Approximation algorithms for higher-order refinements in resource theories

Mario Berta

arXiv:2212.11666 / 2410.01084 / 2410.07051 / 2410.08140 / 2410.10770 / 2410.21124

Imperial College London

Resource interconversion

Channel interconversion

Channel interconversion (fully classical)

- One-shot task: Given channels $W_{X\to Y}(y|x)$ and $V_{X\to Y}(y|x)$, how well can one channel simulate the other one?
- Reverse Shannon theorem [Bennett et al. 02]: Optimal asymptotic rate with shared randomness assistance

$$C(W \mapsto V) = \frac{C(W)}{C(V)}$$
 with $C(W) = \sup_{P_X} I(X;Y)_{W(P)}$ mutual information

- Shared randomness for reversibility higher-order refinements unknown
 - \rightarrow simpler tasks: channel coding (V = id) & channel simulation (W = id)

Channel coding

Channel coding

• One-shot task: given channel $W_{X\to Y}(y|x)$ and message size M, compute success probability

$$p(W \mapsto id_M) := \sup_{(E,D)} \frac{1}{M} \sum_{x,y,i} W_{X \to Y}(y|x) E(x|i) D(i|y)$$

over encoder-decoder pairs

• Shannon theorem: Largest r with $p(W^{\times n} \mapsto id_2rn) \to 1$ in limit $n \to \infty$ is quantified by channel capacity C(W) with mutual information formula

$$C(W) = \sup_{P_X} I(X:Y)_{W(P)}$$

Higher-order refinements?

Meta converse for channel coding

 Bottom-up approach to Shannon theory: Meta converse linear program relaxation [Hayashi 09, Polyanskiy et al. 10]

$$p(W \mapsto id_M) \le p_{ns}(W \mapsto id_M) \coloneqq \sup_{(r,p)} \frac{1}{M} \sum_{x,y} W_{X \to Y}(y|x) r(x,y)$$
with $\sum_{x,y} r(x,y) \le 1$, $\sum_x p_x = M$, $r(x,y) \le p_x$, $0 \le r(x,y)$, $p(x) \le 1$

- Physics: Corresponds to non-signaling assisted value [Matthews 11]
- Bottom-up approach to Shannon theory: one-shot optimality?

Optimality of meta converse?

• Yes, rounding methods from approximation algorithms give for M,N that [Barman & Fawzi 15]

$$p_{ns}(W \mapsto id_N) \ge p(W \mapsto id_N) \ge \frac{M}{N} \cdot \left(1 - \left(1 - \frac{1}{M}\right)^N\right) \cdot p_{ns}(W \mapsto id_M)$$

which implies the constant factor approximation

$$p_{ns}(W \mapsto id_M) \ge p(W \mapsto id_M) \ge \frac{1}{1 - \frac{1}{e}} \cdot p_{ns}(W \mapsto id_M)$$

- Bound is exactly tight
- Gives strong upper bound on entanglement assistance

Higher-order refinements

• Large deviation: For $r \ge C(V)$ strong converse exponent [Dueck & Körner 79]

$$SCExp(V \mapsto id, r) := \lim_{n \to \infty} -\frac{1}{n} log p(V^{\times n}, id_{2^{nr}})$$

$$SCExp(V \mapsto id, r) = \sup_{\alpha > 1} \frac{\alpha - 1}{\alpha} \cdot (r - C_{\alpha})$$
 with C_{α} Rényi capacities

• Large deviation: For $\mathbf{r_c} \leq r \leq C(V)$ error exponent [Shannon et al. 67]

$$\operatorname{Exp}(V \mapsto \operatorname{id}, r) \coloneqq \lim_{n \to \infty} -\frac{1}{n} \log(1 - p(V^{\times n} \mapsto \operatorname{id}_{2^{nr}}))$$

$$\operatorname{Exp}(V \mapsto \operatorname{id}, r) = \sup_{\alpha \in (0,1]} \frac{1 - \alpha}{\alpha} \cdot (C_{\alpha}(V) - r)$$

Small and moderate deviation [Hayashi 09, Polyanskiy et al. 10]

Channel simulation

Channel simulation

• One-shot task: given channel $V_{X\to Y}(y|x)$ and identity channel of size M compute, compute success probability

$$p_{sr}(id_M \mapsto V) \coloneqq \sup_{(p,E,D)} 1 - \sup_{x} ||\tilde{V}_{p,X \to Y}(\cdot | x) - V_{X \to Y}(\cdot | x)||_{TV}$$

over synthesized channels $\tilde{V}_{p,X\to Y}(y|x)\coloneqq \sum_s p(s)\sum_i E_s(i|x)D_s(y|i)$ with randomness assisted encoder-decoder pairs

• Reverse Shannon theorem: Smallest r with $p_{sr}(id_{2^n} \mapsto V^{\times (nr)}) \to 1$ in limit $n \to \infty$ is quantified by channel capacity [Bennett et al. 02]

$$C(V) = \sup_{P_X} I(X:Y)_{V(P)}$$

Meta converse for channel simulation

 Bottom-up approach for Shannon theory: Natural meta converse linear program relaxation

$$p_{sr}(\mathrm{id}_M \mapsto V) \leq p_{ns}(\mathrm{id}_M \mapsto V) \coloneqq \sup_{(U,q)} 1 - \sup_x ||U_{X \to Y}(\cdot | x) - V_{X \to Y}(\cdot | x)||_{\mathrm{TV}}$$
over channels $U_{X \to Y}(y|x)$ with $U_{X \to Y}(y|x) \leq q(y)$ and $\sum_y q(y) = M$

- Physics: corresponds to non-signaling assisted value [Fang et al. 20 (B.)]
- Bottom-up approach to Shannon theory: One-shot optimality?

Result: Optimality of meta converse

• Yes, rounding methods from approximation algorithms give for M, N that

$$p_{ns}(id_N \mapsto V) \ge p_{sr}(id_N \mapsto V) \ge 1 \cdot \left(1 - \left(1 - \frac{1}{M}\right)^N\right) \cdot p_{ns}(id_M \mapsto V)$$

which implies the constant factor approximation

$$p_{ns}(id_M \mapsto V) \ge p_{sr}(id_M \mapsto V) \ge \frac{1}{1 - \frac{1}{e}} \cdot p_{ns}(id_M \mapsto V)$$

- Bound is exactly tight
- Gives strong upper bound on entanglement assistance

Result: Higher-order refinements

• Large deviation: For $r \ge 0$ strong converse exponent

$$SCExp_{sr}(id \mapsto V, r) := \lim_{n \to \infty} -\frac{1}{n} \log p_{sr}(id_{2^{n}} \mapsto V^{\times (nr)})$$

$$SCExp_{sr}(id \mapsto V, r) = \sup_{\alpha \in [0,1]} (1 - \alpha) \cdot (C_{\alpha}(V) - r)$$

• Large deviation: For $r \geq 0$ error exponent

$$\operatorname{Exp}_{\operatorname{sr}}(\operatorname{id} \mapsto \operatorname{V}, \operatorname{r}) \coloneqq \lim_{n \to \infty} -\frac{1}{n} \log(1 - \operatorname{p}_{\operatorname{sim}}^{\operatorname{sr}}(V^{\times n}, 2^{nr}))$$

$$\operatorname{Exp}_{\operatorname{sr}}(\operatorname{id} \mapsto \operatorname{V}, \operatorname{r}) = \sup_{\alpha \ge 0} \alpha \cdot (r - C_{\alpha+1}(V))$$

• Small and moderate deviation [Cao et al. 24 (B.)]

Proof ideas

Proof: Tightness of gap

The family of channels

$$U^{(n,k)}: \binom{n}{k} \to \{1, 2, \dots, n\} \text{ with } U_{X \to Y}(y|x) := \frac{1}{k} \ 1\{y \in x\}$$

has for $n = M^2$ and k = M the limit

$$\lim_{M \to \infty} \frac{p_{sr}(id_M \mapsto U^{(M^2,M)})}{p_{ns}(id_M \mapsto U^{(M^2,M)})} = 1 - \frac{1}{e}$$

which then exactly matches

$$p_{ns}(id_M \mapsto V) \ge p_{sr}(id_M \mapsto V) \ge \frac{1}{1 - \frac{1}{e}} \cdot p_{ns}(id_M \mapsto V)$$

• Crucial step: upper bound power of shared randomness assistance

Proof: Rounding

- Any feasible solution of linear program $p_{ns}(V,M)$ gives channel $U_{X\to Y}(y|x)$ and distribution $\frac{1}{M}q(y)$
 - ightarrow construct shared randomness assisted synthesized channel $\tilde{V}_{p,X
 ightarrow Y}$ for N such that

$$U_{X\to Y}(y|x) \ge \left(1 - \left(1 - \frac{1}{M}\right)^N\right) \tilde{V}_{p,X\to Y}(y|x) \quad \forall x,y$$

- Basic idea:
 - 1. Shared randomness assistance $\{\frac{1}{M}q(y)\}_y$
 - 2. Rejection sampling with N steps, $t_{\text{initial}}(y) = \frac{1}{M} q(y)$, $t_{\text{target}}(y) = U_{X \to Y}(y|x)$
- Above meta inequality works for any average error / fidelity criteria

Channel interconversion

Result: Strong converse exponent interconversion

• From $W_{X\to Y}(y|x)$ to $V_{X\to Y}(y|x)$ via shared randomness-assisted synthesized channels $\tilde{V}_{p,X\to Y}(y|x) \coloneqq \sum_{s} p(s) \sum_{i} E_{s}(i|x) W(x|y) D_{s}(y|i)$ in variational distance

$$p_{sr}(W \mapsto V) \coloneqq \sup_{(p,E,D)} 1 - \sup_{x} ||\tilde{V}_{p,X \to Y}(\cdot | x) - V_{X \to Y}(\cdot | x)||_{TV}$$

or in fidelity

$$F_{sr}(W \mapsto V) := \sup_{(p,E,D)} \inf_{x} F\left(\tilde{V}_{p,X \to Y}(\cdot \mid x) - V_{X \to Y}(\cdot \mid x)\right)$$

• Large deviation: For $r \geq C(W \mapsto V)$ strong converse exponent in fidelity

$$SCExp_F(W \mapsto V, r) := \lim_{n \to \infty} -\frac{1}{n} \log F_{sr}(W^{\times n} \mapsto V^{\times (rn)})$$

$$SCExp_{F}(W \mapsto V, r) \coloneqq \sup_{\frac{1}{2} \le \alpha \le 1} \frac{1 - \alpha}{\alpha} (r \cdot C_{\alpha}(V) - C_{\underline{\alpha}}(W))$$

Conclusion

Previous channel coding result

$$p_{ns}(W \mapsto id_N) \ge p(W \mapsto id_N) \ge \frac{M}{N} \cdot \left(1 - \left(1 - \frac{1}{M}\right)^N\right) \cdot p_{ns}(W \mapsto id_M)$$

via maximizing of sub-modular function rounding, tight \rightarrow exponents \checkmark

Novel channel simulation result

$$p_{ns}(id_N \mapsto V) \ge p_{sr}(id_N \mapsto V) \ge \mathbf{1} \cdot \left(1 - \left(1 - \frac{1}{M}\right)^N\right) \cdot p_{ns}(id_M \mapsto V)$$

via rejection sampling rounding, tight → exponents 🗸

• Channel interconversion: Strong converse exponent \checkmark , but one-shot bounds

$$p_{sr}(W \mapsto V)$$
 versus $p_{ns}(W \mapsto V)$?

Outlook

- Other higher-order refinements for channel interconversion?
- Quantum extensions, entanglement-assistance?
 - > some but not all, check out references!
- For other (quantum) resource theories: Approximation algorithms for tight one-shot bounds + higher-order refinements?
- Postdoc and PhD positions at RWTH Aachen University
- Get in contact: berta@physik.rwth-aachen.de

Imperial College London

Group @RWTH Aachen

- Institute for Quantum Information (IQI)
- Theory of quantum information science
- Members:

Mario Berta **Professor of Physics**

Sreejith Sreekumar Postdoc

Tobias Rippchen PhD student

Aditya Nema Postdoc

Julius Zeiss PhD student

Aadil Oufkir Postdoc

Gereon Koßmann PhD student

AN INITIATIVE OF

Yongsheng Yao Postdoc

Nikolaos Louloudis

PhD student

Michael X. Cao Postdoc

+ 5x Master students RWTH Physics /

Computer Science

+ open PhD and postdoc positions, get in contact!

Richard Meister Postdoc (Imperial)

Quantum extensions

Classical-quantum channels

Classical input – quantum output channels

$$V_{X\to B}: x\mapsto \rho_B^x$$

for sub-normalized quantum states $\rho_B^{\chi} \geq 0$, normalized to $\sum_{\chi} \text{Tr}[\rho_B^{\chi}] = 1$

Entanglement-assisted simulation protocol

$$p_{ea}(id_{M} \mapsto V) := \sup_{(\sigma, E, D)} 1 - \sup_{x} ||\tilde{V}_{\sigma, X \to B} - V_{X \to B}||_{1}$$

over synthesized channels $\tilde{V}_{\sigma,X\to B}\coloneqq\sum_i N_{K\to B}^i\left(\operatorname{Tr}_{K'}\left[\left(E_{\mathcal{X}}^i\otimes 1_{K'}\right)\sigma_{KK'}\right]\right)$ with assistance $\sigma_{KK'}$ + encoders $\{E_{\mathcal{X}}^i\}_i$ and decoders $\{N_{K\to B}^i\}_i$

Same rounding results – not know for reverse task of channel coding!

Fully quantum channels

- No tight, dimension-independent one-shot rounding
- Result for coding & simulation: One-shot dimension-dependent rounding between entanglement-assisted

$$p_{ea}(id_M \mapsto V)$$

and non-signaling assisted success probability

$$p_{ns}(id_M \mapsto V)$$

- Interconversion: Higher-order refinements completely open