Contrôle intermédiaire <u>Durée 1 heure 30</u> Tout document interdit

Exercice 1 (2)

On considère deux circuits logiques C_1 et C_2 à n entrées et une sortie chacun. Donner l'expression logique d'un circuit qui permettrait de vérifier que les deux circuits délivrent les mêmes sorties quels que soient l'état de leurs entrées.

Exercice 2 (2-2)

Soit Γ , Γ_1 , Γ_2 , Γ_3 les quatre ensemblessuivants :

$\Gamma: \{\alpha_1 \vee \beta_1 \vee \gamma_1\}$	$\Gamma_1: \{\alpha_1 \vee \beta_1 \mid \Gamma$	$\Gamma_2:\{\beta_1\vee\gamma_1\}$	$\Gamma_3:\{\alpha_1\vee\gamma_1$
$\alpha_2 \vee \beta_2 \vee \gamma_2$	$\alpha_2 \vee \beta_2$	$\beta_2 \lor \gamma_2$	$\alpha_2 \vee \gamma_2$
$\alpha_3 \vee \beta_3 \vee \gamma_3$	$\alpha_3 \vee \beta_3$	$\beta_3 \vee \gamma_3$	$\alpha_3 \vee \gamma_3$

Laquelle ou lesquelles des propositions suivantes est (sont) valide(s) ?

- 1. Toute valuation qui satisfait Γ_1 ou Γ_2 ou Γ_3 satisfait Γ .
- 2. Toute valuation (toute ligne du TV) qui satisfait Γ satisfait également Γ_1 ou Γ_2 ou Γ_3 .

Exercice 3 (4-4)

Ali, Omar et Saïd veulent constituer une équipe pour travailler leur projet.

- Ali veut inviter Karima ou Aghilesmais il ne veut pas de la présence de Yasmine et Karima en même temps.
- Omar veut inviter Yasmine ou Aghiles mais pas Karima et Rachid en même temps.
- Saïd propose d'inviter Karima ou Yasmine ou Rachidmais ne veut pas destrois en même temps.

On sait par ailleurs que:

- Karima et Yasmine sont d'excellentes amies. La première ne vient que si et seulement si la seconde vient;
- Si Rachid est dans le groupe, Aghiles refusera d'y être.

Montrer en utilisant un arbre sémantique puis la résolution que nos trois amis ne réussirontpas à former leur équipe ?

Exercice 4 (3)

Lesquelles des expressions suivantes sont des formules du premier ordre et lesquelles ne le sont pas ?

E1.
$$\forall u \forall y \ (P(u,f(u)) \land P(a,y))$$
 E2. $\forall x,y \ (P(x,y) \rightarrow Q(a,y))$ E3. $\forall x (P(x,y) \rightarrow \exists y Q(x))$ E4. $\forall P(P(x) \rightarrow P(x))$ E5. $|=\exists y (P(x) \rightarrow Q(y))$ E6. $\forall x \exists y (P(x,y) \rightarrow (Q(x) \rightarrow P(x)))$

Exercice 5 (3)

Ecrire les énoncés suivants dans le langage des prédicats du premier ordre :

- e1 : Chaque étudiant a un binôme.
- e2 : Certains étudiants n'ont pas de binôme.
- **N.B.** Remettre un cahier d'examen sans intercalaire.