〈二つの平均値の差の検定〉

二つの分析法 A, B の分析結果に差異が認められるかどうか、すなわち、A, B 法の分析値の母平均に差があるかどうかを、A 法とB 法のそれぞれ n_A 個、 n_B 個の分析値の平均 x_A , x_B の差から判断するときの検定法を述べる。

母分散の等しい二つの正規母集団 $N(\mu_{_A},\sigma^2)$, $N(\mu_{_B},\sigma^2)$ からそれぞれ大きさ n_A , n_B なる標本をとり、その標本平均を \overline{x}_A , \overline{x}_B とすると、 \overline{x}_A と \overline{x}_B はそれぞれ正規 分布 $N(\mu_{_A},\sigma^2/n_{_A})$, $N(\mu_{_B},\sigma^2/n_{_B})$ に従うものとする。また \overline{x}_A , \overline{x}_B が互いに独立であれば、 \overline{x}_A と \overline{x}_B の差の期待値と分散は次のようになり、

$$E(\overline{x}_A - \overline{x}_B) = \mu_A - \mu_B$$

$$E(x_i - \mu)^2 = \sigma^2$$

$$E(\overline{x} - \mu)^2 = \frac{\sigma^2}{n}$$

$$\sigma^2 \left(\overline{x}_A - \overline{x}_B \right) = \frac{\sigma^2}{n_A} + \frac{\sigma^2}{n_B}$$

 $(\overline{x}_A - \overline{x}_B)$ は正規分布 $N\left(\mu_A - \mu_B, \frac{\sigma^2}{n_A} + \frac{\sigma^2}{n_B}\right)$ に従うので、基準化すれば、

$$u = \frac{(\bar{x}_{A} - \bar{x}_{B}) - (\mu_{A} - \mu_{B})}{\sigma \sqrt{\frac{1}{n_{A}} + \frac{1}{n_{B}}}}$$
(1)

となり、u は正規分布 $N(0,1^2)$ に従う。帰無仮説を $H_0: \mu_A = \mu_B$ とすれば、これが成立するもとで(1)式は、

$$u = \frac{\overline{x_A} - \overline{x_B}}{\sigma \sqrt{\frac{1}{n_A} + \frac{1}{n_B}}}$$
 (2)

となる。例えば、有意水準 5%で両側検定を行なうときには、二つの標本平均値の差から (2) 式によってuを求め、帰無仮説 H_0 を検討する必要がある。

一般には σ の真の値はわからないことが多いので、データから σ を推定しなければならない。ここで、 V_A を A 法の不偏分散、 V_B を B 法の不偏分散, Φ_A を V_A の自由

度 (n_A-1) , Φ_B を V_B の自由度 (n_B-1) とすると, 2 つの方法による測定値の母分散 が等しい場合には、

A 法によるデータから次のようにして σ^2 の不偏推定値を求めることができ、

$$\frac{S_A}{\Phi_A} = \frac{\sum (x_{i(A)} - \bar{x}_A)^2}{n_A - 1} = V_A$$

B 法によるデータからも同様にして.

$$\frac{S_B}{\Phi_B} = \frac{\sum (x_{i(B)} - \overline{x}_B)^2}{n_B - 1} = V_B$$

が求まる。これらの V_A と V_B より V が次式より計算され, $V=\sigma^2$ の不偏推定値を求めることができる。

$$\frac{V_A \Phi_A + V_B \Phi_B}{\Phi_A + \Phi_B} = \frac{S_A + S_B}{\Phi_A + \Phi_B} = V$$

 V_A , V_B はともに σ^2 の不偏推定値だから,これらに自由度の重みをつけて平均したものもまた σ^2 の不偏推定値となる。このようにして求めた不偏分散 V の平方根を σ の代わりに用いると (2)式は,

$$t_0 = \frac{\overline{x}_A - \overline{x}_B}{\sqrt{V\left(\frac{1}{n_A} + \frac{1}{n_B}\right)}}$$
(3)

となる。 t_0 は帰無仮説 \mathbf{H}_0 : $\mu_A = \mu_B$ の成立するもとで自由度 $\boldsymbol{\Phi} = \boldsymbol{\Phi}_A + \boldsymbol{\Phi}_B$ の t 分布 に従う。すなわち,有意水準 α の両側検定ならば,(3) 式により t_0 を計算し,これを t 表から得られる値 $t(\boldsymbol{\Phi}_A + \boldsymbol{\Phi}_B, \alpha)$ と比較し,

$$|t_0| \ge t(\Phi_A + \Phi_B; \alpha)$$

ならば H_0 を棄却する。また有意水準 α の片側検定の場合には、

 $H_1: \mu_A > \mu_B$ のときには,

$$t_0 \ge t(\Phi_A + \Phi_B; 2\alpha)$$

ならば Ho を棄却する。

 $H_1: \mu_{\scriptscriptstyle A} < \mu_{\scriptscriptstyle R}$ のときには,

$$t_0 \leq -t(\Phi_A + \Phi_B; 2\alpha)$$

ならば H₀ を棄却する。

一方、A法とB法の母分散が等しくない場合には、Welchの方法により検定を行なう。 すなわち

$$t_0 = \frac{\overline{x}_A - \overline{x}_B}{\sqrt{\frac{V_A}{n_A} + \frac{V_B}{n_B}}}$$
(4)

は近似的に自由度 ϕ のt分布に従うことを利用する。ただし、 ϕ は次式で与えられる。

$$\frac{1}{\Phi} = \frac{1}{\Phi_A} \left\{ \frac{V_A/n_A}{(V_A/n_A) + (V_B/n_B)} \right\}^2 + \frac{1}{\Phi_B} \left\{ \frac{V_B/n_B}{(V_A/n_A) + (V_B/n_B)} \right\}^2 \tag{5}$$