Measurement and Analysis of Online Social Networks

Presented by Lin Gong April 2nd, 2015

Roadmap

- Introduction
 - Offline social networks
 - Basic knowledge
- Motivation
 - o Mhhs
- Measurement Methodology
 - o Collect data
 - Coverage evaluation
- Analysis of Network Structure
 - o Power-law node degree
 - Correlation of indegree and outdegree
 - Core and fringe

What are online social networks?

Online social networks

- Graphs of people based on Web
- Online acquaintance
 - Share interests and trust
 - Like contributed content
- Online friends may have never met
- Different ways of sharing

Some basic knowledge

- SCC: strongly connected component
- WCC: weakly connected component
- Indegree: the number of head endpoints adjacent to the node
- outdegree: the number of tail endpoints adjacent to the node

Roadmap

- Introduction
 - o Offline social networks
 - Basic knowledge
- Motivation
 - o Mhy?
- Measurement Methodology
 - o Collect data
 - Coverage evaluation
- Analysis of Network Structure
 - Power-law node degree
 - Correlation of indegree and outdegree
 - Core and fringe

Why study social networks?

This work

A large-scale measurement study and analysis of the structure of four popular online social networks:

- o Flicker Photo sharing
- YouTube Video sharing
- LiveJournal Blogging site
- Orkut Social networking site

Roadmap

- Introduction
 - Offline social networks
 - Basic knowledge
- Motivation
 - o Why?
- Measurement Methodology
 - o Collect data
 - Coverage evaluation
- Analysis of Network Structure
 - Power-law node degree
 - Correlation of indegree and outdegree
 - Core and fringe

How do they collect data?

- Select seed users.
 - o Crawl all his/her friends.
 - o Add new users to the list.
- Continue until all known users are crawled.
- Perform a BFS of the graph.

Coverage Evaluation: Flickr

 Select random users by guessing their user names which have format:

```
#######@NOO
```

- Fraction of connected users is 27%, disconnected is 73%.
- Among the disconnected users:
 - o 80% users have fewer than 3 links.
- Cover a large portion of the large WCC.

Coverage Evaluation: LiveJournal

- Use API provided by LiveJournal.
- Use a feature of LiveJournal that returns random users.
- Fraction of disconnected users is only 5%.
- Covers almost the complete population.

Coverage Evaluation: Orkut

- Orkut was fully connected but ended crawling early, so only get a 11.3% subset.
- The representativeness of the dataset:
 - Perform multiple crawls from different seeds.
- Exist sampling bias caused by the partial BFS.

Coverage Evaluation: YouTube

- Unable to estimate the entire YouTube population.
- May not contain some nodes in the large WCC, but the fraction is likely to be small.
- Cover a large portion of the large WCC.

Roadmap

- Introduction
 - Offline social networks
 - Basic knowledge
- Motivation
 - o Why?
- Measurement Methodology
 - o Collect data
 - Coverage evaluation
- Analysis of Network Structure
 - Power-law node degree
 - Correlation of indegree and outdegree
 - Core and fringe

Power-law node degrees

Log-log Plot of outdegree and indegree complementary cumulative distribution function (CCDF)

Correlation of indegree&outdegree

- Social networks:
 - o nodes with high outdegrees -> high indegrees.
- The high correlation is caused by the high symmetry.

Densely connected core

What is a core?

- The core must be necessary for the connectivity of the network.
- The core must be strongly connected with a relatively small diameter.

Densely connected core

Does core exist?

The graphs have a densely connected core comprising of between 1% and 10% of the highest degree nodes.

Tightly clustered fringe

Clustering coefficient:

Number of links between friends

Number of links that could exist

$$C = 4/6 = 0.667$$

Tightly clustered fringe

		Ratio to Random Graphs	
Network	C	Erdös-Rényi	Power-Law
Web [2]	0.081	7.71	-
Flickr	0.313	47,200	25.2
LiveJournal	0.330	119,000	17.8
Orkut	0.171	7,240	5.27
YouTube	0.136	36,900	69.4

- The clustering coefficient of social networks
 - o 10,000 times more clustered than random graphs.
 - 5-50 times more than random power-law graph.

Summary

- The first large-scale study of multiple online social networks.
- Perform BFS to collect data.
- Analysis of the structure of social networks:
 - The degree distribution conforms to power-law.
 - High correlation between indegree and outdegree.
 - Exist densely connected core and tightly clustered fringe.

Thanks!

Q & A

References

- http://www.mpi-sws.org/~mmarcon/ SocialNetworks-IMC.pdf
- http://socialnetworks.mpi-sws.org
- http://www.ccs.neu.edu/home/amislove/ slides/SocialNetworks-IMC-slides.pdf