臺灣大學數學系 103 學年度碩士班甄試試題

科目:高等微積分

2013.10.18

請為每一題預留充分書寫空間,依題號次序 1.(a)(b)(c),2.(a)(b),…作答。若未依題目次序,其跳題作答之部份不予批閱、計分。

Answer the following questions in order.

All functions and sequences are real-valued.

- 1. (25%=5+5+15)
 - (a) State the definition that a sequence (a_n) is a Cauchy sequence.
 - (b) State the definition that a function $F:D\subset\mathbb{R}\to\mathbb{R}$ is uniformly continuous on D.
 - (c) Let f(x) be a continuous function on \mathbb{R} and (x_n) be a Cauchy sequence. Use an $\epsilon \delta/\epsilon N$ type argument to show that $(f(x_n))$ is also a Cauchy sequence.
- 2. (25% = 5 + 20)
 - (a) State the definition that a sequence of functions $(h_n), h_n : D \subset \mathbb{R} \to \mathbb{R}$, converges to H uniformly on D.
 - (b) Let (g_n) be a sequence of differentiable functions on (a,b) such that $\lim_{n\to\infty} g_n(x) = G(x)$ exists for all $x\in(a,b)$. Suppose that there exists a constant M>0 such that $\sup_{x\in(a,b)}|g'_n(x)|< M$ for all n. Show that (g_n) converges to G uniformly on (a,b).
- 3. (25%=7+8+10) Let $\lambda > 0$, $J(\lambda) = \int_0^\infty \frac{dx}{(1+x)x^{2\lambda}}$ and $\Gamma(\lambda) = \int_0^\infty x^{\lambda-1}e^{-x} dx$.
 - (a) Show that for $\lambda > 0$ the improper integral $\Gamma(\lambda)$ converges.
 - (b) Find the range of $\lambda > 0$ on which the improper integral $J(\lambda)$ converges.
 - (c) Show that $J(\lambda) = \Gamma(2\lambda)\Gamma(1-2\lambda)$ when both sides are meaningful. Hint. Express $(1+x)^{-1}$ as an integral.
- 4. (25%=10+15) Let $u_k, p_k, k=1,...,n$, be positive numbers and $p_1 + \cdots + p_n = 1$.
 - (a) Evaluate the limit

$$\lim_{t \to \infty} \left(\sum_{k=1}^n p_k u_k^t \right)^{\frac{1}{t}}.$$

(b) Evaluate the limit

$$\lim_{t \to 0} \left(\sum_{k=1}^n p_k u_k^t \right)^{\frac{1}{t}}.$$

Hint. Use $u^t = \exp(t \ln u)$ and Taylor expansions.