

Proposed Method of Producing a CRAFT-2009 Alignment

Jim Pivarski

Texas A&M University

23 October, 2009

- Here's what I propose for combined DT and CSC alignments, with a discussion of which parameters are well-determined and which are poorly-determined with tracks.
- Proposed DT construction:
 - 1. 2009 photogrammetry and internal layer alignments from Luca
 - 2. global adjustment of the whole barrel from tracks (in the transverse plane)
 - 3. track-based chamber alignments for accessible chambers, except ϕ_x corrections.
- Where each parameter comes from:
 - ▶ all layers/superlayer within chambers: internal alignment
 - \triangleright all ϕ_{x} : photogrammetry
 - y, z, and ϕ_x of station 4 chambers: photogrammetry
 - low-statistics chambers: relative positions from photogrammetry with an overall global correction from tracks (barrel adjustment)
 - ▶ high-statistics chambers: tracks

- ▶ What track-based alignment determines well/poorly:
 - well: relative displacements between tracker and DT layers (as rigid groups within chambers)
 - well: local x, ϕ_y , ϕ_z , medium: y, z, poorly: ϕ_x
 - \blacktriangleright well: central chambers above and below tracker, poorly: horizontal chambers and chambers near the wheel $\pm 2,$ station 1 corner of the barrel

Proposed CSC construction:

- 1. 2007 photogrammetry-derived chambers relative to disks (Karoly)
- 2. 2009 link-derived chambers relative to disks or rings (Celso)
- 3. 2009 ϕ_x and z from endcap hardware (Jim B.)
- 4. global adjustment of whole rings from tracks (in the transverse plane)
- 5. track-based chamber alignments (x, ϕ_y, ϕ_z) for the few chambers that have enough statistics.
- Where each parameter comes from:
 - chamber positions: track-based unless not available due to statistics, otherwise link-derived (with global adjustment) unless not available, otherwise photogrammetry (with global adjustment)
 - ightharpoonup z of disks, average ϕ_{x} of chambers: endcap hardware

- ▶ What the track-based alignment determines well/poorly:
 - well: relative displacements between tracker and CSC layers (as rigid groups within rings)
 - well: local x, ϕ_y , ϕ_z , poorly: y, z, ϕ_x
 - ▶ well: chambers on the top and bottom of rings, especially large-radius rings like ring-2 and ME1/3.

- Changes with respect to the presented alignment:
 - full 1st reprocessing dataset: the one I used for the study already shown was a test-sample of the reprocessing—that's why the statistics was a factor of 10 lower than the full sample.
 - any tracker geometry updates (I'm pretty sure an update is planned)
 - new input from endcap hardware and link
- ▶ Update: data sample is now available; waiting on the other items
- Tuesday's AlCa meeting:
 - conflicts with CSC-DPG; I will be busy presenting an endcap update there.
 - will someone else be available to present at AlCa?
 - and ask about status of tracker alignment?