Definición

Un *espacio métrico* consiste en un conjunto X y una función $d: X \times X \to \mathbb{R}_{\geq 0}$ que satisface las siguientes propiedades:

- Separación de puntos. $d(x,y) = 0 \Leftrightarrow x = y$
- Simetría. d(x, y) = d(y, x)
- Designaldad triangular. $d(x, y) \le d(x, z) + d(z, y)$

Definición

Un *espacio métrico* consiste en un conjunto X y una función $d: X \times X \to \mathbb{R}_{\geq 0}$ que satisface las siguientes propiedades:

- *Separación de puntos.* $d(x,y) = 0 \Leftrightarrow x = y$
- Simetría. d(x,y) = d(y,x)
- Designaldad triangular. $d(x,y) \le d(x,z) + d(z,y)$

Ejemplos

$$\bullet (X,d) = (\mathbb{R}^n, d_2),$$

$$d_2(x,y) = \left(\sum_{i=1}^n (x_i - y_i)^2\right)^{1/2}$$

•
$$(X,d) = (\mathbb{R}^n, d_1),$$

$$d_2(x,y) = \sum_{i=1}^n |x_i - y_i|$$

$$\bullet (X,d) = (\mathbb{R}^n, d_{\infty}),$$

$$d_{\infty}(x,y) = \max_{1 \le i \le n} |x_i - y_i|$$

Definición

Un *espacio métrico* consiste en un conjunto X y una función $d: X \times X \to \mathbb{R}_{\geq 0}$ que satisface las siguientes propiedades:

- *Separación de puntos.* $d(x, y) = 0 \Leftrightarrow x = y$
- Simetría. d(x, y) = d(y, x)
- Designaldad triangular. $d(x,y) \le d(x,z) + d(z,y)$

Ejemplos

$$\bullet (X,d) = (\mathbb{R}^n, d_2),$$

$$d_2(x,y) = \left(\sum_{i=1}^n (x_i - y_i)^2\right)^{1/2}$$

$$\bullet (X,d) = (\mathbb{R}^n, d_1),$$

$$d_2(x,y) = \sum_{i=1}^n |x_i - y_i|$$

$$(X,d) = (\mathbb{R}^n, d_\infty),$$

$$d_{\infty}(x,y) = \max_{1 \le i \le n} |x_i - y_i|$$

Definición

Un *espacio métrico* consiste en un conjunto X y una función $d: X \times X \to \mathbb{R}_{\geq 0}$ que satisface las siguientes propiedades:

- *Separación de puntos.* $d(x,y) = 0 \Leftrightarrow x = y$
- Simetría. d(x, y) = d(y, x)
- Designaldad triangular. $d(x,y) \le d(x,z) + d(z,y)$

Ejemplos

 $\bullet (X,d) = (\mathbb{R}^n, d_2),$

$$d_2(x,y) = \left(\sum_{i=1}^n (x_i - y_i)^2\right)^{1/2}$$

 $(X,d) = (\mathbb{R}^n, d_1),$

$$d_2(x,y) = \sum_{i=1}^n |x_i - y_i|$$

 $(X,d) = (\mathbb{R}^n, d_\infty),$

$$d_{\infty}(x,y) = \max_{1 \le i \le n} |x_i - y_i|$$

Definición

Un *espacio métrico* consiste en un conjunto X y una función $d: X \times X \to \mathbb{R}_{\geq 0}$ que satisface las siguientes propiedades:

- *Separación de puntos.* $d(x, y) = 0 \Leftrightarrow x = y$
- Simetría. d(x, y) = d(y, x)
- Designaldad triangular. $d(x,y) \le d(x,z) + d(z,y)$

Ejemplos

$$\bullet (X,d) = (\mathbb{R}^n, d_2),$$

$$d_2(x,y) = \left(\sum_{i=1}^n (x_i - y_i)^2\right)^{1/2}$$

•
$$(X,d) = (\mathbb{R}^n, d_1),$$

$$d_2(x,y) = \sum_{i=1}^n |x_i - y_i|$$

$$(X,d) = (\mathbb{R}^n, d_\infty),$$

$$d_{\infty}(x,y) = \max_{1 \le i \le n} |x_i - y_i|$$

Definición

Un *espacio métrico* consiste en un conjunto X y una función $d: X \times X \to \mathbb{R}_{\geq 0}$ que satisface las siguientes propiedades:

- *Separación de puntos.* $d(x, y) = 0 \Leftrightarrow x = y$
- Simetría. d(x, y) = d(y, x)
- Designaldad triangular. $d(x,y) \le d(x,z) + d(z,y)$

Ejemplos

$$\bullet (X,d) = (\mathbb{R}^n, d_2),$$

$$d_2(x,y) = \left(\sum_{i=1}^n (x_i - y_i)^2\right)^{1/2}$$

•
$$(X,d) = (\mathbb{R}^n, d_1),$$

$$d_2(x,y) = \sum_{i=1}^n |x_i - y_i|$$

$$(X,d) = (\mathbb{R}^n, d_\infty),$$

$$d_{\infty}(x,y) = \max_{1 \le i \le n} |x_i - y_i|$$

• $(X,d) = (\mathbb{R}^n, d_1),$

$$d_2(x,y) = \sum_{i=1}^n |x_i - y_i|$$

 $\bullet (X,d) = (\mathbb{R}^n, d_\infty),$

$$d_{\infty}(x,y) = \max_{1 \le i \le n} |x_i - y_i|$$

Ejercicio

Sea (X,d) un espacio métrico. A partir de la distancia d definimos una nueva función $d_1: X \times X \to \mathbb{R}_{\geq 0}$ como

$$d_1(x,y)=\min\{d(x,y),1\}.$$

Probar que (X, d_1) es un espacio métrico.

 $(X,d) = (\mathbb{R}^n, d_1),$

$$d_2(x,y) = \sum_{i=1}^n |x_i - y_i|$$

 $(X,d) = (\mathbb{R}^n, d_{\infty}),$

$$d_{\infty}(x,y) = \max_{1 \le i \le n} |x_i - y_i|$$

Ejercicio

Sea (X,d) un espacio métrico. A partir de la distancia d definimos una nueva función $d_1: X \times X \to \mathbb{R}_{>0}$ como

$$d_1(x, y) = \min\{d(x, y), 1\}.$$

Probar que (X, d_1) es un espacio métrico.

 $(X,d) = (\mathbb{R}^n, d_1),$

$$d_2(x,y) = \sum_{i=1}^n |x_i - y_i|$$

 $(X,d) = (\mathbb{R}^n, d_\infty),$

$$d_{\infty}(x,y) = \max_{1 \le i \le n} |x_i - y_i|$$

Ejercicio

Sea (X,d) un espacio métrico. A partir de la distancia d definimos una nueva función $d_1: X \times X \to \mathbb{R}_{>0}$ como

$$d_1(x,y) = \min\{d(x,y), 1\}.$$

Probar que (X, d_1) es un espacio métrico.

Ejercicio

Sea (X, d) un espacio métrico. A partir de la distancia d definimos una nueva función $\overline{d}: X \times X \to \mathbb{R}_{>0}$ como

$$\overline{d}(x,y) = \min\{d(x,y), 1\}.$$

Probar que (X, \overline{d}) es un espacio métrico.

Solución. Para ver que (X, \overline{d}) es un espacio métrico debemos verificar la distancia separa puntos, es simétrica y satisface la desigualdad triangular.

Ejercicio

Sea (X,d) un espacio métrico. A partir de la distancia d definimos una nueva función $\overline{d}: X \times X \to \mathbb{R}_{\geq 0}$ como

$$\overline{d}(x,y) = \min\{d(x,y), 1\}.$$

Probar que (X, \overline{d}) es un espacio métrico.

Solución. Para ver que (X, \overline{d}) es un espacio métrico debemos verificar la distancia separa puntos, es simétrica y satisface la desigualdad triangular.

(SP) Si $\overline{d}(x,y) = \min\{d(x,y),1\} = 0$ entonces necesariamente d(x,y) = 0. Como d separa punto esto ocurre únicamente cuando x = y.

Ejercicio

Sea (X,d) un espacio métrico. A partir de la distancia d definimos una nueva función $\overline{d}:X\times X\to\mathbb{R}_{\geq 0}$ como

$$\overline{d}(x,y) = \min\{d(x,y), 1\}.$$

Probar que (X, \overline{d}) es un espacio métrico.

Solución. Para ver que (X, \overline{d}) es un espacio métrico debemos verificar la distancia separa puntos, es simétrica y satisface la desigualdad triangular.

- (SP) Si $\overline{d}(x,y) = \min\{d(x,y),1\} = 0$ entonces necesariamente d(x,y) = 0. Como d separa punto esto ocurre únicamente cuando x = y.
- (S) Usando la simetría de *d* tenemos que

$$\overline{d}(x,y)=\min\{d(x,y),1\}=\min\{d(y,x),1\}=\overline{d}(y,x).$$

Ejercicio

Sea (X,d) un espacio métrico. A partir de la distancia d definimos una nueva función $\overline{d}:X\times X\to\mathbb{R}_{\geq 0}$ como

$$\overline{d}(x,y) = \min\{d(x,y), 1\}.$$

Probar que (X, \overline{d}) es un espacio métrico.

Solución. Para ver que (X, \overline{d}) es un espacio métrico debemos verificar la distancia separa puntos, es simétrica y satisface la desigualdad triangular.

- (SP) Si $\overline{d}(x,y)=\min\{d(x,y),1\}=0$ entonces necesariamente d(x,y)=0. Como d separa punto esto ocurre únicamente cuando x=y.
- (S) Usando la simetría de *d* tenemos que

$$\overline{d}(x,y)=\min\{d(x,y),1\}=\min\{d(y,x),1\}=\overline{d}(y,x).$$

(DT) Sean $x, y, z \in X$. Observemos que si $d(x, z) \ge 1$ entonces

$$\overline{d}(x,y) \leq 1 = \overline{d}(x,z) \leq \overline{d}(x,z) + \overline{d}(z,y)$$

Un razonamiento análogo resuelve el caso $d(z,y) \ge 1$. Por el contrario supongamos que tanto d(x,z) como d(z,y) son menores o iguales que uno.

Solución. Para ver que (X, \overline{d}) es un espacio métrico debemos verificar la distancia separa puntos, es simétrica y satisface la desigualdad triangular.

- (SP) Si $\overline{d}(x,y) = \min\{d(x,y),1\} = 0$ entonces necesariamente d(x,y) = 0. Como d separa punto esto ocurre únicamente cuando x = y.
- (S) Usando la simetría de *d* tenemos que

$$\overline{d}(x,y) = \min\{d(x,y), 1\} = \min\{d(y,x), 1\} = \overline{d}(y,x).$$

(DT) Sean $x, y, z \in X$. Observemos que si $d(x, z) \ge 1$ entonces

$$\overline{d}(x,y) \le 1 = \overline{d}(x,z) \le \overline{d}(x,z) + \overline{d}(z,y)$$

Un razonamiento análogo resuelve el caso $d(z,y) \ge 1$. Por el contrario supongamos que tanto d(x,z) como d(z,y) son menores o iguales que uno.

De esta manera

$$\overline{d}(x,y) \le d(x,y) \le d(x,z) + d(z,y) = \overline{d}(x,z) + \overline{d}(z,y).$$

Solución. Para ver que (X, \overline{d}) es un espacio métrico debemos verificar la distancia separa puntos, es simétrica y satisface la desigualdad triangular.

- (SP) Si $\overline{d}(x,y)=\min\{d(x,y),1\}=0$ entonces necesariamente d(x,y)=0. Como d separa punto esto ocurre únicamente cuando x=y.
- (S) Usando la simetría de *d* tenemos que

$$\overline{d}(x,y) = \min\{d(x,y),1\} = \min\{d(y,x),1\} = \overline{d}(y,x).$$

(DT) Sean $x, y, z \in X$. Observemos que si $d(x, z) \ge 1$ entonces

$$\overline{d}(x,y) \le 1 = \overline{d}(x,z) \le \overline{d}(x,z) + \overline{d}(z,y)$$

Un razonamiento análogo resuelve el caso $d(z,y) \geq 1$. Por el contrario supongamos que tanto d(x,z) como d(z,y) son menores o iguales que uno.

De esta manera

$$\overline{d}(x,y) \le d(x,y) \le d(x,z) + d(z,y) = \overline{d}(x,z) + \overline{d}(z,y).$$
 Ejercicio

Consideremos el conjunto

$$C[0,1] = \{ f : [0,1] \rightarrow \mathbb{R} : f \text{ es continua} \}$$

y la función $d_1: C[0,1] \times C[0,1] \to \mathbb{R}_{\geq 0}$

$$d_2(f,g) = \int_0^1 |f(x) - g(x)| dx.$$

Probar que $(C[0,1], d_1)$ es un espacio métrico.

Solución. Para ver que (X, \overline{d}) es un espacio métrico debemos verificar la distancia separa puntos, es simétrica y satisface la desigualdad triangular.

- (SP) Si $\overline{d}(x,y)=\min\{d(x,y),1\}=0$ entonces necesariamente d(x,y)=0. Como d separa punto esto ocurre únicamente cuando x=y.
- (S) Usando la simetría de *d* tenemos que

$$\overline{d}(x,y) = \min\{d(x,y),1\} = \min\{d(y,x),1\} = \overline{d}(y,x).$$

(DT) Sean $x, y, z \in X$. Observemos que si $d(x, z) \ge 1$ entonces

$$\overline{d}(x,y) \le 1 = \overline{d}(x,z) \le \overline{d}(x,z) + \overline{d}(z,y)$$

Un razonamiento análogo resuelve el caso $d(z,y) \geq 1$. Por el contrario supongamos que tanto d(x,z) como d(z,y) son menores o iguales que uno.

De esta manera

$$\overline{d}(x,y) \le d(x,y) \le d(x,z) + d(z,y) = \overline{d}(x,z) + \overline{d}(z,y).$$
 Ejercicio

Consideremos el conjunto

$$C[0,1] = \{ f : [0,1] \rightarrow \mathbb{R} : f \text{ es continua} \}$$

y la función $d_1: C[0,1] \times C[0,1] \to \mathbb{R}_{\geq 0}$

$$d_2(f,g) = \int_0^1 |f(x) - g(x)| dx.$$

Probar que $(C[0,1],d_1)$ es un espacio métrico.

Observación. Antes de empezar con la solución propiamente dicha observemos que d_1 está *bien definida*:

De esta manera

$$\overline{d}(x,y) \leq d(x,y) \leq d(x,z) + d(z,y) = \overline{d}(x,z) + \overline{d}(z,y).$$

Ejercicio

Consideremos el conjunto

$$C[0,1] = \{ f : [0,1] \rightarrow \mathbb{R} : f \text{ es continua} \}$$

y la función $d_1:C[0,1]\times C[0,1]\to \mathbb{R}_{\geq 0}$

$$d_1(f,g) = \int_0^1 |f(x) - g(x)| dx.$$

Probar que $(C[0,1],d_1)$ es un espacio métrico.

Observación. Antes de empezar con la solución propiamente dicha observemos que d_1 está *bien definida*: como f y g son funciones continuas entonces |f(x) - g(x)| también es una función continua, y por lo tanto integrable porque está

definida en un dominio compacto. Por ende la expresión

 $\int_0^1 |f(x) - g(x)| dx$

tiene sentido y es un número real.

De esta manera

$$\overline{d}(x,y) \leq d(x,y) \leq d(x,z) + d(z,y) = \overline{d}(x,z) + \overline{d}(z,y).$$

Ejercicio

Consideremos el conjunto

$$C[0,1] = \{ f : [0,1] \rightarrow \mathbb{R} : f \text{ es continua} \}$$

y la función $d_1:C[0,1]\times C[0,1]\to \mathbb{R}_{\geq 0}$

$$d_1(f,g) = \int_0^1 |f(x) - g(x)| dx.$$

Probar que $(C[0, 1], d_1)$ es un espacio métrico.

Observación. Antes de empezar con la solución propiamente dicha observemos que d_1 está *bien definida*: como f y g son funciones continuas entonces |f(x) - g(x)| también es una función continua, y por lo tanto integrable porque está

definida en un dominio compacto. Por ende la expresión

" $\int_0^1 |f(x) - g(x)| dx$ "

tiene sentido y es un número real.

Solución. Nuevamente, verifiquemos las tres condiciones de la definición.

De esta manera

$$\overline{d}(x,y) \leq d(x,y) \leq d(x,z) + d(z,y) = \overline{d}(x,z) + \overline{d}(z,y).$$

Ejercicio

Consideremos el conjunto

$$C[0,1] = \{ f : [0,1] \rightarrow \mathbb{R} : f \text{ es continua} \}$$

y la función $d_1:C[0,1]\times C[0,1]\to \mathbb{R}_{\geq 0}$

$$d_1(f,g) = \int_0^1 |f(x) - g(x)| dx.$$

Probar que $(C[0,1],d_1)$ es un espacio métrico.

Observación. Antes de empezar con la solución propiamente dicha observemos que d_1 está *bien definida*: como f y g son funciones continuas entonces |f(x) - g(x)| también es una función continua, y por lo tanto integrable porque está

definida en un dominio compacto. Por ende la expresión

$$\int_0^1 |f(x) - g(x)| dx$$

tiene sentido y es un número real.

Solución. Nuevamente, verifiquemos las tres condiciones de la definición.

(S) Simplemente porque |f(x) - g(x)| = |g(x) - f(x)|.

De esta manera

$$\overline{d}(x,y) \leq d(x,y) \leq d(x,z) + d(z,y) = \overline{d}(x,z) + \overline{d}(z,y).$$

Ejercicio

Consideremos el conjunto

$$C[0,1] = \left\{ f : [0,1] \to \mathbb{R} : f \text{ es continua} \right\}$$

y la función $d_1:C[0,1]\times C[0,1]\to \mathbb{R}_{\geq 0}$

$$d_1(f,g) = \int_0^1 |f(x) - g(x)| dx.$$

Probar que $(C[0,1],d_1)$ es un espacio métrico.

Observación. Antes de empezar con la solución propiamente dicha observemos que d_1 está *bien definida*: como f y g son funciones continuas entonces |f(x) - g(x)| también es una función continua, y por lo tanto integrable porque está

definida en un dominio compacto. Por ende la expresión

$$\int_0^1 |f(x) - g(x)| dx$$

tiene sentido y es un número real.

Solución. Nuevamente, verifiquemos las tres condiciones de la definición.

(S) Simplemente porque |f(x) - g(x)| = |g(x) - f(x)|.

(DT) Sean $f,g,h\in C[0,1]$ tres funciones continuas. Observemos que para todo $x\in [0,1]$ se satisface la desigualdad

$$|f(x) - g(x)| \le |f(x) - h(x)| + |h(x) - g(x)|.$$

Como las integrales separan sumas y preservan desigualdades

$$d_1(f,h) \leq d_1(f,h) + d_1(h,g).$$

definida en un dominio compacto. Por ende la expresión

$$"\int_0^1 |f(x) - g(x)| dx"$$

tiene sentido.

Solución. Nuevamente, verifiquemos las tres condiciones de la definición.

(S) Simplemente porque
$$|f(x) - g(x)| = |g(x) - f(x)|$$
.

(DT) Sean $f,g,h\in C[0,1]$ tres funciones continuas. Observemos que para todo $x\in [0,1]$ se satisface la desigualdad

$$|f(x) - g(x)| \le |f(x) - h(x)| + |h(x) - g(x)|.$$

Como las integrales separan sumas y preservan desigualdades

$$d_1(f,h) \leq d_1(f,h) + d_1(h,g).$$

(SP) Para esta parte bastará probar lo siguiente:

Si $h: [0,1] \to \mathbb{R}$ es una función continua y no negativa de manera que $\int_0^1 h(x) dx = 0$, entonces h = 0.

¿Por qué esto alcanza? Asumiendo la afirmación previa y que $d_2(f,g) = 0$ podemos concluir que la función continua y positiva h(x) = |f(x) - g(x)| es constantemente nula. Pero entonces f = g.

definida en un dominio compacto. Por ende la expresión

$$"\int_0^1 |f(x) - g(x)| dx"$$

tiene sentido.

Solución. Nuevamente, verifiquemos las tres condiciones de la definición.

(S) Simplemente porque
$$|f(x) - g(x)| = |g(x) - f(x)|$$
.

(DT) Sean $f,g,h\in C[0,1]$ tres funciones continuas. Observemos que para todo $x\in [0,1]$ se satisface la desigualdad

$$|f(x) - g(x)| \le |f(x) - h(x)| + |h(x) - g(x)|.$$

Como las integrales separan sumas y preservan desigualdades

$$d_1(f,h) \leq d_1(f,h) + d_1(h,g).$$

(SP) Para esta parte bastará probar lo siguiente:

Si $h:[0,1]\to\mathbb{R}$ es una función continua y no negativa de manera que $\int_0^1 h(x)dx=0$, entonces h=0.

¿Por qué esto alcanza? Asumiendo la afirmación previa y que $d_2(f,g)=0$ podemos concluir que la función continua y positiva h(x)=|f(x)-g(x)| es constantemente nula. Pero entonces f=g.

Sea $h:[0,1] \to \mathbb{R}$ continua y no negativa con integral nula. Supongamos que existe $x_0 \in (0,1)$ de manera que $h(x_0) > 0$ y lleguemos a una contradicción. Por la continuidad de h sabemos que existe $\delta > 0$ tal que $|h(x) - h(x_0)| < h(x_0)/2$ siempre que $|x - x_0| < \delta$.

definida en un dominio compacto. Por ende la expresión

$$"\int_0^1 |f(x) - g(x)| dx"$$

tiene sentido.

Solución. Nuevamente, verifiquemos las tres condiciones de la definición.

(S) Simplemente porque
$$|f(x) - g(x)| = |g(x) - f(x)|$$
.

(DT) Sean $f, g, h \in C[0, 1]$ tres funciones continuas. Observemos que para todo $x \in [0, 1]$ se satisface la desigualdad

$$|f(x) - g(x)| \le |f(x) - h(x)| + |h(x) - g(x)|.$$

Como las integrales separan sumas y preservan desigualdades

$$d_1(f,h) \leq d_1(f,h) + d_1(h,g).$$

(SP) Para esta parte bastará probar lo siguiente:

Si $h:[0,1] \to \mathbb{R}$ es una función continua y no negativa de manera que $\int_0^1 h(x)dx = 0$, entonces h=0.

¿Por qué esto alcanza? Asumiendo la afirmación previa y que $d_2(f,g)=0$ podemos concluir que la función continua y positiva h(x)=|f(x)-g(x)| es constantemente nula. Pero entonces f=g.

Sea $h:[0,1] \to \mathbb{R}$ continua y no negativa con integral nula. Supongamos que existe $x_0 \in (0,1)$ de manera que $h(x_0) > 0$ y lleguemos a una contradicción. Por la continuidad de h sabemos que existe $\delta > 0$ tal que $|h(x) - h(x_0)| < h(x_0)/2$ siempre que $|x - x_0| < \delta$. Pero

$$|h(x) - h(x_0)| < \frac{h(x_0)}{2} \Leftrightarrow -\frac{h(x_0)}{2} < h(x) - h(x_0) < \frac{h(x_0)}{2}$$

 $\Leftrightarrow \frac{h(x_0)}{2} < h(x) < \frac{3h(x_0)}{2}$

(SP) Para esta parte bastará probar lo siguiente:

Si $h:[0,1] \to \mathbb{R}$ es una función continua y no negativa de manera que $\int_0^1 h(x)dx = 0$, entonces h=0.

¿Por qué esto alcanza? Asumiendo la afirmación previa y que $d_2(f,g)=0$ podemos concluir que la función continua y positiva h(x)=|f(x)-g(x)| es constantemente nula. Pero entonces f=g.

Sea $h:[0,1] \to \mathbb{R}$ continua y no negativa con integral nula. Supongamos que existe $x_0 \in (0,1)$ de manera que $h(x_0) > 0$ y lleguemos a una contradicción. Por la continuidad de h sabemos que existe $\delta > 0$ tal que $|h(x) - h(x_0)| < h(x_0)/2$ siempre que $|x - x_0| < \delta$. Pero

$$|h(x) - h(x_0)| < \frac{h(x_0)}{2} \Leftrightarrow -\frac{h(x_0)}{2} < h(x) - h(x_0) < \frac{h(x_0)}{2}$$

 $\Leftrightarrow \frac{h(x_0)}{2} < h(x) < \frac{3h(x_0)}{2}$

Sin perder generalidad podemos suponer que el intervalo $(x_0 - \delta, x_0 + \delta)$ está contenido en [0,1] (si esto no ocurre, reemplazamos δ por otro real más pequeño de manera que lo cumpla).

(SP) Para esta parte bastará probar lo siguiente:

Si $h: [0,1] \to \mathbb{R}$ es una función continua y no negativa de manera que $\int_0^1 h(x)dx = 0$, entonces h = 0.

¿Por qué esto alcanza? Asumiendo la afirmación previa y que $d_2(f,g)=0$ podemos concluir que la función continua y positiva h(x)=|f(x)-g(x)| es constantemente nula. Pero entonces f=g.

Sea $h: [0,1] \to \mathbb{R}$ continua y no negativa con integral nula. Supongamos que existe $x_0 \in (0,1)$ de manera que $h(x_0) > 0$ y lleguemos a una contradicción. Por la continuidad de h sabemos que existe $\delta > 0$ tal que $|h(x) - h(x_0)| < h(x_0)/2$ siempre que $|x - x_0| < \delta$. Pero

$$|h(x) - h(x_0)| < \frac{h(x_0)}{2} \Leftrightarrow -\frac{h(x_0)}{2} < h(x) - h(x_0) < \frac{h(x_0)}{2}$$

 $\Leftrightarrow \frac{h(x_0)}{2} < h(x) < \frac{3h(x_0)}{2}$

Sin perder generalidad podemos suponer que el intervalo $(x_0 - \delta, x_0 + \delta)$ está contenido en [0, 1] (si esto no ocurre, reemplazamos δ por otro real más pequeño de manera que lo cumpla). Luego,

$$\int_{0}^{1} h(x)dx = \int_{0}^{x_{0}-\delta} h(x)dx + \int_{x_{0}-\delta}^{x_{0}+\delta} h(x)dx + \int_{x_{0}+\delta}^{1} h(x)dx$$
$$\geq \int_{x_{0}-\delta}^{x_{0}+\delta} h(x)dx \geq \int_{x_{0}-\delta}^{x_{0}+\delta} \frac{h(x_{0})}{2}dx = \delta h(x_{0}) > 0$$

lo cual es absurdo porque la integral de h en el intervalo [0,1] era igual a cero.

(SP) Para esta parte bastará probar lo siguiente:

Si $h: [0,1] \to \mathbb{R}$ es una función continua y no negativa de manera que $\int_0^1 h(x) dx = 0$, entonces h = 0.

ces h = 0. ¿Por qué esto alcanza? Asumiendo la afirmación previa y que $d_2(f,g) = 0$ podemos concluir que la función continua y positiva h(x) = |f(x) - g(x)| es

constantemente nula. Pero entonces
$$f=g$$
.
Sea $h:[0,1]\to\mathbb{R}$ continua y no negativa con integral nula. Supongamos que existe $x_0\in(0,1)$ de manera que $h(x_0)>0$ y lleguemos a una contradicción. Por la continuidad de h sabemos que

existe $\delta > 0$ tal que $|h(x) - h(x_0)| < h(x_0)/2$ siempre que $|x - x_0| < \delta$. Pero

$$|h(x) - h(x_0)| < \frac{h(x_0)}{2} \Leftrightarrow -\frac{h(x_0)}{2} < h(x) - h(x_0) < \frac{h(x_0)}{2}$$

 $\Leftrightarrow \frac{h(x_0)}{2} < h(x) < \frac{3h(x_0)}{2}$

Sin perder generalidad podemos suponer que el intervalo $(x_0 - \delta, x_0 + \delta)$ está contenido en [0, 1] (si esto no ocurre, reemplazamos δ por otro real más pequeño de manera que lo cumpla). Luego,

$$\int_{0}^{1} h(x)dx = \int_{0}^{x_{0}-\delta} h(x)dx + \int_{x_{0}-\delta}^{x_{0}+\delta} h(x)dx + \int_{x_{0}+\delta}^{1} h(x)dx$$
$$\geq \int_{x_{0}-\delta}^{x_{0}+\delta} h(x)dx \geq \int_{x_{0}-\delta}^{x_{0}+\delta} \frac{h(x_{0})}{2}dx = \delta h(x_{0}) > 0$$

lo cual es absurdo porque la integral de h en el intervalo [0, 1] era igual a cero.

Diamaiaia

Probar que en el conjunto de sucesiones de cuadrado sumables

$$\ell^2 = \left\{ (a_n)_n \subseteq \mathbb{R} : \sum_{n=1}^\infty a_n^2 < \infty \right\}$$

Sin perder generalidad podemos suponer que el intervalo $(x_0 - \delta, x_0 + \delta)$ está contenido en [0,1] (si esto no ocurre, reemplazamos δ por otro real más pequeño de manera que lo cumpla). Luego,

$$\int_{0}^{1} h(x)dx = \int_{0}^{x_{0}-\delta} h(x)dx + \int_{x_{0}-\delta}^{x_{0}+\delta} h(x)dx + \int_{x_{0}+\delta}^{1} h(x)dx$$
$$\geq \int_{x_{0}-\delta}^{x_{0}+\delta} h(x)dx \geq \int_{x_{0}-\delta}^{x_{0}+\delta} \frac{h(x_{0})}{2}dx = \delta h(x_{0}) > 0$$

lo cual es absurdo porque la integral de h en el intervalo [0,1] era igual a cero.

Ejercicio

Probar que en el conjunto de sucesiones de cuadrado sumables

$$\ell^2 = \left\{ (a_n)_n \subseteq \mathbb{R} : \sum_{n=1}^{\infty} a_n^2 < \infty \right\}$$

la función $d_2: \ell^2 \times \ell^2 \to \mathbb{R}$

$$d_2((a_n)_n,(b_n)_n) = \left(\sum_{n=1}^{\infty} |a_n - b_n|^2\right)^{1/2}$$

está bien definida y hace de ℓ^2 un espacio métrico.

Sin perder generalidad podemos suponer que el intervalo $(x_0 - \delta, x_0 + \delta)$ está contenido en [0,1] (si esto no ocurre, reemplazamos δ por otro real más pequeño de manera que lo cumpla). Luego,

$$\int_{0}^{1} h(x)dx = \int_{0}^{x_{0}-\delta} h(x)dx + \int_{x_{0}-\delta}^{x_{0}+\delta} h(x)dx + \int_{x_{0}+\delta}^{1} h(x)dx$$
$$\geq \int_{x_{0}-\delta}^{x_{0}+\delta} h(x)dx \geq \int_{x_{0}-\delta}^{x_{0}+\delta} \frac{h(x_{0})}{2}dx = \delta h(x_{0}) > 0$$

lo cual es absurdo porque la integral de h en el intervalo [0,1] era igual a cero.

Ejercicio

Probar que en el conjunto de sucesiones de cuadrado sumables

$$\ell^2 = \left\{ (a_n)_n \subseteq \mathbb{R} : \sum_{n=1}^{\infty} a_n^2 < \infty \right\}$$

la función $d_2: \ell^2 \times \ell^2 \to \mathbb{R}$

$$d_2((a_n)_n, (b_n)_n) = \left(\sum_{n=1}^{\infty} |a_n - b_n|^2\right)^{1/2}$$

está bien definida y hace de ℓ^2 un espacio métrico.

Solución. Este este caso d_2 estará bien definida siempre y cuando la serie

$$\sum_{n=1}^{N} |a_n - b_n|^2$$

sea convergente.

Sin perder generalidad podemos suponer que el intervalo $(x_0 - \delta, x_0 + \delta)$ está contenido en [0,1] (si esto no ocurre, reemplazamos δ por otro real más pequeño de manera que lo cumpla). Luego,

$$\int_{0}^{1} h(x)dx = \int_{0}^{x_{0}-\delta} h(x)dx + \int_{x_{0}-\delta}^{x_{0}+\delta} h(x)dx + \int_{x_{0}+\delta}^{1} h(x)dx$$
$$\geq \int_{x_{0}-\delta}^{x_{0}+\delta} h(x)dx \geq \int_{x_{0}-\delta}^{x_{0}+\delta} \frac{h(x_{0})}{2}dx = \delta h(x_{0}) > 0$$

lo cual es absurdo porque la integral de h en el intervalo [0, 1] era igual a cero.

Ejercicio

Probar que en el conjunto de sucesiones de cuadrado sumables

$$\ell^2 = \left\{ (a_n)_n \subseteq \mathbb{R} : \sum_{n=1}^{\infty} a_n^2 < \infty \right\}$$

la función $d_2: \ell^2 \times \ell^2 \to \mathbb{R}$

$$d_2((a_n)_n, (b_n)_n) = \left(\sum_{n=1}^{\infty} |a_n - b_n|^2\right)^{1/2}$$

está bien definida y hace de ℓ^2 un espacio métrico.

Solución. Este este caso d_2 estará bien definida siempre y cuando la serie

$$\sum_{n=1}^{N} |a_n - b_n|^2$$

sea convergente.Por la continuidad de la raíz cuadrada esto equivale a la existencia del límite

$$\lim_{N\to\infty} \left(\sum_{n=1}^N |a_n - b_n|^2\right)^{1/2}$$

la función $d_2:\ell^2\times\ell^2\to\mathbb{R}$

$$d_2((a_n)_n,(b_n)_n) = \left(\sum_{n=1}^{\infty} |a_n - b_n|^2\right)^{1/2}.$$

está bien definida y hace de ℓ^2 un espacio métrico.

Solución. Este este caso d_2 estará bien definida siempre y cuando la serie

$$\sum_{n=1}^{N} |a_n - b_n|^2$$

sea convergente. Por la continuidad de la raíz cuadrada esto equivale a la existencia del límite

$$\lim_{N\to\infty} \left(\sum_{n=1}^N |a_n - b_n|^2\right)^{1/2}.$$

Fijado un $N \in \mathbb{N}$ podemos considerar los vectores (a_1,\ldots,a_N) y (b_1,\ldots,b_N) de \mathbb{R}^N . Por la desigualdad triangular de la norma euclídea $\|\cdot\|_2:\mathbb{R}^N\to\mathbb{R}_{\geq 0}$ tenemos que

$$\left(\sum_{n=1}^{N}|a_{n}-b_{n}|^{2}\right)^{1/2}\leq \left(\sum_{n=1}^{N}|a_{n}|^{2}\right)^{1/2}+\left(\sum_{n=1}^{N}|b_{n}|^{2}\right)^{1/2}.$$

la función $d_2:\ell^2\times\ell^2\to\mathbb{R}$

$$d_2((a_n)_n,(b_n)_n) = \left(\sum_{n=1}^{\infty} |a_n - b_n|^2\right)^{1/2}.$$

está bien definida y hace de ℓ^2 un espacio métrico.

Solución. Este este caso d_2 estará bien definida siempre y cuando la serie

$$\sum_{n=1}^{N} |a_n - b_n|^2$$

sea convergente. Por la continuidad de la raíz cuadrada esto equivale a la existencia del límite

$$\lim_{N\to\infty}\left(\sum_{n=1}^N|a_n-b_n|^2\right)^{1/2}.$$

Fijado un $N \in \mathbb{N}$ podemos considerar los vectores (a_1,\ldots,a_N) y (b_1,\ldots,b_N) de \mathbb{R}^N . Por la desigualdad triangular de la norma euclídea $\|\cdot\|_2:\mathbb{R}^N\to\mathbb{R}_{\geq 0}$ tenemos que

$$\left(\sum_{n=1}^{N}|a_{n}-b_{n}|^{2}\right)^{1/2}\leq \left(\sum_{n=1}^{N}|a_{n}|^{2}\right)^{1/2}+\left(\sum_{n=1}^{N}|b_{n}|^{2}\right)^{1/2}.$$

Tomando límite en N tendiendo a infinito

$$\left(\sum_{n=1}^{\infty}|a_n-b_n|^2\right)^{1/2} \le \left(\sum_{n=1}^{\infty}|a_n|^2\right)^{1/2} + \left(\sum_{n=1}^{\infty}|b_n|^2\right)^{1/2} < \infty$$

porque $(a_n)_n$ y $(b_n)_n$ son sucesiones de cuadrado sumables, lo cual prueba la buena definición de d_2 .

la función $d_2: \ell^2 \times \ell^2 \to \mathbb{R}$

$$d_2((a_n)_n, (b_n)_n) = \left(\sum_{n=1}^{\infty} |a_n - b_n|^2\right)^{1/2}.$$

está bien definida y hace de ℓ^2 un espacio métrico.

Solución. Este este caso d_2 estará bien definida siempre y cuando la serie

$$\sum_{n=1}^{N} |a_n - b_n|^2$$

sea convergente. Por la continuidad de la raíz cuadrada esto equivale a la existencia del límite

$$\lim_{N\to\infty}\left(\sum_{n=1}^N|a_n-b_n|^2\right)^{1/2}.$$

Fijado un $N \in \mathbb{N}$ podemos considerar los vectores (a_1,\ldots,a_N) y (b_1,\ldots,b_N) de \mathbb{R}^N . Por la desigualdad triangular de la norma euclídea $\|\cdot\|_2:\mathbb{R}^N\to\mathbb{R}_{\geq 0}$ tenemos que

$$\left(\sum_{n=1}^{N}|a_{n}-b_{n}|^{2}\right)^{1/2}\leq \left(\sum_{n=1}^{N}|a_{n}|^{2}\right)^{1/2}+\left(\sum_{n=1}^{N}|b_{n}|^{2}\right)^{1/2}.$$

Tomando límite en N tendiendo a infinito

$$\left(\sum_{n=1}^{\infty}|a_n-b_n|^2\right)^{1/2} \leq \left(\sum_{n=1}^{\infty}|a_n|^2\right)^{1/2} + \left(\sum_{n=1}^{\infty}|b_n|^2\right)^{1/2} < \infty$$

porque $(a_n)_n$ y $(b_n)_n$ son sucesiones de cuadrado sumables, lo cual prueba la buena definición de d_2 . Pasemos a verificar las tres propiedades de la definición de espacio métricos. La separación de puntos y la simetría son claras en este caso. Para la desigualdad triangular tomemos tres sucesiones $(a_n)_n$, $(b_n)_n$ y $(c_n)_n$ en ℓ^2 .

Fijado un $N \in \mathbb{N}$ podemos considerar los vectores (a_1,\ldots,a_N) y (b_1,\ldots,b_N) de \mathbb{R}^N . Por la desigualdad triangular de la norma euclídea $\|\cdot\|_2:\mathbb{R}^N \to \mathbb{R}_{\geq 0}$ tenemos que

$$\left(\sum_{n=1}^{N}|a_n-b_n|^2\right)^{1/2} \leq \left(\sum_{n=1}^{N}|a_n|^2\right)^{1/2} + \left(\sum_{n=1}^{N}|b_n|^2\right)^{1/2}.$$

Tomando límite en N tendiendo a infinito

$$\left(\sum_{n=1}^{\infty}|a_n-b_n|^2\right)^{1/2} \leq \left(\sum_{n=1}^{\infty}|a_n|^2\right)^{1/2} + \left(\sum_{n=1}^{\infty}|b_n|^2\right)^{1/2} < \infty$$
 porque $(a_n)_n$ y $(b_n)_n$ son sucesiones de cuadrado sumables, lo cual prueba la buena definición de d_2 . Pasemos a verificar las tres propiedades de la definición de espacio métricos. La separación de puntos y la simetría son claras en este caso. Para la desigualdad triangular tomemos tres sucesiones $(a_n)_n$, $(b_n)_n$ y $(c_n)_n$ en ℓ^2 .

| Para cada $N \in \mathbb{N}$ fijo sabemos que

por la desigualad triangular usual de \mathbb{R}^N .

$$\left| \left(\sum_{n=1}^{N} |a_n - b_n|^2 \right)^{1/2} \le \left(\sum_{n=1}^{N} |a_n - c_n|^2 \right)^{1/2} + \left(\sum_{n=1}^{N} |c_n - b_n|^2 \right)^{1/2}. \right|$$

Fijado un $N \in \mathbb{N}$ podemos considerar los vectores (a_1,\ldots,a_N) y (b_1,\ldots,b_N) de \mathbb{R}^N . Por la desigualdad triangular de la norma euclídea $\|\cdot\|_2:\mathbb{R}^N\to\mathbb{R}_{\geq 0}$ tenemos que

$$\left(\sum_{n=1}^{N}|a_n-b_n|^2\right)^{1/2} \leq \left(\sum_{n=1}^{N}|a_n|^2\right)^{1/2} + \left(\sum_{n=1}^{N}|b_n|^2\right)^{1/2}.$$

Tomando límite en N tendiendo a infinito

$$\left(\sum_{n=1}^{\infty}|a_n-b_n|^2\right)^{1/2} \leq \left(\sum_{n=1}^{\infty}|a_n|^2\right)^{1/2} + \left(\sum_{n=1}^{\infty}|b_n|^2\right)^{1/2} < \infty$$
 porque $(a_n)_n$ y $(b_n)_n$ son sucesiones de cuadrado sumables, lo cual prueba la buena definición de d_2 . Pasemos a verificar las tres propiedades de la definición de espacio métricos. La separación de puntos y la simetría son claras en este caso. Para la desigualdad triangular tomemos tres sucesiones $(a_n)_n$, $(b_n)_n$ y $(c_n)_n$ en ℓ^2 .

|Para cada $N \in \mathbb{N}$ fijo sabemos que

$$\left| \left(\sum_{n=1}^{N} |a_n - b_n|^2 \right)^{1/2} \le \left(\sum_{n=1}^{N} |a_n - c_n|^2 \right)^{1/2} + \left(\sum_{n=1}^{N} |c_n - b_n|^2 \right)^{1/2}. \right|$$

por la desigualad triangular usual de \mathbb{R}^N . Tomando límite en N obtenemos

$$d_2((a_n)_n,(b_n)_n) \leq d_2((a_n)_n,(c_n)_n) + d_2((c_n)_n,(b_n)_n).$$

Fijado un $N \in \mathbb{N}$ podemos considerar los vectores (a_1,\ldots,a_N) y (b_1,\ldots,b_N) de \mathbb{R}^N . Por la desigualdad triangular de la norma euclídea $\|\cdot\|_2:\mathbb{R}^N\to\mathbb{R}_{\geq 0}$ tenemos que

$$\left(\sum_{n=1}^{N}|a_n-b_n|^2\right)^{1/2} \leq \left(\sum_{n=1}^{N}|a_n|^2\right)^{1/2} + \left(\sum_{n=1}^{N}|b_n|^2\right)^{1/2}.$$

Tomando límite en N tendiendo a infinito

$$\left(\sum_{n=1}^{\infty}|a_n-b_n|^2\right)^{1/2} \le \left(\sum_{n=1}^{\infty}|a_n|^2\right)^{1/2} + \left(\sum_{n=1}^{\infty}|b_n|^2\right)^{1/2} < \infty$$

porque $(a_n)_n$ y $(b_n)_n$ son sucesiones de cuadrado sumables, lo cual prueba la buena definición de d_2 . Pasemos a verificar las tres propiedades de la definición de espacio métricos. La separación de puntos y la simetría son claras en este caso. Para la desigualdad triangular tomemos tres sucesiones $(a_n)_n$, $(b_n)_n$ y $(c_n)_n$ en ℓ^2 .

Para cada $N \in \mathbb{N}$ fijo sabemos que

$$\left| \left(\sum_{n=1}^{N} |a_n - b_n|^2 \right)^{1/2} \le \left(\sum_{n=1}^{N} |a_n - c_n|^2 \right)^{1/2} + \left(\sum_{n=1}^{N} |c_n - b_n|^2 \right)^{1/2}.\right|$$

por la desigualad triangular usual de \mathbb{R}^N . Tomando límite en N obtenemos

$$d_2((a_n)_n,(b_n)_n) \leq d_2((a_n)_n,(c_n)_n) + d_2((c_n)_n,(b_n)_n).$$

Ejercicio Adicional: Distancia de Hamming

Sea X un conjunto arbitrario. Denotemos por X^n al conjunto de n-tuplas de elementos en X. Probar que la función $d:X^n\times X^n\to\mathbb{R}_{\geq 0}$

$$d(x,y) = \#\{i \in \{1,\ldots,n\} : x_i \neq y_i\}$$

es una distancia.