The Simplex Method

Combinatorial Problem Solving (CPS)

Javier Larrosa Albert Oliveras Enric Rodríguez-Carbonell

April 3, 2020

Global Idea

- The Fundamental Theorem of Linear Programming ensures it is sufficient to explore basic feasible solutions to find the optimum of a feasible and bounded LP
- The simplex method moves from one basic feasible solution to another that does not worsen the objective function while
 - optimality or
 - unboundedness

are not detected

Bases and Tableaux

 \blacksquare Given a basis B, its tableau is the system of equations

$$x_{\mathcal{B}} = B^{-1}b - B^{-1}Rx_{\mathcal{R}}$$

which expresses values of basic variables in terms of non-basic variables

$$\min -x - 2y
x + y + s_1 = 3
x + s_2 = 2
y + s_3 = 2
x, y, s_1, s_2, s_3 \ge 0$$

$$\mathcal{B} = \{x, y, s_2\}
x = 1 + s_3 - s_1
y = 2 - s_3
s_2 = 1 - s_3 + s_1$$

Basic Solution in a Tableau

The basic solution can be easily obtained from the tableau by looking at independent terms

$$\begin{cases} x = 1 + s_3 - s_1 \\ y = 2 - s_3 \\ s_2 = 1 - s_3 + s_1 \end{cases}$$

Note that by definition of basic solution, the values for non-basic variables are null

Detecting Optimality (1)

Tableaux can be extended with the expression of the cost function in terms of the non-basic variables

$$\begin{cases} \min -x - 2y \Longrightarrow \min -5 + s_1 + s_3 \\ x = 1 + s_3 - s_1 \\ y = 2 - s_3 \\ s_2 = 1 - s_3 + s_1 \end{cases}$$

■ Value of objective function at basic solution can be easily found by looking at independent term

Detecting Optimality (1)

Tableaux can be extended with the expression of the cost function in terms of the non-basic variables

$$\begin{cases} \min -x - 2y \Longrightarrow \min -5 + s_1 + s_3 \\ x = 1 + s_3 - s_1 \\ y = 2 - s_3 \\ s_2 = 1 - s_3 + s_1 \end{cases}$$

- Value of objective function at basic solution can be easily found by looking at independent term
- Coefficients of non-basic variables in objective function after substitution are called reduced costs
- By convention, reduced costs of basic variables are 0

Detecting Optimality (1)

■ Tableaux can be extended with the expression of the cost function in terms of the non-basic variables

$$\begin{cases} \min -x - 2y \Longrightarrow \min -5 + s_1 + s_3 \\ x = 1 + s_3 - s_1 \\ y = 2 - s_3 \\ s_2 = 1 - s_3 + s_1 \end{cases}$$

- Value of objective function at basic solution can be easily found by looking at independent term
- Coefficients of non-basic variables in objective function after substitution are called reduced costs
- By convention, reduced costs of basic variables are 0
- Sufficient condition for optimality: all reduced costs are ≥ 0
 The cost of any other feasible solution can't improve on the basic solution
 So the basic solution is optimal!

Detecting Optimality (2)

- If reduced costs ≥ 0 : sufficient condition for optimality but not necessary
- In the example, both bases are optimal but in one we cannot detect optimality!

$$\min x + 2y \qquad \mathcal{B} = \{x\} \qquad \mathcal{B} = \{y\}$$

$$x + y = 0$$

$$x, y \ge 0 \qquad \begin{cases} \min y \\ x = -y \end{cases} \qquad \begin{cases} \min -x \\ y = -x \end{cases}$$

What to do when the tableau does not satisfy the optimality condition?

$$\min -x - 2y$$

 $x + y + s_1 = 3$
 $x + s_2 = 2$
 $y + s_3 = 2$
 $x, y, s_1, s_2, s_3 \ge 0$

$$\mathcal{B} = (s_1, s_2, s_3)$$

$$\begin{cases} \min & -x - 2y \\ s_1 = 3 - x - y \\ s_2 = 2 - x \\ s_3 = 2 - y \end{cases}$$

- \blacksquare E.g. variable y has a negative reduced cost
- If we can get a new solution where y>0 and the rest of non-basic variables does not worsen the objective value, we will get a better solution
- In general, to improve the objective value: increase the value of a non-basic variable with negative reduced cost while the rest of non-basic variables are frozen to 0

E.g. increase y while keeping x = 0

Let us increase value of variable y while satisfying non-negativity constraints on basic variables

$$\begin{cases} s_1 = 3 - x - y & \text{Limits new value to} \leq 3 \\ s_2 = 2 - x & \text{Does not limit new value} \\ s_3 = 2 - y & \text{Limits new value to} \leq 2 \end{cases}$$

- Best possible new value for y is min(3, 2) = 2
- The bound due to s_3 is tight, i.e., the constraint $s_3 \ge 0$ limits the new value for y

- The new solution does not seem to be basic... but in fact it is.
 We only need to change the basis.
- When increasing the value of the improving non-basic variable, all basic variables for which the bound is tight become 0

$$y=2 \rightarrow s_3=0$$

- Choose a tight basic variable, here s_3 , to be exchanged with the improving non-basic variable, here y
- We can get the tableau of the new basis by solving the non-basic variable in terms of the basic one and substituting:

$$\begin{aligned}
s_3 &= 2 - y &\Rightarrow y &= 2 - s_3 \\
\min &-x - 2y \\
s_1 &= 3 - x - y \\
s_2 &= 2 - x \\
s_3 &= 2 - y
\end{aligned}
\implies
\begin{cases}
\min &-4 - x + 2s_3 \\
s_1 &= 1 + s_3 - x \\
s_2 &= 2 - x \\
y &= 2 - s_3
\end{cases}$$

lacktriangle Let us now increase value of variable x

$$\begin{cases} \min \ -4 - x + 2s_3 \\ s_1 = 1 + s_3 - x \\ s_2 = 2 - x \end{cases}$$
 Limits new value to ≤ 1 Limits new value to ≤ 2 $y = 2 - s_3$ Does not limit new value

- Best possible new value for x is $\min(2,1) = 1$
- Variable s_1 leaves the basis and variable x enters

$$\begin{cases}
\min -4 - x + 2s_3 \\
s_1 = 1 + s_3 - x \\
s_2 = 2 - x \\
y = 2 - s_3
\end{cases} \implies \begin{cases} \min -5 + s_1 + s_3 \\
x = 1 + s_3 - s_1 \\
s_2 = 1 - s_3 + s_1 \\
y = 2 - s_3
\end{cases}$$

Unboundedness

Unboundedness is detected when the new value for the chosen non-basic variable is not bounded.

$$\max x + y$$

$$2x + y \ge 3$$

$$x, y \ge 0$$

$$\downarrow$$

$$\begin{cases} \min -x - y \\ -2x - y + s = -3 \end{cases}$$

$$\downarrow$$

$$\begin{cases} \min -3 + x - s \\ y = 3 - 2x + s \end{cases}$$

Outline of the Simplex Algorithm

- 1. Initialization: Pick a feasible basis.
- Pricing: If all reduced costs are ≥ 0, then return OPTIMAL.
 Else pick a non-basic variable with reduced cost < 0.
- Ratio test: Compute best value for improving non-basic variable respecting non-negativity constraints of basic variables.
 If best value is not bounded, then return UNBOUNDED.
 Else select basic variable for exchange with improving non-basic variable.
- 4. Update: Update the tableau and go to 2.

Note that to optimize

$$\min c^T x$$

$$Ax = b$$

$$x \ge 0$$

initially we need a feasible basis at step 1.

Steps 2-4 of previous procedure are called phase II of simplex algorithm

- Phase I looks for a feasible basis
- We can get a feasible basis with the same procedure by solving another LP for which phase I is trivial
- Let us assume wlog. that $b \ge 0$
- Introduce new artificial variables z and solve

$$\min 1^T z$$

$$Ax + z = b$$

$$x, z > 0$$

$$\begin{aligned} \min c^T x & \min 1^T z \\ [LP] & Ax = b & \Longrightarrow & [LP'] & Ax + z = b & \text{where } b \geq 0 \\ & x \geq 0 & x, z \geq 0 \end{aligned}$$

- \blacksquare LP' is feasible, and a trivial feasible basis is $\mathcal{B} = (z)$
- LP' cannot be unbounded: $z \ge 0$ implies $1^Tz \ge 0$ So LP' has optimal solution with objective value ≥ 0
- If x^* is feasible solution to LP then $(x,z)=(x^*,0)$ is optimal solution to LP' with objective value 0
- If $(x, z) = (x^*, z^*)$ is optimal solution to LP' with objective value 0 then $z^* = 0$ and so x^* is feasible solution to LP

$$\begin{aligned} \min c^T x & \min \mathbf{1}^T z \\ [LP] \ Ax &= b & \Longrightarrow \ [LP'] \ Ax + z = b & \text{where } b \geq 0 \\ x &\geq 0 & x, z \geq 0 \end{aligned}$$

- lacksquare LP is feasible iff optimum of LP' is 0
- \blacksquare Still: how can we get a feasible basis for LP?
- Assume that optimum of LP' is 0. Then:
 - 1. If all artificial variables are non-basic, then an optimal basis for LP^\prime is a feasible basis for LP
 - 2. Any basic artificial variable can be made non-basic by Gaussian elimination (since A has full rank)

- Improvement: use slack variables instead of artificial variables in the initial basis whenever possible
- Alternative phase I approaches do not introduce new variables and work by minimizing the sum of infeasibilities:

$$\min \left\{ \sum_{\beta_i < 0} \beta_i \mid \mathcal{B} \text{ basis with basic solution } \beta \right\}$$

$$\begin{cases} \min -x - 2y \\ 1 \le x + y \le 3 \\ 0 \le x \le 2 \\ 0 \le y \le 2 \end{cases} \Rightarrow \begin{cases} \min -x - 2y \\ x + y + s_1 = 3 \\ x + y - s_2 = 1 \\ x + s_3 = 2 \\ y + s_4 = 2 \end{cases} \Rightarrow \begin{cases} \min z_1 \\ x + y + s_1 = 3 \\ x + y - s_2 + z_1 = 1 \\ x + s_3 = 2 \\ y + s_4 = 2 \end{cases}$$

$$\begin{cases} \min 1 - x - y + s_2 \\ s_1 = 3 - x - y \\ z_1 = 1 - x - y + s_2 \\ s_3 = 2 - x \\ s_4 = 2 - y \end{cases} \Rightarrow \begin{cases} \min z_1 \\ s_1 = 2 + z_1 - s_2 \\ x = 1 - z_1 - y + s_2 \\ s_3 = 1 + z_1 + y - s_2 \\ s_4 = 2 - y \end{cases}$$

Feasible tableau
$$\begin{cases} s_1 = 2 - s_2 \\ x = 1 - y + s_2 \\ s_3 = 1 + y - s_2 \\ s_4 = 2 - y \end{cases}$$

${f Big}\ M$ Method

- Alternative to phase I + phase II approach
- lacktriangle LP is changed as follows, where M is a "big number"

$$\min c^T x \qquad \min c^T x + M \cdot 1^T z$$

$$Ax = b \implies Ax + z = b \quad \text{where } b \ge 0$$

$$x \ge 0 \qquad x, z \ge 0$$

- Again by taking the artificial variables we get an initial feasible basis
- The search of a feasible basis for the original problem is not blind wrt. cost
- Problems:
 - ◆ If *M* is a fixed big number, then the algorithm becomes numerically unstable
 - ◆ If *M* is kept symbolically, then handling costs becomes more expensive

${f Big}\ M$ Method

$$\begin{cases} \min -x - 2y \\ 1 \le x + y \le 3 \\ 0 \le x \le 2 \\ 0 \le y \le 2 \end{cases} \Rightarrow \begin{cases} \min -x - 2y \\ x + y + s_1 = 3 \\ x + y - s_2 = 1 \\ x + s_3 = 2 \\ y + s_4 = 2 \end{cases} \Rightarrow \begin{cases} \min -x - 2y + Mz \\ x + y + s_1 = 3 \\ x + y - s_2 + z = 1 \\ x + s_3 = 2 \\ y + s_4 = 2 \end{cases}$$

${f Big}\ M$ Method

$$\begin{cases} \min M + (-1 - M)x + (-2 - M)y + Ms_2 \\ s_1 = 3 - x - y \\ z = 1 - x - y + s_2 \\ s_3 = 2 - x \\ s_4 = 2 - y \end{cases}$$

$$\begin{cases} \min x - 2 - 2s_2 + (M+2)z \\ s_1 = 2 + z - s_2 \\ y = 1 - x - z + s_2 \\ s_3 = 2 - x \\ s_4 = 1 + z + x - s_2 \end{cases}$$

Then we could drop the artificial variable z and continue the optimization.

Termination and Complexity

- A step of the simplex algorithm is degenerate if the increment of the chosen non-basic variable is 0
- At each step of the simplex algorithm:
 cost improvement = reduced cost · increment (of chosen non-basic var)
- If the step is degenerate then there is no cost improvement
- But degenerate steps can only happen with degenerate bases
- Assume no degenerate bases occur.

Then there is a strict improvement from a base to the next one

So simplex terminates, as bases cannot be repeated

No. steps is at most exponential: there are $\leq \binom{n}{m}$ bases

Tight bound for pathological cases (Klee-Minty cube)

In practice the cost is polynomial

Termination and Complexity

- When there is degeneracy simplex may loop forever
- Termination guaranteed with anticycling rules, e.g. Bland's rule:

Assume there is a fixed ordering of variables.

Pricing: among non-basic vars with reduced cost < 0, take the least one

Ratio test: among tight basic vars, take the least one

PROOF:

States of simplex algorithm determined by bases.

To prove termination, enough to prove we can't repeat bases Let us prove termination by contradiction.

Assume there is a cycle: $\mathcal{B}_k, ..., \mathcal{B}_t, \mathcal{B}_{t+1}$ such that $\mathcal{B}_k = \mathcal{B}_{t+1}$

Var x_j is fickle if it is in some, but not all, bases of the cycle

For all ratio tests in cycle, entering variable takes value 0

Hence pivoting steps do not change basic solution: basic solution is the same for all bases of the cycle

So fickle variables have value 0 in basic solution

Let x_r be the largest fickle variable Let $l \in \{k, ..., t\}$ be such that $x_r \in \mathcal{B}_l$ and $x_r \in \mathcal{R}_{l+1}$ Let $x_r = \sum_{x_j \in \mathcal{R}_l} \lambda_j x_j$ be the respective row in \mathcal{B}_l 's tableau Let $x_s \in \mathcal{R}_l$ be the non-basic variable that is swapped with x_r in \mathcal{B}_l Let $d_l(x_j)$ be the reduced cost of a variable x_j in \mathcal{B}_l Since x_s is entering the basis, $d_l(x_s) < 0$ and $\lambda_s < 0$ Moreover, x_s is fickle too, and hence $x_s \prec x_r$

Let \mathcal{B}_p be the first basis after \mathcal{B}_{l+1} where x_r gets basic again: $x_r \in \mathcal{R}_p$ and $x_r \in \mathcal{B}_{p+1}$

Let $d_p(x_j)$ be the reduced cost of a variable x_j in \mathcal{B}_p

Since x_r is entering the basis, $d_p(x_r) < 0$

Moreover $d_p(x_s) \geq 0$:

- If $x_s \in \mathcal{R}_p$: by Bland's rule and $x_s \prec x_r$
- If $x_s \in \mathcal{B}_p$: reduced costs of basic vars are null

Let γ_l be the value of the objective function at the basic solution of \mathcal{B}_l Then for any x such that Ax = b: $c^Tx = \gamma_l + \sum d_l(x_j)x_j$

Let γ_p be the value of the objective function at the basic solution of \mathcal{B}_p Then for any x such that Ax = b: $c^T x = \gamma_p + \sum d_p(x_j)x_j$

As basic solution is the same all the time: $\gamma_l = \gamma_p$ Hence for any x such that Ax = b: $\sum d_l(x_j)x_j = \sum d_p(x_j)x_j$

If $x_s = t$ and $x_j = 0$ for all $x_j \in \mathcal{R}_l, j \neq s$ then $x_{\mathcal{B}_l} = B_l^{-1}b - B_l^{-1}a_st$. So:

$$\sum_{x_j \in \mathcal{B}_l} d_l(x_j) x_j + \sum_{x_j \in \mathcal{R}_l} d_l(x_j) x_j = \sum_{x_j \in \mathcal{B}_l} d_p(x_j) x_j + \sum_{x_j \in \mathcal{R}_l} d_p(x_j) x_j$$

$$0 + d_l(x_s) t = \sum_{x_{k_i} \in \mathcal{B}_l} d_p(x_{k_i}) (\beta_i - \alpha_s^i t) + d_p(x_s) t$$

where $\beta = B_l^{-1}b$ and $\alpha_s = B_l^{-1}a_s$

- Hence $d_l(x_s) = -\sum_{x_{k_i} \in \mathcal{B}_l} d_p(x_{k_i}) \alpha_s^i + d_p(x_s)$ As $d_l(x_s) < 0$ and $d_p(x_s) \geq 0$, it must be $\sum_{x_{k_i} \in \mathcal{B}_l} d_p(x_{k_i}) \alpha_s^i > 0$
- There must exist $x_{k_i} \in \mathcal{B}_l$ such that $d_p(x_{k_i})\alpha_s^i > 0$

So $d_p(x_{k_i}) \neq 0$ and $x_{k_i} \notin \mathcal{B}_p$. As $x_{k_i} \in \mathcal{B}_l$, x_{k_i} is fickle. Now:

- $lacksquare x_{k_i} = x_r$: $d_p(x_r) < 0$ and $lpha_s^i > 0$ implies $d_p(x_{k_i})lpha_s^i < 0$!!!
- $lacksquare x_{k_i} \prec x_r$: as we didn't chose x_{k_i} to enter \mathcal{B}_p , $d_p(x_{k_i}) \geq 0$

Since $d_p(x_{k_i})\alpha_s^i > 0$, we have $d_p(x_{k_i}) > 0$ and $\alpha_s^i > 0$

But x_{k_i} is fickle, so its basic value at \mathcal{B}_l is 0

By the ratio rule, x_{k_i} has ratio 0, so it could leave \mathcal{B}_l

Contradiction! $x_{k_i} \prec x_r$ and x_r was chosen to leave \mathcal{B}_l

Pricing Strategies

1. Full pricing

Choose the variable with the most negative reduced cost

2. Partial pricing

Make a list with the indices of the P variables with the most negative reduced costs.

In following iterations choose variables from the list until reduced costs are all ≥ 0

Pricing Strategies

3. Best-improvement pricing

Let θ_k be the increment for a non-basic variable x_k with reduced cost $d_k < 0$. Choose the variable j such that

$$|d_j| \cdot \theta_j = \max\{|d_k| \cdot \theta_k \text{ such that } d_k < 0, k \in \mathcal{R}\}$$

4. Normalized pricing.

Let $n_k = ||\alpha_k||$ (in practice $n_k = \sqrt{1 + ||\alpha_k||^2}$)

where α_k is the column in the tableau of variable x_k .

Take criteria 1. or 2. but using $\frac{d_k}{n_k}$ instead of d_k

5. Other more sophisticate normalized pricing strategies:

steepest edge, devex

■ LP solvers implement a variant of the simplex algorithm that handles bounds more efficiently for LP's of the form

$$\min c^T x$$

$$Ax = b$$

$$\ell \le x \le u$$

- lacktriangle ℓ_i may be $-\infty$ and/or u_i may be $+\infty$
- Bounds are incorporated into pricing and ratio test
- Now non-basic variables will take values at the lower or the upper bound

- Initially non-basic variables x, y are at lower bound
- \blacksquare We choose variable x in pricing

```
\begin{cases} &\min -x - 2y\\ s = 3 - x - y\\ 0 \le x \le 2\\ 0 \le y \le 2\\ s \ge 0 \end{cases} Limits new value to \le 3 as s \ge 0 Limits new value to \le 2 as x \le 2
```

- \blacksquare Best possible new value for x is $\min(3,2)=2$
- **Bound flip:** x is still non-basic, but is now at upper bound

$$\begin{cases} \min -x - 2y \\ s = 3 - x - y \\ 0 \le x \le 2 \\ 0 \le y \le 2 \\ s \ge 0 \end{cases}$$

- Pricing considers the bound status of non-basic variables
- lacktriangle A non-basic variable x_j with reduced cost d_j can improve the cost function
 - lack if x_j is at lower bound and $d_j < 0$; or
 - lack if x_j is at upper bound and $d_j > 0$
- \blacksquare Choose y in pricing:

```
\begin{cases} &\min -x - 2y\\ s = 3 - x - y\\ 0 \le x \le 2\\ 0 \le y \le 2 \end{cases} Limits new value to \le 1 as s \ge 0
```

■ Best possible new value for y is $\min(1,2) = 1$

Usual pivoting step now:

$$\begin{cases} & \min -x - 2y \\ s = 3 - x - y \\ 0 \le x \le 2 \\ 0 \le y \le 2 \\ s \ge 0 \end{cases} \implies \begin{cases} & \min -6 + x + 2s \\ y = 3 - x - s \\ 0 \le x \le 2 \\ 0 \le y \le 2 \\ s \ge 0 \end{cases}$$

 $s = 3 - x - y \Rightarrow y = 3 - x - s$

 \blacksquare Choose x in pricing. To respect bounds for y:

$$0 \leq y(x) \leq 2$$

$$0 \leq 3-x \leq 2$$
 (since x decreases its value, $0 \leq y(x)$ is OK)
$$3-x \leq 2$$

$$1 \leq x$$

$$\begin{cases} &\min -6 + x + 2s \\ y = 3 - x - s \\ 0 \le x \le 2 \\ 0 \le y \le 2 \\ s \ge 0 \end{cases} \text{ Limits new value to } \ge 1$$

Best possible new value for x is $\max(1,0) = 1$

■ Usual pivoting step now:

$$y = 3 - x - s \quad \Rightarrow \quad x = 3 - y - s$$

Usual pivoting step now:

$$y = 3 - x - s \implies x = 3 - y - s$$

$$\begin{cases}
\min -6 + x + 2s \\
y = 3 - x - s \\
0 \le x \le 2 \\
0 \le y \le 2 \\
s \ge 0
\end{cases} \implies \begin{cases}
\min -3 + s - y \\
x = 3 - y - s \\
0 \le x \le 2 \\
0 \le y \le 2 \\
s \ge 0
\end{cases}$$

- lacksquare Since upper bound of y was tight, now y is set to its upper bound
- Optimal solution: (x, y, s) = (1, 2, 0) with cost -5
- Now reading the basic solution and its cost is more involved!

