多様体論 定義命題集

v.2.1

mapsto

2024年1月11日

本稿について

本稿では、幾何学の重要な研究対象である多様体を定義し、多様体論の序論としての一つの重要な結果であるStokesの定理を目標に進める。多様体は参考書ごとに流儀や議論の順序が異なり、初学者にとって混乱の要因となる。本稿はそうした参考書間での差異を極力カバーすることを目指す。一方、多様体論では定義や命題が非常に多く、筆者の能力不足ではあるものの、すべてに証明を付けていては到底先が見えないため、潔く証明をすべて省略し、定義や命題、例などを多く挙げるように努める。証明は各自考えたり、参考書を見たりするなどして確認してほしい。前提として、集合・写像の基礎知識、位相空間論、多変数関数の微分、線形代数学、常微分方程式の初歩の知識があるとよい。本稿により生じた不利益は一切の責任を負わない。

本稿の注意点

- 集合は断らない限り空でないとする.
- 自然数全体の集合を $\mathbb{N} := \{1, 2, ...\}, \mathbb{N}_0 := \mathbb{N} \cup \{0\}$ とする.
- 整数全体の集合を ℤ, 有理数全体の集合を ℚ, 実数全体の集合を ℝ, 複素数全体の集合を ℂとする.
- $G = \mathbb{Z}, \mathbb{Q}, \mathbb{R}, x \in G$ について、 $G_{>x} := \{y \in G \mid y > x\}$ とする. $G_{<x}, G_{<x}, G_{>x}$ も同様.
- $A \subset B$ は A = B の場合を含む.
- 位相空間の同相 (位相同型) を ≈, ベクトル空間の同型 (線形同型) を ≅ で表す.

目 次

1	多様体の定義 3			
	1.1	多様体の定義	3	
	1.2	多様体の例	5	
	1.3	多様体の構成	9	
	1.4	第2可算公理と多様体	11	
2	C^s 級写像		16	
	2.1	C^s 級写像 $\ldots \ldots \ldots \ldots \ldots$	16	
	2.2	C^s 級関数 $\ldots \ldots \ldots \ldots \ldots$	16	
	2.3	C ^r 級微分構造	16	
	2.4	1の分割	16	
	2.5	Lie 群	16	
3	接ベクトル空間 16cm 17cm 17cm 17cm 17cm 17cm 17cm 17cm 17			
	3.1	接ベクトル空間	16	
	3.2	C ^r 級写像の微分	16	
	3.3	接ベクトル東	16	
	3.4	C^r 級写像の性質 \ldots	16	
4	はめ	込みと埋め込み	16	
	4.1	はめ込みと埋め込み・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16	
	4.2	正則点と臨界点	16	
	4.3	埋め込み定理	16	
	4.4	Sard の定理	16	
5	ベク	トル場	16	
•	-	・・・	16	
	5.2	積分曲線		
6	微分	·形式	16	
U		1 次微分形式	16	
		<i>k</i> 次微分形式	16	
_				
7		kes の定理 外微分	16	
	7.1	グNMガ	16	
	1.2	Stokes の足達	16	
\mathbf{A}	基礎	数学から	17	
В	位相空間論から			
\mathbf{C}	代数	学から	18	
D	解析	デンタング in the second in the s	18	

1 多様体の定義

我々は地に足を着けて生活しているため、Euclid 的な地図を用いて物の位置を指定することができる。しかし、地球は丸いことを思い出すと、我々が体感している直線とは何か、今見えているのは本当に Euclid 空間なのかということさえ疑問に感じるだろう。しかし、現に不自由なく生活できているため Euclid 空間と考えて問題はない。多様体は「局所的に見れば Euclid 空間である」ものである。多様体に足を着けて住む人間は、自分たちが住んでいる空間は Euclid 空間であると錯覚せざるを得ないのである。

1.1 多様体の定義

目標. 解析学では \mathbb{R}^n 上で微分積分を行えた. 局所的に \mathbb{R}^n (の開集合) と見なせる空間を多様体を定義することで,様々な空間で微分積分を行えるようになるとともに,その空間の解析も行えるようになる.

 $n \in \mathbb{N}$, Λ を添字集合, \mathbb{R}^n を Euclid 空間とする.

定義 1.1.1 (座標近傍). M を位相空間, U を M の開集合, V を \mathbb{R}^n の開集合, $\varphi: U \to V$ を 同相写像とする*1. このとき, 対 (U,φ) を M の n 次元座標近傍 (coordinate neighborhood), または n 次元チャート (chart) という*2. チャート (U,φ) に対し, φ を U 上の局所座標系 (local coordinate system) という. $p \in U$ に対し,

$$\varphi(p) = (x_1(p), \dots, x_n(p)) \in V$$

を p の (U,φ) に関する**局所座標** (local coordinate) という. $i=1,\ldots,n$ に対し、局所座標における連続写像

$$x_i: U \to \mathbb{R}, \ p \mapsto x_i(p)$$

をU上の座標関数 (coordinate function) という.

注意 1.1.2. $p \in M$ の局所座標 $\varphi(p)$ は \mathbb{R}^n の元であるから,実数 $x_1, \ldots, x_n \in \mathbb{R}$ を用いて $\varphi(p) = (x_1, \ldots, x_n)$ と表されるのが自然である.座標関数と実数を自然に同一視し,局所座標系を $\varphi = (x_1, \ldots, x_n)$,チャートを $(U; x_1, \ldots, x_n)$ と表すことがある. x_1, \ldots, x_n は実数であったり,実関数であったりするので文脈に合わせて注意して読む必要がある.

定義 1.1.3 (局所 Euclid 空間). M を位相空間とする. 任意の $p \in M$ に対し, p の開近傍 $U \subset M$ と M の n 次元チャート (U,φ) が存在するとき,M は n 次元局所 Euclid 空間 (locally Euclidian space) であるという.

命題 1.1.4. *M* を位相空間とする. このとき, 次は同値:

- (1) *M* は *n* 次元局所 Euclid 空間である.
- (2) ある M の n 次元チャート族 $\{(U_{\lambda}, \varphi_{\lambda})\}_{\lambda \in \Lambda}$ が存在して, $\{U_{\lambda}\}_{\lambda \in \Lambda}$ は M の開被覆である. すなわち.

$$M = \bigcup_{\lambda \in \Lambda} U_{\lambda}.$$

 $^{^{*1}\}varphi$ は全射であるから, $V=\varphi(U)$ としてよい.

 $^{^{*2}}$ 以降に登場する用語において、n次元はしばしば省略される.

定義 1.1.5 (座標近傍系). 命題 1.1.4(2) を満たす $\{(U_{\lambda}, \varphi_{\lambda})\}_{\lambda \in \Lambda}$ を M の n 次元座標近傍系 (system of coordinate neighborhoods), または n 次元アトラス (atlas) という.

定義 1.1.6 (座標変換). M を位相空間, $(U,\varphi),(V,\psi)$ を M の n 次元チャートとする. $U\cap V\neq\varnothing$ としたとき、写像

$$\psi|_{U\cap V}\circ\varphi|_{U\cap V}^{-1}:\varphi(U\cap V)\to\psi(U\cap V)$$

を (U,φ) から (V,ψ) への座標変換 (coordinate transformation) という. 座標変換が C^r 級であるとき, C^r 級座標変換という. 局所座標系が $\varphi \coloneqq (x_1,\ldots,x_n), \psi \coloneqq (y_1,\ldots,y_n)$ であるとき,

$$\begin{cases} y_1 = y_1(x_1, \dots, x_n) \\ \vdots \\ y_n = y_n(x_1, \dots, x_n) \end{cases}$$

を $\psi|_{U\cap V}\circ \varphi|_{U\cap V}^{-1}$ の座標表示 (coordinate display) という.

注意 1.1.7. (1) $\varphi(U\cap V)$, $\psi(U\cap V)\subset\mathbb{R}^n$ であるから, C^r 級が定義できる.

(2) 以降,座標変換 $\psi|_{U\cap V}\circ\varphi|_{U\cap V}^{-1}$ を省略して $\psi\circ\varphi^{-1}$ と表す.

定義 1.1.8 (C^r 級可微分多様体). M を位相空間, $r \in \mathbb{N}_0 \cup \{\infty\}$ とする. M の n 次元アトラス $S \coloneqq \{(U_\lambda, \varphi_\lambda)\}_{\lambda \in \Lambda}$ が次を満たすとき,対 (M, \mathcal{S}) を n 次元 C^r 級可微分多様体 (differentiable manifold of class C^r) という:

- (1) M は Hausdorff 空間である.
- (2) $\{U_{\lambda}\}_{{\lambda}\in\Lambda}$ は M の開被覆である.
- (3) $U_{\lambda} \cap U_{\mu} \neq \emptyset$ を満たす $^{*3}\lambda, \mu \in \Lambda$ に対し,

$$\varphi_{\mu} \circ {\varphi_{\lambda}}^{-1} : \varphi_{\lambda}(U_{\lambda} \cap U_{\mu}) \to \varphi_{\mu}(U_{\lambda} \cap U_{\mu})$$

は C^r 級座標変換である.

 C^r 級可微分多様体を単に C^r 級多様体,または多様体という. C^r 級多様体 (M, \mathcal{S}) に対し, \mathcal{S} を C^r 級座標近傍系または C^r 級アトラスという.また, C^r 級多様体の次元 (dimension) を $\dim M := n$ と定める.アトラスが明らかなとき, C^r 級多様体 (M, \mathcal{S}) を単に M と表す.次元を明示するときは M^n と表す.

定義 1.1.9. (1) C^0 級多様体を位相多様体 (topological manifold) という.

- (2) C[∞] 級多様体を**可微分多様体** (differentiable manifold), または**滑らかな多様体** (smooth manifold) という.
- **注意 1.1.10.** (1) 定義 1.1.8 の条件 (2) は,命題 1.1.4 より M が局所 Euclid 空間であることに 置き換えることができる.
 - (2) M が局所 Euclid 空間かつ Hausdorff 空間のとき、座標変換は必ず連続であるから、位相 多様体になる. すなわち、位相多様体の定義には定義 1.1.8 の条件 (3) は不要である.
 - (3) 座標変換 $\varphi_{\mu}\circ\varphi_{\lambda}^{-1}$ は $\varphi_{\lambda}\circ\varphi_{\mu}^{-1}$ を逆写像に持つから, C^{r} 級微分同相写像である.

 $^{*^3}U_{\lambda} \cap U_{\mu} = \emptyset$ のとき,空写像となり (3) は自明に成り立つ.

- (4) 以降、 C^T 級多様体 (M, S) 上の点の近傍は、S から取るものとする.
- (5) 多様体の定義に「第2可算公理を満たす」という条件を加えることもある。第2可算公理を課すのは、考える対象を扱いやすいもののみに制限するためである。この場合、定義 1.1.8 の多様体は**広義の多様体**と呼ばれることもある。本稿では、第2可算公理は必要な ときに課せば十分であると考え、第2可算公理を課さない。詳しくは1.3 節で述べる。
- (6) 境界を持つ多様体や角のある多様体はここでは扱わず、7章以降で扱う.

定義 1.1.11 (複素多様体). M を位相空間, U を M の開集合, V を \mathbb{C}^n の開集合, $\varphi: U \to V$ を同相写像とする. このとき, 対 (U,φ) を M の n 次元正則座標近傍 (holomorphic coordinate neighborhood) という. 正則座標近傍 (U,φ) に対し, φ を U 上の n 次元複素局所座標系 (complex local coordinate system) という. $p \in U$ に対し,

$$\varphi(p) = (z_1(p), \dots, z_n(p)) \in V$$

を p の (U, φ) に関する n 次元複素局所座標 (complex local coordinate) という. $i=1,\ldots,n$ に対し、連続写像

$$z_i: U \to \mathbb{C}, \ p \mapsto z_i(p)$$

を U 上の複素座標関数 (complex coordinate function) という. ある M の正則座標近傍 $S := \{(U_{\lambda}, \varphi_{\lambda})\}_{\lambda \in \Lambda}$ が存在して次を満たすとき,対 (M, S) を n 次元複素多様体 (complex manifold) という:

- (1) *M* は Hausdorff 空間である.
- (2) $\{U_{\lambda}\}_{{\lambda}\in\Lambda}$ は M の開被覆である.
- (3) $U_{\lambda} \cap U_{\mu} \neq \emptyset$ を満たす $\lambda, \mu \in \Lambda$ に対し、座標変換

$$\varphi_{\mu} \circ {\varphi_{\lambda}}^{-1} : \varphi_{\lambda}(U_{\lambda} \cap U_{\mu}) \to \varphi_{\mu}(U_{\lambda} \cap U_{\mu})$$

は正則写像である.

複素多様体 (M, S) に対し,S を M の n 次元正則座標近傍系 (system of holomorphic coordinate neighborhoods) という.複素多様体の複素次元 (complex dimension) を $\dim_{\mathbb{C}} M \coloneqq n$ と定める.

注意 1.1.12. 複素多様体と区別して、定義 1.1.8 の多様体を**実多様体**ということもある.

1.2 多様体の例

目標. 多様体の例を挙げる. 基本的なものは覚えておくとよい.

1.2.1 \mathbb{R}^n , \mathbb{C}^n ,グラフ,0 次元多様体

 $n \in \mathbb{N}$, Λ を添字集合, \mathbb{R}^n を Euclid 空間とする.

例 1.2.1. \mathbb{R}^n を Euclid 空間, $\mathrm{id}_{\mathbb{R}^n}: \mathbb{R}^n \to \mathbb{R}^n$ を恒等写像とする.このとき, $(\mathbb{R}^n, \{(\mathbb{R}^n, \mathrm{id}_{\mathbb{R}^n})\})$ は n 次元 C^∞ 級多様体である. $(\mathbb{R}^n, \mathrm{id}_{\mathbb{R}^n})$ を標準的なチャート (standard chart) という.

例 1.2.2. \mathbb{C}^n を複素 Euclid 空間, $\mathrm{id}_{\mathbb{C}^n}: \mathbb{C}^n \to \mathbb{C}^n$ を恒等写像とする.このとき, $(\mathbb{C}^n, \{(\mathbb{C}^n, \mathrm{id}_{\mathbb{C}^n})\})$ は n 次元複素 C^∞ 級多様体である.

例 1.2.3. $\mathbb R$ を Euclid 空間, $\varphi:\mathbb R\to\mathbb R$ を $\varphi(x)\coloneqq x^3$ とする.このとき, $(\mathbb R,\{(\mathbb R,\varphi)\})$ は 1 次元 C^∞ 級多様体である.

例 1.2.4. \mathbb{R}^n を Euclid 空間, $\{U_{\lambda}\}_{\lambda \in \Lambda} \subset 2^{\mathbb{R}^n}$ を \mathbb{R}^n の開被覆, $\varphi_{\lambda}: U_{\lambda} \to \mathbb{R}^n$ を包含写像とする. このとき, $(\mathbb{R}^n, \{(U_{\lambda}, \varphi_{\lambda})\}_{\lambda \in \Lambda})$ は n 次元 C^{∞} 級多様体である.

例 1.2.5 (グラフ). U を \mathbb{R}^n の開集合, $f:U\to\mathbb{R}$ を連続関数とする. $\Gamma(f)\subset\mathbb{R}^{n+1}$, proj: $\Gamma(f)\to U$ を次で定める:

$$\Gamma(f) := \{ (\boldsymbol{x}, y) \in U \times \mathbb{R} \mid y = f(\boldsymbol{x}) \},$$

$$\operatorname{proj}(\boldsymbol{x}, y) \coloneqq \boldsymbol{x}.$$

このとき, $(\Gamma(f), \{(\Gamma(f), \operatorname{proj})\})$ は n 次元 C^{∞} 級多様体である. $\Gamma(f)$ を f の**グラフ** (graph) という.

例 1.2.6. M を高々可算な離散集合とする.任意の $p \in M$ に対し, $\{p\}$ は M の開集合で, $\{p\}$ 上の局所座標系

$$i_p: \{p\} \to \mathbb{R}^0 = \{0\}, \ i_p(p) := 0$$

が定まる.このとき, $(M,\{(\{p\},\iota_p)\}_{p\in M})$ は 0 次元多様体である.0 次元多様体は任意の $r\in\mathbb{N}_0\cup\{\infty\}$ に対し, C^r 級多様体であるとみなす.

1.2.2 n 次元球面

定義 1.2.7 (n 次元球面). \mathbb{R}^{n+1} の部分集合

$$S^n := \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid x_1^2 + \dots + x_{n+1}^2 = 1\} \subset \mathbb{R}^{n+1}$$

を n 次元球面 (sphere) という. 同様に、 \mathbb{C}^{n+1} の部分集合

$$Q^n := \{(z_1, \dots, z_{n+1}) \in \mathbb{C}^{n+1} \mid z_1^2 + \dots + z_{n+1}^2 = 1\} \subset \mathbb{C}^{n+1}$$

 E_n 次元複素球面 (complex sphere) という.

注意 1.2.8. 複素数体 \mathbb{C}^n は \mathbb{R} 上の 2n 次元ベクトル空間であるから, \mathbb{C}^n を \mathbb{R}^{2n} と同一視する. このとき, $j=1,\ldots,n+1$ に対し,

$$z_i = x_i + \sqrt{-1}y_i \in \mathbb{C} \ (x_i, y_i \in \mathbb{R})$$

とすると, $|z_j|^2 = x_j^2 + y_j^2$ より

$$\mathbb{R}^{2n+2} \supset S^{2n+1} = \{ (x_1, y_1, \dots, x_{n+1}, y_{n+1}) \in \mathbb{R}^{2n+2} \mid x_1^2 + y_1^2 + \dots + x_{n+1}^2 + y_{n+1}^2 = 1 \}$$

$$= \{ (z_1, \dots, z_{n+1}) \in \mathbb{C}^{n+1} \mid |z_1|^2 + \dots + |z_{n+1}|^2 = 1 \} \subset \mathbb{C}^{n+1}$$

となる. したがって, (2n+1) 次元球面 S^{2n+1} は \mathbb{C}^{n+1} の部分集合であるとみなせる.

命題 1.2.9. S^n を n 次元球面とする. 各 $i=1,\ldots,n+1$ に対し、開集合 $U_i^\pm\subset S^n$ 、写像 $\varphi_i^\pm:U_i^\pm\to\mathbb{R}^n$ を次で定める:

$$U_i^{\pm} := \{(x_1, \dots, x_{n+1}) \in S^n \mid \pm x_i > 0\},\$$

$$\varphi_i^{\pm}(x_1,\ldots,x_{n+1}) := (x_1,\ldots,x_{i-1},x_{i+1}\ldots,x_{n+1})$$

(複合同順). このとき、 $(S^n, \{(U_i^{\pm}, \varphi_i^{\pm})\}_{i=1}^{n+1})$ はn 次元 C^{∞} 級多様体である.

命題 1.2.10. S^n を n 次元球面とする.開集合 $U_N, U_S \subset S^n$,写像 $\varphi_N: U_N \to \mathbb{R}^n, \varphi_S: U_S \to \mathbb{R}^n$ を次で定める:

$$U_{N} := S^{n} \setminus \{(0, \dots, 0, 1)\}, U_{S} := S^{n} \setminus \{(0, \dots, 0, -1)\},$$

$$\varphi_{N}(x_{1}, \dots, x_{n+1}) := \left(\frac{x_{1}}{1 - x_{n+1}}, \dots, \frac{x_{n}}{1 - x_{n+1}}\right),$$

$$\varphi_{S}(x_{1}, \dots, x_{n+1}) := \left(\frac{x_{1}}{1 + x_{n+1}}, \dots, \frac{x_{n}}{1 + x_{n+1}}\right).$$

(複合同順). このとき、 $(S^n, \{(U_N, \varphi_N), (U_S, \varphi_S)\})$ は n 次元 C^∞ 級多様体である. φ_N, φ_S をそれぞれ $(0, \ldots, 0, 1), (0, \ldots, 0, -1)$ からの立体射影 (stereoscopic projection) という.

命題 1.2.11. Q^n を n 次元複素球面とする. 開集合 $U_N,U_S\subset Q^n$, 写像 $\varphi_N:U_N\to\mathbb{C}^n,\varphi_S:U_S\to\mathbb{C}^n$ を次で定める:

$$U_{N} := Q^{n} \setminus \{(0, \dots, 0, 1)\}, U_{S} := Q^{n} \setminus \{(0, \dots, 0, -1)\},$$

$$\varphi_{N}(z_{1}, \dots, z_{n+1}) := \left(\frac{z_{1}}{1 - z_{n+1}}, \dots, \frac{z_{n}}{1 - z_{n+1}}\right),$$

$$\varphi_{S}(z_{1}, \dots, z_{n+1}) := \left(\frac{z_{1}}{1 + z_{n+1}}, \dots, \frac{z_{n}}{1 + z_{n+1}}\right).$$

(複合同順). このとき、 $(Q^n, \{(U_N, \varphi_N), (U_S, \varphi_S)\})$ は n 次元 C^∞ 級複素多様体である.

1.2.3 n 次元射影空間

定義 1.2.12 (n 次元射影空間). $\mathbb{R}^{n+1}\setminus\{0\}$ 上の同値関係 \sim を次で定める: $x,y\in\mathbb{R}^{n+1}\setminus\{0\}$ に対し、

$$x \sim y \stackrel{\text{def.}}{\Longleftrightarrow}$$
 ある $\lambda \in \mathbb{R} \setminus \{0\}$ が存在して $y = \lambda x$.

~による商空間 $\mathbb{R}P^n := (\mathbb{R}^{n+1} \setminus \{\mathbf{0}\})/\sim \varepsilon n$ 次元実射影空間 (real projective space) という.このとき,自然な射影を $\pi: \mathbb{R}^{n+1} \setminus \{\mathbf{0}\} \to \mathbb{R}P^n$ とし, $(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \setminus \{\mathbf{0}\}$ を代表元とする同値類を $\pi(x_1, \dots, x_{n+1}) \coloneqq [x_1 : \dots : x_{n+1}] \in \mathbb{R}P^n$ と表し,同次座標 (homogeneous coordinate) という.同様に, $\mathbb{C}^{n+1} \setminus \{\mathbf{0}\}$ 上の同値関係 \sim を次で定める: $\mathbf{z}, \mathbf{w} \in \mathbb{C}^{n+1} \setminus \{\mathbf{0}\}$ に対し,

$$oldsymbol{z} \sim oldsymbol{w} \stackrel{ ext{def.}}{\Longrightarrow}$$
 ある $\lambda \in \mathbb{C} \setminus \{0\}$ が存在して $oldsymbol{w} = \lambda oldsymbol{z}$.

~による商空間 $\mathbb{C}P^n := (\mathbb{C}^{n+1} \setminus \{\mathbf{0}\})/\sim$ を n 次元複素射影空間 (complex projective space) という。このとき,自然な射影を $\pi: \mathbb{C}^{n+1} \setminus \{\mathbf{0}\} \to \mathbb{C}P^n$ とし, $(z_1, \ldots, z_{n+1}) \in \mathbb{C}^{n+1} \setminus \{\mathbf{0}\}$ を代表元とする同値類を $\pi(z_1, \ldots, z_{n+1}) \coloneqq [z_1: \cdots: z_{n+1}] \in \mathbb{C}P^n$ と表し,複素同次座標 (complex homogeneous coordinate) という。

命題 1.2.13. $\mathbb{R}P^n$ を n 次元実射影空間とする. 各 $i=1,\ldots,n+1$ に対し, $U_i\subset\mathbb{R}P^n$, 写像 $\varphi_i:U_i\to\mathbb{R}^n$ を次で定める:

$$U_i := \{ [x_1 : \dots : x_{n+1}] \in \mathbb{R}P^n \mid x_i \neq 0 \},$$

$$\varphi_i([x_1 : \dots : x_{n+1}]) := \left(\frac{x_1}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_{n+1}}{x_i}\right).$$

このとき、 $(\mathbb{R}P^n, \{(U_i, \varphi_i)\}_{i=1}^{n+1})$ は n 次元 C^∞ 級多様体である.

射影空間の定義の仕方はいくつかあるが、命題 1.2.15 によって S^n/\sim と $\mathbb{R}P^n$ は同一視できる.

命題 1.2.14 (商空間の普遍性). X,Y を位相空間, \sim を X 上の同値関係, \sim による商空間を X/\sim , 自然な射影を $\pi: X \to X/\sim$ とする. 連続写像 $g: X \to Y$ が任意の $x,x' \in X$ に対して $x \sim x' \Rightarrow g(x) = g(x')$ を満たすならば, 連続写像 $f: X/\sim \to Y$ であって $g = f \circ \pi$ を満たすも のが一意に存在する. このとき, g は f を**誘導** (induce) するという.

命題 1.2.15. S^n を n 次元球面とする. S^n 上の同値関係 \sim を次で定める: $x, y \in S^n$ に対し,

$$oldsymbol{x} \sim oldsymbol{y} \stackrel{ ext{def.}}{\Longleftrightarrow} \ oldsymbol{y} = \pm oldsymbol{x}.$$

 \sim による商空間を S^n/\sim ,自然な射影を $\pi':S^n\to S^n/\sim$ とする*4. $i:S^n\to\mathbb{R}^{n+1}\setminus\{\mathbf{0}\}$ を包含写像とするとき、 $\pi\circ i:S^n\to\mathbb{R}P^n$ は同相写像 $\tilde{i}:S^n/\sim\to\mathbb{R}P^n$ を誘導する. すなわち, $S^n/\sim\approx\mathbb{R}P^n$.

$$S^{n} \xrightarrow{i} \mathbb{R}^{n+1} \setminus \{\mathbf{0}\}$$

$$\pi' \downarrow \qquad \qquad \downarrow \pi$$

$$S^{n}/\sim \xrightarrow{\tilde{\imath}} \mathbb{R}P^{n}$$

 $x \in S^n$ に対し, $-x \in S^n$ を対蹠点 (antipodal point) という.

命題 1.2.16. $\mathbb{C}P^n$ を n 次元複素射影空間とする. 各 $i=1,\ldots,n+1$ に対し, $U_i\subset\mathbb{C}P^n$, 写像 $\varphi_i:U_i\to\mathbb{C}^n$ を次で定める:

$$U_i := \{ [z_1 : \dots : z_{n+1}] \in \mathbb{C}P^n \mid z_i \neq 0 \},$$

$$\varphi_i([z_1 : \dots : z_{n+1}]) := \left(\frac{z_1}{z_i}, \dots, \frac{z_{i-1}}{z_i}, \frac{z_{i+1}}{z_i}, \dots, \frac{z_{n+1}}{z_i}\right).$$

このとき, $(\mathbb{C}P^n,\{(U_i,\varphi_i)\}_{i=1}^{n+1})$ はn次元 C^∞ 級複素多様体である.

命題 1.2.17. 注意 1.2.8 より, S^{2n+1} を \mathbb{C}^{n+1} の部分集合とみなす. S^n 上の同値関係 \sim を命題 1.2.15 と同様に定める. \sim による商空間を S^{2n+1}/\sim ,自然な射影を $\pi': S^{2n+1} \to S^{2n+1}/\sim$ とする. $i: S^{2n+1} \to \mathbb{C}^{n+1} \setminus \{\mathbf{0}\}$ を包含写像とするとき、 $\pi \circ i: S^{2n+1} \to \mathbb{C}^{n}$ は同相写像 $\tilde{i}: S^{2n+1}/\sim \to \mathbb{C}P^n$ を誘導する.すなわち, $S^{2n+1}/\sim \to \mathbb{C}P^n$.

$$S^{2n+1} \xrightarrow{i} \mathbb{C}^{n+1} \setminus \{\mathbf{0}\}$$

$$\pi' \bigvee_{\pi \circ i} \bigvee_{\pi} \pi$$

$$S^{2n+1} / \sim \xrightarrow{\tilde{i}} \mathbb{C}P^n$$

 $^{^{*4}}S^n/\!\!\sim$ を $S^n/\{\pm 1\}$ と表すことがある.この表記は,位相空間 X と位相群 G に対し,G の X への群作用の軌道空間を X/G と表すことに由来する.

1.2.4 多様体でない例

例 1.2.18. ℝの閉部分空間 [0,1] は位相多様体でない.

例 1.2.19. \mathbb{R}^2 の部分空間 $(\mathbb{R} \times \{0\}) \cup (\{0\} \times \mathbb{R}) = \{(x,y) \in \mathbb{R}^2 \mid xy = 0\}$ は位相多様体でない.

例 1.2.20. $(\mathbb{R}, \mathcal{O})$ を通常の位相空間、 $0' \notin \mathbb{R}$ 、 $X := \mathbb{R} \sqcup \{0'\}$ とする. \mathcal{O} 及び

$$\{(a,0) \cup \{0'\} \cup (0,b) \mid a < 0 < b, a, b \in \mathbb{R}\}\$$

を開基とする位相を X に定める. このとき, X は Hausdorff 空間でないが, 局所 Euclid 空間である. また, X は第 2 可算公理を満たす. X を 2 つの原点を持つ直線 (line with two origins) という.

1.3 多様体の構成

目標. 既知の多様体から新たな多様体を構成する. すなわち, 多様体は無数に存在する.

1.3.1 多様体の構成

命題 1.3.1. $r,s\in\mathbb{N}_0\cup\{\infty\}$ が $0\leq s\leq r\leq\infty$ を満たすとき、任意の C^r 級多様体は C^s 級多様体である.

命題 1.3.2. $n \in \mathbb{N}, r \in \mathbb{N}_0 \cup \{\infty\}$, (M, S), (N, T) を n 次元 C^r 級多様体とする. $M \cap N = \emptyset$ であるとき, $(M \sqcup N, S \sqcup T)$ は n 次元 C^r 級多様体である.

命題 1.3.3 (開部分多様体). $r \in \mathbb{N}_0 \cup \{\infty\}$, $(M, \mathcal{S} := \{(U_\lambda, \varphi_\lambda)\}_{\lambda \in \Lambda})$ を C^r 級多様体, W を M の開部分集合とする. このとき,

$$\mathcal{S}|_{W} := \{(U_{\lambda} \cap W, \varphi_{\lambda}|_{U_{\lambda} \cap W})\}_{\lambda \in \Lambda}$$

とすると、 $(W, S|_W)$ は C^r 級多様体である. $(W, S|_W)$ を M の開部分多様体 (open submanifold) という.

例 1.3.4. $n \in \mathbb{N}$ に対し、 $\mathbb{R}^n \setminus \{\mathbf{0}\}$ は \mathbb{R}^n の開部分多様体である.

例 1.3.5. $n \in \mathbb{N}$, $a \in \mathbb{R}^n$, r > 0 とする. $B(a,r) \coloneqq \{x \in \mathbb{R}^n \mid ||x - a|| < r\}$ は \mathbb{R}^n の開部分多様体である. B(a,r) を中心 a, 半径 r の開円板 (open disk) という.

命題 1.3.6 (積多様体). $n, m \in \mathbb{N}, r \in \mathbb{N}_0 \cup \{\infty\}$, $(M, \mathcal{S} := \{(U_\lambda, \varphi_\lambda)\}_{\lambda \in \Lambda})$ を m 次元 C^r 級多様体, $(N, \mathcal{T} := \{(V_\mu, \psi_\mu)\}_{\mu \in \mathcal{M}})$ を n 次元 C^r 級多様体とする. このとき,

$$\mathcal{S} \times \mathcal{T} := \{ (U_{\lambda} \times V_{\mu}, \varphi_{\lambda} \times \psi_{\mu}) \}_{(\lambda, \mu) \in \Lambda \times \mathcal{M}},$$

$$\varphi_{\lambda} \times \psi_{\mu} : U_{\lambda} \times V_{\mu} \to \varphi_{\lambda}(U_{\lambda}) \times \psi_{\mu}(V_{\mu}), \quad (\varphi_{\lambda} \times \psi_{\mu})(p,q) \coloneqq (\varphi_{\lambda}(p), \psi_{\mu}(q))$$

とすると、 $(M \times N, \mathcal{S} \times \mathcal{T})$ は (m+n) 次元 C^r 級多様体である。 $(M \times N, \mathcal{S} \times \mathcal{T})$ を M と N の積多様体 (product manifold) という.

系 1.3.7. $n \in \mathbb{N}, r \in \mathbb{N}_0 \cup \{\infty\}$ とする. 各 i = 1, ..., n に対し、 $m_i \in \mathbb{N}$ 、 $(M_i, \mathcal{S}_i := \{(U_{\lambda_i}, \varphi_{\lambda_i})\}_{\lambda_i \in \Lambda_i})$ を m_i 次元 C^r 級多様体とする. このとき、

$$\mathcal{S}_1 \times \cdots \times \mathcal{S}_n := \{(U_{\lambda_1} \times \cdots \times U_{\lambda_n}, \varphi_{\lambda_1} \times \cdots \times \varphi_{\lambda_n})\}_{(\lambda_1, \dots, \lambda_n) \in \Lambda_1 \times \cdots \times \Lambda_n}$$

とすると、 $(M_1 \times \cdots \times M_n, S_1 \times \cdots \times S_n)$ は $(m_1 + \cdots + m_n)$ 次元 C^r 級多様体である.

例 1.3.8 (超円柱). $n \in \mathbb{N}$, S^n を n 次元球面とする. このとき,

$$I^n := S^n \times \mathbb{R}$$

は (n+1) 次元 C^{∞} 級多様体である. I^n を**超円柱** (hypercylinder) という.

1.3.2 n 次元トーラス

例 1.3.9 (n 次元トーラス). $n \in \mathbb{N}, S^1$ を 1 次元球面とする. このとき,

$$T^n := \underbrace{S^1 \times \cdots \times S^1}_n$$

はn次元 C^{∞} 級多様体である. T^n をn次元トーラス (torus) という.

例 1.3.10. R > r > 0 とする. このとき,

$$T^{2} = \{(x, y, z) \in \mathbb{R}^{3} \mid (\sqrt{x^{2} + y^{2}} - R)^{2} + z^{2} = r^{2}\}.$$

これを**回転トーラス** (torus of revolution) といい,xz 平面上の中心が (R,0),半径 r の円を z 軸 の周りに 1 回転させて得られる.

例 1.3.11. $n \in \mathbb{N}$ とする. \mathbb{R}^n 上の同値関係 ~ を次で定める: $x, y \in \mathbb{R}^n$ に対し、

$$oldsymbol{x} \sim oldsymbol{y} \stackrel{ ext{def.}}{\Longleftrightarrow} oldsymbol{x} - oldsymbol{y} \in \mathbb{Z}^n.$$

商集合 $\mathbb{R}^n/\mathbb{Z}^n := \mathbb{R}^n/\sim$ を**平坦トーラス** (flat torus) という.

例 1.3.12. $S^1 \subset \mathbb{R}^2$ に注意すると、

$$T^2 = \{(x, y, z, w) \in \mathbb{R}^4 \mid x^2 + y^2 = z^2 + w^2 = 1\}$$

と表せる. また, この T^2 を原点中心に $\frac{1}{\sqrt{2}}$ 倍縮小した S^3 の部分集合として

$$T^{2} = \left\{ (x, y, z, w) \in S^{3} \middle| x^{2} + y^{2} = z^{2} + w^{2} = \frac{1}{2} \right\}$$

と表せる. これらを Clifford トーラス (Clifford torus) という. 注意 1.2.8 より, S^3 を \mathbb{C}^2 の部分集合とみなすと, Clifford トーラスは \mathbb{C}^2 の部分集合とみなせる..

1.3.3 有限次元ベクトル空間

命題 1.3.13 (**誘導位相**). (X, \mathcal{O}_X) を位相空間, Y を集合, 写像 $f: Y \to X$ とする. Y の部分集合族

$$\mathcal{O}_f := \{ f^{-1}(U) \subset Y \mid U \in \mathcal{O}_X \}$$

とすると, (Y, \mathcal{O}_f) は位相空間になる. \mathcal{O}_f を Y の f による**誘導位相** (induced topology) という. また, f が Y に誘導位相を与えるとき, f は連続である.

命題 1.3.14. V, W を \mathbb{R} 上の有限次元ベクトル空間とする. このとき, 次は同値:

- (1) $V \cong W$.
- (2) $\dim V = \dim W$.

命題 1.3.15. V を \mathbb{R} 上の有限次元ベクトル空間, $n \coloneqq \dim V$ とする.命題 1.3.14 より線形同型 写像 $f: V \to \mathbb{R}^n$ が存在し,この f による Y の誘導位相を \mathcal{O}_f とする.このとき, $(V, \{(V, f)\})$ は n 次元 C^∞ 級多様体である.また,誘導位相 \mathcal{O}_f は f,すなわち基底の取り方によらない.

注意 1.3.16. 以降, \mathbb{R} 上の有限次元ベクトル空間は命題 1.3.15 の位相により多様体であるとする.

例 1.3.17. 複素数体 \mathbb{C}^n は \mathbb{R} 上の 2n 次元ベクトル空間であるから、2n 次元 C^∞ 級多様体である.

例 1.3.18. $\dim_{\mathbb{C}} M = n$ のとき、 $\dim M = 2n$ である.特に、 $\dim \mathbb{C}^n = \dim Q^n = \dim \mathbb{C}P^n = 2n$ である.

例 1.3.19. m 行 n 列の実行列全体の集合 $M(m \times n, \mathbb{R})$ は \mathbb{R} 上の mn 次元ベクトル空間であるから,mn 次元 C^{∞} 級多様体である.また,m 行 n 列の複素行列全体の集合 $M(m \times n, \mathbb{C})$ は \mathbb{R} 上の 2mn 次元ベクトル空間であるから,2mn 次元 C^{∞} 級多様体である.

注意 1.3.20. 以降, n 次正方行列全体を $M(n,\mathbb{R}) \coloneqq M(n \times n,\mathbb{R}), \ M(n,\mathbb{C}) \coloneqq M(n \times n,\mathbb{C})$ と表す.

1.4 第2可算公理と多様体

目標.参考書や個人の流儀として、多様体の定義に第2可算公理を満たす、という条件を加えることもある。このような条件を加える理由としては、多様体論において非常に有用な 2.4 節 の 1 の分割を適用するためである。1 の分割を適用できる多様体 (または位相空間) は「パラコンパクト空間」でなければならない。そのため、1.4.3 に述べるような病的な多様体を除外する必要がある。位相空間のパラコンパクト性の判定は容易ではないが、多様体上では同値になる性質がいくつか存在し、その中でも判定が容易であるのが第2可算公理である。

 $n \in \mathbb{N}$, Λ を添字集合, (X, \mathcal{O}) を位相空間, $r \in \mathbb{N}_0 \cup \{\infty\}$, (M, \mathcal{S}) を n 次元 C^r 級多様体とする.

1.4.1 位相空間の諸性質

まずは次節の議論に必要な位相空間の諸性質を述べる.

定義 1.4.1 (被覆). X の部分集合族 $\{U_{\lambda}\}_{\lambda\in\Lambda}\subset 2^{X}$ が

$$X = \bigcup_{\lambda \in \Lambda} U_{\lambda}$$

を満たすとき、 $\{U_{\lambda}\}_{\lambda\in\Lambda}$ を X の被覆 (covering) という. また、部分集合 $A\subset X$ に対し、 $\{U_{\lambda}\}_{\lambda\in\Lambda}\subset 2^{X}$ が

$$A \subset \bigcup_{\lambda \in \Lambda} U_{\lambda}$$

を満たすとき、 $\{U_{\lambda}\}_{\lambda\in\Lambda}$ を A の被覆という.

定義 1.4.2 (開被覆). $\{U_{\lambda}\}_{\lambda \in \Lambda}$ を X(または部分集合 $A \subset X$) の被覆とする. 任意の $\lambda \in \Lambda$ に対し, $U_{\lambda} \in \mathcal{O}$ となるとき, $\{U_{\lambda}\}_{\lambda \in \Lambda}$ を X(または A) の開被覆 (open covering) という.

定義 1.4.3 (部分被覆). $U \in X$ (または部分集合 $A \subset X$) の被覆とする. 部分集合 $\mathcal{V} \subset \mathcal{U}$ が X(または A) の被覆であるとき, $\mathcal{V} \in \mathcal{U}$ の部分被覆 (subcovering) という.

定義 1.4.4 (有限). X の部分集合族 $\{U_{\lambda}\}_{\lambda\in\Lambda}\subset 2^{X}$ が $\#\Lambda<\infty$ を満たすとき, $\{U_{\lambda}\}_{\lambda\in\Lambda}$ は有限 (finite) であるという.

定義 1.4.5 (コンパクト). X の任意の開被覆に対して,有限部分被覆が存在するとき,X はコンパクト (compact) であるという.部分集合 $A \subset X$ について,X の部分空間 A がコンパクトであるとき,A はコンパクトであるという.

命題 1.4.6. コンパクト空間の閉部分集合はコンパクト空間である.

命題 1.4.7. コンパクト空間の積空間はコンパクト空間である.

命題 1.4.8. Hausdorff 空間のコンパクト部分集合は閉集合である.

例 1.4.9. S^n , $\mathbb{R}P^n$, T^n はコンパクト空間である.

定義 1.4.10 (細分). $U, V \in X$ の被覆とする. 任意の $V \in V$ に対して,ある $U \in U$ が存在して $V \subset U$ となるとき,V はU の細分 (refinement) である(またはV がU を細分する)という.

定義 1.4.11 (局所有限). $\{U_{\lambda}\}_{\lambda\in\Lambda}$ を X の被覆とする. $x\in X$ に対し, x のある開近傍 V が存在し,

$$\#\{\lambda \in \Lambda \mid V \cap U_{\lambda} \neq \varnothing\} < \infty$$

を満たすとき、 $\{U_{\lambda}\}_{\lambda\in\Lambda}$ はxで**局所有限** (locally finite) であるという.任意の $x\in X$ に対してU がx で局所有限であるとき, $\{U_{\lambda}\}_{\lambda\in\Lambda}$ は**局所有限**であるという.

定義 1.4.12 (パラコンパクト). X の任意の開被覆 U に対して, U の局所有限な細分となる開被覆 V が存在するとき, X はパラコンパクト (paracompact) であるという.

定義 1.4.13 (相対コンパクト). $U \in \mathcal{O}$ に対し、閉包 \overline{U} がコンパクトであるとき、U は相対コンパクト (relative compact) であるという.

定義 1.4.14 (局所コンパクト). 任意の $x \in X$ に対して相対コンパクトな開近傍が存在するとき、X は局所コンパクト (locally compact) であるという.

定義 1.4.15 $(\sigma \operatorname{J})$ ($\sigma \operatorname{J})$

定義 1.4.16 (第2可算公理). X の高々可算個の開集合からなる開基が存在するとき,第2可算公理 (second axiom of countability) を満たすという.

命題 1.4.17. U を X の被覆とする. 任意の $U \in \mathcal{U}$ が第 2 可算公理を満たすならば, X は第 2 可算公理を満たす.

命題 1.4.18. 第2可算公理を満たす位相空間の部分空間は第2可算公理を満たす.

命題 1.4.19. 第2可算公理を満たす位相空間の積空間は第2可算公理を満たす.

例 1.4.20. \mathbb{R}^n は第 2 可算公理を満たす.

定義 1.4.21 (Lindelöf 空間). X の任意の開被覆に対して,高々可算な部分被覆が存在するとき,X は Lindelöf 空間 (Lindelöf space) であるという.

定義 1.4.22 (連結). ある $U, V \in \mathcal{O}$ が存在し, $U \neq \varnothing, V \neq \varnothing, U \cap V = \varnothing, U \cup V = X$ を満たすとき,X は非連結 (disconnected) であるという.X が非連結でないとき,X は連結 (connected) であるという.部分集合 $A \subset X$ について,X の部分空間 A が連結であるとき,A は連結部分空間 (connected subspace) であるという.

例 1.4.23 (連結成分). X 上の同値関係 \sim を次で定める: $x,y \in X$ に対し,

 $x \sim y \stackrel{\text{def.}}{\Longrightarrow}$ ある X の連結部分空間 A が存在して $x, y \in A$.

商集合 X/\sim の同値類を X の連結成分 (connected component) という.

命題 1.4.24. 次は同値:

- (1) X は連結である.
- (2) 部分集合 $A \subset X$ が開集合かつ閉集合ならば、A = X または $A = \emptyset$.

1.4.2 第2可算公理と多様体

本節は[7]を大いに参考し、重要な命題を述べる.目標はパラコンパクト空間である.

命題 1.4.25. コンパクト空間はパラコンパクト空間である.

命題 1.4.26. パラコンパクト空間の閉集合はパラコンパクト空間である.

命題 1.4.27. パラコンパクト空間の直和空間はパラコンパクト空間である. 特に, 離散空間はパラコンパクト空間である.

命題 1.4.28. 局所コンパクト Hausdorff 空間である Lindelöf 空間はパラコンパクト空間である

命題 1.4.29. 第2可算公理を満たす位相空間は Lindelöf 空間である.

系 1.4.30. 第2可算公理を満たす局所コンパクト Hausdorff 空間はパラコンパクト空間である.

命題 1.4.31. 第 2 可算公理を満たす局所コンパクト空間は σ コンパクトである.

命題 1.4.32. 局所コンパクト Hausdorff 空間かつ σ コンパクト空間はパラコンパクト空間である.

命題 1.4.33. コンパクト空間は σ コンパクト空間である.

命題 1.4.34. σ コンパクト空間は Lindelöf 空間である.

命題 1.4.35. 多様体は局所コンパクト空間である.

命題 1.4.36. 多様体 M の各連結成分は開集合かつ閉集合である. したがって, M の各連結成分は多様体であり, M はそれらの直和空間である.

まとめると,次のようになる.

次が最も重要である.

命題 1.4.37. *M* を連結な多様体とする. このとき, 次は同値:

- (1) M はパラコンパクトである.
- (2) M は第二可算公理を満たす.
- (3) M は σ コンパクトである.
- (4) M は Lindelöf 空間である.

系 1.4.38. *M* を多様体とする. このとき, 次は同値:

- (2) M の各連結成分は第二可算公理を満たす.
- (3) M の各連結成分は σ コンパクトである.
- (4) M の各連結成分は Lindelöf 空間である.

1.4.3 1次元多様体の分類

本節は [8] を大いに参考する.第 2 可算公理を満たさない例を挙げるついでに,1 次元多様体の分類に関する事実を紹介する.

命題 1.4.39. 第2可算公理を満たす任意の連結1次元多様体は、 S^1 、 \mathbb{R} のいずれかと同相である.

定義 1.4.40 (順序位相). (X, \leq) を全順序集合とする。X に形式的に最大元 $+\infty$ と最小元 $-\infty$ を付け加えた全順序集合 $X^* := X \cup \{\pm \infty\}$ に対し, $a,b \in X^*, a < b$ について

$$(a,b) := \{x \in X^* \mid a < x < b\}$$

と定義する. このとき, (a,b) は X の部分集合である.

$$\{(a,b) \mid a < b, a, b \in X^*\}$$

を開基とする X の位相 $\mathcal{O}_{<}$ を, X の順序位相 (order topology) という.

定義 1.4.41 (閉じた長い半直線). ω_1 を最小の非可算順序数, $[0,1) \subset \mathbb{R}$ とする. $\mathbb{L}_{\geq 0} \coloneqq \omega_1 \times [0,1)$ 上に、辞書式順序 \leq_L 、すなわち $(\alpha,s), (\beta,t) \in \mathbb{L}_{\geq 0}$ に対し

$$(\alpha, s) \leq_L (\beta, t) \iff \alpha < \beta$$
 または $(\alpha = \beta)$ かつ $s \leq t$

を定める. 全順序集合 ($\mathbb{L}_{>0}, \leq_L$) を**閉じた長い半直線** (closed long ray) という.

定義 1.4.42 (開いた長い半直線). 閉じた長い半直線 ($\mathbb{L}_{>0}, \leq_L$) の部分集合

$$\mathbb{L}_+ := \mathbb{L}_{>0} \setminus \{(0,0)\}$$

に $(\mathbb{L}_{\geq 0}, \leq_L)$ からの相対位相を入れた部分空間を**開いた長い半直線** (open long ray) または **Alexandroff 直線** (Alexandroff line) という.

定義 1.4.43 (長い直線). 閉じた長い半直線を $\mathbb{L}_{\geq 0}$, 開いた長い半直線を \mathbb{L}_{+} とする. $\mathbb{L} := \mathbb{L}_{+} \sqcup \mathbb{L}_{\geq 0}$ に次の順序 < を入れる: $x,y \in \mathbb{L}, x \neq y$ に対し,

$$x < y \iff \begin{cases} x \in \mathbb{L}_+ \text{ in } y \in \mathbb{L}_{\geq 0} \\ y < x \ (x, y \in \mathbb{L}_+) \\ x < y \ (x, y \in \mathbb{L}_{\geq 0}). \end{cases}$$

 $(\mathbb{L},<)$ は全順序集合であり、 $(\mathbb{L},<)$ に順序位相を入れた空間を**長い直線** (long line) という.

命題 1.4.44. \mathbb{L}_+ , \mathbb{L} は、第2可算公理を満たさない連結1次元多様体である.

命題 1.4.45. 任意の連結 1 次元多様体は、 $S^1, \mathbb{R}, \mathbb{L}_+, \mathbb{L}$ のいずれかと同相である.

- 2 C^s 級写像
- 2.1 C^s 級写像
- 2.2 C^s 級関数
- 2.3 C^r 級微分構造
- 2.4 1の分割
- 2.5 Lie 群
- 3 接ベクトル空間
- 3.1 接ベクトル空間
- 3.2 C^r 級写像の微分
- 3.3 接ベクトル束
- 3.4 C^r 級写像の性質
- 4 はめ込みと埋め込み
- 4.1 はめ込みと埋め込み
- 4.2 正則点と臨界点
- 4.3 埋め込み定理
- 4.4 Sard の定理
- 5 ベクトル場
- 5.1 ベクトル場
- 5.2 積分曲線
- 6 微分形式
- 6.1 1次微分形式
- **6.2** *k* 次微分形式
- 7 Stokesの定理
- 7.1 外微分
- 7.2 Stokes の定理

多様体論に重要な定義や命題を厳選して列挙する. 詳細は各分野の参考書を見よ. (未完成)

A 基礎数学から

定義 A.0.1. X を集合とする. 集合族 $\{A \mid A \subset X\}$ を X の冪集合 (power set) といい, 2^X , $\mathcal{P}(X)$, $\mathfrak{P}(X)$ と表す.

B 位相空間論から

定義 B.0.1. X を集合とする. 部分集合族 $\mathcal{O} \subset 2^X$ が次を満たすとき, \mathcal{O} を X の位相 (topology), 対 (X,\mathcal{O}) を位相空間 (topological space), \mathcal{O} の元を開集合 (open set) という: Λ を添字集合として

- (1) $\varnothing, X \in \mathcal{O}$.
- (2) $U_1, U_2 \in \mathcal{O}$ ならば $U_1 \cap U_2 \in \mathcal{O}$.
- $(3) \ \{U_{\lambda}\}_{\lambda \in \Lambda} \subset \mathcal{O} \ \text{$\mbox{$\mbox{\mathcal{L}}$} \ \ $\mbox{$\mathcal{U}$}_{\lambda}$} \ U_{\lambda} \in \mathcal{O}.$

命題 B.0.2. (X, \mathcal{O}) を位相空間とする. 部分集合 $A \subset X$ について

$$\mathcal{O}_A := \{ O \cap A \mid O \in \mathcal{O} \}$$

とすると、 (A, \mathcal{O}_A) は位相空間になる. \mathcal{O}_A を X における A の相対位相 (relative topology)、 (A, \mathcal{O}_A) を X の部分空間 (subspace) という.

定義 B.0.3. $(X, \mathcal{O}_X), (Y, \mathcal{O}_Y)$ を位相空間とする. 写像 $f: X \to Y$ が $V \in \mathcal{O}_Y$ ならば $f^{-1}(V) \in \mathcal{O}_X$ を満たすとき,X から Y への連続写像 (continuous map) という. 連続写像 $f: X \to Y$ が 全単射で f^{-1} も連続写像であるとき,f は X から Y への同相写像 (homeomorphism) という.

定義 B.0.4. (X, \mathcal{O}) を位相空間とする. 部分集合 $A \subset X$ と $A \subset W$ を満たす部分集合 $W \subset X$ に対し, $A \subset U \subset W$ を満たす $U \in \mathcal{O}$ が存在するとき, W を A の近傍 (neighborhood) という. $A = \{x\}$ のとき, W を点 $x \in X$ の近傍という. $W \in \mathcal{O}$ のとき, W を開近傍 (open neighborhood) という.

定義 B.0.5. (X, \mathcal{O}) を位相空間とする. 任意の異なる 2 点 $x, y \in X$ に対し, x の近傍 U と y の近傍 V で $U \cap V = \emptyset$ となるものが存在するとき, X を Hausdorff 空間 (Hausdorff space) であるという.

命題 B.0.6. Hausdorff 空間の部分空間は Hausdorff 空間である.

命題 B.0.7. \mathbb{R}^n を数ベクトル空間とする. \mathbb{R}^n 上の距離 $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ を

$$d((x_1,\ldots,x_n),(y_1,\ldots,y_n)) := \sqrt{(x_1-y_1)^2 + \cdots + (x_n-y_n)^2}$$

で定める. このとき,

$$\mathcal{O}_d := \{ U \subset \mathbb{R}^n \mid \forall x \in U, \exists \varepsilon > 0 \text{ s.t. } \{ y \in \mathbb{R}^n \mid d(x, y) < \varepsilon \} \subset U \}$$

とすると, $(\mathbb{R}^n, \mathcal{O}_d)$ は位相空間になる. 距離空間 (\mathbb{R}^n, d) を Euclid 空間 (Euclidean space) という. 以降, Euclid 空間にはこの位相が定義されているものとする.

定義 B.0.8. (X, \mathcal{O}) を位相空間とする. 部分集合 $\mathcal{B} \subset \mathcal{O}$ が任意の $U \in \mathcal{O}$ に対して $U = \bigcup_{\lambda \in \Lambda} U_{\lambda}$ を満たす $\{U_{\lambda}\}_{\lambda \in \Lambda} \subset \mathcal{B}$ となるものが存在するとき, \mathcal{B} を \mathcal{O} の開基 (open base) であるという.

命題 B.0.9. $(X, \mathcal{O}_X), (Y, \mathcal{O}_Y)$ を位相空間とする.このとき, $\{U \times V \mid U \in \mathcal{O}_X, V \in \mathcal{O}_Y\}$ を開基とする直積集合 $X \times Y$ における位相 $\mathcal{O}_{X \times Y}$ が一意に定まる. $\mathcal{O}_{X \times Y}$ を $X \times Y$ の積位相 (product topology), $(X \times Y, \mathcal{O}_{X \times Y})$ を $X \times Y$ の積空間 (product space) という.

命題 B.0.10. Hausdorff 空間の積空間は Hausdorff 空間である.

命題 B.0.11. (X, \mathcal{O}) を位相空間, \sim を X 上の同値関係とする.写像 $\pi: X \to X/\sim$ を $\pi(x) \coloneqq [x]$ で定める.このとき,

$$\mathcal{O}_{X/\sim} := \{ U \subset X/\sim \mid \pi^{-1}(U) \in \mathcal{O} \}$$

とすると, $(X/\sim, \mathcal{O}_{X/\sim})$ は位相空間になる. $\mathcal{O}_{X/\sim}$ を X の商位相 (quotient topology), $(X/\sim, \mathcal{O}_{X/\sim})$ を X の商空間 (quotient space), π を標準的な射影 (canonical projection) という.

C 代数学から

D 解析学から

定義 D.0.1. $r \in \mathbb{N}_0$ とする. $U \subset \mathbb{R}^n$ 上の関数 $f: U \to \mathbb{R}$ が C^r 級関数 (function of class C^r) であるとは,r 階までのすべての偏導関数が存在し連続であることをいう.U 上の C^r 級関数全体の集合を $C^r(U)$ と表す.

$$C^{\infty}(U) := \bigcap_{r=1}^{\infty} C^r(U)$$

としたとき, $C^{\infty}(U)$ の元を C^{∞} 級関数という.

定義 D.0.2. $r \in \mathbb{N}_0$, 開集合 $U, V \subset \mathbb{R}^n$ とする. 写像 $f : U \to V$ が C^r 級微分同相写像 (diffeomorphism of class C^r) であるとは,f が全単射かつ C^r 写像であり, $f^{-1} : V \to U$ が C^r 写像であることをいう.

参考文献

- [1] 松本幸夫: 多様体の基礎. 東京大学出版会, 2022.
- [2] 服部晶夫: 多様体. 岩波全書, 2008.
- [3] 藤岡敦: 具体例から学ぶ多様体. 裳華房, 2019.
- [4] みなずみ: 多様体論. https://minazumi.com/math/note/mfd/index.html
- [5] 安藤直也: 幾何学特論 II. http://www.sci.kumamoto-u.ac.jp/ ando/geometryII.pdf
- [6] 高間俊至: 微分幾何学 ノート. https://event.phys.s.u-tokyo.ac.jp/physlab2023/pdf/mat-article04.pdf
- [7] yamyamtopo: パラコンパクト性をめぐって. https://yamyamtopo.files.wordpress.com/2017/05/paracompactness-revd.pdf

[8] yamyamtopo: 1次元多様体の分類.

 $https://yamyamtopo.files.wordpress.com/2020/06/one_dimensional_mfd_revd.pdf\ yamyamtopo.files.wordpress.com/2020/06/one_dimensional_mfd_revd.pdf\ yamyamtopo.files.wordpress.com/2020$

topo: 射影空間の Hausdorff 性.

 $https://yamyamtopo.files.wordpress.com/2019/08/projective_space_hausdorff.pdf$