ISTM 214 Homework 6 (Due day: 11/21)

Name:_____ ID:____

- 1. Simplify the following Boolean functions to (1) sum-of-products and (2) products-of-sums
 - (a) $F(A, B, C, D) = \Sigma(3, 7, 11, 13, 14, 15)$
 - (b) $F(A, B, C, D) = \Pi(1, 3, 5, 7, 13, 15)$

- 2. Simplify the following Boolean function F, together with the don't-care conditions d ,and then express the simplified function in sum-of-products form:
 - (a) $F(A, B, C, D) = \Sigma(0, 6, 8, 13, 14),$
- $d(A, B, C, D) = \Sigma(2, 4, 10)$
- (b) $F(A, B, C, D) = \Sigma(5, 6, 7, 12, 14, 15),$
- $d(A, B, C, D) = \Sigma(3, 9, 11)$

3. Given the following circuit, determine the ON set of F(X,Y,Z).

4. Simplify the function mapped below in terms of XOR or XNOR operators, draw a circuit realization, and compare the cost of this "simplified" version with minimal SoP (NAND-NAND) and PoS (NOR-NOR) realizations.

	W'		W		
	0	1	1	0	Z'
Y'	0	d	1	0	\mathbf{z}
Y	1	0	1	d	
Y	d	1	0	1	Z'
	X'	X		X'	•

5. Assuming the availability of both true and complemented variables, find the simplest (lowest cost) realization of the function mapped below. Solution can be two-level NAND, two-level NOR, or a "mixed" simplification that utilizes XOR/XNOR gates. Justify your choice based on a cost comparison among all potential options. Show the circuit for your final answer.

	W		w		
377	0	1	d	0	Z'
Y'	0	d	1	0	7
Y	d	0	d	1	Z
	1	d	0	0	Z'
	X′	X		X'	