

GridUnity® DER Interconnection Study Bootcamp February 7th, 2022

GridUnity | Who We Are

Company: GridUnity, Inc.

Vision: A world powered by intelligently distributed clean energy resources

History: Founded 2010 - Platform v1 release Q1 2016

Industry Leadership:

Founded the Distribution Planning Consortium (DPC) in 2018

Solution:

An energy analytics Platform-as-a-Service company offering cloud applications and analytics for utilities, ISOs, and developers:

- Accelerates interconnection of all T&D applications
- Provides speed, standardization, and scale through rules-based automation of Interconnection processes and engineering analysis
- Offers the workflow flexibility necessary to support ongoing regulatory change
- Enables a learning model that encourages continuous data accuracy improvements, compatible with machine learning
- Drives operational efficiency, effectiveness and transparency
- Cyber Security NIST 800-171 Compliance
- Multiple years serving large utilities and independent system operators in dynamic environments

Industry-leading Customers

DPC Industry-leading Utilities

EVERS

DUKE ENERGY.

Technology Partnerships

GridUnity Platform Services & Solutions

GridUnity | The Role of Automation

Lifecycle of an Engineering Problem

Automation is critical for:

- Long running analysis
- High Volume
- Fast Response Times
- Frequent Refresh
- Well understood processes

Automation never replaces engineering expertise and experimentation, it just frees up engineers to do more interesting analysis and design future automation

GridUnity | Integration Capacity Analysis (ICA)

Integration Capacity Analysis (ICA) Use Case Description

Process

576 hours time series w/ AMI data Queued generation modeled

Run Time

Hours -> Days per study

Volume

100's of studies per month

Response Time

<30 business days (<10 if applicant is waiting)

Refresh Interval

3-4 months

Sample Use Case - Hosting Capacity Analysis

GridUnity | Data Quality Examples

	Description	Impact
Default/Unknown Equipment	Missing conductor sizes and devices ratings	Incorrect impedance values will make powerflow results less accurate. Incorrect ratings can result in overloads.
Incorrect Capacitor and Regulator Settings	Voltage setpoints, deadbands	High or low voltage issues
Incorrect Breaker and Recloser Settings	Pickups, time delays	Miscoordination or undetected reduction of reach
Disconnected Sections	Incorrect conductivity	Missing load
Unknown Phase	A single phase load or lateral	Unbalanced voltage/current

GridUnity | Data Quality

Grid Model Management (GMM)

- Data quality is critical to the automation of power flow and fault analysis
- GMM performs quality checks to ensure the issues are caught prior to result publication
- Dashboards summarize issues to enable administrators to address systemic issues or patterns

Example 12kV Radial Distribution Circuit

- 8 MW Peak Load
- 2615 kW of Generation
- 742 kW of Queued Generation
- Able to integrate up to an additional 1.6 MW generator is some locations

