EXERCISES 2.1

In Exercises 1-12, find an equation of the straight line tangent to the given curve at the point indicated.

1.
$$y = 3x - 1$$
 at $(1, 2)$

2.
$$y = x/2$$
 at $(a, a/2)$

3.
$$y = 2x^2 - 5$$
 at $(2,3)$

4.
$$y = 6 - x - x^2$$
 at $x = -2$

5.
$$y = x^3 + 8$$
 at $x = -3$

5.
$$y = x^3 + 8$$
 at $x = -2$ 6. $y = \frac{1}{x^2 + 1}$ at $(0, 1)$

7.
$$y = \sqrt{x+1}$$
 at $x = 3$

8.
$$y = \frac{1}{\sqrt{x}}$$
 at $x = 9$

9.
$$y = \frac{2x}{100}$$
 at $x = 1$

9.
$$y = \frac{2x}{x+2}$$
 at $x = 2$ 10. $y = \sqrt{5-x^2}$ at $x = 1$

11.
$$y = x^2$$
 at $x = x_0$

11.
$$y = x^2$$
 at $x = x_0$ 12. $y = \frac{1}{x}$ at $\left(a, \frac{1}{a}\right)$

Do the graphs of the functions f in Exercises 13–17 have tangent lines at the given points? If yes, what is the tangent line?

13.
$$f(x) = \sqrt{|x|}$$
 at $x = 0$

13.
$$f(x) = \sqrt{|x|}$$
 at $x = 0$ 14. $f(x) = (x-1)^{4/3}$ at $x = 1$

15.
$$f(x) = (x+2)^{3/5}$$
 at $x = -2$

16.
$$f(x) = |x^2 - 1|$$
 at $x = 1$

17.
$$f(x) = \begin{cases} \sqrt{x} & \text{if } x \ge 0 \\ -\sqrt{-x} & \text{if } x < 0 \end{cases}$$
 at $x = 0$

18. Find the slope of the curve
$$y = x^2 - 1$$
 at the point $x = x_0$. What is the equation of the tangent line to $y = x^2 - 1$ that has slope -3 ?

19. (a) Find the slope of
$$y = x^3$$
 at the point $x = a$.

21. Find all points on the curve
$$y = x^3 - x + 1$$
 where the tangent line is parallel to the line $y = 2x + 5$.

22. Find all points on the curve
$$y = 1/x$$
 where the tangent line is perpendicular to the line $y = 4x - 3$.

23. For what value of the constant
$$k$$
 is the line $x + y = k$ normal to the curve $y = x^2$?

24. For what value of the constant
$$k$$
 do the curves $y = kx^2$ and $y = k(x - 2)^2$ intersect at right angles? *Hint:* Where do the curves intersect? What are their slopes there?

Use a graphics utility to plot the following curves. Where does the curve have a horizontal tangent? Does the curve fail to have a tangent line anywhere?

$$25. \ y = x^3(5-x)$$

25.
$$y = x^3(5-x)^2$$
 26. $y = 2x^3 - 3x^2 - 12x + 1$

$$27. \ \ y = |x^2 - 1| - x$$

27.
$$y = |x^2 - 1| - x$$
 28. $y = |x + 1| - |x - 1|$

$$y = (x^2 - 1)^{1/3}$$

29.
$$y = (x^2 - 1)^{1/3}$$
 30. $y = ((x^2 - 1)^2)^{1/3}$

 \blacksquare 32. Let P(x) be a polynomial. If a is a real number, then P(x)can be expressed in the form

$$P(x) = a_0 + a_1(x - a) + a_2(x - a)^2 + \dots + a_n(x - a)^n$$

for some $n \ge 0$. If $\ell(x) = m(x - a) + b$, show that the straight line $y = \ell(x)$ is tangent to the graph of y = P(x) at x = a provided $P(x) - \ell(x) = (x - a)^2 Q(x)$, where Q(x) is a polynomial.

EXERCISES 2.2

Make rough sketches of the graphs of the derivatives of the functions in Exercises 1-4.

- 1. The function f graphed in Figure 2.18(a).
- 2. The function g graphed in Figure 2.18(b).
- 3. The function h graphed in Figure 2.18(c).
- 4. The function k graphed in Figure 2.18(d).
- 5. Where is the function f graphed in Figure 2.18(a) differentiable?
- 6. Where is the function g graphed in Figure 2.18(b) differentiable?

Figure 2.18

Use a graphics utility with differentiation capabilities to plot the graphs of the following functions and their derivatives. Observe the relationships between the graph of y and that of y' in each case. What features of the graph of y can you infer from the graph of y'?

7.
$$y = 3x - x^2 -$$

7.
$$y = 3x - x^2 - 1$$
 8. $y = x^3 - 3x^2 + 2x + 1$

9.
$$y = |x^3 - x|$$

$$10. \ y = |x^2 - 1| - |x^2 - 4|$$

In Exercises 11-24, (a) calculate the derivative of the given function directly from the definition of derivative, and (b) express the result of (a) using differentials.

11.
$$y = x^2 - 3x$$

12.
$$f(x) = 1 + 4x - 5x^2$$

13
$$f(x) = x^2$$

13.
$$f(x) = x^3$$
 14. $s = \frac{1}{3+4t}$

15.
$$g(x) = \frac{2-x}{2}$$

15.
$$g(x) = \frac{2-x}{2+x}$$
 16. $y = \frac{1}{3}x^3 - x$

17.
$$F(t) = \sqrt{2t + t}$$

17.
$$F(t) = \sqrt{2t+1}$$
 18. $f(x) = \frac{3}{4}\sqrt{2-x}$

19.
$$y = x + \frac{1}{x}$$
 20. $z = \frac{s}{1+s}$

20.
$$z = \frac{s}{1 + s}$$

21.
$$F(x) = \frac{1}{\sqrt{1+x^2}}$$
 22. $y = \frac{1}{x^2}$

22.
$$y = \frac{1}{r^2}$$

23.
$$y = \frac{1}{\sqrt{1 - x^2}}$$

24.
$$f(t) = \frac{t^2 - 3}{t^2 + 3}$$

25. How should the function
$$f(x) = x \operatorname{sgn} x$$
 be defined at $x = 0$ so that it is continuous there? Is it then differentiable there?

27. Where does
$$h(x) = |x^2 + 3x + 2|$$
 fail to be differentiable?

28. Using a calculator, find the slope of the secant line to
$$y = x^3 - 2x$$
 passing through the points corresponding to $x = 1$ and $x = 1 + \Delta x$, for several values of Δx of decreasing size, say $\Delta x = \pm 0.1, \pm 0.01, \pm 0.001, \pm 0.0001$. (Make a table.) Also, calculate $\frac{d}{dx} \left(x^3 - 2x \right) \Big|_{x=1}$ using the definition of derivative.

29. Repeat Exercise 28 for the function
$$f(x) = \frac{1}{x}$$
 and the points $x = 2$ and $x = 2 + \Delta x$.

Using the definition of derivative, find equations for the tangent lines to the curves in Exercises 30-33 at the points indicated.

EXERCISES 2.3

In Exercises 1-32, calculate the derivatives of the given functions. Simplify your answers whenever possible.

1.
$$y = 3x^2 - 5x - 7$$
 2. $y = 4x^{1/2} - \frac{5}{2}$

2.
$$y = 4x^{1/2} - \frac{5}{x}$$

3.
$$f(x) = Ax^2 + Bx + C$$
 4. $f(x) = \frac{6}{x^3} + \frac{2}{x^2} - 2$

4.
$$f(x) = \frac{6}{x^3} + \frac{2}{x^2} - 2$$

5.
$$z = \frac{s^5 - s^3}{15}$$

6.
$$y = x^{45} - x^{-45}$$

7.
$$g(t) = t^{1/3} + 2t^{1/4} + 3t^{1/5}$$

8.
$$y = 3\sqrt[3]{t^2} - \frac{2}{\sqrt{t^3}}$$

8.
$$y = 3\sqrt[3]{t^2} - \frac{2}{\sqrt{t^3}}$$

9. $u = \frac{3}{5}x^{5/3} - \frac{5}{3}x^{-3/5}$
10. $F(x) = (3x - 2)(1 - 5x)$

10.
$$F(x) = (3x - 2)(1 - 5x)$$

11.
$$y = \sqrt{x} \left(5 - x - \frac{x^2}{3} \right)$$
 12. $g(t) = \frac{1}{2t - 3}$

12.
$$g(t) = \frac{1}{2t - 3}$$

13.
$$y = \frac{1}{x^2 + 5x}$$
 14. $y = \frac{4}{3 - x}$

14.
$$y = \frac{4}{3-x}$$

15.
$$f(t) = \frac{\pi}{2 - \pi t}$$

15.
$$f(t) = \frac{\pi}{2 - \pi t}$$
 16. $g(y) = \frac{2}{1 - y^2}$

17.
$$f(x) = \frac{1 - 4x^2}{x^3}$$

17.
$$f(x) = \frac{1 - 4x^2}{x^3}$$
 18. $g(u) = \frac{u\sqrt{u} - 3}{u^2}$

19.
$$y = \frac{2+t+t^2}{\sqrt{t}}$$

20.
$$z = \frac{x-1}{x^{2/3}}$$

$$21. \ f(x) = \frac{3 - 4x}{3 + 4x}$$

22.
$$z = \frac{t^2 + 2t}{t^2 - 1}$$

23.
$$s = \frac{1 + \sqrt{t}}{1 - \sqrt{t}}$$

23.
$$s = \frac{1+\sqrt{t}}{1-\sqrt{t}}$$
 24. $f(x) = \frac{x^3-4}{x+1}$

25.
$$f(x) = \frac{ax + b}{ax + d}$$

26.
$$F(t) = \frac{t^2 + 7t - 8}{t^2 + 7t - 8}$$

27.
$$f(x) = (1+x)(1+2x)(1+3x)(1+4x)$$

28.
$$f(r) = (r^{-2} + r^{-3} - 4)(r^2 + r^3 + 1)$$

29.
$$y = (x^2 + 4)(\sqrt{x} + 1)(5x^{2/3} - 2)$$

30.
$$y = \frac{(x^2+1)(x^3+2)}{(x^2+2)(x^3+1)}$$

30.
$$y = \frac{(x^2 + 1)(x^3 + 2)}{(x^2 + 2)(x^3 + 1)}$$

31. $y = \frac{x}{2x + \frac{1}{3x + 1}}$

32.
$$f(x) = \frac{(\sqrt{x} - 1)(2 - x)(1 - x^2)}{\sqrt{x}(3 + 2x)}$$

Calculate the derivatives in Exercises 33–36, given that f(2) = 2and f'(2) = 3.

33.
$$\frac{d}{dx} \left(\frac{x^2}{f(x)} \right) \Big|_{x=2}$$

34.
$$\frac{d}{dx} \left(\frac{f(x)}{x^2} \right) \Big|_{x=2}$$

35.
$$\frac{d}{dx} \left(x^2 f(x) \right) \bigg|_{x}$$

35.
$$\frac{d}{dx}(x^2 f(x))\Big|_{x=2}$$
 36. $\frac{d}{dx}\left(\frac{f(x)}{x^2 + f(x)}\right)\Big|_{x=2}$

37. Find
$$\frac{d}{dx} \left(\frac{x^2 - 4}{x^2 + 4} \right) \Big|_{x = -2}$$
. 38. Find $\frac{d}{dt} \left(\frac{t(1 + \sqrt{t})}{5 - t} \right) \Big|_{t = 4}$.

39. If
$$f(x) = \frac{\sqrt{x}}{x+1}$$
, find $f'(2)$.

40. Find
$$\frac{d}{dt} \left((1+t)(1+2t)(1+3t)(1+4t) \right) \Big|_{t=0}$$
.

41. Find an equation of the tangent line to
$$y = \frac{2}{3 - 4\sqrt{x}}$$
 at the point $(1, -2)$.

42. Find equations of the tangent and normal to
$$y = \frac{x+1}{x-1}$$
 at $x = 2$.

43. Find the points on the curve
$$y = x + 1/x$$
 where the tangent line is horizontal.

44. Find the equations of all horizontal lines that are tangent to the curve
$$y = x^2(4-x^2)$$
.

2.4

In Exercises 22-29, express the derivative of the given function in terms of the derivative f' of the differentiable function f.

22.
$$f(2t+3)$$

23.
$$f(5x-x^2)$$

24.
$$\left[f\left(\frac{2}{x}\right) \right]^3$$

25.
$$\sqrt{3+2f(x)}$$

26.
$$f(\sqrt{3+2t})$$

27.
$$f(3+2\sqrt{x})$$

28.
$$f(2f(3f(x)))$$

29.
$$f(2-3f(4-5t))$$

EXERCISES 2.5

- 1. Verify the formula for the derivative of $\csc x = 1/(\sin x)$.
- 2. Verify the formula for the derivative of $\cot x = (\cos x)/(\sin x)$.

Find the derivatives of the functions in Exercises 3-36. Simplify your answers whenever possible. Also be on the lookout for ways you might simplify the given expression before differentiating it.

3.
$$y = \cos 3x$$

4.
$$y = \sin \frac{x}{5}$$

5.
$$y = \tan \pi x$$

6.
$$y = \sec ax$$

19.
$$F(t) = \sin at \cos at$$

$$20. \ G(\theta) = \frac{\sin a\theta}{\cos b\theta}$$

21.
$$\sin(2x) - \cos(2x)$$

22.
$$\cos^2 x - \sin^2 x$$

23.
$$\tan x + \cot x$$

24.
$$\sec x - \csc x$$

25.
$$\tan x - x$$

24.
$$\sec x - \csc x$$

27.
$$t \cos t - \sin t$$

26.
$$\tan(3x)\cot(3x)$$

28. $t\sin t + \cos t$

7.
$$v = \cot(4 - 3x)$$

8.
$$y = \sin((\pi - x)/3)$$

$$9. \ f(x) = \cos(s - rx)$$

10.
$$y = \sin(Ax + B)$$

11.
$$\sin(\pi x^2)$$

12.
$$\cos(\sqrt{x})$$

13.
$$v = \sqrt{1 + \cos x}$$

14.
$$\sin(2\cos x)$$

$$15. \ f(x) = \cos(x + \sin x)$$

16.
$$g(\theta) = \tan(\theta \sin \theta)$$

17.
$$u = \sin^3(\pi x/2)$$

18.
$$y = \sec(1/x)$$

- 57. Use the method of Example 1 to evaluate $\lim_{h\to 0} \frac{1-\cos h}{h^2}$.
- 58. Find values of a and b that make

$$f(x) = \begin{cases} ax + b, & x < 0 \\ 2\sin x + 3\cos x, & x \ge 0 \end{cases}$$

differentiable at x = 0.

EXERCISES 2.6

Find y', y'', and y''' for the functions in Exercises 1–12.

1.
$$y = (3 - 2x)^7$$

2.
$$y = x^2 - \frac{1}{x}$$

3.
$$y = \frac{6}{(x-1)^2}$$

$$4. \ y = \sqrt{ax + b}$$

5.
$$y = x^{1/3} - x^{-1/3}$$

6.
$$y = x^{10} + 2x^8$$

7.
$$y = (x^2 + 3)\sqrt{x}$$

8.
$$y = \frac{x-1}{x+1}$$

9.
$$y = \tan x$$

10.
$$y = \sec x$$

11.
$$y = \cos(x^2)$$

$$12. \ y = \frac{\sin x}{x}$$

In Exercises 13–23, calculate enough derivatives of the given function to enable you to guess the general formula for $f^{(n)}(x)$. Then verify your guess using mathematical induction.

13.
$$f(x) = \frac{1}{x}$$

14.
$$f(x) = \frac{1}{x^2}$$

15.
$$f(x) = \frac{1}{2-x}$$

16.
$$f(x) = \sqrt{x}$$

17.
$$f(x) = \frac{1}{a + bx}$$

18.
$$f(x) = x^{2/3}$$

19.
$$f(x) = \cos(ax)$$

20.
$$f(x) = x \cos x$$

21.
$$f(x) = x \sin(ax)$$

1 22.
$$f(x) = \frac{1}{|x|}$$

1 23.
$$f(x) = \sqrt{1 - 3x}$$

24. If
$$y = \tan kx$$
, show that $y'' = 2k^2y(1 + y^2)$.

25. If
$$y = \sec kx$$
, show that $y'' = k^2y(2y^2 - 1)$.

26. Use mathematical induction to prove that the *n*th derivative of
$$y = \sin(ax + b)$$
 is given by the formula asserted at the end of Example 5.

27. Use mathematical induction to prove that the *n*th derivative of
$$y = \tan x$$
 is of the form $P_{n+1}(\tan x)$, where P_{n+1} is a polynomial of degree $n + 1$.

28. If
$$f$$
 and g are twice-differentiable functions, show that $(fg)'' = f''g + 2f'g' + fg''$.

29. State and prove the results analogous to that of Exercise 28 but for
$$(fg)^{(3)}$$
 and $(fg)^{(4)}$. Can you guess the formula for $(fg)^{(n)}$?