Laporan Pengerjaan Latihan Soal

Nama: Farrel Augusta Dinata

NIM: 2341720081 Kelas : TI-2F

Soal 1 - Metode Iterasi Titik Tetap

Persamaan: $f(x) = x^3 - 4x + 1$

Tebakan awal: 1.5

Toleransi dengan selisih = $|x_n - x_{n-1}| < 0.001$

Jawab: Langkah awal dalam menentukan akar penyelesaian dari persamaan tersebut dengan metode iterasi titik tetap adalah dengan menyederhanakan persamaan untuk bisa digunakan mencari nilai x. Jadi dari semula yang berbentuk: $x^3 - 4x + 1$ bisa diubah menjadi $x = \sqrt[3]{4x} - 1$. Prosesnya adalah:

$$x^{3} - 4x + 1 = 0$$

 $x^{3} = 4x - 1$
 $x = \sqrt[3]{4x - 1}$

Hasil x tersebut akan digunakan pada iterasi-iterasi selanjutnya. Proses iterasi akan berakhir jika nilai x_n - x_{n-1} sudah kurang dari atau sama dengan batas toleransi. Contoh iterasi pertama:

$$x_1$$
 = $\sqrt[3]{4(1.5)} - 1$
= $\sqrt[3]{5}$
= 1.709975946676697

Nilai tersebut akan digunakan pada iterasi selanjutnya

n	xn	hasil	xn - xn-1
1	1.5	1.709975947	-
2	1.709975947	1.80081278	0.2099759467
3	1.80081278	1.837411601	0.09083683304
4	1.837411601	1.851753527	0.0365988217
5	1.851753527	1.857313548	0.01434192523
6	1.857313548	1.859460108	0.00556002164
7	1.859460108	1.860287506	0.00214655951
8	1.860287506	1.860606233	0.00082739845
9	1.860606233	1.860728983	0.00031872703
10	1.860728983	1.860776252	0.00012274958

Gambaran grafik:

Soal 2 - Metode Newton Rapshon

Persamaan : $f(x) = 5x^3 + 2x^2 + 8x + 2$

Batas toleransi = 1 * 10⁻⁴

Jawab: Langkah dalam menentukan akar penyelesaian dari sebuah persamaan non-linear dengan menggunakan metode Newton-Rapshon adalah diawali dengan membuat fungsi turunan terlebih dahulu karena rumus ini akan sangat dibutuhkan pada perhitungan pada tiap iterasi selanjutnya.

Misalkan dari persamaan $f(x) = 5x^3+2x^2+8x+2$, maka bisa diperoleh persamaan turunan: $f'(x) = 15x^2+4x+8$. Pada tiap-tiap iterasi, nilai x akan selalu berubah dan x akan selalu dimasukkan pada kedua persamaan tersebut.

Contoh:

Diawali dengan menebak perkiraan nilai x pada akar penyelesaian. Tebakan bisa bebas. Semakin mendekati hasil yang sebenarnya, maka proses iterasi akan semakin singkat. Misalkan ditebak nilai x berada pada koordinat 2. Nilai ini akan dimasukkan kedalam dua persamaan sebelumnya:

$$f(2) = 5(2)^3 + 2(2)^2 + 8(2) + 2$$

= 40 + 8 + 16 + 2
= 66

$$f'(2) = 15(2)^2 + 4(2) + 8$$
$$= 60 + 8 + 8$$
$$= 76$$

Kedua persamaan tersebut akan dimasukkan ke dalam rumus berikut:

$$X_n = X_{n-1} - (f(x) / f'(x))$$

Hasil x tersebut akan menjadi nilai x pada iterasi kedua dan seterusnya

$$X_2 = 2 - (66 / 76)$$

= 2 - 0.868421052631579

= 1.131578947

Langkah selanjutnya adalah menentukan error dari tiap-tiap iterasi. Untuk cara perhitungan error/galat relatif maka bisa dilakukan dengan cara menggunakan rumus berikut:

Nilai error = $(x_n - x_{n-1}) / x_n$

Contoh perhitungan pada iterasi kedua:

$$e = (1.131578947 - 2) / 1.131578947$$

= -1.385892111

Proses ini terus berlanjut hingga mendapatkan nilai minimum error yang sudah ditentukan. Pada soal tersebut ditentukan batas minimum error adalah 0.0001, maka didapatkan nilai x -0.2558987999 pada iterasi ke -6.

n	х	f(x)	f'(x)	hasil	error
1	2	66	76	1.131578947	0
2	1.131578947	20.85834305	31.7333795	0.4742791772	-1.385892111
3	0.4742791772	6.777538434	13.27122778	-0.03641497616	14.0242891
4	-0.03641497616	1.711090851	7.874230853	-0.2537175779	0.8564743663
5	-0.2537175779	0.0173422826	7.950718829	-0.2558987999	0.008523767897
6	-0.2558987999	-0.000008643	7.958667737	-0.2558977139	-0.000004243937119

Gambaran grafik:

Soal 3 - Metode Secant

Persamaan : $f(x) = x^3-6x^2+11x-6$

Rentang tebakan : [2.5, 3] Batas toleransi = 1 * 10⁻⁴

Jawab: Metode Secant dilakukan dengan menghitung gradien antara nilai kedua titik x yang telah ditentukan. Untuk cara perhitungannya adalah dengan menentukan delta x dan y. Implementasi lebih lengkapnya adalah menggunakan rumus:

$$X_{n+1} = X_n + (f(X_n) \cdot (X_n - X_{n-1}) / (f(X_n) - f(X_{n-1}))$$

Pada rumus tersebut, pada tahap awal diperlukan dua titik awal untuk menentukan nilai akar penyelesaian. Kedua titik x tersebut digunakan untuk membentuk garis lurus antar kedua titik tersebut. Semakin lama iterasi, maka kedua titik akan mendekati titik x = 0.

Pada soal tersebut telah ditentukan bahwa dua titik yang sudah ditentukan adalah 2.5 dan 3. Agar mempermudah perhitungan, maka bisa ditentukan nilai f(x) dan $f(x_{n-1})$ terlebih dahulu. Kedua hasil dari persamaan tersebut akan menjadi bahan nilai pada rumus yang sudah ditentukan di atas.

Misalnya pada iterasi kedua karena iterasi pertama menggunakan nilai x yang sudah ditentukan:

$$X_2 = 3.5 + (1.875 \cdot 3.5 - 2.5) / (1.875 - (-0.375))$$

= 2.666666667

Kemudian ditentukan nilai errornya dengan menghitung perbedaan nilai f(x) dan $f(x_{n-1})$

Proses ini terus berlanjut hingga didapatkan error absolut yang sudah memenuhi batas minimum error

n	xn	xn-1	f(xn)	f(xn-1)	error absolut
1	3.5	2.5	1.875	-0.375	2.25
2	2.666666667	3.5	-0.3703703704	1.875	2.24537037
3	2.804123711	2.666666667	-0.2841653035	-0.3703703704	0.08620506692
4	3.257235393	2.804123711	0.7300022053	-0.2841653035	1.014167509
5	2.931083624	3.257235393	-0.1239116672	0.7300022053	0.8539138725
6	2.978411593	2.931083624	-0.04178869704	-0.1239116672	0.08212297019
7	3.002494675	2.978411593	0.005008034772	-0.04178869704	0.04679673182
8	2.999917381	3.002494675	-0.0001652172934	0.005008034772	0.005173252065
9	2.999999692	2.999917381	-0.000000616585826	-0.0001652172934	0.0001646007076
10	3	2.999999692	0	-0.000000616585826	0.0000006166622448

