

DISCOGENIC LOW BACK PAIN

A BME Grand Challenge

What is LBP?

- a musculoskeletal disorder involving the back
- a common, long-term disorder, especially among the middle-aged group
- 2 people out 3 will suffer from LBP
- a major social burden

Social Burden

	United Kingdom		Sweden		Netherlands	
Costs	Costs in US \$ million (% of total)	Costs/ capita	Costs in US \$ million (% of total)	Costs/capita	Costs in US \$ million (% of total)	Costs/ capita
Direct costs Indirect costs Total costs	385 (11.5) 2948 (88.5) 3333 (100)	7 113 120	213 (8) 2262 (92) 2475 (100)	24 266 290	368 (7.4) 4600 (92.6) 4968 (100)	24 299 323

Figure 2. Costs of LBP in the UK, Sweden and the Netherlands (in US \$. Tulder et al., 2002).

Most significant symptoms

- pain
- disability

symptoms usually do not last long, LBP may fluctuate over time, with recurrence and exacerbation

Pathophysiology

⅓: Intervertebral Disc Degeneration

Unknown Mechanism

Figure 1. Decreased signal intensity of the nucleus pulposus in the L5/S1 disc in a T2-weighted image (A). The posterior bulge in the L5/S1 disc was more clearly demonstrated in the proton density-weighted image (B).

Anatomy

Cartilaginous endplate: Water - 55% Proteoglycan - 8% Collagen - 25% Annulus fibrosus: Water - 70% Nucleus pulposus: Proteoglycan - 5% Water - 77% Collagen - 15% Proteoglycan - 14% Collagen - 4%

Early and Middle Stages Solutions

Analgesics

- Paracetamol
- NSAIDs
- Opioids

Physiotherapy

- Chiropractic
- Alexander Technique

Late Stage Treatments

Spinal Fusion

- Joins two or more adjacent vertebrae
- Immobilizes the degenerated vertebrae
- Reduces the flexibility of movement

Total Disc Replacement

- Painful disc is removed and replaced by an prosthetic or donated disc
- Mobility in motion segment can be retained
- Ability of metal components are in doubt
- Rejection towards disc cells

Discectomy

- Removes a herniated disc
- Recurrent herniation

Endoscopic micro-discectomy is better than

open discectomy

Nucleoplasty

- Inserts special probe into faulty disc
- Small portion of nucleus material will be
 - eliminated by emitting Coblation®
- Nerve root tension can be reduced
- Minimally invasive
- Cannot be applied to injured disc

Tissue Engineering

A Proposed Solution

Goal

Restore/Improve IVD's physiological & biomechanical properties

Methods (General)

- Injection: Cells
- Insertion: Tissues, ECM, Scaffolds
- Transplantation: Whole Disc

Methodology Research

- Injection/Mixture of MSCs →Improved
- Successful animal transplant

Challenges - Cells

- What cells?
- Harvest problems (DCs)
- Differentiation problems (SCs)
- Cell culture difficulties

Challenges - Categories

Leakage problems
 Osteophytes

Damage

Interface problems

Challenges - Complex

- Survival
- Nutrition
- Efficacy

Cutting-edge Research - Plug

Cutting-edge Research - SMS

Our Suggestion

Decellularization - Xenogenic Disc

Recellularization - Human MSCs

Dr. Doris Taylor

Research Support

Research Support (Continued)

Problems

- Washed away?
- Thoroughness

- Survival
- Differentiation

Conclusion

- Widespread + Significant Burden
- IVD Degeneration
- Treatments differ
- Tissue Engineering & Challenges
- Our Proposal: Recell-Decell
- Future: Pathogenesis (vital!)

Acknowledgements

Advisor: Dr. Barbara Chan

- Jacky Zhao (3035139812)
- Gwinky Yip (3035176303)
- Cheston Cheng (3035179317)

Thank You!