For what follows, we're going to consider the set of real numbers to be the universe of discourse.

Convex Sets¹

A **convex combination** is a linear combination of points where all coefficients are non-negative and sum to one.

Consider points (possibly vectors) \mathbf{x} , \mathbf{y} , and \mathbf{z} . A general convex combination, which can be denoted \mathbf{w} , is

$$\mathbf{w} = k_1 \mathbf{x} + k_2 \mathbf{y} + k_3 \mathbf{z}$$

where $k_1 + k_2 + k_3 = 1$ and $k_i \ge 0, i = 1, 2, 3$.

The convex combination we are going to use most is:

$$\alpha \mathbf{x} + (1 - \alpha) \mathbf{y}$$
 $\alpha \in [0, 1]$

Think of it like a weighted average between two points (or vectors), where α determines the weight. The convex combinations made by all possible values of α will be a line between the two points.

 $A \subseteq \mathbb{R}^n$ is a **convex set** iff $\alpha \mathbf{x} + (1 - \alpha)\mathbf{y} \in A \quad \forall \ \mathbf{x}, \mathbf{y} \in A, \alpha \in [0, 1]$

A Convex Set

A Non-Convex Set

¹Prepared by Sarah Robinson

If A and B are both convex sets in \mathbb{R}^n , then $A \cap B$ is a convex set.

Intersection: $A \cap B$

Is $A \cup B$ a convex set?

The **convex hull** of set $B \subseteq \mathbb{R}^n$ is the smallest convex set containing B (the set of all convex combinations of points in B).

The Convex Hull

Example: A two-player prisoners' dilemma from game theory and the convex hull of the payoff profiles:

$$\begin{array}{c|cc}
C & D \\
C & (3,3) & (1,4) \\
D & (4,1) & (1,1)
\end{array}$$

Example: Consider set S:

$$S = \{x \mid x \in \mathbb{R} \land -1 \le x \le 1\}$$

Show that S is a convex set.

• $A \subseteq \mathbb{R}^n$ is a **convex set** iff $\alpha \mathbf{x} + (1 - \alpha) \mathbf{y} \in A \ \forall \ \mathbf{x}, \mathbf{y} \in A, \alpha \in [0, 1]$

To Show:

Proof:

CLOSED SETS

A set $A \subseteq \mathbb{R}^n$ is **closed** iff for every sequence $\{\mathbf{x}_n\}_{n=1}^{\infty}$ such that $\mathbf{x}_n \in A$ for all n and $\mathbf{x}_n \to \mathbf{x}$, it is also the case that $\mathbf{x} \in A$

• \approx set A also includes its boundaries

A set is an **open set** if and only if its complement is a closed set.

The following sets in \mathbb{R}^n are open sets:

- The empty set \emptyset
- The entire space \mathbb{R}^n
- The union of any number of open sets
- The intersection of any finite number of open sets

The following sets in \mathbb{R}^n are closed sets:

- The empty set \emptyset
- The entire space \mathbb{R}^n
- The union of any finite number of closed sets
- The intersection of any number of closed sets

We could also define open sets using the notion of an epsilon-neighborhood (a ball with radius ε). A set A is open if and only if for all $\mathbf{x} \in A$, there exists some $\varepsilon > 0$ such that the ε -ball centered at **x** is contained in A.

For any point in an open set, we can always draw a tiny circle around the point that lies entirely within the set. I bring up this definition because ε -balls will come up in other contexts.

Example: Consider set S:

$$S = \{(x, y) \mid (x, y) \in \mathbb{R}^2 \land x^2 + y^2 \le 1\}$$

Show that S is closed.

- $A \subseteq \mathbb{R}^n$ is **closed** iff for every sequence $\{\mathbf{x}_n\}_{n=1}^{\infty}$ such that $\mathbf{x}_n \in A$ for all n and $\mathbf{x}_n \to \mathbf{x}$, it is also the case that $\mathbf{x} \in A$
- Theorem 1: If $a_n \to a$ and $b_n \to b$, then $a_n + b_n \to a + b$ and $a_n b_n \to ab$
- Theorem 2: If $a_n \to a$, then $a_n \le b$ for all n implies $a \le b$.

To Show:

Proof:

BOUNDED SETS

A set $A \subseteq \mathbb{R}^n$ is **bounded** if and only if there exists an M and a point $\mathbf{c} \in \mathbb{R}^n$ such that the M-ball centered at \mathbf{c} contains all of A.

A Bounded (Closed) Set

A Non-Bounded (Open) Set

To prove a set in $A \subseteq \mathbb{R}^n$ is bounded:

- \bullet Pick a radius M
- ullet Pick a center point ${f c}$
- Let $\mathbf{x} \in A$ arbitrary \mathbf{x}
- \bullet Show that **x** is less than M distance away from **c**

To prove a set in $A \subseteq \mathbb{R}^n$ is bounded in the special case where the points furthest away from 0 are along the axes:

- Pick a radius M (use 0 as the center point)
- Let $\mathbf{x} \in A$ arbitrary \mathbf{x}
- Show that $-M \le x_i \le M \ \forall i = 1, \dots, n$

A set $A \subseteq \mathbb{R}^n$ is **compact** if and only if it is closed and bounded.

(by hypothesis)

(algebra)

Example: Consider set S:

$$S = \{(x, y) \mid (x, y) \in \mathbb{R}^2 \land x^2 + y^2 \le 1\}$$

Show that S is bounded.

To prove a set in $A \subseteq \mathbb{R}^n$ is bounded in the special case where the points furthest away from 0 are along the axes:

- Pick a radius M (use 0 as the center point)
- Let $\mathbf{x} \in A$ arbitrary \mathbf{x}
- Show that $-M \le x_i \le M \ \forall i = 1, \dots, n$

 $\implies (-2 < x < 2) \land (-2 < y < 2)$

To Show: S is bounded

Let M=2

Proof:

$$\implies x^2 + y^2 \le 1$$

$$\implies (x^2 \le 1) \land (y^2 \le 1)$$

$$(def. of S)$$

$$(x^2 \ge 0 \ \forall x)$$

$$(x \leq 1) \land (y \leq 1) \qquad (x \geq 0 \ \forall x)$$

$$\implies (-1 \le x \le 1) \land (-1 \le y \le 1)$$
 (algebra)

$$\implies (-M < x < M) \land (-M < y < M)$$
 (algebra)

$$\implies$$
 S is bounded (by def. of bounded)

CONTINUITY & DIFFERENTIABILITY OF FUNCTIONS

Let f be a function with domain D and points (or vectors) $\mathbf{x}, \mathbf{y} \in D$.

f is **continuous** at \mathbf{x} iff for every $\varepsilon > 0$ there exists $\delta > 0$ such that $||\mathbf{x} - \mathbf{y}|| < \delta \implies ||f(\mathbf{x}) - f(\mathbf{y})|| < \varepsilon$.

Recall that for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$,

$$||\mathbf{x} - \mathbf{y}|| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

f is **continuous** at **x** iff for every sequence $\mathbf{x}_n \in D$ such that $\mathbf{x}_n \to \mathbf{x}$, the sequence $f(\mathbf{x}_n) \to f(\mathbf{x})$.

f is a continuous function if it continuous at every point in its domain.

Let $f: D \to \mathbb{R}$ be a continuous, real-valued function where D is non-empty, compact subset of \mathbb{R}^n . Then there exists a vector $\underline{\mathbf{x}} \in D$ and a vector $\overline{\mathbf{x}} \in D$ such that

$$\forall \mathbf{x} \in A, f(\underline{\mathbf{x}}) \le f(\mathbf{x}) \le f(\overline{\mathbf{x}})$$

That is, a continuous function $f(\mathbf{x})$ attains a maximum and a minimum on every compact set. (Weierstrass Extreme Value Theorem).

Let $D \subseteq \mathbb{R}^n$ be a non-empty compact, convex set. Let $f: D \to D$ be a continuous function. Then there exists at least one fixed point of f in D, that is, there exists $\mathbf{x}^* \in D$ such that $f(\mathbf{x}^*) = \mathbf{x}^*$. (Brouwer Fixed Point Theorem).

For D = [0, 1] then any continuous $f: D \to D$ must cross the 45-degree line.

Let f be a function defined on an interval $(a, b) \subseteq \mathbb{R}$ and let $x \in (a, b)$. Then f is **differentiable** at x if and only if the limit of

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

exists and is finite.

If this is the case, then the limit is called the **derivative** of f at x and is denoted f'(x) or $\frac{df(x)}{dx}$.

For a multivariate functions $f(\mathbf{x})$ where $\mathbf{x} \in \mathbb{R}^n$, the **partial derivative** of f with respect to x_i is given by:

$$f_i(\mathbf{x}) = \frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, \dots, x_i + h, \dots x_n) - f(x_1, \dots, x_i, \dots x_n)}{h}$$

f'(x) is a function of x. Often, we want to discuss the value of the derivative at a particular point c:

$$f'(c)$$
 $\frac{df}{dx}\Big|_{c}$

LEVEL SETS

We are focusing on real-valued functions:

- $f: \mathbb{R} \to \mathbb{R}$ (univariate)
- $f: \mathbb{R}^n \to \mathbb{R}$ (multivariate)

Let f be a real valued function such that $f: D \to \mathbb{R}$ where $D \subseteq \mathbb{R}^n$. Then $L(\mathbf{x}_0)$ is a **level set** relative to \mathbf{x}_0 if and only if

$$L(\mathbf{x}_0) = \left\{ \mathbf{x} \mid \mathbf{x} \in D \land f(\mathbf{x}) = f(\mathbf{x}_0) \right\}$$

Indifference curves are level sets. Consider the utility function:

$$u(x_1, x_2) = x_1^{1/2} x_2^{1/2}$$

•
$$\mathbf{x} = (1, 4) \text{ and } u(\mathbf{x}) = 2$$

•
$$\mathbf{y} = (32, \frac{1}{2}) \text{ and } u(\mathbf{y}) = 4$$

All the points on the curve running through \mathbf{x} give a utility of 2, while all those on the curve running through \mathbf{y} provide a utility of 4.

We can also define superior and inferior sets:

- $S(\mathbf{x}_0) = \{\mathbf{x} \mid \mathbf{x} \in D \land f(\mathbf{x}) \ge f(\mathbf{x}_0)\}$ is the **superior set** relative to \mathbf{x}_0
- $I(\mathbf{x}_0) = \{\mathbf{x} \mid \mathbf{x} \in D \land f(\mathbf{x}) \leq f(\mathbf{x}_0)\}$ is the **inferior set** relative to \mathbf{x}_0

If the weak inequalities are replaced with strict inequalities, then the sets are the **strictly superior set** and **strictly inferior set**, respectively.

Example: Consider the function $u(x_1, x_2) = x_1 + x_2$. The inferior and superior sets, relative to $\mathbf{x} = (2, 2)$ can be illustrated graphically as:

\neq On and Above/Below

Let $f: D \to R$, where $D \subseteq \mathbb{R}^n$ and $R \subseteq \mathbb{R}$. The the set of points **on and below the graph** of f is defined as:

$$A = \{ (\mathbf{x}, y) \mid \mathbf{x} \in D \land f(\mathbf{x}) \ge y \}$$

Similarly, the set of points on and above the graph is defined as:

$$B = \{ (\mathbf{x}, y) \mid \mathbf{x} \in D \land f(\mathbf{x}) \le y \}$$

Note that superior/inferior sets are points in the domain, while points relative to graph are *ordered pairs*, (n + 1)-tuples with elements from both the domain and the range.

Consider the set of points on and above the graph of the function $u(x) = x^2$.

CONCAVITY AND CONVEXITY

Let $f: D \to \mathbb{R}$ where D is a convex subset of \mathbb{R}^n . A function is **concave** if and only if for all $\mathbf{x}_0, \mathbf{x}_1 \in D$ and $t \in [0, 1]$:

$$f(t\mathbf{x}_0 + (1-t)\mathbf{x}_1) \ge tf(\mathbf{x}_0) + (1-t)f(\mathbf{x}_1)$$

A function is **convex** if and only if for all $\mathbf{x}_0, \mathbf{x}_1 \in D$ and $t \in [0, 1]$:

$$f(t\mathbf{x}_0 + (1-t)\mathbf{x}_1) \le tf(\mathbf{x}_0) + (1-t)f(\mathbf{x}_1)$$

Example: Consider $f: \mathbb{R} \to \mathbb{R}$ where f(x) = |x|. Prove that it is convex.

- A function is convex iff for all $\mathbf{x}_0, \mathbf{x}_1 \in D$ and $t \in [0, 1]$, $f(t\mathbf{x}_0 + (1-t)\mathbf{x}_1) \leq tf(\mathbf{x}_0) + (1-t)f(\mathbf{x}_1)$
- The absolute value function $|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$
- Theorem 1: |ab| = |a||b|
- Theorem 2: The triangle inequality, $|a + b| \le |a| + |b|$

<u>To show</u>: $f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y)$

Proof:

Let $f: D \to R$, where $D \subseteq \mathbb{R}^n$ and $R \subseteq \mathbb{R}$. Then:

f is a concave function \iff the set on and below f is a convex set f is a convex function \iff B the set on and above f is a convex set

Let $f: D \to \mathbb{R}$ where D is a convex subset of \mathbb{R}^n . A function is **strictly** concave if and only if for all $\mathbf{x}_0, \mathbf{x}_1 \in D \ni \mathbf{x}_0 \neq \mathbf{x}_1$ and $t \in (0, 1)$:

$$f(t\mathbf{x}_0 + (1-t)\mathbf{x}_1) > tf(\mathbf{x}_0) + (1-t)f(\mathbf{x}_1)$$

A function is **strictly convex** if and only if for all $\mathbf{x}_0, \mathbf{x}_1 \in D \ni \mathbf{x}_0 \neq \mathbf{x}_1$ and $t \in (0, 1)$:

$$f\left(t\mathbf{x}_0 + (1-t)\mathbf{x}_1\right) < tf(\mathbf{x}_0) + (1-t)f(\mathbf{x}_1)$$

(We've changed the inequality, made sure the two points are distinct, and made t strictly between 0 and 1).

Strictly convex

Convex but not strictly

Strictly concave

Let D be a convex, non-degenerate interval on \mathbb{R} , such that on the interior of D, f is twice continuously differentiable. Then the following statements are equivalent:

- 1. f is concave
- 2. $f''(x) \leq 0$ for all non-endpoints $x \in D$.
- 3. For all $x_0 \in D$, $f(x) \le f(x_0) + f'(x_0)(x x_0)$
- 4. f''(x) < 0 for all non-endpoints $x \in D \implies f$ is strictly concave

The following statements are also equivalent:

- 1. f is convex
- 2. $f''(x) \ge 0$ for all non-endpoints $x \in D$.
- 3. For all $x_0 \in D$, $f(x) \ge f(x_0) + f'(x_0)(x x_0)$
- 4. f''(x) > 0 for all non-endpoints $x \in D \implies f$ is strictly convex

This is all well and good for single-variable functions, but what about multivariable functions? We need to extend our concept of first and second derivatives, which lead us to the gradient and the Hessian matrix.

Let f be a twice continuously differentiable function, $f: D \to R$, where $D \subseteq \mathbb{R}^n$ and $R \subseteq \mathbb{R}$. Then the **gradient** of f, denoted $\nabla f(\mathbf{x})$ is defined as the row vector of 1st-order partial derivatives:

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} & \dots & \frac{\partial f(\mathbf{x})}{\partial x_n} \end{bmatrix}$$

The **Hessian** of f, denoted H or \mathbf{H} , is the matrix of 2nd-order partial derivatives:

$$H = \begin{bmatrix} \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_1} & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_2} & \cdots \\ \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_2} & \frac{\partial^2 f(\mathbf{x})}{\partial x_2 \partial x_2} & \cdots \\ \vdots & & \ddots \end{bmatrix}$$

Let D be a convex subset of \mathbb{R}^n with a non-empty interior on which f is twice continuously differentiable. Then

- H is negative semi-definite $\implies f$ is concave
- H is negative definite $\implies f$ is strictly concave
- H is positive semi-definite $\implies f$ is convex
- H is positive definite $\implies f$ is strictly convex

The critera from definiteness came up in linear algebra; recall our interpretation using second order total differentials for the intution.

Consider the function $f(x,y) = \ln(x) + \ln(y)$. We can establish that this function is strictly concave over it's domain \mathbb{R}^2_{++} (note that this notation

indicates we are only considering strictly positive values in \mathbb{R}^2 :

$$f(x,y) = \ln(x) + \ln(y)$$
 (the function)

$$\nabla f(x,y) = \begin{bmatrix} \frac{1}{x} & \frac{1}{y} \end{bmatrix}$$
 (the gradient)

$$H = \begin{bmatrix} -\frac{1}{x^2} & 0\\ 0 & -\frac{1}{y^2} \end{bmatrix}$$
 (the Hessian)

Recall first our notion of leading principle minors (note that these are determinant bars):

$$|H_1| = \left| -\frac{1}{x^2} \right|$$
 (the first LPM)
 $= -\frac{1}{x^2} < 0$ (simplifying)
 $|H_2| = |H|$ (the second LPM)
 $= \frac{1}{x^2 u^2} > 0$ (simplifying)

Thus, since our leading principle minors alternate in sign, beginning with a negative, the matrix is negative definite, implying our function is strictly concave.

Let f be a concave function such that $f: D \to R$, where $D \subseteq \mathbb{R}^n$ and $R \subseteq \mathbb{R}$. Let g be an increasing, concave function, $g: R \to \mathbb{R}$. Then the composite function defined as $(g \circ f)(\mathbf{x}) = g(f(\mathbf{x}))$ is a concave function.

This is a relatively straightforward theorem to prove: To show: $(g \circ f)(t\mathbf{x} + (1-t)\mathbf{y}) \ge t(g \circ f)(\mathbf{x}) + (1-t)(g \circ f)(\mathbf{y})$ Proof

Let
$$\mathbf{x}, \mathbf{y} \in D$$
 and $t \in [0, 1]$ (by hypothesis)
Consider $(g \circ f)(t\mathbf{x} + (1 - t)\mathbf{y})$ (the composite)
 $= g(f(t\mathbf{x} + (1 - t)\mathbf{y}))$ (by def. of the composite)
 $\geq g(tf(\mathbf{x}) + (1 - t)f(\mathbf{y}))$ (by f concave and g increasing)
 $\geq tg(f(\mathbf{x})) + (1 - t)g(f(\mathbf{y}))$ (by g concave)
 $= t(g \circ f)(\mathbf{x}) + (1 - t)(g \circ f)(\mathbf{y})$ (by def. of the composite)

Let f be a convex function such that $f: D \to R$, where $D \subseteq \mathbb{R}^n$ and $R \subseteq \mathbb{R}$. Let g be an increasing, convex function, $g: R \to \mathbb{R}$. Then the composite function defined as $(g \circ f)(\mathbf{x}) = g(f(\mathbf{x}))$ is a convex function.