CSE331: Automata and Computability

Summer'25 | Assignment 2

Deadline: 11th September, 2025

Question 1 [10 marks]

Use pumping lemma and prove following languages are not regular

- I. $L1 = \{ w \in \{0, 1\}^* : \mathbf{0}^x \mathbf{1}^{y+1} \mathbf{0}^z \text{ where } x = y \text{ and } x, y, z \ge 0 \}$
- II. $L2 = \{w \in \{0, 1\}^* : ww^R, where w \text{ is a string and } R \text{ denoting reversed string}\}$

Question 2 [20 marks]

Let $\Sigma = \{0, 1\}$. Consider the following languages. Recall that for a string w, |w| denotes the length of w.

$$L1 = \{w \in \Sigma^* : w \text{ is an even length palindrome}\}$$
 $L2 = \{w \in \Sigma^* : \text{length of } w \text{ is even}\}$
 $L3 = \{x11y : x, y \in L2, |x| = |y|\}$ $L4 = L1 \cap L3$

Now solve the following problems.

- (a) Give a context-free grammar for the language L4.
- (b) Convert the following regular expressions into context free grammar.

Let $\Sigma = \{0, 1\}$. Consider the following languages over Σ : $L1 = \{ w \in \Sigma^* : w \text{ starts and ends with the same symbol } \}$ $L2 = \{ w \in \Sigma^* : length \text{ of } w \text{ is odd and } w \text{ contains "11" as a substring } \}$ $L3 = \{ w \in \Sigma^* : w \text{ is a palindrome and has odd length } \}$ $L4 = \{ w \in \Sigma^* : w \text{ has exactly three 1's } \}$ $L5 = L1 \cap L4$ Answer the following:

- (c) Give a context-free grammar for L2.
- (d) Give a context-free grammar for $L2 \cap L3$.
- (e) Give a context-free grammar for the language L5.

Question 3 [3+3+3+1 marks = 10]

Take a look at the grammar below and solve the following problems.

$$A \rightarrow 1A \mid 1C \mid 0B \mid 00A$$

$$B \rightarrow 0A \mid 1B \mid 00B$$

$$C \rightarrow 0C0 \mid 0C1 \mid 1C0 \mid 1C1 \mid \epsilon$$

- (a) Give a leftmost derivation for the string 01011001.
- (b) Sketch the parse tree corresponding to the derivation you gave in (a).
- (c) Demonstrate that the given grammar is ambiguous by showing two more parse trees (apart from the one you already found in (b)) for the same string.
- (d) Find a string w of length six such that w has exactly one parse tree in the grammar above.

Question 4 [10 marks]

Question A: Let $\Sigma = \{a, b\}$. Consider the following languages. $L1 = \{w \mid w \text{ is a palindrome and the length of } w \text{ is odd}\}$ $L2 = \{w \mid w = xby : x, y \in \text{ any positive length string, } |x| = |y|\}$

- (a) Give the state diagram of a pushdown automaton that recognizes L1.
- (b) Give the state diagram of a pushdown automaton that recognizes L2.
- (c) Give the state diagram of a pushdown automaton that recognizes $L1 \cap L2$.

Question B: Let $\Sigma = \{0, 1\}$. Consider the following language. $L = \{x \# y : x, y \in \Sigma^*, \text{ and the number of occurrences of } 0 \text{ in } x \text{ is equal to the number of occurrences of } 10 \text{ in } y\}$

Solve the following problems.

- (a) Find all strings $w \in L$ such that w starts with 110110# and has a length of 10.
- (b) Give the state diagram of a pushdown automaton that recognizes L.

Question 5 [000000 marks]

You've got this! Stay focused, prepare well and walk in with confidence. Wishing you the best of luck for your final exam!