Financial Engineering Lecture 1

Orimar Sauri

Department of Mathematics
Aalborg University

AAU February 6, 2020

General comments

- Mit Dansk er ok ... nok.... men jeg er ikke flydende i det... so I will give the lectures in English.
- Imidlertid, hvis i snakker laaaangsoooom til mig, må i godt formulere jeres spørgsmål på dansk.
- My email is osauri@math.aau.dk and my office number is 5.315.
- I have planned 10 lectures and 1 selfstudy session.
- However, if needed, an extra selfstudy will be programmed.

Structure of the lectures

- As usual, the sessions will be divided between a lecture and an exercise part.
- If needed, a "lecturer+students" exercise session may be arranged.
- Slides will be available before the lectures.
- However, many details will be addressed in the blackboard.
- Along the semester, we will have 3 anonymous (5 min) mini quizzes before the lecture.
- It will not count for your final grade.

Literature

Most of the lectures will be based on:

 $\hbox{``Mathematics for Finance: An Introduction to Financial Engineering''},$

by Capiński, M. and Zastawniak, T.

- It is not mandatory to get this book.
- The structure and some of the content between the first and the second edition differ.
- I will follow the organization of the second edition.

Literature

- Furthermore, the following books will be used as complementary material:
 - "The Mathematics of Arbitrage" by F. Delbaen and W. Schachermayer.
 - "Stochastic Calculus for Finance I: The Binomial Asset Pricing Model" by Steven E. Shreve.

Evaluation

- You will be evaluated by a pass/fail oral exam.
- The exam will have a total duration of 40 min per student.
- 20 minutes preparation of one randomly chosen topic.
- The second part is divided as: 10 minutes presentation + 10 minutes round of questions.
- I will let you know in advance the topics that will be assessed.

• This course concentrates on the study and modeling of financial markets in **discrete time**.

- This course concentrates on the study and modeling of financial markets in **discrete time**.
- We aim at:
 - Developing a theory for pricing financial derivatives based on the non-arbitrage principle.

- This course concentrates on the study and modeling of financial markets in **discrete time**.
- We aim at:
 - Developing a theory for pricing financial derivatives based on the non-arbitrage principle.
 - Investigating some mathematical techniques used in risk management.

- This course concentrates on the study and modeling of financial markets in **discrete time**.
- We aim at:
 - Developing a theory for pricing financial derivatives based on the non-arbitrage principle.
 - Investigating some mathematical techniques used in risk management.
 - Providing the basis for the computational methods used in modern financial analysis.

- This course concentrates on the study and modeling of financial markets in **discrete time**.
- We aim at:
 - Developing a theory for pricing financial derivatives based on the non-arbitrage principle.
 - Investigating some mathematical techniques used in risk management.
 - Providing the basis for the computational methods used in modern financial analysis.
- The course can be seen as the mathematical foundation as well as an extension of the elective course "Finansielle Markeder".

Content of the course

- Risky and Risk-free financial assets.
- Portfolio Management and Risk measures.
- The Binomial and GARCH models.
- Fundamental Theorems of Asset Pricing.
- Pricing Financial Derivatives via Arbitrage principle.
- Hedging with Financial Derivatives.
- American Options.
- Interest Rate Markets (If we have time).

Outline for today

- Elementary probabilistic concepts.
- Basic Market Assumptions.
- Interests and interest rate.
- Bonds and the value of money over time.

Preliminaries

- One of our main goals in this course is to model the price of financial securities, e.g. stocks and bonds.
- We start with the premise that we cannot predict with absolute certainty the price movements of every financial asset.
- But if you can, I recommend you to start using it NOW and don't tell anybody!
- Hence, the dynamics (properties) of prices will be formulated from a probabilistic point of view.

• The triplet $(\Omega, \mathcal{F}, \mathbb{P})$ will denote a probability space.

- The triplet $(\Omega, \mathcal{F}, \mathbb{P})$ will denote a probability space.
- $\Omega \neq \emptyset$ is called the sample space.

- The triplet $(\Omega, \mathcal{F}, \mathbb{P})$ will denote a probability space.
- $\Omega \neq \emptyset$ is called the sample space.
- \mathcal{F} is family of subsets of Ω , which is usually referred as the collection of events.

- The triplet $(\Omega, \mathcal{F}, \mathbb{P})$ will denote a probability space.
- $\Omega \neq \emptyset$ is called the sample space.
- \mathcal{F} is family of subsets of Ω , which is usually referred as the collection of events.
- $\mathbb{P}: \mathcal{F} \to [0,1]$ is a set function satisfying that $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$ and if $(A_n)_{n \ge 1} \subseteq \mathcal{F}$ are pairwise disjoints, i.e. $A_i \cap A_j = \emptyset$ if $i \ne j$, then

$$\mathbb{P}\left(\bigcup_{n\geq 1}A_n\right)=\sum_{n\geq 1}\mathbb{P}\left(A_n\right).$$

- The triplet $(\Omega, \mathcal{F}, \mathbb{P})$ will denote a probability space.
- $\Omega \neq \emptyset$ is called the sample space.
- \mathcal{F} is family of subsets of Ω , which is usually referred as the collection of events.
- $\mathbb{P}: \mathcal{F} \to [0,1]$ is a set function satisfying that $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\Omega) = 1$ and if $(A_n)_{n \ge 1} \subseteq \mathcal{F}$ are pairwise disjoints, i.e. $A_i \cap A_j = \emptyset$ if $i \ne j$, then

$$\mathbb{P}\left(\bigcup_{n\geq 1}A_n\right)=\sum_{n\geq 1}\mathbb{P}\left(A_n\right).$$

We will referred to P as a probability measure.

- \mathcal{F} must satisfy extra regularity conditions, namely:
 - **1** Contains the total sample space: $\Omega \in \mathcal{F}$.

- \mathcal{F} must satisfy extra regularity conditions, namely:
 - **1** Contains the total sample space: $\Omega \in \mathcal{F}$.
 - **2** Closed under complements: $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$.

- F must satisfy extra regularity conditions, namely:
 - **1** Contains the total sample space: $\Omega \in \mathcal{F}$.
 - **2** Closed under complements: $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$.
 - **3** Closed under countable unions: If $(A_n)_{n\geq 1}\subseteq \mathcal{F}$, then $\bigcup_{n\geq 1}A_n\in \mathcal{F}$.

- F must satisfy extra regularity conditions, namely:
 - **1** Contains the total sample space: $\Omega \in \mathcal{F}$.
 - **2** Closed under complements: $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$.
 - **3** Closed under countable unions: If $(A_n)_{n\geq 1}\subseteq \mathcal{F}$, then $\bigcup_{n\geq 1}A_n\in \mathcal{F}$.
- One typically refers to \mathcal{F} as a σ -algebra.

- F must satisfy extra regularity conditions, namely:
 - **1** Contains the total sample space: $\Omega \in \mathcal{F}$.
 - **2** Closed under complements: $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$.
 - **3** Closed under countable unions: If $(A_n)_{n\geq 1}\subseteq \mathcal{F}$, then $\bigcup_{n\geq 1}A_n\in \mathcal{F}$.
- One typically refers to \mathcal{F} as a σ -algebra.
- In your course of integration theory you will study in more detail the concepts of σ -algebras and general measurable spaces.

• For most of the course we will mainly consider finite probability spaces, that is:

$$\mathbf{1} \Omega = \{\omega_1, \omega_2, \dots, \omega_N\}, \ N \in \mathbb{N}.$$

- For most of the course we will mainly consider finite probability spaces, that is:

 - 2 $\mathcal{F} = 2^{\Omega}$, where 2^{Ω} denotes the power set: The collection of all subsets of Ω .

- For most of the course we will mainly consider finite probability spaces, that is:

 - $\mathcal{P} = 2^{\Omega}$, where 2^{Ω} denotes the power set: The collection of all subsets of Ω .
 - 3 For $i=1,\ldots,N$, there are $0 \le p_i \le 1$ such that $\sum_{i=1}^{N} p_i = 1$ and

$$\mathbb{P}(\{\omega_i\}) = p_i.$$

• Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ a mapping $X : \Omega \to \mathbb{R}$ is a random variable if for every $x \in \mathbb{R}$,

$${X \le x} := {\omega \in \Omega : X(\omega) \le x},$$

is an event, i.e. it belongs to \mathcal{F} .

• Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ a mapping $X : \Omega \to \mathbb{R}$ is a random variable if for every $x \in \mathbb{R}$,

$${X \le x} := {\omega \in \Omega : X(\omega) \le x},$$

is an event, i.e. it belongs to \mathcal{F} .

• Note that in this situation, $F_X(x) := \mathbb{P}(X \le x)$ makes sense.

• Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ a mapping $X : \Omega \to \mathbb{R}$ is a random variable if for every $x \in \mathbb{R}$,

$${X \le x} := {\omega \in \Omega : X(\omega) \le x},$$

is an event, i.e. it belongs to \mathcal{F} .

- Note that in this situation, $F_X(x) := \mathbb{P}(X \le x)$ makes sense.
- Let $d \in \mathbb{N}$. A random vector on \mathbb{R}^d is a d-dimensional vector whose components are random variables: (X_1, X_2, \dots, X_d) is a random vector if and only if X_i is a random variable for $i = 1, 2, \dots, d$.

Examples

- Bernoulli.
- Binomial.
- Normal distribution.

- Let $\mathbb{T} \neq \emptyset$ be an arbitrary index set.
- The collection $X=(X_t)_{t\in\mathbb{T}}$ is a real-valued (\mathbb{R}^d -valued) stochastic process if X_t is a random variable (random vector) for very $t \in \mathbb{T}$.
- The set T usually denotes points in time.
- The core examples are $[0, +\infty)$ and $\mathbb{N} \cup \{0\}$.

Time set-up

 Discrete structure of the time: Financial markets (agents) trade only at determined points in time with a final horizon T > 0:

$$0 = t_0 < t_1 < \cdots < t_n := T$$
.

- t_i = Time of the *i*th trading period.
- This means that our time variable, say t, takes values in

$$\{t_0 < t_1 < \cdots < t_n\}.$$

Time set-up

- For instance, suppose that we are interested on describing the daily behavior of a given market during a year.
- If our unit of time is a day, then we may write

$$t \in \{0, 1, 2, \dots, 365\}.$$
 (or $t = 0, 1, 2, \dots, 365$)

 In contrast, if we require the unit of time being a year, we instead have that

$$t \in \{0, 1/365, 2/365, \dots, 1\}.$$
 (or $t = 0, 1/365, 2/365, \dots, 1$)

Time set-up

- More generally, if we want to describe $n \in \mathbb{N}$ trading periods, each of them taking place at a distance h > 0 (years, months, days, hours, minutes, etc).
- Then, we may let T = n and

$$t \in \{0, 1, 2, \ldots, T\},\$$

or

$$t \in \{0, h, 2h, \dots, T\}, T := hn.$$

- We will mainly use the first type and write $0 \le t \le T$ instead of $t \in \{0, 1, 2, ..., T\}$.
- The book typically uses years as unit of time.

Market Assumptions

What shall we ignore?...for the moment

- In order to develop a concise and systematic mathematical theory for financial markets we must impose certain restrictions in the way agents and prices behave.
- Must of the assumptions that we will discuss here can be easily extended in a latter stage.

Dividends

- The market value of a company is determined by the number of shares available in the market and its price.
- Thus, an owner of a share is entitled to a portion of the company's profit.
- Such a profit is known as a dividend and it is paid periodically.
- Nevertheless, we will assume that there are no dividends.

Transaction costs

- In reality, agents buy or sell assets through an intermediary.
- The broker will charge a fee which is proportional to the size of the transaction.
- However, such a fee is often relatively small.
- Hence, we will neglect transaction costs.
- When such a situation occurs, we say that the market is frictionless.

Short-sellings

- Taking a short (long) position on an asset means selling (buying) it.
- A short-selling refers to the situation when the investor borrows an asset and sells it.
- However, the rightful owner of the stock keeps all the rights to it and can reclaim the asset back at any time.
- For instance borrowing money from a bank is considered short-selling.
- Brokers would typically put constraints on the amount of shares an agent can borrow.
- Nonetheless, we will assume that there are no short-selling restrictions.

Divisibility and liquidity

- In reality, the minimum amount of shares that a trader can buy is one.
- This means that we can't buy half of a share.
- However, mathematically this is not a problem: If a stock costs S > 0 then buying one of it is equivalent to buy half share of an asset that costs 2S.
- Hence, we may and do assume that financial assets are infinite divisible.
- Liquidity: Moreover, there is no restriction on the number of assets that an agent can buy or sell.

Basic Market Assumptions

Assumption (A.1)

The market is frictionless and shares do not pay dividends. Moreover, an investor can buy, sell and hold any number $x \in \mathbb{R}$ of financial assets.

Risk-free assets: The value of the money through time

Introduction

- As mentioned previously, the type of markets we are going to consider are those that consist of stocks and bonds.
- A bond is a financial security (piece of paper) that pays the owner a chain of predetermined payments.
- In this way, it can be seen as an asset that has no risk: We are 100% certain of what our profit/loss will be.
- The concept of risk-free rate is key to describe this type of financial assets.

Wealth process

- For most of the course we will be interested on analyzing the investment of a financial agent.
- The evolution over time of such investment will be called the wealth process and will be denoted by

$$V=(V_t)_{0\leq t\leq T}.$$

- V_0 will be termed as the initial capital or initial investment.
- Our basic assumption is that V is a real-valued stochastic process on a given probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

• It is intuitively clear that 100 DKK are worthier now than in a year.

- It is intuitively clear that 100 DKK are worthier now than in a year.
- There are several reasons for this: You cannot use it straightaway, changing of prices, among others.

- It is intuitively clear that 100 DKK are worthier now than in a year.
- There are several reasons for this: You cannot use it straightaway, changing of prices, among others.
- Another relevant example is when you deposit your money in a bank account: You will receive a premium/compensation for doing this.

- It is intuitively clear that 100 DKK are worthier now than in a year.
- There are several reasons for this: You cannot use it straightaway, changing of prices, among others.
- Another relevant example is when you deposit your money in a bank account: You will receive a premium/compensation for doing this.
- Such a premium is described by an interest rate, which in our context will be represented by a positive number r > 0.

- It is intuitively clear that 100 DKK are worthier now than in a year.
- There are several reasons for this: You cannot use it straightaway, changing of prices, among others.
- Another relevant example is when you deposit your money in a bank account: You will receive a premium/compensation for doing this.
- Such a premium is described by an interest rate, which in our context will be represented by a positive number r > 0.
- We are mainly going to consider three forms of interest: simple, compounded and continuously compounded.

• In general, an interest represents a fraction of an investment which is paid once or through several periods.

- In general, an interest represents a fraction of an investment which is paid once or through several periods.
- Let $v_0 \in \mathbb{R}$ be our initial capital. An interest on v_0 is said to be simple if it pays $(1 + rt)v_0$ at time t > 0.

- In general, an interest represents a fraction of an investment which is paid once or through several periods.
- Let $v_0 \in \mathbb{R}$ be our initial capital. An interest on v_0 is said to be simple if it pays $(1 + rt)v_0$ at time t > 0.
- In terms of the wealth process, this means that

$$V_t = (1 + rt)v_0, \ 0 \le t \le T.$$

- In general, an interest represents a fraction of an investment which is paid once or through several periods.
- Let $v_0 \in \mathbb{R}$ be our initial capital. An interest on v_0 is said to be simple if it pays $(1 + rt)v_0$ at time t > 0.
- In terms of the wealth process, this means that

$$V_t = (1 + rt)v_0, \ 0 \le t \le T.$$

• This is indeed a stochastic process!

- In general, an interest represents a fraction of an investment which is paid once or through several periods.
- Let $v_0 \in \mathbb{R}$ be our initial capital. An interest on v_0 is said to be simple if it pays $(1 + rt)v_0$ at time t > 0.
- In terms of the wealth process, this means that

$$V_t = (1 + rt)v_0, \ 0 \le t \le T.$$

- This is indeed a stochastic process!
- This type of investment will be implemented by a passive agent: Nothing happens in between.

- If you get bored of waiting, then you can do the following:
 - 1 In the beginning put $v_0 > 0$ DKK in a bank that pays a simple interest at rate r > 0.

- If you get bored of waiting, then you can do the following:
 - **1** In the beginning put $v_0 > 0$ DKK in a bank that pays a simple interest at rate r > 0.
 - 2 The first month you withdraw your money with interest, i.e. you get

$$V_{1/12} = (1 + r/12)v_0.$$

3 Reinvest it, i.e. deposit your $V_{1/12}$ DKK in a bank account.

- If you get bored of waiting, then you can do the following:
 - **1** In the beginning put $v_0 > 0$ DKK in a bank that pays a simple interest at rate r > 0.
 - 2 The first month you withdraw your money with interest, i.e. you get

$$V_{1/12} = (1 + r/12)v_0.$$

- 3 Reinvest it, i.e. deposit your $V_{1/12}$ DKK in a bank account.
- 4 The next month you do the same, so that

$$V_{2/12} = (1 + r/12)V_{1/12} = (1 + r/12)^2 v_0.$$

- If you get bored of waiting, then you can do the following:
 - **1** In the beginning put $v_0 > 0$ DKK in a bank that pays a simple interest at rate r > 0.
 - 2 The first month you withdraw your money with interest, i.e. you get

$$V_{1/12} = (1 + r/12)v_0.$$

- 3 Reinvest it, i.e. deposit your $V_{1/12}$ DKK in a bank account.
- 4 The next month you do the same, so that

$$V_{2/12} = (1 + r/12)V_{1/12} = (1 + r/12)^2 v_0.$$

5 After a year you will get

$$V_1 = (1 + r/12)^{12} v_0.$$

- If you get bored of waiting, then you can do the following:
 - **1** In the beginning put $v_0 > 0$ DKK in a bank that pays a simple interest at rate r > 0.
 - 2 The first month you withdraw your money with interest, i.e. you get

$$V_{1/12} = (1 + r/12)v_0.$$

- 3 Reinvest it, i.e. deposit your $V_{1/12}$ DKK in a bank account.
- 4 The next month you do the same, so that

$$V_{2/12} = (1 + r/12)V_{1/12} = (1 + r/12)^2v_0.$$

5 After a year you will get

$$V_1 = (1 + r/12)^{12} v_0.$$

• Is this *strategy* better?

- If you get bored of waiting, then you can do the following:
 - **1** In the beginning put $v_0 > 0$ DKK in a bank that pays a simple interest at rate r > 0.
 - 2 The first month you withdraw your money with interest, i.e. you get

$$V_{1/12} = (1 + r/12)v_0.$$

- 3 Reinvest it, i.e. deposit your $V_{1/12}$ DKK in a bank account.
- 4 The next month you do the same, so that

$$V_{2/12} = (1 + r/12)V_{1/12} = (1 + r/12)^2 v_0.$$

5 After a year you will get

$$V_1 = (1 + r/12)^{12} v_0.$$

• Is this *strategy* better?...see the exercise set :).

Compounded interest

• We will say that an interest on $v_0 \in \mathbb{R}$ is **compounded** over $m \in \mathbb{N}$ periods at rate r > 0, if it pays

$$V_t = \left(1 + \frac{r}{m}\right)^{mt} v_0, \ \ 0 \le t \le T.$$

• When, m = 1, 12, 365 we will refer to such interests as annually, monthly and daily compounded, respectively.

Compounded interest

• We have the following properties: For all $0 \le t \le T$

$$\begin{split} \text{\it i)} \quad V_{t+1} &= \left(1 + \frac{r}{m}\right)^m V_t \\ \text{\it ii)} \quad \text{lf } m_1 > m_2, v_0 > 0 \Rightarrow \left(1 + \frac{r}{m_1}\right)^{tm_1} v_0 > \left(1 + \frac{r}{m_2}\right)^{tm_2} v_0. \\ \text{\it iii)} \quad \text{lf } m_1 > m_2, v_0 < 0 \Rightarrow \left(1 + \frac{r}{m_1}\right)^{tm_1} v_0 < \left(1 + \frac{r}{m_2}\right)^{tm_2} v_0. \end{split}$$

Compounded interest

• We have the following properties: For all $0 \le t \le T$

$$\begin{array}{l} \textit{ii)} \quad V_{t+1} = \left(1 + \frac{r}{m}\right)^{m} V_{t} \\ \\ \textit{iii)} \quad \text{If } m_{1} > m_{2}, v_{0} > 0 \Rightarrow \left(1 + \frac{r}{m_{1}}\right)^{tm_{1}} v_{0} > \left(1 + \frac{r}{m_{2}}\right)^{tm_{2}} v_{0}. \\ \\ \textit{iii)} \quad \text{If } m_{1} > m_{2}, v_{0} < 0 \Rightarrow \left(1 + \frac{r}{m_{1}}\right)^{tm_{1}} v_{0} < \left(1 + \frac{r}{m_{2}}\right)^{tm_{2}} v_{0}. \end{array}$$

- Compounded interest generates larger size of payments:
 - As investor, its more attractive cause it pays more.
 - As debtor, it is less convenient, you pay more interests on your debt.

Note now that

$$V_t = \left[\left(1 + \frac{r}{m}\right)^{\frac{m}{r}}\right]^{rt} v_0, \ \ 0 \le t \le T.$$

Since

$$\lim_{x\to\infty}\left(1+\frac{1}{x}\right)^x=e.$$

• Letting x = m/r, we get for every $0 \le t \le T$ that

$$\left[\left(1+\frac{r}{m}\right)^{\frac{m}{r}}\right]^{rt}v_0\to (e)^{rt}v_0,\ \text{as }m\to\infty.$$

• We will say that an interest on $v_0 \in \mathbb{R}$ is continuously compounded at rate r > 0 if

$$V_t = e^{rt}v_0, \ 0 \le t \le T.$$

• We will say that an interest on $v_0 \in \mathbb{R}$ is continuously compounded at rate r > 0 if

$$V_t = e^{rt}v_0, \ 0 \le t \le T.$$

Note that

$$dV_t = rV_t dt, \ V_0 = v_0.$$

 We will say that an interest on v₀ ∈ ℝ is continuously compounded at rate r > 0 if

$$V_t = e^{rt}v_0, \ 0 \le t \le T.$$

Note that

$$dV_t = rV_t dt, \ V_0 = v_0.$$

• On the other hand, if we let

$$V_t^m := \left(1 + \frac{r}{m}\right)^{tm} v_0, \ \ 0 \le t \le T.$$

 We will say that an interest on v₀ ∈ ℝ is continuously compounded at rate r > 0 if

$$V_t = e^{rt}v_0, \quad 0 \le t \le T.$$

Note that

$$dV_t = rV_t dt, \ V_0 = v_0.$$

• On the other hand, if we let

$$V_t^m := \left(1 + \frac{r}{m}\right)^{tm} v_0, \quad 0 \le t \le T.$$

• We get that

$$\underbrace{V_{t+1/m}^m - V_t^m}_{\approx dV_t} = V_t r(1/m) = rV_t \underbrace{\left(t + 1/m - t\right)}_{\approx dt}.$$

How valuable 1 DKK will be after a year?

At a simple interest:

$$(1+r)$$
 DKK.

• When the interest is compounded over *m* periods:

$$(1+\frac{r}{m})^m$$
 DKK.

• Continuously compounded interest:

We have the relation

$$(1+r) \leq (1+\frac{r}{m})^m < e^r.$$

Zero-Coupon Bonds

• As indicated before, a **bond** is a financial security that pays to the owner a chain of predetermined payments.

- As indicated before, a bond is a financial security that pays to the owner a chain of predetermined payments.
- A zero-coupon bond is a bond with a single payment F > 0 at time T > 0.

- As indicated before, a bond is a financial security that pays to the owner a chain of predetermined payments.
- A zero-coupon bond is a bond with a single payment F > 0 at time T > 0.
- The pay-off F is called the face value and T the maturity time.

- As indicated before, a bond is a financial security that pays to the owner a chain of predetermined payments.
- A zero-coupon bond is a bond with a single payment F > 0 at time T > 0.
- The pay-off F is called the face value and T the maturity time.
- How much will you be willing to pay/sell for such a financial asset?

- As indicated before, a bond is a financial security that pays to the owner a chain of predetermined payments.
- A zero-coupon bond is a bond with a single payment F > 0 at time T > 0.
- The pay-off *F* is called the face value and *T* the maturity time.
- How much will you be willing to pay/sell for such a financial asset?
- Well, it depends in which way we measure the time value of the money.

• Let $B_0 \ge 0$ be the value of the zero-coupon bond with face value F > 0 and maturity time T > 0.

- Let $B_0 \ge 0$ be the value of the zero-coupon bond with face value F > 0 and maturity time T > 0.
- Suppose that only annually compound interest at rate r > 0 is available.

- Let $B_0 \ge 0$ be the value of the zero-coupon bond with face value F > 0 and maturity time T > 0.
- Suppose that only annually compound interest at rate r > 0 is available.
- As buyer: What if

$$B_0 > \frac{F}{(1+r)^T}$$
?.

- Let $B_0 \ge 0$ be the value of the zero-coupon bond with face value F > 0 and maturity time T > 0.
- Suppose that only annually compound interest at rate r > 0 is available.
- As buyer: What if

$$B_0 > \frac{F}{(1+r)^T}?.$$

As a seller: What if

$$B_0 < \frac{F}{(1+r)^T}.$$

Therefore, the value that both parts will certainly agree on is

$$B_0 = \frac{F}{(1+r)^T}.$$

• What if at time $1 \le t \le T$ we want to get rid of such a bond, at which price it should be sold?

Therefore, the value that both parts will certainly agree on is

$$B_0 = \frac{F}{(1+r)^T}.$$

- What if at time $1 \le t \le T$ we want to get rid of such a bond, at which price it should be sold?
- Note that at this time, the bond can be thought as a "new" zero-coupon bond with face value F > 0 and maturity time T t.

Therefore, the value that both parts will certainly agree on is

$$B_0 = \frac{F}{(1+r)^T}.$$

- What if at time $1 \le t \le T$ we want to get rid of such a bond, at which price it should be sold?
- Note that at this time, the bond can be thought as a "new" zero-coupon bond with face value F > 0 and maturity time T t.
- Thus,

$$B_t = \frac{F}{(1+r)^{T-t}}, \quad 0 \le t \le T.$$

Therefore, the value that both parts will certainly agree on is

$$B_0 = \frac{F}{(1+r)^T}.$$

- What if at time $1 \le t \le T$ we want to get rid of such a bond, at which price it should be sold?
- Note that at this time, the bond can be thought as a "new" zero-coupon bond with face value F > 0 and maturity time T t.
- Thus,

$$B_t = \frac{F}{(1+r)^{T-t}}, \quad 0 \le t \le T.$$

• In the exercise set of today you must show that this formula changes depending on the type of interest that is paid.