Journey to the Moon

The member states of the UN are planning to send 2 people to the moon. They want them to be from different countries. You will be given a list of pairs of astronaut ID's. Each pair is made of astronauts from the same country. Determine how many pairs of astronauts from different countries they can choose from.

Example

$$n=4$$
 $astronaut=[1,2],[2,3]$

There are 4 astronauts numbered 0 through 3. Astronauts grouped by country are [0] and [1,2,3]. There are 3 pairs to choose from: [0,1],[0,2] and [0,3].

Function Description

Complete the *journeyToMoon* function in the editor below.

journeyToMoon has the following parameter(s):

- int n: the number of astronauts
- $int\ astronaut[p][2]:$ each element astronaut[i] is a 2 element array that represents the ID's of two astronauts from the same country

Returns

- int: the number of valid pairs

Input Format

The first line contains two integers n and p, the number of astronauts and the number of pairs. Each of the next p lines contains p space-separated integers denoting astronaut ID's of two who share the same nationality.

Constraints

- $1 < n < 10^5$
- $1 \le p \le 10^4$

Sample Input

5 3 0 1 2 3 0 4

Sample Output

Explanation

Persons numbered 0, 1 and 4 belong to the same country, and those numbered 2 and 3 belong to the same country, but different from the previous one. All in all, the UN has 6 ways of choosing a pair:

- 1. persons ${\bf 0}$ and ${\bf 2}$
- 2. persons $\boldsymbol{0}$ and $\boldsymbol{3}$
- 3. persons $oldsymbol{1}$ and $oldsymbol{2}$
- 4. persons ${\bf 1}$ and ${\bf 3}$
- 5. persons $\boldsymbol{2}$ and $\boldsymbol{4}$
- 6. persons ${f 3}$ and ${f 4}$