The File System

Learning Objectives

- Explain Linux filesystem
- Display and interpret directory ownership
- Change file and directory permissions
- Describe differences between hard and symbolic links.
- Describe inode, and its relationship with files and directories

What is a File System?

- An abstraction of data storage on a system
- Used to control how information is stored and retrieved (<u>Wikipedia</u>)
- Can be used on many different kind of media: hard drive, magnetic tape, optical disc, and flash memory

In Linux, Everything is a File!

Disk File Format

Types of Files

```
[victoryu@voyager:~] $1s -1
total 132

**Twx----- 2 victoryu victoryu 4096 Sep 16 2003 Mail
drwxr-xr-x 5 victoryu victoryu 4096 Jan 27 22:54 cis18a
drwxrwxr-x 9 victoryu victoryu 4096 Jan 20 17:51 cis18b
drwxr-xr-x 2 victoryu victoryu 4096 Jan 22 11:40 cis35a
drwxr-xr-x 3 victoryu victoryu 4096 Jul 3 2013 cis71A

-rw-r--r-- 1 victoryu victoryu 193 Jan 13 23:13 data
-rw-r--r-- 1 victoryu victoryu 163 Jan 13 23:13 data2
```

File types in a long list

Symbol	Meaning
-	Regular file
d	Directory
1	Link
С	Special file
S	Socket
р	Named pipe
b	Block device

file: Determine File Type

- -ъ brief
- -z uncompress

Hierarchical Directory Structure

Directory

Purpose

/	The root directory; all files appear in this directory or subdirectories of it.
/etc	Holds system configuration files.
/boot	Holds important boot files, such as the Linux kernel, the initial RAM disk, and often boot loader configuration files.
/bin	Holds program files that are critical for normal operation and that ordinary users may run.
/sbin	Holds program files that are critical for normal operation and that ordinary users seldom run.
/lib	Holds libraries—code used by many other programs—that are critical for basic system operation.
/usr	Holds programs and data used in normal system operation but that aren't critical for a bare-bones boot of the system. This directory is split into subdirectories that mirror parts of the root organization—/usr/bin, /usr/sbin, /usr/lib, and so on.
/home	Holds users' home directories. Separating this directory into its own low-level filesystem effectively isolates most user data from the OS, which can be useful if you want to re-install the OS without losing user data.
/root	The root user's home directory. Note that this is different from /, which is pronounced root.
/var	Holds miscellaneous transient files, such as log files and print spool files. One subdirectory of /var, /var/tmp, deserves special mention. Like /tmp(described next), /var/tmpholds temporary files. These files should not be deleted when the computer reboots.
/tmp	Holds temporary files, often including temporary files created by user programs. Such files may theoretically be deleted when the computer reboots, although in practice many distributions don't do this.
/mnt	The traditional mount point for removable media; sometimes split into subdirectories for each mounted filesystem.
/media	The new mount point for removable media; typically split into subdirectories for each mounted filesystem.
/dev	Holds device files, which provide low-level access to hardware.

File Names

- Unique name in a given directory
- Case sensitive
- Do not use SPACE in file names
- Do not use in file names
- Hidden files

1s: Display Files

Options

```
-a: list all files -r: reverse order

-author: with -l, authors of each file recursively

-c: user/group ids -s: print size of each file

-d: reverse order -S: sort by file size

-i: list inode -t: sort by modification time

-l: long list format -u: show access time

-l: info for link references -1: show one file per line
```

The touch Command

- Update file time access time
- Create an empty file

mkdir: Create a Directory

```
$ pwd
/home/max
$ ls
demo names temp
$ mkdir literature
$ ls
demo literature names temp
$ ls -F
demo literature/ names temp
$ ls literature
```

Paths

- Absolute paths
 - / (root) root directory
 - ~ (tilder) home directory
- Relative paths
 - .. parent directory
 - current directory

Absolute Paths

Relative Paths

rmdir: Remove a Directory

Regular File Utilities

The cp Command

Simple File Copy

Copy File to a Directory from Home

Copy and Rename a File

Recursive Copy

Recursive Copy with SubdirectorieS

Wildcard Copy

File Ownership and Permissions

- Three levels of file ownership
 - User
 - Group
 - Other
- Within each level, 3 types of permissions
 - Read
 - Write
 - Execute

1s -1: Displays Permissions, etc.

chown: Change Ownership

- After the change, the new owner will be able to do anything with the file
- Use –R option to apply recursively
- If the system does not allow you to use chown, consider using cp to accomplish the same thing.

Symbolic Arguments to chmod

Choose One From Each


```
[victoryu@voyager:~/cis18a] $1s -1 testfile

-rw-r--r-- 1 victoryu victoryu 22 Feb 3 21:36 testfile

[victoryu@voyager:~/cis18a] $chmod u+rwx,g+w,o+x testfile

[victoryu@voyager:~/cis18a] $1s -1 testfile

-rwxrw-r-x 1 victoryu victoryu 22 Feb 3 21:36 testfile

[victoryu@voyager:~/cis18a] $chmod g-r,o+x testfile

[victoryu@voyager:~/cis18a] $1s -1 testfile

-rwx-w-r-x 1 victoryu victoryu 22 Feb 3 21:36 testfile
```

Absolute Arguments to chmod

```
$ls -l | cut -d" "
$chmod 270 test2$ls -l testfile1 | cut -d" " -f1

-rwxrw-r-x
$chmod 765 testfile

-rwxrw-r-x

Mnemonic (rwx) Binary Octal
```

Numeric Equivalent for Mnemonic Permissions				
Mnemonic (rwx)	Binary	Octal		
	000	0		
x	001	1		
-w-	010	2		
-wx	011	3		
r	100	4		
r-x	101	5		
rw-	110	6		
rwx	111	7		

User Mask

Mask	Directory Permission (Default 777)	File Permission (Default 666)
0	7 (rwx)	6 (rw-)
1	6 (rw-)	6 (rw-)
2	5 (r-x)	4 (r)
3	4 (r)	4 (r)
4	3 (-wx)	2 (-w-)
5	2 (-w-)	2 (-w-)
6	1 (x)	0 ()
7	0 ()	0 ()

umask Utility

\$umask

000

\$umask 022

Examples of Default Permission Calculation				
Mask	Directory Permissions (Default 777)	File Permissions (Default 666)		
000 (Public)	777 (rwxrwxrwx)	666 (rw-rw-rw)		
011 (Public)	766 (rwxrw-rw-)	666 (rw-rw-rw)		
022 (Write Protected)	755 (rwxr-xr-x)	644 (rw-r-r)		
007 (Project Private)	770 (rwxrwx)	660 (rw-rw)		
077 (Private)	700 (rwx)	600 (rw)		

hostname: Displays the System Name

```
[victoryu@voyager:~/cis18a ] $hostname
voyager.deanza.edu
[victoryu@voyager:~/cis18a ] $hostname -a
voyager
[victorvu@voyager:~/cis18a ] $hostname -d
deanza.edu
[victoryu@voyager:~/cis18a ] $hostname -f
voyager.deanza.edu
[victoryu@voyager:~/cis18a ] $hostname -i
153.18.17.12
[victoryu@voyager:~/cis18a ] $hostname -s
vovager
[victoryu@voyager:~/cis18a ] $hostname -V
net-tools 1.60
hostname 1.100 (2001-04-14)
[victoryu@voyager:~/cis18a ] $hostname -y
(none)
[victoryu@voyager:~/cis18a ] $
```

Inode

Links

- A pointer to a file
 - Hard link the specific location of physical data
 - Symbolic (or soft) links pointers to a
- Two pieces of information
 - A name
 - An inode number

A Directory of Three Files

A Hard Link

A Symbolic Link

Hard Links vs. Soft Links

- A hard link is an alias to to a file
 - Hard link the specific location of physical data
 - Can't make a hard link to a directory
 - Can 't span file systems
- A symbolic link is a pointer to a pathname,
 not a pointer to the file itself
 - In -s original target creates a symbolic link
 - Is not equivalent to a hard link, and has a different inode
 - Can make a soft link to a directory

The In Command

1n: Create Link

```
[victoryu@voyager:~/cis18a/testDir ] $1s
thursday tuesday
[victoryu@voyager:~/cis18a/testDir ] $ln tuesday mardi
[victoryu@voyager:~/cis18a/testDir ] $1s
mardi thursday tuesday
[victoryu@voyager:~/cis18a/testDir ] $ln -s thursday jeudi
[victoryu@voyager:~/cis18a/testDir ] $1s
jeudi mardi thursday tuesday
[victoryu@voyager:~/cis18a/testDir ] $1s -1
total 28
lrwxrwxrwx 1 victoryu victoryu 8 Feb 3 16:04 jeudi -> thursday
-rw-r--r-- 2 victoryu victoryu 17 Feb 3 16:02 mardi
-rw-r--r-- 1 victoryu victoryu 18 Feb 3 16:03 thursday
-rw-r--r-- 2 victoryu victoryu 17 Feb 3 16:02 tuesday
[victoryu@voyager:~/cis18a/testDir ] $
[victoryu@voyager:~/cis18a/testDir ] $
```

find: Search for a File

- Syntax: find [path] [option] filename
 - -name File name

```
find . -name "Jose*"
find /home -name test.txt
```

-perm File permission

```
find . -perm 644
```

- -atime <u>n</u> File status last accessed n*24 hours ago
- -empty File is empty
- find [path] [action] command
 - -exec

```
find . -name file3 -exec cp \{\} \{\}.bak \setminus; -exec rm \{\} \setminus;
```

Command Comparison

Command	Apply to Files?	Apply to Directories?
cat	Yes	No
cd	No	Yes
rm	Yes	Yes
ср	Yes	Yes
mv	Yes	Yes
ls	Yes	Yes
find	Yes	Yes
mkdir	No	Yes
rmdir	No	Yes (empty directory only)
touch	Yes	Yes

ACLs: Access Control Lists

- ACLs provide a set of finer-grained rules specifying how a specific user or group can access a file or directory
- Syntax:

```
setfacl -modify ugo:name:permission file
```

Example: set default rules

```
setfacl -d -m g:pubs:r-x,g:adm:rwx dir
```

Example: modify rule(s) in a file's ACL

```
setfacl -modify g:unixStudent:rw dropbox
```

Example: display info about an ACL associated file
 getfacl dropbox

Review Questions

- What is an inode? What happens to the inode when you move a file within a filesystem?
- How can you create a file named -i? Which techniques do not work, and why don't they work? How can you remove the file name -i?
- How to find all files with permission 644 and SGID bit set?