法律声明

□ 本课件包括:演示文稿,示例,代码,题库,视频和声音等,小象学院拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意,我们将保留一切通过法律手段追究违反者的权利。

- □ 课程详情请咨询
 - 微信公众号:小象
 - 新浪微博: ChinaHadoop

第1课 课程介绍

计算机视觉 Computer Vision

本章结构

- □课程简介
- □ 计算机视觉
- □ 主要研究问题
- □ 研究挑战
- □ 开源库介绍
- □ 环境搭建

- □ 部分I: 计算机视觉的基础
 - 数据图像处理
 - 图像特征及描述
- □ 部分II: 深度学习在计算机视觉中的应用
 - 图像分类 ← 卷积神经网络CNN
 - 图像检测 ← 区域卷积神经网络R-CNN
 - 图像分割 ← 全卷积神经网络FCN
 - 图像描述 ← 迭代神经网络RNN
 - 图像问答 ← 迭代神经网络RNN
 - 图像生成 ← 生成对抗网络GAN
- □ 部分Ⅲ:图像检索

- □ 重点&难点
 - 各种深度神经网络模型(DNN)的理解
 - Tensorflow的使用
- □实践环境
 - OpenCV 3.2
 - Windows
 - □ Python 2.7
 - TensorFlow 1.1 (GPU/CPU)
 - Windows
 - \square Python 3.5

- □ 参考书
 - Python
 - □ Python基础教程 (第2版 修订版)
 - OpenCV
 - □ 《OpenCV 3计算机视觉: Python语言实现》
 - □ 《OpenCV3编程入门》
 - □ 《学习OpenCV(中文版)》
 - TensorFlow
 - □ 《TensorFlow:实战Google深度学习框架》
 - □ 《TensorFlow实践》

- □ 部分I: 计算机视觉的基础
 - Python
 - OpenCV
- □ 部分II:深度学习在计算机视觉中的应用
 - Python
 - Tensorflow
- □ 部分Ⅲ:图像检索
 - Python
 - OpenCV/Lire

图片信息量有多大?→100个词

图片信息量有多大?→10,000个词

图片信息量有多大?→1,000,000个词

图片信息量有多大? > 立体空间

研究理论和应用:

- •让计算机具有人类视觉的所有功能
- ·让计算机从图像数据中,提取有用的信息,并解释

•

模拟人类视觉的优越能力:

- •识别人、物体、场景
- •估计立体空间、距离
- 躲避障碍物进行导航
- •想象并描述故事
- •理解并讲解图片
- •

弥补人类视觉的缺陷:

- 关注显著内容、容易忽略很多细节
- •不在乎、不擅长精细感知
- 容易受幻觉干扰
- •描述主观、磨轮两可
- •不善于长时间稳定的执行同一个任务
- •

图像数据(图片、视频、深度图片等)

感知设备 (摄像头)

解释

方向盘 特斯拉 地图 无人驾驶

.

计算设备 (CPU/GPU/FPGA)

高度复合学科

- 工程
- 计算机科学
- 数学
- 心理学
- 生物学
- •

- 2个主要研究维度
 - 语义感知 (semantic)
 - 几何属性(Geometry)
- 赶上人类视觉了吗
 - 迅猛发展(特定领域已赶上)
 - 任重道远(not yet)

语义感知在人工智能中是主角:

- •场景理解←最终形态
 - · 视觉描述(Visual Captioning)
 - 视觉问答 (Visual Question Answering)
- •基础理解←根本
 - 分类、识别、检测、分割、显著性等
 - 得益于深度学习网络发展,性能大幅提升

感知上的本质差异

人类

	3	2	5	4		6	9	8
3	0	1	2	3	4	5	6	7
2	1	0	3	2	5	4	7	6
5	2	3	0	1	2	3	4	5
4	3	2	1	0	3	2	5	4
7	4	5	2	3	0	1	2	3
6	5	4	3	2	1	0	3	2
9	6	7	4	5	2	3	0	1
8	7	6	5	4	3	2	1	0

计算机

- 人工智能目标
 - · 解决"像素值"与"语义"之间的差距(Gap)

计算机所看到的

- 图像数据处理
 - 空域分析及变换
 - Sobel, 拉普拉斯, 高斯, 中值等
 - 频域分析及变换
 - 傅里叶(Fourier) 变换
 - 小波(Wavelet) 变换
 - 模板匹配,全字塔,滤波器组
 - 特征数据操作
 - 主成分分析/PCA
 - 奇异值分解/SVD
 - 聚类/Cluster

- 图像特征及描述
 - 颜色特征
 - RGB, HSV, Lab等
 - 直方图
 - 几何特征
 - Edge, Corner, Blob等
 - 纹理特征
 - HOG, LBP, Gabor等
 - 局部特征
 - SIFT, SURF, FAST等

• 图片分类 > 有没有?

Input Image

Thank you. After analysis, our system describes the image as follows:

butterfly	3.49354
lepidopterous insect	3.42100
insect	2.50084
arthropod	2.01440
nymphalid	1.97341
invertebrate	1.73042
lycaenid	0.40975
admiral	0.38683

- · 卷积神经网络CNN
 - 计算机视觉中的基础网络
 - 有监督深度模型时代的起点
 - AlexNet \rightarrow VGG \rightarrow GoogLeNet \rightarrow ResNet \rightarrow ResNeXt
 - GoogLeNet
 - Inception V1 \rightarrow V2 \rightarrow V3 \rightarrow V4
 - Inception ResNet V1 \rightarrow V2
 - 结构趋势
 - 更深 (Depth): 8层→1000+层
 - 更宽(Width): 1分支→4+分支
 - 更多基数 (Cardinality): 1→32

- 检测一目标在哪儿?
 - 物体检测
 - 人脸检测
 - 行人检测

- · 区域卷积神经网络R-CNN
 - 让基础网络具备区域输出能力
 - 第1阶段: R-CNN→SPP-Net→Fast/Faster R-CNN
 - 第2阶段: YOLO→SSD→R-FCN
 - 目的
 - 检测更快、更准确
 - 工业应用
 - 智能监控
 - 辅助驾驶
 - •

$R-CNN \rightarrow Fast \rightarrow Faster$

Conv

feature map

For each Rol

Rol feature

vector

- 图片分割 > 区域轮廓?
 - 前景分割
 - 语义分割

- · 全卷积神经网络FCN
 - 让基础网络做像素输出
 - $FCN \rightarrow SegNet/DeconvNet \rightarrow DeepLab$
 - 目的
 - 语义推断
 - 分割更精确
 - 工业应用
 - 辅助驾驶
 - •

主流深度神经网络

- 全卷积网络FCN
 - 反卷积/转置卷积

- 识别→内容是什么?
 - 人脸识别
 - 字符识别
 - 车牌识别
 - 行为识别
 - 步态识别

- 视觉&语言
 - 图片描述 (Captioning)
 - · 图片问答(Question Answering)

- Caption
 - 一个人在用自动驾驶系统开车
- QA
 - Q:这个人为什么双手离开了方向盘
 - · A: 因为他启动了无人驾驶功能

- 递归神经网络RNN
 - 具有记忆功能,构建不定长序列数据的模型
 - Vanilla RNN→LSTM→GRU
 - 应用范围
 - 文本序列
 - 区域序列
 - 视频序列
 - 研究问题
 - 图片描述、问答
 - 机器翻译

- 图说模型
 - CNN+LSTM

图片生成

- 样本分布学习
- 超分辨率
- 以图生文
- 语义分割

bicubic

SRResNet

original

this small bird has a pink breast and crown, and black primaries and secondaries.

- · 生成对抗网络GAN
 - 网络结构
 - 生成器网络(Generator)
 - 判别器网络(Discriminator)
 - 网络路线
 - 无监督: GAN→DCGAN→ wGAN
 - 有监督: SRGAN、SalGAN、RLA
 - 应用范围:
 - 样本数据分布(生成)学习
 - 半监督问题的数据增强
 - · 有监督问题的优化(Dynamic loss)

超分辨SRGAN网络

Discriminator Network

• 图片检索 > 相似图片

- DNN网络的综合应用
 - 系统结构
 - 图片预处理
 - 显著性检测、区域分割
 - 图片特征提取
 - 手工设计、CNN类网络层特征抽取
 - 索引构建
 - 局部敏感性哈希 (LSH)
 - 特征相似度计算
 - 特征向量的距离计算
 - 相似度搜索
 - 相似距离排序

• 视觉文本双向编码网络

• 视角变化

• 光照变化

• 尺度变化

• 形态变化

• 背景混淆干扰

• 遮挡

• 类内物体的外观差异

- OpenCV
 - 函数库: 计算机视觉, 机器学习
 - 优化算法: 2500+
 - 编程语言: C, C++, Java, Python, Matlab
 - 系统: Windows, Linus, Mac OS, iOS, Android
 - 并行计算: CUDA, OpenCL
 - URL: http://opencv.org/

- Caffe
 - 函数库:深度学习
 - 发布方: Berkeley Vision and Learning Center (BVLC)
 - 编程语言: C++, Python
 - 系统: Ubuntu, Red Hat, OS X, Windows
 - 并行计算: CUDA
 - URL: http://caffe.berkeleyvision.org

- Theano
 - 函数库:深度学习
 - 发布方: LISA Lab, 蒙特利尔工程学院
 - 编程语言: Lua(Python)
 - 系统: Ubuntu, Red Hat, OS X, Windows
 - 并行计算: CUDA
 - URL: http://deeplearning.net/software/theano/

- Torch(PyTorch)
 - 函数库:深度学习
 - 发布方: Facebook
 - 编程语言: Lua(Python)
 - 系统: Ubuntu, Red Hat, OS X
 - 并行计算: CUDA
 - URL: https://torch.ch(http://pytorch.org/)

- Tensorflow
 - 函数库:深度学习
 - 发布方: Google
 - 编程语言: Python
 - 系统: Ubuntu, Red Hat, OS X
 - 并行计算: CUDA
 - URL: https://www.tensorflow.org/
 - 特色:
 - 多机多GPU分布式
 - Tensorboard

深度学习库对比

深度框架	编程语言 /灵活性	主要应用场景	维护方	Pre-trained 模型	多GPU 模型并行	多机 分布式
(Py)Torch	Lua(Python) /Yes +	CNN/RNN(中等)/ 通用	Facebook	Yes ++	Yes	No
Theano	Python /Yes	CNN/RNN(支持)/ 通用	LISA Lab	Yes (Lasagne)	Tesing	No
Caffe	Python&C++ /No	CNN 图像分类、检测、分割	BVLC	Yes ++	No	No
TensorFlow	Python /Yes +	CNN/RNN(Best)/ 通用	Google	Yes (Inception)	Best	Yes

课程应用案例环境

- 编程语言
 - Python 2.7
 - Anaconda Python 3.5
- 函数库/计算框架
 - OpenCV 3.2
 - Tensorflow 1.1
- DNN模型实践
 - ResNet, Faster R-CNN, DeepLab
 - Show-and-Tell, VQA
 - SRGAN

演示环节

- 安装配置
 - Python
 - OpenCV 3.2
- 链接推荐
 - · Windows安装教程
 - http://docs.opencv.org/3.2.0/d5/de5/tutorial_py_setup_in_windows.html
 - 学习教程
 - http://docs.opencv.org/3.2.0/d6/d00/tutorial_py_root.html

演示环节

• 小象问答

- 1. 登录<u>www.chinahadoop.cn</u>
- 2. 点击标题栏中的小象问答
- 3. 点击提问
- 4. 填写问题
- 6. 邀请老师: 349zzjau

首页

选课中心

小象问答

疑问

□问题答疑: http://www.xxwenda.com/

■可邀请老师或者其他人回答问题

Q & A

小象账号: 349zzjau

课程名:基于深度学习的计算机视觉

课后调查问卷: http://cn.mikecrm.com/0D9JujS

联系我们

小象学院: 互联网新技术在线教育领航者

- 微信公众号: 小象

- 新浪微博: ChinaHadoop

