考试课程: **数学实验** 考试时间: 2015年6月22日

姓名	学号_	20		班级
[说明] (1)第一、二、三、[四、五题的答案直接 单的解题过程和结果 计算结果保留 4 位有	妄填在试题组 是写在试题组	乱上;	面空间不够时请写在背面
1. (8分) 主对角线元素	素均为 2,两个次对	角线元素均	力1的	矩阵 $A = \begin{bmatrix} 2 & 1 & & \\ 1 & 2 & 1 & & \\ & & \ddots & \\ & & 1 & 2 \end{bmatrix}_{n \times n}$, b 为分量
均为1的n维列向量。	求 $n = 50$ 时的2范	数条件数 <i>cc</i>	$ond_2(A$)=,用高斯-赛德尔迭
代法求解方程组 $Ax =$	$m{b}$,计算迭代矩阵 $m{L}$	\mathbf{S}_{G} 的谱半径	$\rho(B_G)$	=,若初值 x⁽⁰⁾取 0 向
量,则第 10 步迭代解 x	(10)的第 5,18,27 个	分量依次为		,
此时残差的 1 范数 Ax	$ a^{(10)} - b $ =			o
				v(1) = 1.6,试用ode45命令求
<i>y</i> (2)≈	; 用改进欧拉?	公式,步长取	₹0.2, 计	- 算 y(2)≈。
3. (6分) 某工厂用三秆	中原料生产三种产品	¹ Q1, Q2, Q3,	己知的	条件如表所示,
单位产品所需原料。	量(公斤) Q1	Q2	Q3	原料可用量(公斤/日)
原料 P1	2	Q2 3	Q3 0	1500
原料 P2	0	2	4	2000
原料 P3	3	2	5	2000
单位产品的利润(-	千元) 3	5	4	
日坛县亜庙復立到洞县	十 加甲盾蚁 D2 f	5可用县山 /	2000)武7	b到 1500,这一条件的变化是否会影响
最优解(是或	不是)。保持最优解	不变,原料 F	2可用量	量可取值的范围是,
原料 P3 增加 1 公斤,	总利润增加		元。	
4. (6 分) 用 fminunc	命令计算 $\min f(z)$	$(x_1, x_2) = 2x$	$x_1^2 + 2x_2^2$	$+3x_1x_2-4x_1-8x_2$ 的局部极小值,初
值取 $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$,搜索方向选	用 BFGS 方法,默认	精度下近似	解 x * = _	;搜索方向选用最速下
				=

两次搜索方向的关系是_____。(注明使用 Matlab 的版本)

5. $(6\,
m eta)$ 对正态总体 $N(\mu,4^2)$ 考虑如下假设检验问题, H_0 : $\mu=6$ vs H_1 : $\mu \neq 6_0$,若样本容量 n=28,则检验统计量 $\overline{x}=6.56$ 对应的 p 值为_______,在显著性水平 $\alpha=0.05$ 下, $\mu=6.2$ 时,犯第二类错误的概率为_______;若使显著性水平 $\alpha=0.05$ 下接受原假设的 \overline{x} 取 值范围不超过 0.15,样本容量 n 应满足______。

6. (8分)确定非线性方程 $\int_0^x \cos(e^{3/(t+1)}) \sin(2t) dt = 0.36$ 在 $x \in [0,10]$ 区间上有几个根,设初值 为 $x_0 = 2$,用 Newton 法迭代 8 次,计算 x_8 。给出计算程序和结果。

7. (12分)有如下一组父亲和儿子的身高数据

父亲身高 (cm)	176	163	180	184	174	177	183	159	165	170
儿子身高(cm)	182	165	171	179	187	178	191	175	170	178

假设父亲身高 X 和儿子身高 Y 服从二维正态分布

- (1) 分别给出父亲和儿子平均身高置信水平 95%的置信区间;
- (2) 建立以儿子身高为因变量,父亲身高为自变量的回归模型。写出回归直线方程,计算总偏差平方和与回归平方和,并检验模型的有效性,解释得到的结果;
- (3) 设 E(X)=173, E(Y)=176, $\sigma_X=\sigma_Y=8$, 相关系数 $\rho(X,Y)=0.6$, 求 (x,y)处于以 (175,175)为圆心、5cm 为半径的圆形区域内的概率。简要给出计算方法和程序。