INFTY-CATEGORIES

github.com/danimalabares/infty-categories

Contents

1.	Other exercises	1
2.	Exercises of Rune, Chapter 1	2
References		3

1. Other exercises

Definition 1.1. A functor $F: C \to B$ is a discrete fibration if for every object c in C and every morphism of the form $g: b \to F(c)$ in B there is a unique morphism $h: d \to c$ in C such that F(h) = g.

Exercise 1.2. Prove that discrete fibrations over a category C correspond to presheaves over C.

Proof. First suppose that we are given a presheaf X on C. Define a discrete fibration $F: C/X \to C$ by $(a,s) \mapsto a$ on objects and mapping a morphism $f: (a,s) \to (b,t)$ in C/X to the corresponding morphism $a \to b$ in C. To show F is a discrete fibration let $g: b \to a$ be a morphism in C. Consider $g^* = X(g): X_a \to X_b$, and the section g^*s of X_b . Then the morphism $h: (b, g^*s) \to (a, s)$ is the only one mapping to g under h.

For the converse let $F: B \to C$ be a discrete fibration over C. To define a presheaf $X: C^{\mathrm{op}} \to \mathrm{Sets}$ let $c \in \mathrm{Ob}\, C$. We assign the set (for now I won't justify why this is a set) of objects in B mapped to c under F. To define the correspondence on morphisms, consider a map $f: c \to d$ in C^{op} . In other words, we have a map in C of the form $f^{\mathrm{op}}: d \to c$. Then to any object in b such that F(b) = c, by definition of discrete fibration, we have a unique morphism of B of the form $h: r \to b$ such that $F(h) = f^{\mathrm{op}}$. In particular this means that F(r) = d. This gives a function from X(c) to X(d). This situation is described in the following diagram:

$$X(d) \ni \qquad r \longmapsto d = F(r)$$

$$\exists ! h \qquad \qquad \downarrow f^{\text{op}} = F(h)$$

$$X(c) \ni \qquad b \longmapsto_{F} c = F(b)$$

To check functoriality of X defined in the previous paragraph suppose that $f:c\to d$ and $g:d\to e$ are two morphisms in C^{op} . Like before, we have maps

 $f^{\mathrm{op}}: d \to c \text{ and } g^{\mathrm{op}}: e \to d.$

$$X(e)\ni \qquad q\longmapsto e=F(q)$$

$$\downarrow g^{\operatorname{op}}=F(j)$$

$$X(d)\ni \qquad r\longmapsto d=F(r)$$

$$\downarrow f^{\operatorname{op}}=F(h)$$

$$X(c)\ni \qquad b\longmapsto_F c=F(b)$$

on the other hand, $gf: c \to e$ gives by the same construction a unique map $k: \hat{q} \to b$ such that $F(k) = f^{\text{op}}g^{\text{op}}$. To check that $\hat{q} = q$, observe that by functoriality of F, we have $F(hj) = F(h)F(j) = f^{\text{op}}g^{\text{op}} = F(k)$. By uniqueness of k, we conclude that k = hj and thus $q = \hat{q}$.

2. Exercises of Rune, Chapter 1

Here's my progress so far on the exercises in [Hau25], Chapter 1.

Exercise 2.1 (Observation 1.4.7). Show that the simplicial sets category Set_Δ has internal Hom S^T for simplicial sets S and T, given by

$$(S^T)_n := \operatorname{Hom}_{\mathsf{Set}_{\Delta}}(T \times \Delta^n, S)$$

Proof. We need to show, that S^T is the internal Hom in the category Set_Δ . Different notations for the internal Hom are $\mathsf{Map}(-,-)$, $\underline{\mathsf{Hom}}(-,-)$. It must be right adjoint to the functor $U \times -$. That is,

$$\operatorname{Hom}_{\operatorname{Set}_{\Delta}}(U \times S, T) \cong \operatorname{Hom}_{\operatorname{Set}_{\Delta}}(U, S^{T})$$

(I think) I understand the statement correctly but I don't understand how to apply [Cis23, Theorem 1.1.10 (Kan)] nor [Cis23, Remark 1.1.11] to prove it.

Exercise 2.2 (1.1). If S is a Kan complex, then the relation defining $\pi_0 S$ is an equivalence relation.

Proof. (1) (Reflexivity.) Let $a \in S_0$. Consider the composition

$$[0] \xrightarrow{d_0} [1] \xrightarrow{f_0} [0]$$
$$0 \longmapsto 1 \longmapsto 0$$

since this gives the identity we must have

$$S_0 \xrightarrow{S(f_0)} S_1 \xrightarrow{S(d_0)} [0]$$

 $a \longmapsto S(f_0)(a) \longmapsto a$

but we can replace d_0 by d_1 and we'd still get the identity, so that $S(d_0)$ also maps $S(f_0)(a)$ to a. In other words, for any $a \in S_0$ the 1-simplex $S(f_0)(a)$ is the desired one.

(2) (Symmetry.) Let $a, b \in S_0...$

Rather informally, I understand a category C to be an enriched category over D if for any objects c,d in C, $\operatorname{Hom}(c,d)$ is an object of D. Compositions of morphisms exist and are associative, and there is an identity morphism for every object c in C. (See https://ncatlab.org/nlab/show/enriched+category for a formal definition.)

Exercise 2.3 (1.2). Show that Cat_Δ can be described as the full subcategory of $\mathsf{Fun}(\Delta^{\mathrm{op}},\mathsf{Cat})$ containing the functors whose simplicial sets of objects are constant.

Proof. To a Set_Δ -enriched category C associate the functor which maps [n] to the category C_n defined as follows. The objects of C_n are the objects of C for all n. For a,b in C, the morphisms of C_n are $\mathsf{Hom}(a,b)_n$. To complete the definition of our functor in $\mathsf{Fun}(\Delta^{\mathrm{op}},\mathsf{Cat})$ we must specify where to send a map $f:[n]\to[m]$ in Δ^{op} . It must go to a functor of C to C that fixes all objects and maps a map in $\mathsf{Hom}(a,b)_n$ to the induced map $\mathsf{Hom}(a,b)_m$ by the presheaf $\mathsf{Hom}(a,b)$.

Now we need to show that every functor whose simplicial sets of objects is constant (i.e. constant functor $\Delta^{\mathrm{op}} \to \mathsf{Cat}$) can be expressed this way. Suppose F is such a functor with value C. Associate the Set_{Δ} -enriched category C with $\mathsf{Hom}(a,b)_n$ given by $\mathsf{Hom}_{F([n])}(a,b)$.

(Hopefully my understanding of the term "full subcategory" is not wrong?)

Exercise 2.4 (1.3). Show that $N : \mathsf{Cat} \to \mathsf{Set}_{\Delta}$ is fully faithful.

Proof. We need to show that for any categories A, B, $\operatorname{Hom}(A, B) = \operatorname{Fun}(A, B)$ is in "bijection" with $\operatorname{Hom}_{\mathsf{Set}_\Delta}(NA, NB)$. Recall that NA is the presheaf that maps [n] to the set of composible sequence of n morphisms in A. Then to a functor $F: A \to B$ we associate the map that sends a sequence of n morphisms in A to the respective sequence of n morphisms in B after applying F to each object and map.

Conversely, given a morphism in Set_Δ from NA to NB we can reconstruct a functor from A to B by interpreting objects of A as NA_0 and maps as NA_1 . \square

References

[Cis23] Denis-Charles Cisinsky, Higher categories and homotopical algebra, 2023.

[Hau25] Rune Haugseng, Yet another introduction to infty-categories, 2025.