Hexapod Walking Robot

Kara Fortunato Justin Ross Justin Purtell

Problem Statement

- Maintaining stability and center of gravity while walking forward, backward, and turning can be more challenging for a programmed machine than a human.
- Develop a hexapod-like robot able to move via user control while maintaining balance and stability.

Overview

- Robot design with 6 legs, joints, and frame.
- Wireless control system via web app.
- Programmed to move forward, backward, left and right via microcontroller w/ servo control.
- Designed to mechanically balance itself during movement and, to an extent, readjust from failure.

Parts List

- 1. 12x Servos
- 2. 1x Tiva-C Microcontroller
- 3. 1x NodeMCU WiFi controller
- 4. Laser-Cut Acrylic Framing (Legs, Joints, and Base)
- 5. PCBs w/ M2 Standoffs
- 6. 1x Switch
- 7. 4-40 Machine Nuts and Bolts
- 8. Smartphone or PC
- 9. Googly Eyes

TM4C123GH6PM

- Previously called Tiva-C
- 80 MHz ARM Cortex-M4F chipset
- 35 available external GPIO pins
- 16 independent PWM outputs
- 8 UART Channels
- C99 Standard of C Programming Language
- Allows a 5 Volt input on the VBUS Pin

SG90 Servos

- 14.7 gram Micro-servo
- Rated for 4.8-6 Volts
- 120° range of motion
- Plastic gearing
- 55 Hz PWM pulse train

NodeMCU

- Microprocessor with ESP8266MOD Wifi Module
- 802.11 b/g/n Wireless protocol
- Has GPIO pins and supports UART
- Broadcasts own network
- Delivers web pages
- Programmed in modified version of C++

The Body

- Laser-cut framing; legs and joints connected to multiple servo motors for control.
- 6-leg design keeps center of gravity towards the center of the frame.
- PCB w/ microcontroller and power circuit mounted to frame.
- Pointed/rounded legs for stability and readjustment.

The Body (Cont.)

The Body (Cont.)

The Body (Cont.)

Tripod Gait

Circuit

Web App Controller

- Developed to interact w/ WiFi module and microcontroller.
- Set of commands tells controller which servos to drive to move a certain direction.
- Operable via web address on any browser on PCs or smartphones.
- Written in HTML and uses CSS and AJAX

Cost Analysis

Component/ Material	Quantity	Vendor	Cost (\$)
Miuzei SG90 Servo Motors	12 (+ Extras)	Amazon.com	34.58
TM4C123GH6PM Microcontroller	1	Mouser	13.45
Node-MCU V1 Wifi Module	1	Amazon.com	8.39
4-40 Machine Bolts and Nuts	30 each (+ Extras)	Raby's Ace	12.44
6 x 8 cm Prototyping PCB	1 (+ Extras)	Amazon.com	5.99
4 x 6 cm Prototyping PCB	1(+ Extras)	Amazon.com	6.99
M2 Standoff Kit	1	Amazon.com	8.99
1/16 in Thick 16x24 in Acrylic Sheet	1	ePlastics.com	8.49
1/8 in Thick 16x24 in Acrylic Sheet	1	ePlastics.com	21.69
Two-Part Quick Setting Epoxy	1	Walmart	5.35
3/8 in Heat Shrink Tubing	1	<u>Jameco</u>	1.75
Colored Googly Eyes	1	Dollar Tree	1.00
Total Cost			129.11

Work Process

- 1. Designed frame parts w/ Autodesk Inventor software
- 2. Developed control code for microcontroller to interact with servos
- 3. Developed web program for remote control of microcontroller
- 4. Laser-cut acrylic frame components
- 5. Build phase: Built frame and compiled programs
- 6. Test phase: Checked build quality and tested program functions
- 7. Refined programs and component designs; repeated build and test phases as necessary

Video

Want to name it? Take our Survey

https://goo.gl/forms/k4L7yxuELGz0lumn2

References

References

[1]B. Baxter, "Tripod-walking Gait," The Tripod Gait as a Model for Robots. [Online]. Available: https://tripodgaitasamodelforrobots.weebly.com/tripod-walking-gait.html.

[2]"Tiva™ TM4C123GH6PM Microcontroller," ti.com. [Online]. Available: http://www.ti.com/lit/ds/symlink/tm4c123gh6pm.pdf.

[3] "SG90 Data Sheet." [Online]. Available: http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf.

[4]"NodeMCU ESP8266 ESP-12E WiFi Development Board." [Online]. Available: https://einstronic.com/wp-content/uploads/2017/06/NodeMCU-ESP8266-ESP-12E-Catalogu e.pdf.

Any Questions?

Thank you for your attention!