UJI SIFAT SENSORIS DAN AKTIVITAS ANTIOKSIDAN KOLANG-KALING DENGAN PENAMBAHAN EKSTRAK KAYU SECANG (Caesalpinia sappan L.) SEBAGAI PEWARNA ALAMI

Sensory Evaluation and Antioxidant Activity of Sugar Palm Fruit with Extract Sappan Wood (Caesalpinia sappan L.) as Natural Colored

Dhimas Ridwan Thoyibi^{1),}Agus Selamet Duniaji²⁾, I Ketut Suter²⁾

¹Mahasiswa Program Studi Imu dan Teknologi Pangan, Fakultas Teknologi Pertanian, Universitas Udayana ²Dosen Program Studi Imu dan Teknologi Pangan, Fakultas Teknologi Pertanian, Universitas Udayana Kampus Bukit Jimbaran, Badung-Bali

ABSTRACT

This study purpose to determine the effect of added sappan wood extract to be sugar palm fruit natural colored toward characteristic sensory evaluation, activities of antioxidant, and to know the best concentrate of sappan wood extract with higgest characteristic sensory and antioxidant. The research design was used Completely Randomize Design with 6 treated exctract concentrating which is 0%; 2%; 4%; 6%; 8%; 10%. The treatment was repeated three times so that have 18 unit experimental. Data were analyzed by Analysis of Variance (ANOVA) and then continued with Duncan Multiple Range Test (DMRT). Result of this shown that the extract concentrate have very significant effect towards activities antioxidant, and anthocyanin levels. Have significant effect towards color (hedonic test). Has not significant effect towards flavour, taste, and overall acceptance (hedonic test). Concentrate 10% was the best treatment for produce sugar palm fruit with characteristic sensory color (liked), taste (rather liked), flavour (liked) and overall acceptance (rather liked), the highest value of antioxidant activitiest (based on IC50) 169.65 mg/ml, and anthocyanin 0.40 mg/100g.

Keywords: sappan wood, sugar palm fruit, extraction, natural colored, antioxidant activity.

PENDAHULUAN

Kolang-kaling ialah produk olahan yang diperoleh dari buah aren yang masih setengah matang, dengan cara membakar atau merebus buahnya. Kolang-kaling merupakan komoditas yang digunakan dalam pembuatan minuman dan makanan yang selama ini sudah banyak dikenal, misalnya kolak atau dimasak dengan bumbu gula dan zat aroma serta diberi pewarna untuk dimakan langsung (Sunanto, 1993). Zat pewarna biasanya ditambahkan dalam proses pembuatan kolang-kaling agar terlihat lebih menarik (Sunanto, 1993). Penggunaan zat pewarna pada produk pangan di Indonesia telah diatur oleh Departemen Kesehatan.

Dewasa ini telah banyak dijumpai produsen makanan yang menggunakan pewarna sintetis

untuk mewarnai berbagai jenis pangan antara lain kerupuk, mie, tahu, kolang-kaling dan pangan jajanan yang berwarna merah (Yuliarti, 2007). Zat pewarna sintetis khususnya yang ilegal seperti rodhamin B dan methanil yellow, dapat terakumulasi pada tubuh manusia dan bersifat karsinogenik yang dalam jangka panjang menyebabkan kelainan-kelainan pada organ tubuh manusia 1992). (Winarno, Beberapa faktor penyebab terjadinya penyalahgunaan bahan tambahan pangan yang dilarang adalah kurangnya sosialisasi tentang bahaya dan akibat dari penggunaan bahan tersebut (Saparinto, 2006). Sejalan dengan adanya penyalahgunaan penggunaan pewarna pada produk pangan tersebut, perlu adanya inovasi baru dalam pengembangan pewarna alami dalam menggantikan pewarna

ISSN: 2527-8010 (*ejournal*)

*Korespondesi Penulis:

E-mail: ridwandhimas@yahoo.co.id¹⁾

makanan sintetis yang membahayakan kesehatan.

Pewarna alami dapat ditemui pada berbagai jenis tanaman dan tidak membahayakan kesehatan. Bagian tanaman yang memiliki pigmen dan dapat dimanfaatkan sebagai pewarna makanan adalah bagian daun, bunga, dan batang. Selain berfungsi mewarnai produk, pewarna alami ini juga berfungsi sebagai flavour, antioksidan, antimikroba, dan fungsifungsi lainnya (Winarno, 1992). Tanaman yang potensial dimanfaatkan sebagai pewarna merah alami pada kolang-kaling adalah kayu secang (Caesalpinia sappan L.), hal ini dibuktikan dari penelitian yang telah dilakukan yaitu isolasi zat warna merah yang terkandung dalam kayu secang oleh (Sanusi ,1989). Penelitian lainnya tentang pemanfaatan kayu secang sebagai pewarna makanan adalah pada produk kerupuk tapioka berbahan dasar dilakukan Holinesti (2009). Kayu secang menghasilkan pigmen berwarna merah dan pigmen merah ini disebut antosianin (Karlina et al., 2016). Antosianin dapat memberikan warna merah, ungu, biru, pada bunga, daun, umbi, buah dan sayur yang bergantung pada pH lingkungan tempatnya berada (Jensen et al. 2011).

Penambahan ekstrak kayu secang pada kolang-kaling selain sebagai pewarna alami makanan juga diharapkan dapat menjadikan sebagai salah satu sumber pangan fungsional karena mengandung antioksidan. Lim et al., membuktikan bahwa (1997)antioksidatif dari ekstrak kayu secang lebih tinggi dari pada antioksidan komersial BHT (Butylated Hydroxy Toluene) dan BHA (Butylated Hydroxy Anisol). Pengolahan kayu menjadi pewarna kolang-kaling secang menggunakan metode dilakukan dengan ekstraksi infundasi, yaitu ekstraksi dengan cara perebusan menggunakan pelarut air pada suhu 96°C selama 14 menit. Perlakuan pemanasan dapat meningkatkan kelarutan senyawa yang

diekstrak (Koswara, 2009). Penambahan ekstrak kayu secang pada kolang-kaling diharapkan dapat menjadikan pewarna alami dan meningkatkan aktivitas antioksidan pada kolang-kaling.

METODE PENELITIAN

Tempat dan Waktu

Penelitian ini dilaksanakan di Laboratorium Pengolahan Pangan, Laboratorium Analisis Pangan, dan Laboratorium Rekayasa Proses dan Pengendalian Mutu Fakultas Teknologi Pertanian, Universitas Udayana. Waktu pelaksanaan September 2018 sampai November 2018.

Bahan dan Alat

digunakan Bahan-bahan yang dalam melaksanakan penelitian ini terdiri dari bahan baku dan bahan kimia. Bahan baku terdiri dari kolang-kaling yang diperoleh dari Pasar Abian Timbul Denpasar dan kayu secang yang diperoleh dari Nusa Penida Desa Sakti, serta air yang digunakan adalah air minum merk Aqua. Bahan kimia yang digunakan dalam melakukan analisis antosianin dan antioksidan meliputi Metanol (Merck), HCl, Aquades, DPPH (1,1diphenyl-2-picrylhydrazil) (SigmaAldrich), NaOH, KCl, dan Natrium sitrat.

Alat yang digunakan untuk mengolah kolang-kaling dan ekstrak kayu secang adalah saringan, panci, baskom, kompor timbangan digital, sendok pengaduk, blender (Philip), ayakan 80 mesh dan gelas ukur. Alat yang digunakan untuk analisis sifat fisik dan kimia adalah lumpang, oven, timbangan (Shimadzu mikropipet analitik ATY224), (Socorex), erlenmeyer, gelas beker, reaksi, labu ukur, gelas ukur, kertas saring, spektrofotometri UV -Vis (Genesys 10s Uv-Vis).

Rancangan Percobaan

Penelitian ini dilakukan dengan menggunakan Rancangan Acak Lengkap (RAL), dengan perlakuan perendaman kolangkaling dalam ekstrak kayu secang yang terdiri dari enam taraf, yaitu : P0 (0%), P1 (2%), P2 (4%), P3 (6%), P4 (8%), P5 (10%). Masingmasing perlakuan diulang sebanyak tiga kali sehingga diperoleh 18 unit percobaan. Data vang diperoleh dari hasil penelitian dianalisis dengan sidik ragam (ANOVA) dan apabila perlakuan berpengaruh terhadap variabel maka dilanjutkan dengan uji Duncan (Steel dan Torrie, 1993).

Pelaksanaan Penelitian

Pelaksanaan penelitian untuk pembuatan kolang-kaling terdiri dari dua tahap yaitu: Tahap I Pembuatan Ekstrak Kayu Secang

Ekstraksi kayu secang pada penelitian ini dilakukan dengan metode infundasi, yaitu ekstraksi dengan cara perebusan menggunakan pelarut air pada suhu 90°C selama 14 menit. Proses pembuatan ekstrak kayu secang meliputi sortasi, pencucian dan penyerutan, pembuatan bubuk kayu secang, dan perebusan. Bahan yang telah dikumpulkan disortasi dengan memilah bahan uji dan dipisahkan dengan kotorankotoran atau bahan asing. Batang secang dicuci dengan air mengalir hingga bersih, kemudian ditiriskan. Batang secang yang telah bersih dan bebas dari sisa air cucian tersebut diserut dengan mesin serut kayu (planer) sehingga diperoleh hasil dengan ketebalan 3-5 mm. Kayu secang yang telah diserut kemudian dikecilkan ukurannya dengan blender. Bubuk kayu secang yang telah diayak dengan ayakan 80 mesh kemudian ditimbang dan dilakukan ekstraksi dengan konsentrasi sesuai taraf perlakuan menggunakan metode infundasi/perebusan selama 14 menit pada suhu 90°C sesuai perlakuan.

Proses ekstraksi dihentikan dan dibiarkan sampai suhu kamar (25°C). Hasil ekstraksi disaring dan filtrat dimasukkan dalam botol kaca warna gelap dan ditutup rapat serta disimpan pada suhu 4°C.

Tahap II Proses Pewarnaan Kolang-kaling

Proses pewarnaan kolang kaling diawali dengan proses sortasi. Kolang kaling yang digunakan yaitu berbentuk pipih dan lebar serta memiliki warna putih transparan dan tekstur cukup kenyal. Setelah itu dilakukan proses pencucian dengan tujuan untuk menghilangkan lendir pada kolang-kaling, karena pada umumnya kolang-kaling yang dijual di pasaran dalam keadan terendam air sehingga kolangkaling berlendir. Setelah dilakukan pencucian, selanjutnya dilakukan proses menghilangkan bau asam atau aroma tidak sedap pada kolangkaling dengan cara merendam kolang-kaling pada air cucian beras selama 48 jam, penggunaan air cucian beras dikarenakan air beras menggandung Nitrogen yang dapat menyeimbangkan asam basa (Hidayatullah, 2012).. Setelah itu dibilas menggunakan air bersih.

Proses selanjutnya yaitu perebusan, tujuan perebusan adalah untuk melunakan tekstur dari kolang-kaling, dengan cara merebusnya dalam air dengan suhu 80°C selama 20 menit. Setelah perebusan dilakukan perendaman kolang kaling dalam ekstrak kayu secang dengan perbandingan 3:4 agar kolang kaling terendam sempurna, untuk menghasilkan warna merah secara alami.

Parameter yang Diamati

Parameter yang diamati dalam penelitian ini meliputi sifat sensoris (Soekarto, 1985) meliputi warna, aroma, rasa, tekstur dan penerimaan keseluruhan, uji intensitas warna menggunakan metode CIELAB (Hutching, 1999 dan CIELAB 1976), aktivitas antioksidan menggunakan metode DPPH (1,1-diphenyl-2-

picryhydrazyl) (Sompong *et al.*, 2011), pengukuran nilai IC₅₀ (Pourmorad *et al.*, 2006), dan total antosianin menggunakan metode pH diferensial (Giusti dan Worlstad, 2001).

Nilai rata-rata uji hedonik terhadap warna, aroma, rasa, penerimaan keseluruhan kolang-kaling dapat dilihat pada Tabel 1.

Tabel 1. Nilai rata – rata Uji Hedonik Warna, Aroma, Rasa, dan Penerimaan Keseluruhan kolang-kaling.

Konsentrasi	Warna	Rasa	Aroma	Penerimaan Keseluruhan
P0 (0%)	4,27b	4,93a	5a	4,93a
P1 (2%)	5,13ab	4,87a	5,4a	5,27a
P2 (4%)	5,20a	4,53a	5,23a	5,20a
P3 (6%)	5,8a	4,67a	5,4a	5,33a
P4 (8%)	5,6a	4,87a	5,5a	5,27a
P5 (10%)	5,87a	4,53a	5,5a	5,13a

Keterangan :-Nilai rata — rata yang diikuti oleh huruf yang berbeda pada kolom yang sama menunjukkan berbeda nyata pada Uji Duncan (α =0,05).

-Kriteria hedonik : 1 (sangat tidak suka); 2 (tidak suka); 3 (agak tidak suka); 4 (biasa); 5 (agak suka); 6 (suka); 7 (sangat suka).

Warna

Hasil sidik ragam menunjukkan bahwa konsentrasi ekstrak berpengaruh nyata (P<0,05) terhadap uji hedonik warna kolang-kaling. Tabel 1 menunjukkan bahwa nilai rata-rata uji hedonik warna kolang-kaling berkisar antara 4,27 (biasa) sampai dengan 5,87 (suka). Nilai rata-rata tertinggi pada parameter warna diperoleh pada perlakuan penambahan ekstrak kayu secang sejumlah 10% (P5) yaitu 5,87 (suka), dari hasil intensitas warna pada kolang-kaling dengan perlakuan penambahan ekstrak kayu secang sejumlah 10% (P5) memiliki nilai L = 21,2067, a* = 22,2422, dan b* = 33,7967, hal ini menunjukan bahwa kolang-kaling yang lebih disukai panelis adalah yang berwarna

HASIL DAN PEMBAHASAN

paling merah dan kecerahan paling rendah, adapun warna merah pada kolang-kaling disebabkan adanya zat antosianin. Kayu secang menghasilkan pigmen berwarna merah dan pigmen merah ini disebut antosianin (Karlina *et al.*, 2016). Menurut Winarno (1997), secara visual faktor warna tampil lebih dahulu dan sangat menentukan sebelum faktor lain dipertimbangkan.

Rasa

Hasil sidik ragam menunjukkan bahwa konsentrasi ekstrak kayu secang berpengaruh tidak nyata (P>0,05) terhadap uji hedonik rasa minuman kolang-kaling. Tabel 1 menunjukkan bahwa nilai rata-rata uji hedonik rasa kolang-kaling berkisar antara 4,53 sampai 4,93 (agak suka), hal ini menandakan panelis cukup menyukai rasa kolang-kaling karena hasil keseluruhan mendekati kriteria suka. Terjadi penurunan pada hasil rata-rata nilai kesukaan panelis terhadap rasa kolang-kaling namun tidak berbeda signifikan. Perubahan rasa oleh penambahan ekstrak kayu secang akibat adanya kandungan tanin pada kayu secang (Widowati ., 2013).

Aroma

Hasil sidik ragam menunjukkan bahwa konsentrasi ekstrak kayu secang berpengaruh tidak nyata (P>0,05) terhadap uji hedonik aroma kolang-kaling. Tabel 1 menunjukkan bahwa nilai rata-rata uji hedonik aroma kolang-kaling berkisar antara 5 (agak suka) sampai 5,55 (suka), hal ini menandakan panelis agak menyukai aroma kolang-kaling karena hasil tertinggi menunjukkan kriteria suka. Kandungan kimia kayu secang meliputi asam galat, tanin, resin, resorsin,brasilin, brasilein, d-

alfa-phellandreme, oscimene, minyak astiri, kandungan minyak astiri pada kayu secang memberikan aroma yang khas (Hariana., 2006).

Penerimaan Keseluruhan

Hasil sidik ragam menunjukkan bahwa konsentrasi ekstrak kayu secang berpengaruh tidak nyata (P>0,05) terhadap uji hedonik penerimaan keseluruhan kolang-kaling. Tabel 1 menunjukkan bahwa nilai rata-rata uji hedonik terhadap penerimaan keseluruhan kolang-kaling berkisar antara 4,93 sampai dengan 5,33 (agak suka). Nilai rata-rata kesukaan keseluruhan tersebut menunjukkan kolang-kaling dapat diterima dengan cukup baik oleh panelis. Penerimaan keseluruhan kolang-kaling dipengaruhi oleh beberapa faktor seperti warna, aroma, dan rasa.

Intensitas Warna

Nilai rata-rata intensitas warna L, a*, b* pada kolang-kaling dapat dilihat pada Tabel 2.

Tabel 2. Nilai rata-rata intensitas warna L, a*, b* dari kolang-kaling dengan penambahan ektrak kayu secang.

Warna					
Perlakuan	L	a*	b*		
P0 (0%)	28,9944	13,6511	17,5711		
P1 (2%)	25,8067	19,0200	25,8511		
P2 (4%)	24,5722	20,2289	27,9533		
P3 (6%)	23,3500	20,7956	29,8633		
P4 (8%)	23,7827	21,6878	31,8556		
P5 (10%)	21,2067	22,2422	33,7967		

Nilai L* Kolang-kaling

Rerata intensitas nilai L* yang dihasilkan kolang-kaling antara 21,2067 – 28,9944. Perlakuan penambahan ekstrak kayu secang

dengan konsentrasi 0% (P0) menunjukan hasil dengan tingkat kecerahan paling tinggi, dan pada uji hedonik warna menunjukan perlakuan yang lebih disukai oleh panelis adalah penambahan ekstrak kayu secang dengan konsentrasi 10% (P5) yaitu 21,2067, hal ini menunjukan bahwa panelis lebih suka terhadap kolang-kaling dengan nilai kecerahan yang lebih rendah. Hasil analisis ragam menunjukan bahwa konsentrasi ekstrak kayu secang berpengaruh sangat nyata (P<0.01) terhadap nilai L*. Tabel 1 menunjukan adanya korelasi negatif antara jumlah konsentrasi perlakuan terhadap nilai L*, semakin besar konsentrasi perlakuan maka semakin kecil nilai L* yang didapatkan. Kecerahan merupakan spektrum warna dasar, penambahan warna lain pada suatu obyek akan menurunkan nilai kecerahan (Satriyanto et al., 2012).

Nilai a* Kolang-kaling

Hasil pengamatan intensitas nilai a* dari kolang-kaling berkisar antara 13,6511 22,2422. Perlakuan penambahan ekstrak kayu secang dengan konsentrasi 10% (P5) menunjukan angka intensitas warna merah yang paling tinggi, dan pada uji hedonik warna menunjukan perlakuan yang lebih disukai oleh panelis adalah penambahan ekstrak kayu secang dengan konsentrasi 10% (P5) yaitu 22,2422, hal ini menunjukan bahwa panelis lebih suka terhadap kolang-kaling dengan warna yang lebih merah. Hasil analisis sidik ragam, menunjukan bahwa konsentrasi ekstrak kayu secang memberikan pengaruh sangat nyata terhadap intensitas nilai a* kolang-kaling (P<0.01). Tabel 1 menunjukan adanya korelasi positif antara jumlah konsentrasi perlakuan terhadap nilai a*, semakin besar konsentrasi perlakuan maka semakin besar angka a* yang didapatkan. Peningatan nilai a* dikarenakan senyawa antosianin yang terdapat pada ekstrak kayu secang jumlahnya semakin banyak sejalan dengan penambahan jumlah kayu secang pada kolang-kaling sesuai dengan perlakuan. Kayu secang menghasilkan pigmen berwarna merah dan pigmen merah ini disebut antosianin (Karlina *et al.*, 2016)

Nilai b* Kolang-kaling

Hasil pengamatan intensitas nilai b* dari kolang-kaling berkisar antara 17,5711 33,7967. Perlakuan penambahan ekstrak kayu dengan konsentrasi 10% menunjukan angka intensitas warna kuning yang paling tinggi, dan pada uji hedonik warna menunjukan perlakuan yang lebih disukai oleh panelis adalah penambahan ekstrak kayu secang dengan konsentrasi 10% (P5) yaitu 33,7967, hal ini menunjukan bahwa panelis lebih suka terhadap kolang-kaling dengan warna yang lebih kuning. Hasil analisis sidik ragam, menunjukan bahwa konsentrasi ekstrak kayu secang memberikan pengaruh sangat nyata terhadap intensitas nilai b* kolang-kaling (P<0.01). Tabel 1 menunjukan adanya korelasi positif antara jumlah konsentrasi perlakuan terhadap nilai b*, semakin besar konsentrasi perlakuan maka semakin besar nilai b* yang didapatkan. Menurut Kasmudjiastuti (2014) warna kuning kecoklatan hingga coklat kemerahan karena adanya flavonoid tannin pada kayu secang.

Warna merupakan salah satu faktor fisik yang mempengaruhi tingkat kesukaan panelis. Nilai rata-rata L paling tinggi pada P0 (kontrol), dan nilai a* dan b* tertinggi pada P5 (10%), hal ini menunjukan semakin tinggi konsentrasi perlakuan maka akan menghasilkan warna yang semakin merah dan tingkat kecerahan yang semakin rendah.

Hasil Analisis Antosianin dan Aktivitas Antioksidan kolang-kaling

Nilai rata-rata antosianin dan aktivitas antioksidan dari kolang-kaling dengan

penambahan ektrak kayu secang dapat dilihat pada Tabel 3.

Tabel 3. Nilai rata-rata aktivitas antioksidan dan antosianin dari kolang-kaling dengan penambahan ektrak kayu secang.

Perlakuan	Antosianin (mg/100g)	IC 50 (mg/ml)
P0 (0%)	$0,04 \pm 0,0005 f$	524,59± 11,97e
P1 (2%)	$0,12 \pm 0,0004$ e	$287,96 \pm 3,66d$
P2 (4%)	0.16 ± 0.003 d	$263,1\pm 9,8d$
P3 (6%)	$0,26 \pm 0,026$ c	$225,76 \pm 8,82c$
P4 (8%)	$0,30 \pm 0,023$ b	$212,46 \pm 6,64b$
P5 (10%)	$0,40 \pm 0,03$ a	194,41± 3,66a

Keterangan : -Nilai rata- rata yang diikuti oleh huruf yang berbeda pada kolom yang sama menunjukkan perbedaan yang nyata pada Uji Duncan (P<0,05).

Antosianin

Hasil sidik ragam menunjukkan bahwa konsentrasi ekstrak kayu secang berpengaruh sangat nyata (P<0,01) terhadap antosianin kolang-kaling dengan penambahan ekstrak kayu secang. Nilai rata-rata antosianin tertinggi terdapat pada konsentrasi 10% (P5) yaitu sebesar 0,4 mg/100g, sedangkan nilai rata-rata terendah terdapat pada konsentrasi 0% (P0) yaitu sebesar 0,04 mg/100g. Hasil tersebut menunjukan semakin tinggi konsentrasi ekstrak yang ditambahkan pada kolang-kaling memiliki jumlah kadar antosianin yang lebih tinggi pula. Meningkatnya kadar antosianin pada kolang kaling yang ditambahkan ekstrak kayu secang dikarenakan ekstrak kayu secang mengandung senyawa antosianin sebesar 2,43% mg/100g (Nomer et al., 2018), sehingga senyawa

⁻Nilai rata-rata diikuti dengan ± standar deviasi (n=3)

antosianin yang terdapat pada kolang-kaling jumlahnya semakin tinggi sejalan dengan penambahan konsentrasi ekstrak kayu secang yang semakin tinggi pula.

Aktivitas Antioksidan

Hasil sidik ragam menunjukkan bahwa konsentrasi ekstrak kayu secang berpengaruh sangat nyata (P<0,01) terhadap aktivitas antioksidan kolang-kaling dengan penambahan ekstrak kayu secang. Nilai rata-rata aktivitas antioksidan berdasarkan nilai IC₅₀ tertinggi terdapat pada konsentrasi 2% (P0) yaitu sebesar 524,59 mg/ml, sedangkan nilai rata-rata terendah terdapat pada konsentrasi 10% (P5) yaitu sebesar 194,41 mg/ml.

Nilai IC₅₀ yang tinggi menunjukkan kemampuan antioksidan rendah. yang sebaliknya nilai IC₅₀ yang rendah menunjukkan kemampuan antioksidan yang tinggi. Hasil pada Tabel 3 menunjukan bahwa semakin tinggi ekstrak konsentrasi kayu secang vang ditambahkan kolang-kaling, pada mengakibatkan aktivitas antioksidan pada kolang-kaling meningkat. Hal ini dikarenakan senyawa antioksidan yang terdapat pada ekstrak kayu secang jumlahnya semakin tinggi sejalan dengan penambahan jumlah kayu secang yang semakin tinggi pula. Hasil tersebut sesuai dengan penelitian yang dilakukan oleh Palupi et al., (2014)yang menyatakan bahwa penambahan filtrat kayu secang sebesar 10% menunjukkan aktivitas antioksidan lebih tinggi jika dibandingkan dengan konsentrasi 5% dan 7%. Meningkatnya aktivitas antioksidan pada kolang kaling yang ditambahkan ekstrak kayu secang dikarenakan ekstrak kayu secang mengandung antioksidan. Setiawan et al., (2018) melaporkan bahwa ekstrak kayu secang memiliki aktivitas antioksidan dengan nilai $IC_{50}=101,8$ ppm.

KESIMPULAN DAN SARAN

Simpulan

Berdasarkan hasil penelitian ini dapat disimpulkan sebagai berikut :

- 1. Konsentrasi ekstrak berpengaruh sangat nyata terhadap aktivitas antioksidan, antosianin, dan intensitas warna, berpengaruh nyata terhadap warna (uji hedonik) dan berpengaruh tidak nyata terhadap aroma, rasa dan penerimaan keseluruhan (uji hedonik).
- 2. Penambahan ekstrak kayu secang sebagai pewarna dengan konsentrasi 10% merupakan perlakuan terbaik vang menghasilkan kolang-kaling dengan sifat sensoris hedonik warna (suka), rasa (agak suka), aroma (suka), dan penerimaan keseluruhan (agak suka). aktivitas antioksidan tertinggi (berdasarkan nilai IC₅₀) sebesar 169,65 mg/ml, dan antosianin 0,40 mg/100g.

Saran

Berdasarkan hasil penelitian ini disarankan untuk :

- Menggunakan konsentrasi 10% ekstrak kayu secang dalam proses pengolahan kolangkaling.
- 2. Perlu dilakukan penelitian lebih lanjut terkait dengan stabilitas warna kolang-kaling dengan penambahan ekstrak kayu secang sebesar 10%.

DAFTAR PUSTAKA

Anonim. 2008. Bahan Tambahan Terlarang dan Berbahaya. http://dinkes.denpasar kota.go.id. Diakses tanggal 8 Maret 2018.

Anonimous. 1985. Peraturan Menteri Kesehatan RI No. 239/Menkes/Per/V/ 85 tentang Zat warna

- tertentu yang dinyatakan sebagai bahan berbahaya. Departemen Kesehatan Republik Indonesia, Jakarta.
- Anonimous. 2006. BPOM Temukan Makanan Dicampuri Rhodamin B. http://www.riau.go.id. Diakses tanggal 8 Maret 2018.
- Dianasari N. 2009. Uji Efektivitas Antibakteri Ekstrak Etanol Kayu Secang (*Caesalpinia sappan* L.,) terhadap Staphylococcus aureus dan Shigella dysentriae serta Bioautografinya. Skripsi. Tidak dipublikasikan. Fakultas Farmasi. Universitas Muhammadiayah Surakarta, Surakarta.
- Erawati. 2012. Uji Aktivitas Antioksidan Ekstrak Daun Garciniadaedalanthera Pierre dengan Metode DPPH (1,1-Difenil Pikrilhidrazil) dan Identifikasi Golongan Senyawa Kimia dari Fraksi Paling Aktif. Skripsi. Tidak dipublikasikan. Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Idonesia, Depok.
- Giusti, M.M. dan R.E. Wrolstad. (1996). Characterization of red radish anthocyanins. J. Food. Sci, Oregon. 61: 322-326.
- Hariana, A. 2006. Tumbuhan Obat dan Khasiatnya. Penebar Swadaya, Jakarta.
- Hidayatullah Rahmat. 2012. Pemanfaatan Limbah Air Cucian Beras Sebagai Substrat Pembuatan Nata De Leri Dengan Penambahan Kadar Gula Pasir Dan Starter Berbeda. Skripsi Universitas Islam Negeri Sunan Kalijaga, Yogyakarta.
- Holinesti R.. 2009. Studi pemanfaatan pigmen brazelein kayu secang (*Caesalpinia sappan* L.) sebagai pewarna alami serta stabilitasnya

- pada model pangan. Jurnal Pendidikan Keluarga UNP, ISSN 2085-4285, Volume I, Nomor 2, 11-21.
- Husnah, S. 2010. Pembuatan Tepung Ubi Jalar Ungu (Ipomoea batatas varietas Ayamurasaki) dan Aplikasinya dalam Pembuatan Roti Tawar. Skripsi. Tidak dipublikasikan. Fakultas Teknologi Pertanian. Institut Pertanian Bogor, Bogor
- Hutching, J.B. 1999. Food Color and Apereance. Aspen pulisher Inc., Maryland.
- Indriani, H. 2003. Stabilitas Pigmen Alami Kayu Secang (*Caesalpinia sappan* Linn) dalam Model Minuman Ringan. Institut Pertanian, Bogor.
- Ingrath, W., W.A. Nugroho, dan R. Yulianingsih. 2015. Ekstraksi pigmen antosianin dari kulit buah naga merah (*Hylocereus costaricensis*) sebagai pewarna alami makanan dengan menggunakan microwave (kajian waktu pemanasan dengan microwave dan penambahan rasio pelarut aquades dan asam sitrat). Jurnal Bioproses Komoditas Tropis 3(3): 1-8
- Johnson, D.H. 1980. The comparison of usage and availability measurements for evaluating resource preference. J. Food. Sci, Oregon. 61 (1): 65-71.
- Julianto. 2014. Khasiat tersembunyi kolang-kaling. Sinar Tani. Jakarta.
- Jun, H. et al., 2008, Antioxidant Activity in Vitro of Three Constituents from *Caesalpinia sappan*L. J. Food. Tsinghua Science and Technology, 13 (4), pp.474-79.
- Kasmudjiastuti, E. (2014). Karakterisasi Kulit Kayu Tingi (Cereops tagal) sebagai Bahan

- Penyamak Nabati. Majalah Kulit, Karet dan Plastik. 30(2), 71–78.
- Koswara, S. 2009. Teknologi Pembuatan Permen. eBookPangan.com. Diakses tanggal 6 Maret 2018.
- Muchtadi, D. 1989. Fisiologi Pasca Panen Sayuran dan Buah-buahan. PAU Pangan dan Gizi Institut Pertanian Bogor, Bogor.
- Pourmorad F, Hosseinimehr SJ, Shahabimajd N. 2006. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr J Biotechnol 5: 1142-1145.
- Prastiwi B. 2008. Pengaruh PH dan Lama Pemanasan terhadap Perubahan Warna dan Intensitas Warna pada Kayu Secang (*Caesalpinia sappan* L.). Skripsi. Tidak dipublikasikan. Universitas Muhammadiyah. Malang.
- Samber, L.N., H. Semangun., dan B, Prasetyo. 2017. Karakteristik Antosianin sebagai Pewarna Alami. Skripsi. Tidak dipublikasikan. FKIP Universitas Sebelas Maret, Surakarta.
- Santoso W.E.A. dan T, Estiasih. 2014. Kopigmentasi ubi jalar ungu (*Ipomoea batatas var. Ayamurasaki*) dengan kopigmen na- kaseinat dan protein whey serta stabilitasnya terhadap pemanasan. Jurnal Pangan dan Agroindustri Vol. 2, No. 4 p.121-127.
- Sanusi, M. 1989. Isolasi dan Identifikasi Zat Warna Kayu Sappan. Balai Industri, Ujung Pandang.
- Satriyanto B. 2009. Pemanfaatan Ekstrak Buah Merah Red Papua Fruit (Pandanus conoideus

- lam) Sebagai Pewarna Alami Sosis Tenggiri (Scomberomorus commerson). Makalah Karya Ilmiah. Skripsi. Tidak dipublikasikan. Pusat Pendidikan Kelautan dan Perikanan Kementerian Kelautan dan Perikanan. Sorong
- Setiawan, F. 2018. Uji Aktivitas Antioksidan Ekstrak Etanol Kayu Secang (*Caesalpinia sappan L.*) Menggunakan Metode DPPH, ABTS, dan FRAP. Surabaya. Jurnal. Universitas Surabaya.
- Soekarto, S. 1985. Penilaian Organoleptik : Untuk Industri Pangan dan Hasil Pertanian. Bhratara Karya Aksara, Jakarta.
- Sompong, R., S. Siebenhandl-Ehn, G. Linsberger-Martin, dan E. Berghofer. 2011. Physicochemical and Antioxidative Properties of Red and Black Rice Varieties from Thailand, China and Sri Lanka. J. Food Chemistry. 124(1): 132-140.
- Sundari, D., L. Widowati, dan M.W, Winarno. 1998. Informasi khasiat, keamanan dan fitokimia tanaman secang (*Caesalpinia* sappan L.). Warta Tumbuhan Obat Indonesia. Jurnal Kesehatan. 4(3): 1–3.
- Tahir, I., K. Wijaya, dan D. Widyaningasih. 2003.

 Terapan analisis hansch untuk aktivitas antioksidan senyawa turunan flavon/flavonol.

 Jurnal Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Gadjah Mada. Yogyakarta.
- Trijotosoepomo, G. 1994. Taksinomi Tumbuhan Obat-obatan. Edisi I. Gadjah Mada University Press, Yogyakarta.
- Widowati, W. 2011. Uji fitokimia dan potensi antioksidan ekstrak etanol kayu secang (*Caesalpinia sappan* L.). Jurnal Kedokteran Maranatha, 11 (1): 23 31.

Winarno, F.G., 1992. Kimia Pangan dan Gizi. PT.Gramedia Utama, Jakarta.

Winarti, C. dan N. Nurdjanah. 2005. Peluang tanaman rempah dan obat sebagai sumber

pangan fungsional. Jurnal Litbang Pertanian. 24(2), 47-55.

Yuliarti, N. 2007. Awas Bahaya Di Balik Lezatnya Makanan. Andi. Yogyakarta.