Homework Assignment 1

Due: 11:59PM March 00, 2025

1.

Rea	nd Chapters 1	-2 of Database System Con-	cepts and answer the f	following questions.	
1. (1 pt. per blank) Fill in the blanks.			
(a)	Underlying the structure of a database is the (): a collection of conceptual tools for describing data,				
	data relationships, data semantics, and consistency constraints.				
(b)	In the relation	nal model, data are represente	ed in the form of (). A table has multiple (); Each
	column has a unique (). Each () of the table represents one piece of information.				
(c)	The collection	on of information stored in th	e database at a particula	r moment is called a/an (). The
	overall design of the database is called the ().				
(d)	A database sy	ystem provides a/an () to specify the d	latabase schema and a/an () to
	express database queries and updates. In practice, these are not two separate languages; instead, they simply				
	form parts of a single language.				
(e)	A/An () is a statement requesting the retrieval of information.			
(f)	A/An () ensures that the database remains in a consistent state despite system failures, and that			
	concurrent transaction executions proceed without conflicts.				
(g)	A/An () manages the allocation of space on disk storage and the data structures used to represent				
	information stored on disk.				
(h)	A/An () is responsible for fetching data from disk storage into main memory, and deciding what data				
	to cache in main memory.				
(i)	The (he () is a special value that signifies the value is unknown or does not exist.			

Answer 1.

- a. Data model
- b. Table, column, attribute, tuple
- c. Instance, schema
- d. DDL(data definition language), DML(data manipulation language)
- e. Query
- f. Transaction management
- g. Storage management
- h. Buffer management
- i. Null

2. What are the major disadvantages of keeping organizational information in a file-processing system?

Answer 2

- 1. Data redundancy and inconsistency; in the file system stored duplicate same data through several files.
- 2. Integrity constraints enforcement issues; file system is hard to modify data at once.
- 3. Concurrency problems; file system possibly to crash when the user modify same data at the same time.
- 4. Security and access control issues; file system hard to access role-based access control

3. List four significant differences between a file-processing system and a DBMS.

Answer 3

- 1. Data independence
- 2. Data redundancy and inconsistency
- 3. Concurrency Control
- 4. Security and access Control
- **4.** Consider the employee database of Figure 2.17 (page 60). Give an **expression in the relational algebra** to express each of the following queries:
- a. Find the name of each employee who lives in city "Miami".
- b. Find the name of each employee whose salary is greater than \$100,000. *Note that the salary refers to the yearly wage*.
- c. Find the name of each employee who lives in "Miami" and whose salary is greater than \$100,000.
- d. Find the ID and name of each employee who does not work for "BigBank".
- e. Find the ID and name of each employee who earns at least as much as every employee in the database.
- f. Find the ID, name, and city of residence of each employee who works for "BigBank".
- g. Find the ID, name, street address, and city of residence of each employee who works for "BigBank" and earns more than \$10,000.
- h. Find the ID and name of each employee in this database who lives in the same city as the company for which s/he works.

Answer 4

- a. Π person_name (σ city = 'Miami' (employee))
- b. Π person name (σ salary > 100000 (works))
- c. Π person_name (σ city = 'Miami' (employee) \bowtie employee.person_name = works.person_name (σ salary > 100000 (works)))
- d. Π person name (employee) Π person name (σ company name = 'BigBank' (works))
- e. ∏ person_name (works) ∏ w1.person_name (works w1 ⋈ w2.salary > w1.salary (works w2))
- f. Π person_name, city (σ company_name = 'BigBank' (works) ⋈ works.person_name = employee.person_name (employee))
- g. Π person_name, street, city (σ company_name = 'BigBank' ∧ salary > 10000 (works) ⋈ works.person_name = employee.person_name (employee))
- h. Π person_name (employee ⋈ employee.person_name = works.person_name (works) ⋈
 works.company_name = company.company_name (company) ⋈ employee.city = company.city)

- 5. Write the following queries in relational algebra, using the university schema (Figure 2.8, page 46).
- a. Find the ID and name of each instructor in the Physics department.
- b. Find the ID and name of each instructor in a department located in the building "Watson".
- c. Find the ID and name of each student who has taken at least one course in the "Comp. Sci." department.
- d. Find the ID and name of each student who has taken at least one course section in the year 2018.
- e. Find the ID and name of each student who has not taken any course section in the year 2018.

Answer 5

- a. Π ID, name (σdept_name = 'Physics'(instructor))
- b. ⊓ ID, name (σ building = 'Watson' (department) ⋈ department.dept_name = instructor.dept_name
- c. Π ID, name (σ dept_name = 'Comp. Sci.' (course) ⋈ course.course_id = takes.course_id (takes) ⋈ takes.ID = student.ID (student))
- d. Π ID, name (σ year = 2018 (section) \bowtie section.course id = takes.course id \wedge section.sec id = takes.sec_id ∧ section.semester = takes.semester (takes) ⋈ takes.ID = student.ID (student))
- e. Π ID, name (student) Π ID, name (Π ID (σ year = 2018 (section) ⋈ section.course_id = takes.course_id ^ section.sec id = takes.sec id ^ section.semester = takes.semester (takes) ⋈ takes.ID = student.ID (student)))
- 6. (5 pt. each) Find the answers to the following questions and provide the SQL queries showing how you find them. All queries should be complete to obtain the listed answers solely by themselves.
 - a. List all **instructor** names in the *Accounting* department.

Answer:

[SQL query answer]

SELECT ALL name from instructor Where dept_name = 'Accounting'; b. How many **students** are in the *Statistics* department?

Answer: 85 students

c. How many **unique student names** are in the *Astronomy* department?

Answer: 104 names

d. Find all students who have "db" as a substring in their name.

Answer: 3 students

7. (3 pt.) List the names of all tables that the "university" database has.

Answer: 1,597 names

- 8. (4 pt.) Execute and explain the differences among the results of the following queries.
- (i) SELECT * FROM instructor;
- (ii) SELECT 'Teacher' FROM instructor;
- (iii) SELECT 'Teacher';
- (iv) SELECT *, 'Teacher' FROM instructor;

Answer:

