Solving Equations with Complex Solutions

Warm Up: Find the roots of each equation below. Leave your answers in simplest radical form in terms of *i* when appropriate. Check your answers.

1.
$$x^2 - 9 = 0$$

 $x^2 = 9$
 $x^2 = 9$
 $x^2 = 9$

2.
$$x^{2} + 9 = 0$$

 -9 -9
 $X^{2} = -9$
 $X = \pm 3i$

3.
$$2x^{2} + 47 = 11$$
 $-47 - 47$
 $2x^{2} = -36$
 $5x^{2} = -18$
 $x = 2\sqrt{-18}$
 $x = 2\sqrt{9.2}$
 $x = 3\sqrt{2}$

4.
$$4x^{2} + 20 = 0$$

 $4x^{2} = -20$
 $\sqrt{x^{2}} = \sqrt{-5}$
 $x = \pm \sqrt{-5}$
 $x = \pm \sqrt{5}$

Exercise #1: Which graph represents a quadratic function with imaginary solutions?

Exercise #2: Solve algebraically for all values of x: $x^4 + 4x^3 + 4x^2 = -16x$

Exercise #3: A 4^{th} degree polynomial has zeros -5, 3, i, and -i. Which graph could represent the function defined by this polynomial?

Exercise #4: Which representation of a quadratic has imaginary roots?

(1)	x	У
	-2.5	2
	-2.0	0
	-1.5	-1
	-1.0	-1
	-0.5	0
	0.0	2

$$(2)2(x+3)^2 = 64$$

$$(4)2x^2 + 32 = 0$$

Solving Equations with Complex Solutions Practice

1. What is the solution set of the equation $3x^5 - 48x = 0$?

(1)
$$\{0,\pm 2\}$$

$$3x(x^{4}-16)=0$$

 $3x(x^{2}+4)(x^{2}-4)=0$ (3) $\{0,\pm 2,\pm 2i\}$

$$3 \times (x + 4)(x - 4) = 0$$

$$3 \times (x^{2} + 4)(x + 3)(x - 3) = 0$$

$$3 \times (x^{2} + 4)(x + 3)(x - 3) = 0$$

$$3 \times (x^{2} + 4)(x + 3)(x - 3) = 0$$

$$4) \{\pm 2, \pm 2i\}$$

$$3 \times = 0 \quad x^{2} + 4 = 0 \quad x = -3 \quad x = 3$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4)(x - 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4)(x - 4)(x - 4) = 0$$

$$4 \times (x + 4)(x - 4)(x - 4)(x - 4) =$$

2. Which equation has 1 - i as a solution?

(2)
$$x^2 + 2x - 2 = 0$$
 (3) $x^2 - 2x - 2 = 0$

(2)
$$x^2 + 2x + 2 = 0$$
 (4) $x^2 - 2x + 2 = 0$

4. Solve:
$$x^4 + 4x^2 = 32$$
.
 $x^4 + 4x^2 - 32 = 0$
 $x^4 - 4x^2 + 8x^2 - 32 = 0$
 $x^2(x^2 - 4) | 8(x^2 - 4) = 0$
 $(x^2 - 4)(x^2 + 8) = 0$
 $(x + 2)(x - 2)(x^2 + 8) = 0$
 $(x + 2)(x - 2)(x^2 + 8) = 0$
 $(x + 2)(x - 2)(x^2 + 8) = 0$
 $(x + 2)(x - 2)(x^2 + 8) = 0$
 $(x + 3)(x - 2)(x^2 + 8) = 0$
 $(x + 3)(x - 2)(x^2 + 8) = 0$
 $(x + 3)(x - 2)(x^2 + 8) = 0$
 $(x + 3)(x - 2)(x^2 + 8) = 0$
 $(x + 3)(x - 2)(x^2 + 8) = 0$
 $(x + 3)(x - 2)(x^2 + 8) = 0$
 $(x + 3)(x - 2)(x^2 + 8) = 0$
 $(x + 3)(x - 2)(x^2 + 8) = 0$
 $(x + 3)(x - 2)(x^2 + 8) = 0$
 $(x + 3)(x - 2)(x^2 + 8) = 0$
 $(x + 3)(x - 2)(x^2 + 8) = 0$
 $(x + 3)(x - 2)(x^2 + 8) = 0$
 $(x + 3)(x - 2)(x^2 + 8) = 0$
 $(x + 3)(x - 2)(x^2 + 8) = 0$
 $(x + 3)(x - 2)(x^2 + 8) = 0$
 $(x + 3)(x - 2)(x^2 + 8) = 0$
 $(x + 3)(x - 2)(x^2 + 8) = 0$

5. Which equation represents a quadratic function with imaginary solutions?

(2)
$$x^2 + 3x - 5 = 0$$
 (3) $(x-3)^2 - 7 = 0$

(3)
$$(x-3)^2 - 7 = 0$$

(2)
$$x^2 - 4x = 5(x+2)$$

(2)
$$x^2 - 4x = 5(x+2)$$
 (4) $x^2 + 2x + 2 = 0$

6. Solve the polynomial equation $0 = x^4 + 13x^2 + 36$?

$$X^{4} + 4x^{2} + 9x^{2} + 36 = 0$$
 $X^{2}(x^{2} + 4) + 9(x^{2} + 4) = 0$
 $(x^{2} + 4)(x^{2} + 9) = 0$
 $X^{2} + 4 = 0$
 $X^{2} + 9 = 0$
 $X = 0$

7. Find the zeros of the following function: $y = x^3 + 2x^2 + 16x + 32$?

$$X^{2}(x+a)|+16(x+a)$$

$$\frac{(x+2)(x^2+16) = 0}{(x+2)(x^2+16) = 0}$$

$$\frac{(x+2)(x^2+16) = 0}{(x^2+16) = 0}$$