```
①细心+方法
  2022年1月8日 21:03
  ①细心
*指数分布定义域为正!
 "加强" 加速又吸引品:

"分布商数機率密度勿忘分类讨论(记得综上)! (若求概率,不需要分类讨论但要注意积分区域!

同是否相互独立:不要先入为主地认为独立! (若发现比较难求(可能是因为离散型变量)— 般就不独立)

"求某点概率密度时不能用概率去求! (应该先求分布函数如然后求导!!)
  **水来点概率节段的/小配州原平去水:(应该先求不申函数则添归水等::)
- 二元函数求期望时老老实实对概率常度函数乘上x重积分,不要直接对x乘上某个线性的差在x上积分:
*判断分布类型,勿忘标准差"归一化"!
*方差的主元包含xi和x拔/x求和时,注意从求和式中剥离开xi(使其独立)!
  ②方法
◆ 允尝试套用小结论!!(八大分布、卡方分布期望&方差)

◆ * (1) F、f的性质(离散的概率直接累加,连续的概率若为某处的则直接求,若为小于等于某处的则求分布函数,然后概率密度函数对分布函数微分求得)
   from (Effects). Fra (1742)
    10 01 For Ris Ravid 188 11 FORET-10 14/1-1-, 14-11
                           31F加多。141大海南
    国fxm/fxm含未知数,本本~
  (2) 联合分布 Z=X+Y/XY: (先看小结论部分这块!!)
1若具体分布类型已知、直接求明显好差后反推
2. 表示 加上法定理、根据x的显像分类及框类为和支持的概律系生文果基值条件不更之的条件概率
(3) 参数估计
  1. 集倍计 (从E(X),即xf(X)积分开始第,f(X)积分肯定是1 ま リリ ) f(Xg) dxdg

拒告計 次展方法:
                            m. ALPHA = fro [ ] to fay low dy
    \textcircled{1} u_1 = E(X) = f(\theta)
   soul for fundy of
    \mathfrak{B} \dot{\theta} = f^{-1}(\overline{X}) 
  2.最上似然估计
   最大似然估计求解方法:
   \mathfrak{D}L(\theta) = \prod_{i} f(x_i)
   ②取对数 \ln L(\theta) = \ln \prod_{i=1}^{n} f(x_i, \theta)
                             *极信点未必存在, 若为单调函数则直接取区间端点值(max(...)等等)
   ③求导\frac{d}{d\theta}lnL(\theta)=0
                             · 旅航本企订证,看79年6月88股利益1824(2)四海流航[[1684],1947]

· 此处的次技曲样本貨得!再也此解求出所需求量(先得其用亡。表示)

· 若求辯量与 具有"单值反函数"(死规要求)关系(即相互唯一地——对应)则可直接代入关系式求解。

· 卷
   ④鮮出ê=?
   (5) 感觉很复杂/算不出来的概率题
  先转化成F(X)再xy互化!
  Fy(y)=P(Y<=y)=P(g(X)<=y)=Fx(g(y))=
=> fy=(Fy(y))'=
   (7) 概率密度f、分布函数F (/概率P)
  fY|X(y|x)=f(x,y)/fY(Y), \sharp phi(y)=f(x,y)dx
  (9) 切比雪夫不等式、中心极限定理的应用:
有n趋于无穷、为n次x之和、独立同分布:中心极限定理(若为贝努利则为拉普拉斯定理)
仅为一次的X: 切比雪夫不等式
   (10) 求(带有未知参数的)假设检验
          ·根据实际的问题,提出原假设H。和备择
            假设H.
           ·确定检验统计量(根据八大分布)及其
            在H。为真时的分布
           ·根据显著性水平a和样本容量n,按照
            P(当H<sub>0</sub>为真时拒绝H<sub>0</sub>)=α 求出临界点,
            确定接受域或拒绝域
          • 计算检验统计量的样本观测值
            · 根据样本观测值做出决策, 是接受原
          假设H。还是拒绝H。(接受H<sub>1</sub>)
    (11) 求和
  选择一部分/全部式子→原参数和常数变量尝试交换意义(即常数变参数,~)→微/积分转化→泰勒展式+等比/等差比混合求和
   (12) XY是否相关、独立
  相关: 看相关系数
独立: 看fXY(x, y)和fX(x), fY(y)是否相等
  (13) 验证无偏、一致(/相合)估计量
无偏:广义上为两边期望相等,若某一边已经为存款等等
```

分区 概率统计 的第1页

-致/相合:用切比雪夫不等式: ^ ^ P(|θ-θ|≥∈)≤Dθ/(∈^2)=...

②小结论

2022年1月8日

泊松分布现实意义: 连续型的二项分布

Jafx14 (x/4) dx= Ja + (x/4) dx

 $f\left(x,y\right)=f_{\chi}\left(x\right)\cdot f_{\gamma}\left(y\right)$

③正态分布的叠加性质

⑤Z=X+Y/XY/...(勿忘分类讨论、定义域!)(中间y换成x和z后都是对z求导!) Z = X + Y型求解:

1. 替换: Y=Z-X

- ② 确定被积函数: f(x,z-x)
- ③ 确定x的积分范围 ④ 分情况,带入公式

Z = XY 的分布

替换: Y = Z

①
$$f_{XY}(z) = \int_{-\infty}^{+\infty} \frac{1}{|x|} f\left(x, \frac{z}{x}\right) dx$$

② 确定被积函数:
$$\frac{1}{|x|}f\left(x,\frac{z}{x}\right)$$

- ③ 确定 x 积分范围
- ④ 分情况,代入公式

Z=Y/X: |x|fx(x)fy(xz)dx

⑥带Cov的方差(Var)和Cov性质 (期望性质中不需要协方差Cov!!)

$$Var(ax + by) = a^2 Var(x) + b^2 Var(y) + 2Cov(x,y)$$

cov(aX+b,cY+d)=ac*cov(X,Y)

cov(X1+X2,Y)=cov(X1,Y)+cov(X2,Y)

(<- a,b都为正数,若左式中间为减号则减去协方差!) **⑦二元正**态分布的**概率密度函数**(可以先求期望和方差然后再套公式!)

$$p_{X,Y}(x,y) = \frac{1}{\sum_{x \in X} exp} \left\{ -\frac{(x-\mu_X)^2}{\sigma_X^2} + \frac{(y-\mu_Y)^2}{\sigma_Y^2} - \frac{2p(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y} \right\}$$

8卡方分布的期望和方差

B、B、N的参数都是x拔(N的另一个参数是样本标准差,就是除n而非n-1) E、一种类数都是*/拔拔 U:

矩估计:

最大似然估计((0, θ)上): $\theta = \max\{X1,...Xn\}$

最大似然估计((0, θ)上): θ =max{X1,...Xn}

2022年1月8日 21:18

①常见分布的大写字母简写

U:均匀分布

N: 正态分布

E: 指数分布

P/π: 泊松分布

②二维连续型随机变量必须满足的条件 1.概率密度

> (这个一般是一样的,不用另求) fxy170 サルタール すった (** f(x,y) dxdy=1 2.分析 (数) 、 子P(x,y)、 2* F(x,y) イ. xy 中取値子 (2) 刺 (3) 入来分解是+の則为1 2.F(x1,y1)+F(x2,y2)-F(x1,y2)-F(x2,y1)>=0(x2>x1,y2>y1)

③二维随机变量的独立性

*f(x,y)=fx(x)fy(y)(边缘分布),xy为实数 * "原始的" P之间的关系勿忘!

④正态分布

⑥协方差和相关系数

协方差: Cov(X,Y)=E(XY)-E(X)E(Y)

 $\rho_{XY} = 0 为 X 和 Y 不相关$ $\sqrt{D(X)}\sqrt{D(Y)}$

(独立一定不相关 不相关不一定独立)

⑦切比雪夫不等式、大数定律和中心极限定理

*切比雪夫不等式:

 $P(|X-EX| \ge) \le DX/$

*大数定律及其三大形式: (<mark>需记住适用条件!</mark>)

①山大板京母、社内的を欠多利が路中事はみずをの次起 新江事件A在有收付给中发生力概算各户(ocpa),例处于15co, 有品的月十月月10日10日日 民富期里相川山かい安大大数を守っ指花: Xi.Xi ~ Xn 4 相互独引の強和 要し、見有相同のからり、那么だっない」かり、ハコナのか 成本的引了幸秋大祖发锋: Xi — Xin 安独立门分布的 随机变量,

*中心极限定理:

独立同分布的中心极限定理

设随机变量 X_1, X_2,X_n ___独立同分布,并且具有有限的数学期望和方差: $E(X_i) \circ \mu$, $D(X_i) \circ \sigma^2 O(i \circ 1, 2....)$,到对任意 x_i

 $F_n(x) = P\left\{\frac{\sum_{i=1}^n X_i - n\mu}{\sigma\sqrt{n}} \le x\right\}$

满足

$$\lim_{n\to\infty} F_n\left(x\right) = \lim_{n\to\infty} P\left\{\frac{\sum_{i=1}^n X_i - n\mu}{\sqrt{n}\sigma} \le x\right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt = \varnothing\left(x\right)$$

该定理说明,当n很大时,随机变量 $Y_n = \frac{\sum_{i=1}^n X_i - n\mu}{\sqrt{n}\sigma}$ 近似地超从标准正态分布N(0, 1)。因此,当n很大时,

 $\sum_{i=1}^n X_i = \sqrt{n}\sigma Y_n + n\mu$ 近似地服从正态分布Ninu,no 2 1.设在理象中心极限定理最简单又最常用的一种形式。在实际工作 一,只要n足够大,便可以把独立。 中,只要n足够大,便可以把独立。 中,只要n足够大,便可以把独立。 中,只要n足够大,便可以把独立。 中,只要n足够大,便可以把独立。 中,只要n足够大,便可以把独立。

棣莫佛 - 拉普拉斯定理

设随机变量X(n=1,2,....) 服从参数为n。p(0

$$\lim_{n\to\infty}P\left\{a<\frac{\mathtt{x}_n-np}{\sqrt{np\left(1-p\right)}}\leq b\right\}=\int_a^b\frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}dt$$

该定理表明,正态分布是二项分布的极限分布,当数充分大时,我们可以利用上式来计算二项分布的概率。 [2]

不同分布的中心极限定理

设 $X_1,~X_2,~....X_n$ 是一列独立睫机变量,它们的概率密度分别为 $f_{x_k}\left(x\right)$,并有 $\mathrm{E}(X_k)=\mathrm{pk},~D\left(X_k\right)=\sigma_k^2$, $(\mathrm{k=1,2,...}],$ 令:

 $Y_n = \frac{\sum_{k=1}^{n} X_k - \sum_{k=1}^{n} \mu k}{B_n}$ **剪对任意正数⊤** 有

45734 h?)

说的是一列独立变量(<mark>可以不同分布</mark>)的均值收敛到一个常数,但前提是<mark>每个变量的期望[和方</mark> 差]均存在且有限,*并且满足方差的平均值是样本数n的高阶无穷小这一额外条件。

说的是一列独立同分布的随机变量的均值收敛到一个常数,条件是分布的绝对期望存在且有限就 够了。

(区别:切比雪夫大数定律不要求随机变量有相同分布但是成立的条件更加严格,辛钦大数定律 要求同分布不过是在比较弱的条件下就成立。)

->Lindeberg-Levy中心极限定理

$$B_n^2 = \sum_{i=1} \sigma_k^2$$

$$Y_n = \frac{\sum_{k=1}^n X_k - \sum_{k=1}^n \mu k}{B_n}$$

$$\lim_{n\to\infty}\frac{1}{B_n^2}\sum_{k=1}^n\int\limits_{|x-\mu_k>\tau B_n|}(x-\mu_k)^2f_{x_k}\left(x\right)dx=0$$

$$\lim_{n \to \infty} F_n(x) = \lim_{n \to \infty} P\left\{ \frac{\sum_{k=1}^n X_k - \sum_{k=1}^n \mu k}{B_n} \le x \right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{x^2}{2}} dt$$

 $\lim_{n\to\infty}F_n\left(x\right)=\lim_{n\to\infty}P\left\{\frac{\sum_{k=1}^nX_k-\sum_{k=1}^n\mu k}{B_n}\leq x\right\}=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^xe^{-\frac{\mu^2}{2}}dt$ 该定律說明:所研究的幾何安量如果是有大量独立的而且均均的幾何安量相如而成,那么它的分布得近似于正态分布。 [5]

⑧四种常见抽样分布

① χ 分布: (卡方)

着 X_1, X_2, \dots, X_n 独立且都服从 N(0,1) ,则 $X_1^2 + X_2^2 + \dots + X_n^2 \sim \chi^2(n)$

性质: $X \sim \chi^2(n_1)$, $Y \sim \chi^2(n_2)$, 则 $X + Y \sim \chi^2(n_1 + n_2)$

着 $X \sim N(0,1)$, $Y \sim \chi^2(n)$, 且 X,Y 相互独立, 则 $\frac{X}{\sqrt{Y/n}} \sim t(n)$

 $X \sim \chi^2(n_j)$, $Y \sim \chi^2(n_z)$, 且X, Y相互独立, 则 $\frac{X/n_1}{Y/n_2} \sim F(n_1, n_2)$

性质:
$$F(n_1,n_2) = \frac{1}{F(n_2,n_1)}$$
 $F_{1-\alpha}(n_1,n_2) = \frac{1}{F_\alpha(n_2,n_1)}$

⑨八大分布 ,

$$1^{\circ} \quad \overline{X} \sim N(\mu, \sigma^2/n)$$

$$2^{\circ} \qquad \frac{\sum_{i=1}^{\circ} (X_i - \mu)^2}{\sigma^2} \sim \chi^2($$

$$\begin{array}{lll} \mathbf{1}^{\circ} & \overline{X} \sim N(\mu,\sigma^{2}/n) & \frac{\overline{X} \sim \mu}{\sigma/\sqrt{n}} \sim N(0,1) & \mathbf{2}^{\circ} & \frac{\sum\limits_{i=1}^{n} (X_{i} - \mu)^{2}}{\sigma^{2}} \sim \chi^{2}(n) \\ \\ \mathbf{3}^{\circ} & \frac{(n-1)S^{2}}{\sigma^{2}} \sim \chi^{2}(n-1) & \frac{\sum\limits_{i=1}^{n} (X_{i} - \overline{X})^{2}}{\sigma^{2}} \sim \chi^{2}(n-1) & \underline{\mathbf{1}} & \overline{X} & \underline{\mathbf{5}} \, S^{2} \underline{\mathbf{H}} \, \underline{\mathbf{5}} \, \underline{\mathbf{M}} \, \underline{\mathbf{5}} \, \underline{\mathbf{5}} \, \underline{\mathbf{M}} \, \underline{\mathbf{5}} \,$$

$$4^{\circ} \qquad \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

5°
$$\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}} \sim N(0, 1)$$

$$\frac{n_2 \sigma_1^2 \sum_{i=1}^{n_1} (X_i - \mu_1)^2}{\sum_{i=1}^{n_2} (X_i - \mu_1)^2} \sim F(n_1 n_2)^2$$

当
$$\sigma_1^2 = \sigma_2^2$$
 未知时 $\sigma_3^2 = \sigma_1^2$ 十 $\sigma_1^2 = \sigma_1^2$ 大 $\sigma_1^2 = \sigma_1^2$ 大 $\sigma_2^2 = \sigma_1^2$ 大 $\sigma_1^2 = \sigma_1^2$ 大 $\sigma_2^2 = \sigma_1^2$ $\sigma_1^2 = \sigma_1^2$ $\sigma_1^2 = \sigma_1^2$ $\sigma_2^2 = \sigma_1^2$ $\sigma_1^2 = \sigma_1^2$ $\sigma_2^2 = \sigma_1^2$ $\sigma_1^2 = \sigma_1$

样本标准差S计算时除以n-1

P(X >N)=1 (X~ x2(n))

→只有这一个性质计算时用的是样本的均值而非期望, 记为和方差相关的分布时n-1和样本均值,n为期望(即2、3分布辨析)

meto: (= (X1-10) = = (X1-10) = (X1-10) = (X1-10)

若 E(Δ)=□

显著性水平: α (当原假设为正确时人们却把它拒绝了的概率或风险)

12.两类错误

⑩估计

第一类错误: 假设正确但拒绝

第二类错误~

13.统计量定义

必须由大小已知的参数构成

14参数估计 $(z_{\alpha/2}$ 是标准正态分布右侧面积为 $\alpha/2$ 时的z值, $t_{\alpha/2}$ 为t随机变量大于这点的概率)(假设检验中检验的统计量结合拒绝域倒推即可~)

待估 参数	其他参数	置信区间	单侧置信限
μ	σ² 已知	$\left(\bar{X} \pm \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right)$	$\underline{\mu} = \overline{X} - \frac{\sigma}{\sqrt{n}} z_a$ $\overline{\mu} = \overline{X} + \frac{\sigma}{\sqrt{n}} z_a$
μ	σ² 未知	$\left(\bar{X} \pm \frac{S}{\sqrt{n}} I_{\alpha/2}(n-1)\right)$	$\underline{\mu} = \overline{X} - \frac{S}{\sqrt{n}} t_{\alpha}(n-1)$ $\overline{\mu} = \overline{X} + \frac{S}{\sqrt{n}} t_{\alpha}(n-1)$
σ^2	μ未知	$\left(\frac{(n-1)S^2}{\chi_{n/2}^2(n-1)}, \frac{(n-1)S^2}{\chi_{1-n/2}^2(n-1)}\right)$	$\underline{\sigma}^{2} = \frac{(n-1)S^{2}}{\chi_{\alpha}^{2}(n-1)}$ $\overline{\sigma}^{2} = \frac{(n-1)S^{2}}{\chi_{1-\alpha}^{2}(n-1)}$
$\mu_1 - \mu_2$	σ ₁ ²,σ ₂ ² 已知	$\left(\overline{X} - \overline{Y} \pm z_{\alpha/2} \sqrt{\frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2}}\right)$	$\underline{\mu_1 - \mu_2} = \overline{X} - \overline{Y} - z_\sigma \sqrt{\frac{\sigma_1^2 + \sigma_2^2}{n_1 + n_2}}$ $\overline{\mu_1 - \mu_2} = \overline{X} - \overline{Y} + z_\sigma \sqrt{\frac{\sigma_1^2 + \sigma_2^2}{n_1 + n_2}}$
$\mu_1 - \mu_2$	$\sigma_1^2 = \sigma_2^2 = \sigma^2 未知$	$\begin{split} \left(\vec{X} - \vec{Y} \pm t_{q/2} (n_1 + n_2 - 2) S_{co} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \right) \\ S_w = \frac{\left(n_1 - 1 \right) S_1^2 + \left(n_2 - 1 \right) S_2^2}{n_1 + n_2 - 2} \end{split}$	$\begin{split} & \underline{\mu_{i} - \mu_{2}} = \overline{X} - \overline{Y} - t_{o} \left(n_{i} + n_{2} - 2 \right) S_{o} \sqrt{\frac{1}{n_{i}} + \frac{1}{n_{2}}} \\ & \overline{\mu_{i} - \mu_{2}} = \overline{X} - \overline{Y} + t_{o} \left(n_{1} + n_{2} - 2 \right) S_{o} \sqrt{\frac{1}{n_{i}} + \frac{1}{n_{2}}} \end{split}$
$\frac{\sigma_1^2}{\sigma_2^2}$	μ ₁ , μ ₂ 未知	$\frac{\left(\frac{S_1^2}{S_2^2} \frac{1}{F_{a/2}(n_1 - 1, n_2 - 1)}, \frac{S_1^2}{S_2^2} \frac{1}{F_{1-a/2}(n_1 - 1, n_2 - 1)}\right)}{S_2^2}$	$\frac{\sigma_z^2}{\sigma_z^2} = \frac{S_z^2}{S_z^2} \frac{1}{F_w(n_1 - 1, n_2 - 1)}$ $\frac{\sigma_z^2}{\sigma_z^2} = \frac{S_z^2}{S_z^2} \frac{1}{F_{t-w}(n_1 - 1, n_2 - 1)}$
	参数 μ μ σ ² μ-μ ₂	 参数 其他参数 μ σ² 巳知 μ σ² 未知 σ² μ未知 μ,-μ, σ₁²,σ₂² 巳知 μ,-μ, σ₁² = σ₂² = σ² 未知 	事数 異化多数 置信区间 $\mu \qquad \sigma^2 E \!$

15估计量的三个标准

无偏性(期望关系)、有效性(方差最小)、一致/相合性(依概率收敛)

16假设检验(不接受即拒绝)

10 0	又们还可	原假设H。	检验统计量	备择假设 H1	拒绝域
7		11 ≤ 11.			

16假设检验(不接受即拒绝)

	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\mu \leq \mu_1$ $\mu \geq \mu_2$ $\mu \leq \mu_3$ $\mu \leq \mu_4$ $\mu $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\sigma \stackrel{d}{\underset{h}{\overset{a'}{\underset{h}{\underset{h}{\overset{a'}{\underset{h}{\overset{a'}{\underset{h}{\underset{h}{\overset{a'}{\underset{h}{\overset{a'}{\underset{h}{\overset{a'}{\underset{h}{\overset{a'}{\underset{h}{\overset{a'}{\underset{h}{\underset{h}{\overset{a'}{\underset{h}{\underset{h}{\overset{a'}{\underset{h}{\underset{h}{\overset{a'}{\underset{h}{\underset{h}{\overset{a'}{\underset{h}{\underset{h}{\overset{a'}{\underset{h}{\underset{h}{\overset{a'}{\underset{h}{\underset{h}{\underset{h}{\underset{h}{\underset{h}{\underset{h}{\underset{h}{$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$K = \mu_1 \ge \delta$ $K = \mu_1 = \delta$ $K = \mu_1 = \delta$ $K = \mu_1 \ge \delta$ $K = \mu_1 = \delta$ $K = \mu_1 \ge \delta$ $K = \mu_1 = \delta$	
$f = \frac{S_{i}^{1}}{\sigma_{i}^{2} = \sigma_{i}^{2}}$ $f = \frac{S_{i}^{1}}{S_{i}^{2}}$ $\sigma_{i}^{2} = \sigma_{i}^{2}$ $\sigma_{i}^{2} = \sigma_{i}^{2} = \sigma_{i}^{2}$ $\sigma_{i}^{2} = \sigma_{i}^{2} = \sigma_$	5 $\mu_1 - \mu_2 = \delta$ $\eta = \frac{\eta}{n_1} - \frac{\eta}{n_2}$ $\mu_1 - \mu_2 < \delta$ $t \le -\epsilon_n(n_1 + n_2 - 2)$
二维正态分布一般形式	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	3二维正态分布一般形式 (μ1, μ2; s1, s2; p(rou))

P>~, n→∞

分区 概率统计 的第6页

4局部技巧

2022年10月25日

- $D(X)=E(X^2)-E(X)^2$
- *求E(Y/X)且之前未求过P(Y/X):实际很简单,此时一般Y与X有关系,找到数量关系,Y用X表示,直接积分即可!
- !!! 求之前先看看有没有给出一些数据,这些数据能否直接猜出结果!
- *max(X,Y):不方便表示时可以用(X+Y+|X-Y|)/2表示!

*⑤典例

求和式:

$$EY = \sum_{k=2}^{\infty} k \cdot P\{Y=k\} = \sum_{k=3}^{\infty} k(k+1) \left(\frac{1}{8}\right)^{2} \left(\frac{1}{8}\right)^{k+2} = \frac{1}{64} \sum_{k=3}^{\infty} k(k+1) \left(\frac{1}{8}\right)^{k-2}$$

$$42 \cdot S(x) = \sum_{k=3}^{\infty} k(k+1) x^{k-2} = \left[\sum_{k=2}^{\infty} x^{k}\right]^{n} = \frac{2}{(1-x)^{3}}$$

$$42 \cdot S(x) = \sum_{k=3}^{\infty} k(k+1) x^{k-2} = \left[\sum_{k=2}^{\infty} x^{k}\right]^{n} = \frac{2}{(1-x)^{3}}$$

$$43 \cdot S(x) = \sum_{k=3}^{\infty} k(k+1) x^{k-2} = \left[\sum_{k=2}^{\infty} x^{k}\right]^{n} = \frac{2}{(1-x)^{3}}$$

$$43 \cdot S(x) = \sum_{k=3}^{\infty} k(k+1) x^{k-2} = \left[\sum_{k=2}^{\infty} x^{k}\right]^{n} = \frac{2}{(1-x)^{3}}$$

$$43 \cdot S(x) = \sum_{k=3}^{\infty} k(k+1) x^{k-2} = \left[\sum_{k=2}^{\infty} x^{k}\right]^{n} = \frac{2}{(1-x)^{3}}$$

$$43 \cdot S(x) = \sum_{k=3}^{\infty} k(k+1) x^{k-2} = \left[\sum_{k=3}^{\infty} x^{k}\right]^{n} = \frac{2}{(1-x)^{3}}$$

$$43 \cdot S(x) = \sum_{k=3}^{\infty} k(k+1) x^{k-2} = \left[\sum_{k=3}^{\infty} x^{k}\right]^{n} = \frac{2}{(1-x)^{3}}$$

$$43 \cdot S(x) = \sum_{k=3}^{\infty} k(k+1) x^{k-2} = \left[\sum_{k=3}^{\infty} x^{k}\right]^{n} = \frac{2}{(1-x)^{3}}$$

$$43 \cdot S(x) = \sum_{k=3}^{\infty} k(k+1) x^{k-2} = \left[\sum_{k=3}^{\infty} x^{k}\right]^{n} = \frac{2}{(1-x)^{3}}$$

$$43 \cdot S(x) = \sum_{k=3}^{\infty} k(k+1) x^{k-2} = \left[\sum_{k=3}^{\infty} x^{k}\right]^{n} = \frac{2}{(1-x)^{3}}$$

$$43 \cdot S(x) = \sum_{k=3}^{\infty} k(k+1) x^{k-2} = \left[\sum_{k=3}^{\infty} x^{k}\right]^{n} = \frac{2}{(1-x)^{3}}$$

$$43 \cdot S(x) = \sum_{k=3}^{\infty} k(k+1) x^{k-2} = \left[\sum_{k=3}^{\infty} x^{k}\right]^{n} = \frac{2}{(1-x)^{3}}$$

$$43 \cdot S(x) = \sum_{k=3}^{\infty} k(k+1) x^{k-2} = \left[\sum_{k=3}^{\infty} x^{k}\right]^{n} = \frac{2}{(1-x)^{3}}$$

$$43 \cdot S(x) = \sum_{k=3}^{\infty} k(k+1) x^{k-2} = \left[\sum_{k=3}^{\infty} x^{k}\right]^{n} = \frac{2}{(1-x)^{3}}$$

$$43 \cdot S(x) = \sum_{k=3}^{\infty} k(k+1) x^{k-2} = \left[\sum_{k=3}^{\infty} x^{k}\right]^{n} = \frac{2}{(1-x)^{3}}$$

$$43 \cdot S(x) = \sum_{k=3}^{\infty} k(k+1) x^{k} =$$

⑥规则

2022年10月24日 22:54

- *假设检验:务必写清(1)~(5)的步骤序号!
- *(X,Y)的联合分布律:一般X为纵轴,Y为横轴(若为n个变量的联合分布律,则写为P(X1=x1...)=...形式)
- *分类讨论表示时:不管怎样(有没有其他一类、有几个具体区间)最左边的具体区间都为双开区间,之后的所有具体区间都为左闭右开
- *相关性说的是有无线性关系,独立性说的是有无关系!!
- *服从参数为(n1,n2)的F分布
- *样本空间规范:
- (1) 用 A, B 分别表示飞机出现和探测到飞机,故障雷达系统的样本空间为

 $S = \{(A, B)(\overline{A}, B)(A, \overline{B})(\overline{A}, \overline{B})\}$