

Modelo De Formantes Para Síntese de Vogais

Bernardo Monteiro - a46149 José Cavaleiro - a43936

Relatório da Unidade Curricular de Aplicações de Processamento de Sinal Mestrado em Engenharia Eletrotécnica e de Computadores Escola Superior de Tecnologia e Gestão

> Supervisão Científica: Prof. Dr. João Paulo Teixeira

Modelo De Formantes Para Síntese de Vogais

Bernardo Monteiro - a46149 José Cavaleiro - a43936

Relatório da Unidade Curricular de Aplicações de Processamento de Sinal Mestrado em Engenharia Eletrotécnica e de Computadores Escola Superior de Tecnologia e Gestão

> Supervisão Científica: Prof. Dr. João Paulo Teixeira

Conteúdo

1	Introdução							
2	Apa	arelho	Fonador Humano	3				
	2.1	Princ	ipais Estruturas do Aparelho Fonador	3				
3	Reprodução e Analise do Som							
	3.1 Análise Acústica com Praat							
4	Desenvolvimento da Produção de Fala							
	4.1	Mode	lo de Produção de Fala	6				
		4.1.1	Frequência Fundamental (F_0)	7				
		4.1.2	Gerador de Impulsos	8				
		4.1.3	Modelo Matemático do Impulso Glotal $(G_{(z)})$	8				
		4.1.4	Modelo Matemático do Trato Vocal $(V_{(Z)})$	9				
		4.1.5	Modelo de Radiação Labial $(R_{(z)})$	11				
5	Resultados							
	5.1 Sinal final							
	5.2	Espec	tograma	13				
6	Conclusão							
Bi	bliog	grafia		15				
A	Código							
В	B Reprodução do Som							

Introdução

Quando interagimos, a comunicação verbal destaca-se, sendo a fala uma das formas mais importantes de expressão. Para articular sons de forma clara, é necessário que o nosso sistema vocal funcione corretamente, o que exige a colaboração de diversos órgãos e processos do corpo. Dentro deste sistema, os formantes são fundamentais: eles representam os pontos altos de ressonância no trato vocal, ajudando-nos a distinguir os diferentes sons da fala.

Neste estudo, vamos explicar e investigar o que é o modelo de formantes na produção da fala, analisando as suas bases teóricas e como podemos representá-lo matematicamente. Para isso, detalharemos as principais partes do aparelho fonador e os modelos matemáticos utilizados para simular o seu funcionamento, focando na frequência fundamental, nos geradores de impulsos e nos modelos do trato vocal e da radiação labial.

Compreender como criar e interpretar a fala humana é útil para o desenvolvimento de tecnologias que reconhecem e sintetizam a voz. Assim, este trabalho tem como objetivo ajudar a perceber como as vogais são produzidas e a sua importância para o estudo da fala e da comunicação.

Aparelho Fonador Humano

Neste capítulo, exploramos a anatomia e o funcionamento do aparelho fonador, destacando os principais órgãos envolvidos e o seu papel na produção do som.

2.1 Principais Estruturas do Aparelho Fonador

Quando falamos da produção de som, é essencial compreendermos como se processa a produção da fala, pois, no nosso corpo, existem alguns órgãos ou partes deles responsáveis por funções fundamentais para a emissão do som. Na Figura 2.1, podemos observar alguns dos mais importantes, tais como:

- Pulmões fornecem o fluxo de ar necessário para a produção do som;
- Pregas vocais (cordas vocais, situadas na laringe) vibram para gerar sons sonoros ou abrem-se completamente para produzir sons como o "s";
- Faringe atua como ressonador, ajudando a moldar o som proveniente das pregas vocais;
- Cavidade nasal intervém na produção de sons nasais, como o "m".

Figura 2.1: Esquema do aparelho fonador humano.

Reprodução e Analise do Som

Este capítulo aborda a reprodução e análise do som, com foco na utilização do software Praat para examinar características acústicas das vogais.

3.1 Análise Acústica com Praat

Para o desenvolvimento deste projeto, é essencial considerar particularidades que não são perceptíveis apenas pela audição. Características acústicas únicas, como os formantes e suas respectivas larguras de banda, não podem ser identificadas sem o auxílio de ferramentas específicas.

Neste caso foi utilizado o software Praat, onde foram gravadas as cinco vogais, permitindo a análise desses parâmetros. A Figura 3.1 apresenta o espectrograma da vogal "a", no qual é possível observar suas características acústicas.

Figura 3.1: Características acústicas vogal "a", retirado do software Praat

Desenvolvimento da Produção de Fala

Este capítulo aborda o desenvolvimento do modelo de produção de fala, detalhando os componentes essenciais, como o impulso glotal, o trato vocal e a radiação labial.

4.1 Modelo de Produção de Fala

A produção da fala pode ser modelada matematicamente através de diferentes abordagens, cada uma procurando representar com maior precisão o funcionamento do aparelho fonador humano. O modelo de produção da fala baseia-se na interação entre três componentes principais: modelo do impulso glotal $G_{(z)}$, o trato vocal $V_{(z)}$ e a radiação labial $R_{(z)}$. A Figura 4.1 demonstra o modelo completo da produção da fala onde estao identificadas as 3 componentes mais importantes, para o nosso caso estamos a excluir a parte do gerador do ruido.

Figura 4.1: Modelo da produção da fala completo

Em termos matemáticos, o modelo da produção da fala pode ser descrito pela equação:

$$H(z) = G(z)V(z)R(z)$$
(4.1)

onde:

- ullet G(z) representa o modelo do impulso glotal;
- V(z) é o modelo do trato vocal;
- $\bullet \ R(z)$ corresponde ao modelo de radiação nos lábios.

4.1.1 Frequência Fundamental (F_0)

A frequência fundamental vocal (F0) é a medida da vibração das cordas vocais em Hertz e reflete a eficiência do sistema fonatório. Varia com fatores como idade, sexo, estado emocional e hábitos de vida. Geralmente, a F0 das mulheres é mais alta do que a dos homens. Estudos mostram que a média da F0 nem sempre distingue vozes patológicas das normais, mas a sua variabilidade pode ser útil na avaliação de problemas vocais [1].

O nosso sinal F_0 foi representada com o valor médio de 175 e a sua amplitude é de 75, tal como podemos ver na equação 4.2 e na Figura 4.2 onda em baixo representados.

Figura 4.2: Frequência Fundamental, retirado do software Matlab

Equação da frequência fundamental:

$$F_0 = 175 + 75 \times \sin(2\pi \times n \times T \times 1/3) \tag{4.2}$$

4.1.2 Gerador de Impulsos

O gerador de impulsos glotais gera uma sequencia de impulsos espaçados por um intervalo de tempo defendido por $T_0 = \frac{1}{F_0}$. Este gerador é um modelo que simula a voz humana, pois este representa as cordas vocais, a abrir e fechar em pulsos unitários.

Figura 4.3: Trem de Impulsos, retirado do software Matlab

4.1.3 Modelo Matemático do Impulso Glotal $(G_{(z)})$

O modelo matemático do impulso glotal, é uma parte fundamental na síntese da fala, pois este é responsável por simular a vibração gerada pelas cordas vocais durante a produção de som. Para realizar este modelo é necessário utilizar os impulsos unitários do gerador (4.1.2) e aplicar a equação 4.3. Dependendo do valor de "a", deve gerar uma sequência de impulsos glotais com as formas da Figura 4.4 Cada forma reproduzirá um sinal com diferente timbre de voz [2].

$$G_{(z)} = \frac{-aeln(a)z^{-1}}{(1 - az^{-1})^2}$$
(4.3)

O valor de "a" escolhido para produzir os nossos impulsos glotais foi o a=0.85.

Figura 4.4: Impulsos glotais com diferentes valores de "a", retirado do software Matlab

Modelo Matemático do Trato Vocal $(V_{(Z)})$ 4.1.4

Para a realização deste modelo, é necessário conhecer os formantes e as respetivas larguras de banda de cada vogal, que se encontram apresentados na Tabela 4.1. Estes valores foram obtidos através do software Praat.

	a	e	i	О	u
F1 (Hz)	617.19	496.08	347.05	567.16	386.63
B1 (Hz)	169.37	70.05	31.62	97.16	16.02
F2 (Hz)	1158.21	1896.12	1953.07	889.32	801.66
B2 (Hz)	474.45	322.23	1137.30	93.68	174.54
F3 (Hz)	2206.21	2161.53	2320.75	2269.36	2458.37
B3 (Hz)	177.70	791.66	135.09	96.33	120.61
F4 (Hz)	3531.82	3734.36	3842.94	3370.87	3745.85
B4 (Hz)	669.63	230.06	163.02	153.93	204.35

Tabela 4.1: Tabela de formantes e larguras de banda das vogais analisadas.

Ao obter os formantes, aplicou-se a equação 4.4 para cada valor da Tabela 4.1. Ou seja, para a vogal "a", realizou-se a filtragem sucessiva do sinal de entrada utilizando um filtro digital correspondente a cada formante e respetiva largura de banda. O sinal inicial, um impulso unitário, foi processado através de um sistema de quatro filtros ressonantes em série, cada um modelando um formante da vogal [2].

Em cada iteração do modelo, o numerador e o denominador do filtro foram calculados com base na frequência do formante e na sua largura de banda, seguindo a equação 4.4. Esse filtro destaca as frequências das ressonâncias naturais do trato vocal, simulando a estrutura espectral da vogal desejada. Por fim, o sinal foi normalizado para manter a amplitude dentro dos limites adequados, evitando distorções e garantindo uma representação correta do som sintetizado.

$$V_k(z) = \frac{1 - 2 \cdot \left| e^{-\frac{B_k \cdot T}{2}} \right| \cdot \cos(2\pi \cdot F_k \cdot T) + \left| e^{-B_k \cdot T} \right|}{1 - 2 \cdot \left| e^{-\frac{B_k \cdot T}{2}} \right| \cdot \cos(2\pi \cdot F_k \cdot T) \cdot z^{-1} + \left| e^{-B_k \cdot T} \right| \cdot z^{-2}}$$
(4.4)

O sinal resultante do modelo matemático do trato vocal está representado na Figura 4.5. A aplicação deste modelo permitiu a conversão do trem de impulsos, ilustrado na Figura 4.4, em um sinal com características acústicas mais próximas da fala humana.

Figura 4.5: Sinal Obtido depois do trato Vocal, retirado do software Matlab

4.1.5 Modelo de Radiação Labial $(R_{(z)})$

O modelo de radiação nos lábios é representado pela fórmula matemática da 4.5, onde a mesma descreve como o som é reproduzido a partir dos lábios de uma pessoa.

O objetivo ao filtrarmos o sinal do modelo de radiação labial, é de ajustar ou igualar o sinal capturado de forma a melhorar a sua qualidade e torná-lo mais realista, isso é, torná-lo o mais parecido possível com a fala humana.

$$R_{(z)} = 1 - z^{-1} (4.5)$$

Resultados

Este capítulo apresenta os resultados obtidos da simulação da produção de fala, incluindo o sinal final gerado e o seu espectrograma.

5.1 Sinal final

Através do código elaborado no software Matlab, Anexo A, obtivemos o seguinte sinal final que está representado na Figura 5.1. Neste é possível observar, num intervalo de tempo reduzido, uma forma de onda que se assemelha ao espectro de uma gravação de voz. O áudio pode ser reproduzido no Anexo B.

Figura 5.1: Sinal Final Obtido, retirado do software Matlab

5.2 Espectograma

O espectrograma apresentado na Figura 5.2 representa a distribuição espectral do sinal de voz concatenado, contendo as vogais a, e, i, o, u. No eixo vertical, observa-se a frequência em kHz, enquanto o eixo horizontal indica a evolução temporal das vogais. A intensidade das componentes espectrais é representada por uma escala de cores, onde regiões em amarelo indicam maior potência do sinal, e azul, menor potência.

As bandas mais destacadas correspondem aos formantes, que são picos de ressonância do trato vocal e caracterizam cada vogal. Nota-se que as vogais apresentam diferentes padrões espectrais, refletindo as diferenças nas configurações articulatórias durante a sua produção. As linhas verticais tracejadas marcam as transições entre as vogais.

Figura 5.2: Espectograma das 5 vogais, retirado do software Matlab

Conclusão

Ao examinar o padrão dos formantes, conseguimos desvendar a intrincada natureza da emissão da fala e o quão importante é o canal vocal na formatação do som. A investigação do sistema fonético humano, juntamente com métodos matemáticos e instrumentos como o programa Praat, permitiu a identificação das qualidades sonoras das vogais e a réplica computacional da sua criação.

Constatou-se que os formantes são cruciais na forma como ouvimos as vogais, sendo definidos pelas ressonâncias do canal vocal. Esquemas matemáticos, como os que especificam a frequência fundamental (F0), o gerador de impulsos, o canal vocal e a irradiação labial, possibilitam aproximar a emissão artificial da voz humana.

Esta análise enfatiza a relevância da compreensão da produção da fala tanto para a pesquisa linguística quanto para a criação de tecnologias de fala, como plataformas de síntese de voz e reconhecimento vocal.

Bibliografia

- [1] João Paulo Teixeira, Débora Ferreira, and Susana Moreira Carneiro. Análise acústica vocal-determinação do jitter e shimmer para diagnóstico de patalogias da fala. In 6º Congresso Luso-Moçambicano de Engenharia, 3º Congresso de Engenharia de Moçambique, number 6º. INEGI, 2011.
- [2] João Paulo Teixeira. Modelo de formantes para sÍntese de vogais, 2025.

Apêndice A

Código

O Anexo A, denominado como "<u>Vogais</u>", está disponível em ficheiro de Matlab e texto. Este ficheiro contém o código realizado para a obtenção do som das 5 Vogais

Apêndice B

Reprodução do Som

O Anexo B, denominado como "Sinal Voz", está disponível em ficheiro de reprodução wav.