Wydział: EAIIB	Konrad Lewandowski Karol Pietruszka	2016	pt. 9.45	Zespół: 8
PRACOWNIA FIZYCZNA WFiIS	Temat: Moduł Younga	,		11
Data wykonania 7.01.2016	Data oddania: 11.01.2016	Zwrot do pop.	Data zaliczenia	Ocena

1 Wstęp

Celem laboratorium było wyznaczenie modułu Younga dla mosiądzu i stali, na podstawie zależności wydłużenia odcinka drutu, poddanego działaniu siły rozciągającej (zawieszania coraz cieszych odważników).

2 Dane

Pomiary długości i średnicy drutów poddawanych rozciągnaiu 2.1

Dla drutu stalowego: Dla drutu mosiężnego Średnica $\phi_s = \frac{0.76 + 0.76 + 0.75 + 0.75}{4} = 0.755$ mm Średnica $\phi_m = \frac{1.15 + 1.16 + 1.17 + 1.17}{4} = 1.162$ mm Długośc $L_m = 1070 \text{mm}$ Długośc $L_s = 1067 \text{mm}$

2.2 Pomiary wydłużenia drutów poddanych obciążeniu

M - obciążenie [kg]

W1S - dwukrotność¹ wydłużenia drutu stalowego podczas dokładania kolejnych obciążeń [µm]

W2S - dwukrotność wydłużenie drutu stalowego podczas zdejmowania kolejnych obciążeń [μm]

W1M, W2M - Analogiczne wartości dla drutu mosiężnego

 $W_s=\frac{W1S+W2S}{4}$ - średnia wartość wydłużenia drutu stalowego [µm] $W_m=\frac{W1M+W2M}{4}$ - średnia wartość wydłużenia drutu mosiężnego [µm]

M	W1S	W2S	W1M	W2M	W_S	W_{M}
0,982	130	200	610	620	85	307,5
2,015	450	480	1090	1110	235	550
2,996	700	720	1720	1420	355	710
3,985	930	950	1730	1740	470	867,5
4,996	1150	1160	2010	2030	585	1010
5,996	1360	1400	2290	2290	695	1140
7,044	1610	1660	2540	2550	820	1275
8,012	1830	1870	2780	2800	925	1395
8,994	2060	2130	3020	3030	1042,5	1512,5
10,022	2270	2320	3250	3290	1150	1635

¹Spowodowane dźwignia 1:2 na przyrzadzie pomiarowym

2.3 Wyniki pomiarów

Proste z poniższych wykresów odzwierciedlają następującą zależność:

 $\Delta l = aF$ - wydłużenie zależy liniowo od siły rozciągającej (a - współczynnik kierunkowy prostej regresji liniowej). Zgodnie z prawem Hooke'a $a = \frac{l}{ES}$. Rozpisując $\Delta l = aMg$ i podstawiając otrzymujemy:

$$E = \frac{4lg}{\pi \phi^2 a} \tag{1}$$

Wyniki liczbowe pomiarów:

	Współczynnik kierunkowy $\left[\frac{\mu m}{N}\right]$	Niepewność	Obliczone E [GPa]
Stali	116	0.000013	203.54
Mosiądzu	1417	0.0000049	74.343

2.4 Niepewności pomiarowe

 $u(\phi)=\frac{0.01}{\sqrt{3}}$ mm - na podstawie działki elementarnej śruby mikrometrycznej $u(l)=\frac{1}{\sqrt{3}}$ mm - na podstawie działki elementarnej linijki

Przy obliczaniu niepewności modułu Younga korzystamy ze standardowego wzoru na propagację niepewności względnej:

$$\frac{u_c(E)}{E} = \sqrt{\left(\frac{\frac{4g}{\pi \cdot d^2 a}}{\frac{4lg}{\pi \cdot d^2 a}}\right)^2 + \left(\frac{\frac{-2 \cdot 4g}{\pi \cdot d^3 a}}{\frac{4lg}{\pi \cdot d^2 a}}\right)^2 + \left(\frac{\frac{-1 \cdot 4g}{\pi \cdot d^2 a^2}}{\frac{4lg}{\pi \cdot d^2 a}}\right)^2}$$
(2)

$$\frac{u_c(E)}{E} = \sqrt{\left(\frac{u(l)}{l}\right)^2 + \left(-2\frac{u(d)}{d}\right)^2 + \left(-1\frac{u(a)}{a}\right)^2} \tag{3}$$

Obliczenie niepewnośći dla stali:

Obliczenie niepewnośći pomiarowej dla mosiądzu:

$$\frac{u_c(E)}{E} = \sqrt{(9.3e - 4)^2 + (2.6e - 2)^2 + (1.1e - 1)^2)} \qquad \frac{u_c(E)}{E} = \sqrt{(9.3e - 4)^2 + (1.7e - 2)^2 + (1.1e - 3)^2)}$$
(4)

$$\frac{u_c(E)}{E} = 0.00311 (5) \frac{u_c(E)}{E} = 0.0011 (8)$$

$$u_c(E) = 0.66$$
GPa (6) $u_c(E) = 0.082$ GPa (9)

3 Wnioski

Po porównaniu z wartościami tablicowymi (E mosiądzu \in (103, 123), E stali \in (190, 210)), możemy stwierdzić, że przyrząd pomiarowy pozwolił jedynie na poprawne wyznaczenie modułu Younga stali. (gdyż wartość E mosiądzu nie mieści się w tablicowym przedziale), lub badana próbka materiału była wykonana ze stopu innego niż tablicowy mosiądz (inne proporcje miedzi i cynku)

Rysunek 1: Wyniki pomiarów dla drutu stalowego

Rysunek 2: Wyniki pomiarów dla drutu mosiężnego