EECS 16A Designing Information Devices and Systems I Discussion 2A

1. Identifying a Subspace: Proof

Is the set

$$V = \left\{ ec{v} \ \middle| \ ec{v} = c egin{bmatrix} 1 \ 1 \ 1 \end{bmatrix} + d egin{bmatrix} 1 \ 0 \ 1 \end{bmatrix}, \ ext{where} \ c,d \in \mathbb{R}
ight\}$$

a subspace of \mathbb{R}^3 ? Why/why not?

2. Exploring Column Spaces and Null Spaces

- The **column space** is the **span** of the column vectors of the matrix.
- The **null space** is the set of input vectors that output the zero vector.

For the following matrices, answer the following questions:

- i. What is the column space of A? What is its dimension?
- ii. What is the null space of A? What is its dimension?
- iii. Are the column spaces of the row reduced matrix A and the original matrix A the same?
- iv. Do the columns of **A** form a basis for \mathbb{R}^2 ? Why or why not?

(a)
$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$$

(d)
$$\begin{bmatrix} -2 & 4 \\ 3 & -6 \end{bmatrix}$$

(e)
$$\begin{bmatrix} 1 & -1 & -2 & -4 \\ 1 & 1 & 3 & -3 \end{bmatrix}$$

3. Mechanical Determinants

- (a) Compute the determinant of $\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$.
- (b) Compute the determinant of $\begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$.

Reference Definitions: Matrices and Linear (In)Dependence The following statements are equivalent for an $n \times n$ matrix **A**, meaning, if one is true then all are true:

- (a) A is invertible
- (b) \Leftrightarrow The equation $\mathbf{A}\vec{x} = \vec{b}$ has a unique solution for any \vec{b}
- (c) \Leftrightarrow **A** has linearly independent columns
- (d) \Leftrightarrow **A** has a trivial nullspace
- (e) \Leftrightarrow the determinant of $\mathbf{A} \neq 0$.

In class have shown/proven that:

- (a) **A** is invertible \Longrightarrow the equation $\mathbf{A}\vec{x} = \vec{b}$ has a unique solution for any \vec{b} .
- (b) A is invertible \Longrightarrow A has linearly independent columns
- (c) A is invertible \Longrightarrow A has a trivial nullspace.

We have not yet shown/proven the implications in the other direction.