Package 'NormalGamma'

February 19, 2015

·				
Type Package				
Title Normal-gamma convolution model				
Version 1.1				
Date 2013-09-20				
Author S. Plancade and Y. Rozenholc				
Maintainer Sandra Plancade <sandra.plancade@jouy.inra.fr></sandra.plancade@jouy.inra.fr>				
Description The functions proposed in this package compute the density of the sum of a Gaussian and a gamma random variables, estimate the parameters and correct the noise effect in a gamma-signal and Gaussian-noise model. This package has been used to implement the background correction method for Illumina microarray data presented in Plancade S., Rozenholc Y. and Lund E. ``Generalization of the normal-exponential model: exploration of a more accurate parameterization for the signal distribution on Illumina BeadArrays", BMC Bioinfo 2012, 13(329).				
License GPL-2				
Depends optimx, histogram				
NeedsCompilation no				
Repository CRAN				
Date/Publication 2013-10-16 16:46:36				
R topics documented:				
NormalGamma-package				
dnormgam				
Intensities				
normgam.fit				
normgam.signal				
Index 12				

NormalGamma-package

Background correction using the normal+gamma model

Description

The NormalGamma package is devoted to the density convolution model Y = X + N where X and N are independent variables with respectively gamma and normal distributions. For this model called further normal-gamma convolution model, this package proposes the computation of the convoluted density, the parameter estimation by likelihood maximization and the background correction obtained by deconvolution.

This package has been used to implement the background correction method for Illumina microarray data presented in Plancade S., Rozenholc Y. and Lund E., BMC Bioinfo 2012.

Details

Package: NormalGamma

Type: Package
Version: 001.0
Date: 2011-12-20
License: GPL-3

The NormalGamma package includes three functions and a data set:

dnormgam computes the convolution product of a normal and a gamma densities.

normgam. fit computes the Maximum Likelihood Estimator of the parameters.

normgam.signal performs the normal-gamma background correction.

Intensities provides data from one Illumina microarray.

Author(s)

Plancade S. and Rozenholc Y.

Maintainer: Plancade S. <Sandra.Plancade@jouy.inra.fr>

References

Plancade S., Rozenholc Y. and Lund E. "Generalization of the normal-exponential model: exploration of a more accurate parametrisation for the signal distribution on Illumina BeadArrays", BMC Bioinfo 2012, 13(329).

- # Load Illumina microarray data previously transformed into two sets of intensities
- # corresponding to negative and regular probes.

dnormgam 3

```
## Not run:
data(RegNegIntensities_Example)
X = Intensities$Regular
N = Intensities$Negative
## Compute the maximum likelihood estimator:
parmle = normgam.fit(X, N)$par
par(mfrow=c(2,1)) # split windows for post comparison
## plot the histogram and the estimated density:
F = dnormgam(parmle, plot=FALSE)
H = histogram(X, type='irregular', verbose=FALSE, plot=FALSE)
plot(H, xlim=c(0,500))
lines(F$xout, F$dout, col='red')
# Perform the normal-gamma background correction:
Shat = normgam.signal(X,parmle)
H = histogram(Shat, type='irregular', verbose=FALSE, plot=FALSE)
plot(H, xlim=c(0,30))
## End(Not run)
```

dnormgam

Normal-gamma density

Description

Computes the convolution product of a normal and a gamma densities.

Usage

Arguments

par

vector of parameters; (par[1],par[2]) are the mean and standard deviation of the normal distribution and (par[3],par[4]) are the shape and scale parameters of the gamma distribution.

4 dnormgam

X	vector of values where the density is computed; if $x == NULL$, the density is computed on a sequence of values from 0 to par[1]+5*par[2]+q where q is the quantile of probability 0.99999 of the gamma distribution.
NØ	number of equally spaced values in the Fast Fourier Transform (see details).
plot	logical; if TRUE plot of the density.
log	logical; if TRUE density d is given as log(d).
tail.cor	logical; if TRUE a linear approximation of right tail adjusts numerical instability.
cor	limit of right tail correction; if tail.cor == TRUE, linear approximation is applied to values with density estimate smaller than cor.
mu, sigma	alternative definition of mean and standard deviation of the normal distribution.
k, theta	alternative definition of shape and scale parameters of the gamma distribution.

Details

The convoluted density is computed using the fft function (Fast Fourier Transform). See details in Plancade S., Rozenholc Y. and Lund E., BMC Bioinfo 2012.

Only one definition of the parameters is required, either par or (mu, sigma, k, theta). If both are specified and do not match, an error message is returned.

Value

xout	vector of values where		

is not NULL.

dout vector of values of normal-gamma density.

Author(s)

Plancade S. and Rozenholc Y.

References

Plancade S., Rozenholc Y. and Lund E. "Generalization of the normal-exponential model: exploration of a more accurate parametrisation for the signal distribution on Illumina BeadArrays", BMC Bioinfo 2012, 13(329).

See Also

normgam.fit computes the Maximum Likelihood Estimator and normgam.signal implements the background correction using the normal-gamma model.

```
## Example 1
par = c(-10, 5, 2, 20)
F = dnormgam(par)
```

Intensities 5

```
## Example 2

n = 50000
par = c(60,5,0.15,400)
F = dnormgam(par, plot=FALSE)

X = rnorm(n, mean=par[1], sd=par[2]) + rgamma(n, shape=par[3], scale=par[4])
H = histogram(X, type='irregular', verbose=FALSE, plot=FALSE)
plot(H, xlim=c(0,500))
lines(F$xout, F$dout, col='red')
```

Intensities

Regular and Negative probes from one Illumina microarray

Description

Provides probe intensities measured on Illumina Human HT-6 v4 Expression BeadChip, from one control in the NOWAC cohort (for more details, see Plancade S., Rozenholc Y. and Lund E. BMC Bioinfo 2012). Vectors Regular and Negative contain the intensities of regular and negative probes, respectively.

Usage

```
data(RegNegIntensities_Example)
```

Format

A list Intensities with two elements: a vector Regular of length 25 519 and a vector Negative of length 759.

References

Plancade S., Rozenholc Y. and Lund E. "Generalization of the normal-exponential model: exploration of a more accurate parametrisation for the signal distribution on Illumina BeadArrays", BMC Bioinfo 2012, 13(329).

Lund, E., Dumeaux, V., Braaten T., Hjartaker A., Engeset D., Skeie G., and Kumle M. (2008), Cohort profile: the norwegian women and cancer -nowac- kvinner og kreft, *Int. J. Epidemiol.*, **37**(1), 36–41.

```
data(RegNegIntensities_Example)
X = Intensities$Regular
N = Intensities$Negative
par(mfrow=c(2,1))
```

6 normgam.fit

```
HX = histogram (X, type='irregular', verbose=FALSE, plot=FALSE) plot(HX, xlim=c(0,500)) hist(N, 30)
```

normgam.fit

Normal-gamma Maximum Likelihood Estimator

Description

Computes the Maximum Likelihood Estimator for the normal-gamma distribution, either from a normal-gamma distributed sample or from two samples respectively normal-gamma and normally distributed.

Usage

Arguments

X vector of normal-gamma distributed values.

N vector of normal distributed values.

par.init vector of initial values for parameters (optional). par.init[1] and par.init[2]

are the mean and standard deviation of the normal distribution, and par.init[3] and par.init[4] are the shape and scale parameters of the gamma distribution.

See details for default initial values.

lower, upper Bounds on the variables for maximization (optional).

control list of control parameters (see details).

verbose logical; if TRUE initial values of the parameters are printed.

Details

Likelihood maximization is run by the R function optimx.

By default, maximization is run with the following control parameters: the maximum number of iterations is equal to 1000 and the vector of scaling values for the parameters is (par0[1], par0[2], par0[3]*par0[4], sqrt(par0[3])*par0[4])/10 where par0 is the vector of default initial parameters. In case of unsuccessful convergence, maximization is run with optimx default control parameters. A list of control parameters can also be chosen by the user (see optimx).

If par.init == NULL, the initial parameters are computed in two ways depending if N is NULL or not. If N != NULL, the initial parameters are computed following the method of the moments (see

normgam.fit 7

Plancade S., Rozenholc Y. and Lund E., BMC Bioinfo 2012). If N == NULL, the initial parameters (par0[1], par0[2]) of the normal distribution are computed following the RMA procedure of Xie Y., Wang X. and Story M. (2009) for the normal-exponential convolution model, and the initial parameters of the gamma distribution, computed following the method of the moments, are (par0[4]=(sd(X)^2-par0[2])/(mean(X)-par0[1]), par0[3]=(mean(X)-par0[1])/par0[4]). Note that the RMA procedure for initial parameter computation when N == NULL stems from an heuristic adapted to microarray data. For parameters with different magnitude, user should specify initial parameters.

Value

par	vector of estimated parameters; par[1] and par[2] are the mean and standard deviation of the normal distribution and par[3] and par[4] are the shape and scale parameters of the gamma distribution
lik	value of the normal-gamma log-likelihood corresponding to par.
conv	integer code: 0 indicates successful convergence. This parameter has the value of the output parameter conv from the procedure optimx used for likelihood maximization (see optimx for details).

Author(s)

Plancade S. and Rozenholc Y.

References

Plancade S., Rozenholc Y. and Lund E. "Generalization of the normal-exponential model: exploration of a more accurate parametrisation for the signal distribution on Illumina BeadArrays", BMC Bioinfo 2012, 13(329).

Xie Y. Wang X. and Story M. (2009), Statistical methods of background correction for Illumina BeadArray data, *Bioinformatics*, **25**(6), 751–757.

See Also

dnormgam computes the density of the normal-gamma distribution and normgam.signal implements the background correction using the normal-gamma model. Intensities provides an example of Illumina microarray data.

```
# Example 1: simulated data
## Not run:

n = 1000
par = c(60,5,0.15,400)
X = rnorm(n, mean=par[1], sd=par[2]) + rgamma(n, shape=par[3], scale=par[4])
N = rnorm(100, mean=par[1], sd=par[2])

par1 = normgam.fit(X, N)$par
```

```
par2 = normgam.fit(X)*par
F1 = dnormgam(par1, plot=FALSE)
F2 = dnormgam(par2, plot=FALSE)
par(mfrow=c(2,1))
H = histogram(X, type='irregular', verbose=FALSE, plot=FALSE)
plot(H, xlim=c(0,500))
lines(F1$xout, F1$dout,col='red')
plot(H, xlim=c(0,500))
lines(F2$xout, F2$dout,col='blue')
## End(Not run)
# Example 2: Illumina data
## Not run:
data(RegNegIntensities_Example)
X = Intensities$Regular
N = Intensities$Negative
par1 = normgam.fit(X, N)par
par2 = normgam.fit(X)par
F1 = dnormgam(par1, plot=FALSE)
F2 = dnormgam(par2, plot=FALSE)
par(mfrow=c(2,1))
H = histogram(X, type='irregular', verbose=FALSE, plot=FALSE)
plot(H, xlim=c(0,500))
lines(F1$xout, F1$dout, col='red')
plot(H, xlim=c(0,500))
lines(F2$xout, F2$dout, col='blue')
## End(Not run)
```

Description

Performs background correction using the normal-gamma model.

Usage

Arguments

х	vector of observed intensities.
par	vector of parameters; par[1] and par[2] are the mean and standard deviation of the normal distribution and par[3] and par[4] are the shape and scale parameters of the gamma distribution.
tail.cor	logical (see details).
cor	limit of the right tail correction (see details).
gshift	logical; if TRUE and par[3] is smaller than 1, an ad-hoc translation and a thresholding to 0 are applied to background-corrected values so that the mode of corrected value distribution is 0.
mu, sigma	alternative definition of mean and standard deviation of the normal distribution.
k, theta	alternative definition of shape and scale parameters of the gamma distribution.

Details

normgam.signal performs background correction in an additive background noise+signal model with a normal background noise and a gamma-distributed signal. The corrected value from an observed intensity x is the expectation of the signal given the signal and noise distributions. For a set of parameters (mu, sigma, k, theta), it is given by the ratio of the convolution product of dgamma(x, shape=k+1, scale=theta) and dnorm(x, mean=mu, sd=sigma) and the convolution product of dgamma(x, shape=k, scale=theta) and dnorm(x, mean=mu, sd=sigma). For more details see Plancade S., Rozenholc Y. and Lund E., BMC Bioinfo 2012.

If tail.cor = TRUE, a linear approximation of right tail is applied to values with density estimate smaller than cor in the computation of normal-gamma convoluted densities (see dnormgam).

Only one definition of the parameters is required, either par or (mu, sigma, k, theta). If both are specified and do not match, an error message is returned.

Value

Vector of background noise-corrected intensities.

Author(s)

Plancade S. and Rozenholc Y.

References

Plancade S., Rozenholc Y. and Lund E. "Generalization of the normal-exponential model: exploration of a more accurate parametrisation for the signal distribution on Illumina BeadArrays", BMC Bioinfo 2012, 13(329).

See Also

dnormgam computes the density of the normal-gamma distribution and normgam. fit computes the Maximum Likelihood Estimator. Intensities provides an example of Illumina microarray data.

```
#Example 1: simulated data
n = 50000
par = c(60, 5, 0.15, 400)
S = rgamma(n, shape=par[3], scale=par[4])
B = rnorm(n, mean=par[1], sd=par[2])
X = S + B
par(mfrow=c(2,1))
Shat1 = normgam.signal(X, par)
H1 = histogram(Shat1, type='irregular', verbose=FALSE, plot=FALSE)
plot(H1, xlim=c(0,50))
I = seq(from=0, to=50, length=1000)
lines(I, dgamma(I, shape=0.15, scale=400), col='red')
Shat2 = normgam.signal(X, par, gshift = TRUE)
H2 = hist(Shat2, 10000, plot=FALSE)
plot(H2, xlim=c(0,50), freq=FALSE)
lines(I, dgamma(I, shape=0.15, scale=400), col='red')
#Example 2: Illumina data
## Not run:
data(RegNegIntensities_Example)
X = Intensities$Regular
N = Intensities$Negative
# parameter estimation
parmle = normgam.fit(X, N)par
Shat = normgam.signal(X,parmle)
H = histogram(Shat, type='irregular', verbose=FALSE, plot=FALSE)
plot(H, xlim=c(0,30))
## End(Not run)
```

Index

```
*Topic background correction
    normgam.signal, 8
*Topic convolution
    dnormgam, 3
    normgam.signal, 8
*Topic datasets
    Intensities, 5
*Topic density
    dnormgam, 3
*Topic gamma
    dnormgam, 3
    normgam.fit, 6
    normgam.signal, 8
*Topic maximum likelihood
    normgam.fit, 6
*Topic normal
    dnormgam, 3
    normgam.fit, 6
    normgam.signal, 8
*Topic package
    NormalGamma-package, 2
dgamma, 9
dnorm, 9
dnormgam, 2, 3, 7, 9, 10
Intensities, 2, 5, 7, 10
NormalGamma (NormalGamma-package), 2
NormalGamma-package, 2
normgam.fit, 2, 4, 6, 10
normgam.signal, 2, 4, 7, 8
optimx, 6, 7
```