.1 Méthode de Gauss-Seidel

.1.1 Introduction à la méthode de Gauss-Seidel

La méthode de Gauss-Seidel est une méthode itérative pour résoudre les systèmes linéaires de la forme Ax = b, où A est une matrice carrée d'ordre n et x, b sont des vecteurs de \mathbb{R}^n . C'est une méthode qui génère une suite qui converge vers la solution de ce système lorsque celle-ci en a une et lorsque les conditions de convergence suivantes sont satisfaites (quels que soient le vecteur b et le point initial x^0):

- Si la matrice A est symétrique définie positive,
- Si la matrice A est à diagonale strictement dominante.

.1.2 Mise en place des matrices pour la méthode de Gauss-Seidel

Soit Ax = b le système linéaire à résoudre, où $A \in \mathcal{M}_{n,n}$ et $b \in \mathcal{M}_{n,1}$. On cherche $x \in \mathcal{M}_{n,1}$ solution du système. Dans un premier temps, on va écrire A sous la forme A = D - E - F où D est une matrice diagonale, E est une matrice triangulaire inférieure, et F est une matrice triangulaire supérieure.

On peut alors écrire :

$$Ax = b \tag{1}$$

$$\Leftrightarrow (D - E - F)x = b \tag{2}$$

$$\Leftrightarrow Dx = b - (E + F)x \tag{3}$$

$$\Leftrightarrow x = D^{-1}[b - (E + F)x] \tag{4}$$

On définit ensuite une suite de vecteurs (x^k) en choisissant un vecteur x^0 et par la formule de récurrence :

$$x_i^{k+1} = \frac{1}{a_{i,i}} \left(b_i - \sum_{j=1}^{i-1} a_{i,j} x_j^{k+1} - \sum_{j=i+1}^n a_{i,j} x_j^k \right)$$
 (5)

.1.3 Algorithme

$$x^{(0)} = x_0 \in \mathcal{M}_{n,1}$$

- .1.4 Résolution manuelle
- .1.5 Implémentation
- .1.6 Exemples d'exécution