

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ імені ІГОРЯ СІКОРСЬКОГО»

КАФЕДРА ІНФОРМАТИКИ ТА ПРОГРАМНОЇ ІНЖЕНЕРІЇ

Курсова робота з освітнього компоненту «Технології паралельних обчислень. Курсова робота»

Тема: Імітаційна модель системи процесорів на основі формального опису мережею Петрі

Керівник:	Виконавець:
ст.викл. Дифучина Олександра Юріївна	Панченко Сергій Віталійович студент групи ІП-11
«Допущено до захисту»	залікова книжка № ІП-1123
«» 2024 p.	« <u>5</u> » <u>грудня</u> 20 <u>24</u> р.
Захищено з оцінкою	
Члени комісії:	
	Інна СТЕЦЕНКО
	Олександра ДИФУЧИНА

Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського"

Кафедра інформатики та програмної інженерії

Дисципліна «Моделювання систем»

Спеціальність 121 Інженерія програмного забезпечення

Курс 4 Група ІП-11 Семестр 1

ЗАВДАННЯ

на курсову роботу студента

Панченка Сергія Віталійовича
(прізвище, ім'я, по батькові)

- 1. Тема роботи «Ім<u>ітаційна модель системи процесорів на основі формального</u> опису мережею Петрі»
- 2. Термін здачі студентом закінченої роботи "5" грудня 2024р.
- 3. Зміст розрахунково-пояснювальної записки
- 1. Опис 2. Псевдокод 3. Реалізація 4. Реалізація 5. Реалізація 6. Проведення експериментів над моделями. Висновки.
- 4. Дата видачі завдання <u>"29" жовтня 2024 року</u>

КАЛЕНДАРНИЙ ПЛАН

		Термін			
No	Назва етапів виконання курсової роботи	виконання	Примітка		
		етапів роботи			
1	Отримання індивідуального завдання на	29.10.2024			
	курсову роботу				
2	Розробка концептуальної моделі системи	29.11.2024			
3	Розробка формалізованої моделі системи	03.11.2024			
4	Алгоритмізація моделі системи та її програмна	08.11.2024			
	реалізація				
5	Експериментальне дослідження моделі системи	13.11.2024			
6	Інтерпритація результатів моделювання,	15.11.2024			
	формулювання висновків та пропозицій				
7	Оформлення пояснювальної записки	17.11.2024			
8	Захист КР	5.12.2024			

Студент		Панченко С. В.
	(підпис)	
Керівник _		Дифучина О.Ю
	(пілпис)	

АНОТАЦІЯ

Структура та обсяг роботи. Пояснювальна записка курсової роботи складається з 5 розділів, містить 2 рисунки, 2 таблиці, 1 додаток, 2 джерела.

Мета: визначення статистичних характеристик роботи багатопроцесорної обчислювальної системи, зокрема середнього значення, середнього квадратичного відхилення та закону розподілу для таких вихідних значень, якот: часу виконання завдання в системі; завантаження чотирьох дисків, каналу передачі даних і процесорів; використання пам'яті; кількості завдань, які очікують виділення ресурсу, та часу їхнього очікування.

У розділі розробки концептуальної моделі було окреслено концептуальну модель та визначено необхідні властивості імітаційних алгоритмів.

У розділі аналіз розробки формалізованої моделі було описано моделі у рамках формалізму мереж Петрі.

У розділі алгоритмізації моделі та її реалізації було описано усі деталі щодо алгоритму та його реалізації.

У розділі експериментів на моделі було проведено верифікацію моделі та факторний експеримент.

У розділі інтерпретації результатів моделювання та експериментів було описано отримані результати в рамках проведеного моделювання та експериментування.

КЛЮЧОВІ СЛОВА: МОДЕЛЮВАННЯ СИСТЕМ, МЕРЕЖІ ПЕТРІ, БАГАТОПРОЦЕСОРНА ОБЧИСЛЮВАЛЬНА СИСТЕМА.

3MICT

Постановка завдання
Вступ10
1 Розробка концептуальної моделі12
1.1 Опис задачі12
1.2 Структурна схема моделі12
1.3 Опис процесу12
1.4 Вхідні змінні13
1.5 Вихідні змінні13
1.6 ВРNМ-діаграма14
1.7 Висновки до розділу16
2 Розробка формалізованої моделі17
2.1 Вхідні параметри18
2.2 Вихідні параметри20
2.2.1 Часи виконання завдання в системі та очікування виділення
пам'яті20
2.2.1.1 Середнє значення20
2.2.1.2 Середнє квадратичне відхилення21
2.2.2 Кількості завдань в очікуванні пам'яті та зайнятих сторінок21
2.2.2.1 Середнє значення21
2.2.2.2 Середнє квадратичне відхилення21
2.2.3 Завантаження процесорів, дисків та каналу передачі23
2.2.3.1 Середнє значення23
2.2.3.2 Середнє квадратичне відхилення24
2.3 Мережа Петрі24
2.4 Висновки до розділу26
З Алгоритмізація моделі та її реалізація27
3.1 Опис алгоритму імітації мережі Петрі27
3.2 Модифікації алгоритму30

3.2.1 Додавання розподілу Пуассона для генерації подіи30
3.2.2 Вдосконалення роботи з NetLibrary30
3.2.3 Покращення графічного інтерфейсу31
3.2.4 Клас CourseWorkPetriSim31
3.2.4.1 Опис атрибутів32
3.2.4.2 Опис методів
3.2.5 Клас CourseWorkNet. Протокол подій34
3.2.5.1 Опис атрибутів34
3.2.5.2 Опис TaskObject36
3.2.5.3 Опис методів
3.3 Верифікація38
3.3.1 Збір даних. Клас GatherDataCourseWorkNet38
3.3.2 Обробка даних40
3.3.3 Аналіз даних45
3.3.3.1 Середні значення45
3.3.3.2 Середньоквадратичні відхилення46
3.4 Висновки до розділу47
4 Експериментальне дослідження моделі
4.1 Визначення перехідного періоду49
4.1.1 Параметри за замовчуванням49
4.1.1.1 Вихідні параметри в момент часу50
4.1.2 Змінені параметри60
4.2 Визначення кількості необхідних прогонів67
4.3 Визначення середніх значень та середньоквадратичних відхилень67
4.4 Визначенні типів розподілів69
4.4.1 Аналіз розподілів навантаження диска, процесора, каналу
передачі72
4.4.2 Аналіз розподілу кількості завдань в очікуванні пам'яті72
4.4.3 Аналіз розподілу кількості часу завдання в системі
4.4.4 Аналіз розподілу часу очікування виділення пам'яті75

4.4.5 Аналіз розподілу кількості зайнятих сторінок	77
4.5 Висновки до розділу	77
5 Інтерпретація результатів моделювання та експериментів	78
Висновки	79
Список використаних джерел	80
ДОДАТОК А	81

ПОСТАНОВКА ЗАВДАННЯ

Багатопроцесорна обчислювальна система складається з двох процесорів обсягом оперативною пам'яттю 131 сторінка, **i**3 загальною чотирьох накопичувачів на дисках, кожний із яких доступний обом процесорам, і одного Завдання надходять у систему із передачі даних. середньою інтенсивністю, рівною 12 завданням у хвилину відповідно до розподілу Пуассона. Загальний час, необхідний процесору на обробку завдання, розподілено нормально з математичним сподіванням 10 секунд та середнім квадратичним відхиленням 3 секунди. Час обробки процесором включає переривання, необхідні для здійснення обміну по каналу вводу-виводу. Інтервали між перериваннями розподілені за негативний експоненціальний розподілом з математичним сподіванням, що дорівнює оберненій величині середньої інтенсивності операцій вводу-виводу завдання. Середня інтенсивність операцій введення-виведення розподілена рівномірно на інтервалі від 2 секунд до 10 секунд. Операції введення-виведення призначаються конкретному диску. Завданню, що надходить у систему, призначається пріоритет, що є величиною, оберненою до потреби в пам'яті. Потреба завдання в пам'яті розподілена рівномірно в інтервалі від 20 до 60 сторінок. Як тільки пам'ять виділена для завдання, один з вільних процесорів починає його обробку. При видачі запиту на здійснення введення-виведення завдання може продовжувати використання процесора доти, доки в черзі залишиться тільки один запит. Таким чином, якщо зроблений запит на здійснення введення-виведення і один запит вже очікує в черзі, то процесор звільняється, а запит на введення виведення розміщується в черзі. Після виконання поточного запиту введення виведення процесор може відновити обробку завдання в тому випадку, якщо вона вільна. Після переривання процесора автоматично виконується запит введення-виведення з призначеним завданню диском. Таким чином, здійснюється прямий доступ до диска з процесора. Передбачається, що час позиціонування диска розподілено рівномірно на інтервалі від 0,0 до 0,075 секунд. Одночасно може здійснюватися тільки одна операція позиціонування диска. Після позиціонування здійснюється обмін даними по каналу передачі даних. Час обміну дорівнює 0,001×(2,5+h), де h - рівномірно розподілена на інтервалі від 0 до 25 величина. Після здійснення обміну запит введення-виведення вважається виконаним. Визначити загальний час виконання завдання в системі, а також статистичні оцінки завантаження усіх чотирьох дисків, каналу передачі даних та обох процесорів. Крім того, необхідно одержати оцінку середнього використання пам'яті, статистику щодо кількості завдань, які очікують виділення ресурсу, та щодо часу очікування.

ВСТУП

У сучасному світі багатопроцесорні обчислювальні системи відіграють ключову роль у вирішенні складних обчислювальних задач. Ефективність їх роботи залежить від багатьох факторів, включаючи управління пам'яттю, розподіл процесорного часу та організацію введення-виведення. Тому дослідження характеристик таких систем є актуальним завданням для оптимізації їх роботи та підвищення продуктивності.

Метою даної курсової роботи є визначення статистичних характеристик роботи багатопроцесорної обчислювальної системи, зокрема середнього значення, середнього квадратичного відхилення та закону розподілу для таких вихідних значень, як-от: часу виконання завдання в системі; завантаження чотирьох дисків, каналу передачі даних і процесорів; використання пам'яті; кількості завдань, які очікують виділення ресурсу, та часу їхнього очікування.

Для досягнення поставленої мети використовується апарат мереж Петрі, який є потужним математичним інструментом для моделювання та аналізу паралельних та розподілених систем. Мережі Петрі дозволяють ефективно описувати та досліджувати асинхронні, паралельні процеси в системі, враховуючи стохастичну природу процесів, що відбуваються в ній. У роботі застосовуються різні типи ймовірнісних розподілів для моделювання надходження завдань (розподіл Пуассона), часу обробки завдань (нормальний розподіл), інтервалів між перериваннями (експоненційний розподіл) та інших характеристик системи.

Для реалізації моделі використовується спеціалізоване програмне забезпечення PetriObjModelPaint, розроблене для моделювання та аналізу мереж Петрі. Цей інструмент надає можливості для створення, візуалізації та дослідження мережевих моделей, а також дозволяє отримувати статистичні оцінки завантаження всіх компонентів системи, включаючи процесори, диски, канал передачі даних, аналізувати використання пам'яті та характеристики черг завдань.

Результати дослідження дозволять оцінити ефективність роботи системи та виявити потенційні "вузькі місця" в її функціонуванні, що може бути використано для подальшої оптимізації роботи багатопроцесорних обчислювальних систем.

1 РОЗРОБКА КОНЦЕПТУАЛЬНОЇ МОДЕЛІ

У цьому розділі представлено концептуальну модель багатопроцесорної обчислювальної системи, яка включає опис її складових, основних процесів, правил взаємодії елементів та параметрів, необхідних для подальшого моделювання і аналізу.

1.1 Опис задачі

Мета моделювання — визначити показники роботи багатопроцесорної обчислювальної системи, зокрема:

- загальний час виконання завдань;
- завантаження дисків, каналу передачі даних і процесорів;
- середнє використання пам'яті;
- кількість завдань, що очікують на виділення ресурсу;
- час очікування виділення пам'яті.

1.2 Структурна схема моделі

Об'єктом моделювання є багатопроцесорна система, яка включає:

- два процесори, що використовують спільну оперативну пам'ять на 131 сторінку;
- чотири диски, доступні обом процесорам;
- один канал передачі даних, який використовується для обміну між процесорами та дисками.

1.3 Опис процесу

Процес складається з таких елементів:

- завдання надходять у систему з інтенсивністю 12 завдань/хв за розподілом Пуассона;
- кожному завданню призначається пріоритет, обернений до його потреби в пам'яті;

- потреба завдань у пам'яті розподілена рівномірно в межах 20–60 сторінок;
- якщо пам'ять доступна, одразу призначається один із вільних процесорів;
- час виконання завдання розподілений нормально із середнім 10 секунд та відхиленням 3 секунди;
- у процесі виконання завдань виникають переривання для обміну даними; інтервали між перериваннями розподілені експоненційно з параметром, оберненим до інтенсивності операцій введення-виведення (2–10 секунд);
- операції введення-виведення включають;
- позиціонування диска (0–0,075 с);
- передачу даних (0,001×(2,5+h), де h розподілено рівномірно в межах 0–
 25);
- завдання звільняє процесор, якщо черга операцій введення-виведення складається з максимум одного завдання; в іншому випадку, воно продовжує займати процесор.

1.4 Вхідні змінні

Модель має такі вхідні змінні, як-от:

- інтенсивність надходження завдань (12 завдань/хв);
- потреба завдань у пам'яті (20–60 сторінок);
- час виконання завдання процесором (нормальний розподіл: середнє 10 с, відхилення 3 с);
- інтенсивність операцій введення-виведення (2–10 с);
- час позиціонування диска (0–0,075 с);
- час передачі даних (0,001×(2,5+h), h у межах 0–25).

1.5 Вихідні змінні

Модель має такі вихідні змінні, як-от:

- загальний час виконання завдань;
- завантаження процесорів, дисків, каналу передачі даних;
- середнє використання пам'яті;
- кількість завдань, що очікують виділення пам'яті чи ресурсів;
- час очікування виділення пам'яті.

1.6 ВРМ-діаграма

BPMN-діаграма (Business Process Model and Notation[1]) — це графічне представлення процесів, яке дозволяє детально описати їхню послідовність, взаємодію елементів системи та потік даних між ними. Вона використовується для візуалізації концептуальної моделі, допомагаючи зрозуміти логіку роботи системи, виявити можливі вузькі місця та полегшити подальшу формалізацію і моделювання.

На рисунку 1.1 представлено BPMN-діаграму моделі, яка відображає ключові етапи обробки завдань і взаємодію різних компонентів системи через обмін повідомленнями. Діаграма ілюструє потік даних і послідовність дій від генерації завдання до його завершення.

Розглянемо блок генерації завдань. Через визначений проміжок часу, вказаний у коментарі, відбувається подія створення нового завдання. Після цього завданню призначається обсяг пам'яті (кількість сторінок), необхідний для його обробки, і воно передається в оперативну пам'ять.

Оперативна пам'ять отримує повідомлення про нове завдання, додає його в чергу й перевіряє наявність вільних сторінок для виконання хоча б одного завдання з черги. Щойно вільна пам'ять стає доступною, вона виділяється, і завдання надсилається до процесорів.

Процесори приймають повідомлення про нове завдання і додають його в чергу. Як тільки один із процесорів стає вільним, він починає обробку завдання. По завершенню обробки перевіряються три умови: наявність вільного диска, невиконаний запит введення-виведення та переривання. Коли ці умови виконано, процесор звільняється, а система надсилає кілька повідомлень:

Рисунок 1.1 — BPNM-діаграма

генератору запитів про виконання запиту, оперативній пам'яті про звільнення сторінок і диску про готовність прийняти завдання.

Розглянемо блок генератора запитів. Через заданий час відбувається подія створення нового запиту, який додається в чергу. Далі постійно перевіряється наявність хоча б одного невиконаного запиту в черзі. Якщо такий запит є, повідомлення надсилається процесорам.

Коли диск отримує повідомлення про готовність захопити завдання, він розпочинає позиціонування своєї головки зчитування, після чого виконується передача даних через канал введення-виведення. Завдання вважається завершеним після успішного виконання цих операцій.

1.7 Висновки до розділу

У висновку можна зазначити, що розроблена концептуальна модель багатопроцесорної обчислювальної системи забезпечує базу для формалізації процесів, побудови алгоритму імітації та проведення експериментального дослідження. Визначені вхідні змінні, параметри та вихідні характеристики дозволяють ефективно аналізувати роботу системи та оптимізувати її продуктивність.

2 РОЗРОБКА ФОРМАЛІЗОВАНОЇ МОДЕЛІ

У цьому розділі представлено формалізовану модель багатопроцесорної обчислювальної системи, розроблену з використанням мережі Петрі. Модель описує елементи системи, такі як пам'ять, процесори, диски та канал передачі даних, а також події, що визначають їх взаємодію. Вказано числові параметри для кожного компонента, правила спрацьовування переходів, а також описано генерацію випадкових величин для вхідних змінних. У розділі також подано формули для обчислення вихідних характеристик системи, які дозволяють аналізувати її продуктивність, завантаженість та ефективність роботи. Створена модель є основою для подальшого алгоритму імітації та експериментального дослідження.

Мережа Петрі — це математичний апарат для моделювання дискретних систем, який складається з позицій, переходів та дуг. Позиції представляють стани системи, переходи — події або дії, що змінюють ці стани, а дуги визначають зв'язки між позиціями і переходами. Стан мережі визначається кількістю маркерів у позиціях, які називаються токенами [2][с. 67].

В основі роботи мережі лежить правило спрацьовування переходу: якщо у всіх вхідних позиціях переходу кількість маркерів не менша за кратність відповідних дуг, перехід активується. Під час спрацьовування маркери переміщуються з вхідних позицій до вихідних відповідно до кратності дуг. Мережа Петрі дозволяє описувати процеси з конфліктними переходами, багатоканальними переходами та стохастичними часовими затримками.

У таблиці 2.1 наведено елеменети формалізації мережі Петрі [2][с. 69].

Таблиця 2.1 Мережа Петрі

Назва	Позначення	Опис
Перехід		Позначає подію

Назва	Позначення	Опис
Позиція	Позначає умову	
Дуга		Позначає зв'язки між подіями та умовами
Маркер(один)		Позначає виконання (або не виконання) умови
Багато маркерів	12	Позначає багатократне виконання умови
Багато дуг	16	Позначає велику кількість зв'язків

2.1 Вхідні параметри

Розглянемо параметри переходів моделі у таблиці 2.2. Нехай маємо відрізок [M,N] , що позначає діапазон можливої кілкості сторінок, що завдання може займати. Нехай $K\!\in\![M,N]$, де K — кількість сторінок, що займає довільне завдання.

Таблиця 2.2 Параметри переходів

Назва переходу	Часова затримка	Значення пріоритету	Значення ймовірності
			запуску
generate_task	Poisson(5.0)	0	1

generate_task_K_pages	0	0	$\frac{1}{M-N}$
fail_allocate_task_K_pages	0	-1	1
try_allocate_task_K_pages	0	0	1
wait_allocate_task_20_page	0	0	1
S			
process_task_K_pages	Norm(10, 3)	N-K	1
generate_io_request	Unif(2, 10)	0	1
create_io_task_20_pages	0	N-K	1
take_up_disk_task_K_pages	0	N-K	1
generate_interrupt_K_pages	Exp(6)	0	1
place_disk_K_pages	Unif(0, 0.075)	N-K	1
io_channel_transfer_task_K	Unif(0.0025,	N-K	1
_pages	0.0275)		

Розглянемо параметри позицій у таблиці 2.3.

Таблиця 2.3 Параметри позицій

Назва позиції	Початкове значення
generator_task	1
generated_task	0
task_K_pages	0
fail_allocate_token_task_K_pages	0
allocated_task_K_pages	0
total_wait_allocate_task	0
pages	131

Назва позиції	Початкове значення
generator_io_request	1
processors	2
generated_request	0
io_task_K_pages	0
generator_interrupt	1
generated_interrupt	0
busy_disk_task_K_pages	0
free_disks	4
disk_placed_task_K_pages	0
is_disk_placement_available	1
finished_tasks_task_K_pages	0
finished_tasks	0

2.2 Вихідні параметри

У даному розділі будуть обраховуватися вихідіні параметри моделі.

2.2.1 Часи виконання завдання в системі та очікування виділення пам'яті

Визначимо середній час та середнє квадратичне відхилення.

2.2.1.1 Середнє значення

Визначимо середній час за формулою (2.1):

$$\Delta t = \frac{\sum_{n=0}^{N-1} \left[(t_{\text{exit},n} - t_{\text{enter},n}) (t_{\text{exit},n+1} - t_{\text{exit},n}) \right]}{\sum_{n=0}^{N-1} \left[t_{\text{exit},n+1} - t_{\text{exit},n} \right]},$$
(2.1)

де n — індекс елемента множин $M_{\rm enter}=(t_0,t_1,...,t_n)$ та $M_{\rm exit}=(t_0,t_1,...,t_n)$, що складаються з точок часу входу та виходу завдання з обробки в системі (очікування виділення пам'яті) відповідно;

N — розмір множин $M_{
m enter}$ та $M_{
m exit}$.

2.2.1.2 Середнє квадратичне відхилення

Визначимо середнє квадратичне відхилення за формулою (2.2):

$$\delta = \sqrt{\frac{\sum_{n=0}^{N-1} \left[\left(\left[t_{\text{exit},n} - t_{\text{enter},n} \right] - \Delta t \right)^{2} \left(t_{\text{exit},n+1} - t_{\text{exit},n} \right) \right]}{\sum_{n=0}^{N-1} \left[t_{\text{exit},n+1} - t_{\text{exit},n} \right]}},$$
(2.2)

2.2.2 Кількості завдань в очікуванні пам'яті та зайнятих сторінок

2.2.2.1 Середнє значення

Середня кількість завдань в очікуванні та зайнятих сторінок розраховується однаково за формулою (2.3):

$$p_{average} = \frac{\sum_{n=0}^{N-1} [(p_n)(t_{n+1} - t_n)]}{\sum_{n=0}^{N-1} [t_{n+1} - t_n]},$$
(2.3)

де n — індекс елемента з множини $M\!=\!((p_0,t_0),(p_1,t_1),\ldots,(p_n,t_n))$, що позначає пари зі значенням позиції p в момент часу t ;

N — розмір множини M.

2.2.2.2 Середнє квадратичне відхилення

Середнє квадрадратичне відхилення кількості завдань в очікуванні та зайнятих сторінок розраховується однаково за формулою (2.4):

$$\delta = \sqrt{\frac{\sum_{n=0}^{N-1} \left[(p_n - p_{\text{average}})^2 (t_{n+1} - t_n) \right]}{\sum_{n=0}^{N-1} \left[t_{n+1} - t_n \right]}},$$
(2.4)

2.2.3 Завантаження процесорів, дисків та каналу передачі

Завантаження в момент часу t процесорів, дисків та каналу передачі обчислюється аналогіно за формулою (2.5).

$$l = \frac{\sum_{n=N_{\min}}^{N_{\max}} [t_{\text{service}}[n]]}{t},$$
(2.5)

де n — це елемент N, що складається з натуральних чисел $[N_{\min}, N_{\min}]$, які позначають кількість сторінок, яку може займати завдання;

 $t_{
m service}$ — це відображення N othe M, де $M = \{t_k\}_{k=0}^{N_{
m max}-N_{
m min}}$, що позначає сукупність переходів, які стосуються або процесорів, або дисків, або каналу передачі.

Однак за умови, що K — кількість пристроїв, що обслуговують, — більша одиниці, і кожен з них може працювати увесь час, то навантаження буде в межах від [0,K].

Тому розрахуємо усереднене навантаження для одного процесора (диска) за формулою (2.6):

$$\bar{l} = \frac{l}{K} \tag{2.6}$$

2.2.3.1 Середнє значення

Знаючи навантаження в момент часу t , можемо обчислити середнє значення навантаження за формулою (2.7):

$$l_{average} = \frac{\sum_{n=0}^{N-1} [(\overline{l}_n)(t_{n+1} - t_n)]}{\sum_{n=0}^{N-1} [t_{n+1} - t_n]},$$
(2.7)

де n — індекс елемента з множини $M = ((l_0,t_0),(l_1,t_1),...,(l_n,t_n))$, що позначає пари зі значенням навантаження l в момент часу t ;

N — розмір множини M.

2.2.3.2 Середнє квадратичне відхилення

Середнє квадрадратичне відхилення розраховується за формулою (2.8):

$$\delta = \sqrt{\frac{\sum_{n=0}^{N-1} \left[(\bar{l}_n - \bar{l}_{average})^2 (t_{n+1} - t_n) \right]}{\sum_{n=0}^{N-1} \left[t_{n+1} - t_n \right]}},$$
(2.8)

2.3 Мережа Петрі

На рисунку 2.1 можна розглянути діаграму мережі Петрі. Для зручності вона побудована лише з двома типами завдань. Це робить її менш нагромадженою, оскільки частини схеми для кожного завдання є однаковими.

Основними компонентами мережі є генератор завдань, оперативна пам'ять, процесори, генератор запитів введення-виведення, диски, канал передачі даних та блок завершення роботи.

Генератор завдань представлений позицією generated_task, яка містить токен, що активує перехід generate_task. Цей перехід генерує нові завдання з пуассонівським розподілом часу. Згенеровані завдання додаються в позиції, які відповідають їхньому обсягу пам'яті, наприклад, task_20_pages для завдань із потребою у 20 сторінок.

Оперативна пам'ять представлена позицією pages, яка відображає загальну кількість доступних сторінок. Переходи try_allocate і wait_allocate перевіряють наявність вільної пам'яті та виділяють її для завдань відповідного обсягу. У разі успішного виділення токени передаються до позиції allocated, а у разі невдачі – у fail_allocate_token.

Рисунок 2.1 — Мережа Петрі з двома типами завдань

Процесори моделюються позицією processors, яка визначає кількість доступних процесорів. Переходи process відповідають за обробку завдань із використанням нормального розподілу часу.

Генератор запитів введення-виведення моделюється позицією generated_io_request, яка активує перехід create_io. Цей перехід генерує запити введення-виведення для завдань, які були оброблені процесорами.

Диски представлені позицією free_disks, яка відображає кількість доступних дисків (4 диски). Перехід place_disk імітує позиціонування головки зчитування з використанням рівномірного розподілу часу. Після виконання цієї операції токени передаються через канал введення-виведення.

Канал введення-виведення моделюється позицією is_disk_placement_available, яка визначає готовність каналу до передачі даних. Перехід io_channel_transfer відповідає за передачу даних із використанням рівномірного розподілу часу. Завершення роботи моделюється позицією finished_tasks, яка накопичує виконані завдання. Це дозволяє аналізувати продуктивність системи та обчислювати необхідні показники.

2.4 Висновки до розділу

У цьому розділі було створено формалізовану модель багатопроцесорної обчислювальної системи, яка дозволяє математично описати її компоненти та взаємодії. Модель побудована з використанням мережі Петрі, що забезпечує можливість детального моделювання процесів генерації, обробки завдань, запитів введення-виведення та управління ресурсами. Було визначено всі необхідні вхідні параметри, їхні числові характеристики, а також формули для обчислення вихідних параметрів. Створена модель є основою для розробки алгоритму імітації та проведення експериментального дослідження роботи системи.

3 АЛГОРИТМІЗАЦІЯ МОДЕЛІ ТА ЇЇ РЕАЛІЗАЦІЯ

Цей розділ присвячений алгоритмізації та програмній реалізації імітаційної моделі багатопроцесорної обчислювальної системи, створеної за допомогою мережі Петрі. Метою є опис роботи стандартного алгоритму моделювання, наданого бібліотекою PetriObjModelPaint [3], а також внесених модифікацій, які забезпечують відповідність алгоритму вимогам поставленої задачі. Розділ містить опис основних етапів алгоритму, реалізацію додаткового функціоналу, оптимізацію коду під конкретну задачу, а також протокол подій, що фіксуються під час моделювання. Наприкінці представлено результати верифікації моделі, що підтверджують коректність її реалізації.

3.1 Опис алгоритму імітації мережі Петрі

Алгоритм імітації мережі Петрі базується на послідовному просуванні моделі в часі та обробці подій, які відбуваються у системі. Основна мета алгоритму — забезпечити виконання правил роботи мережі Петрі, таких як спрацьовування переходів за наявності необхідних умов та обчислення статистичних характеристик позицій і переходів.

Алгоритм визначає мінімальний час запуску переходу (eventMin) і просуває глобальний час моделі до цього моменту. Це забезпечує обробку подій у правильному хронологічному порядку.

На кожному етапі перевіряються активні переходи. Якщо перехід може спрацювати (умови виконуються), він захоплює необхідні маркери з пов'язаних позицій. Конфлікти між переходами вирішуються за пріоритетами або ймовірностями.

Після запуску перехід розподіляє маркери по вихідних позиціях. Якщо перехід має накопичувальний буфер, процес виходу маркерів може повторюватися, поки буфер не стане порожнім.

Алгоритм збирає статистичні дані для кожної позиції і переходу: середню кількість маркерів у позиціях і середній час обробки переходів.

Якщо кілька переходів можуть спрацювати одночасно, вибір здійснюється на основі пріоритетів або ймовірностей. Це забезпечує гнучкість і відповідність алгоритму до стохастичної природи системи.

Розглянемо псевдокод алгоритму нижче. Функція до виконує ітерації, поки поточний час не досягне часу моделювання. На кожній ітерації обчислюються статистичні показники, відбувається перехід до часу наступної події, а також виконується обробка поточного переходу.

Функція іприт шукає активні переходи, які можуть спрацювати. Виконує вирішення конфліктів між переходами, які мають однаковий пріоритет.

Функція output Обробляє спрацьовування переходів і розподіл маркерів у відповідних позиціях. Виконує додаткові перевірки для переходів із накопичувальними буферами, щоб повністю обробити всі події, які можуть відбутися в поточний момент часу.

```
1 def go():
2
     # Initialize simulation time and current time
3
     set_simulation_time(time_modelling)
4
     set_current_time(0)
5
     # Initialize transitions and positions
     input() # Activate initial transitions
7
     # Main simulation loop
8
     while current time < simulation time:
9
        # Update statistics for the current time period
10
        do statistics()
11
        # Move to the next event's time
12
        set current time(get time min())
13
        # Log event details (if logging is enabled)
14
        if logging_enabled:
           log("Time:", current_time, "; Event:", event_min.get_name())
15
16
17
        # Process the event and its effects
18
        output()
19
        # Reactivate transitions after event execution
```

```
20
        input()
21
22 def input():
      # Find all active transitions
23
24
      active_transitions = find_active_transitions()
25
      # If no transitions are active and all buffers are empty, stop further processing
26
      if active_transitions is empty and all_buffers_are_empty():
27
        set_time_min(infinity)
28
      else:
29
        # While there are active transitions
30
        while active transitions is not empty:
31
           # Resolve conflicts between active transitions
32
           selected transition = resolve conflicts(active transitions)
33
           # Activate the selected transition
34
           selected_transition.act_in(listP, current_time)
35
           # Update the list of active transitions
36
           active_transitions = find_active_transitions()
37
        # Update the minimum time for the next event
38
        find_event_min()
39
40 def output():
      # Ensure that the simulation time has not been exceeded
41
42
      if current time <= simulation time:
        # Execute the event with the minimum time
43
44
        event_min.act_out(listP, current_time)
45
46
        # Handle remaining events in the transition's buffer
        while event_min.has_buffer():
47
48
           event_min.update_event_time()
49
           if event_min.get_min_time() == current_time:
50
             event_min.act_out(listP, current_time)
51
           else:
52
             break
53
        # Check other transitions for events occurring at the current time
```

```
54
        for transition in listT:
55
           if transition.has_buffer() and transition.get_min_time() == current_time:
56
             transition.act out(listP, current time)
57
             # Process additional events in the buffer
58
              while transition.has buffer():
59
                transition.update event time()
60
                if transition.get_min_time() == current_time:
61
                   transition.act_out(listP, current_time)
                else:
62
63
                   break
```

3.2 Модифікації алгоритму

У процесі реалізації моделі були внесені зміни до базового алгоритму, щоб адаптувати його до специфіки поставленої задачі. Основні модифікації стосувалися покращення роботи мережі Петрі та збору додаткової інформації для аналізу. Зміни можна поділити на два напрямки: функціональні вдосконалення алгоритму та зручність роботи з мережами.

3.2.1 Додавання розподілу Пуассона для генерації подій

Для точного моделювання вхідних потоків завдань у систему було реалізовано підтримку розподілу Пуассона. Це дозволило описати інтенсивність надходження завдань у вигляді стохастичного процесу, що відповідає заданій середній інтенсивності. Реалізація виконана шляхом додавання відповідної функції до генератора подій у мережі.

```
1 public static double poisson(final double timeMean) {
2  PoissonDistribution poisson = new PoissonDistribution(timeMean);
3  return poisson.sample();
4 }
```

3.2.2 Вдосконалення роботи з NetLibrary

Для зручності роботи з мережами Петрі було додано клас NetLibraryManager, який дозволяє динамічно додавати методи в бібліотеку NetLibrary. Завдяки цьому можна легко інтегрувати нові мережі в графічний інтерфейс, використовувати рефлексію для виклику методів, і забезпечувати їхню коректність під час компіляції. Також додано перевірку методів генерації мережі за допомогою анотацій NetLibraryMethod та NetLibraryMethodProcessor.

```
1 @NetLibraryMethod
2 public static PetriNet createNet() throws ExceptionInvalidTimeDelay {
3  final CourseWorkNet net = new CourseWorkNet();
4  return net.net;
5 }
```

3.2.3 Покращення графічного інтерфейсу

Був виправлений метод generateGraphNetBySimpleNet, що забезпечує коректне графічне відображення мережі Петрі. Помилка полягала у тому, що оскільки не було перевірки на включення переходів та позицій в контейнери inTrans та inPlaces, то дублікати додавалися у графічне відображення мережі.

```
1 if (
2
     !inTrans.contains(tran) // Нова перевірка
     && tran.getNumber() == outArc.getNumT()
4){
     inTrans.add(tran);
6 }
7 // ...
8 if (
     !inPlaces.contains(place) // Нова перевірка
9
     && place.getNumber() == inArc.getNumP()
10
11){
12
     inPlaces.add(place);
13 }
```

3.2.4 Клас CourseWorkPetriSim

Клас CourseWorkPetriSim реалізує механізм імітації роботи мережі Петрі, дозволяючи відстежувати динаміку її роботи протягом заданого часу

моделювання. Він включає методи для управління часом, обробки подій, вирішення конфліктів між переходами та збору статистичних даних.

3.2.4.1 Опис атрибутів

Одним з ключових атрибутів є timeState - об'єкт класу StateTime, який зберігає інформацію про поточний час моделювання (currentTime) та час завершення моделювання (simulationTime). Він є центральним для управління часом у моделі, дозволяючи просувати глобальний час до наступної події.

Атрибут timeMin містить мінімальний час спрацювання серед усіх переходів у мережі. Цей атрибут оновлюється під час виконання моделі, щоб визначити найближчу подію для обробки.

У класі також присутній масив listP, що містить усі позиції мережі Петрі (PetriP). Кожен елемент описує стан позиції, зокрема кількість маркерів у ній. Цей масив використовується для перевірки умов активації переходів і переміщ ення маркерів.

Важливим компонентом є масив listT, що містить усі переходи мережі Петрі (PetriT). У ньому зберігається інформація про затримки, умови спрацювання, ймовірності, пріоритети, буфери та час наступного спрацювання кожного переходу.

Останнім ключовим атрибутом є eventMin - об'єкт типу PetriT, що представляє перехід із мінімальним часом спрацювання. Цей атрибут визначає, який перехід буде оброблено наступним.

3.2.4.2 Опис методів

Конструктор класу CourseWorkPetriSim приймає об'єкт PetriNet як вхідний параметр. Під час ініціалізації встановлюються початкові значення часу моделювання, список позицій (listP) та список переходів (listT), які беруться з переданої мережі. Також викликається метод getEventMin(), який визначає перший перехід із мінімальним часом затримки. Це дозволяє налаштувати початковий стан моделі для початку імітації.

Основний метод класу, до, виконує імітацію протягом заданого часу моделювання. Він приймає параметр timeModelling, що визначає загальну тривалість симуляції, та trackStats — функцію, яка дозволяє збирати статистичні дані під час виконання. Метод ініціалізує початковий час моделювання, потім ітеративно викликає методи іприt і output для обробки подій. В кожному кроці часу оновлюється поточний час, імітуються активація та завершення переходів, а також збирається інформація для подальшого аналізу.

Метод eventMin використовується для визначення переходу з мінімальним часом затримки серед усіх доступних. Він переглядає список переходів і знаходить той, що має найменший час. Цей метод також оновлює значення timeMin і визначає поточний активний перехід eventMin, який буде виконуватись наступним.

Метод findActiveT відповідає за пошук усіх активних переходів у мережі. Він перевіряє кожен перехід на відповідність умовам, що визначені у зв'язках між позиціями, та додає його до списку активних, якщо ймовірність його спрацьовування більше нуля. У випадку, якщо кілька переходів одночасно задовольняють умови, вони сортуються за пріоритетом.

Обробка конфліктів між активними переходами здійснюється за допомогою методу doConflict. У разі, якщо кілька переходів мають однаковий пріоритет, вибір між ними здійснюється випадковим чином із урахуванням ймовірностей, визначених для кожного переходу. Цей механізм гарантує, що імітація враховує стохастичну природу процесів у системі.

Методи input та output відповідають за обробку подій у мережі. Метод input ідентифікує активні переходи та виконує їх активацію, якщо умови дозволяють це зробити. Він також визначає, коли немає жодного активного переходу або всі буфери переходів порожні, встановлюючи час моделювання в максимальне значення. Метод output обробляє завершення переходів і переміщення маркерів між позиціями, а також виконує спрацьовування переходів, якщо в їх буферах залишаються маркери.

Методи для отримання та встановлення часу, такі як getTimeMin, setTimeCurr, getSimulationTime, та setSimulationTime, забезпечують точний контроль за поточним часом моделювання та дозволяють синхронізувати всі компоненти мережі.

3.2.5 Клас CourseWorkNet. Протокол подій

Клас CourseWorkNet розроблений для аналізу та моделювання роботи багатопроцесорної обчислювальної системи за допомогою мережі Петрі. Він є обгорткою для створення та налаштування компонентів мережі, забезпечуючи зручний інтерфейс для опису та управління моделлю.

3.2.5.1 Опис атрибутів

Позиція generated_task зберігає кількість згенерованих завдань у системі. Ця позиція використовується для активізації переходів, що створюють нові завдання. Її основне призначення полягає у фіксації вхідного потоку завдань до системи.

Позиція generated_io_request відповідає за генерацію запитів введеннявиведення для завдань після їх обробки. Її призначення полягає в забезпеченні інтеграції завдань із підсистемою дисків.

Позиція generated_interrupt використовується для моделювання переривань, які запускають запити до дисків. Її призначення - імітувати реальні події введення-виведення у багатозадачній системі.

Позиція processors відображає кількість вільних процесорів у системі, яка початково становить два. Вона використовується для визначення доступності процесорів для обробки завдань.

Позиція pages відображає кількість доступних сторінок пам'яті в системі, початково маючи 131 сторінку. Її призначення полягає у визначенні можливості виділення пам'яті для завдань.

Позиція free_disks відображає кількість доступних дисків, яких початково чотири. Вона забезпечує розподіл завдань між доступними дисками.

Позиція total_wait_allocate_task підраховує загальний час очікування завдань на виділення пам'яті. Вона використовується для аналізу затримок у системі.

Позиція finished_tasks зберігає кількість завершених завдань. Її призначення полягає у відображенні загальної продуктивності системи.

Позиція is_disk_placement_available вказує на доступність каналу введення-виведення для передачі даних. Вона контролює одночасний доступ до каналу.

Перехід generate генерує нові завдання у системі із заданими параметрами, такими як обсяг пам'яті. Його призначення полягає у забезпеченні створення потоку завдань.

Перехід try_allocate перевіряє наявність вільної пам'яті для завдань. У разі успіху пам'ять виділяється. Його призначення - запускати обробку завдань, які отримали доступ до пам'яті.

Перехід fail_allocate відображає спробу виділення пам'яті, яка завершилась невдачею. Його призначення полягає у поверненні завдання у чергу для подальших спроб.

Перехід wait_allocate переводить завдання з черги у стан обробки після виділення пам'яті. Цей перехід забезпечує повторне надання пам'яті для завдань.

Перехід process імітує обробку завдань процесорами із використанням нормального розподілу часу. Це основний перехід для виконання завдань.

Перехід create_io створює запити введення-виведення для завдань, які були оброблені. Його призначення полягає в інтеграції із підсистемою дисків.

Перехід take_up_disks захоплює доступний диск для обробки запиту. Він контролює завантаження дисків.

Перехід place_disk імітує позиціонування головки диска перед операцією. Його призначення - затримувати виконання запиту для моделювання реального часу доступу. Перехід io_channel_transfer імітує передачу даних через канал введеннявиведення. Цей перехід завершує обробку запитів введення-виведення.

3.2.5.2 Опис TaskObject

Об'єкт TaskObject представляє завдання з конкретним обсягом пам'яті (від 20 до 60 сторінок) та визначеним життєвим циклом у системі. Цей об'єкт містить низку важливих полів, що керують його функціонуванням у системі.

Поле generate ϵ генератором завдання цього типу. Поле task явля ϵ собою позицію, що зберіга ϵ завдання. Try_allocate ϵ переходом для перевірки доступності пам'яті, тоді як поле allocated - це позиція, яка фіксу ϵ завдання, що отримали пам'ять.

Fail_allocate є переходом, що фіксує невдалі спроби виділення пам'яті. Позиція fail_allocate_token призначена для невдалих завдань, які очікують повторного виділення пам'яті. Wait_allocate представляє собою перехід для повторного виділення пам'яті.

Process є переходом, що імітує обробку завдання, а create_io - це перехід, який створює запити введення-виведення. Take_up_disks виступає переходом для захоплення дисків завданням.

Поле busy_disk є позицією, яка показує, що диск зайнятий завданням. Place_disk представляє перехід, що імітує позиціонування диска, а disk_placed - це позиція, яка фіксує успішне позиціонування диска.

Io_channel_transfer ϵ переходом, що забезпечу ϵ передачу даних, a finish - це позиція, яка зберіга ϵ завершені завдання.

Об'єкти TaskObject використовуються для відстеження стану кожного типу завдань окремо, включаючи їх генерацію, обробку, введення-виведення та завершення. Завдяки цьому можна проводити детальний аналіз роботи системи та оптимізувати її параметри.

3.2.5.3 Опис методів

Конструктор CourseWorkNet є основним конструктором класу, який створює та ініціалізує всі компоненти мережі Петрі. Він створює генератори

завдань, запитів введення-виведення та переривань, позиції для обробки завдань, пам'яті, процесорів, дисків, а також переходи для роботи з ресурсами. Додаткова логіка включає генерацію завдань з різними параметрами, розрахунок ймовірностей для кожного типу завдання та додавання дуг між позиціями та переходами.

Метод create_task_generator створює генератор завдань, який додає нові завдання до системи відповідно до розподілу Пуассона. Він приймає параметри d_P (список позицій), d_T (список переходів), d_In (список вхідних дуг) та d_Out (список вихідних дуг). В результаті повертає позицію generated_task, яка накопичує створені завдання.

Метод create_processors створює позицію processors, яка відображає кількість доступних процесорів. Він приймає єдиний параметр d_P (список позицій) та повертає позицію processors.

Метод create_pages створює позицію pages, що відображає кількість доступних сторінок пам'яті. Приймає параметр d_P (список позицій) та повертає позицію pages.

Метод create_free_disks створює позицію free_disks, яка відповідає кількості доступних дисків. Приймає параметр d_P (список позицій) та повертає позицію free_disks.

Метод create_io_request_generator створює генератор запитів введеннявиведення з рівномірним розподілом часу. Він приймає параметри d_P (список позицій), d_T (список переходів), d_In (список вхідних дуг) та d_Out (список вихідних дуг). В результаті повертає позицію generated_io_request.

Метод create_interrupt_generator створює генератор переривань із експоненційним розподілом часу. Він приймає параметри d_P (список позицій), d_T (список переходів), d_In (список вхідних дуг) та d_Out (список вихідних дуг). В результаті повертає позицію generated_interrupt.

Метод generate_task_objects створює об'єкти завдань TaskObject для кожного обсягу пам'яті між pages_start та pages_end із заданою ймовірністю. Він приймає параметри pages_start (мінімальний обсяг пам'яті завдання), pages_end

(максимальний обсяг пам'яті завдання) та probability (ймовірність створення завдання кожного типу). В результаті додає об'єкти TaskObject до списку taskObjects.

3.3 Верифікація

У цьому підрозділі опишемо проведення верифікації моделі, класи для збору аналізу даних, приклади коду. Покажемо, що модель досягає сталих повторюваних середніх значень.

3.3.1 Збір даних. Клас GatherDataCourseWorkNet

Клас GatherDataCourseWorkNet призначений для верифікації моделі та збору статистичних даних. Він дозволяє багатократно запускати імітаційну модель, збирати характеристики (завантаження ресурсів, час виконання завдань, використання пам'яті) та записувати результати у файли для аналізу.

Основні компоненти:

- DiffTimePoint зберігає часові точки та різниці між ними для аналізу часу перебування завдань у системі та очікування ресурсів;
- PropertyStats фіксує ключові характеристики: завантаження ресурсів, часи моделювання, використання пам'яті, кількість завдань в очікуванні.
 Основні методи:
- collectStats проводить один прогін моделі, збираючи дані про її поведінку;
- writeStats забезпечує серію прогонів, результати яких записуються у файли (commonProps.csv, timeInSystem.csv, timeWaitAllocate.csv);
- sortDiffTimePointArray сортує часові дані;

VerifyModel — верифікує модель за кількома наборами параметрів, записуючи результати в окремі директорії.

Загалом час моделювання складає 800000 одиниць. Кількість прогонів 5 для кожного набору параметрів. Вхідні параметри описані в таблиці A.1.

```
1 static class VerifyModel {
2
     public static void main(String[] args) throws IOException {
3
       final int[] pagesNums
                                = new int[] { 131, 131, 200, 400, 700,
                                                                              1000, 1000};
4
       final int[] processorsNums = new int[] { 2,
                                                      2,
                                                           4,
                                                                5,
                                                                     12,
                                                                           40,
                                                                                 30};
5
       final int[] diskNums
                               = new int[] { 4,
                                                   4,
                                                         5,
                                                              11,
                                                                    12.
                                                                          8,
                                                                              30};
6
       final int[] pagesStarts = new int[] { 20,
                                                   20,
                                                         30,
                                                               70,
                                                                     30,
                                                                          60,
                                                                                70};
7
                                                                           100,
       final int[] pagesEnds
                               = new int[] { 60,
                                                    60,
                                                          40,
                                                                100,
                                                                      70,
                                                                                  80};
                                                                      8,
8
       final int[] tasksTimeMeans = new int[] { 5,
                                                      7,
                                                           8,
                                                                 8,
                                                                           9,
                                                                                15};
9
        for (int i = 0; i < pagesEnds.length; i++) {
10
11
          final int pagesNum = pagesNums[i];
12
          final int processorsNum = processorsNums[i];
13
          final int diskNum = diskNums[i];
14
          final int pagesStarts[i];
15
          final int pagesEnd = pagesEnds[i]:
16
          final int tasksTimeMean = tasksTimeMeans[i];
17
18
          String dirName = String.format("%d_%d_%d_%d_%d_%d", pagesNum,
processorsNum, diskNum, pagesStart, pagesEnd, tasksTimeMean);
19
          File directory = new File(dirName);
20
          if(!directory.exists()) {
21
            directory.mkdir();
22
          }
23
          dirName += "/":
24
25
          writeStats(dirName + "commonProps.csv", dirName + "timeInSystem.csv", dirName +
"timeWaitAllocate.csv", 5, 800000, pagesNum, processorsNum, diskNum, pagesStart, pagesEnd,
tasksTimeMean);
26
        }
27
     }
28 }
```

Файл commonProps.csv містить загальні характеристики моделі для кожної часової точки симуляції в кожному запуску. Формат даних:

• runNumber – номер прогону моделювання;

- timePoint момент часу в процесі моделювання;
- diskLoad завантаження дисків у відсотках (розраховується як середнє завантаження дисків у момент timePoint);
- ioChannelLoad завантаження каналу передачі даних (у відсотках);
- processorsLoad завантаження процесорів (у відсотках);
- totalWaitAllocate кількість завдань, що очікують виділення ресурсів;
- useOfPage кількість сторінок пам'яті, що використовується.

Файл timeInSystem.csv файл містить дані про час перебування завдань у системі. Формат даних:

- runNumber номер прогону моделювання;
- timePoint момент часу виходу завдання із системи;
- timeInSystem час, проведений завданням у системі (від моменту генерації до завершення всіх операцій).

Файл timeWaitAllocate.csv зберігає інформацію про час очікування завдань у черзі на виділення ресурсів. Формат даних:

- runNumber номер прогону моделювання;
- timePoint момент часу, коли завдання завершило очікування ресурсу;
- timeWaitAllocate час, проведений завданням у черзі на виділення ресурсів.

3.3.2 Обробка даних

Для обробки даних застосуємо мову програмування Python [4]. Python пропонує широкий спектр підходів до аналізу та обробки даних, які охоплюють різні аспекти роботи з інформацією: від попередньої обробки до візуалізації та машинного навчання. Для того щоб обробити дані, застосуємо сторонні бібліотеки Pandas [5] та NumPy [6].

Pandas — це бібліотека для обробки та аналізу структурованих даних. Вона забезпечує зручну роботу з двома основними структурами: DataFrame (таблиця з рядками та стовпцями) і Series (одновимірний масив даних). Pandas дозволяє легко завантажувати дані з різних джерел (CSV, Excel, SQL, JSON),

очищати їх, виконувати групування, фільтрацію, обчислювати статистичні характеристики та працювати з часовими рядами.

NumPy — це бібліотека для ефективної роботи з числовими даними. Її основна структура — пdarray (мультивимірний масив), який забезпечує швидкі математичні операції над великими масивами. NumPy також пропонує інструменти для роботи з лінійною алгеброю, генерації випадкових чисел і інтеграції з іншими бібліотеками для обчислень.

Нижче опишемо функції розрахунку середнього значення та середнього квадратичного відхилення відповідно до пункту 2.2.

```
1 import numpy as np
2 import pandas as pd
3
4 def calculate_mean(time_points: pd.Series, values: pd.Series) -> float:
     prev_time_point = time_points.iloc[0]
6
     delay_sum = 0.0
7
     value\_sum = 0.0
8
9
     for time_point, value in zip(time_points.iloc[1:], values):
10
        delay = time_point - prev_time_point
11
        prev time point = time point
12
        delay_sum += delay
13
        value sum += value * delay
14
15
     try:
16
        res = value_sum / delay_sum
17
        return res
18
     except ZeroDivisionError:
19
        return 0
20
21 def calculate std dev(time points: pd.Series, values: pd.Series, mean: float) -> float:
22
     prev_time_point = time_points.iloc[0]
23
     delay_sum = 0.0
24
     value\_sum = 0.0
```

```
25
26
     for time_point, value in zip(time_points.iloc[1:], values):
27
        delay = time point - prev time point
28
        prev_time_point = time_point
29
        delay sum += delay
30
        value sum += ((value - mean) ** 2) * delay
31
32
     try:
33
        res = np.sqrt(value_sum / delay_sum)
34
        return res
35
     except ZeroDivisionError:
36
        return 0
```

Нижче наведено використання цих функцій під час обчислення статистичних характеристик. Результати наведені у таблицях А.2 та А.3.

```
1 from array import array
2
3 @attr.frozen
4 class MeanStddevStats:
5
     diskLoad_mean: array[float] = attr.field(init=False, factory=lambda: array('d'))
     diskLoad_std_dev: array[float] = attr.field(init=False, factory=lambda: array('d'))
6
7
     ioChannelLoad_mean: array[float] = attr.field(init=False, factory=lambda: array('d'))
8
     ioChannelLoad_std_dev: array[float] = attr.field(init=False, factory=lambda: array('d'))
9
     processorsLoad_mean: array[float] = attr.field(init=False, factory=lambda: array('d'))
10
      processorsLoad std dev: array[float] = attr.field(init=False, factory=lambda: array('d'))
      totalWaitAllocate_mean: array[float] = attr.field(init=False, factory=lambda: array('d'))
11
12
      totalWaitAllocate_std_dev: array[float] = attr.field(init=False, factory=lambda: array('d'))
13
      useOfPage_mean: array[float] = attr.field(init=False, factory=lambda: array('d'))
14
      useOfPage_std_dev: array[float] = attr.field(init=False, factory=lambda: array('d'))
15
      timeInSystem_mean: array[float] = attr.field(init=False, factory=lambda: array('d'))
16
      timeInSystem_std_dev: array[float] = attr.field(init=False, factory=lambda: array('d'))
17
      timeWaitAllocate_mean: array[float] = attr.field(init=False, factory=lambda: array('d'))
18
      timeWaitAllocate std dev: array[float] = attr.field(init=False, factory=lambda: array('d'))
19
20 mean stddev stats list: list[pd.DataFrame] = []
```

```
21
22 for index, params_data in enumerate(datas):
23
     mean stddev stats = MeanStddevStats()
24
25
     for run num, group in params data.common props.groupby('runNumber'):
26
        # Calculate means and standard deviations
27
        diskLoad_mean = calculate_mean(group['timePoint'], group['diskLoad'])
28
        diskLoad_std_dev = calculate_std_dev(group['timePoint'], group['diskLoad'],
diskLoad_mean)
29
30
        ioChannelLoad_mean = calculate_mean(group['timePoint'], group['ioChannelLoad'])
31
        ioChannelLoad_std_dev = calculate_std_dev(group['timePoint'], group['ioChannelLoad'],
ioChannelLoad mean)
32
33
        processorsLoad_mean = calculate_mean(group['timePoint'], group['processorsLoad'])
34
        processorsLoad_std_dev = calculate_std_dev(group['timePoint'], group['processorsLoad'],
processorsLoad_mean)
35
36
        totalWaitAllocate_mean = calculate_mean(group['timePoint'], group['totalWaitAllocate'])
37
        totalWaitAllocate_std_dev = calculate_std_dev(group['timePoint'],
group['totalWaitAllocate'], totalWaitAllocate mean)
38
39
        useOfPage mean = calculate mean(group['timePoint'], group['useOfPage'])
40
        useOfPage_std_dev = calculate_std_dev(group['timePoint'], group['useOfPage'],
useOfPage_mean)
41
42
        mean_stddev_stats.diskLoad_mean.append(diskLoad_mean)
43
        mean_stddev_stats.diskLoad_std_dev.append(diskLoad_std_dev)
44
        mean_stddev_stats.ioChannelLoad_mean.append(ioChannelLoad_mean)
45
46
        mean stddev stats.ioChannelLoad std dev.append(ioChannelLoad std dev)
47
48
        mean_stddev_stats.processorsLoad_mean.append(processorsLoad_mean)
49
        mean stddev stats.processorsLoad std dev.append(processorsLoad std dev)
```

```
50
51
        mean_stddev_stats.totalWaitAllocate_mean.append(totalWaitAllocate_mean)
52
        mean stddev stats.totalWaitAllocate std dev.append(totalWaitAllocate std dev)
53
54
        mean stddev stats.useOfPage mean.append(useOfPage mean)
55
        mean stddev stats.useOfPage std dev.append(useOfPage std dev)
56
57
     for run_num, group in params_data.time_in_system.groupby('runNumber'):
        timeInSystem_mean = calculate_mean(group['timePoint'], group['timeInSystem'])
58
59
        timeInSystem_std_dev = calculate_std_dev(group['timePoint'], group['timeInSystem'],
timeInSystem mean)
60
        mean_stddev_stats.timeInSystem_mean.append(timeInSystem_mean)
        mean stddev stats.timeInSystem std dev.append(timeInSystem std dev)
61
62
63
     for run num, group in params data.time wait allocate.groupby('runNumber'):
64
        timeWaitAllocate_mean = calculate_mean(group['timePoint'], group['timeWaitAllocate'])
        timeWaitAllocate_std_dev = calculate_std_dev(group['timePoint'],
65
group['timeWaitAllocate'], timeWaitAllocate_mean)
66
        mean stddev stats.timeWaitAllocate mean.append(timeWaitAllocate mean)
67
        mean_stddev_stats.timeWaitAllocate_std_dev.append(timeWaitAllocate_std_dev)
68
69
     dt = pd.DataFrame(attr.asdict(mean_stddev_stats))
70
     dt['params\ index'] = index
     mean stddev stats list.append(dt)
```

Нижче розрахуємо глобальні середні значення та квадратичні відхилення, а також відсоткові відхилення значень кожного прогону відносно них. Результати можна розглянути в таблицях А.4, А.5, А.6, А.7 відповідно.

```
for i, mean_stddev_stats in mean_stddev_stats_data_frame.groupby('params_index'):
means = mean_stddev_stats.mean()
global_mean_stddev_list.append(means)
mean_stddev_stats_relative_mean = ((mean_stddev_stats - means).abs() * 100) / means
mean_stddev_stats_relative_mean.fillna(0, inplace=True)
mean_stddev_stats_relative_mean['params_index'] = i
```

3.3.3 Аналіз даних

Після збору та обробки даних перейдемо до їхнього аналізу.

3.3.3.1 Середні значення

3 таблиці А.2 бачимо аномально високі значення для набору 6. Для зручності їх наведено в таблиці З.1. Це можна пояснити тим, що час обробки завдання більший ніж період між надходженнями нових завдань, а також час моделювання великий 800000 вони й досягають таких високих значень.

Таблиця 3.1 Аномально високі значення набору 6

Кількість завдань	Кількість	Час завдання в	Час виділення
в очікуванні	зайнятих	системі	пам'яті
пам'яті	сторінок		
13380.9207081260	113.311319697821	3308.74926877018	4594.38503977522
88	83	4	3
13780.9840818338	113.226667153069	2813.80493761689	4028.65343939817
49	29	24	06
13257.5187966601	113.210901879149	3044.63032273181	4279.44274629576
3	79	76	2
13564.4116141748	112.767507004493	3461.19579759108	4760.63651209371
62	82	14	6
13360.9585336715	112.665021434405	2532.94246609069	3496.31099089404
77	32	2	05

Розглянемо таблиці А.4 та А.6, проаналізуємо відсоткові відхилення середніх значень відносно глобального середнього для кожного набору даних у таблиці 3.2.

Таблиця 3.2 Аналіз відхилень середніх значень відносно глобальних

Індекс набору параметрів	Аналіз		
0	Система працює стабільно, і всі відхилення менші 2%.		
1	Бачимо, що кількість завдань в очікуванні пам'яті варіюється і доходить до 67%. Час виділення пам'яті доростає до 141%. Натомість інші значення тримаються стабільно. Це можна пояснити тим, що кількість сторінок 400, а завдання можуть займати від 70 до 100 — достатньо велику частину пам'яті. Тому затримки і виникають. Для інших вихідних значень система працює стабільно, і всі відхилення менші 2%.		
2	Система працює стабільно, і всі відхилення менші 2%.		
3			
4			
5			
6	Бачимо, що відхилення часу на виділення пам'яті досягає 17%, час завдання в системі — 16.5%. Враховуючи те, що у порівнянні з набором 5 набір 6 відрізняється лише середнім інтервалом надходження завдання, і в наборі 6 він менший, то ці відхилення можна пояснити тим, що система перевантажена. Для інших вихідних значень система працює стабільно, і всі відхилення менші 2%.		

3.3.3.2 Середньоквадратичні відхилення

Розраховані середньоквадратичні відхилення показали значні відносні коливання для завантажень дисків, каналу введення-виведення та процесорів, які досягають 42%. Водночас абсолютні значення цих відхилень є малими, що

робить їх дуже чутливими до незначних змін. Через це відносні відхилення для навантажень можна вважати несуттєвими. Для наборів 1 та 6 відносні відхилення в середніх квадратичних значеннях також є значними, з аналогічних причин, що й для середніх значень у таблиці 3.2.

3.4 Висновки до розділу

У цьому розділі було детально розглянуто алгоритм імітації мережі Петрі, що є основою для моделювання функціонування системи. На основі наявної бібліотеки PetriObjModelPaint було розроблено клас CourseWorkPetriSim, який реалізує основні етапи імітації, такі як просування часу, обробка переходів, вирішення конфліктів, збирання статистики та логування подій. Розроблений алгоритм був адаптований для задачі, що досліджується, із врахуванням специфічних вимог до роботи моделі.

Описані модифікації, внесені до початкової структури моделі, включають: додавання розподілу Пуассона, вдосконалення роботи з NetLibrary, покращення графічного інтерфейсу.

Було описано реалізацію CourseWorkNet для визначення структури мережі Петрі і основних методів імітації, що дозволяють запускати модель.

Було розглянуто клас AnalyzeCourseWorkNet, який використовується для збору статистичних даних моделі за різних вхідних параметрів.

Було описано також процес обробки зібраних даних для верифікації моделі. З цією метою було використано мову програмування Python із застосуванням бібліотек Pandas та NumPy. Для аналізу було розроблено спеціальні функції для розрахунку середніх значень та середньоквадратичних відхилень, що дозволяє оцінювати поведінку системи за кожним прогоном моделювання. Окрім розрахунків базових статистичних характеристик, було виконано обчислення глобальних середніх значень та середньоквадратичних відхилень для кожного набору параметрів. Крім того, було оцінено відсоткові відхилення кожного значення відносно глобального середнього, що дозволило

виділити нестандартну поведінку окремих прогонів. Результати обробки були представлені у вигляді таблиць.

Аналіз зібраних даних показав, що модель функціонує стабільно за більшістю наборів параметрів. Виявлені аномальні значення були пояснені особливостями параметризації, такими як перевантаження системи через занадто короткі інтервали між надходженням завдань. Верифікація також продемонструвала, що зміна вхідних параметрів моделі має очікуваний вплив на її поведінку, що підтверджує правильність реалізації алгоритму та структури моделі.

4 ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ МОДЕЛІ

У даному розділі будуть визначені відгуки: середні значення та середньоквадратичниі відхилення вихідних параметрів моделі—, а також типи їхніх розподілів та перехідні періоди.

4.1 Визначення перехідного періоду

Перехідний період — це час, необхідний системі для досягнення стабільного стану, коли її поведінка починає відповідати реальним або усталеним умовам роботи. Перехідний період у моделюванні необхідно визначати для забезпечення коректності та точності результатів. У процесі імітації моделі системи, зокрема мережі Петрі, перші моменти моделювання не відображають стабільний стан системи. Це пов'язано з тим, що система лише починає працювати, і її стан змінюється під впливом початкових умов.

Для початку завантажимо дані та відсортуємо за часом:

```
1 from pathlib import Path
```

- 2 import pandas as pd
- 3 import matplotlib.pyplot as plt

4

- 5 folder_path = Path('final_data')
- 6 common_props_raw: pd.DataFrame = pd.read_csv(folder_path / 'commonProps.csv')
- 7 time_in_system_raw: pd.DataFrame = pd.read_csv(folder_path / 'timeInSystem.csv')
- 8 time_wait_allocate_raw: pd.DataFrame = pd.read_csv(folder_path / 'timeWaitAllocate.csv')
- 9 common_props_raw.sort_values(by='timePoint', inplace=**True**)
- 10 time_in_system_raw.sort_values(by='timePoint', inplace=**True**)
- 11 time_wait_allocate_raw.sort_values(by='timePoint', inplace=**True**)

4.1.1 Параметри за замовчуванням

Спробуємо визначити перехідні періоди для параметрів, що визначенні в умові завдання, набір 6 з таблиці А.1. Для цього аналогічно до пункту 3.3.1 проженемо модель 5 разів за однакових параметрів.

4.1.1.1 Вихідні параметри в момент часу

Після збору даних потрібно визначити середні значення та середньоквадратичні відхилення в кожен момент часу моделювання. Щоб це функції зробити були визначені calculate_means_through_time та calculate_stddevs_through_time:

```
1 import numpy as np
2 from array import array
3 from typing import Sequence
4 def calculate_means_through_time(
     time_points: pd.Series,
6
     values: pd.Series
7 ) -> array[float]:
     prev_time_point = time_points.iloc[0]
9
     delay_sum = 0.0
10
     value\_sum = 0.0
11
     values through time = array('d')
12
     for time_point, value in zip(time_points.iloc[1:], values):
13
        delay = time_point - prev_time_point
14
        prev_time_point = time_point
15
        delay_sum += delay
16
        value_sum += value * delay
17
        values_through_time.append(value_sum / delay_sum)
18
     return values_through_time
19 def calculate_stddevs_through_time(
20
     time_points: pd.Series,
     values: pd.Series,
21
22
     means: array[float]
23 ) -> array[float]:
24
     prev_time_point = time_points.iloc[0]
25
     delay_sum = 0.0
26
     value\_sum = 0.0
27
     stddevs_through_time: array[float] = array('d')
28
     for time_point, value, mean in zip(time_points.iloc[1:], values, means):
```

```
delay = time_point - prev_time_point

prev_time_point = time_point

delay_sum += delay

value_sum += ((value - mean) ** 2) * delay

stddevs_through_time.append(np.sqrt(value_sum / delay_sum))

return stddevs_through_time
```

Далі обчислимо параметри:

```
1 from collections import deque
2 import attr
3
4 @attr.frozen
5 class PropertyMeanStdDev:
     mean: array[float]
6
7
     stdDev: array[float]
8
9 def calc_mean_stddev_through_time(time_points: pd.Series, props: pd.Series) ->
PropertyMeanStdDev:
     means = calculate_means_through_time(time_points, props)
10
11
     return PropertyMeanStdDev(
12
       means.
13
       calculate_stddevs_through_time(time_points, props, means)
14
     )
15
16 time_points_mat: deque[Sequence[float]] = deque()
17 disk_load_mean_stddev_mat: deque[PropertyMeanStdDev] = deque()
18 io_channel_load_mean_stddev_mat: deque[PropertyMeanStdDev] = deque()
19 processors_load_mean_stddev_mat: deque[PropertyMeanStdDev] = deque()
20 use_of_page_mean_stddev_mat: deque[PropertyMeanStdDev] = deque()
21 total_wait_allocate_stddev_mat: deque[PropertyMeanStdDev] = deque()
22
23 time_in_system_mean_stddev_mat: deque[PropertyMeanStdDev] = deque()
24 time wait allocate mean stddev mat: deque[PropertyMeanStdDev] = deque()
25 time_in_system_time_points_mat: deque[PropertyMeanStdDev] = deque()
26 time_wait_allocate_time_points_mat: deque[PropertyMeanStdDev] = deque()
```

```
27
28 for run_number, common_props_raw_indexed in
common_props_raw.groupby(by='runNumber'):
29
     time_points = common_props_raw_indexed['timePoint'][:-1]
30
     disk load mean stddev mat.append(calc mean stddev through time(time points,
common props raw indexed['diskLoad']))
     io_channel_load_mean_stddev_mat.append(calc_mean_stddev_through_time(time_points,
common_props_raw_indexed['ioChannelLoad']))
32
     processors_load_mean_stddev_mat.append(calc_mean_stddev_through_time(time_points,
common_props_raw_indexed['processorsLoad']))
     use_of_page_mean_stddev_mat.append(calc_mean_stddev_through_time(time_points,
common_props_raw_indexed['useOfPage']))
     total wait allocate stddev mat.append(calc mean stddev through time(time points,
34
common_props_raw_indexed['totalWaitAllocate']))
35
     time_points_mat.append(time_points[:-1])
36
37 for run_number, time_in_system_raw_indexed in
time_in_system_raw.groupby(by='runNumber'):
38
     time_in_system_time_points = time_in_system_raw_indexed['timePoint']
39
time in system mean stddev mat.append(calc mean stddev through time(time in system time
_points, time_in_system_raw_indexed['timeInSystem']))
40
     time in system time points mat.append(time in system time points.iloc[:-1])
41
42 for run_number, time_wait_allocate_raw_indexed in
time_wait_allocate_raw.groupby(by='runNumber'):
     time_wait_allocate_time_points = time_wait_allocate_raw_indexed['timePoint']
43
44
time wait allocate mean stddev mat.append(calc mean stddev through time(time wait allocat
e_time_points, time_wait_allocate_raw_indexed['timeWaitAllocate']))
45
     time_wait_allocate_time_points_mat.append(time_wait_allocate_time_points.iloc[:-1])
```

Далі побудуємо графіки залежності відгуків від часу моделювання на рисунках 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14:

Рисунок 4.1 — Залежність середнього значення навантаження диска від часу

Рисунок 4.2 — Залежність середньоквадратичного відхилення навантаження диска від часу

Рисунок 4.3 — Залежність середнього значення навантаження каналу передачі від часу

Рисунок 4.4 — Залежність середньоквадратичного відхилення навантаження каналу передачі від часу

Рисунок 4.5 — Залежність середнього значення навантаження процесора від часу

Рисунок 4.6 — Залежність середньоквадратичного відхилення навантаження процесора від часу

Рисунок 4.7 — Залежність середнього часу завдання в системі від часу

Рисунок 4.8— Залежність середньоквадратичного відхилення часу завдання в системі від часу

Рисунок 4.9 — Залежність середнього значення часу очікування пам'яті від часу

Рисунок 4.10 — Залежність середньоквадратичного відхилення часу очікування пам'яті від часу

Рисунок 4.11 — Залежність середнього значення кількості завдань, що очікують виділення пам'яті, від часу

Рисунок 4.12 — Залежність середньоквадратичного відхилення кількості завдань, що очікують виділення пам'яті, від часу

Рисунок 4.13 — Залежність середнього значення кількості зайнятих сторінок від часу

Рисунок 4.14 — Залежність середньоквадратичного відхилення кількості зайнятих сторінок від часу

3 рисунків 4.7, 4.8, 4.9, 4.10, 4.11, 4.12 бачимо, що система не може досягти сталих значень, що виникає з причин, описаних у таблиці 3.2.

4.1.2 Змінені параметри

Застосуємо параметри з набору 5 з таблиці А.1 на рисунках 4.15, 4.16, 4.17, 4.18, 4.19, 4.20, 4.21, 4.21, 4.22, 4.23, 4.24, 4.25, 4.26, 4.27, 4.28.

Рисунок 4.15 — Залежність середнього значення навантаження диска від часу

Рисунок 4.16 — Залежність середньоквадратичного відхилення навантаження диска від часу

Рисунок 4.17 — Залежність середнього значення навантаження каналу передачі від часу

Рисунок 4.18 — Залежність середньоквадратичного відхилення навантаження каналу передачі від часу

Рисунок 4.19 — Залежність середнього значення навантаження процесора від часу

Рисунок 4.20 — Залежність середньоквадратичного відхилення навантаження процесора від часу

Рисунок 4.21 — Залежність середнього часу завдання в системі від часу

Рисунок 4.22 — Залежність середньоквадратичного відхилення часу завдання в системі від часу

Рисунок 4.23 — Залежність середнього значення часу очікування пам'яті від часу

Рисунок 4.24 — Залежність середньоквадратичного відхилення часу очікування пам'яті від часу

Рисунок 4.25 — Залежність середнього значення кількості завдань, що очікують виділення пам'яті, від часу

Рисунок 4.26 — Залежність середньоквадратичного відхилення кількості завдань, що очікують виділення пам'яті, від часу

Рисунок 4.27 — Залежність середнього значення кількості зайнятих сторінок від часу

Рисунок 4.28 — Залежність середньоквадратичного відхилення кількості зайнятих сторінок від часу

Бачимо, що для того, щоб всі відгуки стабілізувалися, потрібно 600000 одиниць часу (далі $T_{\mathrm{перехідний}}$).

4.2 Визначення кількості необхідних прогонів

Кількість замірів визначається за формулою (4.1), що є наслідком нерівності Чебишева:

$$p = \frac{\sigma^2}{\epsilon^2 (1 - \beta)} \tag{4.1}$$

де σ — середньоквадратичне відхилення величини, що спостерігається;

 ϵ — точність, або бажане середньоквадратичне відхилення;

 β — довірча ймовірність оцінювання.

Оскільки після моменту часу $T_{\text{перехідний}}$ відгуки на графіках зійшлися до константних значень, то достатньо, що $\epsilon = \sigma$. За умови що $\beta = 0.95$ за розрахунками (4.2) визначимо p:

$$p = \frac{\sigma^2}{\sigma^2 (1 - \beta)} = \frac{1}{0.05} = 20 \tag{4.2}$$

4.3 Визначення середніх значень та середньоквадратичних відхилень

У таблиці 4.1 визначено середні значення та середньоквадратичні відхилення:

```
1 global_mean: dict[str, float] = {}
```

2 global_stddev: dict[str, float] = {}

. . .

3

4 **def** update_global_mean_stddev(

- 5 dest_mean: *dict*[*str*, *float*],
- 6 dest_stddev: *dict*[*str*, *float*],
- 7 src: pd.DataFrame,
- 8 col: *str*
- 9) -> **None**:
- 10 mean = calculate_mean(src['timePoint'], src[col])
- dest_mean[col] = mean

dest_stddev[col] = calculate_std_dev(src['timePoint'], src[col], mean) **for** run number, stable run **in** common props stable.groupby('runNumber'): update_global_mean_stddev(global_mean, global_stddev, stable_run, 'diskLoad') update_global_mean_stddev(global_mean, global_stddev, stable_run, 'ioChannelLoad') update global mean stddev(global mean, global stddev, stable run, 'processorsLoad') update_global_mean_stddev(global_mean, global_stddev, stable_run, 'totalWaitAllocate') update_global_mean_stddev(global_mean, global_stddev, stable_run, 'useOfPage') **for** run_number, stable_run **in** time_in_system_stable.groupby('runNumber'): update_global_mean_stddev(global_mean, global_stddev, stable_run, 'timeInSystem')

Таблиця 4.1 Середні значення та середньоквадратичні відхилення вихідних параметрів

update_global_mean_stddev(global_mean, global_stddev, stable_run, 'timeWaitAllocate')

for run number, stable run **in** time wait allocate stable.groupby('runNumber'):

Назва вихідного	Середнє значення	Середньоквадратичне
параметра		відхилення
Завантаження дисків	0.0013377687709915573	5.164305642651139e-07
Завантаження каналу введення-виведення	0.0021408845049947366	5.826438943862089e-07
Завантаження процесорів	0.7136420069832722	0.0002284169580247951
Кількість завдань в очікуванні пам'яті	0.021118337643089388	0.1499305819609746
Кількість зайнятих сторінок	55.119726204499884	30.542913857411254
Час завдання в системі	10.103186785929791	3.308639012833178
Час виділення пам'яті	2.1739841157524746	2.0189247170561306

4.4 Визначенні типів розподілів

На рисунках 4.29, 4.30, 4.31, 4.32, 4.33, 4.34, 4.35 зобразимо гістограми розподілів.

Рисунок 4.29 — Гістограма розподілу величини завантаження диска

Рисунок 4.30 — Гістограма розподілу навантаження каналу передачі

Рисунок 4.31 — Гістограма розподілу навантаження процесора

Рисунок 4.32 — Гістограма розподілу кількості завдань, що очікують виділення пам'яті

Рисунок 4.33 — Гістограма розподілу кількості зайнятих сторінок пам'яті

Рисунок 4.34 — Гістограма розподілу кількості часу завдання в системі

Рисунок 4.35 — Гістограма розподілу кількості часу, що очікує завдання на виділення пам'яті

4.4.1 Аналіз розподілів навантаження диска, процесора, каналу передачі

3 таблиці 4.1 бачимо, що відхилення дуже близькі до 0. Тому можна сказати, що навантаження сходяться до постійних значень. На рисунках 4.29, 4.30, 4.31 ми бачимо лише надзвичайно малі в абсолютних значеннях коливання, які не піддаються певному визначеному розподілу.

4.4.2 Аналіз розподілу кількості завдань в очікуванні пам'яті

Бачимо, що майже увесь час роботи системи немає завдань, що очікують виділення пам'яті, а тому розподілом є постійне значення.

4.4.3 Аналіз розподілу кількості часу завдання в системі

Бачимо, що розподіл схожий на нормальний, перевіримо цю гіпотезу критерієм згоди χ^2 , для цього визначимо функцію chi_squared_normality_test:

1 **def** *chi_squared_normality_test*(data: Sequence[*float*], mean: *float*, std_dev: *float*) -> *bool*:

```
2
     # Розрахунок кількості бінів за правилом Стерджеса
3
     num_bins = int(np.ceil(1 + 3.322 * np.log10(len(data))))
4
5
     # Створення гістограми даних
6
     observed counts, bin edges = np.histogram(data, bins=num bins)
7
8
     # Розрахунок очікуваних частот для нормального розподілу
9
     expected_counts = []
10
     for i in range(len(bin_edges) - 1):
        # Розрахунок ймовірності для кожного інтервалу
11
12
        bin prob = (
13
          (1 / (std_dev * np.sqrt(2 * np.pi))) *
14
          (np.exp(-0.5 * ((bin edges[i + 1] - mean) / std dev) ** 2) -
15
           np.exp(-0.5 * ((bin_edges[i] - mean) / std_dev) ** 2))
        )
16
17
        # Додавання очікуваної частоти для даного інтервалу
        expected_counts.append(bin_prob * len(data))
18
19
     # Розрахунок статистики хі-квадрат
20
21
     expected_counts = np.array(expected_counts)
22
     chi_squared_stat = np.sum((observed_counts - expected_counts) ** 2 / expected_counts)
23
24
     # Ступені свободи = (кількість бінів - 1 - кількість оцінених параметрів)
25
     degrees of freedom = num bins - 1 - 2
26
27
     # Знаходження критичного значення для розподілу хі-квадрат
28
     critical_value = chi2.ppf(0.95, degrees_of_freedom)
29
30
     # Перевірка, чи входить статистика хі-квадрат в критичний діапазон
     return chi_squared_stat < critical_value</pre>
31
```

Нижче на рисунку 4.36 перевірка показала розподіл є нормальним:

True

Рисунок 4.36 — Результат перевірки

На рисунку поверх гістограми побудуємо графік нормального розподілу функцією norm.pdf, що надає бібліотека Scipy [7].

Рисунок 4.37 — Гістограма розподілу часу завдання в системі із нормальним розподілом з ідентичними середнім значенням та середньоквадратичним відхиленням

Нижче можна розглянути код для побудови:

1 **from** *scipy.stats* **import** norm

```
2
3 count, bins, _ = plt.hist(time_in_system_stable_filtered['timeInSystem'], bins=200,
density=True, alpha=0.6, label='Histogram')
4 x = \text{np.linspace(bins[0], bins[-1], 1000)}
5 pdf = norm.pdf(
6
     Χ,
7
     time_in_system_stable_filtered_mean,
     time_in_system_stable_filtered_std_dev
8
9)
10 plt.plot(x, pdf, 'r-', lw=2, label='Normal Distribution')
11 plt.title('Histogram with Normal Distribution Overlay')
12 plt.xlabel('Value')
13 plt.ylabel('Density')
14 plt.legend()
15 plt.grid(True)
16 plt.savefig(fname=f'histNormTimeInSystem.svg', format='svg')
17 plt.show()
```

4.4.4 Аналіз розподілу часу очікування виділення пам'яті

Припустимо, що величина розподілена експоненційно. Аналогічно до пункту 4.4.3 напишемо фукцію перевірки:

```
1 def chi squared exponential test(data: Sequence[float], mean: float, alpha: float = 0.05) ->
bool:
     # Sort data and calculate the number of bins
3
     sorted_data = np.sort(data)
4
     n = len(data)
5
     bin_width = 2 / np.sqrt(n) # Rule of thumb for bin width in exponential distribution
6
     bins = int(np.ceil(1 / bin_width))
7
     # Create bin edges and calculate expected frequencies
8
     max_data = max(sorted_data)
9
     bin_edges = np.linspace(0, max_data, bins + 1)
      observed_counts, _ = np.histogram(sorted_data, bins=bin_edges)
10
      # Calculate expected frequencies for exponential distribution
11
12
      expected_counts = np.diff(len(data) * (1 - np.exp(-bin_edges / mean)))
```

- 13 # Calculate chi-squared statistic
- chi_squared_stat = np.sum((observed_counts expected_counts)**2 / expected_counts)
- 15 # Degrees of freedom
- degrees_of_freedom = bins 1
- 17 # Compute the p-value
- p_value = 1 chi2.cdf(chi_squared_stat, df=degrees_of_freedom)
- 19 **return** p_value < alpha

На рисунках 4.38, 4.39 й справді бачимо, що величина розподілена експоненційно.

Рисунок 4.38 — Результат перевірки

Рисунок 4.39 — Гістограма розподілу часу очікування пам'яті із експоненційним розподілом з ідентичним середнім значенням

4.4.5 Аналіз розподілу кількості зайнятих сторінок

3 рисунку 4.33 бачимо, що розподіл не є типовим, змішаним та складається з декількох частин:

- інтервал 0: дельта-розподіл (Delta distribution), оскільки всі значення сконцентровані на нулі;
- інтервал 20–40: рівномірний розподіл (Uniform distribution) або близький до рівномірного, якщо значення розподілені приблизно рівномірно;
- інтервал 40–60: модальний розподіл (Unimodal distribution), де значення концентруються навколо одного піку;
- інтервал 60–80: правосторонньо скошений розподіл (Right-skewed distribution), де значення поступово зменшуються до кінця інтервалу;
- інтервал 80–120: правосторонньо скошений розподіл (Right-skewed distribution), що триває з більш різким спадом частоти;
- інтервал 120–131: дельта-розподіл або скінченний розподіл (Finite distribution), якщо всі значення концентруються в цьому граничному стані.

4.5 Висновки до розділу

У даному розділі були визначені перехідні періоди, середні значення та середньоквадратичні відхилення, типи розподілів вихідних параметрів моделі. У наступному розділі результати будуть інтерпретовані.

5 ІНТЕРПРЕТАЦІЯ РЕЗУЛЬТАТІВ МОДЕЛЮВАННЯ ТА ЕКСПЕРИМЕНТІВ

висновки

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

- 1., Business Process Model and Notation,
- 2. І. В. Стеценко, Моделювання систем, 2011
- 3: , PetriObjModelPaint,

додаток а

Результати верифікації

Таблиця А.1 Набори параметрів

Індекс	Кількість	Кількість	Кількість	Початок	Кінець	Середій інтервал
	сторінок	процесорів	дисків	сторінок	сторінок	надходження завдань, с
0	200	4	5	30	40	8
1	400	5	11	70	100	8
2	700	12	12	30	70	8
3	1000	30	30	70	80	15
4	1000	40	8	60	100	9
5	131	2	4	20	60	7
6	131	2	4	20	60	5

Таблиця А.2 Середні значення вихідних параметрів

Індекс	Завантаженн	Завантаженн	Завантаженн	Кількість	Кількість	Час завдання	Час
набору	я дисків	я каналу	я процесорів	завдань в	зайнятих	в системі	виділення
параметрів		введення-		очікуванні	сторінок		пам'яті
		виведення		пам'яті			
0	0.0009360103	0.0018732614	0.3125498430	0.0	43.287725734	9.4950221388	0.0
	51192126	053677868	1379857		20972	01987	
0	0.0009367716	0.0018736703	0.3127120947	0.0	43.317718294	9.4912812737	0.0
	927609831	00544177	7045736		397615	42294	
0	0.0009420197	0.0018796318	0.3129606246	0.0	43.273784112	9.4782467442	0.0
	845173965	284126626	348914		76173	35886	
0	0.0009339838	0.0018721119	0.3123017246	0.0	43.282100480	9.4885524146	0.0
	342392239	92227919	403013		21178	42628	
0	0.0009377930	0.0018743479	0.3116466958	0.0	43.220633891	9.4646266331	0.0
	537845769	865269846	5077337		72833	12106	
1	0.0004253035	0.0018702121	0.2495543875	4.5865727982	105.60035325	9.5064705645	0.8532533290
	7000574435	521688366	669563	77897e-06	188251	11407	942025

Індекс	Завантаженн		Завантаженн	Кількість	Кількість	Час завдання	Час
набору	я дисків	я каналу	я процесорів	завдань в	зайнятих	в системі	виділення
параметрів		введення-		очікуванні	сторінок		пам'яті
		виведення		пам'яті			
1	0.0004258024	0.0018735048	0.2496723413	4.9934105970	105.57352457	9.4863905541	0.5419994385
	2580648575	455757574	5640504	36274e-06	280489	17698	3752
1	0.0004258038	0.0018764226	0.2506825031	7.8180997302	105.66030069	9.5067717984	3.2325037051
	8223467896	34409976	814229	20668e-06	191149	30059	
1	0.0004256360	0.0018753591	0.2506357934	1.8191421722	106.03298739	9.5115185212	0.4548968775
	282428279	680659943	664264	579236e-06	821577	03582	
1	0.0004252183	0.0018708666	0.2493496544	4.0670657529	105.41275631	9.4749327114	1.6002036635
	283449599	37860342	6656035	48077e-06	178681	85453	
2	0.0003905338	0.0018729459	0.1043419975	0.0	61.922011326	9.5122580844	0.0
	267344237	449796592	1852612		29012	26787	
2	0.0003905448	0.0018799245	0.1040531302	0.0	61.642261245	9.4902733669	0.0
	4046708443	869985232	5806305		657934	94723	
2	0.0003904902	0.0018655163	0.1040250364	0.0	61.769947622	9.4928812531	0.0
	7868580686	2232557	7106194		47749	54808	

Індекс набору	Завантаженн я дисків	Завантаженн я каналу	Завантаженн я процесорів	Кількість завдань в	Кількість зайнятих	Час завдання в системі	Час виділення
параметрів		введення-		очікуванні	сторінок		пам'яті
		виведення		пам'яті			
2	0.0003906049	0.0018751445	0.1044183618	0.0	62.110648431	9.5131938583	0.0
	316387162	573874908	399701		79735	39884	
2	0.0003895007	0.0018748490	0.1041926404	0.0	62.005298003	9.4972105785	0.0
	918218604	981729542	5247213		90665	48748	
3	8.3252234109	0.0009980202	0.0221948596	0.0	49.796811295	9.5001365321	0.0
	88142e-05	14955883	35989744		159415	89162	
3	8.3350970328	0.0009999187	0.0223503768	0.0	49.922044096	9.5274672325	0.0
	90894e-05	538115863	87860658		680466	01463	
3	8.3640575120	0.0010010261	0.0223119888	0.0	49.790239399	9.5073177792	0.0
	87945e-05	740462866	55716215		21938	55189	
3	8.3277942063	0.0009990816	0.0222545214	0.0	49.686900834	9.5001338904	0.0
	46052e-05	740021642	44987567		1537	04134	
3	8.3134654527	0.0009974918	0.0222160478	0.0	49.642125413	9.4822541602	0.0
	76243e-05	853889287	75367916		772376	84727	

Індекс	Завантаженн	Завантаженн	Завантаженн	Кількість	Кількість	Час завдання	Час
набору	я дисків	я каналу	я процесорів	завдань в	зайнятих	в системі	виділення
параметрів		введення-		очікуванні	сторінок		пам'яті
		виведення		пам'яті			
4	0.0005194555	0.0016589458	0.0277566178	0.0	88.235206601	9.4719273559	0.0
	476797408	545388863	03047664		72791	6006	
4	0.0005211279	0.0016697866	0.0278495112	0.0	88.432927524	9.4739563069	0.0
	19098321	173494157	1980277		98242	1728	
4	0.0005217099	0.0016737284	0.0278370416	0.0	88.588028489	9.4866561790	0.0
	928487044	459259927	64965367		2275	88905	
4	0.0005208774	0.0016658098	0.0278557223	0.0	88.567865309	9.4917136441	0.0
	785046074	663149548	20352855		99608	97953	
4	0.0005216014	0.0016631591	0.0278197887	0.0	88.495374156	9.4666685570	0.0
	084532069	479217577	18339046		16511	0917	
5	0.0013361316	0.0021385743	0.7136300664	0.0308802467	58.920925943	10.152168042	2.2130075021
	751302958	451527842	160912	67672676	38616	183192	738915
5	0.0013345221	0.0021335454	0.7136058304	0.0325866718	58.909500503	10.193556093	2.2368560465
	023116213	321360363	54851	26679514	36583	065643	532776

Індекс	Завантаженн		Завантаженн	Кількість	Кількість	Час завдання	
набору	я дисків	я каналу	я процесорів	завдань в	зайнятих	в системі	виділення
параметрів		введення-		очікуванні	сторінок		пам'яті
		виведення		пам'яті			
5	0.0013428582	0.0021512103	0.7161423346	0.0317071973	59.009528742	10.177243529	2.2865871453
	497630513	98355921	712389	0101972	252144	153868	8215
5	0.0013365079	0.0021399357	0.7151894300	0.0314686938	59.081004164	10.177539762	2.2880328742
	583489167	087336806	683876	80982515	534455	40193	63237
5	0.0013376912	0.0021349486	0.7129872073	0.0309275669	58.944502658	10.161993312	2.2640942311
	744278067	14874355	262552	50830883	95246	02116	3396
6	0.0015549157	0.0024838855	0.8287059713	13380.920708	113.31131969	3308.7492687	4594.3850397
	397447115	69098083	231449	126088	782183	70184	75223
6	0.0015543881	0.0024900719	0.8294516915	13780.984081	113.22666715	2813.8049376	4028.6534393
	269259644	739375694	77259	833849	306929	168924	981706
6	0.0015629435	0.0025014566	0.8317256221	13257.518796	113.21090187	3044.6303227	4279.4427462
	068970977	3483877	913297	66013	914979	318176	95762
6	0.0015511359	0.0024889314	0.8284132476	13564.411614	112.76750700	3461.1957975	4760.6365120
	242988724	250281804	642948	174862	449382	910814	93716

Індекс	Завантаженн	Завантаженн	Завантаженн	Кількість	Кількість	Час завдання	Час
набору	я дисків	я каналу	я процесорів	завдань в	зайнятих	в системі	виділення
параметрів		введення-		очікуванні	сторінок		пам'яті
		виведення		пам'яті			
6	0.0015561442	0.0024943175	0.8307107776	13360.958533	112.66502143	2532.9424660	3496.3109908
	599845425	27309956	604068	671577	440532	90692	940405

Таблиця А.З Середньоквадратичні відхилення

Індекс	Завантаженн	Завантаженн	Завантаженн	Кількість	Кількість	Час завдання	Час
набору	я дисків	я каналу	я процесорів	завдань в	зайнятих	в системі	виділення
параметрів		введення-		очікуванні	сторінок		пам'яті
		виведення		пам'яті			
0	6.0633182301	1.2187990004	0.0014999733	0.0	22.991929613	2.8910147036	0.0
	23687e-06	602001e-05	399472307		833783	59474	
0	6.7021406918	1.3241064730	0.0014503993	0.0	23.069494401	2.8975417294	0.0
	88731e-06	359894e-05	806075325		712703	92824	
0	6.1765182491	1.2569706992	0.0014247731	0.0	23.059354995	2.8928774788	0.0
	57647e-06	329e-05	34591655		769432	811773	

Індекс набору	Завантаженн я дисків	Завантаженн я каналу	Завантаженн я процесорів	Кількість завдань в	Кількість зайнятих	Час завдання в системі	Час виділення
параметрів	и дисків	введення-	и процесорів	очікуванні	сторінок	B Cherein	пам'яті
		виведення		пам'яті	-		
0	6.9354349774	1.1943064236	0.0019805472	0.0	23.051140418	2.8999232260	0.0
	36626e-06	362212e-05	416211463		283836	332723	
0	6.2839684845	1.5880106291	0.0020546912	0.0	23.085492335	2.8985053307	0.0
	80637e-06	393236e-05	403766777		510185	85881	
1	2.4377928324	1.0970839091	0.0014581422	0.0021416236	56.448500048	2.8941574272	0.0245082831
	90952e-06	620434e-05	307217745	27444322	16332	191426	94041885
1	2.5645985147	1.3916728122	0.0015592548	0.0022345884	56.554545567	2.9129551636	0.5639463883
	086683e-06	596208e-05	667633431	773011127	76581	906164	385167
1	3.6584033561	1.4010064319	0.0019143012	0.0027960755	56.546243338	2.9006892141	0.0
	87013e-06	879976e-05	744062922	725726138	906606	046845	
1	2.4111802958	1.0844180688	0.0010754011	0.0013487545	56.628929775	2.8919202689	0.0
	882988e-06	49111e-05	045203766	599477123	15004	902477	
1	3.1851392422	1.6759857050	0.0012268877	0.0020166926	56.477288115	2.9034802217	0.0
	796374e-06	14997e-05	109490733	419075406	50977	458116	

Індекс набору	Завантаженн я дисків	Завантаженн я каналу	Завантаженн я процесорів	Кількість завдань в	Кількість зайнятих	Час завдання в системі	Час виділення
параметрів		введення-		очікуванні	сторінок		пам'яті
		виведення		пам'яті			
2	3.1314056490	1.5902191783	0.0004627937	0.0	35.117783525	2.9096346241	0.0
	381993e-06	644085e-05	618526907		69744	721545	
2	2.7605322722	1.5204369363	0.0005330774	0.0	34.986283728	2.9094407389	0.0
	03941e-06	794972e-05	888740822		69827	289776	
2	2.9470521527	1.4571256543	0.0006151935	0.0	35.117482245	2.9071993464	0.0
	877146e-06	55262e-05	78240626		891864	97265	
2	2.9425100298	1.2549401709	0.0004933064	0.0	35.041043982	2.8988637314	0.0
	434966e-06	395428e-05	093384896		0899	95643	
2	2.8240482434	1.0976999824	0.0004376764	0.0	35.127839194	2.9035292032	0.0
	28334e-06	895244e-05	30610689		62015	11126	
3	1.0313923455	6.5733714509	0.0001639139	0.0	38.875647459	2.9476198122	0.0
	073889e-06	621685e-06	2587692703		608174	015806	
3	7.7502613994	9.5037515492	0.0001514501	0.0	38.851055286	2.9444798322	0.0
	92419e-07	1653e-06	4808299955		01111	524015	

Індекс набору	Завантаженн я дисків	Завантаженн я каналу	Завантаженн я процесорів	Кількість завдань в	Кількість зайнятих	Час завдання в системі	Час виділення
параметрів	22 14-22	введення-	родоор	очікуванні	сторінок	2 0.1.0.2 0.1.1.2	пам'яті
		виведення		пам'яті			
3	5.9938053088	6.6561218656	0.0001454151	0.0	38.820826724	2.9499255758	0.0
	3507e-07	18153e-06	510442333		05772	929386	
3	6.1409622276	7.2624227376	0.0001471072	0.0	38.826815300	2.9346540949	0.0
	62226e-07	45955e-06	9220316263		71401	157616	
3	6.3682041571	7.3360886716	0.0001203109	0.0	38.831770776	2.9253090518	0.0
	59772e-07	537706e-06	6040425972		875835	378593	
4	3.7020091998	1.5498275789	0.0001692764	0.0	50.841411307	2.9177876646	0.0
	908736e-06	066978e-05	9378458193		17622	131997	
4	3.0464706405	1.0673961771	0.0001768862	0.0	50.787061694	2.9030262732	0.0
	17444e-06	097588e-05	5442550772		530145	416343	
4	2.5898961682	1.0468779241	0.0001354195	0.0	50.867016915	2.9108177033	0.0
	991903e-06	768465e-05	042958765		48756	25894	
4	4.8542137828	1.4388571375	0.0001402846	0.0	50.669218319	2.9129497336	0.0
	12781e-06	9911e-05	2885328614		81429	68332	

Індекс набору	Завантаженн я дисків	Завантаженн я каналу	Завантаженн я процесорів	Кількість завдань в	Кількість зайнятих	Час завдання в системі	Час виділення
параметрів	я дисків	введення-	я процесорів	очікуванні	сторінок	всистеми	пам'яті
		виведення		пам'яті	_		
4	3.4582887819	1.2168680528	0.0001327979	0.0	50.807847019	2.9149022870	0.0
	867115e-06	818852e-05	7871041873		563916	38537	
5	1.0429539252	1.5452226586	0.0027240130	0.1839526487	30.238845100	3.4093331256	2.2837317803
	64986e-05	13835e-05	9799634	0787148	109078	802855	614865
5	9.8511164922	1.5284838346	0.0039473925	0.1900819280	30.346295996	3.4220210458	2.3713058029
	73075e-06	721153e-05	11602092	90188	055964	144003	544203
5	1.0440489039	1.4810999924	0.0036651459	0.1838350889	30.307264891	3.3604252845	2.2539288393
	287137e-05	472431e-05	241224317	937267	898427	9727	29754
5	1.1500476639	1.6151307410	0.0036823174	0.1838137642	30.350028590	3.3982026023	2.4833034772
	141201e-05	099243e-05	25735091	750485	139242	483685	36511
5	6.7932165172	1.3808350765	0.0033327505	0.1823208954	30.310882909	3.3826301229	2.3267677675
	25891e-06	006422e-05	556365695	55085	16066	363542	503418
6	1.6487713608	2.7717817585	0.0066449176	7676.5059956	12.399661375	33001.993335	38936.049733
	485905e-05	898182e-05	177217914	05145	35893	012055	319946

Індекс набору	Завантаженн я дисків	Завантаженн я каналу	Завантаженн я процесорів	Кількість завдань в	Кількість зайнятих	Час завдання в системі	Час виділення
параметрів		введення-		очікуванні	сторінок		пам'яті
		виведення		пам'яті			
6	1.2088566310	1.7969743858	0.0045895362	7870.6757237	12.404640705	32836.597045	39690.970024
	81339e-05	613083e-05	39650023	16892	357226	124334	59861
6	1.4024173231	2.1239429954	0.0057928199	7697.7152225	12.397876864	30225.365413	35935.396834
	770203e-05	140986e-05	01398434	12689	875949	47308	251136
6	1.1495327235	1.5410940009	0.0044120521	7764.8413438	12.510213152	37113.607723	43509.778989
	395708e-05	045226e-05	08418184	40343	973288	822264	32139
6	1.0685274560	1.4690329046	0.0062500224	7738.0275167	12.502708890	27056.371631	32030.925718
	545559e-05	40187e-05	88174315	55956	985504	144702	917628

Таблиця А.4 Глобальні середні значення

Індекс	Завантаженн	Завантаженн	Завантаженн	Кількість	Кількість	Час завдання	Час
набору	я дисків	я каналу	я процесорів	завдань в	зайнятих	в системі	виділення
параметрів		введення-		очікуванні	сторінок		пам'яті
		виведення		пам'яті			
0	0.0009373157	0.0018746047	0.3124341965	0.0	43.276392502	9.4835458409	0.0
	432988612	02615906	820444		66184	0698	
1	0.0004255528	0.0018732730	0.2499789360	4.6568582101	105.65598444	9.4972168299	1.3365714027
	469269394	876161812	0755422	48168e-06	532029	4964	463445
2	0.0003903349	0.0018736761	0.1042062333	0.0	61.890033326	9.5011634282	0.0
	3386957834	019728394	0801868		025915	92989	
3	8.3331275230	0.0009991077	0.0222655589	0.0	49.767624207	9.5034619189	0.0
	17854e-05	404409698	3998442		79706	26934	
4	0.0005209544	0.0016662859	0.0278237363	0.0	88.463880416	9.4781844086	0.0
	693169161	864102013	45301543		4198	34673	
5	0.0013375422	0.0021396428	0.7143109737	0.0315140753	58.973092402	10.172500147	2.2577155599
	519963382	99850555	873649	4543706	49821	76516	013032

Індекс	Завантаженн	Завантаженн	Завантаженн	Кількість	Кількість	Час завдання	Час
набору	я дисків	я каналу	я процесорів	завдань в	зайнятих	в системі	виділення
параметрів		введення-		очікуванні	сторінок		пам'яті
		виведення		пам'яті			
6	0.0015559055	0.0024917326	0.8298014620	13468.958746	113.03628343	3032.2645585	4231.8857456
	115702378	260425116	83287	893302	3788	601335	91383

Таблиця А.5 Глобальні середньоквадратичні відхилення

Індекс	Завантаженн	Завантаженн	Завантаженн	Кількість	Кількість	Час завдання	Час
набору	я дисків	я каналу	я процесорів	завдань в	зайнятих	в системі	виділення
параметрів		введення-		очікуванні	сторінок		пам'яті
		виведення		пам'яті			
0	6.4322761266	1.3164386451	0.0016820768	0.0	23.051482353	2.8959724937	0.0
	37465e-06	00927e-05	674288482		02199	705253	
1	2.8514228483	1.3300333854	0.0014467974	0.0021075469	56.531101369	2.9006404591	0.1176909343
	10914e-06	54754e-05	37472172	7583466	09911	501003	0651172

Індекс набору параметрів	Завантаженн я дисків	Завантаженн я каналу введення-	Завантаженн я процесорів	Кількість завдань в очікуванні	Кількість зайнятих сторінок	Час завдання в системі	Час виділення пам'яті
параметры		виведення		пам'яті	Cropmon		144.W
2	2.9211096694	1.3840843845	0.0005084095	0.0	35.078086535	2.9057335288	0.0
	60337e-06	05647e-05	337833155		39953	610333	
3	7.3134313096	7.4663512550	0.0001456394	0.0	38.841223109	2.9403976734	0.0
	44675e-07	19315e-06	9552231644		45337	201085	
4	3.5301757147	1.2639653741	0.0001509329	0.0	50.794511051	2.9118967323	0.0
	013995e-06	348597e-05	720139342		31443	775196	
5	9.8029675881	1.5101544606	0.0034703239	0.1848008651	30.310663497	3.3945224362	2.3438075334
	15433e-06	48752e-05	030185046	0438393	472678	753357	865025
6	1.2956210989	1.9405652090	0.0055378696	7749.5531604	12.443020197	32046.787029	38020.624260
	40215e-05	81987e-05	71072549	86204	910178	715284	08174

Таблиця А.6 Відсоткові відхилення середніх значень відносно глобальних середніх

Індекс	Завантаженн	Завантаженн	Завантаженн	Кількість	Кількість	Час завдання	Час
набору	я дисків	я каналу	я процесорів	завдань в	зайнятих	в системі	виділення
параметрів		введення-		очікуванні	сторінок		пам'яті
		виведення		пам'яті			
0	0.1392691967	0.0716576271	0.0370146523	0.0	0.0261880228	0.1210127318	0.0
	533767	3838489	7137983		28342115	1496974	
0	0.0580434652	0.0498452858	0.0889461497	0.0	0.0954926909	0.0815668840	0.0
	6426225	04791147	6628373		2434332	0182767	
0	0.5018630330	0.2681699128	0.1684924565	0.0	0.0060272812	0.0558767444	0.0
	457753	2170133	2555628		71077231	1597132	
0	0.3554734979	0.1329725880	0.0423999495	0.0	0.0131895872	0.0527922131	0.0
	6032957	0794026	5491644		54963123	61996636	
0	0.0509231269	0.0136944118	0.2520533091	0.0	0.1288430197	0.1994950845	0.0
	3220478	70573433	083212		36637	628602	
1	0.0585771950	0.1634003855	0.1698336857	1.5092882088	0.0526531400	0.0974362776	36.161036564
	5230517	3801017	410604	852497	27829275	7437438	07996

Індекс	Завантаженн	Завантаженн	Завантаженн	Кількість	Кількість	Час завдання	Час
набору	я дисків	я каналу	я процесорів	завдань в	зайнятих	в системі	виділення
параметрів		введення-		очікуванні	сторінок		пам'яті
		виведення		пам'яті			
1	0.0586481517	0.0123718192	0.1226481943	7.2270267141	0.0780456241	0.1139941945	59.448523481
	7448804	02888379	0222648	63101	5305075	7078315	511224
1	0.0589903955	0.1681306807	0.2814505834	67.883568221	0.0040851889	0.1006080902	141.85043151
	6482662	1151702	393168	67273	40183183	595303	888138
1	0.0195466477	0.1113601889	0.2627651230	60.936277417	0.3568212012	0.1505882355	65.965389012
	28761482	4435572	7913946	81635	5489875	8541926	1177
1	0.0786080000	0.1284623033	0.2517338264	12.665029309	0.2302076260	0.2346384089	19.724517538
	157837	2073935	752249	13427	14175	4854077	827513
2	0.0509544105	0.0389692216	0.1302841549	0.0	0.0516690629	0.1167715534	0.0
	81093804	4996266	8537582		26091594	7901642	
2	0.0537760213	0.3334880035	0.1469231207	0.0	0.4003424575	0.1146181873	0.0
	83785615	618026	1493263		048457	4574075	
2	0.0397978255	0.4354957422	0.1738829158	0.0	0.1940307624	0.0871701155	0.0
	9775387	298137	33972		5869122	4098435	

Індекс набору	Завантаженн я дисків	Завантаженн я каналу	Завантаженн я процесорів	Кількість завдань в	Кількість зайнятих	Час завдання в системі	Час виділення
параметрів		введення-		очікуванні	сторінок		пам'яті
		виведення		пам'яті			
2	0.0691707930	0.0783729596	0.2035660681	0.0	0.3564630586	0.1266205990	0.0
	0621716	1160305	87493		1442107	2127817	
2	0.2136990505	0.0626040007	0.0130441866	0.0	0.1862410984	0.0416038496	0.0
	6887822	0640545	24004125		2297834	135134	
3	0.0948516869	0.1088496706	0.3175276407	0.0	0.0586467363	0.0349913196	0.0
	3121654	6782505	1741096		6114539	4900005	
3	0.0236347021	0.0811737651	0.3809378785	0.0	0.3102818174	0.2525954623	0.0
	883494	2953402	6329514		29433	621973	
3	0.3711690356	0.1920146874	0.2085279595	0.0	0.0454415732	0.0405732180	0.0
	910503	7205694	133558		764172	6672695	
3	0.0640013807	0.0026089717	0.0495720544	0.0	0.1622005770	0.0350191177	0.0
	1894364	60553057	29917634		384334	8245622	
3	0.2359506702	0.1617298101	0.2223661429	0.0	0.2521695500	0.2231582429	0.0
	2915817	7321286	293535		285194	9743064	

Індекс	Завантаженн	Завантаженн	Завантаженн	Кількість	Кількість	Час завдання	Час
набору	я дисків	я каналу	я процесорів	завдань в	зайнятих	в системі	виділення
параметрів		введення-		очікуванні	сторінок		пам'яті
		виведення		пам'яті			
4	0.2877260347	0.4405085280	0.2412276389	0.0	0.2584939905	0.0660153084	0.0
	0331753	185574	5156238		591612	6891568	
4	0.0332946143	0.2100858416	0.0926362806	0.0	0.0349892987	0.0446087724	0.0
	3210878	721115	9700314		8689205	7272433	
4	0.1450267876	0.4466495893	0.0478200321	0.0	0.1403375843	0.0893817854	0.0
	1523216	5561877	4342434		6019975	6636275	
4	0.0147787986	0.0285737321	0.1149593090	0.0	0.1175450286	0.1427407927	0.0
	94187899	88213748	3871425		4536483	5091997	
4	0.1241834314	0.1876531708	0.0141879829	0.0	0.0356006763	0.1214984972	0.0
	5018534	2093308	27616756		40520825	7562398	
5	0.1054603593	0.0499407960	0.0953236610	2.0112555130	0.0884580695	0.1998732394	1.9802342917
	9702729	9477475	1887417	263727	8198674	8512992	531266
5	0.2257984508	0.2849759515	0.0987165756	3.4035473656	0.1078320578	0.2069888915	0.9239212289
	6831762	919465	0782758	940165	7880562	6673628	84996

Індекс набору параметрів	Завантаженн я дисків	Завантаженн я каналу введення-	Завантаженн я процесорів	Кількість завдань в очікуванні	Кількість зайнятих сторінок	Час завдання в системі	Час виділення пам'яті
параметрів		виведення		пам'яті	Cropmox		144.711
5	0.3974452215	0.5406275274	0.2563814572	0.6128117467	0.0617846856	0.0466294550	1.2787964079
	45618	333825	473852	061311	4146393	9763055	101573
5	0.0773279233	0.0136849416	0.1229795303	0.1440037949	0.1829847437	0.0495415538	1.3428314399
	5178747	85648728	8087943	9352542	874463	3204507	028767
5	0.0111415120	0.2193957214	0.1853207510	1.8610998043	0.0484793019	0.1032866610	0.2825276729
	71562979	3220867	016095	802713	6812992	1133437	250885
6	0.0636138774	0.3149237146	0.1320184176	0.6536365610	0.2433167967	9.1180932557	8.5659045604
	6016872	239043	8170844	854696	6546905	3289	64851
6	0.0975242155	0.0666464807	0.0421511074	2.3166255150	0.1684270868	7.2045039845	4.8024053225
	1242055	4941076	64898384	385484	590657	39409	00249
6	0.4523407928	0.3902508918	0.2318819857	1.5698314487	0.1544799953	0.4078062429	1.1237779907
	388308	7448564	477694	891833	2298093	208335	644794
6	0.3065473600	0.1124198072	0.1672947665	0.7086877989	0.2377788981	14.145574396	12.494448058
	9977024	0781593	7066172	256319	8149944	536997	780206

Індекс	Завантаженн	Завантаженн	Завантаженн	Кількість	Кількість	Час завдання	Час
набору	я дисків	я каналу	я процесорів	завдань в	зайнятих	в системі	виділення
параметрів		введення-		очікуванні	сторінок		пам'яті
		виведення		пам'яті			
6	0.0153446602	0.1037391107	0.1095823059	0.8018453040	0.3284449807	16.466969910	17.381725287
	33500852	0666274	6953929	89568	6597856	651326	509344

Таблиця А.7 Відсоткові відхилення середніх квадратичних відхилень відносно глобальних відхилень

Індекс	Завантаженн	Завантаженн	Завантаженн	Кількість	Кількість	Час завдання	Час
набору	я дисків	я каналу	я процесорів	завдань в	зайнятих	в системі	виділення
параметрів		введення-		очікуванні	сторінок		пам'яті
		виведення		пам'яті			
0	5.7360394555	7.4169536882	10.826112112	0.0	0.2583466792	0.1711960359	0.0
	489185	017875	223104		9890676	3321298	
0	4.1954754419	0.5824675508	13.773299621	0.0	0.0781383531	0.0541868310	0.0
	46546	87992	880428		6474967	4463374	
0	3.9761644625	4.5173351670	15.296788025	0.0	0.0341524359	0.1068730761	0.0
	402357	68703	537554		5564912	7754235	

Індекс набору	Завантаженн я дисків	Завантаженн я каналу	Завантаженн я процесорів	Кількість завдань в	Кількість зайнятих	Час завдання в системі	Час виділення
параметрів	и дисків	введення-	и процесорів	очікуванні	сторінок	B CHCTCWI	пам'яті
		виведення		пам'яті	-		
0	7.8224075100	9.2774716025	17.744157830	0.0	0.0014833524	0.1364216086	0.0
	79821	85955	82062		929798452	7360972	
0	2.3056790339	20.629292906	22.152041928	0.0	0.1475392426	0.0874606723	0.0
	372117	968416	82054		7147242	9257319	
1	14.506091794	17.514558569	0.7841314171	1.6168869306	0.1461165958	0.2235034649	79.175725523
	311812	750672	404627	538798	8317377	1606296	41794
1	10.058989804	4.6344270361	7.7728523965	6.0279321373	0.0414713283	0.4245512228	379.17572552
	761875	14707	07928	67418	4654116	745629	341795
1	28.300976417	5.3361853401	32.313012507	32.669667847	0.0267852021	0.0016808341	100.0
	93559	12885	88344	62997	99813268	216654817	
1	15.439399059	18.466853485	25.670237127	36.003582581	0.1730523617	0.3006298189	100.0
	434477	91188	368353	42457	648891	196342	
1	11.703504240	26.010799679	15.199759194	4.3109043342	0.0951922964	0.0979012268	100.0
	572592	434946	163525	2667	2809489	3951474	

Індекс набору	Завантаженн я дисків	Завантаженн я каналу	Завантаженн я процесорів	Кількість завдань в	Кількість зайнятих	Час завдання в системі	Час виділення
параметрів		введення-		очікуванні	сторінок		пам'яті
		виведення		пам'яті			
2	7.1991812487	14.893224442	8.9722495153	0.0	0.1131674906	0.1342550950	0.0
	03803	553528	0242		4362885	5168806	
2	5.4971368906	9.8514623385	4.8519851520	0.0	0.2617098472	0.1275825890	0.0
	5506	87924	48742		8205143	819865	
2	0.8881037093	5.2772266393	21.003548785	0.0	0.1123086074	0.0504457006	0.0
	061366	06617	30306		053076	00984515	
2	0.7326106447	9.3306603998	2.9706611385	0.0	0.1056002677	0.2364221390	0.0
	456033	88158	58204		6900516	9693718	
2	3.3227587121	20.691253020	13.912623283	0.0	0.1418340170	0.0758612456	0.0
	004825	5599	491186		0207965	3773718	
3	41.027146060	11.960056171	12.547716049	0.0	0.0886283886	0.2456177559	0.0
	32164	437603	874943		0094871	50397	
3	5.9729841076	27.287763789	3.9897505411	0.0	0.0253137665	0.1388301612	0.0
	33167	94434	179797		8772318	8035744	

Індекс набору	Завантаженн я дисків	Завантаженн я каналу	Завантаженн я процесорів	Кількість завдань в	Кількість зайнятих	Час завдання в системі	Час виділення
параметрів		введення-		очікуванні	сторінок		пам'яті
		виведення		пам'яті			
3	18.043869490	10.851744871	0.1540409607	0.0	0.0525122119	0.3240344855	0.0
	772856	45215	1505327		30538566	0371605	
3	16.031723446	2.7313008778	1.0078287318	0.0	0.0370941169	0.1953333916	0.0
	096233	721404	849428		86882454	7917074	
3	12.924537231	1.7446618691	17.391254362	0.0	0.0243358262	0.5131490110	0.0
	085676	824116	162773		7121429	5533	
4	4.8675618177	22.616300305	12.153422493	0.0	0.0923333149	0.2023056714	0.0
	83584	49696	366286		4108234	2641423	
4	13.702011267	15.551786547	17.195237107	0.0	0.0146656727	0.3046282183	0.0
	302304	9223	752366		8649348	4490844	
4	26.635488496	17.175110521	10.278382192	0.0	0.1427435025	0.0370558831	0.0
	689263	251586	477798		408215	852656	
4	37.506293598	13.836752734	7.0550145661	0.0	0.2466658875	0.0361620410	0.0
	85491	144923	11514		2781465	196614	

Індекс набору	Завантаженн я дисків	Завантаженн я каналу	Завантаженн я процесорів	Кількість завдань в	Кількість зайнятих	Час завдання в системі	Час виділення
параметрів		введення-		очікуванні	сторінок		пам'яті
		виведення		пам'яті			
4	2.0363556526	3.7261559704	12.015262842	0.0	0.0262547428	0.1032163890	0.0
	46842	68022	52936		3237632	8408316	
5	6.3916529245	2.3221596782	21.505508588	0.4589894078	0.2369410269	0.4363114306	2.5631692136
	08759	90004	780994	868817	4119	3531846	27838
5	0.4911666158	1.2137416735	13.747091681	2.8577046881	0.1175576330	0.8100877238	1.1732306972
	726785	165762	229847	361166	9588185	342141	754312
5	6.5033516171	1.9239401636	5.6139434401	0.5226036740	0.0112125739	1.0044756609	3.8347301505
	6335	45726	0569	205305	99029606	556853	192575
5	17.316277298	6.9513604797	6.1087532069	0.5341429699	0.1298720916	0.1084148401	5.9516808337
	35333	800115	32451	357008	150403	467299	28826
5	30.702448455	8.5633216679	3.9642797394	1.3419686362	0.0007238762	0.3503383336	0.7270121668
	898143	40844	869422	929737	292388592	6057726	571244
6	27.257217576	42.833734502	19.990501987	0.9425984101	0.3484589903	2.9806616944	2.4077076351
	747035	591156	289175	059695	545297	502404	40852

Індекс	Завантаженн	Завантаженн	Завантаженн	Кількість	Кількість	Час завдання	Час
набору	я дисків	я каналу	я процесорів	завдань в	зайнятих	в системі	виділення
параметрів		введення-		очікуванні	сторінок		пам'яті
		виведення		пам'яті			
6	6.6967470605	7.3994330388	17.124516966	1.5629618988	0.3084419372	2.4645528884	4.3932623333
	29283	210185	807874	649996	669509	89885	346505
6	8.2428592992	9.4497100882	4.6037600281	0.6689151864	0.3628004480	5.6836325418	5.4844639361
	31993	71713	13969	629945	922638	62303	16663
6	11.275547729	20.585301968	20.329434051	0.1972782564	0.5400051916	15.810697931	14.437308266
	204225	10239	782624	0439292	2056	773275	40522
6	17.527782086	24.298709583	12.859689003	0.1487265587	0.4796961840	15.572279972	15.753814298
	24543	939484	187388	0039336	932415	851051	764059