- **2.1.** Пусть $\lambda \in \ell^{\infty}$, и пусть $X = \ell^{p}$ или c_{0} . Напомним, что диагональный оператор $M_{\lambda} \colon X \to X$ переводит вектор $x \in X$ в вектор $(\lambda_{n}x_{n})_{n \in \mathbb{N}} \in X$, и что $\|M_{\lambda}\| = \sup_{n} |\lambda_{n}|$ (см. лекцию). При каких условиях оператор M_{λ} достигает нормы?
- **2.2.** Зафиксируем точку $t_0 \in [a,b]$ и рассмотрим линейный функционал

$$F: (C[a, b], \|\cdot\|_p) \to \mathbb{K}, \quad F(x) = x(t_0).$$

- 1) При каких $p \in [1, +\infty]$ функционал F ограничен? 2) Найдите его норму. 3) Достигает ли он нормы?
- **2.3.** Пусть $X = (C[a,b], \|\cdot\|_p)$ $(1 \leqslant p \leqslant +\infty)$, и пусть $f \in C[a,b]$. Оператор умножения $M_f \colon X \to X$ действует по правилу

$$M_f(g) = fg$$
 $(f \in X).$

- 1) Докажите, что M_f ограничен. 2) Вычислите его норму. 3) При каких условиях оператор M_f достигает нормы?
- **2.4.** Пусть (X, μ) пространство с мерой, и пусть $f: X \to \mathbb{K}$ существенно ограниченная измеримая функция. Зафиксируем $p \in [1, +\infty]$. Оператор умножения $M_f: L^p(X, \mu) \to L^p(X, \mu)$ действует по правилу

$$M_f(g) = fg$$
 $(f \in L^p(X, \mu)).$

- 1) Докажите, что M_f ограничен. 2) Вычислите его норму. 3) При каких условиях оператор M_f достигает нормы?
- **2.5.** Пусть $X = L^p[0,1]$ $(1 \le p \le +\infty)$. Оператор неопределенного интегрирования $T \colon X \to X$ действует по формуле

$$(Tf)(x) = \int_0^x f(t) dt \qquad (f \in X).$$

1) Докажите, что T ограничен. 2) Для p = 1 и $p = \infty$ вычислите его норму. 3) Для тех же p выясните, достигает ли он нормы.

Анонс: для p=2 норма этого оператора равна $2/\pi$. В свое время мы это сможем доказать.

2.6. Пусть I = [a, b], и пусть $K \in C(I \times I)$. Интегральный оператор $T \colon C(I) \to C(I)$ задается формулой

$$(Tf)(x) = \int_a^b K(x, y) f(y) \, dy.$$

Докажите, что T действительно отображает C(I) в C(I), что он ограничен, и что $||T|| \leqslant ||K||_{\infty}$.

2.7. Пусть (X, μ) — пространство с мерой, и пусть $K \in L^2(X \times X, \mu \times \mu)$. Интегральный оператор Гильберта-Шмидта $T \colon L^2(X, \mu) \to L^2(X, \mu)$ задается формулой

$$(Tf)(x) = \int_X K(x, y) f(y) d\mu(y).$$

Докажите, что T действительно отображает $L^2(X,\mu)$ в $L^2(X,\mu)$, что он ограничен, и что $||T|| \le ||K||_2$.

2.8. Линейный функционал F на $(C[0,1],\|\cdot\|_{\infty})$ задан формулой

$$F(f) = 2f(0) - 3f(1) + \int_0^1 f(t) dt.$$

1) Докажите, что F ограничен. 2) Вычислите ||F||. 3) Достигает ли F нормы?

- **2.9.** Пусть X, Y нормированные пространства, причем X конечномерно. Докажите, что любой линейный оператор $T \colon X \to Y$ ограничен и достигает нормы.
- **2.10.** Пусть X, Y нормированные пространства. Напомним, что линейный оператор $T \colon X \to Y$ называется *коизометрией*, если он отображает открытый единичный шар пространства X на открытый единичный шар пространства Y.
- 1) Докажите, что если T отображает замкнутый единичный шар пространства X на замкнутый единичный шар пространства Y, то T коизометрия.
- 2) Верно ли обратное утверждение?
- **3)** Докажите, что инъективная коизометрия это то же самое, что изометрический изоморфизм.
- **2.11.** Пусть $\lambda \in \ell^{\infty}$, и пусть $X = \ell^{p}$ или c_{0} . При каких условиях на λ диагональный оператор $M_{\lambda} \colon X \to X$ 1) топологически инъективен; 2) открыт; 3) изометричен; 4) коизометричен?
- 2.12. Ответьте на те же четыре вопроса для оператора умножения из задачи 2.4.
- **2.13.** Постройте линейные изометрические вложения **1)** \mathbb{K}_p^n в $(C[a,b], \|\cdot\|_p)$, **2)** ℓ^{∞} в $C_b(\mathbb{R})$, **3)** c_0 в $(C[a,b], \|\cdot\|_{\infty})$.
- **2.14.** Докажите, что нормированное пространство сепарабельно тогда и только тогда, когда в нем есть плотное подпространство не более чем счетной размерности.
- **2.15.** Докажите, что пространства c_0 , C[a,b], ℓ^p , $L^p[a,b]$, $L^p(\mathbb{R})$ при $p < \infty$ сепарабельны, а ℓ^∞ , $C_b(\mathbb{R})$, $L^\infty[a,b]$ и $L^\infty(\mathbb{R})$ несепарабельны.