COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Introducció

D 1. 1

Comparación

de los modelos

onclusión

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Universidad Autónoma de Nuevo León Facultad de Ciencias Físico - Matemáticas

18 de Septiembre del 2020

Contenido

Modelos No lineales

Sarai E Gómez Ibarra

Introducción

.

Resultado

de los modelos

- 1 Introducción
- 2 Teoría
- 3 Resultados
- 4 Comparación de los modelos
- 5 Conclusión

Introducción

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Introducción

Teoría

Resultados

Comparación de los modelos

La COVID-19 es la enfermedad infecciosa causada por el coronavirus; dicha enfermedad tuvo origen en Wuhan (China) en diciembre de 2019. Actualmente la COVID-19 es una pandemia que afecta a muchos países de todo el mundo.

Este estudio tiene como objetivo el comparar los modelos Gompertz, Logístico y Normal, estimados con los datos arrojados de diferentes países, para validar cual es el desempeño que tiene cada uno de estos y así finalmente descubrir cual es el modelo que mejor se acople al comportamiento de la pandemia en los países afectados.

Contenido

Modelos No lineales

Gómez Ibarra

..........................

Teoría

Resultado

de los modelos

- 1 Introducción
- 2 Teoría
- 3 Resultados
- 4 Comparación de los modelos
- 5 Conclusión

Teoría

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarr

Teoría

D 1. 1

Comparación de los modelos

DEF Una función sigmoidea es una función real diferenciable y acotada que se define para todos los valores de entrada reales y tiene una derivada no negativa en cada punto.

DEF La función de distribución acumulativa de una variable aleatoria de valor real es la función dada por X.

$$F_X(x) = P(X \le x)$$

Error Cuadrático Medio

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarr

Teoría

. . .

Comparación

de los modelo

Conclusión

El Error Cuadrático Medio (MSE) de un estimador mide el promedio de los errores al cuadrado, es decir, la diferencia entre lo estimado y el valor real; Sea \hat{Y} el vector de n predicciones y Y el vector de los valores reales, entonces el MSE del predictor es:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2$$
 (1)

Raíz del Error Cuadrático Medio

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Introdu

Teoría

Resultado

Comparación de los modelos

La Raíz del Error Cuadrático Medio (RMSE) es una medida mayormente usada para valores de muestra o población; nos ayuda a calcular la diferencia entre los valores predichos y los valores observados; se define como:

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2}$$
 (2)

Error Absoluto Medio

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Introducción

Teoría

Resultado

Comparación de los modelos

de los modelos

El Error Absoluto Medio de igual manera es una medida de diferencia entre dos variables continuas; normalmente se usa cuando los datos observados (Y) contienen valores atípicos, esta definido como:

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |\hat{Y}_i - Y_i|$$
 (3)

Modelos considerados

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarr

Teoría

_ . . .

de los modelos

Conclusio

Los modelos a elegir son funciones sigmoidales o bien funciones de distribución acumulada. Se escogen este tipo de funciones ya que las sigmoides tienen su dominio en todos los números reales, el valor de retorno aumenta monótonamente, por esto mismo se escogieron los siguientes modelos:

- Modelo Gompertz
- Modelo Logístico
- Modelo Normal

Modelo Gompertz

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarr

Teoría

Resultado

Comparación

de los modelo

Conclusión

La curva de Gompertz tiene nombre de su diseñador Benjamin Gompertz, el cual diseño el modelo para la Royal Society para detallar su ley de mortalidad humana. El modelo Gompertz esta definido como:

$$G(t) = \alpha e^{-\beta e^{-\kappa t}} \tag{4}$$

Donde:

- \blacksquare G(t) es el numero acumulado de casos confirmados en el tiempo t.
- lacktriangledown lpha corresponde a la asíntota, en este caso lpha estima el numero de casos al final de la epidemia.

Datos de interés para la pandemia

Modelos No lineales

Sarai E Gómez Ibarra

lutus di casi du

Teoría Resultados

Comparación

de los modelo

Conclusión

■ La derivada de la ec. (4) nos arroja la curva que modela el número casos diarios confirmados en el tiempo t, la cual es:

$$g(t) = \beta \kappa G(t) e^{-\kappa t} = \beta \kappa \alpha e^{-\beta e^{-\kappa t}} e^{-\kappa t}$$
(5)

El tiempo en el cual se espera la máxima incidencia diaria

$$t_{max} = \frac{\log(\beta)}{\kappa} \tag{6}$$

Cuantos casos se estiman para el tiempo t_{max}

$$g(t_{max}) = \beta \kappa \alpha e^{-\beta e^{-\kappa t_{max}}} e^{-\kappa t_{max}}$$
 (7)

■ Estimar el numero de casos acumulados al tiempo t_{max} , esto se estima como $G(t_{max})$

Modelo Logístico

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Introducción

Teoría

Resultado

Comparación

de los modelos

Conclusi

El Modelo de Regresión Logística fue publicado en 1844 por Pierre François, con el fin de estudiar el crecimiento de la población. El modelo logístico es de la siguiente manera:

$$H(t) = \frac{\gamma_0}{1 + \gamma_1 e^{-\gamma_2 t}} \tag{8}$$

Donde:

- H(t) es el número acumulado de casos confirmados en el tiempo t.
- $ightharpoonup \gamma_0$ es el valor de crecimiento máximo, para este estudio γ_0 representa los casos predichos para el final de la pandemia.
- Arr γ_2 es la tasa de crecimiento logístico o la pendiente de la curva.

Datos de interés para la pandemia

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Indiana di caratta

Teoría Resultados

Resultados

Comparación de los modelos

Conclusión

La derivada de la ec. (8) nos arroja la curva que modela el número casos diarios confirmados en el tiempo t, la cual es:

$$h(t) = \frac{\gamma_0 \gamma_1 \gamma_2 e^{(-\gamma_2 t)}}{(1 + \gamma_1 e^{-\gamma_2 t})^2}$$
(9)

El tiempo en el cual se espera la máxima incidencia diaria

$$t_{maxL} = \frac{\ln(\gamma_1)}{\gamma_2} \tag{10}$$

■ Cuantos casos se estiman para el tiempo t_{maxL}

$$h(t_{maxL}) = \frac{\gamma_0 \gamma_1 \gamma_2 e^{(-\gamma_2 t_{maxL})}}{(1 + \gamma_1 e^{-\gamma_2 t_{maxL}})^2}$$
(11)

■ Estimar el numero de casos acumulados al tiempo t_{max} , esto se estima como $H(t_{max})$

Modelo Normal

COVID-19 v Modelos No lineales

Teoría

El modelo normal es la distribución normal acumulada con modificaciones, este modelo asume que los casos acumulados siguen una función de error gaussiana parametrizada, la cual esta definida como:

$$N(t) = \frac{p}{2}(\Psi(\alpha(t-\beta))) = \frac{p}{2}\left(1 + \frac{2}{\sqrt{\pi}}\int_0^{\alpha(t-\beta)} \exp(-\tau^2)d\tau\right)$$
(12)

Donde:

- la función Ψ es la función de error gaussiana (escrita explícitamente arriba).
- $\frac{p}{2}$ es el valor de crecimiento máximo, o bien, la estimación de cuantos casos se esperan para el final de la pandemia.
- \blacksquare α es un parámetro de crecimiento.
- \blacksquare β es el tiempo en el que la tasa de aumento es máxima.

Datos de interés para la pandemia

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Teoría

Resultado

Comparación

de los modelos

Conclusiór

■ La derivada de la ec. (12) nos arroja la curva que modela el número casos diarios confirmados en el tiempo t, la cual es:

$$n(t) = \frac{\rho \alpha}{2\sqrt{\pi}} \left(e^{\frac{-1}{2}\alpha^2(t-\beta)^2} \right)$$
 (13)

- \blacksquare Para estimar el tiempo t en el cual se encuentre la incidencia máxima de casos diarios, basta con estimar el parámetro β .
- Cuantos casos se estiman para el pico

$$n(\beta) = \frac{p\alpha}{2\sqrt{\pi}} \tag{14}$$

■ Estimar el numero de casos acumulados al tiempo $t = \beta$, esto se estima como $N(\beta)$

Contenido

Modelos No lineales

Sarai E Gómez Ibarra

. . .

Resultados

Comparación de los modelos

ie ios modeios

- 1 Introducción
- 2 Teoría
- 3 Resultados
- 4 Comparación de los modelos
- 5 Conclusión

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarr

Introducció

Resultados

Comparación de los modelos

Conclusió

En esta sección veremos los modelos resultantes para cada uno de los países seleccionados, los cuales son:

- México
- 2 Egipto
- 3 Rusia
- 4 Brasil
- **5** Alemania

México

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Introducciór

reoria

Resultados

de los modelos

	Modelo		
	Gompertz	Logístico	Normal
Parámetros	$\alpha = 1046175$	$\gamma_o = 731650$	p = 1510456
	$\beta = 11.36096$	$\gamma_1 = 261.2094$	$\alpha = 0.02194987$
	$\kappa = 0.01627938$	$\gamma_2 = 0.03812863$	$\beta = 147.9341$
Casos acumulados al final de la pandemia	1046175	731650	755228
Fecha del pico	2020-07-26	2020-07-23	2020-07-25
Casos acumulados estimados para el pico	383113	366092	378050
Fecha del 95% de avance en la pandemia	2021-01-25	2020-10-08	2020-10-08

México, Modelo Gompertz para casos acumulados

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

I COI Id

Resultados

Comparación de los modelos

México, Modelo Gompertz para casos diarios

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Introducción

Resultados

Comparación de los modelos

México, Modelo Logístico para casos acumulados

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Introducción

Resultados

Comparación

de los modelo

México, Modelo Logístico para casos diarios

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Resultados

Comparación de los modelos

. . . .

México, Modelo Normal para casos acumulados

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Introducci

_ .

Resultados

Comparación de los modelos

México, Modelo Normal para casos diarios

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Introducción

Resultados

Comparación de los modelos

Egipto

COVID-19 y Modelos No lineales

Gómez Ibarra

Introducción

- /

Resultados

Comparación de los modelos

	Modelo			
	Gompertz	Logístico	Normal	
Parámetros	$\alpha = 104630.3$	$\gamma_o = 99820.28$	p = 197865.6	
	$\beta = 87.88444$	$\gamma_1 = 2407.838$	$\alpha = 0.03722599$	
	$\kappa = 0.03853526$	$\gamma_2 = 0.06205153$	$\beta = 125.0506$	
Casos acumulados al final de la pandemia	104630	99820	98933	
Fecha del pico	2020-06-09	2020-06-18	2020-06-18	
Casos acumulados estimados para el pico	38263	49160	49392	
Fecha del 95% de avance en la pandemia	2020-08-25	2020-08-05	2020-08-01	

Egipto, Modelo Gompertz para casos acumulados

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Introducciór

Teoría

Resultados

Comparación de los modelos

Egipto, Modelo Gompertz para casos diarios

Modelos No lineales

Sarai E Gómez Ibarra

Resultados

Comparación de los modelos

Egipto, Modelo Logístico para casos acumulados

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Introducciór

reoria

Resultados

Comparación de los modelos

Egipto, Modelo Logístico para casos diarios

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Resultados

Comparación

Egipto, Modelo Normal para casos acumulados

Modelos No lineales

Sarai E Gómez Ibarra

Introducción

Resultados

Comparación de los modelos

Egipto, Modelo Normal para casos diarios

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Resultados

Comparación de los modelos

Rusia

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Introducción

Teoria

Resultados

de los modelos

	Modelo			
	Gompertz	Logístico	Normal	
Parámetros	$\alpha = 1110127$	$\gamma_o = 1000001$	p = 1993877	
	$\beta = 17.48475$	$\gamma_1 = 249.8297$	$\alpha = 0.0241385$	
	$\kappa = 0.02300265$	$\gamma_2 = 0.04064987$	$\beta = 135.7528$	
Casos acumulados al final de la pandemia	1110127	1000001	996939	
Fecha del pico	2020-06-03	2020-06-15	2020-06-15	
Casos acumulados estimados para el pico	404717	501901	500842	
Fecha del 95% de avance en la pandemia	2020-10-11	2020-08-26	2020-08-22	

Rusia, Modelo Gompertz para casos acumulados

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Introducció

Resultados

Comparación de los modelos

Rusia, Modelo Gompertz para casos diarios

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Introducción

Resultados

Comparación de los modelos

Rusia, Modelo Logístico para casos acumulados

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Resultados

Comparación

de los modelos

Rusia, Modelo Logístico para casos diarios

Modelos No lineales

Resultados

Rusia, Modelo Normal para casos acumulados

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Introducciór

Teoría

Resultados

Comparación de los modelos

Rusia, Modelo Normal para casos diarios

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Resultados

Comparación

Brasil

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarr

Introducciór

Resultados

Comparación de los modelos

	Modelo		
	Gompertz	Logístico	Normal
ros	$\alpha = 7088709$	$\gamma_o = 4852805$	p = 10085787
Parámetros	$\beta = 12.47444$	$\gamma_1 = 335.9201$	$\alpha = 0.0220306$
Para	$\kappa = 0.01618119$	$\gamma_2 = 0.03843174$	$\beta = 153.7158$
Casos acumulados al final de la pandemia	7088709	4852805	5042894
Fecha del pico	2020-07-31	2020-07-26	2020-07-29
Casos acumulados estimados para el pico	2609312	2409805	2534044
Fecha del 95% de avance en la pandemia	2021-01-31	2020-10-11	2020-10-11

Brasil, Modelo Gompertz para casos acumulados

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Introducció

Resultados

Comparación de los modelos

Brasil, Modelo Gompertz para casos diarios

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Introducción

Teoría

Resultados

Comparación de los modelos

Brasil, Modelo Logístico para casos acumulados

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Resultados

Comparación

Brasil, Modelo Logístico para casos diarios

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Introducción

Resultados

Comparación

Brasil, Modelo Normal para casos acumulados

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Introducciór

Resultados

Comparación de los modelos

Brasil, Modelo Normal para casos diarios

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

........................

Resultados

Comparación de los modelos

Alemania

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Introduccioi

Resultados

de los modelos

	Modelo		
	Gompertz	Logístico	Normal
ros	$\alpha = 215464.3$	$\gamma_o = 209292.1$	p = 417016.1
Parámetros	$\beta = 17.20218$	$\gamma_1 = 195.1534$	$\alpha = 0.04191388$
Pari	$\kappa = 0.04194959$	$\gamma_2 = 0.06923798$	$\beta = 76.16083$
Casos acumulados al final de la pandemia	215464	209292	208508
Fecha del pico	2020-04-04	2020-04-12	2020-04-12
Casos acumulados estimados para el pico	79862	104034	103693
Fecha del 95% de avance en la pandemia	2020-06-14	2020-05-25	2020-05-21

Alemania, Modelo Gompertz para casos acumulados

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

IIILIOUU

reoria

Resultados

Comparación de los modelos

Alemania, Modelo Gompertz para casos diarios

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Resultados

Comparación de los modelos

Alemania, Modelo Logístico para casos acumulados

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Resultados

Comparación

Alemania, Modelo Logístico para casos diarios

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Resultados

Comparación de los modelos

Camal...a: 4m

Alemania, Modelo Normal para casos acumulados

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Indonesia de la constitución

Resultados

Comparación de los modelos

Alemania, Modelo Normal para casos diarios

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Resultados

Comparación de los modelos

Contenido

Modelos No lineales

Sarai E Gómez Ibarra

Resultado

Comparación de los modelos

- 1 Introducción
- 2 Teoría
- 3 Resultados
- 4 Comparación de los modelos
- 5 Conclusión

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarr

Introducción

Resultado

Comparación de los modelos

Conclusión

La comparación de modelos a través de procesos estocásticos es una tarea muy complicada, aun mas si los modelos tienen diferente tipo de parámetros; Por tal motivo se optó por realizar la comparación de los modelos midiendo el MSE de los casos acumulados con los casos predichos por el modelo.

México

COVID-19 y Modelos No

Sarai E Gómez Ibarra

Resultados

Comparación de los modelos

		Modelo		
		Gompertz	Logístico	Normal
error	MSE	4929030	49934247	8537168
Métricas del error	RMSE	2220.142	7066.417	2921.843
Métri	MAE	1625.118	6250.701	2443.945

Egipto

COVID-19 y Modelos No

Sarai E Gómez Ibarra

Introducció

Teoría

Resultados

Comparación de los modelos

		Modelo		
		Gompertz	Logístico	Normal
error	MSE	4512989	277487	931420.8
Métricas del error	RMSE	2124.38	526.7704	965.1014
Métri	MAE	1680.521	414.5745	752.739

Rusia

COVID-19 y Modelos No

Sarai E Gómez Ibarra

Introducció

reoria

Resultados

Comparación de los modelos

		Modelo		
		Gompertz	Logístico	Normal
error	MSE	244663284	1031991531	752250183
Métricas del error	RMSE	15641.72	32124.62	27427.18
Métri	MAE	12384.46	27771.95	22894.85

Brasil

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Introducció

Resultados

Comparación de los modelos

		Modelo		
		Gompertz	Logístico	Normal
error	MSE	272160709	3143640103	907970244
Métricas del	RMSE	16497.29	56068.17	30132.54
Métri	MAE	10991.82	50541.51	25270

Alemania

COVID-19 y Modelos No

Sarai E Gómez Ibarra

Introducció

Tanuía

Resultados

Comparación de los modelos

		Modelo		
		Gompertz	Logístico	Normal
error	MSE	210275104	292430804	303170363
Métricas del	RMSE	14500.87	17100.61	17411.79
Métri	MAE	11382.71	13903.18	13864.07

Contenido

Modelos No lineales

- 5 Conclusión

Conclusión

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarra

Introducció

Resultados

Comparación

de los modelos

Conclusión

Nótese que el modelo Gompertz es el que tuvo un mejor desempeño en la mayoría de los países, por tanto, es recomendable usar el modelo Gompertz como primera opción para la modelación de la pandemia, en cambio también es importante hacer uso de los demás modelos mencionados ya que cada país tiene un comportamiento distinto ante la situación, estas variaciones pueden ser efecto de muchas cosas, como las medidas preventivas, el tiempo que duro la cuarentena, las bases económicas, entre otras cosas. COVID-19 y Modelos No lineales

Sarai E Gómez Ibarr

. . .

.

Resultados

Comparación

de los modelos

- Prats, C. et al. (2020) Analysis and prediction of COVID-19 for different regions and countries. Daily report 27-03-2020. UPC, BioComSC, CMCiB, IGTP.
- IHME COVID-19 forecasting team (2020). Forecasting COVID-19 impact on hospital beddays, ICU-days, ventilator days and deaths by US state in the next 4 months. Report.
- Huet, S. et al. (2004). Statistical Tools for Nonlinear Regression. Springer.
- Michael H. Kutner, Christopher J. Nachtsheim. (2005).

 Applied Linear Statistical Models. New York: McGraw-Hill Irwin.

COVID-19 y Modelos No lineales

Sarai E Gómez Ibarr

Introducción

Resultados

Comparación de los modelos

Conclusión

Cornejo-Zúñiga, Ó.; Rebolledo-Vega, R. (2016). Estimación de parámetros en modelos no lineales: algoritmos y aplicaciones. Revista EIA, 13(25), enero-junio, pp. 81-98. [Online]. Disponible en: DOI: http://dx.doi.org/10.14508/reia.2016.13.25.81-98

Organización Mundial de la Salud (2020). Preguntas y respuestas sobre la enfermedad por coronavirus (COVID-19), de Organización Mundial de la Salud Sitio web: https://www.who.int/es/emergencies/diseases/novel-coronavirus-2019/advice-for-public/q-a-coronaviruses