Bases de Datos

Examen Complementario de Promoción - 3 de Noviembre de 2020 - Tema 1 Departamento de Ciencias e Ingeniería de la Computación - U.N.S.

Profesor: Marcelo A. Falappa	(POR FAVOR, COMPLETAR TODOS LOS DATOS)
Apellido:	Nombres:LU:
e-mail:	Hojas Entregadas (sin enunciado):

1. **Dependencias Multivaluadas y Buen Cubrimiento**. Consideremos el siguiente esquema de relación (ABCDEFMN) y el conjunto de dependencias (las dependencias funcionales por separado ya forman un cubrimiento mínimo reducido):

$$\{M\rightarrow N, D\rightarrow A, A\rightarrow CDN, FM\rightarrow CE, AB\rightarrow CD, C\rightarrow EF\}$$

- a) Encontrar un buen cubrimiento del esquema anterior.
- b) Obtener al menos una llave del cubrimiento anterior (probar con no más de 4 atributos).
- 2. **Preguntas Teóricas**. En cada item, Responda VERDADERO o FALSO, justificando su respuesta. En caso de que la respuesta sea VERDADERO debe agregar una demostración formal. En caso de que la respuesta sea FALSO puede agregar un contraejemplo.
 - a) Si un esquema está en 3FN entonces está en 2FN.
 - b) Si un esquema está en FNBC entonces está en 3FN.

¹Teoremas Importantes para el cómputo de un Buen Cubrimiento.

Teorema 1 de Beeri: Sea D un conjunto de df's y dm's. Para computar las bases de dependencias de D es suficiente computar las bases de dependencia de M donde:

 $[\]bullet$ Si X $\to\to$ Y es una d
m en D entonces X $\to\to$ Y está en M.

[•] Si $X \to Y$ $(Y = A_1 ... A_n)$ es una df en D entonces $X \to \to A_1, ..., X \to \to A_n$ están en M.

Teorema 2 de Beeri: Sea D un conjunto de df's y dm's. Entonces la dependencia funcional no trivial $X \rightarrow A$ ($A \notin X$) puede derivarse de D si se cumplen las dos siguientes condiciones:

[•] A es un atributo simple en las bases de dependencias de X.

[•] Existe un conjunto de atributos Y, $A \not\subset Y$, tal que $Y \rightarrow Z$ es una df en D y $A \subset Z$.