# Domande di Reti Logiche - compito del 19/07/2016



### Barrare una sola risposta per ogni domanda

Il punteggio finale è -1 × (n. di risposte errate + n. domande lasciate in bianco) Usare lo spazio bianco sul retro del foglio per appunti, se serve

| AND OR AND                                   |
|----------------------------------------------|
| X <sub>2</sub> X <sub>1</sub> X <sub>0</sub> |

# Il circuito di figura:

- $\hfill \Box$  è affetto da alee statiche del 1° ordine sul livello 1
- è affetto da alee statiche del 1° ordine sul livello 0
  è affetto da A.S. del 1° ordine sui livelli 0 ed 1
- The same of the standard of th
- non è affetto da alee statiche del 1° ordine



L'uscita z della rete di figura, quando b=0:

- ☐ È in alta impedenza
- È nella fascia di indeterminazione
- ☐ Nessuna delle precedenti

La conversione tra rappresentazione in modulo e segno (MS), con modulo su n bit, e rappresentazione in complemento alla radice (CR) su n bit può generare overflow:

- □ Solo da MS a CR
- □ Solo da CR a MS
- ☐ In entrambe le direzioni
- ☐ In nessuna delle due direzioni

L'operazione di estensione di campo per gli interi rappresentati in complemento alla radice

- □ Non richiede mai logica, qualunque sia la base
- □ Non richiede logica per la base 2
- ☐ Richiede sempre logica, qualunque sia la base
- ☐ Nessuna delle precedenti

| X <sub>1</sub> X <sub>0</sub> 00 01 11 10 : |     |           |     |     |   |
|---------------------------------------------|-----|-----------|-----|-----|---|
| /                                           | 00  | 01        | 11  | 10  |   |
| S0                                          | SO) | S1        | SO) | SO) | 0 |
| S1                                          | SO  | <u>S1</u> | S2  | 1   | 0 |
| S2                                          |     | S1        | S2  | S0  | 1 |

Nella rete sequenziale asincrona descritta dalla tabella di figura la codifica S0=00, S1=10, S2=01, introduce corse delle variabili di stato.

- □ Vero
- □ Falso

Nella scomposizione di una rete in Parte Operativa/ Parte Controllo (PO/PC) vista a lezione (e priva di registro MJR):

- La PO è una rete di Moore, la PC di Mealy
- ☐ La PO è una rete di Mealy, la PC di Moore
- ☐ Entrambe sono reti di Mealy
- ☐ Entrambe sono reti di Moore

| S0: [. | 1 | WAIT<=25; | [] |
|--------|---|-----------|----|
|--------|---|-----------|----|

- S1: [...] WAIT<=WAIT-1; [...]
- S2: [...] WAIT<=(WAIT==0)?25:WAIT-1;[...]
- S3: [...] //nessun assegnamento [...]
- S4: [...] //nessun assegnamento [...]

La descrizione di sopra riporta i soli assegnamenti al registro operativo WAIT. Quante variabili di comando sono necessarie per sintetizzare la porzione di parte operativa relativa a WAIT?

- $\square$  2
- □ Non è possibile stabilirlo

Date A e B, rappresentazioni in complemento alla radice dei numeri interi a e b,

- ☐ A<B implica che a<b
- $\Box$  A<=B implies the a<=b
- ☐ A>B implica che a<b
- ☐ Nessuna delle precedenti

Durante l'ingresso a interruzione di programma, il semaforo viene messo a *rosso* durante l'esecuzione:

- Della primitiva *start\_in*
- ☐ Della primitiva *wait\_in* 
  - ☐ Del driver *driver\_in*
- ☐ Nessuna delle precedenti

- ☐ Una rete sequenziale asincrona
- Una rete sequenziale sincronizzata di Moore
- Una rete sequenziale sincronizzata di Mealy Rit.
- ☐ Nessuna delle precedenti

|   |           | Domande di Reti Logiche | – compito del | 19/07/2016 |      |
|---|-----------|-------------------------|---------------|------------|------|
|   | Cognome e | nome:                   |               |            |      |
|   | M         | latricola:              |               |            |      |
| ` |           | Consegna:               | Sì 🗌          | No         |      |
|   |           |                         |               |            | <br> |
|   |           |                         |               |            |      |
|   |           |                         |               |            |      |
|   |           |                         |               |            |      |
|   |           |                         |               |            |      |
|   |           |                         |               |            |      |
|   |           |                         |               |            |      |
|   |           |                         |               |            |      |
|   |           |                         |               |            |      |
|   |           |                         |               |            |      |
|   |           |                         |               |            |      |
|   |           |                         |               |            |      |
|   |           |                         |               |            |      |
|   |           |                         |               |            |      |
|   |           |                         |               |            |      |
|   |           |                         |               |            |      |
|   |           |                         |               |            |      |
|   |           |                         |               |            |      |
|   |           |                         |               |            |      |
|   |           |                         |               |            |      |
|   |           |                         |               |            |      |
|   |           |                         |               |            |      |
|   |           |                         |               |            |      |
|   |           |                         |               |            |      |
|   |           |                         |               |            |      |
|   |           |                         |               |            |      |
|   |           |                         |               |            |      |

#### Domande di Reti Logiche - compito del 19/07/2016



## Barrare una sola risposta per domanda

Il punteggio finale è -1 × (n. di risposte errate + n. domande lasciate in bianco) Usare lo spazio bianco sul retro del foglio per appunti, se serve



# Il circuito di figura:

- è affetto da alee statiche del 1° ordine sul livello 1
  è affetto da alee statiche del 1° ordine sul livello 0
  è affetto da A.S. del 1° ordine sui livelli 0 ed 1
- □ non è affetto da alee statiche del 1° ordine



L'uscita z della rete di figura, quando b=0:

- ☐ È in alta impedenza
- È nella fascia di indeterminazione
- ☐ Nessuna delle precedenti

La conversione tra rappresentazione in modulo e segno (MS), con modulo su n bit, e rappresentazione in complemento alla radice (CR) su n bit può generare overflow:

- □ Solo da MS a CR
- □ Solo da CR a MS
- ☐ In entrambe le direzioni
- ☐ In nessuna delle due direzioni

L'operazione di estensione di campo per gli interi rappresentati in complemento alla radice

- □ Non richiede mai logica, qualunque sia la base
- □ Non richiede logica per la base 2
- ☐ Richiede sempre logica, qualunque sia la base
- ☐ Nessuna delle precedenti

| X <sub>1</sub> X <sub>0</sub> 00 01 11 10 : |     |           |     |     |   |
|---------------------------------------------|-----|-----------|-----|-----|---|
| /                                           | 00  | 01        | 11  | 10  |   |
| S0                                          | SO) | S1        | SO) | SO) | 0 |
| S1                                          | SO  | <u>S1</u> | S2  | 1   | 0 |
| S2                                          |     | S1        | S2  | S0  | 1 |

Nella rete sequenziale asincrona descritta dalla tabella di figura la codifica S0=00, S1=10, S2=01, introduce corse delle variabili di stato.

- □ Vero
- □ Falso

Nella scomposizione di una rete in Parte Operativa/ Parte Controllo (PO/PC) vista a lezione (e priva di registro MJR):

- La PO è una rete di Moore, la PC di Mealy
- La PO è una rete di Mealy, la PC di Moore
- ☐ Entrambe sono reti di Mealy
- Entrambe sono reti di Moore

| S0: [] WAIT<=25; [ | [] |
|--------------------|----|
|--------------------|----|

- S1: [...] WAIT<=WAIT-1; [...]
- S2: [...] WAIT<=(WAIT==0)?25:WAIT-1;[...]
- S3: [...] //nessun assegnamento [...]
- S4: [...] //nessun assegnamento [...]

La descrizione di sopra riporta i soli assegnamenti al registro operativo WAIT. Quante variabili di comando sono necessarie per sintetizzare la porzione di parte operativa relativa a WAIT?

- □ 1
- $\square$  2
- □ Non è possibile stabilirlo

Date A e B, rappresentazioni in complemento alla radice dei numeri interi a e b,

- □ A<B implica che a<b
- □ A<=B implica che a<=b
- ☐ A>B implica che a<b
- ☐ Nessuna delle precedenti

Durante l'ingresso a interruzione di programma, il semaforo viene messo a *rosso* durante l'esecuzione:

- ☐ Della primitiva *start\_in*
- ☐ Della primitiva *wait\_in*
- ☐ Del driver *driver\_in*
- ☐ Nessuna delle precedenti

- ☐ Una rete sequenziale asincrona
- Una rete sequenziale sincronizzata di Moore
- Una rete sequenziale sincronizzata di Mealy Rit.
- ☐ Nessuna delle precedenti

|   | Do           | mande di Reti Logiche | – compito del 1 | 19/07/2016 |  |
|---|--------------|-----------------------|-----------------|------------|--|
|   | Cognome e no | me:                   |                 |            |  |
|   | Matri        | icola:                |                 |            |  |
|   |              | Consegna:             | Sì 🗌            | No         |  |
| - | <br>         |                       |                 |            |  |
|   |              |                       |                 |            |  |
|   |              |                       |                 |            |  |
|   |              |                       |                 |            |  |
|   |              |                       |                 |            |  |
|   |              |                       |                 |            |  |
|   |              |                       |                 |            |  |
|   |              |                       |                 |            |  |
|   |              |                       |                 |            |  |
|   |              |                       |                 |            |  |
|   |              |                       |                 |            |  |
|   |              |                       |                 |            |  |
|   |              |                       |                 |            |  |
|   |              |                       |                 |            |  |
|   |              |                       |                 |            |  |
|   |              |                       |                 |            |  |
|   |              |                       |                 |            |  |
|   |              |                       |                 |            |  |
|   |              |                       |                 |            |  |



# Barrare una sola risposta per domanda

Il punteggio finale è -1 × (n. di risposte errate + n. domande lasciate in bianco) Usare lo spazio bianco sul retro del foglio per appunti, se serve



# Il circuito di figura:

- è affetto da alee statiche del 1° ordine sul livello 1
  è affetto da alee statiche del 1° ordine sul livello 0
- □ è affetto da A.S. del 1° ordine sui livelli 0 ed 1
- non è affetto da alee statiche del 1° ordine



L'uscita z della rete di figura, quando b=0:

- ☐ È in alta impedenza
- È nella fascia di indeterminazione
- ☐ Nessuna delle precedenti

La conversione tra rappresentazione in modulo e segno (MS), con modulo su n bit, e rappresentazione in complemento alla radice (CR) su n bit può generare overflow:

- □ Solo da MS a CR
- □ Solo da CR a MS
- ☐ In entrambe le direzioni
- ☐ In nessuna delle due direzioni

L'operazione di estensione di campo per gli interi rappresentati in complemento alla radice

- □ Non richiede mai logica, qualunque sia la base
- □ Non richiede logica per la base 2
- ☐ Richiede sempre logica, qualunque sia la base
- ☐ Nessuna delle precedenti

| X <sub>1</sub> X <sub>0</sub> 00 01 11 10 |    |    |    |    |   |
|-------------------------------------------|----|----|----|----|---|
| \                                         | 00 | 01 | 11 | 10 |   |
| S0                                        | SO | S1 | SO | SO | 0 |
| S1                                        | S0 | S1 | S2 | 1  | 0 |
| S2                                        |    | S1 | S2 | S0 | 1 |

Nella rete sequenziale asincrona descritta dalla tabella di figura la codifica S0=00, S1=10, S2=01, introduce corse delle variabili di stato.

- □ Vero
- □ Falso

Nella scomposizione di una rete in Parte Operativa/ Parte Controllo (PO/PC) vista a lezione (e priva di registro MJR):

- La PO è una rete di Moore, la PC di Mealy
- □ La PO è una rete di Mealy, la PC di Moore
- ☐ Entrambe sono reti di Mealy
- ☐ Entrambe sono reti di Moore

| S0: [] WAIT<=25; [ | [] |
|--------------------|----|
|--------------------|----|

- S1: [...] WAIT<=WAIT-1; [...]
- S2: [...] WAIT<=(WAIT==0)?25:WAIT-1;[...]
- S3: [...] //nessun assegnamento [...]
- S4: [...] //nessun assegnamento [...]

La descrizione di sopra riporta i soli assegnamenti al registro operativo WAIT. Quante variabili di comando sono necessarie per sintetizzare la porzione di parte operativa relativa a WAIT?

- □ 1
- □ 2
- □ Non è possibile stabilirlo

Date A e B, rappresentazioni in complemento alla radice dei numeri interi a e b,

- □ A<B implica che a<b
- $\Box$  A<=B implies the a<=b
- □ A>B implica che a<b
- ☐ Nessuna delle precedenti

Durante l'ingresso a interruzione di programma, il semaforo viene messo a *rosso* durante l'esecuzione:

- Della primitiva *start\_in*
- ☐ Della primitiva *wait\_in*
- ☐ Del driver *driver\_in*
- ☐ Nessuna delle precedenti

- ☐ Una rete sequenziale asincrona
- Una rete sequenziale sincronizzata di Moore
- Una rete sequenziale sincronizzata di Mealy Rit.
- ☐ Nessuna delle precedenti

| Domande         | di Reti Logiche | – compito del 1 | 9/07/2016   |      |
|-----------------|-----------------|-----------------|-------------|------|
| Cognome e nome: |                 |                 | <del></del> |      |
| Matricola:      |                 |                 |             |      |
| Cor             | nsegna:         | Sì 🗌            | No          |      |
| <br>            |                 |                 |             | <br> |
|                 |                 |                 |             |      |
|                 |                 |                 |             |      |
|                 |                 |                 |             |      |
|                 |                 |                 |             |      |
|                 |                 |                 |             |      |
|                 |                 |                 |             |      |
|                 |                 |                 |             |      |
|                 |                 |                 |             |      |
|                 |                 |                 |             |      |
|                 |                 |                 |             |      |
|                 |                 |                 |             |      |
|                 |                 |                 |             |      |
|                 |                 |                 |             |      |
|                 |                 |                 |             |      |
|                 |                 |                 |             |      |
|                 |                 |                 |             |      |
|                 |                 |                 |             |      |
|                 |                 |                 |             |      |
|                 |                 |                 |             |      |
|                 |                 |                 |             |      |
|                 |                 |                 |             |      |
|                 |                 |                 |             |      |
|                 |                 |                 |             |      |

#### Domande di Reti Logiche - compito del 19/07/2016



## Barrare una sola risposta per domanda

Il punteggio finale è -1 × (n. di risposte errate + n. domande lasciate in bianco) Usare lo spazio bianco sul retro del foglio per appunti, se serve



Il circuito di figura:

□ è affetto da alee statiche del 1° ordine sul livello 1
 □ è affetto da alee statiche del 1° ordine sul livello 0
 □ è affetto da A.S. del 1° ordine sui livelli 0 ed 1
 □ non è affetto da alee statiche del 1° ordine



L'uscita z della rete di figura, quando b=0:

- ☐ È in alta impedenza
- È nella fascia di indeterminazione
- ☐ Nessuna delle precedenti

La conversione tra rappresentazione in modulo e segno (MS), con modulo su n bit, e rappresentazione in complemento alla radice (CR) su n bit può generare overflow:

- □ Solo da MS a CR
- □ Solo da CR a MS
- ☐ In entrambe le direzioni
- ☐ In nessuna delle due direzioni

L'operazione di estensione di campo per gli interi rappresentati in complemento alla radice

- □ Non richiede mai logica, qualunque sia la base
- □ Non richiede logica per la base 2
- ☐ Richiede sempre logica, qualunque sia la base
- ☐ Nessuna delle precedenti

| X <sub>1</sub> X <sub>0</sub> |     |           |     |     |   |
|-------------------------------|-----|-----------|-----|-----|---|
| \                             | 00  | 01        | 11  | 10  | _ |
| S0                            | SO) | S1        | SO) | SO) | 0 |
| S1                            | SO  | <u>S1</u> | S2  | 1   | О |
| <b>S</b> 2                    |     | S1        | S2  | S0  | 1 |

Nella rete sequenziale asincrona descritta dalla tabella di figura la codifica S0=00, S1=10, S2=01, introduce corse delle variabili di stato.

- □ Vero
- □ Falso

Nella scomposizione di una rete in Parte Operativa/ Parte Controllo (PO/PC) vista a lezione (e priva di registro MJR):

- La PO è una rete di Moore, la PC di Mealy
- La PO è una rete di Mealy, la PC di Moore
- ☐ Entrambe sono reti di Mealy
- ☐ Entrambe sono reti di Moore

| so: | [] | WAIT<=25; | ſ ˈ | 1 |
|-----|----|-----------|-----|---|

S1: [...] WAIT<=WAIT-1; [...]

S2: [...] WAIT<=(WAIT==0)?25:WAIT-1;[...]

S3: [...] //nessun assegnamento [...]

S4: [...] //nessun assegnamento [...]

La descrizione di sopra riporta i soli assegnamenti al registro operativo WAIT. Quante variabili di comando sono necessarie per sintetizzare la porzione di parte operativa relativa a WAIT?

- □ 1
- $\square$  2
- □ Non è possibile stabilirlo

Date A e B, rappresentazioni in complemento alla radice dei numeri interi a e b,

- □ A<B implica che a<b
- $\Box$  A<=B implies the a<=b
- □ A>B implica che a<b
- ☐ Nessuna delle precedenti

Durante l'ingresso a interruzione di programma, il semaforo viene messo a *rosso* durante l'esecuzione:

- Della primitiva *start\_in*
- ☐ Della primitiva *wait\_in* 
  - ☐ Del driver *driver\_in*
- ☐ Nessuna delle precedenti

- ☐ Una rete sequenziale asincrona
- Una rete sequenziale sincronizzata di Moore
- Una rete sequenziale sincronizzata di Mealy Rit.
- ☐ Nessuna delle precedenti

|   | Do            | Domande di Reti Logiche – compito del 19/07/2016 |      |      |  |  |
|---|---------------|--------------------------------------------------|------|------|--|--|
|   | Cognome e noi |                                                  |      |      |  |  |
|   | Matri         | icola:                                           |      |      |  |  |
|   |               | Consegna:                                        | Sì 🗌 | No 🗌 |  |  |
| - | <br>          |                                                  |      |      |  |  |
|   |               |                                                  |      |      |  |  |
|   |               |                                                  |      |      |  |  |
|   |               |                                                  |      |      |  |  |
|   |               |                                                  |      |      |  |  |
|   |               |                                                  |      |      |  |  |
|   |               |                                                  |      |      |  |  |
|   |               |                                                  |      |      |  |  |
|   |               |                                                  |      |      |  |  |
|   |               |                                                  |      |      |  |  |
|   |               |                                                  |      |      |  |  |
|   |               |                                                  |      |      |  |  |
|   |               |                                                  |      |      |  |  |
|   |               |                                                  |      |      |  |  |
|   |               |                                                  |      |      |  |  |
|   |               |                                                  |      |      |  |  |
|   |               |                                                  |      |      |  |  |
|   |               |                                                  |      |      |  |  |
|   |               |                                                  |      |      |  |  |
|   |               |                                                  |      |      |  |  |
|   |               |                                                  |      |      |  |  |
|   |               |                                                  |      |      |  |  |
|   |               |                                                  |      |      |  |  |
|   |               |                                                  |      |      |  |  |