CHRISTOPHER R. COLLINS

chris@crcollins.com
 http://github.com/crcollins
 http://crcollins.com

EDUCATION

• Carnegie Mellon University

Ph.D. in Theoretical/Computational Chemistry

Pittsburgh, PA

2014 – 2019 Expected

Thesis Topic: Using Machine Learning and Molecular Similarity to Predict Chemical Properties

• University of North Georgia

B.S. in Chemistry with Chemical Physics Concentration

Dahlonega, GA

2010 - 2014

Research

• Carnegie Mellon University

Graduate Student; Advisor: David Yaron

Pittsburgh, PA

2014 - Present

- Developed parallel and distributed code for optimizing INDO parameters with SGD (50x speedup on 60 core cluster)
- Achieved state-of-the-art performance predicting polymer properties with deep learning with multi-task regression
- Invented new molecular descriptors that reduced previous prediction errors by 50% while reducing $O(n^2)$ storage costs to O(1)
- Implemented ranking heuristic for global minimum energy conformation search using kernel ridge regression
- Developed method for predicting atomic forces using by differentiating LSTM-based energy models
- Examined LASSO regression model for feature selection in Density Functional Theory Model
- Managed two groups of ML masters students on big data term projects (one active learning and the other multilabel/ranking classification)

• University of North Georgia

Undergraduate Researcher; Advisor: Aimée Tomlinson

Dahlonega, GA

2011 - 2014

- Researched Benzobisazole Cruciform structures using DFT for use as efficient organic solar cells
- Built set of tools to automate research process (reduced hours of work to minutes)
- Formulated SVM model for predicting Benzobisazole properties (orders of magnitude faster than comparable methods for the same accuracy)

• Carnegie Mellon University

Undergraduate Researcher; Advisor: David Yaron

Pittsburgh, PA

Summer 2013

- Researched decomposition of Thiaphospholes using quantum computational methods
- Wrote MATLAB code to automate running Gaussian/AMPAC calculations and parsing results
- Wrote code to calculate molecular overlaps and generate molecular orbital diagrams
- Created routines to draw structures with molecular orbital overlaps indicated on each atom

WORK EXPERIENCE

Google, Inc.

Software Engineering Intern; Host: Laura Book

Los Angeles, CA Summer 2018

• Google, Inc.

Software Engineering Intern; Host: John Tantalo

Pittsburgh, PASummer 2017

- Implemented and deployed library for path critical data transfer format (all traffic in Google Shopping)
- Developed code generation code with multiple target languages (Python, Java, C++) for data format API
- Developed design documents for further migration to library

• Tripwire, Inc.

Alpharetta, GA 2012 – 2014

Engineering Intern

- Rewrote entire test suite for Benchmark product using Selenium and PyTest (Python)
- Aided in migration of critical IP360 product and wrote automated test suite for API
- Maintained and expanded installation automation for CCM product
- Wrote automated script to test for CSRF and XSS vulnerabilities in IP360 web application

TECHNICAL SKILLS

Proficient Languages: Python, MATLAB, Octave, Javascript, C, C++, Bash, Java, Mathematica, LaTeX, HTML5, SQL

Familiar Languages: Go, CUDA C, TI-BASIC, CSS, Maple, Haskell, ASM (self built CPU), x86 ASM, Ruby Software: *nix (Linux, Centos, FreeBSD, AIX, Solaris), Vim, Gaussian/AMPAC, Git, SVN, SSH, rsync, coreutils, Make, Logisim, Vagrant, PostgreSQL, Varnish, Hadoop, MapReduce, Spark, AWS, nginx, Apache, Torque, ab, LabVIEW, Pig/GuineaPig

Libraries: NumPy, SciPy, Matplotlib, Scikit-Learn, Pandas, Django, CVXPY, CVX, Keras, PyBrain, Caffe, Protobuf, Jinja2, TensorFlow, Theano, Selenium, Paramiko, PyTest, Bootstrap, jQuery, jQueryUI, Swig, SDL, OpenMP, OpenMPI, SCIP

Side Projects

- MolML (https://github.com/crcollins/molml)
 - Library to extract features from molecules
 - * Extracts features at the atom, molecule, or crystal level (~20-30 descriptors)
 - Parallel feature generation
 - * Automated transformation saving/loading/packaging
 - Full automated testing suite (100% code coverage)
- Chemtools/Chemtools-Webapp (https://gauss.crcollins.com)
 - Implemented a set of tools for use in Benzobisazole research
 - * Gaussian log output parser to collect molecular properties
 - * Machine learning model to predict polymer properties from oligomers
 - * Molecule graph detector/classifier
 - * Benzobisazole structure generator and machine learning predictor for optoelectronic properties
 - * Supercomputer job submitter and curator
 - Full automated testing suite (over 95% code coverage)
 - Python/Django Application with a Bootstrap front end
 - Vagrant VM build system

pyOS

- Implementation of a *nix like operating system using Python
- Created shell similar to Bash Shell
- Reimplemented standard unix programs (cp, mv, rm, ls, etc)
- Included permissions, pipes, multiple users, and a virtual file system

• Other

- 8 bit CPU (Logisim)
- Mandelbrot/Buddhabrot Generator (Python, Javascript, C/C++, CUDA C, TI-BASIC)
- Various Quadtree Visualizations (Python, C/C++ , Javascript)

- Cellular Automata Based Electronic Simulation (Javascript)
- Object Relation Management Library (Python/SQL)
- University Course Scraper (Python)
- Cryptography Library (Python, Logisim)
- Automated Peer Review System Web Application (Python/Django)
- Virtual Cluster and Server Architecture Vagrant Builds
- Resident-Hospital Matching Program (Python, SCIP)

Courses

- (UNG) Linear Algebra
- (UNG) Intro to MATLAB
- (UNG) Intro to Cryptography
- (UNG) Differential Equations
- (UNG) Computational Methods in Physics
- (Udacity) Into to Parallel Programming
- (CMU) Convex Optimization
- (CMU) Machine Learning
- (CMU) Statistical Machine Learning

- (CMU) Graduate Artificial Intelligence
- (CMU) Deep Learning
- (CMU) Machine Learning with Large Datasets
- (CMU) Deep Reinforcement Learning and Control
- (CMU) Intermediate Statistics
- (CMU) Quantum Chemistry
- (CMU) Special Topics in Computational Quantum Chemistry
- (CMU) Computational Chemistry

Publications

- Collins, C. R.; Li, H.; Gordon, G. J.; Yaron, D. J. Continuous Bag of Bonds: A Size-Consistent Way of Representing Molecules. In Progress.
- Collins, C. R.; Tomlinson, A. L. Application of Machine Learning to Predict the Optoelectronic Properties of Benzobisazoles. *In Progress*.
- Li, H.; Collins, C. R.; Ribelli, T. G.; Matyjaszewski, K.; Gordon, G. J.; Kowalewski, T.; Yaron, D. J. Tuning the Molecular Weight Distribution from Atom Transfer Radical Polymerization Using Deep Reinforcement Learning. arXiv:1712.04516 2017.
- Collins, C. R.; Gordon, G. J.; von Lilienfeld, O. A.; Yaron, D. J. Constant Size Molecular Descriptors For Use With Machine Learning. arXiv:1701.06649 2017.
- Collins, C. R.; Yaron, D. J. Developing Coarse-Grained Site Models for Excited Electronic States of Conjugated Polymers. *SPIE* 2015.
- Qiu, Y.; Worch, J. C.; Chirdon, D. N.; Kaur, A.; Maurer, A. B.; Amsterdam, S.; Collins, C. R.; Pintauer, T.; Yaron, D.; Bernhard, S.; Noonan, K. J. T. Tuning Thiophene with Phosphorus: Synthesis and Electronic Properties of Benzobisthiaphospholes. *Chem. Eur. J.* 2014.
- Tlach, B. C.; Tomlinson, A. L.; Morgan, K. D.; Collins, C. R.; Jeffries-EL, M. Evaluation of the Impact of Extended Conjugation on the Optoelectronic Properties Benzo[1,2-d:4,5-d']bisoxazole Polymers. *Aust. J. Chem.* 2013.

Presentations and Posters

• Using Active Learning in Quantum Chemistry to Reduce Experimental Costs CMU 10-805 Machine Learning with Large Datasets Term Project

• A Data-driven Approach for Selecting Optimal Quantum Chemical Methods CMU 10-805 Machine Learning with Large Datasets Term Project

Pittsburgh, PA 2017

Pittsburgh, PA 2017

Using Generative Adversarial Networks to Estimate Uncertainty in Quan Chemical Methods by Exploiting Similarity in Chemical Compound Space	· ·
CMU Original Proposal	2017
 Dueling Recurrent Network for Partially Observable Markov Decision Pro- CMU 10-703 Deep Reinforcement Learning and Control Term Project 	cess Pittsburgh, PA 2017
• Accelerating the (Augmented) Roothaan-Hall Method in Solving the Der Functional Theory Problem	-
CMU 10-725 Convex Optimization Term Project	2016
• Constant Size Molecular Descriptors For Use With Machine Learning Midwest Theoretical Chemistry Conference	Pittsburgh, PA 2016
• Constant Size Molecular Descriptors For Use With Machine Learning CECAM Chemical Space Workshop	Z ürich, Switzerland 2016
• Using Data to Accelerate Quantum Chemical Calculations by Getting Bett Guessing	ter at Pittsburgh, PA
CMU 15-780 Graduate Artificial Intelligence Term Project	2016
• Using Machine Learning and Molecular Similarity to Predict Chemical Proties	oper- Pittsburgh, PA
CMU Progress Report	2016
• Using Machine Learning and Molecular Similarity to Predict Chemical Proties	oper- Pittsburgh, PA
CMU Chemistry Department Poster Session	2016
• Predicting Chemical Properties Using Machine Learning Methods CMU Chemistry Department Retreat Poster Session	Farmington, PA 2015
The Influence of Chemical Representations on the Efficiency of Molec	cular Pittsburgh, PA
Screening CMU Graduate Seminar	2015
• A Mission to Multivariate Adaptive Regression Splines (MARS) and Its O worldly Neighbors	ther- Pittsburgh, PA
CMU 10-702 Statistical Machine Learning Term Project	2015
• Predicting Chemical Properties Using Machine Learning Methods CMU 10-701 Machine Learning Term Project	Pittsburgh, PA 2014
• Application of Machine Learning to Predict the Optoelectronic Properties Benzobisazoles	es of Dahlonega, GA
UNG Senior Seminar	2014
• Machine Learning in Chemical Compound Space UNG Junior Seminar	Dahlonega, GA 2013
Donor-Acceptor Behavior of Benzobisazole Cruciformic Polymers American Chemical Society Southeastern Regional Meeting	Atlanta, GA 2013
• The Impact of Conjugation Length on Benzobisazole Cruciforms American Chemical Society Southeastern Regional Meeting	Raleigh, NC 2012
- Runner-up Undergraduate Poster in Organic Chemistry	

TEACHING

- Teaching Assistant
 - 09-221 Laboratory I: Introduction to Chemical Analysis
 - 09-214 Physical Chemistry
 - 09-101 Introduction to Experimental Chemistry (2 times)
 - 09-103 Atoms, Molecules, and Chemical Change
 - 09-231 Mathematical Methods for Chemists
 - 09-106 Modern Chemistry II
 - 09-107 Honors Chemistry
- Weekly Lecture Series in Theory Suite (Organizer)
 - Intro to Python
 - Intro to Bash Scripting (2 lectures)
 - Intro to Object Oriented Programming
 - Intro to NumPy (2 lectures)

Awards

- State Level Technology Literacy Challenge Winner
- Runner-up Undergraduate Poster
- 2nd Place Spam Classifier in CMU Machine Learning out of about 100.

SERVICE

- CMU Graduate Student Assembly Representative
- Mellon College of Science Graduate Student Advisory Committee
- Department of Chemistry Social Committee
- Department of Chemistry Student Ambassador
- MellonFit Treasurer and Authorized Signer