实验二十三: 高温超导材料特性测试和低温温度计

朱寅杰 1600017721

2018年6月8日

23.1 室温初始数据

室温下,样品装置放置在桌面上,温差电偶读数为 $0.013\,\mathrm{mV}$ 。液面计示数为 $0.001\,\mathrm{mV}$ 。标准铂电阻上的电压为 $109.67\,\mathrm{mV}$,通过的电流为 $100.00\,\mathrm{mV}/100\,\Omega=1.0000\,\mathrm{mA}$,故其阻值为 $109.67\,\Omega$,查表得室温为 $298.04\,\mathrm{K}$ 。二极管上的电压为 $0.5062\,\mathrm{V}$,通过的电流为 $1.0000\,\mathrm{V}/10\,\mathrm{k}\Omega=0.100\,00\,\mathrm{mA}$ 。样品上通过的电流为 $100.217\,\mathrm{mV}/10\,\Omega=10.0217\,\mathrm{mA}$,电压为 $0.226\,\mathrm{mV}$,故此时样品电阻为 $0.022\,55\,\Omega$ 。

23.2 低温温度计比对数据

铂电阻压	温度/K	二极管压降/V	二极管电阻/kΩ	铂电阻压	温度/K	温差电偶压
降/mV				降/mV		降/mV
108.94	296.13	0.5122	5.122	108.67	295.44	5.972
102.58	279.79	0.5495	5.495	102.28	279.02	5.365
96.35	263.89	0.5870	5.870	96.07	263.18	4.786
89.59	246.74	0.6293	6.293	89.25	245.88	4.189
84.50	233.88	0.6610	6.610	84.23	233.20	3.756
78.90	219.79	0.6989	6.989	78.45	218.66	3.292
70.25	198.15	0.7496	7.496	69.96	197.42	2.655
65.10	185.34	0.7802	7.802	64.59	184.08	2.280
61.65	176.80	0.8003	8.003	61.38	176.14	2.064
57.78	167.27	0.8235	8.235	57.54	166.68	1.802
54.27	158.66	0.8438	8.438	54.96	160.35	1.582
51.05	150.79	0.8619	8.619	50.85	150.31	1.401
47.55	142.29	0.8814	8.814	47.36	141.83	1.207
45.20	136.60	0.8944	8.944	44.95	136.00	1.074
43.54	132.60	0.9028	9.028	43.37	132.19	0.996
40.70	125.77	0.9180	9.180	40.30	124.81	0.820
37.65	118.47	0.9340	9.340	37.32	117.69	0.680
34.20	110.26	0.9520	9.520	33.94	109.64	0.526
31.37	103.55	0.9652	9.652	31.20	103.15	0.413
30.67	101.89	0.9690	9.690	30.48	101.44	0.382

作图及分析见附页。

23.3 样品电阻随温度的变化

Pt 电阻压	温度/K	样品压	样品电	Pt 电阻压	温度/K	样品压	样品电
降/mV		降/mV	$阻/m\Omega$	降/mV		降/mV	$阻/m\Omega$
108.44	294.81	0.224	22.35	28.92	97.73	0.097	9.68
101.80	277.76	0.213	21.25	28.48	96.69	0.096	9.58
95.75	262.34	0.202	20.16	28.32	96.32	0.095	9.48
88.88	244.91	0.191	19.06	27.95	95.45	0.094	9.38
83.90	232.34	0.183	18.26	27.82	95.14	0.093	9.28
77.88	217.20	0.174	17.36	27.69	94.83	0.092	9.18
69.48	196.20	0.162	16.16	27.35	94.03	0.090	8.98
64.32	183.38	0.154	15.37	27.12	93.49	0.087	8.68
61.05	175.29	0.150	14.97	26.92	93.02	0.084	8.38
57.15	165.69	0.146	14.57	26.75	92.62	0.081	8.08
53.55	156.87	0.140	13.97	26.60	92.27	0.076	7.58
50.58	149.62	0.138	13.77	26.54	92.13	0.070	6.98
47.18	141.36	0.132	13.17	26.50	92.03	0.065	6.49
44.68	135.32	0.128	12.77	26.42	91.84	0.049	4.89
39.98	124.02	0.123	12.27	26.37	91.73	0.029	2.89
36.88	116.61	0.116	11.57	26.33	91.63	0.017	1.70
33.68	108.99	0.111	11.08	26.20	91.33	0.014	1.40
31.03	102.71	0.105	10.48	25.97	90.79	0.013	1.30
30.37	101.15	0.108	10.78	25.59	89.89	0.012	1.20
29.87	99.97	0.111	11.08	24.11	86.42	0.012	1.20
29.47	99.03	0.100	9.98				

前 18 个数据点(102K ~ 295K)用软件去作电阻值与温度的线性拟合,得到截距为(4.66 ± 0.13) $m\Omega$,斜率为($0.059\,26\pm0.000\,66$) $m\Omega$ /K,相关系数为 $0.999\,02$ 。从样品电阻行为开始偏离直线的位置看,起始转变温度约在 $101\,K$ 左右。当样品上的压降减小到 $0.017\,m$ V时,将电流反相,电压表示数不变,证明此时的电压已经全是杂散电动势的贡献,故认为零电阻温度在 $91.6\,K$ 左右。将坐标轴移动到 $1.7\,m\Omega$ 处,把拟合的直线除以二,与样品电阻的实际行为相交,得到转变中点温度约为 $91.9\,K$ 。

23.4 浸没入液氮中的检测数据

直接把整个装置浸没入液氮里,铂电阻上的电压为20.29 mV,通过的电流为 99.88 mV/100 Ω = 0.9988 mA,比测量开始时变化了千分之一,认为铂电阻上的电流保持基本稳定。此时铂电阻的阻值为20.31 Ω ,对应的温度为77.54 K。液面计和温差电偶的示数均为0.000 mV,符合预期。通过硅二极管的电流为 1.0004 V/10 k Ω = 0.100 04 mA,两端电压为1.0212 mV,电流与开始时相比只变化了万分之四。样品两端电压为0.018 mV,通过样品的电流为 100.206 mV/10 Ω = 10.0206 mA。电流与开始时相比变化了百分之二,尚可以接受。电流反向后电压示数不变,证明电压示数全是杂散电动势的贡献。从中可见我们测量得到的数据基本都是靠谱的。

图 1: 图示为热电偶电压和(在 0.1 mA 下工作的)硅管的电阻随温度变化的曲线。温度值使用铂电阻对表算出。可以看到在 $100 K \sim 300 K$ 段,硅管的电阻与温度呈负相关,而温差电偶的电压与温度呈正相关。二者在局部线性都较好,要求不高时可以当低温温度计使。 24 \blacksquare

图 2: 图示为样品电阻随温度的变化, 102K ~ 295K 段作了线性拟合。