

## **AMENDMENTS TO THE CLAIMS**

This listing of claims will replace all prior versions and listings of claims in the application:

## LISTING OF CLAIMS:

1. (currently amended): A film having a high index of refraction of at least 1.738, comprising a polycarbodiimide copolymer having a repeating structural unit represented by the following formula (1) in a number "m":

$$- \left( -R^1 - N = C = N - \right)$$
 (1)

(wherein R<sup>1</sup> means a naphthylene group) and a repeating structural unit represented by the following formula (2) in a number "n":

$$- \left( -R^2 - N = C = N \right)$$
 (2)

wherein R<sup>2</sup> means an organic diisocyanate residue of an aromatic or aliphatic diisocyanate selected from the group consisting of the following formulae:

$$\begin{array}{ccc}
\text{OCN} & \text{NCO} \\
& & \\
X^1 & & \\
\end{array} (3)$$

wherein X<sup>1</sup> represents an alkyl group having from 1 to 5 carbon atoms, an alkoxyl group or a halogen atom;

$$\begin{array}{c|c}
\text{OCN} & \text{NCO} \\
\hline
\chi^3 & \chi^2 & \chi^4
\end{array}$$
(4)

wherein X<sup>2</sup> represents a single bond, an alkylene group having from 1 to 5 carbon atoms, oxy group, sulfo thio group or sulfoxyl sulfinyl group, and each of X<sup>3</sup> and X<sup>4</sup> represents an alkyl group having from 1 to 5 carbon atoms, an alkoxyl group or a halogen atom;

$$X^{7} \times X^{6} \times X^{6$$

wherein each of  $X^5$  and  $X^6$  represents a single bond or an alkylene group having from 1 to 5 carbon atoms, and  $X^7$  represents a single bond, an alkyl group having from 1 to 5 carbon atoms or an alkylene group having from 1 to 5 carbon atoms;

wherein X<sup>8</sup> represents an alkylene group having from 1 to 18 carbon atoms; and

$$OCN \xrightarrow{X^9} X^{10} NCO$$
 (7)

wherein each of  $X^9$  and  $X^{10}$  represents a single bond or an alkylene group having from 1 to 5 carbon atoms),

and also having on both termini a terminal structural unit derived from a monoisocyanate,

wherein m + n is from 3 to 200 and n/(m + n) is from 0.05 to 0.99.

- 2. (previously presented): The film according to claim 1, wherein n in the aforementioned formula is an integer of from 3 to 198.
- 3. (original): A solution of a polycarbodiimide copolymer, comprising an aprotic organic solvent and the polycarbodiimide copolymer of claim 1 dissolved therein.

- 4. (original): A solution of a polycarbodiimide copolymer, comprising an aprotic organic solvent and the polycarbodiimide copolymer of claim 2 dissolved therein.
- 5. (currently amended): A method for producing a polycarbodiimide copolymer, which comprises carrying out carbodiimidation reaction of naphthalene diisocyanate, an organic diisocyanate selected from the group consisting of the following formulae:

$$\begin{array}{cccc}
\text{OCN} & & & \\
& & & \\
X^1 & & & \\
\end{array}$$
(3)

wherein X¹ represents an alkyl group having from 1 to 5 carbon atoms, an alkoxyl group or a halogen atom;

$$\begin{array}{c|c}
\text{OCN} & \text{NCO} \\
\hline
\chi^3 & \chi^2 & \chi^4
\end{array}$$
(4)

wherein  $X^2$  represents a single bond, an alkylene group having from 1 to 5 carbon atoms, oxy group, sulfo thio group or sulfoxyl sulfinyl group, and each of  $X^3$  and  $X^4$  represents an alkyl group having from 1 to 5 carbon atoms, an alkoxyl group or a halogen atom;

$$\begin{array}{c}
X^7 \\
X^6 \\
NCO
\end{array}$$
(5)

wherein each of  $X^5$  and  $X^6$  represents a single bond or an alkylene group having from 1 to 5 carbon atoms, and  $X^7$  represents a single bond, an alkyl group having from 1 to 5 carbon atoms or an alkylene group having from 1 to 5 carbon atoms;

wherein X<sup>8</sup> represents an alkylene group having from 1 to 18 carbon atoms; and

$$OCN \xrightarrow{X^9} NCO$$
 (7)

wherein each of X<sup>9</sup> and X<sup>10</sup> represents a single bond or an alkylene group having from 1 to 5 carbon atoms, and a monoisocyanate in the presence of a carbodiimidation catalyst, wherein the reaction is carried out at a temperature of from 0 to 120°C using 5% by mol or more of naphthalene diisocyanate based on the total organic isocyanate.