

Introduction

Electrical & Electronic Circuits and Elements

Embedded Systems & Embedded Programming

- Some applications of KVL, KCL and Ohm's law
 - ➤ Calculate the current and voltage of every resistor
 - ➤ Calculate the power consumed by every circuit

Calculate the internal resistance of a 5V battery which can deliver max 10W power

- Pull up resistor / Pull down resistor
 - ➤ Logic states of digital circuits
 - High (e.g. 2.3 3.3 V)
 - Low (e.g. 0 1.1 V)
 - Floating (high impedance)
 - ➤ Resistance value depends on
 - Power dissipation
 - High/Low of signals level
 - Input leakage current
 - Speed of the circuit (RC circuit)

- A rule of thumb: at least 10 times smaller than the impedance of the input pin
- 4.7 k Ω is a common pull up resistor

- LED (Light-Emitting Diode)
 - > Why do we need a resistor
 - To limiting the current
 - > Why should we have a series circuit
 - To dividing the voltage
 - > Calculate the resistance of the resistor
 - If the forward current is 17 mA
 - And forward voltage is 2 V

Answer: 176 Ω

Datasheet of the LED

♦ ADC(Analog to Digital Convertor)

- R-2R ladder network **D**igital to **A**nalog **C**onvertor (DAC)
- Calculate the out voltage
 - ➤ If the digital value is 0100
 - ➤ If the digital value is 1001
 - Suppose that Vref is 4V

- Is a passive element which can store energy in its electric field
- Consists of two conducting plates separated by a dielectric (insulator)
- Air, ceramic, electrolyte etc. are used as dielectric
- Application
 - Capacitors in Series
 - Capacitors in Parallel
 - Coupling and Decoupling Capacitors
 - Energy Storage

Types

- Fixed Capacitors (the conducting surfaces are not adjustable)
- > Variable Capacitors (their capacitance can be changed mechanically or electronically, e.g. keypad)

- ❖ By connecting to a voltage source it stores charge on the plates
- The amount of stored charge (q) is directly proportional to the applied voltage (v)
- ❖ Capacitance (C)
 - > The amount of stored charge per plate for a unit voltage difference in a capacitor
 - ➤ More capacitance means more capacity to store charge
 - Its unit is farads (F) and can be measured by a capacitance meter
 - > Depends on the permittivity of the dielectric and the physical dimensions of the capacitor

Conductive plates
$$q \propto V \longrightarrow q = CV$$

$$\frac{dq}{dt} = C\frac{dv}{dt} \longrightarrow I(t) = C\frac{dv}{dt}$$
 Dielectric $W_C(t) = \frac{1}{2}Cv_C^2(t)$ Energy stored in a capacitor (J)

Current-voltage relationship of a capacitor.

d: distance between the plates

- Capacitance (C) can be measured by
 - A capacitance meter
 - Online calculator
 - A cheat sheet

Capacitor Cheat Sheet

Microfarads (µ	F) N	lanofarads (nF)	Picofarads (pF)
0.000001 µF		0.001 nF	••	1 pF
0.00001 µF		0.01 nF		10 pF
0.0001 µF		0.1 nF	• •	100 pF
0.001 µF		1 nF		1,000 pF
0.01 µF		10 nf		10,000 pF
0.1 µF	++	100 nF	++	100,000 pF
1 µF		1,000 nF		1,000,000 pF
10 μF		10,000 nF	• •	10,000,000 pF
100 µF		100,000 nF		100,000,000 pF

Code	Percentage	
В	± 0.1 pF	
С	±0.25 pF	
D	±0.5 pF	
F	±1%	
G	±2%	
Н	±3%	
J	±5%	
K	±10%	
M	±20%	
Z	+80%, -20%	

Max. Voltage				
Code	Max. Voltage			
1H	50V			
2A	100V			
2T	150V			
2D	200V			
2E	250V			
2G	400V			
2J	630V			

- ❖ A capacitor is an open circuit to dc voltage (i = 0)
- The voltage on a capacitor cannot change suddenly
 - Discontinuous change in the voltage requires an infinite current
- The ideal capacitor does not consume energy
 - > Takes power from the circuit when storing energy (charging)
 - > Returns previously stored energy when delivering power to the circuit (discharging)
- \diamond A real capacitor has a parallel-model leakage resistance (100 M Ω)

- Charge and discharge
- AC, puls and noise responses

Capacitors and Capacitance

- Impedance (or complex resistance)
 - > Is the **frequency-dependent** resistance of a load
 - ➤ Is the generalized version of the ohm's law
 - > Is the i-v relationship of a load
 - > Is measured in ohm(Ω)
 - \rightarrow Is represented by **Z** (Z = R + jX, X is the reactance)
- Impedance of a resistor is R and impedance of a capacitor is
 - > Where **s** is the complex frequency of the source signal
 - \succ s for a DC signal is 0 and for a sinusoidal AC signal is $j\omega$
 - $\omega = 2\pi f$ where f is the frequency of the signal

Capacitors in Series

- Capacitive voltage divider
- Filter out the DC component in a signal (Coupling capacitors)

Capacitors in Parallel

- > DC power supplies
- > Filter out the AC component (decoupling/bypass capacitors)

Capacitors used for energy storage

Audio equipment, UPS, camera flash etc.

$$Q_{total} = Q_1 = Q_2 = \ldots = Q_n$$

Fundamentals of Electric Circuits

References

- Fundamentals of Electric Circuits, 5th Edition, Charles K. Alexander and Matthew N.O. Sadiku, ISBN 978-0-07-338057-5
- Fundamentals of Electrical Engineering, First Edition, Giorgio Rizzoni, ISBN 978-0-07-338037-7
- ➤ Most of the images have been copied from these two books

Some useful links

- <u>Light-Emitting Diodes (LEDs)</u>
- Decoupling Capacitors
- ➤ <u>5 Lighting Terms You Should Know</u>
- ➤ Impedance and Reactance

The SI prefixes.

Multiplier	Prefix	Symbol
10 ¹⁸	exa	Е
10 ¹⁵	peta	P
1012	tera	T
10 ⁹	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{2}	hecto	h
10	deka	da
10^{-1}	deci	d
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p
10^{-15}	femto	f
10^{-18}	atto	a

