

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет» РТУ МИРЭА

Институт Информационных Технологий Кафедра Вычислительной Техники (BT)

«Структура и состав персонального компьютера целевого назначения»

по дисциплине

«Архитектура устройств и систем вычислительной техники»

Выполнили студенты группы ИВМО-02-24	Кутепов А.О.
Принял преподаватель	Гуличева А.А
Работа выполнена «»20г	

Москва 2024

«Зачтено»

« »

20 г

ОГЛАВЛЕНИЕ

ВВЕД	ЕНИЕ .	4
1. C	CPABHI	ИТЕЛЬНЫЙ ОБЗОР, ОБОСНОВАНИЕ И ВЫБОР УЗЛОВ И
УСТР	ОЙСТЕ	В КОНФИГУРИРУЕМОГО ПК6
	1.1.	Выбор процессора
	1.2.	Выбор системной платы
	1.3.	Выбор оперативной памяти
	1.4.	Выбор сетевой карты
	1.5.	Выбор накопителей для подсистемы хранения данных11
	1.6.	Выбор видеокарты
	1.7.	Выбор куллера для процессора
	1.8.	Выбор блока питания
	1.9.	Выбор корпуса
	1.10.	Выбор МФУ17
	1.11.	Выбор источника бесперебойного питания
	1.12.	Выбор сетевого фильтра
	1.13.	Выбор монитора
	1.14.	Выбор клавиатуры
	1.15.	Выбор мыши
	1.16.	Полная стоимость узлов
	2.	СТРУКТУРА КОМПЛЕКСА
ЗАКЛ	ЮЧЕН	ИЕ27
СПИС	СОК ИС	СПОЛЬЗОВАННЫХ ИСТОЧНИКОВ28

ВВЕДЕНИЕ

В данной работе рассматриваются две сборки офисного ПК за 600\$ и 1000\$ предназначенные для работы с текстом и графикой среднего качества, печати изображений, сканирования печатных изображений и плёнок, и входящие в состав локальной сети с сетевой технологией Gygabit Ethernet(1000 Mb/s).

Для визуального восприятия выбранные компоненты для бюджетной сборки обозначаются зелёным цветом, для продвинутой – красным, и те которые входят в обе – жёлтым.

Основные причины использования офисного персонального компьютера в организации:

- 1. **Автоматизация процессов:** ПК позволяет автоматизировать множество рутинных задач, таких как обработка документов, ведение бухгалтерии, управление проектами и т.д. Это значительно повышает эффективность работы.
- 2. **Коммуникация**: Современные ПК обеспечивают возможность быстрой и удобной коммуникации между сотрудниками, включая электронную почту, мессенджеры и видеоконференции. Это особенно важно для командной работы и удаленного взаимодействия.
- 3. Доступ к информации: ПК предоставляет доступ к необходимым данным и информации, включая базы данных, интернет-ресурсы и специализированные программы. Это позволяет сотрудникам быстро находить нужные сведения и принимать обоснованные решения.
- 4. Создание и редактирование документов: Офисные программы, такие как текстовые редакторы, таблицы и презентационные приложения, позволяют создавать и редактировать различные документы, что является важной частью работы в офисе.
- 5. Управление проектами и задачами: С помощью специализированных программ можно эффективно управлять проектами, распределять задачи между сотрудниками и отслеживать прогресс выполнения.

- 6. **Хранение и обработка данных**: ПК служит для хранения больших объемов данных, что важно для анализа и отчетности. Системы управления данными помогают организовать информацию и сделать ее доступной для анализа.
- 7. **Обучение и развитие**: ПК предоставляет доступ к онлайн-курсам, вебинарам и другим образовательным ресурсам, что способствует повышению квалификации сотрудников и развитию бизнеса.
- 8. **Креативность и инновации**: С помощью ПК сотрудники могут разрабатывать новые идеи, проводить исследования и создавать инновационные решения, что способствует развитию компании и повышению её конкурентоспособности.

В целом офисный персональный компьютер является неотъемлемой частью рабочего процесса, способствуя повышению продуктивности, улучшению коммуникации и оптимизации бизнес-процессов.

Целью текущей работы является рассмотрение основных компонентов офисного ПК, выбор узлов, соответствующих требованиям, составление структуры сервера.

Выполнение работы предполагает изучение студентами особенностей архитектуры современных серверов и основных тенденций ее совершенствования; принципов аппаратного устройства и работы серверного оборудования.

В ходе выполнения работы студент должен получить отчетливое представление о физических основах функционирования, конструктивных особенностях, принципах действия, характеристиках и эксплуатационных параметрах основных элементов и узлов серверов и его периферийного оборудования. Помимо этого, выполнение курсовой работы позволит получить общее представление о современном состоянии мирового и российского рынков серверов и их комплектующих.

1. СРАВНИТЕЛЬНЫЙ ОБЗОР, ОБОСНОВАНИЕ И ВЫБОР УЗЛОВ И УСТРОЙСТВ КОНФИГУРИРУЕМОГО ПК

1.1. Выбор процессора

Согласно рассмотренным по заданию требованиям, были выбраны следующие процессоры, представленные в Таблице 1.1.1.

Таблица 1.1.1 – Выбор процессора

Название	AMD Ryzen 5 2400G	AMD Ryzen 5 5600	Intel Core i5-12400F
Производитель	AMD	AMD	Intel
Сокет	AM4	AM4	LGA 1700
Ядро	AMD Raven Ridge	Cascade Lake-SP	Cascade Lake-SP
Кол-во ядер, шт.	4	6	6
Частота, МГц	3.6 ГГц	3.6 ГГц	2.5 ГГц
Тип памяти	DDR4	DDR4	DDR4, DDR5
Тепловыделение, Вт	65	65	117
Объем кэша L2, МБ	2	3	7.5
Объем кэша L3, МБ	4 Mb	32 МБ	18 МБ
Встроенный	PCIe 3.0	PCIe 4.0	PCIe 5.0
контроллер РСІ			
Express			
Стоимость, руб.	8 `500	10`500	11`500

Проанализировав данные процессоры, самыми оптимальным является вариант AMD Ryzen 5 5600. Он поддерживает б`ольшую базовую частоту с более дорогим аналогом от компании Intel, но при этом меньше потребляет электроэнергию и, соответственно, выделяет меньшее количество тепла, а также в сравнении с более дешёвым AMD Ryzen 5 2400G имеет больший объём кэша и продвинутый встроенный контроллер PCI Express 4.0, что обеспечит высокую пропускную способность обмена данными между компонентами ПК.

Для бюджетной сборки возьмём AMD Ryzen 5 2400G так как он обладает встроенным графическим ядром Radeon Vega 11, что делает необязательной покупку видеокарты. А для продвинутой сборки - AMD Ryzen 5 5600.

Изображение выбранных процессоров представлены на Рисунке 1.1.1 и

Рисунке 1.1.2.

Рисунок 1.1.1 - Процессор AMD Ryzen 5 2400G

Рисунок 1.1.2 – Процессор AMD Ryzen 5 5600

1.2. Выбор системной платы

При выборе системной платы в первую очередь стоит отталкиваться от выбранного процессора, а именно сокета и поддерживаемую тактовую частоту. необходимых слотах и портов для других комплектующих, поддерживаемую

версию PCI Express. На текущий момент, большинство материнских плат, кроме сильно дешёвых альтернатив, являются рабочим вариантом.

Подобранные платы представлены в Таблице 1.2.1.

Таблица 1.2.1 – Выбор системной платы

Название	Материнская плата	Материнская плата	Материнская плата
	MSI B550M-A PRO	MSI PRO B550M-P	MSI B550M PRO-
		GEN3	VDH
Производитель	MSI	MSI	MSI
Сокет	AM4	AM4	AM4
Чипсет	AMD B550	AMD B550	AMD B550
Тип памяти	DDR4	DDR4	DDR4
Максимальная	3200 МГц	3200 МГц	3200 МГц
частота памяти, МГц			
Кол-во слотов для	2	4	4
памяти, шт.			
Поддержка NVMe	есть	есть	есть
Скорость сетевого	1 Гбит/с	1 Гбит/с	1 Гбит/с
адаптера			
Стоимость, руб.	<mark>7`700</mark>	10`000	11`500

Проанализировав подходящие системные платы, была выбрана MSI B550M-A PRO. Она обладает подходящими характеристиками для использования выбранного процессора, поддерживает NVMе накопитель, а также обладает нужной скоростью сетевого адаптера и при этом стоит дешевле рассмотренных аналогов.

Выбранная плата изображена на Рисунке 1.2.1.

Рисунок 1.2.1 – Системная плата MSI B550M-A PRO

1.3. Выбор оперативной памяти

При выборе оперативной памяти важно учесть тип памяти и частоту, поддерживаемые процессором и материнской платой. В случае выбранных комплектующих это DDR4 с частотой 3200 МГц. Исходя из условий конфигурации на материнской плате есть два слота под плашки оперативной памяти.

Подобранная память представлена в Таблице 1.3.1

Таблица 1.3.1 – Выбор оперативной памяти

Название	G.Skill Ripjaws V	Kingston FURY Beast	Kingston FURY Beast
		Black	Black
Производитель	G.Skill	Kingston	Kingston
Тип памяти	DDR4	DDR4	DDR4
Тактовая частота,	3200	3200	3200
МΓц			
Объём, Гб.	16 ГБ	16 ГБ	32 ГБ
Количество, шт.	2	2	2
Суммарная	3`500	4`200	7`600
стоимость, руб.			

Среди отобранных плашек оперативной памяти достаточно трудно найти различия. В таблице не были указаны повторяющиеся характеристики, такие как пропускная способность и потребляемая мощность, поэтому очевидным для сравнения критерием остаётся стоимость. По отзывам покупателей, известности, надёжности и цене оптимальным вариантом является выбор двух плашек Kingston FURY Beast Black общим объёмом 16 Гб или 32Гб. Но исходя из цены для бюджетной сборки возьмём G.Skill Ripjaws V 16 Гб,, а для продвинутой - Kingston FURY Beast Black 32 Гб.

Выбранная оперативная память представлена на Рисунке 1.3.1 и

Рисунке 1.3.2

Рисунок 1.3.1- Оперативная память G.Skill Ripjaws V

Рисунок 1.3.2- Оперативная память Kingston FURY Beast Black

1.4. Выбор сетевой карты

Системная плата поддерживает собственный, встроенный сетевой контроллер, поэтому дополнительные комплектующие не потребуются. Встроенная сетевая карта представлена в Таблице 1.4.

Таблица 1.4 – Встроенная сетевая карта

Название	Realtek RTL8111H
Тип интерфейса	1-Gigabit Ethernet
Количество, шт.	1

1.5. Выбор накопителей для подсистемы хранения данных

Основными критериями при выборе накопителей для офисного ПК являются надёжность, скорость чтения/записи и уровень шума.

Рассмотрим SSD NVMe и HDD накопители.

Таблица 1.5.1 – SSD NVMe накопители

Название	SSD M.2 накопитель	Kingston KC3000	Kingston KC3000
	Patriot P300		
Объём памяти	256 ГБ	512 ГБ	1 ТБ
Физический	PCIe 3.0 x4	PCIe 4.0 x4	PCIe 4.0 x4
интерфейс			
Максимальная	1700	7000	3500
скорость			
последовательного			
чтения, Мбайт/сек			
Максимальная	1100	3900	2100
скорость			
последовательной			
записи, Мбайт/сек			

Максимальный	120	400	320
ресурс записи (TBW), ТБ			
Стоимость, руб.	2`250	6`000	6`900

Таблица 1.5.2 – HDD накопители

Название	Toshiba P300	Seagate BarraCuda	Toshiba P300
Объём	1 ТБ	1 ТБ	2 ТБ
Объем кэш-памяти,	64	64	128
МБ			
Максимальная	196	210	190
скорость передачи			
данных, Мбайт/сек			
Уровень шума во	26	24	28
время работы, дБ			
Максимальное	6.4	5.3	4.1
энергопотребление,			
Вт			
Количество, шт.	1	1	1
Стоимость, руб.	6`000	6`900	8 ⁵⁰⁰

SSD NVMe по сравнению с HDD накопителями обладают намного более высокой скоростью чтения/записи, отсутствием движущихся элементов, надёжностью и шума при работе, но и цена за 1 Гб у них намного дороже (среднем в два раза).

Выбранным вариантом для бюджетной сборки является SSD M.2 накопитель Patriot P300 на 256 Гб, а для продвинутой – HDD Toshiba P300 на 2Тб.

Рисунок 1.5.1 – NVMe накопитель SSD M.2 Patriot P300 256 Гб

Рисунок 1.5.2 – Жёсткий диск Toshiba P300 2ТБ

1.6. Выбор видеокарты

Так как данный офисный ПК будет работать с графикой среднего качества, то нужна соответствующая данной задаче видеокарта с необходимым объёмом видеопамяти, выдаваемым максимальным разрешением и HDMI-портом.

Таблица 1.6.1 – Видеокарты

Название	ASRock Radeon RX	PowerColor AMD	MSI Geforce RTX
	6400 Challenger ITX	Radeon RX 6500 XT	3050 VENTUS 2X XS
		Fighter	WHITE OC
Графический	Radeon RX 6400	Radeon RX 6500 XT	GeForce RTX 3050
процессор			
Объем видеопамяти,	4	4	8
ГБ			
Тип памяти	GDDR6	GDDR6	GDDR6
Тип и количество	DisplayPort, HDMI	DisplayPort, HDMI	DVI-D, DisplayPort,
видеоразъемов			HDMI
Максимальное	7680x4320 (8K Ultra	7680x4320 (8K Ultra	7680x4320 (8K Ultra
разрешение	HD)	HD)	HD)
Стоимость, руб.	16`000	19`000	27`000

Для продвинутой сборки выберем видеокарту MSI Geforce RTX 3050 VENTUS 2X XS WHITE OC так как она имеет неплохой объём видеопамяти и для наших задач хорошо подойдёт для работы с графикой.

Для бюджетной сборки в целях экономии на видеокарте был выбран процессор со встроенным графическим ядром.

Рисунок 1.6.1 – Видеокарта MSI Geforce RTX 3050 VENTUS 2X XS WHITE OC

1.7. Выбор куллера для процессора

Куллер должен обеспечивать отвод тепла от процессора, а также в совокупности с архитектурой корпуса и другими вентиляторами обеспечивать рабочую температуру компонентам ПК для избежания их перегрева и выхода из строя.

Таблица 1.7.1 – Куллеры для процессора

Название	DEEPCOOL AG300	DEEPCOOL AG300	PCCooler Paladin
		MARRS	EX400S
Рассеиваемая	150	150	180
мощность, Вт			
Количество	3	3	4
тепловых трубок			
Максимальная	3050	3050	1800
скорость вращения,			
об/мин			
Максимальный	30.5	30.5	28.6
уровень шума, дБ			
Стоимость, руб.	1`500	1`800	1`900

Возьмём PCCooler Paladin EX400S так как за небольшую доплату получаем хорошую рассеиваемую мощность.

Рисунок 1.7.1 – Куллер PCCooler Paladin EX400S

1.8. Выбор блока питания

Учтём потребление основных компонентов питания: процессор (65 Вт) + видеокарта (55 Вт) + материнская плата (50 Вт) + оперативная память (15 Вт) + жесткий диск(15 Вт) + куллер(5 Вт) = 205 Вт, однако следует иметь дополнительный запас хотя бы в 200 Вт для стабильной работы. Также имеет значение сертификат блока питания 80 Plus, который варьируется от обычного до Тітапіцт, последний из которых имеет коэффициент мощности 91% и выше при максимальной загрузке против 80% у обычного. Т.е., если на блоке питания указано 600 Вт, на самом деле реальный показатель от 480 Вт до 546 Вт в зависимости от сертификата.

В нашем случае будет достаточно блока питания на 450 Вт с сертификатом 80 Plus Bronze.

Таблица 1.8.1 – Блоки питания

Название	DEEPCOOL PF450	Accord ACC-450W-	Chieftec COMPACT
		80BR	450W
Стандарт	80 PLUS Bronze	80 PLUS	80 PLUS
эффективности			
Мощность, Вт	450 Bt	450 Bt	450 Bt
Форм-фактор	ATX	ATX	SFX
Сертификат 80 PLUS	Standard	Bronze	Gold
Стоимость, руб.	3`200	<mark>3`500</mark>	8`400

Среди подобранных блоков питания, нам подойдёт Accord ACC-450W-80BR, так как обладает хорошим стандартом эффективности. Выбранный блок питания представлен на Рисунке 1.5.

Рисунок 1.8.1 – Блок питания Accord ACC-450W-80BR

1.9. Выбор корпуса

На рынке представлено большее разнообразие корпусов в различных геометрических формах и цветовых палитрах.

Таблица 1.9.1 – Корпуса

1 иолица 1.3.1 – Корпуса					
Название	DEXP DC-101B	ARDOR GAMING	Cougar MX350 Mesh-		
		Rare Minicase MS4	X		
		WG			
Типоразмер корпуса	Mid-Tower	Mini-Tower	Mid-Tower		
Вес, кг	3.5	5.2	5.2		
Материал корпуса	сталь	пластик, сталь,	пластик, сталь		
		стекло			
Форм-фактор	ATX	ATX	ATX		

Стоимость, руб.	2`000	3`700	4`500
	_ 000	2 , 00	. 200

Возьмём корпус DEXP DC-101B так как он обладает достаточным размером для размещения всех компонент, USB-выходами, прочен (нет хрупких деталей, стекла) и меньше стоит по сравнению с аналогами.

Рисунок 1.9.1 - Корпус DEXP DC-101B

1.10. Выбор МФУ

Многофункциональное устройство (МФУ) объединяет в себе функции принтера, сканера, копировального аппарата и иногда факса. Оно предназначено для повышения эффективности работы в офисе, позволяя быстро обрабатывать документы, сканировать и печатать их в одном устройстве.

Преимущества МФУ:

- Экономия пространства: МФУ занимает меньше места, чем несколько отдельных устройств.
- Снижение затрат: Объединение функций позволяет сократить расходы на оборудование и обслуживание.
- Удобство использования: Все функции доступны из одного интерфейса, что упрощает работу.

• Повышение производительности: Быстрая обработка документов и возможность выполнять несколько задач одновременно.

Недостатки МФУ:

- **Ремонт и обслуживание:** Если одно из устройств выходит из строя, может потребоваться ремонт всего МФУ.
- **Ограниченные функции:** Некоторые МФУ могут не иметь всех функций, которые есть у специализированных устройств.
- **Стоимость:** В некоторых случаях МФУ может быть дороже, чем покупка отдельных устройств.

МФУ является отличным решением для офисов и домашних пользователей, которым нужны функции печати, сканирования и копирования в одном устройстве.

Таблица 1.10.1 – МФУ

Название	Pantum M6507	HP Laser MFP	Xerox WorkCentre
		1188nw	3025BI
Тип	МФУ лазерное	МФУ лазерное	МФУ лазерное
Скорость черно-	22	21	20
белой печати			
(стр/мин)			
Максимальный	20`000	10`000	15`000
месячный объем			
печати			
Интерфейсы	USB	Ethernet (RJ-45),	USB, Wi-Fi
		USB, Wi-Fi	
Стоимость, руб.	15 `500	25`200	20`600

Выберем МФУ Pantum M6507 так как он обладает необходимым функционалом за меньшую цену.

Рисунок 1.10.1 – МФУ Pantum M6507

1.11. Выбор источника бесперебойного питания

Источник бесперебойного питания (ИБП) должен поддерживать в работе ПК на как можно длительный срок в целях возможности сохранения данных сотрудником и безаварийного завершения работы при отключении электричества. Так как мы выбрали блок на 450 Вт позволительно выбрать ИБП с эффективной выгодной мощностью +-15% от 450.

Подходящие варианты представлены в Таблице 1.8.

Таблица 1.11.1 – Источника бесперебойного питания

ruominga 1.11.1 Tiento muna ocenepeootinoco munumum					
Название	DEXP	CEE-E	Pro	Ippon Back Basic 850	SVEN UP-L1000E
	850VA			Euro	
Эффективная	510			480	510
выходная мощность,					
Вт					
Стабильность	± 10 %			± 10 %	± 10 %
выходного					
напряжения					
Стоимость, руб.	5 `000			7`100	8,800

Среди отобранных ИБП наиболее предпочтительным является ИБП DEXP CEE-E Pro 850VA.

Рисунок 1.11.1 – ИБП DEXP CEE-E Pro 850VA

1.12. Выбор сетевого фильтра

Сравнение сетевых фильтров приводится в Таблице 1.12.1

Таблица 1.12.1 – Подобранные сетевые фильтры

Название	DEXP Standard 530B	Defender DFS 151	Power Cube SPG5-C2
Кол-во розеток, шт.	5	6	5
Длина кабеля, м.	3	1.8	1.9
Стоимость, руб.	<mark>450</mark>	550	800

Среди представленных фильтров все являются подходящими и недорогими. Выберем фильтр DEXP Standard 530B.

Рисунок 1.12.1 – Сетевой фильтр DEXP Standard 530B

1.13. Выбор монитора

Таблица 1.13.1 – Подобранные мониторы

,	MCI DDO MDO 112	I C III C	MCI MAC 0740DEW
Название	MSI PRO MP2412	LG UltraGear	MSI MAG 274QRFW
		27GR75Q-B	
Диагональ экрана	23.8"	27"	27"
Максимальное	1920x1080	2560x1440	2560x1440
разрешение			
Технология	VA	IPS	IPS
изготовления			
матрицы			
Стоимость, руб.	10`000	25`000	32`000

Выберем монитор MSI PRO MP2412, так как он подходит для работы с графикой на хорошем уровне за меньшую цену.

Рисунок 1.13.1 – Монитор MSI PRO MP2412

1.14. Выбор клавиатуры

Таблица 1.14.1 – Подобранные клавиатуры

Название	Logitech K120	Logitech K280E	MSI Vigor GK30
Тип клавиатуры	мембранная	мембранная	плунжерная
Длина кабеля, м	1.5	1.8	1.8
Тип питания	проводной	проводной	проводной
Стоимость, руб.	1`550	3`000	4`000

Среди представленных фильтров все являются подходящими и недорогими. Выберем клавиатуру Logitech K280E.

Рисунок 1.14.1 – Клавиатура Logitech K280E

1.15. Выбор мыши

Таблица 1.15.1 – Подобранные компьютерные мыши

Название	Defender Patch MS-759	Logitech M90	Logitech G102 LIGHTSYNC
Общее количество	•	3	6
кнопок			
Тип подключения	проводная	проводная	проводная
Длина кабеля, м	1.1	1.8	2.1
Стоимость, руб.	150	600	2`000

Среди представленных компьютерных мышей все являются подходящими и недорогими. Выберем Defender Patch MS-759.

Рисунок 1.15.1 – Мышь Defender Patch MS-759

1.16. Полная стоимость узлов

Наименование всех комплектующих и подсчет стоимости всего комплекса для двух вариантов сборок приведены в Таблице 1.16.1 и в Таблице 1.16.2

Таблица 1.16.1 – Стоимость бюджетной сборки ~600\$

$N_{\underline{0}}$	Тип оборудования	Наименование	Кол-во	Стоимость, руб.
1	Процессор	AMD Ryzen 5 2400G	1	8`500
2	Системная плата	MSI B550M-A PRO	1	7`700
3	Оперативная память	G.Skill Ripjaws V по 8 Гб	2	3`500
4	Сетевая карта	Realtek RTL8111H	1	0
5	Накопитель	NVMe SSD M.2 Patriot P300	1	2`250
		256 Γ 6		
<u>6</u>	Видеокарта	Графическое ядро Radeon	1	0
		Vega 11		
7	Куллер	PCCooler Paladin EX400S	1	1`900
8	Блок питания	Accord ACC-450W-80BR	1	3`500
9	Корпус	DEXP DC-101B	1	2`000
10	МФУ	Pantum M6507	1	15`500
11	ИБП	DEXP CEE-E Pro 850VA	1	5`000
12	Сетевой фильтр	DEXP Standard 530B	1	450
13	Монитор	MSI PRO MP2412	1	10`000
14	Клавиатура	Logitech K120	1	1`550
15	Мышь	Defender Patch MS-759	1	150
			Итого:	62 000

Таблица 1.16.2 – Стоимость продвинутой сборки ~ 1000\$

No॒	Тип оборудования	Наименование	Кол-во	Стоимость, руб.	
1	Процессор	AMD Ryzen 5 5600	1	10`500	
2	Системная плата	MSI B550M-A PRO	1	7`700	
3	Оперативная память	Kingston FURY Beast Blackпо	2	7`600	
		16 Γδ			
4	Сетевая карта	Realtek RTL8111H	1	0	
5	Накопитель	HDD Toshiba P300 2 TE	1	8`500	
6	Видеокарта	MSI Geforce RTX 3050	1	27`000	
		VENTUS 2X XS WHITE OC			
7	Куллер	PCCooler Paladin EX400S	1	1`900	
8	Блок питания	Accord ACC-450W-80BR	1	3`500	
9	Корпус	DEXP DC-101B	1	2`000	
10	МФУ	Pantum M6507	1	15`500	
11	ИБП	DEXP CEE-E Pro 850VA	1	5`000	
12	Сетевой фильтр	DEXP Standard 530B	1	450	
13	Монитор	MSI PRO MP2412	1	10`000	
14	Клавиатура	Logitech K120	1	1`550	
15	Мышь	Defender Patch MS-759	1	150	
Итого: 101 350					

Различия в компонентах выделены цветом.

регрузок составляет около 21 года.

2. СТРУКТУРА КОМПЛЕКСА

Используя выбранные нами ранее комплектующие, составим структурную схему комплекса (Рисунок 2.1).

Рисунок 2.1 – Структура бюджетного персонального комплекса

Рисунок 2.1 – Структура продвинутого персонального комплекса

ЗАКЛЮЧЕНИЕ

В ходе выполнения работы были рассмотрены физические основы функционирования, конструктивные особенности, принципы действия, характеристики и эксплуатационные параметры основных элементов и узлов персонального компьютера и периферийного оборудования.

Во время выбора компьютерных узлов были рассмотрены основные особенности архитектуры современных ПК и принципы их работы, были выявлены основные критерии и характеристики сравнения для каждой из составных комплектующих с обоснованием преимущества выбранного варианта.

Итогом данной работы являются две сборки в 600\$ и 1000\$ предназначенные для работы с текстом и графикой среднего качества, печати изображений, сканирования печатных изображений и плёнок, и входящие в состав локальной сети с сетевой технологией Gygabit Ethernet(1000 Mb/s).

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. https://www.dns-shop.ru/?utm_referrer=https%3A%2F%2Fwww.dns-shop.ru%2Fproduct%2F84c5925ffbf33330%2Fprocessor-amd-ryzen-5-2400g-oem%2F
 - 2. https://www.youtube.com/@AlphaShutnik/featured