

Distribution Planning and Analysis for Distribution Feeders in Delhi, India

Abhishek Ranjan, BRPL, and Dr. Adarsh Nagarajan, NREL

BSES Rajdhani Power Ltd. – A Profile

Steep Loss reduction post- privatization

~44% reduction in losses post takeover against 20% rise in a decade up-to

privatization

Power Portfolio & Network Landscape (1/2)

- Large seasonal and diurnal variation in demand and hence loading of assets
- High RE share including robust growth in Roof Top Solar

Daily variation in load						
Summer (Jul)	~1160 MW					
Winter (Jan)	~1200 MW					
Fall/Spring (Oct/ Apr)	~600 MW					

Power Portfolio & Network Landscape (2/2)

- Space constraints for network upgradation
- Overall lower utilization of assets
- Rooftop Solar can help reduce day peak loading of assets

Impact of RTS and ISTS Solar on Demand

Techno-economic analysis

Techno-Economic
analysis on emerging
technologies

Technoeconomic analysis Support distribution planning

Electric vehi cle impacts Emerging technology

Baseline analysis

Only load growth and classic distribution planning

Electric vehicle

growth

Additional to load growth moderate and high electric vehicle growth is modeled

Energy storage for

value streams

Comparison of costs and values for choosing energy storage as an alternative for distribution planning upgrades

Monetized and non-monetized grid services

High

Black start and resilience

Upgrade deferral

Back-up power

Load levelling

Voltage support

Reactive power limits

Frequency support

Demand-charge reduction

Peak shaving

Renewable curtailment reduction

Low

Non-Monetized

Monetized

Technical value

Revenue

Impact of storage on losses are insignificant

 Due to operation in higher efficiency region DTs with storage generally experience reduction in losses compared with the baseline values.

EV + Energy storage to avoid coincidental peaks

- EVs and BESS fill DT valleys and push operation in higher efficiency region.
- 28% more energy flows through this DT due to EVs

EV + Energy storage to help reduce distribution upgrade

 With EVs 126 line segments experienced greater than 100% overloading.

 BESS reduced line violations to just 19 line segments, an 85% reduction in violations.

Long Term Distribution Planning Options

- Baseline violations can be corrected by replacing existing equipment with higher rating equipment or by operating multiple devices in parallel.
- The other option is to **use emerging technologies** such as battery storage systems to reduce equipment loading.
- Both options were compared in the simulations.

Traditional Approach

Standard vs Staged Deployment Scenarios

The staged deployment is designed for meeting the capacity requirements from the feeder line / transformer

					•					
Total Battery Capacity (kWh)	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
Standard Deployment (Scenario-1)	3,600	3,600	3,600	3,600	3,600	3,600	3,600	3,600	3,600	3,600
Staged Deployment (Scenario-2)	2,000	2,400	2,400	3,000	3,000	3,000	3,600	3,600	3,600	3,600
Staged Deployment (Scenario-3)	1,800	2,000	2,200	2,400	2,600	2,800	3,000	3,200	3,600	3,600
Battery Capacity Required (kWh)	1,474	1,760	2,055	2,329	2,556	2,840	3,054	3,287	3,560	3,560

Standard vs Staged Deployment Scenarios

Present Value of Li-Ion Battery System Costs

Key Takeaways

- Managed EV charging for avoiding coincidental peaks
- Storage can bring device upgrade deferrals and yet enables EV penetration
- Staged deployment scenario results in additional cost savings
 - 13.2% savings was shown with a specified deployment scenario
 - This scenario allows for flexibility to the upgrade

Thank you!

Comparison of BNEF and NREL SAM LCOE Forecast for India

Standard Deployment Model Scenario

