C

Dr. Mathias K.KOUAKOU

Université F.H.B de Cocody Abidjan (Côte d'Ivoire)

cw1kw5@yahoo.fr

Table des matières

1	Lois	s de composition internes	4
	1.1	Définitions et exemples	4
	1.2	Parties stables	5
		1.2.1 Définition	5
		1.2.2 Loi induite sur une partie stable	5
	1.3	Lois associatives	5
	1.4	Lois commutatives	6
	1.5	Elément neutre	6
	1.6	Eléments symétriques	7
	1.7	Homomorphismes	8
2	Gro	pupes	10
	2.1	Définitions et Exemples	10
	2.2	Sous-groupes d'un groupe	11
		2.2.1 Définitions et Exemples	11
		2.2.2 Intersection de sous-groupes d'un même groupe	12
		2.2.3 Réunions de sous-groupes	12
	2.3	Classes d'équivalence suivant un sous-groupe	13
		2.3.1 Relation de Lagrange	13
		2.3.2 Sous-groupes distingés dans un groupe	13
	2.4	Groupes quotients	14
3	Anr	neaux	16
	3.1	Définition et exemples	16
	3.2	Sous-anneaux, Idéaux	18
		3.2.1 Sous-anneaux	18
		3.2.2 Idéaux	18
	3.3	Anneaux quotients	19
	3.4	L'anneau quotient $\frac{\mathbb{Z}}{n\mathbb{Z}}$	19
	3.5	Homomorphisme d'anneaux	21
	3.6	Théorème Chinois et systèmes de congruence	21
		3.6.1 Théorème 6 : (Chinois)	21
		3.6.2 Systèmes de conguence	22
4	Poly	ynômes et fractions rationnelles à une variable	23
	4.1	Polynômes à une variable	23
		4.1.1 Définitions	23

		4.1.2	Additions et multiplication dans $A[X]$	24
		4.1.3	Division euclidienne et division suivant les puissances croissantes)	24
		4.1.4	Polynômes irréductibles	25
		4.1.5	Racines d'un polynôme	25
		4.1.6	Dérivée formelle d'un polynôme et racines multiples	26
		4.1.7	Polynômes scindés de $K[X]$	26
		4.1.8	Les polynômes de $\mathbb{R}[X]$	27
	4.2	Le cor	ps des fractions rationnelles à une variable	27
		4.2.1	Définition	27
		4.2.2	L'addition et la multiplication dans $K(X)$	28
		4.2.3	Décomposition en éléments simples d'une fraction rationnelle .	28
5	Esp	aces ve	ectoriels sur un corps	31
	5.1	Lois	le composition externes	31
	5.2	Espace	es vectoriels sur un corps	31
	5.3	Sous-e	spaces vectoriels	32
	5.4	Applie	eations linéaires ou Homomorphismes d'espaces vectoriels	32
	5.5	Espace	es vectoriels quotients	33

Chapitre 1

Lois de composition internes

1.1 Définitions et exemples

Soient E un ensemble non vide. On appelle loi de composition interne l.c.i sur E toute application f de $E \times E$ dans E.

Avec une loi de composition interne sur E, on a une règle de base pour calculer dans E. Par exemple si :

$$E = \{ \bigcirc, \triangle, \square \}$$

une loi de composition interne sur E est une application f de $E \times E \longrightarrow E$. Une telle application peut être définie par un tableau

*	0		Δ
\bigcirc		\triangle	0
	\bigcirc	Δ	Δ
\triangle	\bigcirc		0

en convenant que f(X,Y) est l'élément du tableau se trouvant sur la ligne X et la colonne Y.

On pose
$$X * Y = f(X, Y)$$

On a alors

$$\bigcirc * \bigcirc = \Box$$

$$\bigcirc * \triangle = \bigcirc$$

$$\triangle * \bigcirc = \bigcirc$$

$$\triangle * \triangle = \bigcirc$$

$$(\triangle * \Box) * \bigcirc = \Box * \bigcirc = \bigcirc$$

$$\triangle * (\Box * \bigcirc) = \triangle * \bigcirc = \bigcirc$$

• Exemples classiques

1.
$$E = \mathbb{R}$$
 ou $E = \mathbb{C}$

$$(x,y) \longmapsto x+y \; ; \; (x,y) \longmapsto x \times y$$

2. si $A \neq \varnothing$, on pose $E = \mathcal{F}(A)$ l'ensemble de toutes les applications de A dans A

$$(f,g) \longmapsto f \circ g$$

3. La réunion " \bigcup " l'intersection " \bigcap " définissent sur $\mathcal{P}(A)$ des lois de compositions internes.

Notation:

Une loi de composition interne $f: E \times E \to E$ est en général désignée explicitement par un symbole : \bullet , +, *, \top , \bot , \circ , Δ , \cdots , etc et f(x,y) est noté $x \bullet y, x+y, x*y, \cdots$, etc La notation x+y est dite additive, alors que toutes les autres, $x \bullet y, x*y, \cdots$ sont dites multiplicatives.

1.2 Parties stables

1.2.1 Définition

Soient * une loi de composition interne sur E et A une partie <u>non vide</u> de E. On dit que A est stable pour la loi *, si

$$\forall (a,b) \in A^2$$
, on a : $a * b \in A$

Exemples:

- Dans \mathbb{R} muni de l'addition, {0}, \mathbb{N} , \mathbb{Z} , \mathbb{Q} , [1, +∞[,]-∞, -1], · · · , etc sont stables
- Dans \mathbb{R} muni de la multiplication,

$$\{0\}$$
, \mathbb{N} , \mathbb{Z} , \mathbb{Q} , $[1, +\infty[$, $[0, 1]$, $[-1, 1]$, \mathbb{R}_+ , \mathbb{R}^* , $\{1\}$, $\{1, -1\}$, \cdots , etc

sont stables.

– Dans $\mathcal{F}(A)$ muni de la composition des applications, le sous ensembles des applications injectives, celui des applications surjectives, et celui des applications bijectives sont stables.

1.2.2 Loi induite sur une partie stable

Si A est une partie E stable pour la loi *, alors * définit une l.c.i sur A. par $f': A \times A \longrightarrow A$, $(a,b) \longmapsto a * b$.

1.3 Lois associatives

Une loi de composition interne * sur E est dite associative si

$$\forall (x, y, z) \in E^3$$
, on $a \times (y \times z) = (x \times y) \times z$

Exemples et contre - exemples

- l'addition et la multiplication dans \mathbb{C} sont associatives
- La composition des applications est associative
- $\cup \text{ et } \cap \text{ sont associatives dans } \mathcal{P}(A)$
- Sur \mathbb{R} , la loi * définie par : x*y=x.y+2 n'est pas associative (1*2)*0=2 alors que 1*(2*0)=4

Produit fini d'éléments de E

Soit E un ensemble non vide muni d'une loi de composition interne * et soit $(x_1, x_2, \dots, x_n) \in E^n$ (où $n \geq 3$). Le produit de la suite finie d'éléments de E: (x_1, x_2, \dots, x_n) est défini par le produit de la suite finie d'éléments de E: (x_1, x_2, \dots, x_n) est défini inductivement par

$$x = x_1 * x_2 * \dots * x_n = x = (x_1 * x_2 * \dots * x_{n-1}) * x_n$$

Proposition Si la loi de composition * est associative, alors

$$x = (x_1 * \cdots x_i) * (x_{i+1} * \cdots * x_n) \quad pour \ tout \ 1 \le i < n$$

Preuve par récurrence sur n.

- Pour n=3 , c'est la définition de l'associativité
- à l'ordre n+1

$$(x_1 * \cdots x_i) * (x_{i+1} * \cdots * x_{n+1})$$

- $= (x_1 * \cdots x_i) * [(x_{i+1} * \cdots * x_n) * x_{n+1}]$ par définition
- $= [(x_1 * \cdots x_i) * (x_{i+1} * \cdots * x_n)] * x_{n+1}$ par associativité
- $= [x_1 * \cdots x_i * x_{i+1} * \cdots * x_n] * x_{n+1} \text{ par H.R}$
- $-=x_1*\cdots x_i*x_{i+1}*\cdots *x_n*x_{n+1}$ par définition.

Le produit $\underbrace{x * x * \cdots * x}_{nfois}$ est noté x^n avec une loi additive +, la somme $\underbrace{x + x + \cdots + x}_{nfois}$

est notée nx

1.4 Lois commutatives

Soit * une loi de composition interne sur E. On dit que deux éléments a et b de E sont permutables (ou commutent) pour la loi * si

$$a * b = b * a$$

On dit que la loi * est commutative si, pour tout $(x,y) \in E^2$, on a x * y = y * x (en d'autres termes, les éléments de E sont permutables $2 \ a \ 2$).

Notons bien que tout élément $x \in E$ permute avec lui même. Si * de associative, tout x permute avec x^n , $(n \in \mathbb{N}^*)$.

Exemples et contre exemples

- $-+, \times$ sont des lois commutatives dans $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$.
- $-\bigcap$ et \bigcup sont commutatives.
- La composition des applications "∘" n'est pas commutative.

Remarque : Il y a des lois de composition internes qui ne sont ni associatives , ni sont pas commutatives.

1.5 Elément neutre

Soit E un ensemble muni d'une loi de composition * un élément $a \in E$ est dit neutre pour la loi *, si pour tout $x \in E$, on a

$$x * a = x$$
 et $a * x = x$

exemples

- 0 est élément neutre de + dans \mathbb{R} .
- -1 est élément neutre de \times dans \mathbb{R} .
- A est élément neutre de \bigcap dans $\mathcal{P}(A)$.
- Le vide est élément neutre de \bigcup dans $\mathcal{P}(A)$.
- $-id_A$ est élément neutre de \circ dans $\mathcal{F}(A)$.

Il y a cependant des lois qui n'ont pas d'élément neutre par exemples

- La loi * définie sur \mathbb{R} par $x * y = x \cdot y + 2$ n'a pas d'élément neutre.
- La loi \top définie sur \mathbb{R} par : $x \top y = x^2 \cdot y$ n'a pas d'élément neutre.
- La multiplication \times définie sur $[2, +\infty[$ n'a pas d'élément neutre.

Theorème 2 : Si une loi de composition interne admet un élément neutre, il est unique.

1.6 Eléments symétriques

Soient E un ensemble non vide muni d'une loi de composition interne \ast admettant "a" comme élement neutre

– Un élément $x \in E$ admet un symétrique s'il existe un $x' \in E$ tel que x * x' = x' * x = a. Dans ce cas on dit que x' est un symétrique de x.

exemples:

- Dans \mathbb{R} muni de +, tout élément $x \in \mathbb{R}$ admet -x pour symétrique.
- Dans \mathbb{R} muni de \times , tout les éléments $x \in \mathbb{R}^*$ admet $\frac{1}{x}$ pour symétrique.
- Dans $\mathcal{P}(A)$ muni de la loi Δ

$$X\Delta Y = (X \cap \overline{Y}) \cup (\overline{X} \cap Y)$$

Le vide \emptyset est élément neutre et tout élément $X \in \mathcal{P}(A)$ s'admet lui-même pour symétrique.

Théorème 3 : Si E est un ensemble non vide muni d'une loi de composition interne associative, admettant un élément neutre, alors tout $x \in E$ admet au plus un symétrique.

Notation : Si $x \in E$ admet un symétrique, ce symétrique est unique, on le note x^{-1} (en notation multiplicative) et -x (en notation additive).

Proposition 4 : Si x et y sont deux éléments de E admettant chacun symétrique, alors x*y admet $y^{-1}*x^{-1}$ pour symétrique

$$(x*y)^{-1} = y^{-1} * x^{-1}$$

Preuve : Calculer $(x * y) * (y^{-1} * x^{-1})$ puis $(y^{-1} * x^{-1}) * (x * y)$

Corollaire 5: Si x admet un symétrique, alors pour tout $n \in \mathbb{N}^*$, x^n admet $(x^{-1})^n$ pour symétrique:

$$(x^n)^{-1} = (x^{-1})^n$$

1.7 Homomorphismes

Définition : Soient E, F deux ensembles munis respectivement des lois de compositions internes * et \bullet . On dit qu'une application $f: E \longrightarrow F$ est un homomorphisme si

$$\forall (x, x') \in E^2$$
, on a $f(x * x') = f(x) \bullet f(x')$

Exemples

- 1. $id_E: E \longrightarrow E$ est un homomorphisme
- 2. Si la loi admet $\varepsilon \in F$ comme élément neutre, alors l'application constante $h: E \longrightarrow F, x \longmapsto \varepsilon$ est un homomorphisme.
- 3. $\ln : \mathbb{R}_+^* \longrightarrow \mathbb{R}$ est un homomorphisme si on considère la multiplication dans \mathbb{R}_+^* et l'addition dans \mathbb{R} .
- 4. $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$, $(a, b) \longmapsto 2a + b$ est un homomorphisme avec l'addition dans \mathbb{R}^2 et l'addition dans \mathbb{R} . \mathbb{R}^2 muni de la loi cartésienne

$$(a,b) + (a',b') = (a+a',b+b')$$

Définitions:

- Un homomorphisme bijectif est appelé isomorphisme.
- Un homomorphisme de (E,*) dans (E,*) est appelé endomorphisme.

Proposition 6: Soient $f: E \longrightarrow F$ et $g: F \longrightarrow G$ deux homomorphismes, alors $g \circ f$ est un homomorphisme.

Preuve : On considère (E, *), (F, \bullet) , (G, \bot) .

Proposition 7: Si $f: E \longrightarrow F$ est un isomorphisme, alors la bijection réciproque f^{-1} est un isomorphisme.

Exercice 1

Soit $f: E \longrightarrow F$ un homomorphisme

- 1. Montrer que si A est une partie stable de E, alors f(A) est une partie stable de F. (En particulier Imf est une partie stable de F).
- 2. Montrer que si B est une partie stable de F, alors $f^-(B)$ est une partie stable de E.

<u>Exercice 2</u> Soient E et F deux ensembles munis respectivement des lois de composition interne * et \bullet

1. Montrer que sur $E \times F$, * et • induisent une loi de composition interne \top définie par

$$(x,y) \top (x',y') = (x*x',y \bullet y')$$

2. Montrer que si A et B sont respectivement des parties stables de E et de F, alors $A \times B$ est une partie stable pour $E \times F$ pour la loi \top .

Chapitre 2

Groupes

2.1 Définitions et Exemples

On appelle groupe un ensemble non vide E muni d'une loi de composition interne * possédant les propriétés suivantes :

- i) * est associative.
- ii) * admet un élément neutre dans E.
- iii) Tout élément de E admet un symétrique.

Si de plus la loi * est commutative, le groupe G est dit commutatif. Les groupes commutatifs sont appelés groupes abéliens.

Exemples classiques

- 1. \mathbb{Z} muni de l'addition + est un groupe abélien. \mathbb{Z} muni de la multiplication \times n'est pas un groupe.
- 2. \mathbb{Q} , \mathbb{R} , \mathbb{C} sont des groupes abélien avec l'addition +, mais ne sont pas des groupes avec la multiplication \times .
- 3. \mathbb{Q}^* , \mathbb{R}^* , \mathbb{C}^* sont des groupes avec la multiplication.
- 4. Soit A un ensemble non vide.
 - $S(A) = \{ f \in \mathcal{F}(A) : f \text{ bijective} \}$ est une partie stable par la composition des applications \circ .
 - o définit donc une loi de composition interne sur $\mathcal{S}(A)$, et muni de cette loi, $\mathcal{S}(A)$ est un groupe non abélien.
 - Pour $A = \{1, 2, \dots, n\}.$
 - $\mathcal{S}(A)$ est noté simplement S_n et est appelé groupe des premutations de n éléments $Card(\mathcal{S}_n) = n!$
- 5. $\mathcal{P}(\mathcal{A})$ avec la différence symétrique Δ est un groupe abélien.
- 6. Le produit cartésien de deux groupes (E,*) et (F,\bullet) est un groupe avec la loi cartésienne \top :

$$(e,f)\top(e',f')=(e*e',f\bullet f').$$

En pariculier E^2 , est un groupe avec la loi cartésienne notée encore *

$$(a, a') * (b, b') = (a * b, a' * b')$$

Plus généralement E^n est un groupe avec la loi cartésienne *

$$(x_1, \dots, x_n) * (y_1, \dots, y_n) = (x_1 * y_1, \dots, x_n * y_n).$$

Exemple : \mathbb{R}^2 , \mathbb{R}^3 , \cdots , \mathbb{R}^n sont des groupes abéliens avec la loi cartesienne +.

2.2 Sous-groupes d'un groupe

2.2.1 Définitions et Exemples

Soient (G, *) un groupe, d'élément neutre e et H une partie de G. On dit que H est un sous-groupe de (G, *) si les 3 propriétés suivantes sont vérifiées :

- i) $e \in H$
- ii) $\forall (x,y) \in H^2, x * y \in H$
- iii) $\forall x \in H, x^{-1} \in H$

Exemples

- G lui même et $\{e\}$ sont des sous-groupes de (G,*). Ces deux sous groupes sont dits triviaux.
- $-\mathbb{Z}$ est un sous groupe de $(\mathbb{Q},+)$
 - \mathbb{Q} est un sous groupe de $(\mathbb{R},+)$
 - \mathbb{R} est un sous groupe de $(\mathbb{C},+)$
- $-\mathbb{R}_{+}^{*}$, $\{-1,1\}$ sont des sous-groupes de (\mathbb{R}^{*},\times)
- $-U_n = \{z \in \mathbb{C} : z^n = 1\}$ est un groupe de n éléments de (\mathbb{C}^*, \times)
- Pour tout $a \in \mathbb{Z}$, l'ensemble des multiples de a, noté $a\mathbb{Z}$ est un sous groupe de $(\mathbb{Z}, +)$.
- Plus généralement, si (G, *) est un groupe et $g \in G$, alors l'ensemble des puissances de $a : \{g^n, n \in \mathbb{Z}\}$ est un sous-groupe de (G, *).

$$a^0 = e$$
, $a^{-2} = (a^{-1})^2$, $a^{-3} = (a^{-1})^3$

Remarques:

- 1. Un sous-groupe H n'est pas vide.
- 2. Si H est un sous-groupe de (G,*) alors H est stable pour la loi *, et donc * induit une loi de composition interne sur H. Muni de cette loi, H est un groupe, d'où la terminologie "sous groupe"
- 3. Très souvent pour montrer qu'un ensemble muni d'une loi de composition interne (l.c.i) est un groupe, on essaie de voir cet ensemble comme un sous-groupe d'un ensemble plus grands.

Théorème 1 : (Caracterisation des sous-groupes de $(\mathbb{Z}, +)$) Soit H un sous-groupe de $(\mathbb{Z}, +)$. Alors il existe $a \in \mathbb{N}$ tel que $H = a\mathbb{Z}$ Preuve: A faire en exo

Corollaire 2 : (Egalité de Bézout)

a) Soient $a, b \in \mathbb{Z}$ et d = pgcd(a, b)

$$\exists (u, v) \in \mathbb{Z}^2 \ tel \ que \ au + bv = d \quad (d > 0)$$

b) a et b deux entiers sont premiers entre eux si et seulement si

$$\exists (u, v) \in \mathbb{Z}^2 \quad telque \quad au + bv = 1$$

Preuve:

a) On considère l'ensemble $\{am + bn, (m, n) \in \mathbb{Z}^2\}$ qu'on note $a\mathbb{Z} + b\mathbb{Z}$. Il est clair que $a\mathbb{Z} + b\mathbb{Z}$ est un sous-groupe de $(\mathbb{Z}, +)$, donc $\exists c \in \mathbb{N}$ tel que

$$a\mathbb{Z} + b\mathbb{Z} = c\mathbb{Z}$$

Par ailleurs, $a\mathbb{Z} \subset d\mathbb{Z}$ et $b\mathbb{Z} \subset d\mathbb{Z}$ donc $c\mathbb{Z} = a\mathbb{Z} + b\mathbb{Z} \subset d\mathbb{Z}$. En particulier c est un multiple de d et $(c \geq d)$.

L'égalité $a\mathbb{Z}+b\mathbb{Z}=c\mathbb{Z}$ montre que c divise à la fois a et b, donc $pgcd(a,b)=d\geq c$ finalement on a c=d.

b) \Rightarrow) est clair

 \Leftarrow) si au + bv = 1, alors tout diviseur de a et b divise au + bv, donc divise 1.

2.2.2 Intersection de sous-groupes d'un même groupe

Lemme3 Soient H_1 et H_2 deux sous-groupes d'un même groupe (G,*); $H_1 \cap H_2$ est un sous groupe de (G,*).

Plus généralement si $\{H_i\}_{i\in I}$ est une famille de sous-groupes d'un même groupe (G,*), alors $\bigcap_{i\in I} H_i$ est un sous groupe de (G,*).

Sous-groupe engendré par une partie : Soit A une partie de G. On appelle sous groupe engendré par A l'intersection de tous les sous-groupes de G contenant A. Ce sous-groupe est le plus petit (au sens de l'inclusion) sous-groupe de (G,*) contenant A.

Exemples : si $A = \emptyset$, $\langle \emptyset \rangle = \{e\}$; $A = \{x\}, \langle x \rangle = \{x^n, n \in \mathbb{Z}\}$.

2.2.3 Réunions de sous-groupes

La réunion de deux sous-groupes d'un même groupe G n'est pas un sous-groupe (en général). Par exemple $2\mathbb{Z} \cup 3\mathbb{Z}$ n'est pas un sous groupe de \mathbb{Z} .

2.3 Classes d'équivalence suivant un sous-groupe

2.3.1 Relation de Lagrange

Soient (G, *) un groupe, d'élément neutre e, et H un sous-groupe de (G, *). H permet de définir sur G la relation binaire \mathcal{R}_H suivant :

pour tout
$$(x,y) \in G^2$$
, $x\mathcal{R}_H y$ si $x^{-1} * y \in H$

On a le théorème suivant :

Théorème 4 (de Lagrange)

- i) \mathcal{R}_H est une relation d'équivalence.
- ii) La classe d'équivalence d'un point $a \in G$ est $\bar{a} = \{a*h, h \in H\}$ qu'on note a*H.
- iii) Il y a une bijection entre $\bar{e} = H$ et $\bar{a} = aH$.
- iv) Si G est un groupe fini, on a

$$Card(G) = Card(H) \bullet Card(\frac{G}{\mathcal{R}_H})$$

Preuve:

- i) à faire en exercice
- ii) $a^{-1} * (a * h) = h \in H$, donc (a * h)Ra
- iii) $\varphi: H \longrightarrow aH$; $h \longmapsto a * h$ est une application bijective.
- iv) Comme G est fini, l'ensemble des classes d'équivalence est aussi fini on a

$$G = H \cup (x_1 * H) \cup (x_2 * H) \cup \cdots \cup (x_k * H)$$

d'où
$$Card(G) = Card(H) + Card(x_1 * H) + \cdots + Card(x_k * H).$$

Comme
$$Card(x_i * H) = Card(H)$$
, on a $Card(G) = Card(H) \cdot Card(\frac{G}{\mathcal{R}_H})$.

Remarque : H permet de définir une autre relation binaire \mathcal{R}'_H sur G par :

$$x\mathcal{R}'_H y$$
 $si \ x * h^{-1} \in H$

 \mathcal{R}'_H a toutes les propriétés dans le théorème de lagrange, sauf que la classe d'équivalence de $a \in G$ est $H * a = \{h * a, h \in H\}$. Très souvent, on a

$$a*H \neq H*a$$

2.3.2 Sous-groupes distingés dans un groupe

Un sous-groupe H de (G, *) est dit distingué dans G si on a :

$$\forall x \in G, \ \forall h \in H, \ ona \quad x * h * x^{-1} \in H$$

Par exemple

- 1) $\{e\}$ et G les deux sous groupes triviaux sont distingués.
- 2) Tout sous-groupe d'un groupe abélien est distingué.

Théorème 5 : Soient (G,*) et (F,\bullet) deux groupes d'éléments neutre e et ϵ , et $f:G\longrightarrow F$ un homomorphisme (de groupes). Alors

- $-f^{-}(\{\epsilon\})$ est un sous-groupe distingé de (G,*)
- Imf est un sous-groupe de (F, \bullet) .

Preuve : Comme e * e = e, on a $f(e) \bullet f(e) = f(e)$, d'où $f(e) = \epsilon$ c'est à dire $e \in f^-(\{\epsilon\})$.

Si
$$a, b \in f^-(\{\epsilon\})$$
 alors $f(a*b) = f(a) \bullet f(b) = \epsilon \bullet \epsilon = \epsilon$. Donc $a*b \in f^-(\epsilon)$. Comme $x*x^{-1} = e = x^{-1}*x$, $f(x) \bullet f(x^{-1}) = \epsilon = f(x^{-1}) \bullet f(x)$ d'où

$$f(x^{-1}) = (f(x))^{-1}$$

si donc $a \in \ker f = f^-(\{\epsilon\})$ on a $(a^{-1}) = (f(a))^{-1} = \epsilon^{-1} = \epsilon$ d'où $a^{-1} \in f^-(\{\epsilon\})$.

2.4 Groupes quotients

Proposition 5:

- a) $\mathcal{R}_H = \mathcal{R}'_H$
- b) \mathcal{R}_H est compatible avec la loi * c'est à dire :

si
$$a\mathcal{R}_H b$$
 et $x\mathcal{R}_H y$, alors $(a*x)\mathcal{R}_H (b*y)$

Preuve:

a) Il faut montrer que $a\mathcal{R}_H b \iff a\mathcal{R}'_H b$ Soit $(a,b) \in G^2$ tel que $a\mathcal{R}_H b$.

Alors $a^{-1} * b \in H$. Comme H est distingué dans G, $a * (a^{-1} * b) * a^{-1} \in H$. c'est à dire $b * a^{-1} \in H$, donc $b\mathcal{R}'_H a$ et $a\mathcal{R}'_H b$ (puisque \mathcal{R}'_H est symétrique)

- Réciproquement, si $a\mathcal{R}'_H b$, alors $a*b^{-1} \in H$. H étant distingué dans G, on a $b^{-1}(a*b^{-1})*b \in H$. Ainsi $b^{-1}*a \in H$ et $a\mathcal{R}_H b$.
- b) Soient $(a,b) \in G^2$, $(x,y) \in G^2$ tels que $a\mathcal{R}_H b$ et $x\mathcal{R}_H y$. on a :

$$(a*x)^{-1}*(b*y) = x^{-1}*(a^{-1}*b)*y (a*x)^{-1}*(b*y) = (x^{-1}*(a^{-1}*b)*x)*(x^{-1}*y) \in H$$

Notation : Si H est distingué, l'ensemble quotient $\frac{G}{\mathcal{R}_H}$ est noté $\frac{G}{H}$.

Proposition 6 : La loi * induit une loi de composition interne sur $\frac{G}{H}$ par :

$$(\bar{a}, \bar{b}) \longmapsto \overline{a * b}$$

 $\frac{G}{H}$ muni de cette loi (encore notée *) est un groupe, appelé **groupe quotient**.

Exemple:
$$G = \mathbb{Z}$$
 avec l'addition $+$ et $H = 4\mathbb{Z}$, $\frac{\mathbb{Z}}{4\mathbb{Z}}$ est un groupe avec l'addition $\overline{a} + \overline{b} = \overline{a + b}$

$$\textbf{La table de} + \text{de } \frac{\mathbb{Z}}{4\mathbb{Z}}$$

+	$\overline{0}$	$\overline{1}$	$\overline{2}$	3
$\overline{0}$	$\overline{0}$	$\overline{1}$	$\frac{\overline{2}}{\overline{3}}$	$\frac{\overline{3}}{\overline{3}}$
$\overline{1}$	$\overline{1}$	$\frac{\overline{2}}{\overline{3}}$	3	$\overline{0}$
$\overline{2}$	$\overline{2}$		$\overline{0}$	1
3	3	$\overline{0}$	$\overline{1}$	$\overline{2}$

La table de \circ de $\frac{S_3}{K}$, où $K=\{id,\ c_1,\ c_2\}$. Posons $A=\mathbb{C}_{S_3}K$ le complémentaire de K dans S_3 .

	0	K	A
	K	K	A
ĺ	A	A	K

Chapitre 3

Anneaux

3.1 Définition et exemples

On appelle anneau un ensemble A non vide muni de deux lois de composition interne, une addition $(x,y)\mapsto x+y$ et une multiplication $(x,y)\mapsto x\cdot y$ avec les propriétés suivantes :

- i) L'addition definit sur A une structure de groupe abélien. (A, +) est un groupe abélien.
- ii) La multiplication est associative

$$(a \cdot b) \cdot c = a \cdot (b \cdot c) \ \forall (a, b, c) \in A^3$$

iii) La multiplication est distributive à gauche et à droite par rapport à l'addition

$$\begin{array}{rcl} x\cdot (y+z) & = & x\cdot y + x\cdot z \\ (y+z)\cdot x & = & y\cdot x + z\cdot x \end{array} \quad \forall (a,b,c) \in A^3$$

- Si de plus la multiplication est commutative, on dit que A est un anneau commutatif.
- L'anneau A est dit unitaire si la multiplication admet un élément <u>neutre</u>.

Notations

- L'élément neutre de + deux A es noté 0_A et pour tout $x \in A$, le symétrique de x par rapport à la loi + est noté -x. (on dit que -x est l'opposé de x)
- Si l'anneau A est unitaire, l'élément neutre de la multiplication "·" dans A est noté 1_A .

Un élément $x \in A$ sera dit inversible, s'il admet un symetrique par rapport à la multiplication, dans ce cas le symétrique de x est noté x^{-1} .

On note $\mathcal{U}(A)$ l'ensemble de tous les éléments inversibles de A.

 $\mathcal{U}(A)$ est stable pour la multiplication et $(\mathcal{U}(A),\cdot)$ est un groupe.

• Pour tout $a \in A$, et pour tout $n \in \mathbb{N}^*$ on pose :

$$a^n = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n \text{ fois}} \quad et \quad na = \underbrace{a + a + \cdots + a}_{n \text{ fois}}$$

Exemples

- 1. \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} , munis de l'addition + et de la multiplication × sont des anneaux commutatifs et unitaires.
- 2. Soit (G, +) un groupe abélièn.

Une application $f: G \to G$ est dite endomorphe si :

$$f(x+x') = f(x) + f(x')$$

Par exemple Id_G est un endomorphisme de G

on note End(G) l'ensemble de tous les endomorphisme de G.

Si $f, g \in End(G)$, alors $f + g : x \mapsto f(x) + g(x)$ appartient à End(G), et $f \circ g \in End(G)$.

Muni de ces deux lois de composition interne, $(End(G), +, \circ)$ est un anneau unitaire non commutatif.

3. On appelle matrice carrée d'ordre 2 à coefficients dans $\mathbb R$ tout tableau de la forme

$$\left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right)$$

On note $\mathcal{M}_2(\mathbb{R})$ l'ensemble des matrices carrées d'ordre 2 à coefficients dans K On pose :

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} a+a' & b+b' \\ c+c' & d+d' \end{pmatrix}$$
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} a \cdot a' + b \cdot c' & a \cdot b' + b \cdot d' \\ c \cdot a' + d \cdot c' & c \cdot b' + d \cdot d \end{pmatrix}$$

Montrer que $(\mathcal{M}_2(\mathbb{R}), +, \bullet)$ est un anneau unitaire non commutatif.

4. Si A et A' sont 2 anneaux, il y a sur $A \times A'$ une structure naturelle d'anneau

$$\begin{cases} (a, a') + (b, b') = (a + b, a' + b') \\ (a, a') \cdot (b, b') = (a \cdot b, a' \cdot b') \end{cases}$$

En particulier \mathbb{Z}^2 , \mathbb{Z}^3 , \mathbb{Z} , cdots, \mathbb{C}^2 , \mathbb{Z}^3 , \cdots sont des anneaux.

5. Si A est un anneau et X est un ensemble quelconque non vide; L'ensemble de toutes les applications $f:X\to A$ noté A^X est un anneau avec les lois suivantes :

$$f, g \in A^X$$
, $f + g : x \mapsto f(x) + g(x)$
 $f \cdot g : x \mapsto f(x) \cdot g(x)$

Propriétés remarquables dans l'anneau

- i) $0_A \cdot x = 0_A$, $x \cdot 0_A = 0_A$ pour tout $x \in A$
- ii) $-(x \cdot y) = (-x) \cdot y = x \cdot (-y)$ pour tout $(x, y) \in A$
- iii) Si A est un anneau unitaire, on a $(-1_A) \cdot x = -x$
- iv) Si x et y commutent (par rapport à "·") c'est à dire $x \cdot y = y \cdot x$ alors

$$(x \cdot y)^2 = x^2 y^2$$
, $(x \cdot y)^3$, ..., $(x \cdot y)^n = x^n \cdot y^n \ \forall n \in \mathbb{N}^*$
 $(x + y)^2 = x^2 + 2(xy) + y^2$

$$(x+y)^3 = x^3 + 3(x^2y) + 3(xy^2) + y^3$$

Plus généralement

$$(x+y)^n = x^n + C_n^1 x y^{n-1} + C_n^2 x^2 y^{n-2} + \dots + C_n^k x^k y^{n-k} + \dots + C_n^{n-1} x^1 y^{n-1} + y^n$$

Exercice: Calculer $(1_A + a)^6$

Définitions

- Un anneau A est dit intègre, si la partie $A \setminus \{0_A\}$ est stable pour le produit : Par exemple : $(\mathbb{Z}, +, \times)$ est intègre, $\mathcal{M}_2(\mathbb{R})$ n'est pas intègre.
- un anneau unitaire A est appelé corps, si $\mathcal{U}(A)$ (l'ensemble des éléments inversibles de A) est égal à $A \setminus \{0\}$.

exemples : \mathbb{R} , \mathbb{C} , \mathbb{Q} sont des corps.

3.2 Sous-anneaux, Idéaux

3.2.1 Sous-anneaux

Soient A un anneau commutatif unitaire et B une partie de A. On dit que B est un sous-anneau de A si :

- i) B est un sous-groupe de (A, +)
- ii) B contient 1_A et B est stable par le produit $\forall b, b' \in B, bb' \in B$ Par exemple :
 - $\mathbb Z$ est un sous-anneau de $\mathbb Q$
 - $\mathbb R$ est un sous-anneau de $\mathbb C$
 - $-\mathbb{Q}$ est un sous-anneau de \mathbb{R}

Remarque : L'intersection de sous-anneaux est un sous-anneau. On a alors la notion de sous-anneau engendré par une partie quelconque X d'un anneau A.

Si 1_A est l'élément unité de l'anneau $(A,+,\cdot)$, tous les sous-anneaux contiennent le sous-anneau

$$\mathbb{Z} \cdot 1_A$$

3.2.2 Idéaux

On dit que B est un idéal de A si

- i) B est un sous-groupe de (A, +)
- ii) $\forall \in A, \forall b \in B, \text{ on a } ab \in B$

Exemples

- $-\{0_A\}$, A sont des idéaux de A (dits triviaux)
- aA l'ensemble des multiples de a dans A est un idéal (dit principal).
- Les idéaux de l'anneau \mathbb{Z} sont de la forme $n\mathbb{Z}$, où $n \in \mathbb{N}$

Remarque : L'intersection d'idéaux d'un anneau est un idéal. On a donc la notion de d'idéal engendré par une partie quelconque X d'un anneau A.

- Le seul idéal qui contient 1_A l'élément unité de l'anneau $(A,+,\cdot)$ ou tout autre élément inversible est l'idéal A lui-meme.

Définitions : - Un idéal I est dit propre s'il est différent de l'anneau A.

- Parmi les idéaux propres, un idéal M est dit maximal s'il n'est contenu strictement dans aucun autre idéal propre.

Par exemple dans l'anneau $(\mathbb{Z}, +, \cdot)$ les idéaux $2\mathbb{Z}, 3\mathbb{Z}, 5\mathbb{Z} \cdots$ sont maximaux.

Notons que la réunion de deux idéaux d'un anneau n'est un idéal.

3.3 Anneaux quotients

proposition 1 : Si I est un idéal de A, alors les lois " + " et " · " sont compatibles avec la relation d'équivalences (de Lagrange)

$$a\mathcal{R}b$$
 si $b-a \in I$

proposition 2 : L'ensemble quotient $\frac{A}{I}$ muni des lois de composition internes

$$\bar{a} + \bar{b} = \overline{a+b}; \quad \bar{a} \cdot \bar{b} = \overline{a \cdot b}$$

est un anneau commutatif unitaire.

Exercices

- Ecrire les tables de l'addition et de la multiplicattion de l'anneau quotient $\frac{\mathbb{Z}}{6\mathbb{Z}}$.
- Trouver $\mathcal{U}(A)$

3.4 L'anneau quotient $\frac{\mathbb{Z}}{n\mathbb{Z}}$

Soit $n \in \mathbb{N}^*$. On considère l'anneau quotient $\frac{\mathbb{Z}}{n\mathbb{Z}}$

Lemme 3: (La division euclidienne dans \mathbb{Z})

Soient $a \in \mathbb{Z}$ et $b \in \mathbb{N}^*$. Il existe un unique couple $(s,r) \in \mathbb{Z} \times \mathbb{N}$ tel que

- $\cdot \ 0 < r < b$
- $\cdot a = sb + r$

Corollaire 4 : L'anneau $\frac{\mathbb{Z}}{n\mathbb{Z}}$ a exeactement n éléments :

$$\frac{\mathbb{Z}}{n\mathbb{Z}} = \{\bar{0}, \bar{1}, \cdots, \overline{n-1}\}$$

Preuve : Soit $a \in \mathbb{Z}$ la division euclidienne de a par n s'écrit : a = sn + r averc $r \in \{0, 1, \cdots, n-1\}$

On a $a - r = s \cdot n \in n\mathbb{Z}$, donc $a\Re r$ et $\bar{a} = \bar{r}$

par ailleurs, si $i \neq j$ et $i, j \in \{0, 1, \dots, n-1\}$ on a $\bar{i} \neq \bar{j}$ car $0 \neq |i-j|$ et |i-j| < ndonc $j - i \notin n\mathbb{Z}$

proposition 5:

- L'anneau $\frac{\mathbb{Z}}{n\mathbb{Z}}$ est un commutatif unitaire, d'élément unité $\bar{1}$
- un élément \bar{a} de $\frac{\mathbb{Z}}{n\mathbb{Z}}$ est inversible si et seulement si pgcd(a,n)=1
- l'anneau $\frac{\mathbb{Z}}{n\mathbb{Z}}$ est un corps si et seulement si n est premier.

preuve

• \bar{a} est inversible $\Leftrightarrow \exists \bar{b} \in \frac{\mathbb{Z}}{n\mathbb{Z}}$ tel que $\bar{b} = \bar{1}$

$$\Leftrightarrow \exists b \in \mathbb{Z} : \bar{ab} = 1$$

$$\Leftrightarrow \exists b \in \mathbb{Z}, \exists k \in \mathbb{Z} : ab - kn = 1$$

$$\Leftrightarrow pgcd(a,b) = 1$$
(Théorème de Bézout)

- $\frac{\mathbb{Z}}{n\mathbb{Z}}$ est un corps $\Leftrightarrow \mathcal{U}(\frac{\mathbb{Z}}{n\mathbb{Z}}) = \frac{\mathbb{Z}}{n\mathbb{Z}} \setminus \{\bar{0}\}$ $\Leftrightarrow \bar{1}, \bar{2}, \cdots, \overline{n-1} \text{ sont inversibles}$

 - $\Leftrightarrow 1, 2, \cdots, n-1$ sont tous premiers avec n
 - $\Leftrightarrow n$ n'a pas de diviseur premier autre que 1 et n.

3.5 Homomorphisme d'anneaux

Définition : Soient A et B deux anneaux unitaires et $f:A\longrightarrow B$ une application. On dit que f est un homomorphisme d'anneaux si :

- i) f(a + a') = f(a) + f(a')
- $ii) f(a \cdot a') = f(a) \cdot f(a')$
- iii) $f(1_A) = 1_B$
- On note qu'un homomorphisme d'anneaux est un homomorphisme de groupes additifs
- si f est un homomorphisme d'anneaux, on appelle noyau de f et on le note $\ker f$ l'ensemble

$$\ker f = \{ a \in A : f(a) = 0_B \}$$

Exemples

- 1. $id_A: A \longrightarrow A$ est un homomorphisme
- 2. Si I est un idéal de l'anneau A, la surjection canonique $\pi:A\longrightarrow \frac{A}{I}$ est un homomorphisme.
- 3. L'application constante $C: A \longrightarrow B$, $x \longmapsto 0_B$ n'est pas un homomorphisme, car la troisième condition (*iii*) n'est pas vérifiée.

Exercice Soit $f: A \longrightarrow B$ un homomorphisme d'anneaux.

- a) Montrer que $f(0_A) = 0_B$.
- b) Montrer que $\ker f$ est un idéal de A, Imf est un sous-anneau de B.
- c) Montrer que f est injectif si et seulement si $\ker f = \{0_A\}.$
- c) Montrer que la relation d'équivalence de Lagrange définie par $\ker f$ est la même que celle définie par les images de f.
- d) Montrer que l'anneau quotient $\frac{A}{\ker f}$ est isomorphe à Imf.

3.6 Théorème Chinois et systèmes de congruence

3.6.1 Théorème 6 : (Chinois)

Soient p et q deux entiers premiers entre eux.

Alors l'homomorphisme $\varphi : \mathbb{Z} \longrightarrow \frac{\mathbb{Z}}{p\mathbb{Z}} \times \frac{\mathbb{Z}}{q\mathbb{Z}} ; n \longmapsto (\dot{n}, \bar{n})$ est **surjectif**.

Preuve : Comme pgcd(a,b)=1, par Bézout il existe $(a,b)\in\mathbb{Z}^2$ tel que

$$ap + bq = 1$$

21

On vérifie que $\varphi(bx + ay) = (\dot{x}, \bar{y})$, pour tout $(\dot{x}, \bar{y}) \in \frac{\mathbb{Z}}{p\mathbb{Z}} \times \frac{\mathbb{Z}}{q\mathbb{Z}}$.

3.6.2 Systèmes de conguence

Les systèmes suivants sont appelés systèmes de congruence :

$$\begin{cases} x \equiv a \mod (p) \\ x \equiv b \mod (q) \end{cases}, \quad \begin{cases} x \equiv a_1 \mod (p_1) \\ x \equiv a_2 \mod (p_2) \pmod (p_3) \end{cases}$$
 on résoud ces systèmes de congruence.
$$\begin{cases} x \equiv a_1 \mod (p_1) \\ x \equiv a_2 \mod (p_2) \pmod (p_3) \end{cases}$$

Exercice 3:

Résoudre dans \mathbb{Z} les systèmes de congruence suivants;

$$\begin{cases} x \equiv 1 \mod (17) \\ x \equiv -6 \mod (24) \end{cases}, \begin{cases} x \equiv 1 \mod (6) \\ x \equiv 1 \mod (7) \\ x \equiv -1 \mod (11) \end{cases}$$

Chapitre 4

Polynômes et fractions rationnelles à une variable

4.1 Polynômes à une variable

4.1.1 Définitions

Un polynôme à une variable X, à coéfficients dans un anneau A, s'écrit formellement :

$$a_0 + a_1 X + \dots + a_n X^n$$
 où $n \in \mathbb{N}$, $a_i \in A$

- $-a_0$ est appelé terme constant du polynôme
- X est aussi appelé l'indéterminée.
- $-a_iX^i$ est appelé monôme de degré i et de coefficient a_i .

Soit

$$P(X) = a_0 + a_1 X + \dots + a_n X^n$$

– Si $\{i: a_i \neq 0_A\} \neq \emptyset$, on appelle degré de P(X) et on note $\deg(P(X))$ l'entier :

$$\max\{i: a_i \neq 0_A\}$$

– Si $\{i: a_i \neq 0_A\} \neq \emptyset$, on appelle valuation de P(X) et on note val(P(X)) l'entier:

$$\min\{i: a_i \neq 0_A\}$$

Par exemple:

si
$$P(X) = 2X + 0X^2 + 3X^4 + 8X^5 + 0X^6$$

alors $deg(P(X)) = 5$ et $val(P(X)) = 1$.

On convient que

$$\deg(0+0X+\cdots+0X^n)=-\infty$$

$$val(0+0X+\cdots+0X^n)=+\infty$$

Seul $0 + 0X + \cdots + 0X^n$ est de degré strictement négatif et de valuation $+\infty$

Egalité de deux polynômes

Deux polynômes $P(X) = \sum_{i=0}^n a_i X^i$, $Q(X) = \sum_{i=0}^m b_i X^i$ sont égaux si $\deg(P(X)) = \deg(Q(X))$

Notation:

On note A[X] l'ensemble de tous les polynômes en X à coefficients dans l'anneau $(A, +, \cdot)$.

4.1.2 Additions et multiplication dans A[X]

Addition

$$\sum_{i=0}^{n} a_i X^i + \sum_{i=0}^{m} b_i X^i = \sum_{i=0}^{\max(n,m)} (a_i + b_i) X^i$$

où $a_i + b_i$ est défini dans l'anneau A. La convention que $a_i = 0_A$ si i > n et $b_i = 0_A$ si i > m. On voit alors que (A[X], +) est un groupe abélien d'élément neutre, le polynôme $0 + 0X + \cdots + 0X^n$ (polynôme nul).

La multiplication

$$(\sum_{i=0}^{n} a_i X^i) \bullet (\sum_{i=0}^{m} b_i X^i) = \sum_{k=0}^{n+m} (c_k) X^k$$

où $c_k = a_k b_0 + a_{k-1} b_1 + \dots + a_0 b_k$.

Proposition 1

- 1. $(A[X], +, \bullet)$ est un anneau unitaire. Si A est commutatif, alors A[X] aussi.
- 2. Si A est un anneau intègre, alors A[X] est aussi intègre.

On a pour tout $P, Q \in A[X]$,

- $\deg(P \bullet Q) = \deg(p) + \deg(Q) \qquad val(P \bullet Q) = val(P) + val(Q).$
- $-\deg(P+Q) \le \max(\deg(P), \deg(Q)) \qquad val(P+Q) \ge \min(val(P), val(Q)).$

Exemple de calcul dans A[X]

$$(1 + X + 2X^3)(X + X^3) =$$
$$(1 - X)(1 + X + X^2) =$$

remarque: Si A est un anneau intègre, l'anneau A[X] est intègre et un polynôme non constant P(X) n'est pas inversible.

4.1.3 Division euclidienne et division suivant les puissances croissantes)

Dès maintenant, on suppose que A = K est un corps commutatif.

Proposition 2 : (Division euclidienne)

Soient P et Q deux polynômes de K[X] tels que $Q \neq 0$. Il existe un unique couple de polynômes (S,R) tel que :

$$\deg(R) < \deg(Q)$$
 et $P = SQ + R$ *

preuve:

- La formule précedente * est appelée division euclideinne de P par Q.
- -S et R sont respectivement appelés quotient et reste de la division euclidienne de P par Q.
- Si R = 0, on dit que Q divise P ou que P est un multiple de Q (dans A[X]). On a P = SQ.

Exemples : Effectuer la division euclidienne de X^3-1 par $1+XX^2$ et $X^4+4X^3-X^2-X+8$ par X^2-X+1

Proposition 3 : (Division suivant les puissances croissantes) . Soient P, Q deux polynômes de K[X] tels que val(Q) = 0 et $n \in \mathbb{N}$. Il existe un unique couple de polynômes (S,R) tel que :

$$deg(Q) < n$$
 et $P = SQ + X^nR$ **

4.1.4 Polynômes irréductibles

Un polynôme non constant P est dit irréductible s'il n'a pas de diviseur propre, c'est à dire un diviseur Q tel que $1 \le \deg(Q) < \deg(P)$. Par exemple, tout polynôme de degré 1 est irréductible.

Proposition 4 Dans l'anneau K[X], tout polynôme non constant P(X) s'écrit de façon unique comme un produit fini de polynômes irréductibles

$$P = P_1 \cdot P_2 \bullet \cdots P_r$$

où P_i irréductible.

- les P_i sont les facteurs irréductibles de P.
- On peut parler de pqcd et de ppcm d'un couple de polynômes (P,Q).
- Le calcul de pgcd(P,Q) se fait avec l'algorithme d'euclide.
- Dans $\mathbb{C}[X]$ tout polynôme s'écrit $\lambda(\lambda-\alpha_1)^{m_1}\cdots(\lambda-\alpha_p)^{m_p}$

4.1.5 Racines d'un polynôme

Soit

$$P(X) = a_0 + a_1 X + \dots + a_n X^n \in k[X]$$

On dit que $\alpha \in K$ est racine de P(X) si :

$$P(\alpha) = a_0 + a_1 \alpha + \dots + a_n (\alpha)^n = 0_K$$

Lemne 5 : $\alpha \in K$ est racine de P(X) ssi $X - \alpha$ divise P(X).

Preuve: $P(X) = (X - \alpha)S(X) + \alpha$

4.1.6 Dérivée formelle d'un polynôme et racines multiples

On appelle dérivée formelle d'un polynôme

$$P(X) = a_0 + a_1 X + \dots + a_n X^n$$

le polynôme

$$P'(X) = a_1 + 2a_2X + \dots + na_nX^{n-1}$$

On retrouve les propriétés classiques de la dérivation :

$$(P(X) + Q(X))' = P'(X) + Q'(X)$$
$$(\lambda P(X))' = \lambda P'(X)$$
$$(P(X)Q(X))' = P'(X)Q(X) + P(X)Q'(X)$$

 $\alpha \in K$ est dit racine d'ordre $m \in \mathbb{N}^*$ de P(X) si :

$$P(\alpha) = 0$$
, $P'(\alpha) = 0$, ..., $P^{(m-1)}(\alpha) = 0$, $P^{(m)}(\alpha) \neq 0$

 $P^{(i)}(X)$ étant la i-ème dérivée formelle successive de P(X).

Proposition 6 : $\alpha \in K$ est une racine d'ordre m de P(X) ssi $(X - \alpha)^m$ divise P(X) et $(X - \alpha)^{m+1}$ ne divise pas P(X).

Remarque: Si α est une racine d'ordre m de P(X) et β est une autre racine d'ordre p de P(X) alors $(X - \alpha)^m (X - \beta)^p$ divise P(X)

4.1.7 Polynômes scindés de K[X]

Un polynôme $P(X)=a_0+a_1X+\cdots+a_nX^n\in k[X]$ de degré n (c-a-d $a_n\neq 0$) est dit scindé, s'il existe $(\alpha_1,\alpha_2,\cdots,\alpha_n)\in K^n$ tel que

$$P(X) = a_n(X - \alpha_1)(X - \alpha_2) \cdots (X - \alpha_n)$$

Par exemple, tout polynôme de $\mathbb{C}[X]$ est scindé. Alors que $\mathbb{R}[X]$ il y a des polynômes non scindés $X^3 + X$. Si P(X) est scindé, ses coefficients et ses racines sont liés par les n relations suivantes.

$$\begin{cases}
-a_n(\alpha_1 + \alpha_2 + \dots + \alpha_n) &= a_{n-1} \\
+a_n(\alpha_1\alpha_2 + \dots + \alpha_1\alpha_n + \alpha_2\alpha_3 + \dots + \alpha_{n-1}\alpha_n) &= a_{n-2} \\
&\vdots \\
(-1)^k a_n(\alpha_1\alpha_2 \dots + \alpha_k + \dots + \alpha_{n-1}\alpha_{n-k+1} \dots + \alpha_n) &= a_{n-k} \\
(-1)^n a_n \alpha_1\alpha_2 \dots + \alpha_n &= 0
\end{cases}$$

(Somme de tous les produits de k racines d'indices distincts il y en a \mathbb{C}^n_k exactement).

Exemple pour n=4

$$\begin{cases}
-a_4(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4) = a_3 \\
+a_4(\alpha_1\alpha_2 + \alpha_1\alpha_3 + \alpha_1\alpha_4 + \alpha_2\alpha_3 + \alpha_2\alpha_4 + \alpha_3\alpha_4) = a_2 \\
-a_4(\alpha_1\alpha_2\alpha_3 + \alpha_1\alpha_2\alpha_4 + \alpha_1\alpha_3\alpha_4 + \alpha_2\alpha_3\alpha_4) = a_1 \\
+a_4\alpha_1\alpha_2\alpha_3\alpha_4 = a_0
\end{cases}$$

.

Thérème 7 : (de D'Alambert-Gauss) Tout polynôme non-constant P(X) de $\mathbb{C}[X]$ admet au moins une racine dans \mathbb{C} . En particulier, tous les polynômes de $\mathbb{C}[X]$ non-constants sont scindés.

4.1.8 Les polynômes de $\mathbb{R}[X]$

Soit

$$P(X) = a_0 + a_1 X + \dots + a_n X^n \in k[X]$$

Lemne 8 : Si $z_0 \in \mathbb{C}$ est racine de P(X), alors le conjugué \bar{z}_0 est aussi racine de P(X). En particulier $(X^2 - 2Reel(z_0)X + |z_0|^2)$ divise P(X).

Corollaire 8 : Les polynômes irréductibles de $\mathbb{R}[X]$ sont soit du 1^{er} degré soit du second degré $aX^2 + bXc$ avec $b^2 - 4ac < 0$.

4.2 Le corps des fractions rationnelles à une variable

K sera un corps commutatif dans toute la suite .

4.2.1 Définition

Une fraction rationnelle à une variable X, est un quotient de polynômes en X, elle s'écrit sous la forme $\frac{P(X)}{Q(X)}$, où $P(X) \in K[X]$ et $P(X) \in K[X]$, $Q(X) \in K[X] \setminus \{0\}$.

Deux fractions rationnelles $\frac{P(X)}{Q(X)}$ et $\frac{S(X)}{R(X)}$ sont égales si on a l'égalité

$$P(X)R(X) = S(X)Q(X) \ dans \ l'anneau \ K[X].$$

En particulier si

$$H(X) \neq 0$$
 , $\frac{P(X)}{Q(X)} = \frac{P(X)H(X)}{Q(X)H(X)}$

On note K(X) l'ensemble des fractions rationnelles.

On identifie un polynôme P(X) à la fraction rationnelle $\frac{P(X)}{1}$, on a ainsi l'inclusion $K[X] \subsetneq K(X)$. On pose :

$$deg\left(\frac{P(X)}{Q(X)}\right) = degP(X) - degQ(X)$$

4.2.2 L'addition et la multiplication dans K(X)

L'addition Soient $\frac{P}{Q}$, $\frac{S}{R} \in K(X)$. On pose

$$\frac{P}{Q} + \frac{S}{R} = \frac{PR + QS}{QR}$$

La multiplication On pose

$$\frac{P}{Q} \cdot \frac{S}{R} = \frac{PS}{QR}$$

On a les résultats suivants :

propositions Avec cette addition et cette multiplication, K(X) est un corps et K[X] est un anneau de K(X).

propositions Soient $\frac{P}{Q}$, $\frac{R}{S} \in K(X)$ on a :

$$i) \ deg(\frac{P}{Q} \cdot \frac{R}{S}) = deg\frac{P}{Q} + deg\frac{R}{S}$$

$$ii) \ deg(\frac{P}{Q} + \frac{R}{S}) \le Max\left(deg(\frac{P}{Q}), deg(\frac{R}{S})\right)$$

4.2.3 Décomposition en éléments simples d'une fraction rationnelle

propositions [Partie entière d'une fraction rationnelle] Soit $\frac{P}{O} \in K(X)$.

Il existe un unique polynôme E(X) et une unique fraction rationnelle $\frac{R}{S}$ tels que :

$$deg(\frac{R}{S}) < 0 \ et \ \frac{P}{Q} = E(X) + \frac{R}{S}$$

Preuve

$$P = E.Q + R \ avec \ deg(K) < degQ \Longrightarrow \frac{P}{Q} = E(X) + \frac{R}{S}$$

E(X) est appelé partie entière de $\frac{P}{Q}$

Exemples:

$$\frac{X^2}{X+1} = X - 1 + \frac{1}{X+1} \; , \; \frac{2X^5}{3X^5+X} = \frac{2}{3} - \frac{X}{X+1} \; , \; \frac{X^3}{X^4+1} = 0 + \frac{x^3}{X^4+1}$$

28

<u>**Théorème**</u> Soit $\frac{P}{Q}$ où $Q = \lambda (X - \alpha)^n (X - \beta)^m \cdots (X - \gamma)^p$ Alors (Il existe un unique) $\frac{P}{Q}$ s'écrit de façon unique comme somme de sa partie entière et de fractions à dégré strictement négatif comme suit :

$$\frac{P}{Q} = E(X) + \frac{a_n}{(X - \alpha)^n} + \dots + \frac{a_1}{(X - \alpha)}$$

$$+ \frac{b_m}{(X - \beta)^m} + \dots + \frac{b_1}{(X - \beta)}$$

$$+ \frac{c_p}{(X - \gamma)^p} + \dots + \frac{a_1}{(X - \gamma)}$$

Soit $\frac{P}{Q} \in R(X)$ où $Q = \lambda (X - \alpha)^n \cdots (X - \gamma)^m (X^2 + aX + b)^s \cdots (X^2 + cX + d)$. Ainsi $\frac{P}{Q}$ s'écrit de façon unique comme somme d'une partie entière de fonctions.

<u>**Théorème</u>** 5 Soit $\frac{P}{Q} \in K(X)$, avec la décomposition en facteurs irréductibles de $Q = A^n \cdot B^m \cdots C^r$. La fraction $\frac{P}{Q}$ s'écrit de facon unique comme suit :</u>

$$\frac{P}{Q} = E + \frac{F_n}{A^n} + \dots + \frac{F_1}{A} + \frac{H_m}{B^m} + \dots + \frac{H_1}{B} + \frac{T_r}{C^p} + \dots + \frac{T_1}{C}$$

où E est partie entière, et $deg(F_i) < deg(A)$, $deg(H_i) < deg(B)$, $deg(T_i) < deg(C)$. Cette décomposition est unique et elle est appelée **décomposition en éléments** simples de la fraction $\frac{P}{Q}$.

Décomposition d'une fraction de $\mathbb{C}(X)$.

$$\frac{P}{Q} \in \mathbb{C}(X)$$
 avec

$$Q = \lambda \left(X - a \right)^n \cdot \left(X - b \right)^m \cdot \cdots \left(X - c \right)^r$$

$$\frac{P}{Q} = E + \frac{\alpha_n}{\left(X - a \right)^n} + \cdots + \frac{\alpha_1}{\left(X - a \right)^m} + \frac{\beta_m}{\left(X - b \right)^m} + \cdots + \frac{\beta_1}{\left(X - b \right)} + \frac{\gamma_r}{\left(X - c \right)^r} + \cdots + \frac{\gamma_1}{\left(X - c \right)}$$
 où E est la partie entière de $\frac{P}{Q}$, $\alpha_i, \beta_i, \gamma_i \in \mathbb{C}$

Décomposition d'une fraction de $\mathbb{R}(X)$.

$$\frac{P}{Q} \in R(X) \text{ avec}$$

$$Q = \lambda (X - a)^n \cdots (X - b)^m (X^2 + cX + d)^r \cdots (X^2 + eX + f)^s$$

$$\frac{P}{Q} = E + \left(\frac{\alpha_n}{(X - a)^n} + \cdots + \frac{\alpha_1}{(X - a)}\right)$$

$$\begin{array}{c}
+\\
\vdots\\
+\\
\left(\frac{\beta_{m}}{(X-b)^{m}} + \dots + \frac{\beta_{1}}{(X-b)}\right) \\
+\\
\left(\frac{h_{r}X + r_{r}}{(X^{2} + cX + d)^{r}} + \dots + \frac{h1X + r_{1}}{(X^{2} + cX + d)}\right) \\
+\\
\vdots\\
+\\
\left(\frac{u_{s}X + v_{s}}{(X^{2} + eX + f)^{s}} + \dots + \frac{u_{1}X + v_{1}}{(X^{2} + eX + f)^{s}}\right)
\end{array}$$

Où E est la partie entière et $\alpha_i,\beta_i,\gamma_i,h_i,e_i,u_i,v_i\in\mathbb{R}$

Chapitre 5

Espaces vectoriels sur un corps

5.1 Lois de composition externes

Soient E un ensemble non vide. On appelle loi de composition externe l.c.e sur E toute application f de $K \times E$ dans E.

Exemple : Une application $g: \mathbb{N}^* \times E \longrightarrow E$; $(n, e) \longmapsto ne$ est le model de lois externe le plus connu.

Remarque : Avec une loi de composition externe sur E, on a une règle de base pour multiplier les éléments de E par les éléments de K.

5.2 Espaces vectoriels sur un corps

Soit K un un corps commutatif. Un espace vectoriel sur K est un groupe abélien E (dont la loi est notée +) muni d'une application :

$$\varphi: K \times E \longrightarrow E; (a, x) \longmapsto ax$$

vérifiant les quatre propriétés suivantes :

- i) (a+b)x = ax + bx
- ii) (x+y)a = ax + ay
- iii) a(bx) = (ab)x
- iv) $1_K x = x$

pour tout $a, b \in K$; et pour tout $x, y \in E$

Remarques

- 1. Si $K = \mathbb{R}$, E est appelé espace vectoriel **réel**.
- 2. Si $K = \mathbb{C}$, E est appelé espace vectoriel **complexe**.

Exemples d'espaces vectoriels

- 1. Le corps K est un espace vectoriel sur lui-même.
- 2. Si E_1 et E_2 sont deux espaces vectoriels sur K alors le produit cartésien $E_1 \times E_2$ est un espace vectoriel sur K avec les lois cartésiennes.
- 3. Ainsi \mathbb{R}^2 , \mathbb{R}^3 , \cdots , \mathbb{R}^n sont des espaces vectoriels sur \mathbb{R} . \mathbb{C}^2 , \mathbb{C}^3 , \cdots , \mathbb{C}^n sont des espaces vectoriels sur \mathbb{C} .
- 4. Plus généralement, K^n est un espace vectoriel sur K.

Remarque : Si E est un espace vectoriel sur \mathbb{C} , alors E est un espace vectoriel sur \mathbb{R} .

5.3 Sous-espaces vectoriels

Soient E un espace vectoriel sur K et V un sous-ensemble de E.

On dit que Vest un sous-espace vectoriel de E si

- -V est un sous-groupe de (E.+)
- et $\forall x \in V, \ \forall a \in K$ on a $ax \in V$

Exemples: $\{0_E\}$ et E sont des sous-espaces vectoriels de E, ils sont dits triviaux.

Proposition: Si V_1 et V_2 sont deux sous-espaces vectoriels de E, alors

$$V_1 \cap V_2 \text{ et } V_1 + V_2$$

sont des sous-espaces vectoriels de E.

5.4 Applications linéaires ou Homomorphismes d'espaces vectoriels

Soient E et F deux espaces vectoriels sur un corps K. Une application $v:E\longrightarrow F$ est un homomorphisme ou K-linéaire si :

- i) v(ax) = av(x)
- ii) $v(x+x') = v(x) + v(x') \quad \forall x, x' \in E \text{ et } \forall a \in K$

Exemples:

- $-id_E$ est une application linéaire
- $-C: E \longrightarrow F; x \longmapsto 0_F$
- $-p: E \times F \longrightarrow F; (x.y) \longmapsto y$
- $-f: \mathbb{R}^2 \longrightarrow \mathbb{R}; (x,y) \longmapsto x+y$

Proposition : Soit $v : E \longrightarrow F$ une application linéaire. Alors ker v le noyau de v et Imv l'image de v sont respectivement sous-espace vectoriel de E et de F.

Les notions de monomorphisme; d'épimorphisme, d'endomorphisme et d'isomorphisme sont laissées au lecteur.

5.5 Espaces vectoriels quotients

Soient E un espace vectoriel sur K et V un sous-espace vectoriel de E. Sur le groupe quotient $\frac{E}{V}$ on peut définir une **l.c.e** comme suit :

$$\phi: K \times \frac{E}{V} \longrightarrow \frac{E}{V} \; ; \; (a, \bar{x}) \longmapsto \overline{ax}$$

 ϕ est bien définie et avec ϕ le groupe quotient $\frac{E}{V}$ est un espace vectoriel sur K. **N.B**: La structure d'espace vectoriel sera approfondie plus tard.