

CLAIMS

1. In a cooling system having a refrigerant evaporator, a heat
2 exchanger comprising:

4 a suction line for refrigerant output from said evaporator, said suction line
6 including first and second substantially parallel straight cylindrical
8 portions connected in series whereby said second straight
10 cylindrical portion receives gaseous refrigerant from said first
12 straight cylindrical portion; and

14 a capillary tube adapted to carry cooled refrigerant to said evaporator,
16 said capillary tube including first and second helically wound
18 portions connected in series whereby said second helically wound
20 portion receives cooled refrigerant from said first helically wound
22 portion, said first helically wound portion being wrapped around
24 said suction line second straight cylindrical portion and said
26 second helically wound portion being wrapped around said suction
28 line first straight cylindrical portion.

2. The heat exchanger of claim 1, further comprising a bypass
2 safety valve between an inlet to said first helically wound portion of said capillary
4 tube and an outlet from said second helically wound portion of said capillary
6 tube, said bypass safety valve opening responsive to a selected pressure
8 differential between said inlet to said first helically wound portion of said capillary
10 tube and said outlet from said second helically wound portion of said capillary
12 tube.

2 3. The heat exchanger of claim 1, wherein said suction line
includes a U-shaped portion connecting said first and second cylindrical portions
of said suction line.

2 4. The heat exchanger of claim 1, further comprising an
accumulator between said first and second cylindrical portions of said suction
line.

2 5. The heat exchanger of claim 1, wherein said refrigerant
comprises CO₂ and said capillary tube is an expansion device for said cooled
CO₂ refrigerant.

2 6. The heat exchanger of claim 1, wherein said cooling system
is transcritical.

2 7. In a cooling system having a refrigerant evaporator, a heat
exchanger comprising:

4 a suction line for refrigerant output from said evaporator, said suction line
including
6 a straight portion substantially cylindrical about an axis, and
an accumulator between said evaporator and said suction line
8 straight portion, said accumulator including
a phase separation chamber having an input for refrigerant
from said evaporator and an outlet for gaseous
10 refrigerant from which oil and liquid droplets have
been separated in said phase separation chamber,

-15-

12 a accumulator including a discharge opening for
 discharging oil to return said oil to said system,
14 a vertical pipe between said phase separation chamber and
 said accumulator; and
16 a capillary tube adapted to carry cooled refrigerant to said evaporator,
 said capillary tube including a portion helically wound around a
18 central axis generally coinciding with said suction line straight
 portion axis.

2 8. The heat exchanger of claim 7, further comprising a second
 vertical pipe between said phase separation chamber and said accumulator,
 said second vertical pipe adapted to hold a selected volume of refrigerant
4 charge.

2 9. The heat exchanger of claim 7, wherein said cooling system
 is transcritical.

2 10. The heat exchanger of claim 7, wherein said refrigerant
 comprises carbon dioxide.