ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

Институт машиностроения, материалов и транспорта Высшая школа автоматизации и робототехники

КУРСОВАЯ РАБОТА

Алгоритм «В – Дерево»

по дисциплине «Объектно-ориентированное программирование»

Выполнил Студент гр. 3331506/90401		Копейко И.В.
	(подпись)	
Работу принял		Ананьевский М.С.
	(подпись)	

Введение

В-дерево (читается как Би-дерево) — это особый тип сбалансированного дерева поиска, в котором каждый узел может содержать более одного ключа и иметь более двух дочерних элементов. Из-за этого свойства В-дерево называют сильноветвящимся.

Рисунок 1 – Пример структуры В-дерева

Вторичные запоминающие устройства (жесткие диски, SSD) медленно работают с большим объемом данных. Людям захотелось сократить время доступа к физическим носителям информации, поэтому возникла потребность в таких структурах данных, которые способны это сделать. Помимо этого В-деревья используют:

- В базах данных и файловых системах.
- Для хранения блоков данных (вторичные носители).
- Для многоуровневой индексации.

Двоичное дерево поиска, АВЛ-дерево, красно-черное дерево и т. д. могут хранить только один ключ в одном узле. Если нужно хранить больше, высота деревьев резко начинает расти, из-за этого время доступа сильно увеличивается.

С В-деревом все не так. Оно позволяет хранить много ключей в одном узле и при этом может ссылаться на несколько дочерних узлов. Это значительно уменьшает высоту дерева и, соответственно, обеспечивает более быстрый доступ к диску.

Описание алгоритма

Дерево принимает только единственный параметр «t» или «Т», который будет определять количество ключей и указателей в каждом узле. «t» определяет минимальное число указателей в узле. «Т» является альтернативой, определяет максимальное число указателей. Иногда эти величины именуют «Б-фактор».

Имеются следующие правила:

- 1. В каждом узле содержатся минимум (t-1) ключей и минимум (t) указателей. Все ключи и указатели расположен по возрастанию и чередуются между собой. Максимум ключей (2t-1), а указателей (2t). Указателей всегда на 1 больше чем ключей.
- 2. Корень может иметь как минимум один ключ и два указателя, предел такой же как и у других узлов.
- 3. Потомок, на которого имеется указатель содержит ключи больше чем ключ слева от указателя и меньше чем ключ справа от указателя.
- 4. Листья потомков (указателей) не имеют.
- 5. Глубина (число уровней) всех ветвей всегда одинакова.
- 6. Новый ключ добавляется в самый нижний узел

Основные операция производимые с В-Деревом:

- Добавление ключа
- Поиск ключа
- Удаление ключа

Рисунок 2 - B-Дерево с T = 4

Визуальная демонстрация алгоритма добавления

Пример сценария 1(обычное добавление):

Пример сценария 2 (деление коренного узла):

Добавляем 5

Узел переполнен, он делится

Пример сценария 3 (деление узла):

Имеется другое В-дерево с Т = 4, решаем добавить ключ 25.

Мы переходим в правый узел

Добрались до нужного узла

Узел переполнен, его разбивают

Итог операции добавления

Пример сценария 4 (деление узла рекурсивно):

Имеется другое В-дерево с Т = 4, решаем добавить ключ 22:

Добавляем 22 в нижний узел

Узел переполнен, он делится

Один ключ отдали в узел уровнем выше, теперь он тоже переполнен и делится

То же самое, делится коренной узел

Дерево всегда растет вверх!

Визуальная демонстрация алгоритма удаления

Пример сценария 1 (простое удаление):

Удалим ключ 3

Пример сценария 2 (взятие ключа у брата):

Удаляем ключ 4

Он единственный в своем узле

Пример сценария 3 (объединяем узлы):

Удаляем ключ 5

Пример сценария 4 (объединяем коренной узел):

Удаляем ключ 1

Пример сценария 5 (берем ключ из нижнего узла):

Удаляем ключ 7

Пример сценария 6 (забираем ключи из нижнего узла):

Удаляем ключ 12

Пример сценария 7 (рекурсивно забираем ключи):

Удаляем ключ 11

Вместе с ключом был передан еще и указатель

Пример сценария 8 (рекурсивно забираем ключи):

Удаляем ключ 19

Нижние узлы под ключом 19 объединились, теперь будет происходить объединение с братом

Родителя больше не ключей, он тоже будет объединяться с братом

Так уменьшилась высота всего дерева

Исследование алгоритма

Исходя из интернет-источников временная сложность алгоритма для каждой из операций (вставка, поиск, удаление) равно O(log(n))

Временная сложность			
в О-символике			
	В среднем	В худшем случае	
Расход памят	и O(n)	O(n)	
Поиск	O(log n)	O(log n)	
Вставка	O(log n)	O(log n)	
Удаление	O(log n)	O(log n)	

Рисунок 3 – Временная сложность алгоритма

Итак, исследуем временную сложность алгоритма при добавлении:

Рисунок 4 — Временная сложность алгоритма при добавлении на малом промежутке

Рисунок 5 — Временная сложность алгоритма при добавлении на большом промежутке

На заявленный изначально график полученные результаты не похожи, скорее изменение происходит по линейному закону.

Исследуем временную сложность алгоритма при удалении:

Рисунок 6 – Временная сложность алгоритма при удалении

Исследуем временную сложность алгоритма при поиске:

Рисунок 7 – Временная сложность алгоритма при поиске

Как видим все алгоритмы имеют линейную скачкообразную вертикальную функцию. Вероятно, идеальный график достигается на каком-то конкретном промежутке, или же алгоритм построения В-дерева в данной работе несколько отличается от эталона. Тем не менее, алгоритм поиска достаточно простой и должен быть схож с эталоном.

Все выполненные измерения проводились путем использования функции clock() из <ctime>.

Заключение

Алгоритм В — Дерево является довольно простым по своей сути, но имеет трудности на пути его реализации. Это касается того факта, что существуют разные сценарии поведения дерева при добавлении и удалении узла, которые необходимо прописать в коде, по этим причинам код становится довольно большим. На мой взгляд, должны существовать более простые алгоритмы для хранения данных.

Список источников

- 1. https://youtu.be/WXXetwePSRk
- 2. https://youtu.be/GKa_t7fF800
- 3. https://www.cs.usfca.edu/~galles/visualization/BTree.html
- 4. https://codechick.io/tutorials/dsa/dsa-b-tree
- 5. https://habr.com/ru/post/114154/
- 6. http://cppstudio.com/post/468/