CHP 16

SEQUENCE 16

PROPRIETES MÉCANIQUES DES BOIS EFFORT, TRIANGULATION

Propriétés mécaniques du bois

Pour une utilisation conforme d'éléments en bois, il faut tenir compte de leur résistance aux sollicitations auxquelles ils sont soumis. Ainsi, le bois est un matériau :

- <u>Hétérogène</u>: la constitution est variable selon les essences et sujette à des fluences extérieures (sol, climat, ensoleillement...)
- <u>Anisotrope</u>: les propriétés sont différentes suivant la face prise en considération, la ligne d'application et le sens de la contrainte (retrait différent suivant les directions).
- <u>Dirigé</u>: Sa structure a une orientation selon 3 directions:

Variations

- <u>Hygroscopique</u> : son taux d'humidité varie en fonction de l'humidité et de la température ambiantes.
- <u>Elastique</u>: Il se déforme sous l'effet d'une contrainte. Il reprend sa forme initiale lors de la libération de la charge (si la limite d'élasticité n'est pas dépassée).

Les forces qui agissent sur les bois sollicités sont exprimées en newtons (N) ou déca newtons (daN). On a l'équivalence $1 \text{ kg} \approx 1 \text{ daN}$ et donc 1 log 1 log

Une <u>contrainte de rupture</u> est une contrainte suffisante pour faire rompre la pièce.

Une contrainte admissible est une contrainte admise sans risque par la pièce sollicitée.

Pour le bois, on admet qu'elle est environ 3 fois plus petite que la rupture (coefficient de sécurité).

CHP 16

Les différents efforts sur le bois

Les pièces de bois constitutives des constructions doivent résister aux efforts mécaniques qui s'exercent sur elles.

		Sollicitations	Constatations	Remarques	
Compression	Directions	compression transversale compression oblique compression axiale			
	Axiale	L < 5ℓ L < 5ℓ L > 5ℓ	Raccourcissement et écrasement des fibres. Risque de flambage :	Bonne résistance dans cette direction. Le flambage est pris en compte si L > 5ℓ. La résistance de cette pièce diminuera si sa longueur augmente.	
	Transversale		Ecrasement des fibres et déformations de la pièce.	Résistance du bois beaucoup plus faible dans cette direction.	
Traction	Axiale		Très faible allongement des fibres.	Grande résistance à cette sollicitation	
	Transversale		Rupture rapide par décollement des fibres.	Très mauvaise résistance. A éviter dans ce sens.	
Cisaillement	Transversale		Faible tassement des fibres.	Bon comportement du bois dans ce cas.	
	Axiale		Rupture rapide par décollement des fibres.	Eviter cette sollicitation dans ce sens.	
Flexion			Face concave (dessus) : fibres comprimées. Axe : fibre neutre. Face convexe (dessous): fibres tendues	Utiliser des pièces rectangulaires à chant.	

La triangulation en charpente

La réalité du chantier fait que la pratique (notamment par rapport aux assemblages) est un peu différente de cette théorie, mais n'amoindrie en rien la stabilité de la structure...

On appelle BARRE (B) un segment entre deux intersections, et NŒUD (N) le point de concours de ces barres.

On dit alors qu'un système est statiquement stable si le nombre de barres est égale à 2 fois le nombre de nœuds moins 3, c'est-à-dire :

$$B = 2N - 3$$

Exemple:

Sur la ferme ci-dessus, on compte 9 barres et 6 nœuds. Nous calculons alors $2 \times 6 - 3 = 9$. Cette conception est donc stable.

PROPRIETES MECANIQUES DES BOIS, EFFORTS, TRIANGULATION

CHP 16

Lorsque la triangulation est bien réalisée, chaque pièce dans la charpente à un rôle bien précis. Le connaître est primordial pour un choix judicieux des assemblages.

Ainsi pour la ferme latine, nous avons :

Eléments	Rôle de chaque élément	Effort
ARBALETRIER	Supporte les pannes, assure l'équilibre du poinçon	Compression
ENTRAIT	Maintient le pied des arbalétriers, empêche l'écartement des murs	Traction
POINCON	Assure l'assemblage des arbalétriers, reçoit le faitage et soutient l'entrait à la flexion	Traction
CONTRE-FICHES	Soutiennent les arbalétriers à la flexion, transmettent la charge des pannes au poinçon	Compression

Il existe d'autres types de fermes triangulées plus complexe, vérifiant la formule de stabilité :

Dans ces deux derniers cas, les barres obliquent travaillent à la compression pour soutenir la charge des pannes sur les arbalétriers, tandis que les barres verticales travaillent à la traction pour retenir la flexion de l'entrait...

Quelques valeurs remarquables

- Un simple liteau en 27 x 40 mm de 12 cm peut supporter en compression axiale plus d'une tonne, et il faudrait plus de 10 tonnes pour écraser un cube en chêne de 5 cm de côté...
- On remarque qu'en général les feuillus sont plus résistants que les résineux, ceci est dû à une plus grande complexité cellulaire. En effet, ils sont apparus quelques 150 millions d'années après les conifères!
- Une poutre de 3 mètres de portée capable de supporter 20 tonnes, pèse :

- épicéa : 60 kg- acier : 80 kg- béton : 300 kg

Dans tous les cas, bien étudier son chantier, sinon...

• Tous les édifices de Venise ont été construits sur des poteaux en bois assez fins enfoncés dans le sol par plus de 8 mètres, et sont encore valables plus de mille années après...