Fachhochschule Aachen Campus Jülich

Fachbereich: Medizintechnik und Technomathematik Studiengang: Scientific Programming

Autonomous Fault Detection Using Artificial Intelligence Applied to CLAS12 Drift Chamber Data

Eine Bachelorarbeit von Christian Peters

Jülich, den June 19, 2018

Contents

1	Introduction	3
2	Deep Learning Fundamentals	4
	2.1 Artificial Neural Networks	4
	2.1.1 Modeling Artificial Neurons	5
	2.2 The Multilayer Perceptron	5
	2.3 Deep Networks	5
3	Convolutional Neural Networks	6
4	The CLAS12 Particle Detector	7
5	Implementing and Testing a CNN-Model in DL4J	8
6	Discussion	9
7	Conclusion	10

1 Introduction

2 Deep Learning Fundamentals

2.1 Artificial Neural Networks

Artificial neural networks (ANNs) are a class of machine learning algorithms that are loosely inspired by the structure of biological nervous systems. To be precise, each ANN consists of a collection of artificial neurons that are connected with each other. The neurons are able to exchange information along their connections. A common way to arrange artificial neurons within a network is to organize them in layers as depicted in figure 2.1.

Figure 2.1: The structure of a simple ANN. The nodes represent the neurons, the edges represent their connections, also indicating the flow of information.

When an artificial neuron receives a signal on some of its incoming connections, it may elect to become active.¹ In this state it also influences all neurons it has an outgoing

¹The details of this process are further illustrated in section 2.1.1 on the next page.

connection to by passing a signal along their channel. Those other neurons in turn may also elect to become activated - this way a signal can propagate through the network along the connecting edges.

Usually, each ANN consists of at least one layer of neurons that is responsible for receiving signals from the environment - we call this an *input layer* (see figure 2.1 on the preceding page). When these neurons receive a signal from the environment, they propagate it to their connected neighbors in the next layer. This process repeats until the *output layer* is reached. The neurons in this layer represent the output of the whole network. Each layer in between is called a *hidden layer* because there is no direct communication between the neurons in this layer and the environment.

2.1.1 Modeling Artificial Neurons

2.2 The Multilayer Perceptron

2.3 Deep Networks

3 Convolutional Neural Networks

4 The CLAS12 Particle Detector

5 Implementing and Testing a CNN-Model in DL4J

6 Discussion

7 Conclusion

List of Figures

2.1 The structure of a simple ANN. The nodes represent the neurons, the edges represent their connections, also indicating the flow of information. 4