Boolean Algebras,

Boolean Rings, and Stone's Theorem

We saw in Sec. 2 that a Boolean algebra of sets can be defined as a class of subsets of a non-empty set which is closed under the formation of finite unions, finite intersections, and complements. Our purpose in this appendix is threefold: to define abstract Boolean algebras by means of lattices; to show that the theory of these systems can be regarded as part of the general theory of rings; and to prove the famous theorem of Stone, which asserts that every Boolean algebra is isomorphic to a Boolean algebra of sets.

The reader will recall that a *lattice* is a partially ordered set in which each pair of elements x and y has a greatest lower bound $x \wedge y$ and a least upper bound $x \vee y$, and that these elements are uniquely determined by x and y. It is easy to show (see Problem 8-5) that the operations \wedge and \vee have the following properties:

$$x \wedge x = x$$
 and $x \vee x = x$; (1)
 $x \wedge y = y \wedge x$ and $x \vee y = y \vee x$; (2)
 $x \wedge (y \wedge z) = (x \wedge y) \wedge z$ and $x \vee (y \vee z) = (x \vee y) \vee z$; (3)
 $(x \wedge y) \vee x = x$ and $(x \vee y) \wedge x = x$. (4)

We shall see in the next paragraph that these properties are actually characteristic of lattices. Before proceeding further, however, we remark that

$$x \leq y \Leftrightarrow x \land y = x$$
.

This fact serves to motivate the following discussion.

Let L be a non-empty set in which two operations \wedge and \vee are defined, and assume that these operations satisfy the above conditions. We 344

shall prove that a partial order relation \leq can be defined in L in such a way that L becomes a lattice in which $x \wedge y$ and $x \vee y$ are the greatest lower bound and least upper bound of x and y. Our first step is to notice that $x \wedge y = x$ and $x \vee y = y$ are equivalent; for if $x \wedge y = x$, then $x \vee y = (x \wedge y) \vee y = (y \wedge x) \vee y = y$, and similarly $x \vee y = y$ implies $x \wedge y = x$. We now define $x \leq y$ to mean that either $x \wedge y = x$ or $x \vee y = y$. Since $x \wedge x = x$, we have $x \leq x$ for every x. If $x \leq y$ and $y \le x$, so that $x \land y = x$ and $y \land x = y$, then $x = x \land y = y \land x = y$. If $x \leq y$ and $y \leq z$, so that $x \wedge y = x$ and $y \wedge z = y$, then

$$x \wedge z = (x \wedge y) \wedge z = x \wedge (y \wedge z) = x \wedge y = x,$$

so $x \le z$. This completes the proof that \le is a partial order relation. We now show that $x \wedge y$ is the greatest lower bound of x and y. Since $(x \land y) \lor x = x$ and $(x \land y) \lor y = (y \land x) \lor y = y$, we see that $x \land y \le x$ and $x \wedge y \leq y$. If $z \leq x$ and $z \leq y$, so that $z \wedge x = z$ and $z \wedge y = z$, then $z \wedge (x \wedge y) = (z \wedge x) \wedge y = z \wedge y = z$, so $z \leq x \wedge y$. It is easy to prove, by similar arguments, that $x \vee y$ is the least upper bound of x and y.

This characterization of lattices brings the theory of these systems somewhat closer to ordinary abstract algebra, in which operations (instead of relations) are usually placed in the foreground.

A lattice is said to be distributive if it has the following properties:

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z) \tag{5}$$

and

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

$$x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z).$$
(5)
(6)

It is useful to know that (5) and (6) are equivalent to one another. if (5) holds, then

$$(x \lor y) \land (x \lor z) = [(x \lor y) \land x] \lor [(x \lor y) \land z]$$

$$= x \lor [(x \lor y) \land z]$$

$$= x \lor [(x \land z) \lor (y \land z)]$$

$$= [x \lor (x \land z)] \lor (y \land z)$$

$$= x \lor (y \land z),$$

and a similar computation shows that (6) implies (5). We shall say that a lattice is complemented if it contains distinct elements 0 and 1 such that

$$0 \le x \le 1 \tag{7}$$

for every x (these elements are clearly unique when they exist), and if each element x has a complement x' with the property that

$$x \wedge x' = 0$$
 and $x \vee x' = 1$. (8)

We now define a Boolean algebra to be a complemented distributive lattice. It is quite possible for an element of a complemented lattice to have many different complements. In a Boolean algebra, however, each