ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

Элементы высшей математики

Транспортная задача; общая транспортная задача

 $C = \{C_{ij}\}$ – матрица стоимости перевозки из пункта I в пункт ј

Требуется

построить схему перевозки $\mathsf{X}_{\mathsf{i}\mathsf{j}}$, при которой $f = \sum_{ij} \mathit{C}_{ij} \cdot \mathit{X}_{ij} o min$

Ограничение

$$\sum_{k \in U_k^+} X_{ki} + d_i = \sum_{m \in U_m^-} X_{im}$$

$$\sum_{k \in U_k^+} d_i = 0$$

Транспортная задача; классическая транспортная задача

Требуется: $\sum_{i=1}^{m} \sum_{j=1}^{n} C_{ij} \cdot X_{ij} \rightarrow min$

Ограничение: $\sum_{j=1}^{n} X_{ij} = a_i$; $\sum_{i=1}^{m} X_{ij} = b_j$ $\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$

a_i – мощность производства;b – интенсивность потребления

X_{ij} – объём поставок от производителя і к потребителю ј

 $C = \{C_{ij}\}$ – матрица стоимости перевозки из пункта і в пункт ј

Задача о максимальном потоке

 d_i – исток; d_k - сток

 $C = \{C_{ij}\}$ – матрица пропускной способности «трубы»

Требуется

построить схему перекачки, максимизирующую поток в сети;

Ограничения:

- 1) Поток, вышедший из истока равен потоку, вошедшему в сток;
- 2) Для каждой промежуточной вершины вошедший поток равен вышедшему потоку;
- 3) Поток не может быть отрицательным и для каждой «трубы» не может превышать её пропускную способность.

Типовая задача линейного программирования

Задача о диете

Составить план производства кормов для животных при условии, что:

- существуют m различных рецептур $g_1, g_2, ..., g_n$;
- используются n видов компонентов $r_1, r_2, \dots r_m;$
- известны цены реализации товаров c_1, c_2, \ldots, c_n , произведённых по каждой из рецептур;
- заданы запасы компонентов b_1, b_2, \dots, b_m .

Необходимо определить количество товаров x_1, x_2, \dots, x_n , при котором достигается максимальное значение целевой функции $L = x_1c_1 + x_2c_2 + \dots + x_nc_n \to max$

Типовые задачи

Рецептуры задаются Матрицей производства (Технологической матрицей):

	g ₁	g ₂	 g _n
r ₁	a ₁₁	a ₁₂	a _{1n}
r_2	a ₂₁	a ₂₂	 a _{2n}
r _m	a _{m1}	a _{m2}	 a _{mn}

$$L = x_1c_1 + x_2c_2 + \dots + x_nc_n \to max$$

$$\sum_{j=1}^{n} a_{i,j}x_j \le b_i, \quad i = 1, 2, \dots, m$$

$$x_1, x_2, \dots, x_n \ge 0$$

Линейное программирование; общая форма записи задачи

Задана линейная функция L от переменных ($x1, x2,..., x_n$). **L**($x1, x2,..., x_n$) - целевая функция.

Задача:

найти экстремум (максимум или минимум) целевой функции при условии, что переменные удовлетворяют системе линейных равенств и/или неравенств.

$$L = x_1c_1 + x_2c_2 + ... + x_nc_n \rightarrow \max(\text{или min})$$

при условии:

$$\sum_{j=1}^{n} a_{i,j} x_j = b_i, i = 1, 2, ..., k$$
 $\sum_{j=1}^{n} a_{i,j} x_j \leq b_i, i = k+1, k+2, ..., m$ (вместь \leq может быть \geq) $c_i, b_i, a_{i,j}$ — заданные константы

Стандартная и каноническая форма записи задачи линейного программирования

Стандартная форма записи задачи линейного программирования

$$L = x_1c_1 + x_2c_2 + ... + x_nc_n o \max($$
или \min)
$$\sum_{j=1}^n a_{i,j}x_j \le b_i, i=1,2,...,k$$
 $x_j \ge 0 \ (j=1,2,r) \ r \le k$

Каноническая форма записи задачи линейного программирования

$$L=x_1c_1+x_2c_2+...+x_nc_n o \max($$
или \min)
$$\sum_{j=1}^n a_{i,j}x_j=b_i, i=1,2,...,k$$

$$x_1,x_2,\ldots,x_n \geq 0$$

Планы в задаче линейного программирования

Допустимый план — набор чисел x_1, x_2, \dots, x_n , удовлетворяющих системе ограничений.

Оптимальный план — допустимый план, доставляющий минимум (максимум) целевой функции.

Область допустимых планов — множество всех допустимых планов.

Решение задачи линейного программирования — пара, состоящая из оптимального плана и оптимального значения целевой функции.

Матричная форма записи задачи линейного программирования

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}; B = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{pmatrix}; X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_m \end{pmatrix}; C = (c_1 \quad c_2 \quad \dots \quad c_n)$$

Стандартная форма записи задачи линейного программирования в матричном виде:

$$A \cdot X \leq B$$
 $X \geq 0$
 $Z = C \cdot X \rightarrow \max ($ или $\min)$

Каноническая форма записи задачи линейного программирования в матричном виде:

$$A \cdot X = B$$
 $X \ge 0$ $Z = C \cdot X \to \max$ (или \min)

Приведение задачи минимизации к задаче максимизации

$$L = x_1c_1 + x_2c_2 + \dots + x_nc_n \rightarrow min$$

$$L = -x_1c_1 - x_2c_2 - \dots - x_nc_n \rightarrow max$$

$$\min(z) = -\max(-z)$$

$$\max(z) = -\min(-z)$$

Замена направления знака неравенства

$$\sum_{\substack{j=1\\n}}^{n} a_{i,j} x_{j} \le b_{i} \sim -\sum_{\substack{j=1\\n}}^{n} a_{i,j} x_{j} \ge -b_{i}$$

$$\sum_{j=1}^{n} a_{i,j} x_{j} \ge b_{i} \sim -\sum_{j=1}^{n} a_{i,j} x_{j} \le -b_{i}$$

Замена неравенства на равенство

замена на:

$$a_1x_1 + a_2x_2 + \dots + a_nx_n \le b$$

 $a_1x_1 + a_2x_2 + \dots + a_nx_n + x_{n+1} = b$

$$a_1x_1 + a_2x_2 + \dots + a_nx_n + x_{n+1} = k$$

 $x_{n+1} \ge 0$

замена на:

$$a_1x_1 + a_2x_2 + \dots + a_nx_n \geq b$$

$$a_1x_1 + a_2x_2 + \dots + a_nx_n \ge b$$

$$a_1x_1 + a_2x_2 + \dots + a_nx_n - x_{n+1} = b$$

$$x_{n+1} \ge 0$$

Переменная x_{n+1} называется балансовой переменной и должна встречаться ТОЛЬКО в одном ограничении.

Включение переменной в условие неотрицательности

$$x_t = x_t' - x_t''; \ x_t' \ge 0, x_t'' \ge 0$$

Замена равенства на неравенство

замена на:

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$$

$$a_1x_1 + a_2x_2 + \dots + a_nx_n \ge b$$

 $a_1x_1 + a_2x_2 + \dots + a_nx_n \le b$

<u>Исходная</u>

$$L = 2x_1 + x_2 + 5 x_3 \rightarrow min$$

$$\begin{cases} x_1 & -7x_2 + 4x_3 \leq 11 \\ 2x_1 & +9x_2 + x_3 \geq 7 \\ x_1 \geq 0 & x_2 \geq 0 & x_3 \geq 0 \end{cases}$$

<u>Основной вид</u>

$$L = -2x_{1} - x_{2} - 5x_{3} \rightarrow max$$

$$\begin{cases} x_{1} & -7x_{2} & 4x_{3} \leq 11 \\ -2x_{1} & -9x_{2} & -x_{3} \leq -7 \\ x_{1} \geq 0 & x_{2} \geq 0 & x_{3} \geq 0 \end{cases}$$

Канонический вид

$$L = -2x_1 - x_2 - 5 x_3 \rightarrow max$$

$$\begin{cases} x_1 & -7x_2 + 4x_3 + x_4 = 11 \\ -2x_1 & -9x_2 - x_3 + x_5 = -7 \\ x_1 \ge 0 & x_2 \ge 0 & x_3 \ge 0 & x_4 \ge 0 & x_5 \ge 0 \end{cases}$$

Пример 1

Привести к канонической форме задачу линейного программирования:

$$\begin{cases} 2x_1 - x_2 + x_3 \ge 2\\ 3x_1 + 2x_2 + x_3 \le 6\\ x_1 + x_2 + x_3 = 4\\ x_1 \ge 0; x_2 \ge 0\\ z = 3x_1 - 2x_2 - x_3 \to max \end{cases}$$

Пример 2

Привести к стандартной форме задачу линейного программирования:

$$\begin{cases} x_1 - x_2 - 2x_3 = 4 \\ 2x_2 + 4x_3 - x_4 = 8 \\ x_2 + x_3 + x_5 = 6 \end{cases}$$

$$x_1 \ge 0; x_2 \ge 0; x_3 \ge 0; x_4 \ge 0; x_5 \ge 0$$

$$z = x_1 + 2x_2 - x_3 - x_4 - 2x_5 \to max$$

Варианты конфигурации области допустимых решений

Линии уровня

Уравнение линии уровня: $c_1x_1 + c_2x_2 = d$

С учётом направления вектора \bar{c} , $d_1 < d_2 < d_3$

Опорная прямая

Прямая, имеющая хотя бы одну общую точку с областью допустимых решений, и расположенная так, что область допустимых решений лежит с одной стороны от неё, называется опорной прямой.

а б

Опорная прямая

в

Разновидности допустимых множеств решений

- 1. Допустимое множество решений пусто. Задача решений не имеет
- 2. Допустимое множество решений выпуклый ограниченный многогранник. Задача имеет одно или бесконечно много решений.
- 3. Допустимое множество выпуклое неограниченное многогранное множество. Задача решений не имеет.

Если задача линейного программирования имеет хотя бы один оптимальный план, то его следует искать среди вершин допустимого множества решений.

Пример

$$L = 3x_1 + 4x_2 \to min/max$$

$$\begin{cases}
-x_1 + x_2 \leq 3 \\
5x_1 + 3x_2 \leq 97 \\
x_1 + 7x_2 \geq 74 \\
x_1 \geq 0 & x_2 \geq 0
\end{cases}$$

- 1. Задача должна быть представлена в каноническом виде.
- 2. В каждом из равенств присутствует **одна** базисная переменная, взятая с единичным коэффициентом, а в других равенствах её нет.

ПРИМЕР

$$L = 3x_1 + 4x_2 + 6x_3 \rightarrow max$$

$$\begin{cases} 2x_1 + 5x_2 + 2x_3 \le 12 \\ 7x_1 + x_2 + 2x_3 \le 18 \\ x_1 \ge 0 & x_2 \ge 0 & x_3 \ge 0 \end{cases}$$

ПРИМЕР

$$L = 3x_1 + 4x_2 + 6x_3 \rightarrow max$$

$$\begin{cases} 2x_1 + 5x_2 + 2x_3 + x_4 = 12 \\ 7x_1 + x_2 + 2x_3 + x_5 = 18 \\ x_1 \ge 0 & x_2 \ge 0 & x_3 \ge 0 & x_4 \ge 0 & x_5 \ge 0 \end{cases}$$

х4, х5 – базисные переменные

Симплекс-таблица

Базис	x_1	 x_n	x_{n+1}	 x_{n+m}	Свободные члены	Симплекс- отношения
x_{n+1}	<i>a</i> _{1,1}	 $a_{1,n}$	1	 0		
x_{n+m}	$a_{m,1}$	$a_{m,n}$	0	 1		
	-c1	 -C _n	0	 0		

т – количество базисных переменных

Симплекс-таблица для примера

Базис	x_1	x_2	x_3	x_4	x_5	Свободные члены	Симплекс- отношения
x_4	2	5	2	1	0	12	
x_5	7	1	2	0	1	18	
	-3	-4	-6	0	0		

Опорный план: $\bar{x}^0 = (0, 0, 0, 12, 18)$

Условие оптимальности: если в последней строке симплекс-таблицы все элементы **неотрицательны**, то соответствующий опорный план является оптимальным.

- 1. В последней строке симплекс-таблицы выбирается наименьший отрицательный элемент. Столбец, соответствующий этому элементу, называется *ведущим*. Он определяет переменную, которая будет введена в базис на данном этапе. В примере переменная *x*3.
- 2. Вычисляют отношения свободных членов к элементам ведущего столбца (симплекс-отношение): $\theta1=12/2=6$, $\theta1=18/2=9$. Находят наименьшее *неотрицательное* из этих симплекс-отношений. Оно соответствует *ведущей* строке, которая определяет переменную, выводимую из базиса.

 В примере переменная x4. (Если все симплекс-отношения окажутся отрицательными, то задача не имеет решений).

Базис	x_1	x_2	x_3	x_4	x_5	Свободные члены	Симплекс- отношения
x_4	2	5	2	1	0	12	6
x_5	7	1	2	0	1	18	9 🔪
	-3	-4	-6	0	0		

На пересечении ведущей строки и ведущего столбца находится ведущий элемент.

18:2

Базис	x_1	x_2	x_3	x_4	x_5	Свободные члены	Симплекс- отношения
x_4	2	5	2	1	0	12	6
x_5	7	1	2	0	1	18	9
	-3	-4	-6	0	0		

3) Элементы ведущей строки, за исключением симплекс-отношения, делим на ведущий элемент.

Базис	x_1	x_2	x_3	x_4	x_5	Свободные члены	Симплекс- отношения
x_3	1	$\frac{5}{2}$	1	$\frac{1}{2}$	0	6	
x_5	?	?	0	?	1	?	
	?	?	0	?	0		

4) Оставшиеся элементы симплекс-таблицы вычисляются по правилу прямоугольника: мысленно чертим прямоугольник, одна вершина которого совпадает с ведущим элементом, а другая - с элементом, образ которого ищется (две другие вершины называются дополняющими); Искомый элемент будет равен соответствующему элементу текущей таблицы минус дробь, в знаменателе которой стоит ведущий элемент, а в числителе - произведение элементов дополняющих вершин.

Базис	x_1	x_2	x_3	x_4	x_5	Свободные члены	Симплекс- отношения
x_3	1	$\frac{5}{2}$	1	$\frac{1}{2}$	0	6	
x_5	5	-4	0	-1	1	6	
	3	11	0	3	0		

Бази	IC	x_1	x_2	x_3	x_4	x_5	Свободные члены	Симплекс- отношения
x_4	,	2 [5	2	1	0	12	6
<i>x</i> ₅		7	1	2	0	1	18	9
		-3	-4	-6	0	0		

Базис	x_1	x_2	x_3	x_4	x_5	Свободные члены	Симплекс- отношения
x_3	1	$\frac{5}{2}$	1	$\frac{1}{2}$	0	6	
x_5	→ 5	-4	0	-1	1	6	
	3	11	0	3	0		

Базис	x_1	x_2	x_3	x_4	x_5	Свободные члены	Симплекс- отношения
x_3	1	$\frac{5}{2}$	1	$\frac{1}{2}$	0	6	
x_5	5	-4	0	-1	1	6	
	3	11	0	3	0		

В последней строке нет отрицательных чисел. Решение найдено!

Новый опорный план: $\bar{x}^0 = (0, 0, 6, 0, 6)$

Оптимальное решение: x = (0, 0, 6);

Оптимальное значение целевой функции: L=3*0 + 4*0 + 6*6 =36

<u>ПРИМЕР 2</u>

Для изготовления двух видов продукции Р1 и Р2 используются четыре вида сырья S1, S2, S3, S4. Запасы сырья ограничены:

Вид сырья	Запас сырья	Расход сырья на единицу продукции			
		P1	P2		
S1	19	2	3		
S2	13	2	1		
S3	15	0	3		
S4	18	3	0		

Доход от реализации продукции Р1 – 7 единиц; Р2 – 5 единиц.

Требуется составить план производства, при котором общий доход будет максимальным.

$$L = 7x_1 + 5x_2 \rightarrow max$$

$$\begin{cases} 2x_1 + 3x_2 < 19 \\ 2x_1 + x_2 < 13 \\ 3x_2 < 15 \\ 3x_1 < 18 \end{cases}$$

$$x_1 > 0; x_2 > 0$$

Канонический вид
$$L = 7x_1 + 5x_2 \rightarrow max$$

$$\begin{cases} 2x_1 + 3x_2 + x_3 = 19 \\ 2x_1 + x_2 + x_4 = 13 \\ 3x_2 + x_5 = 15 \\ 3x_1 + x_6 = 18 \end{cases}$$

$$x_1 > 0; x_2 > 0; x_3 > 0; x_4 > 0; x_5 > 0; x_6 > 0$$

Базис	x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆	Свободные члены	Симплекс- отношения
x_3	2	3	1	0	0	0	19	
x_4	2	1	0	1	0	0	13	
x_5	0	3	0	0	1	0	15	
x_6	3	0	0	0	0	1	18	
	-7	-5	0	0	0	0		
Базис	x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆	Свободные члены	Симплекс- отношения
x_3	2	3	1	0	0	0	19	$\frac{19}{2}$
x_4	2	1	0	1	0	0	13	$\frac{13}{2}$
x_5	0	3	0	0	1	0	15	
x_6	3	0	0	0	0	1	18	6
	-7	-5	0	0	0	0		

Базис	x_1	x_2	x_3	<i>x</i> ₄	x_5	x_6	Свободные члены	Симплекс- отношения
x_3	2	3	1	0	0	0	19	19 2
x_4	2	1	0	1	0	0	13	13 2
x_5	0	3	0	0	1	0	15	
x_6	3	0	0	0	0	1	18	6
	-7	-5	0	0	0	0		
Базис	x_1	x_2	x_3	x_4	x_5	x_6	Свободные члены	Симплекс- отношения
x_3	0	3	1	0	0	0	19	
x_4	0	1	0	1	0	0	13	
x_5	0	3	0	0	1	0	15	
x_1	1	0	0	0	0	$\frac{1}{3}$	6	
	0	-5	0	0	0	0		

Базис	x_1	x_2	x_3	x_4	x_5	x_6	Свободные члены	Симплекс- отношения
x_3	2	3	1	0	0	0	19	
x_4	2	1	0	1	0	0	13	
x_5	0	3	0	0	1	0	15	
x_1	3	0	0	0	0	1	18	
	-7	-5	0	0	0	0		

Базис	<i>x</i> ₁	<i>x</i> ₂	x_3	x_4	x_5	<i>x</i> ₆	Свободные члены	Симплекс- отношения
x_3	0	3	1	0	0	-2/3	7	
x_4	0	1	0	1	0	-2/3	1	
x_5	0	3	0	0	1	0	15	
x_1	1	0	0	0	0	1/3	6	
	0	-5	0	0	0	7/3		

Базис	x_1	<i>x</i> ₂	x_3	x_4	x_5	x_6	Свободные члены	Симплекс- отношения
x_3	0	3	1	0	0	-2/3	7	
x_4	0	1	0	1	0	-2/3	1	
x_5	0	3	0	0	1	0	15	
x_1	1	0	0	0	0	1/3	6	
	0	-5	0	0	0	7/3		

Базис	x_1	<i>x</i> ₂	x_3	x_4	x_5	x_6	Свободные члены	Симплекс- отношения
x_3	0	3	1	0	0	-2/3	7	7/3
x_2	0	1	0	1	0	-2/3	1	1
x_5	0	3	0	0	1	0	15	5
x_1	1	0	0	0	0	1/3	6	
	0	-5	0	0	0	7/3		

Базис	x_1	x_2	x_3	<i>x</i> ₄	x_5	<i>x</i> ₆	Свободные члены	Симплекс- отношения
x_3	0	3	1	0	0	-2/3	7	7/3
x_2	0	1	0	1	0	-2/3	1	1
x_5	0	3	0	0	1	0	15	5
x_1	1	0	0	0	0	1/3	6	
	0	-5	0	0	0	7/3		
Базис	x_1	x_2	x_3	x_4	x_5	x_6	Свободные члены	Симплекс- отношения
Базис <i>x</i> ₃	<i>x</i> ₁	0	1 x ₃	<i>x</i> ₄	<i>x</i> ₅	-2/3		
					_	-	члены	отношения
x_3	0	0	1	0	0	-2/3	члены 7	отношения 7/3
x_3 x_2	0	0	1 0	0	0	-2/3 -2/3	члены 7 1	отношения 7/3 1

Базис	x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆	Свободные члены	Симплекс- отношения
x_3	0	3	1	0	0	-2/3	7	7/3
x_2	0	1	0	1	0	-2/3	1	1
x_5	0	3	0	0	1	0	15	5
x_1	1	0	0	0	0	1/3	6	
	0	-5	0	0	0	7/3		
Базис	x_1	x_2	<i>x</i> ₃	x_4	x_5	<i>x</i> ₆	Свободные члены	Симплекс- отношения
Базис x_3	<i>x</i> ₁	0	<i>x</i> ₃	-3	<i>x</i> ₅	<i>x</i> ₆ 4/3		
	_				_	-	члены	
x_3	0	0	1	-3	0	4/3	члены 4	
x_3 x_2	0	0	1 0	-3 1	0	4/3 -2/3	члены 4 1	

Базис	x_1	x_2	x_3	<i>x</i> ₄	x_5	<i>x</i> ₆	Свободные члены	Симплекс- отношения
x_3	0	0	1	-3	0	4/3	4	
x_2	0	1	0	1	0	-2/3	1	
x_5	0	0	0	-3	1	2	12	
x_1	1	0	0	0	0	1/3	6	
	0	0	0	5	0	-1		
Базис	x_1	x_2	<i>x</i> ₃	x_4	x_5	<i>x</i> ₆	Свободные члены	Симплекс- отношения
Базис	<i>x</i> ₁	0	<i>x</i> ₃	-3	<i>x</i> ₅	<i>x</i> ₆ 4/3		
	_	_	-		_	-	члены	отношения
x_3	0	0	1	-3	0	4/3	члены 4	отношения 3
x_3 x_2	0	0	1 0	-3 1	0	4/3 -2/3	члены 4 1	отношения 3 -3/2

Базис	x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆	Свободные члены	Симплекс- отношения
x_3	0	0	1	-3	0	4/3	4	3
x_2	0	1	0	1	0	-2/3	1	-3/2
x_5	0	0	0	-3	1	2	12	6
x_1	1	0	0	0	0	1/3	6	18
	0	0	0	5	0	-1		
Базис	x_1	<i>x</i> ₂	x_3	x_4	<i>x</i> ₅	<i>x</i> ₆	Свободные члены	Симплекс- отношения
Базис x_6	<i>x</i> ₁	0	<i>x</i> ₃	-9/4	<i>x</i> ₅	1 1		
		_	-		-		члены	
x_6	0	0	3/4	-9/4	0	1	члены 3	
x_6 x_2	0	0	3/4	-9/4 1	0	1 0	члены 3 1	

Базис	x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆	Свободные члены	Симплекс- отношения
x_6	0	0	3/4	-9/4	0	1	3	
x_2	0	1	0	1	0	-2/3	1	
x_5	0	0	0	-3	1	2	12	
x_1	1	0	0	0	0	1/3	6	
	0	0	0	5	0	-1		
			•					
Базис	x_1	<i>x</i> ₂	x_3	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	Свободные члены	Симплекс- отношения
Базис x_6	<i>x</i> ₁	0	<i>x</i> ₃	-9/4	<i>x</i> ₅	<i>x</i> ₆		
	_		-	-	-		члены	
<i>x</i> ₆	0	0	3/4	-9/4	0	1	члены 3	
x_6 x_2	0	0	3/4 1/2	-9/4 -1/2	0 0	1 0	члены 3 3	

Базис	x_1	x_2	<i>x</i> ₃	x_4	x_5	<i>x</i> ₆	Свободные члены	Симплекс- отношения
x_6	0	0	3/4	-9/4	0	1	3	
x_2	0	1	1/2	-1/2	0	0	3	
x_5	0	0	-3/2	3/2	1	0	6	
x_1	1	0	-1/4	3/4	0	0	5	
	0	0	3/4	11/4	0	0		

В последней строке отрицательных значений нет. Решение найдено!

$$x_1 = 5$$
; $x_2=3$; $x_3=0$; $x_4=0$; $x_5=6$; $x_6=3$

Максимальное значение целевой функции: $L=7x_1+5x_2=35+15=50$