Part 1

Basics

Two-way Error Components Model #flashcard

Two-way Error Components Model is the most general panel data model formulation:

$$y_{it} = \underbrace{x_{it}eta + w_i\gamma + s_t\delta}_{ ext{no restriction, can drop terms}} + (\eta_i + f_t + v_{it})$$

where the error term contains:

- η_i is individual-specific, time-invarying
- f_t is common across individual, time-invariant
- v_{it} is individual-specific, time-varying

Deal with f_t : One-way Error Components Model / Time Dummies #flashcard

We can use time dummies to estimate the common (same across individual) but time-varying component. The corresponding model is known as a **Standard/One-way Error Components Model**:

$$y_{it} = x_{it}eta + w_i\gamma + \sum_{s=1}^T \phi_s \underbrace{\mathbb{I}\left\{t=s
ight\}}_{D^s_i} + (\eta_i + v_{it})$$

where:

• $\phi_s = s_t \delta + f_t$ captures all common (same across individual) but time-varying component, including the time error term f_t . There is no loss in generality in this approach, but be aware that we will not be able to separately identify parameters on specific common time-varying variables.

One-way Error Components Model #flashcard

In the one-way error components model, we suppress f_t since we can deal with easily with time dummies:

$$\underbrace{\begin{bmatrix} y_{i1} \\ \dots \\ y_{iT} \end{bmatrix}}_{y_i(T \times 1)} = \underbrace{\begin{bmatrix} x_{1,i,1} & \dots & x_{K,i,1} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \dots & \dots & \beta_K \end{bmatrix}}_{X_i(T \times K)} + \underbrace{\begin{bmatrix} w_{1,i} & \dots & w_{G,i} \end{bmatrix} \begin{bmatrix} \gamma_1 \\ \dots & \dots & w_{G,i} \end{bmatrix} \begin{bmatrix} \gamma_1 \\ \dots & \dots & \gamma_K \end{bmatrix}}_{W_i(T \times G)} + \underbrace{\begin{bmatrix} \eta_i \\ \dots \\ \eta_{iJ} \end{bmatrix}}_{\gamma_i(T \times 1)} + \underbrace{\begin{bmatrix} v_{i1} \\ \dots \\ v_{iT} \end{bmatrix}}_{v_i(T \times 1)}$$

where:

- $X_i(T \times K)$ contains time-varying and individual-specific variables
 - there are T rows due to the panel structure
- $W_i(T \times G)$ contains time-invariant but individual-specific variables
 - all T rows are the same
- $\eta_i j_T$ is the individual specific constant. It's not time-varying \Longrightarrow a vector of the same constant
- v_i contains the individual-specific and time-varying error terms Stack them together vertically:

$$\underbrace{y}_{NT\times 1} = \underbrace{X}_{NT\times K} \underbrace{\beta}_{K\times 1} + \underbrace{W}_{NT\times G} \underbrace{\gamma}_{G\times 1} + \underbrace{(\underbrace{\eta}_{NT\times 1} + \underbrace{v}_{NT\times 1})}_{NT\times 1}$$

Typically, we are interested in β , so we can set the number of time-invariant but individual-specific variables to 0 (G=0)

 \iff merge them into η , and obtain the following model:

$$\underbrace{y}_{NT\times 1} = \underbrace{X}_{NT\times K} \underbrace{\beta}_{K\times 1} + (\underbrace{\eta}_{NT\times 1} + \underbrace{v}_{NT\times 1})$$

Model with Predetermined Regressors / Random Effects

Pooled OLS

Pooled OLS (Predetermined Reg + RE Consistent) #flashcard

Estimator: the standard OLS estimator:

$$\hat{\beta}_{\text{pooled}} = \hat{\beta}_{OLS} = (X^T X)^{-1} X^T y$$

Assumptions:

- Panel Common Assumption 1 Cross-sectional Independence: observations (y_i, X_i) are cross-sectionally independent
- Panel Common Assumption 2 Slope Parameter Homogeneity: parameters β are common to all $1, \dots N$
- Panel Common Assumption 3 Zero Error Mean: both error components have expected value of zero:

$$\mathbb{E}\left[u_{it}
ight]=\mathbb{E}\left[\eta_{i}
ight]=\mathbb{E}\left[v_{it}
ight]=0$$

Random Effect 1 - Predetermined Regressors:

$$\mathbb{E}\left[x_{it}v_{it}
ight] = 0 \iff x_{it} \perp v_{it} ext{ for given } t$$

Random Effect 2 - Random Effects/Uncorrelated Individual Effects:

$$\mathbb{E}\left[x_{it}\eta_i\right] = 0 \iff x_{it} \perp \eta_i \text{ for given } t$$

- This is *very restrictive* because it requires the explanatory variables x_{it} to be uncorrelated with all individual-specific effects

Under those 5 assumptions, we have the consistency result:

$$\operatorname{plim}_{NT\to\infty}\hat{\beta}_{\text{pooled}} = \beta$$

• Note that this allows $u_{it} = \eta_i + v_{it}$ to be serially correlated (indeed will be correlated if $\eta_i \neq 0$)

Avar for valid inference: Cluster-Roboust Standard Errors with individual as clusters

Part 2

Models with Strictly Exogenous Regressors / Fixed Effects

WGOLS

Within Group (WG) Estimator (Strictly Exogenous Regressors + FE Consistent) #flashcard Estimator: OLS estimator on within transformed variables:

$$\underbrace{y_{it} - y_i}_{ ilde{y}_{it}} = \underbrace{(x_{it} - x_i)}_{ ilde{x}_{it}} + \underbrace{v_{it} - v_i}_{ ilde{v}_{it}}$$

note that η_i drops out after within transformation

$$\hat{eta}_{WG} = \left(ilde{X}^T ilde{X}
ight)^{-1} ilde{X}^T ilde{y}$$

- Panel Common Assumption 1 Cross-sectional Independence: observations (y_i, X_i) are cross-sectionally independent
- Panel Common Assumption 2 Slope Parameter Homogeneity: parameters β are common to all $1, \dots N$
- Panel Common Assumption 3 Zero Error Mean: both error components have expected value of zero:

$$\mathbb{E}\left[u_{it}
ight]=\mathbb{E}\left[\eta_{i}
ight]=\mathbb{E}\left[v_{it}
ight]=0$$

Strict Exogeneity

$$\mathbb{E}[x_{it}v_{is}] = 0 \ \forall \ t, s \in \{1, 2, \dots, T\}$$

- This is also very restrictive because it requires the current values of x_{it} to be uncorrelated with all past, present, and future values of the time-varying component of the error term v_{is} for the same individual
- It rules out any feedback from the past shocks v_{is} onto later x_{it}
- It rules out the presence of any lagged dependent variable $y_{i,t-1}$ in x_{it} since it's correlated with $v_{i,t-1}$
- v_{is}, y_{is} cannot appear in the expression for x_{it} !
- Relaxed assumption: we allow correlation between regressors and the individual-specific but time-varying components (Correlated Individual Effects / Fixed Effects):

$$\mathbb{E}\left[x_{it}\eta_i\right]
eq 0$$

Under those 4 assumptions, we have the consistency result:

$$\operatorname{plim}_{N\to\infty}\hat{\beta}_{\mathrm{W}}=\beta$$

which is valid for small fixed T.

Avar for valid inference: standard errors based on within transformed variables:

$$\hat{eta}_{BG} \sim^a N\left(eta, \widehat{\sigma}_v^2 (ilde{X}^T ilde{X})^{-1}
ight)$$

where the consistent estimator $\hat{\sigma}_v^2$ can be obtained using:

$$\hat{\sigma}_v^2 = rac{\hat{ ilde{v}}^T\hat{ ilde{v}}}{NT-N-K}$$

We typically report the cluster-robust SE to account for serial correlations in v_{it}

LSDVOLS

Least Squares Dummy Variables (LSDV) Estimator (Strictly Exogenous Regressors + FE Consistent) #flashcard

This is an equivalent to the Within Group Estimator.

Estimator: OLS estimator of the original model plus individual dummies:

$$y_{it} = x_{it}eta + \sum_{i=1}^N \eta_j \mathbb{1}\left\{i=j
ight\} + v_{it}$$

and

$$\hat{\beta}_{LSDV} = \hat{\beta}_{WG}$$

Assumptions (same as WG):

- Panel Common Assumption 1 Cross-sectional Independence: observations (y_i, X_i) are cross-sectionally independent
- Panel Common Assumption 2 Slope Parameter Homogeneity: parameters β are common to all $1, \dots N$
- Panel Common Assumption 3 Zero Error Mean: both error components have expected value of zero:

$$\mathbb{E}\left[u_{it}
ight]=\mathbb{E}\left[\eta_{i}
ight]=\mathbb{E}\left[v_{it}
ight]=0$$

Strict Exogeneity:

$$\mathbb{E}\left[x_{it}v_{is}\right] = 0 \ \forall \ t,s \in \{1,2,\ldots,T\}$$

 Relaxed assumption: we allow correlation between regressors and the individual-specific but time-varying components (Correlated Individual Effects / Fixed Effects):

$$\mathbb{E}\left[x_{it}\eta_i
ight]
eq 0$$

Under those 4 assumptions, we have the consistency result:

$$\operatorname{plim}_{N\to\infty}\hat{\beta}_{\mathrm{W}}=\beta$$

which is valid for small fixed T.

Avar for valid inference: standard errors based on within transformed variables:

$$\hat{eta}_{LSDV} \sim^a N\left(eta, \widehat{\sigma}_v^2 (ilde{X}^T ilde{X})^{-1}
ight)$$

where the consistent estimator $\hat{\sigma}_{v}^{2}$ can be obtained using:

$$\hat{\sigma}_v^2 = rac{\hat{ ilde{v}}^T\hat{ ilde{v}}}{NT-N-K}$$

FDOLS

First-Difference OLS (FDOLS) Estimator (Strict Exogeneity Consistent (weaker version / Orthogonality) + FE Consistent #flashcard

Estimator: OLS estimator after the first-differenced transformation:

$$\Delta y_{it} = \Delta x_{it} eta + \Delta v_{it}$$

Assumptions (same as WG):

- Panel Common Assumption 1 Cross-sectional Independence: observations (y_i, X_i) are cross-sectionally independent
- Panel Common Assumption 2 Slope Parameter Homogeneity: parameters β are common to all $1, \dots N$
- Panel Common Assumption 3 Zero Error Mean: both error components have expected value of zero:

$$\mathbb{E}\left[u_{it}
ight]=\mathbb{E}\left[\eta_{i}
ight]=\mathbb{E}\left[v_{it}
ight]=0$$

Strict Exogeneity (weaker version):

$$\mathbb{E}\left[\Delta x_{it}\Delta v_{it}
ight]=0$$

- This is less restrictive than Strict Exogeneity Assumption ($\mathbb{E}\left[x_{it}v_{is}\right]=0 \ \forall \ t,s\in\{1,2,\ldots,T\}$), but still stronger than the Predetermined Regressors Assumption ($\mathbb{E}\left[x_{it}v_{it}\right]=0$)
- It only rules feedback from 1 period lag $(v_{i,t-1}$ on x_{it}), but allows for longer-period feedback $(v_{i,t-k}$ on x_{it} for $k \geq 2$)
- We allow correlation between regressors and the individual-specific but time-varying components (Correlated Individual Effects / Fixed Effects):

$$\mathbb{E}\left[x_{it}\eta_i
ight]
eq 0$$

Under those 4 assumptions, we have the consistency result:

$$\operatorname{plim}_{N \to \infty} \hat{\beta}_{\text{FDOLS}} = \beta$$

which is valid for small fixed T.

Avar for valid inference:

- If v_{it} follows a Random Walk (not likely), standard Avar can be used
- If v_{it} is serially uncorrelated, then Δv_{it} will follow a MA(1) process, and we need to use Cluster-Robust SE

Efficiency Comparison between WGOLS/LSDV and FDOLS #flashcard

- If v_{it} is serially uncorrelated, then WGOLS will be more efficient than FDOLS.
- If all K regressors in x_{it} are correlated with η_i and v_{it} is serially uncorrelated as implied by the classical assumption:

$$v_{it}|x_{i1},x_{i2},\ldots,x_{iT} \sim^{iid} (0,\sigma_v^2) \ \forall \ i,t \implies ext{Strict Exogeneity} + ext{Serially Uncorrelated } v_{it}$$

Then, WGOLS will be efficient.

If we have the additional Normality assumption:

$$v_{it}|x_{i1},x_{i2},\ldots,x_{iT}\sim^{iid}N(0,\sigma_v^2)$$

Then $\hat{eta}_{WG} = \hat{eta}_{ ext{Max Likelihood}}$

• If all K regressors in x_{it} are correlated with η_i and v_{it} follows a Random Walk process:

$$v_{it} = v_{i,t-1} + \epsilon_{it}, \epsilon_{it} | x_{i1}, x_{i2}, \dots, x_{iT} \sim^{iid} (0, \sigma_{\epsilon}^2)$$

Then, FDOLS will be efficient (FD model satisfies all Gauss-Markov Assumptions).

- Special Cases:
 - $T=2 \implies$ WGOLS/FDOLS are exactly the same.
 - One variable in x_{it} is a step-function (switches from 0 to 1 once in the sample period) \implies FDOLS essentially only uses the switching period to estimate the coefficient on the step variable while WGOLS uses the whole sample. \implies WGOLS is more efficient, and FDOLS will be biased if the response of y_{it} to the change in the step variable is gradual (> 1 period).
 - Note that the switching time has to be different if we also wanna to include time dummies.

WGOLS and FDOLS in Big T Panels #flashcard

As $T \to \infty$:

- WGOLS is consistent even if we have Predetermined Coefficients but NOT Strict Exogeneity
 - Intuition: as $T \to \infty$, the contribution of each observation to the within transformed variable $\to 0$. Therefore, in the limit $\mathbb{E}\left[x_{it}v_{it}\right] = 0 \implies \mathbb{E}\left[\tilde{x}_{it}\tilde{v}_{it}\right] = 0$
- FDOLS is still inconsistent without Strict Exogeneity
 - Intuition: the requirement $\mathbb{E}\left[\Delta x_{it}\Delta v_{it}
 ight]=0$ does not change as $T o\infty$

Models with Predetermined and Strict Exogenous Regressors

BGOLS

Between Group OLS (BGOLS) Estimator (Strictly Exogenous Regressors + Uncorrelated Individual Effects (RE) => Consistent) #flashcard

Uncorrelated Individual Effects ← Predetermined Regressors

Estimator: OLS estimator for the cross-section equation:

$$y_i = x_i eta + (\eta_i + v_i)$$

where $y_i = rac{1}{T} \sum_{t=1}^T y_{it}$

Assumptions:

- Panel Common Assumption 1 Cross-sectional Independence: observations (y_i, X_i) are cross-sectionally independent
- Panel Common Assumption 2 Slope Parameter Homogeneity: parameters β are common to all $1, \dots N$

Panel Common Assumption 3 - Zero Error Mean: both error components have expected value of zero:

$$\mathbb{E}\left[u_{it}
ight]=\mathbb{E}\left[\eta_{i}
ight]=\mathbb{E}\left[v_{it}
ight]=0$$

Strict Exogeneity:

$$\mathbb{E}\left[x_{it}v_{is}\right] = 0 \ \forall \ t, s \in \{1, 2, \dots, T\}$$

Uncorrelated Individual Effects / Random Effects

$$\mathbb{E}\left[x_{it}\eta_i\right] = 0 \iff x_{it} \perp \eta_i \text{ for given } t$$

Under those 5 assumptions, we have the consistency result:

$$\operatorname{plim}_{N\to\infty}\hat{\beta}_{\mathrm{B}}=\beta$$

BGOLS is NOT efficient! It's main purpose is to get a consistent estimator for σ_n^2 (in order to carry out REGLS):

· Construct the residuals:

$$oldsymbol{u} = (\widehat{\eta_i + v_i}) = y_i - x_i \hat{eta}_{BG}$$

Estimator for σ̂₂:

$$\hat{\sigma}_{ii}^2 = rac{oldsymbol{u}^Toldsymbol{u}}{N-K}$$

• Backout $\widehat{\sigma}_{\eta}^2$ using the following relation:

$$\widehat{\sigma}_{u}^{2}=\widehat{\sigma}_{\eta}^{2}+rac{\widehat{\sigma}_{v}^{2}}{T}\implies\widehat{\sigma}_{\eta}^{2}=\widehat{\sigma}_{u}^{2}-rac{\widehat{\sigma}_{v}^{2}}{T}$$

where $\hat{\sigma}_{l}^2$ is obtained from BGOLS just now, and $\hat{\sigma}_v^2$ is obtained from WGOLS.

REGLS

Random Effect GLS (REGLS) Estimator (2 Classical Assumptions => Consistent) #flashcard Estimator: Theta Transformation:

- Obtain $\widehat{\sigma}_{\widehat{q}}$ is obtained from BGOLS, $\widehat{\sigma}_{v}^{2}$ from WGOLS, and calculate $\widehat{\sigma}_{n}^{2}$.
- Define:

$$heta^{f 2}:=rac{\widehat{\sigma}_v^2}{\widehat{\sigma}_v^2+T\widehat{\sigma}_n^2}$$

· Perform theta differencing:

$$y_{it}^* = y_{it} - (1 - \theta)y_i, x_{it}^* = x_{it} - (1 - \theta)x_i, u_{it}^* = u_{it} - (1 - \theta)u_i$$

REGLS estimator is the OLS estimator of the transformed model:

$$y_{it}^* = x_{it}^*\beta + u_{it}^*$$

Assumptions (the Strongest Set of Assumptions):

- Panel Common Assumption 1 Cross-sectional Independence: observations (y_i, X_i) are cross-sectionally independent
- Panel Common Assumption 2 Slope Parameter Homogeneity: parameters β are common to all $1, \dots N$
- Panel Common Assumption 3 Zero Error Mean: both error components have expected value of zero:

$$\mathbb{E}\left[u_{it}
ight]=\mathbb{E}\left[\eta_{i}
ight]=\mathbb{E}\left[v_{it}
ight]=0$$

• 2 "Classical" Assumption:

$$egin{cases} \eta_i | x_{i1}, x_{i2}, \dots, x_{iT} & \sim^{iid} (0, \sigma_\eta^2) \ v_{it} | x_{i1}, x_{i2}, \dots, x_{iT} & \sim^{iid} (0, \sigma_v^2) \end{cases}$$

- Those are stronger than strict exogeneity and predetermined regressors.
- Under those 5 assumptions, REGLS is consistent and efficient.

Testing for Correlated Individual Effects

Tests for Correlated Individual Effects #flashcard

- Idea: compare estimates consistent with correlated individual effects (WG/FD) and those inconsistent with correlated individual effects (POLS/GLS)
- Hausman Test:
 - Assumptions: the same as REGLS
 - Null Hypothesis: Uncorrelated Individual Effects:

$$H_0: \mathbb{E}\left[\eta_i|X_i\right] = 0$$

- Test statistics and distribution under null
- Option 1: comparing WG and REGLS:

$$\left(\hat{eta}_{WG} - \hat{eta}_{REGLS}
ight)^T \left[\widehat{Var}(\hat{eta}_{WG}) - \widehat{Var}(\hat{eta}_{REGLS})
ight]^{-1} \left(\hat{eta}_{WG} - \hat{eta}_{REGLS}
ight) \sim^a \chi_K^2$$

- If we only focus on one parameter β^k , this simplifies to

$$rac{\sqrt{\hat{eta}_{WG}^k - \hat{eta}_{REGLS}^k}}{\sqrt{\widehat{Var}(\hat{eta}_{WG}^k) - \widehat{Var}(\hat{eta}_{REGLS}^k)}} \sim^a N(0,1)$$

- Option 2: comparing WG and BG:

$$\left(\hat{eta}_{WG} - \hat{eta}_{BG}\right)^T \left[\widehat{Var}(\hat{eta}_{WG}) + \widehat{Var}(\hat{eta}_{BG})\right]^{-1} \left(\hat{eta}_{WG} - \hat{eta}_{BG}\right) \sim^a \chi_K^2$$

Time-Invariant Variables Estimation

Estimating Time-Invariant Variables #flashcard

Setup: we would like to estimate γ in:

$$y_{it} = x_{it}eta + w_i\gamma + (\eta_i + v_{it})$$

- Case 1: Uncorrelated Time-Invariant Regressors $w_i \perp \eta_i$
 - Assumptions:
 - Panel Common Assumption 1 Cross-sectional Independence: observations (y_i, X_i) are cross-sectionally independent
 - Panel Common Assumption 2 Slope Parameter Homogeneity: parameters β are common to all $1, \dots N$
 - Panel Common Assumption 3 Zero Error Mean: both error components have expected value of zero:

$$\mathbb{E}\left[u_{it}
ight]=\mathbb{E}\left[\eta_{i}
ight]=\mathbb{E}\left[v_{it}
ight]=0$$

- Uncorrelated Time-Invariant Regressors $w_i \perp \eta_i$
- + **Assumptions** on the correlations between x_{it} and η_i, v_{it}
- Procedures:
- First, estimate β using a consistent estimator (depends on the assumptions on the correlations between x_{it} and η_i, v_{it})
- Then, regress the unexplained component on w_i , adjusted for measurement error

- Example:
- Suppose we have strictly exogenous x_{it} and it's correlated with η_i (FE)
- 1. Estimate β using WGOLS
- 2. Construct a new dependent variable:

$$Y_{it} = y_{it} - x_{it} \hat{eta}_{WG}$$

- 3. Choose one of the options:
- POLS: consistent, but with SE adjustment issues:

$$Y_{it} = w_i \gamma + (\eta_i + v_{it} + e_{it})$$

- BGOLS: consistent, but with SE adjustment issues:

$$Y_i = w_i \gamma + (\eta_i + v_i + e_i)$$

- GMM with augmented system of equations: consistent and will produce the correct SE: form a system of equations by attaching WG equations with either of the above (use the second/BG as an example):\$\$\underbrace{ \begin{bmatrix}} $\tilde{y}_{i1} \$

```
\tilde{y}{i2} \
  \vdots \
  \tilde{y}{iT} \
  \textcolor{ red }{ \bar{y}{i} }
  \end{bmatrix} \{ y{i}^{+} \} = \underbrace{ \begin{bmatrix}
  \tilde{x}_{i1} \
  \tilde{x}{i2} \
  \vdots \
  \tilde{x}{iT} \
  \textcolor{ red }{ \bar{x}{i} }
  \end{bmatrix} }{ x{i}^{+} }\beta
\underbrace{ \begin{bmatrix}
  0 \
  0 \
  \vdots \
  0 \
  \textcolor{ red }{ w{i}} }
  \\\end{bmatrix} \} \( \w_{i}^{+} \\\ \textcolor{ red }{ \gamma }
\underbrace{ \begin{bmatrix}
  \tilde{v}{i1} \
  \tilde{v}{i2} \
  \vdots \
  \tilde{v}{iT} \
  \textcolor{ red }{ \eta{i} + \bar{v}{i} }
  \end{bmatrix} }{ u{i}^{+}} \text{ and } \underbrace{ \textcolor{ red }{ \begin{bmatrix}
  \tilde{x}{i1} & 0 \
  \tilde{x}{i2} & 0 \
  \vdots & \vdots \
  \tilde{x}{iT} & 0 \
  0 & w{i}
  \end{bmatrix} } }{ z{i}^{+} } \tag{Augmented System of Equations}
```

and use GMM estimator with the moment condition:

- Case 2: Correlated Time-Invariant Regressors $w_i \perp \eta_i$
 - Assumptions:
 - Panel Common Assumption 1 Cross-sectional Independence: observations (y_i, X_i) are cross-sectionally independent
 - Panel Common Assumption 2 Slope Parameter Homogeneity: parameters β are common to all $1, \dots N$
 - Panel Common Assumption 3 Zero Error Mean: both error components have expected value of zero:

$$\mathbb{E}\left[u_{it}
ight]=\mathbb{E}\left[\eta_{i}
ight]=\mathbb{E}\left[v_{it}
ight]=0$$

- Correlated Time-Invariant Regressors $w_i \perp \eta_i$
- Valid Instruments: We will need time-invariant instruments z_i for w_i with the standard IV assumptions:
- Exogeneity:

$$\mathbb{E}\left[z_i\eta_i
ight]=\mathbb{E}\left[z_iv_{it}
ight]=0$$

- Informative: $\theta \neq 0$ in the first-stage regression (take a scalar example):

$$w_i = x_{it}\delta + z_i\theta + r_i$$

- Procedures:
- Choose one from these:
- Standard 2SLS for the following equations, but with SE adjustment issues:

-

$$Y_{it} = (y_{it} - x_{it}\hat{eta}_{WG}) = w_i\gamma + (\eta_i + v_{it} + e_{it})$$

- or:

$$Y_i = (y_i - x\hat{eta}_{WG}) = w_i \gamma + (\eta_i + v_i + e_i)$$

- If x_{it} is strictly exogenous wrt both v_{it} and η_i (classical assumptions), we can also use z_i to instrument w_i : \$\understand \text{begin{bmatrix}}

```
\tilde{y}{i1} \
\tilde{y}{i2} \
\vdots \
\tilde{y}{iT} \
\textcolor{ red }{ \bar{y}{i} }
\end{\bar{y}{i}} \
\tilde{x}{i1} \
\tilde{x}{i2} \
\vdots \
\tilde{x}{i1} \
\tilde{x}{i2} \
\tilde{x}{i1} \
\tilde{x}{i2} \
\tilde{x}
```

\underbrace{ \begin{bmatrix}

\end{bmatrix} }{ x{i}^{+} }\beta

0 \ 0 \ \vdots \ 0 \

\textcolor{ red }{ w{i}}

\end{bmatrix} }{ w_{i}^{+} }\textcolor{ red }{ \gamma }

\underbrace{ \begin{bmatrix}

\tilde{v}{i1} \
\tilde{v}{i2} \
\vdots \
\tilde{v}{iT} \
\\textcolor{ red }{ \eta{i} + \bar{v}{i} }

 $\mbox{$\mbox{$$m$athbb{$\it E$}\left[$(z{i}^{+})^{T}u_{i}^{+}\right] = 0$$}$

Part 3

Models WITHOUT Strict Exogeneity NOR Random Effect Assumptions

 $\label{lem:condition} Predetermined\ Regressors\ +\ Correlated\ Individual\ Effects\ (FDX-2SLS/LagX-2SLS/Arellano-Bond\ GMM)$

FDX-2SLS/LagX-2SLS/Arellano-Bond GMM Estimator (Predetermined Regressors + Correlated Individual Effects Consistent) #flashcard

Procedure:

- FD+LagX-2SLS
 - Use $x_{i,t-1}$ or $\Delta x_{i,t-1}$ as IV for Δx_{it} in FD regression:

$$\Delta y_{it} = \Delta x_{it} eta + \Delta v_{it}$$

- Both satisfy exogeneity condition ($\mathbb{E}\left[x_{i,t-1}v_{it}\right] = \mathbb{E}\left[x_{i,t-1}v_{i,t-1}\right] = 0$, $\mathbb{E}\left[x_{i,t-1}\Delta v_{it}\right] = 0$) under our assumptions, but the relevance condition rules out $x_{it} \sim RW$.
 - ullet We can also use WG transformation when having $T o\infty$
- 1st-stage Projection:

$$\Delta x_{it} = x_{i,t-1}\theta + \epsilon_{it}$$

2nd-stage Regression:

$$\Delta y_{it} = \widehat{\Delta x}_{it} eta + \Delta v_{it}$$

- Arellano-Bond GMM:
 - For $T \geq 3$, we can use both $x_{i,t-1}$ and $\Delta x_{i,t-1}$
 - Base model is still the FD regression:

$$\Delta y_{it} = \Delta x_{it} eta + \Delta v_{it}$$

- Implement GMM using Sequential Moment Conditions:

$$egin{aligned} \mathbb{E}\left[x_{i1}\Delta v_{i2}
ight] &= 0 \ \mathbb{E}\left[(x_{i2},x_{i1})\Delta v_{i3}
ight] &= 0 \ \mathbb{E}\left[(x_{i3},x_{i2},x_{i1})\Delta v_{i4}
ight] &= 0 \end{aligned}$$

or more concisely:

$$\mathbb{E}\left[Z_i^T \Delta v_i
ight] = 0$$

where Z_i is defined in the first stage projection:

- Beware that: if T is not very small or N is not very large, we need to be careful about "too-many instruments" / overfitting bias.
- Lagged dependent variable is a special case of this method. e.g. we may use $y_{i,t-2}, x_{i,t-1}$ as IVs for $\Delta y_{i,t-1}, \Delta x_{it}$ Assumptions:
- Panel Common Assumption 1 Cross-sectional Independence: observations (y_i, X_i) are cross-sectionally independent
- Panel Common Assumption 2 Slope Parameter Homogeneity: parameters β are common to all $1, \dots N$
- Panel Common Assumption 3 Zero Error Mean: both error components have expected value of zero:

$$\mathbb{E}\left[u_{it}
ight]=\mathbb{E}\left[\eta_{i}
ight]=\mathbb{E}\left[v_{it}
ight]=0$$

Predetermined Regressors:

$$\mathbb{E}\left[x_{it}v_{is}\right] \begin{cases} = 0 & \text{for } s \geq t \\ \neq 0 & \text{for } s < t \end{cases} \text{ (uncorrelated with current future time-varying error)}$$

 (Possibly) Correlated Individual Effects: we allow correlation between regressors and the individual-specific but timevarying components

$$\mathbb{E}\left[x_{it}\eta_i\right]
eq 0$$

- Extra: Serial Uncorrelated Time-Varying Error: v_{it} is serially uncorrelated
- They satisfies non of assumptions for our previous estimators.
- Under those assumptions:

$$\lim_{N o\infty}\hat{eta}_{2SLS}=eta$$

- Note that $\hat{\beta}_{WG}$ is also consistent if we allow $T \to \infty$.
- Avar: we can use clustered SE, but since we know the serially correlation is precisely MA(1), we also have specialised
 tools.

Endogenous Regressors + Correlated Individual Effects

Models with Endogenous Regressors and Correlated Individual Effects #flashcard Procedure:

- Exactly the same as FDX-2SLS/LagX-2SLS/Arellano-Bond GMM Estimator, but we need 2 period levels/differences as IVs (or other IVs satisfying exogeneity and the rank condition).
 Assumptions:
- Panel Common Assumption 1 Cross-sectional Independence: observations (y_i, X_i) are cross-sectionally independent
- Panel Common Assumption 2 Slope Parameter Homogeneity: parameters β are common to all $1, \dots N$
- Panel Common Assumption 3 Zero Error Mean: both error components have expected value of zero:

$$\mathbb{E}\left[u_{it}
ight]=\mathbb{E}\left[\eta_{i}
ight]=\mathbb{E}\left[v_{it}
ight]=0$$

Endogenous Regressors

$$\mathbb{E}\left[x_{it}v_{is}\right] \begin{cases} = 0 & \text{for } s > t \\ \neq 0 & \text{for } s \leq t \end{cases} \quad \text{(uncorrelated with future time-varying error)}$$

 (Possibly) Correlated Individual Effects: we allow correlation between regressors and the individual-specific but timevarying components

$$\mathbb{E}\left[x_{it}\eta_i
ight]
eq 0$$

- Extra: Serial Uncorrelated Time-Varying Error: v_{it} is serially uncorrelated
- Note that $\hat{\beta}_{WG}$ is now inconsistent even when $T \to \infty$ since the correlation comes from current period v_{it} , which cannot be averaged out in the limit.

Ensemble of Endogenous and Strictly Exogenous Regressors

Ensemble of Lagged Y, Endogenous, and Strictly Exogenous Regressors #flashcard Setup:

$$y_{it} = \alpha y_{i,t-1} + \beta_1 x_{1it} + \beta_2 x_{2it} + (\eta_i + v_{it})$$

where:

- Panel Common Assumption 1+2+3
- Serial Uncorrelated Time-Varying Error: vit is serially uncorrelated
- Mixture of Endogenous / Strictly Exogenous Regressors
 - x_{1it} is endogenous wrt v_{it}
 - ullet x_{2it} is strictly exogenous wrt v_{it}
- Correlated Individual Effects: both x_{1it}, x_{2it} are correlated with η_i Consistent Estimator.
- · Focus on FD equation:

$$\Delta y_{it} = lpha \Delta y_{i,t-1} + eta_1 \Delta x_{1it} + eta_2 \Delta x_{2it} + \Delta v_{it}$$

- Use $(y_{i,t-2},x_{1,t-2},x_{2it})$ or $(\Delta y_{i,t-2},\Delta x_{1,t-2},\Delta x_{2it})$ as IVs for $(\Delta y_{i,t-1},\Delta x_{1it},\Delta x_{2it})$ and perform 2SLS
- Alternatively, use sequential moment conditions and BAGMM.

Ensemble of Endogenous, Strictly Exogenous Regressors, and Extra Valid IVs #flashcard Setup:

$$y_{it} = eta_1 x_{1it} + eta_2 x_{2it} + (\eta_i + v_{it})$$

where:

- Panel Common Assumption 1+2+3
- Mixture of Endogenous / Strictly Exogenous Regressors
 - x_{1it} is endogenous wrt v_{it}
 - ullet x_{2it} is strictly exogenous wrt v_{it}
- Valid IV: z_{it} satisfying strict exogeneity and rank condition
 - For large T panels, we can relax the strict exogeneity and only require x_{2it}, z_{it} to be predetermined.
- Correlated Individual Effects: both x_{1it}, x_{2it} are correlated with η_i
- We no longer require v_{it} to be serially uncorrelated!

Consistent Estimator.

· Focus on with-in transformed equation:

$$ilde{y}_{it} = eta_1 ilde{x}_{1it} + eta_2 ilde{x}_{2it} + ilde{v}_{it}$$

• Use $(ilde{x}_{2it}, ilde{z}_{it})$ as IVs for $(ilde{x}_{1it}, ilde{x}_{2it})$ and perform 2SLS

Summary

- Two-way Error Component Model
 - Deal with Common Time Effects → Time Dummies
 - One-way Error Component Model
 - Estimate Effects of x_{it}
 - Predetermined X + Random Effects (Uncorrelated Individual Effects) → Pooled OLS
 - Strictly Exogenous X + Correlated Individual Effects \rightarrow WGOLS, LSDVOLS
 - (Weaker) Strictly Exogenous X + Correlated Individual Effects \rightarrow FDOLS
 - Strictly Exogenous X + Random Effects (Uncorrelated Individual Effects) → BGOLS, REGLS
 - $\bullet \ \ \, \text{Predetermined X + Correlated Individual Effects} \rightarrow \text{FDX-2SLS/LagX-2SLS/ABGMM} \\$
 - Estimate Effects of w_i

All Estimators for Parameters on x_{it} #flashcard

Estimator	Assumption on x_{it}, v_{is}	Assumption on x_{it}, η_i	Additional Assumptions	Method	Remarks
Pooled OLS	$\mathbb{E}\left[x_{it}v_{it} ight]=0$ (Predetermined Regressor)	$\mathbb{E}\left[x_{it}\eta_i ight]=0$ (Random Effects/Uncorrelated Individual Effects)		Standard Pooled OLS	
WG/LSDVOLS	$\mathbb{E}\left[x_{it}v_{is} ight]=0\ orall\ s,t$ (Strict Exogeneity)	$\mathbb{E}\left[x_{it}\eta_i ight] eq 0$ (Fixed Effects/Correlated Individual Effects)		With-in transformation / individual dummies	Efficient if v_{it} is serially uncorrelated; consistently estimate $\hat{\sigma}_v^2$
FDOLS	$\mathbb{E}\left[\Delta x_{it}\Delta v_{it} ight]=0$ (Weaker Strict Exogeneity)	$\mathbb{E}\left[x_{it}\eta_{i} ight] eq0$ (Fixed Effects/Correlated Individual Effects)		First difference	Efficient if $v_{it} \sim RW$
BGOLS	$v_{it}x_{i1},\dots,x_{iT}\sim^{iid}(0,\sigma_v^2)$ (Classical Assumption)	$\mathbb{E}\left[x_{it}\eta_{i} ight]=0$ (Random Effects/Uncorrelated Individual Effects)		Individual average	Not Efficient; just to get $\hat{\sigma}_{\eta}^2$
REGLS	$v_{it}x_{i1},\dots,x_{iT}\sim^{iid}(0,\sigma_v^2)$ (Classical Assumption)	$\eta_i x_{i1}, \dots, x_{iT} \sim^{iid} (0, \sigma_\eta^2)$ (Classical Assumption)		WGOLS + BGOLS → Theta- differencing	Most Efficient Under Assumptions
FDX-2SLS/LagX- 2SLS/Arellano- Bond GMM	$\mathbb{E}\left[x_{it}v_{is}\right] \begin{cases} = 0 & \text{for } s \geq t \\ \neq 0 & \text{for } s < t \end{cases}$ (Predetermined Regressors)	$\mathbb{E}\left[x_{it}\eta_i ight] eq 0$ (Fixed Effects/Correlated Individual Effect)	v_{it} is serially uncorrelated (Serial Uncorrelated Time-Varying Error)	Use previous FD/level as IV for Δx_{it} / Sequential Moment Conditions	WGOLS will aslo be consistent if $T \to \infty$
FDX-2SLS/LagX- 2SLS/Arellano- Bond GMM (Endogenous Version)	$\mathbb{E}\left[x_{it}v_{is}\right] \begin{cases} = 0 & \text{for } s > t \\ \neq 0 & \text{for } s \leq t \end{cases}$ (Endegenous Regressors)	$\mathbb{E}\left[x_{it}\eta_i ight] eq 0$ (Fixed Effects/Correlated Individual Effect)	v_{it} is serially uncorrelated (Serial Uncorrelated Time-Varying Error)	Use previous FD/level as IV for Δx_{it} / Sequential Moment Conditions	FDX-2SLS/LagX-2SLS are also consistent as $T \to \infty$, but ABGMM will suffer from too many IVs. WGOLS will be inconsistent even if $T \to \infty$
WG2SLS	$\mathbb{E}\left[x_{it}v_{is}\right] \begin{cases} = 0 & \text{for } s > t \\ \neq 0 & \text{for } s \leq t \end{cases}$ (Endegenous Regressors)	$\mathbb{E}\left[x_{it}\eta_i ight] eq 0$ (Fixed Effects/Correlated Individual Effect)	v_{it} is serially uncorrelated (Serial Uncorrelated	Use previous level as IV for \tilde{x}_{it} in the WG transformed equation	WG2SLS is consistent ONLY when $T \to \infty$

Estimator	Assumption on x_{it}, v_{is}	Assumption on x_{it}, η_i	Additional Assumptions	Method	Remarks
			Time-Varying Error)		
	•				