		Tipo de Prova			Ano letivo	Data
		Teste 2			2021/2022	13-06-2022
P.PORTO	ESCOLA SUPERIOR	Curso LSIRC+LEI				Hora 14:00
P.PORTO	DE TECNOLOGIA E GESTÃO	Unidade Curricular				Duração
	EGESTAG	Matemática Discreta				1,5 horas + 15 min
Nome:					N	 lúmero:
					'\ `	uniero
Observações:						
A avaliação desta Uni		cular, na modalidade de te 1 + 35% Teste 2 + 30	-		o letivo, contemp	ola os três elementos e
Para a realização dest	a prova pod	e usar um formulário m	nanuscrito e cria	do pelo própr	io, com até uma p	página A4 (ou 2 páginas
A5).						
Responda às questõe						
	-	e justificações. Nas res lo identificadas entre pa	-	e todas as ju	stificações.	
				osta e de rasc	runho assim com	o o formulário, TODOS
		o nome e número de es		J314 C UC 1430	,umo, assim com	o o formulario, 10003
						Bom trabalho!
l				Eli	ana Costa e Silva	e Isabel Cristina Duarte
Responda às qu	iostões <i>1</i>	1 2 6 com an	rocontar			
•	iestoes .	та в зепі арі	esentai	> M1=[1	100101;	> M2=[1 0 2 1;
justificações.		willia.		_	0 0 0 0;	> 0 0 1 0;
1. [1.0] Considere of	-	=			0 0 0 1;	> 2 1 1 0;
definidas as matrizes	=		_		L 0 1 0;	> 1 0 0 1];
		3,C,D}, respetivamer	nte. Com	> 0 0 2	L 0 0 1;	
base no output, resp		uestões seguintes.		> 1 1 (1 1 0];	
Podemos afirmar qu			1			
os dois grafos s					s {a,b,c,d,e,f} é o	
nenhum dos gr	afos é de F	lamilton	apenas o grafo	de vértices	{A,B,C,D} é de F	lamilton
	_		_		<u>(c)</u>	
2. [1.0] Relativamen	_	<u> </u>		, A:		D
é um circuito de	Hamilton	=				, <u>B</u>)
x não é caminho		nenhuma das	anteriores			()
					$A \longrightarrow C_E$	5
						,
3. [1.0] O produto d			iximo divisor co	7	ntão o seu mini	mo múltiplo comum
é: 2	4	<u>x</u> 6		12		
4. Com base no	fragmento	de código sci <mark>lata</mark> ab	aixo, podemos	afirmar que	e:	
> factor(55),	factor(150)), factor(539), fact	or(1287)			
ans =						
5. 11. ans =						
2. 3. 5.	5.					
ans = 7. 7. 11.						
ans = 3. 3. 11.	. 13.					
		7) 4.				
4.1 [1.0] md	c(150, 128	$\dot{}$			·	
<u>x</u> 3		5	11		nennuma d	as anteriores
4.2 [1.0] não	são primo	os entre si:				
55, 150		x 55, 539 e 1287	150. 539	9 e 1287	150 e 539	
	L					
4.3 [1.0] exis	ste o invers	so de 539 modulo:				
55		x 150	1287		nenhuma d	las anteriores
						

ESTG-PR05-Mod013V2 Página 1 de8

P.PORTO		Tipo de Prova Teste 2	Ano letivo 2021/2022	Data 13-06-2022
		Curso	Hora	
	ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO	LSIRC+LEI	15:00	
P.PORTO		Heide de Continue		Duração
		Unidade Curricular Matemática Discreta		1,5 horas+15
		Waternatica Discreta		min

5.	[1.0]	Um	inverso	de 3	modulo	7	é:
J.	լ ±.Ծյ	OIII	11111130	uc J	illoaalo	,	c.

___ 2 ____3 ____4 ____x_5

6. Considere a rede constituída por cinco páginas *web* A, B, C, D e E com os *links* mostrados na imagem apresentada na figura ao lado.

6.1. [1.0] Considere que, em cada passo, escolhemos de forma aleatória um *link* da página web onde estamos. A matriz de transição (definida no science) do processo Markov subjacente é:


```
X
                                                                       0.
                                                                                            0.5
                                                                                     0.
                                                                                                         0.5
                                                                       0.
                                                         0.5
                                                                                     0.5
                                                                                            0.
                                                                                                         0.
                                          0.
    0.
                    0.3333333
            0.
                                                         0.3333333
                                                                       0.3333333
                                                                                     0.
                                                                                            0.3333333
                                                                                                         0.
                                   0.5
    0.
            0.5
                    0.
                                          0.
                                                                       0.
                                                                                     0.5
                                                                                            0.
                                                                                                         0.5
    0.5
            0.
                    0.3333333
                                           0.
                                                                                     0.
                                                                       0.
                                                                                            0.
                                                                                                         0.
```

T =					T =				
0.41	0.59	0.39	0.73	0.54	0.	0.5	0.33	0.	1.
0.88	0.69	0.92	0.26	0.12	0.	0.	0.33	0.	0.
0.11	0.89	0.95	0.5	0.23	0 .	0.5	0.	0.5	0.
0.2	0.5	0.34	0.26	0.63			0.33		
0.56	0.35	0.38	0.53	0.76					
					0.5	0.	0.	0.5	0.

6.2. [1.0] Considere os cálculos apresentados no fragmento de código sei apresentado abaixo, sendo T a matriz de transição definida na alínea 6.1 .

> T^6				
ans =				
0.2916667	0.3935185	0.3217593	0.337963	0.4027778
0.0277778	0.0601852	0.0462963	0.025463	0.0694444
0.1423611	0.1111111	0.1134259	0.1736111	0.0833333
0.2291667	0.1956019	0.2384259	0.1712963	0.2152778
0.3090278	0.2395833	0.2800926	0.2916667	0.2291667

> T^6*[0 1 0 0 0]'	> T^6*[0 0 0 0 1]'	> T^6*[1 0 0 0 0]'
ans =	ans =	ans =
		ļ.
0.3935185	0.4027778	0.2916667
0.0601852	0.0694444	0.0277778
0.1111111	0.0833333	0.1423611
0.1956019	0.2152778	0.2291667
0.2395833	0.2291667	0.3090278

A probabilidade, de começando na página B, seis passos depois estar na página D é aproximadamente:

ESTG-PR05-Mod013V2 Página 2 de8

P.PORTO		Tipo de Prova Teste 2	Data 13-06-2022		
	ESCOLA	Curso LSIRC+LEI	Hora 14:00		
P.PORTO	SUPERIOR DE TECNOLOGIA E GESTÃO	Unidade Curricular Matemática Discreta			Duração 1,5 horas + 15 min

Nome: ______Número:_____

Nas questões que seguem apresente todas as justificações.

7. Considere o grafo ponderado apresentado ao lado.

7.1 [1.5] Use o algoritmo de $\it Dijkstra$ para encontrar o caminho de menor custo entre $\it a$ e $\it f$.

Observação: Apresente a sua resolução na tabela abaixo.

lt.	v _d (M)	Mc	A	$v_i, \dots, v_d, v_j \in L(v_j)$	X e X_d	R: Caminhos mínimos
0		a	{b, e}	$a,b \rightarrow L(b)=1$ $a,e, \rightarrow L(e)=2$	{b, e} {1, 2}	a,b a,e
1	b	a, b	{c, f}	$a,b,c \to L(c)=1+2=3$ $a,b,f \to L(f)=1+4=5$	{e,c,f,} {2, 3, 5}	a,e a,b,c a,b,f
2	e	a,e	{i}	a,e,i \to L(i)=2+4=6	{c,f,i} {3,5,6}	a,b,c a,b,f a,e,i
3	С	a,b,c	{d,g}	$a,b,c,d \rightarrow L(d)=3+1=4$ $a,b,c,g \rightarrow L(g)=3+3=6$	{d,f,g,i} {4,5,6,6}	a,b,c,d a,b,f a,b,c,g a,e,i
4	d	a,b,c,d	{h}	$a,b,c,d,h \rightarrow L(h)=4+1=5$	{h,f,i,g} {5,5,6,6}	a,b,c,d,h a,b,f a,e,i a,b,c,g
5	h	a,b,c,d,h	{g}	$a,b,c,d,h,g \rightarrow L(g) = 5+1=6$	{f,g,i} {5,6,6}	a,b,f a,b,c,g a,e,i a,b,c,g

O caminho de menor custo entre a e f é: a,b,f

ESTG-PR05-Mod013V2 Página 3 de8

P.PORTO	ESCOLA	Tipo de Prova Teste 2	Ano letivo 2021/2022	Data 13-06-2022
		Curso LSIRC+LEI	Hora 15:00	
P.PORTO	SUPERIOR DE TECNOLOGIA E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas+15 min

7.2 [1.5] Usando o Algoritmo de Kruskal, determine uma árvore geradora de custo mínimo do grafo, e indique o seu comprimento.

Observação: Apresente a sua resolução na tabela abaixo.

Proposta de resolução:

A, B - 1

C, D - 1

D, H - 1

H, G-1

B, C - 2

F, J-2

A, E - 2

I, J - 3

E, I - 4

Comprimento: 15+2

Outra resolução

RAMOS

	A, E – 2	C,G - 3	B,F – 4
C, D – 1	B, C – 2	I, J – 3	F,G - 4
D, H – 1	F, J – 2		E, I – 4
G, H – 1			

It	(vi,vj)	Si	Sj	Т	S1	S2	S3	S4	S5	S6	S 7	S8	S9	S10	Nr
					a	b	С	d	е	f	g	h	i	j	
1	(a, b)	1	2	(a, b)	a,b	С	D	е	f	g	h	i	j		1
2	(c,d)	2	3	(c,d)	a,b	c,d	Е	f	g	h	i	j			2
3	(d,h)	2	6	(d,h)	a,b	c,d,	Е	f	gg	i	j				3
4	(g,h)	5	2	(g,h)	a,b	c,d, g,h	Е	f	i	j					4

ESTG-PR05-Mod013V2 Página 4 de8

		Tipo de Prova Teste 2		Ano letivo 2021/2022	Data 13-06-2022	
P.PORTO	ESCOLA	Curso LSIRC+LEI			Hora 14:00	
P.PORTO	SUPERIOR DE TECNOLOGIA E GESTÃO	Unidade Curricular Matemática Discreta				

Nome: _____Número:____

5		1	3	(a,e)	a,b	c,d,	f	i	j			5
	(a,e)				,e	g,h						
					a,b	f	i	j				
6		1	2	(b,c)	,c,d							6
O	(b,c)	-	2	(6,0)	,e,g							
					,h							
					a,b	f,j	i					
7		2	4	(f,j)	,c,d							7
	(f,j)			(*/)/	,e,g							
					,h							
8	(c,g)	1	1									
					a,b	f,i,j						
9	(i,j)	2	3	(i,j)	,c,d							8
	(*))			(1))	,e,g							
					,h							
					a,b							
			2		,c,d							
10	(b,f)	1		(b,f)	,e,f							9
					,g,							
					h,i,							
					j							

ESTG-PR05-Mod013V2 Página 5 de8

		Tipo de Prova Teste 2	Ano letivo 2021/2022	Data 13-06-2022
P.PORTO	ESCOLA	Curso LSIRC+LEI		Hora 15:00
	SUPERIOR DE TECNOLOGIA E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas+15 min

8 [1.5] Determine, recorrendo ao Algoritmo de Euclides, os inteiros $s \in t$ (coeficientes de Bézout) tais que $mdc(234,48) = 234 \times s + 48 \times t$, e se possível, indique o inverso de $48 \mod 234$.

 $\label{eq:mdc} mdc(234,48)$ Temos que: $234 = 48 \times 4 + 42, 48 = 42 \times 1 + 6 \ e \\ 42 = 6 \times 7 + 0$ Portanto, mdc(234,48) = mdc(48,42) = mdc(42,6) = 6 Não existe inverso de 48 mod 234 porque 48 e 234 não são primos entre si. De facto, $mdc(234,48) = 6 \neq 1$

9 [1.5] Resolva, se possível, a congruência $9x \equiv 3 \mod 11$.

```
\label{eq:mdc} \operatorname{mdc}(9,11) = 1, \log o \text{ existe inverso de 9 modulo 11}. Pelo algoritmo da divisão 11 = 9 \times 1 + 2 \Leftrightarrow 2 = 11 - 9 \\ 9 = 2 \times 4 + 1 \Leftrightarrow 1 = 9 - 2 \times 4 \\ 1 = 9 - 2 \times 4 = 9 - (11 - 9) \times 4 = 5 \times 9 - 4 \times 11, \log o 5 \text{ é inverso de 9 modulo 2, então} \\ 9x \equiv 3 \mod 11 \Leftrightarrow 5 \times 9x \equiv 5 \times 3 \mod 11 \Leftrightarrow x \equiv 4 Então x = 4 + 11k, k \in \mathbb{Z}.
```

10 [1.5] Escreva a sequência de números pseudo-aleatórios gerada por $x_{n+1} = (5x_n + 7) \mod 11$ com raíz $x_0 = 7$.

```
x_0=7
x_1=(5*7+7)mod 11= 42mod 11=9
x_2=(5*9+7)mod 11= 52mod 11=8
x_3=(5*8+7)mod 11= 47mod 11=3
x_4=(5*3+7)mod 11= 22mod 11=0
```

ESTG-PR05-Mod013V2 Página 6 de8

		Tipo de Prova Teste 2	Ano letivo 2021/2022	Data 13-06-2022
D DODTO		Curso LSIRC+LEI		Hora 14:00
P.PORTO	SUPERIOR DE TECNOLOGIA E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas + 15 min

Nome: ______Número:_____

11 Considere a função de encriptação $f(n) = (10n + 1) \mod 29$ e ainda as correspondências seguintes:

Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z	_	#	@
0	1	2	3	4	5	6	7	8	9	10		12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28

11.1 [1.0] Encripte a mensagem "HASH".

```
As letras da mensagem a encriptar correspondem às posições 7, 0, 18 e 7 f(7) = (10 \times 7 + 1) mod \ 29 = 71 mod \ 29 = 13 \rightarrow N f(0) = (10 \times 0 + 1) mod \ 29 = 1 mod \ 29 = 1 \rightarrow B f(18) = (10 \times 18 + 1) mod \ 29 = 1811 mod \ 29 = 7 \rightarrow H f(7) = (10 \times 7 + 1) mod \ 29 = 71 mod \ 29 = 13 \rightarrow N
```

Logo, a mensagem encriptada será: NBHN

ESTG-PR05-Mod013V2

11.2 [1.0] Escreva a função de desencriptação f^{-1} , sabendo que 3 é o inverso de 10 módulo 29.

```
Proposta de Resolução:
VERSÃO 1: f(n) = (10n + 1) \mod 29
Como mdc(10,29) = 1 os números 10 e 29 são primos entre si, portanto é possível calcular o inverso de 10 módulo
Pelo algoritmo da divisão temos que
                                         29 = 2 \times 10 + 9 e 10 = 1 \times 9 + 1
Donde,
                           1 = 10 - 1 \times 9 = 10 - 29 + 2 \times 10 \Leftrightarrow 1 = 3 \times 10 - 29 \times 1
Portanto,
x = 3 é o inverso de 10 módulo 29.
          f(n) = (10n + 1) \mod 29 \iff c = (10n + 1) \mod 29 \iff c + 28 = (10n + 1 + 28) \mod 29
           \Leftrightarrow c + 28 = 10n \mod 29 \Leftrightarrow 10n = (c + 28) \mod 29 \Leftrightarrow 3 \times 10 \ n = 3 \times (c + 28) \mod 29
                                             \Leftrightarrow n = (3c + 26) \mod 29
--> pmodulo(3*28,29)
 ans =
    26.
Logo,
                                             f^{-1}(n) = (3n + 26) \mod 29
```

Página 7 de8

		Tipo de Prova Teste 2	Data 13-06-2022		
P.PORTO		Curso	Hora		
	ESCOLA SUPERIOR	LSIRC+LEI	15:00		
	DE TECNOLOGIA			Duração	
	E GESTÃO	Unidade Curricular Matemática Discreta		1,5 horas+15	
		Waternatica Discreta		min	

12 Considere o sistema RSA com a = 13 e $m = 43 \times 59 = 2537$.

Responda às seguintes questões usando os outputs do scienta que considerar necessários.

12.1 [0.75] Encripte a mensagem "CS".

Como C ightarrow02 e S ightarrow18, CS corresponde a 0218. Encriptação: $u(x)=x^a \mod m$, com $m=p\times q=2537$ Assim como

$$u(CS) = u(0218) = 218^{13} \mod (2537) = 1259$$

A mensagem "CS" encriptada é: 1259

12.1[0.75] Sendo b = 937 a chave privada, desencripte a mensagem "1005".

 $v(1005) = 1005^{937} \mod(2537) = 2400$

Como 24 \rightarrow Y e 00 \rightarrow A, a mensagem original é YA.

```
-> x=13
                                    × =
ans =
  218
                                       13.
                                    -> x_new=1;
-> pmodulo(218^13,2537)
                                    --> for k=1:218,
                                    >
                                          x_new=pmodulo(x*x_new,2537);
ans =
                                    > end
  0.
                                    -> x_new
                                    x_new
                                      _
1672.
--> x=218
                                    --> x=1005;
                                    -> x new=1;
 218.
                                    -> for k=1:2537,
                                          x_new=pmodulo(x*x_new,937);
-> x_new=1;
-> for k=1:13,
                                     > end
 > x_new=pmodulo(x*x_new,2537);
                                    -> x_new
> end
                                    x new =
                                      225.
-> x new
x_new =
    1259.
-> x=1005;
                                    -> x=1005;
-> x_new=1;
                                    -> x_new=1;
-> for k=1:13,
                                    -> for k=1:937,
                                       x_new=pmodulo(x*x_new,2537);
   x new=pmodulo(x*x new,2537);
> end
                                    > end
-> x_new
                                    -> x_new
x_new
                                    x_new =
  2056.
                                      2400.
```

ESTG-PR05-Mod013V2 Página 8 de8