

Introduction to Networks & Distributed Computing CECS 327

The Layering Model

Protocol software follows the layering model, with:

- One software module per layer
- Modules that work together
- Incoming or outgoing data passing from one module to another

The entire set of protocol layers (or modules) is known as a *stack*.

Layering Principle

Software implementing layer N at the destination receives exactly the message sent by software implementing layer N at the source. --Comer

Layers and Packet Headers

Each layer:

- Prepends a header to the outgoing packet
- Removes a header from the incoming packet

This process is known as data encapsulation.

TCP/IP Layering

Notwithstanding the push by researchers to adopt the OSI model, it became clear that TCP/IP was technically more flexible and superior. TCP/IP is the primary protocol stack used today.

TCP/IP Layers

- Layer 1: Physical
 - Basic network hardware
 - Similar to OSI Layer 1
- Layer 2: Network Interface
 - MAC frame format
 - MAC addressing
 - Interface between computer and the network (i.e., the NIC)
 - Similar to OSI Layer 2
- Layer 3: Internet (IP)
 - Format of packets
 - Mechanisms for forwarding packets
 - Unit of data exchanged between nodes in this layer is called a datagram
 - Not in the OSI Model

- Layer 4: Transport (TCP/UDP)
 - Specifies how to provide reliable transfer from one application on one computer to an application on another
 - Similar to OSI Layer 4
 - Unit of data exchanges in this layer is called a segment
- Layer 5: Application
 - Everything else (i.e., how one application uses the Internet)
 - Similar to OSI Layer 6 and 7
 - Unit of data exchanges in this layer is called a message

Bandwidth

Latency or delay

Performance - Bandwidth

- Networks need high performance (or high performance per unit cost).
- The old computer adage, "Get it right and then make it fast," may not apply.
 Networks must be designed at the outset for speed.

Bandwidth Definition

- Bandwidth is the measure of the capacity of a transmission system. It is the range (or band)
 of frequencies used on the transmission medium. Bandwidth is typically measured in Hertz.
- Bandwidth is the maximum number of bits that can be transmitted in a certain amount of time over a particular medium. This is the data transfer rate or transmission rate of the system.

We use definition 2 in computer networks.

Performance - Bandwidth

Bits transmitted at a particular bandwidth can be regarded as having some width:

- a) bits transmitted at 1Mbps (each bit 1 μs wide);
- b) bits transmitted at 2Mbps (each bit 0.5 μs wide).

Note: 1 Mbps: 1 x 10^6 bits/second

You can also think of each bit on a network as being a pulse of some width.

The more sophisticated the transmission/receiving technology, the narrower each bit can become.

Performance - Throughput

Recall...

<u>Defn</u>: Bandwidth is the maximum number of bits that can be transmitted in a given amount of time over a particular medium. This is the data transfer rate or transmission rate of the system. Usually, described in bits/sec (or bps).

Consider...

- Defn: Network <u>throughput</u> (or <u>effective throughput</u>) is the measured number of bits that can be transmitted over a particular medium in a given amount of time. Usually, described in bits/sec (or bps).
- The throughput is the maximum number of bits/sec an application can expect to receive.

Bandwidth >= Effective Throughput

 For applications, we can describe throughput as the "bandwidth requirements of an application."

Performance - Throughput

- Throughput: actual rate (bits/time unit) at which bits transferred between sender/receiver
 - instantaneous: rate at given point in time
 - average: rate over longer period of time

Question:

- -What is the end-to-end throughput if Rs<Rc?
- -In what kind of situation the instantaneous throughput is different from average throughput?

Defn: Latency (or delay or end-to-end delay) is the amount of time is takes for a single bit to propagate from one end of a network to another.

Latency is measured in terms of time.

Defn: Round Trip Time (RTT) is the time it takes for a bit to travel from sender to receiver and back again.

There are three components that form the latency:

- Propagation delay
- 2. Transmission Time
- 3. Queuing & Processing Delays

1. Propagation delay

We calculate this using the speed-of-light propagation delay:

- in a vacuum, 3.0 * 10^8 meters/sec
- in a cable, 2.3 *10^8 meters/sec
- in fiber, 2.0 * 10^8 meters/sec

This value is a function of the distances and the speed-of-light delay.

2. Transmission Time

This is the amount of time it takes to transmit the data onto the transmission media. This value is a function of the bandwidth and the packet size.

3. Queuing & Processing Delay

This is the time the data spends in being processed and waiting for its turn (Queuing) to be transmitted. This value is almost impossible to calculate.

Sources of delay


```
Latency = Propagation Delay + Transmit Time + Queuing & Processing Delay = Tp+ Tx+ Tq
```

Tp (Propagation Delay) = (*Distance across link*)/(*Speed-of-light delay*)

Tx (Transmit Time) = (Size of data)/(Throughput)

Tq (Queuing & Processing Delay) = This is hard to measure so a statistically generated value or a constant is used. (**depends on congestion**)

<u>where</u>

Distance = length of the wire over which the data will travel (usually meters/sec)

Speed-of-light = effective speed of light over the channel

Size = size of the packet (usually bits)

Throughput = #bits/(unit time) at which the packet is transmitted (usually bits/sec)

References

- Distributed Systems: Concepts and Design. George Coulouris, Jean Dollimore, Tim Kindberg and Gordon Blair. Fifth Edition, Pearson, 2012.
- Computer Networks, Fifth Edition: A Systems Approach (The Morgan Kaufmann Series in Networking).
- Computer Networks and Internets (5th Edition)
- Some slides by Dr. Tracy Bradley Maples