Titre: Ellipsoïde de John Loewner

Recasages: 152,158,170,171,203,219,229,253

Thème : Algèbre linéaire, convexité.

Références : Francinou, Gianella, Nicolas, Oraux X-Ens algèbre 3 (p. 229)

Rappelons que pour q une forme quadratique définie positive sur \mathbb{R}^n , un ellipsoïde est défini par l'équation $q(x) \leq 1$.

<u>Théorème</u> 1. Soit K un compact d'intérieur non vide de \mathbb{R}^n . Il existe un unique ellipsoïde centré en 0 de volume minimal contenant K

<u>Lemme</u> 2. Soient A et B deux matrices réelles symétriques définies positives, et $\alpha, \beta \in \mathbb{R}_+$ tels que $\alpha + \beta = 1$. On a

$$\det(\alpha A + \beta B) > (\det A)^{\alpha} (\det B)^{\beta}$$

Démonstration. Le théorème de pseudo-réduction simultanée donne l'existence de $P \in Gl_n(K)$ et de $D = \text{Diag}(\lambda_1, \dots, \lambda_n)$ diagonale réelle telle que $A = {}^tPP$ et $B = {}^tDP$. Les λ_i sont strictement positifs car B est définie positive. On a donc

$$(\det A)^{\alpha}(\det B)^{\beta} = (\det P^2)^{\alpha}(\det P^2 \det D)^{\beta} = \det P^2(\det D)^{\beta}$$

 $\operatorname{car} \alpha + \beta = 1$, et $\det(\alpha A + \beta B) = \det P^2 \det(\alpha I_n + \beta D)$, c'est à dire que

$$\prod_{i=1}^{n} (\alpha + \beta \lambda_i) \geqslant \left(\prod_{i=1}^{n} \lambda_i\right)^{\beta}$$

ou encore, en prenant le logarithme, que

$$\sum_{i=1}^{n} \ln(\alpha + \beta \lambda_i) > \beta \sum_{i=1}^{n} \ln \lambda_i$$

Pour tout $i \in [1, n]$, on a $\ln(\alpha + \beta \lambda_i) > \alpha \ln(1) + \beta \ln \lambda_i = \beta \ln \lambda_i$ par stricte concavité du logarithme. Il ne reste qu'à sommer ces inégalités sur i.

On pose Q (resp. Q_+ , resp. Q_{++}) l'ensemble des formes quadratiques (resp. positives, resp. définies positives) de \mathbb{R}^n , et pour $q \in Q_{++}$, on pose $\mathcal{E}_q = \{x \in \mathbb{R}^n \mid q(x) \leq 1\}$. Commençons par calculer le volume V_q de \mathcal{E}_q , on choisit une base orthonormale $\mathcal{B} = (e_1, \dots, e_n)$ dans laquelle q s'écrit

$$q(x) = \sum_{i=1}^{n} q_i x_i^2$$

On obtient

$$V_q = \int_{a_1 x_1^2 + \dots + a_n x_n^2 \le 1} d(x_1, \dots, x_n)$$

On considère le changement de variables donné par $x_i = \frac{t_i}{\sqrt{a_i}}$ dont le jacobien est $\frac{1}{\sqrt{a_1 \cdots a_n}}$. On observe que si S est la matrice de q dans une base orthonormale quelconque de \mathbb{R}^n , il existe $P \in O_n(\mathbb{R})$ telle que $S = P \operatorname{Diag}(a_1, \dots, a_n)^t P$. On a alors det $S = a_1 \cdots a_n$. Ce déterminant ne dépend pas de la base orthonormale de \mathbb{R}^n choisie. On a donc

$$V_q = \frac{V_0}{\sqrt{D(q)}}$$

où V_0 est le volume de la boule unité pour la norme euclidienne. On est donc ramené à trouver une unique forme quadratique $q \in Q_{++}$ telle que D(q) soit maximal et que $q_K \leqslant 1$. On munit l'espace Q de la norme N définie par $N(q) := \sum_{\|x\| \leqslant 1} |q(x)|$. Il est alors naturel de considérer l'ensemble

$$\mathcal{A} = \{ q \in Q_+ \mid \forall x \in K, q(x) \leqslant 1 \}$$

et de chercher à maximiser D sur ce domaine. Montrons que $\mathcal A$ est un compact convexe non vide de Q:

- \mathcal{A} est convexe : soient $q, q' \in \mathcal{A}$ et $\lambda \in [0, 1]$. la forme $\lambda q + (1 \lambda)q'$ est clairement positive. De plus si $x \in K$, $(\lambda q + (1 \lambda)q')(x) \leq 1$ car [0, 1] est convexe. Donc $\lambda q + (1 \lambda)q' \in \mathcal{A}$ comme annoncé.
- \mathcal{A} est fermé : Soit $(q_n)_{n\in\mathbb{N}}$ est une suite de \mathcal{A} convergente dans Q vers q, on a pour $x\in\mathbb{R}^n$, $|q(x)-q_n(x)|\leqslant N(q-q_n)\|x\|$, donc $\lim_{n\to+\infty}q_n(x)=q(x)$. On en déduit

$$\forall x \in \mathbb{R}^n, q(x) = \lim_{n \to \infty} q_n(x) \geqslant 0 \text{ et } \forall x \in K, q(x) = \lim_{n \to \infty} q_n(x) \leqslant 1$$

donc $q \in \mathcal{A}$.

- Montrons que \mathcal{A} est borné. Comme K est d'intérieur non vide, il existe $a \in K$ et r > 0 tel que $B(a, r \subset K)$. Soit $q \in \mathcal{A}$, si $||x|| \leq r$, alors $a + x \in K$, donc $q(a + x) \leq 1$, d'autre part. On a $q(-a) = q(a) \leq 1$. On obtient alors

$$\sqrt{q(x)} = \sqrt{q(x+a-a)} \leqslant \sqrt{q(x+a)} + \sqrt{q(-a)} \leqslant 2$$

Donc $q(x) \leqslant 4$, et $N(q) \leqslant \frac{4}{r^2}$.

- Montrons enfin que \mathcal{A} est non vide, comme K est compact, il existe M > 0 tel que $K \subset B(0, M]$, la forme $q(x) = \|\|x\|^2 \|M^2$ convient.

L'application déterminant est continue, donc $q \mapsto D(q)$ est continue sur le compact \mathcal{A} , et atteint donc un maximum sur \mathcal{A} en un certain q_0 , comme $D\left(\frac{\|x\|^2}{M^2}\right) > 0$, on a $D(q_0) > 0$ donc $q_0 \in Q_{++}$.

Il reste à prouver l'unicité de notre ellipsoïde. Soit $q \in \mathcal{A}$ tel que $D(q) = D(q_0)$, et $q \neq q_0$. Soient S et S_0 les matrices respectives de q et q_0 dans la base canonique de \mathbb{R}^n . Comme \mathcal{A} est convexe, $\frac{1}{2}(q+q_0)$ appartient à \mathcal{A} , et par notre lemme, on obtient

$$D\left(\frac{1}{2}(q+q_0)\right) = \det\left(\frac{1}{2}(q+q_0)\right) > (\det S)^{1/2}(\det S_0)^{1/2} \geqslant D(q_0)$$

Ce qui contredit la maximalité de $D(q_0)$.