

Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID: ssptamcg1632

PASSWORD :

TERMINAL (ENTER 1, 2, 3, OR ?):2

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific

research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

* *

FILE 'HOME' ENTERED AT 10:28:35 ON 25 APR 2006

=> f biosis medline embase scisearch

THIS COMMAND NOT AVAILABLE IN THE CURRENT FILE

Some commands only work in certain files. For example, the EXPAND command can only be used to look at the index in a file which has an index. Enter "HELP COMMANDS" at an arrow prompt (=>) for a list of commands which can be used in this file.

=> file biosis medline embase scisearch

COST IN U.S. DOLLARS

SINCE ENTRY	TOTAL SESSION
0.42	0.42

FULL ESTIMATED COST

FILE 'BIOSIS' ENTERED AT 10:29:37 ON 25 APR 2006
Copyright (c) 2006 The Thomson Corporation

FILE 'MEDLINE' ENTERED AT 10:29:37 ON 25 APR 2006

FILE 'EMBASE' ENTERED AT 10:29:37 ON 25 APR 2006

Copyright (c) 2006 Elsevier B.V. All rights reserved.

FILE 'SCISEARCH' ENTERED AT 10:29:37 ON 25 APR 2006

Copyright (c) 2006 The Thomson Corporation

=> s melusin

L1 75 MELUSIN

=> s L1 and trasngenic

L2 0 L1 AND TRASNGENIC

=> s L1 and transgenic

L3 4 L1 AND TRANSGENIC

=> d L3 all

L3 ANSWER 1 OF 4 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
AN 2005:334635 BIOSIS

DN PREV200510121520

TI Cardiac overexpression of **melusin** protects from dilated cardiomyopathy due to long-standing pressure overload.

AU De Acetis, Marika; Notte, Antonella; Accornero, Federica; Selvetella, Giulio; Brancaccio, Mara; Vecchione, Carmine; Sbroggio, Mauro; Collino, Federica; Pacchioni, Beniamina; Lanfranchi, Gerolamo; Aretini, Alessandra; Ferretti, Roberta; Maffei, Angelo; Altruda, Fiorella; Silengo, Lorenzo; Tarone, Guido [Reprint Author]; Lembo, Giuseppe

CS Univ Turin, Dept Genet Biol and Biochem, Via Santena, 5Bis, I-10126 Turin, Italy

guido.tarone@unito.it; lembo@neuromed.it

SO Circulation Research, (MAY 27 2005) Vol. 96, No. 10, pp. 1087-1094.
CODEN: CIRUAL. ISSN: 0009-7330.

DT Article

LA English

ED Entered STN: 31 Aug 2005

Last Updated on STN: 31 Aug 2005

AB We have previously shown that genetic ablation of **melusin**, a muscle specific beta 1 integrin interacting protein, accelerates left ventricle (LV) dilation and heart failure in response to pressure

overload. Here we show that **melusin** expression was increased during compensated cardiac hypertrophy in mice subjected to 1 week pressure overload, but returned to basal levels in LV that have undergone dilation after 12 weeks of pressure overload. To better understand the role of **melusin** in cardiac remodeling, we overexpressed **melusin** in heart of transgenic mice. Echocardiography analysis indicated that **melusin** over-expression induced a mild cardiac hypertrophy in basal conditions (30% increase in interventricular septum thickness) with no obvious structural and functional alterations. After prolonged pressure overload (12 weeks), **melusin** overexpressing hearts underwent further hypertrophy retaining concentric LV remodeling and full contractile function, whereas wild-type LV showed pronounced chamber dilation with an impaired contractility. Analysis of signaling pathways indicated that **melusin** overexpression induced increased basal phosphorylation of GSK3 beta and ERK1/2. Moreover, AKT, GSK3 beta and ERK1/2 were hyper-phosphorylated on pressure overload in **melusin** overexpressing compared with wild-type mice. In addition, after 12 weeks of pressure overload LV of **melusin** overexpressing mice showed a very low level of cardiomyocyte apoptosis and stromal tissue deposition, as well as increased capillary density compared with wild-type. These results demonstrate that **melusin** overexpression allows prolonged concentric compensatory hypertrophy and protects against the transition toward cardiac dilation and failure in response to long-standing pressure overload.

CC Cytology - General 02502
Cytology - Animal 02506
Biochemistry studies - General 10060
Pathology - General 12502
Cardiovascular system - Physiology and biochemistry 14504
Cardiovascular system - Heart pathology 14506
Muscle - Physiology and biochemistry 17504
IT Major Concepts
 Biochemistry and Molecular Biophysics; Cell Biology; Cardiovascular System (Transport and Circulation)
IT Parts, Structures, & Systems of Organisms
 cardiomyocyte: muscular system, circulatory system; muscle: muscular system; left ventricle: circulatory system; stromal tissue
IT Diseases
 heart failure: heart disease
 Heart Failure, Congestive (MeSH)
IT Diseases
 dilated cardiomyopathy: heart disease, pathology
 Cardiomyopathy, Congestive (MeSH)
IT Chemicals & Biochemicals
 ERK1/2; AKT; GSK3-beta; **melusin**: expression
IT Methods & Equipment
 echocardiography: laboratory techniques, diagnostic techniques, clinical techniques, imaging and microscopy techniques; genetic ablation: laboratory techniques, genetic techniques
IT Miscellaneous Descriptors
 pressure overload; capillary density; cardiac remodeling; interventricular septum thickness
ORGN Classifier
 Muridae 86375
Super Taxa
 Rodentia; Mammalia; Vertebrata; Chordata; Animalia
Organism Name
 mouse (common): transgenic
Taxa Notes
 Animals, Chordates, Mammals, Nonhuman Vertebrates, Nonhuman Mammals, Rodents, Vertebrates

=> d L3 1-4 all

L3 ANSWER 1 OF 4 BIOSIS COPYRIGHT (c) 2006 The Thomson Corporation on STN
AN 2005:334635 BIOSIS
DN PREV200510121520
TI Cardiac overexpression of melusin protects from dilated
cardiomyopathy due to long-standing pressure overload.
AU De Acetis, Marika; Notte, Antonella; Accornero, Federica; Selvetella,
Giulio; Brancaccio, Mara; Vecchione, Carmine; Sbroggio, Mauro; Collino,
Federica; Pacchioni, Beniamina; Lanfranchi, Gerolamo; Aretini, Alessandra;
Ferretti, Roberta; Maffei, Angelo; Altruda, Fiorella; Silengo, Lorenzo;
Tarone, Guido [Reprint Author]; Lembo, Giuseppe
CS Univ Turin, Dept Genet Biol and Biochem, Via Santena, 5Bis, I-10126 Turin,
Italy
guido.tarone@unito.it; lembo@neuromed.it
SO Circulation Research, (MAY 27 2005) Vol. 96, No. 10, pp. 1087-1094.
CODEN: CIRUAL. ISSN: 0009-7330.
DT Article
LA English
ED Entered STN: 31 Aug 2005
Last Updated on STN: 31 Aug 2005
AB We have previously shown that genetic ablation of melusin, a
muscle specific beta 1 integrin interacting protein, accelerates left
ventricle (LV) dilation and heart failure in response to pressure
overload. Here we show that melusin expression was increased
during compensated cardiac hypertrophy in mice subjected to 1 week
pressure overload, but returned to basal levels in LV that have undergone
dilation after 12 weeks of pressure overload. To better understand the
role of melusin in cardiac remodeling, we overexpressed
melusin in heart of transgenic mice. Echocardiography
analysis indicated that melusin over-expression induced a mild
cardiac hypertrophy in basal conditions (30% increase in interventricular
septum thickness) with no obvious structural and functional alterations.
After prolonged pressure overload (12 weeks), melusin
overexpressing hearts underwent further hypertrophy retaining concentric
LV remodeling and full contractile function, whereas wild-type LV showed
pronounced chamber dilation with an impaired contractility. Analysis of
signaling pathways indicated that melusin overexpression induced
increased basal phosphorylation of GSK3 beta and ERK1/2. Moreover, AKT,
GSK3 beta and ERK1/2 were hyper-phosphorylated on pressure overload in
melusin overexpressing compared with wild-type mice. In addition,
after 12 weeks of pressure overload LV of melusin overexpressing
mice showed a very low level of cardiomyocyte apoptosis and stromal tissue
deposition, as well as increased capillary density compared with
wild-type. These results demonstrate that melusin
overexpression allows prolonged concentric compensatory hypertrophy and
protects against the transition toward cardiac dilation and failure in
response to long-standing pressure overload.
CC Cytology - General 02502
Cytology - Animal 02506
Biochemistry studies - General 10060
Pathology - General 12502
Cardiovascular system - Physiology and biochemistry 14504
Cardiovascular system - Heart pathology 14506
Muscle - Physiology and biochemistry 17504
IT Major Concepts
Biochemistry and Molecular Biophysics; Cell Biology; Cardiovascular
System (Transport and Circulation)
IT Parts, Structures, & Systems of Organisms
cardiomyocyte: muscular system, circulatory system; muscle: muscular
system; left ventricle: circulatory system; stromal tissue
IT Diseases
heart failure: heart disease
Heart Failure, Congestive (MeSH)
IT Diseases

dilated cardiomyopathy: heart disease, pathology
Cardiomyopathy, Congestive (MeSH)

IT Chemicals & Biochemicals
ERK1/2; AKT; GSK3-beta; melusin: expression

IT Methods & Equipment
echocardiography: laboratory techniques, diagnostic techniques, clinical techniques, imaging and microscopy techniques; genetic ablation: laboratory techniques, genetic techniques

IT Miscellaneous Descriptors
pressure overload; capillary density; cardiac remodeling; interventricular septum thickness

ORGN Classifier
Muridae 86375
Super Taxa
Rodentia; Mammalia; Vertebrata; Chordata; Animalia
Organism Name
mouse (common): transgenic
Taxa Notes
Animals, Chordates, Mammals, Nonhuman Vertebrates, Nonhuman Mammals, Rodents, Vertebrates

L3 ANSWER 2 OF 4 MEDLINE on STN
AN 2005276325 MEDLINE
DN PubMed ID: 15860758
TI Cardiac overexpression of melusin protects from dilated cardiomyopathy due to long-standing pressure overload.
AU De Acetis Marika; Notte Antonella; Accornero Federica; Selvetella Giulio; Brancaccio Mara; Vecchione Carmine; Sbroggio Mauro; Collino Federica; Pacchioni Beniamina; Lanfranchi Gerolamo; Aretini Alessandra; Ferretti Roberta; Maffei Angelo; Altruda Fiorella; Silengo Lorenzo; Tarone Guido; Lembo Giuseppe
CS Department of Genetics, Biology, Turin University, Turin, Italy.
SO Circulation research, (2005 May 27) Vol. 96, No. 10, pp. 1087-94.
Electronic Publication: 2005-04-28.
Journal code: 0047103. E-ISSN: 1524-4571.
CM Erratum in: Circ Res. 2005 Jul 8;97(1):e5
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 200510
ED Entered STN: 28 May 2005
Last Updated on STN: 12 Oct 2005
Entered Medline: 11 Oct 2005
AB We have previously shown that genetic ablation of melusin, a muscle specific beta 1 integrin interacting protein, accelerates left ventricle (LV) dilation and heart failure in response to pressure overload. Here we show that melusin expression was increased during compensated cardiac hypertrophy in mice subjected to 1 week pressure overload, but returned to basal levels in LV that have undergone dilation after 12 weeks of pressure overload. To better understand the role of melusin in cardiac remodeling, we overexpressed melusin in heart of transgenic mice. Echocardiography analysis indicated that melusin over-expression induced a mild cardiac hypertrophy in basal conditions (30% increase in interventricular septum thickness) with no obvious structural and functional alterations. After prolonged pressure overload (12 weeks), melusin overexpressing hearts underwent further hypertrophy retaining concentric LV remodeling and full contractile function, whereas wild-type LV showed pronounced chamber dilation with an impaired contractility. Analysis of signaling pathways indicated that melusin overexpression induced increased basal phosphorylation of GSK3beta and ERK1/2. Moreover, AKT, GSK3beta and ERK1/2 were hyper-phosphorylated on pressure overload in melusin overexpressing compared with wild-type mice. In addition,

after 12 weeks of pressure overload LV of **melusin** overexpressing mice showed a very low level of cardiomyocyte apoptosis and stromal tissue deposition, as well as increased capillary density compared with wild-type. These results demonstrate that **melusin** overexpression allows prolonged concentric compensatory hypertrophy and protects against the transition toward cardiac dilation and failure in response to long-standing pressure overload.

- CT Animals
 Apoptosis
 Blood Pressure
 Cardiomyopathy, Dilated: ET, etiology
 *Cardiomyopathy, Dilated: PC, prevention & control
 Cytoskeletal Proteins: GE, genetics
 *Cytoskeletal Proteins: PH, physiology
 Fibrosis
 Glycogen Synthase Kinase 3: ME, metabolism
 Humans
 Hypertrophy, Left Ventricular: ET, etiology
 Mice
 Mice, Transgenic
 Mitogen-Activated Protein Kinase 1: PH, physiology
 Mitogen-Activated Protein Kinase 3: PH, physiology
 Muscle Proteins: GE, genetics
 *Muscle Proteins: PH, physiology
 *Myocardium: ME, metabolism
 Myocardium: PA, pathology
 Myocytes, Cardiac: PA, pathology
 Phosphorylation
 Protein-Serine-Threonine Kinases: ME, metabolism
 Proto-Oncogene Proteins: ME, metabolism
 Proto-Oncogene Proteins c-akt
 Rats
 Rats, Sprague-Dawley
 Research Support, Non-U.S. Gov't
 Ventricular Remodeling
- CN 0 (Cytoskeletal Proteins); 0 (Itgb1bp2 protein, mouse); 0 (Muscle Proteins); 0 (Proto-Oncogene Proteins); EC 2.7.1.37 (AKT1 protein, human); EC 2.7.1.37 (Akt1 protein, rat); EC 2.7.1.37 (Glycogen Synthase Kinase 3); EC 2.7.1.37 (Mitogen-Activated Protein Kinase 1); EC 2.7.1.37 (Mitogen-Activated Protein Kinase 3); EC 2.7.1.37 (Protein-Serine-Threonine Kinases); EC 2.7.1.37 (Proto-Oncogene Proteins c-akt); EC 2.7.1.37 (glycogen synthase kinase 3 beta)
- L3 ANSWER 3 OF 4 EMBASE COPYRIGHT (c) 2006 Elsevier B.V. All rights reserved on STN
- AN 2005254947 EMBASE
- TI Cardiac overexpression of **melusin** protects from dilated cardiomyopathy due to long-standing pressure overload.
- AU De Acetis M.; Notte A.; Accornero F.; Selvetella G.; Brancaccio M.; Vecchione C.; Sbroggio M.; Collino F.; Pacchioni B.; Lanfranchi G.; Aretini A.; Ferretti R.; Maffei A.; Altruda F.; Silengo L.; Tarone G.; Lembo G.
- CS G. Tarone, Dept. of Genetics, Biology, and Biochemistry, Turin University, Via Santena, 5bis, 10126 Turin, Italy. guido.tarone@unito.it
- SO Circulation Research, (27 May 2005) Vol. 96, No. 10, pp. 1087-1094. .
 Refs: 27
 ISSN: 0009-7330 CODEN: CIRUAL
- CY United States
- DT Journal; Article
- FS 005 General Pathology and Pathological Anatomy
 014 Radiology
 018 Cardiovascular Diseases and Cardiovascular Surgery
 029 Clinical Biochemistry
- LA English

SL English
ED Entered STN: 30 Jun 2005
Last Updated on STN: 30 Jun 2005
AB We have previously shown that genetic ablation of melusin, a muscle specific β 1 integrin interacting protein, accelerates left ventricle (LV) dilation and heart failure in response to pressure overload. Here we show that melusin expression was increased during compensated cardiac hypertrophy in mice subjected to 1 week pressure overload, but returned to basal levels in LV that have undergone dilation after 12 weeks of pressure overload. To better understand the role of melusin in cardiac remodeling, we overexpressed melusin in heart of transgenic mice. Echocardiography analysis indicated that melusin over-expression induced a mild cardiac hypertrophy in basal conditions (30% increase in interventricular septum thickness) with no obvious structural and functional alterations. After prolonged pressure overload (12 weeks), melusin overexpressing hearts underwent further hypertrophy retaining concentric LV remodeling and full contractile function, whereas wild-type LV showed pronounced chamber dilation with an impaired contractility. Analysis of signaling pathways indicated that melusin overexpression induced increased basal phosphorylation of GSK3 β and ERK1/2. Moreover, AKT, GSK3 β and ERK1/2 were hyper-phosphorylated on pressure overload in melusin overexpressing compared with wild-type mice. In addition, after 12 weeks of pressure overload LV of melusin overexpressing mice showed a very low level of cardiomyocyte apoptosis and stromal tissue deposition, as well as increased capillary density compared with wild-type. These results demonstrate that melusin overexpression allows prolonged concentric compensatory hypertrophy and protects against the transition toward cardiac dilation and failure in response to long-standing pressure overload. .COPYRGT. 2005 American Heart Association, Inc.
CT Medical Descriptors:
*congestive cardiomyopathy: DI, diagnosis
*heart left ventricle overload: DI, diagnosis
protein expression
protein determination
heart ventricle remodeling
 transgenic mouse
 echocardiography
 heart ventricle septum
 heart left ventricle contractility
 wild type
 signal transduction
 enzyme phosphorylation
 apoptosis
 heart dilatation
 heart failure
 nonhuman
 mouse
 rat
 animal experiment
 animal model
 controlled study
 animal tissue
 animal cell
 article
 priority journal
Drug Descriptors:
*binding protein: EC, endogenous compound
 *melusin: EC, endogenous compound
 beta1 integrin: EC, endogenous compound
 mitogen activated protein kinase 3: EC, endogenous compound
 mitogen activated protein kinase 1: EC, endogenous compound
 protein kinase B: EC, endogenous compound

glycogen synthase kinase 3alpha: EC, endogenous compound
unclassified drug

RN (mitogen activated protein kinase 3) 137632-07-6; (mitogen activated protein kinase 1) 137632-08-7; (protein kinase B) 148640-14-6

L3 ANSWER 4 OF 4 SCISEARCH COPYRIGHT (c) 2006 The Thomson Corporation on STN

AN 2005:563501 SCISEARCH

GA The Genuine Article (R) Number: 930DR

TI Cardiac overexpression of melusin protects from dilated cardiomyopathy due to long-standing pressure overload

AU De Acetis M; Notte A; Accornero F; Selvetella G; Brancaccio M; Vecchione C; Sbroggio M; Collino F; Pacchioni B; Lanfranchi G; Aretini A; Ferretti R; Maffei A; Altruda F; Silengo L; Tarone G (Reprint); Lembo G

CS Univ Turin, Dept Genet Biol & Biochem, Via Santena, 5Bis, I-10126 Turin, Italy (Reprint); Univ Turin, Dept Genet Biol & Biochem, I-10126 Turin, Italy; IRCCS, Dept Angiocardiogeneurology, Pozzilli, IS, Italy; San Giovanni Battista Hosp, Expt Med Res Ctr, Turin, Italy; Univ Roma La Sapienza, Dept Expt Med & Pathol, Rome, Italy
guido.tarone@unito.it; lembo@neuromed.it

CYA Italy

SO CIRCULATION RESEARCH, (27 MAY 2005) Vol. 96, No. 10, pp. 1087-1094.
ISSN: 0009-7330.

PB LIPPINCOTT WILLIAMS & WILKINS, 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA.

DT Article; Journal

LA English

REC Reference Count: 27

ED Entered STN: 9 Jun 2005
Last Updated on STN: 9 Jun 2005

AB We have previously shown that genetic ablation of melusin, a muscle specific beta 1 integrin interacting protein, accelerates left ventricle (LV) dilation and heart failure in response to pressure overload. Here we show that melusin expression was increased during compensated cardiac hypertrophy in mice subjected to 1 week pressure overload, but returned to basal levels in LV that have undergone dilation after 12 weeks of pressure overload. To better understand the role of melusin in cardiac remodeling, we overexpressed melusin in heart of transgenic mice. Echocardiography analysis indicated that melusin over-expression induced a mild cardiac hypertrophy in basal conditions (30% increase in interventricular septum thickness) with no obvious structural and functional alterations. After prolonged pressure overload (12 weeks), melusin overexpressing hearts underwent further hypertrophy retaining concentric LV remodeling and full contractile function, whereas wild-type LV showed pronounced chamber dilation with an impaired contractility. Analysis of signaling pathways indicated that melusin overexpression induced increased basal phosphorylation of GSK3 beta and ERK1/2. Moreover, AKT, GSK3 beta and ERK1/2 were hyper-phosphorylated on pressure overload in melusin overexpressing compared with wild-type mice. In addition, after 12 weeks of pressure overload LV of melusin overexpressing mice showed a very low level of cardiomyocyte apoptosis and stromal tissue deposition, as well as increased capillary density compared with wild-type. These results demonstrate that melusin overexpression allows prolonged concentric compensatory hypertrophy and protects against the transition toward cardiac dilation and failure in response to long-standing pressure overload.

CC CARDIAC & CARDIOVASCULAR SYSTEMS; HEMATOLOGY; PERIPHERAL VASCULAR DISEASE

ST Author Keywords: melusin; cardiac hypertrophy; heart failure; signal transduction; fibrosis

STP KeyWords Plus (R): HYPERTROPHY IN-VIVO; TRANSGENIC MICE; GENE; DYSFUNCTION; EXPRESSION; FAILURE; MECHANISMS; INHIBIT; RAT

RE Referenced Author | Year | VOL | ARN PG | Referenced Work

(RAU)	(R PY)	(R VL)	(R PG)	(RWK)
ANTOS C L	2002	99	907	P NATL ACAD SCI USA
BADORFF C	2002	109	373	J CLIN INVEST
BONCI D	2003	10	630	GENE THER
BRANCACCIO M	1999	274	29282	J BIOL CHEM
BRANCACCIO M	2003	9	68	NAT MED
BRODAL P	1977	232	705	AM J PHYSIOL
BUENO O F	2002	91	776	CIRC RES
BUENO O F	2000	19	6341	EMBO J
CONDORELLI G	1999	99	3071	CIRCULATION
CONDORELLI G	2002	99	12333	P NATL ACAD SCI USA
DATTA S R	1999	13	2905	GENE DEV
DIFFEE G M	2003	284	H830	AM J PHYSIOL-HEART C
ESPOSITO G	2002	105	85	CIRCULATION
FREY N	2003	65	45	ANNU REV PHYSIOL
GALLAGHER A M	1998	32	84	HYPERTENSION
GELPI R J	1991	68	555	CIRC RES
GULICK J	1991	266	9180	J BIOL CHEM
HAASE D	2002	4	23	EUR J HEART FAIL
HUNTER J J	1999	341	1276	NEW ENGL J MED
JUHASZLOVA M	2004	113	1535	J CLIN INVEST
KADDOURA S	1996	93	2068	CIRCULATION
LEW A M	1999	341	647	BIOCHEM J 3
LIPS D J	2004	109	1938	CIRCULATION
TSCHOPE C	2004	18	828	FASEB J
VECCHIONE C	2002	105	1700	CIRCULATION
WOLSKA B M	1996	271	H1250	AM J PHYSIOL-HEART C
ZILE M R	2002	105	1503	CIRCULATION

=> d his

(FILE 'HOME' ENTERED AT 10:28:35 ON 25 APR 2006)

FILE 'BIOSIS, MEDLINE, EMBASE, SCISEARCH' ENTERED AT 10:29:37 ON 25 APR
2006

L1 75 S MELUSIN
L2 0 S L1 AND TRASNGENIC
L3 4 S L1 AND TRANSGENIC

=> s l1 and transgen

=>

=> d his

(FILE 'HOME' ENTERED AT 10:28:35 ON 25 APR 2006)

FILE 'BIOSIS, MEDLINE, EMBASE, SCISEARCH' ENTERED AT 10:29:37 ON 25 APR
2006

L1 75 S MELUSIN
L2 0 S L1 AND TRASNGENIC
L3 4 S L1 AND TRANSGENIC