

Data Storage and Retrieval Lecture 6 Sets and Set Theory

Dr. Graham McDonald

Graham.McDonald@glasgow.ac.uk

Overview

This lecture

- Sets and Set Theory
- Relations and the Cartesian Product

Next lecture (lecture 7)

- Relational Algebra
 - The foundations for SQL

Sets and Set Theory

Set theory is the branch of mathematics that studies **sets**

Sets are collections of objects

- The set of all numbers
- the set of all animals with tails
- the set of letters in the alphabet
- the set of all students in a class

Georg Cantor (1845-1918)

Sets

Often all members of a set have similar properties

Odd numbers less than 10

Susan
Bob Lukas
Steven
Tom Sarah
Clare

Students in a Tutorial Group

Set Theory - Vocabulary

- Objects in a set are called 'elements' or 'members' of a set
- A set is said to 'contain' its elements

- In databases
 - all exam scores make up a 'set' of exam scores.
 - all employees of a company make up a 'set' of employees

Describing Sets

- Describing a set
 - List all the members between braces
 - E.g. {a, b, c, d}
 - Represents the set with the four elements a, b, c, and d.

Describing Sets

• E.g. The set V of all vowels in the English alphabet

• E.g. The set O of positive integers less than 10

Describing Sets

- E.g. The set V of all vowels in the English alphabet
 - V = {a, e, i, o, u}
- E.g. The set O of positive integers less than 10
 - $O = \{1, 3, 5, 7, 9\}$
- | denotes the *cardinality* of a set
 - |V| = 5, |O| = 5

Set Equality

- Two sets are *equal* if and only if they have the <u>same</u> elements
 - Order doesn't matter

•
$$\{1,3,5\} = \{1,5,3\} = \{3,1,5\} = \{3,5,1\} = \{5,1,3\} = \{5,3,1\}$$

- Repetition doesn't matter
 - $\{1,2\} = \{1,1,2\} = \{1,2,2,2,2\}$

Set Equality

$$A = \{1,2,3\}$$

$$B = \{3,2,1\} C = \{1,1,2,2,2,3\} D = \{1,2,3\}$$

Which set(s) are equal to A?

Set Equality

$$A = \{1,2,3\}$$

$$B = \{3,2,1\} C = \{1,1,2,2,2,3\} D = \{1,2,3\}$$

$$A = B$$
, C and D

Sets

- Sets usually group together elements with associated properties
 - but seemingly unrelated properties can also be listed as a set
 - {2, e, Fred, Paris} is also a set
 - We just don't know much about exactly how they are related to each other

Predicates and Sets

- It is sometimes inconvenient or impossible to describe a set by listing all of its elements
 - What is the set of all integers less than 1 million?

Predicates and Sets

- It is sometimes inconvenient or impossible to describe a set by listing all of its elements
 - What is the set of all integers less than 1 million?
 - {1,2,3,4,5.....!!!!!!}

Set Builder Notation

 Characterise all those elements in the set by stating the properties they must have to be members

E.g.

- The set O of all positive integers less than 10 in set builder notation is:
 - O = {X | X is an odd integer less than 10}
 - More mathematical definitions are also OK:
 - $O = \{X \mid X \in \mathbb{N} \land x < 10 \land x \% 2 == 1\}$

Predicates and Sets

 A predicate is sometimes used to indicate set membership

 A predicate F(x) will be true or false, depending on whether x belongs to a set

Predicates and Set Membership

```
An example
```

```
\{x \mid x \text{ is a positive integer less than 4}\} is the set \{1,2,3\}
```

If t is an element of the set $\{x \mid F(x)\}$ then the statement F(t) is true

```
So if F(x) is defined as x % 2 = 0
\{x \mid F(x)\} \text{ contains....} the set of all even numbers
```

Here, F(x) is referred to as the **predicate**, and x the subject of the proposition

Some Notation

- a ∈ A
 - a is an element of set A
- a ∉ A
 - a is not an element of set A
- Ø
 - The empty or null set
 - Also represented by { }

Graphical Representations

 Sets can be represented graphically using Venn diagrams

- The universal set U (which contains all of the objects under consideration) is represented by a rectangle
- Inside the rectangle, circles are used to represent sets
- Sometimes points are used to represent the particular elements of the set

An Example Set

U is the Universe – the set of all possible items

The set V of vowels from all letters U

An Example Set

The set T of people in tutorial group from all Students S

Subsets

A is a subset of B

 $A \subset B$

A test that returns true iff $A \subset B$

Subsets (2)

A is a subset or equal to B

 $A \subseteq B$

A test that returns true iff $A \subseteq B$

The Power Set

- Given a set S, the power set is the set of all subsets of the set S
 - Denoted by P(S) or $\mathbb{P}(S)$
- E.g. the power set of {0,1,2} is ...

The Power Set

- E.g. the power set of {0,1,2} is
 - $P({0,1,2}) = {\emptyset, {0}, {1}, {2}, {0,1}, {0,2}, {1,2}, {0,1,2}}$
 - NB the empty set and the set itself are members of this set of subsets

- If a set has n elements, its power set has 2ⁿ elements
- The power set does not contain numbers, it contains SETs

Set Operations

- Two sets can be combined in many different ways
 - The following illustrates some such combinations

Union

Symbol like Union The union of A and B

 $A \cup B$

 $\mathsf{A} \cup \mathsf{B} = \{x \mid x \in A \lor x \in B \}$

The set that contains those elements that are either in A, B, or in both

Intersection

The **intersection** of A and B

 $A \cap B$

 $\mathsf{A} \cap \mathsf{B} = \{ x \mid x \in \mathsf{A} \land x \in \mathsf{B} \ \}$

Symbol like aNd

Difference

31

The difference of A and B

A - **B**

$$A - B = \{x \mid x \in A \land x \notin B \}$$

Complement

The complement of A

A

$$\overline{\mathsf{A}} = \{ x \mid x \notin \mathsf{A} \}$$

Symmetric Difference

The symmetric difference of A and B

$$A \oplus B = (A - B) \cup (B - A)$$

$$A \oplus B = \{x \mid (x \in A \land x \notin B) \lor (x \in B \land x \notin A) \}$$

Summary

- What are sets?
- Notation for making sets, comparing sets
- Operators: making new sets from other sets
 - Union

 - difference
 - A complement
 - symmetric difference

Example Exam Questions

Given the following sets:

$$A = \{1,3,7,9\}, B = \{2,4,6\}, C = \{7,9\}$$

determine the following (assume that P is the powerset operator):

```
• |B| = 3

• P(B) = { {}, {2},{4},{6}, {2,4}, {4,6}, {2,4,6}, {2,6} }

• |P(C)| = 4

• A \cup B = {1,2,3,4,6,7,9}

• A \cap C = {7,9}
```

Which of the following are true?

```
> C ⊂ A = TRUE
> C ⊂ B = FALSE
```


Summary of Sets

- What are sets? {1,3,5}
- Set builder notation for making sets; comparing sets
- Operators: making new sets from other sets
 - Union

 - difference
 - A complement
 - ⊕ symmetric difference
- So how does this help with databases?

So why is this useful?

Consider a query:

"What are the grades of student 8187491?"

How can we query the database to obtain this information?

So why is this useful?

Two ways of querying a database:

- procedural (relational algebra, Pandas)
 - > sequence of operations
 - the output of each operation is the input to the next operation

result \leftarrow F4 (F2 (F1(tableA), tableB), F3(tableC)

- declarative (SQL)
 - > describes the desired results (in terms of conditions
 - > the DBMS works out the operations

result ← CONDITIONS (tableA, tableB, tabl

This is based on set theory

This is internally implemented as RA operations

RA is key to understanding SQL query processing!

A Relational Instance

STUDE	NT			Schema
name	matric	exam1	exam2	Julienia
Gedge	891023	12	58	
Kerr	892361	66	90	
Fraser	880123	50	65	

- This Student relation instance has:
 - Degree 4 and Cardinality 3
- A relation is a set of tuples (or n-tuples)
 - As each tuple has n values (same as degree of the relation)
 - E.g. <Fraser,880123,50,65> is a 4-tuple.

N-tuples are not Sets

- The order of elements in a collection is sometimes important
 - But <u>sets are unordered</u>, so a different structure is needed
- This is provided by ordered n-tuples
 - <2,1,5> is an 3-tuple

N-tuples

- Two ordered n-tuples are equal if and only if each corresponding pair of their elements is equal
 - $\langle a_1, a_2, a_n \rangle = \langle b_1, b_2, b_n \rangle$ if and only if $a_i = b_i$ for i = 1, 2, n
 - $\{1, 3, 5\} = \{3, 1, 5\} = TRUE \text{ for SETS}$
 - <1, 3, 5> = <3, 1, 5> = FALSE for N-TUPLES

NB: We can use <> or () to denote tuples, but not {}

Cartesian Product

Let A and B be sets

- The cartesian product of A and B (A X B) is
 - the set of all **ordered pairs** (i.e. tuples)

 $\langle a,b \rangle$ where $a \in A$ and $b \in B$

$$A=\{0,1\}, B=\{a,b,c\}$$

$$AXB =$$

Cartesian Product

Let A and B be sets

- The cartesian product of A and B (A X B) is
 - the set of all **ordered pairs** (i.e. tuples)

 $\langle a,b \rangle$ where $a \in A$ and $b \in B$

$$A=\{0,1\}, B=\{a,b,c\}$$

A X B =
$$\{<0,a>,<0,b>,<0,c>,<1,a>,<1,b>,<1,c>\}$$

Connecting to Databases: Representing a Relation

Forename = {Marilyn, Quintin, Simon, Henrik} Surname = {McGee, Cutts, Gay}

Domains

Names = {<Marilyn,McGee>,<Quintin,Cutts>, <Simon, Gay>}

R	Cutts	McGee	Gay
Marilyn		Х	
Quintin	Х		
Simon			X
Henrik			

Henrik •

A Relationship and its Equivalent Relation

Lecturer

Initials	
MMcG	
QC	
SGay	
HRight	
RInnis	

Teaches

Lecturer	Course	
MMcG	CS1Q	
QC	CS1CT	
SGay	CS1P	
SGay	CS1Q	

Course

Code
CS1Q
CS1CT
CS1P

The Table as a Relation

```
Lecturers = {MM, QC, SG, HR, RI}

Courses = {CS1P, CS1Q, CS1CT}

Teaches = {<MM, CS1Q>, <QC, CS1CT>, <SG, CS1P>,

<SG,CS1Q>}
```


Teaches	CS1P	CS1Q	CS1CT
MM		X	
QC SG			Х
SG	Χ	X	
HR			
RI			