UCL project Documentation

Release 1

Miriam Gerharz

CONTENTS:

1	Tools	S	1	
	1.1	Calculating spectrum	1	
		Phonon numbers		
		Parameters		
	1.4	Helpers	6	
2 Indices and tables				
Рy	thon I	Module Index	9	
In	dex		11	

CHAPTER

ONE

TOOLS

1.1 Calculating spectrum

```
tools.chi (_omega, _omega_j, _Gamma)
Calculates what is defined as chi in the paper
```

Parameters

- _omega (1D numpy array) The frequency range of which chi shall be calculated
- _omega_j (float) respective mechanical frequency
- _Gamma (float) Damping (either \$Gamma\$ or \$kappa\$)

Returns chi(omega)

Return type np.array

tools.eta (_omega, _detuning, _phi, _kappa)
Calculates optical susceptibility

Parameters

- _omega (numpy array) The frequency range of which chi shall be calculated
- _detuning (float) The detuning
- **_phi** (float) Phase ???
- _kappa (float) cavity linewidth

Returns eta(omega)

Return type np.array

tools.mu(_omega,_omega_j,_Gamma)

Calculates the mechanical susceptibilities

Parameters

- _omega (1D numpy array) The frequency range of which chi shall be calculated
- _omega_j (numpy array of length 3) mechanical frequencies
- _Gamma (float) Damping (either \$Gamma\$ or \$kappa\$)

Returns mu(omega)

Return type np.array

tools.**M**(_omega, _omega_j, _detuning, _phi, _Gamma, _kappa, _g)
Calculates the normalization factor

Parameters

- _omega (1D numpy array) The frequency range of which chi shall be calculated
- _omega_j (numpy array of length 3) mechanical frequencies
- _detuning (float) Detuning
- **phi** (np.array) [0,0,pi/2]
- Gamma (float) Damping (either \$Gamma\$ or \$kappa\$)
- **_kappa** (float) linewidth of cavity
- \underline{g} (np.array) Couplings (\underline{g} _x, \underline{g} _y, \underline{g} _z, \underline{g} _xy, \underline{g} _yz, \underline{g} _zx)

Returns M(omega, mode)

Return type 2D np.array

tools.Q_opt(_omega, _detuning, _kappa, _phi)

Calculates optical noise

Parameters

- _omega (1D numpy array) The frequency range of which chi shall be calculated
- _detuning (float) The detuning
- _kappa (float) cavity linewidth
- **phi** (float) Phase ???

Returns Q_opt(omega, mode)

Return type 2D np.array

tools.Q_mech(_omega, _omega_j, _Gamma)

Calculates the mechanical noises

Parameters

- _omega (1D numpy array) The frequency range of which chi shall be calculated
- _omega_j (numpy array of length 3) mechanical frequencies
- _Gamma (float) Damping (either \$Gamma\$ or \$kappa\$)

Returns Q_mech(omega, mode)

Return type 2D np.array

tools.q 1D (omega, omega j, detuning, g, Gamma, kappa, phi)

Calculates the operator q_j \$propto\$(b_j+b_j^dagger) without taking into account the 3D contributions

Parameters

- _omega (1D numpy array) The frequency range of which chi shall be calculated
- _omega_j (numpy array of length 3) mechanical frequencies
- _detuning (float) Detuning
- _**g** (np.array) Couplings (g_x, g_y, g_z, g_xy, g_yz, g_zx)
- _Gamma (float) Damping (either \$Gamma\$ or \$kappa\$)
- _kappa (float) linewidth of cavity
- **_phi** (np.array) [0,0,pi/2]

2 Chapter 1. Tools

```
Returns q(omega, mode) 1D
```

Return type 2D np.array

```
tools.q_3D(_omega,_omega_j,_detuning,_g,_Gamma,_kappa,_phi)
```

Calculates the operator q_j \$propto\$(b_j+b_j^dagger) with taking into account the 3D contributions

Parameters

- _omega (1D numpy array) The frequency range of which chi shall be calculated
- _omega_j (numpy array of length 3) mechanical frequencies
- _detuning (float) Detuning
- _**g** (np.array) Couplings (g_x, g_y, g_z, g_xy, g_yz, g_zx)
- _Gamma (float) Damping (either \$Gamma\$ or \$kappa\$)
- _kappa (float) linewidth of cavity
- _phi (np.array) [0,0,pi/2]

Returns q(omega, mode) 3D

Return type 2D np.array

tools.expectation_value(_operator, _n, _pair)

Calculates the expectation value of an operator by analyzing the noises

Parameters

- _operator (np.array) operator as function of omega (containing all directions)
- _n (float) Expectation value of the respective noise
- _pair (integer) select pair (0=photon, 1=x, 2=y, 3=z)

Returns < operator > (omega)

Return type np.array

tools.spectrum(_operator, _n_opt, _n_mech)

Calculates the PSD

Parameters

- _operator (np.array) operator as function of omega (containing all directions)
- _n_opt (float) optical photon number (n_opt=0)
- _n_mech (np.array) phonon numbers (n_x, n_y, n_z)

Returns operator>_total(omega) (sum over all modes)

Return type np.array

tools.spectrum_output(omega, _i, param, ThreeD)

Calculates the PSD for a given omega regime and set of parameters

Parameters

- omega (np.array) Frequency range in which the spectrum is to be computed
- _i (integer) selection of operator (0=photon, 1=x, 2=y, 3=z)
- param (class param) set of parameters
- ThreedD (boolean) Consider 3D contribution (True) or not (False)

```
Returns PSD(omega)
Return type np.array
```

1.2 Phonon numbers

```
tools.n_from_area(_S_plus, _S_minus, _Delta_omega, _N=0, _name=", printing=True) Calculates phonon number from area and compares it to the one from the formula
```

Parameters

- _S_plus (np.array) Spectrum for positive omega
- _S_minus (np.array) Spectrum for negative omega
- _Delta_omega (float) Spacing of omega
- _N (float) Phonon number from formula
- $_$ name (str) Name of respective operator (x, y or z)
- printing (boolean) Print the result (True), default is True

Returns Phonon numbers (N_plus, N_minus, N_total)

Return type list

tools.**photon_number**(_*n_j*, _*Gamma_opt*, _*Gamma*, *printing=True*)

Calculates the phonon number from the formula

Parameters

- _n_j (np.array) phonon numbers at room temperature
- _Gamma_opt (np.array) optical damping rate (x,y,z)
- _Gamma (float) mechanical damping rate
- printing (boolean) Print the result (True), default is True

Returns Phonon numbers (N plus, N minus, N total)

Return type np.array

1.3 Parameters

```
class tools.parameters
   This class contains all relevant parameters

DelFSR = 1400000000.0
        Free spectral range [Hz], not used if couplings are given

EPSR = 2.1
        relative permittivity [F m^-1]

Finesse = 73000.0
        Finesse

Pin1 = 0.4
        input power tweezer beam [W]
```

4 Chapter 1. Tools

```
Press = 1e-06
    air pressure [mbar]
R0 = 7.15e-08
    sphere radius [m]
RHO = 2198
    sphere density [kg/m<sup>3</sup>]
WX = 6.7e - 07
    focus of tweezer in x-direction [m]
WY = 7.7e - 07
    focus of tweezer in y-direction [m]
X0 = 2.4472000000000004e-07
    equilibrium position in x [m]
XL = 0.0107
    cavity length [m]
Y0 = 0
    y_0, equilibrium position in x-direction
z_0 = 0
    z_0, equilibrium position in x-direction
detuning = -300000.0
    detuning of trap beam (omega_cav - omega_tw) [2pi kHz]
lambda tw = 1.064e-06
     wavelength of tweezer [m]
n_{opt} = 0
    Photon number at room temperature
opt_damp_rate (printing=False)
     Calculates the optical damping rate
         Parameters printing (boolean) - Result is printed (True) or not, default True
         Returns Optical damping rate for (x,y) and z
         Return type np.array
      Warning: Detuning has to be given in 2pi Hz
prepare_calc()
     Calculates all the theoretical relevant parameters if only the experimental ones are given
      Warning: Detuning has to be given in 2pi Hz
print_param()
    Prints all the parameters in a nice fashion
theta0 = 0.25
     angle between tweezer polarization and cavity axis [pi]
waist = 4.11e-05
```

1.3. Parameters 5

waist radius [m]

1.4 Helpers

```
tools.area(_S,_Delta)
```

Calculates area under curve by using the trapezoidal rule

Parameters

- _S (np.array) spectrum
- _Delta (float) spacing of omega

Returns Area under the spectrum

Return type float

tools.loop_progress(*L_inner*, *L_outer*, *inner*, *outer*, *start_time*)

Print nice progress control in terminal

Parameters

- L_inner (integer) length of inner loop
- **L_outer** (*integer*) length of outer loop
- inner (integer) current value of loop parameter of inner loop
- outer (integer) current value of loop parameter of outer loop
- **start_time** (float) time when loops where started

6 Chapter 1. Tools

CHAPTER

TWO

INDICES AND TABLES

- genindex
- modindex

PYTHON MODULE INDEX

t tools,6

10 Python Module Index

INDEX

A	Q		
area() (in module tools), 6	q_1D() (in module tools), 2		
C	q_3D() (in module tools), 3 Q_mech() (in module tools), 2 Q_opt() (in module tools), 2		
chi() (in module tools), 1			
D	R		
DelFSR (tools.parameters attribute), 4 detuning (tools.parameters attribute), 5	R0 (tools.parameters attribute), 5 RHO (tools.parameters attribute), 5		
E	S		
EPSR (tools.parameters attribute), 4 eta() (in module tools), 1	<pre>spectrum() (in module tools), 3 spectrum_output() (in module tools), 3</pre>		
expectation_value() (in module tools), 3	Т		
Finesse (tools.parameters attribute), 4	theta0 (tools.parameters attribute), 5 tools (module), 1, 4, 6		
L	W		
lambda_tw (tools.parameters attribute), 5 loop_progress() (in module tools), 6	waist (tools.parameters attribute), 5 WX (tools.parameters attribute), 5 WY (tools.parameters attribute), 5		
M	-		
M() (in module tools), 1	X X0 (tools.parameters attribute), 5		
mu() (in module tools), 1	XL (tools.parameters attribute), 5		
N	Υ		
n_from_area() (in module tools), 4 n_opt (tools.parameters attribute), 5	Y0 (tools.parameters attribute), 5		
0	Z		
opt_damp_rate() (tools.parameters method), 5	Z0 (tools.parameters attribute), 5		
P			
parameters (class in tools), 4 photon_number() (in module tools), 4 Pin1 (tools.parameters attribute), 4 prepare_calc() (tools.parameters method), 5 Press (tools.parameters attribute), 4 print_param() (tools.parameters method), 5			
print_param() (tools.parameters method), 5			