Handle Missing Values in Dataset

Author: [Muhammad Umar]

Date: [Date]

Section # 1: Data Visualization

HISTROGRAM PLOT OF AGE (DISTRIBUTION CHECK)

```
# import Libraries
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
ages = [15, 18, 20, 22, 23, 25, 25, 26, 27, 28, 29, 30, 30, 31, 32, 35, 36, 38, 40, 42, 45, 50, 52, 55, 60, 65, 70, 72, 75, 80]
df=pd.DataFrame({"age": ages})
# Histrogram with KDE
sns.histplot(df["age"], kde=True , bins=10)
plt.title("Histrogram of Age")
plt.xlabel("Age")
plt.ylabel("Frequency")
plt.show()
                                 Histrogram of Age
    6
    5
    3
    2
```

BOX PLOT OF AGE (OUTLIERS DETECTION)

30

40

50

60

70

20

1

0

```
# import libraries
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
ages = [15, 18, 20, 22, 23, 25, 25, 26, 27, 28, 29, 30, 30, 31, 32, 35, 36, 38, 40, 42, 45, 50, 52, 55, 60, 65, 70, 72, 75, 80]
df=pd.DataFrame({"age": ages})
# boxplot
sns.boxplot(df["age"])
plt.title("Boxplot of Age")
plt.show()
                                       Boxplot of Age
    80
     70
     60
 age 50
     40
     30
     20
```

SCATTER PLOT OF AGE AND FARE (OUTLIERS DETECTION)

```
# import libraries
import pandas as pd
import matplotlib.pyplot as plt
# dammy data set
ages = [22, 25, 30, 35, 40, 28, 26, 32, 34, 29, 45, 50, 18, 60, 15]
fares =[7.25, 71.83, 8.05, 53.10, 30.00, 13.00, 7.90, 26.00, 27.72, 10.50, 83.47, 25.93, 9.35, 120.00, 3.17]
df = pd.DataFrame({
     "Age": ages,
"Fare": fares
})
# scatter plot with KDE
plt.scatter(df['Age'], df['Fare'])
plt.title("Scatter Plot: Age vs Fare")
plt.xlabel("Age")
plt.ylabel("Fare")
plt.show()
                                     Scatter Plot: Age vs Fare
     120
     100
      80
 Fare
      60
       40
      20
                                                                           50
                                                                                             60
                       20
                                        30
                                                          40
```

HEAT-MAP OF AGE, FARE, INCOME

Age

```
# import libraries
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# Dummy dataset
data = {
     "Age": [15, 18, 20, 22, 23, 25, 26, 28, 30, 35, 40, 45, 50, 55, 60],
"Fare": [5, 7, 10, 15, 20, 25, 30, 35, 40, 50, 60, 75, 90, 110, 130],
"Income": [100, 200, 250, 300, 350, 400, 450, 470, 500, 600, 700, 800, 900, 1000, 1200]
df = pd.DataFrame(data)
# Correlation matrix
# Heatmap
plt.figure(figsize=(6,4))
sns.heatmap(corr, annot=True, cmap="coolwarm", fmt=".2f")
plt.title("Correlation Heatmap")
plt.show()
                       Correlation Heatmap
                                                                                  1.000
                                                                                  0.999
 Age
               1.00
                                     0.99
                                                           1.00
                                                                                  0.998
                                                                                 - 0.997
                                                                                 - 0.996
              0.99
                                                                                 0.995
                                                                                 0.994
  ncome
               1.00
                                     0.99
                                                           1.00
                                                                                   0.993
              Age
                                     Fare
                                                          Income
```

SECTION # 2: Handling Missing Values (Mean, Median, Mode)

NOW WE HANDLE MISSING VALUES WITH (MEAN)

```
import pandas as pd
import numpy as np
# dummy Data set:
data=pd.DataFrame({"age" : [10,12,14,13,15,14,19,18,20,25,28,np.nan,29,30,np.nan,33,35]})
\ensuremath{\text{\#}} print the data with missing values
print("-----
print(f"Here is the data with Missing Values:\n {data}")
# Calculate the Mean
mean=data["age"].mean()
# replace the missing values with mean
data["age"]=data["age"].fillna(mean)
\ensuremath{\text{\#}} now print the data without missing values
print(f"Here is the data without missing values:\n {data}")
Here is the data with Missing Values:
   age
10.0
    12.0
    13.0
    14.0
    19.0
    18.0
8 20.0
9 25.0
10 28.0
11
     NaN
13 30.0
14 NaN
15 33.0
16 35.0
Here is the data without missing values:  \\
age
0 10.0
    12.0
14.0
    13.0
    14.0
6
    19.0
    18.0
8
9
    20.0
10
    28.0
11 21.0
    29.0
12
13 30.0
15
    33.0
16 35.0
```

NOW WE HANDLE MISSING VALUES WITH (MEDIAN)

```
import pandas as pd
\texttt{data=pd.DataFrame}(\{\texttt{"age"} : [10,12,14,13,15,14,19,18,20,25,28,np.nan,29,30,np.nan,33,35]\})
# print the data with missing values:
print(f"Here is the data with Missing Values:\n {data}")
# Calculate the medean
median=data["age"].median()
# replace the missing values with median
data["age"]=data["age"].fillna(median)
\mbox{\tt\#} now print the data without missing values:
print(f"Here is the data without missing values:\n {data}")
Here is the data with Missing Values:
   age
10.0
0
    12.0
14.0
3
    13.0
5
6
7
    14.0
    19.0
    18.0
8
9
    20.0
10 28.0
11
     NaN
12
   29.0
13 30.0
14
15
   33.0
16 35.0
Here is the data without missing values:
age
0 10.0
```

```
1 12.0
2 14.0
3 13.0
4 15.0
5 14.0
6 19.0
7 18.0
8 20.0
9 25.0
10 28.0
11 19.0
12 29.0
13 30.0
14 19.0
15 33.0
16 35.0
```

NOW WE HANDLE MISSING VALUES WITH (MODE)

```
# import libraries:
import pandas as pd
import numpy as np
# dummy data set:
data=pd.DataFrame({"fruits" : ["Apple", "Banana", "Orange", "Mango",np.nan, "Pineapple", "Grapes",np.nan, "Strawberry","Apple"]})
# print the data with missing values:
print("----")
\label{eq:print}  \text{print}(\texttt{f"Here is the data with missing values: } \\ \text{$$ \ $$ (\texttt{data})$")$} 
#calculate mode:
mode=data["fruits"].mode()[0]
#replace the missing values with mode:
data["fruits"]=data["fruits"].fillna(mode)
#now print the data without missing values:
print("-----"
print(f"Here is the data without missing values: \n {data}")
Here is the data with missing values: fruits
0
         Apple
        Orange
    Pineapple
        Grapes
            NaN
8 Strawberry
         Apple
Here is the data without missing values:
          fruits
        Apple
Banana
0
        Orange
Mango
         Apple
5
    Pineapple
        Grapes
   Apple
Strawberry
         Apple
```

CHECK THE MISSING VALUES IN TITANIC DATA:

```
import pandas as pd
import numpy as np
import seaborn as sns
df = sns.load_dataset("titanic")
df.isnull().sum().sort_values(ascending=False)
                 0
    deck
               688
     age
               177
 embark town 2
     sex
                 0
   pclass
                 0
   survived
                 0
     fare
                 0
                 0
    parch
    sibsp
                 0
                 0
                 0
  adult_male
                 0
     who
     alive
                 0
    alone
```

SECTION # 3: Handling Missing Values (KNN & Iterative Imputer)

HANDLE MISSING VALUES WITH KNN IMPUTER (USE FOR ONE BY ONE COLUMN)

```
from sklearn.impute import KNNImputer
imputer= KNNImputer(n_neighbors=4)
df["age"] = imputer.fit transform(df[["age"]])
df.isnull().sum().sort_values(ascending=False)
   survived
              0
   pclass
     sex
     age
              0
    azdiz
    parch
     fare
  embarked
             0
    class
              0
  adult male
    deck
 embark_town 0
    alive
              0
    alone
dtype: int64
```

LABEL ENCODING (CONVERT CATEGORICAL TO NUMBER)

```
from sklearn.preprocessing import LabelEncoder

# columns to encode:
columns_to_encode = ["sex","embarked","who","deck","class","embark_town","alive"]

#Dictionary to store labelencoders for each column
label_encoders = {}

#loop to apply labelencoder to each colum for encoding
for col in columns_to_encode:

# fit and transform the data:
    df[col] = LabelEncoder().fit_transform(df[col])
    # store the encoder in the dictionary
    label_encoders[col] = LabelEncoder()
```

HANDLE MISSING VALUES WITH ITERATIVE IMPUTER:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer

imputer = IterativeImputer(max_iter=10)

#columns to impute
columns_to_impute=["age","pclass","deck"]

# loop to impute each colum

for col in columns_to_impute:
    df[columns_to_impute] = imputer.fit_transform(df[columns_to_impute])

# check the missing values
df.isnull().sum().sort_values(ascending=False)
```

Handle Missing Values - Data Cleaning Project

Overview

In this project, I explored different techniques to handle missing values in a dataset. This is my first data analysis project, completed in Google Colab and shared on GitHub as part of my learning journey.

Objectives

Visualize data distribution and detect outliers (Histogram, Boxplot, Scatter Plot, Heatmap)

Handle missing values using:

Mean, Median, Mode

KNN Imputer

Iterative Imputer

Apply Label Encoding for categorical columns

Visualizations:

 ${\bf Histogram} \to {\bf to} \ {\bf check} \ {\bf data} \ {\bf distribution}$

 $\mathsf{Boxplot} \to \mathsf{to} \; \mathsf{detect} \; \mathsf{outliers}$

Scatter Plot \rightarrow to understand relationships between variables

 $Heatmap \rightarrow to check correlations$

Techniques Used:

Simple Imputation - Mean, Median, Mode

KNN Imputer - fills missing values based on similar rows

Iterative Imputer – advanced, model-based imputation

Encoding - converting categorical data into numeric format

Conclusion:

For small datasets, Mean/Median/Mode are simple and fast solutions.

Median works better when outliers are present.

For complex datasets, KNN and Iterative Imputer provide better results.

Handling missing values is a fundamental step in data cleaning that directly improves machine learning model accuracy.

Files in this Repository:

 $\textbf{Handle Missing Values.ipynb} \rightarrow \textbf{Colab Notebook}$

 ${\sf Handle\ Missing\ Values.pdf} \to {\sf Report\ (PDF\ format)}$

Author

Muhammad Umar