

458/497

FIG. 157

459/497

FIG. 158

460/497

FIG. 159

461/497

FIG. 160

462/497

FIG. 161

463/497

FIG. 162

464/497

1 2 3 4 5 6 7 8

FIG. 163

465/497

FIG. 164

466/497

FIG. 165

467/497

FIG. 166

468/497

FIG. 167

469/497

FIG. 168

470/497

FIG. 169

471/497

FIG. 170

472/497

FIG. 171

473/497

FIG. 172A

474/497

FIG. 172B

475/497

FIG. 173A

476/497

FIG. 173B

477/497

FIG. 174

478/497

FIG. 175

479/497

FIG. 176

480/497

481/497

FIG. 178

482/497

FIG. 179

483/497

FIG. 180A

484/497

FIG. 180B

485/497

FIG. 181

486/497

FIG. 182A

487/497

FIG. 182B

488/497

FIG. 183

489/497

FIG. 184

490/497

FIG. 185

491/497

FIG. 186

492/497

493/497

FIG. 187B

494/497

FIG. 188

495/497

FIG. 189

496/497

FIG. 190

497/497

FIG. 191

SEQUENCE LISTING

<110> Neose Technologies, Inc.
DeFrees, Shawn
Zopf, David
Bayer, Robert
Hakes, David
Chen, Xi
Bowe, Caryne

<120> GLYCOPEGLATION METHODS AND PROTEINS/PEPTIDES PRODUCED BY THE METHODS

<130> 040853-01-5051WO

<150> US 60/328,523
<151> 2001-10-10

<150> US 60/334,233
<151> 2001-11-28

<150> US 60/334,301
<151> 2001-11-28

<150> US 60/344,692
<151> 2001-10-19

<150> US 60/387,292
<151> 2002-06-07

<150> US 60/391,777
<151> 2002-06-25

<150> US 60/396,594
<151> 2002-07-17

<150> US 60/404,249
<151> 2002-08-16

<150> US 60/407,527
<151> 2002-08-28

<150> PCT/US02/32263
<151> 2002-10-09

<150> US 10/360,779
<151> 2003-02-19

<150> US 10/360,770
<151> 2003-01-06

<150> US 10/287,994
<151> 2002-11-05

<160> 75

<170> PatentIn version 3.2

<210> 1
<211> 525
<212> DNA

<213> Homo sapiens

<400> 1
 accccccctgg gccctgccag ctccctgccc cagagttcc tgctcaagtg ctttagagcaa
 60
 gtgaggaaga tccagggcga tggcgccagcg ctccaggaga agctgtgtgc cacctacaag
 120
 ctgtgccacc ccgaggagct ggtgctgctc ggacactctc tggcatccc ctggctccc
 180
 ctgagcagct gcocccagcca ggccctgcag ctggcaggct gcttgagcca actccatagc
 240
 ggcctttcc tctaccaggc gctcctgcag gcccttggaa ggatctcccc cgagttgggt
 300
 cccaccttgg acacactgca gctggacgac gccgactttt ccaccacat ctggcagcag
 360
 atgaaagaac tggaaatggc ccctgccctg cagcccaccc agggtgccat gccggccatc
 420
 gcctctgctt tccagcgccg ggcaggaggg gtcctggttt cctccatct gcagagcttc
 480
 ctggagggtt cgtaccgcgt tctacgccac cttgcccaagc cctga
 525

<210> 2

<211> 174

<212> PRT

<213> Homo sapiens

<400> 2
 Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro Gln Ser Phe Leu Leu Lys
 1 5 10 15
 Cys Leu Glu Gln Val Arg Lys Ile Gln Gly Asp Gly Ala Ala Leu Gln
 20 25 30
 Glu Lys Leu Cys Ala Thr Tyr Lys Leu Cys His Pro Glu Glu Leu Val
 35 40 45
 Leu Leu Gly His Ser Leu Gly Ile Pro Trp Ala Pro Leu Ser Ser Cys
 50 55 60
 Pro Ser Gln Ala Leu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser
 65 70 75 80
 Gly Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu Gly Ile Ser
 85 90 95
 Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu Gln Leu Asp Val Ala Asp
 100 105 110
 Phe Ala Thr Thr Ile Trp Gln Gln Met Glu Glu Leu Gly Met Ala Pro
 115 120 125
 Ala Leu Gln Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala Phe

130

135

140

Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His Leu Gln Ser Phe
145 150 155 160
Leu Glu Val Ser Tyr Arg Val Leu Arg His Leu Ala Gln Pro
165 170

<210> 3
<211> 1733
<212> DNA
<213> Homo sapiens

<400> 3
gccccttta tgtacccaca aaaatctatt ttcaaaaaag ttgtcttaag aataatgtta
60

tcaagttaag taaaatgtca atagcctttt aatthaattt ttaatttgtt tatcattctt
120

tgcaataata aaacattaac tttatacqttt ttaatttaat gtatagaata gagatataaca
180

taggataatgt aaatagataac acagtgtata tgtgattaaa atataatggg agattcaatc
240

agaaaaaaagt ttctaaaaag gctctgggtt aaaagaggaa' ggaaacaata atgaaaaaaa
300

tgtggtgaga aaaacagctg aaaaccatg taaagagtgt ataaagaaag caaaaagaga
360

agtagaaaagt aacacagggg catttgaaaa atgtaaacga gtatgttccc tatttaaggc
420

taggcacaaa gcaaggctt cagagaacct ggaggcttaag gtttaggctc acccatttc
480

accagtcttag cagcatctgc aacatctaca atggcattga cttttgtttt actggggcc
540

ctcctggtgc tcagctgcaa gtcaagctgc tctgtggct gtgatctgcc tcaaaccac
600

agcctggta gcaggaggac cttgatgctc ctggcacaga tgaggagaat ctcttttc
660

tcctgcttga aggacagaca tgactttgga tttccccagg aggagttgg caaccagttc
720

caaaaggctg aaaccatccc tgcctccat gagatgatcc agcagatctt caatctttc
780

agcacaaagg actcatctgc tgcttggat gagaccctoc tagacaaatt ctacactgaa
840

ctctaccagc agctgaatga ctggaaagcc tggatgatac aggggggtggg ggtgacagag
900

actccccctga tgaaggagga ctccattctg gctgtgagga aataacttcca aagaatcact
960

ctctatctga aagagaagaa atacaggccct tgtgcctggg aggttgcag agcagaaaatc
1020

atgagatctt tttctttgtc aacaaacttg caagaaagtt taagaagtaa ggaatgaaaa
1080

ctggttcaac atggaaatga tttcattga ttcgtatgcc agtcacccctt ttatgatct
1140

gccatttcaa agactcatgt ttctgctatg accatgacac gatttaaatc ttttcaaattg
1200

tttttaggag tattaatcaa cattgtattc agctcttaag gcactagtcc cttacagagg
1260

accatgctga ctgatccatt atctatttaa atatttttaa aatatttattt atttaactat
1320

ttataaaaaca acttattttt gttcatatta tgtcatgtgc acctttgcac agtggtaat
1380

gtaataaaat gtgttcttg tatttggtaa atttattttg tggttcat tgaactttg
1440

ctatggaact tttgtacttg tttattcttt aaaatgaaat tccaaaggcta attgtgcaac
1500

ctgattacag aataactggt acacttcatt tgtccatcaa tattatattc aagatataag
1560

taaaaataaa ctttctgtaa accaagttgt atgttgtact caagataaca gggtaaac
1620

aacaaataca attctgtctt cttgtgtatt tgattttgt atgaaaaaaaaa ctaaaaatgg
1680

taatcatact taattatcag ttatggtaaa tggtatgaag agaagaagga acg
1733

<210> 4
<211> 188
<212> PRT
<213> Homo sapiens

<400> 4
Met Ala Leu Thr Phe Ala Leu Leu Val Ala Leu Leu Val Leu Ser Cys
1 5 10 15

Lys Ser Ser Cys Ser Val Gly Cys Asp Leu Pro Gln Thr His Ser Leu
20 25 30

Gly Ser Arg Arg Thr Leu Met Leu Leu Ala Gln Met Arg Arg Ile Ser
35 40 45

Leu Phe Ser Cys Leu Lys Asp Arg His Asp Phe Gly Phe Pro Gln Glu
50 55 60

Glu Phe Gly Asn Gln Phe Gln Lys Ala Glu Thr Ile Pro Val Leu His
65 70 75 80

Glu¹ Met² Ile Gln³ Gln⁴ Ile Phe Asn Leu Phe Ser Thr Lys Asp Ser Ser
85 90 95

Ala Ala Trp Asp Glu Thr Leu Leu Asp Lys Phe Tyr Thr Glu Leu Tyr
100 105 110

Gln Gln Leu Asn Asp Leu Glu Ala Cys Val Ile Gln Gly Val Gly Val
115 120 125

Thr Glu Thr Pro Leu Met Lys Glu Asp Ser Ile Leu Ala Val Arg Lys
130 135 140

Tyr Phe Gln Arg Ile Thr Leu Tyr Leu Lys Glu Lys Lys Tyr Ser Pro
145 150 155 160

Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Phe Ser Leu
165 170 175

Ser Thr Asn Leu Gln Glu Ser Leu Arg Ser Lys Glu
180 185

<210> 5

<211> 757

<212> DNA

<213> Homo sapiens

<400> 5

atgaccaaca agtgtctcct ccaaattgtct ctcctgttgc gtttctccac tacagcttt
60

tccatgagct acaacttgct tggattccta caaagaagca gcaattttca gtgtcagaag
120

ctcctgtggc aattgaatgg gaggcttgaa tattgcctca aggacaggat gaactttgac
180

atcccctgagg agattaagca gctgcagcag ttccagaagg aggacgccgc attgaccatc
240

tatgagatgc tccagaacat ctgtgttatt ttcagacaag attcatcttag cactggctgg
300

aatgagacta ttgttgagaa ctcctggct aatgtctatc atcagataaa ccattctgaag
360

acagtccctgg aagaaaaact ggagaaagaa gattttacca gggaaaaact catgagcagt
420

ctgcacctga aaagatatta tggaggatt ctgcattacc tgaaggccaa ggagtacagt
480

cactgtgcct ggaccatagt cagagtggaa atcctaagga acttttactt cattaacaga
540

cttacagggtt acctccgaaa ctgaagatct cctagcctgt ccctctggaa ctggacaatt
600

gcttcaagca ttcttcaacc agcagatgct gtttaagtga ctgatggcta atgtactgca
660

aatgaaagga cactagaaga^a ttttcaaatttt tatgagttat ttttatttat
720

ttaaatttta ttttggaaaa taaatttattt ttgggtgc
757

<210> 6
<211> 187
<212> PRT
<213> Homo sapiens

<400> 6
Met Thr Asn Lys Cys Leu Leu Gln Ile Ala Leu Leu Leu Cys Phe Ser
1 5 10 15

Thr Thr Ala Leu Ser Met Ser Tyr Asn Leu Leu Gly Phe Leu Gln Arg
20 25 30

Ser Ser Asn Phe Gln Cys Gln Lys Leu Leu Trp Gln Leu Asn Gly Arg
35 40 45

Leu Glu Tyr Cys Leu Lys Asp Arg Met Asn Phe Asp Ile Pro Glu Glu
50 55 60

Ile Lys Gln Leu Gln Phe Gln Lys Glu Asp Ala Ala Leu Thr Ile
65 70 75 80

Tyr Glu Met Leu Gln Asn Ile Phe Ala Ile Phe Arg Gln Asp Ser Ser
85 90 95

Ser Thr Gly Trp Asn Glu Thr Ile Val Glu Asn Leu Leu Ala Asn Val
100 105 110

Tyr His Gln Ile Asn His Leu Lys Thr Val Leu Glu Glu Lys Leu Glu
115 120 125

Lys Glu Asp Phe Thr Arg Gly Lys Leu Met Ser Ser Leu His Leu Lys
130 135 140

Arg Tyr Tyr Gly Arg Ile Leu His Tyr Leu Lys Ala Lys Glu Tyr Ser
145 150 155 160

His Cys Ala Trp Thr Ile Val Arg Val Glu Ile Leu Arg Asn Phe Tyr
165 170 175

Phe Ile Asn Arg Leu Thr Gly Tyr Leu Arg Asn
180 185

<210> 7
<211> 1332
<212> DNA
<213> Homo sapiens

<400> 7
atggctcccc aggcctcag gtcctctgc cttctgttg ggcttcaggc ctgcctggct
60

gcagtcttcg taacccagga ggaagccac ggcttcctgc accggcgccg gcgcccaac
120

gcgttcctgg aggagctgcg gccgggatcc ctggagaggg agtgcagaagga ggacgcgtgc
180

tccttcgagg agggccggga gatcttcaag gacgcggaga ggacgaagct gttctggatt
240

tcttacagtg atggggacca gtgtgcctca agtccatgcc agaatggggg ctccctgcgg
300

gaccagctcc agtccatatat ctgcttctgc ctccctgcct tcgagggccg gaactgtgag
360

acgcacaagg atgaccagct gatctgtgtg aacgagaacg gggctgtga gcagtactgc
420

agtgaccaca cgggcaccaa ggcgtcctgt cggtgccacg aggggtactc tctgctggca
480

gacggggtgtt cctgcacacc cacagttgaa tatccatgtg gaaaaataacc tattctagaa
540

aaaagaaaatg ccagcaaacc ccaaggccga attgtggggg gcaaggtgtg ccccaaaggg
600

gagtgtccat ggcaggtcct gttgtggtg aatggagctc agttgtgtgg ggggaccctg
660

atcaacaccca tctgggtggt ctccgcggcc cactgtttcg acaaaatcaa gaactggagg
720

aacctgatcg cggtgctggg cgagcacgac ctcagcgagc acgacgggga tgagcagagc
780

cggcgggtgg cgaggtcat catccccagc acgtacgtcc cgggcaccaac caaccacgac
840

atcgcgctgc tccgcctgca ccagccctgt gtcctcactg accatgtggt gcccctctgc
900

ctgccccaaac ggacgttctc tgagaggacg ctggccttcg tgacgttctc attggtcagc
960

ggctggggcc agctgctgga ccgtggcgcc acggccctgg agctcatggt gctcaacgtg
1020

ccccggctga tgacccagga ctgcctgcag cagtcacgga aggtggaga ctccccaaat
1080

atcacggagt acatgttctg tgccggctac tcggatggca gcaaggactc ctgcaagggg
1140

gacagtggag gcccacatgc caccactac cggggcaacgt ggtacctgac gggcatcgac
1200

agctggggcc agggctgcgc aaccgtgggc cactttgggg tgtacaccag ggtctccag
1260

tacatcgagt ggctgcaaaa gctcatgcgc tcagagccac gcccaggagt cctccctgcga
1320

gccccatttc cc
1332

<210> 8
<211> 444
<212> PRT
<213> Homo sapiens

<400> 8
Met Val Ser Gln Ala Leu Arg Leu Leu Cys Leu Leu Leu Gly Leu Gln
1 5 10 15
Gly Cys Leu Ala Ala Val Phe Val Thr Gln Glu Glu Ala His Gly Val
20 25 30

Leu His Arg Arg Arg Arg Ala Asn Ala Phe Leu Glu Glu Leu Arg Pro
35 40 45

Gly Ser Leu Glu Arg Glu Cys Lys Glu Glu Gln Cys Ser Phe Glu Glu
50 55 60

Ala Arg Glu Ile Phe Lys Asp Ala Glu Arg Thr Lys Leu Phe Trp Ile
65 70 75 80

Ser Tyr Ser Asp Gly Asp Gln Cys Ala Ser Ser Pro Cys Gln Asn Gly
85 90 95

Gly Ser Cys Lys Asp Gln Leu Gln Ser Tyr Ile Cys Phe Cys Leu Pro
100 105 110

Ala Phe Glu Gly Arg Asn Cys Glu Thr His Lys Asp Asp Gln Leu Ile
115 120 125

Cys Val Asn Glu Asn Gly Gly Cys Glu Gln Tyr Cys Ser Asp His Thr
130 135 140

Gly Thr Lys Arg Ser Cys Arg Cys His Glu Gly Tyr Ser Leu Leu Ala
145 150 155 160

Asp Gly Val Ser Cys Thr Pro Thr Val Glu Tyr Pro Cys Gly Lys Ile
165 170 175

Pro Ile Leu Glu Lys Arg Asn Ala Ser Lys Pro Gln Gly Arg Ile Val
180 185 190

Gly Gly Lys Val Cys Pro Lys Gly Glu Cys Pro Trp Gln Val Leu Leu
195 200 205

Leu Val Asn Gly Ala Gln Leu Cys Gly Gly Thr Leu Ile Asn Thr Ile
210 215 220

Trp Val Val Ser Ala Ala His Cys Phe Asp Lys Ile Lys Asn Trp Arg
225 230 235 240

Asn Leu Ile Ala Val Leu Gly Glu His Asp Leu Ser Glu His Asp Gly
245 250 255

Asp Glu Gln Ser Arg Arg Val Ala Gln Val Ile Ile Pro Ser Thr Tyr
260 265 270

Val Pro Gly Thr Thr Asn His Asp Ile Ala Leu Leu Arg Leu His Gln
275 280 285

tätögaattg öagaääacca gaagtccgtt gaaccaggag tgccattttcc atgtggaaaga
540

gtttctgttt cacaaacttc taagctcacc cgtgctgagg ctgttttcc tcatgtggac
600

tatgtaaatc ctactgaagc tgaaaccatt ttggataaca tcactcaagg cacccaatca
660

ttaaatgact tcactcggtt tggtgggttgaagatgccaaaccaggtaaaatcgat
720

cagggtttt tgaatggtaa agttgatgca ttctgtggag gctctatcgtaatgaaaaa
780

tggattgttaa ctgctgccca ctgtgtgaa actggtgtta aaattacagt tgtcgcagg
840

gaacataata ttgaggagac agaacataca gagcaaaagc gaaatgtgat tcgagcaatt
900

attcctcacc acaactacaa tgcagctatt aataagtaca accatgacat tgcccttctg
960

gaactggacg aacccttagt gctaaacagc tacgttacac ctatttgcat tgctgacaag
1020

gaatacacga acatcttcct caaatttggatctggctatgttaagtggtggctggcaagagtc
1080

ttccacaaaag ggagatcagc tttagttttt cagttaccta gagttccact ttttgaccga
1140

gccacatgtc ttcatctac aaagttcacc atctataaca acatgttctg tgctggcttc
1200

catgaaggag gtagagatccatgtcaagga gatagtgggg gacccatgt tactgaagtg
1260

gaaggacca gtttcttaac tggaatttatt agctgggtt aagagtgtgc aatgaaaggc
1320

aaatatggaa tatataccaa ggtatcccgg tatgtcaact ggattaagga aaaaacaaag
1380

ctcacttaat gaaagatgga tttccaaaggtaattcatttgaattgaaaaa ttaacag
1437

<210> 10
<211> 462
<212> PRT
<213> Homo sapiens

<400> 10
Met Gln Arg Val Asn Met Ile Met Ala Glu Ser Pro Ser Leu Ile Thr
1 5 10 15

Ile Cys Leu Leu Gly Tyr Leu Leu Ser Ala Glu Cys Thr Val Phe Leu
20 25 30

Asp His Glu Asn Ala Asn Lys Ile Leu Asn Arg Pro Lys Arg Tyr Asn

35

40

45

Ser Gly Lys Leu Glu Glu Phe Val Gln Gly Asn Leu Glu Arg Glu Cys
 50 55 60

Met Glu Glu Lys Cys Ser Phe Glu Glu Pro Arg Glu Val Phe Glu Asn
 65 70 75 80

Thr Glu Lys Thr Thr Glu Phe Trp Lys Gln Tyr Val Asp Gly Asp Gln
 85 90 95

Cys Glu Ser Asn Pro Cys Leu Asn Gly Gly Ser Cys Lys Asp Asp Ile
 100 105 110

Asn Ser Tyr Glu Cys Trp Cys Pro Phe Gly Phe Glu Gly Lys Asn Cys
 115 120 125

Glu Leu Asp Val Thr Cys Asn Ile Lys Asn Gly Arg Cys Glu Gln Phe
 130 135 140

Cys Lys Asn Ser Ala Asp Asn Lys Val Val Cys Ser Cys Thr Glu Gly
 145 150 155 160

Tyr Arg Leu Ala Glu Asn Gln Lys Ser Cys Glu Pro Ala Val Pro Phe
 165 170 175

Pro Cys Gly Arg Val Ser Val Ser Gln Thr Ser Lys Leu Thr Arg Ala
 180 185 190

Glu Ala Val Phe Pro Asp Val Asp Tyr Val Asn Pro Thr Glu Ala Glu
 195 200 205

Thr Ile Leu Asp Asn Ile Thr Gln Gly Thr Gln Ser Phe Asn Asp Phe
 210 215 220

Thr Arg Val Val Gly Gly Glu Asp Ala Lys Pro Gly Gln Phe Pro Trp
 225 230 235 240

Gln Val Val Leu Asn Gly Lys Val Asp Ala Phe Cys Gly Ser Ile
 245 250 255

Val Asn Glu Lys Trp Ile Val Thr Ala Ala His Cys Val Glu Thr Gly
 260 265 270

Val Lys Ile Thr Val Val Ala Gly Glu His Asn Ile Glu Glu Thr Glu
 275 280 285

His Thr Glu Gln Lys Arg Asn Val Ile Arg Ala Ile Ile Pro His His
 290 295 300

Asn Tyr Asn Ala Ala Ile Asn Lys Tyr Asn His Asp Ile Ala Leu Leu
 305 310 315 320

Glu Leu Asp Glu Pro Leu Val Leu Asn Ser Tyr Val Thr Pro Ile Cys
 325 330 335

Ile Ala Asp Lys Glu Tyr Thr Asn Ile Phe Leu Lys Phe Gly Ser Gly
 340 345 350

Tyr Val Ser Gly Trp Ala Arg Val Phe His Lys Gly Arg Ser Ala Leu
 355 360 365

Val Leu Gln Tyr Leu Arg Val Pro Leu Val Asp Arg Ala Thr Cys Leu
 370 375 380

Arg Ser Thr Lys Phe Thr Ile Tyr Asn Asn Met Phe Cys Ala Gly Phe
 385 390 395 400

His Glu Gly Gly Arg Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro His
 405 410 415

Val Thr Glu Val Glu Gly Thr Ser Phe Leu Thr Gly Ile Ile Ser Trp
 420 425 430

Gly Glu Glu Cys Ala Met Lys Gly Lys Tyr Gly Ile Tyr Thr Lys Val
 435 440 445

Ser Arg Tyr Val Asn Trp Ile Lys Glu Lys Thr Lys Leu Thr
 450 455 460

<210> 11

<211> 603

<212> DNA

<213> Homo sapiens

<400> 11

atggattact acagaaaata tgcagctatc ttcttgtca cattgtcggt gtttctgcat
 60

gttctccatt ccgcgtcctga tgtgcaggat tgcccagaat gcacgctaca ggaaaaccca
 120

ttcttcctcc agccgggtgc cccaaatactt cagtgcatttgc gctgctgcctt ctcttagagca
 180

tatccccactc cactaaggc caagaagacg atgttggcc aaaaagaacgt cacccatc
 240

tccacttgct gtgttagctaa atcatataac agggtcacag taatgggggg tttcaaagtg
 300

gagaaccaca cggcgtgcc a ctcgtact tggatggaa aatggatgg ttttttttttt
 360

caagtgtgt ctgtatgtact gtttttttc tggatggaa aatggatgg ttttttttt
 420

atggctttgt gagataaaac ttccttttc cttaccatac cactttgaca cgcttcaagg
 480

atataactgca gttttactgc cttcctcggtt atcctacagt acaatcagca gtcttagttct
 540

tttcatttgg aatgaataaca gcatggat tggatggaa aatggatgg ttttttttttt
 600

atc

603

<210> 12

<211> 116

<212> PRT

<213> Homo sapiens

<400> 12
 Met Asp Tyr Tyr Arg Lys Tyr Ala Ala Ile Phe Leu Val Thr Leu Ser
 1 5 10 15
 Val Phe Leu His Val Leu His Ser Ala Pro Asp Val Gln Asp Cys Pro
 20 25 30
 Glu Cys Thr Leu Gln Glu Asn Pro Phe Phe Ser Gln Pro Gly Ala Pro
 35 40 45
 Ile Leu Gln Cys Met Gly Cys Cys Phe Ser Arg Ala Tyr Pro Thr Pro
 50 55 60
 Leu Arg Ser Lys Lys Thr Met Leu Val Gln Lys Asn Val Thr Ser Glu
 65 70 75 80
 Ser Thr Cys Cys Val Ala Lys Ser Tyr Asn Arg Val Thr Val Met Gly
 85 90 95
 Gly Phe Lys Val Glu Asn His Thr Ala Cys His Cys Ser Thr Cys Tyr
 100 105 110
 Tyr His Lys Ser
 115

<210> 13
<211> 390
<212> DNA
<213> Homo sapiens

<400> 13
 atgaagacac tccagttttt cttccttttc tggctgttggaa aagcaatctg ctgcaatagc
 60
 tgtgagctga ccaacatcac cattgcaata gagaagaaga aatgtcgaaa ctgcataaggc
 120
 atcaacacca cttgggtgtgc tggctactgc tacaccaggaa atctggtgta taaggaccca
 180
 gccaggccca aaatccagaa aacatgtacc ttcaagggaaac tggtatatga aacagtggaa
 240
 gtgccggct gtgctcacca tgcagattcc ttgtatacat acccagtggc cacccagtgt
 300
 cactgtggca agtgtgacag cgacagcaact gattgtactg tgcgaggcct ggggccccagc
 360
 tactgctcct ttggtgaaat gaaagaataa
 390

<210> 14
<211> 129
<212> PRT
<213> Homo sapiens

<400> 14
 Met Lys Thr Leu Gln Phe Phe Leu Phe Cys Cys Trp Lys Ala Ile

1

5

10

15

Cys Cys Asn Ser Cys Glu Leu Thr Asn Ile Thr Ile Ala Ile Glu Lys
 20 25 30

Glu Glu Cys Arg Phe Cys Ile Ser Ile Asn Thr Thr Trp Cys Ala Gly
 35 40 45

Tyr Cys Tyr Thr Arg Asp Leu Val Tyr Lys Asp Pro Ala Arg Pro Lys
 50 55 60

Ile Gln Lys Thr Cys Thr Phe Lys Glu Leu Val Tyr Glu Thr Val Arg
 65 70 75 80

Val Pro Gly Cys Ala His His Ala Asp Ser Leu Tyr Thr Tyr Pro Val
 85 90 95

Ala Thr Gln Cys His Cys Gly Lys Cys Asp Ser Asp Ser Thr Asp Cys
 100 105 110

Thr Val Arg Gly Leu Gly Pro Ser Tyr Cys Ser Phe Gly Glu Met Lys
 115 120 125

Glu

<210> 15
<211> 1342
<212> DNA
<213> Homo sapiens .

<400> 15
cccgagccg gaccggggcc accgcgcccc ctctgtcccg acacccgcgc ccctggacag
60
ccgcaccttc ctcaggcccc gtggggctgg ccctgcaccc cgagacctcc cggatgagg
120
gccccggtg tggcacccg ggcgcaccca ggtcgcttag ggacccggc caggcgccga
180
gatgggggtg cacgaatgtc ctgcctggct gtggcttctc ctgtccctgc tgtcgctccc
240
tctgggcctc ccagtccctgg ggcgcaccca acgcctcatc tgtgacagcc gagtcctgga
300
gaggtaccc ttggaggcca aggaggccga gaatatcactg acgggctgtg ctgaacactg
360
cagcttaat gagaatatca ctgtccca gagaaatgtt aatttctatg cctggaagag
420
gatggaggtc gggcagcagg ccgtagaagt ctggcaggcc ctggccctgc tgtcggaagc
480
tgtcctgcgg ggccaggccc tggcgtcaa ctttccca agccgtggagc ccctgcagct
540
gcatgtggat aaagccgtca gtggccttcg cagcctcacc actctgcttc gggctctgcg
600

agcccagaag gaagccatct cccctccaga tgccggcctca gctgtccac tccgaacaat
660

cactgctgac actttccgca aactcttccg agtctactcc aatttcctcc ggggaaagct
720

gaagctgtac acaggggaggc cctgcaggac aggggacaga tgaccaggtg tgtccacctg
780

ggcatatatcca ccaccccttccat caccacatt gcttgtgccca caccctcccc cgccactcct
840

gaaccccgtc gaggggctct cagctcagcg ccagcctgtc ccatggacac tccagtgc
900

gcaatgacat ctcaaggggcc agaggaactg tccagagagc aactctgaga tctaaggatg
960

tcacagggcc aacttgaggg cccagagcag gaagcattca gagagcagct ttaaactcag
1020

ggacagagcc atgctggaa gacgcctgag ctcaactcgcc accctgcaaa atttgatgc
1080

aggacacgct ttggaggcga tttacctgtt ttgcaccta ccatcaggga caggatgacc
1140

tggagaactt aggtggcaag ctgtgacttc tccaggtctc acgggcattgg gcactccctt
1200

ggggcaaga gcccccattga caccggggtg gtgggaacca tgaagacagg atgggggctg
1260

gcctctggct ctcatggggt ccaagtttg tgtattcttc aacctcatttgc acaagaactg
1320

aaaccaccaa aaaaaaaaaaa aa
1342

<210> 16
<211> 193
<212> PRT
<213> Homo sapiens

<400> 16
Met Gly Val His Glu Cys Pro Ala Trp Leu Trp Leu Leu Ser Leu
1 5 10 15

Leu Ser Leu Pro Leu Gly Leu Pro Val Leu Gly Ala Pro Pro Arg Leu
20 25 30

Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu
35 40 45

Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu
50 55 60

Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg
65 70 75 80

Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu
85 90 95

Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser
100 105 110

Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly
115 120 125

Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Arg Ala Gln Lys Glu
130 135 140

Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile
145 150 155 160

Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu
165 170 175

Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp
180 185 190

Arg

<210> 17

<211> 435

<212> DNA

<213> Homo sapiens

<400> 17

atgtggctgc agagcctgct gctcttgggc actgtggcct gcagcatctc tgcacccggc
60

cgttcgccca gcgccagcac gcagccctgg gagcatgtga atgccccatcca ggaggcccg
120

cgttcctcata acctgagtag agacactgct gctgagatga atgaaacagt agaagtcatc
180

tcaaaaaatgt ttgacccatcca ggagccgacc tgcctacaga cccgccttggc gctgtacaag
240

caggccctgc gggccagcct caccaagctc aaggggccct tgaccatgtat ggccagccac
300

tacaaggcagc actgcctcc aaccccgaa acttcctgtg caacccagat tatcaccttt
360

gaaagttca aagagaacct gaaggacttt ctgcttgtca tcccctttga ctgctgggag
420

ccagtccagg agtga

435

<210> 18

<211> 144

<212> PRT

<213> Homo sapiens

<400> 18

Met Trp Leu Gln Ser Leu Leu Leu Gly Thr Val Ala Cys Ser Ile

1

5

10

15

Ser Ala Pro Ala Arg Ser Pro Ser Pro Ser Thr Gln Pro Trp Glu His
 20 25 30

Val Asn Ala Ile Gln Glu Ala Arg Arg Leu Leu Asn Leu Ser Arg Asp
 35 40 45

Thr Ala Ala Glu Met Asn Glu Thr Val Glu Val Ile Ser Glu Met Phe
 50 55 60

Asp Leu Gln Glu Pro Thr Cys Leu Gln Thr Arg Leu Glu Leu Tyr Lys
 65 70 75 80

Gln Gly Leu Arg Gly Ser Leu Thr Lys Leu Lys Gly Pro Leu Thr Met
 85 90 95

Met Ala Ser His Tyr Lys Gln His Cys Pro Pro Thr Pro Glu Thr Ser
 100 105 110

Cys Ala Thr Gln Ile Ile Thr Phe Glu Ser Phe Lys Glu Asn Leu Lys
 115 120 125

Asp Phe Leu Leu Val Ile Pro Phe Asp Cys Trp Glu Pro Val Gln Glu
 130 135 140

<210> 19

<211> 501

<212> DNA

<213> Homo sapiens

<400> 19

atgaaatata caagttatat ctggctttt cagctctgca tcgttttggg ttcttttggc
 60

tgttactgcc aggacccata tgtaaaagaa gcagaaaacc ttaagaaata ttttaatgca
 120

ggtcattcag atgttagcgga taatggaact cttttcttag gcattttgaa gaatttgaaa
 180

gaggagagtg acagaaaaat aatgcagagc caaattgtct cttttactt caaactttt
 240

aaaaacttta aagatgacca gagcatccaa aagagtgtgg agaccatcaa ggaagacatg
 300

aatgtcaagt ttttcaatag caacaaaaag aaacgagatg acttcgaaaa gctgactaat
 360

tattcgtaa ctgacttgaa tgtccaacgc aaagcaatac atgaactcat ccaagtgtatg
 420

gctgaactgt cgccagcagc taaaacaggg aagcgaaaaa ggagtcagat gctgtttcga
 480

ggtcgaagag catcccagta a
 501

<210> 20

<211> 166

<212> PRT

<213> Homo sapiens

<400> 20

Met Lys Tyr Thr Ser Tyr Ile Leu Ala Phe Gln Leu Cys Ile Val Leu	
1	5
	10
	15

Gly Ser Leu Gly Cys Tyr Cys Gln Asp Pro Tyr Val Lys Glu Ala Glu	
20	25
	30

Asn Leu Lys Lys Tyr Phe Asn Ala Gly His Ser Asp Val Ala Asp Asn	
35	40
	45

Gly Thr Leu Phe Leu Gly Ile Leu Lys Asn Trp Lys Glu Glu Ser Asp	
50	55
	60

Arg Lys Ile Met Gln Ser Gln Ile Val Ser Phe Tyr Phe Lys Leu Phe	
65	70
	75
	80

Lys Asn Phe Lys Asp Asp Gln Ser Ile Gln Lys Ser Val Glu Thr Ile	
85	90
	95

Lys Glu Asp Met Asn Val Lys Phe Phe Asn Ser Asn Lys Lys Arg	
100	105
	110

Asp Asp Phe Glu Lys Leu Thr Asn Tyr Ser Val Thr Asp Leu Asn Val	
115	120
	125

Gln Arg Lys Ala Ile His Glu Leu Ile Gln Val Met Ala Glu Leu Ser	
130	135
	140

Pro Ala Ala Lys Thr Gly Lys Arg Lys Arg Ser Gln Met Leu Phe Arg	
145	150
	155
	160

Gly Arg Arg Ala Ser Gln	
165	

<210> 21

<211> 1352

<212> DNA

<213> Homo sapiens

<400> 21

ctggacagt gaatcgacaa tgccgtcttc tgtctcgtagg ggcattcctcc tgctggcagg	
60	

cctgtgctgc ctggcccttg tctccctggc tgaggatccc cagggagatg ctgcccagaa	
120	

gacagataca tccccaccatg atcaggatca cccaaacottt aacaagatca cccccaacct	
180	

ggctgagttc gcatttcagcc tataccgcca gctggcacac cagtccaaaca gcaccaatat	
240	

cttcttctcc ccagttagca tcgctacagc ctttgcaatg ctctccctgg ggaccaaggc	
300	

tgcacactcac gatgaaatcc tggagggcct gaatttcaac ctcacggaga ttccggaggc	
360	

tcagatccat gaaggcttcc aggaactctt ccgtaccctc aaccaggccag acagccagct
 420
 ccagctgacc accggcaatg gcctgttcct cagcgagggc ctgaagctag tggataagtt
 480
 ttggaggat gttaaaaagt tgtaccactc agaaggcttc actgtcaact tcggggacac
 540
 cgaagaggcc aagaaacaga tcaacgatta cgtggagaag ggtactcaag ggaaaattgt
 600
 ggatttggtc aaggagcttg acagagacac agttttgtct ctggtaatt acatcttctt
 660
 taaaggcaaa tggagagac cctttaagt caaggacacc gaggaagagg acttccacgt
 720
 ggaccaggta accaccgtga aggtgcctat gatgaagcgt ttaggcattgt ttaacatcca
 780
 gcactgttaag aagctgtcca gctgggtgtct gctgatgaaa tacctggca atgccaccgc
 840
 catcttcttc ctgcctgatg aggggaaact acagcabctg gaaaatgaac tcacccacga
 900
 tatcatcacc aagtccctgg aaaatgaaga cagaaggctt gccagcttac atttacccaa
 960
 actgtccatt actggAACCT atgatctgaa gagcgtctg ggtcaactgg gcatcactaa
 1020
 ggtcttcagc aatggggctg acctctccgg ggtcacagag gaggcacccc tgaagctctc
 1080
 caaggccgtg cataaggctg tgctgaccat cgacgagaaa gggactgaag ctgctgggc
 1140
 catgtttta gaggccatac ccatgtctat cccccccgag gtcaagttca acaaaccctt
 1200
 tgtcttcita atgattgaac aaaataccaa gtctccctc ttcatggaa aagtggtaa
 1260
 tcccacccaa aaataactgc ctctcgctcc tcaacccctc ccctccatcc ctggccccc
 1320
 ccctggatga cattaaagaa gggttgagct gg
 1352

 <210> 22
 <211> 418
 <212> PRT
 <213> Homo sapiens

 <400> 22
 Met Pro Ser Ser Val Ser Trp Gly Ile Leu Leu Leu Ala Gly Leu Cys
 1 5 10 15
 Cys Leu Val Pro Val Ser Leu Ala Glu Asp Pro Gln Gly Asp Ala Ala

20

25

30

Gln Lys Thr Asp Thr Ser His His Asp Gln Asp His Pro Thr Phe Asn
 35 40 45

Lys Ile Thr Pro Asn Leu Ala Glu Phe Ala Phe Ser Leu Tyr Arg Gln
 50 55 60

Leu Ala His Gln Ser Asn Ser Thr Asn Ile Phe Phe Ser Pro Val Ser
 65 70 75 80

Ile Ala Thr Ala Phe Ala Met Leu Ser Leu Gly Thr Lys Ala Asp Thr
 85 90 95

His Asp Glu Ile Leu Glu Gly Leu Asn Phe Asn Leu Thr Glu Ile Pro
 100 105 110

Glu Ala Gln Ile His Glu Gly Phe Gln Glu Leu Leu Arg Thr Leu Asn
 115 120 125

Gln Pro Asp Ser Gln Leu Gln Leu Thr Thr Gly Asn Gly Leu Phe Leu
 130 135 140

Ser Glu Gly Leu Lys Leu Val Asp Lys Phe Leu Glu Asp Val Lys Lys
 145 150 155 160

Leu Tyr His Ser Glu Ala Phe Thr Val Asn Phe Gly Asp Thr Glu Glu
 165 170 175

Ala Lys Lys Gln Ile Asn Asp Tyr Val Glu Lys Gly Thr Gln Gly Lys
 180 185 190

Ile Val Asp Leu Val Lys Glu Leu Asp Arg Asp Thr Val Phe Ala Leu
 195 200 205

Val Asn Tyr Ile Phe Phe Lys Gly Lys Trp Glu Arg Pro Phe Glu Val
 210 215 220

Lys Asp Thr Glu Glu Glu Asp Phe His Val Asp Gln Val Thr Thr Val
 225 230 235 240

Lys Val Pro Met Met Lys Arg Leu Gly Met Phe Asn Ile Gln His Cys
 245 250 255

Lys Lys Leu Ser Ser Trp Val Leu Leu Met Lys Tyr Leu Gly Asn Ala
 260 265 270

Thr Ala Ile Phe Phe Leu Pro Asp Glu Gly Lys Leu Gln His Leu Glu
 275 280 285

Asn Glu Leu Thr His Asp Ile Ile Thr Lys Phe Leu Glu Asn Glu Asp
 290 295 300

Arg Arg Ser Ala Ser Leu His Leu Pro Lys Leu Ser Ile Thr Gly Thr
 305 310 315 320

Tyr Asp Leu Lys Ser Val Leu Gly Gln Leu Gly Ile Thr Lys Val Phe
 325 330 335

Ser Asn Gly Ala Asp Leu Ser Gly Val Thr Glu Glu Ala Pro Leu Lys
 340 345 350

Leu Ser Lys Ala Val His Lys Ala Val Leu Thr Ile Asp Glu Lys Gly
 355 360 365

Thr Glu Ala Ala Gly Ala Met Phe Leu Glu Ala Ile Pro Met Ser Ile
 370 375 380

Pro Pro Glu Val Lys Phe Asn Lys Pro Phe Val Phe Leu Met Ile Glu
 385 390 395 400

Gln Asn Thr Lys Ser Pro Leu Phe Met Gly Lys Val Val Asn Pro Thr
 405 410 415

Gln Lys

<210> 23

<211> 2004

<212> DNA

<213> Homo sapiens

<400> 23

gctaacctag tgccatatgc taaggcaggt acctgcattcc ttgttttgc ttagtgatc
 60

ctctatcatt cagagactct ggaaccctcg tggcttttc ttcatctaat gaccctgagg
 120

ggatggagtt ttcaagtctt tccagagagg aatgtccaa gccttgagt agggtaagca
 180

tcatggctgg cagcctcaca ggtttgcttc tacttcaggc agtgtcggtt gcatcaggcg
 240

cccgccccctg catccctaaa agcttcggct acagctcggtt ggtgtgtgtc tgcaatgcca
 300

catactgtga ctcccttgac ccccccacctt ttcctgcctt tggtaccttc agcccgatcg
 360

agagtacacg cagtggcgaa cggatggaggc tgagtatggg gcccattccag gctaattcaca
 420

cgggcacagg cctgctactg accctgcaggc cagaacagaa gttccagaaa gtgaaggat
 480

ttggaggggc catgacagat gctgtgtc tcaacatctt tgccctgtca cccctgccc
 540

aaaatttgct acttaaatcg tacttctctg aagaaggaat cggatataac atcatccggg
 600

tacccatggc cagctgtgac ttctccatcc gcacctacac ctatgcagac acccctgtat
 660

atttccagtt gcacaacttc agcctccag aggaagatac caagctcaag atacccctga
 720

ttcaccgagc cctgcagttg gcccagcgtc ccgtttcact cttgccagc ccctggacat
 780

" caccacttg gctcaagacc aatggagcgg tgaatggaa ggggtcaccc aayyyacayc
840
ccggagacat ctaccaccag acctggcca gatactttgt gaagttcctg gatgcctatg
900
ctgagcacaa gttacagttc tggcagtga cagctaaaa tgagccttct gctggctgt
960
tgagtggata cccttccag tgcctggct tcacccctga acatcagcga gacttcattg
1020
cccgtgacct aggtcctacc ctgcacaaca gtactcacca caatgtccgc ctactcatgc
1080
tggatgacca acgcttgctg ctgccccact gggcaaagggt ggtactgaca gacccagaag
1140
cagctaaata tggcatggc attgctgtac attggtaacct ggactttctg gctccagcca
1200
aagccaccct aggggagaca caccgcctgt tcccaaacac catgctctt gcctcagagg
1260
cctgtgtggg ctccaaggttc tggagcaga gtgtgcggct aggctctgg gatcgaggga
1320
tgcagtacag ccacagcattc atcacgaacc tcctgtacca tgggtcgcc tggaccgact
1380
ggaaccttgc cctgaacccc gaaggaggac ccaattgggt gcgttaacttt gtcgacagtc
1440
ccatcattgt agacatcacc aaggacacgt ttacaaaaca gcccatttgc taccacattt
1500
gccacttcag caagttcatt cctgagggt cccagagagt ggggtgggt gccagtcaga
1560
agaacgacct ggacgcagtgc gcaactgatgc atcccgatgg ctctgctgtt gtggcgtgc
1620
taaaccgctc ctctaaggat gtgccttta ccatcaagga tcctgctgtg ggcttcctgg
1680
agacaatctc acctggctac tccattcaca cctacacgtg gcatcgccag tggatggagca
1740
gatactcaag gaggcactgg gctcagcctg ggcatataag ggacagagtc agctcacacg
1800
ctgtctgtga ctaaagaggg cacagcaggg ccagtgttagt cttacagcga cgtaagccca
1860
ggggcaatgg tttgggtgac tcactttccc ctcttaggtgg tgcccaggcc tggaggcccc
1920
tagaaaaaga tcagtaagcc ccagtgtccc cccagccccc atgcttatgt gaacatgcgc
1980

tgtgtgcgc ttgctttggaaact
2004

<210> 24
<211> 536
<212> PRT
<213> Homo sapiens

<400> 24																
Met	Glu	Phe	Ser	Ser	Pro	Ser	Arg	Glu	Glu	Cys	Pro	Lys	Pro	Leu	Ser	
1								5		10						15
Arg	Val	Ser	Ile	Met	Ala	Gly	Ser	Leu	Thr	Gly	Leu	Leu	Leu	Leu	Gln	
								20		25						30
Ala	Val	Ser	Trp	Ala	Ser	Gly	Ala	Arg	Pro	Cys	Ile	Pro	Lys	Ser	Phe	
								35		40						45
Gly	Tyr	Ser	Ser	Val	Val	Cys	Val	Cys	Asn	Ala	Thr	Tyr	Cys	Asp	Ser	
								50		55						60
Phe	Asp	Pro	Pro	Thr	Phe	Pro	Ala	Leu	Gly	Thr	Phe	Ser	Arg	Tyr	Glu	
								65		70						80
Ser	Thr	Arg	Ser	Gly	Arg	Arg	Met	Glu	Leu	Ser	Met	Gly	Pro	Ile	Gln	
								85		90						95
Ala	Asn	His	Thr	Gly	Thr	Gly	Leu	Leu	Leu	Thr	Leu	Gln	Pro	Glu	Gln	
								100		105						110
Lys	Phe	Gln	Lys	Val	Lys	Gly	Phe	Gly	Gly	Ala	Met	Thr	Asp	Ala	Ala	
								115		120						125
Ala	Leu	Asn	Ile	Leu	Ala	Leu	Ser	Pro	Pro	Ala	Gln	Asn	Leu	Leu	Leu	
								130		135						140
Lys	Ser	Tyr	Phe	Ser	Glu	Glu	Gly	Ile	Gly	Tyr	Asn	Ile	Ile	Arg	Val	
								145		150						160
Pro	Met	Ala	Ser	Cys	Asp	Phe	Ser	Ile	Arg	Thr	Tyr	Thr	Tyr	Ala	Asp	
								165		170						175
Thr	Pro	Asp	Asp	Phe	Gln	Leu	His	Asn	Phe	Ser	Leu	Pro	Glu	Glu	Asp	
								180		185						190
Thr	Lys	Leu	Lys	Ile	Pro	Leu	Ile	His	Arg	Ala	Leu	Gln	Leu	Ala	Gln	
								195		200						205
Arg	Pro	Val	Ser	Leu	Leu	Ala	Ser	Pro	Trp	Thr	Ser	Pro	Thr	Trp	Leu	
								210		215						220
Lys	Thr	Asn	Gly	Ala	Val	Asn	Gly	Lys	Gly	Ser	Leu	Lys	Gly	Gln	Pro	
								225		230						240
Gly	Asp	Ile	Tyr	His	Gln	Thr	Trp	Ala	Arg	Tyr	Phe	Val	Lys	Phe	Leu	
								245		250						255
Asp	Ala	Tyr	Ala	Glu	His	Lys	Leu	Gln	Phe	Trp	Ala	Val	Thr	Ala	Glu	
								260		265						270
Asn	Glu	Pro	Ser	Ala	Gly	Leu	Leu	Ser	Gly	Tyr	Pro	Phe	Gln	Cys	Leu	

275

280

285

Gly Phe Thr Pro Glu His Gln Arg Asp Phe Ile Ala Arg Asp Leu Gly
 290 295 300

Pro Thr Leu Ala Asn Ser Thr His His Asn Val Arg Leu Leu Met Leu
 305 310 315 320

Asp Asp Gln Arg Leu Leu Pro His Trp Ala Lys Val Val Leu Thr
 325 330 335

Asp Pro Glu Ala Ala Lys Tyr Val His Gly Ile Ala Val His Trp Tyr
 340 345 350

Leu Asp Phe Leu Ala Pro Ala Lys Ala Thr Leu Gly Glu Thr His Arg
 355 360 365

Leu Phe Pro Asn Thr Met Leu Phe Ala Ser Glu Ala Cys Val Gly Ser
 370 375 380

Lys Phe Trp Glu Gln Ser Val Arg Leu Gly Ser Trp Asp Arg Gly Met
 385 390 395 400

Gln Tyr Ser His Ser Ile Ile Thr Asn Leu Leu Tyr His Val Val Gly
 405 410 415

Trp Thr Asp Trp Asn Leu Ala Leu Asn Pro Glu Gly Gly Pro Asn Trp
 420 425 430

Val Arg Asn Phe Val Asp Ser Pro Ile Ile Val Asp Ile Thr Lys Asp
 435 440 445

Thr Phe Tyr Lys Gln Pro Met Phe Tyr His Leu Gly His Phe Ser Lys
 450 455 460

Phe Ile Pro Glu Gly Ser Gln Arg Val Gly Leu Val Ala Ser Gln Lys
 465 470 475 480

Asn Asp Leu Asp Ala Val Ala Leu Met His Pro Asp Gly Ser Ala Val
 485 490 495

Val Val Val Leu Asn Arg Ser Ser Lys Asp Val Pro Leu Thr Ile Lys
 500 505 510

Asp Pro Ala Val Gly Phe Leu Glu Thr Ile Ser Pro Gly Tyr Ser Ile
 515 520 525

His Thr Tyr Leu Trp His Arg Gln
 530 535

<210> 25

<211> 1726

<212> DNA

<213> Homo sapiens

<400> 25

atggatgcaa tgaagagagg gctctgtgt gtgctgctgc tgtgtggagc agtcttcgtt
 60

tcgcccagcc aggaaatcca tgcccgattc agaagaggag ccagatctta ccaagtgatc
 120

tgcagagatg aaaaaacgca gatgatatac cagcaacatc agtcatggct gcgccctgtg
180

ctcagaagca accgggtgga atattgctgg tgcAACAGTG gcagggcaca gtgccactca
240

gtgcctgtca aaagtgcag cgagccaagg tgTTCAACG gggcacctg ccagcaggcc
300

ctgtacttct cagatttcgt gtgccagtgc cccgaaggat ttgctggaa gtgctgtgaa
360

atagatacca gggcacgtg ctacgaggac cagggcatca gctacagggg cacgtggagc
420

acagcggaga gtggcgccga gtgcaccaac tggAACAGCA gcggcggc ccagaagccc
480

tacagccccgc ggaggccaga cgccatcagg ctgggcctgg ggaaccacaa ctactgcaga
540

aacctcagatc gagactcaa gcccctggtgc tacgtttta aggccccgaa gtacagctca
600

gagttctgca gcacccctgc ctgctctgag ggAAACAGTG actgtactt tggaaatggg
660

tcagcctacc gtggcacgca cagcctcacc gagtcgggtg cctcctgcct cccgtggaaat
720

tccatgatcc ttagaggcaa ggTTACACA gcacagaacc ccagtgcCcC ggcactggc
780

ctggccaaac ataattactg ccggaaatcct gatggggatg ccaAGCCCTG gtGCCACGTG
840

ctgaagaacc gcaggctgac gtgggagtagc tgtgtatgtc cctcctgctc cacctgcggc
900

ctgagacagt acagccagcc tcagttcgc atcaaaggag ggctcttagc cgacatcgcc
960

tcccacccct ggcaggctgc catcttgcc aagcacagga ggtcgccggg agagcggttc
1020

ctgtcgccccggg goatactcat cagctcctgc tggattctct ctgcCcCcCa ctgttccag
1080

gagaggtttc cgccccacca cctgacggtg atcttggca gaacataccg ggtggccct
1140

ggcgaggagg agcagaaatt tgaagtgcAA aaatacattt tccataagga attcgatgat
1200

gacacttacg acaatgacat tgcgtgtgc cagctgaaat cggattcgTC ccgtgtgcc
1260

caggagagca gcgtggtccg cactgtgtgc cttccccgg cggacctgca gctgccccgg
1320

tggacggagt gtgagctctc tggctacggc aagcatgagg cttgtctcc ttcttattcg
1380

gagcggctga aggaggctca tgtcagactg taccatcca ggcgtgcac atcacaacat
1440

ttacttaaca gaacagtac cgacaacatg ctgtgtgtg gagacactcg gagcggcggg
1500

ccccaggcaa acttgcacga cgcctgccag ggcgattcgg gaggccccct ggtgtgtctg
1560

aacatggcc gcatgacttt ggtggcatac atcagctggg gcctgggttg tggacagaag
1620

gatgtcccccgtgtgtacac caaggttacc aactacctag actggattcg tgacaacatg
1680

cggccgtgac caggaacacc cgactcctca aaagcaaatg agatcc
1726

<210> 26

<211> 562

<212> PRT

<213> Homo sapiens

<400> 26

Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly
1 5 10 15

Ala Val Phe Val Ser Pro Ser Gln Glu Ile His Ala Arg Phe Arg Arg
20 25 30

Gly Ala Arg Ser Tyr Gln Val Ile Cys Arg Asp Glu Lys Thr Gln Met
35 40 45

Ile Tyr Gln Gln His Gln Ser Trp Leu Arg Pro Val Leu Arg Ser Asn
50 55 60

Arg Val Glu Tyr Cys Trp Cys Asn Ser Gly Arg Ala Gln Cys His Ser
65 70 75 80

Val Pro Val Lys Ser Cys Ser Glu Pro Arg Cys Phe Asn Gly Gly Thr
85 90 95

Cys Gln Gln Ala Leu Tyr Phe Ser Asp Phe Val Cys Gln Cys Pro Glu
100 105 110

Gly Phe Ala Gly Lys Cys Cys Glu Ile Asp Thr Arg Ala Thr Cys Tyr
115 120 125

Glu Asp Gln Gly Ile Ser Tyr Arg Gly Thr Trp Ser Thr Ala Glu Ser
130 135 140

Gly Ala Glu Cys Thr Asn Trp Asn Ser Ser Ala Leu Ala Gln Lys Pro
145 150 155 160

Tyr Ser Gly Arg Arg Pro Asp Ala Ile Arg Leu Gly Leu Gly Asn His
165 170 175

Asn Tyr Cys Arg Asn Pro Asp Arg Asp Ser Lys Pro Trp Cys Tyr Val

180

185

190

Phe Lys Ala Gly Lys Tyr Ser Ser Glu Phe Cys Ser Thr Pro Ala Cys
 195 200 205

Ser Glu Gly Asn Ser Asp Cys Tyr Phe Gly Asn Gly Ser Ala Tyr Arg
 210 215 220

Gly Thr His Ser Leu Thr Glu Ser Gly Ala Ser Cys Leu Pro Trp Asn
 225 230 235 240

Ser Met Ile Leu Ile Gly Lys Val Tyr Thr Ala Gln Asn Pro Ser Ala
 245 250 255

Gln Ala Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp Gly
 260 265 270

Asp Ala Lys Pro Trp Cys His Val Leu Lys Asn Arg Arg Leu Thr Trp
 275 280 285

Glu Tyr Cys Asp Val Pro Ser Cys Ser Thr Cys Gly Leu Arg Gln Tyr
 290 295 300

Ser Gln Pro Gln Phe Arg Ile Lys Gly Gly Leu Phe Ala Asp Ile Ala
 305 310 315 320

Ser His Pro Trp Gln Ala Ala Ile Phe Ala Lys His Arg Arg Ser Pro
 325 330 335

Gly Glu Arg Phe Leu Cys Gly Gly Ile Leu Ile Ser Ser Cys Trp Ile
 340 345 350

Leu Ser Ala Ala His Cys Phe Gln Glu Arg Phe Pro Pro His His Leu
 355 360 365

Thr Val Ile Leu Gly Arg Thr Tyr Arg Val Val Pro Gly Glu Glu Glu
 370 375 380

Gln Lys Phe Glu Val Glu Lys Tyr Ile Val His Lys Glu Phe Asp Asp
 385 390 395 400

Asp Thr Tyr Asp Asn Asp Ile Ala Leu Leu Gln Leu Lys Ser Asp Ser
 405 410 415

Ser Arg Cys Ala Gln Glu Ser Ser Val Val Arg Thr Val Cys Leu Pro
 420 425 430

Pro Ala Asp Leu Gln Leu Pro Asp Trp Thr Glu Cys Glu Leu Ser Gly
 435 440 445

Tyr Gly Lys His Glu Ala Leu Ser Pro Phe Tyr Ser Glu Arg Leu Lys
 450 455 460

Glu Ala His Val Arg Leu Tyr Pro Ser Ser Arg Cys Thr Ser Gln His
 465 470 475 480

Leu Leu Asn Arg Thr Val Thr Asp Asn Met Leu Cys Ala Gly Asp Thr
 485 490 495

Arg Ser Gly Gly Pro Gln Ala Asn Leu His Asp Ala Cys Gln Gly Asp
 500 505 510

Ser Gly Gly Pro Leu Val Cys Leu Asn Asp Gly Arg Met Thr Leu Val
 515 520 525

Gly Ile Ile Ser Trp Gly Leu Gly Cys Gly Gln Lys Asp Val Pro Gly
 530 535 540

Val Tyr Thr Lys Val Thr Asn Tyr Leu Asp Trp Ile Arg Asp Asn Met
 545 550 555 560

Arg Pro

<210> 27

<211> 825

<212> DNA

<213> Homo sapiens

<400> 27

atcactctct ttaatcacta ctcacattaa cctcaactcc tgccacaatg tacaggatgc
 60

aactcctgtc ttgcattgca ctaattcttg cacttgcac aaacagtgc a cttacttcaa
 120

gttcgacaaa gaaaacaaag aaaacacacgc tacaactgga gcatttactg ctggatttac
 180

agatgatttt gaatggatt aataattaca agaatccaa actcaccagg atgctcacat
 240

ttaagtttta catgcccag aaggccacag aactgaaaca gtttcagtgt ctagaagaag
 300

aactcaaacc tctggagggaa gtgctgaatt tagctcaaag caaaaacttt cacttaagac
 360

ccagggactt aatcagcaat atcaacgtaa tagttctgga actaaaggga tctgaaacaa
 420

cattcatgtg tgaatatgca gatgagacag caaccatgtt agaatttctg aacagatgga
 480

ttaccttttgc tcaaaggcatc atctcaacac taacttgata attaagtgt tcccaactaa
 540

aacatatcag gccttctatt tatttatTTT aatattttaa ttttatTTT attgttgaat
 600

gtatgggtgc tacctattgt aactattttt cttaatctta aaactataaa tatggatctt
 660

ttatgattct ttttgtaagc cctaggggct cttaaaatggt ttaccttatt tatccccaaa
 720

atatttatta ttatgttcaa tgttaaatat agtatctatg tagattggtt agtaaaaacta
 780

tttaataaaat ttgataaataa taaaaaaaaaa aaacaaaaaaaaaa aaaaa
 825

<210> 28

<211> 156

<212> PRT

<213> Homo sapiens

<400> 28

Met	Tyr	Arg	Met	Gln	Leu	Leu	Ser	Cys	Ile	Ala	Leu	Ile	Leu	Ala	Leu
1				5					10				15		

Val	Thr	Asn	Ser	Ala	Pro	Thr	Ser	Ser	Ser	Thr	Lys	Lys	Thr	Lys	Lys
						20		25				30			

Thr	Gln	Leu	Gln	Leu	Glu	His	Leu	Leu	Leu	Asp	Leu	Gln	Met	Ile	Leu
						35		40				45			

Asn	Gly	Ile	Asn	Asn	Tyr	Lys	Asn	Pro	Lys	Leu	Thr	Arg	Met	Leu	Thr
					50			55			60				

Phe	Lys	Phe	Tyr	Met	Pro	Lys	Lys	Ala	Thr	Glu	Leu	Lys	Gln	Leu	Gln
					65		70		75			80			

Cys	Leu	Glu	Glu	Glu	Leu	Lys	Pro	Leu	Glu	Glu	Val	Leu	Asn	Leu	Ala
							85		90			95			

Gln	Ser	Lys	Asn	Phe	His	Leu	Arg	Pro	Arg	Asp	Leu	Ile	Ser	Asn	Ile
					100			105				110			

Asn	Val	Ile	Val	Leu	Glu	Leu	Lys	Gly	Ser	Glu	Thr	Thr	Phe	Met	Cys
					115			120			125				

Glu	Tyr	Ala	Asp	Glu	Thr	Ala	Thr	Ile	Val	Glu	Phe	Leu	Asn	Arg	Trp
					130			135			140				

Ile	Thr	Phe	Cys	Gln	Ser	Ile	Ile	Ser	Thr	Leu	Thr			
					145			150			155			

<210> 29

<211> 7931

<212> DNA

<213> Homo sapiens

<400> 29

atgcaaatacg	agctctccac	ctgtttttt	ctgtgccttt	tgcgattctg	cttttagtgcc
60					

accagaagat	actacctggg	tgcagtggaa	ctgtcatggg	actatatgca	aagtgatctc
120					

ggtgagctgc	ctgtggacgc	aagatttcct	cctagagtgc	caaaaatcttt	tccattcaac
180					

acctcagtcg	tgtacaaaaaa	gactctgttt	gtagaattca	cggtcaccc	tttcaacatc
240					

gctaaggccaa	ggccaccctg	gatgggtctg	ctaggtccca	ccatccaggg	tgaggtttat
300					

gatacagtgg	tcattacact	taagaacatg	gcttcccac	ctgtcagtct	tcatgctgtt
360					

ggtgttatcct	actggaaagc	ttctgaggga	gctgaatatg	atgatcagac	cagtcaaagg
420					

gagaaagaag atgataaaagt cttccctgggt ggaaggccata catatgtctg gcaggtcctg
480

aaagagaatg gtccaatggc ctctgaccca ctgtgcctta cctactcata tctttctcat
540

gtggacotgg taaaagactt gaattcaggc ctcattggag ccctactagt atgttagagaa
600

gggagtctgg ccaaggaaaa gacacagacc ttgcacaaat ttatactact ttttgcgtta
660

tttgatgaag ggaaaagttg gcactcagaa acaaagaact ctttgatgca ggatagggat
720

gctgcatctg ctcgggcctg gcctaaaatg cacacagtca atggttatgt aaacaggtat
780

ctgccaggc tgattggatg ccacaggaaa tcagtctatt ggcatgtgat tggaaatggc
840

accactcctg aagtgcactc aatattcctc gaaggtcaca catttcttgt gaggaaccat
900

cggcaggcgt ccttggaaat ctgc当地ata actttcctta ctgctcaaac actcttgatg
960

gaccttggac agtttctact gttttgtcat atctcttccc accaacatga tggcatggaa
1020

gcttatgtca aagtagacag ctgtccagag gaaccccaac taogaatgaa aaataatgaa
1080

gaagcgaag actatgatga tgatctact gattctgaaa tggatgtggt caggtttgat
1140

gatgacaact ctctttcatt tatccaaatt cgctcagttg ccaagaagca tcctaaaact
1200

tgggtacatt acattgctgc tgaagaggag gactggact atgctccott agtctcgcc
1260

cccgatgaca gaagttataa aagtcaatat ttgaacaatg gccctcagcg gattggtagg
1320

aagtacaaaa aagtccgatt tatggcatac acagatgaaa cctttaagac tcgtgaagct
1380

attcagcatg aatcaggaat cttgggacct ttactttatg gggaaagtgg agacacactg
1440

ttgattatat ttaagaatca agcaagcaga ccatataaca tctaccctca cggaaatcact
1500

gatgtccgtc ctttgttattc aaggagatta cccaaagggtg taaaacattt gaaggatttt
1560

ccaaattctgc caggagaaat attcaaataat aaatggacag tgactgtaga agatggccca
1620

actaaatcg atcctcggtg cctgaccgcg tattactcta gtttcgttaa tattyayaya
1680

gatctagctt caggactcat tggccctctc ctcatctgct acaaagaatc tgttagatcaa
1740

agagggaaacc agataatgtc agacaagagg aatgtcatcc tgtttctgt atttgatgag
1800

aaccgaagct ggtacctcac agagaatata caacgcttc tcccaatcc agctggagtg
1860

cagttgagg atccagagtt ccaagcctcc aacatcatgc acagcatcaa tggctatgtt
1920

ttttagatgtt tgcaagggtc agtttgggg catgaggtgg catactggta cattctaagc
1980

attggagcac agactgactt cctttctgtc ttcttctctg gatatacctt caaacacaaa
2040

atggtctatg aagacacact caccatttc ccattctcg gagaaactgt ctccatgtcg
2100

atggaaaacc caggtctatg gattctgggg tgccacaact cagactttcg gaacagaggc
2160

atgaccgcct tactgaaggt ttcttagttgt gacaagaaca ctgggatta ttacgaggac
2220

agttatgaag atatccagc atacttgctg agtaaaaaca atgccattga accaagaagc
2280

ttctcccaga attcaagaca ccgttagact aggcaaaagc aatttaatgc caccacaatt
2340

ccagaaaaatg acatagagaa gactgaccct tggttgcac acagaacacc tatgcctaaa
2400

atacaaaaatg tctcctctag tgatttggg atgctttgc gacagagtcc tactccacat
2460

ggcttatcct tatctgatct ccaagaagcc aaatatgaga cttttctga tgatccatca
2520

cctggagcaa tagacagtaa taacagcctg tctgaaatga cacacttcag gccacagctc
2580

catcacagtg gggacatggg atttacccct gagtcaggcc tccaattaag attaaatgag
2640

aaactgggaa caactgcagc aacagagttg aagaaaacttg atttcaaagt ttctagtaca
2700

tcaaataatc tgatttcaac aattccatca gacaatttg cagcaggtac tgataataca
2760

agttcccttag gaccccaag tatgccagtt cattatgata gtcaatttgc taccactcta
2820

tttggcaaaa agtcatctcc ccttaactgag tctgggtggac ctctgagctt gagtgaagaa
2880

aataatgatt caaagtgtt agaatoaggt ttaatgaata gccaagaaag ttcatgggga
2940

aaaaatgtat cgtcaacaga gagtggttagg ttattnaaag ggaaaagagc tcatggacct
3000

gctttgttga ctaaagataa tgccattttc aaagtttagca tctctttgtt aaagacaaac
3060

aaaacttcca ataattcagc aactaataga aagactcaca ttgatggccc atcattatta
3120

attgagaata gtccatcagt ctggcaaaat atattagaaa gtgacactga gtttaaaaaa
3180

gtgacaccc ttgattcatga cagaatgctt atggacaaaa atgctacagc tttgaggcta
3240

aatcatatgt caaataaaac tacttcatca aaaaacatgg aaatggtcca acagaaaaaa
3300

gagggccccca ttccaccaga tgcacaaaat ccagatatgt cgttctttaa gatgctattc
3360

ttgccagaat cagcaaggtg gatacaaagg actcatggaa agaactctct gaactctggg
3420

caaggccccca gtccaaagca attagtatcc ttaggaccag aaaaatctgt ggaaggcag
3480

aatttcattgt ctgagaaaaa caaagtggta gtaggaaagg gtgaattttac aaaggacgta
3540

ggactcaaag agatggttt tccaaggcgc agaaacctat ttcttactaa ctggataat
3600

ttacatgaaa ataatacaca caatcaagaa aaaaaattc aggaagaaat agaaaagaag
3660

gaaacattaa tccaagagaa tgtgtttt cctcagatac atacagtgac tggcactaag
3720

aatttcatga agaacctttt cttactgagc actaggcaaa atgtagaagg ttcatatgac
3780

ggggcatatg ctccagtact tcaagatttt aggtcattaa atgattcaac aaatagaaca
3840

aagaaacaca cagctcattt ctcaaaaaaa ggggaggaag aaaacttggta aggcttggga
3900

aatcaaaccac agcaaattgt agagaaatat gcatgcacca caaggatatac tcctaatacaca
3960

agccagcaga attttgtcac gcaacgtagt aagagagctt tgaaacaatt cagactcccc
4020

ctagaagaaaa cagaaccttga aaaaaggata attgtggatg acaccccaac ccagtggcc
4080

aaaaacatga aacatttgac cccgagcacc ctcacacaga tagactacaa tgagaaggag
4140

aaaggggcca ttactcagtc tcccttatca gattgcctta cgaggagtca tagcatccct
4200

caagcaaata gatctccatt acccattgca aaggtatcat catttccatc tattagacct
4260

atatatctga ccagggctt attccaagac aactttctc atcttccagc agcatctt
4320

agaaagaaag attctggggt ccaagaaagc agtcatttct tacaaggagc caaaaaaaaaat
4380

aacctttctt tagccattct aaccttggag atgactggtg atcaaagaga gttggctcc
4440

ctggggacaa gtgccacaaa ttcagtcaca tacaagaaag ttgagaacac tttctcccg
4500

aaaccagact tgccaaaac atctggcaaa gttgaattgc ttccaaaagt tcacattt
4560

cagaaggacc tattccctac ggaaacttagc aatgggtctc ctggccatct ggatctcg
4620

gaagggagcc ttcttcaggg aacagaggg aacagagggc gcgattaagt ggaatgaagc aaacagac
4680

ggaaaagttc ctttctgag agtagcaaca gaaagctctg caaagactcc ctccaagcta
4740

ttggatcctc ttgcttggga taaccactat ggtactcaga tacaaaaga agagtggaaa
4800

tcccaagaga agtcaccaga aaaaacagct ttaagaaaa aggataccat tttgtccctg
4860

aacgcttgtg aaagcaatca tgcaatagca gcaataaatg agggacaaaa taagcccgaa
4920

atagaagtca cctggcaaa gcaaggtagg actgaaaggc tgtgtctca aaacccacca
4980

gtcttgaac gccatcaacg gaaataact cgtactactc ttcagtcaga tcaagaggaa
5040

attgactatg atgataccat atcagttgaa atgaagaagg aagatttga catttatgat
5100

gaggatgaaa atcagagccc ccgcagctt caaaagaaaa cacgacacta ttttattgt
5160

gcagtggaga ggctctggga ttatggatg agtagctccc cacatgttct aagaaacagg
5220

gctcäagtg gcägtgtccc tcagttcaag aaagttgttccaggaaatt tactgauguc
5280

tccttactc agccottata ccgtggagaa ctaaatgaac atttggact cctggggcca
5340

tatataagag cagaagtta agataatatc atggtaactt tcagaaatca ggcctctcg
5400

ccctattccot tctattctag ccttatttct tatgaggaag atcagaggca aggaggcagaa
5460

cctagaaaaa actttgtcaa gcctaattgaa accaaaactt actttggaa agtgcacat
5520

catatggcac ccactaaaga tgagtttgac tgcaaagoct gggcttattt ctctgatgtt
5580

gacctggaaa aagatgtgca ctcaggcctg attggacccc ttctggctcg ccacactaac
5640

acactgaacc ctgctcatgg gagacaagtg acagtacagg aatttgcctt gtttttcacc
5700

atottttagt agacccaaag ctggtaactc actgaaaata tggaaagaaa ctgcaggcgt
5760

ccctgcaata tccagatgga agatccact tttaaagaga attatgcctt ccatgcaatc
5820

aatggctaca taatggatac actacotggc ttagtaatgg ctcaggatca aaggattcga
5880

tggtatctgc tcagcatggg cagcaatgaa aacatccatt ctattcattt cagtgacat
5940

gtgttcaactg tacgaaaaaa agaggagtat aaaatggcac tgtacaatct ctatccaggt
6000

gtttttgaga cagtggaaat gttaccatcc aaagctggaa ttggcgggtt ggaatgcctt
6060

attggcgagc atctacatgc tggatgagc acacttttc tggtgtacag caataagtgt
6120

cagactcccc tggaaatggc ttctggacac attagagatt ttcaagattac agcttcagga
6180

caatatggac agtggggccc aaagctggcc agacttcatt attccggato aatcaatgcc
6240

tggagcacca aggagccctt ttcttggatc aaggtggatc tggcggacc aatgattatt
6300

cacggcatca agacccaggg tgcccgtag aagttctcca gctctacat ctctcagttt
6360

atcatcatgt atagtcttga tggaaagaag tggcagactt atcgaggaaa ttccactgga
6420

accttaatgg ttttctttgg caatgtggat tcatctggga taaaacaccaa tatttttaac
6480

cctccaatta ttgctcgata catccgtttg cacccaaactc attatagcat tcgcagca
6540

cttcgcatttgg agttgatggg ctgtgatttta aatagttgca gcatgccatt gggaatggag
6600

agtaaagcaa tattcagatgc acagattact gcttcattcactt accttaccaa tatgtttgcc
6660

acctgggtctc cttcaaaaagc tcgacttcac ctccaaaggga ggagtaatgc ctggagac
6720

caggtgaata atccaaaaga gtggctgcaa gtggacttcc agaagacaat gaaagtca
6780

ggagtaacta ctcaaggagt aaaatctctg cttaccagca tgtatgtgaa ggagttcc
6840

atctccagca gtcaagatgg ccatcagtgg actctctttt ttcagaatgg caaagtaaag
6900

gtttttcagg gaaatcaaga ctccttcaca cctgtggtga actctctaga cccaccgtta
6960

ctgactcgct acottcgaat tcaccccccag agttgggtgc accagattgc cctgaggatg
7020

gaggttctgg gctgcgaggc acaggacctc tactgagggg ggccactgca gcacctgcca
7080

ctgccgtcac ctctccctcc tcagctccag ggcagtgtcc ctccctggct tgcattctac
7140

ctttgtgcta aatccttagca gacactgcct tgaaggctcc tgaattaact atcatcagtc
7200

ctgcatttct ttgggtggggg gccaggaggg tgcatccaat ttaacttaac tcttacctat
7260

tttctgcagc tgctcccaga ttactcattc cttccaaatat aactaggcaa aaagaagtga
7320

ggagaaacct gcatgaaagc attctccct gaaaagttag gcctctcaga gtcaccactt
7380

cctctgttgtt agaaaaacta tgtgatgaaa ctttgaaaaa gatatttatg atgttaacat
7440

ttcaggttaa gcctcatacg tttaaaataa aactctcagt tttttattat cctgatcaag
7500

catggAACAA agcatgtttc aggatcagat caataacaatc ttggagtcaa aaggcaaatc
7560

atttggacaa tctgcaaaat ggagagaata caataactac tacagtaaag tctgtttctg
7620

cttccttaca catagatata attatgttat ttagtcatta tgaggggcac attccttac
7680

ccaaaactag cattctaaa ctgagaatta tagatgggt tcaagaatcc ctaagtcccc
7740

tgaaattata taaggcattc tgtataaatg caaatgtgca ttttctgac gagtgtccat
7800

agatataaaag ccatttggtc ttaattctga ccaataaaaaa aataagtca gaggatgcaa
7860

ttgttcaaag ctttcaaata aaataacaat gtcttcttga aatttgtgat ggccaagaaa
7920

gaaaatgatg a
7931

<210> 30
<211> 2351
<212> PRT
<213> Homo sapiens

<400> 30
Met Gln Ile Glu Leu Ser Thr Cys Phe Phe Leu Cys Leu Leu Arg Phe
1 5 10 15

Cys Phe Ser Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser
20 25 30

Trp Asp Tyr Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg
35 40 45

Phe Pro Pro Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val
50 55 60

Tyr Lys Lys Thr Leu Phe Val Glu Phe Thr Asp His Leu Phe Asn Ile
65 70 75 80

Ala Lys Pro Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln
85 90 95

Ala Glu Val Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser
100 105 110

His Pro Val Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser
115 120 125

Glu Gly Ala Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp
130 135 140

Asp Lys Val Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu
145 150 155 160

Lys Glu Asn Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser
165 170 175

Tyr Leu Ser His Val Asp Leu Val Lys Asp Leu Asn Ser Gly Leu Ile
180 185 190

Gly Ala Leu Leu Val Cys Arg Glu Gly Ser Leu Ala Lys Glu Lys Thr

195	200	205
Gln Thr Leu His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp Glu Gly		
210	215	220
Lys Ser Trp His Ser Glu Thr Lys Asn Ser Leu Met Gln Asp Arg Asp		
225	230	235
240		
Ala Ala Ser Ala Arg Ala Trp Pro Lys Met His Thr Val Asn Gly Tyr		
245	250	255
Val Asn Arg Ser Leu Pro Gly Leu Ile Gly Cys His Arg Lys Ser Val		
260	265	270
Tyr Trp His Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile		
275	280	285
Phe Leu Glu Gly His Thr Phe Leu Val Arg Asn His Arg Gln Ala Ser		
290	295	300
Leu Glu Ile Ser Pro Ile Thr Phe Leu Thr Ala Gln Thr Leu Leu Met		
305	310	315
320		
Asp Leu Gly Gln Phe Leu Leu Phe Cys His Ile Ser Ser His Gln His		
325	330	335
Asp Gly Met Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro		
340	345	350
Gln Leu Arg Met Lys Asn Asn Glu Glu Ala Glu Asp Tyr Asp Asp Asp		
355	360	365
Leu Thr Asp Ser Glu Met Asp Val Val Arg Phe Asp Asp Asp Asn Ser		
370	375	380
Pro Ser Phe Ile Gln Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr		
385	390	395
400		
Trp Val His Tyr Ile Ala Ala Glu Glu Glu Asp Trp Asp Tyr Ala Pro		
405	410	415
Leu Val Leu Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn		
420	425	430
Asn Gly Pro Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg Phe Met		
435	440	445
Ala Tyr Thr Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu		
450	455	460
Ser Gly Ile Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu		
465	470	475
480		
Leu Ile Ile Phe Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro		
485	490	495
His Gly Ile Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys		
500	505	510
Gly Val Lys His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe		
515	520	525

Lys Tyr Lys Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp
 530 535 540
 Pro Arg Cys Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg
 545 550 555 560
 Asp Leu Ala Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu
 565 570 575
 Ser Val Asp Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val
 580 585 590
 Ile Leu Phe Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu
 595 600 605
 Asn Ile Gln Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp
 610 615 620
 Pro Glu Phe Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val
 625 630 635 640
 Phe Asp Ser Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp
 645 650 655
 Tyr Ile Leu Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe
 660 665 670
 Ser Gly Tyr Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr
 675 680 685
 Leu Phe Pro Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro
 690 695 700
 Gly Leu Trp Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly
 705 710 715 720
 Met Thr Ala Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp
 725 730 735
 Tyr Tyr Glu Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys
 740 745 750
 Asn Asn Ala Ile Glu Pro Arg Ser Phe Ser Gln Asn Ser Arg His Arg
 755 760 765
 Ser Thr Arg Gln Lys Gln Phe Asn Ala Thr Thr Ile Pro Glu Asn Asp
 770 775 780
 Ile Glu Lys Thr Asp Pro Trp Phe Ala His Arg Thr Pro Met Pro Lys
 785 790 795 800
 Ile Gln Asn Val Ser Ser Ser Asp Leu Leu Met Leu Leu Arg Gln Ser
 805 810 815
 Pro Thr Pro His Gly Leu Ser Leu Ser Asp Leu Gln Glu Ala Lys Tyr
 820 825 830
 Glu Thr Phe Ser Asp Asp Pro Ser Pro Gly Ala Ile Asp Ser Asn Asn
 835 840 845

Ser Leu Ser Glu Met Thr His Phe Arg Pro Gin Leu His His Ser Gly
 850 855 860
 Asp Met Val Phe Thr Pro Glu Ser Gly Leu Gln Leu Arg Leu Asn Glu
 865 870 875 880
 Lys Leu Gly Thr Thr Ala Ala Thr Glu Leu Lys Lys Leu Asp Phe Lys
 885 890 895
 Val Ser Ser Thr Ser Asn Asn Leu Ile Ser Thr Ile Pro Ser Asp Asn
 900 905 910
 Leu Ala Ala Gly Thr Asp Asn Thr Ser Ser Leu Gly Pro Pro Ser Met
 915 920 925
 Pro Val His Tyr Asp Ser Gln Leu Asp Thr Thr Leu Phe Gly Lys Lys
 930 935 940
 Ser Ser Pro Leu Thr Glu Ser Gly Gly Pro Leu Ser Leu Ser Glu Glu
 945 950 955 960
 Asn Asn Asp Ser Lys Leu Leu Glu Ser Gly Leu Met Asn Ser Gln Glu
 965 970 975
 Ser Ser Trp Gly Lys Asn Val Ser Ser Thr Glu Ser Gly Arg Leu Phe
 980 985 990
 Lys Gly Lys Arg Ala His Gly Pro Ala Leu Leu Thr Lys Asp Asn Ala
 995 1000 1005
 Leu Phe Lys Val Ser Ile Ser Leu Leu Lys Thr Asn Lys Thr Ser
 1010 1015 1020
 Asn Asn Ser Ala Thr Asn Arg Lys Thr His Ile Asp Gly Pro Ser
 1025 1030 1035
 Leu Leu Ile Glu Asn Ser Pro Ser Val Trp Gln Asn Ile Leu Glu
 1040 1045 1050
 Ser Asp Thr Glu Phe Lys Lys Val Thr Pro Leu Ile His Asp Arg
 1055 1060 1065
 Met Leu Met Asp Lys Asn Ala Thr Ala Leu Arg Leu Asn His Met
 1070 1075 1080
 Ser Asn Lys Thr Thr Ser Ser Lys Asn Met Glu Met Val Gln Gln
 1085 1090 1095
 Lys Lys Glu Gly Pro Ile Pro Pro Asp Ala Gln Asn Pro Asp Met
 1100 1105 1110
 Ser Phe Phe Lys Met Leu Phe Leu Pro Glu Ser Ala Arg Trp Ile
 1115 1120 1125
 Gln Arg Thr His Gly Lys Asn Ser Leu Asn Ser Gly Gln Gly Pro
 1130 1135 1140
 Ser Pro Lys Gln Leu Val Ser Leu Gly Pro Glu Lys Ser Val Glu
 1145 1150 1155
 Gly Gln Asn Phe Leu Ser Glu Lys Asn Lys Val Val Val Gly Lys

1160	.1165	1170												
Gly	Glu	Phe	Thr	Lys	Asp	Val	Gly	Leu	Lys	Glu	Met	Val	Phe	Pro
1175							1180				1185			
Ser	Ser	Arg	Asn	Leu	Phe	Leu	Thr	Asn	Leu	Asp	Asn	Leu	His	Glu
1190							1195				1200			
Asn	Asn	Thr	His	Asn	Gln	Glu	Lys	Lys	Ile	Gln	Glu	Glu	Ile	Glu
1205						1210					1215			
Lys	Lys	Glu	Thr	Leu	Ile	Gln	Glu	Asn	Val	Val	Leu	Pro	Gln	Ile
1220						1225					1230			
His	Thr	Val	Thr	Gly	Thr	Lys	Asn	Phe	Met	Lys	Asn	Leu	Phe	Leu
1235						1240					1245			
Leu	Ser	Thr	Arg	Gln	Asn	Val	Glu	Gly	Ser	Tyr	Asp	Gly	Ala	Tyr
1250						1255					1260			
Ala	Pro	Val	Leu	Gln	Asp	Phe	Arg	Ser	Leu	Asn	Asp	Ser	Thr	Asn
1265						1270					1275			
Arg	Thr	Lys	Lys	His	Thr	Ala	His	Phe	Ser	Lys	Lys	Gly	Glu	Glu
1280						1285					1290			
Glu	Asn	Leu	Glu	Gly	Leu	Gly	Asn	Gln	Thr	Lys	Gln	Ile	Val	Glu
1295						1300					1305			
Lys	Tyr	Ala	Cys	Thr	Thr	Arg	Ile	Ser	Pro	Asn	Thr	Ser	Gln	Gln
1310						1315					1320			
Asn	Phe	Val	Thr	Gln	Arg	Ser	Lys	Arg	Ala	Leu	Lys	Gln	Phe	Arg
1325						1330					1335			
Leu	Pro	Leu	Glu	Glu	Thr	Glu	Leu	Glu	Lys	Arg	Ile	Ile	Val	Asp
1340						1345					1350			
Asp	Thr	Ser	Thr	Gln	Trp	Ser	Lys	Asn	Met	Lys	His	Leu	Thr	Pro
1355						1360					1365			
Ser	Thr	Leu	Thr	Gln	Ile	Asp	Tyr	Asn	Glu	Lys	Glu	Lys	Gly	Ala
1370						1375					1380			
Ile	Thr	Gln	Ser	Pro	Leu	Ser	Asp	Cys	Leu	Thr	Arg	Ser	His	Ser
1385						1390					1395			
Ile	Pro	Gln	Ala	Asn	Arg	Ser	Pro	Leu	Pro	Ile	Ala	Lys	Val	Ser
1400						1405					1410			
Ser	Phe	Pro	Ser	Ile	Arg	Pro	Ile	Tyr	Leu	Thr	Arg	Val	Leu	Phe
1415						1420					1425			
Gln	Asp	Asn	Ser	Ser	His	Leu	Pro	Ala	Ala	Ser	Tyr	Arg	Lys	Lys
1430						1435					1440			
Asp	Ser	Gly	Val	Gln	Glu	Ser	Ser	His	Phe	Leu	Gln	Gly	Ala	Lys
1445						1450					1455			
Lys	Asn	Asn	Leu	Ser	Leu	Ala	Ile	Leu	Thr	Leu	Glu	Met	Thr	Gly
1460						1465					1470			

Asp Gln Arg Glu Val Gly Ser Leu Gly Thr Ser Ala Thr Asn Ser
 1475 1480 1485
 Val Thr Tyr Lys Lys Val Glu Asn Thr Val Leu Pro Lys Pro Asp
 1490 1495 1500
 Leu Pro Lys Thr Ser Gly Lys Val Glu Leu Leu Pro Lys Val His
 1505 1510 1515
 Ile Tyr Gln Lys Asp Leu Phe Pro Thr Glu Thr Ser Asn Gly Ser
 1520 1525 1530
 Pro Gly His Leu Asp Leu Val Glu Gly Ser Leu Leu Gln Gly Thr
 1535 1540 1545
 Glu Gly Ala Ile Lys Trp Asn Glu Ala Asn Arg Pro Gly Lys Val
 1550 1555 1560
 Pro Phe Leu Arg Val Ala Thr Glu Ser Ser Ala Lys Thr Pro Ser
 1565 1570 1575
 Lys Leu Leu Asp Pro Leu Ala Trp Asp Asn His Tyr Gly Thr Gln
 1580 1585 1590
 Ile Pro Lys Glu Glu Trp Lys Ser Gln Glu Lys Ser Pro Glu Lys
 1595 1600 1605
 Thr Ala Phe Lys Lys Asp Thr Ile Leu Ser Leu Asn Ala Cys
 1610 1615 1620
 Glu Ser Asn His Ala Ile Ala Ala Ile Asn Glu Gly Gln Asn Lys
 1625 1630 1635
 Pro Glu Ile Glu Val Thr Trp Ala Lys Gln Gly Arg Thr Glu Arg
 1640 1645 1650
 Leu Cys Ser Gln Asn Pro Pro Val Leu Lys Arg His Gln Arg Glu
 1655 1660 1665
 Ile Thr Arg Thr Thr Leu Gln Ser Asp Gln Glu Glu Ile Asp Tyr
 1670 1675 1680
 Asp Asp Thr Ile Ser Val Glu Met Lys Lys Glu Asp Phe Asp Ile
 1685 1690 1695
 Tyr Asp Glu Asp Glu Asn Gln Ser Pro Arg Ser Phe Gln Lys Lys
 1700 1705 1710
 Thr Arg His Tyr Phe Ile Ala Ala Val Glu Arg Leu Trp Asp Tyr
 1715 1720 1725
 Gly Met Ser Ser Ser Pro His Val Leu Arg Asn Arg Ala Gln Ser
 1730 1735 1740
 Gly Ser Val Pro Gln Phe Lys Lys Val Val Phe Gln Glu Phe Thr
 1745 1750 1755
 Asp Gly Ser Phe Thr Gln Pro Leu Tyr Arg Gly Glu Leu Asn Glu
 1760 1765 1770

His Leu Gly Leu Leu Gly Pro Tyr Ile Arg Ala Glu Val Glu ASP
 1775 1780 1785
 Asn Ile Met Val Thr Phe Arg Asn Gln Ala Ser Arg Pro Tyr Ser
 1790 1795 1800
 Phe Tyr Ser Ser Leu Ile Ser Tyr Glu Glu Asp Gln Arg Gln Gly
 1805 1810 1815
 Ala Glu Pro Arg Lys Asn Phe Val Lys Pro Asn Glu Thr Lys Thr
 1820 1825 1830
 Tyr Phe Trp Lys Val Gln His His Met Ala Pro Thr Lys Asp Glu
 1835 1840 1845
 Phe Asp Cys Lys Ala Trp Ala Tyr Phe Ser Asp Val Asp Leu Glu
 1850 1855 1860
 Lys Asp Val His Ser Gly Leu Ile Gly Pro Leu Leu Val Cys His
 1865 1870 1875
 Thr Asn Thr Leu Asn Pro Ala His Gly Arg Gln Val Thr Val Gln
 1880 1885 1890
 Glu Phe Ala Leu Phe Phe Thr Ile Phe Asp Glu Thr Lys Ser Trp
 1895 1900 1905
 Tyr Phe Thr Glu Asn Met Glu Arg Asn Cys Arg Ala Pro Cys Asn
 1910 1915 1920
 Ile Gln Met Glu Asp Pro Thr Phe Lys Glu Asn Tyr Arg Phe His
 1925 1930 1935
 Ala Ile Asn Gly Tyr Ile Met Asp Thr Leu Pro Gly Leu Val Met
 1940 1945 1950
 Ala Gln Asp Gln Arg Ile Arg Trp Tyr Leu Leu Ser Met Gly Ser
 1955 1960 1965
 Asn Glu Asn Ile His Ser Ile His Phe Ser Gly His Val Phe Thr
 1970 1975 1980
 Val Arg Lys Lys Glu Glu Tyr Lys Met Ala Leu Tyr Asn Leu Tyr
 1985 1990 1995
 Pro Gly Val Phe Glu Thr Val Glu Met Leu Pro Ser Lys Ala Gly
 2000 2005 2010
 Ile Trp Arg Val Glu Cys Leu Ile Gly Glu His Leu His Ala Gly
 2015 2020 2025
 Met Ser Thr Leu Phe Leu Val Tyr Ser Asn Lys Cys Gln Thr Pro
 2030 2035 2040
 Leu Gly Met Ala Ser Gly His Ile Arg Asp Phe Gln Ile Thr Ala
 2045 2050 2055
 Ser Gly Gln Tyr Gly Gln Trp Ala Pro Lys Leu Ala Arg Leu His
 2060 2065 2070
 Tyr Ser Gly Ser Ile Asn Ala Trp Ser Thr Lys Glu Pro Phe Ser

2075	2080	2085
Trp Ile Lys Val Asp Leu Leu Ala Pro Met Ile Ile His Gly Ile		
2090	2095	2100
Lys Thr Gln Gly Ala Arg Gln Lys Phe Ser Ser Leu Tyr Ile Ser		
2105	2110	2115
Gln Phe Ile Ile Met Tyr Ser Leu Asp Gly Lys Lys Trp Gln Thr		
2120	2125	2130
Tyr Arg Gly Asn Ser Thr Gly Thr Leu Met Val Phe Phe Gly Asn		
2135	2140	2145
Val Asp Ser Ser Gly Ile Lys His Asn Ile Phe Asn Pro Pro Ile		
2150	2155	2160
Ile Ala Arg Tyr Ile Arg Leu His Pro Thr His Tyr Ser Ile Arg		
2165	2170	2175
Ser Thr Leu Arg Met Glu Leu Met Gly Cys Asp Leu Asn Ser Cys		
2180	2185	2190
Ser Met Pro Leu Gly Met Glu Ser Lys Ala Ile Ser Asp Ala Gln		
2195	2200	2205
Ile Thr Ala Ser Ser Tyr Phe Thr Asn Met Phe Ala Thr Trp Ser		
2210	2215	2220
Pro Ser Lys Ala Arg Leu His Leu Gln Gly Arg Ser Asn Ala Trp		
2225	2230	2235
Arg Pro Gln Val Asn Asn Pro Lys Glu Trp Leu Gln Val Asp Phe		
2240	2245	2250
Gln Lys Thr Met Lys Val Thr Gly Val Thr Thr Gln Gly Val Lys		
2255	2260	2265
Ser Leu Leu Thr Ser Met Tyr Val Lys Glu Phe Leu Ile Ser Ser		
2270	2275	2280
Ser Gln Asp Gly His Gln Trp Thr Leu Phe Phe Gln Asn Gly Lys		
2285	2290	2295
Val Lys Val Phe Gln Gly Asn Gln Asp Ser Phe Thr Pro Val Val		
2300	2305	2310
Asn Ser Leu Asp Pro Pro Leu Leu Thr Arg Tyr Leu Arg Ile His		
2315	2320	2325
Pro Gln Ser Trp Val His Gln Ile Ala Leu Arg Met Glu Val Leu		
2330	2335	2340
Gly Cys Glu Ala Gln Asp Leu Tyr		
2345	2350	

<210> 31

<211> 1471

<212> DNA

<213> Homo sapiens

<400> 31

atggcgcccg tcgcccgtctg ggccgcgcgtg gccgtcggac tggagctctg ggctgcggcg
60cacgccttgc ccgcccaggt ggcatttaca ccctacgcgc cggagccccg gagcacatgc
120cggctcagag aatactatga ccagacagct cagatgtgct gcagcaaatg ctgcggggc
180caacatgcaa aagtcttctg taccaagacc tcggacaccc tggtgtactc ctgtgaggac
240agcacataca cccagctctg gaactgggtt cccgagtgct tgagctgtgg ctcccgctgt
300agctctgacc aggtggaaac tcaaggctgc actcgaaac agaaccgcac ctgcacctgc
360aggccccgtt ggtactgcgc gctgagcaag caggaggggt gccggctgtg cgccgcgcgtg
420cgcaagtgcc gcccgggtt cggcgtggcc agaccaggaa ctgaaacatc agacgtgttg
480tgcaaggccct gtgccccggg gacgttctcc aacacgactt catccacgga tatttgcagg
540ccccaccaga tctgtaacgt ggtggccatc cttggaaatg caagcatgga tgcagtctgc
600acgtccacgt ccccccacccg gagtatggcc ccagggcag tacacttacc ccagccagtg
660tccacacgat cccaacacac gcagccaaact ccagaaccca gcactgtctcc aagcacctcc
720ttcctgtctcc caatggggccc cagccccca gctgaaggga gcactggcga ctgcgtctt
780ccagttggac tgattgtggg tgtgacagcc ttgggtctac taataatagg agtggtaaac
840tgtgtcatca tgacccaggt gaaaaagaag cccttgcctt tgcagagaga agccaagggtg
900cctcacttgc ctgcgcataa ggcccgccgtt acacaggggcc ccgagcagca gcacctgctg
960atcacagcgc cgagctccag cagcagctcc ctggagagct cggccagtgc gttggaoaga
1020agggcgccca ctggaaacca gccacaggca ccaggcgtgg agggcagtgg ggccggggag
1080gccccggccca gcaccgggag ctcagattct tccctggtg gccatggac ccaggtcaat
1140gtcacctgca tctgtaacgt ctgtacgcgc tctgaccaca gtcacagtg ctccctccaa
1200

gccagctcca caatgggaga cacagattcc agccccctgg agtccccgaa ggacayayay
1260

gtcccccttct ccaaggagga atgtgccttt cggtcacagc tggagacgcc agagaccctg
1320

ctggggagca ccgaagagaa gcccctgccc ctggagtgctgatgctgg gatgaagccc
1380

agttaaccag gccgggtgtgg gctgtgtcgt agccaagggtg ggctgagccc tggcaggatg
1440

accctgcgaa gggccctgg tccttccagg c
1471

<210> 32
<211> 461
<212> PRT
<213> Homo sapiens

<400> 32
Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu
1 5 10 15

Trp Ala Ala Ala His Ala Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr
20 25 30

Ala Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln
35 40 45

Thr Ala Gln Met Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys
50 55 60

Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp
65 70 75 80

Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys
85 90 95

Gly Ser Arg Cys Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg
100 105 110

Glu Gln Asn Arg Ile Cys Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu
115 120 125

Ser Lys Gln Glu Gly Cys Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg
130 135 140

Pro Gly Phe Gly Val Ala Arg Pro Gly Thr Glu Thr Ser Asp Val Val
145 150 155 160

Cys Lys Pro Cys Ala Pro Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr
165 170 175

Asp Ile Cys Arg Pro His Gln Ile Cys Asn Val Val Ala Ile Pro Gly
180 185 190

Asn Ala Ser Met Asp Ala Val Cys Thr Ser Thr Ser Pro Thr Arg Ser
195 200 205

Met Ala Pro Gly Ala Val His Leu Pro Gln Pro Val Ser Thr Arg Ser

210

215

220

Gln His Thr Gln Pro Thr Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser :
 225 230 235 240

Phe Leu Leu Pro Met Gly Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly
 245 250 255

Asp Phe Ala Leu Pro Val Gly Leu Ile Val Gly Val Thr Ala Leu Gly
 260 265 270

Leu Leu Ile Ile Gly Val Val Asn Cys Val Ile Met Thr Gln Val Lys
 275 280 285

Lys Lys Pro Leu Cys Leu Gln Arg Glu Ala Lys Val Pro His Leu Pro
 290 295 300

Ala Asp Lys Ala Arg Gly Thr Gln Gly Pro Glu Gln Gln His Leu Leu
 305 310 315 320

Ile Thr Ala Pro Ser Ser Ser Ser Ser Leu Glu Ser Ser Ala Ser :
 325 330 335

Ala Leu Asp Arg Arg Ala Pro Thr Arg Asn Gln Pro Gln Ala Pro Gly
 340 345 350

Val Glu Ala Ser Gly Ala Gly Glu Ala Arg Ala Ser Thr Gly Ser Ser :
 355 360 365

Asp Ser Ser Pro Gly Gly His Gly Thr Gln Val Asn Val Thr Cys Ile
 370 375 380

Val Asn Val Cys Ser Ser Ser Asp His Ser Ser Gln Cys Ser Ser Gln
 385 390 395 400

Ala Ser Ser Thr Met Gly Asp Thr Asp Ser Ser Pro Ser Glu Ser Pro
 405 410 415

Lys Asp Glu Gln Val Pro Phe Ser Lys Glu Glu Cys Ala Phe Arg Ser :
 420 425 430

Gln Leu Glu Thr Pro Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys Pro
 435 440 445

Leu Pro Leu Gly Val Pro Asp Ala Gly Met Lys Pro Ser
 450 455 460

<210> 33

<211> 1475

<212> DNA

<213> Homo sapiens

<400> 33

tccacacctgc cccgcagcgc cggctcgccg cctccctgccc cagccaccga gcccgggtat
 60

agcgccccga cctcgccacc atgagagccc tgctggcgccg cctgtttctc tgcgtctgg
 120

tcgtgagcga ctccaaaggc agcaatgaac ttcatcaagt tccatcgaac tgtgactgtc
 180

taaatggagg aacatgtgtg tccaacaagt acttctccaa cattcactgg tgcaactgcc
240
caaagaaatt cgaggaggcag cactgtgaaa tagataagtc aaaaacctgc tatgagggga
300
atggtcactt ttaccgagga aaggccagca ctgacaccat gggccggccc tgccctgcct
360
ggaactctgc cactgtcctt cagcaaacgt accatgccca cagatctgat gctcttcagc
420
tggcctggg gaaacataat tactgcagga acccagacaa ccggaggcga ccctggtgct
480
atgtgcaggt gggcctaaag ccgcgttgtcc aagagtgcac ggtgcacatgac tgcgcatgc
540
aaaaaaagcc ctcccttcct ccagaagaat taaaattca gtgtggccaa aagactctga
600
ggccccgctt taagattattt gggggagaat tcaccaccat cgagaaccag ccctggtttg
660
cgcccatcta caggaggcac cggggggct ctgtcaccta cgtgtgtgga ggcagccotca
720
tcagcccttg ctgggtgatc agcgccacac actgcattcat tgattaccca aagaaggagg
780
actacatcgt ctacctgggt cgctcaaggc ttaactccaa cacgcaagg gagatgaagt
840
ttgaggtgga aaacctcatc ctacacaagg actacagcgc tgacacgctt gtcaccaca
900
acgacattgc ctgctgaag atccgttcca aggagggcag gtgtgcgcag ccattccggaa
960
ctatacagac catctgcctg ccctcgatgt ataacgatcc ccagttggc acaagctgtg
1020
agatcactgg ctttgaaaaa gagaattcta ccgactatct ctatccggag cagctgaaga
1080
tgactgtgt gaagctgatt tcccaccggg agtgcagca gccccactac tacggctctg
1140
aagtccaccac caaaatgctg tgtgctgctg acccacagtg gaaaacagat tcctgcagg
1200
gagactcagg gggaccctc gtctgttccc tccaaggccg catgactttg actggaatttg
1260
tgagctgggg ccgtggatgt gccctgaagg acaagccagg cgtctacacg agagtctcac
1320
acttcttacc ctggatccgc agtcacacca aggaagagaa tggcctggcc ctctgagggt
1380

ccccagggag gaaacgggca ccacccgctt tcttgctgggt tgtcattttt gcagtagagt
1440

catctccatc agctgtaaga agagactggg aagat
1475

<210> 34
<211> 431
<212> PRT
<213> Homo sapiens

<400> 34
Met Arg Ala Leu Leu Ala Arg Leu Leu Leu Cys Val Ile Val Val Ser
1 5 10 15

Asp Ser Lys Gly Ser Asn Glu Leu His Gln Val Pro Ser Asn Cys Asp
20 25 30

Cys Leu Asn Gly Gly Thr Cys Val Ser Asn Lys Tyr Phe Ser Asn Ile
35 40 45

His Trp Cys Asn Cys Pro Lys Lys Phe Gly Gly Gln His Cys Glu Ile
50 55 60

Asp Lys Ser Lys Thr Cys Tyr Glu Gly Asn Gly His Phe Tyr Arg Gly
65 70 75 80

Lys Ala Ser Thr Asp Thr Met Gly Arg Pro Cys Leu Pro Trp Asn Ser
85 90 95

Ala Thr Val Leu Gln Gln Thr Tyr His Ala His Arg Ser Asp Ala Leu
100 105 110

Gln Leu Gly Leu Gly Lys His Asn Tyr Cys Arg Asn Pro Asp Asn Arg
115 120 125

Arg Arg Pro Trp Cys Tyr Val Gln Val Gly Leu Lys Pro Leu Val Gln
130 135 140

Glu Cys Met Val His Asp Cys Ala Asp Gly Lys Lys Pro Ser Ser Pro
145 150 155 160

Pro Glu Glu Leu Lys Phe Gln Cys Gly Gln Lys Thr Leu Arg Pro Arg
165 170 175

Phe Lys Ile Ile Gly Gly Glu Phe Thr Thr Ile Glu Asn Gln Pro Trp
180 185 190

Phe Ala Ala Ile Tyr Arg Arg His Arg Gly Ser Val Thr Tyr Val
195 200 205

Cys Gly Gly Ser Leu Ile Ser Pro Cys Trp Val Ile Ser Ala Thr His
210 215 220

Cys Phe Ile Asp Tyr Pro Lys Lys Glu Asp Tyr Ile Val Tyr Leu Gly
225 230 235 240

Arg Ser Arg Leu Asn Ser Asn Thr Gln Gly Glu Met Lys Phe Glu Val
245 250 255

Glu Asn Leu Ile Leu His Lys Asp Tyr Ser Ala Asp Thr Leu Ala His

260

265

270

His Asn Asp Ile Ala Leu Leu Lys Ile Arg Ser Lys Glu Gly Arg Cys
 275 280 285

Ala Gln Pro Ser Arg Thr Ile Gln Thr Ile Cys Leu Pro Ser Met Tyr
 290 295 300

Asn Asp Pro Gln Phe Gly Thr Ser Cys Glu Ile Thr Gly Phe Gly Lys
 305 310 315 320

Glu Asn Ser Thr Asp Tyr Leu Tyr Pro Glu Gln Leu Lys Met Thr Val
 325 330 335

Val Lys Leu Ile Ser His Arg Glu Cys Gln Gln Pro His Tyr Tyr Gly
 340 345 350

Ser Glu Val Thr Thr Lys Met Leu Cys Ala Ala Asp Pro Gln Trp Lys
 355 360 365

Thr Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Ser Leu
 370 375 380

Gln Gly Arg Met Thr Leu Thr Gly Ile Val Ser Trp Gly Arg Gly Cys
 385 390 395 400

Ala Leu Lys Asp Lys Pro Gly Val Tyr Thr Arg Val Ser His Phe Leu
 405 410 415

Pro Trp Ile Arg Ser His Thr Lys Glu Glu Asn Gly Leu Ala Leu
 420 425 430

<210> 35

<211> 107

<212> PRT

<213> Mus musculus

<400> 35

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly
 1 5 10 15

Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Asp Val Asn Thr Ala
 20 25 30

Val Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
 35 40 45

Tyr Ser Ala Ser Phe Leu Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly
 50 55 60

Ser Arg Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
 65 70 75 80

Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln His Tyr Thr Thr Pro Pro
 85 90 95

Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
 100 105

<210> 36

<211> 120

<212> PRT

<213> Mus musculus

<400> 36

Glu	Val	Gln	Leu	Val	Glu	Ser	Gly	Gly	Gly	Leu	Val	Gln	Pro	Gly	Gly
1					5					10				15	

Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Asn	Ile	Lys	Asp	Thr
								20		25			30		

Tyr	Ile	His	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Val
								35		40			45		

Ala	Arg	Ile	Tyr	Pro	Thr	Asn	Gly	Tyr	Thr	Arg	Tyr	Ala	Asp	Ser	Val
							50		55		60				

Lys	Gly	Arg	Phe	Thr	Ile	Ser	Ala	Asp	Thr	Ser	Lys	Asn	Thr	Ala	Tyr
							65		70		75		80		

Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
							85		90		95				

Ser	Arg	Trp	Gly	Gly	Asp	Gly	Phe	Tyr	Ala	Met	Asp	Tyr	Trp	Gly	Gln
					100					105			110		

Gly	Thr	Leu	Val	Thr	Val	Ser	Ser							
						115		120						

<210> 37

<211> 120

<212> PRT

<213> Mus musculus

<400> 37

Gln	Val	Thr	Leu	Arg	Glu	Ser	Gly	Pro	Ala	Leu	Val	Lys	Pro	Thr	Gln
1							5		10			15			

Thr	Leu	Thr	Leu	Thr	Cys	Thr	Phe	Ser	Gly	Phe	Ser	Leu	Ser	Thr	Ser
							20		25		30				

Gly	Met	Ser	Val	Gly	Trp	Ile	Arg	Gln	Pro	Ser	Gly	Lys	Ala	Leu	Glu
							35		40		45				

Trp	Leu	Ala	Asp	Ile	Trp	Trp	Asp	Asp	Lys	Lys	Asp	Tyr	Asn	Pro	Ser
							50		55		60				

Leu	Lys	Ser	Arg	Leu	Thr	Ile	Ser	Lys	Asp	Thr	Ser	Lys	Asn	Gln	Val
							65		70		75		80		

Val	Leu	Lys	Val	Thr	Asn	Met	Asp	Pro	Ala	Asp	Thr	Ala	Thr	Tyr	Tyr
							85		90		95				

Cys	Ala	Arg	Ser	Met	Ile	Thr	Asn	Trp	Tyr	Phe	Asp	Val	Trp	Gly	Ala
							100		105		110				

Gly	Thr	Thr	Val	Thr	Val	Ser	Ser						
						115		120					

<210> 38

<211> 106

<212> PRT

<213> Mus musculus

<400> 38

Asp	Ile	Gln	Met	Thr	Gln	Ser	Pro	Ser	Thr	Leu	Ser	Ala	Ser	Val	Gly
1					5					10				15	

Asp	Arg	Val	Thr	Ile	Thr	Cys	Cys	Gln	Leu	Ser	Val	Gly	Tyr	Met
						20		25			30			

His	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Lys	Ala	Pro	Lys	Leu	Trp	Ile	Tyr
					35		40		45						

Asp	Thr	Ser	Lys	Leu	Ala	Ser	Gly	Val	Pro	Ser	Arg	Phe	Ser	Gly	Ser
					50		55		60						

Gly	Ser	Gly	Thr	Glu	Phe	Thr	Leu	Thr	Ile	Ser	Ser	Leu	Gln	Pro	Asp
					65		70		75		80				

Asp	Phe	Ala	Thr	Tyr	Tyr	Cys	Phe	Gln	Gly	Ser	Gly	Tyr	Pro	Phe	Thr
						85		90		95					

Phe	Gly	Gly	Gly	Thr	Lys	Leu	Glu	Ile	Lys
					100		105		

<210> 39

<211> 1039

<212> DNA

<213> Homo sapiens

<400> 39

tcctgcacag	gcagtgcctt	gaagtgcctc	ttcagagacc	tttcttcata	gactacttt
60					

ttttcttaa	gcagcaaaag	gagaaaattt	tcatcaaagg	atattccaga	ttcttgacag
120					

cattctcg	atctctgagg	acatcaccat	catctcagg	tgagggcat	gaagctgt
180					

ggggcgctgc	tggcactggc	ggccctactg	cagggggccg	tgtccctgaa	gatcgacagcc
240					

ttcaacatcc	agacatttgg	ggagaccaag	atgtccaatg	ccaccctcgt	cagctacatt
300					

gtgcagatcc	ttagccgcta	tgacatcgcc	ctggtccagg	aggtcagaga	cagccacctg
360					

actgccgtgg	ggaagctgt	ggacaacctc	aatcaggatg	caccagacac	ctatca
420					

gtggtcagt	agccactggg	acggaacagc	tataaggagc	gctacctgtt	cgtgtacagg
480					

cctgaccagg	tgtctgcgg	ggacagctac	tactacgatg	atggctgcga	gccctgcggg
540					

aacgacac	tcaaccgaga	gccagccatt	gtcagg	tctcccggtt	cacagagg
600					

agggagtttg ccattgttcc cctgcatgog gccccggggg acgcagtagc cgagatcgac
660

gctctctatg acgtctacct ggatgtccaa gagaaatggg gcttggagga cgtcatgtt
720

atgggcgact tcaatgcggg ctgcagctat gtgagaccct cccagtggtc atccatcogc
780

ctgtggacaa gccccacatt ccagtggctg atccccgaca gcgctgacac cacagctaca
840

cccacgcact gtgcctatga caggatcggt gttgcaggga tgctgctccg aggccgcgtt
900

gttcccgcact cggctttcc cttaacttc caggctgcct atggcctgag tgaccaactg
960

gcccaaggca tcagtgacca ctatccagtg gaggtgatgc tgaagtgagc agccctccc
1020

cacaccagtt gaactgcag
1039

<210> 40

<211> 282

<212> PRT

<213> Homo sapiens

<400> 40

Met Arg Gly Met Lys Leu Leu Gly Ala Leu Leu Ala Leu Ala Leu
1 5 10 15

Leu Gln Gly Ala Val Ser Leu Lys Ile Ala Ala Phe Asn Ile Gln Thr
20 25 30

Phe Gly Glu Thr Lys Met Ser Asn Ala Thr Leu Val Ser Tyr Ile Val
35 40 45

Gln Ile Leu Ser Arg Tyr Asp Ile Ala Leu Val Gln Glu Val Arg Asp
50 55 60

Ser His Leu Thr Ala Val Gly Lys Leu Leu Asp Asn Leu Asn Gln Asp
65 70 75 80

Ala Pro Asp Thr Tyr His Tyr Val Val Ser Glu Pro Leu Gly Arg Asn
85 90 95

Ser Tyr Lys Glu Arg Tyr Leu Phe Val Tyr Arg Pro Asp Gln Val Ser
100 105 110

Ala Val Asp Ser Tyr Tyr Asp Asp Gly Cys Glu Pro Cys Gly Asn
115 120 125

Asp Thr Phe Asn Arg Glu Pro Ala Ile Val Arg Phe Phe Ser Arg Phe
130 135 140

Thr Glu Val Arg Glu Phe Ala Ile Val Pro Leu His Ala Ala Pro Gly
145 150 155 160

Asp Ala Val Ala Glu Ile Asp Ala Leu Tyr Asp Val Tyr Leu Asp Val

165

170

175

Gln Glu Lys Trp Gly Leu Glu Asp Val Met Leu Met Gly Asp Phe Asn
 180 185 190

Ala Gly Cys Ser Tyr Val Arg Pro Ser Gln Trp Ser Ser Ile Arg Leu
 195 200 205

Trp Thr Ser Pro Thr Phe Gln Trp Leu Ile Pro Asp Ser Ala Asp Thr
 210 215 220

Thr Ala Thr Pro Thr His Cys Ala Tyr Asp Arg Ile Val Val Ala Gly
 225 230 235 240

Met Leu Leu Arg Gly Ala Val Val Pro Asp Ser Ala Leu Pro Phe Asn
 245 250 255

Phe Gln Ala Ala Tyr Gly Leu Ser Asp Gln Leu Ala Gln Ala Ile Ser
 260 265 270

Asp His Tyr Pro Val Glu Val Met Leu Lys
 275 280

<210> 41

<211> 678

<212> DNA

<213> Mus musculus

<400> 41

gacatcttgc tgactcagtc tccagccatc ctgtctgtga gtccaggaga aagagtca
 60

tttccttgca gggccagtca gttcggtggc tcaagcatcc actggatataca gcaaagaaca
 120

aatggttctc caaggcttct cataaagtat gcttctgagt ctatgtctgg gatcccttcc
 180

aggtttagtg gcagtggatc agggacagat tttactctta gcatcaacac tgtggagtct
 240

gaagatattt cagattatta ctgtcaacaa agtcatagct ggccattcac gttcggctcg
 300

gggacaaatt tggaaagtaaa agaagtgaag cttgaggagt ctggaggagg cttgggtgcaa
 360

cctggaggat ccatgaaact ctcctgtgtt gcctctggat tcattttcag taaccactgg
 420

atgaactggg tccgccagtc tccagagaag gggcttgagt gggttgctga aattagatca
 480

aatcttatta attctgcaac acattatgcg gagtctgtga aaggaggattt caccatctca
 540

agagatgatt ccaaaaagtgc tgtctacctg caaatgaccg acttaagaac tgaagacact
 600

ggcgtttattt actgttccag gaattactac ggttagtacct acgactactg gggccaaggc
 660

accactctca cagtctcc
678

<210> 42

<211> 226

<212> PRT

<213> Mus musculus

<400> 42

Asp Ile Leu Leu Thr Gln Ser Pro Ala Ile Leu Ser Val Ser Pro Gly
1 5 10 15

Glu Arg Val Ser Phe Ser Cys Arg Ala Ser Gln Phe Val Gly Ser Ser
20 25 30

Ile His Trp Tyr Gln Gln Arg Thr Asn Gly Ser Pro Arg Leu Leu Ile
35 40 45

Lys Tyr Ala Ser Glu Ser Met Ser Gly Ile Pro Ser Arg Phe Ser Gly
50 55 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Asn Thr Val Glu Ser
65 70 75 80

Glu Asp Ile Ala Asp Tyr Tyr Cys Gln Gln Ser His Ser Trp Pro Phe
85 90 95

Thr Phe Gly Ser Gly Thr Asn Leu Glu Val Lys Glu Val Lys Leu Glu
100 105 110

Glu Ser Gly Gly Leu Val Gln Pro Gly Gly Ser Met Lys Leu Ser
115 120 125

Cys Val Ala Ser Gly Phe Ile Phe Ser Asn His Trp Met Asn Trp Val
130 135 140

Arg Gln Ser Pro Glu Lys Gly Leu Glu Trp Val Ala Glu Ile Arg Ser
145 150 155 160

Lys Ser Ile Asn Ser Ala Thr His Tyr Ala Glu Ser Val Lys Gly Arg
165 170 175

Phe Thr Ile Ser Arg Asp Asp Ser Lys Ser Ala Val Tyr Leu Gln Met
180 185 190

Thr Asp Leu Arg Thr Glu Asp Thr Gly Val Tyr Tyr Cys Ser Arg Asn
195 200 205

Tyr Tyr Gly Ser Thr Tyr Asp Tyr Trp Gly Gln Gly Thr Thr Leu Thr
210 215 220

Val Ser
225

<210> 43

<211> 450

<212> DNA

<213> Homo sapiens

<400> 43

gctgcacatcg aagaggccat caagcacatc actgtcccttc tgccatggcc ctgtggatgc
60

gcctcctgcc cctgctggcg ctgtgtggccc tctggggacc tgaccaggcc gcagcccttg
120

tgaaccaaca cctgtgcggc tcacacactgg tggaaagctct ctaccttagtg tgccccggaaac
180

gaggctttctt ctacacacccc aagaccggcc gggaggcaga ggacotgcag gtggggcagg
240

tggagctggg cggggccct ggtgcaggca gcctgcagcc ctggccctg gaggggtccc
300

tgcagaagcg tggcattgtg gaacaatgtt gtaccagcat ctgctccctc taccagctgg
360

agaactactg caactagacg cagcccgagc gcagcccccc acccgccgccc tcctgcacccg
420

agagagatgg aataaagccc ttgtaccaggc
450

<210> 44

<211> 110

<212> PRT

<213> Homo sapiens

<400> 44

Met Ala Leu Trp Met Arg Leu Leu Pro Leu Leu Ala Leu Leu Ala Leu
1 5 10 15

Trp Gly Pro Asp Pro Ala Ala Ala Phe Val Asn Gln His Leu Cys Gly
20 25 30

Ser His Leu Val Glu Ala Leu Tyr Leu Val Cys Gly Glu Arg Gly Phe
35 40 45

Phe Tyr Thr Pro Lys Thr Arg Arg Glu Ala Glu Asp Leu Gln Val Gly
50 55 60

Gln Val Glu Leu Gly Gly Pro Gly Ala Gly Ser Leu Gln Pro Leu
65 70 75 80

Ala Leu Glu Gly Ser Leu Gln Lys Arg Gly Ile Val Glu Gln Cys Cys
85 90 95

Thr Ser Ile Cys Ser Leu Tyr Gln Leu Glu Asn Tyr Cys Asn
100 105 110

<210> 45

<211> 1203

<212> DNA

<213> Hepatitis B virus

<400> 45

atgggaggtt ggtcttccaa acctcgacaa ggcatgggg cgaatctttc tggccat

60

cctctggat tcttcccga tcaccagttg gaccctgcgt tcggagccaa ctcaccaaa
120

ccagatggg acttcaaccc caacaaggat cactggccag aggcaatcaa ggtaggagcg
180

ggagacttag ggccagggtt cacccacca cacggcggtc ttttggggtg gagccctcag
240

gctcaggca tattgacaac agtgcacca gcgcctcctc ctgttccac caatcgccag
300

tcaggaagac agcctactcc catctctcca cctctaagag acagtcatcc tcaggccatg
360

cagtggact ccacaacatt ccaccaagct ctgctagatc ccagagttag gggcctata
420

tttcctgctg gtggctccag ttccggaca gtaaacccctg ttccgactac tgtctcaccc
480

atatcgtaa tcttctcgag gactggggac cctgcacccga acatggagag cacaacatca
540

ggattccctag gaccctgtc cgtgttacag gccccgtttt tcttggac aagaatcctc
600

acaataccac agagtctaga ctcgtggtgg acttctctca attttcttagg gggagccaccc
660

acgtgtctg gccaaaattc gcagtccttca acctccaatc actcaccaac ctcttgtcat
720

ccaatttgtc ctggttatcg ctggatgtgt ctgcggcggtt ttatcatatt cctcttcatc
780

ctgctgtat gcctcatctt ttgttgggtt cttctggact accaaggat gttgcccggtt
840

tgtcctctac ttccaggaac atcaactacc agcacgggac catgcaagac ctgcacgatt
900

cctgctcaag gaacctctat gttccctct tggtgctgtt caaaaccttc ggacggaaac
960

tgcacttgtt ttcccatccc atcatctgg gcttcgcac gattcctatg ggagtgggccc
1020

tcagtcgtt tctctgggtt cagtttacta gtgcatttg ttcaagtgggtt cgccaggcggtt
1080

tccccactg ttggctttc agttatatgg atgatgtggt attgggggcc aagtctgtac
1140

aacatcttga gtccctttt acctcttatta ccaattttct tttgttggt ggtatacatt
1200

tga
1203

<211> 400

<212> PRT

<213> Hepatitis B virus

<400> 46

Met	Gly	Gly	Trp	Ser	Ser	Lys	Pro	Arg	Gln	Gly	Met	Gly	Thr	Asn	Leu
1															
														10	15

Ser	Val	Pro	Asn	Pro	Leu	Gly	Phe	Phe	Pro	Asp	His	Gln	Leu	Asp	Pro
														25	30

Ala	Phe	Gly	Ala	Asn	Ser	Asn	Asn	Pro	Asp	Trp	Asp	Phe	Asn	Pro	Asn
														35	40

Lys	Asp	His	Trp	Pro	Glu	Ala	Ile	Lys	Val	Gly	Ala	Gly	Asp	Phe	Gly
														50	55

Pro	Gly	Phe	Thr	Pro	Pro	His	Gly	Gly	Leu	Leu	Gly	Trp	Ser	Pro	Gln
														65	70

Ala	Gln	Gly	Ile	Leu	Thr	Thr	Val	Pro	Ala	Ala	Pro	Pro	Pro	Val	Ser
														85	90

Thr	Asn	Arg	Gln	Ser	Gly	Arg	Gln	Pro	Thr	Pro	Ile	Ser	Pro	Pro	Leu
														100	105

Arg	Asp	Ser	His	Pro	Gln	Ala	Met	Gln	Trp	Asn	Ser	Thr	Thr	Phe	His
														115	120

Gln	Ala	Leu	Leu	Asp	Pro	Arg	Val	Arg	Gly	Leu	Tyr	Phe	Pro	Ala	Gly
														130	135

Gly	Ser	Ser	Ser	Gly	Thr	Val	Asn	Pro	Val	Pro	Thr	Thr	Val	Ser	Pro
														145	150

Ile	Ser	Ser	Ile	Phe	Ser	Arg	Thr	Gly	Asp	Pro	Ala	Pro	Asn	Met	Glu
														165	170

Ser	Thr	Thr	Ser	Gly	Phe	Leu	Gly	Pro	Leu	Leu	Val	Leu	Gln	Ala	Gly
														180	185

Phe	Phe	Leu	Leu	Thr	Arg	Ile	Leu	Thr	Ile	Pro	Gln	Ser	Leu	Asp	Ser
														195	200

Trp	Trp	Thr	Ser	Leu	Asn	Phe	Leu	Gly	Ala	Pro	Thr	Cys	Pro	Gly	
														210	215

Gln	Asn	Ser	Gln	Ser	Pro	Thr	Ser	Asn	His	Ser	Pro	Thr	Ser	Cys	Pro
														225	230

Pro	Ile	Cys	Pro	Gly	Tyr	Arg	Trp	Met	Cys	Leu	Arg	Arg	Phe	Ile	Ile
														245	250

Phe	Leu	Phe	Ile	Leu	Leu	Cys	Leu	Ile	Phe	Leu	Leu	Val	Leu	Leu	
														260	265

Asp	Tyr	Gln	Gly	Met	Leu	Pro	Val	Cys	Pro	Leu	Leu	Pro	Gly	Thr	Ser
														275	280

Thr	Thr	Ser	Thr	Gly	Pro	Cys	Lys	Thr	Cys	Thr	Ile	Pro	Ala	Gln	Gly
														290	295

Thr Ser Met Phe Pro Ser Cys Cys Cys Thr Lys Pro Ser Asp Gly Asn
305 310 315 320

Cys Thr Cys Ile Pro Ile Pro Ser Ser Trp Ala Phe Ala Arg Phe Leu
325 330 335

Trp Glu Trp Ala Ser Val Arg Phe Ser Trp Leu Ser Leu Leu Val Pro
340 345 350

Phe Val Gln Trp Phe Ala Gly Leu Ser Pro Thr Val Trp Leu Ser Val
355 360 365

Ile Trp Met Met Trp Tyr Trp Gly Pro Ser Leu Tyr Asn Ile Leu Ser
370 375 380

Pro Phe Leu Pro Leu Leu Pro Ile Phe Phe Cys Leu Trp Val Tyr Ile
385 390 395 400

<210> 47
<211> 799
<212> DNA
<213> Homo sapiens

<400> 47
cgaaccactc agggtcctgt ggacagctca octagctgca atggctacag gtcacccggac
60
gtccatgctc ctggattttg gcctgctatg cctgccatgg cttcaagagg gcagtgcatt
120
cccaaccatt cccttatcca ggccttttga caacgctatg ctccggggccc atcgctcgca
180
ccagctggcc tttgacacct accaggagtt tgaagaagcc tatatccaa aggaacagaa
240
gtattcattc ctgcagaacc cccagacactc cctctgttgc tcagagtcta ttccgacacc
300
ctccaacagg gagaaacac aacagaaatc caaccttagag ctgctccgca tctccatgct
360
gctcatccag tcgtggctgg agcccggtca gttccctcagg agtgttccg ccaacagcc
420
gttgtacggc gcctctgaca gcaacgtcta tgacccctta aaggacctag aggaaggcat
480
ccaaacgctg atggggaggc tggaagatgg cagccccgg actggggcaga tcttcaagca
540
gacctacagg aagttcgaca caaactcaca caacgatgac gcactactca agaactacgg
600
gtgtctac tgcttcagga aggacatgga caaggtcgag acattccgtc gcatogtgca
660
gtgccgtct gtggagggca gctgtggctt ctagctgccc gggtggcata cctgtgaccc
720

ctccccagtg ccttcctgg ccctggaagt tgccactcca gtgccacca gccttgtcct
780

aataaaatta agttgcattc
799

<210> 48
<211> 217
<212> PRT
<213> Homo sapiens

<400> 48
Met Ala Thr Gly Ser Arg Thr Ser Leu Leu Leu Ala Phe Gly Leu Leu
1 5 10 15

Cys Leu Pro Trp Leu Gln Glu Gly Ser Ala Phe Pro Thr Ile Pro Leu
20 25 30

Ser Arg Pro Phe Asp Asn Ala Met Leu Arg Ala His Arg Leu His Gln
35 40 45

Leu Ala Phe Asp Thr Tyr Gln Glu Phe Glu Ala Tyr Ile Pro Lys
50 55 60

Glu Gln Lys Tyr Ser Phe Leu Gln Asn Pro Gln Thr Ser Leu Cys Phe
65 70 75 80

Ser Glu Ser Ile Pro Thr Pro Ser Asn Arg Glu Glu Thr Gln Gln Lys
85 90 95

Ser Asn Leu Glu Leu Leu Arg Ile Ser Leu Leu Leu Ile Gln Ser Trp
100 105 110

Leu Glu Pro Val Gln Phe Leu Arg Ser Val Phe Ala Asn Ser Leu Val
115 120 125

Tyr Gly Ala Ser Asp Ser Asn Val Tyr Asp Leu Leu Lys Asp Leu Glu
130 135 140

Glu Gly Ile Gln Thr Leu Met Gly Arg Leu Glu Asp Gly Ser Pro Arg
145 150 155 160

Thr Gly Gln Ile Phe Lys Gln Thr Tyr Ser Lys Phe Asp Thr Asn Ser
165 170 175

His Asn Asp Asp Ala Leu Leu Lys Asn Tyr Gly Leu Leu Tyr Cys Phe
180 185 190

Arg Lys Asp Met Asp Lys Val Glu Thr Phe Leu Arg Ile Val Gln Cys
195 200 205

Arg Ser Val Glu Gly Ser Cys Gly Phe
210 215

<210> 49
<211> 963
<212> DNA
<213> Homo sapiens

<400> 49

atggagacag acacactcct gttatgggtg ctgctgctat gggttccagg tccactgg
60

gacgtcaggc gagggccccg ggcctgcgg ggcaggaaacg cgccagcccc cacgccctgc
120

gtcccggccg agtgcttcga cctgctggtc cgccactgcg tggcctgcgg gtcctgcgc
180

acgcccggc cgaaaccggc cggggccagc agccctgcgc ccaggacggc gctgcagccg
240

caggagtcgg tggcgccggg gcgcggcgag gcggcggtcg acaaaaactca cacatgccca
300

ccgtgcccag cacctgaact cctgggggga ccgtcagtct tcctttccc cccaaaaccc
360

aaggacaccc tcatgatctc ccggacccct gaggtcacat gcgtggtggt ggacgtgagc
420

cacgaagacc ctgaggtcaa gttcaactgg tacgtggacg gcgtggaggt gcataatgcc
480

aagacaaaagc cgcgggagga gcagtacaac agcacgtacc gtgtggtcag cgtccctcacc
540

gtcctgcacc aggactggct gaatggcaag gagtacaagt gcaaggtctc caacaaagcc
600

ctccccagccc ccatcgagaa aaccatctcc aaagccaaag ggcagccccg agaaccacag
660

gtgtacaccc tgccccatc ccggatgag ctgaccaaga accaggtcag cctgacacctgc
720

ctggtaaaag gcttctatcc cagcgacatc gccgtggagt gggagagcaa tggcagccg
780

gagaacaact acaagaccac gcctccgtg ttggactccg acggctcctt ctccctctac
840

agcaagctca ccgtggacaa gagcaggtgg cagcagggga acgtcttctc atgtccgtg
900

atgcatgagg ctctgcacaa ccactacacg cagaagagcc tctccctgtc tcccggaaa
960

tga
963

<210> 50

<211> 320

<212> PRT

<213> Homo sapiens

<400> 50

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Trp Val Pro
1 5 10 15

Gly Ser Thr Gly Asp Val Arg Arg Gly Pro Arg Ser Leu Arg Gly Arg

20

25

30

Asp Ala Pro Ala Pro Thr Pro Cys Val Pro Ala Glu Cys Phe Asp Leu
 35 40 45

Leu Val Arg His Cys Val Ala Cys Gly Leu Leu Arg Thr Pro Arg Pro
 50 55 60

Lys Pro Ala Gly Ala Ser Ser Pro Ala Pro Arg Thr Ala Leu Gln Pro
 65 70 75 80

Gln Glu Ser Val Gly Ala Gly Glu Ala Ala Val Asp Lys Thr
 85 90 95

His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser
 100 105 110

Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg
 115 120 125

Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro
 130 135 140

Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala
 145 150 155 160

Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val
 165 170 175

Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr
 180 185 190

Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr
 195 200 205

Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu
 210 215 220

Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys
 225 230 235 240

Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser
 245 250 255

Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp
 260 265 270

Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser
 275 280 285

Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala
 290 295 300

Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
 305 310 315 320

<210> 51

<211> 107

<212> PRT

<213> Homo sapiens

<400> 51
Asp Ile Gln Met Thr Gln Thr Pro Ser Thr Leu Ser Ala Ser Val Gly
1 5 10 15
Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr
20 25 30
Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
35 40 45
Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro
65 70 75 80
Asp Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp
85 90 95
Thr Phe Gly Gln Gly Thr Lys Val Glu Val Lys
100 105

<210> 52
<211> 107
<212> PRT
<213> Mus musculus

<400> 52
Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu Ser Ala Ser Leu Gly
1 5 10 15
Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr
20 25 30
Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Ile Val Lys Leu Leu Ile
35 40 45
Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60
Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Ser Asn Leu Glu Gln
65 70 75 80
Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp
85 90 95
Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys
100 105

<210> 53
<211> 119
<212> PRT
<213> Homo sapiens

<400> 53
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
1 5 10 15
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr
20 25 30

Leu Ile Glu Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe
50 55 60

Lys Gly Arg Val Thr Leu Thr Val Asp Glu Ser Thr Asn Thr Ala Tyr
65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys
85 90 95

Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Gln Gly
100 105 110

Thr Leu Val Thr Val Ser Ser
115

<210> 54

<211> 119

<212> PRT

<213> Mus musculus

<400> 54
Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Gly Pro Gly Thr
1 5 10 15

Ser Val Arg Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr
20 25 30

Leu Ile Glu Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile
35 40 45

Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe
50 55 60

Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Thr Thr Ala Tyr
65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Asp Asp Ser Ala Val Tyr Phe Cys
85 90 95

Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Arg Gly
100 105 110

Thr Leu Val Thr Val Ser Ala
115

<210> 55

<211> 214

<212> PRT

<213> Homo sapiens

<400> 55
Asp Ile Gln Met Thr Gln Thr Pro Ser Thr Leu Ser Ala Ser Val Gly
1 5 10 15

Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp Ile Asn Asn Tyr
20 25 30

Leu Asn Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Ile

35

40

45

Tyr Tyr Thr Ser Thr Leu His Ser Gly Val Pro Ser Arg Phe Ser Gly
 50 55 60

Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro
 65 70 75 80

Asp Asp Phe Ala Thr Tyr Phe Cys Gln Gln Gly Asn Thr Leu Pro Trp
 85 90 95

Thr Phe Gly Gln Gly Thr Lys Val Glu Val Lys Arg Thr Val Ala Ala
 100 105 110

Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly
 115 120 125

Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala
 130 135 140

Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln
 145 150 155 160

Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser
 165 170 175

Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr
 180 185 190

Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser
 195 200 205

Phe Asn Arg Gly Glu Cys
 210

<210> 56

<211> 448

<212> PRT

<213> Homo sapiens

<400> 56

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser
 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Thr Asn Tyr
 20 25 30

Leu Ile Glu Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile.
 35 40 45

Gly Val Ile Tyr Pro Gly Ser Gly Gly Thr Asn Tyr Asn Glu Lys Phe
 50 55 60

Lys Gly Arg Val Thr Leu Thr Val Asp Glu Ser Thr Asn Thr Ala Tyr
 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys
 85 90 95

Ala Arg Arg Asp Gly Asn Tyr Gly Trp Phe Ala Tyr Trp Gly Gln Gly
 100 105 110

Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe
 115 120 125
 Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu
 130 135 140
 Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp
 145 150 155 160
 Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu
 165 170 175
 Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser
 180 185 190
 Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro
 195 200 205
 Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys
 210 215 220
 Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro
 225 230 235 240
 Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser
 245 250 255
 Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp
 260 265 270
 Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn
 275 280 285
 Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val
 290 295 300
 Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu
 305 310 315 320
 Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys
 325 330 335
 Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr
 340 345 350
 Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr
 355 360 365
 Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu
 370 375 380
 Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu
 385 390 395 400
 Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys
 405 410 415
 Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu
 420 425 430

Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly
435 440 445

<210> 57
<211> 8540
<212> DNA
<213> Homo sapiens

<400> 57
gacgtcgccg ccgcctctagg cctccaaaaa agcctcctca ctacttctgg aatagctcag
60

aggccgaggg gcgcctcgcc tctgcataaa taaaaaaaaaat tagtcagcca tgcatgggc
120

ggagaatggg cggaactggg cggagtttagg qgcggggatgg gcggagtttag gggcgggact
180

atggttgctg actaatttagat atgcattgtt tgcatacttc tgcctgctgg ggagcctggg
240

gactttcac acctgggtgc tgactaattt agatgcattgc tttgcataact tctgcctgct
300

ggggagcctg gggactttcc acaccctaac tgacacacat tccacacaat taattccct
360

agttatataat agtaatcaat tacgggtca tttagttcata gcccatatat ggagttccgc
420

gttacataac ttacggtaaa tggcccgct ggctgaccgc ccaacgaccc cggcccatgg
480

acgtcaataa tgacgtatgt tcccatagta acgccaatag ggactttcca ttgacgtcaa
540

tgggtggact atttacggta aactgcccac ttggcagttac atcaagtgtt tcatatgcca
600

agtacgcccc ctattgacgt caatgacggt aaatggcccg cctggcatta tgcccagttac
660

atgacccttat gggactttcc tacttggcag tacatctacg tattagtcattt cgctattacc
720

atgggtatgc gttttggca gtacatcaat gggcgtggat agcggtttga ctcacggggaa
780

tttccaagtc tccacccat tgacgtcaat gggagtttgt tttggcacca aaatcaacgg
840

gactttccaa aatgtcgtaa caactccgcc ccattgacgc aaatggcgg taggcgtgtt
900

cgggtggagg tctatataag cagagctggg tacgtgaacc gtcagatgc ctggagacgc
960

catcacagat ctctcaccat gagggtcccc gctcagctcc tggggctctt gctgcctgg
1020

ctcccaggtg cacgatgtga tggtaccaag gtggaaatca aacgtacggt ggctgcacca
1080

tctgtcttca tcttcccgcc atctgatgag cagttgaaat ctggaactgc ctctgttg
1140

tgcctgctga ataacttcta tcccagagag gccaaagtac agtggaaagg ggataacgcc
1200

ctccaatcgg gtaactccca ggagagtgtc acagagcagg acagcaagga cagcacctac
1260

agcctcagca gcaccctgac gctgagcaaa gcagactacg agaaacacaa agtctacgcc
1320

tgcgaagtca cccatcaggg cctgagctcg cccgtcacaa agagttcaa caggggagag
1380

tgttgaattc agatccgtta acggttacca actacctaga ctggattcgt gacaacatgc
1440

ggccgtgata tctacgtatg atcagcctcg actgtgcctt cttagttgcc a cccatctgtt
1500

gtttgccttccccgtgcs ttccattgacc ctggaagggtg ccactccac tgtcccttcc
1560

taataaaaatg aggaaattgc atcgcattgt ctgagtaggt gtcattctat tctgggggt
1620

gggggtggggc aggacagcaa gggggaggat tgggaagaca atagcaggca tgctggggat
1680

gcgggtgggct ctatggaacc agctgggct cgacagctat gccaagtacg cccctattg
1740

acgtcaatga cggtaaatgg cccgcctggc attatgcccgtt acatgacc ttatggact
1800

ttcctacttg gcagtacatc tacgtatttag tcatcgctat taccatggtg atgcggtttt
1860

ggcagtgatcat caatgggcgt ggatagcggt ttgactcacg gggatttcca agtctccacc
1920

ccattgacgt caatgggagt ttgtttggc accaaaatca acgggacttt ccaaaatgtc
1980

gtaacaactc cgccccattg acgcaaattgg gcggtaggcg tgtacggtgg gaggtctata
2040

taagcagagc tgggtacgtc ctcacattca gtgatcagca ctgaacacag acccgatcgac
2100

atgggttggc gcctcatctt gctttccctt gtcgctgttgc ctacgcgtgt cgctagcacc
2160

aaggggccat cggtcttccc cctggcaccc tcctccaaga gcacctctgg gggcacagcg
2220

gcccctgggct gcctggtcaa ggactacttc cccgaaccgg tgacggcgcc gtggaaacctaa
2280

ggcgcctgtga ccagcggcgt gcacaccccttc ccggctgtcc tacagtccctc aggactctac
2340

tccctcagca gctgtggtgac cgtgccctcc agcagcttgg gcaccaggac ctacatctgc
2400

aacgtgaatc acaagccccag caacaccaag gtggacaaga aagcagagcc caaatcttgt
2460

gacaaaaactc acacatgccc accgtgccc gcacctgaac tcctgggggg accgtcagtc
2520

ttcctcttcc cccaaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca
2580

tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac
2640

ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcacgtac
2700

cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggactacaag
2760

tgcaaggctt ccaacaaagc cctccagcc cccatcgaga aaaccatctc caaagccaaa
2820

gggcagcccc gagaaccaca ggtgtacacc ctgccccat cccggatga gctgaccagg
2880

aaccaggta cgcgtgacccg cctggtaaaa ggcttctatc ccagcgacat cgccgtggag
2940

tgggagagca atgggcagcc ggagaacaac tacaagacca cgcctccgt gctggactcc
3000

gacggcttct tttccctcta cagcaagctc accgtggaca agagcaggta gcagcagggg
3060

aacgtcttct catgtccgt gatgtacccat gctctgcaca accactacac gcagaagagc
3120

ctctccctgt ctccggtaa atgaggatcc gttaaacgggtt accaactacc tagactggat
3180

tcgtgacaac atgcggccgt gatatctacg tatgtacccg ctcgactgtg cttcttagtt
3240

gccagccatc ttttttttgc ccctccccgg tgccttcatt gaccctggaa ggtgccactc
3300

ccactgtccct ttcttaataaa aatgaggaaa ttgcacgtca ttgtctgagt aggtgtcatt
3360

ctattctggg ggggtgggtg gggcaggaca gcaagggggaa ggattggaa gacaatagca
3420

ggcatgctgg ggatgcggtg ggctctatgg aaccagctgg ggcccgacag cgctggatc
3480

cccgatcccc agctttgctt ctcatttct tatttgata atgagaaaaa aaggaaaatt
3540

aattttaaca ccaattcagt agttgattga gcaaatgcgt tgccaaaaag gatgcttag
3600

agacagtgtt ctctgcacag ataaggacaa acattattca gagggagtag ccagagctga
3660

gactcctaag ccagtggatg gcacagcatt cttagggagaa atatgcgtt catcaccgaa
3720

gcctgattcc gtagagccac accttggtaa gggccaatct gtcacacag gatagagagg
3780

gcaggagcca gggcagagca tataaggtga ggtaggatca gttgctcctc acatttgctt
3840

ctgacatagt tgtgttggga gcttggatag cttggacagc tcagggctgc gatttcgcgc
3900

caaacttgac ggcaatccta gcgtgaaggc tggtaggatt ttatcccgc tgccatcatg
3960

gttcgaccat tgaactgcat cgtcgccgtg tcccaaata tggggattgg caagaacgga
4020

gacctaccct ggctccgat caggaacgag ttcaagtact tccaaagaat gaccacaacc
4080

tcttcagtgg aaggtaaaca gaatctggtg attatggta ggaaaacctg gttctccatt
4140

cctgagaaca atcgaccttt aaaggacaga attaatatacg ttctcagtag agaactcaaa
4200

gaaccaccac gaggagctca ttttcttgc AAAAGTTGG atgatgcctt aagactttt
4260

gaacaaccgg aattggcaag taaagttagac atggtttgg tagtcggagg cagttctgtt
4320

taccaggaag ccatgaatca accaggccac cttagactct ttgtgacaag gatcatgcag
4380

gaatttggaaa gtgacacgtt ttcccagaa attgatttgg ggaaatataa acttctccca
4440

gaatacccaag gcgtcccttc tgaggtccag gagggaaaaag gcatcaagta taagtttggaa
4500

gtctacgaga agaaagacta acaggaagat gctttcaagt tctctgctcc cctccctaaag
4560

tcatgcattt ttataagacc atgggacttt tgctggctt agatcagcct cgactgtgcc
4620

ttcttagttgc cagccatctg ttgtttgccc ctccccgtg ctttccttga ccctggaaagg
4680

tgccactccc actgtccttt cctaataaaa tgaggaaatt gcatcgatt gtctgagtag
4740

gtgtcattct attctgggg gtgggggtgg gcaggacagc aagggggagg attggaaaga
4800

caatagcagg catgctgggg atgcgggtgg ctctatggaa ccagctgggg ctcgagctac
4860

tagcttgct tctcaatttc ttatggcat aatgagaaaa aaaggaaaat taatttaac
4920

accaattcag tagttgattg agcaaattgcg ttgcaaaaaa ggatgttta gagacagtgt
4980

tctctgcaca gataaggaca aacattattc agagggagta cccagagctg agactctaa
5040

gccagtgagt ggcacagcat tctagggaga aatatgcttg tcattaccga agcctgattc
5100

cgttagagcca caccttggtt agggccaatc tgctcacaca ggatagagag ggcaggagcc
5160

agggcagagc atataagggtg aggttaggatc agttgcttct cacatttgct tctgacatag
5220

ttgtgttggg agcttggatc gatccttat gtttgaacaa gatggattgc acgcaggttc
5280

tccggccgct tgggtggaga ggctattcgg ctatgactgg gcacaacaga caatcggttg
5340

ctctgatgcc gccgtgttcc ggctgtcagc gcaggggcgc ccggttcttt ttgtcaagac
5400

cgacctgtcc ggtgccctga atgaactgca ggacgaggca ggcggctat cgtggctggc
5460

cacgacgggc gttccttgcg cagctgtgtc cgacgttgc actgaagcgg gaagggaactg
5520

gctgttattt ggcgaagtgc cggggcagga tctcctgtca tctcaccttg ctccctggca
5580

gaaagtatcc atcatggctg atgcaatgcg gggctgcatt acgcttgcatt cggctacactg
5640

cccattcgac caccaagcga aacatcgcat cgagcgagca cgtactcgga tggaaaggccgg
5700

tcttgcgtat caggatgatc tggacgaaga gcatcagggg ctgcgcggccag ccgaactgtt
5760

cgccaggctc aaggcgccca tgcccgacgg cgaggatctc gtctgtaccc atggcgatgc
5820

cggcttgcgg aatatcatgg tggaaaatgg ccgcttttctt ggatttcattt ggttttccgg
5880

gctgggtgtg gcggaccgct atcaggacat agcggttggct acccggtata ttgctgaaga
5940

gcttggcgcc gaatgggctg accgcttctt cgtgctttac ggtatcgccg cttcccgatt
6000

cgcagcgcat cgcccttctat cgcccttctt acgagttctt ctgagcggga ctctggggtt
6060

cggaaatgacc gaccaagcga cgcccaacct gccatcacga gatttcgatt ccaccgcccgc
6120

cttctatgaa aggttggct tcggaatcgt tttccggac gccggctgga tgatcctcca
6180

gogcggggat ctcatgctgg agttcttcgc ccaccccaac ttgtttattt cagcttataa
6240

tggttacaaa taaagcaata gcatcacaaa tttcacaaat aaagcatttt tttcactgca
6300

ttctagttgt ggtttgtcca aactcatcaa tctatcttat catgtctgga tcgcggccgc
6360

gatccccgtcg agagcttggc gtaatcatgg tcatacgctgt ttccctgtgtg aaattgttat
6420

ccgctcacaa ttccacacaa catacgagcc ggagcataaa gtgtaaagcc tgggggtgcct
6480

aatgagttag ctaactcaca ttaattgcgt tgcgctcaact gcccgttcc cagtcggaa
6540

acctgtcggt ccagotgcat taatgaatcg gccaacgogc ggggagagggc ggtttgcgt
6600

ttggggcgatc ttccgcttcc tcgctcaactg actcgctgctg ctccgtcggtt cggctgcggc
6660

gagcggtatc agctcactca aaggcggtaa tacggttatc cacagaatca ggggataa
6720

cagggaaagaa catgtgagca aaaggccagc aaaaggccag gaaccgtaaa aaggcccggt
6780

tgctggcggtt tttccatagg ctccggccccc ctgacgagca tcacaaaaat cgacgctcaa
6840

gtcagaggtg gcaaaccgg acaggactat aaagatacca ggcgtttccc cctggaaagct
6900

ccctcggtcg ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc
6960

tttcggaaag cgtggcgctt tctcaatgct cacgctgttagt gtatctcagt tcgggttagg
7020

tcgttcgctc caagctgggc tgtgtgcacg aaccccccgt tcagccccac cgctgcgcuc
7080

tatccggtaa ctatcgctt gagtccaacc cggtaaagaca cgacttatcg ccactggcag
7140

cagccactgg taacaggatt agcagagcga ggtatgtagg cggtgctaca gagttcttga
7200

agtggtgcc taactacggc tacactagaa ggacagtatt tggtatctgc gctctgctga
7260

agccagttac cttcgaaaaa agagttggta gctcttgatc cggcaaacaa accaccgctg
7320

gtagcggtgg tttttttgtt tgcaagcgc agattacgag cagaaaaaaa ggatctcaag
7380

aagatccctt gatcttttac acggggctcg acgctcagtg gaacgaaaac tcacgttaag
7440

ggatttttgtt catgagatta tcaaaaagga tcttcaccta gatcctttta aattaaaaat
7500

gaagttttaa atcaatctaa agtatatatg agtaaacttg gtctgacagt taccaatgt
7560

taatcagtga ggcacctatac tcagcgatct gtctatttcg ttcatccata gttgcctgac
7620

tccccgtcgt gttagataact acgatacggg agggcttacc atctggcccc agtgctgcaa
7680

tgatacccgcg agacccacgc tcaccggctc cagatttatac agcaataaac cagccagccg
7740

gaaggggccga gcgcagaagt ggtcctgcaa ctttatccgc ctccatccag tctattaatt
7800

gttgcggga agcttagagta agtagttcgc cagttaatag tttgcgcAAC gttgttgcca
7860

ttgctacagg catcggtgg tcacgctcgt cgtttggat ggcttcattc agctccgggt
7920

cccaacgatc aaggcgagtt acatgatccc ccatgttgcg caaaaaagcg gttagctcct
7980

tcggtcctcc gatcggtgtc agaagtaagt tggccgcagt gttatcactc atggttatgg
8040

cagcactgca taattctctt actgtcatgc catccgtaaatgatcttttgcgtgactgg
8100

agtactcaac caagtcattc tgagaatagt gtatgcggcg accgagttgc tcttgccgg
8160

cgtcaatacg ggataatacc ggcacacata gcagaacttt aaaagtgttc atcattggaa
8220

aacgttcttc gggcgaaaaa.ctctcaagga tcttaccgct gttgagatcc agttcgtatc
8280

aacccactcg tgcacccaac tgatcttcag catctttac tttcaccaggc gtttctgggt
8340

gagcaaaaac aggaaggcaa aatgccgcaa aaaagggaat aagggcgaca cgaaaaatgtt
8400

gaatactcat acttttcattt tttcaatattt attgaagcat ttatcagggt tattgtctca
8460

tgagcggata catatttgaa tgtatttaga aaaataaaca aatagggtt ccgcgcacat
8520

ttccccgaaa agtgccacct
8540

<210> 58
<211> 9209
<212> DNA
<213> Mus

<400> 58
gacgtcgccgg ccgcctctagg cctccaaaaaa agcctcctca ctacttctgg aatagctcag
60

aggccgaggc ggcctcgcc tctgcataaa taaaaaaaaat tagtcagcca tgcatgggc
120

ggagaatggg cggaactggg cggagttagg ggccggatgg gcggagttag gggccggact
180

atggttgctg actaattgag atgcatgctt tgcataacttc tgccctgctgg ggagcctggg
240

gactttccac acctgggtgc tgactaattg agatgoatgc tttgcatact tctgcctgct
300

ggggagcctg gggactttcc acaccctaac tgacacacat tccacagaat taattcccc
360

agttatata agtaatcaat tacgggtca ttatgttcata gcccatatat ggagttccgc
15

gttacataaac ttacggtaaa tggcccgctt ggctgaccgc ccaacgaccc ccgcccatttg

acgtcaataa tgacgtatgt tcccatatgt acggcaatag ggactttcca ttgacgtcaa

540 ttggatggact atttacggta aactqcccac ttggcagttac atcaagtgtta tcataatgc

600
-atataaaaaa stattgacgt caatgacggat aaatqqcccg cctggcatta tgcccagtac

720

atggtgatgc ggtttggca gtacatcaat gggcgtggat accggtttga ctcacgcgga
780

tttccaagtc tccacccat tgacgtcaat gggagtttgtt tttggcacca aaatcaacgg
840

gactttccaa aatgtcgtaa caactccgcc ccattgacgc aaatgggcgg taggcgtgta
900

cggtgggagg tctatataag cagagctggg tacgtgaacc gtcagatcgc ctggagacgc
960

catcacagat ctctcactat ggattttcag gtgcagatta tcagttcct gctaattcgt
1020

gcttcagtca taatgtccag aggacaaaatt gttctctccc agtctccagc aatcctgtct
1080

gcatctccag gggagaaggt cacaatgact tgcagggcca gctcaagtgt aagttacatc
1140

cactggttcc agcagaagcc aggatcctcc cccaaaccct ggatttatgc cacatccaac
1200

ctggcttctg gagtccctgt tcgcttcagt ggcagtgggt ctggacttc ttactctc
1260

acaatcagca gagtgaggc tgaagatgct gccacttatt actgccagca gtggactagt
1320

aacccaccca cggtcgagg ggggaccaag ctggaaatca aacgtacggt ggctgcacca
1380

tctgtcttca tcttcccgcc atctgatgag cagttgaaat ctggaactgc ctctgttg
1440

tgcctgctga ataacttcta tcccagagag gccaaagtac agtggaaaggt ggataacgcc
1500

ctccaatcgg gtaactcccc ggagagtgtc acagagcagg acagcaagga cagcacctac
1560

agcctcagca gcaccctgac gctgagcaaa gcagactacg agaaacacaa agtctacgcc
1620

tgcgaagtca cccatcaggg cctgagctcg ccgtcacaag agagcttcaa caggggagag
1680

tgttgaattc agatccgtta acggttacca actacctaga ctggattcgt gacaacatgc
1740

ggccgtgata tctacgtatg atcagcctcg actgtgcott cttagttgcca gccatctgtt
1800

gtttgccccct ccccccgtgcc ttcccttgacc ctggaaagggtg ccactccac tgcctttcc
1860

taataaaatg agggaaattgc atcgcatgtt ctgagtaggt gtcattctat tctggggggt
1920

ggggggggc aggacagcaa gggggaggat tggaagaca atagcaggca tgcgggat
1980

gcggggct ctatgaaacc agctgggct cgacagctat gccaaagtacg ccccttattg
2040

acgtcaatga cggttaatgg cccgcctggc attatgccca gtacatgacc ttatggact
2100

tccctacttg gcagtacatc tacgtattag tcatcgctat taccatggtg atgcggttt
2160

ggcagttacat caatggcggt ggatagcggt ttgactcacg gggatttcca agtctccacc
2220

ccattgacgt caatggjagt ttgtttggc accaaaatca acgggacttt ccaaaatgtc
2280

gtaacaactc cgccccattg acgcaaattgg gcggtaggcg tgtacggtgg gaggtctata
2340

taagcagagc tgggtacgtc ctcacattca gtgatcagca ctgaacacag acccgtcgac
2400

atgggttggc gcctcatctt gctttcctt gtcgtgttgc ctacgcgtgt cctgtcccag
2460

gtacaactgc agcagcctgg ggctgagctg gtgaagcctg ggcctcagt gaagatgtcc
2520

tgcaaggcatt ctggctacac atttaccagt tacaatatgc actggtaaa acagacacct
2580

ggtcggggcc tggaatggat tggagctatt tatcccgaa atgggatac ttcctacaat
2640

cagaagttca aaggcaaggc cacattgact gcagacaaat cctccagcac agcctacatg
2700

cagctcagca gcctgacatc tgaggactct gcggcttatt actgtgcaag atcgacttac
2760

tacggcggtg actggtaatt caatgtctgg ggcccgaggc ccacggtcac cgtctctgca
2820

gctagcacca agggccatc ggtctcccc ctggcacccct cctccaagag cacctctgg
2880

ggcacagcgg ccctgggctg cctggtaag gactacttcc ccgaaccgggt gacgggtcg
2940

tggaaactcag gcgcctgac cagcggcggtg cacaccttcc cggctgtcct acagtccatca
3000

ggactctact ccctcagcag cgtggtgacc gtgcctccca gcagcttggg cacccagacc
3060

tacatctgca aogtgaatca caagcccagc aacaccaagg tggacaagaa agcagagccc
3120

aaatcttgc acaaaactca cacatgccca ccgtgcccag cacctgaact cctgggggga
3180

ccgtcagtct tcctttccc cccaaaaccc aaggacaccc tcatgatctc ccggaccct
3240

gaggtcacat gcgtggtggt ggacgtgagc cacgaagacc ctgaggtcaa gttcaactgg
3300

tacgtggacg gcgtggaggt gcataatgcc aagacaaagc cgccggagga gcagtacaac
3360

agcacgtacc gtgtggtcag cgtcctcacc gtctgcacc aggactggct gaatggcaag
3420

gagtacaagt gcaaggcttc caacaaagcc ctccccagccc ccatcgagaa aaccatctcc
3480

aaaggccaaag ggcagcccg agaaccacag gtgtacaccc tgcccccattc ccgggatgag
3540

ctgaccaaga accaggttcag cctgacactgc ctggtaaaag gtttatcc cagcgacatc
3600

gccgtggagt gggagagcaa tggcagccg gagaacaact acaagaccac gcctccgtg
3660

ctggactccg acggcttctt cttctctac agcaagctca ccgtggacaa gagcagggtgg
3720

cagcaggsga acgttttctc atgctccgtg atgcatgagg ctctgcacaa ccactacacg
3780

cagaagagcc tctccctgtc tccggtaaa tgaggatccg ttaacggta ccaactacct
3840

agactggatt cgtacaaca tgcggccgtg atatctacgt atgatcagcc tcgactgtgc
3900

cttcttagtttgc ccagccatct gttgtttgcc cctcccccgt gccttccttg accctggaaag
3960

gtgccactcc cactgtcctt tcctaataaa atgagggaaat tgcacatcgat tgtctgagta
4020

ggtgtcattc tattctgggg ggtgggggtgg ggcaggacag caagggggag gattggaaag
4080

acaatagcag gcatgctggg gatgcgggtgg gctctatgga accagctggg gctcgacacgc
4140

gctggatctc ccgatccccca gctttgcttc tcaattttttt atttgcataaa tgagaaaaaaa.
4200

aggaaaatta attttaaacac caattcagta gttgatttag caaatgcgtt gccaaaaagg
4260

atgcttttgc gacagtgttc tctgcacaga taaggacaaa cattattcag agggagttacc
4320

cagagctgag actcctaaggc cagtggatgg cacagcattc tagggagaaa tatgcgttgc
4380

atcacccgaag cctgattccg tagagccaca ccttggtaag gccaaatctg ctcacacagg
4440

atagagaggg caggagccag ggcagagcat ataaggtagag gttaggatcag ttgctcctca
4500

cattttgttc tgacatagtt gtgttggag ctggatagc ttggacagct cagggctgc
4560

atttcgccaa aaacttgacg gcaatcttag cgtgaaggct ggtaggattt tatccccgt
4620

gccatcatgg ttcgaccatt gaactgcata gtcgcccgtgt cccaaaatat ggggattggc
4680

aagaacggag acctaccctg gcctccgctc aggaacgagt tcaagtactt ccaaagaatg
4740

accacaacct cttcagtggaa aggtaaacag aatctggtga ttatggtag gaaaacctgg
4800

ttctccatcc tcgagaagaa tcgaccttta aaggacagaa ttaatatagt tctcagtaga
4860

gaactcaaag aaccaccacg aggagctcat ttcttgc当地 aaagtttggta tgatgc当地
4920

agacttattt aacaaccgga attggcaagt aaagtagaca tggtttggat agtcggaggc
4980

agttctgttt accaggaagc catgaatcaa ccaggccacc tttagactctt tgtgacaagg
5040

atcatgcagg aatttgaaag tgacacgttt ttcccagaaaa ttgatttggg gaaatataaa
5100

cttctccag aatacccagg cgtcotctt gaggccagg agggaaaagg catcaagtt
5160

aagtttgaag tctacgagaa gaaagactaa caggaagatg ctttcaagtt ctctgc当地
5220

ctcctaaagc tatgcatttt tataagacca tggactttt gctggcttta gatcaggc
5280

gactgtgcct totagttgcc agccatctgt tggttgc当地 tcccccgtgc cttccttgac
5340

cctggaaaggc gccactccca ctgtccttta ctaataaaat gaggaaatttgc catgcattt
5400

tctgagtagg tgcatttca ttctgggggg tgggtgggg caggacagca agggggagga
5460

ttgggaagac aatagcaggc atgctggggta tgccgtgggc tctatggAAC cagctggggc
5520

tcgagctact agcttgctt ctcattttct tatttgcata atgagaaaaa aaggaaaaatt
5580

aattttaaca ccaattcagt agttgattga gcaaatgcgt tgccaaaaag gatgccttag
5640

agacagtgtt ctctgcacag ataaggacaa acattattca gagggagtag ccagagctga
5700

gactcctaag ccagtgagtg gcacagcatt cttagggagaa atatgcctgt catcacccaa
5760

gcctgattcc gtagagccac accttggtaa gggccaatct gctcacacag gatagagagg
5820

gcaggagcca gggcagagca tataaggtga ggttaggatca gttgctcctc acatttgctt
5880

ctgacatagt tgtgttggga gcttggatcg atcctctatg gttgaacaag atggatttgc
5940

cgcaggttctt ccggccgctt gggtggagag gctattcggc tatgactggg cacaacagac
6000

aatcggctgc tctgatgccg ccgtgttccg gctgtcagcg cagggccgc cggttcttt
6060

tgtcaagacc gacctgtccg gtgcctgaa tgaactgcag gacgaggcag cgcggctatc
6120

gtggctggcc acgacggggcg ttccattgcgc agctgtgcgc gacgttgtca ctgaagcggg
6180

aagggactgg ctgctattgg gcgaagtgcc gggcaggat ctcctgtcat ctcacccatgc
6240

tcctgccgag aaagtatcca tcatggctga tgcaatgcgg cggotgcata cgcttgatcc
6300

ggctacctgc ccattcgacc accaagcgaa acatcgcatc gagcagacac gtactcggat
6360

ggaagccggt ctgtcgatc aggatgatct ggacgaagag catcaggggc tcgcgccagc
6420

cgaactgttc gccaggctca aggcgccat gccccacggc gaggatctcg tcgtgaccca
6480

tggcgatgcc tgcttgccga atatcatggt ggaaaatggc cgctttctg gattcatcga
6540

ctgtggccgg ctgggtgtgg cggaccgcta tcaggacata gcgttggcta cccgtgatat
6600

tgctgaagag ctggcggcg aatgggctga ccgttcctc gtgccttacg gtatcggccgc
6660

tcccgattcg cagcgcatcg ctttctatcg ctttcttgcac gagttttctt gagcgggact
6720

ctggggttcg aaatgaccga ccaaggcgcg cccaacctgc catcacgaga tttcgattcc
6780

accggccgcct tctatgaaag gttggcgttc ggaatcgttt tccggacgc cggctggatg
6840

atcctccagc gcggggatct catgctggag ttcttcgccc accccaactt gtttattgca
6900

gcttataatg gttacaata aagcaatagc atcacaaatt tcacaaataa agcattttt
6960

tcaactgcatt ctatgtgg tttgtccaaa ctcataatc tatcttatca tgtctggatc
7020

goggccgoga tcccggtcgag agcttggcgt aatcatggtc atagctgttt cctgtgtgaa
7080

attgttatcc gctcacaatt ccacacaaca tacgagccgg aagcataaaag tgtaaaggct
7140

ggggtgacta atgagtgagc taactcacat taattgcgtt ggcgtcaactg cccgctttcc
7200

agtccggaaa cctgtcgtgc cagctgcatt aatgaatcg ccaacgcgcg gggagaggcg
7260

gtttgcgtat tggcgctat tccgcttcct cgctcaactga ctcgctgcgc tcggtcgttc
7320

ggctgcggcg agcggtatca gctcaactaa aggccgtaat acggttatcc acagaatcag
7380

gggataacgc aggaaagaac atgtgagcaa aaggccagca aaaggccagg aaccgtaaaa
7440

aggccgcgtt gctggcggtt ttccataggc tccgcccccc tgacgagcat cacaaaaatc
7500

gacgctcaag tcagagggtgg cgaaacccga caggactata aagataccag gcgtttcccc
7560

ctggaagctc cctcggtgcgc tctcctgttc cgaccctgcc gcttaccggta tacctgtccg
7620

cctttatccc ttccggaaagc gtggcggttt ctcaatgctc acgctgttagg tatctcagtt
7680

cggtgttaggt cgttcgtcc aagctggct gtgtgcacga acccccccgtt cagcccgacc
7740

gctgcgcctt atccggtaac tatcgcttg agtccaaccc ggtaagacac gacttatcgc
7800

cactggcagc agccactggt aacaggatta gcagagcgag gtatgttaggc ggtgtctacag
7860

agttcttgaa gtgggtggcct aactacggct acactagaag gacagtattt ggtatctgcg
7920

ctctgctgaa gcoagttacc .ttcggaaaaa gagttggtag ctcttgatcc ggcaaacaaa
7980

ccaccgctgg tagcggtgg tttttgttt gcaaggcgc gattacgcgc agaaaaaaaaag
8040

gatctcaaga agatcctttg atctttcta cggggctga cgctcagtgg aacgaaaact
8100

cacgttaagg gattttggtc atgagattat caaaaaggat cttcacctag atcctttaa
8160

attaaaaatg aagttttaaa tcaatctaaa gtatatatga gtaaacttgg tctgacagtt
8220

accaatgctt aatcagttag gcacccatct cagcgatctg tctatttctg tcatccatag
8280

ttgcctgact ccccgctgt tagataacta cgatacggga gggcttacca tctggcccca
8340

gtgctgcaat gataccgcga gacccacgct caccggctcc agatttatca gcaataaacc
8400

agccagccgg aaggggccgag cgcagaagtg gtcctgcaac tttatccgcc tccatccagt
8460

ctattaattg ttgccggaa gctagagtaa gtagttcgcc agttaatagt ttgcgcacg
8520

ttagttccat tgctacaggc atcggttgtt caccgtcgcc gtttggatgt gtttcattca
8580

gctccgggttc ccaacgatca aggcgagtta catgatcccc catgttgtgc aaaaaagcgg
8640

ttagctcctt cggctctccg atcggtgtca gaagtaagtt ggccgcagtg ttatcactca
8700

tggttatggc agcactgcat aattcttta ctgtcatgcc atccgtaaga tgctttctg
8760

tgactggta gtactcaacc aagtctttt gagaatagtg tatgcggcga ccgagttgt
8820

cttgcggc gtaatacgg gataataccg cggccacatag cagaacttta aaagtgcgtca
8880

tcattggaaa acgttctcg gggcgaaaac totcaaggat cttaccgtg ttgagatcca
8940

gttcgatgta acccactcg gcacccaaact gatcttcagc atctttact ttcaccagcg
9000

tttctgggtg agcaaaaaca ggaaggcaaa atgccgaaa aaagggaata agggcgacac
9060

ggaaaatgtt aataactcata ctcttccttt ttcaatattt ttgaagcatt tatcagggtt
9120

attgtctcat gagcggatac atatttgaat gtattttagaa aaataaaacaa ataggggttc
9180

cgcgcacatt tccccgaaaa gttccacct
9209

<210> 59
<211> 384
<212> DNA
<213> Mus musculus

<400> 59
atggattttc aggtgcagat tatcagttt cttgctaataca gtgtttcagt cataatgtcc
60

agagggcaaa ttgttcttcc ccagtctcca gcaatcctgt ctgcatttcc aggggagaag
120

gtcacaatga cttgcagggc cagtcaggat gtaagttaca tccactgggtt ccagcagaag
180

ccaggatctt ccccaaacc ctggattttt gccacatcca acctggttt tggagtccct
240

gttcgcttca gtggcagtgg gtctggact tcttacttcc tcacaatcag cagagtggag
300

gctgaagatg ctgccactta ttactgccag cagtggacta gtaacccacc cacgttcgga
360

ggggggacca agctggaaat caaa
384

<210> 60
<211> 128
<212> PRT
<213> Mus musculus

<400> 60
Met Asp Phe Gln Val Gln Ile Ile Ser Phe Leu Leu Ile Ser Ala Ser
1 5 10 15

Val Ile Met Ser Arg Gly Gln Ile Val Leu Ser Gln Ser Pro Ala Ile
20 25 30

Leu Ser Ala Ser Pro Gly Glu Lys Val Thr Met Thr Cys Arg Ala Ser
35 40 45

Ser Ser Val Ser Tyr Ile His Trp Phe Gln Gln Lys Pro Gly Ser Ser
50 55 60

Pro Lys Pro Trp Ile Tyr Ala Thr Ser Asn Leu Ala Ser Gly Val Pro
65 70 75 80

Val Arg Phe Ser Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile
85 90 95

Ser Arg Val Glu Ala Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Trp
100 105 110

Thr Ser Asn Pro Pro Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys
 115 120 125

<210> 61
<211> 420
<212> DNA
<213> Mus musculus

<400> 61
atgggttgg a gcctcatctt gtcgtttttt ctacgcgtgt cctgtcccaag
60
gtacaactgc agcaggctgg ggctgagctg gtgaagcctg gggcctcagt gaagatgtcc
120
tgcaaggc tt ctggctacac atttaccagt tacaatatgc actggtaaa acagacac
180
ggtcggggcc tggaaatggat tggagctatt tatcccgaa atggtgatac ttccatcaat
240
cagaagg tca aaggcaaggc cacattgact gcagacaaat cctccagcac agcctacatg
300
cagctcagca gcctgacatc tgaggactct gcggcttatt actgtgcaag atcgacttac
360
tacggcggtg actggtaattt caatgtctgg ggcgcaggga ccacggcac cgtctctgca
420

<210> 62
<211> 140
<212> PRT
<213> Mus musculus

<400> 62
Met Gly Trp Ser Leu Ile Leu Leu Phe Leu Val Ala Val Ala Thr Arg
1 5 10 15
Val Leu Ser Gln Val Gln Leu Gln Gln Pro Gly Ala Glu Leu Val Lys
20 25 30
Pro Gly Ala Ser Val Lys Met Ser Cys Lys Ala Ser Gly Tyr Thr Phe
35 40 45
Thr Ser Tyr Asn Met His Trp Val Lys Gln Thr Pro Gly Arg Gly Leu
50 55 60
Glu Trp Ile Gly Ala Ile Tyr Pro Gly Asn Gly Asp Thr Ser Tyr Asn
65 70 75 80
Gln Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser
85 90 95
Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val
100 105 110
Tyr Tyr Cys Ala Arg Ser Thr Tyr Tyr Gly Gly Asp Trp Tyr Phe Asn
115 120 125
Val Trp Gly Ala Gly Thr Thr Val Thr Val Ser Ala

130

135

140

<210> 63
<211> 1395
<212> DNA
<213> Homo sapiens

<400> 63.
atgtattcca atgtgatagg aactgttaacc tctggaaaaa ggaaggttta tcttttgtcc
60

ttgctgctca ttggcttctg ggactgcgtg acctgtcaog ggagccctgt ggacatctgc
120

acagccaagc cgccggacat tcccatgaat cccatgtgca tttaccgctc cccggagaag
180

aaggcaactg aggtgaggg ctcagaacag aagatcccgg aggccaccaa ccggcggtgc
240

tgggaactgt ccaaggccaa ttcccgctt gctaccactt tctatcagca cctggcagat
300

tccagaatg acaatgataa cattttcctg tcacccctga gtatctccac ggcttttgtct
360

atgaccaagc tgggtgcctg taatgacacc ctccagcaac tggatggaggt atttaagttt
420

gacaccatat ctgagaaaac atctgatcag atccacttct ttttgccaa actgaactgc
480

cgactctatac gaaaagccaa caaatccctcc aagtttagtat cagccaatcg ctttttgga
540

gacaaatccc ttaccttcaa tgagacctac caggacatca gtgagtttgtt atatggagcc
600

aagctccagc ccctggactt caaggaaaat gcagagcaat ccagageggc catcaacaaa
660

tgggtgtcca ataagaccga aggccgaatc accgatgtca tccctcgga agccatcaat
720

gagctcactg ttctggtgct ggttaacacc atttacttca agggcctgtg gaagtcaaag
780

ttcagccctg agaacacaag gaaggaactg ttctacaagg ctgatggaga gtctgttca
840

gcacatcatga tgtaccagga aggcaagttc cgttatcggc gcgtggctga aggcacccag
900

gtgcttgagt tgcccttcaa aggtgatgac atcaccatgg tcctcatctt gccaaggct
960

gagaagagcc tggccaaggt ggagaaggaa ctcaccccaag aggtgctgca ggagtggctg
1020

gatgaattgg aggagatgat gctggtggtc cacatgcccc gcttccgcac tgaggacggc
1080

ttcagtttga aggaggcgt gcaagacatg ggcccttgtcg atctgttcag ccctgaaaag
1140

tccaaactcc caggtattgt tgccagaaggc cgagatgacc tctatgtctc agatgcattc
1200

cataaggcat ttcttgaggt aaatgaagaa ggcagtgaag cagctgcaag taccgctgtt
1260

gtgattgctg gccgttcgt aaaccccaac agggtgactt tcaaggccaa caggccttcc
1320

ctggtttta taagagaagt tcctctgaac actattatct tcatggcag agtagccaac
1380

ccttgtgtta agtaa
1395

<210> 64
<211> 464
<212> PRT
<213> Homo sapiens

<400> 64
Met Tyr Ser Asn Val Ile Gly Thr Val Thr Ser Gly Lys Arg Lys Val
1 5 10 15

Tyr Leu Leu Ser Leu Leu Ile Gly Phe Trp Asp Cys Val Thr Cys
20 25 30

His Gly Ser Pro Val Asp Ile Cys Thr Ala Lys Pro Arg Asp Ile Pro
35 40 45

Met Asn Pro Met Cys Ile Tyr Arg Ser Pro Glu Lys Lys Ala Thr Glu
50 55 60

Asp Glu Gly Ser Glu Gln Lys Ile Pro Glu Ala Thr Asn Arg Arg Val
65 70 75 80

Trp Glu Leu Ser Lys Ala Asn Ser Arg Phe Ala Thr Thr Phe Tyr Gln
85 90 95

His Leu Ala Asp Ser Lys Asn Asp Asn Asp Asn Ile Phe Leu Ser Pro
100 105 110

Leu Ser Ile Ser Thr Ala Phe Ala Met Thr Lys Leu Gly Ala Cys Asn
115 120 125

Asp Thr Leu Gln Gln Leu Met Glu Val Phe Lys Phe Asp Thr Ile Ser
130 135 140

Glu Lys Thr Ser Asp Gln Ile His Phe Phe Ala Lys Leu Asn Cys
145 150 155 160

Arg Leu Tyr Arg Lys Ala Asn Lys Ser Ser Lys Leu Val Ser Ala Asn
165 170 175

Arg Leu Phe Gly Asp Lys Ser Leu Thr Phe Asn Glu Thr Tyr Gln Asp
180 185 190

Ile Ser Glu Leu Val Tyr Gly Ala Lys Leu Gln Pro Leu Asp Phe Lys
 195 200 205

Glu Asn Ala Glu Gln Ser Arg Ala Ala Ile Asn Lys Trp Val Ser Asn
 210 215 220

Lys Thr Glu Gly Arg Ile Thr Asp Val Ile Pro Ser Glu Ala Ile Asn
 225 230 235 240

Glu Leu Thr Val Leu Val Leu Val Asn Thr Ile Tyr Phe Lys Gly Leu
 245 250 255

Trp Lys Ser Lys Phe Ser Pro Glu Asn Thr Arg Lys Glu Leu Phe Tyr
 260 265 270

Lys Ala Asp Gly Glu Ser Cys Ser Ala Ser Met Met Tyr Gln Glu Gly
 275 280 285

Lys Phe Arg Tyr Arg Arg Val Ala Glu Gly Thr Gln Val Leu Glu Leu
 290 295 300

Pro Phe Lys Gly Asp Asp Ile Thr Met Val Leu Ile Leu Pro Lys Pro
 305 310 315 320

Glu Lys Ser Leu Ala Lys Val Glu Lys Glu Leu Thr Pro Glu Val Leu
 325 330 335

Gln Glu Trp Leu Asp Glu Leu Glu Glu Met Met Leu Val Val His Met
 340 345 350

Pro Arg Phe Arg Ile Glu Asp Gly Phe Ser Leu Lys Glu Gln Leu Gln
 355 360 365

Asp Met Gly Leu Val Asp Leu Phe Ser Pro Glu Lys Ser Lys Leu Pro
 370 375 380

Gly Ile Val Ala Glu Gly Arg Asp Asp Leu Tyr Val Ser Asp Ala Phe
 385 390 395 400

His Lys Ala Phe Leu Glu Val Asn Glu Glu Gly Ser Glu Ala Ala Ala
 405 410 415

Ser Thr Ala Val Val Ile Ala Gly Arg Ser Leu Asn Pro Asn Arg Val
 420 425 430

Thr Phe Lys Ala Asn Arg Pro Phe Leu Val Phe Ile Arg Glu Val Pro
 435 440 445

Leu Asn Thr Ile Ile Phe Met Gly Arg Val Ala Asn Pro Cys Val Lys
 450 455 460

<210> 65
<211> 1962
<212> DNA
<213> Homo sapiens

<400> 65
atgcgtcccc tgcgcggcccg cgccgcgctg ctggcgctcc tggcctcgct cctggccgcg
60

ccccgggtgg ccccgccgaa ggccccgcac ctgggtgcagg tggacgcggc cccgcgcgtg
120

tggccctgc ggcgttctg gaggagcaca ggcttctgcc ccccgctgcc acacagccag
180

gctgaccagt acgtcctcag ctgggaccag cagctcaacc tcgcctatgt gggcgccgtc
240

cctcaccgcg gcatcaagca ggtccggacc cactggctgc tggagcttgt caccaccagg
300

gggtccactg gacggggct gagctacaac ttcacccacc tggacggta cttggacatt
360

ctcaggaga accagctcct cccagggttt gagctgatgg gcagcgcctc gggccacttc
420

actgactttg aggacaagca gcaggtgttt gagtggaagg acttggtctc cagcctggcc
480

aggagataca tcggttaggtt cggactggcg catgttcca agtggactt cgagacgtgg
540

aatgagccag accaccacga ctttacaac gtctccatga ccatgcaagg cttctgaac
600

tactacatgt cctgctcgga gggctgcgc gccgcctggc cccgcctgcg gctgggaggc
660

ccggcgact cttccacac cccacccgca tccccgtga gctggggct cctgcgcac
720

tgccacgacg gtaccaactt cttcaactggg gaggcggcg tgccgctgga ctacatotcc
780

ctccacagga agggtgcgcg cagctccatc tccatcctgg agcaggagaa ggtcgctcg
840

cagcagatcc ggcagcttt cccaaatgtt cggacacccc ccatttacaa cgacgaggcg
900

gaccgcgtgg tggctggtc cctgccacag ccgtggaggcg cggacgtgac ctacgcggcc
960

atggtgtga aggtcatcgc gcagcatcag aacctgctac tggccaacac cacctccggcc
1020

ttccccatcg cgctcctgag caacgacaat gccttctga gctaccaccc gcaccccttc
1080

gcccggcgca cgttcaccgc ggcgttccag gtcaacaaca cccgcggcc gcacgtcg
1140

ctgttgcgca agccgggtgtt cacggccatg gggctgctgg cgctgctgga tgaggagcg
1200

ctctggcccg aagtgtcgca ggccgggacc gtccatggaca gcaaccacac ggtggccgtc
1260

ctggccagcg cccaccgccc ccagggcccc gccgacgcct ggccgcgcgc ggtgctgatc
1320

tacgcgagcg acgacaccccg cgcccacccc aaccgcagcg tcgcggtgac cctgcggctg
1380

cgcgggggtgc ccccccggccc gggcctggtc tacgtcacgc gctacctgga caacgggctc
1440

tgcagccccg acggcgagtg gcggcgctg ggccggcccg tcttcccccac ggcagagcag
1500

ttccggcgca tgcgcgccg tgaggacccg gtggccgcgg cgcccccggc cttacccgcc
1560

ggcgccgcgc tgaccctgctg ccccgcgctg cggctgcgt cgctttgtc ggtgcacgtg
1620

tgtgcgcgcgc ccgagaagcc gcccggcag gtcacgcgc tccgcgcct gcccctgacc
1680

caagggcagc tggttctggat ctggtcggat gaacacgtgg gctccaagtg cctgtggaca
1740

tacgagatcc agttctctca ggacggtaag gcttacaccc cggtcagcag gaagccatcg
1800

accttcaacc tctttgtgtt cagccagac acaggtgctg tctctggctc ctaccgagtt
1860

cgagccctgg actactgggc ccgaccaggc cocttctogg accctgtgcc gtacctggag
1920

gtccctgtgc caagagggcc cccatccccg ggcaatccat ga
1962

<210> 66

<211> 653

<212> PRT

<213> Homo sapiens

<400> 66

Met Arg Pro Leu Arg Pro Arg Ala Ala Leu Leu Ala Leu Leu Ala Ser
1 5 10 15

Leu Leu Ala Ala Pro Pro Val Ala Pro Ala Glu Ala Pro His Leu Val
20 25 30

Gln Val Asp Ala Ala Arg Ala Leu Trp Pro Leu Arg Arg Phe Trp Arg
35 40 45

Ser Thr Gly Phe Cys Pro Pro Leu Pro His Ser Gln Ala Asp Gln Tyr
50 55 60

Val Leu Ser Trp Asp Gln Gln Leu Asn Leu Ala Tyr Val Gly Ala Val
65 70 75 80

Pro His Arg Gly Ile Lys Gln Val Arg Thr His Trp Leu Leu Glu Leu
85 90 95

Val Thr Thr Arg Gly Ser Thr Gly Arg Gly Leu Ser Tyr Asn Phe Thr

100	105	110
His Leu Asp Gly Tyr Leu Asp Leu Leu Arg Glu Asn Gln Leu Leu Pro		
115	120	125
Gly Phe Glu Leu Met Gly Ser Ala Ser Gly His Phe Thr Asp Phe Glu		
130	135	140
Asp Lys Gln Gln Val Phe Glu Trp Lys Asp Leu Val Ser Ser Leu Ala		
145	150	155
Arg Arg Tyr Ile Gly Arg Tyr Gly Leu Ala His Val Ser Lys Trp Asn		
165	170	175
Phe Glu Thr Trp Asn Glu Pro Asp His His Asp Phe Asp Asn Val Ser		
180	185	190
Met Thr Met Gln Gly Phe Leu Asn Tyr Tyr Asp Ala Cys Ser Glu Gly		
195	200	205
Leu Arg Ala Ala Ser Pro Ala Leu Arg Leu Gly Gly Pro Gly Asp Ser		
210	215	220
Phe His Thr Pro Pro Arg Ser Pro Leu Ser Trp Gly Leu Leu Arg His		
225	230	235
Cys His Asp Gly Thr Asn Phe Phe Thr Gly Glu Ala Gly Val Arg Leu		
245	250	255
Asp Tyr Ile Ser Leu His Arg Lys Gly Ala Arg Ser Ser Ile Ser Ile		
260	265	270
Leu Glu Gln Glu Lys Val Val Ala Gln Gln Ile Arg Gln Leu Phe Pro		
275	280	285
Lys Phe Ala Asp Thr Pro Ile Tyr Asn Asp Glu Ala Asp Pro Leu Val		
290	295	300
Gly Trp Ser Leu Pro Gln Pro Trp Arg Ala Asp Val Thr Tyr Ala Ala		
305	310	315
Met Val Val Lys Val Ile Ala Gln His Gln Asn Leu Leu Ala Asn		
325	330	335
Thr Thr Ser Ala Phe Pro Tyr Ala Leu Leu Ser Asn Asp Asn Ala Phe		
340	345	350
Leu Ser Tyr His Pro His Pro Phe Ala Gln Arg Thr Leu Thr Ala Arg		
355	360	365
Phe Gln Val Asn Asn Thr Arg Pro Pro His Val Gln Leu Leu Arg Lys		
370	375	380
Pro Val Leu Thr Ala Met Gly Leu Leu Ala Leu Leu Asp Glu Glu Gln		
385	390	395
Leu Trp Ala Glu Val Ser Gln Ala Gly Thr Val Leu Asp Ser Asn His		
405	410	415
Thr Val Gly Val Leu Ala Ser Ala His Arg Pro Gln Gly Pro Ala Asp		
420	425	430

Ala Trp Arg Ala Ala Val Leu Ile Tyr Ala Ser Asp Asp Thr Arg Ala
 435 440 445

His Pro Asn Arg Ser Val Ala Val Thr Leu Arg Leu Arg Gly Val Pro
 450 455 460

Pro Gly Pro Gly Leu Val Tyr Val Thr Arg Tyr Leu Asp Asn Gly Leu
 465 470 475 480

Cys Ser Pro Asp Gly Glu Trp Arg Arg Leu Gly Arg Pro Val Phe Pro
 485 490 495

Thr Ala Glu Gln Phe Arg Arg Met Arg Ala Ala Glu Asp Pro Val Ala
 500 505 510

Ala Ala Pro Arg Pro Leu Pro Ala Gly Gly Arg Leu Thr Leu Arg Pro
 515 520 525

Ala Leu Arg Leu Pro Ser Leu Leu Leu Val His Val Cys Ala Arg Pro
 530 535 540

Glu Lys Pro Pro Gly Gln Val Thr Arg Leu Arg Ala Leu Pro Leu Thr
 545 550 555 560

Gln Gly Gln Leu Val Leu Val Trp Ser Asp Glu His Val Gly Ser Lys
 565 570 575

Cys Leu Trp Thr Tyr Glu Ile Gln Phe Ser Gln Asp Gly Lys Ala Tyr
 580 585 590

Thr Pro Val Ser Arg Lys Pro Ser Thr Phe Asn Leu Phe Val Phe Ser
 595 600 605

Pro Asp Thr Gly Ala Val Ser Gly Ser Tyr Arg Val Arg Ala Leu Asp
 610 615 620

Tyr Trp Ala Arg Pro Gly Pro Phe Ser Asp Pro Val Pro Tyr Leu Glu
 625 630 635 640

Val Pro Val Pro Arg Gly Pro Pro Ser Pro Gly Asn Pro
 645 650

<210> 67

<211> 1290

<212> DNA

<213> Homo sapiens

<400> 67

atgcagctga ggaacccaga actacatctg ggctgcgcgc ttgcgttcg cttcctggcc
 60

ctcgtttctt gggacatccc tggggctaga gcactggaca atggattggc aaggacgcct
 120

accatggctt ggctgcactg ggagcgcttc atgtgcaacc ttgactgcca ggaagagcca
 180

gattccttgca tcagttagaa gctcttcatg gagatggcag agctcatggc ctcagaaggc
 240

tggaaaggatg caggttatga gtacotctgc attgatgact gttggatggc tcccaaaga
300

gattcagaag gcagacttca ggcagaccct cagcgotttc ctcatggat tcgccagcta
360

gctaattatg ttcacagcaa aggactgaag ctagggattt atgcagatgt tggaaataaa
420

acctgcgcag gctccctgg gagtttgga tactacgaca ttgatgocca gacctttgct
480

gactggggag tagatctgct aaaatttgat ggttgttact gtgacagttt ggaaaatttg
540

gcagatggtt ataaggcacat gtcctggcc ctgaatagga ctggcagaag cattgtgtac
600

tccgtgagt ggcctttta tatgtggccc tttcaaaagc ccaattatac agaaatccga
660

cagtactgca atcactggcg aaattttgct gacattgatg attcctggaa aagtataaaag
720

agtatcttgg actggacatc ttttaaccag gagagaattt ttgatgttgc tggaccaggg
780

ggttggaatg acccagatat gtttgttgc ggcaactttg gcctcagctg gaatcagcaa
840

gtaactcaga tggccctctg ggctatcatg gctgctcctt tattcatgtc taatgacctc
900

cgacacatca gccctcaagc caaagctctc cttcaggata aggacgtaat tgccatcaat
960

caggaccct tggcaagca agggtaccag cttagacagg gagacaactt tgaagtgtgg
1020

gaacgacctc tctcaggctt agcctggct gtagctatga taaaccggca ggagattgg
1080

ggacctcgct cttataccat cgctttgttgc tccctggta aaggagtggc ctgtatcc
1140

gcctgttca tcacacagct cctccctgtg aaaaggaagc tagggttcta tgaatggact
1200

tcaaggtaa gaagtcacat aaatcccaca ggcactgttt tgcttcagct agaaaataca
1260

atgcagatgt cattaaaaga cttactttaa
1290

<210> 68

<211> 429

<212> PRT

<213> Homo sapiens

<400> 68

Met Gln Leu Arg Asn Pro Glu Leu His Leu Gly Cys Ala Leu Ala Leu

Arg Phe Leu Ala Leu Val Ser Trp Asp Ile Pro Gly Ala Arg Ala Leu
 20 25 30

Asp Asn Gly Leu Ala Arg Thr Pro Thr Met Gly Trp Leu His Trp Glu
 35 40 45

Arg Phe Met Cys Asn Leu Asp Cys Gln Glu Glu Pro Asp Ser Cys Ile
 50 55 60

Ser Glu Lys Leu Phe Met Glu Met Ala Glu Leu Met Val Ser Glu Gly
 65 70 75 80

Trp Lys Asp Ala Gly Tyr Glu Tyr Leu Cys Ile Asp Asp Cys Trp Met
 85 90 95

Ala Pro Gln Arg Asp Ser Glu Gly Arg Leu Gln Ala Asp Pro Gln Arg
 100 105 110

Phe Pro His Gly Ile Arg Gln Leu Ala Asn Tyr Val His Ser Lys Gly
 115 120 125

Leu Lys Leu Gly Ile Tyr Ala Asp Val Gly Asn Lys Thr Cys Ala Gly
 130 135 140

Phe Pro Gly Ser Phe Gly Tyr Tyr Asp Ile Asp Ala Gln Thr Phe Ala
 145 150 155 160

Asp Trp Gly Val Asp Leu Leu Lys Phe Asp Gly Cys Tyr Cys Asp Ser
 165 170 175

Leu Glu Asn Leu Ala Asp Gly Tyr Lys His Met Ser Leu Ala Leu Asn
 180 185 190

Arg Thr Gly Arg Ser Ile Val Tyr Ser Cys Glu Trp Pro Leu Tyr Met
 195 200 205

Trp Pro Phe Gln Lys Pro Asn Tyr Thr Glu Ile Arg Gln Tyr Cys Asn
 210 215 220

His Trp Arg Asn Phe Ala Asp Ile Asp Asp Ser Trp Lys Ser Ile Lys
 225 230 235 240

Ser Ile Leu Asp Trp Thr Ser Phe Asn Gln Glu Arg Ile Val Asp Val
 245 250 255

Ala Gly Pro Gly Gly Trp Asn Asp Pro Asp Met Leu Val Ile Gly Asn
 260 265 270

Phe Gly Leu Ser Trp Asn Gln Gln Val Thr Gln Met Ala Leu Trp Ala
 275 280 285

Ile Met Ala Ala Pro Leu Phe Met Ser Asn Asp Leu Arg His Ile Ser
 290 295 300

Pro Gln Ala Lys Ala Leu Leu Gln Asp Lys Asp Val Ile Ala Ile Asn
 305 310 315 320

Gln Asp Pro Leu Gly Lys Gln Gly Tyr Gln Leu Arg Gln Gly Asp Asn
 325 330 335

Phe Glu Val Trp Glu Arg Pro Leu Ser Gly Leu Ala Trp Ala Val Ala
340 345 350

Met Ile Asn Arg Gln Glu Ile Gly Gly Pro Arg Ser Tyr Thr Ile Ala
355 360 365

Val Ala Ser Leu Gly Lys Gly Val Ala Cys Asn Pro Ala Cys Phe Ile
370 375 380

Thr Gln Leu Leu Pro Val Lys Arg Lys Leu Gly Phe Tyr Glu Trp Thr
 385 390 395 400

Ser Arg Leu Arg Ser His Ile Asn Pro Thr Gly Thr Val Leu Leu Glu
405 410 415

Leu Glu Asn Thr Met Gln Met Ser Leu Lys Asp Leu Leu
420 425

<210> 69

<211> 351

<212> DNA

<213> Homo sapiens

<400> 69

atggattact acagaaaata tgcagctatc tttctggtca cattgtcggt gtttctgcat
60

gttctccatt ccgcgtcctgat tgtagcaggat tggcccaaaat gtcacgttttttttgggggggggg
120

2

tatccatc cactaaatgc caagaagacca atattttatcc aaaagaacgt cacctcaqag

240 *Leucostoma corynorhini* *Leucostoma testaceum* *Leucostoma tigrinum*

300

<210> 70
<211> 11

<212> PBT

(212) PRT
(213) Hom

<213> HOMO sapiens

Met Asp T

Met Asp Tyr Tyr Arg Lys Tyr Ile Val Ile Thr 15

Val Phe Leu His Val Leu His Ser Ala Pro Asp Val Gin Asp Cys Ile
20 25 30

Glu Cys Thr Leu Gln Glu Asn Pro Phe Phe Ser Gln Phe Gly Ala Pro
35 40 45

Ile Leu Gln Cys Met Gly Cys Cys Phe Ser Arg Ala Tyr Pro Thr Pro
50 55 60

Leu Arg Ser Lys Lys Thr Met Leu Val Gln Lys Asn Val Thr Ser Glu
 65 70 75 80

Ser Thr Cys Cys Val Ala Lys Ser Tyr Asn Arg Val Thr Val Met Gly
 85 90 95

Gly Phe Lys Val Glu Asn His Thr Ala Cys His Cys Ser Thr Cys Tyr
 100 105 110

Tyr His Lys Ser
 115

<210> 71

<211> 498

<212> DNA

<213> Homo sapiens

<400> 71

atggagatgt tccagggct gctgctgttg ctgctgctga gcatggcgaa gacatggca
 60

tccaaggagc cgcttcggcc acgggtgccgc cccatcaatg ccacccctggc tgtggagaag
 120

gagggctgcc ccgtgtgcat caccgtcaac accaccatct gtgcggctta ctgccccacc
 180

atgaccgcgc tgctgcaggg ggtcctgccc gcccctgcctc aggtgggtgtg caactaccgc
 240

gatgtgcgtct tcgagtccat ccggctccct ggctgcccgc gcggcgtgaa ccccggtggc
 300

tcctacgcgc tggctctcag ctgtcaatgt gcaactctgcc gccgcagcac cactgactgc
 360

gggggtccca aggaccaccc cttgacctgt gatgacccccc gttccagga ctccctttcc
 420

tcaaaggccc ctccccccag cttccaagc ccatcccgac tccggggccc ctggacacc
 480

ccgatcctcc cacaataa
 498

<210> 72

<211> 165

<212> PRT

<213> Homo sapiens

<400> 72

Met Glu Met Phe Gln Gly Leu Leu Leu Leu Leu Leu Ser Met Gly
 1 5 10 15

Gly Thr Trp Ala Ser Lys Glu Pro Leu Arg Pro Arg Cys Arg Pro Ile
 20 25 30

Asn Ala Thr Leu Ala Val Glu Lys Glu Gly Cys Pro Val Cys Ile Thr
 35 40 45

Val Asn Thr Thr Ile Cys Ala Gly Tyr Cys Pro Thr Met Thr Arg Val

50

55

60

Leu Gln Gly Val Leu Pro Ala Leu Pro Gln Val Val Cys Asn Tyr Arg
 65 70 75 80

Asp Val Arg Phe Glu Ser Ile Arg Leu Pro Gly Cys Pro Arg Gly Val
 85 90 95

Asn Pro Val Val Ser Tyr Ala Val Ala Leu Ser Cys Gln Cys Ala Leu
 100 105 110

Cys Arg Arg Ser Thr Thr Asp Cys Gly Gly Pro Lys Asp His Pro Leu
 115 120 125

Thr Cys Asp Asp Pro Arg Phe Gln Asp Ser Ser Ser Lys Ala Pro
 130 135 140

Pro Pro Ser Leu Pro Ser Pro Ser Arg Leu Pro Gly Pro Ser Asp Thr
 145 150 155 160

Pro Ile Leu Pro Gln
 165

<210> 73

<211> 165

<212> PRT

<213> Homo sapiens

<400> 73
 Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu
 1 5 10 15

Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His
 20 25 30

Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe
 35 40 45

Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp
 50 55 60

Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu
 65 70 75 80

Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp
 85 90 95

Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu
 100 105 110

Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala
 115 120 125

Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val
 130 135 140

Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala
 145 150 155 160

Cys Arg Thr Gly Asp
 165

<210> 74
<211> 588
<212> DNA
<213> Homo sapiens

<400> 74
atggccctcc tttccctct actggcagcc ctagtgatga ccagctatacg ccctgttgg
60

tctctggct gtgatctgcc tcagaaccat ggcctactta gcaggaacac ctggtgctt
120

ctgcaccaaa tgaggagaat ctccccttc ttgtgtctca aggacagaag agacttcagg
180

ttcccccagg agatggtaaa agggagccag ttgcagaagg cccatgtcat gtctgtcctc
240

catgagatgc tgcagcagat cttagcctc ttccacacag agcgttcctc tgctgcctgg
300

aacatgaccc tccttagacca actccacact ggacttcatc agcaactgca acacctggag
360

acctgcttgc tgcaggtagt gggagaagga gaatctgctg gggcaattag cagccotgca
420

ctgaccttga ggaggtactt ccagggaaatc cgtgtctacc tgaaagagaa gaaatacagc
480

gactgtgcct gggaaagtgt cagaatggaa atcatgaaat cttgttctt atcaacaaac
540

atgcaagaaa gactgagaag taaagataga gacctggct catcttga
588

<210> 75
<211> 195
<212> PRT
<213> Homo sapiens

<400> 75
Met Ala Leu Leu Phe Pro Leu Leu Ala Ala Leu Val Met Thr Ser Tyr
1 5 10 15

Ser Pro Val Gly Ser Leu Gly Cys Asp Leu Pro Gln Asn His Gly Leu
20 25 30

Leu Ser Arg Asn Thr Leu Val Leu Leu His Gln Met Arg Arg Ile Ser
35 40 45

Pro Phe Leu Cys Leu Lys Asp Arg Arg Asp Phe Arg Phe Pro Gln Glu
50 55 60

Met Val Lys Gly Ser Gln Leu Gln Lys Ala His Val Met Ser Val. Leu
65 70 75 80

His Glu Met Leu Gln Gln Ile Phe Ser Leu Phe His Thr Glu Arg Ser
85 90 95

Ser Ala Ala Trp Asn Met Thr Leu Leu Asp Gln Leu His Thr Gly Leu
100 105 * 110

His Gln Gln Leu Gln His Leu Glu Thr Cys Leu Leu Gln Val Val Gly
115 120 125

Glu Gly Glu Ser Ala Gly Ala Ile Ser Ser Pro Ala Leu Thr Leu Arg
130 135 140

Arg Tyr Phe Gln Gly Ile Arg Val Tyr Leu Lys Glu Lys Lys Tyr Ser
145 150 155 160

Asp Cys Ala Trp Glu Val Val Arg Met Glu Ile Met Lys Ser Leu Phe
165 170 175

Leu Ser Thr Asn Met Gln Glu Arg Leu Arg Ser Lys Asp Arg Asp Leu
180 185 190

Gly Ser Ser
195

1996240.1