Coursera Page 1 of 7

Feedback — Quiz 4 **Please Note: No Grace Period**

Help Center

Thank you. Your submission for this quiz was received.

You submitted this quiz on **Sun 29 Nov 2015 6:36 PM EST**. You got a score of **7.00** out of **9.00**. You can attempt again, if you'd like.

Question 1

A pharmaceutical company is interested in testing a potential blood pressure lowering medication. Their first examination considers only subjects that received the medication at baseline then two weeks later. The data are as follows (SBP in mmHg)

Subject Baseline Week 2

```
    1
    140
    132

    2
    138
    135

    3
    150
    151

    4
    148
    146
```

135

5

Consider testing the hypothesis that there was a mean reduction in blood pressure? Give the P-value for the associated two sided T test.

(Hint, consider that the observations are paired.)

130

Your Answer		Score	Explanation
⊚ 0.087	~	1.00	
○ 0.05			
○ 0.043			
O.10			
Total		1.00 / 1.00	

Question Explanation

 $H_0: \mu_d = 0$ versus $H_0: \mu_d
eq 0$ where μ_d is the mean difference between followup and baseline.

```
bl <- c(140, 138, 150, 148, 135)
fu <- c(132, 135, 151, 146, 130)
t.test(fu, bl, alternative = "two.sided", paired = TRUE)
```

Paired t-test

data: fu and bl

Coursera Page 2 of 7

```
t = -2.262, df = 4, p-value = 0.08652
 alternative hypothesis: true difference in means is not equal to \boldsymbol{\theta}
 95 percent confidence interval:
  -7.5739 0.7739
 sample estimates:
 mean of the differences
Note the equivalence with this
 t.test(fu - bl, alternative = "two.sided")
     One Sample t-test
 data: fu - bl
 t = -2.262, df = 4, p-value = 0.08652
 alternative hypothesis: true mean is not equal to \boldsymbol{\theta}
 95 percent confidence interval:
 -7.5739 0.7739
 sample estimates:
 \text{mean of } x
      -3.4
Note the difference if the test were one sided
 t.test(fu, bl, alternative = "less", paired = TRUE)
     Paired t-test
 data: fu and bl
 t = -2.262, df = 4, p-value = 0.04326
 alternative hypothesis: true difference in means is less than 0
 95 percent confidence interval:
     -Inf -0.1951
 sample estimates:
 mean of the differences
                     -3.4
```

Question 2

A sample of 9 men yielded a sample average brain volume of 1,100cc and a standard deviation of 30cc. What is the complete set of values of μ_0 that a test of $H_0: \mu=\mu_0$ would fail to reject the null hypothesis in a two sided 5% Students t-test?

Your Answer		Score	Explanation
● 1077 to 1123	~	1.00	
○ 1080 to 1120			

Coursera Page 3 of 7

O 1081 to 1119

O 1031 to 1169

Total 1.00 / 1.00

```
Question Explanation

This is the 95% student's T confidence interval.

1100 + c(-1, 1) * qt(0.975, 8) * 30/sqrt(9)

[1] 1077 1123

Potential incorrect answers

1100 + c(-1, 1) * qnorm(0.975) * 30/sqrt(9)

[1] 1080 1120

1100 + c(-1, 1) * qt(0.95, 8) * 30/sqrt(9)

[1] 1081 1119
```

Question 3

[1] 1031 1169

Researchers conducted a blind taste test of Coke versus Pepsi. Each of four people was asked which of two blinded drinks given in random order that they preferred. The data was such that 3 of the 4 people chose Coke. Assuming that this sample is representative, report a P-value for a test of the hypothesis that Coke is preferred to Pepsi using a one sided exact test.

Your Answer		Score	Explanation
○ 0.10			
○ 0.31			
○ 0.005			
● 0.62	×	0.00	
Total		0.00 / 1.00	

Question Explanation

Coursera Page 4 of 7

```
Let p be the proportion of people who prefer Coke. Then, we want to test versus . Let be the number out of 4 that prefer Coke; assume X \sim Binomial(p,.5) . Pvalue = P(X \geq 3) = \text{choose}(4,3)0.5^30.5^1 + \text{choose}(4,4)0.5^40.5^{d_0}: p = .5 \qquad H_a: p > .5 \qquad X pbinom(2, \text{ size = 4, prob = 0.5, lower.tail = FALSE}) [1] \text{ 0.3125} \text{choose}(4,3) * \text{ 0.5^4 + choose}(4,4) * \text{ 0.5^4} [1] \text{ 0.3125}
```

Question 4

Infection rates at a hospital above 1 infection per 100 person days at risk are believed to be too high and are used as a benchmark. A hospital that had previously been above the benchmark recently had 10 infections over the last 1,787 person days at risk. About what is the one sided P-value for the relevant test of whether the hospital is *below* the standard?

Your Answer		Score	Explanation
O.52			
O 0.11			
O.22			
⊚ 0.03	~	1.00	
Total		1.00 / 1.00	

```
Question Explanation H_0: \lambda = 0.01 \text{ versus } H_a: \lambda < 0.01 \text{ .} X = 11 \text{ , } t = 1,787 \text{ and assume } X \sim_{H_0} Poisson(0.01 \times t) \texttt{ppois(10, lambda = 0.01 * 1787)} \texttt{## [1] 0.03237}
```

Question 5

Suppose that 18 obese subjects were randomized, 9 each, to a new diet pill and a placebo. Subjects' body mass indices (BMIs) were measured at a baseline and again after having received the treatment or placebo for four weeks. The average difference from follow-up to the baseline (followup - baseline) was -3 kg/m2 for the treated group and 1 kg/m2 for the placebo group. The corresponding standard deviations of the differences was 1.5 kg/m2 for the treatment group and 1.8 kg/m2 for the placebo group. Does the change in BMI appear to differ between the

Coursera Page 5 of 7

treated and placebo groups? Assuming normality of the underlying data and a common population variance, give a pvalue for a two sided t test.

Your Answer		Score	Explanation
• Larger than 0.10	×	0.00	
○ Less than 0.01			
O Less than 0.05, but larger than 0.01			
O Less than 0.10 but larger than 0.05			
Total		0.00 / 1.00	

```
Question Explanation H_0: \mu_{difference,treated} = \mu_{difference,placebo}  \begin{array}{c} \text{n1} <-\text{ n2} <-\text{ 9} \\ \text{x1} <-\text{ 3} & \text{##treated} \\ \text{x2} <-\text{ 1} & \text{##placebo} \\ \text{s1} <-\text{ 1.5} & \text{##treated} \\ \text{s2} <-\text{ 1.8} & \text{##placebo} \\ \text{s} <-\text{ sqrt}((\text{n1} - 1) * \text{s1}^2 + (\text{n2} - 1) * \text{s2}^2)/(\text{n1} + \text{n2} - 2)) \\ \text{ts} <-(\text{x1} - \text{x2})/(\text{s} * \text{sqrt}(1/\text{n1} + 1/\text{n2})) \\ \text{2} * \text{pt}(\text{ts}, \text{n1} + \text{n2} - 2) \\ \end{array}
```

[1] 0.0001025

Question 6

Brain volumes for 9 men yielded a 90% confidence interval of 1,077 cc to 1,123 cc. Would you reject in a two sided 5% hypothesis test of $H_0: \mu=1,078$?

Your Answer		Score	Explanation
O It's impossible to tell.			
O Where does Brian come up with these questions?			
○ Yes you would reject.			
No you wouldn't reject.	~	1.00	
Total		1.00 / 1.00	

Question Explanation

No, you would fail to reject. The 95% interval would be wider than the 90% interval. Since 1,078 is in the narrower 90% interval, it would also be in the wider 95% interval. Thus, in either case it's in the interval and so you would fail to reject.

Coursera Page 6 of 7

Question 7

Researchers would like to conduct a study of 100 healthy adults to detect a four year mean brain volume loss of $.01\ mm^3$. Assume that the standard deviation of four year volume loss in this population is $.04\ mm^3$. About what would be the power of the study for a 5% one sided test versus a null hypothesis of no volume loss?

Your Answer		Score	Explanation
○ 0.60			
⊚ 0.80	~	1.00	
O 0.50			
○ 0.70			
Total		1.00 / 1.00	

Question Explanation

The hypothesis is $H_0:\mu_\Delta=0$ versus $H_a:\mu_\Delta>0$ where μ_Δ is volume loss (change defined as Baseline - Four Weeks). The test statistics is $10\,\frac{\bar{X}_\Delta}{.04}$ which is rejected if it is larger than $Z_{.95}=1.645$. We want to calculate

$$P\bigg(\frac{\bar{X}_{\Delta}}{\sigma_{\Delta}/10} > 1.645 \mid \mu_{\Delta} = .01\bigg) = P\bigg(\frac{\bar{X}_{\Delta} - .01}{.004} > 1.645 - \frac{.01}{.004} \mid \mu_{\Delta} = .01\bigg) = P(Z > -.855) = .80$$

Or note that $ar{X}_\Delta$ is N(.01,.004) under the alternative and we want the $P(ar{X}_\Delta>1.645*.004)$ under H_a .

pnorm(1.645 * 0.004, mean = 0.01, sd = 0.004, lower.tail = FALSE)

[1] 0.8037

Question 8

Researchers would like to conduct a study of n healthy adults to detect a four year mean brain volume loss of $.01~mm^3$. Assume that the standard deviation of four year volume loss in this population is $.04~mm^3$. About what would be the value of n needded for 90% power of type one error rate of 5% one sided test versus a null hypothesis of no volume loss?

Your Answer		Score	Explanation	
○ 180				
O 160				
() 140	~	1.00		
○ 120				

Coursera Page 7 of 7

Total 1.00 / 1.00

Question Explanation

The hypothesis is $H_0:\mu_\Delta=0$ versus $H_a:\mu_\Delta>0$ where μ_Δ is volume loss (change defined as Baseline - Four Weeks). The test statistics is $\frac{\bar{X}_\Delta}{.04/\sqrt{n}}$ which is rejected if it is larger than $Z_{.95}=1.645$.

We want to calculate

$$P\bigg(\frac{\bar{X}_{\Delta}}{\sigma_{\Delta}/\sqrt{n}} > 1.645 \mid \mu_{\Delta} = .01\bigg) = P\bigg(\frac{\bar{X}_{\Delta} - .01}{.04/\sqrt{n}} > 1.645 - \frac{.01}{.04/\sqrt{n}} \mid \mu_{\Delta} = .01\bigg) = P(Z > 1.645 - \sqrt{n}/4) = .90$$

So we need $1.645-\sqrt{n}/4=Z_{.10}=-1.282$ and thus $n=\left(4*\left(1.645+1.282\right)\right)^2$.

ceiling((4 * (qnorm(0.95) - qnorm(0.1)))^2)

[1] 138

Question 9

As you increase the type one error rate, α , what happens to power?

	Score	Explanation
~	1.00	
	1.00 / 1.00	
	•	✓ 1.00

Question Explanation

As you require less evidence to reject, i.e. your α rate goes up, you will have larger power.