Patrick D. Holmes

patrickdanielholmes.com

pdholmes@umich.edu (805)-403-1431

EDUCATION

University of Michigan

PhD, MS in Mechanical Engineering; GPA: 3.74/4.00

Focus: Robotics, Control, Human Biomechanics

University of California, Berkeley

BS in Mechanical Engineering, High Honors; GPA: 3.92/4.00

EXAMPLEMENT.

EXPERIENCE

Ford Center for Autonomous Vehicles at the University of Michigan

Ann Arbor, MI

Engineer in Research Senior Focus: Safe trajectory planning and control of autonomous robots, studying human trip recovery.

Oct. 2021 - Present

University of Michigan

Ann Arbor, MI

Gradudate Student Research Assistant

Aug. 2015 - Aug. 2021

Focus: Safe trajectory planning and control of autonomous robots, characterizing human stability during motion using control theoretic techniques, novel tools and applications for reachability analysis, human pose estimation for rehabilitation.

SKILLS SUMMARY

- Programming/Software: MATLAB, C++, Python, Git, LATEX, SolidWorks, Simulink, LabVIEW, Microsoft Office
- Technical: Robot Kinematics and Dynamics, Linear/Nonlinear Systems and Control, Hybrid Systems, Motion Planning, Human Biomechanics, Reachability Analysis, Optimization, Machine Learning, Computer Vision, Real/Functional Analysis
- Soft Skills: Project leadership and management, technical writing and presenting, figure and video creation, paper reviewing

Selected Projects

• Guaranteed-Safe Trajectory Planning and Control for Robotic Manipulators with Model Uncertainty:

- o Developed a robust trajectory-tracking controller for a robotic arm with bounded error despite model uncertainty.
- Augmented the Recursive Newton-Euler Algorithm to operate over sets of desired trajectories plus tracking error.
- Created novel receding-horizon reachability-based trajectory planner that satisfies collision-avoidance and torque limit constraints in the presence of static and dynamic obstacles, model uncertainty and tracking error.
- Leveraged parallelization on a GPU to perform real-time nonlinear optimization over sets of safe trajectories.
- $\circ~$ Demonstrated in simulation and on hardware in real time with Fetch 7 DOF arm.
- Extending method to the Digit walking robot, and to a robotic prosthetic leg to achieve real-time trip-recovery.

• Characterizing Fall Risk during Sit-to-Stand using Reachable Sets:

- o Designed and conducted an 11-subject Sit-to-Stand experiment with motor-driven cable pull perturbations.
- Constructed individualized biomechanical models and trajectories from motion capture data.
- o Developed novel control models and reachability techniques for computing sets of safe Sit-to-Stand trajectories.
- Experimentally demonstrated that the method predicted failure during Sit-to-Stand with over 90% accuracy.

• Certifiably-optimal 3D Human Pose Estimation via Sums-of-Squares Programming:

- $\circ \ \ \text{Developed sparse sums-of-squares optimization program for reconstructing 3D human pose from multi-view 2D estimates.}$
- o Demonstrated state-of-the-art accuracy and computational efficiency on Human3.6m dataset.
- o Certified global optimality of solutions obtained via semidefinite programming.

SELECTED PUBLICATIONS

- Holmes, et al. "Reachable sets for safe, real-time manipulator trajectory design", Robotics: Science and Systems (RSS), 2020. (Conference)
- Holmes, et al. "Characterizing the limits of human stability during motion: perturbative experiment validates a model-based approach for the Sit-to-Stand task", Royal Society Open Science, 2020. (Journal)
- Kousik, **Holmes**, Vasudevan, "Safe, Aggressive Quadrotor Flight via Reachability-based Trajectory Design", ASME Dynamic Systems and Control Conference (DSCC), 2019. **Best Student Paper Award** (Conference)
- Shia, Moore, **Holmes**, et al. "Stability basin estimates fall risk from observed kinematics, demonstrated on the Sit-to-Stand task", Journal of Biomechanics, 2018. (Journal)
- Holmes, et al. "Convex estimation of the α -confidence reachable set for systems with parametric uncertainty", IEEE Conference on Decision and Control (CDC), 2016. (Conference)

Honors, Awards, and Leadership

- RSS Pioneers Participant (July 2020) and Organizer (July 2021)
- Drake Scholar (one of six ME students, full academic scholarship to attend UC Berkeley) Aug. 2011 to May 2015
- Reviewer TRO, TCST, RA-L, IROS
- Designed LEGO robot lesson plan for public school teachers (U-M REACT workshop (2019, 2020)).
- Developed and led an introductory C++ summer course for my lab (2020, github.com/pdholmes/CppPrimerPrimer).