Cálculo de la constante elástica de un muelle

Andoni Latorre Galarraga alatorre 73@alumno.uned.es

Resumen

Se estudia la relación entre una masa y el periodo de oscilación de esta al ser suspendida de un muelle. A partir de los datos experimentales se calcula el valor de la constante elástica del muelle. El experimento se desarrolla siguiendo el proceso explicado en [2].

Fundamento Teórico

La ley de Hooke predice que si se aplica una fuerza F a un muelle la elongación x es proporcional a dicha fuerza.

$$F = -kx$$

Donde la constante de proporcionalidad k es la constante elástica del muelle. Si se suspende una masa M del muelle, aplicando la segunda ley de Newton, se tiene

$$Ma = -kx \Rightarrow \frac{d^2x}{dt^2} = -\frac{k}{M}x$$

De la solución de la ecuación diferencial, $C_1 \operatorname{sen}(\sqrt{\frac{k}{M}}t) + C_2 \cos(\sqrt{\frac{k}{M}}t)$, se deduce el periodo de oscilación, T.

$$T=2\pi\sqrt{\frac{M}{k}}$$

Para considerar la masa del muelle, m, como toda la masa del muelle no está tan desplazada, se le suma a la masa una cantidad αm con

 $\alpha < 1$.

$$T = 2\pi \sqrt{\frac{M + \alpha m}{k}}$$

Tomado cuadrados obtenemos una relación lineal entre T^2 y M (resaltados es azul).

$$T^2 = \frac{4\pi^2}{K}M + \frac{4\pi^2\alpha m}{K}$$

Estudiaremos la pendiente para obtener el valor de k.

Dispositivo experimental

El dispositivo experimental consiste en un muelle del cual se ha suspendido un soporte en el cual se pueden colocar distintas masas. En la Fig. 1 se puede observa el dispositivo experimental.

Figura 1: Dispositivo experimental.

Al lado de muelle y el soporte se encuentra una escala con precisión de 1mm con un plástico (ver Fig. 2) para asistir en la medición.

Figura 2: Plástico unido a la escala vertical para asistir con las mediciones.

Procedimiento y Resultados

Para una primera estimación del valor del valor de k utilizaremos la relación lineal entre la fuerza y la elongación.

$$F = Mg = -kx$$

Para el valor de g tomaremos será de $-9,847 \mathrm{ms}^{-2}$, obtenido de [3] sabiendo que la latitud del laboratorio es de unos $43,3305^{\circ}$. Para obtener el error de F, utilizamos propagación cuadrática.

$$\epsilon_F = \sqrt{\left|\frac{dF}{dM}\right|^2 \epsilon_M^2} = g\epsilon_M$$

Los datos experimentales son los siguientes:

Tabla 1:

x(m)	$\epsilon_x(\mathrm{m})$	M(kg)	$\epsilon_M({ m Kg})$	F(N)	$\epsilon_F(\mathrm{N})$
0,007	0,001	0,01	0,002	-0,10	0,02
0,013	0,001	0,02	0,002	-0,20	0,02
0,019	0,001	0,03	0,002	-0,30	0,02
0,026	0,001	0,04	0,002	-0,39	0,02
0,031	0,001	0,05	0,002	-0,49	0,02
0,037	0,001	0,06	0,002	-0,59	0,02
0,044	0,001	0,07	0,002	-0,69	0,02
0,050	0,001	0,08	0,002	-0,79	0,02
0,056	0,001	0,09	0,002	-0,89	0,02
0,064	0,001	0,10	0,002	-0.98	0,02
0,071	0,001	0,11	0,002	-1,08	0,02
0,077	0,001	0,12	0,002	-1,18	0,02
0,083	0,001	0,13	0,002	$-1,\!28$	0,02
0,090	0,001	0,14	0,002	-1,38	0,02

x(m)	$\epsilon_x(\mathrm{m})$	M(kg)	$\epsilon_M({ m Kg})$	F(N)	$\epsilon_F(\mathrm{N})$
0,093	0,001	0,15	0,002	-1,48	0,02
0,099	0,001	0,16	0,002	$-1,\!58$	0,02
0,106	0,001	0,17	0,002	-1,67	0,02
0,111	0,001	0,18	0,002	-1,77	0,02
0,118	0,001	0,19	0,002	-1,87	0,02

En la Fig. 3 se muestra la fuerza, F, frente a la elongación, x junto con la recta de regresión.

Figura 3: F frente a x junto con la recta de regresión.

De la pendiente de la recta de regresión deducimos que

$$-k = (-15,83 \pm 0,13) \text{ kg s}^{-2}$$

$$\Rightarrow k = (15.83 \pm 0.13) \text{ kg s}^{-2}$$

Por otra parte también estimaremos el valor de k a traves de la relación lineal.

$$T^2 = \frac{4\pi^2}{K}M + \frac{4\pi^2\alpha m}{K}$$

Se han tomado 4 tiempos para 10 oscilaciones con 12 masas diferentes. Los datos experimentales son:

Tabla 2:

m(kg)	$T_1(s)$	$T_2(s)$	$T_3(s)$	$T_4(s)$
0,03	3,69	3,69	3,90	3,59
0,04	3,94	3,90	3,91	3,93
0,05	4,28	4,25	4,33	4,25
0,06	4,47	4,41	4,50	4,56
0,07	4,75	4,81	4,65	4,88
0,08	4,94	4,97	4,88	4,94

m(kg)	$T_1(s)$	$T_2(s)$	$T_3(s)$	$T_4(s)$
0,09	5,22	5,25	5, 25	5,00
0,10	5,50	5,59	5,68	5,50
0,12	5,88	5,91	5,93	5,81
0,15	6,50	6,65	6,59	6,50
0,17	6,97	6,94	6,94	6,97
0,20	7,32	7,38	7,44	7,44

Primero calcularemos la media de los 4 tiempos:

$$\overline{T} = \frac{1}{4} \sum_{i=1}^{4} T_i$$

Y para su error calcularemos la dispersión de los 4 tiempos como se indica en la ecuación (2.5) de [1].

$$D = \frac{\min_i T_i - \min_i T_i}{2}$$

Y luego el error de acuerdo con la fórmula (2.8) de [1].

$$\epsilon_{\overline{T}} = \frac{D}{\sqrt{4}}$$

$$\Rightarrow \epsilon_{\overline{T}} = \frac{\max_i T_i - \min_i T_i}{4}$$

Ahora como $\overline{T} = 10T$ Podemos calcular T y su error.

$$T = \frac{\overline{T}}{10}$$

$$\epsilon_T = \sqrt{\left|\frac{dT}{d\overline{T}}\right|^2 \epsilon_T^2} = \frac{\epsilon_{\overline{T}}}{10}$$

$$\Rightarrow T = \frac{1}{40} \sum_{i=1}^{4} T_i \quad \epsilon_T = \frac{\max_i T_i - \min_i T_i}{40}$$

De nuevo, aplicando la propagación cuadrática de errores para T^2 ,

$$\epsilon_{T^2} = 2T\epsilon_T$$

Tabla 3:

M(kg)	T(s)	$\epsilon_T(\mathrm{s})$	$T^2(s^2)$	$\epsilon_{T^2}(\mathrm{s}^2)$
0,03	0,372	0,008	0,138	0,006
0,04	0,3920	0,0010	0,1537	0,0008
0,05	0,428	0,002	0,183	0,0017
0,06	0,448	0,004	0,201	0,003
0,07	0,477	0,006	0,228	0,005
0,08	0,493	0,002	0,243	0,002
0,09	0,517	0,006	0,267	0,006
0,10	0,557	0,004	0,31	0,005
0,12	0,588	0,003	0,346	0,004
0,15	0,656	0,004	0,43	0,005
0,17	0,6955	0,0007	0,4837	0,001
0,20	0,740	0,003	0,547	0,004

En la Fig. 4 se pude ver T^2 frente a M junto con la recta de regresión.

Figura 4: T^2 frente a M junto con la recta de regresión y = ax + b.

$$a = (2.47 \pm 0.04)~{\rm s^2~kg^{\text{-}1}}$$

$$b = (0.055 \pm 0.004) \text{ s}^2$$

Sabiendo la pendiente de la recta calculamos la constante elástica y su error.

$$k = \frac{4\pi^2}{a}$$

$$\epsilon_k = \sqrt{\left|\frac{dk}{da}\right|^2 \epsilon_a^2} = \frac{4\pi^2}{a^2} \epsilon_a$$

$$k = (16.0 \pm 0.3) \text{ kg s}^{-2}$$

A partir de la ordenada en el origen, se puede calcular αm y su error.

$$b = \frac{4\pi^2}{K} \alpha m = a\alpha m$$

$$\Rightarrow \alpha m = \frac{b}{a}$$

$$\epsilon_{\alpha m} = \sqrt{\left|\frac{\partial \alpha m}{\partial a}\right|^2 \epsilon_a^2 + \left|\frac{\partial \alpha m}{\partial b}\right|^2 \epsilon_b^2}$$

$$= \sqrt{\left(\frac{-b}{a^2}\right)^2 \epsilon_a^2 + \left(\frac{1}{a}\right)^2 \epsilon_b^2} = \frac{1}{a} \sqrt{b^2 \epsilon_b^2 + \epsilon_a^2}$$

$$\alpha m = (0.022 \pm 0.016) \text{ kg}$$

$$\alpha m = (22 \pm 16) \text{ g}$$

Este resulado es muy impreciso, ya que tiene un error relativo de más del 70 %. A partir de consideraciones energeticas, como se indica en [2] se puede calcular el valor de α , que debe de ser $\frac{1}{3}$. Sabiendo esto podemos calcular m y su error.

$$m = 3\alpha m$$
 $\epsilon_m = 3\epsilon_{\alpha m}$
 $m = (70 \pm 50) \text{ g}$

Conclusiones

El primer valor de k, $(15,83 \pm 0,13)$ kg s⁻² tiene un error relativo de menos del 1% y el segundo valor $(16,0\pm0,3)$ kg s⁻² tiene un error menor al 2%. Ambos valores son muy precisos y coinciden, ya que existen valores dentro de ambas barras de error. Podemos unficar estos valores utilizando las ecuanciones de [1] p. 51-52., tomamos una media ponderada donde los

pesos están relacionados con los errores de las medidas, dando más peso a las más precisas.

$$k = \frac{\frac{1}{0,13^2} 15,83 + \frac{1}{0,3^2} 16,0}{\frac{1}{0,13^2} + \frac{1}{0,3^2}}$$
$$\epsilon_k = \frac{1}{\sqrt{\frac{1}{0,13^2} + \frac{1}{0,3^2}}}$$
$$k = (15,86 \pm 0,12) \text{ kg s}^{-2}$$

El valor de m es muy impreciso, tiene un error de más del 70%, además al pesar el muelle directamente se tiene una masa de $(22, 9\pm 0, 1)$ g. Este valor está dentro de la barra de error de la masa obtenida (70 ± 50) g, pero está en un extremo del intervalo. El valor de α también puede diferir significativamente del teorico ya que el muelle presentaba grandes deformaciones, aún así, el valor de αm va tenia un error relativo inaceptable (72 %). El único valor experimental que se puede considerar es el de k, tiene un error relativo pequeño y se han conseguido dos valores compatibles por métodos diferentes. El valor unificado $k = (15.86 \pm 0.12) \text{ kg s}^{-2} \text{ es la}$ mejor predicción experimental del valor real de la constante elástica, tiene un error del 0,76 %.

Referencias

- [1] Manual de la asignatura. Versión 3.7
- [2] https://uned-labo.netlify.app/ practicas/te/2_practica_ley_hooke/ prak2.html 14/6/2022
- [3] https://www.sensorsone.com/ local-gravity-calculator/ 14/6/2022