Основы МКТ

- 1. Единицей количества вещества в СИ является:
- **1**) 1 Kr;
- **2**) 1 моль;
- **3**) 1 Γ;
- **4**) 1 кмоль.
- **2.** Если N число молекул, N_A число Авогадро, n концентрация, то количество вещества у определяется по формуле:

1)
$$v = \frac{n}{N}$$

- 1) $v = \frac{n}{N}$; 2) $v = \frac{N_A}{N}$; 3) $v = \frac{N}{N_A}$; 4) $v = \frac{N_A}{n}$.
- 3. Количеством вещества называется физическая величина, численно равная:
 - 1) числу молекул в данной порции вещества;
 - 2) числу молекул в 1 кг вещества;
 - 3) числу молей в данной порции вещества;
- 4) числу молей в 1 кг вещества;
- 5) числу молей в 0,012 кг углерода.
- 4. Число Авогадро характеризует:
- 1) количество частиц в 1 кг вещества:
- 2) количество молей в данной порции вещества;
- 3) массу 1 моль вещества;
- 4) количество молей в 1 кг вещества;
- 5) количество частиц в 1 моле вещества.
- 5. В сосуде, закрытом подвижным поршнем находится кислород. Не изменяя температуры газа, его объем увеличили в 2 раза. Как при этом изменилась концентрация газа?
 - 1) увеличилась в 2 раза;
- 3) увеличилась в 4 раза;
- 5) не изменилась.

- 2) уменьшилась в 2 раза;
- 4) уменьшилась в 4 раза;
- 6. В сосуде, закрытом подвижным поршнем находится азот. Не изменяя температуры газа, его объем увеличили в 2 раза. Как при этом изменилась масса газа?
 - 1) увеличилась в 2 раза;
- 3) увеличилась в 4 раза;
- 5) не изменилась.

- 2) уменьшилась в 2 раза;
- 4) уменьшилась в 4 раза;
- 7. В сосуде, закрытом подвижным поршнем находится водород. Не изменяя температуры газа, его объем уменьшили в 2 раза. Как при этом изменилась плотность газа?
 - 1) увеличилась в 2 раза;
- 3) увеличилась в 4 раза;
- 5) не изменилась.

- 2) уменьшилась в 2 раза;
- 4) уменьшилась в 4 раза;
- **8.** Найдите массу молекулы азота (M = 28 г/моль).
- **9.** В сосуде находится v = 5 моль кислорода с молярной массой M = 32 г/моль. Какова масса m этого кислорода?

- 10. Средняя кинетическая энергия поступательного движения молекулы идеального газа $\langle E_{\kappa} \rangle = 6.2 \cdot 10^{-21}$ Дж. Чему равна концентрация п молекул газа, если давление газа $p = 40 \text{ к}\Pi a$?
- 11. Определите температуру Т идеального газа, находящегося в сосуде емкостью V = 13,8 л при давлении p = 100 кПа. Число молекул газа $N = 2 \cdot 10^{23}$.
- 12. Определите, какое число молекул N содержится в объеме $V = 36 \text{ cm}^3$ воды. Плотность воды $\rho = 1000 \text{ кг/м}^3$, молярная масса воды M = 18 г/моль.
- **13.** Определите число молекул N, содержащихся в m = 64 г кислорода, молярная масса которого равна M = 0.032 кг/моль.
- **14.** Ксенон (M = 131 г/моль) находится в баллоне при температуре t = 27 °C. Найдите среднеквадратичную скорость $\langle v_{\kappa p} \rangle$ движения молекул газа.
- **15.** В баллоне вместимостью V = 10 л находится v = 2 кмоль аргона. Средняя кинетическая энергия атома аргона $\langle E_{\kappa} \rangle = 1.25 \cdot 10^{-24} \, \text{Дж.}$ Чему равно давление р газа на стенки баллона?
- 16. Найдите концентрацию п молекул газообразного кислорода (М = 32 г/моль), находящегося при давлении р = 0,2 МПа. Средняя квадратичная скорость молекул $< v_{KB} > = 700 \text{ м/c}$.
- 17. В сосуде вместимостью V = 5 л находится кислород (M = 0.032 кг/моль). Определите массу m газа, если концентрация его молекул $n = 9.41 \cdot 10^{23} \text{ m}^{-3}$.
- 18. Газообразный аргон находится в сосуде вместимостью V = 200 л под давлением $p = 3.10^5$ Па. Определите массу m аргона, если средняя квадратичная скорость движения его молекул $<v_{KB}>$ = 698 м/с?
- 19. В баллоне находится m = 638 г идеального газа при температуре t = 27 °C. Определите количество вещества у газа, если средняя квадратичная скорость движения его молекул $<v_{KB}> = 484 \text{ M/c}$?
- 20. Идеальный газ, масса которого m = 600 г, находится в сосуде при температуре t = 22 °C и давлении p = 150 кПа. Определите число молекул N газа, если плотность газа $\rho = 1.22 \text{ кг/м}^3$.
- **21.** Идеальный газ, плотность которого $\rho = 5.95 \text{ кг/м}^3$, находится в баллоне при температуре t = 10 °C. Масса одной молекулы газа $m_0 = 7.3 \cdot 10^{-26}$ кг. Определите давление р газа на стенки сосуда.
- 22. В баллоне находится идеальный одноатомный газ, средняя квадратичная скорость молекул которого $\langle v_{KB} \rangle = 580$ м/с. Плотность газа $\rho = 9 \cdot 10^{-4}$ г/см³. Определите давление р газа на стенки сосуда.
- **23.** На изделие, поверхность которого $S = 10 \text{ cm}^2$, нанесен слой серебра толщиной h = 2 мкм. Сколько атомов серебра содержится в покрытии? Молярная масса серебра M = 108 г/моль. Плотность серебра $\rho = 10500 \text{ кг/м}^3$.
- 24. Идеальный одноатомный газ, масса которого m = 6 кг, находится в сосуде вместимостью $V = 4.9 \text{ m}^3$. Средняя квадратичная скорость молекул газа υ_{кв} = 700 м/с. Определите давление р газа на стенки сосуда.

- **25.** Считая, что объем молекулы воды ($M=18\,$ г/моль) равен $V_0=1,1\cdot 10^{-23} \text{см}^3$, определите какой процент от всего пространства, занятого водой, приходится на долю самих молекул? Плотность воды $\rho=1000\,$ кг/м 3 .
- **26.** Спутник площадью поперечного сечения S=3 м² движется по круговой орбите над Землей со скоростью $\upsilon=7.9$ км/с. Давление воздуха на высоте орбиты $p=1.38\cdot 10^{-4}$ Па, температура T=120 К. Определить число столкновений молекул воздуха со спутником за время t=1 с.
- **27.** При повышении температуры идеального газа на $\Delta T_1 = 150$ К средняя квадратичная скорость его молекул увеличилась с $\upsilon_1 = 400$ м/с до $\upsilon_2 = 500$ м/с. На сколько ΔT_2 нужно нагреть этот газ, чтобы увеличить среднюю квадратичную скорость его молекул с $\upsilon_2 = 500$ м/с до $\upsilon_3 = 700$ м/с?

Ответы

8. $m_0 = 4,65 \cdot 10^{-26}$ kg; 9. m = 160 g; 10. $n = 9,7 \cdot 10^{24}$ m⁻³; 11. T = 500 K; 12. $N = 12,04 \cdot 10^{23}$; 13. $N = 12,04 \cdot 10^{23}$; 14. $< v_{\rm kB} > = 239$ m/c; 15. p = 100 kHa; 16. $n = 2,3 \cdot 10^{25}$ m⁻³; 17. m = 0,25 g; 18. m = 0,37 kg; 19. v = 20 моль; 20. $N = 1,8 \cdot 10^{25}$; 21. p = 318,3 kHa; 22. p = 101 kHa; 23. $N = 1,17 \cdot 10^{20}$; 24. $p = 2 \cdot 10^5$ Ha; 25. 36,8 %; 26. $N = 2 \cdot 10^{21}$; 27. $\Delta T_2 = 400$ K.