# Search for Dark Matter in Proton-Proton Collisions at a Center-of-Mass Energy of 13 TeV in the Higgs Boson associated b-anti-b quark channel

## Jue Chen

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

©2019

Jue Chen

All Rights Reserved

## **ABSTRACT**

Search for Dark Matter in Proton-Proton Collisions at a Center-of-Mass Energy of 13 TeV in the Higgs Boson associated b-anti-b quark channel

## Jue Chen

The abstract goes here. The abstract goes here.

# Table of Contents

| Ι  | Int  | roduc            | tion                        | 1  |  |  |  |  |  |  |  |  |  |
|----|------|------------------|-----------------------------|----|--|--|--|--|--|--|--|--|--|
| 1  | Intr | troduction       |                             |    |  |  |  |  |  |  |  |  |  |
| II | Tł   | ne stai          | ndard model and Dark Matter | 3  |  |  |  |  |  |  |  |  |  |
| 2  | The  | $\mathbf{stand}$ | ard model                   | 4  |  |  |  |  |  |  |  |  |  |
|    | 2.1  | Introd           | uction                      | 4  |  |  |  |  |  |  |  |  |  |
|    | 2.2  | Challe           | enges                       | 6  |  |  |  |  |  |  |  |  |  |
| 3  | Dar  | k mat            | ter                         | 7  |  |  |  |  |  |  |  |  |  |
|    | 3.1  | Two-F            | Higgs-doublet model         | 7  |  |  |  |  |  |  |  |  |  |
|    | 3.2  | Simpli           | fied model                  | 7  |  |  |  |  |  |  |  |  |  |
| II | I T  | he LF            | IC and ATLAS experiment     | 8  |  |  |  |  |  |  |  |  |  |
| 4  | The  | LHC              |                             | 9  |  |  |  |  |  |  |  |  |  |
|    | 4.1  | The L            | HC: Instrument              | 9  |  |  |  |  |  |  |  |  |  |
|    |      | 4.1.1            | Machine layout              | 9  |  |  |  |  |  |  |  |  |  |
|    |      | 4.1.2            | Machine performance         | 9  |  |  |  |  |  |  |  |  |  |
|    | 4.2  | The L            | HC: Operation               | 10 |  |  |  |  |  |  |  |  |  |
|    |      | 4.2.1            | Machine accelerator         | 10 |  |  |  |  |  |  |  |  |  |
|    |      | 422              | Machine heam                | 10 |  |  |  |  |  |  |  |  |  |

| <b>5</b> | The  | ATL    | AS experiment                                              | 11 |
|----------|------|--------|------------------------------------------------------------|----|
|          | 5.1  | ATLA   | AS detector system                                         | 11 |
|          |      | 5.1.1  | Inner detector                                             | 11 |
|          |      |        | 5.1.1.1 Pixel detector                                     | 11 |
|          |      |        | 5.1.1.2 Semiconductor Tracker                              | 12 |
|          |      |        | 5.1.1.3 Transition Radiation Tracker                       | 12 |
|          |      | 5.1.2  | Calorimeter                                                | 12 |
|          |      |        | 5.1.2.1 Liquid Argon Calorimeter                           | 12 |
|          |      |        | 5.1.2.2 Tile Calorimeter                                   | 12 |
|          |      | 5.1.3  | Muon Spectrometer                                          | 12 |
|          |      |        | 5.1.3.1 Thin Gap Chambers                                  | 13 |
|          |      |        | 5.1.3.2 Resistive Plate Chambers                           | 13 |
|          |      |        | 5.1.3.3 Monitored Drift Tubes                              | 13 |
|          |      |        | 5.1.3.4 Cathode Strip Chambers                             | 13 |
|          | 5.2  | Event  | reconstruction                                             | 13 |
|          |      | 5.2.1  | Tracks                                                     | 13 |
|          |      | 5.2.2  | Electrons                                                  | 14 |
|          |      | 5.2.3  | Jets                                                       | 14 |
|          |      | 5.2.4  | Missing transverse momentum                                | 14 |
|          |      | 5.2.5  | Muons                                                      | 14 |
|          | 5.3  | Event  | simulation                                                 | 14 |
|          |      | 5.3.1  | Event generator                                            | 14 |
|          |      | 5.3.2  | Detector simulation                                        | 15 |
| I        | / D  | ark M  | Matter search in the Higgs Boson associated $bar{b}$ decay | 16 |
| 6        | Intr | oduct  | ion                                                        | 17 |
|          | 6.1  | MC sa  | amples                                                     | 17 |
| 7        | Boo  | sted X | Xbb tagging                                                | 18 |
|          | 7 1  | Sampl  | le section                                                 | 18 |

|              |       | 7.1.1 Sample subs    | ection .                  |          |        |    | <br> | <br> | <br> | <br> | • | 18        |
|--------------|-------|----------------------|---------------------------|----------|--------|----|------|------|------|------|---|-----------|
|              |       | 7.1.2 Sample subs    | ubsectio                  | n        |        |    | <br> | <br> | <br> | <br> |   | 18        |
|              | 7.2   | Sample section       |                           |          |        |    | <br> | <br> | <br> | <br> |   | 19        |
|              |       | 7.2.1 Sample subs    | $\operatorname{ection}$ . |          |        |    | <br> | <br> | <br> | <br> |   | 19        |
| 8            | Sign  | al selection         |                           |          |        |    |      |      |      |      |   | 20        |
|              | 8.1   | Event Triggers       |                           |          |        |    | <br> | <br> | <br> | <br> |   | 20        |
|              | 8.2   | Baseline selection . |                           |          |        |    | <br> | <br> | <br> | <br> |   | 20        |
|              |       | 8.2.1 Sample subs    | ection .                  |          |        |    | <br> | <br> | <br> | <br> |   | 20        |
|              | 8.3   | Signal region        |                           |          |        |    | <br> | <br> | <br> | <br> |   | 21        |
|              |       | 8.3.1 Sample subs    | ection .                  |          |        |    | <br> | <br> | <br> | <br> | • | 21        |
| 9            | Bac   | kground estimation   | n                         |          |        |    |      |      |      |      |   | 22        |
|              | 9.1   | Backgrounds from     | op and                    | W dec    | cays . |    | <br> | <br> | <br> | <br> |   | 22        |
|              |       | 9.1.1 Sample subs    | ection .                  |          |        |    | <br> | <br> | <br> | <br> |   | 22        |
|              |       | 9.1.2 Sample subs    | ubsectio                  | n        |        |    | <br> | <br> | <br> | <br> |   | 22        |
|              | 9.2   | Backgrounds from     | eutrinos                  | s in Z   | decay  | 7S | <br> | <br> | <br> | <br> |   | 23        |
|              |       | 9.2.1 Sample subs    | ection .                  |          |        |    | <br> | <br> | <br> | <br> |   | 23        |
|              | 9.3   | Backgrounds from     | QCD mu                    | ılti-jet |        |    | <br> | <br> | <br> | <br> | • | 23        |
| 10           | Res   | ılt                  |                           |          |        |    |      |      |      |      |   | <b>24</b> |
|              | 10.1  | Sample section       |                           |          |        |    | <br> | <br> | <br> | <br> |   | 24        |
|              |       | 10.1.1 Sample subs   | ection .                  |          |        |    | <br> | <br> | <br> | <br> |   | 24        |
|              |       | 10.1.2 Sample subs   | ubsectio                  | n        |        |    | <br> | <br> | <br> | <br> |   | 24        |
|              | 10.2  | Sample section       |                           |          |        |    | <br> | <br> | <br> | <br> |   | 25        |
|              |       | 10.2.1 Sample subs   | $\operatorname{ection}$ . |          |        |    | <br> | <br> | <br> | <br> | • | 25        |
| $\mathbf{V}$ | Co    | nclusions            |                           |          |        |    |      |      |      |      |   | 26        |
| 11           |       | clusions             |                           |          |        |    |      |      |      |      |   | 27        |
|              | . OUL | CIUSIUIIS            |                           |          |        |    |      |      |      |      |   | 4 (       |

| V.           | I A   | Appendices                     | <b>28</b> |
|--------------|-------|--------------------------------|-----------|
| $\mathbf{A}$ | The   | e ATLAS detector service work  | <b>29</b> |
|              | A.1   | Sample section                 | 29        |
|              |       | A.1.1 Sample subsection        | 29        |
|              | A.2   | Sample section                 | 29        |
|              |       | A.2.1 Sample subsection        | 30        |
| В            | Ana   | alysis supplementary materials | 31        |
|              | B.1   | $pp 	o Hbar{b}$                | 31        |
|              |       | B.1.1 Sample subsection        | 31        |
|              | B.2   | $pp 	o qar{q}bar{b}$           | 32        |
|              |       | B.2.1 Sample subsection        | 32        |
| V            | II I  | Bibliography                   | 33        |
| Bi           | bliog | graphy                         | 34        |

# List of Figures

| 0 1 | Dartialog of | f the Stand  | ard Model of | partiala r | hygieg   |      |      |  | 5            |
|-----|--------------|--------------|--------------|------------|----------|------|------|--|--------------|
| 4.1 | Particles of | i ine Standa | ard Model of | particle t | mysics . | <br> | <br> |  | $\mathbf{o}$ |

# List of Tables

# Acknowledgments

The acknowledgments go here. The acknowledgments go here.

Dedication text

# Part I

# Introduction

# Introduction

The introduction goes here. The introduction goes here.

# Part II

# The standard model and Dark Matter

# The standard model

## 2.1 Introduction

Sample text sample text sample text. Sample text sample text. Sample text sample text.

The elementary particles defined in the standard model are demonstrated in Fig 2.1.



Figure 2.1: Particles of the Standard Model of particle physics

The standard model Lagrangian is shown in Eq 2.1:

$$L = -\frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{8}tr(F_{\mu\nu}F^{\mu\nu}) - \frac{1}{2}tr(G_{\mu\nu}G^{\mu\nu}), (Gauge \, terms)$$

$$+ \left(\bar{\nu}_L \quad \bar{e}_L\right)\bar{\sigma}^{\mu}iD_{\mu}\begin{pmatrix} \nu_L \\ e_L \end{pmatrix} + \bar{e}_R\sigma^{\mu}iD_{\mu}e_R + \bar{\nu}_R\sigma^{\mu}iD_{\mu}\nu_R, (Lepton \, dynamical \, terms)$$

$$- \frac{\sqrt{2}}{v}[\left(\bar{\nu}_L \quad \bar{e}_L\right)\phi M^e e_R + \bar{e}_R\bar{M}^e\bar{\phi}\begin{pmatrix} \nu_L \\ e_L \end{pmatrix}], (Electron, muon, Tau \, mass \, terms)$$

$$- \frac{\sqrt{2}}{v}[\left(-\bar{e}_L \quad \bar{\nu}_L\right)\phi^*M^{\nu}\nu_R + \bar{\nu}_R\bar{M}^{\nu}\phi^T\begin{pmatrix} -e_L \\ \nu_L \end{pmatrix}], (Neutrino \, mass \, terms)$$

$$+ \left(\bar{u}_L \quad \bar{d}_L\right)\bar{\sigma}^{\mu}iD_{\mu}\begin{pmatrix} u_L \\ d_L \end{pmatrix} + \bar{u}_R\sigma^{\mu}iD_{\mu}u_R + \bar{d}_R\sigma^{\mu}iD_{\mu}d_R, (quark \, dynamical \, terms)$$

$$- \frac{\sqrt{2}}{v}[\left(\bar{u}_L \quad \bar{d}_L\right)\phi M^d d_R + \bar{d}_R\bar{M}^d\bar{\phi}\begin{pmatrix} u_L \\ d_L \end{pmatrix}], (Down, strange, bottom \, mass \, terms)$$

$$- \frac{\sqrt{2}}{v}[\left(-\bar{d}_L \quad \bar{u}_L\right)\phi^*M^u u_R + \bar{u}_R\bar{M}^u\phi^T\begin{pmatrix} -d_L \\ u_L \end{pmatrix}], (Up, charm, top \, mass \, terms)$$

$$+ D_{\mu}\bar{\phi}D^{\mu}\phi - m_h^2[\bar{\phi}\phi - v^2/2]^2/2v^2, (Higgs \, dynamical \, and \, mass \, terms)$$

$$(2.1)$$

The definition of derivative operators in the Eq 2.1 are:

$$D_{\mu} \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} = \left[ \partial_{\mu} - \frac{ig_1}{2} B_{\mu} + \frac{ig_2}{2} W_{\mu} \right] \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \tag{2.2}$$

$$D_{\mu}\nu_{R} = \partial_{\mu}\nu_{R}, \quad D_{\mu}e_{R} = [\partial_{\mu} - ig_{1}B_{\mu}]e_{R}$$

$$D_{\mu} \begin{pmatrix} u_L \\ d_L \end{pmatrix} = \left[ \partial_{\mu} + \frac{ig_1}{6} B_{\mu} + \frac{ig_2}{2} W_{\mu} + igG_{\mu} \right] \begin{pmatrix} u_L \\ d_L \end{pmatrix}$$

$$D_{\mu} u_R = \left[ \partial_{\mu} + \frac{i2g_1}{3} B_{\mu} + igG_{\mu} \right] u_R, \quad D_{\mu} d_R = \left[ \partial_{\mu} - \frac{ig_1}{3} B_{\mu} + igG_{\mu} \right] d_R$$

$$(2.3)$$

$$D_{\mu}\phi = \left[\partial_{\mu} + \frac{ig_1}{2}B_{\mu} + \frac{ig_2}{2}W_{\mu}\right]\phi \tag{2.4}$$

#### Challenges 2.2

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text. Sample text sample text sample text sample text. Sample text sample text.

## Dark matter

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text sample text sample text sample text. Sample text sample text sample text. [4]

## 3.1 Two-Higgs-doublet model

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text.

## 3.2 Simplified model

# Part III

The LHC and ATLAS experiment

# The LHC

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text sample text. Sample text sample text sample text.

#### 4.1 The LHC: Instrument

Sample text sample text sample text. Sample text sample text. Sample text sample text.

#### 4.1.1 Machine layout

Sample text sample text sample text. Sample text sample text. Sample text sample text.

#### 4.1.2 Machine performance

## 4.2 The LHC: Operation

Sample text sample text sample text. Sample text sample text. Sample text sample text.

#### 4.2.1 Machine accelerator

Sample text sample text sample text. Sample text sample text. Sample text sample text.

## 4.2.2 Machine beam

# The ATLAS experiment

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text sample text. Sample text sample text sample text.

## 5.1 ATLAS detector system

Sample text sample text sample text. Sample text sample text. Sample text sample text.

#### 5.1.1 Inner detector

Sample text sample text sample text. Sample text sample text. Sample text sample text.

#### 5.1.1.1 Pixel detector

#### 5.1.1.2 Semiconductor Tracker

Sample text sample text sample text. Sample text sample text. Sample text sample text.

#### 5.1.1.3 Transition Radiation Tracker

Sample text sample text sample text. Sample text sample text. Sample text sample text.

#### 5.1.2 Calorimeter

Sample text sample text sample text. Sample text sample text. Sample text sample text.

#### 5.1.2.1 Liquid Argon Calorimeter

Sample text sample text sample text. Sample text sample text. Sample text sample text.

#### 5.1.2.2 Tile Calorimeter

Sample text sample text sample text. Sample text sample text. Sample text sample text.

#### 5.1.3 Muon Spectrometer

#### 5.1.3.1 Thin Gap Chambers

Sample text sample text sample text. Sample text sample text. Sample text sample text.

#### 5.1.3.2 Resistive Plate Chambers

Sample text sample text sample text. Sample text sample text. Sample text sample text.

#### 5.1.3.3 Monitored Drift Tubes

Sample text sample text sample text. Sample text sample text. Sample text sample text.

#### 5.1.3.4 Cathode Strip Chambers

Sample text sample text sample text. Sample text sample text. Sample text sample text.

## 5.2 Event reconstruction

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text.

#### 5.2.1 Tracks

#### 5.2.2 Electrons

Sample text sample text sample text. Sample text sample text. Sample text sample text.

#### 5.2.3 Jets

Sample text sample text sample text. Sample text sample text. Sample text sample text.

#### 5.2.4 Missing transverse momentum

Sample text sample text sample text. Sample text sample text. Sample text sample text.

#### 5.2.5 Muons

Sample text sample text sample text. Sample text sample text. Sample text sample text.

## 5.3 Event simulation

Sample text sample text sample text. Sample text sample text. Sample text sample text.

#### 5.3.1 Event generator

## 5.3.2 Detector simulation

# Part IV

# Dark Matter search in the Higgs Boson associated $b\bar{b}$ decay

# Introduction

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text. Sample text sample text sample text. Sample text sample text.

## 6.1 MC samples

# Boosted Xbb tagging

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text sample text. Sample text sample text sample text.

## 7.1 Sample section

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text.

## 7.1.1 Sample subsection

Sample text sample text sample text. Sample text sample text. Sample text sample text.

#### 7.1.2 Sample subsubsection

## 7.2 Sample section

Sample text sample text sample text. Sample text sample text. Sample text sample text.

## 7.2.1 Sample subsection

# Signal selection

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text sample text sample text. Sample text sample text sample text.

## 8.1 Event Triggers

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text.

#### 8.2 Baseline selection

Sample text sample text sample text. Sample text sample text. Sample text sample text.

## 8.2.1 Sample subsection

Sample text sample text sample text. Sample text sample text. Sample text samp

sample text. Sample text sample text sample text.

## 8.3 Signal region

TODO, MC simulation in signal region, Pie chart + table. No data.

Sample text sample text sample text. Sample text sample text.

## 8.3.1 Sample subsection

# Background estimation

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text sample text. Sample text sample text sample text.

## 9.1 Backgrounds from top and W decays

Sample text sample text sample text. Sample text sample text. Sample text sample text.

## 9.1.1 Sample subsection

Sample text sample text sample text. Sample text sample text. Sample text sample text.

#### 9.1.2 Sample subsubsection

## 9.2 Backgrounds from neutrinos in Z decays

Sample text sample text sample text. Sample text sample text. Sample text sample text.

## 9.2.1 Sample subsection

Sample text sample text sample text. Sample text sample text. Sample text sample text.

## 9.3 Backgrounds from QCD multi-jet

# Result

TODO, background predictions in signal region, stack chart and table.

Sample text sample text sample text. Sample text sample text sample text. Sample text sample text. Sample text sample text sample text.

## 10.1 Sample section

Sample text sample text sample text. Sample text sample text. Sample text sample text.

#### 10.1.1 Sample subsection

Sample text sample text sample text. Sample text sample text. Sample text sample text.

#### 10.1.2 Sample subsubsection

Sample text sample text sample text. Sample text sampl

sample text. Sample text sample text sample text.

## 10.2 Sample section

Sample text sample text sample text. Sample text sample text. Sample text sample text.

## 10.2.1 Sample subsection

# $\mathbf{Part} \ \mathbf{V}$

# Conclusions

# Conclusions

The general conclusions go here. The general conclusions go here.

# Part VI

# Appendices

# Appendix A

# The ATLAS detector service work

Sample text sample text sample text. Sample text sample text. Sample text sample text.

## A.1 Sample section

Sample text sample text sample text. Sample text sample text. Sample text sample text.

#### A.1.1 Sample subsection

Sample text sample text sample text. Sample text sample text. Sample text sample text.

## A.2 Sample section

## A.2.1 Sample subsection

# Appendix B

# Analysis supplementary materials

Sample text sample text sample text. Sample text sampl

## **B.1** $pp \rightarrow Hb\bar{b}$

Sample text sample text sample text. Sample text sample text. Sample text sample text.

## B.1.1 Sample subsection

## **B.2** $pp \rightarrow q\bar{q}b\bar{b}$

Sample text sample text sample text. Sample text sample text. Sample text sample text sample text.

## **B.2.1** Sample subsection

# Part VII

Bibliography

BIBLIOGRAPHY 34

# Bibliography

- [1] Georges Aad et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. *Phys. Lett.*, B716:1–29, 2012.
- Daniele Alves, Nima Arkani-Hamed, Sanjay Arora, Yang Bai, Matthew Baumgart, Joshua Berger, Matthew Buckley, Bart Butler, Spencer Chang, Hsin-Chia Cheng, Clifford Cheung, R Sekhar Chivukula, Won Sang Cho, Randy Cotta, Mariarosaria D'Alfonso, Sonia El Hedri, Rouven Essig, Jared A Evans, Liam Fitzpatrick, Patrick Fox, Roberto Franceschini, Ayres Freitas, James S Gainer, Yuri Gershtein, Richard Gray, Thomas Gregoire, Ben Gripaios, Jack Gunion, Tao Han, Andy Haas, Per Hansson, JoAnne Hewett, Dmitry Hits, Jay Hubisz, Eder Izaguirre, Jared Kaplan, Emanuel Katz, Can Kilic, Hyung-Do Kim, Ryuichiro Kitano, Sue Ann Koay, Pyungwon Ko, David Krohn, Eric Kuflik, Ian Lewis, Mariangela Lisanti, Tao Liu, Zhen Liu, Ran Lu, Markus Luty, Patrick Meade, David Morrissey, Stephen Mrenna, Mihoko Nojiri, Takemichi Okui, Sanjay Padhi, Michele Papucci, Michael Park, Myeonghun Park, Maxim Perelstein, Michael Peskin, Daniel Phalen, Keith Rehermann, Vikram Rentala, Tuhin Roy, Joshua T Ruderman, Veronica Sanz, Martin Schmaltz, Stephen Schnetzer, Philip Schuster, Pedro Schwaller, Matthew D Schwartz, Ariel Schwartzman, Jing Shao, Jessie Shelton, David Shih, Jing Shu, Daniel Silverstein, Elizabeth Simmons, Sunil Somalwar, Michael Spannowsky, Christian Spethmann, Matthew Strassler, Shufang Su, Tim Tait, Brooks Thomas, Scott Thomas, Natalia Toro, Tomer Volansky, Jay Wacker, Wolfgang Waltenberger, Itay Yavin, Felix Yu, Yue Zhao, and Kathryn Zurek and. Simplified models for LHC new physics searches. Journal of Physics G: Nuclear and Particle Physics, 39(10):105005, sep 2012.

BIBLIOGRAPHY 35

[3] R W Assmann. Preliminary Beam-based specifications for the LHC collimators. Technical Report LHC-PROJECT-NOTE-277, CERN, Geneva, Jan 2002.

- [4] Asher Berlin, Tongyan Lin, and Lian-Tao Wang. Mono-higgs detection of dark matter at the lhc. *Journal of High Energy Physics*, 2014(6):78, Jun 2014.
- [5] Nicola Cabibbo. Unitary symmetry and leptonic decays. Phys. Rev. Lett., 10:531–533, Jun 1963.
- [6] Serguei Chatrchyan et al. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. *Phys. Lett.*, B716:30–61, 2012.
- [7] F. Englert and R. Brout. Broken symmetry and the mass of gauge vector mesons. *Phys. Rev. Lett.*, 13:321–323, Aug 1964.
- [8] David J. Gross and Frank Wilczek. Ultraviolet behavior of non-abelian gauge theories. Phys. Rev. Lett., 30:1343–1346, Jun 1973.
- [9] Peter W. Higgs. Broken symmetries and the masses of gauge bosons. *Phys. Rev. Lett.*, 13:508–509, Oct 1964.
- [10] Makoto Kobayashi and Toshihide Maskawa. CP Violation in the Renormalizable Theory of Weak Interaction. Prog. Theor. Phys., 49:652–657, 1973.
- [11] Y. Nambu and G. Jona-Lasinio. Dynamical model of elementary particles based on an analogy with superconductivity. i. *Phys. Rev.*, 122:345–358, Apr 1961.
- [12] Y. Nambu and G. Jona-Lasinio. Dynamical model of elementary particles based on an analogy with superconductivity. ii. *Phys. Rev.*, 124:246–254, Oct 1961.
- [13] Yoichiro Nambu. Axial vector current conservation in weak interactions. Phys. Rev. Lett., 4:380–382, Apr 1960.
- [14] H. David Politzer. Reliable perturbative results for strong interactions? Phys. Rev. Lett., 30:1346–1349, Jun 1973.
- [15] Martin Schmaltz and David Tucker-Smith. Little Higgs review. Ann. Rev. Nucl. Part. Sci., 55:229–270, 2005.

BIBLIOGRAPHY 36

[16] Steven Weinberg. A model of leptons. Phys. Rev. Lett., 19:1264–1266, Nov 1967.

[17] C. N. Yang and R. L. Mills. Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev., 96:191–195, Oct 1954.