BCS Question Bank

AHSAN

August 19, 2020

Contents

Contents			
0.1	Sets		2
	0.1.1	Lemmas	2
	0.1.2	Extremal Set Theory	4
	0.1.3	Problems	5

0.1 Sets 2

0.1 Sets

0.1.1Lemmas

Lemma 0.1.1 — Let S be a set with n elements, and let F be a family of subsets of S such that for any pair A, B in F, $A \cap B \neq \emptyset$. Then $|F| \leq 2^{n-1}$.

Theorem 0.1.2 (Erdos Ko Rado theorem) — Suppose that A is a family of distinct subsets of $\{1, 2 \dots n\}$ such that each subset is of size r and each pair of subsets has a nonempty intersection, and suppose that $n \ge 2r$. Then the number of sets in A is less than or equal to the binomial coefficient

 $\binom{n-1}{r-1}$

Lemma 0.1.3 — Let S be a set with n elements, and let F be a family of subsets of S such that for any pair A, B in F, S is not contained by $A \cup B$. Then $|F| \le 2^{n-1}$.

Lemma 0.1.4 (Kleitman lemma) — A set family F is said to be downwards closed if the following holds: if X is a set in F, then all subsets of X are also sets in F. Similarly, F is said to be upwards closed if whenever X is a set in F, all sets containing X are also sets in F. Let F_1 and F_2 be downwards closed families of subsets of $S = \{1, 2, ..., n\}$, and let F_3 be an upwards closed family of subsets of S. Then we have

$$|F_1 \cap F_2| \ge \frac{|F_1| \cdot |F_2|}{2^n} \tag{1}$$

$$|F_1 \cap F_2| \ge \frac{|F_1| \cdot |F_2|}{2^n}$$

$$|F_1 \cap F_3| \le \frac{|F_1| \cdot |F_3|}{2^n}$$
(2)

Lemma 0.1.5 — Let S be a set with n elements, and let F be a family of subsets of S such that for any pair A, B in F, $A \cap B \neq \emptyset$ and $A \cap B \neq S$. Then $|F| \leq 2^{n-2}$.

0.1.1 Lemmas 3

	Solution. Using the sets in lemma 1 and lemma 2, defining upwards and downwards sets like in Kleitman's Lemma.
	Lemma 0.1.6 (The Sunflower Lemma) — A sunflower with k petals and a core X is a family of sets S_1, S_2, \ldots, S_k such that $S_i \cap S_j = X$ for each $i \neq j$. (The reason for the name is that the Venn diagram representation for such a family resembles a sunflower.) The sets $S_i \setminus X$ are known as petals and must be nonempty, though X can be empty. Show that if F is a family of sets of cardinality s , and $ F > s!(k-1)^s$, then F contains a sunflower with k petals.
	Solution. Applying induction and considering the best case where $ X = 0$

0.1.2 Extremal Set Theory

MIT 18.314 Lecture-8

Theorem 0.1.7 (Mirsky Theorem) — A set S with a chain of height h can't be partitioned into t anti-chains if t < h. In other words, the minimum number of sets in any anti-chain partition of S is equal to the maximum height of the chains in S. (And Vice Versa)

Theorem 0.1.8 — In any poset, the largest cardinality of an antichain is at most the smallest cardinality of a chain-decomposition of that poset.

Theorem 0.1.9 (Dilworth's Theorem) — Let P be a poset. Then there exist an antichain A and a chain decomposition C of P such that |A| = |C|

Theorem 0.1.10 (Erdos-Szekeres Theorem) — Any sequence of ab + 1 real numbers contains either a monotonically decreasing subsequence of length a + 1 or a monotonically increasing subsequence of length b + 1. The more useful case is when a = b = n.

Problem 0.1.1: Let $n \ge 1$ be an integer and let X be a set of $n^2 + 1$ positive integers such that in any subset of X with n + 1 elements there exist two elements $x \ne y$ such that x|y. Prove that there exists a subset $\{x_1, x_2 \dots x_{n+1} \in X \text{ such that } x_i | x_{i+1} \text{ for all } i = 1, 2, \dots n.$

0.1.3 Problems 5

0.1.3 Problems

Problem 0.1.2 (USA TST 2005 P1): Let n be an integer greater than 1. For a positive integer m, let $S_m = \{1, 2, ..., mn\}$. Suppose that there exists a 2n-element set T such that

- 1. each element of T is an m -element subset of S_m
- 2. each pair of elements of T shares at most one common element
- 3. each element of S_m is contained in exactly two elements of T

Determine the maximum possible value of m in terms of n.

| Solution. We use double counting to find the ans, after that the rest is easy.

Problem 0.1.3 (Iran TST 2008 D3P1): Let S be a set with n elements, and F be a family of subsets of S with 2^{n-1} elements, such that for each A, B, $C \in F$, $A \cap B \cap C$ is not empty. Prove that the intersection of all of the elements of F is not empty.

| Solution. Using Induction with this lemma. □

Problem 0.1.4 (Romanian TST 2016 D1P2): Let n be a positive integer, and let $S_1, S_2, \ldots S_n$ be a collection of finite non-empty sets such that

$$\sum_{1 \le i \le j \le n} \frac{|S_i \cap S_j|}{|S_i||S_j|} < 1$$

Prove that there exist pairwise distinct elements $x_1, x_2 \dots x_n$ such that x_i is a member of S_i for each index i.

Solution. The Inductive proof reduces the problem to American Mathematical Monthly problem E2309 □

Solution. The other approach is to focus on the given weird condition, and interpolate it to something nice, like probabilistic condition. \Box

0.1.3 Problems 6

Problem 0.1.5 (American Mathematical Monthly E2309): If $A_1, A_2, ..., A_n$ are n nonempty subsets of the set $\{1, 2, ..., n-1\}$, then prove that

$$\sum_{1 \le i \le j \le n} \frac{\left| A_i \cap A_j \right|}{\left| A_i \right| \cdot \left| A_j \right|} \ge 1$$

Problem 0.1.6 (CGMO 2010 P1): Let n be an integer greater than two, and let A_1, A_2, \dots, A_{2n} be pairwise distinct subsets of $\{1, 2, \dots n\}$. Determine the maximum value of

$$\sum_{i=1}^{2n} \frac{|A_i \cap A_{i+1}|}{|A_i| \cdot |A_{i+1}|}$$

Where $A_{2n+1} = A_1$ and |X| denote the number of elements in X.

Problem 0.1.7 (ISL 2002 C5): Let $r \ge 2$ be a fixed positive integer, and let F be an infinite family of sets, each of size r, no two of which are disjoint. Prove that there exists a set of size r-1 that meets each set in F.

HMMT 2016 Team Round: Fix positive integers r > s, and let \mathcal{F} be an infinite family of sets, each of size r, no two of which share fewer than s elements. Prove that there exists a set of size r-1 that shares at least s elements with each set in F.

Solution [Focus on a set]. If we take an arbitrary set, we can say that there exists infinitely many sets $\in \mathbb{F}$ which includes a fixed element from our test set. If we do this argument for r-1 times, we get a set X of r-1 elements, and an infinite family of sets that contains X completely. At this point the problem is trivial.

Solution [Adding Elements]. Since it's tricky to work with one family, why not introduce another family, like the second monk. This solution generalizes the problem as such. \Box

Problem 0.1.8 (ISL 1988 P10) : Let $N = \{1, 2, ..., n\}, n \ge 2$.

A collection $F = \{A_1, ..., A_t\}$ of subsets $A_i \subseteq N$, i = 1, ..., t, is said to be **separating**, if for every pair $\{x, y\} \subseteq N$, there is a set $A_i \in F$ so that $A_i \cap \{x, y\}$ contains just one element.

F is said to be **covering**, if every element of N is contained in at least one set $A_i \in F$.

What is the smallest value f(n) of t, so there is a set $F = \{A_1, \ldots, A_t\}$ which is simultaneously separating and covering.

0.1.3 Problems 7

Solution [Binary Representation]. Using Binary Representations for the elements as in or not in, we get an easy bijection. \Box

Problem 0.1.9 (Iran TST 2013 D1P2): Find the maximum number of subsets from $\{1, ..., n\}$ such that for any two of them like A, B if $A \subset B$ then $|B - A| \ge 3$. (Here |X| is the number of elements of the set X.)

Solution. By partitioning the maximum set of subsets into groups which contain the number n and which don't and Induction on n we can show that the maximum number of subset is

$$\frac{2^n-(-1)^n}{3}$$

Problem 0.1.10 (Putnam 2005 B4): For positive integers m and n, let f(m, n) denote the number of n-tuples (x_1, x_2, \ldots, x_n) of integers such that $|x_1| + |x_2| + \cdots + |x_n| \le m$. Show that f(m, n) = f(n, m).

Solution. Try to show Bijection between the result and choosing m or n objects from m+n objects or show that the result is $\binom{m+n}{n}$.