

Un framework para la generación automática de ejercicios mediante técnicas de mutación

Pablo Gómez Abajo

Tutores: Esther Guerra y Juan de Lara

http://www.miso.es

modelling & software engineering research group

Universidad Autónoma de Madrid

Trabajo Fin de Máster, Junio 2016

¿Qué es la mutación de modelos?

- La mutación de un modelo es la variación de un modelo semilla al que se aplica uno o más operadores de mutación
- La mutación de modelos tiene múltiples aplicaciones:
 - Pruebas de transformación de modelos
 - Pruebas de software basadas en modelos

Mutación

Pruebas de líneas de producto software

(a != true) then

Objetivos

- Diseño e implementación de:
 - Un lenguaje de mutación independiente del dominio: Wodel
 - Una aplicación de este lenguaje a la generación automática de ejercicios: Wodel-Edu
- Motivación:
 - No hay lenguajes generales para la mutación de modelos
 - No hay frameworks para generar ejercicios de forma automática independientes del dominio
- Wodel-Edu sirve además como prueba de concepto de Wodel

Índice

- Conceptos y técnicas utilizados
- II. DSL Wodel
- III. Framework Wodel-Edu
- IV. Conclusiones y trabajo futuro

I. Conceptos y técnicas de la Ingeniería Dirigida por Modelos

Modelos y meta-modelos

- Un modelo es la descripción de un sistema utilizando un lenguaje
- Un meta-modelo es un modelo que describe un lenguaje
- Los meta-modelos se definen mediante diagramas de clase o diagramas entidad-relación
- Restricciones OCL adicionales

Sintaxis abstracta y sintaxis concreta

- Un meta-modelo define la sintaxis abstracta del lenguaje
- La sintaxis concreta incluye información sobre cómo visualizar y representar los conceptos de la sintaxis abstracta

Lenguajes de dominio específico (DSLs)

- Un DSL ofrece los conceptos para un dominio de aplicación
- Gráfico, o textual
- Primitivas de alto nivel
- Orientado a expertos en el dominio
- Traducido automáticamente a lenguajes como Java, C, etc.
- Wodel es un DSL para aplicar mutaciones en modelos

Transformación de modelos

Necesario para la manipulación de modelos

Out-place

In-place

Mutación de modelos

- Tipo especial de transformación de modelos
- Los modelos de entrada son los modelos semilla
- Los modelos de salida son los mutantes

Los modelos semilla y los mutantes son conformes al mismo

meta-modelo

Generación de código

 Producción de código a partir de un modelo de un nivel más alto con el objetivo de crear una aplicación que funcione

 Código Java de los programas Wodel

Código HTML y
 JavaScript de la
 aplicación web creada
 con Wodel-Edu

II. Wodel: un lenguaje de dominio específico para mutación de modelos

Motivación

- Los frameworks existentes para mutación de modelos son:
 - Específicos para un lenguaje (p.ej., fórmulas lógicas)
 - Específicos para un dominio (p.ej., pruebas)
 - Los operadores de mutación están codificados a mano
- Se propone el DSL Wodel para mutación de modelos, con:
 - Primitivas de mutación de alto nivel
 - Independencia del lenguaje y del dominio destino
 - Compilado a código Java
 - Extensible mediante post-procesadores

Esquema


```
generate 3 mutants in "out/" from "evenBinary.fa"
metamodel "http://fa.com"

with commands {
   s0 = modify one State where {isFinal = true} with {reverse(isFinal)}
   s1 = create State with {isFinal = true}
   t0 = create Transition with {src = s0, tar = s1, symbol = one Symbol}
}
```

Operadores de mutación

```
// creación de objetos/refs
create State
create reference tar in
  one Transition
// modificación de objetos/refs
modify one State
  with {isFinal = true}
modify source src from
  one Transition
modify target tar from
  one Transition
// eliminación de objetos/refs
remove one State
remove reference tar in
  one Transition
// mutaciones compuestas
  s0 = create State
  modify s0 with {name = 's0'
```


Asigna automáticamente los elementos creados a los contenedores Elimina las referencias que quedan sueltas al borrar elementos Comprueba las cardinalidades y restricciones OCL del meta-modelo Control de mutantes duplicados Compilado automático a código Java

Bloques y restricciones OCL

- Wodel da soporte para bloques de mutaciones:
 - Generación de mutantes por etapas
 - Un bloque puede tomar como modelos semilla los mutantes generados en bloques declarados previamente
 - Jerarquía de carpetas para identificación de los mutantes
 - Control de mutantes repetidos con la directiva repeat=no
 - Útil para los ejercicios de selección de opciones de texto en Wodel-Edu
- Restricciones OCL en el código Wodel:
 - Se aplican sobre los modelos mutantes generados, aunque no estén en el meta-modelo del dominio

Registro de mutaciones

- Opcional, se activa desde la página de preferencias
- Útil en la generación las opciones de texto en Wodel-Edu
- Referencias a modelos semilla y a modelos mutantes
- Opción de compactar el registro (mutaciones irrelevantes)

Arquitectura de la herramienta

IDE de la herramienta

 Completado de código, validación, generación de código, ...

Comparación de Wodel con Java

create Transition with {symbol = one Symbol}

```
1....
2.// create transition
3.EClass transitionClass = (EClass)epackage.getEClassifier("Transition");
4.EObject transition = EcoreUtil.create(transitionClass);
5.
6.// search object automaton in model
7.EObject automaton = null;
8.for (TreeIterator<EObject> it = seed.getAllContents(); it.hasNext();) {
     automaton = it.next();
10.
     if (automaton.eClass().getName().equals("Automaton")) {
11.
         // add transition to automaton
12.
         EStructuralFeature feature =
13.
            automaton.eClass().getEStructuralFeature("transitions");
14.
         ((List<EObject>)automaton.eGet(feature)).add(transition);
15.
         // set random state as source of the transition
16.
         feature = automaton.eClass().getEStructuralFeature("states");
17.
         List<EObject> states = (List<EObject>) automaton.eGet(feature);
18.
         EObject randomState = states.get(rand.nextInt(states.size()));
19.
         feature = transitionClass.getEStructuralFeature("src");
20.
         transition.eSet(feature, randomState);
21....
```

Facilidad de integración con otros programas Java

III. Wodel-Edu: un framework para la generación automática de ejercicios mediante técnicas de mutación

Motivación

 Se propone el entorno Wodel-Edu – una extensión a Wodel – para la generación automática de ejercicios que es independiente del dominio

- Aplicación web con tres formatos de ejercicios:
 - Respuesta alternativa
 - Selección de un diagrama entre varios
 - Selección de opciones de texto
- Necesidad de:
 - Representación gráfica de los modelos
 - Generación de las opciones de texto
 - Generación de código HTML+JavaScript

Arquitectura

Formatos de ejercicios I y II

Respuesta alternativa

C www.wodel.eu Does this automaton accept ((ab)*|(ba)*)+? Exercise 1 Exercise 2 Exercise 3 Exercise 4 Current mark: 0/4

 Selección de un diagrama entre varios

Formato de ejercicios III

- Selección de opciones de texto para corregir el diagrama
- Las opciones de texto (correctas e incorrectas) se generan utilizando el registro de mutaciones
- Los DSLs modelText y mutaText se pueden utilizar para la configuración del texto de estas opciones

Descripción del formato de ejercicios III

- Opciones generadas: correctas
- 1. Change attribute isFinal from State q2 with value true to false
- 2. Change Transition a from State q1 to State q0 with new target State q1

- Opciones generadas: incorrectas
- 1. Change attribute is Final from State q0 with value false to true
- 2. Change Transition b from State q2 to State q2 with new target State q0

IDE de Wodel-Edu I

DSL eduTest

```
☐ Package Explorer 
☐

                                   ₩ FAWodel.tests 🏻 Ж FAWodel.cfgopts
                                                                      14: FAWodel.graph
                                                                                       FAWodel.idelems
                                       navigation=free
retry=no, weighted=no, penalty=0.0, order=options-descending, mode=0

₩ FAWodel.cfgopts

                                           description for 'exercise4.model' = 'Which
                                                                                  ⊞fixed
                                           description for 'exercise6.model' = 'Which
       W FAWodel.graph
                                                                                   options-ascending
                                           description for 'exercise10.model' = 'Whic
       FAWodel.idelems
                                           description for 'exercise12.model' = 'Whic
                                                                                  □ options-descending
       W FAWodel, mutator
                                                                                   □ random

▼ FAWodel.tests

                                     III -
   src-gen
                                           retry=no
                                           description for 'exercise1.model' = 'Selec
   JRE System Library [J2SE-1.5]
```

DSL modelGraph

```
🖺 Package Explorer 🖂 🗏 🔄 🐌
                                        ₩ FAWodel.cfgopts
                                                          ₩ FAWodel.graph 🛭 Ж FAWodel.idelems
                                                                                               W FAWodel.mutator

▼ FAWodel.tests

metamodel "C:/eclipse/runtime-EclipseApplication/FAWodel/model/DFAAutomaton.ecore"
  Automaton: diagram {
       ₩ FAWodel.cfgopts
                                               State(isInitial): markednode
       14 FAWodel.graph
                                               State(not isFinal): node, shape=circle
       7K FAWodel.idelems
                                               State(isFinal): node, shape=doublecircle
       W FAWodel.mutator
                                               Transi
                                                       🖵 isFinal
       74 FAWodel.tests
                                                       🖵 isInitial
  🖵 name

□ not

  ▶ ➡ Plug-in Dependencies

□ yes

  config
                                                      ) 量
  META-INF
   model
       DFAAutomaton.ecore
```

IDE de Wodel-Edu II

DSL modelText

DSL mutaText

Descripción de la evaluación

- Se genera una aplicación web de ejercicios de test con Wodel-Edu (http://www.wodel.eu):
 - Primera página: 4 ejercicios de opciones de texto
 - Segunda página: 4 ejercicios de seleccionar un diagrama entre varios
 - Tercera página: 4 ejercicios de respuesta alternativa
- Se miden tres dimensiones, además de la nota obtenida (opcional):
 - El ejercicio se entiende bien
 - La dificultad del ejercicio es adecuada
 - El ejercicio es útil para aprender autómatas
- Se consiguen 10 participantes (1 sin formación en autómatas, 8 hombres y 2 mujeres, entre 22 y 41 años, ...)

Resultados de la evaluación

 Fácil de entender (68%, 78%, 76%)

 Nivel adecuado de dificultad (82%, 89%, 87%)

 Útil para aprender autómatas (94%, 94%, 88%)

Nota obtenida
 (50%, 67%, 63%)

Conclusiones de la evaluación

- El ejercicio de selección de opciones de texto es complicado de entender:
 - Agrupar con mode=radiobutton en el DSL eduTest
 - Mostrar el resultado de aplicar la opción sobre el diagrama
 - Hacer el ejercicio interactivo
- Dificultad percibida razonable
- Se perciben como muy útiles para aprender autómatas
- Cuestiones para evaluaciones posteriores
 - Incluir instrucciones o un tutorial
 - Influencia del orden de los ejercicios (mejor dificultad creciente)
 - Mezclar ejercicios generados de forma automática con otros hechos a mano
 - Evaluación desde el punto de vista del profesor

IV. Conclusiones y trabajo futuro

Conclusiones

- Wodel es un DSL para mutación de modelos:
 - Primitivas de mutación de alto nivel
 - Independiente del dominio
 - Da soporte a mutaciones compuestas
 - Da soporte a bloques de mutaciones: mutar mutantes generados previamente
 - Mutantes duplicados, validez de los mutantes
 - Compilado a Java
 - Extensible para diferentes aplicaciones
- Wodel-Edu: generación automática de ejercicios mediante técnicas de mutación
 - Independiente del dominio
 - Tres tipos diferentes de ejercicios
 - Generación de opciones de texto basadas en el registro de mutaciones
 - Resultados prometedores para la educación

Publicaciones

- Artículo 'Wodel: a Domain-Specific Language for Model
 Mutation' presentado en el 31st ACM Symposium on
 Applied Computing (SAC'16) que fue celebrado el pasado
 mes de abril en Pisa (Italia)
- Artículo 'A Domain-Specific Language for Model Mutation and its Application to the Automated Generation of Exercises' para la revista Computer Languages, Systems and Structures (Elsevier) (en evaluación)

Trabajo futuro

- Ampliar Wodel con nuevas primitivas de mutación
- Desarrollar nuevos plugins para Wodel (para pruebas basadas en modelos, algoritmos genéticos...)
- Ampliar Wodel-Edu para generar entornos de aprendizaje más complejos (p. ej., con gamificación), ejercicios (p. ej., que sean interactivos), y diferentes plataformas (móviles o tablets)
- Hacer más experimentos con Wodel-Edu, contando con el punto de vista del profesor

Puedes descargarte el código de este proyecto en GitHub: http://gomezabajo.github.io/Wodel/
Una demo breve: https://youtu.be/T9n3T0jGvzg
Gracias!!

Pablo.GomezA@uam.es