

College Algebra and Trigonometry

Prof. Liang ZHENG

Fall 2024

(1) Apply Sum and Difference Formulas for Sine and Cosine

A unit circle $x^2 + y^2 = 1$ in which $x = \cos\theta$ and $y = \sin\theta$. P, Q, R, and S are the points on this unit circle.

$$|PQ| = |RS| \implies cos(u - v) = cosucosv + sinusinv$$

$$\Rightarrow \sin(u+v) = \cos\left[\left(\frac{\pi}{2}-u\right)-v\right] = \cos\left(\frac{\pi}{2}-u\right)\cos v + \sin\left(\frac{\pi}{2}-u\right)\sin v$$

Sine Formulas:
$$sin(u+v) = sinu cosv + cosu sinv$$

$$sin(u-v) = sinu cosv - cosu sinv$$

Cosine Formulas:
$$cos(u + v) = cosu cosv - sinu sinv$$

$$cos(u - v) = cosu cosv + sinu sinv$$

Tangent Formulas:

$$tan(u+v) = \frac{tanu + tanv}{1 - tanu \ tanv}$$

$$tan(u-v) = \frac{tanu - tanv}{1 + tanu \ tanv}$$

$$sin(\pi + u) = -sinu$$
 $sin(\pi - u) = sinu$

$$sin(\pi + u) = -sinu$$
 $sin(\pi - u) = sinu$
 $cos(\pi + v) = -cosv$ $cos(\pi - v) = -cosv$
 $tan(\pi + v) = tanv$ $tan(\pi - v) = -tanv$

$$tan(\pi + v) = tanv$$
 $tan(\pi - v) = -tanv$

Example 1: Find the exact values.

a)
$$cos15^{\circ}$$

b)
$$\sin \frac{11\pi}{12}$$

Example 2:

Find the exact value of the expression.

$$\sin 25^{\circ} \cos 35^{\circ} + \cos 25^{\circ} \sin 35^{\circ}$$

Example 3:

Find the exact value of $\cos(\alpha - \beta)$ given that $\sin\alpha = -\frac{3}{5}$ and

$$\cos\beta = -\frac{12}{13}$$
 for α and β are both in Quadrant III.

2 Apply Sum and Difference Formulas for Tangent

We can use the identities for $\sin(u \pm v)$ and $\cos(u \pm v)$ to derive similar identities for $\tan(u \pm v)$.

$$tan(u+v) = \frac{tanu + tanv}{1 - (tanu)(tanv)}$$

$$tan(u-v) = \frac{tanu - tanv}{1 + (tanu)(tanv)}$$

Example 4:

Find the exact values of $\tan 255^{\circ}$ and $\tan \frac{5\pi}{12}$.

(3) Use Sum and Difference Formulas to Verify Identities

Cofunction Identities*

$$\sin\theta = \cos\left(\frac{\pi}{2} - \theta\right) \qquad \cos\theta = \sin\left(\frac{\pi}{2} - \theta\right)$$

$$\cos\theta = \sin\left(\frac{\pi}{2} - \theta\right)$$

$$\tan \theta = \cot \left(\frac{\pi}{2} - \theta\right) \qquad \cot \theta = \tan \left(\frac{\pi}{2} - \theta\right)$$

$$\cot\theta = \tan\left(\frac{\pi}{2} - \theta\right)$$

$$\sec \theta = \csc \left(\frac{\pi}{2} - \theta\right) \qquad \csc \theta = \sec \left(\frac{\pi}{2} - \theta\right)$$

$$\csc\theta = \sec\left(\frac{\pi}{2} - \theta\right)$$

Periodic Identities*

$$\sin(\theta + 2\pi) = \sin\theta$$
$$\cos(\theta + 2\pi) = \cos\theta$$

$$\tan(\theta + \pi) = \tan\theta$$
$$\cot(\theta + \pi) = \cot\theta$$

$$\csc(\theta + 2\pi) = \csc\theta$$
$$\sec(\theta + 2\pi) = \sec\theta$$

^{*}All statements can be made using 90° for $\frac{\pi}{2}$, 180° for π , and 360° for 2π .

Example 5:

Verify the cofunction identity.

$$\sin\left(\frac{\pi}{2}-\theta\right)=\cos\theta$$

Example 6:

Verify the cofunction identity.

$$\cos(x+y)\cos(x-y) = \cos^2 x - \sin^2 y$$

4 Use Sum and Difference Formulas to Verify Identities

Sum of Asinx and Bcosx

For the real numbers A, B, and x,

$$A\sin x + B\cos x = k\sin(x + \alpha)$$

where
$$k = \sqrt{A^2 + B^2}$$
, and α satisfies $\cos \alpha = \frac{A}{k}$ and $\sin \alpha = \frac{B}{k}$.

Example 7:

Write $9\sin x + 12\cos x$ in the form $k\sin(x + \alpha)$.