Curs 12

Definitie. Fie $X \neq \emptyset$, $\mathcal{A} \subset \mathcal{I}(X)$, $\mathcal{A} \neq \emptyset$ si $\lambda : \mathcal{A} \to \mathbb{R}_+ = [0, \infty]$. Tripletul $(X, \mathcal{A}, \lambda)$ se numește spațiu au măsură aditivă dacă:

1) + A, BEIT avem AUBEIT i A BEIT (va veulta sã A NBEIT).

2) $+ A, B \in \mathcal{A}$ a. $\lambda \cap B = \emptyset$, aven $\lambda (A \cup B) = \lambda(A) + \lambda(B)$.

Observatie. (R°, E(R°), vol) și (R°, J(R°), M)

ment spații cu mărură aditivă și E(R°) ~ J(R°).

Definitie. Fie $A \in \mathcal{J}(\mathbb{R}^n)$. O familie finità $\mathcal{J} = (A_i)_{i=1,m} \subset \mathcal{J}(\mathbb{R}^n)$ se numerte descompunere Jordan a

lui A dacă:

1) ÛAi = A.

2) $\mu(A_i \cap A_j) = 0 + i,j \in \{1,...,m\}, i \neq j.$

Fie $A \in \mathcal{J}(\mathbb{R}^n)$ si $\mathcal{H} = (Ai)_{i=1,m}$ o descompunere Jodan a lui A. Definitie. 1) || It || def. mase diam (Ai), if [1,..., m]

(norma descompuneriit) unde diam $(Ai) = \sup_{x \in A} \{d(x,y) \mid x,y \in Ai\}.$ 2) 0 familie $(di)_{i=1,m} \in A$ se mumeste familie de pencte intermediare assciatà descompunerii et dacă di E Ai Vi= I, m. Observation 1) Bentre Ac J(Rm) si volice E>0, existà A o descompunere Jordan a lui A a.T. 2) Daca $A \in J(\mathbb{R}^n)$ și $f = (Ai)_{i=1,m}$ exte De descompunere Jordan a lui A, raturci MA)= \$\frac{2}{i=4} MAi).

[Cesemplu. Fie A = [a, b], a < b si \(\lambda : a = \times \in \times \).

[\times \times a diviriume a intervalului [a, b]. \times \times \] lia $\mathcal{A} = ([x_{i-1}, x_i])_{i=\overline{i}, m}$ este o descompunere Jordan

La lui A.

Definitie. Fie $A \in \mathcal{J}(\mathbb{R}^n)$, $f: A \to \mathbb{R}$ or function managinità, $f: A = (Ai)_{i=1,m}$ or descompunere Jordan a lui A si $(Ai)_{i=1,m}$ or familie de puncte intermediare asseiatà descompunerii $f: A \to \mathbb{R}$ of $A \to \mathbb{R}$ or function $A \to \mathbb{R$

numerte ruma Riemann assciatà functici f, descompunerii Jordan et și familiei de puncte intermediare (di); î=1, m și se notează Te(f, &i);=1, m).

sefinitie. Fie $A \in J(\mathbb{R}^n)$ și $f: A \to \mathbb{R}$ o funcție marginită. Spunem să f este integrabilă Riemann
dacă există $I \in \mathbb{R}$ ra. \hat{a} . $\forall \varepsilon > 0$, $\exists S_{\varepsilon} > 0$ cu proprietatea să pentru sice descompunere Jordan It ra
lui A, $||ft|| < S_{\varepsilon}$ și pentru sice formilie de puncte inturnediare $(Ai)_{i=1,m}$ associată lui f, arem $|T_{ft}(f,(Ai)_{i=3,m})^{-}I| <$

Observație. Minarul real I din definiția de mai sus, dacă există, est unic. Motatie. I= (Af(x1,..., xn) dx1 dx2 ... dxn. Motatii. 1) Doca n=2, I=II f(x, y) dxdy. $\int_{A} f(x_1, ..., x_n) dx_1 ... dx_n = \lim_{\|A\| \to 0} \nabla_{A} (f, (di)_{i=1, m}).$ Exercitiu. Fie $A \in \mathcal{J}(\mathbb{R}^n)$ a. i. $\mathcal{M}(A) = 0$ si $f: A \to \mathbb{R}$ of function marginita. Aratati că $\int_A f(x_1, ..., x_n) dx_1...dx_n^2$ Solutie. Fie $t = (Ai)_{i=\overline{1,m}}$ or descompunere Jordan a lui A. Aven M(Ai)=0 + i= Im. Fie (di)i=Im & familie de puncte intermediare asociatà descom-punerii It. m. $\nabla_{\mathcal{A}}(f, (x_i)_{i=\overline{1,m}}) = \sum_{i=1}^{m} f(x_i) \mu(A_i) = \sum_{i=1}^{m} f(x_i) \cdot 0 =$

Dei
$$\int_{A} f(x_1, ..., x_n) dx_1...dx_m = \lim_{\|f(x_1, ..., x_n)\| dx_1...dx_m} f(f(x_n)) dx_m = \lim_{\|f(x_n)\| dx_n} f(f(x_n))$$

$$T_{t}(f, (\alpha_{i})_{i=1,m}) = \sum_{i=1}^{m} f(\alpha_{i}) \mu(A_{i}) = \sum_{i=1}^{m} a\mu(A_{i}) = \\
= a \sum_{i=1}^{m} \mu(A_{i}) = a\mu(A).$$

$$\operatorname{deci} \int_{A} f(x_{1}, ..., x_{m}) dx_{1} ... dx_{n} = \lim_{\|A_{i}\| \to 0} T_{t}(f, (\alpha_{i})_{i=1,m}) = \\
\|A_{t}\| \to 0$$

= ama). [Propositie. Fix AEJ(Rn) si f: A > R. 1. Daca f este continua si marginità, atunci f este integrabilà Riemann.

2. Daca A este compactà si f este continuà, attanci f este integrabilà Riemann.

Repositie. Fix $H \in \mathcal{J}(\mathbb{R}^n)$, $a \in \mathbb{R}$ si $f, g: A \to \mathbb{R}$ $a. \bar{a}$.

If si g sunt functii integrabile Riemann. Attunci f+g si a. f sunt integrabile Riemann si $\int_A (f+g)(x_1,...,x_n) dx_1...dx_n = \int_A f(x_1,...,x_n) dx_1...dx_n t$ $+ \int_A g(x_1,...,x_n) dx_1...dx_n$

 $f(af)(x_1,...,x_n)dx_1...dx_n = a(f(x_1,...,x_n)dx_1...dx_n).$ Dacă $f \in g$, atunci $\int_A f(x_1,...,x_n)dx_1...dx_n \leq 1$

\(\int_{A}g(\forall 1,...,\forall n) d\forall 1...d\forall n.
 \)

Ropozitie. File A, B \(\) \(\) \(\alpha \). \(\alpha \) \(\alpha

_ (12) f este integrabilă Riemann (pe AUB).
_ Observatie. Dacă 1) rad 2) din propositia precedentă e adevarată, atunci
_ Teoremă (Jessema lui Fubrini) [AuBf(x)dx = [Af(x)dx+1Bf(x)dx. Fie BCRn o multime compactà si masurabilà Jordan si două functii continue d, B:B > R, $\chi(x) \in \beta(x) + x \in B$. Fie A = { (**1,..., *n+1) \in R^{n+1} | (**1,..., **j,..., **n+1) \in \text{

The A = { (**1,..., **n+1) \in R^{n+1} | (**1,..., **j,..., **2,..., **2,...) \in R^{n+1} | (**1,..., **j,..., **2,...) \in R^{n+1} | (**1,..., **2,..., **2,....) \in R^{n+1} | (**1,..., **2,..., **2,....) \in R^{n+1} | (**1,..., **2,..., **2,....) \in R^{n+1} | (**1,..., **2,...., **2,. EB si d((*1,..., *j,..., *n+1)) ≤ *j ≤ \(\beta((\times_1,...,\tilde{\times_j},...,\times_n+1))\), unde (\times_1,...,\tilde{\tilde{\times_j}};...,\tilde{\tilde{\times_n+1}}=
\) = $(\chi_1, ..., \chi_{j-1}, \chi_{j+1}, ..., \chi_{m+1}) \in \mathbb{R}^m ; f: A \rightarrow \mathbb{R}$ o functie continuà. Attanci A este multime compactà si masura-bilà Jordan si $\int_{A} f(x_1,...,x_{n+1}) dx_1...dx_{n+1} =$ $= \int_{\mathcal{B}} \left(\int_{\mathbb{R}^{2}} (\mathbf{x}_{1}, \dots, \mathbf{x}_{n+1}) d\mathbf{x}_{j} \right) d\mathbf{x}_{1} \dots d\mathbf{x}_{j-1} d\mathbf{x}_{j+1} \dots d\mathbf{x}_{n+1}.$ $= \int_{\mathcal{B}} \left(\int_{\mathbb{R}^{2}} (\mathbf{x}_{1}, \dots, \mathbf{x}_{n+1}) d\mathbf{x}_{j} \right) d\mathbf{x}_{1} \dots d\mathbf{x}_{j-1} d\mathbf{x}_{j+1} \dots d\mathbf{x}_{n+1}.$

Cozuri particulare ale terrenei precedente

1. Integrala dubla

i) Docă A=[a,b] x[c,d] și f: A->R este o funcție continuà, atunci A este multime compactà si mà-surabilà Jordan si Saf(x,y) dxdy= Sa (Saf(x,y)dy)dx=

 $=\int_{c}^{a}\left(\int_{a}^{b}f(x,y)dx\right)dy.$

ii) Dacă $A = \{(x,y) \in \mathbb{R}^2 \mid x \in [a,b], \alpha(x) \leq y \leq \beta(x)\}$, unde a, B:[a,b] > R sunt functio continue si f: A > R este o functie continuà, atunci A este multime compactà si masurabilà Jordan si Sp f(x,y) dedy $=\int_{0}^{h} \left(\int_{\chi(x)}^{\beta(x)} f(x,y) dy\right) dx.$

iii) Docă A= {(x,y) = 12 | y = [c, d], 4(y) = x = 4(y)}, unde Y, Y: [c,d] > R sunt funcții continue și f:A> > R este o funcție continuă, atunci A este mulțime compactà si màsurabilà Jordan si $\iint_A f(x,y) dx dy =$ $= \int_C \left(\int_{Y(y)}^{Y(y)} f(x,y) dx \right) dy.$

2. Integrala triplà

i) laca $A = [a,b] \times [c,d] \times [k,p]$ si $f:A \to \mathbb{R}$ ett o functie continua, atunci A este multime compactà si masurabilà Jordan si $\iiint_A f(x,y,z) dx dy dz = \int_a^b \left(\int_c^d \left(\int_k^f f(x,y,z) dz \right) dy \right) dx = \int_a^b \left(\int_c^d \left(\int_k^f f(x,y,z) dy \right) dz \right) dx = \dots$

ii) Dacă $B \subset \mathbb{R}^2$ este o multime compactă și mărurabilă Jodan și $A = \{(x,y,z) \in \mathbb{R}^3 \mid (x,y) \in B\}$, $Y(x,y) \leq Z \leq Y(x,y)\}$, unde $Y,Y:B \to \mathbb{R}$ sunt functii continue și $f:A \to \mathbb{R}$ este o funcție continua, atunci A este multime compactă și măruralii-

là Jordan si
$$\iint_A f(x,y,z) dxdydz =$$

$$= \iint_B \left(\int_{\{(x,y)\}}^{\{(x,y)\}} f(x,y,z) dz \right) dxdy.$$

etc.

Escritiu. Déterminati:

a) Sh (2x+y) dxdy, unde A=[0,1]×[0,2].

Solutie. $A = [0,1] \times [0,2] \Rightarrow A$ compactà și $A \in J(\mathbb{R}^2)$.

Fie f: A > R, f(x,y)=2x+y.

f continua.

$$= \int_0^1 \left(\int_0^2 (2x + y) dy \right) dx = \int_0^1 (2xy + \frac{y^2}{2}) \Big|_{y=0}^{y=2} dx =$$

$$= \int_{0}^{4} \left[2 \times (2-0) + \frac{1}{2} (4-0) \right] dx = \int_{0}^{4} (4 \times 2) dx =$$

$$=4\frac{x^{2}}{x}\Big|_{x=0}^{x=1}+2x\Big|_{x=0}^{x=1}=2+2=4. \ \Box$$

A= $\{(x,y)\in\mathbb{R}^2\mid x\in [0,3], -x^2\leq y\leq x^2+1\}$. The $\alpha,\beta:[0,3]\rightarrow\mathbb{R}, \alpha(x)=-x^2, \beta(x)=x^2+1$. α,β continue A compacta α $A\in J(\mathbb{R}^2)$. The $f:A\rightarrow\mathbb{R}, f(x,y)=3x+y$. f continua $S_Af(x,y)dxdy=S_A(3x+y)dxdy=$

$$= \int_{0}^{3} \left(\int_{-x^{2}}^{x^{2}+1} (3x+y) dy \right) dx = \int_{0}^{3} (3x+y) dy dx = \int_{0}^{3} (3x+y) dx = \int_{0}^{3$$

$$= \int_0^3 \left\{ 3 \times \left(\chi^2 + 1 + \chi^2 \right) + \frac{1}{2} \left[\left(\chi^2 + 1 \right)^2 - \left(-\chi^2 \right)^2 \right] \right\} d\chi =$$

$$= \int_0^3 \left[6 x^3 + 3 x + \frac{1}{2} \left(x^4 + 2 x^2 + 1 - x^4 \right) \right] dx =$$

$$= \int_{0}^{3} (6x^{3} + x^{2} + 3x + \frac{1}{2}) dx = 6 \frac{x^{4}}{4} \Big|_{x=0}^{x=3} + \frac{x^{3}}{3} \Big|_{x=0}^{x=3} +$$

$$+3\frac{x^{2}}{2}\Big|_{x=0}^{x=3}+\frac{1}{2}x\Big|_{x=0}^{x=3}=\frac{3}{2}(81-0)+\frac{1}{3}(27-0)+$$

$$+\frac{3}{2}(9-0)+\frac{1}{2}(3-0)=\frac{243}{2}+9+\frac{27}{2}+\frac{3}{2}=\frac{273}{2}+9=$$

$$=\frac{273+18}{2}=\frac{291}{2}$$
. \square

c) $\iint_A \times d \times d y d z$, and $A = [0,1] \times [1,2] \times [2,3]$. Solution. $A = [0,1] \times [1,2] \times [2,3] \Rightarrow A$ compactà și $A \in \mathcal{J}(\mathbb{R}^3)$. Fie f: A>> R, f(x, y, 2) = x. f continua.

SSA f(x,y, 2) dx dydz = SSA X dxdy dz =

$$= \int_0^1 \left(\int_1^2 \left(\int_2^3 x \, dx \right) dy \right) dx = \int_0^1 \left(\int_1^2 x \, dx \right)_{z=2}^{z=3} dy \, dx =$$

$$= \int_{0}^{1} \left(\int_{1}^{2} \times (3-2) \, dy \right) dx = \int_{0}^{1} \left(\int_{1}^{2} \times \, dy \right) dz =$$

$$= \int_{0}^{1} \left(\int_{1}^{2} \times (3-2) \, dy \right) dx = \int_{0}^{1} \left(\int_{1}^{2} \times \, dy \right) dz =$$

$$= \int_{0}^{1} \left(\int_{1}^{2} \times (3-2) \, dy \right) dx = \int_{0}^{1} \left(\int_{1}^{2} \times \, dy \right) dz =$$

$$= \int_{0}^{1} xy^{1} y^{2} dx = \int_{0}^{1} x(2-1) dx = \int_{0}^{1} x dx = \frac{x^{2}}{2} \Big|_{x=0}^{x=1} =$$

$$=\frac{1}{2}\cdot\Box$$