~mo3p

XDI-SWORD-IMG-008

Lab8: 图像处理滤波器实验

5: 二值模板匹配

Joseph Xu

2018-5-17

修改记录

版本号.	作者	描述	修改日期
1.0	Joseph Xu	初稿	2018-5-17

审核记录

姓名	职务	签字	日期

	标题		文档编号	版本	页
vinence	Lab8:	图像处理滤波器实验5	XDI-SWORD-IMG-008	1.0	1 of 26
XINGDENG	作者		修改目期		<i>1</i> \ - 11
	Joseph	ı Xu	2018/5/17		公开

目录

修改	文记录	1
宙核	·····································	1
1.	x 验简介	6
	1.1 概述	
	1.2 实验目标	6
	1.3 实验条件	7
	1.4 实验原理	7
2.	二值图腐蚀实验流程	11
	2.1 操作步骤	11
3.	二值模板匹配实验结果	26

	标题	文档编号	版本	页
	Lab8: 图像处理滤波器实验 5	XDI-SWORD-IMG-008	1.0	2 of 26
XINGDENG	作者	修改日期		<i>1</i> 1
	Joseph Xu	2018/5/17	/	公廾

图 1-1	实验连接示意图	7
图 1-2	图像对比度调节连接示意图	8
图 1-3	RowGenerator IP	8
图 1-4	WindowGenerator IP	9
图 1-5	MeanFilter IP	.10
图 2-1	复制一个实验 7 副本	.11
图 2-2	重命名实验目录	.11
图 2-3	启动 Vivado	.12
图 2-4	打开工程	.12
图 2-5	实验初始视图	.13
图 2-6	添加二值模板匹配 IP	.13
图 2-7	添加二值模板匹配 IP 后的视图	.14
图 2-8	二值模板匹配 IP 配置	.14
图 2-9	删除腐蚀膨胀 IP	.15
图 2-10	删除腐蚀膨胀 IP 后的视图	.16
图 2-11	删除 xlconstant_0 后的 IP 视图	.17
图 2-14	配置匹配模板输入	.18
图 2-20	端口连接检查	.19
图 2-28	保存设计	.19
图 2-29	创建实验顶层 Wrapper 文件	.20
图 2-30	自动更新顶层文件	.20
图 2-31	打开 lab1.xdc 文件	.20
图 2-32	修改 lab1.xdc 文件	.21
图 2-33	Generate Bitstream	.21
图 2-34	点击 Yes 确认生成 bit 文件	.21
图 2-35	打开 Hardware Manager	.22
图 2-36	硬件连接对应位置	.23
图 2-37	实际硬件连接	.23
图 2-38	Open target	.24
图 2-39	Program Device	.24
图 2-40	烧写目标器件	.25
图 2-41	编程进度条	.25

	标题	文档编号	版本	页
	Lab8: 图像处理滤波器实验 5	XDI-SWORD-IMG-008	1.0	3 of 26
XINGDENG	作者	修改日期		۸۱
	Joseph Xu	2018/5/17		公廾

上海星》	(T智能科:	技有限公司

Lab8: 图像处理滤波器实验 5

图 3-1 二值模板匹配显示结果......26

	标题	文档编号	版本	页
	Lab8: 图像处理滤波器实验 5	XDI-SWORD-IMG-008	1.0	4 of 26
XINGDENG	作者	修改日期		<i>(</i>)
	Joseph Xu	2018/5/17	,	公廾

表目录

表 1	RowGenerator IP 端口列表	8
	WindowGenerator IP 端口列表	
	MeanFilter IP 端口列表	

	标题	文档编号	版本	页
	Lab8: 图像处理滤波器实验 5	XDI-SWORD-IMG-008	1.0	5 of 26
XINGDENG	作者	修改日期		۸۱
	Joseph Xu	2018/5/17		公廾

1. 实验简介

该实验通过一定尺寸的滑动窗口尺寸的图像模板进行匹配,并将匹配结果输出。

- > 对于初学者,整个实验预计耗时1小时。
- > 对于进阶者,整个实验预计耗时10分钟。

1.1 概述

- 二值模板匹配也可以看做是一种形态学操作,比起腐蚀膨胀它的目的更为极端和明确,如果一个窗口与模板完全一致,则保留中心像素,否则消除。这种效果适用于一些细化算法,比如在某些迭代算法中作为最后迭代结束的一个参照。
- 二值模板匹配的基本原理很简单,如式1所示,如果窗口和模板完全一致,则中心像素保留,否则置0,效果如下图所示。

$$Q = \bigvee_{i,j \in T} I[x+i, y+j] \tag{\textsterling 1}$$

其中 I 为输入, T 为模板, ^为逻辑与操作。

1.2 实验目标

本实验的目标为 SWORD4.0 能够对 HDMI 输入的图像画面进行模板匹配后在显示器上输出的视频画面。

	标题	文档编号	版本 页	Ĩ.
	Lab8: 图像处理滤波器实验 5	XDI-SWORD-IMG-008	1.0 6	of 26
XINGDENG	作者	修改日期	.,	
	Joseph Xu	2018/5/17	公	廾

Lab8: 图像处理滤波器实验 5

1.3 实验条件

类别	名称	数量	说明
	SWORD4.0	1	
	HDMI 信号源	1	如笔记本 HDMI 输出/台式计算
硬件			机 HDMI 输出/带 HDMI 输出的
6 211			视频机顶盒
	带 HDMI 接口的显示器	1	
	HDMI 视频线	2	
软件	Vivado Design Suite	1	版本: 2014.4
	视频接□ IP 库	1	FPGA-Image-Library.zip*

*注:FPGA-Image-Library 为戴天宇开发的一个开源图像处理 IP 库,该 IP 库遵循 LGPL,

详情请见:http://fil.dtysky.moe

1.4 实验原理

该实验的连接方式如下图所示:

说明:本实验中HDMI输入视频的分辨率和输出视频的分辨率相同

图 1-1 实验连接示意图

实验利用了 1 个 IP 来实现对比度变换:ContrastTransform。其中:对比度变换实验

	标题	文档编号	版本 页
	Lab8: 图像处理滤波器实验 5	XDI-SWORD-IMG-008	1.0 7 of 26
XINGDENG	作者	修改日期	//
	Joseph Xu	2018/5/17	公廾

IP 连接示意图如下图所示:

图 1-2 图像对比度调节连接示意图

RowGenerator 这个 IP 的作用是行缓存。

图 1-3 RowGenerator IP

该 IP 的端口信号定义如下表所示:

表 1 RowGenerator IP 端口列表

	表 1 RowGenerator IP 编口列表				
方向	宽度	含义			
I	1	Clock.			
I	1	Reset, active low.			
I	1	Input data enable, it works as fifo0's wr_en.			
I	Color_Width	Input data, it must be synchronous with in_enable.			
0	1	Output data ready, in both two mode, it will be high while the out_data can be read.			
0	rows_width * color_width	Output data, it will be synchronous with out_ready. The lowest color_width-bits of this are the first row!			

	标题	文档编号	版本	页
vinence	Lab8: 图像处理滤波器实验 5	XDI-SWORD-IMG-008	1.0	8 of 26
XINGDENG	作者	修改日期		<i>1</i> /
	Joseph Xu	2018/5/17		公廾

而 WindowGenerator 这个 IP 的作用是滑动窗口缓存。

图 1-4 WindowGenerator IP

该 IP 的端口信号定义如下表所示:

表 2 WindowGenerator IP 端口列表

信号名	方向	宽度	含义
clk	I	1	Clock.
rst_n	I	1	Reset, active low.
			Input data enable, in pipeline
			mode, it works as another rst_n,
in_enable	0	1	in req-ack mode, only it is high
			will in_data can be really
			changes.
in data	0	color width * window width	Input data, it must be
in_data	U	color_width * window_width	synchronous with in_enable.
			Output data ready, in both two
out_ready	0	1	mode, it will be high while the
			out_data can be read.
out data	0	color_width* window_width	Output data, it will be
out_data O		*window_width	synchronous with out_ready.
			Input ack, only used for req-ack
input_ack	0	1	mode, this port will give a ack
			while the input_data received.

而 MeanFilter 这个 IP 的作用是 (算术)均值滤波器。

	标题	文档编号	版本	页
	Lab8: 图像处理滤波器实验 5	XDI-SWORD-IMG-008	1.0	9 of 26
XINGDENG	作者	修改日期	,	·
	Joseph Xu	2018/5/17	2	〉开

图 1-5 MeanFilter IP

该 IP 的端口信号定义如下表所示:

表 3 MeanFilter IP 端口列表

信号名	方向	宽度	含义
clk	I	1	Clock.
rst_n	I	1	Reset, active low.
in_enable	I	1	Input data enable, in pipeline mode, it works as another rst_n, in req-ack mode, only it is high will in_data can be really changes.
in_data	1	color_width *window_width *window_width	Input data, it must be synchronous with in_enable.
out_ready	0	1	Output data ready, in both two mode, it will be high while the out_data can be read.
out_data	0	color_width	Output data, it will be synchronous with out_ready.

	标题	文档编号	版本	页
\	Lab8: 图像处理滤波器实验 5	XDI-SWORD-IMG-008	1.0	10 of 26
XINGDENG	作者	修改日期	,	·
	Joseph Xu	2018/5/17	2	公廾

2. 二值模板匹配实验流程

本章将详细描述如何在 Vivado 2014.4 的环境下完成实验。请耐心阅读,仔细按照图示和文字说明进行操作。

2.1 操作步骤

由于本实验是在实验 7 的基础上进行修改,所以我们先将之前的实验部分复制 1份,具体做法为在 D:\ImageLabs 文件夹下,将鼠标左键选中 lab7,然后按住 Ctrl 键不放,并拖拽到空白处,这样得到一个 lab7 的副本,如下图所示:

图 2-1 复制一个实验 7 副本

然后将 lab7 的副本重命名为 lab8,如下图所示,至此我们就可以在 lab8 文件 夹里开始我们的实验内容:

图 2-2 重命名实验目录

2 接着启动 Vivado 2014.4,在启动界面选择 Open Project,如下图所示:

	标题	文档编号	版本	页
	Lab8: 图像处理滤波器实验 5	XDI-SWORD-IMG-008	1.0	11 of 26
XINGDENG	作者	修改日期		<i>11</i>
	Joseph Xu	2018/5/17		公开

图 2-3 启动 Vivado

3 然后在选择对话框中,找到之前的 lab7(即 D:\lmageLabs\lab7)然后选择 lab1.xpr 文件,点击 OK,打开工程,整个过程如下图所示:

图 2-4 打开工程

4 然后在 Vivado 的主界面,点击 Open Block Design,这时会在主界面右边区域看到之前实验 7 的 IP 结构,如下图所示:

	标题	文档编号	版本	页
	Lab8: 图像处理滤波器实验 5	XDI-SWORD-IMG-008	1.0	12 of 26
XINGDENG	作者	修改日期		<i>(</i> 1 — —
	Joseph Xu	2018/5/17		公开

图 2-5 实验初始视图

5 在此基础上,我们开始添加 IP,点击左边栏的 Add IP 图标,然后在弹出的搜索框中,输入 template,这时能看到搜索结果中有个 MatchTemplateBin 的 IP,双击它进行添加,整个过程如下图所示:

图 2-6 添加二值模板匹配 IP

6 添加后的 IP 视图如下图所示:

	标题	文档编号	版本	页
	Lab8: 图像处理滤波器实验 5	XDI-SWORD-IMG-008	1.0	13 of 26
XINGDENG	作者	修改日期		<i>(1)</i>
	Joseph Xu	2018/5/17		公廾

图 2-7 添加二值模板匹配 IP 后的视图

7 双击 MatchTemplateBin_0 这个 IP 进行配置,保持默认参数配置即可,如下图所示:

图 2-8 二值模板匹配 IP 配置

	标题	文档编号	版本	页
	Lab8: 图像处理滤波器实验:	5 XDI-SWORD-IMG-008	1.0	14 of 26
XINGDENG	作者	修改日期		<i>//</i>
	Joseph Xu	2018/5/17		公廾

8 由于二值模板匹配 IP 也是对二值图像进行操作,所以它在本实验里的连接和实验 7 的腐蚀膨胀 IP 连接方式类似,为此我们直接在实验 7 的基础上,进行替换连接即可,具体步骤如下:

首先删除腐蚀膨胀 IP,鼠标左键选中 ErosionDilationBin 这个 IP 后,鼠标右键选择 Delete 删除,整个过程如下图所示:

图 2-9 删除腐蚀膨胀 IP

删除后的 IP 视图如下图所示:

	标题	文档编号	版本	页
\	Lab8: 图像处理滤波器实验 5	XDI-SWORD-IMG-008	1.0	15 of 26
XINGDENG	作者	修改日期	,	\^
	Joseph Xu	2018/5/17	2	\$計

图 2-10 删除腐蚀膨胀 IP 后的视图

按照同样的方法删除 xlconstant_0 这个 IP, 删除后的 IP 视图如下图所示:

	标题		文档编号	版本	页
	Lab8:	图像处理滤波器实验5	XDI-SWORD-IMG-008	1.0	16 of 26
XINGDENG	作者		修改日期		//
	Joseph	ı Xu	2018/5/17	/	公廾

图 2-11 删除 xlconstant_0 后的 IP 视图

- 9 接着我们双击 xlconstant_1 重新配置这个 IP , 作为匹配模板输入。按照如下方式进行配置:
 - Const Width: 9
 - Const Val: 432 (十进制 432=二进制 110110000)

确认上述设置后,点击 OK 确定,整个过程如下图所示:

	标题	文档编号	版本	页
	Lab8: 图像处理滤波器实验 5	XDI-SWORD-IMG-008	1.0	17 of 26
XINGDENG	作者	修改日期		/\ T*
	Joseph Xu	2018/5/17		公开

图 2-12 配置匹配模板输入

10 然后我们开始连接这些 IP。接着我们将按照如下方式进行连接:

MatchTemplateBin_0:clk → dvi2rgb_0:PixelClk

MatchTemplateBin 0:rst n \rightarrow clk wiz 0:resetn

MatchTemplateBin 0:template[8:0] → xlconstant 1:dout[8:0]

MatchTemplateBin_0:in_enable → WindowGenerator_1:out_ready

MatchTemplateBin_0:in_data[8:0] → WindowGenerator_1:out_data[8:0]

MatchTemplateBin 0:out ready → rgb2dvi 0:vid pVDE

MatchTemplateBin 0:out data[0:0] → xlconcat 0:In0[0:0]

连接后的效果如下图所示,请仔细检查各 IP 的端口连接是否正确,为了方便核对,下图各种连接的高亮色图以示区别:

提示:下图仅作为检查连接使用,读者完全不必也按照图示颜色进行标注!!!

	标题	文档编号	版本	页
\	Lab8: 图像处理滤波器实验 5	XDI-SWORD-IMG-008	1.0	18 of 26
XINGDENG	作者	修改日期		<i>/</i> /
	Joseph Xu	2018/5/17	,	公廾

图 2-13 端口连接检查

11 连接检查无误后,即可保存 IP 模块化设计,在 Vivado 主界面点击保存图标,如下图所示:

图 2-14 保存设计

接着在 Source 子窗口中展开 design_1_wrapper,选中 design_1.bd,鼠标右键单击,在弹出的菜单中选择 Create HDL Wrapper,整个过程如下图所示:

	标题	文档编号	版本	页
	Lab8: 图像处理滤波器实验 5	XDI-SWORD-IMG-008	1.0	19 of 26
XINGDENG	作者	修改日期		//
	Joseph Xu	2018/5/17	'.	公升

图 2-15 创建实验顶层 Wrapper 文件

接着在弹出的对话框中,保持默认的选项不变,即选择 Let Vivado manage wrapper and auto-update,然后点击 OK,如下图所示:

图 2-16 自动更新顶层文件

接着我们还要对 lab1.xdc 文件进行修改。为此,先在 Vivado 的主界面选中 Project Manager,接着在右边的 Source 窗口栏中依次展开 Constraints → constrs_1,在展开后的最下层可以看到 lab1.xdc 文件,双击这个文件打开,整个过程如下图所示:

图 2-17 打开 lab1.xdc 文件

在该文件中,删除如下2行语句:

set_property DONT_TOUCH true [get_cells design_1_i/xlconstant_0] set property DONT TOUCH true [get_cells design_1_i/xlconstant_0/inst]

	标题	文档编号	版本	页
	Lab8: 图像处理滤波器实验 5	XDI-SWORD-IMG-008	1.0	20 of 26
XINGDENG	作者	修改日期		<i>1</i> 1 -
	Joseph Xu	2018/5/17		公开

删除后点击窗口左边的保存图标,保存修改。整个过程如下图所示:

图 2-18 修改 lab1.xdc 文件

之后在 Vivado 主界面点击 Generate Bitstream, 生成 bit 文件, 如下图所示:

在弹出的提示框中直接点 Yes 确认并继续,如下图所示:

Synthesis is Out-of-date

Synthesis is out-of-date. OK to launch synthesis and implementation first? 'Generate Bitstream' will automatically start when synthesis and implementation completes.

Don't show this dialog again

Yes No Cancel

图 2-20 点击 Yes 确认生成 bit 文件

大约经过 10 分钟后, Vivado 会弹出 Bitstream Generation Completed 的提示框,表示 bit 文件完成,选择 Open Hardware Manager,然后点击 OK,如下图所示:

	标题	文档编号	版本	页
	Lab8: 图像处理滤波器实验 5	XDI-SWORD-IMG-008	1.0	21 of 26
XINGDENG	作者	修改日期	,	\^
	Joseph Xu	2018/5/17	2	公开

图 2-21 打开 Hardware Manager

接着我们需要对 SWORD4.0 硬件平台进行连接,根据下图示意依次进行如下操作:

- 1) 将电源线接上 SWORD4.0, 注意此时 SWORD4.0 的开关不要打开;
- 2) 将下载器模块插到 SWORD4.0 的 CN7-JTAG 处,并将下载器的 USB 端口连 到电脑;
- 3) 用一根 HDMI 线将 SWORD4.0 和 HDMI 信号源连接上;
- 4) 用一根 HDMI 线将 SWORD4.0 和 HDMI 显示器连接上;
- 5) 打开电源开关

	标题	文档编号	版本	页
	Lab8: 图像处理滤波器实验 5	XDI-SWORD-IMG-008	1.0	22 of 26
XINGDENG	作者	修改日期		/\
	Joseph Xu	2018/5/17	/	公升

图 2-22 硬件连接对应位置

连接好后的效果如下图所示:

图 2-23 实际硬件连接

12 接着在 Hardware Manager 界面下,点击 Open target,在随之弹出的菜单中选择 Auto Connect,整个过程如下图所示:

	标题		文档编号	版本	页
	Lab8:	图像处理滤波器实验5	XDI-SWORD-IMG-008	1.0	23 of 26
XINGDENG	作者		修改日期		<i>1</i> 1
	Joseph	ı Xu	2018/5/17	(公廾

图 2-24 Open target

接着 Hardware Manager 会自动连接下载器并扫描 JTAG , 一切正常的话 , 会显示出扫描到的目标器件:xc7k325t , 鼠标右键单击目标器件,在弹出的窗口中选择 Program Device,整个过程如下图所示:

图 2-25 Program Device

在弹出的对话框中,保持默认设置,直接点击 Program, 如下图所示:

提示:如果 Debug probe file 这一栏有输入,可忽略之。

	标题	文档编号	版本	页
\	Lab8: 图像处理滤波器实验 5	XDI-SWORD-IMG-008	1.0	24 of 26
XINGDENG	作者	修改日期		/\ TT
	Joseph Xu	2018/5/17	(公廾

图 2-26 烧写目标器件

随着如下图所示进度条显示 100%,即表示目标器件烧写完毕。即可进入实验现象观察阶段。

图 2-27 编程进度条

	标题	文档编号	版本 页
	Lab8: 图像处理滤波器实验 5	XDI-SWORD-IMG-008	1.0 25 of 26
XINGDENG	作者	修改日期	<i>N</i>
	Joseph Xu	2018/5/17	公开

3. 二值模板匹配实验结果

我们将连接 HDMI 输入端口的 HDMI 线在信号源端重新插拔一次,以便让信号源设备重新检测(Detect)一下接收设备,一切正常的话,我们即可在 HDMI 显示器上看到经过局部阈值化滤波后的显示画面。

图 3-1 二值模板匹配显示结果

	标题	文档编号	版本 页	
	Lab8: 图像处理滤波器实验 5	XDI-SWORD-IMG-008	1.0 26 of 26	5
XINGDENG	作者	修改日期	/\	
	Joseph Xu	2018/5/17	公廾	