Instituto Federal do Norte de Minas Gerais - IFNMG - Campus Januária Bacharelado em Sistemas de Informação - BSI

INSTITUTO FEDERAL

Norte de Minas Gerais Campus Januária

Admin. Serviços de Redes

- Kathará -

Kathará

- Kathará é um ambiente open-source para emulação de redes de computadores baseado na tecnologia de virtualização por containers (docker).
 - Kathará é uma evolução do projeto Netkit.

Kathará

- A ferramenta permite a criação, configuração e gerenciamento de redes e serviços, desde as mais simples às mais complexas.
- Site
 - https://www.kathara.org/

Orientações para Instalação e Configuração:

1º Passo - Docker:

- sudo apt-get update
- sudo apt-get install docker.io
- sudo docker run hello-world

Orientações para Instalação e Configuração:

2º Passo - Kathará:

- \$ sudo add-apt-repository ppa:katharaframework/kathara
- \$ sudo apt-get update
- \$ sudo apt-get install kathara
- \$ kathara check

Orientações para Instalação e Configuração:

3º Passo - Imagem Customizada e Outras Definições:

- \$ sudo docker pull adrianoantunesp/admin-redes
- \$ kathara settings
- \$ Opção 2 -> 6: adrianoantunesp/admin-redes
- \$ Opção 5 -> 3: /usr/bin/gnome-terminal
- \$ Opção 10 -> 1.

Criando Host contendo uma Interface de Rede

\$ kathara vstart -n pc0 --eth 0:A

Criando Host contendo uma Interface de Rede

\$ kathara vstart -n pc0 --eth 0:A

Cria e executa um novo contêiner que representa um host...

Criando Host contendo uma Interface de Rede

\$ kathara vstart -n pc0 --eth 0:A

...nomeado como "pc0"

Criando Host contendo uma Interface de Rede

\$ kathara vstart -n pc0 --eth 0:A

...e que possui 1 interface de rede padrão Ethernet "eth0" conectada ao domínio de colisão (enlace) "A"

Explicando...

Já ouvi falar disso...

Quantos Domínios de Colisão?

Quantos Domínios de Colisão?

Quantos Domínios de Colisão?

Começando a Prática...

- Crie dois hosts utilizando o Kathará...
- Ambos contém uma interface de rede Ethernet e estão no mesmo domínio de colisão.
- Os hosts já conseguem se comunicar?

SIM OU NÃO?

Interfaces de Rede

 ifconfig é a tradicional ferramenta para visualização e configuração das interfaces de rede em plataformas Linux.

\$ ifconfig

 Outro utilitário (mais recente) que também permite a visualização e configuração de interfaces é o "ip".

\$ ip a

Atividade

- Execute o comando ifconfig na máquina hospedeira (ou seja, o host que executa o docker/kathará).
- Identifique...
 - Quantas interfaces de rede existem.
 - A diferença entre as interfaces existentes.
 - O endereço IP de cada interface.
 - O endereço MAC de cada interface.
 - O endereço de broadcast da rede.
 - A máscara da rede.
 - A quantidade de pacotes transmitidos.
 - A quantidade de pacotes recebidos.

Atividade

Agora, execute o ifconfig nos hosts do kathará...

Atividade

root@pc0:/ Agora, ex Arquivo Editar Ver Pesquisar Terminal Ajuda root@pc0:/# ifconfig eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500 ether 0a:71:36:d1:72:dc txqueuelen 1000 (Ethernet) RX packets 58 bytes 8606 (8.4 KiB) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 0 bytes 0 (0.0 B) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0 lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536 inet 127.0.0.1 netmask 255.0.0.0 loop txqueuelen 1000 (Local Loopback) RX packets 0 bytes 0 (0.0 B) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 0 bytes 0 (0.0 B) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0 root@pc0:/# O que falta?

Configurando uma Interface

- \$ ifconfig eth0 x.y.z.w/z
- O comando acima realiza a configuração temporária da interface.
 - Atribui o endereço x.y.z.w à interface eth0.
 - Atribui máscara de rede correspondente à /z.

Obs: Essa configuração é VOLÁTIL.

Laboratório 01-1

Crie o seguinte laboratório no Kathará:

Como testar a conectividade entre as máquinas?

PING

- O utilitário PING é famoso por testar a conectividade entre dois terminais em rede.
- PING não é um protocolo!
- PING é uma aplicação baseada em um protocolo de camada 3, chamado ICMP (Internet Control Message Protocol).

\$ ping 192.168.100.2

Observação

No Linux, o comando PING é infinito.

Para encerrar o processo, tecle CTRL + C

PING

Finalizando os Hosts

- Ao fechar o terminal do Host, ele ainda estará em execução (segundo plano) e pode ser conectado novamente pelo comando abaixo (exemplo).
 - \$ kathara connect -v pc0
- A lista de hosts em execução é obtida pelo comando abaixo.
 - \$ sudo kathara list

Finalizando os Hosts

- Para finalizar a execução do laboratório virtual (finalizar todos os contêineres), execute:
 - \$ kathara wipe

- Para finalizar a execução apenas de um host específico, execute:
 - \$ kathara vclean -n pc1

Definindo Comandos Rápidos

Utilize o recurso de "alias" do Linux para criar comandos rápidos...

\$ sudo nano .bashrc

```
alias ks="kathara vstart -n"
alias kw="kathara wipe"
alias kc="kathara connect -v"
alias kx="kathara vclean -n"
alias kl="kathara lstart"
```


Laboratório 01-2

- Configure uma rede no Kathará como descrito...
 - PC1 -> 192.168.1.30 | 255.255.255.192
 - PC2 -> 192.168.1.50 | 255.255.255.192
 - PC3 -> 192.168.1.80 | 255.255.255.192
- Teste a conectividade...
 - PC1 -> PC2
 - PC2 -> PC1
 - PC1 -> PC3
 - PC3 -> PC2

<u>Lembre-se</u>

No Linux, o comando PING é infinito. Para encerrar o processo, tecle CTRL + C

Laboratório 01-2

- Configure uma rede no Kathará como descrito...
 - PC1 -> 192.168.1.30 | 255.255.255.192
 - PC2 -> 192.168.1.50 | 255.255.255.192
 - PC3 -> 192.168.1.80 | 255.255.255.192
- Teste a conectividade...
 - PC1 -> PC2
 - PC2 -> PC1
 - PC1 -> PC3
 - PC3 → PC2 Motivos???

Monitoramento de Rede

- Às vezes é tarefa bastante complexa identificar o ponto focal de um problema de comunicação em rede...
 - O problema é na origem ou no destino?
 - Os pacotes estão saindo pela interface?
 - Os pacotes estão chegando no destino?
 - Os pacotes estão se perdendo no meio do caminho?
 - etc...
- Para auxiliar nessa tarefa, utilizamos ferramentas de monitoramento de rede, que permitem a captura e análise de pacotes.

TCPDUMP

TCPDUMP

é uma ferramenta nativa de monitoramento nos sistemas Linux.

```
root@pc2:/
Arquivo Editar Ver Pesquisar Terminal Ajuda
root@pc2:/# tcpdump
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes
16:41:07.113067 ARP, Request who-has 192.168.1.2 tell 192.168.1.1, length 28
16:41:07.113114 ARP, Reply 192.168.1.2 is-at 52:8b:35:89:16:b7 (oui Unknown), le
ngth 28
16:41:07.113158 IP 192.168.1.1 > 192.168.1.2: ICMP echo request, id 37, seq 1, l
ength 64
16:41:07.113190 IP 192.168.1.2 > 192.168.1.1: ICMP echo reply, id 37, seq 1, len
ath 64
16:41:08.131090 IP 192.168.1.1 > 192.168.1.2: ICMP echo request, id 37, seq 2, l
enath 64
16:41:08.131139 IP 192.168.1.2 > 192.168.1.1: ICMP echo reply, id 37, seq 2, len
ath 64
16:41:09.155052 IP 192.168.1.1 > 192.168.1.2: ICMP echo request, id 37, seq 3, l
enath 64
16:41:09.155087 IP 192.168.1.2 > 192.168.1.1: ICMP echo reply, id 37, seq 3, len
ath 64
16:41:12.258914 ARP, Request who-has 192.168.1.1 tell 192.168.1.2, length 28
16:41:12.258946 ARP, Reply 192.168.1.1 is-at ea:18:99:65:ed:17 (oui Unknown), le
ngth 28
10 packets captured
10 packets received by filter
```


TCPDUMP

Principais parâmetros de filtragem do TCPDUMP

```
$ tcpdump -i eth0

$ tcpdump icmp
$ tcpdump icmp or tcp

$ tcpdump port 80
$ tcpdump src port 1025
$ tcpdump portrange 21-23

$ tcpdump host ifnmg.edu.br and port https
```

- \$ tcpdump -nX
- \$ tcpdump -w arquivoCaptura.pcap

Veja Mais...

Laboratório 01-3

Construa um novo cenário...

PC1
PC3
PC4
PC5

Todos os hosts devem se comunicar entre si.

Laboratório 01-3

Um detalhe ainda não encaixa...

Um detalhe ainda não encaixa...

Um detalhe ainda não encaixa...

O endereço IP do alvo é informado na chamada do comando ping, OK!

Mas como o PC1 descobre o endereço físico (MAC Address) do PC2?

Protocolo ARP

- Protocolo ARP
 - Address Resolution Protocol

- Protocolo de Resolução de Endereços
 - IP -> MAC

- R-ARP (Reverse ARP)
 - MAC -> IP

Protocolo ARP

Cache ARP

- Quando um PC resolve um endereço MAC através do protocolo ARP, essa informação é mantida em um cache para agilizar consultas futuras.
- Vamos verificar...

Obs. Execute CTRL + C para interromper o PING.

No PC1 e no PC2 digite o comando para ver o cache ARP.

```
$ arp -v
```


Exercício Prático

Elimine os registros do cache ARP em alguns PC's

```
$ arp -d <endereço_IP>
```

Agora, utilize o TCPDUMP para rastrear e identificar os pacotes **ARP REQUEST** e **ARP REPLY**

Arquivo de Configuração

- É possível criar um arquivo de texto para configurar automaticamente todo um Laboratório no Kathará.
- O arquivo deve ser nomeado como lab.conf
- É interessante também criar um diretório próprio para cada laboratório (p.ex: ~/kathara/lab01-4/lab.conf)

```
pc1[0]="A"
pc2[0]="A"
pc3[0]="A"
pc4[0]="A"
```

\$ kathara lstart

Arquivo de Configuração

Script de Auto-Execução

Script para execução automática em cada host...

NomeDoHost.startup

pc1.startup

ifconfig eth0 210.15.180.205/29

 Usando arquivo de configuração, construa um novo cenário de laboratório...

PC1

Domínio de Colisão: A

192.168.100.1/24

PC3

Domínio de Colisão: B

192.168.100.3/24

PC2

Domínio de Colisão: B

192.168.100.2/24

PC4

Domínio de Colisão: A

192.168.100.4/24

Todos os hosts devem se comunicar entre si.

- Somente com os conhecimentos adquiridos até o momento, tente responder...
- Quais ping's irão funcionar corretamente?
 - PC1 -> PC2
 - PC1 -> PC3
 - PC2 -> PC3
 - PC2 -> PC4

 Somente com os conhecimentos adquiridos até o momento, tente responder...

Quais ping's irão funcionar corretamente?

- PC1 -> PC2
- PC1 -> PC3
- PC2 -> PC3
- PC2 -> PC4

Como resolver esse problema???

Seminário Individual

Tema de Seminário Individual

Utilitário brctl (Bridge-utils)

- Para que serve.
- Principais comandos.
- Mostrar sua utilidade em cenário do Kathará.