

Solution of Simultaneous Linear Equations Ex 8.1 Q5

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$$

$$A \times B = \begin{bmatrix} 2+4+0 & 2-2+0 & -4+4+0 \\ 4-12+8 & 4+6-4 & -8-12+20 \\ 0-4+4 & 0+2-2 & 0-4+10 \end{bmatrix}$$

$$AB = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{bmatrix}$$

AB = 6I, where I is a 3×3 unit matrix

or
$$A^{-1} = \frac{1}{6}B$$
 [By def. of inverse]
= $\frac{1}{6}\begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$

Now, the ginven system of equations can be written as

$$\begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 17 \\ 7 \end{bmatrix}$$
or
$$AX = B$$
or
$$X = A^{-1}B$$

$$= \frac{1}{6} \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix} \begin{bmatrix} 3 \\ 17 \\ 7 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 6 + 34 - 28 \\ -12 + 34 - 28 \\ 6 - 17 + 35 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 12 \\ -6 \\ 24 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$$

Hence, x = 2, y = -1, z = 4

Solution of Simultaneous Linear Equations Ex 8.1 Q6

$$A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$$

$$|A| = 2(0) + 3(-2) + 5(1) = -1 \neq 0$$

Also,
$$C_{11} = 0$$
 $C_{21} = -1$ $C_{31} = 2$ $C_{12} = 2$ $C_{12} = -9$ $C_{32} = 23$ $C_{13} = 1$ $C_{23} = -5$ $C_{33} = 13$

$$(adj A) = \begin{bmatrix} 0 & 2 & 1 \\ -1 & -9 & -5 \\ 2 & 23 & 13 \end{bmatrix}^{T} = \begin{bmatrix} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} (adj A) = \frac{1}{-1} \begin{bmatrix} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix}$$

The given system of equations can be written as

$$\begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ -1 & 1 & -2 \\ z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix}$$

or
$$A \times = B$$

 $X = A^{-1}B$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix} \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix}$$

$$= \begin{bmatrix} -5+6 \\ -22+45+69 \\ -11-25+39 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Hence,
$$x = 1, y = 2, z = 3$$

Solution of Simultaneous Linear Equations Ex 8.1 Q7

$$A = \begin{bmatrix} 1 & 2 & 5 \\ 1 & -1 & -1 \\ 2 & 3 & -1 \end{bmatrix}$$

$$|A| = 1(1+3) - 2(-1+2) + 5(5) = 4 - 2 + 25 = 27 \neq 0$$

$$C_{11} = 4$$
 $C_{21} = 17$ $C_{31} = 3$ $C_{12} = -1$ $C_{22} = -11$ $C_{32} = 6$ $C_{13} = 5$ $C_{23} = 1$ $C_{33} = -3$

$$A^{-1} = \frac{1}{|A|} \times \text{adj } A = \frac{1}{27} \begin{bmatrix} 4 & 17 & 3 \\ -1 & -11 & 6 \\ 5 & 1 & -3 \end{bmatrix}$$

Now, the given set of equations can be represented as x + 2y + 5z = 10 x - y - z = -22x + 3y - z = -11

or
$$\begin{bmatrix} 1 & 2 & 5 \\ 1 & -1 & -1 \\ 2 & 3 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 10 \\ -2 \\ -11 \end{bmatrix}$$

or
$$X = A^{-1} \times B$$

$$= \frac{1}{27} \begin{bmatrix} 4 & 17 & 3 \\ -1 & -11 & 6 \\ 5 & 1 & -3 \end{bmatrix} \begin{bmatrix} 10 \\ -2 \\ -11 \end{bmatrix}$$

$$= \frac{1}{27} \begin{bmatrix} 40 - 34 - 33 \\ -10 + 22 - 66 \\ 50 - 2 + 33 \end{bmatrix} = \frac{1}{27} \begin{bmatrix} -27 \\ -54 \\ 81 \end{bmatrix} = \begin{bmatrix} -1 \\ -2 \\ 3 \end{bmatrix}$$

Hence, x = -1, y = -2, z = 3

Solution of Simultaneous Linear Equations Ex 8.1 Q8

$$A = \begin{bmatrix} 1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1 \end{bmatrix}$$

$$|A| = 1(7) + 2(2) = 11$$

$$C_{11} = 7$$
 $C_{21} = 2$ $C_{31} = -6$
 $C_{12} = -2$ $C_{22} = 1$ $C_{32} = -3$
 $C_{13} = -4$ $C_{23} = 2$ $C_{33} = 5$

$$A^{-1} = \frac{1}{|A|} \operatorname{adj} A = \frac{1}{11} \begin{bmatrix} 7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 2 & 5 \end{bmatrix}$$

Now,
$$x - 2y = 10$$

 $2x + y + 3z = 8$
 $-2y + z = 7$

or
$$\begin{bmatrix} 1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix}$$

or
$$X = A^{-1} \times B$$

$$= \frac{1}{11} \begin{bmatrix} 7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 2 & 5 \end{bmatrix} \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix}$$

$$= \frac{1}{11} \begin{bmatrix} 70 + 16 - 42 \\ -20 + 8 - 21 \\ -40 + 16 + 35 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 44 \\ -33 \\ 11 \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \\ 1 \end{bmatrix}$$

Hence,
$$x = 4, y = -3, z = 1$$

Solution of Simultaneous Linear Equations Ex 8.1 Q8(ii)

$$A = \begin{bmatrix} 3 & -4 & 2 \\ 2 & 3 & 5 \\ 1 & 0 & 1 \end{bmatrix}$$

$$|A| = 3(3) + 4(-3) + 2(-3) = -9$$

$$C_{11} = 3$$
 $C_{21} = 4$ $C_{31} = -26$
 $C_{12} = 3$ $C_{22} = 1$ $C_{32} = -11$
 $C_{13} = -3$ $C_{23} = -4$ $C_{33} = 17$

$$A^{-1} = \frac{1}{|A|} a \, dj A = \frac{1}{-9} \begin{bmatrix} 3 & 4 & -26 \\ 3 & 1 & -11 \\ -3 & -4 & 17 \end{bmatrix}$$

Now,

$$3x-4y+2z=-1$$
$$2x+3y+5z=7$$
$$x+z=2$$

Or
$$\begin{bmatrix} 3 & -4 & 2 \\ 2 & 3 & 5 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 7 \\ 2 \end{bmatrix}$$

$$X = A^{-1} \times B$$
Or
$$= \frac{1}{-9} \begin{bmatrix} 3 & 4 & -26 \\ 3 & 1 & -11 \\ -3 & -4 & 17 \end{bmatrix} \begin{bmatrix} -1 \\ 7 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{-9} \begin{bmatrix} -27 \\ -18 \\ 9 \end{bmatrix}$$

Hence
$$x = 3, y = 2, z = -1$$

Solution of Simultaneous Linear Equations Ex 8.1 Q8(iii)

$$A = \begin{bmatrix} 1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 2 & 5 \end{bmatrix}$$
$$A \times B = \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix}$$

AB = 11I, where I is a 3×3 unit matrix

$$A^{-1} = \frac{1}{11}B$$
 [By def. of inverse]

Or
$$= \frac{1}{11} \begin{bmatrix} 7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 2 & 5 \end{bmatrix}$$

Now, the given system of equations can be written as

$$\begin{bmatrix} 1 & -2 & 0 \\ 2 & 1 & 3 \\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix}$$

Or
$$AX = B$$

 $X = A^{-1}B$

Or
$$= \frac{1}{11} \begin{bmatrix} 7 & 2 & -6 \\ -2 & 1 & -3 \\ -4 & 2 & 5 \end{bmatrix} \begin{bmatrix} 10 \\ 8 \\ 7 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 44 \\ -33 \\ 11 \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \\ 1 \end{bmatrix}$$

Hence,
$$x = 4$$
, $y = -3$, $z = 1$

******* END *******