A General Purpose Local Search Solver

October 13, 2015

Contents

1	Intr	roduction	3
	1.1	Mixed Integer Programming	3
	1.2	Constraint Programming	3
	1.3	Heuristics and Local Search	3
		1.3.1 Construction Heuristics	3
		1.3.2 Local Search and Neighborhoods	3
		1.3.3 Metaheuristics	į
2	Mo	deling	3
	2.1	Variables	3
	2.2	Constraints	3
	2.3	Invariants and One-way Constraints	4
	2.4	Types of Modeling (not sure this should be here)	4
3	Diff	Ferent Solvers (properly not the best name)	5
	3.1	Comet	1
	3.2	Gecode	1
	3.3	LocalSolver	1
	3.4	OscaR	5
	3.5	(This solver) Constraint Based Local Search with Limitations	5
4	Pre	processing and Simplification	5
	4.1	Gecode Engine	1
		4.1.1 Relaxation	1
	4.2	Initial Solution	5
5	Str	ucturing Local Search Model	1
	5.1	Simplification	6
	5.2	Dependency Digraph	

6	Local Search Engine	8
	6.1 Neighborhoods	
	6.1.1 Moves	
	6.2 Metaheuristics	. 8
7	Tests	8
8	Results	8
9	Conclusion	8

1 Introduction

- 1.1 Mixed Integer Programming
- 1.2 Constraint Programming
- 1.3 Heuristics and Local Search
- 1.3.1 Construction Heuristics
- 1.3.2 Local Search and Neighborhoods
- 1.3.3 Metaheuristics

2 Modeling

2.1 Variables

Models contains variables V that is a n-tuple of variables $V = \langle v_1, v_2, \ldots, v_n \rangle$. Each variable $v_i \in V$ has a domain $D(v_i) \in D$ where D is an n-tuple of domains $D = \langle D_1, D_2, \ldots, D_n \rangle$ such that $v_i \in D_i$. The variables $v_i \in V$ of the models that will be discussed in this paper all have their domain restricted to $D_i \subseteq \mathbb{Z}$: $\forall D_i \in D$ (Does not look quite nice). Hence the all the variables are discrete and can be incremented in small steps.

From now on $y_i \in Y \subseteq V$ will denote integer variable while $x_i \in X \subseteq V$ denotes binary variables.

2.2 Constraints

The variables will be restricted by C that is a m-tuple of constraints $C = \langle c_1, c_2, \ldots, c_m \rangle$. The set of variables to which the constraint c_j applies is called its scope and is denoted $V(c_j)$ or $(X(c_j))$ and $Y(c_j)$ for the binary and integer variables respectively). Each $c_j \in C$ is a pair $\langle R_{V(c_j)}, V(c_j) \rangle$ where $R_{V(c_j)}$ is a subset of the cartesian product of the domains of the variables in $V(c_j)$ also called the relation on c_j .

The Constraint Satisfaction Problem (CSP) can then be defined as a triple $\mathbb{P} = \langle V, D, C \rangle$. A solution to the CSP \mathbb{P} is a n-tuple $A = \langle a_1, a_2, \ldots, a_n \rangle$ where $a_i \in D_i$. The solution is feasible if the projection of A onto $V(c_j)$ is included in $R_{V(c_j)}$ for all $c_j \in C$.

The solution of interest could be all feasible solutions sol(P), any feasible solution S or if there exists a solution or not.

The CSP can be expanded to a Constraint Satisfaction Optimization Problem (CSOP) with an objective function f(S) that evaluate the quality of the solution S. The task is then to find a solution \hat{S} that gives minimum or maximum value of $f(\hat{S})$ depending on the requirements of the problem.

While constraint programming often offers a wide selection of constraints to use, this thesis focus mostly on the constraint Linear that is defined by a left hand side, a relation and a right hand side, which is a constant bound b. The left hand side is a linear function of decision variables multiplied with their coefficient. The relation between left hand side and right hand side is restricted to be one of the six: less (<), less or equal (\le), greater(>), greater or equal(\ge), equal (=), and disequal (\ne). (Ikke særlig pænt, men ved ikke hvordan jeg skal beskrive det ellers (Gecode har seks, MIP og IP har kun 3))

A linear constraint c can be described as:

$$\sum A(c) \cdot V(c) \leq B_c \tag{1}$$

The coefficients A(c) are the coefficients of the variables in the scope of c. The decision variables V(c) are the variables that c applies to. The bound B_c is the bound for the left hand side in constraint c.

MIP, IP and BP are restricted to use the linear constraint and the model is often written as:

Minimize
$$\mathbf{c}^T \mathbf{x}$$

Subject to $\mathbf{A} \mathbf{x} \leq \mathbf{b}$
 $\mathbf{x} \in \mathbf{D}$ (2)

- 2.3 Invariants and One-way Constraints
- 2.4 Types of Modeling (not sure this should be here)
- 3 Different Solvers (properly not the best name)
- 3.1 Comet
- 3.2 Gecode
- 3.3 LocalSolver
- 3.4 OscaR
- 3.5 (This solver) Constraint Based Local Search with Limitations

4 Preprocessing and Simplification

- 4.1 Gecode Engine
- 4.1.1 Relaxation
- 4.2 Initial Solution

5 Structuring Local Search Model

Once an initial solution to the problem has been found by Gecode the model is transformed to create a model better suited for local search. The procedure can be split in several steps before the local search can begin.

- 1. Try to define integer variables by one-way constraints
- 2. Define invariants for the constraints
- 3. Create a dependency directed graph for variables and invariants
- 4. Create propagation queue for variables
- 5. Initialize the invariants
- 6. Initialize the constraints
- 7. Initialize the objective function

5.1 Simplification

We want all the integer variables to be defined by one-way constraints such that the search space in local search only consists of binary variables. The following algorithms describe how integer variables get defined by one-way constraints.

let Y be a list of integer variables and $y \in Y$. The subset of constraints $y(c) \subseteq C$ is the set of constraints where integer variable y has a non zero coefficient.

Algorithm 1: Defining integer variables by one-way constraints

```
input: A List Y of integer variables
1 bool change = true
  while Y \neq \emptyset and change do
      change = false
      Variable y = \text{next} Variable in Y
4
      foreach Constraint c in y(c) do
5
          bool flag = canBeMadeOneway(c,y)
6
          if flaq then
7
             makeOneway(c,y)
             Remove y from Y
9
             change = true
10
             break
11
          end
12
      end
13
14 end
```

The algorithm try to make all integer variables one-way. It uses two other algorithms canBeMadeOneway(c,y)2 and makeOneway(c,y)3. The first algorithm check if the **Constraint** c can be used to define **IntegerVariable** y and the second algorithm transforms c into a one-way constraint defining y. (Need complexity arguments)

The coefficients of the variables in constraint c are denoted A(c) and the coefficients of variables in the objective function $f(\vec{y}) \in F$ denoted as A(f(y)). (Maybe call it evaluation functions) Then the coefficient of variable y in constraint c is A(c, y).

```
Algorithm 2: Test if a constraint c can define a variable y
```

```
input: Constraint c and Variable y
  output: Boolean
1 if c defines a oneway constraint then
return false
3 end
4 if Number of integer variables not defined > 1 then
      return false
6 end
7 if relation(c) == Equal then
     return true
9 end
10 foreach a in A(f(y)) do
      if A(c, y) \cdot a > 0 then
         return false
12
      end
13
14 end
15 return true
```

The variables that a constraint c applies to is the scope V(c). The constraints are of the type Linear and a constraint c have a right hand side B(c).

```
Algorithm 3: Make one-way constraint from c defining variable y
```

```
{f input}: {\sf Constraint}\ c\ {\it and}\ {\sf Variable}\ y
   output: An Invariant
 1 int coef = A(c, y)
 A(c) = A(c) \setminus \{A(c,y)\}
 V(c) = V(c) \setminus \{y\}
 4 foreach A(c, v) in A(c) do
      A(c,v) = A(c,v) \cdot \frac{-1}{coef}
 6 end
 7 int b = B(c)
 s if relation(c) == Equal then
       return Sum(V(c),A(c),b)
10 end
11 else
       Invariant inv = Sum(V(c), A(c), b)
       return Max(inv,b)
14 end
```

- 5.2 Dependency Digraph
- 6 Local Search Engine
- 6.1 Neighborhoods
- 6.1.1 Moves
- 6.2 Metaheuristics
- 7 Tests
- 8 Results
- 9 Conclusion