PHENANTHROLINE COMPOUND AND ORGANIC LIGHT-EMITTING ELEMENT USING THE SAME

Patent number:

JP2004107263

Publication date:

2004-04-08

Inventor:

KASAHARA MAKI; SUZUKI KOICHI; KAWAI TATSUTO;

HASEGAWA TOSHINORI; SENOO AKIHIRO;

TAKIGUCHI TAKAO; OKINAKA KEIJI

Applicant:

CANON KK

Classification:

- international:

C07D471/04; C09K11/06; H01L51/30; C07D471/00;

C09K11/06; H01L51/05; (IPC1-7): C07D471/04;

C09K11/06; H05B33/14; H05B33/22

- european:

C07D471/04; C09K11/06; H01L51/30H4; H01L51/30H8

Application number: JP20020272408 20020919
Priority number(s): JP20020272408 20020919

Report a data error he

Also published as:

WO2004026870 (A AU2003260955 (A1

Abstract of JP2004107263

PROBLEM TO BE SOLVED: To obtain a new phenanthroline compound and to provide an organic light-emitting element having extremely high efficiency, high-luminance optical output and extreme durability by using the compound. SOLUTION: The phenanthroline compound is represented by general formula [I] (R<SB>1</SB>, R<SB>2</SB>, R<SB>3</SB>, R<SB>4</SB>, R<SB>5</SB>and R<SB>6</SB>are each a hydrogen atom, a substituted or nonsubstituted alkyl group, a substituted or nonsubstituted aralkyl group, a substituted or nonsubstituted aryl group, a substituted or nonsubstituted heterocyclic group or a halogen atom and may be the same or different; Ar<SB>1</SB>and Ar<SB>2</SB>are each a substituted or nonsubstituted fluorenyl group, a substituted or nonsubstituted fluoranthenyl group, a substituted or nonsubstituted perylenyl group or a substituted or nonsubstituted carbazolyl group and may be the same or different).

COPYRIGHT: (C)2004,JPO

$$\begin{array}{c|c}
R_6 & R_5 \\
Ar_1 & Ar_2 \\
R_1 & R_2 & R_3
\end{array}$$

Data supplied from the esp@cenet database - Worldwide

(19) 日本国特許庁(JP)

(12)公開特許公報(A)

(11)特許出願公開番号

特開2004-107263 (P2004-107263A)

(43) 公開日 平成16年4月8日 (2004. 4.8)

(51) Int.C1.7 \mathbf{F} I テーマコード (参考) CO7D 471/04 CO7D 471/04 112T 3K007 CO9K 11/06 CO9K 11/06 650 4C065 HO5B 33/14 CO9K 11/06 690 HO5B 33/22 HO5B 33/14 В HO5B 33/22 В 審査請求 未請求 請求項の数 9 〇L (全 34 頁) (21) 出願番号 特願2002-272408 (P2002-272408) (71) 出願人 000001007 (22) 出願日 平成14年9月19日 (2002.9.19) キヤノン株式会社 東京都大田区下丸子3丁目30番2号 (74) 代理人 100096828

弁理士 渡辺 敬介

(74) 代理人 100110870

弁理士 山口 芳広

(72) 発明者 笠原 麻紀

東京都大田区下丸子3丁目30番2号 キ

ヤノン株式会社内

(72) 発明者 鈴木 幸一

東京都大田区下丸子3丁目30番2号 キ

ヤノン株式会社内

最終頁に続く

(54) 【発明の名称】フェナントロリン化合物及びそれを用いた有機発光素子

(57) 【要約】

【課題】新規なフェナントロリン化合物を提供し、この化合物を用いて、極めて高効率で 、高輝度な光出力を有し、極めて耐久性のある有機発光素子を提供する。

【解決手段】下記一般式[I]で示されるフェナントロリン化合物。

【化1】

$$\begin{array}{c|c}
R_6 & R_5 \\
Ar_1 & Ar_2 \\
R_1 & R_2 & R_3
\end{array}$$

10

(式中、R₁、R₂、R₃、R₄、R₅ およびR₆は、水素原子、置換あるいは無置換の アルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基、置 換あるいは無置換の複素環基またはハロゲン原子を表わし、同じであっても異なっていて もよい。Ar, およびAr2 は、置換あるいは無置換のフルオレニル基、置換あるいは無 置換のフルオランテニル基、置換あるいは無置換のペリレニル基または置換あるいは無置 換のカルバゾリル基を表わし、同じであっても異なっていてもよい。)

【特許請求の範囲】

【請求項1】

下記一般式[I]で示されることを特徴とするフェナントロリン化合物。

【化1】

$$\begin{array}{c|c}
R_6 & R_5 \\
\hline
Ar_1 & Ar_2 \\
\hline
R_1 & --- & R_4 \\
\hline
R_2 & R_3
\end{array}$$

(式中、R₁、R₂、R₃、R₄、R₅ およびR₆は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基、置換あるいは無置換の複素環基またはハロゲン原子を表わし、同じであっても異なっていてもよい。Ar₁ およびAr₂ は、置換あるいは無置換のフルオレニル基、置換あるいは無置換のプルオランテニル基、置換あるいは無置換のペリレニル基または置換あるいは無置換のカルバゾリル基を表わし、同じであっても異なっていてもよい。)

【請求項2】

下記一般式 [II] で示されることを特徴とするフェナントロリン化合物。

【化2】

$$R_7$$
 R_{12}
 R_{12}
 R_{13}
 R_{12}
 R_{14}
 R_{12}
 R_{14}
 R_{15}
 R_{15}
 R_{15}
 R_{15}

(式中、R⁷、R⁸、R⁸、R⁹、R¹⁰、R¹¹ およびR¹² は、水素原子、置換あるいは無 置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール 基、置換あるいは無置換の複素環基またはハロゲン原子を表わし、同じであっても異なっ ていてもよい。A⁷ およびA⁷ は、置換あるいは無置換のフルオレニル基、置換ある いは無置換のフルオランテニル基、置換あるいは無置換のペリレニル基または置換あるい は無置換のカルバゾリル基を表わし、同じであっても異なっていてもよい。)

【請求項3】

【化3】

下記一般式[III]で示されることを特徴とするフェナントロリン化合物。

$$R_{16}$$
 R_{15}
 Ar_{8}
 Ar_{6}
 R_{13}
 R_{14}
 R_{15}
 Ar_{8}
 R_{14}

(式中、R」3、R」4、R」5 およびR」6 は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基、置換あるいは無置換の複素環基またはハロゲン原子を表わす。R」3 およびR」4 は、同じであっても異なっていてもよい。Ar5、Ar6、Ar7 およびAr6 は、置換あるいは無置 50

換のフルオレニル基、置換あるいは無置換のフルオランテニル基、置換あるいは無置換のペリレニル基または置換あるいは無置換のカルバゾリル基を表わし、同じであっても異なっていてもよい。)

【請求項4】

前記フルオレニル基が、下記一般式 [IV] で示されることを特徴とする請求項1~3のいずれかに記載のフェナントロリン化合物。

[化4]

 $\lceil \mathbf{W} \rceil$

10

20

(式中、 R 、 7 は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基、置換あるいは無置換の複素環基、置換アミノ基、シアノ基またはハロゲン原子を表わす。 R 、 8 および R 、 9 は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基または置換あるいは無置換の複素環基を表わし、同じであっても異なっていてもよい。)

【請求項5】

前記フルオランテニル基が、下記一般式 [V] で示されることを特徴とする請求項 1 ~ 3 のいずれかに記載のフェナントロリン化合物。

【化5】

[V]

(式中、 R 2 。は、水素原子、 置換あるいは無置換のアルキル基、 置換あるいは無置換のアラルキル基、 置換あるいは無置換のアリール基、 置換あるいは無置換の複素環基、 置換アミノ基、 シアノ基またはハロゲン原子を表わす。)

【請求項6】

前記ペリレニル基が、下記一般式 [VI] で示されることを特徴とする請求項1~3のいずれかに記載のフェナントロリン化合物。

【化6】

 $\lceil \mathbf{W} \rceil$

40

(式中、 R 2 」 は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基、置換あるいは無置換の複素環基、置換アミノ基、シアノ基またはハロゲン原子を表わす。)

【請求項7】

前記カルバゾリル基が、下記一般式 [VII] で示されることを特徴とする請求項 1~3のいずれかに記載のフェナントロリン化合物。

[化7]

$$R_{23}$$
 R_{23} $[VII]$

(式中、R22 およびR23 は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基、置換あるいは無置換の複素環基、置換アミノ基、シアノ基またはハロゲン原子を表わし、同じであっても異なって 10 いてもよい。)

【請求項8】

陽極及び陰極からなる一対の電極と、該一対の電極間に挟持された一または複数の有機化合物を含む層を少なくとも有する有機発光素子において、前記有機化合物を含む層の少なくとも一層が請求項 1 ~ 7 のいずれかに記載のフェナントロリン化合物の少なくとも一種を含有することを特徴とする有機発光素子。

【請求項9】

前記有機化合物を含む層のうち少なくとも電子輸送層または発光層が、前記フェナントロリン化合物の少なくとも一種を含有することを特徴とする請求項8に記載の有機発光素子

20

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、新規な有機化合物およびそれを用いた有機発光素子に関する。

[0002]

【従来の技術】

有機発光素子は、陽極と陰極間に蛍光性有機化合物または燐光性有機化合物を含む薄膜を挟持させて、各電極から電子およびホール(正孔)を注入することにより、蛍光性化合物または燐光性化合物の励起子を生成させ、この励起子が基底状態にもどる際に放射される光を利用する素子である。

30

40

50

[0003]

1987年コダック社の研究(非特許文献 1)では、陽極にITO、陰極にマグネシウム銀の合金をそれぞれ用い、電子輸送材料および発光材料としてアルミニウムキノリノール錯体を用い、ホール輸送材料にトリフェニルアミン誘導体を用いた機能分離型 2層構成の素子で、10V程度の印加電圧において1000cd/m²程度の発光が報告されている。関連の特許としては、特許文献 1~3等が挙げられる。

[0004]

また、蛍光性有機化合物の種類を変えることにより、紫外から赤外までの発光が可能であり、最近では様々な化合物の研究が活発に行われている。例えば、特許文献4~11等に記載されている。

[0005]

近年、燐光性化合物を発光材料として用い、三重項状態のエネルギーをEL発光に用いる 検討が多くなされている。プリンストン大学のグループにより、イリジウム錯体を発光材料として用いた有機発光素子が、高い発光効率を示すことが報告されている(非特許文献 2)。

[0006]

さらに、上記のような低分子材料を用いた有機発光素子の他にも、共役系高分子を用いた 有機発光素子が、ケンブリッジ大学のグループ(非特許文献3)により報告されている。 この報告ではポリフェニレンピニレン(PPV)を塗工系で成膜することにより、単層で 発光を確認している。 [00007]

共役系高分子を用いた有機発光素子の関連特許としては、特許文献 1 2 ~ 1 6 等が挙げられる。

[0008]

このように有機発光素子における最近の進歩は著しく、その特徴は低印加電圧で高輝度、 発光波長の多様性、高速応答性、薄型、軽量の発光デバイス化が可能であることから、広 汎な用途への可能性を示唆している。

[0009]

しかしながら、現状では更なる高輝度の光出力あるいは高変換効率が必要である。また、長時間の使用による経時変化や酸素を含む雰囲気気体や湿気などによる劣化等の耐久性の 10 面で未だ多くの問題がある。さらにはフルカラーディスプレイ等への応用を考えた場合の色純度の良い青、緑、赤の発光が必要となるが、これらの問題に関してもまだ十分でない

[0010]

一方、フェナントロリン化合物がその優れた電子輸送性から電子輸送材料や発光材料として用いられる。フェナントロリン化合物を有機発光素子に用いた例として、特許文献 17~21などが挙げられるが、発光層材料や電子輸送材料として用いた際の特性は十分なものではない。

[0011]

【特許文献1】

米国特許第4,539,507号明細書

【特許文献2】

米国特許第4,720,432号明細書

【特許文献3】

米国特許第4, 885, 211号明細書

【特許文献4】

米国特許第5,151,629号明細書

【特許文献5】

米国特許第5, 409, 783号明細書

【特許文献 6】

米国特許第5, 382, 477号明細書

【特許文献7】

特開平2-247278号公報

【特許文献8】

特開平3-255190号公報

【特許文献9】

特 開 平 5 - 2 0 2 3 5 6 号 公 報

【特許文献10】

特開平9-202878号公報

【特許文献11】

特開平9-227576号公報

【特許文献12】

米国特許第5, 247, 190号明細書

【特許文献13】

米国特許第5, 514, 878号明細書

【特許文献14】

米国特許第5, 672, 678号明細書

【特許文献15】

特 開 平 4 - 1 4 5 1 9 2 号 公 報

【特許文献16】

40

30

20

特開平5-247460号公報

【特許文献17】

特開平5-331459号公報

【特許文献18】

特開平7-82551号公報

【特許文献19】

特開平10-79297号公報

【特許文献20】

特開2001-267080号公報

【特許文献21】

特開2001-131174号公報

【非特許文献1】

Appl. Phys. Lett. 51, 913 (1987)

【非特許文献2】

Nature, 395, 151 (1998)

【非特許文献3】

Nature, 347, 539 (1990)

[0012]

【発明が解決しようとする課題】

本発明の目的は、新規なフェナントロリン化合物を提供することにある。

20

10

[0013]

また本発明の目的は、特定なフェナントロリン化合物を用い、極めて高効率で高輝度な光出力を有する有機発光素子を提供することにある。

[0014]

また、極めて耐久性のある有機発光素子を提供することにある。

[0015]

さらには製造が容易でかつ比較的安価に作成可能な有機発光素子を提供する事にある。

[0016]

【課題を解決するための手段】

即ち、本発明のフェナントロリン化合物は、下記一般式 $[I] \sim [III]$ のいずれかで 30 示されることを特徴とする。

[0017]

[化8]

$$\begin{array}{c}
R_6 \\
R_1 \\
R_2 \\
R_3
\end{array}$$

$$\begin{array}{c}
R_5 \\
R_4 \\
R_3
\end{array}$$

$$\begin{array}{c}
R_1 \\
R_4
\end{array}$$

[0018]

(式中、R₁、R₂、R₃、R₄、R₅ およびR₆ は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基、置換あるいは無置換のアリール基、置換あるいは無置換のフルオレニル基、置換あるいは無置換のフルオシンテニル基、置換あるいは無置換のベリレニル基または置換あるいは無置換のカルバゾリル基を表わし、同じであっても異なっていてもよい。)

[0019]

[化9]

$$R_{7}$$
 R_{12}
 R_{8}
 R_{9}
 R_{10}
 R_{10}

[0020]

(式中、R₇、R₈、R₉、R₁。、R₁ 」およびR₁ 2 は、水素原子、置換あるいは無 置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール 基、置換あるいは無置換の複素環基またはハロゲン原子を表わし、同じであっても異なっ ていてもよい。A₇。およびA₇4は、置換あるいは無置換のフルオレニル基、置換ある いは無置換のフルオランテニル基、置換あるいは無置換のペリレニル基または置換あるい は無置換のカルバゾリル基を表わし、同じであっても異なっていてもよい。)

[0021]

【化10】

$$\begin{array}{c} R_{16} \\ R_{15} \\ Ar_{6} \\ R_{13} \\ R_{14} \end{array}$$

$$\begin{bmatrix} III \end{bmatrix}$$

[0022]

(式中、R13、R14、R15 およびR16 は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基、置換あるいは無置換の複素環基またはハロゲン原子を表わす。R13 およびR14 は、同じであっても異なっていてもよい。Ar5、Ar7 およびAr8 は、置換あるいは無置 30 換のフルオレニル基、置換あるいは無置換のフルオランテニル基、置換あるいは無置換のペリレニル基または置換あるいは無置換のカルバゾリル基を表わし、同じであっても異なっていてもよい。)

[0023]

本発明のフェナントロリン化合物は、前記フルオレニル基が、下記一般式 [IV]で示されることが好ましい。

[0024]

[化11]

$$R_{18} R_{19}$$

$$R_{17}$$
[IV]

[0025]

(式中、Rı, は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基、置換あるいは無置換の複素環基、置換アミノ基、シアノ基またはハロゲン原子を表わす。Rı。およびRı。は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基または置換あるいは無置換の複素環基を表わし、同じであっても異なっていてもよい。)

[0026]

また、前記フルオランテニル基が、下記一般式 [V] で示されることが好ましい。

[0027]

[化12]

$$R_{20}$$
 [V]

[0028]

10

(式中、 R 2 。は、 水素原子、 置換あるいは無置換のアルキル基、 置換あるいは無置換のアラルキル基、 置換あるいは無置換のアリール基、 置換あるいは無置換の複素環基、 置換アミノ基、 シアノ基またはハロゲン原子を表わす。)

[0029]

また、前記ペリレニル基が、下記一般式[VI]で示されることが好ましい。

[0030]

【化13】

[VI]

20

[0031]

(式中、R21は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基、置換あるいは無置換の複素環基、置換アミノ基、シアノ基またはハロゲン原子を表わす。)

[0032]

また、前記カルバゾリル基が、下記一般式 [VII] で示されることが好ましい。

[0033]

30

[化14]

[0034]

(式中、R22 およびR23 は、水素原子、置換あるいは無置換のアルキル基、置換あるいは無置換のアラルキル基、置換あるいは無置換のアリール基、置換あるいは無置換の複 40素環基、置換アミノ基、シアノ基またはハロゲン原子を表わし、同じであっても異なっていてもよい。)

[0035]

また、本発明の有機発光素子は、陽極及び陰極からなる一対の電極と、該一対の電極間に挟持された一または複数の有機化合物を含む層を少なくとも有する有機発光素子において、前記有機化合物を含む層の少なくとも一層が上記フェナントロリン化合物の少なくとも一種を含有することを特徴とする。

[0036]

【発明の実施の形態】

以下、本発明を詳細に説明する。

[0037]

まず、本発明のフェナントロリン化合物について説明する。

[0038]

本発明のフェナントロリン化合物は、上記一般式 [I]~ [III]で示され、フルオレ ニル基が上記一般式 [IV]、フルオランテニル基が上記一般式 [V]、ペリレニル基が 上記一般式 [VI]、カルバゾリル基が上記一般式 [VII] で示されるものであること が好ましい。

[0039]

上記一般式[I]~[VII]における置換基の具体例を以下に示す。

[0040]

10 アルキル基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、ter~ブチル基、オクチル基などが挙げられる。

[0041]

アラルキル基としては、ベンジル基、フェネチル基などが挙げられる。

[0042]

アリール基としては、フェニル基、ビフェニル基、ターフェニル基などが挙げられる。

[0043]

複素環基としては、チエニル基、ピロリル基、ピリジル基、オキサゾリル基、オキサジア ゾリル基、チアゾリル基、チアジアゾリル基、ターチエニル基などが挙げられる。

[0044]

置換アミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基、ジ フェニルアミノ基、ジトリルアミノ基、ジアニソリルアミノ基などが挙げられる。

[0045]

ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素などが挙げられる。

[0046]

上記置換基が有してもよい置換基としては、メチル基、エチル基、プロピル基などのアル キル基、ベンジル基、フェネチル基などのアラルキル基、フェニル基、ビフェニル基など のアリール基、チエニル基、ピロリル基、ピリジル基などの複素環基、ジメチルアミノ基 、ジエチルアミノ基、ジベンジルアミノ基、ジフェニルアミノ基、ジトリルアミノ基、ジ アニソリルアミノ基などのアミノ基、メトキシル基、エトキシル基、プロポキシル基、フ 30 ェノキシル基などのアルコキシル基、シアノ基、フッ素、塩素、臭素、ヨウ素などのハロ ゲン原子などが挙げられる。

[0047]

次に、本発明のフェナントロリン化合物の代表例を以下に挙げるが、本発明はこれらに限 定されるものではない。

[0048]

【化15】

$$\begin{array}{c}
R_6 \\
R_1
\end{array}$$

$$\begin{array}{c}
R_5
\end{array}$$

$$\begin{array}{c}
R_1
\end{array}$$

$$\begin{array}{c}
R_2
\end{array}$$

$$\begin{array}{c}
R_3
\end{array}$$

$$\begin{array}{c}
R_4
\end{array}$$

[0049]

【化16】

[0050] [化17]

[0051] 【化18】

[0052]

$$R_{7}$$
 R_{12}
 R_{8}
 R_{9}
 R_{10}
 R_{10}
 R_{11}

[0053] [化20]

$$\begin{array}{c|c} R_{16} & R_{15} \\ \hline Ar_5 & Ar_8 \\ \hline Ar_6 & R_{13} & R_{14} \end{array}$$

[0054] [化21]

10

20

30

40

[0055] [化22]

[0056] [化23]

20

[0058]

本発明のフェナントロリン化合物は、一般的に知られている方法で合成でき、例えば、J. Org. Chem., 16, 941-945 (1951)、Tetrahedron, Lett., 36, 3489-3490 (1995) などに記載の方法でフェナントロリン化合物中間体を得て、さらにパラジウム触媒を用いたsuzuki coupling法(例えばChem. Rev. 1995, 95, 2457-2483) などの合成法で得ることができる。

[0059]

本発明のフェナントロリン化合物は、従来の化合物に比べ電子輸送性および耐久性の優れた化合物であり、有機発光素子の有機化合物を含む層、特に、電子輸送層および発光層として有用であり、また真空蒸着法や溶液塗布法などによって形成した層は結晶化などが起こりにくく経時安定性に優れている。

[0060]

次に、本発明の有機発光素子について詳細に説明する。

[0061]

本発明の有機発光素子は、陽極及び陰極からなる一対の電極と、該一対の電極間に狭持された一または複数の有機化合物を含む層を少なくとも有する有機発光素子において、前記 40 有機化合物を含む層の少なくとも一層が上記一般式 [I]、 [II] または [III] で示されるフェナントロリン化合物の少なくとも一種を含有する。

[0062]

本発明の有機発光素子は、有機化合物を含む層のうち少なくとも電子輸送層または発光層が、前記フェナントロリンの少なくとも一種を含有することが好ましい。

[0063]

本発明の有機発光素子においては、上記一般式 $[I] \sim [III]$ で示されるフェナントロリン化合物を真空蒸着法や溶液塗布法により陽極及び陰極の間に形成する。その有機層の厚みは 10μ m より薄く、好ましくは 0.5μ m 以下、より好ましくは $0.01\sim0$. 5μ m の厚みに薄膜化することが好ましい。

[0064]

図1~図6に本発明の有機発光素子の好ましい例を示す。

[0065]

図1は、本発明の有機発光素子の一例を示す断面図である。図1は、基板1上に、陽極2、発光層3及び陰極4を順次設けた構成のものである。ここで使用する発光素子は、それ自体でホール輸送能、エレクトロン輸送能及び発光性の性能を単一で有している場合や、それぞれの特性を有する化合物を混ぜて使う場合に有用である。

[0066]

図2は、本発明の有機発光素子における他の例を示す断面図である。図2は、基板1上に、陽極2、ホール輸送層5、電子輸送層6及び陰極4を順次設けた構成のものである。こ 10の場合は、発光物質はホール輸送性かあるいは電子輸送性のいずれか、あるいは両方の機能を有している材料をそれぞれの層に用い、発光性の無い単なるホール輸送物質あるいは電子輸送物質と組み合わせて用いる場合に有用である。また、この場合、発光層は、ホール輸送層5あるいは電子輸送層6のいずれかから成る。

[0067]

図3は、本発明の有機発光素子における他の例を示す断面図である。図3は、基板1上に、陽極2、ホール輸送層5、発光層3,電子輸送層6及び陰極4を順次設けた構成のものである。これは、キャリヤ輸送と発光の機能を分離したものであり、ホール輸送性、電子輸送性、発光性の各特性を有した化合物と適時組み合わせて用いられ、極めて材料選択の自由度が増すとともに、発光波長を異にする種々の化合物が使用できるため、発光色相の20多様化が可能になる。さらに、中央の発光層3に各キャリヤあるいは励起子を有効に閉じこめて、発光効率の向上を図ることも可能になる。

[0068]

図4は、本発明の有機発光素子における他の例を示す断面図である。図4は、図3に対して、ホール注入層7を陽極2側に挿入した構成であり、陽極2とホール輸送層5の密着性改善あるいはホールの注入性改善に効果があり、低電圧化に効果的である。

[0069]

図 5 および図 6 は、本発明の有機発光素子における他の例を示す断面図である。図 5 および図 6 は、図 3 および図 4 に対してホールあるいは励起子(エキシトン)を陰極 4 側に抜けることを阻害する層(ホールブロッキング層 8)を、発光層 3 、電子輸送層 6 間に挿入 30 した構成である。イオン化ポテンシャルの非常に高い化合物をホールブロッキング層 8 として用いる事により、発光効率の向上に効果的な構成である。

[0070]

ただし、図1~図6はあくまで、ごく基本的な素子構成であり、本発明の化合物を用いた有機発光素子の構成はこれらに限定されるものではない。例えば、電極と有機層界面に絶縁性層を設ける、接着層あるいは干渉層を設ける、ホール輸送層がイオン化ポテンシャルの異なる2層から構成される、など多様な層構成をとることができる。

[0071]

本発明に用いられる一般式 [I] ~ [III] で示されるフェナントロリン化合物は、従来の化合物に比べ電子輸送性および耐久性の優れた化合物であり、図1~図6のいずれの 40 形態でも使用することができる。

[0072]

本発明は、電子輸送層または発光層の構成成分として一般式 [I] ~ [III] で示されるフェナントロリン化合物を用いるものであるが、これまで知られているホール輸送性化合物、発光性化合物あるいは電子輸送性化合物などを必要に応じて一緒に使用することもできる。

[0073]

以下にこれらの化合物例を挙げる。

[0074]

[化25]

ホール輸送性化合物

$$\bigcap_{N-O-N-N-O} N-O-N \bigcap_{\alpha-NPD}$$

M : Cu, Mg, AlCl, TiO, SiCl₂, Zn , Sn, MnCl, GaCl, etc

40

$$H_3C$$
 CH_3
 H_3C
 CH_3
 CH_3

[0075] [化26]

20

30

40

電子輸送性発光材料

M: Al, Ga

M:Zn,Mg,Be

 $\mathbf{M}: \mathbf{Zn}$, \mathbf{Mg} , \mathbf{Be}

M:Zn,Mg,Be

M:Zn,Mg,Be

M:Zn,Mg,Be

M: Al, Ga

[0076] [化27]

発光材料

$$C_{2}H_{5}, \bigvee_{C_{2}H_{5}} C_{2}H_{5}$$

$$C_{2}H_{5} C_{2}H_{5}$$

$$C_{3}H_{5} C_{2}H_{5}$$

$$C_{4}H_{5} C_{2}H_{5}$$

$$C_{5}H_{5} C_{2}H_{5}$$

$$C_{7}H_{5} C_{2}H_{5}$$

$$C_{7}H_{5} C_{2}H_{5}$$

$$C_{8}H_{7} C_{8}H_{7} C_{8}H_{7}$$

$$C_{8}H_{8} C_{8}H_{7} C_{8}H_{7}$$

$$C_{8}H_{8} C_{8}H_{7} C_{8}H_{7}$$

$$C_{8}H_{8} C_{8}H_{7} C_{8}H_{7}$$

$$C_{8}H_{8} C_{8}H_{8} C_{8}H_{8}$$

[0077] [化28]

発光層マトリックス材料および電子輸送材料

$$H_{3}C$$

$$CH_{3}$$

$$CH_{4}$$

$$CH_{5}$$

$$CH_{7}$$

$$C$$

[0078] [化29]

ポリマー系ホール輸送性材料

$$\begin{array}{c} -(\mathsf{CH}-\mathsf{CH}_2)_{\mathsf{T}} & -(\mathsf{CH}-\mathsf{CH}_2)_{\mathsf{T}} & +(\mathsf{C}-\mathsf{CH}_2)_{\mathsf{T}} \\ -(\mathsf{CH}-\mathsf{CH}_2)_{\mathsf{T}} & +(\mathsf{C}-\mathsf{CH}_2)_{\mathsf{T}} \\ -(\mathsf{CH}_3)_{\mathsf{T}} & +(\mathsf{C}-\mathsf{CH}_2)_{\mathsf{T}} \\ -(\mathsf{C}-\mathsf{CH}_2)_{\mathsf{T}} \\ -(\mathsf{C}-\mathsf{CH}_2)_{\mathsf{T}} & +(\mathsf{C}-\mathsf{CH}_2)_{\mathsf{T}} \\ -(\mathsf{C}-\mathsf{CH}_2)_{\mathsf{T}} & +(\mathsf{C}-\mathsf{CH}_2)_{\mathsf{T}} \\ -(\mathsf{C}-\mathsf{CH}_2)_{\mathsf{T}} \\ -(\mathsf{C}-\mathsf{CH}_2)_{\mathsf{T}} \\ -(\mathsf{C}-\mathsf{CH}_2)_{\mathsf{T}} & +(\mathsf{C}-\mathsf{CH}_2)_{\mathsf{T}} \\ -(\mathsf{C}-\mathsf{CH}_2)_{\mathsf{T}} \\ -(\mathsf{C}-\mathsf{CH}_2)_$$

[0079] [化30]

ポリマー系発光材料および電荷輸送性材料

[0800]

本発明の有機発光素子において、一般式 [I] ~ [III] で示されるフェナントロリン化合物を含有する層および他の有機化合物を含有する層は、一般には真空蒸着法あるいは 30、適当な溶媒に溶解させて塗布法により薄膜を形成する。特に塗布法で成膜する場合は、適当な結着樹脂と組み合わせて膜を形成することもできる。

[0081]

上記結着樹脂としては、広範囲な結着性樹脂より選択でき、たとえばポリピニルカルバゾール樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂、ポリスチレン樹脂、アクリル樹脂、メタクリル樹脂、ブチラール樹脂、ポリピニルアセタール樹脂、ジアリルフタレート樹脂、フェノール樹脂、エボキシ樹脂、シリコーン樹脂、ポリスルホン樹脂、尿素樹脂等が挙げられるが、これらに限定されるものではない。また、これらは単独または共重合体ポリマーとして1種または2種以上混合してもよい。

[0082]

陽極材料としては、仕事関数がなるべく大きなものがよく、例えば、金、白金、ニッケル、パラジウム、コバルト、セレン、パナジウム等の金属単体あるいはこれらの合金、酸化錫、酸化亜鉛、酸化錫インジウム(ITO)、酸化亜鉛インジウム等の金属酸化物が使用できる。また、ポリアニリン、ポリピロール、ポリチオフェン、ポリフェニレンスルフィド等の導電性ポリマーも使用できる。これらの電極物質は単独で用いてもよく、複数併用することもできる。

[0083]

一方、陰極材料としては、仕事関数の小さなものがよく、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウム、アルミニウム、インジウム、銀、鉛、錫、クロム等の金属単体あるいは複数の合金として用いることができる。酸化錫インジウム(I 50

TO) 等の金属酸化物の利用も可能である。また、陰極は一層構成でもよく、多層構成を とることもできる。

[0084]

本発明で用いる基板としては、特に限定するものではないが、金属製基板、セラミックス製基板等の不透明性基板、ガラス、石英、プラスチックシート等の透明性基板が用いられる。また、基板にカラーフィルター膜、蛍光色変換フィルター膜、誘電体反射膜などを用いて発色光をコントロールする事も可能である。

[0085]

なお、作成した素子に対して、酸素や水分等との接触を防止する目的で保護層あるいは封止層を設けることもできる。保護層としては、ダイヤモンド薄膜、金属酸化物、金属窒化 10 物等の無機材料膜、フッ素樹脂、ポリパラキシレン、ポリエチレン、シリコーン樹脂、ポリスチレン樹脂等の高分子膜、さらには、光硬化性樹脂等が挙げられる。また、ガラス、気体不透過性フィルム、金属などをカバーし、適当な封止樹脂により素子自体をパッケージングすることもできる。

[0086]

【実施例】

以下、実施例により本発明をさらに具体的に説明していくが、本発明はこれらに限定されるものではない。

[0087]

< 合成例1> [例示化合物No. 2の合成]

[8800]

【化31】

[0089]

3 0 0 m 1 三ツロフラスコに、2 - ヨード-9, 9 - ジメチルフルオレン [1] 5.8 g (18.1 mm o 1) およびジエチルエーテル8 0 m 1 を入れ、窒素雰囲気中、-78度で攪拌下、n - ブチルリチウム (15% ヘキサン溶液) 11.7 m l (18.1 mm o 1) を滴下した。室温まで昇温し1時間攪拌した後、-20度に冷却しバソフェナントロリン [2] 1.5 g (4.5 1 mm o 1) のトルエン100 m l 分散液を滴下した。室温で12時間攪拌後、水を加え有機層をクロロホルムで抽出し無水硫酸ナトリウムで乾燥後、アルミナカラム (ヘキサン+クロロホルム混合展開溶媒)で精製し、例示化合物No.2 (黄色結晶) 2.4 g (収率74%) を得た。

[0090]

< 合成例2> [例示化合物No. 5の合成]

[0091]

【化32】

40

*1) J.Org.Chem., 16, 941-945 (1951)

[0092]

5 0 0 m 1 三ツロフラスコに、 4 、 7 ージプロモー 1 、 1 0 ーフェナントロリン [3]*

' 1 . 0 g (2 . 9 6 m m o 1) 、 9 、 9 ージメチルフルオレンー 2 ーボロン酸 [4]

2 . 8 g (1 1 . 8 m m o 1) 、トルエン 1 4 0 m 1 およびエタノール 7 0 m 1 を入れ、
窒素雰囲気中、室温で攪拌下、炭酸ナトリウム 1 2 g / 水 6 0 m 1 の水溶液を滴下し、次
いでテトラキス (トリフェニルホスフィン) パラジウム (0) 0 . 1 7 g (0 . 1 5 m m 20 o 1) を添加した。室温で 3 0 分攪拌した後、 7 7 度に昇温し 3 時間攪拌した。反応後、
有機層をクロロホルムで抽出し無水硫酸ナトリウムで乾燥後、アルミナカラム(ヘキサン
+ クロロホルム混合展開溶媒)で精製し、例示化合物 N o . 5 (白色結晶) 1 . 5 g (収率 9 0 %)を得た。

[0093]

<合成例3>[例示化合物No. 20の合成]

[0094]

[化33]

[0095]

3 0 0 m 1 三ツロフラスコに、2 - ヨード- 9, 9 - ジメチルフルオレン [5] 2. 3 g (7. 1 8 m m o 1) およびジエチルエーテル 6 0 m 1 を入れ、窒素雰囲気中、- 7 8 度 で攪拌下、n - ブチルリチウム (15% ヘキサン溶液) 4. 6 m l (7. 18 m m o l) 5

を滴下した。室温まで昇温し1時間攪拌した後、-20度に冷却し例示化合物No.5 1.0g(1.77mmol)のトルエン80ml分散液を滴下した。室温で12時間攪拌後、水を加え有機層をクロロホルムで抽出し無水硫酸ナトリウムで乾燥後、アルミナカラム(ヘキサン+クロロホルム混合展開溶媒)で精製し、例示化合物No.20(黄色結晶)1.2g(収率73%)を得た。

[0096]

< 合成例4> [例示化合物No. 8の合成]

[0097]

[化34]

*2) Tetrahedron, Lett., 36, 3489-3490 (1995)

[0098]

5 0 0 m 1 三ツロフラスコに、3,8 - ジプロモー1,1 0 - フェナントロリン [6]*

² 1.0 g (2.96 m m o 1)、フルオランテン-8 - ボロン酸 [7] 2.9 g (1
1.8 m m o 1)、トルエン140 m 1 およびエタノール70 m 1 を入れ、窒素雰囲気中、室温で攪拌下、炭酸ナトリウム12 g / 水60 m 1 の水溶液を滴下し、次いでテトラキス(トリフェニルホスフィン)パラジウム(0)0.17 g (0.15 m m o 1)を添加した。室温で30分攪拌した後、77度に昇温し3時間攪拌した。反応後、有機層をクロロホルムで抽出し無水硫酸ナトリウムで乾燥後、アルミナカラム(ヘキサン+クロロホル30ム混合展開溶媒)で精製し、例示化合物No.8(黄色結晶)1.4 g (収率82%)を得た。

[0099]

<実施例1>

図3に示す構造の素子を作成した。

[0100]

基板 1 としてのガラス基板上に、陽極 2 としての酸化錫インジウム(ITO)をスパッタ法にて 1 2 0 n m の膜厚で成膜したものを透明導電性支持基板として用いた。これをアセトン、イソプロピルアルコール(IPA)で順次超音波洗浄し、次いでIPAで煮沸洗浄後、乾燥した。さらに、UV/オゾン洗浄したものを透明導電性支持基板として使用した 40

[0101]

透明導電性支持基板上に下記構造式で示される化合物のクロロホルム溶液をスピンコート 法により30nmの膜厚で成膜し、ホール輸送層5を形成した。

[0102]

[化35]

[0103]

さらに下記構造式で示される I r 錯体および例示化合物 N o . 1 で示されるフェナントロリン化合物(重量比 5 : 1 0 0)を真空蒸着法により 2 0 n m の膜厚で成膜し、発光層 3 を形成した。蒸着時の真空度は 1 . 0 × 1 0 ^{- 4} P a 、成膜速度は 0 . 2 ~ 0 . 3 n m / s e c の条件で成膜した。

[0104]

[化36]

[0105]

さらにアルミニウムトリスキノリノールを真空蒸着法により 40 n m の 膜厚で成 膜 し、 電 30 子 輸 送 層 6 を形成した。 蒸着時の真空度は 1.0×10^{-4} P a、 成 膜 速度は $0.2 \sim 0$. 3 n m / s e c の 条 件 で 成 膜 した。

[0106]

次に、陰極4として、アルミニウムとリチウム(リチウム濃度1原子%)からなる蒸着材料を用いて、上記有機層の上に真空蒸着法により厚さ50nmの金属層膜を形成し、さらに真空蒸着法により厚さ150nmのアルミニウム層を形成した。蒸着時の真空度は1.0×10⁻⁴ Pa、成膜速度は1.0~1.2nm/secの条件で成膜した。

[0107]

さらに、窒素雰囲気中で保護用ガラス板をかぶせ、アクリル樹脂系接着材で封止した。

[0108]

この様にして得られた素子に、ITO電極(陽極 2) を正極、AI-Li電極(陰極 4)を負極にして、10Vの直流電圧を印加すると18.0mA/cm²の電流密度で電流が素子に流れ、4500cd/m²の輝度で緑色の発光が観測された。

[0109]

さらに、電流密度を 6.0 m A / c m² に保 5 1 0 0 時間電圧を印加したところ、初期輝度 8 5 0 c d / m² から 1 0 0 時間後 8 0 0 c d / m² と輝度劣化は小さかった。

[0110]

く実施例2~9>

例示化合物 No. 1に代えて、表 1 に示す例示化合物を用いた他は実施例 1 と同様に素子を作成し、同様な評価を行った。結果を表 1 に示す。

10

20

50

[0111]

<比較例1~3>

例示化合物 No. 1 に代えて、下記構造式で示される化合物を用いた他は実施例 1 と同様に素子を作成し、同様な評価を行った。結果を表 1 に示す。

[0112]

[化37]

比較化合物No. 1

比較化合物No.2

比較化合物No. 3

[0113] [表1]

20

10

	例示	初期		耐久		
例 No.	化合物 No.	印加電圧 (V)	輝度 (cd/m²)	電流密度 (mA/cm²)	初期輝度 (cd/m²)	100 時間後 輝度 (cd/m²)
実施例 1	1	10	4500	6. 0	850	800
実施例 2	2	10	5000	6. 0	1040	900
実施例3	9	10	4300	6. 0	760	680
実施例 4	11	10	4100	6. 0	760	590
実施例 5	16	10	4320	6. 0	800	590
実施例 6	19	10	4900	6. 0	1000	750
実施例 7	22	10	4530	6. 0	900	745
実施例8	27	10	4400	6. 0	830	670
実施例 9	30	10	4600	6. 0	880	750
比較例 1	比較 1	10	760	6. 0	430	200
比較例 2	比較 2	10	400	6. 0	280	140
比較例3	比較 3	10	1200	6.0	730	300

[0114]

く実施例10>

図3に示す構造の素子を作成した。

[0115]

実施例1と同様に、透明導電性支持基板上にホール輸送層5を形成した。

[0116]

さらにクマリンおよびアルミニウムトリスキノリノール(重合比1:20)を真空蒸着法により20nmの膜厚で成膜し、発光層3を形成した。蒸着時の真空度は1.0×10⁻ 30 Pa、成膜速度は0.2~0.3nm/secの条件で成膜した。

[0117]

さらに例示化合物 N o . 3 により 4 0 n m の 膜厚で成 膜 し、電子輸送層 6 を形成した。 蒸着時の真空度は 1 . 0 × 1 0 ^{- 4} P a 、成膜速度は 0 . 2 ~ 0 . 3 n m / s e c の条件で成膜した。

[0118]

次に、実施例1と同様にして陰極4を形成した後に封止した。

[0119]

この様にして得られた素子に、ITO電極(陽極 2) を正極、 $A \ 1 - L \ 1$ 電極(陰極 4) を負極にして、 $8 \ V$ の直流電圧を印加すると $1 \ 1 \ 1 \ 0 \ m \ A \ / \ c \ m^2$ の電流密度で電流が素 40 子に流れ、 $9 \ 5 \ 0 \ 0 \ 0 \ c \ d \ / \ m^2$ の輝度で緑色の発光が観測された。

[0120]

さらに、電流密度を 2 0 0 m A / c m² に保ち 1 0 0 時間電圧を印加したところ、初期輝度 1 0 0 0 0 c d / m² から 1 0 0 時間後 8 5 0 0 c d / m² と輝度劣化は小さかった。

[0121]

<実施例11~18>

例示化合物 No. 3 に代えて、表 2 に示す例示化合物を用いた他は実施例 1 0 と同様に素子を作成し、同様な評価を行った。結果を表 2 に示す。

[0122]

< 比較例4~6>

例示化合物 N o . 3 に代えて、比較化合物 N o . 1 ~ 3 を用いた他は実施例 1 0 と同様に素子を作成し、同様な評価を行った。結果を表 2 に示す。

[0123]

【表 2】

	例示	初期		耐久		
例 No.	化合物 No.	印加電圧 (V)	輝度 (cd/m²)	電流密度 (mA/cm²)	初期輝度 (cd/m²)	100 時間後 輝度 (cd/m²)
実施例 10	3	8	95000	200	10000	8500
実施例 11	1	8	96000	200	14000	8750
実施例 12	8	8	83000	200	13800	8680
実施例 13	10	8	80000	200	13050	8700
実施例 14	15	8	96000	200	13000	8540
実施例 15	21	8	98000	200	15000	9750
実施例 16	23	8	79000	200	11500	8600
実施例 17	26	8	78000	200	11000	8560
実施例 18	28	8	84000	200	13000	8800
比較例 4	比較 1	8	14000	200	7000	3500
比較例 5	比較 2	8	15000	200	6000	2800
比較例 6	比較 3	8	15600	200	8000	4000

[0124]

く実施例19>

図3に示す構造の素子を作成した。

[0125]

実施例1と同様に、透明導電性支持基板上にホール輸送層5を形成した。

[0126]

さらに下記構造式で示される I r 錯体および下記構造式で示されるカルバゾール化合物(重合比 5 : 1 0 0) を真空蒸着法により 2 0 n m の膜厚で成膜し、発光層 3 を形成した。蒸着時の真空度は 1 . 0 × 1 0 - 4 P a 、成膜速度は 0 . 2 ~ 0 . 3 n m / s e c の条件で成膜した。

[0127]

[化38]

40

30

10

20

[0128]

[化39]

[0129]

さらに例示化合物 N o . 5 を用い 4 0 n m の 膜厚で成膜 し、電子輸送層 6 を形成した。蒸着時の真空度は 1 . 0 × 1 0 ^{- 4} P a 、成膜速度は 0 . 2 ~ 0 . 3 n m / s e c の条件で 10 成膜した。

[0130]

次に、実施例1と同様にして陰極4を形成した後に封止した。

[0131]

この様にして得られた素子に、ITO電極(陽極 2) を正極、AI-Li電極(陰極 4) を負極にして、10Vの直流電圧を印加すると 2 0. 0 m A / c m² の電流密度で電流が素子に流れ、6800 c d / m² の輝度で緑色の発光が観測された。

[0132]

さらに、電流密度を 6 . 0 m A / c m 2 に保ち 1 0 0 時間電圧を印加したところ、初期輝度 1 3 0 0 c d / m 2 から 1 0 0 時間後 1 1 5 0 c d / m 2 と輝度劣化は小さかった。

[0133]

< 実施例20~31>

例示化合物 No. 5 に代えて、表 3 に示す例示化合物を用いた他は実施例 1 9 と同様に素子を作成し、同様な評価を行った。結果を表 3 に示す。

[0134]

<比較例7~9>

例示化合物 N o . 5 に代えて、比較化合物 N o . 1 ~ 3 を用いた他は実施例 1 9 と同様に素子を作成し、同様な評価を行った。結果を表 3 に示す。

[0135]

【表3】

	例示	初期			耐久		
例 No.	化合物 No.	印加電圧 (V)	輝度 (cd/m²)	電流密度 (mA/cm²)	初期輝度 (cd/m²)	100 時間後 輝度 (cd/m²)	
実施例 19	5	10	6800	6. 0	1300	1150	
実施例 20	4	10	5400	6. 0	950	700	
実施例 21	6	10	6750	6. 0	1298	1130	
実施例 22	7	10	6580	6. 0	1050	880	
実施例 23	12	10	6510	6. 0	1040	800	
実施例 24	13	10	6410	6. 0	1056	800	
実施例 25	14	10	6680	6. 0	1110	900	
実施例 26	18	10	5800	6. 0	903	690	
実施例 27	19	10	5600	6. 0	960	700	
実施例 28	20	10	6730	6. 0	1220	980	
実施例 29	24	10	5800	6. 0	960	700	
実施例 30	25	10	5980	6. 0	970	610	
実施例 31	28	10	6680	6. 0	990	710	
比較例4	比較 1	10	840	6. 0	500	230	
比較例 5	比較 2	10	500	6. 0	300	150	
比較例 6	比較 3	10	1300	6. 0	800	300	

10

[0136]

【発明の効果】

以上説明のように、一般式 $[I] \sim [III]$ で示されるフェナントロリン化合物を用いた有機発光素子は、低い印加電圧で高輝度な発光が得られ、耐久性にも優れている。特に 30 本発明のフェナントロリン化合物を含有する有機層は、電子輸送層として優れ、かつ発光層としても優れている。

[0137]

さらに、素子の作成も真空蒸着あるいはキャステイング法等を用いて作成可能であり、比較的安価で大面積の素子を容易に作成できる。

【図面の簡単な説明】

- 【図1】本発明における有機発光素子の一例を示す断面図である。
- 【図2】本発明における有機発光素子の他の例を示す断面図である。
- 【図3】本発明における有機発光素子の他の例を示す断面図である。
- 【図4】本発明における有機発光素子の他の例を示す断面図である。
- 【図 5 】本発明における有機発光素子の他の例を示す断面図である。
- 【図6】本発明における有機発光素子の他の例を示す断面図である。

【符号の説明】

- 1 基板
- 2 陽極
- 3 発光層
- 4 陰極
- 5 ホール輸送層
- 6 電子輸送層
- 7 ホール注入層

50

8 ホール/エキシトンブロッキング層

【図1】		[図3]	
	3	6	
	2	3	
	1	2	
[図2]		1	

[図4]

【図5】

	4
	6
	3
	5
	7
	2
Γ	1

4	
6	
8	
3	
5	
2	
1	

[図6]

4
6
8
3
5
7
2
1

フロントページの続き

(72)発明者 川合 達人

東京都大田区下丸子3丁目30番2号 キヤノン株式会社内

(72) 発明者 長谷川 利則

東京都大田区下丸子3丁目30番2号 キヤノン株式会社内

(72)発明者 妹尾 章弘

東京都大田区下丸子3丁目30番2号 キヤノン株式会社内

(72)発明者 滝口 隆雄

東京都大田区下丸子3丁目30番2号 キヤノン株式会社内

(72)発明者 沖中 啓二

東京都大田区下丸子3丁目30番2号 キヤノン株式会社内

Fターム(参考) 3K007 AB02 AB03 AB11 AB18 DB03

4C065 AA04 AA19 BB09 CC09 DD02 EE02 HH02 HH05 JJ07 KK02 KK05 LL07 PP03 PP04 PP18 QQ04

【要約の続き】

【選択図】 なし

THIS PAGE BLANK (USPTO)