PROBLEMAS PROPOSTOS

Consideremos a transformação linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ definida por T(x,y) = (3x - 2y, x + 4y). 1) Utilizar os vetores u = (1, 2) e v = (3, -1) para mostrar que T(3u + 4v) = 3T(u) + 4T(v).

Dada a transformação linear T:V ---- W, tal que T(u) = 3u e T(v) = u - v, calcular em 2) função de u e v:

a)
$$T(u + v)$$

c)
$$T(4u - 5v)$$

Dentre as transformações T: IR2 --- IR2 definidas pelas seguintes leis, verificar quais 3) lineares:

a)
$$T(x, y) = (x - 3y, 2x + 5y)$$
 d) $T(x, y) = (x + 1, y)$ g) $T(x, y) = (sen x, y)$

g)
$$T(x, y) = (sen x, y)$$

b)
$$T(x, y) = (y, x)$$

e)
$$T(x, y) = (y - x, 0)$$

e)
$$T(x, y) = (y - x, 0)$$
 h) $T(x, y) = (xy, x - y)$

c)
$$T(x, y) = (x^2, y^2)$$

f)
$$T(x, y) = (|x|, 2y)$$
 i) $T(x, y) = (3y, -2x)$

i)
$$T(x, y) = (3y, -2x)$$

4) Seja $V = \mathbb{R}^2$. Fazer um gráfico de um vetor genérico v = (x, y) do domínio e de sua imagem T(v) sob a transformação linear T: R² → R² dada por:

a)
$$T(x, y) = (2x, 0)$$

a)
$$T(x, y) = (2x, 0)$$
 d) $T(x, y) = (3x, -2y)$

b)
$$T(x, y) = (2x, y)$$

b)
$$T(x, y) = (2x, y)$$
 e) $T(x, y) = -2(x, y)$

c)
$$T(x, y) = (-2x, 2y)$$
 f) $T(x, y) = (x, -y)$

f)
$$T(x, y) = (x, -y)$$

5) Dentre as seguintes funções, verificar quais são lineares:

a) T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^3$$
; T(x, y) = (x - y, 3x, -2y)

b) T:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
; T(x, y, z) = (x + y, x - y, 0)

c) T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, T(x, y) = (x² + y², x)

d) T:
$$\mathbb{R}$$
 $\longrightarrow \mathbb{R}^2$, $T(x) = (x, 2)$

e) T:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}$$
, $T(x, y, z) = -3x + 2y - z$

f)
$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $T(x, y) = (|x|, y)$

g) T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}$$
, $T(x, y) = x$

h) T:
$$\mathbb{R}^2 \longrightarrow \mathbb{R}$$
, $T(x, y) = xy$

i)
$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^4$$
, $T(x, y) = (y, x, y, x)$

j) T:
$$\mathbb{R}^2 \longrightarrow M(2, 2)$$
, $T(x, y) = \begin{bmatrix} 2y & 3x \\ -y & x+2y \end{bmatrix}$

k) T: M(2,2)
$$\longrightarrow \mathbb{R}^2$$
, T $\begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix}$ = $(a-c, b+c)$

1)
$$T: M(2,2) \longrightarrow \mathbb{R}$$
, $T\begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = \det \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

m) T:
$$\mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

$$(x, y, z) \longrightarrow \begin{bmatrix} 2 & 1 & 3 \\ -1 & 0 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Seja a aplicação T: ℝ² → ℝ³

$$(x, y) \longrightarrow (x + ky, x + k, y)$$

Verificar em que caso(s) T é linear:

$$a) k = x$$

b)
$$k = 1$$

c)
$$k = 0$$

- a) Determinar a transformação linear $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que T(-1, 1) = (3, 2, 1) e 7) T(0,1) = (1,1,0).
 - b) Encontrar $v \in \mathbb{R}^2$ tal que T(v) = (-2, 1, -3).
- a) Determinar a transformação linear $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que T(1, -1, 0) = (1, 1)8) T(0, 1, 1) = (2, 2) e T(0, 0, 1) = (3, 3).
 - b) Achar T(1,0,0) e T(0,1,0).
- Seja $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ uma transformação linear definida por T(1,1,1)=(1,2), 9) T(1, 1, 0) = (2, 3) e T(1, 0, 0) = (3, 4).
 - a) Determinar T(x, y, z).
 - b) Determinar $v \in \mathbb{R}^3$ tal que T(v) = (-3, -2).
 - c) Determinar $v \in \mathbb{R}^3$ tal que T(v) = (0, 0).
- 10) Seja T o operador linear no \mathbb{R}^3 tal que T(1,0,0) = (0,2,0), T(0,1,0) = (0,0,-2) e T(0,0,1) = (-1,0,3). Determinar T(x,y,z) e o vetor $v \in \mathbb{R}^3$ tal que T(v) = (5,4,-9).
- 11) Determinar a transformação linear $T:P_2 \longrightarrow P_2$ tal que T(1) = x, $T(x) = 1 x^2$ e $T(x^2) = x + 2x^2$.
- Seja o operador linear

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $T(x, y) = (2x + y, 4x + 2y)$.

Quais dos seguintes vetores pertencem a N(T)?

- a) (1, -2) b) (2, -3) c) (-3, 6)
- 13) Para o mesmo operador linear do exercício anterior, verificar quais dos vetores pertencem a Im(T).

 - a) (2,4) b) $(-\frac{1}{2},-1)$ c) (-1,3)

Nos problemas 14 a 21 são apresentadas transformações lineares. Para cada uma delas:

51) Determinar o ângulo α formado pelos vetores v e T(v) quando o espaço gira em torno do eixo dos z de um ângulo θ , nos seguintes casos:

a)
$$v = (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 1)$$
 e $\theta = 180^{\circ}$

b)
$$v = (\frac{\sqrt{3}}{2\sqrt{2}}, \frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{2}) e \theta = 180^{\circ}$$

c)
$$v = (\frac{\sqrt{3}}{2\sqrt{2}}, \frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{2}) e \theta = 60^{\circ}$$

4.8.1 Respostas de Problemas Propostos

- 2) a) 4u v
 - b) 3u 3v
 - c) 7u + 5v
- 3) São lineares: a), b), e), i)
- 4) a)

b)

c), d), e) e f) a cargo do leitor.

- 5) São lineares: a), b), e), g), i), j), k), m).
- 6) c) é linear

7) a)
$$T(x, y) = (-2x + y, -x + y, -x)$$

b)
$$v = (3, 4)$$

8) a)
$$T(x, y, z) = (-y + 3z, -y + 3z)$$

b)
$$T(1,0,0) = (0,0) e T(0,1,0) = (-1,-1)$$

9) a)
$$T(x, y, z) = (3x - y - z, 4x - y - z)$$

b)
$$v = (1, 6 - z, z)$$

c)
$$v = (0, -z, z)$$

10)
$$T(x, y, z) = (-z, 2x, -2y + 3z)$$

$$v = (2, -3, -5)$$

11)
$$T(a + bx + cx^2) = b + (a + c)x + (-b + 2c)x^2$$

- 12) a), c)
- 13) a), b)

14) a)
$$N(T) = \{(x, 3x)/x \in \mathbb{R}\}$$
; dim $N(T) = 1$

T não é injetora, porque $N(T) \neq \{(0,0)\}$.

b)
$$Im(T) = \{ (-y, y)/y \in \mathbb{R} \}$$
; $dim Im(T) = 1$

T não é sobrejetora, porque $Im(T) \neq IR^2$.

.15) a)
$$N(T) = \{(0,0)\}$$
; dim $N(T) = 0$.

T é injetora, porque $N(T) = \{0\}$.