

ALSO KNOW
$$\vec{E}_{1} = \vec{V}_{2} - \vec{V}_{1}$$

OR $-\vec{V}_{1} + \vec{V}_{2} + \vec{O}\vec{I}_{x} = 1020^{\circ}$ (3)

Solve:

 $1 \times 10^{-3} \vec{V}_{1} + \vec{O}\vec{V}_{2} + \vec{I}_{x} = 6x/6^{3} \cancel{2}0^{\circ}$ (1)

O.1 $\vec{V}_{1} - (138.6x)^{\circ} \cancel{4}56.33^{\circ} \vec{V}_{2} + \vec{I}_{x} = 0$ (2)

 $-\vec{V}_{1} + \vec{V}_{2} + \vec{O}\vec{I}_{x} = 1020^{\circ}$ (3)

 $A \times = B$... $X = A^{-1}B$
 $\begin{bmatrix} 59.16 \times 10^{-3} \cancel{2} - 167.6^{\circ} \\ 3 & -167.6^{\circ} \end{bmatrix} \leftarrow \vec{V}_{1}$
 $B = 9.997 \cancel{4} - 66.81 \times 10^{-3} \circ \leftarrow \vec{V}_{2}$
 $6.053 \times 10^{-3} \cancel{4} - 109.8 \times 10^{-3} \circ \leftarrow \vec{I}_{x}$
 $\vec{I}_{L1} = \vec{V}_{2} = 9.997 V_{RMS} \cancel{4} - 66.81 \times 10^{-3} \circ \leftarrow \vec{I}_{x}$
 $\vec{I}_{L1} = \vec{V}_{2} = 9.997 V_{RMS} \cancel{4} - 66.81 \times 10^{-3} \circ \leftarrow \vec{I}_{x}$
 $\vec{I}_{L1} = 1.38 M_{RMS} \cancel{4} - 56.9^{\circ}$
 $10V_{RMS} \cancel{4} \circ = (9.947 V_{RMS} \cancel{4} - 167.6^{\circ})$
 $10V_{RMS} \cancel{4} \circ = (9.947 V_{RMS} \cancel{4} - 167.6^{\circ})$
 $10V_{RMS} \cancel{4} \circ = (9.997 V_{RMS} \cancel{4} - 179.80^{-6} \circ \circ \rightarrow V_{x})$
 $10V_{RMS} \cancel{4} \circ = (9.997 V_{RMS} \cancel{4} - 179.80^{-6} \circ \circ \rightarrow V_{x})$
 $10V_{RMS} \cancel{4} \circ = (9.997 V_{RMS} \cancel{4} - 179.80^{-6} \circ \circ \rightarrow V_{x})$
 $10V_{RMS} \cancel{4} \circ = (9.997 V_{RMS} \cancel{4} - 179.80^{-6} \circ \circ \rightarrow V_{x})$