Master Degree in Artificial Intelligence Statistical and Mathematical Methods for Artificial Intelligence

2019-2020

Homework 1

Finite Numbers

Choose three of the following exercises.

1. Use the Matlab functions eps,realmax, realmin to compute the Floating Point Systems parameters t,L,U assuming that $\beta=2$. Fill the gap.

.....

MATLAB FLOATING POINT SYSTEM F(2,t,L,U)

UFL :

OFL =

Precisione Macchina =

t =

L =

U =

Tips:

Given the Floating Point system $\mathcal{F}(\beta, t, L, U)$, you know that:

$$\epsilon_{mach} = \beta^{1-t}, UFL = \beta^L, \quad OFL = (\beta - \beta^{-t+1})\beta^U.$$

Can you get t from the expression of ϵ_{mach} ?

2. Compute the machine precision ϵ for single and double precision, using its alternative definition:

$$fl(1+\epsilon) > 1.$$

Tips:

Use a while structure. To set a single precision use the function single.

3. Truncation error in π approximation. In mathematics, the Leibnitz formula for π , states that:

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots$$

It is obtained using Taylor formula for the tan^{-1} function:

$$\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + o(x^9),$$

setting x=1 since $\arctan(1)=\frac{\pi}{4}$. Fix $n\in\mathbb{N}$ and compute the approximation of π using Leibnitz formula truncated at n-th term. Compare the result with the true value of π .

4. Let's consider the sequence $a_n = (1 + \frac{1}{n})^n$. It is well known that:

$$\lim_{n \to +\infty} a_n = e,$$

where e is the Euler costant. Choose different values for n, compute a_n and compare it to the real value of the Euler costant. What happens if you choose a large value of n?