Vilniaus Universitetas

Matematikos ir Informatikos Fakultetas Duomenų mokslas III kursas 2 grupė

Matas Gaulia

4 užduotis

Duomenys: https://www.cs.toronto.edu/~kriz/cifar.html
Duomenų rinkinį sudaro 60000 nuotraukų, kurių dydis yra 32 x 32 pikselių Kiekvienas paveiksliukas patenka į tik vieną iš 10 klasių Klasės:

- Lėktuvas
- Automobilis
- Paukštis
- Katė
- Elnias
- Šuo
- Varlė
- Arklys
- Laivas
- Sunkvežimis

Prepare data

```
In [30]: (train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()
X = np.concatenate((train_images, test_images))
Y = np.concatenate((train_labels, test_labels))
train_images, test_images, train_labels, test_labels =
    train_test_split(X, Y, test_size=TEST_DATASET_SIZE, random_state=4)
train_images, test_images = train_images / 255.0, test_images / 255.0
```

Kadangi duomenys yra RGB reikšmės, jos svyruoja nuo 0 iki 255, norint kad modelis geriau mokytusi, reikia normalizuoti duomenis, tad padalinu reikšmes iš 255, kad gautusi skalė 0 - 1

Tensorflow automatiškai parenka kad testavimo aibės dydis yra 10000, bet programoje galima parinkti bet kokį aibės dydį

Programa buvo leidžiama panaudojant tensorflow-metal kuris išnaudoja GPU.

Kompiuteris: M1 Macbook AIR

8 CPU branduoliai: 4 didelio efektyvumo ir 4 didelio pajėgumo

7 GPU branduoliai 16 GB Atminties

https://www.tensorflow.org/tutorials/images/cnn

Pagal oficialius mokymus pasirinkau siūlomus neuroninio tinklo sluoksnius: Conv2D, MaxPooling2D, Flatten, Dense

Aktyvacijos funkcija: Relu Optimizacijos funkcija: Adam

Praradimo matavimo funkcija: Sparse Categorical Crossentropy

Modelio metrika: atspėjamų klasių procentas

Epochos: 10

```
Epoch 1/10
   5/782 [.....] - ETA: 10s - loss: 2.3064 - accuracy: 0.0813
2021-12-14 \ 05:23:35.293377: \ {\tt I \ tensorflow/core/grappler/optimizers/custom\_graph\_optimizer\_registry.cc:112] \ {\tt Plugin \ optimizers/custom\_graph\_optimizer\_registry.cc:112]} \ {\tt Plugin \ optimizer\_registry.cc:112]} \ {
mizer for device_type GPU is enabled.
782/782 [===========] - ETA: 0s - loss: 1.5833 - accuracy: 0.4237
2021-12-14 05:23:44.523361: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:112] Plugin opti
mizer for device_type GPU is enabled.
782/782 [==========] - 10s 13ms/step - loss: 1.5833 - accuracy: 0.4237 - val_loss: 1.2872 - val_a
ccuracy: 0.5334
Epoch 2/10
782/782 [==
                                         =========] - 10s 13ms/step - loss: 1.2183 - accuracy: 0.5667 - val_loss: 1.1486 - val_a
ccuracy: 0.5899
Epoch 3/10
782/782 [==
                                           ========= ] - 10s 12ms/step - loss: 1.0560 - accuracy: 0.6292 - val loss: 1.1253 - val a
ccuracy: 0.6016
Epoch 4/10
782/782 [==
                         ccuracy: 0.6507
Epoch 5/10
782/782 [==
                                     ==========] - 10s 13ms/step - loss: 0.8874 - accuracy: 0.6907 - val_loss: 0.9321 - val_a
ccuracy: 0.6756
Epoch 6/10
782/782 [======
                                     ccuracy: 0.6823
Epoch 7/10
782/782 [==
                                      ==========] - 10s 13ms/step - loss: 0.7906 - accuracy: 0.7245 - val_loss: 0.9123 - val_a
ccuracy: 0.6826
Epoch 8/10
                                         =========] - 10s 13ms/step - loss: 0.7436 - accuracy: 0.7415 - val_loss: 0.8371 - val_a
782/782 [==
ccuracy: 0.7070
Epoch 9/10
782/782 [===========] - 10s 13ms/step - loss: 0.7010 - accuracy: 0.7562 - val_loss: 0.9174 - val_a
ccuracy: 0.6894
Epoch 10/10
782/782 [===
                                    ccuracy: 0.7183
```

Kaip matome nuo 5 ar 6 epochos modelio tikslumo augimas nelabai stipriai augo.

Taip pat matome kad nėra per didelio mokinimo (over-fitting) problemos, nes modelio metrika tolygiai augo

```
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show()
```



```
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print("Model accuracy: ", test_acc)

313/313 - 1s - loss: 0.8377 - accuracy: 0.7183 - 1s/epoch - 5ms/step
Model accuracy: 0.7183000445365906
```

Žinant kad buvo naudojama tik 10 epochų, 71.8% tikslumo rezultatas yra neblogas kaip pirmam bandymui.

Tyrimas:

Pasižiūrėsiu modelio reakciją keičiant skirtingus hyper parametrus

RELU SGD 32

313/313 - 1s - loss: 1.1242 - accuracy: 0.6028 - 1s/epoch - 5ms/step Model accuracy: 0.6028000116348267

RELU SGD 64

313/313 - 1s - loss: 1.1810 - accuracy: 0.5836 - 1s/epoch - 4ms/step Model accuracy: 0.5836000442504883

RELU SGD 128

313/313 - 1s - loss: 1.4451 - accuracy: 0.4774 - 1s/epoch - 5ms/step Model accuracy: 0.4774000346660614

RELU ADAM 32

313/313 - 1s - loss: 0.8680 - accuracy: 0.7108 - 1s/epoch - 4ms/step Model accuracy: 0.710800051689148

RELU ADAM 64

313/313 - 1s - loss: 0.8464 - accuracy: 0.7068 - 1s/epoch - 5ms/step Model accuracy: 0.7068000435829163

RELU ADAM 128

313/313 - 1s - loss: 0.9046 - accuracy: 0.6866 - 1s/epoch - 5ms/step Model accuracy: 0.6866000294685364

SOFTMAX SGD 32

313/313 - 2s - loss: 2.3027 - accuracy: 0.0970 - 2s/epoch - 8ms/step Model accuracy: 0.09700000286102295

SOFTMAX SGD 64

313/313 - 2s - loss: 2.3027 - accuracy: 0.0991 - 2s/epoch - 7ms/step Model accuracy: 0.09910000115633011

SOFTMAX SGD 128

313/313 - 2s - loss: 2.3026 - accuracy: 0.0970 - 2s/epoch - 8ms/step Model accuracy: 0.09700000286102295

SOFTMAX ADAM 32

313/313 - 2s - loss: 1.6502 - accuracy: 0.3709 - 2s/epoch - 7ms/step Model accuracy: 0.3709000051021576

SOFTMAX ADAM 64

313/313 - 2s - loss: 1.7451 - accuracy: 0.3628 - 2s/epoch - 7ms/step Model accuracy: 0.3628000319004059

SOFTMAX ADAM 128

313/313 - 2s - loss: 1.9402 - accuracy: 0.2643 - 2s/epoch - 7ms/step Model accuracy: 0.26430001854896545

Rezultatai

Optimizer	Activation	Batch size	
adam	relu	32	0.7100
		64	0.7070
		128	0.6870
	softmax	32	0.3710
		64	0.3630
		128	0.2640
sgd	relu	32	0.6030
		64	0.5840
		128	0.4770
	softmax	32	0.0970
		64	0.0990
		128	0.0970

Geriausias rezultatas kai:

Optimizavimo algoritmas: Adam

Aktyvacijos funkcija: Relu

Paketo dydis: 32 Rezultatas: 0.71

```
def get_n_test_data(n):
    (train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()
    X = np.concatenate((train_images,test_images))
    Y = np.concatenate((train_labels,test_labels))
    train_images, test_images, train_labels, test_labels = train_test_split(X, Y, test_size=n, random_state=4)
    train_images, test_images = train_images / 255.0, test_images / 255.0
    return test_images, test_labels

x30, y30 = get_n_test_data(30)
```

Prognozuojant nuo 30 atsitiktinai pasirinktų duomenų:

Confusion matrix:

```
y_pred = model.predict(test_images)
con_mat = tf.math.confusion_matrix(labels=test_labels, predictions=[np.argmax(i) for i in y_pred]).numpy()
con mat
array([[767, 25, 47, 13, 15,
                                       7,
                                              7, 22,
                                                         99,
                                                               22],
                 87, 5, 13,
7, 645, 36,
        [ 21, 787,
                                  3,
                                         3,
                                             21,
                                                    5,
                                                          46,
                                                                89],
                                                                5],
        [ 69,
                                 44,
                                        62,
                                             68,
                                                    38,
                                                          17,
                      59, 489, 26, 202,
                                                               10],
        [ 24,
                 7,
                                             81.
                                                   36.
                                                          36,
                      97, 66, 567, 53,
        [ 39,
                 4,
                                             55,
                                                    82,
                                                          12.
                                                                8],
                      53, 185,
        [ 12,
                 2,
                                 22, 653,
                                             30, 47,
                                                           9,
                                                                 4],
           7,
                 9,
                      47, 62,
                                  20, 19, 843,
                                                    9,
                                                           7,
                                                                 3],
                                                        10,
                                                               23],
        [ 15,
                                  51, 66, 11, 738,
                 3, 33, 42,
                                  5,
                                                               23],
        [ 57,
                34, 11, 16,
                                         4,
                                               5,
                                                    3, 838,
                74,
                                         9,
                                                   10, 38, 821]], dtype=int32)
        [ 24,
                            20.
                                               5.
                       6.
                                   1.
classes = ["airplane","automobile","bird","cat","deer","dog","frog","horse","ship","truck"]
for i,j in zip(model.predict(x30, verbose=2), y30):
    pred = classes[np.argmax(i)]
    fact = classes[j[0]]
print(pred == fact, ": Predicted:", pred ," True:", fact)
1/1 - 0s - 14ms/epoch - 14ms/step
True : Predicted: deer True: deer
True : Predicted: horse True: horse
True : Predicted: bird True: bird
False : Predicted: horse True: deer
True : Predicted: truck True: truck
True : Predicted: deer True: deer
True : Predicted: deer True: deer
True : Predicted: deer True: deer
True : Predicted: airplane True: airplane
True : Predicted: dog True: dog
True : Predicted: deer True: deer
True : Predicted: dog True: dog
True: Predicted: automobile True: automobile False: Predicted: airplane True: ship True: Predicted: airplane True: airplane
True : Predicted: automobile True: automobile
True : Predicted: frog True: frog
True : Predicted: truck True: truck
True : Predicted: dog True: dog
False : Predicted: cat True: deer
True : Predicted: frog True: frog
True : Predicted: ship True: ship
True : Predicted: truck True: truck
False : Predicted: airplane True: cat
True : Predicted: horse True: horse
True : Predicted: airplane True: airplane
True : Predicted: dog True: dog
True : Predicted: cat True: cat
True : Predicted: bird True: bird
True : Predicted: automobile True: automobile
```

Išvados:

- Didžiausią itaką modelio efektytvumui dare aktyvacijos funkcija
- Modeliai su mažesnėm batch_size reikšmėm pasirode geresni
- Adam optimizavimo funkcija pasirode stipriai geresnė nei SGD
- Imant epochų skaičių <10, modelio taiklumas stipriai mažėja
- Modelio spėjimas ant 30 duomenų eilučių davė geresnius rezulatus nei buvo įvertintas modelis
- Ten kur modelis suklydo, dažniausia klaida yra gyvūnų rūšių sumaišymas, tai gali būti dėl to kad paveiksliukų raiška labai stipriai sumažinta
- Geriausiai atspėta klasė yra varlės
- Blogiausiai atspėta klasė yra katės