Statistical Learning

Today

- Parameter Estimation:
 - Maximum Likelihood (ML)
- Maximum A Posteriori (MAP)
- Continuous case
- Learning Parameters for a Bayesian Network
- Naive Bayes
 - Maximum Likelihood estimates
- Priors
- Learning Structure of Bayesian Networks

Coin Flip

 $P(H|C_1) = 0.1$

 $P(H|C_2) = 0.5$

 $P(H|C_3) = 0.9$

Which coin will I use?

$$P(C_1) = 1/3$$

 $P(C_2) = 1/3$

 $P(C_3) = 1/3$

Prior: Probability of a hypothesis before we make any observations

Coin Flip

 $P(H|C_1) = 0.1$

 $P(H|C_2) = 0.5$

 $P(H|C_3) = 0.9$

Which coin will I use?

$$P(C_1) = 1/3$$

$$P(C_2) = 1/3$$

 $P(C_3) = 1/3$

Uniform Prior: All hypothesis are equally likely before we make any observations

Experiment I: Heads

Which coin did I use?

$$P(C_{\cdot}|H) = ?$$

 $P(C_{2}|H) = ?$

 $P(C_3|H) = ?$

 $P(C_1|H) = P(H|C_1)P(C_1)$

 $P(C_1) = 1/3$

 $P(C_2) = 1/3$

 $P(H|C_3) = 0.9$

 $P(C_3) = 1/3$

Experiment I: Heads

Which coin did I use?

 $P(C_1|H) = 0.066 \quad P(C_2|H) = 0.333 \quad P(C_3|H) = 0.6$

Posterior: Probability of a hypothesis given data

 $P(H|C_1) = 0.1$

 $P(H|C_2) = 0.5$

 $P(C_2) = 1/3$

 $P(H|C_3) = 0.9$

 $P(C_1) = 1/3$

 $P(C_3) = 1/3$

Experiment 2: Tails

Which coin did I use?

$$P(C_1|HT) = ?$$
 $P(C_2|HT) = ?$ $P(C_3|HT) = ?$

$$P(C_1|HT) = \alpha P(HT|C_1)P(C_1) = \alpha P(H|C_1)P(T|C_1)P(C_1)$$

$$P(H|C_1) = 0.1$$

 $P(C_1) = 1/3$

$$P(H|C_2) = 0.5$$

 $P(C_2) = 1/3$

$$P(H|C_3) = 0.9$$

$$P(C_3) = 1/3$$

Experiment 2: Tails

Which coin did I use?

$$P(C_1|HT) = 0.21$$
 $P(C_2|HT) = 0.58$ $P(C_3|HT) = 0.21$

$$P(C_1|HT) = \alpha P(HT|C_1)P(C_1) = \alpha P(H|C_1)P(T|C_1)P(C_1)$$

 $P(H|C_1) = 0.1$ $P(C_1) = 1/3$

 $P(H|C_2) = 0.5$

$$H|C_2) = 0.5$$

 $P(C_2) = 1/3$

 $P(H|C_3) = 0.9$

$P(C_3) = 1/3$

Experiment 2: Tails

Which coin did I use?

$$P(C_1|HT) = 0.21 P(C_2|HT) = 0.58 P(C_3|HT) = 0.21$$

 $P(H|C_2) = 0.5$ $P(C_2) = 1/3$

Your Estimate?

What is the probability of heads after two experiments?

Most likely coin:

Best estimate for P(H) $P(H|C_2) = 0.5$

 $P(H|C_2) = 0.5$ $P(C_2) = 1/3$

Your Estimate?

Maximum Likelihood Estimate: The best hypothesis that fits observed data assuming uniform prior

Most likely coin:

Best estimate for P(H)

 $P(H|C_2) = 0.5$

Using Prior Knowledge

- Should we always use Uniform Prior?
- Background knowledge:
 - Heads => you go first in Abalone against TA
 - TAs are nice people
 - => TA is more likely to use a coin biased in your favor

 $P(H|C_3) = 0.9$

Using Prior Knowledge

We can encode it in the prior:

$$P(C_1) = 0.05$$

$$P(C_2) = 0.25$$

$$P(C_{|}|H) = ?$$

Experiment I: Heads

$$P(C_{2}|H) = ?$$

$$P(C_3|H) = ?$$

$$P(C_1|H) = \alpha P(H|C_1)P(C_1)$$

 $P(H|C_1) = 0.1$

 $P(H|C_2) = 0.5$

$$P(H|C_3) = 0.9$$

 $P(C_3) = 0.70$

 $P(H|C_1) = 0.1$ $P(C_1) = 0.05$ $P(H|C_2) = 0.5$ $P(C_2) = 0.25$ $P(H|C_3) = 0.9$ $P(C_3) = 0.70$

Experiment I: Heads

Which coin did I use?

 $P(C_1|H) = 0.006 P(C_2|H) = 0.165 P(C_3|H) = 0.829$

ML posterior after Exp 1:

 $P(C_1|H) = 0.066 P(C_2|H) = 0.333 P(C_3|H) = 0.600$

 $P(H|C_1) = 0.1$ $P(C_1) = 0.05$

 $P(C_2) = 0.25$

 $P(H|C_2) = 0.5$

 $P(H|C_3) = 0.9$ $P(C_3) = 0.70$

Experiment 2: Tails

Which coin did I use?

P(C,|HT) = ?

 $P(C_2|HT) = ?$

 $P(C_3|HT) = ?$

 $P(C_1|HT) = \alpha P(HT|C_1)P(C_1) = \alpha P(H|C_1)P(T|C_1)P(C_1)$

 $P(H|C_1) = 0.1$

 $P(C_1) = 0.05$

 $P(H|C_2) = 0.5$ $P(C_2) = 0.25$

 $P(H|C_3) = 0.9$ $P(C_3) = 0.70$

Experiment 2:Tails

Which coin did I use?

 $P(C_1|HT) = 0.035 P(C_2|HT) = 0.481 P(C_3|HT) = 0.485$

 $P(C_1|HT) = \alpha P(HT|C_1)P(C_1) = \alpha P(H|C_1)P(T|C_1)P(C_1)$

 $P(H|C_1) = 0.1$

 $P(C_1) = 0.05$

 $P(H|C_2) = 0.5$ $P(C_2) = 0.25$

 $P(H|C_3) = 0.9$ $P(C_3) = 0.70$

Experiment 2: Tails

Which coin did I use?

 $P(C_1|HT) = 0.035 P(C_2|HT) = 0.481 P(C_3|HT) = 0.485$

Your Estimate?

What is the probability of heads after two experiments?

Most likely coin:

Best estimate for P(H)

 $P(H|C_3) = 0.9$

 $P(H|C_3) = 0.9$

 $P(C_3) = 0.70$

Your Estimate?

Maximum A Posteriori (MAP) Estimate: The best hypothesis that fits observed data assuming a non-uniform prior

Most likely coin:

Best estimate for P(H)

 $P(H|C_3) = 0.9$

 $P(H|C_3) = 0.9$ $P(C_3) = 0.70$

Did We Do The Right Thing?

 $P(C_1|HT) = 0.035 P(C_2|HT) = 0.481 P(C_3|HT) = 0.485$

 $P(H|C_1) = 0.1$

 $P(H|C_2) = 0.5$

 $P(H|C_3) = 0.9$

Did We Do The Right Thing?

 $P(C_1|HT) = 0.035 P(C_2|HT) = 0.481 P(C_3|HT) = 0.485$

C₂ and C₃ are almost equally likely

 $P(H|C_1) = 0.1$

 $P(H|C_1) = 0.1$

 $P(H|C_2) = 0.5$

 $P(H|C_3) = 0.9$

A Better Estimate

Recall:
$$P(H) = \sum_{i=1}^{3} P(H|C_i)P(C_i) = 0.680$$

$$P(C_1|HT) = 0.035 P(C_2|HT) = 0.481 P(C_3|HT) = 0.485$$

 $P(H|C_2) = 0.5$

 $P(H|C_3) = 0.9$

Bayesian Estimate

Bayesian Estimate: Minimizes prediction error, given data and (generally) assuming a non-uniform prior

$$P(H) = \sum_{i=1}^{3} P(H|C_i)P(C_i) = 0.680$$

 $P(C_1|HT) = 0.035 P(C_2|HT) = 0.481 P(C_3|HT) = 0.485$

 $P(H|C_2) = 0.5$

Comparison

- ML (Maximum Likelihood):
 P(H) = 0.5
- MAP (Maximum A Posteriori):
 P(H) = 0.9
- Bayesian: P(H) = 0.68

Comparison

ML (Maximum Likelihood):
 P(H) = 0.5
 after 10 experiments (HTH8): P(H) = 0.9

MAP (Maximum A Posteriori):
 P(H) = 0.9
 after 10 experiments (HTH8): P(H) = 0.9

Bayesian:
 P(H) = 0.68
 after 10 experiments (HTH*): P(H) = 0.9

26

Comparison

- ML (Maximum Likelihood):
- MAP (Maximum A Posteriori):
- Bayesian:
 - Minimizes error => great when data is scarce
 - Potentially much harder to compute

Comparison

- ML (Maximum Likelihood):
- MAP (Maximum A Posteriori):
 - Still easy to compute
 - Incorporates prior knowledge
- Bayesian:
 - Minimizes error => great when data is scarce
 - Potentially much harder to compute

-

Comparison

- ML (Maximum Likelihood):
 - Easy to compute
- MAP (Maximum A Posteriori):
 - Still easy to compute
 - Incorporates prior knowledge
- Bayesian:
 - Minimizes error => great when data is
 - Potentially much harder to compute

Summary For Now

- Prior:
- Uniform Prior:
- Posterior:
- Likelihood:

Summary For Now

- Prior: Probability of a hypothesis before we see any data
- Uniform Prior: A prior that makes all hypothesis equaly likely
- **Posterior**: Probability of a hypothesis after we saw some data
- Likelihood: Probability of data given hypothesis

Maximum Likelihood Estimate Maximum A Posteriori

Estimate

Bayesian Estimate

ŀ	rior	Hypothesis		
U	Iniform	The most likely	Ро	int
	Any	The most likely	Po	int
	Any	Weighted combination	Av	erage
	-	-		

Continuous Case

- In the previous example, we chose from a discrete set of three coins
- In general, we have to pick from a continuous distribution of biased coins

32

Parameter Estimation and Bayesian Networks Earthquake Т Т Т F Nbr2Calls (Nbr1Calls) P(A|E,B) = ?Prior Now compute $P(A|E, \neg B) = ?$ either MAP or + data = $P(A|\neg E,B) = ?$ Bayesian estimate $P(A|\neg E, \neg B) = ?$

- A Bayes Net where all nodes are children of a single root node
- Why?
 - Expressive and accurate?
 - Easy to learn?

Naive Bayes

- A Bayes Net where all nodes are children of a single root node
- Why?
 - Expressive and accurate? No why?
 - Easy to learn?

Naive Bayes

- A Bayes Net where all nodes are children of a single root node
- Why?
 - Expressive and accurate? No
 - Easy to learn? Yes

Naive Bayes

- A Bayes Net where all nodes are children of a single root node
- Why?
 - Expressive and accurate? No
 - Easy to learn? Yes
 - Useful? **Sometimes**

Inference In Naive Bayes

 Goal, given evidence (words in an email) decide if an email is spam

$$E = \{A, \neg B, F, \neg K, \ldots\}$$

Inference In Naive Bayes

$$\begin{split} P(S|E) &= \frac{P(E|S)P(S)}{P(E)} \\ &= \frac{P(A, \neg B, F, \neg K, \dots | S)P(S)}{P(A, \neg B, F, \neg K, \dots)} & \text{Independence} \\ &= \frac{P(A|S)P(\neg B|S)P(F|S)P(\neg K|S)P(\dots | S)P(S)}{P(A)P(\neg B)P(F)P(\neg K)P(\dots)} \end{split}$$

50

Inference In Naive Bayes

$$P(S|E) = \frac{P(A|S)P(\neg B|S)P(F|S)P(\neg K|S)P(\dots|S)P(S)}{P(A)P(\neg B)P(F)P(\neg K)P(\dots)}$$

$$P(\neg S|E) = \frac{P(A|\neg S)P(\neg B|\neg S)P(F|\neg S)P(\neg K|\neg S)P(\dots|\neg S)P(\neg S)}{P(A)P(\neg B)P(F)P(\neg K)P(\dots)}$$

Spam if $P(S|E) > P(\neg S|E)$

But...

Inference In Naive Bayes

 $P(S|E) \propto P(A|S)P(\neg B|S)P(F|S)P(\neg K|S)P(\dots|S)P(S)$ $P(\neg S|E) \propto P(A|\neg S)P(\neg B|\neg S)P(F|\neg S)P(\neg K|\neg S)P(\dots|\neg S)P(\neg S)$

Parameter Estimation Revisited

 Can we calculate Maximum Likelihood estimate of θ easily?

Data:

Max Likelihood estimate

Looking for the maximum of a function:
- find the derivative

- set it to zero

Parameter Estimation Revisited

 What function are we maximizing? P(data|hypothesis)

Parameter Estimation Revisited

- What function are we maximizing? P(data|hypothesis)
- hypothesis = h_{θ} (one for each value of θ)

Parameter Estimation Revisited

- What function are we maximizing? P(data|hypothesis)
- hypothesis = h_{θ} (one for each value of θ)
- $P(data|h_{\theta}) = P(||h_{\theta}|)P(||h_{\theta}|)P(||h_{\theta}|)P(||h_{\theta}|)P(||h_{\theta}|)$

55

Parameter Estimation Revisited

- What function are we maximizing? P(data|hypothesis)
- hypothesis = h_{θ} (one for each value of θ)
- $P(\text{data}|h_{\theta}) = P(|\mathbf{a}|h_{\theta})P(|\mathbf{a}|h_{\theta})P(|\mathbf{a}|h_{\theta})P(|\mathbf{a}|h_{\theta})P(|\mathbf{a}|h_{\theta})P(|\mathbf{a}|h_{\theta})P(|\mathbf{a}|h_{\theta})$

Parameter Estimation Revisited

- What function are we maximizing? P(data|hypothesis)
- hypothesis = h_{θ} (one for each value of θ)
- $P(\text{data}|h_{\theta}) = P(|h_{\theta}|h_{\theta})P(|h_{\theta}|h_{\theta})P(|h_{\theta}|h_{\theta})$ = $\theta (1-\theta) (1-\theta) \theta$ = $\theta^{\#}(1-\theta)^{\#}(1-\theta)$

58

Parameter Estimation Revisited

• To find θ that maximizes $\theta^{\#} (1-\theta)^{\#} (1-\theta)^{\#}$ we take a derivative of the function and set it to 0. And we get:

Parameter Estimation Revisited

- To find θ that maximizes $\theta^{\#} = (1-\theta)^{\#}$ we take a derivative of the function and set it to 0. And we get:
- $P(S) = \theta = \frac{\# \square}{\# \square + \# \lozenge}$
- You knew it already, right?

59

Problems With Small Samples

- What happens if in your training data apples are not mentioned in any spam message?
- P(A|S) = 0
- Why is it bad?

 $P(S|E) \propto \mathbf{0} P(\neg B|S)P(F|S)P(\neg K|S)P(\dots|S)P(S) = \mathbf{0}$

Smoothing

- Smoothing is used when samples are small
- Add-one smoothing is the simplest smoothing method: just add I to every count!

Priors!

Priors!

- If we have a slight hunch that $P(S) \approx p$

$$P(S) = \frac{\# \square + p}{\# \square + \# \lozenge + 1}$$

Priors!

- Recall that P(S) = # ₩ + # ₺
- If we have a slight hunch that $P(S) \approx p$

$$P(S) = \frac{\# \square + p}{\# \square + \# \lozenge + 1}$$

• If we have a **big** hunch that $P(S) \approx p$

where m can be any number > 0

Priors!

- Note that if m = 10 in the above, it is like saying "I have seen 10 samples that make me believe that P(S) = p"
- Hence, m is referred to as the equivalent sample size

Priors!

- Where should p come from?
- No prior knowledge => p=0.5
- If you build a personalized spam filter, you can use p = P(S) from some body else's filter!

Inference in Naive Bayes Revisited

• Recall that

 $P(S|E) \propto P(A|S)P(\neg B|S)P(F|S)P(\neg K|S)P(\ldots|S)P(S)$

Is there any potential for trouble here?

68

Inference in Naive Bayes Revisited

• Recall that

 $P(S|E) \propto P(A|S)P(\neg B|S)P(F|S)P(\neg K|S)P(\dots|S)P(S)$

- We are multiplying lots of small numbers together => danger of underflow!
- Solution? Use logs!

Inference in Naive Bayes Revisited

 $log(P(S|E)) \propto log(P(A|S)P(\neg B|S)P(F|S)P(\neg K|S)P(\dots|S)P(S))$

 $| \propto log(P(A|S)) + log(P(\neg B|S)) + log(P(F|S)) + log(P(\neg K|S)) + log(P(\ldots|S)) + log(P(S))) |$

 Now we add "regular" numbers -- little danger of over- or underflow errors!

70

Learning The Structure of Bayesian Networks

- General idea: look at all possible network structures and pick one that fits observed data best
- Impossibly slow: exponential number of networks, and for each we have to learn parameters, too!
- What do we do if searching the space exhaustively is too expensive?

Learning The Structure of Bayesian Networks

- Local search!
 - Start with some network structure
 - Try to make a change (add, delete or reverse node)
 - See if the new network is any better

Learning The Structure of Bayesian Networks

- What network structure should we start with?
 - Random with uniform prior?
 - Networks that reflects our (or experts') knowledge of the field?

Learning The Structure of Bayesian Networks

prior network-equivalent sample size

| March | M

73

Learning The Structure of Bayesian Networks

- We have just described how to get an ML or MAP estimate of the structure of a Bayes Net
- What would the Bayes estimate look like?
 - Find all possible networks
 - Calculate their posteriors
 - When doing inference: result weighed combination of all networks!