ME 311: Microprocessors and Automatic Control

Microprocessor architecture Programming fundes

Acknowledgements: Anand (Mtech 09)+

P.S. Gandhi Mechanical Engineering IIT Bombay

PRASANNA S GANDHI gandhi@me.iitb.ac.in

1

Life Skills

Why and How to deal with emotions?

- Emotions, thoughts come to you weather you like it or not. You have no control.
- If mind is caught up in emotions, no focus on studies or any other activities and they eventually drain a lot of your energy
- So need to deal with emotions to make sure focus on what we want to do is not lost

PRASANNA S GANDHI gandhi@me.iitb.ac.in

Why and How to deal with emotions?

- How to deal with?
 - First accept the situation as it is! you start resisting creating fight in mind! no use..
 - With acceptance you will get ideas to overcome intellect will have clarity
 - If you are too much bogged by negative emotions Things that will help: do physical exercise, do creative stuff (hobby), dancing (without alcohol ©), refrain from alchohol and substance abuse if any

Today's class

- Microprocessor History
- Architecture
- Example of 8085
- Execution of instructions

PRASANNA S GANDHI gandhi@me.iitb.ac.ir

5	History Advancement of Intel Microprocessor						
	Processor	Year of Introduction	Number of Transistors	Initial Clock Speed	Address Bus	Data Bus	Addressable Memory
	4004	1971	2,300	108 kHz	10-bit	4-bit	640 bytes
	8008	1972	3,500	200 kHz	14-bit	8-bit	16 K
	8080	1974	6,000	2 MHz	16-bit	8-bit	64 K
	8085	1976	6,500	5 MHz	16-bit	8-bit	64 K
	8086	1978	29,000	5 MHz	20-bit	16-bit	1 M
	8088	1979	29,000	5 MHz	20-bit	8-bit	1 M
	80286	1982	134,000	8 MHz	24-bit	16-bit	16 M
	80386	1985	275,000	16 MHz	32-bit	32-bit	4 G
	80486	1989	1.2 M	25 MHz	32-bit	32-bit	4 G
	Pentium	1993	3.1 M	60 MHz	32-bit	32/64-bit	4 G
	Pentium Pro	1995	5.5 M	150 MHz	36-bit	32/64-bit	64 G
	Pentium II	1997	8.8 M	233 MHz	36-bit	64-bit	64 G
	Pentium III	1999	9.5 M	650 MHz	36-bit	64-bit	64 G
	Pentium 4	2000	42 M	1.4 GHz	36-bit	64-bit	64 G

Examples of microprocessors

- **8085**
- **PIC16F62X** (midrange, 18 pin),
- PIC18FXX20 (high level, 64 or 80 pin),
- Atmega128 (high level, 64 pin).
- Freescale XEP 100
- TI Tiva Board

A comparison of these typical processors will reveal most of the properties and capabilities of microprocessors.

Sharing of Data Lines with a Part of Address

- Data lines are 8 (bit) and address lines are 16. Idea is to allow sharing of 8 lines between data and address so that number of wires running around can be reduced
- Q: How this can be achieved? Additional signal necessary to know/control what is currently there on those shared 8 lines. What additional thing is necessary?
- VIMP: an 8 bit register to store the shared part of the current address so that when the lines turn into data mode address is not lost or mistaken

PRASANNA S GANDHI gandhi@me.iitb.ac.in

Data Sheet of 8085

- How to read through the data sheet? Example, 8085 (no internal memory)
- VIMP: Need not know each and every detail before start using. One can start with sample programs understanding them and then modifying for your purpose

PRASANNA S GANDHI gandhi@me.iitb.ac.in

23

Things to look for in datasheet of microcontroller?

- Interfaces provided (if any)
- Memory map (internal for most muPs)
- Data bit accuracy
- Instruction set: most modern muPs provide compilers and high level C programming can be used
- Sample programs to do some routine operations

PRASANNA S GANDHI gandhi@me.iitb.ac.in

