Tropical Implicitization

Shaowei Lin

07 May 2009

"Elimination Theory for Tropical Varieties" Sturmfels, Tevelev

Problem

 $f_1, \ldots, f_s \in \mathbb{C}[t_1^{\pm}, \ldots, t_r^{\pm}]$ Laurent polynomials

 $f = (f_1, \dots, f_s) : \mathbb{T}^r \to \mathbb{T}^s$ rational map

$$Y = \overline{\mathrm{Im}f}$$

Compute tropical variety $\mathcal{T}(Y)$

First, we recall a theorem from Bernd's class on tropical elimination.

Thm. $X \subset \mathbb{T}^n$ closed subvariety

 $\alpha: \mathbb{T}^n \to \mathbb{T}^d$ homomorphism of tori generically finite from X onto $\alpha(X)$

 $A: \mathbb{Z}^n \to \mathbb{Z}^d$ corr. linear map of lattices

Then $\mathcal{T}(\alpha(X)) = A(\mathcal{T}(X))$

Approach

Consider graph $X \subset \mathbb{T}^{r+s}$ of f with coords $(t_1, \ldots, t_r, y_1, \ldots, y_s)$

X defined by
$$f_1(t) - y_1 = ... = f_s(t) - y_s = 0$$

$$\alpha: \mathbb{T}^{r+s} \to \mathbb{T}^s, (t,y) \mapsto y$$
 projection, A projection

Then
$$\alpha(X) = Y$$
 so $\mathcal{T}(Y) = A(\mathcal{T}(X))$

Qn: How to compute $\mathcal{T}(X)$?

Thm (Geometric Tropicalization, Hacking-Keel-Tevelev)

This is the del Pezzo paper. Keep theorem on board.

 $X \subset \mathbb{T}^n$ smooth variety with coords (t_1, \ldots, t_n)

 $\overline{X} \supset X$ compactification, bdy divisor $D = \overline{X} \setminus X$ s.n.c.

 D_1, \ldots, D_m irreducible components of D

$$\Delta_{X,D}$$
 simplicial complex on $\{1, 2, \dots, m\}$ with $\{i_1, \dots, i_l\} \in \Delta_{X,D}$ iff $D_{i_1} \cap \dots \cap D_{i_l} \neq \emptyset$

$$[D_i] = (\operatorname{val}_{D_i}(t_1), \dots, \operatorname{val}_{D_i}(t_n)) \in \mathbb{R}^n$$

For face $\sigma \in \Delta_{X,D}$, $[\sigma] = \text{cone spanned by } \{[D_i] : i \in \sigma\}$

Then
$$\mathcal{T}(X) = \bigcup_{\sigma \in \Delta_{X,D}} [\sigma]$$

Example

Let
$$Y = \{(u, v) \in \mathbb{T}^2 : v^2 - u^3 - u^2\}$$
. Find $\mathcal{T}(Y)$.

We know the answer to this.

[Draw Newton Polytope and Inner Normal Fan]

Now, lets do it by tropical implicitization.

Let
$$f: \mathbb{T}^1 \setminus \{-1, 1\} \to \mathbb{T}^2, t \mapsto (u, v) = (t^2 - 1, t^3 - t)$$
 so $Y = \overline{\mathrm{Im} f}$

Let $X\subset \mathbb{T}^3$ graph of f

[Draw graph X]

Compactify $\overline{X}\supset X$ via $\mathbb{P}^3\supset \mathbb{T}^3$

Four bdy divisors (in proj coords)

Coordinate divisors

$$\begin{array}{rcl} (t) & = & D_1 & & -D_4 \\ (u) = (t^2 - 1) & = & D_2 & +D_3 & -2D_4 \\ (v) = (t^3 - t) & = & D_1 & +D_2 & +D_3 & -3D_4 \end{array}$$

Divisorial rays

 $\Delta_{X,D}$ consists of 4 points

$$\mathcal{T}(X)$$
 generated by $(0,1),(1,1),(-2,-3)$

Algorithm

(need not be generic complete intersection)

Input: $f = (f_1, \dots, f_s) : \mathbb{T}^r \dashrightarrow \mathbb{T}^s$ rational map

Output: the set $\mathcal{T}(Y)$, $Y = \overline{\mathrm{Im}f}$

- (1) $X := \mathbb{T}^r \setminus \bigcup_{i=1}^s E_i, \quad E_i := \{f_i = 0\}$
- (2) Find compactification $\overline{X} \supset X$ smooth with s.n.c.
- (3) For each irred bdy divisor D, compute

$$[D] = (\operatorname{val}_D(f_1), \dots, \operatorname{val}_D(f_s)) \in \mathbb{R}^s$$

- (4) Compute $\Delta_{X,D}$
- (5) $\mathcal{T}(Y) = \bigcup_{\sigma \in \Delta_{X,D}} [\sigma]$

Example

$$f = (f_0, f_1, \dots, f_6) : \mathbb{T}^6 \to \mathbb{T}^7$$

 $f_i=a_0b_0^ib_1^{6-i}+a_1c_0^ic_1^{6-i}$ secant of Veronese variety, dim = 4 relations on $\widetilde{Y}=\overline{\mathrm{Im}f}$ gen by 3×3 minors of Hankel matrix

$$\begin{pmatrix}
f_0 & f_1 & f_2 & f_3 \\
f_1 & f_2 & f_3 & f_4 \\
f_2 & f_3 & f_4 & f_5 \\
f_3 & f_4 & f_5 & f_6
\end{pmatrix}$$

$$\mathcal{T}(\widetilde{Y})$$
 dim = 4, dim(linearity space)=2

("Computing Tropical Varieties" BJSST)

[Draw graph of $\mathcal{T}(\widetilde{Y})$]

Reparametrization

$$f_i = \lambda \omega^i (a + c^i)$$

Now, we consider instead

$$f_i = a + c^i, Y = \overline{\mathrm{Im}f}$$

Then, modulo the linearity space, $\mathcal{T}(\widetilde{Y}) \equiv \mathcal{T}(Y)$

We compute $\mathcal{T}(Y)$ using the algorithm.

[Draw E_i on graph]

(Signs opp of that of Gfan)

RAYS

1 0 0 0 0 0 0 # 0 (0) E0

0 1 0 0 0 0 0 # 5 (6) E1

0 0 1 0 0 0 0 # 3 (9) E2

0 0 0 1 0 0 0 # 7 (11) E3

0 0 0 0 1 0 0 # 4 (10) E4

0 0 0 0 0 1 0 # 14 (7) E5

0 0 0 0 0 0 1 # 1 (1) E6

0 1 1 1 1 1 1 # 10 (2) D1

0 1 2 2 2 2 2 # 6 (4) D2

0 1 2 3 3 3 3 # 2 (8) D3

0 1 2 3 4 4 4 # 5 (5) D4

0 1 2 3 4 5 5 # 9 (3) D5

1 0 1 0 1 0 1 # 11 (13) FE

0 1 0 1 0 1 0 # 12 (14) FO

LEFTOVERS

1 0 0 1 0 0 1 # 8 (12) Divisor at Infty?

0 1 0 3 0 1 0 # 13 (15) Extra?