Tekil Değer Ayrıştırması

T.C. Trakya Üniversitesi Mühendislik Fakültesi Elektrik - Elektronik Mühendisliği Bölümü Kontrol Anabilim Dalı

Dr. Öğr. Üyesi İşık İlber Sırmatel sirmatel.github.io

Kaynak (source)

Lecture slides for Introduction to Linear Dynamical Systems Stephen Boyd

Konu listesi

1. Tekil değer ayrıştırması

2. Tekil değer ayrıştırmasının yorumları

3. Tekil değer ayrıştırması uygulamaları

Bölüm 1

Tekil değer ayrıştırması

bir $A \in \mathbb{R}^{m \times n}$ matrisinin **tekil değer ayrıştırması** (singular value decomposition) (SVD)

$$A = U\Sigma V^T$$

şeklinde ifade edilir

- bir matrisin tekil değer ayrıştırması daima mevcuttur
- $ightharpoonup \operatorname{rank}(A) = r$
- $ightharpoonup U \in \mathbb{R}^{m imes r}$, $U^T U = I$
- $ightharpoonup V \in \mathbb{R}^{n \times r}, \ V^T V = I$

U ve V'yi

$$U = \begin{bmatrix} u_1 & \dots & u_r \end{bmatrix} \qquad V = \begin{bmatrix} v_1 & \dots & v_r \end{bmatrix}$$

şeklinde (yani, sütunlarını belirterek) yazarsak

$$A = U\Sigma V^T = \sum_{i=1}^{T} \sigma_i u_i v_i^T$$

yazabiliriz

- $ightharpoonup \sigma_i$, A'nın (sıfıra eşit olmayan) **tekil değer**leri (*singular value*)
- $ightharpoonup u_i$, A'nın **sol tekil** (*left singular*) vektörleri
- $ightharpoonup v_i$, A'nın **sağ tekil** (*right singular*) vektörleri

$$A^T A = (U \Sigma V^T)^T (U \Sigma V^T) = V \Sigma^2 V^T$$

yazabiliriz

dolayısıyla:

- $ightharpoonup v_i$, A^TA 'nın (sıfıra eşit olmayan özdeğerlerine karşılık gelen) özvektörleridir
- $ightharpoonup \sigma_i = \sqrt{\lambda_i(A^TA)}$ (ve, i > r için $\lambda_i(A^TA) = 0$)
- ▶ $||A|| = \sigma_1$ (yazıyla: bir matrisin (spektral) normu, o matrisin maksimum tekil değerine eşittir)

benzer şekilde,

$$AA^{T} = (U\Sigma V^{T})(U\Sigma V^{T})^{T} = U\Sigma^{2}U^{T}$$

yazabiliriz

dolayısıyla:

- $ightharpoonup u_i$, AA^T 'nın (sıfıra eşit olmayan özdeğerlerine karşılık gelen) özvektörleridir
- $ightharpoonup \sigma_i = \sqrt{\lambda_i(AA^T)}$ (ve, i > r için $\lambda_i(AA^T) = 0$)
- $ightharpoonup u_1, \ldots, u_r, \mathcal{R}(A)$ (A'nın sütun uzayı) için bir birim dikgen taban oluşturur
- \triangleright $v_1, \ldots, v_r, \mathcal{R}(A^T)$ (A'nın satır uzayı) için bir birim dikgen taban oluşturur

Ek bilgi: Tam tekil değer ayrıştırması

$$A \in \mathbb{R}^{m \times n} (\operatorname{rank}(A) = r)$$
 için

$$A = U_1 \Sigma_1 V_1^T = \begin{bmatrix} u_1 & \cdots & u_r \end{bmatrix} \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{bmatrix} \begin{bmatrix} v_1^T \\ \vdots \\ v_r^T \end{bmatrix}$$

şeklindeki SVD'ye ekonomik (veya, ince (thin)) SVD denir

- ▶ $U = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \in \mathbb{R}^{m \times m}$ ve $V = \begin{bmatrix} V_1 & V_2 \end{bmatrix} \in \mathbb{R}^{n \times n}$ olacak şekilde dikgen $U_2 \in \mathbb{R}^{m \times (m-r)}$ ve $V_2 \in \mathbb{R}^{n \times (n-r)}$ matrislerini bulalım
- $ightharpoonup \Sigma_1$ 'e sıfır satır ve sütunlar ekleyerek $\Sigma \in \mathbb{R}^{m \times n}$ 'yı oluşturalım:

$$\Sigma = \left[\frac{\Sigma_1}{0_{(m-r)\times r}} \left| \frac{0_{r\times(n-r)}}{0_{(m-r)\times(n-r)}} \right]$$

Ek bilgi: Tam tekil değer ayrıştırması

buradan, A'nın tam (full) SVD'sini

$$A = U_1 \Sigma_1 V_1^T = \underbrace{\left[\begin{array}{c|c} U_1 \mid U_2 \end{array}\right]}_{U} \underbrace{\left[\begin{array}{c|c} \Sigma_1 & 0_{r \times (n-r)} \\ \hline 0_{(m-r) \times r} \mid 0_{(m-r) \times (n-r)} \end{array}\right]}_{\Sigma} \underbrace{\left[\begin{array}{c|c} V_1^T \\ \hline V_2^T \end{array}\right]}_{V^T}$$

şeklinde yazabiliriz

Bölüm 2

Tekil değer ayrıştırmasının yorumları

$$A = U\Sigma V^T = \sum_{i=1}^r \sigma_i u_i v_i^T$$

doğrusal eşleme (mapping) y = Ax

- $ightharpoonup x'in giriş yönleri <math>(v_1, \ldots, v_r)$ doğrultusundaki katsayılarını hesapla
- \blacktriangleright katsayıları σ_i ile **ölçekle** (scale)
- ightharpoonup sonucu çıkış yönleri (u_1, \ldots, u_r) doğrultusunda **yeniden oluştur** (reconstitute)

şeklinde adımlarına ayrıştırılabilir

not: simetrik A için SVD ile özayrışma arasındaki fark: SVD'de giriş ve çıkış yönleri ${f farklı}$

- $ightharpoonup v_1$ en yüksek kazançlı giriş yönü
- $ightharpoonup u_1$ en yüksek kazançlı çıkış yönü
- $ightharpoonup Av_1 = \sigma_1 u_1$

SVD, giriş ve çıkış yönlerinin fonksiyonu olarak bir matrisin kazancıyla ilgili net bir fikir edinmemizi sağlar

örnek:
$$A \in \mathbb{R}^{4\times4}$$
, $\Sigma = \operatorname{diag}(10, 7, 0.1, 0.05)$

- $ightharpoonup v_1$ ve v_2 yönlerindeki giriş bileşenleri, A ile çarpımla kuvvetlendirilir (yaklaşık 10 kat) ve daha çok u_1 ve u_2 'nin gerdiği düzlem boyunca çıkışa yansır
- $ightharpoonup v_3$ ve v_4 yönlerindeki giriş bileşenleri, A ile çarpımla zayıflatılır (yaklaşık 10 kat)
- $ightharpoonup rac{\|Ax\|}{\|x\|}$ 'in değeri 10 ile 0.05 arasında değişir
- ► A tersi alınabilirdir
- ▶ bazı uygulamalar için "A'nın kertesi esasında 2" diyebiliriz

örnek: $A \in \mathbb{R}^{2\times 2}$, $\sigma_1 = 1$, $\sigma_2 = 0.5$

 $ightharpoonup x'i v_1$ ve v_2 doğrultusunda çöz (yani, $x'i v_1$ - v_2 koordinatlarında yaz):

$$v_1^T x = 0.6, \quad v_2^T x = 0.6 \longrightarrow x = 0.5v_1 + 0.6v_2$$

▶ sonucu $\sigma_1 = 1$ ve $\sigma_2 = 0.5$ ile ölçekle:

$$v_1^T x \sigma_1 = 0.6 \qquad v_2^T x \sigma_2 = 0.3$$

► u_1 ve u_2 doğrultusunda Ax'i oluştur:

$$Ax = v_1^T x \sigma_1 u_1 + v_2^T x \sigma_2 u_2 = 0.5u_1 + 0.3u_2$$

örnek (devam):

SVD'nin geometrik yorumu

kaynak (source): Georg-Johann, CC BY-SA 3.0

SVD'nin geometrik yorumu

kaynak (source): Georg-Johann, CC BY-SA 3.0

- ightharpoonup x'i V^T ile döndür
- ightharpoonup sonucu Σ ile ölçekle
- ightharpoonup sonucu U ile döndürerek Ax'i hesapla

Bölüm 3

Tekil değer ayrıştırması uygulamaları

Genel sözde ters

 $A \neq 0$ olsun. A'nın SVD'si $A = U\Sigma V^T$ ise, A'nın sözde tersi (pseudo-inverse)

$$A^{\dagger} = V \Sigma^{-1} U^T$$

şeklinde yazılabilir

A uzun matris; tam sütun kerteli (yani, $(A^TA)^{-1}$ mevcut) ise

$$A^{\dagger} = (A^T A)^{-1} A^T$$

ile Ax=b'nin en küçük kareler yaklaşık çözümü: $\hat{x}_{\mathsf{LS}}=A^{\dagger}y$

A geniş matris; tam satır kerteli (yani, $(AA^T)^{-1}$ mevcut) ise

$$A^{\dagger} = A^T (AA^T)^{-1}$$

ile Ax=b'nin en küçük norm çözümü: $\hat{x}_{\mathsf{LN}}=A^{\dagger}y$

SVD'nin kestirme ve evirmede kullanımı

ölçüm modeli: y=Ax+v. ölçülen y'den x'i bulmak istiyoruz

- ▶ $y \in \mathbb{R}^m$ ölçüm (measurement)
- $\mathbf{x} \in \mathbb{R}^n$ kestirmek (yani, değerini tahmin etmek) istediğimiz vektör
- $lackbox{}v\in\mathbb{R}^m$ ölçüm gürültüsü veya hata

(not: **kestirme** (*estimation*), **evirme** (*inversion*))

norm-sınırlı (norm-bound) gürültü modeli: v için $\|v\| \leq \alpha$ olduğunu varsayıyoruz ancak bunun haricinde v ile ilgili hiçbir şey bilmiyoruz (burada α gürültünün maksimum normu)

SVD'nin kestirme ve evirmede kullanımı

- ▶ $\hat{x} = By$ formundaki **kestirici**yi (*estimator*) ele alalım (BA = I, yani, kestirici **yansız** (*unbiased*))
- ▶ kestirme (veya evirme) hatasına \tilde{x} diyelim:

$$\tilde{x} = \hat{x} - \tilde{x} = \underbrace{By}_{\hat{x}} - \underbrace{B(y-v)}_{x} = Bv$$

► olası kestirme hatalarının kümesi

$$\tilde{x} \in \mathcal{E}_{\mathsf{bel}} = \{Bv \mid ||v|| \le \alpha\}$$

ile verilen bir elipsoittir

- ▶ $x = \hat{x} \tilde{x} \in \hat{x} \mathcal{E}_{\mathsf{bel}} = \hat{x} + \mathcal{E}_{\mathsf{bel}}$, dolayısıyla: x'in (bilmediğimiz) gerçek değeri, merkezi kestirim \hat{x} 'te olan **belirsizlik elipsoiti**nin (*uncertainty ellipsoid*) elemanıdır
- lacktriangle iyi kestiricinin belirsizlik elipsoiti $\mathcal{E}_{\mathrm{bel}}$ küçük olur (BA=I'yı sağlamak koşuluyla)

SVD'nin kestirme ve evirmede kullanımı

 $\mathcal{E}_{\mathsf{bel}}$ 'nin yarıeksenleri $\alpha \sigma_i u_i$ şeklindedir (yani, B'nin tekil değerleri ve tekil vektörleri)

hatanın normunun maksimum değeri $\alpha \|B\|$, yanı $\|\hat{x}-x\| \leq \alpha \|B\|$

en küçük karelerin optimalitesi: BA=I koşulunu sağlayan bütün kestiricileri ele alalım; bunların belirsizlik elipsoitlerine $\mathcal E$ diyelim. en küçük kareler kestirici $B_{\mathsf{LS}}=A^\dagger$ olarak verilsin; bunun belirsizlik elipsoitine $\mathcal E_{\mathsf{LS}}$ diyelim. buradan

- $ightharpoonup B_{LS}B_{LS}^T \le BB^T$
- $ightharpoonup \mathcal{E}_{LS} \subset \mathcal{E}$
- ▶ $||B_{LS}|| \le ||B||$

yazabiliriz. sonuç olarak: en küçük kareler kestirici belirsizlik elipsoiti en küçük olan kestiricidir

SVD'nin kontrolde kullanımı

model: y = Ax. istenen y'yi oluşturacak x'i seçmek istiyoruz

- ightharpoonup sağ tekil vektör v_i , tekil değer σ_i ile kuvvetlendirilerek, sol tekil vektör u_i ile eşlenir
- $ightharpoonup \sigma_i$, u_i yönündeki kontrol otoritesinin bir ölçüsüdür
- $ightharpoonup r < m \Rightarrow u_{r+1}, \ldots, u_m$ yönlerinde kontrol otoritesi yok
- ▶ A geniş matris; tam satır kerteli (yani, $(AA^T)^{-1}$ mevcut) ise oluşturulabilecek y'lerin kümesi

$$\mathcal{E} = \{ y \in \mathbb{R}^m \,|\, y^T (AA^T)^{-1} y \le 1 \}$$

ile verilen bir elipsoittir

SVD'nin kontrolde kullanımı

örnek: katı cisme uygulanan kuvvetler. örneğin, bir taşıta (araba, uçak, roket vb.) **itki** (*thrust*) sistemleriyle çeşitli yönlerde kuvvetlerin uygulandığı bir uygulamayı ele alalım

$$A = \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 0 & -1 \\ 0 & 0.5 & -0.5 \end{bmatrix}$$

$$\sigma_1 = 1.4668, \quad \sigma_2 = 0.5904$$

- ▶ $y = Ax \in \mathbb{R}^m$: cisim üzerindeki toplam kuvvet (birim: N)
- ► $x_i \in \mathbb{R}$: itki sistemi *i*'ye sağlanan güç (birim: W)
- ▶ $||a||_i$: itki sistemi *i*'nin **etkililiği** (*efficiency*)
- ▶ itki uygulayabileceğimiz en etkili yön büyük yarıeksen (yani, u₁) yönüdür

Ana bileşenler analizi

ana bileşenler analizi (principal component analysis (PCA)): keşfedici veri çözümlemesi (exploratory data analysis), veri görselleştirme, ve veri ön işleme (data preprocessing) gibi uygulamalarda kullanılan bir doğrusal boyut indirgeme (dimensionality reduction) yöntemi

örnek: tıbbi veri

örneklem sayısı: 216 (kişi) öznitelik sayısı: 4000 (gen

ifadesi)

veri matrisi: $A \in \mathbb{R}^{216 \times 4000}$

etiketler: {pozitif, negatif}

121 kişi pozitif, 95 kişi negatif

figür: ilk 3 ana bileşen

uzayında veri

