Issues in water withdrawal from ISIMIP2b

Provided input files for MATSIRO and LPJmL, histsoc

(calculated based on ISIMIP2a multimodel mean of WaterGAP, PCRGLOB-WB and H08 simulations)

domww_histsoc_annual_1901-2005.nc Path: /ISIMIP/ISIMIP2b/InputData/water_abstraction/histsoc/

Domww histsoc 2000

Domww histsoc 2001

Current: (i=193, j=0) 0 (x=-83.25, y=83.75)

Concatenated 1860-2099 timeseries for two individual grid cells Histsoc (file shown on right)

Rcp60soc: SSP2 from Global Water Futures and Solutions, constant after 2050

Domestic withdrawal

Industrial withdrawal

Sharp transition in 2000, again transition in 2005-2006-2007 (different input files)

Domestic withdrawal

Industrial withdrawal

Provided input files for MATSIRO and LPJmL, histsoc

(calculated based on ISIMIP2a multimodel mean of WaterGAP, PCRGLOB-WB and H08 simulations) domww_histsoc_annual_1901-2005.nc
Path: /ISIMIP/ISIMIP2b/InputData/water_abstraction/histsoc/

Spatial extent of the issue (shown are relative difference maps between 2000-1999 and 2001-2000) showing the difference in transitioning and which areas are affected by the issue

Sharp, unrealistic transitions in 2000-2001: along coastlines, Eastern China, ...

Concatenated 1860-2099 timeseries for two individual grid cells

Histsoc (file shown on right)

Rcp60soc: SSP2 from Global Water Futures and Solutions, constant after 2050

Grid cell in Saudi-Arabia

Domestic withdrawal

Industrial withdrawal

Grid cell in France

Domestic withdrawal

Industrial withdrawal

Unrealistic transitions can directly be related to inconsistencies in original population dataset*

Population (uncorrected)

Population (uncorrected)

^{*} See further slides for this issue

Simulated withdrawals (for same grid cells and global mean)

H08 (Had-GEM)

Grid cell in Saudi-Arabia

Domestic withdrawal

Industrial withdrawal

Grid cell in France

Domestic withdrawal

Industrial withdrawal

Domestic withdrawal

Industrial withdrawal

Simulated withdrawals (for same grid cells and global mean)

CWatM (Had-GEM)

Grid cell in Saudi-Arabia

Domestic withdrawal

Industrial withdrawal

Grid cell in France

Domestic withdrawal

Industrial withdrawal

Global mean domestic withdrawal

Global mean Industrial withdrawal

Population input dataset issues ISIMIP2b

population_histsoc_0p5deg_annual_1861-2005.nc4 Population 2005

population_ssp2soc_0p5deg_annual_2006-2100.nc4 Population 2006

Inconsistencies: North-African countries, inland Australia, Siberia etc

While the global population seems fine, there are problems in individual grid cells, like in this Austrialian grid cell

Corrected data

With corrected data

Recap: calculation of water deficit

Little recap: conceptual figure on lifetime water deficit calculation

Variables and defenitions used for water demand per ISIMIP model

Model	Irrigation demand	Domestic demand	Industrial demand	Total demand	Reference
CWatM	Potential irrigation withdrawal (pirrww)	Actual domestic use (adomuse)	Actual industrial use (ainduse)	Total potential water withdrawal (ptotww)	
Н08	Potential irrigation withdrawal (pirrww)	Actual domestic withdra wal (adomww)	Actual industrial withdrawal (aindww)	Sum of sectors	
LPJmL	Potential irrigation withdrawal (pirrww)	Historical: multi-model mean of ISI MIP2a (WaterGAP, PCR-GLOBWB, H08)	IMIP2a (WaterGAP, PCR-GLOBWB , H08)	Sum of sectors	
MATSIRO	Potential irrigation withdrawal (pirrww)	Future: multi-model mean of (Wat erGAP, PCR-GLOBWB, H08) under SSP2 (Wada et al., 2016) until 205 0, constant beyond	terGAP, PCR-GLOBWB, H08) unde	Sum of sectors	

Lifetime water deficit Total water amount not present when demanded during lifetime

Annual amount of water that is not meeting monthly demand

$$D_{i,y} = \begin{cases} \sum_{m=1}^{12} (WD_{i,m} - WA_{i,m}) & \text{if } WD_{i,m} > WA_{i,m} \\ 0 & \text{if } WD_{i,m} < WA_{i,m} \end{cases}$$

For water deficit and demand of the different birth cohorts

$$D_{i,birth_cohort} = \sum_{y=0}^{years\ lived} D_{i,y}/pop_{i,y}$$
 $WD_{i,birth_cohort} = \sum_{y=0}^{years\ lived} WD_{i,y}/pop_{i,y}$

Share of total water demand not met during lifetime

$$WD\%_{i, birth_cohort} = D_{i, birth_cohort} / WD_{i, birth_cohort}$$

D_{i,v} Water deficit in cell i, month m (m³/ year)

WD_{i,m} Total water demand in cell i, month m (m³/month)

WA_{i,m} Total water availability in cell i, month m (m³/month)

pop_{i,y} Number of people in cell i and year y (#people / year)

D_{i,birth_cohort} Water deficit per capita integrated over lifetime of birth cohort (m³/cap)

WD_{i,birth_cohort} Water demand per capita integrated over lifetime of birth cohort (m³/cap)

WD%_{i,birth_cohort} Share of total water demand not met during lifetime (%)

Water availability and demand from the ISIMIP global water sector (0.5°)

Water availability: water from upstream and local runoff, corrected for environmental flow

$$WA_{i,m} = dis_{upstream, i, m} + qtot_{i,m} - EF_{i,m}$$

- WA_{i,m} Water availability in cell i, month m (m³/month)
- dis_{upstream.i.m} Discharge of direct upstream cells of i (m³/month)
- qtot_{i,m}
 Local runoff in cell i (m³/month)
- EF_{i,m} Environmental flow (m³/month)

based on mean discharge (Pastor et al. 2014)

Water demand: taken as total potential water withdrawal (ptotww)

$$WW_{i,m} = WW_{industrial, i, m} + WW_{domestic, i, m} + WW_{irrigation, i, m}$$

Depending on the model availability, actual water use is used (but no water limitation, so actual = potential)

	domestic	industrial/man	irrigation
CWatM	adomuse	ainduse	pirrww
H08	adomww	amanww	pirrww
LPJmL	0	0	pirrww
MATSIRO	0	0	pirrww