Topography based models

PC practical Catchment and Climate Hydrology

1 Introduction

This practical focuses on the importance of the catchment geomorphology for the catchment response to rainfall. Digital elevation models (DEMs) are relatively easily available (compared to e.g. soil maps or the location of river branches) and are often used as a first tool to characterize catchments. A detailed analysis of a digital elevation model will give a first idea of how the discharge will respond to rainfall events.

You don't have to do all exercises, but make sure you start with the Sec. 5 at approximately 11:30, Sec. 6 at 12:00 and the final assignment at 12:30. We discuss the results at 13.05.

2 The Ourthe catchment

We will focus specifically on the catchment of the Ourthe upstream of Tabreux (1600 km²). Both topography and geomorphology play an important role in the hydrological response of the Upper Ourthe catchment. The catchment is situated in the hilly plateaus of the Ardennes in the eastern part of Belgium* (Figure 1). The elevation of the catchment varies between 150 and 650 m above sea level. The soil mainly consists of sandstone, shale and limestone, which have been eroded by small river systems that drain into the river Meuse. The region can be characterized as mostly rainfed with some snow during the winter period. This results in a highly variable runoff regime with low discharges in summer and high peaks in winter.

3 Digital elevation models for hydrological applications

The data and scripts can be found on Brightspace. Download and unzip. This will generate the folder topmodels, containing the subdirectories R_scripts, DEM and Data.

3.1 **DEM**

The DEM you will use today was obtained by the Shuttle Radar Topography Mission (SRTM) which generated a near global elevation map. For Europe the resolution of this dataset is about 90 meter and can be downloaded from the internet (http://www2.jpl.nasa.gov/srtm/). Your DEM file is called ourthe_90m.asc and is located in the folder DEM.

Figure 1: Location of the Ardennes and a 200x200-km box with a topographic map, the main channel network (black), the Ourthe catchment boundary (white), the catchment outlet (\blacktriangle), the meteorological station (\circ), rain gauges (+) and weather radar (\bullet).

Open this file in Notepad and find out how this ASCII file is set up. What do the numbers in the big matrix mean?

3.2 Preprocessing

Before you can use the DEM for hydrological applications, the DEM has to be preprocessed. In this preprocessing step, pits in the topography field are filled, flow directions are computed and contributing areas and slope gradients are computed.

For this preprocessing, multiple GIS programs can be used (e.g. ArcGIS, SAGA GIS, GRASS). For this practical these preprocessing steps have already been performed using the TAUDEM package. TAUDEM is a terrain analysis package for ArcGIS developed by D.G. Tarboton of Utah State University. For more information concerning the specific aspects of TAUDEM, see http://hydrology.usu.edu/taudem/taudem5.0/index.html. The following sections explain what happens during the preprocessing phase.

 $[^]st$ a well-known area for those who followed Hydrogeology

3.2.1 Sink / pit filling

The main assumptions behind spatial hydrological analyses is that water will flow from higher to lower cells. To obtain a continuous flow direction map, the lowest cell in a DEM should be situated at the boundary of a DEM. Unfortunately, local topography or erroneous measurements by the satellite can result in local depressions (also called sinks or pits). Because the cells surrounding the pits are higher in elevation, water will never flow out of them and will never reach the river.

Although sinks may represent real terrain features, they hinder the analysis of drainage networks. Local depressions should therefore be filled before making a flow direction map. Using TAUDEM, the original DEM file ourthe_90m.asc was corrected for pits, resulting in a new DEM file ourthe_90mfel.asc, which can also be found in the DEM folder.

3.2.2 Flow direction, slope and contributing area

There are many ways to compute flow directions. In this practical the simplest and oldest method will be applied: the D8 flow direction method. The elevation of each pixel is compared to the elevations of the 8 neighbouring cells and water will flow in the direction of the steepest descent:

649	645	645	642
639	643	640	642
642	638-	-637-	-639

The flow directions are represented by numbers:

4	3	2
5		1
6	7	8

Boundary pixels for which no downstream direction could be obtained receive the value of -1. The output of this step was saved in the file ourthe_90mp.asc. Once these directions have been determined, TAUDEM immediately generates the file ourthe_90msd8.asc, containing the local slopes for all pixels. From the flow direction map, the upstream area for each pixel can be computed. TAUDEM starts at the highest points of the DEM and moves downward. In ourthe_90mad8.asc the number of upstream pixels is given for each pixel.

Open ourthe_90mp.asc, ourthe_90msd8.asc and ourthe_90mad8.asc in Notepad and try to understand what the numbers mean.

3.3 R for DEM analyses

After these preprocessing steps, R can be used for spatial hydrological analyses. Open RStudio and load the script topmodels.R. Set the working directory and run the part under "Getting started".

The folder R_scripts contains more scripts with functions used in the main R script topmodels.R (you don't have to open these scripts now):

- SetGeo.R gives pixel size and extent of the DEM.
- nbrtable.R Within R a DEM matrix is internally represented as a vector. Therefore, for every pixel within the grid this function calculates the vector index value for the 8 neighbour points.
- downnbr.R gives the vector index number of a pixel's downstream neighbour based on the D8 flow direction method.
- mainbasin.R gives the upstream area for a given pixel.
- GetNewCoordinates.R zooms in to the catchment when the catchment area covers a small part of the DFM
- flowdistance.R calculates the distance to the channel network for each pixel.
- plotflowdistance.R draws a map of the distance to the channel for each pixel obtained by flowdistance.R.
- channeldistance.R gives the distance to the outlet (measured along the channel) for each pixel (given a certain channel network).
- channelpixelsize.R computes for each channel pixel how many metres of channel it contains.
- strahler_order.R gives Strahler order numbers for each channel link.
- shreve_order.R gives Shreve order numbers for each channel link.
- TOPMODEL.R runs the hydrological model TOP-MODEL.
- NSeff.R computes the Nash-Sutcliffe efficiency.

Run the part under "Extra functions". You then load all extra functions. For example, when you run the line source("R_scripts/SetGeo.R") in the topmodels.R-script, R runs the whole SetGeo.R-script at once in the background. Because the SetGeo.R-script contains the definition of the function SetGeo, this function with the argument A appears in the workspace window.

4 DEM analyses

4.1 Read data

Next, run the part of the script under "Read Data". This part of the script generates a map with the pit filled DEM. Check if your figure is similar to Figure 1.

Read the part of the script under "Catchment Area". If you run this part in R, only the part of the DEM that lies upstream of Tabreux is selected. This part belongs to the Upper Ourthe catchment.

Click on basin in the workspace window. What do the TRUE and FALSE mean?
TRUE:

Make sure you understand what happens in the line Elevation[basin == FALSE] = NA. If you don't know what the square brackets do, reread Section 11.1 of the (very) short introduction to R (which can be found on the R website: cran.r-project.org/doc/contrib/Torfs+Brauer-Short-R-Intro.pdf).

How many pixels belong to the Ourthe catchment and what is the corresponding area?

4.2 Channel network

FALSE:

Because you do not have information on where the channels are (which is almost always the case), you will predict the location of the channels with the DEM. Assume that a river branch will develop when the upstream area exceeds a certain value representing the soil's flow capacity; excess water will start to flow overland instead, creating a channel. Assume that for a pixel to be part of the channel network, the upstream area has to be equal to or exceed $0.1~{\rm km}^2~(A_c)$.

Run the part of the script under "Channel Network". This will generate the channel network. Click on "Channel" in the workspace window to see what this matrix looks like.

How many pixels are part of the channel network?

How many pixels are part of the network when you change the upstream area to 0.03, 0.3 and 1 $\mathrm{km}^2.$

0.03 km²: 1 km²:

What is the relation between channel density and A_c ?

Set the upstream area to $0.1\ km^2$ for the next assignments.

4.3 Channel network ordering

The shape of channel network can be analyzed with several ordering systems. Today we will focus on the Strahler (left) and Shreve (right) ordering systems:

Use the function shreve to calculate the Shreve order for each channel pixel.

What is the maximum Shreve value? (Look at the arguments of the function max to find out how to exclude non-channel pixels in the computation.)

What does this maximum represent?

Do the same for the Strahler order.

What is the maximum Strahler number?

How does this value change when you increase A_c ; the upstream area which defines the channel network? (what you did in section 4.2)

4.4 Drainage density and hillslope length

The function channelpixelsize calculates for every channel pixel how many metres of channel it contains.

Click on Channel_Length_Per_Pixel in the workspace window. What do NA, 90 and 127 tell you about the flow direction?

NA:
90:
127:
Where do the numbers 90 and 127 come from?

A rectangular valley with a channel in the middle and the local water divide at the edges, can be characterized by several measures: the channel length L_c , the area A, the hillslope length L_h and the drainage density d:

Give the equation to compute the area of the valley in the
figure above from L_h and L_c . $A=$
Give the equation to compute the drainage density from area ${\cal A}$ and channel length ${\cal L}.$ $d=$
Give the equation to compute the drainage density from the hillslope length ${\cal L}_h. \ d=$
Give the equation to compute L_h from d . $L_h =$
What is the unit of drainage density?

Compute the drainage density of the Ourthe catchment (for

4.6 Channel width function

From the channel network you can compute the network width function. This function gives the fraction of channel pixels at a given distance from the outlet. Plot the width function.

Explain the	shape of the	width func	tion with the	shapes of
the channel	network and	catchment.		

4.7 Channel travel time distribution

The velocity of the water in the river is generally between 0.3 and $3.0~{\rm m\,s^{-1}}$. Here a value of $0.8~{\rm m\,s^{-1}}$ is assumed for every stretch of river. With the flow velocity you can convert the distance-to-outlet-map into a channel travel time map.

What can you say about the pattern and variability in flow times and their relation to the shape of the catchment and the channel network?

4.5 Distance to outlet

What is the average hillslope length?

 $A_c = 0.1$)

d =

Compute for each pixel the distance to the outlet. This is preprogrammed in channeldistance.

What is the distance from the most upstream channel pixel to the outlet?

Plot the average channel elevation versus distance to the outlet. What do the slopes of the curves show?

What can you say about the relation between the slopes of the curves and the distance to the outlet?

Different channel velocities lead to different travel time distributions. Compute the maximum and median travel time with different channel velocities ranging from 0.3 to $3.0~{\rm m\,s^{-1}}$ and plot the results (channel velocity on the x-axis and travel time on the y-axis).

What is the relation between flow velocity and maximum channel travel time?

If all rain would fall on the channel network directly, what do the maximum and median travel time then represent?

5 Rainfall-runoff modelling

5.1 Time series

Before you start modelling, you should get a better feeling of the water balance terms in the Ourthe catchment. The file PEQ_Ourthe_2002_2003.txt in the folder Data contains 2 years of basin averaged hourly precipitation [mm h $^{-1}$], potential evaporation [mm h $^{-1}$] and discharge [m $^3\,s^{-1}$] data. Use the year 2002 for calibration and Feb.–Dec. 2003 for validation. The discharge data of January 2003 are removed – you will predict these in the final assignment.

Comparing fluxes is easier when they have the same units. Use the catchment area to convert the discharge to mm h^{-1} and plot the time series. To remove the hourly variability, the data can be averaged over monthly periods. This is preprogrammed in the script. In addition, the $10^{\rm th}$ and $90^{\rm th}$ percentiles are computed.

Look at the seasonal variation to get a rough idea of the dominant fluxes during different seasons.

The models in Chapter 5 need input, but cannot deal with negative input (ET>P), because they do not contain stores from which water can be removed (they use transfer functions instead of reservoirs). You could just use P as input, but of course part of the precipitation evaporates. As a quick fix, a factor f is introduced to close the water balance over 2002 to account for evapotranspiration:

$$f \cdot \Sigma P - \Sigma Q = 0 \ .$$

Hourly values of effective precipitation are computed as

$$P_{\text{eff}} = f \cdot P$$
.

5.2 Channel travel time distribution model

From the channel width function in section 4.6 you can make a simple rainfall-runoff model. In this model you assume that all precipitation enters the channel network directly.

The function Q_geomorph_channel converts the width function to a travel time distribution model with a convolution integral. Try to understand the different aspects of this function (look in the file Q_geomorph_channel.R).

Run this function with the effective precipitation time series and flow velocity parameter.

How does the simulated discharge compare to the observed discharge? What happens if you change the velocity?

5.3 Hillslope width function

Of course, the assumption that all precipitation immediately enters the channel network is not valid: the simulated discharge response is too fast. This illustrates that the response of a catchment is not only characterized by the channel network but also by the soil, slope and vegetation on the hill-slopes.

Compute for each pixel the distance to the nearest channel, plot the map and make a histogram: the hillslope width function.

What is the average distance to the channel?

How does the average distance to the channel compare to the average hillslope length you computed in Section 4.4?

What information does this width function give?

5.4 Channel and hillslope travel time distribution model

A catchment's travel time distribution is determined by the time a water droplet spends in both the hillslope and the channel network. You already computed the channel travel time distribution from the channel width function (Sec. 5.2). In the same way, you can make a hillslope travel time distribution from the histogram of the distances to the nearest channel. Just as in the channel, we assume that the flow velocity in the hillslope is constant.

Why is the assumption of a constant (no variation in time) flow velocity in the hillslope not realistic?

The functions Q_geomorph_hillslope and Q_hillslope_parts have a similar set-up as the previously used function Q_geomorph_channel. As a first estimate, the effective † velocity in the hillslope is assumed to be 0.1 m s $^{-1}$ and the channel network velocity 0.8 m s $^{-1}$.

[†]The word effective is added because the actual flow velocity of the water particles through the soil is much slower than the response caused by pressure changes.

	6 TOPMODEL		
During which part of the year do the simulated discharge peaks fit the observed ones well? Why?	As you probably noticed, the simple model was only able to simulate a proper response behaviour for some events. It is very difficult to simulate the hydrological response of a catchment with a few fixed velocities. It is impossible to grasp the temporal variations in the complex hydrologi-		
What happens to the baseflow? Why?	cal interactions between vegetation and the unsaturated and saturated zones using this simple approach. The next step is to use a more complex (but still relatively simple) hydrological model: TOPMODEL. TOPMODEL is a well-known model based on the topographic properties of the catchment.		
Try different values for the effective hillslope velocity.	6.1 Topographic index		
Which values for the effective hillslope velocity yield good results in the winter period and which in the summer?	The main assumption behind TOPMODEL is that the response behaviour of a given pixel can be estimated by its topographic index value λ :		
You probably found that in winter the hillslope velocity is higher than in in summer. Explain this with the dominant processes that occur during winter.	$\lambda = \ln\left(\frac{a}{\tan\beta}\right) \;,$ where a is the upstream area per unit contour length (pixel length) [m] and β the local slope [°]. More information on TOPMODEL is given in the reader. Use the script to compute and plot the topographic index for each pixel.		
	How are the topographic indices distributed?		
5.5 Flow routes			
The route a water droplet takes through the hillslope to the channel depends on many factors, such as soil type, presence of macropores, vegetation and catchment wetness. Because many of these factors change during the year, the flow routes change, and therefore the travel times change.	6.2 Running TOPMODEL		
Make the model a bit more complex by assuming that the hillslope can be modelled with three different hillslope velocity values, $v=10^{-3}$, $v=10^{-5}$ and $v=10^{-7}~{\rm ms^{-1}}$, indicating the fast, intermediate and slow hillslope response. Run the model with the defined fractions for fast, medium and slow response velocities.	To run TOPMODEL, you need to specify 5 parameters and 2 initial conditions. TOPMODEL has already been calibrated for the Ourthe catchment and 20 parameter sets are given in TOPMODEL_Parameters.dat. The initial conditions are the unsaturated zone deficit (Dbar) and root zone deficit (Drzone), both effective catchment values. First, use only the first parameter set (first row in		
Play around with the fractions of the different velocities. Which fractions did you get for which part of the year?	TOPMODEL_Parameters.dat). Run TOPMODEL and simulate the discharge response. Choose the period yourself.		
For which part of the year were you able to obtain proper discharge estimates?	Describe the performance of the model. When did the model succeed and when and how did it fail?		

6.3 Effect of parameters

ues, ru	anyze the effect of uncertainty in the parameter value in the model with all 20 parameter sets and make a ble of the simulations. This may take a few minutes
when	is the parameter uncertainty large? In other words is the spread of the grey lines, caused by different eter sets, large?
6.4	Effect of initial conditions
the res Novem the ini Ch	esults show that it is especially difficult to simulate sponse of the Ourthe for the first main runoff peak in the period of the Courthe for the first main runoff peak in the period of the court of th
What	is the effect of the initial conditions?
for bac forecas	me models use a warming-up period to compensat d initial conditions. For example, when you want t st discharge from April to September, you may stan mulations in March and neglect the output of the firs
	ong would you advise the warming-up period to be for MODEL in the Ourthe catchment and why?

What is the relation between Dbar and Drzone?

6.5 Final assignment

Predict the discharge peak in January 2003 using TOP-MODEL. Run TOPMODEL with different settings. You can change (1) the warming-up period, (2) parameter sets and (3) initial conditions. Collect the computed discharge from different runs as columns in a matrix to get an ensemble of forecasts, which you can plot and analyse. Follow the instructions in the script.

Compute the 25th, 50th and 75th percentile of the ensemble and cut out the values of January (so 3 time series with 744 values). Save the output as a CSV file in your working directory. Open the file in Excel, copy and paste it in Google Sheets before 13:00. We will discuss the results at 13:05.