

2. GPIO ===

이영주 young.kopo@gmail.com

개발도구(Thonny Python IDE)

Thonny 4 is dedicated to Ukraine fighting the Russian invasion.

ua Please support Ukraine! ua

Thonny Python IDE for beginners

라즈베리파이 GPIO 제어용 파이썬 모듈 (기본 내장)

import RPi.GPIO as GPIO

• 제어핀 모드 설정

GPIO.setmode(GPIO.BOARD)
or
GPIO.setmode(GPIO.BCM)

		Physical F				
Function	BCM	pin#	pin#	BCM	Function	
3.3 Volts		1	2		5 Volts	
GPIO/SDA1 (I2C)	2	3	4		5 Volts	
GPIO/SCL1 (I2C)	3	5	6		GND	
GPIO/GCLK	4	7	8	14	TX UART/GPIC	
GND		9	10	15	RX UART/GPI	
GPIO	17	11	12	18	GPIO	
GPIO	27	13	14		GND	
GPIO	22	15	16	23	GPIO	
3.3 Volts		17	18	24	GPIO	
MOSI (SPI)	10	19	20		GND	
MISO(SPI)	9	21	22	25	GPIO	
SCLK(SPI)	11	23	24	8	CEO_N (SPI)	
GND		25	26	7	CE1_N (SPI)	
RESERVED		27	28		RESERVED	
GPIO	5	29	30		GND	
GPIO	6	31	32	12	GPIO	
GPIO	13	33	34		GND	
GPIO	19	35	36	16	GPIO	
GPIO	26	37	38	20	GPIO	
GND		39	40	21	GPIO	

- 채널설정(입/출력 설정)
- ✓ GPIO.setup(channel, GPIO.IN)
- ✓ GPIO.setup(channel, GPIO.OUT)
- ✓ GPIO.setup(channel, GPIO.OUT, initial = GPIO.HIGH)
- 입출력 제어
- ✓ GPIO.input(channel)
- ✓ GPIO.ouput(channel, state)
- > state : GPIO.HIGH/1/True, GPIO.LOW/0/False
- 종료전 리소스 반납(필수)
- ✓ GPIO.cleanup()

Rpi.GPIO 사용 예제

```
# 라이브러리 임포트
import RPi.GPIO as GPIO
# GPIO setup
GPIO.setmode(GPIO.BCM)
GPIO.setup(12, GPIO.IN)
GPIO.setup(18, GPIO.OUT)
#메인 쓰레드
try:
      while 1:
              button = GPIO.input(12)
              GPIO.output(18, GPIO.HIGH)
# 반드시 클린업
finally: GPIO.cleanup()
```

DC모터제어

BRUSHED MOTOR

BRUSHLESS MOTOR

DC모터제어

```
import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
MOTOR P = 19
MOTOR M = 13
If _name__ == "__main__":
        GPIO.setup(MOTOR P, GPIO.OUT)
        GPIO.setup(MOTOR M, GPIO.OUT)
        try:
                 while(True):
                  GPIO.output(MOTOR P, GPIO.HIGH)
                  GPIO.output(MOTOR M, GPIO.LOW)
                  print("Clock Wise")
                  time.sleep(1)
                  GPIO.output(MOTOR P, GPIO.LOW)
                  GPIO.output(MOTOR_M, GPIO.LOW)
                  print("Stop")
                  time.sleep(1)
```

```
GPIO.output(MOTOR P, GPIO.LOW)
         GPIO.output(MOTOR M, GPIO.HIGH)
         print("Count Clock Wise")
         time.sleep(1)
         GPIO.output(MOTOR P, GPIO.LOW)
         GPIO.output(MOTOR M, GPIO.LOW)
         print("Stop")
          time.sleep(1)
except KeyboardInterrupt:
#finally:
         GPIO.cleanup()
```

Step 모터제어

모터상	1	2	3	4	5	6	7	8
A (A) – in1	1	1	0	0	0	0	0	1
B (B) – in2	0	1	1	1	0	0	0	0
C (/A) – in3	0	0	0	1	1	1	0	0
D (/B) - in4	0	0	0	0	0	1	1	1

Step 모터제어

Step 모터제어-1

```
Gearbox of 1:64
                                                  \rightarrow 32*64 = 2048 steps for 360 degree rotation
import RPi.GPIO as GPIO
import time
# 스텝모터와 연결된 GPIO 번호를 변수에 저장한다.
                                                                      # 반복하여 모터를 정방향 -> 정지 -> 역방향 -> 정지 순서로 제어한다.
STEP IN1 = 16
                                                                        try:
STEP IN2 = 20
                                                                           for i in range(0,ROTATE_360_STEP):
STEP IN3 = 21
                                                                              for step_idx in range(FULL_STEP):
                                                                                # GPIO를 제어한다. for문을 통해 코드를 줄일 수 있다.
STEP IN4 = 26
                                                                                # GPIO.output(STEP IN1, signal full[step idx][0])
pinsArray = [STEP IN1,STEP IN2,STEP IN3,STEP IN4]
                                                                                # GPIO.output(STEP IN2, signal full[step idx][1])
                                                                                # GPIO.output(STEP_IN3, signal_full[step_idx][2])
# 풀 스탭 구동 (1상 여자 방식)
                                                                                # GPIO.output(STEP IN4, signal full[step idx][3])
                                                                                for idx in range(4):
signal full = [
                                                                                   GPIO.output(pinsArray[idx], signal_full[step_idx][idx])
       [GPIO.HIGH, GPIO.LOW, GPIO.LOW],
       [GPIO.LOW, GPIO.HIGH, GPIO.LOW, GPIO.LOW],
                                                                                time.sleep(0.002)
       [GPIO.LOW, GPIO.LOW, GPIO.HIGH, GPIO.LOW],
       [GPIO.LOW, GPIO.LOW, GPIO.HIGH]
                                                                           for i in range(0,ROTATE 360 STEP):
                                                                              for step idx in reversed(range(FULL STEP)):
                                                                                # GPIO를 제어한다. for문을 통해 코드를 줄일 수 있다.
# 1스탭의 사이클
                                                                                # GPIO.output(STEP IN1, signal full[step idx][0])
                                                                                # GPIO.output(STEP_IN2, signal_full[step_idx][1])
FULL STEP = len(pinsArray)
ROTATE 360 STEP = 512 # FULL STEP으로 512스탭
                                                                                # GPIO.output(STEP_IN3, signal_full[step_idx][2])
                                                                                # GPIO.output(STEP IN4, signal full[step idx][3])
if __name__ == "__main__":
                                                                                for idx in range(4):
                                                                                   GPIO.output(pinsArray[idx], signal full[step idx][idx])
  # BCM 핀맵을 사용한다
                                                                                time.sleep(0.002)
  GPIO.setmode(GPIO.BCM)
  for p index in pinsArray:
                                                                        # 키보드 인터럽트, 에러 등으로 소스가 종료될 경우 GPIO를 초기화한 후 종료한다.
     GPIO.setup(p index, GPIO.OUT)
                                                                        finally:
     GPIO.output(p index, GPIO.LOW)
                                                                           GPIO.cleanup()
```

32 step = 360 degree, 4 pulses = 11.25 degree

Step 모터제어-2

```
import RPi.GPIO as GPIO import time from collections import deque

# 스텝모터와 연결된 GPIO 번호를 변수에 저장한다. STEP_IN1 = 16
STEP_IN2 = 20
STEP_IN3 = 21
STEP_IN4 = 26

sig=deque([1,0,0,0])
step=2048
dir=1
```

deque objects

```
class collections.deque([iterable[, maxlen]])
```

Returns a new deque object initialized left-to-right (using append()) with data from *iterable*. If *iterable* is not specified, the new deque is empty.

```
rotate(n=1)
```

Rotate the deque *n* steps to the right. If *n* is negative, rotate to the left.

```
if name == " main ":
   GPIO.setmode(GPIO.BCM)
   GPIO.setwarnings(False)
   GPIO.setup(STEP IN1, GPIO.OUT, initial=GPIO.LOW)
   GPIO.setup(STEP IN2, GPIO.OUT, initial=GPIO.LOW)
   GPIO.setup(STEP IN3, GPIO.OUT, initial=GPIO.LOW)
   GPIO.setup(STEP_IN4, GPIO.OUT, initial=GPIO.LOW)
   try:
      while(True):
         for cnt in range(0, step):
            GPIO.output(STEP_IN1,sig[0])
            GPIO.output(STEP_IN2,sig[1])
            GPIO.output(STEP IN3,sig[2])
            GPIO.output(STEP_IN4,sig[3])
            time.sleep(0.01)
            sig.rotate(dir)
         dir=dir*-1
   except KeyboardInterrupt:
      GPIO.cleanup()
```

Step 모터제어-wiringpi

```
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <wiringPi.h>
#define STEP_IN1 27
#define STEP_IN2 28
#define STEP_IN3 29
#define STEP_IN4 25
char pinsArray[4] = {STEP_IN1,STEP_IN2,STEP_IN3,STEP_IN4};
char signal_full[4][4] = \{
          {1, 0, 0, 0},
          \{0, 1, 0, 0\},\
          \{0, 0, 1, 0\},\
          {0, 0, 0, 1}
char FULL STEP = 4;
int ROTATE_360_STEP = 512;
void setup_io(void){
       pinMode(STEP_IN1 , OUTPUT);
       pinMode(STEP_IN2 , OUTPUT);
       pinMode(STEP_IN3 , OUTPUT);
       pinMode(STEP_IN4 , OUTPUT);
       digitalWrite(STEP_IN1, LOW);
       digitalWrite(STEP_IN2, LOW);
       digitalWrite(STEP_IN3, LOW);
       digitalWrite(STEP_IN4, LOW);
```

```
int main ()
      if (wiringPiSetup () == -1)
            fprintf (stdout, "oops: %s\n", strerror (errno));
            return 1
      setup_io();
     for(int i = 0; i < ROTATE_360_STEP; i++){
            for(char step_idx = 0; step_idx < FULL_STEP; step_idx ++){</pre>
                  for(char idx = 0; idx < 4; idx++){
                  digitalWrite(pinsArray[idx], signal_full[step_idx][idx]);
            delay(1);
      for(int i = 0; i < ROTATE_360_STEP; i++){
            for(char step_idx = FULL_STEP; step_idx > 0; step_idx --){
                  for(char idx = 0; idx < 4; idx++){
                  digitalWrite(pinsArray[idx], signal_full[step_idx][idx]);
                  delay(1);
      return 0;
```

스위치

Switch

```
if __name__ == "__main__":
                                                          # GPIO 핀을 INPUT 으로 설정한다.
                                                          GPIO.setup(SW_PIN_LIST, GPIO.IN)
import RPi.GPIO as GPIO
import time
                                                          try:
                                                             while(True):
# GPIO의 모드를 BCM으로 설정한다(GPIO번호 사용)
GPIO.setmode(GPIO.BCM)
                                                               button state = []
SW1 PIN = 4
                                                               for i in SW PIN LIST:
SW2 PIN = 17
                                                                  button_state.append(GPIO.input(i))
SW3 PIN = 18
SW4_PIN = 22
                                                               print("Button State : ", button_state)
SW PIN LIST = [SW1 PIN, SW2 PIN, SW3 PIN, SW4 PIN]
                                                               # 0.5초간 대기한다.
                                                               time.sleep(0.5)
                                                          finally:
                                                             GPIO.cleanup()
```

Switch-1

```
#include <stdio.h>
#include <string.h>
#include <wiringPi.h>
#define SW1_PIN 7
#define SW2 PIN 0
#define SW3_PIN 1
#define SW4 PIN 3
void setup_io(void){
 pinMode(SW1_PIN, INPUT);
 pinMode(SW2_PIN, INPUT);
 pinMode(SW3_PIN, INPUT);
 pinMode(SW4_PIN, INPUT);
```

```
int main ()
    if (wiringPiSetup () == -1)
        fprintf (stdout, "oops: %s\n", strerror
       (errno));
       return 1;
   setup_io();
   for (;;) {
       printf("Button State: %d %d %d %d ₩n",
        digitalRead(SW1_PIN), digitalRead(SW2_PIN),
       digitalRead(SW3_PIN), digitalRead(SW4_PIN));
   return 0;
```

과제

SW1 누름시 DC모터 정회전 SW2 누름시 DC모터 역회전 SW3 누름시 DC모터 정지

* 정회전 및 역회전을 시작 하기전 모터를 정지하고 구동하시오

ftp 서버 설치

sudo apt-get install vsftpd sudo nano /etc/vsftpd.conf

#내용중 주석 삭제 local_enable=YES write_enable=YES local_umask=022

chroot_local_user = YES
chroot_list_enable = YES
chroot_list_file=/etc/vsftpd.chroot_list

아이디 저장 sudo nano /etc/vsftpd.chroot_list 아이디는 bready 로 입력후 저장

재시작

sudo systemctl restart vsftpd

자동실행 sudo systemctl enable vsftpd

ftp 클라이언트 설치

₩192.168.24.251 접속하여 filezilla 설치

