```
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-pythor
# For example, here's several helpful packages to load

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

from google.colab import drive
drive.mount('/content/drive')

   Mounted at /content/drive

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()

df=pd.read_csv('/content/drive/MyDrive/Enzo_2022/ESC/Machine Learning BI Project/customer.

df.head()
```

	customer_id	home_store	customer_first- name	customer_email	customer_since	10
0	1	3	Kelly Key	Venus@adipiscing.edu	2017-01-04	
1	2	3	Clark Schroeder	Nora@fames.gov	2017-01-07	
2	3	3	Elvis Cardenas	Brianna@tellus.edu	2017-01-10	•
,						,

Échec de l'enregistrement automatique. Ce fichier a été modifié à distance ou dans un autre onglet.

Voir diff.

(2246, 9)

```
df['home_store'].value_counts()
```

```
5 945
```

Name: home_store, dtype: int64

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2246 entries, 0 to 2245
Data columns (total 9 columns):
# Column Non-Null Count Dtype
```

^{3 800}

^{8 501}

0	customer_id	2246 non-null	int64
1	home_store	2246 non-null	int64
2	customer_first-name	2246 non-null	object
3	customer_email	2246 non-null	object
4	customer_since	2246 non-null	object
5	loyalty_card_number	2246 non-null	object
6	birthdate	2246 non-null	object
7	gender	2246 non-null	object
8	birth_year	2246 non-null	int64

dtypes: int64(3), object(6)
memory usage: 158.0+ KB

#The birthdate feature in object data type.So we are changing to datetime format

```
df['birthdate']=df['birthdate'].astype('datetime64')
```

#From birthdate we are going to extract the age of the customer

df['Age_Customer']=2020-df['birth_year']

df.head()

10	customer_since	customer_email	customer_first- name	customer_id home_store		
	2017-01-04	Venus@adipiscing.edu	Kelly Key	3	1	0
	2017-01-07	Nora@fames.gov	Clark Schroeder	3	2	1
	2017-01-10	Brianna@tellus.edu	Elvis Cardenas	3	3	2
_	2017-01-13	Ina@non.gov	Rafael Estes	3	4	3

Échec de l'enregistrement automatique. Ce fichier a été modifié à distance ou dans un autre onglet.

Voir diff.
ut[Age_customer].prot(kinu= kue)

df['TotalYearOfCustomer'].value_counts()

- 2 988
- 3 986
- 1 272

Name: TotalYearOfCustomer, dtype: int64

df['TotalYearOfCustomer'].value_counts().plot(kind='bar')

<matplotlib.axes._subplots.AxesSubplot at 0x7fef34e6ca90>

Échec de l'enregistrement automatique. Ce fichier a été modifié à distance ou dans un autre onglet. Voir diff.

```
df.groupby(['home_store'])['Age_Customer'].mean()
```

```
home_store
```

- 3 44.651250
- 5 39.176720
- 8 41.363273

Name: Age_Customer, dtype: float64

df.groupby(['home_store'])['Age_Customer'].mean().plot(kind='bar')

<matplotlib.axes._subplots.AxesSubplot at 0x7fef34eb87d0>

df['home store'].value counts().plot(kind='bar')

<matplotlib.axes. subplots.AxesSubplot at 0x7fef34e39750>

#Store 5 has the highest count of people followed by Store 3 and Store 8

pd.crosstab(df['home_store'],df['TotalYearOfCustomer']).plot(kind='bar')

<matplotlib.axes. subplots.AxesSubplot at 0x7fef34d57e10>

#Store 5 and 3 has decent metrics of old customer visiting
#Store 8 Lacks overall in all aspects more business strategies has to be done on the store
#In store 5 and 3 we can notice very few new customers.So some drill down analysis should
#should be taken from those people to make new customers count high

df.groupby(['home_store'])['Age_Customer'].median().plot(kind='bar')

<matplotlib.axes._subplots.AxesSubplot at 0x7fef34ce1810>

#We can notice and relate that in store 5 comparatively with other the mean age is less.Sc #Whereas in store 5 we have more regular customer.It Might be the cause of location nearby #Store 3 and 8 Follows next comparitively to store 5 its less.So the coffe shop reciepe th #tiers 2 and tier3 of youths

df1=df.copy()

df1.set_index('customer_id')

Échec de l'enregistrement automatique. Ce fichier a été modifié à distance ou dans un autre onglet. Voir diff.

	home_store	<pre>customer_first-</pre>	customer_email	customer_since	loyal	
customer_id	customer_id					
1	3	Kelly Key	Venus@adipiscing.edu	2017-01-04		
2	3	Clark Schroeder	Nora@fames.gov	2017-01-07		
3	3	Elvis Cardenas	Brianna@tellus.edu	2017-01-10		
A #Since we are doin	3 the cluste	Rafael Fetes	Ina@non dov are removing the unwa	2017-01-13		
#STITCE WE are doing	g the cluste	Little blocess we a	are removing the unwa	inted Teatures		
5	3	Colin Lvnn	Dale@Integer.com	2017-01-15		
<pre>df1=df1.drop(['customer_first-name','customer_email','customer_since','loyalty_card_number</pre>						
/usr/local/li	/usr/local/lih/nython3 7/dist-nackages/invkernel launcher ny:1: EutureWarning: In a					

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: In a """Entry point for launching an IPython kernel.

df1.head()

	customer_id	home_store	gender	Age_Customer	TotalYearOfCustomer
0	1	3	M	70	3
1	2	3	M	70	3
2	3	3	M	70	3
3	4	3	M	70	3
4	5	3	M	69	3

Échec de l'enregistrement automatique. Ce fichier a été modifié à distance ou dans un autre onglet. Voir diff.

von ann.		
3	F	44.682500
	Μ	44.663333
	N	44.490000
5	F	44.672222
	Μ	44.642857
	N	29.726225
8	F	44.092166
	Μ	46.452128
	N	25.229167

Name: Age_Customer, dtype: float64

df.groupby(['home_store','gender'])['Age_Customer'].mean().plot(kind='bar')

<matplotlib.axes._subplots.AxesSubplot at 0x7fef34c2b210>

pd.crosstab(df1['home_store'],df1['gender']).plot(kind='bar')

#In store we have good amount female and not disclosed gender people #WE can notice throughout the stores females are most.

#The second we see male customers.But there is a good base for the not disclosed gender pe

Échec de l'enregistrement automatique. Ce fichier a été modifié à distance ou dans un autre onglet. Voir diff.

pd.crosstab(df1['home_store'],df1['TotalYearOfCustomer']).plot(kind='bar')

<matplotlib.axes._subplots.AxesSubplot at 0x7fef34b1af50>

sns.heatmap(df1.corr())

Échec de l'enregistrement automatique. Ce fichier a été modifié à distance ou dans un autre onglet.

Voir diff.

```
sc=StandardScaler()
data_sc=sc.fit_transform(df1)

from sklearn.cluster import KMeans

wcse=[]
cl=[1,2,3,4,5,6,7,8]
for i in cl:
    mod=KMeans(n_clusters=i,random_state=42)
    mod.fit(data_sc)
    wcse.append(mod.inertia_)
```

plt.plot(cl,wcse)

[<matplotlib.lines.Line2D at 0x7fef321c56d0>]


```
clust_mod=KMeans(n_clusters=4, random_state=42)
clust 4=clust mod.fit(data sc)
```

label=clust_4.labels_

df['Label']=label

from sklearn.metrics import silhouette_score

silhouette score(data sc,clust 4.labels)

0.35490366000921847

```
c1=[2,3,4,5,6,7,8,9]
sil=[]
```

Échec de l'enregistrement automatique. Ce fichier a été modifié à distance ou dans un autre onglet.

Voir diff. mod.+it(data_sc)

sil.append(silhouette_score(data_sc,mod.labels_))

sil

[0.2942725951837463,

0.3197039662600329,

0.35490366000921847,

0.37284669182203156,

0.3808058664191642,

0.4099002279377665, 0.41824839079976434,

0.43813849254683346]

from yellowbrick.cluster import SilhouetteVisualizer

model= KMeans(3,random_state=42) visualizer=SilhouetteVisualizer(model,colors='yellowbrick')

visualizer.fit(data_sc) visualizer.show()

<matplotlib.axes._subplots.AxesSubplot at 0x7fef2cfd0e90>

data_sc_copy=data_sc.copy() df3=pd.DataFrame(data_sc_copy)

kmo=KMeans(n clusters=3,random state=42) kmo3=kmo.fit(data sc)

label=kmo3.labels

Échec de l'enregistrement automatique. Ce fichier a été modifié à distance ou dans un autre onglet. Voir diff.

df1.groupby('Cluster').mean()

	customer_id	home_store	gender	Age_Customer	TotalYearOfCustomer
Cluster					
0	394.500000	3.000000	0.604061	44.996193	2.340102
1	6701.443871	6.331613	0.320000	49.433548	2.517419
2	6034.628111	5.654466	1.592972	28.840410	2.065886

#There is a good amount of difference between them each other

from scipy.cluster.hierarchy import linkage,dendrogram,fcluster,cophenet

```
merg=linkage(data_sc_copy)
merg_complete=linkage(data_sc,method='complete')
dendrogram(merg_complete,truncate_mode='lastp',p=50)
plt.show()
```


merg_average=linkage(data_sc,method='average')
dendrogram(merg_average,truncate_mode='lastp',p=50)
plt.show()

Échec de l'enregistrement automatique. Ce fichier a été modifié à distance ou dans un autre onglet.

merg_ward=linkage(data_sc,method='ward') # Most efective method
dendrogram(merg_ward,truncate_mode='lastp',p=50)

plt.show()

```
for i in [2,4,8,10,12,14,16,18,21,24,27,30,33,36,39,42,45,50,55,60,65,70]:
    n_clust=fcluster(merg_ward,i,criterion='distance')
    print("The Number of cluster for the distance of :",i,'is',len(np.unique(n clust)))
     The Number of cluster for the distance of : 2 is 65
     The Number of cluster for the distance of : 4 is 44
     The Number of cluster for the distance of : 8 is 26
     The Number of cluster for the distance of: 10 is 22
     The Number of cluster for the distance of : 12 is 19
     The Number of cluster for the distance of: 14 is 18
     The Number of cluster for the distance of : 16 is 14
     The Number of cluster for the distance of : 18 is 14
     The Number of cluster for the distance of : 21 is 9
     The Number of cluster for the distance of : 24 is 8
     The Number of cluster for the distance of : 27 is 8
     The Number of cluster for the distance of : 30 is 8
     The Number of cluster for the distance of : 33 is 6
     The Number of cluster for the distance of : 36 is 4
```

Échec de l'enregistrement automatique. Ce fichier a été modifié à distance ou dans un autre onglet.

Voir diff.

```
The Number of cluster for the distance of : 50 is 3
The Number of cluster for the distance of : 55 is 3
The Number of cluster for the distance of : 60 is 3
The Number of cluster for the distance of : 65 is 3
The Number of cluster for the distance of : 70 is 2
```

#Here also suggesting 3 Clusters

```
df1['Cluster'].value_counts().plot(kind='bar')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fef2cc6ad90>

df3.columns=cl

from sklearn.decomposition import PCA

```
pca = PCA(n_components = df3.shape[1])
pca_data = pca.fit_transform(df3)
exp_var_ratio= pca.explained_variance_ratio_
exp_var_ratio.round(3)

cum_var=exp_var_ratio[0]
itr=2 # defined as two as first pc1 variance defined outside the loop
for j in exp_var_ratio[1:]:
    cum_var=cum_var+j
    if cum_var >= 0.95:
        break
    itr=itr+1
```

Échec de l'enregistrement automatique. Ce fichier a été modifié à distance ou dans un autre onglet.

Voir diff.

```
pc=exp_var_ratio[:itr]
ax = plt.bar(range(1,len(pc)+1), pc)
plt.xlabel("PCA Components",fontweight = 'bold')
plt.ylabel("Variance Ratio",fontweight = 'bold')
```

```
Text(0, 0.5, 'Variance Ratio')
```



```
wcss=[]
cl=[1,2,3,4,5,6,7,8,9,10,11,12]
for k in cl:
    mod=KMeans(k)
    mod.fit(pca_data)
    print(mod.inertia_)
    wcss.append(mod.inertia_)
plt.plot(cl,wcss)
```

11230.0

7801.148300205508

5966.7646877178595

4594.688179652896

3809.712348810605

3205.6033088319464

2886.433759897198

2545.0332424434373

2243.5459996804875

2026.940937984351

1825.9291596126573

1644.3091856710234

[<matplotlib.lines.Line2D at 0x7fef2cc64650>]

Échec de l'enregistrement automatique. Ce fichier a été modifié à distance ou dans un autre onglet.

pcadata=pca_data[:,:itr]
pcadata.shape

```
(2246, 4)
```

```
col=list(np.arange(1,pcadata.shape[1]+1))
col
```

```
[1, 2, 3, 4]
```

```
df pca final = pd.DataFrame(pcadata, columns=col)
```

```
wcss=[]
cl=[1,2,3,4,5,6,7,8,9,10,11,12]
for k in cl:
    mod=KMeans(k)
    mod.fit(pcadata)
    print(mod.inertia_)
    wcss.append(mod.inertia_)
plt.plot(cl,wcss)
```

11118.51791683348

7691.917260755141

5881.377074691029

4466.298807494277

3749.637460623918

3173.497943271411

2787.2381337958277

2510.740135920555

2303.549068434964

2003.4040529372933

1815.25840743845

1612.0811383785967

[<matplotlib.lines.Line2D at 0x7fef2cd6c0d0>]

Échec de l'enregistrement automatique. Ce fichier a été modifié à distance ou dans un autre onglet.

#By PCA Suggesting 4 Clusters.

√ 0 s terminée à 21:50

Échec de l'enregistrement automatique. Ce fichier a été modifié à distance ou dans un autre onglet. Voir diff.