



23.12.14

# 다변량 스팀 사용 이상 감지 및 영향 변수의 원인 분석

서울과학기술대학교 데이터사이언스학과

이성호 <u>sean0310@seoultech.ac.kr</u>

배소희 <u>shbae2819@g.seoultech.ac.kr</u>

심재웅 <u>jaewoong@seoultech.ac.kr</u>

- Tg04 예측
- IMV-LSTM 활용
- 이상 탐지 정의 방안
- Tg04 vs 지절

#### 데이터

- 이용 데이터
- 제품 2종에 대한 6달간 센서 데이터

df\_ext(2023-03,04)(5123,0385)\_2023-11-16 seoultech df\_ext(2023-05,06)(5123,0385)\_2023-11-16 seoultech df\_ext(2023-07,08)(5123,0385)\_2023-11-16 seoultech 기간: 2023-03-02 08:00:00 ~ 2023-08-27 03:00:00 (분)

| date | 날짜                                             |
|------|------------------------------------------------|
| tg   | Sensor (38개)                                   |
| stop | 공정 분석값<br>0 : 가동<br>1 : 중지 이벤트 발생<br>2 : 중지 복구 |
| jr   | 단위 공정값 / 제품 생산 주기 (생산품 번호)                     |

- 이용 데이터 전처리
  - jr\_progress : jr을 기준으로 시간에 따른 정수를 새로운 변수로 추가
  - 전체 데이터에 대해 Minmaxscaler 적용



#### 데이터

- 이용 데이터
- 이용 데이터 정의
  - input(X): tg (37개 sensor 데이터), 공정진행도(jr\_progress)
    - Window size: 20
  - output(y) : 10분 후의 <u>tg 04(스팀 순간값)</u>
- Data split
  - Train/Validation/Test = 60:20:20

Train:  $2023-03-02\ 08:00:00 \sim 2023-06-16\ 18:22:00\ (52980)$ 

Validation: ~ 2023-07-16 12:37:00 (17660)

Test: ~ 2023-08-27 03:00:00 (17663)

# 머신 러닝 모델 (Random forest)

■ 예측 성능 지표

 $- R^2 : 0.4051$ 

- MSE: 2.2104

■ 변수 중요도







tag04 & tg03가 가장 중요하게 작용

### 딥러닝 모델 (1D CNN)

#### Experiment setting

- 1D Conv layers(64-128-256-512-1024 / kernel=3) + linear layers (1024-512-128-64-1)

- Epoch: 100

- optimizer : Adam(lr=1e-4)

Result

 $- R^2 : 0.4045$ 

- MSE: 2.2125

• SHAP을 통한 모델 해석







tg04: 스팀 순간값 tg03: 끝단 설비 속도

tg13: 설비B1 절대습도

tg34: 설비AE 절대습도

tg43: 설비 PE2 온도

# 딥러닝 모델 (LSTM)

#### Experiment setting

LSTM layer(hidden=256, layer=8) + attention layar

- Epoch: 100

- optimizer : Adam(lr=1e-4)

Result

 $- R^2 : 0.4018$ 

- MSE: 2.2226

#### ■ 모델 해석



35

30

25

Value 02

15



Time Series Prediction LSTM



tg17: 스팀 누적값

tg04: 스팀 순간값 tg02: 종이별 측정 무게 tg32: 설비 S1 온도 tg39: 설비 AS 절대습도

### 딥러닝 모델 (DARNN)

Experiment setting

- Encoder & Decoder Layer: 16

- Epoch : 200

- Optimizer : Adam(Ir=1e-3)

Result

 $- R^2 : 0.4331$ 

- MSE: 2.1064

• Attention Score을 통한 모델 해석

- tg17이 중요하게 작용



### 딥러닝 모델 (IMV-LSTM)

Guo, Tian, Tao Lin, and Nino Antulov-Fantulin. "Exploring interpretable LSTM neural networks over multi-variable data." *International conference on machine learning*. PMLR, 2019.

Experiment setting

Lstm layer node : 32

- Epoch: 100

- Optimizer : Adam(lr=1e-3)

Result

 $- R^2 : 0.4136$ 

- MSE: 2.1787

■ Attention Map을 통한 모델 해석





<변수 별 temporal importance>

### 이상 임계값 설정 방안

- 전체 테스트 데이터셋 기준 mean += 3sigma



- 하루 전 (60 \* 24개 시점) 데이터셋 기준 mean += 3sigma
- 지속 업데이트



# Tg04 vs 지절





### 기타

- 단일 제품 데이터 혹은 제품 명 태그 필요
  - 현재 데이터는 두 개 제품이 혼재 되어 있음





# 감사합니다

#### 이상 탐지

- Actual values
- UCL/LCL(control limits) 기준의 시점과 stop 여부에 대해 확인
- UCL/LCL은 전체 테스트 데이터셋으로 계산되며, Sigma 3기준
  - Test구간
    - **2**023-07-16 13:06:00 ~ 2023-08-27 03:00:00 (17663)

#### Test 내 Stop 변수 0 16134 1 654 2 875

• LCL이하, UCL이상인 경우인 index (350)





#### 이상 탐지

- Actual values
- UCL/LCL(control limits) 기준의 시점과 stop 여부에 대해 확인
- UCL/LCL은 <u>하루 전의 데이터셋</u>으로 계산되며, Sigma 3기준
  - Test구간
    - **2**023-07-16 13:06:00 ~ 2023-08-27 03:00:00 (17663)

#### Test 나 stop 0 16134 1 654 2 875

• LCL이하, UCL이상인 경우인 index (1144)



