GEOS-Chem Chemical Mechanism Version 8-02-04

Jingqiu Mao¹, Claire Carouge¹, Mat Evans², Dylan Millet³, and Paul Palmer group⁴

¹Harvard University, Cambridge, MA, USA

²University of Leeds, Leeds, UK

³University of Minnesota, St. Paul, MN, USA

⁴University of Edinburgh, Edinburgh, UK

Updates in v8-02-04:

1. Change the branch ratio of HNO4 photolysis in ratj.d

```
Line 13 HNO4+hv->OH+NO3 from 33.3 to 5.0
Line 14 HNO4+hv->HO2+NO2 from 66.7 to 95.0
```

This is based on Jimenez et al. (Quantum yields of OH, HO2 and NO3 in the UV photolysis of HO2NO2, PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2005), which shows that HO_2 yield should be 0.95 and OH yield should be 0.05 for wavelength above 290nm.

This way all the near-IR photolysis will have most weight on HO2 channel (Stark et al., Overtone dissociation of peroxynitric acid (HO2NO2): Absorption cross sections and photolysis products, JOURNAL OF PHYSICAL CHEMISTRY A, 2008).

2. Comment out the near-IR calculation of HNO4 photolysis in calcrate.f since FastJX already takes this into account.

No.	Reaction	Rate Constant	Reference	Notes
1	NO + O3 → NO2 + O2	3.00E-12 exp(-1500/T)	JPL00	
		Same	JPL06	
2	O3+OH = HO2+O2	1.70E-12 exp(-940/T)	JPL02	
		Same	JPL06	
3	O3+HO2 = OH+2O2	1.00E-14 exp(-490/T)	JPL02	
		Same	JPL06	
4	O3+NO2 = O2+NO3	1.20E-13 exp(-2450/T)	JPL97	
		Same	JPL06	
5	O3+MO2 = CH2O+HO2+2O2	2.90E-16 exp(-1000/T)	JPL02	
		Same	JPL06	
6	OH+OH = H2O+O3	4.20E-12 exp (-240/T)	JPL97	
		1.8E-12	JPL06	JMAO
7	OH+OH+M = H2O2	LPL: 6.9E-31(300/T)	JPL02	
		HPL: 2.60E-11		
		Fc:0.6		
		Same	JPL06	
8	OH+HO2 = H2O + O2	4.80E-11 exp (250/T)	JPL97	
		Same	JPL06	
9	OH+H2O2 = H2O + HO2	2.90E-12 exp (-160/T)	JPL97	
		1.8E-12	JPL06	JMAO
10	HO2+NO = OH + NO2	3.50E-12 exp(250/T)	JPL97	
		Same	JPL06	
11	HO2+HO2 = H2O2	K1=2.30E-13 exp(600/T)	JPL97	
	HO2+HO2+M=H2O2	K2=1.70E-33 [M]		
		exp(1000/T)		
		K = (K1 + K2)*(1+1.4E-		
		21*[H2O]*EXP(2200/T))		
		K1=3.50E-13 exp(430/T)	JPL06	JMAO
		K2=1.70E-33 [M]exp(1000/T)		
		K = (K1 + K2)*(1+1.4E-		
40	011110 - 1100 + 1100	21*[H2O]*EXP(2200/T)	151.0=	
12	OH+H2 = H2O + HO2	5.50E-12 exp(-2000/T)	JPL97	
		2.80E-12 exp(-1800/T)	JPL06	JMAO
13	CO+OH = HO2 + CO2	K0=1.50E-13	JPL97	
		K = K0(1+0.6 Patm)		
	CO+OH = HOCO	LPL: 5.9E-33(300/T)^1.4	JPL06	JMAO(in calcrate.f)
		HPL:1.1E-12(300/T)^-1.3 Fc:0.6		Ignore the
		==(0.00, 1, -1.0 1.010)		intermediate species
				HOCO and use two 3-
				body reactions
	11000 - 00 - 1100 - 000			
	HOCO + O2= HO2 + CO2	2.00E-12		
	CO+OH=HO2+CO2 (different	LPL: 1.5E-13(300/T)^-0.6	JPL06	
	formula)	HPL:2.10E9(300/T)^-6.1		
		Fc:0.6		
	1			

14	OH+ CH4 = MO2+H2O	1.26E-12 (300/T)^(-6.7E-01)	JPL97	This reaction coeffciient
			31 237	was not found on
		exp(-1575/T)		JPL97.
		2.45E-12exp(-1775/T)	JPL06	JMAO:could also be
		Σ. 132 12 ΕΧΡ(1773/17	31 200	2.8E-14T^0.667
45	MO0+NO -01100+1100+NO0	0.005.40(200/5)	Turn dell 0004	exp(-1575/T)
15	MO2+NO =CH2O+HO2+NO2	2.80E-12 exp(300/T)	Tyndall 2001	Tyndall et al., Atmospheric Chemistry
				of small organic peroxy
				radicals, JGR 106,
				12157-12182, 2001.
				, , , , ,
		Same	JPL06	
16	MO2+HO2 = MP+O2	K1=4.10E-13 exp(750/T)	Tyndall-	
		K2=2.00E-03exp(1160/T)	2001&Elrod 2001	
		K=K1/(1+K2)		
		4.1E-13 exp(750/T)	JPL06	JMAO
17	MO2+HO2 = CH2O + O2	K1=4.10E-13 exp(750/T)	Tyndall-	31417 (0
		K2=4.98E+2 exp(-1160/T)	2001&Elrod 2001	
		* * * * * * * * * * * * * * * * * * * *	200101100 2001	
		K=K1/(1+K2)	IDLOC/D4 FO D25)	10.44.0
40	MOO : MOO - MOUL: CLICO : OO	Not recommended in JPL06	JPL06(P1-59,D35)	JMAO
18	MO2+MO2 =MOH+CH2O+O2	K1=9.5E-14 exp(390/1)	Tyndall 2001	This reaction coeffciient was not found on
				Tyndall.
		K2=2.62E+1 exp(-1130/T)		Tyridaii.
		Same		
19	MO2+MO2 = 2CH2O + 2HO2	K1=9.5E-14 exp(390/T)	Tyndall 2001	This reaction coeffciient
				was not found on
				Tyndall.
		K2=4.00E-02		
		exp(1130/T)		
		K=K1 / (1+K2)		
	MD: OH - MOO: HOO	Same	IDI 07	
20	MP+OH = MO2+H2O	2.66E-12 exp(200/T) Same	JPL97 JPL06	
21	MP+OH = CH2O+OH+H2O	1.14E-12 exp(200/T)	JPL97	
	1011 - 0112010111120	Same	JPL06	
22	CH2O+OH = CO+HO2+H2O	9.00E-12	JPLO2	
	CH2O+OH = HCO +H2O	5.5E-12 exp(125/T)	JPL06	JMAO(use the first
		3.32 12 CAP(123/1)	31 200	rate)
	HCO + O2 = CO + HO2	E 2E 12	IDLOG	rate)
22	NO2+OH+M = HNO3+M	5.2E-12	JPL06	
23		LPL: 2.00E-30(300/T)^3	JPL02	
		HPL:2.50E-11(300/T)^0		
		Fc: 0.6		
	OH + NO2 + M = HONO2	LPL: 1.80E-30(300/T)^3	JPL06	JMAO: Ignore the
		HPL:2.80E-11(300/T)^0		HOONO channel for
		Fc:0.6		now.

	OH + NO2 + M=HOONO	LPL:9.10E-32(300/T)^3.9	JPL06	This adds a new
	on the winder		JPLUU	
		HPL:4.20E-11(300/T)^0.5 Fc:0.6		species HOONO,should
				we include this
				reaction?
24	HNO3+OH = H2O+NO3	K0=2.41E-14 exp(460/T)	Brown 98	OH + HNO3: K = K0 +
		K2=2.69E-17exp(2199/T)		K3[M] / (1 + K3[M]/K2)
		K3=6.51E-34exp(1335/T)		
		Same	JPL06,same	Brown, S. S., R. K.
			source	Talukdar and A. R.
				Ravishankara, 1999, J.
				Phys. Chem. A, 103,
				3031-3037.
25	NO+OH+M = HNO2+M	LPL: 7.00E-31(300/T)^2.6	JPL97	
		HPL: 3.60E-11(300/T)^0.1		
		Fc: 0.6	IDI 00	
		LPL: 7.00E-31(300/T)^2.6	JPL06	
<u> </u>		HPL: 3.60E-11(300/T)^0.1		
	LINGS OLL LIGG NOS	Fc: 0.6	IDI 07	
26	HNO2+OH = H2O+NO2	1.80E-11 exp(-390/T)	JPL97	
27	HO2+NO2+M = HNO4+M	Same	JPL06	
21	HO2+NO2+W = HNO4+W	LPL: 1.80E-31(300/T)^3.2;	JPL97	
		HPL:4.7E-12(300/T)^1.4; Fc= 0.6		
		LPL: 2.0E-31(300/T)^3.4	JPL06	JMAO
		HPL:2.9E-12(300/T)^1.1		
		Fc= 0.6		
28	HNO4+M = HO2+NO2	LPL: 8.64E-5(300/T)^3.2* exp(-	K=forward rxn/Keq	
		10900/T);	Keq=2.1E-	
		HPL:2.24E+15*(300/T)^1.4*exp(•	
		10900/T); Fc=0.6	JPL97	
		10300/17, FC-0.0	JFL37	
		LDL 0 525 5/200/7342 3*	14 (10.4.4.0
		LPL: 9.52E-5(300/T)^3.2* exp(-	K=forward rxn/Keq	JIVIAU
		10900/T)		
		HPL:1.38E+15*(300/T)^1.4*exp(-	Keq=2.1E-	
L		10900/T);	27exp(10900/T)	
		Fc=0.6	JPL06	
29	HNO4+OH = H2O+NO2+O2	1.30E-12 exp(380/T)	JPL97	
		Same	JPL06	
30	NO+NO3=2NO2	1.50E-11 exp(170/T)	JPL97	
		Same	JPL06	
31	HO2+NO3 = OH+NO2+O2	3.50E-12		
		Same	JPL06	
32	OH+NO3 = HO2+NO2	2.20E-11	JPL97	
		Same	JPL06	
33	NO2+NO3+M = N2O5+M	LPL: 2.0E-30(300/T)^4.4;	JPL00	
		HPL:1.4E-12(300/T)^0.7; Fc=0.6		

		Same	JPL06	
34	N2O5+M = NO2+NO3	LPL: 6.67E-4(300/T)^4.4* exp(-	K=forwardrxn/	
		10990/T);	Keg; Keg = 3.00E-	
		HPL:4.67E+14*(300/T)^0.7*exp(-	27exp(10990/T);	
		10990/T); F∈=0.6	JPL00	
		LPL: 7.4E-4(300/T)^4.4* exp(-	K=forwardrxn/	JMAO
		11000/T);	Keq; Keq = 2.70E-	
		HPL:5.18E+14*(300/T)^0.7*exp(-	27exp(11000/T);	
		11000/T); Fc=0.6	JPL06	
35	НСООН+ОН	4.00E-13	JPL97	
	=H2O+CO2+HO2			
		Same	JPL06	
36	MOH+OH = HO2+CH2O	7.30E-12 exp(-620/T)	JPL02	
		2.9E-12 exp(-345/T)	JPL06	
37	NO2+NO3 = NO+NO2+O2	4.50E-14 exp(-1260/T)	JPL97	
20	NO2+01100 -	Same	JPL06	
38	NO3+CH2O = HNO3+HO2+CO	5.80E-16	JPL97	
	11110311102100	Same	JPL06	
39	ALD2+OH = MCO3+H2O	5.60E-12 exp(270/T)	JPL97	
	ALDZ FOTT = MICOSTTIZO	Same	31 L37	JMAO:Can not find this
		danic		reaction from JPL06, it
				was in JPL02. It is 4.4 E
				12exp(365/T) in
				IUPAC06
	ALD2 + OH=H2O + 0.95 MCO3	4.4 E-12exp(365/T)	IUPAC06	DBM
	+ 0.05 CH2O + 0.05 CO + 0.05			
	HO2			
40	ALD2+NO3 = HNO3+MCO3	1.40E-12 exp(-1860/T)	IUPAC02	
		1.40E-12 exp(-1900/T)	JPL06	JMAO
41	MCO3+NO2+M = PAN	LPL: 8.50E-29(300/T)^6.5;	Tyndall	
		HPL:1.10E-11(300/T); Fc: 0.6		
		LPL: 9.70E-29(300/T)^5.6;	JPL06	JMAO
		HPL:9.3E-12(300/T)^1.5; Fc: 0.6		
		(222)		
42	PAN = MCO3+NO2	9.30E-29 exp(14000/T)	Tyndall	
		F. \/	IUPAC06	
43	MCO3+NO = MO2+NO2+CO2	8.10E-12 exp(270/T)	Tyndall	
<u> </u>		Same	JPL06	
44	C2H6+OH = ETO2+H2O	8.7E-12 exp(-1070/T)	JPL97	
15	ETODINO - AL DOINGO LLOS	Same	JPL06	
45	ETO2+NO =ALD2+NO2+HO2	2.70E-12 exp(350/T)	Tyndall	
		2.60E-12 exp(365/T)	JPL06	JMAO

46	C3H8+OH = B3O2	V4 7 CO : 42 : : / FOF /T)	U.D.A.CO.2	
40	C3H6+OH = B3O2	K1=7.60e-12 exp(-585/T);	IUPAC02	
		K2=5.87*(300/T)^0.64exp(-		
		816/T); K=K1 / (1+K2)		
	C3H8+OH = A3O2	K1=7.60E-12 exp(-585/T); K2=	IUPAC02	Cant find from Tyndall
	1001101011 - 7002	1.3	IUPACUZ	
		0.17*(300/T)^-0.64exp(816/T);		
		K=K1 / (1+K2)		
			IUPAC06	JMAO
47	A3O2+NO = NO2 + HO2 +	2.70E 12.0vp/2E0/T)		The products is not
47	RCHO	2.70E-12 exp(350/T)	Tyndall	from Tyndall
	KCIO	2.005.42(250/T)	II IDA COC	
	700 110	2.90E-12 exp(350/T)	IUPAC06	JMAO
48	PO2+NO =	2.70E-12 exp(350/T)	Tyndall	
	NO2+HO2+CH2O+ALD2			
49	ALK4+OH = R4O2	9.10E-12 exp(-405/T)	IUPAC02	
		Same	IUPAC06	
50	R4O2+NO = NO2 +0.32ACET	K* (1-YN) where YN isreturned	Atkinson 97	
	+ 0.19MEK +0.18MO2 +	from fyrno3.f; K=2.7E-12		
	0.27HO2 +0.32ALD2 +	exp(350/T) (Xcarbn=4.50E00)		
	0.13RCHO +0.50A3O2 +			
	0.18B3O2 + 0.32ETO2			
	0.100002 - 0.022102			
				A302 is 0.05 in the
				input file(Palmer)
51	R4O2+NO = R4N2	K* YN where YN is returned from	Atkinson97	
		fyrno3.f K=2.7E-12		
		exp(350/T) (Xcarbn=4.50E00)		
52	ATO2+NO = 0.96NO2 +	2.80E-12 exp(300/T)	Tyndall	
	0.960CH2O +0.960MCO3 +		,	
	0.04R4N2			
53	KO2+NO = 0.93NO2+0.93NO	2.70E-12 exp(350/T)	Tyndall ETO2+NO	
33	+ 0.93ALD2 +0.93MCO3 +	2.70L-12 exp(330/1)	Tyridaii E1021110	
	0.07R4N2			
	U.U/ INTINZ			
	DIG2 NG		A.1.1	
54	RIO2+NO =	K* (1-YN) where YN is returned	Atkinson 97	
	NO2+0.864HO2+0.690CH2O+	from fyrno3.f K=2.7E-12		
	0.402MVK+0.288MACR+0.136	exp(350/T) (Xcarbn=5.00E00)		
	RIO1+0.127IALD			
				DD14/14/01 4 2 4)
	RIO2 + NO = 0.90NO2 +			DBM(MCM 3.1)
	0.90HO2 + 0.34IALD +			
	0.34MVK + 0.22MACR +			
	0.56CH2O			
	0.500120			

55	RIO2+NO = HNO3	K* YN where YN is returned from fyrno3.f K=2.7E-12 exp(350/T) (Xcarbn=5.00E00)	Atkinson 97	
56	IAO2+NO = 0.92HO2+0.61CO+0.17H2+0. 33HAC+0.24GLYC +0.53MGLY+0.92NO2 +0.35CH2O+0.08HNO3	2.7E-12 exp(350/T)	Tyndall ETO2+NO	
57	ISN1+NO = 1.9NO2+0.95GLYC+0.95HAC +0.05HNO3+0.05NO2	2.7E-12 exp(350/T)	Tyndall ETO2+NO	
	ISN1+NO = 1.9NO2+0.95GLYC+0.95HAC +0.05HNO3+0.05NO2+0.05HO 2		Paulson&Seinfeld 1992	HO2 term(Palmer, JMAO)
58	VRO2+NO = NO2+0.28HO2+0.28CH2O+0. 72MCO3+0.72GLYC+0.28MG LY		Atkinson 97	
59	VRO2+NO = HNO3	K* YN where YN is returned from fyrno3.f K=2.7E-12 exp(350/T) (Xcarbn=4.00E00)	Atkinson 97	
60	MRO2+NO = NO2+HO2 +0.17MGLY+0.83HAC +0.83CO+0.17CH2O	K* (1-YN) where YN is returned from fyrno3.f K=2.7E-12 exp(350/T) (Xcarbn=4.00E00)	Atkinson 97	
	MRO2 + NO = NO2 + HAC + CH2O + HO2			DBM(MCM 3.1)
61	MRO2+NO = HNO3	K* YN where YN is returned from fyrno3.f K=2.7E-12 exp(350/T) (Xcarbn=4.00E00)	Atkinson 97	
62	MVN2+NO = 1.90NO2 +0.30HO2+0.30CH2O+0.60M CO3+0.60GLYC+0.30MGLY+ 0.10HNO3	2.7E-12 exp(350/T)		
63	MAN2+NO = 2NO2+CH2O+MGLY	2.7E-12 exp(350/T)	Tyndall ETO2+NO	
64	B3O2+NO = NO2+HO2+ACET	2.7E-12 exp(350/T)		

65	INO2+NO = 1.10NO2+0.80HO2+0.85HNO 3+0.05NO2+0.10MACR+0.15 CH2O+0.05MVK	2.7E-12 exp(350/T)	Tyndall ETO2+NO	
66	PRN1+NO = 2NO2+CH2O+ALD2	2.7E-12 exp(350/T)	Tyndall ETO2+NO	
67	ALK4+NO3 = HNO3 + R4O2	2.8E-12 exp(-3280/T) Same	IUPAC02 IUPAC06	? Can't find
68	R4N2+OH = R4N1+H2O	1.30E-12	Atkinson 92	HO + 1-C4H9ONO2 → products
		1.6E-12	IUPAC06	JMAO
69	ACTA+OH = MO2+CO2++H2O	4.00E-13 exp(200/T)	DeMore et al., 1994	
		4.20E-14 exp(855/T)	IUPAC06	JMAO
70	OH+RCHO= RCO3+H2O	5.10E-12 exp(405/T)	IUPAC02	HO + CH3CH2CH2CHO → products
		6.0E-12exp(410/T)	IUPAC06	JMAO
71	RCO3+NO2 = PPN	LPL: 9.00E-28(300/T)^8.9 HPL:7.70E-12(300/T)^0.2 Fc: 0.6	JPL02	
		Same	JPL06	
72	PPN = RCO3+NO2	9e-29*exp(14000/T)	JPL02	
		Same	JPL06	
73	MAO3+NO2 = PMN	LPL: 9.00E-28(300/T)^8.9 HPL:7.70E-12(300/T)^0.2 Fc: 0.6	JPL02 Same	
		Same	as PPN	
74	PMN = MAO3+NO2	9e-29*exp(14000/T)	JPL02	
		Same		
75	GLCO3+NO2 = GLPAN	LPL: 9.00E-28(300/T)^8.9 HPL:7.70E-12(300/T)^0.2 Fc: 0.6	JPL02 Same as PPN	Should be same as RCO3???
76	GLPAN = GLCO3+NO2	9e-29*exp(14000/T)	JPL02 PPN	
77	GCO3+NO2 = GPAN	LPL: 9.00E-28(300/T)^8.9 HPL:7.70E-12(300/T)^0.2 Fc: 0.6	JPL02 Same as PPN	
70	GPAN = GCO3+NO2N	00 20*0vp(14000/T)	JPL02 PPN	
78	GFAIN - GCUSTNUZIN	9e-29*exp(14000/T)	JFLUZ PPIN	
79	RCO3+NO = NO2+ETO2	6.70E-12 exp(340/T)	IUPAC02 C2H5CO3+NO	
<u></u>		Same	IUPAC06	
80	GCO3+NO = NO2+HO2 +CH2O	6.70E-12 exp(340/T)	IUPAC02 C2H5CO3+NO	
		Same	IUPAC06	

81	GLCO3+NO = NO2+HO2+CO	6.70E-12 exp(340/T)	IUPAC02 C2H5CO3+NO	
		Same	IUPAC06	
82	RCHO+NO3 = HNO3 +RCO3	1.82E-12exp(-1680/T)	IUPAC02 Mean of	
02		1.02L 12CXP(1000/1)	TOTACOZ WICAIT OF	
			CH3CHO+NO3 and	
			C3H7CH+NO3	
		6.5E-15	IUPAC06	NO3+C2H5CHO →
				HNO3 + C2H5CO
83	ACET+OH = ATO2 + H2O	1.33E-13+ 3.82E-11 exp(-	JPL 02	
		2000/T)	Implemented as 2	
			reactions	
		Same	JPL06	JMAO
84	A3O2+MO2 = HO2	5.92E-13	Tyndall	K(RO2+MO2) =
	+0.75CH2O+0.75RCHO+0.25		RateMO2+MO2	2*sqrt(k(MO2+MO2)*k(
	MOH + 0.25ROH		Atkinson97RO2+R	RO2+RO2)).
			O2	
85	PO2+MO2 = HO2 +	5.92E-13	Tyndall	
	0.5ALD2+1.25CH2O		RateMO2+MO2	
	+0.16HAC + 0.09RCHO		Atkinson97RO2+R	
	+0.25MOH + 0.25ROH		O2	
	D.100.1100. D.1D	700(T)	-	
86	R4O2+HO2 = R4P	7.40E-13 exp(700/T)	Tyndall	
			ETO2+HO2	
87	R4N1+HO2 = R4N2	7.40E-13 exp(700/T)	Tyndall	
07	141N1+1102 = 141N2	7:40L-13 exp(700/1)	ETO2+HO2	
			LIOZITIOZ	
88	ATO2+HO2 = MCO3 + MO2	8.60E-13 exp(700/T)		
		(· · · · · ·)		
89	KO2+HO2 = MO2 + MGLY	7.40E-13 exp(700/T)	Tyndall	Tyndall forms CH3C(O)CH2OOH ,this must then split and go to MCO3+MO2, the products in chemdat ??
			ETO2+HO2	
90	RIO2+HO2 = RIP	7.40E-13 exp(700/T)	Tyndall	
0.4	DIO4 - LIOO DID	7.40F.40(700/T)	ETO2+HO2	
91	RIO1+HO2 = RIP	7.40E-13 exp(700/T)	Tyndall ETO2+HO2	
92	IAO2 + HO2 = IAP	7.40E-13 exp(700/T)	Tyndall	
32	IAOZ I IIOZ – IAF	[7.40L-13 ΕΧΡ(700/1)	ETO2+HO2	
93	ISN1+HO2 = ISNP	7.40E-13 exp(700/T)	Tyndall	
- 55	IOIATTIOE - IOIAI		ETO2+HO2	
94	VRO2+HO2 = VRP	7.40E-13 exp(700/T)	Tyndall	
<u> </u>	VIOL.IIOL VIII			
95	MRO2+HO2 = MRP	7.40F-13 exp(700/T)		
	THE TOTAL WIND	<u></u>		
	MRO2+HO2 = MRP	7.40E-13 exp(700/T)	ETO2+HO2 Tyndall ETO2+HO2	

96	MVN2 + HO2 = ISNP	7.40E-13 exp(700/T)	Tyndall	
	10142 - 1102 10141		ETO2+HO2	
97	MAN2 + HO2 = ISNP	7.40E-13 exp(700/T)	Tyndall	
-	1017 (142 - 1102 1014)		ETO2+HO2	
98	B3O2+HO2 = RB3P	7.40E-13 exp(700/T)	Tyndall	
00	1002:1102 1001		ETO2+HO2	
99	INO2 + HO2 = INPN	7.40E-13 exp(700/T)	Tyndall	
- 55			ETO2+HO2	
100	PRN1 + HO2 = PRPN	7.40E-13 exp(700/T)	Tyndall	
100	1101 1102 11010	7.402 10 CXP(100/1)	ETO2+HO2	
101	MEK+OH = KO2+H2O	2.28E-13 * (300/T)^-2	IUPAC02	
' '	MERCOTT ROZVILZO		10171602	
		*exp(503/T)		
		1.3 E-12exp(-25/T)	IUPAC06	JMAO
	MO2+ETO2 =	3.00E-13	Horowitz 98,	
	0.75CH2O+0.75ALD2+HO2+0		Atkinson 92& 94	
	.25MOH+0.25EOH			
103	MEK+NO3 = HNO3+ KO2	8.00E-16	Lurmann et	
			al., 1986.	
104	R4O2+MO2 =	8.37E-14	Tyndall MO2+MO2	
	0.16ACET+0.10MEK+0.09MO		Atkinson97	
	2+0.14HO2+0.16ALD2		RO2+RO2 (See	
	+0.07RCHO+0.03A3O2		note 11 below)	
	+0.09B3O2+0.16ETO2+0.25M			
	EK+0.75CH2O+0.25MOH+0.2			
	5ROH+0.50HO2			
105	R4N1+MO2 =	8.37E-14	Tyndall MO2+MO2	
	NO2+0.20CH2O+0.38ALD2 +		Atkinson97	
	0.29RCHO+0.15R4O2+		RO2+RO2 (See	
	0.25RCHO+0.75CH2O+0.25M		note 11 below)	
	OH+0.25ROH+0.50HO2			
106	ATO2+MO2 =	7.5E-13 exp(500/T)	Tyndall,2001	
1	0.30HO2+0.30CH20+0.30MC			
1	O3+0.20HAC+0.20CH2O+0.5			
	0MGLY+0.50MOH			
107	KO2+MO2 = 0.5ALD2	8.37E-14		
	+0.50MCO3+0.25MEK+0.75C			
	H2O+0.25MOH+0.25ROH+0.5			
	HO2			
108	RIO2+MO2 = 0.42HO2	8.37E-14	Tyndall MO2+MO2	
	+0.35CH2O+0.2MVK		Atkinson97	
1			RO2+RO2 (See	
1	+0.14MACR + 0.07RIO1		note 11 below)	
1	+0.06IALD+0.25MEK+0.75CH2			
	O+0.25MOH+0.25ROH +			
	0.5HO2			
	J.J J	<u> </u>	<u> </u>	

				HO2 term is 0.43 in
				input file, need to be
				changed back to
				0.42(Palmer, JMAO)
109	RIO1+MO2 =	8.37E-14	Tyndall MO2+MO2	
	0.50IALD+0.50HO2+0.38CH2	0.0.	Atkinson97	
	O+0.25MEK+0.75CH2O+0.25		RO2+RO2 (See	
	MOH+0.25ROH+ 0.5HO2		note 11 below)	
			,	
110	IAO2+MO2 =	8.37E-14	Tyndall MO2+MO2	
_	0.50HO2+0.33CO+0.09H2+0.	0.07 2 14	Atkinson97	
	18HAC+0.13GLYC+0.29MGL		RO2+RO2 (See	
	Y+0.25MEK+0.95CH2O+0.25		note 11 below)	
	MOH+0.25ROH+0.5HO2		note 11 below)	
111	ISN1+MO2 =	8.37E-14	Tyndall MO2+MO2	
	NO2+0.50GLYC+0.50HAC+0.	0.57 L-14	Atkinson97	
	25RCHO+0.75CH2O+0.25MO		RO2+RO2 (See	
	H+ 0.25ROH+0.50HO2		note 11 below)	
	111 0.231(01110.301102		note in below)	
110	VD02+M02 =	0.275.44	Turndall MO2 (MO2	
	VRO2+MO2 =	8.37E-14	Tyndall MO2+MO2 Atkinson97	
	0.14HO2+0.14CH2O+0.36MC			
	O3+0.36GLYC+0.14MGLY+0.		RO2+RO2 (See	
	25MEK+0.75CH2O+0.25MOH		note 11 below)	
	+0.25ROH+0.50HO2			
113	MRO2+MO2 =	8.37E 14	Tyndall MO2+MO2	
	0.50HO2+0.09MGLY+0.42HAC		Atkinson97	
	+0.42CO+0.09CH2O+0.25MEK		RO2+RO2 (See	
	+0.75CH2O+0.25MOH+0.25R		note 11 below)	
			note 11 below)	
	OH+0.50HO2			
	MRO2 + MO2 = HAC +			DBM(MCM 3.1)
	0.85CH2O + 1.15HO2 +			
	0.15CO			
114	MVN2+MO2 =	8.37E-14	Tyndall MO2+MO2	
	NO2+0.50CH2O+0.25MCO3		Atkinson97	
	+0.25MGLY+0.25HO2+0.25R		RO2+RO2 (See	
	CHO+0.75CH2O+0.25MOH+0		note 11 below)	
	.25ROH+0.50HO2			
115	MANI2 - MO2-	0 27	Typdoll MACC: MACC	
	MAN2+MO2=	8.37E-14	Tyndall MO2+MO2	
	NO2+0.50CH2O+0.50MGLY+		Atkinson97	
	0.25RCHO+0.75CH2O+0.25M		RO2+RO2 (See	
	OH+0.25ROH+0.50HO2		note 11 below)	
<u> </u>			1	

	B3O2+MO2 = 0.50HO2+0.50ACET+0.25AC ET +0.75CH2O+0.25MOH+0.25R OH+0.50HO2	8.37E-14	Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below)	
	INO2+MO2 = 0.55NO2+0.40HO2+0.425HNO 3+0.025NO2+0.05MACR+0.08 CH2O+0.03MVK+0.25RCHO+0 .75CH2O+0.25MOH+0.25ROH +0.05HO2	8.37E-14	Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below)	
				NISOPO2(in MCM), HO2 term is 0.5 in the input file, need to be fixed. (Palmer, JMAO)
	PRN1+MO2 = NO2+0.50CH2O+ 0.50ALD2+0.25RCHO+0.75C H2O+0.25MOH+0.25ROH+0.5 0HO2	8.37E-14	Tyndall MO2+MO2 Atkinson97 RO2+RO2 (See note 11 below)	
119	EOH+OH = HO2+ALD2	6.90E-12 exp(-230/T)	JPL02	
120	ROH+OH = HO2+RCHO	4.6E 12.0vp/70/T)	IUPAC	not in JPL06
120	ROH+OH = HOZ+RCHO	4.6E-12 exp(70/T) Same	IUPAC06	HOLIH JPLU0
121	ETO2+ETO2 = 2ALD2 +2HO2		JPL97	
		Same	JPL06	
122	ETO2+ETO2 = EOH + ALD2	2.70E-14	JPL97	
		Same	JPL06	
123	HO2+ETO2 = ETP	7.40E-13 exp(700/T)	Tyndall (see note 4)	
			N. (IDL 00	
124	A2O2+UO2 = DA2D	7.40E.12.ovp(700/T)	Not JPL 03	
124	A3O2+HO2 = RA3P	7.40E-13 exp(700/T)	Tyndall ETO2+HO2	
125	PO2+HO2 = PP	7.40E-13 exp(700/T)	Tyndall	
123	1 02 11 02 - 1 15	17.70L-10 EXP(100/1)	ETO2+HO2	
126	HO2+MCO3 =ACTA+O3	K-K1/(1+K2); K1-4.30E- 13exp(1040/T) K2-3.70E+1 exp(- 660/T)	RateTyndall:br- crawford&- moortgart	
127	HO2+MCO3 = MAP	K=K1/(1+K2); K1=4.30E- 13exp(1040/T) K2=2.70E-2- exp(660/T)	RateTyndall:br- crawford&- moortgart	

	MCO3 + HO2 = 0.15 ACTA + 0.15 O3 + 0.44 OH + 0.44 MO2 + 0.41 MAP	5.2e-13exp(980/T)	IUPAC(Feb2009)	DBM
	RCO3+HO2=0.3RCOOH+0.3 O3+ 0.7RP	4.30E-13 exp(1040/T)		
	GCO3+HO2=0.3RCOOH+0.3O3 +0.7GP	4.30E-13 exp(1040/T)		
	GCO3 + HO2 = 0.71GP + 0.29O3 + 0.29CH2O			DBM(MCM 3.1)
	MAO3+HO2=0.3RCOOH+0.3 O3 + 0.7MAOP	4.30E-13 exp(1040/T)		
131	GLCO3+HO2=0.3RCOOH+0.3 O3+0.7GLP	4.30E-13 exp(1040/T)		
132	PRPE+OH+M = PO2	LPL: 8.00E-27(300/T)^3.5	Atkinson 92&IUPAC 03	
		HPL:3.00E-11	for Fc.	
		Fc: 0.5		
		LPL: 8.00E-27(300/T)^3.5	IUPAC06	JMAO
		HPL:3.00E-11(300/T)		
		Fc: 0.5		
	PRPE+O3 = 0.535CH2O+0.500ALD2+0.42 0CO+0.300HO2+0.135OH+0.0 65H2+0.305MO2	6.50E-15 exp(-1880/T)	Paulson &Seinfeld- 92	
		5.50E-15 exp(-1880/T)	IUPAC06	JMAO
134	GLYX+OH = HO2+2CO	K1=1.10E 11	Atkinson 92,94	
		K = K1*([O2]+3.5D18)/		
		(2*[O2]+3.5D18)		
		1.1E-11	IUPAC06	Already updated
135	MGLY+OH = MCO3+CO	1.70E-11	Atkinson 92,94	
155		1.50E-11	IUPAC06	JMAO
	GLYX+NO3 = HNO3 + HO2+ 2CO	K1=1.40E-12exp(-1860/T) K=K1*([O2]+3.5D18)/(2*[O2]+3.5 D18)	Atkinson92&94, (ALD2)	
137	MGLY+NO3 = HNO3 + CO +MCO3	1.40E-12 exp(-1860/T)	Atkinson92&94, (ALD2)	
		Same	IUPAC06	
400	ISOP+OH = RIO2	2.70E-11 exp(390/T)	IUPAC02	

		Same	IUPAC06	
139	MVK+OH = VRO2	4.13E-12 exp(452/T)	Atkinson92,94;	
			Tuazon	
			&Atkinson 89,90	
		2.6e-12exp(610/T)	IUPAC06	JMAO
140	MACR+OH = 0.5MAO3 +0.5MRO2	1.86E 11 exp(175/T)	Atkinson92,94;	
			Tuazon- &Atkinson89,90	
	MACR + OH = 0.57MAO3 + 0.43MRO2	8.0E-12exp(380/T)	IUPAC06	JMAO,DBM(MCM3.1)
141	HAC+OH = MGLY+HO2	3E-12	Atkinson 92,94	
		Same	IUPAC06	
	MCO3+A3O2 = MO2+RCHO+HO2	1.68E-12 exp(500/T)	T dep & B.R.Tyndall K298Villenave 98 See note 12	
143	MCO3+PO2 = MO2 +ALD2+CH2O+HO2	1.68E-12 exp(500/T)	T dep & B.R.Tyndall K298Villenave 98 See note 12	
144	MCO3+A3O2 = ACTA +RCHO	1.87E-13 exp(500/T)	T dep & B.R.Tyndall K298Villenave 98 See note 12	k 298 = 1e-11cm3 molec-1. Use T dep. From MCO3+MO2 according to Tyndall, and apply branching ratio from Tyndall. Keeping rate constant at 298K equal to 1E- 11,means that A factor is 1.87E-12. Branching ratio from Tyndall sends 90% to the radical branch(A = 0.9*1.87E-12 = 1.68E- 12), and 10% to molecular branch (A = 0.1* 1.87E-12 = 1.87E- 13).
	MCO3+PO2 = ACTA + 0.35RCHO+0.65HAC	1.87E-13 exp(500/T)	T dep & B.R.Tyndall K298Villenave 98 See note 12	

146	ISOP+O3 = 0.387MACR + 0.159MVK+0.100O3+0.270OH +0.070PRPE+0.900CH2O+0.0 60HO2+0.150CO2+0.050CO	1.05E-14 exp(-2000/T)	Paulson &Seinfeld, 92 Aschmann &Atkinson, 94	
147	MVK+O3 = 0.82MGLY+ 0.80CH2O+0.20O2+0.05CO+0 .06HO2+ 0.04ALD2	4.00E-15 exp(-2000/T)	Paulson & Seinfeld 92	
	0.2002->0.2003(Palmer, JMAO, according to Paulson & Seinfeld 92)	8.5 E-16exp(-1520/T)	IUPAC06	JMAO, 0.2002- >0.2003(Palmer, JMAO, according to Paulson & Seinfeld 92)
148	MACR+O3 = 0.800MGLY +0.700CH2O+0.200O3+0.200 CO+0.275HO2+0.215OH+0.16 0CO2	4.40E-15 exp(-2500/T)	Paulson & Seinfeld 92	
		1.4 E-15exp(-2100/T)	IUPAC06	JMAO
140	ISOD (NO2 = INO2	2 225 42 / 445/5	A.I.: 02.04	
149	ISOP+NO3 = INO2	3.03E-12 exp(-446/T)	Atkinson 92,94	10.44.0
150	MVK+NO3 = MVN2	3.15E-12 exp(-450/T) 2.00E-14	Horowitz et al., 1998,	JMAO
			Lurmann et al., 1986	
		REMOVED (<6E-16,IUPAC06)		JMAO
151	MACR+NO3 = MAN2	6.70E-15	Lurmann et al., 1986	
		2.3E-15	IUPAC06	JMAO
152	MACR+NO3 = MAO3+HNO3	3.30E-15	Lurmann et al., 1986	IUPAC06 total rate is 3.4E-15, so use the ratio from Lurmann et al.,1986
		1.1E-15	IUPAC06	JMAO
153	RCO3+MO2 = CH2O+HO2+ETO2	1.68E-12 exp(500/T)	T dep & B.R.Tyndall K298Villenave 98 See note 12	
154	GCO3+MO2 = 2CH2O +2HO2	1.68E-12 exp(500/T)	T dep & B.R.Tyndall K298Villenave 98 See note 12	

155	MAO3+MO2 = CH2O+HO2+CH2O+MCO3	1.68E-12 exp(500/T)	T dep & B.R.Tyndall K298Villenave 98 See note 12	
156	GLCO3+MO2 = CH2O +2HO2+CO	1.68E-12 exp(500/T)	T dep & B.R.Tyndall K298Villenave 98 See note 12	
157	RCO3+MO2 = RCOOH +CH2O	1.87E-13 exp(500/T)	T dep & B.R.Tyndall K298Villenave 98 See note 12	
158	GCO3+MO2 = RCOOH + CH2O	1.87E-13 exp(500/T)	T dep & B.R.Tyndall K298Villenave 98 See note 12	
159	MAO3+MO2 = RCOOH + CH2O	1.87E-13 exp(500/T)	T dep & B.R.Tyndall K298Villenave 98 See note 12	
160	GLCO3+MO2 = RCOOH + CH2O	1.87E-13 exp(500/T)	T dep & B.R.Tyndall K298Villenave 98 See note 12	
161	INPN+OH = INO2	3.80E-12 exp(200/T)	DeMore,reported in Horowitz as MP+OH	
162	PRPN+OH = PRN1	3.80E-12 exp(200/T)	JPL97,MP+OH	
163	ETP+OH = 0.50OH+ 0.50ETO2+0.50ALD2	3.80E-12 exp(200/T)	JPL97,MP+OH	
164	RA3P+OH = 0.50OH + 0.50A3O2+0.50RCHO	3.80E-12 exp(200/T)	JPL97,MP+OH	
165	RB3P+OH =- 0.50OH+0.50B3O2+0.50RCHO	3.80E-12 exp(200/T)	JPL97,MP+OH	
	RB3P + OH = 0.5OH + 0.5B3O2 + 0.5ACET			DBM,lumping from MCM3.1
166	R4P+OH = 0.50OH+0.50R4O2 + 0.50RCHO	3.80E-12 exp(200/T)	JPL97,MP+OH	

	RP+OH = 0.50OH+0.50RCO3+0.50ALD 2	3.80E-12 exp(200/T)	JPL97,MP+OH	
168	PP+OH =- 0.50OH+0.50PO2+0.50RCHO	3.80E-12 exp(200/T)	JPL97,MP+OH	
	PP + OH = PO2			DBM(MCM 3.1)
169	GP+OH =- 0.50OH+0.50GCO3+0.50CH2O	3.80E-12 exp(200/T)	JPL97,MP+OH	
	GP + OH = GCO3			DBM(MCM 3.1)
170	GLP+OH = 0.50OH+0.50GLCO3+0.50CO	3.80E-12 exp(200/T)	JPL97,MP+OH	
171	RIP+OH = 0.50IAO2 +0.40RIO2 + 0.20RIO1	3.80E-12 exp(200/T)	JPL97,MP+OH	
	RIP + OH = 0.509IALD + 0.509OH + 0.491RIO2			DBM,lumping from MCM3.1
172	IAP+OH = 0.50OH +0.50RCHO+0.50IAO2	3.80E-12 exp(200/T)	JPL97,MP+OH	
	IAP + OH = IAO2			DBM(MCM 3.1)
173	ISNP+OH = 0.50OH+0.50RCHO+0.50NO2 +0.50ISN1	3.80E-12 exp(200/T)	JPL97,MP+OH	
	VRP+OH = 0.50OH+0.50RCHO+0.50VRO 2	3.80E-12 exp(200/T)	JPL97,MP+OH	
175	MRP+OH = 0.50OH +0.50RCHO + 0.50MRO2	3.80E-12 exp(200/T)	JPL97,MP+OH	
	MRP + OH = MRO2			DBM(MCM 3.1)
	MAOP+OH =- 0.50OH+0.50RCHO +- 0.50MAO3	3.80E-12 exp(200/T)	JPL97,MP+OH	
	MAOP + OH = MAO3			DBM(MCM 3.1)
177	OH+MAP = 0.50OH+0.50CH2O + 0.50MCO3	3.80E-12 exp(200/T)	JPL97,MP+OH	

178	C2H6+NO3 = ETO2+HNO3	1.40E-18	Atkinson,92	
170	0211011103 - 2102111103	<1E-17	Atti13011,32	
		VIL-17		
170	MNO3+OH	F 00F 12 over/ 010/T)	IDI 03	
179	=CH2O+NOMNO32	5.00E-13 exp(-810/T)	JPL02	
		8.0E-13exp(-1000/T)	JPL06	JMAO, The product is
				NO2 in the input file
				instead of NOMNO32.
				mateur of Hemmes 2.
180	IALD+OH = 0.44IAO2	3.70E-11	Paulson &Seinfeld,	
	+0.41MAO3+0.15HO2		92	
	30.1100.0040.101102			
181	IALD+O3 =	6.16E-15 exp(-1814/T)	Paulson &Seinfeld	MCO3+NO,MCO3,HO2
	0.60MGLY+0.10OH+0.12CH2	0.102 10 0xp(10 1 11 1)	92	,RCO3,GCO3,MAO3,G
	O+0.28GLYC+0.30O3+0.40C		\\ \frac{1}{2}	LCO3 rates are used
	O+0.20H2+0.20HAC+0.20HC			for other radicals.
	OOH			loi otilei radicais.
	0011			
182	MCO3+MCO3 = 2MO2	2.50E-12 exp(500/T)	Tyndall; See note	RCO3+HO2 same as
102		2.30L-12 exp(300/1)	6.	MCO3+HO2,
			0.	RCO3+NO same as
				MCO3+NO,
				*
				RCO3+MCO3 same
				asMCO3+MCO3
183	MCO3+MO2 =	1.80E-12 exp(500/T)	Tyndall	
100	CH2O+MO2+HO2	1:00E-12 exp(000/1)	Tyridan	
	0112011102			
184	MCO3+MO2 = ACTA +CH2O	2.00E-13 exp(500/T)	Tyndall	
			-	
185	R4O2+MCO3 = MO2	1.68E-12 exp(500/T)	T dep &	
	+0.32ACET+0.19MEK+0.18M	1.00L 12 0xp(000,1)	B.R.Tyndall	
	O2+0.27HO2+0.32ALD2+0.13		K298Villenave 98	
	RCHO+0.05A3O2+0.18B3O2+		See note 12	
	0.32ETO2		See Hote 12	
	U.J4ETU4			
186	ATO2+MCO3 = MO2	1.68E-12 exp(500/T)	Ibid.	
	+0.8HO2+0.2CH2O+0.2MCO3			
	+0.8MGLY			
187	KO2+MCO3 = MO2	1.68E-12 exp(500/T)	lbid.	
101	+ALD2+MCO3	1.00L-12 θλρ(000/1)	ibiu.	
	I ALDZTIVICUS			
				<u> </u>

	RIO2+MCO3 = MO2+0.864HO2+0.690CH2O +0.402MVK+0.288MACR+0.1 36RIO1+0.127IALD	1.68E-12 exp(500/T)	lbid.
189	RIO1+MCO3 = MO2 +IALD+HO2+0.75CH2O	1.68E-12 exp(500/T)	Ibid.
	IAO2+MCO3 = MO2 +HO2+0.65CO+0.18H2+0.36H AC+0.26GLYC+0.58MGLY+0. 4CH2O	1.68E-12 exp(500/T)	Ibid.
	ISN1+MCO3 = MO2+NO2+GLYC+HAC	1.68E-12 exp(500/T)	lbid.
	VRO2+MCO3 = MO2+0.28HO2+0.28CH2O+0. 72MCO3+0.72GLYC+0.28MG LY	1.68E-12 exp(500/T)	Ibid.
	MRO2+MCO3 = MO2+HO2+0.17MGLY+0.83H AC+0.83CO+0.17CH2O	1.68E-12 exp(500/T)	Ibid.
	B3O2+MCO3 = MO2+HO2+ACET	1.68E-12 exp(500/T)	lbid.
	R4N1+MCO3 = MO2+NO2+0.39CH2O+0.75A LD2+0.57RCHO+0.30R4O2	1.68E-12 exp(500/T)	Ibid.
196	MVN2+MCO3 = MO2 +NO2+CH2O+0.5MCO3+0.5M GLY+0.5HO2	1.68E-12 exp(500/T)	lbid.
197	MAN2+MCO3 = MO2 +NO2+CH2O+MGLY	1.68E-12 exp(500/T)	Ibid.
198	INO2+MCO3 = MO2 +0.10NO2 + 0.80HO2 +0.85HNO3 + 0.05NO2 +0.10MACR + 0.15CH2O +0.05MVK	1.68E-12 exp(500/T)	Ibid.
199	PRN1+MCO3 = MO2 +NO2+CH2O+ALD2	1.68E-12 exp(500/T)	Ibid.

200	R4O2+MCO3 = MEK +ACTA	1.87E-13 exp(500/T)	Ibid.	
		····· = ··· •··························		
201	ATO2+MCO3 = MEK +ACTA	1.87E-13 exp(500/T)	lbid.	
202	KO2+MCO3 = MEK + ACTA	1.87E-13 exp(500/T)	Ibid.	
203	RIO2+MCO3 = MEK +ACTA	1.87E-13 exp(500/T)	Ibid.	
204	RIO1+MCO3 = MEK +ACTA	1.87E-13 exp(500/T)	lbid.	
207	NOT WERE THE	1.07 E 10 CXP(000,1)	ibid.	
205	IAO2+MCO3 = MEK+ ACTA	1.87E-13 exp(500/T)	Ibid.	
200	VDOO: MOOO - MEK : ACTA	4.07E 42 ave/500/E)	lla: a	
206	VRO2+MCO3 = MEK +ACTA	1.87E-13 exp(500/T)	lbid.	
207	MRO2+MCO3 = MEK +ACTA	1.87E-13 exp(500/T)	Ibid.	
208	R4N1+MCO3 = RCHO +ACTA	1 87F-13 evn(500/T)	lbid.	
200	+ NO2	1.07 E-10 CXP(000/1)	ibid.	
209	ISN1+MCO3 = RCHO +ACTA	1.87E-13 exp(500/T)	Ibid.	
	+ NO2			
210	MVN2+MCO3 = RCHO	1.87E-13 exp(500/T)	Ibid.	
	+ACTA + NO2	,		
044	MANO BOUG	1 075 10 (500/F)		
211	MAN2+MCO3 = RCHO +ACTA + NO2	1.87E-13 exp(500/T)	lbid.	
	I ACTA I NOZ		+	
212	INO2+MCO3 = RCHO +ACTA	1.87E-13 exp(500/T)	Ibid.	
	+ NO2			
212	PRN1 + MCO3 = RCHO	1.87E-13 exp(500/T)	lbid.	
213	+ACTA + NO2	1.07 L-13 exp(300/1)	ibid.	
214	B3O2+MCO3 = ACET +ACTA	1.87E-13 exp(500/T)	Ibid.	
			+	
215	MCO3+ETO2 =	1.68E-12 exp(500/T)	lbid.	
	MO2+ALD2+HO2			
216	MCO3+ETO2 = ACTA +ALD2	1.87E-13 exp(500/T)	lbid.	
<u> </u>			+ +	
217	RCO3+MCO3 = MO2 + ETO2	2.50E-12 exp(500/T)	Tyndall,MCO3+MC	
		, , ,	O3	
0.15	0000.14000 1400 1400	0.505.40 (500(7))	T	
218	GCO3+MCO3 = MO2 + HO2+ CH2O	2.50E-12 exp(500/1)	Tyndall,MCO3+MC O3	
	OI IZO		100	

		Γ		
219	MAO3+MCO3 = MO2 +	2.50E-12 exp(500/T)	Tyndall,MCO3+MC	
	CH2O + MCO3			
220	GLCO3+MCO3 = MO2+ HO2+ CO	2.50E-12 exp(500/T)	Tyndall,MCO3+MC O3	
221	NO3+NO3 = 2NO2 + O2	8.50E-13 exp(-2450/T) Same	JPL 97 JPL06	
222	HO2 = 0.50H2O2	gamma=2E-1	Jacob, 2000	
223	NO2 = 0.50HNO3 +0.50HNO2	gamma=1E-4	Jacob, 2000	
224	NO3 = HNO3	gamma=1E-3	Jacob, 2000	
225	N2O5 = 2HNO3	gamma= fct(aerosol type, rh,	See Appendix	
226	DMS+OH = SO2+MO2+CH2O	temp) 1.20E-11 exp(-260/T)	JPL 2003	
		1.1E-11exp(-240/T)	JPL06	JMAO
227	DMS+OH+O2 = 0.75SO2+0.25MSA+MO2	K1 = 1.7E 42exp(7810/T) K2=5.5E-31exp(7460/T) K = K1/(1.0+K2*[O2])	Atkinson 89, yields- from Chatfield and Crutzen 90, as- reported by Chin-	
			et al., 1996.	
		K1=1.0E-39exp(5820/T) K2=5.0E-30exp(6280/T) K=K1*[O2]/(1.0+K2*[O2])	JPL06	MJE
228	DMS+NO3 = SO2+HNO3 +MO2+CH2O	1.90E-13 exp(500/T)	JPL2003	
229	SO2+OH+M = SO4+HO2	LPL: 3.00E-31(300/T)^3.3- HPL:1.50E-12 Fc: 0.6	JPL97	
		LPL: 3.30E-31(300/T)^4.3 HPL:1.60E-12 Fc: 0.6	JPL06	JMAO
230	MAO3+NO=1.0NO2+4.0CH2O +1.0HO2	6.7E-12exp(340/T)	IUPAC2006	This reaction doesn't exist in the manual but is in the input The rate is from IUPAC2006 (or 2003), using the rate of CH3CH2C(O)O2+NO=C 2H5C(O)O+NO2.
	MAO3 + NO=MCO3 + CH2O + N	NO2		Palmer, May, JMAO

,	Photolysis reaction	1	·
Photolysis reaction	reference	Date updated	Flag
O3 = 2OH	JPL97 and Atkinson97 as	1/2002	Q
	reported by Wild et al., 2000;		
	See also notes with Q flag		
NO2 = NO + O3	As in Wild et al., 2000		
H2O2 = 2OH	As in Wild et al., 2000		
MP = CH2O + HO2 + OH	As in Wild et al., 2000.		
CH2O = 2HO2 + CO	As in Wild et al., 2000.		
CH2O = H2 + CO	As in Wild et al., 2000.		
HNO3 = OH+NO2	As in Wild et al., 2000.		
HNO2 = OH+NO	As in Wild et al., 2000.		
HNO4 = OH+NO3	As in Wild et al., 2000.		
NO3 = NO2 + O3	As in Wild et al., 2000.		
NO3 = NO + O2	As in Wild et al., 2000.		
N2O5 = NO2 + NO2	As in Wild et al., 2000.		
N2O5 = NO3 + NO + O3	As in Wild et al., 2000.		
HNO4 = HO2 + NO2	As in Wild et al., 2000.; See also	1/2002	Т
	T flag notes [Roehl, 2002]		
ALD2 = MO2 + HO2 + CO	As in Wild et al., 2000.		
ALD2 = CH4 + CO	As in Wild et al., 2000.		
PAN = MCO3 + NO2	As in Wild et al.		
PAN =0.6 MCO3 + 0.6 NO2 +	JPL06		DBM
0.4 MO2 + 0.4 NO3			
RCHO = ETO2 + HO2 + CO	As in Wild et al.		
ACET = MCO3 + MO2	Pressure dependent		
	crosssections from Cameron-		
	Smith et al., 2000		
ACET = MCO3 + MO2;	FAST JX		Prather
ACET = 2MO2+CO	_		
7102100			
MEK = MCO3 + ETO2	As in Wild et al., 2000.		
	,		
MEK =	FAST_JX		Prather
0.15MO2+0.15RCO3+0.85MC			
O3 + 0.85ETO2			
MNO3 = CH2O + H2O + NO2	As in Wild et al., 2000.		
GLYC = CH2O + HO2 + CO	As in Wild et al.		
GLYC =CH2O + 2.0 HO2 + CO	JPL06,Lurman1986	GLYC + hv →	Palmer,JMAO
GETC = C1120 + 2.0 1102 + C0	57 E00,E011118111300		r allflet, JiviAO
		CH2OH + HCO;	
		CH2OH + O2 →	
		CH2O + HO2;	
		HCO + O2 → CO +	
		HO2	
GLVV = H2 + 2CO	As in Wild at al	1102	
GLYX = H2 + 2CO	As in Wild et al.		
GLYX = 2CO + 2HO2	As in Wild et al.		
GLYX = CH2O + CO	As in Wild et al.		
GLYX=0.5H2+CO+0.5CH2O+0.	FAST_JX		Prather
5CO;			
300.			

	MGLY = MCO3 + CO + HO2	As in Wild et al.		
	MGLY = ALD2 + CO	As in Wild et al.	Removed; JPL06	Not important
				according to
				JPL06,DBM
				Updated in ratj.d
				for the yield
	MVK = PRPE + CO	As in Wild et al.		Tor the yield
	MVK = MCO3+CH2O+CO+	As in Wild et al.		
	HO2			
	MVK = MO2+MAO3	As in Wild et al.		
	MACR = MAO3 + HO2	As in Wild et al.		
	MACR = CO + HO2	As in Wild et al.		
	+0.8MGLY+0.8HO2			
	+0.2MCO3+0.2CH2O			
	MACR = CO + HO2 + CH2O +			DBM(MCM3.1)
	мсоз			
	HAC = MCO3 + CH2O + HO2	Uses pressure-dependent		
		acetone cross-section;Cameron-		
		Smith et al., 2000.		
		Uses MP cross-section		
	NO2 PRPN = OH + HO2 + RCHO +	Lloca MD gross section		
	NO2	Uses MP cross-section		
	ETP = OH + HO2 + ALD2	Uses MP cross-section		
	RA3P = OH + HO2 + RCHO	Uses MP cross-section		
	RB3P = OH + HO2 + RCHO	Uses MP cross-section		
	RB3P = OH + HO2 + ACET			DBM
	R4P = OH + HO2 + RCHO	Uses MP cross-section		
	PP = OH + HO2 + RCHO	Uses MP cross-section		
	PP = OH + HO2 + ALD2 +			DBM(MCM 3.1)
	CH2O			
	RP = OH + HO2 + ALD2	Uses MP cross-section		
	GP = OH + HO2 + CH2O	Uses MP cross-section		
	GLP = OH + HO2 + CO	Uses MP cross-section		
	RIP = OH +0.864HO2 +	Uses MP cross-section		
	0.69CH2O +0.402MVK +			
	0.288MACR +0.136RIO1 +			
	0.127IALD			
		J(41)???		DBM(MCM3.1)
	+ 0.368MVK + 0.259MACR +	-(-,-,-		2(
	0.373IALD			
	IAP = OH + HO2 + 0.67CO	Uses MP cross-section		
	+0.19H2+			
	0.36HAC+0.26GLYC+			
L	0.58MGLY			
		Uses MP cross-section		
	NO2			

VRP = OH + 0.28HO2 + 	Uses MP cross-section	
0.28CH2O+0.72MCO3+0.72GL		
YC+0.28MGLY		
VRP = OH + 0.3HO2 +		DBM(MCM3.1)
0.3CH2O + 0.7MCO3 +		
0.7GLYC + 0.3MGLY		
MRP = OH + HO2 + 0.17MGLY	Uses MP cross-section	
+0.83HAC+0.83CO+0.17CH2O		
MRP = OH + HO2 + HAC +		DBM(MCM3.1)
0.5CO + 0.5CH2O		
MAOP = OH + HO2 + RCHO	Uses MP cross-section	
MAOP = OH + MCO3 + CH2O		DBM(MCM3.1)
R4N2 = NO2 + 0.32ACET	Uses MNO3 cross-section	
+0.19MEK + 0.18MO2 +		
0.27HO2 0.18B3O2+0.32ETO2+0.32AL		
D2+0.13RCHO+0.05A3O2+0.		
18B3O2+0.32ETO2		
MAP = OH + MO2	Uses MP cross-section	

PHOTOLYSIS REACTIONS - MASTER RATEFILE - Paul Brown, Oliver Wild & David Rowley
Centre for Atmospheric Science, Cambridge, U.K. Release date: 22 November 1993
SCCS version information: @(#)photol.d 1.2 5/11/94

Modified for Harward chemistry: governl reactions add

Modified for Harvard chemistry: several reactions added, re-ordered per chem.dat # Also putting in the Harvard names in col 1, the UCI x-sec names in last col !!! # -Prashant Murti [4/13/98]

The new peroxide recycling now activates the following photolysis species:
GP,IAP,INPN,ISN1,ISNP,MAOP,MRP,PP,PRPN,RIP,VRP.

Also be sure to set parameter JPMAX = 55 in "cmn_fj.h".

- Randall Martin & Bob Yantosca [12/20/00]

New updates from FASTJX.(jmao,ccarouge, 04/20/09)

#									
# Harvard species			Products	- UCI no	tation	UCI xsec			
# =========			========	=======	========			=:	======
	H2O	PHOTON	OH	HO2		0.00E+00	0.00	0.0	
	HO2	PHOTON	OH	O(3P)		0.00E+00	0.00	0.0	
3	02	PHOTON	O(3P)	O(3P)		0.00E+00	0.00	100.0	02
4	O3_P	PHOTON	02	O(3P)		0.00E+00	0.00	100.0	03
5	03	PHOTON	02	O(1D)		0.00E+00	0.00	100.0	03_1d
6	NO2	PHOTON	NO	O(3P)		0.00E+00	0.00	100.0	NO2
7	H2O2	PHOTON	OH	OH		0.00E+00	0.00	100.0	H2O2
8	MP	PHOTON	HCHO	OH	HO2	0.00E+00	0.00	100.0	ROOH
9	CH2O	PHOTON	CO	HO2	HO2	0.00E+00	0.00	100.0	HCHO=H+
10	CH2O	PHOTON	CO	H2		0.00E+00	0.00	100.0	нсно=н2
11	HNO3	PHOTON	OH	NO2		0.00E+00	0.00	100.0	HONO2
12	HNO2	PHOTON	OH	NO		0.00E+00	0.00	100.0	HONO
13	HNO4	PHOTON	OH	NO3		0.00E+00	0.00	5.0	HO2NO2
14	HNO4	PHOTON	HO2	NO2		0.00E+00	0.00	95.0	HO2NO2
15	NO3	PHOTON	NO	02		0.00E+00	0.00	100.0	NO3=02+
16	NO3	PHOTON	NO2	O(3P)		0.00E+00	0.00	100.0	NO3=O+
17	N2O5	PHOTON	NO3	NO	O(3P)	0.00E+00	0.00	0.0	N205
18	N2O5	PHOTON	NO3	NO2		0.00E+00	0.00	100.0	N205
19	ALD2	PHOTON	CH4	CO		0.00E+00	0.00	100.0	Acet=R+
	ALD2	PHOTON	MeOO	HO2	CO	0.00E+00	0.00	100.0	Acet=RO
	PAN	PHOTON	MeCO3	NO2		0.00E+00	0.00	100.0	PAN
	RCHO	PHOTON	EtO2	HO2	CO	0.00E+00	0.00	100.0	RCHO
	ACET	PHOTON	MeCO3	MeOO		0.00E+00	0.00	100.0	AcetA
	ACET	PHOTON	MeOO	MeOO	CO	0.00E+00	0.00	100.0	AcetB
	MEK	PHOTON	MeCO3	EtOO		0.00E+00	0.00	100.0	EtCOMe
	MNO3	PHOTON	НСНО	H2O	NO2	0.00E+00	0.00	100.0	MeNO3
27	GLYC	PHOTON	НСНО	HO2	CO	0.00E+00	0.00	100.0	НОМеСНО
28	GLYX	PHOTON	Н2	CO	НСНО	0.00E+00	0.00	100.0	Glyxla
29	GLYX	PHOTON	CO	HO2		0.00E+00	0.00	100.0	Glyxlb
	MGLY	PHOTON	MeCO3	CO	но2	0.00E+00	0.00	100.0	MeCOCHO
31	MGLY	PHOTON	Acet	CO		0.00E+00	0.00	0.0	MeCOCHO
32	MVK	PHOTON	PRPE	CO		0.00E+00	0.00	60.0	MeCOVi
33	MVK	PHOTON	MeCO3	НСНО	CO HO2	0.00E+00	0.00	20.0	MeCOVi
34	MVK	PHOTON	MeOO	MAO3		0.00E+00	0.00	20.0	MeCOVi
35	MACR	PHOTON	MAO3	HO2		0.00E+00	0.00	50.0	MACR
36	MACR	PHOTON	CO HO2 M	GLY HO2	MeCO3 HCHO	0.00E+00	0.00	50.0	MACR
37	HAC	PHOTON	MeCO3	HCHO	HO2	0.00E+00	0.00	100.0	AcetA
	ETP	PHOTON	OH	HO2	Acet	0.00E+00	0.00	100.0	ROOH
39	RA3P	PHOTON	OH	HO2	RCHO	0.00E+00	0.00	100.0	ROOH
40	RB3P	PHOTON	OH	HO2	RCHO	0.00E+00	0.00	100.0	ROOH
41	R4P	PHOTON	OH	HO2	RCHO	0.00E+00	0.00	100.0	ROOH
42	RP	PHOTON	ОН	HO2	Acet	0.00E+00	0.00	100.0	ROOH
	R4N2	PHOTON			HO2 ALD2		0.00	100.0	MeNO3
	MAP	PHOTON	ОН	MO2		0.00E+00	0.00	100.0	ROOH
	INPN	PHOTON	ОН	HO2	RCHO NO2	0.00E+00	0.00	100.0	ROOH
	PRPN	PHOTON	ОН	HO2	RCHO NO2	0.00E+00	0.00	100.0	ROOH
	PP	PHOTON	ОН	HO2	RCHO	0.00E+00	0.00	100.0	ROOH

48	GP	PHOTON	ОН		I	102		RCHC)	0.00E+00	0.00	100.0	ROOH
49	GLP	PHOTON	OH		F	102		RCHC)	0.00E+00	0.00	100.0	ROOH
50	RIP	PHOTON	OH	HO2	CH2O	MVK	MACR	RIO1	IALD	0.00E+00	0.00	100.0	ROOH
51	IAP	PHOTON	ОН	HO2	CO	Н2	HAC	GLYC	MGLY	0.00E+00	0.00	100.0	ROOH
52	ISNP	PHOTON	OH		F	102		RCHC	NO2	0.00E+00	0.00	100.0	ROOH
53	VRP	PHOTON	OH	HO2	CH2	20	MCO3	GLYC	MGLY	0.00E+00	0.00	100.0	ROOH
54	MRP	PHOTON	OH	HO2	MGI	ĹΥ	HAC	СО СН	120	0.00E+00	0.00	100.0	ROOH
55	MAOP	PHOTON	OH		F	102		RCHC)	0.00E+00	0.00	100.0	ROOH
9999										0.00E-00	0.00	0.0	

NOTES:

[4/15/98]

Oliver Wild: All reaction data from JPL '97, IUPAC IV. IUPAC V is soon expected. - ppm

All reaction data taken from IUPAC supplement IV unless otherwise indicated.

JPL - data from JPL (latest assessment as far as possible)

- ? reaction products unknown
- * user strongly advised to consult source material
- B branching ratio assumed equal for all channels in the absence of more information
- U upper limit for rate coefficient

Changes since 08/3/93 release:

O now written as O(3P)

(Note that the second of the acetaldehyde channels above occurs at wavelengths less than 289 nm, and therefore doesn't appear in the Fast-J region at all - I've simply included it here for completeness) - [from Oliver, 3/7/98]

JV_SPEC.dat updates(mostly cut from the visible wavelength bins of FASTJX 6.4, except Solar Flux, O3 cross section, NO2 cross section are from Huisheng Bian and Michael Prather's latest updates in 2009): Green is the value to be updated.Red is the value significantly changed.

Notes:1.Acetone photolysis is implemented by Claire.2. Pressure dependence is updated for MVK,MEK, MGLY by Claire. 3.Glyoxal reactions and branching ratio have been changed here and ratj.d iv spec.dat FAST-J std JPL 0 (mje 4/02) aer/dust(rvm,3/02)

I	jv_spec.dat	•		15 and brai JPL		(mje 4/02)	rchangeu	aer/dust(rvm,	•
	NW-JValue		7	JFL 1			NWWW,	NW1:NW2	3/02)
	w-beg(nm)	. 21	289	298.25	307.45	312.45	320.3	345	412.45
	w-end(nm)		298.25	307.45	312.45	320.3	345	412.45	850
	w-eff(nm)		294	303	310	316	333	380	574
	SOL#/cm2/	's	7.352E+14	7.332E+14	5.022E+14	8.709E+14	3.786E+15	1.544E+16	2.11E+17
		New	5.882E+14	7.686E+14	5.046E+14	8.906E+14	3.854E+15	1.548E+16	2.131E+17
	Raylay	cm2	6.180E-26	5.430E-26	4.920E-26	4.540E-26	3.630E-26	2.09E-26	3.830E-27
	, ,		6.131E-26	5.422E-26	4.923E-26	4.514E-26	3.643E-26	2.087E-26	3.848E-27
	BCarb	m2/g	10.08	9.96	9.87	9.79	9.58	9	6.5
	O2	180							
	O2	260							
	O2	300							
	O3	180	8.693E-19	2.365E-19	8.722E-20	3.694E-20	4.295E-21	1.804E-23	1.630E-21
		180	7.561E-19	2.367E-19	8.756E-20	3.69E-20	4.256E-21	1.806E-23	1.625E-21
	O3	260	9.189E-19	2.571E-19	9.673E-20	4.141E-20	5.457E-21	2.775E-23	1.630E-21
		260	8.016E-19	2.572E-19	9.71E-20	4.136E-20	5.409E-21	2.784E-23	1.625E-21
	O3	300	9.574E-19	2.777E-19	1.075E-19	4.725E-20	6.782E-21	4.824E-23	1.630E-21
		300	8.391E-19	2.778E-19	1.079E-19	4.72E-20	6.725E-21	4.845E-23	1.625E-21
	O3_1d	180	0.9	0.9	0.3824	0.08092	0.0765	0	0
		180	0.9	0.8941	0.4501	0.09189	0.07915	0.065	0
	O3_1d	260	0.9	0.9	0.4531	0.1438	0.07654	0	0
		260	0.9	0.8948	0.4992	0.1463	0.08728	0.07017	0
	O3_1d	300	0.9	0.9	0.5273	0.2395	0.07659	0	0
		300	0.9	0.8965	0.5636	0.2349	0.1002	0.07435	0
	NO2	200	1.048E-19	1.494E-19	1.898E-19	2.295E-19	3.391E-19	4.230E-19	4.047E-22
		220	1.173E-19	1.603E-19	1.966E-19	2.349E-19	3.354E-19	4.473E-19	2.339E-22
	NO2	300	1.039E-19	1.462E-19	1.845E-19	2.223E-19	3.256E-19	4.150E-19	4.02E-22
		298	1.165E-19	1.617E-19	2.021E-19	2.455E-19	3.619E-19	4.680E-19	4.291E-22
	H2O2	200	8.838E-21	4.991E-21	3.190E-21	2.099E-21	7.716E-22	1.707E-23	0
		200	8.360E-21	5.008E-21	3.220E-21	2.115E-21	7.984E-22	2.101E-23	806E-23
	H2O2	300	9.801E-21	5.718E-21	3.773E-21	2.568E-21	1.02E-21	2.287E-23	0
		300	9.300E-21	5.735E-21	3.803E-21	2.583E-21	1.046E-21	2.715E-23	0
	ROOH	300	5.883E-21	3.573E-21	2.437E-21	1.756E-21	7.428E-22	4.194E-23	0
() () () () () () () () () () () () () (297	5.621E-21	3.573E-21	2.441E-21	1.755E-21	7.405E-22	4.261E-23	0
	ROOH	300	5.883E-21	3.573E-21	2.437E-21	1.756E-21	7.428E-22	4.194E-23	0
		298	5.621E-21	3.573E-21	2.441E-21	1.755E-21	7.405E-22	4.261E-23	0
	HCHO=H+	223	0	1.969E-20	1.274E-20	1.971E-20	4.354E-21	0	0
		223	0	1.945E-20	1.289E-20	1.969E-20	4.324E-21	5.105E-26	0
	HCHO=H+	293	0	1.873E-20	1.304E-20	1.896E-20	3.949E-21	0	0
		293	0	1.85E-20	1.317E-20	1.895E-20	3.922E-21	4.467E-26	0
	HCHO=H2	223	0	6.475E-21	4.392E-21	9.027E-21	1.041E-20	1.946E-22	0
ı		223	0	6.397E-21	4.443E-21	9.027E-21	1.04E-20	1.960E-22	0
	HCHO=H2	293	0	6.163E-21	4.500E-21	8.715E-21	9.434E-21	1.883E-22	0
		293	0	6.086E-21	4.543E-21	8.717E-21	9.424E-21	1.903E-22	0
	HONO2	200	3.706E-21	1.377E-21	5.451E-22	2.102E-22	2.154E-23	8.105E-26	0
		200	3.396E-21	1.377E-21	5.474E-22	2.100E-22	2.131E-23	8.822E-26	0
	HONO2	300	4.747E-21	1.923E-21	8.314E-22	3.589E-22	4.764E-23		0

	300	4.384E-21	1.923E-21	8.345E-22	3.586E-22	4.720E-23	2.683E-25	0
HONO	300	0	0	1.265E-20	3.469E-20	1.09E-19	8.644E-20	0
	297	0	0	1.175E-20	3.47E-20	1.093E-19	8.764E-20	0
HONO	300	0	0	1.265E-20	3.469E-20	1.09E-19	8.644E-20	0
	298	0	0	1.175E-20	3.47E-20	1.093E-19	8.764E-20	0
HO2NO2	300	2.869E-20	1.102E-20	5.222E-21	2.794E-21	3.255E-22	0	0
	297	2.601E-20	1.103E-20	5.239E-21	2.793E-21	2.250E-22	0	4.792E-23
HO2NO2	300	2.869E-20	1.102E-20	5.222E-21	2.794E-21	3.255E-22	0	0
	298	2.601E-20	1.103E-20	5.239E-21	2.793E-21	2.250E-22	0	4.792E-23
NO3=O+	298	0	0	0	0	0	0	7.428E-19
	297	0	0	0	0	0	0	7.321E-19
NO3=O+	298	0	0	0	0	0	0	7.428E-19
1100-01	298	0	0	0	0	0	0	7.321E-19
NO3=O2+	298	0	0	0	0	0	0	9.569E-20
1100-021	297	0	0	0	0	0	0	9.435E-20
NO3=O2+	298	0	0	0	0	0	0	9.569E-20
1103=02+	298	0	0	0	0	0	0	9.435E-20
N2O5	225	4.13E-20	1.998E-20	1.167E-20	7.250E-21	2.296E-21	1.161E-22	
N2O5								0
NOOE	225	3.823E-20	1.998E-20	1.17E-20 2.223E-20	7.246E-21	2.286E-21	1.173E-22	0
N2O5	300	5.718E-20	3.317E-20		1.552E-20	6.409E-21	5.415E-22	0
A D.O	300	5.404E-20	3.317E-20	2.226E-20	1.551E-20	6.389E-21	5.481E-22	0
Acet=RO	298	4.008E-20	2.869E-20	1.84E-20	3.626E-21	0	0	0
with yield?	298	2.161E-20	1.46E-20	8.410E-21	3.335E-21	1.751E-22	0	0
Acet=RO	298	4.008E-20	2.869E-20	1.84E-20	3.626E-21	0	0	0
	298	2.161E-20	1.46E-20	8.410E-21	3.335E-21	1.751E-22	0	0
Acet=R+	298	0	0	0	0	0	0	0
	298	0	0	0	0	0	0	0
Acet=R+	298	0	0	0	0	0	0	0
	298	0	0	0	0	0	0	0
PAN	250	2.714E-21	9.251E-22	4.342E-22	2.290E-22	5.508E-23	6.551E-25	0
	250	2.438E-21	9.252E-22	4.355E-22	2.288E-22	5.480E-23	6.941E-25	0
PAN	298	3.931E-21	1.399E-21	6.730E-22	3.630E-22	9.301E-23	1.193E-24	0
	298	3.555E-21	1.399E-21	6.750E-22	3.627E-22	9.257E-23	1.265E-24	0
RCHO	298	5.203E-20	3.671E-20	2.22E-20	1.17E-20	1.569E-21	0	0
	297	5.548E-20	4.63E-20	3.578E-20	2.441E-20	5.853E-21	1.257E-23	0
RCHO	298	5.203E-20	3.671E-20	2.22E-20	1.17E-20	1.569E-21	0	0
	298	5.548E-20	4.63E-20	3.578E-20	2.441E-20	5.853E-21	1.257E-23	0
Acetone	235	2.98E-20	1.30E-20	4.32E-21	1.04E-21	5.88E-23	1.53E-25	0.00E+00
Acetone	298	3.26E-20	1.48E-20	5.18E-21	1.30E-21	9.62E-23	2.67E-25	0.00E+00
AcetA	220	3.100E-20	1.944E-20	1.088E-20	5.532E-21	4.637E-22	3.425E-25	0
AcetA	300	3.439E-20	2.255E-20	1.356E-20	7.273E-21	8.481E-22	6.682E-25	0
AcetB	240	5.156E-03	1.931E-03	8.022E-04	4.144E-04	4.156E-05	0	0
AcetB	300	8.564E-02	5.100E-02	3.298E-02	2.214E-02	3.533E-03	0	0
EtCOMe	298	1.432E-20	4.217E-21	1.150E-21	3.394E-22	4.706E-23	0	0
E.00::	297	4.170E-20	2.684E-20	1.57E-20	7.721E-21	8.142E-22	3.734E-25	0
EtCOMe	298	1.432E-20	4.217E-21	1.150E-21	3.394E-22	4.706E-23	0	0
	298	4.170E-20	2.684E-20	1.57E-20	7.721E-21	8.142E-22	3.734E-25	0

MeNO3	298	2.871E-20	1.08E-20	5.497E-21	3.460E-21	2.919E-22	0	0
	240	4.679E-21	2.022E-21	9.381E-22	3.730E-22	3.755E-23	0	0
MeNO3	298	2.871E-20	1.08E-20	5.497E-21	3.460E-21	2.919E-22	0	0
	298	6.029E-21	2.735E-21	1.346E-21	5.734E-22	6.957E-23	0	0
HOMeCHO	296	2.322E-20	1.773E-20	1.139E-20	5.584E-21	3.639E-22	0	0
	297	2.784E-20	1.706E-20	9.411E-21	4.388E-21	4.937E-22	0	0
HOMeCHO	296	2.322E-20	1.773E-20	1.139E-20	5.584E-21	3.639E-22	0	0
	298	2.784E-20	1.706E-20	9.411E-21	4.388E-21	4.937E-22	0	0
HCOCHO	298	9.701E-22	1.498E-21	8.257E-21	1.434E-21	2.078E-22	6.393E-22	3.277E-22
HCOCHO	298	9.701E-22	1.498E-21	8.257E-21	1.434E-21	2.078E-22	6.393E-22	3.277E-22
Glyxla	297	0	0	0	0	0	5.914E-22	2.199E-22
Glyxla	298	0	0	0	0	0	5.914E-22	2.199E-22
Glyxlb	297	1.333E-20	1.238E-20	1.117E-20	8.335E-21	2.625E-21	0	0
Glyxlb	298	1.333E-20	1.238E-20	1.117E-20	8.335E-21	2.625E-21	0	0
MeCOCHO	298	2.381E-21	1.853E-21	1.296E-21	9.572E-22	3.327E-22	2.004E-21	4.255E-22
	297	4.384E-20	3.465E-20	2.428E-20	1.788E-20	6.194E-21	2.237E-20	1.435E-21
MeCOCHO	298	2.381E-21	1.853E-21	1.296E-21	9.572E-22	3.327E-22	2.004E-21	4.255E-22
	298	4.384E-20	3.465E-20	2.428E-20	1.788E-20	6.194E-21	2.237E-20	1.435E-21
MeCOVi	298	1.388E-21	1.985E-21	2.587E-21	2.837E-21	3.115E-21	6.627E-22	0
	297	5.521E-21	7.955E-21	8.828E-21	7.236E-21	3.374E-21	1.790E-22	0
MeCOVi	298	1.388E-21	1.985E-21	2.587E-21	2.837E-21	3.115E-21	6.627E-22	0
	298	5.521E-21	7.955E-21	8.828E-21	7.236E-21	3.374E-21	1.790E-22	0
MACR	298	7.862E-22	1.215E-21	1.645E-21	1.804E-21	1.998E-21	3.654E-22	0
	297	2.107E-22	3.151E-22	3.995E-22	4.742E-22	5.222E-22	1.064E-22	0
MACR	298	7.862E-22	1.215E-21	1.645E-21	1.804E-21	1.998E-21	3.654E-22	0
	298	2.107E-22	3.151E-22	3.995E-22	4.742E-22	5.222E-22	1.064E-22	0
CH3I	225	3.289E-20	9.071E-21	4.037E-21	2.073E-21	3.577E-22	1.551E-24	0
	210	2.781E-20	8.253E-21	3.557E-21	1.826E-21	3.437E-22	2.347E-24	0
CH3I	298	5.024E-20	1.479E-20	6.296E-21	3.199E-21	6.783E-22	6.121E-24	0
	298	4.648E-20	1.511E-20	6.466E-21	3.293E-21	6.699E-22	9.781E-24	0
Q1A-Ac	240	1.00E+00	1.21E+00	4.133E+00	2.498E+01	9.452E+01	1.000E+02	1.00E+02
Q1A-Ac	300	1.01E+00	1.22E+00	2.411E+00	6.656E+00	1.969E+01	2.100E+01	2.10E+01
Q1B-Ac	240	1.03E+00	1.07E+01	5.202E+01	2.632E+02	2.760E+03	3.210E+03	3.21E+03
Q1B-Ac	300	8.79E-01	4.90E+00	1.617E+01	5.268E+01	3.023E+02	3.420E+02	3.42E+02
		===Pressure	e Dependenc	ies=====		.=======		===
Pressure De	p: 5							
MeCOVi	1	1.67E-19	1.67E-19	1.670E-19	1.670E-19	1.670E-19	1.670E-19	1.67E-19
EtCOMe	1	8.00E-20	8.00E-20		8.000E-20		8.000E-20	8.00E-20
MeCOCHO	1	1.66E-19	1.66E-19	1.660E-19			1.660E-19	1.66E-19
AcetA	2	1.00E+00	1.00E+00	1.000E+00	1.000E+00		1.000E+00	1.00E+00
AcetB	3	1.00E+00	1.00E+00		1.000E+00		1.000E+00	1.00E+00
							1.000E+00	
		====riessure	- Dependenc	162======				==

From Fast-JX(Michael Prather)
NO3 => NO+O2 [0.11414] fixed
=> NO2+O [0.88586]
Acet=RO is multiplied by the branching ratio

PAN = Peroxyacetyl nitrate = CH3C(O)COONO2

=>CH3C(O)O2 + NO2

CH3NO3 = CH3ONO2 = Methyl nitrate

=> CH3O + NO2

ActAld = Acetaldehyde = CH3CHO

=> CH3 + HCO

MeVK =Methylvinyl ketone = CH3C(O)CH=CH2

=> C3H6+CO [0.6]

=> CH2CHCO+CH3 [0.4]

to be scaled by density 1/(1 + 1.67e-19*M)

MeAcr = Methacrolein CH2C(CH3)CHO

=> CH2=C(CH3)+HCO

X-sect includes q-yld =0.008

GlyAld = Glycol aldehyde = HOCH2CHO

=> HOCH2 + HCO

X-sect includes q-yld =0.75

MEKeto = Methylethyl ketone = CH3COC2H5

=> C2H5+CH3CO [.85]

=> CH3+C2H5CO [.15]

to be scaled by pressure 1/(1 + 2.0*M(bar))

EAId = Ethyl aldehyde = C2H5CHO

=> C2H5 + HCO

MGlyxl = Methyl glyoxal = CH3COCHO

=> CH3CO + HCO

includes *qyld-0(wvl)

to be scaled by pressure 1/(1 + 4.15*M(bar))

Glyxl = Glyoxal (CHO)2

Glyxla => H2+CO+CO or CO+CH2O wvl > 340 nm

X-sect includes qyld-2 [0.029]

Glyxlb => HCO + HCO wvl < 340 nm

X-sect includes qyld-1 [0.40]

C3H6O = Acet = Acetone = CH3C(O)CH3

Acet-A => CH3CO+CH3

Acet-B => CH3+CH3+CO

q-ylds scale with T and density

Q1A-Ac and Q1B-Ac are for the pressure dependence of Acetone.

```
Updates from Randall Martin
15 Mdust 0.15 = mineral dust (R.V.Martin)
300 4.0154 0.151 0.964 1.000 2.104 2.573 2.380 1.837 1.226 0.608 0.153
400 3.0582 0.151 0.986 1.000 2.021 2.061 1.505 0.757 0.210 0.057 0.010
600 1.2133 0.151 0.994 1.000 1.712 1.120 0.368 0.096 0.015 0.002 0.000
999 0.2195 0.151 0.988 1.000 0.628 0.573 0.113 0.011 0.001 0.000 0.000
16 Mdust 0.25 = mineral dust (R.V.Martin)
300 2.6560 0.253 0.905 1.000 1.666 2.248 1.871 2.248 2.056 2.231 2.048
400 3.9669 0.253 0.980 1.000 2.060 2.715 2.658 2.515 2.163 1.591 1.024
600 3.2556 0.253 0.996 1.000 2.077 2.287 1.790 1.017 0.388 0.147 0.031
999 1.1019 0.253 0.994 1.000 1.708 1.120 0.374 0.096 0.015 0.002 0.000
17 Mdust 0.4 = mineral dust (R.V.Martin)
300 2.6071 0.402 0.862 1.000 2.190 3.255 3.624 4.518 4.572 5.092 4.820
400 2.1923 0.402 0.941 1.000 1.517 2.098 1.515 2.102 1.809 2.234 2.079
600 3.9815 0.402 0.993 1.000 2.085 2.791 2.764 2.694 2.379 1.855 1.308
999 2.9227 0.402 0.996 1.000 2.079 2.211 1.661 0.887 0.289 0.090 0.018
18 Mdust 0.8 = mineral dust (R.V.Martin)
300 2.3459 0.818 0.784 1.000 2.411 3.560 4.213 5.255 5.832 6.783 7.227
400 2.3417 0.818 0.907 1.000 2.223 3.180 3.372 4.151 4.298 5.044 5.206
600 2.4688 0.818 0.978 1.000 1.987 2.992 3.061 4.004 3.935 4.526 4.272
999 3.3741 0.818 0.992 1.000 1.984 2.703 2.614 2.793 2.687 2.533 2.298
19 Mdust 1.5 = mineral dust (R.V.Martin)
300 2.1925 1.491 0.694 1.000 2.582 3.893 4.901 6.101 7.097 8.288 9.215
400 2.2457 1.491 0.860 1.000 2.380 3.497 3.982 5.010 5.498 6.555 7.020
600 2.3919 1.491 0.964 1.000 2.237 3.288 3.523 4.492 4.768 5.704 5.996
999 2.6314 1.491 0.980 1.000 2.133 3.236 3.499 4.489 4.582 5.171 5.055
20 Mdust 2.5 = mineral dust (R.V.Martin)
300 2.1427 2.417 0.627 1.000 2.698 4.194 5.526 6.930 8.263 9.655 10.931
400 2.1881 2.417 0.805 1.000 2.493 3.713 4.426 5.563 6.301 7.494 8.213
600 2.1559 2.417 0.944 1.000 2.293 3.361 3.606 4.583 4.849 5.859 6.157
999 2.3282 2.417 0.967 1.000 2.240 3.252 3.437 4.274 4.506 5.346 5.708
21 Mdust 4.0 = mineral dust (R.V.Martin)
300 2.1045 3.721 0.582 1.000 2.769 4.422 5.990 7.568 9.129 10.687 12.200
400 2.1191 3.721 0.742 1.000 2.580 3.887 4.812 6.027 7.005 8.295 9.268
600 2.2094 3.721 0.925 1.000 2.402 3.575 4.016 5.102 5.567 6.724 7.229
999 2.3429 3.721 0.956 1.000 2.358 3.499 3.877 4.861 5.221 6.222 6.690
```