五、实验数据处理

实验1.激光双棱镜干涉

(1)原始数据记录

i	1	2	3	4	5	6	7	8	9	10
x_i/mm	1.195	1.445	1.745	2.102	2.443	2.773	3.052	3.359	3.681	3.972
i	11	12	13	14	15	16	17	18	19	20
x_i/mm	4.295	4.657	4.921	5.182	5.495	5.798	6.115	6.457	6.745	7.018

	扩束镜	透镜成小像	透镜成大像
X/cm	141.35	78.21	111.02

	b/mm	(小像)	b'/mm(大像)		
左	4.281	4.485	2.551	2.815	
右	5.163	5.395	6.957	7.112	

(2)数据处理

用逐差法计算条纹间距 Δx :

$$\overline{\Delta x} = \frac{\sum_{i=1}^{10} |x_{i+10} - x_i|}{10 \times 10} = 0.3092mm$$

计算波长λ:

$$\bar{b} = \frac{b_{\mathrm{IE}} + b_{\mathrm{1}}}{2} = \frac{(4.281 - 5.163) + (4.485 - 5.395)}{2} = -0.896mm$$

$$\bar{b'} = \frac{b'_{1\overline{\mathbb{L}}} + b'_{\overline{\mathbb{M}}}}{2} = \frac{(2.551 - 6.957) + (2.815 - 7.112)}{2} = -4.351mm$$

$$S = |141.35 - 78.21| = 63.14cm$$

$$S' = |141.35 - 111.02| = 30.33cm$$

$$\lambda = \frac{\Delta\sqrt{bb'}}{S + S'} = 653.1nm$$

(3)不确定度计算

 $\triangle x$ 的不确定度:

10△x的A类不确定度:

$$u_a(10\triangle x) = \sqrt{\frac{\sum_{i=1}^{10} (10\triangle x_i - 10\overline{\triangle x})^2}{10\times(10-1)}} = 0.01872mm$$

10△x的B类不确定度:

$$u_b(10\triangle x) = \frac{\triangle \cancel{x}}{\sqrt{3}} = \frac{0.01}{2 \times \sqrt{3}} = 0.00289mm$$

10△x的不确定度:

$$u(10\triangle x) = \sqrt{u_a(10\triangle x^2) + u_b(10\triangle x^2)} = 0.01894mm$$

 $\triangle x$ 的不确定度:

$$\therefore u(\triangle x) = \frac{u(10\triangle x)}{10} = 0.001894mm$$

$$\frac{\Delta b}{b} = \frac{\Delta b'}{b} = 0.025$$

b'的不确定度:

$$u(b') = \frac{-0.896 \times 0.025}{\sqrt{3}} = -0.01293mm$$

b的不确定度:

$$u(b) = \frac{-4.351 \times 0.025}{\sqrt{3}} = -0.06281mm$$

S的不确定度:

$$\Delta S = \Delta S' = 0.5cm$$

$$u(S+S') = \sqrt{2} \times 0.289 = 0.409cm$$

不确定度的合成:

$$\ln \lambda = \ln \Delta x + \frac{1}{2}(\ln b + \ln b') - \ln(S + S')$$

$$\frac{\ln \lambda}{\lambda} = \frac{\ln \Delta x}{\Delta x} + \frac{1}{2} \left(\frac{\ln b}{b} + \frac{\ln b'}{b'} \right) - \frac{\ln \left(S + S' \right)}{S + S'}$$

$$\frac{u(\lambda)}{\lambda} = \sqrt{\left[\frac{u(\Delta x)}{\Delta x}\right]^2 + \frac{1}{4}\left[\frac{u(b)}{b}\right]^2 + \frac{1}{4}\left[\frac{u(b')}{b'}\right]^2 + \left[\frac{u(S+S')}{S+S'}\right]^2} = 0.007523$$

$$u(\lambda) = 4.914nm$$

最终结果为:

$$\lambda \pm u(\lambda) = 653 \pm 5nm$$