## M3398: September 26th, 2022.

- 15) You are given the following information about Stock X, Stock Y, and the market:
  - (i) The expected return and volatility for Stock X, Stock Y, and the market are shown in the table below:

|         | Required Return | <b>Volatility</b> |
|---------|-----------------|-------------------|
| Stock X | 3.0%            | 50%               |
| Stock Y | 3               | 35%               |
| Market  | 6.0%            | 25%               |

(ii) The correlation between the returns of stock X and the market is -0.25.

(iii) The correlation between the returns of stock Y and the market is 0.30.

Assume the Capital Asset Pricing Model holds. Calculate the required return for Stock Y.

(A) 1.48% 
$$\longrightarrow : \beta_{x} = \frac{\sigma_{x}}{\sigma_{\text{NL}}} \cdot \beta_{x_{\text{N}}} = \frac{0.5}{0.25} \quad (-9.25) = -0.5$$

(B) 2.52% 
$$r_{X} = r_{f} + \beta_{X} \left( \mathbb{E} \left[ R_{Het} \right] - r_{f} \right)$$

(D) 
$$4.84\%$$
  $0.03 = f_{f} + (-0.5)(0.06 - f_{f})$ 

(E) 
$$6.52\%$$
  $0.03 = i_1 - 0.03 + 0.5 i_2$   
 $1.5 i_3 = 0.06 \Rightarrow i_3 = 0.04 \checkmark$ 

$$\beta_{\gamma} = \frac{\delta_{\gamma}}{\delta_{\text{NLT}}} \cdot \beta_{\gamma, \text{NLS}} = \frac{0.35}{0.25} (0.3) = 0.42$$

IFM-02-18 30

Beta of a Portfolio.

Let P be a portfolio such that  $R_{p} = w_{1} \cdot R_{1} + w_{2} \cdot R_{2} + \cdots + w_{n} \cdot R_{n}$   $Cov[R_{p}, R_{nlet}]$   $Cov[w_{1} \cdot R_{1} + w_{2} \cdot R_{2} + \cdots + w_{n} \cdot R_{n}, R_{nlet}]$   $Cov[w_{1} \cdot R_{1} + w_{2} \cdot R_{2} + \cdots + w_{n} \cdot R_{n}, R_{nlet}]$   $Var[R_{nlet}]$   $Var[R_{nlet}]$   $Var[R_{nlet}]$   $Var[R_{nlet}]$   $Var[R_{nlet}]$   $Var[R_{nlet}]$   $Var[R_{nlet}]$   $Var[R_{nlet}]$ 

7) Consider a portfolio of four stocks as displayed in the following table:

| Stock | Weight | Beta      |
|-------|--------|-----------|
| 1     | 0.1    | 1.3       |
| 2     | 0.2    | -0.6      |
| 3     | 0.3    | $\beta_3$ |
| 4     | 0.4    | 1.1       |

Assume the expected return of the portfolio is 0.12, the annual effective risk-free rate is 0.05, and the market risk premium is 0.08.

Assuming the Capital Asset Pricing Model holds, calculate  $\beta_3$ .

1.83

$$0.12 = 0.05 + \beta_{P}(0.08)$$

$$\beta_P = \frac{0.12 - 0.05}{0.08} = 0.875$$

D)

$$0.875 = 0.1(1.3) + 0.2(-0.6) + 0.3 b_3 + 0.4(1.1)$$

$$0.875 = 0.1(1.3) + 0.2(-0.6) + 0.3 \beta_3 + 0.4(1.1)$$

$$\beta_3 = \frac{0.875 - 0.13 + 0.12 - 0.044}{0.3} = 4.4167$$



"Attack" 
$$\omega$$
 expectation above:

$$E[Y] = \alpha + \beta \cdot E[X]$$
They can be estimated using the least squares live.

In our applications:

$$excess\ return of market: Explanation:$$

$$excess\ return of I$$

$$exc$$