Pflichtenheft

Projekt P5 – Elektro- & Informationstechnik – HS19

Auftraggeber:

Hufschmid Markus

Projektmitglieder:

Burkhardt Simon

Studer Mischa

In den Bereichen Amateurfunk und Hobbymusik gibt es viele Situationen in denen ein einfaches, DSP-basiertes Effektgerät zur Anwendung gebracht werden kann. So soll beispielsweise ein Notchfilter einen Störton unterdrücken, oder auf Knopfdruck ein Reverb-Effekt eingeschaltet werden können.

Das derzeit verwendete DSP Board für den Unterricht im MicroCom Labor basiert auf einem dsPIC33 mit Fixed-Point-Recheneinheit. Die neuen ARM Prozessoren bieten ab der Cortex-M4 Serie eine Floating-Point-Unit (FPU) und ermöglichen dadurch eine schnellere Verarbeitung von Signalen.

Aus diesem Grund wird die Hardware des DSP Boards überarbeitet und soll mit einem ARM Cortex-M4 Microcontroller ausgestattet werden. Der Schaltungsaufwand beschränkt sich auf die wesentlichen Funktionen. Diese beinhalten die MCU, einen Codec für die AD/DA Wandlung, die Audio-Steckverbinder und die Bedienelemente des HMI.

Harte Ziele

Ziele

Nr	Ziel	Erreichungsgrad
1.1	Microcontroller mit Cortex-M4(F) Architektur mit FPU	erfüllt/nicht erfüllt
1.2	Audio Passthrough von Line-In nach Line-Out	erfüllt/nicht erfüllt
1.3	Audio Schnittstelle (analog)	erfüllt/nicht erfüllt
	- Line-IN	
	- Line OUT	
1.4	2 Stk. Drehencoder für HMI	erfüllt/nicht erfüllt
1.5	2 Stk. Taster für HMI	erfüllt/nicht erfüllt
1.6	1 Display zur Anzeige des Funktionsmodus	erfüllt/nicht erfüllt
1.7	Microcontroller ohne Debugger über USB programmierbar	erfüllt/nicht erfüllt