





Tobia Claglüna :: AMAS Group, LSM

# IPPL Meeting

May 30, 2023

Contact: tobia.clagluena@psi.ch

1/5

Tobia Clagiüna (LSM, PSI) May 30, 2023 May 30, 2023

### Hessian Operator

- Old implementation chose operators at compile-time via constexpr return statement
- Doesn't allow for loop through index ranges of  $\partial\Omega$
- Potential solution, use std::variant to store them in container; discouraged by Alex

#### Current Idea:

- Decouple stencils from operators themselves
- Instantiate 1D stencils (pass them to Hessian operator) at runtime for each index range

2 / 5

#### Diffusion Coefficient: At Gridcells

Matrix entries exhibits magnitudes in range [10<sup>14</sup>, 10<sup>19</sup>]



Figure 1: Value average over time.

# Diffusion Coefficients Distribution at iteration 1200 -5.0 -2.5 0.0 -5.0 -2.5 0.0 ×10<sup>-18</sup> -5.0 -2.5 0.0 2.5 ×10<sup>19</sup>

Figure 2: Distribution of the values at the last iteration

3 / 5

Tobia Claglüna (LSM, PSI) May 30, 2023 May 30, 2023

### Cholesky Decomposed D: At Particles

Cholesky Decomposed Diffusion Coefficients at iteration 1200



Figure 3: Potential numerical instabilities in current Cholesky Algorithm.

4 / 5

## (Adjusted) Timeline

| Date  | Target Goals                                                                                                                            |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 16/05 | Setup v-space datastructures in LangevinParticles.hpp. Add Friction coefficient. Add Solver for 2nd Rosenbluth potential $g(\vec{v})$ . |
| 23/05 | Analyse structure of $D$ . Finish Diffusion coefficient computation (via onesided Hessian operator).                                    |
| 30/05 | Analyse interplay between collision coeff.'s (see whether Severin's conclusions are confirmed or can be disproved).                     |
|       | Profiling of runtime and memory consumption.                                                                                            |
| 06/06 | Start improving most pressing bottlenecks. Start writing.                                                                               |
| 17/07 | Submission.                                                                                                                             |

Table 1: Timeline with approximate milestones

5 / 5