25 juin 2001 Durée : 2 heures Documents autorisés

AUTOMATES

- 1°) Soit L_1 le langage représenté par l'expression régulière ((a + aa)(b + bb))*.
- a) Déterminer la grammaire qui engendre L_1 .
- b) Déterminer l'AFD minimal qui accepte L_1 .
- 2°) Soit L_2 le langage engendré par la grammaire $G = (V_N, V_T, S, R)$, avec $V_N = \{S\}$, $V_T = \{a, b\}$, et $R = \{S \rightarrow abS ; S \rightarrow a^2b^2S ; S \rightarrow \epsilon\}$.
- a) Expliciter le langage L_2 .
- b) L_2 est-il un langage régulier?
- 3°) Soit $L_3 = \{ a^{n_1}b^{n_1} \dots a^{n_k}b^{n_k}, k \in \mathbb{N}, \forall i \in \{1...k\} \ n_i \in \mathbb{N}^* \}.$
- a) Déterminer la grammaire qui engendre L_3 .
- b) Déterminer l'APND qui accepte L_3 .
- c) Montrer que:

 $\forall m \in L_3$ tel que $|m| \ge 2$: ($\exists x, u, y$, tels que $m = xuy, u \ne \varepsilon$, et $\forall n \in IN * xu^n y \in L_3$). Que peut-on en déduire ?

- 4°) Soit $L = \{ a^{2^n}, n \in IN \}$.
- a) Montrer que L n'est pas un langage hors contexte.
- b) Déterminer la machine de Turing qui accepte le langage $L' = \{>\}L$.
- c) En déduire la machine de Turing qui accepte le langage $L'' = \{ > \} \{ a^{2^n} b^{2^n}, n \in \mathbb{N} \}$.
- d) En déduire la machine de Turing qui accepte le langage :

$$L_4 = \{ > \} \{ a^{2^{m_i}} b^{2^{m_i}} \cdots a^{2^{n_k}} b^{2^{n_k}}, k \in \mathbb{N}, \forall i \in \{1...k\} n_i \in \mathbb{N} \}.$$

Solution:

 4°) a) Principe général : répéter une boucle consistant à chaque itération à diviser le nombre de a par deux. Pour faire ceci, on prend le premier a non marqué, on le marque (q_1) , et on va chercher à supprimer un a à la fin du mot $(q_2$ et $q_3)$. Si à un moment, pour un a que l'on vient de marquer, on ne trouve pas un autre a en fin de mot (on tombe directement sur un # en q_2), c'est que le nombre de a était impair. Si le nombre de a est pair, on arrive avec cette méthode à diviser le nombre de a par deux. Dans ce dernier cas, on démarque tous les A (q_6) , et on recommence. Si le nombre de a n'est pas une puissance de deux, alors on finira forcément avec un nombre de A impair supérieur à 1. Par contre si le nombre de a est une puissance de deux, alors on finira avec un seul A. C'est q_7 et q_8 qui contrôle s'il n' y a qu'un seul A et qui acceptent le mot dans ce seul cas.

Algorithme détaillé:

 q_0 : aller sur le premier a et passer en q_1 ;

Boucle $q_1 ext{ ... } q_5$ avec sortie en q_6 si le nombre est pair et a été divisé par deux, et sortie en q_7 s'il est impair (et donc que le dernier A marqué n'a pas eu de a correspondant) :

 q_1 : marquer le premier a et passer en q_2 ; s'il n'y a plus de a, le nombre de a était pair, et a donc été divisé par deux, passer alors en q_6 ;

 q_2 : si derrière le A que l'on vient de marquer il n'y a plus rien, c'est que le nombre de a était impair, passer alors en q_7 pour contrôler si ce nombre de a est 1 ou un entier impair supérieur à 1; sinon passer en q_3 ;

q₃ : aller à la fin du mot, et passer en q₄ ;

q₄: effacer le dernier a du mot et passer en q₅;

q₅: retourner jusqu'au dernier A marqué, et passer en q₁;

 q_6 : retourner au début en démarquant les A, et passer en q_1 pour recommencer une nouvelle division par 2;

 q_7 et q_8 : pour que le mot soit accepté, il doit être de longueur 1 (résultat de n divisions successives de 2^n par 2).

	>	a	A	#
q_0	$(q_1, >, \rightarrow)$			
q_1		(q_2, A, \rightarrow)		$(q_6, \#, \leftarrow)$
q_2		$ \begin{array}{c} (q_2, A, \rightarrow) \\ (q_3, a, \rightarrow) \end{array} $		$(q_6, \#, \leftarrow)$ $(q_7, \#, \leftarrow)$ $(q_4, \#, \leftarrow)$
q_3		\rightarrow		$(q_4, \#, \leftarrow)$
q_4		$(q_5, \#, \leftarrow)$		
q_5		←	(q_1, A, \rightarrow)	
q_6	(q_1, \geq, \rightarrow)		$ \begin{array}{c} (q_1, A, \rightarrow) \\ (q_6, a, \leftarrow) \end{array} $	
\mathbf{q}_7			(q_8, A, \leftarrow)	
q_8	(f, \geq, \rightarrow)			