Metric Distances

General
$$\underline{l_p}$$
: $d_p(P_1, P_2) = \left[|x_1 - x_2|^p + |y_1 - y_2|^p \right]^{\frac{1}{p}}, \quad p \ge 1$

Rectilinear:
$$d_1(P_1, P_2) = |x_1 - x_2| + |y_1 - y_2|$$

Euclidean:
$$d_2(P_1, P_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Chebychev:
$$d_{\infty}(P_1, P_2) = \max\{|x_1 - x_2|, |y_1 - y_2|\}$$

Great Circle Distances

$$(lon_1, lat_1) = (x_1, y_1), (lon_2, lat_2) = (x_2, y_2)$$

 d_{rad} = (great circle distance in radians of a sphere)

$$= \cos^{-1} \left[\sin y_2 \sin y_1 + \cos y_2 \cos y_1 \cos \left(x_1 - x_2 \right) \right]$$

R =(radius of earth at equator) – (bulge from north pole to equator)

$$= 3,963.34 - 13.35 \sin\left(\frac{y_1 + y_2}{2}\right) \quad \text{mi,} \quad = 6,378.388 - 21.476 \sin\left(\frac{y_1 + y_2}{2}\right) \quad \text{km}$$

$$d_{GC}$$
 = distance (x_1, y_1) to $(x_2, y_2) = \boxed{d_{rad} \cdot R}$

$$x_{\text{deg}} = \begin{cases} DD + \frac{MM}{60} + \frac{SS}{3,600}, & \text{if } E \text{ or } N \\ -DD - \frac{MM}{60} - \frac{SS}{3,600}, & \text{if } W \text{ or } S \end{cases}$$

Circuity Factor

Circuity Factor:
$$g = \sum \frac{d_{\text{road}_i}}{d_{GC_i}}$$
, where usually $1.15 \le g \le 1.5$

 $d_{\text{road}} \approx g \cdot d_{GC}(P_1, P_2)$, estimated road distance from P_1 to P_2

From High Point to Goldsboro: Road = 143 mi, Great Circle = 121 mi, Circuity = 1.19

2-D Euclidean Distance

$$\mathbf{x} = \begin{bmatrix} 2 & 3 \end{bmatrix}, \quad \mathbf{P} = \begin{bmatrix} 1 & 1 \\ 7 & 1 \\ 4 & 5 \end{bmatrix}$$

$$\mathbf{d} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} = \begin{bmatrix} \sqrt{(x_1 - p_{1,1})^2 + (x_2 - p_{1,2})^2} \\ \sqrt{(x_1 - p_{2,1})^2 + (x_2 - p_{2,2})^2} \\ \sqrt{(x_1 - p_{3,1})^2 + (x_2 - p_{3,2})^2} \end{bmatrix}$$

Minisum Distance Location

Fermat's Problem (1629):

Given three points, find fourth (Steiner point) such that sum to others is minimized (Solution: Optimal location corresponds to all angles = 120°)

Minisum Weighted-Distance Location

- Solution for 2-D+ and non-rectangular distances:
 - Majority Theorem: Locate NF at EFj if $w_j \ge \frac{W}{2}$, where $W = \sum_{i=1}^{m} w_i$
 - Mechanical (Varigon frame)
 - 2-D rectangular approximation
 - Numerical: nonlinear unconstrained optimization
 - Analytical/estimated derivative (quasi-Newton, fminunc)
 - Direct, derivative-free (Nelder-Mead, fminsearch)

m = number of EFs

$$TC(\mathbf{x}) = \sum_{i=1}^{m} w_i d_i(\mathbf{x})$$
$$\mathbf{x}^* = \arg\min_{\mathbf{x}} TC(\mathbf{x})$$
$$TC^* = TC(\mathbf{x}^*)$$

Varignon Frame

Convex vs Nonconvex Optimization

