## CS 321 HW - 5

### Assignments:

1. (5 pts) Convert the grammar below to CNF.

$$G = \{V,T,S,P\}$$

where

$$V = \{ S, A, B, C, D \} T = \{ 0, 1, 2 \}$$

and P is given below.

$$S \rightarrow A \mid ABD \mid 0BB$$

$$A \rightarrow 0 \mid BAA$$

$$B \rightarrow BB \mid 1 \mid 2 \mid \lambda$$

$$C \rightarrow CD \mid 0$$

$$D \rightarrow D1 \mid DD$$

Answer:

We can delete  $C \rightarrow CD \mid 0$ , because it isn't impact on  $S \rightarrow A \mid ABD \mid 0BB$ .

And we can delete D because it is infinite variable, also we should delete ABD variables.

In result  $S \rightarrow A \mid 0BB$ ;

Remove  $\lambda$  from B  $\rightarrow$  BB | 1 | 2 |  $\lambda$  and because B can be BB:

$$S \rightarrow A \mid 0 \mid 0B$$
;

$$A \rightarrow 0 \mid BAA;$$

$$B \rightarrow BB \mid 1 \mid 2;$$

Also we can change 0B:

$$0B \rightarrow T_0B; T_0 \rightarrow 0;$$

S will be 
$$S \rightarrow 0 \mid T_0B \mid A$$
 but  $A \rightarrow 0 \mid BAA$ ;

Change AA to  $T_A$  and in general we are receiving  $S \rightarrow 0 \mid T_0B \mid BT_A$ ;

Our grammar in CNF:

$$G = \{V, T, S, P\}, V = \{S, T_0, B, T_A, A\}, T = \{0, 1, 2\}, S = \{S\}, P = \begin{cases} S \rightarrow 0 \mid T_0 B \mid BT_A \\ T_0 \rightarrow 0 \\ T_A \rightarrow AA \\ A \rightarrow BT_A \mid 0 \\ B \rightarrow BB \mid 1 \mid 2 \end{cases};$$

2. (5 pts) Consider the CNF grammar

$$G = (V,T,S,P)$$
 where  $V = \{S, A, B, C, D\}$ ,

 $T = \{a, b, c\}, S = S \text{ and } P \text{ is given below.}$ 

$$S \rightarrow AB \mid AD \mid AC$$

$$A \rightarrow AA \mid a$$

$$B \rightarrow BB \mid AB \mid b$$

$$C \rightarrow AC \mid DC \mid c$$

$$D \rightarrow DD \mid b \mid c$$

Use the CYK algorithm to determine if the strings w1 = babbc and w2 = aaaabb are in the language L(G). Show the DP table. If the string is in L(G) construct the parse tree.

### Answer:

DP - table for w1

| i/j | 1 | 2 | 3 | 4 | 5 |
|-----|---|---|---|---|---|
| 1   | b |   |   |   |   |
| 2   |   | а |   |   |   |
| 3   |   |   | b |   |   |
| 4   |   |   |   | b |   |
| 5   |   |   |   |   | С |

| i/j | 1   | 2 | 3   | 4   | 5   |
|-----|-----|---|-----|-----|-----|
| 1   | B,D | Ø | В   | В   | Ø   |
| 2   |     | Α | S,B | S,B | S   |
| 3   |     |   | B,D | B,D | D,C |
| 4   |     |   |     | B,D | D,C |
| 5   |     |   |     |     | D,C |
|     |     |   |     |     |     |

For the first string w1 = babbc is not language, because corner of table equal  $\emptyset$ 

DP - table for w2

| i/j | 1 | 2 | 3 | 4 | 5 | 6 |
|-----|---|---|---|---|---|---|
| 1   | a |   |   |   |   |   |
| 2   |   | a |   |   |   |   |
| 3   |   |   | a |   |   |   |
| 4   |   |   |   | a |   |   |
| 5   |   |   |   |   | b |   |
| 6   |   |   |   |   |   | b |

| i/j | 1 | 2 | 3 | 4 | 5   | 6   |
|-----|---|---|---|---|-----|-----|
| 1   | Α | Α | Α | Α | S,B | S,B |
| 2   |   | Α | Α | Α | S,B | S,B |
| 3   |   |   | Α | Α | S,B | S,B |
| 4   |   |   |   | Α | S,B | S,B |
| 5   |   |   |   |   | B,D | B,D |
| 6   |   |   |   |   |     | B,D |



3. (15 pts) Construct NPDA's that accept the following languages on  $\Sigma$  = {a, b, c}. Give both a verbal explanation on how your NPDA works and the formal definition including the transition function and/or

transition graph. You must use JFLAP. Submit the transition graph in the HW pdf and the JFLAP code file for each problem.

a) L = { 
$$a^nb^{2n} : n \ge 0$$
 }

Answer:



- 1. For each a push A in stack; state reading a's;
- 2. Move to a state for seeing even b's for each is pop A off stack;
- 3. If consume the input and stack contains only Z we will reach to the final state.

b) L = { w : 
$$n_a(w) = 2n_b(w)$$
 }

Answer:



- 1. For each a push A in stack; state reading a's; For each c doing noting;
- 2. Move to a state for seeing even b's we need to check the top of stack. If top of stack is A string we will pop A off stack; Else if top of stack contain B or Z; we need to add B in a stack;
- 3. If consume the input and stack contains only Z we will reach to the final state.

# c) L = { $wcw^R : w \in \{a,b\}^*$ }

#### Answer:

- 1. For each a push A in stack; For each b push B in stack; state reading a's and b's
- 2. For each c move to state q1; Move to a state for seeing even a's for each is pop A off stack; Also seeing even b's for each is pop B off stack; State q1 keep check a's and b's strings.
- 3. If consume the input and stack contains only Z we will reach to the final state.

