Boolean algebra and logic gates

A and B can be equal 0 or 1. \bar{A} = not A, contradiction of A, A reversed

Statement 1. - Commutative Law A+B = B+A

A*B = B*A

Statement 2. - Associative Law (A+B)+C = A+(B+C)

Statement 3. A*(B+C) = A*B+A*C A+(B*C) = (A+B)*(A+C)

Statement 4. - Idempotent Law A+A = A A*A = A

Statement 5. $A*B+A*\bar{B} = A$ (A+B)*(A+B) = A

Statement 6. - Absorption Law A+A*B = A A*(A+B) = 1

Statement 7. - Identity Law

0+A=A0*A=0

Statement 8.

1+A = 1 1*A = A

Statement 9.

 $\bar{A}+A=1$ $\bar{A}*A=0$

Statement 10.

 $A+\bar{A}*B = A+B$ $A*(\bar{A}+B) = A*B$

Statement 11. - De Morgan's Law

 $\frac{\overline{A+B}}{A*B} = \overline{A}*\overline{B}$ $\overline{A*B} = \overline{A}+\overline{B}$

Y is the result of letting A and B through a given logic gate.

OR		AND				XOR		1	NOT	
,	Y = A	+B	,	Y = A	*B	Y	= A *B	+Ā*B	Y	′ = Ā
Α	В	Υ	Α	В	Y	Α	В	Υ	Α	В
0	0	0	0	0	0	0	0	0	0	1
0	1	1	0	1	0	0	1	1	1	0
1	0	1	1	0	0	1	0	1	~	<u></u>
1	1	1	1	1	1	1	1	0		
<u>o</u> -	7	> -0	0-	1) —0	Q	#)		
<u></u>	1	,	0		, •	O	#	, –		
NOR		NAND			XNOR					
Υ	$=\overline{A}$	+ B	Y	$' = \overline{A}$	* B	Y	= A *B	+Ā*Ē		
Α	В	Υ	Α	В	Y	Α	В	Y		
0	0	1	0	0	1	0	0	1		
0	1	0	0	1	1	0	1	0		
1	0	0	1	0	1	1	0	0		
1	1	0	1	1	0	1	1	1		
0-	7	\sim	0-	1	\sim	0	#	\sim		

Α	В	$\overline{A*B}$	Ā*Ē
0	0	1	1
0	1	1	0
1	0	1	0
1	1	0	0