8 Formal Languages

Task: Use what we learned about structures in abstract algebra in order to make sense of formal languages and grammars.

Let A be a finite set. When studying formal languages, we call A an alphabet and the elements of A letters.

Examples:

- 1. $A = \{0, 1\}$ binary digits
- 2. $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ decimal digits
- 3. A =letters of the English alphabet

Definition: $\forall n \in \mathbb{N}^*$, we define a <u>word</u> of length n in the alphabet A as being any string of the form $a_1 a_2 \cdots a_n$ s.t. $a_i \in A \quad \forall i, 1 \leq i \leq n$. Let A^n be the set of all words of length n over the alphabet A.

Remark: There is a one-to-one correspondence between the string $a_1 a_2 \cdots a_n$ and the ordered n-tuple $(a_1, a_2, ..., a_n) \in A^n = \underbrace{A \times ... \times A}_{n \ times}$, the Cartesian

product of n copies of A.

Definition: Let $A^+ = \bigcup_{n=1}^{\infty} A^n = A^1 \cup A^2 \cup A^3 \cup$ A^+ is the set of all words of positive length over the alphabet A.

Examples:

- 1. $A = \{0, 1\}, A^+$ is the set of all binary strings of finite length that is at least one, **i.e.** 0, 1, 01, 10, 00, 11, etc.
- 2. If A = letters of the English alphabet, then A^+ consists of all non-empty strings of finite length of letters from the English alphabet.

It is useful to also have the empty word ε in our set of strings. ε has length

0. Define $A^0 = \{\varepsilon\}$ and then adjoin the empty word ε to A^+ . We get $A^* = \{\varepsilon\} \cup A^+ = A^0 \cup \bigcup_{n=1}^{\infty} A^n = \bigcup_{n=0}^{\infty} A^n$.

Notation: We denote the length of a word w by |w|.

Next introduce an operation on A^* .

Definition: Let A be a finite set, and let w_1 and w_2 be words in A^* . $w_1 = a_1 a_2 ... a_m$ and $w_2 = b_1 b_2 ... b_n$. The <u>concatenation</u> of w_1 and w_2 is the word $w_1 \circ w_2$, where $w_1 \circ w_2 = a_1 a_2 ... a_m b_1 b_2 ... b_n$. Sometimes $w_1 \circ w_2$ is denoted as just $w_1 w_2$. Note that $|w_1 \circ w_2| = |w_1| + |w_2|$.

Concatenation of words is:

- 1. associative
- 2. NOT commutative if A has more than one element.

Proof of (1): Let $w_1, w_2, w_3 \in A^*$. $w_1 = a_1 a_2 ... a_m$ for some $m \in \mathbb{N}$, $w_2 = b_1 b_2 ... b_n$ for some $n \in \mathbb{N}$, and $w_3 = c_1 c_2 ... c_p$ for some $p \in \mathbb{N}$. $(w_1 \circ w_2) \circ w_3 = w_1 \circ (w_2 \circ w_3) = a_1 a_2 ... a_m b_1 b_2 ... b_n c_1 c_2 ... c_p$.

qed

Proof of (2): Since A has at least two elements, $\exists a, b \in A \text{ s.t. } a \neq b.$ $a \circ b = ab \neq ba = b \circ a.$

qed

 A^* is closed under the operation of concatenation \Rightarrow concatenation is a binary operation on A^* as $\forall w_1, w_2 \in A^*, w_1 \circ w_2 \in A^*$.

Theorem Let A be a finite set. (A^*, \circ) is a monoid with identity element ε .

Proof: Concatenation \circ is an associative binary operation on A^* as we showed above. Moreover, $\forall w \in A^*, \varepsilon \circ w = w \circ \varepsilon = w$, so ε is the identity element of A^* .

qed

Definition: Let A be a finite set. A <u>language</u> over A is a subset of A^* . A language L over A is called a <u>formal language</u> is \exists a finite set of rules or algorithm that generates exactly L, **i.e.** all words that belong to L and no other words.

Theorem: Let A be a finite set.

- 1. If L_1 and L_2 are languages over $A, L_1 \cup L_2$ is a language over A.
- 2. If L_1 and L_2 are languages over $A, L_1 \cap L_2$ is a language over A.
- 3. If L_1 and L_2 are languages over A, the concatenation of L_1 and L_2 given by $L_1 \circ L_2 = \{w_1 \circ w_2 \in A^* \mid w_1 \in L_1 \land w_2 \in L_2\}$ is a language over A.
- 4. Let L be a language over A. Define $L^1=L$ and inductively for any $n\geq 1,\ L^n=L\circ L^{n-1}.\ L^n$ is a language over A. Furthermore, $L^*=\{\varepsilon\}\cup L^1\cup L^2\cup L^3\cup ...=\bigcup_{n=0}^{\infty}L^n$ is a language over A.

Proof: By definition, a language over A is a subset of A^* . Therefore, if $L_1 \subseteq A^*$ and $L_2 \subseteq A^*$, then $L_1 \cup L_2 \subseteq A^*$ and $L_1 \cap L_2 \subseteq A^*$. $\forall w_1 \circ w_2 \in L_1 \circ L_2$, $w_1 \circ w_2 \in A^*$ because $w_1 \in A^n$ for some n and $w_2 \in A^m$ for some m, so $w_1 \circ w_2 \in A^{m+n} \subseteq A^* = \bigcup_{n=0}^{\infty} A^n$.

Applying the same reasoning inductively, we see that $L \subset A^* \Rightarrow L^* \subseteq A^*$ as $L^n \subseteq A^* \ \forall n \geq 0$.

qed