Feuille d'exercices

- Chapitre 2 : Intégrales généralisées -

Exercice 1 —

Donner la nature des intégrales suivantes.

1.
$$\int_0^1 \frac{\cosh(t) - \cos(t)}{t^{\frac{5}{2}}} dt$$

$$2. \int_0^{+\infty} \frac{\sqrt{t} \sin\left(\frac{1}{t^2}\right)}{\ln(1+t)} dt$$

3.
$$\int_0^{+\infty} \frac{\ln(1+t^{\alpha})}{t^{\beta}} dt, \ (\alpha,\beta) \in \mathbb{R}^2.$$

4.
$$\int_0^1 \frac{dx}{x^2 - x}$$
.

5.
$$\int_{1}^{+\infty} \left(\left(\frac{x+1}{x} \right)^{\sqrt{\sin\left(\frac{1}{x}\right)}} - 1 \right) dx.$$

Exercice 2 —

Montrer que la fonction $t \mapsto \frac{\ln(t)}{1+t^2}$ est intégrable sur \mathbb{R}_+^* et déterminer la valeur de $\int_0^{+\infty} \frac{\ln(t)}{1+t^2} dt$.

Exercice 3 —

EXERCICE 3 — Soient a, b > 0. Montrer l'existence et calculer l'intégrale $\int_{-\infty}^{+\infty} \frac{dx}{(x^2 + a^2)(x^2 + b^2)}$.

Exercice 4 — Montrer l'existence et calculer l'intégrale $\int_{-\pi}^{\pi} \ln(\sin(t))dt$.

Exercice 5 —

- 1. Quelle est la nature de l'intégrale $\int_{0}^{+\infty} \frac{\sin(x)}{x} dx$?
- 2. La fonction $x \mapsto \frac{\sin(x)}{x}$ est-elle intégrable sur $]0, +\infty[$?

EXERCICE 6 — Pour $n \in \mathbb{N}$, on pose $I_n := \int_{-\infty}^{+\infty} \frac{\sin(x)}{x^{2n+1}} dx$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, I_n converge.
- 2. Montrer la relation de récurrence $I_n = \frac{1}{2n(2n-1)} \left(I_{n-1} + \frac{1}{\pi^{2n-1}} \right)$ pour $n \in \mathbb{N}^*$.

Exercice 7 —

- XERCICE 7 —

 1. Calculer pour tout entier naturel n l'intégrale $I_n := \int_0^{\frac{\pi}{2}} \frac{\sin(2n+1)t}{\sin(t)} dt$. (<u>Indication</u> : on pourra faire le lien entre I_n et I_{n+1} .)
- 2. On pose, pour tout entier naturel $n, J_n := \int_0^{\frac{\pi}{2}} \frac{\sin(2n+1)t}{t} dt$. Montrer que $(I_n J_n)$ converge vers 0 et en déduire la valeur de $\int_{0}^{+\infty} \frac{\sin(t)}{t} dt$.

Exercice 8 —

Montrer que la fonction f définie sur]0,1] par $f(t)=\frac{1}{t}-E(\frac{1}{t})$ est intégrable et calculer son intégrale sur]0,1].

Exercice 9 —

Soient a < b deux réels et soit $f : \mathbb{R} \to \mathbb{R}$ continue. On suppose que $\int_0^{+\infty} f(x)dx$ existe et que $\lim_{x \to -\infty} f(x) = l$,

Justifier l'existence et calculer $\int_{-\infty}^{+\infty} (f(a+x) - f(b+x)) dx$.

Exercice 10 —

Soit $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ continue et soit $a \in \mathbb{R}$.

- 1. On suppose que $t \mapsto f(t)e^{-at}$ est intégrable sur \mathbb{R}^+ . Montrer que pour tout $x \geq a$, l'intégrale $\int_{-\infty}^{+\infty} f(t)e^{-xt}dt$ existe.
- 2. Montrer que le résultat précédent est encore vrai en supposant seulement que l'intégrale $\int_{0}^{+\infty} f(t)e^{-at}dt$ est convergente. (Indication : on pourra considérer la fonction

$$F: \mathbb{R}^+ \longrightarrow \mathbb{R}$$
$$x \longmapsto \int_0^x f(t)e^{-at}dt$$

et faire une intégration par parties.)

Exercice 11 —

Soit $f: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ continue par morceaux, décroissante et intégrable. Montrer que $f(x) = o(\frac{1}{x})$.

Exercice 12 —

- 1. Soit $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ uniformément continue et intégrable. Montrer que $\lim_{x \to +\infty} f(x) = 0$.
- 2. Le résultat précédent est-il vrai si l'on suppose seulement $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ continue et intégrable?

Exercice 13 —

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ de classe \mathscr{C}^1 . On suppose que f et f'^2 sont intégrables sur \mathbb{R} .

- 1. Montrer que f est uniformément continue sur \mathbb{R} .
- 2. En déduire que f admet des limites en $\pm \infty$ et les déterminer.

Exercice 14 —

Soit $u:\mathbb{R}\longrightarrow\mathbb{R}$ continue. Montrer que u est bornée si et seulement si pour toute fonction $v:\mathbb{R}\longrightarrow\mathbb{R}$ continue et intégrable, uv est intégrable.

Exercice 15 —

1. Soit $\epsilon > 0$ et soit $f: [-\epsilon, +\infty[\longrightarrow \mathbb{C}$ continue. On suppose que f est dérivable en 0 et que $x \longmapsto \frac{f(x)}{x}$ est intégrable sur $[1, +\infty[$.

Montrer: $\forall (a,b) \in (\mathbb{R}_+^*)^2$, $\int_0^{+\infty} \frac{f(bx) - f(ax)}{x} dx = f(0) \ln \left(\frac{a}{h}\right)$.

2. En déduire la valeur de $\int_0^{+\infty} \frac{e^{-y} - e^{-2y}}{y} dy$ puis celle de $\int_0^1 \frac{x-1}{\ln(x)} dx$.

Exercice 16 (Inégalités de Young, Hölder et Minkowski.) —

Soient $p, q \in]1, +\infty[$ tels que $\frac{1}{p} + \frac{1}{q} = 1$. Soit I un intervalle de \mathbb{R} et soient $f, g : I \longrightarrow \mathbb{C}$ continues par morceaux.

- 1. Montrer: $\forall a, b \in \mathbb{R}^+, ab \leq \frac{a^p}{p} + \frac{b^q}{q}$.
- 2. En déduire que si $|f|^p$ et $|g|^q$ sont intégrables sur I, alors fg est intégrable sur I et de plus

$$\int_I |fg| \leq \Big(\int_I |f|^p\Big)^{\frac{1}{p}} \Big(\int_I |g|^q\Big)^{\frac{1}{q}}.$$

3. En déduire que si $|f|^p$ et $|g|^p$ sont intégrables sur I, alors $|f+g|^p$ est intégrable sur I et de plus

$$\left(\int_I |f+g|^p\right)^{\frac{1}{p}} \leq \left(\int_I |f|^p\right)^{\frac{1}{p}} + \left(\int_I |g|^p\right)^{\frac{1}{p}}.$$

Exercice 17 (Une inégalité due à Kolmogorov) — Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ de classe \mathscr{C}^2 telle que f^2 et f''^2 sont intégrables.

- 1. Montrer que f'^2 est intégrable.
- 2. Montrer que $\left(\int_{\mathbb{D}} f'^2\right)^2 \le \left(\int_{\mathbb{D}} f^2\right) \left(\int_{\mathbb{D}} f''^2\right)$.

Exercice 18 —

- 1. Montrer l'équivalent $\int_0^x \ln(\ln(1+t))dt \sim x \ln(x)$ au voisinage de 0.
- 2. Montrer l'équivalent $\int_0^x e^{t^2} dt \sim \frac{e^{x^2}}{2x}$ au voisinage de $+\infty$.

Exercice 19 -

Proposer un développement asymptotique à n termes lorsque x tend vers $+\infty$ de la fonction "logarithme intégral" $li: x \longmapsto \int_{2}^{x} \frac{dt}{\ln(t)}.$

Exercice 20 —

Soit $f:[0,+\infty[\to\mathbb{R}$ décroissante. On suppose que l'intégrale $\int_0^{+\infty} f(t)dt$ converge et est non-nulle. Pour t>0,

prouver la convergence de la série $\sum_{n\geq 1} f(nt)$ et montrer que $\sum_{n=1}^{+\infty} f(nt) \underset{t\to 0}{\sim} \frac{1}{t} \int_0^{+\infty} f(x) dx$.

Application : trouver un équivalent de $\sum_{n=1}^{+\infty} x^{n^2}$ lorsque x tend vers 1.

Exercice 21 —

Soit f une fonction de classe \mathscr{C}^1 sur l'intervalle $]A, +\infty[$, où $A \in \mathbb{R}$. On suppose que f' est intégrable sur $]A, +\infty[$.

- 1. Montrer que la série de terme général $\int_{-\infty}^{n} f(t)dt f(n)$ est absolument convergente.
- 2. En déduire que la série $\sum f(n)$ converge si et seulement si l'intégrale impropre $\int_{-\infty}^{+\infty} f(t)dt$ converge.

Application. Soit $\alpha \in]0,1[$. Quelle est la nature de la série $\sum \frac{\sin(n^{\alpha})}{n}$?