Place all books, papers and calculators under your desk. Write your name and section number on your blue book. In a column number one to four. Box your answers and show all your work. Good Luck!

- 1. (a) 5 pts. Find 3 complex numbers that satisfy $z^3 = i$.
 - (b) 5 pts. Find 2 unit vectors that make an angle of $\pi/6$ with $\vec{\jmath}$.
 - (c) 5 pts. Find the equation of a plane perpendicular to $2\vec{i} + \vec{j} \vec{k}$ passing through (1,2,3).
 - (d) 5 pts. P = (2, -1, 0), Q = (-1, 0, 3), R = (2, 1, 1) are vertices of a parallelogram. If S is the 4th vertex opposite P, find S.
- 2. (a) 10 pts. Let $f(x,y) = x^2 e^y + \cos(xy)$. Let $x(t) = \sqrt{t}$, $y = t^2$. Compute f_x f_y , f_{xy} . Use the chain rule to find $\frac{df}{dt}$.
 - (b) 10 pts. A function g(x,y) has directional derivative $2\sqrt{2}$ at (1,2) in the direction of $\vec{i} + \vec{j}$ and directional derivative 2 in the direction of $\vec{i} + 2j$. What is $\vec{\nabla}g(1,2)$? Check your answer.
- 3. 20 pts. Find all critical points, local maxima, minima and saddle points of $f(x,y) = xy x^2 y^2 2x 2y + 4.$
- 4. (a) 10 pts. Use Lagrange multipliers to find the maxima and minima of the function f(x,y) = xy subject to the constraint $x^2 + y^2 = 1$. Find the points where maximum and minimum occur and also the maximum and minimum values of f.
 - (b) 10 pts. Sketch level curves of f and the graph of $x^2 + y^2 = 1$.