Updatable Learned Index with Precise Positions Experiment

Wu J, Zhang Y, Chen S, et al., 2021 VLDB

2024. 02. 21

Presentation by Nakyeong Kim, Suhwan Shin nkkim@dankook.ac.kr, shshin@dankook.ac.kr

Contents

- 1. Prev experiment
 - a. LIPP Detail
 - b. Adjustment Strategy
- 2. Experiments enhancement
- 3. Next Step

1. Previous Experiment

Metric for Evaluating Model

Most nodes have less than 30% of all entries

→ There exists upper bound

$$T_{\mathcal{M}} = \max_{l \in [0, L-1]} |\{k \in \mathcal{K} | \mathcal{M}(k) == l\}|$$

We observe that there exists an upper bound for the minimum $T_{\mathcal{M}}$, i.e. $\exists \mathcal{M}, T_{\mathcal{M}} \leq \lceil \frac{N}{3} \rceil$ where N is the number of keys in \mathcal{K} , i.e. $N = |\mathcal{K}|$. However, the $\lceil \frac{N}{3} \rceil$ may not be the tightest upper bound in many cases. Thus, our goal is to find a best model $\mathcal{M} = A\mathcal{G}(k) + b$ with the minimum conflict degree $T_{\mathcal{M}}$.

Any consecutive T+1 elements should not conflict in the same position by conflict degree T

1.1. Adjustment Strategy

When to Adjust

- 1. Insert key(s)
- Update and check statistics of nodes in the traversal path
- Trigger adjustment on a chosen node when certain conditions are satisfied
 - **a.** $\frac{n.element_num}{n.build\ num} \ge \beta$ is set to 2 by default
 - 0. $\frac{n.conflict_num}{n.element_num-n.build_num} \ge \alpha$ we set the threshold $\alpha = 0.1$

Figure 4: Node Adjustment

1.1. Adjustment Strategy

How to Adjust

- Collect all elements(keys) in the subtree rooted at node by sequential traversal
- 2. Build a partial tree on the elements
- Update the pointer of the original node to point of the new node(tree)

Figure 4: Node Adjustment

2.1. Experiment

Tendency by Dataset

2.2.1. Experiment

Range Query Throughput by Dataset

Range Query Throughput by Dataset 500k 400k Throughput (ops) 300k 200k 100k books history face osm Dataset

scan_num: 100 iteration: 1M

table_size: 100M (key_range: 200M)

operations: range query only

2.2.2. Experiment

Range Query Latency by Dataset

scan_num: 100 iteration: 1M

table_size: 100M (key_range: 200M)

operations: range query only

2.3. Dataset Hardness

New Criteria

- Previous experiments defined data hardness as the number of segments (optimal PLA model)
- But our approach is based on conflict count, so it is not compatible
- Need to quantify to other criteria
- Plan to use definition of conflict degree of node

3. Next Step

Conflict-Tolerance Strategy

- Focus on "Conflict" (SAF)

- Work on both factors at the same time
 - Motivation
 - Compare LIPP(Model+Chaining) and ALEX(Model+Shifting) with same index size
 - Conflicts
 - Shift/Chaining overhead
 - Design
 - Study meaning of TM's N/3 (What happened when more proportion)
 - Try shifting until some threshold (e.g., array size * a)
 After, use chaining

Q&A

Thank you!

