Al Planning for Autonomy 2. Search Algorithms

Basic Stuff You're Gonna Need to Search for a Solution Where To Search Next?

Chris Ewin & Tim Miller

With slides by Nir Lipovetsky

Basic State Model: Classical Planning

Ambition:

Write one program that can solve all classical search problems.

State Model S(P):

- finite and discrete state space S
- a known initial state $s_0 \in S$
- \blacksquare a set $S_G \subseteq S$ of goal states
- actions $A(s) \subseteq A$ applicable in each $s \in S$
- **a** deterministic transition function s' = f(a, s) for $a \in A(s)$
- \blacksquare positive action costs c(a,s)
- \rightarrow A **solution** is a sequence of applicable actions that maps s_0 into S_G , and it is **optimal** if it minimizes **sum of action costs** (e.g., # of steps)
- → Different models and controllers obtained by relaxing assumptions in blue ...

Example

Criteria for Evaluating Search Strategies

Guarantees:

Completeness: Is the strategy guaranteed to find a solution when there is one?

Optimality: Are the returned solutions guaranteed to be optimal?

Criteria for Evaluating Search Strategies

Guarantees:

Completeness: Is the strategy guaranteed to find a solution when there is one?

Optimality: Are the returned solutions guaranteed to be optimal?

Complexity:

Time Complexity: How long does it take to find a solution? (Measured in generated states.)

Space Complexity: How much memory does the search require? (Measured in

states.)

Criteria for Evaluating Search Strategies

Guarantees:

Completeness: Is the strategy guaranteed to find a solution when there is one?

Optimality: Are the returned solutions guaranteed to be optimal?

Complexity:

Time Complexity: How long does it take to find a solution? (Measured in generated

states.)

Space Complexity: How much memory does the search require? (Measured in

states.)

Typical state space features governing complexity:

Branching factor b: How many successors does each state have?

Goal depth *d*: The number of actions required to reach the shallowest goal state.

Agenda

Blind Systematic Search Algorithms

Informed Systematic Search Algorithms

Strategy: Expand nodes in the order they were produced (FIFO frontier).

Strategy: Expand nodes in the order they were produced (FIFO frontier).

Strategy: Expand nodes in the order they were produced (FIFO frontier).

Strategy: Expand nodes in the order they were produced (FIFO frontier).

Strategy: Expand nodes in the order they were produced (FIFO frontier).

Illustration:

Guarantees:

■ Completeness?

Strategy: Expand nodes in the order they were produced (FIFO frontier).

Illustration:

Guarantees:

- Completeness? Yes.
- Optimality?

Strategy: Expand nodes in the order they were produced (FIFO frontier).

Illustration:

Guarantees:

- Completeness? Yes.
- Optimality? Yes, for uniform action costs. Breadth-first search always finds a shallowest goal state. If costs are not uniform, this is not necessarily optimal.

Time Complexity: Say that b is the maximal branching factor, and d is the goal depth (depth of shallowest goal state).

Upper bound on the number of generated nodes?

Time Complexity: Say that b is the maximal branching factor, and d is the goal depth (depth of shallowest goal state).

- Upper bound on the number of generated nodes? $b + b^2 + b^3 + \cdots + b^d$: In the worst case, the algorithm generates all nodes in the first d layers.
- So the time complexity is $O(b^d)$.
- And if we were to apply the goal test at node-expansion time, rather than node-generation time?

Time Complexity: Say that b is the maximal branching factor, and d is the goal depth (depth of shallowest goal state).

- Upper bound on the number of generated nodes? $b + b^2 + b^3 + \cdots + b^d$: In the worst case, the algorithm generates all nodes in the first d layers.
- So the time complexity is $O(b^d)$.
- And if we were to apply the goal test at node-expansion time, rather than node-generation time? $O(b^{d+1})$ because then we'd generate the first d+1 layers in the worst case.

Space Complexity:

Time Complexity: Say that b is the maximal branching factor, and d is the goal depth (depth of shallowest goal state).

- Upper bound on the number of generated nodes? $b + b^2 + b^3 + \cdots + b^d$: In the worst case, the algorithm generates all nodes in the first d layers.
- So the time complexity is $O(b^d)$.
- And if we were to apply the goal test at node-expansion time, rather than node-generation time? $O(b^{d+1})$ because then we'd generate the first d+1 layers in the worst case.

Space Complexity: Same as time complexity since all generated nodes are kept in memory.

Breadth-First Search: Example Data

Setting: b = 10; 10000 nodes/second; 1000 bytes/node.

Yields data: (inserting values into previous equations)

Depth	Nodes	Time		Memory	
2	110	.11	milliseconds	107	kilobytes
4	11110	11	milliseconds	10.6	megabytes
6	10 ⁶	1.1	seconds	1	gigabyte
8	10 ⁸	2	minutes	103	gigabytes
10	10^{10}	3	hours	10	terabytes
12	10 ¹²	13	days	1	petabyte
14	10 ¹⁴	3.5	years	99	petabytes

→ So, which is the worse problem, time or memory?

Breadth-First Search: Example Data

Setting: b = 10; 10000 nodes/second; 1000 bytes/node.

Yields data: (inserting values into previous equations)

Depth	Nodes	Time		Memory	
2	110	.11	milliseconds	107	kilobytes
4	11110	11	milliseconds	10.6	megabytes
6	10 ⁶	1.1	seconds	1	gigabyte
8	10 ⁸	2	minutes	103	gigabytes
10	10 ¹⁰	3	hours	10	terabytes
12	10 ¹²	13	days	1	petabyte
14	10 ¹⁴	3.5	years	99	petabytes

→ So, which is the worse problem, time or memory? Memory. (In my own experience, typically exhausts RAM memory within a few minutes.)

Strategy: Expand the most recent nodes in (LIFO frontier).

Strategy: Expand the most recent nodes in (LIFO frontier).

Strategy: Expand the most recent nodes in (LIFO frontier).

Strategy: Expand the most recent nodes in (LIFO frontier).

Guarantees:

Question: A) Complete and optimal B) Complete but may not be optimal C) Optimal but may not be complete D) Neither complete nor optimal

Guarantees:

Question: A) Complete and optimal B) Complete but may not be optimal C) Optimal but may not be complete D) Neither complete nor optimal

Optimality?

Guarantees:

Question: A) Complete and optimal B) Complete but may not be optimal C) Optimal but may not be complete D) Neither complete nor optimal

- Optimality? No. After all, the algorithm just "chooses some direction and hopes for the best". (Depth-first search is a way of "hoping to get lucky".)
- Completeness?

Guarantees:

Question: A) Complete and optimal B) Complete but may not be optimal C) Optimal but may not be complete D) Neither complete nor optimal

- Optimality? No. After all, the algorithm just "chooses some direction and hopes for the best". (Depth-first search is a way of "hoping to get lucky".)
- Completeness? No, because search branches may be infinitely long: No check for cycles along a branch!
 - ightarrow Depth-first search is complete in case the state space is acyclic, e.g., Constraint Satisfaction Problems. If we do add a cycle check, it becomes complete for finite state spaces.

Guarantees:

Question: A) Complete and optimal B) Complete but may not be optimal C) Optimal but may not be complete D) Neither complete nor optimal

- Optimality? No. After all, the algorithm just "chooses some direction and hopes for the best". (Depth-first search is a way of "hoping to get lucky".)
- Completeness? No, because search branches may be infinitely long: No check for cycles along a branch!
 - → Depth-first search is complete in case the state space is acyclic, e.g., Constraint Satisfaction Problems. If we do add a cycle check, it becomes complete for finite state spaces.

Complexity:

Space: Stores nodes and applicable actions on the path to the current node. So if m is the maximal depth reached, the complexity is

Guarantees:

Question: A) Complete and optimal B) Complete but may not be optimal C) Optimal but may not be complete D) Neither complete nor optimal

- Optimality? No. After all, the algorithm just "chooses some direction and hopes for the best". (Depth-first search is a way of "hoping to get lucky".)
- Completeness? No, because search branches may be infinitely long: No check for cycles along a branch!
 - → Depth-first search is complete in case the state space is acyclic, e.g., Constraint Satisfaction Problems. If we do add a cycle check, it becomes complete for finite state spaces.

Complexity:

- Space: Stores nodes and applicable actions on the path to the current node. So if m is the maximal depth reached, the complexity is O(b m).
- Time: If there are paths of length m in the state space, $O(b^m)$ nodes can be generated. Even if there are solutions of depth 1!

Guarantees:

Question: A) Complete and optimal B) Complete but may not be optimal C) Optimal but may not be complete D) Neither complete nor optimal

- Optimality? No. After all, the algorithm just "chooses some direction and hopes for the best". (Depth-first search is a way of "hoping to get lucky".)
- Completeness? No, because search branches may be infinitely long: No check for cycles along a branch!
 - ightarrow Depth-first search is complete in case the state space is acyclic, e.g., Constraint Satisfaction Problems. If we do add a cycle check, it becomes complete for finite state spaces.

Complexity:

- Space: Stores nodes and applicable actions on the path to the current node. So if m is the maximal depth reached, the complexity is O(b m).
- Time: If there are paths of length m in the state space, $O(b^m)$ nodes can be generated. Even if there are solutions of depth 1!
 - \rightarrow If we happen to choose "the right direction" then we can find a length-l solution in time $O(b\,l)$ regardless how big the state space is.

Iterative Deepening Search: Guarantees and Complexity

"Iterative Deepening Search= Keep doing the same work over again until you find a solution."

"Iterative Deepening Search= Keep doing the same work over again until you find a solution."

BUT: Optimality?

"Iterative Deepening Search= Keep doing the same work over again until you find a solution."

BUT: Optimality? Yes! (assuming uniform costs) Completeness?

"Iterative Deepening Search= Keep doing the same work over again until you find a solution."

BUT: Optimality? Yes! (assuming uniform costs) Completeness? Yes! Space complexity?

"Iterative Deepening Search= Keep doing the same work over again until you find a solution."

BUT: Optimality? Yes! (assuming uniform costs) Completeness? Yes! Space complexity? O(bd).

"Iterative Deepening Search= Keep doing the same work over again until you find a solution."

BUT: Optimality? Yes! (assuming uniform costs) Completeness? Yes! Space complexity? O(bd).

Time complexity:

	$b+b^2+\cdots+b^{d-1}+b^d\in O(b^d)$
Iterative Deepening Search	$(d)b + (d-1)b^{2} + \dots + 3b^{d-2} + 2b^{d-1} + 1b^{d} \in O(b^{d})$

"Iterative Deepening Search= Keep doing the same work over again until you find a solution."

BUT: Optimality? Yes! (assuming uniform costs) Completeness? Yes! Space complexity? O(bd).

Time complexity:

	$b+b^2+\cdots+b^{d-1}+b^d\in O(b^d)$
Iterative Deepening Search	$(d)b + (d-1)b^{2} + \dots + 3b^{d-2} + 2b^{d-1} + 1b^{d} \in O(b^{d})$

Example:
$$b = 10, d = 5$$

 \rightarrow IDS combines the advantages of breadth-first and depth-first search. It is the preferred blind search method in large state spaces with unknown solution depth.

Agenda

Blind Systematic Search Algorithms

Informed Systematic Search Algorithms

Greedy Best-First Search

Greedy Best-First Search (with duplicate detection)

```
\begin{array}{l} \textit{open} := \mathbf{new} \ \mathsf{priority} \ \mathsf{queue} \ \mathsf{ordered} \ \mathsf{by} \ \mathsf{ascending} \ h(\mathit{state}(\sigma)) \\ \textit{open}.\mathsf{insert}(\mathsf{make-root-node}(\mathsf{init}())) \\ \textit{closed} := \emptyset \\ \mathsf{while} \ \mathsf{not} \ \mathit{open}.\mathsf{empty}(): \\ \sigma := \mathit{open}.\mathsf{pop-min}() \ /^* \ \mathsf{get} \ \mathsf{best} \ \mathsf{state} \ ^* / \\ \mathsf{if} \ \mathit{state}(\sigma) \notin \mathit{closed} : \ /^* \ \mathsf{check} \ \mathsf{duplicates} \ ^* / \\ \mathit{closed} := \mathit{closed} \cup \{\mathit{state}(\sigma)\} \ /^* \ \mathsf{close} \ \mathsf{state} \ ^* / \\ \mathsf{if} \ \mathsf{is-goal}(\mathsf{state}(\sigma)): \ \mathsf{return} \ \mathsf{extract-solution}(\sigma) \\ \mathsf{for} \ \mathsf{each} \ (a,s') \in \mathsf{succ}(\mathit{state}(\sigma)): \ /^* \ \mathsf{expand} \ \mathsf{state} \ ^* / \\ \sigma' := \mathsf{make-node}(\sigma,a,s') \\ \mathsf{if} \ h(\mathit{state}(\sigma')) < \infty: \ \mathit{open}.\mathsf{insert}(\sigma') \\ \mathsf{return} \ \mathsf{unsolvable} \\ \end{array}
```

Greedy Best-First Search: Remarks

Properties:

Complete?

¹Even for perfect heuristics! E.g., say the start state has two transitions to goal states, one of which costs a million bucks while the other one is free. Nothing keeps Greedy Best-First Search from choosing the bad one.

Greedy Best-First Search: Remarks

Properties:

- Complete? Yes, for safe heuristics. (and duplicate detection to avoid cycles)
- Optimal?

one.

¹Even for perfect heuristics! E.g., say the start state has two transitions to goal states, one of which costs a million bucks while the other one is free. Nothing keeps Greedy Best-First Search from choosing the bad

Greedy Best-First Search: Remarks

Properties:

- Complete? Yes, for safe heuristics. (and duplicate detection to avoid cycles)
- Optimal? No.1
- Invariant under all strictly monotonic transformations of h (e.g., scaling with a positive constant or adding a constant).

Implementation:

- Priority queue: e.g., a min heap.
- "Check Duplicates": Could already do in "expand state"; done here after "get best state" only to more clearly point out relation to A*.

one.

¹Even for perfect heuristics! E.g., say the start state has two transitions to goal states, one of which costs a million bucks while the other one is free. Nothing keeps Greedy Best-First Search from choosing the bad

A^*

A* (with duplicate detection and re-opening)

```
open := new priority queue ordered by ascending g(state(\sigma)) + h(state(\sigma))
open.insert(make-root-node(init()))
closed := \emptyset
best-g := \emptyset/* maps states to numbers */
while not open.empty():
        \sigma := open.pop-min()
        if state(\sigma) \notin closed or g(\sigma) < best-g(state(\sigma)):
          /* re-open if better g; note that all \sigma' with same state but worse g
             are behind \sigma in open, and will be skipped when their turn comes */
          closed := closed \cup \{state(\sigma)\}\
          best-q(state(\sigma)) := g(\sigma)
          if is-goal(state(\sigma)): return extract-solution(\sigma)
          for each (a, s') \in \operatorname{succ}(\operatorname{state}(\sigma)):
               \sigma' := \mathsf{make-node}(\sigma, a, s')
               if h(state(\sigma')) < \infty: open.insert(\sigma')
return unsolvable
```

A*: Remarks

Properties:

■ Complete?

A*: Remarks

Properties:

- Complete? Yes, for safe heuristics. (Even without duplicate detection.)
- Optimal?

A*: Remarks

Properties:

- Complete? Yes, for safe heuristics. (Even without duplicate detection.)
- Optimal? Yes, for admissible heuristics. (Even without duplicate detection.)

Implementation:

- Popular method: break ties (f(s) = f(s')) by smaller h-value.
- If h is admissible and consistent, then A* never re-opens a state. So if we know that this is the case, then we can simplify the algorithm.
- Common, hard to spot bug: check duplicates at the wrong point. (Russel & Norvig are way too imprecise about this.)
- Our implementation is optimized for readability not for efficiency!

Question

Question!

If we set h(n) := 0 for all n, what does A^* become?

(A): Breadth-first search. (B): Depth-first search.

(C): Uniform-cost search. (D): Depth-limited search.

Question

Question!

If we set h(n) := 0 for all n, what does A^* become?

(A): Breadth-first search. (B): Depth-first search.

(C): Uniform-cost search. (D): Depth-limited search.

→ (C): Same expansion order. (Details in book-keeping of open/closed states may differ.)