EE183DA Lab 3 - Markov Decision Processes

Problem Description

MDP

(3)

(4)

$$V^{\pi}(s) = E\Big[\sum_{i=1}^{T} \gamma^{i-1} r_i\Big] \forall s \in \mathbb{S}$$

$$V^{*}(S) = \max_{a} \left[R(s, a) + \gamma \sum_{s' \in \mathbb{S}} p(s'|s, a) V^{*}(s') \right]$$
 (2)

$$V^*(s) = \max_{\pi} V^{\pi}(s) \ \forall s \in \mathbb{S}$$

$$\pi^* = \underset{\pi}{arg\max} \ V^{\pi}(s) \ \forall s \in \mathbb{S}$$

(1) Bellman Equation: Find Optimal Value. Eq. (2)

Value Function: Expected total reward. Eq. (1)

Optimal Policy: Policy for optimal value function Eq. (4)

Optimal Value Function: Eq. (3)

Value Iteration

For all states in the state space

For all actions in the action space

Q(s,a), where Q(s,a) = $E[r|s,a] + \gamma \sum_{s' \in S} P(s'|s,a)V(s')$

V(s), where V(s) is $max_aQ(s,a)$

Continue until V(s) converges

Matlab Implementation

Policy Iteration

Start with an arbitrary policy π_0 Rerun $\pi \ corresponds \ to \ \pi_0$ Compute values using π by solving the following equation: $V^\pi(S) = E[r|s,\pi(s)] + \gamma \sum_{s' \in S} P(s'|s,\pi(s)) V^\pi(s')$ At each state, improve policy $\pi'(s) = argmax_a(E[r|s,a] + \gamma \sum_{s' \in S} P(s'|s,a) V^\pi(s'))$ Continue until $\pi = \pi'$

