CSE 40622 Cryptography, Spring 2018 Written Assignment 02 (Lecture 03-05)

Name: Jasmine Walker

- 1. (15 pts, page 5) Prove Fermat's Little Theorem when x is not a positive integer without using Euler's Theorem.
 - Follow the proof in page 5 in the note for Lecture 03-05, but consider that x is either 0 or negative.

Answer:

Case 1: x = 0If x = 0, then $0^p \equiv 0 \pmod{p}$ for any p

Case 2: $x \in \mathbb{Z}^-$

If $x \in \mathbb{Z}^-$, x = -1 - 1 - 1... for as many 1's as x. So, for all x in \mathbb{Z} , $x^p \equiv (\sum_{n=1}^x -1)^p \equiv (\sum_{n=1}^x (-1)^p) \equiv (\sum_{n=1}^x -1) \equiv x \pmod p$ Note that $(-1)^p$ is always -1 because p is a prime.

- 2. (Hard, 15 pts, page 5) If p in Fermat's Little Theorem is not a prime number, the first step of its proof may not hold any more. Explain this with a special case where $p = q^2$ and q is a prime number.
 - Binomial theorem states

$$(x+y)^p = \binom{p}{0}x^p y^0 + \binom{p}{1}x^{p-1}y^1 + \binom{p}{2}x^{p-2}y^2 + \dots + \binom{p}{p-1}x^1 y^{p-1} + \binom{p}{p}x^0 y^p$$

Is it true that $(x+y)^p \mod p = x^p + y^p$ even though $p = q^2$?

- Look at the terms $\binom{p}{q}$, $\binom{p}{q+1}$, $\binom{p}{q+2}$, \cdots and see whether they are ALL multiples of p.
- For example, $\binom{p}{3} = \frac{q^2(q^2-1)(q^2-2)}{3\cdot 2}$. q^2 cannot be divided by 2 or 3 (since q is prime), and $\binom{p}{3}$ must be an integer. Then, $\frac{(q^2-1)(q^2-2)}{3\cdot 2}$ must be an integer factor. Therefore, $\binom{p}{3}$ must be a multiple of p, and $\binom{p}{3}$ mod p=0. The same theory applies to $\binom{p}{4}$, $\binom{p}{5}$, $\binom{p}{6}$, \cdots all the way up to $\binom{p}{q-1}$.

$$\binom{q}{p} = \binom{q^2}{q} = \frac{(q^2)(q^2 - 1)\dots(q^2 - q + 1)}{(q)(q - 1)\dots(2)} = (q)\frac{(q^2 - 1)\dots(q^2 - q + 1)}{(q - 1)\dots(2)}$$

Answer: $\binom{p}{q} = \binom{q^2}{q} = \frac{(q^2)(q^2-1)\dots(q^2-q+1)}{(q)(q-1)\dots(2)} = (q)\frac{(q^2-1)\dots(q^2-q+1)}{(q-1)\dots(2)}$ This shows that $\binom{p}{q}$ is some factor of q, but not necessarily some factor of $q^2 = p$. There are some cases (ex. when p = 4, q = 2, x = 9, y = 5) where $(x + y)^p \not\equiv (x^p + y^p) \pmod{p}$ (ex. $(9 + 5)^4 \not\equiv (9^4 + 5^4)$) $\pmod{4}$.

- 3. (10 pts, page 4 & 5) Use Euler's Theorem to prove Fermat's Little Theorem.
 - There are two cases: when gcd(x, p) = 1 and when $gcd(x, p) \neq 1$.

Answer:

Case 1: gcd(x, p) = 1

When gcd(x, p) = 1, then $x^{\varphi(p)} \equiv 1 \pmod{p}$. Multiplying both sides by x, $(x^{\varphi(p)} \cdot x) \equiv (1 \cdot x) \pmod{p}$ $x^{\varphi(p)+1} \equiv x \pmod{p}$ Since p is prime, $x^{(p-1)+1} \equiv x \pmod{p}$ $x^p \equiv x \pmod{p}$

Case 2: $gcd(x, p) \neq 1$

If p is prime and $gcd(x, p) \neq 1$, then x must be some multiple of p. If this is the case, then x mod p = 0. For any $p \in \mathbb{Z}$, $x^p \equiv x \equiv 0 \pmod{p}$.

- 4. Suppose we have strong attackers as follows. Describe how he/she can universally break the RSA encryption.
 - ** Anyone has access to the public key by default.
 - (a) (10 pts, page 7) The attacker can do the factoring of n = pq. That is, he/she can figure out p and q from n = pq.

Answer:

The attacker has n from the public key and e from the public key. The attacker can find p and q from the public key n. Then, the attacker can find $\varphi(n) = (p-1)(q-1)$, which is trivial if the attacker can find p and q from p. The attacker can find p, the private key, from this information by computing the inverse of p mod p. The hacker can then decrypt any cipher given by computing p mod p mo

(b) (10 pts, page 8) The attacker can somehow calculate $\varphi(n)$ from n.

Answer:

If the attacker can figure out $\varphi(n)$ from n, then the answer is similar to the one above: Given the public key n and e, the attacker can find $\varphi(n)$, which means the attacker can find $d = e^{-1} \mod \varphi(n)$. Since d is the private key, the attacker can decrypt any cipher encrypted by the public keys by computing $c^d \mod n = m$.

5. (15 pts) Assuming that the factoring of n = pq is hard. Explain why it is hard to infer m in RSA by performing the e-th root modulo n as follows, given that e is a public parameter.

$$\sqrt[e]{c} \mod n = c^{\frac{1}{e}} \mod n = (m^e)^{e^{-1}} \mod n = m^{e \cdot e^{-1}} \mod n = m^1 \mod n = m$$

Answer:

While it is easy to determine $e^{-1} \mod n$, raising c to e^{-1} would not necessarily result in m. Consider, $c^{e^{-1}} \equiv m^{e \cdot e^{-1}} \equiv m^{kn+1} \pmod n$ for some integer k

In order for $m^{kn+1} = m$, m^{kn} must equal 1. But we cannot guarantee that $m^{kn} = 1$. Instead of multiplying by the modular multiplicative inverse of $e \mod n$, we should multiply by the modular multiplicative inverse of $e \mod \varphi(n)$, which results in m due to Euler's Theorem:

$$c^{e^{-1}} \equiv m^{e \cdot e^{-1}} \equiv m^{k\varphi(n)+1} \equiv m^{k\varphi(n)} m^1 \equiv m \pmod{n}$$

6. (10 pts, page 6) The RSA encryption requires that m to be a positive number. Explain why m should not be 0.

Answer:

If m were 0, the ciphertext c of m will be 0 no matter what the public or private key is, meaning that an attacker can infer the message m from the ciphertext c. Which is not ideal.

2