Technicolor

A REVIEW GOES HERE - Check our WWW List of Reviews

The latest unpublished results are described in "Dynamical Electroweak Symmetry Breaking" review.

MASS LIMITS for Resonances in Models of Dynamical Electroweak Symmetry Breaking

<i>VALUE</i> (GeV)	CL%	DOCUMENT ID		TECN	COMMENT			
• • • We do not use								
		$^{ m 1}$ AAD	16W	ATLS	color octet vector resonance			
>2400	95	² KHACHATRY.	16E	CMS	top-color Z'			
		³ AAD	15 AB	ATLS	$h \rightarrow \pi_V \pi_V$			
>1800	95	⁴ AAD	15 AO	ATLS	top-color Z'			
		⁵ AAD	15 BB	ATLS	$egin{array}{ll} ho ho ho au / a_{1T} ightarrow W h ext{or} \ Z h \end{array}$			
		⁶ AAD	15Q	ATLS	$h \to \pi_V \pi_V$			
		⁷ AAIJ	15AN	LHCB	$h \rightarrow \pi_V \pi_V$			
>1140	95	⁸ KHACHATRY.	15 C	CMS	$\rho_T \rightarrow W^Z$			
		⁹ KHACHATRY.			$H \rightarrow \pi_V \pi_V$			
none 200-700,	95	¹⁰ AAD		ATLS	$pp \rightarrow \omega_T \rightarrow Z\gamma$			
750-890		10			·			
none 275–960	95	¹⁰ AAD		ATLS	$pp \rightarrow a_T \rightarrow W\gamma$			
		¹¹ AAD		ATLS	color singlet techni-vector			
> 703		¹² AAD		ATLS	$pp \rightarrow a_T \rightarrow W\gamma$			
> 494		13 AAD		ATLS	$pp \rightarrow \omega_{T} \rightarrow Z\gamma$			
none 500-1740	95	14 AAD		ATLS	top-color Z'			
>1300	95	¹⁵ CHATRCHYAN	I 13 AP	CMS	top-color Z'			
>2100	95	14 CHATRCHYAN	I 13 BM	1CMS	top-color Z'			
		¹⁶ BAAK	12	RVUE	QCD-like technicolor			
none 167–687	95	¹⁷ CHATRCHYAN			$\rho_T \rightarrow WZ$			
> 805	95	¹⁴ AALTONEN		CDF	top-color Z'			
> 805	95	¹⁴ AALTONEN	11 AE	CDF	top-color Z'			
		¹⁸ CHIVUKULA	11	RVUE	top-Higgs			
		¹⁹ CHIVUKULA	11A	RVUE	techini- π			
		²⁰ AALTONEN	101	CDF	$p\overline{p} \rightarrow \rho_T/\omega_T \rightarrow W\pi_T$			
none 208-408	95	²¹ ABAZOV	10A	D0	$ ho_{T} ightarrow WZ$			
		²² ABAZOV	07ı	D0	$p\overline{p} \rightarrow \rho_T/\omega_T \rightarrow W\pi_T$			
> 280	95	²³ ABULENCIA	05A	CDF	$ ho_T ightarrow { m e^+ e^-}$, $\mu^+ \mu^-$			
		²⁴ CHEKANOV	02 B	ZEUS	color octet techni- π			
> 207	95	²⁵ ABAZOV	01 B	D0	$ ho_T ightarrow \ e^+ e^-$			
none 90-206.7	95	²⁶ ABDALLAH	01	DLPH	$e^+e^- ightarrow ho_T$			
		²⁷ AFFOLDER	00F	CDF	color-singlet techni- ρ ,			
					$ ho_T ightarrow \; W \pi_T$, $2 \pi_T$			
> 600	95	²⁸ AFFOLDER	00K	CDF	color-octet techni- ρ ,			
					$ ho_{T8} ightarrow \; 2\pi_{LQ}$			
none 350-440	95	²⁹ ABE	99F	CDF	color-octet techni-ρ,			
					$ ho_{T8} ightarrow \overline{b} b$			

none 260–480 95 31 ABE 99N CDF techni- ω , $\omega_T \to \gamma \overline{b} b$ 97G CDF color-octet techni- ρ , $\rho_{T8} \to 2 {\rm jets}$

¹ AAD 16W search for color octet vector resonance decaying to bB in pp collisions at \sqrt{s} = 8 TeV. The vector like quark B is assumed to decay to bH. See their Fig.3 and Fig.4 for limits on $\sigma \cdot B$.

² KHACHATRYAN 16E search for top-color Z' decaying to $t\overline{t}$. The quoted limit is for $\Gamma_{Z'}/m_{Z'}=0.012$. Also exclude $m_{Z'}<2.9$ TeV for wider topcolor Z' with $\Gamma_{Z'}/m_{Z'}$

= 0.1.

- ³AAD 15AB search for long-lived hidden valley π_V particles which are produced in pairs by the decay of a scalar boson. π_V is assumed to decay into dijets. See their Fig. 10 for the limit on σB .
- ⁴ AAD 15AO search for top-color Z' decaying to $t\overline{t}$. The quoted limit is for $\Gamma_{Z'}/m_{Z'}=0.012$.
- 5 AAD 15BB search for minimal walking technicolor (MWT) isotriplet vector and axial-vector resonances decaying to Wh or Zh. See their Fig. 3 for the exclusion limit in the MWT parameter space.
- ⁶ AAD 15Q search for long-lived hidden valley π_V particles which are produced in pairs by the decay of scalar boson. π_V is assumed to decay into dijets. See their Fig. 5 and Fig. _ 6 for the limit on σB .
- ⁷ AAIJ 15AN search for long-lived hidden valley π_V particles which are produced in pairs by the decay of scalar boson with a mass of 120GeV. π_V is assumed to decay into dijets. See their Fig. 4 for the limit on σB .
- ⁸ KHACHATRYAN 15C search for a vector techni-resonance decaying to WZ. The limit assumes $M_{\pi_T}=(3/4)~M_{\rho_T}-25$ GeV. See their Fig.3 for the limit in $M_{\pi_T}-M_{\rho_T}$ plane of the low scale technicolor model.
- ⁹ KHACHATRYAN 15W search for long-lived hidden valley π_V particles which are produced in pairs in the decay of heavy higgs boson H. π_V is assumed to decay into $\ell^+\ell^-$. See their Fig. 7 and Fig. 8 for the limits on σB .
- ¹⁰ AAD 14AT search for techni- ω and techni-a resonances decaying to $V\gamma$ with $V=W(\to \ell\nu)$ or $Z(\to \ell^+\ell^-)$.
- ¹¹ AAD 14V search for vector techni-resonances decaying into electron or muon pairs in pp collisions at $\sqrt{s}=8$ TeV. See their table IX for exclusion limits with various assumptions.
- $^{12}\,\mathrm{AAD}$ 13AN search for vector techni-resonance a_{T} decaying into $W\,\gamma.$
- 13 AAD 13AN search for vector techni-resonance ω_T decaying into $Z\gamma$.
- ¹⁴ Search for top-color Z' decaying to $t\bar{t}$. The quoted limit is for $\Gamma_{Z'}/m_{Z'}=0.012$.
- ¹⁵ CHATRCHYAN 13AP search for top-color leptophobic Z' decaying to $t\overline{t}$. The quoted limit is for $\Gamma_{Z'}/m_{Z'}=0.012$.
- ¹⁶ BAAK 12 give electroweak oblique parameter constraints on the QCD-like technicolor models. See their Fig. 28.
- ¹⁷ CHATRCHYAN 12AF search for a vector techni-resonance decaying to WZ. The limit assumes $M_{\pi_T} = (3/4)~M_{\rho_T} -$ 25 GeV. See their Fig. 3 for the limit in $M_{\pi_T} M_{\rho_T}$ plane of the low scale technicolor model.
- 18 Using the LHC limit on the Higgs boson production cross section, CHIVUKULA 11 obtain a limit on the top-Higgs mass > 300 GeV at 95% CL assuming 150 GeV top-pion mass.
- 19 Using the LHC limit on the Higgs boson production cross section, CHIVUKULA 11A obtain a limit on the technipion mass ruling out the region 110 GeV $< m_P < 2m_t.$ Existence of color techni-fermions, top-color mechanism, and $N_{TC} \geq$ 3 are assumed.
- ²⁰ AALTONEN 10I search for the vector techni-resonances (ρ_T, ω_T) decaying into $W\pi_T$ with $W \to \ell \nu$ and $\pi_T \to b\overline{b}$, $b\overline{c}$, or $b\overline{u}$. See their Fig. 3 for the exclusion plot in $M_{\pi_T} M_{\rho_T}$ plane.
- 21 ABAZOV 10A search for a vector techni-resonance decaying into WZ . The limit assumes $M_{\rho_T} < M_{\pi_T} + M_W$.

- ²² ABAZOV 07I search for the vector techni-resonances (ρ_T, ω_T) decaying into $W\pi_T$ with $W \to e\nu$ and $\pi_T \to b\overline{b}$ or $b\overline{c}$. See their Fig. 2 for the exclusion plot in $M_{\pi_T} M_{\rho_T}$ plane.
- ²³ ABULENCIA 05A search for resonances decaying to electron or muon pairs in $p\overline{p}$ collisions. at $\sqrt{s}=1.96$ TeV. The limit assumes Technicolor-scale mass parameters $M_V=M_A=500$ GeV.
- ²⁴ CHEKANOV 02B search for color octet techni- π P decaying into dijets in ep collisions. See their Fig. 5 for the limit on $\sigma(ep \rightarrow ePX) \cdot B(P \rightarrow 2j)$.
- ²⁵ ABAZOV 01B searches for vector techni-resonances (ρ_T, ω_T) decaying to e^+e^- . The limit assumes $M_{\rho_T} = M_{\omega_T} < M_{\pi_T} + M_W$.
- 26 The limit is independent of the π_T mass. See their Fig. 9 and Fig. 10 for the exclusion plot in the M_{ρ_T} – M_{π_T} plane. ABDALLAH 01 limit on the techni-pion mass is $M_{\pi_T} > 79.8$ GeV for $N_D{=}2$, assuming its point-like coupling to gauge bosons.
- ²⁷ AFFOLDER 00F search for ρ_T decaying into $W \pi_T$ or $\pi_T \pi_T$ with $W \to \ell \nu$ and $\pi_T \to \overline{b} \, b$, $\overline{b} \, c$. See Fig. 1 in the above Note on "Dynamical Electroweak Symmetry Breaking" for the exclusion plot in the $M_{\rho_T} M_{\pi_T}$ plane.
- 28 AFFOLDER 00K search for the ρ_{T8} decaying into $\pi_{LQ}\pi_{LQ}$ with $\pi_{LQ}\to b\nu.$ For $\pi_{LQ}\to c\nu,$ the limit is $M_{\rho_{T8}}>$ 510 GeV. See their Fig. 2 and Fig. 3 for the exclusion plot in the $M_{\rho_{T8}}-M_{\pi_{LQ}}$ plane.
- ABE 99F search for a new particle X decaying into $b\overline{b}$ in $p\overline{p}$ collisions at $E_{\text{cm}}=1.8$ TeV. See Fig. 7 in the above Note on "Dynamical Electroweak Symmetry Breaking" for the upper limit on $\sigma(p\overline{p}\to X)\times B(X\to b\overline{b})$. ABE 99F also exclude top gluons of width $\Gamma=0.3M$ in the mass interval 280 < M < 670 GeV, of width $\Gamma=0.5M$ in the mass interval 340 < M < 640 GeV, and of width $\Gamma=0.7M$ in the mass interval 375 < M < 560 GeV.
- 30 ABE 99N search for the techni- ω decaying into $\gamma\pi_T$. The technipion is assumed to decay $\pi_T\to b\overline{b}$. See Fig. 2 in the above Note on "Dynamical Electroweak Symmetry Breaking" for the exclusion plot in the $M_{\omega_T}-M_{\pi_T}$ plane.
- ³¹ ABE 97G search for a new particle X decaying into dijets in $p\overline{p}$ collisions at $E_{\text{cm}}=1.8$ TeV. See Fig. 5 in the above Note on "Dynamical Electroweak Symmetry Breaking" for the upper limit on $\sigma(p\overline{p}\to X)\times \mathrm{B}(X\to 2j)$.

REFERENCES FOR Technicolor

AAD KHACHATRY AAD AAD AAD	15AB 15AO	PL B758 249 PR D93 012001 PR D92 012010 JHEP 1508 148 EPJ C75 263	G. Aad et al. V. Khachatryan et al. G. Aad et al. G. Aad et al. G. Aad et al.	(ATLAS Collab.) (CMS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.)	
AAD	-	PL B743 15	G. Aad et al.	(ATLAS Collab.)	
AAIJ	15AN	EPJ C75 152	R. Aaij et al.	`(LHCb Collab.)	
KHACHATRY	15C	PL B740 83	V. Khachatryan et al.	(CMS Collab.)	
KHACHATRY	15W	PR D91 052012	V. Khachatryan et al.	(CMS Collab.)	
AAD	14AT	PL B738 428	G. Aad et al.	(ATLAS Collab.)	
AAD	14V	PR D90 052005	G. Aad et al.	(ATLAS Collab.)	
AAD	13AN	PR D87 112003	G. Aad et al.	(ATLAS Collab.)	
Also		PR D91 119901 (errat.)	G. Aad et al.	(ATLAS Collab.)	
AAD	13AQ	PR D88 012004	G. Aad et al.	(ATLAS Collab.)	
CHATRCHYAN	13AP	PR D87 072002	S. Chatrchyan et al.	(CMS Collab.)	
CHATRCHYAN	13BM	PRL 111 211804	S. Chatrchyan et al.	(CMS Collab.)	
Also		PRL 112 119903 (errat.)	S. Chatrchyan et al.	(CMS Collab.)	
BAAK	12	EPJ C72 2003	M. Baak <i>et al.</i>	(Gfitter Group)	
		PRL 109 141801	S. Chatrchyan et al.	(CMS Collab.)	
AALTONEN	11AD	PR D84 072003	T. Aaltonen <i>et al.</i>	(CDF Collab.)	
AALTONEN	11AE	PR D84 072004	T. Aaltonen et al.	(CDF Collab.)	
CHIVUKULA	11	PR D84 095022	R.S. Chivukula et al.		

CHIVUKULA	11A	PR D84 115025	R. S. Chivukula <i>et al.</i>	
AALTONEN	101	PRL 104 111802	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	10A	PRL 104 061801	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	07I	PRL 98 221801	V.M. Abazov et al.	(D0 Collab.)
ABULENCIA	05A	PRL 95 252001	A. Abulencia <i>et al.</i>	(CDF Collab.)
CHEKANOV	02B	PL B531 9	S. Chekanov <i>et al.</i>	(ŻEUS Collab.)
ABAZOV	01B	PRL 87 061802	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABDALLAH	01	EPJ C22 17	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
AFFOLDER	00F	PRL 84 1110	T. Affolder <i>et al.</i>	(CDF Collab.)
AFFOLDER	00K	PRL 85 2056	T. Affolder <i>et al.</i>	(CDF Collab.)
ABE	99F	PRL 82 2038	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	99N	PRL 83 3124	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	97G	PR D55 R5263	F. Abe <i>et al.</i>	(CDF Collab.)
				, ,