

Lauren Schmiedeler

PROJECT STEPS

DATA PREPARATION

Read Data, Remove NAs, Assemble Features Using Vector Assembler, Create Training and Test Sets

MODELING AND PREDICTION

Linear Regression, Decision Tree, Random Forest, Gradient Boosted Tree, Prediction, Evaluation, Hyperparameter Tuning

DATA PREPARATION

Assemble Features Using Vector Assembler, Scale Features Using Min Max Scaler

CLUSTERING

K-Means, Evaluation

DATA PREPARATION: OVERVIEW

This dataset is from Kaggle and includes taxi trips for 2016, reported to the City of Chicago in its role as a regulatory agency.

Descriptions of Relevant Features:

• **trip_seconds:** time of the trip in seconds

number of rows = 19866157

- **trip_miles:** distance of the trip in miles
- fare: the fare for the trip

+	+					+	++
taxi_id trip_start_timestamp trip_end_timestamp	trip_seconds	trip_miles	pickup_census_tract	dropoff_census_tract	pickup_community_area	dropoff_community_area	fare
85 2016-01-13 06:15:00 2016-01-13 06:15:00	180	0.4	null	null	24	24	4.5
2776 2016-01-22 09:30:00 2016-01-22 09:45:00	240	0.7	null	null	null	null	4.45
3168 2016-01-31 21:30:00 2016-01-31 21:30:00	0	0.0	null	null	null	null	42.75
4237 2016-01-23 17:30:00 2016-01-23 17:30:00	480	1.1	null	null	6	6	7.0
5710 2016-01-14 05:45:00 2016-01-14 06:00:00	480	2.71	null	null	32	null	10.25
1987 2016-01-08 18:15:00 2016-01-08 18:45:00	1080	6.2	null	null	8	3	17.75
4986 2016-01-14 04:30:00 2016-01-14 05:00:00	1500	18.4	null	null	null	null	45.0
6400 2016-01-26 04:15:00 2016-01-26 04:15:00	60	0.2	null	null	16	16	3.75
7418 2016-01-22 11:30:00 2016-01-22 11:45:00	180	0.0	null	504	8	32	5.0
6450 2016-01-07 21:15:00 2016-01-07 21:15:00	0	0.0	null	null	null	null	3.25
+	4					4	44

DATA PREPARATION: STEPS

- Create a list containing the file names of the monthly csv files using os.listdir().
- Read in the monthly csv files using **spark.read.csv()**.
- Select only the necessary columns (trip_seconds, trip_miles, and fare).
- Remove the rows that contain NAs in any of the three remaining columns.

number of rows = 19862606

- Assemble the trip_seconds and trip_miles columns into a features column using VectorAssembler().
- Rename the fare column label.
- Create a **training set** that contains 70% of the data and a **test set** that contains the remaining 30% of the data (seed = 100).

number of observations in the training set = 13902282 number of observations in the test set = 5960324

DATA PREPARATION: SUMMARY OF DATA (BEFORE TRAIN/TEST SPLIT)

df.show(10)

	+
far	summary
	+
1986260	count
13.89208666476087	mean

df.summary.show()

label	trip_seconds	trip_miles	features
4.5 4.45 42.75 7.0 10.25 17.75 45.0 3.75 5.0	180 240 0 480 480 1080 1500 60	The state of the s	[240.0,0.7] (2,[],[]) [480.0,1.1] [480.0,2.71] [1080.0,6.2] [1500.0,18.4] [60.0,0.2]
3.25	0	0.0	

count 19862606 19862606 19862606 mean 13.892086664760871 767.0163579240307 3.394684370219944 stddev 25.385934033731534 1060.416563035996 22.597176756854346 min 0.0 0 0.0 25% 6.25 300 0.1 50% 8.5 540 1.1 75% 14.25 900 2.7 max 9999.0 86399 3353.1	summary	fare	trip_seconds	trip_miles
	mean	13.892086664760871	767.0163579240307	3.394684370219944
	stddev	25.385934033731534	1060.416563035996	22.597176756854346
	min	0.0	0	0.0
	25%	6.25	300	0.1
	50%	8.5	540	1.1
	75%	14.25	900	2.7

MODELING AND PREDICTION: STEPS

- Using the **training data**:
 - Build a **linear regression** model with elastic net regularizers using **LinearRegresion(elasticNetParam = 0.5)**.
 - Build a decision tree model using DecisionTreeRegressor(seed = 100).
 - Build a random forest model using RandomForestRegressor(seed = 100).
 - Build a **gradient-boosted tree** model using **GBTRegression(seed = 100)**.
- Using the **test data**, make **predictions** for each model.
- **Evaluate** the models using the predictions.
 - Find RMSE and R².
- Select the best model.
- Perform hyperparameter tuning on the best model using CrossValidator(seed = 100).

MODELING AND PREDICTION: EVALUATION

+	+	++
model	RMSE	R2
+	+	++
GBTRegressor	23.25334	0.19844
RandomForestRegressor	23.35318	0.19154
DecisionTreeRegressor	23.35943	0.19111
LinearRegression	24.86094	0.08378
+	+	++

- The **linear regression** model is slightly worse than the other models based on RMSE and quite a bit worse based on R².
- The other three models perform similarly with the **gradient-boosted tree** model performing slightly better than the **decision tree** and **random forest** models.
- However, the **decision tree** model is **simpler** than the other two.

MODELING AND PREDICTION: HYPERPARAMETER TUNING

DecisionTreeRegressor(seed = 100)

CrossValidator(numFolds = 3, seed = 100)

Possible Parameters:

- minInstancesPerNode = [1, 2, 4]
- maxDepth = [5, 10]

Best Parameters:

- minInstancesPerNode = 4
- maxDepth = 10

RMSE = 23.24027

 $R^2 = 0.19934$

+	·+
label	prediction
+	++
9500.45	40.2066219178905
9476.21	57.00532193803531
9300.45	35.75285125770721
9276.62	57.00532193803531
9026.31	26.85222517245868
9002.29	37.87905074626866
9001.52	15.904370564212362
9001.17	9.123955842988858
9001.0	12.069101031367095
9000.62	7.2128795830498325
+	++

For large labels, the predictions are very far off from the true values.

DATA PREPARATION: STEPS

- Consider only the **training data**.
- Assemble the trip_seconds, trip_miles, and fare (label) columns into a k_means_features column using VectorAssembler().
- Scale the features and create a k_means_features_scaled column using MinMaxScaler(min = 0, max = 1).
 - Without scaling, only the larger features will affect the k-means clustering.
 - In this situation, **trip_seconds** (mean = 767) would completely outweigh **fare** (label) (mean = 13.9) and especially **trip_miles** (mean = 3.4).
 - After scaling, the values for each feature are between 0 and 1.
- Select only the columns relevant to k-means clustering (all the columns except **features**).

DATA PREPARATION: SUMMARY

label trip_seconds trip_miles k_m	neans_features	k_means_features_scaled
9890.12 11820	1820.0,161.6,9890.12] 980.0,0.0,9800.45] 140.0,716.0,9739.58] 780.0,0.0,9600.48] 1220.0,0.0,9500.45] 190.0,91.8,9490.61]	[1.388904964177826E-4,0.0,1.0] [0.13680713897151586,0.048194208344517014,0.9891109110911093] [0.02291693190893413,0.0,0.9801430143014302] [0.013194597159689347,0.2135337448927858,0.974055405540554] [0.04375050637160152,0.0,0.9601440144014] [0.025694741837289783,0.0,0.9501400140014002] [0.0034722624104445653,0.027377650532343208,0.9491559155915592] [0.01111123971342261,0.0,0.940118011802] [0.0375004340328013,0.0,0.92013801380138] [0.04166714892533478,0.0,0.9201370137013702]

CLUSTERING: STEPS

- Consider only the **training data**.
- Create ten different **k-means** models, each using a different value of k.
 - Try k = 2, 3, 4, ..., 11.
- Evaluate the k-means models.
 - Find the **silhouette value** for each model.
- Select the **best value of k** using the **silhouette values**.
 - Consider the large size of the data.

CLUSTERING: EVALUATION

- The best silhouette value is associated with k = 2, and the second-best silhouette value is associated with k = 5.
- Considering the size of the data (the training data contains almost 14 million observations), I would use k = 5 instead of k = 2.
- Splitting a dataset this large into 5 clusters seems more reasonable than splitting it into only 2 clusters.