Complex Exponential Signals

Pablo M. Olmos (olmos@tsc.uc3m.es) Emilio Parrado (emipar@tsc.uc3m.es)

March 3, 2018

uc3m

$$a = r_a + ji_a$$

•
$$|a|^2 = r_a^2 + i_a^2$$

•
$$r_a = |a| \cos(\phi_a)$$

•
$$i_a = |a| \sin(\phi_a)$$

Using Euler's formula

$$\mathrm{e}^{(r_a+ji_a)}=\mathrm{e}^{r_a}\;\mathrm{e}^{ji_a}=\mathrm{e}^{r_a}\Big(\cos(r_a)+j\sin(i_a)\Big)$$

- $lue{1}$ Continuous-time Complex Exponential Signals: $x(t)=a\mathrm{e}^{bt}$
 - a and b are real
 - b is a pure imaginary number
 - a and b are complex

② Discrete-time Complex Exponential Signals: $x[n] = ae^{bn}$

Complex exponential signals

$$x(t) = ae^{bt},$$

where a and b are complex numbers:

$$a = |a|e^{j\phi_a} = r_a + ji_a$$

 $b = |b|e^{j\phi_b} = r_b + ji_b$

- $lue{1}$ Continuous-time Complex Exponential Signals: $x(t)=a\mathrm{e}^{bt}$
 - a and b are real
 - b is a pure imaginary number
 - a and b are complex

2 Discrete-time Complex Exponential Signals: $x[n] = ae^{bn}$

$$x(t) = ae^{bt}$$
 with $a, b \in \mathbb{R}$

For instance, assume a = 3...

- **1** Continuous-time Complex Exponential Signals: $x(t) = ae^{bt}$
 - a and b are real
 - b is a pure imaginary number
 - a and b are complex

② Discrete-time Complex Exponential Signals: $x[n] = ae^{bn}$

$$x(t) = ae^{bt}$$
 with $b = j\omega$

a is real: $a \in \mathbb{R}$.

$$x(t) = ae^{j\omega t} = a\cos(\omega t) + ja\sin(\omega t)$$

Both the real and imaginary parts of x(t) are periodic with period $T=\frac{2\pi}{\omega}$. ω is the angular frequency (radians/secod).

a is complex: $a = r_a + ji_a = |a|e^{j\phi_a}$.

$$x(t) = |a|e^{j(\omega t + \phi_a)} = |a|\cos(\omega t + \phi_a) + j|a|\sin(\omega t + \phi_a)$$

Both the real and imaginary parts of x(t) are periodic with period $T=rac{2\pi}{\omega}.$

$$x(t) = a \exp(bt), \qquad b = j2\pi$$

Imaginary part of x(t)

$$a = 3$$
 $a = 3\cos(\pi/4) + j3\sin(\pi/4)$

- f 1 Continuous-time Complex Exponential Signals: $x(t)=a{
 m e}^{bt}$
 - a and b are real
 - b is a pure imaginary number
 - a and b are complex

② Discrete-time Complex Exponential Signals: $x[n] = ae^{bn}$

$$x(t) = ae^{bt}$$
 with $a = |a|e^{j\phi_a}$ and $b = r + j\omega$

$$x(t) = |a|e^{rt}e^{j(\omega t + \phi_a)}$$
$$= |a|e^{rt}\cos(\omega t + \phi_a) + j|a|e^{rt}\sin(\omega t + \phi_a)$$

The real and imaginary parts of x(t) are NOT periodic functions anymore.

0.5

-1.5

-0.5

1.5

$$x(t) = a \exp(bt)$$
 $a = 3$
 $b = -1 + j2\pi$ $a = 3\cos(\pi/4) + j3\sin(\pi/4)$

Real part of x(t)

Imaginary part of x(t)

- ① Continuous-time Complex Exponential Signals: $x(t) = ae^b$
 - a and b are real
 - b is a pure imaginary number
 - a and b are complex

2 Discrete-time Complex Exponential Signals: $x[n] = ae^{bn}$

Discrete-time complex exponential signal

$$x[n] = ae^{bn},$$

where a and b are complex numbers:

$$a = |a|e^{j\phi_a} = r_a + ji_a$$

$$b = |b|e^{j\phi_b} = r_b + ji_b$$

$$x[n] = a \mathbf{e}^{bn}$$
 with $a = |a| \mathbf{e}^{j\phi_a}$ and $b = j\Omega$

$$\mathbf{x}[n] = |\mathbf{a}| \mathbf{e}^{j(\Omega n + \phi_{\mathbf{a}})} = |\mathbf{a}| \cos(\Omega n + \phi_{\mathbf{a}}) + j|\mathbf{a}| \sin(\Omega n + \phi_{\mathbf{a}})$$

x[n] is periodic if there exist $N \in \mathbb{Z}$ such that ΩN is a multiple of 2π .

- $x(t) = ae^{j\omega t}$ is always periodic with period $T = 2\pi/\omega$.
- $x[n] = ae^{j\Omega n}$ is only periodic if $\frac{2\pi}{\Omega}$ is a rational number.

Periodicity in the frequency domain (Discrete case!)

$$x[n] = ae^{j\Omega n}$$

 $y[n] = ae^{j(\Omega + 2\pi k)n} = ae^{\Omega n}e^{j2\pi k} = ae^{\Omega n} = x[n]$ $\forall n \text{ if } k \in \mathbb{Z}$

The continuous-time complex exponential $x(t)=a\mathrm{e}^{j\omega t}$ is NOT periodic in the frequency domain!.

$$x[n] = ae^{bn}$$
 with $a = |a|e^{j\phi_a}$ $b = r + j\Omega$

$$x[n] = |a|e^{rn}e^{j(\Omega n + \phi_a)}$$
$$= |a|e^{rn}\cos(\Omega n + \phi_a) + j|a|e^{rn}\sin(\Omega n + \phi_a)$$

x[n] is not periodic.