TEBD

David Aceituno

Contents

TEBD on C++	1
Notation	1
Model	2
Hamiltonian	
Time Evolution Operator	2
Γhe iTEBD algorithm	2
Initialization	
SVD Truncation	2
Loop	2

iTEBD on C++

The code follows the steps outlined in the following paper

Kjäll, J. A., Zaletel, M. P., Mong, R. S. K., Bardarson, J. H. & Pollmann, F. Phase diagram of the anisotropic spin-2 XXZ model: Infinite-system density matrix renormalization group study. Phys. Rev. B 87, 235106 (2013).

and the file itebd.py.

Notation

Latin letters are reserved for physical indices, and greek indices for bond indices. The order of indices in all tensors is physical indices \rightarrow bond indices. In diagrammatic notation we have

$$\Lambda_{\alpha}\beta = \frac{\alpha}{\Lambda} = \frac{0}{\Lambda} = \frac{1}{1} \tag{1}$$

$$\Lambda_{\alpha}\beta = \begin{array}{ccc}
\alpha & \beta & 0 & 1 \\
i & 0 & 0 \\
\Gamma_{\alpha\beta}^{i} = \begin{array}{ccc}
\alpha & \beta & 1 & 2 \\
\Gamma_{\alpha}^{i} & \beta & 1 & 2
\end{array}$$
(1)

$$\theta_{\alpha\beta}^{ij} = \alpha \begin{array}{c|c} i & j & 0 & 1 \\ \hline \theta & \beta & 2 & 1 & 3 \\ \hline \theta & \beta & \beta & 3 & 3 \\ \hline \end{array}$$
 (3)

In C++ these are explicitly objects of type Eigen::Tensor<double,rank,Eigen::ColMajor>;, which are typedef'ed into shorthand TensorR, where R is the rank (0 to 4).

Model

Hamiltonian

We study the 1D Ising model with the following two-site Hamiltonian

$$H = \begin{pmatrix} J & -g/2 & -g/2 & 0 \\ -g/2 & -J & 0 & -g/2 \\ -g/2 & 0 & -J & -g/2 \\ 0 & -g/2 & -g/2 & J \end{pmatrix}.$$

Time Evolution Operator

We now define $U=e^{-H\delta\tau}$, a unitary matrix that performs the time evolution. U is reshaped into a rank 4 tensor with dimensions (2,2,2,2), i.e. $U=U^{jk}_{j'k'}$, where j and k are the original physical indices, and j' and k' are the updated indices.

The iTEBD algorithm

Initialization

We initialize a two-site MPS state in Vidal canonical form

- Define $G^{A,i}_{\alpha\gamma}=G^{B,i}_{\delta\beta}$ with dimensions (2,1,1). Set $G^{A,B}(0,0,0)=1$ and the rest to zero. In code: std::array<Tensor3,sites>G;, where constexpr int sites =2;
- Define diagonal matrices $L^A_{\gamma\gamma}=L^B_{\delta\delta}$ with dimensions (1,1). Set $L^{A,B}(0,0)=1.$ In code: std::array<Tensor2,sites>G;, where constexpr int sites =2;

SVD Truncation

We define χ , the maximum rank of each SVD decomposition simply by long chi =15;.

Loop

Next we have a double for-loop.

```
for(int step = 0; step < N; step++){
  for(long i_bond = 0; i_bond < d; i_bond++) {
    long ia = mod(i_bond-1,d);
    long ib = mod(i_bond ,d);
    long chia = G[ia].dimension(1); //index alpha (eq. 25-27)
    long chib = G[ib].dimension(2); //index gamma (eq. 25-27)

// Construct theta matrix and do time evolution
    A = L[ib].contract(G[ia], idxlist1{idx2(0,1)}).</pre>
```

```
10
                         shuffle(array3{1,0,2}).
                         contract(L[ia],idxlist1{idx2(2,0)});
11
                = G[ib].contract(L[ib], idxlist1{idx2(2,0)});
12
13
        theta4 = A.contract(B, idxlist1{idx2(2,1)}).shuffle(array4{0,2,1,3});
        theta2 = U.contract(theta4, idxlist2 {idx2(2,0),idx2(3,1)})
14
15
                       . \, \texttt{shuffle(array4\{0,2,1,3\})} \, . \, \texttt{reshape(array2\{d*chia,d*chib\})} \, ;
16
17
        SVD.compute(tensor2_to_matrix(theta2), Eigen::ComputeThinU | Eigen::ComputeThinV);
18
19
        chi2 = std::min(SVD.rank(),chi);
20
        X = matrix_to_tensor3(SVD.matrixU().leftCols(chi2),{d,chia,chi2})
21
                                                     .unaryExpr(&truncate);
        Z = matrix_to_tensor3(SVD.matrixV().leftCols(chi2),{d,chib,chi2})
22
23
                             .shuffle(array3{0,2,1}).unaryExpr(&truncate);
        Y = matrix_to_tensor1(SVD.singularValues().head(chi2));
24
        L[ia] = asDiagonal(Y / SVD.singularValues().head(chi2).norm());
25
26
27
        G[ia] = inverseDiagonal(L[ib]).contract(X, idxlist1{idx2(0,1)})
28
                                                   .shuffle(array3{1,0,2});
29
        G[ib] = Z.contract(inverseDiagonal(L[ib]), idxlist1{idx2(2,0)});
30
      }
31
   }
```