(1) 33.6

AL/2017/02/S-I ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්**ත් විභාගි මිපාරින ලෙපාර්තලේනිනුව** විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව இலங்கைப் பழிட்சைத் නිතාහන්සයහාව இහங்கைப் பழிடன்தே නිතාගන්නෙහි ඉතිස්කත්ව பழிடன்தத் - නිතාගන්සයහාව இலங்கைப் பழிட்சைத் නිතාගන්සයහාව Department of Examinations, Sri Lanka Department **இහාසාභාසාය Sufface නිගාගන්නෙහි**න **නිගාගන්නෙහි**න Sri Lanka Department of Examinations, Sri Lanka දී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දේපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව නිගාගන්සයහාව ලී ලංකා විභාග දෙපාර්තමේන්තුව ලී ලංකා විභාග දෙපාර්තමේන්තුව இහණයක්ව ප්රියාපනි නිගාගන්සයහාව இහங்கை**ව විශාග පිටාර්තමේන්තුව වැඩි විභාග**න්සයහාව இහණයක්ව ප්රීඩාහන්ව ප්රියාමේන්තුව අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2017 අගෝස්තු <u>கல்விப் பொதுத் த</u>ராதரப் பத்திர (உயர் தர)ப் பரீட்*சை, 2*017 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2017 රසායන විදුපාච පැය දෙකයි இரசாயனவியல் இரண்டு மணித்தியாலம் Chemistry Two hours උපදෙස්: * අාවර්තිතා වගුවක් සපයා ඇත. * මෙම පුශ්න පතුය පිටු 08 කින් යුක්ත වේ. * සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. ※ ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ. * උත්තර පතුයේ නියමිත ස්ථානයේ ඔබේ විභාග අංකය ලියන්න. * උත්තර පතුයේ පිටුපස දී ඇති අනෙක් උපදෙස් සැලකිලිමත් ව කියවන්න. * 1 සිට 50 තෙක් එක් පුශ්නයට (1),(2),(3),(4),(5) යන පිළිතුරුවලින් **නිවැරදි හෝ ඉතාමත් ගැළපෙන හෝ** පිළිතුර තෝරා ගෙන, එය **උත්තර පතුගේ පිටුපස දැක්වෙන උපදෙස් පරිදි කතිරයක්** (X) **යොද දක්වන්න.** සාර්වනු වායු නියනය $R = 8.314 \,\mathrm{J \, K^{-1} \, mol^{-1}}$ ඇවගාඩ්රෝ නියතය $N_A = 6.022 \times 10^{23} \, \mathrm{mol}^{-1}$ ප්ලෑන්ක්ගේ නියතය $h = 6.626 \times 10^{-34} \text{ J s}$ ආලෝකයේ පුවේගය $c=3\times10^8\,\mathrm{m\ s^{-1}}$ 1. පරමාණුවක වාූූහය පිළිබඳ ව තොම්සන්ගේ 'ප්ලම් පුඩිං' ආකෘතිය වැරදි බව ඔප්පු කළ විදාූූාඥයා වනුයේ, (1) අර්නස්ට් රදර්ෆඩ්. (2) රොබට් මිලිකන්. (3) නීල්ස් බෝර්. (4) ඉයුජින් ගෝල්ඩ්ස්ටයින්. (5) හෙන්රි මෝස්ලි. පහත අණු සම්බන්ධයෙන් මින් කුමන වගන්තිය අසතා වන්නේ ද? CO₂, BF₃, PF₃, CF₄, XeF₄, SF₆ (1) සියලු ම අණුවලට ධුැවීය සහසංයුජ බන්ධන ඇත. (2) සියලු ම අණුවලට වෙනස් හැඩයන් ඇත. (3) සියලු ම අණු අෂ්ටක නීතිය අනුගමනය නොකරයි. (4) සියලු ම අණු නිර්ධැවීය වේ. (5) අණු දෙකක පමණක් ඒවායෙහි මධා පරමාණු සතුව එකසර ඉලෙක්ටෝන යුගල් පවතී. 3. පහත දැක්වෙන සංයෝගයේ IUPAC නාමය කුමක් ද? СНО Н-С≡С-СН-СН-СН³СН³ (1) 4-formylhex-1-yn-3-ol (2) 4-formyl-3-hydroxyhex-1-yne (3) 2-ethyl-3-hydroxy-4-ynepentanal (4) 3-hydroxy-4-ethyl-1-ynepentanal (5) 2-ethyl-3-hydroxypent-4-ynal 4. නයිට්රජන්හි ඔක්සිකරණ අවස්ථාව -1 වන්නේ, (3) NO₂F (4) NH₃ (5) NH₂OH (1) N_2O_4 (2) N₂O 5. මධා පරමාණුව වටා තියානති ද්විපිරමිඩාකාර ඉලෙක්ටුෝන යුගල් ජාාමිතිය පදනම් කර ගනිමින් ජනනය වී ඇති අණුවල හැඩයන් කිහිපයක් ඇත. ඒවා නම්, (1) රේඛීය, කෝණික, සී-සෝ. (2) රේඛීය, T - හැඩය, සී-සෝ. (3) රේබීය, තිුයානති පිරමිඩාකාර, T - හැඩය. (4) තලීය තිුකෝණාකාර, කෝණික, T - හැඩය. (5) රේඛීය, තලීය තිුකෝණාකාර, සී-සෝ. 6. ඇමෝතියම් නයිට්රේට් ඉහළ උෂ්ණත්වයේ දී, නයිට්රජන් වායුව, ඔක්සිජන් වායුව හා ජල වාෂ්ප සාදමින් ස්ඓෝටික ලෙස වියෝජනය වේ. සම්මත උෂ්ණත්වයේ දී හා පීඩනයේ දී ඇමෝනියම් නයිට්රේට් 240 g වියෝජනය වීමෙන් සැදෙන මුළු වායු ලීටර සංඛ්යාව වනුයේ,

(H=1,N=14,O=16, සම්මත උෂ්ණත්වයේ දී හා පීඩනයේ දී වායු මවුල එකක පරිමාව ලීටර 22.4 වේ.)

(3) 100.8

(2) 67.2

(5) 235.2

(4) 134.4

7.	$f AX$ සහ $f BX_2$ යනු ජලයෙහි අල්ප වර	යෙන් දාවා ලවණ දෙකකි.	කාමර උෂ්ණත්වයේ දී ඒදි	ටායෙහි දාවානතා ගුණිත
	පිළිවෙළින් $K_{\mathop{\mathrm{sp}} olimits_{\mathrm{sp}_1}}$ සහ $K_{\mathop{\mathrm{sp}} olimits_{\mathrm{sp}_2}}$ වේ. $\mathbf{A}\mathbf{X}$ හි දු	වාතාව p වන අතර \mathbf{BX}_2 හි	එම අගය q වේ. එක් එක්	ලවණය එහි සංකෘප්ත
	දුාවණය සමග සමතුලිකතාවයෙහි ඇති	විට $\frac{K_{\mathrm{sp}_1}}{\left\lceil \mathbf{A}^+ \right\rceil} = \frac{K_{\mathrm{sp}_2}}{\left\lceil \mathbf{R}^{2+} \right\rceil}$ මේ ප	ාම්, පහත සඳහන් ඒවා යින	ත් කුමක් නිවැරදි වේ ද ි
		['-(aq)] [-(aq)]	2	2

- (1) $p = q^2$
- (2) $p^2 = q$
- (3) $4p = q^2$
- (4) $p = 4q^2$
- $(5) \quad p = 2q^2$
- 8. ක්ෂාර හා ක්ෂාරීය පාංශු ලෝහ සම්බන්ධයෙන් මින් කුමන වගන්තිය අසතප වේ ද?
 - (1) සියලු ම ක්ෂාරීය පාංශු ලෝහ N_2 වායුව සමග ඉහළ උෂ්ණත්වයේ දී පුතිකිුිිිියා කරයි.
 - (2) ක්ෂාරීය පාංශු ලෝහවල දුවාංක එම ආවර්තයේම ඇති ක්ෂාර ලෝහවල දුවාංකවලට වඩා වැඩි ය.
 - (3) ක්ෂාර ලෝහවල දෙවන අයනීකරණ ශක්තීන් එම ආචර්තයේම ඇති ක්ෂාරීය පාංශු ලෝහවල එම අගයයන්ට වඩා බොහෝ වැඩි ය.
 - (4) ක්ෂාරීය පාංශු ලෝහ සාදන සියලු ම හයිඩොක්සයිඩ පුබල භස්ම වේ.
 - (5) ක්ෂාර ලෝහ හයිඩුොක්සයිඩවල දුාවානාව කාණ්ඩයේ පහළට වැඩි වේ.
- 9. ලිතියම්හි (Li) සංයුජතා ඉලෙක්ටෝනයට දැනෙන සඵල නාෂ්ටික ආරෝපණය,

(Li, Z = 3 හා සාපේක්ෂ පරමාණුක ස්කන්ධය = 7)

(1) +3 ට සමාන ය.

- (2) +3 ට වඩා අඩු ය.
- (3) +3 ට වඩා වැඩි ය.

(4) +7 ට සමාන ය.

- (5) +7 ට වඩා අඩු ය.
- 10. දී ඇති උෂ්ණත්වයක දී සංවෘත දෘඪ භාජනයක් තුළ පහත සමතුලිකතාවය පවතී.

$$2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$$

එම උෂ්ණත්වයේ දී භාජනය තුළට අමතර $\mathrm{O}_{\mathrm{g}}(\mathrm{g})$ පුමාණයක් එකතු කරන ලදී. සමතුලිතතාවයට නැවත එළඹුුණු පසු මුල් සමතුලිතතාවයෙහි තිබූ අගයට සන්සන්දනාත්මකව වඩා අඩු අගයයක් තිබෙන්නේ මින් කුමක ද?

- (1) පුතිකිුියාවේ සමතුලිතතා නියතය
- (2) පද්ධතියේ මුළු පීඩනය
- (3) පද්ධතියේ ඇති $\mathrm{SO}_{2}(\mathrm{g})$ පුමාණය
- (4) පද්ධතියේ ඇති $\mathrm{SO}_{q}(\mathrm{g})$ පුමාණය
- (5) පද්ධතියේ ඇති $\mathrm{O}_{2}(\mathrm{g})$ පුමාණය
- 11. නයිට්රජන් විශේෂයන්හි O-N-O කෝණය සම්බන්ධයෙන් පහත සඳහන් කුමක් **සත** වේ ද?
- (1) $NO_{2}^{+} > NO_{2}^{-} > NO_{2} > NO_{4}^{3-}$ (2) $NO_{4}^{3-} > NO_{2}^{+} > NO_{2}^{-} > NO_{2}^{-}$ (3) $NO_{2}^{+} > NO_{2}^{-} > NO_{2}^{-} > NO_{4}^{3-}$ (4) $NO_{4}^{3-} > NO_{2} > NO_{2}^{-} > NO_{2}^{+}$
- (5) $NO_2^+ > NO_2^- > NO_4^{3-} > NO_2$
- 12. ලාම්පුවක් දෘශා ආලෝකයේ නිල් කලාපයෙහි (470 nm) තත්පරයට $6.0~\mathrm{J}$ ශක්තියක් නිපදවයි. ෆෝටෝන $1.0 imes 10^{20}$ ජනනය කිරීම සඳහා ලාම්පුව කොපමණ කාලයක් දැල්විය යුතු ද?
 - (1) 2.4 s
- (2) 7.1 s
- (3) 8.5 s
- (4) 9.2s
- (5) 10.5 s
- 13. පුතිකිුයාවක් 298 K හා 100 kPa පීඩනයේ දී ස්වයංසිද්ධ වන අතර එය ඉහළ උෂ්ණත්වයේ දී හා එම පීඩනයේ දී ස්වයංසිද්ධ නොවේ. මෙම පුතිකිුිිිියාව සඳහා $298~\mathrm{K}$ හි දී හා $100~\mathrm{kPa}$ පීඩනයේ දී පහත සඳහන් කුමක් **සත** s වේ ද?
 - ΔG ΔΗ ධන ධන ධන (1)(2)සු න සෘණ සෘණ (3)ධන සෘණ දයන නො (4)ධන කැණෙ දයා ණ සා ණ ධන ධන
- 14. නොදන්නා f X නමැති වායුවක මවුලික ස්කන්ධය සෙවීම සඳහා පහත සඳහන් කුමය භාවිත කරන ලදී. පළමුව, වියළි වාතය අඩංගු පරිමාව V වන දෘඪ භාජනයක ස්කන්ධය $m_{_1}$ ලෙස මනින ලදී. ඉන්පසු, වියළි වාතය ඉවත් කොට භාජනය උෂ්ණත්වයේ (T) හා පීඩනයේ (P) පැවතුණි. වියළි වාතයෙහි ඝනත්වය d වේ. පහත සඳහන් කුමන පුකාශනය මගින් නොදන්නා වායුවෙහි මවුලික ස්කන්ධය ලබා දෙයි ද?
 - (1) $\frac{dRT}{P}$

- (2) $\frac{\left[m_2 \left(m_1 dV\right)\right]RT}{PV}$
- $(3) \quad \frac{\left(m_1 m_2\right)RT}{PV}$

 $(4) \quad \frac{\left(m_2 - m_1\right)RT}{PV}$

(5) $\frac{\left[m_1 - \left(m_2 - dV\right)\right]RT}{PV}$

15.	ඒකභාස්මික දුබල අම්ලයකින් V_1 පරිමාවක්, ඒකආම්ලික පුබල භස්මයකින් V_2 පරිමාවක් සමග මිශු කිරීමෙන් ස්වාරක්ෂක
	දාවණයක් සාදන ලදී. දුබල අම්ලයෙහි හා පුබල හස්මයෙහි ආරම්භක සාන්දුණ පිළිවෙළින් C හා C වේ. දබල අම්ලයෙහි
	අම්ල විඝටන නියතය $K_{ m a}$ වේ. ස්වාරක්ෂක දාවණයෙහි pH අගය p $K_{ m a}-1$ හා p $K_{ m a}+1$ අතර පවත්වා ගැනීමට නම් පහත
	සඳහන් කුමන පුකාශනය මගින් C_1,C_2,V_1 සහ V_2 සඳහා නිවැරදි සම්බන්ධතාව ලබාලේ ද?

(1)
$$\frac{1}{10} < \frac{C_2 V_2}{C_1 V_1 - C_2 V_2} < 10$$

$$(1) \quad \frac{1}{10} < \frac{C_2 V_2}{C_1 V_1 - C_2 V_2} < 10 \qquad \qquad (2) \quad \frac{1}{10} < \frac{C_1 V_1}{C_1 V_1 - C_2 V_2} < 10$$

$$(3) \quad \frac{1}{10} < \frac{C_2 V_2}{C_1 V_1} < 10$$

(4)
$$\frac{1}{10} < \frac{C_1 V_1 - C_2 V_2}{C_2 V_2} < 10$$
 (5) $1 < \frac{C_1 V_1}{C_2 V_2} < 10$

$$(5) \quad 1 < \frac{C_1 V_1}{C_2 V_2} < 10$$

16. ඇනිලීන් හි සම්පුයුක්ත වුපුහයක් නොවන්නේ පහත දැක්වෙන ඒවායින් කුමක් ද?

17. ශුනා පෙළ පුතිකිුයාවක ආරම්භක ශීඝුතාව $R_0^{}$ හා වේග නියතය k වේ. ආරම්භක සාන්දුණය 50% කින් අඩු වූ විට පුතිකියාවේ ශීඝුතාව වනුයේ,

(2)
$$\frac{1}{k}$$

$$(3) \quad \frac{k}{2}$$

$$(4) \quad \frac{R_0}{2}$$

(5)
$$\frac{R_0}{4}$$

 $18.~~{
m Ni}^{2+}({
m aq},1.0~{
m M})/{
m Ni}({
m s})$ හා ${
m Cu}^{2+}({
m aq},1.0~{
m M})/{
m Cu}({
m s})$ අර්ධ කෝෂ, චෝල්ට්මීටරයක් මගින් හා ලවණ සේතුවකින් සම්බන්ධ කිරීමෙන් විදුහුත් රසායනික කෝෂයක් ගොඩනගන ලදී. සම්පූර්ණ කෝෂ පුතිකිුිිිියාව හා මෙම අර්ධ කෝෂ දෙක සම්බන්ධ කළ විට චෝල්ට්මීටරයෙහි ආරම්භක පාඨාංකය වනුයේ,

$$\left(E_{\text{Ni}^{2+}/\text{Ni}}^{\circ} = -0.24\text{V} \text{ the } E_{\text{Cu}^{2+}/\text{Cu}}^{\circ} = +0.34\text{V}\right)$$

More Past Papers at

(1)
$$Ni^{2+}(aq) + Cu(s) \longrightarrow Ni(s) + Cu^{2+}(aq)$$
; 0.00 V
(2) $Cu^{2+}(aq) + Ni(s) \longrightarrow Cu(s) + Ni^{2+}(aq)$; +0.58 V

(2) Cu (aq) + Ni(s)
$$\longrightarrow$$
 Cu(s) + Ni²⁺(aq) ; +0.58 V
(3) Cu²⁺(aq) + Ni(s) \longrightarrow Cu(s) + Ni²⁺(aq) ; -0.58 V

(4)
$$Cu^{2+}(aq) + Ni(s) \longrightarrow Cu(s) + Ni^{2+}(aq)$$
; 0.00 V

(5)
$$Cu(s) + Ni(s) \longrightarrow Cu^{2+}(aq) + Ni^{2+}(aq) + 4e$$
; +0.58 V

f 19. කාමර උෂ්ණත්වයේ දී ඝන ඩයිඅයඩීන් පෙන්ටොක්සයිඩ් $f (I_2O_5)$ කාබන් මොනොක්සයිඩ් සමග පුතිකිුයා කර කාබන් ඩමයාක්සයිඩ් හා අයඩීන් සාදයි. වායු සාම්පලයක ඇති කාබ්න් මොනොක්සයිඩ් පුමාණය මැනීම සඳහා මෙය භාවිත කළ හැක. $5.0\,\mathrm{dm}^3$ වායු සාම්පලයක් $\mathrm{I_2O_5}$ අඩංගු නළයක් තුළින් යවා, මුදාහැරෙන අයඩීන් ජලීය KI දාවණයකට (වැඩිපුර m KI ඇත.) එකතු කරන ලදී. ලැබෙන දුාවණය පිෂ්වය දර්ශකය ලෙස යොදා $0.005~
m mol~dm^{-3}~Na_2S_2O_3$ දුාවණයක් සමග අනුමාපනය කරන ලදී. අවශා වූ $\mathrm{Na_2S_2O_3}$ පරිමාව $10.00\,\mathrm{cm}^3$ වේ. වායු සාම්පලයේ කාබන් මොනොක්සයිඩ් සාන්දුණය (ppm වලින්) වනුයේ, (C = 12, O = 16, වායු සාම්පලයේ ඝනත්වය = $1.40 \times 10^{-3} \, \mathrm{g \ cm^{-3}}$)

- (1) 100
- (2) 250
- (3) 500
- (5) 1000

20. සල්ෆර් සහ එහි සංයෝග සම්බන්ධයෙන් පහත සඳහන් කුමන වගන්තිය අසත‍‍ වන්නේ ද?

- (1) S යනු ඔක්සිකරණ අවස්ථා -2 සිට +6 පරාසයක් ඇති අලෝහයකි.
- (2) එක් ඵලයක් ලෙස SO_3 ලබා දෙමින් සාන්දු $\mathrm{H_2SO_4}$ සමග S පුතිකිුයා කරයි.
- (3) ඔක්සිකාරකයක් සහ ඔක්සිහාරකයක් යන දෙද්ගකාරයටම SO ූ ට කිුිියා කළ හැක.
- (4) විශාල පුමාණයන්ගෙන් S දහනය කිරීම අම්ල වැසිවලට දායක් වේ.
- (5) සාන්දු $H_{\gamma}SO_{\gamma}$ ට පුබල අම්ලයක්, ඔක්සිකාරකයක් සහ විජලකාරකයක් ලෙස කිුිිිියා කළ හැක.

21. 298 K හි දී, $N_2(g) + 3 F_2(g) \longrightarrow 2 N F_3(g)$ පුතිකියාව සඳහා $\Delta H^\circ = -263 \text{ kJ mol}^{-1}$ වේ. N≡N හා N—F බන්ධන විඝටන එන්තැල්පි අග්යයන් පිළිවෙළින් 946 kJ mol⁻¹ හා 272 kJ mol⁻¹ වේ. F—F බන්ධනයේ බන්ධන විඝටන එන්තැල්පි අගය $(kJ \text{ mol}^{-1} වලින්) වනුයේ,$

- (1) -423
- (2) -393
- (3) -141
- (4) 141
- (5) 423

- 22. 3d ගොනුවේ මූලදුවා සම්බන්ධයෙන් පහත කුමන වගන්තිය **අසත** ${f x}$ වේ ද?
 - (1) Sc, Ti සහ Zn විචලා සංයුජතා පුදර්ශනය නොකරයි.
 - (2) 3d ගොනුවේ මූලදුවා හොඳ කාර්මික උත්පේුරක වේ.
 - (3) Mn, ආම්ලික, උභයගුණි සහ භාස්මික ඔක්සයිඩ සාදයි.
 - (4) 3d ගොනුවේ සියලු ම මූලදුවා අතුරෙන් අඩුම දුවාංකය ඇත්තේ ${\bf Z}{\bf n}$ ට ය.
 - (5) V හි ධන ඔක්සිකරණ අවස්ථා +2 සිට +5 පරාසයක ඇත.
- **23.** $3{
 m NO}({
 m g})
 ightleftharpoons {
 m NO}_{
 m g}({
 m g}) + {
 m N}_{
 m g}{
 m O}({
 m g})$ පුතිකිුයාව සඳහා පහත තාප රසායනික දත්ත දී ඇත.

$$\Delta H_{f_{\text{NO}_2(g)}}^{\circ} = 35 \text{ kJ mol}^{-1}, \ \Delta H_{f_{\text{NO}_2(g)}}^{\circ} = 80 \text{ kJ mol}^{-1}, \ \Delta H_{f_{\text{NO}(g)}}^{\circ} = 90 \text{ kJ mol}^{-1}$$

ඉහත පුතිකිුයාව සඳහා පහත සඳහන් කුමන පුකාශය **සත**ෂ වේ ද?

- (1) $\Delta H^{\circ} = -155 \; \mathrm{kJ \; mol}^{-1}$ වන අතර උෂ්ණත්වය වැඩි වීමත් සමග පුතිකිුයාවේ සමතුලිතතා නියතයේ අගය අඩු වේ.
- (2) $\Delta H^\circ = 155 \, \mathrm{kJ \ mol}^{-1}$ වන අතර උෂ්ණත්වය වැඩි වීමත් සමග පුතිකිුයාවේ සමතුලිතතා නියතයේ අගය අඩු වේ.
- (3) $\Delta H^{\circ} = -25 \text{ kJ mol}^{-1}$ වන අතර උෂ්ණත්වය වැඩි වීමත් සමග පුතිකිුිිිියාවේ සමතුලිතතා නියතයේ අගය අඩු වේ.
- (4) $\Delta H^\circ = 25 \text{ kJ mol}^{-1}$ වන අතර උෂ්ණත්වය වැඩි වීමත් සමග පුතිකිුයාවේ සමතුලිතතා නියතයේ අගය අඩු වේ.
- (5) $\Delta H^{\circ} = -155 \; \mathrm{kJ} \; \mathrm{mol}^{-1}$ වන අතර උෂ්ණත්වය වැඩි වීමත් සමග සමතුලිතතා නියතයේ අගය වැඩි වේ.
- 24. පහත දැක්වෙන පුතිකිුයාව සලකන්න.

D හි වාූනය වීමට වඩාත් ම ඉඩ ඇත්තේ,

25. A සංයෝගය $LiAlH_4$ සමග පුතිකිුයා කර B ලබා දෙයි. A ට වඩා B භාස්මික ය. B, 0-5 °C දී $NaNO_2/HCl$ සමග පිරියම් කළ විට N_2 මුක්ත කරයි. A සහ B දෙකම ඇමෝනීය $AgNO_3$ සමග පුතිකිුයා කර අවක්ෂේප ලබා දේ. A හි වාුහය විය හැක්කේ,

$$(1) \begin{array}{c} CONH_2 \\ CH_2C\equiv CH \end{array} \qquad (2) \begin{array}{c} CONH_2 \\ C\equiv C-CH_3 \end{array} \qquad (3) \begin{array}{c} NH_2 \\ CH_2-C-CH_3 \end{array}$$

- 26. ඕසෝන් ස්ථරයේ ක්ෂය වීම පිළිබඳ ව මින් කුමන වගන්තිය **සතෳ** වේ ද?
 - (1) ඕසෝන් සමග ක්ලෝරොෆ්ලුවොරොකාබන් (CFCs) ඍජුව ම පුතිකිුයා කර ඕසෝන් ස්ථරය ක්ෂය කරයි.
 - (2) පෘථිවි පෘෂ්ඨය මනට IR කිරණ පතිත වීම ඕසෝත් ස්ථරයෙහි ක්ෂය වීම මගින් දිරිගැන්වේ.
 - (3) ඕසෝන් ස්ථරයේ ක්ෂය වීම සඳහා හයිඩොංෆ්ලුවොරොකාබන් (HFCs) දායක වේ.
 - (4) පාරජම්බුල කි්රණ ඇති විට ඕසෝන් ස්ථරයේ පවතින ඕසෝන් ස්වාභාවිකව වියෝජනයට භාජනය වේ.
 - (5) CIO' මුක්ත ඛණ්ඩ මගින් පමණක් ඕසෝන් ස්ථරයේ ක්ෂය වීම සිදු වේ.

- 27. විදාුත් විච්ඡේදා කෝෂයක් තුළ සිදු වන ${
 m AlF}_6^{3-}({
 m aq})+3{
 m e}
 ightarrow {
 m Al}({
 m s})+6~{
 m F}^-({
 m aq})$ අර්ධ පුතිකිුයාව සම්බන්ධයෙන් පහත සඳහන් කුමක් **සතප** වේ ද?
 - (1) Al ඔක්සිකරණය වේ.
 - (2) AlF_6^{3-} ඔක්සිහරණය වේ.
 - (3) Al හි ඔක්සිකරණ අවස්ථාව -3 සිට 0 දක්වා වෙනස් වේ.
 - (4) F ඕක්සිහාරකයක් ලෙස කිුයා කරයි.
 - (5) F ි ඔක්සිහරණය වේ.
- 28. $CH_3CHO \xrightarrow{OH^-} P \xrightarrow{H^+} Q \xrightarrow{(1) CH_3MgBr} R$

ඉහත දැක්වෙන පුතිකිුයා අනුකුමයෙහි P, Q සහ R හි වූෘුත පිළිවෙළින් වනුයේ,

29. ස්වාභාවික රබර් හි පුනරාවර්තන ඒකකය වන්නේ,

(1)
$$\begin{bmatrix} CH_3 & H \\ C-C & CH \end{bmatrix}$$
(2)
$$\begin{bmatrix} CH_3 & CH_2 \\ CH_2 & CH_2 \end{bmatrix}$$
(3)
$$\begin{bmatrix} CH_3 & H \\ C-CH_2 & CH_2 \end{bmatrix}$$
(4)
$$\begin{bmatrix} CH_3 & CH_2 \\ C-C & CH_2 \end{bmatrix}$$
(5)
$$\begin{bmatrix} H & H \\ C-C & CH_2 \end{bmatrix}$$

- 30. මූලදුවාෳයක කලාප සටහන රූපයෙහි දක්වා ඇත. මෙම මූලදුවාෳයෙහි කලාප සටහන සම්බන්ධයෙන් පහත සඳහන් කුමන වගන්තිය අසතෘ වේ ද?
 - (1) S_1,S_2 හා G කලාප සමතුලිකතාවයේ පවතින \mathbf{T},\mathbf{P} තත්ත්ව එකක් ඇත.
 - (2) S_1^1, S_2^2 හා L කලාප සමතුලිතතාවයේ පවතින T, P තත්ත්ව එකක් ඇත. (3) S_2^1, L හා G කලාප සමතුලිතතාවයේ පවතින T, P තත්ත්ව එකක් ඇත.

 - (4) S_1^-, L හා G කලාප සමතුලිතතාවයේ පවතින \mathbf{T}, \mathbf{P} තත්ත්ව එකක් ඇත.
 - (5) කලාප දෙකකට වැඩි ගණනක් සමතුලිකතාවයේ පවතින T, P තත්ත්ව තුනක් කලාප සටහනෙහි දැක්වේ.

- අංක 31 සිට 40 තෙක් එක් පුශ්නය සඳහා දී ඇති (a),(b),(c) සහ (d) යන පුතිවාර හතර අතුරෙන්, එකක් හෝ වැඩි සංඛාාවක් හෝ නිවැරදි ය. නිවැරදි පුතිචාරය/පුතිචාර කවරේ දැ'යි තෝරා ගන්න.
 - (a) සහ (b) පමණක් නිවැරදි නම් (1) මත ද
 - (b) සහ (c) පමණක් නිවැරදි නම් (2) මත ද
 - (c) සහ (d) පමණක් නිවැරදි නම් (3) මත ද
 - (d) සහ (a) පමණක් නිවැරදි නම් (4) මත ද

වෙනත් පුතිචාර සංඛාාවක් හෝ සංයෝජනයක් හෝ නිවැරදි නම් (5) මක ද

උත්තර පතුයෙහි දැක්වෙන උපදෙස් පරිදි ලකුණු කරන්න.

ඉහත උපදෙස් සම්පිණ්ඩනය

(1)	(2)	(3)	(4)	(5)
(a) සහ (b)	(b) සහ (c)	(c) සහ (d)	(<i>d</i>) සහ (<i>a</i>)	වෙනත් පුතිචාර
පමණක්	පමණක්	පමණක්	පමණක්	සංඛාාවක් හෝ
නිවැරදියි	<i>තිවැර</i> දියි	නිවැ <i>ර</i> දියි	නිවැරදියි	සංයෝජනයක් හෝ නිවැරදියි

- ${f 31.} \ \ {f T_1}, {f T_2} \ ({f T_2} > {f T_1})$ යන උෂ්ණත්වයන් දෙකෙහි දී සහ නියත පීඩනයේ දී A(g)
 ightleftharpoons B(g) හි පුතිකියා පුමාණය (extent of reaction) සමග සම්මත ගිබ්ස් ශක්තියෙහි විචලනය රූප සටහනෙහි දක්වා ඇත. පහත දී ඇති කුමන වගන්තිය/ වගන්ති මෙම පුතිකිුයාව සඳහා **නිවැරදී** වේ ද?
 - (a) T_2 හි දී සමතුලිතතා නියතය T_1 හි දී ට වඩා විශාල වේ.
 - (b) පුතිකියාව තාපාවශෝෂක වේ.

 - (d) පුතිකියාව තාපදායක වේ.

32. $CH_3CH_2CH = CH_2 \xrightarrow{HBr} CH_3CH_2CH CH_3 + CH_3CH_2CH_2CH_2Br$

ඉහත දක්වා ඇති පුතිකිුයාව සඳහා පහත දී ඇති වගන්තිවලින් **නිවැරදි** වන්නේ කුමක් ද?/කුමන ඒවා ද?

- (a) මෙම පුතිකිුිිිියාව නියුක්ලියෝෆිලික ආකලන පුතිකිුිියාවකි.
- (b) P පුධාන එලය වේ.
- (c) ප්‍රතිකි්යාවේ පළමු පියවරේ දී කාබොකැටායනයක් සෑදේ.
- (d) **Q** පුධාන ඵලය වේ.
- 33. පහත සඳහන් වගන්ති කාර්මික කිුයාවලි සමහරක් සම්බන්ධයෙන් වේ. මින් කුමන වගන්තිය / වගන්ති **නිවැරදි** වේ ද?
 - (a) KOH භාවිත කර ළදරු සබන් නිපදවයි.
 - (b) ස්පර්ශ කියාවලියේ දී ${
 m SO}_{
 m q}$ ලබා ගැනීමට ${
 m SO}_{
 m p}$ හා ${
 m O}_{
 m p}$ අතර පුතිකිුයාව සඳහා අඩු පීඩන තත්ත්ව අනුගුහය දක්වයි.
 - (c) සොල්වේ කුමයෙන් $\mathrm{K_{2}CO_{3}}$ සංශ්ලේෂණය කළ හැක.
 - (d) ඩවුන්ස් කෝෂය භාවිතයෙන් Na නිෂ්පාදනයේ දී Na හා ක්ලෝරීන් වායුව පුතිකිුයා කිරීම වැළැක්වීමට කැතෝඩ හා ඇනෝඩ කුටීර පුාචීරයකින් වෙන්කර ඇත.
- 34. බහු-පියවර පුතිකිුයාවක වඩාත් ම සෙමින් සිදු වන පියවර සඳහා පහත කුමන වගන්තිය / වගන්ති සැම විට ම **නිවැරදි** වේ ද?
 - (a) එහි අණුකතාවය පූර්ණ සංඛ්‍යාවක් වේ.
 - (b) එහි අණුකතාවය පුතිකිුියාවේ සමස්ත පෙළට වඩා වැඩි වේ.
 - (c) එහි ශීඝුතාව මත සමස්ත පුතිකිුිිිිිිියාවෙහි ශීඝුතාව රඳා පවතී.
 - (d) එහි අණුකතාවය පුතිකිුිිියාවෙහි පියවර සංඛ්‍යාවට සමාන වේ.
- 35. ආලෝකය හමුවේ දී $\mathrm{CH_4}$ සමග $\mathrm{Cl_2}$ පුතිකිුයා කිරීමේ දී සිදු නොවීමට වඩාත් ම ඉඩ ඇති පුතිකිුයා පියවර පහත දැක්වෙන ඒවායින් කුමක් ද?/ කුමන ඒවා ද?ි
- 36. NH ු හා NF ු සම්බන්ධයෙන් මින් කුමන වගන්තිය/වගන්ති නිවැරදී වේ ද?
 - (a) NHූ ට වඩා NFූ හි බන්ධන යුගල් විකර්ෂණය දුර්වල වේ.
 - (b) NH_3 ට වඩා වැඩි ද්විධුව සූර්ණයක් NF_3 ට ඇත.
 - (c) NH ූ ට වඩා NF ූ පුබල ලුවිස් හස්මයක් වේ.
 - (d) NH_3^2 හි N හා H අතර විදාුුත් සෘණතා වෙනසත් NF_3 හි N හා F අතර එම අගයත් බොහෝ දුරට සමාන වේ.

- 37. 1000 K දී $2 \text{ NO(g)} + \text{Br}_2(g) \rightleftharpoons 2 \text{ NOBr}(g)$ පුතිකිුයාව සඳහා සමතුලිකතා නියකය $1.25 \times 10^{-2} \text{ mol}^{-1} \text{ dm}^3$ වේ. මෙම උෂ්ණත්වයේ දී පහත සඳහන් කුමන පුකාශය/පුකාශ **නිවැරදි** වේ ද?
 - (a) සමතුලිත මිශුණයෙහි NO(g) හා $Br_2(g)$ පුමුබව ඇති අතර ආපසු පුතිකිුිිියාව සඳහා සමතුලිතතා නියතය $80 \ mol \ dm^{-3}$ වේ.
 - (b) සමතුලිත මිශුණයෙහි NOBr(g) පුමුබව ඇති අතර ආපසු පුතිකිුිිිියාව සඳහා සමතුලිතතා තියකය $80 \ mol \ dm^{-3}$ වේ.
 - (c) සමතුලිත මිශුණයෙහි NO(g) හා $Br_2(g)$ පුමුබව ඇති අතර ආපසු පුතිකුියාව සඳහා සමතුලිතතා තියතය $1.25 \times 10^{-2}~{
 m mol}^{-1}~{
 m dm}^3$ වේ.
 - (d) සමතුලිත මිශුණයෙහි NOBr(g) පුමුඛව ඇති අතර ආපසු පුතිකියාව සඳහා සමතුලිකතා නියකය $1.25 \times 10^{-2} \, \mathrm{mol}^{-1} \, \mathrm{dm}^3$ වේ.
- **38.** වායු කලාපයේ සිදුවන ද්විඅණුක මූලික පුතිකිුයාවක් සම්බන්ධයෙන් පහත සඳහන් කුමන වගන්තිය/වගන්ති **නිවැරදි** වේ ද?
 - (a) පුතිකියාවෙහි පරීක්ෂණාත්මකව නිර්ණය කරන ලද පෙළ දෙක වන්නේ පුතිකියකයන්හි සාන්දුණ සමාන වූ විට පමණි.
 - (b) පුතිකියකවල සාන්දුණ අනුපාක 1 : 3 වන විට පුතිකියාවෙහි පරීක්ෂණාත්මකව නිර්ණය කරන ලද පෙළ තුන වේ.
 - (c) එක් පුතිකියකයක සාන්දුණය අනිකට වඩා සන්සන්දනාත්මකව විශාල වශයෙන් වැඩි වන විට පුතිකියාවෙහි ශීසුතාව එම පුතිකියකයෙහි සාන්දුණයෙන් ස්වායත්ත වේ.
 - (d) නියත උෂ්ණත්වයක දී පුතිකියක අඩංගු බඳුනෙහි පරිමාව අඩු කළ විට පුතිකියක අතර ගැටුම් ඇති වීමේ ශීඝුතාව වැඩි වේ.
- 39. පහත සඳහන් කුමන වගන්තිය/වගන්ති මෙතිල් බෙන්සීන් (ටොලුවීන්) සඳහා **නිවැරදි** වේ ද?

- (a) සියලු ම කාබන් පරමාණු එකම තලයක පිහිටයි.
- (b) සියලු ම කාබන් කාබන් බන්ධනවල දිග එකිනෙකට සමාන වේ.
- (c) සියලු ම කාබන් හයිඩ්රජන් බන්ධනවල දිග එකිනෙකට සමාන වේ.
- (d) ඕනෑම C-C-C බන්ධන කෝණයක් 120° ක් වේ.
- 40. වායු දූෂණය සම්බන්ධයෙන් පහත දී ඇති කුමන වගන්තිය / වගන්ති **නිවැරදි** වේ ද?
 - (a) ජල ස්කන්ධවල ඇති සල්ෆේට වායුගෝලීය $\mathbf{H}_{\mathbf{y}}\mathbf{S}$ හි පුභවයකි.
 - (b) NO(g) මගින් $SO_{3}(g)$, $SO_{3}(g)$ බවට පරිවර්තනය වීම ශීසු කරයි.
 - (c) පොසිල ඉන්ධන දහනයේ දී පිටවන $\mathrm{NO}(\mathrm{g})$ වායු දූෂකයක් ලෙස නොසැලකේ.
 - (d) වායුගෝලයේ ඇති $\mathrm{SO}_{p}(\mathrm{g})$ අකුණු කෙටීම මගින් ඉවත් වේ.
- අංක 41 සිට 50 තෙක් එක් එක් පුශ්නය සඳහා පුකාශ දෙක බැගින් ඉදිරිපත් කර ඇත. එම පුකාශ යුගලයට හොඳින් ම ගැළපෙනුයේ පහත වගුවෙහි දැක්වෙන පරිදි (1),(2),(3),(4) සහ (5) යන පුතිචාරවලින් කවර පුතිචාරය දැ'යි තෝරා උත්තර පතුයෙහි උචිත ලෙස ලකුණු කරන්න.

පුතිචාරය	පළමුවැනි පුකාශය	දෙවැනි පුකාශය
(1)	සතා වේ.	සතා වන අතර, පළමුවැනි පුකාශය නිවැරදි ව පහදා දෙයි.
(2)	සතා වේ.	සතා වන නමුත් පළමුවැනි පුකාශය නිවැරදි ව පහදා නොදෙයි .
(3)	සතා වේ.	අසතා වේ.
(4)	අසතා වේ.	සතා මව්.
(5)	අසතා වේ.	අසතා වේ.

	පළමුවැනි පුකාශය	දෙවැනි පුකාශය
41.	බයිකාබනේට් අයනයෙහි C—O බන්ධන සර්වසම වේ.	බයිකාබනේට් අයනය ස්ථායි සම්පුයුක්ත වුපුහ තුනක සම්පුයුක්ත මුහුමක් ඓ.
42.	HOCH CH Br වියළි ඊතර මාධායේ දී Mg සමග පුතිකිුිිියා කිරීමෙන් ශීනාඩ් පුතිකාරකයක් පිළියෙල කළ නොහැකි ය.	හයිඩොක්සිල් කාණ්ඩයක් අඩංගු සංයෝග සමග ගුීනාඩ පුතිකාරකය පුතිකිුයා නොකරයි.
43.	නියත උෂ්ණත්වයේ දී $2H_2(g)+\mathrm{CO}(g) \rightleftarrows \mathrm{CH_3OH}(g)$ සමතුලිත මිශුණයෙහි පීඩනය වැඩි කිරීමෙන් සමතුලින ස්ථානය දකුණට නැඹුරු වේ.	නියත උෂ්ණත්වයේ දී රසායනික සමතුලිකතාවයෙහි ඇති වායුමය මිශුණයක පීඩනය වැඩි කිරීමේ දී මවුල සංඛාාව අඩු වන පරිදි පුතිකියාව සිදු වේ.

	පළමුවැනි පුකාශය	දෙවැනි පුකාශය
44.	II කාණ්ඩයේ සල්ෆේට හා කාබනේටවල දුාවාාතාව කාණ්ඩයේ පහළට යන විට අඩුවන අතර හයිඩුොක්සයිඩ සඳහා එයට විරුද්ධ නිරීක්ෂණයක් ලැබේ.	
45.	ඉලෙක්ටුෝෆයිල කෙරෙහි ඇල්කේනවල පුතිකිුියාකාරීත්වය ඇල්කීනවලට වඩා අඩු ය.	කාබන් හා හයිඩ්රජන් පරමාණු අතර විදායුත් සෘණතාවයෙහි වෙනස කුඩා නිසා හයිඩුොකාබනවල C—H බන්ධනවල ධුැවීයතාවය අඩු ය.
46.	සංවෘත භාජනයක් තුළ ඇති ජල වාෂ්ප ඝනීභවනය වන විට අවට පරිසරයෙහි එන්ටුොපිය වැඩි වේ.	සංවෘත පද්ධතියක් මගින් අවශෝෂණය කළ තාපය අවට පරිසරයෙහි තාපමය චලනය වැඩි කරයි.
47.	NaOH නිෂ්පාදනයේ දී භාවිත වන පටල කෝෂයේ කැතෝඩ කුටීරය හා ඇනෝඩ කුටීරය අයන වරණීය පටලයකින් වෙන් කර ඇත.	පටල කෝෂයේ භාවිත වන අයන වරණීය පටලය කැටායන හුවමාරු වීමට ඉඩ නොදෙයි.
48.	2-butene පාරතිුමාන සමාවයවිකතාව පෙන්වයි.	එකිනෙකෙහි දර්පණ පුතිබිම්බ නොවන වසුහ දෙකක් 2-butene සඳහා තිබිය හැක.
49.	කාමර උෂ්ණක්වයේ දී MnS(s) හි ජලයේ දාවානාව pH අගය මත රඳා නොපවතී.	$S^{2-}(aq)$ දූර්වල අම්ලයක සංයුග්මක හස්මය වේ.
50.	d-ගොනුවේ මූලදවාවල දවාංක s -ගොනුවේ මූලදවාවල දවාංකවලට වඩා වැඩි ය.	d-ගොනුවේ මූලදුවාවල ලෝහක බන්ධන සැදීමේ දී විස්ථානගත වීම සඳහා, d සහ s ඉලෙක්ටුෝන ඇත.

* * *

ආවර්තිතා වගුව

		_																
	1																	2
1	H																	He
	3	4											5	6	7	8	9	10
2	Li	Be											В	C	N	0	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	P	S	Cl	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	<u>Bi</u>	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113					
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut					
						·												
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	1
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

விது ම හිමිකම් ඇවිටිණි /முழுப் பதிப்புரிமையுடையது / $All\ Rights\ Reserved$)

		/ 1 10	- A017
	PARAMETER PARAME	(උසස් ලපළ) විහ	
		\	idia, zuri Gerbiidaka
			A1
கல்லாட் வாகக	E T E T		IT AND 7017 CARANTO
CONTRACT ANTICOMES	وروط طرارو اا رازو	n) (2.41) 23170 C	III 1 2000 - 2017 WOODUU
			/ / 8 E
(Anarol (Artificate	of Danastian	(Adv Level) Ever	alantos August 2017 -
CIGICIAI COMITCALO	UL CARCARON	TAULY LOVOIT TANK	HUMUOH. AUPUSL ZVI7

රසායන විදනවIIஇரசாயனவியல்IIChemistryII

පැය තුනයි

மூன்று மணித்தியாலம் Three hours

විභාග අංකය :

- 🔻 ආවර්තිතා වගුවක් 15 වැනි පිටුවෙහි සපයා ඇත.
- 🔆 ගණක යන්තු භාව්තයට ඉඩ දෙනු නොලැබේ.
- * සාර්වනු වායු නියනය, $R = 8.314 \,\mathrm{J \ K^{-1} \ mol^{-1}}$
- * ඇවගාඩ්රෝ නියතය, $N_A = 6.022 \times 10^{23} \ \mathrm{mol}^{-1}$
- * මෙම පුශ්න පතුයට පිළිතුරු සැපයීමේ දී ඇල්කයිල් කාණ්ඩ සංක්ෂිප්ත ආකාරයකින් නිරුපණය කළ හැකි ය.

- A කොටස වපුහගත රචනා (පිටු 2 8)
- * **සියලු ම** පුශ්නවලට මෙම පුශ්න පතුයේ ම පිළිතුරු සපයන්න.
- * ඔබේ පිළිතුරු එක් එක් පුශ්නයට ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නොවන බව ද සලකන්න.
 - □ B කොටස සහ C කොටස රචනා (පිටු 9 14)
- * එක් එක් කොටසින් පුශ්න **දෙක** බැගින් තෝරා ගනිමින් පුශ්න **හතරකට** පිළිතුරු සපයන්න. මේ සඳහා සපයනු ලබන කඩදාසි භාවිත කරන්න.
- * සම්පූර්ණ පුශ්න පතුයට නියමිත කාලය අවසන් වූ පසු A, B සහ C කොටස්වලට පිළිතුරු, A කොටස මුලින් තිබෙන පරිදි එක් පිළිතුරු පතුයක් වන සේ අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි f B සහ f C කොටස් **පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යා හැකි ය.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි

කොටස	උශ්න අංකය	ලැබූ ලකුණු
	1	
A	2	
	3	
	4	
	5	
В	6	
	7	
	8	
C	9	
	10	
එකතුව		
පුතිශතය		

අවසාන ලකුණ

ඉලක්කමෙන්	
අකුරින්	

යංකේත අංක

උත්තර පතු පරීක්ෂක 1	
උත්තර පනු පරික්ෂක 2	
පරීක්ෂා කළේ :	
අධීක්ෂණය කළේ :	

A කොටස - වපුහගත රචනා

පුශ්න **හතරට ම** මෙම පතුයේ ම පිළිතුරු සපයන්න. (එක් එක් පුශ්නය සඳහා නියමිත ලකුණු පුමාණය 10 කි.)

මෙම තීරයේ කිසිවක් නො ලියන්න

I.~(a)~(i)~I.~ ලුවිස් වනුහයක ඇති පරමාණුවක ආරෝපණය $(\mathbf{Q})~$ නිර්ණය කිරීමට පහත දක්වා ඇති පුකාශනය $\mathbf{N}_{\mathbf{A}},\mathbf{N}_{\mathbf{LP}}$ සහ $\mathbf{N}_{\mathbf{BP}}$ යන පද සුදුසු කොටුවල ඇතුළත් කිරීමෙන් සම්පූර්ණ කරන්න. මෙහි,

N_A = පරමාණුවේ ඇති සංයුජතා ඉලෙක්ටෝන සංඛ්‍යාව

 \mathbf{N}_{LP} = එකසර ඉලෙක්ටුෝන යුගලවල ඇති ඉලෙක්ටුෝන සංඛාාව

N_{BP} = පරමාණුව වටා බන්ධන යුගලවල ඇති ඉලෙක්ටුෝන සංඛාාව

 $\mathbf{Q} = \boxed{ - \frac{1}{2}}$

 $II.\ N_A,N_{LP}$ සහ N_{BP} සඳහා අගයයන් සුදුසු කොටුවල ඇතුළත් කිරීමෙන් පහත දී ඇති SOF_2 වනුහයෙහි S මත ආරෝපණය, \mathbf{Q} (සල්ෆර්), ගණනය කරන්න.

- (ii) ${
 m ClO}_2{
 m F}_2^+$ අයනය සඳහා **වඩාත් ම** පිළිගත හැකි ලුවිස් ව<u>පු</u>හය අඳින්න.
- (iii) CH₂SO (සල්ෆින්) අණුව සඳහා වඩාත් ම ස්ථායි ලුවිස් ව<u>පු</u>හය පහත දක්වා ඇත. මෙම අණුව සඳහා තවත් ලුවිස් වපුහ (සම්පුයුක්ත වපුහ) **දෙකක්** අදින්න.

More Past Papers at

tamilguru.lk

(iv) පහත සඳහන් උපකල්පිත ලුවිස් වාුහය පදනම් කරගෙන පහත වගුවේ දක්වා ඇති ${
m C,N}$ සහ ${
m O}$ පරමාණුවල

I. පරමාණුව වටා VSEPR යුගල්

II. පරමාණුව වටා ඉලෙක්ටෝන යුගල් ජාාමිතිය

III. පරමාණුව වටා හැඩය

IV. පරමාණුවේ මුහුම්කරණය

සඳහන් කරන්න.

$$\begin{array}{c} :O\colon & H\\ \ominus & \oplus & \parallel & .. & \mid\\ C \equiv N - C - O - N - H \end{array}$$

පහත දැක්වෙන පරිදි පරමාණු අංකනය කර ඇත.

	O^7	H^6	
C1 N2		04 > 75	
C ₁ -N ₂ -	–Ċ³—∙	O⁴—N ⁵ –	Н

		N ²	C_3	O ⁴	N ⁵
I.	VSEPR යුගල්				
II.	ඉලෙක්ටුෝන යුගල් ජාාාමිතිය				
III.	හැඩය				
IV.	මුහුම්කරණය				

	පරමාණුක/මුහුම්කාක්	හ ඉදන ලද ලුවස වනුහයෙ මික හඳුනාගන්න. (පරමාණුවල		ධන සෑදීමට සහභාගි වන හි ආකාරයට වේ.)
	I. N ² —C ³	N ² ,	C ³	***********
	II. O^4 — N^5	O ⁴ ,	N ⁵	
	III. N ⁵ —H ⁶	N ⁵ ,	H ⁶	
	IV. C ³ —O ⁷	C ³ ,	O ⁷	
				(ලකුණු <i>5.5</i> යි)
) (i)	ඒවායේ උද්දිගංශ ක් ෙ එක් එක් උපකචචයෙ	ක්වොන්ටම් අංකය $n=3$ වන ශ වොන්ටම් අංකය (l) සහ චුම්බෘ හි පවතින උපරීම ඉලෙක්ටුෝද දී ඇති වගුවේ ලියන්න.	ක ක්වොන්ටම් අංකය/අං	ක (m_l) සමග හඳුනාගන්න.
	උපකවචය	උද්දිගංශ ක්ෂවාන්ටම් අංකය (l)	චුම්බක ක්වොන්ටම් අංකය/අංක (m_l)	එක් එක් උපකවචයේ පවතින උපරිම ඉලෙක්ටුෝන සංඛ්‍යාව
	II. NO වායුව			
	<u></u>		••••••	
	III. KCl කුඩා පුමාණ	යෙක් දුවණය වී ඇති ජල සාමඃ	පලයක	
(iii)		හි තාපාංකය පොපේන් (C ₃ H ₈) ; යන වග හේතු සහිත ව සඳහ		; ය." මෙම පුකාශනය සත ෳ
			•••••	
		••••••	***************************************	
	වරහන් තුළ දී ඇති ගුණ	ශිය අඩු වන පිළිවෙළට පහත සඳ	හන් දෑ සකසන්න. (හේතු අ	අවශා නොවේ .)
(iv)				
(iv)	,	₃ , K ₂ CO ₃ (ජලයෙහි දුාව ාතාව)		
(iv)		₃ , K ₂ CO ₃ (ජලයෙහි දුාවාඃතාව) > > Cl, NO ₂ ⁺ (බන්ධන කෝණය)		

III. $\mathrm{COCl}_2,\,\mathrm{CO}_2,\,\mathrm{HCN},\,\mathrm{CH}_3\mathrm{Cl}$ (කාබන්වල විදාුක් සෘණතාව)

- 3 -

(ලකුණු 4.5 යි)

100

2.			වගුවේ එකම කාණ්ඩයට අයත් මූලදවා වේ. කාණ්ඩයේ පහළට යැ වතී. කාමර උෂ්ණත්වයේ දී Y අලෝහමය වර්ණවත් දුවයක් ලෙස ෑ	
		(i) X, Y සහ Z හඳුනාග	ගන්න. (පරමාණුක සංකේත දෙන්න.)	
		X =		
	(ii) X,Y සහ Z සම්බන්ධ	යෙන් පහත දැහි සාපේක්ෂ විශාලත්ව දක්වන්න.	
		I. පරමාණුක විශාල	ලත්වය	
		II. ඉලෙක්ටුෝන බ	ත්ධුතාවය >	
		III. පළමු අයනීකර	නි ශක්තිය	
	(i		නයන්හි ජලීය දුාවණ වෙන වෙනම පරීක්ෂා නළවල ඔබට සපයා භවිත කළ හැකි තනි පුතිකාරකයක් යෝජනා කරන්න.	ඇත. මෙම ඇතායත
		[සෑ. යු: එක් එක් ඇනා	යනය සඳහා නිරීක්ෂණය ඔබ සඳහන් කළ යුතුයි.]	
		පුතිකාරකය:		
		නිරීක්ෂණය: (ඇනායන සඳහා)	X :	
		(4(0))	Y:	
			Z :	
	(i		හි පුතිකියා සඳහා තුලිත රසායනික සමීකරණ දෙන්න.	
		II. තනුක NaOH		
	(\mathbf{x} හි ඔක්සො අම්ල දෙ	ුකක ව <u>ා</u> පුහ අඳින්න.	
	(v	i) X හි එක් ස්වාභාවික පුෑ	හවයක් නම් කරන්න	
	(vi		වකයක් ජල නළ නිෂ්පාදනයේ දී බහුලව භාවිත කරන ආකල යේ වනුහය අඳින්න.	;න බහුඅවයවකයක්
		ш 40 0	l māmka no C	
		II. එම බහුඅවයවකයෙ	් යම්පූර්ණ නම ලියන්න	
				(ලකුණු 5.0 යි)

	· · · · · · ·	ප රීක්ෂාව	නිරීක්ෂණය			
0	ľ	කනුක HCl එකතු කරන ලදී.	අවර්ණ වායුවක් පිට විය. පැහැදිලි දුාවණයක් ලැබුණි.			
	II	පිටවූ වායුව ලෙඩි ඇසිටේට්වලින් තෙත් කරන ලද පෙරහන් කඩදාසියක් මගින් පරීක්ෂා කරන ලදී.	වර්ණ විපර්යාසයක් නොමැත.			
@	I	BaCl ₂ දුාවණයක් එකතු කරන ලදී.	සුදු අවක්ෂේපයක් ලැබුණි.			
	II	සුදු අවක්ෂේපය පෙරා වෙන් කර එයට කනුක HCl එක් කරන ලදී.	වායුවක් පිට වෙමින් සුදු අවක්ෂේපය දුවණය වුණි.			
	III	පිටවුණු වායුව ආම්ලිකෘත පොටෑසියම් ඩයිකෝමේට්වලින් තෙත් කරන ලද පෙරහන් කඩදාසියක් මගින් පරීක්ෂා කරන ලදී.	තැඹිලි පැහැයේ සිට කොළ පැහැයට වර්ණය වෙනස් වුණි.			
1	දුාව අ	්දු HNO ₃ හා ඇමෝනියම් මොලිබ්ඩේට් ණයකින් වැඩිපුර පුමාණයක් එක් කර මිශුණය සුම් කරන ලදී.	කහ පැහැති අවක්ෂේපයක් නොසෑදුණි.			
		වර්ඩා මිශු ලෝහය සහ NaOH දුාවණයක් එක් මිශුණය රත් කරන ලදී.	නෙස්ලර් පුතිකාරකය දුඹුරු පැහැ ගත්වන වායුවක් පිටවුණි.			
Ī	. ب د	- 9 Od.	<u></u>			
6	FeC	් දුාවණයක් එකතු කරන ලදී.	ලේ රතු පැහැති දුාවණයක් ලැබුණි.			
(i)	FeCi		ලේ රතු පැහැති දුාවණයක් ලැබුණි. සහ			
(i)	FeCi	් ₃ දාවණයක් එකතු කරන ලදී. ාවණයේ ඇති ඇනායන තුන හඳුනාගන්න.	ලේ රතු පැහැති දුාවණයක් ලැබුණි. සහ			
(i) (ii)	FeC: Q දුර	l ₃ දාවණයක් එකතු කරන ලදී. වචණයේ ඇති ඇතායන තුන හඳුනාගන්න. , ශ්ෂණ අංක ② III හි සිදු වන පුතිකිුයාව සඳහා ;	ලේ රතු පැහැති දුංවණයක් ලැබුණි සහ කුලිත රසායනික සමීකරණය ලියන්න. (ලකුණු 5.0 යි.			
(i) (ii)	Q ද Q ද පරීක	් ₃ දාවණයක් එකතු කරන ලදී. ාවණයේ ඇති ඇනායන තුන හඳුනාගන්න. , ශ්ෂණ අංක ② III හි සිදු වන පුතිකිුයාව සඳහා ;	ලේ රතු පැහැති දුංවණයක් ලැබුණි සහ කුලිත රසායනික සමීකරණය ලියන්න. (ලකුණු 5.0 යි.			
(i) (ii)	PeCi Q දුර පරික පරික	${ m I}_3$ දාවණයක් එකතු කරන ලදී. වණයේ ඇති ඇතායන තුන හඳුනාගන්න. ග්ෂණ අංක ${ m f Q}$ III හි සිදු වන පුතිකිුයාව සඳහා ස මීන්, ${ m CH_3NH_2}$ දුබල හස්මයක් වේ. මෙතිල්ඇමීන ${ m CH_3NH_2}({ m aq}) + { m H_2O(I)} \;\; ightleftarrows$ ${ m CH_3NH_3^\dagger}({ m aq})$	ලේ රතු පැහැති දාවණයක් ලැබුණි. සහ කුලිත රසායනික සමීකරණය ලියන්න. (ලකුණු 5.0 යි. ත් හි ජලීය දාවණයක පහත සමතුලිතතාවය පවතී. () + OH (aq)			
(i) (ii) (ii)	FeCi Q දුර පරික පරික	I_3 දාවණයක් එකතු කරන ලදී. වණයේ ඇති ඇතායන තුන හඳුනාගන්න. ක්ෂණ අංක $\textcircled{2}$ III හි සිදු වන පුතිකිුයාව සඳහා ස වීත්, $\operatorname{CH_3NH_2}$ දුබල හස්මයක් වේ. මෙතිල්ඇමීන $\operatorname{CH_3NH_2}(\operatorname{aq}) + \operatorname{H_2O}(\operatorname{I}) \;\; ightharpoonup \operatorname{CH_3NH_3^+}(\operatorname{aq})$ සිල්ඇමීත් හි K_b සඳහා පුකාශනය ලියන්න.	ලේ රතු පැහැති දාවණයක් ලැබුණි. සහ කුලිත රසායනික සමීකරණය ලියන්න. (ලකුණු 5.0 යි. ත් හි ජලීය දාවණයක පහත සමතුලිතතාවය පවතී. () + OH (aq)			
(i) (ii) (ii)	FeCi Q දුර පරික පරික	${ m I}_3$ දාවණයක් එකතු කරන ලදී. වණයේ ඇති ඇතායන තුන හඳුනාගන්න. ග්ෂණ අංක ${ m f Q}$ III හි සිදු වන පුතිකිුයාව සඳහා ස මීන්, ${ m CH_3NH_2}$ දුබල හස්මයක් වේ. මෙතිල්ඇමීන ${ m CH_3NH_2}({ m aq}) + { m H_2O(I)} \;\; ightleftarrows$ ${ m CH_3NH_3^\dagger}({ m aq})$	ලේ රතු පැහැති දාවණයක් ලැබුණි. සහ කුලිත රසායනික සමීකරණය ලියන්න. (ලකුණු 5.0 යි. ත් හි ජලීය දාවණයක පහත සමතුලිතතාවය පවතී. () + OH (aq)			
(i) (ii) (ii)	FeCi Q දුර පරික පරික	I_3 දාවණයක් එකතු කරන ලදී. වණයේ ඇති ඇතායන තුන හඳුනාගන්න. ක්ෂණ අංක $\textcircled{2}$ III හි සිදු වන පුතිකිුයාව සඳහා ස වීත්, $\operatorname{CH_3NH_2}$ දුබල හස්මයක් වේ. මෙතිල්ඇමීන $\operatorname{CH_3NH_2}(\operatorname{aq}) + \operatorname{H_2O}(\operatorname{I}) \;\; ightharpoonup \operatorname{CH_3NH_3^+}(\operatorname{aq})$ සිල්ඇමීත් හි K_b සඳහා පුකාශනය ලියන්න.	ලේ රතු පැහැති දාවණයක් ලැබුණි. සහ කුලිත රසායනික සමීකරණය ලියන්න. (ලකුණු 5.0 යි. ත් හි ජලීය දාවණයක පහත සමකුලිතතාවය පවතී. () + OH (aq)			
(i) (ii)	FeCi Q දුර පරික පරික	I_3 දාවණයක් එකතු කරන ලදී. වණයේ ඇති ඇතායන තුන හඳුනාගන්න. ක්ෂණ අංක $\textcircled{2}$ III හි සිදු වන පුතිකිුයාව සඳහා ස වීත්, $\operatorname{CH_3NH_2}$ දුබල හස්මයක් වේ. මෙතිල්ඇමීන $\operatorname{CH_3NH_2}(\operatorname{aq}) + \operatorname{H_2O}(\operatorname{I}) \;\; ightharpoonup \operatorname{CH_3NH_3^+}(\operatorname{aq})$ සිල්ඇමීත් හි K_b සඳහා පුකාශනය ලියන්න.	ලේ රතු පැහැති දාවණයක් ලැබුණි. සහ කුලිත රසායනික සමීකරණය ලියන්න. (ලකුණු 5.0 යි. ත් හි ජලීය දාවණයක පහත සමතුලිතතාවය පවතී. () + OH (aq)			
(i) (ii)	FeCi Q දුර පරික පරික	I_3 දාවණයක් එකතු කරන ලදී. වණයේ ඇති ඇතායන තුන හඳුනාගන්න. ක්ෂණ අංක $\textcircled{2}$ III හි සිදු වන පුතිකිුයාව සඳහා ස වීත්, $\operatorname{CH_3NH_2}$ දුබල හස්මයක් වේ. මෙතිල්ඇමීන $\operatorname{CH_3NH_2}(\operatorname{aq}) + \operatorname{H_2O}(\operatorname{I}) \;\; ightharpoonup \operatorname{CH_3NH_3^+}(\operatorname{aq})$ සිල්ඇමීත් හි K_b සඳහා පුකාශනය ලියන්න.	ලේ රතු පැහැති දාවණයක් ලැබුණි. සහ කුලිත රසායනික සමීකරණය ලියන්න. (ලකුණු 5.0 යි. ත් හි ජලීය දාවණයක පහත සමතුලිතතාවය පවතී. () + OH (aq)			

(iii)	ඉහත (ii) හි දුාවණයෙන් $25.00~{ m cm}^3$ පරිමාවක් $0.20~{ m mol~dm}^{-3}$ HCl සමග $25~{ m ^{\circ}C}$ දී අනුමාපනය කරන ලදී. සමකතා ලක්ෂායේ දී දුාවණයේ pH අගය ගණනය කරන්න. ($25~{ m ^{\circ}C}$ දී $K_{ m w}=1.0 imes 10^{-14}~{ m mol}^2~{ m dm}^{-6}$)
ුල්	
ූනි.	(ලකුණු 5.0 යි) ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධතිය තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙව්ට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සෑදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුයා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුයා ලියන්න.
ූනි.	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ^{–3} HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධතිය තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙව්ට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සෑදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුයා කරයි.
ූනි.	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ^{–3} HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධතිය තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙව්ට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සෑදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුයා කරයි.
ූනි.	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ^{–3} HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධතිය තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සෑදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුයා කරයි.
සමා පුනි. (i) ii)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධතිය තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුයා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුයා ලියන්න.
සමා පුනි. (i) ii)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධතිය තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුයා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුයා ලියන්න. HX(aq) හි විසටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දාවණයෙහි ඇති [X (aq)] ගණනය
සමා ;ුනි. (i) ii)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධතිය තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුයා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුයා ලියන්න. HX(aq) හි විසටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දාවණයෙහි ඇති [X (aq)] ගණනය
සමා ;ුනි. (i) ii)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධතිය තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුයා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුයා ලියන්න. HX(aq) හි විසටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දාවණයෙහි ඇති [X (aq)] ගණනය
සමා ;ුනි. (i) ii)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධතිය තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුයා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුයා ලියන්න. HX(aq) හි විසටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දාවණයෙහි ඇති [X (aq)] ගණනය
සමා ;ුනි. (i) ii)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධතිය තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුයා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුයා ලියන්න. HX(aq) හි විසටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දාවණයෙහි ඇති [X (aq)] ගණනය
සමා පුනි. (i) ii)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධතිය තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුයා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුයා ලියන්න. HX(aq) හි විසටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දාවණයෙහි ඇති [X (aq)] ගණනය
සමා ;ුනි. (i) ii)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධතිය තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුයා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුයා ලියන්න. HX(aq) හි විසටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දුාවණයෙහි ඇති [X (aq)] ගණනය
සමා ;ුනි. (i) ii)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධතිය තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුයා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුයා ලියන්න. HX(aq) හි විසටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දුාවණයෙහි ඇති [X (aq)] ගණනය
සම: දුනි. (i) ii)	ක්ෂණයක දී MX(s) නම් අවක්ෂේපයකට 1.00 mol dm ⁻³ HNO ₃ සීමිත පරිමාවක් එකතු කර 25 °C දී පද්ධතිය තුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙවිට අවක්ෂේපය අර්ධ වශයෙන් දිය වී පැහැදිලි දුාවණයක් ලබා . සැදුණු HX(aq) දුබල අම්ලයක් ලෙස කිුයා කරයි. ඉහත දුාවණයෙහි පවතින සමතුලිතතා සඳහා රසායනික පුතිකිුයා ලියන්න. HX(aq) හි විසටනය නොසැලකිය හැකි බව උපකල්පනය කරමින් ඉහත දාවණයෙහි ඇති [X (aq)] ගණනය

- 6 -

	ද විශාල ද යන වග හේතු දා)(ii) හි ලබා ගත් අගයට සමාන ද කුඩා
		•••••••••••	
	•••••	•••••••••••••••••••••••••••••••••••••••	
		•••••••••••••••••••••••••••••••••••••••	
	•••••	•••••	
	I ₁₂ O අණුක සූතුය සහිත A, B, ශකාශ සමාවයවිකතාවය පෙන්ෑ		(ලකුණු 5.0 යි) කෙහි වපුහ සමාවයවික වේ. A, B සහ
_	\mathbf{A}, \mathbf{B} සහ \mathbf{C} සඳහා තිබිය හැ i		
		⁰ 7සමග පුතිකිුයා කළ විට පිළිවෙළින් Xි මන් පිළිවෙළින් B, C සහ D බවට නැව	X, Y සහ Z සැදේ. X, Y සහ Z යන එල වත පරිවර්තනය කළ හැක.
(ii)	🗚 හි වාුුහය කුමක් ද?		
		A	
	ලබා දුනි. ${f G}$ පාරතිුමාන සමාව	වයවිකතාවය පෙන්වයි. ${f E},{f F}$ සහ ${f G}$ යන	න් අතර C හා D , එකම . G නමැති එලය හ සංයෝග තුනටම C ₅ H ₁₀ අණුක සූතුය සැදුණි.
(iii)	ලබා දුනි. ${f G}$ පාරතිුමාන සමාව	විට A හා B පිළිවෙළින් E හා F ලබා දුz වයවිකතාවය පෙන්වයි. E, F සහ G යන හිකිුයා කළ විට එකම H නමැති ඵලය	ා සංයෝග තුනටම $\mathrm{C_5H_{10}}$ අණුක සූතුය
(iii)	ලබා දුනි. G පාරතිුමාන සමාව ඇත. E සහ F , HBr සමග පුණ	විට A හා B පිළිවෙළින් E හා F ලබා දුz වයවිකතාවය පෙන්වයි. E, F සහ G යන හිකිුයා කළ විට එකම H නමැති ඵලය	ා සංයෝග තුනටම $\mathrm{C_5H_{10}}$ අණුක සූතුය
(iii)	ලබා දුනි. G පාරතිුමාන සමාව ඇත. E සහ F , HBr සමග පුණ	විට A හා B පිළිවෙළින් E හා F ලබා දුz වයවිකතාවය පෙන්වයි. E, F සහ G යන හිකිුයා කළ විට එකම H නමැති ඵලය	ා සංයෝග තුනටම $\mathrm{C_5H_{10}}$ අණුක සූතුය
(iii)	ලබා දුනි. G පාරතිුමාන සමාව ඇත. E සහ F , HBr සමග පුණ	විට A හා B පිළිවෙළින් E හා F ලබා දුz වයවිකතාවය පෙන්වයි. E, F සහ G යන හිකිුයා කළ විට එකම H නමැති ඵලය	ා සංයෝග තුනටම $\mathrm{C_5H_{10}}$ අණුක සූතුය
(iii)	ලබා දුනි. G පාරතිුමාන සමාව ඇත. E සහ F , HBr සමග පුණ	විට A හා B පිළිවෙළින් E හා F ලබා දුz වයවිකතාවය පෙන්වයි. E, F සහ G යන හිකිුයා කළ විට එකම H නමැති ඵලය	ා සංයෝග තුනටම $\mathrm{C_5H_{10}}$ අණුක සූතුය
(iii)	ලබා දුනි. G පාරතිුමාන සමාව ඇත. E සහ F , HBr සමග පුස් B , C, D, E, F සහ H හි වාුුහ	විට A හා B පිළිවෙළින් E හා F ලබා දුද වයවිකතාවය පෙන්වයි. E, F සහ G යන හිකිුයා කළ විට එකම H නමැති එලය අදින්න.	ා සංශෝග තුනටම C ₅ H ₁₀ අණුක සූතුය සැදුණි.
(iii)	ලබා දුනි. G පාරතිුමාන සමාව ඇත. E සහ F , HBr සමග පුස් B , C, D, E, F සහ H හි වාුුහ	විට A හා B පිළිවෙළින් E හා F ලබා දුද වයවිකතාවය පෙන්වයි. E, F සහ G යන හිකිුයා කළ විට එකම H නමැති එලය අදින්න.	ා සංශෝග තුනටම C ₅ H ₁₀ අණුක සූතුය සැදුණි.
(iii)	ලබා දුනි. G පාරතිුමාන සමාව ඇත. E සහ F , HBr සමග පුස් B , C, D, E, F සහ H හි වාුුහ	විට A හා B පිළිවෙළින් E හා F ලබා දුද වයවිකතාවය පෙන්වයි. E, F සහ G යන හිකිුයා කළ විට එකම H නමැති එලය අදින්න.	ා සංශෝග තුනටම C ₅ H ₁₀ අණුක සූතුය සැදුණි.
(iii)	ලබා දුනි. G පාරතිුමාන සමාව ඇත. E සහ F , HBr සමග පුස් B , C, D, E, F සහ H හි වාුුහ	විට A හා B පිළිවෙළින් E හා F ලබා දුද වයවිකතාවය පෙන්වයි. E, F සහ G යන හිකිුයා කළ විට එකම H නමැති එලය අදින්න.	ා සංශෝග තුනටම C ₅ H ₁₀ අණුක සූතුය සැදුණි.

17/02-S-II(A)	- 8 -	
(iv) G හි පාරතිුමාන සමාව	ටයවිකවල වාුුහ අඳින්න,	
		(200 7 49 5)
පහත දී ඇති පුතිකිුයා අනුසු	ාම දෙක සලක න්න.	(ලකුණු 4.8 යි)
NH ₂ CH ₂ N		
CH ₂ Cl V පුතිකිුයාව	w	CHO HCN පුතිකිුයාව 3
(i) J, K සහ L හි වනුන පෘ	ගත දී ඇති කොටු තුළ අඳින්න.	
J	K	L
(ii) V සහ W පුතිකාරක ප	හත දී ඇති කොටු තුළ ලියන්ත. 	· · · · · · · · · · · · · · · · · · ·
V =	W =	
ආකලන ($\mathbf{A_{E}}$), නියුස	ලෙස අදාළ කොටුවෙහි ලියා 1,2 සහ 3 යන එක් වීලියෝෆිලික ආකලන (A _N), ඉලෙක්ටුෝෆිලික ත් වීම (E) ලෙස වර්ගීකරණය කරන්න.	
පුතිකිුිිිිිිිිි 1	පුතිකිුයාව 2 පුතිකිුයාව	D 3
		(ලකුණු 4.0 යි)

(ii) ඉහත සඳහන් කළ පුතිකිුයාවෙහි යන්තුණය ලියන්න.

(ලකුණු 1.2 යි)

සියලු ම හිමිකම් ඇවිටීම් / முழுப் பதிப்புரிமையுடையது / All Rights Reserved]

ලි ලංකා විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුවෙන් මෙන්දියා මෙන්දියා ලෙසාල් ජාතමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව இහங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பரீட்சைத் திணைக்களும் இலங்கைப் பரீட்சைத் திணைக்களும் இலங்கைப் பரீட்சைத் திணைக்களும் Department of Examinations, Sri Lanka Department o **இலங்கைப்** Sr**i Linki கூறார்களும் இலங்கை**ப் பரீட்சைத் திணைக்களும் இலங்கைப் பரீட்சைத் திணைக்களும் இலங்கைப் **பரீட்சைத்** திணைக்களும் இலங்கைப் பரீட்சைத் திணைக்களும்

අධායන පොදු සහනික පනු (උසස් පෙළ) විභාගය, 2017 අගෝස්කු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2017 ஒகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2017

රසායන විදුනව II இரசாயனவியல் II Chemistry II

* සාර්වනු වායු නියනය $R=8.314~{
m J~K^{-1}~mol^{-1}}$ * ඇවගාඩ්රෝ නියනය $N_A=6.022~{
m \times}~10^{23}~{
m mol}^{-1}$

B කොටස — රචනා

පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 15** බැගින් ලැබේ.)

5. (a) NaHCO $_3$ (s), $100~^{\circ}$ C ව ඉහළ උෂ්ණත්වයකට රත් කළ විට පහත පුතිකිුයාව සිදු වේ.

2 NaHCO₃(s)
$$\rightleftharpoons$$
 Na₂CO₃(s) + CO₂(g) + H₂O(g)

 $m NaHCO_3(s)$ නියැදියක් පරිමාව $5.00\,
m dm^3$ වන රේචනය කළ සංවෘත දෘඪ භාජනයක් තුළ තබා $328\,
m ^{\circ}C$ ට රක් කරන ලදී. සමතුලිතතාවයට එළඹුණු පසු $m NaHCO_3(s)$ කුඩා පුමාණයක් තවදුරටත් භාජනයෙහි ඉතිරීව තිබුණි. භාජනයේ පීඩනය $1.0 \times 10^6\,
m Pa$ බව සොයා ගන්නා ලදී. භාජනයේ ඉතිරීව ඇති ඝන දුවායන්හි පරිමාව නොසලකා හැරිය හැකි බව උපකල්පනය කරන්න. $328\,
m ^{\circ}C$ දී $m RT=5000\,J\,mol^{-1}$ වේ.

- (i) $328~^{\circ}\text{C}$ දී සමතුලිතතාවයට එළඹුණු විට භාජනයේ ඇති $H_{\gamma}\text{O}(g)$ මවුල පුමාණය ගණනය කරන්න.
- (ii) $328~^{\circ}\mathrm{C}$ දී ඉහත සමතුලිතතාවය සඳහා K_{p} ගණනය කර **එනයින්** K_{c} ගණනය කරන්න.
- (iii) ඉහත විස්තර කරන ලද භාජනයට $328\,^{\circ}$ C දී $CO_2(g)$ අමතර පුමාණයක් එකතු කරන ලදී. සමතුලිතතාවයට නැවත එළඹුණු විට $CO_2(g)$ හි ආංශික පීඩනය $H_2O(g)$ හි ආංශික පීඩනය මෙන් සිව් (4) ගුණයක් විය. මෙම තත්ත්වය යටතේ දී $CO_2(g)$ හා $H_2O(g)$ හි ආංශික පීඩන ගණනය කරන්න.

(ලකුණු 7.5 යි.)

- (b) $2 \text{ NaHCO}_3(s) \to \text{Na}_2\text{CO}_3(s) + \text{H}_2\text{O}(l) + \text{CO}_2(g)$ පුතිකිුයාවේ සම්මත එන්කැල්පි විපර්යාසය (ΔH°) නිර්ණය කිරීම සඳහා පියවර දෙකකින් (l හා ll) සමන්විත පහත සඳහන් පරීක්ෂණය කාමර උෂ්ණත්වයේ දී සිදු කරන ලදී.
 - පියවර I: බීකරයක ඇති 1.0 mol dm^{-3} HCl අම්ල දාවණ 100.00 cm^3 ට $NaHCO_3(s)$ 0.08 mol එකතු කරන ලදී. උෂ්ණත්වයෙහි උපරිම **පහත වැටීම** $5.0 \text{ }^{\circ}\text{C}$ බව සොයා ගන්නා ලදී.

[සිදු වන පුතිකියාව: NaHCO $_3$ (s) + HCl(aq) \longrightarrow Na+(aq) + Cl-(aq) + H $_2$ O(l) + CO $_2$ (g)]

පියවර II : බීකරයක ඇති 1.0 mol dm^{-3} HCl අම්ල දාවණ 100.00 cm^3 ට $Na_2CO_3(s)$ 0.04 mol එකතු කරන ලදී. උෂ්ණත්වයෙහි උපරිම **ඉහළ යාම** 3.5 $^{\circ}$ C බව සොයා ගන්නා ලදී.

[සිදු වන පුතිකියාව: $Na_2CO_3(s) + 2HCl(aq) \longrightarrow 2Na^+(aq) + 2Cl^-(aq) + H_2O(l) + CO_2(g)$]

m HCl අම්ල දාවණයෙහි නියත පීඩනයේ දී විශිෂ්ට තාප ධාරිතාව හා ඝනත්වය පිළිවෙළින් $4.0~\rm J~g^{-1}~K^{-1}$ හා $1.0~\rm g~cm^{-3}$ වේ. ඉහත පියවර දෙකෙහි දී ඝනයන් එකතු කළ පසු දාවණයන්හි පරිමා සහ ඝනත්ව වෙනස නොසැලකිය හැකි බව උපකල්පනය කරන්න.

- (i) ඉහත ${f I}$ හා ${f II}$ පියවරවල දී ඇති පුතිකිුයාවන්හි එන්තැල්පි විපර්යාසයන් (${f kJ}$ ${f mol}^{-1}$ වලින්) ගණනය කරන්න.
- (ii) ඉහත (i) හි ලබා ගත් අගයයන් හා **තාප රසායනික චතුයක්** භාවිතයෙන්,

2 NaHCO $_3$ (s) → Na $_2$ CO $_3$ (s) + H $_2$ O(l) + CO $_2$ (g) පුතිකිුයාවේ ΔH^o ගණනය කරන්න.

- (iii) පුතිකිුියාවක තාප විපර්යාසය, කුමන තත්ත්වය යටතේ දී එහි එන්තැල්පි වෙනසට සමාන වේ දැයි සඳහන් කරන්න.
- (iv) ඉහත පරීක්ෂණාත්මක කියාපිළිවෙළෙහි දෝෂ පුභව දෙකක් හඳුනාගන්න.

(ලකුණු 7.5 යි.)

- 6. (a) (i) ප්‍රතික්‍රියකයන්හි සාන්දුණ වැඩි කළ විට ප්‍රතික්‍රියාවක ශීස්‍රතාව වැඩි වන්නේ මන් දැයි පැහැදිලි කරන්න.
 - (ii) සාමානාශයන් පුතිකිුයාවක ශීඝුතාව උෂ්ණත්වය වැඩි වීමත් සමග වැඩි වන්නේ මන් දැයි පැහැදිලි කිරීමට හේතු **දෙකක්** දක්වන්න.
 - (iii) මූලික පුතිකියාවක පෙළ හා අණුකතාවය අතර සම්බන්ධය කුමක් ද?
 - (iv) NO + $O_2 o NO_2$ + O යන මූලික පුතිකිුිිියාවෙහි සකිුිය සංකීර්ණයෙහි වනුහයෙහි දළ සටහනක් අඳින්න. සැදෙමින් පවතින බන්ධන '**සැදෙන**' හා කැඩෙමින් පවතින බන්ධන '**කැඩෙන**' ලෙස නම් කරන්න.
 - (v) ශීසුතා නියතය k, හා ස්ටොයිකියෝමිතික සංගුණක x,y,z වන $x\mathbf{A}+y\mathbf{B} \longrightarrow z\mathbf{C}$ යන මූලික පුතිකිුයාව සඳහා ශීසුතා පුකාශනය ලියන්න.

(ලකුණු 5.0 යි.)

(b) $x\mathbf{A} + y\mathbf{B} \longrightarrow z\mathbf{C}$ යන පුතිකිුයාව කාබනික දාවකයකින් හා ජලයෙන් සමන්විත ද්විකලාපීය පද්ධතියක් තුළ අධායයනය කරන ලදී. \mathbf{A} සංයෝගය කලාප දෙකෙහිම දාවා වන අතර \mathbf{B} සහ \mathbf{C} සංයෝග ජලීය කලාපයෙහි පමණක් දාවා වේ.

කලාප අතර
$${f A}$$
 හි වාසාප්තිය සඳහා විභාග සංගුණකය, ${f K}_{
m D}=rac{{f A}_{
m (org)}}{{f A}_{
m (aq)}}=4.0$ වේ.

 ${f A}$ සංයෝගය ද්විකලාපීය පද්ධතියට එකතු කර සමතුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. ජලීය කලාපයට ${f B}$ සංයෝගය නික්ෂේපණය (injecting) කිරීමෙන් පුතිකිුයාව ආරම්භ කරන ලදී. පද්ධතියෙහි උෂ්ණත්වය නියත අගයක පවත්වා ගන්නා ලදී. සිදු කරන ලද පරීක්ෂණවල පුතිඵල පහත දක්වා ඇත.

පරීක්ෂණ අංකය	කාබනික කලාපයෙහි පරිමාව (cm³)	ජලීය කලාපයෙහි පරිමාව (cm³)	පද්ධතියට එකතු කළ A පුමාණය (mol)	තික්ෂේපිත B පුමාණය (mol)	ආරම්භක ශීඝුතාව, $\left(rac{-oldsymbol{\Delta}C_{f A}}{oldsymbol{\Delta}t} ight)$
					(mol dm ⁻³ s ⁻¹)
I	_	100.00	1.00×10^{-2}	1.00×10^{-2}	1.20×10^{-5}
II	100.00	100.00	1.25×10^{-1}	1.00×10^{-2}	7.50×10^{-5}
III	50.00	50.00	6.25×10^{-2}	1.00×10^{-2}	1.50×10^{-3}

සටහන: I වන පරීක්ෂණය කාබනික කලාපය නොමැතිව සිදු කරන ලදී.

- (i) ඉහත I, II හා III පරීක්ෂණවල ජලීය කලාපයෙහි ආරම්භක A සාන්දුණය ගණනය කරන්න.
- (ii) A අනුබද්ධයෙන් පුතිකියාවෙහි පෙළ සොයන්න.
- (iii) B අනුබද්ධයෙන් පුතිකියාවෙහි පෙළ සොයන්න.
- (iv) පුතිකියාවෙහි ශීඝුතා නියතය ගණනය කරන්න.
- (v) ඉහත III පරීක්ෂණයෙහි A එකතු කර සමතුලිතතාවයට එළඹීමට ඉඩ හැරීමෙන් පසු කාබනික කලාපයෙන් $10.00~{
 m cm}^3$ පරිමාවක් ඉවත් කළේ නම්, පුතිකිුයාවේ ආරම්භක ශීඝුතාව ගැන කුමක් පුකාශ කළ හැකි ද? ඔබගේ පිළිතුරට හේතුව/හේතු දක්වන්න.

(ලකුණු 5.0 යි.)

(c) \mathbf{X} හා \mathbf{Y} දුවයන්හි මිශුණයක් පරිපූර්ණ ලෙස හැසිරේ. නියත උෂ්ණත්වයක ඇති දෘඪ සංවෘත භාජනයක් තුළ වාෂ්ප කලාපය සමග සමතුලිකව ඇති දුව කලාපයෙහි \mathbf{X} මවුල 1.2 හා \mathbf{Y} මවුල 2.8 ඇති විට, මුළු වාෂ්ප පීඩනය 3.4×10^4 Pa වේ. මෙම උෂ්ණත්වයේ දීම වාෂ්ප කලාපය සමග සමතුලිතව ඇති දුව කලාපයෙහි සංයුතිය \mathbf{X} මවුල 1.2 හා \mathbf{Y} මවුල 4.8 වන විට, මුළු වාෂ්ප පීඩනය 3.6×10^4 Pa වේ. මෙම උෂ්ණත්වයේ දී \mathbf{X} හා \mathbf{Y} හි සංතෘප්ත වාෂ්ප පීඩන ගණනය කරන්න.

(ලකුණු 5.0 යි.)

7. (a) පහත සඳහන් පරිවර්තනය පියවර **පහකට (5) නොවැඩි පියවර සංඛනාවකින්** ඔබ සිදු කරන්නේ කෙසේ දැයි පෙන්වන්න.

$$\bigcirc \longrightarrow \bigcirc_{NO_2}^{CO_2 I}$$

(ලකුණු 3.0 යි.)

(b) ${f A}$ සහ ${f B}$ සංයෝග දෙක රසායනාගාරයේ දී පිළියෙල කිරීමට අවශාව ඇත.

- (i) අවශා පරිදි X සහ Y යොදා ගනිමින් A සහ B එකිනෙකක් පියවර **පහකට** (5) **නොවැඩි පියවර සංඛනවකින්** ඔබ පිළියෙල කරන්නේ කෙසේ දැයි පෙන්වන්න.
- (ii) ඉහත දී ඇති A සහ B භාවිත කර පියවර **පහකට** (5) **නොවැඩ් පියවර සංඛනාවකින් C** සංයෝගය ඔබ පිළියෙල කරන්නේ කෙසේ දැයි පෙන්වන්න.

(ලකුණු 9.0 යි.)

(c) ඇසටයිල් ක්ලෝරයිඩ් හා NaOH අතර පුතිකිුිිියාවේ යන්තුණය පිළිබඳ ඔබගේ දැනුම භාවිත කරමින්

සහ NaOH අතර පුතිකිුයාව සඳහා යන්තුණයක් යෝජනා කරන්න.

(ලකුණු 3.0 යි.)

C කොටස — රචනා

පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 15** බැගින් ලැබේ.)

8. (a) Y දුාවණයෙහි කැටායන **තුනක්** අඩංගු වේ.

🙆 මෙම කැටායන හඳුනාගැනීම සඳහා පහත පරීක්ෂා සිදු කරන ලදී.

	පරීක් ෂාව	නි රික්ෂණ ය
①	Y හි කුඩා කොටසකට තනුක HCl එක් කරන ලදී.	සුදු පැහැති අවක්ෂේපයක් ($\mathbf{P_i}$)
0	$\mathbf{P_1}$ පෙරා වෙන් කර දාවණය තුළින් $\mathrm{H_2S}$ බුබුලනය කරන ලදී.	කළු පැහැති අවක්ෂේපයක් ($\mathbf{P_2}$)
3	${f P_2}$ පෙරා වෙන් කරන ලදී. ${f H_2S}$ ඉවත් කිරීම සඳහා පෙරනය නටවා, සිසිල් කර, ${f NH_4OH/NH_4Cl}$ එක් කරන ලදී.	අවක්ෂේපයක් නොමැත.
4	දුාවණය තුළින් $\mathrm{H_2S}$ බුබුලනය කරන ලදී.	කළු පැහැති අවක්ෂේපයක් (${f P_3}$)

අවක්ෂේපය	පරීක්ෂාච	නිරීක්ෂණය
P ₁	$I. {f P}_I$ ට ජලය එක් කර මිශුණය නටවන ලදී.	P ₁ හි කොටසක් දුවණය වුණි.
	II. ඉහත I හි මිශුණය උණුසුම්ව තිබිය දී පෙරා, පෙරනය $(\mathbf{F_1})$ හා ශේෂය $(\mathbf{R_1})$ මත පහත පරීක්ෂා සිදු කරන ලදී.	
	පෙරනය (F ₁)	
	$ullet$ උණුසුම් $oldsymbol{F}_1$ ට තනුක $oldsymbol{H}_2 \mathrm{SO}_4$ එක් කරන ලදී. ගේෂය ($oldsymbol{R}_i$)	සුදු අවක්ෂේපයක්
	• උණුසුම් ජලයෙන් \mathbf{R}_1 හොඳින් සෝදා කනුක $\mathrm{NH_4OH}$ එක් කරන ලදී.	R 1 දුවණය වුණි.
	• ඉන්පසු, KI දුාවණයක් එක් කරන ලදී.	තද කහ පැහැති අවක්ෂේපයක්
P ₂	උණුසුම් තනුක HNO_3 හි \mathbf{P}_2 දුවණය කර පොටෑසියම් කෝමේට් දුාවණයක් එක් කරන ලදී.	කහ පැහැති අවක්ලෂ්පයක්
P ₃	I . උණුසුම් සාන්දු $\mathrm{HNO_3}$ හි $\mathbf{P_3}$ දුවණය කරන ලදී.	රෝස පැහැති දුාවණයක් (1 දුාවණය)
	II. ඉහත I දුාවණයට පහත දෑ එකතු කරන ලදී. • සාන්දු HCl	නිල් පැහැති දාවණයක් (2 දාවණය)
	• තනුක NH ₄ OH	කහ-දුඹුරු පැහැති දුංවණයක් (3 දුාවණය)

- (i) කැටායන **තුන** හඳුනාගන්න. (හේතු අවශා **නැත**.)
- (ii) I. $oldsymbol{P_1}, oldsymbol{P_2}$ හා $oldsymbol{P_3}$ අවක්ෂේප
 - II. 1,2 හා 3 දාවණවල වර්ණයන්ට හේතුවන විශේෂයන් හඳුනාගන්න.

(**සැ.යු:** රසායනික සුතු **පමණක්** ලියන්න.)

(iii) ඉහත 🛕 🍳 හි අවක්ෂේප වන කැටායනය/කැටායන ආම්ලික මාධායේ දී අවක්ෂේප නොවන්නේ මන් දැයි **කෙටියෙන්** පැහැදිලි කරන්න.

(ලකුණු 7.5 යි.)

(b) සන සාම්පලයක $({
m NH_4})_2{
m SO_4}$, ${
m NH_4NO_3}$ සහ පුතිකිුයාශීලි නොවන දුවා අඩංගු බව සොයා ගන්නා ලදී. මෙම සාම්පලයේ ඇමෝනියම් ලවණ පුමාණය නිර්ණය කිරීම සඳහා පහත දක්වා ඇති කිුයාපිළිවෙළ යොදා ගන්නා ලදී. සන සාම්පලයෙන් $1.00\,{
m g}$ කොටසක් ජලයේ දුවණය කර $250.00\,{
m cm}^3$ දක්වා පරිමාමිතික ප්ලාස්කුවක් තුළ තනුක කරන ලදී. (මින් පසු ${
m S}$ දාවණය ලෙස හැඳින්වේ.)

තුියාපිළිවෙළ 1

S දාවණයෙන් $50.00~{\rm cm^3}$ කොටසක් පුබල ක්ෂාරයක (NaOH) වැඩිපුර පුමාණයක් සමග පිරියම් කර නිදහස් වූ වා**යුව** $0.10~{\rm mol~dm^{-3}~HCl~30.00~cm^3}$ තුළට යවන ලදී. ඉතිරිව ඇති HCl උදාසීන කිරීමට (ෆිනොල්ප්තලීන් දර්ශකය ලෙස යොදා ගනිමින්) අවශා වූ $0.10~{\rm mol~dm^{-3}~NaOH}$ පරිමාව $10.20~{\rm cm^3}$ විය.

කුියාපිළිවෙළ 2

S දාවණයෙන් $25.00\,\mathrm{cm}^3$ කොටසකට Al කුඩු ද ඉන්පසු පුබල ක්ෂාරයක වැඩිපුර පුමාණයක් ද එකතු කර මිශුණය රත් කරන ලදී. නිදහස් වූ **වායුව** $0.10\,\mathrm{mol}~\mathrm{dm}^{-3}~\mathrm{HCl}~30.00\,\mathrm{cm}^3$ තුළට යවන ලදී. ඉතිරිව ඇති HCl උදාසීන කිරීමට (ෆිනොල්ප්කලීන් දර්ශකය ලෙස යොදා ගනිමින්) අවශා වූ $0.10\,\mathrm{mol}~\mathrm{dm}^{-3}~\mathrm{NaOH}$ පරිමාව $15.00\,\mathrm{cm}^3$ විය.

(සැ.යු: ලිට්මස් කඩදාසි භාවිත කරමින් 1 සහ 2 කිුයාපිළිවෙළහි වායු පිටවීම සම්පූර්ණ දැයි පරීක්ෂා කරන ලදී.)

- (i) කිුයාපිළිවෙළ 1 හි නිදහස් වූ **වායුව** හඳුනාගන්න.
- (ii) කියාපිළිවෙළ 2 හි නිදහස් වූ **වායුව** හඳුනාගන්න.
- (iii) කියාපිළිවෙළ 1 සහ 2 හි දී සිදු වන පුතිකියා සඳහා තුලිත රසායනික සමීකරණ ලියන්න.
- (iv) ඝන සාම්පලයේ ඇති (NH $_4$) $_2$ SO $_4$ සහ NH $_4$ NO $_3$ යන එක් එක් සංයෝගයෙහි ස්කන්ධ පුතිශනය ගණනය කරන්න. (H = 1, N = 14, O = 16, S = 32)

(ලකුණු 7*5* යි.)

- 9. (a) පහත දක්වා ඇති කාර්මික කිුයාවලි සලකන්න.
 - I. විරංජන කුඩු නිෂ්පාදනය
 - II. කැල්සියම් කාබයිඩ් නිෂ්පාදනය
 - III. යූරියා නිෂ්පාදනය
 - IV. සල්ෆියුරික් අම්ල නිෂ්පාදනය (ස්පර්ශ කුමය)
 - (i) එක් එක් කිුයාවලියෙහි දී භාවිත කරන ආරම්භක දුවා සඳහන් කරන්න.
 - (ii) අවශා තැන්වල දී සුදුසු තත්ත්ව සඳහන් කරමින් එක් එක් කියාවලියේ සිදු වන පුතිකියා සඳහා තුලිත රසායනික සමීකරණ ලියන්න.
 - (iii) පහත එක් එක් දෑ සඳහා පුයෝජන **දෙක** බැගින් සඳහන් කරන්න:

විරංජන කුඩු, කැල්සියම් කාබයිඩ්, යූරියා හා සල්ෆියුරික් අම්ලය

(ලකුණු 7.5 යි.)

- (b) ඕසෝන් වියන හායනය (OLD), ගෝලීය උණුසුම (GW) හා අම්ල වැසි (AR) වර්තමානයේ දී අප මුහුණ දෙන පුධාන පාරිසරික ගැටලු වේ. පහත දැක්වෙන පුශ්න පරිසරය සහ ඉහත දැක්වෙන ගැටලු හා සම්බන්ධ ය.
 - (i) කාබන් සහ නයිටුජන් චකු පරිසරයේ කියාක්මක වන වැදගත් රසායනික චකු දෙකක් වේ.
 - I. කාබන් චකුය සම්බන්ධයෙන් පහත එක් එක් දැහි කාබන් පවතින පුධාන ආකාර **එක** බැගින් සඳහන් කරන්න:
 - වායුගෝලයේ, ශාකවල, ජලයෙහි, පෘථිවි කබොලේ.
 - II. නයිටුජන් චකුයෙහි වායුගෝලයේ ඇති N_2 වායුව ඉවත් වීම සහ පුතිපූර්ණ වීම සිදු වන්නේ කෙසේ දැයි කෙටියෙන් සඳහන් කරන්න.
 - III. කාබන් චකුයෙහි ක්ෂුදු ජීවීන් සහභාගි වන ආකාර **දෙකක්** සඳහන් කරන්න.
 - (ii) අම්ල වැසි ඇති වීමට දායක වන වායුගෝලයේ පවතින නයිටුජන් අඩංගු පුධාන සංයෝග **දෙක** හඳුනාගන්න. තුලිත රසායනික සමීකරණ ආධාරයෙන් මෙම සංයෝග වැසි ජලය ආම්ලික කරන්නේ කෙසේ දැයි පෙන්වන්න.
 - (iii) ඉහත සඳහන් **එක් එක්** පාරිසරික ගැටලුවට (OLD, GW, AR) දායක වන කාර්මික කිුියාවලි **දෙක බැගින්** හඳුනාගන්න. මෙම **එක් එක්** කාර්මික කිුිිියාවලිය මගින් වායුගෝලයට මුදාහැරෙන **එක්** රසායනික සංයෝගයක් බැගින් හඳුනාගන්න.
 - (iv) ජලයට සහ පසට නයිටුජන් සංයෝග එකතු වීමට සැලකිය යුතු අන්දමින් දායක වන පුධාන කාර්මික කිුිිියාවලිය හඳුනාගන්න. මෙම සංයෝග ජලයට හා පසට ඇතුල් වන මාර්ග සම්බන්ධව අදහස් දක්වන්න.
 - (v) මීතොටමුල්ල සිද්ධිය වැනි අකුමවත්ව නාගරික ඝන අපදුවා බැහැර කිරීම ඉහත සඳහන් පාරිසරික පුශ්න තුනෙන් එකකට සැලකිය යුතු දායකත්වයක් දක්වයි. එම පාරිසරික පුශ්නය හඳුනාගෙන අකුමවත් ලෙස නාගරික ඝන අපදුවා බැහැර කිරීම අදාළ පාරිසරික පුශ්නයට දායක වන්නේ කෙසේ දැයි කෙටියෙන් සඳහන් කරන්න.

(ලකුණු 7.5 යි.)

10. (a) (i) $\mathrm{TiCl_3}$ යනු ලා දම් පැහැති ඝනයකි. ජලයෙහි දී \mathbf{A} හා \mathbf{B} නම් $\mathrm{TiCl_3}$ හි සජලනය වූ විශේෂ දෙකක් සෑදෙයි. \mathbf{A} සහ \mathbf{B} යනු $\mathrm{H_2O}$ හා Cl^- ලිගන අඩංගු අෂ්ටතලීය ජාාමිතියක් සහිත ටයිටේනියම්හි සංගත සංයෝග වේ. \mathbf{A} හා \mathbf{B} වෙන් කර ඒවායෙහි පරමාණුක සංයුති නිර්ණය කරන ලදී. පහත සඳහන් කි්යාපිළිවෙළ භාවිත කර සංයෝග තවදුරටත් විශ්ලේෂණය කරන ලදී.

A හි විශ්ලේෂණය

 $\bf A$ හි $0.20~{
m mol~dm^{-3}}$ දුංවණයකින් $50.00~{
m cm^3}$ ට වැඩිපුර ${
m AgNO_3(aq)}$ එක් කළ විට තනුක ඇමෝනියා හි දුංවා සුදු පැහැති අවක්ෂේපයක් ලැබුණි. අවක්ෂේපය සෝදා, උදුනක වේලූ විට (නියත ස්කන්ධයක් ලැබෙන තුරු) ස්කන්ධය $4.305~{
m g}$ විය.

B හි චිශ්ලේෂණය

 ${f B}$ හි $0.30~{
m mol~dm^{-3}}$ දාවණයකින් $50.00~{
m cm^3}$ ට වැඩිපුර ${
m AgNO_3(aq)}$ එක් කළ විට ${f A}$ හි විශ්ලේෂණයේ දී ලැබුණු සුදු අවක්ෂේපය ම ලැබුණි. අවක්ෂේපය සෝදා, උදුනක වේලූ විට (නියත ස්කන්ධයක් ලැබෙන තුරු) ලැබුණු ස්කන්ධය ද $4.305~{
m g}$ විය.

(H = 1, O = 16, Cl = 35.5, Ti = 48, Ag = 108)

- $I. \ \mathbf{A}$ හා \mathbf{B} හි දී ටයිටේනියම්හි ඉලෙක්ටෝනික විනාහසය ලියන්න.
- II. A හා B හි වනුහ අපෝහනය කරන්න.
- III. A හා B හි IUPAC නම් දෙන්න.

(ii) X,Y හා Z යනු M(II) ලෝහ අයනයෙහි සංගත සංයෝග වේ. ඒවාට තලීය සමවතුරසුාකාර ජාාමිතියක් ඇත. X උදාසීන සංයෝගයකි. Y හි ජලීය දුාවණයකට $BaCl_2(aq)$ එක් කළ විට තනුක අම්ලවල අදුාවා සුදු පැහැති අවක්ෂේපයක් ලැබේ. ජලීය දුාවණයේ දී Z අයන තුනක් ලබා දෙයි.

පහත දී ඇති ලැයිස්තුවෙන් සුදුසු විශේෂ තෝරා ගතිමින් \mathbf{X},\mathbf{Y} හා \mathbf{Z} හි වුහුහ සූතු ලියන්න.

$$K^+$$
, NH_3 , CN^- , SO_4^{2-}

(ලකුණු 7.5 යි.)

(b)

ඉහත රූප සටහනේ පෙන්වා ඇති පරිදි විදාුුුන් රසායනික කෝෂයක් සාදා ඇත. පහත දත්ත සපයා ඇත.

Ag(s), $AgCl(s) | Cl^{-}(aq)$

 $E^{\circ} = 0.22 V$

 $Hg(l) \mid Hg_{s}Cl_{s}(s) \mid Cl^{-}(aq)$

 $E^{o} = 0.27 V$

- (i) ඉහත කෝෂයෙහි ඔක්සිහරණ අර්ධ පුතිකිුිිියාව ලියන්න.
- (ii) ඉහත කෝෂයෙහි ඔක්සිකරණ අර්ධ පුතිකිුියාව ලියන්න.
- (iii) කෝෂ පුතිකිුයාව ගොඩනගන්න.
- $({
 m iv})$ දී ඇති ${
 m E}^{
 m o}$ අගයයන් භාවිතයෙන් කෝෂයෙහි විදාුුත් ගාමක බලය ගණනය කරන්න.
- (v) ඉහත විදාූත් රසායනික කෝෂයේ සම්මත ලිඛිත නිරූපණය දෙන්න.
- (vi) ඉහත විදාුත් රසායනික කෝෂයෙහි විදාුත් ගාමක බලය ක්ලෝරයිඩ අයන සාන්දුණය මත රඳාපවතී ද? ඔබගේ පිළිතුර සඳහා හේතුව/හේතු දක්වන්න.
- (vii) කෝෂයෙන් $0.10 \, A$ වූ ධාරාවක් විනාඩි $60 \, m$ කාලයක් තුළ දී ලබා ගත් විට Ag(s) + AgCl(s) ස්කන්ධයෙහි සිදු වූ වෙනස ගණනය කරන්න.
- (viii) ඉහත (vii) හි ධාරාව ලබා ගත් පසු දුාවණයෙහි ක්ලෝරයිඩ අයන සාන්දුණය කුමක් විය හැකි ද?

(ෆැරඩේ නියකය, $F = 96,500 \,\mathrm{C \ mol^{-1}}$, Cl = 35.5, Ag = 108)

(ලකුණු 7.5 යි.)

* * *

More Past Papers at

tamilguru.lk

ආවර්තිතා වගුව

	1																	2
1	H		7															He
	3	4											5	6	7	8	9	10
2	Li	Be	1										В	C	N	O	F	Ne
	11	12	İ										13	14	15	16	17	18
3	Na	Mg	_										Al	Si	P	S	Cl	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113					
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut					

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr