1. Let function f be defined by the polynomial below:

$$f(x) = 6x^4 + 7x^3 - 4x^2 + 8x + 9$$

Draw lines that match each function reflection with its polynomial:

2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

x	f(x)	g(x)	h(x)
1	2	4	8
2	8	6	7
3	1	9	3
4	9	7	2
5	7	2	6
6	3	1	4
7	6	8	1
8	4	5	9
9	5	3	5

3. Evaluate f(6).

$$f(6) = 3$$

4. Evaluate $h^{-1}(8)$.

$$h^{-1}(8) = 1$$

5. By filling more rows of the table, it is possible to make function h **even**. If that were done, what would be the value of h(-7)?

If function h is even, then

$$h(-7) = 1$$

6. By filling more rows of the table, it is possible to make function g odd. If that were done, what would be the value of g(-5)?

If function g is odd, then

$$g(-5) = -2$$

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = -x^3 + x$$

a. Express p(-x) as a polynomial in standard form.

$$p(-x) = -(-x)^3 + (-x)$$

 $p(-x) = x^3 - x$

b. Express -p(-x) as a polynomial in standard form.

$$-p(-x) = -(x^3 - x)$$
$$-p(-x) = -x^3 + x$$

c. Is polynomial p even, odd, or neither?

odd

d. Explain how you know the answer to part c.

We see that p(x) = -p(-x) for all x because p(x) and -p(-x) are equivalent polynomials. Thus function p satisfies the criterion for being an odd function.

8. I have drawn half of a function. Draw the other half to make it even or odd.

9. Let function f be defined with the equation below.

$$f(x) = 3x - 7$$

a. Evaluate f(24).

step 1: multiply by 3 step 2: subtract 7

$$f(24) = 3(24) - 7$$
$$f(24) = 65$$

b. Evaluate $f^{-1}(20)$.

 $\begin{array}{l} \text{step 1: add 7} \\ \text{step 2: divide by 3} \end{array}$

$$f^{-1}(x) = \frac{x+7}{3}$$
$$f^{-1}(20) = \frac{(20)+7}{3}$$
$$f^{-1}(20) = 9$$

10. The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(1).

$$b(1) = 5$$

b. Evaluate $b^{-1}(4)$.

$$b^{-1}(4) = 6$$

- 11. Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

\overline{x}	f(x)	-f(x)	f(-x)	-f(-x)
-2	4	-4	4	-4
-1	8	-8	-8	8
0	0	0	0	0
1	-8	8	8	-8
2	4	-4	4	-4

b. Is function f even, odd, or neither?

neither

c. How do you know the answer to part b?

Function f is neither because neither column -f(-x) nor column f(-x) matches column f(x) exactly.