Introduction
Project Recon
Recognition Techniques
Communication
Summary

Ju-Jutsu Training Kinect Application

El-Hassan Bilal Makled

Faculty of Media Engineering and Technology German University in Cairo

Bachelor Thesis Presentation, 2013

Introduction
Project Recon
Recognition Techniques
Communication
Summary

- Introduction
 - Motivation
 - Project Impact
- Project Recon
 - Architecture
 - Tools
 - Project Requirements
- Recognition Techniques
 - Glyphs Method
 - Joint Positions Lists
 - MCS UK
- Communication
 - Communication to the Interface
 - Demonstration

- Introduction
 - Motivation
 - Project Impact
- 2 Project Recon
 - Architecture
 - Tools
 - Project Requirements
- Recognition Techniques
 - Glyphs Method
 - Joint Positions Lists
 - MCS UK
- Communication
 - Communication to the Interface
 - Dei

Ju-Jutsu

- Ju Jutsu is a Japanese martial art.
- Like most martail arts, it includes Thai Pad training.

- Different sensors include:
 - PlayStation EyeToy.
 - Microsoft Kinect.
- Applications supporting activities
 - Ubisoft's Just Dance.
- However, there are no contact sports fitness related applications.

- Different sensors include:
 - PlayStation EyeToy.
 - Microsoft Kinect.
- Applications supporting activities
 - Ubisoft's Just Dance.
- However, there are no contact sports fitness related applications.

- Different sensors include:
 - PlayStation EyeToy.
 - Microsoft Kinect.
 - Applications supporting activities:
 - Nike+ Kinect Iraining.
 - Ubisoft's Just Dance.
- However, there are no contact sports fitness related applications.

- Different sensors include:
 - PlayStation EyeToy.
 - Microsoft Kinect.
- Applications supporting activities:
 - Nike+ Kinect Training.
 - Ubisoft's Just Dance.
- However, there are no contact sports fitness related applications.

- Different sensors include:
 - PlayStation EyeToy.
 - Microsoft Kinect.
- Applications supporting activities:
 - Nike+ Kinect Training.
 - Ubisoft's Just Dance.
- However, there are no contact sports fitness related applications.

- Different sensors include:
 - PlayStation EyeToy.
 - Microsoft Kinect.
- Applications supporting activities:
 - Nike+ Kinect Training.
 - Ubisoft's Just Dance.
- However, there are no contact sports fitness related applications.

- Introduction
 - Motivation
 - Project Impact
- 2 Project Recon
 - Architecture
 - Tools
 - Project Requirements
- Recognition Techniques
 - Glyphs Method
 - Joint Positions Lists
 - MCS UK
- Communication
 - Communication to the Interface
 - Der

Project Impact

- Embedded systems project
- Multiple inputs from a practitioner during a workout session through different input sources
- Main monitor will be used as the interface and to display sessions

Input Sources and Different Components

- Seismic sensor equipped Thai Pads
- Kinect sensor (Project Recon)
- Optional input
 - Pulse rates
 - Lactic acid levels
 - Respiration rates
 - and any similar measurement . . .

- Introduction
 - Motivation
 - Project Impact
- 2 Project Recon
 - Architecture
 - Tools
 - Project Requirements
- Recognition Techniques
 - Glyphs Method
 - Joint Positions Lists
 - MCS UK
- Communication
 - Communication to the Interface
 - Dei

Project Recon Architecture

Kinect

- Four components
 - Infrared emitter
 - Infrared sensor
 - Color camera
 - Microphone
- Four different streams
 - Depth stream
 - Color stream
 - Skeleton stream
 - Audio stream

- Introduction
 - Motivation
 - Project Impact
- 2 Project Recon
 - Architecture
 - Tools
 - Project Requirements
- Recognition Techniques
 - Glyphs Method
 - Joint Positions Lists
 - MCS UK
- Communication
 - Communication to the Interface
 - Der

XNA

- Framework based on .NET Compact framework
- Created by Microsoft to support game development
- Basic platform for the indie games on XBOX Live
- Language used is C[‡]

Architecture
Tools
Project Requirement

Kinect SDK

KINECT for Windows

- Is the official SDK for the Kinect system
- Manages data streams

Socket Programming

- Enables Processes to communicate
- Used to connect between Project Recon and the Interface
- Uses client-server model

- Introduction
 - Motivation
 - Project Impact
- 2 Project Recon
 - Architecture
 - Tools
 - Project Requirements
- Recognition Techniques
 - Glyphs Method
 - Joint Positions Lists
 - MCS UK
- Communication
 - Communication to the Interface
 - Dei

Project Requirements

- Real time recognition
- Robust and Dynamic
- Plug in to interface

- Introduction
 - Motivation
 - Project Impact
- Project Recon
 - Architecture
 - Tools
 - Project Requirements
- Recognition Techniques
 - Glyphs Method
 - Joint Positions Lists
 - MCS UK
- Communication
 - Communication to the Interface
 - Dei

The Challenges in Kinect

- The user always faces the Kinect
- Kinect does not differentiate between facing and not facing
- Solution:
 - Normalize the skeleton of the user (Always ends up facing)

Normal Vector

• Create normal between vectors \vec{r} , \vec{c} , and \vec{l}

$$\vec{N} = (\vec{r} - \vec{c}) \times (\vec{l} - \vec{c})$$

Normal Vector

• Create normal between vectors \vec{r} , \vec{c} , and \vec{l}

$$\vec{N} = (\vec{r} - \vec{c}) \times (\vec{l} - \vec{c})$$

Glyphs Method

- Rotates the skeleton of the user
- Draws the path joints take and stores it in an image
- Each joint will have its own exclusive color

- Introduction
 - Motivation
 - Project Impact
- Project Recon
 - Architecture
 - Tools
 - Project Requirements
- Recognition Techniques
 - Glyphs Method
 - Joint Positions Lists
 - MCS UK
- Communication
 - Communication to the Interface
 - Del

Joint Positions Lists

- Creates a list (n=30)
- The list stores object types StoreGesture (Position, Time Stamp)

- Introduction
 - Motivation
 - Project Impact
- Project Recon
 - Architecture
 - Tools
 - Project Requirements
- Recognition Techniques
 - Glyphs Method
 - Joint Positions Lists
 - MCS UK
- Communication
 - Communication to the Interface
 - De

MCS UK

- Microsoft Consultant Services UK
- Gesture service for Kinect for Windows
- The gesture service is written in C[‡]
- Similar to the JPL in a manner.

Architecture

Architecture

- Introduction
 - Motivation
 - Project Impact
- Project Recon
 - Architecture
 - Tools
 - Project Requirements
- Recognition Techniques
 - Glyphs Method
 - Joint Positions Lists
 - MCS UK
- Communication
 - Communication to the Interface
 - Demonstration

Communication to the Interface

- Connection is attempted once Kinect is plugged and ready
- The interface listens for gestures
- User sends gestures with their timestamps
- Once connection to the interface falls, program terminates

- Introduction
 - Motivation
 - Project Impact
- Project Recon
 - Architecture
 - Tools
 - Project Requirements
- Recognition Techniques
 - Glyphs Method
 - Joint Positions Lists
 - MCS UK
- Communication
 - Communication to the Interface
 - Demonstration

Demonstration

Please Hold for a Demonstration!
[this will only take few minutes]

Demonstration

Please Hold for a Demonstration! [this will only take few minutes] I lied

Summary

- Real time recognition was accomplished by Kinect's fast streaming.
- The Robust and Dynamic requirement was not fully possible was Kinect has a lot of limitations.
- Plugging in to the interface, was possible through Socket programming.
- Outlook
 - Differentiation between facing and not facing(Solved in the new Kinect).
 - Detecting minor movements.

Q&A

Thank you for listening, floor is open for Q & A

