LECTURE

2

SEQUENCES OF REAL NUMBERS

Definition 2.1 By a sequence of real numbers (or sequence in \mathbb{R}) we mean any function of type $f: \mathbb{N} \to \mathbb{R}$. Denoting $x_n := f(n)$ for all $n \in \mathbb{N}$ we may use one of the following notations to represent the sequence f:

$$(x_n)_{n\in\mathbb{N}}, (x_n)_{n\geq 1}$$
 or simply (x_n) .

Remark 2.2 Any function $g: \mathbb{N} \cap [m, \infty) \to \mathbb{R}$ with $m \in \mathbb{Z}$ can be seen as a sequence, too. Indeed, g can be identified with $f: \mathbb{N} \to \mathbb{R}$, given by

$$f(n) := g(m+n-1), \ \forall n \in \mathbb{N}.$$

In this case instead of $(x_n)_{n\in\mathbb{N}}$, with $x_n := f(n)$ for all $n \in \mathbb{N}$, we write

$$(y_n)_{n\geq m}$$
, where $y_n:=g(n), \ \forall n\in\mathbb{Z}, \ n\geq m$.

Definition 2.3 A sequence of real numbers $(x_n)_{n\in\mathbb{N}}$ is said to be bounded below (bounded above; bounded; unbounded) if the set $\{x_n \mid n \in \mathbb{N}\}$ is bounded below (bounded above; bounded; unbounded).

Remark 2.4 For any sequence $(x_n)_{n\in\mathbb{N}}$ in \mathbb{R} we have:

```
(x_n)_{n\in\mathbb{N}} is bounded below \iff \exists a \in \mathbb{R} \text{ s.t. } x_n \geq a, \ \forall n \in \mathbb{N};

(x_n)_{n\in\mathbb{N}} is bounded above \iff \exists a \in \mathbb{R} \text{ s.t. } x_n \leq a, \ \forall n \in \mathbb{N};

(x_n)_{n\in\mathbb{N}} is bounded \iff \exists a \in \mathbb{R} \text{ s.t. } |x_n| \leq a, \ \forall n \in \mathbb{N};

(x_n)_{n\in\mathbb{N}} is unbounded \iff \forall a \in \mathbb{R}, \ \exists n \in \mathbb{N} \text{ s.t. } |x_n| > a.
```

Definition 2.5 A sequence $(x_n)_{n\in\mathbb{N}}$ in \mathbb{R} is called

- increasing if $x_{n+1} \ge x_n$, $\forall n \in \mathbb{N}$;
- decreasing if $x_{n+1} \leq x_n, \forall n \in \mathbb{N}$;
- strictly increasing if $x_{n+1} > x_n$, $\forall n \in \mathbb{N}$;
- strictly decreasing if $x_{n+1} < x_n, \forall n \in \mathbb{N}$;
- monotonic (or monotone) if it is increasing or decreasing;
- strictly monotonic (or strictly monotone) if it is strictly increasing or strictly decreasing.

Remark 2.6 Every increasing sequence is bounded below. Similarly, every decreasing sequence is bounded above.

Definition 2.7 We say that a sequence of real numbers $(x_n)_{n\in\mathbb{N}}$ has a limit $(in \overline{\mathbb{R}})$ if there exists $\ell \in \overline{\mathbb{R}} := \mathbb{R} \cup \{-\infty; +\infty\}$ such that

$$\forall V \in \mathcal{V}(\ell), \ \exists n_V \in \mathbb{N} \ s.t. \ x_n \in V, \ \forall n \in \mathbb{N}, \ n \ge n_V.$$
 (2.1)

Remark 2.8 For any $\ell_1, \ell_2 \in \overline{\mathbb{R}}$, $\ell_1 \neq \ell_2$, there exist $V_1 \in \mathcal{V}(\ell_1)$ and $V_2 \in \mathcal{V}(\ell_2)$ s.t. $V_1 \cap V_2 = \emptyset$. Hence, whenever $(x_n)_{n \in \mathbb{N}}$ has a limit, there is a unique $\ell \in \overline{\mathbb{R}}$ satisfying (2.1).

Definition 2.9 If a sequence $(x_n)_{n\in\mathbb{N}}$ has a limit, then the unique $\ell\in\overline{\mathbb{R}}$ that satisfies (2.1) is called the limit of the sequence $(x_n)_{n\in\mathbb{N}}$. In this case we denote $\lim_{n\to\infty}x_n:=\ell$ or $x_n\to\ell$ and we say that $(x_n)_{n\in\mathbb{N}}$ tends to ℓ .

Proposition 2.10 Let $(x_n)_{n\in\mathbb{N}}$ be a sequence of real numbers that has a limit. We have

$$\lim_{n \to \infty} x_n = \ell \in \mathbb{R} \iff \forall \varepsilon > 0, \ \exists \ n_{\varepsilon} \in \mathbb{N} \ s.t. \ |x_n - \ell| < \varepsilon, \ \forall \ n \in \mathbb{N}, \ n \ge n_{\varepsilon};$$

$$\lim_{n \to \infty} x_n = -\infty \iff \forall \ a \in \mathbb{R}, \ \exists \ n_a \in \mathbb{N} \ s.t. \ x_n < a, \ \forall \ n \in \mathbb{N}, \ n \ge n_a;$$

$$\lim_{n \to \infty} x_n = +\infty \iff \forall \ a \in \mathbb{R}, \ \exists \ n_a \in \mathbb{N} \ s.t. \ x_n > a, \ \forall \ n \in \mathbb{N}, \ n \ge n_a.$$

Definition 2.11 A sequence of real numbers $(x_n)_{n\in\mathbb{N}}$ is said to be

- convergent, if it has a finite limit, i.e., $\lim_{n\to\infty} x_n \in \mathbb{R}$; in this case we say that $(x_n)_{n\in\mathbb{N}}$ converges to the real number $\lim x_n$;
- divergent, if it is not convergent.

Proposition 2.12 Let $(x_n)_{n\in\mathbb{N}}$ be a sequence of real numbers and let $\ell\in\mathbb{R}$. The following assertions are equivalent:

- 1° The sequence $(x_n)_{n\in\mathbb{N}}$ converges to ℓ , i.e., $\lim_{n\to\infty} x_n = \ell$.
- 2° The sequence $(|x_n \ell|)_{n \in \mathbb{N}}$ converges to zero, i.e., $\lim_{n \to \infty} |x_n \ell| = 0$.
- 3° There exists a sequence $(a_n)_{n\in\mathbb{N}}$ of nonnegative real numbers satisfying the following two conditions:
 - (i) $|x_n \ell| \le a_n \text{ for all } n \in \mathbb{N};$
 - (ii) $(a_n)_{n\in\mathbb{N}}$ converges to zero, i.e., $\lim_{n\to\infty} a_n = 0$.

Corollary 2.13 Let $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ be two sequences of real numbers. If $(a_n)_{n\in\mathbb{N}}$ is bounded and $\lim_{n\to\infty}b_n=0$, then $\lim_{n\to\infty}(a_n\cdot b_n)=0$.

Proposition 2.14 Let $(x_n), (y_n)$ be sequences in \mathbb{R} such that $\forall n \in \mathbb{N}, x_n \leq y_n$.

- (i) If (x_n) and (y_n) converge, then $\lim_{n\to\infty} x_n \leq \lim_{n\to\infty} y_n$.
- (ii) If $\lim_{n\to\infty} x_n = +\infty$, then $\lim_{n\to\infty} y_n = +\infty$.
- (iii) If $\lim_{n \to \infty} y_n = -\infty$, then $\lim_{n \to \infty} x_n = -\infty$.

Theorem 2.15 (Squeeze Theorem) Let $(x_n), (y_n), (z_n)$ be sequences in \mathbb{R} such that

$$x_n \le y_n \le z_n, \ \forall n \in \mathbb{N}.$$

Suppose that (x_n) and (z_n) are convergent and $\lim_{n\to\infty} x_n = \lim_{n\to\infty} z_n = \ell \in \mathbb{R}$. Then (y_n) is also convergent and $\lim_{n\to\infty} y_n = \ell$.

Corollary 2.16 (Cantor's Theorem on Nested Intervals) Consider a nested sequence of compact intervals, i.e.,

$$I_n := [a_n, b_n] \subseteq \mathbb{R}, \quad s.t. \quad a_n \le a_{n+1} < b_{n+1} \le b_n, \ \forall n \in \mathbb{N}.$$

If $\lim_{n\to\infty} (b_n - a_n) = 0$, then there exists $x \in \mathbb{R}$ such that $\bigcap_{n=1}^{\infty} I_n = \{x\}$.

Proposition 2.17 Every convergent sequence of real numbers is bounded.

Notice that there are bounded sequences that are not convergent.

Theorem 2.18 (Counterpart of the Weierstrass' Theorem) Let $(x_n)_{n\in\mathbb{N}}$ be a monotonic (i.e., increasing or decreasing) sequence of real numbers. The following assertions hold:

$$1^{\circ} (x_n)_{n \in \mathbb{N}} \text{ has a limit in } \overline{\mathbb{R}}.$$

2° If
$$(x_n)_{n\in\mathbb{N}}$$
 is increasing, then $\lim_{n\to\infty} x_n = \sup_{n\in\mathbb{N}} x_n$, hence

 (x_n) is convergent if and only if it is bounded above.

$$2^{\circ}$$
 If $(x_n)_{n\in\mathbb{N}}$ is decreasing, then $\lim_{n\to\infty} x_n = \inf_{n\in\mathbb{N}} x_n$, hence (x_n) is convergent if and only if it is bounded below.

Theorem 2.19 (Toeplitz) Consider an "infinite triangular matrix" of real numbers

which satisfies the following three conditions:

(i)
$$c_{n,k} \ge 0, \ \forall n \in \mathbb{N}, \ \forall k \in \{1, 2, ..., n\};$$

(ii)
$$\sum_{k=1}^{n} c_{n,k} = 1, \ \forall n \in \mathbb{N};$$

(iii)
$$\lim_{n\to\infty} c_{n,k} \to 0, \ \forall k \in \mathbb{N}.$$

If $(x_n)_{n\in\mathbb{N}}$ is a sequence of real numbers that has a limit $\ell\in\overline{\mathbb{R}}$ then the sequence $(y_n)_{n\in\mathbb{N}}$, given by

$$y_n = c_{n,1}x_1 + c_{n,2}x_2 + \dots + c_{n,n}x_n, \ \forall n \in \mathbb{N}$$

has the same limit ℓ .

Theorem 2.20 (Stolz-Cesàro) Let $(a_n), (b_n)$ be sequences in \mathbb{R} such that

- (i) (b_n) is strictly increasing and $\lim_{n\to\infty} b_n = +\infty$,
- (ii) $\lim_{n \to \infty} \frac{a_{n+1} a_n}{b_{n+1} b_n} = L \in \overline{\mathbb{R}}.$

Then
$$\lim_{n\to\infty} \frac{a_n}{b_n} = L$$
.

Proof. We can apply Toeplitz's Theorem, letting $a_0 = b_0 := 0$,

$$x_n := \frac{a_n - a_{n-1}}{b_n - b_{n-1}}, \ \forall n \in \mathbb{N} \quad \text{ and } \quad c_{n,k} := \frac{b_k - b_{k-1}}{b_n}, \ \forall k \in \{1, 2, ..., n\}.$$

Since $y_n = \frac{a_n}{b_n}$, the conclusion follows.

Corollary 2.21 Let (x_n) be a sequence in \mathbb{R} . The following assertions hold:

1° If
$$\lim_{n\to\infty} x_n = \ell \in \overline{\mathbb{R}}$$
, then $\lim_{n\to\infty} \frac{x_1 + x_2 + \ldots + x_n}{n} = \ell$.

$$2^{\circ}$$
 If $x_n > 0$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} x_n = \ell \in \overline{\mathbb{R}}$, then $\lim_{n \to \infty} \sqrt[n]{x_1 \cdot x_2 \cdot \ldots \cdot x_n} = \ell$

2° If
$$x_n > 0$$
 for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} x_n = \ell \in \overline{\mathbb{R}}$, then $\lim_{n \to \infty} \sqrt[n]{x_1 \cdot x_2 \cdot \ldots \cdot x_n} = \ell$.
3° If $x_n > 0$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = L \in \overline{\mathbb{R}}$, then $\lim_{n \to \infty} \sqrt[n]{x_n} = L$.

Definition 2.22 Let $(x_n)_{n\in\mathbb{N}}$ be a sequences of real numbers. A sequence $(y_k)_{k\in\mathbb{N}}$ is said to be a subsequence of $(x_n)_{n\in\mathbb{N}}$ if there exists a strictly increasing sequence $(n_k)_{k\in\mathbb{N}}$ of natural numbers (i.e., $n_k \in \mathbb{N}$ and $n_k < n_{k+1}$ for all $k \in \mathbb{N}$) such that

$$y_k = x_{n_k}, \ \forall k \in \mathbb{N}.$$

Proposition 2.23 Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R} that has a limit $x = \lim_{n\to\infty} x_n \in \overline{\mathbb{R}}$. Then any subsequence $(x_{n_k})_{k\in\mathbb{N}}$ of $(x_n)_{n\in\mathbb{N}}$ has the same limit, i.e., $\lim_{k\to\infty} x_{n_k} = x$.

Theorem 2.24 (Bolzano-Weierstrass) Every bounded sequence of real numbers has a convergent subsequence.

Theorem 2.25 (Cauchy's criterion for convergence of sequences) For any sequence $(x_n)_{n\in\mathbb{N}}$ the following assertions are equivalent:

- $1^{\circ} (x_n)_{n \in \mathbb{N}}$ is convergent.
- 2° For every $\varepsilon > 0$ there exists $n_{\varepsilon} \in \mathbb{N}$ such that for all $m, n \in \mathbb{N}$, with $m \geq n_{\varepsilon}$ and $n \geq n_{\varepsilon}$, we have $|x_m x_n| < \varepsilon$.
- 3° For every $\varepsilon > 0$ there exists $n_{\varepsilon} \in \mathbb{N}$ such that for any $n \in \mathbb{N}$ with $n \geq n_{\varepsilon}$ and any $p \in \mathbb{N}$ we have $|x_{n+p} x_n| < \varepsilon$.

Corollary 2.26 Let $(x_n)_{n\in\mathbb{N}}$ be a sequence of real numbers. Assume that there is a sequence $(a_n)_{n\in\mathbb{N}}$ of nonnegative real numbers satisfying the following two conditions:

- $1^{\circ} |x_{n+p} x_n| \leq a_n \text{ for all } n, p \in \mathbb{N};$
- $2^{\circ} (a_n)_{n \in \mathbb{N}}$ converges to zero, i.e., $\lim_{n \to \infty} a_n = 0$.

Then the sequence $(x_n)_{n\in\mathbb{N}}$ is convergent.

Limit Laws

$$x + \infty = \infty + x = \infty, \ \forall x \in \mathbb{R},$$

$$x + (-\infty) = (-\infty) + x = -\infty, \ \forall x \in \mathbb{R},$$

$$\infty + \infty = \infty, \ (-\infty) + (-\infty) = -\infty,$$

$$x \cdot \infty = \infty \cdot x = \begin{cases} \infty, & \text{if } x \in (0, \infty) \\ -\infty, & \text{if } x \in (-\infty, 0), \end{cases}$$

$$x \cdot (-\infty) = (-\infty) \cdot x = \begin{cases} -\infty, & \text{if } x \in (0, \infty) \\ \infty, & \text{if } x \in (-\infty, 0), \end{cases}$$

$$\infty \cdot \infty = \infty, \ (-\infty) \cdot (-\infty) = \infty, \ \infty \cdot (-\infty) = (-\infty) \cdot \infty = -\infty,$$

$$\frac{x}{\infty} = \frac{x}{-\infty} = 0, \ \forall x \in \mathbb{R},$$

$$\frac{1}{0+} = \infty, \quad \frac{1}{0-} = -\infty,$$

$$x^{\infty} = \begin{cases} \infty, & \text{if } x \in (1, \infty) \\ 0, & \text{if } x \in (0, 1), \end{cases}$$

$$x^{-\infty} = \begin{cases} 0, & \text{if } x \in (1, \infty) \\ \infty, & \text{if } x \in (0, 1), \end{cases}$$

$$(\infty)^{x} = \begin{cases} \infty, & \text{if } x \in (0, \infty) \\ 0, & \text{if } x \in (-\infty, 0), \end{cases}$$

$$\infty^{\infty} = \infty, \quad \infty^{-\infty} = 0.$$

The following limits are undefined

$$\begin{array}{lll} \infty + (-\infty), & (-\infty) + \infty, \\ 0 \cdot \infty, & \infty \cdot 0, & 0 \cdot (-\infty), & (-\infty) \cdot 0, \\ \frac{\infty}{\infty}, & \frac{-\infty}{-\infty}, & \frac{\infty}{-\infty}, & \frac{-\infty}{\infty}, \\ 1^{\infty}, & 0^{0}, & \infty^{0}, & 1^{-\infty}. \end{array}$$