

Reg. No.:

Final Assessment Test (FAT) - November/December 2022

programme	B.Tech.			
		Semester	Fall Semester 2022-23	
		Course Code		
Faculty Name	Prof. Sheena Christabel Pravin	Slot	C1+TC1	
T:		Class Nbr	CH2022231002262	
	3 Hours	Max. Marks	100	

Section A (4 X 15 Marks)

- 1. A PN junction has acceptor impurity concentration of 10²⁰ per cm³ and donor impurity of 10¹⁷ [15] per cm³.
 - (i)Derive an expression for contact difference potential in the PN junction [9 marks]
 - (ii)Compute the built-in potential [3 marks]
 - (iii)Calculate the width of the depletion region [3 marks]
- With relevant equations, illustrate the equivalent circuit model of a bipolar transistor. [5 marks]
 Verify the model construction by applying Kirchoff's Voltage and Current law at the input and output loops respectively for
 - (i)Common Emitter Configuration [5 marks]
 - (ii)Common Base Configuration [5 marks]
- 3. (i) With a detailed comparison of JFET with MOSFET, illustrate the use of JFET as a variable resistor [9 marks] [15]
 - (ii)Determine the pinch-off voltage for an N-channel silicon FET with a channel width of 5.6 x 10^{-4} cm and a donor concentration of 10^{15} /cm³. Assume that the dielectric constant of Si is 12.[3 marks]
 - (iii) With relevant graphs, illustrate the Transfer characteristics of JFET and MOSFET. [3 marks]
- 4. (i)List the dielectrics that can be used for various capacitance values, indicating their frequency ranges. [6 marks]
 - (ii)What is electrical double-layer capacitance? Illustrate the basis for high capacitance in supercapacitor with relevant equations, along with a simplified structure of a supercapacitor [9 marks]

Section B (3 X 10 Marks) Answer All questions

- 5. Arrive at the expression for current density and drift velocity of electrons under the influence of an electric field, taking into consideration the velocity gained by electrons in a particular direction.
- 6. An n-type Si wafer was doped uniformly with 10¹⁶ Antimony (Sb) atoms per cm³.

 (i)Calculate and sketch the position of the Fermi Energy with respect to the Fermi Energy level (E_{Fi}) in Intrinsic Si. [5 marks]
 - (ii) The same n-type Si sample was further doped with 2 x 10^{17} Boron atoms per cm³. Recalculate and sketch the position of the Fermi Energy with respect to the Fermi Energy level ($E_{\rm Fi}$) in Intrinsic Si with the following assumptions: T=300K and KT=0.0259 eV. [5 marks]

7. (i)State the rule that combines the effects of various scattering mechanisms into a single measure of mobility and gives the probability of carrier scattering. [2 marks]

(ii)Using the rule, find the net mobility of carriers due to ionized impurity scattering and phonon scattering. [4 marks]

(iii)Does Electron mobility depend on temperature? If yes, graphically represent the change in electron mobility w.r.t. temperature of Silicon doped at different concentrations. [4 marks]

Section C (2 X 5 Marks)
Answer All questions

- 8. (i) What is the applied electric field that will impose a drift velocity equal to 0.1 percent of the mean speed 'u' (approximately 10⁶ m s⁻¹) of conduction electrons in copper? [3 marks]
 (ii) What is the corresponding current density and current through a Cu wire of diameter 1 mm? Assume that the drift mobility of copper is 43.4 cm² V⁻¹ s⁻¹ and conductivity is 5.9 × 10⁷ Ω⁻¹ m⁻¹. [2 marks]
- 9. Which diode is used to detect the presence of light along with its colour and intensity? Explain its principle of working with its modes of operation. [5]

