A. Giovanidis 2022

08. Classification – pt.B Bayesian methods

Network Data Analysis - NDA'22 Anastasios Giovanidis

Sorbonne-LIP6

November 15, 2022

Bibliography

A. Giovanidis 2022

B.1 Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. "An introduction to statistical learning: with applications in R". Springer Texts in Statistics. ISBN 978-1-4614-7137-0
 Chapter 2, Chapter 4
 DOI 10.1007/978-1-4614-7138-7

Bayes Classifier

A. Giovanidis 2022

Optimal Classifier: (If all misclassifications are equally important) Assign each observation to the most likely class, given its predictor values:

$$\max_{1 \le j \le M} Pr(Y = j \mid X = x_o)$$

• We consider *conditional probabilities* given the observed x_o .

In a two-class problem

$$Pr(Y = 1 \mid X = x_o) + Pr(Y = 2 \mid X = x_o) = 1:$$
Class 1, if $Pr(Y = 1 \mid X = x_o) > 0.5$
Class 2, if $Pr(Y = 2 \mid X = x_o) > 0.5$

Decision boundary
$$Pr(Y = 1 \mid X = x_o) = Pr(Y = 2 \mid X = x_o)$$

Drawback...

A. Giovanidis 2022

There is one problem however: For real data we do not know the conditional distribution P(Y|X),

(unless we have generated data ourselves, in which case we know the joint distribution P(X, Y)).

Bayes classifier serves as an unreachable golden standard!

If we do not know exactly P(Y|X) we can try to estimate it.

Naive Bayes

A. Giovanidis 2022

The Naive Bayes classifier:

- Assumes that the K features are independent.
- Uses a simple MAP or ML estimator

$$P(Y \mid \mathcal{D}_n) \propto P(\mathcal{D}_n \mid Y)P(Y)$$
 [MAP]
 $P(Y \mid \mathcal{D}_n) \propto P(\mathcal{D}_n \mid Y)$ [ML]

where Y is the class label.

We choose MAP or ML, depending on the prior information over the class distribution Y.

Naive Bayes with discrete features

A. Giovanidis 2022

Let us classify texts (e.g. books, sentences) in one of two classes:

- 1. History
- 2. Science

Bag-of-words

A. Giovanidis 2022

To do so, we will use some features from the available data (texts).

These are a certain bag-of-words: {'king', 'food', 'equals', 'proof'}

Bag-Of-Words

Label

	1:'king'	2:'food'	3:'equals'	4:'proof'	History	Science
Text 1	No	Yes	Yes	Yes	No	Yes
Text 2	No	No	Yes	No	No	Yes
Text 3	Yes	Yes	No	Yes	Yes	No
Text n	Yes	No	Yes	Yes	No	Yes

Forming the variables

A. Giovanidis 2022

 \mathscr{O} If X contains K binary state features, with $X_{t,k} \in \{0,1\}$, then

$$X_t = (X_{t,1}, \ldots, X_{t,K}), \quad t = 1, \ldots, n.$$

 $X_{t,k}$ says whether feature k appears or not in the t-th data sample of \mathcal{D}_n .

Also, Y is the label of each text. Then, let

$$Y_t = \left\{ egin{array}{ll} 0 & ext{if 'History'} \ 1 & ext{if 'Science'} \end{array}
ight.$$

A. Giovanidis 2022

Discrete Estimators

► Mean estimators

$$p_{1} = p_{Sc} = P(Y = 1) = \frac{1}{n} \sum_{t=1}^{n} Y_{t},$$

$$p_{0} = p_{Hi} = P(Y = 0) = \frac{1}{n} \sum_{t=1}^{n} (1 - Y_{t})$$

ML estimators

$$p_{1,k} = p_{Sc,k} = P(X_k = 1 \mid Y = 1) = \frac{\sum_{t=1}^{n} Y_t \cdot X_{t,k}}{\sum_{t=1}^{n} Y_t}$$

$$p_{0,k} = p_{Sc,k} = P(X_k = 1 \mid Y = 0) = \frac{\sum_{t=1}^{n} (1 - Y_t) \cdot X_{t,k}}{\sum_{t=1}^{n} (1 - Y_t)}$$

Test likelihood

A. Giovanidis 2022

How does Naive Bayes work in 2 classes ('History'-'Science'), for a **Test sample** (X_o, y_o) ?

- ▶ We make use of the estimated likelihood!
- Suppose the distribution for each feature k per class j is $\operatorname{Bernoulli}(p_{j,k})$ and independent of other features.

For each feature the test-data likelihood is:

$$L(p_{j,k}; X_{o,k}) = p_{j,k}^{X_{o,k}} (1 - p_{j,k})^{1 - X_{o,k}},$$
 for class $j \in \{0, 1\}$

Posteriors

A. Giovanidis 2022

▶ Then for ML posteriors (with feature independence):

$$P(Y = 0 \mid X_o) \propto P(X_o \mid Y = 0) = \prod_{k=1}^{n} p_{0,k}^{X_{o,k}} (1 - p_{0,k})^{1 - X_{o,k}},$$

$$P(Y = 1 \mid X_o) \propto P(X_o \mid Y = 1) = \prod_{k=1}^{K} p_{1,k}^{X_{o,k}} (1 - p_{1,k})^{1 - X_{o,k}}$$

For MAP posteriors we need also the Prior distribution over classes, i.e. $p_0 = P(Y = 0)$ and $p_1 = P(Y = 1)$,

$$P(Y = j \mid \mathcal{D}_n) = P(\mathcal{D}_n \mid Y = j) \cdot P(Y = j), j \in \{0, 1\}.$$

Example

A. Giovanidis 2022

Calculate the Naive Bayes classification for the following example:

Bag-Of-Words

Label

	1:'king'	2:'food'	3:'equals'	4:'proof'	History	Science
Text 1	No	Yes	Yes	Yes	No	Yes
Text 2	No	No	Yes	No	No	Yes
Text 3	Yes	Yes	No	Yes	Yes	No
Text 4	Yes	No	Yes	Yes	No	Yes
Test	No	No	Yes	Yes	??	??

Naive Bayes with continuous features

A. Giovanidis 2022

- $\ensuremath{\varnothing}$ Suppose that X contains K continuous state features.
 - Suppose the distribution for each feature k per class j is Gaussian $\mathcal{N}(\mu_{j,k}, \sigma_{j,k}^2)$.
 - Prior distribution over classes, is assumed uniform, i.e. P(Y=0) = P(Y=1) = 0.5, non-uniform arbitrary, or estimated from dataset (as before).

A. Giovanidis 2022

Continuous estimates

► ML estimates for mean.

$$n_1 = \sum_{t \in \mathcal{D}_n} \mathbf{1}(Y_t = \mathbf{1}), \qquad \overline{X}_{1,k} = \frac{1}{n_1} \sum_{t \in \mathcal{D}_n, Y_t = \mathbf{1}} X_{t,k},$$

$$n_0 = \sum_{t \in \mathcal{D}_n} \mathbf{1}(Y_t = \mathbf{0}), \qquad \overline{X}_{0,k} = \frac{1}{n_0} \sum_{t \in \mathcal{D}_n, Y_t = \mathbf{0}} X_{t,k}$$

ML estimates for variance.

$$\overline{S}_{1,k}^{2} = \frac{1}{n_{1}-1} \sum_{t \in \mathcal{D}_{n}, Y_{t}=1} (X_{t,k} - \overline{X}_{1,k})^{2},$$

$$\overline{S}_{0,k}^{2} = \frac{1}{n_{0}-1} \sum_{t \in \mathcal{D}_{n}, Y_{t}=0} (X_{t,k} - \overline{X}_{0,k})^{2}.$$

ML and MAP estimators

A. Giovanidis 2022

Given a Test sample (X_o, y_o) , the estimated class is the one which maximizes the Likelihood (ML) estimator, i.e. the maximum between

$$\begin{split} &P(Y=0 \mid \mathcal{D}_n) \propto \prod_{k=1}^K \frac{1}{(2\pi \overline{S}_{0,k}^2)^{1/2}} \exp\left(-\frac{(X_{o,k} - \overline{X}_{0,k})^2}{2\overline{S}_{0,k}^2}\right) \quad \textit{for} \quad \textit{Class } 0 \\ &P(Y=1 \mid \mathcal{D}_n) \propto \prod_{k=1}^K \frac{1}{(2\pi \overline{S}_{1,k}^2)^{1/2}} \exp\left(-\frac{(X_{o,k} - \overline{X}_{1,k})^2}{2\overline{S}_{1,k}^2}\right) \quad \textit{for} \quad \textit{Class } 1 \end{split}$$

and similarly as in the discrete case for MAP estimators

$$P(Y=j\mid \mathcal{D}_n) \ = \ P(\mathcal{D}_n\mid Y=j)\cdot P(Y=j), \ j\in \{0,1\}\,.$$

Linear Discriminant Analysis (LDA)

A. Giovanidis 2022

For classification of two or multiple classes, we often use LDA:

- ▶ Instead of modelling Pr(Y = j | X = x) directly as in Logistic Regression, it does this indirectly by modelling Pr(X = x | Y = j) (Likelihood again!).
- Makes use of the Bayes' Theorem and the Bayes classifier.
- ► Assumes the distribution of *X*'s is approximately Gaussian.

The class boundaries are linear, as in Logistic Regression.

Applies to **continuous** feature variables $X_n = (X_{n,1}, \dots, X_{n,K})$

Bayes' Theorem in Classification

A. Giovanidis 2022

We want to calculate the conditional probability for each class

$$Pr(Y = j | X = x) \stackrel{Bayes'}{=} \frac{Pr(X = x | Y = j) Pr(Y = j)}{Pr(X = x)}$$

$$\stackrel{Total}{=} \frac{Pr(X = x | Y = j) Pr(Y = j)}{\sum_{m=1}^{M} Pr(X = x | Y = m) Pr(Y = m)}$$

$$= \frac{f_j(x) \cdot \pi_j}{\sum_{m=1}^{M} f_m(x) \cdot \pi_m}$$

 \square We need the conditional probability of X given the class, and the frequency of each class.

Bayes' Theorem in Classification

A. Giovanidis 2022

We want to calculate the conditional probability for each class

$$Pr(Y = j | X = x) \stackrel{Bayes'}{=} \frac{Pr(X = x | Y = j) Pr(Y = j)}{Pr(X = x)}$$

$$\stackrel{Total}{=} \frac{Pr(X = x | Y = j) Pr(Y = j)}{\sum_{m=1}^{M} Pr(X = x | Y = m) Pr(Y = m)}$$

$$= \frac{f_j(x) \cdot \pi_j}{\sum_{m=1}^{M} f_m(x) \cdot \pi_m}$$

 \square We need the conditional probability of X given the class, and the frequency of each class.

Given these, we can choose for $X = x_o$, the class with $\max_{1 \le j \le M} Pr(Y = j | X = x_o)$ (Bayes classifier).

LDA for 1 predictor K = 1

A. Giovanidis 2022

We can **assume** that $f_j(x)$ is normal or Gaussian.

For K=1 feature:

$$f_j(x) = \frac{1}{\sigma_j \sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma_j^2}(x-\mu_j)^2\right),$$

 μ_j and σ_j^2 are the mean and variance for the j-th class.

- Let us further assume that $\sigma_1^2 = \sigma_2^2 = \ldots = \sigma_M^2 = \sigma^2$, hence there is a shared variance among all classes.
- ▶ The π_i 's are also called prior probabilities.

Q: Is the gaussian assumption reasonable?

Plugging in (1), we get:

$$Pr(Y = j | X = x) = \frac{\frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2}(x - \mu_j)^2\right) \cdot \pi_j}{\sum_{m=1}^{M} \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2}(x - \mu_m)^2\right) \cdot \pi_m}$$

Unknowns:

- \triangleright prior probabilities π_m ,
- ightharpoonup means μ_m , $m=1,\ldots,M$, and
- \triangleright common variance σ .

LDA (K = 1) classification

A. Giovanidis 2022

Let us take the log in the above expression.

We assign for
$$X = x$$
, the class m^* such that
$$m^* = \arg\max_{1 \le m \le M} \Pr(Y = m | X = x)$$
$$= \arg\max_{1 \le m \le M} \log \Pr(Y = m | X = x)$$
$$= \arg\max_{1 \le m \le M} \left\{ x \cdot \frac{\mu_m}{\sigma^2} - \frac{\mu_m^2}{2\sigma^2} + \log(\pi_m) \right\}$$
$$= \arg\max_{1 \le m \le M} \left\{ x \cdot c_{1,m} + c_{0,m} \right\} \quad (linear!)$$

A. Giovanidis 2022

Estimating the decision function

For each class m we have the linear discriminant function of x:

$$\delta_m(x) = x \cdot \frac{\mu_m}{\sigma^2} - \frac{\mu_m^2}{2\sigma^2} + \log(\pi_m),$$

and to calculate it from the dataset D_n we use the estimates:

$$\hat{\mu}_{m} = \frac{1}{n_{m}} \sum_{t:y_{t}=m} x_{t},$$

$$\hat{\sigma}^{2} = \frac{1}{n-M} \sum_{m=1}^{M} \sum_{t:y_{t}=m} (x_{t} - \hat{\mu}_{m})^{2},$$

$$\hat{\pi}_{m} = \frac{n_{m}}{n}.$$

2-class example

A. Giovanidis 2022

For M=2 classes, suppose $\pi_1=\pi_2$ additionally (uniform prior). Then the discriminant functions become:

$$\delta_1(x) = x \cdot \frac{\mu_1}{\sigma^2} - \frac{\mu_1^2}{2\sigma^2} + \log(\pi_1)$$

 $\delta_2(x) = x \cdot \frac{\mu_2}{\sigma^2} - \frac{\mu_2^2}{2\sigma^2} + \log(\pi_2)$

so that x is assigned class 1, if $\delta_1(x) > \delta_2(x)$ or,

$$2x(\mu_1 - \mu_2) > \mu_1^2 - \mu_2^2$$

The decision boundary are the points x, s.t.

$$x = \frac{\mu_1 + \mu_2}{2}.$$

A. Giovanidis 2022

Figure: Two normal density functions and decision boundary. ¹

¹Source [B.1]

LDA for K > 1 dimensions

How does the LDA perform, when the predictors X have more than 1 dimension? say $X = (X_1, \dots, X_K)$.

Assume a multivariate Gaussian distribution instead of a 1-dimensional $X \sim \mathcal{N}\left(\mu, \mathbf{\Sigma}\right)$.

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{K/2} |\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \mu)\right).$$

- ightharpoonup mean $\mu = (\mu_1, \dots, \mu_K)^T$,
- common covariance matrix Σ.

Bivariate Gaussian distribution

A. Giovanidis 2022

Two random variables X and Z are said to have a **bivariate Gaussian distribution** with parameters

$$\mu_X$$
, σ_X^2 , μ_Z , σ_Z^2 , ρ ,

if their joint PDF is given by

$$f_{XZ}(x,z) = \frac{1}{2\pi\sigma_X\sigma_Z\sqrt{1-\rho^2}} \cdot \exp\left\{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_X}{\sigma_X}\right)^2 + \left(\frac{z-\mu_Z}{\sigma_Z}\right)^2 - 2\rho\frac{(x-\mu_X)(z-\mu_Z)}{\sigma_X\sigma_Z}\right]\right\},\,$$

where $\rho \in (-1,1)$ the correlation coefficient $\rho = \frac{Cov(X,Z)}{\sqrt{Var(X)Var(Z)}} = \frac{\sigma_{XZ}}{\sigma_X\sigma_Z}$.

Matrix form (general)

A. Giovanidis 2022

For any number of features $K>1\,$

$$f_{\mathbf{X}}(X_1 = x_1, \dots, X_K = x_K) = \frac{\exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \mu)\right)}{\sqrt{(2\pi)^K |\mathbf{\Sigma}|}},$$

- The covariance matrix Σ should be positive definite.
- ▶ The mean vector $\mu = (\mu_1, \dots, \mu_K)^T$.
- In the case K = 2 with $(X_1, X_2) = (X, Z)$

$$\mu = (\mu_X, \mu_Z)^T, \qquad \mathbf{\Sigma} = \begin{pmatrix} \sigma_X^2 & \rho \sigma_X \sigma_Z \\ \rho \sigma_X \sigma_Z & \sigma_Z^2 \end{pmatrix}$$

Bivariate properties

A. Giovanidis 2022

Property 1

Suppose X and Z follow a bivariate Gaussian distribution. Then, given X = x, the variable Z is Gaussian distributed, with

$$\mathbb{E}[Z \mid X = x] = \mu_Z + \rho \sigma_Z \frac{x - \mu_X}{\sigma_X},$$

$$Var(Z \mid X = x) = (1 - \rho^2)\sigma_Z^2.$$

Property 2

Suppose X and Z follow a bivariate Gaussian distribution. Then, if X, Z are uncorrelated $\rho=0$ they are independent.

$$\mu = (\mu_X, \mu_Z)^T, \qquad \mathbf{\Sigma} = \begin{pmatrix} \sigma_X^2 & 0 \\ 0 & \sigma_Z^2 \end{pmatrix}$$

Example bivariate

A. Giovanidis 2022

In the following we will make use of the expressions

$$\begin{aligned} |\mathbf{\Sigma}| &= (1 - \rho^2) \sigma_X^2 \sigma_Z^2, \\ \mathbf{\Sigma}^{-1} &= \frac{1}{|\mathbf{\Sigma}|} \begin{pmatrix} \sigma_Z^2 & -\rho \sigma_X \sigma_Z \\ -\rho \sigma_X \sigma_Z & \sigma_X^2 \end{pmatrix} \end{aligned}$$

Linear discriminant function (general)

A. Giovanidis 2022

Linear Discriminant Function for *K* features:

$$\delta_j(\mathbf{x}) = \mathbf{x}^T \mathbf{\Sigma}^{-1} \mu_j - \frac{1}{2} \mu_j^T \mathbf{\Sigma}^{-1} \mu_j + \log(\pi_j)$$

Q: Is it linear? Check for K = 2.

A. Giovanidis 2022

Figure: Classification for M=3 classes and K=2 dimensions. ²

²Source [B.1]

Quadratic Discriminant Analysis (QDA)

A. Giovanidis 2022

LDA assumed for each class a different vector for the feature-means μ_j and same covariance matrix Σ .

 \mathbb{Q} QDA assumes different covariance matrix per class. That is, an observation from the j-th class is of the form $X \sim \mathcal{N}(\mu_j, \mathbf{\Sigma}_j)$.

Quadratic Discriminant Function:

$$\delta_{j}(\mathbf{x}) = -\frac{1}{2}\mathbf{x}^{T}\mathbf{\Sigma}_{j}^{-1}\mathbf{x} + \mathbf{x}^{T}\mathbf{\Sigma}_{j}^{-1}\mu_{j} - \frac{1}{2}\mu_{j}^{T}\mathbf{\Sigma}_{j}^{-1}\mu_{j} - \frac{1}{2}\log|\mathbf{\Sigma}_{j}| + \log(\pi_{j})$$

QDA is more flexible than LDA: Bias vs Variance tradeoff!

QDA examples

Figure: (left:) Truth common Σ , (right:) Truth different Σ_1 , Σ_2 .

³Source [B.1]

Method comparison: linear

A. Giovanidis 2022

Figure: (1) uncorr., \mathcal{N} , $\mu_1 \neq \mu_2$, (2) corr., \mathcal{N} , (3) uncorr., t-distr.⁴

⁴Source [B.1]

Method comparison: non-linear

A. Giovanidis 2022

Figure: (4) corr. \mathcal{N} , $\Sigma_1 \neq \Sigma_2$, (5) $X_1^2, X_2^2, X_1 X_2$ (6) more-NL. ⁵

⁵Source [B.1]

A. Giovanidis 2022

END