

Lab 08 - 09 APPLIED LINEAR ALGEBRA FOR IT - 501032

1 Exercises

Exercise 1: To find the least square solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$. For this case, the equation $A^TAx = A^Tb$ with

$$\mathbf{A} = \begin{pmatrix} 2 & 2 \\ 2 & 3 \end{pmatrix}$$
$$\mathbf{b} = \begin{pmatrix} 4 \\ 6 \end{pmatrix}$$

Exercise 2: Solve the linear system below and find the least squares solutions.

$$\begin{cases} e = 0.5 \\ d + e = 1.6 \\ c + 2d + e = 2.8 \\ c + e = 0.8 \\ 4c + d + e = 5.1 \\ 4c + 2d + e = 5.9 \end{cases} \Leftrightarrow \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 0 & 1 \\ 4 & 1 & 1 \\ 4 & 2 & 1 \end{pmatrix} \begin{pmatrix} c \\ d \\ e \end{pmatrix} = \begin{pmatrix} 0.5 \\ 1.6 \\ 2.8 \\ 0.8 \\ 5.1 \\ 5.9 \end{pmatrix} \Leftrightarrow \mathbf{A}\mathbf{x} = \mathbf{b}$$

Exercise 3: Find the equation $y = a_0 + a_1 x$ of the least squares line that best fits the given data points.

- (a) (0,1),(1,1),(2,2),(3,2)
- (b) (1,0), (2,1), (4,2), (5,3)
- (c) (-1,0),(0,1),(1,2),(2,4)
- (d) (2,3), (3,2), (5,1), (6,0)

Exercise 4: An engineer is tracking the friction index over mileage of a breaking system of a vehicle. She expects that the mileage-friction relationship is approximately linear and she collects five data points that are show in the table below.

Mileage	2000	6000	20000	30000	40000
Friction Index	20	18	10	6	2

Write a function to describe these points above and the approximately points by graph.

Hint: Consider **b** is the vector of friction index data values and **y** values when we plug in the mileage data for **x** and find **y** by the equation of the line ax + b = y. We want minimizes the distance between **b** and **y**.

Exercise 5: A cetain experiment produces the data (1,7.9), (2,5.4) and (3,-9). Describe the model that produces a least squares fit of these points by a function of the form

$$y = Acosx + Bsinx$$

Exercise 6: A bioengineer is studying the growth of a genetically engineered bacteria culture and suspects that is it approximately follows a cubic model. He collects six data points that are show table below.

Time in Days	1	2	3	4	5	6
Grams	2.1	3.5	4.2	3.1	4.4	6.8

He assumes the equation has the cubic form $ax^3 + bx^2 + cx + d = y$. Write a function to describe these points above by graph.

Exercise 7: We define the 2×2 matrix $S_{\lambda,\mu}$ as

$$S_{\lambda,\mu} = \left[\begin{array}{cc} \lambda & 0 \\ 0 & \mu \end{array} \right]$$

When we multiply $S_{\lambda,\mu}$ to any vector $v \in \mathbb{R}^2$, we get

$$S_{\lambda,\mu} \left[\begin{array}{c} x \\ y \end{array} \right] = \left[\begin{array}{c} \lambda x \\ \mu y \end{array} \right]$$

Execute commands trans 2×2 .

- (a) Describe geometrically the action of $S_{2,2}$ with $\lambda = 2$ and $\mu = 2$.
- (b) Describe geometrically the action of $S_{0.5,0.5}$ with $\lambda = 0.5$ and $\mu = 0.5$.
- (c) Describe geometrically the action of $S_{1,-1}$ with $\lambda = 1$ and $\mu = -1$.
- (d) Describe geometrically the action of $S_{-1,1}$ with $\lambda = -1$ and $\mu = 1$.

Exercise 8: We define the 2×2 matrix R_{θ} as

$$R_{\theta} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Execute commands trans 2×2 .

- (a) Describe geometrically the action of R_{θ} with $\theta = \pi$.
- (b) Describe geometrically the action of R_{θ} with $\theta = \frac{\pi}{3}$.

Exercise 9: Draw the house and its image when you perform transformations:

- (a) **Translation** with $t_x = 2$ and $t_y = 4$
- (b) **Rotation** with $\alpha = \pi/3$
- (c) Scaling with $S_x = 2$ and $S_y = 3$
- (d) Shear
 - along x with $Shear_x = 0.5$
 - along y with $Shear_y = -1.5$

Exercise 10: Let P(1,1), Q(3,1), R(1,3) are the vertices of a triangle, and matrix A represent the vertices of this triangle. Determine the image of the triangle PQR under the transformation (-I)A.

Exercise 11: Define the following map from R^2 to R^3 :

$$\left(\begin{array}{c} x \\ y \end{array}\right) \to \left(\begin{array}{c} x \\ y \\ w \end{array}\right)$$

Hence representing each 2D point by a 3D coordinate (w = 1).

(a) Perform transformations on the original image of Figure F using each of the following transformation matrices, and observe the corresponding geometrical changes,

$$T_{1} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, T_{2} = \begin{bmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & 1 \end{bmatrix}, T_{3} = \begin{bmatrix} 1 & 0 & \frac{5}{4} \\ 0 & 1 & -\frac{5}{4} \\ 0 & 0 & 1 \end{bmatrix}, T_{4} = \begin{bmatrix} \frac{1}{4} & 0 & \frac{5}{4} \\ 0 & \frac{1}{4} & -\frac{5}{4} \\ 0 & 0 & 1 \end{bmatrix},$$

$$T_{5} = \begin{bmatrix} -\frac{1}{4} & 0 & 0 \\ 0 & -\frac{1}{4} & 0 \\ 0 & 0 & 1 \end{bmatrix}, T_{6} = \begin{bmatrix} -\frac{1}{4} & 0 & -\frac{5}{4} \\ 0 & -\frac{1}{4} & \frac{5}{4} \\ 0 & 0 & 1 \end{bmatrix}, T_{7} = \begin{bmatrix} 1 & -1 & \frac{5}{4} \\ 0 & 0 & \frac{5}{4} \\ 0 & 0 & 1 \end{bmatrix},$$

(b) Draw on Diagram 2, the image of the transformation of the Figure F in Diagram 1, represented by the matrix

$$T = \left[\begin{array}{rrr} 1 & 0 & -2 \\ 0 & -2 & 1 \\ 9 & 0 & 1 \end{array} \right]$$