

- Algorithmique - TD - Série N°2 - Les structures de contrôle

Exercice 1: Si ... Alors ... Sinon ... FSi

- Q1) Écrire un algorithme qui détermine si un entier positif N est pair ou impair.
- Q2) Écrire un algorithme qui prend en entrée deux entiers A et B et affiche leur minimum.
- Q3) Écrire un algorithme qui permet de résoudre l'équation du second degré : $aX^2 + bX + c = 0$.
- Q4) Une librairie facture 5 DA les dix premières photocopies, 4 DA les vingt suivantes et 3 DA au-delà.

Écrire un algorithme qui lit le nombre de photocopies effectuées (N) et qui affiche la facture correspondante.

Q5) Une année bissextile est une année comptant 366 jours au lieu de 365 jours pour une année normale.

C'est-à-dire une année comprenant un 29 février. La prochaine année bissextile est 2024.

Une année est bissextile si elle est divisible par 4 mais pas par 100 sauf si elle est multiple de 400.

Exemples: 2000 et 2008 sont des années bissextiles. 2006 et 2100 sont des années normales (non-bissextiles).

Écrire un algorithme permettant de vérifier si une année est bissextile ou pas.

Q6) Écrire un algorithme qui permet d'ordonner trois nombres entiers (A, B, C) dans l'ordre croissant.

Exercice 2: Essentiellement la boucle POUR ...

Ecrire des algorithmes pour les cas suivants :

- **Q1**) Calcul de la **somme** $S = 2^2 + 4^2 + 6^2 + ...$ en prenant N termes.
- **Q2**) Calcul de la **puissance** N d'un nombre réel X *i.e.* $X^N = X * X * ... * X$, N fois.
- Q3) Calcul de la factorielle d'un entier naturel N i.e. N ! = N * (N-1) * ... * 3 * 2 * 1.
- **Q4)** Calcul de la **somme** S = 1! + 2! + 3! + ... + N!
- **Q5**) Calcul de la valeur approchée $e^x \cong 1 + \frac{x}{1} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$ (x est un nombre réel, n un entier positif).
- **Q6**) Calcul du *sinus* d'un angle *x* exprimé en radian est donné par la somme infinie suivante :

$$Sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$$

Q7) Ecrire un l'algorithme permettant de calculer le n^{ieme} terme de la suite de *Fibonacci* définie par :

$$\begin{cases} U_0 = 0 \\ U_1 = 1 \\ U_n = U_{n-1} + U_{n-2} & Si \ n \geq 2 \end{cases}$$

Exercice 3: Nombres Parfaits

Q1) Ecrire un algorithme qui permet d'afficher tous les diviseurs d'un entier N.

Un nombre est dit **parfait** s'il est égal à la somme de tous ses diviseurs excepté lui-même.

Exemples: 6 est parfait car 6 = 1 + 2 + 3. Les diviseurs de 6 sont: 1, 2, 3 et 6 (exclu).

- **28** est parfait car **28** = 1 + 2 + 4 + 7 + 14. Les diviseurs de 28 sont : 1, 2, 4, 7, 14 et 28 (exclu).
- Q2) Ecrire un algorithme qui permet de vérifier si un entier N est parfait ou pas.
- Q3) Généraliser l'algorithme précédent pour afficher tous les nombres parfaits \leq NMax.

Exercice 4: PGCD et PPCM

Q1) L'algorithme d'Euclide permettant de calculer le **PGCD** (Plus Grand Commun Diviseur) de deux entiers strictement positifs A et B tel que $A \ge B$ est défini comme suit :

$$PGCD(A,B) = \begin{cases} PGCD(B,A\,mod \quad B) & Si\,B \neq 0 \\ A & Si\,B = 0 \end{cases}$$

Ecrire un algorithme qui permet de : a) Saisir deux entiers positifs non nuls A et B. b) S'assurer que $A \ge B$.

- c) Déterminer et afficher le **PGCD** de **A** et **B**.
- Q2) Une méthode pour calculer le **PPCM** (Plus Petit Commun Multiple) de deux entiers strictement positifs A et B tel que $A \ge B$ est de trouver le plus petit multiple de A qui est aussi multiple de B.

Ecrire un algorithme permettant de trouver le PPCM de deux entiers positifs non nuls A et B.

Exercice 5: Nombre premier

Un nombre est dit **premier** s'il n'admet que deux diviseurs : 1 et lui-même.

- Q1) Ecrire un algorithme qui permet de vérifier si un entier N est premier.
- Q2) Modifier l'algorithme précédent pour afficher les vingt (20) petits nombres premiers.

Exercice 6 : Types Caractère et Chaine

Q1) Ecrire un algorithme qui permet **de saisir** les noms, prénoms et moyennes du BAC des étudiants. Les étudiants sont affectés séquentiellement au groupe 1 puis groupe 2 et ainsi de suite. Pour tester l'algorithme, on suppose que chaque groupe contient 10 étudiants. Après la saisie de chaque étudiant, l'algorithme **affiche** le numéro du groupe ainsi que le numéro de l'étudiant dans le groupe. **Exemple**: Pour la saisie du quinzième étudiant (le 5^{ième} étudiant du groupe 2), si l'utilisateur saisit les informations suivantes: nom = **DJAZAIRI**, Prénom = **Mohamed**, Moyenne Bac = **12.5**, l'algorithme affiche le message suivant : "**DJAZAIRI Mohamed BAC=12.5 est l'étudiant N°5 du groupe 2**".

Ensuite, l'algorithme demande à l'utilisateur s'il veut faire une autre saisie par le message :

- "Voulez-vous continuer la saisie? Tapez 'O' pour OUI ou bien 'N' pour NON ".
- Q2) Compléter l'algorithme pour qu'il affiche à la fin un résumé qui donne le nombre de groupes utilisés et le nombre d'étudiants affectés à chaque groupe.

Exercice 7 : Nombres Symétriques

Soit N un nombre entier positif.

Q1) Ecrire un algorithme qui permet d'afficher les chiffres qui composent le nombre N ainsi que sa longueur.

Exemples: - Si $N = 17 \rightarrow$ on affiche les chiffres 7 puis 1 et La longueur = 2.

- Si $N = 695 \rightarrow$ on affiche les chiffres 5 puis 9 puis 6 et La longueur = 3.
- Q2) Ecrire un algorithme qui permet de calculer puis afficher le nombre inverse de N.

Exemple Si $N = 695 \rightarrow$ son nombre inverse = 596.

Q3) Dérouler l'algorithme pour N = 695

Un nombre N est dit **symétrique** s'il est égal à son inverse.

Exemples: Les nombres suivants sont symétriques: 1, 2, 3, 44, 55, 161, 717, 8228, 94549.

- **Q4**) Modifier l'algorithme précédent pour qu'il affiche un message indiquant si N est symétrique ou non.
- Q5) Généraliser l'algorithme précédent pour qu'il affiche les nombres symétriques de longueur égale à 5