Laboratorium UOA Ćwiczenie 1

Czujniki Pomiarowe, Identyfikacja Obiektu.

16 maja 2020

1 Wstęp

1.1 Cel ćwiczenia

Zapoznanie się z meodą wyznaczania modelu zastępczego Kupfmullera oraz Strejca. Wykreślenie wykresu charakterystyki dynamicznej dla modelu rzeczywistego i jak najdokładniejsze odczytanie z niego parametrów modeli zastępczych.

1.2 Programy wykorzystane do przeprowadzenia ćwiczenia

- Matlab w wersji R2018a
- Program do edycji grafiki Paint

2 Wyznaczanie parametrów modeli zastępczych z charakterystyki dynamicznej modelu rzeczywistego

2.1 Charakterystyka dynamiczna modelu rzeczywistego

Korzystając z otrzymanych danych wykreślono charakterystykę dynamiczną. To~trzeba~z~matlaba~wygenerować,~w~skrypcie~.m~wszystko~jest.

2.2 Wyznaczanie parametrów modelu zastępczego Strejca

Na wyznaczonej charakterystyce naniesiono styczną przechodzącą przez punkt przegięcia A, następnie wyznaczono wartości t_i , T_m i T_z . Jak masz to wyżej, to trzeba to w paincie porysować takie kreski, i odczytać wartości i tak dalej. Nie będę tu wam rozprawki pisał. Ma być niż to, żeby nie było plagiatu. Kolejność pozmieniajcie. Coś tam swojego dopiszcie.

Wzór na model zastępczy Strejca:

$$K(s) = \frac{k}{(Ts+1)^n} \cdot e^{s\tau}$$

Wartość odniesienia od poziomu zerowego wynosi około E=0,9[mV], z tego po odjęciu tego od maksymalnej wartości E=19,0[mV] wynika parametr k=18,1[mV] Pozostałe parametry możemy odczytać bezpośrednio z wykresu.

$$T_z = 645[s]$$
 $T_m = 235[s]$ $t_i = 545[s]$ $k = 18, 1[mV]$

Stosunek $\left(\frac{T_m}{T_z}\right)_{exp} = 0,364$ co korzystając z tabeli i biorąc mniejszą wartość daje stosunek na poziomie 0,319, rząd obiektu równy 4 oraz $\frac{t_i}{T} = 3$. Korzystając z powyższych danych możemy obliczyć

$$\tau = \left[\left(\frac{T_m}{T_z} \right)_{exp} - \left(\frac{T_m}{T_z} \right)_{tab} \right] \cdot T_z \approx 29,025[s]$$

Kolejną czynnością konieczną do wyznacze nia paramatrów modelu jest wyznaczenie stałej czasowej T. Z tabelki odczytaliśmy wartość $\frac{t_i}{T}=3$ więc:

$$T = \frac{t_i}{3} = 181,67$$

Ostateczny wzór modelu to

$$K(s) = \frac{18,1}{(181,67s+1)^3} \cdot e^{29,025s}$$

2.3 Wyznaczanie parametrów modelu zastępczego Küpfmüllera

Na wyznaczonej charakterystyce naniesiono styczną przechodzącą przez punkt przegięcia A, następnie wyznaczono wartości t_i , T_m i T_z .

Wzór na model zastępczy Küpfmüllera:

$$K(s) = \frac{k}{(Ts+1)} \cdot e^{sT_0}$$

Wartość wspóczynnika k wynosi tak samo jak w modelu Strejca k = 18, 1[mV] Pozostałe parametry możemy ponownie odczytać bezpośrednio z wykresu.

$$T = 645[s]$$
 $T_0 = 235[s]$ $k = 18, 1[mV]$

Tak więc ostateczny wzór modelu to

$$K(s) = \frac{18,1}{(645s+1)} \cdot e^{235s}$$

3 Porównanie modeli zastępczych z modelem rzeczywistym

3.1 Schematy Simulink

Wykresy modeli zastępczych jak i modelu rzeczywistego zostały wygenerowane numerycznie poprzez badanie reakcji modelu na skok jednostkowy. Do wygenerowania wykresów użyto programu Matlab wraz z przybornikiem o nazwie Simulink

Schemat dla modelu Strejca

Schemat dla modelu Küpfmüllera

3.2 Porównanie modeli zastępczych z modelem rzeczywistym

Otrzymane modele jak sama nazwa wskazuje są modelami zastępczymi, czyli jedynie aproksymują rzeczywisty obiekt. Charakterystyka dynamiczna jest bardzo zbliżona do rzeczywistej. Różnią się przede wszystkim czasy stabilizacji każdego z modelu, jednak co najważniejsze stabilizują się one na takiej samej wartości.

4 Pytania i odpowiedzi

4.1 Co mierzy termoelement?

Termoelement najczęściej jest wykorzystywany jako czujnik temperatury, rzadziej jako źródło zasilania o bardzo niskim napięciu i wysokim prądzie. Warunkiem działania termoelementu jest różnica temperatur na jego przeciwległych końcach, pownieaż wykorzystuje on zjawisko generowania siły termoelektrycznej na styku dwóch różnych metali. Termoelement mierzy różnice napięć, która powstaje w skutek zmiany temperatury na jego końcach.

4.2 Do czego służą przewody kompensacyjne? Z czego są zbudowane?

Przewody kompensacyjne są przystosowane do łączenia urządzeń pomiarowych z czujnikami termoelektrycznymi. Zbudowany jest on z rdzenia (ten sam materiał co termopara) i izolacji wykonanej z tworzywa sztucznego. Niektóre typy są dodatkowo wzmocnione włóknem szklanym lub cynkowym, aby zabezpieczyć przewód przed przerwaniem i rozciąganiem.

4.3 Jak zidentyfikować czujnik pomiarowy temperatury w obiekcie przy pomocy multimetru i bez załączania zasilania obiektu?

Czujnik podłączyć do obiektu o innej temperaturze niż temperatura odniesienia dla czujnika, a następnie za pomocą multimetru zmierzyć napięcie i porównać jego wartość z tabelą wartości siły termoelektrycznej SME (mV) między spoinami. Część przykładowej tabeli dla temperatury odniesienia $0^{\circ}C$:

T [°C]	Cu-CuNi T	Fe-CuNi J	NiCr-NiAI K	NiCrSi-NiSi N	PtRh10-Pt S	PtRh13-Pt R	PtRh30-PtRh6 B
-200	-5,603						
-100	-3,378	-4,633	-3,554	-2,407			
-50	-1,819	-2,43	-1,889	-1,269			
0	0,000	10,000	0,000	0,000	0,000	0,000	0,000
20	0,790	1,019	0,798	0,525	0,113	0,111	-0,003
50	2,036	2,585	2,023	1,340	0,299	0,296	0,002
100	4,277	5,269	4,096	2,774	0,646	0,647	0,033
150	6,704	8,010	6,138	4,302	1,029	1,041	0,092
200	9,286	10,779	8,138	5,913	1,441	1,469	0,178
250	12,013	13,555	10,153	7,597	1,874	1,923	0,291
300	14,860	16,327	12,209	9,341	2,323	2,401	0,431
350	17,819	19,090	14,293	11,136	2,786	2,896	0,596
400	20,869	21,848	16,397	12,974	3,259	3,408	0,787
450		24 640	10 516	11 016	2 7/12	ა იაა	1 002

4.4 Jaki parametr zmienia się w tensometrze?

Tensometr to miernik służący do pomiaru naprężenia. W praktyce mierzy się odkształcenie i oblicza naprężenie w oparciu o przyjęty związek fizyczny.

4.5 Jakie są warunki pomiaru prędkości obrotowej przy pomocy prądnicy tachometrycznej prądu stałego?

Pomiar prędkości obrotu za pomocą prądnicy tachometrycznej wymaga sprzężenia osi prądnicy z wirującym elementem, którego prędkość chcemy zmierzyć. Sygnał wyjściowy prądnicy tachometrycznej duży wpływ ma temperatura samej prądnicy jak i obciążenie przyłożone do wyjścia, dlatego dobrą praktyką jest, aby prądnice były podłączane do układów o bardzo dużej impedancji wejściowej.

5 Wnioski

Modele zastępcze takie jak Strejca czy Küpfmüllera mogą znacząco uprościć matematyczne opisy bardziej skomplikowanych obiektów, dlatego tak ważna jest ich jak najdokładniejsze odwzorowanie rzeczywistego obiektu. Zależy to w dużej mierze od poprawnego odczytania ich parametrów z charakterystyk dynamicznych rzeczywistych obiektów przez osobę za to odpowiedzialną.