

A Hybrid Neural Model for Recommender System

Yuanhang Cui¹ Weijie Sun¹ Shiyu Wang¹

¹ Electrical and Computer Engineering, University of Michigan

Problem Definition

- We implemented a CB-CF Hybrid Movie Recommendation system by using Neural Networks.
- **INPUT**: A specific user's watching history, her or his information (History) and information about those movies (Tastes).
- **OUTPUT**: A list of movies that one particular user may get interested.

OUTPUT: A list of Recommended movies

CB-CF Hybrid Movie Recommendation system by using **Neural Networks**

INPUT: User A's History & Tastes

Datasets

- We used the dataset of MovieLens of the version of ml-1m, and the dataset of The Movie Database(TMDb).
- Files in ml-1m of Movielens contain 1,000,209 anonymous ratings of approximately 3,900 movies made by 6,040 MovieLens users; We also request and parse data such like movie plot overview from TMDb via open API as a complement to the dataset of MovieLens.

References

- Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-SengChua. 2017. Neural collaborative filtering. (2017), 173–182
- Yehuda Koren. 2008. Factorization meets the neighborhood
- •Wenxing Hong Youchun Ji. 2016. Regularized singular value decomposition innews recommendation system

Our Approach

Feature Selection & Embedding

Raw Data:

1::F::1::10::48067 2::M::56::16::70072 3::M::25::15::55117 4::M::45::7::02460 5::M::25::20::55455 8::M::25::12::11413 9::M::25::17::61614 10::F::35::1::95370

• For Users:

Treat their attributes as additional id-vocabulary Use One-Hot encoder

User ID	Gender ID	Age ID	Job ID	ZipCode ID
853	1099	2158	5179	13154

For Movies: Build word dictionary for every word appears Use embedding layer before NeuMF model

Title	Genre	Director	Overview
Toy Story	Animation	John Lasseter	Led by woody, Andy's toys

User/Movie Feature Embedding

- Mainly two parts: general matrix factorization (GMF) and multi-layer perceptron (MLP)
- Input contains itemized info
- Concatenation & element-wise product keep interactive info

Model Pretrain

- GMF layers modeling the potential interaction between users and movies based on collaborative filtering
- MLP layers view the problem in a "black-box" way
- Significant improvement observed using pre-trained model!

Experimental Results

Experiment 1: Hyper-parameter Tuning

Best number of layers: 5

Experiment 2: Pretrained vs. No Pretrained

Best Dropout Ratio: 0.3

- With pre-trained parameters, both HR and NDCG outperformed the model without pretrained parameters
- Low variation of HR and NDCG in pretrained model, but fluctuated in model without pretrain.
- Improved in terms of both performance and stability!

Experiment 3: Performance Comparison

Model	HR	NDCG
Traditional Content Based	0.2630	0.1757
Traditional Collaborative-filtering	0.3345	0.1908
NeuMF	0.6015	0.3272
NeuMF With User Feature	0.6190	0.3230
NeuMF with User and Movie Feature	0.6991	0.3795
NeuMF with User and Movie Feature with Pretrain	0.7510	0.4827

Conclusions

- By combining itemized user and movie features, our model outperformed basic NeuMF model by He et al.
 - Significant improvement observed by stacking pretrained models
- More data visualization works could be expected for better understanding