Homework 5. CS 511.

Eric Chao

October 9, 2020

Problem 1

- a $\phi_1(x) := x \times 0$
- b $\phi_2(x) := (x \times 0) + 1$
- c $\phi_3(x) := <(x \times y), (x \times y) + 1 >$
- d $\phi_4(x) := \langle x, x + y + 1 \rangle$

Problem 2

1. $(\forall x.\phi(x, f(x))) \vdash (\forall x.\exists y.\phi(x, y))$

	1	$(\forall x.\phi(x,f(x)))$	premise
x_0	2		fresh x_0
	3	$\phi(x_0,f(x_0))$	$\forall E \ 1$
	4	$\exists y. \phi(x_0,y)$	$\exists I \ 3$
	5	$orall x. \exists y. (phi(x,y))$	I~2,4

2. Let $(\forall x. \phi(x, f(x)))$ and $(\forall x. \exists y. \phi(x, y))$ fit under the model $M := \{\mathbb{Z}, <, -, f(x), \phi(x, y)\}$ where $\phi(x, y) := x < y$, and f(x) := -x.

This holds true for $(\forall x. \exists y. \phi(x,y))$ since for all integers, there does exist one smaller than itself, but does not hold true for $(\forall x. \phi(x,f(x)))$, since the negative of an integer is not always smaller than itself, therefore $(\forall x. \exists y. \phi(x,y)) \not\models (\forall x. \phi(x,f(x)))$.

3. By completeness, we know that $(\forall x. \exists y. \phi(x,y)) \models (\forall x. \phi(x,f(x))) \rightarrow (\forall x. \exists y. \phi(x,y)) \vdash (\forall x. \phi(x,f(x)))$ and by soundness that $(\forall x. \exists y. \phi(x,y)) \vdash (\forall x. \phi(x,f(x))) \rightarrow (\forall x. \exists y. \phi(x,y)) \models (\forall x. \phi(x,f(x)))$, so $(\forall x. \exists y. \phi(x,y)) \vdash (\forall x. \phi(x,f(x))) \leftrightarrow (\forall x. \exists y. \phi(x,y)) \models (\forall x. \phi(x,f(x)))$.

Therefore, because we showed that $(\forall x. \exists y. \phi(x,y)) \not\models (\forall x. \phi(x,f(x)))$, then we also know that $(\forall x. \exists y. \phi(x,y)) \not\vdash (\forall x. \phi(x,f(x)))$.

Problem 3

1. Let the model $M := \{ \mathbb{N}, P(m, n) \}$ where

$$P(m,n) := m \ge n.$$

This satisfies that P is reflexive because arbitrary natural number is equal to itself, and P is transitive, since for any given numbers x, y, z, if x and $y \ge z$, then we know that xgeqz. It does not satisfy that P is symmetric because if for 2 numbers $x, y, x \ge y$, then it is not necessarily true that $y \ge x$, in fact it is only true if x = y.

2. Let the model $M := \{\mathbb{R}, P(m, n)\}$ where

$$P(m,n) := m \times n > 0.$$

This does not satisfy that P is reflexive because 0 multiplied by itself is 0, which is not > 0. P is transitive, since for any given numbers x, y, z, if $x \times y > 0$ and $y \times z > 0$, then we know that x, and z must have the same sign, therefore xz > 0. P is symmetric because if for 2 numbers $x, y, x \times y > 0$, then it is necessarily true that yx > 0, since multiplication is commutative.

3. Let the model $M := \{ \mathbb{N}, P(m, n) \}$ where

$$P(m,n) := (|m-n| \le 1.$$

This satisfies that P is reflexive because the difference between a number and itself is 0 which is ≤ 1 . It is symmetric since for any 2 numbers x, y, x - y = -(y - x), which have the same absolute value. It is not transitive because it is not the case that for numbers x, y, z, where $|x - y| \leq 1$, and $|y - z| \leq 1$, that $|x - z| \leq 1$. Take x = 2, y = 3, z = 4. $|x - y| \leq 1$ and $|y - z| \leq 1$, but |x - z| = 2 which is not ≤ 1 .

Therefore, symmetry, reflexivity, and transitivity are each respectively not semantically entailed by the other 2.

Problem 4

 $Problem \ 5 \ code \ uploaded \ to \ this \ github \ repository: \ \texttt{https://github.com/ehchao88/CS511_HW5}$

The multiplication table of G, as found by mace4 is the following:

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	0	3	2	5	4
2	2	4	0	5	1	3
3	3	5	1	4	0	2
4	4	2	5	0	3	1
5	5	3	4	1	2	0