Artificial Intelligence

Local Search

Fred Koriche

koriche@lirmm.fr

Overview

- I. Optimization Problems
- II. Local Search
- III. Hill Climbing
- IV. Simulated Annealing
- V. Evolutionary Algorithms

Problem

Search Space

Space *S* of all possible solutions

Constraints

Separate feasible from infeasible solutions

Objective

Separate optimal from feasible solutions

N-Queens

Solution

Any placement of the N queens on the chess board

Constraints

Two queens cannot be on the same column

Objective

Minimize the number of queens attacking each other

Pathfinding

Solution

Any path in the graph of waypoints starting from the initial position

Constraints

The path must reach a goal node

Objective

Minimize the cost function of each state

Constraint Optimization

Solution

Any assignment of variables to discrete values

Constraints

A set of **rules** that must be satisfied

Objective

Maximize the set of **preferences**

AAJ					onday 37/200			esday 18/200			nesday 19/200			rsday 0/200		Frid 08/1	day 1/200		Satu 08/12		
AVE EAE ELEC JUBB JUDS JUDS JUDS JUDS JUDS JUDS JUDS JUDS	۱r	Hrs	Irs	Job	Time	Hrs	Job	Time	Hrs	Job	Time	Hrs	Job	Time	Hrs	Job	Time	Hrs	Job	Time	1
EAE 1302 04:00F 35 ELEC 28 10:00A 28 IDS 28 10								3			9	- 8	- 3			8				3	
ELEC		80 8								1.	18 18					88	is 8				
BBB		100 10								1302	04:00F	35				30					l
DS																					l
DS 28 10:004 PB													2000			-200					l
PPB													28	09:004	2	28	07:304	2			l
88A 27 01:00P 3 8HE 27 09:304 2			_							28	10:004										l
SHE 27 09:304 2								2			100										l
				27	01:00F	3		9			9	- 1				į.	8 8			9	l
27 09:00A 3 1302 08:30A 8		82.0	- 1								18 15	- 3				63					l
		20 1					27	09:004	3	1302	08:304	8				100					l
										-											
							(
							1														
										6						30					
		40.00								1		- 3				90	2 2				
															Ш						

Non Linear Programming

Solution

Any assignment of variables to real values

Constraints

A set of **rules** that must be satisfied

Objective

Minimize (or maximize) a **function** on the variables

Maximize

$$\frac{\sum_{i=1}^{n} \cos^{4}(x_{i}) - 2 \prod_{i=1}^{n} \cos^{2}(x_{i})}{\sqrt{\sum_{i=1}^{n} i x_{i}^{2}}}$$

Subject to

$$\prod_{i=1}^{n} x_i \ge 075, \ \sum_{i=1}^{n} \le 7.5, \ 0 \le x_i \le 10$$

Local Search

Local Search

- 1 Pick a solution and evaluate it.
- Apply a local transformation to generate a new solution and evaluate it
- If the new solution is better, then exchange it with the current solution.

Repeat 1-3 until no transformation improves the current solution

Hill Climbing

```
select a point x at random;
v_x = \text{Eval}(x);
moves = 1;
repeat
for each point y in Neighbors(x)
     v_{v} = \text{Eval}(\mathbf{y});
     if v_y > v_x then
          x = y;
          v_x = v_y;
until moves = MaxMoves;
return x;
```


Iterative Hill Climbing

```
select a point x at random;
v_x = \text{Eval}(x);
tries = 1;
repeat
     moves = 1;
     repeat
     for each point y in Neighbors(x)
          v_v = \text{Eval}(y);
         if v_y > v_x then
              x = y;
              v_x = v_y;
     until moves = MaxMoves;
until tries = MaxTries
return x;
```


Local Pathfinding

Solution

Any path from initial state to goal state

Evaluation

Cost of the path

Neighbors

Local Pathfinding

Solution

Any path from initial state to goal state

Evaluation

Cost of the path

Neighbors

Local Pathfinding

Solution

Any path from initial state to goal state

Evaluation

Cost of the path

Neighbors

Local Pathfinding

Solution

Any path from initial state to goal state

Evaluation

Cost of the path

Neighbors

GSAT Algorithm

Solution

Any assignment of variables to discrete values

Evaluation

Number of clauses satisfied

Neighbors

GSAT Algorithm

Solution

Any assignment of variables to discrete values

Evaluation

Number of clauses satisfied

Neighbors

$$(x_1 \vee \overline{x}_2) \wedge (x_2 \vee \overline{x}_3) \wedge (x_2 \vee x_4) \wedge (x_1 \vee x_3)$$

GSAT Algorithm

Solution

Any assignment of variables to discrete values

Evaluation

Number of clauses satisfied

Neighbors

$$(x_1 \vee \overline{x_2}) \wedge (x_2 \vee \overline{x_3}) \wedge (x_2 \vee x_4) \wedge (x_1 \vee x_3)$$

	x_1	x_2	x_3	x_4
1	0	0	0	0

GSAT Algorithm

Solution

Any assignment of variables to discrete values

Evaluation

Number of clauses satisfied

Neighbors

$$(x_1 \vee \overline{x_2}) \wedge (x_2 \vee \overline{x_3}) \wedge (x_2 \vee x_4) \wedge (x_1 \vee x_3)$$

	x_1	x_2	x_3	x_4
1	0	0	0	0

GSAT Algorithm

Solution

Any assignment of variables to discrete values

Evaluation

Number of clauses satisfied

Neighbors

$$(x_1 \vee \overline{x}_2) \wedge (x_2 \vee \overline{x}_3) \wedge (x_2 \vee x_4) \wedge (x_1 \vee x_3)$$

	x_1	x_2	x_3	x_4
1	0	0	0	0
2	1	0	0	0

GSAT Algorithm

Solution

Any assignment of variables to discrete values

Evaluation

Number of clauses satisfied

Neighbors

$$(x_1 \vee \overline{x}_2) \wedge (x_2 \vee \overline{x}_3) \wedge (x_2 \vee x_4) \wedge (x_1 \vee x_3)$$

	x_1	x_2	x_3	x_4
1	0	0	0	0
2	1	0	0	0
3	1	0	0	1

Strengths

Fast algorithms

No memory

Very simple!

Weaknesses

Frequently return local optimas

No information in the deviation between the local optimum and the global optimum

Difficult to provide an upper bound on the overall computational time

Hill-Climbing

Stochastic Hill-Climbing

Simlated Annealing

Stochastic Hill Climbing

```
trial = 1;

select a point x at random;

v_x = \text{Eval}(x);
```

repeat

take at random a point y in Neighbors(x)

$$v_y = \text{Eval}(y);$$

select
$$x = y$$
 with probability $\left(1 + e^{\frac{v_x - v_y}{T}}\right)^{-1}$

until trial = MaxTrials;

return x;

Idea

- 1. Select only one point in the neighborhood of the current solution
- 2. Accept this new point with some probability that depends on the relative merit of the new point

The temperature T

Plot function with

$$v_x = 0$$

 $v_y \in [0, 20]$
 $T \in [1, 50]$

Simulated Annealing

```
t = 1:
select a point x at random;
v_x = \text{Eval}(x);
repeat
  T = T_{max}
  repeat
     take at random a point y in Neighbors(x)
     if v_x < v_v
           then x = y;
          select x = y with probability \left(\frac{v_x - v_y}{1 + e^{-T}}\right)^{-1}
     else
     T = T_{max} e^{-tr};
  until T < T_{min};
until t = maxTrials;
return x:
```

Idea

- 1. Start with $T = T_{max}$
- 2. Iteratively lower *T*
- 3. If temperature is T_{min} restart with $T = T_{max}$

Non-Linear Programming

Function Minimization

Constraint Optimization

SA-SAT

SA-TSP

Solutions are viewed as chromosomes

Evolutionary Algorithm

t = 1; Initialize Population P_t ;

repeat

Evaluate P_t ;

Select P_{t+1} from P_t ;

Alter P_{t+1} ;

t = t + 1;

until t = maxTrials;

return best point in P_i ;

GA-SAT

$$(x_1 \vee \overline{x}_2) \wedge (x_2 \vee \overline{x}_3) \wedge (x_2 \vee x_4) \wedge (x_1 \vee x_3)$$

GA-PathFinding

GA-PathFinding

GA-NLP

Initialization

Randomly choose a positive for x_i and use its invser for x_{i+1} . The last variable is either 0.75 (odd) or multiplied by 0.75 (even)

Crossover

$$(x)(y) - (x^{\alpha} y^{1-\alpha})$$

 α randomly chosen in [0,1]

Mutation

Pick two variables randomly, multiply one by a random factor q > 0 and the other by 1/q

Subject to

$$\prod_{i=1}^{n} x_i \ge 075, \ \sum_{i=1}^{n} \le 7.5, \ 0 \le x_i \le 10$$

N=50 population of size 30, 30000 générations, probability of crossover 1 probability of mutation 0.06

Solution 0.833197 Better than any other algorithm!