1 point

1.

Which of the following (possibly more than one) must be true if random variable X is continuous with PDF f(x)?

- $\int_{-\infty}^{\infty} f(x) dx = 1$
- $f(x) \geq 0$ always
- f(x) is a continuous function
- $\lim_{x o\infty}f(x)=\infty$
- f(x) is an increasing function of x
- X>=0 always

1 point

2.

If $X \sim \operatorname{Exp}(3)$, what is the value of P(X>1/3)? Round your answer to two decimal places.

Enter answer here

1 point

3.

Suppose $X \sim \mathrm{Uniform}(0,2)$ and $Y \sim \mathrm{Uniform}(8,10).$ What is the value of E(4X+Y)?

Enter answer here	
1 point 4.	
For Questions 4-7, consider the following: Suppose $X\sim \mathrm{N}(1,5^2)$ and $Y\sim \mathrm{N}(-2,3^2)$ and the have $Z=X+Y\sim \mathrm{N}(\mu,\sigma^2)$ because the sum of follows a normal distribution.	
• What is the value of μ ? Enter answer here	
1 point 5. Adding normals:	
• What is the value of σ^2 ?	
Hint: If two random variables are independent, the vof their variances.	variance of their sum is the sum

Enter answer here

Module 1 Honors

Quiz, 8 questions 6.

Adding normals:

If random variables X and Y are not independent, we still have E(X+Y)=E(X)+E(Y), but now Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y) where Cov(X,Y)=E[(X-E[X])(Y-E[Y])] is called the covariance between X and Y.

• A convenient formula for calculating variance was given in the supplementary material: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2$. Which of the following is an analogous expression for the covariance of X and Y?

Hint: Expand the terms inside the expectation in the definition of Cov(X,Y) and recall that E(X) and E(Y) are just constants.

- $E[Y^2] (E[Y])^2$
- $(E[X^2] (E[X])^2) \cdot (E[Y^2] (E[Y])^2)$
- E(XY) E(X)E(Y)

1 point

7.

Adding normals:

• Consider again $X \sim \mathrm{N}(1,5^2)$ and $Y \sim \mathrm{N}(-2,3^2)$, but this time X and Y are not independent. Then Z = X + Y is still normally distributed with the same mean found in Question 4. What is the variance of Z if E(XY) = -5?

Hint: Use the formulas introduced in Question 6.

Enter answer here

1 point

_			
Free	$n \cap$	ın	+
1166	ν	111	L.

Le	earn more about Coursera's Honor Code
_	Md Yousuf Ali , understand that submitting work that isn't my own may result in ermanent failure of this course or deactivation of my Coursera account.
	Solution (2)
	Solution (1)
	ow that the two expressions for independence $P(A B)=P(A)$ and $\cap B)=P(A)P(B)$ are equivalent.
ave 1	$P(A\cap B)=P(B A)P(A)=P(A B)P(B).$

