Downloading the data

```
In [1]:
         import pandas as pd
          import numpy as np
          import seaborn as sns
          import matplotlib.pyplot as plt
          import plotly.express as px
          import matplotlib
          import warnings
          warnings.filterwarnings("ignore")
          matplotlib.rcParams['figure.figsize'] = 10,10
          nyc_df = pd.read_csv('nyc_taxi_trip_duration.csv')
In [2]:
          nyc_df
Out[2]:
                          id vendor_id pickup_datetime dropoff_datetime passenger_count pickup_longitude
                                              2016-02-29
                                                               2016-02-29
                                     2
                                                                                         1
               0 id1080784
                                                                                                   -73.953918
                                                16:40:21
                                                                  16:47:01
                                             2016-03-11
                                                               2016-03-11
               1 id0889885
                                     1
                                                                                         2
                                                                                                   -73.988312
                                                23:35:37
                                                                  23:53:57
                                             2016-02-21
                                                               2016-02-21
                                     2
               2 id0857912
                                                                                         2
                                                                                                   -73.997314
                                                17:59:33
                                                                  18:26:48
                                             2016-01-05
                                                               2016-01-05
               3 id3744273
                                     2
                                                                                                   -73.961670
                                                09:44:31
                                                                  10:03:32
                                             2016-02-17
                                                               2016-02-17
                 id0232939
                                     1
                                                                                                   -74.017120
                                                06:42:23
                                                                  06:56:31
                                              2016-05-21
                                                               2016-05-21
          729317 id3905982
                                     2
                                                                                         2
                                                                                                   -73.965919
                                                13:29:38
                                                                  13:34:34
                                             2016-02-22
                                                               2016-02-22
          729318 id0102861
                                     1
                                                                                                   -73.996666
                                                00:43:11
                                                                  00:48:26
                                              2016-04-15
                                                               2016-04-15
                                     1
          729319 id0439699
                                                                                         1
                                                                                                   -73.997849
                                                18:56:48
                                                                  19:08:01
                                             2016-06-19
                                                               2016-06-19
          729320 id2078912
                                                                                                   -74.006706
                                                09:50:47
                                                                  09:58:14
                                              2016-01-01
                                                               2016-01-01
          729321 id1053441
                                     2
                                                                                                   -74.003342
                                                17:24:16
                                                                  17:44:40
         729322 rows × 11 columns
         nyc_df.info()
In [3]:
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 729322 entries, 0 to 729321
Data columns (total 11 columns):
    Column
                        Non-Null Count
                                        Dtype
    _____
                        -----
 0
                        729322 non-null object
    id
 1
    vendor id
                        729322 non-null int64
 2
    pickup_datetime
                        729322 non-null object
 3
    dropoff_datetime
                        729322 non-null object
 4
                        729322 non-null int64
    passenger count
 5
    pickup_longitude
                        729322 non-null float64
 6
    pickup_latitude
                        729322 non-null float64
 7
                        729322 non-null float64
    dropoff_longitude
    dropoff latitude
                        729322 non-null float64
    store and fwd flag 729322 non-null
                                        object
 10 trip duration
                        729322 non-null int64
dtypes: float64(4), int64(3), object(4)
memory usage: 61.2+ MB
```

In [4]: nyc_df.describe()

Out[4]:	vendor_id		passenger_count	pickup_longitude	pickup_latitude	$drop off_longitude$	dropoff
	count	729322.000000	729322.000000	729322.000000	729322.000000	729322.000000	72932
	mean	1.535403	1.662055	-73.973513	40.750919	-73.973422	4
	std	0.498745	1.312446	0.069754	0.033594	0.069588	
	min	1.000000	0.000000	-121.933342	34.712234	-121.933304	3
	25%	1.000000	1.000000	-73.991859	40.737335	-73.991318	4
	50%	2.000000	1.000000	-73.981758	40.754070	-73.979759	4
	75%	2.000000	2.000000	-73.967361	40.768314	-73.963036	4
	max	2.000000	9.000000	-65.897385	51.881084	-65.897385	4

Data Preprocessing

```
In [5]: m = np.mean(nyc_df['trip_duration'])
    std = np.std(nyc_df['trip_duration'])
    nyc_df = nyc_df[nyc_df['trip_duration'] <= m + 2*std]
    nyc_df = nyc_df[nyc_df['trip_duration'] >= m- 2*std]
    nyc_df.trip_duration
```

Out[8]:

```
400
Out[5]:
        1
                   1100
        2
                   1635
        3
                   1141
         4
                    848
                   . . .
        729317
                    296
        729318
                    315
        729319
                    673
        729320
                    447
        729321
                   1224
        Name: trip duration, Length: 728274, dtype: int64
        print(min(nyc_df['dropoff_latitude']))
In [6]:
         print(max(nyc df['dropoff latitude']))
         print(min(nyc_df['dropoff_longitude']))
         print(max(nyc_df['dropoff_longitude']))
        32.1811408996582
        43.92102813720703
         -121.9333038330078
         -65.89738464355469
```

Now looking into the longitude the coordinates lies between (-74.53,-72.71) and the latitude coordinates lies between (40.44,41.09). But the pickup_latitude and pickup_longitude and dropoff_latitude and dropoff_latitude lies outside this range. So let's clean them.

```
In [7]: nyc_df = nyc_df[nyc_df['dropoff_latitude'] <= 41.09]
    nyc_df = nyc_df[nyc_df['dropoff_latitude'] >= 40.44]
    nyc_df = nyc_df[nyc_df['dropoff_longitude'] <= -73.33]
    nyc_df = nyc_df[nyc_df['dropoff_longitude'] >= -74.53]

nyc_df = nyc_df[nyc_df['pickup_latitude'] <= 41.09]
    nyc_df = nyc_df[nyc_df['pickup_latitude'] >= 40.44]
    nyc_df = nyc_df[nyc_df['pickup_longitude'] <= -73.33]
    nyc_df = nyc_df[nyc_df['pickup_longitude'] >= -74.53]
```

```
In [8]: nyc_df.describe()
```

	vendor_id	passenger_count	pickup_longitude	pickup_latitude	$drop off_longitude$	dropoff
count	728191.000000	728191.000000	728191.000000	728191.000000	728191.000000	72819
mean	1.534779	1.661410	-73.973463	40.750925	-73.973359	4
std	0.498789	1.311762	0.038266	0.028061	0.035981	
min	1.000000	0.000000	-74.459015	40.446159	-74.511681	4
25%	1.000000	1.000000	-73.991859	40.737347	-73.991310	4
50%	2.000000	1.000000	-73.981758	40.754082	-73.979752	4
75%	2.000000	2.000000	-73.967369	40.768318	-73.963043	4
max	2.000000	9.000000	-73.330917	41.069038	-73.332817	4

Now let's change the data type of pickup_datetime and dropoff_datetime fields as they may be

useful later.

```
nyc_df['pickup_datetime'] = nyc_df['pickup_datetime'].astype('datetime64')
 In [9]:
          nyc_df['pickup_date'] = nyc_df['pickup_datetime'].dt.date
          nyc_df['pickup_date']
                    2016-02-29
 Out[9]:
                    2016-03-11
         1
          2
                    2016-02-21
          3
                    2016-01-05
         4
                    2016-02-17
                       . . .
         729317
                    2016-05-21
         729318
                    2016-02-22
         729319
                    2016-04-15
         729320
                    2016-06-19
         729321
                    2016-01-01
         Name: pickup_date, Length: 728191, dtype: object
         nyc_df['dropoff_datetime'] = nyc_df['dropoff_datetime'].astype('datetime64')
In [10]:
          nyc_df['dropoff_date'] = nyc_df['dropoff_datetime'].dt.date
          nyc_df['dropoff_date']
                    2016-02-29
Out[10]:
         1
                    2016-03-11
          2
                    2016-02-21
          3
                    2016-01-05
         4
                    2016-02-17
         729317
                    2016-05-21
         729318
                    2016-02-22
         729319
                    2016-04-15
         729320
                    2016-06-19
         729321
                    2016-01-01
         Name: dropoff_date, Length: 728191, dtype: object
In [11]: nyc_df['Month'] = nyc_df['pickup_datetime'].dt.month
          nyc df['Month']
                    2
Out[11]:
         1
                    3
          2
                    2
         3
                    1
         4
                    2
                   . .
         729317
                    5
         729318
                    2
         729319
                    4
         729320
                    6
         729321
         Name: Month, Length: 728191, dtype: int64
         nyc df['Hour'] = nyc df['pickup datetime'].dt.hour
In [12]:
          nyc df['Hour']
```

```
16
Out[12]:
                     23
          2
                    17
                     9
                     6
          4
                     . .
          729317
                    13
          729318
                     0
          729319
                    18
          729320
                     9
                    17
          729321
          Name: Hour, Length: 728191, dtype: int64
         nyc_df['Year'] = nyc_df['pickup_datetime'].dt.year
In [13]:
          nyc_df['Year']
                    2016
Out[13]:
          1
                    2016
          2
                    2016
          3
                    2016
                    2016
                     . . .
          729317
                    2016
          729318
                    2016
          729319
                    2016
          729320
                    2016
                    2016
          729321
          Name: Year, Length: 728191, dtype: int64
```

EDA

Distribution of trip duration


```
In [16]: nyc_df['log_trip_duration'] = np.log(nyc_df['trip_duration'].values+1)
    plt.title('Distribution of trip duration')
    sns.histplot(nyc_df['log_trip_duration'].values,bins=100)
```

Out[16]: <AxesSubplot:title={'center':'Distribution of trip duration'}, ylabel='Count'>

Distribution of trip duration


```
In [17]: nyc_df.groupby('pickup_date').count()['id']
plt.plot(nyc_df.groupby('pickup_date').count()['id'], 'o-', label='train')
```

Out[17]: [<matplotlib.lines.Line2D at 0x1e81c8c5250>]

In [18]: df = nyc_df.groupby('passenger_count')['trip_duration'].mean()
 plt.title('Distribution of trip_duration with respect to the trip_duration')
 sns.barplot(df.index,df.values)

Distribution of trip_duration with respect to the trip_duration

We can see that the number of passengers has nothing to do with the trip_duration

```
In [19]:
         df = nyc_df.groupby('vendor_id')['trip_duration'].mean()
         print(df)
         plt.subplots(1,1,figsize=(15,10))
         plt.ylim(ymin=800)
         plt.ylim(ymax=842)
         sns.barplot(df.index,df.values)
         plt.title('Time per Vendor')
         plt.legend(loc=0)
         plt.ylabel('Time in Seconds')
         No artists with labels found to put in legend. Note that artists whose label start w
         ith an underscore are ignored when legend() is called with no argument.
         vendor_id
         1
              830.268890
              841.574204
         Name: trip_duration, dtype: float64
         Text(0, 0.5, 'Time in Seconds')
Out[19]:
```


seem to be like the trip_duration differs between the vendors.

So it would seem that the store_and_fwd_flag discriminates well between travel times. Clearly there is a slight skew in the data where some of the vendor employees didn't record their travel times accurately.

Splitting the data

```
In [21]: from sklearn.model_selection import train_test_split
    train_val_df , test_df = train_test_split(nyc_df,test_size=0.2,random_state=42)
    train_df , val_df = train_test_split(train_val_df,test_size=0.25,random_state=42)
In [22]: train_df
```

Out[22]:		id	vendor_id	pickup_datetime	dropoff_datetime	passenger_count	pickup_longitude
	286013	id0067398	1	2016-03-05 04:07:20	2016-03-05 04:18:30	1	-74.008812
	21787	id3410913	1	2016-05-10 10:01:21	2016-05-10 10:10:32	1	-73.953125
	95884	id0620121	1	2016-05-22 14:03:24	2016-05-22 14:18:34	1	-73.976868
	393606	id2297203	2	2016-02-24 17:11:32	2016-02-24 17:14:00	1	-73.980225
	654514	id3648168	2	2016-04-27 20:42:52	2016-04-27 21:29:53	1	-73.782257
	371761	id2833545	2	2016-02-05 11:11:58	2016-02-05 11:18:12	1	-73.975761
	119424	id2060517	2	2016-04-10 01:38:31	2016-04-10 01:56:12	5	-73.991692
	390313	id2833290	1	2016-03-21 21:01:32	2016-03-21 21:07:41	1	-73.990349
	580262	id3692355	2	2016-02-13 14:58:07	2016-02-13 15:02:56	1	-73.978630
	284542	id0235093	2	2016-05-23 06:14:35	2016-05-23 06:16:25	1	-73.978233
	436914 r	ows × 17 c	olumns				
4							>
In [23]:	train_d	<pre>If.info()</pre>					

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 436914 entries, 286013 to 284542
Data columns (total 17 columns):
#
     Column
                         Non-Null Count
                                         Dtype
     _____
                         -----
 0
     id
                         436914 non-null object
 1
     vendor id
                         436914 non-null
                                         int64
 2
     pickup datetime
                         436914 non-null
                                         datetime64[ns]
 3
     dropoff_datetime
                        436914 non-null
                                         datetime64[ns]
 4
     passenger count
                        436914 non-null int64
 5
     pickup longitude
                         436914 non-null float64
 6
     pickup latitude
                        436914 non-null float64
 7
                         436914 non-null float64
     dropoff_longitude
     dropoff_latitude
                        436914 non-null float64
 9
     store and fwd flag
                        436914 non-null
                                         object
 10
    trip duration
                                         int64
                        436914 non-null
    pickup date
                         436914 non-null
                                         object
    dropoff_date
 12
                         436914 non-null
                                         object
 13
    Month
                         436914 non-null int64
 14
    Hour
                         436914 non-null int64
                         436914 non-null int64
 15
    Year
                        436914 non-null float64
    log_trip_duration
dtypes: datetime64[ns](2), float64(5), int64(6), object(4)
memory usage: 60.0+ MB
```

Identifying input and output columns

```
train df.corr()
In [24]:
Out[24]:
                              vendor id
                                         passenger_count pickup_longitude pickup_latitude dropoff_longitude
                               1.000000
                   vendor_id
                                                 0.286284
                                                                   0.014747
                                                                                   0.004083
                                                                                                      0.003772
             passenger_count
                               0.286284
                                                 1.000000
                                                                   0.002214
                                                                                   -0.004782
                                                                                                      -0.000170
            pickup_longitude
                                                                   1.000000
                                                                                                      0.281059
                               0.014747
                                                 0.002214
                                                                                   -0.146973
              pickup_latitude
                               0.004083
                                                -0.004782
                                                                  -0.146973
                                                                                   1.000000
                                                                                                      0.048042
           dropoff_longitude
                               0.003772
                                                -0.000170
                                                                   0.281059
                                                                                   0.048042
                                                                                                      1.000000
             dropoff_latitude
                               0.006103
                                                -0.003731
                                                                   0.041242
                                                                                   0.431060
                                                                                                      0.123774
                trip_duration
                               0.008507
                                                 0.014596
                                                                   0.359654
                                                                                   -0.236989
                                                                                                      0.220217
                               -0.005568
                                                                                   -0.002362
                                                                                                      0.005533
                      Month
                                                -0.000834
                                                                   0.006320
                               0.011499
                                                 0.010299
                                                                   0.019828
                                                                                   0.012568
                                                                                                      -0.041875
                       Hour
                        Year
                                   NaN
                                                     NaN
                                                                       NaN
                                                                                       NaN
                                                                                                          NaN
            log_trip_duration
                               0.012210
                                                 0.017886
                                                                   0.212200
                                                                                   -0.176261
                                                                                                      0.144543
           input_col = ['vendor_id','pickup_datetime','passenger_count','pickup_latitude','dropof
In [25]:
           target_col = 'trip_duration'
           train inputs = train df[input col].copy()
In [26]:
           train targets = train df[target col].copy()
```

```
NYC\_Taxi\_Trip\_duration\_Prediction
In [27]: val_inputs = val_df[input_col].copy()
          val_targets = val_df[target_col].copy()
In [28]:
         test_inputs = test_df[input_col].copy()
          test_targets = test_df[target_col].copy()
         numeric_col = train_inputs.select_dtypes(include=np.number).columns.tolist()
In [29]:
          cate_col = train_inputs.select_dtypes('object').columns.tolist()
In [30]:
         train_inputs[numeric_col]
Out[30]:
```

	vendor_id	passenger_count	pickup_latitude	dropoff_latitude	dropoff_longitude
286013	1	1	40.713646	40.692276	-73.987366
21787	1	1	40.785812	40.776913	-73.957542
95884	1	1	40.745228	40.774494	-73.872375
393606	2	1	40.783470	40.787838	-73.974861
654514	2	1	40.644661	40.765869	-73.988670
•••					
371761	2	1	40.788940	40.803177	-73.967346
119424	2	5	40.726608	40.779530	-73.981941
390313	1	1	40.751183	40.767376	-73.982262
580262	2	1	40.764622	40.771458	-73.982422
284542	2	1	40.752110	40.759312	-73.974487

436914 rows × 5 columns

```
train_inputs[cate_col]
In [31]:
```

Out[31]:		store_and_fwd_flag
	286013	N
	21787	N
	95884	N
	393606	N
	654514	N
	•••	
	371761	N
	119424	N
	390313	N
	580262	N
	284542	N

436914 rows × 1 columns

Imputing missing values

```
train_inputs[numeric_col].isna().sum()
In [32]:
         vendor_id
Out[32]:
         passenger_count
                               0
                               0
         pickup latitude
         dropoff_latitude
                               0
         dropoff_longitude
                               0
         dtype: int64
In [33]:
         val_inputs[numeric_col].isna().sum()
         vendor_id
Out[33]:
         passenger_count
                               0
         pickup latitude
                               0
         dropoff_latitude
                               0
         dropoff_longitude
         dtype: int64
In [34]:
         test_inputs[numeric_col].isna().sum()
         vendor_id
Out[34]:
                               0
         passenger count
         pickup_latitude
                               0
         dropoff_latitude
                               0
         dropoff_longitude
                               0
         dtype: int64
```

It seems like there are no missing values in the train, validation and test datasets.

Scaling numeric values

```
train_inputs[numeric_col].describe()
In [35]:
Out[35]:
                                                                  dropoff_latitude dropoff_longitude
                      vendor_id
                                 passenger_count pickup_latitude
                 436914.000000
                                    436914.000000
                                                   436914.000000
                                                                     436914.000000
                                                                                       436914.000000
           count
                                         1.659494
                                                       40.750896
           mean
                       1.534318
                                                                         40.751766
                                                                                           -73.973360
             std
                       0.498821
                                         1.309079
                                                         0.028091
                                                                          0.032287
                                                                                            0.036056
             min
                       1.000000
                                         0.000000
                                                        40.496761
                                                                         40.467426
                                                                                           -74.479622
            25%
                                                                                           -73.991310
                       1.000000
                                         1.000000
                                                        40.737331
                                                                         40.735928
            50%
                                                                                           -73.979774
                       2.000000
                                         1.000000
                                                        40.754086
                                                                         40.754517
            75%
                       2.000000
                                         2.000000
                                                        40.768318
                                                                         40.769730
                                                                                           -73.963058
                       2.000000
                                         9.000000
                                                        41.069038
                                                                         41.089260
                                                                                           -73.341927
            max
           from sklearn.preprocessing import MinMaxScaler
In [36]:
           scaler = MinMaxScaler()
           scaler.fit(train_inputs[numeric_col])
In [37]:
          MinMaxScaler()
Out[37]:
           train_inputs[numeric_col] = scaler.transform(train_inputs[numeric_col])
In [38]:
           val inputs[numeric col] = scaler.transform(val inputs[numeric col])
           test inputs[numeric col] = scaler.transform(test inputs[numeric col])
           train_inputs[numeric_col].describe()
In [39]:
Out[39]:
                      vendor_id
                                 passenger_count pickup_latitude
                                                                  dropoff_latitude
                                                                                   dropoff_longitude
                  436914.000000
                                    436914.000000
           count
                                                   436914.000000
                                                                     436914.000000
                                                                                       436914.000000
                                         0.184388
                                                         0.444077
                                                                                            0.444989
           mean
                       0.534318
                                                                          0.457260
             std
                       0.498821
                                         0.145453
                                                         0.049087
                                                                          0.051922
                                                                                            0.031692
                                                                                            0.000000
             min
                       0.000000
                                         0.000000
                                                         0.000000
                                                                          0.000000
            25%
                       0.000000
                                         0.111111
                                                         0.420373
                                                                          0.431789
                                                                                            0.429211
            50%
                       1.000000
                                         0.111111
                                                         0.449650
                                                                          0.461683
                                                                                            0.439351
            75%
                       1.000000
                                                         0.474520
                                                                          0.486148
                                                                                            0.454044
                                         0.222222
            max
                        1.000000
                                         1.000000
                                                         1.000000
                                                                          1.000000
                                                                                            1.000000
```

Encoding categorical columns

```
In [40]: from sklearn.preprocessing import OneHotEncoder
encoder = OneHotEncoder(sparse=False, handle_unknown='ignore')
In [41]: encoder.fit(train_inputs[cate_col])
Out[41]: OneHotEncoder(handle_unknown='ignore', sparse=False)
```

```
In [42]: enc_col = encoder.get_feature_names(cate_col).tolist()
enc_col

Out[42]: ['store_and_fwd_flag_N', 'store_and_fwd_flag_Y']

In [43]: train_inputs[enc_col] = encoder.transform(train_inputs[cate_col])
    val_inputs[enc_col] = encoder.transform(val_inputs[cate_col])
    test_inputs[enc_col] = encoder.transform(test_inputs[cate_col])
In [44]: train_inputs[enc_col]
```

Out[44]:

	store_and_fwd_flag_N	store_and_fwd_flag_Y
286013	1.0	0.0
21787	1.0	0.0
95884	1.0	0.0
393606	1.0	0.0
654514	1.0	0.0
•••		
371761	1.0	0.0
119424	1.0	0.0
390313	1.0	0.0
580262	1.0	0.0
284542	1.0	0.0

436914 rows × 2 columns

In [45]: val_inputs

Out

[45]:		vendor_id	pickup_datetime	passenger_count	pickup_latitude	dropoff_latitude	dropoff_long
	693724	0.0	2016-01-21 10:07:05	0.111111	0.456982	0.490056	0.46
	427142	1.0	2016-04-05 10:05:30	0.111111	0.444830	0.448764	0.44
	486052	1.0	2016-02-09 21:00:17	0.444444	0.479139	0.390510	0.4
	632095	1.0	2016-04-30 18:37:17	0.111111	0.397850	0.472769	0.43
	444283	0.0	2016-02-29 18:20:00	0.111111	0.413054	0.341384	0.42
	•••						
	498341	0.0	2016-02-16 07:49:48	0.111111	0.442304	0.432673	0.42
	397765	1.0	2016-05-09 15:37:29	0.111111	0.530966	0.525710	0.4!
	204431	0.0	2016-06-12 13:20:18	0.111111	0.488345	0.471634	0.43
	681512	1.0	2016-05-03 21:12:45	0.444444	0.409555	0.456641	0.42
	326236	0.0	2016-01-18 12:17:20	0.111111	0.453103	0.454297	0.42

145638 rows × 9 columns

```
In [46]: x_train = train_inputs[numeric_col + enc_col]
    x_val = val_inputs[numeric_col+enc_col]
    x_test = test_inputs[numeric_col + enc_col]
```

Model

we weren't taught decision tree model so the intructor told us that we could skip it

KNN

```
In [47]: from sklearn.neighbors import KNeighborsClassifier as KNN
    from sklearn.metrics import mean_squared_error as mse

In [48]: def elbow(k):
        test_mse=[]
        for i in k:
            reg=KNN(n_neighbors=i)
            reg.fit(x_train,train_targets)
            tmp=reg.predict(x_train)
```

```
tmp=mse(tmp,train_targets)
    test_mse.append(tmp)
return test_mse
```

```
In [ ]: elbow(train_targets)
```

the KNN model was taking to long to train so the instructor said that we could skip it

LINEAR MODEL

```
In [48]:
         from sklearn.linear_model import LinearRegression
In [49]:
         model = LinearRegression()
In [50]:
         model.fit(x_train,train_targets)
         LinearRegression()
Out[50]:
          lr=model.predict(x_train)
In [51]:
In [52]:
         train_targets
          286013
                     670
Out[52]:
          21787
                     551
         95884
                     910
         393606
                     148
         654514
                    2821
                    . . .
         371761
                     374
         119424
                    1061
         390313
                     369
                     289
          580262
          284542
                     110
         Name: trip_duration, Length: 436914, dtype: int64
In [53]:
         from sklearn.metrics import mean squared error
          mean_squared_error(lr,train_targets,squared=False)
         614.5914915521748
Out[53]:
In [54]:
         mean_squared_error(model.predict(x_val), val_targets, squared=False)
         610.9301753215624
Out[54]:
```