Effective one-electron potential

$$U(\vec{r} + \vec{R}) = U(\vec{r})$$

4.1. Bloch - Theorem

3. Crystal vibrations

Translational symmetry

$$\hat{H}(\vec{r} + \vec{R}) = \hat{H}(\vec{r})$$

vields Bloch-wave:

$$\Psi(\vec{r} + \vec{R}) = e^{i\vec{k}\vec{R}}\Psi(\vec{r})$$

and therefore:

$$\Psi_{\vec{k}}(\vec{r}) = e^{i\vec{k}\vec{r}}u_{\vec{k}}(\vec{r})$$
$$u_{\vec{k}}(\vec{r} + \vec{R}) = u_{\vec{k}}(\vec{r})$$

$$\Psi_{\vec{k}+\vec{G}}(\vec{r}) = \Psi_{\vec{k}}(\vec{r})$$
$$E_{\vec{k}+\vec{G}} = E_{\vec{k}}$$

Energy $E = \frac{\hbar^2 \vec{k}^2}{2m^*}$

Density
$$n = \frac{1}{(2\pi)^3} \cdot 2 \cdot \int_0^{k_F} 4\pi k^2 dk$$

Density of states
$$D(E) = \frac{1}{2\pi^2} (\frac{\hbar^2}{2m^*})^{2/3} \sqrt{E}$$

Fermi-Wellenvektor	$k_F = \sqrt[3]{3\pi^2 n}$	$1.75 \ { m \AA}^{-1}$	
Fermi-Geschwindigkeit	$v_F = \hbar k_F/m$	$0.0068 \ c = 2 \cdot 10^6 \ \text{m/s}$	2
Fermi-Energie	$E_F = \frac{\hbar^2 k_F^2}{2m} = \frac{\hbar^2}{2m} (3\pi^2 n)^{2/3}$	11.7 eV	4
Zustandsdichte bei E_F	$D(E_F) = \frac{3}{2}n(E_F)/E_F$	$0.38 \; (eV \cdot Atom)^{-1}$	1
Energiedichte	$u = \frac{\hbar^2}{2m} \frac{k_F^5}{5\pi^2} = \frac{3}{5} n E_F$	$2.01 \cdot 10^{11} \text{ J/m}^3$]
Mittlere Energie	$u/n = \frac{3}{5}E_F$	7 eV	7
Druck	$p = -\frac{\partial E}{\partial V} _{N} = \frac{2}{3}u$	$1.34 \cdot 10^{11} \text{ Pa}$	(
Kompressionsmodul	$\kappa = -V \frac{\partial p}{\partial V} = \frac{5}{3}p$	$2.24 \cdot 10^{11} \text{ Pa}$	

Zahlenwerte: Aluminium mit drei Valenzelektronen $n = \frac{3}{a^3/4}$, a = 4.05 Å

4.2. Density of states

3. Crystal vibrations

Density of states $D(E) = \frac{1}{2\pi^2} (\frac{\hbar^2}{2m^*})^{2/3} \sqrt{E}$

Energy
$$E(\vec{k}) = \frac{\hbar^2 \vec{k}^2}{2m^*}$$

$$E_{\vec{k}} = E_{\vec{k} + \vec{G}}$$

4.3. Fermi distribution-function

4. Electrons in solids

$$f(E,T) = \frac{1}{e^{\frac{E-\mu}{k_B T}} + 1}$$

width $\approx 4k_BT$

$$f(E_F,T) = \frac{1}{2}$$

4.4. Specific heat

$$c_v = c_v^{el} + c_v^{lattice}$$
$$c_v^{el} = \frac{\pi^2}{3} k_B^2 \cdot D(E_F) \cdot T$$

at 300 K: $c_v^{lattice} pprox {
m 1000} \cdot c_v^{el}$

at 10 K:
$$c_v = \gamma T + \beta T^3$$

4.4. Specific heat

4. Electrons in solids

$$c_v^{el,free} = \frac{\pi^2}{2} k_B^2 \cdot \frac{n}{E_F} \cdot T = \gamma_{theoret.} \cdot T$$

Metall	$\gamma_{\text{exp.}} \left(10^{-3} \frac{\text{J}}{\text{Mol K}^2} \right)$	$\gamma_{\rm exp.}/\gamma_{\rm theoret.}$
Li	1.7	2.3
Na	1.7	1.5
K	2.0	1.1
Cu	0.69	1.37
Ag	0.66	1.02
Al	1.35	1.6
Fe	4.98	10.0
Co	4.98	10.3
Ni	7.02	15.3

heavy fermions (e.g. CeAl₃): $m_{th} \approx 100-1000 \cdot m_e$

Distance

100

$$\delta n = D(E_F) \cdot e \delta U$$

Poisson equation:

$$\nabla^2 \delta U = -\frac{\rho}{\epsilon_0} = \frac{|e| \ \delta n}{\epsilon_0}$$

Solution:

$$\delta U = \frac{e^{-r/r_{TF}}}{r}$$

whereby Thomas-Fermi screening length:

$$r_{TF} = \sqrt{\frac{\epsilon_0}{e^2 D(E_F)}}$$

4.5. Mott insulator

4. Electrons in solids

In a shallow potential the number of bound states decreases

$$r_{TF} \propto D(E_F)^{-1/2} \propto n^{-1/2}$$

increase of $n \Rightarrow$ decrease of $r_{TF} \Rightarrow$ free electrons

Mott transition: insulator ⇒ metal

4.5. Thermionic emission

$$j = \frac{4\pi me}{h^3} (kT)^2 e^{-\Phi/kT}$$

$$\Phi = \Phi - \sqrt{\frac{e^3 \mathcal{E}}{4\pi \epsilon_0}}$$
 Potential of the external field \mathcal{E}

Work function

Table 6.3. Work functions of elements in eV (polycrystalline samples, after Michaelson [6.5])

Li 2.9	Be 4.98											B 4.45	-		
Na 2.75	Mg 3.66												Si 4.85		S -
			Ti 4.33												
Rb 2.16	Sr 2.59	Y 3.1	Zr 4.05	Nb 4.3	Mo 4.6	Tc -	Ru 4.71	Rh 4.98	Pd 5.12	Ag 4.26	Cd 4.22	In 4.12	Sn 4.42	Sb 4.55	Te 4.95
			Hf 3.9												

4.6. Nearly free electrons

4. Electrons in solids

Potential: $V(\vec{r}) = \sum_{\vec{G}} V_{\vec{G}} e^{i\vec{G}\vec{r}}$

periodisch: $V(\vec{r}) = V(\vec{r} + \vec{R}) \Rightarrow \vec{G} \cdot \vec{R} = 2\pi n$

Blochwelle: $\Psi(\vec{r}) = e^{i\vec{k}\vec{r}} \cdot u_{\vec{k}}(\vec{r})$

Potential: $u_{\vec{k}}(\vec{r}) = \sum_{\vec{G}} u_{\vec{G}} e^{i\vec{G}\vec{r}}$

periodisch: $u(\vec{r}) = u(\vec{r} + \vec{R}) \Rightarrow \vec{G} \cdot \vec{R} = 2\pi n$

102

(a) The free electron & vs. k

parabola in one dimension. (b) Step 1 in the construction to determine the distortion in the free electron parabola in the neighborhood of a

Bragg "plane," due to a weak

centered on K. (c) Step 2 in the construction to determine the distortion in the free electron parabola in the neighborhood of a Bragg "plane." The degeneracy of the two parabolas at K/2 is split. (d) Those portions

to the original free electron parabola given in (a). (e) Ef-

way of displaying the electronic levels in a periodic potential is known as the extended-zone scheme. (f) The levels of (e), displayed in a reduced-zone scheme, (g) Free electron levels of (e) or (f) in a reported-zone scheme.

Schrödinger: $\left[\frac{\hbar^2}{2m}\nabla^2 - E + V(\vec{r})\right]\Psi(\vec{r}) = 0$

. . .

$$\left[\frac{\hbar^2}{2m}(\vec{k} + \vec{G})^2 - E\right]u_{\vec{G}} + \sum_{\vec{G}'} V_{\vec{G}'} u_{\vec{G}'} = 0$$

Zweibandnäherung:

$$\begin{pmatrix} \frac{\hbar^2(\vec{k}+\vec{G}_1)^2}{2m} - E + V_0 & V_{\vec{G}_1 - \vec{G}_2} \\ V_{\vec{G}_1 - \vec{G}_2} & \frac{\hbar^2(\vec{k}+\vec{G}_2)^2}{2m} - E + V_0 \end{pmatrix} \begin{pmatrix} u_{\vec{G}_1} \\ u_{\vec{G}_2} \end{pmatrix} = 0$$

det() = 0 ...

4.6. Nearly free electrons

4. Electrons in solids

 $E(\underline{k}) = V_0 + \frac{1}{2} \frac{\hbar^2}{2m} (\underline{k}_1^2 + \underline{k}_2^2) \pm \sqrt{\left[\frac{1}{2} \frac{\hbar^2}{2m} (\underline{k}_1^2 - \underline{k}_2^2)\right]^2 + \left|V_{\underline{G}_1 - \underline{G}_2}\right|^2}.$

$$\underline{k}_1 = \underline{k} + \underline{G}_1 \quad \underline{k}_2 = \underline{k} + \underline{G}_2$$

"back-folding": E(k) = E(k+G)

$$E(G/2) = V_0 + \frac{\hbar^2}{2m}(G/2)^2 \pm |V_G|$$

$$E(k \neq G/2) \approx V_0 + \frac{\hbar^2}{2m}k^2$$

Extended zone scheme

Reduced zone scheme

Repeated zone scheme

K=2π/a

 $e^{i\varphi} = \frac{V_{g_1 - g_2}}{|V_{g_1 - g_2}|}$

4.6. Solution at Brillouin zone-boundary

4. Electrons in solids

Standing waves: $\Psi_{1/2}=\pm 2u_{g_2} \frac{i\sin[(\vec{k}+\vec{G}_2)\vec{r}+\varphi/2]}{\cos[(\vec{k}+\vec{G}_2)\vec{r}+\varphi/2]}$

V reell,
$$\varphi = 0$$

4.7 Tight binding bandstructure

4. Electrons in solids

Blochwelle: $\Psi_k(\vec{r}) = \sum_j b_j \sum_{\vec{R}} e^{i\vec{k}\vec{R}} \varphi_j(\vec{r} - \vec{R})$

$$\sum_{j} \left[\sum_{\vec{R}} e^{i\vec{k}\vec{R}} \left\{ \int d^3r \varphi_j^*(\vec{r} - \vec{R}') \right] \left(\frac{\hbar^2}{2m} \nabla^2 - V(\vec{r}) \right) \varphi_j(\vec{r} - \vec{R}) - E \int d^3r \varphi_j^*(\vec{r} - \vec{R}') \varphi_j(\vec{r} - \vec{R}) \right\} \right] b_j = 0$$

Aluminium-Bandstruktur mit 1 s-artigen, 3 p-artigen und 5 d-artigen Basisfunktionen (j = 1 . . . 9) nach: D. A. Papaconstantopoulos, Handbook of the band structure of elemental solids, Plenum Press (New York) 1986.

4.8 Examples - metall

4. Electrons in solids

109

Cu, fcc: 3s2 3p6 3d10 4s1, s(p) and d bands, metal

Ge, 4s2 4p2, → sp3 hybridized, absolute band gap, semiconductor

Reduced wave vector

4.8 Examples – Fermi surfaces

Density per atom (eV⁻¹)

4. Electrons in solids

111

$$k_{\parallel} = |k| \cdot \sin \vartheta = \frac{\sqrt{2mE_{kin}}}{\hbar} \sin \vartheta = 0.511 \sqrt{E_{kin}} [\text{eV}] \sin \vartheta [\text{Å}^{-1}]$$

$$E_{kin}(k_{\parallel}, k_{\perp}') = E_B(k_{\parallel}, ?) + h\nu - \Phi$$

Annahme: freier Endzustand:

$$k_{\perp} = \sqrt{2m^*(E_{kin} + \Phi - E_0)/\hbar^2 - k_{\parallel}^2}$$

4.8 Unoccupied states

4. Electrons in solids

113

Inverse photoemission (IPES)

Two-photon photoemission (2PPE)

4. Electrons in solids

109

Cu, fcc: 3s2 3p6 3d10 4s1, s(p) and d bands, metal

4.8 Examples - semiconductor

4. Electrons in solids

Ge, 4s2 4p2, \rightarrow sp3 hybridized, absolute band gap, $\underline{\text{semiconductor}}$

Fermi surfaces

4.8 Occupied states – photoelectron spectroscopy 4. Electrons in solids

 $\begin{aligned} k_{\parallel} &= |k| \cdot \sin \vartheta = \frac{\sqrt{2mE_{kin}}}{\hbar} \sin \vartheta = \\ 0.511 \sqrt{E_{kin}} [\text{eV}] \sin \vartheta \left[\text{Å}^{-1} \right] \end{aligned}$

 $E_{kin}(k_{\parallel}, k_{\perp}') = E_B(k_{\parallel}, ?) + h\nu - \Phi$

Annahme: freier Endzustand:

$$k_{\perp} = \sqrt{2m^*(E_{kin} + \Phi - E_0)/\hbar^2 - k_{\parallel}^2}$$

Inverse photoemission (IPES)

Two-photon photoemission (2PPE)

