

Inspire...Educate...Transform.

Tableau- Lab

Tableau

Tableau is business intelligence software that helps people see and understand their data.

Fast Analytics

Ease of Use

Connect and visualize your data in minutes. Tableau is 10 to 100x faster than existing solutions. Anyone can analyze data with intuitive drag & drop products. No programming, just insight.

Big Data, Any Data

Smart Dashboards

From spreadsheets to databases to Hadoop to cloud services, explore any data.

Combine multiple views of data to get richer insight. Best practices of data visualization are baked right in.

CSE 7202c

Tableau Data Types

Data Type	Description	Example
STRING	Any sequence of zero or more characters. They are enclosed within single quotes. The quote itself can be included in a string by writing it twice.	'Hello' 'Quoted' 'quote'
NUMBER	These are either integers or floating points. It is advised to round the floating point numbers while using them in calculations.	3 142.58
BOOLEAN	They are logical values.	TRUE FALSE
DATE & DATETIME	Tableau recognizes dates in almost all formats. But in case we need to force Tableau to recognize a string as date, then we put a # sign before the data.	"02/01/2015" "#3 March 1982"

When to choose what kind of plot?

1 Variable	Numeric	Histogram
1 Variable	Categorical	Barplot
2 variables	Numeric vs Numeric	Scatterplot
2 variables	Numerical vs Categorical	Boxplot
3 variables	Color or shape or facet	
> 3 variables	Color and/or shape and/or facet	

Chart Suggestions—A Thought-Starter

5

Activity

Dataset: AirFares

AirFares Data

S_CODE: starting airport's code

S_CITY: starting city

E_CODE: ending airport's code

E_CITY: ending city

COUPON: average number of coupons (a one-coupon flight is a non-stop flight,

a two-coupon flight is a one stop flight, etc.) for that route.

NEW: number of new carriers entering that route between Q3-96 and Q2-97

VACATION: whether a vacation route (Yes) or not (No); Florida and Las Vegas routes are

generally considered vacation routes

SW: whether Southwest Airlines serves that route (Yes) or not (No)

HI: Herfindel Index – measure of market concentration (refer to BMGT 681)

S_INCOME: starting city's average personal income

E_INCOME: ending city's average personal income

S_POP: starting city's population **E_POP:** ending city's population

SLOT: whether either endpoint airport is slot controlled or not; this is a measure of airport congestion

GATE: whether either endpoint airport has gate constraints or not; this is another measure of airport

congestion

DISTANCE: distance between two endpoint airports in miles

PAX: number of passengers on that route during period of data collection

FARE: average fare on that route

Tableau use cases – Airfares dataset

- 1. Visualization of relationship between Fare and Distance (Scatter plot).
- 2. Visualization of relationship between Fare and Vacation (Box plot).
- 3. Average Fare based on the destination city (Bar chart).
- 4. Visualization on how the Southwest airlines sell tickets for lesser price (Facet plot).
- 5. Average fare based on hierarchical of source and destination. (hierarchy plot).
- 6. Fare based on Ecity. Also identify if SW airlines serves that route (Tree map).
- 7. Create a Dashboard.
- 8. Create a Story.

