Logica e Modelli Computazionali

Macchine di Turing

Marco Console

Ingegneria Informatica e Automatica (Sapienza, Università di Roma)

Oltre i Linguaggi Non-Contestuali

- Fino ad ora abbiamo visto due diversi modelli computazionali
 - Automi a stati finiti (D, ND, ϵ). L'unica memoria che posseggono è lo stato interno
 - Automi a Pila. Posseggono memoria illimitata ma gestita come una Pila (LIFO Queue)
- Abbiamo visto che entrambi i modelli hanno delle limitazioni molto stringenti
 - Possiamo provare un Pumping Lemma (distinto) per entrambi i modelli
 - II linguaggio $\mathcal{L}_1 = \{a^m b^m \mid m \geq 1\}$ non è regolare (non possiamo riconoscerlo ϵ -ASFND)
 - II linguaggio $\mathcal{L}_2 = \{a^m b^m c^m | m \ge 1\}$ non è Non-Contestuale (non sappiamo riconoscerlo!)
- Possiamo aumentare il potere computazionale delle nostre macchine rendendo più libero l'accesso alla memoria durante la computazione
 - Il linguaggio \mathcal{L}_2 può essere riconosciuto semplicemente "contando" le occorrenze dei tre simboli
 - Per farlo dobbiamo però tenere traccia del numero di simboli incontrati senza dimenticarlo

Macchine di Turing – Intuizione

- Per costruire un modello matematico con accesso alla memoria privo di restrizioni ci viene in aiuto un modello computazionale inventato negli anni 1920 dal matematico britannico Alan Turing
- Le definizioni della Macchina di Turing sono molte (e tutte equivalenti a meno di parametri) ma si basano tutte sull'idea di fornire ad un Automa a Stati Finiti le seguenti caratteristiche aggiuntive
 - La macchina ha un insieme finito di stati interni tra cui si muove (come gli ASFD)
 - La macchina ha accesso a una memoria illimitata (come gli automi a pila)
 - L'input non è consumato durante la computazione ma risiede nella memoria interna
 - La memoria è un nastro illimitato (stringa infinita) le cui celle (caratteri) possono essere letti e\o scritti
 - La macchina può terminare la sua computazione in qualunque momento senza consumare tutto l'input
- In termini di linguaggi riconosciuti, tale modello computazionale è il più potente che conosciamo
 - In termini di linguaggi riconosciuti, congetturiamo che non sia possibile trovare di meglio ©
 - "It is amazing how little we need to have everything." (Christos H. Papadimitriou Computational Complexity)

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - 1. Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4.** Torna all'ultima occorrenza del carattere ↓

NASTRO

a a b b c c u u ...

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - 1. Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **Torna** all'ultima occorrenza del carattere ↓

NASTRO

a a b b c c u u ...

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - 1. Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **Torna** all'ultima occorrenza del carattere ↓

NASTRO

 \downarrow a b b c c \sqcup \sqcup \sqcup

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - **1.** Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4.** Torna all'ultima occorrenza del carattere ↓

NASTI

 \downarrow a b b c c \sqcup \sqcup \ldots

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - **1.** Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4.** Torna all'ultima occorrenza del carattere ↓

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - 1. Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4.** Torna all'ultima occorrenza del carattere ↓

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - **1.** Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4.** Torna all'ultima occorrenza del carattere ↓

NASTRO

Algoritmo per riconoscere
$$L = \{a^m b^m c^m | m \ge 0\}$$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - 1. Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4.** Torna all'ultima occorrenza del carattere ↓

Algoritmo per riconoscere
$$L = \{a^m b^m c^m | m \ge 0\}$$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - 1. Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4.** Torna all'ultima occorrenza del carattere ↓

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - 1. Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #

Torna all'ultima occorrenza del carattere ↓

NASTRO

↓ a # b # c ⊔ ⊔ ...

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - **1.** Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4.** Torna all'ultima occorrenza del carattere ↓

NASTI

↓ a # b # c □ □ □ ...

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - **1.** Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4.** Torna all'ultima occorrenza del carattere ↓

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - 1. Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4.** Torna all'ultima occorrenza del carattere ↓

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - 1. Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4.** Torna all'ultima occorrenza del carattere ↓

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - 1. Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4.** Torna all'ultima occorrenza del carattere ↓

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - 1. Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4.** Torna all'ultima occorrenza del carattere ↓

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

#

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - 1. Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente

#

2. Altrimenti cambia tale occorrenza di c con #

#

4. Torna all'ultima occorrenza del carattere ↓

NASTRO

#

Ш

Ш

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

#

#

Ш

Ш

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - **1.** Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente

#

2. Altrimenti cambia tale occorrenza di c con #

#

4. Torna all'ultima occorrenza del carattere ↓

NAST

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - 1. Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4.** Torna all'ultima occorrenza del carattere ↓

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - **1.** Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4.** Torna all'ultima occorrenza del carattere ↓

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - 1. Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4.** Torna all'ultima occorrenza del carattere ↓

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - **1.** Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4.** Torna all'ultima occorrenza del carattere ↓

NASTRO

#

#

•••

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - 1. Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4.** Torna all'ultima occorrenza del carattere ↓

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - **1.** Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4.** Torna all'ultima occorrenza del carattere ↓

NASTRO

Accetta la stringa corrente

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - 1. Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4.** Torna all'ultima occorrenza del carattere ↓

NASTRO

a a c c b b u u ...

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - 1. Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **Torna** all'ultima occorrenza del carattere ↓

NASTRO

a a c c b b u u ...

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - 1. Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - Torna all'ultima occorrenza del carattere ↓

NASTRO

 \downarrow a c c b b \sqcup \sqcup \sqcup

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - **1.** Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4.** Torna all'ultima occorrenza del carattere ↓

NASTI

 \downarrow a c c b b \sqcup \sqcup ...

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - **1.** Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4.** Torna all'ultima occorrenza del carattere ↓

 \downarrow a c c b b \sqcup \sqcup \ldots

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - **1.** Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4.** Torna all'ultima occorrenza del carattere ↓

NASTRO

Rifiuta la stringa corrente

 ↓
 a
 c
 c
 b
 b
 ⊔
 ⊔
 u
 ...

Macchina di Turing – Definizione Formale

Definizione. Una macchina di Turing M è una 7-upla $M = \langle \Sigma, \Gamma, Q, \delta, q_0, q_{ves}, q_{no} \rangle$ tale che:

- Σ è un insieme finito di simboli detto, insieme dei simboli di input che non include il simbolo blank ⊔
- Γ con Σ ⊆ Γ è un insieme finito di simboli detto, insieme dei simboli del nastro, che include il simbolo blank ⊔
- Q è un insieme finito e non vuoto di stati tale che
 - $q_0 \in Q$ è lo stato iniziale
 - $q_{yes} \in Q$ è lo stato accettante
 - $q_{no} \in Q \text{ con } q_{ves} \neq q_{no} \text{ è lo stato rifiutante}$
 - $Q' = Q \setminus \{q_{yes}, q_{no}\}$ (Q' non contiene q_{yes} e q_{no})
- δ è la funzione di transizione; ovvero, una funzione totale definita come segue $\delta: Q' \times \Sigma \to Q \times \Sigma \times \{\leftarrow, \rightarrow, -\}$

Macchina di Turing – Definizione Informale

- Intuizione 1. La definizione che abbiamo dato cerca di catturare il comportamento della macchina che abbiamo descritto fino ad ora
 - La macchina ha diversi stati interni e inizia la computazione dallo stato iniziale
 - Lo stato accettante termina la computazione della macchina e accetta
 l'input
 - Lo stato rifiutante termina la computazione della macchina e rifiuta l'input
 - La macchina può manipolare i simboli della memoria interna e quelli dell'input

Macchina di Turing – Definizione Informale

- Intuizione 2. Il prossimo passo di una Macchina di Turing è determinato dallo stato interno corrente, dal contenuto del nastro e dalla posizione della testina nel nastro
 - Da queste informazioni possiamo definire la sequenza eseguiti dalla macchina (computazione)
 - La funzione di transizione è definita per ogni coppia ogni coppia (q, σ) ∈ $Q \times \Sigma$ che rappresenta lo stato interno della macchina e il simbolo correntemente letto dalla testina sul nastro e restituisce una terna (q', σ', t) ∈ $Q \times \Sigma \times \{\leftarrow, \rightarrow, -\}$ dove
 - q' è il prossimo stato interno della macchina (chiaramente non è necessario che $q' \neq q$)
 - σ' è il simbolo che sovrascrive quello corrente (chiaramente non è necessario che $\sigma' \neq \sigma$)
 - t è lo spostamento della testina lungo il nastro
 - ←, spostamento a sinistra (torna indietro di una cella)
 - →, spostamento a destra (vai avanti di una cella)
 - –, nessuno spostamento (rimani alla cella corrente)

- Definiamo la macchina di Turing $M = < \Sigma, \Gamma, Q, \delta, q_0, q_{yes}, q_{no} >$ come segue
 - $-\Sigma = \{a, b\}$ Simboli di input
 - Γ = Σ ∪ {#,⊔} Simboli del nastro
 - $Q = \{q_0, q_1, q_{ves}, q_{no}\}$ Insieme degli stati

$oldsymbol{q}$	σ	$oldsymbol{\delta(q,\sigma)}$
q_0	а	(q_0, a, \rightarrow)
q_0	b	(q_1, b, \rightarrow)
q_0	#	$(q_{no}, \#, -)$
q_0	Ц	$(q_{no},\sqcup,-)$
q_1	а	$(q_{no},a,-)$
q_1	b	(q_1, b, \rightarrow)
q_1	#	$(q_{no}, \#, -)$
q_1	Ц	$(q_{yes},\sqcup,-)$

Macchina di Turing – Configurazioni

- Sia $M = \langle \Sigma, \Gamma, Q, \delta, q_0, q_{ves}, q_{no} \rangle$ una macchina di Turing
- **Definizione**. Una **configurazione** di *M* è una 3-upla $C = (\sigma, q, \tau)$ tale che:
 - σ è una **stringa sull'alfabeto** Γ (nastro a sinistra della testina)
 - $-\tau = a\tau'$ è una stringa sull'alfabeto Γ (nastro a destra della testina e a è il simbolo corrente)
 - $-q \in Q$ è uno **stato** di M (stato corrente della configurazione)
- Definizione. Una configurazione $C = (\sigma, q, \tau)$ di M è detta:
 - Accettante (finale) se $q = q_{ves}$
 - Rifiutante (finale) se $q = q_{no}$
 - Iniziale se se $q=q_0$, $\sigma=\epsilon$ (stringa vuota) e $\tau\in\Sigma^*$ (τ è una stringa dell'alfabeto dell'input)

Macchina di Turing – Configurazioni

- Esempio. Sia $M = < \Sigma, \Gamma, Q, \delta, q_0, q_{yes}, q_{no} > \text{con } \Sigma = \{a, b\}, \Gamma = \Sigma \cup \{\#, \ \sqcup\}, Q = \{q_0, q_1, q_{yes}, q_{no}\}$
 - La macchina definita in precedenza
 - (ϵ, q_0, aa) è una configurazione **Iniziale** di M
 - $(abab, q_{ves}, abb \sqcup)$ è una configurazione **Accettante** di M
 - $(ab, q_{no}, ab \sqcup b)$ è una configurazione Rifiutante di M
 - $-(\epsilon, q_1, aa)$ è una configurazione di M (non iniziale, non finale)
 - $(\epsilon, q_0, aa\#)$ è una configurazione di M (non è iniziale perché $\# \notin \Sigma$)

Macchina di Turing – Esecuzioni

- Intuizione. Vogliamo formalizzare l'idea di una macchina che si sposta attraverso le sue configurazioni seguendo le regole dettate dalla sua funzione di transizione
- Sia $M = \langle \Sigma, \Gamma, Q, \delta, q_0, q_{ves}, q_{no} \rangle$ una macchina di Turing
- Siano $x, y, z \in \Gamma$ (simboli di nastro)
- Siano $\sigma, \tau \in \Gamma^*$ (stringhe di simboli di nastro)
- Siano $q, q' \in Q$
- Definizione. Una configurazione C genera una configurazione D in M ($C \Rightarrow_M D$) se
 - $C = (\sigma y, q, x\tau), D = (\sigma, q', yz\tau) \in \delta(q, x) = (q', z, \leftarrow) \in \sigma \neq \epsilon$ (movimento a sinistra)
 - $C = (\epsilon, q, x\tau), D = (\epsilon, q', z\tau) \in \delta(q, x) = (q', z, \leftarrow)$ (movimento a sinistra bloccato)
 - $C = (\sigma, q, xy\tau), D = (\sigma z, q', y\tau) \in \delta(q, x) = (q', z, \rightarrow) \in \tau \neq \epsilon$ (movimento a destra)
 - $C = (\sigma, q, \epsilon), D = (\sigma z, q', \epsilon)$ e $\delta(q, \sqcup) = (q', z, \rightarrow)$ (movimento a destra oltre il nastro corrente)
 - $C = (\sigma, q, x\tau), D = (\sigma, q', z\tau) \in \delta(q, x) = (q', z, -)$ (nessun movimento)

Macchina di Turing – Esecuzioni – Esempio

• Sia M = $< \Sigma$, Γ , Q, δ , q_0 , q_{yes} , $q_{no} > \cos \Sigma = \{a, b, \#\}$, $\Gamma = \Sigma \cup \{\sqcup\}$, $Q = \{q_0, q_{yes}, q_{no}\}$

q	σ	$oldsymbol{\delta}(q,\sigma)$
q_0	а	(q_0, a, \rightarrow)
q_0	b	$(q_{yes}, b, -)$
q_0	#	$(q_{no}, \#, \leftarrow)$
q_0	Ц	(q_0,\sqcup,\to)

- Esempio. La configurazione iniziale $C_1 = (\epsilon, q_0, aab)$ genera la configurazione $C_2 = (a, q_0, ab)$
- Esempio. La configurazione $C_2 = (a, q_0, ab)$ genera la configurazione $C_3 = (aa, q_0, b)$
- Esempio. La configurazione $C_3 = (aa, q_0, b)$ genera la configurazione accettante $C_4 = (aa, q_{yes}, b)$
- Esempio. La configurazione iniziale $D_1 = (\epsilon, q_0, aa\#)$ genera la configurazione $D_2 = (a, q_0, a\#)$
- Esempio. La configurazione $D_2 = (a, q_0, a\#)$ genera la configurazione $D_3 = (aa, q_0, \#)$
- Esempio. La configurazione $D_3 = (aa, q_0, \#)$ genera la configurazione rifiutante $D_4 = (a, q_{no}, a\#)$

Macchina di Turing – Linguaggio Riconosciuti

- Definiamo ora il linguaggio riconosciuto da una Macchina di Turing
 - In maniera analoga al linguaggio riconosciuto da un automa
- Definizione. La macchina M accetta\riffiuta l'input $\sigma \in \Sigma^*$ se esiste una sequenza finita di configurazioni $C_1, C_2, ..., C_n$ di M tale che le seguenti proprietà sono soddisfatte
 - $C_1 = (\epsilon, q_0, \sigma)$
 - C_n è una configurazione accettante\rifiutante
 - $C_i \Rightarrow_M C_{i+1}$ per ogni i = 1, ..., n-1
- Definizione. L'insieme L(M) delle stringhe che M accetta è detto il linguaggio riconosciuto da M

MdT – Linguaggio Riconosciuti – Esempio

• Sia M = $< \Sigma$, Γ , Q, δ , q_0 , q_{yes} , $q_{no} > \cos \Sigma = \{a, b, \#\}$, $\Gamma = \Sigma \cup \{\sqcup\}$, $Q = \{q_0, q_{yes}, q_{no}\}$

$oldsymbol{q}$	σ	$oldsymbol{\delta(q,\sigma)}$
q_0	а	(q_0, a, \rightarrow)
q_0	b	$(q_{yes}, b, -)$
q_0	#	$(q_{no}, \#, \leftarrow)$
q_0	Ц	(q_0,\sqcup,\to)

- Esempio 1. La macchina M accetta l'input $aab \in \Sigma^*$ a causa di (C_1, C_2, C_3, C_4)
 - La configurazione iniziale $C_1 = (\epsilon, q_0, aab)$ genera la configurazione $C_2 = (a, q_0, ab)$
 - La configurazione $C_2 = (a, q_0, ab)$ genera la configurazione $C_3 = (aa, q_0, b)$
 - Esempio. La configurazione $C_3 = (aa, q_0, b)$ genera la configurazione accettante $C_4 = (aa, q_{yes}, b)$

MdT – Linguaggio Riconosciuti – Esempio

• Sia M = $< \Sigma$, Γ , Q, δ , q_0 , q_{yes} , $q_{no} > \cos \Sigma = \{a, b, \#\}$, $\Gamma = \Sigma \cup \{\sqcup\}$, $Q = \{q_0, q_{yes}, q_{no}\}$

q	σ	$oldsymbol{\delta}(oldsymbol{q},oldsymbol{\sigma})$
q_0	a	(q_0, a, \rightarrow)
q_0	b	$(q_{yes}, b, -)$
q_0	#	$(q_{no}, \#, \leftarrow)$
q_0	Ц	(q_0,\sqcup,\to)

- Esempio 2. La macchina M rifiuta l'input $aa \# \in \Sigma^*$ a causa di (D_1, D_2, D_3, D_4)
 - La configurazione iniziale $D_1 = (\epsilon, q_0, aa\#)$ genera la configurazione $D_2 = (a, q_0, a\#)$
 - La configurazione $D_2 = (a, q_0, a\#)$ genera la configurazione $D_3 = (aa, q_0, \#)$
 - La configurazione $D_3 = (aa, q_0, \#)$ genera la configurazione rifiutante $D_4 = (a, q_{no}, a\#)$
- Esempio. Il linguaggio riconosciuto da M è il linguaggio delle stringhe sull'alfabeto $\{a, b, \#\}$ in cui almeno un simbolo b precede la prima occorrenza del simbolo #

MdT – Linguaggio Riconosciuti – Esempio

• Sia M = $< \Sigma, \Gamma, Q, \delta, q_0, q_{yes}, q_{no} > \cos \Sigma = \{a, b, \#\}, \Gamma = \Sigma \cup \{\sqcup\}, \ Q = \{q_0, q_{yes}, q_{no}\}$

$oldsymbol{q}$	σ	$oldsymbol{\delta(q,\sigma)}$
q_0	а	(q_0, a, \rightarrow)
q_0	b	$(q_{yes}, b, -)$
q_0	#	$(q_{no}, \#, \leftarrow)$
q_0	Ц	(q_0,\sqcup,\to)

• Esempio 3. Il linguaggio riconosciuto da M L(M) è il linguaggio delle stringhe sull'alfabeto $\{a, b, \#\}$ in cui almeno un simbolo b precede la prima occorrenza del simbolo #

Macchina di Turing – Linguaggio Riconosciuti

- **Domanda**. Data una qualunque stringa $\sigma \in \Sigma^*$ è vero che una macchina di Turing accetta o rifiuta tale stringa?
 - Considerare anche la macchina che abbiamo appena definito
- Sia M =< Σ , Γ , Q, δ , q_0 , q_{yes} , q_{no} > con Σ = {a, b, #}, Γ = Σ \cup { \sqcup }, Q = { q_0 , q_{yes} , q_{no} }

q	σ	$oldsymbol{\delta(q,\sigma)}$
q_0	а	(q_0, a, \rightarrow)
q_0	b	$(q_{yes}, b, -)$
q_0	#	$(q_{no}, \#, \leftarrow)$
q_0	Ц	(q_0,\sqcup,\to)

Macchina di Turing – Non Terminazione

- **Domanda**. Data una stringa $\sigma \in \Sigma^*$ è vero che una macchina di Turing accetta o rifiuta tale stringa?
- Sia M = $< \Sigma$, Γ , Q, δ , q_0 , q_{yes} , $q_{no} > \cos \Sigma = \{a, b, \#\}$, $\Gamma = \Sigma \cup \{\sqcup\}$, $Q = \{q_0, q_{yes}, q_{no}\}$

\boldsymbol{q}	σ	$oldsymbol{\delta}(oldsymbol{q},oldsymbol{\sigma})$
q_0	a	(q_0, a, \rightarrow)
q_0	b	$(q_{yes}, b, -)$
q_0	#	$(q_{no}, \#, \leftarrow)$
q_0	Ц	(q_0,\sqcup,\to)

- Esempio. La configurazione iniziale $C_1 = (\epsilon, q_0, aa)$ genera la configurazione $C_2 = (a, q_0, a)$
- Esempio. La configurazione $C_2 = (a, q_0, a)$ genera la configurazione $C_3 = (aa, q_0, \epsilon)$
- Esempio. La configurazione $C_3 = (aa, q_0, \epsilon)$ genera la configurazione $C_4 = (aa \sqcup, q_0, \epsilon)$
- Esempio. La configurazione $C_5 = (aa \sqcup, q_0, \epsilon)$ genera la configurazione $C_6 = (aa \sqcup \sqcup, q_0, \epsilon)$
- •
- Possiamo conclude che M non accetta ne rifiuta l'input aa!!
 - Intuitivamente, la macchina entra in un ciclo infinito

Macchina di Turing – Terminazione

- Sia $M = \langle \Sigma, \Gamma, Q, \delta, q_0, q_{ves}, q_{no} \rangle$ una macchina di Turing
- Definizione 1. La macchina M è terminante se per ogni stringa $\sigma \in \Sigma^*$ abbiamo che M accetta o rifiuta σ
 - La macchina entra nello stato accettante o rifiutante per ogni input senza mai bloccarsi in un ciclo infinito
 - Tali macchine vengono chiamate a volte decisori
- Definizione 2. Un linguaggio di stringhe \mathcal{L} è detto Turing Riconoscibile se esiste una macchina di Turing M che riconosce \mathcal{L} (ovvero $\mathcal{L} = L(M)$)
 - Spesso definiti Ricorsivamente Enumerabili (Recursively Enumerable)
- Definizione 3. Un linguaggio di stringhe \mathcal{L} è detto Turing Decidibile se esiste una macchina di Turing terminante M che riconosce \mathcal{L} (ovvero $\mathcal{L} = L(M)$)
 - Spesso definiti Ricorsivi (Recursive)
- **Domanda 1**. Esiste un linguaggio di stringhe £ che non è Turing Riconoscibile?
- Domanda 2. Esiste un linguaggio di stringhe \mathcal{L}' che non è Turing Decidibile?

Macchina di Turing – Decidibilità

- Teorema 1. Esiste un linguaggio di stringhe \mathcal{L} che non è Turing Riconoscibile
- Teorema 2. Esiste un linguaggio di stringhe \mathcal{L}' che non è Turing Decidibile
- Le prove di questi due teoremi ci terranno impegnati per le prossime lezioni ©

Esempi di Macchina di Turing

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - **1.** Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4.** Torna all'ultima occorrenza del carattere ↓

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- 6. Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - 1. Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4. Torna** all'ultima occorrenza del carattere ↓

Stato 0.

La macchina esamina il simbolo corrente e verifica le condizioni di terminazione

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - **1.** Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4. Torna** all'ultima occorrenza del carattere ↓

Stato 1.

La macchina cerca il prossimo carattere *b* e lo sovrascrive se lo trova oppure rifiuta se trova caratteri non coerenti

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- 6. Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere *b*
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - 1. Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4.** Torna all'ultima occorrenza del carattere ↓

Stato 2.

La macchina cerca il prossimo carattere *c* e lo sovrascrive se lo trova oppure rifiuta

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- 6. Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - **1.** Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la strin
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4. Torna** all'ultima occorrenza del carattere ↓

Stato 3.

brrente

La macchina torna indietro all'ultima occorrenza di ↓ e torna allo Stato 0

- Definiamo la Macchina di Turing $M = < \Sigma, \Gamma, Q, \delta, q_0, q_{yes}, q_{no} > con$
 - $\ \Sigma = \{a,b\}, \Gamma = \Sigma \cup \{\downarrow,\#,\sqcup\}, \ Q = \{q_0,q_1,q_2,q_3,q_{yes},q_{no}\}$

- Procediamo a definire la funzione di transizione δ stato per ogni stato
 - Tenendo in considerazione le diverse fasi

- Stato 0. La macchina esamina il simbolo corrente e verifica le condizioni di terminazione
 - Se x = # Allora passa al prossimo carattere.
 - $-\delta(q_0,\#) = (q_0,\#,\to)$
 - Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
 - $\delta(q_0, \sqcup) = (q_{ves}, \sqcup, -)$
 - Se x = b Allora rifiuta la stringa corrente
 - $-\delta(q_0,b) = (q_{no},b,-)$
 - Se x = c Allora rifiuta la stringa corrente
 - $\delta(q_0, c) = (q_{no}, c, -)$
 - Se $x = \downarrow$ Allora rifiuta la stringa corrente
 - $\delta(q_0,\downarrow) = (q_{no},\downarrow,-)$
 - Se x = a Allora Sovrascrivi tale occorrenza di a con il carattere \downarrow e passa allo Stato 1
 - $\delta(q_0, a) = (q_1, \downarrow, \rightarrow)$

- Stato 1. La macchina cerca il prossimo carattere b e lo sovrascrive se lo trova oppure rifiuta se trova un carattere indesiderato
 - Se x = # Allora passa al prossimo carattere.
 - $-\delta(q_1,\#) = (q_1,\#,\to)$
 - Se $x = \sqcup$ (cella vuota) oppure $x = \downarrow$ Allora rifiuta la stringa corrente
 - $\delta(q_1, \sqcup) = (q_{n_0}, \sqcup, -)$
 - $\delta(q_1,\downarrow) = (q_{no},\downarrow,-)$
 - Se trova a Allora scorri a destra il nastro
 - $\delta(q_1, a) = (q_1, a, \rightarrow)$
 - Se trova b Allora sovrascrivilo con # e passa allo Stato 2
 - $-\delta(q_1,b) = (q_2,\#,\to)$
 - Se trova c Allora rifiuta la stringa corrente
 - $-\delta(q_1,c) = (q_{no},c,-)$

- Stato 2. La macchina cerca il prossimo carattere b e lo sovrascrive se lo trova oppure rifiuta se trova un carattere indesiderato
 - Se x = # Allora passa al prossimo carattere.
 - $-\delta(q_2,\#) = (q_2,\#,\to)$
 - Se $x = \sqcup$ (cella vuota) oppure $x = \downarrow$ Allora rifiuta la stringa corrente
 - $\delta(q_2, \sqcup) = (q_{no}, \sqcup, -)$
 - $\delta(q_2,\downarrow) = (q_{no},\downarrow,-)$
 - Se trova b Allora scorri a destra il nastro
 - $\delta(q_2, b) = (q_2, b, \rightarrow)$
 - Se trova c Allora sovrascrivilo con # e passa allo Stato 3
 - $-\delta(q_2,c)=(q_3,\#,-)$
 - Se trova a Allora rifiuta la stringa corrente
 - $\delta(q_2, a) = (q_{no}, a, -)$

- Stato 3. La macchina torna indietro all'ultima occorrenza di ↓ e torna allo Stato 0
 - Se trova ↓ Allora passa allo Stato 0
 - $\delta(q_3,\downarrow) = (q_0,\downarrow,\rightarrow)$
 - - $\delta(q_3, \sqcup) = (q_{no}, \sqcup, -)$
 - Altrimenti scorre a sinistra
 - $\delta(q_3, a) = (q_3, a, \leftarrow)$
 - $-\delta(q_3,b)=(q_3,b,\leftarrow)$
 - $\delta(q_3, c) = (q_3, c, \leftarrow)$
 - $\delta(q_3, \#) = (q_3, \#, \leftarrow)$

$q \in Q$	$\sigma \in \Gamma$	$\delta(\sigma,q)$
q_0	#	$(q_0, \#, \rightarrow)$
q_0	Ц	$(q_{yes},\sqcup,-)$
q_0	\downarrow	$(q_{no},\downarrow,-)$
q_0	а	$(q_1,\downarrow,\rightarrow)$
q_0	b	$(q_{no},b,-)$
q_0	С	$(q_{no},c,-)$
q_1	#	$(q_1, \#, \rightarrow)$
q_1	Ц	$(q_{no},\sqcup,-)$
q_1	1	$(q_{no},\downarrow,-)$
q_1	а	(q_1, a, \rightarrow)
q_1	b	$(q_2, \#, \rightarrow)$
q_1	С	$(q_{no},c,-)$

$q \in Q$	$\sigma \in \Gamma$	$\delta(\sigma,q)$
q_2	#	$(q_2, \#, \rightarrow)$
q_2	Ц	$(q_{no},\sqcup,-)$
q_2	1	$(q_{no},\downarrow,-)$
q_2	а	$(q_{no},a,-)$
q_2	b	(q_2, b, \rightarrow)
q_2	С	$(q_3, \#, -)$
q_3	#	$(q_3, \#, \leftarrow)$
q_3	Ц	$(q_{no},\sqcup,-)$
q_3	1	$(q_0,\downarrow,\rightarrow)$
q_3	а	(q_3, a, \leftarrow)
q_3	b	(q_3, b, \leftarrow)
q_3	С	(q_3, c, \leftarrow)

Macchine di Turing – Esempio di Computazione

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - **1.** Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4.** Torna all'ultima occorrenza del carattere ↓

NASTRO

a a b b c c u u ...

$q \in Q$	$\sigma \in \Gamma$	$oldsymbol{\delta}(oldsymbol{\sigma},oldsymbol{q})$
q_0	#	$(q_0, \#, \rightarrow)$
q_0	Ц	$(q_{yes}$, \sqcup , $-)$
q_0	\downarrow	$(q_{no},\downarrow,-)$
q_0	а	$(q_1,\downarrow,\rightarrow)$
q_0	b	$(q_{no},b,-)$
q_0	С	$(q_{no},c,-)$
q_1	#	$(q_1,\#,\to)$
q_1	Ш	$(q_{no},\sqcup,-)$
q_1	↓	$(q_{no},\downarrow,-)$
q_1	а	(q_1, a, \rightarrow)
q_1	b	$(q_2, \#, \rightarrow)$
q_1	С	$(q_{no},c,-)$

$q \in Q$	$\sigma \in \Gamma$	$\delta(\sigma,q)$
q_2	#	$(q_2, \#, \rightarrow)$
q_2	Ц	$(q_{no}$, \sqcup , $-)$
q_2	\downarrow	$(q_{no},\downarrow,-)$
q_2	а	$(q_{no},a,-)$
q_2	b	(q_2, b, \rightarrow)
q_2	С	$(q_3, \#, -)$
q_3	#	$(q_3, \#, \leftarrow)$
q_3	Ш	$(q_{no},\sqcup,-)$
q_3	\downarrow	$(q_0,\downarrow,\rightarrow)$
q_3	a	(q_3, a, \leftarrow)
q_3	b	(q_3, b, \leftarrow)
q_3	С	(q_3, c, \leftarrow)

NASTRO

a a b b c c u u ...

↓ a # b # c ⊔ ⊔ ...

$q \in Q$	$\sigma \in \Gamma$	$\boldsymbol{\delta}(\pmb{\sigma},\pmb{q})$
q_0	#	$(q_0, \#, \rightarrow)$
q_0	Ц	$(q_{yes}$, \sqcup , $-)$
q_0	\downarrow	$(q_{no},\downarrow,-)$
q_0	а	$(q_1,\downarrow,\rightarrow)$
q_0	b	$(q_{no},b,-)$
q_0	С	$(q_{no},c,-)$
q_1	#	$(q_1, \#, \rightarrow)$
q_1	Ц	$(q_{no},\sqcup,-)$
q_1	1	$(q_{no},\downarrow,-)$
q_1	a	(q_1, a, \rightarrow)
q_1	b	$(q_2, \#, \rightarrow)$
q_1	С	$(q_{no},c,-)$

$q \in Q$	$\sigma \in \Gamma$	$\delta(\sigma,q)$
q_2	#	$(q_2, \#, \rightarrow)$
q_2	Ц	$(q_{no},\sqcup,-)$
q_2	1	$(q_{no},\downarrow,-)$
q_2	а	$(q_{no},a,-)$
q_2	b	(q_2, b, \rightarrow)
q_2	С	$(q_3, \#, -)$
q_3	#	$(q_3,\#,\leftarrow)$
q_3	Ц	$(q_{no},\sqcup,-)$
q_3	\downarrow	$(q_0,\downarrow,\rightarrow)$
q_3	а	(q_3, a, \leftarrow)
q_3	b	(q_3, b, \leftarrow)
q_3	С	(q_3, c, \leftarrow)

NASTRO

a a c c b b u u ...

a c c b b 🗆 ...

a c c b b 🗆 ...

Descrizione Semi-Formale delle Macchinen di Turing

Macchina di Turing – Descrizione Semi Formale

- La definizione di una macchina di Turing richiede tantissimi dettagli di basso livello
 - Movimento delle testine, stati interni ecc.
- Ovviamente, non vogliamo definire tali dettagli ogni volta che definiamo un algoritmo per riconoscere un determinato linguaggio
 - Equivalentemente, per risolvere un problema
- Spesso, utilizziamo una descrizione semi-formali delle macchine
 - Basata sul linguaggio naturale che ne spiega le funzionalità
 - In maniera simile allo pseudo-codice di un algoritmo
- Nel costruire tale descrizione, dobbiamo prestare attenzione ad utilizzare solo le funzionalità ammesse da un Macchina di Turing
 - Così che la conversione sia ragionevolmente semplice

Macchine di Turing – Esempio

Algoritmo per riconoscere $L = \{a^m b^m c^m | m \ge 0\}$

- 1. Leggi il prossimo carattere x della stringa dell'input
- 2. Se x = # Allora passa al prossimo carattere
- 3. Se $x = \sqcup$ (cella vuota) Allora accetta la stringa corrente
- 4. Se x = b Allora rifiuta la stringa corrente
- 5. Se x = c Allora rifiuta la stringa corrente
- **6.** Se x = a Allora
 - 1. Sovrascrivi tale occorrenza di α con il carattere \downarrow
 - 2. Scorri il nastro fino alla prossima occorrenza carattere b
 - 1. Se incontri un carattere $y \in \{c, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti sovrascrivi tale occorrenza di b con #
 - 3. Scorri il nastro fino al prossimo *c*
 - **1.** Allora incontri un carattere $y \in \{a, b, \sqcup\}$ Allora rifiuta la stringa corrente
 - 2. Altrimenti cambia tale occorrenza di c con #
 - **4.** Torna all'ultima occorrenza del carattere ↓

Macchine di Turing – Esempio

- 1. Inizia dallo stato q_0
- 2. Nello stato q_0
 - 1. Se il carattere corrente è # allora muovi la testina a destra
 - 2. Se il carattere corrente è \sqcup (cella vuota) allora passa allo stato q_{yes}
 - 3. Se il carattere corrente è b allora passa allo stato q_{no}
 - 4. Se il carattere corrente è c allora passa allo stato q_{no}
 - 5. Se il carattere corrente è \downarrow allora passa allo stato q_{no}
 - 6. Se il carattere corrente è a Allora
 - 1. Sovrascrivi il carattere corrente con ↓
 - 2. Passa allo stato q_1
- 3. Nello stato q_1
 - 1. Se il carattere corrente è # allora muovi la testina a destra
 - 2. Se il carattere corrente è \sqcup (cella vuota) allora passa allo stato q_{no}
 - 3. Se il carattere corrente è a allora passa allo stato q_{no}
 - 4. Se il carattere corrente è c allora passa allo stato q_{no}
 - 5. Se il carattere corrente è \downarrow allora passa allo stato q_{no}
 - 6. Se il carattere corrente è b Allora
 - 1. Sovrascrivi il carattere corrente con #
 - 2. Passa allo stato q_2

Macchine di Turing – Esempio

1. Nello stato q_2

- 1. Se il carattere corrente è # allora muovi la testina a destra
- 2. Se il carattere corrente è \sqcup (cella vuota) allora passa allo stato q_{no}
- 3. Se il carattere corrente è a allora passa allo stato q_{no}
- 4. Se il carattere corrente è b allora passa allo stato q_{no}
- 5. Se il carattere corrente è \downarrow allora passa allo stato q_{no}
- 6. Se il carattere corrente è c Allora
 - 1. Sovrascrivi il carattere corrente con #
 - 2. Passa allo stato q_3

2. Nello stato q_3

- 1. Se il carattere corrente è # allora muovi la testina a sinistra
- 2. Se il carattere corrente è \sqcup (cella vuota) allora passa allo stato q_{no}
- 3. Se il carattere corrente è α allora muovi la testina a sinistra
- 4. Se il carattere corrente è b allora muovi la testina a sinistra
- 5. Se il carattere corrente è c allora muovi la testina a sinistra
- 6. Se il carattere corrente è ↓ Allora
 - 1. Muovi la testina a destra
 - 2. Passa allo stato q_0

Macchina di Turing – Considerazioni Finali

- 1. La prima descrizione è la meno formale
 - Definisce solo i passi generali dell'algoritmo
 - Sappiamo però che possiamo implementarli con una Macchina di Turing
- 2. La seconda descrizione è la più formale
 - Definisce tutte le transizioni in termini di stati e movimenti della testina
 - Possiamo dimostrare formalmente che riconosce il linguaggio che vogliamo
- 3. La terza descrizione è semi-formale
 - Definisce le transizioni in linguaggio naturale
 - Possiamo usarla nelle nostre dimostrazioni (con attenzione)

Macchina di Turing – Considerazioni Finali

- Quale descrizione utilizzare dipende dal contesto
 - E tendo presente che le Macchine di Turing non sono un linguaggio di programmazione
- 1. Per fornire una intuizione delle nostre idee algoritmiche, usiamo la prima descrizione
 - Basta pensarci un po' per convincersi che possiamo implementare tutto con una Macchine di Turing anche se non stiamo fornendo i dettagli necessari
- 2. Per fornire una prova di un enunciato utilizziamo la terza descrizione
 - Possiamo utilizzarla nelle dimostrazioni perché i dettagli sono (quasi) tutti li
 - Una dimostrazione non è un programma che dobbiamo compilare ed eseguire
 - C'è sempre un essere umano di mezzo che può capire cosa stiamo dicendo
- 3. La seconda descrizione non è quasi mai utilizzata in letteratura
 - A meno di voler dimostrare proprietà delle macchine stesse oppure ...
 - Se vogliamo fornire in input una MdT ad un programma che abbiamo scritto