xy + x + y (HKMO Classified Questions by topics)

1985 FG8.4

若 v = ab + a + b + 1 且 a = 99 , b = 49 , 求 v 的 值 。

If y = ab + a + b + 1 and a = 99, b = 49, find the value of y.

1986 FG9.3

若 S = ab + a - b - 1 及 a = 101 , b = 49 , 求 S 的值。

If S = ab + a - b - 1 and a = 101, b = 49, find the value of S.

1987 FG10.4

若 $P \cdot Q$ 為正整數使P + Q + PQ = 90,且D = P + Q,求D的值。 (提示:因式分解1+P+Q+PQ)

If P, Q are positive integers such that P + Q + PQ = 90 and D = P + Q, find the value of D. (Hint: Factorise 1 + P + Q + PQ)

1988 FG6.3

若 v = ab - a + b - 1, 且 a = 49, b = 21, 求 v 的值。

If y = ab - a + b - 1 and a = 49, b = 21, find the value of y.

1990 FG9.1

若 S = ab - 1 + a - b, 且 a = 101, b = 9, 求 S 的值。

If S = ab - 1 + a - b and a = 101, b = 9, find the value of S.

1995 HI6

有多少對正整數 $x \cdot y$ 可滿足 xy - 3x - 2y = 10?

How many pairs of positive integers x, y are there satisfying xy - 3x - 2y = 10?

1998 FG3.3

若方程x+y+2xy=141有c個正整數解,求c的值。

If the number of positive integral root(s) of the equation x + y + 2xy = 141 is c, find the value of c.

1999 FI2.2

設 u 和 t 為正整數使得 u+t+ut=34,若 b=u+t,求 b 之值。

Let u and t be positive integers such that u + t + ut = 34.

If b = u + t, find the value of b.

2002 HG9

已知正整數 $a \cdot b$ 满足方程 ab-a-b=12, 求 ab 的值。

Given that a and b are positive integers satisfying the equation ab - a - b = 12, find the value of ab.

2004 HG6

若 $a \cdot b$ 及 c 是正整數且 abc+ab+bc+ac+a+b+c=2003, 求 abc 的最小值。

If a, b and c are positive integers such that

abc + ab + bc + ac + a + b + c = 2003, find the least value of abc.

2006 FI3.3

已知整數 x 和 y 满足 $15xy = 21x + 20y - 13 \circ 若 <math>T = xy$, 求 T 的值。 Given that x and y are integers satisfying the equation 15xy = 21x + 20y - 13. If T = xv, find the value of T.

2006 FG2.4 2024 FI1.1

已知 x 和 y 是正整數及 x+y+xy=54。若 t=x+y,求 t 的值。 Given that x and y are positive integers and x + y + xy = 54.

If t = x + v, find the value of t.

2011 HI9

某長方形的長和濶均為整數。若面積比周界大9,求周界的值。

The length and the width of a rectangle are integers.

If its area is larger than its perimeter by 9, find the perimeter.

2011 HG8

已知 $a \cdot b \cdot c$ 及 d 為非負整數,且 ac+bd+ad+bc=2011。求 a+b+c+d 的值。 Given that a, b, c and d are non-negative integers and ac + bd + ad + bc = 2011. Find the value of a + b + c + d.

2012 HG8

已知方程 $x^2 + px + q = 0$ 的兩個根為正整數,且q > 0。若p + q = 60,求q的值。 Given that the roots of the equation $x^2 + px + q = 0$ are integers and q > 0. If p + q = 60, find the value of q.

2012 FI4.2

If x and y be positive integers such that x > y > 1 and xy = x + y + 22.

Let $B = \frac{x}{y}$, find the value of B.

2016 HG4

設 x 及 y 為正整數且滿足 $\log x + \log y = \log(2x - y) + 1$,求 (x, y) 的數量。 If x and y are positive integers that satisfy $\log x + \log y = \log(2x - y) + 1$, find the number of possible pairs of (x, y).

2018 FI4.3

若對於正整數 x>y>z, $xyz+xy+xz+yz+x+y+z+1=30\times9+87$ 。 求 c = x + v + z 的值。

If $xyz + xy + xz + yz + x + y + z + 1 = 30 \times 9 + 87$ for positive integers x > y > z, determine the value of c = x + y + z.

2019 HG9

有多少對正整數 $x \cdot y$ 可满足 $xy = 6\left(x + y + \sqrt{x^2 + y^2}\right)$?

How many pairs of positive integers x, y are there satisfying $xy = 6(x + y + \sqrt{x^2 + y^2})$?

2019 FI1.2

若 x 和 y 為正整數,並且滿足以下等式 $\log_{10} x + \log_{10} y = \log_{10} (2x - 80y) + 1$, 而 B 是 (x, y) 所有可能組合的數量,求 B 的值。

If x and y are positive integers that satisfy $\log_{10} x + \log_{10} y = \log_{10} (2x - 80y) + 1$, and B is the number of possible pairs of (x, y), determine the value of B. **2021 P1O7**

 $p \cdot q$ 及 r 為質數。若 pqr = 7(p+q+r),求 p+q+r 的值。 p,q and r are prime numbers. If pqr = 7(p+q+r), find the value of p+q+r. **2022 P2Q2**

 \overline{AB} 和 \overline{CB} 均為兩位正整數,其中 $A \cdot B$ 和 C 是不同的數字。 設 $d = \overline{AB} + \overline{CB}$ 。若 $\overline{AB} \times \overline{CB} = \overline{BCBB}$ 是四位數,求 d 的值。

Both \overline{AB} and \overline{CB} are two-digit positive integers, where A, B and C are different digits. Let $d = \overline{AB} + \overline{CB}$. If $\overline{AB} \times \overline{CB} = \overline{BCBB}$ is a four-digit number, find the value of d.

2022 P2Q3

假設方程 $x^2y - 2x^2 - 3y - 13 = 0$ 只有一對正整數解 (x_0, y_0) 。 若 $a = y_0 - x_0$,求 a 的值。

Suppose the equation $x^2y - 2x^2 - 3y - 13 = 0$ has only one pair of positive integral solution (x_0, y_0) . If $a = y_0 - x_0$, find the value of a.

2023 HI2

若 x 及 y 均為正整數且滿足 x+8xy+y=28,求 x+2y 的最大可能值。 If x and y are positive integers satisfying x+8xy+y=28, find the largest possible value of x+2y.

2023 FI3.1

已知 m 和 n 均為正整數。如果 m+n+mn=76 及 A=m+n,求 A 的值。 Given that m and n are positive integers. If m+n+mn=76 and A=m+n, find the value of A.

2024 FI3.1

 \ddot{x} 和 y 為滿足方程 $\frac{1}{x} + \frac{1}{y} = \frac{2}{5}$ 的不同正整數。求 A = x + y 的值。

If x and y are two different positive integers such that $\frac{1}{x} + \frac{1}{y} = \frac{2}{5}$, find the value of A = x + y.

Answers

1985 FG8.4	1986 FG9.3	1987 FG10.4	1988 FG6.3	1990 FG9.1
5000	5000	18	1000	1000
1995 HI6	1998 FG3.3	1999 FI2.2	2002 HG9	2004 HG6
5	0	10	28	500
2006 FI3.3	2006 FG2.4 2024 FI1.1	2011 HI9	2011 HG8	2012 HG8
6	14	36	2012	124
2012 FI4.2	2016 HG4	2018 FI4.3	2019 HG9	2019 FI1.2
12	6	24	12	7
2021 P1Q7	2022 P2Q2	2022 P2Q3	2023 HI2	2023 FI3.1
15	112	19	7	16
2024 FI3.1				
18				