Tropical Semirings

Tropical Semirings
seneral method for declinatively solving graph problems
Simon Zeng
Unionally of Warning Computer Science Cush
November 20, 2022

Tropical Semirings

You may obtain a copy of these notes and code samples on my waterials may be a supple of the samples on the sample of the samples and the sample of the samples and the sample of t

-Handout

- Greeting
- Spoiler: Functional programming talk
 - Not lambda
 - Not purity
 - Not monads
- Solving real problems declaratively
 - Graph problems!
- We develop an algebraic method that elegantly describes a class of graph problems and their solutions
- These notes are available on my website

Tropical Semirings Motivating problem

└─Motivating problem

Motivating problem

Figure 1: Graph where edge weights represent number of paths

• Problem: find the number of paths between two nodes on a

graph that traverses n edges?

• Example 1: there are 20 paths from node 1 to node 5 that

 Example 1: there are 20 paths from node 1 to node 5 that traverse 2 edges

a Example 2: there are 41 paths from node 6 to node 6 that traverse 2 edges (edge reuse allowed) Solving imperatively

Solving imperatively

The graph

OTS, printy team, etc.

Works, but a bit painful

- Informally go over an imperative DFS
- Do example with n=3

☐Towards an elegant solution

■ $Paths(0.5) = 3 \times 1 + 5 \times 0 + 2 \times 1 + 4 \times 2 = 13$

Towards an elegant solution

- What does this look like? A linear combination!
- It's actually a dot product!

—What does that look like?

What does that look like?

The graph

State of a 1 - 4 as det product

Path(0.5) = (1.5.2.4) × (1.0.1.2) = 13

• Explain where the numbers come from

• Explain where the numbers come from again, but with the 0s

The solution for n=2 is a dot product

Our process energia

Paths $(0,5)=(0.3.5,2.4.0.0)\times(0.1.0,1.2.0.5)=13$ If the nodes are labelled a_1 , the a_1 - b_2 - b_3 - b_4 -

So if the answer is just dot products, what if we want to calculate the number of paths between two nodes for the entire graph at once? A bunch of dot products??? What's that called?

The solution for n = 2 is a dot product

It's a matrix product!

2022-11-29

Tropical Semirings

Towards an elegant solution

—A global answer

Tropical Semirings
Tropical Semirings
Towards an elegant solution
A global answer

Tropical Semirings Towards an elegant solution

Extending the global answer

- What if we want to find the answer for other n?
- a Simply take a to the nth power!
- . Example: as represents the number of paths between nodes that traverse exactly 5 edges:

	1560	15608	16145	7611	15222	6580	7045
	15608	4480	1600	1800	3600	7181	12084
	16145	1600	0	300	600	5765	5960
a5 -	7611	1800	300	280	560	3852	2928
	15222	3500	600	560	1120	7704	5856
	6580	7181	5765	3852	7704	4680	12370
	7045	12084	5960	2928	5856	12370	5080

Lends to efficient implementation via square-and-multiply!

Tropical Semirings
C7-11-22

—A more useful answer

A more useful answer

- What if we want to know the number of paths that use less or equal to n moves, rather than exactly n?
 Solution: replace the diagonals of a with 1
- Then there will always be a "no-op" action, where staying at the same node counts as a move
- So aⁿ will give all the number of paths between nodes that
- So aⁿ will give all the number of paths between nodes that use less or equal to n moves
- $a^2 = \begin{bmatrix} 1 & 3 & 5 & 2 & 4 & 0 & 0 \\ 3 & 1 & 0 & 0 & 0 & 1 & 4 \\ 5 & 0 & 1 & 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 1 & 0 & 1 & 0 \\ 4 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 2 & 1 & 5 \\ 0 & 4 & 0 & 0 & 0 & 5 & 1 \end{bmatrix} = \begin{bmatrix} 55 & 6 & 10 & 4 & 8 & 13 & 12 \\ 6 & 27 & 15 & 7 & 14 & 22 & 0 & 3 \\ 15 & 25 & 15 & 25 & 10 & 20 & 2 & 3 \\ 0 & 4 & 7 & 10 & 6 & 10 & 2 & 5 \\ 0 & 4 & 0 & 0 & 0 & 5 & 1 & 3 & 22 & 0 & 2 & 4 & 32 & 14 \\ 13 & 22 & 0 & 2 & 4 & 32 & 14 & 10 \\ 133 & 22 & 0 & 2 & 4 & 32 & 14 & 10 \\ \end{bmatrix}$

└─A different problem?

A different problem?

Figure 6: Graph where edge weights represent distance between nodes

- Problem: find the shortest path between two nodes on a graph
- Traditional ways: Dijkstra, Bellman-Ford, etc.
- Lots of state, not the most elegant Can we do better (or at least cleaner)?

└─A different problem?

A different problem?

Figure 6: Graph where edge weights represent distance between nodes

- Problem: find the shortest path between two nodes on a graph
 Traditional ways: Dijkstra, Bellman-Ford, etc.
- Lots of state, not the most elegant Can we do better (or at least cleaner)?Yes

☐A different problem?

A different problem?

Figure 6: Graph where edge weights represent distance between nodes

- Problem: find the shortest path between two nodes on a graph
- Traditional ways: Dijkstra, Bellman-Ford, etc.
- Can we do better (or at least cleaner)?Yes
 Solution: the exact same solution as the number of
- Solution: the exact same solution as the number naths neoblem!

Tropical Semirings 2022-11-29 -A different problem?

Recall the solution

Recall the solution

Get the adjacency matrix a of the graph
Row i, Col j has weight of edge ij
Row i, Col j has additive identity 0 if node i and j are

The diagonals are filled with the multiplicative identity 1 Take the nth power of a, for whatever value of n we want to calculate up to

Recall the solution

Recall the solution

The Algor

Get the adjacency matrix a of the graph
Row i, Col j has weight of edge ij
Row i, Col j has additive identity 0 if node i and j are

 Now i, Col j has additive identity 0 if node i and j are unconnected
 The diagonals are filled with the multiplicative identity 1

The diagonals are filled with the multiplicative identity 1
 Take the nth power of a, for whatever value of n we want to calculate up to

 If we follow these paths as written, we'll just be solving number of paths again

Q: How is the same algorithm able to solve shortest path?

Recall the solution

Recall the solution

Get the adjacency matrix a of the graph
 Row i, Col j has weight of edge ij
 Row i, Col j has additive identity 0 if node i and j are

The diagonals are filled with the multiplicative identity 1

Take the nth power of a, for whatever value of n we want to calculate up to

. If we follow these paths as written, we'll just be solving

number of paths again . Q: How is the same algorithm able to solve shortest path? A: Changing the algebraic structure we work in!

└─Algebraic structure??

Algebraic structure??

 $_{b}$ In the shortest path problem, we were working in N $_{b}$ N has a lot of properties, but what did we actually use?

—Algebraic structure??

Alexaberata aterratura??

- In the shortest path problem, we were working in N
 N has a lot of properties, but what did we actually use?
 Addition
- Multiplication
 Additive identity
- Multiplicative identity
 Related laws (i.e. associativity, distributivity, etc)

-Algebraic structure??

Algebraic structure??

- a In the shortest path problem, we were working in N . N has a lot of properties, but what did we actually use? Addition
 - Multiplication Additive identity
 - . Multiplicative identity
- Related laws (i.e. associativity, distributivity, etc)
- . An algebraic structure that has these properties is called a semiring

—Algebraic structure??

Algebraic structure??

- In the shortest path problem, we were working in N
 N has a lot of properties, but what did we actually use?
 Addition
 - Multiplication
 Additive identity
 Multiplicative identity
 - Multiplicative identity
 Related laws (i.e. associativity, distributivity, etc)
- An algebraic structure that has these properties is called a semiring
 Matrices over a semiring also form a semiring

-Algebraic structure??

Algebraic structure??

- a In the shortest path problem, we were working in N . N has a lot of properties, but what did we actually use? Addition
 - Multiplication Additive identity
 - . Multiplicative identity
- Related laws (i.e. associativity, distributivity, etc) . An algebraic structure that has these properties is called a
- Matrices over a semiring also form a semiring . We can run our graph algorithm with any semiring

—So what semiring will help us solve shortest path?

So what semiring will help us solve shortest path?

Answer: Shortest(0.5) = min(3+1.5+0.2+1.4+2) = 3

So what semiring will help us solve shortest path?

So what semiring will help us solve shortest path?

So what semiring will help us solve shortest path?

 Example: how do we get the shortest distance between node 0 and node 5?
 Answer: Shortest(0.5) = min(3+1.5+0.2+1.4+2) = 3

Answer: Shortest(0,5) = min(3+1,5+0,2+1,4+2) = 3
Compare to the number of paths problem:

 $Paths(0,5) = 3 \times 1 + 5 \times 0 + 2 \times 1 + 4 \times 2 = 13$

So what semiring will help us solve shortest path?

So what semiring will help us solve shortest path?

rigure /: The graph

- Example: how do we get the shortest distance between node 0 and node 5?
 Answer: Shortest(0,5) = min(3+1,5+0,2+1,4+2) = 3
- Answer: Shortest(0,5) = min(3+1,5+0,2+1,4+2) = 3
 Compare to the number of paths problem:
- $Paths(0,5) = 3 \times 1 + 5 \times 0 + 2 \times 1 + 4 \times 2 = 13$
- If you replace multiplication with addition, and addition with min, then you can convert between these!

Introducing the tropical semiring

Introducing the tropical semiring

Defining a semiring

Definition A semiring is a 3-tuple $(S, +, \times)$ of a set S and binary operators $+, \times$ such that $\forall a, b, c \in S$ the following laws hold:

Commutivity of +: a + b = b + a
 Associativity of +: a + (b + c) = (a + b) + c

Associativity of +: a + (b + c) = (a + b) + c
 Additive identity: ∃0 ∈ S, a + 0 = a

 $oldsymbol{\Phi}$ Associativity of \times : $a \times (b \times c) = (a \times b) \times c$ $oldsymbol{\Phi}$ Multiplicative identity: $\exists 1 \in S, a \times 1 = 1 \times a = 1$ $oldsymbol{\Phi}$ Multiplying by additive identity: $a \times 0 = 0 \times a = 0$ $oldsymbol{\Phi}$ Distributivity 1: $a \times (b + c) = a \times b + a \times c$

Distributivity 2: (a+b) × c = a × c + b × c
The Tropical Semiring is the semiring (N ∪ {∞}, min, +)

• Additive identity is ∞ • Multiplicative identity is $0 \in \mathbb{N}$

The Tropical Semiring Solves Shortest Path

Figure 8: The graph

• Recall: Shortes(5,5) = min(3+1,5+0,2+1,4+2) = 3

The Tropical Semiring Solves Shortest Path

miring Solves Shortest Path

Figure 8: The graph

» Recall: Shortest(0,5) = min(3+1,5+0,2+1,4+2) = 3 » Written with the tropical semiring:

 $Shortest(0,5) = 3 \times 1 + 5 \times 0 + 2 \times 1 + 4 \times 2 = 3$ $= (3,5,2,4) \cdot (1,0,1,2)$

Dot products just work!
 Hence, powers of the adjacency matrix just work as well!

-Constructing our adjacency matrix

Constructing our adjacency matrix

Get the adjacency matrix a of the graph
Row i, Col j has weight of edge ij
Row i, Col j has additive identity O if node i and j are

- The diagonals are filled with the multiplicative identity /
- Take the nth power of a, for whatever value of n we want to calculate up to, under whatever semiring solves our

I	3	5	2	4	0	0		0	3	5	2	4	∞	00
3	1	0	0	0	1	4		3	0	∞	∞	∞	1	4
5	0	1	0	0	0	0		5	∞	0	∞	∞	0	∞
2	0	0	1	0	1	0	-	2	∞	∞	0	∞	1	∞
4	0	0	0	1	2	0		4	∞	∞	∞	0	2	∞
0	1	0	1	2	1	5		∞	1	0	1	2	0	5
o	4	0	0	Ω	5	- /		~	4	200	200	200	5	0

└─Solving shortest path

Choose your character

Choose your character

By selecting different semirings, we can use this same algorithm to solve multiple different problems:

 ν Connectedness: $(\mathbb{Z}_2, +, *)$ ■ Longest path: $(N \cup \{-\infty\}, max, +)$

■ Widest flow: (N ∪ {-∞, ∞}, max, min)

» Dfa → Regex: (Strings, Or, concat)

The following are left as an exercise:

Determine graph is bipartite

Inverting matrices

Knapsack problem

Tropical Semirings A different problem
└─The end

2022-11-29

The end

Thanks for listening!

Extra note: getting closure

Extra note: getting closure

Colors Delimins The classes of sampling element a_i written as a^a , is defined as the fixed point: $a^a=1+a\times a^a$ You can think of R as: $a^a=1+a+a^2+a^3+a^4+a^5+\cdots$

There exists a closed form solution for closure of a semiring matrix

For DFA to regex and a few other problems on the last list, you need to calculating the closure of a matrix instead of a big power.