Listing of Claims:

1. (Withdrawn) A process for preparing phenyl iso(thio)cyanates of the formula ${\tt I}$

$$W=C=N-Ar N SO_2-A$$

where the variables are as defined below:

W is oxygen or sulfur,

Ar is phenyl which may be mono- or polysubstituted by the following groups: hydrogen, halogen, $C_1\text{-}C_4\text{-haloalkyl}$ or cyano,

A is a radical derived from a primary or secondary amine or is NH_2 ,

which comprises reacting a compound of the formula II

$$H_2N$$
 Ar N SO_2 A (II)

where the variables Ar and A are as defined above or its HCl adduct, with phosgene, thiophosgene or diphosgene.

2. (Withdrawn) A process as claimed in claim 1, wherein the HCl adduct of the compound of formula II is used.

- 3. (Withdrawn) A process as claimed in claim 1, wherein from 0.9 to 2 molar equivalents of phosgene, thiophosgene or diphosgene are used, based on the moles of the compound of formula II.
- 4. (Withdrawn) A process as claimed in claim 1, wherein the reaction of the hydrogen chloride adduct of the compound of formula II is carried out in the presence of activated carbon.
- 5. (Withdrawn) A process as claimed in claim 1, wherein a compound of the formula IIA

$$\begin{array}{c|c} & Rb \\ \hline \\ Rd & Ra \\ \hline \\ Rd & N-SO_2-A \\ \hline \\ O & H \\ \end{array}$$

where

 R^a , R^b , R^c and R^d independently of one another are hydrogen, halogen, $C_1\text{-}C_4\text{-haloalkyl}$ or cyano and

A is as defined above

or its HCl adduct is reacted with phosgene, thiophosgene or diphosgene, giving a compound of the formula IA

where the variables R^a , R^b , R^c , R^d , A and W are as defined above.

6. (Withdrawn) A process as claimed in claim 1, wherein the radical A in formula I is NR^1R^2 ,

where the variables R^1 and R^2 are as defined below:

 R^1 and R^2 independently of one another represent hydrogen, C_1-C_{10} -alkyl, C_2-C_{10} -alkenyl or C_2-C_{10} -alkynyl which may be unsubstituted or substituted by one of the following radicals: C_1-C_4 -alkoxy, C_1-C_4 -alkylthio, CN, NO₂, formyl, C_1-C_4 -alkylcarbonyl, C_1-C_4 -alkoxycarbonyl, C_1-C_4 alkylaminocarbonyl, C_1-C_4 -dialkylaminocarbonyl, C_1-C_4 alkylsulfinyl, C_1-C_4 -alkylsulfonyl, C_3-C_{10} -cycloalkyl, 3to 8-membered heterocyclyl having one, two or three heteroatoms selected from the group consisting of O, S, N and a group NR^6 (where R^6 is hydrogen, C_1-C_6 -alkyl, C_3-C_6 alkenyl or C_3 - C_6 -alkynyl), phenyl, which for its part may have 1, 2, 3 or 4 substituents selected from the group consisting of halogen, C_1-C_4 -alkyl, C_1-C_4 -alkoxy, C_1-C_4 fluoroalkyl, C_1-C_4 -alkyloxycarbonyl, trifluoromethylsulfonyl, C_1-C_3 -alkylamino, C_1-C_3 dialkylamino, formyl, nitro and cyano,

 C_1 - C_{10} -haloalkyl, C_2 - C_{10} -haloalkenyl, C_2 - C_{10} -haloalkynyl, C_3 - C_8 -cycloalkyl, C_3 - C_{10} -cycloalkenyl, 3- to 8-membered heterocyclyl having one to three heteroatoms selected from the group consisting of O, S, N and a group NR^6 (where R^6 is hydrogen, C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl or C_3 - C_6 -alkynyl), phenyl or naphthyl, where C_3 - C_8 -cycloalkyl, C_3 - C_{10} -cycloalkenyl, 3- to 8-membered heterocyclyl, phenyl and naphthyl may for their part have 1, 2, 3 or 4 substituents selected from the group consisting of halogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -fluoroalkyl, C_1 - C_4 -alkyloxycarbonyl, trifluoromethylsulfonyl, formyl, C_1 - C_3 -alkylamino, C_1 - C_3 -dialkylamino, phenoxy, nitro and cyano, or

- R^1 and R^2 together with the nitrogen atom to which they are attached form a saturated or partially unsaturated 5- to 8-membered nitrogen heterocycle which for its part may be substituted by C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy and/or C_1 - C_4 -haloalkyl and may have one or two carbonyl groups, thiocarbonyl groups and/or one or two further heteroatoms selected from the group consisting of O, S, N and a group NR^6 (where R^6 is as defined above) as ring members.
- 7. (Withdrawn) A process as claimed in claim 1, wherein the compound of formula II is prepared by the following steps:
 - i) reacting an aroyl compound of the formula III

$$O_2N$$
—Ar X (III)

in which the variable Ar is as defined above and X is halogen, OH or $C_1\text{-}C_4\text{-}alkoxy$ with a sulfamic acid amide of the formula IV,

$$H_2N$$
— SO_2 — A (IV)

where A is as defined above and

ii) reducing N-aroylsulfamic acid amide, obtained in step i), of the formula $\mbox{\tt V}$

$$O_2N$$
 O_2N O_2N

where Ar and A are as defined above, giving a compound of the formula II.

- 8. (Withdrawn) A process as claimed in claim 7, wherein in step (ii) the reduction is carried out in the presence of catalytic amounts of transition metals or transition metal compounds.
- 9. (Withdrawn) A process as claimed in claim 7, wherein in step (ii) the reduction is carried out in the presence of iron and at least one C_1 - C_4 -carboxylic acid.

- 10. (Withdrawn) A process as claimed in claim 7, wherein in step (ii) the reduction is carried out in the presence of Raney nickel and hydrogen.
- 11. (Withdrawn) A phenyl iso(thio)cyanate of the formula I as defined in claim 1.
- 12. (Withdrawn) A phenyl iso(thio)cyanate of the formula IA as defined in claim 5, wherein R^a is fluorine, chlorine or cyano, R^c is hydrogen, fluorine or chlorine and R^b and R^d are each hydrogen.
- 13. (Withdrawn) A phenyl iso(thio)cyanate of the formula IA as defined in claim 5, wherein A is a radical of the formula $NR^{1}R^{2}$ where R^{1} and R^{2} independently of one another represent hydrogen, C_1-C_{10} -alkyl, C_2-C_{10} -alkenyl or C_2-C_{10} -alkynyl which may be unsubstituted or substituted by one of the following radicals: C_1-C_4 -alkoxy, C_1-C_4 -alkylthio, CN, NO₂, formyl, C_1 - C_4 -alkylcarbonyl, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 alkylaminocarbonyl, C_1-C_4 -dialkylaminocarbonyl, C_1-C_4 alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_3 - C_{10} -cycloalkyl, 3- to 8-membered heterocyclyl having one, two or three heteroatoms selected from the group consisting of O, S, N and a group NR^6 (where R^6 is hydrogen, C_1-C_6 -alkyl, C_3-C_6 alkenyl or C_3-C_6 -alkynyl), phenyl, which for its part may have 1, 2, 3 or 4 substituents selected from the group consisting of halogen, C_1-C_4 -alkyl, C_1-C_4 -alkoxy, C_1-C_4 fluoroalkyl, C_1-C_4 -alkyloxycarbonyl, trifluoromethylsulfonyl, C_1-C_3 -alkylamino, C_1-C_3 dialkylamino, formyl, nitro and cyano,

 C_1-C_{10} -haloalkyl, C_2-C_{10} -haloalkenyl, C_2-C_{10} -haloalkynyl, C_3-C_8 -cycloalkyl, C_3-C_{10} -cycloalkenyl, 3- to 8-membered heterocyclyl having one to three heteroatoms selected from the group consisting of O, S, N and a group NR^6 (where R^6 is hydrogen, C_1-C_6 -alkyl, C_3-C_6 -alkenyl or C_3-C_6 -alkynyl), phenyl or naphthyl, where C_3-C_8 -cycloalkyl, C_3-C_{10} -cycloalkenyl, 3- to 8-membered heterocyclyl, phenyl and naphthyl may for their part have 1, 2, 3 or 4 substituents selected from the group consisting of halogen, C_1-C_4 -alkyl, C_1-C_4 -alkoxy, C_1-C_4 -fluoroalkyl, C_1-C_4 -alkyloxycarbonyl, trifluoromethylsulfonyl, formyl, C_1-C_3 -alkylamino, C_1-C_3 -dialkylamino, phenoxy, nitro and cyano, or

- R^1 and R^2 together with the nitrogen atom to which they are attached form a saturated or partially unsaturated 5- to 8-membered nitrogen heterocycle which for its part may be substituted by C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy and/or C_1 - C_4 -haloalkyl and may have one or two carbonyl groups, thiocarbonyl groups and/or one or two further heteroatoms selected from the group consisting of O, S, N and a group NR^6 (where R^6 is as defined above) as ring members.
- 14. (Withdrawn) A phenyl iso(thio)cyanate of the formula IA as claimed in claim 13, wherein R¹ and R² independently of one another are hydrogen, C₁-C₆-alkyl which is optionally substituted by a substituent selected from the group consisting of halogen, cyano, C₁-C₄-alkoxy, C₁-C₄-alkoxycarbonyl, C₁-C₄-alkylthio, C₃-C₈-cycloalkyl, furyl, thienyl, 1,3-dioxolanyl, phenyl which for its part is optionally substituted by halogen or C₁-C₄-alkoxy,

 C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, C_3 - C_8 -cycloalkyl or phenyl which is optionally substituted by 1 or 2 substituents selected from the group consisting of halogen, C_1 - C_4 -alkyl, C_1 - C_4 -fluoroalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkoxycarbonyl, nitro and C_1 - C_3 -dialkylamino, naphthyl or pyridyl or

 R^1 and R^2 together with the nitrogen atom to which they are attached form a five-, six- or seven-membered saturated or unsaturated nitrogen heterocycle which may optionally contain a further heteroatom selected from the group consisting of N, a group NR^6 (where R^6 is as defined above) and O as ring member and/or which may be substituted by one, two or three substituents selected from the group consisting of C_1 - C_4 -alkyl and C_1 - C_4 -haloalkyl.

15. (Withdrawn) A process for preparing compounds of the formula VI

where W, Ar and A are as defined in claim 1, W' is O or S and R^3 and R^4 independently of one another are hydrogen, cyano, amino, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_1 - C_6 -haloalkoxy, C_3 - C_7 -cycloalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -haloalkenyl, C_3 - C_6 -alkynyl, benzyl, OR^5 (where R^5 is hydrogen, C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_3 - C_7 -cycloalkyl, C_2 - C_6 -alkenyl, C_3 - C_6 -alkynyl, unsubstituted or substituted phenyl or

unsubstituted or substituted benzyl), C_1 - C_3 -cyanoalkyl, or R^3 and R^4 together with the nitrogen atoms to which they are attached form a four- to seven-membered heterocycle which is optionally interrupted by sulfur, oxygen, a group NR^6 (where R^6 is as defined above) or nitrogen and which is unsubstituted or mono- or polysubstituted by halogen or C_1 - C_4 -alkyl,

which comprises

(i) reacting a compound of the formula I as defined in claim 1 with an oxadiazinecarboxylic acid ester of the formula VII

$$R_3$$
 $C(W')OR'$ (VII)

where W' is as defined above and R' is C_1 - C_4 -alkyl, giving a urea derivative of the formula VIII

where the variables R^3 , R^4 , R^\prime , W, W^\prime , Ar and A are as defined above and

- (ii) cyclizing the resulting intermediate VIII, giving a compound of the formula VI.
- 16. (Withdrawn) A process as claimed in claim 15, wherein the compound of the formula I used in step (i) is a compound of the formula IA

where the variables A and W are as defined above , and R^a , R^b , R^c and R^d independently of one another are hydrogen, halogen, C_1 - C_4 -haloalkyl or cyano.

17. (Withdrawn) A process as claimed in claim 15, wherein the compound VII used in step (i) is a compound of the formula VII'

$$\bigcap_{N} \bigcap_{N \in \mathbb{N}} C(W')OR'$$

$$O \bigvee_{N \in \mathbb{N}} \bigcap_{N \in \mathbb{N}} C(VII')$$

where W' is O or S and R' is C_1-C_4 -alkyl.

18. (Previously Presented) An aminobenzoylsulfamic acid amide of the formula II

where the variables are as defined below:
Ar is a group of the formula Ar-1

where

R^a is halogen or cyano,

R^b is hydrogen,

R° is halogen or hydrogen,

R^d is hydrogen;

* denotes the point of attachment of Ar to the C(O) group and

** denotes the point of attachment of Ar to the nitrogen atom of the amino group; and

- A is a group of the formula NR^1R^2 , where one of the radicals R^1 or R^2 is hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl or C_2 - C_6 -alkynyl and the other radical R^1 or R^2 is C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl or phenyl.
- 19. (Withdrawn) A nitrobenzoylsulfamic acid amide of the formula V

$$O_2N$$
—Ar N SO_2 —A (V)

where the variables are as defined below:
Ar is a group of the formula Ar-1

where

R^a is halogen or cyano,

R^b is hydrogen,

R° is halogen or hydrogen,

R^d is hydrogen;

- * denotes the point of attachment of Ar to the C(O) group and
- ** denotes the point of attachment of Ar to the nitrogen atom of the amino group;

- A is a group of the formula NR^1R^2 , where one of the radicals R^1 or R^2 is hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl or C_2 - C_6 -alkynyl and the other radical R^1 or R^2 is C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl or phenyl.
- 20. (Currently amended) A process for preparing aminobenzoylsulfamic acid amides of the formula II as claimed in claim 18, which process comprises the following steps:
- a) reacting an aroyl compound of the formula III[[.]]

$$O_2N$$
—Ar X (III)

where Ar is a group of the formula Ar-1

where

R^a is halogen or cyano,

R^b is hydrogen,

R° is halogen or hydrogen,

R^d is hydrogen;

- * denotes the point of attachment of Ar to the C(0) group and
- ** denotes the point of attachment of Ar to the nitrogen atom of the amino group; and X is halogen or C_1 - C_4 -alkoxy with a sulfamic acid amide of the formula IV

$$H_2N$$
— SO_2 — A (IV)

Where where A is a group of the formula NR^1R^2 , where one of the radicals R^1 or R^2 is hydrogen, C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl or C_2 - C_6 -alkynyl and the other radical R^1 or R^2 is C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl or phenyl; and

b) reducing the nitrobenzoylsulfamic acid amide, obtained in step a), of the formula $\mbox{\tt V}$

$$O_2N$$
—Ar N SO_2 —A (V)

to produce the aminobenzoylsulfamic acid amide of formula II.

21. (Original) A process as claimed in claim 20, wherein in step b) the reduction is carried out in the presence of catalytic amounts of transition metals or transition metal compounds.

22. (New) An aminobenzoylsulfamic acid amide of the formula II where the variables are as defined below:

Ar is a group of the formula Ar-1

where

R^a is halogen,

R^b is hydrogen,

R° is halogen,

R^d is hydrogen;

- * denotes the point of attachment of Ar to the C(O) group and
- ** denotes the point of attachment of Ar to the nitrogen atom of the amino group; and
- A is NR^1R^2 where each of R^1 and R^2 is C_1-C_6 -alkyl.