3. kontrolná písomka ML (30. 4. 2009)

Príklad 1.

Nájdite riešenie sylogizmov (ak existuje, uveďte aj nutné podmienky pre existenciu riešenia)

(a) každý vodič je ženatý

niektorí ženatí muži žehlia

(b) každý učiteľ nie je z Bratislavy niektorí učitelia chovajú psov

(c) niektorí štrajkujúci sú charakterní každý kováč nie je charakterný

?

Príklad 2.

Pomocou prirodzenej dedukcie dokážte

(a)
$$\vdash p \land q \Rightarrow p \lor q$$

(b)
$$\{p \Rightarrow q, p \Rightarrow r\} \vdash (p \Rightarrow (q \land r))$$

Príklad 3.

Pomocou tabuľkovej metódy zistite, či formula Lukasiewiczovej 3-hodnotovej logiky $(p \Rightarrow q) \Rightarrow (\neg q \Rightarrow \neg p)$ je tautológia

Príklad 4.

Pomocou sémantického tabla zistite, či formula fuzzy logiky je tautológia: $p \Rightarrow (\neg p \Rightarrow q)$

Príklad 5.

Pomocou sémantického tabla zistite, či formula predikátovej logiky

$$\varphi = (\forall x) (P(x) \Rightarrow Q(x)) \Rightarrow ((\forall x) P(x) \Rightarrow (\forall x) Q(x))$$

je tautológia.

Poznámka: Všetky príklady budú hodnotené po 3 bodoch.

Riešenie

Príklad 1.

Nájdite riešenie sylogizmov (ak existuje, uveďte aj nutné podmienky pre existenciu riešenia)

(a) každý vodič je ženatý niektorí ženatí muži žehlia

$$\forall x (vo(x) \Rightarrow \check{z}en(x))$$

 $\exists x (\check{z}en(x) \land \check{z}ehli(x))$
 $vo(a) \Rightarrow \check{z}en(a)$
 $\check{z}en(b) \land \check{z}ehli(b)$
 $\check{z}en(a)$
 $\check{z}ehli(a)$
nie je čo dokazovať
riešenie: neexistuje

(b) niektorí učitelia chovajú psov každý učiteľ nie je z Bratislavy

$$\exists x \big(u \check{c}(x) \land chov(x) \big)$$

$$\forall x \big(u \check{c}(x) \Rightarrow \neg Blav(x) \big)$$

$$u \check{c}(a) \land chov(a)$$

$$u \check{c}(a)$$

$$chov(a)$$

$$u \check{c}(a) \Rightarrow \neg Blav(a)$$

$$\neg Blav(a)$$

$$chov(a) \land \neg Blav(a)$$

$$\exists x \big(chov(x) \land \neg Blav(x) \big)$$

riešenie: niektorí chovatelia psov nie sú z Bratislavy.

(c) niektorí štrajkujúci sú charakterní každý kováč nie je charakterný

$$\exists x \big(st(x) \land ch(x) \big)$$
$$\forall x \big(ko(x) \Rightarrow \neg ch(x) \big)$$
$$st(a) \land ch(a)$$

$$st(a)$$

$$ch(a)$$

$$ko(a) \Rightarrow \neg ch(a)$$

$$\neg ko(a)$$

$$st(a) \land \neg ko(a)$$

$$\exists x (st(x) \land \neg ko(x))$$

riešenie: niektorí štrajkujúci nie sú kováči

Príklad 2.

Pomocou prirodzenej dedukcie zistite, či (a) formula $\varphi = p \wedge q \Rightarrow p \vee q$ je tautológia?

1	$p \wedge q$	akt. pomocného predpokladu					
2 3 4 5	$ p q p \lor q p \land q \Rightarrow p \lor q $	eliminácia konjunjkcie na 1 eliminácia konjunkcie na 1 introdukcia disjunkcie na 2 deaktivácia pomocného predpokladu					
(b) $\{p \Rightarrow q, p \Rightarrow r\} \vdash (p \Rightarrow (q \land r))$							
(0	, (1 11)	(- (- //					
_		1. predpoklad					
_							
_	$p \Rightarrow q$ $p \Rightarrow r$ p	1. predpoklad					

Príklad 3.

Pomocou tabuľkovej metódy zistite, či formula je tautológia Lukasiewiczovej 3-hodnotovej logiky.

$$(\phi \!\Rightarrow\! \psi) \!\Rightarrow\! (\neg \psi \!\Rightarrow\! \neg \phi)$$

φ	Ψ	φ⇒ψ	¬ψ	¬φ	¬ψ⇒¬φ	$(\phi \Rightarrow \psi) \Rightarrow (\neg \psi \Rightarrow \neg \phi)$
0	0	1	1	1	1	1
0	1/2	1	1/2	1	1	1
0	1	1	0	1	1	1
1/2	0	1/2	1	1/2	1/2	1
1/2	1/2	1	1/2	1/2	1	1
1/2	1	1	0	1/2	1	1

1	0	0	1	0	0	1
1	1/2	1/2	1/2	0	1/2	1
1	1	1	0	0	1	1

Formula je tautológia.

Príklad 4.

Zistite či formula fuzzy logiky je tautológia: $p \Rightarrow (\neg p \Rightarrow q)$

Riešenie:

Príklad 5

$$\varphi = (\forall x) (P(x) \Rightarrow Q(x)) \Rightarrow ((\forall x) P(x) \Rightarrow (\forall x) Q(x))$$

Riešenie: Negácia formuly φ má tvar

$$\neg \varphi = (\forall x) (P(x) \Rightarrow Q(x)) \land (\forall x) P(x) \land (\exists x) \neg Q(x)$$

sémantické tablo k tejto formule má tvar

$$(\forall x)(P(x) \Rightarrow Q(x)) \land (\forall x)P(x) \land (\exists x) \neg Q(x)$$

$$(\forall x)(P(x) \Rightarrow Q(x))$$

$$(\forall x)P(x)$$

$$(\exists x) \neg Q(x)$$

$$P(t) \Rightarrow Q(t) \quad \forall t \in U$$

$$P(t') \quad \forall t' \in U$$

$$\exists a \in U$$

$$t = a$$

Sémantické tablo je uzavreté, preto formula ϕ je tautológia.