Matemática Discreta

Felipe Augusto Lima Reis felipe.reis@ifmg.edu.br

Sumário

- Introdução
- Conceitos
- Tipos Conjuntos
- 4 Operações
- 5 Identidades
- 6 Cardinalidade

Introdução

- Conjuntos correspondem a um tipo de estrutura discreta fundamental, utilizada para coleção de objetos [Rosen, 2019];
 - Conjuntos podem ser considerados um dos pilares da Matemática [Gersting, 2014];
 - São utilizados frequentemente como base para outras estruturas mais complexas [Rosen, 2019];
- Conceitos de Ciência da Computação e Matemática podem ser expressos em linguagens de conjuntos [Gersting, 2014]
 - A linguagem de conjuntos corresponde ao estudo de coleções em sua organização [Rosen, 2019].

Operações

Identidades

Cardinalidade

Tipos Conjuntos

Introdução

Conceitos

Conceitos

Definição

- Conjunto: coleção <u>não ordenada</u> de <u>objetos distintos</u> [Rosen, 2019]
 - Objetos são chamados de elementos ou membros;
 - Diz-se que os elementos pertencem ao conjunto;
 - Notação (I):
 - Conjuntos, frequentemente, utilizam letras maiúsculas;
 - Elementos dos conjuntos utilizam letras minúsculas;
 - O símbolo ∈ (pertence) indica "adesão ao conjunto";
 - Notação (II):
 - $a \in A$: $a \in A$: a $\in A$: a $\in A$: $a \in A$:
 - $a \notin A$: a não é um elemento do conjunto A.

- Representação de Conjuntos (I):
 - Elementos são enumerados em listas, limitadas por chaves;
 - Podem ser utilizados três pontos (...) para suprimir elementos, quando o padrão é óbvio [Rosen, 2019];
 - Exemplos:
 - $V = \{a, e, i, o, u\}$:
 - $I = \{1, 3, 5, 7, 9\}$:
 - \bullet $P = \{2, 3, 5, 7, 11, 13, 17, 19, ...\}$:
 - $F = \{1, 1, 2, 3, 5, 8, 13, 21, ...\}^1$:
 - $N = \{1, 2, 3, 4, 5, ..., 97, 98, 99\};$
 - $E_S = \{MG, SP, RJ, ES\}^2$;
 - $C = \{América, África, Ásia, Europa, Oceania, Antártida\}^2;$

¹ O primeiro valor "1" foi mantido no conjunto somente para possibilitar a melhor representação da sequência de Fibonacci. Lembrar que os conjuntos devem conter elementos distintos.

² Exemplos de [da Silva, 2012b].

Representação de Conjuntos

00000000000

- Representação de Conjuntos (II):
 - Outra forma de representar um conjunto é utilizando a notação de construção de conjuntos [Rosen, 2019];
 - Forma: $S = \{x \mid P(x)\}$, onde P(x) é um predicado³;
 - Exemplos:
 - $I = \{x \mid x \text{ \'e um n\'umero inteiro positivo \'impar menor que } 10\};$
 - $I = \{x \in \mathbb{Z}^+ \mid x \text{ \'e impar menor e } x < 10\}^4$;
 - $E_S = \{x \mid x \text{ \'e estado da região Sudeste do Brasil}\};$
 - $C = \{x \mid x \text{ \'e um continente}\};$
 - $\bullet \mathbb{N} = \{x \in \mathbb{Z} \mid x \ge 0\}^5.$

³ Propriedade ou relacionamento entre objetos [da Silva, 2012a].

⁴ Exemplo de [Rosen, 2019].

⁵ Exemplo de [da Silva. 2012b].

Representação de Conjuntos

- Representação de Conjuntos (III):
 - Conjuntos podem ser representados graficamente com auxílio do Diagrama de Venn
 - Nesse diagrama, um conjunto universal *U*, que contém todo o universo possível é representado por um retângulo;
 - Círculos⁶ representam os conjuntos [Rosen, 2019].

Fonte: [Gersting, 2014]

Prof. Felipe Reis

⁶ Outras figuras geométricas também podem ser utilizadas para representação dos conjuntos.

Representação de Conjuntos

- Representação de Conjuntos (IV):
 - Conjuntos podem, ainda, ser representados por relações de recorrência (ou recursão) [da Silva, 2012a];
 - Exemplos⁷:
 - 1 ∈ A
 - ullet Se $x\in A$, então $(x+1)\in A$
 - Logo, $A = \{1, 2, 3, 4, 5, ...\}.$
 - 2 ∈ A
 - Se $x \in A$, então $(x + 2) \in A$
 - Logo, $A = \{2, 4, 6, 8, 10, ...\}.$

⁷Exemplos baseados em [da Silva, 2012b].

Conjuntos Numéricos

000000000000

Introdução

- Representam agrupamento de números
 - $\mathbb{N} = \{0, 1, 2, 3, 4, 5, ...\}$: conjunto dos números naturais;
 - $\mathbb{N}^* = \{1, 2, 3, 4, 5, ...\}$: conjunto dos números naturais não nulos;
 - $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$: conjunto dos números inteiros;
 - $\mathbb{Z}^+ = \{1, 2, 3, 4, ...\}$: conjunto dos números inteiros positivos;
 - $\mathbb{Z}^- = \{..., -3, -2, -1\}$: conjunto dos números inteiros negativos;
 - $\mathbb{Z}^* = \{..., -2, -1, 1, 2, ...\}$: conjunto dos números inteiros não nulos;
 - O: conjunto dos números racionais⁸;
 - I: conjunto dos números irracionais⁹;
 - R: conjunto dos números reais:
 - C: conjunto dos números complexos¹⁰.

Prof. Felipe Reis

⁸ Números que podem ser representados por uma divisão p/q de dois números inteiros não nulos $p \in q$.

 $^{^9}$ Números que não podem ser representados por pela divisão de dois números inteiros. Ex.: π , $\sqrt{2}$.

Números que podem ser escritos na forma z = x + yi, onde $i = \sqrt{-1}$.

Intervalos

Introdução

• Para dois números reais a e b, onde $a \le b$, é possível denotar os seguintes intervalos [da Silva, 2012b]:

•
$$[a,b] = \{x \mid a < x < b\}$$

•
$$(a,b] = \{x \mid a \le x \le b\}$$

•
$$[a,b) = \{x \mid a \le x < b\}$$

• $(a,b) = \{x \mid a < x < b\}$

$$\stackrel{a}{\longrightarrow} \stackrel{b}{\longrightarrow}$$

$$\bullet (a,+\infty) = \{x > a\}$$

$$(a, +\infty) = \{x > a\}$$

$$(-\infty, b] = \{x < b\}$$

- Intervalo fechado: [a, b];
- Intervalo aberto: (a, b).

Nota 1: Utiliza-se também a seguinte notação: $[a, b] \equiv (a, b]$, $[a, b] \equiv [a, b)$ e $[a, b] \equiv (a, b)$.

Nota 2: As notações $[-\infty, a]$, $[a, \infty]$ e $[-\infty, \infty]$ estão incorretas, pois infinito não é um número. Logo, o intervalo não pode ser fechado.

Tipos de Dados - Computação

- Em Ciência da Computação e demais ciências ligadas a computação, utiliza-se o conceito de tipos de dados;
- Cada tipo de dado pode ser entendido como um conjunto:
 - Conjunto de valores binários (0,1): boolean, bool;
 - Conjunto de valores inteiros: int, integer;
 - Conjunto de valores reais¹¹: float, double, real;
 - Conjunto de letras do alfabeto (caracteres): char;
 - Conjunto finito de caracteres: string;
- Os nomes dos tipos de dados podem variar de acordo com a linguagem de programação.

¹¹As palavras double, float, quad, etc., indicam a precisão da representação de um número. Esses nomes serão detalhados na disciplina de Matemática Computacional.

Introdução

Igualdade de Conjuntos

- Definição: Dois conjuntos são iguais se, e somente se, possuem os mesmos elementos [Rosen, 2019];
- Definição formal: Se A e B são dois conjuntos, então A e B são iguais se, e somente se, $\forall x (x \in A \leftrightarrow x \in B)$;
- Notação: A = B se A e B são iguais.
- Exemplos:
 - $A = \{a, b, c\} \in B = \{c, a, b\}$. A = B.
 - $A = \{a, b, c\} \in B = \{a, a, a, a, b, c, c, c\}.$ A = B.
 - $A = \{a, b, c\} \in B = \{a, a, c\}. A \neq B.$

Tamanho de Conjuntos (Cardinalidade)

- Se S é um conjunto contendo n elementos distintos, então podemos concluir que S é finito e n é a cardinalidade do conjunto [Rosen, 2019]
 - Obviamente, n é um valor inteiro não negativo ($n \ge 0$);
 - A cardinalidade de S é denotada por |S|;
 - Um conjunto é infinito se não for finito ($n = \infty$).
- Exemplos:
 - Seja S o conjunto de letras do alfabeto latino. Então |S|=26;
 - Seja S o conjunto dos números primos < 10. Então |S| = 4.
 - Seja C o conjunto de continentes. Então |C| = 6.

09/2021

Conjunto Vazio

- Definição: Conjuntos vazios ou nulos são aqueles que não possuem nenhum elemento [Rosen, 2019];
- Representação: Ø ou {};
- ullet Importante: O conjunto $\{\emptyset\}$ não é um conjunto vazio
 - O conjunto contém um único elemento e esse elemento é vazio.
- Exemplos:
 - $A = \{x \in \mathbb{N} \mid x^2 < x\} = \emptyset;$
 - $A = \{x \in \mathbb{Z} \mid 0 < x < 1\} = \emptyset;$
 - $A = \{x \in \mathbb{Z} \mid x^2 3 = 0\} = \emptyset$;

Subconjuntos

- Definição: Um conjunto A é um subconjunto de B se, e somente se, cada elemento de A estiver em também em B
 - O conjunto *B* é chamado de superconjunto de *A*;
- Definição formal: Sejam A e B dois conjuntos, então A é subconjunto de B se, e somente se, $\forall x (x \in A \rightarrow x \in B)$ [Rosen, 2019];
- Notação: $A \subseteq B$ (subconjunto) ou $B \supseteq A$ (superconjunto);
- Prova: para mostrar que $A \subseteq B$, é necessário provar que todos os elementos de A também pertencem a B
 - Para provar que $A \not\subseteq B$, basta encontrar um contra-exemplo.

Subconjuntos

- Exemplos (I):
 - $A = \{a, b\} \in B = \{c, a, b, d\}$. $A \subseteq B$.
 - $A = \{a, a, a, a, b, b, b\}$ e $B = \{a, b, c\}$. $A \subseteq B$.
 - $A = \{a, b, c\}$ e $B = \{a, b, c\}$. $A \subseteq B$.
 - $A = \{a, b, c, d\}$ e $B = \{a, b, c, a, b, c\}$. $A \nsubseteq B$.
- Exemplos (II):
 - $A = \{a, b, c\}.$
 - Subconjuntos de A:
 - $\{\}$, $\{a\}$, $\{b\}$, $\{c\}$, $\{a,b\}$, $\{a,c\}$, $\{b,c\}$, $\{a,b,c\}$.

Subconjunto Próprio

- Definição: Se um conjunto A é um subconjunto de B e $A \neq B$, então A é um subconjunto próprio de B.
 - $A \neq B$ significa que existe ao menos um elemento de B que não existe em A [Gersting, 2014];
- Definição formal: Sejam A e B são dois conjuntos, então A é subconjunto próprio de B se, e somente se, $\forall x (x \in A \rightarrow x \in B) \land \exists x (x \in B \land x \notin A)$ [Rosen, 2019];
- Notação: A ⊂ B (subconjunto próprio);
- Exemplos:
 - $\mathbb{N} \subset \mathbb{Z}$:
 - $\mathbb{Z}^+ \subset \mathbb{Z}$:
 - $S = \{x \mid x \text{ \'e primo}\}. S \subset \mathbb{N}.$

Identidades

- Definição: Um conjunto pode admitir um outro subconjunto como um de seus elementos [da Silva, 2012a];
- Exemplos:
 - $A = \{a, b, \{a, b, c\}\};$
 - $A = \{\emptyset\};$
 - $A = {\emptyset, {\emptyset}};$
 - $A = \{\emptyset, a, b, \{a, b\}, \{3\}, \{\{7\}\}\};$
 - $B = \{a, b\}$. $A = \{\emptyset, a, b, B, \{3\}\} = \{\emptyset, a, b, \{a, b\}, \{3\}\}$.

Lembrete: O conjunto $\{\emptyset\}$ não é um conjunto vazio. Ele contém um único elemento e esse elemento é vazio.

Operações

Conceitos

- Definição: Se S é um conjunto, $\mathcal{P}(S)$ é o conjunto formado por todos os subconjuntos de S [Gersting, 2014];
- Cardinalidade: Se |S| = n, então $|\mathcal{P}(S)| = 2^n$;
- Exemplos:
 - $S = \{0, 1\}.$ $P(S) = \{\}, \{0\}, \{1\}, \{0, 1\}.$
 - $S = \{a, b, c\}$. $P(S) = \{\}, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}$.

¹² Também chamado de Conjunto de Partes ou Conjunto das Partes.

- Definição: Uma tupla ordenada (a₁, a₂, ..., a_n) é uma coleção ordenada, onde a₁ é o primeiro elemento, a₂, o segundo, ... e a_n o n-ésimo elemento [Rosen, 2019]
 - Tuplas são utilizadas como alternativa aos conjuntos (que, por definição, não são ordenados).
- Igualdade: $(a_1, a_2, ..., a_n) = (b_1, b_2, ..., b_n)$ se, e somente se, $a_i = b_i$, para n = 1, 2, ..., n;
- Pares ordenados: caso particular de tuplas de tamanho 2
 - Exemplos: (a_1, a_2) , (b_1, b_2) , (c_1, c_2) .

¹³ Também chamadas de *n-uplas* ou *ênuplas*.

Produto Cartesiano

- Definição: O produto cartesiano de dois conjuntos $A \in B$ corresponde ao conjunto de todos os pares ordenados (a, b), onde $a \in A$ e $b \in B$ [Rosen, 2019];
- Notação: $A \times B = \{(a, b) \mid a \in A \land b \in B\};$
- Importante: Os produtos $A \times B$ e $B \times A$ são diferentes
 - Esses produtos somente são iguais se $A = \emptyset$ e $B = \emptyset$.

Operações

Produto Cartesiano

Introdução

Exemplos:

- $A = \{a, b\}$ e $B = \{1, 2, 3\}$. $A \times B = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$. $B \times A = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$.
- $A = \{a, b\}, B = \{1, 2\} \in C = \{x, y, z\}.$ $A \times B \times C = \{(a, 1, x), (a, 1, y), (a, 1, z), (a, 2, x), (a, 2, y), (a, 2, z), (b, 1, x), (b, 1, y), (b, 1, z), (b, 2, x), (b, 2, y), (b, 2, z)\}.$

Conjunto Verdade

- Definição: Dado um predicado P e um domínio D, o conjunto verdade de P corresponde ao conjunto de todos os elementos $x \in D$, para qual P(x) é verdadeiro [da Silva, 2012a];
- Definição Formal: $CV = \{x \in D \mid P(x)\};$
- Exemplos:
 - Predicado: |x| = 1. Domínio: \mathbb{Z} . $\mathcal{CV} = \{x \in \mathbb{Z} \mid |x| = 1\} = \{-1, 1\}$.
 - Predicado: $|x| \le 2$. Domínio: \mathbb{Z} . $\mathcal{CV} = \{x \in \mathbb{Z} \mid |x| \le 2\} = \{-2, -1, 0, 1, 2\}$.
 - Predicado: |x| = x. Domínio: \mathbb{Z} . $\mathcal{CV} = \{x \in \mathbb{Z} \mid |x| = x\} = \{0, 1, 2, 3, ...\} = \mathbb{N}$.

OPERAÇÕES

Prof. Felipe Reis Matemática Discreta - Conjuntos 09/2021 27 / 57

Conceitos

Prof. Felipe Reis Matemática Discreta - Conjuntos 09/2021 28 / 57

Operações Fechadas e Bem Definidas

- Operação Fechada: um conjunto é fechado em relação a uma dada operação quando o resultado dessa operação corresponde a um elemento desse mesmo conjunto [Gersting, 2014]
 - Exemplos:
 - ① Considere $x \in \mathbb{Z}$ e $y \in \mathbb{Z}$. Uma operação de adição é fechada, uma vez que $(x + y) \in \mathbb{Z}$.
 - **2** Considere $x \in \mathbb{Z}$ e $y \in \mathbb{Z}$. Uma operação de divisão <u>não</u> é fechada, uma vez que $x \div y$ pode não pertencer aos conjuntos dos inteiros (se x = 2 e y = 3, então $x \div y \notin \mathbb{Z}$).

Cardinalidade

Operações Fechadas e Bem Definidas

- Operação Bem Definida: operação que sempre produz um único valor [Gersting, 2014]
 - O valor sempre existe e é único;
 - Exemplos:
 - Considere $x \in \mathbb{Z}$ e $y \in \mathbb{Z}$. Uma operação de adição é bem definida, uma vez que (x + y) produz sempre um único valor;
 - Considere $x \in \mathbb{Z}$. Uma operação de radiciação não é bem definida, uma vez que \sqrt{x} não produz um valor único;
 - Considere $x \in \mathbb{Z}$ e $y \in \mathbb{Z}$. Uma operação de divisão não é bem definida, uma vez que $x \div y$ pode não existir (e se y = 0, $\exists (x \div y)$).

Aridade

- Definição Informal: número de argumentos necessários a uma operação ou função
 - Operação nulária: zero argumentos (apenas funções);
 - Operação unária: apenas um argumento (ex.: negação);
 - Operação binária: dois argumentos (ex.: adição, subtração);
 - Operação *n*-ária: *n*-argumentos.

Aridade

Introdução

32 / 57

- Operação Unária: uma operação em um conjunto S é unária somente se, para cada elemento $x \in S$, ela for verdadeira, fechada e bem definida [Gersting, 2014];
- Operação Binária: uma operação \circ em cada par ordenado (x,y) de valores de um conjunto S é binária, somente se $x \circ y$ for fechada e bem definida [Gersting, 2014].

Os símbolos o e • não representam, neste contexto, nenhuma operação em especial e sim um conjunto de operações que se adequam às definições de operações unárias e binárias.

Prof. Felipe Reis Matemática Discreta - Conjuntos 09/2021

Operações sobre Conjuntos

Prof. Felipe Reis Matemática Discreta - Conjuntos 09/2021 33 / 57

Introdução

- Definição: Dados dois conjuntos A e B, a união A ∪ B corresponde ao conjunto formado pelos elementos que estejam em A, B ou em ambos [Rosen, 2019] [Gersting, 2014];
- Definição Formal: $A \cup B = \{x \mid x \in A \lor x \in B\};$
- Exemplos:
 - $A = \{a, b, c\}$. $B = \{b, c, d, e\}$. $A \cup B = \{a, b, c, d, e\}$.

Fonte: Adaptado de [Gersting, 2014]

Interseção

Introdução

- Definição: Dados dois conjuntos A e B, a interseção A ∩ B corresponde ao conjunto formado pelos elementos que estejam em A e B [Rosen, 2019] [Gersting, 2014];
- Definição Formal: $A \cap B = \{x \mid x \in A \land x \in B\};$
- Exemplos:
 - $A = \{a, b, c\}$. $B = \{b, c, d, e\}$. $A \cap B = \{b, c\}$.

Fonte: Adaptado de [Gersting, 2014]

Prof. Felipe Reis Matemática Discreta - Conjuntos 09/2021 35 / 57

Conjuntos Disjuntos

Introdução

- Definição: Dados dois conjuntos A e B, estes são chamados de conjuntos disjuntos se sua interseção é um conjunto vazio [Rosen, 2019];
- Definição Formal: $A \cap B = \emptyset$;
- Exemplos:
 - $A = \{a, b, c\}$. $B = \{d, e, f\}$. $A \cap B = \{\}$.

Fonte: Próprio autor

Prof. Felipe Reis Matemática Discreta - Conjuntos 09/2021 36 / 57

Diferença

Introdução

- Definição: Dados dois conjuntos A e B, a diferença A B corresponde ao conjunto de elementos que estejam em A e não estejam em B [Rosen, 2019] [Gersting, 2014];
- Definição Formal: $A B = \{x \mid x \in A \land x \notin B\};$
- Exemplos:
 - $A = \{a, b, c\}$. $B = \{b, c, d\}$. $A B = \{a\}$. $B A = \{d\}$.
 - $A = \{a, b, c\}$. $B = \{d, e, f\}$. $A B = \{a, b, c\}$.

Fonte: Próprio autor

Complemento

Introdução

- Definição: Dados dois conjuntos A e o universo de valores possíveis U, o complemento \overline{A} , corresponde a todos os elementos de U que não estão em A [Rosen, 2019];
- Definição Formal: $\overline{A} = \{x \in U | x \notin A\};$
- Exemplos:
 - $U = \mathbb{N}$. $A = \{0, 1, 2, 3\}$. $\overline{A} = \{4, 5, 6, 7, ...\}$.
 - $U = \text{alfabeto. } A = \{a, b, c, d, e\}. \overline{A} = \{f, g, h, ..., z\}.$

Fonte: Próprio autor

Resumo das Operações

 As operações sobre conjuntos podem ser resumidas na tabela a seguir:

Operação	Proposição
União	$A \cup B = \{x \mid x \in A \lor x \in B\}$
Intersecção	$A \cap B = \{x \mid x \in A \land x \in B\}$
Diferença	$A - B = \{x \mid x \in A \land x \notin B\}$
Complemento	$\overline{A} = \{x \mid x \not\in A\}$

Fonte: [da Silva, 2012a]

IDENTIDADE E PROVAS

Identidades

- As identidades s\u00e3o igualdades que s\u00e3o verdadeiras para todos os subconjuntos de um dado conjunto S [Gersting, 2014]
 - Independem de subconjuntos particulares [da Silva, 2012a];
 - Muitas delas utilizam operações de união, interseção, diferença e complemento;
 - Nomes e formas das identidades são similares às equivalências tautológicas;
- As identidades podem ser utilizadas para realização de operações com conjuntos
 - Podem também ser usadas para representação dos conjuntos sem uso dos diagramas de Venn.

Identidades

Introdução

• A lista das identidades mais importantes está disponível na tabela a seguir:

Propriedade	Identidade
Elementos Neutros	$A \cup \emptyset = A$
	$A \cap U = A$
Dominação	$A \cup U = U$
	$A \cap \emptyset = \emptyset$
Idempotentes	$A \cup A = A$
	$A \cap A = A$
Complementação	$\overline{(\overline{A})} = A$
Comutativa	$A \cup B = B \cup A$
	$A \cap B = B \cap A$
Associativa	$A \cup (B \cup C) = (A \cup B) \cup C$
	$A \cap (B \cap C) = (A \cap B) \cap C$

Propriedade	Identidade
Distributiva	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
De Morgan	$\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$
Absorção	$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$
Complementares	$A \cup \overline{A} = U$ $A \cap \emptyset = \emptyset$

Fonte: [da Silva, 2012a]

Operações

Identidades

0000000

Cardinalidade

Tipos Conjuntos

Introdução

00

Conceitos

0000000000

Provas

Prof. Felipe Reis Matemática Discreta - Conjuntos 09/2021 43 / 57

44 / 57

Prova

Introdução

- Para provar identidades de conjuntos vamos considerar a seguinte representação:
 - α : Identidade do lado esquerdo;
 - β : Identidade do lado direito;
- A prova deve ser feita mostrando que:
 - $\bullet \quad \alpha \subseteq \beta$
 - $\beta \subseteq \alpha.$

A notação utilizada nesse slide não é comum na literatura. Ela foi escolhida apenas para generalização.

Prova - Lei de De Morgan¹⁴

• Prove que $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

$$= \{x \mid \neg(x \in (A \cap B))\}\$$

$$= \{x \mid \neg(x \in A \land x \in B)\}$$

$$= \{x \mid (\neg x \in A) \lor (\neg x \in B)\}$$

$$= \{x \mid (x \notin A) \lor (x \notin B)\}$$

$$= \{x \mid (x \in (\overline{A} \cup \overline{B}))\}$$

¹⁴ Prova baseada em [da Silva, 2012b] e [Rosen, 2019].

Prova - Propriedade Distributiva¹⁵

• Prove que $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

1
$$A \cup (B \cap C) = \{x \mid (x \in A) \lor (x \in (B \cap C))\}$$

$$= \{x \mid (x \in A) \lor ((x \in B) \land (x \in C))\}\$$

$$= \{x \mid ((x \in A) \lor (x \in B)) \land ((x \in A) \lor (x \in C))\}$$

$$= \{x \mid (x \in (A \cup B)) \land (x \in (A \cup C))\}\$$

$$= \{x \mid x \in ((A \cup B) \cap (A \cup C))\}$$

$$\bullet A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

¹⁵ Prova baseada em [Gersting, 2014].

CARDINALIDADE

Prof. Felipe Reis Matemática Discreta - Conjuntos 09/2021 47 / 57

Conjuntos Contáveis e Incontáveis

- Conjunto Contável: conjunto finito ou que tem a mesma cardinalidade do conjunto de inteiros positivos;
 - Quando um conjunto infinito é contável, sua cardinalidade é definida por \aleph_0 (alef, letra do alfabeto hebraico);
 - Se $|S| = \aleph_0$, dizemos que S tem cardinalidade "alef zero" 16;
- Conjunto Incontável: conjunto que não atende as condições dos conjuntos contáveis [Rosen, 2019];

¹⁶ Também pode ser utilizada a expressão em inglês "aleph null".

Conjuntos Contáveis

- Se em um conjunto infinito S, for possível selecionar o elementos sequenciais $s_1, s_2, ..., s_n$, esse conjunto é chamado denumerável [Gersting, 2014]
 - Conjuntos denumeráveis são contáveis, uma vez que podemos contar ou enumerar elementos;
- Importante: Ser contável não significa que o número total de elementos é conhecido. Significa apenas que é possível indicar cada um dos *n* elementos do conjunto em uma sequência [Gersting, 2014] [Rosen, 2019].

Conjuntos Contáveis- Exemplo

- Mostre que o conjunto de números inteiros positivos ímpares é contável [Rosen, 2019].
 - Para isso, basta indicar que o conjunto possui a mesma cardinalidade do conjunto de inteiros positivos;
 - Podemos correlacionamos cada um dos números inteiros a cada um dos números do conjunto;
 - Como o conjunto de inteiros positivos é infinito, a cardinalidade é a mesma.

Conjuntos Contáveis- Exemplo

- Mostre que o conjunto de números inteiros positivos ímpares é contável [Rosen, 2019].
 - Para isso, basta indicar que o conjunto possui a mesma cardinalidade do conjunto de inteiros positivos;
 - Podemos correlacionamos cada um dos números inteiros a cada um dos números do conjunto;
 - Como o conjunto de inteiros positivos é infinito, a cardinalidade é a mesma.

Conjuntos Contáveis- Exemplo

- Mostre que o conjunto de números inteiros ímpares é contável [Rosen, 2019].
 - Para isso, basta indicar que o conjunto possui a mesma cardinalidade do conjunto de inteiros positivos;
 - Podemos correlacionamos cada um dos números inteiros a cada um dos números do conjunto;
 - Como o conjunto de inteiros positivos é infinito, a cardinalidade é a mesma.

Fonte: [Rosen, 2019]

Introdução

- Teorema da União¹⁷: Se dois conjuntos A e B são contáveis, então $A \cup B$ também é contável;
- Teorema de Schröder-Bernstein: Se A e B são conjuntos e $|A| \le |B|$ e $|B| \le |A|$, então |A| = |B|.

Prof. Felipe Reis Matemática Discreta - Conjuntos

¹⁷ Na literatura, o teorema não recebe essa nomenclatura - usada apenas para facilitar a identificação.

¹⁸ Provas dos teoremas podem ser encontradas em [Rosen, 2019].

Conjuntos Incontáveis

- Ao contrário dos números inteiros, que são considerados contáveis, os números reais são considerados incontáveis
 - Para demonstrar essa condição, iremos utilizar o método criado pelo matemático alemão Georg Cantor em 1879;
 - A técnica é chamada de Método de Diagonalização de Cantor
 - É usada em Lógica Matemática e Teoria da Computação [Rosen, 2019]
 - Utiliza a prova por contradição.

Método de Diagonalização de Cantor

- Mostre que o conjunto de todos os números reais entre 0 e 1 é incontável [Gersting, 2014].
 - Para provar por contradição, primeiramente devemos supor que o conjunto de valores reais entre 0 e 1 é contável;
 - Um número real pode ser escrito na forma decimal $0.d_1d_2d_3...$
 - Cada um dos n números reais, pode ser escrito, de forma única, na forma d_{ii}:

```
r_1 = 0.d_{11}d_{12}d_{13}..

r_2 = 0.d_{21}d_{22}d_{23}..

r_3 = 0.d_{31}d_{32}d_{33}..
```

19 Cada dígito de corresponde a um número no intervalo (0.1.2.3.4.5.6.7.8.9)

Introdução

Método de Diagonalização de Cantor

- Mostre que o conjunto de todos os números reais entre 0 e 1 é incontável [Gersting, 2014].
 - Para provar por contradição, primeiramente devemos supor que o conjunto de valores reais entre 0 e 1 é contável;
 - Um número real pode ser escrito na forma decimal 19 como: $0.d_1d_2d_3...$
 - Cada um dos n números reais, pode ser escrito, de forma única, na forma d_{ii}:

$$r_1 = 0.d_{11}d_{12}d_{13}...$$

 $r_2 = 0.d_{21}d_{22}d_{23}...$
 $r_3 = 0.d_{31}d_{32}d_{33}...$

:

Prof. Felipe Reis

The second section d_{ii} corresponds a um número no intervalo $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$.

Método de Diagonalização de Cantor

- Mostre que o conjunto de todos os números reais entre 0 e 1 é incontável [Gersting, 2014].
 - Suponha que desejamos criar um novo número z, com base na lista de todos números reais possíveis;
 - Esse número será criado utilizando a fórmula $z_i = d_{ii} + 1$;²⁰
 - Após a criação desse novo número, teremos um valor que não estava na lista original de números reais;
 - Com isso, teremos um número que é real e não estava na lista original, o que é uma contradição!

²⁰Caso o dígito seja 9, o novo dígito será igual a 0.

Introdução

Método de Diagonalização de Cantor

- Mostre que o conjunto de todos os números reais entre 0 e 1 é incontável [Gersting, 2014].
 - Exemplo:
 - Suponha que tenhamos uma lista com os seguintes números: $r_1 = 0.\underline{1}3324.., r_2 = 0.3\underline{3}465.., r_3 = 0.14\underline{1}05.., r_4 = 0.989\underline{9}5..;$
 - Novo número: 0.(1+1)(3+1)(1+1)(9+1).. = 0.2420...
 - No entanto, esse número deveria ser igual a um número existente na lista de números reais:
 - Como temos que o número é novo, temos uma contradição, pois o conjunto de números reais não seria contável.

Referências I

Introdução

da Silva, D. M. (2012a).

Notas de Aula 2: Conjuntos.

IFMG - Instituto Federal de Minas Gerais, Campus Formiga.

da Silva, D. M. (2012b).

Gersting, J. L. (2014).

Mathematical Structures for Computer Science.

W. H. Freeman and Company, 7 edition.

Levin, O. (2019).

Discrete Mathematics - An Open Introduction.

University of Northern Colorado, 7 edition.

[Online] Disponível em http://discrete.openmathbooks.org/dmoi3.html.

Rosen, K. H. (2019).

Discrete Mathematics and Its Applications.

McGraw-Hill, 8 edition.