MATH 113: Homework 2

William Guss 26793499 wguss@berkeley.edu

September 1, 2016

32. Let \mathcal{R} be the following relation. We say that $x\mathcal{R}y\in\mathbb{R}$ if and only if $|x-y|\leq 3$. We claim that the relation is not an equivalence relation.

Proof. Let x = 0, y = 3, z = 6. It is obvious that $x\mathcal{R}y$ and $y\mathcal{R}z$, but since $|z - x| = 6 \le 3$ so it is not the case that $x\mathcal{R}z$. Therefore the relation is not transitive by counter example, and thereby is not an equivalence relation.

4. We compute the result of $(-i)^{35}$.

$$(-i)^{35} = (-1)^{35}i^{35} = -i^3 = -i^2i = i.$$

8. We compute the result of $(i+1)^3$ by first establishing the coefficients of pascals triangle as follows.

$$(a+b)^0$$
 1 1 $(a+b)^1$ 1 1 1 $(a+b)^2$ 1 2 1 $(a+b)^3$ 1 3 3 1 $(a+b)^4$ 1 4 6 4 1

Therefore we apply the rule to our equation and yield

$$(i+1)^3 = 1 + 3i + 3i^2 + i^3 = -2 + 3i - i = -2 + 2i.$$

19. We find all solutions to $z^3=-27i$. First let $z=re^{i\theta}$. Then $r^3e^{i3\theta}=27e^{-i\pi/2}$. Therefore r=3 and $\theta=-\pi/2$ gives the principle solution $\theta^*=-\pi/6$. It also follows however that $\theta=-\pi/6+2k\pi/3$ are all valid solutions since in the cube

$$e^{i\theta^3} = e^{-i\pi/6 + i2k\pi/3^3} = e^{-i\pi/2 + i2k\pi} = e^{-i\pi/2}.$$

Hence the following set satisfies $z^3 = -27i$

$$S = \left\{ 3 \exp\left(i\pi \left(\frac{2k}{3} - \frac{1}{6}\right)\right) \mid k \in \mathbb{Z}. \right\}.$$

21. We find all solutions to $z^6=-64$ using the same logic as before. Observe that $2^6=64$, and $e^{i\pi}+1=0$ (magic!!!). Then

$$S = \left\{ 2 \exp\left(i\pi \frac{1+2k}{6}\right) \mid k \in \mathbb{Z}. \right\}$$
 (1)

satisfies $z \in S \implies z^6 = -64$.