CENTRO UNIVERSITÁRIO DA FEI

ANDRÉ DE SOUZA MENDES

DOCUMENTAÇÃO - MODELOS DE VEÍCULOS SIMPLES

RESUMO

Modelos de veículos simples em Matlab. Palavras-chave: Modelo. Veículo. Matlab.

ABSTRACT

Abstract

Keywords: Keywords. Go. Here.

LISTA DE ILUSTRAÇÕES

LISTA DE TABELAS

Tabela	1 –	Modelos do sistema	- Veíc	culo simples		 	•	•		•		•	•	•			•	•			12	2
Tabela	1 —	Wiodelos do sistema	- veic	uio simpies	•	 	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1 4	_

SUMÁRIO

1 INTRODUÇÃO	7
2 Pneu	8
2.1 linear	8
2.2 Sadri	8
2.3 Pacejka	8
2.4 Comparação	9
3 Veículo	10
3.1 Linear 2 GDL	10
3.2 Não linear 2 GDL	10
3.3 Não linear 3 GDL	10
4 Simulações	12
4.1 Esterçamento	12
4.2 Condição inicial	12
5 Animação	13
REFERÊNCIAS	14

1 INTRODUÇÃO

Próximas implementações

a) Escrever a documentação

Próximas simulações

a) ...

Esta documentação visa dar base para os estudos e simulações realizados para avaliar a aplicação dos modelos de pneus e veículos em situações dinâmicas extremas.

Os modelos de pneu usados são:

- a) Linear
- b) Sadri
- c) Pacejka

Os modelos de veículo usados são

- a) Linear 2 GDL
- b) Não linear 2 GDL
- c) Não linear 3 GDL

Os parâmetros de veículos e pneus utilizados como base de todas as análises são retirados do artigo de sadri.

8

2 PNEU

Neste capítulo os modelos de pneu são detalhados. Entende-se por modelo de pneu a

chamada equação característica que define a relação entre a força lateral do pneu e o ângulo de

deriva.

2.1 LINEAR

Modelo linear apresenta uma relação linear entre a força lateral do pneu e o ângulo de

deriva, ou seja, a equação característica pode ser escrita como:

EQUAÇÃO

Função: pneu/pneuLinearFun.m

2.2 SADRI

Modelo Sadri é um modelo não linear da curva característica do pneu que foi apresen-

tado por e utilizado na literatura por , e . A expressão que caracteriza o modelo é dada por:

EQUAÇÃO

Script: pneu/pneuSadriFun.m

2.3 PACEJKA

Uma outra alternativa de modelo não linear de pneu é a Magic Formula apresentada por

??). A curva característica é dada por:

Script: pneu/pneuPacejkaFun.m

2.4 COMPARAÇÃO

Usando como base os dados do modelo de pneu apresentados por ??), que usa o pneu Sadri, é possível obter o os dados que geram curvas características equivalentes através dos dois outros modelos. A equivalência se da garantindo o coeficiente de rigidez de curva (para ângulos de deriva tendendo a zero) igual nos três modelos. Além disso, nos modelos não lineares a força lateral máxima também deve ser igual.

A tabela mostra os dados dos três pneus que fornecem curvas características equivalentes entre os três modelos.

A figura ilustra as trs curvas características para os dados apresentados na tabela.

10

3 VEÍCULO

Neste capítulo os modelos de veículo são detalhados.

3.1 LINEAR 2 GDL

Modelo linear de veículo com dois graus de liberdade e velocidade do centro de massa constante.

As equações de movimento são dadas por:

EQUAÇÃO

Hipóteses do modelo:

Script: veiculo/veiculoLinear2gdl.m

a) Item 1

3.2 NÃO LINEAR 2 GDL

Modelo não linear de veículo com dois graus de liberdade e velocidade do centro de massa constante.

As equações de movimento são dadas por:

EQUAÇÃO

Hipóteses do modelo:

a) Item 1

Script: veiculo/veiculoNaoLinear2gdl.m

3.3 NÃO LINEAR 3 GDL

Modelo não linear de veículo com três graus de liberdade. Neste modelo, a velocidade do centro de massa não é constante constante.

As equações de movimento são dadas por:

EQUAÇÃO

Hipóteses do modelo:

a) Item 1

Script: veiculo/veiculoNaoLinear3gdl.m

4 SIMULAÇÕES

Este capítulo visa apresentar os resultados de simulações dinâmicas com combinações dos modelos apresentados nos capítulos anteriores.

As combinações dos modelos simulados estão presentes na tabela.

Tabela 1 – Modelos do sistema - Veículo simples

Modelo	Veículo	Pneu	Estados	Tratamento
Modelo 1	Linear 2 GDL	Linear	ψ, α_T	-
Modelo 2	Linear 2 GDL	Sadri	ψ , α_T	-
Modelo 3	Linear 2 GDL	Pacejka	ψ , α_T	-
Modelo 4	Não Linear 2 GDL	Pacejka	ψ , α_T	-
Modelo 5	Não linear 3 GDL	Pacejka	ψ , α_T , v_T	-

Fonte: Autor

Os dados do veículo utilizados nas simulações estão apresentados na tabela (Dados apresentados por ??)).

4.1 ESTERÇAMENTO

Modelo 1: -Baixa velocidade -Alta velocidade ...

4.2 CONDIÇÃO INICIAL

Modelo 1: -Baixas C.I. -Altas C.I. ...

5 ANIMAÇÃO

Os scripts animacao.m e vetor.m descrevem a movimentação do veículo no plano horizontal com os vetores velocidade (F, T e R) ao longo do tempo.

REFERÊNCIAS