مدت آزمون: ۳ ساعت ۹۹/۴/۲۸

امتحان نهايي الكترومغناطيس ٢

## توجه:

۱) تمام صفحه های پاسخنامه خود را پس از عکس گرفتن، فقط در یک فایل Pdf ، به آدرس ایمیل زیر تا ساعت ۱۲ و
 ربع ارسال کنید. یک ربع آخر برای ارسال پاسخنامه اختصاص دارد.

۲) لازم است اسم فایل ارسالی، نام و نام خانوادگی خودتان باشد.

۳) امتحان کتاب باز است و فقط استفاده از کتاب "گریفیتس" یا "ریتس و میلفورد و کریستی" به صورت هارد یا نرم مجاز است ولی هرگونه کتاب یا امکانات دیگر اینترنتی غیر مجاز است

آدر س ایمیل من: bahmanabadi@sharif.edu

\_\_\_\_\_

مسئله ی () موج تختی در محیطی با ضریب شکست  $n_1$  منتشر می شود و در فصل مشترک این محیط با محیط با ضریب شکست  $n_2$  انعکاس کلی داخلی می کند. موج فرودی ترکیبی از قطبش  $n_2$  و قطبش  $n_2$  است.

آ) اختلاف فاز دو مولفه قطبش موج منعکس شده را برحسب  $n_1$  ،  $n_2$  ، و زاویه فرود heta به دست آورید.

ب) اختلاف فاز ماکزیمم با چه زاویه ی  $heta_1$  ای به وجود می آید؟

ج) اختلاف فاز ماكزيمم را به دست آوريد.

مسئله ی f یک موج TE در یک موجبر مستطیلی با ابعاد a=2.5cm و a=2.5cm در فرکانس های پایین تر از f=15.1GHz

آ) مُدهای مختلف  ${
m TE}_{mn}$  که در این موج بَر منتشر می شود را به دست آورید.

ب) سرعت فاز و سرعت گروه مُدهایی که در این موجبر منتشر می شوند را در فرکانس  $f=15.1 ext{GHz}$  به دست آورید.

مسئله ی ۳ یک ستاره تپنده ( پالسار) به طور منظم پشت سر هم امواج رادیویی با فرکانس های  $\omega_1=3.833\times 10^9 s^{-1}$  و  $\omega_1=2.563\times 10^9 s^{-1}$  منتشر می کند. به دلیل محیط میان ستاره ای، که دارای

هیدروژن یونیزه شده با  $\frac{N}{m^3} = 10^5$  است، سیگنال با فرکانس  $\omega_1$  با تاخیر زمانی 0.367 ثانیه دیرتر از سیگنال با فرکانس  $\omega_2$  به گیرنده زمینی می رسد. فرض کنید ضریب شکست محیط میان ستاره ای برحسب فرکانس زاویه ای،  $\omega_2$  ، به صورت  $\omega_2$  است، که در آن  $\omega_2$   $\omega_3$  فرکانس پلاسما است.

آ) با استفاده از تعریف سرعت گروه  $v_g = \frac{d\omega}{dk}$ ، با  $v_g = \frac{d\omega}{dk}$ ، سرعت گروه موج الکترومغناطیسی را در محیط میان ستاره ای برحسب  $\omega$  به دست آورید.

 $\mathcal{L}$  ، تا زمین چند سانتیمتر است  $\mathcal{L}$  ، نا زمین چند سانتیمتر است

مسئله ی  $\vec{E}=\overrightarrow{E_0}e^{-i(\omega t-\vec{k}.\vec{r})}$  یک موج الکترومغناطیسی تخت با قطبیدگی خطی فطبیدگی خطی  $\vec{E}=\vec{E_0}e^{-i(\omega t-\vec{k}.\vec{r})}$  به یک الکترون آزاد می خورد. الکترون شتاب گرفته و تابش می کند.

فرض کنید میدان الکتریکی موج فرودی در صفحه ی xy است و جهت آن با محور x زاویه ی  $\phi$  است. می خواهیم شدت موج تابش شده از الکترون، i ، در نقطه ی i را برحسب شدت موج فرودی، i ، به دست آوریم. i در صفحه ی i می سازد. است و با محور i زاویه ی i می سازد.



.  $\cos lpha = \sin heta \cos arphi$  زاویه بین  $ec{r}$  و  $ec{r}$  است. نشان دهید lpha (آ

$$r_e=rac{e^2}{4\pi\epsilon_0mc^2}$$
 ب) نشان دهید  $I=I_0rac{r_e^2}{r^2}(1-sin^2 heta cos^2arphi)$  به در آن دهید  $heta=0$  با نمودار شدت  $I$  برحسب  $heta$  را در بازه ی  $heta=0$  تا  $heta=0$  رسم کنید.