Iris: A Modular Foundation for Higher-Order Concurrent Separation Logic¹

Jacques-Henri Jourdan² Robbert Krebbers³

²CNRS, LRI, Université Paris-Sud, France

³Delft University of Technology, The Netherlands

January 8, 2018 @ POPL Tutorials, Los Angeles

¹Iris is joint work with: Ralf Jung, Aleš Bizjak, Hoang-Hai Dang, Jan-Oliver Kaiser, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Amin Timany, Derek Dreyer and Lars Birkedal

Preparation for this tutorial

- ► Download the tutorial lecture material http://iris-project.org/tutorial
- ► Follow README to install Iris 3.1

Iris Proof Mode (IPM)

Many recent program logics come with mechanized soundness proofs, but how to reason in these logics?

Goal of IPM: reasoning in Iris in the same style as reasoning in Coq

Iris Proof Mode (IPM)

Many recent program logics come with mechanized soundness proofs, but how to reason in these logics?

Goal of IPM: reasoning in Iris in the same style as reasoning in Coq

Features of IPM:

- Extends Coq with (spatial and non-spatial) named proof contexts for Iris
- Tactics for introduction and elimination of all connectives of Iris
- Entirely implemented using reflection, type classes and Ltac (no OCaml plugin needed)


```
Lemma and_exist_sep {A} P R (\Psi: A \rightarrow iProp) : 1 subgoal M : ucmraT Proof. A : Type P, R : iProp \Psi: A \rightarrow iProp \Psi: A
```

```
Lemma and_exist_sep {A} P R (\Psi: A \rightarrow iProp) : 1 subgoal P * (\exists a, \Psi a) * R -* \exists a, \Psi a * P. M : ucmraT Proof. A : Type P, R : iProp \Psi: A \rightarrow iProp \Psi: A \rightarrow iProp \frac{(1/1)}{P * (\exists a : A, \Psi a) * R - * \exists a : A, \Psi a * P}
```

```
Lemma and_exist_sep {A} P R (Ψ: A → iProp) : 1 subgoal
P * (∃ a, Ψ a) * R -* ∃ a, Ψ a * P.

Proof.
iIntros "[HP [HΨ HR]]".

A : Type
P, R : iProp
Ψ : A → iProp

"HP" : P
"HΨ" : ∃ a : A, Ψ a
"HR" : R

∃ a : A, Ψ a * P
```

```
Lemma and_exist_sep {A} P R (Ψ: A → iProp) : 1 subgoal
P * (∃ a, Ψ a) * R -* ∃ a, Ψ a * P.

Proof.

iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

"HP" : P

"HΨ" : ∃ a : A, Ψ a

"HR" : R

∃ a : A, Ψ a * P
```

```
Lemma and_exist_sep \{A\} P R (\Psi: A \rightarrow iProp) :
                                                        1 subgoal
  P * (\exists a, \Psi a) * R - * \exists a, \Psi a * P.
                                                             M : ucmraT
Proof.
                                                             A : Type
  iIntros "[HP [H\Psi HR]]".
                                                             P, R : iProp
  iDestruct "H\Psi" as (x) "H\Psi".
                                                             \Psi : A \rightarrow iProp
                                                             x : A
                                                                                                           _{-}(1/1)
                                                             "HP" : P
                                                              "НΨ" : Ψ х
                                                              "HR" : R
                                                             ∃ a : A. Ψ a * P
```

```
Lemma and_exist_sep \{A\} P R (\Psi: A \rightarrow iProp) :
                                                        1 subgoal
  P * (\exists a, \Psi a) * R -* \exists a, \Psi a * P.
                                                             M : ucmraT
Proof.
                                                             A : Type
  iIntros "[HP [H\Psi HR]]".
                                                             P, R : iProp
  iDestruct "H\Psi" as (x) "H\Psi".
                                                             \Psi : A \rightarrow iProp
  iExists x.
                                                             x : A
                                                                                                          _{-}(1/1)
                                                             "HP" : P
                                                             "НΨ" : Ψ х
                                                             "HR" : R
                                                             ∃ a : A. Ψ a * P
```

```
Lemma and_exist_sep \{A\} P R (\Psi: A \rightarrow iProp) :
                                                        1 subgoal
  P * (\exists a, \Psi a) * R -* \exists a, \Psi a * P.
                                                             M : ucmraT
Proof.
                                                             A : Type
  iIntros "[HP [H\Psi HR]]".
                                                             P, R : iProp
  iDestruct "H\Psi" as (x) "H\Psi".
                                                             \Psi : A \rightarrow iProp
  iExists x.
                                                             x : A
                                                                                                          (1/1)
                                                             "HP" : P
                                                             "НΨ" : Ψ х
                                                             "HR" : R
                                                             \Psi x * P
```

```
Lemma and_exist_sep \{A\} P R (\Psi: A \rightarrow iProp) :
                                                        1 subgoal
  P * (\exists a, \Psi a) * R -* \exists a, \Psi a * P.
                                                             M : ucmraT
Proof.
                                                              A : Type
  iIntros "[HP [H\Psi HR]]".
                                                             P, R : iProp
  iDestruct "H\Psi" as (x) "H\Psi".
                                                             \Psi : A \rightarrow iProp
  iExists x.
                                                              x : A
  iSplitL "H\Psi".
                                                                                                            _{-}(1/1)
                                                              "HP" : P
                                                              "НΨ" : Ψ х
                                                              "HR" : R
                                                             \Psi x * P
```

```
Lemma and_exist_sep {A} P R (\Psi: A \to iProp) : 2 subgoals P * (\exists a, \Psi a) * R -* \exists a, \Psi a * P. M : ucmraT Proof. A : Type iIntros "[HP [H\Psi HR]]". P, R : iProperty iExists x. iSplitL "H\Psi". The interpolation is a subgoal of the interpolation in the interpolation is a subgoal of the interpolation in the interpolation is a subgoal of the interpolation in the interpolation is a subgoal of the interpolation in the i
```

```
M : ucmraT
A : Type
P, R : iProp
\Psi : A \rightarrow iProp
x : A
"HV" : Ч х
ψх
                                           (2/2)
"HP" : P
"HR" : R
Р
```

```
Lemma and_exist_sep {A} P R (\Psi: A \rightarrow iProp) : P * (\exists a, \Psi a) * R -* \exists a, \Psi a * P.

Proof.

iIntros "[HP [H\Psi HR]]".

iDestruct "H\Psi" as (x) "H\Psi".

iExists x.

iSplitL "H\Psi".
```

```
1 subgoal
M : ucmraT
A : Type
P, R : iProp
Ψ : A → iProp
x : A

"HΨ" : Ψ x

Ψ x
```

```
Lemma and_exist_sep {A} P R (\Psi: A \rightarrow iProp) : P * (\exists a, \Psi a) * R -* \exists a, \Psi a * P. Proof.

iIntros "[HP [H\Psi HR]]".

iDestruct "H\Psi" as (x) "H\Psi".

iExists x.

iSplitL "H\Psi".

i Assumption.
```

```
1 subgoal
M : ucmraT
A : Type
P, R : iProp
Ψ : A → iProp
x : A

"HΨ" : Ψ x

Ψ x
```

```
Lemma and_exist_sep {A} P R (\Psi: A \rightarrow iProp) : P * (\exists a, \Psi a) * R -* \exists a, \Psi a * P.

Proof.

iIntros "[HP [H\Psi HR]]".

iDestruct "H\Psi" as (x) "H\Psi".

iExists x.

iSplitL "H\Psi".

- iAssumption.
```

```
Lemma and_exist_sep {A} P R (\Psi: A \rightarrow iProp) : P * (\exists a, \Psi a) * R -* \exists a, \Psi a * P.

Proof.

iIntros "[HP [H\Psi HR]]".

iDestruct "H\Psi" as (x) "H\Psi".

iExists x.

iSplitL "H\Psi".

- iAssumption.
```

```
1 subgoal
M : ucmraT
A : Type
P, R : iProp
\Psi : A \rightarrow iProp
x : A

"HP" : P
"HR" : R
```

```
Lemma and_exist_sep \{A\} P R (\Psi: A \rightarrow iProp) :
                                                       1 subgoal
  P * (\exists a, \Psi a) * R - * \exists a, \Psi a * P.
                                                            M : ucmraT
Proof.
                                                            A : Type
  iIntros "[HP [H\Psi HR]]".
                                                            P, R : iProp
  iDestruct "H\Psi" as (x) "H\Psi".
                                                            \Psi : A \rightarrow iProp
  iExists x.
                                                            x : A
  iSplitL "H\Psi".
                                                                                                         (1/1)
                                                            "HP" : P
  - iAssumption.
  - iAssumption.
                                                            "HR" : R
```

```
Lemma and_exist_sep {A} P R (\Psi: A \rightarrow iProp) : No more subgoals. P * (\exists a, \Psi a) * R -* \exists a, \Psi a * P.

Proof.

iIntros "[HP [H\Psi HR]]".

iDestruct "H\Psi" as (x) "H\Psi".

iExists x.

iSplitL "H\Psi".

- iAssumption.

- iAssumption.
```

```
Lemma and_exist_sep {A} P R (\Psi: A \rightarrow iProp) : No more subgoals. P * (\exists a, \Psi a) * R -* \exists a, \Psi a * P.

Proof.

iIntros "[HP [H\Psi HR]]".
iDestruct "H\Psi" as (x) "H\Psi".
iExists x.
iSplitL "H\Psi".
- iAssumption.
- iAssumption.
Qed.
```

```
Lemma and_exist_sep {A} P R (\Psi: A \rightarrow iProp) : P * (\exists a, \Psi a) * R \stackrel{*}{-*} \exists a, \Psi a * P. Proof.

iIntros "[HP [H\Psi HR]]".

iDest Logical notations overridden in scope for Iris iExists a.

iSplitL "H\Psi".

- iAssumption.

- iAssumption.

Qed.
```

```
Lemma and_exist_sep {A} P R (\Psi: A \to iProp) : 1 subgoal P * (\exists a, \Psi a) * R -* \exists a, \Psi a * P. M : ucmraT Proof. A : Type P, R : iProp \Psi: A \to iProp \Psi: A \to iProp ... \Psi: A \to iProp ... \Psi: B a : A, \Psi a ... \Psi a ... \Psi a ... \Psi Notation for deeply embedded context ... \Psi a ... \Psi
```

```
Lemma and_exist_sep \{A\} P R (\Psi: A \rightarrow iProp) :
                                                      1 subgoal
 P * (\exists a, \Psi a) * R - * \exists a, \Psi a * P.
                                                       M : ucmraT
Proof.
                                                       A : Type@{Top.105}
  iIntros "[HP [HΨ HR]]".
                                                       P. R : uPred M
  Unset Printing Notations.
                                                       \Psi : forall _ : A. uPred M
                                                       OuPred entails M
                                                         (@of_envs M
                                                           (@Envs M (@Enil (uPred M))
                                                            (@Esnoc (uPred M)
                                                              (@Esnoc (uPred M)
                                                               (@Esnoc (uPred M) (@Enil (uPred M))
                                                                 (String
                                                                   (Ascii false false false true false
                                                             false true
                                                                    false)
                                                                  (String
                                                                     (Ascii false false false false true
                                                              false true
                                                                      false) EmptyString)) P)
                                                               (String
```

Motivation

Why should we care about interactive proofs? Why not automate everything?

Infeasible to automate everything, for example:

- ► The Rust type system (Jung, Jourdan, Krebbers, Dreyer)
- ► Logical relations (Krogh-Jespersen, Svendsen, Timany, Birkedal, Krebbers)
- ► Termination-preserving refinement (Tassarotti, Jung, Harper)
- Weak memory concurrency (Kaiser, Dang, Dreyer, Lahav, Vafeiadis)
- Object capability patterns (Swasey, Garg, Dreyer)
- ► Logical atomicity (Jung, Swasey, Krogh-Jespersen, Zhang, Dreyer, Birkedal)
- ▶ Defining Iris (Krebbers, Jung, Jourdan, Bizjak, Dreyer, Birkedal)

Most of these projects are formalized in IPM

Coq demo

