Lexicalized Probabilistic Context-Free Grammars

Michael Collins, Columbia University

PCFGs的精确度只能达到72%,而现代的方法能达到92%,它的一个明显的缺点就是对词汇不敏感

NN→bin

Overview

- Lexicalization of a treebank
- Lexicalized probabilistic context-free grammars
- Parameter estimation in lexicalized probabilistic context-free grammars
- Accuracy of lexicalized probabilistic context-free grammars

Heads in Context-Free Rules

Add annotations specifying the "head" of each rule:

S	\Rightarrow	NP	VP
VP	\Rightarrow	Vi	
VP	\Rightarrow	Vt	NP
VP	\Rightarrow	VP	PP
NP	\Rightarrow	DT	NN
NP	\Rightarrow	NP	PP
PP	\Rightarrow	IN	NP

Vi	\Rightarrow	sleeps	
Vt	\Rightarrow	saw	
NN	\Rightarrow	man	
NN	\Rightarrow	woman	
NN	\Rightarrow	telescope	
DT	\Rightarrow	the	
IN	\Rightarrow	with	
IN	\Rightarrow	in	

More about Heads

► Each context-free rule has one "special" child that is the head of the rule. e.g.,

- ► A core idea in syntax (e.g., see X-bar Theory, Head-Driven Phrase Structure Grammar)
- ► Some intuitions:
 - ▶ The central sub-constituent of each rule.
 - ▶ The semantic predicate in each rule.

Rules which Recover Heads: An Example for NPs

```
If the rule contains NN, NNS, or NNP:
Choose the rightmost NN, NNS, or NNP
```

Else If the rule contains an NP: Choose the leftmost NP

Else If the rule contains a JJ: Choose the rightmost JJ

Else If the rule contains a CD: Choose the rightmost CD

Else Choose the rightmost child

e.g.,

```
NP
            DT
                  NNP
                           NN
NΡ
           DT
                  NN
                           NNP
      \Rightarrow
NP
            NP
                  PP
      \Rightarrow
NP
           DT
      \Rightarrow
                  JJ
NP
            DT
```

Rules which Recover Heads: An Example for VPs

If the rule contains Vi or Vt: Choose the leftmost Vi or Vt

Else If the rule contains an VP: Choose the leftmost VP

Else Choose the leftmost child

e.g., $\begin{array}{cccc} \mathsf{VP} & \Rightarrow & \mathsf{Vt} & \mathsf{NP} \\ \mathsf{VP} & \Rightarrow & \mathsf{VP} & \mathsf{PP} \end{array}$

Adding Headwords to Trees

Adding Headwords to Trees (Continued)

A constituent receives its headword from its head child.

Overview

- Lexicalization of a treebank
- Lexicalized probabilistic context-free grammars
- Parameter estimation in lexicalized probabilistic context-free grammars
- Accuracy of lexicalized probabilistic context-free grammars

Chomsky Normal Form

A context free grammar $G=(N,\Sigma,R,S)$ in Chomsky Normal Form is as follows

- ightharpoonup N is a set of non-terminal symbols
- $ightharpoonup \Sigma$ is a set of terminal symbols
- R is a set of rules which take one of two forms:
 - $X \to Y_1Y_2$ for $X \in N$, and $Y_1, Y_2 \in N$
 - $X \to Y$ for $X \in N$, and $Y \in \Sigma$
- $ightharpoonup S \in N$ is a distinguished start symbol

We can find the highest scoring parse under a PCFG in this form, in $O(n^3|N|^3)$ time where n is the length of the string being parsed.

Lexicalized Context-Free Grammars in Chomsky Normal Form

- ightharpoonup N is a set of non-terminal symbols
- $ightharpoonup \Sigma$ is a set of terminal symbols
- R is a set of rules which take one of three forms:
 - $X(h) \to_1 Y_1(h) \ Y_2(w)$ for $X \in N$, and $Y_1, Y_2 \in N$, and $h, w \in \Sigma$
 - $X(h) \to_2 Y_1(w) \ Y_2(h)$ for $X \in N$, and $Y_1, Y_2 \in N$, and $h, w \in \Sigma$
 - $X(h) \to h$ for $X \in N$, and $h \in \Sigma$
- $lackbox{lack} S \in N$ is a distinguished start symbol

An Example

```
S(saw)
                    NP(man)
                                  VP(saw)
                                  NP(dog)
VP(saw) \rightarrow_1 Vt(saw)
NP(man) \rightarrow_2
                    DT(the)
                                  NN(man)
\mathsf{NP}(\mathsf{dog}) \longrightarrow_2
                    DT(the)
                                  NN(dog)
Vt(saw)
            \rightarrow
                    saw
DT(the)
              \rightarrow
                    the
NN(man)
             \rightarrow
                    man
                    dog
NN(dog)
```

Parameters in a Lexicalized PCFG

▶ An example parameter in a PCFG:

$$q(S \rightarrow NP VP)$$

► An example parameter in a Lexicalized PCFG:

$$q(S(saw) \rightarrow_2 NP(man) VP(saw))$$

Parsing with Lexicalized CFGs

- ► The new form of grammar looks just like a Chomsky normal form CFG, but with potentially $O(|\Sigma|^2 \times |N|^3)$ possible rules.
- Naively, parsing an n word sentence using the dynamic programming algorithm will take $O(n^3|\Sigma|^2|N|^3)$ time. But $|\Sigma|$ can be huge!!
- ▶ Crucial observation: at most $O(n^2 \times |N|^3)$ rules can be applicable to a given sentence $w_1, w_2, \ldots w_n$ of length n. This is because any rules which contain a lexical item that is not one of $w_1 \ldots w_n$, can be safely discarded.
- ▶ The result: we can parse in $O(n^5|N|^3)$ time.

Overview

- Lexicalization of a treebank
- Lexicalized probabilistic context-free grammars
- Parameter estimation in lexicalized probabilistic context-free grammars
- Accuracy of lexicalized probabilistic context-free grammars

$$\begin{array}{l} \mathsf{p(t)} = q(\mathsf{S(saw)} \to_2 \mathsf{NP(man)} \mathsf{VP(saw)}) \\ \times q(\mathsf{NP(man)} \to_2 \mathsf{DT(the)} \; \mathsf{NN(man)}) \\ \times q(\mathsf{VP(saw)} \to_1 \mathsf{VP(saw)} \; \mathsf{PP(with)}) \\ \times q(\mathsf{VP(saw)} \to_1 \mathsf{Vt(saw)} \; \mathsf{NP(dog)}) \\ \times q(\mathsf{PP(with)} \to_1 \mathsf{IN(with)} \; \mathsf{NP(telescope)}) \\ \times \dots \end{array}$$

A Model from Charniak (1997)

▶ An example parameter in a Lexicalized PCFG:

$$q(S(saw) \rightarrow_2 NP(man) VP(saw))$$

► First step: decompose this parameter into a product of two parameters

$$q(\mathsf{S}(\mathsf{saw}) \to_2 \mathsf{NP}(\mathsf{man}) \mathsf{VP}(\mathsf{saw})) \\ = q(\mathsf{S} \to_2 \mathsf{NP} \mathsf{VP}|\mathsf{S}, \mathsf{saw}) \times q(\mathsf{man}|\mathsf{S} \to_2 \mathsf{NP} \mathsf{VP}, \mathsf{saw})$$

A Model from Charniak (1997) (Continued)

$$\begin{split} &q(\mathsf{S}(\mathsf{saw}) \to_2 \mathsf{NP}(\mathsf{man}) \; \mathsf{VP}(\mathsf{saw})) \\ &= &q(\mathsf{S} \to_2 \mathsf{NP} \; \mathsf{VP}|\mathsf{S}, \; \mathsf{saw}) \times q(\mathsf{man}|\mathsf{S} \to_2 \mathsf{NP} \; \mathsf{VP}, \; \mathsf{saw}) \end{split}$$

 Second step: use smoothed estimation for the two parameter estimates

$$\begin{split} &q(\mathsf{S} \to_2 \mathsf{NP} \mathsf{VP}|\mathsf{S}, \, \mathsf{saw}) \\ &= \ \lambda_1 \times q_{ML}(\mathsf{S} \to_2 \mathsf{NP} \mathsf{VP}|\mathsf{S}, \, \mathsf{saw}) + \lambda_2 \times q_{ML}(\mathsf{S} \to_2 \mathsf{NP} \mathsf{VP}|\mathsf{S}) \end{split}$$

A Model from Charniak (1997) (Continued)

$$\begin{split} &q(\mathsf{S}(\mathsf{saw}) \to_2 \mathsf{NP}(\mathsf{man}) \; \mathsf{VP}(\mathsf{saw})) \\ &= &q(\mathsf{S} \to_2 \mathsf{NP} \; \mathsf{VP}|\mathsf{S}, \; \mathsf{saw}) \times q(\mathsf{man}|\mathsf{S} \to_2 \mathsf{NP} \; \mathsf{VP}, \; \mathsf{saw}) \end{split}$$

 Second step: use smoothed estimation for the two parameter estimates

$$\begin{split} &q(\mathsf{S} \to_2 \mathsf{NP} \mathsf{VP}|\mathsf{S}, \mathsf{saw}) \\ &= \lambda_1 \times q_{ML}(\mathsf{S} \to_2 \mathsf{NP} \mathsf{VP}|\mathsf{S}, \mathsf{saw}) + \lambda_2 \times q_{ML}(\mathsf{S} \to_2 \mathsf{NP} \mathsf{VP}|\mathsf{S}) \\ &q(\mathsf{man}|\mathsf{S} \to_2 \mathsf{NP} \mathsf{VP}, \mathsf{saw}) \\ &= \lambda_3 \times q_{ML}(\mathsf{man}|\mathsf{S} \to_2 \mathsf{NP} \mathsf{VP}, \mathsf{saw}) + \lambda_4 \times q_{ML}(\mathsf{man}|\mathsf{S} \to_2 \mathsf{NP} \mathsf{VP}) \\ &+ \lambda_5 \times q_{ML}(\mathsf{man}|\mathsf{NP}) \end{split}$$

▶ Need to deal with rules with more than two children, e.g.,

 $\mathsf{VP}(\mathsf{told}) \to \mathsf{V}(\mathsf{told}) \; \mathsf{NP}(\mathsf{him}) \; \mathsf{PP}(\mathsf{on}) \; \mathsf{SBAR}(\mathsf{that})$

▶ Need to deal with rules with more than two children, e.g.,

 $\mathsf{VP}(\mathsf{told}) \to \mathsf{V}(\mathsf{told}) \; \mathsf{NP}(\mathsf{him}) \; \mathsf{PP}(\mathsf{on}) \; \mathsf{SBAR}(\mathsf{that})$

Need to incorporate parts of speech (useful in smoothing)

 $VP-V(told) \rightarrow V(told) NP-PRP(him) PP-IN(on) SBAR-COMP(that)$

▶ Need to deal with rules with more than two children, e.g.,

$$VP(told) \rightarrow V(told) NP(him) PP(on) SBAR(that)$$

▶ Need to incorporate parts of speech (useful in smoothing) $VP\text{-}V(told) \rightarrow V(told) \; NP\text{-}PRP(him) \; PP\text{-}IN(on) \; SBAR\text{-}COMP(that)$

Need to encode preferences for close attachment
 John was believed to have been shot by Bill

▶ Need to deal with rules with more than two children, e.g.,

$$VP(told) \rightarrow V(told) NP(him) PP(on) SBAR(that)$$

Need to incorporate parts of speech (useful in smoothing) $VP\text{-V(told)} \rightarrow V(told) \ NP\text{-PRP(him)} \ PP\text{-IN(on)} \ SBAR\text{-COMP(that)}$

- ► Need to encode preferences for close attachment John was believed to have been shot by Bill
- Further reading:

Michael Collins. 2003. Head-Driven Statistical Models for Natural Language Parsing. In Computational Linguistics.

Overview

- Lexicalization of a treebank
- Lexicalized probabilistic context-free grammars
- Parameter estimation in lexicalized probabilistic context-free grammars
- Accuracy of lexicalized probabilistic context-free grammars

Evaluation: Representing Trees as Constituents

Label	Start Point	End Point
NP	1	2
NP	4	5
VP	3	5
S	1	5

Precision and Recall

Label	Start Point	End Point
NP	1	2
NP	4	5
NP	4	8
PP	6	8
NP	7	8
VP	3	8
S	1	8

Label	Start Point	End Point
NP	1	2
NP	4	5
PP	6	8
NP	7	8
VP	3	8
S	1	8

- G = number of constituents in gold standard = 7
- ightharpoonup P = number in parse output = 6
- ightharpoonup C = number correct = 6

$$\label{eq:Recall} \text{Recall} = 100\% \times \frac{C}{G} = 100\% \times \frac{6}{7} \qquad \quad \text{Precision} = 100\% \times \frac{C}{P} = 100\% \times \frac{6}{6}$$

Results

- ► Training data: 40,000 sentences from the Penn Wall Street Journal treebank. Testing: around 2,400 sentences from the Penn Wall Street Journal treebank.
- ▶ Results for a PCFG: 70.6% Recall, 74.8% Precision
- ► Magerman (1994): 84.0% Recall, 84.3% Precision
- ► Results for a lexicalized PCFG: 88.1% recall, 88.3% precision (from Collins (1997, 2003))
- ▶ More recent results: 90.7% Recall/91.4% Precision (Carreras et al., 2008); 91.7% Recall, 92.0% Precision (Petrov 2010); 91.2% Recall, 91.8% Precision (Charniak and Johnson, 2005)


```
ROOT_0.
                                                        ROOT >
                            saw<sub>3</sub>,
                                                        S \rightarrow_2 NP VP \rangle
saw<sub>3</sub>,
                            man_2,
                            \mathsf{the}_1,
                                                       \mathsf{NP} \to_2 \mathsf{DT} \; \mathsf{NN} \; \rangle
man<sub>2</sub>,
                            with<sub>6</sub>.
                                                  \mathsf{VP} \to_1 \mathsf{VP} \mathsf{PP} \ \rangle
saw<sub>3</sub>,
                                                     VP \rightarrow_1 Vt NP \rangle
                            dog_5,
saw<sub>3</sub>,
                                                       \mathsf{NP} \to_2 \mathsf{DT} \; \mathsf{NN} \; \rangle
                            \mathsf{the}_4,
dog_5,
with<sub>6</sub>.
                                                       PP \rightarrow_1 IN NP \rangle
                           telescopes.
                                                        NP \rightarrow_2 DT NN \rangle
telescope<sub>8</sub>,
                            the_7,
```

Dependency Accuracies

- ▶ All parses for a sentence with n words have n dependencies Report a single figure, dependency accuracy
- ▶ Results from Collins, 2003: 88.3% dependency accuracy
- ▶ Can calculate precision/recall on particular dependency types e.g., look at all subject/verb dependencies \Rightarrow all dependencies with label S \rightarrow_2 NP VP

```
Recall = number of subject/verb dependencies correct number of subject/verb dependencies in gold standard
```

```
Precision = number of subject/verb dependencies correct number of subject/verb dependencies in parser's output
```

Strengths and Weaknesses of Modern Parsers

(Numbers taken from Collins (2003))

- ▶ Subject-verb pairs: over 95% recall and precision
- ▶ Object-verb pairs: over 92% recall and precision
- ightharpoonup Other arguments to verbs: pprox 93% recall and precision
- ▶ Non-recursive NP boundaries: $\approx 93\%$ recall and precision
- ightharpoonup PP attachments: pprox 82% recall and precision
- ightharpoonup Coordination ambiguities: pprox 61% recall and precision

Summary

- Key weakness of PCFGs: lack of sensitivity to lexical information
- Lexicalized PCFGs:
 - Lexicalize a treebank using head rules
 - ► Estimate the parameters of a lexicalized PCFG using smoothed estimation
- Accuracy of lexicalized PCFGs: around 88% in recovering constituents or dependencies