Gravitational Waves from Inspiralling Compact Binaries: Equation Summary

AK

15 july

Key Equations and Variable Definitions

Modelled inspiral of two compact objects (black holes) using mathematical equations. The orbital dynamics are governed by the following (coupled) differential equations:

Velocity

$$\frac{dv}{dt} = -\frac{F(v)}{dE/dv} \tag{1}$$

- v(t): Orbital velocity parameter (related to orbital frequency)
- F(v): Gravitational-wave energy flux (power radiated)
- E(v): Orbital's binding energy

Orbital Phase

$$\frac{d\phi}{dt} = \frac{v^3}{m} \tag{2}$$

- $\phi(t)$: Orbital phase (radians)
- $m = m_1 + m_2$: Total mass of the binary system

Gravitational-Wave Polarizations

$$h_{+}(t) = 4 \cdot \frac{\mu}{m} \cdot v^{2}(t) \cdot \cos(\phi(t))$$

$$h_{\times}(t) = 4 \cdot \frac{\mu}{m} \cdot v^{2}(t) \cdot \sin(\phi(t))$$
(3)

$$h_{\times}(t) = 4 \cdot \frac{\mu}{m} \cdot v^{2}(t) \cdot \sin(\phi(t)) \tag{4}$$

- $h_{+}(t), h_{\times}(t)$: Plus and cross polarizations of the gravitational wave
- $\mu = \frac{m_1 m_2}{m}$: Reduced mass

Other

$$E(v) = -\frac{1}{2}\mu v^2 \quad \Rightarrow \quad \frac{dE}{dv} = -\mu v \tag{5}$$

$$F(v) = \frac{32}{5} \left(\frac{\mu}{m}\right)^2 v^{10} \tag{6}$$

• These are the leading-order post-Newtonian expressions for energy and flux.

Initial Conditions

- $v(t=0) = v_0 = 0.3$
- $\phi(t=0) = 0$
- $m_1 = m_2 = 5M_{\odot}$ (solar masses)