Set Theory

- · Set theory provides a mathematical foundation for probability theory.
- · A set is a collection of elements.
 - → Elements can be anything you want:

* Ex: Numbers $A = \{1, 3, 5\}$ B = [-2.32, 1.45)

* Ex: Words C = { Win, Lose}

* Ex: animals D= { (i) }

- -) a set can be empty, which we call the empty set or null set \$.
- The universal set of all elements.

*Ex: Six-sided die 1 1 1 = {1,2,3,4,5,6}

- · Notation: X & A means "x is an element of A" X & A means "x is not an element of A"
- · There are several ways to describe a set, including:
 - → List its elements. Ex: A = {3,4,5,...}
 - → Give a rule. E_X : $A = \{ \text{natural numbers larger than 2} \}$ (in words) N = set of natural numbers
 - -) Give a rule. Ex: $A = \{x \in \mathbb{N} : x > 2\}$ (in mathematical symbols)

 "set-builder notation"

 "such that"
- · Pick the description method (or combination of methods) that is the clearest for the example at hand.

- · a set A is a subset of a set B, A c B, if all of the elements in A are also in B.
 - → Ex: A = { 1,4 } B = { 1,2,3,4 } A C B
 - A and B are equal if ACB and BCA.
 - → ϕ c A for any set A.
 - → A c 1 for any set A.
- · a Venn tiagram can be used to illustrate the relationship between sets.

 A C B C D

Set Operations

The union AUB of sets A and B is the set consisting of the elements of Ω that belong to A or belong to B.

-) Set theory version of the logical "OR" operation.

→ Notation:
$$\bigcup_{i=1}^{n} A_{i} = A_{i} \cup A_{2} \cup \cdots \cup A_{n}$$

= $\{ x \in \Omega : x \in A_{i} \text{ or } x \in A_{2} \text{ or } \cdots \text{ or } x \in A_{n} \}$

The intersection $A \cap B$ of sets A and B is the set consisting of the elements of Ω that belong to A and belong to B.

An B =
$$\{x \in \Omega : x \in A \text{ and } x \in B\}$$

-> Set theory version of the logical "AND" operation.

The complement A^c of a set A is the set consisting of the elements of Ω that do not belong to A.

$$A^c = \{ \times \in \Omega : \times \notin A \}$$

-) Set theory version of the logical "NOT" operation.

The set difference A-B of sets A and B is the set consisting of elements in Ω that belong to A and do not belong to B.

$$A - B = \{x \in \Omega : x \in A \text{ and } x \notin B\}$$

$$= A \cap B^{c}$$

-) We will not use this as often as the preceding three operations.

De Morgan's Laws

- · (AUB) = AcnBc
 - "not in (A or B)" = " (not in A) and (not in B)"
 - \rightarrow For more than 2 sets, $\left(\begin{array}{c} \hat{U} \\ \hat{i} = 1 \end{array} \right)^c = \bigcap_{i=1}^n A_i^c$
- · (AnB) = A UB
 - "not in (A and B)" = "(not in A) or (not in B)"
 - -) For more than 2 sets, $\left(\bigcap_{i=1}^{n} A_i \right)^{c} = \bigcup_{i=1}^{n} A_i^{c}$

• Recall the notation for an interval of the real line IR $[a,b] = \{x \in \mathbb{R}: a \le x \le b\} \quad \text{closed interval}$ $[a,b) = \{x \in \mathbb{R}: a \le x < b\} \quad \text{half-open intervals}$ $(a,b] = \{x \in \mathbb{R}: a < x \le b\} \quad \text{open interval}$

• Example:
$$\Omega = [1,5]$$
 $A = [1,3]$ $B = (2,4)$ $C = (3,5]$

Determine $A^c = (3,5] = C$ $A \cap B = (2,3]$ $A \cap C = \phi$ $B \cup C = (2,5]$ $B^c = [1,2] \cup [4,5]$

Other Set Concepts

- A and B are disjoint or mutually exclusive if $A \cap B = \emptyset$.
- A collection of sets $A_1, A_2,...$ is mutually exclusive (or disjoint) if $A_i \cap A_j = \emptyset$ for all $i \neq j$.

A, A2, A3 mutually exclusive

A, Az, Az not mutually exclusive A, Az mutually exclusive Az, Az mutually exclusive • A collection of sets $A_1, A_2,...$ is collectively exhaustive if $A_1 \cup A_2 \cup ... = \Omega$.

A, Az, Az, Ay are collectively exhaustive

A, Az, Az are not collectively exhaustive

· a collection of sets A, Az, ... is a partition if they are both mutually exclusive and collectively exhaustive.

A, A, Az are a portition.