Implementing a symmetric cryptographic protocol: DES

The DES protocol allows encryption and decryption of 64-bits blocks, with a 56 bits key. This algorithm uses various tables for substitution, expansion, permutations, and also uses a nonlinear operator: the bitwise XOR operator.

The sequence of DES is the following

Let M be the original message (64 bits block to cipher)

Step 1

M is shuffled using an initial permutation (init_perm array)

The resulting block is splitted in two 32-bit blocks: L_0 and R_0

Step 2 is composed of 16 rounds described by the following picture:

- 2.1 expand R_i using the E table (expansion_table array)
- 2.2 generate 48 bits subkey *key*_i (see below)
- 2.3 operate a XOR between expanded version of R_i and key_i
- 2.4 input the 48 bit computed value at step 2.3 to the ith S-Box (s_boxes array), get the 32 bits output
- 2.5 permute the previous result (permut_32 array)
- 2.6 operate a XOR between the result of step 2.5 and L_i

The computed value is then L_{i+1} . Use L_i as initial value for R_{i+1}

Step 3

At the output of the 16^{th} round, the values are L_{16} and R_{16}

 L_{16} is appended to R_{16} , then a reverse permutation is done (reverse_perm array)

Step 2.2 : Generating subkeys for each round.

An arbitrary 56 bits key is chosen, expanded to 64 bits with odd parity control: for each block of 7 bits, an eight bit is added so that the number of 1s in the 8 bit-block is odd.

The key is divided in two blocks of 28 bits each:

The left block *L* is calculated from the key with the pc_1_left array

The right block *R* is calculated from the key with the pc_1_right array

Each of these two blocks is then left shifted by some number of positions, depending on the round. For the first round, the shift is 1 bit left, for the second round, the shift is 2 bits left, ... See the **keyshift** table to know the left shift offset.

The shifted R block is then appended to the shifted L block, the resulting 48 blocks is finally extracted using the pc_2 array.

This produces the key for the current round.