Definición inductiva de conjuntos.

Un conjunto está definido inductivamente, o se dice también que se ha definido un conjunto por inducción, si se dan las siguientes reglas para su construcción:

Paso base: se especifica una colección inicial de elementos. No puede ser vacía. Tiene que haber por lo menos un elemento.

Paso inductivo: se proporcionan reglas para la formación de nuevos elementos del conjunto a partir de los que ya se conocen.

Regla de exclusión (también llamada cláusula de clausura): no puede haber más elementos que aquellos nombrados en el paso base o generados por la aplicación del paso recursivo un número finito de veces.

Ejemplo: Definición inductiva del conjunto de los números naturales.

1) Paso base: $0 \in \mathbb{N}$

2) Paso inductivo: Si $x \in N \Rightarrow (x + 1) \in N$

Con esta definición inductiva vamos a contemplar la construcción todos los elementos del conjunto N, partiendo del paso base, es decir, a partir de 0 perteneciente a N.

Luego a través de la aplicación de pasos inductivos continuaremos creando elementos de N y así obtendremos $N=\{0,1,2...\}$

NOTA: Si se nos pide demostrar si un elemento pertenece a N, debemos demostrarlo a través de los pasos o reglas de la definición inductiva declarada anteriormente.

Ejemplo: Demostrar que 2 pertenece al conjunto de los números naturales.

Por Paso base 1): $0 \in \mathbb{N}$ Partimos de $\mathbb{N} // \mathbb{N} = \{0\}$

Por Paso inductivo 2): Si $0 \in \mathbb{N} \Rightarrow (0+1) \in \mathbb{N}$ Tras aplicar el paso inductivo a 0, ahora $1 \in \mathbb{N}/\mathbb{N} = \{0,1\}$

Por Paso inductivo 2): Si $1 \in \mathbb{N} \Rightarrow (1+1) \in \mathbb{N}$ Tras aplicar el paso inductivo a 1, ahora $2 \in \mathbb{N}//\mathbb{N} = \{0,1,2\}$

Más conjuntos definidos en forma inductiva: Lenguajes.

Definición: Un **alfabeto** es un conjunto finito de símbolos, números o caracteres. Por ejemplo, S= {a,b,c} es un alfabeto con 3 letras.

Una **palabra** sobre un alfabeto es una cadena, de cero o más elementos del alfabeto, concatenados.

A la palabra vacía la llamaremos ε.

Con nuestro alfabeto S definido más arriba, y sin reglas definidas por ahora, podemos decir que podemos formar las palabras "ba", "ca", "baca", "ababa", " ".

Esta última palabra, la palabra que no tiene letras, recordemos que se llama ε. La palabra "pastel" no se puede formar porque nos faltan muchas letras.

Lenguajes definidos en forma inductiva.

Sea $S=\{a,b,c\}$.

Con los 3 elementos de S podemos hacer un número infinito de palabras.

A este conjunto de las palabras que podemos hacer con las letras de S vamos a llamarlo Lenguaje, en este caso vamos a escribirlo como S*.

S* es el conjunto de <u>todas</u> las palabras que se pueden formar con las letras de S incluyendo la palabra vacía E.

 $S^* = \{ p / p \text{ es una palabra formada con letras de } S \}$

Ejemplo: Definiendo S* de forma inductiva.

1) Paso base: $\varepsilon \in S^*$

2) Paso inductivo: $x \in S^* \Rightarrow xa \in S^*$

3) Paso inductivo: $x \in S^* \Rightarrow xb \in S^*$

4) Paso inductivo: $x \in S^* \Rightarrow xc \in S^*$

Ejemplo: Aplicando definición inductiva de S*.

Probar que abc pertenece a S*

Por Paso base 1): $\varepsilon \in S^*$ Partimos de $S^* // S^* = \{\varepsilon\}$

Por Paso inductivo 2): $\varepsilon \in S^* \Rightarrow \varepsilon a \in S^*$ Tras aplicar el paso inductivo a ε , ahora "a" $\in S^*//S^* = \{\varepsilon, a\}$

Por Paso inductivo 3): $a \in S^* \Rightarrow ab \in S^*$ Tras aplicar el paso inductivo a "a", ahora "ab" $\in S^*//S^* = \{\epsilon, a, ab\}$

Por Paso inductivo 4): $ab \in S^* \Rightarrow abc \in S^*$ Tras aplicar el paso inductivo a "ab", ahora "abc" $\in S^*//S^* = \{\epsilon, a, ab, abc\}$