Lab 14: RNAseq Mini Project2

AUTHOR
Tiffany Chin 15700705

Import Data

We need two things "Counts" and "MetaData" (what DESeq calls colData - as it describes the columns in Counts)

```
counts <- read.csv("GSE37704_featurecounts.csv", row.names=1)
head(counts)</pre>
```

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR4933	371				
ENSG00000186092		0				
ENSG00000279928		0				
ENSG00000279457		46				
ENSG00000278566		0				
ENSG00000273547		0				
ENSG00000187634	2	258				

```
metadata <- read.csv("GSE37704_metadata.csv")
head(metadata)</pre>
```

```
id condition
1 SRR493366 control_sirna
2 SRR493367 control_sirna
3 SRR493368 control_sirna
4 SRR493369 hoxa1_kd
5 SRR493370 hoxa1_kd
6 SRR493371 hoxa1 kd
```

Data Cleanup

We want the columns in counts to match the rows in the metadata

```
colnames(counts)
```

- [1] "length" "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370"
- [7] "SRR493371"

```
metadata$id
```

[1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"

We can get rid of the first column in counts to make these match

```
countData <- counts[,-1]
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

```
colnames(countData) == metadata$id
```

[1] TRUE TRUE TRUE TRUE TRUE TRUE

```
#to check if all conditions are true
all(colnames(countData) == metadata$id)
```

[1] TRUE

Filter out zero counts

It is standard practice to remove any genes/transcripts that we have no data for- i.e. zero counts in all columns.

```
#keep genes with more than 0 counts across the conditions summed
#just removing genes with 0 in all samples
to.keep.inds <- rowSums(countData) > 0
cleanCounts <- countData[to.keep.inds,]
head(cleanCounts)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357

ENSG00000187583 24 48 65 44 48 64 ENSG00000187642 4 9 16 14 16 16

Setup DESEq object

library(DESeq2)

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, saveRDS, setdiff, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

findMatches

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

localhost:3795

3/12

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars

Loading required package: Biobase

Welcome to Bioconductor

```
Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'.
```

Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

rowMedians

The following objects are masked from 'package:matrixStats':

anyMissing, rowMedians

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

localhost:3795 4/12

DESeq

```
dds <- DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing

res <- results(dds)</pre>
```

Inspect Results

```
head(res)
```

```
log2 fold change (MLE): condition hoxa1 kd vs control sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 6 rows and 6 columns
                 baseMean log2FoldChange
                                             lfcSE
                                                         stat
                                                                   pvalue
                <numeric>
                               <numeric> <numeric> <numeric>
                                                                <numeric>
                               0.1792571 0.3248216
ENSG00000279457
                  29.9136
                                                     0.551863 5.81042e-01
ENSG00000187634 183.2296
                               0.4264571 0.1402658
                                                     3.040350 2.36304e-03
                              -0.6927205 0.0548465 -12.630158 1.43989e-36
ENSG00000188976 1651.1881
ENSG00000187961 209.6379
                               0.7297556 0.1318599
                                                     5.534326 3.12428e-08
ENSG00000187583
                  47.2551
                               0.0405765 0.2718928
                                                     0.149237 8.81366e-01
FNSG00000187642
                  11.9798
                               0.5428105 0.5215599
                                                     1.040744 2.97994e-01
                       padj
                  <numeric>
ENSG00000279457 6.86555e-01
ENSG00000187634 5.15718e-03
ENSG00000188976 1.76549e-35
```

Data Viz

ENSG00000187961 1.13413e-07 ENSG00000187583 9.19031e-01 ENSG00000187642 4.03379e-01

```
plot(res$log2FoldChange, -log(res$padj))
```

localhost:3795 5/12

Annotation of genes

First, I need to "translate" our ENSEMBL IDs in res object to Entrez and gene symbol formats.

For this, I will use the AnnotationDbi package and its mapIds() function.

```
library(AnnotationDbi)
library(org.Hs.eg.db)
```

```
columns(org.Hs.eg.db)
 [1] "ACCNUM"
                     "ALIAS"
                                    "ENSEMBL"
                                                     "ENSEMBLPROT"
                                                                    "ENSEMBLTRANS"
 [6] "ENTREZID"
                     "ENZYME"
                                     "EVIDENCE"
                                                     "EVIDENCEALL"
                                                                    "GENENAME"
                     "G0"
                                     "GOALL"
                                                     "IPI"
                                                                    "MAP"
[11] "GENETYPE"
[16] "OMIM"
                                     "ONTOLOGYALL"
                                                    "PATH"
                                                                    "PFAM"
                     "ONTOLOGY"
[21] "PMID"
                     "PROSITE"
                                    "REFSEQ"
                                                    "SYMBOL"
                                                                    "UCSCKG"
[26] "UNIPROT"
```

We already have "ENSEMBL". Let's map to "SYMBOL", "ENTREZID", "GENENAME" using "ENSEMBL"

```
res$genename <- mapIds(org.Hs.eg.db,
    keys = rownames(res),
    keytype= "ENSEMBL",
    column = "GENENAME")</pre>
```

'select()' returned 1:many mapping between keys and columns

```
res$entrez <- mapIds(org.Hs.eg.db,
    keys = rownames(res),
    keytype= "ENSEMBL",
    column = "ENTREZID")</pre>
```

'select()' returned 1:many mapping between keys and columns

```
res$symbol <- mapIds(org.Hs.eg.db,
    keys = rownames(res),
    keytype= "ENSEMBL",
    column = "SYMBOL")</pre>
```

'select()' returned 1:many mapping between keys and columns

```
head(res)
```

log2 fold change (MLE): condition hoxa1 kd vs control sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 6 rows and 9 columns

```
baseMean log2FoldChange
                                             lfcSE
                                                         stat
                                                                   pvalue
                               <numeric> <numeric> <numeric>
                <numeric>
                                                                <numeric>
ENSG00000279457
                 29.9136
                               0.1792571 0.3248216
                                                     0.551863 5.81042e-01
ENSG00000187634 183.2296
                               0.4264571 0.1402658
                                                     3.040350 2.36304e-03
ENSG00000188976 1651.1881
                              -0.6927205 0.0548465 -12.630158 1.43989e-36
                                                     5.534326 3.12428e-08
FNSG00000187961 209.6379
                               0.7297556 0.1318599
                 47.2551
                               0.0405765 0.2718928
                                                     0.149237 8.81366e-01
ENSG00000187583
ENSG00000187642
                  11.9798
                               0.5428105 0.5215599
                                                     1.040744 2.97994e-01
                       padj
                                          genename
                                                        entrez
                                                                    symbol
                                       <character> <character> <character>
                  <numeric>
ENSG00000279457 6.86555e-01
                                                            NA
                                                                        NA
ENSG00000187634 5.15718e-03 sterile alpha motif ..
                                                        148398
                                                                    SAMD11
ENSG00000188976 1.76549e-35 NOC2 like nucleolar ...
                                                                     N0C2L
                                                         26155
ENSG00000187961 1.13413e-07 kelch like family me..
                                                                    KLHL17
                                                        339451
ENSG00000187583 9.19031e-01 pleckstrin homology ...
                                                         84069
                                                                   PLEKHN1
ENSG00000187642 4.03379e-01 PPARGC1 and ESRR ind..
                                                                     PERM1
                                                         84808
```

Before going any further, let's focus in on a subset of "top" hits

We can use a starting point log 2FC of +2/-2 and adjusted P-value of 0.05.

localhost:3795 7/12

```
#use absolute value to negate the sign. returns T/F for genes that have values for more t #use & to combine both log2FC and padj filters top.inds <- (abs(res$log2FoldChange)) > 2 & (res$padj < 0.05)
```

Why are there some values in our dataset that aren't T or F, but "NA"? These should be false, so we need to manually change them to false

```
top.inds[is.na(top.inds)] <- FALSE</pre>
```

Let's save our "top genes" to a CSV file

```
top.genes <- res[top.inds, ]
write.csv(top.genes, file = "top_geneset.csv")</pre>
```

Pathway Analysis

Now we can do some pathway analysis!

```
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

```
library(gage)
```

```
library(gageData)

data(kegg.sets.hs)
data(sigmet.idx.hs)
```

```
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
```

The **gage** function wants a vector of importance as input with gene names as labels - KEGG speaks ENTREZ

```
foldchanges <- res$log2FoldChange
names(foldchanges) <- res$entrez
head(foldchanges)</pre>
```

```
<NA> 148398 26155 339451 84069 84808
0.17925708 0.42645712 -0.69272046 0.72975561 0.04057653 0.54281049
```

Run gage with these values

```
keggres <- gage(foldchanges, gsets = kegg.sets.hs)</pre>
```

```
attributes(keggres)
```

\$names

[1] "greater" "less" "stats"

```
head(keggres$less)
```

```
p.geomean stat.mean
                                                                     p.val
hsa04110 Cell cycle
                                      8.995727e-06 -4.378644 8.995727e-06
hsa03030 DNA replication
                                      9.424076e-05 -3.951803 9.424076e-05
hsa03013 RNA transport
                                      1.246882e-03 -3.059466 1.246882e-03
hsa03440 Homologous recombination
                                      3.066756e-03 -2.852899 3.066756e-03
hsa04114 Oocyte meiosis
                                      3.784520e-03 -2.698128 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                            q.val set.size
                                                                    exp1
hsa04110 Cell cycle
                                      0.001448312
                                                        121 8.995727e-06
hsa03030 DNA replication
                                      0.007586381
                                                         36 9.424076e-05
hsa03013 RNA transport
                                      0.066915974
                                                        144 1.246882e-03
                                                         28 3.066756e-03
hsa03440 Homologous recombination
                                      0.121861535
hsa04114 Oocyte meiosis
                                      0.121861535
                                                        102 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 0.212222694
                                                         53 8.961413e-03
```

```
pathview(foldchanges, pathway.id = "hsa04110")
```

Info: Working in directory /Users/2pmti/Documents/UCSD:Salk/Grad school/BGGN213
Bioinformatics

Info: Writing image file hsa04110.pathview.png

localhost: 3795 9/12

^{&#}x27;select()' returned 1:1 mapping between keys and columns

pathway view for hsa04110

Gene Ontology analysis

```
data(go.sets.hs)
data(go.subs.hs)

#focus on biological processes subset of GO
gobpsets <- go.sets.hs[go.subs.hs$BP]

gores <- gage(foldchanges, gsets = gobpsets)</pre>
```

```
head(gores$less)
```

```
p.geomean stat.mean p.val GO:0048285 organelle fission 1.536227e-15 -8.063910 1.536227e-15 GO:0000280 nuclear division 4.286961e-15 -7.939217 4.286961e-15 GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
```

G0:0007059	chromosome segregation	2.028624e-11	-6.878340	2.028624e-11
G0:0000236	mitotic prometaphase	1.729553e-10	-6.695966	1.729553e-10
		q.val	set.size	exp1
G0:0048285	organelle fission	5.841698e-12	376	1.536227e-15
G0:0000280	nuclear division	5.841698e-12	352	4.286961e-15
G0:0007067	mitosis	5.841698e-12	352	4.286961e-15
GO:0000087	M phase of mitotic cell cycle	1.195672e-11	362	1.169934e-14
GO:0007059	chromosome segregation	1.658603e-08	142	2.028624e-11
G0:0000236	mitotic prometaphase	1.178402e-07	84	1.729553e-10

Reactome Analysis

To run reactome online, we need to make a wee text file with one gene name per line.

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, qu
```


reactome mitotic M phase

