

General Description

The QM6015D is the highest performance trench P-ch MOSFETs with extreme high cell density , which provide excellent RDSON and gate charge for most of the synchronous buck converter applications .

The QM6015D meet the RoHS and Green Product requirement , 100% EAS guaranteed with full function reliability approved.

Features

- Advanced high cell density Trench technology
- Super Low Gate Charge
- Excellent CdV/dt effect decline
- 100% EAS Guaranteed
- Green Device Available

Product Summery

BVDSS	RDSON	ID
-60V	25mΩ	-35A

Applications

- High Frequency Point-of-Load Synchronous Buck Converter for MB/NB/UMPC/VGA
- Networking DC-DC Power System
- Load Switch

TO252 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter Rating		Units
V_{DS}	Drain-Source Voltage	-60	V
V_{GS}	Gate-Source Voltage	±20	V
I _D @T _C =25℃	Continuous Drain Current, -V _{GS} @ -10V ¹	-35	Α
I _D @T _C =100°C	Continuous Drain Current, -V _{GS} @ -10V ¹	-27	А
I _{DM}	Pulsed Drain Current ²	-70	А
EAS	Single Pulse Avalanche Energy ³	162	mJ
I _{AS}	Avalanche Current 47.6		А
P _D @T _C =25°C	Total Power Dissipation ⁴ 52.1		W
T _{STG}	Storage Temperature Range -55 to 150		$^{\circ}$
T_J	Operating Junction Temperature Range -55 to 150		$^{\circ}$

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
$R_{\theta JA}$	Thermal Resistance Junction-Ambient 1		62	°C/W
$R_{ heta JC}$	Thermal Resistance Junction-Case ¹		2.4	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =-250uA	-60			V
$\triangle BV_{DSS}/\triangle T_{J}$	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =-1mA		-0.035		V/°C
D	Static Drain-Source On-Resistance ²	V _{GS} =-10V , I _D =-18A		20	25	
R _{DS(ON)}		V _{GS} =-4.5V , I _D =-12A		26	33	mΩ
$V_{GS(th)}$	Gate Threshold Voltage	$V_{GS}=V_{DS}$, $I_D=-250uA$	-1.0	-1.6	-2.5	٧
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	V _{GS} -V _{DS} , I _D 250uA		4.28		mV/℃
	Drain Source Leakage Current	V_{DS} =-48V , V_{GS} =0V , T_J =25 $^{\circ}$ C			1	uA
I _{DSS}	Drain-Source Leakage Current	V _{DS} =-48V , V _{GS} =0V , T _J =55℃			5	
I _{GSS}	Gate-Source Leakage Current	V_{GS} = $\pm 20 V$, V_{DS} = $0 V$			±100	nA
gfs	Forward Transconductance	V _{DS} =-10V , I _D =-18A		23		S
R_g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		7	14	Ω
Qg	Total Gate Charge (-4.5V)	V _{DS} =-20V , V _{GS} =-4.5V , I _D =-12A		25		nC
Q_gs	Gate-Source Charge			6.7		
Q_{gd}	Gate-Drain Charge			5.5		
$T_{d(on)}$	Turn-On Delay Time			38		
T _r	Rise Time	V_{DD} =-15V , V_{GS} =-10V , R_{G} =3.3 Ω , I_{D} =-1A		23.6		no
$T_{d(off)}$	Turn-Off Delay Time			100		ns
T _f	Fall Time			6.8		
C _{iss}	Input Capacitance	V _{DS} =-15V , V _{GS} =0V , f=1MHz		3635		
Coss	Output Capacitance			224		pF
C _{rss}	Reverse Transfer Capacitance			141		

Guaranteed Avalanche Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
EAS	Single Pulse Avalanche Energy ⁵	V _{DD} =-25V , L=0.1mH , I _{AS} =-30A	64			mJ

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current ^{1,6}	V _G =V _D =0V , Force Current			-35	А
I _{SM}	Pulsed Source Current ^{2,6}				-70	Α
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =-1A , T _J =25℃			-1	V

Note:

- 1. The data tested by surface mounted on a 1 inch 2 FR-4 board with 2OZ copper.
- 2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%
- 3. The EAS data shows Max. rating . The test condition is V_{DD} =-25V, V_{GS} =-10V, L=0.1mH, I_{AS} =-47.6A
- 4. The power dissipation is limited by 150 ℃ junction temperature
- 5. The Min. value is 100% EAS tested guarantee.
- 6. The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

Typical Characteristics

Fig.1 Typical Output Characteristics

Fig.3 Forward Characteristics Of Reverse

Fig.5 Normalized V_{GS(th)} v.s T_J

Fig.2 On-Resistance v.s Gate-Source

Fig.4 Gate-Charge Characteristics

Fig.6 Normalized R_{DSON} v.s T_J

Fig.9 Normalized Maximum Transient Thermal Impedance

Fig.10 Switching Time Waveform

Fig.11 Unclamped Inductive Waveform