

이론, 실습, 시뮬레이션 디지털 논리회로 캠핑크

Chapter 02. 수(數)의 체계

학습목표 및 목차

- 10진수, 2진수, 8진수, 16진수 등의 표현 방법을 이해할 수 있다.
- 10진수, 2진수, 8진수, 16진수 등을 상호 변환할 수 있다.
- 2진수의 연산과 2진수 음수의 표현 방법을 이해하고 이를 활용할 수 있다.
- 부동소수점 2진수를 IEEE 754 표준 방식으로 표현할 수 있다.
- 01. 10진수
- 02. 2진수
- 03. 8진수와 16진수
- 04. 진법 변환
- 05. 2진수 정수 연산과 보수
- 06. 2진 부동소수점수의 표현

01 10진수

■ 10진수 표현법

- 10진수: 기수가 10인 수
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9의 10개 수로 표현

$$9345.35 = 9 \times 1000 + 3 \times 100 + 4 \times 10 + 5 \times 1 + 3 \times 0.1 + 5 \times 0.01$$
$$= 9 \times 10^{3} + 3 \times 10^{2} + 4 \times 10^{1} + 5 \times 10^{0} + 3 \times 10^{-1} + 5 \times 10^{-2}$$

- 바빌로니아인 : 60진법을 사용(기원전 4000~3000년)
- 고대 로마의 기수법에는 5진법을 사용
- 10진법의 아라비아 숫자는 인도에서 기원전 2세기에 발명

☞ 진법을 나타내는 기본수를 기수(基數, radix)라 한다. 10이 기수인 수를 10진법, 2가 기수인 수를 2진법, 12가 기수인 수를 12진법이라 한다.

02 2진수

■ 2진수 표현법

- 기수가 2인 수
- 0, 1 두 개의 수로 표현

$$1010.1011_{(2)} = 1 \times 1000_{(2)} + 0 \times 100_{(2)} + 1 \times 10_{(2)} + 0 \times 1_{(2)}$$
$$+1 \times 0.1_{(2)} + 0 \times 0.01_{(2)} + 1 \times 0.001_{(2)} + 1 \times 0.0001_{(2)}$$
$$= 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} + 1 \times 2^{-4}$$

Punch card

Core memory

03 8진수와 16진수

■ 8진수 표현법

■ 0~7까지 8개의 수로 표현

$$607.36_{(8)} = 6 \times 100_{(8)} + 0 \times 10_{(8)} + 7 \times 1_{(8)} + 3 \times 0.1_{(8)} + 6 \times 0.01_{(8)}$$
$$= 6 \times 8^{2} + 0 \times 8^{1} + 7 \times 8^{0} + 3 \times 8^{-1} + 6 \times 8^{-2}$$

■ 2진수 3자리는 8진수 1자리 : $2^3 = 8^1$

```
10101110100010.0111111_{(2)} = 10 101 110 100 010.011 111 1_{(2)}
= 010 101 110 100 010.011 111 100_{(2)}
= 2 5 6 4 2. 3 7 4_{(8)}
```

■ 2진수에 해당하는 8진수

8진수	0	1	2	3	4	5	6	7
2진수	000	001	010	011	100	101	110	111

03 8진수와 16진수

■ 16진수 표현법

■ 0~9, A~F까지 16개의 기호로 표현

$$6C7.3A_{(16)} = 6 \times 100_{(16)} + C \times 10_{(16)} + 7 \times 1_{(16)} + 3 \times 0.1_{(16)} + A \times 0.01_{(16)}$$
$$= 6 \times 16^{2} + C \times 16^{1} + 7 \times 16^{0} + 3 \times 16^{-1} + A \times 16^{-2}$$

• 2진수 4자리는 16진수 1자리 : $2^4 = 16^1$

10진수	0	1	2	3	4	5	6	7
16진수	0	1	2	3	4	5	6	7
2진수	0000	0001	0010	0011	0100	0101	0110	0111
10진수	8	9	10	11	12	13	14	15
16진수	8	9	A	В	C	D	E	F
2진수	1000	1001	1010	1011	1100	1101	1110	1111

1. 10진수-2진수 변환

- 정수부분과 소수부분으로 나누어 변환
- 정수부분은 2로 나누고, 소수부분은 2를 곱한다.
- 10진수 75.6875를 2진수로 변환

$$75.6875_{(10)} = 1001011.1011_{(2)}$$

- 10진수 75.6을 2진수로 변환하는 경우
- 10진수 소수부분은 대부분의 경우 정확한 2진수로 변환이 안 된다.

 $75.6_{(10)} = 1001011.1001 1001 1001 1001...._{(2)}$

2. 10진수-8진수 변환

- 10진수 75.6875를 8진수로 변환
- 8로 나누고, 곱한다.

$$75.6875_{(10)} = 113.54_{(8)}$$

■ 10진수 75.6을 8진수로 변환 75.6=113.46314631...₍₈₎

3. 10진수-16진수 변환

■ 10진수 75.6875를 16진수로 변환

$$75.6875_{(10)} = 4B.B_{(16)}$$

■ 10진수 75.6을 16진수로 변환

$$75.6_{(10)} = 4B.999..._{(16)}$$

다른 진법의 경우도 같은 방법을 이용하여 변환할 수 있다.

■ 10진수-5진수 변환

■ 10진수 75.6875를 5진수로 변환

$$75.6_{(10)} = 300.32043204..._{(5)}$$

4. 2진수-8진수-16진수-10진수 상호 변환

10진수	2진수	8진수	16진수
0	0000	00	0
1	0001	01	1
2	0010	02	2
3	0011	03	3
4	0100	04	4
5	0101	05	5
6	0110	06	6
7	0111	07	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	Е
15	1111	17	F

■ 상호변환 예

```
75.6875 = 1001011.1011<sub>(2)</sub>
= 001 001 011.101 100<sub>(2)</sub>
= 1 1 3. 5 4<sub>(8)</sub>
```

```
75.6 = 1001011.10011001100110011..._{(2)}
= 001 001 011.100 110 011 001 100 110 011..._{(2)}
= 1 1 3. 4 6 3 1 4 6 3..._{(8)}
```

■ 상호변환 예(Cont'd)

```
75.6875 = 1001011.1011_{(2)}
= 0100 \ 1011.1011_{(2)}
= 4 B. B_{(16)}
```

```
75.6 = 1001011.10011001100110011..._{(2)}
= 0100 \ 1011.1001 \ 1001 \ 1001 \ 1001 \ 1001..._{(2)}
= 4 \quad B. \quad 9 \quad 9 \quad 9 \quad 9..._{(16)}
```

■ 상호변환 예(Cont'd)

$$367.75_{(8)} = 011\ 110\ 111.111\ 101_{(2)}$$

8진수 1자리 = 2진수 3자리

$$9A3.50F3_{(16)} = 1001 \ 1010 \ 0011.0101 \ 0000 \ 1111 \ 0011_{(2)}$$

16진수 1자리 = 2진수 4자리

$$101101.101_{(2)} = 1 \times 2^{5} + 0 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$$
$$= 32 + 0 + 8 + 4 + 0 + 1 + 0.5 + 0 + 0.125 = 45.625_{(10)}$$

각 자리에 기수의 거듭제곱을 곱하여 10진수로 변환

■ 상호변환 예(Cont'd)

$$364.35_{(8)} = 3 \times 8^{2} + 6 \times 8^{1} + 4 \times 8^{0} + 3 \times 8^{-1} + 5 \times 8^{-2}$$

$$= 3 \times 64 + 6 \times 8 + 4 \times 1 + 3 \times 0.125 + 5 \times 0.015325$$

$$= 192 + 48 + 4 + 0.375 + 0.078125$$

$$= 244.453125_{(10)}$$

- 10×16¹ + 3×16⁰ + 13×16⁻¹ + 2×16⁻² 10진수로 변환

$$A3.D2_{(16)} = 10 \times 16^{1} + 3 \times 16^{0} + 13 \times 16^{-1} + 2 \times 16^{-2}$$

$$= 10 \times 160 + 3 \times 1 + 13 \times 0.8125 + 2 \times 0.0078125$$

$$= 160 + 3 + 0.8125 + 0.0078125$$

$$= 163.8203125_{(10)}$$

■ 상호변환 예(Cont'd)

1. 2진 양의 정수 덧셈

■ 0+0=0, 0+1=1, 1+0=1, 1+1=10 (자리올림 발생)

2. 2진 음의 정수 표현과 보수

- 최상위비트(MSB)를 부호비트로 사용
 - 양수(+):0 음수(-):1
- 2진수 음수를 표시하는 방법
 - 부호와 절대치(sign-magnitude)
 - 1의 보수(1's complement)
 - 2의 보수(2's complement)

- 부호와 절대치
 - 부호비트만 양수와 음수를 나타내고 나머지 비트들은 같다.
- 1의 보수로 변환하는 방법
 - 0 → 1, 1 → 0으로 변환
 - 00000011 → 1의 보수 = 11111100
- 2의 보수로 변환하는 방법
 - 1의 보수 + 1 = 2의 보수
 - 00000011 → 2의 보수 = 1의 보수 + 1 = 11111100 + 1 = 11111101
 - 01101100 → 2의 보수 = 1의 보수 + 1 = 10010011 + 1 = 10010100

- *r*진법 *n*자릿수 *x*의 *r*의 보수 : *r*^{*n*}-*x*
- r진법 n자릿수 x의 r-1의 보수 : r^n -1-x
 - 567의 9의 보수 : 10³-1-567=999-567=432
 - 567의 10의 보수 : 10³-567=1000-567=433
 - 00000011의 1의 보수 : 2⁸-1-00000011=111111111-00000011=111111100
 - 00000011의 2의 보수 : 28-00000011=100000000-00000011=111111101
- 양수를 보수로 바꾸면 음수
- 음수를 보수로 바꾸면 양수

- 2진수와 그 수의 1의 보수와의 합은 모든 bit가 1이 된다.
- 2진수와 그 수의 2 보수와의 합은 모든 bit가 0이 된다. (자릿수를 벗어나는 비트는 제외)

<2진수의 표현 방법 3가지(8bit)>

	8비트 크기이며, MSB가 부호비트임				
2진수	부호와 절대치	1의 보수	2의 보수		
00000000	+0	+0	+0		
00000001	+1	+1	+1		
00000010	+2	+2	+2		
00000011	+3	+3	+3		
	•••	•••	•••		
01111100	+124	+124	+124		
01111101	+125	+125	+125		
01111110	+126	+126	+126		
01111111	+127	+127	+127		
10000000	-0	-127	-128		
10000001	-1	-126	-127		
10000010	-2	-125	-126		
10000011	-3	-124	-125		
•••	•••	•••	•••		
11111100	-124	-3	-4		
11111101	-125	-2	-3		
11111110	-126	-1	-2		
11111111	-127	-0	-1		

■ 부호와 절대치의 표현(4bit)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0	+0
0 0 1 0 0 0 1 1 + 0 1 0 0 0 1 0 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+2
0 1 0 1	+3
	+4
0 1 1 0	+5
0 1 1 0	+6
0 1 1 1	+7
0 1 0 0 0	-0
1 0 0 1	-1
1 0 1 0	-2
1 0 1 1	-3
- 1 1 0 0	-4
1 1 0 1	-5
1 1 1 0	-6
1 1 1 1	-7

■ 1의 보수 표현(4bit)

/부호 비트						
0	0	0	0	0		+0
	0	0	0	1		+1
	0	0	1	0		+2
	0	0	1	1		+3
+	0	1	0	0		+4
	0	1	0	1		+5
	0	1	1	0		+6
	0	1	1	1		+7
	1	0	0	0		-7
	1	0	0	1		-6
	1	0	1	0		-5
_	1	0	1	1		-4
	1	1	0	0		-3
	1	1	0	1		-2
	1	1	1	0		-1
0	1	1	1	1		-0

구오 미드						
1	1	1	1	-0		
1	1	1	0	-1		
1	1	0	1	-2		
1	1	0	0	-3		
1	0	1	1	-4		
1	0	1	0	-5		
1	0	0	1	-6		
1	0	0	0	-7		
0	1	1	1	+7		
0	1	1	0	+6		
0	1	0	1	+5		
0	1	0	0	+4		
0	0	1	1	+3		
0	0	1	0	+2		
0	0	0	1	+1		
0	0	0	0	+0		

/브증 HIE

■ 2의 보수 표현(4bit)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	/부호 비트						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	0	0	0		0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	0	1		+1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0	1	0		+2
0 1 0 1 +5 0 1 1 0 +6 0 1 1 1 +7 1 0 0 0 -8 1 0 0 0 -8 1 0 0 1 -7 1 0 1 0 -6 1 0 1 1 -5 1 1 0 0 -4 1 1 0 1 -3 1 1 1 0 -2		0	0	1	1		+3
0 1 1 0 +6 0 1 1 1 +7 1 0 0 0 -8 1 0 0 1 -7 1 0 1 0 -6 - 1 0 1 1 -5 1 1 0 0 -4 1 1 0 1 -3 1 1 1 0 -2	+	0	1	0	0		+4
0 1 1 1 +7 1 0 0 0 -8 1 0 0 1 -7 1 0 1 0 -6 - 1 0 1 1 -5 1 1 0 0 -4 1 1 0 1 -3 1 1 1 0 -2		0	1	0	1		+5
1 0 0 0 -8 1 0 0 1 -7 1 0 1 0 -6 1 0 1 1 -5 1 1 0 0 -4 1 1 0 1 -3 1 1 1 0 -2		0	1	1	0		+6
1 0 0 1 -7 1 0 1 0 -6 - 1 0 1 1 -5 1 1 0 0 -4 1 1 0 1 -3 1 1 1 0 -2		0	1	1	1		+7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	0	0	0		-8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	0	0	1		-7
1 1 0 0 -4 1 1 0 1 -3 1 1 1 0 -2		1	0	1	0		-6
1 1 0 1 -3 1 1 1 0 -2		1	0	1	1		-5
1 1 1 0 -2		1	1	0	0		-4
		1	1	0	1		-3
1 1 1 1 -1		1	1	1	0		-2
		1	1	1	1		-1

/ 쿠오 미드						
0	0	0	0	0		
1	1	1	1	-1		
1	1	1	0	-2		
1	1	0	1	-3		
1	1	0	0	-4		
1	0	1	1	-5		
1	0	1	0	-6		
1	0	0	1	-7		
1	0	0	0	-8		
0	1	1	1	+7		
0	1	1	0	+6		
0	1	0	1	+5		
0	1	0	0	+4		
0	0	1	1	+3		
0	0	1	0	+2		
0	0	0	1	+1		

, ㅂㅎ 비트

■ 뺄셈 : 보수를 취하여 더하면 뺄셈을 수행(Carry가 있으면 버림)

$$7928-879 = 7928+(-879) = 7928+(-0879)$$
 $\Rightarrow 7928+(10^4-0879) = 7928+9121 = 17049$ $\Rightarrow 7049$

bit 수	2의 보수를 사용한 2진 정수의 표현 범위
<i>n</i> bit	$-2^{n-1} \sim +2^{n-1} -1$
4 bit	$-2^{4-1} \sim +2^{4-1} -1 (-8 \sim +7)$
8 bit	$-2^{8-1} \sim +2^{8-1} -1 (-128 \sim +127)$
16 bit	$-2^{16-1} \sim +2^{16-1} -1 (-32,768 \sim +32,767)$
32 bit	$-2^{32-1} \sim +2^{32-1} -1 (-2,147,483,648 \sim +2,147,483,647)$
64 bit	$-2^{64-1} \sim +\ 2^{64-1} -1\ (-9,223,372,036,854,775,808 \sim 9,223,372,036,854,775,807)$

자릿수 맞춤

n비트 2의 보수에 대한 10진수의 표현 범위

3. 부호 확장

■ 부호 확장이란 늘어난 비트 수 만큼 부호를 늘려주는 방법

2진수	부호 확장 방법	예			
표현 방식	구조 극이 이터	구분	8bit	16bit 확장	
ㅂ둥이 그기	부호만 MSB에 복사하고,	양수	0 0101010	00000000 00101010	
부호와 크기	나머지는 0으로 채움	음수	1 0010111	10000000 00010111	
101日人	늘어난 길이만큼 부호와	양수	0 0101010	00000000 00101010	
1의 보수	같은 값으로 모두 채움	음수	1 0010111	11111111 10010111	
201 日人	늘어난 길이만큼 부호와	양수	0 0101010	00000000 00101010	
2의 보수	같은 값으로 모두 채움	음수	1 0010111	11111111 10010111	

4. 2의 보수로 표현된 음수를 10진수로 변환

■ 2의 보수 10101100을 10진수로 변환하는 경우

첫 번 째 방 법

MSB가 1이므로 음수이다. 실제크기는 -128이다.

$$10101100_{(2)} = -1 \times 2^{7} + 0 \times 2^{6} + 1 \times 2^{5} + 0 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 0 \times 2^{0}$$
$$= -128 + 0 + 32 + 0 + 8 + 4 + 0 + 0 = -128 + 44$$
$$= -84$$

두번째방법

2의 보수로 바꾸어 10진수로 바꾼 다음 -부호를 붙인다.

$$10101100_{(2)}$$
 ⇒ 2의 보수 $01010100_{(2)}$
= $0 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 0 \times 2^0$
= $0 + 64 + 0 + 16 + 0 + 4 + 0 + 0$
= 84 나 - 부호를 붙이면 - 84

5. 2의 보수 연산

양수 + 양수 = 양수	큰 수 - 작은 수 = 양수	작은 수 - 큰 수 = 음수
(49+58=107)	(58-49=9)	(49-58=-9)
Carry $\rightarrow \underline{0110000}$ 00110001 $+ 00111010$ $\underline{0} 01101011$	Carry → <u>1</u> 1111110 00111010 - <u>00110001</u> 같음 <u>+ 11001111</u> 1 00001001	Carry \rightarrow 0000000 00110001 $- 00111010$ 00110001 $+ 11000110$ $0 11110111$
음수 + 음수 = 음수	큰 양수 + 큰 양수 = 음수	큰 음수 + 큰 음수 = 양수
(-49-58=-107)	(98+74=-84)	(-98-74=+84)
Carry $\rightarrow 1001110$ - 00110001 - 00111010 11001111 + 11000110 1 10010101	Carry → <u>1</u> 000010 01100010 + 01001010 H로 → <u>0</u> 10101100 CH를 overf	Carry \rightarrow 0111110 - 01100010 - 01001010 10011110 + 10110110 1 01010100

■ 2진 정수의 2의 보수 개념도

5에서 +방향으로 5만을 이동하면 -6이 된다.

98+74는 98에 +방향으로 74**만을** 이동하면 -84가 된다.

- 컴퓨터의 부동소수점수는 IEEE 754표준을 따른다.
- 부호(sign), 지수(exponent), 가수(mantissa)의 세 영역으로 표시
- 단정도(single precision) 부동소수점수와 배정도(double precision) 부동소수점수의 두 가지 표현 방법이 있다.

단정도 및 배정도 부동소수점수의 비트 할당

구분	IEEE 754 표준 부동소수점수의 비트 할당	바이어스
단정도 부동소수 점수	8 bit 23 bit	127
배정도 부동소수 점수	11 bit 52 bit 63 62 61 53 52 51 50 1 0 S Exponent Mantissa	1023

- 정규화(normalization) : 과학적 표기 방법
 - 2진수의 정규화

$$75.6875 = 1001011.1011_{(2)}$$
$$= 1.0010111011_{(2)} \times 2^{6}$$
$$= 1.0010111011_{(2)} \times 2^{110_{(2)}}$$

- 바이어스(bias): 지수의 양수, 음수를 나타내기 위한 방법
 - IEEE 754 표준에서는 바이어스 127(단정도) 또는 1023(배정도)을 사용
 - 표현 지수 = 바이어스 + 2진 지수 값

부호 : 1비트	지수(bias 127) : 8비트	가수(1.xxx): 23비트
양수		1.을 생략한 가수 (1. <mark>0001011011</mark>)
0	10000101	001011101100000000000000

여기에 "1."이 숨어 있다.

■ 10진수 -0.2를 단정도 부동소수점으로 표현

■ 2진수로 변환하고 정규화한다.

$$-0.2 = -0.00110011001100110011001..._{(2)}$$
$$= -1.10011001100110011001..._{(2)} \times 2^{-3}$$
$$= -1.10011001100110011001... \times 2^{-11_{(2)}}$$

부호 : 1비트	지수(bias 127) : 8비트	가수(1.xxx): 23비트
양수	127 - 3 (01111111 - 00000011)	1.을 생략한 가수 (1.1001100110011001100)
0	01111100	1001100110011001100

여기에 "1."이 숨어 있다.

■ 컴퓨터에서의 부동소수점수의 표현 범위

	단정도 부동소수점수	배정도 부동소수점수
비정규화된 2진수	~ $\pm 2^{-149}$ to $\pm (1-2^{-23}) \times 2^{126}$	~ $\pm 2^{-1074}$ to $\pm (1-2^{-52}) \times 2^{1022}$
정규화된 2진수	~ $\pm 2^{-126}$ to $\pm (2-2^{-23}) \times 2^{127}$	~ $\pm 2^{-1022}$ to $\pm (2-2^{-52}) \times 2^{1023}$
10진수	~ $\pm 1.40 \times 10^{45}$ to $\pm 3.40 \times 10^{38}$	~ $\pm 4.94 \times 10^{-324}$ to $\pm 1.798 \times 10^{308}$

감사합니다 ☺

