Package 'snplinkage'

September 9, 2024

Title Single Nucleotide Polymorphisms Linkage Disequilibrium Visualizations

Version 1.2.0

Description Linkage disequilibrium visualizations of up to several hundreds of single nucleotide polymorphisms (SNPs), annotated with chromosomic positions and gene names. Two types of plots are available for small numbers of SNPs (<40) and for large numbers (tested up to 500). Both can be extended by combining other ggplots, e.g. association studies results, and functions enable to directly visualize the effect of SNP selection methods, as minor allele frequency filtering and TagSNP selection, with a second correlation heatmap. The SNPs correlations are computed on Genotype Data objects from the 'GWASTools' package using the 'SNPRelate' package, and the plots are customizable 'ggplot2' and 'gtable' objects and are annotated using the 'biomaRt' package. Usage is detailed in the vignette with example data and results from up to 500 SNPs of 1,200 scans are in Charlon T. (2019) <doi:10.13097/archive-ouverte/unige:161795>.

Imports biomaRt, cowplot, data.table, gdsfmt, ggplot2, ggrepel, grid, grDevices, gtable, knitr, magrittr, methods, parallel, reshape2, SNPRelate, stats, utils

Depends R (>= 2.15), GWASTools (>= 1.10.1)

Suggests rmarkdown, testthat

biocViews GeneticVariability, MicroArray, SNP

URL https://gitlab.com/thomaschln/snplinkage

BugReports https://gitlab.com/thomaschln/snplinkage/-/issues

VignetteBuilder knitr

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation no

Author Thomas Charlon [aut, cre] (https://orcid.org/0000-0001-7497-0470),

Karl Forner [aut],

Alessandro Di Cara [aut],

Jérôme Wojcik [aut]

2 Contents

 ${\bf Maintainer}\ {\bf Thomas}\ {\bf Charlon} \verb|<charlon@protonmail.com>$

Repository CRAN

Date/Publication 2024-09-09 19:10:02 UTC

Contents

chisq_pvalues
chisq_pvalues_gdata
crohn
diamond_annots
fetch_allele1.default
fetch_allele1.GdsGenotypeReader
fetch_allele1.GenotypeData
fetch_allele1.GenotypeDataSubset
fetch_allele2.default
fetch_allele2.GdsGenotypeReader
fetch_allele2.GenotypeData
fetch_allele2.GenotypeDataSubset
fetch_gds.default
fetch_gds.GdsGenotypeReader
fetch_gds.GenotypeData
fetch_gds.GenotypeDataSubset
gdata_add_gene_annots
gdata_add_gene_annots_aim_example
gdata_add_gene_annots_hladr_example
gdata_scans_annots
gdata_snps_annots
get_biomart_metadb
get_scan_annot.GenotypeData
get_scan_annot.GenotypeDataSubset
get_snp_annot.GenotypeData
get_snp_annot.GenotypeDataSubset
ggplot_associations
ggplot_ld
ggplot_snp_pos
gtable_ld
gtable_ld_associations
gtable_ld_associations_combine
gtable_ld_associations_gdata
gtable_ld_gdata
gtable_ld_grobs
is_snp_first_dim.default
is_snp_first_dim.gds.class
is_snp_first_dim.GdsGenotypeReader
is_snp_first_dim.GenotypeData
is_snp_first_dim.MatrixGenotypeReader
is snp first dim.NcdfGenotypeReader

chisq_pvalues 3

	load_gds_as_genotype_data	29
	parallel_apply	30
	print_qc_as_tex_table	31
	save_hgdp_as_gds	31
	select_region_idxs	32
	snprelate_allele_frequencies	32
	snprelate_ld	33
	snprelate_ld_select	34
	snprelate_qc	35
	%<>%	
	%\$%	
	%>%	37
Index		38

chisq_pvalues

Compute Chi-squared p-values

Description

Compute Chi-squared p-values

Usage

```
chisq_pvalues(
   m_data,
   response,
   adjust_method = "fdr",
   mlog10_transform = TRUE,
   n_cores = 1,
   ...
)
```

Arguments

m_data Data matrix of observations by variables

response Response vector of length the number of observations

adjust_method Multiple testing p-value adjustment method. Passed to stats::p.adjust. 'fdr' by default.

mlog10_transform

Logical, transform p-values by minus log10. True by default.

n_cores Number of cores

... Passed to stats::chisq.test

Value

Chi-squared p-values

4 crohn

chisq_pvalues_gdata

Compute Chi-squared p-values on a Genotype data object

Description

Compute Chi-squared p-values on a Genotype data object

Usage

```
chisq_pvalues_gdata(
   gdata,
   snp_idxs,
   response_column = "region",
   response_value = "Europe",
   threshold = 2,
   ...
)
```

Arguments

gdata Genotype data object snp_idxs SNPs indexes

response_column

Response column in gdata scans annotations data frame

response_value Response value. The response vector will be a logical, true if equal to the value,

false otherwise.

threshold Keep only associations greater than the threshold

... Passed to chisq_pvalues

Value

SNPs annotation data frame, chi-squared p-values in column pvalues

crohn

Crohn's disease data

Description

The data set consist of 103 common (>5% minor allele frequency) SNPs genotyped in 129 trios from an European-derived population. These SNPs are in a 500-kb region on human chromosome 5q31 implicated as containing a genetic risk factor for Crohn disease.

Imported from the gap R package.

An example use of the data is with the following paper, Kelly M. Burkett, Celia M. T. Greenwood, BradMcNeney, Jinko Graham. Gene genealogies for genetic association mapping, with application to Crohn's disease. Fron Genet 2013, 4(260) doi: 10.3389/fgene.2013.00260

diamond_annots 5

Usage

```
data(crohn)
```

Format

A data frame containing 387 rows and 212 columns

Source

MJ Daly, JD Rioux, SF Schaffner, TJ Hudson, ES Lander (2001) High-resolution haplotype structure in the human genome Nature Genetics 29:229-232

diamond_annots

Get diamond ggplot layer.

Description

Diamond ggplot layer for ggplot_ld

Usage

```
diamond_annots(data, x = "x", y = "y", color = "color", size = 0.5)
```

Arguments

data	Data frame of 3 columns defining the diamonds
Х	Name of the column for horizontal positions
у	Name of the column for vertical positions
color	Name of the column for color values
size	Radius of the diamonds

Value

gglayers

fetch_allele1.default Fetch allele 1 (default object)

Description

Fetch allele 1 (default object)

Usage

```
## Default S3 method:
fetch_allele1(obj, snps_idx)
```

Arguments

obj Default object snps_idx SNPs indexes

fetch_allele1.GdsGenotypeReader

Fetch allele 1 (GdsGenotypeReader object)

Description

Fetch allele 1 (GdsGenotypeReader object)

Usage

```
## S3 method for class 'GdsGenotypeReader'
fetch_allele1(obj, snps_idx)
```

Arguments

obj GenotypeData object

snps_idx SNPs indexes

Value

```
fetch_allele1.GenotypeData
```

Fetch allele 1 (GenotypeData object)

Description

```
Fetch allele 1 (GenotypeData object)
```

Usage

```
## S3 method for class 'GenotypeData'
fetch_allele1(obj, ...)
```

Arguments

obj GenotypeData object
... Passed to getAlleleA

Value

Allele 1

```
{\tt fetch\_allele1.GenotypeDataSubset}
```

Fetch allele 1 (GenotypeDataSubset object)

Description

```
Fetch allele 1 (GenotypeDataSubset object)
```

Usage

```
## S3 method for class 'GenotypeDataSubset'
fetch_allele1(obj, snps_idx)
```

Arguments

obj GenotypeDataSubset object

snps_idx SNPs indexes

Value

fetch_allele2.default Fetch allele 2 (default object)

Description

Fetch allele 2 (default object)

Usage

```
## Default S3 method:
fetch_allele2(obj, snps_idx)
```

Arguments

obj Default object snps_idx SNPs indexes

fetch_allele2.GdsGenotypeReader

Fetch allele 2 (GdsGenotypeReader object)

Description

Fetch allele 2 (GdsGenotypeReader object)

Usage

```
## S3 method for class 'GdsGenotypeReader'
fetch_allele2(obj, snps_idx)
```

Arguments

obj GenotypeData object

snps_idx SNPs indexes

Value

```
fetch_allele2.GenotypeData
```

Fetch allele 2 (GenotypeData object)

Description

```
Fetch allele 2 (GenotypeData object)
```

Usage

```
## S3 method for class 'GenotypeData'
fetch_allele2(obj, ...)
```

Arguments

obj GenotypeData object
... Passed to getAlleleB

Value

Allele 2

```
\verb|fetch_allele2.GenotypeDataSubset|\\
```

Fetch allele 1 (GenotypeDataSubset object)

Description

```
Fetch allele 1 (GenotypeDataSubset object)
```

Usage

```
## S3 method for class 'GenotypeDataSubset'
fetch_allele2(obj, snps_idx)
```

Arguments

obj GenotypeDataSubset object

snps_idx SNPs indexes

Value

fetch_gds.default

Fetch GDS (default)

Description

```
Fetch GDS (default)
```

Usage

```
## Default S3 method:
fetch_gds(obj, ...)
```

Arguments

obj Default object
... Not passed

fetch_gds.GdsGenotypeReader

Fetch GDS (GdsGenotypeReader)

Description

```
Fetch GDS (GdsGenotypeReader)
```

Usage

```
## S3 method for class 'GdsGenotypeReader'
fetch_gds(obj, ...)
```

Arguments

obj GdsGenotypeReader object

... Not passed

Value

```
S4 slot 'handler' of obj
```

```
{\tt fetch\_gds.GenotypeData}
```

Fetch GDS (GenotypeData)

Description

```
Fetch GDS (GenotypeData)
```

Usage

```
## S3 method for class 'GenotypeData'
fetch_gds(obj, ...)
```

Arguments

```
obj GenotypeData object
```

... Not passed

Value

```
fetch_gds output on S4 slot 'data' of obj
```

```
fetch_gds.GenotypeDataSubset
```

Fetch GDS (GenotypeDataSubset)

Description

```
Fetch GDS (GenotypeDataSubset)
```

Usage

```
## S3 method for class 'GenotypeDataSubset'
fetch_gds(obj, ...)
```

Arguments

```
obj GenotypeDataSubset object
```

... Not passed

```
gdata_add_gene_annots
```

Add biomaRt gene annotations to Genotype Data object.

Usage

```
gdata_add_gene_annots(
   gdata,
   snp_idxs,
   rsids_colname = "probe_id",
   biomart_metadb = get_biomart_metadb()
)
```

Arguments

gdata Genotype Data object

snp_idxs SNP indexes

rsids_colname Column of SNP annotation data frame with rs identifiers

biomart_metadb List with slots snpmart and ensembl, corresponding to the biomart databases to

query for SNP identifiers and gene names, respectively. See get_biomart_metadb

function.

Value

Genotype Data object

Description

Add ancestry informative markers gene annotations to Genotype Data object. Convenience function for the vignette to avoid querying biomaRt on build.

Usage

```
gdata_add_gene_annots_aim_example(gdata, aim_idxs)
```

Arguments

gdata Genotype Data object

aim_idxs AIM indexes in the example Genotype data object

Value

Genotype Data object

Description

Add HLA-DR gene annotations to Genotype Data object. Convenience function for the vignette to avoid querying biomaRt on build.

Usage

```
gdata_add_gene_annots_hladr_example(gdata, hla_dr_idxs)
```

Arguments

gdata Genotype Data object

hla_dr_idxs HLA-DR indexes in the example Genotype data object

Value

Genotype Data object

```
gdata_scans_annots gdata_scan_annots
```

Description

Get scans annotations from a Genotype Data object or a subset.

Usage

```
gdata_scans_annots(gdata, scan_ids)
```

Arguments

gdata Genotype Data object scan_ids Scan identifiers to subset

Value

Scans annotations data frame

14 get_biomart_metadb

gdata_snps_annots gdata_snp_annots

Description

Get SNPs annotations from a Genotype Data object or a subset.

Usage

```
gdata_snps_annots(gdata, snp_ids = NULL)
```

Arguments

gdata Genotype Data object snp_ids SNP identifiers to subset

Value

SNP annotation data frame

get_biomart_metadb

Description

To query gene names of SNPs, it is necessary to retrieve two objects using biomaRt::useMart. First, the object required to map SNP rs identifiers to ENSEMBL identifiers. Second, the object required to map ENSEMBL identifiers to common gene names. The function returns a list of two slots named snpmart and ensembl corresponding to each one, respectively. Once obtained it is saved to a local file.

Usage

```
get_biomart_metadb(
  filepath = extdata_filepath("bmart_meta.rds"),
  host = "https://grch37.ensembl.org"
)
```

Arguments

filepath Path to save the biomaRt objects

host BiomaRt Ensembl host, by default https://grch37.ensembl.org

Value

List of slots snpmart and ensembl as detailed above

```
{\tt get\_scan\_annot.GenotypeData}
```

Get scans annotations (GenotypeData object)

Description

Get scans annotations (GenotypeData object)

Usage

```
## S3 method for class 'GenotypeData'
get_scan_annot(obj, ...)
```

Arguments

obj GenotypeData object

... Not passed

Value

Data frame

```
{\tt get\_scan\_annot.GenotypeDataSubset}
```

Get scans annotations (GenotypeDataSubset object)

Description

Get scans annotations (GenotypeDataSubset object)

Usage

```
## S3 method for class 'GenotypeDataSubset'
get_scan_annot(obj, ...)
```

Arguments

obj GenotypeDataSubset object

... Not passed

Value

Data frame

```
{\tt get\_snp\_annot.GenotypeData}
```

Get SNPs annotations (GenotypeData object)

Description

Get SNPs annotations (GenotypeData object)

Usage

```
## S3 method for class 'GenotypeData'
get_snp_annot(obj, ...)
```

Arguments

obj GenotypeData object

... Not passed

Value

Data frame

```
{\tt get\_snp\_annot.GenotypeDataSubset}
```

Get SNPs annotations (GenotypeDataSubset object)

Description

Get SNPs annotations (GenotypeDataSubset object)

Usage

```
## S3 method for class 'GenotypeDataSubset'
get_snp_annot(obj, ...)
```

Arguments

obj GenotypeDataSubset object

... Not passed

Value

Data frame

ggplot_associations 17

ggplot_associations Ggplot associations

Description

Get SNPs associations ggplot, either as points or as a linked area. Optionally add labels to most associated points using ggrepel.

Usage

```
ggplot_associations(
  df_snp,
  pvalue_colname = "pvalues",
  labels_colname = "probe_id",
  n_labels = 10,
  nudge = c(0, 1),
  linked_area = FALSE,
  byindex = linked_area,
  colors = if (linked_area) snp_position_colors(nrow(df_snp)) else "black")
```

Arguments

df_snp SNP annotation data frame with columns chromosome, position, and as speci-

fied by parameters pvalue_colname and optionally labels_colname.

pvalue_colname Column name of df_snp with association values

labels_colname Optional column name of df_snp with labels. Set to NULL to remove.

n_labels Number of labels of most associated points to display.

Nudge parameter passed to ggrepel::geom_label_repel.

linked_area Add a linked area to associations points, default FALSE

byindex Display by SNP index or chromosomic position (default)

colors Colors of SNPs

Value

ggplot

18 ggplot_snp_pos

ggplot_ld

Ggplot linkage disequilibrium

Description

Display SNP r2 correlations using points or diamonds with text.

Usage

```
ggplot_ld(
  df_ld,
  diamonds = length(unique(df_ld$SNP_A)) < 40,
  point_size = 120/sqrt(nrow(df_ld)),
  reverse = FALSE,
  reindex = TRUE
)</pre>
```

Arguments

df_ld Data frame with columns SNP_A, SNP_B, and R2. As returned by the snprelate_ld

function.

diamonds Should the values be displayed as diamonds or points? Default is TRUE for

less than 40 SNPs.

point_size Size for geom_point. Ignored if diamonds is TRUE.

reverse Reverse the display (horizontal symmetry)

reindex If FALSE, SNPs are positionned following their IDs

Value

ggplot

ggplot_snp_pos

Ggplot SNPs position

Description

Get SNPs position ggplot with mappings to combine with other ggplots. Optionally add labels and an upper subset.

Usage

```
ggplot_snp_pos(
  df_snp,
  upper_subset = NULL,
  labels_colname = NULL,
  colors = snp_position_colors(nrow(df_snp))
)
```

gtable_ld 19

Arguments

df_snp SNP annotation data frame with a column named position and, if specified, one

named as the labels_colname parameter.

upper_subset Subset of df_snp for the positions on the upper side labels_colname Optional column name of df_snp to use as SNP labels.

colors Colors for each SNP

Value

ggplot

gtable_ld

Gtable of linkage disequilibrium and chromosomic positions

Description

Creates a gtable of linkage disequilibrium and chromosomic positions ggplots. A biplot_subset parameter is available to add a second linkage disequibrium ggplot to visualize the effect of a SNP selection.

Usage

```
gtable_ld(
    df_ld,
    df_snp,
    biplot_subset = NULL,
    labels_colname = NULL,
    diamonds = length(unique(df_ld$SNP_A)) < 40,
    point_size = ifelse(is.null(biplot_subset), 120, 80)/sqrt(nrow(df_ld)),
    title = "",
    title_biplot = "",
    ...
)</pre>
```

Arguments

df_ld Data frame returned by snprelate_ld

df_snp SNP annotations with columns snpID and position biplot_subset SNP indexes of the subset for the second ld plot labels_colname Column name of df_snp to use as SNP labels

diamonds Display the values as diamonds or as points Default is TRUE for less than 40

SNPs.

point_size Size for geom_point. Ignored if diamonds is TRUE.

title Plot title

title_biplot Optional biplot title
... Passed to ggplot_ld

Value

gtable of ggplots

Examples

```
library(snplinkage)
gds_path <- save_hgdp_as_gds()
gdata <- load_gds_as_genotype_data(gds_path)
qc <- snprelate_qc(gdata, tagsnp = .99)
snp_idxs_8p23 <- select_region_idxs(qc$gdata, chromosome = 8,
    position_min = 11e6, position_max = 12e6)

df_ld <- snprelate_ld(qc$gdata, snps_idx = snp_idxs_8p23, quiet = TRUE)
plt <- gtable_ld(df_ld, df_snp = gdata_snps_annots(qc$gdata))</pre>
```

gtable_ld_associations

Gtable of linkage disequilibrium and associations

Description

Creates a gtable of a linkage disequilibrium, chromosomic positions, and association scores ggplots.

Usage

```
gtable_ld_associations(
   df_assocs,
   df_ld,
   pvalue_colname = "pvalues",
   labels_colname = "probe_id",
   n_labels = 5,
   diamonds = nrow(df_assocs) <= 40,
   linked_area = diamonds,
   point_size = 150/nrow(df_assocs),
   colors = snp_position_colors(nrow(df_assocs)),
   ...
)</pre>
```

Arguments

	SNP annotation data frame with columns chromosome, position, and as specified by parameters pvalue_colname and optionally labels_colname.
	Data frame with columns SNP_A, SNP_B, and R2, as returned by the snprelate_ld function.
<pre>pvalue_colname</pre>	Column name of df_snp with association values
labels_colname	Optional column name of df_snp with labels. Set NULL to remove labels.

diamonds Should the values be displayed as diamonds or points? Default is TRUE for up

to 40 SNPs.

linked_area Add a linked area to associations points. Default same as diamonds.

point_size Point size for ggplot_ld, ignored if diamonds is TRUE.

colors Colors of SNPs

... Passed to ggplot_associations

Value

gtable

gtable_ld_associations_combine

Build gtable by combining ggplots

Description

Build gtable by combining ggplots

Usage

```
gtable_ld_associations_combine(ggplots, diamonds)
```

Arguments

ggplots List of ggplots

diamonds Does the LD visualization use diamond-type layout

Value

gtable of ggplots

Examples

```
library(snplinkage)

# example rnaseq data frame, 20 variables of 20 patients
m_rna = matrix(runif(20 ^ 2), nrow = 20)

# pair-wise correlation matrix
m_ld = cor(m_rna) ^ 2

# keep only upper triangle and reshape to data frame
m_ld[lower.tri(m_ld, diag = TRUE)] = NA
df_ld = reshape2::melt(m_ld) |> na.omit()
```

```
# rename for SNPLinkage
names(df_ld) = c('SNP_A', 'SNP_B', 'R2')
# visualize with ggplot_ld
gg_ld = ggplot_ld(df_ld)
# let's imagine the 20 variables came from 3 physically close regions
positions = c(runif(7, 10e5, 15e5), runif(6, 25e5, 30e5),
              runif(7, 45e5, 50e5)) |> sort()
# build the dataframe
df_snp_pos = data.frame(position = positions)
df_snp_pos$label = c(rep('HLA-A', 7), rep('HLA-B', 6), rep('HLA-C', 7))
gg_pos_biplot = ggplot_snp_pos(df_snp_pos, labels_colname = 'label',
                               upper_subset = TRUE)
# let's assume HLA-B is more associated with the outcome than the other genes
pvalues = c(runif(7, 1e-3, 1e-2), runif(6, 1e-8, 1e-6), runif(7, 1e-3, 1e-2))
log10_pvals = -log10(pvalues)
# we can reuse the df_snp_pos object
df_snp_pos$pvalues = log10_pvals
# add the chromosome column
df\_snp\_pos$chromosome = 6
gg_assocs = ggplot_associations(df_snp_pos, labels_colname = 'label',
                                linked_area = TRUE, nudge = c(0, 0.5),
                                n_{labels} = 12)
l_ggs = list(pos = gg_pos_biplot, ld = gg_ld, pval = gg_assocs)
gt_ld = gtable_ld_associations_combine(l_ggs, diamonds = TRUE)
grid::grid.draw(gt_ld)
```

```
gtable_ld_associations_gdata
```

Gtable of linkage disequilibrium and associations using a Genotype-Data object

Description

Compute linkage disequilibrium using snprelate_ld on the set of SNPs in the associations data frame and call gtable_ld_associations. Creates a gtable of a linkage disequilibrium, chromosomic positions, and association scores ggplots.

Usage

```
gtable_ld_associations_gdata(
```

```
df_assocs,
  gdata,
  pvalue_colname = "pvalues",
  labels_colname = "probe_id",
  diamonds = nrow(df_assocs) <= 40,
  window = 15,
  ...
)</pre>
```

Arguments

df_assocs SNP annotation data frame with columns chromosome, position, and as speci-

fied by parameters pvalue_colname and optionally labels_colname.

gdata GenotypeData object, as returned by load_gds_as_genotype_data

pvalue_colname Column name of df_snp with association values

labels_colname Optional column name of df_snp with labels. Set NULL to remove labels.

diamonds Should the values be displayed as diamonds or points? Default is TRUE for up

to 40 SNPs.

window Window size for snprelate_ld. Forced to the total number of SNPs if diamonds

is FALSE

... Passed to gtable_ld_associations

Value

gtable

Examples

24 gtable_ld_gdata

gtable_ld_gdata	Gtable of linkage disequilibrium and positions using a GenotypeData object
-----------------	--

Description

Compute linkage disequilibrium using snprelate_ld on a set of SNP indexes and call gtable_ld. Two parameters are available to compute and compare minor allele frequency filtering and TagSNP selection by displaying two LD plots with their positions in the center. The maf and r2 parameters are used similarly and as follows: - compare baseline with MAF 5 gtable_ld(gdata, snps_idx, maf = 0.05) - compare baseline with TagSNP r2 = 0.8 gtable_ld(gdata, snps_idx, r2 = 0.8) - compare 5 gtable_ld(gdata, snps_idx, maf = c(0.05, 0.05), r2 = 0.8) - compare MAF 5 gtable_ld(gdata, snps_idx, maf = c(0.05, 0.1), r2 = c(0.8, 0.6))

Usage

```
gtable_ld_gdata(
   gdata,
   snps_idx,
   maf = NULL,
   r2 = NULL,
   diamonds = length(snps_idx) < 40,
   window = 15,
   autotitle = TRUE,
   autotitle_bp = TRUE,
   double_title = FALSE,
   ...
)</pre>
```

Arguments

gdata

snps_idx SNPs indexes to select maf Minor allele frequency threshold(s), see description r2 TagSNP r2 threshold(s), see description
• • • • • • • • • • • • • • • • • • • •
r2 TagSNP r2 threshold(s), see description
diamonds Display the values as diamonds or as points Default is TRUE for less than 40 SNPs.
window Window size for snprelate_ld. Forced to the total number of SNPs if diamonds is FALSE
autotitle Set title to feature selection method(s), number of SNPs and chromosome
${\tt autotitle_bp} \qquad {\tt Set\ biplot\ title\ to\ feature\ selection\ method}(s), number\ of\ SNPs\ and\ chromosome}$
double_title Logical, if false (default) keep only biplot title
Passed to gtable_ld

GenotypeData object returned by load_gds_as_genotype_data

gtable_ld_grobs 25

Value

```
gtable of ggplots
```

Examples

```
library(snplinkage)
gds_path <- save_hgdp_as_gds()
gdata <- load_gds_as_genotype_data(gds_path)
qc <- snprelate_qc(gdata, tagsnp = .99)

snp_idxs_1p13_large <- select_region_idxs(qc$gdata, chromosome = 1,
    position_min = 114e6, n_snps = 100)
plt <- gtable_ld_gdata(qc$gdata, snp_idxs_1p13_large)</pre>
```

gtable_ld_grobs

Build gtable by combining ggplots

Description

Build gtable by combining ggplots

Usage

```
gtable_ld_grobs(plots, labels_colname, title)
```

Arguments

plots List of ggplots

labels_colname Does the SNP position plot contain labels

title Title text string

Value

gtable of ggplots

Examples

```
library(snplinkage)

# example rnaseq data frame, 20 variables of 20 patients
m_rna = matrix(runif(20 ^ 2), nrow = 20)

# pair-wise correlation matrix
m_ld = cor(m_rna) ^ 2

# keep only upper triangle and reshape to data frame
m_ld[lower.tri(m_ld, diag = TRUE)] = NA
```

```
df_ld = reshape2::melt(m_ld) |> na.omit()
# rename for SNPLinkage
names(df_ld) = c('SNP_A', 'SNP_B', 'R2')
# visualize with ggplot_ld
gg_ld = ggplot_ld(df_ld)
# let's imagine the 20 variables came from 3 physically close regions
positions = c(runif(7, 10e5, 15e5), runif(6, 25e5, 30e5),
              runif(7, 45e5, 50e5)) |> sort()
# build the dataframe
df_snp_pos = data.frame(position = positions)
df_snp_pos$label = c(rep('HLA-A', 7), rep('HLA-B', 6), rep('HLA-C', 7))
gg_snp_pos = ggplot_snp_pos(df_snp_pos, labels_colname = 'label')
l_ggs = list(snp_pos = gg_snp_pos, ld = gg_ld)
gt_ld = gtable_ld_grobs(l_ggs, labels_colname = TRUE,
                        title = 'RNASeq correlations')
grid::grid.draw(gt_ld)
```

```
is_snp_first_dim.default
```

Is SNP first dimension (default)

Description

Is SNP first dimension (default)

Usage

```
## Default S3 method:
is_snp_first_dim(obj, ...)
```

Arguments

obj Default object
... Not passed

Value

NA

Is SNP first dimension (GDS object)

Usage

```
## S3 method for class 'gds.class'
is_snp_first_dim(obj, ...)
```

Arguments

```
obj GDS object
... Not passed
```

Value

Logical, TRUE if SNP is first dimension

```
is_snp_first_dim.GdsGenotypeReader

Is SNP first dimension (GdsGenotypeReader object)
```

Description

Is SNP first dimension (GdsGenotypeReader object)

Usage

```
## S3 method for class 'GdsGenotypeReader'
is_snp_first_dim(obj, ...)
```

Arguments

```
obj GdsGenotypeReader object
... Not passed
```

Value

```
is_snp_first_dim output on S4 slot 'handler'
```

Is SNP first dimension (GenotypeData object)

Usage

```
## S3 method for class 'GenotypeData'
is_snp_first_dim(obj, ...)
```

Arguments

obj Genotype data object
... Not passed

Value

is_snp_first_dim output on S4 slot 'data'

```
is\_snp\_first\_dim. \texttt{MatrixGenotypeReader} \\ \textit{Is SNP first dimension (MatrixGenotypeReader object)}
```

Description

Is SNP first dimension (MatrixGenotypeReader object)

Usage

```
## S3 method for class 'MatrixGenotypeReader'
is_snp_first_dim(obj, ...)
```

Arguments

obj MatrixGenotypeReader object
... Not passed

Value

TRUE

Is SNP first dimension (NcdfGenotypeReader object)

Usage

```
## S3 method for class 'NcdfGenotypeReader'
is_snp_first_dim(obj, ...)
```

Arguments

```
obj NcdfGenotypeReader object
... Not passed
```

Value

TRUE

```
load_gds_as_genotype_data

Load GDS as Genotype Data
```

Description

Open a connection to a snpgds file (cf. SNPRelate package) as a Genotype Data object.

Usage

```
load_gds_as_genotype_data(
  gds_file,
  read_snp_annot = TRUE,
  read_scan_annot = TRUE
)
```

Arguments

```
gds_file Path of snpgds file
read_snp_annot Read the SNPs' annotations
read_scan_annot
Read the scans' annotations
```

30 parallel_apply

Value

Genotype Data object

Examples

```
library(snplinkage)
gds_path <- save_hgdp_as_gds()
gdata <- load_gds_as_genotype_data(gds_path)</pre>
```

parallel_apply Separate a matrix in a

Separate a matrix in a list of matrices of length the number of cores and apply a function on the columns in parallel

Description

Separate a matrix in a list of matrices of length the number of cores and apply a function on the columns in parallel

Usage

```
parallel_apply(m_data, apply_fun, n_cores = 1, ...)
```

Arguments

m_data Data matrix

apply_fun Function to apply

n_cores Number of cores

... Passed to apply_fun

Value

apply_fun return

print_qc_as_tex_table 31

```
print_qc_as_tex_table print_qc_as_tex_table
```

Description

Print information about quality control performed by the snprelate_qc function.

Usage

```
print_qc_as_tex_table(
   gdata_qc,
   label = "qc",
   caption = paste("Quality control and feature selection of the subset of the",
        "human genome diversity project dataset.")
)
```

Arguments

gdata_qc Genotype Data object object returned by snprelate_qc

Label of the Tex tablecaptionCaption of the Tex table

Value

Prints knitr::kable object using cat

```
save_hgdp_as_gds save_hgdp_as_gds
```

Description

Save the HGDP SNP data text file as a Genomic Data Structure file

Usage

```
save_hgdp_as_gds(paths = hgdp_filepaths(), outpath = tempfile(), ...)
```

Arguments

```
paths Paths of the zip, txt, and gds files outpath Output GDS file path
```

... Passed to save_genotype_data_as_gds

Value

Path of the saved gds file

```
select_region_idxs
```

Select SNP indexes corresponding to a specific genomic region.

Usage

```
select_region_idxs(
  gdata,
  chromosome,
  position_min = -Inf,
  position_max = Inf,
  n_snps = 0,
  offset = 0
)
```

Arguments

gdata	Genotype Data object
chromosome	Chromosome to select
position_min	Minimum base pair position to select
position_max	Maximum base pair position to select
n_snps	Maximum number of SNPs to return
offset	Number of SNPs to offset

Value

SNP indexes of Genotype Data object

Description

Wrapper over SNPRelate::snpgdsSNPRateFreq

snprelate_ld 33

Usage

```
snprelate_allele_frequencies(
  gdata,
  snps_idx = NULL,
  scans_idx = NULL,
  quiet = FALSE
)
```

Arguments

gdata A GenotypeData object snps_idx Vector of snps indices scans_idx Vector of scans indices quiet Whether to be quiet

Value

A data frame of snps_idx, snps_ids, allele1, allele2, maf, missing where allele1 and allele2 are the rates of the alleles, and maf the minimum of the 2. Missing is the missing rate. N.B: the allele rates are computed on the non missing genotypes, i.e. their sum equals 1.

snprelate_ld

Wrapper for snpgdsLDMat to compute r2

Description

Wrapper for snpgdsLDMat to compute r2

Usage

```
snprelate_ld(
  gdata,
  window_size = 0,
  min_r2 = 0,
  snps_idx = NULL,
  scans_idx = NULL,
  threads = 1,
  quiet = FALSE
)
```

Arguments

gdata A GenotypeData object

window_size Max number of SNPs in LD window, 0 for no window

min_r2 Minimum r2 value to report

34 snprelate_ld_select

```
snps_idx Indices of snps to use
scans_idx Indices of scans to use
threads The number of threads to use
```

quiet Whether to be quiet

Value

A data frame with columns SNP_A, SNP_B, R2 for r2 >= min_r2

```
snprelate_ld_select Wrapper for snpgdsLDpruning to select Tag SNPs
```

Description

The tagged snp set is (by sliding window) representative and strongly not redundant.

Usage

```
snprelate_ld_select(
  gdata,
  window_length = 500L,
  min_r2,
  window_size = NA,
  snps_idx = NULL,
  scans_idx = NULL,
  remove.monosnp = FALSE,
  autosome.only = FALSE,
  method = "r",
  threads = 1,
  quiet = FALSE,
  ...
)
```

Arguments

```
A GenotypeData object
gdata
window_length
                 Max length in kb of the window
                 Minimum r2 value to report
min_r2
                 Max number of SNPs in LD window
window_size
                 Indices of snps to use
snps_idx
scans_idx
                 Indices of scans to use
                 if TRUE, remove monomorphic SNPs
remove.monosnp
                 if TRUE, use autosomal SNPs only; if it is a numeric or character value, keep
autosome.only
                 SNPs according to the specified chromosome
```

snprelate_qc 35

```
method "composite", "r", "dprime", "corr", see details
threads The number of threads to use, currently ignored
quiet Whether to be quiet
... Forwarded to SNPRelate::snpgdsLDpruning
```

Value

A list of SNP IDs stratified by chromosomes.

prelate_qc

Description

Quality control using SNPRelate functions.

Usage

```
snprelate_qc(
  gdata,
  samples_nas = 0.03,
  ibs = 0.99,
  keep_ids = NULL,
  snps_nas = 0.01,
  maf = 0.05,
  tagsnp = 0.8,
  n_cores = 1
)
```

Arguments

gdata	Genotype data object
samples_nas	NA threshold for samples, default 3 pct
ibs	Samples identity by state threshold, default 99 pct
keep_ids	Samples ids to keep even if IBS is higher than threshold. Used for monozygotic twins.
snps_nas	NA threshold for SNPs, default 1 pct
maf	Minor allele frequency threshold, default 5 pct
tagsnp	TagSNP r2 correlation threshold, default 0.8
n_cores	Number of cores

Value

List of gdata, Genotype data object, and df_qc, QC info data frame

36

Examples

```
library(snplinkage)
gds_path <- save_hgdp_as_gds()
gdata <- load_gds_as_genotype_data(gds_path)
qc <- snprelate_qc(gdata, tagsnp = .99)</pre>
```

%<>%

Assignment pipe

Description

Pipe an object forward into a function or call expression and update the 'lhs' object with the resulting value. Magrittr imported function, see details and examples in the magrittr package.

Arguments

1hs An object which serves both as the initial value and as target.

rhs a function call using the magrittr semantics.

Value

None, used to update the value of lhs.

%\$%

Exposition pipe

Description

Expose the names in 'lhs' to the 'rhs' expression. Magrittr imported function, see details and examples in the magrittr package.

Arguments

1hs A list, environment, or a data.frame.

rhs An expression where the names in lhs is available.

Value

Result of rhs applied to one or several names of lhs.

%>%

%>%	Pipe	

Description

Pipe an object forward into a function or call expression. Magrittr imported function, see details and examples in the magrittr package.

Arguments

1hs A value or the magrittr placeholder.

rhs A function call using the magrittr semantics.

Value

Result of rhs applied to lhs, see details in magrittr package.

Index

* datasets crohn, 4 %<>%, 36 %>%, 37 %\$%, 36	gtable_ld_asso gtable_ld_asso gtable_ld_asso gtable_ld_gda gtable_ld_grol
<pre>chisq_pvalues, 3 chisq_pvalues_gdata, 4 crohn, 4 diamond_annots, 5</pre>	<pre>is_snp_first_c is_snp_first_c is_snp_first_c is_snp_first_c is_snp_first_c</pre>
fetch_allele1.default, 6 fetch_allele1.GdsGenotypeReader, 6	is_snp_first_c
<pre>fetch_allele1.GenotypeData, 7 fetch_allele1.GenotypeDataSubset, 7</pre>	load_gds_as_ge
fetch_allele2.default, 8 fetch_allele2.GdsGenotypeReader, 8 fetch_allele2.GenotypeData, 9	<pre>parallel_apply print_qc_as_te</pre>
fetch_allele2.GenotypeDataSubset, 9 fetch_gds.default, 10 fetch_gds.GdsGenotypeReader, 10 fetch_gds.GenotypeData, 11 fetch_gds.GenotypeDataSubset, 11	save_hgdp_as_{ select_region_ snprelate_allo snprelate_ld, snprelate_ld_s snprelate_dc,
<pre>gdata_add_gene_annots, 12 gdata_add_gene_annots_aim_example, 12 gdata_add_gene_annots_hladr_example,</pre>	Silpi etate_qc, .
gdata_scans_annots, 13 gdata_snps_annots, 14 get_biomart_metadb, 14 get_scan_annot.GenotypeData, 15 get_scan_annot.GenotypeDataSubset, 15 get_snp_annot.GenotypeDataSubset, 16 get_snp_annot.GenotypeDataSubset, 16 ggplot_associations, 17 ggplot_ld, 18 ggplot_snp_pos, 18 gtable_ld, 19	

```
ociations, 20
ociations_combine, 21
ociations_gdata, 22
ta, 24
bs, 25
dim.default, 26
dim.gds.class, 27
dim.GdsGenotypeReader,27
dim.GenotypeData, 28
dim.MatrixGenotypeReader,
dim.NcdfGenotypeReader,
enotype_data, 29
y, 30
ex_table, 31
gds, 31
_idxs, 32
ele_frequencies, 32
select, 34
35
```