Step-1

We have to give 3×3 matrices as examples for diagonal, symmetric, uppertriangular and skew symmetric matrices.

Step-2

(a) Let $A_i = [a_{ij}]$ be a 3×3 diagonal matrix with $a_{ij} = 0$ if $i \neq j$

$$A_{\rm I} = \begin{pmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{pmatrix}$$
 Therefore

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 7 \end{pmatrix}$$

Step-3

(b) Let $A_2 = [a_{ij}]_{be \ a} 3 \times 3$ symmetric matrix i.e. $A = A^T$ and $a_{ij} = a_{ji}$ for all i and j

$$A_2 = \begin{pmatrix} 1 & 3 & 4 \\ 3 & 2 & 0 \\ 4 & 0 & 7 \end{pmatrix}$$

Step-4

(c) Let $A_3 = [a_{ij}]$ be a 3×3 an upper triangular matrix i.e. $a_{ij} = 0$ if i > j

$$A_3 = \begin{pmatrix} 1 & 3 & 4 \\ 0 & 2 & 0 \\ 0 & 0 & 7 \end{pmatrix}$$

Step-5

(d) Let $A_4 = [a_{ij}]$ be a 3×3 skew symmetric matrix i.e. $A = -A^T$ and $A_{ij} = -A_{ji}$

for all i and j

$$A_4 = \begin{pmatrix} 0 & 3 & 4 \\ -3 & 0 & 0 \\ -4 & 0 & 0 \end{pmatrix}$$