Feuille de TD 1

1) Distanciel

Exercice 1:

On considère les suites suivantes :

$$u_n = n^{1/n}, \ v_n = \frac{2^n + 3^n}{3^n}, \ w_n = \ln(3n^2)e^{-n}\cos(\sqrt{2n+2}).$$

- 1) Déterminez la limite de u_n lorsque n tend vers $+\infty$. (On notera qu' à priori il s'agit d'une forme indéterminée. Pour lever l'indétermination, on écrira u_n sous forme d'une exponentielle. Pour cela on rappelle que pour x > 0, $x = e^{\ln(x)}$ et que $\ln(x^{\alpha}) = \alpha . \ln(x)$.)
- 2) Soit $a, 0 \le a < 1$. Que vaut $\lim_{n \to +\infty} a^n$. En déduire la limite lorsque n tend vers $+\infty$ de v_n .
- 3) Encadrez $cos(\sqrt{2n+2})$. En déduire un encadrement de w_n , puis en déduire sa limite par le théorème des gendarmes.

Exercice 2:

Soit (u_n) la suite définie par $u_n = \frac{e^n}{4^n}$.

- 1. Prouver que (u_n) est une suite géométrique.
- 2. Soit $v_n = \sum_{k=0}^n u_k$. Calculer v_n et étudier sa convergence.

Exercice 3:

Etudier la limite de la suite définie par :

$$u_n = \frac{1 + 3 + 5 + \dots + (2n - 1)}{1 + 2 + \dots + n}$$

Pour cela on calculera d'abord $1+2+\cdots+n$, puis $1+3+5+\cdots+(2n-1)$ en fonction de n.

Exercice 4:

On considère la suite $(u_n)_{n\geq 1}$ définie par :

$$u_n = \frac{n}{n^2 + 1} + \frac{n}{n^2 + 2} + \dots + \frac{n}{n^2 + n} = \sum_{k=1}^n \frac{n}{n^2 + k}.$$

- 1) On fixe n. Soit k, $1 \le k \le n$, encadrez $\frac{n}{n^2 + k}$ en fonction de n.
- 2) Quel est le plus petit terme (respectivement le plus grand) dans la somme qui définit u_n . En déduire un encadrement de u_n . (On écrira que u_n est majorée (resp. minorée)

par le nombre de termes fois le plus grand terme (resp. plus petit terme) de la somme).

3) Montrez à l'aide de 2) que u_n est convergente et calculez sa limite.

Exercice 5:

Etudier la monotonie et la convergence de la suite suivante :

$$(v_n)_{n\geq 1}, \ v_n = \frac{1}{1\times 2} + \frac{1}{2\times 3} + \dots + \frac{1}{n\times (n+1)}.$$

(utiliser $\frac{1}{k \times (k+1)} = \frac{1}{k} - \frac{1}{k+1}$ puis recalculer v_n grace à cette décomposition).

Exercice 6:

Déterminer la suite de nombres réels vérifiant :

$$u_{n+2} = 3u_{n+1} - 2u_n, \ u_0 = 2, \ u_1 = 3.$$

Consulter le dernier paragraphe du cours.

2) Présentiel

Exercice 1:

- 1) Soit $\epsilon = \frac{1}{100}$. Déterminez explicitement un entier $N_{1/100}$ tel que pour tout n, $n \geq N_{1/100}$ implique $\frac{1}{\sqrt{n}} < \frac{1}{100}$.
- 2) Soit $\epsilon > 0$ un réel fixé. Déterminez explicitement un entier N_{ϵ} tel que pour tout n, $n \geq N_{\epsilon}$ implique $\frac{1}{\sqrt{n}} < \epsilon$.
- 3) Ecrire la définition de la suite $(\frac{1}{\sqrt{n}})_{n\geq 1}$ converge vers zéro. Qu'a t-on vérifié?

Exercice 2:

Soit $(u_n)_{n\geq 0}$ la suite de nombres réels définie par :

$$u_0 = 0, \ u_{n+1} = \frac{u_n^2 + 1}{2}$$

- 1) Montrez par récurrence que : $\forall n \in \mathbb{N}, \ 0 \leq u_n < 1.$
- 2) Montrez que $(u_n)_{n\geq 0}$ est croissante. (On calculera $u_{n+1}-u_n$ et on reconnaitra une identité remarquable)
- 3) Montrez que $(u_n)_{n\geq 0}$ est convergente. Quelle relation doit satisfaire la limite l de u_n ? Calculez la limite l de u_n .

Exercice 3:

Etude de la suite $(u_n)_{n\geq 0}$ définie par :

$$u_0 = 1, \ u_{n+1} = u_n + \frac{1 + u_n}{1 + 2u_n}$$

- 1) Montrez par récurrence que $u_n > 0$. Puis montrez que u_n est croissante.
- 2) Supposer que u_n est convergente, quelle relation doit vérifier la limite l de u_n . En déduire que u_n est divergente.
- 3) Que peut-on conclure?

Exercice 4:

Soient $(u_n)_{n\geq 1}$, $(v_n)_{n\geq 1}$, $(w_n)_{n\geq 1}$ les suites définies par :

$$u_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}, \ v_n = u_n + \frac{1}{n!}, \ w_n = u_n + \frac{1}{nn!}.$$

Montrez que (u_n) et (v_n) sont adjacentes, ainsi que (u_n) et (w_n) .

Exercice 5:

Soit la suite S_n définie par :

$$S_n = 1 - \frac{1}{2} + \frac{1}{3} + \dots + \frac{(-1)^{n-1}}{n} = \sum_{k=1}^n (-1)^{k-1} \frac{1}{k}$$

- 1) Que valent S_{2n} et S_{2n+1} .
- 2) Montrez que les suites $(u_n) = (S_{2n})$ et $(v_n) = S_{2n+1}$ sont adjacentes.
- 3) Montrez que (S_n) est convergente.

Exercice 6:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres réels. Montrer que si $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers la même limite, alors $(u_n)_{n\in\mathbb{N}}$ converge.

Execice 7:

Soient $v_0 \ge u_0 > 0$ et soient les suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ définies par $u_{n+1} = \sqrt{u_n v_n}$ et $v_{n+1} = \frac{u_n + v_n}{2}$.

- 1. Montrer par récurrence que les deux suites sont à termes positifs.
- 2. Montrer que pour tout $n \in \mathbb{N}$, $u_n \leq v_n$ (On pourra former la différence $v_{n+1} u_{n+1}$ et reconnaitre une identité remarquable).
- 3. Montrer que $(u_n)_{n\geq 0}$ est croissante et que $(v_n)_{n\geq 0}$ est décroissante. En déduire que $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ sont convergentes.
- 4. On note leurs limites respectives U et V, quelles relations vérifient U et V?
- 5. En déduire que ces deux suites ont en fait une limite identique, que dire alors de ces deux suites?

Exercice 8:

Soit $(S_n)_{n\geq 1}$ la suite définie par :

$$S_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} = \sum_{k=1}^{n} \frac{1}{k}.$$

- 1) Calculez $S_{2n} S_n$.
- 2) Minorez $S_{2n} S_n$ (On cherchera le plus petit terme de la somme et on minorera la somme par le nombre de termes fois le plus petit terme).
- 3) Enoncez la propriété $(S_n)_{n\geq 1}$ n'est pas de Cauchy. Puis déduire de 2) que $(S_n)_{n\geq 1}$ n'est pas de Cauchy.
- 3) Que peut-on en déduire pour $(S_n)_{n\geq 1}$.

Exercice 9:

Soit $(u_n)_{n\geq 1}$ la suite définie par $u_1=1$ et $u_{n+1}=\sqrt{u_n^2+\frac{1}{2^n}}$ pour $n\geq 1$.

- 1. Développer $\left(u_n + \frac{1}{2^{n+1}}\right)^2$ et en déduire que pour tout $n \geq 1$, $u_n < u_{n+1} < u_n + \frac{1}{2^{n+1}}$.
- 2. En déduire une majoration de $|u_{n+1} u_n|$, puis une majoration de $|u_{n+p} u_n|$ pour tout $n, p \ge 1$ (on pourra écrire $u_{n+p} u_n = (u_{n+p} u_{n+p-1}) + (u_{n+p-1} u_{n+p-2}) + \cdots + (u_{n+1} u_n)$ et majorer la somme précédente).
- 3. En déduire que $(u_n)_{n\geq 0}$ est une suite de Cauchy puis la convergence de $(u_n)_{n\geq 1}$.
- 4. Etudier la convergence de la suite $(u_n^2)_{n\geq 1}$ et en déduire la limite de $(u_n)_{n\geq 1}$.

Exercice 10:

Soit $(u_n)_{n\geq 0}$ une suite de nombres réels possédant la propriété suivante. Il existe un entier naturel N et un nombre k, 0 < k < 1, tel que pour $n \geq N$, $|u_{n+1}| \leq k|u_n|$.

- 1) Montrez par récurrence sur n que pour tout $n \ge N$, $|u_n| \le |u_N| k^{n-N} = \frac{|u_N|}{k^N} k^n$. En déduire que (u_n) converge vers 0.
- 2) Soit $x \in \mathbb{R}$. Etudier la suite définie par $u_n = \frac{x^n}{n!}$. (Former le quotient $\frac{|u_{n+1}|}{|u_n|}$).

Exercice 11:

Déterminez les suites définies par :

- $u_{n+2} = 2u_{n+1} u_n$; $u_0 = 1$; $u_1 = 0$.
- $u_{n+2} = -5u_{n+1} 4u_n$; $u_0 = 0$; $u_1 = 9$.
- $u_{n+2} = 5u_{n+1} 6u_n$; $u_0 = 2$; $u_1 = 4$.
- $u_{n+2} = \frac{5}{2}u_{n+1} u_n$; $u_1 = 1$; $u_2 = -1$.