Due date: 2020-11-24 (화) 수업시간 전 까지

1. When
$$A = \begin{bmatrix} 1 & 1 & -1 & 0 & 2 \\ -2 & 0 & 2 & 4 & 4 \\ 2 & 2 & -2 & 0 & 1 \\ -3 & -1 & 3 & 4 & 5 \end{bmatrix}$$
, let $W = \text{col}(A)$. Find a basis for W^{\perp} .

2. Let
$$A = \{v_1, v_2, v_3\}$$
 (with $v_1 = (0, 1, 0)$, $v_2 = (-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}})$, $v_3 = (\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}})$), $B = \{u_1, u_2, u_3\}$ (with $u_1 = (1, 0, 0)$, $u_2 = (0, 1, 2)$, $u_3 = (0, -2, 1)$) and $C = \{w_1, w_2, w_3\}$ (with $w_1 = (1, 0, 0)$, $w_2 = (1, 1, 0)$, $w_3 = (1, 1, 1)$) be three bases of \mathcal{R}^3 . Find $[x]_A$, $[x]_B$, and $[x]_C$, when $x = (3, 1, -2)$.