Q1. Find the value of Dep_delay & arr_delay.

4 M
Sum of dep_delay

Z M
Sum of arr_delay

328.52K

Count of dep_delay

327.35K
Count of arr delay

In this page we are finding the value of the **Departure Delay** and **Arrival Delay**.

From the given dataset:

Total sum of dep_delay and total count of dep_delay is 4M and 328.52K respectively. Total sum of arr_delay and total count of arr_delay is 4M and 327.35K respectively.

Graph is showing the destination wise data of count of dep_delay and count of arr_delay.

Q2. Find the Maximum Arrival Delay in EWR Origin.

1109

Max of arr_delay

month	origin	Max of arr_delay
1	EWR	1109
10	EWR	688
11	EWR	796
12	EWR	878
2	EWR	773
3	EWR	506
4	EWR	560
5	EWR	875
6	EWR	490
7	EWR	645
8	EWR	403
Total		1109

In this page we have seen the graph which is showing month wise maximum arrival delay in EWR Origin.

We got the Maximum Arrival delay in EWR region is 1109 in Month no. 1.

Q3. Show the Difference Between arr_time & Sched_arr_Time, represented this visually.

As per the question, In this page

We will see the difference between Arrival time and schedule arrival time(origin wise) in multi-row card.

Here, I have plotted a line and a clustered column chart in which the two bars shows the sum of arr_time and sum of sched_arr_time and the line show the difference.

Q4. Find the Minimum Departure Delay in LGA Origin.

In this page we have seen the graph which is showing month wise minimum departure delay in LGA Origin.

We got the Minimum Departure delay in LGA region is -33 in Month no. 2.

-33 Min of dep_delay

month	origin	Sum of dep_delay
1	LGA	43818
10	LGA	50612
11	LGA	41641
12	LGA	118250
2	LGA	49107
3	LGA	86031
4	LGA	96180
5	LGA	91433
6	LGA	158368
7	LGA	161022
8	LGA	98599
9	LGA	55240
Total		1050301

Q5. Find the Total Arrival & Departure Delay in JFK Origin.

In this question, we have to find the total arrival and departure delay in JFK region.

Here, we can see the total sum of arrival delay(2M) and departure delay(4M) with the help of cards.

We can also see the comparision between the total arrival and departure delay with help of pie chart and clustered column chart.

NYC Flights Datasets

CONCLUSION

There are more number of flights which are departed late in comparison of arrival delay.

Most no. of arrival delay in the first month in EWR origin.

There is huge negative difference in the actual arrival time and scheduled arrival time of flights that means most of the times flights came before the time.

Least no. of departure delay in the second month in EWR origin.

In JFK origin, arrival delay(2M) & departure delay(4M) which means mostly Flight are not take off on time.

6th and 7th months are most affected by delays in JFK origin.