CNN Architecture

Al604 Deep Learning for Computer Vision Prof. Hyunjung Shim

Slide credit: Justin Johnson, Fei-Fei Li, Ehsan Adeli

Recap: Components of Convolutional Networks

Convolution Layers

Pooling Layers

Fully-Connected Layers

Activation Function

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

ImageNet Classification Challenge

ImageNet Classification Challenge

227 x 227 inputs5 Convolutional layersMax pooling3 fully-connected layersReLU nonlinearities

227 x 227 inputs5 Convolutional layersMax pooling3 fully-connected layersReLU nonlinearities

Used "Local response normalization"; Not used anymore

Trained on two GTX 580 GPUs – only 3GB of memory each! Model split over two GPUs

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

AlexNet Citations per year (As of 9/19/2024)

Total Citations: 162,207

AlexNet Citations per year
(As of 9/19/2024)

Total Citations: 162,207

Citation Counts

Darwin, "On the origin of species", 1859: 64,798

Shannon, "A mathematical theory of communication", 1948: **156,596**

Watson and Crick, "Molecular Structure of Nucleic Acids", 1953: **19,392**

	In	out si	ze		Laye	er			Output size
Layer	С	Η.	/ W	filters	kernel	stride	pad	C	H / W
conv1		3	227	64	11	4	4	2	?

	Ir	nput si	ze		Laye	er		Oı	utput size
Layer	С	Н	/ W	filters	kernel	stride	pad	С	H/W
conv1		3	227	64	11	4	1 2	2	

		Input	t si	ze		L	aye	er				Outp	ut si	ze
Layer	C		Н	/ W	filters	kernel		stride	ŗ	oad	С		H /	W
conv1		3		227	64		11		4	2		64		?

Recall: Output channels = number of filters

	In	put si	ze		Laye	er		(Outpu	t size
Layer	С	Н	/ W	filters	kernel	stride	pad	С	Н	/ W
conv1		3	227	64	11	2	1 2	2	64	56

Recall: W' =
$$(W - K + 2P) / S + 1$$

= $(227 - 11 + 2*2) / 4 + 1$
= $220/4 + 1 = 56$

		Inp	ut size		Laye	er			Output	size	
Layer	С		H/W	filters	kernel	stride	pad	С	Н	/ w	memory (KB)
conv1		3	227	64	11		1 2	2	64	56	Ş

		Inpu	t s	iz	е		La	yε	er			C)utp	ut s	ize	
Layer	C		Н	/	W	filters	kernel		stride	pad		С		н /	W	memory (KB)
conv1		3			227	64	1	L1	4		2		64		56	784

Number of output elements =
$$C * H' * W'$$

= $64*56*56 = 200,704$

Bytes per element = 4 (for 32-bit floating point)

KB = (number of elements) * (bytes per elem) / 1024 = 200704 * 4 / 1024 = **784**

		Inpu	ut s	ize		Laye	er			Out	put si	ze		
Layer	С		H/	W	filters	kernel	stride	pad	C		н /	W	memory (KB)	params (k)
conv1		3		227	64	. 11		4	2	64		56	784	?

		Inpu	t s	ize)		La	Ιye	er				Outp	ut s	ize		
Layer	C		Н	/	W	filters	kernel		stride	pa	d	C		н /	W	memory (KB)	params (k)
conv1		3		2	227	64		11	2	4	2		64		56	784	. 23

Weight shape =
$$C_{out} \times C_{in} \times K \times K$$

= $64 \times 3 \times 11 \times 11$
Bias shape = $C_{out} = 64$
Number of weights = $64*3*11*11 + 64$
= **23,296**

		Input	size		Lay	/er			Outp	ut size			
Layer	С	H	1 / W	filters	kernel	stride	pad	C		H/W	memory (KB)	params (k)	flop (M)
conv1		3	227	64	1	1	4	2	64	56	784	. 23	ý

		Input	t siz	e.		Lay	er		(Outp	ut size			
Layer	C		H /	W	filters	kernel	stride	pad	С		H/W	memory (KB)	params (k)	flop (M)
conv1		3		227	64	. 11	. 4	1 2	2	64	56	784	23	73

Number of floating point operations (multiply+add)

- = (number of output elements) * (ops per output elem)
- $= (C_{out} \times H' \times W') * (C_{in} \times K \times K)$
- = (64 * 56 * 56) * (3 * 11 * 11)
- = 200,704 * 363
- **= 72,855,552**

		Inpu	ıt siz	e		La	yer			Outp	ut s	ize			
Layer	С		н /	W	filters	kernel	stride	pad	С		н /	W	memory (KB)	params (k)	flop (M)
conv1		3	3	227	64	:	11	4	2	64		56		. 23	73
pool1		64	1	56			3	2	0		?				

		Input siz	е		Layer			Output s	ize			
Layer	C	н /	W fi	ilters ker	nel stride	e pad	C	н /	w W	memory (KB)	params (k)	flop (M)
conv1		3	227	64	11	4	2	64	56	784	4 2	3 73
pool1		64	_56		3	2	0	64	27			

For pooling layer:

#output channels = #input channels = 64

		Inpu	t si	ize		Lay	er			Outp	ut size			
Layer	С		Н	/ W	filters	kernel	stride	pad	С		H/W	memory (KB)	params (k)	flop (M)
conv1		3		227	64	11	1	4 2	2	64	56	784	23	73
pool1		64		56		3	3	2 ()	64	27	182	?	

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

		Inpu	ıt s	ize		Lay	er			Outp	ut size			
Layer	C		Н	/ W	filters	kernel	stride	pad	С		H/W	memory (KB)	params (k)	flop (M)
conv1		3	3	227	64	11		4	2	64	56	784	23	73
pool1		64	ŀ	56		3	3	2	0	64	27	182	C	?

Pooling layers have no learnable parameters!

		Inpu	t si	ze		Lay	er		Ou	tput	size			
Layer	C		Н	/ W	filters	kernel	stride	pad	С	Н	/ W	memory (KB)	params (k)	flop (M)
conv1		3	3	227	64	11	. 4	4 2	. 6	64	56	784	23	73
pool1		64		56		3		2 C	(64	27	182	0	0

Floating-point ops for pooling layer

- = (number of output positions) * (flops per output position)
- $= (C_{out} * H' * W') * (K * K)$
- = (64 * 27 * 27) * (3 * 3)
- = 419,904
- **= 0.4 MFLOP**

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

		Input	Size		Laye	•		Outpu	t size			
Layer	С		H/W	filters	kernel stride	pad	C	Н	/ W	memory (KB)	params (k)	flop (M)
conv1		3	227	64	11	4	2	64	56	784	23	73
pool1		64	56		3	2	0	64	27	182	2 0	0
conv2		64	27	192	5	1	2	192	27	547	307	224
pool2		192	27		3	2	0	192	13	127	, C	0
conv3		192	13	384	3	1	1	384	13	254	664	112
conv4		384	13	256	3	1	1	256	13	169	885	145
conv5		256	13	256	3	1	1	256	13	169	590	100
pool5		256	13		3	2	0	256	ϵ	36	5 0	0
flatten		256	6					9216		36	5 0	0

Flatten output size =
$$C_{in} x H x W$$

= 256 * 6 * 6
= **9216**

		Inpu	ıt siz	e		Laye	er		Out	put size			
Layer	С		н/ W		filters	kernel	stride	pad	С	H / W	memory (KB)	params (k)	flop (M)
conv1		3	2	227	64	11	. 4	. 2	64	56	784	23	73
pool1		64		56		3	2	C	64	27	182	. 0	0
conv2		64		27	192	5	1	. 2	192	27	547	307	224
pool2		192		27		3	2	C	192	13	127	0	0
conv3		192		13	384	. 3	1	. 1	384	13	254	664	112
conv4		384		13	256	3	1	. 1	256	13	169	885	145
conv5		256		13	256	3	1	. 1	256	13	169	590	100
pool5		256		13		3	2	C	256	6	36	0	0
flatten		256		6					9216		36	0	0
fc6	ç	9216			4096				4096		16	37,749	38

FC params =
$$C_{in} * C_{out} + C_{out}$$
 FC flops = $C_{in} * C_{out}$
= 9216 * 4096 + 4096 = 37,725,832 FC flops = $C_{in} * C_{out}$
= 9216 * 4096 = 37,748,736

	lı	าрเ	ut size		Laye	er		Out	put size			
Layer	С		H / W	filters	kernel	stride	pad	С	H / W	memory (KB)	params (k)	flop (M)
conv1		3	227	64	11	4	- 2	64	56	784	23	73
pool1		64	56)	3	2		64	. 27	182	C	0
conv2		64	27	192	5	1	. 2	192	27	547	307	224
pool2	1	92	27		3	2		192	13	127	C	0
conv3	1	92	13	384	3	1	. 1	384	. 13	254	664	112
conv4	3	84	13	256	3	1	. 1	256	13	169	885	145
conv5	2	56	13	256	3	1	. 1	256	13	169	590	100
pool5	2	56	13		3	2		256	6	36	C	0
flatten	2	56	6	ò				9216		36	C	0
fc6	92	16		4096				4096		16	37,749	38
fc7	40	96		4096				4096		16	16,777	17
fc8	40	96		1000				1000		4	4,096	4

How to choose this? Trial and error =(

									1	3 48			
	In	put	size		Laye	er			Out	put size			
Layer	С	Н	1	filters	kernel	stride	pad	C		н / w	memory (KB)	params (k)	flop (M)
		W	/										
conv1		3	227	64	11	. 4	4	2	64	. 50	784	23	73
pool1	(54	56		3		2	0	64	- 27	7 182	C	0
conv2	(54	27	192	5	<u> </u>	1	2	192	2	7 547	307	224
pool2	19	92	27		3		2	0	192	. 13	3 127	C	0
conv3	19	92	13	384	. 3	;	1	1	384	- 13	3 254	664	112
conv4	38	34	13	256	3		1	1	256	13	3 169	885	145
conv5	2.	56	13	256	3	;	1	1	256	13	3 169	590	100
pool5	2.	56	13		3		2	0	256		36	C	0
flatten	2.	56	6						9216		36	C	0
fc6	92:	16		4096					4096		16	37,749	38
fc7	409	96		4096					4096		16	16,777	17
fc8	409	96		1000					1000		4	4,096	4

Interesting trends here!

		Inp	ut size		Laye	er			Out	put	size			
Layer	С		н /	filters	kernel	stride	pad	С		Н	/ w	memory (KB)	params (k)	flop (M)
			W											
conv1		3	22	<mark>7</mark> 64	11	. 4	. 2	2	64		56	784	23	73
pool1		64	- 5	6	3	2	2 (64		27	182	O	0
conv2		64	. 2	<mark>7</mark> 192	2 5	. 1	. 2	2	192		27	547	307	224
pool2		192	. 2	7	3	2	2		192		13	127	C	0
conv3		192	. 1	384	1 3	1	. 1		384		13	254	664	112
conv4		384	· 1	<mark>3</mark> 256	5 3	1	. 1		256		13	169	885	145
conv5		256	1	<mark>3</mark> 256	5 3	1	. 1		256		13	169	590	100
pool5		256	1	3	3	2	2 (256		6	36	C	0
flatten		256		6				9	9216			36	C	0
fc6		9216		4096	5			4	4096			16	37,749	38
fc7		4096		4096	5			4	4096			16	16,777	17
fc8		4096		1000)				1000			4	4,096	4

224 | Stride | Max | pooling | 128 | Max | pooling | 2048

Most of the **memory usage** is in the early convolution layers

Memory (KB)

Nearly all **parameters** are in the fully-connected layers

Params (K)

Most **floating-point ops** occur in the convolution layers

MFLOP

ImageNet Classification Challenge

ImageNet Classification Challenge

ZFNet: A Bigger AlexNet

ImageNet top 5 error: 16.4% -> 11.7%

AlexNet but:

CONV1: change from (11x11 stride 4) to (7x7 stride 2)

CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

More trial and error =(

ImageNet Classification Challenge

ImageNet Classification Challenge

VGG: Deeper Networks, Regular Design

VGG Design rules:

All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

Sc	oftmax
FC	C 1000
FC	C 4096
FC	2 4096
	Pool
3x3 c	onv, 512
3x3 c	conv, 512
3x3 c	onv, 512
3x3 c	conv, 512
	Pool
3x3 c	conv, 512
3x3 c	onv, 512
3X3 C	conv, 512
383 (Pool
	conv, 256
3x3 c	conv, 256
0,10	Pool
	conv, 128
3x3 c	conv, 128
	Pool
	conv, 64
3x3	conv, 64
	Input

VGG16 VGG19

VGG Design rules:

All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

Network has 5 convolutional **stages**:

Stage 1: conv-conv-pool

Stage 2: conv-conv-pool

Stage 3: conv-conv-pool

Stage 4: conv-conv-conv-[conv]-pool

Stage 5: conv-conv-conv-[conv]-pool

(VGG-19 has 4 conv in stages 4 and 5)

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input
AlexNet

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool 3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input
VGG16

FC 4096 FC 4096

VGG Design rules:

All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

Option 1:

Conv(5x5, C -> C)

Params: 25C²

FLOPs: 25C²HW

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input
V/CC1C

	Softmax
	FC 1000
	FC 4096
	FC 4096
	Pool
	3x3 conv, 512
	Pool
	3x3 conv, 512
	3x3 conv, 512
	3x3 conv, 512
L	3x3 conv, 512
	Pool
_	3x3 conv, 256
L	3x3 conv, 256
_	Pool
L	3x3 conv, 128
_	3x3 conv, 128
	Pool
	3x3 conv, 64
_	3x3 conv, 64
	Input

VGG Design rules:

All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

Option 2: Option 1:

 $Conv(5x5, C \rightarrow C)$ $Conv(3x3, C \rightarrow C)$

 $Conv(3x3, C \rightarrow C)$

Params: 25C² Params: 18C²

FLOPs: 25C²HW FLOPs: 18C²HW

FC 4096 FC 4096 **AlexNet**

FC 1000 FC 4096 FC 4096 FC 4096 FC 4096 Pool

VGG Design rules:

All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels Two 3x3 conv has same receptive field as a single 5x5 conv, but has fewer parameters and takes less computation!

Softmax

FC 1000

FC 4096

FC 4096

Pool

3x3 conv, 256

3x3 conv, 384

Pool

3x3 conv, 384

Pool

1x11 conv, 96

Input

AlexNet

VGG16 VGG19

FC 4096

FC 4096

FC 4096 FC 4096

Option 1: Option 2:

Conv $(5x5, C \rightarrow C)$ Conv $(3x3, C \rightarrow C)$

 $Conv(3x3, C \rightarrow C)$

Params: 25C² Params: 18C²

FLOPs: 25C²HW FLOPs: 18C²HW

VGG Design rules:

All conv are 3x3 stride 1 pad 1
All max pool are 2x2 stride 2
After pool, double #channels

Input: C x 2H x 2W

Layer: Conv(3x3, C->C)

Memory: 4HWC

Params: 9C²

FLOPs: 36HWC²

Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool
3x3 conv, 512
3x3 conv, 512
Pool
3v3 copy 256
3x3 conv. 256
Pool
3x3 conv. 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input
VGG16

Softmax
FC 1000
FC 1000 FC 4096
FC 4096 Pool
Pool
3x3 conv, 512
Pool
3x3 conv, 512
9x3 conv, 512 Pool
3x3 conv, 256
3x3 conv, 256
Pool
3x3 conv, 128
3x3 conv, 128
Pool
3x3 conv, 64
3x3 conv, 64
Input
VGG19

AlexNet VGG16 VGG19

VGG Design rules:

All conv are 3x3 stride 1 pad 1
All max pool are 2x2 stride 2
After pool, double #channels

Input: C x 2H x 2W Input: 2C x H x W

Layer: Conv(3x3, C->C) Conv(3x3, 2C -> 2C)

Memory: 4HWC Memory: 2HWC

Params: 9C² Params: 36C²

FLOPs: 36HWC² FLOPs: 36HWC²

Softmax

FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input

AlexNet

FC 4096 FC 4096

FC 1000 FC 4096 FC 4096

VGG16 VGG19

VGG Design rules:

All conv are 3x3 stride 1 pad 1

All max pool are 2x2 stride 2

After pool, double #channels

Conv layers at each spatial resolution take the same amount of computation!

FC 4096

FC 4096

FC 1000 FC 4096 FC 4096

Input: C x 2H x 2W

Layer: Conv(3x3, C->C)

Memory: 4HWC

Params: 9C²

FLOPs: 36HWC²

Input: 2C x H x W

Conv(3x3, 2C -> 2C)

Memory: 2HWC

Params: 36C²

FLOPs: 36HWC²

AlexNet

FC 4096 FC 4096

VGG16 VGG19

AlexNet vs VGG-16: Much bigger network!

AlexNet total: 1.9 MB

VGG-16 total: 48.6 MB (25x)

AlexNet total: 61M

VGG-16 total: 138M (2.3x)

AlexNet total: 0.7 GFLOP

VGG-16 total: 13.6 GFLOP (19.4x)

ImageNet Classification Challenge

ImageNet Classification Challenge

GoogLeNet: Focus on Efficiency

Many innovations for efficiency: reduce parameter count, memory usage, and computation

GoogLeNet: Aggressive Stem

Stem network at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)

GoogLeNet: Aggressive Stem

Stem network at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)

	Input size			Laye	er		Outp	ut size			
Layer	С	н / w	filters	kerne	stride	pad	С	H/W	memory (KB)	params	flop (M)
				1						(K)	
conv	3	224	64	7	2	3	64	112	3136	9	118
max-pool	64	112		3	2	. 1	. 64	1 56	784	0	2
conv	64	- 56	64	1	. 1	. C	64	1 56	784	4	13
conv	64	- 56	192	3	1	. 1	192	2 56	2352	111	347
max-pool	192	56		3	2	1	192	2 28	588	0	1

Total from 224 to 28 spatial resolution:

Memory: 7.5 MB

Params: 124K

MFLOP: 418

Compare VGG-16:

Memory: 42.9 MB (5.7x)

Params: 1.1M (8.9x)

MFLOP: 7485 (17.8x)

GoogLeNet: Inception Module

Inception module

Local unit with parallel branches

Local structure repeated many times throughout the network

GoogLeNet: Inception Module

Inception module

Local unit with parallel branches

Local structure repeated many times throughout the network

Uses 1x1 "Bottleneck" layers to reduce channel dimension before expensive conv (we will revisit this with ResNet!)

GoogLeNet: Global Average Pooling

No large FC layers at the end! Instead uses **global average pooling** to collapse spatial dimensions, and one linear layer to produce class scores (Recall VGG-16: Most parameters were in the FC layers!)

	Input	size	Layer			Outpu	ıt size				
Layer	С	H/W	filters	kernel	stride	pad	С	H/W	memory (KB)	params (k)	flop (M)
avg-pool	1024	. 7	,	7	1	. 0	1024	. 1	. 4	C	0
fc	1024		100				1000		0	1025	1

GoogLeNet: Global Average Pooling

No large FC layers at the end! Instead uses **global average pooling** to collapse spatial dimensions, and one linear layer to produce class scores (Recall VGG-16: Most parameters were in the FC layers!)

	Input	size	Layer			Outpu	t size				
Layer	С	H/W	filters	kernel	stride	pad	С	H/W	memory (KB)	params (k)	flop (M)
avg-pool	1024	. 7	,	7	1	. 0	1024	1	4	0	0
fc	1024		1000				1000		C	1025	1

Compare with VGG-16:

Layer	С	H/W	filters	kernel	stride	pad	С	H/W	memory (KB)	params (K)	flop (M)
flatten	512	7	7				25088		98		
fc6	25088			4096			4096		16	102760	103
fc7	4096			4096			4096		16	16777	17
fc8	4096			1000			1000		4	4096	4

GoogLeNet: Summary

Deeper networks, with computational efficiency

- 22 layers
- Efficient "Inception" module
- Avoids expensive FC layers
- 12x less params than AlexNet
- 27x less params than VGG-16
- ILSVRC'14 classification winner (6.7% top 5 error)

ImageNet Classification Challenge

ImageNet Classification Challenge

Once we have Batch Normalization, we can train networks with 10+ layers. What happens as we go deeper?

Once we have Batch Normalization, we can train networks with 10+ layers. What happens as we go deeper?

Deeper model does worse than shallow model!

Initial guess: Deep model is **overfitting** since it is much bigger than the other model

Once we have Batch Normalization, we can train networks with 10+ layers. What happens as we go deeper?

In fact the deep model seems to be **underfitting** since it also performs worse than the shallow model on the training set! It is actually **underfitting**

A deeper model can <u>emulate</u> a shallower model: copy layers from shallower model, set extra layers to identity

Thus deeper models should do at least as good as shallow models

Hypothesis: This is an <u>optimization</u> problem. Deeper models are harder to optimize, and in particular don't learn identity functions to emulate shallow models

A deeper model can <u>emulate</u> a shallower model: copy layers from shallower model, set extra layers to identity

Thus deeper models should do at least as good as shallow models

Hypothesis: This is an <u>optimization</u> problem. Deeper models are harder to optimize, and in particular don't learn identity functions to emulate shallow models

Solution: Change the network so learning identity functions with extra layers is easy!

Solution: Change the network so learning identity functions with extra layers is easy!

Solution: Change the network so learning identity functions with extra layers is easy!

A residual network is a stack of many residual blocks

Regular design, like VGG: each residual block has two 3x3 conv

Network is divided into **stages**: the first block of each stage halves the resolution (with stride-2 conv) and doubles the number of channels

Uses the same aggressive **stem** as GoogleNet to downsample the input 4x before applying residual blocks:

		nput size		Layer				itput size			
Layer	С	H/W	filters	kernel	stride	pad	С	H/W		params (k)	flop (M)
conv	3	224	64	. 7	2	3	64	112	3136	9	118
max-pool	64	112		3	2	. 1	64	56	784	O	2

Like GoogLeNet, no big fully-connected-layers: instead use **global average pooling** and a single linear layer at the end

ResNet-18:

Stem: 1 conv layer

Stage 1 (C=64): 2 res. block = 4 conv

Stage 2 (C=128): 2 res. block = 4 conv

Stage 3 (C=256): 2 res. block = 4 conv

Stage 4 (C=512): 2 res. block = 4 conv

Linear

ImageNet top-5 error: 10.92

GFLOP: 1.8

ResNet-18:

Stem: 1 conv layer

Stage 1 (C=64): 2 res. block = 4 conv

Stage 2 (C=128): 2 res. block = 4 conv

Stage 3 (C=256): 2 res. block = 4 conv

Stage 4 (C=512): 2 res. block = 4 conv

Linear

ImageNet top-5 error: 10.92

GFLOP: 1.8

ResNet-34:

Stem: 1 conv layer

Stage 1: 3 res. block = 6 conv

Stage 2: 4 res. block = 8 conv

Stage 3: 6 res. block = 12 conv

Stage 4: 3 res. block = 6 conv

Linear

ImageNet top-5 error: 8.58

GFLOP: 3.6

ResNet-18:

Stem: 1 conv layer

Stage 1 (C=64): 2 res. block = 4 conv

Stage 2 (C=128): 2 res. block = 4 conv

Stage 3 (C=256): 2 res. block = 4 conv

Stage 4 (C=512): 2 res. block = 4 conv

Linear

ImageNet top-5 error: 10.92

GFLOP: 1.8

ResNet-34:

Stem: 1 conv layer

Stage 1: 3 res. block = 6 conv

Stage 2: 4 res. block = 8 conv

Stage 3: 6 res. block = 12 conv

Stage 4: 3 res. block = 6 conv

Linear

ImageNet top-5 error: 8.58

GFLOP: 3.6

VGG-16:

ImageNet top-5 error: 9.62

GFLOP: 13.6

Residual Networks: Basic Block

Residual block

Residual Networks: Basic Block

Residual Networks: Basic Block

Residual Networks: Basic Block

			Sta	age 1	St	age 2	Sta	age 3	Sta	age 4			
	Block	Stem	Blocks	Lavers	Blocks	Lavers	Blocks	Lavers	Blocks	Lavers	FC	GFLOP	ImageNet
	type	layers	Diocho	20,010	Dicono	24,0.0	Dicono	24,0.0	Dioons	24,010	layers		top-5 error
ResNet-18	Basic	1	2	. 4	2	4	- 2	. 4	. 2	4	. 1	1.8	10.92
ResNet-34	Basic	1	3	6	4	. 8	6	12	3	6	1	3.6	8.58

ResNet-50 is the same as ResNet-34, but replaces Basic blocks with Bottleneck Blocks. This is a great baseline architecture for many tasks even today!

			Sta	age 1	St	age 2	St	age 3	Sta	age 4			
	Block	Stem	Blocks	Lavers	Blocks	Layers	Blocks	Lavers	Blocks	Lavers	FC	GFLOP	ImageNet
	type	layers		,		,		, , ,		.,	layers		top-5 error
ResNet-18	Basic	1	2	4	2	2 4	. 2	2 4	2	4	. 1	1.8	10.92
ResNet-34	Basic	1	3	6	4	. 8	8 6	12	3	6	1	3.6	8.58
ResNet-50	Bottle	1	3	9	4	12	. 6	18	3	9	1	3.8	7.13

Deeper ResNet-101 and ResNet-152 models are more accurate, but also more computationally heavy

			Sta	ge 1	Sta	ige 2	Sta	ige 3	Sta	ige 4			
	Block	Stem	Blocks	Lavers	Blocks	Lavers	Blocks	Layers	Blocks	Lavers	FC	GFLOP	ImageNet
	type	layers		,		,		Í		Í	layers		top-5 error
ResNet-18	Basic	1	2	4	- 2	. 4	. 2	. 4	2	. 4	. 1	. 1.8	10.92
ResNet-34	Basic	1	3	6	4	. 8	6	12	3	6	5 1	3.6	8.58
ResNet-50	Bottle	1	3	9	4	12	6	18	3	9	1	3.8	7.13
ResNet-101	Bottle	1	3	9	4	12	23	69	3	9	1	7.6	6.44
ResNet-152	Bottle	1	3	9	8	24	36	108	3	9) 1	. 11.3	5.94

Improving Residual Networks: Block Design

Original ResNet block

"Pre-Activation" ResNet Block

Note ReLU after residual:

Cannot actually learn identity function since outputs are nonnegative!

Note ReLU inside residual:

Can learn true identity function by setting Conv weights to zero!

Improving Residual Networks: Block Design

Original ResNet block

"Pre-Activation" ResNet Block

Slight improvement in accuracy (ImageNet top-1 error)

ResNet-152: 21.3 vs 21.1

ResNet-200: 21.8 vs 20.7

Not actually used that much in practice

Training recipe:

- Batch Normalization after every CONV layer
- Xavier initialization from He et al.
- SGD + Momentum (0.9)
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used

Summary:

- Able to train very deep networks
- Deeper networks do better than shallow networks (as expected)
- Swept 1st place in all ILSVRC and COCO 2015 competitions
- Still widely used today!

MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

GoogLeNet: Very efficient!

ImageNet Classification Challenge

ImageNet Classification Challenge

ImageNet 2016 winner: Model Ensembles

Multi-scale ensemble of Inception, Inception-Resnet, Resnet, Wide Resnet models

	Inception- v3	Inception- v4	Inception- Resnet-v2	Resnet- 200	Wrn-68-3	Fusion (Val.)	Fusion (Test)
Err. (%)	4.20	4.01	3.52	4.26	4.65	2.92 (-0.6)	2.99

<u>Convolution with groups=1</u>:

Normal convolution

Input: C_{in} x H x W

Weight: $C_{out} \times C_{in} \times K \times K$ Output: $C_{out} \times H' \times W'$ FLOPs: $C_{out} C_{in} K^2 HW$

All convolutional kernels touch all C_{in} channels of the input

Convolution with groups=1:

Normal convolution

Input: C_{in} x H x W

Weight: $C_{out} \times C_{in} \times K \times K$ Output: $C_{out} \times H' \times W'$ FLOPs: $C_{out}C_{in}K^2HW$

All convolutional kernels touch all C_{in} channels of the input

Convolution with groups=2:

Two parallel convolution layers that work on half the channels

Convolution with groups=1:

Normal convolution

Input: C_{in} x H x W

Weight: $C_{out} \times C_{in} \times K \times K$ Output: $C_{out} \times H' \times W'$ FLOPs: $C_{out}C_{in}K^2HW$

All convolutional kernels touch all C_{in} channels of the input

<u>Convolution with groups=G</u>:

G parallel conv layers; each "sees" C_{in}/G input channels and produces C_{out}/G output channels

Input: C_{in} x H x W

Split to $G \times [(C_{in}/G) \times H \times W]$

Weight: $G \times (C_{out} / G) \times (C_{in} \times G) \times K \times K$

G parallel convolutions

Output: $G \times [(C_{out}/G) \times H' \times W']$

Concat to C_{out} x H' x W' FLOPs: C_{out}C_{in}K²HW/G

Convolution with groups=1:

Normal convolution

Input: C_{in} x H x W

Weight: C_{out} x C_{in} x K x K Output: C_{out} x H' x W' FLOPs: C_{out}C_{in}K²HW

All convolutional kernels touch all C_{in} channels of the input

Depthwise Convolution

Special case: G=C_{in}, C_{out} = nC_{in} Each input channel is convolved with n different K x K filters to produce n output channels

Convolution with groups=G:

G parallel conv layers; each "sees" C_{in}/G input channels and produces C_{out}/G output channels

Input: C_{in} x H x W

Split to G x $[(C_{in}/G) \times H \times W]$

Weight: $G \times (C_{out} / G) \times (C_{in} \times G) \times K \times K$

G parallel convolutions

Output: $G \times [(C_{out}/G) \times H' \times W']$

Concat to C_{out} x H' x W' FLOPs: C_{out}C_{in}K²HW/G

Grouped Convolution in PyTorch

PyTorch convolution gives an option for groups!

Conv2d

Improving ResNets: ResNeXt

Xie et al, "Aggregated residual transformations for deep neural networks", CVPR 2017

ResNeXt: Maintain computation by adding groups!

Model	Groups	Group width	Top-1 Error
ResNet-50	1	64	23.9
ResNeXt-50	2	40	23
ResNeXt-50	4	24	22.6
ResNeXt-50	8	14	22.3
ResNeXt-50	32	4	22.2

Model	Groups	Group width	Top-1 Error
ResNet-101	1	64	22.0
ResNeXt-101	2	40	21.7
ResNeXt-101	4	24	21.4
ResNeXt-101	8	14	21.3
ResNeXt-101	32	4	21.2

Adding groups improves performance with same computational complexity!

ImageNet Classification Challenge

Squeeze-and-Excitation Networks

Adds a "Squeeze-and-excite" branch to each residual block that performs global pooling, full-connected layers, and multiplies back onto feature map

Adds **global context** to each residual block!

Won ILSVRC 2017 with ResNeXt-152-SE

SE-ResNet Module

ImageNet Classification Challenge

Densely Connected Neural Networks

Dense blocks where each layer is connected to every other layer in feedforward fashion

Alleviates vanishing gradient, strengthens feature propagation, encourages feature reuse

MobileNets: Tiny Networks (For Mobile Devices)

Standard Convolution Block

Total cost: 9C²HW

Speedup =
$$9C^2/(9C+C^2)$$

= $9C/(9+C)$
=> 9 (as C->inf)

Depthwise Separable Convolution

Total cost: $(9C + C^2)HW$

MobileNets: Tiny Networks (For Mobile Devices)

Also related:

ShuffleNet: Zhang et al, CVPR 2018

MobileNetV2: Sandler et al, CVPR 2018

ShuffleNetV2: Ma et al, ECCV 2018

Depthwise Separable Convolution

Total cost: $(9C + C^2)HW$

Neural Architecture Search

Designing neural network architectures is hard – let's automate it!

- One network (controller) outputs network architectures
- Sample **child networks** from controller and train them
- After training a batch of child networks, make a gradient step on controller network (Using policy gradient)
- Over time, controller learns to output good architectures!

Neural Architecture Search

Designing neural network architectures is hard – let's automate it!

- One network (controller) outputs network architectures
- Sample **child networks** from controller and train them
- After training a batch of child networks, make a gradient step on controller network (Using policy gradient)
- Over time, controller learns to output good architectures!
- VERY EXPENSIVE!! Each gradient step on controller requires training a batch of child models!
- Original paper trained on 800 GPUs for 28 days!
- Followup work has focused on efficient search

Neural Architecture Search

Neural architecture search can be used to find efficient CNN architectures!

CNN Architectures Summary

Early work (AlexNet -> ZFNet -> VGG) shows that bigger networks work better

GoogLeNet one of the first to focus on **efficiency** (aggressive stem, 1x1 bottleneck convolutions, global avg pool instead of FC layers)

ResNet showed us how to train extremely deep networks – limited only by GPU memory! Started to show diminishing returns as networks got bigger

After ResNet: **Efficient networks** became central: how can we improve the accuracy without increasing the complexity?

Lots of tiny networks aimed at mobile devices: MobileNet, ShuffleNet, etc

Neural Architecture Search promises to automate architecture design

Which Architecture should I use?

Many popular architectures are available in model zoos; don't try to design your own!

If you just care about accuracy, ResNet-50 or ResNet-101 are great choices

If you want an efficient network (real-time, run on mobile, etc) try

MobileNets and ShuffleNets

Next Time: Training Neural Networks