

π -CIPHER V2.0

Danilo Gligoroski, ITEM, NTNU, Norway Hristina Mihajloska, FCSE, UKIM, Macedonia Simona Samardjiska, FCSE, UKIM, Macedonia Håkon Jacobsen, ITEM, NTNU, Norway Mohamed El-Hadedy, University of Virginia, USA Rune Erlend Jensen, IDI, NTNU, Norway Daniel Otte, RUB, Germany

About π - Cipher

- Nonce-based authenticated encryption cipher with associated data
- Sponge based
 - key-less permutation function based on ARX operations
 - supports 16, 32 and 64-bit words
- Security in the range of 96 to 256 bits
- Uses secret message number (SMN)

What is new!?

• Padding rule

- Gaëtan Leurent and Thomas Fuhr Observation on picipher. Message on the cryptocompetitions mailing list, Nov, 2014

• The rule is now simple:

- "Append 1 in any case, and fill the rest of the block with 0s"

\mathbf{M}_1	M_2	• • •	$M_{\rm m}$	10*	1
----------------	-------	-------	-------------	-----	---

What is changed?

• The number of rounds R

Now R = 3
 (previously it was R = 4)

What is changed in explanation?

- From v2.0 π -Cipher supports the concept of "open authorship"
 - it gives opportunity to all people that contribute anyhow in the development of π -Cipher:
 - a tweak is introduced due to an analysis of the cipher,
 - a new mode of operation is proposed,
 - a new significantly different and improved implementation is given
 - if they want, they can be added to the list of designers for new versions or variants of π -Cipher.

What is changed in explanation?

- New parts in the documentation of π -Cipher:
 - The security proof of π -Cipher
 - Explanation of how to use tweakable parameter N for wide blocks
 - Explanation of how to securely use incremental property of π Cipher
 - Rational why we consider π -Cipher to be STREAM OAE2+ design

• F. Abed, C. Forler and S. Lucks, "General Overview of the Authenticated Schemes for the First Round of the CAESAR Competition", Cryptology ePrint Archive, Report 2014/792

Construction Candidate	Design	Primitive	Features Security
			Parallelizable Enc/Dec Online Inverse-Free Incremental AD/AE Fixed AD reuse Intermediate Tags Security proof Nonce-MR Decryption-MR
Sponge-based π -cipher [57]	ARX,Duplex	n.n.	· -/

Functional characteristics

1. Parallelizable

– π -Cipher is parallelizable in both encryption and decryption phases

2. Online

- Encryption of the *i*-th input message block M_i depends only on the common state CIS, *i* and M_i .

3. Inverse free

- π -Cipher does not use π^{-1} of underlying permutation

		*			
Design	Primitive	Features	Security		
		Parallelizable Enc/Dec Online Inverse-Free Incremental AD/AE Fixed AD reuse Intermediate Tags	Security proof Nonce-MR Decryption-MR		
ARX,Duplex	n.n.	•/• • • •			
	,		Parallelizable Enc/Dec Online Inverse-Free Incremental AD/AE Fixed AD reuse Intermediate Tags		

Yes, with additional metadata for the plaintext (overhead), in which case it is secure even with complete

NONCE = (PMN, SMN) REUSE

Incremental feature of π - Cipher

- Incremental schemes have advantage over standard one when longer messages are used (ex. encrypting data in rest)
- In π Cipher incrementality and NMR are achieved with additional **metadata** overhead of 64 bits per block
 - Update counter *UpdCtr* that records the history of updates for every data block

Incremental feature of π - Cipher

- Adding 64 bits of metadata to existing data blocks of π -Cipher (128, 256 and 512 bits) is unacceptable big overhead
- We need bigger blocks!
- How to do that?
 - Change the length of the state
 - In our case it is doable by changing the parameter N
 - Make π -Cipher a wide block cipher

π - Cipher as a wide block cipher

- Permutation state can be from 512B to 16KB
- Keeps the same security level even with 2 rounds

Table 4.1: Wide block characteristics of π 64-Cipher256

	klen (in bits)	PMN (in bits)	SMN (in bits)	Rate in Bytes	N	Tag T (in bits)	R
wide block of 512B	256	512	0	512	32	256	2
wide block of 2KB	256	512	0	2048	128	256	2
wide block of 4KB	256	512	0	4096	256	256	2
wide block of 8KB	256	512	0	8192	512	256	2
wide block of 16KB	256	512	0	16384	1024	256	2

			\
Construction Candidate	Design	Primitive	Features Security
			Parallelizable Enc/Dec Online Inverse-Free Incremental AD/AE Fixed AD reuse Intermediate Tags Security proof Nonce-MR Decryption-MR
Sponge-based π -cipher [57]	ARX,Duplex	n.n.	•/• • • -/-
		s, when PM but SMN is	IN is reused different

Functional characteristics ...

4. Fixed Associated Data Reuse

- It is possible in the case where PMN is the same and SMN is different
- Allows considerable speed-up (Initialization phase and Processing the AD are skipped)
 - A typical use-case scenario would be a secure communication between devices in Internet Of Things. They run the initial setup procedure once where AD is used, and then they send only short encrypted messages.

Construction Candidate	Design	Primitive	Features Security
			Parallelizable Enc/Dec Online Inverse-Free Incremental AD/AE Fixed AD reuse Intermediate Tags Security proof Nonce-MR Decryption-MR
Sponge-based π -cipher [57]	ARX,Duplex	n.n.	•/• • -/

Yes, π- Cipher always computes intermediate tags for every block. It is just a matter of a mode of operation to use them. Additionally, with the wide-block feature, the relative overhead of having intermediate tags goes to zero.

Functional characteristics ...

5. By default, π - Cipher has no ciphertext expansion

- The length of the ciphertext is the same as the length of the message before padding + the length of the SMN
- But, as a mode of operation, it is possible to output intermediate tags for every block. Security of the cipher is not affected by publishing these intermediate tags.
- In order to reduce the relative overhead of having intermediate tags, the wide-block feature of π Cipher should be used.

			3	
Construction Candidate	Design	Primitive	Features	Security
			Parallelizable Enc/Dec Online Inverse-Free Incremental AD/AE Fixed AD reuse Intermediate Tags	Security proof Nonce-MR Decryption-MR
Sponge-based π -cipher [57]	ARX,Duplex	n.n.	•/• • • -/	<u> </u>

Security proof of π - Cipher

- Ensuring both privacy and authenticity for encrypted messages at the same time
 - Data privacy (IND-CPA)
 - Ciphertext integrity against forgery (INT-CTXT)
- π Cipher security proof is based on the proof for the sponge based authenticated ciphers given by P. Jovanovic, A. Luykx, B. Mennink in the ASIACRYPT 2014 paper "Beyond $2^{c/2}$ security in sponge based authenticated encryption modes"

IND-CPA

3.1.1 Privacy of π -Cipher

Theorem 2. Let $\Pi = (\mathcal{E}, \mathcal{D})$ be the proposed authenticated encryption scheme with an ideal permutation π which operates on b bits. Then,

$$\begin{aligned} \boldsymbol{A} \boldsymbol{d} \boldsymbol{v}_{II}^{priv}(q_p, q_{\varepsilon}, \lambda_{\varepsilon}) \leqslant & \frac{(q_p + \sigma_{\varepsilon} + \sigma_{\mathcal{D}})^2}{2^b} + \frac{q_{\mathcal{D}}}{2^r} + \frac{q_p + \sigma_{\varepsilon} + \sigma_{\mathcal{D}}}{2^k} + \frac{q_p r}{2^c} + \\ & \frac{q_{\varepsilon} a + q_{\mathcal{D}} a}{2^r} + \sqrt{\frac{8e\sigma_{\varepsilon} q_p}{2^b}} + \frac{\sigma_{\mathcal{D}}(q_p + \sigma_{\varepsilon} + \sigma_{\mathcal{D}}/2)}{2^c}, \end{aligned}$$

where σ_{ε} is defined in (3.1).

INT-CTXT

3.1.2 Authenticity of π -Cipher

Theorem 3. Let $\Pi = (\mathcal{E}, \mathcal{D})$ be the proposed authenticated encryption scheme with an ideal permutation π which operates on b bits. Then,

$$\mathbf{Adv}_{II}^{auth}(q_p, q_{\varepsilon}, \lambda_{\varepsilon}, q_{\mathcal{D}}, \lambda_{\mathcal{D}}) \leqslant \frac{(q_p + \sigma_{\varepsilon} + \sigma_{\mathcal{D}})^2}{2^b} + \frac{q_{\mathcal{D}}}{2^{\tau}} + \frac{q_p + \sigma_{\varepsilon} + \sigma_{\mathcal{D}}}{2^k} + \frac{q_p r}{2^c} + \frac{q_p$$

where σ_{ε} and $\sigma_{\mathcal{D}}$ are defined in (3.1).

Yes for authenticity, Yes (conditional) for privacy (when SMN is not repeated)

Nonce Misuse Resistance

- Nonce = PMN (27 candidates)
- Nonce = (PMN, SMN) (2 candidates: *π* -Cipher and ICEPOLE-128)
- An intermediate level of nonce-misuse resistance is manifested when legitimate key holder reuses K, PMN and AD, but SMN is different

Construction Candidate	Design	Primitive	Features Security
			Parallelizable Enc/Dec Online Inverse-Free Incremental AD/AE Fixed AD reuse Intermediate Tags Security proof Nonce-MR Decryption-MR
Sponge-based π -cipher [57]	ARX,Duplex	n.n.	•/• • • -/

Yes, it is automatically achieved if it is implemented with intermediate tags, but still we need security proof (work in progress)

Construction Candidate	Design	Primitive	Features			Security				
			$Parallelizable\ Enc/Dec$	$Online \ Inverse-Free$	$Incremental\ AD/AE$	d AD reu		curity 1	once-MR	$Decryption ext{-}MR$
Sponge-based π -cipher [57]	ARX,Duplex	n.n.	•/•	• •	-/-	_	_	_	_	_

Authenticated Encryption Zoo

Name	Туре	Primitive	Parallel E/D	Online	Inverse- free	Security proof	Nonce- MR	Status
π-Cipher	Sponge	ARX	+/+	+	+	-	NONE	

Authenticated Encryption Zoo

Name	Туре	Primitive	Parallel E/D	Online	Inverse- free	Security proof	Nonce- MR	Status
π-Cipher	Sponge	ARX	+/+	+	+	- (NONE	

Authenticated Encryption Zoo

Name	Туре	Primitive	Parallel E/D	Online	Inverse- free	Security proof	Nonce- MR	Status
π-Cipher	Sponge	ARX	+/+	+	+	-	NONE	

Replace with

Authenticated Encryption Zoo

Name	Туре	Primitive	Parallel E/D	Online	Inverse- free	Security proof	Nonce- MR	Status
π-Cipher	Sponge	ARX	+/+	+	+	+	ON-SOME	

V. T. Hoang, R. Reyhanitabar, P. Rogaway, and D. Vizr. "Online Authenticated-Encryption and its Nonce-Reuse Misuse-Resistance", CRYPTO 2015. There, thay say: "Sponge duplex construction of Bertoni et al., resembles OAE2."

Construction Candidate	Design	Design Primitive	Features Security 2nd-roun	2nd-round
			Parallelizable Enc/Dec Online Inverse-Free Incremental AD/AE Fixed AD reuse Intermediate Tags Security proof Nonce-MR Decryption-MR	
Sponge-based π -cipher [57]	ARX,Duplex	n.n.		

 π - Cipher is based on sponge duplex construction of Bertoni et al., with additional cryptographic mechanisms that strengthen its robustness such as the features:

- tag second preimage resistance
- wide block tweakability
- incrementability
- use of SMN that guarantees confidentiality and integrity even when the K, AD and PMN are reused

Construction Candidate	Design	Primitive	Features Security 2nd-round
			Parallelizable Enc/Dec Online Inverse-Free Incremental AD/AE Fixed AD reuse Intermediate Tags Security proof Nonce-MR Decryption-MR
Sponge-based π -cipher [57]	ARX,Duplex	π -func.	

 π - Cipher is based on sponge duplex construction of Bertoni et al., with additional cryptographic mechanisms that strengthen its robustness su

- tag second
- wide block
- incrementa
- π Cipher is STREAM
 - OAE2+ cipher
- use of SMN that guarantees confidentiality and integrity even when the K, AD and PMN are reused

Efficiency

- Software speed of non SSE implementation of π 64-Cipher in v1.0 was around 11 cpb on Sandy Bridge. We expect v2.0 to be faster.
- Still we want to emphasize the incrementality feature of π -cipher by which it can outperform the speed of any non-incremental cipher even with 0.01 cpb

Efficiency

- Recent lightweight hardware implementation of π16-Cipher on Xilinx Virtex-7 platform XC7VX485T-2FFG1761 is:
 - 266 slices for the pi-function
 - 1114 slices for encryption engine without AD and SMN running at 347MHz
- Another lightweight implementation of $\pi 16$ -Cipher for AVR 8-bit MCU
 - 1.9 KB code size for encryption-authentication/decryption-verification part

Acknowledgements

- Gäetan Leurent and Thomas Fuhr
 - thanks for your detaild observation on the π -Cipher and pointing out the problem with padding
- Bart Mennink
 - thanks for your valuable and excellent advices in the process of proving the security of π -Cipher

Thank you for listening!

