Name:	Signature:
P525/1	
CHEMISTRY	
Paper 1	
May./June. 2021	S.5
2 3 hours	

THE CHEMISTRY DEPARTMENT

TEST - 2021

CHEMISTRY

Paper 1

2 hours 45 minutes

INSTRUCTIONS:

Answer all questions in this section A and six questions in section B.

Allanswers must be written in the spaces provided.

The Periodic Table, with relative atomic masses, is attached at the end of the paper.

Mathematical tables (3-figure tables) are adequate or non-programmable scientific electronic calculators may be used.

Illustrate your answers, with equations where applicable.

Where necessary, use the following;

Molar gas constant, R=8.31 JK⁻¹mol⁻¹.

Molar volume of a gas at s.t.p is 22.4 litres.

Standard temperature = 273K.

Standard pressure = 101325Nm⁻²

	For Teachers' Use Only																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

SECTION A (46 MARKS)

Answer all questions in this section.

1. (a) C	omplete	the follow	ving eq	uatio	ns.		
(i)	$^{27}_{13}Al$ +	$_{0}^{1}n$ -		$\rightarrow \beta + \dots$		(01 mark)
(ii) 4	$4^{1}_{1}H$ —		► 4 2	He +		(01 mark)
(iii) ²	²³⁹ U ——	→ ²	²³⁹ U	+		(01 mark)
(b) /	An elem	ent X has	s two r	natur	ally occuri	ring isoto	pes with isotopic
masses	and rela	ative abur	ndance	s as s	shown belo	w.	
		Isotopic	mass	Re	lative abu	ındance	
		79)		50.5		
		81			49.3		
(i)	Stat	te what is	meant	t by t	the term r	elative at	omic mass.
							(01 mark)
(ii)	Calc						(02 marks)
2. An o	rganic c	•	Q has		structure; <i>CH</i>		
(a)	Name t	the funct	ional gi	roups	s present i	n Q .	(02 marks)

	(b)	Write equation fo	or the reaction between	Q and:
	(i)	alkaline potas:	sium permanganate solut	tion. (01 mark)
••••				
••••	·············		(T) abbasida aababia	
	(ii)	ammoniacai co	pper(I) chloride solutio	n. (UI mark)
	(c)	State what would	l be observed in (b) (i)	(01 mark)
			. , , ,	
••••				
3.	Draw	, the structure a	nd name the shape of	each of the following
F	speci	ies.	,	(4 ½ marks)
	speci	es. Species	Structure	(4 ½ marks) Shape
	speci		Structure	<u> </u>
	speci		Structure	<u> </u>
	speci	Species	Structure	<u> </u>
	speci	Species	Structure	<u> </u>
	speci	Species CrO_4^{2-}	Structure	<u> </u>
	speci	Species	Structure	<u> </u>
	speci	Species CrO_4^{2-}	Structure	<u> </u>
	speci	Species CrO_4^{2-} ClO_3^-	Structure	<u> </u>
	speci	Species CrO_4^{2-}	Structure	<u> </u>

l

4. 20 cm 3 of a hydrocarbon Z was exploded with 200 cooling to room temperature, the residual gases of When the residual gases were passed through solution, the volume reduced to 20 cm 3 .	occupied 160 cm ³ .
(a)(i) Write equation for the reaction between Z and or	
(b) Determine the molecular formula of Z .	(2 ½ marks)
(c)Compound Z burns with a sooty flame. When Z was alkaline potassium manganate(VII) solution fol hydrochloric acid, compound T was formed. T react ribbon liberating hydrogen gas.	lowed by dilute
(i) Identify Z and T	(01 mark)
(ii) Write equation to show how Z can be obtained	ed from an alkyne.
	(1 ½ marks)

(b) Write an equation to show the reaction between; (i) Al_2O_3 and excess sodium hydroxide solution.	(1 ½ marks)
(ii) $Cr_2O_7^{2-}$ and hydrogen peroxide solution.	(1 ½ marks)
7. (a) A compound, R contains iron; 28%, Oxygen; 48% an Calculate the empirical formula of R .	d sulphur; 24%. (02 marks)
(b) If the molecular mass of R is 400, determine the molecular R .	cular formula of (01 mark)
(c) A solution of R in water was added onto a piece of magna test tube. State what was observed and write equation f that took place. Observation	

Εq 	uatio	n 		(1 ½ marks)
8.	that	would take plo ted together.	observed and write an equatace when each of the follow	wing compounds are
		Observation:		(2 ½ marks)
	(b)	$CH_3CH = CH_2$	and bromine water.	$(2\frac{1}{2} \text{ marks})$
		Equation:		
9.	sulph to th The	nur dioxide is come following equal $2SO_2(g) + 1$ sulphur trioxide compound X .	$O_2(g)$ \Longrightarrow $2SO_3(g)$, Δ formed is then absorbed in S strial conditions used to obtain	Ir trioxide according $H^{ heta}=-197kJmol^{-1}$ 98% sulphuric acid to ain maximum yield of
		sulphur trioxid	ટ.	(1 ½ marks)

(b)		e equation to show how compou uric acid.	und X can be converted into (01 mark)
 (c)	Write acid (e equation for the reaction bet and: Aluminium	ween concentrated sulphuric
			(O1 mark)
	(ii)	Phosphorus	(01 mark)
10 W/n	to oa	SECTION B: (54 M Answer any six questions fro	om this section.
	•	•	om this section. Ollowing compounds can be
	thesise	Answer any six questions from ations to show how the fo	om this section. Ollowing compounds can be the reaction(s).
syn	thesise	Answer any six questions from ations to show how the food. Indicate the condition(s) for	om this section. Ollowing compounds can be the reaction(s).
syn	thesise	Answer any six questions from ations to show how the food. Indicate the condition(s) for	om this section. Ollowing compounds can be the reaction(s).
syn	thesise	Answer any six questions from ations to show how the food. Indicate the condition(s) for	om this section. Ollowing compounds can be the reaction(s).

(b)	Benzene from ethene		marks)
••••••			•••••
(c)	Butanone from propyne	$(3\frac{1}{2})$	marks)
11. Stat	e what would be observed and write the equation for would take place if;		
(a)	Propyne is bubbled through ammoniacal silver nitra	te solut	ion.
		(02	marks)
	Observation;		
	Equation:		
(b)	Acidified potassium permanganate solution is adde		-2-ene. marks)

	Obse	rvation	,								
								••••••			·····
	Equa	tion:		••••			• • • •				···
(c)	dilute	e sodiu	m hydro	xi	ide solu	tion is	s	added d	rop wis	e until	in
	exces	ss to aq	ueous ma	agi	nesium i	ons.			('02 marl	(S)
	Obse	rvation	•								••••
	State stance.	what is	meant	by	y the t	erm fi	re	ezing po	int cons	tant of (01 mar	
(b)	 The	table	below	 sl	hows t	 he fr		ezing po	oints o	f vario	 us
` '								Q in wate			
Conce	entrati	on of Q	(gdm^{-3}))	0	30		60	90	120	150
Free	zina po	int(°C)			0	-0.16	5	-0.32	-0.49	-0.65	-0.81

Plot a graph of freezing point depression against concentration of Q

(i) Determine ti	ne : graph you have dr	awn in (b).	(1 ½ marks)

of water is 1.86 °Ckg ⁻¹ mol ⁻¹) (2 $\frac{1}{2}$ marks)	nass of Q. $(K_f$	olecular n	relative r	(ii)
the following conversions can	how each of	n to show	a mechanis	
(03 marks)	SO ₃ H	<i>∧</i> /		be eff (a)
CH ₃ (2 ½ marks)	<i>OH</i> (<i>CH</i> ₃) ₂ <i>CCH</i> ₂ (HCH ₃ to	$(CH_3)_2C = C$	(b)

(c)		to	N	2		(3	3 <u>1</u> n	narks
	pound Z rest beir			copper, 12	2.8% sulphur,	25.6% (хүдө	en an
(a)				al formula	of Z .	((02 r	narks
		•••••					• • • • • • • • • •	
	(iii)	Deterr	nine the	molecular	formula of Z			
			(The fo	rmula ma	formula of Z . ss of Z = 250)		mark
(b)	Excess		(The fo	ermula ma	$ss of \mathbf{Z} = 250$			

(ii)	Write the equation	for the reaction that too	k place.
			(1 ½ marks)
(c)	followed by barium niti	on of Z was added to c	illute nitric acid
(i)	State what was obs		(01 mark)
(ii)	Write the equation	for the reaction that took	place.
	·		(1 ½ marks)
	a alamanta: codium maar	pasium silican and sulphun	belong to Peniod
	_	nesium, silicon and sulphur	belong to Period
3 of	f the Periodic Table.	·	-
	f the Periodic Table.	nesium, silicon and sulphur	-
3 of	f the Periodic Table. For each element, wri	·	the structure of (04 marks)
3 of	f the Periodic Table. For each element, writhe hydride it forms.	te the formula and name	the structure of (04 marks)
3 of	f the Periodic Table. For each element, writh the hydride it forms. Element	te the formula and name	the structure of (04 marks)
3 of	f the Periodic Table. For each element, writhe hydride it forms. Element Sodium	te the formula and name	the structure of (04 marks)
3 of	f the Periodic Table. For each element, writhe hydride it forms. Element Sodium Magnesium	te the formula and name	the structure of (04 marks)
3 of	f the Periodic Table. For each element, writh the hydride it forms. Element Sodium Magnesium Silicon Sulphur	te the formula and name	the structure of (04 marks) Structure
3 of (a)	f the Periodic Table. For each element, writh the hydride it forms. Element Sodium Magnesium Silicon Sulphur	Formula and name	the structure of (04 marks) Structure

••••••	••••••				
	(ii)	Sulphur			(01 mark)
(c)		n hydride is h xplain this ob	nydrolysed by wa oservation.	ter whereas car	bon hydride is (03 marks)
	_	•	e water is 100°C	•	
	•	ure, a solution er boils at 10	on containing 1.5 00.11°C	1769 of potassi	um chioride in
(a)			ng point constant	, K_b for water.	(3 ½ marks)
		• • • • • • • • • • • • • • • • • • • •			
		•••••			

(b)	Explain why;											
	(i)	the boiling point of potassium chloride than that of pure water.	solution is higher (2 $\frac{1}{2}$ marks)									
••••••	••••••											
	• • • • • • • • • • • • • • • • • • • •											
	•••••											
	• • • • • • • • • • • • • • • • • • • •											
	• • • • • • • • • • • • • • • • • • • •											
	(ii)	a 0.1M potassium chloride solution b										
		temperature as a 0.2M glucose solution	. (03 marks)									
	• • • • • • • • • • • • • • • • • • • •											
	• • • • • • • • • • • • • • • • • • • •											
	• • • • • • • • • • • • • • • • • • • •											
	• • • • • • • • • • • • • • • • • • • •											

of co	oncenti	de are manufactured by electrolysis olution.	
(a)		the substance used as	
	(i) 	Cathode	(½ mark)
	(ii)	Anode	(½ mark)
(b) Wri	te the	equation(s) for the red	action(s) leading to formation of:
	(i)	Chlorine	(01 mark)
	(ii)	Sodium hydroxide	(2 ½ marks)
(c)			ved and write the equation(s) for the place if chlorine is bubbled through; ion. (1 ½ marks)

	(ii)	Hot concentrated sodium hydroxide so	lution. (02 marks)
(d)	Give	a reason for your answer in (c)(i).	(01 mark)

THE PERIODIC TABLE

1	2											3	4	5	6	7	8
1.0 H 1					=			Į.								1.0 H 1	4.0 He 2
6.9 Li 3	9.0 Be 4								٠			10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	20.2 Ne 10
23.0 Na 11	24.3 Mg 12											27.0 Al 13	28.1 Si 14	31.0 P 15	32.1 S 16	35.4 Cl 17	40.0 Ar 18
39.1 K 19	40.1 Ca 20	45.0 Sc 21	47.9 Ti 22	50.9 V 23	52.0 Cr 24	54.9 Mn 25	55.8 Fe 26		58.7 Ni 28	63.5 Cu 29	65.7 Zn 30	69.7 Ga 31	72.6 Ge 32	74.9 As 33	79.0 Se 34		83.8 Kr 36
85.5 Rb	87.6	88.9 Y 39	91.2 Zr 40	92.9 Nb 41		98.9 Tc 43	101 Ru 44	103 Rh 45	106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
133 Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75	T-1000	192 Ir 77	195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	209 Bi 83	209 Po 84	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89															
			139 La 57	140 Ce 58	141 Pr 59	144 Nd 60	147 Pm 61	150 Sm 62	F 1000000000000000000000000000000000000	57.000		100		167 Er 68	169 Tm 69		71
			227 Ac 89	232 Th 90	231 Pa 91	238 U 92	237 Np 93	244 Pu 94	243 Am 95	247 Cm 96	247 Bk 97	251 Cf 98	254 Es 99		256 Md 101	254 No 102	260 Lw 103