FIG. 1A

FIG. 1A (CONT.)

FIG. 1B

FIG. 1B (CONT.)

FIG. 2A

 \lceil

FIG. 2B

FIG. 2A

FIG. 2B

FIG. 3A

FIG. 3B

FIG. 3D

SEQ ID NO:47

aggetetgaatgaaatacettecaacaggtgetgagaacegecaggagcagggaacggacteccegtggagccccagaagg agccagccctgatgatacctcggccctgggccctcctcacgctgggagagagccagctcctgttgttcatgcctggcctgtggtt ctttgtcgtcatggcctcaaacaagcccacaggtcctggcctgagtccctcggcctgcgtgcagccgccccctcccctgctgg agg caccet g cegt g g ag cecet caccea acgt tecce g cet g at g g g tegg cegea a agga cacc g t tracea g a central constraint of the constractgccttccaggagcctactgctgggaggcggccttctctgggaccaggtccactccactcccttggatagtcactgtcaggcc $\verb|cctggtggcccacaagaggcgtcctgggaagccccagtctccttccagcccctgaaattgcctccctggagagccagatcac|\\$ $\verb|cctcacccagctccctcgccccagggtctcctctcccatcccaccgcccaccctaccctggcgttgccgtcacagctaa|\\$ $\verb|cctgacctccctgggttcgagcgtgccgcccctgtcggcccccacctggacccccgcagcctatctctgagggctaatgc|\\$ ${\tt cctgagacttcctttcaccctccaggcaccgtcttctggcctgcaggtgaggtctcgcgctccctcagggcacgatgtggctgca}$ cacaccegg ccctcctcccg agt ccctcctg cacaccaccg cgcacccg agg tt gacaagccctg ccgt gg tt gg gattcc ${\tt gggaatggcggcagaggggcggggtgtccttggggctggtggcagggtcctcatggatgcacacagcggccccggctc}$ aggccaccttgggaaaccagtcctgggatctgcaactcggccatgttcctgcatctggaccagccccaagacaccaccccggc gtggcgccactggcctgggaggagacacatgtccctttcccatcagcaatgggttcagcactaggatatgcagcacacaggag tgtggcttgggggtaaaaaaaccttcacgaggaagcggtttcacaaaataaagta

FIG. 3E

SEQ ID NO: 48

tctagacccaccagcctcagttgaggttaaatggacccaaagcatctcaacaatttgcccaagtcaagccagctcaatgggttccaatgggttccaatgggttccaatgggttccaatgggttccaatgggttccaatgggttccaatgggttccaatgggttccaatgggttccaatgggttccaatgggttccaatgggttcaatgggttcccttctgttcacccagctctagcccaccatggtaacccagcataccccggttaagcccagcttagcccagcccagctcagcccagct cage teag et cage teag etccagcctgctcaactcagcccagcacagcccaacttggctcagctcagcttagcccagctcagcccagcttacccactccgcc cageteaaacageceaggteageceaacetageteagtteageceageteageceageteageceageteacecacte aacccagcccagcccagctcactcattctgccaagctcagcccagctcaaccaggctcagctcagctcagctcagcctgctga gcccagcccagctgagcccagctcaactcagcctaacccagctcagcccagcctaacccagctcagcccagcccaaccagct ccagctcacctgctgtaggtggcctgaaccgcgaacacagacatgaaagcccagtggttctgacgagaaagggtcagatcctgggagcccgctcgcccttccctggtgcctgacacctccatcccgacaccaggcccagctggcccttctcccagctgtcagtcaccactaccetc cactetgggtgaaaagettgttggagaetttagetteectagageateteacaggetgagaeacacttgccaceggcctcctgggcacgtgccatgggcctgagatcccgccccgagtctaaaagagtcctggtgactaactgctctctggcaaatgtagtgagtctggctgcaccggctcctggtccctggcatgtcccctgggctctctgacctggcggattcctccgaatcccttcgctgtgttaactcgtgacctgcctactggcctgggggcagaggccaggcccacacgtccccaggtgtgggcagtcccaggagaccc cccagccttggcgagcctggggactcagagcagagactgtccctccagacggtcccaggccccgctgactgccgcccaccggg catcetet caateee cagetag tag tag cag ag taacte ac gac gaat geece cgtt te acce ag tet gteet gag at the control of the congggtacc

FIG. 3F

	1.7	7 Kb	
4.4 I	Kb Pl	JRE 4.6 K	b .
	*****	*****	
Xho	Xho	Xba	Xba
^		٨	
NotI		M1u.	I

FIG. 3G

SEQ ID NO: 60

1 atgagattee etgeteaget eetggggete eteetgetet gggteeeagg
51 atceagtggg gatgttgtge tgacceagae teecetetee etgtetatea
101 teeetggaga gaeggtetee ateteetgea agtetactea gagtetgaaa
151 tatagtgatg gaaaaaaceta tttgtactgg etteaacata aaceaggeea
201 ateaceaeag ettttgatet atgetgttte eageegttae aetggggtee
251 cagacaggtt eaetggeagt gggteagaaa eagattteae aettaegate
301 aacagtgtge aggetgagga tgttggagte tattaetgte tteaaacaae
351 atatgteeea aataettteg geeaaggaae eaaggtagag ateaaaaggt
401 etgatgetga geeateegte tteetettea aaceatetga tgageagetg
451 aagaceggaa etgtetetgt egtgtgettg gtgaatgatt tetaeeceaa
501 agatateaat gteaagtgga aagtggatgg ggttaeteag ageageagea
551 aetteeaaaa eagttteaea gaeeaggaea geaagaaaag eacetaeage
601 eteageagea teetgaeaet geeeagetea gagtaeeaaa geeatgaege
651 etataegtgt gaggteagee acaagageet gaetaeeaee etegteaaga
701 getteagtaa gaaegagtgt tag

FIG. 5

- 1. Bovine genomic DNA (negative
- 2. Fetus 5968 genomic DNA at 56 days
- 3. Fetus 5983 genomic DNA at 56 days
- 4. Fetus 6032 genomic DNA at 58 days
- 5. Fetus 6045 genomic DNA at 56 days
- 6. Fetus 5846 genomic DNA at 79 days
- 7. Fetus 5996 genomic DNA at 77 days

		Ig λ	
B4-2	Pos	Pos	
B2-13	Neg	Neg	
B4-8	Pos	Pos	
B2-22	Pos	Pos	
B4-8	Neg	Neg	
B4-2	Pos	Neg	
	B2-13 B4-8 B2-22 B4-8	B2-13 Neg B4-8 Pos B2-22 Pos B4-8 Neg	

- Human mu constant region in bovine liver cDNA from fetus 5996.
 - Human mu constant region in bovine brain cDNA from fetus 5996.
- Human mu constant region in bovine spleen cDNA from fetus 5996. w 4.
 - Human mu constant region in human spleen cDNA.
- Human mu constant region in mouse spleen cDNA with HAC.
- Bovine rearranged Cmu heavy chain in bovine spleen cDNA from fetus 5996. . 6 %
 - Bovine rearranged Cmu heavy chain in human spleen cDNA.
- Bovine rearranged Cmu heavy chain in mouse spleen cDNA with HAC. GAPDH primers in bovine spleen cDNA from fetus 5996.

 - 10. GAPDH primers in bovine liver cDNA
- 11. GAPDH primers in mouse spleen cDNA with HAC.

- GAPDH primers in bovine liver cDNA
- Bovine rearranged Cmu heavy chain in bovine brain cDNA from fetus 5996. Bovine rearranged Cmu heavy chain in bovine liver cDNA from fetus 5996.
- Bovine rearranged Cmu heavy chain in bovine spleen cDNA from fetus 5996. GAPDH primers in bovine spleen cDNA from fetus 5996.
- GAPDH primers in bovine brain cDNA from fetus 5996. しんぶ よくらて
 - Bovine rearranged Cmu heavy chain positive control.

- 1. Human rearranged Cmu heavy chain in mouse spleen cDNA with HAC (+ control).
 - Human rearranged Cmu heavy chain in bovine liver cDNA from fetus. 7.6.4.6.6.8.6
- Human rearranged Cmu heavy chain in bovine brain cDNA from fetus 5996 Human rearranged Cmu heavy chain in human spleen cDNA (+ control).
- Human rearranged Cmu heavy chain in bovine spleen cDNA from fetus 5996.
 - GAPDH primers in bovine spleen cDNA from fetus 5996.
 - GAPDH primers in bovine brain cDNA from fetus 5996. GAPDH primers in mouse spleen cDNA with HAC
 - GAPDH primers in bovine liver cDNA from fetus 5996.
 - GAPDH primers positive control.

FIG. 9

- 1. Mouse spleen (negative control)
- 2. Bovine spleen (negative control)
- 3. Fetus 5996 brain
- 4. Fetus 5996 liver
- 5. Fetus 5996 liver
- 6. Fetus 5996 spleen
- 7. Fetus 5996 spleen
- 8. △ HAC-chimeric mouse spleen (positive control)
- 9. Human spleen (positive control).

Unspliced genomic fragment Spliced transcript

FIG. 10

- 1. Mouse spleen (negative control)
- 2. Bovine spleen (negative control)
- 3. Fetus 5996 brain
- 4. Fetus 5996 liver
- 5. Fetus 5996 liver
- 6. Fetus 5996 spleen
- 7. Fetus 5996 spleen
- 8. △HAC-chimeric mouse spleen (positive control)
- 9. Human spleen (positive control)

FIG. 11A

SEQ ID NO: 49 5'

GGGAAGGAAGTCCTGTGCGACCANCCAACGGCCACGCTGCTCGTATCCGACG GGGAATTCTCACAGGAGACGAGGGGGGAAAAGGGTTGGGGCGGATGCACTCC CTGAGGAGACGGTGACCAGGGTTCCNTGGCCCCAGNNGTCAAA3'

FIG. 11B

FIG. 12A

SEQ ID NOs: 52 and 53

5' GGA GGC TTG GTC AAG CCT GGA GGG TCC CTG AGA CTC TCC TGT GCA GCC TCT GGA O Ö ت م

TTC ACC TTC AGT GAC TAC TAC ATG AGC TGG ATC CGC CAG GCT CCA GGG AAG GGG **9** R (Q A I A S DYYM r S

118 127 136 145 154 163 CTG GAG TGG GTT TCA TAC ATT AGT AGT AGT AGT ACC ATA TAC TAC GCA GAC ST Ö S S VH3-11 Ø 127

217 TCT GTG AAG GGC CGA TTC ACC ATC TCC AGG GAC AAC AGG AAC TCG TATS V K G R F T I S R D N A K N S L Y 661 8

CTG CAA ATG AAC AGC CTG AGG GCC GCC GCT GTGTTAC TGT GCG AGA 253

325 ATA ACT GGG GAT GCT TTT GAT ATC TGG GGC CAA GGG ACA ATG GTC ACC GTC TCT 316 303 238

TCA GGG ACTT CIC CCC CCA ACT CTT TTT CCCT CTT CTT CAG AAT TCC S G S A S A P T L F P L V S C B N S

CCG TCG GAT ACG AGC 3'

Д С

SEQ ID NOs: 54 and 55

5' GTG GAG TCT GGG GGA GGC TTG GTA CAG CCT GGG AGG TCC CTG AGA CTC TCC TGT V E S G G G L V Q P G R S L R L S C

OCA GCG TCA GGA TTC ACC TTC AGG AAC TTT GGC ATG CACTGG GTC CGC CAG GCT A S G F T F R N F G M H W V R Q A VH3-33

CCA GGC AAG GGG CTG GAG TGG GTG ACA GTT ATA TGG TAT GAC GGA AGT AAT CAA

P G K G L E W V T V I W Y D G S N Q

TACTATATA GACTCC GTG AAG GGC CGATTC ACC ATCC CAGA GAC AATTCC AAG

AAC ATG TTG TAT CTG CAA ATG AAC AGC CTG AGA GCC CAG GAT ACG GCT GTG TAT N N N S L R A B D T A V Y

TACTGT GCG AGA GAT CGC AAT GGC CTG AAG TACTTC GAT CTGG GGC CGT 3GC

Y C A R D R N G L K Y F D L W G R G

Y C A R D R N G L K Y F D L W G R G

D6-39? N addition

3 CTC TCC TGT CACT AAT TCC CCG TCC GA1 ACC AGC 3.

FIG. 13

1 2 3 4 5 6 7 8 9 10 11 12

Fetus	Clone	IgH	<u>Igλ</u>	
5580	412	Pos	Pos	
5848	214	Neg	Neg	

- 1. Bovine genomic DNA (negative control)
- 2. Fetus 5580 genomic DNA (Igλ)
- 3. Fetus 5580 genomic DNA (Igλ)
- 4. Fetus 5848 genomic DNA (Igλ)
- 5. Fetus 5848 genomic DNA (Igλ)
- 6. Positive control (Human genomic DNA)
- 7. Bovine genomic DNA (negative control)
- 8. Fetus 5580 genomic DNA (IgH)
- 9. Fetus 5580 genomic DNA (IgH)
- 10. Fetus 5848 genomic DNA (IgH)
- 11. Fetus 5848 genomic DNA (IgH)
- 12. Positive control (Human genomic DNA)

FIG. 14

1 2 3 4 5 6 7

IgH

- 1. Bovine genomic DNA (negative control)
- 2. Fetus 5442A genomic DNA (91 day)
- 3. Fetus 5442A genomic DNA (91 day)
- 4. Fetus 5442B genomic DNA (91 day)
- 5. Fetus 5442B genomic DNA (91 day)
- 6. Fetus 5968 genomic DNA (56 day; positive control)
- 7. Human genomic DNA (positive control)

Igλ

- 2. Fetus 5442A brain
 - 3. Fetus 5442A liver
- 4. Fetus 5442A spleen5. Fetus 5442A spleen6. Fetus 5996 spleen (positive control)7. AHAC-chimeric mouse spleen

(positive control)

FIG. 16

- 1. Low Mass Ladder: 2.0, 1.2, 0.8,0.4, 0.2 0.1kb
- 2. Normal Bovine spleen cDNA negative
- 3. $\Delta\Delta$ HAC 5868A spleen
- 4. empty
- 5. Hi Lo

0.2, 0.1 kb

- 6. Tc Mouse HAC spleen cDNA positive
- 7. GAPDH product from 5868A spleen cDNA
- 8. GAPDH product from normal bovine cDNA

Bovine spleen (negative control)

Fetus 5442A brain

Fetus 5442B brain

Fetus 5442A liver Fetus 5442B liver

Fetus 5442A spleen

Fetus 5442A spleen

Fetus 5442B spleen

Fetus 5442B spleen

AHAC-chimeric mouse spleen (positive control)

9 10 00 9 S

- Bovine spleen (negative control)
 Fetus 5442A brain
 Fetus 5442A liver
- 4. Fetus 5442A spleen
- 5. Fetus 5442A spleen 6. AHAC-chimeric mouse spleen

(positive control)

FIG. 19

- 1. Hi-Lo MW:2.0,1.5,1.4,1.0,0.7,0.5 kb
- 2. ΔΔHAC 5868A fetal brain cDNA
- 3. ΔΔHAC 5868A fetal liver cDNA
- 4. ΔΔHAC 5868A fetal spleen cDNA
- 5. Low Mass Ladder
- 6. Tc Mouse HAC spleen cDNA positive control (530bp)
- 7. Low Mass Ladder
- 8. GAPDH ΔΔHAC 5868A brain cDNA
- 9. Low Mass Ladder
- 10. GAPDH ΔΔHAC 5868A liver cDNA

SEQ ID NOs: 56 and 57

5' ACC CTC CTC ACT CAC TGT GCA GGG TCC TGG GCC CAG TCT GTG CTG ACT CAG CCA T L L T H C A G S W A Q S V L T Q P

CCC TCA GCG TCT GGG ACC CCC GGG CAG AGG GTC ACC ATC TCT TGT TCT GGA AGC PS A S G T P G Q R V T I S C S G S

AGC TCC AAC ATC GGA AGT AAT TAT GTA TAC TGG TAC CAG CAG CTC CCA GGA ACG GSNYYWYQQLPG GCC CCC AAA CTC CTC ATC TAT AGG AAT AAT CAG CGG CCC TCA GGG GTC CCT GAC V1-17 A P K L L I Y R N N Q R P S G V P D

CGA TTC TCT GGC TCC AAG TCT GGC ACC TCA GCC TCC CTG GCC ATC AGT GGG CTC
R F S G S K S G T S A S L A I S G L

CGG TCC GAG GAT GAG GCT GAT TAT TAC TGT GCA GCA TGG GAT GAC AGC CTG AGT E D E A D Y Y C A A W D D S L GGT CTT TTC GGC GGA GGG ACC AAG CTG ACC GTC CTA GGT CAG CCC AAG GCT GCC G L F G G G T K L T V L G Q P K A A JL3

CCC TCG GTC ACT CTG TTC CCA CCC TCC TCT GAG GAG CTT CAA GCC AAC AAG GCC E E L Q A

ACA CTG GTG 3' T 1. V

SEQ ID NOs: 58 and 59

5' AGT TGG ACC CCT CTC TGG CTC ACT CTC TTC ACT CTT TGC ATA GGT TCT ပ T L PLWLTLF

GTG GTT TCT TCT GAG CTG ACT CAG GAC CCT GCT GTG TCT GTG GCC TTG GGA CAG Ö SVAL Q D P A V BLT

ACA GTC AGG ATC ACA TGC CAA GGA GAC AGC CTC AGA AGC TAT TAT GCA AGC TGG တ _ S C O O D T T 4 >

TAC CAG CAG AAG CCA GGA CAG GCC CCT GTA CTT GTC ATC TAT GGT AAA AAC AAC V2-13 Z Ö QQKPGQAPVLVIY

CGG CCC TCA GGG ATC CCA GAC CGA TTC TCT GGC TCC AGC TCA GGA AAC ACA GCT Z Ö တ တ S Ö r. S ~ I O

TCC TTG ACC ATC ACT GGG GCT CAG GCG GAA GAT GAG GCT GAC TAT TAC TGT AAC

S L T I T G A O A E D E A D Y Y C N DEADY A E G A D

TCC CGG GAC AGC AGT GGT AAC CAT CTG GTA TTC GGC GGA GGG ACC AAG CTG ACC

GTC CTA GGT CAG CCC AAG GCT GCC CCC TCG GTC ACT CTG TTC CCA CCC TCC TCT Ľ, _ H > A P S K A ۵. 0 Ö

GAG GAG CTT CAA GCC AAG GCC ACA CTG GTG 3' E E L Q A N K A T L V

ර

FIG. 23

FIG. 24

FIG. 27

Cell line	Total NTs	No of Blast	No of Blast		Pre	gnancy st	atus				
ID	in culture	(%)	Transferred	No Recips	40 d	60 d	90 đ	120 d	150 d	180 d	210
D5968	174	34 (28)	27	17	3	3	3	3	3	3	
D6045	215	10 (7)	8	4	1	1	1	1	1	1	
D6045	122	20 (23)	12	9	1	0	0	0	0	0	
D6032	161	18 (16)	14	7	3	3	3	2	2	2	
D6032	188	15 (11)	11	11	3	Ô	0	0	0	0	
D6032	198	20 (14)	16	10	1	1	1	1			
D6032	200	17 (12)	12	8	2	2	2	2			
D6032	180	11 (9)	10	5	3	1	1	0			
D6032	135	22 (23)	22	11	2	1	1	1			
D5968	140	35 (36)	25	13	2	2	1				
D5968	180	30 (24)	26	13	2	2	1				
D6045	170	46 (39)	32	16	4	_					
D6045	80	7 (13)	1	1	ò						
D6045 SLOT	108	9 (12)	à	2	1						
D6045	76	8 (15)	2	1	Ò						
C8045 SLOT	128	12 (13)	7	5	ō						
D6045	47	6 (18)	5	3	2						
D6045 SLOT	112	3 (4)	3	ž	2						
D6045	120	28 (33)	18	9	-						
D6045 SLOT	100	11 (16)	2	1							
D6045	78	15 (27)	16	8							
D6045 SLOT	91	0	2	1							
D6045	98	16 (23)	10	5							
D6045 SLOT	104	16 (22)	10	5							
D5968	128	24 (27)	8	Ă							
D5968 SLOT	65	10 (22)	8	4							
D5968	120	28 (33)	14	7							
D5968 SLOT	95	13 (19)	6	3							
D5968	98	17 (25)	20	10							
D5968 SLOT	93	14 (22)	12	6							
D	13	1 (11)	1	3							
SLOT	63	8 (18)	8	3							
D	108	4 (5)	4	3							
SLOT	100	1 (1)	1	3							
D.	90	10 (16)	10	6							
SLOT	110	13 (17)	13	6							
D.	90	10 (16)	10	1							
SLOT	83	5 (9)	5	į							
D.	105	20 (27)	20	ģ							
SLOT	78	7 (13)	20 7	2							
D.	88	7 (13) 7 (11)	7	4							
SLOT	93	9 (14)	9	4							
D	85	20 (33)	20	10							
SLOT	65 77	20 (33) 4 (7)	20 4	10							
OLO I	4987	~ */	481	4							

Summary			
Preg Status	No of Pregnancie:		
> 40 d	. 9		
> 90 d	2		
> 120 d	4		
> 180 d	3		
> 210 d	3		
Total	21		