Exercise 3.8.13:

Consider the function $g(z) = (z - z_0)f(z)$. By the assumptions on f we see that

$$\lim_{z \to z_0} |g(z)| \le \lim_{z \to z_0} A|z - z_0| \cdot |z - z_0|^{-1 + \epsilon} = \lim_{z \to z_0} A|z - z_0|^{\epsilon} = 0$$

Hence, g is bounded in $D_r(z_0)$ and so the singularity of g is removable. We gan then extend g to an analytic function on all of $D_r(z_0)$. Hence, because $g(z_0) = 0$ we can write $g(z) = (z - z_0)h(z)$ in a neighborhood of z_0 . By definition, we must have that f(z) = h(z) in a deleted neighborhood of z_0 . By setting $f(z_0) = h(z_0)$ we extend f to a holomorphic function on all of D_r . Thus, the singularity at z_0 is removable.

Exercise 3.8.14:

Let f be an entire, injective function and consider g(z) = f(1/z). It is clear that g is holomorphic in the punctured plane because f is entire. We will study the type of singularity that g can have at the origin. We see that f cannot have a removable singularity at the origin because that would imply that f is bounded and hence, constant. Thus, f could not be injective.

Moreover, f cannot have an essential singularity at the origin. Consider a punctured neighborhood of the origin $N_R(0)$ and a $z \in N_R(0)$. We then look at a neighborhood of z with radius less than |z|, say $N_r(z)$. If we look at the image $g(N_r(z))$, the Open Mapping theorem guarantees that this contains a neighborhood of the point g(z). But the Casorati-Weierstrass theorem says that the image of $N_R(0)$ is dense in $\mathbb C$ and therefore has non-empty intersection with the neighborhood of g(z). So f could not have been injective.

Consequently, the singularity of q at the origin must be a pole. We can then write

$$g(z) = \frac{a_m}{z^m} + \frac{a_{m-1}}{z^{m-1}} + \cdots + \frac{a_1}{z} + h(z)$$

Where h is holomorphic at the origin. We then see this implies that

$$f(z) = a_m z^m + a_{m-1} z^{m-1} + \dots + a_1 z + h(1/z)$$

This function cannot be holomorphic unless h is bounded at infinity, and hence constant. So f is a polynomial.

To see that f must be linear, we note that f must be of the form

$$f(z) = a(z - z_0)^m$$

because if f had multiple distinct roots, it would not be injective. To see that m=1 we observe that if not, then we can consider the values of f on a unit disk centered at the root, z_0 . We see that $f(z_0 + 1) = f(z_0 + e^{2\pi i/m})$, so that f would not be injective. Hence, m=1 and we see that $f(z) = a(z-z_0)$. Finally, we observe that $a \neq 0$ because otherwise f would be constant. This completes the proof.

Exercise 3.8.15:

(d) Suppose that Re (f) is bounded and so |Re(f)| < M| for some $M \ge 0$. Consider the function $g(z) = e^{f(z)}$. g is entire and $|g| = e^{Re(f)}$ is bounded by e^M . Because g is bounded and entire, it must be a constant, say k. So that $f = \log k$ everywhere. Although the logarithm is multi-valued we note that the values differ by a discrete amount $2\pi i$, but f is continuous, and so it must be constant.

Exercise 3.8.17:

(a) Suppose that f is holomorphic in an open set containing the closed unit disk and that |f(z)| = 1 whenever |z| = 1. We will show that $f(z) = w_0$ has a root for every $w_0 \in \mathbb{D}$. We will instead show that f(z) = 0 has a root, because by Rouché's theorem f(z) and $f(z) - w_0$ have the same number of zeros in the interior of \mathbb{D} (because $w_0 < 1$).

If f is non-zero then g(z)=1/f(z) is holomorphic in the disk and so $|g(z)|\leq 1$ by the maximum modulus principle. This implies that $|f(z)|\geq 1$ for $z\in \mathbb{D}$. Consider the image of f on the boundary of \mathbb{D} , because |f(z)|=1 for $z\in \partial \mathbb{D}$ the Open Mapping theorem implies that the image $f(N_r(z))$ contains an open ball about f(z). Because |f(z)|=1, any neighborhood contains points in the interior of \mathbb{D} , so |w|<1. But this contradicts that $|f(z)|\geq 1$ for all $z\in \mathbb{D}$. So f(z)=0 must have a root in \mathbb{D} .

We then complete the argument by noting that $f(z) = w_0$ must have a root for each w_0 by Rouché's theorem and so the image of f contains the unit disk.

(b) Now we know that $|f(z)| \ge 1$ whenever |z| = 1 and that there is some point $z_0 \in \mathbb{D}$ such that |f(z)| < 1. We apply Rouché's theorem again to see that f(z) and f(z) - w have the same number of roots in the disk for all $w \in \mathbb{D}$. Then note that $f(z) - f(z_0)$ has a root and by the above, this implies that f(z) has a root for all $w \in \mathbb{D}$. So the image of f contains \mathbb{D} .

Exercise 3.8.19:

- (a) Suppose that u attained a maximum at z_0 . Consider the complex function f(z) = u + iv, where v is the conjugate harmonic to u. Then f is holomorphic at z_0 and is therefore an open mapping in a neighborhood of z_0 . Thus, the image of any neighborhood of z_0 under f contains a neighborhood of $f(z_0)$. But this implies that there are points f(w) in this neighborhood such that $\operatorname{Re}(f(w)) > \operatorname{Re}(f(z_0))$, which means that $u(w) > u(z_0)$ and so z_0 was not a local maximum.
- (b) This is a direct consequence of part (a). Because u is harmonic on Ω it is continuous there and also continuous on its closure, which is assumed compact, thus it must attain its maximum in $\overline{\Omega}$. However, by (a) it cannot achieve its maximum on the interior, Ω , and therefore must achieve the maxima on the boundary. This is equivalent to saying that

$$\sup_{z \, \in \Omega} |u(z)| \leq \sup_{z \, \in \overline{\Omega} - \Omega} |u(z)|$$

Exercise 3.8.22:

Suppose that f, holomorphic in \mathbb{D} , could extend continuously to a function such that f(z)=1/z for $z\in\partial\mathbb{D}$. Because \mathbb{D} is simply connected we see that $\int_{\gamma}f(z)dz=0$ for any closed γ in \mathbb{D} . In particular, we should have that $\int_{\partial\mathbb{D}}f(z)dz=0$ but we know that

$$\int_{\partial\mathbb{D}}f(z)dz=\int_{\partial\mathbb{D}}rac{1}{z}dz=2\pi i$$

This contradiction shows that no continuous extension of f could have existed.

Exercise 4.4.3:

We want to verify

$$\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{a}{a^2 + x^2} e^{-2\pi i x \xi} dx = e^{-2\pi a |\xi|}$$

We will show this using contour integration. Consider the function

$$f(z) = \frac{a}{a^2 + z^2}e^{-2\pi i z\xi}$$

This function has a simple pole at $z=\pm ia$. We consider the case $\xi>0$ and integrate over the semicircle of radius R in the upper half-plane, denoted by C_R . Let γ_R be the arced part of the semicircle, and I_R be the interval [-R,R]. Then the residue theorem guarantees that

$$\int_{\gamma_{R}} \frac{a}{a^{2} + z^{2}} e^{-2\pi i z \xi} dz + \int_{I_{R}} \frac{a}{a^{2} + x^{2}} e^{-2\pi i x \xi} dx = 2\pi i \operatorname{res}(f, ia)$$

We will first show that the integral over $\gamma_R \to 0$ as $R \to \infty$. We note that

$$egin{aligned} \left| \int_{\gamma_R} rac{a}{a^2 + z^2} e^{-2\pi i z \xi} dz
ight| &= \int_0^\pi \left| rac{a}{a^2 + R^2 e^{2i heta}} e^{-2\pi i R e^{i heta} \xi} i R e^{i heta}
ight| d heta \ &\leq \int_0^\pi \left| rac{a R}{a^2 + R^2}
ight| d heta \ &\leq rac{a R \pi}{a^2 + R^2} \end{aligned}$$

Which goes to zero as $R \to \infty$.

Now we compute the residue at z = ia

$$\lim_{z \to ia} (z - ia) \cdot \frac{a}{(z + ia)(z - ia)} e^{-2\pi i z \xi} = \frac{1}{2i} e^{2\pi a \xi}$$

This formula gives that

$$\int_{-\infty}^{\infty} \frac{a}{a^2 + x^2} e^{-2\pi i x \xi} dx = 2\pi i \cdot \frac{1}{2i} e^{2\pi a \xi} = \pi e^{2\pi a \xi}$$

as desired. The case for $\xi \leq 0$ is the same, reflecting the contour across the real axis.

To see that

$$\int_{-\infty}^{\infty}e^{-2\pi a|\xi|}e^{2\pi i\xi x}d\xi=\frac{1}{\pi}\frac{a}{a^2+x^2}$$

We apply the previous part and break up the integral to see

$$\begin{split} \int_{-\infty}^{\infty} e^{-2\pi a |\xi|} e^{2\pi i \xi x} d\xi &= \int_{-\infty}^{0} e^{-2\pi a (-\xi) + 2\pi i (-\xi) x} d\xi + \int_{0}^{\infty} e^{-2\pi a \xi + 2\pi i \xi x} d\xi \\ &= \int_{-\infty}^{0} e^{2\pi \xi (a + ix)} d\xi + \int_{0}^{\infty} e^{2\pi i \xi (-a + ix)} d\xi \\ &= \frac{1}{2\pi} \frac{1}{a + ix} + \frac{1}{2\pi} \frac{1}{a - ix} \\ &= \frac{1}{\pi} \frac{a}{a^2 + x^2} \end{split}$$

Exercise 4.4.4:

We want to encapsulate of the roots of Q inside a disk so that the poles of the function

$$f(z) = \frac{e^{-2\pi i z \xi}}{Q(z)}$$

will occur at precisely the roots of Q. The nature of each pole depends on the factorization of Q and what multiplicity the root is at that point. We will be integrating over a disk of radius R in the plane, C_R . We estimate the value of the integral via

$$\left| \int_{C_R} \frac{e^{-2\pi iz\xi}}{Q(z)} dz \right| \leq \int_0^{2\pi} \left| \frac{e^{-2\pi iRe^{i\theta}\xi}}{Q(Re^{\theta})} iRe^{i\theta} \right| d\theta \leq O(1/R^{\deg(Q)})$$

Which goes to 0 as $R \to \infty$. We then see that

$$\sum_i \operatorname{res}(f,z_i) = 0$$

The exact form of each residue depends on the order of the pole at each root z_i of Q.

Exercise 4.4.6:

This follows from Exercise 4.4.3. We showed that if

$$f(x) = \frac{1}{\pi} \frac{a}{a^2 + x^2}$$

then its Fourier transform is

$$\hat{f}(\xi) = e^{-2\pi a|\xi|}$$

Applying the Poisson summation forumula immediately shows that

$$\frac{1}{\pi} \sum_{n = -\infty}^{\infty} \frac{a}{a^2 + n^2} = \sum_{n = -\infty}^{\infty} e^{-2\pi a |n|}$$

We then observe that because the sum is symmetric we note that

$$\sum_{n=-\infty}^{\infty} e^{-2\pi a|n|} = 2\sum_{n=0}^{\infty} e^{-2\pi a|n|} - 1 = \frac{2}{1 - e^{-2\pi a}} - 1 = \frac{1 + e^{-2\pi a}}{1 - e^{-2\pi a}} = \frac{e^{\pi a} + e^{-\pi a}}{e^{\pi a} - e^{-\pi a}} = \coth \pi a$$

Exercise 4.4.7:

(a) First we compute the Fourier transform of

$$f(x) = (\tau + z)^{-k}$$

We fix a $\xi \leq 0$ and use contour integration (around a semicircle of radius R, C_R , in the lower half-plane). Note that if $k \geq 2$ the function $f(z)e^{-2\pi iz\xi}$ is analytic in C_R

$$egin{aligned} 0 &= \int_{C_R} f(z) e^{-2\pi i z \xi} dz \ &= \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx + \int_{\gamma_R} f(z) e^{-2\pi i z \xi} dz \end{aligned}$$

We then compute

$$\left| \int_{\gamma_R} f(z) e^{-2\pi i z \xi} dz \right| = \left| \int_0^{\pi} f(Re^{i\theta}) e^{-2\pi i Re^{\theta} \xi} i Re^{i\theta} d\theta \right|$$

$$\leq \int_0^{\pi} \left| \frac{i Re^{i\theta} e^{-2\pi i Re^{\theta} \xi}}{(Re^{i\theta} + \tau)^k} \right| d\theta$$

$$\leq \frac{R\pi}{(|R| + |\tau|)^k}$$

Letting $R \to \infty$ shows that this integral goes to zero. This implies that

$$\int_{-\infty}^{\infty} f(x)e^{-2\pi i x\xi} dx = 0$$

If $\xi > 0$ then $f(z)e^{-2\pi iz\xi}$ has a pole at $-\tau$ of order k so that

$$\hat{f}(\xi) = \int_{-\infty}^{\infty} rac{e^{-2\pi i x \xi}}{(au + x)^k} dx = 2\pi i \operatorname{res}(f, - au)$$

We compute the residue using Theorem 3.1.4 to see that

$$\mathrm{res}(f,- au) = rac{(2\pi i)^k}{(k-1)!} \xi^{k-1} e^{2\pi i z \xi}$$

So that

$$\hat{f}(\xi) = rac{(2\pi i)^k}{(k-1)!} \xi^{k-1} e^{2\pi i x \xi}$$

We then apply the Poisson summation formula to see that

$$\sum_{n=-\infty}^{\infty} \frac{1}{(\tau+n)^k} = \frac{(2\pi i)^k}{(k-1)!} \sum_{m=1}^{\infty} m^{k-1} e^{2\pi i m \tau}$$

(b) We set k=2 in the result of part (a) to see that

$$\sum_{n=-\infty}^{\infty} \frac{1}{(\tau+n)^2} = (2\pi i)^2 \sum_{m=1}^{\infty} m e^{2\pi i m \tau}$$
$$= -4\pi^2 \sum_{m=1}^{\infty} m e^{-2\pi i m \tau}$$

Consider the series for |x| < 1

$$\sum_{m=1}^{\infty} mx^{m-1} = x\frac{d}{dx}\left(\sum_{m=1}^{\infty} x^m\right) = x\frac{d}{dx}\left(\frac{x}{1-x}\right) = \frac{x}{(1-x)^2}$$

We then note that if Im (au)>0 then $|e^{\pm 2\pi im au}|<1$ so we can apply the above to see that

$$-4\pi^2\sum_{m=1}^{\infty}me^{-2\pi im au}=-4\pi^2rac{e^{2\pi i au}}{(1-e^{2\pi i au})^2}=rac{-4\pi^2}{e^{\pi i au}-e^{-\pi i au}}=rac{\pi^2}{\sin^2(\pi au)}$$

(c) This is true, you can extend this identity to non-integer complex u. To see this, we take the hint given in Exercise 3.8.12, which considers the function

$$f(z) = \frac{\pi \cot(\pi z)}{(u+z)^2}$$

If the poles of this function occur at the integers, which are simple poles, as well as a pole of order 2 at z = -u. We compute the residues at each type of pole by evaluating

$$\operatorname{res}(f,-u) = \lim_{z o -u} rac{d}{dz} \pi \cot(\pi z) = rac{-\pi^2}{\sin^2(\pi u)}$$

At each integral pole we see that

$$\operatorname{res}(f, n) = \lim_{z \to n} (z - n) \frac{\pi \cot(\pi z)}{(u + z)^2}$$

$$= \lim_{z \to n} \frac{\pi(z - n)}{\sin(\pi(z - n))} \cdot \frac{\cot(\pi(z - n))}{(u + z)^2}$$

$$= \frac{1}{(u + n)^2}$$

Following the hint, we let C_N be the circle of radius N + 1/2 and we want to verify that

$$\int_{C_N} f(z) dz
ightarrow 0$$
 as $N
ightarrow \infty$

We then note that for sufficiently large choices of N the conditions $z \in C_N$ and $|\operatorname{Im} z| \leq 1$ imply that $|\operatorname{Re} z - n| > \epsilon$ for some $\epsilon > 0$, so that z is bounded away from the poles. We then note that the bound on this set is uniform and so we see that when z = x + iy such that $y \geq 1$ we see

$$|\cot(\pi z) = \left|irac{e^{iz} + e^{-iz}}{e^{iz} - e^{-iz}}
ight| \leq rac{1 + e^{-2y}}{1 - e^{-2y}} \leq rac{1 + e^{-2}}{1 - e^{-2}}$$

In the other case when $y \leq -1$ we see that

$$|\cot(\pi z)| \le \frac{1 + e^{2y}}{1 - e^{2y}} \le \frac{1 + e^{-2}}{1 - e^{-2}}$$

Hence, $cot(\pi z)$ is bounded for large N, say $|\cot(\pi z)| \leq M$ for some M > 0. We can then bound the integral via

$$\left| \int_{G_N} f(z) dz \right| \leq 2\pi (N + 1/2) rac{M}{(N + 1/2)^2 - |u|^2}$$

For large enough N. Consequently,

$$\left| \int_{G_N} f(z) dz \right| \to 0$$

as $N \to \infty$.

Now we apply the residue theorem to see that

$$\int_{C_N} f(z)dz = \operatorname{res}(f,-u) + \sum_{n=-\infty}^{\infty} \operatorname{res}(f,n) = 0$$

Plugging in the computed values for the residues gives that

$$\sum_{n=-\infty}^{\infty} \frac{1}{(u+n)^2} = \frac{\pi^2}{\sin^2(\pi u)}$$

As claimed.