§ 11.2 导数的性质与应用(基础)

11.2.1 相关概念

学习目标

- 1、导数与函数典型性质之间的关系
- 2、利用导数解决函数的单调性、零点、极值和最值问题
- 3、对数平均值不等式及其应用

1、导数与函数单调性的关系

函数 f(x) 定义在区间(a,b) 上且可导,则有如下结论

f'(x) > 0 ,则 f(x) 单调递增; f'(x) < 0 ,则 f(x) 单调递减。

比如, $f'(x_0) > 0$,则 f(x) 的图像在 $(x_0, f(x_0))$ 处的切线的斜率k > 0,故 f(x) 在 x_0 附近 递增;

特别注意: 反过来未必成立, 因为, 一个单调函数未必在其定义域中每个点处的导数都存在。

2、函数的极值点

如果函数 f(x) 在 x_0 附近(**可以是任意小的一个区域**),总有 $f(x) < f(x_0)$,则称 x_0 为 f(x) 的极大值点;如总有 $f(x) > f(x_0)$,则称 x_0 为 f(x) 的极小值点。f(x) 的极大值点和极小值点,统称为 f(x) 的极值点。

3、函数极值点与导数的关系

如果函数 f(x) 满足 $f'(x_0) = 0$, 则

- (1) 若在 x_0 的左边 (无限靠近 x_0 的地方), $f'(x_0) > 0$,在 x_0 的右边 (无限靠近 x_0 的地方), $f'(x_0) < 0$,则 x_0 为f(x)的极大值点;
- (2) 若在 x_0 的左边 (无限靠近 x_0 的地方), $f'(x_0) < 0$,在 x_0 的右边 (无限靠近 x_0 的地方), $f'(x_0) > 0$,则 x_0 为f(x)的极小值点;

【注意】:函数的极值点与函数的导数也没有必然的联系。一个函数在其极值点处的导数甚至可以不存在。比如函数 f(x) = |x| ($x \in (-1,1)$),显然,0 为 f(x) 的极小点,但 f(x) 在 0 处的导数不存在。

4、凸函数和凹函数

令 f''(x) 为 f(x) 的二阶导数(f(x) 连求两次导数),如 f''(x) > 0 ,则称 f(x) 为**凹函数或**下凸函数(类似于开口向上),如 f''(x) < 0 ,则称 f(x) 为凸函数或上凸函数(类似于开口向下)。

显然, 二阶导数可以帮助我们更精确的绘制函数图像。

凸函数性质

- (1) 如 f(x) 为凹函数或下凸函数,则 $f(\frac{x_1 + x_2 + \dots + x_n}{n}) \le \frac{f(x_1) + f(x_2) + \dots + f(x_n)}{n}$
- (2) 如 f(x) 为凸函数(上凸函数),则 $f(\frac{x_1 + x_2 + \dots + x_n}{n}) \ge \frac{f(x_1) + f(x_2) + \dots + f(x_n)}{n}$

 $f(\frac{x_1 + x_2}{2}) \le \frac{f(x_1) + f(x_2)}{2}$

5、对数平均值不等式

$$\Leftrightarrow x_1, x_2 \in R^+$$
,且 $x_1 < x_2$,则: $\sqrt{x_1 x_2} < \frac{x_1 - x_2}{\ln x_1 - \ln x_2} < \frac{x_1 + x_2}{2}$

【证明】: 我们仅证明 $\sqrt{x_1x_2} < \frac{x_1 - x_2}{\ln x_1 - \ln x_2}$, 剩下的留给读者。

事实上,
$$\sqrt{x_1x_2} < \frac{x_1 - x_2}{\ln x_1 - \ln x_2} \Leftrightarrow \sqrt{\frac{x_1}{x_2}} < \frac{\frac{x_1}{x_2} - 1}{\ln \frac{x_1}{x_2}}$$
,

令
$$t = \sqrt{\frac{x_1}{x_2}}$$
 ,则上面不等式等价于 $2t \ln t - t^2 + 1 > 0$, $t \in (0,1)$

$$\Rightarrow f(t) = 2t \ln t - t^2 + 1$$
, $\Box x f(1) = 0$,

因
$$f''(t) = \frac{2}{t} - 2 > 0(t \in (0,1))$$
, 故 $f'(t)$ 单调递增,

因此 $t \in (0,1)$ 时, f'(t) < f'(1) = 0, 进而得 $t \in (0,1)$ 时, f(t)递减,

从而
$$f(t) > f(1) = 0$$
, 也即 $2t \ln t - t^2 + 1 > 0 (t \in (0,1))$, 证毕。

特别注意:

1、函数 f(x) 在 [a,b] 上有最值的条件

如果在区间[a,b]上,函数y = f(x)的图象是一条**连续不断**的曲线,那么它必有最大值和最小值.

- 2、求 y = f(x) 在[a,b]上的最大(小)值的步骤
- ①求函数 y = f(x) 在 (a,b) 内的<mark>极值</mark>;
- ②将函数 y = f(x) 的各极值与 f(a), f(b) 比较,其中最大的一个是最大值,最小的一个是最小值.
 - 3、"f'(x) > 0在(a,b)上成立"是"f(x)在(a,b)上单调递增"的充分不必要条件.
 - 4、对于可导函数 f(x), " $f'(x_0) = 0$ " 是"函数 f(x) 在 $x = x_0$ 有极值"的必要不充分条件.
- 5、函数最值是"整体"概念,而函数极值是"局部"概念,极大值与极小值之间没有必然的大小关系

11.2.2 典型例题

例 1.判断下列结论正误(在括号内打" $\sqrt{"}$ 或" \times ")

- (1)若函数 f(x) 在 (a,b) 内单调递增,那么一定有 f'(x) > 0 ()
- (2)如果函数 f(x) 在某个区间内恒有 f'(x) = 0,则 f(x) 在此区间内没有单调性.()
- (3)函数的极大值一定大于其极小值.()
- (4)对可导函数 f(x), $f'(x_0) = 0$ 是 x_0 为极值点的充要条件.()
- (5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.()

【解】(1) f(x) 在(a,b) 内单调递增,可以有 $f'(x) \ge 0$,以及导数不存在的情况

- (2) f(x) 必为常数函数,它没有单调性,是对的。
- (3)函数的极大值也可能小于极小值.
- (4) x_0 为 f(x) 的极值点的充要条件是 $f'(x_0) = 0$,且 x_0 两侧导函数异号.

综上, (1)× (2) $\sqrt{}$ (3)× (4)× (5) $\sqrt{}$

例 2.如图是 f(x) 的导函数 f'(x) 的图象,则 f(x) 的极小值点的个数为(

A.1 B.2 C.3 D.4

【解】由题意知在x=-1处f'(-1)=0,且其两侧导数符号为左负右正。选 A

例 3. 函数 y = f(x) 的导函数 y = f'(x) 的图象如图所示,则函数 y = f(x) 的图象可能是

【解】设导函数 y = f'(x) 与 x 轴交点的横坐标从左往右依次为 x_1, x_2, x_3 ,由导函数 y = f'(x) 的图象易得当 $x \in (-\infty, x_1) \cup (x_2, x_3)$ 时, f'(x) < 0 ; 当 $x \in (x_1, x_2) \cup (x_3, +\infty)$ 时, f'(x) > 0 (其中 $x_1 < 0 < x_2 < x_3$),所以函数 f(x) 在 $(-\infty, x_1)$, (x_2, x_3) 上单调递减,在 (x_1, x_2) , $(x_3, +\infty)$ 上单调递增,观察各选项,只有 D 选项符合.

例 4.设 $g(x) = \ln x + x - x^2$ 。

(1) 求g(x)的单调区间;

(2) 求g(x)的极值。

【解】 (1)
$$g'(x) = 1 + \frac{1}{x} - 2x = \frac{-(2x+1)(x-1)}{x}$$
,

当 $x \in (0,1)$ 时, g'(x) > 0 , g(x)递增, 当 $x \in (1,+\infty)$ 时, g'(x) < 0 , g(x)递减, 故 g(x) 的单调递增区间为(0,1) , 单调递减区间为 $(1,+\infty)$.

(2) 由 (1) 知 g'(1)=0,

当 $x \in (0,1)$ 时,g'(x) > 0,g(x)递增,当 $x \in (1,+\infty)$ 时,g'(x) < 0,g(x)递减,因此,1 为 g(x)的极大值点,g(x)的极大值为 $g(1) = \ln 1 + 1 - 1 = 0$

例 5. 下列命题为真命题的个数是

①
$$\ln 3 < \sqrt{3} \ln 2$$
; ② $\ln \pi < \sqrt{\frac{\pi}{e}}$; ③ $2^{\sqrt{15}} < 15$; ④ $3e \ln 2 < 4\sqrt{2}$

A. 1 D. 4

【解】: 令
$$f(x) = \frac{\ln x}{\sqrt{x}}$$
,则 $f'(x) = \frac{\frac{1}{x} \times \sqrt{x} - \frac{1}{2\sqrt{x}} \ln x}{x} = \frac{2 - \ln x}{2x^{\frac{3}{2}}}$,

显然, f(x)在 $(0,e^2)$ 上递增, 在 $(e^2,+\infty)$ 上递减, 故

$$f(3) < f(4) \Rightarrow \frac{\ln 3}{\sqrt{3}} < \frac{\ln 4}{\sqrt{4}} = \frac{2\ln 2}{2} = \ln 2 \Rightarrow \ln 3 < \sqrt{3} \ln 2$$
, (1) $\forall j$;

$$f(\pi) > f(e) \Rightarrow \frac{\ln \pi}{\sqrt{\pi}} > \frac{\ln e}{\sqrt{e}} \Rightarrow \ln \pi > \sqrt{\frac{\pi}{e}}$$
, (2) 错;

$$f(15) > f(16) \Rightarrow \frac{\ln 15}{\sqrt{15}} > \frac{\ln 16}{\sqrt{16}} = \ln 2 \Rightarrow \ln 15 > \ln 2^{\sqrt{15}} \Rightarrow 2^{\sqrt{15}} < 15, (3) \text{ M};$$

$$f(8) < f(e^2)$$
 $\Rightarrow \frac{\ln 8}{\sqrt{8}} < \frac{\ln e^2}{\sqrt{e^2}} \Rightarrow \frac{3\ln 2}{2\sqrt{2}} < \frac{2}{e} \Rightarrow 3e \ln 2 < 4\sqrt{2}$, (4) 对。综上,选 C。

例 6.设 A, B, C 为 $\triangle ABC$ 的三个内角,证明: $\sin A + \sin B + \sin C \le \frac{3\sqrt{3}}{2}$

显然, $x \in (0,\pi)$ 时, f''(x) < 0, 此时 f(x) 为上凸函数,

从而
$$f(\frac{A+B+C}{3}) \ge \frac{f(A)+f(B)+f(C)}{3}$$
,即 $\sin 60^\circ \ge \frac{\sin A+\sin B+\sin C}{3}$,

也即 $\sin A + \sin B + \sin C \le \frac{3\sqrt{3}}{2}$,证毕。

例7. 已知函数 $f(x) = \ln x + a$, g(x) = ax + b + 1 , 若 $\forall x > 0$, $f(x) \le g(x)$, 则 $\frac{b}{a}$ 的最 小值是()

A.
$$1+e$$

B.
$$1-e$$
 C. e^{-1}

D
$$2e^{-1}$$

【解】 $f(x) \le g(x) \Leftrightarrow h(x) = \ln x - ax + a - b - 1 \le 0 \Leftrightarrow h(x)_{max} \le 0$ 恒成立

因 $h'(x) = \frac{1-ax}{x}$, 显然 $a \le 0$ 时 h(x) 无最大值, 故必有 a > 0, 且易知 $h(x)_{\text{max}} = h(\frac{1}{a})$,

从而
$$h(\frac{1}{a}) \le 0 \Rightarrow b \ge a - 2 - \ln a \Rightarrow \frac{b}{a} \ge 1 - \frac{2}{a} - \frac{\ln a}{a}$$

构造函数 $m(a) = 1 - \frac{2}{a} - \frac{\ln a}{a}$, $\Leftrightarrow t = \frac{1}{a}$, 则 $m(a) = k(t) = 1 - 2t + t \ln t$

显然 $k'(t) = \ln t - 1$,

易知t = e时k(t)取得最小值1-e,选B。

例 8.设实数 $\lambda > 0$,若对任意的 $x \in (0, +\infty)$,不等式 $e^{\lambda x} - \frac{\ln x}{\lambda} \ge 0$ 恒成立,则 λ 的最小值为 ()

(A)
$$\frac{1}{e}$$
 (B) $\frac{1}{2e}$ (C) $\frac{2}{e}$ (D) $\frac{e}{3}$

【解】显然, $x \in (0,1]$ 时, 不等式 $e^{\lambda x} - \frac{\ln x}{\lambda} \ge 0$ 恒成立

 $x > 1 \text{ ff}, \quad e^{\lambda x} - \frac{\ln x}{\lambda} \ge 0 \Leftrightarrow \lambda e^{\lambda x} \ge \ln x \Leftrightarrow (\lambda x) e^{\lambda x} \ge x \ln x \Leftrightarrow (\lambda x) e^{\lambda x} \ge e^{\ln x} \ln x$

$$\Leftrightarrow g(t) = te^t(t > 0)$$
 , 则上面不等式 $\Leftrightarrow g(\lambda x) \ge g(\ln x)$ (*)

因 $g'(t) = (t+1)e^t > 0$,故 g(t) 单调递增,由(*)得 $\lambda x \ge \ln x$,即 $\lambda \ge \frac{\ln x}{x}$

令
$$m(x) = \frac{\ln x}{x}$$
,由 $m'(x) = \frac{\frac{1}{x} \times x - \ln x}{x^2} = \frac{1 - \ln x}{x^2}$ 知, e 为 $m(x)$ 的极大值点,故 $\lambda \ge m(e) = \frac{1}{e}$,选 A。

例 9.定义域为 R 的奇函数 f(x), 当 $x \in (-\infty,0)$ 时, f(x) + xf'(x) < 0 恒成立, 若 a = 3f(3), $b = (\log_{\pi} 3) \cdot f(\log_{\pi} 3)$, c = -2f(-2), \mathbb{N}

B.
$$c > b > a$$
 C. $c > a > b$ D. $a > b > c$

【巧】(特殊函数) 取 f(x) = x , 易知当 $x \in (-\infty, 0)$, f(x) + xf'(x) = 2x < 0 恒成立,符合 要求,但此时a=3f(3)=9, $b=(\log_{\pi}3) \cdot f(\log_{\pi}3) < 1$,c=-2f(-2)=4,选A。

【法二】 $\Rightarrow g(x) = xf(x)$, 问题转化为比较 $g(3), g(-2), g(\log_{\pi} 3)$ 的大小;

易知 g(x) 为偶函数, 且 g'(x) = f(x) + xf'(x) < 0 在 $(-\infty, 0)$ 上恒成立,

即 g(x) 在 $(-\infty,0)$ 上递减,在 $(0,+\infty)$ 上递增,

考虑到 g(-2) = g(2) , 且 $3 > 2 > \log_{\pi} 3$, 故 , $g(3) > g(2) > g(\log_{\pi} 3)$, 选 A。

例 10. 设函数 f(x) 是定义在 $(-\infty,0)$ 上的可导函数, 其导函数为 f'(x), 且 2f(x)+xf'(x)>0,则不等式 $(x+2017)^2f(x+2017)-9f(-3)<0$ 的解集为()

A. $(-2020, +\infty)$ B. (-2020, 2017) C $(-\infty, -2020)$ D. (-2020, -2017)

【巧解】取 f(x) = -x , 则 x < 0 时,2f(x) + xf'(x) = -2x - x = -3x > 0 , 故满足要求

此时,
$$(x+2017)^2 f(x+2017) - 9f(-3) < 0 \Leftrightarrow \begin{cases} (x+2017)^3 > -27 \\ x+2017 < 0 \end{cases}$$

 $\Rightarrow x \in (-2020, -2017)$, 选D。

【決二】 $\Rightarrow g(x) = x^2 f(x)$, 则 g(-3) = 9 f(-3) ,

因 x < 0 时, $g'(x) = 2xf(x) + x^2 f'(x) = x[2f(x) + xf'(x)] < 0$,

故g(x)单调递减,从而

$$(x+2017)^2 f(x+2017) - 9f(-3) < 0 \Leftrightarrow g(x+2017) < g(-3) \Leftrightarrow \begin{cases} x+2017 > -3 \\ x+2017 < 0 \end{cases}$$

解得-2020 < x < -2017,选D。

例 11. 已知函数
$$f(x) = \begin{cases} -\frac{3}{2}x+1, & x \ge 0 \\ e^{-x}-1, & x < 0 \end{cases}$$
, 若 $x_1 < x_2$ 且 $f(x_1) = f(x_2)$,则 $x_2 - x_1$ 的取值范

围是()

A)
$$(\frac{2}{3}, \ln 2)$$

(B)
$$\left(\frac{2}{3}, \ln \frac{3}{2} + \frac{1}{3}\right]$$

(C)
$$\left[\ln 2, \ln \frac{3}{2} + \frac{1}{3}\right]$$

A)
$$(\frac{2}{3}, \ln 2]$$
 (B) $(\frac{2}{3}, \ln \frac{3}{2} + \frac{1}{3}]$ (C) $[\ln 2, \ln \frac{3}{2} + \frac{1}{3}]$ (D) $(\ln 2, \ln \frac{3}{2} + \frac{1}{3})$

【解】作出函数
$$f(x) = \begin{cases} -\frac{3}{2}x + 1, & x \ge 0 \\ e^{-x} - 1, & x < 0 \end{cases}$$
 的图像如下,

曲 $x_1 < x_2$,且 $f(x_1) = f(x_2)$,可得 $0 \le x_2 < \frac{2}{3}$, $-\frac{3}{2}x_2 + 1 = e^{-x_1} - 1$,

即为
$$-x_1 = \ln(-\frac{3}{2}x_2 + 2)$$

可得
$$x_2 - x_1 = x_2 + \ln(-\frac{3}{2}x_2 + 2)$$
 , $\Leftrightarrow g(x_2) = x_2 + \ln(-\frac{3}{2}x_2 + 2), 0 \le x_2 < \frac{2}{3}$

$$g'(x_2) = 1 + \frac{-\frac{3}{2}}{-\frac{3}{2}x_2 + 2} = \frac{3x_2 - 1}{3x_2 - 4}$$

当
$$0 \le x_2 < \frac{1}{3}$$
时, $g'(x_2) > 0$, $g(x_2)$ 递增;当 $\frac{1}{3} < x_2 < \frac{2}{3}$ 时, $g'(x_2) < 0$, $g(x_2)$ 递减;

故,
$$g(x_2)$$
在 $x_2 = \frac{1}{3}$ 处取得极大值,也即最大值 $\ln \frac{3}{2} + \frac{1}{3}$, $g(0) = \ln 2$, $g(\frac{2}{3}) = \frac{2}{3}$,

由
$$\frac{2}{3} < \ln 2$$
 可得: $x_2 - x_1$ 的取值范围是 $(\frac{2}{3}, \ln \frac{3}{2} + \frac{1}{3}]$, 故选 B。

例 12. 已知函数 $f(x) = xe^x - a(x + \ln x)$, 若 $f(x) \ge 0$ 恒成立,则实数 a 的取值范围是(

A) [0,e]

(B) [0,1]

(C) $(-\infty, e]$

(D) $[e, +\infty)$

【巧解】易知x>0,因此时 $xe^x \ge 0$ 显然恒成立,故a=0满足要求,因此排除D;

如a<0,则 $\lim_{x\to 0^+} f(x) = -\infty$,不可能有 $f(x) \ge 0$ 恒成立,故排除C;

取
$$a = \frac{3}{2}$$
 , 易知 $f(x) \ge x(1+x) - \frac{3}{2}(x+x-1) = x^2 - 2x + \frac{3}{2} = (x-1)^2 + \frac{1}{2} > 0$ 恒成立,

故 $a = \frac{3}{2}$ 满足要求,排除 B。最终,选 A.

【法二】 易知
$$f(x) = e^{\ln x} \cdot e^x - a(x + \ln x) = e^{x + \ln x} - a(x + \ln x) = e^t - at$$
,

其中 $t = x + \ln x$, 易知 $t \in (-\infty, +\infty)$

故,问题等价于 $e^t - at \ge 0$,也即 $e^t \ge at$ 恒成立;

数形结合, 易知 $y = e^t$ 与 y = at 相切于点 P(1,e),

从图像上看, $a \in [0,e]$

例 13. 已知函数 $f(x) = e^x - ax$ 有两个零点 $x_1 < x_2$,则下列说法错误的是(

A. a > e

B.
$$x_1 + x_2 > 2$$

C.
$$x_1 x_2 > 1$$

B.
$$x_1 + x_2 > 2$$
 C. $x_1 x_2 > 1$ D. 有极小值点 x_0 , 且 $x_1 + x_2 < 2x_0$

【巧解】显然 $f'(x) = e^x - a$, 如 $a \le 0$, 则 f(x) 单调递增,不可能有两个零点,

故a>0,从而 x_1,x_2 均为正数。

曲题意
$$\begin{cases} e^{x_1} = ax_1 \\ e^{x_2} = ax_2 \end{cases} \Rightarrow \begin{cases} x_1 = \ln a + \ln x_1 \\ x_2 = \ln a + \ln x_2 \end{cases} \Rightarrow x_1 - x_2 = \ln x_1 - \ln x_2 , \quad \text{故} \frac{x_1 - x_2}{\ln x_1 - \ln x_2} = 1 ,$$

曲 "对数平均值不等式" 知:
$$\sqrt{x_1x_2} < \frac{x_1-x_2}{\ln x_1-\ln x_2} < \frac{x_1+x_2}{2} \Rightarrow \begin{cases} x_1+x_2 > 2 \\ x_1x_2 < 1 \end{cases}$$

显然 C 错 B 对,选 C。

由 $f'(x) = e^x - a = 0$ 得 $x_0 = \ln a$, 易知 x_0 为 f(x) 的极小点,所以, f(x) 要有两个零点, 必有 $f(x_0) < 0$, 即 $e^{\ln a} - a \ln a < 0$, 也即 $a - a \ln a < 0$, 即 $1 - \ln a < 0$, 故 a > e, 选项 A 对。

由前面的分析知: $x_1 < x_0 < x_2$,

又,
$$g'(x) = e^{x_0 + x} + e^{x_0 - x} - 2a \ge 2\sqrt{e^{2x_0}} - 2a = 0$$
,故 $g(x)$ 单调递增;

故
$$x>0$$
时, $g(x)>g(0)=0$,即 $f(x_0+x)-f(x_0-x)>0$

故
$$f(x_0 + x) > f(x_0 - x)$$
, 考虑到 $x_0 - x_1 > 0$

从而
$$f(x_2) = f(x_1) = f(x_0 - (x_0 - x_1)) < f(x_0 + (x_0 - x_1)) = f(2x_0 - x_1)$$

考虑到 $x_2 > x_0$, $2x_0 - x_1 > x_0$, f(x) 在 $x > x_0$ 时递增,

故 $x_2 < 2x_0 - x_1$, 即 $x_1 + x_2 < 2x_0$, 选项 D 对。

例 14. 已知函数 $f(x) = \frac{\ln x - ax}{x} (a \in R)$ 有两个零点 $x_1, x_2, x_1 \neq x_2, y_1 \neq x_2$

(A)
$$x_1 + x_2 > 2e$$

(B)
$$x_1 \cdot x_2 < e^{x_1}$$

(A)
$$x_1 + x_2 > 2e$$
 (B) $x_1 \cdot x_2 < e^2$ (C) $x_1 + x_2 > e^2$ (D) $x_1 \cdot x_2 < 1$

(D)
$$x_1 \cdot x_2 < 1$$

【巧解】显然
$$a > 0$$
,由题意知 $a = \frac{\ln x_1}{x_1} = \frac{\ln x_2}{x_2} = \frac{\ln x_1 - \ln x_2}{x_1 - x_2} = \frac{\ln x_1 + \ln x_2}{x_1 + x_2}$;

不妨设 $x_1 > x_2$, 由对数平均值不等式知:

$$\frac{x_1 - x_2}{\ln x_1 - \ln x_2} < \frac{x_1 + x_2}{2}$$
, $\exists \lim \frac{\ln x_1 - \ln x_2}{x_1 - x_2} > \frac{2}{x_1 + x_2}$

从而知
$$\frac{\ln x_1 + \ln x_2}{x_1 + x_2} > \frac{2}{x_1 + x_2}$$
,

故 $\ln x_1 + \ln x_2 > 2$, 即 $x_1 x_2 > e^2$; B、D 均错;

因此,
$$x_1 + x_2 > 2\sqrt{x_1 x_2} = 2e$$
,选 A

例 15. 已知函数 $f(x) = (x^2 - 3)e^x$,设关于 x 的方程 $f^2(x) - mf(x) - \frac{12}{e^2} = 0 (m \in R)$ 有 n

个不同的实数解,则n的所有可能的值为(

A. 3 B. 1或3

C. 4或6 D. 3或4或6

【解】 $f'(x) = (x-1)(x+3)e^x$, ∴ f(x) 在($-\infty$,-3) 和(1, $+\infty$) 上单增, (-3,1) 上单减 又当 $x \to -\infty$ 时 $f(x) \to 0$, $x \to +\infty$ 时 $f(x) \to +\infty$,

故f(x)的图像如图所示。

令
$$f(x) = t$$
 , 则方程 $t^2 - mt - \frac{12}{e^2} = 0$ 必有两根 t_1, t_2 ($t_1 < t_2$) 且 $t_1 t_2 = -\frac{12}{e^2}$,

当 $t_1 = -2e$ 时恰有 $t_2 = 6e^{-3}$, 此时 $f(x) = t_1$ 有 1 个根, $f(x) = t_2$ 有 2 个根;

当 $t_1 < -2e$ 时必有 $0 < t_2 < 6e^{-3}$,此时 $f(x) = t_1$ 无根, $f(x) = t_2$ 有 3 个根;

当 $-2e < t_1 < 0$ 时必有 $t_2 > 6e^{-3}$,此时 $f(x) = t_1$ 有2个根, $f(x) = t_2$ 有1个根; 综上,对任意 $m \in R$,方程均有3个根.

例 16.已知函数
$$H(x) = \frac{e^{ax}}{4} + (m+1)x + (m+1)^2$$
,则下列说法正确的是()

B. 若
$$m=-1, a\neq 0$$
,则过原点恰好可以作一条直线与曲线 $y=H(x)$ 相切;

C. 若
$$a=0$$
, 且对任意的 $m \in R, H(x) \ge 0$ 恒成立, 则 $0 \le x \le 1$;

D. 若对任意的
$$m \in R$$
,任意 $x > 0$, $H(x) \ge 0$ 恒成立,则 a 的最小值为 $\frac{2}{e}$ 。

【解】 对于 A。
$$H(x) = \frac{1}{4}e^{-x} + x + 1, H'(x) = -\frac{1}{4}e^{-x} + 1$$
,

由
$$H'(x) = 0 \Rightarrow -\frac{1}{4}e^{-x} + 1 = 0 \Rightarrow x = -2\ln 2$$
. 易知 $-2\ln 2$ 为 $H(x)$ 的极小点,

考虑到H(x)的定义域为R,故,H(x)无最大值,A错。

对于 B。
$$H(x) = \frac{1}{4}e^{ax}$$
, $H'(x) = \frac{a}{4}e^{ax}$, 设切点为 $(x_0, \frac{1}{4}e^{ax_0})$,

则
$$k = H'(x_0) = \frac{a}{4}e^{ax_0} = \frac{\frac{1}{4}e^{ax_0}}{x_0} \Rightarrow x_0 = \frac{1}{a}$$
 是唯一解,B 对。

对于 C: 此时,
$$H(x) = \frac{1}{4} + (m+1)x + (m+1)^2$$
, 故 $H(x) \ge 0 \Rightarrow m^2 + (x+2)m + x + \frac{5}{4} \ge 0$ 恒成立。

故,
$$\Delta = (x+2)^2 - 4(x+\frac{5}{4}) = x^2 - 1 \le 0$$
, 解得 $-1 \le x \le 1$, 故 C 错。

对于 D。 $H(x) = m^2 + (x+2)m + x + \frac{1}{4}e^{ax} + 1$,将其看成是关于 m 的一元二次函数,故 $H(x) \ge 0$

恒成立,则有
$$\Delta = (x+2)^2 - 4(x+1+\frac{1}{4}e^{ax}) = x^2 - e^{ax} \le 0$$
 恒成立,即 $a \ge \frac{2\ln x}{x} (x > 0)$

$$\Rightarrow h(x) = \frac{2 \ln x}{r} (x > 0)$$
, $\text{MI} h'(x) = 2 \cdot \frac{1 - \ln x}{r^2}$

易知, e 为 h(x) 的极大点, 故 $a \ge h(x)_{\max} = \frac{2}{e}$, 即 a 的最小值为 $\frac{2}{e}$, D 对。

综上, BD 正确。

例17.已知函数
$$f(x) = e^x - mx^2 - 2x$$
,若 $m < \frac{e}{2} - 1$ 时,证明:当 $x \in [0, +\infty)$ 时, $f(x) > \frac{e}{2} - 1$.

证明:
$$f'(x) = e^x - 2mx - 2$$
, $f''(x) = e^x - 2m > e^x - 2 \cdot \frac{e-2}{2} = e^x - (e-2)$.

当 $x \in [0, +\infty)$ 时, $e^x \ge 1 > e - 2$,故 f''(x) > 0 ,故 f'(x) 单调递增.

$$\mathbb{Z} f'(0) = 1 - 2 = -1 < 0$$
, $f'(1) = e - 2m - 2 > e - 2(\frac{e}{2} - 1) - 2 = 0$,

故存在唯一的 $x_0 \in (0, 1)$, 使得 $f'(x_0) = 0$, 即 $e^{x_0} - 2mx_0 - 2 = 0$,

因 $x \in (0, x_0)$ 时, f'(x) < 0 , f(x) 单调递减, $x \in (x_0, +\infty)$ 时, f'(x) > 0 , f(x) 单调递增.

故, x_0 为 f(x) 的极小点,

故
$$f(x)_{\min} = f(x_0) = e^{x_0} - mx_0^2 - 2x_0$$
.

故
$$g'(x)$$
 在 $(0,1)$ 上单调递减,故 $g'(x) < g'(0) = -\frac{1}{2} < 0$,

故
$$g(x)$$
 在 $(0,1)$ 上单调递减, $: g(x) > g(1) = \frac{e}{2} - 1$,故 $f(x) > \frac{e}{2} - 1$.

例 18.已知函数 $f(x) = a \ln x + x^b (a \neq 0)$.

- (1) 当b=2时,讨论函数f(x)的单调性;
- (2) 当a+b=0, b>0时, 对任意 x_1 , $x_2 \in \left[\frac{1}{e}, e\right]$, 都有 $\left|f(x_1) f(x_2)\right| \le e-2$ 成立, 求实数b的取值范围.

【解】(1) 函数 f(x) 的定义域为 $(0,+\infty)$.

$$\stackrel{\text{def}}{=} b = 2 \text{ Hr}, \quad f(x) = a \ln x + x^2, \quad \therefore f'(x) = \frac{2x^2 + a}{x}.$$

① 当 a > 0 时, f'(x) > 0 , f(x) 在 $(0,+\infty)$ 上单调递增.

② 当
$$a < 0$$
 时, 令 $f'(x) = 0$, 解得 $x = \sqrt{-\frac{a}{2}}$,

当
$$0 < x < \sqrt{-\frac{a}{2}}$$
 时, $f'(x) < 0$, $f(x)$ 在 $\left(0, \sqrt{-\frac{a}{2}}\right)$ 上单调递减;

当
$$x > \sqrt{-\frac{a}{2}}$$
 时, $f'(x) > 0$, $f(x)$ 在 $\left(\sqrt{-\frac{a}{2}}, +\infty\right)$ 上单调递增.

综上所述, 当b=2时

a > 0 时, f(x) 在 $(0,+\infty)$ 上单调递增;

$$a < 0$$
 时, $f(x)$ 在 $\left(0, \sqrt{-\frac{a}{2}}\right)$ 上单调递减,在 $\left(\sqrt{-\frac{a}{2}}, +\infty\right)$ 上单调递增.

(2) 问题 $\Leftrightarrow f(x)_{\text{max}} - f(x)_{\text{min}} \le e - 2$,

:
$$a+b=0$$
, $b>0$ H;, $f(x)=-b\ln x+x^b$, $f'(x)=\frac{b(x^b-1)}{x}$.

 $\therefore f(x)$ 在 $\left[\frac{1}{e},1\right]$ 单调递减,在 $\left[1,e\right]$ 单调递增,

$$f(x)_{\min} = f(1) = 1$$
, $f(\frac{1}{e}) = b + e^{-b}$, $f(e) = -b + e^{b}$,

$$\label{eq:continuous} \mbox{if } g\left(b\right) = f\left(e\right) - f\left(\frac{1}{e}\right) = e^b - e^{-b} - 2b \ , \ \left(b > 0\right) \ , \ g'\left(b\right) = e^b + e^{-b} - 2 > 2\sqrt{e^b \cdot e^{-b}} - 2 = 0 \ .$$

$$\therefore g(b)$$
在 $(0,+\infty)$ 递增, $\therefore g(b) > g(0) = 0$,

$$\therefore f(e) > f\left(\frac{1}{e}\right), \quad \Box \mathcal{A} = f(e) = -b + e^b,$$

∴
$$-b + e^b - 1 \le e - 2$$
, $\exists \vdash e^b - b - e + 1 \le 0$,

设
$$\varphi(b) = e^b - b - e + 1$$
, $(b > 0)$, $\varphi'(b) = e^b - 1 > 0$ 在 $b \in (0, +\infty)$ 恒成立.

$$\therefore \varphi(b)$$
在 $(0,+\infty)$ 单调递增,且 $\varphi(1)=0$,

∴不等式
$$e^b - b - e + 1 \le 0$$
的解集为 $(0,1]$.

::实数b的取值范围为(0,1].