.07	164	0.8204	1337.3	1.38E-07	3.17	1.02E-07
08182	1411.1	0.1370	3.11	164	0.8417	1411.1	1.53E-07	3.22	1.02E-07
08282	1457.6	0.2156	3.15	164	0.8524	1457.6	2.31E-07	3.26	1.02E-07
08384	1534.5	0.1323	3.19	164	0.8636	1534.5	1.49E-07	3.32	1.02E-07
08484	1592.1	0.1743	3.23	164	0.8748	1592.1	1.90E-07	3.37	1.02E-07
08585	1644.4	0.1918	3.28	164	0.8857	1644.4	2.08E-07	3.42	1.02E-07
08685	1666.1	0.2253	3.32	164	0.8964	1666.1	2.40E-07	3.47	1.02E-07
08786	1739.2	0.2007	3.37	164	0.9073	1739.2	2.18E-07	3.52	1.02E-07
08886	1777.5	0.2826	3.74	180	0.9179	1777.5	2.77E-07	3.92	1.02E-07
08986	1793.1	0.8486	3.79	180	0.9284	1793.1	6.70E-07	4.31	1.02E-07
09086	1835.3	0.2369	3.85	180	0.9390	1835.3	2.53E-07	4.05	1.02E-07
09186	1876.8	0.2439	3.90	180	0.9498	1876.8	2.58E-07	4.11	1.02E-07
09286	1908.2	0.3410	3.96	180	0.9603	1908.2	3.56E-07	4.17	1.02E-07
09401	1934.8	0.3579	4.02	180	0.9709	1934.8	3.75E-07	4.24	1.02E-07
09503	1971.6	0.2746	4.06	180	0.9817	1971.6	2.90E-07	4.31	1.02E-07
09603	2009.1	0.2886	4.14	180	0.9923	2009.1	2.84E-07	4.38	1.02E-07
09703	2039.2	0.3315	4.20	180	1.0028	2039.2	3.48E-07	4.45	1.02E-07

Figure I7. Fatigue Crack Growth Rate Data for 2095-T8 0.5 Inch Plate (LT-LT orientation, Specimen W45-2). Air Force.

TABLE I30

Fatigue Crack Growth Data Associated with Figure I7

WBS-2-DAT		W-	2,000 h	W-	2,000 h	W-	2,000 h
N	Exponent						
0.5261	0.0	0.0000	3.98	300	0.54381	0.0	2.16E-07
0.5481	-0.7	0.21092	4.01	300	0.54380	4.87	2.16E-07
0.5541	0.4	0.11117	3.85	277	0.55380	99.4	1.06E-07
0.5602	1.543	0.11112	3.51	243	0.55387	194.3	1.06E-07
0.5683	2.642	0.06046	3.00	219	0.56350	260.2	0.34E-08
0.5723	3.582	0.05312	2.79	200	0.57172	339.2	0.32E-08
0.5743	459.1	0.00004	2.79	200	0.57770	489.1	0.32E-08
0.5843	627.3	0.00539	2.53	180	0.58425	677.3	3.27E-08
0.5904	977.2	0.01774	2.42	171	0.59473	874.2	1.07E-08
0.5984	2327.7	0.00443	2.32	182	0.61464	2027.7	1.36E-08
0.6025	4602.5	0.00520	2.55	177	0.63085	4662.5	2.30E-08
0.6056	569.5	0.00036	2.57	177	0.63263	599.5	2.50E-08
0.6130	9179.3	0.00119	2.61	192	0.64006	8179.3	2.59E-08
0.6210	8373.3	0.00119	2.83	192	0.64344	8072.3	2.87E-08
0.6279	8481.1	0.00539	2.96	182	0.65001	8471.1	3.22E-08
0.6320	8665.5	0.07150	2.88	182	0.66055	8655.5	8.82E-09
0.6401	8611.7	0.11108	2.90	182	0.68119	8411.7	1.15E-07
0.6481	8650.5	0.15323	2.92	182	0.68178	8650.5	1.15E-07
0.6522	8701.0	0.15324	2.93	182	0.68230	8701.0	1.35E-07
0.6594	8746.0	0.13379	2.97	182	0.68289	8746.0	1.35E-07
0.6644	8807.6	0.08991	2.99	182	0.69337	8807.6	1.35E-07
0.6704	8865.5	0.11109	3.02	182	0.69415	8865.5	1.35E-07
0.6784	8879.4	0.13021	3.04	182	0.69474	8865.5	1.35E-07
0.6824	8920.2	0.24446	3.06	182	0.69533	8920.2	2.41E-07
0.6864	8940.4	0.5644	3.09	182	0.69594	8940.4	8.85E-07
0.6904	8971.7	0.18116	3.11	182	0.69654	8971.7	1.80E-07
0.7004	10024.2	0.16770	3.14	192	0.69712	10024.2	1.05E-07
0.7064	10078.7	0.1194	3.18	182	0.69771	10078.7	1.05E-07
0.7124	10137.6	0.12446	3.27	187	0.69830	10127.6	1.22E-07
0.7184	10156.9	0.20716	3.29	187	0.69881	10156.9	2.05E-07
0.7220	10182.1	0.34601	3.32	187	0.69932	10182.1	2.42E-07
0.7210	10217.3	0.3722	3.35	187	0.70111	10217.3	2.42E-07
0.7275	10244.4	0.2235	3.46	202	0.70371	10244.4	2.24E-07
0.7311	10251.3	0.25513	3.46	202	0.71191	10251.3	2.50E-07
0.7452	10280.5	0.21046	3.51	202	0.71900	10280.5	2.11E-07
0.7482	10317.4	0.20034	3.54	202	0.72520	10317.4	2.84E-07
0.7512	10336.3	0.27712	3.57	202	0.73710	10336.3	2.05E-07
0.7573	10389.0	0.2020	3.66	207	0.73730	10389.0	1.98E-07
0.7705	10506.7	0.22224	3.71	207	0.74520	10506.7	2.21E-07
0.7795	0.0	0.00020	3.84	212	0.74900	10620.0	1.70E-07
0.7848	38.0	0.26520	3.87	212	0.75620	10650.0	2.81E-07
0.7869	87.7	0.35229	3.92	212	0.75822	10650.0	3.46E-07
0.7932	310.0	0.35094	4.47	220	0.82370	10748.0	3.0E-07
0.8022	347.1	0.35051	4.54	220	0.84776	10775.1	3.57E-07
0.8083	361.2	0.25040	4.80	220	0.86777	10877.2	2.80E-07
0.8093	340.8	0.21681	5.02	220	0.86714	10872.8	4.17E-07
0.8207	403.8	0.46746	4.67	220	0.88030	10872.8	4.53E-07
0.8201	225.7	0.35114	5.05	212	0.88030	10851.7	2.05E-07
0.8138	483.4	0.32229	4.80	220	0.88611	10873.8	3.0E-07
0.8262	300.2	0.36052	4.41	220	0.88776	10873.2	4.23E-07
0.8402	896.2	0.31046	4.47	220	0.89000	10873.2	4.30E-07
0.8402	940.2	0.08320	4.34	220	0.89030	10880.0	4.30E-07
0.8472	524.5	0.41118	5.02	220	0.89182	10872.8	4.61E-07
0.8503	540.9	0.19435	5.17	220	0.89270	10874.0	4.61E-07
0.8507	538.7	1.04050	5.17	220	0.89345	10864.7	1.04E-08
0.8607	870.1	0.35049	5.25	220	0.89365	10876.0	3.70E-07
0.8610	671.4	0.80119	5.41	220	0.89367	10867.4	0.80E-07

Figure 18. Fatigue Crack Growth Rate Data for 2095-T8 0.5 Inch Thick Plate (L-T and T-L orientations). Northrop.

Figure I9. Fatigue Crack Growth Rate Data for 2095-T8 0.5 Inch Thick Plate
(L-T orientation, KGRAD - 4.00 and 2.50). Northrop.

TABLE I31
Fatigue Crack Growth Data Associated with Figure I9 (Specimen F2GL1A)
AUTOMATED FATIGUE CRACK
GROWTH RATE ANALYSIS

Specimen Id.	F2GL1A	Geometry	C(T)
Contract #	WB02115N	Orientation	L-T
Material	Weldalite	Yield (ksi)	82.0
Temperature (F)	80	Modulus	11.1
Environment	Lab. air		

Specimen Dimensions (in)

Thickness	0.495	Notch depth	0.609
Width	2.997	Gage length	1.000
Height	3.600	Alpha ratio	1.250

Precrack Parameters

Pmax (lbs)	1471.0	Stress ratio (R)	0.10
Final a (in)	0.689	Kmax	8.00

Test Parameters

Initial a (in)	0.689	Initial K	8.00
K-gradient	-4.00	Stress ratio (R)	0.10

K Coeff	EVB/P Coeff	Analysis Codes
0.886000	1.000980	KRP 2 0
4.640000	-4.669510	
-13.320000	18.460100	
14.720000	-236.824997	
-5.600000	1214.880000	
0.000000	-2143.570100	

Visual Observations

EVB/P	Crack (EVB/P)	Crack (visual)	Error	CAF
19.54	0.689	0.656	-.033	1.000
20.82	0.745	0.715	-.031	1.000
21.33	0.766	0.728	-.038	1.000
21.58	0.776	0.754	-.023	1.000
21.67	0.780	0.757	-.023	1.000
23.00	0.831	0.800	-.031	1.000
23.65	0.855	0.818	-.036	1.000
24.14	0.872	0.836	-.036	1.000
25.06	0.904	0.870	-.034	1.000
27.11	0.969	0.928	-.041	1.000
29.75	1.045	1.017	-.028	1.000
92.36	1.818	1.818	-.000	1.000
Pmax (lbs)	EVB/P (in)	N (X1)	Δa (in)	ΔN (X1)
19.64	0.6938	4398		
1393	19.80	0.7011	11308	0.0130
1347	19.93	0.7067	17660	0.0118
1308	20.07	0.7129	25349	0.0125
1269	20.22	0.7193	34918	0.0126
1232	20.36	0.7255	45890	0.0120
1195	20.49	0.7312	57689	0.0117
1162	20.63	0.7373	7925	0.0118
1128	20.77	0.7430	88388	0.0118
1095	20.91	0.7490	106343	0.0124
1063	21.07	0.7554	127588	0.0123
1031	21.21	0.7614	151035	0.0120
1001	21.36	0.7674	175652	0.0121
974	21.51	0.7735	202829	0.0111
	21.64	0.7785	225187	
	21.82	0.7859	249807	
888	21.97	0.7918	282411	0.0119
863	22.13	0.7978	316225	0.0121
838	22.28	0.8038	351672	0.0118
814	22.43	0.8096	388056	0.0116
791	22.59	0.8155	425576	0.0120
768	22.75	0.8216	466905	0.0122
	22.91	0.8277	511274	
	23.08	0.8341	537843	
	23.23	0.8395	565306	

TABLE I32
Fatigue Crack Growth Data Associated with Figure I9 (Specimen F2GL1B)

AUTOMATED FATIGUE CRACK GROWTH RATE ANALYSIS

Specimen Id.	F2GL1B	Geometry	C(T)
Contract #	WB0211SN	Orientation	L-T
Material	Weldelite	Yield (ksi)	82.0
Temperature (F)	80	Modulus	11.1
Environment	Lab. air		

Specimen Dimensions (in)

Thickness	0.495	Notch depth	0.609
Width	2.997	Gage length	1.000
Height	3.600	Alpha ratio	1.250

Precrack Parameters

Pmax (lbs)	1471.0	Stress ratio (R)	0.10
Final a (in)	0.689	Kmax	8.00

Test Parameters

Initial a (in)	0.855	Initial K	4.10
K-gradient	2.50	Stress ratio (R)	0.10

K Coeff	EVB/P Coeff	Analysis Codes
0.886000	1.000980	KRP 2 0
4.640000	-4.669510	
-13.320000	18.460100	
14.720000	-236.824997	
-5.600000	1214.880000	
0.000000	-2143.570100	

Visual Observations

EVB/P	Crack (EVB/P)	Crack (visual)	Error	CAF
19.54	0.689	0.656	-.033	1.000
20.82	0.745	0.715	-.031	1.000
21.33	0.766	0.728	-.038	1.000
21.58	0.776	0.754	-.023	1.000
21.67	0.780	0.757	-.023	1.000
23.00	0.831	0.800	-.031	1.000
23.65	0.855	0.818	-.036	1.000
24.14	0.872	0.836	-.036	1.000
25.06	0.904	0.870	-.034	1.000
27.11	0.969	0.928	-.041	1.000
29.75	1.045	1.017	-.028	1.000
92.36	1.818	1.818	-.000	1.000

Comments

Date of test: 08-12-1992

TABLE I32 (Continued)

TABLE I32 (Continued)

Specimen Id.	F22A.18		Page 3		Specimen Id.		F22A.18		Page 4						
	F4B/P (lbs)	Δ (in)	N (X1)	Δ (in)	AN (X1)	Δ /AN (in/cyc)	Δ K (kN/in)	E4B/P (lbs)	Δ (in)	AN (X1)	Δ (in)	Δ N (in/cyc)	Δ K (kN/in)		
1335	41.24	1.2971	1116639	0.0098	1062	8.264E-06	11.15	2126	64.77	1.6080	114807	0.0087	122	7.129E-05	24.24
1344	41.48	1.3015	1117134	0.0098	1016	6.630E-06	11.27	2140	65.20	1.6121	114968	0.0089	122	7.340E-05	24.53
1354	41.73	1.3059	1117655	0.0097	1146	8.337E-06	11.41	2151	65.69	1.6169	114928	0.0086	115	7.48E-05	24.77
1364	42.02	1.3110	1118280	0.0097	1147	8.426E-06	11.54	2166	66.09	1.6206	114983	0.0090	109	8.211E-05	25.08
1373	42.28	1.3155	1118802	0.0090	985	8.106E-06	11.66	2179	66.64	1.6259	114038	0.0099	109	9.02E-05	25.35
1383	42.48	1.3190	1119265	0.0081	995	8.150E-06	11.79	2193	67.13	1.6305	1142092	0.0092	109	8.442E-05	25.66
1392	42.75	1.3236	1119797	0.0094	1041	9.059E-06	11.92	2207	67.62	1.6351	114147	0.0091	109	8.327E-05	25.95
1402	43.03	1.3284	1120306	0.0091	997	9.147E-06	12.05	2221	68.12	1.6396	114220	0.0092	103	8.923E-05	26.25
1412	43.29	1.3328	1120794	0.0089	932	9.416E-06	12.19	2235	68.63	1.6442	114250	0.0091	97	9.442E-05	26.55
1422	43.55	1.3372	1121238	0.0085	887	9.553E-06	12.32	2249	69.13	1.6487	114229	0.0093	97	9.656E-05	26.87
1432	43.79	1.3412	1121681	0.0091	951	9.580E-06	12.47	2262	69.67	1.6536	1142346	0.0091	90	1.006E-04	27.16
1442	44.10	1.3463	1122189	0.0095	974	9.768E-06	12.60	2276	70.15	1.6578	114238	0.0085	84	1.017E-04	27.47
1453	44.37	1.3507	1122655	0.0092	921	9.992E-06	12.76	2290	70.65	1.6621	114230	0.0090	84	1.070E-04	27.78
1463	44.67	1.3556	1123110	0.0093	888	1.052E-05	12.90	2303	71.19	1.6668	114247	0.0092	84	1.092E-04	28.09
1473	44.95	1.3601	1123543	0.0085	804	1.051E-05	13.04	2318	71.71	1.6713	114251	0.0097	84	1.153E-04	28.44
1484	45.19	1.3640	1123914	0.0086	794	1.085E-05	13.19	2332	72.33	1.6764	114255	0.0098	77	1.271E-04	28.76
1494	45.49	1.3687	1124337	0.0095	853	1.146E-05	13.34	2347	72.88	1.6811	114259	0.0089	65	1.365E-04	29.10
1504	45.79	1.3735	1124767	0.0088	772	1.141E-05	13.48	2360	73.39	1.6853	114261	0.0082	59	1.398E-04	29.42
1514	46.05	1.3775	1125109	0.0082	689	1.186E-05	13.63	2375	73.89	1.6893	114265	0.0093	58	1.594E-04	29.77
1525	46.32	1.3817	1125456	0.0095	774	1.233E-05	13.80	2389	74.54	1.6946	114267	0.0092	59	1.746E-04	30.11
1536	46.67	1.3871	1125883	0.0100	805	1.233E-05	13.95	2405	75.16	1.6996	114270	0.0096	59	1.622E-04	30.48
1547	46.97	1.3917	1126261	0.0090	702	1.276E-05	14.12	2420	75.74	1.7042	114273	0.0093	59	1.594E-04	30.85
1558	47.26	1.3960	1126585	0.0085	646	1.320E-05	14.27	2434	76.35	1.7089	114276	0.0089	52	1.730E-04	31.19
1568	47.54	1.4002	1126907	0.0084	631	1.331E-05	14.43	2447	76.89	1.7131	114279	0.0082	46	1.776E-04	31.54
1579	47.83	1.4044	1127216	0.0088	619	1.421E-05	14.59	2461	77.42	1.7171	114281	0.0085	47	1.831E-04	31.88
1590	48.14	1.4090	1127526	0.0094	606	1.558E-05	14.75	2475	78.00	1.7216	114283	0.0095	49	1.932E-04	32.25
48.47	48.47	1.4139	1127623	0.0094	606	1.558E-05	14.75	2492	78.68	1.7267	114286	0.0107	52	2.086E-04	32.66
54.16	54.16	1.4905	1139102	0.0088	342	2.569E-05	16.28	2508	79.45	1.7323	114288	0.0110	45	2.453E-04	33.09
1808	54.57	1.4956	1139298	0.0088	305	2.796E-05	16.51	2522	80.18	1.7477	114298	0.0086	41	2.086E-04	33.45
1822	54.86	1.4993	1139445	0.0085	318	3.010E-05	18.71	2537	80.62	1.7409	114292	0.0073	38	1.942E-04	33.85
1833	55.26	1.5041	1139603	0.0096	279	3.318E-05	18.93	2551	81.19	1.7450	114294	0.0096	44	2.204E-04	34.22
1846	55.65	1.5089	1139762	0.0093	279	3.318E-05	18.93	2568	81.97	1.7505	114297	0.0110	55	2.146E-04	34.67
2000	60.39	1.5134	1139883	0.0085	2582	82.88	1.7568	114300	0.0110	45	2.228E-04	35.07	45	2.4708E-04	38.48
2011	61.00	1.5180	1139993	0.0088	2508	79.45	1.7323	114301	0.0094	37	2.582E-04	35.60	1143142		
2024	61.38	1.5234	1140101	0.0314	862	3.644E-05	20.15	2614	84.25	1.7662	114303	0.0099	40	2.476E-04	35.96
1928	59.16	1.5494	1140854	0.0302	834	3.619E-05	20.39	2635	84.88	1.7704	114305	0.0110	40	2.43E-04	36.52
1971	59.53	1.5536	1140935	0.0096	173	5.574E-05	21.21	2649	85.90	1.7772	114307	0.0116	40	2.905E-04	36.94
1983	60.04	1.5591	1141027	0.0093	166	5.623E-05	21.42	2675	86.64	1.7820	114309	0.0139	40	3.495E-04	37.68
2060	62.57	1.5629	1141101	0.0104	192	5.400E-05	21.74	2702	88.06	1.7911	1143117	0.0209	45	4.708E-04	38.48
2074	62.97	1.5900	1141550	0.0085	193	5.469E-05	21.96	69.96							
2011	61.00	1.5695	1141220	0.0106	193	5.469E-05	21.96	1141294	0.0067	123	5.455E-05	22.21			
2036	61.64	1.5762	1141343	0.0074	122	6.028E-05	22.45	1141416	0.0097	147	6.621E-05	22.68			
2048	62.08	1.5808	1141490	0.0091	134	6.817E-05	22.92	1141550	0.0085	128	6.632E-05	23.20			
2060	62.57	1.5859	1141550	0.0085	128	6.704E-05	23.45	1141618	0.0090	134	6.704E-05	23.45			
2074	62.97	1.5944	1141685	0.0090	128	7.016E-05	23.71	1141685	0.0090	122	7.355E-05	23.98			
2100	63.86	1.5990	1141685	0.0090	122	7.016E-05	23.71	1141746	0.0090	122	7.355E-05	23.98			
2113	64.31	1.6034	1141746	0.0090											

Figure I10. Fatigue Crack Growth Rate Data for 2095-T8 0.5 Inch Thick Plate (L-T orientation, KGRAD 2.50). Northrop.

TABLE I33
Fatigue Crack Growth Data Associated with Figure I10 (Specimen F2GL2)

AUTOMATED FATIGUE CRACK GROWTH RATE ANALYSIS

Specimen Id.	F2GL2	Geometry	C(T)
Contract #	WB02115.J	Orientation	L-T
Material	WELDALITE	Yield (ksi)	101.0
Temperature (F)	78	Modulus	10.6
Environment	Lab. air		

Specimen Dimensions (in)

Thickness	0.495	Notch depth	0.605
Width	2.996	Gage length	1.000
Height	3.600	Alpha ratio	1.250

Precrack Parameters

Pmax (lbs)	911.0	Stress ratio (R)	0.10
Final a (in)	0.680	Kmax	4.91

Test Parameters

Initial a (in)	0.771	Initial K	3.40
K-gradient	2.50	Stress ratio (R)	0.10

K Coeff	EvB/P Coeff	Analysis Codes
0.886000	1.000980	KRP
4.640000	-4.669510	0
-13.320000	18.460100	
14.720000	-236.824997	
-5.600000	1214.880000	
0.000000	-2143.570100	

Visual Observations

EvB/P	Crack (EvB/P)	Crack (visual)	Error	CAF
24.03	0.855	0.849	-.006	0.985
25.57	0.909	0.910	0.002	0.986
27.48	0.970	0.972	0.002	0.988
30.72	1.063	1.069	0.007	0.991
32.46	1.108	1.110	0.002	0.993
34.22	1.150	1.150	-.000	0.994
36.98	1.211	1.206	-.006	0.996

Comments

Date of test: 01-28-1992

TABLE I33 (Continued)

Specimen Id. F2GL2	P (lbs)	E48/P (in)	N (X1)	A4 (in)	AN (X1)	AE/AN (in/cyc)	AK (kst/in)	Page 1	Specimen Id. F2G2-2			Page 2
									Pmax (lbs)	E48/P (in)	N (X1)	
21.99	0.7752	174177	271918	0.0181	199081	9.074E-08	3.23	1309	40.08	1.2723	1498556	0.0271
605	22.12	0.7841	373258	0.0185	181574	1.019E-07	3.31	1337	40.56	1.2812	1499582	0.0172
614	22.35	0.7933	453392	0.0186	147514	1.258E-07	3.38	1356	41.02	1.2895	1500542	0.0177
623	22.60	0.8027	520772	0.0181	123971	1.457E-07	3.46	1375	41.54	1.2988	1501488	0.0181
632	22.84	0.8118	577362	0.0178	115839	1.538E-07	3.54	1395	42.03	1.3076	1502388	0.0181
642	23.08	0.8207	636611	0.0184	117511	1.565E-07	3.62	1415	42.57	1.3170	1503250	0.0186
651	23.32	0.8296	694673	0.0185	106408	1.736E-07	3.70	1435	43.11	1.3262	1504070	0.0178
661	23.58	0.8391	743019	0.0182	93930	1.936E-07	3.79	1455	43.62	1.3348	1504748	0.0169
671	23.83	0.8481	788603	0.0183	69828	2.043E-07	3.88	1475	44.12	1.3431	1505406	0.0174
681	24.09	0.8573	832847				1496	44.68	1.3522	1506096	0.0188	1413
711	24.60	0.8752	882227				1517	45.29	1.3619	1506819	0.0167	1384
723	25.16	0.8853	930654	0.0196	90775	2.163E-07	4.15	1539	45.85	1.3709	1507480	0.0179
733	25.44	0.9044	973001	0.0191	82526	2.320E-07	4.25	1561	46.43	1.3799	1508080	0.0181
744	25.71	0.9133	1050922	0.0180	77921	2.371E-07	4.35	1583	47.03	1.3890	1508648	0.0179
755	25.98	0.9224	1086482	0.0185	73032	2.455E-07	4.45	1605	47.62	1.3978	1509125	0.0179
801	26.27	0.9318	1120360		69438	2.663E-07	4.55	1626	48.23	1.4069	1509550	0.0177
813	27.44	0.9688	1255395	0.0180	66424	3.074E-07	4.86	1648	48.83	1.4156	1509930	0.0172
825	27.74	0.9779	1280840	0.0182	50526	3.594E-07	5.21	1671	49.42	1.4240	1510289	0.0181
837	28.04	0.9870	1305921	0.0184	48354	3.814E-07	5.33	1693	50.15	1.4336	1510651	0.0184
850	28.35	0.9963	1329194	0.0191	44973	4.255E-07	5.46	1717	50.75	1.4425	1510987	0.0180
862	28.69	1.0061	1350893	0.0189	40277	4.684E-07	5.58	1836	54.16	1.4871	1512506	0.0173
876	29.00	1.0152	1369471	0.0185	35243	5.150E-07	5.71	1861	54.88	1.4961	1512780	0.0190
889	29.32	1.0243	1386136	0.0185	30944	5.991E-07	5.84	1886	55.71	1.5054	1513053	0.0193
902	29.66	1.0337	1400416	0.0187	25697	7.272E-07	5.98	1912	56.12	1.5154	1513287	0.0180
915	29.99	1.0430	1411834	0.0186	20987	8.866E-07	6.12	1938	57.23	1.5242	1513510	0.0180
929	30.33	1.0523	1421403	0.0184	17678	1.041E-06	6.26	1964	58.15	1.5334	1513732	0.0186
943	30.67	1.0614	1429512	0.0182	15152	1.202E-06	6.40	58.86	1.5428	1513941	0.0193	
956	31.01	1.0705	1436555	0.0180	13339	1.351E-06	6.54	60.45	1.5603	1514439	0.0190	
970	31.35	1.0794	1442851	0.0179	11978	1.496E-06	6.69	2096	61.43	1.5707	1514642	0.0185
985	31.70	1.0885	1448534	0.0185	10675	1.729E-06	6.84	2265	66.52	1.6253	1515325	0.0172
999	32.07	1.0979	1453526	0.0185	9476	1.955E-06	7.00	2121	63.06	1.5789	1514751	0.0169
1014	32.43	1.1070	1458010	0.0187	8639	2.167E-06	7.16	2147	63.92	1.5963	1514969	0.0179
1029	32.82	1.1166	1462165	0.0186	7711	2.412E-06	7.32	2175	64.85	1.6055	1515077	0.0190
1044	33.19	1.1256	1465721	0.0181	6889	2.620E-06	7.49	2352	65.87	1.6153	1515199	0.0184
1060	33.56	1.1346	1482565	0.0183	6648	2.813E-06	7.67	2265	68.57	1.6405	1515438	0.0202
1076	33.97	1.1443	1472369	0.0191	6179	3.092E-06	7.84	2302	69.12	1.6655	1515477	0.0137
1091	34.37	1.1537	1475234	0.0179	5286	3.379E-06	8.02	2325	70.11	1.6543	1515538	0.0183
1108	34.74	1.1622	1477655	0.0181	4998	3.627E-06	8.21	2352	71.20	1.6638	1515606	0.0184
1124	35.17	1.1719	1480232	0.0192	4909	3.916E-06	8.39	2352	72.25	1.6727	1515658	0.0181
1140	35.59	1.1814	1482565	0.0183	4379	4.182E-06	8.59	2381	73.35	1.6818	1515716	0.0177
1157	35.99	1.1902	1484611	0.0179	4021	4.450E-06	8.79	2409	74.50	1.6917	1515769	0.0171
1174	36.41	1.1993	1486586	0.0183	3823	4.794E-06	8.98	2437	74.10	1.6904	1515809	0.0209
1191	36.84	1.2085	1488434	0.0183	3550	5.157E-06	9.19	2471	75.47	1.6930	1515870	0.0289
1208	37.28	1.2176	1490136	0.0181	3271	5.539E-06	9.40	2511	77.06	1.7113	1515932	0.0280
1226	37.72	1.2266	1491705	0.0180	3067	5.870E-06	9.61	2550	79.25	1.7278	1515932	0.0280
1244	38.17	1.2356	1493203	0.0183	2923	6.339E-06	9.84	80.83	71.793	1515976	0.0280	
1262	38.66	1.2452	1494628	0.0185	2683	6.881E-06	10.06	82.87	71.793	1516023	0.0280	
1291	39.12	1.2540	1495886	0.0272	3928	6.919E-06	10.42	85.09	71.7689	1516111		

Figure I11. Fatigue Crack Growth Rate Data for 2095-T8 0.5 Inch Thick Plate (T-L orientation, KGRAD - 4.00 and 2.50). Northrop.

TABLE I34
Fatigue Crack Growth Data Associated with Figure I11 (Specimen F2GT1A)

AUTOMATED FATIGUE CRACK GROWTH RATE ANALYSIS

Specimen Id.	F2GT1A	Geometry	C(T)
Contract #	WB02115N	Orientation	T-L
Material	WELDALITE	Yield (ksi)	.31.0
Temperature (F)	77	Modulus	10.9
Environment	Lab. air		

Specimen Dimensions (in)

Thickness	0.486	Notch depth	0.614
Width	2.997	Gage length	1.000
Height	3.600	Alpha ratio	1.250

Precrack Parameters

Pmax (lbs)	1271.0	Stress ratio (R)	0.10
Final a (in)	0.901	Kmax	8.50

Test Parameters

Initial a (in)	0.901	Initial K	8.50
K-gradient	-4.00	Stress ratio (R)	0.10

K Coeff	EvB/P Coeff	Analysis Codes
0.886000	1.000980	KRP 2 0
4.640000	-4.669510	
-13.320000	18.460100	
14.720000	-236.824997	
-5.600000	1214.880000	
0.000000	-2143.570100	

Visual Observations

EvB/P	Crack (EvB/P)	Crack (visual)	Error	CAF
24.97	0.900	0.872	-0.028	1.000
26.23	0.941	0.947	0.005	1.000
28.03	0.996	1.010	0.014	1.000
32.61	1.118	1.119	0.001	1.000
37.42	1.224	1.203	-.021	1.000
40.54	1.285	1.261	-.024	1.000
47.82	1.405	1.381	-.024	1.000
50.85	1.447	1.426	-.022	1.000
55.56	1.508	1.481	-.027	1.000
58.77	1.545	1.525	-.020	1.000

Pmax (lbs)	EvB/P	a (in)	N (X1)	Δa (in)	ΔN (X1)	Δa/ΔN (in/cyc)	ΔK (ksi/in)
25.44	0.9161	12656					
1127	25.73	0.9256	21925	0.0183	18984	9.616E-07	6.93
1078	26.00	0.9343	31640	0.0174	21722	8.018E-07	6.68
1033	26.27	0.9430	43646	0.0174	28109	6.203E-07	6.45
989	26.55	0.9518	59749	0.0179	37173	4.808E-07	6.22
947	26.85	0.9609	80820	0.0183	45759	3.998E-07	6.01
906	27.15	0.9701	105508	0.0185	52122	3.552E-07	5.79
867	27.46	0.9794	132941	0.0183	57804	3.164E-07	5.58
829	27.76	0.9884	163312	0.0178	64272	2.772E-07	5.38
794	28.06	0.9972	197213	0.0170	71996	2.477E-07	5.19
28.37	1.0062	235308					

TABLE I35
Fatigue Crack Growth Data Associated with Figure I11 (Specimen F2GT1B)

AUTOMATED FATIGUE CRACK GROWTH RATE ANALYSIS

Specimen Id.	F2GT1B	Geometry	C(T)
Contract #	WB0211SN	Orientation	T-L
Material	WELDALITE	Yield (ksi)	101.0
Temperature (F)	77	Modulus	10.9
Environment	Lab. air		

Specimen Dimensions (in)

Thickness	0.486	Notch depth	0.614
Width	2.997	Gage length	0.200
Height	3.600	Alpha ratio	1.000

Precrack Parameters

Pmax (lbs)	1271.0	Stress ratio (R)	0.10
Final a (in)	0.901	Kmax	8.50

Test Parameters

Initial a (in)	1.064	Initial K	4.40
K-gradient	2.50	Stress ratio (R)	0.10

K Coeff	EvB/P Coeff	Analysis Codes
0.886000	1.000980	KRP 2 0
4.640000	-4.669510	
-13.320000	18.460100	
14.720000	-236.824997	
-5.600000	1214.880000	
0.000000	-2143.570100	

Visual Observations

EvB/P	Crack (EvB/P)	Crack (visual)	Error	CAF
24.97	0.900	0.872	-.028	1.000
26.23	0.941	0.947	0.005	1.000
28.03	0.996	1.010	0.014	1.000
32.61	1.118	1.119	0.001	1.000
37.42	1.224	1.203	-.021	1.000
40.54	1.285	1.261	-.024	1.000
47.82	1.405	1.381	-.024	1.000
50.85	1.447	1.426	-.022	1.000
55.56	1.508	1.481	-.027	1.000
58.77	1.545	1.525	-.020	1.000

Comments

Date of test: 01-14-1992

TABLE I35 (Continued)

Specimen Id.	F2GT18	Page 1		Page 2												
		E48/P (lbs)	Δ (in)	ΔN (X1)	ΔK (kN/in/cyc)											
784	38.67	1.2491	493512	0.0181	246118	7.364E-07	6.43	1.463	74.00	1.6905	606303	0.0185	548	3.36E-05	18.93	
795	39.13	1.2282	506627	0.0181	19751	9.345E-07	6.58	1502	75.09	1.6992	608549	0.0178	484	3.67E-05	19.38	
806	40.11	1.2266	518130	0.0185	15063	1.195E-06	6.73	1518	76.24	1.7083	608788	0.0174	459	3.28E-05	19.80	
818	40.58	1.2853	526378	0.0180	13111	1.306E-06	6.88	1536	77.31	1.7166	609008	0.0169	402	4.14E-05	20.24	
830	41.04	1.2238	533193	0.0171	12955	1.413E-06	7.04	1552	78.45	1.7251	609190	0.0166	362	4.5E-05	20.66	
842	41.55	1.3029	539489	0.0177	11807	1.579E-06	7.20	1571	79.53	1.7332	609370	0.0192	386	4.36E-05	21.17	
854	42.09	1.3214	545688	0.0186	10345	1.815E-06	7.36	1589	81.07	1.7443	609576	0.0202	364	5.57E-05	21.63	
866	42.63	1.3217	550632	0.0176	8543	2.059E-06	7.53	1609	82.36	1.7534	609734	0.0183	303	6.10E-05	22.19	
879	43.11	1.3200	559839	0.0179	7405	2.422E-06	7.71	1628	83.70	1.7627	609879	0.0189	277	6.80E-05	22.72	
890	43.69	1.3396	563437	0.0178	6559	2.717E-06	7.87	1645	85.13	1.7723	610011	0.0179	240	7.44E-05	23.22	
903	44.18	1.3417	566339E	0.0173	6017	2.876E-06	8.06	1664	86.38	1.7806	610119	0.0172	228	7.53E-05	23.76	
916	44.74	1.3569	569454	0.0186	5983	3.106E-06	8.24	1682	87.77	1.7895	610239	0.0182	240	7.50E-05	24.29	
929	45.33	1.3664	572381	0.0183	5491	3.234E-06	8.42	1700	89.23	1.7987	610359	0.0181	228	7.74E-05	24.84	
942	45.90	1.3752	574945	0.0177	4884	3.626E-06	8.62	1719	90.68	1.8077	610467	0.0186	216	8.63E-05	25.43	
955	46.47	1.3841	577265	0.0176	4461	3.954E-06	8.81	1738	92.29	1.8173	610575	0.0196	216	9.01E-05	26.04	
968	47.04	1.3929	579406	0.0176	4126	4.271E-06	9.01	1757	93.98	1.8272	610683	0.0193	203	9.53E-05	26.66	
982	47.63	1.4017	581391	0.0179	3816	4.681E-06	9.21	1776	95.63	1.8366	610778	0.0176	178	9.46E-05	27.27	
995	48.24	1.4107	583221	0.0179	3564	4.994E-06	9.42	1796	97.09	1.8448	610861	0.0185	166	1.16E-04	27.95	
1009	48.85	1.4195	584955	0.0183	3442	5.323E-06	9.64	1814	99.00	1.8551	610944	0.0201	153	1.16E-04	28.59	
1022	49.52	1.4291	586663	0.0172	2967	5.790E-06	9.84	1835	100.84	1.8649	611013	0.0202	133	1.23E-04	29.34	
1036	50.07	1.4367	587922	0.0165	2739	6.013E-06	10.07	1855	102.87	1.8753	611076	0.0203	116	1.47E-04	30.07	
1051	50.70	1.4455	589402	0.0198	3050	6.479E-06	10.30	1874	104.84	1.8852	611130	0.0179	91	1.79E-04	30.77	
1064	51.51	1.4565	590972	0.0193	2701	7.150E-06	10.53	1895	106.49	1.8932	611167	0.0191	81	2.55E-04	31.59	
1080	52.14	1.4648	592103	0.0169	2339	7.215E-06	10.78	1918	108.82	1.9043	611211	0.0260	68	2.56E-04	32.51	
1095	52.79	1.4734	593311	0.0186	2491	7.466E-06	11.04	1949	112.09	1.9192	611255	0.0345	91	3.11E-04	33.78	
1109	53.58	1.4834	595954	0.0185	2319	7.986E-06	11.27	2004	116.58	1.9388	611301	0.0579	96	3.31E-04	36.14	
1125	54.25	1.4919	596631	0.0176	2015	8.472E-06	11.55	216.20	1.9771	611351						
1139	54.99	1.5010	596669	0.0182	2031	8.943E-06	11.80									
1154	55.73	1.5100	597662	0.0172	1607	9.508E-06	12.06									
1170	56.42	1.5182	598476	0.0177	1695	1.042E-05	12.34									
1184	57.22	1.5277	599357	0.0181	1681	1.079E-05	12.60									
1200	57.98	1.5363	600157	0.0179	1573	1.138E-05	12.90									
1216	58.79	1.5456	600930	0.0186	1489	1.250E-05	13.20									
1232	59.64	1.5550	601647	0.0185	1375	1.347E-05	13.50									
1248	60.48	1.5641	602305	0.0181	1275	1.422E-05	13.82									
1264	61.32	1.5731	602921	0.0172	1162	1.482E-05	14.12									
1281	62.11	1.5813	603467	0.0178	1136	1.570E-05	14.45									
1296	63.04	1.5909	604057	0.0182	1082	1.681E-05	14.76									
1307	63.90	1.5995	604549	0.0181	980	1.845E-05	15.12									
1329	64.86	1.6090	605036	0.0181	931	1.943E-05	15.45									
1346	65.75	1.6176	605480	0.0179	867	2.070E-05	15.81									
1363	66.73	1.6269	605903	0.0187	828	2.256E-05	16.17									
1380	67.73	1.6363	606308	0.0180	760	2.367E-05	16.54									
1397	68.68	1.6449	606663	0.0178	712	2.496E-05	16.93									
1414	69.71	1.6541	607021	0.0177	669	2.651E-05	17.29									
1432	70.69	1.6627	607332	0.0181	709	2.556E-05	17.70									
1448	71.80	1.6722	607730	0.0183	610	2.692E-05	18.08									
1467	72.81	1.6807	608001	0.0183	573	3.185E-05	18.53									

Figure I12. Fatigue Crack Growth Rate Data for 2095-T8 0.5 Inch Thick Plate (T-L orientation, KGRAD 2.50). Northrop.

TABLE I36
Fatigue Crack Growth Data Associated with Figure I12 (Specimen F2GT2)

AUTOMATED FATIGUE CRACK GROWTH RATE ANALYSIS

Specimen Id.	F2GT2	Geometry	C(T)
Contract #	WB0211SN	Orientation	T-L
Material	WELDALITE	Yield (ksi)	101.0
Temperature (F)	77	Modulus	10.8
Environment	Lab. air		

Specimen Dimensions (in)

Thickness	0.494	Notch depth	0.605
Width	2.999	Gage length	0.200
Height	3.600	Alpha ratio	1.000

Precrack Parameters

Pin σ (lbs)	1166.0	Stress ratio (R)	0.10
Final a (in)	0.665	K _{max}	6.21

Test Parameters

Initial a (in)	0.741	Initial K	4.60
K-gradient	2.50	Stress ratio (R)	0.10

K Coeff	EvB/P Coeff	Analysis Codes
0.886000	1.000980	KRP 1 0
4.640000	-4.569510	
-13.320000	18.460100	
14.720000	-236.824997	
-5.600000	1214.880000	
0.000000	-2143.570100	

Visual Observations

EvB/P	Crack (EvB/P)	Crack (visual)	Error	CAF
21.66	0.785	0.795	0.010	1.006
23.23	0.844	0.842	-.002	1.005
28.22	1.003	0.990	-.014	1.001
34.19	1.154	1.151	-.003	0.998
36.97	1.213	1.219	0.005	0.997
46.28	1.377	1.379	0.002	0.993

Comments

Date of test: 02-12-1992

TABLE I36 (Continued)

P er son (lbs.)	Specimen Id. F2GT2 E4B/P (in.)	N (X1) (in.)	Ae (in.)	Page 1		Specimen Id. F2GT2		N (X1) (in.)	Ae (in.)	Page 2	
				A _N (X1)	A _{E/N} (in/cyc)	A _K (ksi/in)	E4B/P (lbs.)			A _N (X1)	A _{E/N} (in/cyc)
878	21.74	0.7885	326137	405818	0.0239	122269	1.957E-07	4.76	1816	38.21	1.2378
895	22.13	0.8035	448406	0.0178	851112	2.094E-07	4.91	1842	38.67	1.2467	1007739
908	22.60	0.8124	490989	0.0177	81995	2.162E-07	5.02	1869	39.08	1.2546	0.0185
924	22.84	0.8301	530401					1895	39.58	1.2640	0.0168
951	23.15	0.8415	557757					1922	40.05	1.2728	1009359
964	23.34	0.8484	583768	0.0154	59790	2.583E-07	5.39	1948	40.50	1.2808	0.0163
978	23.59	0.8570	617547	0.0178	67507	2.585E-07	5.49	1976	40.95	1.2891	101019
992	23.84	0.8658	651275	0.0178	66576	2.674E-07	5.62	2004	41.48	1.2984	0.0189
1007	24.10	0.8748	684123	0.0177	64210	2.749E-07	5.74	2034	42.03	1.3080	1010561
1022	24.35	0.8835	715486	0.0174	62704	2.768E-07	5.87	2065	42.56	1.3171	1010924
1037	24.61	0.8921	746827	0.0176	62694	2.804E-07	6.01	2095	43.11	1.3264	0.0180
1052	25.15	0.9011	778180	0.0178	61327	2.899E-07	6.14	2124	43.64	1.3351	1011184
1068	25.39	0.9099	808154	0.0169	55847	3.018E-07	6.27	2154	44.15	1.3435	1011419
1083	25.68	0.9179	834027	0.0171	50008	3.423E-07	6.42	2185	44.69	1.3521	1011838
1100	25.97	0.9364	89270	0.0184	49275	3.744E-07	6.56	2215	45.30	1.3618	1012059
1116	26.26	0.9453	883302	0.0183	45915	3.990E-07	6.71	2254	45.98	1.3707	1012273
1133	26.54	0.9538	920616	0.0175	37374	4.673E-07	6.87	2281	46.70	1.3834	1012489
1150	26.82	0.9625	935577	0.0181	31507	4.435E-07	7.02	2317	47.12	1.3988	0.0191
1168	27.14	0.9719	948228	0.0193	27552	6.575E-07	7.18	2345	47.63	1.3975	1012591
1186	27.47	0.9818	957241	0.0184	21664	8.924E-07	7.35	2375	48.26	1.4067	1012661
1204	27.77	0.9903	965882	0.0171	10089	1.698E-06	7.50	2408	48.84	1.4153	1012995
1223	28.07	0.9989	967330	0.0182	8338	2.182E-06	7.88	2441	49.47	1.4242	1013128
1240	28.40	1.0085	971220	0.0175	6790	2.579E-06	8.04	2476	50.15	1.4337	1013249
1259	28.69	1.0164	974120	0.0163	5587	2.926E-06	8.23	2547	51.51	1.4524	1013358
1276	28.99	1.0248	976807	0.0170	5179	3.280E-06	8.40	2582	52.25	1.4623	1013528
1295	29.30	1.0334	979300	0.0175	4905	3.567E-06	8.59	2622	52.96	1.4715	1013609
1314	29.64	1.0423	981712	0.0179	4606	3.882E-06	8.78	2660	53.79	1.4821	1013688
1334	29.97	1.0513	983906	0.0178	4206	4.226E-06	8.98	2703	54.62	1.4925	1013756
1354	30.31	1.0601	985918	0.0180	3983	4.509E-06	9.19	2741	55.51	1.5035	1013815
1374	30.66	1.0693	987689	0.0177	3677	4.803E-06	9.39	2789	56.23	1.5121	1013859
1394	31.00	1.0778	989594	0.0168	3286	5.103E-06	9.60	2840	57.29	1.5247	1013905
1415	31.33	1.0860	991174	0.0174	3197	5.429E-06	9.82	2925	58.71	1.5409	1013954
1435	31.69	1.0951	992191	0.0184	3168	5.811E-06	10.04	3056	61.26	1.5688	1014005
1457	32.07	1.1044	993342	0.0181	2901	6.237E-06	10.27	65.57	1.6124		
1479	32.44	1.1132	996692	0.0172	2542	6.785E-06	10.50				
1500	32.79	1.1217	996884	0.0172	2360	7.285E-06	10.74				
1523	33.17	1.1304	998052	0.0180	2279	7.893E-06	10.98				
1545	33.57	1.1397	999163	0.0184	2132	8.632E-06	11.23				
1593	33.97	1.1488	1000163	0.0360	4047	8.883E-06	11.76				
1617	35.18	1.1756	1003210	0.0357	3811	9.358E-06	12.03				
1663	35.59	1.1845	1003995	0.0166	1463	1.136E-05	12.56				
1688	35.96	1.1922	1004673	0.0168	1365	1.231E-05	12.85				
1711	36.39	1.2013	1005360	0.0180	1369	1.312E-05	13.12				
1738	36.83	1.2102	1006043	0.0193	1363	1.415E-05	13.45				
1762	37.34	1.2206	1006722	0.0180	1147	1.571E-05	13.73				
1791	37.72	1.2282	1007189	0.0172	1017	1.696E-05	14.08				

T-38 LIF & v. N 0.01" 4/24/92

Figure I13. T38 LIF Spectrum Fatigue Crack Growth Rate Data for 2095-T8 0.5 Inch Plate
(Max Stress = 38 ksi, Flaw = 0.01 inch). Northrop.

Figure 114. T38 LIF Spectrum Fatigue Crack Growth Rate Data for 2095-T8 0.5 Inch Plate
 (Max Stress = 38 ksi, Flaw = 0.05 inch). Northrop.

T-38 LIF Spectrum Fatigue

Figure I15. T38 LIF Spectrum Fatigue Crack Growth Rate Data for 2095-T8 0.5 Inch Plate
(Max Stress = 38 KSI). Northrop.

da/dH v a 4/24/92

SECTION V

CONCLUSIONS

Seven aerospace laboratories participated in generating data on the 2095-T8 0.5-inch-thick plate for the cooperative test program. These data combined with previous interim reports on the Air Force/Industry Cooperative Test Program on Advanced Aluminum Alloys provide an extensive data base on aluminum-lithium alloys.