

Cours: Logique Formelle

Chapitre 2: Logique Propositionnelle (Partie 3)

Réalisé par:

Dr. Sakka Rouis Taoufik

1

Chapitre 2: Logique Propositionnelle

III. Sémantique propositionnelle

2) Formes normales disjonctives

> Méthode des arbres

- Conjonction et sa négation

- Disjonction et sa négation

III. Sémantique propositionnelle

2) Formes normales disjonctives

Méthode des arbres

- Implication et sa négation
- \Rightarrow p \rightarrow q
- $\neg (p \rightarrow q) = \neg((\neg p) \lor q)$ $= (\neg \neg p) \land (\neg q)$ $= (p) \land (\neg q)$

- Équivalence et sa négation
- $ightharpoonup p \leftrightarrow q$
- $\neg (p \leftrightarrow q) = (\neg p \land q) \lor$ $(p \land \neg q)$

Chapitre 2: Logique Propositionnelle

III. Sémantique propositionnelle

2) Formes normales disjonctives

> Méthode des arbres

· Récapitulatif des règles

Conjonction	Disjonction	Implication	Equivalence
p	p q	$ \begin{array}{ccc} p \rightarrow q \\ \neg p & q \end{array} $	d d d d d d d d d d d d d d d d d d d
NON Conjonction	NON Disjonction	NON Implication	NON Equivalence
¬(p \ q) ¬p ¬q	¬(p ∨ q) ¬p ¬q	$\neg (p q)$ $\neg q$	$ \begin{array}{ccc} & \neg (p \leftrightarrow q) \\ & p & \neg p \\ & \neg q & q \end{array} $

III. Sémantique propositionnelle

2) Formes normales disjonctives

Méthode des arbres

• Exemple 1 : En utilisant la méthode des arbres déterminer une formule en forme normale disjonctive équivalente à $p \rightarrow (q \lor r)$;

RQ: L'arbre est fini quand on ne trouve plus aux extrémités inférieures des branches que des formules atomiques ou des négations de formules atomiques.

 $\neg p \lor q \lor r$: forme normale disjonctive

 $p \rightarrow (q \lor r)$ est vrai soit quand: $\neg p$ est vrai ou quand q est vrai ou quand r est vrai.

Chapitre 2: Logique Propositionnelle

III. Sémantique propositionnelle

2) Formes normales disjonctives

> Méthode des arbres

 Exemple 2: En utilisant la méthode des arbres déterminer une formule en FND équivalente à p ∧ (¬p ↔ q);

Étape 2: Cet énoncé est vrai si et seulement si p est vrai et $(\neg p \leftrightarrow q)$ est vrai.

$$\begin{array}{c}
p \\
\neg p \leftrightarrow q
\end{array}$$

III. Sémantique propositionnelle

2) Formes normales disjonctives

Méthode des arbres

Étape 2: $(\neg p \leftrightarrow q)$ est vrai si et seulement si $\neg p$ est vrai **et** q est vrai **ou**

¬p est faux et q est faux.

Remarque: ¬ p est faux et q est faux si et seulement si ¬¬p est vrai et ¬q est vrai

Étape 3: ¬¬p est vrai si et seulement si p est vrai.

7

Chapitre 2: Logique Propositionnelle

III. Sémantique propositionnelle

2) Formes normales disjonctives

> Méthode des arbres

Quand on regarde cet arbre-là, on peut le lire comme étant la disjonction de deux conjonctions : $(p \land \neg p \land q)$ avec

$$(p \land \neg q \land p)$$

Conclusion 1: $(p \land \neg p \land q) \lor (p \land \neg q)$ est une FND équivalente à $p \land (\neg p \leftrightarrow q)$

III. Sémantique propositionnelle

2) Formes normales disjonctives

> Méthode des arbres

Quand if y a une **contradiction** sur une branche $(p \land \neg p \land q)$ on marque une 'X' au bout de la branche et on dit aussi que cette **branche est fermée**.

$$p \land (\neg p \leftrightarrow q)$$

$$p$$

$$\neg p \leftrightarrow q$$

Conclusion 2: $p \land \neg q$ est une FND équivalente à $p \land (\neg p \leftrightarrow q)$

9

Chapitre 2: Logique Propositionnelle

III. Sémantique propositionnelle

2) Formes normales disjonctives

Méthode des arbres

Remarque: Si un énoncé est une contradiction, alors toutes ces branches seront fermées.

III. Sémantique propositionnelle

- 2) Formes normales disjonctives
- **Exercice 1:** en utilisant les **la méthode des arbres**, déterminer une formule en FND équivalente à $p \rightarrow (q \land r)$

Conclusion:

11

Chapitre 2: Logique Propositionnelle

III. Sémantique propositionnelle

3) Méthode des arbres et tautologie

Remarque: Un énoncé est une tautologie quand sa négation est une contradiction

Exemple : montrer que $(\neg p \rightarrow p) \rightarrow p$

est une tautologie?

 $\begin{array}{c}
\neg ((\neg p \to p) \to p) \\
 & | \\
 & | \\
 & \neg p
\end{array}$

Conclusion: La négation de cet énoncé est bien **une contradiction** car toutes les branches sont fermées. Donc :

 $(\neg p \rightarrow p) \rightarrow p$ est une **tautologie**.

р Х **12**

¬¬ p

III. Sémantique propositionnelle

3) Méthode des arbres et tautologie

Exercice: Utiliser la méthode des arbres pour montrer que les formules suivantes sont ou non des tautologies ?

$$1/(p \land q) \rightarrow p$$

$$2/(p \lor q) \rightarrow (p \land q)$$

$$3/(p \land q) \rightarrow (p \lor q)$$

$$4/p \rightarrow (p \lor q)$$

$$5/p \rightarrow ((\neg p) \rightarrow p)$$

$$6/p \rightarrow (p \rightarrow q)$$

$$7/p \rightarrow (q \rightarrow p)$$

$$8/(p \rightarrow (\neg p)) \rightarrow (\neg p)$$

$$9/p \rightarrow (p \rightarrow p)$$

10/
$$(p \lor q) \leftrightarrow ((p \rightarrow q) \rightarrow q)$$

11/
$$(p \wedge (\neg q)) \vee (p \wedge q)$$

$$12/(p \to q) \to ((q \to r) \to (p \to r))$$

13

Chapitre 2: Logique Propositionnelle

III. Sémantique propositionnelle

4) Méthode des arbres et validité des arguments

Remarque: Les arbres nous permettent de tester la validité des arguments.

Exemple 1: $p \rightarrow (q \lor r)$, $\neg q \land p \models r$

Pour savoir si cet argument est valide ou non :

Étape 1: On écrit la négation de la conclusion de l'argument et les prémisses dans l'ordre comme suit :

Étape 2: On vérifier si toutes les branches de l'arbre sont fermées ou non.

Conclusion: l'argument est valide.

 $\neg q$

III. Sémantique propositionnelle

4) Méthode des arbres et validité des arguments

Remarque: Les arbres nous permettent de tester la validité des arguments.

Exemple 1:
$$(p \land q) \rightarrow r \models p \rightarrow (q \rightarrow r)$$

 $\neg (p \rightarrow (q \rightarrow r))$

 $\neg (q \rightarrow r)$

Pour savoir si cet argument est valide ou non :

Étape 1:

$$1/\neg (p \rightarrow (q \rightarrow r))$$

2/ (p \land q) \rightarrow r

Étape 1.2

Étape 2:

Toutes les branches de l'arbre sont fermées.

Conclusion: l'argument est valide.

Chapitre 2: Logique Propositionnelle

III. Sémantique propositionnelle

4) Méthode des arbres validité des arguments

Remarque: Les arbres nous permettent de tester la validité des arguments.

Exemple 1: $(p \rightarrow q)$, $(q \rightarrow r) \models p \rightarrow r$

Pour savoir si cet argument est valide ou non :

Étape 1:

$$1/\neg (p \rightarrow r)$$

$$2/p \rightarrow q$$

$$3/q \rightarrow r$$

Étape 1.2

Étape 1.3

Étape 2:

Toutes les branches de l'arbre sont fermées.

Conclusion: l'argument est valide.

III. Sémantique propositionnelle

4) Méthode des arbres et validité des arguments

Exercice: Dans chacun des cas suivants déterminer, par la méthode des arbres, si les arguments sont valides.

1/ p
$$\rightarrow$$
 q, p \rightarrow \neg q | \vdash (\neg p)
2/ p \leftrightarrow (q \vee r) | \vdash ((p \wedge (\neg q)) \rightarrow r)
3/ p \rightarrow r, q \rightarrow r | \vdash (p \rightarrow q)
4/ p \rightarrow (q \rightarrow r), r \vee (\neg q) | \vdash (\neg p)
5/ p \rightarrow (q \rightarrow r), q \rightarrow (r \rightarrow p) | \vdash (p \rightarrow r)