

Autor do material: Cauan Teixeira Machado, Lucas Feitosa Lima Sátiro, Michael Alves dos Santos

Área: Sistemas Embarcados, Ciência de Dados

Palavras-chave: Embarcados, Arduino, Ciência de Dados

Sistema de Medição de Umidade e Temperatura: Integrando Arduino e Ciência de Dados

Sumário

1. Introdução	3
1.1. Contextualização	3
1.2. Conceitos Fundamentais	3
1.3 Visão Geral do Sistema	3
2. Componentes e Funcionamento	3
2.1. Hardware necessário	3
3. Implementação do Sistema	4
3.1. Código do Arduino	4
3.2. Código Python	4
3.3 Código Python para Análise	6
4. Análise de Dados	6
4.1. Processo de Coleta	6
4.2. Processamento	6
4.3 Resultados Esperados	6

1. Introdução

1.1. Contextualização

Este documento descreve a implementação de um sistema de medição de umidade e temperatura utilizando Arduino e Python. O projeto combina hardware e software para criar um sistema de monitoramento preciso e análise de dados em tempo real.

Aplicações: Monitoramento de reservatórios, Controle de processos industriais, Sistemas de irrigação automatizados.

1.2. Conceitos Fundamentais

a. Sensor Analógico de Temperatura e Umidade

- Princípio de funcionamento baseado na condutividade do vapor de água
- Variação da resistência elétrica conforme temperatura e umidade do ar
- Saída analógica proporcional à temperatura e umidade

b. Conversão Analógico-Digital

- Utilização do ADC do Arduino
- Resolução de 10 bits (valores de 0 a 1023)
- Conversão de tensão em valores digitais

1.3 Visão Geral do Sistema

O sistema opera em três etapas principais:

a. Captação

- Sensor realiza medições umidade e temperatura
- Conversão de nível em sinal elétrico

b. Digitalização

- Arduino processa o sinal analógico
- Conversão em dados digitais

c. Análise

- Python processa os dados recebidos
- Geração de insights e visualizações

2. Componentes e Funcionamento

2.1. Hardware necessário

Componentes Principais:

- 1. Arduino UNO
- 2. Sensor de umidade e temperatura

- 3. Cabos de conexão
- 4. Recipiente graduado
- 5. Computador para processamento

3. Implementação do Sistema

3.1. Código do Arduino

```
#include "dht.h" //INCLUSÃO DE BIBLIOTECA
#define pinoDHT11 A2//PINO ANALÓGICO UTILIZADO PELO DHT11
dht DHT; //VARIÁVEL DO TIPO DHT
void setup() {
  Serial.begin(9600); //INICIALIZA A SERIAL
  delay(2000); //INTERVALO DE 2 SEGUNDO ANTES DE INICIAR
void loop() {
  DHT.read11(pinoDHT11); //LÊ AS INFORMAÇÕES DO SENSOR
  Serial.print(DHT.humidity, 0); //IMPRIME NA SERIAL O VALOR DE
UMIDADE MEDIDO
  Serial.print(DHT.temperature, 0); //IMPRIME NA SERIAL O VALOR DE
UMIDADE MEDIDO E REMOVE A PARTE DECIMAL
  delay(2000); //INTERVALO DE 2 SEGUNDOS * NÃO DIMINUIR ESSE VALOR
3.2. Código Python
# Importação das bibliotecas utilizadas
import serial as ard
import pandas as pd
import time
# Função que lê o valor relativo ao sensor pelo Serial
def read data(temperatura, umidade):
```



```
global arduino
    dados = arduino.readline().decode('utf-8').strip().split(',')
    dados_umidade = dados[0]
    dados temperatura = dados[1]
    print(f"Dados recebidos: {dados umidade},
{dados temperatura}")
    umidade.append(dados umidade)
    temperatura.append(dados temperatura)
# Conecta ao serial pela porta utilizada pelo arduino
arduino = ard.Serial('COM9', 9600) # Alterar para o relativo ao
seu computador
contador = 1 # contador para controlar o número de leituras
MAX VALUE = 150 # número máximo de leituras dos dados
# listas que armazenarão os valores lidos, relativos para cada
volume de água
lista temperatura = []
lista umidade = []
# Leitura de dados, com o volume de 50mL
while contador <= MAX VALUE:</pre>
    read_data(lista_temperatura, lista_umidade)
    contador += 1
# Cria o dataframe utilizando as listas, para que possamos
analisar esses dados
df = pd.DataFrame({'Temperatura': lista_temperatura, 'Umidade':
lista umidade})
```


Exporta para csv o arquivo gerado com os dados
df.to_csv('dados_arduino.csv', index=False)
print(df)

3.3 Código Python para Análise

Disponível no repositório:

<u>GitHub | X SEMAC: Ciência de Dados para Sistemas Embarcados</u>

4. Análise de Dados

4.1. Processo de Coleta

Parâmetros de Amostragem:

- 150 amostras
- 2 medições temperatura e umidade
- Intervalo de 2 segundos entre leituras

4.2. Processamento

Etapas de Processamento:

- 1. Coleta de dados brutos
- 2. Filtragem de ruídos
- 3. Cálculo de médias e desvios
- 4. Geração de gráficos
- 5. Análise estatística

4.3. Resultados Esperados

Métricas de Análise:

- Linearidade do sensor
- Precisão das medições
- Faixa de operação
- Resolução efetiva

5. Glossário

Termo	Definição
ADC	Conversor Analógico-Digital
Serial	Protocolo de comunicação Arduino-PC
DataFrame	Estrutura de dados do Pandas
Buffer	Memória temporária para dados
Calibração	Processo de ajuste sensor-medição