# Шаблон отчёта по лабораторной работе

Простейший вариант

Сокирка Анна Константиновна

# Содержание

| 1 | Цель работы                                                   |                     |  |  |  |  |  |  |  |  |  |  |  |  |  |
|---|---------------------------------------------------------------|---------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|
| 2 | Задание                                                       | 6                   |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 | 3 Теоретическое введение                                      |                     |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 | Выполнение лабораторной работы         4.1 Основы работы с mc | 9<br>10<br>12<br>16 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 | Выводы                                                        | 20                  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6 | Список литературы                                             | 21                  |  |  |  |  |  |  |  |  |  |  |  |  |  |

# Список иллюстраций

| 4.1  | Рисунок 1. | • |  |  |  | • | • |  | • | • |  |  |  | • |  | • |  |  |  |  | 9  |
|------|------------|---|--|--|--|---|---|--|---|---|--|--|--|---|--|---|--|--|--|--|----|
| 4.2  | Рисунок 2. |   |  |  |  |   |   |  |   |   |  |  |  |   |  |   |  |  |  |  | 9  |
| 4.3  | Рисунок 3. |   |  |  |  |   |   |  |   |   |  |  |  |   |  |   |  |  |  |  | 10 |
| 4.4  | Рисунок 4. |   |  |  |  |   |   |  |   |   |  |  |  |   |  |   |  |  |  |  | 10 |
| 4.5  | Рисунок 5. |   |  |  |  |   |   |  |   |   |  |  |  |   |  |   |  |  |  |  | 11 |
| 4.6  | Рисунок 6. |   |  |  |  |   |   |  |   |   |  |  |  |   |  |   |  |  |  |  | 11 |
| 4.7  | Рисунок 7. |   |  |  |  |   |   |  |   |   |  |  |  |   |  |   |  |  |  |  | 12 |
| 4.8  | Рисунок 8. |   |  |  |  |   |   |  |   |   |  |  |  |   |  |   |  |  |  |  | 12 |
| 4.9  | Рисунок 9. |   |  |  |  |   |   |  |   |   |  |  |  |   |  |   |  |  |  |  | 12 |
| 4.10 | Рисунок 10 |   |  |  |  |   |   |  |   |   |  |  |  |   |  |   |  |  |  |  | 13 |
|      | Рисунок 11 |   |  |  |  |   |   |  |   |   |  |  |  |   |  |   |  |  |  |  | 13 |
| 4.12 | Рисунок 12 |   |  |  |  |   |   |  |   |   |  |  |  |   |  |   |  |  |  |  | 14 |
| 4.13 | Рисунок 13 |   |  |  |  |   |   |  |   |   |  |  |  |   |  |   |  |  |  |  | 14 |
| 4.14 | Рисунок 14 |   |  |  |  |   |   |  |   |   |  |  |  |   |  |   |  |  |  |  | 15 |
| 4.15 | Рисунок 15 |   |  |  |  |   |   |  |   |   |  |  |  |   |  |   |  |  |  |  | 15 |
| 4.16 | Рисунок 16 |   |  |  |  |   |   |  |   |   |  |  |  |   |  |   |  |  |  |  | 16 |
| 4.17 | Рисунок 17 |   |  |  |  |   |   |  |   |   |  |  |  |   |  |   |  |  |  |  | 17 |
| 4.18 | Рисунок 18 |   |  |  |  |   |   |  |   |   |  |  |  |   |  |   |  |  |  |  | 17 |
| 4.19 | Рисунок 19 |   |  |  |  |   |   |  |   |   |  |  |  |   |  |   |  |  |  |  | 18 |
| 4.20 | Рисунок 20 |   |  |  |  |   |   |  |   |   |  |  |  |   |  |   |  |  |  |  | 18 |
| 4.21 | Рисунок 21 |   |  |  |  |   |   |  |   |   |  |  |  |   |  |   |  |  |  |  | 19 |
| 4.22 | Рисунок 22 |   |  |  |  |   |   |  | _ |   |  |  |  |   |  |   |  |  |  |  | 19 |

# Список таблиц

# 1 Цель работы

Целью данной лабораторной работы является приобретение практических навыков работы в Midnight Commander, освоение инструкций языка ассемблера mov и int.

## 2 Задание

- 1. Основы работы с тс
- 2. Структура программы на языке ассемблера NASM
- 3. Подключение внешнего файла
- 4. Выполнение заданий для самостоятельной работы

#### 3 Теоретическое введение

Midnight Commander (или просто mc) — это программа, которая позволяет просматривать структуру каталогов и выполнять основные операции по управлению файловой системой, т.е. mc является файловым менеджером. Midnight Commander позволяет сделать работу с файлами более удобной и наглядной. Программа на языке ассемблера NASM, как правило, состоит из трёх секций: секция кода программы (SECTION .text), секция инициированных (известных во время компиляции) данных (SECTION .data) и секция неинициализированных данных (тех, под которые во время компиляции только отводится память, а значение присваивается в ходе выполнения программы) (SECTION .bss). Для объявления инициированных данных в секции .data используются директивы DB, DW, DD, DQ и DT, которые резервируют память и указывают, какие значения должны храниться в этой памяти: - DB (define byte) — определяет переменную размером в 1 байт; - DW (define word) — определяет переменную размеров в 2 байта (слово); - DD (define double word) — определяет переменную размером в 4 байта (двойное слово); - DQ (define quad word) — определяет переменную размером в 8 байт (учетве- рённое слово); - DT (define ten bytes) — определяет переменную размером в 10 байт. Директивы используются для объявления простых переменных и для объявления массивов. Для определения строк принято использовать директиву DB в связи с особенностями хранения данных в оперативной памяти. Инструкция языка ассемблера mov предназначена для дублирования данных источника в приёмнике. mov dst,src Здесь операнд dst — приёмник, a src — источник. В качестве операнда могут выступать регистры (register), ячейки памяти

(memory) и непосредственные значения (const). Инструкция языка ассемблера іптпредназначена для вызова прерывания с указанным номером. int n Здесь n — номер прерывания, принадлежащий диапазону 0–255. При программировании в Linux с использованием вызовов ядра sys\_calls n=80h (принято задавать в шестнадцатеричной системе счисления).

#### 4 Выполнение лабораторной работы

#### 4.1 Основы работы с тс

Открою Midnight Commander (рис. 4.1).



Рис. 4.1: Рисунок 1

Перейду в каталог ~/work/arch-pc созданный при выполнении лабораторной работы №4 (рис. 4.2).



Рис. 4.2: Рисунок 2

С помощью функциональной клавиши F7 создам папку lab05 и перейду в созданный каталог (рис. 4.3).



Рис. 4.3: Рисунок 3

Пользуясь строкой ввода и командой touch создам файл lab5-1.asm (рис. 4.4).



Рис. 4.4: Рисунок 4

#### 4.2 Структура программы на языке ассемблера NASM

С помощью функциональной клавиши F4 откройте файл lab5-1.asm для редактирования во встроенном редакторе (рис. 4.5).



Рис. 4.5: Рисунок 5

Ввожу текст программы из листинга, сохраняю изменения и закрываю файл (рис. 4.6).



Рис. 4.6: Рисунок 6

С помощью функциональной клавиши F3 открою файл lab5-1.asm для просмотра.Убеждаюсь, что файл содержит текст программы (рис. 4.7).

Рис. 4.7: Рисунок 7

Оттранслирую текст программы lab5-1.asm в объектный файл. Выполню компоновку объектного файла и запущу получившийся исполняемый файл. Программа выводит строку 'Введите строку:' и ожидает ввода с клавиатуры. На запрос введу мои ФИО (рис. 4.8).

```
aksokirka@fedora:-$ mc
aksokirka@fedora:~/work/arch-pc/lab05$ nasm -f elf lab5-1.asm
aksokirka@fedora:~/work/arch-pc/lab05$ ld -m elf_i386 -o lab5-1 lab5-1.o
aksokirka@fedora:~/work/arch-pc/lab05$ ./lab5-1
Введите строку:
Сокирка Анна Константинговна
```

Рис. 4.8: Рисунок 8

#### 4.3 Подключение внешнего файла

Скачиваю файл in\_out.asm со страницы курса в ТУИС (рис. 4.9).

Рис. 4.9: Рисунок 9

С помощью функциональной клавиши F5 копирую файл in\_out.asm из каталога Загрузки в созданный каталог lab05-1.asm (рис. 4.10).



Рис. 4.10: Рисунок 10

Создам копию файла lab5-1.asm с именем lab5-2.asm. Выделю файл lab5-1.asm, введу имя файла lab5-2.asm (рис. 4.11).



Рис. 4.11: Рисунок 11

Изменяю содержимое файла lab5-2.asm во встроенном редакторе nano, чтобы в программе использовались подпрограммы из внешнего файла in\_out.asm (рис. 4.12).

```
mc[aksokirka@fedora]:-/Загрузки

Q ≡ ×

GNU nano 7.2 //home/aksokirka/work/arch-pc/lab05/lab5-2.asm

Winclude 'in_out.asm'; подключение внешнего файла

SECTION .data; Секция инициированных данных

mag: DB 'Введите строку: ',0h; сообщение

SECTION .bss; Секция не инициированных данных

bufil RESE 80; Буфер размером 80 байт

SECTION .text; Код программы

GLOBAL _start; Начало программы

_start: ; Точка входа в программы

_start: ; Точка входа в программы

mov eax, msg; запись адреса выводимого сообщения в 'EAX'

call sprintLF; вызов подпрограммы печати сообщения

mov edx, 80; запись длины вводимого сообщения в 'EBX'

call sread; вызов подпрограммы ввода сообщения

call quit; вызов подпрограммы ввода сообщения

call quit; вызов подпрограммы завершения
```

Рис. 4.12: Рисунок 12

Транслирую текст программы файла в объектный файл командой nasm -f elf lab5-2.asm. Создался объектный файл lab5-2.o. Выполняю компоновку объектного файла с помощью команды ld -m elf\_i386 -o lab5-2 lab5-2.o Создался исполняемый файл lab5-2. Запускаю исполняемый файл (рис. 4.13).



Рис. 4.13: Рисунок 13

Разница между первым исполняемым файлом lab5-2 и вторым lab5-2-2 в том, что запуск первого запрашивает ввод с новой строки, а программа, которая исполняется при запуске второго, запрашивает ввод без переноса на новую строку, потому что в этом заключается различие между подпрограммами sprintLF и sprint (рис. 4.14).



Рис. 4.14: Рисунок 14

Открываю файл lab5-2.asm для редактирования в nano функциональной клавишей F4. Изменяю в нем подпрограмму sprintLF на sprint. Сохраняю изменения и открываю файл для просмотра, чтобы проверить сохранение действий (рис. 4.15).



Рис. 4.15: Рисунок 15

Снова транслирую файл, выполняю компоновку созданного объектного файла, запускаю новый исполняемый файл (рис. 4.16).



Рис. 4.16: Рисунок 16

Разница между первым исполняемым файлом lab5-2 и вторым lab5-2-2 в том, что запуск первого запрашивает ввод с новой строки, а программа, которая исполняется при запуске второго, запрашивает ввод без переноса на новую строку, потому что в этом заключается различие между подпрограммами sprintLF и sprint.

#### 4.4 Выполнение заданий для самостоятельной работы

Создаю копию файла lab5-1.asm с именем lab5-1-1.asm с помощью функциональной клавиши F5 (рис. 4.17).



Рис. 4.17: Рисунок 17

С помощью функциональной клавиши F4 открываю созданный файл для редактирования. Изменяю программу так, чтобы кроме вывода приглашения и запроса ввода, она выводила вводимую пользователем строку (рис. 4.18).



Рис. 4.18: Рисунок 18

Создаю объектный файл lab5-1-1.о, отдаю его на обработку компоновщику, получаю исполняемый файл lab5-1-1, запускаю полученный исполняемый файл. Программа запрашивает ввод, ввожу свои ФИО, далее программа выводит введенные мною данные (рис. 4.19).

```
aksokirka@fedora:~$
aksokirka@fedora:~/work/arch-pc/lab05$ nasm -f elf lab5-1-1.asm
aksokirka@fedora:~/work/arch-pc/lab05$ ld -m elf_i386 -o lab5-1-1 lab5-1-1.o
aksokirka@fedora:~/work/arch-pc/lab05$ ./lab5-1-1
Введите строку:
Сокирка Анна Константиновна
Сокирка Анна Константиновна
```

Рис. 4.19: Рисунок 19

Создаю копию файла lab5-2.asm с именем lab5-2-1.asm с помощью функциональной клавиши F5 (рис. 4.20).



Рис. 4.20: Рисунок 20

С помощью функциональной клавиши F4 открываю созданный файл для редактирования. Изменяю программу так, чтобы кроме вывода приглашения и запроса ввода, она выводила вводимую пользователем строк (рис. 4.21).

```
€
                          aksokirka@fedora:~/work/arch-pc/lab05
                                                                           Q
 GNU nano 7.2
                     /home/aksokirka/work/arch-pc/lab05/lab5-2-1.asm
                                                                                Изменён
         .data ; Секция инициированных данных
         'Введите строку: ',0h ; сообщение
         .bss ; Секция не инициированных данных
           3 80 ; Буфер размером 80 байт
         .text ; Код программы
       _start ; Начало программы
        ; Точка входа в программу
nov eax, msg ; запись адреса выводимого с<mark>о</mark>общения в `EAX`
call sprint ; вызов подпрограммы печати сообщения
mov ecx, buf1 ; запись адреса переменной в
mov edx, 80 ; запись длины вводимого сообщения в
call sread ; вызов подпрограммы ввода сообщения
mov eax,4 ; Системный вызов для записи (sys_write)
mov ebx,1 ; Описатель файла '1' - стандартный вывод
              ^О Записать ^W Поиск
^R ЧитФайл ^\ Замен
                                            ^К Вырезать
                                            ^U Вставить
   Выход
                  ЧитФайл
                                 Замена
```

Рис. 4.21: Рисунок 21

Создаю объектный файл lab5-2-1.о, отдаю его на обработку компоновщику, получаю исполняемый файл lab5-2-1, запускаю полученный исполняемый файл. Программа запрашивает ввод без переноса на новую строку, ввожу свои ФИО, далее программа выводит введенные мною данные (рис. 4.22).

```
aksokirka@fedora:~/work/arch-pc/lab05$ ld -m elf_i386 -o lab5-2-1 lab5-2-1.o
aksokirka@fedora:~/work/arch-pc/lab05$ ./lab5-2-1
Введите строку: Сокирка Анна Константиновна
Сокирка Анна Константиновна
```

Рис. 4.22: Рисунок 22

## 5 Выводы

При выполнении данной лабораторной работы я приобрела практические навыки работы в Midnight Commander, а также освоила инструкции языка ассемблера mov и int.

### 6 Список литературы

https://esystem.rudn.ru/pluginfile.php/2089085/mod\_resource/content/0/Лабораторная%20работа%20№5.%20Основы%20работы%20с%20Midnight%20Commander%20%28%2 тура%20программы%20на%20языке%20ассемблера%20NASM.%20Системные%20вызовы%20в%20ОС%20GNU%20Linux.pdf