

Week 1- Functions

:≡ Tags

Odd and Even Functions

Even	f(x)=f(-x)
Odd	f(-x)=-f(x)

Equations

Point-Slope Equation

$$y{-}y_1=m(x{-}x_1)$$

Slope-Intercept Form

$$y = mx + b$$

Standard Form

$$ax + by = c$$

Function Types

Algebraic

Addition, subtraction, multiplication, division, rational powers, roots

Rational

$$f(x) = rac{p(x)}{q(x)}$$

Root

$$f(x)=x^{rac{1}{n}}$$
 where $n>1$

Transcendental

$$f(x) = \sin(x)$$

$$f(x) = \cos(x)$$

$$f(x) = \tan(x)$$

$$f(x) = \cot(x)$$

$$f(x) = \sec(x)$$

$$f(x) = b^x$$

$$f(x) = \log_a(x)$$

Piecewise

$$f(x) = \begin{cases} -x, & x < 0 \\ x, & x \ge 0 \end{cases}.$$

Periodic

$$f(x) = A\sin(B(x-\alpha) + C)$$

lpha - Horizontal/phase shift

A - Vertical shift of $\left|A\right|$

B - Changes the period to $\frac{2\pi}{|B|}$

 ${\cal C}$ - Vertical Shift

One-to-One

$$f(x_1)
eq f(x_2)$$
 when $x_1
eq x_2$

Only one-to-one if it passes horizontal line test

Restricting Domains

A function that is not one-to-one doesn't have an inverse across the whole domain.

However, by restricting domains we can make the function one-to-one

Function	Domain	Range
$\sin^{-1}(x)$	$-1 \le x \le 1$	$-rac{\pi}{2} \leq y \leq rac{\pi}{2}$
$\cos^{-1}(x)$	$-1 \le x \le 1$	$0 \leq y \leq \pi$
$\cos^{-1}(x)$	$-\infty \le x \le \infty$	$-rac{\pi}{2} < y < rac{\pi}{2}$
$\cot^{-1}(x)$	$-\infty \le x \le \infty$	$0 < y < \pi$
$\csc^{-1}(x)$	$x \geq 1$	$-\pi \leq y \leq \pi$ and $y eq 0$
$\sec^{-1}(x)$	$x \geq 1$	$0 \leq y \leq \pi$ and $y eq \pi/2$

$$\sin(\sin^{-1}(y))=y$$
 if $-1\leq y\leq 1$ $\sin^{-1}(\sin(x))=x$ if $-\pi\leq x\leq \pi$.

Exponential

$$f(x) = b^x$$

 $f(x)=e^x$ is the only exponential to have the gradient at x=0 equal to 1

Logarithmic

$$f(x) = \log_a(x)$$
 iff $b^y = x$

Change of base formulae

$$a^x = b^{x \log_b(a)}$$

$$log_a(x) = rac{\log_b(x)}{\log_b(a)}$$

Hyperbolic

Function	Equation
$\cosh(x)$	$\frac{e^x + e^{-x}}{2}$
$\sinh(x)$	$\frac{e^x - e^{-x}}{2}$
$\tanh(x)$	$\frac{\sinh(x)}{\cosh(x)}$

Week 1- Functions 4

Identities

5

1.
$$\cosh^2(x) - \sinh^2(x) = 1$$

2.
$$1 - \tanh^2(x) = \frac{1}{\cosh^2(x)}$$

3.
$$\sinh(x \pm y) = \sinh(x)\cosh(y) \pm \cosh(x)\sinh(y)$$

4.
$$\cosh(x \pm y) = \cosh(x) \cosh(y) \pm \sinh(x) \sinh(y)$$

Inverse Hyperbolics

$\sinh^{-1}(x)$	$\ln(x+\sqrt{x^2+1})$
$\cosh^{-1}(x)$	$\ln(x+\sqrt{x^2-1})$
$\tanh^{-1}(x)$	$rac{1}{2}\ln(rac{1+x}{1-x})$

$$\sinh^{-1}(x) = \ln(x+\sqrt{x^2+1})$$