Ampliació de Matemàtiques Tema 1. Integrals dobles i triples

Lali Barrière Departament de Matemàtiques - UPC

Enginyeria de Sistemes Aeroespacials Enginyeria d'Aeroports Enginyeria d'Aeronavegació EETAC

Continguts

1.1 Integrals dobles

Definició d'integral doble Integració iterada Canvi de variables per a integrals dobles Integrals dobles en coordenades polars Coordenades el·líptiques

1.2 Integrals triples

Definició d'integral triple Regions elementals a \mathbb{R}^3 Canvi de variables per a integrals triples Integrals triples en coordenades cilíndriques Integrals triples en coordenades esfèriques

1.1 Integrals dobles

Integrals definides en dues variables

Definició. $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ i un recinte $D \subseteq \mathbb{R}^2$, amb $f(x,y) \geq 0$ per a $(x,y) \in D$. La integral definida de f sobre D es defineix com el volum de la regió de l'espai entre el pla XY i la superfície z = f(x,y) per sobre de D.

Ampliació de Matemàtiques

Tema 1. Integrals dobles i triples

Observacions

- La integral definida d'una funció negativa z = f(x, y) sobre un recinte $D \subseteq \mathbb{R}^2$ es defineix equivalentment i té signe negatiu.
- ▶ Si f no manté el signe constant en D, aleshores el resultat de la integral sobre D ja no és un volum.
- La integral doble d'una funció sobre un recinte podria no existir. No es demana tenir en compte els problemes d'existència o no existència de les integrals, en aquest curs.
- Les integrals de funcions de dues variables es calculen fent dues integrals en una variable. És per això que també s'anomenen integrals dobles.
- ► Els límits d'integració d'una integral doble han de descriure el recinte d'integració on es calcula la integral. Aquesta és la principal dificultat associada al càlcul d'integrals dobles.

Intervals de \mathbb{R}^2

Un interval del pla és un recinte D de la forma:

$$D = [a,b] \times [c,d] \text{ \'es a dir } (x,y) \in D \Longleftrightarrow \left\{ \begin{array}{l} a \leq x \leq b \\ c \leq y \leq d \end{array} \right.$$

En la representació gràfica del recinte:

- ▶ inclourem l'eix Z, si necessitem veure punts de l'espai,
- o representarem només el pla XY, si només volem fixar-nos en el recinte D.

Les integrals sobre intervals són les més senzilles de calcular.

Integrals sobre intervals (I)

- El volum és la integral de l'àrea de les seccions per plans verticals paral·lels, seguint la direcció de l'eix X o la de l'eix Y.
- L'àrea és una funció d'una de les dues variables:
 - ► Fent secció per plans en la direcció de l'eix y, l'àrea depèn de x.
 - Fent secció per plans en la direcció de l'eix x, l'àrea depèn de y.

$$V = \iint_D f(x,y) \, dx \, dy = \int_a^b A(x) \, dx \int_a^b \left(\int_c^d f(x,y) \, dy \right) \, dx$$

- ▶ La primera integral (la de dins) es resol suposant x constant.
- ▶ El resultat depèn de x, i no conté y.
- ▶ Els límits d'integració ens diuen: $a \le x \le b$ i $c \le y \le d$.
- L'ordre de les integrals ens indica de quina manera hem cobert tots els punts del recinte.

2. Seccions per plans paral·lels a l'eix x

$$V = \iint_D f(x, y) dx dy = \int_c^d A(y) dy = \int_c^d \left(\int_a^b f(x, y) dx \right) dy$$

- La primera integral (la de dins) es resol suposant y constant.
- El resultat depèn de y, i no conté x.
- Els límits d'integració ens diuen: $c \le y \le d$ i $a \le x \le b$.
- L'ordre de les integrals ens indica de quina manera hem cobert tots els punts del recinte.

Integrals sobre intervals (II)

▶ Propietat. Si $D = [a, b] \times [c, d]$

$$\iint_D f(x,y) \, dx \, dy = \int_a^b A(x) dx = \int_a^b \left(\int_c^d f(x=ct,y) dy \right) dx$$
$$= \int_c^d A(y) dy = \int_c^d \left(\int_a^b f(x,y=ct) dx \right) dy$$

▶ **Propietat.** Si $D = [a,b] \times [c,d]$ i f(x,y) = g(x)h(y), aleshores

$$\iint_D f(x,y)dx \, dy = \left(\int_a^b g(x)dx\right) \left(\int_c^d h(y)dy\right)$$

Cal anar molt en compte en aplicar aquesta propietat!!!

Recintes elementals d'integració: tipus y-simple

$$(x,y) \in D_1 \Longleftrightarrow \left\{ \begin{array}{l} a \le x \le b \\ \phi_1(x) \le y \le \phi_2(x) \end{array} \right.$$

Aleshores:

$$\iint_{D_1} f(x,y)dx \, dy = \int_a^b \left(\int_{\phi_1(x)}^{\phi_2(x)} f(x,y)dy \right) dx$$

Recintes elementals d'integració: tipus x-simple

$$(x,y) \in D_2 \Longleftrightarrow \begin{cases} c \leq y \leq d \\ \psi_1(y) \leq x \leq \psi_2(y) \end{cases}$$

Aleshores:

$$\iint_{D_2} f(x,y) dx dy = \int_c^d \left(\int_{\psi_1(y)}^{\psi_2(y)} f(x,y) dx \right) dy$$

Observacions

- ▶ Hi ha recintes que són a la vegada de tipus *y*-simple i *x*-simple.
- ▶ Integració en recintes no elementals: si un recinte D es pot escriure com $D=D_1\cup D_2$, de tal manera que $D_1\cap D_2=\varnothing$ o bé només es toquen a la frontera, aleshores

$$\iint_{D} f(x,y) dx \, dy = \iint_{D_1} f(x,y) dx \, dy + \iint_{D_2} f(x,y) dx \, dy$$

Notació:

$$\int_{a}^{b} \left(\int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x,y) dy \right) dx = \int_{a}^{b} dx \int_{\phi_{1}(x)}^{\phi_{2}(x)} dy f(x,y)$$
$$\int_{c}^{d} \left(\int_{\psi_{1}(y)}^{\psi_{2}(y)} f(x,y) dx \right) dy = \int_{c}^{d} dy \int_{\psi_{1}(y)}^{\psi_{2}(y)} dx f(x,y)$$

Quan s'integra sobre un interval es poden calcular les integrals en qualsevol dels dos ordres.

Quan el recinte no és un interval el canvi d'ordre no és immediat!!!

Aplicacions al càlcul d'àrees i volums

ightharpoonup Àrea d'un recinte Sigui $D \subset \mathbb{R}^2$. Aleshores:

$$\text{Àrea } (D) = \iint_D 1 \cdot dx \, dy \ u^2$$

► Volum entre dues superfícies

Sigui $D \subseteq \mathbb{R}^2$ i les superfícies z = f(x,y) i z = g(x,y), amb $f(x,y) \geq g(x,y)$, $\forall (x,y) \in D$, o bé $f(x,y) \leq g(x,y)$, $\forall (x,y) \in D$. Aleshores, el volum entre f i g sobre D vé donat per:

$$V = \left| \iint_D (f(x,y) - g(x,y)) dx \, dy \right| \quad u^3$$

Cal assegurar-se que f(x,y) - g(x,y) no canvia de signe!!!

Si D i D^* són dues regions de \mathbb{R}^2 , i podem transformar D^* en D per una transformació

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(u,v) \longrightarrow (x,y)$

 \mathcal{C}^1 i bijectiva, amb jacobià no nul aleshores:

$$\iint_D f(x,y) \, dx \, dy = \iint_{D^*} f(x(u,v),y(u,v)) \cdot |J_T| \cdot du \, dv$$

on J_T denota el jacobià de T, és a dir, el determinant de la matriu de derivades parcials de T:

$$J_T = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

Observacions

- ▶ Un canvi de variables és una transformació de \mathbb{R}^2 a \mathbb{R}^2 , que permet escriure les integrals dobles en funció de noves variables per tal de simplificar-ne el càlcul.
- ightharpoonup T és de classe \mathcal{C}^1 si existeixen les (quatre) derivades parcials de T i són contínues
- ightharpoonup T és bijectiva entre D^* i D si a cada punt de D li correspon exactament un punt de D^* .
- ▶ És important recordar que en el canvi de variables, el diferencial es multiplica pel valor absolut del jacobià de T.

Coordenades cartesianes i coordenades polars

$$\left\{ \begin{array}{l} x = r \cos \theta \\ y = r \sin \theta \end{array} \right\} \Leftrightarrow \left\{ \begin{array}{l} r = \sqrt{x^2 + y^2} \ge 0 \\ \theta = \arctan \left(\frac{y}{x}\right) \left(+\pi \text{ si } x < 0\right) \end{array} \right\}$$

Podem expressar corbes del pla tant en cartesianes com en polars:

$$F(x,y) = 0 \Longleftrightarrow F(r\cos\theta,r\sin\theta) = 0 \Longleftrightarrow G(r,\theta) = 0$$

$$G(r,\theta) = 0 \Longleftrightarrow G(\sqrt{x^2 + y^2},\arctan\left(\frac{y}{x}\right)) = 0 \Longleftrightarrow F(x,y) = 0$$

Donada la funció f(x,y), és clar que:

$$f(x,y) = f(r\cos\theta, r\sin\theta) = g(r,\theta)$$

Ampliació de Matemàtiques

Tema 1. Integrals dobles i triples

Càlcul d'integrals dobles en coordenades polars

▶ Si D ve donat en coordenades polars, i f és una funció de r i θ :

$$\iint_D f(r,\theta)\,dr\,d\theta$$

es calcula de la mateixa manera que les integrals dobles en coordenades cartesianes.

▶ En la integral $\int_a^b \int_c^d f(r,\theta)\,d\theta\,dr$ el recinte és el conjunt de punts que compleixen $a\leq r\leq b$ i $c\leq \theta\leq d$:

Canvi de cartesianes a polars en integrals dobles (I)

$$\left. \begin{array}{l} x = r\cos\theta \\ y = r\sin\theta \end{array} \right\} \Rightarrow J = \frac{\partial(x,y)}{\partial(r,\theta)} = \left| \begin{array}{ll} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{array} \right| = r$$

El producte dels diferencials de x i de y s'anomena diferencial de superfície: dS = dx dy.

Canvi de cartesianes a polars en integrals dobles (II)

▶ Si D_C representa un recinte en coordenades cartesianes D_P el mateix recinte en coordenades polars, aleshores:

$$\iint_{D_C} f(x, y) dx \, dy = \iint_{D_P} f(r \cos \theta, r \sin \theta) \cdot r \cdot dr \, d\theta$$

Així, per al càlcul d'àrees tenim que:

$$\grave{\mathsf{A}}\mathsf{rea}(D) = \iint_{D_P} r \cdot dr \, d\theta \ u^2$$

▶ D'altra banda, el volum entre z=0 i $z=g(r,\theta)\geq 0$ per sobre de D_P és:

$$V = \iint_{D_R} g(r,\theta) \cdot r \cdot dr \, d\theta \ u^3$$

Coordenades el·líptiques

$$\left. \begin{array}{l} x = a \cdot r \cdot \cos \theta \\ y = b \cdot r \cdot \sin \theta \end{array} \right\} \text{,} \quad \text{amb } a > 0 \text{, } b > 0 \text{, } a \neq b \text{ constants.}$$

$$\mathsf{Jacobi\grave{a}}\colon |J| = \left| \begin{array}{cc} a \cdot \cos \theta & -a \cdot r \cdot \sin \theta \\ b \cdot \sin \theta & b \cdot r \cdot \cos \theta \end{array} \right| = a \cdot b \cdot r$$

Propietats

- ► Es compleix: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{(a \cdot r \cdot \cos \theta)^2}{a^2} + \frac{(b \cdot r \cdot \sin \theta)^2}{b^2} = r^2$
- L'equació de l'el·lipse de centre (0,0) i semieixos a i b és:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Leftrightarrow r = 1$$

L'interior de l'el·lipse de centre (0,0) i semieixos a i b és:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \Leftrightarrow r \le 1 \Leftrightarrow \begin{cases} 0 \le r \le 1 \\ 0 \le \theta \le 2\pi \end{cases}$$

 \bullet és l'angle. Per exemple, les coordenades el·líptiques dels vèrtexs de l'el·lipse són:

$$(a,0) \Rightarrow r = 1, \theta = 0$$

$$(0,b) \Rightarrow r = 1, \theta = \frac{\pi}{2}$$

$$(-a,0) \Rightarrow r = 1, \ \theta = \pi$$

$$(0,-b) \Rightarrow r = 1, \ \theta = \frac{3\pi}{2}$$

Ampliació de Matemàtiques

Integral doble en coordenades el·líptiques

Exemple 1 Calcular el volum del sòlid

$$A = \{(x, y, z) \in \mathbb{R}^3 \mid z \ge \frac{x^2}{4} + \frac{y^2}{2}, \ \frac{x^2}{8} + \frac{y^2}{4} \le 1, \ z \in [0, 2]\}.$$

Per representar el sòlid i calcular els límits d'integració, calculem la intersecció entre el paraboloide i el cilindre:

$$\begin{cases} \frac{x^2}{4} + \frac{y^2}{2} = z \\ \frac{x^2}{8} + \frac{y^2}{4} = 1 \end{cases} \Rightarrow z = 2, \quad \frac{x^2}{8} + \frac{y^2}{4} = 1$$

Projecció sobre el pla z=0: interior de l'el·lipse $\frac{x^2}{8}+\frac{y^2}{4}\leq 1$

$$V = \iint_D \left(2 - \frac{x^2}{4} - \frac{y^2}{2}\right) dx \, dy \text{ amb } D = \{(x,y) \in \mathbb{R}^2 \, | \, \frac{x^2}{8} + \frac{y^2}{4} \leq 1\}$$

► En coordenades cartesianes:

$$V = \int_{-2\sqrt{2}}^{2\sqrt{2}} \int_{-\sqrt{4-\frac{x^2}{2}}}^{\sqrt{4-\frac{x^2}{2}}} \left(2 - \frac{x^2}{4} - \frac{y^2}{2}\right) dy dx$$

lacktriangle En coordenades el·líptiques: prenem com a semieixos els de l'el·lipse que defineix D.

Canvi:
$$\begin{cases} x = 2\sqrt{2} \cdot r \cdot \cos \theta \\ y = 2 \cdot r \cdot \sin \theta \end{cases}$$
, amb Jacobià: $|J| = 4\sqrt{2} \cdot r$

La funció queda:

$$V = 2 - \frac{x^2}{4} - \frac{y^2}{2} = 2 - \frac{(2\sqrt{2} \cdot r \cdot \cos\theta)^2}{4} - \frac{(2 \cdot r \cdot \sin\theta)^2}{2} = 2 - 2r^2$$

 $\text{Com que } \frac{x^2}{8} + \frac{y^2}{4} \leq 1 \Leftrightarrow r^2 \leq 1 \text{, els límits de la integral són } 0 \leq r \leq 1 \text{ i } 0 \leq \theta \leq 2\pi.$

$$V = \int_0^{2\pi} \int_0^1 (2 - 2r^2) 4\sqrt{2}r \, dr \, d\theta$$

Hauríem pogut fer el canvi amb semieixos a=2 i $b=\sqrt{2}$. Com quedaria la integral?

Per tant:

Àrea entre dues el·lipses

Exemple 2 Calcular l'àrea entre les dues el·lipses $\frac{x^2}{4}+\frac{y^2}{9}=1$ i $\frac{x^2}{16}+\frac{y^2}{36}=1$.

$$A = \iint_D 1 \, dx \, dy \text{, amb } D = \{(x,y) \in \mathbb{R}^2 \, | \, \frac{x^2}{4} + \frac{y^2}{9} \geq 1, \frac{x^2}{16} + \frac{y^2}{36} \leq 1\}$$

$$\text{Observem que } \frac{x^2}{16} + \frac{y^2}{36} \leq 1 \Leftrightarrow \frac{x^2}{4} + \frac{y^2}{9} \leq 4 \Rightarrow D = \{(x,y) \in \mathbb{R}^2 \, | \, 1 \leq \frac{x^2}{4} + \frac{y^2}{9} \leq 4 \}.$$

Coordenades el·líptiques, amb a = 2 i b = 3

Canvi:
$$\begin{cases} x = 2 \cdot r \cdot \cos \theta \\ y = 3 \cdot r \cdot \sin \theta \end{cases}$$
, amb Jacobià: $|J| = 6 \cdot r$

Límits del recinte:
$$1 \leq \frac{x^2}{4} + \frac{y^2}{9} \leq 4 \Leftrightarrow \left\{ \begin{array}{l} 1 \leq r \leq 2 \\ 0 \leq \theta \leq 2\pi \end{array} \right.$$

L'àrea és:

$$A = \int_{1}^{2} \int_{0}^{2\pi} 6r \, d\theta \, dr$$

Hauríem pogut fer el canvi amb semieixos a=4 i b=6. Com quedaria la integral?

Ampliació de Matemàtiques

1.2 Integrals triples

Integrals definides en tres variables sobre un interval

Definició. Si $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ i $V = [a, b] \times [c, d] \times [p, q]$, la integral definida de f sobre V es calcula:

$$\iiint_{V} f(x, y, z) dx dy dz = \int_{a}^{b} \left(\int_{c}^{d} \left(\int_{p}^{q} f(x, y, z) dz \right) dy \right) dx =$$

$$= \int_{a}^{b} dx \int_{c}^{d} dy \int_{p}^{q} dz f(x, y, z)$$

Observació La integral sobre un rectangle es pot calcular en qualsevol ordre.

En les integrals triples, no podem representar gràficament la funció. A més, els recintes d'integració són volums, que a vegades són difícils de visualitzar.

Interpretació física de la integral triple

▶ Si $V \subset \mathbb{R}^3$ és una volum qualsevol i $f: V \subset \mathbb{R}^3 \longrightarrow R$ és la densitat de massa, aleshores la integral de f sobre V és la massa de V:

$$M = \iiint_V f(x, y, z) \, dx \, dy \, dz$$

▶ Si f(x, y, z) = 1, la integral ens dóna el volum de V:

$$vol(V) = \iiint_V dx \, dy \, dz$$

A vegades ens pot interessar abreviar: dx dy dz = dV, i l'anomenem diferencial del volum.

Regions elementals a \mathbb{R}^3 (I)

Un volum V és una regió elemental (o simple) si es compleix:

- Una coordenada està entre dos valors constants.
- Una altra coordenada està entre dues funcions de la primera.
- La tercera coordenada està entre dues funcions de les dues primeres.

Exemple: tipus 1. La coordenada z està entre dues funcions de les coordenades x i y.

► Cas 1:

$$V = \{(x, y, z) | a \le x \le b, \, \phi_1(x) \le y \le \phi_2(x), \, \gamma_1(x, y) \le z \le \gamma_2(x, y) \}$$

llavors:

$$\iiint_V f(x, y, z) \, dx \, dy \, dz = \int_a^b \int_{\phi_1(x)}^{\phi_2(x)} \int_{\gamma_1(x, y)}^{\gamma_2(x, y)} f(x, y, z) \, dz \, dy \, dx$$

Regions elementals a \mathbb{R}^3 (II)

► Cas 2:

$$V = \{(x, y, z) | c \le y \le d, \, \psi_1(y) \le x \le \psi_2(y), \, \gamma_1(x, y) \le z \le \gamma_2(x, y) \}$$

llavors:

$$\iiint_V f(x, y, z) \, dx \, dy \, dz = \int_c^d \int_{\psi_1(y)}^{\psi_2(y)} \int_{\gamma_1(x, y)}^{\gamma_2(x, y)} f(x, y, z) \, dz \, dx \, dy$$

- ▶ Tipus 2: Anàleg al tipus 1, intercanviant x per z.
- ▶ Tipus 3: Anàleg al tipus 1, intercanviant y per z.
- ▶ Tipus 4: Volums que són alhora de tipus 1, 2 i 3.

Teorema del canvi de variables per a integrals triples

Si V i V^* són dues regions de \mathbb{R}^3 , i podem transformar V^* en V per T

$$T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

 $(u, v, w) \longrightarrow (x, y, z)$

 \mathcal{C}^1 i bijectiva, amb jacobià no nul aleshores:

$$\iiint_{V} f(x, y, z) dx dy dz =$$

$$= \iiint_{V^*} f(x(u, v, w), y(u, v, w), z(u, v, w)) \cdot |J_T| \cdot du dv dw$$

on J_T denota el jacobià de T, és a dir, el determinant de la matriu de derivades parcials de T:

$$J_{T} = \frac{\partial(x, y, z)}{\partial(u, v, w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}$$

Integrals triples en coordenades cilíndriques

$$\frac{\partial(x,y,z)}{\partial(r,\theta,z)} = \left| \begin{array}{ccc} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial z} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial z} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial z} \end{array} \right| = \left| \begin{array}{ccc} \cos\theta & -r\sin\theta & 0 \\ \sin\theta & r\cos\theta & 0 \\ 0 & 0 & 1 \end{array} \right| = r$$

$$\iiint_V f(x, y, z) dx dy dz = \iiint_{V_{cil}} f(r, \theta, z) \cdot r \cdot dr d\theta dz$$

$$\mathbb{R}^3 = \{ (r, \theta, \varphi) \mid r \ge 0, \ 0 \le \theta \le 2\pi, \ -\infty \le z \le +\infty \}$$

Ampliació de Matemàtiques

Tema 1. Integrals dobles i triples

Integrals triples en coordenades esfèriques

$$\left. \begin{array}{l} x = r \sin \varphi \cos \theta \\ y = r \sin \varphi \sin \theta \\ z = r \cos \varphi \end{array} \right\}$$

$$\frac{\partial(x,y,z)}{\partial(r,\theta,\varphi)} = \begin{vmatrix} \sin\varphi\cos\theta & -r\sin\varphi\sin\theta & r\cos\varphi\cos\theta \\ \sin\varphi\sin\theta & r\sin\varphi\cos\theta & r\cos\varphi\sin\theta \end{vmatrix} = r^2\sin\varphi$$

$$\cos\varphi & 0 & -r\sin\varphi$$

$$\iiint_{V} f(x, y, z) dx dy dz = \iiint_{V_{esf}} f(r, \theta, \varphi) \cdot r^{2} \sin \varphi \cdot dr d\theta d\varphi$$
$$\mathbb{R}^{3} = \{ (r, \theta, \varphi) \mid r > 0, \ 0 < \theta < 2\pi, \ 0 < \varphi < \pi \}$$

Ampliació de Matemàtiques

Tema 1. Integrals dobles i triples