# Mushroom Classification Using Logistic Regression, Linear Regression, and Naïve Bayes

Nicolas DeMilio
Department of Computer Science
SUNY New Paltz
Email: demilion1@newpaltz.edu

Abstract—Mycotourism, also known as Mushroom foraging, is the practice of collecting wild mushrooms for consumption or recreational use. However, this hobby comes with some risk from the uncertainty when distinguishing the difference between poisonous and edible mushrooms. This is where data driven classification comes into play; With the use of the UCI Mushroom Dataset, which contains roughly eight thousand instance of mushrooms while recording 22 categorical features, one can make use of machine learning algorithms such as Naive Bayes, Linear Regression, and Logistic Regression to identify which mushrooms are edible and poisonous. The process to implement these algorithms encompass data cleaning, categorical feature hot-encoding, dataset partitioning, and model training. TODO: ATTACH RESUTLS

#### I. Introduction

Mycotourism, a popular activity all around the world in countries like Spain, Poland, the Netherlands, and many more. Originally used for survival, mycotourism has developed into a popular hobby by many recreationally. Keeping in mind the overhead or risk when participating, one can become extremely ill with just one misidentification.

By capitalizing existing machine learning algorithms such as Naive Bayes, Linear Regression, and Logistic Regression one can aid in a mushroom edibility classification. Features such as cap color, odor, and habitat to apply the various supervised machine learning algorithms for binary classification. Additionally, one can compare each algorithm to one another to determine effectiveness on the dataset.

The problem being investigated can be formally defined as: Given a dataset consisting of categorical mushroom attributes with a tag for edibility, is it possible to train a machine learning model to identify whether or not a mushroom is edible? This problem consists of a binary classification that is poisonous or edible based on given categorical attributes. To accomplish this we use the UCI Mushroom dataset that is presented as a csv. Clean the data by removing incomplete entries and hot-encoding columns accordingly. Doing this minimalizes error and increases the model's reliablilty because it ensures a complete and high quality dataset. Then each model was trained on a partitioned portion of the dataset and evaluated on the other.

### II. MOTIVATION

The motivation for this investigation stems from public health and data science perspectives. Just alone in the USA there are over 7,000 cases of poisoning from mushrooms a year. The majority of these incidences are due to misidentification of mushrooms. The silver lining is that most these incidents aren't fatal but there are a couple couple lives taken among the statistics. Mushroom foraging has typically been a hobby typically passed through social learning, person to person. Given the state of the data available and machine learning algorithms, it is assumed that machine learning cannot replace the knowledge held by hobbyists and experts. Therefore it would be better to supplement the identification of edibility. From the data science perspective this type of categorical data is ideal for a machine learning model. Therefore its a great opportunity to compare different models doing the same task to emphasize strengths and weaknesses between one another.

## III. RELATED WORK

The UCI Mushroom dataset is a well known benchmark for binary classification tasks. There are 77 papers known to be have cited this dataset at this time (Oct 2025). The earlier papers were known to use this dataset for data mining research whereas whithin the last 10 years the focus really turned to machine learning research. Most of these works are focused on the technical advancement of solving classification problems. A paper from May 2019 by Taiping He and others, called **High-Performance Support Vector Machines and Its Applications** was focused on scaling the support vector machine classification technique via cloud computation disrtibution technique along with minimizing intercommunications between machines.

The tools resulting from these algorithms are a fantastic supplement for practicing safe foraging practices. For example a tool like this would help prevent cross contamination between mushrooms in the sense of putting a poisonous one in with the edible mushrooms, although they should be kept separated by type until consumption.

Going outside the scope of the dataset, there are studies done via computer vision and deep learning in attempt to capture some of the cultural or ecological aspects. Aspects such as the environment its in as well as species. There are many european cultures that are deeply intertwined with mycology. There was a social study conducted in Poland in March of 2024 by Mikotaj Jalinik called **Mushroom Picking as a Special Form of Recreation and Tourism in Woodland Areas**. Of which focused on the benefits of mushrooms in

health, recreation, and tourism. In poland mycology has proven to play a large cultural role in recreation and a tourism asset. However, it is still found that the knowledge of health benefits of mushrooms seems to be a mystery to most.

## IV. METHODS

# A. Dataset

The Mushroom dataset contains 8124 entries of mushroom examples while covering 22 features for each example. We obtained this dataset from Kaggle.com.Each mushroom is labeled as either edible (e) or poisonous (p). Features include attributes such as cap shape, surface, color, odor, gill size, and habitat. Each feature has categorical values consisting of letters  $ie.\ mushroom\ color = red\ (r)$ , shows how a color can be represented by a letter. The dataset was made in 1981 by the University of California, Irving, and spans 23 different classes of mushrooms. It's worth mentioning that the dataset states that there is no difinitive rule for declaring mushrooms to be poisonous, ie. "leaflets three, let it be" for poison ivy/oak.

# B. Data Preprocessing

For preprocessing we started by cleaning the dataset via removing imcomplete entries. In other words we remove examples that contain any features missing. This allows us to avoid any bias coming from the model not being able to identify trends among features. This step also generally increases the quality of the data, but also decreases the amount of entries by roughly 30%. Then we fixed the naming convention to follow snake case, multi\_word\_var, from the starting kebab case, multi-word-var. Then all that was left was to shuffle the dataset with a seed for reproducability and separate features from outputs. The reason we separate features and outputs is to give the model a clear prediction target.

## C. Algorithms Implemented

Each algorithm implementation on the data set followed the same method with some minor differences. First is to partition the newly cleaned dataset into 2 partitions, training and testing, we start with and 80/20 split respectively. From there generically fit the line using the base paramters provided, this gives a preview to the accuracy. Then since the dataset is small, cross-validation is a great resource to really validate our data. We use a k-fold cross validation algorithm with 5 folds. Its standard to use folds in multiples of 5. The three algorithms we train with are the following:

• Logistic Regression: Used for binary classification. Regularization was applied to prevent overfitting. We use hyperparamters, which in this context are learning settings for the model, such as ensuring even spacing between a feature's categorical range, prevent coefficients from going to zero, and ensure we use stochastic gradient descent. Stochastic gradient descent uses one example at a time to reduce variances in dataset, its means is using a memory of past gradients to reduce noise, it takes longer but is effective in this case due to our small dataset.

- Linear Regression: Used as a baseline to demonstrate
  the faults of regression algorithms for categorical outputs.
  We didn't do anything special to these hyparameters
  except using a scaler serves the purpose of ensuring
  each feature's range is proportionate for each category
  encapsulated.
- Naïve Bayes: Implemented using a categorical distribution (GaussianNB). Suitable for this dataset since features are discrete and can be assumed to be independent of one another given the current state of information on mushroom identification. For the hyperparameters we implement "variable smoothing" to ensure coefficients do not sky rocket to 1 or plummet to 0. If this were to happen we'd obtain severely underfitted skewed results.

### D. Evaluation Metrics

Model performance was evaluated using multiple metrics and visualizations to provide comprehensive assessment. Each model was evaluated on accuracy, precision, recall, F1-score, Mean Squared Error (MSE), and Area Under the ROC Curve (AUC). Confusion matrices visualize classification performance by showing true positives, true negatives, false positives, and false negatives for each model (Figures 1, 2, 3). Receiver Operating Characteristic (ROC) curves plot the true positive rate against the false positive rate across all classification thresholds (Figures 4, 5, 6).



Fig. 1: Confusion Matrix for Logistic Regression.



Fig. 2: Confusion Matrix for Linear Regression.



Fig. 3: Confusion Matrix for Naïve Bayes.



Fig. 4: ROC curve with AUC score for Logistic Regression.



Fig. 5: ROC curve with AUC score for Linear Regression.



Fig. 6: ROC curve with AUC score for Naïve Bayes.

### V. RESULTS

TODO: Implement

#### VI. CONCLUSION

TODO: Implement

#### REFERENCES

- [1] G. Alexander, "Responsible Mushroom Hunting," Earth911, Mar. 14, 2023. [Online]. Available: https://earth911.com/home-garden/responsible-mushroom-hunting/
- [2] M. Jalinik, T. Pawłowicz, P. Borowik, and T. Oszako, "Mushroom Picking as a Special Form of Recreation and Tourism in Woodland Areas—A Case Study of Poland," Forests, vol. 15, no. 3, p. 573, 2024, doi:10.3390/f15030573.
- [3] I. Svanberg and H. Lindh, "Mushroom Hunting and Consumption in Twenty-First Century Post-Industrial Sweden," Journal of Ethnobiology and Ethnomedicine, vol. 15, no. 1, 2019, doi:10.1186/s13002-019-0318-z.
- [4] T. He, T. Wang, R. Abbey, and J. Griffin, "High-Performance Support Vector Machines and Its Applications," arXiv preprint, 2019. [Online]. Available: https://www.semanticscholar.org/paper/ High-Performance-Support-Vector-Machines-and-Its-He-Wang/ 72200eb638423bb0810c40eb804633299bb184b9
- [5] UCI Machine Learning Repository, "Mushroom Data Set." [Online]. Available: https://archive.ics.uci.edu/dataset/73/mushroom
- [6] UCIML, "Mushroom Classification," Kaggle. [Online]. Available: https://www.kaggle.com/datasets/uciml/mushroom-classification
- [7] UCI Machine Learning Repository, 1981. [Online]. Available: https://doi. org/10.24432/C5959T
- [8] Becoming Better, "Classification with Machine Learning (Python) Mushroom Dataset," Medium. [Online]. Available: https://medium.com/becoming-for-better/classification-with-machine-learning-python-mushroom-dataset-790a275610df
- [9] R Project, "Mushroom arulesCBA Dataset Documentation." [Online]. Available: https://search.r-project.org/CRAN/refmans/arulesCBA/html/Mushroom.html
- [10] UCI Machine Learning Repository, "Datasets related to ecology." [Online]. Available: https://archive.ics.uci.edu/datasets?Keywords=ecology
- [11] Scikit-learn contributors, "scikit-learn: Machine Learning in Python." [Online]. Available: https://scikit-learn.org/stable/index.html
- [12] Scikit-learn contributors, "Nested versus non-nested cross-validation." [Online]. Available: https://scikit-learn.org/stable/auto\_examples/model\_selection/plot\_nested\_cross\_validation\_iris.html