一、选择题

DDDDA BA

二、填空题

1.0; n (n-1) /2; n-1

2. 先序遍历; 层序遍历

3. AEDCB; BCADE

4. n; n(n-1)

三、应用题

1.

对应的邻接表如图所示,深度优先遍历该图的结果为012534。

过程	=> 从顶点a到各终点的D值和最短路径父顶点P的变化过程 =>											
	初始 (第0步)		选c (第1步)		选b (第2步)		选d (第3步)		选e (第4步)		选d (第5步)	
	D	P	D	P	D	P	D	P	D	P	D	P
b	6	a	5	c	5	c	5	c	5	c	5	c
c	3	a	3	a	3	a	3	a	3	a	3	a
d	∞		6	c	6	c	6	c	6	c	6	c
e	∞		7	c	7	c	7	c	7	c	7	c
f	∞		∞		œ		9	d	9	d	9	d

(2)

4.

四、算法设计题

}

int countout(frontnodetype adjlist[],int n) //n 为有向图中的顶点个数

 int i,j,num=0; //num 为出度为 2 的顶点个数
 nodetype *p;
 for(i=0;i<n;i++)
 j=0;
 p=adjlist[i].next;
 while(p!= NULL)
 j++;
 p=p->next;
 if(j == 2)
 num++;

```
return num;
       }
2. int SumOfWeight(int G[][],int Nv) //二维数组 G 为邻接矩阵, Nv 为顶点数
   { int sum,i,j;
      sum=0;
      for(i = 0; i < Nv; i++)
        for(j = 0; j < Nv; j++)
          if(G[i][j]!=0 && G[i][j] < INF) //INF 为符号常量,表示无穷大
            sum = sum + G[i][j];
   return sum;
3. void DegreeOut(int G[][],int Nv) //统计各顶点的出度
        int i,j;
        int degree[maxvertexnum] = \{0\};
        for(i = 0; i < Nv; i++)
           for(j = 0; j < Nv; j++)
             if(G[i][j] >0 && G[i][j] < INFINITY ) //INFINITY 表示无穷大
                  degree[i]++;
     }
    void DegreeIn(int G[][],int Nv) //统计各顶点的入度
         int i,j;
         int degree[maxvertexnum] = \{0\};
         for(i = 0; i < Nv; i++)
           for(j = 0; j < Nv; j++)
             if(G[j][i] >0 && G[j][i] < INFINITY ) //INFINITY 表示无穷大
                  degree[i]++;
     }
```