CMSC 277: Homework #5

Jesse Farmer

10 November 2005

1. Let $\mathfrak{L} = \{R\}$ where R is a binary relation symbol and let \mathfrak{M} be a finite \mathfrak{L} -structure. Show that there exists a $\sigma \in \operatorname{Sent}_{\mathfrak{L}}$ such that for all \mathfrak{L} -structures \mathfrak{N} we have

$$\mathfrak{N} \vDash \sigma \text{ if and only if } \mathfrak{M} \cong \mathfrak{N}$$

If $\mathfrak{N} \cong \mathfrak{M}$ then $\mathfrak{N} \equiv \mathfrak{M}$, so simply choose $\sigma \in \mathrm{Th}(\mathfrak{M})$.

To see the converse, let

$$\tau_i = \bigwedge_{\substack{k=1\\k\neq i}}^n (v_i \neq v_k)$$

and define

$$\sigma_n = (\exists v_1 \cdots \exists v_n ((\tau_1) \land (\tau_2) \land \cdots \land (\tau_n))) \land (\forall v) ((v = v_1) \lor (v = v_2) \lor \cdots \lor (v = v_n))$$

Then are precisely n elements in any \mathfrak{L} -structure which models σ_n . Define

$$\upsilon = \bigwedge_{(a_i, a_j) \in R^{\mathfrak{M}}} Rv_i v_j$$

Then let $\sigma = \sigma_n \wedge v$. If $\mathfrak{N} \models \sigma$ and s is some variable assignment, then the map $M \to N$ given by $a_i \mapsto s(v_i)$ is an isomorphism between \mathfrak{M} and \mathbb{N} .

- 2. Let $\mathfrak{L} = \{f\}$ where f is a binary function symbol. Let $\mathfrak{M} = \{0,1\}^*$ and $f^{\mathfrak{M}} : \mathfrak{M}^2 \to \mathfrak{M}^2$ be the concatenation operation.
 - (a) Show that $\{\lambda\} \subset M$ is definable in \mathfrak{M} .

Define

$$\varphi(x) = \forall y (fxy = y)$$

This expresses the statement that $\tau \sigma = \sigma$ if and only if $\tau = \lambda$.

(b) Show that for each $n \in \mathbb{N}$ the set $\{\sigma \in \mathfrak{M} \mid |\sigma| = n\}$ is definable.

Let $X_n = \{ \sigma \in \mathfrak{M} \mid |\sigma| = n \}$. By the previous part we have that X_0 is definable. We proceed by strong induction. Assume that each X_k for k < n is definable. Let $\varphi_k(x) \in \operatorname{Sent}_{\mathfrak{L}}$ be the sentence which defines X_k . Then define

$$\varphi_n(x) = \exists y \exists z (\varphi_1(y) \land \varphi_{n-1}(z) \land (fyz = x))$$

Then $X_n = \{x \in M \mid \mathfrak{M} \models \varphi_n(x)\}$, since every element of X_n can be written uniquely as the concatenation of a sequence of length 1 and a sequence of length n-1.

(c) Find all automorphisms of \mathfrak{M} .

First note that $(M, f^{\mathfrak{M}})$ is isomorphic to the free monoid on two generators. Hence any automorphism of \mathfrak{M} is specified completely by its action on the two generators. Likewise, any permutation $\sigma \in S_2$ induces an automorphism given by

$$h_{\sigma}(\tau) = \sigma(\tau(1)) * \cdots * \sigma(\tau(|\tau|))$$

Hence $\operatorname{Aut}(\mathfrak{M}) = \{h_{\sigma} \mid \sigma \in S_2\}.$

(d) Show that $\{\sigma \in M \mid \sigma \text{ contains no 1s}\}\$ is not definable in \mathfrak{M} .

Let $X = \{ \sigma \in \mathfrak{M} \mid \sigma \text{ contains no 1s} \}.$

Recall that any definable set X in \mathfrak{M} is closed under the natural action of elements of $\operatorname{Aut}(\mathfrak{M})$. Hence it suffices to construct an automorphism under which X is not closed.

Since there are only two automorphisms of \mathfrak{M} the choice is pretty obvious: let $\sigma = (12)$, using cycle notation. Then $h_{\sigma}(X) = \{ \sigma \in M \mid \sigma \text{ contains no 0s} \} \not\subset X$.

- 3. Let $\mathfrak{L} = \{f\}$ where f is a binary function symbol. Let \mathfrak{M} be the \mathfrak{L} -structure (\mathbb{N},\cdot) .
 - (a) Show that $\{0\}$ is definable in \mathfrak{M} .

Define

$$\varphi(x) = \forall y (fxy = x)$$

Since this defines a left zero in \mathbb{N} , and \mathbb{N} has a unique zero, it follows that the set defined by $\varphi(x)$ is precisely $\{0\}$.

(b) Show that $\{1\}$ is definable in \mathfrak{M} .

Define

$$\varphi(x) = \forall y (fxy = y)$$

Since identities are unique in a monoid, it follows that the set defined by $\varphi(x)$ is precisely $\{1\}$.

(c) Show that $\{p \in \mathbb{N} \mid p \text{ is prime}\}\$ is definable in \mathfrak{M} .

Let $\varphi(x)$ be as in the previous part. Define

$$\psi(x) = ((\exists m \exists n) f m n = x) \to (\varphi(m) \lor \varphi(n))$$

(d) Find all automorphisms of \mathfrak{M} .

Since (\mathbb{N}, \cdot) is a free commutative monoid with countably many generators (i.e., the primes), it follows that any automorphism of this monoid (and hence, by our construction, any automorphism of \mathfrak{M}) is completely determined by its action on the generators. Likewise, any permutation of the generators σ induces an automorphism h_{σ} by

$$h_{\sigma}(n) = \sigma(p_1)^{a_1} \cdot \dots \cdot \sigma(p_k)^{a_k}$$

where $n = p_1^{a_1} \cdots p_k^{a_k}$ by the fundamental theorem of arithmetic.

Therefore $\operatorname{Aut}(\mathfrak{M}) = \{h_{\sigma} \mid \sigma \in S_P\}$, where P is the set of all primes in \mathbb{N} and S_P denotes the permutation group of the set P.

(e) Show that $\{n\}$ is not definable in \mathfrak{M} for $n \geq 2$.

Recall that if a set $X \subset M^k$ is definable then it is closed under the natural action of any automorphism. Hence to prove that such an X is not definable it suffices to find an automorphism under which X is not closed.

But this is not hard. Fix $n \in \mathbb{N}$ and choose a $\sigma_n \in S_P$, where P is the set of all primes in \mathbb{N} , which swaps every prime appearing in the prime decomposition of n with a prime not appearing in the decomposition. Then certainly $h_{\sigma}(n) \neq n$, since n has a unique prime decomposition up to powers and commutativity.

- (f) Show that $\{(k, m, n) \in \mathbb{N}^3 \mid k + m = n\}$ is not definable in \mathfrak{M} . Let $X = \{(k, m, n) \in \mathbb{N}^3 \mid k + m = n\}$ and pick some element, say, y = (2, 4, 6). Let $\sigma \in S_P$ be, in cycle notation, $\sigma = (235)$. Then $h_{\sigma}(2) = 3$, $h_{\sigma}(4) = 9$ and $h_{\sigma}(6) = 15$. Hence h_{σ} sends y outside X, and so X is not definable.
- 4. (a) Give an example of a language \mathfrak{L} together with a $\varphi \in \text{Form}_{\mathfrak{L}}$ and $x, y \in \text{Var such that } (\varphi_x^y)_y^x \neq \varphi$. Let $L = \{R\}$ where R is a binary relation. Define

$$\varphi = \forall y \forall x = RxyRyx$$

Then

$$(\varphi_x^y)_y^x = (\forall y \forall y = RyyRyy)_y^x = (\forall x \forall x = RxxRxx) \neq \varphi$$

(b) Suppose \mathfrak{L} is a language and $x, y \in \text{Var.}$ Show that for every $\varphi \in \text{Form}_{\mathfrak{L}}$ with $y \notin \text{OccurVar}(\varphi)$ we have $(\varphi_x^y)_y^x = \varphi$.

Denote by φ' , $(\varphi_x^y)_y^x$ and let $X = \{\varphi \in \operatorname{Form}_{\mathfrak{L}} \mid y \notin \operatorname{OccurVar}(\varphi) \Rightarrow \varphi' = \varphi\}$. We proceed by induction (thrice!) to show that $X = \operatorname{Form}_{\mathfrak{L}}$.

First note that if $y \in \text{OccurVar}(\varphi)$ then $\varphi \in X$ vacuously, so it suffices to consider only those $\varphi \in \text{Form}_{\mathfrak{L}}$ with $y \notin \text{OccurVar}(\varphi)$.

For the base case we will show that AtomicForm_{\mathcal{L}} $\subset X$. We proceed by induction here, too. To show that Term_{\mathcal{L}} $\subset X$, let $\varphi \in \mathcal{C} \cup \text{Var}$. Since $y \notin \text{OccurVar}(\varphi)$, from the definition of substitution it follows that $\varphi' = \varphi$. Now let $\varphi_1, \ldots, \varphi_k \in X \cap \text{Term}_{\mathcal{L}}$ with $y \notin \text{OccurVar}(\varphi_i)$ for all i. Then from the definition of substitution it follows that

$$h_f(\varphi_1, \dots, \varphi_k)' = f\varphi_1'\varphi_2' \cdots \varphi_k' = f\varphi_1 \cdots \varphi_k = h_f(\varphi_1, \dots, \varphi_k)$$

Hence $\operatorname{Term}_{\mathfrak{L}} \subset X$. Now, assuming we have $\varphi_1, \ldots, \varphi_k \in \operatorname{Term}_{\mathfrak{L}}$ with $y \notin \operatorname{OccurVar}(\varphi_i)$ for all i, it follows directly from the definition of substitution that

$$(=\varphi_1\varphi_2)' = (=\varphi_1'\varphi_2') = (=\varphi_1\varphi_2)$$

and

$$(R\varphi_1\cdots\varphi_k)'=(R\varphi_1'\cdots\varphi_k')=(R\varphi_1\cdots\varphi_k)$$

so that AtomicForm_{\mathcal{L}} $\subset X$. The final proof is really identical to all the above. If $\varphi, \psi \in X$, with y not occurring in either, then $(\neg \varphi)' = \neg \varphi' = \neg \varphi$, $(\varphi \diamond \psi)' = (\varphi' \diamond \psi') = (\varphi \diamond \psi)$, and so forth. Hence Form_{\mathcal{L}} = X and the proposition follows.

- 5. Let $\mathfrak{L} = \{P\}$ where P is a binary relation symbol, and let $x, y \in Var$ be distinct.
 - (a) Give a deduction showing that $\forall x \forall y Pxy \vdash \forall y \forall x Pxy$.

In place of subscripts or superscripts to denote substitution, I will replace the actual variable with the appropriate letter. Fix $t, u \in \text{Var}$ not occurring in any of the formulas below.

(b) Give a deduction showing that $\exists x \forall y Pxy \vdash \forall y \exists x Pxy$.

In place of subscripts or superscripts to denote substitution, I will replace the actual variable with the appropriate letter. Fix $t, u \in \text{Var}$ not occurring in any of the formulas below.

$\{\forall y Puy, \neg \forall y \exists x Pxy\} \vdash \forall y Puy$	(Assumption)	(1)
$\{\forall y Puy, \neg \forall y \exists x Pxy\} \vdash Put$	$(\forall E \text{ on } 1)$	(2)
$\{\forall y Puy, \neg \forall y \exists x Pxy\} \vdash \exists x Pxt$	$(\exists I \text{ on } 2)$	(3)
$\{\forall y Puy, \neg \forall y \exists x Pxy\} \vdash \neg \forall y \exists x Pxy$	(Assumption)	(4)
$\{\forall y Puy, \neg \forall y \exists x Pxy\} \vdash \neg \exists x Pxt$	$(\forall E \text{ on } 4)$	(5)
$\forall y Puy \vdash \forall y \exists x Pxy$	(Contr on 3 and 5)	(6)
$\exists x \forall y Pxy \vdash \forall y \exists x Pxy$	$(\exists I \text{ on } 6)$	(7)

(c) Show that $\forall y \exists x Pxy \not\vdash \exists x \forall y Pxy$.

Using completeness/soundess we can pass to semantics, and come up with a specific example. Let $\mathfrak{L} = \{P\}$ and \mathfrak{M} be (G,P) where G is a nontrivial group and $P = \{(a,b) \mid ab = e\}$. Then it is true that for all y there exists an x such that yx = e, viz., $x = y^{-1}$. However, it is not true that there exists an x such that for every y, xy = e since then x is idempotent so that x = e and G is trivial.