Exercícios resolvidos de Álgebra Linear e Geometria Analítica

Rui Albuquerque rpa@dmat.uevora.pt
Departamento de Matemática da Universidade de Évora Rua Romão Ramalho, 59, 7000-671 Évora, Portugal

10 de Maio de 2009

— Primeira versão —

Breve explicação da origem destes exercícios

Aqueles que leiam o nosso "Prontuário de Álgebra Linear e Geometria Analítica", texto escrito para o curso de *alga* das licenciaturas em ramos da Engenharia e da Física da Universidade de Évora do ano lectivo 2008/09, com maior dificuldade e não possam assistir a aulas, encontrarão no presente um conjunto de exercícios complementares à teoria.

Mostramos aqui os enunciados que se fizeram para os vários momentos de avaliação do curso. Acrescidos de um grupo de problemas dados numa aula teórico-prática, o conjunto resulta em bastante mais do que o que se pode dar num semestre de aulas práticas. Apresentamos ainda a resolução de todos os exercícios.

Note-se que este texto não é suficiente em problemas de cálculo linear, nomeadamente resolução de sistemas de equações, prática do método de Gauss ou condensação, cálculo de determinantes e inversão de matrizes — essenciais para a consolidação do estudo.

Necessitamos por vezes de fazer referência ao "Prontuário de ALGA", edição de 14 de Março de 2009, a última que se disponibilizou ao público e que se encontra em http://home.uevora.pt/~rpa/ . Sobre esses apontamentos, confiamos que se mostre positiva aquela escrita rápida — não menos cuidada —, assim tanto quanto se possa beneficiar o estudo *urgente* de um instrumento da matemática fundamental como a álgebra linear.

Recordemos que o conhecimento teórico é o esteio de toda a formação científicotécnica de base. Sempre a ser conferido pela prática.

Rui Albuquerque Lisboa, 10 de Maio de 2009 Departamento de Matemática da Universidade de Évora 1º Teste de

Álgebra Linear e Geometria Analítica

27 de Outubro de 2008, 1ª turma

Cursos de Ciências Ter. Atm., Eng. Civil, Eng. En. R., Eng. Geol., Eng. Inf. e Eng. Mecat.

- **1.** Seja $(A, +, \cdot)$ um anel. Mostre primeiro que 0+0=0 e depois que $a\cdot 0=0, \ \forall a\in A$.
- 2. Suponha que $A, B \in \mathcal{M}_{n,n}$ são matrizes invertíveis. Mostre que AB é invertível.
- 3. Resolva o sistema

$$\begin{cases} 2u + v + x - z = 0\\ 3u + 2v - x - z = 0\\ 2u + x - 2z = u\\ 3x - v - 2z = 0 \end{cases}$$
 (1)

pelo método da matriz ampliada. Diga qual é a matriz do sistema, a sua característica, a característica da matriz ampliada e o grau de indeterminação.

Descreva o conjunto de soluções, se existir, na forma mais simples que consiga.

- 4. Diga qual a condição para a matriz $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ ter característica 1. Pode supôr desde já $a \neq 0$.
- 5. Escreva a condição sobre uma matriz 2×2 para que seja *complexa*, isto é,

$$\left[\begin{array}{cc} x & y \\ z & w \end{array}\right] \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right] = \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right] \left[\begin{array}{cc} x & y \\ z & w \end{array}\right].$$

Departamento de Matemática da Universidade de Évora 1º Teste de

Álgebra Linear e Geometria Analítica

29 de Outubro de 2008, 2ª turma

Cursos de Ciências Ter. Atm., Eng. Civil, Eng. En. R., Eng. Geol., Eng. Inf. e Eng. Mecat.

- 1. Seja (G, \cdot) um grupo.
 - i) Suponha que G tem dois elementos neutros e, e'. Mostre que então e = e'.
 - ii) Suponha que g' e g'' são dois inversos do mesmo elemento $g \in G$. Mostre que g' = g''.
- 2. Considere uma matriz diagonal D e outra matriz quadrada A qualquer,

$$D = \begin{bmatrix} d_1 & 0 & & 0 \\ 0 & d_2 & & \\ & & \ddots & \\ 0 & & & d_n \end{bmatrix} \qquad A = \begin{bmatrix} a_{11} & a_{12} & & a_{1n} \\ a_{21} & a_{22} & & \\ & & \ddots & \\ a_{n1} & & & a_{nn} \end{bmatrix}$$

ambas de ordem n.

- i) Calcule DA.
- ii) Mostre que D tem inversa sse $d_i \neq 0, \ \forall 1 \leq i \leq n$. Calcule a inversa.
- 3. Resolva o sistema

$$\begin{cases} x - y + 2u + v = 0\\ 3u + 2v - x - y = 0\\ 2u + x = 2y + u\\ 3x = v + 2y \end{cases}$$
 (2)

pelo método da matriz ampliada. Diga qual é a matriz do sistema, a sua característica, a característica da matriz ampliada e o grau de indeterminação.

Descreva o conjunto de soluções, se existir, na forma mais simples que puder.

- **4.** Diga qual a condição para a matriz $\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & c & d \end{bmatrix}$ ter característica 2.
- 5. Encontre uma matriz não nula cujo quadrado seja 0.

Resolução do 1º Teste, 1ª turma

1. 0 é o elemento neutro da adição, logo 0+0=0. Para a segunda igualdade, faz-se

$$a.0 = a.(0+0) = a.0 + a.0$$
 (propriedade distributiva) $\Rightarrow 0 = a.0$ como queríamos demonstrar.

2. Se A e B são invertíveis, então admitem inversa A^{-1} e B^{-1} , respectivamente. Então

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AA^{-1} = 1_n$$
ou seja $(AB)^{-1} = B^{-1}A^{-1}.$

3. A matriz ampliada é, na ordem u, v, x, z

$$\begin{bmatrix} 2 & 1 & 1 & -1 & 0 \\ 3 & 2 & -1 & -1 & 0 \\ 1 & 0 & 1 & -2 & 0 \\ 0 & -1 & 3 & -2 & 0 \end{bmatrix}.$$

As primeiras 4 colunas formam a matriz do sistema, a qual tem característica igual à da matriz ampliada (o sistema é homogéneo). Apagando então a última coluna e resolvendo pelo método de Gauss, começamos por fazer $L_1 - 2L_3$ e $L_2 - 3L_3$ e colocamos a L_3 no lugar da primeira:

$$\begin{bmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & -1 & 3 \\ 0 & 2 & -4 & 5 \\ 0 & -1 & 3 & -2 \end{bmatrix} \xrightarrow{L_3 - 2L_2, \ L_4 + L_2} \begin{bmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & -1 & 3 \\ 0 & 0 & -2 & -1 \\ 0 & 0 & 2 & 1 \end{bmatrix}$$

$$\frac{L_{2}+3L_{3}, L_{1}+2L_{4}, L_{4}+L_{3}}{0 \quad 0 \quad 0 \quad 2 \quad 1} \cdot \begin{bmatrix} 1 & 0 & 5 & 0 \\ 0 & 1 & -7 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Assim obtemos característica 3 e grau de indeterminação 1. Uma forma de descrever as soluções é pôr $z=-2x,\ v=7x,\ u=-5x.$ Outra é escrevendo o conjunto solução: $\{(-5x,7x,x,-2x):\ x\in\mathbb{R}\}.$

4. Usando o método de Gauss para triangularizar a matriz mantendo a característica:

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \xrightarrow{L_2 - \frac{c}{a}L_1} \left[\begin{array}{cc} a & b \\ 0 & d - \frac{c}{a}b \end{array}\right].$$

A característica será 1 (pois $a \neq 0$) se $d - \frac{c}{a}b = 0$, ou seja, ad - bc = 0.

5. Fazendo as contas,

$$\begin{bmatrix} x & y \\ z & w \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x & y \\ z & w \end{bmatrix} \iff \begin{bmatrix} -y & x \\ -w & z \end{bmatrix} = \begin{bmatrix} z & w \\ -x & -y \end{bmatrix}.$$
 Ou seja, $x = w$, $z = -y$.

Resolução do 1º Teste, 2ª turma

(Sobre a primeira questão houve uma breve explicação durante o teste)

- 1. i) Por ser e elemento neutro, ee' = e'. Por ser e' elemento neutro, ee' = e. Donde e = ee' = e'.
 - ii) Seja e o elemento neutro. Sabemos que g'g = gg' = e e, pela mesma razão de ser inverso de g, também g''g = gg'' = e. Então,

$$g' = g'e = g'(gg'') = (g'g)g'' = eg'' = g''.$$

2. i) DA =

$$\begin{bmatrix} d_1 & 0 & & 0 \\ 0 & d_2 & & \\ & & \ddots & \\ 0 & & & d_n \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & & a_{1n} \\ a_{21} & a_{22} & & \\ & & \ddots & \\ a_{n1} & & & a_{nn} \end{bmatrix} = \begin{bmatrix} d_1 a_{11} & d_1 a_{12} & & d_1 a_{1n} \\ d_2 a_{21} & d_2 a_{22} & & \\ & & \ddots & \\ d_n a_{n1} & & & d_n a_{nn} \end{bmatrix}.$$

ii) Para D ter inversa deve existir uma matriz A tal que $DA = 1_n$. Da equação

$$\begin{bmatrix} d_1 a_{11} & d_1 a_{12} & & d_1 a_{1n} \\ d_2 a_{21} & d_2 a_{22} & & \\ & & \ddots & \\ d_n a_{n1} & & d_n a_{nn} \end{bmatrix} = \begin{bmatrix} 1 & 0 & & 0 \\ 0 & 1 & & 0 \\ & & \ddots & \\ 0 & & & 1 \end{bmatrix}$$

resulta que $d_i a_{ii} = 1$, $\forall i$, e que todos os $d_i a_{ij} = 0$ sempre que $i \neq j$.

Existe solução se, e só se, todos os d_i forem não nulos. Teremos então

$$a_{ii} = \frac{1}{d_i},$$
 $a_{ij} = 0, \ \forall i \neq j.$

A inversa de D será a matriz A seguinte:

$$A = D^{-1} = \begin{bmatrix} d_1^{-1} & 0 & & 0 \\ 0 & d_2^{-1} & & \\ & & \ddots & \\ 0 & & & d_n^{-1} \end{bmatrix}.$$

3. A matriz ampliada é, na ordem u, v, x, y,

$$\begin{bmatrix} 2 & 1 & 1 & -1 & 0 \\ 3 & 2 & -1 & -1 & 0 \\ 1 & 0 & 1 & -2 & 0 \\ 0 & -1 & 3 & -2 & 0 \end{bmatrix}.$$

Este exercício é bastante parecido ao exercício 3 do teste da 1ª turma, para o qual remetemos o leitor.

4. A matriz tem, pelo menos, característica 2. Para esta ser mesmo 2, temos de conseguir anular a última linha. Usando o método de Gauss para triangularizar a matriz, vem:

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & c & d \end{bmatrix} \xrightarrow{L_3 - L_1} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & c - 2 & d - 1 \end{bmatrix} \xrightarrow{L_3 - (c - 2)L_2} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & d - 1 - c + 2 \end{bmatrix}.$$

A condição para a característica ser 2 exprime-se pela equação d-1-c+2=0, ou seja, d-c+1=0.

5. Quatro soluções, da simples à complicada:

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ -2 & -2 & -2 \end{bmatrix}, \begin{bmatrix} 1 & 1 & \cdots & 1 \\ & & \ddots & \\ 1 & 1 & \cdots & 1 \\ -n & -n & \cdots & -n \end{bmatrix}.$$

Departamento de Matemática da Universidade de Évora 2º Teste e 1ª Frequência de

Álgebra Linear e Geometria Analítica

22 de Novembro de 2008

Cursos de CTA, EC, EER, EG, EI e EM

1. Sejam $A \in \mathcal{M}_{n,p}$, $B \in \mathcal{M}_{n,q}$, $C \in \mathcal{M}_{p,l}$, $D \in \mathcal{M}_{q,l}$, com dimensões $l, n, p, q \in \mathbb{N}$. Mostre que

$$\left[\begin{array}{cc}A&B\end{array}\right]\left[\begin{array}{c}C\\D\end{array}\right]=AC+BD.$$

2. Escreva a seguinte permutação como um produto de ciclos disjuntos e em seguida como um produto de transposições:

Diga qual o sinal de σ e justifique o cálculo.

3. Calcule o determinante e, se possível, encontre a inversa de

$$A = \left[\begin{array}{rrrr} 1 & 3 & 1 & 1 \\ 0 & 2 & 4 & 2 \\ 1 & 2 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{array} \right].$$

4. Resolva o sistema em x, y, z, v

$$\begin{cases} x - y + v = z \\ 2v - x - y = 0 \\ x = 2y + v \end{cases}$$

pelo método da matriz ampliada. Diga qual é a matriz do sistema, a característica e o grau de indeterminação do sistema. Descreva o conjunto de soluções, se existir, na forma mais simples que puder.

5. Estude a independência linear dos vectores de \mathbb{R}^4 :

Escreva o vector (3, 3, 2, 5) como combinação linear daqueles três, se possível.

6. Calcule os seguintes determinantes:

i)
$$\begin{vmatrix} -1 & 2 & 5 \\ 1 & 2 & 4 \\ 4 & 5 & 2 \end{vmatrix}$$
 ii)
$$\begin{vmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 3 & 3 & 2 \\ 3 & 1 & 0 & 0 & 2 \\ 3 & 1 & 0 & -2 & 1 \\ 4 & 1 & 2 & 0 & 0 \end{vmatrix}$$
.

Resolução do 2º Teste

1. A matriz $\begin{bmatrix} A & B \end{bmatrix}$ está em $\mathcal{M}_{n,p+q}$. A matriz $\begin{bmatrix} C \\ D \end{bmatrix}$ está em $\mathcal{M}_{p+q,l}$. Podemos então multiplicá-las. O resultado desse produto aparece em $\mathcal{M}_{n,l}$, tal como os produtos $AC \in BD$.

Sejam $A = [a_{ij}], B = [b_{ik}], C = [c_{jt}], D = [d_{kt}].$ A entrada (i, t) do produto vem então a ser:

$$\begin{bmatrix} a_{ij} \ b_{ik} \end{bmatrix} \begin{bmatrix} c_{jt} \\ d_{kt} \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{p} a_{ij} c_{jt} + \sum_{k=1}^{q} b_{ik} d_{kt} \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{p} a_{ij} c_{jt} \end{bmatrix} + \begin{bmatrix} \sum_{k=1}^{q} b_{ik} d_{kt} \end{bmatrix}$$

e a partir daqui o resultado torna-se claro.

2. Basta tomar um elemento inicial e procurar as imagens sucessivamente, completando os ciclos. Depois há um truque conhecido para escrever cada ciclo como produto de transposições. Neste caso,

$$\sigma = (16359)(2487) = (19)(15)(13)(16)(27)(28)(24).$$

(Lembrar que a função composta se lê da direita para a esquerda...)

3. A matriz ampliada do sistema, na ordem x, y, z, v, \acute{e}

$$\left[\begin{array}{cccc|cccc}
1 & -1 & -1 & 1 & | & 0 \\
-1 & -1 & 0 & 2 & | & 0 \\
1 & -2 & 0 & -1 & | & 0
\end{array} \right].$$

O sistema é *homogéneo*, logo a sua característica é a da matriz simples. Esqueçemos então a última coluna e resolvemos pelo método de Gauss, começando pelas transformações:

$$\frac{L_{2}+L_{1}, L_{3}-L_{1}}{2} \xrightarrow{\begin{bmatrix} 1 & -1 & -1 & 1 \\ 0 & -2 & -1 & 3 \\ 0 & -1 & 1 & -2 \end{bmatrix}} \xrightarrow{L_{1}-L_{3}, -2L_{3}+L_{2}}$$

$$\begin{bmatrix} 1 & 0 & -2 & 3 \\ 0 & -2 & -1 & 3 \\ 0 & 0 & -3 & 7 \end{bmatrix} \xrightarrow{-3L_{2}+L_{3}, 3L_{1}-2L_{3}} \begin{bmatrix} 3 & 0 & 0 & -5 \\ 0 & 6 & 0 & -2 \\ 0 & 0 & -3 & 7 \end{bmatrix}.$$

A característica do sistema é 3. O grau de indeterminação é 1=4-3 e as soluções podem ser escritas como

$$z = \frac{7}{3}v, \ y = \frac{2}{6}v, \ x = \frac{5}{3}v, \ v \in \mathbb{R}.$$

5. A característica do sistema de vectores é a da matriz

$$\begin{bmatrix} 1 & 1 & 3 & 2 \\ 0 & 2 & 4 & 1 \\ 1 & 3 & 0 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 3 & 2 \\ 0 & 2 & 4 & 1 \\ 0 & 2 & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 3 & 2 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 4 & 1 \end{bmatrix},$$

logo os três vectores dados são linearmente independentes. Para escrevermos (3,3,2,5) à custa desse sistema, temos de resolver

$$(3,3,2,5) = x(1,1,3,2) + y(0,2,4,1) + z(1,3,0,2)$$

o que obriga a

$$x + z = 3$$
, $x + 2y + 3z = 3$, $3x + 4y = 2$, $2x + y + 2z = 5$.

Este sistema de equações lineares escreve-se e resolve-se, na ordem x, y, z,

$$\begin{bmatrix} 1 & 0 & 1 & 3 \\ 1 & 2 & 3 & 3 \\ 3 & 4 & 0 & 2 \\ 2 & 1 & 2 & 5 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 1 & 3 \\ 0 & 2 & 2 & 0 \\ 0 & 4 & -3 & -7 \\ 0 & 1 & 0 & -1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 1 & 3 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & -3 & -3 \\ 0 & 1 & 0 & -1 \end{bmatrix}.$$

Donde o sistema é possível e determinado: x = 2, y = -1, z = 1 (significa que o vector (3, 3, 2, 5) está no espaço gerado pelos três vectores iniciais linearmente independentes). A verificação dos valores encontrados faz-se com facilidade.

6. i) Pela regra de Sarrus:

$$\begin{vmatrix} -1 & 2 & 5 \\ 1 & 2 & 4 \\ 4 & 5 & 2 \end{vmatrix} = -1.2.2 + 4.2.4 + 5.1.5 - 5.2.4 - (-1).4.5 - 2.1.2 = 29.$$

ii) Apliquemos as regras do cálculo de determinantes:

$$\begin{vmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 3 & 3 & 2 \\ 3 & 1 & 0 & 0 & 2 \\ 3 & 1 & 0 & -2 & 1 \\ 4 & 1 & 2 & 0 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 3 & 3 & 2 \\ 0 & 1 & -3 & 0 & -1 \\ 0 & 1 & -3 & -2 & -2 \\ 0 & 1 & -2 & 0 & -4 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 3 & 3 & 2 \\ 0 & 0 & -6 & -3 & -3 \\ 0 & 0 & -6 & -5 & -4 \\ 0 & 0 & -5 & -3 & -6 \end{vmatrix} .$$

Apagando as duas primeiras linhas e colunas, obtemos

$$= \begin{vmatrix} -6 & -3 & -3 \\ 0 & -2 & -1 \\ 0 & -3 + \frac{15}{6} & -6 + \frac{15}{6} \end{vmatrix} = \begin{vmatrix} -6 & -3 & -3 \\ 0 & -2 & -1 \\ 0 & -\frac{1}{2} & -\frac{21}{6} \end{vmatrix} = \begin{vmatrix} -6 & -3 & -3 \\ 0 & -2 & -1 \\ 0 & 0 & -\frac{21}{6} + \frac{1}{4} \end{vmatrix}.$$

Juntando tudo de novo obtemos uma matriz diagonal da qual já sabemos bem como calcular o determinante:

deter. =
$$1.1.(-6).(-2).\left(\frac{-21}{6} + \frac{1}{4}\right) = -42 + 3 = -39$$

Departamento de Matemática da Universidade de Évora Alguns exercícios de **Álgebra Linear e Geometria Analítica**

resolvidos em aula teórica

27 de Novembro de 2008 Cursos de CTA, EC, EER, EG, EI e EM

- 1. Diga quais dos seguintes conjuntos são subespaços vectoriais:
 - i) $U_a = \{(x, y, z) \in \mathbb{R}^3 : a^2(x+y) + z = 0, 3x + y = 0\}.$
 - ii) $V_a = \{(x, y) \in \mathbb{R}^2 : ay^2 = 3x + y = 0\} \text{ e } \tilde{V}_a = \{(x, y) \in \mathbb{R}^2 : ay^2 = 3x + y\}.$
 - iii) $W_1 = \{A \in \mathcal{M}_{nn}: AB B^2A + A^t = 0\}$, onde B é uma matriz fixada.
 - iv) $W_2 = \{ A \in \mathcal{M}_{nn} : a_{11} + 3a_{1n} + a_{n-1,1} a_{nn} = 0 \}.$

Calcule a dimensão dos subespaços que encontrou (faça n = 1, 2, 3 em iii)).

- 2. Seja V um espaço vectorial e $S \subset V$ um subconjunto qualquer.
 - i) Mostre que o **espaço gerado**

 $\langle S \rangle = \{ \text{combinações lineares finitas de vectores de } S \}$

é um subespaço vectorial de V.

- ii) Descreva o subespaço de \mathbb{R}^3 gerado por (1,1,1),(1,1,0),(0,0,1) e calcule a sua dimensão.
- iii) Mostre que, em dimensão finita, uma base de V é um conjunto minimal de geradores.
- 3. Seja W um espaço vectorial de dim < ∞ e U,V dois subespaços vectoriais de W .
 - i) Mostre que $U \cap V$ é subespaço vectorial de W.
 - ii) Mostre que U+V é subespaço vectorial de W.
 - iii) Mostre que $\dim(U+V) = \dim U + \dim V \dim(U \cap V)$.
- 4. Sejam V, W espaços vectoriais reais de dim n, m, respectivamente, e $\{v_i\}, \{w_j\}$ bases fixadas em V, W, respectivamente. Sejam $X = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^t$ a matriz dos coeficientes de um qualquer vector $v \in V$ e $B = \begin{bmatrix} b_1 & \cdots & b_n \end{bmatrix}^t$ a matriz dos coeficientes de um vector $w_0 \in W$. Seja $f: V \to W$ uma aplicação linear e $A = M(f, \{v_i\}, \{w_i\})$.
 - i) Mostre que $f(v) = w_0$ sse AX = B.
 - ii) Mostre que $C_{w_0} = \{v : f(v) = w_0\} = v_0 + \text{Nuc } f$, onde v_0 é uma solução particular, isto é, $f(v_0) = w_0$. Interprete 'geométricamente'.
 - iii) Demonstre a fórmula dim $V = \dim \text{Nuc } f + \dim \text{Im } f$.
- 5. Seja $f: V \to W$ uma aplicação linear entre espaços vectoriais. Mostre que:
 - i) se $U \subset W$ é um subespaço vectorial, então

$$f^*U = \{v \in V : f(v) \in U\}$$

é um subespaço vectorial de V.

- ii) f é injectiva sse Nuc $f = \{0\}$.
- iii) f é injectiva sse f transforma vectores linearmente independentes em vectores linearmente independentes.
- iv) f é sobrejectiva sse o espaço gerado por f(B) é igual a W, ou seja $\langle f(B) \rangle = W$, para qualquer base B de V.
- v) f é bijectiva sse transforma uma base de V numa base de W.
- 6. Seja Tr A a soma das entradas da diagonal principal de uma matriz A. Esta aplicação linear chama-se **traço**. Mostre que é de facto linear. Mostre que Tr (AB) = Tr(BA) para quaisquer $A, B \in \mathcal{M}_{n,n}$.
- 7. Considere o espaço vectorial das sucessões em \mathbb{R} . Mostre que é um espaço vectorial. Mostre que tem um subespaço vectorial, denotado l^{∞} , composto pelas sucessões convergentes. Verifique que lim : $l^{\infty} \to \mathbb{R}$ é linear. Verifique que o núcleo de lim contém um subespaço próprio, que é o das sucessões $(x_n)_{n \in \mathbb{N}}$ tais que $S_n = \sum_{i=1}^n x_i$ converge. Verifique que este não é de dimensão finita.
- 8. Por noções de geometria elementar, sabe-se que a aplicação R_{θ} , rotação de ângulo θ no plano \mathbb{R}^2 em torno da origem, é uma aplicação linear. Agora resolva:
 - i) identifique a matriz de R_{θ} na base canónica, (1,0),(0,1).
 - ii) deduza as fórmulas

$$\cos(\theta_1 + \theta_2) = \cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2$$

$$\sin(\theta_1 + \theta_2) = \sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2.$$

- 9. Seja $f:V\to W$ uma aplicação linear e bijectiva entre espaços vectoriais. Neste caso, f chama-se um **isomorfismo** e diz-se que V e W são **isomorfos**.
 - i) Mostre que dim $W = \dim V$, se uma delas é finita.
 - ii) Mostre que $f^{-1}: W \to V$ é uma aplicação linear.
 - iii) Na notação do exercício 4, prove que $M(f^{-1}, \{w_j\}, \{v_i\}) = M(f, \{v_i\}, \{w_j\})^{-1}$.
 - iv) Mostre¹ que qualquer espaço vectorial de dimensão finita n é isomorfo a \mathbb{R}^n .
- 11. Diga quais das seguintes aplicações são lineares:

$$\begin{array}{ll} \text{i)} \ f(x,y)=(x+y,3x+y,x-y) \\ \text{iii)} \ (\partial g/\partial x)(x,y,z) & \text{iv)} \ f\circ g \end{array} \qquad \begin{array}{ll} \text{ii)} \ g(x,y,z)=(2x^2+z,3x) \\ \text{v)} \ h(y,z)=(0,y,z) & \text{vi)} \ g\circ h. \end{array}$$

12. Represente as aplicações lineares da alínea anterior pelas suas matrizes nas bases $\{(1,1,0),(0,2,1),(3,0,1)\}\ de\ \mathbb{R}^3$ e $\{(0,1),(2,0)\}\ de\ \mathbb{R}^2$.

¹Nota: este exercício não retira qualquer importância ao conceito geral de espaço vectorial de dim finita, como noção objectiva e independente de referenciais.

Admitindo aquelas bases, descreva as três aplicações lineares cujas matrizes são:

$$A = \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 0 & -\sqrt{2} \\ 0 & \sqrt{2} & 4 \end{bmatrix} \qquad C = \begin{bmatrix} 0 & -1 \\ 3 & 4 \\ 1 & 0 \end{bmatrix}.$$

- 13. Reconsideremos a notação do exercício 4. Suponhamos que alteramos a base $\{v_i\}$ para a base $\{v_k'\}$. Seja $P = M(1_n, \{v_k'\}, \{v_i\})$ a **matriz de mudança de base**.
 - i) Mostre que $M(f, \{v_k'\}, \{w_j\}) = P M(f, \{v_i\}, \{w_j\}).$
 - ii) Seja $g:V\to V$ uma aplicação linear e $G=M(g,\{v_i\},\{v_i\})$. Mostre que $M(g,\{v_k'\},\{v_k'\})=PGP^{-1}$.
 - iii) Escreva uma definição e prove que o determinante e o traço de uma aplicação linear, como q, fazem sentido.

Resolução dos exercícios

- 1. i) U_a é subespaço vectorial. É o núcleo de uma aplicação linear. A sua dimensão é 1 pois é gerado pelo vector $(1, -3, 2a^2)$, gerador das soluções do sistema das duas equações.
 - ii) V_a é subespaço vectorial (embora apareça $y^2=0$, esta expressão não linear é equivalente a y=0). Tem-se, como na alínea anterior, dim $V_a=0$, pois (0,0) é a única solução. Já \tilde{V}_a não é subespaço vectorial se $a\neq 0$; note-se que a parábola $ay^2=3x+y$ não se reduz ao (0,0) e, se (x,y) lhe pertencer, então nem toda a recta $\lambda(x,y)$ lhe pertencerá.
 - iii) É subespaço vectorial. Vejamos pela definição. Supondo $A,A'\in W_2$ e $\lambda\in\mathbb{R},$ vem

$$(A + \lambda A')B - B^{2}(A + \lambda A') + (A + \lambda A')^{t}$$

$$= AB + \lambda A'B - B^{2}A - B^{2}\lambda A' + A + \lambda A'^{t}$$

$$= (AB - B^{2}A + A) + \lambda (A'B - B^{2}A' + A'^{t}) = 0.$$

Em dimensão 1: temos que B e A são simplesmente, apenas números reais. A equação dada fica $A(-B^2 + B + 1) = 0$, logo $W_1 = \mathbb{R}$ sse

$$-B^2 + B + 1 = 0 \iff B = \frac{1 \pm \sqrt{5}}{2}.$$

Caso contrário, $W_1 = \{0\}.$

Em dimensão 2: também aqui aparecem vários casos dependendo de B. Se B=0 ou $B=1_2$, então $W_1=\{0\}$. Se, por exemplo, $B=\begin{bmatrix}0&1\\0&0\end{bmatrix}$, então $B^2=0$ e a equação dada, escrevendo

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, resulta em $AB - B^2A + A^t = \begin{bmatrix} 0 & a \\ 0 & c \end{bmatrix} + \begin{bmatrix} a & c \\ b & d \end{bmatrix} = 0$

e logo a=c=b=d=0. Mas se $B=\begin{bmatrix}0&1\\\pm 1&0\end{bmatrix}$, então $B^2=\pm 1_2$ e daí temos as equações $AB-B^2A+A^t=0$ se, e só se,

$$\begin{bmatrix} \pm b & a \\ \pm d & c \end{bmatrix} \mp \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} \mp a + a \pm b & a \mp b + c \\ \pm d \mp c + b & c \mp d + d \end{bmatrix} = 0.$$

Agora, no caso +, vem b=c=0 olhando para a diagonal e depois seguem a=d=0, ou seja A=0 e logo $W_1=\{0\}$. No caso -, vem de novo A=0.

Não será portanto fácil deduzir a solução geral do problema, o que deixamos em aberto. É certo que há soluções não nulas, como mostra o caso $B=\begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix}$: temos $AB-B^2A+A^t=$

$$\begin{bmatrix} -a & 0 \\ -c & 0 \end{bmatrix} - \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} a & c \\ b & d \end{bmatrix} = 0$$

se, e só se, a=d=0 e -b+c=0. Donde W_1 tem dimensão 1 neste caso.

Em dimensão 3: problema ainda mais complicado que o anterior, que deixamos como ilustração das dificuldades de cálculo em Álgebra Linear.

- iv) A equação apresentada definindo as matrizes de W_2 é linear. W_2 é o seu núcleo, logo um subespaço vectorial do espaço das matrizes (cf. exercício 4). A dimensão de W_2 é igual a dim $\mathcal{M}_{n,n}$ dim $\mathbb{R} = n^2 1$.
- 2. i) Este é um exercício importante, que mostra que a matemática às vezes "nem de papel e lápis" precisa.

Vejamos: é claro que ao somarmos duas combinações lineares finitas de elementos de S obtemos uma combinação linear finita de vectores de S. E se

multiplicarmos uma dessas combinações lineares por um escalar qualquer, é também imediato que obtemos de novo uma dessas expressões: simbolicamente, neste último caso, $\lambda(\sum_{\alpha}\lambda_{\alpha}s_{\alpha}) = \sum_{\alpha}(\lambda\lambda_{\alpha}s_{\alpha})$.

ii) É fácil ver que qualquer vector de \mathbb{R}^3 se escreve como combinação linear daqueles três vectores dados.

Ao fazermos as combinações lineares a(1,1,1) + b(1,1,0) + c(1,0,0) podemos chegar a qualquer vector (x,y,z) de \mathbb{R}^3 . O sistema

$$\begin{cases} x = a + b + c \\ y = a + b \\ z = a \end{cases} \iff \begin{cases} a = z \\ b = y - z \\ c = x - y \end{cases}$$

é possível e determinado.

- iii) Esta frase está justificada no Prontuário de ALGA.
- 3. i) Suponhamos que $w_1, w_2 \in U \cap V$ e $\lambda \in \mathbb{R}$. Então $w_1 + \lambda w_2 \in U \cap V$, por definição, pois cada um dos U, V é subespaço vectorial real.
 - ii) Recordemos que, por definição, qualquer vector $w \in U + V$ se escreve na forma u + v com $u \in U$ e $v \in V$. Suponhamos agora que $u_1, u_2 \in U$, que $v_1, v_2 \in V$ e que $\lambda \in \mathbb{R}$. Com estes formamos vectores genéricos de U + V, ou seja, $u_1 + v_1$ e $u_2 + v_2$. Então fazendo uma combinação linear como na alínea i), obtém-se

$$u_1 + v_1 + \lambda(u_2 + v_2) = u_1 + \lambda u_2 + v_1 + \lambda v_2,$$

de novo um vector em U+V, porque $u_1+\lambda u_2\in U$ e $v_1+\lambda v_2\in V$.

- iii) Este exercício aparece como o teorema 15 no *Prontuário de ALGA*, onde é demonstrado.
- 4. Resolvido na página 46 e teorema 18 do Prontuário de ALGA.
- 5. i) Sejam $v_1, v_2 \in f^*U$ e $\lambda \in \mathbb{R}$, com f aplicação linear e U subespaço vectorial de W. Então $f(v_1), f(v_2) \in U$ por definição. E logo

$$v_1 + \lambda v_2 \in f^*U$$

porque f é linear e porque $f(v_1 + \lambda v_2) = f(v_1) + \lambda f(v_2) \in U$.

- ii) Exercício 4 do terceiro teste.
- iii) Exercício 4 do quarto teste e 2ª frequência, 1ª chamada.
- iv) Queremos ver que f(V) = W se, e só se, $\langle f(B) \rangle = W$. Na verdade podemos fazer melhor, simplesmente demonstrando que se tem sempre, para qualquer aplicação linear, $\langle f(B) \rangle = f(V)$. Ou seja, a imagem da base gera o subespaço vectorial imagem de f. O que é óbvio, pois qualquer $v \in V$ verifica $v = \sum \lambda_i v_i$, com os $v_i \in B$ e certos escalares λ_i , e logo

$$f(v) = f(\sum_{i} \lambda_{i} v_{i}) = \sum_{i} \lambda_{i} f(v_{i}) \in \langle f(B) \rangle.$$

- v) Como é sabido, uma base é simultâneamente um conjunto de vectores geradores do espaço e um sistema linearmente independente (sli). Portanto este resultado segue das alíneas iii) e iv).
- 6. É a primeira parte da pergunta 5 do exame de Recurso. Para ver que Tr (AB) = Tr (BA) para quaisquer $A, B \in \mathcal{M}_{n,n}$, suponhamos $A = [a_{ij}]$ e $B = [b_{kl}]$. Como a entrada (i, l) de AB é o termo $\sum_i a_{ij} b_{jl}$, vem

$$\operatorname{Tr}(AB) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{ji} = \sum_{j=1}^{n} \sum_{i=1}^{n} b_{ji} a_{ij} = \operatorname{Tr}(BA)$$

como queríamos demonstrar.

7. Se somarmos duas sucessões (convergentes), digamos $(x_n)_{n\in\mathbb{N}}$ e $(y_n)_{n\in\mathbb{N}}$, ou multiplicarmos uma sucessão por um escalar $\lambda \in \mathbb{R}$, então obtemos uma sucessão (convergente) — é uma consequência imediata da definição e do que se entende por soma de sucessões e, no caso das convergentes, uma consequência do conceito de limite. Portanto o subespaço l^{∞} é subespaço vectorial real do espaço vectorial de todas as sucessões. Também sabemos da Análise que

$$\lim(x_n + \lambda y_n) = \lim x_n + \lambda \lim y_n.$$

O que se afirma a seguir no enunciado é que o subespaço das sucessões convergentes para 0, ou seja o núcleo de lim, contém um subespaço ainda menor: o daquelas sucessões x_n cujas respectivas séries $S_n = \sum_{i=1}^n x_i$ convergem. Designemos este subespaço por S. Com efeito, sabe-se que S_n convergir implica $\lim x_n = 0$.

E S é mesmo um subespaço próprio: por exemplo, recordemos que a série de Dirichlet de termo $x_n = \frac{1}{n}$ não converge.

As sucessões $x^k = (0, 0, ..., 0, 1, 0, 0, ...)$ que tomam o valor 0 em todas as ordens excepto k, onde valem 1, são linearmente independentes². Claro que $x^k \in \mathcal{S}$. Logo este espaço vectorial tem dimensão infinita (provámos que uma sua base será, no mínimo, enumerável).

8. i) Uma rotação de ângulo θ na base canónica e_1, e_2 verifica

$$R_{\theta}(e_1) = (\cos \theta, \sin \theta) = \cos \theta \, e_1 + \sin \theta \, e_2,$$

$$R_{\theta}(e_2) = (-\sin \theta, \cos \theta) = -\sin \theta \, e_1 + \cos \theta \, e_2,$$
 logo a matriz é
$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \text{ da b.c. para a b.c.}$$

ii) A rotação de ângulo $\theta_1 + \theta_2$ é a composição de duas rotações:

$$R_{\theta_1+\theta_2}=R_{\theta_2}\circ R_{\theta_1}.$$

 $^{^2\}mathrm{Recordar},$ de passagem, que só se consideram combinações lineares finitas.

Olhando apenas para a imagem de $e_1 = (1, 0)$, obtemos

$$\begin{bmatrix} \cos(\theta_1 + \theta_2) & \cdots \\ \sin(\theta_1 + \theta_2) & \cdots \end{bmatrix} = \begin{bmatrix} \cos\theta_2 & -\sin\theta_2 \\ \sin\theta_2 & \cos\theta_2 \end{bmatrix} \begin{bmatrix} \cos\theta_1 & -\sin\theta_1 \\ \sin\theta_1 & \cos\theta_1 \end{bmatrix}$$

Multiplicando as matrizes deduzem-se as duas célebres fórmulas do enunciado.

- 9. i) Este resultado segue do exercício 5 depois de mostrarmos a alínea ii).
 - ii) A aplicação inversa também é linear: para ver, na notação habitual, que

$$f^{-1}(u + \lambda v) = f^{-1}(u) + \lambda f^{-1}(v)$$

basta aplicar f a ambos os membros da identidade. Com efeito, temos

$$f(f^{-1}(u) + \lambda f^{-1}(v)) = f(f^{-1}(u)) + f(\lambda f^{-1}(v))$$

= $u + \lambda v = f(f^{-1}(u + \lambda v)),$

e sendo f injectiva, teremos a garantia que estas imagens vêm de um mesmo objecto. Ou seja,

$$f^{-1}(u + \lambda v) = f^{-1}(u) + \lambda f^{-1}(v).$$

- iii) Ver página 47 do Prontuário de ALGA.
- iv) Suponhamos que V é um qualquer espaço vectorial de dimensão finita n. Logo possui uma base $B = \{u_1, \ldots, u_n\}$. Seja $B_0 = \{e_1, \ldots, e_n\}$ a base canónica de \mathbb{R}^n . Então a aplicação linear $f: V \to \mathbb{R}^n$ definida por $f(u_i) = e_i$, $\forall 1 \leq i \leq n$, é um isomorfismo.
- 11. i) Qualquer forma do tipo $f(x,y) = ax + by \operatorname{com} a, b \operatorname{constantes}$, é uma aplicação linear:

$$f((x_1, y_1) + \lambda(x_2, y_2)) = f(x_1 + \lambda x_2, y_1 + \lambda y_2) = a(x_1 + \lambda x_2) + b(y_1 + \lambda y_2)$$

= $ax_1 + by_1 + \lambda(ax_2 + by_2) = f(x_1, y_1) + \lambda f(x_2, y_2).$

No caso da aplicação dada, só temos de acrescentar que uma aplicação para \mathbb{R}^k é linear sse as suas k componentes são, cada uma delas, lineares.

- ii) g não é linear por ter uma parte quadrática.
- iii) Temos

$$\frac{\partial g}{\partial x}(x, y, z) = (4x, 3).$$

Esta aplicação não é linear porque tem uma componente constante e a única aplicação constante que é linear é a aplicação nula.

- iv) $f \circ g(x, y, z)$ não é linear por ter uma parte quadrática.
- v) h é claramente linear, representando um dos possíveis mergulhos de \mathbb{R}^2 em \mathbb{R}^3 .
- vi) $g \circ h(y, z) = g(0, y, z) = (z, 0)$ também é fácil de ver que é linear.

12. i) Temos f(0,1)=(1,1,-1)=a(1,1,0)+b(0,2,1)+c(3,0,1). Há que resolver este sistema de equações lineares, o que dá: $(a,b,c)=(\frac{11}{5},\frac{-3}{5},\frac{-2}{5})$. Convirá aliás resolver o sistema para qualquer vector: (x,y,z)=a(1,1,0)+b(0,2,1)+c(3,0,1) \Leftrightarrow

$$(a,b,c) = \frac{1}{5}(2x+3y-6z, -x+y+3z, x-y+2z).$$
 (**)

Agora para f(2,0) = (2,6,2) = 2(1,1,0) + 2(0,2,1), resolvido o sistema. Assim, denotando por \mathcal{B} e \mathcal{B}' as respectivas bases dadas de \mathbb{R}^3 e de \mathbb{R}^2 , temos

$$M = M(f, \mathcal{B}, \mathcal{B}') = \begin{bmatrix} \frac{11}{5} & 2\\ -\frac{3}{5} & 2\\ -\frac{2}{5} & 0 \end{bmatrix}$$

— repare-se que a ordem como se dispõem os coeficientes na matriz é aquela que nos permite depois calcular a imagem de cada vector $\alpha(0,1)+\beta(2,0)$ pelo produto $M\begin{bmatrix}\alpha\\\beta\end{bmatrix}$.

Vejamos agora o caso de h. Temos $h(0,1)=(0,0,1)=-\frac{6}{5}(1,1,0)+\frac{3}{5}(0,2,1)+\frac{2}{5}(3,0,1)$ e ainda $h(2,0)=(0,2,0)=\frac{6}{5}(1,1,0)+\frac{2}{5}(0,2,1)-\frac{2}{5}(3,0,1)$. Finalmente $g\circ h$, que também é linear, verifica $g\circ h(0,1)=(1,0)=\frac{1}{2}(2,0),\ g\circ h(2,0)=0$. Donde,

$$M(h, \mathcal{B}, \mathcal{B}') = \begin{bmatrix} -\frac{6}{5} & \frac{6}{5} \\ \frac{3}{5} & \frac{2}{5} \\ \frac{2}{5} & -\frac{2}{5} \end{bmatrix}, \quad M(g \circ h, \mathcal{B}', \mathcal{B}') = \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & 0 \end{bmatrix}.$$

A segunda parte desta questão pede-nos para encontrar o termo geral de uma aplicação linear, dada a sua matriz nas bases fixadas. Sendo f_A a aplicação respeitante à matriz A, temos $f_A(1,0) = \frac{1}{2}f_A(2,0) = 3(0,1) + 4(2,0) = (8,3)$ e $f_A(0,1) = 2(0,1) + 3(2,0) = (6,2)$. Então

$$f_A(x,y) = xf_A(1,0) + yf_A(0,1) = (8x + 6y, 3x + 2y).$$

Para a matriz B, a respectiva aplicação f_B verifica $f_B(1,1,0)=2(0,1)=(0,2),\ f_B(0,2,1)=\sqrt{2}(2,0)=(2\sqrt{2},0)$ e $f_B(3,0,1)=-\sqrt{2}(0,1)+4(2,0)=(8,-\sqrt{2}).$ Agora, por (\bigstar) , vemos que $(x,y,z)=\frac{1}{5}(2x+3y-6z)(1,1,0)+\frac{1}{5}(-x+y+3z)(0,2,1)+\frac{1}{5}(x-y+2z)(3,0,1).$ Donde

$$f_B(x,y,z) = \frac{1}{5}((2x+3y-6z)(0,2) + (-x+y+3z)(2\sqrt{2},0) + (x-y+2z)(8,-\sqrt{2}))$$

$$= \frac{1}{5}\left((8-2\sqrt{2})x + (2\sqrt{2}-8)y + (6\sqrt{2}+16)z, (4-\sqrt{2})x + (6+\sqrt{2})y - (12+2\sqrt{2})z\right).$$

Finalmente para a matriz C temos, fazendo os cálculos,

$$f_C(0,1) = 3(0,2,1) + 1(3,0,1) = (3,6,4),$$

$$f_C(2,0) = -1(1,1,0) + 4(0,2,1) = (-1,7,4).$$

E logo

$$f_C(x,y) = \frac{x}{2}f_C(2,0) + yf_C(0,1) = (-\frac{1}{2}x + 3y, \frac{7}{2}x + 6y, 2x + 4y).$$

13. Ver secção 4.2.3 do *Prontuário de ALGA*. A definição do determinante de uma aplicação linear é dada na fórmula (4.38). Não depende da escolha das bases devido à regra do determinante do produto. Com efeito, considerando a notação da alínea ii), se G e $G' = PGP^{-1}$ são duas representações da mesma aplicação linear, então

$$|G'| = |PGP^{-1}| = |P||G||P^{-1}| = |P||G||P|^{-1} = |G|.$$

No caso do traço também se define $\operatorname{Tr} g = \operatorname{Tr} G$. A invariância do traço relativa às bases resulta da fórmula demonstrada acima no exercício 6:

$$\operatorname{Tr} G' = \operatorname{Tr} (PGP^{-1}) = \operatorname{Tr} (P^{-1}PG) = \operatorname{Tr} G.$$

Departamento de Matemática da Universidade de Évora $3^{\rm o}$ Teste de

Álgebra Linear e Geometria Analítica

10 de Dezembro de 2008

Cursos de CTA, EC, EER, EG, EI e EM

1. Para o subespaço vectorial de \mathbb{R}^4 gerado por

$$(1, 2, 3, -2), (0, 1, -3, 1), (1, 4, -3, 0)$$

encontre uma base e diga qual a sua dimensão.

2. Represente a matriz da seguinte aplicação linear:

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, \qquad f(x,y) = (3x, 2x + 3y),$$

da base canónica (1,0),(0,1) de \mathbb{R}^2 para a base (1,1),(1,0) de \mathbb{R}^2 .

- 3. Sejam V,W dois espaços vectoriais e $f,g:V\to W$ duas aplicações lineares. Seja $\lambda\in\mathbb{R}$. Mostre que f+g e λf também são aplicações lineares.
- **4.** Mostre que uma aplicação linear f é injectiva see Nuc $f = \{0\}$.
- 5. Conhecendo a regra de Laplace para o cálculo do determinante de $A = [a_{ij}] \in \mathcal{M}_{nn}$, diga por que razão se tem a fórmula

$$\sum_{j=1}^{n} (-1)^{i+j} a_{kj} |A_{(i,j)}| = 0, \quad \forall k \neq i.$$

 $A_{(i,j)}$ é a matriz que resulta de A tirando a linha i e a coluna j. (Esta fórmula permite provar que a matriz adjunta sobre o determinante é a inversa da matriz dada...)

Justique os cálculos.

Solução

1. Para encontrar uma base do subespaço gerado por aqueles vectores, basta encontrar entre eles um s.l.i. (sistma de vectores linearmente independende) que não possa ser extendido. Ora a característica da matriz

$$\begin{bmatrix} 1 & 2 & 3 & -2 \\ 0 & 1 & -3 & 1 \\ 1 & 4 & -3 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 3 & -2 \\ 0 & 1 & -3 & 1 \\ 0 & 2 & -6 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 3 & -2 \\ 0 & 1 & -3 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

é claramente 2 e não menos que 2. Portanto podemos escolher os dois primeiros vectores para base do subespaço (é exactamente o mesmo subespaço gerado só por estes dois vectores). Note-se que qualquer par de vectores extraídos daqueles três serve de base do subespaço pedido.

Assim a dimensão é 2.

2. Tem-se f(1,0) = (3,2) = 2(1,1) + 1(1,0), f(0,1) = (0,3) = 3(1,1) - 3(1,0). Então a matriz de f da primeira base para a segunda é

$$M(f, \mathcal{B}_1, \mathcal{B}_2) = \begin{bmatrix} 2 & 1 \\ 3 & -3 \end{bmatrix}$$

3. Para quaisquer $u, v \in V, \alpha \in \mathbb{R}$, temos a condição de linearidade

$$(\lambda f + g)(u + \alpha v) = (\lambda f)(u + \alpha v) + g(u + \alpha v) = \lambda (f(u + \alpha v)) + g(u) + \alpha g(v)$$
$$= \lambda f(u) + \lambda \alpha f(v) + g(u) + \alpha g(v) = (\lambda f + g)(u) + \alpha (\lambda f + g)(v).$$

Fazendo acima $\lambda=1$, temos a demonstração da linearidade de f+g. Fazendo g=0, temos a demonstração da linearidade de λf .

4. Suponhamos que f é injectiva. Se $v \in \text{Nuc } f$, ou seja, f(v) = 0, então f(v) = 0 = f(0). Por injectividade, apenas um v tem a mesma imagem que outro vector. Logo v = 0.

Recíprocamente, suponhamos Nuc f=0 (subespaço vectorial trivial). Então, sendo $f(v_1)=f(v_2)$ com $v_1,v_2\in V$ quaisquer, vem $f(v_1)-f(v_2)=0$. Em seguida, por linearidade de f, vem $f(v_1-v_2)=0$. Pela hipótese, temos $v_1-v_2=0$, isto é, $v_1=v_2$ como queríamos. Donde f é injectiva.

5. O lado esquerdo da fórmula que aparece é a do cálculo do determinante pela regra de Laplace, $mas\ so\ que$, na linha i, em vez da linha i colocámos a linha k — $k \neq i$. Porém, se repetimos linhas, o determinante é 0.

Departamento de Matemática da Universidade de Évora 4º Teste e 2ª Frequência de

Álgebra Linear e Geometria Analítica

12 de Janeiro de 2009

Cursos de CTA, EC, EER, EG, EI e EM

- **1.** Seja $A = \begin{bmatrix} k & -2 & k \\ 1 & 3 & k \\ 0 & 2 & 1 \end{bmatrix}, \ k \in \mathbb{R}.$
 - i) Calcule o determinante de A pela regra de Laplace sobre uma linha ou coluna à escolha.
 - ii) Encontre os valores de k para os quais A é regular.
 - iii) Admita k = 3 e calcule a inversa de A pelo método da matriz adjunta (se possível, verifique o resultado).
- 2. Prove que os seguintes vectores constituem uma base de \mathbb{R}^3 :

$$u_1 = (1, 2, 0), u_2 = (5, -2, 1), u_3 = (2, 3, -6).$$

Escreva (2,0,0) como combinação linear de u_1, u_2, u_3 .

- **3.** Sabe-se que a aplicação $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, f(x,y,z) = (3x,2y+x,z+y), é linear.
 - i) Descreva o núcleo de f.
 - ii) Escreva a matriz de f na base canónica de \mathbb{R}^3 .
 - iii) Encontre os valores próprios de f.
 - iv) Encontre um vector próprio de f associado a 3.
- **4.** Seja V um espaço vectorial de dimensão finita e $f:V\to V$ uma aplicação linear injectiva (Nuc $f=\{0\}$). Seja $\{v_1,\ldots,v_n\}$ um sistema de vectores linearmente independentes de V. Mostre que $\{f(v_1),\ldots,f(v_n)\}$ também é um sistema de vectores linearmente independentes.
- 5. Encontre um vector de \mathbb{R}^3 , não nulo, ortogonal ao plano de equação 3x-4y+7z=0.

Justique os cálculos.

Resolução do teste e frequência

1)i) Calculemos o determinante por Laplace na 1^a coluna:

$$|A| = k \begin{vmatrix} 3 & k \\ 2 & 1 \end{vmatrix} - 1 \begin{vmatrix} -2 & k \\ 2 & 1 \end{vmatrix} = k(3 - 2k) - (-2 - 2k) = -2k^2 + 5k + 2.$$

ii) A é regular para os valores para os quais é invertível ("regular"="invertível"). Uma matriz é regular sse o determinante é não nulo. Pela fórmula resolvente e pela alínea i),

$$\frac{-5 \pm \sqrt{25 + 16}}{-4} = \frac{5 \mp \sqrt{41}}{4}$$

são os valores que k NÃO deve ter para A ser regular. Ou seja, $k \in \mathbb{R} \setminus \{\frac{5\pm\sqrt{41}}{4}\}$.

iii) Para k = 3, vê-se que |A| = -1. Agora

$$\begin{bmatrix} 3 & -2 & 3 \\ 1 & 3 & 3 \\ 0 & 2 & 1 \end{bmatrix}^{-1} |A| = \begin{bmatrix} \begin{vmatrix} 3 & 3 \\ 2 & 1 \end{vmatrix} & - \begin{vmatrix} -2 & 3 \\ 2 & 1 \end{vmatrix} & \begin{vmatrix} -2 & 3 \\ 3 & 3 \end{vmatrix} \\ - \begin{vmatrix} 1 & 3 \\ 0 & 1 \end{vmatrix} & - \begin{vmatrix} 3 & 3 \\ 0 & 1 \end{vmatrix} & - \begin{vmatrix} 3 & 3 \\ 1 & 3 \end{vmatrix} \\ \begin{vmatrix} 1 & 3 \\ 0 & 2 \end{vmatrix} & - \begin{vmatrix} 3 & -2 \\ 0 & 2 \end{vmatrix} & \begin{vmatrix} 3 & -2 \\ 1 & 3 \end{vmatrix} \end{bmatrix} = \begin{bmatrix} -3 & 8 & -15 \\ -1 & 3 & -6 \\ 2 & -6 & 11 \end{bmatrix}.$$

Verificação:

$$\begin{bmatrix} 3 & -2 & 3 \\ 1 & 3 & 3 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} -3 & 8 & -15 \\ -1 & 3 & -6 \\ 2 & -6 & 11 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

como queríamos.

2) Pondo os vectores em matriz, tem-se $\begin{bmatrix} 1 & 2 & 0 \\ 5 & -2 & 1 \\ 2 & 3 & -6 \end{bmatrix} = 12 + 4 - 3 + 32 \neq 0$. Logo a

característica r = 3, ou seja, há 3 linhas linearmente independentes. Quem diz linhas, diz vectores. Sendo 3 vectores l.i. num espaço de dimensão 3, claro que formam uma base.

Para escrever (2,0,0) como combinação linear dos u_i , resolve-se

$$(2,0,0) = \lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3$$

ou seja

$$\begin{cases} \lambda_1 + 5\lambda_2 + 2\lambda_3 = 2 \\ 2\lambda_1 - 2\lambda_2 + 3\lambda_3 = 0 \\ \lambda_2 - 6\lambda_3 = 0 \end{cases} \begin{cases} \lambda_1 + 32\lambda_3 = 2 \\ 2\lambda_1 - 9\lambda_3 = 0 \\ \lambda_2 = 6\lambda_3 \end{cases} \begin{cases} 9\lambda_3 + 64\lambda_3 = 4 \\ \lambda_1 = \frac{9}{2}\lambda_3 \\ \lambda_2 = \frac{24}{73} \end{cases} .$$

3) Este exercício faz-se de uma assentada, já que a base canónica

$$\mathcal{B} = \{(1,0,0), (0,1,0), (0,0,1)\}$$

simplifica tudo. Primeiro, a matriz de f é

$$A = M(f, \mathcal{B}, \mathcal{B}) = \begin{bmatrix} 3 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

porque f(1,0,0) = (3,1,0), f(0,1,0) = (0,2,1) e f(0,0,1) = (0,0,1).

Agora, os valores próprios de f são as raízes do polinómio característico da matriz de f (numa base qualquer – desde que escolhamos a mesma base no espaço de partida e no espaço de chegada):

$$p_A(\lambda) = |A - \lambda 1_3| = \begin{vmatrix} 3 - \lambda & 0 & 0 \\ 1 & 2 - \lambda & 0 \\ 0 & 1 & 1 - \lambda \end{vmatrix} = (3 - \lambda)(2 - \lambda)(1 - \lambda).$$

Logo os valores próprios são 1, 2, 3.

Calculando vectores próprios associados a 3, temos

$$AX = 3X \Leftrightarrow (A - 3.1_3) \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0 \Leftrightarrow \begin{bmatrix} 0 & 0 & 0 & | & 0 \\ 1 & -1 & 0 & | & 0 \\ 0 & 1 & -2 & | & 0 \end{bmatrix}$$

donde as soluções x = y = 2z. Assim um gerador do subespaço próprio associado a 3 é, por exemplo, (2, 2, 1). Verificação: f(2, 2, 1) = (6, 6, 3) = 3(2, 2, 1).

Finalmente, 0 não é valor próprio, logo o núcleo de f é nulo, isto é, Nuc $f = \{0\}$. 4) Como se sabe, a condição de $\{f(v_1), \ldots, f(v_n)\}$ ser um sistema de vectores linearmente independentes (sli) vê-se por análise da equação em λ 's

$$\lambda_1 f(v_1) + \dots + \lambda_n f(v_n) = 0$$

Ora, por linearidade, \bigstar é equivalente a $f(\lambda_1 v_1 + \cdots + \lambda_n v_n) = 0$. Mas por o núcleo de f ser nulo, tem mesmo de ser $\lambda_1 v_1 + \cdots + \lambda_n v_n = 0$. Como os v_i 's são por hipótese um sli, tem de ser $\lambda_1 = \cdots = \lambda_n = 0$.

Então está provado que $f(v_1), \ldots, f(v_n)$ são um sli: não é possível escrever uma combinação linear nula, destes vectores, com algum λ_i não nulo.

5) (1ª solução) O subespaço afim dado é um plano. É também claro que este plano passa pela origem dos referenciais. Ou seja, é um subespaço vectorial (só por conter o 0).

Encontremos dois vectores l.i. no plano (que o geram): podem ser u=(1,-1,-1) e v=(4,3,0). Agora, um vector $(a,b,c) \in \mathbb{R}^3$ é ortogonal ao plano se for ortogonal

a $u \in v$. Resolvemos o sistema:

$$\left\{ \begin{array}{l} \langle (a,b,c), (1,-1,-1) \rangle = 0 \\ \langle (a,b,c), (4,3,0) \rangle = 0 \end{array} \right. \left. \left\{ \begin{array}{l} a-b-c = 0 \\ 4a+3b = 0 \end{array} \right. \right.$$

E vemos que uma solução é (-3, 4, -7).

5) (2ª solução, para um caso mais geral) A equação de um plano π é dada como ax + by + cz = d, ou seja, $\langle (a,b,c), (x,y,z) \rangle = d$. O ortogonal a π é o subespaço vectorial ortogonal aos vectores diferença de dois pontos $P, P' \in \pi$. Mas então vem

$$\langle (a, b, c), (x, y, z) - (x', y', z') \rangle = \langle (a, b, c), (x, y, z) \rangle - \langle (a, b, c), (x', y', z') \rangle = d - d = 0$$

Logo é mesmo o vector (a, b, c) que gera π^{\perp} .

No caso presente, era ainda mais fácil: a equação

$$3x - 4y + 7z = \langle (3, -4, 7), (x, y, z) \rangle = 0$$

mostra logo que (3, -4, 7) é ortogonal ao plano. (Isto bastava como resposta.)

Departamento de Matemática da Universidade de Évora 4º Teste e 2ª Frequência de

Álgebra Linear e Geometria Analítica

19 de Janeiro de 2009

Cursos de CTA, EC, EER, EG, EI e EM

1. i) Sejam $A, B, C \in \mathcal{M}_{2,2}$ as componentes de uma matriz quadrada $[a_{ij}]_{i,j=1,\dots,4} \in \mathcal{M}_{4,4}$, tal como na fórmula que segue. Prove que

$$\left| \begin{array}{cc} A & 0 \\ B & C \end{array} \right| = |A||C|.$$

- ii) Calcule o determinante $\begin{vmatrix} 2 & 0 & 3 & 0 \\ -1 & 0 & 5 & 0 \\ 2 & 3 & 7 & 4 \\ 3 & 2 & 1 & 0 \end{vmatrix}$ recorrendo a alínea anterior.
- **2.** i) Encontre dois vectores u_3 e u_4 de modo que os seguintes constituam uma base de \mathbb{R}^4 , justificando a sua escolha:

$$u_1 = (1, -1, 2, 0), u_2 = (2, 0, -2, 1), u_3, u_4.$$

- ii) Escreva (-1, -1, 4, -1) como combinação linear dos vectores dessa base.
- iii) Calcule a norma dos vectores u_1, u_2 e calcule o ângulo entre eles.
- 3. Considere as aplicações definidas por

$$f(x, y, z) = (2x + 3yz, 2x), \quad g(x, t) = t, \quad h(x, y) = (2x, y, 1), \quad gf, \quad fh.$$

- i) Diga quais as que são lineares e, para as que não são, dê um contra-exemplo.
- ii) Descreva o núcleo de gfh.
- iii) Escreva a matriz de fh na base canónica de \mathbb{R}^2 .
- iv) Encontre os valores próprios de fh.
- 4. Seja $U \subset \mathbb{R}^n$ um subconjunto não vazio.
 - i) Use as linearidades do produto interno para mostrar que

$$U^{\perp} = \left\{ v \in \mathbb{R}^n : \ \langle v, u \rangle = 0, \ \forall u \in U \right\}$$

é um subespaço vectorial.

ii) Seja $c \in \mathbb{R}$ uma constante. Prove que

$$\mathcal{F} = \left\{ v \in \mathbb{R}^n : \ \langle v, u \rangle = c, \ \forall u \in U \right\}$$

é um subespaço afim associado a U^{\perp} .

Justique os cálculos.

Esclarecimentos necessários prestados durante a prova.

A matriz do exercício 1 pode-se ver como

$$\begin{bmatrix} A & 0 \\ B & C \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

Na alínea 2.iii) queria-se pedir, de facto, para calcular o coseno do ângulo e não o ângulo.

No exercício 3, a notação refere-se a

$$gf = g \circ f,$$
 $fh = f \circ h,$ etc.

Resolução do teste e frequência

1)i) Aplicando a regra de Laplace na 1^a linha e seguindo os "esclarecimentos", vem

$$\begin{vmatrix} A & 0 \\ B & C \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & 0 & 0 \\ a_{32} & a_{33} & a_{34} \\ a_{42} & a_{43} & a_{44} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & 0 & 0 \\ a_{31} & a_{33} & a_{34} \\ a_{41} & a_{43} & a_{44} \end{vmatrix}.$$

Aplicando a regra de Laplace de novo e reparando já no determinante de C, o cálculo anterior segue igual a

$$= a_{11}a_{22}|C| - a_{12}a_{21}|C| = |A||C|,$$

como queríamos demonstrar.

- ii) Trocando as colunas 2 e 3 o determinante muda de sinal e estamos nas condições anteriores. O resultado final é $\begin{vmatrix} 2 & 3 \\ -1 & 5 \end{vmatrix} \begin{vmatrix} 3 & 4 \\ 2 & 0 \end{vmatrix} = -13(-8) = 104.$
- 2) Parece, à primeira vista, que $u_3 = (0, 0, 1, 0)$ e $u_4 = (0, 0, 0, 1)$ são escolhas acertadas. Com efeito, o determinante

$$\begin{vmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{vmatrix} = \begin{vmatrix} 1 & -1 & 2 & 0 \\ 2 & 0 & -2 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & -1 \\ 2 & 0 \end{vmatrix} \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \neq 0$$

(pelo exercício 1). Logo os 4 vectores são linearmente independentes. Sendo parte de uma base, num espaço de dimensão 4, só podem ser uma base (todas têm o mesmo número de vectores).

ii) Queremos

$$(-1, -1, 4, -1) = x_1u_1 + x_2u_2 + x_3u_3 + x_4u_4 = (x_1 + 2x_2, -x_1, 2x_1 - 2x_2 + x_3, x_2 + x_4).$$

Então vê-se logo que $x_1 = 1$ e de seguida vem

$$x_2 = -1, \qquad x_3 = 0 \qquad \text{e} \quad x_4 = 0.$$

Ou seja, aquele vector é a combinação linear $u_1 - u_2$. (Os outros u_3, u_4 não entram nunca, pois, para quaisquer vectores que se arranje extendendo u_1, u_2 a uma base de \mathbb{R}^4 , lembremo-nos sempre que a escrita de $u_1 - u_2$ aparece de forma única.)

iii)
$$||u_1|| = \sqrt{1+1+4} = \sqrt{6}$$
, $||u_2|| = \sqrt{4+4+1} = \sqrt{9} = 3$. Logo

$$\cos \angle (u_1, u_2) = \frac{\langle u_1, u_2 \rangle}{\|u_1\| \|u_2\|} = \frac{2 - 4}{3\sqrt{6}} = -\frac{\sqrt{2}}{3\sqrt{3}}.$$

3)i) f não é linear:

$$f(0,0,1)+f(0,1,0)=(0,0)+(0,0)=(0,0)\neq f((0,0,1)+(0,1,0))=f(0,1,1)=(3,0).$$

g é claramente linear.

h não é linear:

$$h(0,1) + h(0,0) = (0,1,1) + (0,0,1) = (0,1,2) \neq h((0,1) + (0,0)) = h(0,1) = (0,1,1).$$

Aliás, se fosse linear, h aplicava zero em zero.

gf(x, y, z) = g(2x + 3yz, 2x) = 2x é linear.

$$fh(x,y) = f(2x,y,1) = (2(2x) + 3y1, 2(2x)) = (4x + 3y, 4x)$$
 é linear.

ii) gfh(x,y)=g(4x+3y,4x)=4x tem núcleo dado pela equação gfh(x,y)=0, ou seja

Nuc
$$gfh = \{(x, y) \in \mathbb{R}^2 : 4x = 0\} = \{0\} \times \mathbb{R}$$

iii) fh(x, y) = (4x + 3y, 4x) então

$$fh(1,0) = (4,4),$$
 $fh(0,1) = (3,0)$

e logo, sendo \mathcal{B}_0 a base canónica,

$$A = M(fh, \mathcal{B}_0, \mathcal{B}_0) = \begin{bmatrix} 4 & 3 \\ 4 & 0 \end{bmatrix}.$$

iv) $p_A(\lambda)=\left|\begin{array}{cc} 4-\lambda & 3\\ 4 & -\lambda \end{array}\right|=-(4-\lambda)\lambda-12.$ Assim, o polinómio característico de A é

$$p_A(\lambda) = \lambda^2 - 4\lambda - 12 = (\lambda + 2)(\lambda - 6)$$

onde usámos já a fórmula resolvente para descobrir as raízes.

4)i) Para ser subespaço vectorial, tem de ser *fechado* para a soma de quaisquer dois vectores do subespaço e para o produto por escalar. Fazendo logo tudo ao mesmo tempo, basta provar:

$$v_1, v_2 \in U^{\perp}, \ \alpha \in \mathbb{R} \implies v_1 + \alpha v_2 \in U^{\perp}$$

Ora isto é óbvio pela bilinearidade do produto interno:

$$\langle v_1 + \alpha v_2, u \rangle = \langle v_1, u \rangle + \alpha \langle v_2, u \rangle = 0 + 0 = 0$$

para qualquer $u \in U$. Logo também $v_1 + \alpha v_2 \in U^{\perp}$, como queríamos provar.

ii) Para ver que U^{\perp} é o subespaço associado, é preciso ver que a diferença de dois quaisquer pontos P,P' de \mathcal{F} é um vector de U^{\perp} e, recíprocamente, um ponto $P \in \mathcal{F}$ adicionado de um vector $v \in U^{\perp}$ ainda está em \mathcal{F} . Mas isto é evidente de se ter $P' = P + P' - P = P + v \in \mathcal{F}$ sse

$$\langle v, u \rangle = \langle P' - P, u \rangle = c - c = 0 \ \forall u \in U.$$

Assim pode-se garantir $\mathcal{F} = P + U^{\perp}$.

Departamento de Matemática da Universidade de Évora

Exame de Álgebra Linear e Geometria Analítica

26 de Janeiro de 2009

Cursos de CTA, EC, EER, EG, EI e EM

- 1. i) Mostre que $P^{T-1} = P^{-1T}$ para qualquer matriz invertível $P \in \mathcal{M}_{n,n}$.
 - ii) Uma matriz diz-se <u>ortogonal</u> se $AA^T = 1_n$. Mostre que o produto de duas matrizes ortogonais é uma matriz ortogonal e prove que det $A = \pm 1$.
 - iii) Mostre que

$$R_t = \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix}$$

é ortogonal.

- iv) Escreva a aplicação linear f(x,y) de $\mathbb{R}^2 \to \mathbb{R}^2$ da qual R_t é a matriz na base canónica \mathcal{B}_0 . Interprete num pequeno desenho de um gráfico x, y.
- **2.** i) O que entende pela característica de linha r de uma matriz? Qual a relação com a característica de coluna?
 - ii) Considerando a matriz $B = \begin{bmatrix} 3 & k & 1 \\ 4 & 1 & k \\ 7 & -k & 5 \end{bmatrix}$, encontre $k \in \mathbb{R}$ de tal forma que

r(B) < 3.

- iii) Admita k=2; encontre os valores próprios de B.
- iv) Ainda com k=2, encontre um dos vectores próprios de B.
- 3. Sejam V, W espaços vectoriais de dim finita. Seja $f: V \to W$ uma aplicação linear, que tem a seguinte propriedade:

 v_1, \dots, v_k são linearmente independentes (l.i.) $\implies f(v_1), \dots, f(v_k)$ são l.i.

Mostre que f é injectiva. (Sugestão: um dos teoremas das dimensões.)

4. Mostre que o produto interno euclidiano é uma aplicação bilinear simétrica:

$$\langle u + \lambda v, w \rangle = \langle u, w \rangle + \lambda \langle v, w \rangle, \quad \forall u, v, w \in \mathbb{R}^n, \ \lambda \in \mathbb{R},$$
$$\langle u, v \rangle = \langle v, u \rangle.$$
(3)

Escreva $u = (x_1, \dots, x_n), \ v = (y_1, \dots, y_n), \ w = (z_1, \dots, z_n).$

5. Encontre o ponto de intersecção da recta dada por

$$(x, y, z) = (2, 3, 4) + t(1, 0, 2), \quad t \in \mathbb{R},$$

e o plano de equação 4x - y - z = 2, se existir.

Departamento de Matemática da Universidade de Évora

Exame de Álgebra Linear e Geometria Analítica

29 de Janeiro de 2009

Cursos de CTA, EC, EER, EG, EI e EM

- 1. i) Mostre que $(PQ)^{-1} = Q^{-1}P^{-1}$ para quaisquer matrizes invertíveis $P, Q \in \mathcal{M}_{n,n}$.
 - ii) Uma matriz A diz-se uma semelhança de razão $\mu>0$ se se tem $AA^T=A^TA=\mu 1_n$. Prove que A é invertível e encontre a sua inversa.
 - iii) Mostre que A^{-1} é uma semelhança de razão $1/\mu$.
 - iv) Sejam $a, b, c, d \in \mathbb{R}$ tais que $a^2 + b^2 = 1$, $c^2 + d^2 = 1$. Mostre que

$$R = \begin{bmatrix} a & -bc & bd \\ b & ac & -ad \\ 0 & d & c \end{bmatrix}$$

é ortogonal (semelhança de razão 1).

2. Das seguintes funções $f, g, h : \mathbb{R}^2 \to \mathbb{R}^2$

$$f(x,y) = (2x + 3y, 4x)$$
 $g(x,y) = (0, \sqrt{y})$ $h(x,y) = gf(x,y)$

- i) diga quais são aplicações lineares e justifique a resposta nas que *não* são.
- ii) Para as aplicações lineares, encontre as matrizes na base $\mathcal{B}_1 = \{(1,1), (1,0)\}.$
- iii) Para as aplicações lineares, calcule a matriz da função inversa, na mesma base, se existir.
- iv) Para as aplicações lineares, encontre os valores próprios.
- 3. Seja V um espaço vectorial de dim finita, $\mathcal B$ uma base qualquer e $f:V\to V$ uma aplicação linear.
 - i) O que entende por um vector próprio u de f associado a um valor próprio λ ?
 - ii) Mostre que o subespaço próprio associado a λ

$$U_{\lambda}:=\left\{u\in V:\ u\ \text{\'e vector pr\'oprio de f associado a λ}\right\}$$

é um subespaço vectorial de V.

- iii) Verifique que Nuc $f = U_0$.
- iv) Mostre que, se Nuc $f = \{0\}$, então $\det M(f, \mathcal{B}, \mathcal{B}) \neq 0$.
- 4. O teorema de Pitágoras no espaço euclidiano \mathbb{R}^n estabelece uma relação entre as normas de dois vectores ortogonais u,v e a norma da sua soma u+v. Enuncie e prove esse teorema.

5. Considere a recta r dada por intersecção de dois planos

$$3x - y = 4x - 3z = 1.$$

Escreva a equação vectorial da recta: $r = \{P : P = P_0 + tu, t \in \mathbb{R}\}$. (Sugestão: dois pontos definem uma recta.)

Esclarecimentos necessários prestados durante a prova.

Exame de 26/1:

No exercício 1)ii), supôr que tem duas matrizes ortogonais A e B, portanto também $BB^T = 1_n$, e mostrar que AB satisfaz a mesma condição.

Exame de 29/1:

No exercício 2, a notação refere-se a

$$gf = g \circ f$$
.

Depois em ii) pede-se de facto $M(...; \mathcal{B}_1, \mathcal{B}_1)$.

No 4) pede-se para recordar o teorema de Pitágoras (está em qualquer livro de ALGA1) pensando no triângulo de lados u, v, u + v. Como $u \perp v$, ie. u é ortogonal a v, resulta que o triângulo é triângulo-rectângulo.

No 5) só tem de encontrar P_0 e u.

Figura 1: Uma rotação é uma aplicação linear

Resolução do Exame de 26 de Janeiro, 1ª chamada

1)i) Recordar que $(AB)^T = B^T A^T$. Logo $P^T P^{-1T} = (P^{-1}P)^T = 1^T = 1$, ou seja P^{-1T} é o inverso de P^T .

ii) Sejam A e B ortogonais: $AA^T=1$, $BB^T=1$. Então $(AB)(AB)^T=ABB^TA^T=A1A^T=AA^T=1$, como queríamos.

iii)

$$RR^{T} = \begin{bmatrix} \cos & -\sin \\ \sin & \cos \end{bmatrix} \begin{bmatrix} \cos & \sin \\ -\sin & \cos \end{bmatrix}$$
$$= \begin{bmatrix} \cos^{2} + \sin^{2} & \cos \sin - \sin \cos \\ \sin \cos - \cos \sin & \sin^{2} + \cos^{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

iv) A matriz diz-nos que $f(1,0) = (\cos t, \sin t), \ f(0,1) = (-\sin t, \cos t).$ Então $f(x,y) = f(x(1,0) + y(0,1)) = xf(1,0) + yf(0,1) = x(\cos t, \sin t) + y(-\sin t, \cos t) = (x\cos t - y\sin t, x\sin t + y\cos t).$

Mais ainda, f é uma rotação³ (ver figura 1).

- 2)i) A característica de linha r de uma matriz é o número de linhas linearmente independentes (linhas são entendidas como vectores de \mathbb{R}^n). É igual à característica de coluna, como se viu num teorema demonstrado na aula teórica.
- ii) Para uma matriz quadrada A de ordem n, é sabido que

$$r(A) < n \iff A$$
 é singular $\iff A$ não é invertível $\iff \det A = 0$.

Dito pela negativa, por serem equivalências, é o mesmo que:

$$r(A) = n \iff A \text{ \'e regular} \iff A \text{ \'e invert\'e l} \iff \det A \neq 0.$$

 $^{^3{\}rm O}$ facto de uma rotação ser uma aplicação linear remete apenas para os axiomas e proposições de Euclides, circa~330 — 265 ac.

Assim, r(B) < 3 sse |B| = 0 sse

$$\begin{vmatrix} 3 & k & 1 \\ 4 & 1 & k \\ 7 & -k & 5 \end{vmatrix} = 15 + 7K^2 - 4k - 7 + 3k^2 - 20k$$
$$= 10k^2 - 24k + 8 = 0.$$

Dividindo esta equação por 2, temos de resolver $5k^2 - 12k + 4 = 0$. O que dá

$$k = \frac{12 \pm \sqrt{144 - 80}}{10} = \begin{cases} 2 \\ \frac{2}{5} \end{cases}.$$

iii) Se k=2, vem |B|=0 como se viu e verá, pois descobre-se o v.p. 0:

$$|B - \lambda .1_3| = \begin{vmatrix} 3 - \lambda & 2 & 1 \\ 4 & 1 - \lambda & 2 \\ 7 & -2 & 5 - \lambda \end{vmatrix} = \dots = -\lambda(\lambda^2 - 9\lambda + 12).$$

Os v.p. são então $\lambda = 0$ ou $\lambda = \frac{9 \pm \sqrt{81 - 48}}{2} = \frac{9 \pm \sqrt{33}}{2}$.

iv) Para $\lambda = 0$ (o caso mais rápido), só temos de resolver BX = 0:

$$\begin{cases} 3x + 2y + z = 0 \\ 4x + y + 2z = 0 \\ 7x - 2y + 5z = 0 \end{cases} \Leftrightarrow \begin{cases} 10x + 6z = 0 \\ -5y + 2z = 0 \end{cases} \Leftrightarrow \begin{cases} x = -\frac{3}{5}z \\ y = \frac{2}{5}z \end{cases}$$

Um vector próprio é uma das soluções não nulas: $\left(-\frac{3}{5},\frac{2}{5},1\right)$.

3) Basta ver que Nuc $f = \{0\}$, pois já sabemos de outras ocasiões que tal implica f injectiva. Ora qualquer $v \neq 0$ forma, por si só, um sistema linearmente independente (s.l.i.). Então pela hipótese f(v) também é um s.l.i., logo nunca poderá ser 0. Portanto, Nuc f não contém outro vector senão o 0.

Outra resolução: seja $\{v_1, \ldots, v_n\}$ uma base de V. Então, como o subespaço imagem $\operatorname{Im} f = \langle \{f(v_1), \ldots, f(v_n)\} \rangle$ é gerado pela imagem dos vectores da base e como por hipótese essas imagens formam um s.l.i., temos de concluir que dim $\operatorname{Im} f = n$. Agora, por um teorema das dimensões, dim $V = \dim \operatorname{Nuc} f + \dim \operatorname{Im} f$, donde só pode ser dim $\operatorname{Nuc} f = 0$. Ou seja, $\operatorname{Nuc} f = \{0\}$. Sabíamos já que o núcleo trivial implica f injectiva.

4) Aqui basta usar a definição de p.i. euclidiano: $\langle u, w \rangle = \sum_{i=1}^n x_i z_i$. Resulta então,

$$\langle u + \lambda v, w \rangle = \langle (x_1, \dots, x_n) + \lambda (y_1, \dots, y_n), (z_1, \dots, z_n) \rangle$$

$$= \langle (x_1 + \lambda y_1, \dots, x_n + \lambda y_n), (z_1, \dots, z_n) \rangle$$

$$= (x_1 + \lambda y_1) z_1 + \dots + (x_n + \lambda y_n) z_n$$

$$= (x_1 z_1 + \dots + x_n z_n) + \lambda (y_1 z_1 + \dots + y_n z_n)$$

$$= \langle u, w \rangle + \lambda \langle v, w \rangle$$

A simetria $\langle u, v \rangle = \sum_i x_i y_i = \sum_i y_i x_i = \langle v, u \rangle$ é simples.

5) O ponto (x, y, z) está na recta se (x, y, z) = (2, 3, 4) + (t, 0, 2t) = (2 + t, 3, 4 + 2t) para algum t e, o mesmo ponto, está no plano se 4x - y - z = 2. Resolvendo, vem $4(2+t) - 3 - (4+2t) = 2 \Leftrightarrow t = \frac{1}{2}$. Donde o ponto de intersecção é $(\frac{5}{2}, 3, 5)$.

Resolução do Exame de 29 de Janeiro, 2ª chamada

1)i) Por definição, $(PQ)^{-1}PQ = 1_n$. Sabe-se que só existe uma inversa para cada matriz invertível. Ora,

$$Q^{-1}P^{-1}PQ = Q^{-1}(P^{-1}P)Q = Q^{-1}1_nQ = Q^{-1}Q = 1_n$$

logo $(PQ)^{-1} = Q^{-1}P^{-1}$.

ii) Se $AA^T = \mu 1_n$, com $\mu > 0$, então $A\frac{A^T}{\mu} = 1_n$. Então só pode ser $A^{-1} = \frac{A^T}{\mu}$ (para ver a inversa à esquerda faz-se o mesmo raciocínio, mas não é necessário uma vez que se trata de matrizes quadradas⁴).

iii) Basta ver:

$$A^{-1}(A^{-1})^T = \frac{1}{\mu^2} A^T (A^T)^T = \frac{1}{\mu^2} A^T A = \frac{\mu}{\mu^2} 1_n = \frac{1}{\mu} 1_n.$$

iv) Sejam $a,b,c,d\in\mathbb{R}$ tais que $a^2+b^2=1,\ c^2+d^2=1.$ Então

$$RR^{T} = \begin{bmatrix} a & -bc & bd \\ b & ac & -ad \\ 0 & d & c \end{bmatrix} \begin{bmatrix} a & b & 0 \\ -bc & ac & d \\ bd & -ad & c \end{bmatrix}$$
$$= \begin{bmatrix} a^{2} + b^{2}c^{2} + b^{2}d^{2} & ab - abc^{2} - abd^{2} & -bcd + bdc \\ ab - abc^{2} - abd^{2} & b^{2} + a^{2}c^{2} + a^{2}d^{2} & acd - adc \\ -bcd + bcd & acd - acd & d^{2} + c^{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Repare-se que $a^2 + b^2c^2 + b^2d^2 = a^2 + b^2(c^2 + d^2) = 1$.

(Nota para quem quer saber como se encontrou esta matriz ortogonal: Compõem-se

⁴Uma matriz *quadrada* com inversa de um dos lados é invertível.

duas rotações óbvias — ver exame anterior —, uma do plano x,y e outra do plano y,z. Depois, o produto de ortogonais é ortogonal e assim se produz aquela aparente confusão. Mais ainda, o espaço euclidiano, seja \mathbb{R}^2 , \mathbb{R}^3 ou \mathbb{R}^n contém um GRUPO: o grupo das matrizes ortogonais, que é o que generaliza o grupo das rotações do plano). 2)i) Só f é linear. Vejamos g e h com contra-exemplos:

$$g((0,1)+(0,1))=g(0,2)=(0,\sqrt{2})\neq g(0,1)+g(0,1)=(0,1)+(0,1)=(0,2)$$
 $h(x,y)=gf(x,y)=g(2x+3y,4x)=(0,\sqrt{4x})$ também não é linear por razões parecidas às do anterior.

ii) Queremos encontrar $M(f, \mathcal{B}_1, \mathcal{B}_1) = M$. Então temos de calcular:

$$f(1,1) = (5,4) = 4(1,1) + 1(1,0),$$
 $f(1,0) = (2,4) = 4(1,1) - 2(1,0)$

(fixadas as bases os coeficientes são únicos). Donde $M = \begin{pmatrix} 4 & 4 \\ 1 & -2 \end{pmatrix}$.

iii) (Nota: este exercício foi retirado durante a prova no dia 29.) A matriz da função inversa, na mesma base, é a inversa da matriz da função dada: $M(f^{-1}, \mathcal{B}_1, \mathcal{B}_1) = (M(f, \mathcal{B}_1, \mathcal{B}_1))^{-1} = M^{-1}$ (se não quer reconhecer deste facto, só tem de começar por calcular f^{-1} e depois proceder como em ii)). Agora pelo método da matriz adjunta, tem-se:

$$M^{-1} = -\frac{1}{12} \left(\begin{array}{cc} -2 & -4 \\ -1 & 4 \end{array} \right).$$

Verificação:

$$\begin{pmatrix} -2 & -4 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} 4 & 4 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} -12 & 0 \\ 0 & -12 \end{pmatrix} = -12.1_2.$$

iv) Podemos usar M para procurar os valores próprios:

$$|M - \lambda 1_2| = \begin{vmatrix} 4 - \lambda & 4 \\ 1 & -2 - \lambda \end{vmatrix} = (\lambda + 2)(\lambda - 4) - 4 = \lambda^2 - 2\lambda - 12$$

Donde as raízes são: $\lambda = \frac{2\pm\sqrt{4+48}}{2} = 1 \pm \sqrt{1+12} = 1 \pm \sqrt{13}$. Falta-nos afirmar que os valores próprios de f (também se dizem "da matriz M") são as raízes do polinómio característico $p_M(\lambda) = |M - \lambda 1_n|$.

- 3)i) Um vector próprio u de f associado ao valor próprio λ é um vector de V tal que $f(u) = \lambda u$.
- ii) Para ver que U_{λ} é subespaço vectorial temos de ver que é fechado para a soma de vectores e para o produto por escalares. Ora, se $\alpha \in \mathbb{R}$ e se $u, v \in U_{\lambda}$, ou seja, $f(u) = \lambda u$ e $f(v) = \lambda v$, então resulta

$$f(u+v) = f(u) + f(v) = \lambda u + \lambda v = \lambda(u+v),$$

$$f(\alpha v) = \alpha f(v) = \alpha \lambda v = \lambda(\alpha v).$$

Donde u + v, $\alpha v \in U_{\lambda}$, como queríamos demonstrar.

- iii) Por definição Nuc $f = \{v \in V : f(v) = 0\}$. Ora U_0 é exactamente o mesmo.
- iv) Se Nuc $f = \{0\}$, então dim $V = \dim \operatorname{Im} f$. E como a imagem de $f : V \to V$ está evidentemente contida em V, o facto de ter a mesma dimensão obriga a que seja $\operatorname{Im} f = V$. Logo f é injectiva e sobrejectiva, \Leftrightarrow bijectiva \Leftrightarrow invertível \Leftrightarrow a sua matriz é invertível \Leftrightarrow o determinante é $\neq 0$.

Outra solução: por iii) e pela hipótese, 0 não é v.p. de M. Logo 0 não é raíz do polinómio característio $p_M(\lambda) = |M - \lambda 1_n|$. Ou seja, $p_M(0) = |M| \neq 0$.

4) Como é sabido das aulas teóricas, se $u \perp v$, então $||u + v||^2 = ||u||^2 + ||v||^2$ (O quadrado da hipotenusa é igual à soma dos quadrados dos catetos). De facto,

$$||u + v||^2 = \langle u + v, u + v \rangle = \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle = ||u||^2 + ||v||^2,$$

porque $\langle u, v \rangle = 0$.

5) Encontremos um ponto P_0 na recta: pode ser $P_0 = (0, -1, -\frac{1}{3})$, escolhido x = 0 e resolvidas as duas equações dadas. Agora outro ponto: $P_1 = (1, 2, 1)$, escolhido x = 1. Então

$$r \equiv P_0 + t(P_1 - P_0) = P_0 + tu, \ t \in \mathbb{R}.$$

 $u=(1,3,\frac{4}{3})$ é o *versor* da recta, ou seja, a *direcção* quando pensamos em P_0 como a origem.

Departamento de Matemática da Universidade de Évora

Exame de Recurso de Álgebra Linear e Geometria Analítica

6 de Fevereiro de 2009 Cursos de CTA, EC, EER, EG, EI e EM

1. i) O que entende por sistema de vectores linearmente independentes $\{v_1, \ldots, v_k\}$? ii) Encontre uma base e diga qual a dimensão do subespaço vectorial de \mathbb{R}^4 gerado por

$$(1, 2, 3, -2), (0, 1, -3, 1), (1, 4, -3, 0).$$

2. Seja V um espaço vectorial sobre \mathbb{R} e $\mathcal{B} = \{v_1, v_2, v_3, v_4\}$ uma base de V.

i) Com recurso aos determinantes, encontre os valores de $\alpha \in \mathbb{R}$ para os quais o sistema de vectores

$$u_1 = v_1 + v_2 + v_4$$
, $u_2 = v_3 - \alpha v_1 + 2v_4$, $u_3 = v_2 - \alpha v_3$, $u_4 = v_4$

também forma uma base de V (sugestão: determine a 'matriz de mudança de base' $M(1_V, \{u_i\}, \mathcal{B})$).

Escreva $u_1 + u_2$ na base inicial e $v_1 + v_2$ na base dos $\{u_i\}$.

ii) Diga se $W=\{xv_1+yv_2+zv_3: x,y,z\in\mathbb{R},\ x^2=-y+z\}$ forma um subespaço vectorial de V. Justifique a resposta.

iii) Diga se $S = \{(x, y): xv_1 + yv_2 = xv_2 + yv_1\}$ forma um subespaço vectorial de \mathbb{R}^2 e em caso afirmativo determine uma base de S.

3. Justifique que o seguinte sistema "AX = B" é sempre possível e determinado:

$$\begin{cases} 5x - 2y - z = b_1 \\ -2y + 5z = b_2 \\ 3x - 4z = b_3 \end{cases}.$$

Encontre uma matriz A' tal que na resolução do sistema, $\forall b_1, b_2, b_3$, só tenhamos

de fazer
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = A' \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
.

4. Seja $f: \mathbb{R}^3 \to \mathbb{R}^3$ uma aplicação linear dada pelos subespaços próprios $U_0 = \langle \{(0,0,1)\} \rangle$ e $U_1 = \langle \{(2,0,1),(2,3,0)\} \rangle$. Encontre a expresssão de f(x,y,z).

5. Mostre que Tr : $\mathcal{M}_{n,n} \to \mathbb{R}$, Tr $A = \sum_{i=1}^n a_{ii}$, é uma aplicação linear.

Será que $g: \mathcal{M}_{n,n} \to \mathcal{M}_{n,n}, \ g(A) = A \operatorname{Tr} A$, também é linear? Justifique.

- 6. Mostre que nenhuma aplicação linear $f: \mathbb{R}^n \to \mathbb{R}^m$, com n < m, é sobrejectiva.
- 7. Demonstre a identidade do paralelogramo: $||u+v||^2 + ||u-v||^2 = 2||u||^2 + 2||v||^2$, $\forall u,v\in\mathbb{R}^n$.
- 8. Diga se a recta $r \equiv (1,1,1) + \langle (1,0,1) \rangle$ intersecta o plano $\pi \equiv x+y=2.$

Esclarecimentos necessários prestados durante a prova.

No exercício 4 recordar que

$$U_{\lambda} = \{ v \in \mathbb{R}^3 : f(v) = \lambda v \}.$$

No exercício 6 tomar em conta a

Sugestão: usar um dos teoremas das dimensões.

Resolução do Exame de Recurso, de 6 de Fevereiro

1)i) Um sistema de vectores $\{v_1, \ldots, v_k\}$ diz-se um sistema de vectores linearmente independentes (s.l.i.) se não forem linearmente dependentes. Isto é, se nenhum deles se escreve como combinação linear dos restantes.

Equivalente: temos um s.l.i. se só há uma forma de obter a combinação linear nula a partir dos v_1, \ldots, v_k — a saber, a que tem os escalares todos nulos.

Ainda de forma equivalente: temos s.l.i. se sempre que se tiver $\lambda_1 v_1 + \cdots + \lambda_n v_n = 0$, então $\lambda_1 = \ldots = \lambda_k = 0$.

ii) O subespaço é gerado por aqueles 3 vectores. Uma base é um conjunto minimal de geradores, logo tem de ser um s.l.i. extraído de entre aqueles 3. Vejamos a característica do sistema:

$$\begin{bmatrix} 1 & 2 & 3 & -2 \\ 0 & 1 & -3 & 1 \\ 1 & 4 & -3 & 0 \end{bmatrix} \xrightarrow{L_3 - L_1} \begin{bmatrix} 1 & 2 & 3 & -2 \\ 0 & 1 & -3 & 1 \\ 0 & 2 & -6 & 2 \end{bmatrix} \xrightarrow{L_3 - 2L_2} \begin{bmatrix} 1 & 2 & 3 & -2 \\ 0 & 1 & -3 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

A característica é claramente 2, logo posso tomar os dois primeiros vectores como base do subespaço, o qual tem dimensão 2.

2)i) Pela sugestão, a matriz de mudança de base é

$$\begin{bmatrix}
1 & 1 & 0 & 1 \\
-\alpha & 0 & 1 & 2 \\
0 & 1 & -\alpha & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

O determinante é, pela regra de Laplace e de seguida a de Sarrus (fica só o quadrado à esquerda em cima), igual a $-1-\alpha^2$. Logo nunca se anula. Logo a matriz de mudança de base é sempre invertível. Os 4 vectores são l.i., ou seja, formam uma base de V qualquer que seja $\alpha \in \mathbb{R}$ (o enunciado diz-nos logo que V tem dimensão 4).

Claro que
$$u_1 + u_2 = v_1 + v_2 + v_4 + v_3 - \alpha v_1 + 2v_4 = (1 - \alpha)v_1 + v_2 + v_3 + 3v_4$$
.

Também se resolve 'de cabeça' o sistema linear para a escrita de v's em u's no caso particular pedido: basta olhar para os vectores,

$$v_1 + v_2 = (v_1 + v_2 + v_4) - v_4 = u_1 - u_4.$$

Se não se consegue ver logo, só temos de resolver o sistema: $v_1 + v_2 = xu_1 + yu_2 + zu_3 + wu_4$.

- ii) W não é subespaço: $v_1-v_2\in W$, pois $1^2=1$, mas $2(v_1-v_2)=2v_1-2v_2\notin W$ pois $2^2\neq 2$. Logo W não é fechado para a multiplicação por escalares.
- iii) Tem-se $xv_1 + yv_2 = yv_1 + xv_2 \Leftrightarrow x = y$. Quer dizer, $S = \{(x, y) \in \mathbb{R}^2 : x = y\}$, ou seja $S = \langle \{(1, 1)\} \rangle$.
- 3) Temos

$$A = \left[\begin{array}{ccc} 5 & -2 & -1 \\ 0 & -2 & 5 \\ 3 & 0 & -4 \end{array} \right]$$

e, como o determinante $|A| = 40 - 30 - 6 = 4 \neq 0$, o sistema tem característica 3 e logo é sempre possível e determinado (independente de B). Para o resolver, 'passa-se A para o outro lado': $AX = B \Leftrightarrow X = A^{-1}B$. Portanto $A' = A^{-1}$ e está resolvida a questão. Não se percebendo bem se se pedia para calcular a inversa, calculamos aqui:

$$\begin{bmatrix} 5 & -2 & -1 & | & 1 & 0 & 0 \\ 0 & -2 & 5 & | & 0 & 1 & 0 \\ 3 & 0 & -4 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{L_3 - \frac{3}{5}L_1} \begin{bmatrix} 5 & 0 & -6 & | & 1 & -1 & 0 \\ 0 & -2 & 5 & | & 0 & 1 & 0 \\ 0 & \frac{6}{5} & -\frac{17}{5} & | & -\frac{3}{5} & 0 & 1 \end{bmatrix} \xrightarrow{L_3 + \frac{3}{5}L_2} \begin{bmatrix} 5 & 0 & -6 & | & 1 & -1 & 0 \\ 0 & -2 & 5 & | & 0 & 1 & 0 \\ 0 & -2 & 5 & | & 0 & 1 & 0 \\ 0 & 0 & -\frac{2}{5} & | & -\frac{3}{5} & \frac{3}{5} & 1 \end{bmatrix} \xrightarrow{L_1 - 15L_3} \begin{bmatrix} 5 & 0 & 0 & | & 10 & -10 & -15 \\ 0 & -2 & 0 & | & -\frac{15}{2} & \frac{17}{2} & \frac{25}{2} \\ 0 & 0 & 1 & | & \frac{3}{2} & -\frac{3}{2} & -\frac{5}{2} \end{bmatrix}$$

acrescido de $L_3 \leftrightarrow -\frac{5}{2}L_3$. Donde

$$A^{-1} = \begin{bmatrix} 2 & -2 & -3\\ \frac{15}{4} & -\frac{17}{4} & -\frac{25}{4}\\ \frac{3}{2} & -\frac{3}{2} & -\frac{5}{2} \end{bmatrix}.$$

Verificação:

$$4A^{-1}A = \begin{bmatrix} 8 & -8 & -12 \\ 15 & -17 & -25 \\ 6 & -6 & -10 \end{bmatrix} \begin{bmatrix} 5 & -2 & -1 \\ 0 & -2 & 5 \\ 3 & 0 & -4 \end{bmatrix} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} = 4.1_3,$$

está certo.

4) Seja e_1, e_2, e_3 a base canónica de \mathbb{R}^3 ; todos sabemos que vectores são. Temos por hipótese

$$f(0,0,1) = 0,$$
 $f(2,0,1) = (2,0,1),$ $f(2,3,0) = (2,3,0),$

ou seja, $f(e_3) = 0$, $f(2e_1 + e_3) = 2e_1 + e_3$, $f(2e_1 + 3e_2) = 2e_1 + 3e_2$. Agora, por linearidade, da segunda destas equações vem

$$2f(e_1) + f(e_3) = 2e_1 + e_3 \Leftrightarrow 2f(e_1) = 2e_1 + e_3 \Leftrightarrow f(e_1) = e_1 + \frac{1}{2}e_3$$

e da terceira vem

$$2f(e_1) + 3f(e_2) = 2e_1 + 3e_2 \Leftrightarrow (2e_1 + e_3) + 3f(e_2) = 2e_1 + 3e_2 \Leftrightarrow f(e_2) = e_2 - \frac{1}{3}e_3.$$

Finalmente

$$f(x,y,z) = f(xe_1 + ye_2 + ze_3) = xf(e_1) + yf(e_2) + zf(e_3) =$$

$$= x(e_1 + \frac{1}{2}e_3) + y(e_2 - \frac{1}{3}e_3) + 0 = xe_1 + ye_2 + (\frac{1}{2}x - \frac{1}{3}y)e_3$$

$$= (x, y, \frac{1}{2}x - \frac{1}{3}y).$$

4) (outra solução) Os vectores próprios apresentados (associados a 0 ou a 1) constituem claramente uma base de \mathbb{R}^3 . Então existem escalares únicos $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ tais que

$$(x, y, z) = \alpha_1(0, 0, 1) + \alpha_2(2, 0, 1) + \alpha_3(2, 3, 0).$$

Resolvemos o sistema:

$$\begin{cases} z = \alpha_1 + \alpha_2 \\ x = 2\alpha_2 + 2\alpha_3 \end{cases} \Leftrightarrow \begin{cases} \alpha_1 = z - \frac{x}{2} + \frac{y}{3} \\ \alpha_2 = \frac{x}{2} - \frac{y}{3} \\ \alpha_3 = \frac{y}{3} \end{cases}.$$

Então

$$f(x,y,z) = \alpha_1 f(0,0,1) + \alpha_2 f(2,0,1) + \alpha_3 f(2,3,0)$$

$$= \alpha_1 \cdot 0 + \alpha_2 (2,0,1) + \alpha_3 (2,3,0)$$

$$= \left(\frac{x}{2} - \frac{y}{3}\right) (2,0,1) + \frac{y}{3} (2,3,0)$$

$$= \left(x, y, \frac{1}{2} x - \frac{1}{3} y\right).$$

5) Sejam $A_1,A_2\in\mathcal{M}_{n,n}$ e $\mu\in\mathbb{R}$. Então, sendo $A_q=[a_{ij}^q]_{i,j=1,\dots,n}$ para q=1,2, vem

$$\operatorname{Tr}(A_1 + \mu A_2) = \sum_{i=1}^{n} (a_{ii}^1 + \mu a_{ii}^2) = \sum_{i} a_{ii}^1 + \mu \sum_{i} a_{ii}^2 = \operatorname{Tr} A_1 + \mu \operatorname{Tr} A_2$$

como queríamos.

A aplicação g não é linear (porque aparece o argumento A numa expresão quadrática): basta confirmar com um exemplo

$$q(5A) = 5A.\text{Tr}(5A) = 5A.5\text{Tr} A = 25A\text{Tr} A \neq 5q(A).$$

- 6) Pelo teorema das dimensões (ver sugestão), sabemos que dim $\mathbb{R}^n = n = \dim \operatorname{Nuc} f + \dim \operatorname{Im} f$. Daqui se vê logo que dim $\operatorname{Im} f \leq n$. E como por hipótese n < m, terá de ser $\operatorname{Im} f$ estritamente mais pequeno que \mathbb{R}^m . Ou seja, f não cobre todo o espaço de chegada. Isto mostra que f não é sobre jectiva.
- 7) Usando as propriedades conhecidas do produto interno, vem

$$\begin{split} \|u+v\|^2 + \|u-v\|^2 &= \langle u+v, u+v \rangle + \langle u-v, u-v \rangle \\ &= \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle + \\ & \langle u, u \rangle - \langle u, v \rangle - \langle v, u \rangle + \langle v, v \rangle \\ &= 2\langle u, u \rangle + 2\langle v, v \rangle \\ &= 2\|u\|^2 + 2\|v\|^2. \end{split}$$

8) Um ponto (1+t,1,1+t), $t\in\mathbb{R}$, da recta r está em π ? Se e só se $(1+t)+1=2 \Leftrightarrow t=0$. Sim, há solução. Logo há intersecção. No ponto (1,1,1), como se via logo.

Terá mesmo de ser $\{(1,1,1)\}=r\cap\pi$.

Programa do curso de Álgebra Linear e Geometria Analítica, 2008/09

- 1) Elementos da teoria dos conjuntos
- noções básicas, leis de Morgan, produtos cartesianos
- funções, injectividade e sobrejectividade
- relações de equivalência
 - 2) Os números reais
- o corpo R e breves noções sobre grupo, anel e corpo
- divisores de zero
 - 3) O anel das matrizes e sistemas lineares
- Álgebra das matrizes sobre R (referência ao corpo qualquer)
- matrizes especiais
- sistemas de equações lineares
- transposta, inversa, cálculo da inversa, o método da transposição
- resolução de sistemas por matriz ampliada
- vectores em \mathbb{R}^n , independência linear
- característica de uma matriz
- estudo dos sistemas
 - 4) Determinantes
- definição, cálculo, regras
- teoria dos menores, regra de Laplace
 - 5) Espaços vectoriais sobre \mathbb{R}
- definição (com referência ao corpo qualquer), exemplos, soma directa
- subespaços vectoriais, espaço vectorial quociente (NÃO FOI DADO)
- bases e dimensão
- dimensão da soma directa de subespaços
 - 6) Aplicações lineares
- definição, núcleo, imagem
- representação matricial, o produto vs composição
- transformação por mudança de bases
- teorema do homomorfismo
 - 7) Valores vectores próprios
- definição e polinómio característico
- diagonalização
 - 8) Geometria do plano e do espaço
- planos e rectas afins
- distância entre planos, rectas e pontos
- volumes

Bibliografia recomendada para o curso de ALGA 2008/09

- 1 Dias Agudo, F.R., "Introdução à Álgebra Linear e Geometria Analítica", Livraria Escolar Editora
 - 2 Greub, W., "Linear Algebra", Springer
 - 3 Lipschutz, S., "Álgebra Linear", McGraw-Hill
- 4 Magalhães, L.T. "Álgebra linear como introdução à matemática aplicada", Texto editora
- 5 Monteiro, A.J.A., "Álgebra Linear e Geometria Analítica", edição da Associação de Estudantes da FCUL
 - 6 Silva Ribeiro, C., "Álgebra linear: exercícios e aplicações", McGraw-Hill

Nota: há muitos mais livros de álgebra linear na secção M15 da biblioteca.