

Course > Topic 5... > 5.6 Axi... > Axioms

Axioms Axioms

5.6_Probability_Axioms

POLL

Does P(A)=0 imply that A is the empty set?

RESULTS

Not necessarily

82%

Yes

18%

Submit

Results gathered from 292 respondents.

FEEDBACK

It is possible that P(A)=0 for a non-empty set A.

1

0 points possible (ungraded)

For any three events A, B, and C, we have P(B) =

$$P(A \cap B) + P(B \cap C) + P(B \cap A^c \cap C^c)$$

$$ullet P(A\cap B) + P(B\cap C) - P(A\cap B\cap C) + P(B\cap A^c\cap C^c)$$

$$\bigcirc P(A^c \cap C^c) + P(A \cap B) + P(B \cap C)$$

$$P(\Omega) - P(A) - P(C) + P(A \cap B \cap C)$$

Answer

Correct: Video: Total Probability

Explanation

- False. It is $P\left(B\right)+P\left(A\cap B\cap C\right)$

- True.
- False. This includes the events outside of the three circles.
- False. Same as above.

Submit

You have used 2 of 2 attempts

1 Answers are displayed within the problem

2

1/1 point (graded)

Under which of the following probability assignments does $S=\{a_1,a_2,a_3\}$ become a probability space?

$$Arr$$
 $P(a_1) = 0.2, P(a_2) = 0.3, P(a_3) = 0.4$

$$P(a_1) = 0.2, P(a_2) = 0.3, P(a_3) = 0.5$$

$$Arr$$
 $P(a_1) = 0.3, P(a_2) = -0.2, P(a_3) = 0.9$

$$P(a_1) = 0.2, P(a_2) = 0, P(a_3) = 0.8$$

Explanation

Two necessary conditions:

- 1. The probability P of the events satisfies $0 \leq P \leq 1$.
- 2. All Ps sum up to 1.

Submit

You have used 3 of 3 attempts

1 Answers are displayed within the problem

3

0 points possible (ungraded)

Which of the following always holds?

$$\square$$
 $A \subseteq B \Rightarrow P(A) < P(B)$

$$\square \ A \subset B \quad \Rightarrow \quad P(A) \leq P(B) \checkmark$$

Explanation

The only tricky part may be the third. Note that because elements may have 0 probabilities, non-empty events may also have zero probability. Hence A may be a strict subset of B and yet have the same probability. For example, if the sample space is $\{a,b\}$ and P(a) = 1 while P(b) = 0, then $P(\{a\}) = P(\{a,b\})$.

Submit

You have used 3 of 3 attempts

Answers are displayed within the problem

4

0 points possible (ungraded)

Which of the following statements are true?

$$\square$$
 If $P(E) = 0$ for event E , then $E = \emptyset$.

$$lacksquare$$
 If $E=\emptyset$, then $P\left(E
ight) =0$. $lacksquare$

$$lacksquare$$
 If $E_1 \cup E_2 = \Omega$, then $P\left(E_1
ight) + P\left(E_2
ight) = 1$

$$lacksquare$$
 If $P\left(E_{1}
ight)+P\left(E_{2}
ight)=1$, then $E_{1}\cup E_{2}=\Omega$.

$$lacksquare$$
 If $E_1 \uplus E_2 = \Omega$, then $P\left(E_1
ight) + P\left(E_2
ight) = 1$ 🗸

$$lacksquare$$
 If $P\left(E_{1}
ight)+P\left(E_{2}
ight)=1$, then $E_{1}\uplus E_{2}=\Omega$.

Explanation

- False. E is not necessary to be \emptyset .
- True.
- False. Let $\Omega = \{1,2,3\}, E_1 = \{1,2\}, E_2 = \{2,3\}E_1 \cup E_2 = \Omega$, but $P(E_1) + P(E_2) = \frac{4}{3}$
- False. Let $\Omega = \{1,2,3\}, E_1 = \{1,2\}, E_2 = \{1\}\,P(E_1) + P(E_2) = ext{1}$, but $E_1 \cup E_2 \neq \Omega$.
- True.
- False. Same as option 4.

Submit

You have used 3 of 3 attempts

1 Answers are displayed within the problem

5

7/7 points (graded)

Suppose A, B are events that P(A)=0.65, P(B)=0.5 and $P(A\cap B)=0.25$. What are the following probabilities?

• $P(A^c)$

✓ Answer: 0.35 0.35

0.35

Explanation

$$P(A^c) = 1 - P(A) = 0.35$$

• $P(B^c)$

✓ Answer: 0.5 0.5

0.5

Explanation

$$P(B^c) = 1 - P(B) = 0.5$$

• $P(A \cup B)$

0.9 **✓ Answer:** 0.9 0.9

Explanation

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.9$$

• P(A-B)

✓ Answer: 0.4 0.4 0.4

Explanation

$$P(A-B) = P(A \cup B) - P(B) = 0.4$$

• P(B-A)

✓ Answer: 0.25 0.25 0.25

Explanation

$$P(B-A) = P(A \cup B) - P(A) = 0.25$$

• $P(A\Delta B)$

✓ Answer: 0.65 0.65 0.65

Explanation

$$P(A\Delta B) = P(A \cup B) - P(A \cap B) = 0.65$$

• $P((A \cup B)^c)$

✓ Answer: 0.1 0.1 0.1

Explanation

$$P((A \cup B)^c) = 1 - P(A \cup B) = 0.1$$

Submit

You have used 3 of 4 attempts

Answers are displayed within the problem

6

0 points possible (ungraded)

Let P be a probability function on $S = \{a_1, a_2, a_3\}$. Find $P(a_1)$ if:

• $P(\{a_2, a_3\}) = 3P(a_1)$

30

X Answer: 0.25

30

Explanation

We have $P\left(\left\{a_2,a_3
ight\}
ight)=3P\left(a_1
ight)$ and $P\left(a_1
ight)+P\left(\left\{a_2,a_3
ight\}
ight)=1$ Solving the equations we have $P(a_1) = 0.25$.

• $P(a_1) = 2P(a_2) = 3P(a_3)$

X Answer: 0.5454

Explanation

We have $P\left(a_{1}
ight)=2P\left(a_{2}
ight)=3P\left(a_{3}
ight)$ and $P\left(a_{1}
ight)+P\left(a_{2}
ight)+P\left(a_{3}
ight)=1$ Solving the equations we have $P(a_1) = 6/11$.

Submit

You have used 4 of 4 attempts

1 Answers are displayed within the problem

7

0 points possible (ungraded)

Let X be distributed over $\{1,2,\ldots,100\}$ with $P\left(X=i\right)=rac{i}{k}$ for some integer k. Find:

• k

15

X Answer: 5050

15

Explanation

$$K = 1 + 2 + \ldots + 100 = \frac{(1+100)\cdot 100}{2} = 5050$$

• |E| where $E = \{ \text{integer multiples of } 3 \}$,

X Answer: 33

Explanation

$$E=\{3,6,9,\ldots,96,99\}$$
 hence $|E|=33$.

• P(E).

X Answer: 0.333

Explanation

$$\frac{3+6+\ldots+96+99}{5050} = \frac{102\cdot33}{2\cdot5050} = \frac{1683}{5050} = 0.333267.$$

Note that, as could be expected, this probability is very close to 1/3.

Submit

You have used 4 of 4 attempts

1 Answers are displayed within the problem

8

0 points possible (ungraded)

Consider a die where the probability of rolling 1, 2, 3, 4, 5 and 6 are in the ratio

1:2:3:4:5:6 What is the probability that when this die is rolled twice, the sum is 7?

15

X Answer: 0.12698

15

Explanation

Let p be the probability of rolling a 1, then for $i=1,2,3,\ldots,6$ the probability of rolling iis $i \cdot p$.

These probabilities sum to 21p, which must be 1, hence p=1/21.

Hence The probability that the sum is 7 is $\frac{2 \cdot (1 \cdot 6 + 2 \cdot 5 + 3 \cdot 4)}{21 \cdot 21} = \frac{56}{21^2} = \frac{8}{63}$.

Submit

You have used 4 of 4 attempts

1 Answers are displayed within the problem

9

0 points possible (ungraded)

Jack solves a Math problem with probability 0.4, and Rose solves it with probability 0.5. What is probability that at least one of them can solve the problem?

- 0.7
- 0.9
- 0.6
- Not enough information

Explanation

Let A be the event that Jack solves the problem, B be the event that Rose solves the problem. $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ but $P(A \cap B)$ is missed here.

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Topic 5 / Axioms

Add a Post

© All Rights Reserved