

Projeto de Engenharia de Redes

04-06-2019

Multinacional Financeira no Estoril

André Martinez – 30001174 Adelxandre Justo – 30001783 Bruno Saraiva – 20160782 Joana Bastos – 30003458 João Brandão – 30001279 Sérgio Balduíno – 20141222

Índice

ĺnd	ice de Figuras	4
ĺnd	ice de Tabelas	4
Lis	ta de acrónimos	5
Ca _l	oítulo 1 - Análise de requisitos	6
ı	ntrodução	6
(Objetivo geral	6
ı	-uncionalidades e necessidades	6
,	Abrangência	7
(Qualidade e Segurança	10
١	Disponibilidade	10
(Gestão	11
١	Escalabilidade e adaptabilidade	11
ı	nteroperabilidade	11
(Custo	11
(Condicionantes	11
Ca _l	oítulo 2 – Planeamento	12
,	Arquitetura Lógica	13
١	Dimensionamento	15
١	Fluxos individuais	15
(Caracterização dos fluxos agregados	16
١	Dimensionamento das ligações	16
Ca _l	oítulo 3 – Projeto	18
١	Princípios	18
(Cablagem	18
	Normalização	18
	Capacidade	18
	Funcionalidade	18
	Adaptabilidade	18
	Flexibilidade	18
-	Tecnologias	19
	Cablagem Vertical (Building Distributor - BD)	19
	Cablagem Horizontal (Floor Distributor - FD)	19

	Repartidor (Consolidation Point - CP)	. 19
	Fichas da parede (Telecommunication Outlets – TO)	. 19
	Bastidor	. 19
	Sala de Equipamentos	. 21
	Armário de Telecomunicações	
	Área de trabalho	. 22
Ec	uipamentos Ativos	. 22
	uipamentos Passivos	
	clusão	
	rências Bibliográficas	

Índice de Figuras

Figura 1: Piso 0 da Sede	7
Figura 2: Piso 1 da Sede	8
Figura 3: Piso 2 da Sede	8
Figura 4: Planta da filial do Estoril e de Coimbra	9
Figura 5: Arquitetura Lógica da Rede	14
Figura 6: Esquema Rack Filial	20
Figura 7: Esquema Rack Sede	21
Figura 8: Esquema geral do equipamento ativo	
Índiae de Tabalae	
Índice de Tabelas	
Tabela 1: Resumo da estrutura da Sede e das Filiais	7
Tabela 2: Número de funcionários distribuídos por espaço, na Sede da empresa no Estoril	10
Tabela 3: Número de funcionários distribuídos por espaço, nas filiais do Estoril e Coimbra	10
Tabela 4: Modelo de funcionamento da rede	12
Tabela 5: Fluxos Best-Effort	15
Tabela 6: Fluxos adaptativos (voz e vídeo)	15
Tabela 7: Débitos LAN	16
Tabela 8: Débitos WAN	17
Tabela 9: Orçamento dos Componentes Ativos	22
Tabela 10: Orçamento dos Componentes Passivos	
·	

Lista de acrónimos

AMR – Atraso Máximo Round-trip.

AP – Access Point

BE - Best-effort

DNS – Domain Name System

DSE – Débito deSituação Excepção

DSN – Débito de Situação Nominal

FTP - File Transfer Protocol

IEEE – Institute of Electrical and Electronics Engineers

IOS – International Organization for Standardization

IP - Internet Protocol

ISP – Internet Service Provider

ITU-T – International Telecommunication Union (Telecommunication Standardization)

QoS – Quality of Service

SNMP – Simple Network Management Protocol

TBG - Tamanho de Bloco Grande

TBN – Tamanho de Bloco Normal

TRO – Tempo de Resposta Ótimo

TRT – Tempo de Resposta Tolerável

VBR - Variable Bit Rate

VCoIP - Voice over IP

VLAN - Virtual LAN

VoIP - VoiceOver IP

WAN – Wide Area Network

WWW – World Wide Web

Capítulo 1 - Análise de requisitos

Introdução

Uma empresa multinacional da área financeira, decidiu expandir o seu negócio para Portugal pela primeira vez. Iremos abordar todas as questões envolvendo este projeto nos seguintes capítulos:

Capítulo 1 – Levantamento de requisitos que estão inerentes em todo o projeto.

Capítulo 2 – Planeamento, análise dos componentes a ser utilizados, a cablagem necessária e o espaço ocupado por esta. Neste capítulo também decidimos a arquitetura lógica.

Capítulo 3 – Concretização do projeto em si.

Objetivo geral

Neste projeto, pede-se a elaboração de uma infra-estrutura capaz de proporcionar serviços diferentes para funcionários e clientes.

Estes serviços são voz, dados, intranet e internet para os funcionários, e serviço *e-banking* para os clientes. A empresa que deseja implementar esta infra-estrutura, comprou três edifícios, a sede nacional, localizada no Estoril, com três pisos, cada um com uma área útil de 1050 m², e mais duas filiais, uma em frente à sede no Estoril e outra em Coimbra, ambas têm apenas um piso com 400 m² de área útil.

O piso 0 da sede deverá ter uma receção com dois postos de atendimento, um auditório com três pontos de rede e cobertura Wi-fi, um *datacenter* e uma sala de reuniões capaz de vídeo-teleconferências.

O piso 1 da sede deverá ter apenas um escritório OpenSpace.

No piso 2 da sede é onde se irá localizar a administração, o departamento de contabilidade e o departamento de recursos humanos.

Nos pisos únicos das filiais deverão existir em ambos os edifícios, um escritório OpenSpace.

Funcionalidades e necessidades

A empresa necessita de aplicações como correio eletrónico, web e acesso às bases de dados.

A infra-estrutura deve ainda suportar serviços de VoIP e vídeo-teleconferência via Web.

A empresa exige redundância entre os diversos sistemas a instalar, quer entre edifícios quer no interior de cada um deles. Por isso está prevista a contratação de dois operadores diferentes de telecomunicações. Devem ser previstos os *Service Level Agreements* (SLA's) adequados ao suporte de tráfego 24 horas por dia.

Em resumo teremos a seguinte estrutura, representada na tabela 1.

Tabela 1: Resumo da estrutura da Sede e das Filiais

Edifício	Piso	Espaços		
		Receção		
	0	Auditório		
		Datacenter		
Sede		Sala de reuniões		
	1	Escritório openspace		
		Administração		
	2	Departamento Contabilidade		
		Departamento de Recursos Humanos		
Filial Estoril	0	Escritório openspace		
Filial Coimbra	0	Escritório openspace		

E teremos que ser capazes de fornecer os seguintes serviços:

- Web VTC;
- VoIP;
- Transacções em bases de dados e WWW;
- Transferências de ficheiros WAN, LAN e Internet;
- Consulta de e-mail;
- Conexão remota;

Abrangência

Em relação à quantidade de postos de trabalho que a empresa terá nos seus diferentes espaços, serão distribuídos da seguinte maneira, como poderemos ver nas figuras 1, 2, 3 e 4.

Sede:

Piso 0 - Na receção há dois postos de atendimento, no auditório existem três pontos de rede e cobertura WI-FI, um *datacenter* e uma sala de reuniões com sistema de vídeo teleconferência (VTC).

Figura 1: Piso 0 da Sede

Figura 2: Piso 1 da Sede

Piso 2 – Localização dos departamentos de Contabilidade, Recursos Humanos e Administração.

Figura 3: Piso 2 da Sede

Filiais:

Piso 0 – Em ambas as filiais como existe menos espaço, apenas criámos 38 postos de trabalho.

Figura 4: Planta da filial do Estoril e de Coimbra

Nas tabelas 2 e 3 estão representados os números de funcionários em cada edifício e de que maneira estão distribuídos.

Sede:

Tabela 2: Número de funcionários distribuídos por espaço, na Sede da empresa no Estoril

Espaço	Número de Funciónarios
Auditorio (Piso 0)	122
Receção (Piso 0)	2
Datacenter (Piso 0)	8
Sala de reuniões (Piso 0)	14
OpenSpace (Piso 1)	52
Departamento de Contabilidade (Piso 2)	12
Departamento de Recursos Humanos (Piso 2)	12
Administração (Piso 2)	24

Filiais:

Tabela 3: Número de funcionários distribuídos por espaço, nas filiais do Estoril e Coimbra.

Espaço	Número de Funcionários
OpenSpace (Filial do Estoril)	38
OpenSpace (Filial de Coimbra)	38

As filiais do Estoril e de Coimbra necessitam de acesso remoto e acesso a outros serviços tal como voz e dados Intranet e Internet, por parte dos funcionários. Os clientes também necessitam de utilizar serviços de *e-banking* (por acesso remoto).

Qualidade e Segurança

Em termos de segurança, como se trata de uma empresa multinacional da área financeira terá de ser extremamente bem protegida e preparada para aplicações *Best-Effort*. Num nível físico, os routers e os *switchs* deverão estar em locais protegidos, devendo também ser *password protected*. O *datacenter* apenas deverá poder ser acedido pelos funcionários responsáveis por essa área específica. Num nível virtual, deverá uma dupla firewall e um servidor *Honeypot*. Pode ser um bocado custoso, mas dada a importância dos serviços da empresa, recomendamos vivamente a seguir esta estrutura.

Aplicações Best-Effort: A nossa rede terá capacidade de suportar algumas aplicações como a de transação WWW e em BD, consulta de e-mail, transferências de ficheiros Internet, LAN e WAN e por fim interação remota.

Aplicações adaptativas: A nossa rede terá que suportar aplicações como Web, VTC e VolP.

Disponibilidade

Como a empresa é uma multinacional da área financeira, que trabalha com quantidades avultados de dinheiro, e necessita de uma conexão constante aos dados, torna-se necessário criarmos redundância no sistema de forma a impedir ou diminuir a possibilidade de avarias nos sistemas. Para isso, em termos de telecomunicações, é recomendado contratar duas diferentes operadoras.

Gestão

Dado que não existia nenhuma estrutura nestes locais, por ser uma empresa recente, não existe uma necessidade de substituição de equipamento, migrar dados ou ligar quaisquer sistemas. Em termos de gestão da infra-estrutura deverá existir uma equipa em cada local responsável pelos respetivos edifícios da localidade, ou seja, duas equipas, uma mais central responsável pela sede e a filial localizadas no Estoril, uma outra equipa, de menor dimensão deverá também estar presente em Coimbra. Evidentemente, gestão remota também deve ser suportada.

Escalabilidade e adaptabilidade

Como a rede inteira foi construída pelas normas de cablagem estruturada, não deverá haver problemas em substituir ou adicionar novos equipamentos, à medida que for necessário por outro por parte dos utilizadores, desde que as tecnologias em conta sejam compatíveis.

Interoperabilidade

Como se trata de uma empresa nova, num edifício novo não iremos ter problemas de *Legacy Systems*, ou de migrar dados para sistemas novos.

Custo

Em relação ao custo, tendo em conta tratar-se de uma empresa relativamente grande e que alguns dos requisitos também irão ter um custo elevado, não só na segurança ou na redundância, mas também na gestão, mas se houver tal necessidade para garantir a segurança dos clientes, ou investir na rede, deverá ter uma margem aceitável para poder evoluir.

Condicionantes

Temos uma condicionante temporal que é entregar o projeto até dia 4 de junho, mas não temos mais qualquer condicionante. Não temos condicionantes porque se trata de um espaço novo, por isso não existe nenhuma especificidade na cablagem. À hora deste projeto não nos foi referido qualquer tipo de condicionante ambiental.

Capítulo 2 – Planeamento

Os departamentos de Administração, Contabilidade e de Recursos Humanos, que estão todos localizados na sede, terão acesso a várias aplicações, tais como E-mail, Intranet, Internet, Transferências de ficheiros, Base de dados, videoconferência pier to pier e VoIP. Para todas estas, exceto para videoconferência deverá ser utilizado o suporte *Best-Effort*. Para os restantes serviços, E-mail, Intranet, Transferência de ficheiros e Base de dados, deverão ter o seu próprio servidor dentro da sede para garantir uma maior segurança.

O acesso à Internet será possível utilizando um Proxy. Em relação ao VoIP deverá ser utilizado um Posto Privado de Comutação Automática, ou PPCA, que é uma central digital que permite interligar redes telefónicas a redes VoIP.

Nos *OpenSpaces* também têm acesso a estes serviços, mas a videoconferência em vez de ser pier to pier é por Web. As filiais para além disso para poderem usar estes serviços terão que aceder aos servidores e ao proxy presentes na sede. Os clientes também poderão aceder às transações.

Podemos observar na tabela 4 o modelo de funcionamento da rede, de forma sucinta.

Tabela 4: Modelo de funcionamento da rede

ID	Descrição	Νº	Local	Aplicação	Tráfego	Destino Tráfego	ID Destino
				e-mail	BE	Serv. e-mail Sede	S1
				Serv. Internos	BE	Serv. Interno Sede	S2
	Departamentos			WWW geral	BE	Proxy WWW Sede	S3
	de			Ficheiros	BE	Serv. Fich. Sede	S4
	Administração, Contabilidade			Base de dados	BE	Serv. BD Sede	S5
	e RH			Videoconf p.p	AD	Grupos A a F	G1-6
G1	CINII	48	Sede	Várias	BE	Internet	1
				Telefone	CM	PPCA da Sede	P1
				e-mail	BE	Serv. e-mail Sede	S1
				Serv. Internos	BE	Serv. Interno Sede	S2
				WWW geral	BE	Proxy WWW Sede	S3
	OpenSpace			Ficheiros	BE	Serv. Fich. Sede	S4
				Base de dados	BE	Serv. BD Sede	S5
G2		52	Sede	Várias	BE	Internet	I
				Telefone	CM	PPCA da Sede	P1
				e-mail	BE	Serv. e-mail Sede	S1
				Serv. Internos	BE	Serv. Interno Sede	S2
				WWW geral	BE	Proxy WWW Sede	S3
	Sala de			Ficheiros	BE	Serv. Fich. Sede	S4
	Reuniões			Base de dados	BE	Serv. BD Sede	S5
G3		14	Sede	Videoconf p.p	AD	Grupos A a F	G1-6
				Várias	BE	Internet	I
				Telefone	CM	PPCA da Sede	P1
				e-mail	BE	Serv. e-mail Sede	S1

				Serv. Internos	BE	Serv. Interno Sede	S2
				WWW geral	BE	Proxy WWW Sede	S3
	Auditório			Ficheiros	BE	Serv. Fich. Sede	S4
G4		122	Sede	Base de dados	BE	Serv. BD Sede	S5
				Videoconf p.p	AD	Grupos A a F	G1-6
				Várias	BE	Internet	I
				Serv. Interno Sede	S2		
	DataCenter			WWW geral	BE	Proxy WWW Sede	S3
G5		8	Sede	Base de dados	BE	Serv. BD Sede	S5
				e-mail	BE	Serv. e-mail Sede	S1
	2 Filiais (OpenSpace)			Serv. Internos	BE	Serv. Interno Sede	S2
				WWW geral	BE	Proxy WWW Sede	S3
				Ficheiros	BE	Serv. Fich. Filiais	S7-8
	Bas		Base de dados	BE	Serv. BD Sede	S5	
G6				Várias	BE	Internet	ı
				Telefone	CM	PPCA da Filiais	P1
				Serv. externos	BE	Serv. externo Sede	S9
G7	Clientes ? Externo		Externo	e-mail externo	BE	Serv. e-mail ext.	S10
				WWW	BE	Serv. WWW Sede	S11
G8	Outros	Outros ? Externo		e-mail externo	BE	Serv. e-mail ext.	S12

Arquitetura Lógica

Como referimos antes, recomendamos contratar dois ISPs de forma a garantir redundância de dados. Usando o MPLS, teremos uma rede de alto desempenho no desvio de tráfego de dados em situações críticas, como alturas em que ocorrem falhas ou congestionamento.

O MPLS assegura transmissão de pacotes que possuem perdas ou atrasos insignificantes em função da capacidade dos serviços e consequentemente maior confiabilidade, credibilidade e confiança quanto à disponibilidade dos seus serviços. MPLS permite criar VPNs, garantindo um isolamento completo de tráfego, além de realizar a qualidade com a priorização de aplicações críticas, tratando de uma forma diferente o tráfego entre diferentes pontos da VPN, dando condições necessárias para um melhor uso dos recursos da rede, permitindo assim usar os serviços de tráfego de voz e vídeo. As VPN criadas irão servir para as comunicações internas entre a sede, a filial do Estoril e a filial de Coimbra.

A normalização escolhida será a ISO/IEC 11801-2:2017, usando um meio de transporte misto de fibra ótica e cabos de cobre. Especificamente a utilização de fibra ótica do tipo monomodo no *Campus Backbone* e no *Building Backbone*, ambos fazem parte do mesmo subsistema. A cablagem horizontal e a cablagem workstation serão constituídas por cabos de cobre do tipo S/FTP de categoria 6.

Na figura 5 está representada a arquitetura lógica da rede dimensionada neste projeto.

Figura 5: Arquitetura Lógica da Rede

Sede:

O piso O será o centro de toda a rede, e onde estarão concentrados os equipamentos mais importantes. Terá um *Campus Distributor/ Building Distributor* integrado, que será responsável por suportar as conexões entre a sede e a filial do Estoril e o *Backbone* da sede. Também será aqui que os servidores aplicacionais da base de dados serão instalados.

O piso 1 e 2 terão um *Floor Distributor* cada *e Telecommunications Outlets*.

Filial do Estoril:

Está previsto um Building Distributor/Floor Distributor integrado e as TOs. Este edifício estará ligado à sede por fibra ótica, a redundância será garantida por meio de duas ligações de fibra ótica.

Filial de Coimbra:

A rede interna é composta por Building Distributor/Floor Distributor e as Telecommunication Outlets. Este edifício estará ligado à sede e à filial de Estoril, suportado por VPNs através da rede MPLS dos dois ISPs e pela Internet, de forma a garantir maior redundância.

Dimensionamento

De forma a atingir as expectativas dos utilizadores para os diversos serviços providenciados, tornase necessário definir os fluxos individuais e agregados previsíveis. Os valores têm sempre uma componente de dúvida, que são obtidos em base na análise de sistemas semelhantes já implementados, porém, ao fazer um dimensionamento protetor, deixa-se bastante margem de crescimento, o que permite preparar para eventuais imprecisões nos cálculos efetuados.

Fluxos individuais

Temos *Best-Effort* que representa os fluxos de dados proveniente de aplicações cuja variação do tráfego se traduz numa grande variação entre fluxos mínimos e de pico (tabela 5). Os fluxos adaptativos em que se conhece os parâmetros ótimos de funcionamento em função de qualidade pretendida (tabela 6). Neste caso falamos de VoIP e Web VTC. É de extrema importância reservar largura de banda suficiente para que os serviços tenham o nível de qualidade necessária.

Tabela 5: Fluxos Best-Effort

Aplicação	TRO	TRT	TBN	TBG	DSN	DSE	AMR
	(seg)	(seg)	(Kb)	(Kb)	(Kbps)	(Kbps)	(ms)
Consulta e-	10	60	20	10000	16	1333	1000
mail							
Transação	1	5	10	500	80	800	500
www							
Interação	0,2	1	2	20	80	160	100
Remota							
Transações							
em Base de	1	5	5	100	40	160	100
Dados							
Transferência							
de ficheiros	10	90	2000	50000	1600	4444	1000
Internet							
Transferência							
de ficheiros	5	30	2000	50000	3200	13333	500
LAN							
Transferência							
de ficheiros	8	60	2000	50000	2000	6667	800
WAN							

Tabela 6: Fluxos adaptativos (voz e vídeo)

Aplicação	Codificação	Débito mínimo (Kbps)	Débito Nominal (Kbps)	Atraso Round- trip máximo (ms)	
VoIP	H.323	8	32	200	
Web VTC	H.320(MPEG-4)	32	64	200	

Caracterização dos fluxos agregados

Os fluxos agregados resultam da sucessiva concentração dos fluxos individuais que partilham uma ligação ou um percurso comum. É com base nos fluxos agregados que vamos determinar o tipo de cabo a utilizar, o comprimento máximo, e o desempenho dos equipamentos de rede.

Dimensionamento das ligações

No dimensionamento das ligações considerou-se certas aplicações típicas que uma empresa financeira necessita de usar, tal como os débitos previsíveis dessas aplicações. Na inviabilidade do conhecimento detalhado que cada utilizador terá no uso das aplicações, consideramos um correto uso de um valor médio para todos os utilizadores, levando em consideração que alguns utilizadores usarão menos largura de banda, e outros utilizarão uma maior largura de banda, representamos esses valores na tabela 7.

Tabela 7: Débitos LAN

Aplicação	Débito normal (Kbps)	Débito Exceção (Kbps)	Nº de Fluxos Montante	Coeficiente de Simultaneidade	Nº de Fluxos Jusante	Débito Total (Kbps)
Consulta e- mail	16	1333	156	0,80	125	2000
Transação WWW	80	800	99	0,80	79	6320
Interação Remota	80	160	99	0,80	79	6320
Transações em BD	40	160	160	0,80	128	5120
Transferência de Ficheiros Internet	1600	4444	156	0,30	47	75200
Transferência de ficheiros LAN	3200	13333	156	0,80	125	400000
Transferência de ficheiros WAN	2000	6667	156	0,30	47	94000
VoIP	32	32	190	0,80	152	4864
Web VTC	64	64	190	0,80	152	9728
				gregada (Kbps)		603552
Capacidade m		•		exceção suportado) (Kbps)	13333
		em débito par				396448
		o de débito da				1000000
1	axa Nominal	de utilização o	da ligação agr	regada (Kbps)		60,4%

Segundo este quadro definimos que cada utilizador precisaria em média de uma ligação de 1Gbps ao FD (*Floor Distributor*). Este valor tem em consideração possíveis mudanças que podem ocorrer com o crescimento da empresa. Dado que já calculamos os valores que os utilizadores necessitam, então agora temos as necessidades da cablagem horizontal e do seu Backbone, valores esses representados na tabela 8.

Tabela 8: Débitos WAN

Aplicação	Débito normal (Kbps)	Débito Exceção (Kbps)	Nº de Fluxos Montante	Coeficiente de Simultaneidade	Nº de Fluxos Jusante	Débito Total (Kbps)
Consulta e- mail	16	1333	38	0,30	11	176
Transação WWW	80	800	38	0,30	11	880
Interação Remota	80	160	38	0,30	11	880
Transações em BD	40	160	38	0,30	11	440
Transferência de Ficheiros Internet	1600	4444	38	0,30	11	17600
Transferência de ficheiros WAN	2000	6667	38	0,30	11	22000
VoIP	32	32	38	0,30	11	352
Web VTC	64	64	38	0,30	11	704
				regada (Kbps)		43032
Capacidade n		•		exceção suportado) (Kbps)	6667
		em débito para	•			56968
		o de débito da				100000
1	Taxa Nominal	de utilização d	la ligação agr	egada (Kbps)		43%

Tendo todos estes valores em consideração, decidimos usar uma largura de banda de 1 Gbps para a ligação entre a Sede e a filial do Estoril, dado que uma ligação por fibra será mais barato e terá uma maior qualidade em alturas de maior tráfego. Em relação à redundância, esta ligação terá que ser duplicada, terá de existir mais um caminho de tráfego, para garantir o correto funcionamento da rede no caso de alguma avaria na cablagem principal.

No caso da Filial de Coimbra deverão ser contratadas duas ligações MPLS de 100 Mbps, a diferentes ISPs. Decidimos utilizar 100 Mbps em vez de 10 Mbps, de forma a garantir uma melhor qualidade e escalabilidade para futuras atualizações da rede, apesar de ter um custo bastante mais elevado.

Capítulo 3 – Projeto

Princípios

Pretendendo-se que a rede a instalar tenha um tempo de vida relativamente elevado, e tendo em conta os custos de substituir ou melhorar equipamento e a rápida evolução das tecnologias de comunicação, será implementada uma cablagem estruturada de acordo com os princípios que os sistemas de cablagem devem ser genéricos, de forma a poderem suportar um leque alargado de tecnologias de comunicação e de aplicações telemáticas.

Também devem flexíveis de forma a poderem acomodar a evolução das tecnologias de comunicação e o crescimento das organizações sem necessidade de alterações frequentes nos componentes instalados. Para poderem ser genéricos e flexíveis, os sistemas de cablagem devem ser estruturados em níveis hierárquicos para refletir os diferentes níveis de circulação da informação dentro das organizações e as correspondentes necessidades de comunicação e ainda, a fim de permitirem uma mais fácil delegação das funções de operação e manutenção. Para podermos implementar estes princípios também devemos seguir os seguintes princípios genéricos.

Cablagem

Normalização

Instalação blindada de tomadas, painéis e cablagem S/UTP, de acordo com normas internacionais, concretamente com a norma ISO/IEC 11801 e com a norma europeia EN 50173. [1] [2]

Capacidade

Instalação de componentes de Categoria 6(ou superior) com largura de banda de 250 MHz (ligações classe E) em quatro pares, o que possibilita comunicação a 1 Gbps até 100 metros.

Funcionalidade

Suporte das tecnologias de comunicação em rede local e capacidade de integração de voz e vídeo de definição normal na cablagem.

Adaptabilidade

Capacidade de adaptação a mudanças nos equipamentos terminais, de forma a poder ser instalado qualquer equipamento de voz ou informático, com capacidade de comunicação em série ou em rede, em qualquer dos postos de trabalho.

Flexibilidade

Instalação de tomadas para acesso à rede em todos os compartimentos em que esteja prevista a necessidade de utilização de equipamento informático, de voz ou de videovigilância.

Estes princípios garantem a máxima versatilidade de utilização de cablagem, permitindo assim, sem necessidade de qualquer alteração, a escolha da tecnologia mais adequada a cada momento, de acordo com as necessidades e com a melhor relação de custo/ desempenho.

Tecnologias

Para os postos de trabalho será utilizado tecnologia Ethernet, Fast Ethernet e Gigabit Ethernet, garantindo boas margens para futuras atualizações de equipamentos. Os servidores irão utilizar 1 Gigabit Ethernet e nos pontos de acesso sem fios iremos utilizar a norma IEEE 802.11. As comunicações de voz serão baseadas no protocolo VoIP com ligações de 10 Mbps. A ligação entre outros edifícios fora do país deverá ser feita usando o protocolo MPLS, o que permite a criação de VPNs.

Cablagem Vertical (Building Distributor - BD)

Vai fazer a interligação entre os distribuidores de edifício (BD) e os distribuidores de piso (FD). Na sede e nas filiais apenas haverá um distribuidor por edifício.

Cablagem Horizontal (Floor Distributor - FD)

Vai fazer a interligação entre os distribuidores de piso (FD) e as tomadas de rede (TO) que estão distribuídas ao longo de cada piso. Na sede haverá 2 por piso, enquanto que nas filiais, haverá apenas um BD a servir de FD.

Repartidor (Consolidation Point - CP)

Vai interligar os cabos dos operadores contratados, com a rede de cabos do edifício. Permite flexibilidade de interligação. Funciona como um Patch Panel (PP).

Fichas da parede (Telecommunication Outlets – TO)

Vão permitir ligar todos os computadores ao FD através da cablagem horizontal. Sendo que, no mínimo são necessárias duas tomadas por cada 10m2 (voz + dados) etiquetadas de forma visível (ISO/IEC 11801).

Bastidor

Um armário que alberga todo o material associado à rede local do edifício e ainda o equipamento destinado às comunicações com o exterior, presente em cada edifício. [3]

Na figura 6 está representado o bastidor das filiais, o bastidor de 30U. Enquanto que na figura 7 está representado o bastidor da Sede de 42U.

Figura 6: Esquema Rack Filial

Figura 7: Esquema Rack Sede

Sala de Equipamentos

Vai ser o local para armazenar equipamentos de telecomunicações, de interligação e instalações de aterramento e de proteção. Vai contar com a conexão cruzada principal ou a conexão secundária, usada conforme a hierarquia do sistema de Cablagem Backbone.

Armário de Telecomunicações

Este armário irá conter conectores de cruzamento (cross-connects), terminadores para os sistemas de cablagem Horizontal e Vertical (patch panel).

Área de trabalho

Os componentes que vão compor cada piso dos edifícios da sede e das filias são:

- Equipamento da estação: computadores, terminais de dados, telefone, etc.;
- Cabos de ligação cordões modulares, cabos de adaptação, jumpers de fibra;
- Adaptadores

Equipamentos Ativos

Na tabela 9 está representado o orçamento detalhado para os equipamentos ativos necessários para a execução do projeto.

Tabela 9: Orçamento dos Componentes Ativos

Descrição	Quantidade em Unidades	Custo por unidade (€)	Custo total (€)
Router c/ 2 interfaces GigabitEth, 2 interfaces high-speed WAN e Firewall	5	420	2100
Switch 48 portas 10/100/1000, uplink GE, Full Duplex, Autosensing, VLAN	3	3000	9000
Switch 24 portas 10/100/1000, uplink GE, Full Duplex, Autosensing, VLAN	2	1750	3500
Switch 12 portas 10/100/1000, rede DMZ	5	1000	5000
Módulos SPF 1 Gbps por Fibra Ótica	9	1000	9000
UPS de 1000 VA, 10 minutos	8	500	4000
Alicate de cravamento RJ45/RJ11	4	50	200
Ferramenta de cravamento de tomadas e painéis	4	50	200
	Total		33000

Equipamentos Passivos

Na tabela 10 está representado o orçamento detalhado para os equipamentos passivos necessários para a execução do projeto.

Tabela 10: Orçamento dos Componentes Passivos

Descrição	Quantidade em Unidades	Custo por unidade (€)	Custo total (€)
Tomada ISO 8877			
Cat6A, Dupla	525	25	13125
Blindada			
Tomada ISO 8877			
Cat6A, Simples	525	15	7875
Blindada			
Cabo S/UTP Cat6A. c			
Foil e Dreno	500	1,2	600
Bastidor de 19", 42u			
80 cm de fundo,	1	1000	1000
c/porta de vidro			
Bastidor de 19", 30u			
80 cm de fundo,	2	750	1500
c/porta de vidro			
Painel P/Conectores			
ISO 8877, Blindado,			
Cat 6A, C/24 Posições	12	200	2400
Equipadas			
Painel P/Fibra Ótica			
com 12 Posições	5	50	250
Conectores FO para a			
Conexão no painel	60	7,5	450
Régua de Tomadas			
Elétricas, com	7	60	420
Disjuntor	•	450	1200
Kit de Ventilação	8	150	1200
Kit de Rodas	8	30	240
Guia Organizador	100	25	2500
Cabos	100	25	2500
Chicote S/UTP de 1,5	F2F	F	2625
metros (patching de	525	5	2625
Dados para Bastidor)			
Chicote S/UTP de 3 metros	525	7 5	2 027 5
Chicote FO	525	7,5	3 937,5
c/conectores SC ou	20	20	400
LC, de 1 metro	20	20	400
Caixa PVC			
p/aplicação de	600	2,5	1500
tomada RJ exterior	000	۷,۵	1300
- Comada NJ EXCENDI			

Esteira Metálica de			
200MM e acessórios			
	4=0		
para caminhos de	450	15	6750
cabos			
Tubo VD de 20MM	300	1,5	450
Tubo VD de 40MM	250	3	750
Calha em meia cana			
para aplicação no	120	10	1200
pavimento			
Calha Plástica de 20"			
12,5MM	1700	5	8500
Calha Plástica de 40"			
12,5MM	400	7,5	3000
Calha Plástica de			
100" 40MM	480	15	7200
Calha Plástica de			
150"65MM	200	17,5	3500
		Total	67435

Na figura 8 está representado o esquema geral do equipamento ativo necessário no projeto da execução da rede entre a Sede no Estoril e as Filiais no Estoril e em Coimbra.

Figura 8: Esquema geral do equipamento ativo

Conclusão

Uma empresa multinacional da área financeira, deseja expandir para Portugal. Neste projeto elaborámos a rede informática, utilizando cablagem estruturada, que a empresa irá utilizar. Quanto à cablagem estruturada, utilizamos cabos S/UTP para a cablagem horizontal e fibra ótica para a cablagem vertical. Para ligar a filial do Estoril à Sede, serão usados dois cabos de fibra ótica monomodo, e para ligar à filial de Coimbra serão usadas duas ligações, uma MPLS e outra por Internet, para garantir uma maior redundância. Tentámos, em termos de custos, manter uma relação de qualidade/preço, apesar de não termos quaisquer condicionantes em relação ao orçamento, que estávamos autorizados a usar. Assim damos por concluído este projeto, dado que todos os requisitos pedidos foram atingidos.

Referências Bibliográficas

Livros:

Monteiro, E; Boavida, F. (2011). Engenharia de Redes Informáticas. 10°edição. ISBN: 978-972-722-694-8 Lisboa: FCA; Editora de Informática.

Plataformas utilizadas para criar as plantas e bastidores:

Disponível no site https://floorplanner.com/, acedido a 28 de Abril de 2019

Software *Microsoft Visio*, disponível em https://www.lucidchart.com/documents, acedido a 2 de Maio de 2019

Sites:

[1] Utilizado para saber a norma de cablagem internacional

Disponível em https://www.iso.org/standard/66183.html, acedido a 28 de Maio de 2019

[2] Utilizado para saber a norma europeia da cablagem

Disponível em https://standards.globalspec.com/std/10393555/EN%2050173-2, acedido a 01 de Junho de 2019

[3] Utilizado para ver as dimensões dos bastidores

Disponível em http://static.lvengine.net/jsl/Imgs/content/page_269/48-53.pdf, acedido a 01 de Junho de 2019