Evaluating assembly quality

How good is my assembly?

- 1. Is the assembler "correct"?
- 2. Will the assembly answer your question?
 - Functional Profiling want high assembly rate
 - Novel taxa, common or rare need accurate genome binning
 - Biosynthetic gene cluster finding requires long sequences

How good is my assembly?

-Or-

How well does the assembly represent the reads dataset that when into it?

Many different statistics to <u>compare</u> assemblies

Many metrics are "relative"

Some may only tell you if one assembly is different (maybe better/worse) than another.

Some metrics are more important to improve than others

Improving % reads is possibly the most important

But luckily, sequencing tech will only get better and cheaper!

Some great recent references:

- 1. Critical Assessment of Metagenome Interpretation (CAMI) challenge
 - a. Comparison using mock communities from isolate

http://www.biorxiv.org/content/biorxiv/early/2017/01/09/099127.full.pdf

- Vollmer et al "Comparing and Evaluating Metagenome Assembly Tools from a Microbiologist's Perspective - Not Only Size Matters!"
 - a. Comparison using experimental (real) metagenomic data

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169662

3. **Awad et al** "Evaluating Metagenome Assembly on a Simple Defined Community with Many Strain Variants"

http://www.biorxiv.org/content/early/2017/06/25/155358