Matematika I

05. január 2020 9:00

Meno a priezvisko:	Podpis:
Ročník:	študijný program:
1. (11b) Daná je všeobeci Doplňte	ná rovnica kužeľosečky $4x^2 - y^2 - 24x + 4y + 28 = 0$.
a) (2b) Stredová rovnic	ca kužeľosečky je
b) (1b) Kužeľosečka je	typu
c) (3b) Popíšte (ak exid	stujú):
c_2) dĺžka vedľajšej	oloosi je
d) (4b) Napíšte súradn	ice (ak existujú):
d_2) hlavných vrcho d_3) vedľajších vrch	čky lov kužeľosečky olov kužeľosečky ska resp. ohnísk kužeľosečky
e) (1b) Znázornite kuž	eľosečku a v náčrte popíšte jej významné prvky.

2. (2b) Vyberte funkciu, ktorej definičný obor je znázornený na obrázku.

a)
$$f(x,y) = \frac{\ln(x^2 + y^2 - 1)}{\sqrt{4 - x^2 - y^2}}$$

b)
$$f(x,y) = \frac{\ln(4-x^2-y^2)}{\sqrt{x^2+y^2-1}}$$

c)
$$f(x,y) = \frac{\sqrt{x^2 + y^2 - 1}}{\ln(4 - x^2 - y^2)}$$

d)
$$f(x,y) = \frac{\sqrt{4-x^2-y^2}}{\ln(x^2+y^2-1)}$$

3. (6b) Vypočítajte

$$\iint\limits_{M} xy \, \mathrm{d}x \mathrm{d}y,$$

kde množina M je trojuholník s vrcholmi A = [1, 1], B = [1, 2] a C = [2, 2].

- **4.** (4b) Bod M má v sférickej súradnicovej sústave súradnice: $M = \left[4, \frac{\pi}{6}, \frac{2}{3}\pi\right]$.
 - a) (2b) Vyberte správnu odpoveď: Súradnice bodu M v pravouhlej súradnicovej sústave sú:

a)
$$M = [-3, -\sqrt{3}, -2]$$

c)
$$M = [3, -\sqrt{3}, -2]$$

b)
$$M = [-3, \sqrt{3}, -2]$$

d)
$$M = [3, \sqrt{3}, -2]$$

b) (2b) Znázornite tento bod M v pravouhlej súradnicovej sústave.

Náčrt:

5. (8b) Daná je lineárna obyčajná diferenciálna rovnica (LODR) $y''(x) + 6y'(x) = 1$.
a) (2b) Napíšte charakteristickú rovnicu k danej diferenciálnej rovnici.
Charakteristická rovnica je:
b) (2b) Nájdite fundamentálny systém riešení diferenciálnej rovnice s nulovou pravou stranou.
Fundamentálny systém riešení je
b) (2b) Nájdite partikulárne riešenie uvedenej nehomogénnej rovnice.
Partikulárne riešene je
c) (2b) Napíšte všeobecné riešenie danej lineárnej diferenciálnej rovnice.
Všeobecné riešenie danej LODR je
6. (4b) Vypočítajte
$\lim_{[x,y]\to[0,1]} \frac{x^2y^2}{x+y+1}.$
Výsledok:
7. (6b) Nájdite rovnicu dotykovej roviny τ ku grafu funkcie $f(x,y)=e^{x\cos y}$ v bode $T=[1,\pi,z_0].$
(2b) Nájdite z_0 a uveďte súradnice dotykového bodu :
(4b) Všeobecná rovnica dotykovej roviny τ je:
8. (6b) Daná je funkcia $f(x,y)=\frac{x}{y^2},$ bod $A=[1,2]$ a vektor $\vec{l}=(-1,2).$
a) (3b) Nájdite gradient funkcie $f(x,y)$ v bode A .
Gradient funkcie $f(x,y)$ v bode A je
b) (3b) Vypočítajte deriváciu funkcie $f(x,y)$ v bode A v smere vektora \vec{l} .
Derivácia funkcie $f(x,y)$ v bode A v smere vektora \vec{l} je

9. (9b) Toto je príklad typu E

text text text