CS771A: Machine Learning Techniques

Assignment #2

Instructor: Prof. Harish Karnick

Deepak Kumar(12228)

1 Question 1

This problem is based on Hinge Loss which is defined as

$$L(y) = \max(0, 1 - t.y) \tag{1.1}$$

here t = +1 or -1: the intended output

y is the actual raw output from the decision function

NOTE : Hinge Loss is convex function

1.1 Result

Performance with various values of C (Tuning C) :

Value of C	Performance (in %)		
0.01	98.96		
0.1	98.44		
0.5	98.27		
1, 10, 100,, 10000000	98.27		

Hence I choose the value C=0.01 for the 'Hinge Loss' and C=1000000 for standard formulation of SVM (Large Margin Classifier)

5-Fold cross validated result for hinge loss in the SVM Classifier over the Spam dataset Library used : sklearn.svm.LinearSVC

Validation Set	Perf (in %)	Perf (in %)	Perf (in %)	Perf (in %)
	Binary Hinge	Hinge Loss	Binary Standard	Standard Formulation
1	99.654	99.308	99.481	99.481
2	99.138	99.448	99.483	99.793
3	99.962	98.789	99.135	98.270
4	98.937	98.791	99.136	98.273
5	99.481	99.308	99.308	98.962
Average	99.434	99.129	99.309	98.956

2 Question 2

Dataset: Connect Four Game positions with final outcome (win/loss/draw) for the first player.

Train SVM over the given dataset and report the results for

- 1. One-Vs-Rest
- 2. One-Vs-One

2.1 Result

5 Fold Cross Validated results are as follows : OVO : My Implementation without Multiclass SVM Use (Classification based on most occuring class)

OVR : My Implementation without Multiclass SVM Use (Classification based of largest distance from margin plane)

SVM OVO : sklearn.svm.SVC(kernel='linear')

SVM OVR: sklearn.svm.LinearSVC(kernel='linear')

Total Number of Training Vectors = 67557

Validation Set	Num Train	Num Test	OVR	SVM OVR	OVO	SVM OVO
1	54046	13511	76.863	76.863	76.826	76.693
2	54046	13511	81.267	81.267	80.949	81.141
3	54045	13512	70.648	70.648	70.722	70.878
4	54046	13511	76.116	76.116	76.153	76.316
5	54045	13512	68.058	68.058	67.784	68.014
Average			74.590	74.590	74.487	74.608