Prof. Dr. J. W. Kolar Übung Nr. 11

Name, Vorname	Testat

Aufgabe 1: Hubmagnet

Der mittlere Schenkel 2 eines E-Kernes aus Dynamoblech trägt eine Wicklung mit N Windungen. Über die drei Luftspalte mit gleicher Länge δ wird ein Anker aus Grauguss mit der Kraft F_A angezogen (siehe **Fig. 1**). E-Kern und Anker besitzen die gleiche Dicke d. Die Streuung an den Luftspalten ist bei den Berechnungen zu vernachlässigen. Die magnetischen Materialien sind als linear, d. h. mit aussteuerungsunabhängig konstanter Permeabilität anzunehmen.

Fig. 1: E-Kern aus Dynamoblech mit Anker aus Grauguss

Gegeben sind folgende Parameterwerte:

Windungszahl der Wicklung: = 1000 $= 4\pi \cdot 10^{-7} \text{ Vs/Am}$ Magnetische Feldkonstante: Relative Permeabilität Dynamoblech: $\mu_{rD} = 2000$ Relative Permeabilität Gusseisen: = 250Luftspaltlänge: $= 0.1 \, \text{mm}$ Anzugskraft Anker: $F_{A} = 150 \text{ N}$ Breite E-Kern und Anker: = 20 mmAbstand der Schenkel: = 80 mmDicke E-Kern und Anker: $= 50 \, \text{mm}$

Zeichnen Sie die Feldlinien ein und bestimmen Sie die in den drei Luftspalten zur Erzeugung einer Anzugskraft F_A erforderlichen magnetischen Flussdichten. *Hinweis*: Verwenden Sie das Kraftwirkungsgesetz $F_A = \frac{B^2}{2\mu_0}A$.

Prof. Dr. J. W. Kolar Übung Nr. 11

- b) Berechnen Sie den erforderlichen Spulenstrom $I_{\rm s}$ zur Erzeugung der Anzugskraft $F_{\rm A}$. Wie gross ist die Haltekraft $F_{\rm H}=F_{\rm A}-F_{\rm G}$? $F_{\rm G}$ bezeichnet dabei die Gewichtskraft, die Dichte von Grauguss beträgt $\rho_{\rm G}=7200~{\rm kg}\,/{\rm m}^3$.
- c) Wie verändern sich die magnetische Flussdichte im Luftspalt B_{δ} und die Anzugskraft F_{A} , wenn bei gleichem Spulenstrom der Querschnitt von Magnet und Anker verdoppelt wird?
- d) Zeichnen Sie das Reluktanzmodell (magnetisches Ersatzschaltbild) der Anordnung und berechnen Sie die darin vorkommenden Ersatzkomponenten.
- e) Ermitteln Sie die magnetischen Spannungen V_{AD} auf dem Weg ACD und V_{BD} auf dem Weg BCD.
- f) Berechnen Sie die Induktivität L der Erregerspule.
- g) Die gesamte Anzugskraft F_A soll bei unverändertem Strom I_s durch die Erregerspule zu Null gemacht werden. Dazu werden auf die Schenkel 1 und 3 Spulen mit derselben Windungszahl N aufgebracht, die von einem Strom I_s * durchflossen werden. Wie gross ist I_s * und in welcher Richtung muss I_s * durch die beiden Spulen fliessen?

Prof. Dr. J. W. Kolar Übung Nr. 11

Aufgabe 2: Elektron im Magnetfeld

Ein homogenes Magnetfeld \overrightarrow{H} steht senkrecht zur x-y-Ebene. Ein Elektron wird mit der Beschleunigungsspannung U_D in der Elektronenquelle in der Ebene z=0 ausserhalb des Magnetfeldes beschleunigt und fliegt an der Stelle $x=x_1$, y=0 zur Zeit t=0 in das Feld. Die Eintrittsgeschwindigkeit \overrightarrow{v} des Elektrons hat den Winkel α gegen die y-Achse (siehe **Fig. 2**). Die Gewichtskraft des Elektrons ist hier vernachlässigbar. Der betrachtete Raum besitzt die Permeabilität μ_0 .

Fig. 2: Elektron im magnetischen Feld

a) Welche Geschwindigkeit v besitzt das Elektron unmittelbar vor dem Eintritt in das Magnetfeld? Das Elektron bewegt sich im Magnetfeld auf einer Kreisbahn. Begründen Sie, warum die Bahn eine Kreisbahn sein muss und geben Sie an, welche Orientierung der Kreis hat. Leiten Sie ausserdem die Formel für den Radius r der Kreisbahn her. Benutzen Sie folgende Werte, um r zu berechnen:

> Beschleunigungsspannung: $U_{\rm B} = 1000 \, \rm V$ Betrag homogenes Magnetfeld: $H = 500 \, \rm A/m$ Masse Elektron: $m = 9,109 \cdot 10^{-31} \, \rm kg$ Elementarladung: $e = 1,602 \cdot 10^{-19} \, \rm C$

- b) Das Magnetfeld sei in positiver x- und y-Richtung unbegrenzt. Nach welcher Zeit t_2 und an welcher Stelle x_2 verlässt das Elektron das Magnetfeld wieder, wenn es an der Stelle x_1 = 10 mm unter einem Winkel α = 45° in das Magnetfeld eintritt?
- c) Das Magnetfeld sei in positiver x-Richtung unbegrenzt und reicht in y-Richtung von y = 0 bis y = d. Wie gross muss die Eintrittsgeschwindigkeit v in Abhängigkeit von B, d und α mindestens sein, damit das Elektron das Magnetfeld an der Stelle y = d = 5 mm verlässt?