(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 6 October 2005 (06.10.2005)

PCT

(10) International Publication Number WO 2005/093824 A1

(51) International Patent Classification⁷: H01L 21/762

(21) International Application Number:

PCT/IB2005/050883

(22) International Filing Date: 11 March 2005 (11.03.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

04101185.9 23 March 2004 (23.03.2004) EP

(71) Applicant (for all designated States except US): KONIN-KLIJKE PHILIPS ELECTRONICS N.V. [NL/NL]; Groenewoudseweg 1, NL-5621 BA Eindhoven (NL).

- (72) Inventors; and
- (75) Inventors/Applicants (for US only): VAN NOORT, Wibo, D. [NL/BE]; c/o Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL). AKSEN, Eyup [FR/BE]; c/o Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL).
- (74) Agents: ELEVELD, Koop, J. et al.; Prof. Holstlaan 6, NL-5656 AA Eindhoven (NL).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM,

[Continued on next page]

(54) Title: METHOD OF MANUFACTURING A SEMICONDUCTOR DEVICE AND SEMICONDUCTOR DEVICE OBTAINED BY MEANS OF SAID METHOD

(57) Abstract: The invention relates to a method of manufacturing a semiconductor device comprising a substrate (1) and a semiconductor body (2) in which at least one semiconductor element is formed, wherein, in the semiconductor body (2), a semiconductor island (3) is formed by forming a first cavity (4) in the surface of the semiconductor body (2), the walls of said first cavity being covered with a first dielectric layer (6), after which, by means of underetching through the bottom of the cavity (4), a lateral part of the semiconductor body (2) is removed, thereby forming a cavity (20) in the semiconductor body (2) above which the semiconductor island (3) is formed, and wherein a second cavity (5) is formed in the surface of the semiconductor body (2), the walls of said second cavity being covered with a second dielectric layer, and one of the walls covered with said second dielectric layer forming a side wall of the semiconductor island (3). According to the invention, the same dielectric layer (6) is chosen for the first and the second dielectric layer, a lateral size of the second cavity (5) and the thickness of the dielectric layer (6) are chosen such that the second cavity (5) becomes nearly completely filled by the dielectric layer (6), and the lateral sizes of the first cavity (4) are chosen such that the walls and the bottom of the first cavity (4) are provided with a uniform coating by the dielectric layer (6). In this way, a semiconductor island (3) which is isolated from its environment can be made using a minimum number of (masking) steps.

WO 2005/093824 A1

PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.