Quiz 1 Solutions CSE 112 Computer Organization

Question 1:

```
n = 9 bits
   c_9 \oplus c_8 = 1
                            C<sub>2</sub>=0

C<sub>3</sub>=0

C<sub>3</sub>=0

C<sub>3</sub>=0

C<sub>3</sub>=0

C<sub>3</sub>=0

C<sub>3</sub>=0

C<sub>3</sub>=0

C<sub>3</sub>=0

C<sub>3</sub>=0
  Overflow!
                    -255 = 1 0 0 0 0 0 0 1 +
                    -230 = 1 0 0 0 1 1 0 1 0
                                 0 0 0 0 1 1 0 1 1
 -255-230 = -485 \notin [-2^8, 2^8-1] \rightarrow \text{overflow!}
To avoid overflow:
n = 10 bits (sign-extension)
 C_{10} \oplus C_9 = 0
                                C<sub>2</sub>=0
C<sub>3</sub>=0
C<sub>5</sub>=0
C<sub>3</sub>=0
C<sub>3</sub>=0
C<sub>2</sub>=0
C<sub>1</sub>=0
No Overflow
                -255 = 1 1 0 0 0 0 0 0 1 +
                -230 = 1 1 0 0 0 1 1 0 1 0
                -485 = 1 0 0 0 0 1 1 0 1 1
-255-230 = -485 \in [-2^9, 2^9-1] \rightarrow \text{no overflow}
```

- 1. [1 mark for 2's complement notation of -255]
- 2. [1 mark for 2's complement notation of -230]
- 3. [1 mark for computation of 9 LSBs of the result]
- 4. [1 mark for computation of MSB of the result]
- 5. [1 mark to mention the number of bits to represent the result is 10]

Question 2

- a. +ve [1 marks]
- b. $1000_0001 = 129 = 127 + 2$. Therefore 2. [2 marks]
- c. 011_0100_0000_0000_0000_0000 **[2 marks]**
- d. $1.01101_2 \times 2^2 = 101.101_2 = 5.625_{10}$ [3 marks. Students must show the steps.]

Question 3

Question 4

- a. 21 [2 marks]
- b. 21 [2 marks]
- c. 6 [2 marks]
- d. 16 [2 marks]
- e. $2^5 = 32$ [2 marks]
- f. $2^6 = 64$ [2 marks]

Question 5

Students should mention that the multiplication is just a left shift operation. [1 marks.

"Left shift" must be mentioned]

Students should mention the shift is by 8 bits. [1 mark to shift by 8 bits]

[1 mark to copy the rest of the number correctly]

b) In case of IEEE754 floating point number when multiplying with 2, we add 1 to the exponent part of the IEEE format

Sign = 0

Exponent = $1001_{-}0101$

New Exponent = $1001_0101 + 1 = 1001_0110$

Mantissa = 011_1100_1011_0000_0000_0000

New Number after multiplying by 2 = {Sign, New Exponent, Mantissa}

[1 marks for sign bit]

[2 for exponent part]

[1 mark for mantissa part]