Oracle analysis hDCBM algorithm

Jiaxin Hu

July 22, 2021

1 Oracle analysis

Suppose we have p nodes from r communities and observe the adjacent tensor $\mathcal{Y} \in \{0,1\}^{p \times p \times p}$ whose entry \mathcal{Y}_{ijk} refers to the connection of the triplet (i,j,k). Let $\theta = (\theta_1,...,\theta_p) \in \mathbb{R}^p$ denote the degree-corrected parameters and $z = (z_1,...,z_p) \in [r]^p$ denote the clustering assignment. Consider the hDCBM model

$$\mathbb{E}[\mathcal{Y}] = \mathcal{S} \times_1 \Theta M \times_2 \Theta M \times_3 \Theta M,$$

where $S \in \mathbb{R}^{r \times r \times r}$ is the symmetric core tensor, $\Theta = \text{diag}(\theta) \in \mathbb{R}^{p \times p}$ and $M \in \mathbb{R}^{p \times r}$ is the hard membership matrix based on z. Algorithms 1, 2 are modified slightly for this simpler setting.

Suppose we have the noiseless observation

$$Q = S \times_1 \Theta M \times_2 \Theta M \times_3 \Theta M$$
.

We study the output of the initialization algorithm 1 and the iteration algorithm 2. Without the loss of generality, we use SCORE function $h(x) = ||x||_F$.

1.1 Initialization

Note that Q is symmetric. So, the intermediate parameters $\tilde{\boldsymbol{U}}_k, \hat{\boldsymbol{U}}_k, z_k^{(0)}$ in Algorithm 1 are the same on d modes. For simplicity, let $\tilde{\boldsymbol{U}}, \hat{\boldsymbol{U}}, z^{(0)}$ denote the common parameters.

1. The very first step in Algorithm 1 is HOSVD factor $\tilde{\boldsymbol{U}}$. Following the tensor algebra in Han et al. (2020), we have

$$\tilde{\boldsymbol{U}} = \text{SVD}_r \left(\mathcal{M}_1(\mathcal{Q}) \right) = \text{SVD}_r \left(\Theta \boldsymbol{M} \mathcal{M}_1(\mathcal{S}) (\Theta \boldsymbol{M} \otimes \Theta \boldsymbol{M})^T \right). \tag{1}$$

By the Lemma 3.1 in Ke et al. (2019), we have

$$\tilde{\boldsymbol{U}} = \Theta \boldsymbol{M} \boldsymbol{D}^{-1} \boldsymbol{B}.$$

where $\mathbf{D} = \operatorname{diag}(d), d = (d_1, ..., d_r) \in \mathbb{R}^r, d_k = (\sum_{z_i = k} \theta_i^2)^{1/2}, \mathbf{B}$ is an orthonormal matrix, i.e., $\mathbf{B}^T \mathbf{B} = \mathbf{1}_r$. Thus, we also have $\tilde{\mathbf{U}}^T \tilde{\mathbf{U}} = \mathbf{1}_r$.

2. Secondly, we improve the SVD estimation via

$$\hat{\boldsymbol{U}} = \text{SVD}_r \left(\mathcal{M}_1(\mathcal{Q} \times_2 \tilde{\boldsymbol{U}}^T \times_3 \tilde{\boldsymbol{U}}^T) \right)
= \text{SVD}_r \left(\Theta \boldsymbol{M} \mathcal{M}_1(\mathcal{S}) (\tilde{\boldsymbol{U}}^T \Theta \boldsymbol{M} \otimes \tilde{\boldsymbol{U}}^T \Theta \boldsymbol{M})^T \right).$$
(2)

Note that \hat{U} , \hat{U} refer to the left singular space, both of them are orthonormal, and the right hand side in equation (1) and (2) share the same column space. Therefore, we have $\hat{U} = \hat{U}$. However, the equivalence is not true for noisy observation.

3. Thirdly, we calculate the projected matrix

$$\hat{\mathbf{Y}}_{1} = \hat{\mathbf{U}}\hat{\mathbf{U}}^{T}\mathcal{M}_{1}(\mathcal{Q} \times_{2} \tilde{\mathbf{U}}^{T} \times_{3} \tilde{\mathbf{U}}^{T})
= \left[\Theta \mathbf{M} \mathbf{D}^{-1} \mathbf{B}\right] \left[\mathbf{B}^{T} \mathbf{D}^{-1} \mathbf{M}^{T} \Theta\right] \Theta \mathbf{M} \mathcal{M}_{1}(\mathcal{S}) (\tilde{\mathbf{U}}^{T} \Theta \mathbf{M} \otimes \tilde{\mathbf{U}}^{T} \Theta \mathbf{M})^{T}
= \Theta \mathbf{M} \mathbf{V},$$

where $V = BB^T \mathcal{M}_1(\mathcal{S}) (\tilde{U}^T \Theta M \otimes \tilde{U}^T \Theta M)^T \in \mathbb{R}^{r \times r^2}$ since $M^T \Theta \Theta M = D^2$.

4. Last, we apply SCORE normalization to $\hat{\mathbf{Y}}_1$. Let $\hat{\mathbf{Y}}_{1,j}$ denote the j-th row or $\hat{\mathbf{Y}}_1$ for $j \in [p]$, and \mathbf{V}_u denote the u-th row of \mathbf{V} for $u \in [r]$. Then, for $z_j = u$, we have normalized row

$$\hat{oldsymbol{Y}}_{1,j}^s = rac{\hat{oldsymbol{Y}}_{1,j}}{\left\|\hat{oldsymbol{Y}}_{1,j}
ight\|} = rac{ heta_j oldsymbol{V}_u}{ heta_j \left\|oldsymbol{V}_u
ight\|_F} = rac{oldsymbol{V}_u}{\left\|oldsymbol{V}_u
ight\|_F}.$$

Hence, the normalized \hat{Y}_1^s only has r distinct rows, and thus the k-means clustering exactly covers the true membership, i.e., $z^{(0)} = z^*$.

1.2 Iteration

Take the true assignment $z^{(0)} = z^*$ and the true signal \mathcal{Q} as input of the iteration Algorithm 2.

1. The first step imposes the SCORE normalization on all modes. Note that \mathcal{Q} is symmetric. Let \mathbf{Q}_k denote the k-th matrication of \mathcal{Q} . We have

$$\hat{ heta}_j = \|oldsymbol{Q}_{1,j}\| = heta_j \left\|oldsymbol{V}_{z_j^*}
ight\|_E,$$

where $V = \mathcal{M}_1(\mathcal{S})(\Theta M \otimes \Theta M)^T$. Let $\tilde{V} = \text{diag}(\|V_1\|_F, ..., \|V_r\|_F)$.

2. Secondly, we apply the SCORE normalization to Q. Note that

$$\hat{\Theta} = \Theta \operatorname{diag}\left(\left\|\boldsymbol{V}_{z_{1}^{*}}\right\|_{F}, ..., \left\|\boldsymbol{V}_{z_{p}^{*}}\right\|_{F}\right)$$

$$Q^{s} = Q \times_{1} \hat{\Theta}^{-1} \times_{2} \cdots \hat{\Theta}^{-1} \times_{3} \hat{\Theta}^{-1}$$

$$= S \times_{1} M \tilde{V} \times_{2} M \tilde{V} \times_{2} M \tilde{V}$$

$$= \tilde{S} \times_{1} M \times_{2} M \times_{3} M,$$

where $\tilde{S} = S \times_1 \tilde{V} \times_2 \tilde{V} \times_3 \tilde{V}$.

3. Last, note that Q^s is completely separated. The HLloyd algorithm will return the true assignment, i.e., $z^{(T)} = z^*$.

Algorithm 1 High-order degree-corrected spectral clustering (HDCSC)

Input: Observation $\mathcal{Y} \in \mathbb{R}^{p \times \cdots \times p}$, r, relaxation factor in k-means M > 1, SCORE normalization function h

- 1: Compute $\tilde{U}_k = SVD_{r_k}(\mathcal{M}_k(\mathcal{Y}) \text{ for } k \in [d]$
- 2: for $k \in [d]$ do
- 3: Estimate the singular space \hat{U}_k via

$$\hat{\boldsymbol{U}}_k = SVD_r(\mathcal{M}_k(\mathcal{Y} \times_1 \tilde{\boldsymbol{U}}_1^T \times \cdots \times_{k-1} \tilde{\boldsymbol{U}}_{k-1}^T \times_{k+1} \tilde{\boldsymbol{U}}_{k+1}^T \times \cdots \times_d \tilde{\boldsymbol{U}}_d^T))$$

- 4: end for
- 5: for $k \in [d]$ do
- 6: Calculate \hat{Y}_k via $\hat{Y}_k = \hat{U}_k \hat{U}_k^T \mathcal{M}_k (\mathcal{Y} \times_1 \hat{U}_1^T \times \cdots \times_{k-1} \hat{U}_{k-1}^T \times_{k+1} \hat{U}_{k+1}^T \times \cdots \times_d \hat{U}_d^T)$
- 7: Let \hat{Y}_{kj} denote the rows of \hat{Y}_k for $j \in [p_k]$. Obtain the SCORE normalized \hat{Y}_k^s via $\hat{Y}_{kj}^s = \frac{\hat{Y}_{kj}}{h(\hat{Y}_{kj})}$
- 8: Find the initial assignment $z_k^{(0)} \in [r_k]^{p_k}$ and centroids $\hat{x}_1,...,\hat{x}_{rk} \in \mathbb{R}^{r_{-k}}$ such that

$$\sum_{j=1}^{p_k} \left\| (\hat{\mathbf{Y}}_{kj}^s)^T - \hat{x}_{(z_k^{(0)})_j} \right\|^2 \le M \min_{x_1, \dots, x_{r_k}, z_k} \sum_{j=1}^{p_k} \left\| (\hat{\mathbf{Y}}_{kj}^s)^T - x_{(z_k^{(0)})_j} \right\|^2$$

9: end for

ಬ

10: Find the average of $z_k^{(0)}, k \in [d], z^{(0)}$.

Output: $\{z^{(0)} \in [r]^p\}$

Algorithm 2 High-order degree-corrected Lloyd Algorithm (HDCLloyd)

Input: Observation $\mathcal{Y} \in \mathbb{R}^{p \times \cdots \times p}$, initialization $\{z^{(0)} \in [r]^p\}$, iteration number T, SCORE normalization function h1: Let \mathbf{Y}_k denote the k-th model matricization of \mathcal{Y} and $\mathbf{Y}_{k,j}$ denote the j-th column of \mathbf{Y}_k . Find the surrogate estimation of θ via

$$\hat{\theta}_j = \frac{1}{d} \left\| \sum_{k=1}^d \mathbf{Y}_{k,j} \right\|_F$$

2: Let $\hat{\Theta} = \operatorname{diag}(\hat{\theta})$. Apply SCORE normalization to \mathcal{Y} via

4

$$\mathcal{Y}^s = \mathcal{Y} \times_1 \hat{\Theta}^{-1} \times \cdots \times_d \hat{\Theta}^{-1}$$

3: Apply HLloyd with \mathcal{Y}^s , initialization $\{z^{(0)} \in [r]^p\}$, and iteration number T. **Output:** $\{z^{(T)} \in [r]^p\}$

References

Han, R., Luo, Y., Wang, M., and Zhang, A. R. (2020). Exact clustering in tensor block model: Statistical optimality and computational limit. arXiv preprint arXiv:2012.09996.

Ke, Z. T., Shi, F., and Xia, D. (2019). Community detection for hypergraph networks via regularized tensor power iteration. arXiv preprint arXiv:1909.06503.