<u>אלגברה ב – תרגול חזרה למועד א'</u>

1 מה – moodle – מה Exam.B2 קובץ

– ל $f(u,v)=u_1v_2-u_2v_1$ שדה ו $f:F^2\times F^2\to F$ העתקה ביליניארית המוגדרת ע"י $f:F^2\times F^2\to F$ העתקה ביליניארית המוגדרת ע"י $u=(u_1\,u_2),v=(v_1\,v_2)$

 $B = span \{(1,0),(1,1)\}$ א. חשב את המטריצה המייצגת את f ביחס לבסיס הסדור א. חשב את המטריצה המייצגת את $u,v \in F^2$ ולכל $T:F^2 \to F^2$ מתקיים ב. הוכח שלכל אופרטור ליניארי f(T(u),T(v)) = det(T) f(u,v)

פתרון:

היא B פטעיף א' העריצה המייצגת את f ביחס לבסיס ביחס המייצגת את אוווי המטריצה המייצגת את אווי היא ווי המטריצה המטריצה המטריצה המטריצה

:נחשב את הערכים של המטריצה: $[f]_B = \begin{pmatrix} f(v_1, v_1) & f(v_1, v_2) \\ f(v_2, v_1) & f(v_2, v_2) \end{pmatrix}$

$$[f]_{B} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad \text{7"} \quad f(v_{1}, v_{1}) = 0, \quad f(v_{1}, v_{2}) = 1, \quad f(v_{2}, v_{1}) = -1, \quad f(v_{2}, v_{2}) = 0$$

f(u,v)=-f(v,u) מעיף ב'- נשים לב תחילה כי התבנית שלנו היא תבנית מתחלפת (ז"א f(v,v)=0 לכל f(v,v)+f(v,v)

 $u=x_1v_1+y_1v_2$, $w=x_2v_1+y_2v_2$ כלליים, מתקיים $u,w\in F^2$ עבור וקטורים $u,w\in F^2$ כלליים, מתקיים $x_1,x_2,y_1,y_2\in F$

$$f(T(u),T(v))=f(x_1T(v_1)+y_1T(v_2),x_2T(v_1)+y_2T(v_2))=\\ =x_1y_1f(T(v_1),T(v_1))+x_1y_2f(T(v_1),T(v_2))+x_2y_1f(T(v_2),T(v_1))+y_1y_2f(T(v_2),T(v_2))=\\ =(x_1y_2-x_2y_1)f(T(v_1),T(v_2))$$

– מצד שני, נקבל באופן דומה $f(u,v)=(x_1y_2-x_2y_1)f(v_1,v_2)$, לכן מספיק להראות ש . $f(T(v_1),T(v_2))=\det(T)$

: נציב למקרה שלנו ונקבל:
$$f(x,y) = [x]_B^T [f]_B [y]_B$$

$$f(T(v_1),T(v_2)) = (a-c-c) \binom{0}{-1} \binom{a+b-c-d}{c+d} = (a-c-c) \binom{c+d}{-a-b+c+d} = (a-c)(c+d) + c(-a-b+c+d) = ac+ad-c^2-cd-ac-cb+c^2+cd=ad-cb=det(T)$$

באלה 2 moodle – מה Exam.A2 קובץ

יהי עצמו, כלומר ליניארי אופרטור $T\colon V\to V$ ויהי מעל טופי ממימד ממימד אופרטור ויהי C יהי עמימד סופי מעל יהי יהי י $T:V\to V$

א. הוכח כי I+iT הוא אופרטור הפיר (I אופרטור הזהות).

ב. הוכח ש-1 אופרטור אוניטרי. $(I-iT)(I+iT)^{-1}$

. ||7v + 5iT(v)|| = ||7v - 5iT(v)|| $v \in V$ ג. הוכח שלכל

פתרון:

(I+iT)(v)=0 אז נקבל: $v\in V$ מקיים $v\in V$ מקיים $v\in V$ אז נקבל: $v\in V$ מקיים $v\in V$ מקיים $v\in V$ $v\in V$

 $\|v\|^2=0$ כי \overline{t} צמוד לעצמו, לכן $\|v\|^2=0$ כי $\overline{t}=-i$ בפרט חייב להתקיים $\|v\|^2=0$ ז"א v=0 לכן נקבל שI+iT אופרטור חח"ע, לכן הוא על (לפי משפט המימדים), ז"א v=0אופרטור הפיר.

. $\|(I-iT)(I+iT)^{-1}(v)\| = \|v\|$ מתקיים $v \in V$ סעיף ב' – נראה כי לכל $v \in V$, (I+iT)(u)=v , $v \in V$ עבור $v \in V$, לכן נקבל , לכן נקבל . $\|(I-iT)(u)\| = \|v\|$ – ומספיק להראות ש $\|(I-iT)(I+iT)^{-1}(v)\| = \|(I-iT)(u)\|$ u בסעיף הקודם ראינו שעבור $u \in V$ מתקיים $\|(I+iT)(u)\|^2 = \|u\|^2 + \|T(u)\|^2$ מתקיים $u \in V$ $\|v\|^2 = \|u\|^2 + \|T(u)\|^2 - U$ נקבל נחשב ונקבל: I+iT מצד שני נחשב ונקבל: $\|(I-iT)(u)\|^2 = \|v\|^2$ א"ז, $\|(I-iT)(u)\|^2 = \langle (I-iT)(u), (I-iT)(u) \rangle = \|u\|^2 + \|T(u)\|^2$ נקבל את השיוויון של הנורמות הנדרש (כי הנורמה מוגדרת להיות השורש החיובי).

סעיף ג' – נחשב את ערכי הנורמות בריבוע:

אותם שיקולים כמו $\|7v + 5iT(v)\|^2 = \langle 7v + 5iT(v), 7v + 5iT(v) \rangle = 49\|v\|^2 + 25\|T(v)\|^2$ בסעיף א', שהאופרטור הרמיטי ו $\bar{i}=-i$). חישוב דומה ייתן לכן נקבל את הנדרש. $\|7v - 5iT(v)\|^2 = 49\|v\|^2 + 25\|T(v)\|^2$

מועד א' סמסטר חורף תשע"ב, שאלה 3

יהי על ממ"פ מעל C לכל שני וקטורים $x,y \in V$ נגדיר טרנספורמציה ליניארית על . $(x \otimes y^*)(v) = \langle v, y \rangle x$ ע"י $x \otimes y^*$ שנסמנה V

 $(x \otimes y^*)^*$ א. מצאו את הטרנספורמציה הצמודה

ב. מתי $x \otimes y^*$ צמודה לעצמה? מתי היא מוגדרת אי שלילית? מתי היא מוגדרת חיובית? T את שניתן לרשום את , $rank\left(T\right)=k$ טרנספורמציה ליניארית עם $T:V\overset{.}{ o}V$ הראו שניתן לרשום את . $T = \sum_{i=1}^k x_i \otimes y_i^*$ טרנספורמציות מהצורה שהגדרנו, ז"א טרנספורמציות מהצורה של

. $rank(T^*) = rank(T)$ – ש כדי להוכיח ש - א' כדי להוכים ג' ו

פתרון:

סעיף א' $\langle T(v), u \rangle = \langle v, T^*(u) \rangle$ אז מתקיים $T = x \otimes y^*$ לכן נקבל - $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial x}$ ולכן מיחידות הצמוד נקבל בהכרח ש $\langle v, T^*(u) \rangle = \langle \langle v, y \rangle x, u \rangle = \langle v, y \rangle \langle x, u \rangle = \langle v, \overline{\langle x, u \rangle} y \rangle$.($u, v \in V$ כי השיוויון לעיל נכון לכל $T^*(u) = \overline{\langle x, u \rangle} v = \langle u, x \rangle v = (v \otimes x^*)(u)$ –

 $v \in V$ אבייך להתקיים לכל $v \in V$ אבייך להתקיים לכל $T = T^*$ השיוויון: בשני y=0 או x=0 או x=0 בשני x=0 בשני x=0 או x=0 בשני x=0 או x=0המקרים הללו T היא העתקת האפס והצמוד שלה הוא העתקת האפס. המקרה השני הוא

x,y מקיימים x,y מקיימים x,y מקיימים x,y מקיימים x,y מקיימים x,y מקיימים x,y ואז בפרט x,y

וזה $\langle v,x\rangle ax=\langle v,y\rangle x=\langle v,ax\rangle x=\langle v,x\rangle \overline{a}$ וזה $\langle v,x\rangle ax=\langle v,y\rangle x=\langle v,ax\rangle x=\langle v,x\rangle a$ a ממשי. בכיוון $a=ar{a}$, $a=ar{a}$ מתקיים לכל v=x , בפרט עבור v=x- ממשי, אז החישוב למעלה מראה שa-y=ax ההפוך, אם מתקיים y=ax

. צמודה לעצמה $x \otimes y^*$ ז"א $v \in V$ לכל $\langle v, x \rangle y = \langle v, y \rangle x$

לכל $\langle x \otimes v^*(v), v \rangle \geq 0$ מוגדרת אי שלילית כאשר היא צמודה לעצמה ומקיימת $x \otimes v^*$ אז כמובן מקיימת אי שליליות. אחרת נדרש T=0 אם T=0 אם T=0 אם T=0 אם T=0 אם T=0 $a \ge 0$ - כדי שT - u תהיה T - u כדי שT - u לכן סה"כ T - u מוגדרת אי שלילית כאשר u > 0. a>0 - ו $x,y\neq 0$ ז"א $T\neq 0$ מוגדרת חיובית, חייב להתקיים

 $v_1, \dots, v_{n-k} - u$ בסיס של V כך ש $V_1, \dots, V_n - v_n$ נסמן ב $V_1, \dots, V_n - v_n$ ביט של V כך ש

בסיס של $\mathit{Ker}(T)$ אם נבצע על v_1, \ldots, v_n תהליך גרהאם שמידט, נקבל בסיס מתקיים $i \leq n-k$ כי לכל $T(u_i)=0$ מתקיים u_1,\ldots,u_n לכל $T(w_i)=0$ – של V כך ש w_1,\ldots,w_n לכל $(u_i\in span\{v_1,\ldots,v_i\}$ הפיכת סדר האיברים בבסיס). i > k

 $v=a_1w_1+...+a_nw_n$ אז נקבל: $v\in V$ אוז נקבל

מצד שני,
$$w_1,\ldots,w_n$$
 בסיס א"נ, לכן מתקיים . $T(v)=\sum_{i=1}^n a_i T(w_i)=\sum_{i=1}^k a_i T(w_i)$.
$$T(v)=\sum_{i=1}^k a_i T(w_i)=\sum_{i=1}^k a_i T(w_i)$$
 .
$$C(v)=\sum_{i=1}^k \langle v,w_i\rangle T(w_i)=\sum_{i=1}^k \langle v,w_i\rangle T(w_i)=\sum_{i=1}^k \langle v,w_i\rangle T(w_i)$$

 σ סעיף ד' - נניח T מדרגה k לפי סעיף ג', $T=\sum_{i=1}^k (y_i\otimes w_i^*)$ לפי סעיף ג', איברים ב א"נ ו - $y_i
eq 0$, תמונות של אברי הבסיס הא"נ שלא פורשים את הגרעין של $y_i \neq 0$ א' והתכונות של אופרטורים צמודים, נקבל ש $\sum_{i=1}^k (w_i \otimes y_i^*) - T^* = \sum_{i=1}^k (w_i \otimes y_i^*)$ לכן מרחב התמונה של T^* נפרש ע"י שהם כאמור בת"ל, לכן $w_1, ..., w_k$ מצד שני, אם T^* - אבל אנו יודעים ש rank $((T^*)^*) \le p < k$ אבל אנו יודעים ש rank $(T^*) = p < k$ $rank(T^*)=k$ וזו סתירה, לכן $(T^*)^*=T$

מועד א' סמסטר חורף תש"ע, שאלה 1

.
$$T \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 2a + 2b + c \\ 2b - c \\ 3c \end{pmatrix}$$
 ע"י ע"י המוגדרת ע"י $T: R^3 \to R^3$ תהי $T: R^3 \to R^3$

א. חשבו את הפולינום המינימלי של T

ב. פרקו את \mathbb{R}^3 לסכום ישר של תתי מרחבים - אינווריאנטים של \mathbb{R}^3 כך שהפולינום . R[x] - מהינימלי של הצמצום של T לכל אחד מהם הוא חזקה של פולינום אי פריק ב . T ג. מיצאו את צורת ג'ורדן של

פתרון:

. σ סעיף א' - תחילה, נמצא את המטריצה המייצגת של T ביחס לבסיס הסטנדרטי לכן המטריצה המייצגת היא:, $T(e_1)=2e_1$, $T(e_2)=2(e_1+e_2)$, $T(e_3)=e_1-e_2+3e_3$

בפרט,
$$p_T(x) = (x-2)^2(x-3)$$
 בפרט. $p_T(x) = \begin{pmatrix} 2 & 2 & 1 \\ 0 & 2 & -1 \\ 0 & 0 & 3 \end{pmatrix}$

הפולינום המינימלי הוא או הפולינום האופייני או הפולינום (x-2)(x-3) . נציב ונבדוק אם

$$([T]_E - 2\mathrm{I})([T]_E - 3\mathrm{I}) = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 2 & 1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -2 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

<u>סעיף ב'</u> – לפי תהליך הפירוק שמבוצע במשפט ג'ורדן, תתי המרחבים אותם אנו מחפשים הם המרחבים $W_1 = ker((T-2\mathrm{I})^2), \ W_2 = ker(T-3\mathrm{I})$ מכור כי מציאת הגרעין של אופרטור $: (T-2\mathrm{I})^2$ היא מציאת הְמרֶחב העצמִי של הערך העצמי 0. נתחיל עם W_1 נחשב את היא

$$(T-2I)^{-1}$$
 א נציאור וונו ווב וועצנוי של וועד א $W_1 = span\{e_1,e_2\}$ אי", $[T-2I]_E^2 = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 2 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{pmatrix}$ עבור (x,y,z) נחשב ונקבל $[T-3I]_E = \begin{pmatrix} -1 & 2 & 1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$ נחשב ונקבל $[T-3I]_E = \begin{pmatrix} -1 & 2 & 1 \\ 0 & -1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$

$$(x\,,y\,,z)$$
 הוא $[T-3\mathrm{I}]_E=egin{pmatrix} -1 & 2 & 1 \ 0 & -1 & -1 \ 0 & 0 & 0 \end{pmatrix}$ נחשב ונקבל $[T-3\mathrm{I}]_E=egin{pmatrix} -1 & 2 & 1 \ 0 & -1 & -1 \ 0 & 0 & 0 \end{pmatrix}$

לכן (-z,-z,z) פתרון מערכת נותן את וקטור מהצורה -x+2y+z=0 המקיים: -y-z=0 . $W_2=span\{(1,1,-1)\}$

<u>סעיף ג'</u> – מצאנו את הפולינוֻם המינימְלי של T בסעיף א', ולפי משפט ג'ורדן נקבל שצורת

x-3 הגורם - $J_T=egin{pmatrix} 2 & 1 & 0 \ 0 & 2 & 0 \ 0 & 0 & 3 \end{pmatrix}$ הגורם בריבוי 1 בפולינום

המינימלי, לכן כל בלוק המתאים לע"ע 3 יהיה בלוק 1×1 , מצד שני הגורם הנ"ל מופיע בפולינום האופייני בריבוי 1, לכן יש בלוק אחד כזה.

2 imes 2 הגורם x-2 מופיע בפולינום המינימלי בריבוי 2, לכן יש לפחות בלוק אחד בגודל x-2 המתאים לערך עצמי 2, מצד שני הריבוי של x-2 בפולינום האופייני הוא 2, לכן סכום המימדים של הבלוקים המתאימים לערך עצמי 2 הוא 2, ז"א יש בלוק יחיד בגודל 2 imes 2 המתאים לערך עצמי 2 הוא 2, ז"א יש בלוק יחיד בגודל 2 imes 2 המתאים לערך עצמי 2.

טענות נכון/לא נכון (אם נכון, נדרש להוכיח, אחרת להביא דוגמה נגדית)

(קובץ Exam.B2 מה – moodle, שאלה 5 א')

יהיו AB מטריצות. יהי f(x) הפולינום המאפס המינימלי של A , $B \in F^{n \times n}$ יהיו יהי g(BA) = 0 אז g(x) אז g(x) אז g(x) אז g(x)

פתרון: נכון – נסמן את הפולינום $f(x)=a_0+a_1x+...+a_nx^n$ אז נקבל $g(BA)=(BA)(a_0I+a_1BA+...+a_n(BA)^n)=$ $=Ba_0IA+B(a_1AB)A+...+B(a_n(AB)^n)A=B(f(AB))A=0$

(מועד א' אביב תשע"ב, שאלה 6 א')

. אז T^3 אז T^3 אופרטור ליניארי המקיים $T:V \to V$ – אז T לכסין מ"ו מעל $T:V \to V$

פתרון: נכון – נסמן ב $x = m_T(x)$ את הפולינום המינימלי של x, אז מתקיים $x = m_T(x)$ (כי $x = m_T(x)$), לכן בפרט הפולינום המינימלי של $x = m_T(x)$ מתפרק לגורמים ליניאריים, לכן לפי $x = m_T(x)$, הפולינום האופייני מתפרק לגורמים ליניאריים, לכן ל $x = m_T(x)$ אורת בור $x = m_T(x)$ ($x = m_T(x)$), $x = m_T(x)$ אור שור בור שור $x = m_T(x)$ ($x = m_T(x)$), $x = m_T(x)$ אור של $x = m_T(x)$ ($x = m_T(x)$), $x = m_T(x)$ אור בודל בפולינום המינימלי הם ממעלה $x = m_T(x)$ (כל בלוק במטריצת ג'ורדן הוא לכל היותר בגודל $x = m_T(x)$), $x = m_T(x)$

(מועד א' אביב תשע"ב, שאלה 6 ג') מועד א' אביב תשע"ב, שאלה x^2+x+1 שהפולינום המינימלי שלה הוא $A \in R^{7 imes 7}$

פתרון: נכון – הפולינום האופייני של A הוא פולינום ממעלה 7 עם מקדמים ממשיים. כיוון ששורשים מרוכבים של פולינום ממשי מופיעים בזוגות צמודים, יש מספר זוגי של שורשים מרוכבים לפולינום האופייני של A, לכן בהכרח יש לפולינום האופייני של A שורש ממשי. לפי משפט קיילי המילטון, לפולינום המינימלי של A יש אותם שורשים כמו לפולינום האופייני, לכן בהכרח לפולינום המינימלי של A יש שורש ממשי, ז"א יש גורם ליניארי. מצד שני, הפולינום A בוא אי פריק מעל A, לכן אין לו גורמים ליניאריים.

<u>מועד א' סמסטר חורף תש"ע, שאלה 3</u>

$$(v,u)=v^TAu$$
 : R^3 ונגדיר על $A=\begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$ תהי

. R^3 א. הראו כי (v,u) היא מכפלה פנימית על

תת $W\!=\!span\{(0,1,0),(1,0,1)\}$ תת מסעיף א'. יהי $V\!=\!R^3$ עם המכפלה הפנימית מסעיף א'. יהי V והשלימו אותו לבסיס א"נ מרחב של V מיצאו ב V וקטור באורך 1 שניצב ל V והשלימו אותו לבסיס א"נ של V (המושגים "ניצב" ו - "אורתונורמלי" מתייחסים למכפלה הפנימית מסעיף א').

:פתרון

(-,-) על מרחב וקטורי V מעל R הן: $v_1,v_2,u\in V$ התכונות של מכפלה פנימית (-,-) על מרחב וקטורי $(av_1+bv_2,u)=a\langle v_1,u\rangle+b\langle v_2,u\rangle$ - לכל $(av_1+bv_2,u)=a\langle v_1,u\rangle+b\langle v_2,u\rangle$ - מעל $(av_1+bv_2,u)=a\langle v_1,u\rangle+b\langle v_2,u\rangle$

לכל
$$\langle v, au_1 + bu_2 \rangle = a \langle v, u_1 \rangle + b \langle v, u_2 \rangle$$
 - לכל ברכיב הימני $v, u_1 + bu_2 \rangle = a \langle v, u_1 \rangle + b \langle v, u_2 \rangle$. $v, u_1, u_2 \in V$, $a, b \in R$

. $u,v \in V$ לכל $\langle v,u \rangle = \langle u,v \rangle$. 3

$$v=0$$
 אם ורק אם $\langle v,v \rangle = 0$ אם ורק אם $\langle v,v \rangle \geq 0$ אם ורק אם $\langle v,v \rangle \geq 0$.

היא מטריצה סימטרית, לכן התבנית (v,u) המוגדרת לעיל היא תבנית ביליניארית A סימטרית, בפרט מקיימת את תכונות 1-3.

 $v=(a\,,b\,,c)$ נראה ש $(v\,,u)$ מקיימת את תנאי $(v\,,u)$ בסמן ונקבל $(v\,,u)$

$$\langle v, v \rangle = \begin{pmatrix} a & b & c \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a & b & c \end{pmatrix} \begin{pmatrix} 2a+b \\ a+2b+c \\ b+2c \end{pmatrix} = a(2a+b)+b(a+2b+c)+c(b+2c) = 2a^2+2ab+2b^2+2bc+2c^2=(a+b)^2+(b+c)^2+a^2+c^2$$

לכן לכל $v\in R^3$ מתקיים $v\in R^3$. בנוסף, אם $v\in R^3$ אז בפרט כל אחד מהמחוברים . v=0 מתקיים לכן לכל צריך להתאפס (סכום ריבועים), לכן בהכרח v=0 וזה גורר

קל . $v_1 = (0,1,0), v_2 = (1,0,1), v_3 = (1,0,0)$ קל . $v_1 = (0,1,0), v_2 = (1,0,1), v_3 = (1,0,0)$ קל . $v_1,v_2 = v_1,v_2 = v_1,v_2 = v_1,v_3 = v_1,v_3$ לראות שזה בסיס כך ש $v_1,v_2 = v_1,v_2 = v_1,v_3 = v_1,v_3 = v_1,v_3 = v_1,v_2 = v_1,v_3 = v_1,v_3 = v_1,v_2 = v_1,v_3 = v_1,v_3$

 $: v_1$ לכן נחשב את הנורמה של , $u_1 = \frac{v_1}{\|v_1\|}$

$$. \quad u_1 = (0, \frac{1}{\sqrt{2}}, 0) \quad |v_1||^2 = (v_1, v_1) = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = 2$$

.
$$u_2 = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$$
 ונקבל $u_2 = \frac{w_2}{\|w_2\|}$ וואז $w_2 = v_2 - (u_1, v_2)u_1 = (1, 0, 1) - \sqrt{2}u_1 = (1, -1, 1)$

$$w_3 = v_3 - (u_{1,}v_3)u_1 - (u_{2,}v_3)u_2 = (1,0,0) - \frac{1}{\sqrt{2}}u_1 - \frac{1}{\sqrt{2}}u_2 = (1,0,0) - (0,\frac{1}{2},0) - (\frac{1}{2},-\frac{1}{2},\frac{1}{2}) = (\frac{1}{2},0,-\frac{1}{2})u_1 - (\frac{1}{2},0,0) - (\frac{$$

.
$$u_3 = (\frac{1}{2}, 0, -\frac{1}{2})$$
 לכן נקבל $\|w_3\|^2 = (w_3, w_3) = 1$ היא: $w_3 = (w_3, w_3) = 1$.

הוקטור u_3 הוא הוקטור באורך יחידה המאונך לW - המאונך לבסיס א"נ הוא u_1,u_2,u_3 הבסיס u_1,u_2,u_3 שמצאנו.