## Начало работы с **GMT**

Обсудить в форуме Комментариев — 5

Эта страница опубликована в основном списке статей сайта по адресу http://gis-lab.info/qa/gmt.html

Описание работы с GMT на конкретном примере.

## Введение

GMT (Generic Mappnig Tools) — набор из 60-и консольных инструментов, направленных на обработку географических данных и на создание высококачественных Encapsulated PostScript (EPS) иллюстраций этих данных от простых х-у графиков, до искусственно освещенных карт рельефа и 3-х мерных изображений моделей поверхностей. Начиная в 1988 году с нескольких несложных картографических программ в дипломной работе двух студентов, сейчас GMT это мощная, полнофункциональная ГИС широко распространенная по всему миру в научной сфере. GMT поддерживает около 30 проекций, имеет данные о береговых линиях континентов, рек и политических границах, которые использует для построения карт. Несмотря на внушительный набор возможностей по обработке данных, основная цель GMT — это уменьшение количества времени, затрачиваемых на подготовку высококачественных иллюстраций для публикаций в научных журналах, проектах или слайдов для презентаций.

Основным отличием GMT от большинства ГИС является отсутствие графического интерфейса, что многим кажется большим неудобством. Однако, при большом объеме обрабатываемых данных и большом количестве карт, которые требуется получить на выходе, это является скорее достоинством. Можно легко написать скрипт, который сам будет извлекать требуемую порцию данных, соответствующим образом их обрабатывать, и оформлять все это дело в карту.

Почти все GMT-инструменты посылают на стандартный выход код на языке Postscript. Этот код является каким либо элементом карты. Стандартный выход мы можем просто перена и записать в нужный нам файл или приписать к уже существующему ("> file" или ">> file" после вызова утилиты). Этим достигается необычайная гибкость - одну карту мы рисуем последовательно вызывая утилиты, каждая из которых добавляет в файл свою порцию данных (рамка, изолинии, маршруты, точки, надписи, масштабная линейка, легенда и т.п.). По этой причине, последовательность вызовов утилит принято оформлять в shell-скрипт, незначительно отредактировав который мы можем перерисовать карту, или нарисовать новую.

## Пример

Рассмотрим процесс оформления карты подробнее.

Допустим, мы имеем грид ЦМР на Чукотский полуостров (<u>скачать</u>) . Чтобы отобразить его с помощью GMT, создадим вот такой скрипт:

```
#!/bin/bash
makecpt -Ctopo -T1/1300/1 > map.cpt
grdimage elev.grd -R-178/-168/64/68 -JM16c -Cmap.cpt -K > map.ps
psbasemap -R -J -B2/1 -O >> map.ps
```

Сохраним его под именем gmt.sh. Для запуска скрипта откроем терминал (консоль) и перейдем в папку где он хранится. Разрешим выполнение файла скрипта набрав: chmod u+x gmt.sh Теперь мы можем его запустить: ./gmt.sh

После запуска скрипта, в его каталоге появиться наша карта - файл map.ps. Его можно просмотреть с помощью

любого просмотрщика, поддерживающего формат PostScipt. Разработчики рекомендуют использовать ghostview.



Посмотрим на работу скрипта шаг за шагом.

Строка 1 - стандартное начало любого Unix-скрипта - путь к программе-интерпретатору.

Строка 2- создаем цветовую палитру (файл map.cpt) для карты командой makecpt.

| -Ctopo                                                                         | -T1/1300/1                                                                                                         |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Имя палитры (одной из 20 палитр, имеющихся в GMT) которую мы возьмем за основу | Интервал значений, для которого следует создавать таблицу. Интервал значений грида можно узнать командной grdinfo. |

Строка 3 - отрисовка грида командой **grdimage**. С этой командом необходимо использовать большое количество флагов в которых с первого раза легко запутаться (для GMT это нормально). Разберем их подробнее:

| elev.grd                      | -R-178/-168/64/68                                                                  | -JM16c                                      | -Cmap.cpt                                   | -К                                         |
|-------------------------------|------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------------------|
|                               |                                                                                    |                                             |                                             |                                            |
| имя грида<br>для<br>отрисовки | Размер региона<br>(minx/maxx/miny/maxy),<br>который будет<br>отрисовываться (может | Проекция<br>Меркатор.<br>Ширина<br>экватора | Использовать<br>цветовую палитру<br>map.cpt | После текущей команды ожидается следующая. |

быть больше или нарисованной меньше размеров карты составит рисуемого грида) 16 сантиметров.

Теперь назначение флагов стало более или менее понятно, кроме последнего -К. Этот флаг отсекает добавление в файл нашей карты финализирующей части postscript кода, для того чтобы следующие gmt-инструменты могли добавить к карте новые детали.

Строка 4 - создание рамки и координатной сетки командой psbasemap. Описание использованных флагов:

-B2/1 -R -J -0 Использовать тот же Добавить к Использовать ту же Расставить подписи размер, что и при координатной сетки на существующему проекцию, что и при вызове предыдущей вызове предыдущей оси Х через 2 градуса, файлу. команды команды на оси Ү через 1 градус.

Знакомые нам флаги -R и -J, задающие регион и проекцию на этот раз используются без параметров. GMT догадается использовать такие же параметры региона и проекции как и при выполнении прошлой команды. Флаг -О аналогичен флагу -К, но действует наоборот - отсекает вступительную часть postscript кода, для того чтобы корректно добавить новый фрагмент карты в уже существующий файл. Далее по тексту, в таблицах объяснений параметров, объяснения параметров -J, -R, -O, -К пропускается.

Как видим, пока ничего сложного. Только вот на карте отсутствует береговая линия, и океан. Нарисуем океан вставив перед **psbasemap** следующую строку:

pscoast -R -J -Slightblue -O -K -Df >> map.ps
-Slightblue -Df

Закрасить моря и Использовать высокое океаны светло-серым разрешение для данные о цветом. береговой линии.

**Pscoast** рисует не только моря или океаны, но и континент (если задана опция -G) и береговую линию (опцией -W) и гидросеть (опцией -I) и даже политические границы (опцией -N). Мы задали лишь опцию -S, в результате океан залит светло-серым цветом и наша карта выглядит уже вполне сносно.



Поэкспериментируем с результатом. Чтобы не загружать процессор понапрасну, будем отрисовывать на карте только береговую линию, закомментировав третью строку и слегка изменив четвертую:

```
#!/bin/bash
makecpt -Ctopo -T1/1300/1 > map.cpt
#grdimage elev.grd -R-178/-168/64/68 -JM16c -Cmap.cpt -K > map.ps
pscoast -R-178/-168/64/68 -JM16c -Slightblue -K -Df > map.ps
psbasemap -R -J -B2/1 -O >> map.ps
```



Попробуем в третей строчке вместо **-JM16c** написать **-JM16i** изменив тем самым ширину экватора с 16 сантиметров на 16 дюймов. Запустим скрипт и увидим, что в нашем файле уместился только край карты.



Вернуть все назад можно написав **-JM6c**, и размер карты будет совпадать с размером 16-и сантиметровой карты. От цилиндрической проекции перейдем к конической написав **-JB-173/66/64/68/6i** (Albers projection -JBlon0/lat0/lat1/lat2/width).



Уменьшим разрешение береговой линии с полного (full) до минимального (crude) изменив параметр -D команды pscoast c -**Df** на -**Dc**.



Граница сильно генерализована, но для крупномасштабной карты такая степень генерализации в самый раз. Азимутальная проекция **-JS-173/66/6i** (General Stereographic - JSlon0/lat0/width).



Изменим проекцию, а заодно и размеры региона с -R-180/180/-90/90 на -JG-180/40/20с.



Установим следующие параметры: -R-178/-176/66/67-JM16c, и перед **psbasemap** вставим строку:



Команда grdcontour отображает изолинии поверхности грида и имеет следующие параметры:

| elev.grd           | -C100             | -A200+kblack                  |
|--------------------|-------------------|-------------------------------|
|                    |                   |                               |
|                    |                   |                               |
| грид, для которого | Интервал изолиний | Через каждые 200 м будет      |
| надо нарисовать    | 100 м.            | нарисована сплошная изолиния, |
| изолинии           |                   | и подписана шрифтом черного   |
|                    |                   | цвета.                        |

Вернем наш скрипт к первоначальному варианту и изменим проекцию на цилиндрическую:

```
#!/bin/bash
makecpt -Ctopo -T1/1300/1 > map.cpt
grdimage elev.grd -R-178/-168/64/68 -JB-173/66/64/68/6i -Cmap.cpt -K > map.ps
pscoast -R -J -Slightblue -O -K -Df >> map.ps
psbasemap -R -J -B2/1 -O >> map.ps
```

Неплохо было как-нибудь бы озаглавить нашу карту. Чуть-чуть исправим строчку psbasemap:

```
psbasemap -R -J -B2/1:."Цифровая модель рельефа Чукотского полуострова": -O -V >> map.ps
```

Для нормального отображения кириллицы в ps-файле, файл нашего скрипта нужно сохранить в кодировке ISO-8859-5, а в начале скрипта, перед вызовом остальных gmt инструментов, добавить сразу после !#/bin/bash:

```
gmtset CHAR_ENCODING ISO-8859-5
```

# 

Команда **gmtset** устанавливает глобальные параметры для GMT, хранящиеся в файле .gmtdefaults4 в директории \$GMTHOME (каталоге установки GMT). Перед тем как производить какие-либо изменения в этом файле, gmtset копирует его в текущую директорию, и изменяет копию. Все последующие gmt-инструменты обнаружив .gmtdefaults4 в текущей директории, будут брать настройки из него. Поэтому, для того чтобы не возникало недоразумений (особенно, когда в одной директории хранится сразу несколько скриптов), перед завершением скрипта лучше удалить этот файл, а заодно и .gmtcommands, в котором хранится история введенных параметров, общих для всех gmt-инструментов (-R, -J, -P, и др.):

rm .gmt\*

Примечание: К сожалению, поддержка русского языка в GMT слабая. Если вы запустите этот скрипт, то в терминале увидите сообщения **psbasemap** о том что символы для обозначения градусов, минут и секунд отсутствуют, и поэтому он вставит на их место пробелы. Также, если вы конвертируете post-script в pdf (например командой ps2pdf) то, в зависимости от просмотровщика, все символы сползут со своих мест. Впрочем, Acrobat Reader 7.0 такие pdf-файлы отображает корректно.

Один из способов решения этой проблемы предложил <u>Михаил Чернышев</u>, и заключается он в установке дополнительных кирилических шрифтов в ghostscript, и ссылки на них в gmt. После этого шрифты можно использовать в gmt под номерами 36 и больше. Однако, стоит отметить, что ps-файлы, полученные таким способом будут корректно отображаться только на компьютере с установленными кирилическими шрифтами в ghostsript.

Изменим шрифт заголовка с Times на Helvetica:

gmtset CHAR\_ENCODING ISO-8859-5 HEADER\_FONT 1 HEADER\_FONT\_SIZE 20

## **Цифровая модель рельефа Чуко**т

Теперь, добавим поселки и их названия. Отрисовка векторных элементов в GMT осуществляется командой **рѕху** для двухмерной карты и **рѕхуг** для псевдо-трехмерного изображения. Эти команды визуализируют векторные объеты, передаваемые им в формате .ху (или .хуг), который является простым текстовым файлом, в каждой строчке которого содержится координаты х и у (и z, в формате .хуг). Например:

```
-173.19806733
                    64.45356668
-172.84372109
                    64.50418757
-172.26769026
                    64.41341907
-171.72657038
                    65.50962321
-171.01264126
                    65.58991841
-169.79599432
                    66.15896705
-171.89763408
                    66.96541022
-173.00954815
                    67.03523214
-174.95932524
                    67.42972598
-175.84780916
                    67.83294757
-175.82511704
                    65.00515984
                    64.80442182
-175.41316772
```

Сохраним список в файл points.xy. Следующая команда нарисует на месте поселков белые кружочки.

```
psxy points.xy -J -R -Sc0.14 -W2black -Gwhite -O -K -V >> map.ps
```

роints.xy -Sc0.14 -W2black -Gwhite

ху-файл, содержащий Рисуем кружок координаты поселков радиусом 0.14 см. Кружок нарисуем карандашом черного цвета и толщиной 2



Чтобы напротив каждого поселка написать его название воспользуемся командной **pstext**. Pstext размещает на карте в заданных местах надписи, определенного размера, и начертания, построчно записанные в простом текстовом файле. В каждой строке такого файла написаны х-у координаты (как в .xy файле), размер надписи, наклон, номер ps-шрифта, выравнивание по вертикали (М-по середине, Т-по верху, В-по низу) и выравнивание по горизонтали (L-лево, C-центр, R-право), и, собственно, надпись. Вот как такой файл будет выглядеть для надписей названий поселков (скачать):

| -173.19806733 | 64.45356668 | 8 | 0 | 2 | TR               | Прові | идения  |
|---------------|-------------|---|---|---|------------------|-------|---------|
| -172.84372109 | 64.50418757 | 8 | 0 | 2 | ${\tt BL}$       | Нов.  | Чаплино |
| -172.26769026 | 64.41341907 | 8 | 0 | 2 | $_{\mathrm{BL}}$ | Чаплі | ино     |
| -171.72657038 | 65.50962321 | 8 | 0 | 2 | ${\tt TL}$       | Лори  | HO      |

| -171.01264126 | 65.58991841 | 8 0 2 TL Лаврентия   |
|---------------|-------------|----------------------|
| -169.79599432 | 66.15896705 | 8 0 2 BL Уэлен       |
| -171.89763408 | 66.96541022 | 8 0 2 BL Энмурино    |
| -173.00954815 | 67.03523214 | 8 02 BL Нешкан       |
| -174.95932524 | 67.42972598 | 8 0 2 BL Нутэпельмен |
| -175.84780916 | 67.83294757 | 8 0 2 BL Ванкарем    |
| -175.82511704 | 65.00515984 | 8 0 2 TR Энмелен     |
| -175.41316772 | 64.80442182 | 8 0 2 TR Нунлингран  |

По сути дела, это дополненный файл points.xy. Мы смело можем удалить его, а на его месте сохранить наш новый файл. **psxy** после этого также будет рисовать кружочки, а **pstext** из этого же файла надписи к ним:

pstext points.xy -J -R -Dj0.1c/0.1c -Gblack -K -O >> map.ps

-Dj0.1c/0.1c

| файл, содержащий    | Смещение координат каждой      | Поселки         |
|---------------------|--------------------------------|-----------------|
| координаты поселков | надписи для того чтобы надписи | подписывать     |
| и их названия       | не наползали на символы        | шрифтом черного |
|                     | поселков.                      | цвета           |

-Gblack

## Надписи заливов и морей сохраним в файле <u>names.xy</u>:

points.xy

| -171   | 67.5 | 14 -10 0 МС Чукотское море |
|--------|------|----------------------------|
| -176.5 | 64.5 | 14 0 0 МС Анадырский залив |
| -168.8 | 66   | 10 80 0 МС Берингов Пролив |
| -171.6 | 65.3 | 8 -10 0 MC Мечигменский    |
| -171.6 | 65.2 | 8 <b>-</b> 10 0 MC залив   |
| -174.2 | 66.8 | 8 -10 0 МС Колючинская     |
| -174.2 | 66.7 | 8 -10 0 МС губа            |

## И отобразим их командой:

```
pstext names.xy -J -R -Gblack -K -O >> map.ps
```



Теперь, неплохо было бы добавить к карте шкалу высот рельефа.

psscale -Cmap.cpt -D8c/-2c/8c/0.3ch -B100:"Высота рельефа":/:"метры": -A -O -K >> map.ps

-Cmap.cpt -D8c/-2c/8c/0.3ch -B100:"Высота -A рельефа":/:"метры":

Цветовая палитра, для которой рисуется странице с центром в шкала точке на 8 см правее

странице с центром в на шкале через 100 точке на 8 см правее и на и сделать подпись 2см ниже левого на шкале "Высота рельефа", а на Параметр h рисует горизонтальную шкалу (по умолчанию она вертикальная).

Установить деления Подпись и на шкале через 100 м деления и сделать подпись поместить над на шкале "Высота шкалой. рельефа", а на делениях - "метры".



Чтобы нарисовать масштабную линейку к команде **psbasemap** нужно добавить флаг -Lflat0/lon0/lon/lenght. Мы добавим так: -Lf-173/64.2/66/50:"км":r. После этого на карте в точке с координатами 1173/64.2 отобразиться масштабная линейка, отображающая горизонтальный масштаб для широты 66 градусов,

протяженностью в 50 км, с подписью "км", размещенной справа.



В завершение, в левом нижнем углу карты разместим схематичный фрагмент окрестностей мелкого масштаба (карту врезку), на котором выделим наш регион:

```
pscoast -R160/210/45/70 -JB-175/60/50/70/5c -O -K -Wthinnest,black -X10.5c -A400 >>
map.ps
psxy -R -J -L -Wthinnest,black -O <> map.ps
182 64
182 68
192 68
192 64
EOF
```



### -R160/210/45/70 -JB-175/60/50/70/5c -Wthinnest,black -X10.5c -A400

размер региона Коническая Береговая сместить Упростить проекция, и ширина линия черная, карту вправо береговую линию, карт по горизонтали тонкая на 10,5 см. отсечением - 5 см элементов, площадь которых меньше 400 м2.

Границы региона рисуем командой рѕху:

-L -Wthinnest,black <<EOF

Замкнуть Линия черная, координаты кривой находятся не в рисуемую кривую тонкая файле, а следуют после текущей команды, и завершаются строкой 'EOF'

Содержание результирующего скрипта (скачать скрипт):

```
#!/bin/bash
 gmtset CHAR ENCODING ISO-8859-5 HEADER FONT 1 HEADER FONT SIZE 20
 makecpt -Ctopo -T0/1300/1 > map.cpt
 grdimage elev.grd -R-178/-168/64/68 -JB-173/66/64/68/6i -Cmap.cpt -K > map.ps
 pscoast -R -J -Slightblue -O -K -Df >> map.ps
 psxy points.xy -J -R -Sc0.14 -W2black -Gwhite -O -K -V >> map.ps
 pstext points.xy -J -R -Dj0.1c/0.1c -Gblack -K -O >> map.ps
 pstext names.xy -J -R -Gblack -K -O >> map.ps
 psscale -Cmap.cpt -D8c/-2c/10c/0.3ch -B100:"Высота рельефа":/:"метры": -A -O -K >>
psbasemap -R -J -B2/1:."Цифровая модель рельефа Чукотского полуострова": -Lf-
173/64.2/66/50:"km":r -O >> map.ps
pscoast -R160/210/45/70 -JB-175/60/50/70/5c -O -K -Wthinnest, black -X10.5c -A400 >>
map.ps
      -R -J -L -Wthinnest, black -O <> map.ps
 psxy
 182 64
 182 68
 192 68
 192 64
 EOF
 rm .qmt*
```

## Заключение

Как видно, с помощью GMT несложно создавать качественные карты. Простота внутреннего формата данных, а также большое разнообразие поддерживаемых форматов, позволяет использовать GMT в связке с любой ГИС и в любом проекте. А широкий выбор предустановленных параметров позволяет отвлечься от дизайнерской рутины, и сосредоточиться на более важных аспектах работы.

GMT распространяется под лицензией GPL, ее можно свободно скачать с <u>официального сайта</u>. На сайте представлена удобная форма, позволяющая относительно легко получить исходный код и скомпилировать его на компьютере с установленной ОС Linux. Для установки GMT можно ознакомиться с <u>небольшой инструкцией</u> на русском языке . GMT есть в репозиториях многих дистрибутивов, однако установка программы из них сопровождается некоторыми трудностями. Возможное их решение описано <u>здесь</u>.

Данное описание проверено на работоспособность под UNIX. Разработчики утверждают, что программу можно использовать также и и под Windows. На официальном ftp-сервере есть уже скомпилированная версия для win-32. Однако, GMT зависит от ряда классических UNIX утилит (например, awk), так что проще будет установить cygwin, и запустить GMT в нем.

Обсудить в форуме Комментариев — 5

Последнее обновление: 2014-05-15 01:27

Дата создания: 04.04.2008 Автор(ы): Михаил Кондратьев