

Exploring
Generalization in Deep
Reinforcement
Learning for Control
Tasks

Àlex Montoya Pérez

Anders Jonsson & Sergio Calo Oliveira

Grau en Enginyeria en Informàtica

01

INTRODUCTION

02

BACKGROUND THEORY

03

METHODOLOGY

04

EXPERIMENT EVALUATION

05

01

INTRODUCTION

02

BACKGROUND THEORY

03

METHODOLOGY

04

EXPERIMENT EVALUATION

05

01

INTRODUCTION

02

BACKGROUND THEORY

03

METHODOLOGY

04

EXPERIMENT EVALUATION

05

01

INTRODUCTION

02

BACKGROUND THEORY

03

METHODOLOGY

04

EXPERIMENT EVALUATION

05

01

INTRODUCTION

02

BACKGROUND THEORY

03

METHODOLOGY

04

EXPERIMENT EVALUATION

05

01

INTRODUCTION

02

BACKGROUND THEORY

03

METHODOLOGY

04

EXPERIMENT EVALUATION

05

1.1 INTRODUCTION

1.1 INTRODUCTION

1.2 OBJECTIVE

- 1. Training: Learning Efficiency.
- 2. Generalization: Adaptability to different environments.

01

INTRODUCTION

02

BACKGROUND THEORY

03

METHODOLOGY

04

EXPERIMENT EVALUATION

05

2.1 Reinforcement Learning

Markov Decision Processes (MDP)

MDPs are tuples (S, A, T, R, γ):

- States (S): Finite set of possible states
- Actions (A): Set of actions applicable in a specific state $s \in S$
- **Transition Function (T):** specifies the probability distribution of the next state given the current state and action
- Reward Function (R): Assigns rewards to states or actions.
- **Discount Factor** (γ): Represents the difference in importance between short and long term rewards. $\gamma \in (0, 1]$.

2.1 Reinforcement Learning

Policies and Value Functions

A policy π represents a strategy that dictates the agent's behavior in an environment.

State Value Function ($V^{\pi}(s)$):

Expected return when starting in state s and following policy π .

$$V^{\pi}(s) = \mathbb{E}_{\pi}[R_t \mid s_t = s] = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s \right]$$
$$= \sum_{s_{t+1}} T(s, \pi(s), s_{t+1}) \left(R(s, a, s_{t+1}) + \gamma V^{\pi}(s_{t+1}) \right).$$

Goal in MDP: Find the best policy, maximizing the value function for all states

State-Action Value Function ($oldsymbol{Q}^{\pi}(s,a)$) :

Expected return when starting in state s, taking action a and following policy π .

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi}[R_t \mid s_t = s, a_t = a] = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s, a_t = a \right]$$
$$= \sum_{s_{t+1}} T(s, a, s_{t+1}) \left(R(s, a, s_{t+1}) + \gamma V^{\pi}(s_{t+1}) \right).$$

$$V^{\pi^*}(s) = \max_{\pi} V^{\pi}(s) = \max_{a} Q^{\pi^*}(s, a),$$

$$Q^{\pi^*}(s, a) = \max_{\pi} Q^{\pi}(s, a).$$

2.1 Reinforcement Learning

Bellman Optimality Equation

 $\pi^*(s)$: for any state s is the action a that maximizes the sum of the immediate reward and the discounted value of the next state, averaged over all possible next states s_{t+1}

$$\pi^*(s) = \arg\max_{a} \sum_{s \in \mathcal{S}} T(s, a, s_{t+1}) \Big(R(s, a, s_{t+1}) + \gamma V^*(s_{t+1}) \Big) = \arg\max_{a} Q^{\pi^*}(s, a).$$

This can also be expressed using the optimal Q-value:

$$Q^*(s, a) = \sum_{s_{t+1} \in \mathcal{S}} T(s, a, s_{t+1}) [R(s, a, s_{t+1}) + \gamma V^*(s_{t+1})]$$
$$V^*(s) = \max_{a} Q^*(s, a).$$

This allows for learning Q-functions instead of V-functions in model-free approaches when transition and reward functions are unknown.

2.2 Deep Learning

Training Procedure

- **Initialization:** Randomly initialize the θ .
- 4. Repeat steps 2 and 3

Q-Learning

Goal: Learn a policy that maximizes long-term accumulated rewards by estimating Q-values.

Q-Learning

Goal: Learn a policy that maximizes long-term accumulated rewards by estimating Q-values.

DQN

The DQN algorithm employs two multilayer perceptron ANN:

- **Eval-net:** ANN responsible for calculating the actual Q-Value based on the current state-action pairs.
- **Target-net:** A replica of the Eval-net, updated at regular intervals to maintain stability during training by providing consistent Q-value targets

Actor-Critic

Unlike traditional TD methods where a single value function represents both policy and value estimates, AC methods maintain separate structures for these components.

- **Actor:** Responsible for decision-making, the actor selects actions according to the prevailing policy
- Critic: Assesses the actor's decisions, the critic estimates the value function and evaluates the actor's actions. offering feedback on their efficacy.

Advantage Function: primary feedback signal, guiding learning for both the actor and the critic.

$$A_t(s_t, a_t) = R(s_t, a_t) + V^{\pi_{\theta}}(s_{t+1}) - V^{\pi_{\theta}}(s_t).$$

Proximal Policy Optimization (PPO)

An Actor-Critic algorithm that iteratively refines a policy parameterized by θ (π_{θ}) through environment interaction and datadriven updates to maximize expected rewards.

$$\theta_{\text{new}} = \underset{\theta}{\operatorname{argmax}} \sum_{t=0}^T \mathbb{E} \left[\min \left(r_t(\theta) \ A^{\pi_{\theta_{\text{old}}}}(s_t, a_t), \operatorname{clip}(r_t(\theta), 1 - \epsilon, 1 + \epsilon) \right) \right]$$
 Probability ratio between the new and old policies
$$r_t(\theta) = \frac{\pi_{\theta}(a_t, s_t)}{\pi_{\theta_{\text{old}}}(a_t, s_t)}.$$

Clipped Objective Function:

PPO maintains stability by restricting policy changes within a small range using a clipping mechanism

$$L^{CLIP}(\theta) = \mathbb{E}\left[\min\left(r_t(\theta)A^{\pi_{\theta_{\text{old}}}}(s_t, a_t), \text{clip}(r_t(\theta), 1-\epsilon, 1+\epsilon)A^{\pi_{\theta_{\text{old}}}}(s_t, a_t)\right)\right],$$

01
INTRODUCTION

02

BACKGROUND THEORY

03

METHODOLOGY

04

EXPERIMENT EVALUATION

05

3.1 Environment

3.1 Environment

Custom Pick And Place

Thesis Orientation

Types of State and Action Spaces (Observation space & State space are same for most gym environments.) Grid World End +1 End -1 Start Start Discrete State/ Observation Space [1,2,...,6 non terminal states] Continuous State/ Observation Space [-1.2 to 0.6), (-0.07 to 0.07)]

Continuous Action Space

[-1.0 to 1.0]

Discrete Action Space

[Up, Down, Left & Right]

Problem with DQN and Continuous Actions

Q-value functions assigns an expected value to each state-action pair. In a continuous action space, the number of possible actions is infinite.

Actor and Critic Networks: Actor

Actor and Critic Networks: Actor

Action	Probability		
Left	1/10		
Right	3/10		
Up	5/10		
Down	1/10		

Actor and Critic Networks: Actor

Actor and Critic Networks: Critic

• Simpler due to its straightforward task of estimating state value, requiring only a single scalar output.

Hyperparameters Fine-Tuning

- Timesteps per Batch: Number of timesteps in each batch.
- Max Timesteps per Episode: Maximum number of timesteps allowed for each episode before termination.
- **Gamma (γ):** Importance of future rewards in the agent's decision-making process.
- **Epsilon (ε):** Clipping parameter to limit policy updates.
- **Alpha** (α): Learning rate, controlling the magnitude of parameter updates during optimization.
- Training Cycles per Batch: The number of training cycles executed per batch,

Hyperparameter	Control Task		
Timesteps per Batch (TB)	500, 750, 1000		
Max Timesteps per Episode (MTE)	750, 1000		
Gamma (γ)	0.99		
Epsilon (ϵ)	0.1, 0.2		
Alpha (α)	0.01, 0.001, 0.0001, 0.00001		
Training Cycles per Batch (TCB)	5, 10		

Hyperparameter	Pick and Place		
Timesteps per Batch (TB)	10K, 50K, 100K, 150K, 200K		
Max Timesteps per Episode (MTE)	1K, 5K, 10K, 15K		
Gamma (γ)	0.99		
Epsilon (ϵ)	0.1, 0.2		
Alpha (α)	0.01, 0.001, 0.0001, 0.00001		
Training Cycles per Batch (TCB)	5, 10		

3.3 Generalization

Zero-Shot Generalization

TE	MF	TV	VT	SV	MS
Acrobot-v1	Center of Mass	0.5	[0.1, 3.0]	0.2	400
	Link Length	1.0	[0.25, 4.0]	0.25	400
	Link Mass	1.0	[0.25, 4.5]	0.25	400
CartPole-v1	Force Magnitude	10	[5.0, 15.0]	1.0	10000
	Gravity	9.8	[5.0, 15.0]	1.0	10000
	Pole Length	0.5	[0.2, 0.8]	0.1	10000
	Pole Mass	0.1	[0.1, 0.6]	0.05	10000
MountainCar Continuous-v0	Car Friction	0.0025	[0.001, 0.005]	0.0005	300
	Initial Position	[-0.04, -0-06]	[-0.6, 0.3]	0.1	300
	Car Power	0.0015	[0.0005, 0.003]	0.0005	300
Pendulum-v1	Delta Time	0.05	[0.01, 0.15]	0.01	8000
	Gravity	9.8	[5, 15]	1	8000
	Pendulum Length	1.0	[0.5, 1.6]	0.1	8000
	Pendulum Mass	1.0	[0.25, 2.50]	2.5	8000

Table 3.2: Summary of modifications made to test generalization. MF = Modified Feature of the trained environment, TV = Trained Value, VT = Values Tested with the modified feature, SV = Step size between the values tested, MS = Maximum number of Steps to reach the goal.

O1
INTRODUCTION

02

BACKGROUND

THEORY

03 METHODOLOGY 04
EXPERIMENT EVALUATION

4.1 Training Results

Acrobot

Reward: Each step incurs a reward of -1 until the goal is achieved.

Actions:

- Apply -1 torque: Exerts a negative torque on the actuated joint.
- Apply 0 torque: Exerts no torque on the actuated joint.
- Apply 1 torque: Exerts a positive torque on the actuated joint

Goal: The free end reaches the target height.

4.1 Training Results

Acrobot

 Environment
 Timesteps
 α
 Time

 Acrobot-v1
 1M
 0.00001
 0:11:33

Reward: Each step incurs a reward of -1 until the goal is achieved.

Actions:

- Apply -1 torque: Exerts a negative torque on the actuated joint.
- Apply 0 torque: Exerts no torque on the actuated joint.
- Apply 1 torque: Exerts a positive torque on the actuated joint

4.1 Training Results

CartPole

Reward: A reward of +1 is given for every step taken.

Actions:

- Action 0: Push cart to the left.
- Action 1: Push cart to the right.

Goal: keep the pole upright for as long as possible.

CartPole

pivot point

EnvironmentTimestepsαTimeCartPole2M0.0010:20:10

Reward: A reward of +1 is given for every step taken.

Actions:

- Action 0: Push cart to the left.
- Action 1: Push cart to the right.

Mountain Car Continuous

Goal: Reach the flag (goal position) with the car.

Reward: A negative reward of $-0.1*action^2$ is received at each timestep to penalize large magnitude actions. A positive reward of +100 is added if (position ≥ 0.45)

 $\text{velocity}_{t+1} = \text{velocity}_t + \text{force} \times \text{power} - 0.0025 \times \cos(3 \times \text{position}_t)$

Action: Force $\in [-1, 1]$ position_{t+1} = position_t + velocity_{t+1}

Mountain Car Continuous

Environment	Timesteps	α	Time
Mountain Car Continuous	3M	0.001	0:32:05

Reward: A negative reward of $-0.1*action^2$ is received at each timestep to penalize large magnitude actions. A positive reward of +100 is added if (position ≥ 0.45)

 $\text{velocity}_{t+1} = \text{velocity}_t + \text{force} \times \text{power} - 0.0025 \times \cos(3 \times \text{position}_t)$

Action: Force $\in [-1, 1]$ position_{t+1} = position_t + velocity_{t+1}

Pendulum

Reward: The reward function penalizes the square of the angle, the square of the angular velocity, and the square of the applied torque

$$r = -(\theta^2 + 0.1 \cdot \theta_{dt}^2 + 0.001 \cdot \text{torque}^2)$$

Action: Torque $\in [-1, 1]$

Goal: Apply torque on the free end to swing it into an upright position.

Pendulum

Reward: The reward function penalizes the square of the angle, the square of the angular velocity, and the square of the applied torque

$$r = -(\theta^2 + 0.1 \cdot \theta_{dt}^2 + 0.001 \cdot \text{torque}^2)$$

Action: Torque \in [-1, 1]

Environment	Timesteps	α	Time
Pendulum	4M	0.0001	1:04:39

Custom Pick And Place

HPC Cluster (SNOW)

Reward Types:

- Sparse: provide a binary feedback (-1 or 0).
- *Dense*: provide a continuous feedback based on the Euclidean distance between the achieved and desired goal positions.

Goal: Pick up an object from a random location and place it in a random target location.

Actions:

- Displacement in the x direction $(dx) \in [-1, 1]$
- Displacement in the y direction $(dy) \in [-1, 1]$
- Displacement in the z direction $(dz) \in [-1, 1]$
- Gripper control ∈ [-1, 1]

Custom Pick And Place

Dense Reward Types: provide a continuous feedback based on the Euclidean distance between the achieved and desired goal positions.

Actions:

- Displacement in the x direction $(dx) \in [-1, 1]$
- Displacement in the y direction $(dy) \in [-1, 1]$
- Displacement in the z direction $(dz) \in [-1, 1]$
- Gripper control \in [-1, 1]

Environment	Timesteps	α	Time
Custom Pick and Place	200M	0.001	14 days

Custom Acrobot

Feature Modified	Trained Value	Values Tested	Step Size	Max. Steps
Center of Mass	0.5	[0.1, 3.0]	0.2	400
Link Length	1.0	[0.25, 4.0]	0.25	400
Link Mass	1.0	[0.25, 4.5]	0.25	400

Custom CartPole

Feature Modified	Trained Value	Values Tested	Step Size	Max. Steps
Force Magnitude	10	[5.0, 15.0]	1.0	10000
Gravity	9.8	[5.0, 15.0]	1.0	10000
Pole Length	0.5	[0.2, 0.8]	0.1	10000
Pole Mass	0.1	[0.1, 0.6]	0.05	10000

Custom CartPole

Feature Modified	Trained Value	Values Tested	Step Size	Max. Steps
Force Magnitude	10	[5.0, 15.0]	1.0	10000
Gravity	9.8	[5.0, 15.0]	1.0	10000
Pole Length	0.5	[0.2, 0.8]	0.1	10000
Pole Mass	0.1	[0.1, 0.6]	0.05	10000

Feature Modified	Trained Value	Values Tested	Step Size	Max. Steps
Car Friction	0.0025	[0.001, 0.005]	0.0005	300
Initial Position	[-0.04, -0.06]	[-0.6, 0.3]	0.1	300
Car Power	0.0015	[0.0005, 0.003]	0.0005	300

Feature Modified	Trained Value	Values Tested	Step Size	Max. Steps
Car Friction	0.0025	[0.001, 0.005]	0.0005	5000
Initial Position	[-0.04, -0.06]	[-0.6, 0.3]	0.1	300
Car Power	0.0015	[0.0005, 0.003]	0.0005	300

Feature Modified	Trained Value	Values Tested	Step Size	Max. Steps
Car Friction	0.0025	[0.001, 0.005]	0.0005	300
Initial Position	[-0.04, -0.06]	[-0.6, 0.3]	0.1	300
Car Power	0.0015	[0.0005, 0.003]	0.0005	300

Feature Modified	Trained Value	Values Tested	Step Size	Max. Steps
Car Friction	0.0025	[0.001, 0.005]	0.0005	300
Initial Position	[-0.04, -0.06]	[-0.6, 0.3]	0.1	300
Car Power	0.0015	[0.0005, 0.003]	0.0005	500

Custom Pendulum

Feature Modified	Trained Value	Values Tested	Step Size	Max. Steps
Delta Time	0.05	[0.01, 0.15]	0.01	8000
Gravity	9.8	[5, 15]	1	8000
Pendulum Length	1.0	[0.5, 1.6]	0.1	8000
Pendulum Mass	1.0	[0.25, 2.50]	2.5	8000

Custom Pendulum

Feature Modified	Trained Value	Values Tested	Step Size	Max. Steps
Delta Time	0.05	[0.01, 0.15]	0.01	8000
Gravity	9.8	[5, 15]	1	8000
Pendulum Length	1.0	[0.5, 1.6]	0.1	8000
Pendulum Mass	1.0	[0.25, 2.50]	2.5	8000

01
INTRODUCTION

02

BACKGROUND THEORY

03

METHODOLOGY

04

EXPERIMENT EVALUATION

05

DISCUSSIONS, CONCLUSION & FUTURE WORK

5.1 Discussions & Conclusions

• Initial Hipotesis: Potential synergy between RL and DL, leveraging RL's strengths in sequential decision making and DL's capabilities in robust function approximation.

Control Tasks:

- **Performance**: DRL agents effectively learned and adapted using the PPO algorithm.
- Key Factors: Systematic hyperparameter tuning was crucial
- Outcome: High performance and consistent rewards.

Pick and Place Task:

- Challenges: High-dimensional state/action spaces, intricate physical interactions.
- Results: DRL agents struggled despite extensive training and environment simplifications.
- **Key Issues:** Difficulty in precise control and adaptability, large action space.

5.1 Discussions & Conclusions

• **Initial Hipotesis**: Potential synergy between RL and DL, leveraging RL's strengths in sequential decision making and DL's capabilities in robust function approximation.

Control Tasks:

- **Performance**: DRL agents effectively learned and adapted using the PPO algorithm.
- Key Factors: Systematic hyperparameter tuning was crucial
- Outcome: High performance and consistent rewards.

Pick and Place Task:

- **Challenges:** High-dimensional state/action spaces, intricate physical interactions.
- Results: DRL agents struggled despite extensive training and environment simplifications.
- **Key Issues:** Difficulty in precise control and adaptability, large action space.

Generalization:

- •**Tests:** Agents faced parameter changes in trained environments.
- •Findings: Mixed results; some robustness, but significant performance drops with substantial parameter alterations.

5.3 Future Work

Broader Environment Testing:

- Include more complex, dynamic scenarios.
- Expand beyond standard control tasks to environments with higher-dimensional state spaces, multi-agent interactions, and varied physical dynamics.

Advanced Learning Techniques:

- Hierarchical Reinforcement Learning (HRL):
 Decompose tasks into simpler sub-tasks.
- Curriculum Learning: Train on progressively more challenging tasks.
- Meta-Learning: "Learning to learn" for quicker adaptation to new tasks.
- Domain Randomization: Train in varied simulated environments to enhance robustness.

Transfer Learning:

• Leverage knowledge from one task/environment to improve performance on related tasks.

Hyperparameter Optimization:

 Use Bayesian optimization and AutoML for efficient hyperparameter tuning.

Resources

Access to the repository: https://github.com/ialexmp/DRL-Generalization

Thanks For Your Attention

Àlex Montoya Pérez

Anders Jonsson & Sergio Calo Oliveira

Grau en Enginyeria en Informàtica

