

Computer Networks Class 2: Physical Layer

Physical Layer

Class goals:

- Introduce physical transmissions and their underlying theoretical foundation.
- Discuss examples of networks that implement the presented concepts

Overview/roadmap:

- Preliminaries
- Guided Transmission
- Wireless Transmission
- Using the Spectrum for Transmission
- Fundamentals of Digital Communication

Dauphine | PSL**®**

Preliminaries: Binary Representation

- · Communication presumes shared symbols
 - Examples: Latin alphabet (a, b, c, ...), Arabic numbers (0, 1, 2, ...), etc.
- Computer operation is based on **binary digits** or **bits**, e.g., 0's or 1's
 - For N bits, we have 2^N combinations of symbols.
 - How many bits do we need to represent all 26 letters in the standard English alphabet?
 - Why?
- Any piece of information can be discretized and represented by a sequence of bits!
 - Number, text, image, audio, etc.
- Computer communication = **Digital** communication

Dauphine I PSL**™**

Physical Layer

Preliminaries: Binary Conversion and Arithmetic

Decimal <-> Binary

Logic Operators

Unary Operation (Single Operand)				
Α	<u>not</u> A			
0	0			
1	1			

	N-ary Operation (N operands) – Ex.: N=2					
Α	В	A <u>and</u> B	A <u>or</u> B	A <u>xor</u> B		
0	0	0	0	0		
0	1	0	1	1		
1	0	0	1	1		
1	1	1	1	0		

Dauphine | PSL**★**

Preliminaries: Binary Coding

- · Real number representation
 - · Scientific applications
 - · Increase precision
- More operations
 - Numerical approximation of sophisticated functions
- Architectural limitations (Overflow)
- · Massive applications in networks!
 - · Gray Coding

	Decimal	Binary No Coding	Binary Gray
	0	0000	0000
	1	0001	0001
	2	0010	0011
	3	0011	0010
	4	0100	0110
ge	5	0101	0111
Gray Code	6	0110	0101
ay	7	0111	0100
Ō	8	1000	1100
	9	1001	1101
	10	1010	1111
	11	1011	1110
	12	1100	1010
	13	1101	1011
	14	1110	1001
	15	1111	1000

Dauphine I PSL**™**

Physical Layer
Preliminaries: Waves

Physical Layer

Overview/roadmap:

- Preliminaries
- Guided Transmission
- Wireless Transmission
- Using the Spectrum for Transmission
- Fundamentals of Digital Communication

Dauphine | PSL**®**

Guided Transmission Media: Persistent Storage - Examples

Amazon "Snowmobile"

- Hundreds of HDDs (~100 PB)
- High-speed internal network
- Optic fibre upload/download
- Connectivity for remote access

Opportunistic Transmission

- Electric car charging station nets.
- ~8 hours to fully charge a car
- Wireless upload/download
- Non-reliable transmission

Dauphine | PSL**™**

Guided Transmission Media: Copper Wires - Twisted Pairs

Characteristics

- 1mm copper wire
- Difference of voltage transmission
- · Pairs in helical form
- Application: Telephone, xDSL, etc.
- Analog and digital info
- · Rate: Thickness and distance

Category "Cat" 5e

- 4 twisted pairs
- Full-Duplex
- · Standards:
 - 100Mbps Ethernet LAN2 pairs for each direction
 - 1Gbps Ethernet LANEach pair in both directions

Dauphine | PSL**™**

Guided Transmission Media: Copper Wire - Coaxial Cables

Characteristics

- Better shielding ("isolation")
 - higher distances and better rates
- Types:
 - 50-ohm: digital transmission
 - 75-ohm: analog transmission
- Bandwidth of up to 6GHz
- Full-duplex
- Usage: TV, Cable internet

Dauphine | PSL**™**

Physical Layer

Guided Transmission Media: Electrical Power Lines

Characteristics

- · Application: Home LAN
 - Electrical signals: 50Hz-60Hz
- Embedded information signal
 - Data signals: Order of MHz GHz
- Bad news:
 - electric wire has natural attenuation
 - power network change wires properties
- · Similar idea: landline telephony

Dauphine | PSL**®**

Guided Transmission Media: Fiber Optics - Motivation

- Technological evolution
 - Computers: 1981 PCs @ 4.77 MHz 2021 PCs @ 3GHz Factor: ~2500
 - Networks: 1981 Telephone lines @ 45Mbps 2021 MANs @ 100Gbps Factor: ~2000
- Physical limits
 - Computers: Achieved performance increase is only in the number of CPU cores
 - Networks: 50Tbps (fiber optics) still a lot of room for improvement
- Bottlenecks
 - conversion between electric and optical signals is still slow
 - implementation and communication costs
- Usage
 - Networks' (and Internet's) backbone
 - High-speed LAN
 - Fiber-to-the-Home

Dauphine | PSL**™**

Questions? guilherme.lecker-ricardo@dauphine.psl.eu D UNIVERSITÉ PARIS DAUPHINE - PSL Place du Maréchal de Lattre de Tassigny – 75775 Paris cedex 16