Contents

Introduction

Section outline

- Introduction
 - Light switch control
 - Non-uniqueness

- Forming Boolean functions
- Beyond combinational logic
- State m/c for lighting
- Gate circuits

- x Boolean variable to indicate low light in room (1: low light, 0: otherwise)
- *u* Line to turn light in room on or off (1: turn light on, 0: turn light off)
 Let light be on if light is low: $u \leftarrow x$

- x Boolean variable to indicate low light in room (1: low light, 0: otherwise)
- *u* Line to turn light in room on or off (1: turn light on, 0: turn light off)

Let light be on if light is low: $u \leftarrow x$

Don't want light going on and off to oscillate

- x Boolean variable to indicate low light in room (1: low light, 0: otherwise)
- *u* Line to turn light in room on or off (1: turn light on, 0: turn light off)
 - Let light be on if light is low: $u \leftarrow x$
 - Don't want light going on and off to oscillate
- / Boolean variable to indicate light is on (1: light is on; 0: light is off)
 - Let the light be on if light is low or the light is already on; $u \leftarrow x \lor I$; $u \leftarrow x + I$

- x Boolean variable to indicate low light in room (1: low light, 0: otherwise)
- *u* Line to turn light in room on or off (1: turn light on, 0: turn light off)
 - Let light be on if light is low: $u \leftarrow x$
 - Don't want light going on and off to oscillate
- / Boolean variable to indicate light is on (1: light is on; 0: light is off)
 - Let the light be on if light is low or the light is already on; $u \leftarrow x \lor I$; $u \leftarrow x + I$
 - Light never goes off; would like to turn off when there's enough light
- y Boolean variable to indicate enough light outside (1: enough light outside; 0: otherwise)
 - Let the light be on if light is low or the light is already on but not enough light outside: $u \leftarrow x + (I \cdot \overline{y})$; $u \leftarrow x + I\overline{y}$

- $u \leftarrow x + l\overline{y}$
- $u \leftarrow (x+I) \cdot (x+\overline{y})$ are these equivalent?

- $u \leftarrow x + l\overline{y}$
- $u \leftarrow (x+I) \cdot (x+\overline{y})$ are these equivalent?

Х	1	у	$x + l\overline{y}$	$(x+I)\cdot(x+\overline{y})$
0	0	0	0	

- $u \leftarrow x + l\overline{y}$
- $u \leftarrow (x+I) \cdot (x+\overline{y})$ are these equivalent?

Х	ı	у	$x + l\overline{y}$	$(x+I)\cdot(x+\overline{y})$
0	0	0	0	0
0	0	1	0	'

- $u \leftarrow x + l\overline{y}$
- $u \leftarrow (x+I) \cdot (x+\overline{y})$ are these equivalent?

Х	ı	у	$x + I\overline{y}$	$(x+I)\cdot(x+\overline{y})$
0	0	0	0	0
0	0	1	0	0
0	1	0	1	'

- $u \leftarrow x + l\overline{y}$
- $u \leftarrow (x + I) \cdot (x + \overline{y})$ are these equivalent?

X		у	$x + l\overline{y}$	$(x+I)\cdot(x+\overline{y})$
0	0	0	0	0
0	0	1	0	0
0	1	0	1	1
0	1	1	0	'

- $u \leftarrow x + l\overline{y}$
- $u \leftarrow (x+I) \cdot (x+\overline{y})$ are these equivalent?

Χ	1	у	$x + l\overline{y}$	$(x+I)\cdot(x+\overline{y})$
0	0	0	0	0
0	0	1	0	0
0	1	0	1	1
0	1	1	0	0
1	0	0	1	

- $u \leftarrow x + l\overline{y}$
- $u \leftarrow (x+I) \cdot (x+\overline{y})$ are these equivalent?

Х	1	у	$x + l\overline{y}$	$(x+I)\cdot(x+\overline{y})$
0	0	0	0	0
0	0	1	0	0
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1

- $u \leftarrow x + l\overline{y}$
- $u \leftarrow (x + I) \cdot (x + \overline{y})$ are these equivalent?

X	1	у	$x + I\overline{y}$	$(x+I)\cdot(x+\overline{y})$
0	0	0	0	0
0	0	1	0	0
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

- $u \leftarrow x + l\overline{y}$
- $u \leftarrow (x+I) \cdot (x+\overline{y})$ are these equivalent?

Χ		у	$x + l\overline{y}$	$(x+l)\cdot(x+\overline{y})$
0	0	0	0	0
0	0	1	0	0
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

- $u \leftarrow xx + lx + x\overline{y} + l\overline{y}$
- $u \leftarrow x + lx + x\overline{y} + l\overline{y}$
- $u \leftarrow x + x\overline{y} + l\overline{y}$
- $u \leftarrow x + l\overline{y}$

- $u \leftarrow x + l\overline{y}$
- $u \leftarrow (x+I) \cdot (x+\overline{y})$ are these equivalent?

	Χ	1	у	$x + l\overline{y}$	$(x+I)\cdot(x+\overline{y})$
	0	0	0	0	0
İ	0	0	1	0	0
ı	0	1	0	1	1
	0	1	1	0	0
	1	0	0	1	1
	1	0	1	1	1
	1	1	0	1	1
	1	1	1	1	1

•
$$u \leftarrow xx + lx + x\overline{y} + l\overline{y}$$

•
$$u \leftarrow x + lx + x\overline{y} + l\overline{y}$$

•
$$u \leftarrow x + x\overline{y} + l\overline{y}$$

•
$$u \leftarrow x + l\overline{y}$$

Which one to use?

• We might like to have redundancy in assessing outside light

- We might like to have redundancy in assessing outside light
- Say, there are three sensors yielding y_1 , y_2 and y_3
- How to use these?

- We might like to have redundancy in assessing outside light
- Say, there are three sensors yielding y₁, y₂ and y₃
- How to use these?
- Go by majority: $y \leftarrow y_1 y_2 + y_2 y_3 + y_3 y_1$
- True if majority are true; false if majority are false

•
$$u \leftarrow x + l\overline{y} = x + l \cdot \overline{(y_1y_2 + y_2y_3 + y_3y_1)}$$

- We might like to have redundancy in assessing outside light
- Say, there are three sensors yielding y_1 , y_2 and y_3
- How to use these?
- Go by majority: $y \leftarrow y_1 y_2 + y_2 y_3 + y_3 y_1$
- True if majority are true; false if majority are false
- $u \leftarrow x + l\overline{y} = x + l \cdot \overline{(y_1y_2 + y_2y_3 + y_3y_1)}$
- $u \leftarrow x + I \cdot (\overline{y_1} \overline{y_2} + \overline{y_2} \overline{y_3} + \overline{y_3} \overline{y_1} + \overline{y_1} \overline{y_2} \overline{y_3})$

- We might like to have redundancy in assessing outside light
- Say, there are three sensors yielding y_1 , y_2 and y_3
- How to use these?
- Go by majority: $y \leftarrow y_1 y_2 + y_2 y_3 + y_3 y_1$
- True if majority are true; false if majority are false
- $u \leftarrow x + l\overline{y} = x + l \cdot \overline{(y_1y_2 + y_2y_3 + y_3y_1)}$
- $u \leftarrow x + I \cdot (\overline{y_1} \overline{y_2} + \overline{y_2} \overline{y_3} + \overline{y_3} \overline{y_1} + \overline{y_1} \overline{y_2} \overline{y_3})$
- Intuitively, from the definition of majority

- We might like to have redundancy in assessing outside light
- Say, there are three sensors yielding y_1 , y_2 and y_3
- How to use these?
- Go by majority: $y \leftarrow y_1 y_2 + y_2 y_3 + y_3 y_1$
- True if majority are true; false if majority are false
- $u \leftarrow x + l\overline{y} = x + l \cdot \overline{(y_1y_2 + y_2y_3 + y_3y_1)}$
- $u \leftarrow x + l \cdot (\overline{y_1} \overline{y_2} + \overline{y_2} \overline{y_3} + \overline{y_3} \overline{y_1} + \overline{y_1} \overline{y_2} \overline{y_3})$
- Intuitively, from the definition of majority
- By the application of De Morgan's theorem (to be studied)

Beyond combinational logic

- Suppose there is a lightning
- External lighting is high momentarily
- But we wouldn't like the light to go off solution?
- Wait for sometime and see the external lighting stays on
- Now system works with some memory (c = 0: not counting, c = 1: counting)

Beyond combinational logic

- Suppose there is a lightning
- External lighting is high momentarily
- But we wouldn't like the light to go off solution?
- Wait for sometime and see the external lighting stays on
- Now system works with some memory (c = 0: not counting, c = 1: counting)
- Memory is encoded in a finite number of states of the machine

Beyond combinational logic

- Suppose there is a lightning
- External lighting is high momentarily
- But we wouldn't like the light to go off solution?
- Wait for sometime and see the external lighting stays on
- Now system works with some memory (c = 0: not counting, c = 1: counting)
- Memory is encoded in a finite number of states of the machine
- How to wait?
- Use a counter (digital) or a monoshot multivibrator (op amp based)

State m/c for lighting

A counter may be used to wait (synchronous design, using a clock)

- Signals related to counter
- Z Boolean variable to indicate all the bits are zero (1: all zero, 0: not all zero)
- c Line to enable count down (1: count down, 0: counting disabled)
- r Line to reset the counter to all 1's (1: reset, 0: normal operation)

State m/c for lighting

A counter may be used to wait (synchronous design, using a clock)

- Signals related to counter
- Z Boolean variable to indicate all the bits are zero (1: all zero, 0: not all zero)
- c Line to enable count down (1: count down, 0: counting disabled)
- r Line to reset the counter to all 1's (1: reset, 0: normal operation)

Control states related to counter

- N Normal state (not counting, counter disabled)
- S Get ready to count (set to maximum count)
- D Counting down
- C Counting over

State m/c for lighting (contd.)

PS	Input condition	NS	Output
N	$I=1 \wedge y=1$	S	$u \leftarrow 1, c \leftarrow 0, r \leftarrow 1$
/ V	$I=0 \lor y=0$	Ν	$u \leftarrow x + l\overline{y}, c \leftarrow 0, r \leftarrow 0$
S	_	D	$u \leftarrow 1, c \leftarrow 1, r \leftarrow 0$
D	Z	С	$u \leftarrow 1, c \leftarrow 0, r \leftarrow 0$
	Z	D	$u \leftarrow 1, c \leftarrow 1, r \leftarrow 0$
С	_	Ν	$u \leftarrow x + l\overline{y}, r \leftarrow 0$

Mealy m/c outputs depend on the inputs and the present state

Moore m/c outputs depend only on the present state

State m/c for lighting (contd.)

A monoshot multivibrator may be used to wait (asynchronous design, not using a clock)

Signals related to monoshot

- Z Boolean variable to indicate timing out (1: triggered, 0: not trigger)
- r Line to trigger the monoshot (1: trigger on, 0: trigger off)

State m/c for lighting (contd.)

A monoshot multivibrator may be used to wait (asynchronous design, not using a clock)

Signals related to monoshot

- Z Boolean variable to indicate timing out (1: triggered, 0: not trigger)
- r Line to trigger the monoshot (1: trigger on, 0: trigger off)

Control states related to monoshot

- Normal state (z = 0)
- S Monoshot triggered ($r \leftarrow 1$, enter after $l = 1 \land y = 1$)
- D Waiting to timeout $(r \leftarrow 1$, enter after z = 1)
- C Timeout over (after z = 0); move to N

Gate circuits

