

IN THE CLAIMS:

Please amend the claims as shown immediately below with all changes (e.g., additions, deletions, modifications) included, pursuant to 37 C.F.R. 1.121(c)(1).

Complete listing of the claims:

1. (Currently amended) A process for manufacturing gas diffusion electrodes, which process comprises:

- a) treating an a restricted area of a pre-shrunk porous hydrophobic substrate wherein said area is less hydrophobic than a surrounding area of said substrate,
- b) dispensing a slurry of catalyst onto the restricted area, the slurry of catalyst further comprises organic materials,
- c) removing liquid from the dispensed slurry to dry the slurry, and
- d) treating the dried slurry to remove organic materials.

2. (Previously Presented) A process as in claim 1 wherein step a) comprises further comprising forming a well at the said area in the pre-shrunk porous hydrophobic substrate to form said restricted area.

3. (Cancelled)

4. (Currently Amended) A process as in claim 2 which comprises forming said well after treating the restricted area to render the well relatively less hydrophobic than an area surrounding the well.

5. (Cancelled)

6. (Cancelled)

7. (Previously Presented) A process as claimed in claim 1, wherein step c) comprises heating the slurry to evaporate the liquid.

8. (Previously Presented) A process as claimed in claim 1 wherein step d) comprises heating the dried slurry to a temperature sufficient to decompose the organic materials.

9. (Previously Presented) A process as in claim 1, where step c) is achieved by solidifying the liquid.

10. (Previously Presented) A process as claimed in claim 1, which includes pre-shrinking the hydrophobic substrate by heat treatment at a temperature greater than that used in either of steps c) or d).

11. (Previously Presented) A process as claimed in claim 1, which includes a further step of: e) cutting the catalyst deposit and the underlying portion of substrate from the rest of the hydrophobic substrate to provide a porous and conductive catalyst mass supported on the said portion of the substrate.

12. (Previously Presented) A process as claimed in claim 1, wherein the hydrophobic substrate is PTFE.

13. (Previously Presented) A process as claimed in claim 1 wherein (c) and (d) steps are performed in a single step.

14. (Cancelled)

15. (Cancelled)

16. (Currently Amended) A process for manufacturing gas diffusion electrodes comprising:

- a) heat treating a microporous hydrophobic PTFE sheet to a temperature between 280 to 310°C to form a pre-shrunk porous hydrophobic substrate,
- b) forming a well area in said heat treated PTFE sheet,
- c) treating the well area to increase the surface energy of the well area by at least 10 to 15 dynes/cm<sup>2</sup> so that said well area is less hydrophobic than a surrounding area of said PTFE sheet,
- d) dispensing an aqueous slurry of catalyst into the treated well area the aqueous slurry comprises organic materials,
- e) drying the aqueous slurry to remove water therefrom and dry the slurry, and
- f) curing the dried slurry to remove organic materials.

17. (Previously Presented) The process of claim 16 wherein the slurry contains about 10 to 25% by weight of the catalyst, the slurry is dried at a temperature of 80-85° C for about 10 minutes, and is cured by raising the temperature from the drying temperature at 5°C per minute until it reaches 290 °C and is held at 290 °C for about 80 minutes.

18. (Currently Amended) The process of claim 16 which further comprises stamping the cured dried slurry to provide an electrode, removing the electrode from the well and lightly applying a relatively light pressing force to opposing sides of the removed electrode to improve mechanical adhesion.

19. ( Previously Presented) The process of claim 17 which further comprises stamping the cured dried slurry to provide an electrode, removing the electrode from the well and lightly pressing the

removed electrode with a force of about 600-900 N per 17 mm.

20. (Currently Amended) A gas diffusion electrode which has been prepared by providing a pre-shrunk microporous PTFE substrate with a confined area that is less hydrophobic than a surrounding area of said substrate, dispensing an aqueous catalyst slurry in the confined area, and preparing the electrode from heating the slurry and the PTFE substrate in the confined area to dry the slurry.

21. (Currently Amended) The gas diffusion electrode of claim 20 wherein the confined area is plasma treated prior to the slurry being dispensed, said slurry contains about 10 to 25% by weight of a catalyst, the slurry is dried at a temperature of 80-85° C for about 10 minutes, and is cured by raising the temperature from the drying temperature at 5 °C per minute until it reaches 290 °C and is held at 290 °C for about 80 minutes, stamping the cured dried slurry to provide an electrode, removing the electrode from the well a support and lightly applying a relatively light pressing force to opposing sides of the removed electrode to improve mechanical adhesion.