Majoranten und Minorantenkriterium

- Seien an und bn mit positiven Gliedern und $n: an \le bn$
 - Majorantenkriterium: ist b konvergent, muss auch a konvergieren
 - * b ist die konvergente Majorante von a
 - Minorantenkriterium: ist a divergent, muss auch b divergieren
 - * a ist die divergente Minorante von b
- Variation:
 - − Ist Reihe Σ bn konvergent, bn \geq 0 und lim an/bn \geq 0 ==> Reihe Σ an konvergent
 - Ist Reihe Σ bn divergent, bn \geq 0 und lim an/bn <0 ==> Reihe Σ an divergent

Quotientenkriterium/test

- Sei Σ an eine Reihe mit positiven Gliedern gilt:
 - lim sup an+1/an < 1 ==> konvergent
 - $\lim \inf an+1/an > 1 ==> \text{divergent}$
 - wenn $q = \lim_{n \to \infty} a_n + 1/a_n$ existiert, dann
 - * q < 1 ==> konvergent
 - * q > 1 ==> divergent
 - * q = 1 ==> keine Aussage

Wurzelkriterium/test

- Sei Σ an eine Reihe mit positiven Gliedern gilt für $\limsup \sqrt[n]{a_n} = q$
 - -q > 1 ==> divergent
 - * weil $\sqrt[n]{a_n} \ge 1 ==> a_n \ge 1$ für ∞ Glieder
 - -q < 1 ==> konvergent
 - * weil N n \ge N ==> $\sqrt[n]{a_n} \ge 1$ ==> $\sqrt[n]{a_n} \le \frac{1+q}{2} < 1$ ==> $a_n \le (\frac{1+q}{2})^n$
 - * wenn Grenzwert existiert ==> Grenzwert = lim sup
 - -q=1=> keine Aussage

Leibnizkriterium

• Sei an eine monoton fallende Nullfolge ==> konvergiert $\sum_{n=1}^{\infty} (-1)^n a_n$

Cauchy-Kriterium für Reihen

• [[Cauchy-Kriterium]]

[[Reihen und Folgen]]