Fiscal Theory of the Price Level

Marco Bassetto

May 22, 2024

Our Lab Economy

- Will need a common framework to think about several distinct policies
- Will build from explicit microfoundations, to understand incentives
- Want to talk about monetary/fiscal policy, will need:
 - A motive for the existence of money
 - Taxes
 - Government bonds

Notable elements from which we abstract

- Heterogeneity
- Nominal frictions (e.g., Phillips curve)

Notable elements from which we abstract

- Heterogeneity
- Nominal frictions (e.g., Phillips curve)
- Are these elements important?
- For some questions, very important (e.g. cost of inflation, price impact of money increase)
- ... but not for those that we will ask:
 - Are monetary and fiscal policy connected?
 - How is the price level determined?

Our lab economy: commodity space

- Time: discrete and infinite: t = 0, 1, 2, ...;
- Large number ("continuum") of identical "islands;"
- A single good per period and island;
- "Money," a useless object

Agents

- Large number ("continuum") of identical households;
- Monetary authority (CB, for "central bank")
- Fiscal authority ("Treasury")
- CB + Treasury = "government"

Household preferences

$$E_0 \sum_{t=0}^{\infty} \beta^t [u(c_{1t}) + c_{2t}] \tag{1}$$

- c_{1t} and c_{2t} will be acquired from different islands;
- We will call goods 1 "cash goods" and goods 2 "credit goods"
- Notice special assumption: quasilinear preferences (linear in credit goods)
- Assume also $\lim_{c_{1t}\to 0}u'(c_{1t})=\infty$, $\lim_{c_{1t}\to \infty}u'(c_{1t})=0$ ("Inada" conditions)
- Last two assumptions simplify the algebra

Government behavior

- Will not describe what motivates government
- Will consider various strategies, implications

Technology, markets, information: First part of period

- A sunspot shock s_t and a potential fiscal shock τ_t are realized
- Each household has a home island, where it starts each period with y_t units of the good; the good cannot be stored
- Money can be produced for free by the monetary authorities, perfectly storable
- Asset markets open:
 - households and government trade money and nominally risk-free debt,
 - households trade state-contingent debt (in zero net supply),
 - Treasury levies taxes (in money): T_t
- Note: time-t variables are adapted to $\{s_s, y_s, \tau_s\}_{s=0}^t$.

Technology, markets, information: Second part of period

- Households divide: shopper, worker
- Worker stays on island, sells goods to others, buys credit goods
- Can promise to settle payment at beginning of next period
- Shopper travels to another island where she is anonymous
- Shopper buys cash good, but needs money

Household flow budget constraint

$$B_{t-1} + M_{t-1} + P_{t-1}(y - c_{1t-1} - c_{2t-1}) + A_t - T_t \ge \frac{B_t}{1 + R_t} + M_t + E_t(z_{t,t+1}A_{t+1})$$
(2)

- M_t : (nominal) money holdings (currency unit: "dollar")
- B_t : (nominal) debt (number of dollars promised at t to be paid at t+1)
- A_{t+1} : (nominal) state-contingent debt (number of dollars promised at t to be paid at t+1, contingent on t+1 shocks)
- P_t : price level in period t
- R_t : nominal interest rate between period t and t+1
- $z_{t,t+1}$: state-price deflator between periods t and t+1

Some convenient definitions

Nominal wealth coming into the period:

$$W_t := B_{t-1} + M_{t-1} + P_{t-1}(y - c_{1t-1} - c_{2t-1}) + A_t - T_t$$

Multi-period asset-pricing kernel:

$$z_{0,0} := 1, z_{0,t} := \prod_{s=0}^{t-1} z_{s,s+1}, t > 0$$

$$z_{t,s} := z_{0,s}/z_{0,t}, s \ge t$$

• Will take W_0 as an exogenous initial condition

Cash-in-advance constraint

$$M_t \ge P_t c_{1t} \tag{3}$$

Note: it implies $M_t \ge 0$

No-Ponzi condition

$$W_t \geq -\limsup_{n \to \infty} \sum_{s=t}^n E_t[z_{t,s+1}(P_s y_s - T_{s+1})]$$

Will mostly consider "sane" policies where we can replace the limsup with a regular limit.

Government budget constraint

$$B_{t-1}^{S} + M_{t-1}^{S} - T_{t} = \frac{B_{t}^{S}}{1 + R_{t}} + M_{t}^{S}$$

- B_t^S: bonds supplied by government
- M_t^S: money supplied by government

Does gov't have a no-Ponzi condition?

First-order conditions

Go to equilibrium definitio

First-order conditions:

• Cash goods:

$$u'(c_{1t}) = (\beta E_t \lambda_{t+1} + \mu_t) P_t, \quad t \ge 0$$

Credit goods:

$$1 = \beta E_t \lambda_{t+1} P_t, \quad t \ge 0$$

• Money:

$$\lambda_t = \mu_t + \beta E_t \lambda_{t+1}, \quad t \ge 0$$

Government Bonds:

$$\frac{\lambda_t}{1+R_t} = \beta E_t \lambda_{t+1}, \quad t \ge 0$$

State-Contingent Bonds:

$$\lambda_t z_{t,t+1} = \beta \lambda_{t+1}, \quad t \ge 0$$

Transversality condition

One more necessary condition $(t \ge 0)$:

$$E_t \left[\liminf_{T \to \infty} \beta^T \left[\lambda_T \left(W_T - \limsup_{n \to \infty} \sum_{s=T}^n E_t [z_{T,s+1} (P_s y_s - T_{s+1})] \right) \right] = 0$$

- Weitzman, Management Science, 1973 (deterministic case)
- Coşar and Green, Macroeconomic Dynamics, 2016 (stochastic case)

The Friedman distortion

$$u'(c_{1t}) = 1 + R_t, \quad t \ge 0$$
 (4)

$$R_t > 0 \Longrightarrow M_t = P_t c_{1t}, \quad t \ge 0$$
 (5)

- Money is free to produce
- When $R_t > 1$, gov't charges for it
- Consumption tilted towards credit
- Only source of inflation cost in this model
- Cost related to expected inflation

The Fisher equation

$$1 = E_t \left[\beta (1 + R_{t+1}) \frac{P_t}{P_{t+1}} \right] \quad t \ge 0$$
 (6)

- Positive relation between interest rates and inflation
- Holds across most models (and data) in the long run
- Here, in the short run as well

Gov't policy regime

- Description of competitive equilibrium cannot be completed without knowing what gov't does
- Will explore various options

A pure money supply rule

- Set $B_t^S = 0$;
- Set $M_t^S = (1+q)M_{t-1}^S$;
- Set $T_t = M_{t-1}^S M_t^S$.

Equilibria under a money supply rule: the log case

Suppose $u(c_{1t}) = \log c_{1t}$, $q > \beta - 1$, use (4), (5), and (6):

$$c_{1t} = rac{eta M_t}{M_{t+1}} = rac{eta}{1+q}, \quad t \geq 0$$

 $rac{P_{t+1}}{P_t} = rac{M_{t+1}}{M_t} = 1+q, \quad t \geq 0$

$$P_0=rac{M_0(1+q)}{eta}$$

· Unique equilibrium, price level pinned down

Success?

We got control of prices using just money supply!

Success?

- We got control of prices using just money supply!
- One problem: Preferences for cash goods are very unstable in practice...

Success?

- We got control of prices using just money supply!
- One problem: Preferences for cash goods are very unstable in practice...
- More problems:
 - Fiscal policy is more important than it seems
 - Works fine for log, but what about other preferences?

Power utility and money supply rules

When $\sigma < 1$ and $q \ge 0$ (most plausible case):

- SS equilibrium
- Continuum of equilibria where P_0 starts above SS, $P_t \to \infty$, so $c_{1t} = \bar{M}/P_t \to 0$
- No guarantee that money will have value!

```
Detail for \sigma \neq 1
```

A different way of running monetary policy

- Since the mid-1980s, central banks only use interest rates as the main policy tool
- Caveat: until the great recession, they did manage money on a day-to-day basis
- 2nd caveat: they now use QE too ("bonds-in-advance?")

The simplest case: A fixed interest rate peg

- New specification of monetary-fiscal policy:
- Central bank sets $R_t = \bar{R}$ in every period.
- Gov't budget constraint:

$$B_{t-1}^S + M_{t-1}^S - T_t = \frac{B_t^S}{1 + \bar{R}} + M_t^S$$

Infinitely elastic supply for M_t^S and B_t^S (but sum of two is set)

Computing the set of equilibria under an interest rate peg (Sargent-Wallace, 1975)

Friedman distortion:

$$u'(c_{1t}) = 1 + \bar{R} \Longrightarrow \text{ get } c_{1t}!$$

Fisher equation:

$$1 = \beta(1 + \bar{R})E_t\left(\frac{P_t}{P_{t+1}}\right)$$

• Cash-in-advance (if $\bar{R} > 0$): $M_t = P_t c_{1t}$

The good news

- The real allocation (consumption of cash vs. credit goods) pinned down
- Expected (inverse) inflation pinned down

- For now, no way to pin down P_0
- Why is this?

$$M_0 = P_0 c_{10}$$

- Price level is "indeterminate"
- Indeterminacy translates into the possibility of sunspots (only pin down expectation)

- For now, no way to pin down P₀
- Why is this?

$$M_0 = P_0 c_{10}$$

- Price level is "indeterminate"
- Indeterminacy translates into the possibility of sunspots (only pin down expectation)
- Nobody cares about indeterminacy here (purely nominal)...

- For now, no way to pin down P₀
- Why is this?

$$M_0 = P_0 c_{10}$$

- Price level is "indeterminate"
- Indeterminacy translates into the possibility of sunspots (only pin down expectation)
- Nobody cares about indeterminacy here (purely nominal)...
- ... but they would in a richer model

- For now, no way to pin down P_0
- Why is this?

$$M_0 = P_0 c_{10}$$

- Price level is "indeterminate"
- Indeterminacy translates into the possibility of sunspots (only pin down expectation)
- Nobody cares about indeterminacy here (purely nominal)...
- ... but they would in a richer model
 ... what about our old friend, the transversality condition?
 [Suspense]

Taylor rules

- So far, interest rate was unconditional commitment
- What if the interest rate responds to the past?
- E.g., to past inflation?
- Note: look only at deterministic equilibria, but we have sunspot equilibria every time there are multiple deterministic equilibria

Taylor rules

Consider

$$R_{t+1} = \frac{\bar{\pi}^{1-\alpha}}{\beta} \left(\frac{P_t}{P_{t-1}} \right)^{\alpha} - 1, \tag{7}$$

where $\bar{\pi}$ is some target inflation rate

• Define $\pi_t := P_t/P_{t-1}$. Substitute (7) into Fisher equation:

$$\pi_{t+1} = \bar{\pi}^{1-\alpha} \left(\pi_t \right)^{\alpha}.$$

Steady state:

$$\pi^{\text{SS}} = \bar{\pi}^{1-\alpha} \left(\pi^{\text{SS}}\right)^{\alpha} \Longrightarrow \quad \pi^{\text{SS}} = \bar{\pi}$$

The Taylor principle

- Are there equilibria outside of SS?
- Take logs:

$$(\log \pi_{t+1} - \log \bar{\pi}) = \alpha(\log \pi_t - \log \bar{\pi})$$

- If $|\alpha| < 1$, many equilibria converging to SS (local indeterminacy): name P_0 , get R_1 , which affects P_1 and so on
 - With uncertainty, can have sunspot equilibria
- If $|\alpha| > 1$, SS is locally unique: any path that starts away from SS will move further away, local determinacy, success?

The Taylor principle

- Are there equilibria outside of SS?
- Take logs:

$$(\log \pi_{t+1} - \log \bar{\pi}) = \alpha(\log \pi_t - \log \bar{\pi})$$

- If $|\alpha| < 1$, many equilibria converging to SS (local indeterminacy): name P_0 , get R_1 , which affects P_1 and so on
 - With uncertainty, can have sunspot equilibria
- If $|\alpha| > 1$, SS is locally unique: any path that starts away from SS will move further away, local determinacy, success?
- Is there something wrong with paths where $\log \pi$ diverges?
- Also, ZLB (Benhabib, Schmitt-Grohé, and Uribe, 2001)

Playing with the timing of Taylor rules

What if

$$R_{t+1} = \frac{\bar{\pi}^{1-\alpha}}{\beta} \left(\frac{P_{t+1}}{P_t}\right)^{\alpha} - 1? \tag{8}$$

Get

$$\pi_{t+1} = \bar{\pi}^{1-\alpha} (\pi_{t+1})^{\alpha} \Longrightarrow \pi_{t+1} = \bar{\pi}$$

• Success (other than P_0)?

Playing with the timing of Taylor rules

What if

$$R_{t+1} = \frac{\bar{\pi}^{1-\alpha}}{\beta} \left(\frac{P_{t+1}}{P_t}\right)^{\alpha} - 1? \tag{8}$$

Get

$$\pi_{t+1} = \bar{\pi}^{1-\alpha} (\pi_{t+1})^{\alpha} \Longrightarrow \pi_{t+1} = \bar{\pi}$$

- Success (other than P_0)?
- How does central bank know P_{t+1} when setting R_{t+1} ?

Taylor rule: targeting rule or reaction function?

- Svensson and Woodford:
- Targeting rule="describes conditions that the forecast paths must satisfy in order to minimize a particular loss function"

Taylor rule: targeting rule or reaction function?

- Svensson and Woodford:
- Targeting rule="describes conditions that the forecast paths must satisfy in order to minimize a particular loss function"
- Translation: nice to have, but potentially pie in the sky (at that point, in our world we might as well say $\pi_t = \bar{\pi}$ directly)

Taylor rule: targeting rule or reaction function?

- Svensson and Woodford:
- Targeting rule="describes conditions that the forecast paths must satisfy in order to minimize a particular loss function"
- Translation: nice to have, but potentially pie in the sky (at that point, in our world we might as well say $\pi_t = \bar{\pi}$ directly)
- Reaction function: "specifies the central bank's instrument as a function of predetermined endogenous or exogenous variables observable to the central bank at the time that it sets the instrument."

Roll household flow budget constraint forward to period J+1

$$W_0 = \sum_{s=0}^{J} E_0 z_{0,s} \frac{R_s}{1 + R_s} M_s + \sum_{s=0}^{J} E_0 \left[z_{0,s+1} \left(T_{s+1} - P_s (y_s - c_{1s} - c_{2s}) \right) \right] + E_0 \left[z_{0,J+1} W_{J+1} \right]$$

... and to infinity

Use no-Ponzi to replace $E_0[z_{0,J+1}W_{J+1}]$ and take limit as $J \to \infty$:

•
$$E_0[z_{0,J+1}W_{J+1}] \ge -E_0[\sum_{s=J+1}^{\infty} z_{0,s+1}(P_sy_s - T_{s+1})]$$

• $W_0 \ge \frac{R_0}{1+R_0}M_0 + \sum_{s=0}^{\infty} E_0[z_{0,s+1}(T_{s+1} - P_sy_s)]$
+ $\sum_{s=0}^{\infty} E_0\left[z_{0,s+1}\left(p_s(c_{1s} + c_{2s}) + \frac{R_{s+1}}{1+R_{s+1}}M_{s+1}\right)\right]$

The government side

• Up to J + 1:

$$W_0 = \sum_{s=0}^{J} E_0 z_{0,s} \frac{R_s}{1 + R_s} M_s^S + \sum_{s=0}^{J} E_0 z_{0,s+1} T_{s+1} + E_0 \left[z_{0,J+1} \left(\frac{B_{J+1}}{1 + R_{J+1}} + M_{J+1}^S \right) \right]$$

- Does gov't have a transversality condition
- Does gov't have a no-Ponzi condition?

 Households: no-Ponzi imposed because otherwise would get stuck in a debt spiral

- Households: no-Ponzi imposed because otherwise would get stuck in a debt spiral
- Gov't: we did not impose limits on taxes, can get out of spiral by having arbitrarily large taxes

- Households: no-Ponzi imposed because otherwise would get stuck in a debt spiral
- Gov't: we did not impose limits on taxes, can get out of spiral by having arbitrarily large taxes
- Suppose real bound is imposed on taxes

- Households: no-Ponzi imposed because otherwise would get stuck in a debt spiral
- Gov't: we did not impose limits on taxes, can get out of spiral by having arbitrarily large taxes
- Suppose real bound is imposed on taxes
- Debt is still a promise to money

- Households: no-Ponzi imposed because otherwise would get stuck in a debt spiral
- Gov't: we did not impose limits on taxes, can get out of spiral by having arbitrarily large taxes
- Suppose real bound is imposed on taxes
- Debt is still a promise to money
 Can gov't print unlimited quantities of money?

The transversality condition under a money supply rule

- Under money supply rule, gov't cannot print unlimited money
- Then, taxes must adjust to meet budget constraint
- Limit on taxes ⇒ no-Ponzi condition, at least for debt:

$$\Longrightarrow \lim_{J\to\infty} E_0[z_{0,J}B_J^S]=0$$

- Our example tax policy satisfied this (we had $B_t^S \equiv 0$)
- There are many others that would work, but, given prices, gov't must meet obligations

The transversality condition under a money supply rule

- Under money supply rule, gov't cannot print unlimited money
- Then, taxes must adjust to meet budget constraint
- Limit on taxes ⇒ no-Ponzi condition, at least for debt:

$$\Longrightarrow \lim_{J\to\infty} E_0[z_{0,J}B_J^S]=0$$

- Our example tax policy satisfied this (we had $B_t^S \equiv 0$)
- There are many others that would work, but, given prices, gov't must meet obligations
- Even here, no need to back money with tax revenue

The transversality condition under an interest-rate rule

- Under interest-rate rule, money supply infinitely elastic
- Gov't can meet debt obligations by printing money
- mo-Ponzi constraint absent, transversality condition not imposed on gov't

A first peek at CB independence

- Right now, we have only a consolidated gov't budget constraint
- Treasury can't print money to repay debt
- CB can (though usually done in a round-about way)
- Independent CB \Longrightarrow Treasury may face limit

One last important point

- B_t^S : nominal debt
- no-Ponzi applies to real debt (denominated in gold, foreign currency)

Does this matter?

Households will exhaust their net worth, PVBC will hold as equality

$$\lim_{J \to \infty} E_0[z_{0,J+1}W_{J+1}] = 0$$

Substitute market clearing:

$$\lim_{J \to \infty} E_0[z_{0,J+1} \left(\frac{B_{J+1}^S}{1 + R_{J+1}} + M_{J+1}^S \right)] = 0$$

• Voilà: transversality condition obtained, write PVBC:

$$W_0 = \frac{R_0}{1 + R_0} M_0^S + \sum_{s=0}^{\infty} E_0 \left[z_{0,s+1} \left(T_{s+1} + \frac{R_{s+1}}{1 + R_{s+1}} M_{s+1}^S \right) \right]$$

It does matter!

- Market clearing is an equilibrium condition
- Does not have to hold for all prices
- If gov't PVBC does not hold, what adjusts: prices or taxes?

What adjusts?

- Money supply rule, real debt, independent CB: taxes
- Otherwise: maybe taxes, maybe prices
- When prices adjust, fiscal theory of the price level (FTPL)

The FTPL with an interest rate peg

- We saw that setting a constant interest rate \bar{R} would deliver indeterminate P_0 (and sunspots)
- Suppose now we set T_0 fixed, $T_t = \bar{T}P_{t-1}$ for some constant \bar{T} .
- Check transversality condition (or gov't PVBC): what prices are consistent with competitive equilibrium?

The FTPL in action

- Use Friedman distortion and Euler equation to substitute prices into the gov't PVBC
- Also, use market clearing
- Get:

$$W_0=rac{P_0}{(1-eta)(1+ar{R})}[ar{c}ar{R}+ar{T}]$$

- W₀ given (initial condition)
- \bar{T}, \bar{R} given, \bar{c} determined by \bar{R}
- \Longrightarrow at most one P_0 will work!
- Solution exists if $sign(W_0) = sign(\bar{T} + \bar{R}\bar{c})$

Economic intuition on the FTPL

- Initial nominal government liabilities: W_0
- Gov't PVBC: PV of gov't surpluses = liabilities
- Given fiscal policy, PV of taxes fixed real amount
- Seigniorage $(\bar{R}\bar{c})$ also fixed real amount
- Price level must be the ratio of nominal liabilities to real surpluses

More economic intuition on the FTPL

- Under the FTPL, bonds are claims to money
- Money (and thus bonds) is an entitlement to tax revenues, cannot be worthless
- Suppose P_0 above equilibrium level and $W_0 > 0$
- Gov't has excess resources ⇒ households do not have enough wealth to support their consumption
- \Longrightarrow households cut back on their consumption
- Excess supply ⇒ prices go down, until equilibrium attains

Why intuition in previous slide is loose

- Previous slide describes a process by which the equilibrium is attained
- But this is really a mental process
- The economy is always in equilibrium
- "Starting from P₀ low" is a thought experiment, we do not model this
- ...but we can (Bassetto, Econometrica, 2002)

Microsoft Theory of Prices vs. AIG Theory of Prices

- Cochrane (2005): Gov't bonds like Microsoft stock
- Microsoft produces dividends, stock price adjusts
- Same with government bonds: gov't produces (primary) surpluses, price must adjust
- Complication: Gov't bonds like AIG stock
- What do you do if you have negative dividends (primary deficits) in the short run?

The FTPL and CB independence

- FTPL is the only complete theory of what pins down the price level
- Unpleasant feature: it's not CB, it's Treasury that matters!!

Patching up CB independence

• Is that a death knell for CB independence?

Patching up CB independence

- Is that a death knell for CB independence?
- CB retains control of inflation after time 0 (it is deterministic and equal to $\beta(1+\bar{R})$)
- Also, no more pesky sunspots

000000

Combining local determinacy with FTPL

- Start from an active Taylor rule ($\alpha > 1$)
- Add a fiscal policy that prunes equilibria with very high or very low inflation
- On a day-to-day basis inflation responds the way it would in the locally-unique equilibrium

●0000000

Active and Passive Monetary Policy Rules

- Recall Taylor principle for interest-rate rules:
 - $\alpha > 1$: strong response to inflation, Fisher equation is a divergent difference equation (except for SS)
 - $\alpha <$ 1: weak response to inflation, Fisher equation is convergent
- When Fisher equation is divergent, we say that monetary policy is active
- When Fisher equation is convergent, we say that monetary policy is passive

00000000

Active and Passive Fiscal Policy Rules

 Same "active" and "passive" language applies to fiscal policy rules, but what is the relevant difference equation?

0000000

Active and Passive Fiscal Policy Rules

- Same "active" and "passive" language applies to fiscal policy rules, but what is the relevant difference equation?
- The gov't budget constraint!
- Define $H_t := E_0 \left[z_{0,t} \left(\frac{B_t^S}{1+R_t} + M_t^S \right) \right]$
- Get

$$H_{t} = H_{t-1} + E_{0}[M_{t-1}^{S}(z_{0,t} - z_{0,t-1})] - E_{0}[z_{0,t}T_{t}] = H_{t-1} - E_{0}\left[\frac{z_{0,t-1}M_{t-1}^{S}R_{t-1}}{1 + R_{t-1}}\right] - E_{0}[z_{0,t}T_{t}]$$

$$(9)$$

Initial condition

$$H_0 = \frac{B_0^S}{1 + R_0} + M_0^S = W_0$$

00000000

Because it is the left-hand side that has to converge to 0 for PVBC to hold

0000000

Example of a Passive Fiscal Policy Rule

- Passive fiscal policy rule = difference equation converges to 0 no matter what P₀ is
- Technical assumption : $\lim_{R \to \infty} R(u')^{-1}(1+R) < \infty$
- \Longrightarrow implies $R(u')^{-1}(1+R) < \bar{S}$, i.e., seigniorage revenues are bounded

$$T_t = \gamma (M_{t-1}^S + B_{t-1}^S)$$

With $\gamma \in (0,1)$: taxes cover at least fraction γ of nominal liabilities

Active Fiscal Policy Rule

- Active fiscal policy rule = difference equation does not converge to 0, except for one value of P_0
- Example: $T_t = \bar{T}P_{t-1}$ (with $R_t = \bar{R}$)

0000000

A Difference between Exploding Paths

Paths where inflation explodes according to

$$(\log \pi_{t+1} - \log \bar{\pi}) = \alpha(\log \pi_t - \log \bar{\pi})$$

are not ruled out by any equilibrium conditions

Paths where debt explodes according to

$$H_t = H_{t-1} = H_{t-1} - E_0 \left[\frac{z_{0,t-1} M_{t-1}^S R_{t-1}}{1 + R_{t-1}} \right] - E_0[z_{0,t} T_t]$$

violate the households' transversality condition, ruled out by equilibrium

0000000

A Weaker Notion of Active Fiscal Policy

- Compute equilibrium difference equation for W_t/P_t
- Fiscal policy active if the difference equation is explosive
- Adopted by Bianchi, Melosi and coauthors, sometimes Leeper and coauthors,...
- Rationale: equilibria with exploding household wealth are weird...
- ... but they are still equilibria, unless the explosion is sufficiently fast to violate transversality

A Final Classification

	Fiscal Policy	
	Passive	Active (strong sense)
Interest-rate rule: Passive	Indeterminacy	Uniqueness
Interest-rate rule: Active	Local uniqueness	Uniqueness, explosive

Regime switching

- Davig and Leeper (2007, 2010)
- Bianchi and Melosi (2014, 2019, 2022), Bianchi, Faccini and Melosi (2023)

Incomplete information

- Bassetto and Galli (2019), Bassetto and Miller (2022)
- Angeletos and Lian (2023)

Low Interest Rates

- Bassetto and Cui (2018), Blanchard (2019), Brunnermeier, Merkel, and Sannikov (2020)
- Jiang et al. (2022, 2023), Elenev et al. (2022)

Endogenous Policy

- Camous and Matveev (2023)
- Barthélemy and Plantin (2018), Barthélemy, Mengus, and Plantin (2021)

Equilibrium concept: Competitive equilibrium: Elements

- An allocation $(c_{1t}, c_{2t}, M_t, B_t, A_{t+1})_{t=0}^{\infty}$
- A price system $(P_t, R_t, z_{t,t+1})_{t=0}^{\infty}$
- A government policy $(T_t, B_t^S, M_t^S)_{t=0}^{\infty}$

Equilibrium concept: Competitive equilibrium: Requirements

- Allocation maximizes household utility subject to their budget constraint, cash-in-advance, and no-Ponzi, taking gov't policy and prices as given (notice rational expectations);
- Markets clear:

$$B_t = B_t^S, M_t = M_t^S, c_{1t} + c_{2t} = y_t, A_{t+1} \equiv 0$$

Gov't budget constraint is met period by period

Back to first-order conditions

Household Lagrangean

$$E_{0} \sum_{t=0}^{\infty} \beta^{t} \left\{ u(c_{1t}) + c_{2t} + \lambda_{t} \left[B_{t-1} + M_{t-1} + A_{t} + P_{t-1}(y - c_{1t-1} - c_{2t-1}) \right. \right.$$

$$\left. - T_{t} - \frac{B_{t}}{1 + R_{t}} - M_{t} - E_{t}(z_{t,t+1}A_{t+1}) \right] + \mu_{t}(M_{t} - P_{t}c_{1t}) \right\}$$

- Bewley, Journal of Economic Theory, 1972
- Luenberger, Optimization by Vector Space Methods, 1969
- Stokey, Lucas, and Prescott (dealing with the issue of LM being in L_1)

Equilibria under a money supply rule: other power cases

- Now $u(c_{1t}) = c_{1t}^{1-\sigma}/(1-\sigma)$.
- To keep it simple, set q=0: $M_t=M_{t-1}=\bar{M}$, and study deterministic equilibria.

Use again (4), (5), and (6):

$$ar{M}^{-\sigma} = \mathcal{E}_{t-1} rac{eta P_{t-1}}{P_t^{1-\sigma}}, \quad t \ge 1$$

Equilibria under a money supply rule: other power cases

- Now $u(c_{1t}) = c_{1t}^{1-\sigma}/(1-\sigma)$.
- To keep it simple, set q=0: $M_t=M_{t-1}=\bar{M}$, and study deterministic equilibria.

Use again (4), (5), and (6):

$$\bar{M}^{-\sigma} = E_{t-1} \frac{\beta P_{t-1}}{P_t^{1-\sigma}}, \quad t \ge 1$$

so (for deterministic equilibria)

$$\log P_t = \left(rac{1}{1-\sigma}
ight)^t \left[\log P_0 - \log(ar{M}eta^{-rac{1}{\sigma}})
ight] + \log(ar{M}eta^{-rac{1}{\sigma}}), \quad t \geq 1$$

Unique SS at $P = \bar{M}\beta^{-\frac{1}{\sigma}}$

Deterministic equilibria under a money supply rule: $\sigma > 2$

$$\log P_t = \left(rac{1}{1-\sigma}
ight)^t \left[\log P_0 - \log(ar{M}eta^{-rac{1}{\sigma}})
ight] + \log(ar{M}eta^{-rac{1}{\sigma}}) \quad t \geq 1$$

• Name any $P_0 > 0$, solve for sequence that converges to SS

Deterministic equilibria under a money supply rule: $\sigma > 2$

$$\log P_t = \left(rac{1}{1-\sigma}
ight)^t \left[\log P_0 - \log(ar{M}eta^{-rac{1}{\sigma}})
ight] + \log(ar{M}eta^{-rac{1}{\sigma}}) \quad t \geq 1$$

- Name any $P_0 > 0$, solve for sequence that converges to SS
- Disturbing: price level can be anything
- ... but at least it converges back to SS?

Deterministic equilibria under a money supply rule: $\sigma > 2$

$$\log P_t = \left(rac{1}{1-\sigma}
ight)^t \left[\log P_0 - \log(ar{M}eta^{-rac{1}{\sigma}})
ight] + \log(ar{M}eta^{-rac{1}{\sigma}}) \quad t \geq 1$$

- Name any $P_0 > 0$, solve for sequence that converges to SS
- Disturbing: price level can be anything
- ... but at least it converges back to SS?
- With randomness, it could bounce away from SS all the time

Deterministic equilibria under a money supply rule: $\sigma \leq 2$

- For $\sigma = 2$, we get a period-2 cycle outside of SS
- For $1 < \sigma < 2$, we get paths where prices oscillate, exploding to $+\infty$ every other period and going to 0 every other period
- For $\sigma < 1$, we get either prices going to $+\infty$ or to 0
- Are these equilibria?
- One more condition to check: transversality condition

Checking the transversality condition

Use (4), (5), and (6) once more, get

$$\prod_{s=0}^{t} (1+R_s)^{-1} = (1+R_0)^{-1} \beta^t \frac{P_0}{P_t}$$

Substitute into transversality condition, use constant money supply rule; transv. will hold if

$$\bar{M}(1+R_0)^{-1}P_0 \liminf_{t\to\infty} \frac{\beta^t}{P_t} = 0$$

Take logs, use difference equation: transv. will hold if

$$\begin{split} & \liminf_{t \to \infty} \left[t \log \beta - (1 - \sigma)^{-t} \left(\log P_0 - \log \left(\bar{M} \beta^{-\frac{1}{\sigma}} \right) \right) \right] + \\ & \log \left(\bar{M} \beta^{-\frac{1}{\sigma}} \right) = -\infty. \end{split}$$

Conclusion from checking transversality condition

- If $\sigma = 2$, bounded oscillations, OK
- If $1<\sigma<2$, explosive oscillations (converging to 0 in either period and to $+\infty$ every other period), OK according to current transv
- If $\sigma < 1$, prices blow up to ∞ or go down to 0, transv. OK only when they go to ∞

Back to main slides