Conservativity of

The Calculus of Constructions

over

Higher-order Heyting Arithmetic

Overview

We investigate the relation between arithmetic and type theory.

We compare:

- Higher-order Heyting Arithmetic (HAH), and
- The Calculus of Constructions (CC), along with additional assumptions (CC+).

 $\mathbb{N}, \Sigma, \mathbb{W}, \mathsf{propext}, \mathsf{funext}$

We will show that CC+ is a conservative extension of HAH.

Contents

Higher-order Heyting Arithmetic

In higher-order logic we can quantify over powersets of the domain. If we write $\exists x^n$ or $\forall x^n$ then x is an element of the n-th powerset:

- x^0 is an element of the domain,
- x^1 is a set,
- x^2 is a set of sets,
- and so on.

For x^n and Y^{n+1} we have a new atomic formula $x \in Y$. We have two additional logical axiom schemes:

$$\forall X, Y^{n+1} \ (\forall z^n \ (z \in X \leftrightarrow z \in Y) \to X = Y), \quad \text{(extensionality)}$$

$$\exists X^{n+1} \ \forall z^n \ (z \in X \leftrightarrow P[z]). \quad \text{(comprehension)}$$

HAH has the axioms of PA but in intuitionistic higher-order logic.

Contents

The Calculus of Constructions

CC is a minimalistic and impredicative version of type theory.

There are only two primitive types: Type₀ and Type₁.

We view these as universes and we assume $\mathsf{Type}_0 : \mathsf{Type}_1$.

We have only one way to construct new types:

$$\frac{A: \mathsf{Type}_i \qquad x: A \vdash B[x]: \mathsf{Type}_j}{\Pi(x:A)\, B[x]: \mathsf{Type}_j} \, \text{(Π-F, impredicative),}$$

Terms of $\Pi(x:A)\,B[x]$ are functions: they map x:A to y:B[x].

We write $A \to B$ for $\Pi(x : A) B$.

Compare this rule to Martin-Löf Type Theory where we have:

$$\frac{A: \mathsf{Type}_i \qquad x: A \vdash B[x]: \mathsf{Type}_j}{\Pi(x:A) \, B[x]: \mathsf{Type}_{\max\{i,j\}}} \text{(Π-F, predicative),}$$

Dependent Functions

Examples of types are:

$$\begin{split} \Pi(X: \mathsf{Type}_0) \, (X \to X) : \mathsf{Type}_0, \\ \mathsf{Type}_0 &\to \mathsf{Type}_0 : \mathsf{Type}_1. \end{split}$$

We can define functions and apply them:

$$\frac{\Pi(x:A)\,B[x]: \mathsf{Type}_i \qquad x:A \vdash b[x]:B[x]}{\lambda(x:A)\,b[x]:\Pi(x:A)\,B[x]} \, \text{(Π-I)},$$

$$rac{f:\Pi(x:A)\,B[x]}{f\,a:B[a]}$$
 $rac{a:A}{}$ (Π -E),

We can define for example:

$$\begin{split} \mathrm{id}: & \ \Pi(X: \mathrm{Type}_0) \ (X \to X), \\ \mathrm{id}:& = \lambda(X: \mathrm{Type}_0) \ \lambda(x:X) \ x. \end{split}$$

Contents

Higher-order Logic in The Calculus of Constructions

Think of A: Type₀ as a proposition and of a: A as a proof for A.

We write $\forall (x:A) \ B[x]$ for $\Pi(x:A) \ B[x]$ if we have $B[x]: \mathsf{Type}_0$.

The other logical connectives can be defined:

$$\begin{split} \bot \coloneqq \forall (C: \mathsf{Type}_0) \, C, \\ \top \coloneqq \forall (C: \mathsf{Type}_0) \, (C \to C), \\ A \lor B \coloneqq \forall (C: \mathsf{Type}_0) \, ((A \to C) \to ((B \to C) \to C)), \\ A \land B \coloneqq \forall (C: \mathsf{Type}_0) \, ((A \to (B \to C)) \to C), \\ \exists (x:A) \, B[x] \coloneqq \forall (C: \mathsf{Type}_0) \, (\forall (x:A) \, (B[x] \to C) \to C), \\ \mathcal{P} \, A \coloneqq A \to \mathsf{Type}_0, \\ (a =_A a') \coloneqq \forall (P: \mathcal{P} \, A) \, (Pa \to Pa'). \end{split}$$

Natural Numbers

We can define a weak version of \mathbb{N} :

$$\begin{split} \mathbb{N}_{\mathbf{w}} : & \mathsf{Type}_0, \\ \mathbb{N}_{\mathbf{w}} := & \Pi(Z : \mathsf{Type}_0) \: (Z \to ((Z \to Z) \to Z)). \end{split}$$

The idea is to encode n as $\lambda Z \lambda z \lambda f f^n z$. We can define 0 and S:

$$\begin{split} 0: \mathbb{N}_{\mathsf{w}}, \\ 0: & = \lambda(Z: \mathsf{Type}_0) \: \lambda(z:Z) \: \lambda(f:Z \to Z) \: z, \end{split}$$

$$S: \mathbb{N}_w \to \mathbb{N}_w,$$

$$\mathsf{S} \coloneqq \lambda(n:\mathbb{N}_{\mathsf{w}})\,\lambda(Z:\mathsf{Type}_0)\,\lambda(z:Z)\,\lambda(f:Z\to Z)\,f(n\,Z\,z\,f).$$

Natural Numbers

 \mathbb{N}_{w} satisfies the rule:

$$\frac{C: \mathsf{Type}_0 \qquad c: C \qquad f: C \to C}{\mathsf{rec}_{C,c,f} \colon \mathbb{N} \to C} \text{(\mathbb{N}-E, weak),}$$

Simply take $\operatorname{rec}_{C,c,f} := \lambda(n : \mathbb{N}_{\mathbf{w}}) \, n \, C \, c \, f$.

However this is weaker than the following rule:

$$\frac{n: \mathbb{N} \vdash C[\underline{n}]: \mathsf{Type}_i \quad c: C[\underline{0}] \quad f: \Pi(n:\mathbb{N}) \left(C[\underline{n}] \to C[\underline{\mathsf{S}}\,\underline{n}]\right)}{\mathsf{ind}_{C,c,f}: \Pi(n:\mathbb{N}) \, C[\underline{n}]} \text{ (\mathbb{N}-E),}$$

We can not define a $\mathbb{N}: \mathsf{Type}_0$ satisfying $\mathbb{N}\text{-E}$ in CC. (Geuvers, 2001) So, we cannot prove induction in CC.

In addition, we cannot prove extensionality or $0 \neq 1$. (Smith, 1988)

Additional Assumptions

We replace $\mathsf{Type}_0 : \mathsf{Type}_1$ with $\mathsf{Prop}, \mathsf{Set} : \mathsf{Type}$.

We assume that there exists a \mathbb{N} : Set satisfying \mathbb{N} -E.

We also add \mathbb{O} , $\mathbb{1}$, A + B, $\Sigma(x : A) B[x]$, W(x : A) B[x], and ||A||.

This brings us closer to CIC, which is implemented by Coq and Lean.

Lastly, we assume two axioms:

$$\begin{aligned} & \text{funext}: \forall (f,f':\Pi(x:A)\,B[x])\,(\forall (x:A)\,(fx=f'\,x)\to f=f'),\\ & \text{propext}: \forall (P,P':\text{Prop})\,((P\to P')\land (P'\to P)\to P=P'). \end{aligned}$$

Contents

Main Result

Theorem

CC+ is a conservative extension of HAH.

Proof Sketch. We can show that CC+ proves the axioms of HAH. The difficult part is showing that it does not prove more.

We first give a conservative extension of HAH, named HAHP.

Then we construct an arrow:

$$\overbrace{\lambda x\, b[x], \{f\}\,(a), \langle a,b \rangle}$$

And show that the diagram commutes up to logical equivalence.

Interpreting Propositions in HAHP

We will interpret the propositions, sets, and types of CC+ in HAHP.

Propositions are easy, we can interpret them as follows:

Definition (subsingleton)

A subsingleton is a set $P \subseteq \{0\}$.

A morphism from P to Q is just a function $P \rightarrow Q$.

Interpreting Sets in HAHP

Sets are more difficult because the type theory is impredicative. We have to put restrictions on functions to avoid cardinality issues:

Definition (partial equivalence relation)

A PER is a relation $R \subseteq \mathbb{N} \times \mathbb{N}$ that is symmetric and transitive. We define:

$$\begin{split} \operatorname{dom}(R) &:= \{n \in \mathbb{N} \,|\, \langle n, n \rangle \in R\}, \\ [n]_R &:= \{m \in \mathbb{N} \,|\, \langle n, m \rangle \in R\}, \\ \mathbb{N}/R &:= \{[n]_R \,|\, n \in \operatorname{dom}(R)\}. \end{split} \tag{equivalence class}$$

A morphism from R to S is a function $F: \mathbb{N}/R \to \mathbb{N}/S$ such that there exists a computable $f: \mathbb{N} \to \mathbb{N}$ such that:

$$n \in dom(R)$$
 implies $f(n) \in F([n]_R)$.

Interpreting Types in HAHP

We interpret types in a similar way:

Definition (assembly)

An assembly consists of an $A\subseteq \mathcal{P}^n(\mathbb{N})$ and a relation $\Vdash_A\subseteq \mathbb{N}\times A$ such that for every $a\in A$ there exists an $n\in \mathbb{N}$ with $n\Vdash_A a$. A morphism from A to B is a function $F:A\to B$ such that there exists a computable $f:\mathbb{N} \rightharpoonup \mathbb{N}$ such that:

$$n \Vdash_A a \text{ implies } f(n) \Vdash_{\mathcal{B}} F(A).$$

Conservativity

This gives us a model of CC+ and an interpretation of CC+ in HAHP.

The following diagram is commutative (up to logical equivalence):

We conclude:

CC+ is a conservative extension of HAH, λ P2+ is a conservative extension of HA2, λ P+ is a conservative extension of HA.

Martin-Löf Type Theory

ML is not impredicative so our logical definitions do not work.

However, we can interpret higher-order logic as follows:

$$\begin{split} \bot^* &:= \mathbb{0}, & (a^n \in X^{n+1})^* := X \, a, \\ & \top^* := \mathbb{1}, & (a^n = b^n)^* := (a =_{\mathcal{P}^n \mathbb{N}} b), \end{split}$$

$$(A \lor B)^* := A^* + B^*, & (\exists x^n \, B(x^n))^* := \Sigma(x : \mathcal{P}^n \, \mathbb{N}) \, B(x^n)^*, \\ (A \land B)^* := A^* \times B^*, & (\forall x^n \, B(x^n))^* := \Pi(x : \mathcal{P}^n \, \mathbb{N}) \, B(x^n)^*, \\ (A \to B)^* := A^* \to B^*. \end{split}$$

For this interpretation, ML1 is not conservative over HA2:

ML1 proves choice but not extensionality or comprehension.

Martin-Löf Type Theory

Alternatively, with $\|\cdot\|$ we can interpret higher-order logic as follows:

For this interpretation, ML1 with $\|A\|$: Type₀ might be conservative over HA2 without extensionality.

Summary

For impredicative type theory we have:

CC+ is a conservative extension of HAH,

 λ P2+ is a conservative extension of HA2,

 $\lambda P+$ is a conservative extension of HA,

For predicative type theory we have:

ML1 is **not** a conservative extension of HA2 using *,

 $ML1 + \|\cdot\|$ is a conservative extension of HA2 — ext using \circ .

The last result is still work in progress.