2.5D Medical Segmentation using Large Vision Models

Chris Winsor 9/15/2023

This is a demonstration of 2.5D medical image segmentation based on UNET. The dataset is from https://www.kaggle.com/c/uw-madison-gi-tract-image-segmentation. The training code is from user AWSAF (https://www.kaggle.com/awsaf49) with discussion at https://www.kaggle.com/competitions/uw-madison-gi-tract-image-segmentation/discussion/322549

Additional background on medical segmentation tools/approaches is available at https://github.com/cwinsor/medical_image_practice/blob/main/kaggle_UW_Madison_tech_review.pdf

Table of Contents

2.5D Training	1
Environment Setup (every time)	
Environment Setup (first time)	
Environment octup (first time)	•••

2.5D Training

Download notebook and dataset:

- https://www.kaggle.com/code/awsaf49/uwmgi-2-5d-train-pytorch/notebook
- https://www.kaggle.com/datasets/awsaf49/uwmgi-25d-stride2-dataset

The dataset is 8GB. Extract the dataset revealing:

with .npy files under /images/images and /masks/masks.

To run the training file it is necessary to remove 'class' from the df.drop() as that field is not in the train.csv.

```
# df = df.drop(columns=['segmentation', 'class', 'rle_len'])
df = df.drop(columns=['segmentation', 'rle_len'])
```

The runtime is about 30 minutes/epoch * 5 epochs = 2.5 hours.

The output of the "Training" section is model (best and last epochs)

Training stats are logged locally and on W&B. In five epochs we achieve Dice of 90.8, Jaccard 88.1. This is achieved in epoch 4.

Running "Prediction" allows us to visualize the segmentation.

Environment Setup (every time)

In WSL ubuntu environment:

- git clone https://github.com/cwinsor/medical_image_practice.git
- conda activate pytorch_r_cv2_u_madison
- <for details on the conda environment refer to next section>
- cd /medical_image_practice/
- code -n.

Environment Setup (first time)

Steps are in README.txt under 014_2pt5d folder. Both conda and pip are used.

```
04b_2pt5d > ① README.txt
      following
     https://www.kaggle.com/code/awsaf49/uwmgi-unet-train-pytorch
    This notebook uses conda environment followed by pip installs
     currently "pytorch_(N)_..." !!!
     Creating conda environment...
    export CONDA_ENV_VERSION=r
    export CONDA_ENV_NAME="pytorch_"$CONDA_ENV_VERSION"_cv2_u_madison"
 10 conda create -y -n $CONDA_ENV_NAME
    conda activate $CONDA_ENV_NAME
    conda install -y pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
    pip install opency-contrib-python==4.5.5.62
     pip install -U ipykernel
     when starting vscode:
    ensure vscode python kernel points to the kernel (select via 'view' command pallet - select python kernel)
     ensure vscode ipykernel points to the right venv (select ipykernel in upper right corner)
 21 pip install pandas
 22 pip install importlib-resources
    pip install -q segmentation_models_pytorch
    pip install -qU wandb
    # pip install -q scikit-learn==1.0
 26 pip install -q scikit-learn
    pip install -q plotly
    pip install -q matplotlib
    pip install -q albumentations
    pip install -q colorama
     pip install -q nbformat
```