סיכומי הרצאות - חדו"א 1א

מיכאל פרבר ברודסקי

תוכן עניינים 2 2 3 3 3.2 3 3.3 3 3.4 3 3.5 3.6 4 טורים 4.1 5 מבחן ה[(השוואה)(שורש)(מנה)] (הגבולי)? (לטורים חיוביים)? 4.2 4.3 6 4.4 טענות נוספות על טורים 6 4.5 פונקציות 5 5.1 5.2 5.3 7 5.4

1 נוסחאות כלליות

בינום:

א"ש הממוצעים:

 $\left(1+x\right)^{n}\geq1+nx$ מתקיים $x>-1,n\in\mathbb{N}$ לכל

א"ש ברנולי: א"ש המשולש:

 $|a+b| \le |a| + |b|$

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$

 $\frac{a_1 + \dots + a_n}{n} \ge \sqrt[n]{a_1 \cdot \dots \cdot a_n} \ge \frac{n}{\frac{1}{a_1} + \dots + \frac{1}{a_n}}$

2 חסמים עליונים ותחתונים

 $.x \leq M$, $x \in A$ יקרא חסם מלעיל של A אם לכל M יקרא חסם מלרע של A אם לכל A יקרא חסם מלרע של A

אקסיומת השלמות: לכל קבוצה לא ריקה וחסומה מלעיל קיים חסם עליון קטן ביותר, ונסמן $\sup A$ אותו ב־

a < b < a < b כך ש־a < a < b כד שימושית: אם אז לכל $b = \sup A$ אז לכל שימושית: אם

|b-a|<arepsilon בך ש־ס $a\in A$ קיים קיים לכל ולכל אם אם לכל שב אם בבת אם הגדרה: נאמר א

 $s(a,b)\cap S
eq \emptyset$, $a< b\in \mathbb{R}$ לכל R צפופה ב־ $S\subseteq \mathbb{R}$ צפופה ב

 $.q \in (a,b)$ טענה: לכל קיים q קיים ,a < b

a>0הוכחה: נניח ש־0. a>0 היי a>0 פ"- a>0. יהי a>0 המספר הקטן ביותר כך ש־a>0. יהי a<0 המספר הקטן אז a>0 אז בנוסף, בנוסף, $a+\frac{1}{k}<a+(b-a)=b$ ולכן $a+\frac{m-1}{k}<a+(b-a)=b$ וסיימנו. אם $a>\frac{m-1}{k}<a+(b-a)=b$ בנוסף, אם בוסף, אז a>0 בנוסיף אם $a+\frac{1}{k}<a+(b-a)=b$ ולכן אם $a+\frac{1}{k}<a+(b-a)=b$ בנוסיף את בנוסיף את בנוסיף את בוסיף את בוסי

[a,b]ענה: \mathbb{Q} צפופה ב־ \mathbb{R} ו־ $[a,b] \cap \mathbb{Q}$ צפופה ב

3 סדרות

 $\left(a_{n}
ight)_{n=1}^{\infty}$ או $\left(a_{n}
ight)$ נסמן סדרות ב־

 $a_n \leq M$, מער שסדרה **חסומה מלעיל** אם קיים M כך שלכל

 $M \leq a_n$, אם כך שלכל M נאמר שסדרה **חסומה מלרע** אם קיים

 $|a_n| \leq M$, אם כך שלכל M כד שסדרה אם נאמר אם קיים M

3.1 הגדרת הגבול

 $a_n o L$ אם: או $\lim_{n o \infty} a_n = L$ ונסמן, ונסמן, הוא (a_n) או נאמר שהגבול של

$$\forall \varepsilon > 0. \exists n_0 \in \mathbb{N}. \forall n > n_0. |a_n - L| < \varepsilon$$

 $\lim_{n \to \infty} a_n = \infty$ אם, אם, אוו $\lim_{n \to \infty} a_n = \infty$ ונסמן, הוא או (a_n) אוו נאמר שהגבול של

$$\forall M > 0. \exists n_0 \in \mathbb{N}. \forall n > n_0. a_n > M$$

L=L' אז $\lim_{n o\infty}a_n=L,\lim_{n o\infty}a_n=L'$ משפט (יחידות הגבול): אם

 $:\!L$ את בשבילו את בריך לדעת בשבילו את סדרות קושי: זהו תנאי שקול להתכנסות, שלא צריך לדעת בשבילו

$$\forall \varepsilon > 0. \exists n_0 \in \mathbb{N}. \forall m, n \geq n_0. |a_m - a_n| < \varepsilon$$

3.2 חשבון גבולות

יהיו $a_n o a, b_n o b$ ש־ל סדרות (a_n), (b_n) יהיו

- $a_n + b_n \rightarrow a + b \bullet$
 - $a_n \cdot b_n \to a \cdot b$ •
- $b \neq 0$ ו היס לכל $b_n \neq 0$ אם שו $\frac{a_n}{b_n} o \frac{a}{b}$

$$rac{1}{b_n} o \infty$$
 אם $b=0$ לכל $b_n
eq 0$ אז $b=0$

- $|a_n| \to |a| \bullet$
- n לכל $a_n \geq 0$ אם $\sqrt{a_n} o \sqrt{a}$

3.3 טענות על גבולות

 $a \leq b$:אז: $a_n \leq b_n$ שיה: יהיו מתכנסות סדרות ($a_n) o a, (b_n) o b$ טענה: יהיו

 $x_n o x, y_n o x$ אם $x_n o x$ אם $x_n o x_n, y_n, z_n$ כלל הסנדוויץ': יהיו x_n, y_n, z_n סדרות כך ש־ x_n, y_n, z_n יהיו יהיו $z_n o x_n$

 $x_n o \infty$ אז $y_n o \infty$ ו ו־ $x_n o y_n$ אז הרחבה: אם

 $|a_n| > r$, $n > n_0$ כך שלכל n_0 כיים n_0 אז קיים $a_n \to L
eq 0$ טענה: תהי $a_n \to L \neq 0$ טענה:

משפט (שטולץ): יהיו a_n,b_n סדרות כך ש־ b_n מונוטונית עולה ו־ a_n,b_n או ש־ a_n,b_n סדרות משפט (שטולץ): יהיו מחרוסות ל- a_n,b_n

$$\lim_{n o\infty}rac{a_n}{b_n}=L$$
 אזי, אם $\lim_{n o\infty}rac{a_{n+1}-a_n}{b_{n+1}-b_n}=L$ במובן הרחב

3.4 מבחן ה[(שורש)(מנה)] (הגבולי)?

 $\lim_{n o\infty}a_n=0$ אזי $(a_n)^{1/n}\leq lpha$ כך ש־ $lpha\leq 0$ כך אזי $0\leq lpha<1$ וקיים $a_n\geq 0$ וקיים $\lim_{n o\infty}a_n^{1/n}=L$ ו אזי, $\lim_{n o\infty}a_n>0$ ו־ $a_n>0$ ו־ $a_n>0$

- $\lim_{n \to \infty} a_n = 0$ th L < 1 on ullet
- $\lim_{n \to \infty} a_n = \infty$ th L > 1 or ullet

, אזי, $\lim_{n o \infty} rac{a_{n+1}}{a_n} = L$ ר וי $a_n > 0$ אזי,

- $\lim_{n \to \infty} a_n = 0$ th L < 1 DN ullet
- $\lim_{n\to\infty}a_n=\infty$ th L>1 on •

 $a_n>0$ משפט המנה הכללי:

- $\lim_{n \to \infty} a_n = 0$ אם קיים L < 1 ממקום מסוים בהחל ממקום כך L < 1
- $\lim_{n \to \infty} a_n = \infty$ אז $a_{n+1} > La_n$ מסוים מסוים ל בך עהחל כך L > 1 סיים •

3.5 סדרות מונוטוניות

 $a_n o \sup a_n$:מונוטונית עולה וחסומה מלעיל. אזי (a_n) מונוטונית עולה

 $a_n o \infty$: אזי: מונוטונית עולה ולא חסומה מלעיל. אזי: מונוטונית עולה ולא

3.6 תתי סדרות

 (a_n) שדרה וד (n_k) סדרה ממש של טבעיים. אז מש סדרה וד (n_k) סדרה חדרה וד $(a_n)_{k=1}^\infty$ ונסמן בי $(a_{n_k})_{k=1}^\infty$

משפט הירושה: תהי (a_n) סדרה ו־ (a_{n_k}) תת־סדרה.

- $a_{nk} \to L$ th $a_n \to L$ dh ullet
- אם a_{n_k} מונוטונית עולה a_n מונוטונית עולה \bullet
 - אם a_{n_k} אם חסומה a_n •

משפט בולצנו־ויירשטראס: לכל סדרה חסומה יש תת־סדרה מתכנסת ומונוטונית. אם הסדרה לא חסומה יש תת־סדרה מונוטונית מתבדרת ל־ $\infty\pm$.

3.6.1 גבולות חלקיים

התלקיים, הבולות הגבול אם יימת ב־ $\hat{\mathcal{P}}(a_n)$ נסמן ב־ $a_{n_k} \to L$ את קבוצת הגבולות החלקיים, ב- $\pm \infty$ את קבוצת הגבולות החלקיים בלי

 $\lim\sup a_n=\overline{\lim}a_n=\sup\hat{\mathcal{P}}\left(a_n
ight),\qquad \liminf a_n=\underline{\lim}a_n=\inf\hat{\mathcal{P}}\left(a_n
ight)$ בנוסף, נגדיר:

הערה: על פי בולצנו־ויירשטראס, תמיד קיים גבול חלקי

 $:\iff L=\limsup a_n$ חסומה. תהי (a_n) טענה שימושית:

(חוץ ממספר סופי של איברים) מעט תמיד $a_n < L + arepsilon$,arepsilon > 0 לכל |.1|

(באינסוף איברים) תופעה שכיחה $L-\varepsilon < a_n$, $\varepsilon > 0$ לכל .2

. סענה: $\lim \sup a_n$, $\lim \inf a_n \iff$ חסומה (a_n) סענה:

 $-\infty/\infty\iff$ טענה: חסומה מלעיל/מלרע אינה אינה אינה אינה טענה: (a_n)

טענה: יש גבול חלקי איש הרחב מתכנסת מתכנסת מתכנסת שענה: (a_n)

 $\inf a_n \leq \liminf a_n \leq \limsup a_n \leq \sup a_n$ סענה: בסדרה חסומה,

 $\mbox{,}(x_n)\subseteq B$ סדרה אם לכל סדרה ש־B קבוצה. נאמר ש־B קבוצה סגורה אם קבוצה סגורה אם ההי $B\subseteq\mathbb{R}$ תהי תהי הי $x_n\to x\Longrightarrow x\in B$

משפט: אם $\mathcal{P}\left(a_{n}\right)$ אז חסומה $\left(a_{n}\right)$ קבוצה סגורה.

4 טורים

 $.s_n = \sum_{k=1}^n a_k$ סדרה. נגדיר את סדרת הסכומים החלקיים מדרה. נגדיר את סדרה הסכומים החלקיים החלקיים $.s_n = \sum_{k=1}^n a_k$ מתכנסת הגדרה: נאמר ש

הערה: הטור הוא עצם נפרד מסדרת הסכומים החלקיים, אסור לבלבל ביניהם

|q| < 1 עבור $\sum_{n=0}^{\infty} q^n = \frac{1}{1-q}$ עבור הגיאומטרי:

 $a_n o 0$ אז מתכנס אז $\sum a_n$ טענה: אם

 $orall arepsilon>0. \exists n_0. orall m\geq n_0. orall p\in \mathbb{N}. \left|\sum_{k=m}^{m+p}a_k
ight|<arepsilon$ טורים:

חשבון טורים:

- מתכנס מתכנס $\sum (a_n+b_n)=K+L$ מתכנסים $\sum a_n=K,\sum b_n=L$ אם
 - מתכנס מתכנס $\sum a a_n = \alpha L$ מתכנס מתכנס $\sum a_n = L, \alpha \in \mathbb{R}$

טור חיובי 4.1

n לכל $a_n \geq 0$ אם סור חיובי טור $\sum a_n$

משפט: טור חיובי מתכנס \iff חסומה מלעיל

משפט: יהי $\sum a_n$ טור חיובי. אם $\sum a_n$ מתכנס, אז כל טור שמתקבל מסידור מחדש של האיברים בו גם מתכנס ולאותו הגבול.

4.2 מבחן ה[(השוואה)(שורש)(מנה)] (הגבולי)? (לטורים חיוביים)?

 $\sum a_n\succcurlyeq \sum b_n$ נסמן, $a_n\ge b_n$ נסמוים, אם החל ממקום טורים. אם החל $\sum a_n,\sum b_n$ ניהיו יהיו $\sum a_n\succcurlyeq \sum b_n$ שלוביים כך שי $\sum a_n\succcurlyeq \sum b_n$ אז:

- מתכנס $\sum b_n$ מתכנס מתכנס.1
- מתבדר $\sum a_n$ מתבדר מתבדר 2.

0 < q < 1 יהי חיובי טור חיובי יהי יהי מבחן השורש לטורים חיוביים: יהי

. אם החל ממקום מסוים, $\sqrt[n]{a_n} < q$ מתכנס מתכנס החל ממקום

 $a_n>0$ מבחן המנה לטורים חיוביים: יהי a_n יהי $a_n>0$ טור חיובי כך

- מתכנס מחור אז הטור מחור מסוים מסוים כך שהחל כך 0 < q < 1 אז מתכנס .1
 - מתבדר מחל אז הטור מסוים מסוים מסוים אז הטור מתבדר .2

 $a_n>0$ ש־ $a_n>0$ לכל מבחן המנה הגבולי לטורים חיוביים: יהי

- מתכנס $\sum a_n$, $\limsup rac{a_{n+1}}{a_n} < 1$ מתכנס .1
- מתבדר $\sum a_n$, $\liminf rac{a_{n+1}}{a_n} > 1$ מתבדר .2

מבחן השורש הגבולי: יהי $\sum a_n$ טור חיובי.

- מתכנס $\sum a_n$ אז $\lim \sup \sqrt[n]{a_n} < 1$ מתכנס.
- מתבדר $\sum a_n$ אז $\lim \sup \sqrt[n]{a_n} > 1$ מתבדר .2

4.3 טור מתכנס בהחלט

נאמר ש־ a_n מתכנס בהחלט אם $\sum |a_n|$ מתכנס. אם טור לא מתכנס בהחלט נאמר שהוא "מתכנס בתנאי"

 $\sum a_n$ אז מתכנס מתכנס מתכנס $\sum a_n$ אם סענה:

$$.\overline{a}_n=rac{|a_n|+a_n}{2}, \underline{a}_n=rac{|a_n|-a_n}{2}$$
 טענה שימושית: נסמן

$$\begin{array}{ll} a_n \geq 0 & \overline{a}_n = a_n & \underline{a}_n = 0 \\ a_n \leq 0 & \overline{a}_n = 0 & \underline{a}_n = -a_n \end{array}$$

 $a_n = \overline{a}_n - \underline{a}_n$ ומתקיים ש

.טענה: אם $\sum a_n$ מתכנסים אז $\sum \overline{a}_n, \sum \underline{a}_n$ מתכנס בהחלט. $\sum \overline{a}_n, \sum \underline{a}_n \to \infty$ אז מתכנס בתנאי, אז מתכנס בתנאי, אם מתכנס בתנאי, אז

4.4 טורי חזקות

.(או מתייחסים מחות מחזקות הוא אבל פחות מתייחסים אליו). $\sum a_n (x-x_0)^n$ טור חזקות הוא טור מהצורה

0 טור חזקות בהכרח מתכנס באיזשהו x, למשל

משפט (שנקרא רדיוס ההתכנסות) קיים "מספר" קיים ההתכנסות) לכל טור חזקות ההתכנסות קיים "מספר" (שנקרא רדיוס ההתכנסות) לכל הטור מתבדר. x>R, x<-Rהטור מתכנס בהחלט, ול

הערה: משפט $\pm R$ לא מתייחס ל- $\pm R$ ל מתייחס ל-Abel משפט

טענות נוספות על טורים 4.5

 $A_1=$ טענה (הכנסת סוגריים): יהי $\sum a_n$ טור מתכנס ור a_n סור מתכנס וראונה של אינדקסים. נסמן כסענה (הכנסת סוגריים): יהי $a_1+\cdots+a_{n_1}, A_2=a_{n_1+1}+\cdots+a_{n_2},\ldots$

טענה הפוכה: תהי (a_n) סדרה ו n_k סד

 $\sum a_n = (a_1 + a_2) + (a_3 + a_4 + a_5) + \dots$ שימוש: בתנאים הנכונים,

 $\sum {(-1)}^n a_n$ אזי הטור ל־0. אזי יורדת אי־שלילית ההי תהי תהי תהי מתכנסים: תהי מתכנסים: תהי מתכנס.

 $a_n b_n$ מתכנס אם אחד מהניסוחים הבאים מתקיים: באים סדרות. $\sum a_n b_n$ סדרות.

 $|s_n^a| < M$ ו היאי ווי $b_n \searrow 0$ או או $b_n \nearrow 0$:Dirichlet תנאי

מתכנס מתכנס $\sum a_n$ יו $|b_n| < M$ וי או $b_n \searrow {f :} {f Abel}$ מתכנס

משפט יהי לסדר לחדר ליהי בתנאי. אזי לכל התכנס בתנאי. אוי לסדר את יהי ג
Riemann משפט הטור ליה או שאפילו לא יתכנס במובן הרחב. הטור כך שיתכנס ל
 sאו שאפילו לא יתכנס במובן הרחב.

5 פונקציות

5.1 הגדרת הגבול

בשביל $\lim_{x \to x_0} f(x)$ מוגדרת בסביבה נקובה כלשהי.

$\lim_{x \to x_0} f\left(x\right) = L$	$\forall \varepsilon > 0. \exists \delta > 0. \forall x \in (x_0 - \delta, x_0 + \delta) \setminus \{x_0\}. f(x) - L < \varepsilon$	Cauchy
	$f\left(x_{n} ight) ightarrow L$ אז $x_{n} ightarrow x_{0}$ אם נקובה, אם וווע סביבה ווווע ווווע ווווע סביבה אז ווווע ווווע וווווע איז א	Heine
$\lim_{x \to x_0^+} f(x) = L$	$\forall \varepsilon > 0. \exists \delta > 0. \forall x \in (x_0, x_0 + \delta) . f(x) - L < \varepsilon$	Cauchy
$x \rightarrow x_0^+$	$f\left(x_{n} ight) ightarrow L$ れ $x_{0} < x_{n} ightarrow x_{0}$ つ $\left(x_{n} ight) \subseteq I \setminus \left\{x_{0} ight\}$	Heine
$\lim_{x \to \infty} f(x) = L$	$\forall \varepsilon > 0. \exists M > 0. \forall x > M. f(x) - L < \varepsilon$	Cauchy
	$f\left(x_{n} ight) ightarrow L$ th $x_{n} ightarrow\infty$	Heine
$\lim_{x \to x_0^+} f(x) = -\infty$	$\forall M > 0. \exists \delta > 0. \forall x \in (x_0, x_0 + \delta). f(x) < -M$	Cauchy
	$f\left(x_{n} ight) ightarrow -\infty$ th $x_{0} < x_{n} ightarrow x_{0}$, $\left(x_{n} ight) \subseteq I \setminus \left\{x_{0} ight\}$	Heine

5.2 חשבון גבולות (דומה לסדרות)

 $\lim_{x o x_0}f\left(x
ight)=L_1,\lim_{x o x_0}g\left(x
ight)=L_2$ יהיו $f,g:I\setminus\{x_0\} o\mathbb{R}$ יהיו

- $\lim_{x \to x_0} f(x) + g(x) = L_1 + L_2 \bullet$
 - $\lim_{x \to x_0} f(x) \cdot g(x) = L_1 \cdot L_2 \bullet$
- $\lim_{x o x_0}rac{f\left(x
 ight)}{g\left(x
 ight)}=rac{L_1}{L_2}$:($g\left(x
 ight)
 eq 0$ אם סביבה נקובה בה טביבה נקובה לימת סביבה נקובה בה $L_2
 eq 0$

 $f:I\setminus\{x_0\} o J\setminus\{y_0\}$ תהיינה $x_0\in I,y_0\in J$ ר קטעים פתוחים ו־ $x_0\in I,y_0\in J$ ר יהיו $\lim_{x o x_0}g\left(f\left(x
ight)
ight)=L$ אז: $\lim_{y o y_0}g\left(y
ight)=L$ ו־ $\lim_{x o x_0}f\left(x
ight)=y_0$ אם $g:J\setminus\{x_0\} o\mathbb{R}$ ר

5.3 גבולות שימושיים

.(מחשבון גבולות) $\lim_{x \to x_0} \frac{p\left(x\right)}{q\left(x\right)} = \frac{p\left(x_0\right)}{q\left(x_0\right)}$, $\lim_{x \to x_0} x = x_0$ בגלל ש

$$\lim_{x o\infty}a^{1/x}=1$$
 , $a>0$ עבור $\lim_{x o0}rac{\sin(x)}{x}=1$

5.4 רציפות

 $f:I o\mathbb{R}$ יהי $x_0\in I$ אז: הגדרה: יהי וויהי קטע פתוח ויהי

- $\lim_{x\to x_0} f\left(x\right) = f\left(x_0\right)$ אם x_0 רציפה ב־ •
- Iבים בכל נקודה ביf אם fרציפה בכל נקודה בי

 $\lim_{x o a^+}f\left(x
ight)=f\left(a
ight)\iff a$ ביפה מימין בה fר איז הוי $f:[a,b) o\mathbb{R}$ תהי תהי תהי תהי לענה: fרציפה ביfרציפה מימין ומשמאל ביfרציפה ביfרציפה בי

 x_0 יון נקודות אי רציפות: תהי f מוגדרת ב־ x_0 ו־ x_0 נקודה פנימית.

- נאמר שיש ב־ x_0 אי רציפות סליקה כי $\lim_{x\to x_0}f(x)\neq f(x_0)$ אבל $\lim_{x\to x_0}f(x)$ נאמר שיש ב- $\lim_{x\to x_0}f(x)$ אפשר לסלק אותה עם החלפת ערך אחד.
- נאמר שיש $\lim_{x\to x_0^+}f(x)\neq\lim_{x\to x_0^-}f(x)$ אבל $\lim_{x\to x_0^+}f(x),\lim_{x\to x_0^-}f(x)$ נאמר שיש .2 נקודת אי־רציפות ממין ראשון.
 - .3 אינו קיים מכל סיבה אחרת, היא ממין שני. $\lim_{x \to x_0} f(x)$

 $f:(a,b) o\mathbb{R}$ עולה.

- $\lim_{x\to b^-} f(x) = \sup (f(a,b))$ אם f חסומה מלעיל:
- $\lim_{x\to b^-} f(x) = \infty$:(a,b)אם אינה חסומה מלעיל ב־f אינה חסומה f

 $\mathbf{0}$ טענה: תהי $x_0\in I$ אזי קיימים וסופיים $f:I\to\mathbb{R}$ אזי קיימים וסופיים וווווווווות, $\lim_{x\to x_0^+}f(x),\lim_{x\to x_0^-}f(x)$