Visual pathway

Daniela Pamplona

U2IS - ENSTA - IPParis

ecampus moodle: MI210 - Modèles neuro-computationnels de la vision (P4 - 2020-21)

daniela.pamplona@ensta.fr

Contents

- 1. Visual Pathway
- 2. A systems architecture perspective on the visual system
- 3. Hierarchical vs Parallel visual system
 - 1. Organizational structures
 - 2. Example 1: Hierarchical visual system
 - 3. Example 2: Flat retina

Contents

- 1. Visual Pathway
- 2. A systems architecture perspective on the visual system
- 3. Hierarchical vs Parallel visual system
 - 1. Organizational structures
 - 2. Example 1: Hierarchical visual system
 - 3. Example 2: Flat retina

Sensing: the eye (outside)

Pupil: black-looking aperture, that allows light to enter the eye

Iris: colored circular muscle, which is pigmented giving us our eye's color. It controls the size of the pupil so that more or less light

Cornea: transparent external surface that covers both the pupil and the iris. This is the first and most powerful lens of the optical system of the eye

Crystaline Lens: secondary lens

Sclera: The "white of the eye", which forms part of the supporting wall of the eyeball.

Sensing: the eye (inside)

Cilliary body: accommodation, aqueous humor production and resorption (providing oxygen, nutrients, and metabolic waste removal), and maintenance of the lens **Choroid:** the vascular layer **Retina:** light-sensitive layer of tissue of the eye, where the neurons are Fovea: central pit composed of closely packed cones (one type of photoreceptors)

https://webvision.med.utah.edu

Sensing: the eye (optics)

Ray diagram for a converging lens.

Ray diagram for the human eye.

Sensing: the eye (visual field)

Monocular

Binocular

Retina: structure

Fig. 1.1. A drawing of a section through the human eye with a schematic enlargement of the retina.

https://webvision.med.utah.edu

Retina: Visual Spectrum

Comparison of wavelength, frequency and energy for the electromagnetic spectrum. (Credit: NASA's Imagine the Universe)

Retina: Photoreceptors

Cones: cone-shaped, operate in high light, color vision: Red, Green and Blue Rods: rod-shaped, operate at night gray-scale vision

 Rods are 100 times more sensitive to a single photon than cones, but they respond slower

Retina: Photoreceptors

- 20 times more rods than cones in the retina
- The cones density decreases exponentially with the eccentricity
- The rods density decreases
 "linearly" from the peak

Fig. 20. Graph to show rod and cone densities along the horizontal meridian.

Summary

Retina: Interneurons

- Bipolar Cells: send information directly to Ganglion Cells or to Amacrine. Gates for cirtuitry in the retina. Contrast sensitivity
- Horizontal Cells: illumination adaptation, large range connectivity, contribute to the Ganglion Cells (surrond Receptive Field)
- Amacrine Cells: detection of directional motion, modulate light adaption and circadian rhythm, and control high sensitivity in scotopic (low light) vision

Retina: Ganglion Cells Receptive Fields Spatial Shape Across the Visual Field

Fig. 6. Ganglion cell (GC) density as a function of eccentricity along the horizontal (A, C) and vertical (B, D) meridians of the composite retina. A, B show foveal and C, D show peripheral ganglion cell density at appropriate scales. The gap in the nasal curve at 4 mm represents the site of the optic disk.

Retina: Ganglion Cells types

Name	Prop	Dendritic Size	Conduction	RECEPTIVE	RECEPTIVE	Color	Contrast
NAME				FIELD SIZE	FIELD SHAPE	SENSITIVITY	SENSITIVITY
Midget	80%	Small	Slow	Small	Center-Surround	Strong	Weak
Parasol	10%	Large	Fast	Large	Center-Surround	Weak	Strong
Bistratined	5%	Very Small	Moderate	Very Large	Center	?	Medium

Primary and Secondary Pathways

Primary	Seconday	
focal	global	
attentive	pre-attentive	
what	where	
scrutinizing	early warning	
internal	external	

Primary and Secondary Pathways

Primary	Seconday		
focal	global		
attentive	pre-attentive		
what	where		
scrutinizing	early warning		
internal	external		

Lateral Geniculate Nucleus

- Function and RFs associated with RGC
- Clear pathway division
- Strong feedback connections from V1
- 6 celullar layers organised as a stack of pancakes bent around the optic trackow
- Layers 1, 4 and 6 are related to the opposite eye (contralateral) whereas 2,3 and 5 relate the the eye on the same side (ipsilateral)

Summary

Simple cells and complex cells in V1

- 10% of V1 cells
- Probably the most studied cells in vision
- Shape like Gabors varying orientation, phase and frequency

Simple cells and complex cells in V1

- Nonlinear summation
- Spatial invariance
- Some direction selectivity

Simple cells and complex cells in V1

V1: other properties

- Binocular neurons
- local motion detectors
- Center surround (similar to retinal ganglion cells)

V1: retino-cortical map

V1: retino-cortical map

Summary

Krüger et al., Deep Hierarchies in the Primate Visual

V2

- Receptive fields similar to V1
- Detect texture-defined contours
- Relactive disparity (in V1 is absolute)
- Border ownership
- Many illusions can be explained in function of the cells of this area

Summary

More pathways

V4

- Shape detection
- Curvature selectivity
- Luminance invariance/ color consistency by coding the hue (instead of RGB opponency)

V5 (Middle Temporal visual)

- Motion in 2D (direction and speed)
- Binocular depth

Summary

Summary

Krüger et al., Deep Hierarchies in the Primate Visual Cortex What Can We Learn for Computer Vision

Contents

- 1. Visual Pathway
- 2. A systems architecture perspective on the visual system
- 3. Hierarchical vs Parallel visual system
 - 1. Organizational structures
 - 2. Example 1: Hierarchical visual system
 - 3. Example 2: Flat retina

Systems Architecture

Architecture of a system is a global model of the system consisting of:

- structure
- properties of various elements involved
- relationships between various elements
- behaviors & dynamics
- multiple views of the system: complementary and consistent

Structure: What are the areas responsible for visual processing

Properties: What are their physiological properties? Area Size (mm²) | RFS

Area	Size (mm ²)	RFS	
Sub-cortical			
Retina	1018	0.01	
LGN		0.1	
Occipital			
V1	1120	3	
V2	1190	4	
V3/V3A/VP	325	6	
V4/VOT/V4t	650	8	
MT	55	7	
Sum	3340	61	
Ventral Pathway			
TEO	590	3-5	
TE	180	10-20	
Sum	770		
Dorsal Pathway			
MST	60	>30	
CIP	?	?	
VIP	40	10-30	
7a	115	>30	
LIP	55	12-20	
AIP	35	5-7	
MIP	55	10-20	
Sum	585		

Dynamics

Area	Size (mm ²)	RFS	Latency (ms)		
	Sub-cortica	1	v.		
Retina	1018	0.01	20-40		
LGN		0.1	30-40		
	Occipital	8	la 18		
V1	1120	3	30-40		
V2	1190	4	40		
V3/V3A/VP	325	6	50		
V4/VOT/V4t	650	8	70		
MT	55	7	50		
Sum	3340				
	Ventral Path	way	50.09.00M (SAK) (SAK) (SAK) (SAK)		
TEO	590	3-5	70		
TE	180	10-20	80-90		
Sum	770				
	Dorsal Path	way	9		
MST	60	>30	60-70		
CIP	?	?	?		
VIP	40	10-30	50-60		
7a	115	>30	90		
LIP	55	12-20	50		
AIP	35	5-7	60		
MIP	55	10-20	100		
Sum	585	25			

Contents

- 1. Visual Pathway
- 2. A systems architecture perspective on the visual system
- 3. Hierarchical vs Parallel visual system
 - 1. Organizational structures
 - 2. Example 1: Hierarchical visual system
 - 3. Example 2: Flat retina

Hierarchical vs Flat Organizations

Hierarchical Organization

Flat Organization

Hierarchical vs Flat Organizations

Hierarchical Organization

Flat Organization

Pros:

- clarity and managerial control;
- close supervision of employees;
- clear, distinct layers with obvious lines of responsibility and control; ...

Cons:

- communication take too long;
- slow decision-making;
- obstruct progress; ...
 Griffin, D. Pros & cons of a flat organizational structure.

Hierarchical vs Flat Organizations

Hierarchical Organization

Flat Organization

Pros:

- clarity and managerial control;
- close supervision of employees;
- clear, distinct layers with obvious lines of responsibility and control; ...

Cons:

- communication take too long;
- slow decision-making;
- obstruct progress; ...
 Griffin, D. Pros & cons of a flat organizational structure.

Pros:

- flexible and better able to adapt to changes;
- faster communication;
- quicker decisions;
- more democratic style; ...

Cons:

- confusion over roles;
- managers with a heavier workload; ...

Hierarchical vs flat hierarchies

Hierarchical visual system

Flat retina

Flat retina

• Light detection (photo-receptors)

- Light detection
- Whitening: remove 2nd order correlations (next class)

- Light detection
- Whitening
- Contrast and pattern adaptation

Contrast adaptation

Contrast adaptation

- Light detection
- Whitening
- Contrast and pattern adaptation
- Texture motion

Texture Motion

If the bars do not move the cells do not respond (the gray values cancel out)

If the bars move the cells respond

- Light detection
- Whitening
- Contrast and pattern adaptation
- Texture motion
- Object motion

- Light detection
- Whitening
- Contrast and pattern adaptation
- Texture motion
- Object motion
- Approaching motion

- Light detection
- Whitening
- Contrast and pattern adaptation
- Texture motion
- Object motion
- Approaching motion
- Motion extrapolation

Motion extrapolation

Motion extrapolation

- Light detection
- Whitening
- Contrast and pattern adaptation
- Texture motion
- Object motion
- Approaching motion
- Motion extrapolation
- Omitted stimulus response

Omitted stimulus response

Omitted stimulus response

Off-center cell?

Omitted stimulus response

- Light detection
- Whitening
- Contrast and pattern adaptation
- Texture motion
- Object motion
- Approaching motion
- Motion extrapolation
- Omitted stimulus response

• ...

Summary

Visual Pathway

• Hierarchical view of the visual system

• Flat view of the retina

			:	-	:	-	-	.:
Ar	ea	(TE AIT)	AIP	7a	MIP	VIP	LIP
RF	size	-		Ma				
Task		¥ ⊙ ⊸ 🧇		K		1		F. 30
		ν	entral		don	al		
TEO		77.	^	500				CIP
(PIT)						7.7	-	MST
V4			((₽	62	МТ
/3/V3A						4		V3/V3A
V2			0	н	y			V2
V1	23	• 0	0000	•		Ē	10	V1
LGN Retina	A.	+	0.				Ala.	LGN Retina
Retina	1	*	٨				.a.	Retina
Area	RF size	Color	2D Shape	3D Shap	ю	Motion	RF size	Area

Bibliography

- •Griffin, D. Pros & cons of a flat organizational structure. http://smallbusiness.chron.com/pros-cons-flat- organizational-structure-3798.html, 2011
- •Krüger et al., Deep Hierarchies in the Primate Visual Cortex What Can We Learn for Computer Vision, 2013
- •Webvision, http://webvision.med.utah.edu/, constantly updated
- •Gollish, eye's smarter than scientists believe, 2010
- •Johnston and Lagnado, General features of the retinal connectome determine the computation of motion anticipation, 2015
- •Schwartz et al, Detection and prediction of periodic patterns by the retina, 2007

Bibliography

- Krob, Eléments d'architecture des systèmes complexes, http://www.afscet.asso.fr/msc/textes-2009/Krob-elements-archisys.pdf
- Felleman, Van Essen, Distributed hierarchical processing in the primate cerebral cortex, 1991