

Lecture 3

Math 105

Calculus

Limits & Continuity of Functions

By

Prof Dr. Fathy Helail

Department of Mathematics

Contents

1. The Limit of the Functions:

1.1. Motivation.

1.1. Definition of Limit.

1.3. Rules for evaluating Limits .

1.4. Other Technique for Evaluating Limits.

1.5. One – Sided Limits & Limit Existence.

2. Continuity of Functions:

2.1. Continuity of Polynomials.

2.2. Continuity of Rational Functions.

3. Problems & Examples on Limits.

1. The Limit of Functions

1.1. Motivation

Mathematically for the concept of a Limit, we give the following example of a function $f(x) = x^2 - x + 2$ & we will investigate the behavior of $f(x)$ for the values of x near $x = 2$. Thus, we need to get the Limit of the function $f(x)$ as x approaches 2; i.e. We shall calculate some values of $f(x) = x^2 - x + 2$ from Left & from Right:

(a) From Left: Substituting by x values < 2 ; e.g. $f(1.995) = 3.985 \approx 4$ & $f(1.999) = 3.997 \approx 4$.

(b) From Right: Substituting by x values > 2 ; e.g. $f(2.005) = 4.015 \approx 4$ & $f(2.001) = 4.003 \approx 4$.

From the above calculations, we can see that when x is close to 2 on either side of 2, then the value of $f(x)$ is close to 4. We express this by using the notation of Mathematical Limit as follows:

$$\lim_{x \rightarrow 2} (x^2 - x + 2) = 4$$

1.2. Definition of Limit:

Now, we come to the Mathematical Definition of Limits, as follows:

Definition 1. If $f(x)$ becomes arbitrary close to a single number L as x approaches a from either side, then:

$$\lim_{x \rightarrow a} f(x) = L$$

which reads as “the Limit of $f(x)$ as x approaches a is L ”

Important Note: In Limits we are concerned **not with what happens to $f(x)$ when $x = a$,** but only with what happens to $f(x)$ **when x is close to a .**

To evaluate different types of limits for functions, we present some Rules.

1.3. Rules (properties) for evaluating Limits

Let a & c be real numbers, and let n be a natural number, then:

Rule 1.

$$\lim_{x \rightarrow a} c = c$$

i.e. the limit of a constant C is equal to the same C .

e.g. $\lim_{x \rightarrow -3} 15 = 15$.

Rule 2.

$$\lim_{x \rightarrow a} x^n = a^n$$

i.e. the limit of monomial is just to replace x by a .

e.g. $\lim_{x \rightarrow 2} x^4 = (2)^4 = 16$ & $\lim_{x \rightarrow -3} x^3 = (-3)^3 = -27$.

Rule 3.

$$\lim_{x \rightarrow a} (f(x) \pm g(x)) = \lim_{x \rightarrow a} f(x) \pm \lim_{x \rightarrow a} g(x).$$

i.e. The Limit is distributed on plus or minus signs.

e.g. $\lim_{x \rightarrow 2} (x^5 - x^8) = \lim_{x \rightarrow 2} x^5 - \lim_{x \rightarrow 2} x^8 = -224$.

Rule 4.

$$\lim_{x \rightarrow a} c f(x) = c \lim_{x \rightarrow a} f(x).$$

e.g. $\lim_{x \rightarrow -3} -2x^3 = -2 \lim_{x \rightarrow -3} x^3 = 54$.

Rule 5.

$$\lim_{x \rightarrow a} \frac{f(x)}{g(x)} = \lim_{x \rightarrow a} f(x) / \lim_{x \rightarrow a} g(x), \text{ provided that } \lim_{x \rightarrow a} g(x) \neq 0.$$

Rule 6.

$$\lim_{x \rightarrow a} (f(x) \cdot g(x)) = \lim_{x \rightarrow a} f(x) \cdot \lim_{x \rightarrow a} g(x).$$

Rule 7.

$$\lim_{x \rightarrow a} \sqrt[n]{x} = \sqrt[n]{a}. \text{ If } n \text{ is even, then } a \text{ must be positive.}$$

Rule 8.

If $f(x)$ a polynomial function, then: $\lim_{x \rightarrow a} f(x) = f(a)$.

i.e. The limit of a Polynomial is just replace (substitute) x by a .

Example 1. Find the following limit $\lim_{x \rightarrow 2} (x^2 + 2x - 3)$.

Solution.

Since $f(x)$ is a polynomial, then we find the limit of $f(x)$ by direct substitution of $x = 2$, as follows:

$$\lim_{x \rightarrow 2} (x^2 + 2x - 3) = 2^2 + 2 \times 2 - 3 = 5.$$

1.4. Other Techniques (Rules) for Evaluating Limits

Many techniques for evaluating limits are based on the following Replacement theorem, which states that if 2 functions agree at all but a single point c , then they have identical limit behavior at $x = c$.

Replacement Theorem:

Let c be a real number & let $f(x) = g(x)$ for all $x \neq c$.

If the limit of $g(x)$ exists as $x \rightarrow c$; then the limit of $f(x)$ also exists and we have: $\lim_{x \rightarrow c} f(x) = \lim_{x \rightarrow c} g(x)$.

Important Remark:

To apply the Replacement Theorem, you can use a result from Algebra which states that for a polynomial function $f(x)$, $f(c) = 0$ if and only if $(x - c)$ is a factor of $f(x)$.

This concept is demonstrated in the following *examples* on Replacement Theorem.

1.4.1. Limit of Rational Function:

Let $f(x) = \frac{g(x)}{h(x)}$ be a real function, then we take the limit for $f(x)$ as follows:

$\lim_{x \rightarrow a} f(x) = \lim_{x \rightarrow a} \frac{g(x)}{h(x)}$, then, we check the 2 cases:

$h(a) \neq 0$ or $h(a) = 0$ as follows:

Case 1 if $h(a) \neq 0$, then the limit can be obtained by direct substitution, and we have

$$\lim_{x \rightarrow a} f(x) = \lim_{x \rightarrow a} \frac{g(x)}{h(x)} = \frac{g(a)}{h(a)}$$

Case 2 if $h(a) = 0$, then factorize $g(x)$ & $h(x)$ as follows:

$g(x) = (x - a) \tilde{g}(x)$, and $h(x) = (x - a) \tilde{h}(x)$, then:

$$\lim_{x \rightarrow a} f(x) = \lim_{x \rightarrow a} \frac{g(x)}{h(x)} = \lim_{x \rightarrow a} \frac{(x - a) \tilde{g}(x)}{(x - a) \tilde{h}(x)} = \lim_{x \rightarrow a} \frac{\tilde{g}(x)}{\tilde{h}(x)}$$

Note. The technique used at **Case 2** is called the dividing out technique. We shall demonstrate the above 2 cases in the following example.

Example 2 Find the following limits:

$$(a) \lim_{x \rightarrow 1} \frac{x+3}{x^2 - 2}$$

$$(b) \lim_{x \rightarrow 2} \frac{x^2 - 3x + 2}{x - 2} .$$

Solution

(a) If we replace x with 1, then we find that the denominator $1^2 - 2 = -1 \neq 0$, then

$$\lim_{x \rightarrow 1} \frac{x+3}{x^2 - 2} = \frac{1+3}{1^2 - 2} = \frac{4}{-1} = -4.$$

(b) If we replace x with 2, the denominator & the numerator will be equal to zero where the $(x - 2)$ is a common factor.

So, for all $x \neq 2$, you can **simplify out this factor** to obtain the following:

$$\lim_{x \rightarrow 2} \frac{x^2 - 3x + 2}{x - 2} = \lim_{x \rightarrow 2} \frac{(x-2)(x-1)}{(x-2)} = \lim_{x \rightarrow 2} (x-1) = 1.$$

1.4.2. The Root Trick Technique

When we try to evaluate a limit where both numerator & denominator are zeros, we rewrite the fraction with a **new denominator that does not include a zero in its limit**. One way to do this is to divide out like factors as shown in **Example 2**. Another technique is to Rationalize the root, as shown in **Example 3**.

Example 3. Find the following limit: $\lim_{x \rightarrow 0} \frac{\sqrt{x+1} - 1}{x}$.

Solution. Since both the numerator & the denominator are zeros. Then, we **Rationalize the root** by **multiplying both denominator & numerator** with the Conjugate of the numerator $\sqrt{x+1} + 1$, as follows:

$$\begin{aligned}\lim_{x \rightarrow 0} \frac{\sqrt{x+1} - 1}{x} &= \lim_{x \rightarrow 0} \frac{\sqrt{x+1} - 1}{x} \left(\frac{\sqrt{x+1} + 1}{\sqrt{x+1} + 1} \right) \\ &= \lim_{x \rightarrow 0} \frac{(x+1) - 1}{x(\sqrt{x+1} + 1)} \\ &= \lim_{x \rightarrow 0} \frac{x}{x(\sqrt{x+1} + 1)} \\ &= \lim_{x \rightarrow 0} \frac{1}{\sqrt{x+1} + 1}\end{aligned}$$

Replacing x with 0, we get

$$\lim_{x \rightarrow 0} \frac{\sqrt{x+1} - 1}{x} = \frac{1}{1+1} = \frac{1}{2}$$

1.5. One – Sided Limits & Limit Existence

Sometimes you can see that a limit fail to exist when a function approaches a different values from **the left of c** than it approaches from **the right of c** . This type of behavior can be described using the concept of a one-sided limit.

1.5.1. Left Sided Limits:

Let $f(x)$ be a function and c is a real number, then: If there is a real number L , such that $f(x)$ approaches L as $x \rightarrow c$ from left, we write: $\lim_{x \rightarrow c^-} f(x) = L$ & we say L is the left-sided limit of $f(x)$.

1.5.2. Right Sided Limits:

Let $f(x)$ be a function and c is a real number, then: If there is a real number K , such that $f(x)$ approaches K as $x \rightarrow c$ from right, we write: $\lim_{x \rightarrow c^+} f(x) = K$ & K is the right-sided limit of $f(x)$.

1.5.3. Existence of Limit

Definition 2. If the left sided limit is equal to the right limit both equal to L (or K), then the limit of the function $f(x)$ as $x \rightarrow a$ exists and it is equal to L . Also, if the left limit is not equal to the right limit, then the limit of $f(x)$ as $x \rightarrow a$ doesn't exist.

Example 4. Given that $f(x)$ is a piecewise-defined function;

$$f(x) = \begin{cases} 4+x & x < 1 \\ 4x - x^2 & x > 1 \end{cases} \text{. Then find the limit of } f(x) \text{ as } x \text{ approaches 1.}$$

Solution. We calculate the left sided limit & the right sided limit, and we see if they are equal or not?

Left sided Limit: $\lim_{x \rightarrow 1^-} f(x) = \lim_{x \rightarrow 1^-} 4 + x = 4 + 1 = 5$

Right sided Limit: $\lim_{x \rightarrow 1^+} f(x) = \lim_{x \rightarrow 1^+} 4x - x^2 = 4 - 1 = 3$

Since, $\lim f(x) \neq \lim f(x)$ then the limit **does not exist**.

2. Continuity of Functions

Function is continuous on an interval if its graph on an interval can be traced using the pencil & paper **without lifting the pencil from the paper**.

Definition 3. A function $f(x)$ is said **to be continuous** at a point $x = a$ if the following 3 conditions are satisfied:

1. $f(a)$ is **defined**. i.e. a in domain of f .
2. $\lim_{x \rightarrow a} f(x)$ **exists**.
3. $\lim_{x \rightarrow a} f(x) = f(a)$.

Remark: If one of the 3 conditions is not satisfied for a point a , then $f(x)$ is **not continuous (discontinuous)** at $x = a$.

Example 5. Given the following function

$$f(x) = \begin{cases} 2, & \text{at } x = 1 \\ 4x + 1 & \text{at } x \neq 1 \end{cases}$$

Is the function $f(x)$ **continuous** at $x = 1$?

Solution

1st condition: $f(1) = 2$, then the function $f(1)$ is defined.

2nd condition: $\lim_{x \rightarrow 1} f(x) = \lim_{x \rightarrow 1} (4x + 1) = 5$. Thus the Limit at $x = 1$ exist.

3rd condition: $\lim_{x \rightarrow 1} f(x) \neq f(1)$. Thus the 3rd condition not satisfied.

Finally, we conclude that $f(x)$ is not continuous at $x = 1$.

2.1 Continuity of Polynomial Functions

Definition 4. Every polynomial function is **Continuous** on **R** .

i.e. the polynomial function is continuous at any real number.

Example 6. Check weather the following function:

$$f(x) = x^7 - 3x^3 + x - 3$$

is continuous or not ?

Solution. Since this function is a **polynomial** then:

$f(x)$ is continuous on $(-\infty, \infty)$

2.2 Continuity of Rational Functions

Definition 5. Every Rational Function is continuous on its Domain.

Example 7.

Describe the interval's for which the following function is

continuous: $f(x) = \frac{x^2 - 1}{x}$.

Solution :

Since $f(x)$ is a rational function which is continuous on its domain & since $f(x)$ is not defined at $x = 0$.

Then, the domain of $f(x)$ is $R - \{0\}$.

i.e. $f(x)$ is continuous on $(-\infty, 0) \cup (0, \infty)$.

3. Problems & Solved Examples on Limits

Problem 1.

Evaluate the following limits:

(a) $\lim_{x \rightarrow 0} \frac{(x+2)^2 - 4}{x}$

(b) $\lim_{x \rightarrow 2} \frac{\frac{1}{x+2} - \frac{1}{2}}{x}$

(c) $\lim_{x \rightarrow 7} \frac{7-x}{49-x^2}$

(d) $\lim_{t \rightarrow 3} \frac{t^3 - 27}{t^2 + 2t - 15}$

(e) $\lim_{x \rightarrow -3} \frac{x^2 + x - 6}{x + 3}$

Solved Examples

Example 1. Find the following limit: $\lim_{x \rightarrow 0} \frac{\sqrt{x+4} - 2}{x}$.

Solution

Direct substitution fails since both numerator and denominator are zero when $x = 0$. We rationalize the numerator through multiplying numerator and denominator by the conjugate of the numerator which is $\sqrt{x+4}+2$ then

$$\begin{aligned}\lim_{x \rightarrow 0} \frac{\sqrt{x+4} - 2}{x} &= \lim_{x \rightarrow 0} \frac{\sqrt{x+4} - 2}{x} \left(\frac{\sqrt{x+4} + 2}{\sqrt{x+4} + 2} \right) \\ &= \lim_{x \rightarrow 0} \frac{1}{\sqrt{x+4} + 2}\end{aligned}$$

Replacing x with 0, we get

$$\lim_{x \rightarrow 0} \frac{\sqrt{x+4} - 2}{x} = \frac{1}{2+2} = \frac{1}{4}.$$

Example 2.

Find the limit of $f(x)$ as x approaches 1.

$$f(x) = \begin{cases} 4 - x, & x < 1 \\ 4x - x^2, & x > 1 \end{cases}$$

Solution. We calculate the left sided limit & the right sided limit, then we see if they are equal or not?

Left sided Limit $\lim_{x \rightarrow 1^-} f(x) = \lim_{x \rightarrow 1^-} 4 - x = 4 - 1 = 3.$

Right Sided Limit $\lim_{x \rightarrow 1^+} f(x) = \lim_{x \rightarrow 1^+} 4x - x^2 = 4 - 1 = 3.$

Since $\lim_{x \rightarrow 1^-} f(x) = \lim_{x \rightarrow 1^+} f(x) = 3;$

then we conclude that the limit exist and equal 3.

Example 3

Find the limit as $x \rightarrow 0$ from the left and the limit as $x \rightarrow 0$ from the right for the function

$$f(x) = \frac{|2x|}{x}$$

Solution: you know that $|x| = \begin{cases} x, & x \geq 0 \\ -x, & x < 0. \end{cases}$

$$\text{then } |2x| = 2|x| = \begin{cases} 2x, & x \geq 0 \\ -2x, & x < 0. \end{cases}$$

Hence ,

$$f(x) = \frac{|2x|}{x} = \begin{cases} 2, & x > 0 \\ -2, & x < 0. \end{cases}$$

Thus we have $f(x) = -2$ for all $x < 0$ & the limit from the Left is: $\lim_{x \rightarrow 0^-} \frac{|2x|}{x} = -2$.

Also $f(x) = 2$ for all $x > 0$ & the limit from the Right is: $\lim_{x \rightarrow 0^+} \frac{|2x|}{x} = 2$.

Thus, $f(x)$ approaches different limits from the Left & from the Right.

Finally, the limit of the function $f(x)$ as $x \rightarrow 0$ does not exist.

Example 4. Given the following function $f(x) = \frac{x^2 - 1}{x - 1}$.

Discuss the continuity of $f(x)$ at $x = 1$.

Solution: Clearly, $f(x)$ is not defined at $x = 1$. Then, $f(x)$ is not continuous (discontinuous) at $x = 1$.

Example 5. Given the following function: $f(x) = \begin{cases} \frac{x}{2} - 1, & x \leq 2 \\ x + 1, & x > 2 \end{cases}$.

Discuss the continuity of $f(x)$ at $x = 2$.

Solution: We apply the 3 conditions of continuity:

From the definition of $f(x)$, we have $f(2) = (2/2) - 1 = 0$ i.e. $f(2)$ is defined.

The right - sided limit: $\lim_{x \rightarrow 2^+} f(x) = \lim_{x \rightarrow 2^+} (x + 1) = 2 + 1 = 3$.

The left - sided limit: $\lim_{x \rightarrow 2^-} f(x) = \lim_{x \rightarrow 2^-} \left(\frac{x}{2} - 1\right) = 2/2 - 1 = 1 - 1 = 0$.

Since $\lim_{x \rightarrow 2^-} f(x) \neq \lim_{x \rightarrow 2^+} f(x)$, then $\lim_{x \rightarrow 2} f(x)$ doesn't exist.

Hence, we conclude that: Since the limit of $f(x)$ at $x = 2$ does not exist; then $f(x)$ is not continuous at $x = 2$.

THANK YOU...