TP3: Algèbre linéaire

Aide mémoire

Toutes les fonctions d'algèbre linéaire (définition de matrice, définition de matrice, déterminant, trace, etc...) appartiennent à la librairie linalg (linear algebra). On suppose donc que la librairie est chargée par with(linalg).

i) Matrices et vecteurs

	Définition d'une matrice (par lignes)	>A:=matrix([1,2],[5,4]);
matrix		>B:=matrix(2,2,[1,2,5,4]);
matrix	Matrice définie à partir d'une fonction f	>A:=matrix(n,m,f);
diag	Matrice diagonale	$>\Delta$:=diag(a ₁ ,,a _n);
		$>$ I $_n$:=diag (1\$ n);
band	Matrice tridiagonale	>band([a,b,c],15);
vandermonde	Matrice de Vandermonde	$>$ vandermonde([a_1, \ldots, a_n]);
vector	Définiton d'un vecteur	> v:=vector([a ₁ ,,a _n]);
vector	Vecteur défini à partir d'une fonction f	<pre>>v:=vector(n,f);</pre>
transpose	Transpose une matrice	<pre>> transpose(A);</pre>
		<pre>>evalm(transpose(A));</pre>
inverse	Inverse une matrice	<pre>> inverse(A);</pre>
111/0150		<pre>>evalm(inverse(A));</pre>
rank	Rang d'une matrice	<pre>>rank(A);</pre>
det, trace	Déterminant et trace d'une matrice carrée	>det(A); , >trace(A);
equal	Egalité de matrices	<pre>> equal(M,N);</pre>
add	Somme matricielle	<pre>>add(A,B);</pre>
add	Somme matriciene	<pre>>evalm(A+B);</pre>
multiply	Produit matriciel	<pre>>multiply(A,B);</pre>
murcipiy		>evalm(A&*B);
multiply	Désigne aussi le produit d'une matrice	<pre>>multiply(A,v);</pre>
	et d'un vecteur	
scalarmul	Produit d'une matrice par un scalaire	>scalarmul(A, α)
dotprod	Produit scalaire de 2 vecteurs	>dotprod(u,v);
crossprod	Produit vectoriel	>crossprod(u,v);
norm	Norme euclidienne d'un vecteur	>norm(u,2);
charmat	Matrice caractéristique : $A - \lambda I_n$	>charmat(A, λ)
charpoly	Polynôme caractéristique : $det(A - \lambda I_n)$	>charpoly(A, λ)
eigenvals	Valeurs propres	>eigenvals(A)
eigenvects	Vecteurs propres	>eigenvects(A)
concat	Retourne la matrice bloc (A, B)	<pre>>concat (A,B);</pre>
stackmatrix	Retourne la matrice bloc $\begin{pmatrix} A \\ B \end{pmatrix}$	>stackmatrix(A,B);
submatrix	Permet d'extraire une sous-matrice	>submatrix(A, i_1i_2, j_1j_2);
delrows	Retourne A privée des lignes i_1 à i_2	>delrows(A, i_1i_2);
delcols	Retourne A privée des colonnes i_1 à i_2	>delcols(A,i ₁ i ₂);
col	Retourne la i^{eme} colonne de A	>col(A,i);
	sous forme de vecteur (Maple)	
row	Retourne la i^{eme} ligne de A	>row(A,i);
	sous forme de vecteur (Maple)	

Les commandes concat et stackmatrix s'utilisent aussi avec les vecteurs. Le résultat est une matrice. Avec concat, les vecteurs donnés deviennent les "vecteurs" colonnes de la matrice obtenue et avec stackmatrix ils deviennent les "vecteurs" lignes.

Les vecteurs et les matrices unilignes sont tous les deux de type array mais de natures différentes. Pour s'en convaincre on peut tester les produits

$$multiply(A, u)$$
 et $multiply(A, B)$

avec v:=vector([1,2,3])=
$$\begin{bmatrix} 1, 2, 3 \end{bmatrix}$$
, B:=matrix(1,3,[1,2,3])= $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ et

A:=matrix(3,3,[3,2,1,4,5,6,9,8,7]) =
$$\begin{bmatrix} 3 & 2 & 1 \\ 4 & 5 & 6 \\ 9 & 8 & 7 \end{bmatrix}$$
. Ou en calculant transpose(B) et transpose(v).

Ou en calculant transpose(B) et transpose(v

Un vecteur est affiché horizontalement. Il ne possède ni notion de ligne ni celle de la colonne. Quand Maple le convertit en matrice, il crée une matrice colonne. Exemple :

```
>b:=vector([x,y]);
>B:=evalm(convert(b,matrix));
>coldim(B);
>rowdim(B);
```

ii)Systèmes linéaires

solve	Résolution des systèmes linéaires	>solve($\{a_{11}x+a_{12}y=b_1, a_{21}x+a_{22}y=b_2\},\{x,y\}$)
genmatrix	Donne la matrice du système	$>genmatrix({a_{11}x+a_{12}y=b_1, a_{21}x+a_{22}y=b_2},[x,y])$
genmatrix	Génère aussi la matrice augmentée	>genmatrix(Le système,[x,y],Le vecteur
		second_membre)
geneqns	Retourne le système d'équations	>geneqns(A,x)
linsolve	Résout le système A.x=b	<pre>>linsolve(A,b);</pre>
gausselim	La matrice réduite de Gauss	>gausselim(A);
swapcol	Permute les colonnes	>swapcol(A,i,j);
swaprow	Permute les lignes	>swaprow(A,i,j);
mulcol	$C_j \longleftarrow xC_j$	<pre>>mulcol(A,j,x);</pre>
mulrow	$L_i \longleftarrow xL_i$	>mulrow(A,i,x);
addcol	$\mathtt{C}_j \longleftarrow \mathtt{C}_j + \mathtt{x}\mathtt{C}_i$	<pre>>addcol(A,i,j,x);</pre>
addrow	$L_j \longleftarrow L_j + xL_i$	<pre>>addrow(A,i,j,x);</pre>

Exercice 1

1. Ecrire les matrices suivantes :

$$A = \begin{pmatrix} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{pmatrix}; B = \begin{pmatrix} 4 & 5 & 6 \end{pmatrix}; C = \begin{pmatrix} 4 & -6 & 9 & 6 \\ 0 & -7 & 10 & 7 \\ 5 & 8 & 11 & -8 \end{pmatrix}; D = \begin{pmatrix} 2 & 5 \\ 3 & 6 \\ 0 & -1 \\ 1 & 2 \end{pmatrix};$$

$$E = \frac{1}{5} \cdot \begin{pmatrix} 4 & 3 \\ 3 & -4 \end{pmatrix}; F = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}; O_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- 2. Même question pour :
 - (a) La matrice carrée identiquement nulle d'ordre 15.
 - (b) La matrice carrée $M = (m_{ij})_{1 \le i,j \le 10}$ d'ordre 10 définie par :

$$m_{ij} = \begin{cases} i+j & \text{si} \quad i \neq j \\ 0 & \text{si} \quad i = j \end{cases}.$$

- (c) La matrice identité I_{20} .
- (d) La matrice carrée $N=\begin{pmatrix}1&y&y^2\\x&xy&xy^2\\x^2&x^2y&x^2y^2\end{pmatrix},$ ($indication:utiliser\ la\ fonction\quad f(i,j)=x^{i-1}y^{j-1}).$

Evaluer la matrice N pour x = 1.

- (e) La matrice tridiagonale $T = \begin{pmatrix} 2 & -1 & 0 & 0 & 0 \\ 3 & 2 & -1 & 0 & 0 \\ 0 & 3 & 2 & -1 & 0 \\ 0 & 0 & 3 & 2 & -1 \\ 0 & 0 & 0 & 3 & 2 \end{pmatrix}$.
- 3. Calculer 5C, $\sqrt{2}A + 3N$ et $C \cdot D$.

Exercice 2

1. Ecrire les vecteurs :

$$u = \begin{pmatrix} 1, & 3 & 5 \end{pmatrix}$$
, $v = \begin{pmatrix} -2, & 3, & 0 \end{pmatrix}$, $w = \begin{pmatrix} 0, & -3, & 6 \end{pmatrix}$ et le vecteur colonne $n = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$.

- 2. Calculer le produit vectoriel de u par v, $u \wedge v$, puis le produit scalaire du résultat par w, $(u \wedge v) \cdot w$. Calculer le produit vectoriel de v par w puis le produit scalaire du résultat par u.
- 3. Calculer $||u \wedge v||$ (l'aire du parallélogramme engendré par u et v).
- 4. Soient U, V et W trois vecteurs de \mathbb{R}^3 . Calculer le produit vectoriel de U par V puis le produit scalaire du résultat par W. Calculer le produit vectoriel de V par W puis le produit scalaire du résultat par U. Concluez.
- 5. Ecrire la matrice A qui pour vecteurs lignes U, V et W. Calculer det A et concluez.

Exercice 3

Soit la matrice de Vandermonde $A = \begin{pmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{pmatrix}$.

- 1. Extraire de A le coefficient de la 2° ligne et la 3° colonne.
- 2. Extraire de A les sous matrices $\begin{pmatrix} y^2 & 1 \\ z^2 & 1 \end{pmatrix}$ et $\begin{pmatrix} x & x^2 \\ y & y^2 \end{pmatrix}$.
- 3. Extraire de A le 2^{eme} vecteur ligne et le 3^{eme} vecteur colonne.

Exercice 4

Soient les matrices
$$A = \begin{pmatrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 4 \end{pmatrix}$.

Construire les matrices écrites par blocs suivantes : $\begin{pmatrix} A \\ B^T \end{pmatrix}$ et $\begin{pmatrix} A \\ B \end{pmatrix}$

Exercice 5

Soit M la matrice $\begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix}$ et soit la matrice A obtenue en effaçant la cinquième colonne de M.

- 1. Calculer le rang de A.
- 2. Montrer que la matrice A^TA est inversible $(A^T$ est la transposée de A).
- 3. Calculer A^{-1} .

Exercice 6

- 1. Soit $A = (a_{ij})_{\substack{1 \leq i \leq 3 \\ 1 \leq i \leq A}}$ une matrice (3,4). Donner la transposée A^T de A. Calculer $A.A^T$ et vérifier que c'est une matrice carrée symétrique.
- 2. On pose $B = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. Calculer B^n .

Exercice 7

1. Expliquer la suite de commandes :

```
>S:=matrix(5,5);
   >seq(row(S,i),i=1..5);
   >T:=augment (%);
2. Idem pour
  >S:=matrix(5,5);
   >seq(col(S,i),i=1..5);
   >T:=augment (%);
```

Exercice 8

- 1. Ecrire une procédure retournant la fonction $f_{in}(x) = \begin{cases} n\left(x \frac{i-1}{n}\right) & \text{si} & \frac{i-1}{n} \leq x \leq \frac{i}{n} \\ n\left(\frac{i+1}{n} x\right) & \text{si} & \frac{i}{n} \leq x \leq \frac{i+1}{n} \end{cases}$
- 2. Ecrire une procédure retournant la matrice unité d'odre n.
- 3. Même question pour les matrices

Meme question pour les matrices:
$$A = (a_{ij})_{1 \le i,j \le n} \text{ avec } a_{ij} = \begin{cases} i+j & \text{si } i \ne j \\ 0 & \text{si } i = j \end{cases}$$

$$B = (b_{ij})_{1 \le i,j \le n} \text{ avec } b_{ij} = \frac{i-j}{i+j}$$

$$C = (c_{ij})_{1 \le i,j \le n} \text{ avec } \begin{cases} c_{ii} = 1 - \left(\frac{1}{2}\right)^{n-i} & \text{si } i < n \\ c_{ii} = 1 & \text{si } i = n \\ c_{ij} = \left(\frac{1}{2}\right)^{n-j} & \text{si } i = j+1 \\ c_{ij} = 0 & \text{sinon} \end{cases}$$

Exercice 9

- 1. Un théorème affirme que la matrice B obtenue en interchangeant deux lignes (ou deux colonnes) d'une matrice carrée A a un déterminant égal à -det(A). Vérifiez ceci sur une matrice quelconque (4,4).
- 2. Soit C une matrice (3,3) quelconque. Vérifier que le déterminant de C reste inchangé si on ajoute à un vecteur ligne respectivement colonne une combinaison linéaire des autres vecteurs lignes respectivement colonnes.

Exercice 10

Reprendre les exercices 6, 7 et 8 du TD1 (matrices) de l'algèbre linéaire