Capitolo 4 Livello di rete

Nota per l'utilizzo:

Abbiamo preparato queste slide con l'intenzione di renderle disponibili a tutti (professori, studenti, lettori). Sono in formato PowerPoint in modo che voi possiate aggiungere e cancellare slide (compresa questa) o modificarne il contenuto in base alle vostre esigenze.

Come potete facilmente immaginare, da parte nostra abbiamo fatto *un sacco* di lavoro. In cambio, vi chiediamo solo di rispettare le seguenti condizioni:

- se utilizzate queste slide (ad esempio, in aula) in una forma sostanzialmente inalterata, fate riferimento alla fonte (dopo tutto, ci piacerebbe che la gente usasse il nostro libro!)
- □ se rendete disponibili queste slide in una forma sostanzialmente inalterata su un sito web, indicate che si tratta di un adattamento (o che sono identiche) delle nostre slide, e inserite la nota relativa al copyright.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2005 J.F Kurose and K.W. Ross, All Rights Reserved

Reti di calcolatori e Internet: Un approccio top-down

3ª edizione Jim Kurose, Keith Ross Pearson Education Italia ©2005

Capitolo 4: Livello di rete

Obiettivi del capitolo:

- Capire i principi che stanno dietro i servizi del livello di rete:
 - Instradamento (scelta del percorso)
 - Scalabilità
 - Funzionamento di un router
 - Argomenti avanzati: IPv6, mobilità
- Implementazione in Internet

<u>Capitolo 4: Livello di</u> <u>rete</u>

- 4. 1 Introduzione
- 4.2 Reti a circuito virtuale e a datagramma
- 4.3 Che cosa si trova
 all'interno di un
 router?
- 4.4 Protocollo
 Internet (IP)
 - Formato dei datagrammi
 - Indirizzamento IPv4
 - ICMP
 - IPv6

- 4.5 Algoritmi di instradamento
 - Stato del collegamento
 - Vettore distanza
 - Instradamento gerarchico
- 4.6 Instradamento in Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Instradamento broadcast e multicast

Livello di rete

- □ Il livello di rete prende i segmenti dal livello di trasporto nell'host mittente
- □ Sul lato mittente, incapsula i segmenti in datagrammi
- □ Sul lato destinatario, consegna i segmenti al livello di trasporto
- Protocolli del livello di rete in ogni host, router
- □ Il router esamina i campi intestazione in tutti i datagrammi IP che lo attraversano

<u>Funzioni chiave del</u> <u>livello di rete</u>

- ☐ Inoltro (forwarding):
 trasferisce i
 pacchetti dall'input
 di un router
 all'output del router
 appropriato
- ☐ Instradamento
 (routing): determina
 il percorso seguito
 dai pacchetti
 dall'origine alla
 destinazione
 - Algoritmi
 d'instradamento

analogia:

- □ instradamento:
 processo di
 pianificazione di
 un viaggio
 dall'origine alla
 destinazione
- □ inoltro: processo di attraversamento di un determinato svincolo

<u>Instradamento e inoltro</u>

Impostazione della connessione

- Terza funzione importante in qualche architettura a livello di rete:
 - ATM, frame relay, X.25
- Prima che i datagrammi fluiscano, due host e i router stabiliscono una connessione virtuale
 - i router vengono coinvolti
- □ Servizio di connessione tra livello di trasporto e livello di rete:
 - O Rete: tra due host
 - Trasporto: tra due processi

<u>Modello di servizio del</u> livello di rete

D: Qual è il *modello di servizio* per il "canale" che trasporta i datagrammi dal mittente al destinatario?

<u>Servizi per un</u> <u>singolo</u> <u>datagramma:</u>

- Consegna garantita
- Consegna
 garantita con un
 ritardo inferiore
 a 40 msec

<u>Servizi per un flusso</u> <u>di datagrammi:</u>

- Consegna in ordine
- Minima ampiezza di banda garantita
- Restrizioni sul lasso di tempo tra la trasmissione di due pacchetti consecutivi

Modelli di servizi del livello di rete:

Architettura		Modello di servizio	Garanzia?				Indicazione
di rete	Banda		Consegna	Ordina- mento	Temporiz- zazione	di congestione	
_	Internet	best effort	nessuna	no	no	no	no
	ATM	CBR	Tasso costante garantito	sì	sì	sì	Nessuna congestione
	ATM	VBR		sì	sì	sì	Nessuna congestione
	ATM	ABR	Minima garantita	no	sì	no	sì
	ATM	UBR	nessuna	no	sì	no	no

<u>Capitolo 4: Livello di</u> rete

- 4.1 Introduzione
- 4.2 Reti a circuito virtuale e a datagramma
- 4.3 Che cosa si trova
 all'interno di un
 router?
- 4.4 Protocollo
 Internet (IP)
 - Formato dei datagrammi
 - Indirizzamento IPv4
 - ICMP
 - IPv6

- 4.5 Algoritmi di instradamento
 - Stato del collegamento
 - Vettore distanza
 - Instradamento gerarchico
- 4.6 Instradamento
 in Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Instradamento
 broadcast e
 multicast

Reti a circuito virtuale e a datagramma

- □ Reti a datagramma offrono solo il servizio senza connessione.
- Reti a circuito virtuale (VC) mettono a disposizione solo il servizio con connessione.
- Ci sono alcune analogie con quanto avviene a livello di trasporto ma:
 - Servizio: da host a host
 - Non si può scegliere: il livello di rete offre un servizio senza connessione o con connessione ma non entrambi
 - Le implementazioni: sono fondamentalmente diverse.

Reti a circuito virtuale

"il percorso tra origine e destinazione
 si comporta in modo analogo a un
 circuito telefonico"

- □ Il pacchetto di un circuito virtuale ha un numero VC nella propria intestazione.
- Un circuito virtuale può avere un numero VC diverso su ogni collegamento.
- Ogni router sostituisce il numero VC con un nuovo numero.

<u>Implementazioni</u>

Un circuito virtuale consiste in:

- un percorso tra gli host origine e destinazione
- 2. numeri VC, uno per ciascun collegamento
- 3. righe nella tabella d'inoltro in ciascun router.
- □ Il pacchetto di un circuito virtuale ha un numero VC nella propria intestazione.
- □ Il numero VC del pacchetto cambia su tutti i collegamenti lungo un percorso.
 - Un nuovo numero VC viene rilevato dalla tabella d'inoltro.

Tabella d'inoltro vo

<u>Γabella d'inoltro:</u>

in ingresso	Nr. VC entra	ante Inter	f. in uscit	ta Nr. VC u
12			3	
63			1	
7			2	
97			3	
•••			•••	

I router mantengono le informazioni sullo stato delle connessioni!

Protocolli di segnalazione

- Messaggi inviati dai sistemi terminali per avviare o concludere un circuito virtuale
- □ Usati in ATM, frame-relay e X.25
- 🗖 Non usati in Internet.

Reti a datagramma

- L'impostazione della chiamata non avviene a livello di rete
- □ I router della rete a datagramma non conservano informazioni sullo stato dei circuiti virtuali (perché non ce ne sono).
- □ I pacchetti vengono inoltrati utilizzando l'indirizzo dell'host destinatario.
 - I pacchetti passano attraverso una serie di router che utilizzano gli indirizzi di destinazione per inviarli.

Tabella d'inol trossibili indirizzi

Intervallo degli indirizzi di destinazione	<u>Interfaccia</u>
da 11001000 00010111 00010000 00000000	
a 11001000 00010111 00010111 11111111	0
da 11001000 00010111 00011000 00000000	1
a 11001000 00010111 00011000 111111111	1
da 11001000 00010111 00011001 00000000	2
a 11001000 00010111 00011111 111111111	2
altrimenti	3

Confronta un *prefisso* dell'indirizzo

Corrispondenza di prefisso

Interfaccia

	11001000	00010111	00010	0
	11001000	00010111	00011000	1
	11001000	00010111	00011	2
altrimenti				3

Esempi:

con: 11001000 00010111 00010110 101000**01**al è l'interfaccia?

con: 11001000 00010111 00011000 101010Qu0al è l'interfaccia?

<u>Perché reti a circuito virtuale</u> <u>o a datagramma?</u>

Internet

- Necessità di scambiare dati tra differenti calcolatori.
 - Servizi elastici, non vi sono eccessivi requisiti di tempo
- L'interconnessione è semplice (computer)
 - È adattabile, effettua controlli e recupera errori
 - Rete interna non complessa, la complessità sta agli estremi
- □ Svariati tipi di link
 - Caratteristiche differenti
 - Difficile uniformarne il servizio

ATM

- Deriva dal mondo della telefonia.
- Conversazione
 telefonica:
 - Requisiti stringenti in termini di tempo e affidabilità.
 - Necessità di servizi garantiti.
- □ Sistemi terminali "stupidi"
 - Telefoni.
 - La complessità sta nella rete interna.

<u>Capitolo 4: Livello di</u> <u>rete</u>

- 4. 1 Introduzione
- 4.2 Reti a circuito virtuale e a datagramma
- 4.3 Che cosa si trova all'interno di un router?
- 4.4 Protocollo
 Internet (IP)
 - Formato dei datagrammi
 - Indirizzamento IPv4
 - ICMP
 - IPv6

- 4.5 Algoritmi di instradamento
 - Stato del collegamento
 - Vettore distanza
 - Instradamento gerarchico
- 4.6 Instradamento in Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Instradamento
 broadcast e multicast

Architettura del router?

Due funzioni chiave:

- □ Far girare i protocolli/algoritmi d'instradamento (RIP, OSPF, BGP)
- Inoltro di datagrammi dai collegamenti in ingresso a quelli in uscita.

Porte d'ingresso

Es. Ethernet (vedi Capitolo 5)

Commutazione decentralizzata:

- Determina la porta d'uscita dei pacchetti utilizzando le informazioni della tabella d'inoltro
- Obiettivo: completare l'elaborazione
 allo stesso tasso della linea
- Accodamento: se il tasso di arrivo dei datagrammi è superiore a quello di inoltro

Tre tecniche di commutazione

Commutazione in memoria

Prima generazione di router:

- □ Erano tradizionali calcolatori e la commutazione era effettuata sotto il controllo diretto della CPU.
- □ Il pacchetto veniva copiato nella memoria del processore.
- □ I pacchetti venivano trasferiti dalle porte d'ingresso a quelle d'uscita con una frequenza totale inferiore a B/2.

Commutazione tramite bus

- Le porte d'ingresso trasferiscono un pacchetto direttamente alle porte d'uscita su un bus condiviso.
- La larghezza di banda della commutazione è limitata da quella del bus.
- Cisco 1900 opera con bus da 1 Gbps: è sufficiente per router che operano in reti d'accesso o in quelle aziendali

Commutazione attraverso rete d'interconnessione

- Supera il limite di banda di un singolo bus condiviso.
- Tendenza attuale: frammentazione dei pacchetti IP a lunghezza variabile in celle di lunghezza fissa.
- □ Switch Cisco 12000: usano una rete d'interconnessione che raggiunge i 60 Gbps nella struttura di commutazione.

Porte d'uscita

- □ Funzionalità di accodamento: quando la struttura di commutazione consegna pacchetti alla porta d'uscita a una frequenza che supera quella del collegamento uscente.
- □ Schedulatore di pacchetti: stabilisce in quale ordine trasmettere i pacchetti accodati.

Dove si verifica l'accodamento?

- □ Se la struttura di commutazione non è sufficientemente rapida nel trasferire i pacchetti, si può verificare un accodamento.
- □ Se le code diventano troppo lunghe, i buffer si possono saturare e quindi causare una *perdita di pacchetti!*

Dove si verifica

l'accodamento?

packet can be transferred

- □ Blocco in testa alla fila (HOL): un pacchetto nella coda d'ingresso deve attendere il trasferimento (anche se la propria destinazione è libera) in quanto risulta bloccato da un altro pacchetto in testa alla fila.
- □ Se le code diventano troppo lunghe, i buffer si possono saturare e quindi

<u>Capitolo 4: Livello di</u> <u>rete</u>

- 4. 1 Introduzione
- 4.2 Reti a circuito
 virtuale e
 a datagramma
- 4.3 Che cosa si trova
 all'interno di un
 router?
- 4.4 Protocollo Internet (IP)
 - Formato dei datagrammi
 - Indirizzamento IPv4
 - ICMP
 - IPv6

- 4.5 Algoritmi di instradamento
 - Stato del collegamento
 - Vettore distanza
 - Instradamento gerarchico
- 4.6 Instradamento in Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Instradamento
 broadcast e multicast

<u>Protocollo Internet (IP):</u> <u>inoltro e indirizzamento in</u> <u>Internet</u>

Uno sguardo al livello di rete Internet:

<u>Capitolo 4: Livello di</u> <u>rete</u>

- 4. 1 Introduzione
- 4.2 Reti a circuito virtuale e a datagramma
- 4.3 Che cosa si trova
 all'interno di un
 router?
- 4.4 Protocollo Internet (IP)
 - Formato dei datagrammi
 - Indirizzamento IPv4
 - ICMP
 - IPv6

- 4.5 Algoritmi di instradamento
 - Stato del collegamento
 - Vettore distanza
 - Instradamento gerarchico
- 4.6 Instradamento in Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Instradamento
 broadcast e
 multicast

Formato dei datagrammi

<u>Frammentazione dei</u> <u>datagrammi IP</u>

- L'unità massima di trasmissione (MTU) è la massima quantità di dati che un frame a livello di collegamento può trasportare.
 - Differenti tipi di link, differenti MTU.
- Datagrammi IP grandi vengono frammentati in datagrammi IP più piccoli.
 - Un datagramma viene frammentato.
 - I frammenti saranno riassemblati solo una volta raggiunta la destinazione
 - I bit dell'intestazione IP sono usati per identificare e ordinare i frammenti

<u>Frammentazione e</u> <u>riassemblaggio IP</u>

<u>Esempio</u>

- Datagramma di 4000 byte
- □ MTU = 1500 byte

1480 byte nel.... campo dati

Spiazzamento =
1480/8

Un datagramma IP grande viene frammentato in datagrammi IP più piccoli.

<u>Capitolo 4: Livello di</u> <u>rete</u>

- 4. 1 Introduzione
- 4.2 Reti a circuito virtuale e a datagramma
- 4.3 Che cosa si trova
 all'interno di un
 router?
- 4.4 Protocollo Internet (IP)
 - Formato dei datagrammi
 - Indirizzamento IPv4
 - ICMP
 - IPv6

- 4.5 Algoritmi di instradamento
 - Stato del collegamento
 - Vettore distanza
 - Instradamento gerarchico
- 4.6 Instradamento in Internet
 - ORIP
 - OSPF
 - BGP
- 4.7 Instradamento
 broadcast e
 multicast

Indirizzamento IPv4

- □ Indirizzo IP: ogni interfaccia di host e router di Internet ha un indirizzo IP globalmente univoco.
- □ *Interfaccia:* è il confine tra host e collegamento fisico.
 - I router devono necessariamente essere connessi ad almeno due collegamenti.
 - Un host, in genere, ha un'interfaccia
 - A ciascuna interfaccia sono associati indirizzi IP

Sottoreti

□ Cos'è una sottorete?

- Per IP una rete che interconnette tre interfacce di host e l'interfaccia di un router forma una sottorete.
- Nella letteratura Internet le sottoreti sono anche chiamate reti IP.

rete composta da 3 sottoreti

Sottorete

Definizione

□ È detta *sottorete* una rete isolata i cui punti terminali sono collegati all'interfaccia di un host o di un router.

223.1.3.0/24

Maschera di sottorete: /24

Sottoreti

Quante sono?

<u>Assegnazione indirizzi</u> <u>Internet CIDR</u>

CIDR: Classless InterDomain Routing

- È la strategia di assegnazione degli indirizzi.
- O Struttura dell'indirizzo: l'indirizzo IP viene diviso in due parti e mantiene la forma decimale puntata a.b.c.d/x, dove x indica il numero di bit nella prima parte dell'indirizzo.

200.23.16.0/23

<u>Come ottenere un blocco di</u> indirizzi

- D: Cosa bisogna fare per assegnare un indirizzo IP a un host?
- Configurazione manuale:
 - Wintel: control-panel->network->configuration->tcp/ip->properties
 - UNIX: /etc/rc.config
- DHCP: Dynamic Host Configuration Protocol: permette a un host di ottenere un indirizzo IP in modo automatico

<u>Come ottenere un blocco di</u> indirizzi

- D: Cosa deve fare un amministratore di rete per ottenere un blocco di indirizzi IP da usare in una sottorete?
- R: deve contattare il proprio ISP e ottenere la divisione in otto blocchi uguali di indirizzi contigui.

Blocco dell'ISP	11001000 00010111	00010000	00000000	200.23.16.0/20
Organizzazione 1		<u>0001001</u> 0	00000000	200.23.16.0/23 200.23.18.0/23
Organizzazione 2	<u>11001000 00010111</u>	<u>0001010</u> 0	00000000	200.23.20.0/23
Organizzazione 7	11001000 00010111	00011110	00000000	200.23.30.0/23

Indirizzamento gerarchico

Indirizzamento gerarchico e aggregazione di indirizzi:

<u>Indirizzamento gerarchico più</u> <u>specifico</u>

covvedo-Io presenta un percorso più specifico verso Organizzazione

Indirizzi IP alla fonte

- D: Ma come fa un ISP, a sua volta, a ottenere un blocco di indirizzi?
- R: ICANN: Internet Corporation for Assigned

Names and Numbers

- Ha la responsabilità di allocare i blocchi di indirizzi.
- Gestisce i server radice DNS.
- Assegna e risolve dispute sui nomi di dominio.

I router abilitati alla Mazio di indirizzi riservato alle non appaiono al mondo reti private, molte delle quali esterno come router ma come usano un identico spazio, un unico dispositivo 10.0.0/24 per scambiare pacchetti con un unico indirizzo IP. tra i loro dispositivi Indirizzo IP origine:

138.76.29.7,

4-47

e tutto il traffico verso

- Il router abilitato alla NAT nasconde i dettagli della rete domestica al mondo esterno
 - Non è necessario allocare un intervallo di indirizzi da un ISP: un unico indirizzo IP è sufficiente per tutte le macchine di una rete locale.
 - È possibile cambiare gli indirizzi delle macchine di una rete privata senza doverlo comunicare all'Internet globale.
 - È possibile cambiare ISP senza modificare gli indirizzi delle macchine della rete privata

- □ Il campo numero di porta è lungo 16 bit:
 - Il protocollo NAT può supportare più di 60.000 connessioni simultanee con un solo indirizzo IP sul lato WAN.
- NAT è contestato perché:
 - i router dovrebbero elaborare i pacchetti solo fino al livello 3.
 - Viola il cosiddetto argomento punto-punto
 - Interferenza con le applicazioni P2P, a meno che non sia specificamente configurato per quella specifica applicazione P2P.
 - Per risolvere la scarsità di indirizzi IP si dovrebbe usare IPv6.

<u>Capitolo 4: Livello di</u> <u>rete</u>

- 4. 1 Introduzione
- 4.2 Reti a circuito virtuale e a datagramma
- 4.3 Che cosa si trova
 all'interno di un
 router?
- 4.4 Protocollo Internet (IP)
 - Formato dei datagrammi
 - Indirizzamento IPv4
 - ICMP
 - IPv6

- 4.5 Algoritmi di instradamento
 - Stato del collegamento
 - Vettore distanza
 - Instradamento gerarchico
- 4.6 Instradamento in Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Instradamento
 broadcast e multicast

Internet Control Message Protocol (ICMP)

- □ Viene usato da host e router per scambiarsi informazioni a livello di rete.
 - report degli errori: host, rete, porta, protocollo irraggiungibili.
 - o echo request/reply (usando il programma ping).
- □ Livello di rete "sopra" IP:
 - ICMP è considerato parte di IP.
- ☐ Messaggi ICMP: hanno un campo tipo e un campo codice, e contengono l'intestazione e i primi 8 byte del datagramma IP.

Codico	Descrizione
Codice	
0	Risposta eco (a ping)
0	rete destin. irraggiungibile
1	host destin. irraggiungibile
2	protocollo dest. irraggiungibile
3	porta destin. irraggiungibile
6	rete destin. sconosciuta
7	host destin. sconosciuto
0	riduzione (controllo
	di congestione)
0	richiesta eco
0	annuncio del router
0	scoperta del router
0	TTL scaduto
0	errata intestazione IP
	2 3 6 7 0

Traceroute e ICMP

- □ Il programma invia una serie di datagrammi IP alla destinazione.
 - Il primo pari a TTL =1
 - Il secondo pari a TTL=2, ecc.
 - Numero di porta improbabile
- □ Quando l'*n*-esimo datagramma arriva all'*n*-esimo router:
 - Il router scarta il datagramma.
 - Invia all'origine un messaggio di allerta ICMP (tipo 11, codice 0).
 - Il messaggio include il nome del router e l'indirizzo IP.

Quando il messaggio ICMP arriva, l'origine può calcolare RTT

<u>Criteri di arresto</u> <u>dell'invio</u>

- Quando un segmento UDP arriva all'host di destinazione.
- □ L'host di destinazione restituisce un messaggio ICMP di porta non raggiungibile (tipo 3, codice 3).
- Quando l'origine riceve questo messaggio ICMP, si blocca.

<u>Capitolo 4: Livello di</u> <u>rete</u>

- 4. 1 Introduzione
- 4.2 Reti a circuito virtuale e a datagramma
- 4.3 Che cosa si trova
 all'interno di un
 router?
- 4.4 Protocollo Internet (IP)
 - Formato dei datagrammi
 - Indirizzamento IPv4
 - ICMP
 - IPv6

- 4.5 Algoritmi di instradamento
 - Stato del collegamento
 - Vettore distanza
 - Instradamento gerarchico
- 4.6 Instradamento in Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Instradamento
 broadcast e multicast

IPv6

- □ Esigenza principale: lo spazio di indirizzamento IP a 32 bit stava incominciando a esaurirsi.
- □ Altre motivazioni:
 - Il formato dell'intestazione aiuta a rendere più veloci i processi di elaborazione e inoltro
 - Agevolare la QoS.

Formato dei datagrammi IPv6:

- Intestazione a 40 byte e a lunghezza fissa.
- Non è consentita la frammentazione.

<u>Formato dei datagrammi</u> <u>IPv6</u>

Priorità di flusso: attribuisce priorità a determinati datagrammi di un flusso.

Etichetta di flusso: identifica i pacchetti che appartengono a flussi particolari (anche se non è ben chiaro il concetto di "flusso").

Intestazione successiva: identifica il protocollo cui verranno consegnati i contenuti del datagramma.

32 bits -----

Altre novità di IPv6

- Checksum: i progettisti hanno deciso di rimuoverla dal livello di rete in quanto risultava ridondante.
- □ *Opzioni:* non fa più parte dell'intestazione IP standard. Il campo non è del tutto scomparso ma è diventato una delle possibili "intestazioni successive" cui punta l'intestazione di IPv6.
- □ *ICMPv6:* nuova versione di ICMP:
 - Ha aggiunto nuovi tipi e codici, es. "Pacchetto troppo grande".
 - Assume le funzionalità dell'IGMP, e gestisce l'ingresso e l'uscita di host nei gruppi multicast.

Passaggio da IPv4 a IPv6

- □ Non è possibile aggiornare simultaneamente tutti i router:
 - Impossibile dichiarare una "giornata campale" in cui tutte le macchine Internet verranno spente e aggiornate da IPv4 a IPv6.
 - O Come riuscirà la rete a funzionare in presenza di router IPv4 e IPv6?
- Tunneling: IPv6 viene trasportato come payload in datagrammi IPv4 quando attraversa router IPv4

Tunneling

<u>Capitolo 4: Livello di</u> rete

- 4. 1 Introduzione
- 4.2 Reti a circuito
 virtuale e
 a datagramma
- 4.3 Che cosa si trova
 all'interno di un
 router?
- 4.4 Protocollo
 Internet (IP)
 - Formato dei datagrammi
 - Indirizzamento IPv4
 - ICMP
 - IPv6

- 4.5 Algoritmi di instradamento
 - Stato del collegamento
 - Vettore distanza
 - Instradamento gerarchico
- 4.6 Instradamento in Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Instradamento
 broadcast e
 multicast

Algoritmi d'instradamento

<u>Grafo di una rete di</u> calcolatori

Grafo: G = (N,E)

 $N = insieme di nodi = \{ u, v, w, x, y, z \}$

 $E = insieme di archi = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

N.B.: Il grafo è un'astrazione utile anche in altri contesti di rete

Esempio: P2P, dove N è un insieme di peer ed E è un insieme di collegamenti TCP

<u>Grafo di una rete :</u> <u>costi</u>

• c(x,x') = costo del collegamento (

$$- es., c(w,z) = 5$$

il costo di un cammino è semplicemente la somma di tutti i costi degli archi lungo il cammino

sto di un cammino $(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1})$

Domanda: Qual è il cammino a costo minimo tra u e z ?

oritmo d'instradamento: determina il cammino a costo minimo.

<u>Classificazione degli</u> <u>algoritmi d'instradamento</u>

Globale o decentralizzato?

Globale:

- ☐ L'algoritmo riceve in ingresso tutti i collegamenti tra i nodi e i loro costi.
- Algoritmi a stato del collegamento (link-state algorithm).

Decentralizzato:

- Ogni nodo elabora un vettore di stima dei costi (distanze) verso tutti gli altri nodi nella rete.
- □ Il cammino a costo minimo viene calcolato in modo distribuito e iterativo.
- Algoritmo a vettore distanza
 (VC, distance-vector
 algorithms)

Statico o dinamico?

Statico:

I cammini cambiano molto raramente.

Dinamico:

- Determinano gli instradamenti al variare di:
 - Volume di traffico
 - Topologia della rete

<u>Capitolo 4: Livello di</u> rete

- 4. 1 Introduzione
- 4.2 Reti a circuito
 virtuale e
 a datagramma
- 4.3 Che cosa si trova
 all'interno di un
 router?
- 4.4 Protocollo
 Internet (IP)
 - Formato dei datagrammi
 - Indirizzamento IPv4
 - ICMP
 - IPv6

- 4.5 Algoritmi di instradamento
 - Stato del collegamento
 - Vettore distanza
 - Instradamento gerarchico
- 4.6 Instradamento in Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Instradamento
 broadcast e
 multicast

<u>Algoritmo d'instradamento a</u> <u>stato del collegamento (LS)</u>

Algoritmo di Dijkstra:

- □ La topologia di rete e tutti i costi dei collegamenti sono noti a tutti i nodi
 - o attraverso il "linkstate broadcast".
 - tutti i nodi dispongono delle stesse informazioni
- □ Calcola il cammino a costo minimo da un nodo (origine) a tutti gli altri nodi della rete.
 - O Crea una tabella
 d'inoltro per quel nodo
- □ È iterativo: dopo la *k*esima iterazione i cammini
 a costo minimo sono noti a *k* nodi di destinazione.

Definiamo la seguente notazione:

- c(x,y): costo del collegamenti dal nodo x al nodo y; = ∞ se non sono adiacenti.
- □ D(v): costo del cammino dal nodo origine alla destinazione ν per quanto riguarda l'iterazione corrente.
- □ p(v): immediato predecessore di ν lungo il cammino.
- N': sottoinsieme di nodi per cui il cammino a costo minimo dall'origine è definitivamente noto.

Algoritmo di Dijsktra

```
Inizializzazione:
  N' = \{u\}
  per tutti i nodi v
    se v è adiacente a u
       allora D(v) = c(u,v)
5
    altrimenti D(v) = ∞
6
   Ciclo
    determina un w non in N' tale che D(w) sia minimo
   aggiungi w a N'
    aggiorna D(v) per ciascun nodo v adiacente a w e non in N':
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* il nuovo costo verso v è il vecchio costo verso v oppure
14 il costo del cammino minimo noto verso w più il costo da w a v */
15 Finché N' = N
```

Algoritmo di Dijkstra: esempio

pas	SO	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	2,u	5,u	1,u	∞	∞
	1	ux←	2,u	4,x		2,x	∞
	2	uxy	2,u	3,y			4,y
	3	uxyv		3,y			4,y
	4	uxyvw •					4,y
	5	uxvvwz ←					

<u>Algoritmo di Dijkstra: un altro</u> <u>esempio</u>

<u>Cammino a costo minimo da u:</u>

Tabella d'inoltro in u:

destinazion@ollegamento

(u,v)
(u,x)
(u,x)
(u,x)
(u,x)

<u>Capitolo 4: Livello di</u> rete

- 4. 1 Introduzione
- 4.2 Reti a circuito
 virtuale e
 a datagramma
- 4.3 Che cosa si trova
 all'interno di un
 router?
- 4.4 Protocollo
 Internet (IP)
 - Formato dei datagrammi
 - Indirizzamento IPv4
 - ICMP
 - IPv6

- 4.5 Algoritmi di instradamento
 - Stato del collegamento
 - Vettore distanza
 - Instradamento gerarchico
- 4.6 Instradamento in Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Instradamento
 broadcast e
 multicast

<u>Algoritmo d'instradamento</u> <u>con vettore distanza (DV)</u>

<u>Formula di Bellman-Ford (programmazione dinamica)</u>

definisce

 $d_x(y) := il costo del percorso a costo minimo dal nodo <math>x$ al nodo y.

Allora:

$$d_{x}(y) = \min_{x \in \mathcal{L}(x, y) + d_{y}(y)}$$

dove min_{ν} riguarda tutti i vicini di x.

Formula di Bellman-Ford: esempio

<u>Algoritmo con vettore</u> distanza

- $\square D_{x}(y) = stima del costo del percorso a$ costo minimo da se stesso al nodo y. \square Vettore distanza: $\mathbf{D}_{\mathsf{v}} = [D_{\mathsf{v}}(\mathsf{y}): \mathsf{y} \in \mathsf{N}]$ Il nodo x conosce il costo verso
- ciascun vicino ν : c(x,v)
- □ Il nodo x mantiene $\mathbf{D}_{x} = [\mathbf{D}_{x}(y): y \in \mathbb{N}]$
- □ Il nodo x mantiene anche i vettori distanza di ciascuno dei suoi vicini
 - Per ciascun vicino v, x mantiene $\mathbf{D}_{\mathsf{v}} = [\mathsf{D}_{\mathsf{v}}(\mathsf{y}) : \mathsf{y} \in \mathsf{N}]$

<u>Algoritmo con vettore</u> <u>distanza</u>

Idea di base:

- Ogni nodo invia una copia del proprio vettore distanza a ciascuno dei suoi vicini.
- Quando un nodo x riceve un nuovo vettore distanza, DV, da qualcuno dei sui vicini, lo salva e usa la formula B-F per aggiornare in proprio vettore distanza come segue: $D_x(y) \leftarrow \min_v \{c(x,v) + D_v(y)\}$ per ciascun nodo y in N.
- □ Finché tutti i nodi continuano a cambiare i propri DV in maniera asincrona, ciascuna stima dei costi Dx(y) converge a $d_x(y)$.

<u>Algoritmo con vettore</u> distanza

Iterativo, asincrono:

ogni iterazione locale è causata da:

- cambio del costo di uno dei collegamenti locali.
- Ricezione da qualche vicino di un vettore distanza aggiornato.

Distribuito:

- Ogni nodo aggiorna i suoi vicini solo quando il suo DV cambia.
 - i vicini avvisano i
 vicini solo se
 necessario.

Ciascun nodo:

Attende (un messaggio del cambio del costo da parte del suo vicino)

Effettua il çalcolo

Se il DV cambia, lo *notifica* ai suoi vicini.

<u>Algoritmo con vettore</u> <u>distanza: modifica dei</u>

COSTI Modifica dei costi:

- Un nodo rileva un cambiamento nel costo dei collegamenti.
- Aggiorna il proprio vettore distanza.
- ☐ Se si verifica un cambiamento nel costo, trasmette ai suoi vicini il nuovo DV.

'istante $t_{\scriptscriptstyle heta}$, y rileva il cambiamento nel costo del collegamento, iorna il proprio DV e informa i vicini del cambiamento.

'istante $t_{\scriptscriptstyle 1}$, z riceve l'aggiornamento da y e aggiorna la propria tabella, cola un nuovo costo minimo verso x e invia il nuovo DV ai vicini.

'istante t_2 , y riceve l'aggiornamento di z e aggiorna la propria tabella di tanza. I costi minimi di y non cambiano e y non manda alcun messaggio a z.

Algoritmo con vettore distanza: modifica dei costi

Modifica dei costi:

- ☐ Le buone notizie (costo diminuito) si sono propagate rapidamente.
- ☐ Le cattive notizie si propagano lentamente: problema dell'instradamento ciclico!
- □ 44 iterazioni prima che l'algoritmo di stabilizzi (esempio nel testo pp. 312-313)

Inversione avvelenata:

- □ Se Z instrada tramite Y per giungere alla destinazione X :
 - Allora Z avvertirà Y che la sua distanza verso X è infinita (così Y non tenterà mai d'instradare verso X passando per Z)
- L'inversione avvelenata può

<u>Confronto tra gli algoritmi LS e DV</u>

Complessità dei messaggi:

- LS: con n nodi, E
 collegamenti, implica l'invio
 di O(nE) messaggi.
- DV: richiede scambi tra nodi adiacenti.
 - Il tempo di convergenza può variare.

Velocità di convergenza:

- LS: l'algoritmo O(n²) richiede O(nE) messaggi.
 - ci possono essere oscillazioni di velocità.
- □ <u>DV</u>: può convergere lentamente.
 - può presentare cicli d'instradamento.
 - può presentare il problema del conteggio all'infinito.

Robustezza: cosa avviene se un router funziona male?

LS:

- un router può comunicare via broadcast un costo sbagliato per uno dei suoi collegamenti connessi (ma non per altri).
- i nodi si occupano di calcolare soltanto le proprie tabelle.

DV:

- un nodo può comunicare cammini a costo minimo errati a tutte le destinazioni.
- la tabella di ciascun nodo può essere usata degli altri.
 - Un calcolo errato si può diffondere per l'intera rete.

<u>Capitolo 4: Livello di</u> <u>rete</u>

- 4. 1 Introduzione
- 4.2 Reti a circuito virtuale e a datagramma
- 4.3 Che cosa si trova
 all'interno di un
 router?
- 4.4 Protocollo
 Internet (IP)
 - Formato dei datagrammi
 - Indirizzamento IPv4
 - ICMP
 - IPv6

- 4.5 Algoritmi di instradamento
 - Stato del collegamento
 - Vettore distanza
 - Instradamento gerarchico
- 4.6 Instradamento in Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Instradamento
 broadcast e
 multicast

<u>Instradamento gerarchico</u>

Abbiamo fin qui visto la rete come una collezione di router interconnessi

- Ciascun router era indistinguibile dagli altri
- □ Visione omogenea della rete

... nella pratica le cose non sono così semplici

Scala: con 200 milioni di destinazioni:

- Archiviare le informazioni d'instradamento su ciascun host richiederebbe un'enorme quantità di memoria.
- □ Il traffico generato dagli aggiornamenti LS non lascerebbero banda per i pacchetti di dati!

Autonomia amministrativa:

- □ Internet = la rete delle reti
- □ Da un punto di vista ideale, ciascuno dovrebbe essere in grado di amministrare la propria rete nel modo desiderato, pur mantenendo la possibilità di connetterla alle reti esterne.

<u>Instradamento gerarchico</u>

- Organizzazione di router in sistemi autonomi (AS, autonomous system).
- □ I router di un gruppo autonomo eseguono lo stesso algoritmo d'instradamento.
 - Protocollo
 d'instradamento interno
 al sistema autonomo
 (intra-AS).
 - I router appartenenti a differenti AS possono eseguire protocolli d'instradamento intra-AS diversi

Router gateway

□ Hanno il compito aggiuntivo d'inoltrare pacchetti a destinazioni esterne.

<u>Sistemi autonomi</u> interconnessi

Tabella

d'inoltro

Ciascun sistema autonomo sa come inoltrare pacchetti lungo il percorso ottimo verso qualsiasi destinazione interna al gruppo

- I sistemi AS2 e AS3 hanno tre router ciascuno
- I protocolli d'instradamento dei tre sistemi autonomi non sono necessariamente gli stessi
- I router 1b, 1c, 2a e 3a sono gateway
 4-83

<u>Instradamento tra sistemi</u> <u>autonomi</u>

- □ Supponiamo che un router in AS1 riceva un datagramma la cui destinazione ricade al di fuori di AS1
 - Il router dovrebbe inoltrare il pacchetto verso uno dei due gateway. Ma quale??

AS1 deve:

- Sapere quali destinazioni sono raggiungibili attraverso AS2 e quali attraverso AS3
- Informare tutti i router all'interno del sistema in modo che ciascuno possa configurare la propria tabella d'inoltro per gestire destinazioni esterne

<u>Esempio: impostare la tabella d'inoltro</u> nel router 1d

- Supponiamo che AS1 apprenda dal proprio protocollo d'instradamento inter-AS che la sottorete x è raggiungibile da AS3 (gateway 1c), ma non da AS2.
- □ Il protocollo inter-AS propaga questa informazione a tutti i propri router.
- □ Il router 1d determina, partendo dall'informazione fornita dal protocollo intra-AS, l'interfaccia *I* del router sul percorso a costo minimo dal router 1d al gateway 1c.
- □ Il router 1d può inserire la riga (x, I) nella propria tabella d'inoltro.

Esempio: scegliere fra più AS

- □ Supponiamo inoltre che AS1 apprenda dal protocollo d'instradamento tra sistemi autonomi che la sottorete *x* è raggiungibile da AS2 *e* da AS3.
- □ Al fine di configurare la propria tabella d'inoltro, il router 1D dovrebbe determinare a quale gateway, 1b o 1c, indirizzare i pacchetti destinati alla sottorete x.
- Anche questo è un compito che spetta al protocollo d'instradamento inter-AS!
- Instradamento a patata bollente: il sistema autonomo si sbarazza del pacchetto (patata bollente) non appena possibile.

<u>Capitolo 4: Livello di</u> <u>rete</u>

- 4. 1 Introduzione
- 4.2 Reti a circuito
 virtuale e
 a datagramma
- 4.3 Che cosa si trova
 all'interno di un
 router?
- 4.4 Protocollo
 Internet (IP)
 - Formato dei datagrammi
 - Indirizzamento IPv4
 - ICMP
 - IPv6

- 4.5 Algoritmi di instradamento
 - Stato del collegamento
 - Vettore distanza
 - Instradamento gerarchico
- 4.6 Instradamento in Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Instradamento
 broadcast e
 multicast

<u>Instradamento in</u> <u>Internet</u>

- □ I protocolli d'instradamento intra-AS sono noti come protocolli gateway interni (IGP)
- □ I protocolli intra-AS più comuni sono:
 - RIP: routing information protocol
 - OSPF: open shortest path first
 - IGRP: Interior Gateway Routing Protocol (di proprietà Cisco)

<u>Capitolo 4: Livello di</u> <u>rete</u>

- 4. 1 Introduzione
- 4.2 Reti a circuito
 virtuale e
 a datagramma
- 4.3 Che cosa si trova all'interno di un router?
- 4.4 Protocollo
 Internet (IP)
 - Formato dei datagrammi
 - Indirizzamento IPv4
 - ICMP
 - IPv6

- 4.5 Algoritmi di instradamento
 - Stato del collegamento
 - Vettore distanza
 - Instradamento gerarchico
- 4.6 Instradamento in Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Instradamento
 broadcast e
 multicast

RIP (Routing Information Protocol)

- □ È un protocollo a vettore distanza.
- □ È tipicamente incluso in UNIX BSD dal 1982.
- □ Conteggio degli hop come metrica di costo (max = 15 hop)

<u>Dal router A alle varie sottoret</u>

destinazione	hop	
u		1
V		2
W		2
X		3
У		3
Z		2

Annunci RIP

- □ In RIP, i router adiacenti si scambiano gli aggiornamenti d'instradamento ogni 30 secondi circa utilizzando un messaggio di risposta RIP, noto anche come annuncio RIP (RIP advertisement).
- □ Ogni messaggio contiene un elenco comprendente fino a 25 sottoreti di destinazione all'interno del sistema autonomo nonché la distanza del mittente rispetto a ciascuna di tali sottoreti.

RIP: esempio_

Sottorete destin. verso la dest.	Router successivo	Numero di hop
W	A	2
у	В	2
Z	В	7
X		1
m. Tabel	la d'instradamento nel	router D.

4-92

RIP: esempio_

<u>RIP: guasto sul collegamento e</u> <u>recupero</u>

Se un router non riceve notizie dal suo vicino per 180 sec --> il nodo adiacente/il collegamento viene considerato spento o guasto.

- RIP modifica la tabella d'instradamento locale
- Propaga l'informazione mandando annunci ai router vicini.
- I vicini inviano nuovi messaggi (se la loro tabella d'instradamento è cambiata).
- OL'informazione che il collegamento è fallito si propaga rapidamente su tutta la rete.
- L'utilizzo dell'inversione avvelenata evita i loop (distanza infinita = 16 hop)

Tabella d'instradamento RIP

- Un processo chiamato routed esegue RIP, ossia mantiene le informazioni d'instradamento e scambia messaggi con i processi routed nei router vicini.
- Poiché RIP viene implementato come un processo a livello di applicazione, può inviare e ricevere messaggi su una socket standard e utilizzare un protocollo di trasporto standard.

<u>Capitolo 4: Livello di</u> <u>rete</u>

- 4. 1 Introduzione
- 4.2 Reti a circuito
 virtuale e
 a datagramma
- 4.3 Che cosa si trova
 all'interno di un
 router?
- 4.4 Protocollo
 Internet (IP)
 - Formato dei datagrammi
 - Indirizzamento IPv4
 - ICMP
 - IPv6

- 4.5 Algoritmi di instradamento
 - Stato del collegamento
 - Vettore distanza
 - Instradamento gerarchico
- 4.6 Instradamento in Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Instradamento
 broadcast e
 multicast

OSPF (Open Shortest Path First)

- "open": le specifiche del protocollo sono pubblicamente disponibili.
- □ È un protocollo a stato del collegamento:
 - Utilizza il flooding di informazioni di stato del collegamento
 - O Utilizza l'algoritmo di Dijkstra per la determinazione del percorso a costo minimo.
- Con OSPF, ogni volta che si verifica un cambiamento nello stato di un collegamento, il router manda informazioni d'instradamento a tutti gli altri router.
- □ Invia messaggi OSPF all'intero sistema autonomo, utilizzando il flooding.
 - I messaggi OSPF vengono trasportati direttamente da IP (e non da TCP o UDP) con un protocollo di livello superiore. 4-97

Vantaggi di OSPF (non in RIP)

- □ Sicurezza: gli scambi tra router sono autenticati.
- Multipath: quando più percorsi verso una destinazione hanno lo stesso costo, OSPF consente di usarli senza doverne scegliere uno, come invece avveniva in RIP
- □ Su ciascun collegamento, vi possono essere più metriche di costo per differenti TOS (es. il costo del satellite sarà "basso" per un best effort; elevato per un real time)
- Supporto integrato per l'instradamento unicast e multicast.
 - Per consentire l'instradamento multicast viene impiegato MOSPF (OSPF multicast) che utilizza il database di collegamenti OSPF.
- Supporto alle gerarchie in un dominio d'instradamento.

OSPF strutturato gerarchicamente

OSPF strutturato gerarchicamente

- Gerarchia su due livelli: area locale, dorsale.
 - Messaggio di link-state solo all'interno dell'area
 - Ciascun nodo ha una sua area; conosce solo la direzione (shortest path) verso le reti nelle altre aree
- Router di confine d'area: appartengono sia a un'area generica sia alla dorsale.
- Router di dorsale: effettuano l'instradamento all'interno della dorsale, ma non sono router di confine.
- Router di confine: scambiano informazioni con i router di altri sistemi autonomi.

<u>Capitolo 4: Livello di</u> <u>rete</u>

- 4. 1 Introduzione
- 4.2 Reti a circuito
 virtuale e
 a datagramma
- 4.3 Che cosa si trova
 all'interno di un
 router?
- 4.4 Protocollo
 Internet (IP)
 - Formato dei datagrammi
 - Indirizzamento IPv4
 - ICMP
 - IPv6

- 4.5 Algoritmi di instradamento
 - Stato del collegamento
 - Vettore distanza
 - Instradamento gerarchico
- 4.6 Instradamento in Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Instradamento
 broadcast e
 multicast

Border gateway protocol (BGP)

- □ BGP (Border Gateway Protocol): rappresenta l'attuale standard *de facto.*
- □ BGP mette a disposizione di ciascun AS un modo per:
 - 1. ottenere informazioni sulla raggiungibilità delle sottoreti da parte di AS confinanti
 - 2. propagare le informazioni di raggiungibilità a tutti i router interni di un AS
 - 3. determinare percorsi "buoni" verso le sottoreti sulla base delle informazioni di raggiungibilità e delle politiche dell'AS
- BGP consente a ciascuna sottorete di comunicare la propria esistenza al resto di Internet.

Fondamenti di BGP

- □ I router ai capi di una connessione TCP sono chiamati peer BGP, e la connessione TCP con tutti i messaggi BGP che vi vengono inviati è detta sessione BGP.
- □ Notiamo le linee di sessione BGP non sempre corrispondono ai collegamenti fisici.
- Quando AS2 annuncia un prefisso a AS1, AS2 sta in realtà promettendo che inoltrerà i datagrammi su un percorso verso il prefisso cui sono destinati.
 - AS2 può aggregare più prefissi nel suo annuncio

<u>Distribuzione delle informazioni di</u> <u>raggiungibilità</u>

- □ In una sessione eBGP tra i gateway 3a e 1c, AS3 invia ad AS1 la lista di prefissi raggiungibili.
- □ 1c utilizza le proprie sessioni iBGP per distribuire i prefissi agli altri router del sistema autonomo.
- Anche AS1 e AS2 si scambiano informazioni sulla raggiungibilità dei prefissi attraverso i propri gateway 1b e 2a.
- Quando un router viene a conoscenza di un nuovo prefisso, lo memorizza in una nuova riga della propria tabella d'inoltro.

<u>Attributi del percorso e</u> rotte BGP

- Quando un router annuncia un prefisso per una sessione BGP, include anche un certo numero di attributi BGP.
 - prefisso + attributi = "rotta"
- □ Due dei più importanti attributi sono:
 - AS-PATH: elenca i sistemi autonomi attraverso i quali è passato l'annuncio del prefisso: AS 67 AS 17
 - NEXT-HOP: quando si deve inoltrare un pacchetto tra due sistemi autonomi, questo potrebbe essere inviato su uno dei vari collegamenti fisici che li connettono direttamente.
- Quando un router gateway riceve un annuncio di rotta, utilizza le proprie politiche d'importazione per decidere se accettare o filtrare la rotta.

<u>Selezione dei percorsi</u> <u>BGP</u>

- Un router può ricavare più di una rotta verso un determinato prefisso, e deve quindi sceglierne una.
- Regole di eliminazione:
 - Alle rotte viene assegnato come attributo un valore di preferenza locale. Si selezionano quindi le rotte con i più alti valori di preferenza locale.
 - 2. Si seleziona la rotta con valore AS-PATH più breve.
 - 3. Si seleziona quella il cui router di NEXT-HOP è più vicino: instradamento *a patata bollente*.
 - 4. Se rimane ancora più di una rotta, il router si basa sugli identificatori BGP.

Messaggi BGP

- □ I messaggi BGP vengono scambiati attraverso TCP.
- □ Messaggi BGP:
 - OPEN: apre la connessione TCP e
 autentica il mittente
 - OUPDATE: annuncia il nuovo percorso (o cancella quello vecchio)
 - KEEPALIVE mantiene la connessione attiva in mancanza di UPDATE
 - NOTIFICATION: riporta gli errori del precedente messaggio; usato anche per chiudere il collegamento.

Politiche d'instradamento BGP

- 🛂 A,B,C sono reti di provider di dorsale.
- □ X,W,Y sono reti stub
- □ X è una rete stub a più domicili
 - X non vuole che il traffico da B a C passi attraverso di lui
 - O... e così X non annuncerà a B la rotta verso C

Politiche d'instradamento BGP

- □ A annuncia a B del percorso AW.
- B annuncia a X del percorso BAW.
- □ B deve annunciare a C del percorso BAW?
 - O Certo che no! B non ha nessun "interesse" nella rotta CBAW poiché né W né C sono clienti di B
 - B vuole costringere C ad instradare verso W attraverso A
 - B vuole instradare solo da/verso i suoi clienti!

<u>Perché i protocolli d'instradamento</u> <u>inter-AS sono diversi da quelli</u>

intra-AS?

Politiche:

- □ Inter-AS: il controllo amministrativo desidera avere il controllo su come il traffico viene instradato e su chi instrada attraverso le sue reti.
- □ Intra-AS: unico controllo amministrativo, e di conseguenza le questioni di politica hanno un ruolo molto meno importante nello scegliere le rotte interne al sistema

Scala:

L'instradamento gerarchico fa "risparmiare" sulle tabelle d'instradamento, e riduce il traffico dovuto al loro aggiornamento

Prestazioni:

- Intra-AS: orientato alle prestazioni
- Inter-AS: le politiche possono prevalere sulle prestazioni

<u>Capitolo 4: Livello di</u> <u>rete</u>

- 4. 1 Introduzione
- 4.2 Reti a circuito virtuale e a datagramma
- 4.3 Che cosa si trova
 all'interno di un
 router?
- 4.4 Protocollo
 Internet (IP)
 - Formato dei datagrammi
 - Indirizzamento IPv4
 - ICMP
 - IPv6

- 4.5 Algoritmi di instradamento
 - Stato del collegamento
 - Vettore distanza
 - Instradamento gerarchico
- 4.6 Instradamento in Internet
 - RIP
 - OSPF
 - BGP
- 4.7 Instradamento
 broadcast e
 multicast

Instradamento broadcast

- Consegna di un pacchetto spedito da un nodo origine a tutti gli altri nodi della rete.
- 🗖 La duplicazione all'origine è inefficiente.

Duplicazione di origine

Duplicazione interna alla rete

<u>Duplicazione interna</u>

alla rete

- Flooding (inondazione): quando un nodo riceve un pacchetto broadcast, lo duplica e lo inoltra a tutti i propri vicini.
 - O Problema: se nel grafo c'è un ciclo, più copie di un pacchetto broadcast continueranno a percorrere quel ciclo.
- □ Flooding controllato: un nodo origine pone il proprio indirizzo e un numero di sequenza broadcast nei pacchetti, prima di inviarli ai suoi vicini.
 - Ogni nodo mantiene una lista di indirizzi d'origine e di numeri di sequenza per ogni pacchetto broadcast ricevuto.
 - O Broadcast su percorso inverso (RPB): un router riceve un pacchetto broadcast, lo trasmette su tutti i propri collegamenti in uscita solo se è pervenuto attraverso il percorso unicast più breve tra il router e l'origine.
- Albero di copertura
 - Elimina i pacchetti broadcast ridondanti.

<u>Albero di copertura</u>

Ogni nodo invia un pacchetto broadcast solo sui collegamenti che appartengono all'albero di copertura.

(a) Broadcast iniziato presso A

(b) Broadcast iniziato presso D

<u>Determinazione</u>

<u>dell'albero</u>

- □ Si definisce un nodo centrale.
- I nodi inoltrano al nodo centrale il messaggio di adesione.
 - O Il messaggio prosegue fino a quando raggiunge un router che già appartiene all'albero di copertura o arriva al nodo centrale.

(a) Costruzione passo passo dell'albero di copertura

(b) Albero di copertura risultante

Problema dell'instradamento

multicast

- <u>Obiettivo:</u> trovare un albero che colleghi tutti i router connessi ad host che appartengono al gruppo multicast.
 - Albero basato sull'origine: viene creato un albero per ciascuna origine nel gruppo multicast.
 - Albero condiviso dal gruppo: viene costruito un singolo albero d'instradamento condiviso per il multicast originato da tutti i mittenti.

Albero condiviso dal gruppo Albero basato sull'origine

Approcci per determinare l'albero d'instradamento multicast bue approcci:

- Albero basato sull'origine: un albero per ciascuna origine.
 - albero shortest path
 - inoltro su percorso inverso (RPF)
- □ Albero condiviso dal gruppo: il gruppo usa un albero:
 - minimal spanning (Steiner)
 - basato su un nodo centrale
- … diamo prima un'occhiata agli approcci, e poi agli specifici protocolli che adottano questi approcci.

Shortest Path Tree

- Albero di inoltro multicasting, costruisce l'albero con il percorso più breve dall'origine a tutti i destinatari.
 - Algoritmo di Dijkstra

LEGENDA

Router con membro di gruppo collegato

gruppo collegati

Inoltro su percorso inverso (RPF)

- Si basa sul presupposto che il router conosca il percorso unicast più breve verso il mittente
- ciascun router si comporta secondo questo semplice schema:

```
if (il pacchetto multicast è pervenuto
  attraverso il percorso unicast più breve
  tra il router e l'origine)
  then lo trasmette su tutti i propri
  collegamenti in uscita
  else ignora il pacchetto
```

<u>Inoltro su percorso</u> <u>inverso (RPF): un esempio</u>

LEGENDA

- Router con membro di gruppo collegato
- Router senza membri di gruppo collegati
- Il pacchetto sarà inoltrato
- Ille | Image: Imag

<u>Inoltro su percorso inverso:</u> <u>potatura</u>

- □ È la soluzione per evitare di ricevere pacchetti multicast non desiderati.
 - Un router multicast che riceve pacchetti multicast e non è connesso a host aderenti al gruppo invierà un messaggio di potatura al proprio router di upstream.
 - Se un router riceve questi messaggi da tutti i suoi router di downstream, può inoltrare il messaggio di potatura in upstream.
 LEGENDA

Router con membro di gruppo collegato

Router senza membri di gruppo collegati

Messaggio di potatura

€ollegamenti che ricevono pacchetti multicast

<u>Instradamento multicast in</u> <u>Internet: DVMRP</u>

- DVMRP: distance-vector multicast routing protocol [RFC1075].
- flood and prune: implementa alberi basati su origine con inoltro su percorso inverso e potatura
 - Outilizza un algoritmo a vettore distanza che consente ai router di calcolare il collegamento in uscita (hop successivo) che si trova sul suo percorso minimo di ritorno a ciascuna possibile origine.
 - O DVMRP computa una lista di router di downstream a scopi di potatura.
 - I messaggi d'innesto sono inviati dai router ai propri vicini in upstream per forzare nuovamente l'aggiunta di un ramo precedentemente potato all'albero multicast.

Protocol-independent Multicast (PIM)

- Non dipende da nessun particolare algoritmo d'instradamento unicast sottostante (funziona con tutti).
- Prende in considerazione due scenari di distribuzione multicast:

<u>Modalità densa:</u>

- ☐ I membri del gruppo multicast sono concentrati in una determinata area.
- □ La maggior parte dei router nell'area richiede di essere coinvolta nell'instradamento dei datagrammi multicast.

<u>Modalità sparsa:</u>

- □ Il numero di router con membri di gruppo connessi è piccolo rispetto al numero totale di router.
- □ I membri del gruppo sono "disseminati" su un'area ampia.

PIM- Modalità densa

È una tecnica d'inoltro a percorso inverso flood-and-prune simile concettualmente a DVMRP.

<u>PIM - Modalità sparsa</u>

- Approccio basato sul centro
- simile al
 protocollo
 d'instradamento
 multicast CBT
 (core-based tree)

