Hash May & Hash Jable

*31 -> O(log N)

How to get element in constant amount of time? O(1)?

Juring How Maps - why?

How it words?

key (Name)	Value (Marks)
Kunal	88
Kauan	99
Rahul	95

map. get ("kunal")

-- return the value =88

In 0(1)

-> do convert keys to numbers	
→ Jo convert leys to numbers ve use Hash Code function	
·	
The need all elements as positive	
Numbers - Hash code junction.	
reduce it by hashing) It reduce all elements in table to a size	
reduce it by hashing of Oreduce	
all elements in table to a size	2
D 1 2 3 4 5 6 7 8 9	
"Civo" \rightarrow hash ("civo")=7 $m=10$ hash ("Kunal")= 3 hash ("Rahul") = 2	
COO - MASH (Civo)=+	_
hash("nunau") = 3	
hash (Kanul) - 2	
let the stem : both ("kund") =	ス
get the item: hash ("kural") =. amortized constant time 0(1)	ر
amortized enstant time	
0(1)	
But in code it does not give us the small Integer number let gives w like 7328879 ou 72883560 so	
the small Integer number (It gives w	>

→ 9) \(\alpha \) stself is \(O(1) \) then above formula bould also be \(O(1) \) This happens when the X = O(1) = 0 (i) Size of the table is Hash Functions: D Division Methods h(k) = k% m C size of away m = pulme number [but not too
close to the power of 2 or 10)

She cause these are common in Heal
world (2) Multiplication Method's h(k) = $[(a \cdot k)^{9/0} 2^{m}] >> (w-9)$ $\alpha = \text{ mandom number}$ w = no of lets in k $m = 2^{n}$ Many time's multiplication method &

used because it is faster than division method. This is practicall when a & odd number and also a is not to close to 200-1 or 200. 32w-1<a<2wUniversal hashing: h(k) = [(ak+b)% p)% ma & b are random numbers that belongs [0,1,-,p-1] p is als a large prime number. probability of (p[h(k1) = h(k2)]= $\frac{1}{m}$ - How large or size of the table should be? Size of the table of m = O(n)all the time:

If mis small-slow but if mistig > resonnce wasteful. Idea? start small & than grow | 2 3 4 5 | 9 | 8 | 3 | 7 | 5 double the size
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 9
 8
 3
 7
 5
 8
 9
 10
 → If the object is increase by I(mt)
when number of elements =

some of the accept. [n = m] Do in energy step when we add new elements it comes out to be O(N2) number (n) = 0(1+2+3+4+5+ ... n)= $0(n^2)$ 2) do better way to do is multiply the street and doubling the street

Dpen Addressing å
only litem per plot => m >> n
puole - try to insent an Pten
firsttry 0
h(33,0) eliment 139
already
h(33,1) way
second 10 75 delete
h(33,2)
Maryl 88
third in lack
try
when again searching for 33 if mi'll go to 139 then, 96 and then 33
it mill go to 139 than, 96 and
then 33
139 →96 → 33
Suppose me montto delete 96 me.
have to put a flag or part for there
suppose we want to delete 96 we have to put a flag or pointer there
139 - delete - 33

 3^{rd} &uccess = m-n > p m-2Expected trials = 1 = 1 Delete nuill also take 0 (1-a) When to use which operations? Open addrersing -> better lache

penformance

L better memory wage) pointers not

needed: Chaining -> less sensitive to hash functions

