- 1. The graph¹ of Europe $\mathcal{G}^* = \langle V, E \rangle$ is defined as follows: each vertex $v \in V$ is a Europe country²; two vertices are adjacent ($\{u, v\} \in E$) if the corresponding countries share a land border. Let \mathcal{G} be a maximum connected component of \mathcal{G}^* .
 - (a) Prove that G^* is planar by drawing it on a plane without an intersection of edges.
 - (b) Find |V|, |E|, $\delta(\mathcal{G})$, $\Delta(\mathcal{G})$, $rad(\mathcal{G})$, $diam(\mathcal{G})$, $girth(\mathcal{G})$, $center(\mathcal{G})$, $\kappa(\mathcal{G})$, $\lambda(\mathcal{G})$.
 - (c) Find the minimum vertex coloring $Z: V \to \mathbb{N}$ of \mathcal{G} .
 - (d) Find the minimum edge coloring $X : E \to \mathbb{N}$ of \mathcal{G} .
 - (e) Find the maximum clique $Q \subseteq V$ of G.
 - (f) Find the maximum stable set $S \subseteq V$ of \mathcal{G} .
 - (g) Find the maximum matching $M \subseteq E$ of G.
 - (h) Find the minimum vertex cover $R \subseteq V$ of G.
 - (i) Find the minimum edge cover $F \subseteq E$ of G.
 - (j) Find the shortest closed path (circuit) W that visits every vertex of G.
 - (k) Find the shortest closed path (circuit) U that visits every edge of G.
 - (l) Find all 2-vertex-connected components (blocks) and draw a block-cut tree of \mathcal{G}^* .
 - (m) Find all 2-edge-connected components of \mathcal{G}^* .
 - (n) Construct an SPQR tree of the largest biconnected component of \mathcal{G} .
 - (o) Add the weight function $w : E \to \mathbb{R}$ denoting the distance³ between capitals. Find the minimum (*w.r.t.* the total weight of edges) spanning tree T for the maximum connected component of the weighted Europe graph $\mathcal{G}_w^* = (V, E, w)$.
 - (p) Find centroid(T) (w.r.t. the edge weight function w).
 - (q) Construct the Prüfer code for *T*.
- 2. Prove *rigorously* the following theorems:

Theorem 1. (Triangle Inequality) For any connected graph $G = \langle V, E \rangle$:

$$\forall x, y, z \in V : \operatorname{dist}(x, y) + \operatorname{dist}(y, z) \ge \operatorname{dist}(x, z)$$

Theorem 2. For any connected graph $G: rad(G) \le diam(G) \le 2 rad(G)$.

Theorem 3. A connected graph $G = \langle V, E \rangle$ is a tree (*i.e.* acyclic graph) *iff* |E| = |V| - 1.

Theorem 4. Given a connected graph G with n vertices, if $\delta(G) \ge \lfloor n/2 \rfloor$, then $\lambda(G) = \delta(G)$.

Theorem 5. Every block of a block graph⁴ is a clique.

¹Hereinafter, "graphs" are "simple undirected and unweighted", unless stated otherwise.

²Since the absolute geopolitical correctness is not necessary to accomplish this task, you can simply use https://simple.wikipedia.org/wiki/List_of_European_countries or any similar source as a reference.

³You can choose a geodesic or a road distance, to your preference.

⁴A block graph H = B(G) is an intersection graph of all blocks (biconnected components) of G, *i.e.* each vertex $v \in V(H)$ corresponds to a block of G, and there is an edge $\{v, u\} \in E(H)$ iff "blocks" v and u share a cut vertex.