Approach to Toxicology

Terminology:

- **Toxidrome** = Combination of signs and symptoms that suggest specific CLASS of toxin
 - o 4 main types:
 - Sympathomimetic
 - Opioid
 - Anticholinergic
 - Cholinergic
 - Look for vital signs & physical findings

1. GENERAL APPROACH - The Poisoned Patient:

- 2 components → Treatment & Diagnosis (occurring simultaneously)
- TREATMENT:
 - Airway \rightarrow possible intervention if Ψ GCS
 - o Breathing → ensure proper ventilation & oxygenation = supplemental O2 if hypoxic
 - o Circulation → IVF to maintain end organ perfusion + cardiac monitor + ECG
 - o D.O.N.T./Decontamination
 - **Dextrose**: many toxins cause hypoglycemia → bedside BG test for everyone
 - If Ψ BG \rightarrow IV dextrose
 - $02 \rightarrow \text{if hypoxic}$
 - **Naloxone** → for suspected <u>opioid</u> toxidrome with resp depression
 - Thiamine → for chronic alcoholics with suspected Wernicke's encephalopathy (rare)
 - Decontamination:
 - Skin \rightarrow if toxin on skin/clothes then remove and irrigate skin copiously with water
 - o Gloves, goggles, gowns for care providers to prevent contamination
 - Eyes → irrigation if involved
 - GI \rightarrow if toxin ingested
 - o **Activated charcoal** → for presentation **1-2h** post ingestion
 - Will bind to toxin in stomach → excretion
 - Disadvantages:
 - Not effective for liquids, metals
 - Aspiration risk with Ψ GCS
 - Whole bowel irrigation → for specific toxins that don't bind to charcoal
 - ++Fluids to flush out contents of bowel
 - \circ Enhanced elimination \rightarrow once toxin in circulation
 - Dialysis → used for ASA, Digoxin, toxic alcohols
 - **Focused** therapy = specific antidotes (see below for more info):
 - Acetaminophen, ASA, toxic alcohols, etc.
 - Get toxicology help → poison control centre
 - Early involvement important
- DIAGNOSIS:
 - \circ Hx \rightarrow often difficult to obtain from intoxicated patient, use collateral
 - What was taken
 - Ask about all available meds in house (OTC, herbal)
 - Have family members go through all meds at home and bring empty bottles
 - Ask EMS about bottles found at the scene
 - When it was taken
 - How Many
 - Why \rightarrow intentional vs accidental
 - Px + Toxidrome recognition (see below)
 - VITALS → Temp, HR, BP, RR, O2 sat
 - NEURO \rightarrow toxins produce global Ψ LOC, possible seizures
 - Key points = global motor/sensory exam, pupils (size)
 - SKIN → dry vs wet (diaphoretic)
 - Look for drug patches (ie. nitro, fentanyl)
 - o Diagnostic Tests

- **Blood Gas** → many toxins cause metabolic acidosis
 - Obtain venous gas (arterial not required)
- Anion Gap \rightarrow AG = Na (Cl + HCO3) \rightarrow normal = 12
 - Causes of $\triangle AG \rightarrow MUDPILES CT$
 - Methanol, metformin
 - Uremia
 - o DKA
 - o Paraldehyde
 - o Iron, Isoniazid
 - Lactate
 - o Ethylene glycol
 - Salicylates
 - o CO, CN
 - o Toluene
- Osmol Gap (absolute value) = expected osmolality measured serum osmolality → >10 = abnormal
 - Expected = 2Na + Glucose + BUN ("2 salts and a sugary bun")
 - Causes of ♠OG:
 - o Ethanol
 - o Ethylene Glycol
 - o Methanol, mannitol
- Specific **Drug Levels** (QUANTITATIVE) → available for:
 - Acetaminophen, ASA, Digoxin, anti-seizure, alcohols (incl toxic alcohol)
- Drug Screen (QUALITATIVE)
 - Disadvantages = cross-reaction, timely (not helpful in acute settings)
 - o Therefore rarely used in ED
- Xray:
 - Packets, heavy metals → AXR
 - Resp difficulty → CXR

2. MAIN TOXIDROMES:

- SYMPATHOMIMETIC Toxidrome:
 - o Stimulants = amphetamines, cocaine
 - o Presentation
 - Vital signs $\rightarrow \uparrow$
 - ↑HR, ↑BP, ↑temp, ↑LOC (agitated)
 - Pupils = dilated
 - Skin = flushed, warm, WET (diaphoretic)
 - \circ Tx:
- **Supportive** care → treat symptoms
 - Cooling for ↑temp
 - BZDs (lorazepam, diazepam) for agitation, seizures
- OPIOID Toxidrome:
 - Examples = morphine, fentanyl, methadone, heroin
 - o Presentation:
 - Vital signs \rightarrow \checkmark
 - Ψ HR, Ψ BP, Ψ temp, Ψ RR, Ψ LOC (difficult to rouse)
 - Pupils = constricted
 - Death = by hypoxia 2° to Ψ RR
 - \circ Tx:
- If Ψ RR or Ψ 02 sat \rightarrow give **naloxone** (opioid antagonist)
- IVF if hypotensive
- ANTICHOLINERGIC Toxidrome:
 - Examples = TCA, diphenhydramine, dimenhydrinate
 - o Presentation:
 - Vital signs → ↑
 - ◆ HR, ◆BP, ◆temp, ◆LOC (agitation/confusion)

- Pupils = dilated
- Skin = flushed, warm, DRY
- Urinary retention
- \circ Tx:
- Supportive care (except TCA discussed below)
 - IVF + Cooling for ↑temp
 - BZDs (lorazepam, diazepam) for agitation, seizures
- CHOLINERGIC Toxidrome:
 - Examples = organophosphates (pesticides, insecticides)
 - Presentation = opposite to anticholinergic

 - Vital signs:
 - ↓↓HR
 - Pupils = constricted
 - \circ Tx:
 - Atropine \rightarrow \uparrow HR + \checkmark secretions
 - +/- Pralidoxime = specific cholinergic antidote
- **3. SPECIFIC TREATMENTS –** see above for tx of specific toxidromes
 - ACETAMINOPHEN toxicity:
 - o Targets LIVER → hepatocellular damage, necrosis, liver failure
 - o Toxic dose = 150mg/kg
 - o 4 stages:
 - $1 = \text{nonspecific} \rightarrow \text{nausea, vomiting}$
 - 2 = beginning of liver involvement → RUQ pain, ↑AST, ↑ALT
 - 3 = when patient sickest → fulminant hepatic failure
 - Coagulopathy, lactate acidosis, encephalopathy
 - 4 = gradual recover (for those surviving stage 3)
 - O Diagnosis:
 - $Hx \rightarrow when, how much (>150mg/kg)$
 - Lab:
 - AST, ALT, INR
 - Serum acetaminophen level → Rumack-Matthew Nomogram
 - \circ Plots serum level vs time of ingestion \rightarrow determines hepatic toxicity
 - o If probable hepatic toxicity → treat with antidote
 - Tx with specific antidote = N-Acetyl Cysteine (NAC)
 - Can be given PO vs IV (IV preferred in Canada)
 - ASA toxicity:
 - Toxic dose = 300mg/kg
 - Presentation → 3 targeted systems
 - NEURO → tinnitus, lethargy, confusion, seizures
 - GI → N/V
 - RESP → hyperventilation, resp distress
 - Diagnosis:
 - $Hx \rightarrow when, how much$
 - Labs:
 - Routine BW to determine dehydration
 - ASA Level
 - Blood gas → AG metabolic acidosis
 - Will have $\Psi\Psi$ pCO2 \Rightarrow from metabolic acidosis + effect of ASA on respiration \Rightarrow also get respiratory alkalosis from overcompensation (\uparrow pH)
 - o Treatment:
 - Supportive → ABCs
 - Specific = ALKALINIZATION → IV NaHCO3
 - ASA elimination = renal → ↑clearance with ↑urine pH
 - o **\(\phi** urine pH via blood alkalinisation
 - Give NaHCO3 then test urine pH → titrate to >7.5

- Hemodialysis \rightarrow if patient looking sicker post alkalinisation treatment
 - Severe acid-base imbalance
 - ↑Neuro deficits → seizure, cerebral edema
 - Resp deterioration
- TCA toxicity:
 - Examples = Amitriptyline, Imipramine
 - o Main Targets:
 - NEURO \rightarrow **\Pi**LOC, seizures
 - CVS $\rightarrow \uparrow$ HR, ψ BP, arrhythmia
 - o Diagnosis:
 - $Hx \rightarrow when, how much$
 - Labs:
 - Routine BW +/- suspected co-ingestant levels (ASA, tylenol)
 - No test for serum TCA serum level
 - ECG (more valuable than labs) → abnormalities ↑ with severity of OD
 - **↑**HR
 - AV block
 - Wide QRS → risk of arrhythmias +/- seizures
 - $\mathbf{\uparrow}$ QT \rightarrow risk of arrhythmias
 - Treatment:
 - Supportive → ABCs
 - Specific \rightarrow NaHCO3
 - Indication = Wide QRS, arrhythmia, hypotension post IVF
 - BZD \rightarrow for seizures
- TOXIC ALCOHOL Toxicity
 - Methanol & Ethylene Glycol → parent compounds (ie. alcohol) not toxic & cause ↑serum Osmol
 - Metabolized to **acids** = TOXIC (no effect on serum osmol, but cause AG metabolic acidosis)
 - Methanol → metabolized to <u>formic acid</u> (toxic)
 - Targets:
 - EYES → blindness via optic nerve
 - NEURO \rightarrow \checkmark LOC, ataxia, seizures
 - Ethylene Glycol → metabolized to <u>oxalic acid</u> (toxic)
 - Targets = KIDNEYS
 - o Diagnosis:
 - $Hx \rightarrow$ when, how much (try to obtain original container)
 - Px:
- VS $\rightarrow \land$ RR from metabolic acidosis
- $lack \Psi$ visual acuity, Ψ LOC +/- seizurs
- Labs:
 - Routine BW
 - Serum osmolality + Blood gas
 - Serum toxic alcohol levels (ie. fractioned alcohol level)
 - o Compare level with osmol gap
- o Treatment:
 - Goal = BLOCK metabolism via enzyme responsible (alcohol dehydrogenase)
 - **Ethanol** infusion \rightarrow binds to enzyme, blocking other alcohol metabolism
 - **Fomepizole** → deactivates enzyme
 - REMOVE metabolites → hemodialysis
 - Not required if initiation of treatment before conversion to metabolites occurs