On the Non-Existence of Kervaire Invariant One Manifolds

M. Hill¹, M. Hopkins², D. Ravenel³

¹University of Virginia

²Harvard University

³University of Rochester

Isle of Skye, June 2009

Main Result

Theorem (H.-Hopkins-Ravenel)

There are smooth Kervaire invariant one manifolds only in dimensions 2, 6, 14, 30, 62, and maybe 126.

Exemplars:

- $\circled{S}^1 \times S^1$
- \odot $SU(2) \times SU(2)$
- ${\color{red} {oldsymbol {\mathbb G}}} {\color{red} {\mathbb G}}({\color{blue} {\mathbb G}}) \times {\color{red} {\mathcal S}}({\color{blue} {\mathbb G}})$

- (Bökstedt) Related to $E_6/(U(1) \times Spin(10))$
- Possibly a similar construction.

Geometry and History

- 1930s Pontryagin proves $\{\text{framed } n \text{manifolds}\}/\text{cobordism} \cong \pi_n^S.$
 - Tries to use surgery to reduce to spheres & misses an obstruction.
- 1950s Kervaire-Milnor show can always reduce to case of spheres
 - Except possibly in dimension 4k + 2, where there is an obstruction: Kervaire Invariant.

Adams Spectral Sequence

$$[X, Y] \sim \sim \rightarrow \operatorname{Hom}_{\mathcal{A}}(H^*(Y), H^*(X))$$

Have a SS with

$$E_2 = \operatorname{Ext}_{\mathcal{A}}(H^*(Y), H^*(X))$$

and converging to [X, Y].

- (Adem) $\operatorname{Ext}^1(\mathbb{F}_2, \mathbb{F}_2)$ is generated by classes h_i , $i \geq 0$.
- h_j survives the Adams SS if \mathbb{R}^{2^j} admits a division algebra structure.

Browder's Reformulation

Theorem (Browder 1969)

- There are no smooth Kervaire invariant one manifolds in dimensions not of the form $2^{j+1} 2$.
- ② There is such a manifold in dimension $2^{j+1} 2$ iff h_j^2 survives the Adams spectral sequence.

Adams showed that h_i itself survives only if j < 4

$$d_2(h_{j+1}) = h_0 h_j^2$$
.

Previous Progress

 h_1^2 , h_2^2 , and h_3^2 classically exist.

Theorem (Mahowald-Tangora)

The class h_4^2 survives the Adams SS.

Theorem (Barratt-Jones-Mahowald)

The class h_5^2 survives the Adams SS.

Theorem (H.-Hopkins-Ravenel)

For $j \ge 7$, h_i^2 does not survive the Adams SS.

General Outline

There are four main steps

- Reduce to a simpler homotopy computation which faithfully sees the Kervaire classes
- Rigidify the problem to get more structure and less wiggle-room
- Show homotopy is automatically zero in dimension −2
- Show homotopy is periodic with period 2⁸

Reduction to Simpler Cases

Benefits of Reduction

Reduction is purely algebraic!

- Lifting from Adams to Adams-Novikov is well understood.
- Reduction from Adams-Novikov to homotopy fixed points is formal deformation theory.

So good choice of R gives us something that is

- easily computable
- strong enough to detect the classes.

Why Go Equivariant?

- Homotopy fixed point spectral sequence is still too complicated.
- Simplify computation by adding extra structure: equivariance.
- Here have fixed points, rather than homotopy fixed points.
- And there are spheres for every real representation.

Example

If
$$G = \mathbb{Z}/2$$
, then have $S^{\rho_2} = \mathbb{C}^+$ and S^2 .

Important Representations

Focus now on $G = \mathbb{Z}/8$.

 $RO(\mathbb{Z}/8)$ is rank 5 over \mathbb{Z} , generated by 1-dim reps:

- trivial rep 1
- sign rep σ

and 2-dim reps: $L = \mathbb{C}, L^2, L^3$.

We care only about $\rho_8 = 1 \oplus \sigma \oplus L \oplus L^2 \oplus L^3$. Plus the regular reps for subgroups.

What is R?

- **1** Begin with MU with $\mathbb{Z}/2$ given by complex conjugation.
- ② "induce" up to a $\mathbb{Z}/8$ spectrum:

- **③** The "fixed points" for the $\mathbb{Z}/8$ -action is geometric.
- Inverting an equivariant class Δ makes the fixed points and homotopy fixed points agree.

Advantages of the Slice SS

Advantages of the Slice SS

Basic Idea of Slices

Want to decompose *X* into computable pieces.

Similar to Postnikov tower

Key difference: don't use all spheres!

Acceptable Ones

- \bigcirc $\mathbb{Z}/8 \otimes S^k$

Unacceptable Ones

- Z/8 ⊗_{Z/4} S^σ
 Z/8 ⊗_{Z/2} S^{σ-1}
- 4 S^{k}

Computing with Slices

Key Fact

For spectra like *MU*, slices can be computed from equivariant simple chain complexes.

These algebraically describe the fixed points of the acceptable spheres.

Cellular Chains for S^{ρ_4-1}

Gives the chain complex

$$\mathbb{Z}^4 \to \mathbb{Z}^4 \to \mathbb{Z}^2 \to \mathbb{Z} = \textit{C}_{\bullet}.$$

Maps determined by

$$H_*(C_{\bullet}) = \tilde{H}_*(S^3).$$

Theorem

For any non-trivial subgroup H of $\mathbb{Z}/8$ and for any slice sphere $\mathbb{Z}/8 \otimes_H S^{\rho_H}$,

$$H_{-2}(C_*^{\mathbb{Z}/8})=0$$

The proof is an easy direct computation:

- If $k \ge 0$, then we are looking at something connected.
- ② If $k \le 0$, then we look at the associated *co*chain algebra.
- In the relevant degrees, the complex is $\mathbb{Z} \to \mathbb{Z}^2$ by $1 \mapsto (1,1)$.

Gap Theorem

Theorem

$$\pi_{-2}(R) = 0.$$

Proof.

• Slices of $MU \otimes MU \otimes MU \otimes MU$ are all of the form

$$H\mathbb{Z}\otimes (\mathbb{Z}/8\otimes_{H}S^{k\rho_{H}}).$$

- Class we are inverting is carried by an $S^{k\rho_8}$.
- Inversion is a colimit and first steps show $\pi_{-2} = 0$.

Take Home Message

- Slices are easy to compute with
- Things built from MU have easy, geometric slices.

Happy A_5 Birthday, Bob and Ron!