a. $\sum_{Y} P(X,Y) =$

X=1	X=2	X=3
.15	.35	.5

b. $\sum_X P(X,Y) =$

Y=a	Y=b
.6	.4

c. $\frac{\overline{P(X,Y)}}{P(Y)} =$

	X=1	X=2	X=3
Y=a	.167	.333	.5
Y=b	.125	.375	.5

d. $\frac{p(X,Y)}{P(X)} =$

	X=1	X=2	X=3
Y=a	.667	.571	.6
Y=b	.333	.429	.4

- e. No. $P(Y) \neq P(Y|X)$
- f. $-.15 \log_2(.15) .35 \log_2(.35) .5 \log_2(.5) = 1.441$
- g. $-.6 \log_2(.6) .4 \log_2(.4) = .971$
- h. $-\sum_{X}\sum_{Y}P(X,Y)\log_{2}P(X,Y)$ = $-.10\log_{2}(.10) - .20\log_{2}(.20) - .30\log_{2}(.30) - .05\log_{2}(.05) - .15\log_{2}(.15) - .20\log_{2}(.20)$ = 2.409
- i. H(X,Y) H(Y) = 1.438
- j. H(X,Y) H(X) = .968
- k. H(Y) H(Y|X) = .003
- I. $KL(P(X,Y||Q(X,Y)) = -\sum_{X} P(X) \log_2 Q(X,Y) + \sum_{X} P(X) \log_2 P(X,Y) = -.10 \log_2(.10) .20 \log_2(.20) .30 \log_2(.40) .05 \log_2(.01) .15 \log_2(.09) .20 \log_2(.20) (-.10 \log_2(.10) .20 \log_2(.20) .30 \log_2(.30) .05 \log_2(.05) .15 \log_2(.15) .20 \log_2(.20)) = 2.51082 2.40869 = .102$

$$\begin{split} \mathit{KL}\big(Q(\mathit{X},\mathit{Y}||\mathit{P}(\mathit{X},\mathit{Y}\,)\big) &= -\sum_{\mathit{X}}\mathit{Q}\left(\mathit{X}\right) \log_{2}\mathit{P}(\mathit{X},\mathit{Y}\,) + \sum_{\mathit{X}}\mathit{Q}\left(\mathit{X}\right) \log_{2}\mathit{Q}(\mathit{X},\mathit{Y}\,) = \\ &-.10\log_{2}(.10) - .20\log_{2}(.20) - .40\log_{2}(.30) - .01\log_{2}(.05) - .09\log_{2}(.15) - .20\log_{2}(.20) - (-.10\log_{2}(.10) - .20\log_{2}(.20) - .40\log_{2}(.40) - .01\log_{2}(.01) - .09\log_{2}(.09) - .20\log_{2}(.20)\,) = 2.24530 - 1.86985 = .375 \end{split}$$
 These are not equal.

Q2.

a.
$$-p \log_2 p - (1-p) \log_2 (1-p)$$

b. .5

c.
$$\frac{d}{dp} ((-p \log_2 p) - (1-p) \log_2 (1-p)) = 0$$
$$-(\ln(x) + 1) - \ln(1-x) + 1 = 0$$
$$\ln\left(\frac{1-x}{x}\right) = 0$$
$$\frac{1-x}{x} = 1$$

$$x = .5$$

Additionally, $\frac{d^2}{dp^2} \left((-p \log_2 p) - (1-p) \log_2 (1-p) \right) = -\frac{1}{p(1-p) \ln(2)} < 0$ for p = .5, so this is a local maximum.

Q3.

a.
$$\frac{\binom{n}{\frac{n}{2}}}{2}$$

b. $\frac{10!}{2} = 2520$

c1.
$$\frac{N!}{t_1!t_2!...t_n!}$$

c2.
$$\frac{N!}{t_1!t_2!...t_n!}\prod_i (P(w_i))^{t_i}$$

Q4.

a. $\prod_{i} P(w_i|t_i)P(t_i|t_{i-2},t_{i-1})$

b. T states, corresponding to the number of POS tags

$$a_{ij} = P(s_i|s_i)$$

$$b_{jk} = P(o_k|s_j)$$

Q5.

a. $O(V^2T^2)$

b. x is a word; y is a tag

C.

<Mike NN w_{-1} <s> w_0 Mike w_1 likes $w_{-1}w_{+1}$ BOS_likes t_{-1} BOS $t_{-2}t_{-1}$ BOS_BOS> likes VBP w_{-1} Mike w_0 likes w_1 cats $w_{-1}w_{+1}$ Mike_cats t_{-1} NN $t_{-2}t_{-1}$ BOS_NN)> <cats NNS w_{-1} likes w_0 cats w_1 EOS $w_{-1}w_{+1}$ likes_EOS t_{-1} VBP $t_{-2}t_{-1}$ NN_VBP> Q6.

- a. I would build a classifier, where x is a document and y is a language. I would choose the following features:
 - 1. Word unigrams
 - 2. Word bigrams
 - 3. Word trigrams
 - 4. Letters
 - 5. Word length
 - 6. Document size

b.

- 1. Languages poorly represented in training data
- 2. Documents in closely related languages
- 3. Some languages are harder than others to identify word boundaries