```
In [1]: # Import dependencies
import pandas as pd

# File to load
csvfile = "Resources/purchase_data.csv"

# Read Purchasing File and store into Pandas data frame
purchase_df = pd.read_csv(csvfile)
```

```
In [2]: ## Player Count
    # Display the total number of players
    total_players = purchase_df["SN"].nunique()
    total_players_pd = pd.DataFrame({"Total Players":[total_players]})
    total_players_pd
```

Out[2]:

Total Players

0 576

```
In [3]: | ## Purchasing Analysis (Total)
        # Run basic calculations to obtain number of unique items, average pri
        ce, etc.
        unique items counts = purchase df["Item Name"].nunique()
        average price = purchase df["Price"].mean()
        total purchase = purchase df["Item ID"].count()
        total_revenue = sum(purchase_df["Price"])
        # Create a summary data frame to hold the results
        summary df = pd.DataFrame({"Number of Unique Items": [unique items cou
        nts],
                                    "Average Price": [average price],
                                    "Number of Purchases": [total purchase],
                                    "Total Revenue": [total revenue]})
        # Optional: give the displayed data cleaner formatting
        summary df["Average Price"] = summary df["Average Price"].map("${:.2f}
        ".format)
        summary df["Total Revenue"] = summary df["Total Revenue"].map("${:.2f})
        ".format)
        # Display the summary data frame
        summary df
```

Out[3]:

Number of Unique Items	Average Price	Number of Purchases	iotai Revenue
0 179	\$3.05	780	\$2379.77

```
In [4]: ## Gender Demographics
        # Count male total
        male count df = purchase df.loc[purchase df["Gender"] == "Male", :]
        male count = male count df["SN"].nunique()
        # Count female total
        female count df = purchase df.loc[purchase df["Gender"] == "Female", :
        female count = female count df["SN"].nunique()
        # Count gender unknown
        unknown count = total players - male count - female count
        # Count percentage
        male percent = (male count/total players)*100
        female percent =(female count/total players)*100
        unknown percent = (unknown count/total players) *100
        gender df = pd.DataFrame({" ":["Male", "Female", "Other / Non-Disclosed
        "],
                                   "Toatl Count": [male count, female count, unkn
        own count],
                                   "Percentage of Players": [male percent,
                                                            female percent, unkn
        own percent]})
        gender index df = gender df.set index(" ")
        # Optional: give the displayed data cleaner formatting
        gender index df["Percentage of Players"] = gender index df["Percentage
        of Players"].map("{:.2f}%".format)
        gender index df
```

Out[4]:

Toatl Count Percentage of Players

Male	484	84.03%
Female	81	14.06%
Other / Non-Disclosed	11	1.91%

```
In [5]: ## Purchasing Analysis (Gender)
        # Group data by gender
        gender group = purchase df.groupby(["Gender"])
        # Calculate demanded valuables:
        # Purchase Count, Average Purchase Price, Total Purchase Value, Avg Total
        Purchase per Person
        gender PC = gender group["SN"].count()
        gender_APP = gender_group["Price"].mean()
        gender TPV = gender group["Price"].sum()
        gender ATPP = gender TPV /gender group["SN"].nunique()
        # Create a summary data frame to hold the results
        gender 2 df = pd.DataFrame({"Purchase Count": gender PC,
                                  "Average Purchase Price": gender APP,
                                   "Total Purchase Value": gender TPV,
                                   "Avg Total Purchase per Person": gender ATPP
        # Optional: give the displayed data cleaner formatting
        gender 2 df["Average Purchase Price"] = gender 2 df["Average Purchase
        Price"].map("${:.2f}".format)
        gender 2 df["Total Purchase Value"] = gender 2 df["Total Purchase Valu
        e"].map("${:.2f}".format)
        gender 2 df["Avg Total Purchase per Person"] = gender 2 df["Avg Total
        Purchase per Person"].map("${:.2f}".format)
        gender 2 df
```

Out[5]:

	Purchase Count	Average Purchase Price	Total Purchase Value	Avg Total Purchase per Person
Gender				
Female	113	\$3.20	\$361.94	\$4.47
Male	652	\$3.02	\$1967.64	\$4.07
Other / Non- Disclosed	15	\$3.35	\$50.19	\$4.56

```
In [6]: ## Age Demographics
        # Create the bins in which Data will be held
        bins = [0,9, 14, 19, 24, 29, 34, 39, 100]
        group names = ["<10","10-14","15-19","20-24","25-29","30-34","35-39","
        40+"1
        # Categorize the existing players using the age bins. Hint: use pd.cut
        ()
        purchase df["Age Group"] = pd.cut(purchase df["Age"], bins, labels=gro
        up names, include lowest=True)
        # Calculate the numbers and percentages by age group
        age group = purchase df.groupby("Age Group")
        total count = age group["SN"].nunique()
        percent = total count.div(total count.sum(axis=0))*100
        # Create a summary data frame to hold the results
        age df = pd.DataFrame({"Total Count": total count,
                                "Percentage of Players": percent })
        # Optional: round the percentage column to two decimal points
        age df["Percentage of Players"] = age df["Percentage of Players"].map(
        "{:.2f}%".format)
        # Display Age Demographics Table
        age df
```

Out[6]:

Total Count Percentage of Players

Age Group

<10	17	2.95%
10-14	22	3.82%
15-19	107	18.58%
20-24	258	44.79%
25-29	77	13.37%
30-34	52	9.03%
35-39	31	5.38%
40+	12	2.08%

```
In [7]: ## Purchasing Analysis (Age)
        # Bin the purchase data data frame by age(see above)
        # Run basic calculations to obtain purchase count, avg. purchase price
        # avg. purchase total per person etc. in the table below
        age PC = age group["Item ID"].count()
        age_APP = age_group["Price"].mean()
        age TPV = age group["Price"].sum()
        age_ATPP = age_group["Price"].sum()/total_count
        #Create a summary data frame to hold the results
        age_2_df = pd.DataFrame({"Purchase Count": age_PC,
                                  "Average Purchase Price": age APP,
                                   "Total Purchase Value": age TPV,
                                  "Avg Total Purchase per Person": age ATPP
                                   })
        #Optional: give the displayed data cleaner formatting
        age 2 df["Average Purchase Price"] = age 2 df["Average Purchase Price"
        ].map("${:.2f}".format)
        age 2 df["Total Purchase Value"] = age 2 df["Total Purchase Value"].ma
        p("${:.2f}".format)
        age 2 df["Avg Total Purchase per Person"] = age 2 df["Avg Total Purcha
        se per Person"].map("${:.2f}".format)
        #Display the summary data frame
        age 2 df
```

Out[7]:

	Purchase Count	Average Purchase Price	Total Purchase Value	Avg Total Purchase per Person
Age Group				
<10	23	\$3.35	\$77.13	\$4.54
10-14	28	\$2.96	\$82.78	\$3.76
15-19	136	\$3.04	\$412.89	\$3.86
20-24	365	\$3.05	\$1114.06	\$4.32
25-29	101	\$2.90	\$293.00	\$3.81
30-34	73	\$2.93	\$214.00	\$4.12
35-39	41	\$3.60	\$147.67	\$4.76
40+	13	\$2.94	\$38.24	\$3.19

```
In [8]: ## Top Spenders
        # Group data by SN
        SN group = purchase df.groupby(["SN"])
        # Calculate variables
        SN PC = SN group["SN"].count()
        SN APP = SN group["Price"].mean()
        SN_TPV = SN_group["Price"].sum()
        # Create a summary data frame to hold the results
        SN_df = pd.DataFrame({"Purchase Count": SN_PC,
                               "Average Purchase Price": SN APP,
                              "Total Purchase Value": SN TPV })
        # Sort the total purchase value column in descending order
        top spender df = SN df.sort values(["Total Purchase Value"], ascending
        =False)
        #Optional: give the displayed data cleaner formatting
        top spender df["Average Purchase Price"] = top spender df["Average Pur
        chase Price"].map("${:.2f}".format)
        top spender df["Total Purchase Value"] = top spender df["Total Purchas
        e Value"].map("${:.2f}".format)
        # Display a preview of the summary data frame
        top spender df.head()
```

Out[8]:

Purchase Count Average Purchase Price Total Purchase Value

Lisosia93	5	\$3.79	\$18.96
Idastidru52	4	\$3.86	\$15.45
Chamjask73	3	\$4.61	\$13.83
Iral74	4	\$3.40	\$13.62
Iskadarya95	3	\$4.37	\$13.10

```
In [9]: ## Most Popular Items
        # Retrieve the Item ID, Item Name, and Price columns
        popular items df = purchase df[["Item ID", "Item Name", "Price"]]
        # Group by Item ID and Item Name. Perform calculations to obtain purch
        ase count, item price, and total purchase value
        PI group = popular items df.groupby(["Item ID","Item Name"])
        PI_PC = PI_group["Item ID"].count()
        ## Question: I don't know why I can use PI group["Price"].mean() to ge
        t anwser.
        ## Is that beacuse it has two different prices?
        PI price = PI group["Price"].mean()
        PI TPV = PI group["Price"].sum()
        # Create a summary data frame to hold the results
        PI df = pd.DataFrame({"Purchase Count": PI PC,
                               "Item Price": PI price,
                               "Total Purchase Value": PI TPV })
        # Sort the purchase count column in descending order
        PI 2 df = PI df.sort values(["Purchase Count"], ascending=False)
        # Optional: give the displayed data cleaner formatting
        PI 2 df["Item Price"] = PI 2 df["Item Price"].map("${:.2f}".format)
        PI 2 df["Total Purchase Value"] = PI 2 df["Total Purchase Value"].map(
        "${:.2f}".format)
        # Display a preview of the summary data frame
        PI 2 df.head()
```

Out[9]:

		Purchase Count	Item Price	Total Purchase Value
Item ID	Item Name			
92	Final Critic	13	\$4.61	\$59.99
178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
145	Fiery Glass Crusader	9	\$4.58	\$41.22
132	Persuasion	9	\$3.22	\$28.99
108	Extraction, Quickblade Of Trembling Hands	9	\$3.53	\$31.77

In [10]: ## Most Profitable Items # Sort the above table by total purchase value in descending order PI_2_df = PI_df.sort_values(["Total Purchase Value"], ascending=False) # Optional: give the displayed data cleaner formatting PI_2_df["Item Price"] = PI_2_df["Item Price"].map("\${:.2f}".format) PI_2_df["Total Purchase Value"] = PI_2_df["Total Purchase Value"].map("\${:.2f}".format) # Display a preview of the data frame PI_2_df.head()

Out[10]:

		Purchase Count	Item Price	Total Purchase Value
Item ID	Item Name			
92	Final Critic	13	\$4.61	\$59.99
178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
82	Nirvana	9	\$4.90	\$44.10
145	Fiery Glass Crusader	9	\$4.58	\$41.22
103	Singed Scalpel	8	\$4.35	\$34.80