

Adversarial Attacks Applied to Whale-Detecting Neural Network

Background

- Modern neural networks tend to be susceptible to adversarial attacks.
- Adversarial attack: a small, targeted disruption to an input image that causes a model to misclassify the image
- Adversarial attacks could cause real-world damage as important technology begins to rely on machine learning.

Objective

Dataset: 30,000 2-second audio clips from ocean buoys run by Cornell University

- Create a neural network that can distinguish North Atlantic right whale calls from ocean noise and other whale calls
- Discover vulnerabilities in the model through white-box and black-box attacks

Jerry Kurtin – Georgetown High School – Georgetown, TX Supervisors: Reid Wyde and Scott Johnston Signal and Information Sciences Laboratory

AlexNet Performance AlexNet Performance Standard Control of the policy of the performance of the performan

Conclusion

■ Blooodhound Model

- Image-recognition CNNs can be accurately used for sound classification
- White and black box attacks succeeded in reducing accuracy below random chance
- Decision borders are cloudy due to small dataset

Moving Forward

■ Target Model

- Bootstrap dataset to train generalization
- Create realistic attacks that perturb original sound samples
- Expand network to detect and identify animal calls and human activity

Acknowledgements

I'd like to thank Reid Wyde, Scott Johnston, Anna Chaney, and Hector Gonzalez for their generous mentorship and patience.