LPHYS2114 Non Linear Dynamics Série 10 – Tent map. Linear 1d maps

Tent map and the Cantor set

We will consider the tent map defined by:

$$f(x) = \begin{cases} 3x, & x \le 1/2, \\ 3(1-x), & x \ge 1/2. \end{cases}$$
 (1)

The graph of f is shown in Figure 1. We are interested in the collection of points x_0 from which orbits originate.

FIGURE 1 – Left: Graph of the tent map defined by (1). Right: Graph of the logistic map with a=6.

1. Cantor set 1/3. It is convenient to introduce the Cantor set 1/3. To define it we consider the interval [a, b] and a function T defined by

$$T([a,b]) = [a, a + (b-a)/3] \cup [b - (b-a)/3, b].$$
(2)

For the union of disjoint intervals $I = \bigcup_{k=1}^{n} [a_k, b_k]$, we define $T(\bigcup_{k=1}^{n} [a_k, b_k]) = \bigcup_{k=1}^{n} T([a_k, b_k])$, i.e. T agit séparément sur chaque intervalle de l'union.

- (a) Given $K_0 = [0, 1]$. We iteratively define $K_{n+1} = T(K_n)$, $n \ge 0$. Calculate K_1, K_2, K_3 and the et les tracer.
- (b) The Cantor set is $K_{\infty} = \lim_{n \to \infty} K_n$. Show that this collection is not empty.
- (c) Show that the sum $|K_n|$ of the length of the intervals of K_n is given by $|K_n| = (2/3)^n$. Deduce that K_{∞} is the null measure.

The ternary representation of a point $x \in K_0$ is given by

$$x = .a_1 a_2 a_3 \dots = \sum_{n=1}^{\infty} \frac{a_n}{3^n}, \quad a_n \in \{0, 1, 2\}.$$
 (3)

On admet toutes les suites de chiffres ternaires, ce qui implique que la représentation n'est pas unique. En effet pour $a_n > 0$ on a $a_1 \dots a_n \bar{0} = a_1 \dots (a_n - 1)\bar{2}$.

- (d) Montrer que $K_{\infty}=\{x=.a_1a_2a_3\dots|a_n\in\{0,2\},\,n\geqslant 0\}$. En déduire que K_{∞} n'est pas dénombrable.
- (e) Établir que l'application $x \mapsto 3x$ est une bijection entre $[0, 1/3] \cap K_{\infty}$ et K_{∞} . Expliquer dans quel sens il est alors autosimilaire.
- **2. Tent map.** We now use the results from the previous question to study the tent map f.
 - (a) Prove that the orbit of points $x_0 \notin K_0 = [0,1]$ under the map f is not n'est pas bornée.
 - (b) Show that the points $x_0 \in K_0 \setminus K_1$ leave K_0 after one iteration. Deduce that all the orbits are not En déduire que leur orbite n'est pas bornée.
 - (c) Find all points which leave the set K_0 after n iterations.
 - (d) Show taht the set of points Montrer que l'ensemble des points dont l'orbite reste dans K_0 est K_∞ . Conclure.
- 3. L'application logistique avec a > 4. We now will look at the logistic map with a > 4, shown in Figure (1) and the et de l'étude de l'application en tente, décrire l'ensemble des points x_0 dont l'orbite est bornée.

Linear iterations in the plane

4. A map on the plane. We consider the linear map $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined by f(x) = Ax with

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}. \tag{4}$$

- (a) Calculate the eigan-values and eigan-vectors of A.
- (b) Deduce the phase portrait of the map $x_{n+1} = f(x_n), n \ge 0$.
- **5.** Conserved Quantities. A function $E: \mathbb{R}^m \to R$ is called quantity conserving for the map $f: \mathbb{R}^m \to \mathbb{R}^m$ if $E \circ f = E$.
 - (a) Show that E is est constante le long les orbites de l'itération $x_{n+1} = f(x_n)$ définie par f.
- (b) On considère l'application linéaire f(x) = Ax avec $x \in \mathbb{R}^2$. Show that $E(x) = x_1^2 + x_2^2$ is quantity conserving for

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}. \tag{5}$$

- (c) Sketch the phase portrait of the map defined by f.
- (d) Find the non-trivial conserved quantities for

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \text{et} \quad A = \begin{pmatrix} 2 & 0 \\ 0 & 1/3 \end{pmatrix}. \tag{6}$$