Dog No					
Reg No.					

MANIPAL INSTITUTE OF TECHNOLOGY (Constituent Institute of Manipal University) MANIPAL-576104

FIFTH SEMESTER B. E. END SEMESTER EXAMINATION DEC – 2007
OPERATING SYSTEMS AND UNIX (CSE –307)

(10 POINT CREDIT SYSTEM) 08-12-2007 (2-5PM)

TIME DURATION: 3 HRS MAX.MARKS: 50

Instructions to Candidates

- Answer **ANY FIVE FULL** questions:
- 1A. Explain the concept of virtual machines. Write a program in C to create a new process that lists the users currently logged on to the system and parent waits till the child process terminates.

 5 Marks
- 1B. With the help of diagrams, explain the current activities of a process when it executes and PCB of that process.

 5 Marks
- 2A. Differentiate between a Process and a Thread. Discuss the following threading issues to be considered in multithreaded programs:
 - i) fork() and exec() system calls
 - ii) Thread cancellation
 - iii)Thread pools

5 Marks

2B. With necessary diagram explain multilevel queue scheduling. For the following set of processes with the length of CPU burst time and arrival time in milliseconds is given:

Process	Arrival Time	Burst Time	Priority
P1	0	6	2
P2	1	3	1
P3	2	1	4
P4	3	5	2

Draw the Gantt chart and calculate average waiting time, average turn around time for Preemptive Priority scheduling algorithm.

5 Marks

3A. Clearly show that with the general definition of semaphores with busy waiting, the value is never negative but with *spinlock* may have negative semaphore values. **5 Marks**

3B. What are two methods incurred to eliminate deadlocks in a system using process termination method. Consider a system with P_0 through P_4 and three resource types A, B, C. Assume resource type A has 10 instances, resource type B has 5 instances and resource type C has 7 instances. Following is the Maximum and Allocation matrices to the processes:

	Allocation	Max			
	A B C	A	В	C	
P0	0 1 0	7	5	3	
P1	2 0 0	3	2	2	
P2	3 0 2	9	0	2	
P3	2 1 1	2	2	2	
P4	0 0 2	4	3	3	

- i) Check whether the system remains in safe state or not at time t=t0. Give the safe sequence.
- ii) At time t1>t0, Process P4 requests additional resources (3 3 0). Check whether this request could be granted and safety of the system. **5 Marks**
- 4A. What is meant by external fragmentation? Specify the solutions to deal with external fragmentation. The following measurements are obtained from a system that uses a linear segmented memory with TLB.
 - Number of entries in TLB=16
 - Time taken to conduct an associative search in TLB=160ns
 - Main memory access time=1µs

Determine the average access time assuming a TLB hit ratio of 0.75.

5 Marks

- 4B. Explain how computer will slow down because of demand paging with appropriate example. Explain how operating system monitors the working set of each process using working set model.

 5 Marks
- 5A. What is the protection mechanism provided for controlled access of file in multi-user system. Explain tree structured directories. Explain searching for a file, creation and deletion of directory in this scheme.

 5 Marks
- 5B. Suppose that a disk drive has 200 cylinders, numbered 0 to 199. disk head is initially at cylinder 53. the disk queue has the following request for I/O to blocks on cylinders:98, 183, 37, 122, 14, 124, 65, 67. Indicate the total head movement using the following disk scheduling algorithms:
- i) SCAN
- ii) LOOK
- iii) C-SCAN
- iv) C-LOOK

5 Marks

6A. Explain the owner and control operations to the content of access matrix with appropriate example.

5 Marks

6B.With the relationship between priorities and time-slice length explain the linux
scheduler supported with the run queue, active array and expired array. Use diagrams
where ever necessary. 5 Marks