COMP/EECE 7/8740 Neural Networks

Topics:

Linear regression

- Correlation and linear correlation
- Linear regression with single and multiple variables

Md Zahangir Alom Department of Computer Science University of Memphis, TN

Recall: Covariance and interpreting covariance

$$cov(x,y) = \frac{\sum_{i=1}^{n} (x_i - \overline{X})(y_i - \overline{Y})}{n-1}$$

 $cov(X,Y) > 0 \longrightarrow X$ and Y are positively correlated $cov(X,Y) < 0 \longrightarrow X$ and Y are inversely correlated $cov(X,Y) = 0 \longrightarrow X$ and Y are independent

Correlation coefficient

 Pearson's Correlation Coefficient is standardized covariance (unitless):

$$r = \frac{\text{cov} \, ariance(x, y)}{\sqrt{\text{var} \, x} \sqrt{\text{var} \, y}}$$

Correlation

- Measures the relative strength of the linear relationship between two variables
 - Ranges between –1 and 1
 - The closer to –1, the stronger the negative linear relationship
 - The closer to 1, the stronger the positive linear relationship
 - The closer to 0, the weaker any positive linear relationship

Scatter Plots of Data with Various Correlation Coefficients

Linear Correlation

Linear Correlation

•Slide from: Statistics for Managers Using Microsoft® Excel 4th Edition, 2004 Prentice-Hall

Linear Correlation

Linear regression

What is Linear Regression?

Linear regression is a basic and commonly used type of predictive analysis.

LR examine two things:

- Does a set of predictor variables do a good job in predicting an outcome (dependent) variable?
- Which variables in particular are significant predictors of the outcome variable?
- LR use to explain the relationship between one dependent variable and one or more independent variables.
- Different between linear correlation and regression:
 - In correlation, the two variables are treated as equals.
 - In regression, one variable is considered independent (=predictor) variable (X) and the other the dependent (=outcome) variable Y.

What is "Linear"?

Remember this:

$$Y=mX+B$$
?

What's Slope (m)?

A slope of 2 means that every 1-unit change in X yields a 2-unit change in Y.

Prediction: If you know something about X, this knowledge helps you predict something about Y. (sound like conditional probabilities?)

Regression equation...

Expected value of y at a given level of x=

$$E(y_i / x_i) = \alpha + \beta x_i$$

Predicted value for an individual...

Linear regression with one variable

X	Y
0.4	11
0.56	14
0.6	15
0.8	22
1	26

Processing pipeline

- ❖ M Number of Training Examples
- ❖ x's Input Variables / Features
- ❖ y's Output variable / "target" variable
- ❖ h Hypothesis "Proposal"

Each training example – (x,y)

'h' is a function that maps 'x' to 'y'

Linear Regression with one variable

• $h_{\theta}(x) = \theta_0 + \theta_1 x$

Linear Regression with one variable

• $h_{\theta}(x) = \theta_0 + \theta_1 x$

- We have to choose θ_0 and θ_1 such that $h_{\theta}(x) \cong y$
- Minimize $h_{\theta}(x) y$ or $y h_{\theta}(x)$
- $(h_{\theta}(x) y)^2$ is a good function to minimize Loss Function

Linear regression with one variable

- We have to optimize the values across the entire dataset: i.e., every sample needs to contribute to loss function
- Cost function: J

$$J = minimize_{\theta_0,\theta_1} \sum_{i=1}^{M} (h_{\theta}(x^i) - y^i)^2$$

$$J$$

$$J = minimize_{\theta_0,\theta_1} \frac{1}{2m} \sum_{i=1}^{M} (h_{\theta}(x^i) - y^i)^2$$

Gradient Descent

- Minimize cost function:
 - Start with a random
 - Keep updating $\theta_0 \& \theta_1$ to reduce J
 - Find the global minimum
 - Find the values of θ_0 , θ_1 at which J is minimum
 - Differentiation is the way to go!

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} \boldsymbol{J}(\theta_0, \theta_1)$$

- α - Learning rate - Big steps (Large value), Baby Steps (Small value)

Learning rate example

Learning rate example

Update the parameters : θ_0 , θ_1

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} \boldsymbol{J}(\theta_0, \, \theta_1)$$

$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} \frac{1}{2m} \sum_{i=1}^{M} (h_{\theta}(x^i) - y^i)^2$$

$$\theta_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} \frac{1}{2m} \sum_{i=1}^{M} \left(h_{\theta}(x^i) - y^i \right)^2 \quad \text{and} \quad \theta_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} \frac{1}{2m} \sum_{i=1}^{M} \left(h_{\theta}(x^i) - y^i \right)^2$$

$$\frac{\partial}{\partial \theta_0} \boldsymbol{J}(\theta_0, \, \theta_1) = \frac{\partial}{\partial \theta_0} \frac{1}{2m} \sum_{i=1}^{M} \left(\theta_0 + \theta_1 x^i - y^i\right)^2$$

$$\frac{\partial}{\partial \theta_1} \boldsymbol{J}(\theta_0, \, \theta_1) = \frac{\partial}{\partial \theta_1} \frac{1}{2m} \sum_{i=1}^{M} \left(\theta_0 + \theta_1 x^i - y^i\right)^2$$

Partial differentiation

$$\frac{\partial}{\partial \theta_{0}} \int (\theta_{0}, \theta_{1}) \cdot \frac{\partial}{\partial \theta_{0}} \frac{1}{2m} \sum_{i=1}^{m} (\theta_{0} + \theta_{1} x^{i} - y^{i})^{2}$$

$$\frac{\partial}{\partial \theta_{0}} \frac{1}{2m} \sum_{i=1}^{m} (\theta_{0} + \theta_{1} x^{i} - y^{i})^{2}$$

$$\frac{\partial}{\partial \theta_{0}} \frac{1}{2m} \sum_{i=1}^{m} (\theta_{0} + \theta_{1} x^{i} + 2\theta_{0} \theta_{1} x^{i}) y^{i}$$

$$\frac{1}{2m} \sum_{i=1}^{m} \lambda \theta_{0} + 0 + \lambda \theta_{1} x^{i} + 0 - \lambda y^{i}$$

$$\frac{\partial}{\partial \theta_{0}} \int (\theta_{0}, \theta_{1}) \cdot \frac{\partial}{\partial \theta_{0}} \frac{1}{2m} \sum_{i=1}^{m} (h_{0}(x^{(i)}) - y^{i})$$

$$\frac{\partial}{\partial \theta_{0}} \int (\theta_{0}, \theta_{1}) \cdot \frac{\partial}{\partial \theta_{0}} \frac{1}{2m} \sum_{i=1}^{m} (h_{0}(x^{(i)}) - y^{i})$$

$$\frac{\partial}{\partial o_{1}} J(o_{0}, o_{1}) = \frac{\partial}{\partial o_{1}} \frac{1}{2m} \sum_{i=1}^{m} o_{0}^{2} + o_{1}^{2} x^{i^{2}} + \partial o_{0} o_{1} x^{i} y^{(i)} + y^{i} - \partial (o_{0} + o_{1} x^{i}) y^{(i)} + y^{i} - \partial (o_{0} + o_{1} x^{i}) y^{(i)}$$

$$= \frac{1}{2m} \sum_{i=1}^{m} (o_{0} + o_{1} x^{i}) + \partial (o_{0} x^{i}) + o_{0} - \lambda^{i} x^{i} y^{(i)}$$

$$= \frac{1}{m} \sum_{i=1}^{m} (o_{0} + o_{1} x^{(i)}) - y^{(i)} x^{(i)}$$

$$\frac{\partial}{\partial o_{1}} J(o_{0}, o_{1}) = \frac{1}{m} \sum_{i=1}^{m} (h_{0}(x^{(i)}) - y^{(i)}) x^{(i)}$$

Update the parameters : θ_0 , θ_1

$$\frac{\partial}{\partial \theta_0} \boldsymbol{J}(\theta_0, \, \theta_1) = \frac{1}{m} \sum_{i=1}^{M} \left(h_{\theta}(\boldsymbol{x}^i) - \boldsymbol{y}^i \right),$$

$$\frac{\partial}{\partial \theta_1} \boldsymbol{J}(\theta_0, \, \theta_1) = \frac{1}{m} \sum_{i=1}^{M} \left(h_{\theta}(x^i) - y^i \right) \, x^i$$

$$\theta_0 = \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{M} (h_{\theta}(x^i) - y^i), \qquad \theta_1 = \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{M} (h_{\theta}(x^i) - y^i) x^i$$

Repeat this process for 'N' iterations

Linear Regression Demo! (Video)

Feature engineering?

Feature engineering

- Size in square feet
- # Bedrooms
- # Restrooms
- School district
- School quality
- Crime rate
- Highway accessibility

And so on...

We can engineer 'n' number of features and so on.

Linear regression with multiple variables

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1$$

$$\downarrow$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 \dots \theta_n x_n$$

- It doesn't make sense to type out this equation manually for every variable,
- You'll have to modify the equation every time a feature is added especially in problems where you are engineering features
- Moreover, the gradient descent function would also vary as you add more variables

Linear regression with multiple variables

$$h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 \dots \theta_n x_n$$

Let's resort to vectorization:

$$h_{\theta}(\mathbf{x}) = \theta \mathbf{x}^T$$

- However, size of θ is (1 x n+1) and x is (M x n)
- Note that, x is a feature matrix instead of an array

Hypothesis

• Let's introduce x_0 whose value is 1 to make sure the dimensions match – [x_0 = 1 for all samples present in the dataset]

$$h_{\theta}(\mathbf{x}) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 \dots \theta_n x_n$$

- Now, size of θ is (1 x n+1) and x is (M x n+1)
- $h_{\theta}(\mathbf{x}) = \theta \mathbf{x}^T$ should be possible now
- $h_{\theta}(x)$ Size would be (1 x M)

Hypothesis can be computed for multiple variables now!

Cost function

•
$$J = \frac{1}{2m} \sum_{i=1}^{M} (h_{\theta}(x^i) - y^i)^2$$
 - from previous slide

• y is $\mathbf{1} \times \mathbf{M}$ and $h_{\theta}(x^i)$ is $\mathbf{1} \times \mathbf{M}$

Do we need to make any changes to this equation?

No need of for-loops for cost calculation

Gradient Descent

From previous slides,

•
$$\theta_0 = \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{M} (h_\theta(x^i) - y^i)$$

•
$$\theta_1 = \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{M} (h_\theta(x^i) - y^i) x^i$$

Is there any generic way we can write such that we can update all weights simultaneously?

Gradient Descent

- However, now we have until θ_n and x is (M x N+1)
- Instead of updating parameters one by one, it's good to update them all simultaneously

•
$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

•
$$\delta = \frac{\partial}{\partial \theta} J(\theta)$$

Vectorized implementation of gradient descent

• Generic formula for simultaneously updating all θ_i

•
$$\delta = \frac{1}{m} \sum_{i=1}^{M} (h_{\theta}(x^i) - y^i) x^i$$

Notes for programming:

- Dimensions of $(h_{\theta}(x) y)$ $(1 \times M)$
- Dimensions of $x (M \times n+1)$
- $\delta = (h_{\theta}(x) y) x =>$ Note that, it is matrix multiplication
- Dimensions of δ (1 x n+1)

$$\theta = \theta - \alpha \delta$$

Gradient descent for multiple variables is complete now!

One extra step to be completed!

- x₁ Size in square feet Range of values: (100-10,000)
- x_2 # Bedrooms Range of values: (0-6)
- x_3 # Restrooms Range of values: (0-5)
- x_4 School quality Range of values: (1-100)
- Indifferent range for every feature Make it forever to converge or even might make it biased to certain features
- It's important to normalize the data

Data normalization

- There are multiple ways to normalize the data
- Let's adopt to the one where we can zero center the values

$$\hat{x} = \frac{x - \mu}{\sigma}$$

 μ – mean for each feature, σ – standard deviation for each feature

No need of for-loops for this as well.

Note that, please do this normalization step before adding x_0

Steps for linear regression with multiple variables

- Read the dataset: (Input features and Output values)
- Normalize features

$$-\hat{x} = \frac{x-\mu}{\sigma}$$

- Add $x_0 = 1$ to all samples (Normalized \hat{x})
- new Dimensions of $x M \times (n+1)$
- Implement cost function after computing hypothesis

$$-h_{\theta}(\mathbf{x}) = \theta \mathbf{x}^T$$

$$- J = \frac{1}{2m} \sum_{i=1}^{M} (h_{\theta}(x^{i}) - y^{i})^{2}$$

 Implement gradient descent function for multiple variables

$$-\theta = \theta - \alpha\delta$$

$$- \delta = \frac{1}{m} \sum_{i=1}^{M} \left(h_{\theta}(x^{i}) - y^{i} \right) x^{i}$$

*No need any for-loops other than one for iteration

Assignment 1 for practice at home

Compute cost Function

- Determine the number of samples
- Compute $h_{\theta}(x) = \theta_0 + \theta_1 x$
- Compute $J = \frac{1}{2m} \sum_{i=1}^{M} (h_{\theta}(x^i) y^i)^2$

Gradient Descent Function

- Determine the number of samples
- Loop for iterations
- Compute $h_{\theta}(x) = \theta_0 + \theta_1 x$
- Compute cost using your own "compute cost" function
- Calculate updated θ_0 and θ_1
- Repeat for all iterations!

Summary

- Linear correlation
- Linear regression with and single and multiple variables
- What's next?
 - Logistic Regression (LR)
 - Variants...

9/6/22 37