CMP205: Computer Graphics

Lecture 5: Triangle Drawing and Hidden Surface Removal

Ahmed S. Kaseb Fall 2018

Slides by: Dr. Mohamed Alaa El-Dien Aly

Agenda

- Triangle Drawing
- Anti-aliasing
- Z-Buffer

- Second primitive shape, after the line!
- Used for modeling and shading surfaces
- Assign properties to vertices and interpolate

Given the three vertices of the triangle

Find out which pixels belong to the triangle

Vectors

A vector is a direction and a magnitude

Two vectors are the same if they have the same direction and magnitude, even if they are at *different* places.

Vector Addition

Vector Subtraction

Vectors and Coordinates

A 2D vector can be written as the combination of any two non-parallel vectors. This is called linear independence.

These two vectors are called the basis vectors.

$$c = c_a a + c_b b$$

We can then represent a vector as an ordered pair of numbers:

$$C = \begin{bmatrix} C_a \\ C_b \end{bmatrix}$$

Barycentric Coordinates

Any point *p* on the plane can be written as:

$$p=a+\beta(b-a)+\gamma(c-a)$$

$$p = (1 - \beta - \gamma)a + \beta b + \gamma c$$

$$p(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c$$

s.t.
$$\alpha + \beta + \gamma = 1$$

Color Interpolation:

$$c_p = \alpha c_a + \beta c_b + \gamma c_c$$

Barycentric Coordinates

Inside Triangle iff:

 $0 < \alpha < 1$

 $0 < \beta < 1$

 $0 < \gamma < 1$

On edge ab if:

 $0 \le \alpha \le 1$

 $0 \le \beta \le 1$

 $\gamma = 0$

On vertex *a* if:

 $\alpha = 1$

 $\beta = 0$

 $\gamma = 0$

$$p(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c$$

s.t.
$$\alpha + \beta + \gamma = 1$$

Computing Barycentric Coordinates

- Algebraic Solution
 - 2 equations in 2 unknowns

$$p=a+\beta(b-a)+\gamma(c-a)$$

$$\begin{bmatrix} x_p \\ y_p \end{bmatrix} = \begin{bmatrix} x_a \\ y_a \end{bmatrix} + \beta \begin{bmatrix} x_b - x_a \\ y_b - y_a \end{bmatrix} + \gamma \begin{bmatrix} x_c - x_a \\ y_c - y_a \end{bmatrix}$$

$$\begin{bmatrix} x_b - x_a & x_c - x_a \\ y_b - y_a & y_c - y_a \end{bmatrix} \begin{bmatrix} \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} x_p - x_a \\ y_p - y_a \end{bmatrix}$$

Computing Barycentric Coordinates

Geometric Solution

They are signed scaled distances from triangle sides:

Implicit Function: $\beta = f_{ac}(x, y)$

want:

$$\beta = 0 \rightarrow \text{ on line } ac$$

$$\beta = 1 \rightarrow \text{ at point } b$$

$$\beta = \frac{f_{ac}(x, y)}{f_{ac}(x_b, y_b)}$$

$$f_{ac}(x,y) = (y_a - y_c)x + (x_c - x_a)y + x_ay_c - x_cy_a$$

Triangle Rasterization • We want it to be:

- - Fast
 - Accurate
 - No gaps
 - No order dependency

- Approach
 - Compute Barycentric Coordinates for every pixel
 - If inside triangle
 - Interpolate color
 - Draw
- What if pixels are *on* edges? Later.

```
for all x do
  for all y do
    compute (alpha, beta, gamma) for (x,y)
    // Inside?
    if (alpha in (0,1) AND
        beta in (0,1) AND
        gamma in (0,1)) then
      c = alpha*c0 + beta*c1 + gamma*c2
      drawpixel(x,y) with color c
```

Optimizations?

Bounding Rectangles

Compute only for pixels likely to be inside the triangle

Every point inside the triangle *is* inside the bounding rectangle

Not every point inside the bounding rectangle is inside the triangle

```
// Bounding rectangle
(xmin, xmax) = minmax(x0, x1, x2)
(ymin, ymax) = minmax(y0, y1, y2)
for x=xmin:xmax do
  for y=ymin:ymax do
     \alpha = f_{12}(x,y) / f_{12}(x0,y0)
     \beta = f_{20}(x,y) / f_{20}(x1,y1)
     y = f_{01}(x,y) / f_{01}(x2,y2)
     // Inside?
     if (\alpha > 0 \text{ AND } \beta > 0 \text{ AND } \gamma > 0)
        c = \alpha^*c0 + \beta^*c1 + \gamma^*c2
        drawpixel(x,y) with color c
                  More Optimizations?
```


				0.00 1.00 0.00	
			0.25 0.75 0.00	0.25 1.00 0.00	
		0.50 0.50 0.00	0.50 0.75 0.00	0.50 1.00 0.00	
	0.75 0.25 0.00	0.75 0.50 0.00	0,75 0.75 0.00	0.75 1.00 0.00	
1.00 0.00 0.00	1.00 0.25 0.00	1.00 0.50 0.00	1,00 0.75 0.00	1.00 1.00 0.00	

What to do with pixels on a shared edge? Which color should they get?

Pick a point p outside the screen e.g. (-1, -1)

P _

If the pixel on the shared edge belongs to the triangle whose opposite vertex is on the same side as *p*, then draw it

$$f(a) \times f(p) > 0$$
?

```
// Bounding rectangle
(xmin, xmax) = minmax(x0, x1, x2)
(ymin, ymax) = minmax(y0, y1, y2)
f_{\alpha} = f_{12}(x0, y0)
f_{B} = f_{20}(x1, y1)
f_{v} = f_{01}(x2, y2)
for x=xmin:xmax do
   for y=ymin:ymax do
                                                 Inside the triangle or on the edge
      \alpha = f_{12}(x,y) / f_{\alpha}
                                                 and belongs to the right triangle!
      \beta = f_{20}(x,y) / f_{\beta}
      y = f_{01}(x,y) / f_{y}
      // Inside or on edge?
      if (\alpha \ge 0 AND \beta \ge 0 AND \gamma \ge 0) then
         if (\alpha > 0 \text{ OR } f_{\alpha} * f_{12}(-1, -1) > 0) \text{ AND}
             (\beta > 0 \text{ OR } f_{\beta} * f_{20}(-1,-1) > 0) \text{ AND}
             (y>0 \text{ OR } f_{y} * f_{01}(-1,-1) > 0)) \text{ then}
            c = \alpha^*c0 + \beta^*c1 + \gamma^*c2
            drawpixel(x,y) with color c
```

Anti-aliasing

Technique used to reduce the artifacts of sub-sampling and make the output more visually pleasing

The transition from black to white is smooth

Antialiasing

- Draw line at higher resolution
 - If we want a line on a raster of 256x256 pixels
 - Rasterize a line on a raster of 1024x1024
- "Box filter" to subsample
 - Replace every pixel with the average of its 16 neighbors

Hidden Surface Elimination

Back Face Elimination

- Object Space
 - Works in the scene and compares objects
 - e.g. Back Face Culling
- Image Space
 - Works on the projected pixels
 - e.g. Z-Buffer and BSP Trees

Back Face Culling

If $N \cdot V_{view} > 0 \rightarrow \text{Back Face}$

Is this enough?

$$\begin{bmatrix} x_s \\ y_s \\ z_c \\ 1 \end{bmatrix} = M_{vp} M_{orth} P M_{cam} M_m \begin{bmatrix} x_o \\ y_o \\ z_o \\ 1 \end{bmatrix}$$

From the transformations pipeline, we get z_c

∞	∞	∞	∞
8	8	8	8
œ	80	œ	80
8	8	8	8

Keep a z value for every pixel on the screen!

```
function SetPixel(i, j, color, z)
  if (z < z_buffer(i,j)) then
  z_buffer(i,j) = z
  screen(i,j) = color</pre>
```

∞	∞	∞	∞
8	8	8	8
∞	8	œ	000
8	8	8	8

Z-Buffer independent of rendering order!

How do we get z values for pixels on a triangle ?!

Barycentric Coordinates!

$$p(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c$$

s.t.
$$\alpha + \beta + \gamma = 1$$

Recap

- Triangle Drawing
- Anti-aliasing
- Z-Buffer