# **Answer to Q1:**

a) Insufficient training data -

# Ans.1. Linear Discriminant Analysis

Because Logistic regression can become unstable when there are few examples from which to estimate the parameters.

b) Class imbalance -

Ans. **3. Either of the two.** We need to use additional sampling in case of class imbalance to improve the accuracy of model

c) Different co-variance matrices for the classes with Gaussian distribution.

Ans. **2. Logistic Regression** works well when co-variance matrices differ for the classes, because LDA expects Homogeneity of variance /covariance among classes.

d) Uniform distribution instead of Gaussian distribution.

Ans. **2. Logistic Regression** because LDA for simplification assumes that data is gaussian.

## Answer to Q2:

**Initial Entropy:** 

$$H(x) = -(((4/10)*log2(4/10))+((6/10)*log2_2(6/10)))$$
  
= 0.971

#### **Information Gain (Weather):**

```
Entropy(Weather) =
(4/10)*(-((3/4)*log2(3/4)+(1/4)*log2(1/4))) (Weather=Fine)
+ (4/10)*(-((3/4)*log2(3/4)+(1/4)*log2(1/4))) (Weather=Rain)
+ (2/10)*0 (Weather=Cloudy)
= 0.646
Information Gain(Weather) = Initial Entropy - Entropy(Weather) = 0.971 - 0.646 = 0.325
```

### **Information Gain (Humidity):**

```
Entropy(Humidity) = (5/10) * (-((%)*log2(%)+(%)*log2(%)) (Humidity = High) + (5/10) * (-((%)*log2(%)+(%)*log2(%)) (Humidity = Medium) = 0.843
```

### **Information Gain (Wind):**

```
Entropy(Wind) = (7/10) * (-((5/7)*log2(5/7)+(2/7)*log2(2/7)) (Wind = None) + (3/10) * (-((\frac{1}{3})*log2(\frac{1}{3})+(\frac{2}{3})*log2(\frac{2}{3})) (Wind = Breezy) = 0.88
```

Since, Information gain is high if we split data set on attribute weather, we will pick Weather as an attribute to split initially.



| RID | Humidity  | Wind   | Play Golf | RID | Humidity | Wind   | Play Golf | RID | Humidity | Wind   | Play Golf |
|-----|-----------|--------|-----------|-----|----------|--------|-----------|-----|----------|--------|-----------|
| 1   | high      | none   | no        | 2   | medium   | breezy | yes       | 7   | high     | none   | yes       |
| 2   | 100000000 |        |           | 6   | high     | none   | yes       | 8   | medium   | none   | yes       |
| 3   | high      | none   | no        |     |          |        |           | 9   | medium   | breezy | no        |
| 4   | medium    | none   | yes       |     |          |        |           | 10  | medium   | none   | yes       |
| 5   | high      | breezy | no        |     |          |        |           |     |          |        | •         |

Now new computing information gain for each individual sub data sets

1. Sub Data Set Weather=Fine

# **Initial Entropy:**

$$H(x) = -(((\frac{1}{4})*log2(\frac{1}{4}))+((\frac{3}{4})*log2(\frac{3}{4})))$$
  
= 0.811

# **Information Gain (Humidity):**

Entropy(Humidity) = 
$$(3/4) * (-((3/3)*log2(3/3)+(0/3)*log2(0/3))$$
 (Humidity = High) +  $(1/4) * (-((1/1)*log2(1/1)+(0/1)*log2(0/1))$  (Humidity = Medium) = 0 Information Gain (Humidity) = Initial Entropy - Entropy(Humidity)

Since here information gain is maximum here for this split, we can skip other attributes and split on Humidity

= 0.811 - 0 = 0.811



# 2. Sub Data Set Weather=Cloud

We can stop examining further attributes for this split since information gain is maximum here.

3. Sub Data Set Weather=Rain

### **Initial Entropy:**

$$H(x) = -(((\frac{1}{4})*log2(\frac{1}{4}))+((\frac{3}{4})*log2(\frac{3}{4})))$$
  
= 0.811

### Information Gain (Humidity):

Entropy(Humidity) =

$$(3/4) * (-((2/3)*log2(2/3)+(1/3)*log2(1/3))$$
 (Humidity = Medium)

$$+ (1/4) * (-((1/1)*log2(1/1)+(0/1)*log2(0/1)) (Humidity = High)$$

= 0.68875

**Information Gain (Humidity) =** Initial Entropy - Entropy(Humidity)

$$= 0.811 - 0.68875 = 0.12225$$

### **Information Gain (Wind):**

Entropy(Wind) =

$$(3/4) * (-((3/3)*log2(3/3)+(0/3)*log2(0/3))$$
 (Wind = none)

$$+ (1/4) * (-((1/1)*log2(1/1)+(0/1)*log2(0/1)) (Wind = breeze)$$

= 0

**Information Gain (Wind) =** Initial Entropy - Entropy(Wind)

$$= 0.811 - 0 = 0.811$$

So for this split, if we split of Wind we get maximum gain.



# Final Decision Tree will look like this.

