Conjunction Assessment Risk Analysis

ASW Covariance Introduction and Formation

M.D. Hejduk | 13 APR 2016

OD Parameters Generated by ASW Solutions

- Solved for: State parameters
 - Six parameters needed to determine 3-d state fully
 - Cartesian: three position and three velocity parameters in orthogonal system
 - Element: six orbital elements that describe the geometry of the orbit
- Solved for: Non-conservative force parameters
 - Ballistic coefficient (C_DA/m); describes vulnerability of spacecraft state to atmospheric drag
 - Solar radiation pressure (SRP) coefficient (C_RA/m); describes vulnerability of spacecraft state to visible light momentum from sun
- Considered: ballistic coefficient and SRP consider parameter
 - Not solved for but "considered" as part of the solution
 - Derived from information outside of the OD itself
- Covariance matrix includes variances/covarainces for all solved-for parameters, with potential alteration by consider parameters

Covariance Matrix Construction: Symbolic Example

- Three estimated parameters (a, b, and c)
- Variances of each along diagonal
- Off-diagonal terms the product of two standard deviations and the correlation coefficient (ρ); matrix is symmetric

	a	b	c	•••
a	$\sigma_a^{\ 2}$	$\rho_{ab}\sigma_a\sigma_b$	$\rho_{ac}\sigma_a\sigma_c$	
b	$ ho_{ab}\sigma_a\sigma_b$	$\sigma_{\rm b}^{\ \ 2}$	$\rho_{bc}\sigma_a\sigma_c$	
c	$\rho_{ac}\sigma_a\sigma_c$	$ ho_{bc}\sigma_a\sigma_c$	$\sigma_{\rm c}^{\ 2}$	
	• • •	•••	•••	•••

Example Covariance from CDM

- 8 x 8 matrix typical of most ASW updates
 - Some orbit regimes not suited to solution for both drag and SRP; these covariances 7 x 7
- Mix of different units often creates poorly conditioned matrices
 - Condition number of matrix at right is 9.8E+11—terrible!
- Often better numerically (and more intuitive) to separate matrix into sections
- First 3 x 3 portion (amber) is position covariance—often considered separately

	U	V	W	Udot	Vdot	Wdot	В	AGOM
	(m)	(m)	(m)	(m/s)	(m/s)	(m/s)	(m2/kg)	(m2/kg)
U	6.84E+01	-2.73E+02	6.38E+00	2.76E-01	-7.14E-02	8.75E-03	-3.83E-02	-3.83E-02
V	-2.73E+02	1.10E+05	3.23E+01	-1.17E+02	-8.99E-02	2.51E-02	-1.28E-01	-1.28E-01
W	6.38E+00	3.23E+01	4.47E+00	-3.26E-02	-6.83E-03	1.81E-03	-3.73E-03	-3.73E-03
Udot	2.76E-01	-1.17E+02	-3.26E-02	1.24E-01	1.10E-04	-2.47E-05	1.46E-04	1.46E-04
Vdot	-7.14E-02	-8.99E-02	-6.83E-03	1.10E-04	7.57E-05	-9.39E-06	4.10E-05	4.10E-05
Wdot	8.75E-03	2.51E-02	1.81E-03	-2.47E-05	-9.39E-06	2.06E-05	-4.39E-06	-4.39E-06
В	-5.07E-03	1.30E+00	4.34E-05	-1.38E-03	7.97E-07	7.26E-07	1.64E-05	-6.28E-07
AGOM	-3.83E-02	-1.28E-01	-3.73E-03	1.46E-04	4.10E-05	-4.39E-06	-6.28E-07	2.31E-05

Position Covariance Ellipse

- Position covariance defines an "error ellipsoid"
 - Placed at predicted satellite position
 - Square root of variance in each direction defines each semi-major axis (UVW system used here)
 - Off-diagonal terms rotate the ellipse from the nominal position shown
- Ellipse of a certain "sigma" value contains a given percentage of the expected data points

 $-1-\sigma$: 19.9%

 $-2-\sigma$: 73.9%

 $-3-\sigma$: 97.1%

 Note how much lower these are than the univariate normal percentage points

Batch Epoch Covariance Generation (1 of 2)

Batch least-squares update (ASW method) uses the following minimization equation

- $-dx = (A^{T}WA)^{-1}A^{T}Wb$
 - dx is the vector of corrections to the state estimate
 - A is the time-enabled partial derivative matrix, used to map the residuals into statespace
 - W is the "weighting" matrix that provides relative weights of observation quality (usually $1/\sigma$, where σ is the standard deviation generated by the sensor calibration process)
 - b is the vector of residuals (observations predictions from existing state estimate)

Covariance is the collected term (A^TWA)⁻¹

– A the product of two partial derivative matrices:

•
$$A = \frac{\partial(obs)}{\partial X_0} = \frac{\partial(obs)}{\partial X} \frac{\partial X}{\partial X_0}$$

- First term: partial derivatives of observations with respect to state at obs time
- Second term: partial derivatives of state at obs time with respect to epoch state

Batch Epoch Covariance Generation (2 of 2)

- Formulated this way, this covariance matrix is called an a priori covariance
 - A does not contain actual residuals, only transformational partial derivatives
 - So (A^TWA)⁻¹ is a function only of the amount of tracking, times of tracks, and sensor calibration relative weights among those tracks
 - Not a function of the actual residuals from the correction
- Limitations of a priori covariance
 - Does not account well for unmodeled errors, such as transient atmospheric density prediction errors
 - Because not examining actual fit residuals
 - W-matrix only as good as sensor calibration process
 - Principal weakness of present process, but expected to be improved eventually with JSpOC Mission System (JMS) upgrades

ASW Covariance Propagation

- Covariance in VCM is virginal (unaltered) covariance
- When propagating VCM covariance, the propagator
 - Scales the covariance by the weighted RMS if it is greater than unity
 - C* = C * WRMS ^ 2
 - Was an early attempt to improve covariance realism; not clear this is still a good idea
 - Applies the consider parameter to the ballistic coefficient variance
 - $C^*(7,7) = C^*(7,7) + Cpd ^2$
 - More later on how this value is determined
 - May apply a consider parameter to the solar radiation pressure variance
 - $C^*(9,9) = C^*(9,9) + Cps ^2$
 - Presently not used (Cps set to 0)
 - Propagates the altered covariance using linearized dynamics
 - Phi * C** * Phi^T
 - Converts propagated matrix from equinoctial to Cartesian coordinates

Altered Covariance Positions

- Ballistic coefficient consider parameter (DCP) applied to ballistic coefficient variance (orange)
- If used, solar radiation pressure consider parameter applied to solar radiation pressure variance (purple)

		1						
	U	V	W	Udot	Vdot	Wdot	В	AGOM
	(m)	(m)	(m)	(m/s)	(m/s)	(m/s)	(m2/kg)	(m2/kg)
U	6.84E+01	-2.73E+02	6.38E+00	2.76E-01	-7.14E-02	8.75E-03	-3.83E-02	-3.83E-02
V	-2.73E+02	1.10E+05	3.23E+01	-1.17E+02	-8.99E-02	2.51E-02	-1.28E-01	-1.28E-01
W	6.38E+00	3.23E+01	4.47E+00	-3.26E-02	-6.83E-03	1.81E-03	-3.73E-03	-3.73E-03
Udot	2.76E-01	-1.17E+02	-3.26E-02	1.24E-01	1.10E-04	-2.47E-05	1.46E-04	1.46E-04
Vdot	-7.14E-02	-8.99E-02	-6.83E-03	1.10E-04	7.57E-05	-9.39E-06	4.10E-05	4.10E-05
Wdot	8.75E-03	2.51E-02	1.81E-03	-2.47E-05	-9.39E-06	2.06E-05	-4.39E-06	-4.39E-06
В	-5.07E-03	1.30E+00	4.34E-05	-1.38E-03	7.97E-07	7.26E-07	1.64E-05	-6.28E-07
AGOM	-3.83E-02	-1.28E-01	-3.73E-03	1.46E-04	4.10E-05	-4.39E-06	-6.28E-07	2.31E-05

Dynamic Consider Parameter (DCP)

Specifies global error in the atmospheric density forecast

- Parameterizes percent RMS error in terms of
 - Satellite height (perigee altitude)
 - Geomagnetic activity (a_D and Dst)
- Density forecast error combination of solar/geomagnetic indices and DCA
 - Directly compared numerous forecast densities to actual density
 - Discretized heights from 200 km to 1000 km averaged over lat / lon
- Sample high, low, and medium solar cycles (2001, 2005, 2013)
 - Found most variation parameterizable via a_p conditions (versus F₁₀)
 - Functions optimized for 3-day predictions—this is the tuning point!

Determines satellite-specific frontal area variation in prediction

- Quantifies ballistic coefficient RMS error through satellite histories
 - Looks back in time up to a year in most cases (upfront preprocessing)
 - Ascertains error / target for 3-day predictions (accounting for time-lags)
- Combine the two uncertainty components to obtain DCP value
 - Additive in variance sense as the root sum of squares

B Consider Parameter Values

dRho STD Predict ap & Dst

DCP Components RMS Uncertainty

