AERONAUTICAL ENGINEERING

(NASA-SP-7037(265)) AERONAUTICAL ENGINEERING: A CONTINUING BIBLIOGRAPHY WITH INDEXES (SUPPLEMENT 265) (NASA) 152 P CSCL 01A N91-24095

Unclas 00/01 0019381

A CONTINUING BIBLIOGRAPHY WITH INDEXES

AERONAUTICAL ENGINEERING

A CONTINUING BIBLIOGRAPHY WITH INDEXES

INTRODUCTION

This issue of *Aeronautical Engineering—A Continuing Bibliography* (NASA SP-7037) lists 554 reports, journal articles, and other documents originally announced in April 1991 in *Scientific and Technical Aerospace Reports (STAR)* or in *International Aerospace Abstracts (IAA)*.

Accession numbers cited in this issue are:

STAR (N-10000 Series) N91-15123 — N91-16987 IAA (A-10000 Series) A91-20489 — A91-24168

The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

Each entry in the publication consists of a standard bibliographic citation accompanied in most cases by an abstract. The listing of the entries is arranged by the first nine *STAR* specific categories and the remaining *STAR* major categories. This arrangement offers the user the most advantageous breakdown for individual objectives. The citations include the original accession numbers from the respective announcement journals.

Seven indexes—subject, personal author, corporate source, foreign technology, contract number, report number, and accession number—are included.

A cumulative index for 1991 will be published in early 1992.

Information on availability of documents listed, addresses of organizations, and NTIS price schedules are located at the back of this issue.

CONTENTS

•	• • •	
Category 01	Aeronautics (General)	249
	Aerodynamics aerodynamics of bodies, combinations, wings, rotors, and control sur- nd internal flow in ducts and turbomachinery.	_: 251
	Air Transportation and Safety passenger and cargo air transport operations; and aircraft accidents.	278
Includes	Aircraft Communications and Navigation digital and voice communication with aircraft; air navigation systems and ground based); and air traffic control.	282
	Aircraft Design, Testing and Performance aircraft simulation technology.	283
	Aircraft Instrumentation cockpit and cabin display devices; and flight instruments.	294
Includes	Aircraft Propulsion and Power prime propulsion systems and systems components, e.g., gas turbine and compressors; and onboard auxiliary power plants for aircraft.	297
	Aircraft Stability and Control aircraft handling qualities; piloting; flight controls; and autopilots.	303
	Research and Support Facilities (Air) airports, hangars and runways; aircraft repair and overhaul facilities; nels; shock tubes; and aircraft engine test stands.	308
facilities space co spacecra	Astronautics astronautics (general); astrodynamics; ground support systems and (space); launch vehicles and space vehicles; space transportation; immunications, spacecraft communications, command and tracking; ft design, testing and performance; spacecraft instrumentation; and ft propulsion and power.	
Includes physical	Chemistry and Materials chemistry and materials (general); composite materials; inorganic and chemistry; metallic materials; nonmetallic materials; propellants and materials processing.	311
Includes electrical photograp	Engineering engineering (general); communications and radar; electronics and engineering; fluid mechanics and heat transfer; instrumentation and ohy; lasers and masers; mechanical engineering; quality assurance bility; and structural mechanics.	315

Categor	•	Geosciences	324
p	roductio	geosciences (general); earth resources and remote sensing; energy on and conversion; environment pollution; geophysics; meteorology atology; and oceanography.	
	ncludes	Life Sciences life sciences (general); aerospace medicine; behavioral sciences; em technology and life support; and space biology.	N.A.
a C	ncludes ind hard ybernetic	Mathematical and Computer Sciences mathematical and computer sciences (general); computer operations dware; computer programming and software; computer systems; cs; numerical analysis; statistics and probability; systems analysis; retical mathematics.	326
а	ncludęs Ind high-	Physics physics (general); acoustics; atomic and molecular physics; nuclear energy physics; optics; plasma physics; solid-state physics; and ther- nics and statistical physics.	331
ta	ncludes s ation and	Social Sciences social sciences (general); administration and management; documend information science; economics and cost analysis; law, political science policy; and urban technology and transportation.	333
	ncludes s	Space Sciences space sciences (general); astronomy; astrophysics; lunar and planetration; solar physics; and space radiation.	N.A.
Category	/ 19	General	333
Subject I		· Index	A-1 B-1
Corporat	e Sourc	ce Index	. C-1
Foreign 1	Technolo	ogy Index	. D-1
Contract	Numbe	r Index	E-1
Report N	lumber i	Index	F-1
		ber Index	
Appendix	x	A	1-1-1

TYPICAL REPORT CITATION AND ABSTRACT

TYPICAL JOURNAL ARTICLE CITATION AND ABSTRACT

AERONAUTICAL **ENGINEERING**

A Continuing Bibliography (Suppl. 265)

MAY 1991

01

AERONAUTICS (GENERAL)

A91-20784 COMPOSITE PATCH REINFORCEMENT OF CRACKED AIRCRAFT UPPER LONGERON - ANALYSIS AND SPECIMEN

C. L. ONG, R. C. CHU, T. C. KO, and S. B. SHEN (Aero Industrial Development Center, Aeronautical Research Laboratory, Taichung, Republic of China) Theoretical and Applied Fracture Mechanics (ISSN 0167-8442), vol. 14, Sept. 1990, p. 13-26. refs

Methods by means of which composite patch repairs can restore the structural integrity of cracked components are illustrated. The requisite patch-bonding strengths are reachable with a phosphoric-acid anodize (PAA) surface treatment of Al alloy components prior to application of the AV138/HV998 adhesive; a dismantling of the component from its assembled position for immersion in the PAA tank was not required. Boron/epoxy and carbon/epoxy patches were applied at room temperature to 7075-T6511 cracked specimens and tested under fatigue simulating the load spectrum of a fuselage longeron. The repair yielded a substantial improvement in fatigue life.

A91-20997 DOD NONLETHAL UNMANNED AERIAL VEHICLES JOINT PROJECT TEST AND EVALUATION

LAWRENCE G. KARCH and H. CLAUDE JONES (U.S. Navy, Naval Air Systems Command, Washington, DC) IN: Society of Flight Test Engineers, Annual Symposium, 20th, Reno, NV, Sept. 18-21, 1989, Proceedings. Lancaster, CA, Society of Flight Test Engineers, 1989, p. 4.4-1 to 4.4-7.

Copyright

Unmanned aerial vehicle (UAV) systems are militarily useful alternatives to manned vehicles combining mission effectiveness with low risk to personnel and lower costs. Nonlethal UAV systems are capable of the following real-time and near-real-time operations: target acquisition, reconnaisance and surveillance; target spotting and designation; command and control/communications and data relay; nuclear, biological and chemical detection; meteorological data collection; and deception and disruption. Nonlethal UAV systems generally contain the following subsystems: the air vehicle, data links, mission payloads, mission planning and control, launch and recovery, and support subsystems. Operational requirements and environments are discussed, and categories of nonlethal UAVs, including short range, medium range, close range, and endurance types, are described. R.E.P.

A91-21001 THE EQUIPMENT OF A RESEARCH AIRCRAFT WITH **EMPHASIS ON METEOROLOGICAL EXPERIMENTS**

RUDOLF HANKERS (Braunschweig, Technische Universitaet, Brunswick, Federal Republic of Germany) IN: Society of Flight Test Engineers, Annual Symposium, 20th, Reno, NV, Sept. 18-21,

1989, Proceedings. Lancaster, CA, Society of Flight Test Engineers, 1989, p. 6.3-1 to 6.3-7. refs Copyright

The research aircraft Dornier 128-6 of the Technical University of Braunschweig is equipped with a variety of different sensors. It is widely used for airborne investigations e.g. identification of the aerodynamic parameters of the aircraft, measurement of air pollution and meteorological measurements. Due to the powerful on-board measuring and computer system the aircraft is well suited for this wide range of research projects. This system is concepted mainly for on-line data acquisition and computation. The possibility of monitoring flight test processes allows the active participation of the test engineer which is very important especially for meteorological experiments. Author

A91-21106 **DESIGNING AND MANUFACTURING THE F-111 ADVANCED COMPOSITE FORWARD VENTAL STRAKE**

ALLEGRA D. HAKIM and DENNIS M. CONBOY (USAF, Advanced Composites Program Office, McClellan AFB, CA) Manufacturing Engineers, Conference on Composites in Manufacturing 9, San Diego, CA, Jan. 15-18, 1990. 14 p. (SME PAPER EM90-105) Copyright

The paper describes an F-111 forward vental strake composed of an aramid/epoxy and graphite/epoxy hybrid skin over a nonmetallic core. This strake is replacing the original design consisting of two skins of fiberglass preimpregnated cloth bonded over a wedge of fiberglass-reinforced phenolic honeycomb core. A preliminary redesign involved skins fabricated predominantly of Kevlar/epoxy fabric and the final redesign utilizing a tapered hybrid skin of Kevlar prepreg fabric and graphite/epoxy tape over a glass/phenolic core extending from the baseplate to the edge of the strake are described. Static and flight tests are outlined, manufacturing considerations including a three-dimensional surfaced model, tooling, and core creation are discussed, and life-cycle cost savings are calculated.

A91-21107 **ADVANCED COMPOSITES F-4 RUDDER**

DENNIS TANG (USAF, Advanced Composites Program Office, McClellan AFB, CA) Society of Manufacturing Engineers. Conference on Composites in Manufacturing 9, San Diego, CA, Jan. 15-18, 1990. 15 p.

(SME PAPER EM90-106) Copyright

An effort to redesign the F-4 rudder in order to reduce the high failure rate of the aft honeycomb trailing-edge section is addressed, and emphasis is placed on maintaining consistent form, fit, and function at minimum cost. Design and manufacturing considerations such as bending stiffness, core selection, laminate instability, and damage tolerance are discussed, and core fabrication, tooling, and full-scale static tests are described. The choice of skin material is narrowed to unidirectional graphite/epoxy prepreg, while the core is made of polymethacrylimide foam fabricated with the help of a contoured tool designed on a CAD/CAM system using a geometrical model of the rudder core.

V.T.

A91-21201

MAINTENANCE OF MODERN AVIONICS SYSTEMS; PROCEEDINGS OF THE CONFERENCE, HEATHROW, ENGLAND, MAY 9, 1989

London, Royal Aeronautical Society, 1989, 78 p. For individual items see A91-21202 to A91-21206.
Copyright

Attention is given to such topics as the limitations of BITE, the ACARS system, and the Aircraft Avionic Interconnection System. The problems and solutions for testing air data systems on aircraft, and the development of onboard maintenance systems on Boeing aircraft are also considered.

R.E.P.

A91-21202

LIMITATIONS OF BITE

A. VAUGHAN and P. D. HALL (Monarch Aircraft Engineering, Ltd., Luton, England) IN: Maintenance of modern avionics systems; Proceedings of the Conference, Heathrow, England, May 9, 1989. London, Royal Aeronautical Society, 1989, p. 1.1-1.22.

The introduction and development of built-in test equipment (BITE) on today's transport aircraft have had a significant impact on maintenance procedures and traditional troubleshooting techniques. The flight management system (FMS) BITE is designed to be operated within the principle of 'on condition' maintenance. A flight-crew-reported defect is utilized to determine which of the FMS subsystems is involved, and by using the BITE, isolate the faulty line replaceable unit. Finally, manufacturers must be able to react more quickly to in-service problems and produce effective improvements in a prompt manner to maintain confidence in the integrity of the system.

A91-21206

DEVELOPMENT OF ONBOARD MAINTENANCE SYSTEMS ON BOEING AIRPLANES

ANTHONY J. MARTIN (Boeing Commercial Airplanes, Seattle, WA) IN: Maintenance of modern avionics systems; Proceedings of the Conference, Heathrow, England, May 9, 1989. London, Royal Aeronautical Society, 1989, p. 5.1-5.15.
Copyright

A review is presented of onboard maintenance development from the evolution of maintenance functions or built-in test equipment (BITE) in individual units through small-scale integration around autopilot and flight management systems to central integrated maintenance computer systems. Various issues concerning onboard maintenance systems are discussed including aviation industry standards, the reliability and maintanability of digital avionics systems, the measurement of reliability in the aircraft environment, and airline line maintenance practice. A new 747-400 Central Maintenance Computer (CMC) that integrates all 70 electronic systems of the aircraft is described. It is concluded that maintenance functions must be designed into systems from the onset of the design process, and industry standards for BITE are essential.

A91-21218

WINGS FOR THE 21ST CENTURY

JAMES BRAHNEY Aerospace Engineering (ISSN 0736-2536), vol. 11, Jan. 1991, p. 9-12. Copyright

Researchers and aeronautical engineers have analyzed the aircraft wing design process with an eye toward increasing strength, fatigue life, and reliability, while at the same time reducing weight and cost. The underutilized structural capability of the wing (overcompensating for fatigue, panel instability, and lightning strike considerations) equates to added unnecessary weight. One proposed wing design has the upper surface optimized for all possible loading conditions along the entire wing span. Thus, the wing's upper surface would incorporate three separate designs, each considering the fact that the compression loads increase from wing tip to wing root. In this optimized wing's upper surface midsection, an isogrid/waffle design could be utilized. With this

isogrid/waffle design, parts count and the number of fastener holes can be significantly reduced. New material applications and machining techniques are also discussed.

R.E.P.

A91-21324

1989 SPRING CONVENTION - FLIGHT SIMULATION: ASSESSING THE BENEFITS AND ECONOMICS, LONDON, ENGLAND, MAY 17, 18, 1989, PROCEEDINGS

Convention sponsored by the Royal Aeronautical Society. London, Royal Aeronautical Society, 1989, 226 p. No individual items are abstracted in this volume.

Copyright

The use of flight simulators in aircrew training and research is discussed, considering both technological and economic aspects. Topics addressed include advanced simulators for ab initio pilot training, the economic advantages of investing in state-of-the-art flight-simulation equipment, the use of full flight simulators by a commercial airline, cost-effective distributed processing for simulators, and the evolution and economics of software engineering for flight simulation. Consideration is given to cost-performance tradeoffs in visual simulation, a data-base approach to cost management for a versatile research flight simulator, the future of flight simulation, and an FAA perspective on increasing the benefits of flight simulation.

A91-22102

PAINTING TECHNOLOGY FOR CIVIL AIRCRAFT AND HELICOPTERS (2ND REVISED AND ENLARGED EDITION) [TEKHNOLOGIIA OKRASKI SAMOLETOV I VERTOLETOV GRAZHDANSKOI AVIATSII /2ND REVISED AND ENLARGED EDITION/]

IL'IA I. DENKER and VIKTOR N. VLADIMIRSKII Moscow, Izdatel'stvo Mashinostroenie, 1988, 128 p. In Russian. refs Copyright

The materials, techniques, and tools used for the corrosion protection and painting of the external and internal surfaces of commercial airplanes and helicopters are discussed. In particular, general data are presented on the corrosion of metals and alloys; principal structural materials used in aircraft building; types of paints, primers, and thinners; surface preparation techniques; and different methods of applying paints. The discussion also covers specific paint systems for aluminum, magnesium, and steel surfaces, interior paints, paints for contacts and radio and electronic components, engine paints, paints for propellers, and repair of painted surfaces. Finally, some safety and fire prevention measures are discussed.

V.L

A91-22104

ASSEMBLY OF AIRCRAFT COMPONENTS [SBORKA AGREGATOV SAMOLETA]

VASILII V. BOITSOV, SHARAFUTDIN F. GANIKHANOV, and VLADIMIR N. KRYSIN Moscow, Izdatel'stvo Mashinostroenie, 1988, 152 p. In Russian. refs
Copyright

The principles and methods of computer-aided spacecraft assembly are reviewed. The types of assembly operations, principal assembly techniques, and the efficiency of assembly processes are examined. Attention is then given to the analysis of the structure of assembly processes and methods for optimizing assembly work. The discussion also covers assembly tools and equipment, typical assembly schemes for the principal aircraft components, and systems for the design and manufacture of assembly equipment.

V.L.

A91-23546

MAINTENANCE STANDARDS

A. C. D. CUMMING (British Airways, PLC, Hounslow, England) (European Aerospace Conference on Civil Aviation Operations - Problems, Solutions and Actions, 3rd, London, England, May 22-24, 1990) Aeronautical Journal (ISSN 0001-9240), vol. 94, Dec. 1990, p. 329-334.
Copyright

This paper discusses why maintenance standards are the most

important technical factor within the control of the operator, and how this control is exercised. High maintenance standards have a direct beneficial effect on safety. Details are provided for British Airway's maintenance control program and quality monitoring, incident investigation, and involvement of senior management are discussed.

R.E.P.

A91-23547

ADVANCED TECHNOLOGY - CONSTANT CHALLENGE AND EVOLUTIONARY PROCESS

D. SCHMITT (Airbus Industrie, Toulouse, France) (European Aerospace Conference on Civil Aviation Operations - Problems, Solutions and Actions, 3rd, London, England, May 22-24, 1990) Aeronautical Journal (ISSN 0001-9240), vol. 94, Dec. 1990, p. 335-340.

Copyright

An overview is presented of the main improvement potentials in the European civil aircraft industries. Consideration is given to such areas of development as new powerplant concepts, aerodynamics, new structures and materials, aircraft systems, and production technology. In assessing technology benefits, all of the aforementioned items may count for a theoretical improvement potential of a further 30 to 35 percent in terms of specific energy saving per aircraft seat mile; however, this assumes a major breakthrough in laminarization, which counts for nearly half of the potential improvement. The development of hybrids, that allow weight reductions of up to 40 percent in tension-loaded, fatigue critical structural components, is also promising.

N91-15124*# National Aeronautics and Space Administration.

Ames Research Center, Moffett Field, CA.

DYNAMIC ANALYSIS OF ROTOR BLADE UNDERGOING ROTOR POWER SHUTDOWN

KHANH QUOC NGUYEN Dec. 1990 27 p (NASA-TM-102865; A-90284; NAS 1.15:102865) Avail: NTIS HC/MF A03 CSCL 01B

A rigid flap-lag blade analysis was developed to simulate a rotor in a wind tunnel undergoing an emergency power shutdown. Results show that for a rotor at a nonzero shaft tilt angle undergoing an emergency power shutdown, the oscillatory lag response is divergent. The mean lag response is large when tested at high collective pitch angles. Reducing the collective pitch during the emergency shutdown reduces the steady lag response. Increasing the rotor shaft tilt angle increases the oscillatory lag response component. The blade lag response obtained by incorporating a nonlinear lag damper model indicates that in this case the equivalent linear viscous damping is lower than originally expected. Simulation results indicate that large oscillatory lag motions can be suppressed if the rotor shaft is returned to the fully vertical position during the emergency power shutdown.

N91-15977# Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Goettingen (Germany, F.R.). Forschungsbereich Stroemungsmechanik.

DOCUMENTS ON THE HISTORY OF THE AERODYNAMIC RESEARCH ESTABLISHMENT AT GOETTINGEN, 1907 - 1925 JULIUS C. ROTTA Apr. 1990 174 p In GERMAN; ENGLISH SUMMARY

(DLR-MITT-90-05; ISSN-0176-7739; ETN-91-98261) Avail: NTIS HC/MF A08; DLR, VB-PL-DO, Postfach 90 60 58, Cologne, Fed. Republic of Germany, HC 27 DM

A supplement to a history of the Aerodynamic Research Establishment is presented. Subjects covered are the model research facilities; first interests in aeronautical engineering; the project of an institute for aerodynamics and hydrodynamics; permission given by military authorities during the First World War for the creation of an aerodynamic research institute; construction of the model research center for aerodynamics; and the research equipment used in the institute after the First World War.

02

AERODYNAMICS

Includes aerodynamics of bodies, combinations, wings, rotors, and control surfaces; and internal flow in ducts and turbomachinery.

A91-20615

AIRFRAME-ENGINE INTEGRATION - TASK FOR FUTURE COMMERCIAL AIRCRAFT EVOLUTION [ZELLE-TRIEBWERKS-INTEGRATION - AUFGABE ZUKUENFTIGER VERKEHRSFLUGZEUGENTWICKLUNGEN]

HEINZ HOHEISEL (DLR, Institut fuer Entwurfsaerodynamik, Brunswick, Federal Republic of Germany) DLR-Nachrichten (ISSN 0937-0420), Nov. 1990, p. 34-39. In German.

The numerical treatment of the problem of airframe-engine integration is discussed. The experimental determination of interference effects is addressed. The significance of the results for future commercial aircraft evolution is considered.

C.D.

A91-20745#

AERODYNAMIC DESIGN FOR SUPERSONIC NOZZLES OF ARBITRARY CROSS SECTION

A. HADDAD and J. B. MOSS (Cranfield Institute of Technology, Bedford, England) Journal of Propulsion and Power (ISSN 0748-4658), vol. 6, Nov.-Dec. 1990, p. 740-746. refs Copyright

A comparatively simple method for obtaining wall contours of supersonic nozzles of arbitrary exit cross sections from readily determined axisymmetric flows is presented. An initial axisymmetric flowfield is calculated using the method of characteristics in two dimensions from which the desired three-dimensional shape may be generated by specifying the appropriate cross section at the streamwise station giving the required overall nozzle length and exit Mach number. The describing points on the perimeter of this section are traced along corresponding streamlines back to the throat. The stream sheets formed by these streamlines then define the new nozzle contour. Elliptical and two-dimensional wedge-shaped nozzles are designed using this approach, and comparisons are reported between detailed finite-difference flowfield predictions and experimental measurement.

A91-20748# NUMERICAL INVESTIGATION OF HOT STREAKS IN TURBINES

BJORN KROUTHEN and MICHAEL B. GILES (MIT, Cambridge, MA) Journal of Propulsion and Power (ISSN 0748-4658), vol. 6, Nov.-Dec. 1990, p. 769-776. Previously cited in issue 04, p. 462, Accession no. A89-16478. refs Copyright

A91-20750#

EXPERIMENTAL MEASUREMENTS OF THE FLOW IN A SCRAMJET INLET AT MACH 4

WILLIAM J. YANTA, ARNOLD S. COLLIER, W. CHARLES SPRING, III, CHRISTOPHER F. BOYD (U.S. Navy, Naval Surface Warfare Center, Silver Spring, MD), and J. CRAIG MCARTHUR Journal of Propulsion and Power (ISSN 0748-4658), vol. 6, Nov.-Dec. 1990, p. 784-790. Research supported by the U.S. Navy. Previously cited in issue 07, p. 930, Accession no. A88-22198. refs

A91-20933#

COMPUTATION OF UNSTEADY VISCOUS FLOWS AROUND WING PROFILES [BERECHNUNG INSTATIONAERER VISKOSER STROEMUNGEN UM TRAGFLUEGELPROFILE]

K. DORTMANN Rheinisch-Westfaelische Technische Hochschule, Aerodynamisches Institut, Abhandlungen (ISSN 0172-3898), no. 30, 1990, p. 34-44. In German. refs

Central-difference schemes for the numerical simulation of unsteady viscous flows on wing profiles are evaluated by means of test computations. The mathematical bases of the Navier-Stokes

solvers employed are outlined, and results are presented graphically for (1) a NACA 0012 profile at angle of attack 20 deg, Reynolds number 20,000, and freestream Mach number 0.3 and (2) a NACA 4412 profile at zero angle of attack and Reynolds number 5000-20,000. Generally good accuracy is obtained using the cell-vertex multigrid approach of Hall (1986) with artificial damping terms. It is found, however, that artificial dissipation can significantly degrade the accuracy of the solution in case (1) unless the damping coefficients are minimized. In case (2), where there is early separation and a vortex street forms in the wake, a grid refinement to 512 x 64 points is required to give wake Strouhal numbers within 6 percent of experimentally measured values.

A91-20934#

EXPERIMENTAL INVESTIGATION OF THE TRANSONIC FLOW ON A SUPERCRITICAL WING PROFILE [EXPERIMENTELLE UNTERSUCHUNG DER SCHALLNAHEN UMSTROEMUNG EINES SUPERKRITISCHEN TRAGFLUEGELPROFILS]

H.-J. ROMBERG Rheinisch-Westfaelische Technische Hochschule, Aerodynamisches Institut, Abhandlungen (ISSN 0172-3898), no. 30, 1990, p. 45-53. In German. refs

The steady flow on CAST7 supercritical wing profiles of chord length 150 and 200 mm is investigated experimentally at Mach numbers between 0.61 and 0.79 in the adaptive-wall test section of the large transonic/supersonic wind tunnel of the Aerodynamisches Institut in Aachen. The experimental setup and measurement procedures are described, and the results are presented in graphs and photographs and characterized in detail. The pressure distributions obtained in the adaptive tunnel are found to be in good agreement with published data from larger facilities, but at maximum lift there were discrepancies with respect to the lift coefficient, the size of the supersonic region, and the trailing-edge pressure. Shock oscillations are observed at Mach numbers 0.70-0.78 and angles of attack 3-5 deg and tentatively attributed to the effects of vortex formation in the wake.

A91-20935#

EXPERIMENTAL AND THEORETICAL INVESTIGATION OF A VORTEX STREET IN THE WAKE OF A FLAT PLATE [EXPERIMENTELLE UND THEORETISCHE UNTERSUCHUNG EINER WIRBELSTRASSE IM NACHLAUF EINER EBENEN PLATTE]

W. ALTHAUS Rheinisch-Westfaelische Technische Hochschule, Aerodynamisches Institut, Abhandlungen (ISSN 0172-3898), no. 30, 1990, p. 54-59. In German. refs

Results are reported from wind-tunnel experiments on flat plates to which strips of smooth paper or sandpaper (mean roughness 0.43 or 0.18 mm), extending to leave an uncovered band (UB) of a few mm at the trailing edge, are attached to induce vortex formation (VF). Holographic interferometry and two-component LDA measurements obtained at Mach 2.2 in the 15 x 15-cm wind tunnel of the Aerodynamisches Institut in Aachen are presented in graphs and discussed in detail. With the smooth paper, the wake flow is tully turbulent, whereas with sandpaper there is VF slightly behind the trailing edge; VF reaches a maximum when the UB width is 5 mm, and the location of visible VF depends on the roughness of the paper and the UB width, in good agreement with the theoretical model of Hannemann (1988).

A91-20936#

CALCULATION OF THREE-DIMENSIONAL COMPRESSIBLE BOUNDARY LAYERS ON SLENDER BODIES [BERECHNUNG DREIDIMENSIONALER KOMPRESSIBLER GRENZSCHICHTEN AN SPITZEN KOERPERN]

V. N. VETLUTSKII (AN SSSR, Institut Teoreticheskoi i Prikladnoi Mekhaniki, Novosibirsk, USSR) and E. KRAUSE Rheinisch-Westfaelische Technische Hochschule, Aerodynamisches Institut, Abhandlungen (ISSN 0172-3898), no. 30, 1990, p. 60-63. In German. refs

A numerical technique for the characterization of three-dimensional compressible supersonic boundary-layer flows on slender bodies is described. The forebody (assumed to be conical) is analyzed using the similarity method of Vetlutsky and

Ganimedov (1982), and the general solution is obtained using the difference method of Vetlutsky (1981). The method is applied to smooth bodies with double-ellipse and ogival body cross sections and circular-cone nose sections at freestream Mach numbers 2-4 and angles of attack 4.2-10 deg, incorporating several different mixing-path models for the turbulent boundary layers. Results are expressed in terms of Stanton-number distribution, velocity and temperature profiles, and drag coefficients and compared with published experimental data. Good general agreement is obtained using the Baldwin-Lomax (1978) model with C(cp) varied from 3.6 to 1.6.

A91-21057# TURBULENT SHEAR FLOW OVER SURFACE MOUNTED OBSTACLES

W. H. SCHOFIELD (Defence Science and Technology Organization, Aeronautical Research Laboratory, Melbourne, Australia) and E. LOGAN (Arizona State University, Tempe) ASME, Transactions, Journal of Fluids Engineering (ISSN 0098-2202), vol. 112, Dec. 1990, p. 376-385. refs
Copyright

The mean flow field surrounding obstacles attached to a wall under a turbulent boundary layer is analyzed. The analysis concentrates on how major features of the flow are influenced by model geometry and the incident shear flow. Experimental data are analyzed in terms of nondimensionalized variables chosen on the basis that their effect on major flow features can be simply appreciated. The data are restricted to high Reynolds number shear layers thicker than the attached obstacle. The work shows that data from a wide range of flows can be collapsed if appropriate nondimensional scales are used.

A91-21063# INTERFERENCE DRAG OF A TURBULENT JUNCTION VORTEX

F. J. PIERCE (Virginia Polytechnic Institute and State University, Blacksburg) and S. K. NATH (Du Pont de Nemours and Co., Richmond, VA) ASME, Transactions, Journal of Fluids Engineering (ISSN 0098-2202), vol. 112, Dec. 1990, p. 441-446. refs

(ASME PAPER 90-WA/FE-2) Copyright

The interference drag identified with the junction of a streamlined cylindrical body and a flat plate was investigated. The iunction drag was calculated from a set of detailed, self consistent, high quality data using a control volume approach. The drag for the isolated flat plate and streamlined cylinder making up the junction was calculated using boundary-layer solvers together with surface pressure measurements. For the particular and relatively thick body under consideration, the results show a significant increase in drag due to the junction. These and other available results indicate that the interference drag has a systematic dependence on the thickness to chord ratio. The junction vortex wake increases the downstream flat plate drag significantly. Because of this effect, a unique value for the drag force, drag coefficient, or induced drag coefficient for a junction vortex flow would require that the geometry be specified in detail. The induced drag and the total pressure losses identified with the junction are also reported.

A91-21064*# Florida Atlantic Univ., Boca Raton. NONIDEAL ISENTROPIC GAS FLOW THROUGH CONVERGING-DIVERGING NOZZLES

W. BOBER and W. L. CHOW (Florida Atlantic University, Boca Raton) ASME, Transactions, Journal of Fluids Engineering (ISSN 0098-2202), vol. 112, Dec. 1990, p. 455-461. refs (Contract NAS2-11555)
Copyright

A method for treating nonideal gas flows through convergingdiverging nozzles is described. The method incorporates the Redlich-kwong equation of state. The Runge-Kutta method is used to obtain a solution. Numerical results were obtained for methane gas. Typical plots of pressure, temperature, and area ratios as functions of Mach number are given. From the plots, it can be seen that there exists a range of reservoir conditions that require the gas to be treated as nonideal if an accurate solution is to be obtained.

Author

A91-21065*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

NAVIER-STOKES SIMULATION OF TRANSONIC BLADE-VORTEX INTERACTIONS

N.-S. LIU (NASA, Lewis Research Center, Cleveland, OH; Scientific Research Associates, Glastonbury, CT), F. DAVOUDZADEH, W. R. BRILEY, and S. J. SHAMROTH (Scientific Research Associates, Inc., Glastonbury, CT) ASME, Transactions, Journal of Fluids Engineering (ISSN 0098-2202), vol. 112, Dec. 1990, p. 501-509. refs

(Contract NAS2-12635)

Copyright

Transonic strong blade-vortex interaction is numerically analyzed by solving the unsteady two-dimensional Navier-Stokes equations using an iterative implicit second order scheme. The dominant processes during the interaction are the development of large transverse pressure gradients in the upper leading edge region and the development of disturbances at the root of the lower surface shock wave. As a result of this interaction, high pressure pulses are emitted from the leading edge, and acoustic waves are radiated from the lower surface in a region originally occupied by a supersonic pocket. In addition, severe load variations occur when the vortex is within one chord length of the blade.

Author

A91-21066#

APPLICATION OF AN IMPLICIT RELAXATION METHOD SOLVING THE EULER EQUATIONS FOR TIME-ACCURATE UNSTEADY PROBLEMS

A. BRENNEIS and A. EBERLE (MBB GmbH, Munich, Federal Republic of Germany) ASME, Transactions, Journal of Fluids Engineering (ISSN 0098-2202), vol. 112, Dec. 1990, p. 510-520. refs

Copyright

A numerical procedure is presented for computing time-accurate solutions of flows about two and three-dimensional configurations using the Euler equations in conservative form. A nonlinear Newton method is applied to solve the unfactored implicit equations. Relaxation is performed with a point Gauss-Seidel algorithm ensuring a high degree of vectorization by employing the so-called checkboard scheme. The fundamental feature of the Euler solver is a characteristic variable splitting scheme (Godunov-type averaging procedure, linear locally one-dimensional Riemann solver) based on an eigenvalue analysis for the calculation of the fluxes. The true Jacobians of the fluxes on the right-hand side are used on the left-hand side of the first order in time-discretized Euler equations. A simple matrix conditioning needing only few operations is employed to evade singular behavior of the coefficient matrix. Numerical results are presented for transonic flows about harmonically pitching airfoils and wings. Comparisons with experiments show good agreement except in regions where viscous effects are evident. Author

A91-21176

INTERNATIONAL CONFERENCE ON HYPERSONIC AERODYNAMICS, VICTORIA UNIVERSITY OF MANCHESTER, ENGLAND, SEPT. 4-6, 1989, PROCEEDINGS

London, Royal Aeronautical Society, 1989, 385 p. For individual items see A91-21177 to A91-21197.

Copyright

Topics presented include an interim technology concept for an innovative fully reusable launch vehicle, some ground facilities for hypersonic simulation, a review of a code development and calibration program in support of the Aeroassist Flight Experiment, and hypersonic flow calculations using locally body-fitting and overlapping grids. Also presented are three-dimensional simulations of hypersonic flows, the solution of the Euler equations for a dissociating gas by the finite element method, the computation of high speed compressible viscous flows by total variation diminishing

(TVD) schemes, and nonadiabatic hypersonic boundary layers with nonsimilar pressure gradients. Also addressed are the modeling and calculation of laminar hypersonic boundary layer flows, the dynamic effects of hypersonic separated flow, and boundary layer transition and heat transfer on slender delta wings.

R.E.P.

A91-21180

THE AERODYNAMIC CHARACTERISTICS OF POWER-LAW BODIES IN CONTINUUM AND TRANSITIONAL HYPERSONIC FLOW

M. F. WESTBY and J. D. REGAN (Royal Aerospace Establishment, Weapon Systems Aerodynamics Div., Farnborough, England) IN: International Conference on Hypersonic Aerodynamics, Manchester, England, Sept. 4-6, 1989, Proceedings. London, Royal Aeronautical Society, 1989, p. 4.1-4.18. Previously announced in STAR as N90-22537. refs

The experimental studies presented were carried out to determine the aerodynamic characteristics of a series of power-law bodies of constant fineness ratio over a Reynolds number range covering both continuum and transitional rarefied flow. The tests were performed at Mach numbers of 10 in the low density tunnel and 12.8 in the gun tunnel at angles of incidence up to 30 degrees.

Author

A91-21183

HYPERSONIC FLOW CALCULATIONS USING LOCALLY BODY-FITTING AND OVERLAPPING GRIDS

I. M. HALL (Manchester, Victoria University, England) and S. SHAHPAR IN: International Conference on Hypersonic Aerodynamics, Manchester, England, Sept. 4-6, 1989, Proceedings. London, Royal Aeronautical Society, 1989, p. 9.1-9.14. refs Copyright

A calculation procedure utilizing overlapping grids is applied to the solutions of two-body problems, and its usefulness in the discretization of geometrically complicated flow regions is demonstrated. The extent of the overlap region between the different grids and the relative size of each subdomain are the principal factors affecting the accuracy and convergence speed of the scheme. Numerical results show that increasing the extent of the overlap region decreases the quantity of iterations for convergence. The time accuracy of the method is demonstrated by the solution of the swept cylinder problem where the general characteristics of a hypersonic flow (freestream M = 7.1) around the swept-cylinder are successfully simulated.

A91-21184

THREE-DIMENSIONAL SIMULATIONS OF HYPERSONIC FLOWS

M. PFITZNER, W. SCHROEDER, S. MENNE, and C. WEILAND (MBB GmbH, Munich, Federal Republic of Germany) IN: International Conference on Hypersonic Aerodynamics, Manchester, England, Sept. 4-6, 1989, Proceedings. London, Royal Aeronautical Society, 1989, p. 10.1-10.15. refs Copyright

Flow codes for the simulation of three-dimensional hypersonic flows are presented in this paper. The equilibrium real gas flow about a reentry configuration and about a two-stage reusable launch vehicle is simulated by a code based on the quasi-conservative form of the Euler equations in conjunction with a bow shock fitting algorithm and a Runge-Kutta time stepping scheme. Imbedded shocks are captured. Flows about more complicated geometries containing very strong shocks are simulated using a code based on a symmetric TVD discretization and explicit and implicit time integration.

A91-21188* Old Dominion Univ., Norfolk, VA. 2-D AND 3-D MIXING FLOW ANALYSES OF A SCRAMJET-AFTERBODY CONFIGURATION

OKTAY BAYSAL, MOHAMED E. ELESHAKY, and WALTER C. ENGELUND (Old Dominion University, Norfolk, VA) IN: International Conference on Hypersonic Aerodynamics, Manchester, England, Sept. 4-6, 1989, Proceedings. London, Royal

Aeronautical Society, 1989, p. 14.1-14.16. refs (Contract NAG1-811) Copyright

A cold simulant gas study of propulsion/airframe integration for a hypersonic vehicle powered by a scramjet engine is presented. The specific heat ratio of the hot exhaust gases are matched by utilizing a cold mixture of argon and Freon-12. Solutions are obtained for a hypersonic corner flow and a supersonic rectangular flow in order to provide the upstream boundary conditions. The computational test examples also provide a comparison of this flow with that of air as the expanding supersonic jet, where the specific heats are assumed to be constant. It is shown that the three-dimensional computational fluid capabilities developed for these types of flow may be utilized to augment the conventional wind tunnel studies of scramjet afterbody flows using cold simulant exhaust gases, which in turn can help in the design of a scramjet internal-external nozzle.

A91-21189* University of Southern California, Los Angeles. ON HYPERSONIC SHOCK LAYER AND ITS EXTENSION BEYOND THE NAVIER-STOKES LEVEL

H. K. CHENG (Southern California, University, Los Angeles, CA) IN: International Conference on Hypersonic Aerodynamics, Manchester, England, Sept. 4-6, 1989, Proceedings. London, Royal Aeronautical Society, 1989, p. 15.1-15.16. refs (Contract AF-AFOSR-88-0146; NAGW-1061)

Copyright

An extension of the continuum model beyond the Navier-Stokes (NS) level and related issues on problem formulation are examined for a hypersonic shock layer on the basis of Grad's thirteen-moment equations for a Maxwell gas. The 13-moment system, simplified consistently with a fully viscous version of the thin shock-layer approximation, permits correlation with the corresponding NS-based solution. With the exception of pressure and density, several flow properties including normal stress, shear stress and normal heat flux along a streamline are unaffected by translational nonequilibrium and are therefore predicted correctly by the NS solution to the leading order, even in a domain far from translational equilibrium where molecular-transport processes rank equally with the convection.

A91-21190 MODELLIZATION AND CALCULATION OF LAMINAR HYPERSONIC BOUNDARY LAYER FLOWS

M. L. SAWLEY, J. B. VOS, and S. WUETHRICH (Lausanne, Ecole Polytechnique Federale, Switzerland) IN: International Conference on Hypersonic Aerodynamics, Manchester, England, Sept. 4-6, 1989, Proceedings. London, Royal Aeronautical Society, 1989, p. 18.1-18.16. Research supported by AMDBA and Commission pour l'Encouragement de la Recherche Scientifique of Switzerland. refs

Copyright

A study of the physical modelization and calculation of hypersonic boundary layer flow relevant to high temperature re-entry conditions is presented. A model for air comprised of a mixture of five chemical species is considered. The transport coefficients are determined using a simplified formulation of kinetic theory. Special consideration is given to the effects of equilibrium and non-equilibrium chemistry and radiative transfer. Solutions for the laminar, compressible, boundary layer flow over two-dimensional planar and axisymmetric bodies are presented.

Author

A91-21191 HYPERSONIC VISCOUS INTERACTION REVISITED

JOHN L. STOLLERY and UWE BEYER (Cranfield Institute of Technology, Bedford, England) IN: International Conference on Hypersonic Aerodynamics, Manchester, England, Sept. 4-6, 1989, Proceedings. London, Royal Aeronautical Society, 1989, p. 20.1-20.13. refs
Copyright

A previous theoretical analysis of hypersonic viscous interaction on flat and curved surfaces is extended to the case of a flat

plate at incidence with a deflected trailing edge flap. The incidence range covered is 0 to 40 degrees with flap deflections of between 0 and 30 degrees. By combining simple rules for boundary layer growth, pressure distribution, and the effective shape of the body, the flowfield can be solved to give the pressure and heat transfer rate distributions together with the development of the displacement thickness. Sample calculations have been made for a Mach number of 25 at a freestream Reynolds number (based on distance to the hinge line) of 100,000. The results show how viscous interaction significantly modifies the loads on the flap and reduces control effectiveness.

A91-21192

DYNAMIC EFFECTS OF HYPERSONIC SEPARATED FLOW

T. P. ROBERTS and R. A. EAST (Southampton, University, England) IN: International Conference on Hypersonic Aerodynamics, Manchester, England, Sept. 4-6, 1989, Proceedings. London, Royal Aeronautical Society, 1989, p. 21.1-21.16. Research supported by the Ministry of Defence Procurement Executive. refs

Copyright

Results are presented of a study into the static and dynamic behavior of the hypersonic laminar and transitional separated flows generated over a flat plate-rearward flap configuration with special emphasis on the dynamic aspects. For the dynamic tests the motion of the flap consisted in rapid deployment from 0 to 40 degrees, followed by rapid reversal. This study has involved an experimental program in which many static pressure measurements and flow visualization experiments have been made for both the fixed flap and rapidly moving flap examples. A lag of up to about 1.3 degrees is found to occur between the flap angles for the fixed flap case and moving flap case, for a flap angular velocity of 50 rad/s, at which a given sized separation region is obtained. Consideration is also given to the evolution of the overall force and moment coefficients as the flap is rapidly deployed.

A91-21193

HYPERSONIC INTERACTIONS AND FLOW TRANSITION

A. F. KHORRAMI, A. J. NEISH, S. N. BROWN, and F. T. SMITH (University College, London, England) IN: International Conference on Hypersonic Aerodynamics, Manchester, England, Sept. 4-6, 1989, Proceedings. London, Royal Aeronautical Society, 1989, p. 22.1-22.19. refs

Copyright

Some theoretical research studies into hypersonic flow in connection with boundary layers, shock layers, nozzle flows, interactions, and their instability and transition properties are presented. These studies are concerned with the continuum range, for high Mach numbers and Reynolds numbers. Consideration is given to steady, laminar, external two-dimensional flows in the hypersonic strong-interaction regime, and analytical features and finite-difference computations are described. Specific aspects are presented of the instability and transition of the hypersonic boundary layer and inviscid shock layer, including viscous and inviscid modes in the compressible boundary layer, inviscid modes in the shock layer, their interaction, and nonlinear effects such as vortex-wave interaction and finite-time break-up in the unsteady interactive boundary layer.

A91-21194 BOUNDARY-LAYER TRANSITION AND HEAT TRANSFER ON SLENDER DELTA WINGS

D. I. A. POLL (Manchester, Victoria University, England) IN: International Conference on Hypersonic Aerodynamics, Manchester, England, Sept. 4-6, 1989, Proceedings. London, Royal Aeronautical Society, 1989, p. 23.1-23.19. refs

The problem of boundary-layer transition via three different mechanisms - attachment-line contamination, cross-flow instability and tripping by isolated roughness elements - is considered in the context of flow over a slender delta wing. Existing knowledge of the transition mechanisms is summarized and estimates of the shape of the resulting transition fronts are made by linking the

phenomena to the topography of the flow at the edge of the boundary-layer. Simple relations are presented for the estimation of leading edge heating at small angles of incidence and wing center-line heating at large angles of incidence.

Author

A91-21195* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

PREDICTION OF TRANSITIONAL (LAMINAR-TURBULENT) HYPERSONIC FLOWS USING THE PARABOLIZED NAVIER-STOKES EQUATIONS

UPENDER K. KAUL (NASA, Ames Research Center, Moffett Field; Sterling Federal Systems, Inc., Palo Alto, CA) IN: International Conference on Hypersonic Aerodynamics, Manchester, England, Sept. 4-6, 1989, Proceedings. London, Royal Aeronautical Society, 1989, p. 24.1-24.14. refs
Copyright

Hypersonic transitional flow predictions have been made using the parabolized Navier-Stokes equations with an algebraic transition/turbulence model by appropriately modulating the turbulent viscosity with the available intermittency functions for incompressible and compressible flows. A comparison between the predictions with and without a low Reynolds number correction has also been made. The predictions are compared with the available experimental data and with the theory over a range of Mach number. A simple Re(theta)/M(delta) criterion is shown to satisfactorily predict the meridional variation of the onset location of transition on a cone at a small angle of attack, whereas noon of the correlations discussed can do that. Various available correlations are discussed vis-a-vis the predictions as to the locations of the onset and the end of transition.

A91-21198#

THEORETICAL ANALYSIS OF SUPERSONIC GAS-PARTICLE TWO-PHASE FLOW AND ITS APPLICATION TO RELATIVELY COMPLICATED FLOW FIELDS

NATSUO HATTA, HITOSHI FUJIMOTO, RYUJI ISHII (Kyoto University, Japan), and JUN-ICHI KOKADO (Niihama College of Technology, Japan) Kyoto University, Faculty of Engineering, Memoirs (ISSN 0023-6063), vol. 52, July 1990, p. 115-185. refs (Contract MOESC-01550532)

Supersonic flows of a two-phase gas-particle mixture are considered in several complex situations. For a flow field in which the gas and particle phases interact, a model is constructed by incorporating the particle-trajectory method into the gas phase equations in the two-fluid model. Single-phase and two-phase flows of jets exhausted from a sonic nozzle are examined in detail. Single-phase results are compared with experimental results to see if the scheme is reliable. For two-phase results, particles with the same velocity and temperature as those of the gas are injected at the nozzle exit plane, and the effect of the presence of particles is studied by comparison with single-phase results. Next, results of numerical experiments in which jets impinge on a flat plane normal to the jet axis are considered for both the single-phase and two-phase cases. For a single-phase flow, periodic unstable oscillations are found to give fairly good agreement with experimental results. Finally, supersonic gas-particle two-phase flows around a sphere are simulated. The instability in particle motion near the stagnation region in the shock layer is discussed in detail.

A91-21242* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

FLOW STUDIES IN CLOSE-COUPLED VENTRAL NOZZLES FOR STOVL AIRCRAFT

JACK G. MCARDLE (NASA, Lewis Research Center, Cleveland, OH) and C. FREDERIC SMITH (NASA, Lewis Research Center; Sverdrup Technology, Inc., Cleveland, OH) SAE, Aerospace Atlantic Meeting, Dayton, OH, Apr. 23-26, 1990. 22 p. (SAE PAPER 901033) Copyright

Flow in a generic ventral nozzle system was studied experimentally and analytically with the PARC3D computational fluid dynamics program (a full Navier-Stokes equations solver) in order to evaluate the program's ability to predict system

performance and internal flow patterns. A generic model of a tailpipe with a rectangular ventral nozzle, about one-third of full size, was tested with unheated air at steady-state pressure ratios up to 4.0. Measurements showed about 5.5 percent flow-turning loss and reasonable nozzle performance coefficients. The flow turned more than the designed 90 deg, causing an aftward axial component in the total thrust. Flow behavior into and through the ventral duct is discussed and illustrated with paint streak flow visualization photographs. PARC3D graphic images are shown for comparison with the experiment photographs. The program successfully predicted internal flow patterns; it also computed thrust and discharge coefficients within 1 percent of measured values.

Author

A91-21257

TURBULENCE MODELING FOR COMPLEX GROUND EFFECTS FLOWS

ROBERT E. CHILDS (Nielsen Engineering and Research, Inc., Mountain View, CA) SAE, Aerospace Atlantic Meeting, Dayton, OH, Apr. 23-26, 1990. 13 p. Research supported by DARPA and USAF. refs

(SAE PAPER 901062) Copyright

The turbulent impinging jet flows associated with vertical or short take-off and landing (VTOL) aircraft hovering in ground effect can have a critical effect on aircraft performance, and they are modeled very poorly by existing models. Three flow phenomena representative of VTOL ground effects flows, the upwash fountain, the ground vortex, and the impingement zone of a round jet, are considered. Extensions to the k-epsilon model are presented which are designed to account for streamline curvature, large scale mixing, and anisotropy. The extensions significantly improve the model's ability to predict some aspects of these flows. Requirements for further model development are identified.

Author

A91-21327#

THREE-DIMENSIONAL UNSTEADY FLOW FIELDS ELICITED BY PITCHING A CANARD AND FORWARD SWEPT WING CONFIGURATION

JAY DEANDREA, JAMES W. ROACHE, and MICHAEL C. ROBINSON (Colorado, University, Boulder) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 18 p. Research sponsored by USAF. refs

(AIAA PAPER 91-0005) Copyright

Unsteady, three-dimensional flow fields generated by sinusoidal oscillations of a combined canard/forward swept wing planform were examined across a range of dynamic parameters. Pitch motions which exceeded the planform static stall angle generated large vortical flow structures. Multiple exposure, phase locked. stroboscopic photographs documented the three-dimensional nature of both flow structures and interactions. Dynamic stall vortices were produced on both the canard and trailing wing. The flow fields in the region of the canard tip and wing tip were dominated by conical tip vortices. The unsteady separated flow fields were temporally dependent on reduced frequency. However, the flow development differed from that previously observed with a solitary forward swept wing pitched about quarter chord. The addition of the canard further complicated the flow fields by introducing additional three-dimensional structures which impinged on the trailing forward swept wing. Dynamic separation from the forward swept wing dominated the surrounding flow and altered the flow separation from the canard. Author

A91-21328#

ON THE FÖRMATION AND CONTROL OF THE DYNAMIC STALL VORTEX ON A PITCHING AIRFOIL

MIGUEL R. VISBAL (USAF, Wright Aeronautical Laboratories, Wright-Patterson AFB, OH) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 17 p. refs (AIAA PAPER 91-0006)

Dynamic stall vortex formation is described based on laminar Navier-Stokes computations performed for an airfoil pitching at constant rate. At low Reynolds number, the vortex is initiated by

the roll-up of the strong shear layer which is created by the appearance of a thin unsteady region of flow reversal, and not by the growth of a laminar separation bubble or by the eruption of fluid particles from the surface. The effects of pitch rate, pivot location, and Reynolds number on the dynamic stall vortex formation were also investigated. It is shown that, at higher pitch rates, the process of flow reversal is more abrupt, and a thinner and stronger shear layer develops near the airfoil leading edge.

The resulting vortex is smaller and forms more rapidly and closer to the leading edge.

L.K.S.

A91-21329*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

A STUDY OF DYNAMIC STALL USING REAL TIME INTERFEROMETRY

L. W. CARR (NASA, Ames Research Center; U.S. Army, Aeroflightdynamics Directorate, Moffett Field, CA), M. S. CHANDRASEKHARA (Navy-NASA Joint Institute of Aeronautics; U.S. Naval Postgraduate School, Monterey, CA), S. AHMED (MCAT Institute, San Jose, CA), and N. J. BROCK (Aerometrics, Sunnyvale, CA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 13 p. Research supported by the U.S. Navy and U.S. Army. refs

(Contract AF-AFOSR-ISSA-89-0067) (AIAA PAPER 91-0007) Copyright

Dynamic stall over an oscillating airfoil in compressible flow was studied using a real-time interferometry technique. Instantaneous flow field data was obtained for various unsteady as well as steady flow conditions. Comparison of steady flow interferograms with those taken in unsteady flow reveal a significant delay in the development of leading edge suction peaks in the unsteady case. The interferograms permit detailed analysis of the leading edge pressure field; as many as 13 pressure values have been obtained around the leading edge in the first 1 percent of the airfoil chord. The results offer a significant new insight into the character of the dynamic stall vortex, and the stall delay that is observed during dynamic motions.

A91-21331#

VORTICITY DYNAMICS OF 2-D AND 3-D WINGS IN UNSTEADY FREE STREAM

ISMET GURSUL, HANK LIN, and CHIH-MING HO (Southern California, University, Los Angeles, CA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 8 p. refs (Contract F49620-88-C-0061)

(AIAA PAPER 91-0010) Copyright

The response of delta wings with different aspect ratios and a two-dimensional wing in unsteady free stream was investigated in a vertical water channel. It was found that the characteristics of the lift forces depend on whether the leading edge vortex convects. For delta wings with attached leading edge vortex, the lift forces are not a function of the reduced frequency, since there is no intrinsic time scale. At large angle of attack, the leading edge vortices shed and convect downstream. Consequently, an intrinsic time scale appears and the lift depends on the reduced frequency, which is the ratio of the convection time of the vortex on the chord, to the period of the free stream variation. This is very similar to the lift characteristics of a two-dimensional wing. For the NACA-0012 airfoil, very high lift coefficients could be obtained in the post stall region by trapping a large coherent vortex on the chord for an appreciable portion of the cycle, which provides a lift coefficient larger than 10. Author

A91-21333#

EXPERIMENTAL INVESTIGATION OF A 2-D SCRAMJET INLET AT MACH NUMBERS OF 8 TO 18 AND STAGNATION TEMPERATURES OF 4,100K

M. A. S. MINUCCI (Centro Tecnico Aeroespacial, Sao Jose dos Campos, Brazil) and H. T. NAGAMATSU (Rensselaer Polytechnic Institute, Troy, NY) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 13 p. refs (AIAA PAPER 91-0013) Copyright

An investigation of the internal flow in a two-dimensional variable

geometry scramjet inlet was performed using the RPI .61 m diameter Hypersonic Shock Tunnel. The stagnation conditions investigated were 4100 K and 5.5 MPa with a corresponding stagnation enthalpy of 6.5 MJ/Kg. The selected free stream Mach numbers were 8, 10, 12, 15, and 18 corresponding to free stream Reynolds numbers of 180,000-13,000/m range and free stream Knudsen numbers in the 1-32 range. Surface and pitot pressure measurements at these flow conditions indicate very complex flow structure due to the impingement of the cowl shock wave on the inlet ramp boundary layer. It is also noted that higher pitot pressures exist in the duct region at Mach 18 than those measured at Mach 15.

A91-21334#

CFD VALIDATION AND WIND TUNNEL TEST FOR A NASP SINGLE EXPANSION RAMP NOZZLE IN THE TRANSONIC REGIME

ISMAIL O. HINDASH and FRANK W. SPAID (McDonnell Douglas Corp., Saint Louis, MO) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 7 p. refs (AIAA PAPER 91-0015) Copyright

Wind tunnel test data were obtained at Mach 1.2 to validate a two-dimensional zonal Navier-Stokes computer code for various single-expansion-ramp-nozzle flowfields. The sensitivity of computed results to variations in computational modeling parameters, such as grid topology, grid density, and turbulence modeling, has been evaluated. Various turbulence models were used. Wind tunnel measurements and CFD predictions of thrust coefficient were compared and found to agree within 5 percent (+ or - 0.0375 thrust coefficient). A parametric study of jet stagnation to freestream static pressure ratios is also provided.

Author

A91-21335#

EXPERIMENTAL STUDY ON MIXING PHENOMENA IN SUPERSONIC FLOWS WITH SLOT INJECTION

SHIGERU ASO (Kyushu University, Fukuoka, Japan), MASAFUMI KAWAI, YASUNORI ANDO (Ishikawajima-Harima Heavy Industries Co., Ltd., Yokohama, Japan), and SATOSHI OKUYAMA AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 7 p. refs

(AIAA PAPER 91-0016) Copyright

The complex flowfields induced by gaseous secondary flow injected into supersonic flow have been studied experimentally at free-stream Mach 3.8, total pressure of 1.2 MPa, and Reynolds number of 2.0 x 10 to the 7th. The results show that the bow shock wave/turbulent boundary layer interaction induces the boundary layer separation in front of the injection. In the interacting flow, barrel shock waves and Mach disk are observed clearly. As the total pressure ratio or thickness of nozzle is increased, the separation region, the extent of the interaction region and shock structures enlarge significantly.

A91-21338*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

NUMERICAL PREDICTION OF THE UNSTEADY FLOWFIELD AROUND THE F-18 AIRCRAFT AT LARGE INCIDENCE

YEHIA M. RIZK (NASA, Ames Research Center, Moffett Field, CA) and KEN GEE (MCAT Institute, Moffett Field, CA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 19 p. refs

(AIAA PAPER 91-0020) Copyright

This paper describes a numerical method capable of solving the steady and unsteady viscous flow around complete aircraft configurations at high angles of attack. This method is used to simulate the external flow around the F-18 aircraft, including deflected control surfaces. The current technique employs a generalized overset zonal grid scheme to decompose the computational space around the aircraft. The grid around various components of the aircraft are created numerically using a three-dimensional hyperbolic grid generation procedure. The Reynolds-averaged Navier-Stokes equations are integrated using a time-accurate, implicit procedure. Results for the turbulent flow

around the F-18 aircraft at 30 degrees angle of attack show the details of the flowfield structure, including the unsteadiness created by the vortex burst and the resulting fluctúating airloads exerted on the vertical tail. The computed results agree fairly well with flight data for surface pressure, surface flow pattern, vortex burst location, and the dominant frequency for tail load fluctuations.

Author

A91-21341#

NUMERICAL SIMULATION OF SUPERSONIC UNSTEADY FLOW FOR MULTIBODY CONFIGURATIONS

ABDOLLAH ARABSHAHI and DAVID L. WHITFIELD (NSF, ... Research Center for Computational Field Simulation; Mississippi State University, Mississippi State) AlAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 16 p. Research supported by USAF. refs

(AIAA PAPER 91-0023) Copyright

An implicit, upwind numerical scheme is presented for solving the unsteady supersonic flowfields around complex configurations. This scheme solves the time-dependent thin-layer Navier-Stokes equations in generalized time-dependent curvilinear coordinate systems. Accuracy is achieved by a conservative finite-volume discretization which satisfies the geometric conservation law in generalized moving coordinate systems. The algorithm is based on flux-difference splitting using Roe averaged variables. The scheme is up to third-order accurate in space and first-order accurate in time. The viscous and diffusive terms are treated explicitly, and the turbulence effects are modeled with the well known Baldwin and Lomax mixing length model. Computational results have been obtained for a range of configurations in the supersonic speed regime to evaluate the accuracy and reliability of the present code. The computed results show favorable agreement with experiments in the flow regions which are influenced by viscous effects.

A91-21343#

ON THE STABILITY OF CONDUCTION DOMINATED NATURAL CONVECTION IN NEAR-VERTICAL SLOTS AND HORIZONTAL CYLINDRICAL ANNULI

A. P. ROTHMAYER (Iowa State University of Science and Technology, Ames) and D. B. FANT (USAF, Institute of Technology, Wright-Patterson AFB, OH) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 10 p. Research supported by USAF and United Technologies Corp. refs (AIAA PAPER 91-0027) Copyright

The stability of natural convection is examined for flow in narrow inclined slots and horizontal annuli, in the limit of high Rayleigh number and flow Prandtl number. The basic steady flow is driven by the temperature difference across the slot/annulus and the local gravitational field, whereas the instability is forced by a prescribed temperature fluctuation on the left, or inner, wall the so-called receptivity problem. The closure of the upper and lower branches of the neutral stability curve is found to be governed by the full Navier-Stokes equations at very small gap spacings. At larger gap spacings the lower branch of the neutral stability curve is governed by a classical boundary layer problem. Along the upper branch, the flow splits into a three-region structure with a Rayleigh instability in the central inviscid region. It is argued that the entire instability process at low Prandtl numbers is effectively a Rayleigh instability, with both viscosity and exponential decay to the central core of the slot/annulus setting the boundaries of the neutral stability curve. Detailed calculations are presented for the vertical slot, while extensions for the inclined slot and cylindrical Author annulus are noted.

A91-21344#

ASYMPTOTIC THEORY IN AERODYNAMICS

J. D. COLE (Rensselaer Polytechnic Institute, Troy, NY) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 45 p. refs

(Contract AF-AFOSR-88-0037)

(AIAA PAPER 91-0028) Copyright

Asymptotic approximation to the Euler equations by limit process

expansions is studied. Application is made to slender wing theory, transonic slender body theory, transonic planar wings, wind-tunnel corrections, supersonic far-fields, and hypersonic lifting wings. Various limits and asymptotic matching are discussed and important results are summarized.

Author

A91-21346#

STRIP BLOWING FROM A WEDGE AT HYPERSONIC SPEEDS
A. F. MESSITER, T. C. ADAMSON, JR. (Michigan, University, Ann Arbor), and M. D. MATARRESE AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 23 p. refs (AIAA PAPER 91-0032) Copyright

Surface pressure distributions are derived when gas is injected through a strip at the surface of a thin wedge in uniform flow at high Mach number. The blowing velocities are such that the flow separates ahead of the blowing region, but the layer of blown gas remains thin. Asymptotic descriptions of the separation region and the blowing region are reviewed and extended, for weak laminar viscous interaction and a cooled surface.

Author

A91-21354*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA. EFFECTS OF SWEEP ANGLE AND PASSIVE

EFFECTS OF SWEEP ANGLE AND PASSIVE RELAMINARIZATION DEVICES ON A SUPERSONIC SWEPT-CYLINDER BOUNDARY LAYER

T. R. CREEL (NASA, Langley Research Center, Hampton, VA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 13 p. refs (AIAA PAPER 91-0066)

The effects of passive leading-edge devices on the boundary layer of a swept cylinder in supersonic flow with very low free-stream disturbance levels are investigated. Tests are conducted at Mach 3.5 over a free-stream Reynolds number based on model diameter of 15,000 to 150,000, and sweep angles of 60 deg and 76 deg are used to evaluate possible sweep-angle effects. The devices tested include a sawtoothed leading edge, square device, and a fence. It is observed that at a sweep angle of 76 deg, relaminarization of the supersonic attachment-line flow is achieved by several of the devices, while no devices are successful at a sweep angle of 60 deg.

A91-21355*# Analytical Services and Materials, Inc., Hampton, VA.

DESIGN LIMITS OF COMPRESSIBLE NLF AIRFOILS

JEFF VIKEN (Analytical Services and Materials, Hampton, VA) and R. D. WAGNER (NASA, Langley Research Center, Hampton, VA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 33 p. refs (AIAA PAPER 91-0067)

There has been considerable success in the design of practical low-speed natural laminar flow (NLF) airfoils, with significant profile drag reduction from conventional turbulent flow airfoils. The favorable lowspeed results give an incentive to explore the possibilities of high-subsonic speed NLF airfoil design. The design problem at higher freestream Mach numbers is more severe than for low-speed designs because these high-speed airplanes typically fly at higher chord Reynolds numbers than low-speed NLF airplanes. As the Mach number increases, the main priority changes from the use of sufficient acceleration to achieve NLF for low-drag, to the delay of separation in the far aft pressure recovery region. In this effort, NLF airfoils have been designed for Mach numbers ranging from 0.60 to 0.80 and chord Reynolds numbers of 30 x 10 to the 6th and 40 x 10 to the 6th.

A91-21356*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

NAVIER-STOKES SIMULATION OF A CLOSE-COUPLED CANARD-WING-BODY CONFIGURATION

EUGENE L. TU (NASA, Ames Research Center, Moffett Field, CA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 20 p. refs (AIAA PAPER 91-0070) Copyright

The thin-layer Navier-Stokes equations are solved for the flow

about a coplanar close-coupled canard-wing-body configuration at a transonic Mach number of 0.90 and at angles of attack ranging from 0 to 12 degrees. The influence of the canard on the wing flowfield, including canard-wing vortex interaction and wing vortex breakdown, is investigated. A study of canard downwash and canard leading-edge vortex effects, which are the primary mechanisms of the canard-wing interaction, is emphasized. Comparisons between the computations and experimental measurements of surface pressure coefficients, lift, drag and pitching moment data are favorable. A grid refinement study for configurations with and without canard shows that accurate results are obtained using a refined grid for angles of attack where vortex burst is present. At an angle of attack of approximately 12 deg, favorable canard-wing interaction which delays wing vortex breakdown is indicated by the computations and is in good agreement with experimental findings.

Author

THIN-LAYER NAVIER-STOKES SOLUTIONS FOR TRANSONIC **MULTI-BODY INTERFERENCE**

PRISCA L. LYNCH (USAF, Armament Directorate, Eglin AFB, FL) and MAGDI H. RIZK (Sverdrup Technology, Inc., Eglin AFB, FL) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 10 p. refs

(AIAA PAPER 91-0071)

A thin-layer, Navier-Stokes flow solver was used to predict the aerodynamics about interfering bodies. Surface pressure distributions compared very well with available experimental data for freestream Mach numbers between 0.60 and 1.20 at an interbody separation distance of 0.8 diameters. Five separate interference regions were identified which contribute to the total interference force, which was an attractive force for all cases investigated. In general, the level of interference increases with increasing free stream Mach number, and decreases with increasing separation distance. Author

A91-21368# OPTIMUM SPACING CONTROL OF THE MARCHING GRID GENERATION

KAZUHIRO NAKAHASHI (Osaka Prefecture, University, Sakai, AIAA, Aerospace Sciences Meeting, 29th, Reno, NV. Jan. 7-10, 1991. 12 p. refs

(AIAA PAPER 91-0103) Copyright

A point-wise marching procedure to generate the grid is developed for external viscous flow computations about complex geometries. The grid spacings in the marching direction are controlled by using an optimization technique in which the advancing grid surface is minimized under an isoperimetric constraint. This is physically similar to the minimization of the free surface of a liquid by the surface tension. Thus the resulting grid is expected to be naturally smooth even in concave regions. For three-dimensional problems, the method is applied to a directionally-structured, prismatic mesh. The bases of the grid cells are triangles which cover the three-dimensional surface in an unstructured manner, while the direction away from the body is structured so as to achieve an efficient computation for viscous flows. The method is applied to generate a two-dimensional structured O-grid around a multielement airfoil, and a directionally-structured grid about a wing-fuselage configuration.

A91-21373#

APPLICATION OF THREE-DIMENSIONAL VISCOUS ANALYSIS TO TURBOFAN FORCED MIXERS

MOHAMED A. ABOLFADL and ARUN K. SEHRA (Textron Lycoming, Stratford, CT) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 14 p. refs (AIAA PAPER 91-0131) Copyright

A combined analytical and experimental study was conducted to establish an analytical procedure for optimizing the design of forced mixers for application to high bypass ratio turbofan engines. This two part study involved the application of a fully three-dimensional viscous procedure to a series of mixer configurations, followed by an experimental program to validate the analytical procedure. The viscous analysis used for this study involved combining two robust and versatile codes: PARC-3D, a flow solver, with INGRID-3D grid generation code. Comparison between the Navier-Stokes solution and detailed experimental measurements were made for five different mixer configurations. Both global performance parameters and detailed temperature distributions were compared. Predicted results were found to be in excellent agreement with test data.

A91-21374*# Purdue Univ., West Lafavette, IN. DEVELOPMENT OF A SOLUTION ADAPTIVE UNSTRUCTURED SCHEME FOR QUASI-3D INVISCID FLOWS THROUGH ADVANCED TURBOMACHINERY CASCADES

WILLIAM J. USAB, JR. and YI-TSANN JIANG (Purdue University, West Lafayette, IN) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 19 p. refs (Contract NAG3-1127)

(AIAA PAPER 91-0132) Copyright

The objective of the present research is to develop a general solution adaptive scheme for the accurate prediction of inviscid quasi-three-dimensional flow in advanced compressor and turbine designs. The adaptive solution scheme combines an explicit finite-volume time-marching scheme for unstructured triangular meshes and an advancing front triangular mesh scheme with a remeshing procedure for adapting the mesh as the solution evolves. The unstructured flow solver has been tested on a series of two-dimensional airfoil configurations including a three-element analytic test case presented here. Mesh adapted quasi-threedimensional Euler solutions are presented for three spanwise stations of the NASA rotor 67 transonic fan. Computed solutions are compared with available experimental data. Author

A91-21381#

VISCOUS HIGH SPEED FLOW COMPUTATIONS BY ADAPTIVE MESH EMBEDDING TECHNIQUES

F. BASSI (Catania, Universita, Italy), F. GRASSO (Roma I, Universita, Rome, Italy), M. SAVINI (CNR-CNPM, Milan, Italy), and M. PASSALACQUA AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 11 p. refs (AIAA PAPER 91-0149) Copyright

In the present work an adaptive mesh embedding technique has been developed for the solution of viscous high Mach number flows. The equations solved are the two-dimensional full Navier Stokes equations. A Runge Kutta finite volume formulation is used with symmetric discretization of both inviscid and viscous fluxes. and adaptive dissipation. The technique has been applied to a variety of flows over a (double ellipse) blunt body to show the effects of the topology of the adapted region on the solution accuracy. Computed results indicate that the selection of the most appropriate criterion for adaptation depends upon the physical phenomena of interest.

A91-21389*# Analytical Services and Materials, Inc., Hampton,

CROSS-FLOW VORTEX STRUCTURE AND TRANSITION MEASUREMENTS USING MULTI-ELEMENT HOT FILMS

NAVAL K. AGARWAL, SIVA M. MANGALAM (Analytical Services and Materials, Inc., Hampton, VA), DAL V. MADDALON, and FAYETTE S. COLLIER, JR. (NASA, Langley Research Center, Hampton, VA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 14 p. refs

(AIAA PAPER 91-0166) Copyright

An experiment on a 45-degree swept wing was conducted to study three-dimensional boundary-layer characteristics using surface-mounted, micro-thin, multi-element hot-film sensors. Cross-flow vortex structure and boundary-layer transition were measured from the simultaneously acquired signals of the hot films. Spanwise variation of the root-mean-square (RMS) hot-film signal show a local minima and maxima. The distance between two minima corresponds to the stationary cross-flow vortex wavelength and agrees with naphthalene flow-visualization results. The chordwise and spanwise variation of amplified traveling

(nonstationary) cross-flow disturbance characteristics were measured as Reynolds number was varied. The frequency of the most amplified cross-flow disturbances agrees with linear stability theory. Author

A91-21393*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

AN ALGEBRAIC RNG-BASED TURBULENCE MODEL FOR THREE-DIMENSIONAL TURBOMACHINERY FLOWS

K. R. KIRTLEY (NASA, Lewis Research Center; Sverdrup Technology, Inc., Brook Park, OH) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 13 p. refs (Contract NAS3-25266) (AIAA PAPER 91-0172)

An algebraic eddy viscosity turbulence model based on Renormalization Group (RNG) theory for complex three-dimensional turbomachinery flows is presented. Modifications are made to the baseline RNG model for wakes and separated flows. The model has several advantages over popular algebraic models most notably its lack of empirically determined coefficients. The model is used to compute the mean flow in a low speed axial compressor rotor. The agreement with blade boundary layer and radial flow experimental data is very good and shows improvement over the Baldwin-Lomax model. The development of the tip leakage vortex is also well predicted. The computed wake decay also compares favorably with recent experimental data.

A91-21394# CALCULATION OF THE FLOW IN A CIRCULAR S-DUCT

R. H. NICHOLS (Calspan Corp.; USAF, Arnold Engineering Development Center, Arnold AFB, TN) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 12 p. refs (AIAA PAPER 91-0174)

The flow through a circular S-duct inlet has been computed and compared to experimental data at two mass-flow rates. Computations were performed using a three-dimensional Navier-Stokes code with both an algebraic and a two-equation turbulence model. The predictions for the low mass-flow-rate condition were in excellent agreement with the experiment for both turbulence models. The predictions for the strongly separated, high mass-flow-rate case have the same trends as the experiment, but do not accurately reproduce the proper levels. The two-equation turbulence model produces better results than does the algebraic model for both mass-flow-rate cases.

National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

NUMERICAL ALGORITHM COMPARISON FOR THE ACCURATE AND EFFICIENT COMPUTATION OF HIGH-INCIDENCE VORTICAL FLOW

NEAL M. CHADERJIAN (NASA, Ames Research Center, Moffett Field, CA) AlAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 20 p. refs

(AIAA PAPER 91-0175) Copyright

Computations from two Navier-Stokes codes, NSS and F3D, are presented for a tangent-ogive-cylinder body at high angle of attack. Features of this steady flow include a pair of primary vortices on the leeward side of the body as well as secondary vortices. The topological and physical plausibility of this vortical structure is discussed. The accuracy of these codes are assessed by comparison of the numerical solutions with experimental data. The effects of turbulence model, numerical dissipation, and grid refinement are presented. The overall efficiency of these codes are also assessed by examining their convergence rates, computational time per time step, and maximum allowable time step for time-accurate computations. Overall, the numerical results from both codes compared equally well with experimental data, however, the NSS code was found to be significantly more efficient Author than the F3D code.

A91-21396#

CALCULATION OF VORTEX FLOWFIELDS AROUND FOREBODIES AND DELTA WINGS

J. E. DEESE, R. K. AGARWAL, and J. G. JOHNSON (McDonnell Douglas Research Laboratories, Saint Louis, MO) Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 19 p. refs (AIAA PAPER 91-0176) Copyright

A Navier-Stokes solver has been applied to the flow about forebodies and delta wings at angle of attack. For forebodies, the method is able to simulate the symmetric flow that occurs at alpha of 35 deg or less and the asymmetric flow that occurs at alpha of 35-60 deg. In addition, the method is able to simulate the vortex breakdown phenomena that occur under certain conditions for delta wings. Computational predictions of surface pressure, normal force, side force, and off-body velocity vectors are compared with experimental results for flowfields which include vortex asymmetry and/or breakdown.

A91-21397#

A RAPIDLY CONVERGING VISCOUS/INVISCID COUPLING CODE FOR MULTI-ELEMENT AIRFOIL CONFIGURATIONS

KAZUHIRO KUSUNOSE, LAURENCE B. WIGTON, and PAUL T. MEREDITH (Boeing Commercial Airplanes, Seattle, WA) AIAA. Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 11 p. refs

(AIAA PAPER 91-0177) Copyright

A rapidly converging viscous/inviscid coupling code for two-dimensional multielement airfoil analysis has been developed. An integral procedure is employed to account for the boundary layers and viscous wakes. A finite element full potential code is used to compute the outer flow. The modified streamline H-grid for the outer inviscid flow is generated with the support of a panel code. A new quasi-simultaneous method is introduced to the viscous/inviscid coupling process to achieve rapid convergence. The present code is capable of analyzing both single and multielement airfoil configurations in laminar, transitioning and turbulent flows, including fixed or free transition, separations and reattachments. Accuracy is further enhanced by adapting the wake locations. Numerical results for two and four element airfoil configurations are compared with experimental data. Agreement is generally very good for pre-stall conditions. As results in this paper show, precise locations of transition points and wakes significantly impact flap loadings, especially near maximum lift.

Author

A91-21402#

NUMERICAL INFLUENCE OF UPWIND TVD SCHEMES ON TRANSONIC AIRFOIL DRAG PREDICTION

G. SEIDER and D. HAENEL (Aachen, Rheinisch-Westfaelische Technische Hochschule, Federal Republic of Germany) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 12 p. refs

(AIAA PAPER 91-0184) Copyright

The influence of upwind TVD schemes on the solution of viscous transonic airfoil flow is investigated. A flux-difference and a flux-vector splitting formulation are used to solve the thin-layer Navier-Stokes equation. Both splitting formulations, which are designed for the solution of hyperbolic conservation laws, produce numerical dissipation which can interfere with the physical viscosity and heat conduction included in the Navier-Stokes equation. Numerical experiments are presented, investigating the impact of dissipative elements like upwind damping, entropy correction and limiter functions on the solution of steady transonic airfoil flows and in particular on the prediction of airfoil forces. Author

A91-21403#

CALCULATION OF THREE-DIMENSIONAL LOW REYNOLDS **NUMBER FLOWS**

TUNCER CEBECI, HSUN H. CHEN (California State University, Long Beach), and BENG P. LEE AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 11 p. refs (AIAA PAPER 91-0187) Copyright

An interactive boundary-layer stability-transition approach is used to calculate the performance characteristics of an infinite swept wing at low Reynolds numbers for several angles of attack. The inviscid flow solutions are obtained from an inviscid method based on conformal mapping and the viscous flow solutions from an inverse boundary-layer scheme which use the Hilbert integral formulation to couple the inviscid and viscous flow. The onset of transition is calculated by the e exp n method based on two- and three-dimensional versions of linear stability theory. The effect of sweep angle on lift and drag coefficients is investigated together with the accuracy of predicting the onset of transition with two versions of the e exp n method.

A91-21404# AERODYNAMIC SHAPE DESIGN USING STREAM-FUNCTION-COORDINATE (SFC) FORMULATION

GEORGE S. DULIKRAVICH (Pennsylvania State University, University Park) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 7 p. refs (AIAA PAPER 91-0189) Copyright

A new approach to the inverse design of two-dimensional aerodynamic shapes has been developed. This formulation is based on a Stream-Function-Coordinate (SFC) concept for steady, irrotational, compressible, inviscid, planar flows. It differs from the classical stream function formulation in that it treats the y-coordinate of each point on a streamline as a function of the x-coordinate and the stream function psi, that is, Y = Y(x,psi). This new formulation is especially suitable for the computation of stream line shapes, and therefore, for determination of aerodynamic shapes subject to specified surface pressure distributions. In addition, the SFC method is equally suitable for the analysis of the flowfields around given shapes. A computer code has been developed on the basis of SFC formulation. It is capable of performing flowfield analysis and inverse design of airfoil cascade shapes by changing a single input parameter.

A91-21437#

AERODYNAMIC CHARACTERISTICS OF THREE GENERIC FOREBODIES AT HIGH ANGLES OF ATTACK

FREDERICK W. ROOS and JEROME T. KEGELMAN (McDonnell Douglas Research Laboratories, Saint Louis, MO) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 11 p. refs

(Contract N00019-88-C-0357)

(AIAA PAPER 91-0275) Copyright

A comprehensive series of experiments has been conducted to quantitatively define the vortical flowfields of three generic forebody shapes at high angles of attack. This paper reports on the first stage of the research effort, which involved measurement of aerodynamic loads and surface pressures for the three bodies at angles of attack up to 60 degs, and for several Reynolds numbers with both laminar and turbulent separation. Forebodies with circular and elliptical cross sections developed large side forces for alpha greater than 30 degs, whereas a chined body did not generate a side force at any a. The chined body, however, developed the strongest normal force at all angles of attack. Placement of a small bump at the forebody nose stabilized the flow asymmetry for both the tangent ogive and the elliptical body. Transition strips successfully produced the simulation of high-Reynolds-number, fully turbulent flow separations. Turbulent separation reduced the nonlinear vortex lift on both the tangent ogive and the elliptical body. While side force was also reduced on the tangent ogive, it was actually increased on the elliptical body. Turbulent separation made no difference in the chined body loads.

AQ1-21438#

VISCOUS FLOW SIMULATION OF FIGHTER AIRCRAFT

OH J. KWON and LAKSHMI N. SANKAR (Georgia Institute of Technology, Atlanta) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 10 p. Research supported by USAF. refs

(AIAA PAPER 91-0278) Copyright

A computer code capable of solving the three-dimensional

compressible, unsteady, Navier-Stokes equations has been developed. This solver has been applied to steady and unsteady subsonic flow past highly swept fighter aircraft wings and wing-body-inlet-tail combinations at high angles of attack. Calculations for isolated wings show the formation of a leading edge vortex and the resultant increase in lift. At sufficiently high angles of attack, the lift distribution over the wing begins to oscillate in time. Calculations for wings subjected to a ramp motion reveal substantially higher lift loads prior to stall than for the static fixed angle of attack conditions. The results for wing-body-inlet combinations show separated flow off the sharp inlet leading edge. vortex formation over wing-inlet interface region and over the wing leading edge. The vortex core trajectory and the flow field agree well with the experimental results. The analysis shows near-periodic fluctuations in the sectional lift coefficients with time. A Fourier analysis of the sectional lift coefficients reveals the flow field to be rich in Strouhal number-like fundamental frequencies. Calculations have also been carried out for a vertical tail configuration, which indicates large lateral forces on the vertical tail due to interaction between the vertical tail and the vortical flow off the wing-body-inlet configuration. Author

A91-21442*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

ANĀLŸSIS OF FLOW ON CONES AND CYLINDERS USING DISCRETE VORTEX METHODS

THOMAS G. GAINER (NASA, Langley Research Center, Hampton, VA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 14 p. refs

(AIAA PAPER 91-0288) Copyright

Discrete vortex methods have been developed to investigate the vortex flows on cones and two-dimensional cylinders. The cone problem was solved by assuming that, to meet conical flow and zero-force conditions, the vortices move radially away from the body at a given cross-section. The two-dimensional cylinder problem was solved by limiting the velocity along the zero streamline surrounding the vortex field to two times freestream velocity and by limiting the lateral movement of the vortices. Variations in vortex position and strength with time were determined by taking into account the rate at which circulation is generated at separation points on the body. The calculated vortex positions and strengths were in good agreement with available experimental data. Viscous effects could be accounted for by adding empirically determined damping terms to the velocity equations. The models indicate that different types of asymmetry occur for the cone and two-dimensional cylinder. Asymmetry onset boundaries determined by the discrete vortex method show the same trend as experiment.

A91-21443*# Technion - Israel Inst. of Tech., Haifa. NUMERICAL, EXPERIMENTAL, AND THEORETICAL STUDY OF CONVECTIVE INSTABILITY OF FLOWS OVER POINTED BODIES AT INCIDENCE

DAVID DEGANI (Technion - Israel Institute of Technology, Haifa) and MURRAY TOBAK (NASA, Ames Research Center, Moffett Field, CA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 16 p. refs

(AIAA PAPER 91-0291) Copyright

A study is conducted to investigate whether the behavior of the asymmetric mean flow observed on pointed bodies of revolution at incidence remains consistent with the presence of a convective instability of an original symmetric flow, even in the incidence range where virtually bistable behavior of the asymmetric flow is observed. By means of a retractable wire located near the tip, it is determined experimentally that for all angles of attack tested (30 to 60 degs), changing the size or location of the controlled disturbance results in a finite change in the asymmetric flow field, even to the extent of reversing the sign of the side force or becoming almost symmetric. The process is reversible; returning flow field and mean side force. The effect of wire location (roll angle and distance from the tip) as well as angle of attack and flow conditions are evaluated experimentally by means of flow

visualization and side-force measurements for a generic ogive-cylinder model in a low-speed wind tunnel. Evaluation of the results in the light of computational observations and theoretical considerations yields an affirmative answer to the question posed. Author

A91-21457*# Air Force Wright Research and Development Center, Wright-Patterson AFB, OH.

NONLINEAR DISTURBANCES IN A HYPERSONIC LAMINAR **BOUNDARY LAYER**

ROGER L. KIMMEL (USAF, Wright Research and Development Center, Wright-Patterson AFB, OH) and JAMES M. KENDALL (JPL, Pasadena, CA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 13 p. refs (AIAA PAPER 91-0320)

Three separate but similar experiments on the growth of naturally-occurring instability waves in the laminar boundary-layers on sharp cones at hypersonic Mach numbers have been conducted. Each provided clear evidence that the theoretically-predicted second mode of instability was responsible for high-amplitude wave trains observed to prevail upstream of boundary-layer transition to turbulence. However, each also seemed to reveal the presence of an additional instability not accounted for by the linear theory. Here, examination is made of the tape-recorded hot-wire anemometer signals of one experiment on a sharp cone at Mach 8 for evidence of nonlinearity, the finding of which would explain the presence of the additional mode as a consequence of harmonic generation. Several approaches for identification of the residual effects of nonlinearity are described and utilized. Also, a simplified model describing certain fluctuation characteristics has been developed. Altogether, the evidence of nonlinear wave development is found to be strong. Quantitative comparisons of linear theory to experiments must be made with caution when nonlinearity is present in the experiment. Author

A91-21458#

JOINT COMPUTATIONAL EXPERIMENTAL AERODYNAMICS RESEARCH ON A HYPERSONIC VEHICLE. II -**COMPUTATIONAL RESULTS**

MARY WALKER and WILLIAM L. OBERKAMPF (Sandia National Laboratories, Albuquerque, NM) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 15 p. refs (Contract DE-AC04-76DP-00789) (AIAA PAPER 91-0321) Copyright

Parabolized and iterative Navier-Stokes codes are used to predict flowfield solutions around a complex hypersonic vehicle. Aerodynamic force and moment predictions from the codes are compared with wind tunnel data from the Sandia Mach 8 hypersonic wind tunnel. The comparisons are made on a spherically blunted cone with a slice parallel to the body axis. On the sliced portion of the body a flap can be attached such that the angle of the flap is 10, 20, or 30 deg, relative to the slice. The Sandia Parabolized Navier-Stokes code is used to generate solutions for the sliced vehicle with no flap. For the vehicle with the flap, axially separated flow occurs and a time iterative Navier-Stokes code is used to provide comparisons with the data. A detailed study of grid convergence is presented to determine the accuracy of the numerical solutions. Errors in the numerical predictions on different grids are determined where Richardson extrapolation is used to estimate the exact solution. Predictions obtained from the coders show very good agreement with the experimental data for force and moment coefficients, except for large flap deflections.

Author

A91-21459*# Case Western Reserve Univ., Cleveland, OH. MOLECULAR DYNAMICS COMPUTATIONS OF TWO **DIMENSIONAL SUPERSONIC RAREFIED GAS FLOW PAST BLUNT BODIES**

ISAAC GREBER (Case Western Reserve University, Cleveland, OH), HAROLD Y. WACHMAN (MIT, Cambridge, MA), and MYEUNG-JOUH WOO AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 10 p. Research supported by NASA. (AIAA PAPER 91-0322) Copyright

This paper presents results of molecular dynamics computations of supersonic flow past a circular cylinder and past a flat plate perpendicular to a supersonic stream. The results are for Mach numbers of approximately 5 and 10, for several Knudsen numbers and several ratios of surface to free stream temperatures. A special feature of the computations is the use of relatively small numbers of particles in the molecular dynamics simulation, and an examination of the adequacy of using small numbers of particles to obtain physically useful results. Author

A91-21460#

A STUDY OF COMPRESSIBLE LAMINAR BOUNDARY LAYER

AT MACH NUMBERS 4 TO 30
JOSEPH E. FLAHERTY, HENRY T. NAGAMATSU (Rensselaer Polytechnic Institute, Troy, NY), and AUGUSTO C. M. MORAES AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 16 p. Research supported by SDIO. refs (Contract DAAL03-90-G-0096)

(AIAA PAPER 91-0323) Copyright

This investigation is the first part of a two-phase study on laminar boundary layers at the high Mach numbers and stagnation temperatures encountered by the national Aero-Space Plane. In this preliminary study, compressible laminar boundary layers are investigated over an adiabatic flat plate for Mach numbers 4 to 30. The Prandtl laminar boundary layer equations are solved using a finite element method with symbolic evaluation of element matrices for three different assumptions: (1) a perfect gas with constant properties and unit Prandtl number; (2) a gas with viscosity variation according to Sutherland's law; and (3) a real gas with equilibrium air properties. Results for each flow regime include streamwise and transverse velocity profiles, temperature and density distributions, recovery factors, and boundary layer thickness. Author

A91-21461*# Analytical Services and Materials, Inc., Hampton,

NONPARALLEL INSTABILITY OF SUPERSONIC AND HYPERSONIC BOUNDARY LAYERS

NABIL M. EL-HADY (Analytical Services and Materials, Inc., Hampton, VA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 19 p. refs (Contract NAS1-18599)

(AIAA PAPER 91-0324) Copyright

Multiple scaling technique is used to examine the nonparallel instability of supersonic and hypersonic boundary-layer flows to three-dimensional (first mode) and two-dimensional (second mode) disturbances. The method is applied to the flat plate boundary layer for a range of Mach numbers from 0 to 10. Growth rates of disturbances are calculated based on three different criteria: following the maximum of the mass-flow disturbance, using an integral of the disturbance kinetic energy, and using an integral of the square of the mass-flow amplitude. By following the maximum of the mass-flow dusturbance, the calculated nonparallel growth rates are in good quantitative agreement with the experimental results of Kendall (1967) at Mach number 4.5.

A91-21465#

SIMULATION OF STALL DEPARTURE USING A NONLINEAR LIFTING LINE MODEL

JOHN D. FUNK, JR. and BARNES W. MCCORMICK (Pennsylvania AIAA, Aerospace Sciences State University, University Park) Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 11 p. refs (AIAA PAPER 91-0340)

A dynamic simulation is conducted using a nonlinear lifting line model to predict the spanwise lift distribution on a wing through and beyond stall. This aerodynamic model allows for roll and vaw at high angles of attack, thus permitting a dynamic simulation of stall. The nonlinear lifting line model uses a combination of wind tunnel data and analysis to find the lift and drag at any location on the wing. Circulation in the wake resulting from spanwise lift variations is considered. Forces on the tail surfaces and fuselage are approximated by linear relations performed on representative sections. The aerodynamic forces are integrated over time using six-degree-of-freedom equations of motion. The result is a time history of all aircraft orientations and velocities during a wings-level stall. This result is compared to flight test data.

Author

A91-21484#

SLENDER WING ROCK REVISITED

LARS E. ERICSSON (Lockheed Missiles and Space Co., Inc., Sunnyvale, CA) AlAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 7 p. Research supported by the Lockheed Missiles and Space Co., Inc. refs (AlAA PAPER 91-0417) Copyright

Analysis of experimental results for slender delta wings reveals that several flow phenomena play a role in the observed wing rock motions. The relative importance of the various flow mechanisms is determined by leading edge sweep and angles of attack and sideslip. The underlying fluid mechanics are analyzed, laying the foundation for future development of means for predicting not only when wing rock will occur but also how wing rock characteristics, such as limit cycle amplitude and oscillation frequency, depend on wing geometry and flight conditions.

Author

A91-21491*# Illinois Univ., Urbana. EFFECT OF A SIMULATED ICE ACCRETION ON THE AERODYNAMICS OF A SWEPT WING

M. B. BRAGG, A. KHODADOUST, R. SOLTANI, S. WELLS, and M. KERHO (Illinois, University, Urbana) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 13 p. Research supported by NASA and University of Illinois. refs (AIAA PAPER 91-0442) Copyright

The effect of a simulated glaze ice accretion on the aerodynamic performance of a three-dimensional swept wing is studied experimentally. A semispan wing of effective aspect ratio four was mounted from the sidewall of the UIUC subsonic wind tunnel. The model uses a NACA 0012 airfoil section on a rectangular planform with interchangeable tip and root sections to allow for 0- and 30-degree sweep. A sidewall suction system is used to minmize the tunnel boundary-layer interaction with the model. Surface pressure data from five spanwise stations are compared to earlier data from a similar tunnel. A three-component sidewall balance has been designed, built and used to measure lift, drag and pitching moment on the clean and iced model. The data compare well to the integrated pressure data and to theory on the clean model. In addition, helium-bubble flow visualization has been performed on the iced model and reveals extensive spanwise flow in the separation bubble aft of the upper surface horn. This compares well to the computational results of other researchers. Sidewall suction was found to have no effect on the Author aerodynamics of the swept wing.

A91-21492#

AERODYNAMIC EFFECTS OF DISTRIBUTED ROUGHNESS ON A NACA 63(2)-015 AIRFOIL

B. OOLBEKKINK and D. F. VOLKERS (Fokker Aircraft, Amsterdam, Netherlands) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 7 p. refs

(AIAA PAPER 91-0443) Copyright

This paper describes a wind tunnel test on an NACA 63(2)-015 airfoil with several configurations of distributed roughness on the upper surface. Experimental and calculated lift losses are presented for an angle of attack of 8.4 deg. It is shown that both the size and the extent of the roughness have an effect on the lift of the airfoil. The loss of lift is correlated with the increase in the boundary layer displacement thickness near the trailing edge of the model. The prediction of this increase, and of the loss of lift, by the computer code are at a lower level.

A91-21493*# Wichita State Univ., KS.

EXPERIMENTAL WATER DROPLET IMPINGEMENT DATA ON MODERN AIRCRAFT SURFACES

MICHAEL PAPADAKIS (Wichita State University, KS), MARLIN D. BREER, NEIL C. CRAIG (Boeing Co., Wichita, KS), and COLIN S. BIDWELL (NASA, Lewis Research Center, Cleveland, OH) AIAA,

Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 13 p. Research supported by FAA. refs (Contract NAG3-566)

(AIAA PAPER 91-0445) Copyright

An experimental method has been developed to determine the droplet impingement characteristics on two- and three-dimensional aircraft surfaces. The experimental water droplet impingement data are used to validate particle trajectory analysis codes that are used in aircraft icing analyses and engine inlet particle separator analyses. The aircraft surface is covered with thin strips of blotter paper in areas of interest. The surface is then exposed to an airstream that contains a dyed-water spray cloud. The water droplet impingement data are extracted from the dyed blotter paper strips by measuring the optical reflectance of each strip with an automated reflectometer. Preliminary experimental and analytical impingement efficiency data are presented for a NLF(1)-0414F airfoil, s swept MS(1)-0317 airfoil, a swept NACA 0012 wingtip and for a Boeing 737-300 engine inlet model. Author

A91-21495# MODELING TWO-POINT SPATIAL TURBULENCE SPECTRA FOR ANALYSIS OF GUST VARIATIONS OVER AEROSPACE VEHICLES

JOSEPH E. DURHAM, JR. (U.S. Army, Missile and Space Intelligence Center, Redstone Arsenal, AL) and WALTER FROST (Tennessee, University, Tullahoma) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 12 p. refs (AIAA PAPER 91-0449) Copyright

Analytical models for two-point spatial spectra of atmospheric turbulence are developed. Models based on both the von Karman and Dryden correlation are presented. A two-point auto-correlation, defined as the correlation between like components of velocity measured at two spatially separated positions, is Fourier transformed to give the spectrum. A discussion of the bias and aliasing errors associated with fast Fourier transform techniques for two-point correlations is presented. A comparison is given of the spectrum computed by the fast Fourier transform of the digitized analytical correlation, and of the experimental data directly. The results demonstrate that the two-point auto-spectrum is extremely sensitive to bias errors. Filters for smoothing the data to minimize the bias error are investigated and an optimum filter is proposed.

Autho

A91-21505*# Old Dominion Univ., Norfolk, VA. AERODYNAMIC DESIGN OPTIMIZATION USING SENSITIVITY ANALYSIS AND COMPUTATIONAL FLUID DYNAMICS

OKTAY BAYSAL and MOHAMED E. ELESHAKY (Old Dominion University, Norfolk, VA) AlAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 12 p. refs (Contract NAG1-1188)

(AIAA PAPER 91-0471) Copyright

A new and efficient method is presented for aerodynamic design optimization, which is based on a computational fluid dynamics (CFD)-sensitivity analysis algorithm. The method is applied to design a scramjet-afterbody configuration for an optimized axial thrust. The Euler equations are solved for the inviscid analysis of the flow, which in turn provides the objective function and the constraints. The CFD analysis is then coupled with the optimization procedure that uses a constrained minimization method. The sensitivity coefficients, i.e. gradients of the objective function and the constraints, needed for the optimization are obtained using a quasi-analytical method rather than the traditional brute force method of finite difference approximations. During the one-dimensional search of the optimization procedure, an approximate flow analysis (predicted flow) based on a first-order Taylor series expansion is used to reduce the computational cost. Finally, the sensitivity of the optimum objective function to various design parameters, which are kept constant during the optimization, is computed to predict new optimum solutions. The flow analysis of the demonstrative example are compared with the experimental data. It is shown

that the method is more efficient than the traditional methods.

Author

A91-21506#

AERODYNAMIC SHAPE DESIGN AND OPTIMIZATION

GEORGE S. DULIKRAVICH (Pennsylvania State University, University Park) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 13 p. refs (AIAA PAPER 91-0476) Copyright

Realistic aerodynamic shapes can be designed using methodologies from computational fluid dynamics and optimization. Two basic categories of the inverse (design) formulation are surface flow design and flow field design. Several methods, in both categories, including novel methods based on flow control theory, are being discussed and critically evaluated. Many issues remain unresolved. These issues include: specification of a more appropriate set of design constraints, acceleration of iterative algorithms, minimization of artificial dissipation, increased versatility of the design methods, and direct use of the existing and future flow field analysis software. Author

A91-21517#

NUMERICAL INVESTIGATION OF DRAG REDUCTION IN FLOW OVER SURFACES WITH STREAMWISE ALIGNED

DOUGLAS CHU and GEORGE E. KARNIADAKIS (Princeton University, NJ) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991, 8 p. refs (Contract NSF CTS-89-06432; NSF CTS-89-14422)

(AIAA PAPER 91-0518) Copyright

The flow in a channel with its lower wall mounted with riblets that are aligned along the streamwise direction is investigated numerically using three-dimensional spectral element simulations. The particular riblet configuration considered is symmetric V-shaped grooves with height h equal to their base s. The range of Reynolds numbers investigated is 500 to 3500, which corresponds to laminar and transitional flow states. The results suggest that in the laminar regime there is no drag reduction, while in the transitional regime drag reduction up to ten percent exists for the lower grooved wall in comparison with the upper smooth wall of the channel; in the latter case, good agreement exists with available experimental data and empirical correlations.

A91-21518#

DETAILED DOCUMENTATION OF THE NEAR FIELD EFFECTS OF LARGE EDDY BREAK UP DEVICES ON THE ONCOMING **VORTICAL STRUCTURES IN TURBULENT BOUNDARY**

Y. G. GUEZENNEC (Ohio State University, Columbus) and N. AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, TRIGUI Jan. 7-10, 1991. 11 p. refs (Contract NSF MSM-87-09154; AF-AFOSR-89-0434)

(AIAA PAPER 91-0519) Copyright

The near field effect of a single Large Eddy Break Up device (LEBU) on the oncoming vortical structure in a turbulent boundary layer was investigated in great detail by measuring the full two-point space-time correlation tensor. In addition to conventional turbulence moments, spatial and temporal integral scales were determined. The stochastic estimation technique was used to reconstruct estimates of the full three-dimensional spatio-temporal evolution of the vortical structures as they pass over the manipulator: the name 'Large Eddy Break Up' device is indeed justified to the results obtained here. It was found that in addition to the obvious inhibition of the normal velocity component by the LEBU, a number of other interrelated mechanisms are at play. Author

A91-21525#

STUDY OF DYNAMIC STALL MECHANISM USING SIMULATION OF TWO-DIMENSIONAL UNSTEADY **NAVIER-STOKES EQUATIONS**

K. N. GHIA, J. YANG, G. A. OSSWALD, and U. GHIA (Cincinnati, University, OH) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 18 p. refs (Contract AF-AFOSR-90-0249) (AIAA PAPER 91-0546) Copyright

An unsteady Navier-Stokes analysis in velocity-vorticity variables extended to higher Reynolds numbers. The convective derivatives in the known vorticity transport equation are approximated using a third-order biased upwind differencing scheme (UDS), with all other spatial derivatives still being approximated using the central difference scheme. A test configuration for a NACA 0015 airfoil is selected with the Reynolds numbers of 10,000 and 45,000 and constant pitch-up motion. The third-order biased UDS is shown to be satisfactory for obtaining results up to the Reynolds number of 45,000. A separation bubble embedded within the boundary layer is observed between the leading edge and the quarter-chord point (QCP). If the separation bubble is controlled through suction in the appropriate vicinity of QCP, the dynamic stall may be delayed and/or prevented.

A91-21549#

TECHNIQUES FOR ACCURATE, EFFICIENT COMPUTATION OF UNSTEADY TRANSONIC FLOW

T. H. SHIEH, JEFFREY G. SCHOEN, and K.-Y. FUNG (Arizona, University, Tucson) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 7 p. refs (Contract AF-AFOSR-83-0071)

(AIAA PAPER 91-0597) Copyright

This paper describes the development of an accurate and efficient computer code for transonic flutter prediction. The unique features of this code, to be called ZUNAS, are the capability of accepting a steady mean flow regardless of its origin, a time dependent perturbation boundary condition on the steady mean surface, and a new locally applied three-dimensional far-field boundary condition. Results obtained using this code show good agreement with experiment and other theories. Nonlinear effects. viscous effects, and other important features in unsteady transonic flow computation can be delineated from these results. The techniques introduced here can easily be adopted for other methods to achieve similar savings in computational resources.

Author

A91-21550#

A COMPOSITE GRID APPROACH TO STUDY THE FLOW SURROUNDING A PITCH-UP AIRFOIL IN A WIND TUNNEL

TAEKYU REU and SUSAN X. YING (Florida State University, Tallahassee) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 17 p. refs (Contract DE-FC05-85ER-25000)

(AIAA PAPER 91-0599) Copyright

This paper presents an unsteady Navier-Stokes algorithm featuring a composite grid scheme to solve the flow over a pitch-up airfoil inside a wind tunnel. The composite grid consists of structured grids with wall boundaries and an unstructured grid which fills up the gap between the structured grids. A second order implicit iterative scheme and a third order upwind cell centered finite volume method are employed for the algorithm. The results are validated against measurement. Moreover, the pitch-up simulations are carried out to higher angle of attack than available experimental data. The development of the flow structures seen from these transient high angle of attack solutions yields better understanding of dynamic stall. Author

A91-21551*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

CALCULATION OF FLOW ABOUT TWO-DIMENSIONAL BODIES BY MEANS OF THE VELOCITY-VORTICITY FORMULATION ON A STAGGERED GRID

PAUL M. STREMEL (NASA, Ames Research Center, Moffett Field, AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 14 p. refs

(AIAA PAPER 91-0600) Copyright

A method for calculating the incompressible viscous flow about two-dimensional bodies, utilizing the velocity-vorticity form of the Navier-Stokes equations using a staggered-grid formulation is

presented. The solution is obtained by employing an alternative-direction implicit method for the solution of the block tridiagonal matrix resulting from the finite-difference representation of the governing equations. The boundary vorticity and the conservation of mass are calculated implicitly as a part of the solution. The mass conservation is calculated to machine zero for the duration of the computation. Calculations for the flow about a circular cylinder, a 2-pct thick flat plate at 90-deg incidence, an elliptic cylinder at 45-deg incidence, and a NACA 0012, with and without a deflected flap, at - 90-deg incidence are performed and compared with the results of other numerical investigations.

A91-21558*# Syracuse Univ., NY. THE SYMMETRIC TURBULENT PLANE WAKE DOWNSTREAM OF A SHARP TRAILING EDGE

E. A. BOGUCZ (Syracuse University, NY) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 9 p. Research supported by NASA and Syracuse University. refs (AIAA PAPER 91-0612) Copyright

The analysis and modeling of the symmetric turbulent plane wake downstream of a sharp trailing edge is addressed. A compact description of the flow near the trailing edge is formulated using the results of a previous asymptotic analysis. The new description retains the two-layered structure identified in the previous work, and it clarifies the principal dynamics of the flow in the nearwake outer layer, away from the wake centerline. For zeropressure-gradient flow, the near-wake outer layer is shown to be represented to leading order by the similarity solution that governs the outer region of the surface boundary layer. The leading perturbation in the outer layer due to the developing near-wake inner-layer flow is identified, and this is shown to be asymptotically smaller than undetermined higher-order terms associated with the surface boundary-layer flow. Results of the new near-wake analysis are used to formulate an algebraic eddy viscosity model for wake flow predictions at arbitrary distances from the trailing edge. The model is used in a numerical solution of the boundary layer equations, and computed velocity and Reynolds stress profiles are shown to compare well with experimental data.

Author

A91-21561*# Stanford Univ., CA. HIGH ALPHA AERODYNAMIC CONTROL BY TANGENTIAL **FUSELAGE BLOWING**

G. I. FONT and DOMINGO A. TAVELLA (Stanford University, CA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991, 16 p. refs (Contract NCC2-55)

(AIAA PAPER 91-0620) Copyright

This work explores the effect of tangential blowing on the vortical structures that develop around a tangent-ogive cylinder configuration at high angle of attack. A lateral force results if blowing is applied asymmetrically. The study is conducted numerically by solving the three-dimensional, compressible-flow Navier-Stokes equations. The computation was done for a Reynolds number of 52,000, Mach number of 0.2, blowing momentum coefficients of 0.0, 0.1, 0.2, and 0.4, and angle of attack of 10, 30, and 45 deg. Only asymmetrical blowing was considered. Surface streamlines, helicity contours and pressure distributions are obtained for each case. Author

A91-21562#

A THEORY FOR TANGENTIAL FUSELAGE BLOWING

DOMINGO A. TAVELLA (Stanford University, CA) Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991.

(AIAA PAPER 91-0621) Copyright
A theoretical model for the physics of tangential fuselage blowing is proposed. The fundamental assumption of the theory is that the yawing moment produced by tangential blowing arises from vorticity generated by the jet through its external shear layer. Some of this vorticity becomes bound, resulting in a lateral force. A simple version of the theory is applied to an ogive-cylinder configuration through a discrete vortex representation of the iet-generated vorticity.

A91-21573#

A SYSTEMATIC COMPARATIVE STUDY OF SEVERAL HIGH RESOLUTION SCHEMES FOR COMPLEX PROBLEMS IN HIGH SPEED FLOWS

NORBERT KROLL (DLR, Institut fuer Entwurfsaerodynamik, Brunswick, Federal Republic of Germany), DATTA GAITONDE, Wright MICHAEL AFTOSMIS (USAF, Laboratory, Wright-Patterson AFB, OH) AIAA, Aerospace Sciences Meeting, 29th, Reno. NV, Jan. 7-10, 1991, 39 p. refs

(AIAA PAPER 91-0636) Copyright
Five different MUSCL and non-MUSCL higher order upwind schemes were evaluated to determine their ability to accurately model the fluxes of the Euler equations for problems containing complex shock structures. The MUSCL scheme included the Steger Warming and van Leer flux vector split schemes and the Roe flux. difference split scheme; the two non-MUSCL schemes were the 'Symmetric' and 'Upwind' TVD methods of Yee and Harten and Yee. The discrete solutions obtained with the Upwind TVD and Roe flux difference splitting are found to be the least diffusive of the upwind methods considered. The two schemes are also the most successfull in resolving features with a characteristic dimension on the order of the grid spacing.

A91-21574*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

UNSTRUCTURED EULER FLOW SOLUTIONS USING **HEXAHEDRAL CELL REFINEMENT**

JOHN E. MELTON, GELSOMINA CAPPUCCIO (NASA, Ames Research Center, Moffett Field, CA), and SCOTT D. THOMAS (Sterling Federal Systems, Inc., Palo Alto, CA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 44 p. refs (AIAA PAPER 91-0637) Copyright

An attempt is made to extend grid refinement into three dimensions by using unstructured hexahedral grids. The flow solver is developed using the TIGER (topologically Independent Grid, Euler Refinement) as the starting point. The program uses an unstructured hexahedral mesh and a modified version of the Jameson four-stage, finite-volume Runge-Kutta algorithm for integration of the Euler equations. The unstructured mesh allows for local refinement appropriate for each freestream condition, thereby concentrating mesh cells in the regions of greatest interest. This increases the computational efficiency because the refinement is not required to extend throughout the entire flow field.

A91-21576# Texas Univ., Austin.

WALL PRESSURE FLUCTUATIONS NEAR SEPARATION IN A MACH 5, SHARP FIN-INDUCED TURBULENT INTERACTION

BERRY T. GIBSON and DAVID S. DOLLING (Texas, University, AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Austin) Jan. 7-10, 1991. 16 p. Research supported by USAF and U. S. Navy. refs

(Contract NAG1-1005; NAGW-964) (AIAA PAPER 91-0646) Copyright

Fluctuating surface pressure measurements have been made near separation in a Mach 5, swept shock/turbulent boundary-layer interaction induced by a sharp fin at angles of attack of 16 and 18 deg. Pressure signals in the initial compression region indicate a 'shuddering' compression fan, in contrast to a translating separation shock found previously in fin interactions at Mach 3. Therefore, shock strength does not appear to be a dominant factor in provoking interaction unsteadiness. The results show that the frequency range of the shuddering may scale on the large-eddy frequency of the incoming boundary layer, and that the intensity of the fluctuations may depend on the degree of interaction 'sweep'. Measurements along a conical ray downstream of the initial compression show that the fluctuation rms increases spanwise.

Author

A91-21577# THE EFFECTS OF MASS REMOVAL ON TURBULENCE **PROPERTIES IN A** NORMAL-SHOCK/TURBULENT-BOUNDARY-LAYER INTERACTION

M. J. MORRIS and M. SAJBEN (McDonnell Douglas Research Laboratories, Saint Louis, MO) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 10 p. refs (AIAA PAPER 91-0647) Copyright Nominally two-dimensional interestings of

a turbulent boundary layer were investigated experimentally, with and without mass removal. The approach flow was uniform at a freestream Mach number of 1.48 and the subsonic flow downstream of the shock was subject to an adverse pressure gradient. Most of the boundary layer flow was removed through a finely perforated plate just upstream of the foot of the shock. Laser Doppler velocimetry was used to determine the velocity field, including time-mean and turbulence properties. The mean flows have been presented in an earlier publication; this paper characterizes the turbulence fields of both interactions. Bleed eliminated the separation present in the solid wall case and changed the turbulence properties drastically. The streamwise rate of growth of turbulence kinetic energy across the interaction was substantially reduced as was the turbulence intensity level in the boundary layer emerging from the interaction. The shear stress distributions displayed a comparable trend. As implied by these changes, the turbulence production rates were significantly lower with bleed. The degree of anisotropy was reduced.

A91-21578# Texas Univ., Austin.
CORRELATION OF SEPARATION SHOCK MOTION IN A
CYLINDER-INDUCED, MACH 5, TURBULENT INTERACTION
WITH PRESSURE FLUCTUATIONS IN THE SEPARATED FLOW
D. S. DOLLING and L. BRUSNIAK (Texas, University, Austin)
AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10,
1991. 17 p. Research supported by USAF and U.S. Navy. refs
(Contract NAG3-1023; NAGW-964)

(AIAA PAPER 91-0650) Copyright

Simultaneous measurements of wall-pressure signals in the region of separation shock motion and in the separated flow downstream are taken in order to determine whether pressure variations under the separated flow correlate with specific shock motions and whether these pressure variations precede or follow the shock motions. Ensemble-averaging methods are utilized, and the individual pressure ensembles on the downstream channels and their relationship with specific shock motions are analyzed. Cross-correlations between pressure fluctuations generated by the translating separation shock wave and those under the vortex at various downstream stations are found to have large negative maxima at negative time delays, while ensemble-averaged pressure histories on the same channels show upstream propagation of large pressure pulses prior to changes in the direction of motion of the shock wave.

A91-21580*# Georgia Inst. of Tech., Atlanta. NUMERICAL STUDY OF THE EFFECTS OF ICING ON FIXED AND ROTARY WING PERFORMANCE

OH J. KWON and LAKSHMI N. SANKAR (Georgia Institute of Technology, Atlanta) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 12 p. refs (Contract NAG3-768)

(AIAA PAPER 91-0662) Copyright

The sectional and total aerodynamic load characteristics and performance degradation of swept wings and helicopter rotors have been studied using a three-dimensional, compressible Navier-Stokes solver. Correlations of predictions with experimental data for swept wings with and without leading-edge ice formation show the ability of the present computational technique to accurately predict both the distributed surface pressures and integrated sectional loads. The leading-edge flow separation and reattachment on the wing surface associated with the leading-edge ice are also captured well showing a vortex formation and the spanwise migration of the flow inside the separated flow region. In the case of the helicopter rotors in hover, the rotor thrust loss and the torque penalties due to the leading-edge ice formation are numerically demonstrated.

A91-21591#

SYNERGISTIC EFFECTS OF HYDROGEN TRANSPIRATION ON COMPRESSION SURFACES FOR HYPERSONIC VEHICLES

A. M. TAGGART and E. RESHOTKO (Case Western Reserve University, Cleveland, OH) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 17 p. refs (AIAA PAPER 91-0699) Copyright

The purpose of this work is to determine whether hydrogen transpiration cooling is: (1) an effective means of thermally protecting an airframe-integrated compression surface on a hypersonic flight vehicle; and (2) a feasible method of introducing a hydrogen fuel pre-mix into the airflow entering the scramjet engines on such a vehicle. To accomplish this, laminar-toturbulent boundary layer flows are numerically modeled over two-dimensional, hydrogen transpiration-cooled compression surfaces at freestream Mach numbers = 8, 12, and 16. The focus is on determining the maximum injection rates that the boundary lavers can support without premature separation. In addition, ignition delay times are computed at selected streamwise stations to determine whether the hydrogen in the boundary layers will combust before the engine inlet. Results from this analysis indicate that turbulent flow is more desirable than laminar flow for both cooling and premixing purposes as greater quantities of hydrogen can be injected without premature flow separation.

A91-21592#

VISCOUS NON EQUILIBRIUM FLOW CALCULATIONS BY AN IMPLICIT FINITE VOLUME METHOD

C. FLAMENT, F. COQUEL, C. MARMIGNON, and H. HOLLANDERS (ONERA, Chatillon, France) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 11 p. Research supported by DRET. refs

(AIAA PAPER 91-0702) Copyright

A fully coupled implicit finite volume method for calculating axisymmetric viscous flows with thermal and chemical nonequilibrium is presented. The numerical approximation of the governing equations is derived using a second order upwind scheme of Harten-Yee type for the inviscid fluxes and a space centered scheme for the viscous fluxes. Numerical fluxes and sources terms are fully coupled in the implicit step. A particular attention is paid on the physical models involved in this study. New transport models for species diffusion and thermal conductivities for internal mode are introduced. Furthermore, an original dissociation-vibration coupling derived from Park's approach and including the influence of reaction rates on vibrational relaxation is proposed. Results are first presented for a two-dimensional axisymmetric thermo-chemical nonequilibrium flow around a sphere-cylinder. The influence of physical models is discussed. Comparisons are performed with available numerical, results and show a rather good agreement. The second application deals with the two-dimensional axisymmetric flow around a hyperboloid simulating a shuttle shape in a hyperenthalpic nozzle flow.

Author

A91-21593*# Stanford Univ., CA. NAVIER-STOKES COMPUTATION OF WING/ROTOR INTERACTION FOR A TILT ROTOR IN HOVER

IAN FEJTEK and LEONARD ROBERTS (Stanford University, CA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 11 p. refs (Contract NCC2-55)

(AIAA PAPER 91-0707) Copyright

A method has been developed to analyze the wing/rotor interaction of tilt rotor aircraft in hover. The unsteady, thin-layer compressible Navier-Stokes equations are solved using an implicit, finite difference scheme that employs LU-ADI factorization. The rotor is modeled as an actuator disk which imparts a radial and azimuthal distribution of pressure rise and swirt to the flowfield. The 'chimera' approach of grid point blanking is used to update the rotor boundary conditions. Results are presented for both a

the rotor boundary conditions. Results are presented for both a rotor alone and for wing/rotor interaction where the thrust coefficient is 0.0164 and wing flap deflection is 67 degrees. Many of the complex flow features are captured including the fountain

effect, leading and trailing edge separation, and the unsteady wake beneath the wing. Wing surface pressures compare fairly well with experimental data although the time-averaged download is about twenty percent higher than the measured value. This discrepancy is due to a combination of factors that are discussed.

A91-21598*# Washington Univ., Seattle. SYMMETRY PLANE MODEL FOR TURBULENT FLOWS WITH VORTEX GENERATORS

GILLES L. ARNAUD and DAVID A. RUSSELL (Washington, University, Seattle) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 10 p. refs (Contract NAG2-283)

(AIAA PAPER 91-0723) Copyright

An approximate procedure is proposed for predicting the performance of counterrotating vortex-generator installations in incompressible flow. An inviscid calculation that includes the motion of the vortices is used to obtain crossflow velocities at the boundary-layer edge as a function of initial position, spacing, and strength of the vortices, and local values of the spanwise gradient are then folded into an integral turbulent-boundary layer procedure applied in the plane of symmetry. Special attention is paid to the consistency of the approximations and equations used. The two-dimensional aerodynamics of vortex generator installations on a NACA 0016 airfoil at angle-of-attack are estimated in this manner, and the results compared with experiments carried out with a 30-cm chord wing mounted in a 2.4 x 3.6-m cross-section wind tunnel and tested at chord Reynolds numbers of 0.7 and 1.4 x 10 to the 6th. Agreement in the separation location is found for these complex flows for a range of conditions.

A91-21600# MULTI-SENSOR INVESTIGATION OF DELTA WING HIGH-ALPHA AERODYNAMICS

O. K. REDINIOTIS, N. T. HOANG, and D. P. TELIONIS (Virginia Polytechnic Institute and State University, Blacksburg) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 13 p. refs

(Contract AF-AFOSR-89-0283)

(AIAA PAPER 91-0735) Copyright

The flow over a slender delta wing at high angles of attack, alpha = 28 deg and 40 deg is investigated. A multiplicity of sensors are employed, namely surface pressure taps, seven-hole probes, a fiber-optic LDV probe, and flow visualization. The accuracy of different sensors and their possible interference with the flow is examined. Special attention is directed at the phenomenon of vortex breakdown.

A91-21603# COMPRESSIBILITY EFFECTS ON THE SUPERSONIC REACTING MIXING LAYER

O. H. PLANCHE and W. C. REYNOLDS (Stanford University, CA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 14 p. Research supported by USAF. refs (AIAA PAPER 91-0739) Copyright

The effects of heat release and compressibility on the flow stability and on the obliquity of the disturbance waves are examined through a linear inviscid stability analysis for the plane reacting compressible shear layer. The results indicate that the obliquity of the disturbance waves is reduced by increased heat release. It is shown that the reacting mixing layer can be viewed as a system of two interacting shear layers. Disturbance modes associated with either the fast or the slow stream exist for short wavelengths, while for long wavelengths the modes are associated with the entire shear layer. It is shown that the 'flame convective Mach number' is preferable to the usual convective Mach number as a parameter for correlating reacting shear layer compressibility. The results suggest the possibility of controlling the mixing rate by judicious positioning of the flame sheet.

A91-21604*# Old Dominion Univ., Norfolk, VA.
COMPUTATION OF STEADY AND UNSTEADY
COMPRESSIBLE QUASI-AXISYMMETRIC VORTEX FLOW AND
BREAKDOWN

OSAMA A. KANDIL, HAMDY A. KANDIL (Old Dominion University, Norfolk, VA), and C. H. LIU (NASA, Langley Research Center, Hampton, VA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 15 p. refs (Contract NAG1-994) (AIAA PAPER 91-0752)

The unsteady, compressible Navier-Stokes equations are used to compute and analyze compressible quasi-axisymmetric isolated vortices. The Navier-Stokes equations are solved using an implicit, upwind, flux-difference splitting finite-volume scheme. The developed three-dimensional solver has been verified by comparing its solution profiles with those of a slender, quasi-axisymmetric vortex solver for a subsonic, isolated quasi-axisymmetric vortex in an unbounded domain. The Navier-Stokes solver is then used to solve for a supersonic quasi-axisymmetric vortex flow in a configured circular duct. Steady and unsteady vortex-shock interactions and breakdown have been captured. The problem has also been calculated using the Euler solver of the same code and the results are compared with those of the Navier-Stokes solver. The effect of the initial swirl has been tentatively studied.

Author

A91-21605*# National Aeronautics and Space Administration.
Ames Research Center, Moffett Field, CA.
NUMERICAL INVESTIGATION OF THE FLOW OVER A

NUMERICAL INVESTIGATION OF THE FLOW OVER A DOUBLE DELTA WING AT HIGH INCIDENCE

JOHN A. EKATERINARIS (NASA, Ames Research Center; U.S. Navy-NASA Joint Institute of Aeronautics, Moffett Field, CA), RAYMOND L. COUTLEY (U.S. Navy, Naval Test Pilot School, Patuxent River, MD), MAX F. PLATZER (U.S. Naval Postgraduate School, Monterey, CA), and LEWIS B. SCHIFF (NASA, Ames Research Center, Moffett Field, CA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 12 p. Research supported by the U.S. Navy. refs (AIAA PAPER 91-0753) Copyright

The vortical flowfield over a double-delta wing configuration, consisting of a sharp leading edge 76 deg sweep strake and a 40 deg sweep wing section is investigated. The governing equations are solved numerically with a partially upwind, finite-difference, factorized algorithm. The leeward side vortex system resulting from the strake and wing vortices is investigated for subsonic, high-Reynolds-number flow at various angles of incidence. At low angles of attack the strake and wing vortices remain separate over the wing section, while for flows at higher angles of attack the two vortices merge and vortex breakdown develops. Vortex breakdown appears initially at the trailing edge region of the wing section. As the angle of attack increases bursting occurs further upstream closer to the strake section. The effect of numerical grid density is investigated, and the solutions are compared with available experimental data.

A91-21606#

CALCULATION OF IMPINGING JET FLOWS WITH REYNOLDS STRESS MODELS

ROBERT E. CHILDS (Nielsen Engineering and Research, Inc., Mountain View, CA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 12 p. Research supported by DARPA and USAF. refs

(AIAA PAPER 91-0754) Copyright

The accuracy of the Reynolds-stress transport model is evaluated for two impinging jet flow phenomena important to VSTOL aircraft, the upwash fountain and the ground vortex. Models for the pressure-strain term recently proposed by Gibson and Younis and by Sarkar and Speziale were examined, and they were found to provide no significant improvement over the earlier model of Gibson and Launder for the upwash fountain. Poor accuracy for the upwash was obtained from all versions of the Reynolds-stress transport model tested here. The Gibson and

Launder model gave a reasonable estimate of the location of the core of the ground vortex, although this result may be fortuitous.

A91-21608#

FLIGHT AND WIND TUNNEL TESTS OF THE AERODYNAMIC EFFECTS OF AIRCRAFT GROUND DEICING/ANTI-ICING

EUGENE G. HILL and THOMAS A. ZIERTEN (Boeing Commercial Airplanes, Seattle, WA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 15 p. refs (AIAA PAPER 91-0762) Copyright

This paper presents the results of flight and wind tunnel investigations of the aerodynamic effects of aircraft ground deicing/anti-icing fluids on a Boeing 737-200ADV. The flight tests were performed in Kuopio, Finland, and the wind tunnel tests were performed at the NASA Lewis Research Center Icing Research Tunnel. Both types of commonly used fluids, those characterized by Newtonian and non-Newtonian viscosity behavior, were evaluated. Results of the tests indicate that the fluids remain on aircraft surfaces until well after liftoff and may cause measurable lift loss and drag increase, depending on temperature, dilution, and specific characteristics of each fluid. A secondary wave of fluid that occurred at takeoff rotation was observed. Capillary wave action within the secondary wave is considered to be the source of the fluid's adverse aerodynamic effects at high angles of attack. Wind tunnel testing and computational fluid dynamics analysis indicate that the fluid effects are airplane configuration dependent. The paper also describes how results from these tests, other data, and airplane performance analyses were used to define an aerodynamic acceptance test for the fluids.

National Aeronautics and Space Administration. A91-21610*# Ames Research Center, Moffett Field, CA.

AN IMPROVED THREE-DIMENSIONAL AERODYNAMICS MODEL FOR HELICOPTER AIRLOADS PREDICTION

ROGER C. STRAWN (NASA, Ames Research Center; U.S. Army, Aeroflightdynamics Directorate, Moffett Field, CA) and JOHN O. BRIDGEMAN (Woodside Summit Group, Inc., Mountain View, CA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 14 p. refs (AIAA PAPER 91-0767) Copyright

The importance of unsteady aerodynamic effects due to rotor blade motion is demonstrated for a helicopter in high-speed forward flight. These unsteady effects are modeled as surface boundary conditions to a three-dimensional, unsteady Computational Fluid Dynamics (CFD) code called the Full-Potential Rotor Code (FPR). These boundary conditions cause significant changes in the computed lift and pitching moment at the front and rear of the rotor disk. Airloads from the modified FPR code are then iteratively coupled with the helicopter comprehensive code, CAMRAD/JA. Computed airloads show good agreement with flight-test data when lift values from the FPR code are used in the coupled calculation. However, the computed airloads from CAMRAD/JA along also show good agreement with the experimental data. Thus for this case one cannot demonstrate a significant improvement in computed airloads with the hybrid coupled scheme. The addition of the pitching moment values from the FPR code into the CAMRAD/JA calculation slows down the overall iterative convergence and does not yield any improvement in the final Author results.

A91-21611# THE GROUND VORTEX FORMED BY IMPINGING JETS IN **CROSS-FLOW**

K. KNOWLES and D. BRAY (Royal Military College of Science, Shrivenham, England) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 12 p. Research supported by the British Aerospace, PLC. refs (AIAA PAPER 91-0768) Copyright

The parameters affecting the position of the ground vortex formed by single and twin impinging jets in cross flow were investigated experimentally and numerically. The results confirm

the existence of a constant relationship between the penetration distance, the separation distance, and the position of the vortex core. Any of the above parameters can thus be used to quantify ground sheet forward penetration. The relationship between the penetration and separation distances seems to hold for single and twin nozzles acrosss the complete range of parameters tested.

A91-21616*# University of Southern California, Los Angeles. A SHOCK-LAYER THEORY BASED ON THIRTEEN-MOMENT **EQUATIONS AND DSMC CALCULATIONS OF RAREFIED** HYPERSONIC FLOWS

H. K. CHENG, ERIC Y. WONG (Southern California, University, Los Angeles, CA), and V. K. DOGRA (Vigyan Research Associates, Inc, Hampton, VA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 19 p. Research supported by DOD and USAF. refs

(Contract NAGW-1061)

(AIAA PAPER 91-0783) Copyright

Grad's thirteen-moment equations are applied to the flow behind a bow shock under the formalism of a thin shock layer. Comparison of this version of the theory with Direct Simulation Monte Carlo calculations of flows about a flat plate at finite attack angle has lent support to the approach as a useful extension of the continuum model for studying translational nonequilibrium in the shock layer. This paper reassesses the physical basis and limitations of the development with additional calculations and comparisons. The streamline correlation principle, which allows transformation of the 13-moment based system to one based on the Navier-Stokes equations, is extended to a three-dimensional formulation. The development yields a strip theory for planar lifting surfaces at finite incidences. Examples reveal that the lift-to-drag ratio is little influenced by planform geometry and varies with altitudes according to a 'bridging function' determined by correlated two-dimensional calculations.

A91-21744

A THREE-DIMENSIONAL EULER CODE FOR CALCULATING FLOW FIELDS IN CENTRIFUGAL COMPRESSOR DIFFUSERS INGOLF TEIPEL and ALEXANDER WIEDERMANN (Hannover, Universitaet, Hanover, Federal Republic of Germany) (CTAC-89 International Conference on Computational Techniques and Applications, Brisbane, Australia, July 10-12, 1989) Computers and Fluids (ISSN 0045-7930), vol. 19, no. 1, 1991, p. 21-31. refs Copyright

In order to avoid large computer running times and storage requirements, three-dimensional flow fields in turbomachines have been approximated by applying a general theory of Wu (1952) up to the present day. The handling of more complex flow problems has become possible with a reasonable effort. In this paper, a full three-dimensional code will be discussed which replaces the earlier quasi-three-dimensional approach. The code has been implemented on a conventional CYBER 990 and a CRAY-XMP. The running times of both computers will be compared to measure the effect of vectorization of the present FORTRAN code. Here the results obtained with the new three-dimensional time marching procedure are compared with those obtained with the earlier method. The present code prove to be a very efficient tool for solving three-dimensional flow fields in high-pressure-ratio centrifugal compressor diffusers. Author

A91-21748* Cincinnati Univ., OH. INVISCID STEADY/UNSTEADY FLOW CALCULATIONS

H. S. PORDAL, P. K. KHOSLA, and S. G. RUBIN (Cincinnati, (CTAC-89 - International Conference on University, OH) Computational Techniques and Applications, Brisbane, Australia, July 10-12, 1989) Computers and Fluids (ISSN 0045-7930), vol. 19, no. 1, 1991, p. 93-118. refs

(Contract NAG3-716; F49620-85-C-0027)

Copyright

The solution of the Euler equations using a flux splitting procedure is considered for low subsonic to high supersonic flows. Steady and unsteady, internal and external flow fields, are computed. For transient flows, a direct sparse matrix solver is applied to compute the flow field at each instant of time. Oscillation free normal and oblique shocks are captured. Unstart and restart of a simplified two-dimensional inlet is investigated.

Author

A91-21879

ANALYSIS OF RAREFIED GAS FLOW NEAR A CRITICAL POINT [ANALIZ POTOKA RAZREZHENNOGO GAZA VBLIZI KRITICHESKOI TOCHKI]

E. M. SHAKHOV Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki (ISSN 0044-4669), vol. 30, Nov. 1990, p. 1744-1749, ln Russian.

Copyrigh

A quasi-one-dimensional kinetic model is proposed which describes flow in the wall layer near a cold body. The model kinetic equation is used to solve the problem of heat transfer at the front critical point for the two-dimensional and axisymmetric cases. The numerical results obtained are compared with the available data.

V.L.

A91-21940

MAXIMUM-RATE DECELERATION OF AN OBJECT DURING CONTROLLED MOTION UNDER THE EFFECT OF AERODYNAMIC DRAG AND GRAVITY FORCES [MAKSIMAL'NO BYSTROE TORMOZHENIE OB'EKTA, OSUSHCHESTVLIAIUSHCHEGO UPRAVLIAEMOE DVIZHENIE POD DEISTVIEM SIL AERODINAMICHESKOGO SOPROTIVLENIIA I TIAZHESTI]

B. E. FEDUNOV Prikladnaia Matematika i Mekhanika (ISSN 0032-8235), vol. 54, Sept.-Oct. 1990, p. 737-744. In Russian.

Copyright

The controlled motions of objects in the atmosphere due to aerodynamic drag and gravity forces are examined with reference to the model problem of the effect of these forces on the deceleration rate of an object in an exponential atmosphere. Rate-optimized control synthesis is developed for a class of objects whose aerodynamic drag can be characterized by a single force proportional to the product of object velocity and the atmosphere density at a given height. The optimal synthesis procedure can be simplified by introducing a certain level of significance for the control.

A91-21979

MACROSCOPIC MODEL OF VIBRATIONAL RELAXATION IN HEAT TRANSFER PROBLEMS FOR SUPERSONIC FLOW PAST HARD BODIES [MAKROSKOPICHESKAIA MODEL' KOLEBATEL'NOI RELAKSATSII V ZADACHAKH TEPLOPEREDACHI PRI SVERKHZVUKOVOM OBTEKANII TVERDYKH TEL]

V. M. DOROSHENKO, N. N. KUDRIAVTSEV, and V. V. SMETANIN (Moskovskii Fiziko-Tekhnicheskii Institut, Dolgoprudny, USSR) Teplofizika Vysokikh Temperatur (ISSN 0040-3644), vol. 28, Sept.-Oct. 1990, p. 952-959. In Russian. refs

Copyright

For the case of heat transfer in a boundary layer near a body in the path of flow of a dissociated gas, an efficient method is proposed for considering the relaxation of vibrationally excited molecules formed as a result of atomic recombination. With reference to the nitrogen molecules, it is shown that a strong positive dependence of the vibrational-translational relaxation rate on the gas temperature makes it possible to take account of heat transfer associated with the vibrational-translational relaxation of molecules under nonequilibrium conditions. The calculated results based on the macroscopic vibrational relaxation model proposed here are in good agreement with results based on a system of vibrational relaxation equations for the boundary layer over a wide range of flow conditions.

A91-22351#

A NEW METHOD FOR SUBSONIC LIFTING-SURFACE THEORY ZHENHAO LI (Chinese Helicopter Research and Development Institute, People's Republic of China) Acta Aeronautica et

Astronautica Sinica (ISSN 1000-6893), vol. 11, July 1990, p. A309-A314. In Chinese, with abstract in English.

A new method based on lifting-surface theory is presented for determining the load distributions on finite wings in subsonic flows. A spanwise strip and a classical chordwise series are used. The order of the Mangler-type doubly singular integral is exchanged in order to make the calculations analytical and simple. A segmented polynomial approximation for the integrand of the chordwise integral is deduced to evaluate the kernel function in a closed-form finite-sum manner, resulting a well behaved coefficient matrix. Analytical results are compared with experimental data and other methods; the computational efficiency is demonstrated. Author

A91-22367#

OPTIMIZATION OF MULTI-ELEMENT AIRFOILS FOR MAXIMUM LIFTS IN SEPARATED FLOW

JIANFA CAO and YANQING CHEN (Beijing University of Aeronautics and Astronautics, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Aug. 1990, p. B313-B319. In Chinese, with abstract in English. refs

A theoretical method for optimizing multielement airfoils in separated flow is presented to determine the optimum location and deflection angle of flap or slat relative to the main component corresponding to the optimum C(Lmax). The maximum lift coefficient is taken as the objective function. This approach is used to calculate the maximum lift of the NLR 7301 airfoil and the GA(w)-1 airfoil. The optimum computations are carried out for the GA(w)-1 airfoil. The results of the calculations are in good agreement with the wind-tunnel testing results.

A91-22382#

FLOWFIELD COMPUTATION OF 2-C-D NOZZLE

BAISONG CHEN (Air Force PR China, 2nd Aerotechnology School, People's Republic of China) and DA WU (Beijing University of Aeronautics and Astronautics, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Aug. 1990, p. B396-B399. In Chinese, with abstract in English. refs

The flow-field equations of 2-C-D nozzle have been solved by a time-dependent finite difference method known as two-step MacCormack technique. The computational results of nozzle wall pressure distribution and thrust agree well with experimental data. A complicated shock system has been attained through the computation of exhaust flow field.

Author

A91-22392#

A PRACTICAL METHOD FOR THE AERODYNAMIC CALCULATIONS OF BLUNT BODIES OF REVOLUTION

WEIQUAN ZHANG (Lanzhou Commercial Institute, People's Republic of China) Acta Armamentarii (ISSN 1000-1093), Aug. 1990, p. 42-50. In Chinese, with abstract in English. refs

The paper presents a method to obtain the pressure distributions on blunt bodies of revolution in the supersonic-speed range. The method consists basically of a modified Newtonian theory for the stagnation region in correlation with the second-order shock-expansion theory when the surface flow becomes supersonic. The present method provides some formulas for the aerodynamic coefficients.

A91-22476#

EFFECTS OF A FILLET ON THE FLOW PAST A WING-BODY JUNCTION

W. J. DEVENPORT, N. K. AGARWAL, M. B. DEWITZ, R. L. SIMPSON, and K. PODDAR (Virginia Polytechnic Institute and State University, Blacksburg) AIAA Journal (ISSN 0001-1452), vol. 28, Dec. 1990, p. 2017-2024. Previously cited in issue 11, p. 1591, Accession no. A89-30498. refs (Contract N00014-88-C-0291) Copyright

A91-22477#

INVISCID ANALYSIS OF TWO-DIMENSIONAL AIRFOILS IN UNSTEADY MOTION USING CONFORMAL MAPPING

D. H. CHOI (Korea Advanced Institute of Science and Technology,

Seoul, Republic of Korea) and L. LANDWEBER AIAA Journal (ISSN 0001-1452), vol. 28, Dec. 1990, p. 2025-2033. refs Copyright

Using a conformal mapping technique, a procedure for calculating the irrotational flow about a two-dimensional airfoil of arbitrary shape in unsteady motion is developed. two-dimensional form with a sharp trailing edge is transformed into a unit circle by two successive transformations. The latter of the two is a modified version of the Gershgorin integral equation, which yields solutions much more accurate than those obtained with panel methods. The change in circulation around the airfoil due to unsteadiness is modeled by discrete vortices that are shed from the trailing edge and allowed to move freely with the local stream. The strength of these vortices is determined by the Kutta condition that, at each time step, the velocity be zero at the trailing edge in the circle plane. The procedure is efficient since the integral equation is solved only once. Numerical examples are presented for a sinusoidal heaving motion and for an impulsively started airfoil. Author

A91-22479#

VELOCITY FIELD OF AN AXISYMMETRIC PULSED, SUBSONIC AIR JET

KLAUS BREMHORST and PETER G. HOLLIS (Queensland, University, Brisbane, Australia) AIAA Journal (ISSN 0001-1452), vol. 28, Dec. 1990, p. 2043-2049. refs Copyright

Laser Doppler anemometer measurements in a fully pulsed, subsonic air jet with a significant no-flow period between pulses have been conducted and show much higher entrainment than steady or partially pulsed jets of the same mass flow. The mean centerline velocity decay is linearly related to the inverse of the effective distance from exit for some 50 diameters, but centerline velocity decay is much slower than for steady jets due to dominationi by the periodic component and its associated pressure field, which affects jet momentum. For larger distances, the decay changes to the steady jet rate. Reynolds stresses are considerably larger than for a steady jet and are considered to be responsible for the increased entrainment. Results are, except for a small increase in the constant of proportionality, consistent with Taylor's entrainment hypothesis. Phase averaged results through a cycle show the ratio of shear stress to turbulent kinetic energy to be in the range of 0.2-0.3 for the bulk of the flow.

A91-22481#

UNSTEADY SEPARATION OVER MANEUVERING BODIES

S. F. SHEN and TZUYIN WU (Cornell University, Ithaca, NY) AIAA Journal (ISSN 0001-1452), vol. 28, Dec. 1990, p. 2059-2068. Previously cited in issue 20, p. 3344, Accession no. A88-48875. refs

(Contract AF-AFOSR-86-0328) Copyright

A91-22483*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

VORTICAL FLOW COMPUTATIONS ON SWEPT FLEXIBLE WINGS USING NAVIER-STOKES EQUATIONS

GURU P. GURUSWAMY (NASA, Ames Research Center, Moffett Field, CA) AlAA Journal (ISSN 0001-1452), vol. 28, Dec. 1990, p. 2077-2084. Previously cited in issue 12, p. 1776, Accession no. A89-31362. refs
Copyright

A91-22491#

NUMERICAL SOLUTION OF THE EQUATION FOR A THIN AIRFOIL IN GROUND EFFECT

LAZAR DRAGOS (Bucuresti, Universitatea, Bucharest, Rumania) AIAA Journal (ISSN 0001-1452), vol. 28, Dec. 1990, p. 2132-2134. refs Copyright

An effort is made to integrate the thin-airfoil equation in ground effect, using Gauss-type quadrature formulas. Unlike classical methods, in which the thin airfoil is supplanted by a vortex

distribution, the present method replaces the airfoil with a force distribution. The intensity of this distribution is determined in such a way that its effect of the fluid duplicates that of the wing. Numerical results are presented.

O.C.

A91-22492#

OPTIMUM HYPERSONIC AIRFOIL WITH POWER LAW SHOCK WAVES

B. A. WAGNER AIAA Journal (ISSN 0001-1452), vol. 28, Dec. 1990, p. 2134-2136. refs (Contract AF-AFOSR-88-0037) Copyright

The present examination of the inviscid flowfield over a family of two-dimensional lifting surfaces uses hypersonic small-disturbance theory to treat not only convex but concave surfaces. On this basis, a wider class of lifting surfaces is constructed using the streamlines of the basic flowfield. Boundary layers are assumed to be thin and attached to the surface; the surfaces are considered to correspond to the lower compression surface of a two-dimensional wing.

O.C.

A91-22497#

FLOW SEPARATION PATTERNS OVER AN F-14A AIRCRAFT WING

TSZE C. TAI (U.S. Navy, David W. Taylor Naval Ship Research and Development Center, Bethesda, MD) AIAA, Aerospace Sciences Meeting, 28th, Reno, NV, Jan. 8-11, 1990. 9 p. Research supported by the U.S. Navy. refs (AIAA PAPER 90-0596)

Computational results of flow over an F-14A wing based on a thin-layer Navier-Stokes method are presented, and the resulting flow separation patterns are discussed. A zonal approach is employed that allows condensed grid for viscous calculations near the wing surface. The F-14A wing is fixed with a sweep angle of 20 degrees and travels at an altitude of 45,000 feet above sea level at Mach 0.6 and at sea level at Mach 0.1 with various angles of attack. These conditions, which yield a Reynolds number of 8.95 x 10 to the 6th, allow evaluation of the effect of Mach number on flow separation patterns with fixed Reynolds number. Massive flow separation occurs at Mach 0.6 at an angle of attack of 10 degrees. At Mach 0.1, with the same Reynolds number, the rear region massive separation is replaced by a moderate leading edge separation. As a consequence, the lift and drag values are far more stable at low speed as the angle of attack increases.

Aùthor

A91-22499*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

A STEADYING EFFECT OF ACOUSTIC EXCITATION ON TRANSITORY STALL

K. B. M. Q. ZAMAN (NASA, Lewis Research Center, Cleveland, OH) AlAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 16 p. Previously announced in STAR as N91-13420. refs

(AIAA PAPER 91-0043) Copyright

The effect of acoustic excitation on a class of separated flows with a transitional boundary layer at the point of separation is considered. Experimental results on the flow over airfoils, a two-dimensional backward-facing step, and through large angle conical diffusers are presented. In all cases, the separated flow undergoes large amplitude fluctuations, much of the energy being concentrated at unusually low frequencies. In each case, an appropriate high frequency acoustic excitation is found to be effective in reducing the fluctuations substantially. The effective excitation frequency scales on the initial boundary layer thickness and the effect is apparently achieved through acoustic tripping of the separating boundary layer.

A91-22511* Manchester Univ. (England). THE INVISCID STABILITY OF SUPERSONIC FLOW PAST A SHARP CONE

PETER W. DUCK and STEPHEN J. SHAW (Manchester, Victoria University, England) Theoretical and Computational Fluid

Dynamics (ISSN 0935-4964), vol. 2, no. 3, 1990, p. 139-163.

(Contract NAS1-18605; SERC-GR/E/25702)

Copyright

The effects of lateral curvature on the development of supersonic laminar inviscid boundary-layer flow on a sharp cone with adiabatic wall conditions are investigated analytically, with a focus on the linear temporal inviscid stability properties. The derivation of the governing equations and of a 'triply generalized' inflexion condition is outlined, and numerical results for freestream Mach number 3.8 are presented in extensive graphs and characterized in detail. A third instability mode related to the viscous mode observed by Duck and Hall (1990) using triple-deck theory is detected and shown to be more unstable and to have larger growth rates than the second mode in some cases. It is found that the 'sonic' neutral mode is affected by the lateral curvature and becomes a supersonic neutral mode.

A91-22762#

THE INFLUENCES OF FORCED OSCILLATIONS TOWARD VORTEX-BREAKDOWN

YANQIU CHEN, ZHIYONG LU, and CHUN-HIAN LEE (Beijing University of Aeronautics and Astronautics, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Sept. 1990, p. A505-A509. In Chinese, with abstract in English. refs

The experimental results on the effects of oscillating leading-edge vortex-flaps of a triangular wing on vortex breakdown are presented. The results reveal that forced oscillations can delay the breakdown of concentrated vortices, and large reversed-flow regions which originally appear at the upper surface of the fixed wing at high angles of attack would be suppressed to some extent, depending on the oscillation frequencies. As a consequence, the effects can be optimized by selecting proper oscillation frequencies.

A91-22763#

AF-2 ITERATION AND ITS PARALLEL ALGORITHM FOR TRANSONIC FLOW WITH LARGE DISTURBANCES IN FREESTREAM-DIRECTION AROUND AXISYMMETRIC BODIES AT ZERO ANGLE OF ATTACK

SAIJIN MIN, XIUYING LI (National University of Defence Technology, People's Republic of China), and SHIJUN LUO (Northwestern Polytechnical University, Xian, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Sept. 1990, p. A510-A514. In Chinese, with abstract in English. refs

The calculations of an AF-2 scheme are made by serial and parallel algorithms on a computer for solving axisymmetrical transonic potential equation with large disturbances in the freestream direction and small disturbance in the radial direction. By computations, the convergence of AF-2 is compared with that of SLOR, and the efficiency for parallel algorithm of AF-2 is compared with the efficiency for serial algorithm. Results indicate that AF-2 technique has led to a 3 to 7 fold improvement in convergence against SLOR, and the computation efficiency by the parallel algorithm of AF-2 is about 3 times higher than that by the serial algorithm of AF-2.

A91-22764#

CALCULATION OF UNSTEADY AERODYNAMIC LOADS ON WINGS WITH AN OSCILLATORY LEADING EDGE FLAP

LI YUAN, ZHIYONG LU (Beijing University of Aeronautics and Astronautics, People's Republic of China), and J. M. WU (Tennessee, University, Tullahoma) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Sept. 1990, p. A515-A520. In Chinese, with abstract in English.

The unsteady aerodynamic loads on wings with leading edge (LE) separation in inviscid incompressible flow are calculated using the vortex-lattice method. The calculated results of delta and double delta wings with oscillating LE flaps not only show influence upon aerodynamic response as a result of different oscillatory

frequencies and hinge line swept-back angles, but also reveal the phenomena of aerodynamic lag and nonlinear interaction associated with unsteady vortex flows.

Author

A91-22878*# Analytical Services and Materials, Inc., Hampton, VA.

FLUX-DIFFERENCE SPLIT SCHEME FOR TURBULENT TRANSPORT EQUATIONS

J. H. MORRISON (Analytical Services and Materials, Inc., Hampton, VA) AIAA, International Aerospace Planes Conference, 2nd, Orlando, FL, Oct. 29-31, 1990. 11 p. refs (Contract NAS1-18599) (AIAA PAPER 90-5251)

This paper describes a high accuracy upwind method to solve the mean compressible flow equations closed with two-equation turbulence models. A flux-difference splitting scheme is developed to compute the flowfield without introducing oscillations into the solution. A high-order accuracy scheme is used to predict both the mean flow variables and the turbulence variables. Results comparing two different two-equation turbulence models are presented for supersonic flow over a flat plate and a compressible, free shear-layer. The non-oscillatory behavior of the upwind scheme is demonstrated on the free shear-layer.

A91-22882*# High Technology Corp., Hampton, VA. BOUNDARY LAYER RECEPTIVITY PHENOMENA IN THREE-DIMENSIONAL AND HIGH-SPEED BOUNDARY LAYERS

MEELAN CHOUDHARI (High Technology Corp., Hampton, VA) and CRAIG L. STREETT (NASA, Langley Research Center, Hampton, VA) AIAA, International Aerospace Planes Conference, 2nd, Orlando, FL, Oct. 29-31, 1990. 22 p. refs (Contract NAS1-18240)

(AIAA PAPER 90-5258) Copyright

The process by which the boundary layer internalizes the environmental disturbances in the form of instability waves is known as the boundary-layer receptivity. The paper discusses the importance of receptivity in transition research. The receptivity scenario for three-dimensional and high-speed boundary layers is examined. It is found that, while receptivity mechanisms present in the low-speed case are also operative in these complex flows, certain uniquely 'compressible' receptivity mechanisms may come into play as well. Both numerical, and where convenient, asymptotic procedures are utilized to develop quantitative predictions of the localized generation of a variety of instability types (Tollmien-Schlichting, inflectional, higher modes, crossflow vortices) in boundary layer flows relevant to the National Aero-Space Plane (NASP).

A91-22883#

SIMPLIFIED MODELING OF BLUNT NOSE EFFECTS ON VEHICLE FLOW FIELDS

J. W. HANEY and B. A. MILLER (Rockwell International Corp., Downey, CA) AIAA, International Aerospace Planes Conference, 2nd, Orlando, FL, Oct. 29-31, 1990. 6 p. refs (AIAA PAPER 90-5259) Copyright

A simplified method has been developed to predict the impact of nose bluntness on the velocity distributions for axisymmetric vehicles. The method makes use of both wind tunnel and computational fluid dynamics to develop the data base for correlating local velocities.

Author

A91-22893#

THE INVESTIGATION OF THE HYPERSONIC VEHICLE AEROTHERMODYNAMICS

V. N. GUSEV (Tsentral'nyi Aerogidrodinamicheskii Institut, Moscow, USSR) AIAA, International Aerospace Planes Conference, 2nd, Orlando, FL, Oct. 29-31, 1990. 25 p. refs (AIAA PAPER 90-5271) Copyright

A numerical-experiment approach is described which makes possible the efficient investigation of hypersonic flow about vehicles under conditions ranging from continuum to free molecular flow. A method for introducing corrections to aerodynamic characteristics

for vehicles with perfect aerodynamic shapes is considered. Particular attention is given to the calculation of intense, heating experienced by the hypersonic vehicle in a descent trajectory.

B.J.

A91-23095#

CALCULATIONS ON TOTAL TEMPERATURE AND PRESSURE IN HYPERSONIC AIR FLOW

SHAOQING WANG (31st Research Institute, People's Republic of China) Journal of Propulsion Technology (ISSN 1001-4055), Dec. 1990, p. 29-33. In Chinese, with abstract in English.

Total temperature and total pressure of a gas flow in chemical equilibrium, isentropy with variable composition and specific heat at Ma = 0 to about 7.0 and H = 0 to about 40 km are calculated. The results are compared with those calculated with an aerodynamic function method, a modifying coefficient method and the method issued by the R-R company. In this paper, the variations of total temperature and pressure with Ma and H are presented. The results show that if Ma is greater than 3.00, the calculation results by the thermodynamic method and aerodynamic function method are remarkably different. For example, at Ma = 6.50, the relative deviation of total temperature exceeds 14 percent, and that of total pressure is greater than 26 percent.

A91-23186

COMPUTATION OF THREE-DIMENSIONAL SUBSONIC FLOWS IN DUCTS USING THE PNS APPROACH

A. R. ASLAN and R. GRUNDMANN (Institut Von Karman de Dynamique des Fluides, Rhode-Saint-Genese, Belgium) Zeitschrift fuer Flugwissenschaften und Weltraumforschung (ISSN 0342-068X), vol. 14, Dec. 1990, p. 373-380. refs (Contract BMVG-T/RF42/G022/G1412) Copyright

The steady laminar incompressible three-dimensional flow field in ducts of constant square cross section is analyzed. It is found that an a priori inviscid pressure distribution must be included in the analysis in order to take upstream effects into account. The inviscid pressure distribution is computed by solving Laplace's equation by a finite element method. Detailed comparison of the computations of the S-bend geometry with experimental data are presented, both with and without the inviscid pressure distribution.

A91-23189

LIMEAR STABILITY ANALYSIS OF MEASURED NEAR-WAKE PROFILES FOR A FLAT PLATE IN LONGITUDINAL FLOW [LIMEARE STABILITAETSANALYSE GEMESSENER NAHER NACHLAUFPROFILE EINER LAENGS ANGESTROEMTEN EBENEN PLATTE]

W. ALTHAUS (Aachen, Rheinisch-Westfaelische Technische Hochschule, Federal Republic of Germany) Zeitschrift fuer Flugwissenschaften und Weltraumforschung (ISSN 0342-068X), vol. 14, Dec. 1990, p. 400-405. In German. refs Copyright

The supersonic wake generated by a flat plate can exhibit a turbulent or vortical structure depending on the nature of the surface of the plate. If the roughness of the surface, varied by pasting sandpaper onto it, exceeds a critical value, and if the sandpaper ends at a certain distance from the trailing edge, the wake has a vortical structure; otherwise it is turbulent. Linear local stability analysis of measured velocity profiles of the near wake, together with a global resonance criterion, gives good agreement between the measured and calculated Strouhal numbers for subsonic freestream Mach numbers. The underlying physical model of the analysis can explain some aspects of the phenomenon investigated. Spatial development of the wake profiles is necessary for the flow to become globally unstable. Surface roughness seems to be necessary to reach the required minimum length of the local absolute unstable region.

A91-23550

AN INVESTIGATION OF SUPERSONIC OSCILLATORY CAVITY FLOWS DRIVEN BY THICK SHEAR LAYERS

X. ZHANG and J. A. EDWARDS (Cambridge, University, England) Aeronautical Journal (ISSN 0001-9240), vol. 94, Dec. 1990, p. 355-364. Research supported by the Ministry of Defence Procurement Executive. refs Copyright

This study forms part of a theoretical and experimental investigation into single and multiple cavity flow and it is indicated that the results for single cavities will form the basis for understanding work on multiple cavities. Time averaged and unsteady results of an experimental study of the fluid dynamic characteristics of supersonic cavity flows driven by thick shear layers are presented. Changes in the time-mean and the time-dependent flow characteristics at different flow conditions are discussed. The experimental time-dependent results are compared with existing theoretical analyses of the frequencies. For one of these oscillation characteristic types (longitudinal oscillation) an existing theoretical description is improved with a modified phase relation.

A91-23639#

COMPUTATIONAL FLUID DYNAMIC APPLICATIONS FOR JET PROPULSION SYSTEM INTEGRATION

R. H. TINDELL (Grumman Corp., Bethpage, NY) ASME, Transactions, Journal of Engineering for Gas Turbines and Power (ISSN 0022-0825), vol. 113, Jan. 1991, p. 40-50. refs (ASME PAPER 90-GT-343) Copyright

Various CFD codes are presently used for the prediction of performance of such propulsion system elements as inlets and nozzles. Attention is given to the supersonic flow Euler analysis of an inlet-approach flow field, to clarify an apparent discrepancy between wind tunnel and flight data results. Also noted are the results obtainable with calculations for low-speed inlet performance at indidence, as well as for the more complex inlet flow phenomena obtained at high angles of attack with an approach combining a panel method with a Navier-Stokes code. Propulsion integration is treated in the form of nozzle-afterbody calculations using a Navier-Stokes code and a more economical equivalent-body-of-revolution technique.

A91-23640*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA. AIRFRAME/PROPULSION INTEGRATION AT TRANSONIC SPEEDS

W. P. HENDERSON (NASA, Langley Research Center, Hampton, VA) ASME, Transactions, Journal of Engineering for Gas Turbines and Power (ISSN 0022-0825), vol. 113, Jan. 1991, p. 51-59. refs

(ASME PAPER 90-GT-338) Copyright

A significant level of research is ongoing at NASA's Langley Research center on integrating the propulsion system with the aircraft. This program has included nacelle/pylon/wing integration for turbofan transports, propeller/nacelle/wing integration for turboprop transports, and nozzle/afterbody/empennage integration for high-performance aircraft. The studies included in this paper focus more specifically on pylon shaping and nacelle bypass ratio studies for turbofan transports, nacelle and wing contouring, and propeller location effects for turboprop transports, empennage effects, and thrust vectoring for high-performance aircraft. The studies were primarily conducted in NASA Langley's 16-Foot Transonic Tunnel at Mach numbers up to 1.20.

A91-23656#

EXPERIMENTAL STUDY OF THE THREE-DIMENSIONAL FLOW FIELD IN A TURBINE STATOR PRECEDED BY A FULL STAGE E. BOLETIS and C. H. SIEVERDING (Institut von Karman de Dynamique des Fluides, Rhode-Saint-Genese, Belgium) ASME, Transactions, Journal of Turbomachinery (ISSN 0889-504X), vol. 113, Jan. 1991, p. 1-9. refs

Results are reported of an experimental investigation of the flow through a low aspect ratio turbine stator with inlet conditions generated by an upstream stage. The inlet flow conditions to a turbine stator preceded by a full stage are considerably different from those generated in isolated cascades. In particular, the shape of the inlet flow angle and total pressure distributions are affected by radial free-stream gradients and rotor secondary and clearance flows. The flow field in the stator blade row is strongly influenced by the combined action of the rotor clearance flow and the free-stream total pressure gradient. They augment the effects of the radial static pressure gradient generated within the blade row, causing a significant radial migration of low-momentum boundary layer material along the rear suction side. Downstream of the cascade the rotor tip clearance effects influence the angle distribution over the entire upper span.

A91-23842

AN EXPERIMENTAL STUDY OF THE EVOLUTION OF HARMONIC PERTURBATIONS IN A BOUNDARY LAYER ON A FLAT PLATE AT MACH 4 [EKSPERIMENTAL'NOE ISSLEDOVANIE RAZVITIIA GARMONICHESKIKH VOZMUSHCHENII V POGRANICHNOM SLOE PLOSKOI PLASTINY PRI CHISLE MAKHA M = 4]

A. D. KOSINOV, A. A. MASLOV, and S. G. SHEVEL'KOV Akademiia Nauk SSSR, Izvestiia, Mekhanika Zhidkosti i Gaza (ISSN 0568-5281), Nov.-Dec. 1990, p. 54-58. In Russian. refs

The evolution of three-dimensional wave packets introduced artificially into a boundary layer is investigated experimentally. Measurements were carried out by hot-wire anemometry in a boundary layer on a flat plate at Mach 4. Artificial perturbations were introduced into the boundary layer by using an electric discharge. A Fourier analysis of the experimental results has yielded the wave characteristics of the plane waves. The composition of the perturbations is analyzed, and the types of perturbations that are most likely to cause a loss of stability are identified.

A91-23845

EFFECT OF SURFACE TEMPERATURE ON THE STABILITY OF THE ATTACHMENT LINE BOUNDARY LAYER OF A SWEPT WING [VLIIANIE TEMPERATURY POVERKHNOSTI NA USTOICHIVOST' POGRANICHNOGO SLOIA NA LINII PRISOEDINENIIA SKOL'ZIASHCHEGO KRYLA]

A. V. KAZAKOV Akademiia Nauk SSSR, Izvestiia, Mekhanika Zhidkosti i Gaza (ISSN 0568-5281), Nov.-Dec. 1990, p. 78-82. In Russian. refs Copyright

The effect of surface temperature on the stability characteristics of laminar flow of a viscous heat-conducting gas at the leading edge of a swept wing is investigated analytically. It is found that an increase in surface temperature leads to a rapid decrease in the Reynolds number of stability loss. An increase in the Mach number, on the contrary, stabilizes flow at the attachment line, although the Reynolds number of stability loss increases only slightly.

A91-23848

A STUDY OF FLOW STRUCTURE IN NOZZLES WITH A CONSTANT-HEIGHT SECTION IN THE THROAT REGION [ISSLEDOVANIE STRUKTURY TECHENIIA V SOPLAKH S UCHASTKOM POSTOIANNOI VYSOTY V OBLASTI MINIMAL'NOGO SECHENIIA]

O. A. VASIL'EV, S. N. MININ, and A. V. SHIPOVSKIKH Akademiia Nauk SSSR, Izvestiia, Mekhanika Zhidkosti i Gaza (ISSN 0568-5281), Nov.-Dec. 1990, p. 160-166. In Russian. refs Copyright

Results of an analytical and experimental study of flow structure in plane nozzles with a constant-height section in the throat area are reported. The nozzle used in the experiments consisted of two shaped duralumin plates 1500 mm wide. The effect of the longitudinal and transverse deflections of the nozzle vanes on the parameters of transonic and supersonic flows is discussed. V.L.

A91-23903

EFFECT OF THE INITIAL FLOW CONDITIONS ON THE AERODYNAMIC AND ACOUSTIC CHARACTERISTICS OF TURBULENT JETS [VLIIANIE NACHAL'NYKH USLOVII ISTECHENIIA NA AERODINAMICHESKIE I AKUSTICHESKIE KHARAKTERISTIKI TURBULENTNYKH STRUI]

E. V. VLASOV, A. S. GINEVSKII, and R. K. KARAVOSOV IN: Mechanics of nonuniform and turbulent flows. Moscow, Izdatel'stvo Nauka, 1989, p. 26-34. In Russian. refs Copyright

The effect of acoustic and vibrational perturbations on the aerodynamic characteristics of jets is investigated theoretically and experimentally for laminar and turbulent boundary layers of varying initial thickness. It is shown that, depending on the excitation frequency and amplitude, the acoustic and vibrational excitation of turbulent jets may either intensify or weaken mixing. The introduction of artificially generated acoustic or vibrational perturbations can thus be used as an efficient control method for turbulent jets.

A91-23913

TURBULENT THREE-DIMENSIONAL SEPARATED FLOWS IN A SUPERSONIC STREAM NEAR OBSTACLES AT THE EDGE OF DIHEDRAL CORNERS [TURBULENTNYE TREKHMERNYE OTRYVNYE TECHENIIA V SVERKHZVUKOVOM POTOKE VBLIZI PREPIATSTVII NA REBRAKH DVUGRANNYKH UGLOVI

A. I. GLAGOLEV, A. I. ZUBKOV, B. E. LIAGUSHIN, and IU. A. PANOV IN: Mechanics of nonuniform and turbulent flows. Moscow, Izdatel'stvo Nauka, 1989, p. 194-201. In Russian. Copyright

Supersonic flow past three-dimensional obstacles located at the edge of acute and obtuse dihedral corners were investigated experimentally in a wind tunnel at Mach 3 using dihedral-corner models consisting of two tapered plates. Replaceable cylinders of varying length and diameter were mounted at the edge. It is found that three-dimensional separated flows forming in front of obstacles at the edge of external dihedral corners are characterized by a decrease in the separation zone length with an increase of the external angle, disappearance of a local supersonic region in the vicinity of the edge, and a decrease in the critical pressure drop at the edge that leads to flow separation.

A91-24115#

DOUBLE LINEARIZATION THEORY FOR A ROTATING SUBSONIC ANNULAR CASCADE OF OSCILLATING BLADES. I - MATHEMATICAL EXPRESSIONS OF DISTURBANCE FLOW FIELD. II - NUMERICAL STUDY OF UNSTEADY AERODYNAMIC FORCES

KAZUHIKO TOSHIMITSU, MASANOBU NAMBA (Kyushu University, Fukuoka, Japan), and PING LI Kyushu University, Faculty of Engineering, Memoirs (ISSN 0023-6160), vol. 50, June 1990, p. 161-199. refs

Mathematical expressions for steady and unsteady disturbance flow fields are obtained on the basis of the double linearization theory. A numerical study of unsteady aerodynamic forces is carried out. Three-dimensional effects in pure n- and s-wise bending and in pure torsional vibrations are investigated.

K.K.

A91-24152#

SOLUTION OF EULER EQUATIONS TO 2-D AND AXISYMMETRIC COMPRESSIBLE FLOWS USING CONFORMAL MAPPING COORDINATES

MINGKE HUANG (Nanjing Aeronautical Institute, People's Republic of China) Acta Aerodynamica Sinica (ISSN 0258-1825), vol. 8, Dec. 1990, p. 371-378. In Chinese, with abstract in English. refs

Conformal mapping is used here to transform two-dimensional and axisymmetric Euler equations. It is found that the Euler equations can be cast in quasi-conservative form with source terms containing no unknown derivatives, and that the only unknown velocity components are those aligned with the direction of curvilinear coordinates in transformed equations. The derived equations are almost as simple as those in Cartesian systems. As

examples, the equations are used to compute two-dimensional and axisymmetric flows past arbitrary airfoils and bodies of revolution. The results show that the method has good accuracy and shock resolution.

C.D.

A91-24154#

UNSTEADY TRANSONIC FLOW CALCULATIONS FOR MULTIPLE OSCILLATING AIRFOIL

QIN E and FENGWEI LI (Northwestern Polytechnical University, Xian, People's Republic of China) Acta Aerodynamica Sinica (ISSN 0258-1825), vol. 8, Dec. 1990, p. 388-397. In Chinese, with abstract in English. refs

Inviscid, unsteady transonic flows over the NACA 0012 airfoil for sinusoidal pitching oscillations about the midchord were calculated using a finite-difference analog of the Euler equations. An extension of the unsteady transonic flow calculations to include perpendicular and horizontal oscillations and the superposition of pitch and translations is developed. In this method the grid motion together with the airfoil and the boundary conditions in infinity and on the surface of the airfoil are exactly satisfied, and the full field is covered with a fewer number of grids having a total of about 600 nodes.

A91-24155#

A METHOD FOR CALCULATING THE AERODYNAMIC FORCES OF ELLIPTICAL CIRCULATION CONTROL AIRFOILS

MAO SUN (Beijing University of Aeronautics and Astronautics, People's Republic of China) Acta Aerodynamica Sinica (ISSN 0258-1825), vol. 8, Dec. 1990, p. 398-403. In Chinese, with abstract in English. refs

This paper presents a method for calculating the aerodynamic forces of elliptical circulation control airfoils by combining the boundary layer calculation and potential flow calculation. The effect of the separated wake on the potential flow is included using the discrete vortex method. Nascent vortices are introduced into the flow from the separation points on the upper and lower surface of the airfoil to model the separated vortex sheets. Only the vortices in the near wake are allowed to move freely and the vortices in the far wake are assumed to move with the freestream velocity. The effect of the boundary layer upstream of the jet exit on the jet development is neglected. These simplifications make the method very efficient. Good agreement is found between calculated and experimental results for the separation points and pressure distributions before the separation points and for lift coefficient vs. momentum coefficient.

A91-24156#

THE EFFECTS OF CANARD POSITION AERODYNAMIC CHARACTERISTICS OF FORWARD-SWEPT WING

BINQIAN ZHANG (Northwestern Polytechnical University, Xian, People's Republic of China) and B. LASCHKA (Muenchen, Technische Universitaet, Munich, Federal Republic of Germany) Acta Aerodynamica Sinica (ISSN 0258-1825), vol. 8, Dec. 1990, p. 404-409. In Chinese, with abstract in English. refs

Based on the results of aerodynamic forces measurements, oil visualization and vortex measurement from wind tunnel testing, the effect of canard position on the aerodynamic characteristics of canard-forward swept wing configuration is investigated. The results show that the effect of canard position on the aerodynamic characteristics is noticeable. The improvements of aerodynamic characteristics for the canard-forward-swept wing configuration at high angles of attack depend on the relative location of the wing nose vortex ad the canard nose vortex and their interaction. Proper arrangements of the geometry of the wing and the canard and their relative position are proposed. A double forward-swept wing configuration is also discussed.

A91-24157#

A GREEN'S FUNCTION METHOD FOR CALCULATING THE TRANSONIC PRESSURE DISTRIBUTION OF WING

KAI WU and QIANGANG LIU (Northwestern Polytechnical University, Xian, People's Republic of China) Acta Aerodynamica

Sinica (ISSN 0258-1825), vol. 8, Dec. 1990, p. 410-416. In Chinese, with abstract in English. refs

A Green's Function Method for solving the steady nonlinear three-dimensional potential equation is proposed. The Green's theorem is used to transform the partial different equation to an integral equation. The integral equation is discretized by finite element and finite different methods. The resulting nonlinear simultaneous equations are solved by relaxation-interation methods. The influence coefficients represented by volume integrals are transformed to surface integrals by using the Gaussian theorem, so the analytical forms of these coefficients can be obtained. The results of the present method are in good agreement with those of finite difference method.

A91-24162#

CURVED VORTEX ELEMENTS FOR NUMERICAL WAKE MODELING

WUJIANG LOU and SHICUN WANG (Nanjing Aeronautical Institute, People's Republic of China) Acta Aerodynamica Sinica (ISSN 0258-1825), vol. 8, Dec. 1990, p. 459-463. In Chinese, with abstract in English.

Connecting two vortex end points to form a vortex segment and evaluating its contribution to the induced velocity at an arbitrary point is the key element in wake numerical analysis. The conventional straight line vortex element (SLVE) is unable to produce high accuracy evaluation in the case of a complex wake structure, such as a helicopter rotor wake, where a substitution for the SLVE is essentially needed. This paper covers the derivation and development of CVEC (curved vortex element on circular arcs) and CVEP (curved vortex element on parabolic arcs) and conscientiously prepared numerical tests to show their high accuracy and efficiency. Both CVEC and CVEP are recommended for use in advanced wake modeling.

A91-24163#

THE METHOD FOR EXTENDING THE RANGE OF ATTACK ANGLE AND BLOCKAGE IN TRANSONIC WIND TUNNEL TESTING - USING LOW SUPERSONIC NOZZLE INSTEAD OF SONIC NOZZLE

CHANGHAI ZHOU (Shenyang Aerodynamics Research Institute, People's Republic of China) Acta Aerodynamica Sinica (ISSN 0258-1825), vol. 8, Dec. 1990, p. 464-467. In Chinese, with abstract in English.

Instead of the sonic nozzle, low supersonic nozzles have been utilized to solve the choking problem in transonic wind tunnel testing at high angle of attack and high blockage. The low supersonic nozzles can produce steady low supersonic flowfield with satisfactory quality, double the allowable angles of attack and blockage limits, and fill in the gaps in Mach-number/attack-angle range. Model test results from a small wind tunnel are in good agreement with the data obtained in large wind tunnel for a model of the same scale.

A91-24164#

NUMERICAL COMPUTATION OF SHOCK IN THE FRONT OF BLUNT BODY

HUI ZHANG and WEICHENG FAN (University of Science and Technology of China, Hefei, People's Republic of China) Acta Aerodynamica Sinica (ISSN 0258-1825), vol. 8, Dec. 1990, p. 468-472. In Chinese, with abstract in English.

The shock problem is studied by direct solving N-S equations. Explorations are made of whether supersonic and transonic flows can be solved by direct solution of N-S equations, and how to do it. New approaches to treatment of viscous term, construction of pressure correction equation for compressible flow, and numerical methods are proposed and adopted in the paper. Computational results obtained are basically reasonable.

Author

A91-24167#

CALCULATION OF TRANSONIC NOZZLE FLOW

DINGYOU FANG (National University of Defence Technology, People's Republic of China) Acta Aerodynamica Sinica (ISSN

0258-1825), vol. 8, Dec. 1990, p. 486-490. In Chinese, with abstract in English.

The time-dependent method is applied to the calculation of transonic nozzle flow in this paper. The transonic nozzle is computed by solving the conservation and nonconservation governing equations with uniform integration step size in the full flowfield and local integration step size, and by the corrected dashpot method. The computational results show that the convergence rate of the numerical solution with local integration step size is the fastest among these computations. The convergence rate with uniform integration step size for nonconservation equations is faster than that for conservation equations, and the corrected dashpot method with optimizing damping factor and time interval is a better method for computing transonic nozzle flow.

A91-24168#

VISCOUS-INVISCID INTERACTIVE SEMI-INVERSE CODE FOR THREE DIMENSIONAL TRANSONIC FLOW

GONGBI WEN, XIAOYI HE, and WANGYI WU (Beijing University, People's Republic of China) Acta Aerodynamica Sinica (ISSN 0258-1825), vol. 8, Dec. 1990, p. 491-497. In Chinese, with abstract in English. refs

A version of viscous-inviscid interactive semiinverse code for three-dimensional transonic flow is proposed. Inverse integral method is used for compressible turbulent boundary layer. It is proved that with external streamline angle alpha and 'incompressible' shape H choice of inputs the integral boundary layer equations are always hyperbolic in the transonic regime. The inviscid calculation is performed using FL027 which is the full potential code. Viscous-inviscid interactive solution which agreed reasonably well with experiments in small attack angle is obtained for the case of small separated region.

N91-15125*# National Aeronautics and Space Administration.
Langley Research Center, Hampton, VA.
STATIC INTERNAL PERFORMANCE OF AN AXISYMMETRIC

STATIC INTERNAL PERFORMANCE OF AN AXISYMMETRIC NOZZLE WITH MULTIAXIS THRUST-VECTORING CAPABILITY GEORGE T. CARSON, JR. and FRANCIS J. CAPONE Washington Feb. 1991 77 p

(NASA-TM-4237; L-16809; NAS 1.15:4237) Avail: NTIS HC/MF A05 CSCL 01A

An investigation was conducted in the static test facility of the Langley 16 Foot Transonic Tunnel in order to determine the internal performance characteristics of a multiaxis thrust vectoring axisymmetric nozzle. Thrust vectoring for this nozzle was achieved by deflection of only the divergent section of this nozzle. The effects of nozzle power setting and divergent flap length were studied at nozzle deflection angles of 0 to 30 at nozzle pressure ratios up to §.0.

N91-15126*# Brown Univ., Providence, RI. Div. of Engineering. PARAMETER IDENTIFICATION FOR NONLINEAR AERODYNAMIC SYSTEMS Annual Report, 23 Oct. 1989 - 22 Oct. 1990

ALLAN E. PEARSON 19 Nov. 1990 59 p (Contract NAG1-1065)

(NASA-CR-187410; NAS 1.26:187410; SATR-2; ATR-1) Avail: NTIS HC/MF A04 CSCL 01A

Parameter identification for nonlinear aerodynamic systems is examined. It is presumed that the underlying model can be arranged into an input/output (I/O) differential operator equation of a generic form. The algorithm estimation is especially efficient since the equation error can be integrated exactly given any I/O pair to obtain an algebraic function of the parameters. The algorithm for parameter identification was extended to the order determination problem for linear differential system. The degeneracy in a least squares estimate caused by feedback was addressed. A method of frequency analysis for determining the transfer function G(j omega) from transient I/O data was formulated using complex valued Fourier based modulating functions in contrast with the trigonometric modulating functions for the parameter estimation

problem. A simulation result of applying the algorithm is given under noise-free conditions for a system with a low pass transfer function.

B.G.

N91-15127 Air Force Inst. of Tech., Wright-Patterson AFB, OH. NUMERICAL SOLUTIONS FOR A CYLINDRICAL LASER DIFFUSER FLOW-FIELD Ph.D. Thesis JAMES ANDREW HORKOVICH 1990 394 p

JAMES ANDREW HORKOVICH 1990 394 p Avail: Univ. Microfilms Order No. DA9027995

Numerical solution to the diffusion of a supersonic flow through a cylindrical laser diffuser is approached by incorporating a modified two-layer Cebici-Smith algebraic eddy viscosity turbulence model into the compressible Navier-Stokes equations. The standard algebraic constants are made functions of the local adverse pressure gradient based on experimental values obtained in the research of Jobe, Hankey, Laderman, Sturek, and Waltrup and Schetz. This modification allows solution of the Navier-Stokes equations by MacCormack's time splitting explicit numerical scheme for selected experimental flow conditions. This effort represents the first full Navier-Stokes solution that has accurately simulated the viscous-inviscid interactions present in a supersonic axisymmetric diffuser. The experimental tests used as a basis for the computational solutions were conducted at a diffuser entrance unit Reynolds number of 1.6 million per foot. Computations were performed for diffuser exit pressure representing 60 and 47 percent of normal shock recovery pressure. When the turbulence model was properly modified to accommodate the physics of flows with strong adverse pressure gradients, the numerical solution successfully reproduced all of the essential flow features including boundary layers, location, and size of wall separation regions, location of the core flow normal shock, and the persistence of source nozzle flow interactions through several streamwise turnback shocks. Convergence to stable numerical solutions was not achieved using the basic Cebici-Smith models. The required modifications to the basic Cebici-Smith two-layer algebraic eddy viscosity turbulence model are extremely sensitive to the von Karman universal mixing length constant, the sublayer thickness parameter, the Clauser outer region constant, and to the downstream location in the diffuser duct at which these modifications are implemented. Dissert. Abstr.

N91-15128*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

FLOWFIELD OF A LIFTING HOVERING ROTOR: A NAVIER-STOKES SIMULATION

G. R. SRINIVASAN, J. D. BAEDER, S. OBAYASHI (MCAT Inst., Moffett Field, CA.), and W. J. MCCROSKEY Aug. 1990 26 p Presented at the 16th European Rotorcraft Forum, Glasgow, Scotland, 18-21 Sep. 1990 Prepared in cooperation with Army Aviation Systems Command, Moffett Field, CASA-TM-102862: A-90274: NAS 1.15-102862) Avail: NTIS

(NASA-TM-102862; A-90274; NAS 1.15:102862) Avail: NTIS HC/MF A03 CSCL 01A

The viscous, three-dimensional flowfield of a lifting helicopter rotor in hover is calculated by using an upwind, implicit, finite-difference numerical method for solving the thin layer Navier-Stokes equations. The induced effects of the wake, including the interaction of tip vortices with successive blades, are calculated as a part of the overall flowfield solution without using any ad hoc wake models. Comparison of the numerical results for the subsonic and transonic conditions show good agreement with the experimental data and with the previously published Navier-Stokes calculations using a simple wake model. Some comparisons with Euler calculations are also presented, along with some discussions of the grid refinement studies.

N91-15129*# Stanford Univ., CA. Dept. of Mechanical Engineering.

DIRECT NUMERICAL SIMULATIONS OF A PLANE

COMPRESSIBLE WAKE: STABILITY, VORTICITY DYNAMICS, AND TOPOLOGY

JACQUELINE H. CHEN, BRIAN J. CANTWELL, and NAGI N. MANSOUR Nov. 1989 180 p

(Contract DE-AC04-76DR-00789) (NASA-CR-187737; NAS 1.26:187737; DE90-007934; SAND-90-8201) Avail: NTIS HC/MF A09 CSCL 01A

Recent interest in supersonic combustion and problems of transatmospheric flight has prompted renewed research efforts in laminar-turbulent free shear flow transition. In the present work, linear stability theory and direct numerical simulations are used to study the effect of Mach number on the linear, nonlinear, and three-dimensional aspects of transition in a plane compressible wake. Direct numerical simulations are also used to study the sensitivity of a compressible wake to: (1) phase effects, and (2) two- and three-dimensional subharmonics. A linear stability analysis shows that the influence of increasing Mach number is stabilizing, resulting in reduced growth rates for both antisymmetric and symmetric modes of the wake. This reduction is due to baroclinic and dilatational effects as revealed from the linear eigenfunctions. For both low and high Mach numbers, the least stable wave is a two-dimensional antisymmetric mode aligned with the stream-wise direction. Three-dimensional simulations were performed to study the effect of phase angle between a fundamental and a pair of oblique waves on the development of the large-scale structures in a wake. Finally, the topology of the computed velocity, vorticity, and pressure gradient fields is determined using a generalized three-dimensional critical point theory.

N91-15130 ESDU International Ltd., London (England). AIRFRAME-INDUCED UPWASH AT SUBSONIC SPEEDS Abstract Only

Oct. 1990 38 p (ESDU-90020; ISBN-0-85679-746-4; ISSN-0141-397X) Avail:

This Data Item 90020, an addition to the Aerodynamic Sub-series, provides a simple theoretically-based method for predicting the upwash at any point in the flow field ahead of the wing. The method, based on the Yaggy-Rogallo method, combines contributions from those airframe components that are planar lifting with contributions from the body-like essentially non-lifting components, with allowance for interference. For lifting surfaces a graphical method was developed from a correlation of a large number of calculations using the original approach but with spanwise loadings from lifting-surface theory. A correction factor to obtain results out of the plane of the surface was developed using a single swept horseshoe vortex. This approach greatly reduces the work required to calculate wing upwash. The method for body-like components uses an analytical integration of an equivalent axisymmetric body by dividing it into cross-sectional segments whose sides are approximately linear. For both types of components the first-order effects of compressibility are taken into account. The method has a wide range of applications with wing-body combinations. For use with ESDU 89047 to predict normal force and moments on an inclined propeller an effective angle of attack is devised. The method was compared with test data for upwash due to isolated nacelles, upwash induced at the propeller plane for a number of wing-body-nacelle combinations, and upwash at a noseboom-mounted vane on a combat aircraft. The agreement between predictions and test results for Mach numbers up to critical is good and is discussed in detail. Two worked examples illustrate the use of the method. **Author**

N91-15131 ESDU International Ltd., London (England). PERFORMANCE OF CONICAL DIFFUSERS IN SUBSONIC COMPRESSIBLE FLOW Abstract Only

Nov. 1990 41 p

(ESDU-90025; ISBN-0-85679-751-0; ISSN-0141-4011) Avail: ESDU

This Data Item 90025, an addition to the Fluid Mechanics, Internal Flow Sub-series, gives performance maps for straight axis diffusers with a sharp transition from an inlet pipe with naturally-developing flow. They apply for an inlet Reynolds number (based on pipe diameter) of one million. They plot static pressure recovery against diffuser area ratio (inlet/outlet) and length ratio (length/inlet radius) and each applies to a specific value of inlet Mach number (from 0.2 to 0.8) and a limited range of inlet pipe

length/diameter ratios (from 0 to 35.5). Shown on each map are curves of optimum performance for either given length ratio or given area ratio. The maps, whose use is illustrated by two worked examples, can be applied to determine the performance of given design or to design an optimum diffuser. An approximate method is suggested for deriving the total head loss from the static pressure recovery. Various other influences on diffuser performance are discussed and illustrated with sketches for specific cases. They include Reynolds number variation, inlet turbulence intensity, inlet velocity profile shape, upstream shock wave/boundary layer interaction, the approach to choking Mach number, fairing the inlet/diffuser junction, and fitting a tailpipe.

N91-15132 ESDU International Ltd., London (England). AN INTRODUCTION TO AIRCRAFT EXCRESCENCE DRAG Abstract Only

Nov. 1990 14 p

(ESDU-90029; ISBN-0-85679-755-3; ISSN-0141-397X) Avail: ESDU

This Data Item 90029, an addition to the Aerodynamics Sub-series, provides information to assist in the application of the group of ESDU data on the prediction of the drag due to such excrescences as grooves, ridges and steps, rivets, and cylinders and stub wings immersed in the boundary layer. Those data were obtained from wind tunnel tests of an idealized condition in which the excrescence was mounted on a flat plate with no pressure gradient, and the application of such data in the real aircraft situation is considered. Corrections are required for the effect of pressure gradient and flow orientation. The pressure gradient correction on a lifting surface is a magnification factor (although it can be less than unity) and its estimation in incompressible two-dimensional flow is discussed; its variation with the boundary layer parameters on an airfoil is illustrated graphically. The analysis is extended to compressible flow and reference is made to the prediction methods in ESDU 87004. The treatment of an excrescence only partially immersed in the boundary layer is also considered, and recommendations are made for the case of excrescences on non-lifting components. The effect of flow orientation is more briefly discussed, and suggestions are made for some situations, while the treatment of an excrescence for which no specific data are available is also considered. The significance of the excrescence drag penalty on aircraft performance is discussed, and acceptable levels in current good design practice are suggested.

N91-15133 ESDU International Ltd., London (England). A METHOD OF ESTIMATING A SEPARATION BOUNDARY OF TWO-DIMENSIONAL AEROFOIL SECTIONS IN TRANSONIC FLOW Abstract Only

Jun. 1990 19 p

(ESDU-81020-AMEND-A; ISSN-0141-4356) Avail: ESDU

ESDU 81020 gives a method for predicting the lift coefficient versus Mach number curve defining separation from a series of pressure distribution calculations using computer codes that strictly do not apply for flows approaching separation. From an analysis of wind-tunnel data two separation criteria were developed for use with the calculated pressure distributions, depending on whether separation occurred initially at the upper-surface upstream shock location or just upstream of the trailing edge. Separation was defined as occurring when the trailing-edge pressure coefficient diverged by 0.05 from an extrapolation of its trend with freestream Mach number or lift coefficient in attached flow. Because conditions for initial separation change along the complete separation boundary both criteria have to be considered. A detailed step-by-step explanation of the method is provided. The method was developed using calculations by the viscous Garabedian and Korn program with a lag entrainment boundary layer theory, but will apply using any comparable method for computing aerofoil pressure distributions. It applies to round-nosed aerofoils with or without camber with sharp or blunt bases. The experimental data used to develop the separation criteria covered a freestream Mach number range from 0.6 to 0.85 for Reynolds number based on chord of 2.5 to 20 million with transition fixed within a few percent

02 AERODYNAMICS

of the leading edge on both upper and lower surfaces. The method predicts the boundary within 0.03 in lift coefficient where separation lift coefficient varies slowly with Mach number and within 0.005 in Mach number were the separation Mach number varies slowly with lift coefficient.

N91-15135# Technische Hochschule, Aachen (Germany, F.R.). Fakultaet fuer Maschinenwesen.

PSEUDO REYNOLDS NUMBER EFFECTS IN TRANSONIC WIND TUNNELS Ph.D. Thesis [PSEUDO-REYNOLDSZAHLEFFEKTE IN TRANSSONISCHEN WINDKANAELEN]

FELIX AULEHLA 1989 63 p In GERMAN (ETN-91-98493) Avail: NTIS HC/MF A04

Three types of measures are discussed, for which Mach numbers errors are of great importance: the pressure resistance of forebodies and afterbodies, the transonic maximum lift, the transonic shock location. The positive or negative pseudo Reynolds number effects vary whether the reference pressure to regulate the blower stream Mach number is inside or outside the measured length of the wind tunnel. The wall pressure average value in the blank measured length is an excellent way to determine the slightest errors in the blower stream Mach number and in axial pressure gradients during a Reynolds number variation. It is proposed, as a first step, to determine at least the average wall pressures for all total pressures of the tunnel, for all transonic wind tunnels of variable thicknesses whose Reynolds number is not exactly known.

N91-15136# Technische Hochschule, Darmstadt (Germany, F.R.). Fachbereich Mechanik.

THE LAMINAR FREE JET PROBLEM, USING NEWTONIAN MEDIA Ph.D. Thesis [DAS LAMINARE FREISTRAHLPROBLEM BEI NEWTONSCHEN MEDIEN]

HARRY KNOEDLER 1989 112 p In GERMAN (ETN-91-98494) Avail: NTIS HC/MF A06

A calculation process and results were presented for a stationary and nonstationary free jet problem for Reynolds numbers up to 100. On the basis of a global impulse evaluation, the jet swell phenomena was explained. For the critical field of the transition between channel and free surface, an asymptotical solution was given in corner field, from the point of view of nonlinear and nonstationary effects. Using the kinematic iteration process, the location of the free border could be determined. A process known up to now in the field of the finite element method (conjugate gradient least square) was decisive in the treatment of the nonlinear border value functions, using the Border Element Method (BEM). A comparison with the finite element method showed the advantage of the BEM for Reynolds number less than 100.

N91-15138*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

SELECTABLE TOWLINE SPIN CHUTE SYSTEM Patent Application

DANIEL M. VAIRO, inventor (to NASA) (Lockheed Engineering and Sciences Co., Hampton, VA.) and RAYMOND D. WHIPPLE, inventor (to NASA) 25 Oct. 1990 22 p

(NASA-CASE-LAR-14322-1; NAS 1.71:LAR-14322-1;

US-PATENT-APPL-SN-603335) Avail: NTIS HC/MF A03 CSCL 01A

An emergency spin recovery parachute is housed within a centrally mounted housing on the aft end of an aircraft and is connected to a ring fitting within the housing. Two selectively latching shackles, connected to separate towlines are openly disposed adjacent the ring fitting. The towlines extend in opposite directions from the housing along the aircraft wing to attachment points adjacent the wing-tips, where the other end of each towline is secured. Upon pilot command, one of the open shackles latches to the ring fitting to attach the towline connected thereto, and a second command signal deploys the parachute. Suitable break-away straps secure the towlines to the aircraft surface until the parachute is deployed and the resulting force on the towline attached to the parachute overcomes the straps and permits the

towline to extend to the point of attachment to exert sufficient drag on the spinning aircraft to permit the pilot to regain control of the aircraft. To employ the parachute as a drag chute to reduce landing speeds, both shackles and their respective towlines are latched to the ring fitting.

NASA

N91-15981*# Tennessee Univ. Space Inst., Tullahoma. INVESTIGATION OF TRANSONIC FLOW OVER SEGMENTED SLOTTED WIND TUNNEL WALL WITH MASS TRANSFER Final Report

M. K. BHAT, A. D. VAKILI, and J. M. WU Dec. 1990 90 p (Contract NAG2-193)

(NASA-CR-187760; NAS 1.26:187760; UTSI-90) Avail: NTIS HC/MF A05 CSCL 01/1

The flowfield on a segmented multi-slotted wind tunnel wall was studied at transonic speeds by measurements in and near the wall layer using five port cone probes. The slotted wall flowfield was observed to be three-dimensional in nature for a relatively significant distance above the slot. The boundary layer characteristics measured on the single slotted wall were found to be very sensitive to the applied suction through the slot. The perturbation in the velocity components generated due to the flow through the slot decay rapidly in the transverse direction. A vortex-like flow existed on the single slotted wall for natural ventilation but diminished with increased suction flow rate. For flow on a segmented multi-slotted wall, the normal velocity component changes were found to be maximum for measurement points located between the segmented slots atop the active chamber. The lateral influence due to applied suction and blowing, through a compartment, exceeded only slightly that in the downstream direction. Limited upstream influence was observed. Influence coefficients were determined from the data in the least-square sense for blowing and suction applied through one and two compartments. This was found to be an adequate determination of the influence coefficients for the range of mass flows considered. Author

N91-15982# National Aerospace Lab., Tokyo (Japan). ACT Study Group.

WIND TUNNEL TESTS ON FLUTTER CONTROL OF A HIGH-ASPECT-RATIO CANTILEVERED WING: CONTROL WITH LEADING-EDGE AND TRAILING-EDGE CONTROL SURFACES Report No. 2

Jun. 1990 26 p In JAPANESE; ENGLISH summary (NAL-TR-1070; ISSN-0389-4010) Avail: NTIS HC/MF A03

Control laws were synthesized for active flutter suppression of a transport-type high aspect-ratio wing using both the leading-edge and the trailing-edge control surfaces. Wind tunnel tests were conducted in the NAL 5.5m x 6.5m low-speed wind tunnel in order to verify these control laws. The wing model has two accelerometers as sensors co-located at the control surfaces. The Linear Quadratic Gaussian (LQG) optimal control law synthesis method was applied to this multi-input, multi-output system to yield full order control laws. The order reduction procedure based on chained aggregation, together with some engineering manipulation, reduced the original 17th order controller to the decoupled second order practical controller. This synthesis method was verified to be effective by wind tunnel tests. In spite of the violent nature of clean wing flutter, the control law attained 13 percent increase in flutter speed in the test.

N91-15983# National Aerospace Lab., Tokyo (Japan).
AN EXPERIMENT ON SUPERSONIC TURBULENT MIXING
LAYERS: SUPERSONIC-SUBSONIC TWO-STREAM LAYERS
ATSUO MURAKAMI, TOMOYUKI KOMURO, KENJI KUDOU,
GORO MASUYA, and NOBUO CHINZEI May 1990 17 p in
JAPANESE; ENGLISH summary
(NAL-TR-1066; ISSN-0389-4010) Avail: NTIS HC/MF A03

An experimental study was made on supersonic-subsonic two-stream mixing layers with a high-velocity side free-stream Mach number of 2.3. The free-stream Mach number on the low-velocity side was 0.19, 0.49, 0.65, or 0.80. Self-similar velocity distributions approximately agreed with those of the single-stream

incompressible mixing layers. Centers of the mixing layers moved to the low-velocity side with decreasing velocity ratio. Values of the maximum shear stress decreased with increasing compressibility effect, and simply correlated with the spreading rates irrespective of compressibility. Compressibility effect on the spreading rate appeared stronger to the visual thickness and the density thickness than to the velocity thickness.

National Aerospace Lab., Tokyo (Japan). Aircraft N91-15984# Aerodynamics Div.

LARGE-SCALE NUMERICAL AERODYNAMIC SIMULATIONS FOR COMPLETE AIRCRAFT CONFIGURATIONS

SUSUMU TAKANASHI Jul. 1990 14 p

(NAL-TR-1073-T; ISSN-0389-4010) Avail: NTIS HC/MF A03

Navier-Stokes simulations of transonic flows were carried out for complete configurations of two kinds of test models which were designed to investigate the aerodynamic characteristics of the airplanes under development using the transonic wind tunnel. An O-O grid system for the computation is constructed by the automatic procedure based on the electro-static theory. The Reynolds-averaged Navier-Stokes equations are solved on a supercomputer, FACOM VP-400, using an implicit finite volume, upwind Total Variation Diminishing (TVD) scheme. Computed pressure distributions as well as force coefficients are also compared with the experimental data.

N91-15985# National Aerospace Lab., Tokyo (Japan). CALCULATIONS FOR UNSTEADY AERODYNAMIC CHARACTERISTICS ON A 3-D LIFTING BODY IN SUBSONIC FLOW USING BOUNDARY ELEMENT METHOD

MITSUNORI YANAGIZAWA, TOSHIYUKI MORITA, and SHIGEFUMI TATSUMI May 1990 72 p In JAPANESE; ENGLISH summary

(NAL-TR-1065; ISSN-0389-4010) Avail: NTIS HC/MF A04

A boundary element method of unsteady compressible potential flow around lifting bodies having arbitrary configurations and harmonic oscillation motions was developed using Green's function. Morino described the form of the integral equation relating the perturbation potential and its normal derivative. The purpose is to present a new paneling and derivative technique which can be applied to any complex configuration for evaluating the derivative of unsteady velocity potential on the surface. Numerical results for a wing-store model are presented and compared to experimental results in a subsonic flow. Good agreement was obtained between

N91-15986*# Pennsylvania State Univ., University Park. Dept. of Mechanical Engineering.

HYPERSONIC SHOCK/BOUNDARY-LAYER INTERACTION DATABASE

GARY S. SETTLES and LORI J. DODSON Dec. 1990 156 p. (Contract NAG2-565)

Turbulence modeling is generally recognized as the major problem obstructing further advances in computational fluid dynamics (CFD). A closed solution of the governing Navier-Stokes equations for turbulent flows of practical consequence is still far beyond grasp. At the same time, the simplified models of turbulence which are used to achieve closure of the Navier-Stokes equations are known to be rigorously incorrect. While these models serve a definite purpose, they are inadequate for the general prediction of hypersonic viscous/inviscid interactions, mixing problems, chemical nonequilibria, and a range of other phenomena which must be predicted in order to design a hypersonic vehicle computationally. Due to the complexity of turbulence, useful new turbulence models are synthesized only when great expertise is brought to bear and considerable intellectual energy is expended. Although this process is fundamentally theoretical, crucial guidance may be gained from carefully-executed basic experiments. Following the birth of a new model, its testing and validation once again demand comparisons with data of unimpeachable quality. This report concerns these issues which arise from the experimental aspects of hypersonic modeling and represents the results of the first phase of an effort to develop compressible turbulence models. Author

N91-15987*# MCAT Inst., San Jose, CA. ROTORCRAFT APPLICATION OF ADVANCED **COMPUTATIONAL AERODYNAMICS Final Report** SHARON STANAWAY Jan. 1991 8 p

(Contract NCC2-579)

(NASA-CR-187767; NAS 1.26:187767; MCAT-91-001) Avail: NTIS HC/MF A02 CSCL 01/1

The objective was to develop the capability to compute the unsteady viscous flow around rotor-body combinations. In the interest of tractability, the problem was divided into subprograms for: (1) computing the flow around a rotor blade in isolation; (2) computing the flow around a fuselage in isolation, and (3) integrating the pieces. Considerable progress has already been made by others toward computing the rotor in isolation (Srinivasen) and this work focused on the remaining tasks. These tasks required formulating a multi-block strategy for combining rotating blades and nonrotating components (i.e., a fuselage). Then an appropriate configuration was chosen for which suitable rotor body interference test data exists. Next, surface and volume grids were generated and state-of-the-art CFD codes were modified and applied to the problem.

N91-15988# Stuttgart Univ. (Germany, F.R.). FINITE ELEMENT APPROXIMATIONS FOR TRANSONIC FLOWS Ph.D. Thesis [FINITE-ELEMENT-APPROXIMATIONEN **FUER TRANSONISCHE STROEMUNGEN]**

HARALD BERGER 1989 96 p In GERMAN (ETN-91-98491) Avail: NTIS HC/MF A05

The conservative nonlinear potential equation is examined using finite element methods. This equation describes a stationary, even, friction free, adiabatic, isoenergetical and homentropic flow for an ideal gas. In the case of a subsonic flow, the nonlinear potential equation is of elliptical type. The nonlinear potential equation is derived from the continuum mechanics general equations. It is shown that the solution of an hyperbolic conservation equation should fulfill a mathematical entropoy condition. It is established that some finite element functions satisfy the discrete entropy condition. It is underlined that the convergence behavior of finite element solutions of the nonlinear potential equation in subdomains of the flow field stays strictly subsonic, e.g., the potential equation stays uniformly elliptical. The global convergence properties of finite element solutions are examined. An error analysis can be derived for these finite element solutions.

N91-15989# EMA, Mansfield, TX. **EVALUATION OF ROTORWASH CHARACTERISTICS FOR** TILTROTOR AND TILTWING AIRCRAFT IN HOVERING **FLIGHT Final Report**

SAMUEL W. FERGUSON Dec. 1990 263 p Prepared for Systems Control Technology, Inc., Arlington, VA (Contract DTFA01-87-C-00014)

(SCT-90RR-18; DOT/FAA/RD-90/16) Avail: NTIS HC/MF A12

The rotorwash characteristics of eleven different types of tiltrotor and tiltwing aircraft in hovering flight are presented for comparison purposes. Rotorwash characteristics that were quantified include the mean and peak outwash velocity profiles off the left wing position (azimuth = 270 degrees) and nose position (azimuth = 0 degrees). Maximum values from each of the peak velocity and peak dynamic pressure profiles are also presented as a function of distance from the rotorcraft along both the 0 and 270 degree azimuths. Calculated personnel overturning forces are presented along both azimuths for a six foot tall person. All documented results were calculated with the ROTWASH analysis program. Flight test data, as correlated with the analysis program, are presented for the XV-15 tiltrotor and the CL-84 tiltwing. These hover characteristics do not represent the worst cast scenario characteristics which would be expected at a vertiport. Scenarios involving ambient winds and maneuvering flight near hover generate

higher rotorwash velocities. Unfortunately, the identification and prediction of worst case scenario results for comparison purposes is not presently possible.

N91-15992 Iowa State Univ. of Science and Technology, Ames. COMPUTATION OF TURBULENT FLOW ABOUT **UNCONVENTIONAL AIRFOIL SHAPES Ph.D. Thesis** SALAHUDDIN AHMED 1990 84 p

Avail: Univ. Microfilms Order No. DA9100414

A new nonequilibrium turbulence closure model was developed for computing wall bounded two-dimensional turbulent flows. This two-layer eddy viscosity model was motivated by the success of the Johnson-King model in separated flow regions. The influence of history effects are described by an ordinary differential equation developed from the turbulent kinetic energy equation. The performance of the present model was evaluated by solving the flow around three airfoils using the Reynolds time-averaged Navier-Stokes equations. Excellent results were obtained for both attached and separated flows about the NACA 0012 airfoil, the RAE 2822 airfoil, and the Integrated Technology A 153W airfoil. Based on the comparison of the numerical solutions with the available experimental data, it is concluded that the new nonequilibrium turbulence model accurately captures the history effects of convection and diffusion on turbulence. Dissert. Abstr.

N91-15993 Purdue Univ., West Lafayette, IN. PROPFAN SUPERSONIC PANEL METHOD ANALYSIS AND FLUTTER PREDICTIONS Ph.D. Thesis CHING-CHYWAN HWANG 1990 141 p

Avail: Univ. Microfilms Order No. DA9031342

A supersonic panel method analysis for propfan performance and flutter predictions was developed by extending Williams' three dimensional unsteady lifting surface theory to the supersonic speed range. The method upgrades the capability of the original (subsonic) panel code, UPROP3S, to include the propfan operating conditions at subsonic axial speeds with subsonic/supersonic tip speeds and supersonic axial speeds. The original panel code, UPROP3S, is coded for the predictions of steady performance characteristics, forced vibration, static aeroelastic deformation, and flutter. This panel code is effective and inexpensive compared to full potential, Euler, or Navier-Stokes codes. In this method the unsteady aerodynamic model is based on the three dimensional linearized compressible aerodynamic theory. A piece-wise constant load paneling technique is applied to find the blade pressure difference distributions from the lifting surface integral equation. The aeroelastic model is formulated in terms of the in-vacuum normal modes of the blades. The flutter event is determined by solving the eigenvalue problem associated with the equations of motion. The surveyed propfan wind tunnel models include the SR2, SR3, SR5, and SR7 blades. The computed results correlate very well with the measured data in both performance and flutter predictions. It is thought that this study could also lead to the emergence of a Dissert. Abstr. supersonic cruise propeller.

Messerschmitt-Boelkow-Blohm G.m.b.H., Munich (Germany, F.R.). Hubschrauber und Flugzeuge.

NUMERICAL ANALYSIS OF VISCOUS HYPERSONIC FLOW **PAST A GENERIC FOREBODY**

K. M. WANIE and M. A. SCHMATZ 6 Jul. 1990 13 p Presented at the 17th Congress of the International Council of the Aeronautical Sciences, Stockholm, Sweden, 9-14 Sep. 1990 (MBB/FE122/S/PUB/0407; ICAS-90-6.7.2; ETN-91-98544)

Copyright Avail: NTIS HC/MF A03

The viscous hypersonic flow past an analytically defined generic-transport aircraft forebody is numerically simulated using a Navier-Stokes code. The governing equations were written in general three dimensional curvilinear form. The sensitivity of the solutions to variations of physical parameters was investigated. Turbulence is shown to have a significant influence on boundary layer velocity profiles and boundary layer thickness but at Mach number, real gas effects and radiation play a minor role for these features while they considerably reduce the thermal loads.

N91-16268# Kyushu Univ., Fukuoka (Japan). Dept. of Aeronautical Engineering.

NUMERICAL SIMULATION OF SEPARATED FLOWS AROUND A WING SECTION AT STEADY AND UNSTEADY MOTION BY A DISCRETE VORTEX METHOD

SHIGERU ASO, ATSUSHI FUJIMOTO, NAOKI FUTATSUDERA, and MASANORI HAYASHI (Nishinippon Inst. of Tech., Fukuoka, Japan) In Tokyo Univ., The Proceedings of the Symposium on Mechanics for Space Flight 1989 p 15-24 Mar. 1990 Original language document was announced in IAA as A90-33753 Avail: NTIS HC/MF A09

Separated flows around a wing section at pitching motion are simulated numerically by a discrete vortex method combined with a panel method. The potential flows around wing sections are expressed by vortex sheets and separated shear layers are expressed by discrete vortices. In the calculation, a separation point is determined by solving boundary layer equations. The strength of shed vortex is estimated using local velocity near separation point. Separated flows around pitching airfoils are simulated. A hysteresis of lift of airfoil at dynamic stall is obtained in the calculation. These results suggest that this method is useful to simulate separated flows around a wing section at pitching motions.

N91-16272# Kyushu Univ., Fukuoka (Japan). Dept. of Aeronautical Engineering.

UNSTEADY VORTEX LATTICE CALCULATION OF THE FLOW AROUND A SLENDER DELTA WING

AKIRA SAKURAI and HIROSHI UCHIHORI In Tokyo Univ., The Proceedings of the Symposium on Mechanics for Space Flight 1989 p 53-59 Mar. 1990

Avail: NTIS HC/MF A09

The unsteady vortex lattice method was applied to the calculation of the unsteady flow field around a slender delta wing at a high angle of attack. The result shows that the essential feature of the flow such as the formation of the leading edge vortex can be described by this model, while the detail of the calculated flow field still depends on the practical aspects of the scheme such as the selection of the viscous core radius. Author

03

AIR TRANSPORTATION AND SAFETY

Includes passenger and cargo air transport operations; and aircraft accidents.

A91-21229

ANALYSIS AND CERTIFICATION OF THE STARSHIP

ALL-COMPOSITE AIRFRAME
ANN L. KOLARIK (Beech Aircraft Corp., Wichita, KS) Aerospace Atlantic Meeting, Dayton, OH, Apr. 23-26, 1990. 10 p. (SAE PAPER 900997) Copyright

Beech Aircraft has completed Federal Aviation Administration (FAA) certification of the all graphite/epoxy Starship I business airplane. This paper describes the analysis and test procedures developed and documented during the FAA certification program. These procedures satisfy Federal Aviation Regulations (FAR Part 23) and the special conditions pertaining to composite certification. Author

A91-21486#

AIRCRAFT ACCIDENT FLIGHT PROFILE SIMULATION AND ANIMATION

D. E. CALKINS (Washington, University, Seattle) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 11 p. refs (AIAA PAPER 91-0422) Copyright

During 1987, Northwest Airlines Flight 255 crashed in Detroit in the summer, and Continental Airlines Flight 1713 crashed in Denver in the winter. This paper will describe the reconstruction.

simulation and animation of the time dependent flight profile for each accident through a process known as forensic engineering. Forensic engineering is the application of scientific and engineering knowledge to legal matters, such as accident reconstruction. The flight profiles were reconstructed as an aid in visualizing the sequence of events and the factors involved in each accident.

Author

A91-21494# COMPARISON OF RIME AND GLAZE DEFORMATION AND **FAILURE PROPERTIES**

A. D. REICH (BF Goodrich Aerospace, De-Icing Systems, Uniontown, OH) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 10 p. refs

(AIAA PAPER 91-0446) Copyright
Young's Modulus, E, and the fracture strength, P(f), of glaze and rime ice were measured. The two ice forms were obtained in the 5-10 C temperature zone by using two different levels of liquid water content and drop size. A simply supported beam configuration was used for the ice samples both with and without metal substrates. A model development was performed using simple beam theory to obtain ice properties from ice+foil (substrate) beams. Samples were shaped to size and measured in a cold room located next to the icing tunnel. The glaze values for E and P(f) were found to be 410,000 psi and 199.2 psi, respectively. Rime failure was observed to occur either abruptly or continuously. Two failure modes were introduced to account for this. The rime ice properties consistent with the continuous, mode 2, failure were found to be E = 22,000 psi and P(f) = 18.3 psi. Debonding phenomena, observed during beam deformation, were used to establish qualitative adhesion strength relationships. Author

A91-21532#

CERTIFICATION OF FOKKER 50 AND FOKKER 100 FOR **OPERATION IN ICING CONDITIONS**

J. N. BOER and J. VAN HENGST (Fokker Aircraft, Amsterdam, AIAA, Aerospace Sciences Meeting, 29th, Reno, Netherlands) NV, Jan. 7-10, 1991. 8 p.

(AIAA PAPER 91-0561) Copyright

The certification process for flight in icing conditions for the Fokker 50 and Fokker 100 is described. The various tests necessary for demonstrating compliance with this requirement, such as laboratory tests, flight tests in dry air, flight tests with simulated ice shapes and flight tests in natural icing conditions, are discussed. It is shown that the Fokker 50 and Fokker 100 are able to operate safely in icing conditions when the relevant flight manual statements are observed.

A91-21581*# Akron Univ., OH. STATISTICAL STRUCTURAL ANALYSIS OF ROTOR IMPACT **ICE SHEDDING**

C. J. KELLACKY, M. L. CHU, and R. J. SCAVUZZO (Akron, University, OH) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 8 p. refs (Contract NAG3-479) (AIAA PAPER 91-0663)

The statistical characteristics of impact ice shear strength are analyzed, with emphasis placed on the most probable shear strength and statistical distribution of an ice deposit. Several distribution types are considered: the Weibull, two-parameter Weibull, and exponential distributions, as well as the Gumbell distribution of the smallest extreme and the Gumbell distribution of the largest extreme. It is concluded that the Weibull distribution vields the best results; however, the expected life, shape parameter, and scale parameter should be determined separately for each case of varying wind speed and droplet size. The theoretical predictions of shear stresses in a specific rotating ice shape are compared, and it is noted that when the effects of lift are added to the theoretical model and the interference is calculated with a new mean and standard deviation, the probability of ice shed is computed as 36.64 pct.

A91-21582*# Akron Univ., OH.

INFLUENCE OF AERODYNAMIC FORCES IN ICE SHEDDING

R. J. SCAVUZZO, M. L. CHU, and V. ANANTHASWAMY (Akron, University, OH) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 7 p. refs (Contract NAG3-479)

(AIAA PAPER 91-0664)

Stresses in accreted ice on a typical airfoil impact ice caused by aerodynamic forces have been studied using finite element analyses. The objective of this study is to determine the significance of these stresses relative to values needed to cause ice shedding. In the case studied, stresses are not significant (less than 10 percent) when compared to the fracture value for airspeeds below a Mach number of 0.45. Above this velocity, the influence of aerodynamic forces on impact ice stresses should be considered in analyses of ice shedding.

A91-21583*# Toledo Univ., OH. NUMERICAL SIMULATION OF ICING, DEICING, AND SHEDDING

W. B. WRIGHT, K. J. DEWITT, and T. G. KEITH, JR. (Toledo. University, OH) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 16 p. Research supported by Boeing Helicopters, Ohio Aerospace Institute, and NASA. refs (AIAA PAPER 91-0665)

An algorithm has been developed to numerically model the concurrent phenomena of two-dimensional transient heat transfer, ice accretion, ice shedding and ice trajectory which arise from the use of electrothermal pad. The Alternating Direction Implicit method is used to simultaneously solve the heat transfer and accretion equations occurring in the multilayered body covered with ice. In order to model the phase change between ice and water, a technique was used which assumes a phase for each node. This allows the equations to be linearized such that a direct solution is possible. This technique requires an iterative procedure to find the correct phase at each node. The computer program developed to find this solution has been integrated with the NASA-Lewis flow/trajectory code LEWICE. Author

A91-21584#

ANALYSIS OF INFRARED THERMOGRAPHY DATA FOR ICING **APPLICATIONS**

LINDA SMITH BOYD (United Technologies Corp., Hamilton Standard Div., Windsor Locks, CT) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 8 p. refs

(AIAA PAPER 91-0666) Copyright
This paper discusses the use of infrared thermography data to verify theoretical temperature distributions induced by aerodynamic frictional heating and generated by electrothermal heaters used for ice protection on propeller blades. The thermal imaging data proved to be useful for analyzing and understanding steady-state and transient temperature distributions on nonrotating propeller blade heaters and for analyzing steady-state temperature distributions on rotating prop-fan blades. The infrared thermal imaging techniques are found to offer a significant potential for cost effectively obtaining surface temperature characteristics on aircraft surfaces that require ice protection systems.

A91-21585#

DEVELOPMENT OF A WORKSTATION-BASED FLIGHT DATA **ANALYSIS PACKAGE**

KENNETH B. CENTER and F. CARROLL DOUGHERTY (Colorado, University, Boulder) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 9 p. (AIAA PAPER 91-0668) Copyright

The paper presents a flight-data analysis package providing the real-time animation of airline incidents, based on a flight simulator program and an IRIS workstation with the ability to perform rapid geometry operations such as coordinate transforms and polygon drawings. Both four- and sixteen-channel flight-recorder data sets can be used as input. Sequence speed and viewpoint are controlled by the user interactively, and a full set of important flight parameters is displayed so that a comprehensive overview of the aircraft's status may be analyzed at any point in time. The modeling of possible complications in the aircraft flight path such as weather features, ground structures, or other aircraft is possible. Data from three recent crashes are analyzed, along with two hypothetical scenarios.

V.T.

A91-22500*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

A REVIEW OF ICE ACCRETION DATA FROM A MODEL ROTOR ICING TEST AND COMPARISON WITH THEORY

RANDALL K. BRITTON (NASA, Lewis Research Center; Sverdrup Technology, Inc., Brook Park, OH) and THOMAS H. BOND (NASA, Lewis Research Center, Cleveland, OH) AlAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 34 p. Previously announced in STAR as N91-13421. refs (AlAA PAPER 91-0661) Copyright

An experiment was conducted by the Helicopter Icing Consortium (HIC) in the NASA Lewis Icing Research Tunnel (IRT) in which a 1/6 scale fuselage model of a UH-60A Black Hawk helicopter with a generic rotor was subjected to a wide range of icing conditions. The HIC consists of members from NASA, Bell Helicopter, Boeing Helicopter, McDonnell Douglas Helicopters, Sikorsky Aircraft, and Texas A&M University. Data was taken in the form of rotor torque, internal force balance measurements, blade strain gage loading, and two dimensional ice shape tracings. A review of the ice shape data is performed with special attention given to repeatability and correctness of trends in terms of radial variation, rotational speed, icing time, temperature, liquid water content, and volumetric median droplet size. Moreover, an indepth comparison between the experimental data and the analysis of NASA's ice accretion code LEWICE is given. Finally, conclusions are shown as to the quality of the ice accretion data and the predictability of the data base as a whole. Recommendations are also given for improving data taking technique as well as potential Author future work.

A91-24120

THE VERTICAL FLIGHT COMMUTER - A SOLUTION TO URBAN TRANSPORTATION PROBLEMS

MORRIS E. FLATER (HubExpress Airlines, Stow, MA) Vertiflite (ISSN 0042-4455), vol. 37, Jan.-Feb. 1991, p. 29-31. Copyright

The tiltrotor craft is described as a high-leverage technology which addresses the public transportation problems of the next three decades. Statistics are presented which illustrate the increasing congestion in the environs of U.S. airports. The subsequent need for an efficient transportation link with major airports in order to supply air carrier markets in suburbs with the passenger feeds they require is emphasized. A commuter service in Boston is used as a successful example of a tiltrotor craft service which provides 10-15 minutes commuting time to Logan Airport from the rooftops of Boston's buildings at costs ranging from 59 to 79 dollars. It is noted that disadvantages of the tiltrotor craft include a higher operations and maintenance cost than for most fixed-wing craft, while advantages cited include the high demand for this type of service, excellent service at relatively low cost, and the lack of competition from fixed-wing craft for this type of service. L.K.S.

A91-24121

OVERCOMING OBSTACLES TO VERTICAL FLIGHT PUBLIC TRANSPORT OPERATIONS

JOHN W. LEVERTON (E. H. Industries, Inc., Arlington, VA) Vertiflite (ISSN 0042-4455), vol. 37, Jan.-Feb. 1991, p. 34-38. Copyright

Two issues of technical importance concerning the viability of advanced rotorcraft and civil tilt-rotor (CTR) aircraft as a viable segment of the air transportation industry are discussed. These include the use of 'steep approaches', that is, steeper than the 3 deg used by fixed wing aircraft, and the required operational performance standards. The debate surrounding FAA acceptance of angles greater than 3 deg, including airspace and environmental issues, is outlined. It is concluded that, in the future, true vertical

approach should be considered for advanced rotorcraft and CTR. It is recommended that in the meantime an initial step to 6-7.5 deg should be considered for advanced rotorcraft/CTR. Public transportation requirements are discussed. Specifically, the ICAO Annex 6, dealing with helicopter performance, and Annex 14, dealing with heliports, are examined and the 'zero field length' Cat A take-off is discussed. The advanced technology rotorcraft EH10 is also examined in detail.

A91-24122* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

THE CIVIL TILTROTOR AIRCRAFT'S POTENTIAL IN DEVELOPING ECONOMIES

LARRY R. ALTON (NASA, Ames Research Center, Moffett Field, CA) and THEODORE LANE Vertiflite (ISSN 0042-4455), vol. 37, Jan.-Feb. 1991, p. 46-51. refs

The civilian tiltrotor (CTR) is analyzed as a new transportation technology with the potential for changing one of the key economic factors linked to Third World economic development. It is contended that efficient, low-cost transport services are a necessary condition for the economic development of Third World countries and that the CTR's capabilities and operating costs can provide more efficient transport services than have heretofore been available to such countries. A case study of potential CTR use among the nations of the Carribean Basin region appears to offer both analytical and empirical support to these contentions. The analysis indicates that normal market mechanisms are adequate for development of air cargo services using the CTR's capabilities. It is suggested that implementation of this service may require new institutional arrangements, but overall it is concluded that tiltrotor technology could make an important contribution to the economic development of Third World countries.

A91-24123

TO CAPTURE THE MARKET PUT THE REAL 'V' IN VTOL

JOHN F. WARD (Ward Associates, Watertown, NY) Vertiflite (ISSN 0042-4455), vol. 37, Jan.-Feb. 1991, p. 58-61. Copyright

A view of the civil rotorcraft transportation system design challenge is offered. The focus is on an augmented, all-weather, VTOL operating capability requirement. The challenge discussed is to develop a safe, reliable, nonintrusive VTOL precision terminal area operating system for use in the urban and congested airport environment. It is suggested that this challenging design requirement can be fully met in a second-generation commercial rotorcraft transportation system. Although this application of technology will not be viable for some time, the near-term system would utilize the current microwave landing system to achieve steep (perhaps up to 15 degrees), although not vertical, approach and departure angles. Aircraft design integration and augmentation and ground-based and vertiport guidance system design augmentation are discussed.

N91-15140# National Transportation Safety Board, Washington, DC.

AIRCRAFT INCIDENT REPORT: USAIR FLIGHT 105, BOEING 737-200, N283AU, KANSAS CITY INTERNATIONAL AIRPORT, MISSOURI, SEPTEMBER 8, 1989

11 Sep. 1990 196 p

(PB90-910404; NTSB/AAR-90/04) Avail: NTIS HC/MF A09 CSCL 01C

The premature descent below minimum descent altitude of USAir flight 105 on approach to Kansas City International Airport, Missouri, on September 8, 1989 is explained. The aircraft struck and severed four electronic transmission cables, located about 75 feet above the ground, approximately 7,000 feet east of the runway threshold. The safety issues discussed in the report are identification of potentially confusing features near runways on instrument approach charts; FAA oversight of air traffic control quality assurance; FAA training of and guidance to operations inspectors; application of visual descent points to training in and execution of nonprecision instrument approaches, and incorporation

of requirements for visual descent points in Federal Aviation Regulation (FAR) Part 135 operations; communications of weather information between air traffic control and the National Weather Service: and revision of minimum safe altitude warning inhibit areas. Safety recommendations addressing these issues were made to the FAA and the National Weather Service.

National Aeronautics and Space Administration. N91-15141*# Langley Research Center, Hampton, VA.

REPORT OF THE WORKSHOP ON AVIATION SAFETY/AUTOMATION PROGRAM

SAMUEL A. MORELLO, ed. Oct. 1990 45 p Workshop held in Virginia Beach, VA, 10 Oct. 1989 (NASA-CP-10054; NAS 1.55:10054) Avail: NTIS HC/MF A03 CSCL 01C

As part of NASA's responsibility to encourage and facilitate active exchange of information and ideas among members of the aviation community, an Aviation Safety/Automation workshop was organized and sponsored by the Flight Management Division of NASA Langley Research Center. The one-day workshop was held on October 10, 1989, at the Sheraton Beach inn and Conference Center in Virginia Beach, Virginia. Participants were invited from industry, government, and universities to discuss critical questions and issues concerning the rapid introduction and utilization of advanced computer-based technology into the flight deck and air traffic controller workstation environments. The workshop was attended by approximately 30 discipline experts, automation and human factors researchers, and research and development managers. The goal of the workshop was to address major issues identified by the NASA Aviation Safety/Automation Program. Here, the results of the workshop are documented. The ideas, thoughts, and concepts were developed by the workshop participants. The findings, however, have been synthesized into a final report primarily by the NASA researchers.

N91-15143# National Transportation Safety Board, Washington, DC. Office of Aviation Safety.

AIRCRAFT ACCIDENT REPORT: UNITED AIRLINES FLIGHT 232, MCDONNELL DOUGLAS DC-10-10, SIOUX GATEWAY AIRPORT, SIOUX CITY, IOWA, 19 JULY 1989

1 Nov. 1990 127 p (PB90-910406; NTSB/AAR-90/06) Avail: NTIS HC/MF A07 CSCL 01C

The crash of a United Airlines McDonnell Douglas DC-10-10 in Sioux City, Iowa, on July 19, 1989 is explained. The safety issues discussed in the report are engine fan rotor assembly design, certification, manufacturing, and inspection; maintenance and inspection of engine fan rotor assemblies; hydraulic flight control system design, certification, and protection from uncontained engine debris; cabin safety, including infant restraint systems; and aircraft rescue and firefighting facilities. Safety recommendations addressing these issues were made to the Federal Aviation Administration and the U.S. Air Force. Author

N91-15999# Civil Aeromedical Inst., Oklahoma City, OK. **DEVELOPMENT OF A CRASHWORTHY SEAT FOR COMMUTER AIRCRAFT Final Report**

VAN GOWDY Sep. 1990 13 p Sponsored by FAA, Washington,

(AD-A227486; DOT/FAA/AM-90/11) Avail: NTIS HC/MF A03 CSCL 01/3

A series of dynamic impact tests were conducted using a prototype seat with an energy absorbing mechanism as part of the seat pan. The seat frame was designed to represent a typical commuter aircraft passenger seat. Tests were conducted in an orientation simulating a vertical impact with a 30 deg nose-down aircraft attitude. The impact severity for these tests ranged from 15 to 33 Gs. Seat pan stroke and occupant lumbar reaction forces were measured. Results indicate the axial force measured in the lumbar spine of a fiftieth percentile Hybrid II dummy can be limited to a peak value less than 1500 pounds during vertical impact tests of 33 G with a seat pan stroke distance of 6.3 inches.

N91-16000# Planungsbuero Luftraumnutzer, Frankfurt (Germany, F.R.).

THE EUROPEAN FLIGHT SAFETY CRISIS: COSTS AND SOLUTION (DIE KRISE DER EUROPAEISCHEN FLUGSICHERUNG: DIE KOSTEN UND IHRE LOESUNG) Sep. 1989 69 p In GERMAN (ETN-91-98490) Avail: NTIS HC/MF A04

The European airspace structure is based on political and not commercial considerations. The costs of the European flight safety crisis, in particular the costs of the delays, were rated at ten billion German marks. A drastic cost increase is still expected up to year 2000, as the air traffic is expected to double. It is necessary to harmonize the 22 different national safety systems. The long term solution is a unique, fully integrated flight safety system. A two phase planning is proposed, including the creation of a European flight safety organization.

N91-16001*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

POTENTIAL USE OF TILTROTOR AIRCRAFT IN CANADIAN **AVIATION**

DENYSE GAZDAG (Versatec, Inc., Santa Clara, CA.) and LARRY ALTON Dec. 1990 37 p

(NASA-TM-102245; A-89269; NAS 1.15:102245) Avail: NTIS HC/MF A03 CSCL 01/3

The aviation system in Canada is described as it relates to the potential applicability of tiltrotor technology. Commuter service in two corridors, the Vancouver-Victoria route on the west coast and the heavily traveled Montreal-Toronto corridor in eastern Canada, are examined. The operation of air service from the near-downtown Toronto STOLport and from the Vancouver-Victoria downtown heliport facilities is described. The emergency medical services, search and rescue, and natural resources development sectors are described with regard to the needs that tiltrotor technology could uniquely meet in these areas. The airport construction program in isolated communities of northern Quebec and possible tiltrotor service in northern regions are reviewed. The Federal and provincial governments' financial support policy regarding the aeronautical industry is to encourage the establishment and expansion of businesses in the field of aeronautics and to make possible the acquisition of new technology. This policy has implications for the tiltrotor program.

N91-16002 Bundesanstalt fuer Flugsicherung, Frankfurt am Main (Germany, F.R.).

ACTIVITIES REPORT OF THE GERMAN FEDERAL INSTITUTE FOR FLIGHT SAFETY Annual Report, 1989 [BUNDESANSTALT FUER FLUGSICHERUNG, **JAHRESBERICHT 1989**]

Jul. 1990 51 p In GERMAN

(ETN-91-98644) Copyright Avail: Fachinformationszentrum Karlsruhe, 7514 Eggenstein-Leopoldshafen 2, Fed. Republic of Germany

The air traffic flow, as well as the air traffic flow control and measures envisaged to increase the air traffic safety are presented. The problems raised by airplane noises, flight incidents and accidents are mentioned. The progress achieved in fields, such as Doppler omnidirectional radio range, instrument and microwave landing systems, radar renewable and modernization airspace utilization, training simulation, weather data information system. and electronic data processing, are outlined. Subjects covered in testing were: computer oriented metering planning and advisory system, experimental working position simulation, radar data quality control and radar analysis support systems. The cooperation with international airflight organizations and the participation in international conferences are mentioned.

GRA

04

AIRCRAFT COMMUNICATIONS AND NAVIGATION

Includes digital and voice communication with aircraft; air navigation systems (satellite and ground based); and air traffic control.

A91-20900

NORTH ATLANTIC AIR TRAFFIC CONTROL

PETER BERRY Aeronautical Journal (ISSN 0001-9240), vol. 94, Nov. 1990, p. 318-323.

Copyright

The more recent improvements to North Atlantic air traffic control are discussed. The early introduction of computers providing on-line data interchange between Oceanic Control Centers and the current computer supported services provided by the Shanwick (Prestwick and Shannon) and Gander Area Control Centers are reviewed. Separation standards, supersonic routes, and safety standards are examined. Flight level assignment and North Atlantic clearance, in-flight communications, and transfer of control are all discussed.

A91-20979

A REAL TIME EXPERT-AIDED TRAJECTORY ESTIMATOR USING MULTIPLE TSPI SOURCES INCLUDING A UNIQUE ON-AIRCRAFT POSITIONING SYSTEM

M. DECOLATOR, L. SLEDJESKI, and L. STONE (Grumman Corp., Calverton, NY) IN: Society of Flight Test Engineers, Annual Symposium, 20th, Reno, NV, Sept. 18-21, 1989, Proceedings. Lancaster, CA, Society of Flight Test Engineers, 1989, p. 1A.4-1 to 1A.4-7. refs
Copyright

A system was constructed that extends restricted test instrumented airspace, permits tracking more aircraft from the test facility than the number of radars available, maintains tracking accuracy at long ranges, and allows autonomous low altitude overland testing. The interdependent elements of the system, i.e., Radarbet, Mini-Map, Geo, and the Expert System, are described. Radarbet provides accurate trajectory data representing aircraft velocities and spatial positions for up to eight aircraft simultaneously, while Geo provides absolute and relative positioning information between the Radarbet tracks. A pre-mission setup file that is interpreted in real-time permits Radarbet to correctly access and merge multiple streams of time, space, and position information (TSPI) data coming from ground-based radar, IFF tracking systems, and airborne-based aircraft/missile telemetry streams. Geo, Radarbet, and Mini-Map, in conjunction with the Expert System have been in operation at Grumman's flight test facility and have proven themselves in the F-14D demonstration and other test R.E.P. programs.

A91-20985

HIGH PRECISION REAL TIME AIRPLANE POSITIONING SYSTEM WITH FULL NAVIGATIONAL CAPABILITIES FOR FLIGHT TESTING

TH. JACOB and G. SCHAENZER (Braunschweig, Technische Universitaet, Brunswick, Federal Republic of Germany) IN: Society of Flight Test Engineers, Annual Symposium, 20th, Reno, NV, Sept. 18-21, 1989, Proceedings. Lancaster, CA, Society of Flight Test Engineers, 1989, p. 2A.5-1 to 2A.5-9. refs Copyright

A system concept is presented that results in high precise position, attitude and flight path information for a moving platform, such as an aircraft. This information is measured by an integrated system based on the GPS and provides real-time capability (23 samples/sec) using a micro vax in connection with an array processor. Various concepts of system integration are defined and the results of a closed-loop mechanization of a Kalman filter coupling GPS and INS implemented in this integrated flight path

measurement have been checked by simulation and flight test. R.E.P.

A91-20998

GPS - THE LOGICAL CHOICE FOR FLIGHT TEST TRACKING OF AIRCRAFT

CARL E. HOEFENER and ROBERT VAN WECHEL (Interstate Electronics Corp., Anaheim, CA) IN: Society of Flight Test Engineers, Annual Symposium, 20th, Reno, NV, Sept. 18-21, 1989, Proceedings. Lancaster, CA, Society of Flight Test Engineers, 1989, p. 4.6-1 to 4.6-3.

Copyright

Precise time and space-position information (TSPI) is necessary during aircraft flight testing for such reasons as flight safety, flight test control, navigation system evaluation, flight performance, and determination of balanced field length. Although GPS is designed as a precision radio navigation system, it is now being applied as a TSPI source on flight test ranges. GPS has many advantages over alternative TSPI techniques: the determination of a more accurate position, no range presurvey requirements, provision of precise time for all users, facilitating interrange operations through a worldwide common-grid system, providing over-the-horizon extension of existing ranges, accommodating an unlimited number of operators, providing position solution to ground level, and providing portable tracking capability.

A91-21203 ACARS

R. E. CLAYTON (British Airways, PLC, Heathrow, England) IN: Maintenance of modern avionics systems; Proceedings of the Conference, Heathrow, England, May 9, 1989. London, Royal Aeronautical Society, 1989, p. 2.0-2.12. Copyright

ACARS is a VHF digital data link that connects an operational aircraft with its ground communications network. This system complements the existing air/ground voice communications and provides a communication capability between the advanced avionics of present and future aircraft and the ground airline data processing facilities. Potential problem information will be reported to the ground using fault reporting/fault isolation manual code or electronically on the new generation of aircraft employing the central maintenance system. Details are provided for the ACARS/AIRCOM system and its operation using both the ground network and airborne systems. ACARS and the new generation of aircraft avionic systems will give maintenance technicians the visibility of engine performance data in real time plus advance warning of aircraft performance events that may require maintenance action.

A91-22203#

PLANNING SUPPORT SYSTEM FOR AIR TRAFFIC CONTROL [SYSTEME ZUR PLANUNGSUNTERSTUETZUNG BEI DER FLUGVERKEHRSKONTROLLE]

U. VOELCKERS (DLR, Institut fuer Flugfuehrung, Brunswick, Federal Republic of Germany) Ortung und Navigation (ISSN 0474-7550), no. 3, 1990, p. 373-380. In German.

The role of planning in air traffic management is outlined, and the basic criteria and solution principles for designing planning systems for ATC are discussed. An overview is given of the COMPAS system, which supports pilots in approach flight to airports. The role of automation in COMPAS is described. C.D.

A91-22815

EVALUATION OF HAND HELD LASER COMMUNICATORS FOR AIRBORNE APPLICATIONS

ROBERT J. FELDMANN (USAF, Wright Research and Development Center, Wright-Patterson AFB, OH) IN: Free-space laser communication technologies II; Proceedings of the Meeting, Los Angeles, CA, Jan. 15-17, 1990. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1990, p. 431-438. Copyright

The viability of replacing flashlight signals by a hand-held laser communicator for low-probability-of-intercept voice communications

is demonstrated. Potential sources for detecting the laser communication signals are examined and evaluated, and system improvements with regard to the concept of deployment are discussed. The specifications of a laser communicator are presented.

A91-22904

MODULATION AND CODING FOR THE AERONAUTICAL SATELLITE CHANNEL

ANDREAS NEUL (DLR, Institut fuer Nachrichtentechnik, Oberpfaffenhofen, Federal Republic of Germany) (Informationstechnische Gesellschaft, European Conference on Satellite Communications, 1st (ECSC-1), Munich, Federal Republic of Germany, Nov. 28-30, 1989) Space Communications (ISSN 0924-8625), vol. 7, Nov. 1990, p. 311-318. refs Copyright

Digital satellite links are to replace unreliable HF connections currently used for communication with aircraft. This paper presents a generalized Rician fading model of the aeronautical satellite channel based on data acquired during a number of measurement flights. The derived model is then used to evaluate the performance of DPSK modulation and convolutional coding for its application in the aeronautical channel.

A91-23145

MODERN AIRBORNE EARLY WARNING RADARS

STEPHEN L. JOHNSTON (International Radar Directory, Huntsville, AL) and WILLIAM C. MORCHIN Microwave Journal (ISSN 0192-6225), vol. 34, Jan. 1991, p. 30, 33, 35 (9 ff.). refs Copyright

A survey of airborne early warning (AEW) radars is presented, starting with descriptions of AEW systems. Radars for battlefield surveillance and sea search are discussed as illustrative examples. Tables giving the basic characteristics of 40 AEW radars are presented.

A91-23548

FUTURE AERONAUTIC ENVIRONMENT - FMS/ATC/PILOT

R. DEQUE and P. BACHELIER (Aerospatiale, Toulouse, France) (European Aerospace Conference on Civil Aviation Operations -Problems, Solutions and Actions, 3rd, London, England, May 22-24, 1990) Aeronautical Journal (ISSN 0001-9240), vol. 94, Dec. 1990, p. 341-343.

Copyright

A review is presented of the evolution of air-ground data links developed over the last decade to meet the airlines' operational requirements whose scope will be extended in future years. Ground-air digital communications have developed over the last decade to fill initially the airlines operating requirements, utilizing a VHF link. Some details are discussed in the areas of flight management systems and the interface with ATC and the flight crew, system automation, and optimized monitoring by the use of CRT displays. Whichever optimization principles are used the processing performed by the ground systems will require the on-board flight management systems to perform specific calculations.

N91-16003# Air Force Inst. of Tech., Wright-Patterson AFB, OH. School of Engineering.

OPTIMAL KALMAN FILTER INTEGRATION OF A GLOBAL POSITIONING SYSTEM RECEIVER AND AN LN-94 INERTIAL **NAVIGATION SYSTEM M.S. Thesis**

JAMES LAWRENCE HIRNING Sep. 1990 121 p. (AD-A227222; AFIT/GE/ENG/90S-02) Avail: NTIS HC/MF A06 **CSCL 17/7**

This research develops and attempts to implement a Kalman filter integration of a Phase 3 Global Positioning System (GPS) five channel receiver and an LN-94 Inertial Navigation System (INS). The GPS provides highly accurate position and velocity information in low dynamic environments. An INS provides position and velocity information with lower accuracy over long periods of time, but it is highly responsive in dynamic maneuvers or at high frequencies. The INS has the added advantage of requiring no

signals external to the vehicle to function. The integration of these two systems provide more precise information under a wider variety of situations. A truth model for the INS is verified. A GPS error model is developed and combined with the INS model to provide GPS-aided INS navigation. This model is used to predict baseline performance of all full ordered filter. Attempts are made to utilize the filter with empirical data. The data is analyzed, and suggestions are made about ways to account for the errors in evidence. Results to date are presented and analyzed.

N91-16004# Mitre Corp., Bedford, MA. A SUCCESSIVE PARTIAL-RELAXATION GAUSSIAN ALGORITHM FOR AREA NAVIGATION OPERATIONS WITH THE MICROWAVE LANDING SYSTEM (MLS) Final Report PATRICIA M. HATZIS and FREDERIC D. POWELL

(Contract F19628-89-C-0001; AF PROJ. 5420) (AD-A228871; MTR-10910; ESD-TR-90-326) Avail: NTIS HC/MF A03 CSCL 17/7

Position reconstruction algorithms (PRAs) based on Gaussian techniques converge very slowly, or diverge, for some geometries of ground unit and aircraft location which are within MLS system On the other hand, algorithms based coverage. Newton-Raphson techniques usually converge very rapidly but impose a significantly greater storage requirement and computational burden on the avionics. This report presents a modified Gaussian algorithm which uses a relaxation factor to achieve rapid convergence for all geometries, and with a computational burden much less than the equivalent Newton-Raphson algorithm. It presents the theoretical foundations of this algorithm and various results showing its effects. It also compares the algorithm's storage and computational burdens against Gaussian, rotated-coordinate Gaussian, and Newton-Raphson equivalent PRAs in the MLS context.

N91-16005# Rijksluchtvaartdienst, Schiphol (Netherlands). Meetkundige Dienst.

ACTIVITIES REPORT OF THE DUTCH CIVIL AERONAUTICS BOARD Annual Report, 1989 [RIJKSLUCHTVAARTDIENST: JAARVERSLAG 1991]

ANNE MARIE STEENDIJK 1990 69 p In DUTCH and **ENGLISH**

(ETN-91-98472) Avail: NTIS HC/MF A04

The activities in the fields of air traffic control air transportation and infrastructure, civil areronautics school, civil aeronautics museum aviodome, national aeronautics and astronautics laboratory, responsibility in the air, aerospace safety above the North Sea, and air traffic and environment are presented.

05

AIRCRAFT DESIGN, TESTING AND **PERFORMANCE**

Includes aircraft simulation technology.

A91-20746#

FUNDAMENTAL CONCEPTS OF VECTORED PROPULSION BENJAMIN GAL-OR (Technion - Israel Institute of Technology, Haifa) Journal of Propulsion and Power (ISSN 0748-4658), vol.

6, Nov.-Dec. 1990, p. 747-757. Research supported by USAF, General Electric Co., General Dynamic Corp., et al. refs

The defining principles of partial and complete thrust-vectoring (TV) powerplants for advanced military aircraft are presented with a view to their poststall-regime maneuvering and STOL capabilities. These principles are illustratively applied to the integrated roll/yaw/pitch TV system of a family of RPVs; prototypes based on these designs have been constructed and flight tested since May, 1987, demonstrating both STOL and enhanced maneuverability/controllability. This laboratory/RPV flight test campaign has proven both cost-effective and time-saving. A follow-up program predicated on the same methodology has been launched to upgrade such existing fighters as the F-15, F-16, and F-18 to partial-TV capabilities.

A91-20783 DESIGN FOR STRENGTH AND RIGIDITY OF A THERMOPLASTIC COMPOSITE SPEED BRAKE

C. L. ONG and H. CHIN (Aero Industrial Development Center, Aeronautical Research Laboratory, Taichung, Republic of China) Theoretical and Applied Fracture Mechanics (ISSN 0167-8442), vol. 14, Sept. 1990, p. 1-12. refs Copyright

The unusual formability of thermoplastic composites in addition to their strength and rigidity make them attractive in the design and manufacture of structural members in aircraft. In this work the design of an aircraft speed brake, the major portion of which is made of PEEK reinforced by graphite fibers is presented. This material is thermoformed into a laminate with the appropriate sequence that satisfies the load requirement for the skin. The complex 'Z' shaped spar is made of graphite fiber-reinforced epoxy, which is cured by the autoclave vacuum-bag technique. These components together with the ribs of the speed brake are prefitted and adhesive-bonded as a unit in the fixture. Rivets are then applied to secure the assembly. The integrity of this newly developed thermoplastic speed brake is verified by conducting a series of coupon tests in addition to a full scale static test. Results were obtained by measuring the strains at six different critical points and showed that the thermoplastic speed brake can sustain up to 200 percent of the design limit load in addition to satisfying the other performance requirements. The new design shows that thermoplastics can be used in place of metals in the design of speed brakes. Author

A91-20898

THE DEVELOPMENT AND DESIGN INTEGRATION OF A VARIABLE CAMBER WING FOR LONG/MEDIUM RANGE **AIRCRAFT**

E. GREFF (Deutsche Airbus GmbH, Bremen, Federal Republic of Germany) Aeronautical Journal (ISSN 0001-9240), vol. 94, Nov. 1990, p. 301-312. refs

The variable camber (VC) wing, offering an opportunity to achieve considerable improvements in operational flexibility, buffet boundaries, and performance, is described. It is estimated that, among other advantages, the VC will contribute an average reduction of 3 to 6 percent in fuel burn. Research work produced significant drag reductions and increases of the buffet boundary and led to the current concept where the trailing edge flaps and ailerons are used to modify the wing camber in cruise according to the lift demand. It is noted that a VC system requires a change in design philosophy, and several new design constraints were found to affect the extent of the supersonic region, the acceptable pressure gradients in the recompression zone, and the required surface curvature. Theoretical and wind tunnel results are presented and the effects on the system design, loads, weight, handling qualities, propulsion integration and mission performance are discussed.

A91-20946

THE DEVELOPMENT AND TESTING OF ACTIVE CONTROL TECHNIQUES TO MINIMISE HELICOPTER VIBRATION

ALAN E. STAPLE (Westland Helicopters, Ltd., Yeovil, England) Environmental Engineering (ISSN 0954-5824), vol. 3, Dec. 1990, p. 16, 17. Copyright

An active control of structural response (ACSR) system, able to maintain minimal helicopter vibration in spite of the changing airframe dynamics and flight conditions, is presented. The system includes from three to six electrohydraulic actuators (each producing a maximum force of 2000 lbf and absorbing a maximum displacement of 0.01 in) incorporated into the structure using single

or dual point activation. The system is optimized for a range of 15-25 Hz and maximum control frequency of 40 Hz, and it is tested under different conditions. It is suggested that the substantial reduction of the vibrations, the enhanced comfort and reliability, and the extended helicopter life due to the application of the ACSR system lead to cost savings as well.

GENERAL APPROACH TO DYNAMIC ANALYSIS OF ROTORCRAFT

OM P. AGRAWAL (Southern Illinois University, Carbondale, IL) Journal of Aerospace Engineering (ISSN 0893-1321), vol. 4, Jan. 1991, p. 91-107. refs Copyright

This paper presents a general-purpose mathematical formulation for the dynamic analysis of a rotorcraft consisting of flexible or rigid components, or both, that may undergo large rotations. In this formulation, two sets of coordinates are used, namely rigid-body coordinates and elastic coordinates. The rigid-body coordinates define the location and the orientation of a body frame with respect to an inertial frame. The rigid-body rotational coordinates may be Euler angles, Euler-like angles, or Euler parameters. The elastic coordinates define the elastic deformations with respect to the body frame. Nonlinear strain-displacement relations are considered in order to be able to incorporate the effect of geometric stiffening. A systematic methodology that combines the traditional finite element and multibody approaches is developed to obtain a set of differential and algebraic equations governing the dynamics of the system. The resulting set of equations is highly nonlinear. Numerical schemes to solve this set of equations are also discussed.

A91-20976

SOCIETY OF FLIGHT TEST ENGINEERS, ANNUAL SYMPOSIUM, 20TH, RENO, NV, SEPT. 18-21, 1989,

Symposium sponsored by the Society of Flight Test Engineers, Computer Sciences Corp., Lockheed Corp., McDonnell Douglas Corp., et al. Lancaster, CA, Society of Flight Test Engineers, 1989, 192 p. For individual items see A91-20977 to A91-21004. Copyright

Topics presented include a real-time expert-aided trajectory estimator using multiple time, space, and position information sources and a unique on-aircraft positioning system, a range safety flight testing technique using an external camera tracking system, and a measurement system for production flight tests of new aircraft. Also presented are the AV-8B shipboard ski jump evaluation, the use of onboard data for takeoff performance determination, a flight test management and integration program, and a high speed motion analysis. Also addressed are downwash measurement at the horizontal tail, the equipment of a research aircraft with emphasis on meteorological experiments, the development and results of the AM-X high incidence trials, and some trends in telemetry for the flight test engineer.

A91-20977

TORNADO AFDS/TF FLIGHT TESTING - LESSONS LEARNED MAURIZIO ASTOLFI (Italian Air Force Studies, Research and Test Centre, Pratica di Mare, Italy) and SIMON P. DENNIS (Aeroplane

and Armament Experimental Establishment, Boscombe Down, England) IN: Society of Flight Test Engineers, Annual Symposium, 20th, Reno, NV, Sept. 18-21, 1989, Proceedings. Lancaster, CA, Society of Flight Test Engineers, 1989, p. 1A.1-1 to 1A.1-13.

Copyright

An overview is presented of the Tornado trinational flight test program, with particular emphasis on the autopilot, the flight director and terrain following (AFDS/TF) systems. Each of the various types of flight tests is presented, and for each of these the different responsibilities of the contractors and official test centers are described. The specific approach to testing and operational acceptance of this critical flight safety and essential mission system. which is to be operated in an all-weather, low level, ECM and high threat environment, is described. The TF system has proved

to be a powerful and effective answer for all-weather, low altitude penetration and is now used on several types of aircraft and cruise missiles.

R.E.P.

A91-20980

MINIMUM CONTROL SPEED - A 'THRUSTLESS' APPROACH

ALICIO LOTHARIO LOTH, JR. (Empresa Brasileira de Aeronautica, S.A., Sao Jose dos Campos, Brazil) IN: Society of Flight Test Engineers, Annual Symposium, 20th, Reno, NV, Sept. 18-21, 1989, Proceedings. Lancaster, CA, Society of Flight Test Engineers, 1989, p. 1B.2-1 to 1B.2-7.

. Copyright

This paper describes a new procedure to flight test the minimum control speed. The procedure uses torque instead of thrust in the calculations. Advantages of this new approach are discussed, and typical test data sets are shown and analyzed.

Author

A91-20986

POSITION ERROR CALIBRATION OF A PRESSURE SURVEY AIRCRAFT USING A TRAILING CONE

EDWARD N. BROWN (NCAR, Boulder, CO) IN: Society of Flight Test Engineers, Annual Symposium, 20th, Reno, NV, Sept. 18-21, 1989, Proceedings. Lancaster, CA, Society of Flight Test Engineers, 1989, p. 2B.2-1 to 2B.2-8. refs

Copyright

The paper reviews the trailing cone development and testing, application procedures, and the results of position error evaluation over a wide speed and altitude range. The methodology by which the Research Aviation Facility calibrated and verified the position of a Sabreliner with the installation of a trailing cone assembly in order to establish a position error base for survey altitudes up to 12,500 meters is discussed. This methodology is used to provide position error data for the complete flight envelope of an aircraft. The uncertainty or the largest expected error in the Sabreliner static pressure measurement after correction with the trailing cone position error is + or - 0.396 mb.

A91-20987

RPAS - RUNWAY PERFORMANCE ANALYSIS SYSTEM

A. HASS and J. CHEN (Israel Aircraft Industries, Ltd., Flight Test Engineering Dept., Lod) IN: Society of Flight Test Engineers, Annual Symposium, 20th, Reno, NV, Sept. 18-21, 1989, Proceedings. Lancaster, CA, Society of Flight Test Engineers, 1989, p. 2B.3-1 to 2B.3-11.

Copyright

A runway performance analysis system (RPAS) is described which is a hardware/software combination utilized to calculate runway performance and related parameters in semireal-time. This system is based exclusively on measurements telemetered from the test aircraft to the ground station, thus avoiding the long turn-around time associated with photographic or radar tracking techniques. A trapped anemometric sources algorithm is implemented in the software for evaluation of anemometric sources ground effects. Results of 137 test runs in 17 flights performed with RPAS using a Westwind 1125 corporate jet aircraft are evaluated. It is shown that the fast turnaround time and completeness of the analysis makes it possible to reduce the total number of test runs and to rapidly generate final type inspection reports and/or aircraft flight manual compatible charts.

A91-20988

USE OF ONBOARD DATA FOR TAKEOFF PERFORMANCE DETERMINATION

FRANK S. BROWN (USAF, Flight Test Center, Edwards AFB, CA) IN: Society of Flight Test Engineers, Annual Symposium, 20th, Reno, NV, Sept. 18-21, 1989, Proceedings. Lancaster, CA, Society of Flight Test Engineers, 1989, p. 2B.4-1 to 2B.4-5. refs Copyright

A comparison is presented between the use of a two-station phototheodolite system and the use of onboard Inertial Navigation System (INS) data to determine takeoff distances. Distances from brake release to nosewheel liftoff, brake release to main wheel

liftoff, (takeoff), and the horizontal distance from brake release to the aircraft passing through 50 feet above the ground level (AGL) were compared. The data were acquired during five takeoffs using a fighter type aircraft at the Air Force Flight Test Center (AFFTC). Relative to the current phototheodolite system, the onboard INS method offers several advantages. The advantages include: (1) it requires less scheduling of resources and less advanced notice; (2) the data turnaround is faster than the phototheodolite system; and (3) it is also less expensive.

A91-20989

FLIGHT TESTING ANTISKID/BRAKE SYSTEMS

JIM FITZGERALD (Lockheed Aeronautical Systems Co., Burbank, CA) IN: Society of Flight Test Engineers, Annual Symposium, 20th, Reno, NV, Sept. 18-21, 1989, Proceedings. Lancaster, CA, Society of Flight Test Engineers, 1989, p. 2B.5-1 to 2B.5-9. Copyright

A review is presented of the methods to be followed for ground and flight test antiskid/brake systems. Test engineers should become familiar with all aspects of the system, e.g., steel vs. carbon brake heat sink material, the number of braked wheels, routing and length of hydraulic lines, design kinetic energy limits, pressure or torque limiting, deceleration assistance devices, pedal force requirements, FBW vs. mechanical linkage, and provisions for adjustable or programmable antiskid gains. Types of testing, instrumentation requirements (per braked wheel, related system parameters, aircraft parameters), test planning and procedures, and test experiences are described.

A91-20990

TESTING THE NEW SWEDISH MULTIROLE A/C - THE JAS 39 GRIPEN

BO LUNDBERG and GOSTA NISS (Saab-Scania, AB, Linkoping, Sweden) IN: Society of Flight Test Engineers, Annual Symposium, 20th, Reno, NV, Sept. 18-21, 1989, Proceedings. Lancaster, CA, Society of Flight Test Engineers, 1989, p. 3.1-1 to 3.1-8. Copyright

A review is presented of the design, development and continuing flight testing of the Gripen fighter. The aircraft has been designed to carry a variety of external loads to permit fighter, ground attack and reconnaisance missions. The flight test program to be accomplished in five prototype aircraft covers about 2300 flights over a period of five years. The beginning of this testing is presented and includes the aircraft description, simulation and ground testing, data acquisition, and data analysis, with particular attention to onboard digital data systems and the use of online telemetry and the advantages of piggy-back testing. The flight control system commands seven primary control surfaces plus leading edge flaps and airbrakes for enhanced maneuvering.

A91-20993* PRC Systems Services Co., Edwards, CA. AFTI/F-111 AIRPLANE MISSION ADAPTIVE WING OPERATIONAL FLIGHT EVALUATION TECHNIQUE USING UPLINKED PILOT COMMAND CUES

ROBERT W. KEMPEL (PRC Systems Services, Aerospace Technologies Div., Edwards, CA), PAUL W. PHILLIPS (USAF, Flight Test Center, Edwards AFB, CA), C. GORDON FULLERTON, and JOHN J. BRESINA (NASA, Flight Research Center, Edwards AFB, CA) IN: Society of Flight Test Engineers, Annual Symposium, 20th, Reno, NV, Sept. 18-21, 1989, Proceedings. Lancaster, CA, Society of Flight Test Engineers, 1989, p. 3.6-1 to 3.6-19. refs Copyright

NASA and the USAF have conducted a program to investigate aircraft performance improvements utilizing a mission adaptive wing (MAW). The MAW was designed and developed for the AFTI/F-111 variable-sweep aircraft to provide a hydraulically driven, smooth, and continuous variable camber of the trailing and leading edges as a function of maneuvering requirements or of flight conditions. The remotely augmented vehicle facility (RAV) at the NASA DFRF, as utilized in the MAW investigations, is described. The RAV was a dedicated, ground based, general purpose facility capable of receiving a data stream downlinked from a test vehicle, processing this data stream in a digital computer, and transmitting processed

data back to the test vehicle. It is shown that this method of flight testing provides a technique that can evaluate highly dynamic maneuvers.

A91-20995

X-31...FLIGHT TEST IN THE 90'S

DAVID J. RODRIGUES (Rockwell International Corp., Palmdale, CA) IN: Society of Flight Test Engineers, Annual Symposium, 20th, Reno, NV, Sept. 18-21, 1989, Proceedings. Lancaster, CA, Society of Flight Test Engineers, 1989, p. 4.2-1 to 4.2-3. Copyright

The two major objectives of the X-31 flight test program are technical demonstration and measurement of enhanced fighter maneuverability (EFM) performance, and demonstration of EFM enhancements of tactics. EFM comprises maneuverability through the use of thrust vectoring and integrated flight controls. Thrust vectoring in the X-31 is accomplished with three thrust vectoring paddles mounted to the aft fuselage and extended aft of the engine exhaust nozzle. The ultimate goal of this flight test program is to demonstrate the tactical effectiveness of EFM structured toward the attainment of air combat maneuvers for the X-31.

R.E.P.

Author

A91-20996

FLIGHT TEST MANAGEMENT AND INTEGRATION PROGRAM

GADY LEVI (Israel Aircraft Industries, Ltd., Lod) IN: Society of Flight Test Engineers, Annual Symposium, 20th, Reno, NV, Sept. 18-21, 1989, Proceedings. Lancaster, CA, Society of Flight Test Engineers, 1989, p. 4.3-1 to 4.3-7. Copyright

A flight-test management and integration program (TMIP), based on DBASE III software and IBM hardware, has been developed in Israel Aircraft Industries for a small remotely piloted vehicle and the Astra business jet. It is designed to create a flexible and easy-to-use tool for tasks that are not suitable for full-scale main-frame management programs, yet cannot be achieved by manual tracking forms. The main features include flight plan and flight summary automatic production; a data bank that consists of seven data bases (necessary for any test program); and a package for reporting system, cross references, and software handling. The TMIP is recommended for use in small and medium-size flight-test

programs, based on its unique features and good operational

experience. A91-21000

DOWNWASH MEASUREMENT AT THE HORIZONTAL TAIL

YOSHIO HAYASHI, HAMAKI INOKUCHI (National Aerospace Laboratory, Kakamigahara, Japan), MASAKI SAITO, and TAKASHI TSUJIMOTO (Kawasaki Heavy Industries, Ltd., Kakamigahara, Japan) IN: Society of Flight Test Engineers, Annual Symposium, 20th, Reno, NV, Sept. 18-21, 1989, Proceedings. Lancaster, CA, Society of Flight Test Engineers, 1989, p. 6.1-1 to 6.1-9. refs Copyright

This paper describes the results of downwash measurements at the horizontal tail of 'ASKA', which is the Japanese STOL research aircraft with an Upper Surface Blowing (USB) type powered lift device. As the downwash substantially concerns lift, it becomes very large for STOL aircraft with high lift. Large increments of downwash at the horizontal tail influences the aircraft longitudinal static stability. There is also some uncertainty about the behavior of the jet efflux sheet behind the USB flap. It is important to know the flow field around the empennage. Characteristics of the flow such as downwash angle and dynamic pressure at the horizontal tail were measured by air data sensors with pitot-static tubes and vanes. The results show that: (1) the downwash and Delta-epsilon/Delta-alpha increase for power setting and USB flap angle, and (2) this system, using the pitot tube with vanes, is convenient for downwash measurements, and a heating system is required. Author

A91-21002
RANDOM AIR TURBULENCE AS A FLUTTER TEST
EXCITATION SOURCE

WILLIAM J. NORTON (USAF, Flight Test Center, Edwards AFB, CA) IN: Society of Flight Test Engineers, Annual Symposium, 20th, Reno, NV, Sept. 18-21, 1989, Proceedings. Lancaster, CA, Society of Flight Test Engineers, 1989, p. 6.4-1 to 6.4-11. refs Copyright

The use of random air turbulence as a structural excitation source for aircraft flutter clearance flight test has gained wider use in the last decade as the increased data capacity and speed of small digital computers has permitted a near real-time analysis of such data. The attractiveness of the technique is due largely to the elimination of the complexities and cost of a dedicated onboard mechanical excitation system. However, the method has a number of serious limitations and may be unsuitable in many applications. These limitations were recently demonstrated during the testing of the F-15 S/MTD (Short Takeoff and Landing/Maneuver Technology Demonstrator). The advantages and disadvantages of this flutter test excitation approach are discussed in detail. Specific examples of application and data results are presented.

A91-21003

ENGINE WATER INGESTION TEST

GADY LEVI and HILLEL KAIN (Israel Aircraft Industries, Ltd., Lod) IN: Society of Flight Test Engineers, Annual Symposium, 20th, Reno, NV, Sept. 18-21, 1989, Proceedings. Lancaster, CA, Society of Flight Test Engineers, 1989, p. 6.5-1 to 6.5-11. Copyright

This paper describes the logic and practice in water ingestion test in a tight budget and compressed test time schedule. The Astra business jet water ingestion certification test was completed successfully on an active runway which was available for the test for only 8 hours, but was due to be cleared at any stage of the test within 15 minutes. The test planning logic as outlined in this paper will enable successful repetition of this test for almost any type of aircraft and location within one test day.

Author

A91-21125

WINDSHIELDS AND CANOPIES - A PILOT'S BEST FRIENDS

GEORGE L. WISER (Sierracin/Sylmar Corp., Advanced Programs Group, CA) Cockpit (ISSN 0742-1508), July-Sept. 1990, p. 5-27. Copyright

The operating conditions of modern aircraft windshields and canopies are reviewed, and special attention is paid to bird impact, icing protection, protection from gunfire, field of vision, distortions, and reflections. Airliners and military aircraft are exposed to a variety of conditions including temperatures ranging from Arctic to desert, internal pressurization, aerodynamic forces, heat from supersonic speeds, nuclear and microwave radiation, and chemical warfare agents. It is pointed out that the windshield design also has to take into consideration the necessity of high transparency, critical optical quality, minimum weight, and low cost. Since none of the materials available possesses all the properties required, the design is complicated. Existing windshields can be upgraded in order to improve their effectiveness and the safety of the crew.

A91-21241

ASSESSMENT OF A POST 2000 STOVL FIGHTER

G. C. TAMPLIN, D. L. HAMMOND, and R. E. FREDETTE (USAF, Wright Research and Development Center, Wright-Patterson AFB, OH) SAE, Aerospace Atlantic Meeting, Dayton, OH, Apr. 23-26, 1990. 17 p. Research supported by USAF. (SAE PAPER 901031) Copyright

An evaluation is made of the performance requirements, design features, and technology-development imperatives of a next-generation USAF defensive counterair/battlefield interdiction STOVL fighter able to replace the F-16 in the 2000-2010 time period. Numerous configurational possibilities were considered in feature tradeoff studies focusing on the effects of three different propulsion systems: (1) vectorable nozzle with ventral bypass and separate lift turbojet; (2) vectorable nozzle with ventral bypass and fan air offtake ducting; and (3) vectorable nozzle with ventral

bypass and mixed fan/main flow offtake ducting. An integrated weapons-bay feature increased supersonic drag in all cases.

O.C.

A91-21256* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

SMALL-SCALE EXPERIMENTS IN STOVL GROUND EFFECTS VICTOR R. CORSIGLIA, DOUGLAS A. WARDWELL (NASA, Ames Research Center, Moffett Field, CA), and RICHARD E. KUHN SAE, Aerospace Atlantic Meeting, Dayton, OH, Apr. 23-26, 1990. 17 p. refs

(SAE PAPER 901060) Copyright

A series of tests has been completed in which suckdown and fountain forces and pressures were measured on circular plates and twin-tandem-jet generic STOVL (short takeoff and vertical landing) configurations. The tests were conducted using a small-scale hover rig, for jet pressure ratios up to 6 and jet temperatures up to 700 F. The measured suckdown force on a circular plate with a central jet was greater than that found with a commonly used empirical prediction method. The present data showed better agreement with other sets of data. The tests of the generic STOVL configurations were conducted to provide force and pressure data with a parametric variation of parameters so that an empirical prediction method cold be developed. The effects of jet pressure ratio and temperature were found to be small. Lift improvement devices were shown to substantially reduce the net suckdown forces.

A91-21258 AIRCRAFT FUEL WEIGHT PENALTY DUE TO AIR CONDITIONING

SAE Aerospace Information Report SAE AIR 1168/8, Sept. 14, 1989, 18 p. refs (SAE AIR 1168/8) Copyright

Techniques and numerical data are presented for calculating the take-off fuel-weight penalty (assuming that the range is kept constant) imposed on a supersonic aircraft by the installation of an air-conditioning system. The methods employed quantify the relationships between the flight performance and the weight, external and momentum drag, and changes in engine performance due to the extraction of bleed air and/or shaft power. The flight range, gross weight, fuel load, payload, speed-altitude characteristics, power, and landing characteristics of the aircraft and any limitations on the length of the takeoff field are all taken

A91-21259

SAE AEROSPACE FLIGHT DECK AND HANDLING QUALITIES STANDARDS FOR TRANSPORT AIRCRAFT

into account. Typical results are presented in extensive graphs,

and a sample weight-penalty computation is outlined.

Warrendale, PA, Society of Automotive Engineers, 1988, 271 p. No individual items are abstracted in this volume. (SAE ARP 4100)

This manual includes individual documents on flight deck layout and facilities, and flight deck panels, controls and displays. Also included are documents covering flight deck lighting for commercial transport aircraft, the design objectives for the handling qualities of transport aircraft, and pertinent nomenclature and abbreviations.

A91-21415#

AN APPROACH TO AIR-BREATHING HIGH SPEED VEHICLE

S. N. B. MURTHY (Purdue University, West Lafayette, IN) and P. CZYSZ (McDonnell Douglas Corp., Saint Louis, MO) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 29 p. Research supported by McDonnell Douglas Corp. refs (AIAA PAPER 91-0225) Copyright

Various complications involved in the synthesis of an air-breathing high speed propulsion system are discussed. Energy analysis and availability are discussed as they pertain to the synthesis of such technology. Methods of deriving the greatest work output from various, available systems inputs are discussed

for cases when propulsion, lift, and balance of moments are sought to be generated using atmospheric air up to the highest speeds. The use of system structure coefficients to evaluate performance and scope for improvement of processes, components, and system architechture is discussed. Several illustrative examples are given. Also, the method of including considerations of weights, trajectory, and control within the framework for maximizing energy availability usage is discussed. A number of diagrams are provided including a schematic of interactions in a high speed vehicle system, a schematic of comprehensive energy analysis, a comparison of weight factors for rocket and air-breathers, and examples of structure diagrams.

A91-21433#

THREE-DIMENSIONAL NUMERICAL SIMULATION OF ELECTROTHERMAL DEICING SYSTEMS

ALAN D. YASLIK, KENNETH J. DE WITT, THEO G. KEITH, JR. (Toledo, University, OH), and WALTER BORONOW (McDonnell Douglas Corp., Long Beach, CA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 15 p. Research supported by McDonnell Douglas Corp. refs (AIAA PAPER 91-0267) Copyright

This paper examines three-dimensional transient heat transfer in a multi-layered body which is ice covered. The physical application studied is the process of melting and removal of ice from aircraft components by use of electrothermal heaters. In order to model the ice phase change, a predictor-corrector technique used which assumes a phase for each ice gridpoint. This allows the use of the Method of Douglas three-dimensional alternating direction numerical solver to iteratively converge on the correct phase of each ice node for each timestep. Less than five iterations are required for convergence. Verification of the code is discussed by comparing results with those of previous one-dimensional and two-dimensional studies. Finally, three-dimensional results are presented and the usefulness of the code as a design tool is illustrated.

A91-21434#

NUMERICAL SIMULATION OF AN ELECTROTHERMALLY DE-ICED AIRCRAFT SURFACE USING THE FINITE ELEMENT METHOD

THEO G. KEITH, JR., KENNETH J. DE WITT (Toledo, University, OH), and J. R. HUANG AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 19 p. refs (AIAA PAPER 91-0268) Copyright

A finite-element method, which incorporates an assumed phase state technique, is presented for the solution of one- and two-dimensional heat conduction problems with phase change. A simulation of the electrothermal de-icing of an aircraft surface is made using this method and the results are compared with existing experimental data. Comparison of predicted temperatures within a rectangle and those within an airfoil reveals the extent and importance of modeling curvature effects. When the curvature is less than 0.25, curvature effects may be neglected and a rectangular shape may be used instead of the actual curved geometry.

A91-21515#

APPLICATION OF TURBULENCE MODELING TO THE DESIGN OF MILITARY AIRCRAFT

BRIAN R. SMITH (General Dynamics Corp., Fort Worth, TX) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 12 p. refs

(AIAA PAPER 91-0513) Copyright

Turbulence modeling methods currently in use in the military aircraft industry are discussed. Algebraic, two equation and Reynolds stress closure models are briefly surveyed. Approaches for modeling turbulence in the near wall region and modeling of compressibility effects in hypersonic flows are reviewed. Several applications of turbulence models to military aircraft design problems are presented. These examples demonstrate the challenges involved in the application of turbulence models to complex configurationis. With this background, recommendations

are made for future research in turbulence modeling which are needed to improve the CFD predictions in the aerospace industry. Author

A91-21529#

NUMERICAL MODELING OF AN ADVANCED PNEUMATIC IMPULSE ICE PROTECTION SYSTEM (PIIP) FOR AIRCRAFT

THEO G. KEITH, JR., KENNETH J. DE WITT (Toledo, University, OH), JAMES C. PUTT, CHARLES A. MARTIN (B. F. Goodrich Aerospace Div., Uniontown, OH), SUBRAMANIAM RAMAMURTHY et al. AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 11 p. Research supported by B. F. Goodrich Co. refs

(AIAA PAPER 91-0555) Copyright

The development of a numerical model of an advanced pneumatic impulse ice protection system, also known as PIIP, for aircraft is described in this paper. A time-dependent, compressible flow model for internal duct flow is used to model the ice protection system. The model incorporates a high resolution shock capturing method - Essentially Non-Oscillatory (ENO) Scheme with Subcell Resolution (SR) and Characteristic Direction (CR). The model consists of a tube section which expands due to the passage of shock. The model includes a grid generation scheme to account for the size of the system. The model is analyzed for different inlet and exit boundary conditions. Preliminary results are obtained for different compressor pressures and the model is shown to give results of practical use. The paper also recommends a suitable operating pressure for the compressor.

A91-21609#

WIND TUNNEL TESTS OF AERODYNAMIC EFFECTS OF TYPE I AND II GROUND DE/ANTI-ICING FLUIDS ON SMALL TRANSPORT AND GENERAL AVIATION AIRCRAFT DURING TAKEOFF

N. ELLIS, E. LIM, P. TEELING, and S. ZHU (Boeing Canada, de Havilland Div., Downsview) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 15 p. refs

(AIAA PAPER 91-0763) Copyright
Fluids used to 'anti-ice' the aircraft on the ground contribute to enhanced air safety by reducing the chances of airframe icing before take-off. The premise of use is that the fluids will stay on the aerodynamic surfaces long enough to prevent the formation of any ice then flow clear of the aerodynamic surfaces before lift-off. A wing tunnel test simulating take-offs has been conducted at NASA LeRCIRT. The clearing of the fluids and the effect of the residual fluid for typical commuter and general aviation aircraft was observed. The tests were two-dimensional with two sections being tested - a flapped wing and a tailplane with elevator. Selected combinations of 19 fluids in three concentrations at four temperatures and two acceleration/rotation profiles were tested. Some tests were done with extended times to rotation using the same speeds. Both the force characteristics and the wave motion of the fluid were recorded. Significant degradation of the maximum lift and drag at climb out conditions were observed for the flapped wing model. The degradation in aerodynamic performance for many of the combinations of conditions was unacceptable relative to flight safety. Increased time to rotation resulted in a substantial improvement in the aerodynamic parameters to the extent that most fluids became acceptable. The tailplane with elevator model was affected less significantly than the flapped wing model.

Author

A91-21617#

FLIGHT TESTS OF THE AERODYNAMIC EFFECTS OF TYPE I AND TYPE II GROUND DE-/ANTI-ICING FLUIDS ON THE **FOKKER 50 AND FOKKER 100 AIRCRAFT**

J. VAN HENGST (Fokker Aircraft, Amsterdam, Netherlands) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 12 p. refs (AIAA PAPER 91-0785) Copyright

Based on the assumption that fluids may cause both a transitory loss of lift and an increase in drag during take-off, the aerodynamic effects of Type I and Type II ground deicing/antiicing fluids on the performance characteristics of the Fokker 100 and Fokker 50 are investigated using flight and wind tunnel tests. It is found that, if the deicing/antiicing treatment is applied before take-off, no performance corrections are needed, and the flow-off behavior of the fluids is satisfactory. After take-off, the handling and control characteristics are not affected by residual fluids or possible small loss of lift, and no performance corrections are needed if the aircraft is properly deiced/antiiced with Type II fluid.

A91-22173

TESTING SOVIET CIVIL AIRCRAFT

OLIVER SUTTON Aerospace World (ISSN 0983-1592), vol. 4, Dec. 1990, p. 39-41.

The State Scientific Research Institute of Civil Aviation in the Soviet Union is reponsible for assessing the capabilities of new aircraft and equipment, and making its certification recommendations to the State Register department, which issues the type certificate. Flight test procedures generally follow Western practices, with end-of-flight pilot qualitative reports. These pilot qualitative reports form the basis of the final handling report on the aircraft. Raw performance data are collected by onboard computers and then the numbers are reduced to ISA standard conditions after each flight. Several of the flying testbeds are described, e.g., the An-74 STOL light utility transport, which is primarily designed for operations in the Arctic and remote regions. It is equipped with Doppler-based and Soviet Omega navigation systems, and an inertial platform. The An-74's low-pressure tires, which can also be equipped with skis, allow it to land on the ice.

A91-22262#

DEFINITION OF SERVICE LIFE FOR FRAME OF AN **AIRPLANE**

XIANGJIONG FU (Northwestern Polytechnical University, Xian, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Oct. 1990, p. B492-B494. In Chinese, with abstract in English. refs

The maximum service period reached safely and economically by frames of an airplane is defined as service life. This definition is different from the 'safe life' or 'economic life' specified in MILA-008866A or MIL-A-87221, respectively. It is explicated that the service life is related to the overall process of production from material to operation management. The paper also points out the way to obtain the service life. Author

A91-22266#

IMPROVED DESIGN OF THE ERROR-PROOF FILLER COVER OF AIRCRAFT FUEL SYSTEM

XIDING SUN (Chengdu Aircraft Factory, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Oct. 1990, p. B507, B508. In Chinese, with abstract in English.

A91-22302

TECHNOLOGICAL FORECAST OF VTOL WEIGHT EMPTY **FRACTION IN THE YEAR 2020**

JOYCE E. MACLENNAN (Sikorsky Aircraft, Stratford, CT) SAWE, Annual International Conference, 48th, Alexandria, VA, May 22-24, 1989. 38 p. refs (SAWE PAPER 1871) Copyright

A Delphi forecasting study has been conducted in view of an array of identified potential VTOL-related technology breakthroughs and 40 years' worth of weight empty fraction trend data, in order to estimate possible weight empty fraction levels 30 years from the present. Among the emerging technologies that could reduce VTOL weight are the 'all-glass' cockpit, the bearingless main rotor, all-composite airframes, fly-by-light controls, improved engine drives, innovative antitorque systems, and advanced technology engines. Offsetting these potential weight benefits are requirements for radar/lidar warning, nuclear hardening, better maintainability, low observability, increased agility, NBC protection, and all-weather target identification.

A91-22317

EFFECTS OF EXTERNAL LOADS ON ONBOARD WEIGHT AND BALANCE SYSTEMS

MATTHEW L. NOLAN (Boeing Commercial Airplanes, Seattle, WA) SAWE, Annual International Conference, 48th, Alexandria, VA. May 22-24, 1989. 22 p.

(SAWE PAPER 1895) Copyright

Onboard weight-and-balance systems employed on commercial aircraft to ensure adherence to the certified weight and center-of-gravity limits automate the previously manual process of mass additions. They are, however, subject to uncertainties that encompass load-sensing equipment tolerances and the effects of such external loads as wind, ice, rain, snow, and asymmetrical gear loads. An effort is presently made to characterize these external load-caused uncertainties relative to manual reckoning efforts; center-of-gravity restrictions are developed to account for the external loads on illustrative large (B747) and small (B737) aircraft cases.

A91-22319

DERIVATION OF A FUSELAGE WEIGHT ESTIMATING **RELATIONSHIP**

PAUL W. SCOTT and JOHN L. NOVELLI (Douglas Aircraft Co., Long Beach, CA) SAWE, Annual International Conference, 48th, Alexandria, VA, May 22-24, 1989. 15 p. (SAWE PAPER 1901) Copyright

A step-by-step developmental recapitulation is presented for an aircraft weight estimating relationship (WER) whose derivation is sufficiently close to being generic for application to a variety of vehicular structures. The WER proceeds by (1) establishing a preliminary plan; (2) normalizing the data base; (3) developing the preliminary WER; and (4) refining the WER. A fuselage weight-estimation relationship possessing 11 independent variables has in this way been derived and shown to demonstrate exceptionally high correlation with the fuselage weights of 12 different military transports whose gross weights range from 12,000 to 331,000 kg.

A91-22320

ANALYTICAL WEIGHT ESTIMATION OF UNCONVENTIONAL LANDING GEAR DESIGNS

ROBERT H. WILLE (McDonnell Douglas Corp., Saint Louis, MO) SAWE, Annual International Conference, 48th, Alexandria, VA, May 22-24, 1989. 15 p.

(SAWE PAPER 1905) Copyright

Currently available military aircraft landing gear statistical weight-estimation equations may be inadequate for the unconventional variations in geometry and performance requirements associated with stealthy and high maneuverability configurations. Analytical weight estimates are inherently more sensitive than statistical ones to landing gear design variations. This analytical approach is embodied in Kraus' (1970) LANGE program, which is presently expanded to achieve greater analytical flexibility for the estimation of naval (carrier-based) landing-gear loading specifications as well as greater accuracy. Attention is given to the illustrative case of the F/A-18's main landing gear weight optimization process.

A91-22321

ROTORCRAFT STRUCTURAL WEIGHT AND COST ASPECTS

W. Z. STEPNIEWSKI SAWE, Annual International Conference, 48th, Alexandria, VA, May 22-24, 1989. 13 p. refs (SAWE PAPER 1908) Copyright

An exploration is presented of the links between helicopter structural weight and cost. A reduction in structural weight, even is obtained only through a higher cost/lb of structure, as is often the case with advanced composite airframes, can yield a substantial lowering of total operating costs/revenue seat-mile for passenger carriage (or per revenue ton-mile in the case of cargo helicopters). When composites form a substantial portion of a helicopter's structural weight, various fatigue and environmental effects-related factors must be factored into the various weight-and-cost considerations.

A91-22326

ALUMINUM LITHIUM FOR THE F/A-18, HORNET 2000

JON C. JOHNSON (McDonnell Aircraft Co., Saint Louis, MO) SAWE, Annual International Conference, 48th, Alexandria, VA, May 22-24, 1989. 38 p.

(SAWE PAPER 1913) Copyright
The 'Hornet 2000' derivative of the current F/A-18 will experience a 20-percent increase in empty weight due to avionics upgrades, survivability improvements, and wingspan and fuselage length increases; these changes have compelled consideration of Al-Li structures' incorporation for weight minimization without structural performance reduction. Data were merged from a structural drawings data base and an alloy weight data base, in order to arrive at a detailed listing of structural components potentially changeable into Al-Li; potential weight savings were then projected on the basis of a 9 percent alloy density reduction, together with ultimate Hornet 2000 empty weight savings.

A91-22327

ROTORCRAFT WEIGHT TRENDS IN LIGHT OF STRUCTURAL MATERIAL CHARACTERISTICS

W. Z. STEPNIEWSKI (International Technical Associates, Ltd., Upper Darby, PA) and C. C. INGALLS (U.S. Army, Aviation Research and Technology Activity, Moffett Field, CA) SAWE, Annual International Conference, 48th, Alexandria, VA, May 22-24, 1989. 35 p. refs

(SAWE PAPER 1873) Copyright

Variations in the weights of rotorcraft and their components due to advanced materials use are the topic of this study. The impact of new materials on component weights is illustrated by historical weight trends. The influence of structural material characteristics on the relative weight levels of rotorcraft components, the weight effectiveness, for both static and cyclical loadings is reviewed. Cursory expressions are developed to permit estimation of the effect of structural material strength effectiveness values on component relative weights. Special constraints which could limit possible weight reductions are considered briefly. Advanced structural materials that exhibit superior weight reduction potential are identified. Author

A91-22354#

THE FUZZY SYNTHETIC JUDGEMENT OF CORRELATING PARAMETER OF FIGHTER DESIGN

HONG CUI and YONG ZHAO (Beijing University of Aeronautics and Astronautics, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, July 1990, p. A328-A332. In Chinese, with abstract in English. refs

Correlating parameters are developed which can be used to synthetically express the close combat maneuverability of fighters by the method of fuzzy mathematics. On the basis of analysis of fighter maneuvering performances, this paper proposes the parameters omega(A), omega(s), and SEP to measure the maneuvering performance. The linear weighted method, which is one of the basic methods of transforming several objects to a single object in mathematical programming, is used to determine the form of the correlating parameter expression. To determine the weight coefficients of maneuvering performance in the expression, the inverse problem of synthetic judgment in fuzzy mathematics is employed. The development of the equation of fuzzy relationship is based on judgment data gathered from many experts working in aeronautical field. The expression developed can be used in aircraft conceptual design and to judge synthetic measurements of maneuverability. Author

A91-22357#

NONLINEAR MULTI-POINT MODELING AND PARAMETER **ESTIMATION OF THE DO 28 RESEARCH AIRCRAFT**

WEI WANG, XINHAI CHEN, SHUNDA XIAO (Northwestern Polytechnical University, Xian, People's Republic of China), and R. BROCKHAUS (Braunschweig, Technische Universitaet, Brunswick, Federal Republic of Germany) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, July 1990, p. A351-A359. In Chinese, with abstract in English. refs

05 AIRCRAFT DESIGN, TESTING AND PERFORMANCE

The modeling and parameter estimation of the DO 28 research aircraft is a part of the German special research program 212 on air-traffic safety. In this paper a nonlinear multipoint mathematical model with six degrees of freedom for DO 28 parameter estimation is presented. The model considers the high nonlinearity of aircraft motions; the characteristics of the propeller, the wings, and the horizontal stabilizer; and the wind disturbance. Its features include reconstruction of a quasi-stationary windfield, an improved algorithm for thrust calculation, and the necessary corrections of the measured input/output signals through flight-test-data compatibility check. A nonlinear maximum-likelihood method and a modified Newton-Raphson optimization algorithm are applied to the estimation of the stability and control derivatives of the DO 28 aircraft. Compared with a one-point model of aircraft motion, it is shown that the multipoint model can more accurately describe the aircraft motion and is more suitable for aircraft parameter, Author estimation.

A91-22381# A METHOD OF DEVELOPING LOAD SPECTRUM FOR A FIGHTER AIRCRAFT

ZHI WANG, SHUWEN LI, and WENQI LIU (Air Force PR China, 1st Research Institute, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Aug. 1990, p. B393-B395. In Chinese, with abstract in English.

This paper describes a method for developing load spectrum for fighter aircraft based on maneuvers. By using this method, the magnitude and the frequency of occurrence of loads experienced by fighter aircraft can be simulated. In addition, the sequence and distribution of loads can be represented.

Author

A91-22757#

THE COMPATIBILITY CHECK OF THE FLIGHT TEST DATA OF THE DO 28 RESEARCH AIRCRAFT

WEI WANG, SHUNDA XIAO, XINHAI CHEN (Northwestern Polytechnical University, Xian, People's Republic of China), and R. BROCKHAUS (Braunschweig, Technische Universitaet, Brunswick, Federal Republic of Germany) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Sept. 1990, p. A465-A473. In Chinese, with abstract in English. refs

The compatibility check and error corrections of flight test data from Dornier DO 28 research aircraft are discussed. A nonlinear six-DOF kinematic multipoint mathematical model with correction algorithms is presented. The wind-speed vector, angle of attack, and sideslip angle at any local point are successfully reconstructed by building a quasi-stationary wind field model. The relative time delays of all measured input/output signals are estimated with adequate precision using the equivalent first-order lag time constants. The measured heading, including discontinuous points, is appropriately transformed into a continuous signal, and the measured errors in angular velocity caused by sensor saturation are compensated for by the method.

A91-22956*# Massachusetts Inst. of Tech., Cambridge. HIGH PERFORMANCE LINEAR-QUADRATIC AND H-INFINITY DESIGNS FOR A 'SUPERMANEUVERABLE' AIRCRAFT

LENA VALAVANI (MIT, Cambridge, MA) and PETROS VOULGARIS Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 14, Jan.-Feb. 1991, p. 157-165. Previously cited in issue 23, p. 3614, Accession no. A89-52712. refs (Contract F08635-87-K-0031; NAG2-297) Copyright

A91-23549

PREDICTION OF THE DYNAMIC CHARACTERISTICS OF HELICOPTERS IN CONSTRAINED FLIGHT

D. G. THOMSON and R. BRADLEY (Glasgow, University, Scotland) Aeronautical Journal (ISSN 0001-9240), vol. 94, Dec. 1990, p. 344-354. refs

In circumstances where a pilot is forced to follow a specified flight path, such as during a landing approach or in nap-of-the-earth conditions, it will be shown that there is an apparent modification

of the helicopter's stability characteristics. This effect is identified in helicopter flight data from nap-of-the-earth agility trials where oscillations are observed in the time histories or the pilot's control inputs and the vehicle's response. A technique of predicting the nature of these oscillations using a linearized helicopter mathematical model is developed. The model is inverted to give the response of the unconstrained states in terms of those strongly controlled by the need to remain on a specific flight path. Results are compared with data from flight trials and it is shown that good correlation between the period of the oscillations in the flight data and the predicted values can be obtained.

A91-23643#

INTRODUCTION TO THE BASIC TECHNOLOGY OF STEALTH AIRCRAFT. I - BASIC CONSIDERATIONS AND AIRCRAFT SELF-EMITTED SIGNALS (PASSIVE CONSIDERATIONS). II - ILLUMINATION BY THE ENEMY (ACTIVE CONSIDERATIONS)

D. HOWE (Cranfield Institute of Technology, England) ASME, Transactions, Journal of Engineering for Gas Turbines and Power (ISSN 0022-0825), vol. 113, Jan. 1991, p. 75-86. refs (ASME PAPER 90-GT-116; ASME PAPER 90-GT-117) Copyright

An account is given, first, of the signals potentially usable by an enemy in the detection and tracking of aircraft by passive means; these encompass acoustic, IR, visual, and other self-emitted phenomena. Attention is given to the means of either reducing the intensity of these emissions or eliminating them altogether. An evaluation is then made of the principles and development status of techniques for the reduction of probability of detection by such active means as radar. These techniques encompass the tailoring of several potential contributors to radar cross-section, as well as the incorporation of radar absorbers over external surfaces. The positive contributions obtainable through detailed design are noted.

A91-23644*# McDonnell Aircraft Co., Saint Louis, MO. OPTIMIZING AIRCRAFT PERFORMANCE WITH ADAPTIVE, INTEGRATED FLIGHT/PROPULSION CONTROL

R. H. SMITH, J. D. CHISHOLM (McDonnell Aircraft Co., Saint Louis, MO), and J. F. STEWART (NASA, Flight Research Center, Edwards, CA) ASME, Transactions, Journal of Engineering for Gas Turbines and Power (ISSN 0022-0825), vol. 113, Jan. 1991, p. 87-94. refs

(ASME PAPER 90-GT-252) Copyright

The Performance-Seeking Control (PSC) integrated flight/propulsion adaptive control algorithm presented was developed in order to optimize total aircraft performance during steady-state engine operation. The PSC multimode algorithm minimizes fuel consumption at cruise conditions, while maximizing excess thrust during aircraft accelerations, climbs, and dashes, and simultaneously extending engine service life through reduction of fan-driving turbine inlet temperature upon engagement of the extended-life mode. The engine models incorporated by the PSC are continually upgraded, using a Kalman filter to detect anomalous operations. The PSC algorithm will be flight-demonstrated by an F-15 at NASA-Dryden.

A91-24119

ISHIDA TILT-WING PROJECT TAKES CUES FROM HISTORY IWAO NAKATANI Vertiflite (ISSN 0042-4455), vol. 37, Jan.-Feb. 1991, p. 24-28. Copyright

Ishida's plans for the testing, certification, and delivery of the TW-68 are discussed. The aircraft's potential use as a means of public transportation is cited as an important advantage and chief motive for its development. A historical overview is presented of the development of the tilt-wing aircraft, which began in the 1950s, noting that the Ishida Group included all previous tilt-wing programs in their overall analysis prior to selecting an aircraft design for development. A chart presents information considered in this analysis including first flight dates, operational dates, gross weight of the VTOL/STOL, and project scope for various aircraft company tilt-wing projects. The TW-68 will be powered by four turboprop

engines from the PT-6 family in two twin engine nacelles. Present design requirements and target markets are cited.

Messerschmitt-Boelkow-Blohm G.m.b.H., Munich (Germany, F.R.). Hubschrauber und Flugzeuge.

INTEGRATED DESIGN ANALYSIS AND OPTIMIZATION

G. SCHNEIDER, H. KRAMMER, and H. GOEDEL Apr. 1990 66 p Presented at 70th SMP Meeting on Integrated Design Analysis and Optimization: Preliminary Results Fin Optimization, Sorrento, Italy, Apr. 1990

(MBB/FE2/S/PUB/0398; ETN-90-98154) Copyright Avail: NTIS HC/MF A04

The current status is presented of MBB activities contributing to the AGARD working group, integrated design analysis, and optimization. For this research activity, MBB has proposed a fin design study with high aeroelastic and flutter design requirements, which was developed in 1983. A repetition of this design study using the MBB LAGRANGE program revealed the capability of a modern design tool. The results of an optimization run covering aeroelastic, and flutter design constraints are documented. Starting from an initial design with violated design constraints, the optimization procedure ended with a lower structural weight, fulfilling all design constraints.

N91-15146*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

REVIEW OF THE TRANSMISSIONS OF THE SOVIET **HELICOPTERS**

LEV I. CHAIKO Dec. 1990 14 p Prepared in cooperation with Army Aviation Systems Command, Cleveland, OH (Contract DA PROJ. 1L1-61102-AH-45)

(NASA-TM-103634; E-5803; NAS 1.15:103634;

AVSCOM-TM-90-C-015) Avail: NTIS HC/MF A03 CSCL 01C A review of the following aspects of Soviet helicopter transmissions is presented: transmitted power, weight, reduction ratio, RPM, design configuration, comparison of different type of manufacturing methods, and a description of the materials and technologies applied to critical transmission components. Included are mechanical diagrams of the gearboxes of the Soviet helicopters and test stands for testing gearbox and main shaft. The quality of Soviet helicopter transmissions and their Western counterparts are assessed and compared.

National Aeronautics and Space Administration. N91-15147*# Ames Research Center, Moffett Field, CA.

SIMULATED ROTOR TEST APPARATUS DYNAMIC **CHARACTERISTICS IN THE 80- BY 120-FOOT WIND TUNNEL** M. S. HOQUE (Sterling Federal Systems, Inc., Palo Alto, CA.), R. L. PETERSON, and T. A. GRAHAM Nov. 1990 23 p (NASA-TM-102870; A-90301; NAS 1.15:102870) Avail: NTIS HC/MF A03 CSCL 01C

A shake test was conducted in the 80 by 120 foot Wind Tunnel at NASA Ames Research Center, using a load frame and dummy weights to simulate the weight of the NASA Rotor Test Apparatus. The simulated hub was excited with broadband random excitation, and accelerometer responses were measured at various locations. The transfer functions (acceleration per unit excitation force as a function of frequency) for each of the accelerometer responses were computed, and the data were analyzed using modal analysis to estimate the model parameters.

N91-15148# Battelle Columbus Labs., Research Triangle Park,

AN EVALUATION OF SHAPE METHODS FOR HELICOPTER CLASSIFICATION AND ORIENTATION DETERMINATION Final Report, 7 Jul. 1987 - 31 Mar. 1988

TIMOTHY A. GROGAN (Cincinnati Univ., OH.) Sep. 1990 93 p (Contract DAAG29-81-D-0100)

(AD-A227326; AD-E402098; ARFSD-CR-90016) Avail: NTIS HC/MF A05 CSCL 01/3

The performance of two competing methods are evaluated for classification and orientation determination accuracy. Helicopter fuselage silhouettes are classified as to their type and orientation.

The methods are tested for sensitivity to imaging noise and the reference library sampling density. Under all conditions of imaging noise and library sampling density, the Fourier descriptor method out performs the Walsh points method for helicopter type classification. Helicopter type classification performance for the Fourier method ranges from 99 to 84 percent even under the most severe conditions examined. In almost all cases, the Fourier method exhibits median angle errors one-half those of the Walsh points method. Median angle errors of one-half the library sampling interval have been attained using the Fourier descriptor method. A scheme for helicopter rotor segmentation and orientation determination including the enhancements is also proposed. necessary additional GRA

N91-15149# Naval Postgraduate School, Monterey, CA. AIRCRAFT CONFIGURATION STUDY FOR EXPERIMENTAL 2-PLACE AIRCRAFT AND RPVS M.S. Thesis

GARY D. BLACK Mar. 1990 135 p

(AD-A227604) Avail: NTIS HC/MF A07 CSCL 01/1

A performance comparison and tradeoff study was conducted between eight unique aircraft configurations for high performance light aircraft and remotely piloted vehicles. These configurations included conventional tractor, conventional pusher, canard, tandem-wing, joined-wing, and 3-surface designs, which were analyzed though the use of microcomputer-based performance and lattice-vortex programs. Actual experimental aircraft were utilized as models which were scaled to a useful load of 600 pounds and given a common powerplant of 115 horsepower. The joined-wing, tandem-wing, and conventional pusher were found to exhibit sufficient improvement over a conventional tractor configuration to warrant serious consideration for design selection. The performance and stability programs provided reasonably accurate predictions of aircraft performance when given actual aircraft dimensions and power available data and warrant use for preliminary aircraft design. GRA

N91-15150# Oklahoma City Air Logistics Center, Tinker AFB,

PROCEEDINGS OF THE 2ND E-3 AWACS CORROSION PREVENTION ADVISORY BOARD (CPAB)

12 Jul. 1990 141 p Meeting held at Tinker AFB, OK, 12 Jul.

(AD-A227627) Avail: NTIS HC/MF A07 CSCL 11/3

Two environmental issues in particular are affecting all USAF weapons systems and is being felt by FMS weapons systems as well (particularly in Germany). These are volatile organic compounds (VOCs), and non-chemical paint removal. Topics include: problems with waterborne primers, MIL-P-85582; comparison of plastic materials, MIL-P-85891 (Dupont lease agreement); use of high solids polyurethane topcoat, MIL-C-85285; and qualification of materials. **GRA**

N91-15151 ESDU International Ltd., London (England). ENERGY HEIGHT METHOD FOR FLIGHT PATH **OPTIMISATION Abstract Only**

Jul. 1990 32 p Supersedes ESDU-Perf-EG3/3; ESDU-Perf-EG3/4: ESDU-Perf-EG3/5

(ESDU-90012; ESDU-PERF-EG3/3; ESDU-PERF-EG3/4; ESDU-PERF-EG3/5; ISBN-0-85679-738-3; ISSN-0141-4054)

Avail: ESDU

ESDU 90012 discusses and illustrates the use of the energy height method to minimize time or fuel used in transferring from one (velocity, height) point to another. Energy height is an equivalent height that yields an equivalent potential energy at any point equal to the sum of the kinetic and true potential energies of the aircraft. The method allows additional constraints to be applied, such as structural or aerodynamic limits (for example, maximum Mach number or lift coefficient) or operational limits (for example, horizontal distance coverage in the climb). It involves the simplifications that net thrust is assumed always to be aligned with the flight path and that drag equals drag in level flight at the given weight irrespective of aircraft attitude or maneuvers. In addition, transfers between trajectories are assumed instantaneous.

05 AIRCRAFT DESIGN, TESTING AND PERFORMANCE

The effect of these assumptions is studied and shown to be generally small for a range of typical aircraft configurations. Four worked examples illustrate the use of the method: for a combat aircraft minimum time to height and speed, and to height, speed, and distance, and for a subsonic transport aircraft minimum fuel to height and speed, and to height, speed, and distance.

N91-15152 ESDU International Ltd., London (England). NORMAL FORCE AND PITCHING MOMENT OF LOW ASPECT RATIO CROPPED-DELTA WINGS UP TO HIGH ANGLES OF ATTACK AT SUPERSONIC SPEEDS Abstract Only

Aug. 1990 17 p (ESDU-90013; ISBN-0-85679-739-1; ISSN-0141-397X) Avail:

ESDU

ESDU 90013 gives a semi-empirical method for thin uncambered and untwisted wings with streamwise or pointed tips and sharp leading-edges and unswept sharp trailing-edges. It applies for angles of attack up to 60 degrees and for Mach numbers from 1.2 to 5. The method requires only the aspect and taper ratios, together with values at zero angle of attack of normal-force-curve slope and aerodynamic center position which may be obtained from ESDU 70012. The method was developed from a correlation of published and unpublished experimental data for taper ratios less that 0.5 and aspect ratios of 0.5 to 4 while for taper ratios exceeding 0.5 the aspect ratios were from 0.5 to 2; however, for angles of attack less than 20 degrees, the aspect ratio went down to 0.2. It predicted the normal force coefficient to within 10 percent except at low angles of attack where the accuracy was determined by ESDU 70012 and was within 15 percent and gave aerodynamic center position as a fraction of aerodynamic mean chord to within 0.05 which yielded a pitching moment coefficient, based on root chord, within 0.03. Although all the data are for monoplane wings, it is suggested the results will apply to a cruciform configuration in symmetric flight with one wing in the plane of symmetry. The use of the method is illustrated with a worked example. **ESDU**

N91-15153# Wichita State Univ., KS. National Inst. for Aviation Research.

RESIN TRANSFER MOLDING OF COMPOSITE AIRCRAFT INTERIOR FURNISHINGS

MARK WADSWORTH Jun. 1990 14 p Aircraft Interiors Conference, Wichita, KS, 24-25 Apr. 1990 (NIAR-90-19) Avail: NTIS HC/MF A03

The main objectives were to develop a low cost fabrication system for aircraft interior furnishing with the following characteristics: (1) must meet the FAA flammability regulations; (2) must have the potential for application to the new commercial aircraft flammability requirements; (3) utilize low cost tooling; (4) the weight must be reduced over current designs; (5) minimum tooling costs since low quantities are usually built; (6) the furnishing must have aesthetic appeal; and (7) components must withstand 9 gravity forces without damage. Each of these criteria was analyzed in the context of improved producibility.

N91-16006 Maryland Univ., College Park. A COUPLED ROTOR AEROELASTIC ANALYSIS UTILIZING ADVANCED AERODYNAMIC MODELING Ph.D. Thesis MICHAEL SCOTT TOROK 1989 339 p

Avail: Univ. Microfilms Order No. DA9021593

The effects of improved aerodynamic modeling on rotor blade section and root loads, blade response, and blade stability are investigated. A nonlinear unsteady aerodynamic model for attached and separated flow and dynamic stall, as well as prescribed and free wake models, are incorporated into a coupled rotor aeroelastic analysis. Blade responses and loadings are calculated using a finite element formulation in space and time. A modified Newton iterative method is used to calculate blade response and trim controls as one coupled solution. Aeroelastic stability is determined utilizing Floquet theory for a linearized system, and a transient perturbation technique which can model nonlinear unsteady aerodynamic effects. Damping estimations are made using a Moving-Block analysis. Results of a parametric study of a soft

in-plane hingeless rotor show that at high speed flight conditions, nonlinear effects dominate blade section forces, and significantly affect peak-to-peak values and the harmonic content of blade root loads. A correlation with SA349/2 Aerospatiale Gazelle flight test data is used to evaluate the analysis. Trim controls, blade section aerodynamic loads, and blade flap bending moments are satisfactorily predicted. The rotor stability analysis is correlated with model hingeless rotor data. A parametric study of a hingeless rotor in forward flight is examined. Dissert. Abstr.

N91-16007# Army Lab. Command, Watertown, MA. Material Technology Lab. FAILURE ANALYSIS OF A MAIN ROTOR PITCH HORN BOLT LOCATED ON THE AH-1 COBRA HELICOPTER Final Report VICTOR K. CHAMPAGNE, JR. Sep. 1990 36 p (AD-A227679; MTL-TR-90-44) Avail: NTIS HC/MF A03 CSCL 01/3

A comprehensive metallurgical examination of the pitch horn bolt was conducted to determine the probable cause of failure. The component is part of the main rotor hub assembly and had failed while in service. Light optical microscopy revealed evidence of corrosion pitting in regions adjacent to the fracture. Chemical analysis verified that the part was fabricated from 4340 steel. It was determined by metallographic examination that the microstructure was tempered martensite. Hardness measurements taken on transverse cross sections of the bolt near the fracture indicated that the material had been hardened to the upper limit of the specified range. The surface finish was measured along the upper shank and conformed to the requirements of the engineering drawing. Fractographic examination utilizing the scanning electron microscope (SEM) revealed multiple crack origins which assumed a decohesion. Many of these crack sites were initiated from corrosion pits. Energy dispersing spectroscopy (EDS) performed on areas within the crack initiation site showed the presence of chlorides. Beyond the thumbnail zone fast fracture occurred in a ductile manner, which was confirmed by a dimpled topography. The failure was attributed to stress corrosion cracking (SCC).

N91-16010*# Rice Univ., Houston, TX. Dept. of Mechanical Engineering and Materials Science.

OPTIMIZATION AND GUIDANCE OF FLIGHT TRAJECTORIES FOR THE NATIONAL AEROSPACE PLANE Final Report, 22 Jun. 1989 - 31 Dec. 1990

ANGELO MIELE 1990 22 p

(Contract NAG1-1029)

(NASA-CR-187837; NAS 1.26:187837; AAR-252) Avail: NTIS HC/MF A03 CSCL 01/3

The research on optimal trajectories for the National Aerospace Plane (NASP) performed by the Aero-Astronautics Group of Rice University from June 22, 1989 to December 31, 1990 is summarized. The aerospace plane is assumed to be controlled via the angle of attack and the power setting. The time history of the controls is optimized simultaneously with the switch times from one powerplant to another and the final time. The intent is to arrive at NASP guidance trajectories exhibiting many of the desirable characteristics of NASP optimal trajectories. Author

N91-16011*# Rice Univ., Houston, TX. Dept. of Mechanical Engineering and Materials Science.

OPTIMAL TRAJECTORIES FOR AN AEROSPACE PLANE. PART 2: DATA, TABLES, AND GRAPHS

ANGELO MIELE, W. Y. LEE, and G. D. WU Presented at the 1990 American Control Conference, San Diego, CA, 23-25 May 1990

(Contract NAG1-1029)

(NASA-CR-187848; NAS 1.26:187848; AAR-248-PT-2) Avail: NTIS HC/MF A05 CSCL 01/3

Data, tables, and graphs relative to the optimal trajectories for an aerospace plane are presented. A single-stage-to-orbit (SSTO) configuration is considered, and the transition from low supersonic speeds to orbital speeds is studied for a single aerodynamic model (GHAME) and three engine models. Four optimization problems

are solved using the sequential gradient-restoration algorithm for optimal control problems: (1) minimization of the weight of fuel consumed; (2) minimization of the peak dynamic pressure; (3) minimization of the peak heating rate; and (4) minimization of the peak tangential acceleration. The above optimization studies are carried out for different combinations of constraints, specifically: initial path inclination that is either free or given; dynamic pressure that is either free or bounded; and tangential acceleration that is either free or bounded.

N91-16012*# Purdue Univ., West Lafayette, IN. School of Mechanical Engineering.

APPLICATIONS OF FUZZY THEORIES TO MULTI-OBJECTIVE SYSTEM OPTIMIZATION

S. S. RAO and A. K. DHINGRA Jan. 1991 74 p (Contract NCA2-223)

(NASA-CR-177573; A-91029; NAS 1.26:177573) Avail: NTIS HC/MF A04 CSCL 01/3

Most of the computer aided design techniques developed so far deal with the optimization of a single objective function over the feasible design space. However, there often exist several engineering design problems which require a simultaneous consideration of several objective functions. This work presents several techniques of multiobjective optimization. In addition, a new formulation, based on fuzzy theories, is also introduced for the solution of multiobjective system optimization problems. The fuzzy formulation is useful in dealing with systems which are described imprecisely using fuzzy terms such as, 'sufficiently large', 'very strong', or 'satisfactory'. The proposed theory translates the imprecise linguistic statements and multiple objectives into equivalent crisp mathematical statements using fuzzy logic. The effectiveness of all the methodologies and theories presented is illustrated by formulating and solving two different engineering design problems. The first one involves the flight trajectory optimization and the main rotor design of helicopters. The second one is concerned with the integrated kinematic-dynamic synthesis of planar mechanisms. The use and effectiveness of nonlinear membership functions in fuzzy formulation is also demonstrated. The numerical results indicate that the fuzzy formulation could yield results which are qualitatively different from those provided by the crisp formulation. It is felt that the fuzzy formulation will handle real life design problems on a more rational basis.

Author

N91-16013*# Rice Univ., Houston, TX. Aero-Astronautics Group.

OPTIMAL TRAJECTORIES FOR AN AEROSPACE PLANE. PART 1: FORMULATION, RESULTS, AND ANALYSIS

ANGELO MIELE, W. Y. LEE, and G. D. WU 1990 61 p Presented at the American Control Conference, San Diego, CA, 23-25 May 1990

(Contract NAG1-1029; TATP-003604020)

(NASA-CR-187868; NAS 1.26:187868; AAR-247) Avail: NTIS HC/MF A04 CSCL 01/3

The optimization of the trajectories of an aerospace plane is discussed. This is a hypervelocity vehicle capable of achieving orbital speed, while taking off horizontally. The vehicle is propelled by four types of engines: turbojet engines for flight at subsonic speeds/low supersonic speeds; ramjet engines for flight at moderate supersonic speeds/low hypersonic speeds; scramjet engines for flight at hypersonic speeds; and rocket engines for flight at near-orbital speeds. A single-stage-to-orbit (SSTO) configuration is considered, and the transition from low supersonic speeds to orbital speeds is studied under the following assumptions: the turbojet portion of the trajectory has been completed; the aerospace plane is controlled via the angle of attack and the power setting; the aerodynamic model is the generic hypersonic aerodynamics model example (GHAME). Concerning the engine model, three options are considered: (EM1), a ramjet/scramjet combination in which the scramjet specific impulse tends to a nearly-constant value at large Mach numbers; (EM2), a ramjet/scramjet combination in which the scramjet specific impulse decreases monotonically at large Mach numbers; and (EM3), a

ramjet/scramjet/rocket combination in which, owing to stagnation temperature limitations, the scramjet operates only at M approx. less than 15; at higher Mach numbers, the scramjet is shut off and the aerospace plane is driven only by the rocket engines. Under the above assumptions, four optimization problems are solved using the sequential gradient-restoration algorithm for optimal control problems: (P1) minimization of the weight of fuel consumed; (P2) minimization of the peak dynamic pressure; (P3) minimization of the peak heating rate; and (P4) minimization of the peak tangential acceleration.

N91-16014# Technische Univ., Brunswick (Germany, F.R.). Fakultaet fuer Maschinenbau und Elektrotechnik.

TESTS FOR INTEGRATING MEASUREMENTS OF GAS PRESSURES IN AIRCRAFT MECHANISMS Ph.D. Thesis [VERSUCHE ZUR INTEGRIERENDEN MESSUNG VON GASDRUECKEN IN FLUGTRIEBWERKEN]

GERARDO WALLE 1989 217 p in GERMAN (ETN-91-98558) Avail: NTIS HC/MF A10

The possibility that the integral signal driven by a fiber is a measure for the mean value of the examined data, is studied. Examinations were carried out at a firmly inserted fiber, which was bent between two support teeth by a weight tooth (fiber deformation unity). The radial curvature distributions along the fiber was approximately simulated by the bend beam model. The relation between damping and bending was described by a nonlinear exponential function. For the practical realization of a sensor with optical fibers several prototypes were made and the conditions for a successful conception were defined.

N91-16015# Messerschmitt-Boelkow-Blohm G.m.b.H., Munich (Germany, F.R.). Military Aircraft Div.

AEROTHERMODYNAMIC PHENOMENA AND THE DESIGN OF ATMOSPHERIC HYPERSONIC AIRPLANES

E. H. HIRSCHEL 18 Jul. 1990 42 p Presented at the 3rd Joint Europe/US Short Course in Hypersonics, Aachen, Fed. Republic of Germany, 1-5 Oct. 1990 (MBB/FE122/S/PUB/0408; ETN-91-98545) Avail: NTIS HC/MF

(MBB/FE122/S/PUB/0408; ETN-91-98545) Avail: NTIS HC/MF A03

The design problems of aerodynamic hypersonic airplanes and the aerodynamic tools such as wind tunnels and computation methods are reviewed simultaneously with their validation problems. Aerodynamic phenomena such as viscosity, heat loads, heat transfer and real gas effects are studied with consideration of the design and simulation problems. It is remarked that research and development must be increased in the area of turbulence and laminar turbulent transition.

N91-16016# Messerschmitt-Boelkow-Blohm G.m.b.H., Munich (Germany, F.R.). Hubschrauber und Flugzeuge.

HYPERSONIC MODEL CONFIGURATIONS

K. M. WANIE, ed. and E. H. HIRSCHEL 7 Aug. 1990 78 p In GERMAN; ENGLISH summary

(MBB/FE122/S/PUB/411; EŤN-91-98546) Avail: NTIS HC/MF A05

Model configurations for the development of hypersonic aerothermodynamics are presented in order to create a common data base for hypersonic cruise flights. Each configuration is dedicated to a specific problem arising from the flight conditions.

ESA

N91-16017# Messerschmitt-Boelkow-Blohm G.m.b.H., Munich (Germany, F.R.). Aircraft Div.

THE INTEGRATION OF STRUCTURAL OPTIMIZATION IN THE GENERAL DESIGN PROCESS FOR AIRCRAFT

O. SENSBURG, J. SCHWEIGER, H. GOEDEL, and A. LOTZE 21 Jun. 1990 12 p Presented at the 17th Congress of the International Council of the Aeronautical Sciences, Stockholm, Sweden, 9-14 Sep. 1990

(MBB/FE122/S/PUB/0405; ETN-91-98547) Copyright Avail: NTIS HC/MF A03

A method for solving large linear equation systems by an iterative method is described and successfully applied with the

MBB-LAGRANGE code which uses mathematical programming and gradients to fulfill different constraints simultaneously. As examples, heat flux and frequency optimization of a satellite structure, and design of a carbon fiber wing are presented and studied with the finite element method. In the first case, vector optimization method is added to obtain a compromise solution between dynamic and **ESA** thermal constraints.

N91-16018# Cranfield Inst. of Tech., Bedford (England). Dept. of Aerospace Vehicle Design.

TF89 AIRCRAFT CENTRE FUSELAGE M.S. Thesis

D. C. ELLIS Apr. 1990 248 p

(ETN-91-98579) Copyright Avail: NTIS HC/MF A11

The design work undertaken on the TF89 tactical fighter aircraft center fuselage is detailed. The requirement is for a high performance, long range interceptor, comparable to the American Tactical Fighter (ATF) project, to replace the now ageing F15. Maneuver shear force and bending moment loading analyses of the fuselage are presented with explanations of longeron design using the computer program STRUCT and skin design. A fatigue analysis of a longeron is undertaken. The design solution uses aluminum lithium alloy throughout.

N91-16019# Cranfield Inst. of Tech., Bedford (England). Dept. of Aircraft Design.

TF89 TACTICAL FIGHTER OUTER WING DESIGN M.S. Thesis

A. M. LEAHY May 1990 230 p

(ETN-91-98580) Copyright Avail: NTIS HC/MF A11
The swept wing is largely designed using thermoplastic PEEK (PolyEtherEtherKetone) composite material which offers excellent specific strength, good fracture toughness and can be tailored to match the wing loading. A highly redundant multiple spar structure is used to meet the chosen failsafe design philosophy. The wing skins carry both shear and some bending and hence are reinforced by closely spaced spanwise stiffeners which prevent buckling. The wing was modeled on the finite element system to obtain the distribution of the loads though the structure. All detailed discussion and calculations are shown, as well as stress calculations and drawings.

06

AIRCRAFT INSTRUMENTATION

Includes cockpit and cabin display devices; and flight instruments.

A91-20609

HOW SAFE IS FLYING? OR - THE AIMS ONBOARD INTEGRATED MONITORING SYSTEMS [WIE SICHER IST DAS FLIEGEN? ODER - BORDINTEGRIERTE

UEBERWACHUNGSSYSTEME AIMS]

HELMUT HARDEGEN (DLR, Institut fuer Flugfuehrung, Brunswick, DLR-Nachrichten (ISSN Federal Republic of Germany) 0937-0420), Nov. 1990, p. 2-5. In German. refs Copyright

The development and applications of AIMS (Aircraft Integrated Monitoring System) are briefly discussed. The use of AIMS in monitoring aircraft engines, avionics, pilot/aircraft interaction, failures, and shear wind effects are considered. The cost-benefit aspects of AIMS are addressed.

A91-20617

COMPUTER COMMUNICATION USING LOGIC CELL ARRAYS (LCA) IN ATTAS [RECHNER-KOMMUNIKATION UNTER VERWENDUNG VON LOGIC CELL ARRAYS /LCA/ AM **BEISPIEL ATTAS**]

HANS-PETER SCHWANECK (DLR, Institut fuer Flugmechanik, Brunswick, Federal Republic of Germany) DLR-Nachrichten (ISSN 0937-0420), Nov. 1990, p. 45-47. In German. Copyright

A new hardware for computer communication has been developed for the computer network onboard ATTAS (Advanced Technologies Testing Aircraft). The hardware uses highly integrated, programmable elements called Logic Cell Arrays (LCA). The programmable logic components and the LCA design cycle are described, and the realization of the system is discussed.

C.D.

A91-20982

ARTIST - AIRBORNE REAL TIME INSTRUMENTATION SYSTEM

F. X. SUDHARMONO, M. MULIA TIRTOSUDIRO, and MR. (Nusantara Aircraft Industries, Ltd., Bandung, IN: Society of Flight Test Engineers, Annual SRIYONO Indonesia) Symposium, 20th, Reno, NV, Sept. 18-21, 1989, Proceedings. Lancaster, CA, Society of Flight Test Engineers, 1989, p. 2A.2-1 to 2A.2-8. refs Copyright

A novel system is being introduced for performing test flights in Indonesia where telemetry data transmission could not be assured due to the terrain limitations and the extreme distance of the test area to the base. This ARTISt system is capable of producing data in real-time in the form of barcharts, graphics, tables, and a mixture of graphics and tables to give the engineer on board an impression of the flight test situation being performed. The definition of the global parameters set is controlled by a module, GLODEF, which provides three functions: (1) GLOSHO, which shows what parameters are included in a global parameters set file; (2) GLOINI, which sets up and initiates the ARTISt system and allows the operator to select which global parameter set is to be utilized; and (3) CALMOD, which defines the format of the test area. The test data can be processed in the form of electrical units (raw data) or engineering units.

A91-21221

VASI SYSTEMS FOR HELICOPTER OPERATIONS

C. DEVASENAPATHY (International Civil Aviation Organization, ICAO Journal (ISSN 0018-8778), vol. 45, Montreal, Canada) Aug. 1990, p. 6-8. Copyright

This paper sums up the ICAO developed specifications on the visual approach slope indicator (VASI) systems for helicopter operations. These systems include the precision approach path indicator (PAPI), an abbreviated configuration of PAPI (APAPI), and a new single-unit system, designated the helicopter approach path indicator (HAPI), which was specifically designed for helicopter operations. HAPI specifications including equipment characteristics, filter characteristics, system installation, initial flight inspection, and routine inspections are described. The HAPI is best suited for operation on a floating helideck, where its signal remains stable despite the pitching and rolling motions of the helideck.

A91-21248

INTEGRATED CONTROL AND AVIONICS FOR AIR SUPERIORITY - A PROGRAM OVERVIEW

JAMES A. KOCHER (USAF, Wright Research and Development Center, Wright-Patterson AFB, OH) SAE, Aerospace Atlantic Meeting, Dayton, OH, Apr. 23-26, 1990. 11 p. refs (SAE PAPER 901049) Copyright

Potentially critical technologies enabling prospective USAF fighter aircraft to survive air combat engagements in which they are outnumbered by enemy aircraft are the focus of the Integrated Control and Avionics for Air Superiority (ICAAS) program. ICAAS has as its goal the securing of victories when USAF fighters are outnumbered 4:1, with such technological capabilities anticipated for the 1995-2000 as beyond-visual-range multiple target attack and smooth transition to close-in combat. Sufficient integration and automation will be furnished for such taxing targeting tasks' implementation in a single-seat fighter; an intraflight data link is included to enhance mutual combat support among USAF fighters. O.C.

A91-22202#

CONTROL CONCEPT OF MODERN AVIONICS IN THE SERVICE OF PILOT RELIEF - PRESENTED USING THE EXAMPLE OF DO 328 [KONTROLLKONZEPT MODERNER AVIONIK IM DIENST DER PILOTENENTLASTUNG - DARGESTELLT AM BEISPIEL DER DO 328]

H. FEUERSENGER (Dornier Luftfahrt GmbH, Wessling, Federal Republic of Germany) Ortung und Navigation (ISSN 0474-7550), no. 3, 1990, p. 360-371. In German.

The avionics system used in the DO 328 is discussed. An avionics control concept using 'soft keys' is described, including the automatic monitoring of the flight configuration, the allowable flight regime, the performance, and the overall system. The avionics control menus are shown along with flight displays.

C.D.

A91-22301

HELICOPTER WEIGHT AND TORQUE ADVISORY SYSTEM RICHARD L. ADELSON (Boeing Military Airplanes, Wichita, KS) SAWE, Annual International Conference, 48th, Alexandria, VA, May 22-24, 1989. 11 p.

(SAWE PAPER 1872) Copyright

The Weight and Torque Advisory (WTA) system for helicopters presented is an onboard avionic system which assists pilots in the definition of maximum cargo-carrying capability while enhancing safety, reducing maintenance costs, and extending helicopter service life. The WTA combines cargo-hook load weight information with temperature, altitude, and fuel weight for the computation of optimum performance data which can be displayed for the pilots on the cockpit instrument board. All WTA system features are generic, thereby allowing adaptation to different types of helicopters; the WTA may also be used with other avionic system components or operate as a stand-alone system with its own dedicated processor, control panel, and display.

A91-23134 National Aeronautics and Space Administration.
Goddard Space Flight Center, Greenbelt, MD.

AIRBORNE LIDAR FOR PROFILING OF SURFACE TOPOGRAPHY

JACK L. BUFTON, JAMES B. GARVIN, JOHN F. CAVANAUGH, EUIS RAMOS-IZQUIERDO (NASA, Goddard Space Flight Center, Greenbelt, MD), THOMAS D. CLEM, and WILLIAM B. KRABILL (NASA, Wallops Flight Center, Wallops Island, VA) Optical Engineering (ISSN 0091-3286), vol. 30, Jan. 1991, p. 72-78. refs Copyright

A lidar system is described that measures laser pulse time-of-flight and the distortion of the pulse waveform for reflection from earth surface terrain features. This instrument system is mounted on a high-altitude aircraft platform and operated in a repetitively pulsed mode for measurements of surface elevation profiles. The laser transmitter makes use of recently developed short-pulse diode-pumped solid-state laser technology. Aircraft position in three dimensions is measured to submeter accuracy by use of differential Global Positioning System receivers. Instrument construction and performance are detailed.

A91-24095

HIGH-PRECISION FIBER-OPTIC POSITION SENSING USING DIODE LASER RADAR TECHNIQUES

GREGORY L. ABBAS, W. RANDALL BABBITT, MICHAEL DE LA CHAPELLE, MARK L. FLESHNER, J. DOYLE MCCLURE (Boeing Aerospace and Electronics High Technology Center, Seattle, WA) et al. IN: Laser-diode technology and applications II; Proceedings of the Meeting, Los Angeles, CA, Jan. 16-19, 1990. Bellingham, WA, Society of Photo-Optical Instrumentation Engineers, 1990, p. 468-479. refs

Copyright

An account is given of analytical, design, and testing procedures for a linear position sensor that employs diode laser radar techniques in conjunction with fiber-optic signal distribution. A frequency-chirped and intensity-modulated semiconductor diode laser transmits, while the receiving sensors are a moving and a fixed reflector operating in a difference-ranging mode in order to cancel temperature-induced fiber-length variations. The

performance of the laser radar position sensor is analyzed by calculating the return's S/N value; a Cramer-Rao lower bound is then derived in order to relate the SNR, chirp bandwidth, and chirp duration to the rms range error. The theoretical optimum performance of the sensor system was 58 microns rms range error, on the basis of a chirp duration with 50-microsec processing time.

O.C.

N91-15154# Advisory Group for Aerospace Research and Development, Neuilly-Sur-Seine (France). Avionics Panel. ADVANCES IN COMPONENTS FOR ACTIVE AND PASSIVE AIRBORNE SENSORS

Sep. 1990 191 p Meeting held in Bath, England, 9-10 May

(AGARD-CP-482; ISBN-92-835-0584-0) Copyright Avail: NTIS HC/MF A09; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

The survivability of aircraft and their capability of carrying out different missions rely on numerous sensor systems such as radar, altimeters, radio navigation, measure, and countermeasure equipment. It is very important that the most advanced semiconductor technologies be used in those systems as early as possible because avionic equipment performance is limited by the available components. Emerging semiconductor components and sensor technologies are examined in the proceedings from this workshop.

N91-15155# Thomson Composants, Saint Egreve (France). Militaires et Spatiaux.

SPECIFIC ASPECTS OF ADVANCED COMPONENTS FOR AIRBORNE APPLICATIONS

JEAN-MICHEL BRICE In AGARD, Advances in Components for Active and Passive Airborne Sensors 6 p Sep. 1990 Copyright Avail: NTIS HC/MF A09; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Some of the important specific aspects are presented of electronic components, mainly high speed, high performance integrated circuits used for airborne applications. It is shown that the requirements such as complexity, performance, power consumption, are more stringent for airborne components than for other components, civil ones in particular. In addition, the long lifetime of airborne equipments, typically 25 to 30 years, requires specific arrangement to assure the long term availability of the strategic components, as the semiconductor technologies don't survive more than 10 years. The antinomy, use of standard and mature technologies for low cost and large product base but necessity to get access to specific or advanced technologies for specific performance requirements, can be solved by the add-on military concept, where civil technologies are used whenever possible, but specific developments are undertaken to fulfill the military airborne specifications.

N91-15156# Thomson Composants, Orsay (France). MICROWAVE AND MILLIMETER WAVE COMPONENTS: PERFORMANCES, PERSPECTIVES, AND APPLICATIONS TO AVIONICS

PIERRE BRIERE and DOMINIQUE PONS (Thomson-CSF, Orsay, France) /n AGARD, Advances in Components for Active and Passive Airborne Sensors 7 p Sep. 1990
Copyright Avail: NTIS HC/MF A09; Non-NATO Nationals requests

Copyright Avail: NTIS HC/MF A09; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Significant advances in microwave and millimeter wave three terminal devices have been obtained in the last few years, leading to great performance gains in noise figure power gain, and power output up to 100 GHz. Great improvements in materials growth, heterojunction device structures and processing technology have resulted in noise figure as low as 1.4 dB and power output in excess of 50 mw, both at 94 GHz. In addition, the emergence of Heterojunction Bipolar Transistor (HBT) based Monolithic Microwave Integrated Circuit's (MMIC's) opens new possibilities for high power and high efficiency circuits, low phase noise Voltage Controlled Oscillators (VCOs) and others. The different types of these advanced devices are reviewed and their performance

characteristics in low noise and power applications are examined. Potential applications of such devices with their specific advantages in electronic airborne equipment are also studied. Author

Army Electronics Technology and Devices Lab., Fort Monmouth, NJ.

LOW-NOISE OSCILLATORS FOR AIRBORNE RADAR **APPLICATIONS**

RAYMOND L. FILLER and JOHN R. VIG In AGARD, Advances in Components for Active and Passive Airborne Sensors 16 p Sep. 1990

Copyright Avail: NTIS HC/MF A09; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Vibration effects are a significant problem in modern communication, navigation, and radar systems. Vibration induced phase noise can change the probability of detection of moving target indicator (MTI) radar from near 100 percent to 0. Oscillators that are capable of meeting the requirements of MTI radar systems in a quiet environment are readily available. In the vibrating environments of airborne platforms, however, the phase noise of oscillators will degrade to a large degree. High stability frequency sources, including atomic standards, contain quartz crystal resonators. One result of the evolution of electronics, i.e., the transition from tubes to transistors, and from point-to-point wiring to printed circuits, is the establishment of the quartz crystal resonator as the most acceleration sensitive component in frequency sources. The causes and effects of acceleration sensitivity of bulkwave quartz crystal resonators are reviewed along with the methods that reduce or compensate for that sensitivity. Most of what is discussed is relevant to most microwave oscillators. Author

N91-15160# Siemens A.G., Munich (Germany, F.R.). Components Group.

GAAS MMICS IN SELFALIGNED GATE TECHNOLOGY FOR PHASED ARRAY RADAR APPLICATION

PETTENPAUL and U. FREYER (Siemens Unterschleissheim, Germany, F.R.) In AGARD, Advances in Components for Active and Passive Airborne Sensors 10 p

Copyright Avail: NTIS HC/MF A09; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Design and performance data of GaAs Monolithic Microwave Integrated Circuits (MMICs) for C and X band Transmitter/Receiver (T/R) Radar Antenna Modules and broadband Electronic Countermeasure application are described. The devices considered are low noise amplifiers, medium power amplifiers, 3 W high power amplifiers, 4 and 6 bit attenuators, 4 and 6 bit phase shifters, and distributed amplifiers. The devices are fabricated on a high volume pilot line with only one standard high yield process. The main steps in the process are given. In comparison to other standard MMIC process lines it is specific, that a Selfaligned Gate Technique, the so called DIOM (Double Ge/Si contact Implantation, One Metallization) process, is used for production. Thereupon is another specific aspect that an advanced inhouse computer aided design package for GaAs MMICs and a very accurate cell library based on on-wafer RF measurements is operational. Highlights are the very accurate and low noise 6 bit attenuators and phase shifters and especially a high power amplifier MMIC with 3.6 W output power and 31 percent added efficiency at C band. Author

N91-15164# Naval Weapons Center, China Lake, CA. LOGARITHMIC AMPLIFICATION FOR PASSIVE AIRBORNE **DIRECTION FINDING IN THE 1990S**

RICHARD SMITH HUGHES In AGARD, Advances in Components for Active and Passive Airborne Sensors 15 p Sep. 1990 Copyright Avail: NTIS HC/MF A09; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Logarithmic amplifiers (log amps) are indepensable parts in most airborne passive direction finding (DF) sensors, including both antiradiation missiles (ARMs) and radar warning receivers (RWRs) on aircraft. The modern early warning (EW) threat necessitates covering increased instantaneous radio frequency (RF) bandwidths

and processing increasing pulse densities, coupled with needs for lower power dissipation, smaller size, and lower cost. Because of these constraints, the log amp designer is often at a loss. Successive detection log intermediate frequency amps (SDLAs) and Detector/log video amps (DLVAs) have disadvantages. The log amps of the 1970s through mid 80s will not meet the stringent requirement of the 90s. A historical perspective is presented of the why's and how's of modern log amps, with emphasis on their application specific strong and weak points. New circuit elements and topologies are presented that may well determine where the log amps of the 90s are headed. Author

N91-15166# Rome Air Development Center, Griffiss AFB, NY. MMIC IMPACT ON AIRBORNE AVIONIC SYSTEMS

EDWARD J. JONES and WILLIAM J. BOCCHI, JR. Advances in Components for Active and Passive Airborne Sensors Sep. 1990

Copyright Avail: NTIS HC/MF A09; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

The latest advances in Monolithic Microwave Integrated Circuit (MMIC) technology and its impact on airborne avionic systems. along with a unique technique for designing reliability into MMIC devices, is described. Current MMIC transmit/receive (T/R) module performance is presented along with current hybrid module results for comparison. For example, typical RMS phase error for a 10 GHz T/R MMIC module is about one half of a hybrid module, which can increase antenna performance by 5 dB. Work in developing and applying finite element analysis (FEA) techniques to MMIC T/R modules to determine temperature and stress levels within microscopic regions of these devices is also examined. It is now possible to assess the reliability of new MMIC designs using this analytical tool which makes it possible to avoid time consuming and costly after-the-fact test and redesign of a given development. Author

N91-15169# Naval Weapons Center, China Lake, CA. Targeting and Fire Control Div.

LASER OBSTACLE AND CABLE UPDATE SENSOR

C. K. BULLOCK, R. T. HINTZ, and W. TANAKA In AGARD, Advances in Components for Active and Passive Airborne Sensors Sep. 1990

Copyright Avail: NTIS HC/MF A09; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

The real night foreign weapon evaluation (FWE) program was evaluating an integrated night attack avionics suite for an A-6E aircraft. The most recent addition to this avionics suite is a CO2 laser terrain following/obstacle avoidance (TF/OA) sensor. The requirements are described for this type of sensor along with the characteristics of the system, and some preliminary test results gathered during A-6 flights. Author

N91-15171# Aeronautical Research Labs., Melbourne (Australia).

PROGRAMMABLE COCKPIT-FLIGHT DYNAMIC MODEL

M. IOB Jul. 1990 24 p (AD-A227748; ARL-SYS-TM-138; DODA-AR-006-078) Avail: NTIS HC/MF A03 CSCL 01/4

The programmable cockpit has been developed as a low cost alternative to a full research simulator. It is intended for use in cockpit display design and layout studies and for crew workload and other human factors studies. With this system it is possible to quickly change the design or layout of a display and evaluate it under representative flight conditions. A six degree of freedom flight dynamic model has been developed for the Programmable Cockpit. The model's development is described from it original form in the IBM PC-AT Simulator to its current implementation in the Programmable Cockpit. It features and operation are described in some detail as well as its limitations. A brief overview of the Programmable Cockpit is also given. The hardware required for the simulator includes: IBM PC-AT 80286 computer with 80287 mathematics co-processor; Locus System Engineering touch screen; MetraByte DASH-8 eight channel, 12 bit A/D converter;

and Measurement System Inc. analogue, spring-centered joystick.

N91-15172# Aeronautical Research Labs., Melbourne (Australia).

PROGRAMMABLE COCKPIT-HEAD-UP DISPLAY AND OUTSIDE VIEW

ANDREW G. PAGE Jun. 1990 27 p (AD-A227751; ARL-SYS-TM-137; DODA-AR-006-077) Avail: NTIS HC/MF A03 CSCL 17/5

The Programmable Cockpit is a low-cost facility utilizing personal computers linked together to represent the fundamental displays of a fixed-wing aircraft. The cockpit instruments can be displayed either in the conventional manner or in a glass-cockpit type format. Aircraft controls include a sidestick and throttle. It was designed so that the instrument layouts and display formats could be reconfigured rapidly and tested in a reasonable aircraft representation, with the pilot under representative workload conditions. The Programmable Cockpit is to be used to study and develop the pilot vehicle interface for future aircraft systems.

GRA

N91-15173*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

EFFECT OF SHAPING SENSOR DATA ON PILOT RESPONSE ROGER M. BAILEY Nov. 1990 19 p

(NASA-TM-102737; NAS 1.15:102737) Avail: NTIS HC/MF A03 CSCL 01/4

The pilot of a modern jet aircraft is subjected to varying workloads while being responsible for multiple, ongoing tasks. The ability to associate the pilot's responses with the task/situation, by modifying the way information is presented relative to the task, could provide a means of reducing workload. To examine the feasibility of this concept, a real time simulation study was undertaken to determine whether preprocessing of sensor data would affect pilot response. Results indicated that preprocessing could be an effective way to tailor the pilot's response to displayed data. The effects of three transformations or shaping functions were evaluated with respect to the pilot's ability to predict and detect out-of-tolerance conditions while monitoring an electronic engine display. Two nonlinear transformations, on being the inverse of the other, were compared to a linear transformation. Results indicate that a nonlinear transformation that increases the rate-or-change of output relative to input tends to advance the prediction response and improve the detection response, while a nonlinear transformation that decreases the rate-of-change of output relative to input tends to lengthen the prediction response and make detection more difficult. Author

07

AIRCRAFT PROPULSION AND POWER

Includes prime propulsion systems and systems components, e.g., gas turbine engines and compressors; and on-board auxiliary power plants for aircraft.

A91-20489

RECENT DEVELOPMENTS IN RAMJETS, DUCTED ROCKETS AND SCRAMJETS

Y. M. TIMNAT (Technion - Israel Institute of Technology, Haifa) Progress in Aerospace Sciences (ISSN 0376-0421), vol. 27, no. 3, 1990, p. 201-235. refs Copyright

An evaluation is made of powerplant configurations representative of the state-of-the-art in subsonic and supersonic combustion ramjets, as well as the combination of ramjet propulsion principles with rocket and turbomechanical features for hybrid cycles. Attention is given to the conceptual and practical development of combined rocket-booster/ramjet combustor

chambers, and the evolution of configurational concepts for the integration of a scramjet propulsion apparatus into an HST lifting-body vehicle. Emphasis is given to the difficulties encountered in the design of regenerative cooling systems predicated on the use of LH2 fuel, as well as to the test facilities required for realistic scramjet operation.

O.C.

A91-20612

SIMULATION AND STUDY OF SHEAR FLOWS SURROUNDING PROPFAN ENGINE MODELS (SIMULATION UND UNTERSUCHUNG DER SCHUBUMKEHRSTROEMUNGEN AN MODELLEN VON PROPFANTRIEBWERKEN)

DIETMAR CHRIST and REINHARD FRIEDRICHS (DLR, Hauptabteilung Windkanaele, Brunswick, Federal Republic of Germany) DLR-Nachrichten (ISSN 0937-0420), Nov. 1990, p. 24, 25. In German.
Copyright

The wind tunnels at Braunschweig and Goettingen have been used to investigate the shear flow around new kinds of propfan engines. The designs and performances of the shear flow simulations and engine models are briefly described.

C.D.

A91-20737#

FLOWFIELD MEASUREMENTS IN AN UNSTABLE RAMJET BURNER

D. M. REUTER, U. G. HEGDE, and B. T. ZINN (Georgia Institute of Technology, Atlanta) Journal of Propulsion and Power (ISSN 0748-4658), vol. 6, Nov.-Dec. 1990, p. 680-685. Previously cited in issue 18, p. 3002, Accession no. A88-44678. refs (Contract N00014-84-K-0470) Copyright

A91-20744#

COMPARISON OF COMBUSTION EXPERIMENTS AND THEORY IN POLYETHYLENE SOLID FUEL RAMJETS

P. J. M. ELANDS, P. A. O. G. KORTING, T. WIJCHERS (TNO, Prins Maurits Laboratoria, Rijswijk, Netherlands), and F. DIJKSTRA (Delft, Technische Universiteit, Netherlands) Journal of Propulsion and Power (ISSN 0748-4658), vol. 6, Nov.-Dec. 1990, p. 732-739. Research supported by the Stichting voor de Technische Wetenschappen and National Fund for Supercomputers of Netherlands. Previously cited in issue 18, p. 3003, Accession no. A88-44738. refs

A91-21205

TESTING AIR DATA SYSTEMS ON AIRCRAFT - PROBLEMS AND SOLUTIONS

G. R. WITT (Penny and Giles Avionic Systems, Ltd., Christchurch, England) IN: Maintenance of modern avionics systems; Proceedings of the Conference, Heathrow, England, May 9, 1989. London, Royal Aeronautical Society, 1989, p. 4.0-4.14. Copyright

A major problem in testing air data and associated systems is that the testing should be noninvasive and in particular nondestructive. A review is presented of the operational problems encountered in carrying out maintenance within time and cost budgets. The approach presented leads to a maintenance capability that provides full testing under safe conditions with extended capability to meet increasing requirements. Examples are given of newly available test regimes utilizing this type of equipment that include off-aircraft testing, on-aircraft testing operational problems, and typical maintenance schedule requirements. A newly developed unit is described that consists of a calibrator/controller unit and a remote control display unit which are interconnected by a cable of up to 25 m in length.

A91-21222

OPTIMIZATION STUDIES FOR THE PW305 TURBOFAN

D. J. KARANJIA and R. A. HARVEY (Pratt and Whitney Canada, Longueil) ICAO Journal (ISSN 0018-8778), vol. 45, Aug. 1990, p. 9-12.
Copyright

07 AIRCRAFT PROPULSION AND POWER

A review is presented of the requirements, design, development and testing of the PW305 engine that will power the BAe 1000 business aircraft. The key design objectives included a maximum takeoff thrust of 23.24 kN, a mass of 431 kgs, a ten percent improvement in TSFC, and a fan diameter as close as possible to existing engines. Cycle studies were accomplished to optimize the total engine/airframe combination. The theoretical optimum for best specific fuel consumption had to be modified by considering physical size, mass, and cost. The paper focuses on the means by which the critical parameters were chosen for the basic cycle at the design condition of 12,000 m, Mach 0.8 at ISA and maximum cruise rating. Then the definition studies for compressor stages, high turbine choices, and specific thrust are described. Given the stated targets and constraints, the design bypass ratio chosen was 4.3, which for the target thrust requirement resulted in a fan diameter of 78.1 cm, or just over 2.5 cm larger than existing turbofans. R.E.P.

A91-21239

SIMULATION, TESTING AND OPTIMIZATION OF A NEW LOW COST ELECTRONIC FUEL CONTROL UNIT FOR SMALL GAS TURBINE ENGINES

G. CARRESE, T. KREPEC (Concordia University, Montreal, Canada), and C. H. TO (Bendix Avelex, Inc., Montreal, Canada) SAE, Aerospace Atlantic Meeting, Dayton, OH, Apr. 23-26, 1990. 11 p. Research supported by NSERC and Bendix Avelex, Inc. (SAE PAPER 901027) Copyright

(SAE PAPER 901027) Copyright

The potential benefits of digital electronic controls, including increased flexibility and lower cost, have not yet been fully applied to the small gas turbine engines of remotely piloted vehicles. For these applications, the need for low cost is a strong factor in design. To address this situation, a new, simple and inexpensive electronically controlled metering system for small gas turbine engines is proposed. The system incorporates a diaphragm type valve keeping a constant differential pressure across a stepper motor actuated metering valve. To optimize the design, mathematical models were created for computer simulation. Experimental tests performed on a prototype showed that it can adequately meet the fuel schedules of small gas turbines. The simulation models were validated against the test results and were used in design optimization.

A91-21240

NUMERICAL SIMULATIONS OF AUXILIARY POWER UNITS WITH DIFFERENT CONFIGURATIONS

GIOVANNI TORELLA (Accademia Aeronautica, Naples, Italy) SAE, Aerospace Atlantic Meeting, Dayton, OH, Apr. 23-26, 1990. 21 p. refs

(SAE PAPER 901028) Copyright

Development techniques are presented for the production of fast, flexible, and reliable numerical codes simulating auxiliary power units (APUs) of various configurations, with a view to the projection of both design-point and off-design condition performance characteristics. Attention is given to diagnostic and fault simulation functions, as well as to the transient behavior of APUs and the evaluation of control laws for satisfying specific constraints. Flowcharts are presented for engine simulation with a numerical code, the primary steps for calculations of influence matrices, and the steps of the iterative and component fault-simulation methods.

A91-21245

NEW FAMILY OF LOW COST ELECTRONIC FUEL CONTROL UNITS FOR SMALL GAS TURBINE ENGINES

T. KREPEC, A. I. GEORGANTAS (Concordia University, Montreal, Canada), M. TAYLOR, and C. H. TO (Bendix Avelex, Inc., Montreal, Canada) SAE, Aerospace Atlantic Meeting, Dayton, OH, Apr. 23-26, 1990. 8 p. Research supported by NSERC and Bendix Avelex, Inc. refs

(SAE PAPER 901039) Copyright

A new family of low cost electronic fuel control units is being proposed for the small gas turbine engines of remotely piloted vehicles and auxiliary power units. A modular design incorporating

an electronically actuated metering value is used which can be matched with various types of differential pressure valves controlling the pressure drop across the metering value. Four different configurations are proposed: metering valve only, metering value with diaphragm type differential pressure valve, metering valve with bypass valve and double valve configuration, and the latter with a back-up capability.

A91-21336*# Virginia Univ., Charlottesville.

COMBUSTION EFFICIENCY DETERMINED FROM WALL PRESSURE AND TEMPERATURE MEASUREMENT IN A MACH 2 COMBUSTOR

CORIN SEGAL, JAMES C. MCDANIEL, ROBERT B. WHITEHURST, and ROLAND H. KRAUSS (Virginia, University, Charlottesville) AlAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 11 p. refs

(Contract NAG1-795)

(AIAA PAPER 91-0017) Copyright

A study of transverse hydrogen injection behind a rearward facing step in a Mach 2 airflow was conducted to determine the combustion efficiency and the combustor/inlet interactions at the low temperature lean-mixture operational end of a scramiet combustor model. The fuel was injected at sonic conditions into the electrically heated airstream, which was maintained at 850 K or below. The static pressure delivered at the entrance of the combustor ranged between 0.25 to 0.5 atm. Injector configurations included single and staged injectors placed at 3 or 3-and-7 step-heights downstream of the step, respectively, with injector diameters of 1, 1.5, and 2 mm. Ignition was achieved by initially unstarting the test section. The constant area combustor and the low initial temperatures caused thermal choking and upstream interaction to occur at very low equivalence ratios. Typically, most of the fuel was burned in the recirculation region behind the step and around the jets. The effects of initial conditions (temperature and pressure), fuel-to-air dynamic pressure ratio, and boundaries (thermal vs adiabatic) are presented.

A91-21372#

AN ANALYTICAL STUDY OF A SUPERSONIC MIXER-EJECTOR EXHAUST SYSTEM

T. J. BARBER (United Technologies Research Center, East Hartford, CT) and O. L. ANDERSON AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 14 p. refs (AIAA PAPER 91-0126) Copyright

A computational procedure has been developed for modeling the flowfield produced by a supersonic mixer-ejector exhaust system. The flowfield both within the mixing duct as well as in the downstream exhaust of the ejector has been modeled. The analytical procedure used in the present study is based on an efficient PNS analysis combined with empirical data obtained from previously presented analytical studies. The analytical studies reported here have been conducted for a flat plate shroud, flight-inlet mixer ejector operating at a nozzle exit Mach number of 1.5. Favorable comparisons with experimental data for both the static and near-static operating conditions have been made to demonstrate the validity of the analysis procedure. Comparison calculations are also presented for a slot nozzle ejector, having an equivalent nozzle exit area. The analytical results presented confirm the experimentally observed significant improvement in turbojet exhaust mixing available from recently developed mixer ejector concepts. In addition, the internal flow calculations provided insight into the interaction of the induced secondary flow with the outer shroud. Author

A91-21417#

PARAMETRIC STUDY ON THRUST PRODUCTION IN THE TWO DIMENSIONAL SCRAMJET

GARY A. ALLEN, JR. (Queensland, University, Brisbane, Australia) AlAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 9 p. refs

(AIAA PAPER 91-0227) Copyright

The paper examines thrust production in the two-dimensional scramjet. The method of analysis used is the nonhomentropic

(nonisentropic) method of characteristics. This method is used in developing a computer program which takes a Mach number distribution as input and determines the thrust produced on the scramjet's diverging section. The Mach number distribution is found experimentally or through another numerical method. The resulting program is essentially a postprocessor which determines thrust for different scramjet geometries for a given Mach number distribution. In the paper some optimal angles for maximum pressure are described.

A91-21418#

HYPERSONIC PROPULSION SYSTEM FORCE ACCOUNTING

KEITH NUMBERS (USAF, Wright Research and Development Center, Wright-Patterson AFB, OH) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 16 p. refs (Contract F33615-87-C-3006) (AIAA PAPER 91-0228)

A generic matrix of propulsion force accounting procedures has been developed from a survey of the aerospace community. The matrix includes definitions for propulsion system and control volume boundary specification. Aerodynamic reference conditions are also discussed relative to off-design performance. The advantages and disadvantages of each of the force accounting procedures are discussed as they apply to some typical hypersonic force accounting problems.

A91-21471# ACTIVE CONTROL OF A DUMP COMBUSTOR WITH FUEL MODULATION

K. J. WILSON, E. GUTMARK, K. C. SCHADOW, and R. A. SMITH (U.S. Navy, Naval Weapons Center, China Lake, CA) AlAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 11 p. refs (AIAA PAPER 91-0368)

Closed-loop control tests were performed to suppress the combustion instability of a dump combustor and to extend its flammability limits. The pressure oscillations originating from the unstable combustion were measured at the dump plane and at the exhaust nozzle. The signals were used as a reference to lock on and to produce an acoustic signal which modulated the fuel flow at a predetermined phase shift relative to them. At a certain range of phase shift angles the combustion oscillation amplitude was reduced to 50 percent of its unforced level. The control system was most effective when the reference signal was picked up at the dump. The amount of reduction was proportional to the acoustic forcing level, but leveled off for high forcing amplitudes. The effectiveness of the control system was reduced as the mass flow rate of the air was increased. The combustion instability became bimodal, with multiple unstable frequency and a more sophisticated lock-on, and a phase-shift system is required to suppress effectively oscillations with more than a single dominant frequency. However, even for the high flow rates the amplitude of the instability was reduced by nearly 40 percent.

A91-21475#

STRUCTURE OF A SUPERSONIC REACTING JET

R. S. BARLOW (Sandia National Laboratories, Livermore, CA), D. C. FOURGUETTE (Wellesley College, MA), M. G. MUNGAL (Stanford University, CA), and R. W. DIBBLE (California, University, Berkeley) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 24 p. Research supported by DOE. refs (AIAA PAPER 91-0376)

An axisymmetric burner for the study of compressible reacting shear layers is described, and the ranges of its operating parameters are analyzed. This burner has a central supersonic free jet of resistively heated air, surrounded by a low-speed coflow of fuel-rich H2-air combustion products. Planar laser-induced fluorescence (PLIF) imaging of OH is used to visualize the structure of the annular reacting shear layer in the near field of the jet. Images from two cases with convective Mach numbers of 0.11 and 0.41 are presented and discussed in terms of previously reported results for nonreacting compressible shear layers. Results from a compressible 'lifted' flame are also presented and discussed

in terms of the local Damkoehler number. The extension of these exploratory experiments to higher convective Mach numbers and higher Reynolds numbers is outlined.

Author

A91-21482#

ACTIVE CONTROL OF COMBUSTION INSTABILITY IN A RAMJET USING LARGE-EDDY SIMULATIONS

SURESH MENON (Quest Integrated, Inc., Kent, WA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 18 p. refs

(Contract N00014-90-C-0089)

(AIAA PAPER 91-0411) Copyright

Combustion instability in a ramjet combustor has been numerically simulated using a large-eddy simulation (LES) technique. Premixed combustion in the combustor is simulated using a thin-flame model that explicitly uses the local turbulent flame speed in the governing equation. Two types of instability are observed: a small-amplitude, high-frequency instability and a large-amplitude, low-frequency instability. Both such instabilities have been experimentally observed, and various computed flow features are in good qualitative agreement with experimental observations. The information obtained from these simulations has been used to develop active control strategies to suppress the instabilities. Two active control techniques have been investigated: an acoustic feedback technique and secondary (both steady and unsteady) fuel injection. Control of both types of combustion instability was successfully achieved using the acoustic feedback technique, and the control could be used to turn the instability on and off. Secondary fuel injection also shows promise as an active control technique to suppress combustion instability.

A91-21483*# Massachusetts Inst. of Tech., Cambridge. MULTI-DIMENSIONAL MODELLING OF GAS TURBINE COMBUSTION USING A FLAME SHEET MODEL IN KIVA II

W. K. CHENG (MIT, Cambridge, MA), M.-C. LAI (Wayne State University, Detroit, MI), and T.-H. CHUE AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 7 p. Research supported by Cummins Engine Co. refs (Contract NAG3-1140)

(AIAA PAPER 91-0414) Copyright

A flame sheet model for heat release is incorporated into a multi-dimensional fluid mechanical simulation for gas turbine application. The model assumes that the chemical reaction takes place in thin sheets compared to the length scale of mixing, which is valid for the primary combustion zone in a gas turbine combustor. In this paper, the details of the model are described and computational results are discussed.

Author

A91-21516#

TURBULENCE WODELING IN GAS TURBINE DESIGN AND ANALYSIS

O. P. SHARMA and S. A. SYED (United Technologies Corp., Pratt and Whitney Group, East Hartford, CT) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 22 p. refs (AIAA PAPER 91-0514) Copyright

The current status of turbulence models, as applied to the design of components for aircraft gas turbine engines, is discussed. Aspects of turbomachinery flow fields are identified for which the unavailability of reliable turbulence models constrains design options. Areas of research are suggested where direct numerical simulations of Navier-Stokes equations can yield information leading to more reliable turbulence models; results from these simulations are also expected to provide improved insight into flow physics, benefitting design engineers. The relative importance of turbulence to periodic unsteadiness and boundary conditions is discussed. It is argued that parallel development in all three of these aspects of flow prediction is needed to harness the full potential of the recent explosive growth in computer storage, speed and Computational Fluid Dynamics (CFD) codes. Improved flow prediction capability should reduce both specific fuel consumption and the cost of development and ownership of gas turbine engines. Author

A91-21527#

FURTHER ASSESSMENT OF A SCRAMJET INLET MASS FLOW MEASUREMENT TECHNIQUE FOR USE IN HYPERSONIC PULSE FACILITIES

G. P. CORPENING, D. M. VAN WIE, and L. A. MATTES (Johns Hopkins University, Laurel, MD) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 14 p. (AIAA PAPER 91-0551) Copyright

The purpose of the study is to devise a mass-flow measurement technique for inlet tests in facilities with run times which are not sufficient to establish steady-flow conditions through a plenum/nozzle assembly. The equation relating plenum-pressure rate to mass capture is derived from the integral form of the energy equation. A mass-metering device for measuring inlet masss capture, consisting of a closed plenum with a striker plate and baffle arrangement to break up the imcoming flow and damp out internal flow oscillations is described. Test results obtained from a Ludwieg tube, gun tunnel, and Calspan shock tunnel are presented. Focus is placed on the quantitative assessment of the accuracy of the technique at a Mach-8 condition. It is shown that the accuracy of the meter is within 5 percent for the range from 1700 R to 3100 R.

A91-21575# EXPERIMENTAL AND THEORETICAL STUDIES IN A **GAS-FUELED RESEARCH COMBUSTOR**

W. M. ROQUEMORE, V. K. REDDY (USAF, Aero Propulsion and Power Directorate, Wright-Patterson AFB, OH), P. O. HEDMAN (Brigham Young University, Provo, UT), M. E. POST, T. H. CHEN (Systems Research Laboratories, Inc., Dayton, OH) et al. AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 17 p. Research supported by USAF. refs (AIAA PAPER 91-0639) Copyright

Results are presented from an experimental and theoretical investigation of the flow and flame behavior gas-fueled burner reproducing the recirculation patterns and 'lean blow-out' of an actual gas turbine combustor. As the equivalence ratio is reduced, the initially attached flame becomes less stable and eventually reaches a stage where the pilot flame lifts from the base region; the entire flame structure is then stabilized downstream. A CFD model with one-step chemistry is used to investigate the time-averaged features of the reacting and nonreacting flowfields. It is theorized that unburned hydrocarbon combustion products are transported into the recirculation zone by an intermittent process encountered in both attached and lifted flames.

National Aeronautics and Space Administration. Langley Research Center, Hampton, VA. PROGRESS IN HYPERSONIC COMBUSTION TECHNOLOGY WITH COMPUTATION AND EXPERIMENT

GRIFFIN Y. ANDERSON, AJAY KUMAR (NASA, Langley Research Center, Hampton, VA), and JOHN I. ERDOS (General Applied Science Laboratories, Ronkonkoma, NY) AIAA, International Aerospace Planes Conference, 2nd, Orlando, FL, Oct. 29-31, 1990. 24 p. Research supported by the National Aero-Space Plane Joint Program Office. refs

(AIAA PAPER 90-5254) Copyright

Design of successful airbreathing engines for operation at near-orbital speeds presents significant challenges in all the disciplines involved, including propulsion. This paper presents a discussion of the important physics of hypersonic combustion and an assessment of the state of the art of ground simulations with pulse facilities and with computational techniques. Recent examples of experimental and computational simulations are presented and discussed. The need for continued application of these tools to establish the credibility and fidelity of engineering design methods for practical hypersonic combustors is emphasized along with the critical need for improved diagnostic methods for hypervelocity reacting flows. Author

A91-22885# OPTIMIZATION AND VALIDATION OF A FUSELAGE FUEL TANK STRUCTURAL CONCEPT FOR THE NASP

FREDERICK T. MCQUILKIN and TRENT R. LOGAN (Rockwell International Corp., North American Aircraft Div., Los Angeles, AIAA, International Aerospace Planes Conference, 2nd, Orlando, FL, Oct. 29-31, 1990. 11 p. refs (AIAA PAPER 90-5262) Copyright

The success of the National Aerospace Plane in meeting its single-stage-to-orbit objective depends to a large degree on achieving an extremely low mass fraction. The major contributor to the dry weight of the vehicle is the airframe structure. Because of the use of hydrogen as fuel, with its low density and high poundage required, the fuselage fuel tank is the largest single element. Consequently, the optimization of this component of the vehicle will produce the maximum contribution to minimizing vehicle weight. The paper discusses the procedure which produced a circular, monocoque structure employing titanium aluminide truss-core sandwich with multi-layer insulation as the ideal tank/fuselage design. The validity of this approach was demonstrated by fabrication of full scale panels using the superplastic forming/diffusion bonding process as well as by structural testing.

A91-22892#

EXPERIMENTAL INVESTIGATION OF A 2-D DUAL MODE SCRAMJET WITH HYDROGEN FUEL AT MACH 4-6

V. A. VINOGRADOV, V. A. GRACHEV, M. D. PETROV, and IU. M. SHIKHMAN (Tsentral'nyi Nauchno-Issledovatel'skii Institut Aviatsionnogo Motorostroeniia, Moscow, USSR) International Aerospace Planes Conference, 2nd, Orlando, FL, Oct. 29-31, 1990. 11 p. (AIAA PAPER 90-5269) Copyright

The paper presents the results of an experimental investigation of a working process in a model noncooled dual-mode scramjet with a two-dimensional inlet and combined combustor with hydrogen burning in subsonic and supersonic air flow. The investigation was conducted at freestream M = 5 and 6 and and also under conditions of connected duct, simulating the parameters at the combustor entry corresponding freestream M = 4. Distribution of gasthermodynamic parameters along the duct, efficiency of hydrogen-air mixture and combustion, special features of combustion stabilization, data on heat transfer and conditions of inlet and combustor interaction are discussed in this paper.

Author

A91-23100#

AN APPLICATION OF AUTOMATIC IGNITOR DDK-1 TO TURBOJET ENGINE TEST UNDER SIMULATED ALTITUDE

QIN ZHU (31st Research Institute, People's Republic of China) and XIAOHONG FAN (Design Institute of Aerospace, Chongqing, People's Republic of China) Journal of Propulsion Technology (ISSN 1001-4055), Dec. 1990, p. 56-63. In Chinese, with abstract

In this paper, an application of automatic ignitor DDK-1 in tests of a turbojet with an s-shape air inlet under simulated altitude condition are introduced. Automatic ignitor DDK-1 is useful for turbojet tests in simulated altitude conditions. Due to the use of automatic ignitor DDK-1, the process of engine test under high altitude simulation condition from igniting and starting to speeding up is completely automated. It is the first application of this ignitor to turbojet test under simulated altitude condition in China.

Author

A91-23106#

A COMPUTATIONAL INVESTIGATION OF DUMP COMBUSTOR **PERFORMANCE**

CHING-HUA WANG (National Taiwan University, Taipei, Republic of China) and YI CHANG Chinese Society of Mechanical Engineers, Journal (ISSN 0257-9731), vol. 11, Oct. 1990, p.

A finite difference method with SIMPLE algorithm and power-law scheme is employed in this paper to compute two-dimensional axial symmetric dump (sudden expansion) combustor flow field and its performance. The combustion model is single one-step

chemical reaction model based on Arrhenius and eddy-breakup concept with scalar fluctuations for premixed situation. The k-epsilon turbulence model is used to close the Reynolds stress term. The computational results show some interesting effects of combustor parameters (configuration geometry, operating conditions, and fuel injection mode) on its performance (i.e., total pressure recovery and combustion efficiency), and provide engineers with useful informations for combustor design. Author

A91-23634#

ON THE LEADING EDGE - COMBINING MATURITY AND ADVANCED TECHNOLOGY ON THE F404 TURBOFAN ENGINE S. F. POWEL (GE Aircraft Engines, Lynn, MA) ASME, Transactions, Journal of Engineering for Gas Turbines and Power (ISSN 0022-0825), vol. 113, Jan. 1991, p. 1-10. (ASME PAPER 90-GT-149) Copyright

The overall design concept of the F404 afterburning turbofan engine is reviewed together with some of the lessons learned from over 2 million flight hours in service. GE Aircraft Engines' derivative and growth plans for the F404 family are then reviewed including the 'Building Block' component development approach. Examples of advanced technologies under development for introduction into new F404 derivative engine models are presented in the areas of materials, digital and fiber optic controls systems, and vectoring exhaust nozzles. The design concept and details of the F404-GE-402, F412-GE-400, and other derivative engines under full-scale development are described. Studies for future growth variants and the benefits of the F404 derivative approach to development of afterburning engines in the 18,000-24,000 lb thrust class and nonafterburning engines in the 12,000-19,000 lb class are discussed. Author

A91-23635#

ENGINE PERFORMANCE MONITORING AND TROUBLESHOOTING TECHNIQUES FOR THE CF-18 AIRCRAFT

R. W. CUE (Canadian Forces, Ottawa, Canada) and D. E. MUIR (GasTOPS, Ltd., Ottawa, Canada) ASME, Transactions, Journal of Engineering for Gas Turbines and Power (ISSN 0022-0825), vol. 113, Jan. 1991, p. 11-19.

(ASME PAPER 90-GT-357) Copyright The F404-GE-400 engines of the CF-18 aircraft are the first engines of the Canadian Forces to be maintained under a formal on-condition maintenance program. In support of this program, the Canadian Forces are developing advanced troubleshooting and performance monitoring procedures based on information recorded by the aircraft In-flight Engine Condition Monitoring System (IECMS). A suite of computer programs has been developed that enables maintenance personnel to access, display, and analyze in-flight event data recorded by the IECMS and to track the performance of individual engines based on 'health indices' derived from the IECMS takeoff ground roll recordings. The new techniques have been under evaluation at each of the CF-18 main operating bases for a period of approximately 14 months. Results to date indicate that the IECMS recordings provide a considerable amount of information of benefit to engine technicians and maintenance Author planners.

A91-23636#

SNECMA M88 ENGINE DEVELOPMENT STATUS

J. C. CORDE (SNECMA, Paris, France)
 ASME, Transactions,
 Journal of Engineering for Gas Turbines and Power (ISSN 0022-0825), vol. 113, Jan. 1991, p. 20-24.
 (ASME PAPER 90-GT-118)
 Copyright
 The SNECMA M88-2 engine is a two-shaft, augmented

The SNECMA M88-2 engine is a two-shaft, augmented mixed-flow turbofan intended for the Rafale next-generation fighter. An account is presently given of the design rationale for its configurations and the results of tests conducted to date on such major components as the low and high pressure compressors, the combustor, the high-pressure turbine, and the afterburner, as well as the engine's core components and the entire engine. Good general dynamic behavior and transitory response have been demonstrated, with excellent compressor stability and vibration

behavior in all rotor blades and good thermal behavior of hot-section components. Both engine-mass and development-cost targets have been met.

O.C.

A91-23637#

EJ200 - THE ENGINE FOR THE NEW EUROPEAN FIGHTER AIRCRAFT

J. R. LANE and J. BEHENNA (Rolls-Royce, PLC, Filton, England) ASME, Transactions, Journal of Engineering for Gas Turbines and Power (ISSN 0022-0825), vol. 113, Jan. 1991, p. 25-32. (ASME PAPER 90-GT-119) Copyright

The European Fighter Aircraft will be powered by two EJ200 engines of 20,000-lb thrust class designed to achieve the greatest possible compactness and lightness consistent with the need for a turbine entry temperature 200 C higher than current fighter engines, without compromising service life. The engine is of highly modular design, and has minimized turbomechanical structure weight and complexity through the use of low aspect ratio airfolis in both compressor and turbine blading. Each of the two spools operates with only a single turbine stage, and it is expected that carbon/carbon composites and ceramics will be employed in the hot section components as they become available.

191-23638#

ADVANCED TECHNOLOGY PROGRAMS FOR SMALL TURBOSHAFT ENGINES - PAST, PRESENT, FUTURE

H. LINDSAY (GE Aircraft Engines, Lynn, MA) and E. T. JOHNSON ASME, Transactions, Journal of Engineering for Gas Turbines and Power (ISSN 0022-0825), vol. 113, Jan. 1991, p. 33-39. Research sponsored by the U.S. Army. (ASME PAPER 90-GT-267) Copyright

A 15-year development history is presented for the U.S. Army Aviation Applied Technology Directorate's efforts to advance the state-of-the-art in small turboshaft engines, encompassing the 1500 shp GE12 technology demonstrator for the 1700 engine and the 5000 shp GE27 Modern Technology Demonstrator Engine. Attention is given to ongoing advanced technology component development programs and the performance goals thus far envisioned for the next generation of advanced gas generators applicable to turboshaft propulsion systems. Predictions are made for the propulsion system advancements required by the NASA/DOD Integrated High-Performance Turbine Engine Technology initiative through the year 2000.

A91-23642*# McDonnell Aircraft Co., Saint Louis, MO. STOVL HOT GAS INGESTION CONTROL TECHNOLOGY

K. C. AMUEDO, B. R. WILLIAMS, J. D. FLOOD (McDonnell Aircraft Co., Saint Louis, MO), and A. L. JOHNS (NASA, Lewis Research Center, Cleveland, OH) ASME, Transactions, Journal of Engineering for Gas Turbines and Power (ISSN 0022-0825), vol. 113, Jan. 1991, p. 68-74.

(ASME PAPER 89-GT-323) Copyright

A comprehensive wind tunnel test program was conducted to evaluate control of Hot Gas Ingestion (HGI) on a 9.2 percent scale model of the McDonnell Aircraft Company model 279.3C advanced Short Takeoff and Vertical Landing (STOVL) configuration. The test was conducted in the NASA-Lewis Research Center 9 ft by 15 ft Low Speed Wind Tunnel during the summer of 1987. Initial tests defined baseline HGI levels as determined by engine face temperature rise and temperature distortion. Subsequent testing was conducted to evaluate HGI control parametrically using Lift Improvement Devices (LIDs), forward nozzle splay angle, a combination of LIDs and forward nozzle splay angle, and main inlet blocking. The results from this test program demonstrate that HGI can be effectively controlled and that HGI is not a barrier to STOVL aircraft development. Author

A91-23645#

SIMULATION OF AIRCRAFT GAS TURBINE ENGINES

I. H. ISMAIL and F. S. BHINDER (Hatfield Polytechnic, England) ASME, Transactions, Journal of Engineering for Gas Turbines and Power (ISSN 0022-0825), vol. 113, Jan. 1991, p. 95-99. refs (ASME PAPER 90-GT-342) Copyright

07 AIRCRAFT PROPULSION AND POWER

The present FORTRAN 77 aircraft gas turbine simulation code was developed for IBM-compatible microcomputers and employs a high degree of modularity. Complete engine steady-state operation is modeled by means of either analytical equations or detailed performance characteristics of individual components. These components (air intake, compressor, combustor, turbine, and nozzle) can be variously assembled to represent different engine configurations, and will therefore be especially useful for exploratory, initial design-phase studies.

A91-23646#

DETERMINATION OF CYCLE CONFIGURATION OF GAS TURBINES AND AIRCRAFT ENGINES BY AN OPTIMIZATION **PROCEDURE**

Y. TSUJIKAWA and M. NAGAOKA (Osaka Prefecture, University, ASME, Transactions, Journal of Engineering for Sakai, Japan) Gas Turbines and Power (ISSN 0022-0825), vol. 113, Jan. 1991, p. 100-105. refs

(ASME PAPER 90-GT-115) Copyright

This paper is devoted to the analyses and optimization of simple and sophisticated cycles, particularly for various gas turbine engines and aero-engines (including the scramjet engine) to achieve maximum performance. The optimization of such criteria as thermal efficiency, specific output, and total performance for gas turbine engines, and overall efficiency, nondimensional thrust, and specific impulse for aero-engines has been performed by the optimization procedure with the multiplier method. Comparison of results with analytical solutions establishes the validity of the optimization procedure. Author

A91-23647#

A NEW METHOD OF PREDICTING THE PERFORMANCE OF **GAS TURBINE ENGINES**

YONGHONG WANG (Shanghai Jiao Tong University, People's Republic of China) ASME, Transactions, Journal of Engineering for Gas Turbines and Power (ISSN 0022-0825), vol. 113, Jan. 1991, p. 106-111.

(ASME PAPER 90-GT-337) Copyright

This paper points out that the turbine performance computation method used widely at present in solving the performance of gas turbine engines is a numerically unstable algorithm. Therefore a new method, namely an inverse algorithm, is proposed. This paper then further proposes a new mathematical model for solving the stable performance of gas turbine engines. It has the features of not only being suitable for an inverse algorithm for turbine performance, but also having fewer dimensions than existing models. It has the advantages of high accuracy, rapid convergence, good stability and fewer computations. It has been fully proven that the accuracy of the new model is much greater than that of the common model for gas turbine engines. Additionally, the time consumed for solving the new model is approximately 1/4 to about 1/10 of that for the common model. **Author**

A91-23648#

AN ALGORITHM AND CRITERIA FOR COMPRESSOR CHARACTERISTICS REAL TIME MODELING AND **APPROXIMATION**

A. M. EL-GAMMAL (Beograd, Univerzitet, Belgrade, Yugoslavia) ASME, Transactions, Journal of Engineering for Gas Turbines and Power (ISSN 0022-0825), vol. 113, Jan. 1991, p. 112-118. Research sponsored by the Egyptian Air Force. refs (ASME PAPER 90-GT-336) Copyright

Numerous problems are encountered in realizing an adequate real time model for an aircraft engine. The purpose of this article is to propose a systematic approach for modeling and approximating the characteristics of an engine or engine component parts, and to apply this approach to the Viper compressor (VC) characteristics. The proposed approach introduces a set of quantitative model-performance measures. Monitoring these measures makes it possible to take care of the multiple objectives of the model simultaneously and individually, and to attach a guarantee level to the model behavior. A set of (66) models are

considered, from which the adequate VC model for real time (RT) simulation purposes is determined.

N91-15174*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

OPTICAL MEASUREMENT OF UNDUCTED FAN FLUTTER

ANATOLE P. KURKOV and ORAL MEHMED 1990 Prepared for presentation at the 36th International Gas Turbine and Aeroengine Congress and Exposition, Orlando, FL, 3-6 Jun. 1991; sponsored in part by the American Society of Mechanical Engineers

(NASA-TM-103285; E-5741; NAS 1.15:103285) Avail: NTIS HC/MF A03 CSCL 21/5

A nonintrusive optical method is described for flutter vibrations in unducted fan or propeller rotors and provides detailed spectral results for two flutter modes of a scaled unducted fan. The measurements were obtained in a high-speed wind tunnel. A single-rotor and a dual-rotor counterrotating configuration of the model were tested; however, only the forward rotor of the counterrotating configuration fluttered. Conventional strain gages were used to obtain flutter frequency; optical data provided complete phase results and an indication of the flutter mode shape through the ratio of the leading- to trailing-edge flutter amplitudes near the blade tip. In the transonic regime exhibited some features that are usually associated with nonlinear vibrations. Experimental mode shape and frequencies were compared with calculated values that included centrifugal effects.

N91-16020# Aeronautical Research Labs., Melbourne (Australia).

IFDIS: AN EXPERT SYSTEM FOR DIAGNOSIS OF FAILURES IN JET AIRCRAFT ENGINES

M. D. LARKIN (Deakin Univ., Australia), D. A. FRITH, and A. S. FINDLAY Jan. 1987 45 p (AD-A227757; ARL-PROP-TM-439; DODA-AR-004-515) Avail: NTIS HC/MF A03

IFDIS (Interactive Fault Diagnosis and Isolation System) is being developed to aid in the F404 jet engines that are installed in the F/A-18 fighters. Existing documentation supporting troubleshooting for these engines is inflexible in the level of sophistication expected of the user and it does not explicitly use the reasoning with uncertain information which is inherent in human troubleshooting. Data, which is required for troubleshooting the F404, is currently or potentially available for computer processing from a number of sources. IFDIS will assist maintenance personnel by providing on-line access to relevant information and will perform much of the tedious interpretation of the available data. The expert knowledge embodied on some of the existing maintenance manuals has been re-expressed in a format that serves as the basis for the knowledge-base for an expert system. Expert systems techniques have been employed because they offer benefits of perspicuity, they can be developed incrementally and can cope with imprecise data. IFDIS is currently based on EMYCIN but will be reimplemented using a commercial expert system shell in the near future. Author

N91-16021*# General Motors Corp., Indianapolis, IN. Gas Turbine

ADVANCED TURBINE TECHNOLOGY APPLICATIONS PROJECT (ATTAP) Final Annual Report, Jan. - Dec. 1989 2 Jul. 1990 137 p

(Contract DEN3-336; DE-Al01-85CE-50111)

(NASA-CR-187039; NAS 1.26:187039; EDR-14585; DOE/NASA/0336-2) Avail: NTIS HC/MF A07 CSCL 21/5

Advanced Turbine Technology Application Project (ATTAP) activities during the past year were highlighted by test-bed engine design and development activities; ceramic component design; materials and component characterization; ceramic component process development and fabrication; component rig testing; and test-bed engine fabrication and testing. Although substantial technical challenges remain, all areas exhibited progress. Test-bed

engine design and development activity included engine mechanical

design, power turbine flow-path design and mechanical layout,

and engine system integration aimed at upgrading the AGT-5 from a 1038 C metal engine to a durable 1371 C structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities include: the ceramic combustor body, the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, the ceramic/metal power turbine static structure, and the ceramic power turbine rotors. The materials and component characterization efforts included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities are being conducted for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig testing activities include the development of the necessary test procedures and conduction of rig testing of the ceramic components and assemblies. Four-hundred hours of hot gasifier rig test time were accumulated with turbine inlet temperatures exceeding 1204 C at 100 percent design gasifier speed. A total of 348.6 test hours were achieved on a single ceramic rotor without failure and a second ceramic rotor was retired in engine-ready condition at 364.9 test hours. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that will permit the achievement of program performance and durability goals. The designated durability engine accumulated 359.3 hour of test time, 226.9 of which were on the General Motors gas turbine durability schedule. Author

N91-16022# Karlsruhe Univ. (Germany, F.R.). Fakultaet fuer Maschinenbau.

EXPERIMENTAL AND THEORETICAL EXAMINATIONS OF FILM COOLING OF GAS TURBINE BLADES Ph.D. Thesis [EXPERIMENTELLE UND THEORETISCHE UNTERSUCHUNGEN ZUR FILMKUEHLUNG VON GASTURBINENSCHAUFELN]

WOLFGANG HAAS 1989 245 p In GERMAN (ETN-91-98554) Avail: NTIS HC/MF A11

Film cooling measurements are carried out in a grid channel with relatively low velocities to obtain data for the development and the safeguarding of calculation models. The influence of the density ratio, the Reynolds number and the turbulence degree on the cooling efficiency, and the heat transfer number was investigated. The formation and the development of velocity and temperature profiles were also investigated in the case of a plane blade grid. A calculation process based on a numerical solution of the stationary two dimensional conservation equations for mass, impulse, and energy in the boundary shape was developed which characterizes the velocity and temperature fields at turbine blades.

N91-16023# Loughborough Univ. of Technology (England). Dept. of Transport Technology.

JET ENGINE PERFORMANCE ESTIMATION FROM MINIMAL INPUT DATA M.S. Thesis

MARK PITT 27 Nov. 1990 234 p

(ETN-91-98582) Copyright Avail: NTIS HC/MF A11

From a photograph of a subject aircraft for which drag characteristics can be estimated, determination of an engine cycle which matches the engine thrust to the aircraft drag characteristics is attempted. A database collating the facets of engine design important to the analysis task is established. Computer routines are used to assist in the analysis. The expected output of the assessment methodology is defined. The performance of the method is critically examined to determine its strengths and weaknesses. The assessment was found to be highly sensitive to the values of total pressure at the engine inlet and as calulated at the nozzle exit.

N91-16024# Loughborough Univ. of Technology (England). Dept. of Electrical and Electronic Engineering.
AN INTRODUCTION TO MODERN AERO-ENGINE CONTROL DESIGN M.S. Thesis

B. A. MOORE 27 Nov. 1990 104 p (ETN-91-98583) Copyright Avail: NTIS HC/MF A06

The fundamental requirements of aeroengine controllers are discussed. Using the example of a remotely piloted vehicle engine controller, a simple in service system is analyzed from the control engineer view. The relationship between theory and practice is discussed. The fundamental concepts underlying a unique research control system for a military gas turbine power plant are examined. The complexity of the technique needed for safe and efficient control of a modern jet engine is briefly discussed. The idea of employing multivariate techniques in a modern aeroengine controller is considered. A simple engine controller design exercise based on a military aeroengine is undertaken, using a modern control compensator design technique.

80

AIRCRAFT STABILITY AND CONTROL

Includes aircraft handling qualities; piloting; flight controls; and autopilots.

A91-20610

DISCUS - A FAILURE-TOLERANT FBW/FBL-EXPERIMENTAL SYSTEM [DISCUS - EIN FEHLERTOLERANTES FBW/FBL-EXPERIMENTALSYSTEM]

GUENTER MANSFELD, KLAUS BENDER, and KLAUS-DIETER HOLLE (DLR, Institut fuer Flugfuehrung, Brunswick, Federal Republic of Germany) DLR-Nachrichten (ISSN 0937-0420), Nov. 1990, p. 6-11. In German. Copyright

The DISCUS (Digital Self-healing Control for Upgraded Safety) system for helicopters is discussed. DISCUS offers one-fail-op capability, flexible hardware structure, modular construction capability, high performance due to multiprocessor capability, and adaptability to higher computer languages. The DISCUS computer architecture and its fly-by-wire/fly-by-night system are examined. The DISCUS yaw control concept and flight measurement technology are described.

A91-20991

FLIGHT-TEST-DERIVED STABILITY DERIVATIVES FOR THE ADVANCED TECHNOLOGY TACTICAL TRANSPORT

ROBERT G. HOEY IN: Society of Flight Test Engineers, Annual Symposium, 20th, Reno, NV, Sept. 18-21, 1989, Proceedings. Lancaster, CA, Society of Flight Test Engineers, 1989, p. 3.4-1 to 3.4-10.

Copyright

A 62 percent scale Advanced Technology Tactical Transport (ATTT) proof of concept vehicle was constructed and flight tested under a contract to DARPA. This aircraft was a twin turboprop, tandem wing design with large flaps incorporated on both lifting surfaces for STOL performance, and it was constructed with all-composite materials. In support of the flight test program, a simple parameter identification scheme was developed for a personal computer based on the analog matching concept. Relatively simple, linear, perturbation response models (two degrees of freedom in pitch, three degrees of freedom in roll/yaw) were programmed on the PC and used to identify primary stability and control derivatives from flight test maneuvers of the scale ATTT. The lateral-directional response model was also utilized to establish preliminary gain requirements for a yaw damper in the power approach configuration. R.E.P.

A91-20992

ESTIMATION OF AERODYNAMIC AND MODE PARAMETERS OF AIRCRAFT'S OPEN AND CLOSED-LOOP SYSTEM

CHANG-YE QUAN (China Flight Test Research Centre, Xian, People's Republic of China) IN: Society of Flight Test Engineers, Annual Symposium, 20th, Reno, NV, Sept. 18-21, 1989,

Proceedings. Lancaster, CA, Society of Flight Test Engineers, 1989, p. 3.5-1 to 3.5-8. refs

Copyright

This paper describes flight test techniques for estimating aerodynamic derivatives and mode parameters of aircraft with automatic flight control systems. These techniques include ground test, control input, data acquisition systems, and the method for processing flight testing data, the maximum likelihood algorithm. Mathematical models used in parameter estimation are given. They include longitudinal airframe and equivalent airframe models. The estimation results of airframe and equivalent airframe aerodynamic derivatives and mode parameters for eleven maneuvers are also given and a brief analysis is done. The test results show that the short-period mode characteristics of aircraft with automatic flight control systems are improved and that it is possible to use equivalent airframe models to estimate equivalent aerodynamic derivatives and mode parameters of aircraft with automatic flight control systems. Author

A91-21004 AM-X HIGH INCIDENCE TRIALS, DEVELOPMENT AND RESULTS

B. MARCHETTO and G. MENSO (Aeritalia S.p.A., Turin, Italy) IN: Society of Flight Test Engineers, Annual Symposium, 20th, Reno, NV, Sept. 18-21, 1989, Proceedings. Lancaster, CA, Society of Flight Test Engineers, 1989, p. 6.7-1 to 6.7-10. Previously announced in STAR as N90-26016.

Copyright

The activities carried out to investigate the high angle of attack/spin characteristics of the AM-X are described. Vertical wind tunnel and rotary balance facilities were used to collect all the information on aircraft behavior at stall, beyond stall, and in developed spin required to efficiently approach the flight test activity. A special training of the ground monitoring team and adequate use of the telemetry facilities allowed the efficient employment of flight time. Analysis of the test results allowed validation and identification of the aerodynamics model. Flight controls modifications useful to improve the aircraft behavior at high incidence are suggested.

A91-21230

AN.ANALYSIS OF THE SU-27 FLIGHT DEMONSTRATION AT THE 1989 PARIS AIR SHOW

ANDREW M. SKOW (Eidetics International, Inc., Torrance, CA) SAE, Aerospace Atlantic Meeting, Dayton, OH, Apr. 23-26, 1990.

(SAE PAPER 901001) Copyright

From an initial position of 1000 ft above ground level and 220 knots indicated airspeed, Viktor Pougachev flew an Su-27 fighter at the 1989 Paris Air Show into a rapid nose-up maneuver which reached a peak pitch attitude of 110-120 deg. Attention is presently given to: (1) the potential tactical value of this 'cobra' maneuver; (2) the possibility that other aircraft in Western air forces may be able to duplicate the maneuver; and (3) the design characteristics that are required for an advanced fighter aircraft to perform this maneuver. Simulation experiments have been conducted with all U.S. fighters; only the F-16 has been able to demonstrate sufficient nose-up pitch-control power for the cobra maneuver, but weak lateral-directional stability and pitch-down control power will preclude successful duplication.

A91-21231

AIR-TO-GROUND ATTACK FIGHTER IMPROVEMENTS THROUGH MULTI-FUNCTION NOZZLES

PAUL W. HERRICK (United Technologies Corp., Pratt and Whitney Group, West Palm Beach, FL) SAE, Aerospace Atlantic Meeting, Dayton, OH, Apr. 23-26, 1990. 11 p. refs (SAE PAPER 901002) Copyright

The benefits of pitch/yaw thrust vectoring and/or thrust reversing multi-function nozzles (MFN) for fighter type aircraft have been identified relative to the air-to-air mission in several previous papers. This paper will point out those previously noted payoffs which also apply to air-to-ground attack fighters. It will also present

a detailed description of air-to-ground unique multi-function nozzle benefits. Specific treatment will be given to close air support, battlefield interdiction, suppression of enemy air defenses, and deep strike missions. MFN contributions to air-to-ground survivability and effectiveness will be emphasized relative to the critical aspects of basing, ingress, target attack, self defense, egress and recovery. Actual air-to-ground attack historical data will be employed as it is applicable to this discussion.

A91-21232

RELATIONSHIPS BETWEEN AGILITY METRICS AND FLYING QUALITIES

DAVID R. RILEY and MARK H. DRAJESKE (McDonnell Aircraft Co., Saint Louis, MO) SAE, Aerospace Atlantic Meeting, Dayton, OH, Apr. 23-26, 1990. 14 p. refs (SAE PAPER 901003) Copyright

Various agility measures of merit, called metrics, have been proposed to define and measure aircraft agility. The proposed agility metrics are intended to offer designers new insight into aircraft maneuverability and controllability. This paper discusses the relationships between these new agility metrics and traditional flying qualities parameters for the lateral and longitudinal axes. In general, traditional flying qualities parameters are found to be a significant part of describing an aircraft's agility. Flying qualities considerations also help to explain trends in agility metrics that are otherwise unexplainable.

A91-21233 MEASURES OF MERIT FOR AIRCRAFT DYNAMIC MANEUVERING

JURI KALVISTE (Northrop Corp., Aircraft Div., Hawthorne, CA) SAE, Aerospace Atlantic Meeting, Dayton, OH, Apr. 23-26, 1990. 13 p.

(SAE PAPER 901005) Copyright

New parameters which characterize aircraft dynamic maneuvering performance in air-to-air combat have been developed. The parameters are functions of both the time to perform the task and the spatial aspects of the maneuver. They have been developed for a point-and-shoot engagement and roll reversal maneuver, although the procedure is sufficiently general that it can be applied to most combat maneuvers. The parameters can be used to predict the outcome of air-to-air engagements and the time advantage that one aircraft has against another aircraft.

A91-21249

VERIFICATION OF FLIGHT CRITICAL SYSTEMS

EMRAY GOOSSEN (Honeywell, Inc., Defense Avionics Systems Div., Albuquerque, NM) SAE, Aerospace Atlantic Meeting, Dayton, OH, Apr. 23-26, 1990. 9 p.

(SAE PAPER 901051) Copyright

Increasingly widespread use of ever-more-complex fly-by-wire aircraft controls exacerbates the safety-assurance problems faced by flight control system designers, which are already severe due to the compromising of system testing by flight scheduling pressures. Attention is presently given to a concept which promises to improve costs, scheduling, and safety in future fly-by-wire system development; the heart of the concept is a fully-automated integration, verification, and validation (IVV) capability. A proof-of-concept automated IVV demonstration conducted as part of the X-31 program has yielded results which are presently given.

A91-22201#

FLIGHT MANAGEMENT/GUIDANCE SYSTEM IN AIR TRANSPORT USING AIRBUS A320 AS AN EXAMPLE [DAS FLIGHT MANAGEMENT/GUIDANCE SYSTEM IN DER LUFTFAHRT AM BEISPIEL DES AIRBUS A320]

H. NEUMANN (Deutsche Lufthansa AG, Cologne, Federal Republic of Germany) Ortung und Navigation (ISSN 0474-7550), no. 3, 1990, p. 316-324. In German and English.

The Flight Management/Guidance system of the Airbus 320 is

outlined and graphically illustrated. Comparisons are made with standard systems in aircraft navigation systems. The development of the Airbus 320 system is briefly reviewed.

C.D.

A91-22251#

CONTROL LAW STUDY OF AIRCRAFT MANEUVERS AT HIGH ATTACK ANGLE

XIONG HE and HAO GAO (Northwestern Polytechnical University, Xian, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Oct. 1990, p. B411-B419. In Chinese, with abstract in English. refs

Based on bifurcation analysis and catastrophe theory, a novel theoretical method for forecasting jump bifurcation phenomena in control space is established. By studying singular lines in the bifurcation surfaces, critical values of control surfaces for avoiding rapid-roll divergence and extending the rapid-roll maneuver scope are obtained. The control law for bringing aircraft into stall and spin and returning them to stable and controllable states at low angles of attack is worked out.

A91-22265#

AIR-TO-GROUND ATTACK AND INTEGRATED FLIGHT/FIRE CONTROL

LEJIN HUANG and LINCHANG ZHANG (Beijing University of Aeronautics and Astronautics, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Oct. 1990, p. B503-B506. In Chinese, with abstract in English. refs

It is demonstrated that the air-to-ground attack plays an important role in war. Taking the air-to-ground attack as the application background, the paper shows the effect of Integrated Flight/Fire Control (IFFC) on enhancement of the mission efficiency of military aircraft. The evolution, technical foundation, and development trend of IFFC are summarized. Finally, some suggestions on the development of IFFC in China are given.

Author

A91-22352#

A CALCULATING METHOD OF THE KILL PROBABILITY ATTACK AREA FOR AAM

TINGJIE LI, RUNQUAN LIU, CHAOZHI WANG (Beijing University of Aeronautics and Astronautics, People's Republic of China), GUXIANG ZHU, and LIZHEN WANG (Ministry of Aeronautics and Astronautics, 014 Center, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, July 1990, p. A315-A322. In Chinese, with abstract in English.

This paper provides a calculating method which can be used in calculation of the kill-probability attack area for every air-to-air missile (AAM). First, the attack area of the AAM and the kill probability of every characteristic point are obtained by combining trajectory and kill-probability calculations. Then the coordinates of a fire point relative to the standard kill probability value are found in terms of a standardization method. Equivalent kill probability curve equations are then formulated by means of a curve-fitting method.

Author

A91-22371#

PREDICTIVE CONTROL OF OPTIMAL PATH TERRAIN FOLLOWING SYSTEM

SHUNDA XIAO (Northwestern Polytechnical University, Xian, People's Republic of China) and BENGANG CHEN (Leihua Electronic Technology Research Institute of China, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Aug. 1990, p. B343-B347. In Chinese, with abstract in English. refs

An output prediction algorithm is applied to the design of a predictive controller for an optimal path terrain-following system. The tracking error of the path is thereby simply and efficiently reduced to a small degree, and the computing time for the optimal path is also greatly reduced. All of this makes the real-time processing of the optimal path terrain-following system look promising.

S.A.V.

A91-22950*# Sverdrup Technology, Inc., Cleveland, OH. INTEGRATED FLIGHT/PROPULSION CONTROL SYSTEM DESIGN BASED ON A CENTRALIZED APPROACH

SANJAY GARG, DUANE L. MATTERN (Sverdrup Technology, Inc., Cleveland, OH), and RANDY E. BULLARD (NASA, Lewis Research Center, Cleveland, OH) Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 14, Jan.-Feb. 1991, p. 107-116. Previously cited in issue 23, p. 3620, Accession no. A89-52611. refs

Copyright

A91-22959#

NEW TECHNIQUE FOR AIRCRAFT FLIGHT CONTROL RECONFIGURATION

MARCELLO R. NAPOLITANO and ROBERT L. SWAIM (Oklahoma State University, Stillwater) Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 14, Jan.-Feb. 1991, p. 184-190. Previously cited in issue 23, p. 3616, Accession no. A89-52527. refs
Copyright

A91-22961*# California Univ., Davis. TECHNIQUE FOR PREDICTING LONGITUDINAL

PILOT-INDUCED OSCILLATIONS

R. A. HESS (California, University, Davis) and R. M. KALTEIS Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 14, Jan.-Feb. 1991, p. 198-204. Previously cited in issue 23, p. 3620, Accession no. A89-52609. refs (Contract NCC2-490)

A91-22962*# National Aeronautics and Space Administration. Hugh L. Dryden Flight Research Facility, Edwards, CA. NATIONAL AEROSPACE PLANE LONGITUDINAL LONG-PERIOD DYNAMICS

DONALD T. BERRY (NASA, Flight Research Center, Edwards, CA) Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 14, Jan.-Feb. 1991, p. 205, 206. Previously cited in issue 21, p. 3495, Accession no. A88-50601. Copyright

A91-23641#

INTEGRATED PROPULSION SYSTEM REQUIREMENTS FOR CONTROL OF STOVL AIRCRAFT

G. W. GALLOPS, C. F. WEISS, and R. A. CARLTON (Pratt and Whitney Group, West Palm Beach, FL) ASME, Transactions, Journal of Engineering for Gas Turbines and Power (ISSN 0022-0825), vol. 113, Jan. 1991, p. 60-67. refs (ASME PAPER 90-GT-364) Copyright

This paper describes an evaluation of propulsion system requirements and capability for a Short Take-Off/Vertical Landing (STOVL) aircraft employing modulation of the propulsive lift distribution for pitch and roll control in hover. The effects of propulsive lift nozzle configuration and propulsion system dynamic response were evaluated using a combined system simulation consisting of a six degree of freedom aircraft model, engine model, and integrated flight/propulsion control. The response and stability of propulsive lift control are compared with control by reaction jets supplied by engine bleed. Aircraft performance is demonstrated in simulated STOVL maneuvers using a dynamic pilot model. The conclusion of this study is that propulsive lift control of aircraft pitch and roll is feasible and can provide as much as a 10 percent increase in engine lift rating over systems that employ reaction control alone. The dynamic response of practical propulsive lift configurations, however, is less than that of reaction control configurations, which must be offset through integration of the propulsion system and its control.

A91-23743#

INTEGRATED AEROELASTIC CONTROL OPTIMIZATION

T. N. DRACOPOULOS and H. OZ (Ohio State University, Columbus) IN: Dynamics and control of large structures;

Proceedings of the Seventh VPI&SU Symposium, Blacksburg, VA, May 8-10, 1989. Blacksburg, VA, Virginia Polytechnic Institute and State University, 1989, p. 361-378. refs

A new design methodology is developed and demonstrated for the aeroelastic control of composite lifting surfaces. This design is formulated as an optimization problem in connection with determining the laminate design and the control law which maximizes the critical aeroelastic (flutter or divergence) speed of an actively controlled composite lifting surface without excessive expenditure of control energy. The integrated aeroelastic control optimization methodology is formulated and illustrated for composite lifting surfaces simulated by rectangular symmetric cantilevered composite plates with structural and control constraints. The formulation includes the Rayleigh-Ritz energy method, a two-dimensional incompressible unsteady aerodynamic theory, parameter optimization, and optimum control design techniques. This design gave results that exhibited 102 percent higher critical aeroelastic speed with 294.4 percent lower control cost compared to designs obtained by a nonintegrated design procedure.

A91-24113 AUTOMATIC FLIGHT CONTROL SYSTEMS

DONALD MCLEAN (Southampton, University, England) Englewood Cliffs, NJ, Prentice Hall, 1990, 606 p. refs Copyright

The present introductory work on automatic flight control systems proceeds from a brief development history for this technology to the equations of motion for an aircraft within the stability axis system and for steady maneuvering flight, the nature of the most important stability derivatives, and such aspects of aircraft stability and dynamics as the phugoid and lateral motion transfer functions and the two- and three-degree-of-freedom approximations. Attention is also given to the dynamic effects of structural flexibility on aircraft motion, disturbances affecting aircraft motion, flying and handling qualities, control system design methods, stability-augmentation systems, helicopter flight controls, and adaptive flight control systems.

N91-15175 Maryland Univ., College Park.
HIGHER HARMONIC CONTROL ANALYSIS FOR VIBRATION
REDUCTION OF HELICOPTER ROTOR SYSTEMS Ph.D. Thesis
KHANH QUOC NGUYEN 1989 258 p
Avail: Univ. Microfilms Order No. DA9021560

An advanced higher harmonic control (HHC) analysis was developed and applied to investigate its effect on vibration reduction levels, blade and control system fatigue loads, rotor performance, and power requirements of servo-actuators. The analysis is based on a finite element method in space and time. A nonlinear time domain unsteady aerodynamic model, based on the indicial response formulation, is used to calculate the airloads. The rotor induced inflow is computed during a free wake model. The vehicle trim controls and blade steady responses are solved as one coupled solution using a modified Newton method. A linear frequency-domain quasi-steady transfer matrix is used to relate the harmonics of the vibratory hub loads to the harmonics of the HHC inputs. Optimal HHC is calculated from the minimization of the vibratory hub loads expressed in terms of a quadratic performance index. Predicted vibratory hub shears are correlated with wind tunnel data. Due to the applied HHC, the blade torsional stresses and control loads are increased substantially. For flight conditions where the blades are stalled considerably, the HHC input-output model is quite non-linear. The fixed-gain controller performs poorly for such flight conditions. It was determined that a soft-inplane hingeless rotor requires less actuator power at high speeds than an articulated rotor, and a stiff-inplane hingeless rotor generally requires more actuator power than an articulated or a soft-inplane hingeless rotor. Parametric studies for a hingeless rotor operating in a transition flight regime and for an articulated rotor operating at the level-flight boundary indicate that blade parameters including flap, lag, torsion stiffness distributions, linear pretwist, chordwise offset of center-of-mass from elastic axis, and chordwise offset of elastic axis from aerodynamic center all have some influences on the actuator power requirements.

Dissert. Abstr.

N91-15176 Maryland Univ., College Park. DAMPING ESTIMATION IN HELICOPTER ROTOR STABILITY TESTING Ph.D. Thesis

FREDERICK ABAYOMI TASKER 1990 162 p Avail: Univ. Microfilms Order No. DA9031001

Estimating the damping of helicopter rotor blade modes is complicated by rotor harmonics, high measurement noise, close modes, and the difficulty of exciting modes in the rotating environment. Methods are developed and evaluated for obtaining improved estimates of modal damping from rotor stability test data. Two transient analysis methods, Moving-Block analysis and the Sparse Time Domain (STD) method are studied. Two refinements in Moving-Block analysis are introduced: High resolution recursive spectral analysis and a recursive frequency domain interpretation for the Hanning window to reduce leakage from close modes. Singular Value Decomposition is applied to the STD method and a procedure to calculate only the structural modes from the system matrix is developed. The techniques are evaluated for noisy data, close damped and undamped modes, for low and high damping levels. Subspace methods substantially improve the time domain estimation for noisy data, but require higher computation time. A method is developed that retains the low variance estimation property of the subspace methods, but is comparable in computation cost to baseline methods. Its performance is evaluated for multi-output and single out-put implementations and compared to the standard STD method. Equivalent Damping is estimated using modified versions of the Moving-Block analysis technique and the STD method from numerical simulations. Effects of rotor harmonics and noise on the performance of these techniques are evaluated. Dissert. Abstr.

N91-15177# Naval Postgraduate School, Monterey, CA. Dept. of Aeronautics and Astronautics.

APPLICATION OF CHAOS METHODS TO HELICOPTER VIBRATION REDUCTION USING HIGHER HARMONIC CONTROL Ph.D. Thesis

MARTINUS M. SARIGUL-KLIJN Mar. 1990 202 p (AD-A226736) Avail: NTIS HC/MF A10 CSCL 01/1

Chaos is used to understand complex nonlinear dynamics. The geometric and topological methods of Chaos theory are applied, for the first time, to the study of flight test data. Data analyzed is from the OH-6A Higher Harmonic Control (HHC) test aircraft. HHC is an active control system used to suppress helicopter vibrations. Some of the first practical applications of Chaos methods are demonstrated with the HHC data. Although helicopter vibrations are mostly periodic, evidence of chaos was found. The presence of a strange attractor was shown by computing a positive Lyapunov exponent and computing a non integer fractal correlation dimension. A broad band Fourier spectrum and a well defined attractor in pseudo phase space are observed. A limit exists to HHC vibration reduction due to the presence of chaos. A new technique based on a relationship between the Chaos methods (the Poincare section and Van der Pol plane) and the vibration amplitude and phase was discovered. This newly introduced technique results in the following: (1) it gives the limits of HHC vibration reduction; (2) it allows rapid determination of best phase for a HHC controller; (3) it determines the minimum HHC controller requirement for any helicopter from a few minutes duration of flight test data; and (4) it shows that the HHC controller transfer matrix is linear and repeatable when the vibrations are defined in the Rotor Time Domain and that the matrix is nonlinear and nonrepeatable when the vibrations are defined. GRA

N91-15178# Aeronautical Research Labs., Melbourne (Australia).
FLIGHT FLUTTER TEST TECHNIQUES AT ARL Aircraft

Structures Technical Memorandum
P. A. FARRELL and T. G. RYALL Aug. 1990 26 p

(AD-A227754; ARL-STRUC-TM-569; DODA-AR-006-121) Avail: NTIS HC/MF A03 CSCL 01/1

Good design of an aircraft ensures that its flutter speed lies beyond its maximum operating speed; however, modification of the aircraft, such as the attachment of external stores to the wings, can lower the flutter speed significantly. In this case it may be necessary to determine experimentally the new flutter speed by means of a series of flight flutter trials. During such trails the aircraft is excited in flight and the measured response analysed to obtain estimates of the structural natural frequencies and damping ratios. Some of the methods are described which were used in Australia to excite aircraft in flight flutter trials, together with the analytical techniques used to reduce the resulting data. Typical results from trials are presented.

Sandia National Labs., Albuquerque, NM. Aircraft N91-15179# Compatibility Div.

AIRCRAFT COMPATIBILITY TASKS REQUIRED FOR THE RELEASE OF AN AIRCRAFT COMPATIBILITY CONTROL **DRAWING (ACCD)**

GARTH L. MAXAM Nov. 1990 17 p (Contract DE-AC04-76DP-00789)

(DE91-004698; SAND-90-2373) Avail: NTIS HC/MF A03
The Aircraft Compatibility Division at Sandia National
Laboratories has the responsibility to assure that the aircraft that have been designed to carry and release nuclear gravity bombs are indeed compatible with the bombs. Division personnel work with Air Force and Navy personnel and their contractors to make sure that bomb electrical, mechanical, and aerodynamic requirements are fully understood. Once an aircraft has been designed, a series of tests and analyses are run on the aircraft/bomb nuclear weapon system and descriptive weapon system documentation is produced. At the conclusion of an aircraft compatibility program, a recommendation is made to add the aircraft to the nuclear gravity bomb Aircraft Compatibility Control Drawing (ACCD).

N91-15180*# Boeing Aerospace Co., Seattle, WA. INTEGRATED CONTROL-STRUCTURE DESIGN Final Report K. SCOTT HUNZIKER, RAYMOND H. KRAFT, and JOSEPH A. BOSSI 15 Jan. 1991 65 p (Contract NAS1-18762) (NASA-CR-182020; NAS 1.26:182020) Avail: NTIS HC/MF A04 CSCL 01/3

A new approach for the design and control of flexible space structures is described. The approach integrates the structure and controller design processes thereby providing extra opportunities for avoiding some of the disastrous effects of control-structures interaction and for discovering new, unexpected avenues of future structural design. A control formulation based on Boyd's implementation of Youla parameterization is employed. Control design parameters are coupled with structural design variables to produce a set of integrated-design variables which are selected through optimization-based methodology. A performance index reflecting spacecraft mission goals and constraints is formulated and optimized with respect to the integrated design variables. Initial studies have been concerned with achieving mission requirements with a lighter, more flexible space structure. Details of the formulation of the integrated-design approach are presented and results are given from a study involving the integrated redesign of a flexible geostationary platform.

Sheffield Univ. (England). Dept. of Control N91-15181# Engineering.

A REAL-TIME DISTRIBUTED OPTIMAL AUTOPILOT

G. S. VIRK and J. M. TAHIR Jun. 1990 13 p (RR-398; ETN-91-98526) Avail: NTIS HC/MF A03

A new distributed optimal autopilot for aircraft flight control is presented. A parallel processing approach is taken where the longitudinal and lateral motions with cross coupling effects are handled in different processors. The proposed control algorithm is implemented on a T800 transputer network programmed using

parallel C, and it is shown that real time performance is possible.

N91-15182*# National Aeronautics and Space Administration. Hugh L. Dryden Flight Research Facility, Edwards, CA.
INITIAL FLIGHT TEST OF A GROUND DEPLOYED SYSTEM FOR FLYING QUALITIES ASSESSMENT

MARY F. SHAFER, RUTHARD KOEHLER, EDWARD M. WILSON, and DAVID R. LEVY (Air Force Systems Command, Andrews AFB, Aug. 1989 10 p Presented at the AIAA Atmospheric Flight Mechanics Conference, Boston, MA, 14-16 Aug. 1989 (NASA-TM-101700; H-1554; NAS 1.15:101700; AIAA-89-3359) Avail: NTIS HC/MF A02 CSCL 01/3

In order to provide a safe, repeatable, precise, high-gain flying qualities task a ground deployed system was developed and tested at the NASA Ames Research Center's Dryden Flight Research Facility. This system, the adaptable target lighting array system (ATLAS), is based on the German Aerospace Research Establishment's ground attack test equipment (GRATE). These systems provide a flying-qualities task, emulating the ground-attack task with ground deployed lighted targets. These targets light in an unpredictable sequence and the pilot has to aim the aircraft at whichever target is lighted. Two flight-test programs were used to assess the suitability of ATLAS. The first program used the United States Air Force (USAF) NT-33A variability stability aircraft to establish that ATLAS provided a task suitable for use in flying qualities research. A head-up display (HUD) tracking task was used for comparison. The second program used the X-29A forward-swept wing aircraft to demonstrate that the ATLAS task was suitable for assessing the flying qualities of a specific experimental aircraft. In this program, the ground-attack task was used for comparison. All pilots who used ATLAS found it be highly satisfactory and thought it to be superior to the other tasks used in flying qualities evaluations. It was recommended that ATLAS become a standard for flying qualities evaluations. Author

N91-15183# Massachusetts Inst. of Tech., Cambridge. Technology Lab. for Advanced Composites. NONLINEAR LARGE AMPLITUDE VIBRATION OF COMPOSITE HELICOPTER ROTOR BLADE AT LARGE STATIC **DEFLECTION Interim Technical Report** TAEHYOUN KIM and JOHN DUGUNDJI 25 Jul. 1990 91 p (Contract DAAL03-87-K-0024) (AD-A227933; TELAC-90-14; ARO-24023.4-EG) Avail: NTIS HC/MF A05 CSCL 01/3

The nonlinear, large amplitude free vibration of composite helicopter blades under large static deflection is investigated analytically. A new model capable of handling large amplitudes as well as large deflections was developed, based on the work in a previous report by Minguet. The model can deal with large displacements and rotations by use of Euler angles and can account for structural couplings such as bending-twist and extension-twist. The reduction of this large deflection model to a commonly used moderate deflection model is also shown. A Newton-Raphson type iterative solution technique based on numerical integration of the basic large deflection equations is seen effective for the present analysis. It is found that both large static deflection and large amplitudes can affect the fore-and-aft and torsion modes significantly, but bending modes are not influenced much by the geometrical nonlinearities. GRA

N91-16025 Purdue Univ., West Lafayette, IN. **AEROSERVOELASTIC TAILORING FOR LATERAL CONTROL ENHANCEMENT Ph.D. Thesis** CHANGHO NAM 1990 166 p

Avail: Univ. Microfilms Order No. DA9031368

A fundamental study of aeroservoelastic tailoring for roll control is presented. The effects of combining the structural tailoring of the lifting surface (ply orientation and thickness), together with the wing geometry (sweep angle and taper ratio), and the control surface geometry (spanwise position and chordwise size of the control surface) upon the lateral control effectiveness are discussed. Several optimization examples for the minimization of control surface hinge moment, subject to constant roll effectiveness, are performed. To understand the effects of aeroservoelastic tailoring, two different levels of approach are used. First, a simple beam model is used to represent a high aspect ratio flexible wing. Second, a plate model is used for the more accurate structural analysis. The ELAPS code, the general equivalent plate analysis program, is used for the structural analysis. The best spanwise location of the control surface for flutter suppression is found, by using Nissim's aerodynamic energy concept. The results are compared with those of the best spanwise position of the control surface for roll control. The formulation for optimization studies when the wing weight is included as a part of the objective function is presented. Optimization examples for the simultaneous minimization of wing and control surface hinge moment are considered. Results show that the control surface hinge moment can be minimized by reorienting the ply angle and redesigning the wing, control surface geometry. Even the hinge moment and wing weight can be minimized simultaneously.

Dissert. Abstr.

N91-16026# Loughborough Univ. of Technology (England). Dept. of Electrical and Electronic Engineering.

LONGITUDINAL STABILITY AUGMENTATION OF A LIGHTWEIGHT FIGHTER AIRCRAFT MODEL M.S. Thesis

W. A. FERNIE 1989 161 p (ETN-91-98585) Copyright Avail: NTIS HC/MF A08

Two control systems are assessed and tested over a range of incidence values, in order to evaluate the effectiveness of the designs. A suitable aircraft model is developed and aerodynamic data for the F16 fighter aircraft are used to ensure that the resulting longitudinal behavior of the model is unsatisfactory. The stability criteria are established and the existing defense standard criteria for the short period oscillation are selected. Both control systems produce better results when the designs are based on the fourth order model. The performance of a digital compensator is studied. The quantization and discretization errors are evaluated. An optimum sampling rate is selected. The effects of system delays on aircraft handling qualities are considered.

09

RESEARCH AND SUPPORT FACILITIES (AIR)

Includes airports, hangars and runways; aircraft repair and overhaul facilities; wind tunnels; shock tube facilities; and engine test blocks.

A91-20613

PROFILE MEASUREMENTS IN TRANSONIC WIND TUNNEL BRAUNSCHWEIG [PROFILMESSUNGEN IM TRANSSONISCHEN WINDKANAL BRAUNSCHWEIG]

WOLFGANG PUFFERT-MEISSNER (DLR, Hauptabteilung Windkanaele, Brunswick, Federal Republic of Germany) DLR-Nachrichten (ISSN 0937-0420), Nov. 1990, p. 26-28. In German. Copyright

The Braunschweig wind tunnel and its operation are briefly discussed. The instruments used in the tunnel are mentioned. The Mach number and Reynolds number of the tunnel are graphically depicted. C.D.

A91-20978

THE RADIO TRIALS CENTRE AT A&AEE BOSCOMBE DOWN, UNITED KINGDOM - A DESCRIPTION

JOHN HOWES (Aeroplane and Armament Experimental Establishment, Navigation and Radio Div., Boscombe Down, England) IN: Society of Flight Test Engineers, Annual Symposium, 20th, Reno, NV, Sept. 18-21, 1989, Proceedings. Lancaster, CA, Society of Flight Test Engineers, 1989, p. 1A.3-1 to 1A.3-10. Copyright

The paper presents a review of the activities conducted by the Radio Trials Centre, which provides RF measurement facilities for the airborne testing of aircraft communications, radar, radio navigation, electronic warfare and other RF link-based systems. Among the principal capabilities provided by the center are network analysis facilities, mobile measurement facilities, and an acoustic noise laboratory. These capabilities and the range of tests which they support are discussed.

A91-20983

COST CONSCIOUS DESIGN FOR DATA ACQUISITION SYSTEM GROUND SUPPORT EQUIPMENT

JAMES B. MCCORMICK (McDonnell Aircraft Co., Saint Louis, IN: Society of Flight Test Engineers, Annual Symposium, 20th, Reno, NV, Sept. 18-21, 1989, Proceedings. Lancaster, CA, Society of Flight Test Engineers, 1989, p. 2A.3-1 to 2A.3-6.

Inexpensive and powerful desktop computer systems and improvement in software programming methods have permitted the development of support equipment at an order-of-magnitude cost reduction, while supporting much more complex systems. This paper describes the McDonnell Douglas Digital Data Acquisition System Ground Support Equipment, which combines MS/DOS based computer systems and C programming language software routines. The routines have been modularized into three functional areas: a flight preparation program, a flight line unit program, and a preflight data assessment program. Program details are provided for the interfaces, flight preparation, multiple format capability, preflight assessment and verification, real-time display and the format quality check progam. R.E.P.

A91-20984

A MEASUREMENT SYSTEM FOR PRODUCTION FLIGHT TESTS OF NEW AIRCRAFT

R. VAN DE LEIJGRAAF, W. A. VAN DORP., S. STROM VAN LEEUWEN, and R. UDO (Nationaal Lucht- en Ruimtevaartlaboratorium, Amsterdam, Netherlands) IN: Society of Flight Test Engineers, Annual Symposium, 20th, Reno, NV, Sept. 18-21, 1989, Proceedings. Lancaster, CA, Society of Flight Test Engineers, 1989, p. 2A.4-1 to 2A.4-9. refs Copyright

A measurement system has been developed for the production flight tests of the Fokker 50 and the Fokker 100 production aircraft. This system includes a data acquisition module that gathers data from the aircraft systems and records this raw data on magnetic tape for backup, and a data processing module that performs the calibration of the measured data, and the real-time calculation of performance parameters. Then quick-look presentation facilities during the measurements of the production flight tests are provided. The measurement system for the production flight tests is described, with emphasis on the software and hardware of the data processing module.

A91-21179

GROUND FACILITIES FOR HYPERSONIC SIMULATION

A. WATSON and A. J. WAKE (British Aerospace / Military Aircraft/. Ltd., Preston, England) IN: International Conference on Hypersonic Aerodynamics, Manchester, England, Sept. 4-6, 1989, Proceedings. London, Royal Aeronautical Society, 1989, p. 3.1-3.13. refs. Copyright

A hypersonic blowdown tunnel that is both affordable and within the current state-of-the-art, is proposed along with one or more hypervelocity shock tunnels of the free-piston type. These would make a major contribution to the development and validation of advanced computer codes, and increase confidence in the ability to minimize vehicle weight by reducing design margins. This paper discusses the urgent need for advanced hypersonic ground test facilities for the European aerospace community and the options available for acquiring them. It is shown that the range of tests and parameters required can be considerably extended by introducing the hypersonic and hypervelocity regimes. In addition to the normal measurements of loads, values of stagnation temperature, moments and pressures, heat transfer and wall

temperature ratios are required. These and other requirements serve to illustrate the severe demands placed on the ground test facilities.

R.E.P.

A91-21200

AIRPORT TECHNOLOGY INTERNATIONAL 1990/1991

MAURICE G. HUDSON, ED. London, Sterling Publishing Group, PLC, 1990, 276 p. No individual items are abstracted in this volume.

Copyright

This review of civil aviation, airport, and airline ground management considers international policies and legislation, airport policy management, the planning, design and construction of airports, and airport commercial operations. Also presented are papers covering a systems approach to airport security, ramp operation and handling, airfield operations, and air traffic control and navigation.

A91-22172

SOVIET ATC RESEARCH

OLIVER SUTTON Aerospace World (ISSN 0983-1592), vol. 4, Dec. 1990, p. 37, 38.

Copyright

A review of the Soviet International Air Traffic Control Research Center and its activities are presented. A seminatural modeling facility (SETA) is designed for real-time research of ATC operations with the participation of a human operator in the simulation modeling area. The SETA complex makes it possible to simulate processes of planning and air traffic control by taking into account peculiarities of control zones and individual areas. The system is capable of following up to 100 targets simultaneously and processing as many as 400 flight plans. Utilizing datalink, the experiments have shown that a controller can easily manage up to 30 aircraft at the same time, with less stress than when using today's conventional system. A program is also being undertaken to build up a flow management databank, designed to be compatible with Eurocontrol's new central databank.

A91-22307

AIRCRAFT PLATFORM SCALES WITHOUT SIDELOAD INDUCED WEIGHING ERRORS

EARL STUDLIEN (Electro-Services, Inc., Hudson, MA) SAWE, Annual International Conference, 48th, Alexandria, VA, May 22-24, 1989. 8 p.

(SAWE PAPER 1882) Copyright

Initial tests of the weighing platforms built for the B-1B program revealed sideload errors which were in due course eliminated through (1) a redesign of the load-beam mounting so that it 'floats', and (2) the application of the load to the knife-edges of a yoke resting on the concave section of the load beam. The outer frame of the platform was also designed to achieve enough flexibility for conformance to irregularities in the hangar floor or ramp. The experience gained in this highly challenging program was then applied to the design of two versions of the weighing platform for general aviation use; these are the Portable Aircraft Digital Scale and the Portable Aircraft Weighing System.

A91-22308

A STATE OF THE ART MASS PROPERTIES LABORATORY

GEORGE W. TULEY and JOSE GARCIA (McDonnell Douglas Helicopter Co., Mesa, AZ) SAWE, Annual International Conference, 48th Alexandria, Vd, May 22-24, 1989. 27 p. refs

(SAWE PAPER 1883) Copyright

The 'Mass Properties Laboratory' (MPL) developed by a major helicopter manufacturer accomplished weight and center-of-gravity measurements, static balancing of helicopter main rotor blades, inertia measurements, and the dynamic balancing of main rotor hubs and tail rotors. These functions are accomplished with accuracy, repeatability, linearity, and easy maintainability and calibration. The MPL's dynamic balancing capability derives from the incorporation of a hard-bearing vertical balancing apparatus; all other components are substantially simpler and require no

computer interface. All prospective rotorcraft designs currently envisioned can be accommodated by the MPL. O.C.

A91-22863#

STRUCTURAL TESTS FOR THE DORNIER 328

EBERHARD JOHST and PETER WAIBEL Dornier Post (ISSN 0012-5563), no. 4, 1990, p. 39-42.

Copyright

The design of the Dornier 328 airliner, which makes extensive use of fiber composites and must meet the JAR and FAR rules for a damage-tolerant design of aircraft structures, is presented. The airliner has a 3.5-m pressurized cabin section for 30 passengers, and a specified service life of 65,000 flights. The share of the fiber composites in the airframe structure is about 25 percent. Fiber composites are also used in the rear pressure bulkhead. Unidirectional CFRP prepregs form the rear fuselage and tail unit. The development and qualification test program includes static and dynamic airframe tests as well as tests on bird strike, CFRP components, components critical for air stability, and the pressurized fuselage section. The tests are planned to be conducted in 1991/93, and a full-scale ground vibration test is a prerequisite for take-off clearance.

N91-15185# Air Force Engineering and Services Center, Tyndall AFB, FL. Environics Div.

A CONTROLLED-ENVIRONMENT CHAMBER FOR ATMOSPHERIC CHEMISTRY STUDIES USING FT-IR SPECTROSCOPY Final Report, Jan. 1986 - Jun. 1988

DANIEL A. STONE Jun. 1990 57 p (Contract AF PROJ. 0100)

(AD-A227532; AFESC/ESL-TR-89-44) Avail: NTIS HC/MF A04 CSCL 07/4

A one meter diameter, Teflon coated, stainless steel sphere was constructed as a tool for conducting studies of the atmospheric chemistry of toxic chemicals. The temperature can be controlled from 5 to 50 C. The chamber can be evacuated to 5 X 10(exp-6) torr. Gas samples can be introduced from an external manifold. Solid samples of various kinds can be placed into the interior of the chamber through a 12 in sampling port to determine their effects on gases under study. The chamber is equipped with an in situ, multipass optical system which allows infrared path lengths of 100 meters to be used for the analysis of chemical species.

GRA

N91-15186# Oak Ridge National Lab., TN. RADIOLUMINESCENT (RL) AIRFIELD LIGHTING SYSTEM PROGRAM Annual Report, 1 Oct. 1986 - 30 Sep. 1987

J. A. TOMPKINS (Westinghouse Electric Corp., Las Vegas, NV.), K. W. HAFF, and F. J. SCHULTZ Sep. 1990 74 p (Contract DE-AC05-84OR-21400)

(DE91-001007; ORNL/TM-11503) Avail: NTIS HC/MF A04

In 1980, the U.S. Air Force Engineering and Services Center (AFESC) at Tyndall Air Force Base, Florida, requested that the Radioisotope Technology Group of Oak Ridge National Laboratory (ORNL) develop large-scale, tritium-powered, radioluminescent (RL) airfield lighting systems. The RL lighting systems possess the advantages of being portable, requiring no electrical power source, having a long shelf life, and being unaffected by environmental extremes. These characteristics make the RL system well-suited for harsh environments where the cost of electrical power production is high and traditional incandescent airfield lighting systems are difficult to maintain. RL lighting is typically a large-surface-area, low-intensity light source that operates 100 percent of the time. The RL light sources gradually decrease in brightness over time, so periodic replacement (every 6 to 8 years) is necessary. RL lighting functions best in low ambient light, which provides the high contrast ratios necessary for successful use of these devices. DOF

N91-15188*# Cryolab, Inc., San Luis Obispo, CA.
COST-EFFECTIVE USE OF LIQUID NITROGEN IN CRYOGENIC
WIND TUNNELS, PHASE 2 Final Report, Jul. 1987 - Dec. 1990
GLEN E. MCINTOSH, DAVID S. LOMBARD, KENNETH R.

LEONARD, and GERALD D. MORHORST Dec. 1990 71 p (Contract NAS1-18481)

(NASA-CR-182088; NAS 1.26:182088; D6-44238-5) Avail: NTIS HC/MF A04 CSCL 14/2

Cryogenic seal tests were performed and Rulon A was selected for the subject nutating positive displacement expander. A four-chamber expander was designed and fabricated. A nitrogen reliquefier flow system was also designed and constructed for testing the cold expander. Initial tests were unsatisfactory because of high internal friction attributed to nutating Rulon inlet and outlet valve plates. Replacement of the nutating valves with cam-actuated poppet valves improved performance. However, no net nitrogen reliquefaction was achieved due to high internal friction. Computer software was developed for accurate calculation of nitrogen reliquefaction from a system such as that proposed. These calculations indicated that practical reliquefaction rates of 15 to 19 percent could be obtained. Due to mechanical problems, the nutating expander did not demonstrate its feasibility nor that of the system. It was concluded that redesign and testing of a smaller nutating expander was required to prove concept feasibility.

Author

N91-15189# Federal Aviation Administration, Atlantic City, NJ. EFFECTS OF RUNWAY ANTI-ICING CHEMICALS ON TRACTION

RICK MARINELLI Nov. 1990 68 p (DOT/FAA/CT-TN90/53) Avail: NTIS HC/MF A04

This study was conducted to determine the effects of runway anti-icing chemicals on traction. Chemicals were applied to cold runway surfaces, and water was added in increments to simulate freezing rain. Friction coefficients were measured throughout with a Saab Friction Tester. The results of the study show that pavements in otherwise good condition will not experience an unsafe drop in friction levels when anti-icing chemicals are applied at the manufacturers' recommended rates, but that pavements with poor microtexture may become slippery.

N91-16031# Army Engineer Waterways Experiment Station, Vicksburg, MS. Geotechnical Lab.

EVALUATION PROCEDURE FOR REINFORCED CONCRETE BOX CULVERTS UNDER AIRFIELD PAVEMENTS Final Report, Jan. 1983 - Mar. 1990

DAVID M. COLEMAN, JAMES A. HARRISON, and STANLEY C. WOODSON Sep. 1990 81 p Sponsored by Corps of Engineers, Washington, DC and AFESC, Tyndall AFB, FL (AD-A227920; WES/TR/GL-90-25) Avail: NTIS HC/MF A05

CSCL 12/5

While most airfield pavements are periodically evaluated to determine their structural capacity, often little thought is given to the structural capacity of the culverts and other drainage structures beneath the pavement. The Department of Defense has never had a standard means of evaluating box culverts under airfields or landing strips. This capacity has been needed on several occasions, particularly overseas where landing strips are sometimes built into the local highway system. The research reported herein evaluated several different methods for performing the structural evaluation of reinforced concrete box culverts under aircraft loads, selected two computer programs (CANDE-1980 and CORTCUL) for detailed testing, and then developed a culvert evaluation methodology based on the CORTCUL program. To assist in determining the aircraft loads, an additional computer program was developed. This program, CULVERT, uses elastic layer theory and predefined aircraft data to calculate the vertical stress acting on the top of the culvert due to the aircraft and also provides output and plotting capabilities. Stress is then applied to the culvert model along with the member loads, soil loads, and other loads such as internal water. The CORTCUL program evaluates the culvert based on the requirements of ACI 318, Building Code Requirements for Reinforced Concrete.

10

ASTRONAUTICS

Includes astronautics (general); astrodynamics; ground support systems and facilities (space); launch vehicles and space vehicles; space transportation; spacecraft communications, command and tracking; spacecraft design, testing and performance; spacecraft instrumentation; and spacecraft propulsion and power.

A91-20618

CONCEPT AND SPECIFICATION FOR THE HERMES TRAINING AIRCRAFT (HTA) [KONZEPT UND SPEZIFIKATION FUER DAS HERMES TRAINING AIRCRAFT /HTA/]

DIETRICH HANKE (DLR, Institut fuer Flugmechanik, Brunswick, Federal Republic of Germany) DLR-Nachrichten (ISSN 0937-0420), Nov. 1990, p. 48-52. In German. Copyright

The training concept and technical specification for the development of the Hermes Training Aircraft are discussed. The aircraft modification involved in that development and the resulting model systems are described. Various systems are diagrammed.

C.D.

A91-20743#

FLOW MEASUREMENTS IN A MODEL RAMJET SECONDARY COMBUSTION CHAMBER

LAZAR T. CHITTILAPILLY (ISRO, Vikram Sarabhai Space Centre, Trivandrum, India), S. VENKATESWARAN, P. J. PAUL, and H. S. MUKUNDA (Indian Institute of Science, Bangalore, India) Journal of Propulsion and Power (ISSN 0748-4658), vol. 6, Nov.-Dec. 1990, p. 727-731. Research supported by the Defence Research and Development Laboratory of India. refs Copyright

Éxperimental studies were conducted on a typical secondary combustion chamber of a ramjet to understand the influence of various inlet parameters such as primary nozzle configuration, secondary air injection angle, and flow Reynolds numbers on the secondary combustion chamber (SCC) performance. Cold flow studies were made with air as the flow medium for both primary and secondary jets followed by similar studies with hot primary iets. The general flow structure in the SCC obtained from surface oil film technique showed recirculation zones near the head end. The combustor length required for jet mixing was found to be unrelated to recirculation zone length confirmed by selective temperature and total pressure profile measurements. The calculated frictional loss from the momentum balance consideration was found to be small. That significant improvement in mixing can be achieved by a choice of multiple-hole primary nozzle configuration has been demonstrated. Author

A91-22877*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

THE AEROSPACE PLANE DESIGN CHALLENGE - CREDIBLE COMPUTATIONAL FLUID DYNAMICS RESULTS

UNMEEL B. MEHTA (NASA, Ames Research Center, Moffett Field, CA) AIAA, International Aerospace Planes Conference, 2nd, Orlando, FL, Oct. 29-31, 1990. 17 p. refs (AIAA PAPER 90-5248) Copyright

In order to establish the credibility of CFD results utilized in aerospace plane design, the following topics are discussed: CFD validation in relation to 'measureable' fluid dynamics (MFD) validation, credibility requirements, responsibility for credibility, and a guide for establishing credibility. What is of paramount concern for fluid dynamic design is not CFD code validation but qualification of CFD unknowns so that their magnitude is greatly reduced and that these uncertainties are employed for designing with margin. The designers must be trained to properly use CFD if they are to produce good designs. In approximately 70 percent of the flight envelopes of SSTO aerospace planes with supersonic combustion.

CFD will be necessary to determine dynamics performance and specifications. R.E.P.

A91-22888*#

MANNED VERSUS UNMANNED - THE IMPLICATIONS TO NASP

THEODORE WIERZBANOWSKI and TERRY D. KASTEN (National Aero-Space Plane Joint Program Office, Wright-Patterson AFB, OH) AIAA, International Aerospace Planes Conference, 2nd, Orlando, FL, Oct. 29-31, 1990. 12 p. refs (AIAA PAPER 90-5265)

The assessment of unmanned approaches to experimental aerospace vehicles in general and to the NASP program in particular is summarized. Technical requirements for NASP demonstration are presented and unmanned options for satisfying requirements are discussed. The X-30 sensitivities to technical requirements are described. A correlation of the NASP program to prior flight test programs, both manned and unmanned, is also presented. It is noted that subscale vehicles may reduce risk by as much as 18 percent for approximately \$200 M. It is concluded that half-scale vehicles may reduce program risk by 60 percent, while reducing X-30 costs by 40 percent. Also, an unmanned X-30 will probably cost more than a manned X-30 due to costs associated with additional software development and ground support systems costs.

L.K.S.

A91-22889#

AEROSPACE SYSTEM DEVELOPMENT DIRECTIONS AND SOME ASPECTS OF THEIR CONSTRUCTION AND APPLICATION

G. I. ZAGAINOV, V. P. PLOKHIKH, L. M. SHKADOV, and V. A. IAROSHEVSKII (Tsentral'nyi Aerogidrodinamicheskii Institut, Moscow, USSR) AIAA, International Aerospace Planes Conference, 2nd, Orlando, FL, Oct. 29-31, 1990. 17 p. (AIAA PAPER 90-5266) Copyright

International cooperation in aerospace system development is discussed, focusing on the costs to be shared and benefits to be gained by joint, rather than independent, development. Some current activities of the Soviet aerospace program are outlined, mentioning Energiia-Buran system development and the Mria program. The concept of applying the carrier Mria as the first stage for the injection of a two-stage vehicle into the launch trajectory is also discussed. It is argued that international cooperation on various projects which would mutually benefit all peoples, such as the timely detecting asteroids and the prevention of their collision with the earth, is not only advisable, but necessary.

L.K.S.

A91-22960*# California Univ., Davis. CLOSED-LOOP ASSESSMENT OF FLIGHT SIMULATOR FIDELITY

RONALD A. HESS (California, University, Davis) and TERRY MALSBURY Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 14, Jan.-Feb. 1991, p. 191-197. Research supported by the U.S. Army. Previously cited in issue 09, p. 1393, Accession no. A89-25010. refs

(Contract NAG2-482)

Copyright

N91-15295# Computer Technology Associates, Inc., McKee City,

AERONAUTICAL MOBILE SATELLITE SERVICE (AMSS) CAPACITY ANALYSIS AND PROTOCOL PERFORMANCE SIMULATION PLAN

THOMAS DEHEL Oct. 1990 16 p (Contract DTFA03-89-C-00023)

(DOT/FAA/CT-TN90/35) Avail: NTIS HC/MF A03

This plan describes the simulation and analysis which will be performed on the Aeronautical Mobile Satellite Service (AMSS) communication system. Two system aspects which are examined in this effort are AMSS capacity and message transit delay. The capacity results are generated by software written as a part of this effort; the message transit delay results are generated by a

simulation program called ADSSIM written by Boeing and provided to the Federal Aviation Administration (FAA). The analysis of the results will include a comparison to project system requirements.

Author

N91-15303*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

THE AERODYNAMIC CHARACTERISTICS OF VORTEX INGESTION FOR THE F/A-18 INLET DUCT

BERNHARD H. ANDERSON Jan. 1991 40 p Presented at the 29th Aerospace Sciences Meeting, Reno, NV, 7-10 Jan. 1991; sponsored in part by AIAA

(NASA-TM-103703; E-5925; NAS 1.15:103703; AIAA-91-0130) Avail: NTIS HC/MF A03 CSCL 01/3

A Reduced Navier-Stokes (RNS) solution technique was successfully combined with the concept of partitioned geometry and mesh generation to form a very efficient 3D RNS code aimed at the analysis-design engineering environment. Partitioned geometry and mesh generation is a pre-processor to augment existing geometry and grid generation programs which allows the solver to (1) recluster an existing gridlife mesh lattice, and (2) perturb an existing gridfile definition to alter the cross-sectional shape and inlet duct centerline distribution without returning to the external geometry and grid generator. The present results provide a quantitative validation of the initial value space marching 3D RNS procedure and demonstrates accurate predictions of the engine face flow field, with a separation present in the inlet duct as well as when vortex generators are installed to supress flow separation. The present results also demonstrate the ability of the 3D RNS procedure to analyze the flow physics associated with vortex ingestion in general geometry ducts such as the F/A-18 inlet. At the conditions investigated, these interactions are basically inviscid like, i.e., the dominant aerodynamic characteristics have their origin in inviscid flow theory. Author

11

CHEMISTRY AND MATERIALS

Includes chemistry and materials (general); composite materials; inorganic and physical chemistry; metallic materials; nonmetallic materials; and propellants and fuels.

A91-20677

METALLURGICAL CONTROL OF FATIGUE CRACK PROPAGATION IN SUPERALLOYS

K.-M. CHANG, M. F. HENRY, and M. G. BENZ (GE Physical Metallurgy Laboratory, Schenectady, NY) JOM (ISSN 1047-4838), vol. 42, Dec. 1990, p. 29-35. refs Copyright

Low-cycle fatigue life of turbine engine disk alloys is determined by the initiation and propagation of fatigue cracks. Performance improvements can be achieved through the combination of clean melting technology, to reduce the defect size, and a new generation of high-strength superalloys with fatigue-cracking resistance. Metallurgical control of fatigue crack propagation in high-strength superalloys becomes feasible only through a clear understanding of the fatigue-cracking mechanism, as well as the microstructure/property relationships. Many metallurgical parameters have been identified to control the fatigue cracking resistance at high temperatures. One of the most effective methods, applicable to all high gamma-prime content superalloys, is to modify the grain boundary structure by means of a controlled cooling from a supersolvus solutioning. The precipitation reaction occurring on the grain boundaries during cooling generates a serrated structure that exhibits a good stress oxidation resistance for fatigue cracking. Author

CHEMISTRY AND MATERIALS

A91-20776

ASSESSMENT OF IMPACT DAMAGE IN TOUGHENED RESIN **COMPOSITES**

C. POON, T. BENAK, and R. GOULD (National Aeronautical Establishment, Structures and Materials Laboratory, Ottawa, Theoretical and Applied Fracture Mechanics (ISSN 0167-8442), vol. 13, May 1990, p. 81-97. refs

An evaluation of impact performance of three commercial toughened resin systems against the baseline T300/5208 material is studied, using an instrumented dropweight impact method. It is shown that the toughened resin systems can absorb a much higher level of elastic energy than the baseline system. The baseline system absorbs inelastic energy by fiber and matrix fractures that coalesce to form a major through-the-thickness crack with extensive delaminations in every ply of the laminate. Toughened resin systems have better resistance to impact loading as evidenced by the production of barely visible impact damage (BVID) in contrast to the production of easily visible impact damage in the baseline system for the same impact energy. It is also shown that the residual compressive properties for the toughened resin systems are higher than those for the baseline system.

A91-20864 PROPERTIES OF ADVANCED RAPIDLY SOLIDIFIED TITANIUM ALLOYS

R. A. AMATO, G. E. WASIELEWSKI (GE Aircraft Engines, Cincinnati, OH), M. F. X. GIGLIOTTI, and R. G. ROWE (GE Corporate Research and Development Center, Schenectady, NY) IN: Advances in powder metallurgy; Proceedings of the 1989 Powder Metallurgy Conference and Exhibition, San Diego, CA, June 11-14, 1989. Volume 3. Princeton, NJ, Metal Powder Industries Federation, 1989, p. 189-201. refs (Contract F33615-83-C-5034)

Copyright

The tensile and creep properties of a range of rapidly solidified titanium alloys were surveyed. Detailed evaluation of two compositions included tensile, creep, fatigue crack growth, and oxidation tests. Property improvements equivalent to a 140 C advantage in tensile strength and an advantage in creep resistance over Ti-6242S were observed. Author

A91-20879

TITANIUM COMPRESSOR EGGSHELLS

GERALD FRIEDMAN (Precision Castparts Corp., Cleveland, OH) IN: Advances in powder metallurgy; Proceedings of the 1989 Powder Metallurgy Conference and Exhibition, San Diego, CA, June 11-14, 1989. Volume 3. Princeton, NJ, Metal Powder Industries Federation, 1989, p. 401-411. refs

Copyright

The use of metal-cored wax patterns, atomized titanium alloy powder, precision canisters, and HIP consolidation, has made it possible to produce high strength, ductile, thin-wall hollow structures for both static and dynamic applications in the compressor section of aircraft gas turbine engines. The commercial manufacture of this type of component is possible because of the fortuitous combination of a number of critical factors including the availability of high-purity titanium alloy powder, the development and reduction to practice of an all-metal powder-consolidation technology, and (most importantly) the present need for hollow compressor components which are sufficiently strong and tough to constitute an acceptable risk when they are employed in the 'front end' of the engine. The dimensional, metallurgical, and mechanical property attributes of these 'titanium eggshells' are discussed.

A91-20881

THE PRODUCTION OF PREP TITANIUM POWDER

P. R. ROBERTS (Nuclear Metals, Inc., Concord, MA) IN: Advances in powder metallurgy; Proceedings of the 1989 Powder Metallurgy Conference and Exhibition, San Diego, CA, June 11-14, 1989. Volume 3. Princeton, NJ, Metal Powder Industries Federation, 1989, p. 427-438. refs Copyright

One of the applications for the plasma rotating electrode process (PREP), which was developed originally for producing high-quality Ti PM for aerospace applications, includes manufacture of coarse spherical particles that can be used in the formation of porous structures on the stems of prosthetic devices to enhance their mechanical attachment by ingrowth of bone tissue. This paper describes a modified version of PREP, where molten particles are immersed in liquid argon, showing that the particle size distribution is refined over that obtained in original PREP procedure.

A91-21226

ADDITIONAL FUEL COMPONENT APPLICATION FOR **HYDROGEN SCRAMJET BOOSTING**

A. S. RUDAKOV and V. V. KRIUCHENKO (Tsentral'nyi Nauchno-Issledovatel'skii Institut Aviatsionnogo Motorostroeniia, Moscow, USSR) SAE, Aerospace Atlantic Meeting, Dayton, OH, Apr. 23-26, 1990. 9 p. refs

(SAE PAPER 900990) Copyright

The results of computational investigations carried out to clarify the possibilities of hydrogen scramjet thrust uprating in hypersonic flight by adding to the fuel various substances of higher density are presented. Thrust, specific impulse, and density impulses are calculated, while adding nitrogen, oxygen, water or inert liquefied gases. For scramjet boosting in hypersonic flight it is suggested that the oxygen or a heavy inert gas be added to stoichiometric part of hydrogen, instead of the excessive part of hydrogen.

Author

A91-21473*# Old Dominion Univ., Norfolk, VA. **RADIATIVE INTERACTIONS IN A HYDROGEN-FUELED** SUPERSONIC COMBUSTOR

R. CHANDRASEKHAR, S. N. TIWARI (Old Dominion University, Norfolk, VA), and J. P. DRUMMOND (NASA, Langley Research Center, Hampton, VA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 12 p. refs (Contract NAG1-363; NAG1-423)

(AIAA PAPER 91-0373) Copyright

The two-dimensional, elliptic Navier-Stokes equations are used to investigate supersonic flows with finite-rate chemistry and radiation, for hydrogen-air systems. The chemistry source term in the species equation is treated implicitly to alleviate the stiffness associated with fast reactions. The explicit, unsplit MacCormack finite-difference scheme is used to advance the governing equations in time, until convergence is achieved. The specific problem considered is the premixed flow in a channel with a 10-deg compression ramp. Three different chemistry models are used, accounting for increasing number of reactions and participating species. Two chemistry models assume nitrogen as inert, while the third model accounts for nitrogen reactions and NO(x) formation. The tangent slab approximation is used in the radiative flux formulation. A pseudogray model is used to represent the absorption-emission characteristics of the participating species. Results otained for specific conditions indicate that the radiative interactions vary substantially, depending on reactions involving HO2 and NO species, and that this can have a significant influence on the flowfield.

A91-21962

EFFECT OF THE PENETRATION DEPTH OF FUEL JETS ON COMBUSTION IN A SUPERSONIC COMBUSTION CHAMBER (VLIIANIE GLUBINY PRONIKNOVENIIA TOPLIVNYKH STRUI NA GORENIE V SVERKHZVUKOVOI KAMERE SGORANIIA]

S. I. BARANOVSKII and I. V. KONOVALOV Fizika Goreniia i Vzryva (ISSN 0430-6228), vol. 26, July-Aug. 1990, p. 66-68. In Russian.

Copyright

Experiments were carried out to investigate the effect of the relative penetration depth of hydrogen gas jets injected into supersonic cross-stream on self-ignition and combustion in a combustion chamber of constant cross section. The water-cooled experimental apparatus had a test section of 100x50 mm and a Mach 2.5 supersonic nozzle. It is found that the combustion efficiency of multiple-jet supersonic combustion chambers is largely determined by the ratio of the penetration depth to the boundary layer thickness at the point of injection.

A91-22109

COMPOSITE MATERIALS IN AIRCRAFT STRUCTURES

DONALD H. MIDDLETON, ED. Harlow, England/New York, Longman Scientific and Technical/John Wiley and Sons, Inc., 1990, 406 p. No individual items are abstracted in this volume. Copyright

The present work discusses the development history of composite materials in aircraft applications, composite structures' thus-far demonstrated capabilities and adaptability, types of aerospace composite matrices and reinforcing fibers, the relationship of fiber-matrix interfaces to resulting composite strengths, micromechanics and the failure properties of composites, and design rules and techniques for composites. Also discussed are load-carrying composite joints, advanced composite tooling and manufacturing methods, composite NDE and quality assurance, and composite repair methods. Case histories are presented for the incorporation of composite structures by the Airbus airliners, the Harrier AV-8B, the C-130 airlifter, high-performance gliders, propellers, radomes, and carbon-carbon aircraft brakes.

A91-22340

DEVELOPMENT OF CAST SUPERALLOYS FOR GAS TURBINES IN CHINA

RONGZHANG CHEN and WANHUA CHEN (Institute of Aeronautical Materials, Beijing, People's Republic of China) Chinese Journal of Metal Science and Technology (ISSN 1000-3029), vol. 6, April 1990, p. 92-97. refs Copyright

Advances in the development of cast superalloys for gas turbine applications in China over the past 30 years are briefly reviewed. It is noted that the three major developments contributing to the progress in superalloy technology were the adoption of vacuum melting and casting processes, advances in investment casting technology, and the introduction of directional solidification techniques. A table summarizing the chemical compositions and mechanical properties of the principal cast turbine superalloys produced in China is included.

A91-22346

MAGNETRON SPUTTERED COCRALY COATINGS ON **SUPERALLOY IN738**

FUHUI WANG, HANYI LOU, and LINXIANG BAI (Chinese Academy of Sciences, Institute of Corrosion and Protection of Metals, Shenyang, People's Republic of China) Chinese Journal of Metal Science and Technology (ISSN 1000-3029), vol. 6, Feb. 1990, p. 61-64. refs

Copyright

Magnetron-sputtered CoCrAIY alloy coatings on 20 x 30 x 3 mm sheets of superalloy IN738 are studied. The protective coatings are used in the hot-section components in gas turbine engines. Since no melting is involved in the sputtering process, it is possible to deposit multicomponent films of desired composition from an alloy target of the same composition. Before sputtering, the substrates are polished with waterproof emery paper of various roughnesses, peened with glass balls, and degassed with ultrasonic cleaning. In order to evaluate the oxidation and hot corrosion resistances of the sputtered CoCrAIY coating, a pack aluminide coating is selected for comparison. Subsequent to the sputtering, oxidation, and hot corrosion, the specimens are examined by optical metallography, XRD analysis, transmission electron diffraction, and electron probe microanalysis. The microstructure of the coatings, as well as the oxidation resistance and hot corrosion test results, are summarized. S.A.V.

A91-22383#

CORROSION FATIGUE CRACK GROWTH OF 30CRMNSINI2A STEEL IN AIRPLANE ENVIRONMENTS

KANGMIN NIU, MEIYING CHEN, and XUENING JU (Institute of

Aeronautcal Materials, Beijing, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Aug. 1990, p. B400-B404. In Chinese, with abstract in English. refs

The fatigue crack growth rates of 30CrMnSiNi2A high-strength steel were studied at room-temperature in standard laboratory air, low humidity air, high humidity air, 3.5 percent NaCl solution, and synthetic sump-water environments. The results show that there is no influence of moisture on d(a)/d(N). The SEM examination of specimens tested in air showed some typical features of intergranular fracture, but individual transgranular fracture was observed in moist air. There is no effect of frequency on d(a)/d(N) in air. In salt water, under free-corrosion conditions and at f = 10Hz, the d(a)/d(N) were in agreement with the results in air, otherwise at f + 1 Hz, the d(a)/d(N) increased up to a factor of 4, dependent on Delta-K, primarily at midrange. The fracture surfaces showed classic intergranular fracture mixed with patches of transgranular fracture which was similar in both 10 Hz and 1 Hz. The result is attributed to the fact that the high strength steel is susceptible to hydrogen embrittlement.

A91-22884#

TITANIUM ALUMINIDES DEVELOPMENT FOR NASP AIRFRAME APPLICATIONS

DHANANJAY D. BHATT, TRENT R. LOGAN, and IRA F. VICTER (Rockwell International Corp., North American Aircraft Div., Downey, CA) AIAA, International Aerospace Planes Conference, 2nd, Orlando, FL, Oct. 29-31, 1990. 8 p. (AIAA PAPER 90-5261) Copyright

The NASP program has led to intensive development of alpha-2 and gamma TiAl materials and fabrication methods for aluminide structures. These efforts are directed toward the development of TiAl airframe components for the X-30 vehicle and accordingly place a premium on high structural performance, producibility, structural integrity, and the greatest possible weight savings. A multitask parallel-path approach is being used to ascertain desirable alloy chemistries, optimize fabrication processes, and identify suitable coatings and their application methods. SPF/DB and laser welding have been investigated for alpha-2 TiAl with encouraging results, and large TiAl test structures have been produced by SPF/DB. O.C.

A91-22891#

GASDYNAMIC FEATURES OF SUPERSONIC KEROSENE COMBUSTION IN A MODEL COMBUSTION CHAMBER

S. I. BARANOVSKII, V. M. LEVIN (Moskovskii Aviatsionnyi Institut, Moscow, USSR), and V. N. AVRASHKOV AIAA, International Aerospace Planes Conference, 2nd, Orlando, FL, Oct. 29-31, 1990. 9 p. refs (AIAA PAPER 90-5268) Copyright

The article is devoted to the description of methods and analysis of the results of mixture-forming bubbling systems combined with tubular micropylons, and also to obtaining the self-ignition and supersonic burning of kerosene/air mixture. The burning was investigated in a cooled model combustion chamber of rectangular cross-section. The shape of combustion chamber channel was both of constant cross section and of expansion type. The assumption of the presence of gasdynamic burning stabilization on a shock wave dominant system is substantiated. Results obtained show the quantitative and qualitative relation between the stable kerosene/air mixture burning concentration limits and the combustion chamber shape. Author

A91-23714

QUALIFICATION OF PRIMARY COMPOSITE AIRCRAFT **STRUCTURES**

R. S. WHITEHEAD (Northrop Corp., Aircraft Div., Hawthorne, CA) and J. L. MULLINEAUX (USAF, Wright Aeronautical Laboratories, Hawthorne, CA) IN: Advances in composite materials and structures. New York, American Society of Mechanical Engineers, 1989, p. 97-103.

This paper presents the qualification procedures for primary composite aircraft structures. Special attention is given to the role

11 CHEMISTRY AND MATERIALS

of material selection, the design development tests, the test conditions, the full scale static test, and the full scale durability testing in the certification process. It is recommended that the full scale static test should be regarded as the cornerstone of the qualification process and that, if the design development testing and full scale static test are successful, no full scale durability test is required for composite structures; for mixed composite/metal structures, the full scale durability tests are only required for validation fatigue critical metal parts.

Boeing Aerospace and Electronics Co., Seattle, N91-15322# WA.

X RAY COMPUTED TOMOGRAPHY OF COMPOSITES Interim Report, Jun. - Dec. 1989

RICHARD H. BOSSI, KAREN K. COOPRIDER, and GARY E. GEORGESON Jul. 1990 86 p (Contract F33615-88-C-5404; AF PROJ. 3153)

(AD-A227227; WRDC-TR-90-4014) Avail: NTIS HC/MF A05 **CSCL 14/3**

The application of computed tomography (CT) for various polymer matrix composite parts was investigated. Emphasis was placed on pultruded composite parts in an effort to introduce CT as a real-time, on-line, nondestructive sampling method for the pultrusion process. In addition, several other composite parts were examined, including honeycomb panels, helicopter rotor to blades, a filament wound pressure bottle, sinewave spars, graphite/phenolic insulation, 3-D braided thermoplastics, an injection molded airfoil, and more. It has concluded that, first CT has demonstrated significant potential for reducing time and costs in development CT systems can offer advantages in research applications for composites particularly as an alternative to destructive sectioning. Based on our studies, we would recommend that efforts can be made to incorporate a medical CT system on a pultrusion system producing high criticality, aerospace components.

Pratt and Whitney Aircraft, West Palm Beach, FL. N91-15374# Engineering Div.

FATIGUE AND FRACTURE OF TITANIUM ALUMINIDES Final Report, 1 Jul. 1985 - 28 Apr. 1989

D. P. DELUCA, B. A. COWLES, F. K. HAAKE, and K. P. HOLLAND Feb. 1990 270 p (Contract F33615-85-C-5029; AF PROJ. 2420)

(AD-A226737; PW/ED/FR-20781; WRDC-TR-89-4136) Avail: NTIS HC/MF A12 CSCL 11/6

Future tactical aircraft engine designs depend heavily on advanced materials technology to meet thrust-to-weight and durability goals. Several types of materials currently under development are candidates for use in these advanced engines, including intermetallic titanium aluminides. Titanium aluminide alloys offer low density, high specific strength, and elevated temperature capabilities. If the materials are used in major structural and rotating components, these properties could significantly increase engine thrust-to-weight ratio. Monolithic titanium aluminides are currently being evaluated for static components where they offer strength and stiffness advantages at temperatures above conventional titanium alloy capability.

N91-15390*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

THERMAL BARRIER COATING EVALUATION NEEDS

WILLIAM J. BRINDLEY and ROBERT A. MILLER Presented at the Conference on Nondestructive Evaluation of Modern Ceramics, Columbus, OH, 9-12 Jul. 1990; cosponsored by American Ceramic Society and American Society of Nondestructive Testing

(NASA-TM-103708; E-5596; NAS 1.15:103708) Avail: NTIS HC/MF A02 CSCL 11/6

A 0.025 cm (0.010 in) thick thermal barrier coating (TBC) applied to turbine airfoils in a research gas turbine engine provided component temperature reductions of up to 190 C. These impressive temperature reductions can allow increased engine operating temperatures and reduced component cooling to achieve greater engine performance without sacrificing component durability. The significant benefits of TBCs are well established in aircraft gas turbine engine applications and their use is increasing. TBCs are also under intense development for use in the Low Heat Rejection (LHR) diesel engine currently being developed and are under consideration for use in utility and marine gas turbines. However, to fully utilize the benefits of TBCs it is necessary to accurately characterize coating attributes that affect the insulation and coating durability. The purpose there is to discuss areas in which nondestructive evaluation can make significant contributions to the further development and full utilization of TBCs for aircraft gas turbine engines and low heat rejection diesel engines.

Author

N91-15418*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

IN-FLIGHT AND SIMULATED AIRCRAFT FUEL TEMPERATURE **MEASUREMENTS**

ROGER A. SVEHLA Dec. 1990 81 p (NASA-TM-103611; E-5765; NAS 1.15:103611) Avail: NTIS HC/MF A05 CSCL 07/4

Fuel tank measurements from ten flights of an L1011 commercial aircraft are reported for the first time. The flights were conducted from 1981 to 1983. A thermocouple rake was installed in an inboard wing tank and another in an outboard tank. During the test periods of either 2 or 5 hr, at altitudes of 10,700 m (35,000 ft) or higher, either the inboard or the outboard tank remained full. Fuel temperature profiles generally developed in the expected manner. The bulk fuel was mixed by natural convection to a nearly uniform temperature, especially in the outboard tank, and a gradient existed at the bottom conduction zone. The data indicated that when full, the upper surface of the inboard tank was wetted and the outboard tank was unwetted. Companion NASA Lewis Research Center tests were conducted in a 0.20 cubic meter (52 gal) tank simulator of the outboard tank, chilled on the top and bottom, and insulated on the sides. Even though the simulator tank had no internal components corresponding to the wing tank, temperatures agreed with the flight measurements for wetted upper surface conditions, but not for unwetted conditions. It was concluded that if boundary conditions are carefully controlled, simulators are a useful way of evaluating actual flight temperatures.

N91-16076# Messerschmitt-Boelkow-Blohm G.m.b.H., Munich (Germany, F.R.). Hubschrauber und Flugzeuge.

BUMP EXAMINATIONS OF INTEGRALLY STRENGTHENED CARBON FIBER REINFORCED PLASTIC PANELS [BEULUNTERSUCHUNGEN AN INTEGRALVERSTEIFTEN **CFK-PANELS**

K. BRUNNER and K. PFISTER 20 Jul. 1990 Presented at DGLR-Jahrestagung 1989, Hamburg, GERMAN Fed. Republic of Germany, 2-4 Oct. 1989

(MBB/FE281/CFK/PUB/0013; ETN-91-98548) Copyright Avail: NTIS HC/MF A03

The appearance of bumps on carbon fiber reinforced plastic aircraft structures is investigated. Static and dynamic experiments were carried out with determination of the residual strength by means of tests which were carried out in accordance to the constructive requirements of modern high power aircraft. The bump initiation was detected with experimental measurement processes based on the failure charge. The functioning charge was shown to have no influence on the residual strength despite the high bump excess. The measurement Moire process was successfully implemented so that a routine utilization is possible.

N91-16170# Human Systems Div., Brooks AFB, TX. A COMPARISON OF THREE PROSPECTIVE ANALYTICAL METHODS FOR BENZENE ANALYSIS IN JET FUEL **ENVIRONMENTS Final Report**

MOHAMMAD A. HOSSAIN Aug. 1990 23 p (AD-A227489; USAFOEHL-90-126SA00687HAE) Avail: NTIS HC/MF A03 CSCL 07/3

Accurate analysis of benzene in jet fuel has been a concern

over the past several years. The method has been used to analyze benzene in jet fuel is the NIOSH 1501 method, a method specifically designed for aromatic hydrocarbons including benzene. However, the method is not designed for analysis of benzene in jet fuel environments. At the present time there is no approved (either by NIOSH or OSHA) method for analysis of benzene in fuel environments. At the request of HQ AAC/SGPB, a study was conducted to compare three prospective analytical methods (NIOSH method 1501 (Gas Chromatography/Flame Ionization Detection (GC/FID) with packed column), modified NIOSH 1501 method (GC/FID with capillary column), and High Pressure Liquid Chromatography with Ultraviolet Detection (HPLC/UV)). Spiked charcoal tube samples as well as air samples of known concentrations of benzene in JP-4 and Stoddard Solvents were analyzed by all three methods. The test results showed that modified NIOSH 1501 and HPLC methods had good correlation between spiked and measured amount of benzene in JP-4 and Stoddard Solvent mixtures. The NIOSH 1501 method utilizing packed column over estimated the test benzene concentration indicating positive interference from other hydrocarbons present in JP 4 and Stoddard Solvents.

12

ENGINEERING

Includes engineering (general); communications; electronics and electrical engineering; fluid mechanics and heat transfer; instrumentation and photography; lasers and masers; mechanical engineering; quality assurance and reliability; and structural mechanics.

A91-20616

THE STABILITY OF LIGHT STRUCTURES - AN AREA OF RESEARCH WITH A TRADITION AND A FUTURE [STABILITAET VON LEICHTBAUSTRUKTUREN - EIN FORSCHUNGSGEBIET MIT TRADITION UND ZUKUNFT]

BODO GEIER and KLAUS ROHWER (DLR, Institut fuer Strukturmechanik, Brunswick, Federal Republic of Germany) DLR-Nachrichten (ISSN 0937-0420), Nov. 1990, p. 40-44. In German. refs

Copyright

The study of light structures for air and space travel is discussed. Past, present, and future developments, especially those involving shells of rotation and panels, are addressed. Theoretical and experimental methods used in these studies are described. C.D.

A91-20728

A THREE-DIMENSIONAL VISUALIZATION TECHNIQUE APPLIED TO FLOW AROUND A DELTA WING

M. YODA and L. HESSELINK (Stanford University, CA) Experiments in Fluids (ISSN 0723-4864), vol. 10, no. 2-3, Dec. 1990, p. 102-108. refs

(Contract F49620-86-K-0020)

Copyright

The visualization of flows in two dimensions by using planer laser light sheets is extended to three dimensions by rapidly scanning the laser light sheet to obtain a set of 'slices' of the flow around a full-span delta wing. The leading edge vortices, which are marked with smoke, are unburst by tangential blowing around the leading edges at angles of attack in excess of 25 deg. Since the measurement period is on the order of the smallest convection time scale, a virtually instantaneous set of planar cross sections of the flow is obtained. Software is used to stack the slices and recontruct a three-dimensional surface of the smoke-seeded fluid. This surface, which corresponds to the vortices, clearly shows the qualitative effects of blowing on the delta wing flow.

A91-20788* Analytical Services and Materials, Inc., Hampton,

AN EVALUATION OF THE PRESSURE PROOF TEST CONCEPT FOR THIN SHEET 2024-T3

D. S. DAWICKE (Analytical Services and Materials, Inc., Hampton, VA), C. C. POE, JR., J. C. NEWMAN, JR., and C. E. HARRIS (NASA, Langley Research Center, Hampton, VA) Theoretical and Applied Fracture Mechanics (ISSN 0167-8442), vol. 14, Nov. 1990, p. 101-116. refs
Copyright

The concept of pressure proof testing of fuselage structures with fatigue cracks to insure structural integrity was evaluated from a fracture mechanics viewpoint. A generic analytical and experimental investigation was conducted on uniaxially loaded flat panels with crack configurations and stress levels typical of longitudinal lap-splice joints in commercial transport aircraft fuselage. The results revealed that the remaining fatigue life after a proof test was longer than that without the proof test because of crack growth retardation due to increased crack closure. However, based on a crack length that is slightly less than the critical value at the maximum proof test stress, the minimum assured life or proof test interval must be no more than 550 pressure cycles for a 1.33 proof factor and 1530 pressure cycles for a 1.5 proof factor to prevent in-flight failures.

A91-20791

FRACTURE INSTABILITY OF A LAYERED CONICAL COMPOSITE RESISTING THE AERODYNAMIC LOAD

D. Y. TZOU (New Mexico, University, Albuquerque) Theoretical and Applied Fracture Mechanics (ISSN 0167-8442), vol. 14, Dec. 1990, p. 165-174. refs
Copyright

The influence of the stacking sequence of material layers on the crack instability of the layered conical composite is studied. With emphasis placed on the application to the aeronautical structures, the pressure field imposed on the structure is obtained from the aerodynamic flow field with a free stream Mach number being 2.05. The method of characteristics is used for determining the aerodynamic flow field, and the strain energy density theory is used for characterizing the crack instability which varies significantly with the stacking sequence of the material layers. It is found that the material layer with the softest stress and strain curve should be placed on the side of the inner cone tip such that the energy density established thereby can be absorbed to the most extent. The fracture instability of the three-layered conical composite is found to be geometry-dominant.

A91-20899

PREDICTION OF PENETRATION OF CURVED METAL STIFFENED PANELS DUE TO BIRDSTRIKE

M. R. WISNOM (Bristol, University, England) Aeronautical Journal (ISSN 0001-9240), vol. 94, Nov. 1990, p. 313-317. Research supported by British Aerospace (Commercial Aircraft). refs Copyright

A finite element analysis has been carried out to simulate the effect of birdstrike on concave curved metal stiffened panels representative of engine intakes. A simplified static analysis approach was adopted including the effects of nonlinear material response and large displacements. Loading was by means of an equivalent pressured derived from experimental results of bird impacts on rigid plates. Good agreement was obtained between predicted and measured bird impact velocities to cause penetration of the structure for a range of panel thicknesses, curvatures and impact angles.

Author

A91-20916

RELIABILITY ANALYSIS OF STRUCTURE AND CONTROL MECHANISM OF AIRCRAFT FLAP

Y. S. FENG and L. YANG (Northwestern Polytechnical University, Xian, People's Republic of China) Computers and Structures (ISSN 0045-7949), vol. 38, no. 1, 1991, p. 21-24. Copyright

The aircraft flap structure and its control mechanism are

considered as an entire system for analysis of the system's reliability. The significant failure modes of a flap structure are based on the following engineering criteria: the magnitude of the computational safety factors of different structural members and the possible patterns that compose failure modes. According to these significant failure modes, the failure probability of a single failure mode can be computed, and the failure probability of the flap structural system can then be solved based on these single failure probabilities. For the flap control mechanism, besides the static strength reliability, it is necessary to compute the function reliability. The reliability of the control mechanism can be synthesized from the above two kinds of reliabilities. Finally, the entire flap system failure probability can be solved by synthesis of the flap structural system failure probability and the flap control mechanism failure probability.

A91-20932#

METHOD OF STRENGTH EVALUATION OF RADIAL FAN ROTORS [METODA OCENY WYTRZYMALOSCIOWEJ WIRNIKOW WENTYLATOROW PROMIENIOWYCH]

WACLAW SZYC and ZYGMUNT SEKULSKI (Poznan, Politechnika, Poland) (Miedzynarodowe Kolokwium o Modelach w Projektowaniu i Konstruowaniu Maszyn, 13th, Zakopane, Poland, Apr. 25-28, 1989) Politechnika Slaska, Zeszyty Naukowe, Mechanika (ISSN 0434-0817), no. 92, 1989, p. 275-280. In Polish.

The paper presents a method for the strength evaluation of rotors based on stress analysis and a computerized finite element method. The essential rules of a object modeling are discussed with reference to the high fidelity of mapping in the SESAM system. The values of the limiting and allowable rotational speeds are expressed. An example of the application of this method to the evaluation of a large fan rotor is presented.

A91-20943

FREE VIBRATION OF A CANTILEVER ANNULAR SECTOR PLATE WITH CURVED RADIAL EDGES AND VARYING THICKNESS

K. TANAKA, G. YAMADA, Y. KOBAYASHI, and S. MIURA (Hokkaido University, Sapporo, Japan) Journal of Sound and Vibration (ISSN 0022-460X), vol. 143, Dec. 8, 1990, p. 329-341. refs

Copyright

The free vibration of a cantilever annular sector plate with curved radial edges and varying thickness is analyzed by the Ritz method. For this purpose, the plate is transformed into a regular sector plate with unit outer radius by a transformation of variables. The transverse deflection of the transformed plate is expressed in a power series, the dynamical energies of the plate are evaluated, and the frequency equation of the plate is derived by the conditions for a stationary value of the Lagrangian functional. This method is applied to annular sector plates with symmetrically or unsymmetrically curved radial edges and also with varying thickness; the natural frequencies and the mode shapes are calculated numerically, and the effects of varying thickness on the vibration are studied.

A01-21109

MATERIALS AND PROCESSES USED FOR BONDED REPAIRS OF F/A-18 ADVANCED COMPOSITE HONEYCOMB SANDWICH STRUCTURES

DOUGLAS R. PERL (U.S. Navy, Naval Aviation Depot North Island, San Diego, CA) Society of Manufacturing Engineers, Conference on Composites in Manufacturing 9, San Diego, CA, Jan. 15-18, 1990. 23 p. refs

(SME PAPER EM90-107) Copyright

The materials and processes used for bonded repairs of F/A-18 honeycomb sandwich structures and in-service damage experience are discussed. Damage types such as delaminations, disbonds, airstream stripping, edge damage, denting, and penetration damage are outlined. The use of injection techniques for delamination damage and the use of joints for restoring strength and stiffness to skin gouges or through penetrations are reviewed, and a general repair-process flow is analyzed, with focus placed on damage/paint

removal, joint machining, splicing of repair core sections, surface preparation for bonding, repair layup, and curing. The verification of the repair-process including material monitoring, process monitoring, and nondestructive inspection is covered.

A91-21109

NORTH ISLAND F/A-18 AIRCRAFT ADVANCED COMPOSITES REPAIR

GUY THERIAULT (U.S. Navy, Naval Aviation Depot North Island, San Diego, CA) Society of Manufacturing Engineers, Conference on Composites in Manufacturing 9, San Diego, CA, Jan. 15-18, 1990. 16 p.

(SME PAPER EM90-108) Copyright

Common damages occurring to F/A-18 advanced-composite components, observed at the Naval Aviation Depot North Island, as well as various repair methods practiced at this location are considered. Among the characteristic damage types are edge, impact, crash, burn, and aircraft-battle damages in addition to fluid intrusion, skin-to-core disbond damage, blown skin-to-core unbond damage, and fastener-hole damage. Nondestructive inspection techniques consisting of radiographic and ultrasonic inspections are covered, and damage tolerance is analyzed. Such repair approaches as resin injection, scarf path repairs, and moldform tools are discussed, and bolted and stepped-lap patch repairs are covered. Attention is given to external patch repairs where precured carbon/epoxy patches and patches cut from titanium-foil sheets are utilized.

A91-21115

KNOWLEDGE-BASED ENGINEERING TECHNOLOGY CASE STUDY - JET ENGINE TURBINE BLADE DESIGN

KATHY KESSEL-HUNTER (ICAD, Inc., Cambridge, MA) Society of Manufacturing Engineers, AUTOFACT '89 Conference, Detroit, MI, Oct. 30-Nov. 2, 1989. 22 p.

(SME PAPER MS89-727) Copyright

Knowledge-based engineering is presented in this study as an advanced technology addressing the need for companies to bring new high-quality products to market quickly while adapting to customer-specific needs. The evolution of design-automation technology is reviewed, and the fundamental principles of knowledge-based engineering are outlined along with its benefits. The differences between knowledge-based engineering and CAD and parametric modeling are assessed, and applications suited for knowledge-based engineering are covered. A case study involving the automated design and engineering of turbine blades for jet engines is presented with examples of the types of rules built into the resulting model, its inputs and outputs.

A91-21116

ROBOTIC ABRASIVE WATER JET CUTTING OF AEROSTRUCTURE COMPONENTS

DAREN C. DAVIS (LTV Aerospace and Defense Co., Dallas, TX) Society of Manufacturing Engineers, Conference on Nontraditional Machining, Orlando, FL, Oct. 30-Nov. 2, 1989. 14 p. (SME PAPER MS89-812) Copyright

To reduce tooling and labor costs associated with net trimming of aerostructure components, a system has been designed and implemented which combines the flexibility and accuracy of robotics with the productivity of abrasive water jet cutting. The system is comprised of a large, six-axis gantry robot which uses specially developed abrasive water jet end effectors to trim the edge-of-panel (EOP) and integral stiffener blades. These end effectors employ compact catchers to contain the spent stream, and thereby eliminate the need for large catcher tanks commonly used in abrasive water jet cutting. The robot is offline programmed to perform trimming on large, complex contoured panels.

A91-21118

WATERJET/HYDROBRASIVE CUTTING IN THE AUTOMOTIVE, AEROSPACE AND APPLIANCE INDUSTRIES

DAVID F. WIGHTMAN (Ingersoll-Rand Waterjet Cutting Systems, Chicago, IL) Society of Manufacturing Engineers, Waterjet Cutting

West Conference, Los Angeles, CA, Nov. 14, 15, 1989. 12 p. (SME PAPER MS89-833) Copyright

This paper presents the state-of-the-art manufacturing techniques of waterjet cutting. Facts on equipment, process, economics, advantages, applications, and limitations are reviewed. Waterjet/hydrobrasive is an all purpose process that requires less labor and less capital for special applications on materials of a nontraditional nature.

THE AIRCRAFT AVIONIC INTERCONNECTION SYSTEM

D. T. HARRISON (British Airways, PLC, Heathrow, England) IN: Maintenance of modern avionics systems; Proceedings of the Conference, Heathrow, England, May 9, 1989. London, Royal Aeronautical Society, 1989, p. 3.1-3.7. Copyright

The avionic interconnection system is described as the means by which electrical power and intelligence are distributed throughout the airframe and powerplants. In addition there is no other system on the aircraft that does not rely on the avionic interconnection system. Some of the major components of the interconnection system are described including cables, conductors, insulants, fiber optics, connectors, and system protection from lightning. Other components involved in the system include circuit breakers and fuses, terminal blocks and modules, shield terminators, cable clips, loom ties, and sleeves.

A91-21348*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

EXPLORATORY STUDY OF VORTEX-GENERATING DEVICES FOR TURBULENT FLOW SEPARATION CONTROL

J. C. LIN, F. G. HOWARD (NASA, Langley Research Center, Hampton, VA), and G. V. SELBY (Old Dominion University, Norfolk, AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991, 16 p. refs (AIAA PAPER 91-0042)

Flow phenomena and the relative performance associated with several devices for controlling turbulent separated flow were investigated at low speeds. Vortex-generating devices examined included: submerged vortex generators (Wheeler doublet and wishbone types), spanwise cylinders, large-eddy breakup devices (LEBU) at small angle of attack (alpha), and vortex-generator jets (VGJ). Dve flow visualization tests in a water tunnel indicated that wishbone vortex generators in the forward orientation shed horseshoe vortices; wishbone vortex generators oriented in the reverse direction and doublet vortex generators shed streamwise counterrotating vortices; a spanwise cylinder located near the wall and LEBUs at alpha = -10 deg produced eddies which rotated with the same sign as the mean vorticity in a turbulent boundary layer; and the most effective VGJs produced streamwise corotating vortices. Comparative wind tunnel tests conducted on a curved backward-facing ramp indicated that transferring momentum from the outer region of a turbulent boundary layer by embedded streamwise vortices is more effective than by transverse vortices for separation control applications. Author

National Aeronautics and Space Administration. A91-21351*# Ames Research Center, Moffett Field, CA.

PROGRESS IN LASER-SPECTROSCOPIC TECHNIQUES FOR **AERODYNAMIC MEASUREMENTS - AN OVERVIEW**

ROBERT L. MCKENZIE (NASA, Ames Research Center, Moffett Field, CA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 21 p. refs

(AIAA PAPER 91-0059) Copyright

An overview is given of the capabilities and recent progress in laser-spectroscopic measurement techniques for use aerodynamic test facilities and flight research vehicles. It includes a survey of the literature which is centered on this application of laser spectroscopy. The intended reader is the specialist in experimental fluid dynamics who is not intimately familiar with the physics or applications of laser spectroscopy. Thus, some discussion is also included of the nature of each laser-spectroscopic technique and the practical aspects of its use for aerodynamic

measurements. The specific techniques reviewed include laser absorption, laser-induced fluorescence, laser Rayleigh scattering, and laser Raman scattering including spontaneous and coherent processes. Author

A91-21352*# California Inst. of Tech., Pasadena. INTERNALLY MOUNTED THIN-LIQUID-FILM SKIN-FRICTION METER - COMPARISON WITH FLOATING ELEMENT METHOD WITH AND WITHOUT PRESSURE GRADIENT

HANS HORNUNG (California Institute of Technology, Pasadena) and JEFFREY SETO AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 8 p. refs (Contract NAG2-621)

(AIAA PAPER 91-0060) Copyright

A new, robust oil film skin friction meter was designed and constructed. This enables skin friction measurements remotely and from within the model, as well as avoiding the need to know the location of the leading edge of the film. The instrument was tested by comparing measurements with those given by a floating element gage in a zero pressure gradient flat plate turbulent boundary layer. Both instruments agreed satisfactorily with the well-known curve for this case. Significant discrepancies between the two instruments were observed in the case of adverse and favorable pressure gradients. The discrepancies were of opposite sign for opposite-sign pressure gradients as is consistent with the error expected from floating-element gages. Additional confidence in the oil film technique is supplied by the good agreement of the behavior of the film profile with predictions from lubrication theory.

A91-21384#

TRENDS IN CURRENT HEAT TRANSFER COMPUTATIONS

A. F. EMERY, R. J. COCHRAN (Washington, University, Seattle), and D. W. PEPPER (Advanced Projects Research, Inc., Moorpark, AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 23 p. refs

(AIAA PAPER 91-0157) Copyright

Various heat transfer problems that are currently investigated computationally, and some emerging computational trends are reviewed with reference to specific examples. In particular, attention is given to radiation problems, evaporation and interfaces, coupled and integrated problems, finite difference, finite volume, and finite element methods, and spectral elements. The discussion also covers internal forced flows and turbulence, free convection, mesh generation, adaptive grids and solvers, turbulence modeling, commercial software, and computer hardware trends.

A91-21388#

HIGH TEMPERATURE HEAT FLUX MEASUREMENTS

J. M. HAGER, L. W. LANGLEY (Vatell Corp., Christiansburg, VA), S. ONISHI, and T. E. DILLER (Virginia Polytechnic Institute and State University, Blacksburg) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 7 p. refs (Contract NSF CBT-88-14364)

(AIAA PAPER 91-0165) Copyright

The Heat Flux Microsensor is a new heat flux gage system that is made using microfabrication techniques. The gages are small, have high frequency response, can measure very high heat flux, and output a voltage directly proportional to the heat flux. Because the gage is made directly on the measurement surface and the total thickness is less than 2 microns, the presence of the gage contributes negligible flow and thermal disruption. Details are given of a new gage design for use in high-temperature aerothermodynamic tests. Feed-through leads have successfully employed to bring the signals out through the back of the surface. Survivability of gages to at least 500 C is demonstrated. Measurements are reported of heat flux in a Mach 2.4 flow. The effects of normal shock passage on the heat flux to the wall were measured. Author

A91-21391#

UNSTEADY MEASUREMENT OF SKIN FRICTION IN ADVERSE PRESSURE GRADIENT - A NEW APPROACH TO A WELL KNOWN GAUGE

KIRK J. FLUTIE and EUGENE E. COVERT (MIT, Cambridge, MA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 16 p. refs

(Contract F49620-79-C-0226; AF-AFOSR-81-0282)

(AIAA PAPER 91-0168) Copyright.

A near-surface-mounted hot wire shear gauge was designed, built and calibrated in a quasi-two-dimensional channel. The time constants of the gauge are essentially the same as a hot wire anemometer so the gauge can measure unsteady shear stress. In addition to this dynamic response, the gauge has shown low thermal drift, is insensitive to pressure gradient and is virtually non-intrusive. The gauge was used to measure unsteady wall shear stress on an NACA-0012 immersed in a constant phase unsteady flow. The reduced frequency, based upon the mean displacement thickness was 0.07 or less (12 or less based upon boundary layer run). Hence the experiment corresponds to a low frequency milleu.

A91-21435#

SPATIAL CORRELATION VELOCIMETRY IN UNSTEADY FLOWS

P. A. FAWCETT and N. M. KOMERATH (Georgia Institute of Technology, Atlanta) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 14 p. refs (Contract DAAL03-88-C-0003)

(AIAA PAPER 91-0271) Copyright

Two-dimensional velocity field data are obtained in steady and unsteady flow environments by Spatial Cross Correlation Velocity (SCV). Previous work on SCV is summarized. Algorithm for pixel array interpolation and moving-window averaging are used to extend the capabilities of the technique. In this paper, previous work in a water channel is extended to capture the unsteady wake of a cylinder. The first application of the technique to the flow of air in a large wind tunnel test section is demonstrated. Laminar flow over an NACA 0012 wing at a small angle of attack is first studied. Finally, the flow around the wing is captured as it executes rapid, arbitrary plunging motions. The velocity field thus captured is related to the time history of the motion of the wing. The technique is at present limited to low flow velocities by the constraints of the home-video camera system used: methods for extension to higher flow velocities are discussed.

A91-21519#

EIGENFUNCTION ANALYSIS OF TURBULENT MIXING PHENOMENA

M. WINTER, T. J. BARBER (United Technologies Research Center, East Hartford, CT), R. M. EVERSON, and L. SIROVICH (Brown University, Providence, RI) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 12 p. refs

(AIAA PAPER 91-0520) Copyright

An analysis of the inviscid mixing of a turbulent jet in crossflow is considered. An experimental data base is analyzed by means of a technique based on the empirical eigenfunctions. It is shown, for example, that mixing which increases with downstream distance is characterized by patterns of increasing complexity. A firm quantitative basis is presented which supports this visual perception of complexity.

Author

A91-21587*# Virginia Polytechnic Inst. and State Univ., Blacksburg.

INFRARED IMAGING - A VALIDATION TECHNIQUE FOR COMPUTATIONAL FLUID DYNAMICS CODES USED IN STOVL APPLICATIONS

R. R. HARDMAN, J. R. MAHAN (Virginia Polytechnic Institute and State University, Blacksburg), M. H. SMITH, P. A. GELHAUSEN, and W. R. VAN DALSEM (NASA, Ames Research Center, Moffett Field, CA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 12 p. refs

(AIAA PAPER 91-0675) Copyright

The need for a validation technique for computational fluid dynamics (CFD) codes in STOVL applications has led to research efforts to apply infrared thermal imaging techniques to visualize gaseous flow fields. Specifically, a heated, free-jet test facility was constructed. The gaseous flow field of the jet exhaust was characterized using an infrared imaging technique in the 2 to 5.6 micron wavelength band as well as conventional pitot tube and thermocouple methods. These infrared images are compared to computer-generated images using the equations of radiative exchange based on the temperature distribution in the jet exhaust measured with the thermocouple traverses. Temperature and velocity measurement techniques, infrared imaging, and the computer model of the infrared imaging technique are presented and discussed. From the study, it is concluded that infrared imaging techniques coupled with the radiative exchange equations applied to CFD models are a valid method to qualitatively verify CFD codes used in STOVL applications. Author

A91-21601#

BOUNDARY-LAYER TRANSITION - ANALYSIS AND PREDICTION REVISITED

TH. HERBERT (Ohio State University, Columbus) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 23 p. refs

(Contract F49620-88-C-0082; N0014-90-J-1520)

(AIAA PAPER 91-0737) Copyright

A highly efficient approach to stability analysis and spatial transition simulations in nonparallel boundary layers has been developed. Progress is being made elsewhere in the exploration of receptivity mechanisms. In light of these developments, the basic elements of the transition process and the weaknesses of current engineering methods for transition prediction are evaluated. The characteristics and validation of the new approach are briefly described and its utilization both as a research tool for analysis and as an engineering tool for prediction of transition in boundary layers are discussed.

A91-21722

EIGHT CHANNEL PRESSURE MEASURING SYSTEM FOR CRYOGENIC USE IN THE EUROPEAN TRANSONIC WIND-TUNNEL OVER THE TEMPERATURE RANGE 78-300 K

R. G. SCURLOCK and R. WEBB (Southampton, University, England) (International Conference on Low Temperature Electronics, 1st, Berkeley, CA, Apr. 23-26, 1990) Cryogenics (ISSN 0011-2275), vol. 30, Dec. 1990, p. 1101-1103. Research supported by the Royal Aerospace Establishment and Department of Trade and Industry. refs

Copyright

This paper describes a prototype eight-channel (four pressure and four temperature channels) computer-controlled data-logging system developed for the European Transonic Wind Tunnel. The system is capable of operations at temperatures between 77.5 and 300 K and has a precision of + or - 0.05 percent. In its present form, the data logger has 16 channel capability; in the projected modular form, a further 16 channel modules can be added, making it possible to construct a 32, 48, 64, etc., channel logger with a single digital output link, using the same local computer to control the switching, data collection, internal temperature correction, and data transmission functions. Block diagrams of the data logger are included.

A91-22188

PULSED EDDY CURRENT INSPECTION OF CRACKS UNDER INSTALLED FASTENERS

MARTIN GIBBS and JOE CAMPBELL (Staveley Instruments, Inc., Kennewick, WA) Materials Evaluation (ISSN 0025-5327), vol. 49, Jan. 1991, p. 51, 52, 54, 57-59.

Copyrigh

A new type of eddy current inspection technique is discussed. The technique uses a pulsed square waveform drive signal and broadband rotating Hall sensor to simplify these inspections. Advantages include reduced operator interpretation, inspection of many layers simultaneously, excellent accuracy and sensitivity,

speed and simplicity of operation, and no surface preparation. Radial position, approximate depth, and relative size of defects can quickly be determined in any layer, including the countersunk area hidden directly under a fastener head to as deep as 7 mm with nonferrous fasteners and 13 mm with ferrous fasteners. The basic technology of the system is described, the problem of dealing with off-center signals is dealt with, and the test sequence is discussed. Also discussed are the limitations to depth, edge-signal interference, relationship of gate time setting to depth, and Hall sensors and pickup calls.

A91-22252#

A MECHANISM OF FRETTING FATIGUE FAILURE IN THE JOINING LUG OF A WING STRUCTURE

XIANGLIN DONG (Chinese Academy of Sciences, Institute of Metal Research, Shenyang, People's Republic of China) and QINGXIANG XIN (Aircraft Structural Strength Research Institute, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Oct. 1990, p. B420-B425. In Chinese, with abstract in English. refs

A fatigue test was carried out on a full-scale fighter wing. The aluminum alloy lug, which joins the wing and the fuselage, failed at the boundary of lug hole parallel to the fuselage. The fracture surface was observed by optical and scanning electron microscopes. There were widespread scars and extruded debris in the lug mated with a steel bushing. In the area of initial crack, wear was particularly obvious, and the crack origin caused by wear scars was observable directly. According to the condition of the stress and strain suffered by the lug, it is clear that fretting occurred between the lug hole and the bush lug surface. The lug fracture, therefore, belongs to fretting fatigue fracture. A model illustrating the mechanism of the crack origin in fretting fatigue in the joining lug is presented.

A91-22259#

MEASUREMENTS OF VORTICITY FIELD

ZUFENG WANG and DINGDING XIN (Beijing University of Aeronautics and Astronautics, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Oct. 1990, p. B480-B483. In Chinese, with abstract in English.

Vorticity spatial distributions are measured by a vorticity probe (vorticimeter) in the flow field induced by vortex shedding from the tip of a rectangular wing in various angles of attack. The vorticimeter has high sensitivity, a simpler calibration process, and ease of use. Consequently, it is capable of direct vorticity measurement and of finding the exact center trace of the vortex core. The vorticimeter measurements show a counter-rotating vortex with a center strength of 1/17 to that of the nearby main wing-tip vortex. The center vorticity is shown to decay substantially as the main wing-tip vortex moves downstream. The strengths of a pair of interacting corotational vortices are measured. The results show that both their locations and center strengths vary significantly as the two wings, each producing a tip vortex, approach each other. At a cross section of 0.3 times the chord length (c), the two corotational vortices, which are 0.195 c apart, are clearly shown to roll up. S.A.V.

A91-22267#

DETERMINATION OF RIVET DIAMETER AND EDGE DISTANCE IN AIRCRAFT RIVETED STRUCTURE

FANGLIN XIE (Shanxi Aircraft Co., People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Oct. 1990, p. B509-B514. In Chinese, with abstract in English.

A91-22323

WEIGHT PENALTIES FOR ELECTROMAGNETIC INTERFERENCE CONTROL

RUSSELL V. CARSTENSEN (U.S. Navy, Naval Air Systems Command, Washington, DC) SAWE, Annual International Conference, 48th, Alexandria, VA, May 22-24, 1989. 7 p. refs (SAWE PAPER 1914) Copyright

The aircraft EM environment (EME) is composed of radiations from both natural and anthropogenic sources, such as lightning

static, radar, radio transmissions, etc.; in combat environments, EMP due to upper-atmosphere nuclear bursts and other nonnuclear microwaves will be especially intense. High energy radiation hazards could exist for personnel, fuel, and ordnance, in association with EMI for such instruments as avionics and radio. EMI control measures involving spatial separation, shielding, filtering, etc., are potentially associated with substantial weight gain. An account is presented of the various measures by which weight can be controlled while meeting EMI-minimization criteria. O.C.

A91-22369#

AN EQUIVALENT CALCULATION OF LOAD SPECTRUMS

FANPEI MENG and LINGFANG LI (Xian Aircraft Co., People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Aug. 1990, p. B328-B333. In Chinese, with abstract in English. refs

A new method of obtaining equivalent load spectrums is presented. The load curves are divided into infinitesimal sections and the equation of S-N curve is introduced. Furthermore, the integration is performed to get the equivalent load spectrum. The method is more reasonable and more convenient in comparison with other engineering methods. It can be used in equivalent calculations of other load spectra.

Author

A91-22496#

COMMENT ON 'OPTICAL BOUNDARY-LAYER TRANSITION DETECTION IN A TRANSONIC WIND TUNNEL'

P. M. H. W. VIJGEN (High Technology Corp., Hampton, VA), C. P. VAN DAM (California, University, Davis), and C. J. OBARA (Lockheed Engineering and Sciences Co., Hampton, VA) AIAA Journal (ISSN 0001-1452), vol. 28, Dec. 1990, p. 2142, 2143. refs
Copyright

A91-22752#

A CLOSED FORM SOLUTION OF STRESS INTENSITY FACTORS FOR THE SHAFT OF AEROPLANE ALL-MOVING STABILIZER WITH CORNER CRACKS EMANATING FROM A HOLE

QIZHI WANG, XING ZHANG, QINGZHI HE (Beijing University of Aeronautics and Astronautics, People's Republic of China), and BINGYI REN (Chengdu Aircraft Co., People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Sept. 1990, p. A424-A432. In Chinese, with abstract in English.

Corner cracks often appear in the shaft of an aircraft all-moving stabilizer near a hole. In this paper, a new analytical-engineering method for a closed form solution of stress intensity factors for the shaft of an aircraft all-moving stabilizer (circular tube) with corner cracks near a hole is derived. The energy release rate method is used.

Author

A91-22754#

NUMERICAL ANALYSES OF STRESS NEAR THE HOLE OF COMPRESSOR DISK BY BOUNDARY ELEMENT METHOD

WEIDONG WEN and DEPING GAO (Nanjing Aeronautical Institute, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Sept. 1990, p. A440-A448. In Chinese, with abstract in English.

The boundary element method (BEM) is used to calculate the stresses near the hole of a compressor disk. Since the disk is axisymmetrical, one sector of the disk with a hole is chosen and the numerical results of FEM are used as the boundary conditions of the sector. The numerical results of BEM are compared with those of FEM. In order to obtain the stresses on the boundary, the second finite difference approach equation for the constant element is derived as well.

A91-23423

PANEL FLUTTER ANALYSIS USING HIGH PRECISION SHEAR FLEXIBLE ELEMENT

M. S. R. PRASAD, B. S. SARMA (Defence Research and Development Laboratory, Hyderabad, India), and T. K. VARADAN

12 ENGINEERING

(Indian Institute of Technology, Madras, India) Journal of Sound and Vibration (ISSN 0022-460X), vol. 144, Jan. 8, 1991, p. 9-16. refs

Copyright

A finite element formulation with use of a two-noded shear flexible element with four degrees of freedom per node is adopted to study the effects of shear deformation and rotary inertia on two-dimensional panel flutter. Exact integration is carried out for all the terms in the element matrix for both thick and thin configurations of the panel. The present study shows good agreement with the previous work for thin panels for all boundary conditions as a result of using the high precision finite element. Shear deformation and rotary inertia effects on the critical dynamic pressure, the effect of aerodynamic damping on the critical dynamic pressure, and the change in flutter mode shapes due to the increase in thickness value of the panel and its end conditions are presented in the form of graphs.

A91-23659*# United Technologies Research Center, East Hartford, CT.

HEAT TRANSFER IN ROTATING PASSAGES WITH SMOOTH WALLS AND RADIAL OUTWARD FLOW

J. H. WAGNER, B. V. JOHNSON (United Technologies Research Center, East Hartford, CT), and T. J. HAJEK (Pratt and Whitney Group, East Hartford, CT) ASME, Transactions, Journal of Turbomachinery (ISSN 0889-504X), vol. 113, Jan. 1991, p. 42-51. Research supported by the United Technologies Corp. refs (Contract NAS3-23691)

(ASME PAPER 89-GT-272) Copyright

Experiments were conducted to determine the effects of rotation on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a smooth wall, large-scale heat transfer model. The objective was to obtain the heat transfer data base required to develop heat transfer correlations and to assess computational fluid dynamic techniques for rotating coolant passages. An analysis of the governing equations showed that four parameters influence the heat transfer in rotating passages (coolant density ratio, Rossby number, Reynolds number, and radius ratio). These four parameters were varied over ranges that exceed the ranges of current open literature results, but that are typical of current and advanced gas turbine engine operating conditions. Rotation affected the heat transfer coefficients differently for different locations in the coolant passage. For example, heat transfer at some locations increased with rotation, but decreased and then increased again at other locations. Heat transfer coefficients varied by as much as a factor of five between the leading and trailing surfaces for the same test condition and streamwise location. Comparisons with previous results are presented. **Author**

A91-23661#

AN EXPERIMENTAL INVESTIGATION OF HEAT TRANSFER COEFFICIENTS IN A SPANWISE ROTATING CHANNEL WITH TWO OPPOSITE RIB-ROUGHENED WALLS

M. E. TASLIM, A. RAHMAN (Northeastern University, Boston, MA), and S. D. SPRING (General Electric Co., Aircraft Engine Business Group, Lynn, MA)

ASME, Transactions, Journal of Turbomachinery (ISSN 0889-504X), vol. 113, Jan. 1991, p. 75-82. Research supported by the General Electric Co. refs (ASME PAPER 89-GT-150)

Copyright

The heat transfer coefficient in a spanwise rotating cooling passage roughened with turbulators of different geometries is measured for a range of Reynolds numbers and three different blockage ratios. The influence of Coriolis forces on internal heat transfer is emphasized. It is concluded that a significant enhancement in heat transfer is achieved in both the stationary and rotating cases when the surfaces are roughened with ribs. For the rotating case as compared with the stationary case, a maximum increase of about 45 percent in the heat transfer coefficient is observed for a blockage ratio of 0.1333; the minimum is a decrease of about 6 percent for a blockage ratio of 0.333. The technique of using liquid crystals to determine the heat transfer

coefficient is found to be effective and accurate, especially for rotating test sections.

A91-23665#

SOME OBSERVATIONS OF CHAOTIC VIBRATION PHENOMENA IN HIGH-SPEED ROTORDYNAMICS

F. F. EHRICH (GE Aircraft Engines, Lynn, MA) ASME, Transactions, Journal of Vibration and Acoustics (ISSN 0739-3717), vol. 113, Jan. 1991, p. 50-57. refs Copyright

Previous studies showed that subharmonic vibration may be encountered by a rotor when it is operated with its rotational centerline being eccentric to that of a close clearance static part, so that local contact can be made during each orbit when the rotor is excited by residual unbalance. In this paper, a simple numerical model of a Jeffcott rotor mounted on a nonlinear spring is used to show that the vibratory response in the transition zone midway between the adjacent zones of subjarmonic response has all the characteristics of chaotic behavior. It is shown that the transition from subharmonic to chaotic response has a complex substructure which involves a sequence of bifurcations of the orbit with variations in speed. This behavior was verified experimentally, using a high-speed turbomachine operating at a speed between 8 and 9 times its fundamental rotor frequency when in local contact across a clearance in the support system.

A91-23679 COMPUTERIZED PROCEDURE FOR VIBRATION DIAGNOSTICS OF AIRCRAFT BRAKES

R. L. WHEELER, III (Loral Aircraft Braking Systems, Akron, OH) and G. D. SHTEINHAUZ (PG Engineering, Akron, OH) IN: Vibration analysis - Techniques and applications; Proceedings of the Twelfth Biennial ASME Conference on Mechanical Vibration and Noise, Montreal, Canada, Sept. 17-21, 1989. New York, American Society of Mechanical Engineers, 1989, p. 101-107. refs Copyright

A procedure that is implemented in a computer program called VIBSCAN5, based on analysis of signals measured during dynamometer tests, is developed for vibration diagnostics of aircraft brakes. Analyzed data include torque, pressure, and load and acceleration signals measured on the working brake. The methodology consists of digital zero-phase filtering, searching for the time window of maximum vibration activity, and calculation of a number of dimensional and dimensionless discriminants, intended to represent the vibration events of brake stops in time and frequency domains. Application of the procedure to the data analysis of aircraft carbon brake stops shows its high diagnostics potential and usefulness for establishing a product and design database.

A91-23685* National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

SOLUTION AND SENSITIVITY ANALYSIS OF A COMPLEX TRANSCENDENTAL EIGENPROBLEM WITH PAIRS OF REAL EIGENVALUES

D. V. MURTHY (NASA, Lewis Research Center, Cleveland; Toledo, University, OH) IN: Vibration analysis - Techniques and applications; Proceedings of the Twelfth Biennial ASME Conference on Mechanical Vibration and Noise, Montreal, Canada, Sept. 17-21, 1989. New York, American Society of Mechanical Engineers, 1989, p. 229-234. Previously announced in STAR as N89-13819. refs Copyright

This paper considers complex transcendental eigenvalue problems where one is interested in pairs of eigenvalues that are restricted to take real values only. Such eigenvalue problems arise in dynamic stability analysis of nonconservative physical systems, i.e., flutter analysis of aeroelastic systems. Some available solution methods are discussed and a new method is presented. Two computational approaches are described for analytical evaluation of the sensitivities of these eigenvalues when they are dependent on other parameters. The algorithms presented are illustrated through examples.

A91-23745#

FLEXURAL-FLEXURAL-TORSIONAL PARAMETRIC VIBRATIONS OF A CANTILEVER BEAM

P. F. PAI and A. H. NAYFEH (Virginia Polytechnic Institute and State University, Blacksburg) IN: Dynamics and control of large structures; Proceedings of the Seventh VPI&SU Symposium, Blacksburg, VA, May 8-10, 1989. Blacksburg, VA, Virginia Polytechnic Institute and State University, 1989, p. 395-409. refs (Contract AF-AFOSR-86-0090; F49620-87-C-0088)

Three nonlinear integrodifferential equations that describe the motion of an inextensional beam are utilized to study the planar and nonplanar responses of a fixed-free beam to a principal parametric excitation. The method of multiple scales is employed to construct a first-order uniform expansion for the interaction of three resonant modes, giving six first-order nonlinear ordinary-differential equations governing the phases and amplitudes of the modes of vibration. Results indicate that the nonlinear inertia terms produce a softening effect and play a significant role in the planar responses of high-frequency modes. For some range of parameters, the response comprises chaotically or periodically modulated motions. The dynamic behavior of a slender, long beam is of interest in connection with manipulator arms, spacecraft antennas, helicopter rotor blades, flexible satellites, and other systems that perform complex and/or large motions.

A91-23814

THEORY OF THE RESONANCE METHOD FOR THE QUALITY CONTROL OF ADHESIVE JOINTS [K TEORII REZONANSNOGO METODA KONTROLIA KACHESTVA KLEEVYKH SOEDINENII]

S. A. FILIMONOV (Vsesoiuznyi Nauchno-Issledovatel'skii Institut Nerazrushaiushchego Kontrolia, Kishinev, Moldavian SSR) Defektoskopiia (ISSN 0130-3082), no. 12, 1990, p. 28-36. In Russian. refs Copyright

A study is made of the electroacoustic channel of an ultrasonic resonance instrument for the quality control of adhesive joints in aircraft panel structures. The observed differences between the calculations and the experimental data are attributed to the effect of diffraction losses. From the standpoint of the reliability of testing, the unique correspondence between the adhesive joint quality and the frequency characteristic of the ultrasonic piezoelectric transducer is shown to be essential.

A91-23817

OPTIMIZATION OF PROCESS ROUTES IN THE REPAIR OF GAS TURBINE ENGINE COMPONENTS USING CAPILLARY TESTING [RATSIONALIZATSIIA MARSHRUTOV REMONTA DETALEI GAZOTURBINNYKH DVIGATELEI, PROVERIAEMYKH KAPILLIARNYMI METODAMI]

IU. A. GLAZKOV Defektoskopiia (ISSN 0130-3082), no. 12, 1990, p. 76-80. In Russian. refs Copyright

Methods are proposed for the optimization of process routes in the repair of gas turbine engine components in order to improve the efficiency of capillary and complex nondestructive testing. The process is optimized by changing the sequence of repair operations, changing the operations themselves, changing test specimen preparation procedures, and changing testing techniques. Examples of repair process optimization are presented for turbine and compressor blades made of a titanium alloy.

A91-23904

OPTIMAL CONDITIONS FOR CONTROLLING THE INTENSITY OF TURBULENT FLOW BY MEANS OF SCREENS [OPTIMAL'NYE USLOVIIA UPRAVLENIIA INTENSIVNOST'IU TURBULENTNOSTI POTOKA S POMOSHCH'IU SETOK]

G. I. DERBUNOVICH, A. S. ZEMSKAIA, E. U. REPIK, and IU. P. SOSEDKO IN: Mechanics of nonuniform and turbulent flows. Moscow, Izdatel'stvo Nauka, 1989, p. 35-44. In Russian. refs Copyright

The use of screens with a high aerodynamic resistance for reducing turbulence in wind tunnels is investigated with a view to

optimizing screen geometry and location in order to achieve maximum turbulence damping with a minimum resistance. The experiments reported here were carried out at incoming flow velocities of 5-8 m/s; velocity fluctuations were measured by hot-wire anemometry. Empirical relations are obtained which make it possible to determine the optimal operating conditions of damping screens.

A91-23905

BOUNDARY LAYER THREE-DIMENSIONALITY IN PLANE COMPRESSION FLOWS [PROSTRANSTVENNOST' POGRANICHNOGO SLOIA V PLOSKOM TECHENII SZHATIJA]

V. V. ZATOLOKA and A. P. OSOVIK IN: Mechanics of nonuniform and turbulent flows. Moscow, Izdatel'stvo Nauka, 1989, p. 57-63. In Russian. refs Copyright

Plane compression flow in an air intake was investigated experimentally in the wall region of the boundary layer by means of a visualization technique using a carbon black-oil mixture. The experiments were carried out in a supersonic wind tunnel at Mach 2 and 4 and angles of attack of 0-15 deg. The effect of free-stream Mach, angle of attack, and angle of bank on the relative flow surface is determined, and the results are presented in graphic form.

A91-23910

THREE-DIMENSIONAL BOUNDARY LAYER EFFECTS IN CONVERGENT COMPRESSION FLOWS [PROSTRANSTVENNYE EFFEKTY POGRANICHNOGO SLOIA V KONVERGENTNOM TECHENII SZHATIIA]

V. V. ZATOLOKA and G. A. KISEL' IN: Mechanics of nonuniform and turbulent flows. Moscow, Izdatel'stvo Nauka, 1989, p. 100-106. In Russian. refs
Copyright

The paper is concerned with a class of convergent compression flows derived from initially axisymmetric convergent flows by sectioning along the current surfaces, such as the external compression region AA1-LL1. Under certain conditions (e.g., pressure differential or boundary layer effects) such flows can be essentially three-dimensional. Here, results of a carbon black-oil visualization study of this class of flows are presented for a model with a central angle of 70 deg. It is shown that an important feature of convergent flow with external compression is the formation of local separation bubbles, rather than separation of the boundary layer as a whole, at Mach 1.2-1.3 or greater. V.L.

A91-23938

CALCULATION OF AVERAGED AXISYMMETRIC FLOW OF AN IDEAL GAS IN TURBOMACHINE STAGES [RASCHET OSREDNENNOGO OSESIMMETRICHNOGO POTOKA IDEAL'NOGO GAZA V STUPENIAKH TURBOMASHINY]

IU. S. KOSOLAPOV and E. IU. PROTSENKO Akademiia Nauk SSSR, Izvestiia, Energetika i Transport (ISSN 0002-3310), Nov.-Dec. 1990, p. 141-145. In Russian. refs Copyright

The steady-state averaged axisymmetric flow of an ideal gas in turbomachine stages is calculated using a method based on the numerical solution of equations for a current function. The method makes it possible to calculate both subsonic and transonic flow regimes. Examples of calculations are presented, and the results are compared with experimental data and analytical results in the literature.

A91-24114

AIRCRAFT STRUCTURES FOR ENGINEERING STUDENTS (2ND REVISED AND ENLARGED EDITION)

THOMAS HENRY GORDON MEGSON (Leeds, University, England) New York, Halsted Press, 1990, 581 p.
Copyright

The present work on the analysis and design of state-of-the-art aircraft structures discusses the fundamental concepts of elasticity, the torsion of solid sections, such energy methods in structural analysis as those of total potential energy and virtual work, and

12 ENGINEERING

the principle of superposition. Attention is then given to the bending of thin plates and the structural instability problems of Euler buckling, inelastic buckling, and flexural-torsional buckling of thin-walled columns. The analysis of actual aircraft structures encompasses the principles of stressed-skin construction for various advanced materials, the bending as well as the shearing and torsion of open and closed thin-walled beams, and the behavior of specific aircraft components. Matrix methods of structural analysis are detailed, and the relevance of these concepts to aeroelasticity and airworthiness criteria.

A91-24153# SUPERCONVERGENCE IN TWO-DIMENSIONAL VORTEX-LATTICE METHODS

KEQIN ZHU (University of Science and Technology of China, Hefei, People's Republic of China) Acta Aerodynamica Sinica (ISSN 0258-1825), vol. 8, Dec. 1990, p. 379-387. In Chinese, with abstract in English. refs

Superconvergence in two-dimensional vortex-lattice methods is studied. Firstly, a numerical solution is compared with an exact solution of the two-dimensional flat plate in the thin wing theory, and the discretization errors of the numerical method are analyzed. Then, a discretization scheme with superconvergence in vortex-lattice methods is derived from the Chebychev polynomial theory. Finally, superconvergence of the scheme for flow around a parabolic camber or cubic parabolic camber is verified theoretically.

N91-15163# Naval Weapons Center, China Lake, CA. BROADBAND COUPLING STRUCTURES FOR MICROWAVE ARITHMETIC CIRCUITS AND PHASED ARRAYS

JOSEPH A. MOSKO /n AGARD, Advances in Components for Active and Passive Airborne Sensors 13 p Sep. 1990 Copyright Avail: NTIS HC/MF A09; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Four specific coupling structures are introduced or are described in detail. Each has important applications now and in future systems. For example, smart skins with integrated microwave circuitry for processing and radiation may make use of a novel coupling aperture. Various rigorous design equations are available for high performance coupler designs, be they on common soft or the newer monolithic microwave integrated circuit (MMICs) capable materials. Numerical solutions are ideally suited to CAD/CAM practices and could be extended to promising newer devices involving multielement coupled transmission lines.

N91-15276# Novespace, Paris (France).

ECONOMICAL TEST METHOD AND EASE OF ACCESS UNDER MICROGRAVITY: THE ZERO-G CARAVELLE Abstract Only [UN MOYEN D'ESSAIS ECONOMIQUE ET D'ACCES AISE EN MICROGRAVITE: LA CARAVELLE ZERO-G]

J.-P. HOCHART and M. BRAFMAN In ESA, International Symposium on Environmental Testing for Space Programmes: Test Facilities and Methods p 449 Sep. 1990 In FRENCH Copyright Avail: NTIS HC/MF A23

The zero-g test aircraft Caravelle is summarized. Planes under parabolic trajectories are submitted to repeated 20 to 25 second sequences of microgravity. The level of residual gravity is in the order of 0.05 g; it is possible to achieve 0.001 g by freely floating the equipment in the flight simulator. The zero-g Caravelle has six test possibilities onboard, driven by two operators, for paths of 120 parabolas. It can be used to prepare orbital parabolic flights by simulating zero-g conditions.

N91-15426*# National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

AN INTEGRATED APPROACH TO SYSTEM DESIGN, RELIABILITY, AND DIAGNOSIS

F. A. PATTERSON-HINE and DAVID L. IVERSON Dec. 1990 17 p Presented at the Digital Avionics Systems Conference, Virginia Beach, VA, 15-18 Oct. 1990 (NASA-TM-102861; A-90272; NAS 1.15:102861) Avail: NTIS

HC/MF A03 CSCL 13/2

The requirement for ultradependability of computer systems in future avionics and space applications necessitates a topdown, integrated systems engineering approach for design, implementation, testing, and operation. The functional analyses of hardware and software systems must be combined by models that are flexible enough to represent their interactions and behavior. The information contained in these models must be accessible throughout all phases of the system life cycle in order to maintain consistency and accuracy in design and operational decisions. One approach being taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates information about system components required in the reliability evaluation with behavioral information useful for diagnostic algorithms. Procedures have been developed at Ames that perform reliability evaluations during design and failure diagnoses during system operation. These procedures utilize information from a central source, structured as object-oriented fault trees. Fault trees were selected because they are a flexible model widely used in aerospace applications and because they give a concise, structured representation of system behavior. The utility of this integrated environment for aerospace applications in light of our experiences during its development and use is described. The techniques for reliability evaluation and failure diagnosis are discussed, and current extensions of the environment and areas requiring further development are summarized. Author

N91-15597 ESDU International Ltd., London (England).
FATIGUE OF ALUMINIUM ALLOY JOINTS WITH VARIOUS
FASTENER SYSTEMS. HIGH LOAD TRANSFER Abstract Only
Sep. 1990 32 p
(ESDU) 00019: ISBN 0.85670.744.9: ISSN 0058-0270). Augili

(ESDU-90018; ISBN-0-85679-744-8; ISSN-0958-0379) Avail: ESDU

This Data Item 90018, an addition to the Fatigue-Endurance Data Sub-series, presents the results of over 150 axial load fatique tests extracted from the literature on the joints under variable amplitude loading (the FALSTAFF loading sequence). A high load transfer joint is one in which more than 30 percent of the axial load is transferred between members and many joints in aircraft wings fall in that category. Details are given of the seven joint designs tested intended to simulate typical structural features, together with details of the two countersunk proprietary fasteners used. Data for the alloys, which were 7050-T76 and 7050-T7651, are included. Tests were made with both clearance-fit and interference-fit fasteners and in some cases the holes were also treated to induce compressive stresses. The effects of these differences are discussed. Despite being tested under axial load, in some designs due to the asymmetric distribution of stresses a bending moment, termed secondary bending, was induced in the region of the fasteners. Using strain gauges the secondary bending was measured and the results are presented in terms of the peak stress, including that due to secondary bending, plotted against FALSTAFF cycles. In addition, results are tabulated for the percentage of load transferred and the measured values of secondary bending. It is noted that to use the results for other joints, secondary bending must be taken into account, and that caution must be observed if the results are applied to joints markedly different in geometry or size from those tested.

N91-15598*# Sverdrup Technology, Inc., Brook Park, OH.
ESTIMATION OF THE ENGINEERING ELASTIC CONSTANTS
OF A DIRECTIONALLY SOLIDIFIED SUPERALLOY FOR
FINITE ELEMENT STRUCTURAL ANALYSIS Final Report
ALI ABDUL-AZIZ and SREERAMESH KALLURI Jan. 1991
15 p
(Contract NAS3-25266)

(NASA-CR-187036; E-5832; NAS 1.26:187036) Avail: NTIS HC/MF A03 CSCL 20/11

The temperature-dependent engineering elastic constants of a directionally solidified nickel-base superalloy were estimated from the single-crystal elastic constants of nickel and MAR-MOO2 superalloy by using Wells' method. In this method, the directionally solidified (columnar-grained) nickel-base superalloy was modeled as a transversely isotropic material, and the five independent elastic

constants of the transversely isotropic material were determined from the three independent elastic constants of a cubic single crystal. Solidification for both the single crystals and the directionally solidified superalloy was assumed to be along the (001) direction. Temperature-dependent Young's moduli in longitudinal and transverse directions, shear moduli, and Poisson's ratios were tabulated for the directionally solidified nickel-base superalloy. These engineering elastic constants could be used as input for performing finite element structural analysis of directionally solidified turbine engine components.

N91-15604*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

A COMPARISON OF FATIGUE LIFE PREDICTION METHODOLOGIES FOR ROTORCRAFT

R. A. EVERETT, JR. (Army Aviation Research and Development Command, Hampton, VA.) Dec. 1990 32 p Submitted for publication

Because of the current U.S. Army requirement that all new rotorcraft be designed to a 'six nines' reliability on fatigue life, this study was undertaken to assess the accuracy of the current safe life philosophy using the nominal stress Palmgrem-Miner linear cumulative damage rule to predict the fatigue life of rotorcraft dynamic components. It has been shown that this methodology can predict fatigue lives that differ from test lives by more than two orders of magnitude. A further objective of this work was to compare the accuracy of this methodology to another safe life method called the local strain approach as well as to a method which predicts fatigue life based solely on crack growth data. Spectrum fatigue tests were run on notched (k(sub t) = 3.2) specimens made of 4340 steel using the Felix/28 tests fairly well, being slightly on the unconservative side of the test data. The crack growth method, which is based on 'small crack' crack growth data and a crack-closure model, also predicted the fatigue lives very well with the predicted lives being slightly longer that the mean test lives but within the experimental scatter band. The crack growth model was also able to predict the change in test lives produced by the rainflow reconstructed spectra. Author

N91-15605*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

PROBABILISTIC FATIGUE METHODOLOGY FOR SIX NIMES RELIABILITY

R. A. EVERETT, JR., F. D. BARTLETT, JR., and WOLF ELBER (Army Aviation Research and Development Command, Hampton, VA.) Dec. 1990 53 p Submitted for publication (NASA-TM-102757; NAS 1.15:102757; AVSCOM-TR-90-B-009)

Avail: NTIS HC/MF A04 CSCL 20/11

Fleet readiness and flight safety strongly depend on the degree of reliability that can be designed into rotorcraft flight critical components. The current U.S. Army fatigue life specification for new rotorcraft is the so-called six nines reliability, or a probability of failure of one in a million. The progress of a round robin which was established by the American Helicopter Society (AHS) Subcommittee for Fatigue and Damage Tolerance is reviewed to investigate reliability-based fatigue methodology. The participants in this cooperative effort are in the U.S. Army Aviation Systems Command (AVSCOM) and the rotorcraft industry. One phase of the joint activity examined fatigue reliability under uniquely defined conditions for which only one answer was correct. The other phases were set up to learn how the different industry methods in defining fatigue strength affected the mean fatigue life and reliability calculations. Hence, constant amplitude and spectrum fatigue test data were provided so that each participant could perform their standard fatique life analysis. As a result of this round robin, the probabilistic logic which includes both fatigue strength and spectrum loading variability in developing a consistant reliability analysis was established. In this first study, the reliability analysis was limited to the linear cumulative damage approach. However, it is expected that superior fatigue life prediction methods will ultimately be

developed through this open AHS forum. To that end, these preliminary results were useful in identifying some topics for additional study.

Author

N91-15607*# McDonnell-Douglas Helicopter Co., Mesa, AZ.
DEVELOPMENT AND APPLICATION OF A TECHNIQUE FOR
REDUCING AIRFRAME FINITE ELEMENT MODELS FOR
DYNAMICS ANALYSIS

MOSTAFA HASHEMI-KIA and MOSTAFA TOOSSI Oct. 1990 132 p

(Contract NAS1-17498)

(NASA-CR-187448; NAS 1.26:187448) Avail: NTIS HC/MF A07 CSCL 20/11

A computational procedure for the reduction of large finite element models was developed. This procedure is used to obtain a significantly reduced model while retaining the essential global dynamic characteristics of the full-size model. This reduction procedure is applied to the airframe finite element model of AH-64A Attack Helicopter. The resulting reduced model is then validated by application to a vibration reduction study.

N91-16206# Massachusetts Inst. of Tech., Lexington. Lincoln Lab.

RESULTS OF THE KANSAS CITY 1989 TERMINAL DOPPLER WEATHER RADAR (TDWR) OPERATIONAL EVALUATION TESTING

J. E. EVANS, ed. 17 Aug. 1990 87 p (Contract DTFA01-83-4-10579) (AD-A228784; ATC-171; DOT/FAA/NR-90/1) Avail: NTIS HC/MF A05 CSCL 17/9

The Terminal Doppler Weather Radar (TDWR) testbed was used at the Kansas City International (KCI) airport during the summer of 1989. The objective was to test and refine previous tested techniques for the automatic detection of low-altitude wind shear phenomena (specifically microbursts and gun fronts) and heavy precipitation in a midwest weather environment, as well as to assess possible new products such as storm movement predictions. A successful operation evaluation of the TDWR products took place at the KCI tower and terminal radar control room (TRACON). Several supervisor and controller display refinements were assessed as effective. The system was successful in terms of aircraft at KCI avoiding wind shear encounters during the operational period, and it was assessed as very good in usefulness for continuing operation by the KCI air traffic control (ATC) personnel. The probability of detection for microbursts was substantially better than that in Denver. However, the false-alarm probability was found to be substantially higher in Kansas City due to a combination of weather and clutter phenomena. By optimizing the site-adaptation capabilities of the TDWR meteorological and data quality algorithms, the required false-alarm probability was achieved. The gust front performance was generally poorer than in Denver due to a combination of unfavorable radar-airport-gust front geometry of false alarms induced by low-level jets. Gust front algorithm refinements which should provide improved performance are discussed.

N91-16281 Council for National Academic Awards (England). FAR-FIELD BOUNDARIES AND THEIR NUMERICAL TREATMENT Ph.D. Thesis

S. KARNI 1989 227 p

Avail: Univ. Microfilms Order No. BRDX89813

Many computational problems of theoretical and practical interest are not naturally bounded by physical boundaries. Aerodynamic examples include flow calculations past airfoils or past wing-body configurations, semi-bounded channel flows. Other examples include simulations of turbomachinery flows, problems in underwater acoustics. To obtain a numerical solution, the problem has first to be converted to a finite region by introducing an artificial boundary at some finite distance. Boundary conditions must be specified at the artificial boundary for well-posedness of the truncated problem. An open boundary across which the fluid flows are simulated should ideally allow outgoing waves to pass through without generating reflections. A thorough numerical study is

12 ENGINEERING

presented for the efficiency of several widely used boundary conditions in absorbing outgoing waves. The key parameters upon which the level of absorption at the boundaries depends, are examined and the limitations of some of the existing recipes expressed. Substantial reflections may occur even under conditions which are considerably milder than those encountered in practical calculations. Two closely related far field modifications are derived and analyzed: slowing down the outgoing waves; and attenuating the outgoing waves. Analytic conditions are derived to ensure that no reflections are generated due to the change of coefficients in the governing equations. Reflection analysis is also performed on the discrete level. The modifications are extended to two space dimensions and are applied to a variety of one and multidimensional test problems.

N91-16293# Calspan Corp., Arnold AFS, TN.
INVESTIGATION OF THE INFLUENCE OF CONSTANT
ADVERSE PRESSURE GRADIENTS ON LAMINAR
BOUNDARY-LAYER STABILITY AT MACH NUMBER 8 Final
Report. 7-11 May 1990

Report, 7-11 May 1990
J. C. DONALDSON, J. P. GRUBB, and D. W. SINCLAIR AEDC Oct. 1990 59 p Sponsored by AF
(AD-A228231; AEDC-TSR-90-V13) Avail: NTIS HC/MF A04
CSCL 20/4

Measurements of fluctuating flow and mean flow parameters were made in the boundary layer on each of two axisymmetric, constant pressure gradient bodies in an investigation of the influence of adverse pressure gradients on the stability of a laminar boundary layer in hypersonic flow. Each test article was slender, constant pressure gradient flare combined with a sharp cone forebody with a 7-deg half angle. The test articles differed in the magnitude of the pressure gradient. The flow fluctuation measurements were made using constant current hot-wire anemometry techniques. Boundary layer profiles and model surface conditions were measured to supplement the hot-wire data. Testing was done at Mach number 8 with a free-stream unit Reynolds number of 1.0-million per foot. The test equipment, test techniques, and the data acquisition and reduction procedures are described. The test was the ninth in a series of efforts which have investigated various aspects of hypersonic boundary layer stability.

N91-16330# United Technologies Research Center, East Hartford, CT

ADVANCED STRUCTURAL INSTRUMENTATION, VOLUME 2 Final Report, Feb. 1983 - Nov. 1989

A. J. DENNIS and GRAHAM B. FULTON 11 Jun. 1990 171 p (Contract F33615-83-C-2330; AF PROJ. 3066) (AD-A227473; UTRC-R-89-2330-VOL-2; WRDC-TR-90-2020-V2-VOL-2) Avail: NTIS HC/MF A08 CSCL

The results are presented of the development and tests of a variety of steady state strain and temperature sensors specifically aimed at application in hot sections of advanced gas turbines. In each case, the sensors have shown success in the laboratory, and tests and results described herein were designed to simulate the actual turbine environment. Most of the testing was carried out in the UTRC vacuum spin rig which was able to achieve speeds and temperatures characteristic of advanced gas turbines. Volume 1 is an overview of the sensors, physical description, comparison of results and conclusions recommendations. Volume 2 gives the details of the sensor fabrication and installation as well as evaluation of the data acquired. The details are given of a specific sensor tested in this program. Temperature sensors tested in the present program include conventional wire thermocouples and an advanced type of thin film thermocouple deposited directly on the test piece. The temperature measuring capability of twin core optical fiber sensor technology was also demonstrated. Remote sensing of temperature was achieved with a thermographic phosphor technique, and optical pyrometry was used as a control throughout the program. Additionally, the feasibility of advanced concept heat flux sensors on a turbine blade was demonstrated. GRA

N91-16382# Implant Sciences Corp., Danvers, MA. WEAR MEASUREMENT OF CERAMIC BEARINGS IN GAS TURBINES Final Report, Aug. 1989 - Mar. 1990
A. J. ARMINI and S. N. BUNKER Mar. 1990 58 p
(Contract F33615-89-C-2942; AF PROJ. 3005)
(AD-A227505; WRDC-TR-90-2078) Avail: NTIS HC/MF A04 CSCL 13/9

The objective was to determine the feasibility of measuring ceramic bearing wear in real time. The method chosen is to selectively introduce a radioactive tag into the surface of a ceramic part and to measure the wear amount by monitoring the strength of the tagging activity as the test progresses. Although this method has been used for many years in the automobile and heavy machinery industries, it has not yet been used to measure the extremely minute amounts of wear which are experienced by ball bearings. This program was analytical in nature, and its principal task was to show the feasibility and accuracy of such a technique applied to Si3N4 and SiC ceramic bearing components. In addition the goal was to develop the analytical theory and operational techniques needed for wear tests.

N91-16407*# National Aeronautics and Space Administration.
Langley Research Center, Hampton, VA.

FINITE ELEMENT THERMO-VISCOPLASTIC ANALYSIS OF AEROSPACE STRUCTURES

AJAY K. PANDEY, PRAMOTE DECHAUMPHAI, and EARL A. THORNTON (Virginia Univ., Charlottesville.) Nov. 1990 23 p Presented at the 1st Thermal Structures Conference, Charlottesville, VA, 13-15 Nov. 1990 Previously announced in IAA as A91-16034

(NASA-TM-102761; NAS 1.15:102761) Avail: NTIS HC/MF A03 CSCL 20/11

The time-dependent thermo-viscoplastic response of aerospace structures subjected to intense aerothermal loads is predicted using the finite-element method. The finite-element analysis uses the Bodner-Partom unified viscoplastic constitutive relations to determine rate-dependent nonlinear material behavior. The methodology is verified by comparison with experimental data and other numerical results for a uniaxially-loaded bar. The method is then used (1) to predict the structural response of a rectangular plate subjected to line heating along a centerline, and (2) to predict the thermal-structural response of a convectively-cooled engine cowl leading edge subjected to aerodynamic shock-shock interference heating. Compared to linear elastic analysis, the viscoplastic analysis results in lower peak stresses and regions of plastic deformations.

13

GEOSCIENCES

Includes geosciences (general); earth resources; energy production and conversion; environment pollution; geophysics; meteorology and climatology; and oceanography.

A91-20695* Air Force Geophysics Lab., Hanscom AFB, MA. OBSERVATIONS OF SEVERE TURBULENCE NEAR THUNDERSTORM TOPS

K. C. PANTLEY (USAF, Geophysics Laboratory, Hanscom AFB, MA) and PETER F. LESTER (San Jose State University, CA) Journal of Applied Meteorology (ISSN 0894-8763), vol. 29, Nov. 1990, p. 1171-1179. refs (Contract NCC2-315)

Copyright

Data derived from the flight tapes of two airliners that experienced severe turbulence near thunderstorm tops are used to produce quantitative descriptions of the turbulence and its environment. The likely turbulence-producing processes include a three-dimensional turbulent wake in the lee of a squall line and an updraft in the top of a thunderstorm. Results suggest that

current procedures for using surface and airborne weather radar for routing aircraft near thunderstorm tops should be reexamined. Also, although useful rules for safe flight near thunderstorm tops already exist, there is evidence that they are not universally applied.

Author

A91-21252

ADVANCED U.S. MILITARY AIRCRAFT BATTERY SYSTEMS
RICHARD A. FLAKE (USAF, Wright Research and Development
Center, Wright-Patterson AFB, OH) and MICHAEL D. ESKRA
(Johnson Controls, Inc., Advanced Battery Business Unit,
Milwaukee, WI) SAE, Aerospace Atlantic Meeting, Dayton, OH,
Apr. 23-26, 1990. 6 p.

(SAE PAPER 901054) Copyright

While most USAF aircraft currently use vented Ni-Cd for do electrical power and emergency power, as well as the powering of lights and instruments prior to engine starting, these batteries have high maintenance requirements, low reliability, and no built-in testing capability with which to check battery health prior to flight. The USAF Wright R&D Center accordingly initiated its Advanced Maintenance-Free NiCd Battery System development program in 1986, in order to develop a sealed Ni-Cd battery which would remain maintenance-free over a period of three years. Attention is being given to a high power bipolar battery design in which there are no individual cell cases or cell interconnects.

A91-21530#

A PROGRAM TO IMPROVE AIRCRAFT ICING FORECASTS - STATUS REPORT

WAYNE R. SAND and MARCIA K. POLITOVICH (NCAR, Boulder, CO) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 9 p. Research supported by NOAA and NSF. refs (Contract DTFA01-90-Z-02005)

(AIAA PAPER 91-0557) Copyright

In October 1989, the Federal Aviation Administration (FAA) initiated a six-year program to improve aircraft icing forecasts. As part of this program, two months of field studies were conducted in the Denver area during winter 1990. This paper provides a status report on that effort, gives a summary of the observations, and presents plans for an expanded field study in 1991. Author

A91-21712* National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, MD.

THE DYNAMICS OF THE STRATOSPHERIC POLAR VORTEX AND ITS RELATION TO SPRINGTIME OZONE DEPLETIONS MARK R. SCHOEBERL (NASA, Goddard Space Flight Center, Greenbelt, MD) and DENNIS L. HARTMANN (Washington, University, Seattle) Science (ISSN 0036-8075), vol. 251, Jan. 4, 1991, p. 46-52. refs Copyright

Recent aircraft observations have determined the structure of polar vortices during winter and their relationship to polar ozone depletions, based on high dynamical isolation and the extremely low temperatures required for stratospheric cloud formation. The aircraft data reveal large gradients of potential vorticity and concentrations of conservative trace species at the transition from high-latitude to polar air, implying that the inward mixing of heat and constituents is strongly inhibited, and that the perturbed polar stratospheric chemistry associated with the ozone hole is isolated from the rest of the stratosphere until the vortex breaks up in late spring. It is therefore the overall polar vortex which limits the annual polar ozone depletions' maximum area-coverage.

N91-15657# Air Force Inst. of Tech., Wright-Patterson AFB, OH.

FINE SCALE ANALYSIS OF THE KINEMATIC, DYNAMIC AND THERMODYNAMIC FEATURES OF A MULTIPLE MICROBURST-PRODUCING STORM M.S. Thesis - St. Louis

BRADLEY TODD REGAN 1990 104 p (AD-A227733; AFIT/CI/CIA-90-083) Avail: NTIS HC/MF A06 CSCL 04/2

The Joint Airport Weather Studies (JAWS) project, designed

to investigate low-level wind shear (LLWS) and its impact on aviation, provides abundant knowledge of the phenomena of microbursts. Observational data collected by Doppler radar during experiment is providing a better understanding of microburst/LLWS structure and Doppler analysis techniques. This understanding is important because deployment of Doppler radar at the national level makes it the principle instrument of regional (meso-scale) forecasting. Microbursts are multi-faceted features of some thunderstorms and occur under a myriad of circumstances. Meteorologists are studying their history, evolution and outcome. Microburst detection, warning, notification and general aviation education are becoming paramount tissues in light of todays ever increasing air travel. The atmospheric state at the time of the microburst and boundary layer interaction exemplify the planetary cascade of energy as it occurs daily. Studies of this kind are necessary to focus attention upon the consequential impacts of these weather phenomena. Data are presented for several mircoburst events which occurred on 5 August 1982.

N91-16466*# National Aeronautics and Space Administration, Washington, DC.

THE ATMOSPHERIC EFFECTS OF STRATOSPHERIC AIRCRAFT: A TOPICAL REVIEW

HAROLD S. JOHNSTON (California Univ., Berkeley.), M. J. PRATHER, and R. T. WATSON Jan. 1991 32 p (NASA-RP-1250; NAS 1.61:1250) Avail: NTIS HC/MF A03 CSCL 13/2

In the late 1960s the aircraft industry became interested in developing a fleet of supersonic transports (SSTs). Between 1972 and 1975, the Climatic Impact Assessment Program (CIAP) studied the possible environmental impact of SSTs. For environmental and economic reasons, the fleet of SSTs was not developed. The Upper Atmosphere Research Program (UARP) has recently undertaken the responsibility of directing scientific research needed to assess the atmospheric impact of supersonic transports. The UARP and the High-Speed Research Program asked Harold Johnston to review the current understanding of aircraft emissions and their effect on the stratosphere. Johnston and his colleagues have recently re-examined the SST problem using current models for stratospheric ozone chemistry. A unique view is given here of the current scientific issues and the lessons learned since the beginning of CIAP, and it links the current research program with the assessment process that began two years ago.

N91-16467*# National Aeronautics and Space Administration. Goddard Space Flight Center, Greenbelt, MD:

THE ATMOSPHERIC EFFECTS OF STRATOSPHERIC AIRCRAFT: A CURRENT CONSENSUS

A. R. DOUGLASS, M. A. CARROLL, W. B. DEMORE, J. R. HOLTON, I. S. A. ISAKSEN, H. S. JOHNSTON, and M. K. W. KO (Atmospheric and Environmental Research, Inc., Cambridge, MA.) Jan. 1991 46 p

(NASA-RP-1251; NAS 1.61:1251) Avail: NTIS HC/MF A03 CSCL 13/2

In the early 1970's, a fleet of supersonic aircraft flying in the lower stratosphere was proposed. A large fleet was never built for economic, political, and environmental reasons. Technological improvements may make it economically feasible to develop supersonic aircraft for current markets. Some key results of earlier scientific programs designed to assess the impact of aircraft emissions on stratospheric ozone are reviewed, and factors that must be considered to assess the environmental impact of aircraft exhaust are discussed. These include the amount of nitrogen oxides injected in the stratosphere, horizontal transport, and stratosphere/troposphere assessment models are presented. Areas in which improvements in scientific understanding and model representation must be made to reduce the uncertainty in model calculations are identified.

15

MATHEMATICAL AND COMPUTER SCIENCES

Includes mathematical and computer sciences (general); computer operations and hardware; computer programming and software; computer systems; cybernetics; numerical analysis; statistics and probability; systems analysis; and theoretical mathematics.

A91-20506

NEW GENERAL GUIDANCE METHOD IN CONSTRAINED OPTIMAL CONTROL. I - NUMERICAL METHOD

B. KUGELMANN (Muenchen, Technische Universitaet, Munich, Federal Republic of Germany) and H. J. PESCH (Muenchen, Technische Universitaet, Munich; Muenchen, Universitaet der Bundeswehr, Neubiberg, Federal Republic of Germany) Journal of Optimization Theory and Applications (ISSN 0022-3239), vol. 67, Dec. 1990, p. 421-435. Research supported by DFG. refs Copyright

A very fast numerical method is developed for the computation of neighboring optimum feedback controls. This method is applicable to a general class of optimal control problems (for example, problems including inequality constraints and discontinuities) and needs no on-line computation, except for one matrix-vector multiplication. The method is based on the so-called accessory minimum problem. The necessary conditions for this auxiliary optimal control problem form a linear multipoint boundary-value problem with linear jump conditions, which is especially well suited for numerical treatment. In the second part of this paper, the performance of the guidance scheme is shown for the heating-constrained cross-range maximization problem of a space-shuttle-orbiter-type vehicle.

A91-20999* Sparta, Inc., Laguna Hills, CA. THE DEVELOPMENT OF A FLIGHT TEST ENGINEER'S WORKSTATION FOR THE AUTOMATED FLIGHT TEST MANAGEMENT SYSTEM

DAVID M. TARTT, MARLE D. HEWETT (Sparta, Inc., Laguna Hills, CA), EUGENE L. DUKE, JAMES A. COOPER (NASA, Flight Research Center, Edwards, CA), and RANDAL W. BRUMBAUGH (PRC Kentron, Inc., Aerospace Technologies Div., Edwards, CA) IN: Society of Flight Test Engineers, Annual Symposium, 20th, Reno, NV, Sept. 18-21, 1989, Proceedings. Lancaster, CA, Society of Flight Test Engineers, 1989, p. 5.2-1 to 5.2-12. Copyright

The Automated Flight Test Management System (ATMS) is being developed as part of the NASA Aircraft Automation Program. This program focuses on the application of interdisciplinary state-of-the-art technology in artificial intelligence, control theory, and systems methodology to problems of operating and flight testing high-performance aircraft. The development of a Flight Test Engineer's Workstation (FTEWS) is presented, with a detailed description of the system, technical details, and future planned developments. The goal of the FTEWS is to provide flight test engineers and project officers with an automated computer environment for planning, scheduling, and performing flight test programs. The FTEWS system is an outgrowth of the development of ATMS and is an implementation of a component of ATMS on SUN workstations.

A91-21235

CURRENT RESEARCH ON SCHEDULERS FOR AEROSPACE INDUSTRY SOFTWARE

RICHARD M. GREATHOUSE and KELLY L. SHIPLEY (U.S. Army, Aviation Systems Command, Saint Louis, MO) SAE, Aerospace Atlantic Meeting, Dayton, OH, Apr. 23-26, 1990. 9 p. refs (SAE PAPER 901014) Copyright

Reconstruction of existing software data for U.S. Army Aviation Systems Command (AVSCOM) cost analysis is presented. The data in both quantitative and statistical terms are developed. Four formal cost estimating models are included: (1) software

engineering cost model (SECOMO); (2) software architecture sizing estimating tool (SASET); (3) parametric review of information for costing and evaluation (PRICE-S); and (4) Ray's enhanced version of intermediate COCOMO (REVIC). Attempts to identify possible causes of variances between the models and the actual calendar months reported in each study are reported.

Y.P.Q.

A91-21326# Rockwell International Science Center, Thousand Oaks, CA.

RESEARCH TO APPLICATION: SUPERCOMPUTING TRENDS FOR THE 90'S - OPPORTUNITIES FOR INTERDISCIPLINARY COMPUTATIONS

VIJAYA SHANKAR (Rockwell International Science Center, Thousand Oaks, CA) AlAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 24 p. Research supported by NASA. refs

(AIAA PAPER 91-0002) Copyright

The progression of supercomputing is reviewed from the point of view of computational fluid dynamics (CFD), and multidisciplinary problems impacting the design of advanced aerospace configurations are addressed. The application of full potential and Euler equations to transonic and supersonic problems in the 70s and early 80s is outlined, along with Navier-Stokes computations widespread during the late 80s and early 90s. Multidisciplinary computations currently in progress are discussed, including CFD and aeroelastic coupling for both static and dynamic flexible computations, CFD, aeroelastic, and controls coupling for flutter suppression and active control, and the development of a computational electromagnetics technology based on CFD methods. Attention is given to computational challenges standing in a way of the concept of establishing a computational environment including many technologies.

A91-21624#

COUPLED LEWICE/NAVIER-STOKES CODE DEVELOPMENT

J. ERIC HOLCOMB (Boeing Aerospace and Electronics, Seattle, WA) and BAHMAN NAMDAR (Boeing Commercial Airplanes, Seattle, WA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 9 p. refs (AIAA PAPER 91-0804) Copyright

An existing Boeing-developed Navier-Stokes/grid generation computer code package has been integrated with the water droplet trajectory and thermal routines from the NASA Lewis ice accretion prediction computer code (LEWICE), in an effort to overcome the limitations of the potential flow solver used in the standard version of LEWICE. The flow code solves the Reynolds-averaged Navier-Stokes equations with the 1985 MacCormack implicit finite volume algorithm, and a two-equation (k-epsilon) turbulence model. The grid generator uses an efficient parabolic/elliptic method. A limited number of airfoil test cases, with and without icing, have been run to validate the new code package. These test cases include RAE 2822, NACA 0012, and Boeing 737-200 airfoils. Preliminary results appear encouraging, although there are some differences between calculations and test data at higher angles of attack, and not enough cases have yet been run with ice accretion for proper validation.

A91-22325

IMPP - THE INTEGRATED MASS PROPERTIES PROGRAM

BRAD FISCHER (Lockheed Aeronautical Systems Co., Burbank, CA) SAWE, Annual International Conference, 48th, Alexandria, VA, May 22-24, 1989. 41 p.

(SAWE PAPER 1894) Copyright

The user-friendly, expandable data base Integrated Mass Properties Program (IMPP) was developed in order to meet the weight tracking and reporting requirements of such projects as the Advanced Tactical Fighter. IMPP operates via a series of menus, with users responding to on-screen prompts with one-character selections from a list. While some options allow the user to prepare data for incorporation into the data base, others allow the user to retrieve data and present it in such formats as MIL-STD-1374A, as well as the format of internal status reports.

A representative work session with the IMPP is presented, together with illustrative inputs and outputs. O.C.

A91-22373#

A MAXIMUM LIKELIHOOD METHOD FOR FLIGHT TEST DATA COMPATIBILITY CHECK

ZHONGKE SHI (Northwestern Polytechnical University, Xian, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Aug. 1990, p. B354-B360. In Chinese, with abstract in English.

An efficient maximum likelihood method for the estimation of instrumentation errors for flight is presented. In order to get high accuracy of bias estimation and to decrease the effects of measurement noises, the least-squares and shifted Chebyshev series method are applied to smoothing the measurements of roll rate, yaw rate, pitch rate, and accelerations. The methods for determining sensitivity matrix and initial values of parameters are developed, and U-D factorization is devoted to computing the 'ill-conditioned' matrix of parameter covariance. Simulation and actual application to two kinds of aircraft show that the method presented can give accurate estimation results of instrumentation errors in a flight test system, and is more efficient than the ordinary ones.

A91-22756#

AN ADAPTIVE FILTER FOR TRACKING THE MANEUVERING TARGET

PEIZHANG JIA (Chinese Academy of Sciences, Institute of Systems Science, Beijing, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Sept. 1990, p. A456-A464. In Chinese, with abstract in English.

The tracking problem for the maneuvering target is studied and an adaptive filter is shown in the paper. In the adaptive filter different dynamical models are adopted depending on the flight states of the aircraft. The optimal detecting method, which not only detects maneuver of the aircraft but also determines the fashion of the maneuver based on the three typical flight states of the aircraft, is presented.

Author

A91-22758#

AN IDENTIFICATION METHOD OF FAST TIME VARYING PARAMETERS ADAPTED TO AIRCRAFT CONTROL SYSTEMS

XINHAI CHEN, XIAOMING YAN, and YANJUN LI (Northwestern Polytechnical University, Xian, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Sept. 1990, p. A474-A479. In Chinese, with abstract in English.

In adaptive control systems, specifically in aircraft control systems, there is often the problem of identifying fast time varying parameters. Using broken line to approximate time-varying parameter and based on the least squares principle, an identification algorithm which is simple for calculation with perfect accuracy is derived. Simulations for control systems of antitank missiles are carried out.

A91-22953#

IDENTIFICATION OF TIME DELAYS IN FLIGHT MEASUREMENTS

J. BLACKWELL and R. A. FEIK (Defence Science and Technology Organisation, Aeronautical Research Laboratory, Melbourne, Australia) Journal of Guidance, Control, and Dynamics (ISSN 0731-5090), vol. 14, Jan.-Feb. 1991, p. 132-139. refs Copyright

A computer program has been developed for the maximum likelihood estimation of parameters in general nonlinear systems. Sensitivity matrix elements are calculated numerically, overcoming the need for explicit sensitivity equations. Parameters such as break points and time delays are successfully determined using simulated data. Two examples using aircraft flight data are shown to demonstrate the identification of multiple time delays concurrently with other parameters.

A91-23742#

ADAM 2.0 - AN ASE ANALYSIS CODE FOR AIRCRAFT WITH DIGITAL FLIGHT CONTROL SYSTEMS

J. SALLEE (USAF, Wright Research and Development Center, Wright-Patterson AFB, OH) IN: Dynamics and control of large structures; Proceedings of the Seventh VPI&SU Symposium, Blacksburg, VA, May 8-10, 1989. Blacksburg, VA, Virginia Polytechnic Institute and State University, 1989, p. 329-344. refs

This paper presents an overview of a new computer code used for the analysis of the aeroservoelastic stability of an aircraft employing a digital flight control system. The computer code, ADAM 2.0, evolved as a result of the modifications and improvements made to another original Air Force computer code, ADAM. The modifications result from changes made to the original procedure for integrating the model of the digital flight control system with the aeroelastic model of the aircraft. In addition, discretization schemes are compared. The major improvements arise from the techniques used to develop analytic functions of the unsteady generalized aerodynamic forces. These improvements are demonstrated together with results of a preliminary analysis of a current aircraft.

N91-15715# Advisory Group for Aerospace Research and Development, Neuilly-Sur-Seine (France). Guidance and Control Panel.

COMPUTER AIDED SYSTEM DESIGN AND SIMULATION

Aug. 1990 388 p In ENGLISH and FRENCH Symposium held in Cesme/Izmir, Turkey, 22-25 May 1990 (AGARD-CP-473; ISBN-92-835-0578-6) Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

* Papers from the workshop are presented. The following guidance and control topics are addressed: Computer aided system design; Simulation technology for missile applications; Simulation technology for aircraft applications; Hardware in the loop simulation; Systems applications; and Pilot in loop simulations.

N91-15716# Aerospatiale, Marignane (France). Div. Helicopteres.

ALGORITHMS DEVELOPMENT METHODOLOGY FOR PERFORMANCE-OPTIMIZED MULTICYCLIC ROTOR COMMANDS

S. GERMANETTI and BERNARD J. GIMONET In AGARD, Computer Aided System Design and Simulation 14 p Aug. 1990 In FRENCH

Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

It is now necessary to use simulation between the conception of an idea and its realization in the domain of control laws. The attempts to measure classically simple models focus attention on the limited but important aspects of the many problems posed by control and the necessity of minimizing the volume of calculations. Simulations now used, so that the calculations are realistically creditable and flexible, are a more integral part of actual components, theory, and equipment. Wind tunnel tests and flight tests are not the ultimate phase of simulation. Numerical simulation allows a choice of complexity of landing phenomena. This data allows a change of analytic and verification tools thanks to the effectiveness of the available interactive means. The precise approach is given of simulation tools during development of control laws for optimization of helicopter performance. Transl. by E. R.

N91-15717# Bilkent Univ., Ankara (Turkey). A DECENTRALIZED CONTROLLER FOR HIGHLY AUGMENTED AIRCRAFT

KONUR ALP UNYELIOGLU and A. BULENT OZGULER In AGARD, Computer Aided System Design and Simulation 10 p Aug. 1990

Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

The design is considered of a decentralized controller for the yaw pointing/lateral translation control of the Flight Propulsion Control Coupling (FPCC) aircraft, to increase the reliability of the

closed loop system with respect to absolute sensor failures. It is shown that better robustness results concerning absolute sensor failures with fixed zero output can be achieved by using decentralized dynamic compensator with high gain in the canard loop, at the expense of reduced phase and gain margins.

Author

N91-15718# Naples Univ. (Italy). Dipartimento di Informatica and Sistemistica.

PARAMETER SPACE DESIGN OF ROBUST FLIGHT CONTROL, SYSTEMS

A. CAVALLO, G. DEMARIA, and L. VERDE (Italian Aerospace Research Center, Capua.) *In* AGARD, Computer Aided System Design and Simulation 13 p Aug. 1990

Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Generally, high performance requirements in terms of better efficiency (reduction in fuel consumption) and maneuverability, impose intrinsic instability on the aircraft. Then a Stability Augmentation System is required for its stabilization. Moreover, the aircraft must be safely controllable without any exceptional piloting skill. The requirements of stability and control are referred in literature as handling qualities. According to handling quality specifications, a feedback controller must be designed with robustness criteria with respect to flight conditions and sensor failure. A new design procedure of feedback controllers which allows the achievement of simultaneous stabilization, and provides some kind of fault tolerance with respect to sensor failure, are proposed. An application to the F4-E military aircraft is also presented.

N91-15719# Messerschmitt-Boelkow-Blohm G.m.b.H., Munich (Germany, F.R.). Aircraft Div.

COMPUTER AIDED DESIGN AND SIMULATION OF THE AUTOMATIC APPROACH AND LANDING PHASE OF A COMBAT AIRCRAFT

F. D. LANGER In AGARD, Computer Aided System Design and Simulation 10 p Aug. 1990

Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Complex control systems like those used in modern aircraft can be efficiently designed and simulated with the aid of artificial intelligence tools. It is discussed how a symbolic manipulation program can be used to automate the steps which are necessary to design and simulate a control system. The landing phase of the MRCA Tornado is taken as an example. The automation of the development phase of a control system can reduce the workload of designers by doing repetitive, tedious, time consuming, and error prone tasks on the computer while letting the respective designers concentrate on more important issues. In the initial design phase, a six degree of freedom model is derived for the approach and landing mode of the aircraft configuration under consideration. The resulting nonlinear equations of motion are linearized around suitably spaced points of the flight trajectory. Next, control systems design methods are applied to the linearized set of equations to generate a control algorithm that satisfies prespecified goals. It is shown that a symbolic manipulation program can be employed as an integrated tool to derive the equations of motion, linearize them around a operating point, and produce a code for digital Author computer simulation.

N91-15727# Universite Catholique de Louvain (Belgium). SYMBOLIC GENERATION OF AIRCRAFT SIMULATION PROGRAMMES

P. MAES and P. Y. WILLEMS In AGARD, Computer Aided System Design and Simulation 9 p Aug. 1990

Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

The main features are presented of a multipurpose computer program which provides aircraft equations of motion in symbolic form and can be used in various testing and simulation procedures. The entries of the program are compatible with ISO standards. Various possibilities are given to the users and, when appropriate,

standard choices are suggested. Both kinematical and dynamical equations are derived. They permit the motion of a reference point fixed to the aircraft to be determined as well as the orientation of the system; they relate the variables which describe the motion to the controls and the interactions and perturbations acting on the system. The program is written in C language, but its output is a standard FORTRAN subroutine which can be used as such by the user. Among other things, this program can be used for simulation and design purposes for the vehicle and its control and navigation systems. It can also be used for air traffic control simulation and trajectory optimization; coupled with a numerical linearization subroutine, it also proves useful for stability analysis.

Author

. __ . ____

N91-15728# Avions Marcel Dassault, Saint-Cloud (France). Div. Systemes Avioniques.

FORMAL TOOLS AND SIMULATION TOOLS: A COHERENT WORKSHOP

PATRICK SCHIRLE In AGARD, Computer Aided System Design and Simulation 12 p Aug. 1990 In FRENCH

Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Avionics systems today have become very complex and represent a large part of aircraft costs. The increasing cost over the last decade can be realized from the operational plans, technology, and methodology. Effective operations research and polyvalence carry an integration of many close functions, which are expressed by the optimization of physical and human resources (sensory fusion, human factors engineering, expert systems). For improvements in their efficiency, these methods rest on a number of information tools collected from coherent workshops. According to their place in the cycle of development, they represent the creative activities, verification, validation, or quality control. During some stages of development, the simulation allows verification to continue from the limited techniques of different specs. The simulation characteristics are from a different stage of development. The more upstream simulation allows hypothetical development to demonstrate their operability. Lastly, a simulation of system behavior is realized beginning with functional specs of the components. The methods and means are described which were used by the AMD-BA Society for the development of avionics systems from an industrial architecture viewpoint. The accent is placed on the different techniques and tools of simulation and their integration in a complete and coherent workshop.

Transl. by E.R.

N91-15729# Aeronautica Macchi S.p.A., Varese (Italy). Air Vehicle Technology Div.

AIRCRAFT CONTROL SYSTEM DESIGN, SYNTHESIS, ANALYSIS, AND SIMULATION TOOLS AT AERMACCHI

L. MANGIACASALE, L. V. CIOFFI, and C. A. BONATTI In AGARD, Computer Aided System Design and Simulation 10 p Aug. 1990 Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Three phases of an aircraft control system design are presented and discussed. From the preliminary synthetic design to the nonlinear simulation, the various steps proceed through the computational methods currently exploited at Aermacchi. Optimal and suboptimal methods are used in the first phase in order to get information about control strategies; accurate linear analysis is then performed with complex linear models for the continuous and sampled data design. The design is completed with three and six degrees of freedom nonlinear simulations in which the complete aircraft is simulated with an even more complex modelization.

N91-15730# Electronic System G.m.b.H., Munich (Germany, F.R.).

COCKPIT MOCK UP (CMU): A DESIGN AND DEVELOPMENT TOOL

CHRISTOPH WEBER In AGARD, Computer Aided System Design and Simulation 9 p Aug. 1990

Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Designing a modern helicopter cockpit, ergonomics, operational, and technical aspects have to be considered. To ensure a low cost development schedule the Cockpit Mock-Up (CMU) is a flexible, inexpensive design and development tool for optimization of the Man Machine Interface (MMI). The ESG CMU, realized in close cooperation with the user, is a full size model cockpit of future helicopters such as NH 90 and PAH-2. The future user is integrated in the experimental closed loop simulation with the CMU.

N91-15731# Royal Aerospace Establishment, Bedford (England). Dept. of Flight Management.

COMPUTER-AIDED CONTROL LAW RESEARCH: FROM CONCEPT TO FLIGHT TEST

B. N. TOMLINSON, G. D. PADFIELD, and P. R. SMITH In AGARD, Computer Aided System Design and Simulation 15 p Aug. 1990

Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Active control technology (ACT) has changed the way aircraft can be designed and flown. The challenge for flight control research is, given the potential of ACT, to define what is required. In order to answer this question, a flyable implementation is needed, whether for a piloted flight simulator or for full scale flight. The need for implementation introduces issues of software design and management and possibly conflict with the needs of research. A domain is described for flight control law research being developed to provide a rigorous yet flexible framework. A comprehensive life cycle is defined for the evolution of flight control laws from concept via piloted simulation to flight test which, in its current form, has four major phases: conceptual design, engineering design, flight clearance, and flight tests. Conceptual design covers off-line simulation. Engineering design is the process of full control law design. Flight clearance consolidates results from earlier stages and achieves a verified implementation for the target flight control computer. Flight test evaluates the control system in full scale flight. A description of all these phases is presented. Control law life cycle examples are given. Author

N91-15732# Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany, F.R.). Inst. fuer Flugmechanik. REAL-TIME HARDWARE-IN-THE-LOOP SIMULATION FOR ATTAS AND ATTHES ADVANCED TECHNOLOGY FLIGHT TEST VEHICLES

PETER SAAGER In AGARD, Computer Aided System Design and Simulation 12 p Aug. 1990

Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Applications are given of the real time simulations used by DLR, and are followed by the presentation of the implemented hardware concept and some special aspects with regard to the simulation computers AD10 and AD100. This includes considerations of the analog and digital input/output handling with connected hardware in the loop (HIL). The advantage of higher simulation languages (CSSL based ADSIM, MPS10) as software tools for the development, modification, and implementation of complex and extensive software modules under real time simulation aspects is also considered. Based on this discussion is the description of problems with the correlation between the simulation frame time and the actual integration stepsize. Suitable integration algorithms and other supporting methods used within real time simulations to compute the dynamics of stiff systems are described. The presented helicopter's mainrotor simulation model serves as an example of the complexity of software modules, incorporated into the real time simulations. Finally, the actual method for the verification and validation of the simulation results and the principle diagnostic and test software application concept is explained.

Author

N91-15735# Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Brunswick (Germany, F.R.). Inst. fuer Flugmechanik. A NEW APPROACH TO HARDWARE-IN-THE-LOOP SIMULATION (FALKE SHUTTLE)

C.-H. OERTEL, K. ALVERMANN, R. GANDERT, and B. GELHAAR In AGARD, Computer Aided System Design and Simulation 19 p Aug. 1990
Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests

Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

System simulation is an important task in the development procedure of new and improved flight test vehicles. In addition to typical off-line and non-real time system simulations, special requirements for real time computation speed exists for flight simulators. Another application of real time simulation is the so called hardware in the loop (HIL) simulation, where real parts like new closed loop controllers or complete on-board systems are tested under realistic conditions. The progress in computer science shows a trend to distributed systems where multiple processors are running in parallel to improve the performance dramatically. At DLR a computer system, based on the TRANSPUTER was designed to achieve real time simulation capabilities for the FALKE Shuttle. This flight vehicle is a reduced size model of a reentry body which is used for a new aerodynamic flight test technique. The characteristics of the HIL simulation is presented along with an introduction to the FALKE flight test technique. Then an introduction to TRANSPUTERS is given along with a description of the hardware for simulation including all the interfaces to the FALKE. The simulation model is described and its mathematical formulation.

N91-15738# European Organization for the Safety of Air Navigation, Brussells (Belgium). Engineering Directorate.

INTEGRATION OF A REALISTIC

AIRLINE/AIRCREW/AIRCRAFT COMPONENT IN ATC SIMULATIONS

ANDRE BENOIT and SIP SWIERSTRA In AGARD, Computer Aided System Design and Simulation 10 p Aug. 1990 Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Present trends indicate that air traffic density will double over the next few years. The level of automation achieved in the aircraft itself allows a flight to be programmed and then conducted with little or no subsequent human intervention. In contrast, at the executive level, the air traffic authorities handle each flight as a succession of individual short segments and are not in a position to take much account of aircraft capabilities. The work done by EUROCONTROL is described with a view to integrating airline requirements, crew reactions, and aircraft capabilities in simulations aimed at assessing future air traffic handling procedures. Such procedures involve the 4-D guidance of aircraft which may possess the entire range of 2-D, 3-D, and 4-D navigation capabilities. Emphasis is placed on specific aspects such as (1) assessment of future 4-D ground/air guidance procedures under realistic conditions, and (2) assessment of the overall air traffic control loop. The solutions proposed in the two areas were tested and were presented to controllers, pilots, and pseudopilots.

N91-15739# Honeywell Advanced Technology Centre, Markham (Ontario).

NAVPACK: SIMULATION TOOLS FOR DESIGN OF HIGH PERFORMANCE INTEGRATED NAVIGATION SYSTEMS

JAN Z. ZYWIEL, JOHN S. A. HEPBURN, and BRUNO M. SCHERZINGER In AGARD, Computer Aided System Design and Simulation 6 p Aug. 1990

Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

The NAVPACK Software Package for navigation systems simulation and analysis is described. The fundamental concept of NAVPACK is to create as modular a structure for the software as possible, with standard interfaces between separate programs and within individual programs. Therefore NAVPACK consists of distinct computer programs that perform individual simulation tasks. These programs are combined as needed at the operating system level

to perform the required processing. The NAVPACK software was successfully used for supporting a number of programs. It was used in the development of the Helicopter Integrated System (HINS). HINS requirements called for a high performance, robust, and fault tolerant integrated navigation system. Elements of NAVPACK were used for the development of a very high precision motion compensation system for high resolution, long range synthetic aperture radar. The package was also used in some work on a recently completed Marine Attitude Reference System (MARS), comprising an Inertial Navigation System (INS) capable of in motion alignment without aiding sensors.

N91-15741# Deutsche Airbus G.m.b.H., Hamburg (Germany, F:R.).

THE USE OF SYSTEM SIMULATION DURING THE DEFINITION PHASE OF THE PASSENGER TRANSPORT AIRCRAFT MPC75 DIETER DEY and AUGUST KROEGER In AGARD, Computer Aided System Design and Simulation 13 p Aug. 1990 Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Some general remarks are presented concerning the tasks to be performed during the definition phase of a civil passenger aircraft and the importance is given of the use of simulation as a design tool. A more detailed differentiation of the terms systems and simulation is given with the emphasis on real time simulation. The present use of simulation in four areas is described: for systems engineering and know-how accumulation; for aircraft systems automation, monitoring, and handling in failure cases; for tests of programmed avionic boxes, specially the fly-by-wire system; and for flight simulation with and without pilot in the loop.

N91-15743# Boeing Co., Seattle, WA. INTEGRATED TECHNOLOGY DEVELOPMENT **LABORATORIES**

DONALD E. DEWEY In AGARD, Computer Aided System Design

and Simulation 7 p Aug. 1990 Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

New integrated avionics technologies are capable of providing the performance improvements needed for current military aircraft. However, integrated laboratory facilities are needed to fully realize the potential of these technologies. The Boeing Co. has developed such a facility, a single laboratory capable of studying high integrated avionics systems from research through full scale development.

National Aeronautics and Space Administration. N91-15744*# Ames Research Center, Moffett Field, CA.

SIMULATION OF NAP-OF-EARTH FLIGHT IN HELICOPTERS GREGORY W. CONDON In AGARD, Computer Aided System

Design and Simulation 17 p Aug. 1990 Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive CSCL 09/2

NASA-Ames in conjunction with U.S. Army has conducted simulation investigations of rotorcraft in the nap-of-the-Earth (NOE) environment and has developed facility capabilities specifically designed for this flight regime. The experience gained to date in applying these facilities to the NOE flight regime are reported along with the results of specific experimental investigations conducted to understand the influence of both motion and visual scene on the fidelity of NOE simulation. Included are comparisons of results from concurrent piloted simulation and flight research investigations. The results of a recent simulation experiment to investigate simulator sickness in this flight regime is also discussed. Author

N91-15746# Test Squadron (6515th), Edwards AFB, CA. THE DEVELOPMENT OF AVIONICS-INTENSIVE **MULTI-SENSOR COCKPITS: SIMULATION DOES NOT ALWAYS EQUAL SUCCESS**

In AGARD, Computer Aided System Design C. G. KILLBERG

and Simulation 8 p Aug. 1990 Copyright Avail: NTIS HC/MF A17; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

Simulation provides a critical foundation for the design and development of advanced aircraft. Present day wind tunnels and aerodynamic computer models are generally accurate to within a few percentages of actual performance. Simulators appear to provide a very accurate model of the environment for large transport category aircraft, which operate in comparatively benign conditions. Although the past decade has brought significant changes to the design of commercial airline cockpits, one may recall that for many years major commercial aircraft manufacturers tried in vain to modernize airline cockpits with significant improvements in instrument and display design. The use of simulation in the design and development of the cockpit man-machine interface for advanced multisensor aircraft is not always successful. Certainly simulation has been useful in the development of fighter/attack aircraft with high integrated cockpits. Some of the reasons for the failure of simulation to highlight some of these problems before a highly integrated fighter flys for the first time are examined.

Author

N91-15751*# Computer Sciences Corp., Hampton, VA. Applied Technology Div.

ANALYTIC PATCH CONFIGURATION (APC) GATEWAY VERSION 1.0 USER'S GUIDE

BRADFORD D. BINGEL Dec. 1990 20 p

(Contract NAS1-19038)

(NASA-CR-187464; NAS 1.26:187464) Avail: NTIS HC/MF A03 **CSCL 09/2**

The Analytic Patch Configuration (APC) is an interactive software tool which translates aircraft configuration geometry files from one format into another. This initial release of the APC Gateway accommodates six formats: the four accepted APC formats (89f, 89fd, 89u, and 89ud), the PATRAN 2.x phase 1 neutral file format, and the Integrated Aerodynamic Analysis System (IAAS) General Geometry (GG) format. Written in ANSI FORTRAN 77 and completely self-contained, the APC Gateway is very portable and was already installed on CDC/NOS, VAX/VMS, SUN, SGI/IRIS, CONVEX, and GRAY hosts.

Sheffield Univ. (England). Dept. of Control N91-15796# Engineering.

SELECTION OF WEIGHTS IN OPTIMAL CONTROL G. S. VIRK and J. M. TAHIR Jun. 1990 11 p

(RR-397; ETN-91-98525) Avail: NTIS HC/MF A03

A method to design the weighting matrices in the optimal control of an aircraft is presented. The method is equally suitable for any general multivariable application provided some prior knowledge is available to enable the rankings and the determination of the important terms. **ESA**

N91-16582# Midwest Research Inst., Golden, CO. Solar Energy Research Inst.

SMOOTHING AND SCALING AIRFOIL COORDINATES ON A PERSONAL COMPUTER

PETER K. C. TU and GEORGE N. SCOTT Dec. 1989 79 p (Contract DE-AC02-83CH-10093)

(DE89-000878; SERI/TR-257-3372) Avail: NTIS HC/MF A05

A mainframe computer program written for smoothing and scaling coordinates was successfully adapted for use on personal computers (IBM PC or compatible microcomputers). The program was modified with a new format for input/output files, keyboard selection of plotting and printing options, and the ability to preview plots on a PC monitor before pen plotting. The new source code was then recompiled on a PC and used mainly for the purpose of supporting in-house aerodynamic research work. It was made compatible with other in-house codes. The system specifications for PCs are listed and the NASA Langley program and its theories used for smoothing and scaling airfoil coordinates are briefly described. A flow chart of the program and the input/output files are explained in detail. A step-by-step manual of executing the code on a PC and the results of sample runs are included. Also included is an evaluation section of airfoil performance characteristics by using a low Reynolds number airfoil design and analysis computer code created to demonstrate the significance or any discrepancies as a result of the smoothing and scaling.

DOE

16

PHYSICS

Includes physics (general); acoustics; atomic and molecular physics; nuclear and high-energy physics; optics; plasma physics; solid-state physics; and thermodynamics and statistical physics.

A91-20614

PROPELLER NOISE MINIMIZATION WITHOUT THRUST LOSS DUE TO ASYMMETRIC BLADE DISTRIBUTION [PROPELLERLAERMMINDERUNG OHNE SCHUBVERLUST DURCH UNSYMMETRISCHE BLATTEILUNG]

WERNER DOBRZYNSKI (DLR, Institut fuer Entwurfsaerodynamik, Brunswick, Federal Republic of Germany) DLR-Nachrichten (ISSN 0937-0420), Nov. 1990, p. 29-33. In German. Copyright

Measures which can be taken to minimize propeller noise caused by asymmetric blade distribution, without loss of thrust, are discussed. The theoretical optimization of angular separation and its relation to the minimization of noise is reviewed. Experimental results on various propellers are discussed. C.D.

A91-20747*# Kansas Univ., Lawrence. PRESSURE-TIME HISTORY OF PYLON WAKE ON A PUSHER PROPELLER IN FLIGHT

SAEED FAROKHI (Kansas, University, Lawrence) Journal of Propulsion and Power (ISSN 0748-4658), vol. 6, Nov.-Dec. 1990, p. 758-768. Previously cited in issue 21, p. 3401, Accession no. A89-49425. refs (Contract NAG1-867)

A91-21255* National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.

THE PREDICTION OF STOVL NOISE - CURRENT SEMIEMPIRICAL METHODS AND COMPARISONS WITH JET NOISE DATA

PAUL T. SODERMAN (NASA, Ames Research Center, Moffett Field, CA) SAE, Aerospace Atlantic Meeting, Dayton, OH, Apr. 23-26, 1990. 31 p. refs

(SAE PAPER 901058) Copyright

The prediction of conventional or STOVL turbojet propulsion system-using aircraft noise is presently undertaken by means of a method incorporating empirical models for jet-mixing noise, engine core noise, and broadband shock noise. The free-jet noise is coupled with a novel empirical equation for ground-interaction noise generated by a vertically impinging jet, and supplemented with the out-of-ground-effect free-jet acoustic directivity pattern of a Harrier-type vectoring nozzle installation. This acoustic-prediction method yielded reasonable agreement with measured far-field Harrier noise during hover in and out of ground effect. Unlike small-scale studies of jet impingement on a hard surface, no tones were found in the present Harrier nozzle spectra.

A91-21511°# Lockheed Engineering and Sciences Co., Hampton, VA.

A STUDY OF LOUDNESS AS A METRIC FOR SONIC BOOM ACCEPTABILITY

KATHY E. NEEDLEMAN (Lockheed Engineering and Sciences Co., Hampton, VA), CHRISTINE M. DARDEN, and ROBERT J. MACK (NASA, Langley Research Center, Hampton, VA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 11 p. refs (AIAA PAPER 91-0496)

A parametric study of loudness levels with respect to weight,

altitude, and Mach number for sonic boom signatures generated by two Mach 2.0 conceptual configurations is presented and compared with a similar study for nose shock overpressure. This paper discusses the relative importance of the two sonic boom metrics and the implications of the trends shown. Of the two configurations considered in this study, one was designed for optimum aerodynamic performance and the second was designed to produce a constrained overpressure sonic boom signature at cruise flight conditions. Results indicate that reductions in both loudness and overpressure level are possible when the configuration is shaped to produce a low boom signature. Results also prove that the loudness metric is a more reliable measure of the disturbance due to sonic booms than nose shock overpressure, because the overpressure does not include the sometimes significant effects of embedded shocks which are often present in mid-field low boom signatures.

A91-21545*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

DIRECTIVITY AND PREDICTION OF LOW FREQUENCY ROTOR NOISE

C. L. BURLEY, M. A. MARCOLINI (NASA, Langley Research Center, Hampton, VA), H. E. JONES (NASA, Langley Research Center; U.S. Army, Aviation Systems Command, Hampton, VA), and W. R. SPLETTSTOESSER (DLR, Brunswick, Federal Republic of Germany) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 18 p. refs (AIAA PAPER 91-0592) Copyright Acoustic data obtained over a large horizontal plane under the

Acoustic data obtained over a large horizontal plane under the model rotor and digitally filtered in order to determine the low-frequency content near the blade passage frequency is analyzed. Focus is placed on the directivity of low-frequency noise, and the changes in directivity as a function of the descent glide slope angle and advance ratio are presented and compared with predicted directivity results. The differences between the data and prediction are discussed for two observer positions, one below and on the rotor axis, and the other 60 degrees down from the horizontal. It is demonstrated that for the latter position, blade-vortex interaction noise is strong when it occurs, and the loading at the low frequencies is significantly affected during blade-vortex interactions.

A91-21546#

DEVELOPMENT OF A BOUNDARY LAYER NOISE PREDICTION CODE AND ITS APPLICATION TO ADVANCED PROPELLERS

PETER L. SPENCE (Lockheed Engineering and Sciences Co., Hampton, VA) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 19 p. refs (AIAA PAPER 91-0593) Copyright

A computer program is developed which models the refractive and scattering effects on acoustic pressure waves propagating through a boundary layer encompassing an aircraft's fuselage. The noise source is assumed known and generated by a propeller. The fuselage is represented by an infinitely long cylinder embedded in a longitudinal flow. A transfer function is derived in the paper by matching a numerical solution inside the boundary layer with an analytical solution outside the boundary laver. For a specified boundary layer velocity profile and thickness, the code calculates the acoustic pressure at the surface of the cylinder given the incident field at the top of the boundary layer. Numerical experiments illustrate the importance of describing the boundary layer velocity profile shape and thickness as accurately as possible. Results of the code are compared with flight test data measured during the Propfan Test Assessment (PTA) experiment. Comparisons of theoretical results with the measured data show good agreement.

A91-21547*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

IN-FLIGHT SOURCE NOISE OF AN ADVANCED FULL-SCALE SINGLE-ROTATION PROPELLER

RICHARD P. WOODWARD and IRVIN J. LOFFLER (NASA, Lewis

Research Center, Cleveland, OH) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 19 p. refs (AIAA PAPER 91-0594) Copyright

Flight tests to define the far-field tone source at cruise conditions have been completed on the full-scale SR-7L advanced turboprop, which was installed on the left wing of a Gulfstream II aircraft. These measurements defined source levels for input into long-distance propagation models to predict en route noise. Infight data were taken for seven test cases. The sideline directivities measured showed expected maximum levels near 105 deg from the propeller upstream axis. However, azimuthal directivities based on the maximum observed sideline tone levels showed highest levels below the aircraft. The tone level reduction associated with reductions in propeller tip speed is shown to be more significant in the horizontal plane than below the aircraft.

A91-21548#

ACOUSTIC POWER LEVEL COMPARISONS OF MODEL-SCALE COUNTERROTATING UNDUCTED FANS

B. A. JANARDAN and P. R. GLIEBE (GE Aircraft Engines, Cincinnati, OH) AIAA, Aerospace Sciences Meeting, 29th, Reno, NV, Jan. 7-10, 1991. 11 p. refs (AIAA PAPER 91-0595) Copyright

Sound power level and power spectra, computed from sound pressure measurements made in an anechoic facility, were used to quantify the noise characteristics of a model-scale counterrotating fan configuration. The model-scale sound power level data obtained with various blade numbers, blade pitch angles and simulated flight Mach numbers were correlated with performance results using statistical regression techniques. The data of all these configurations were determined to collapse well on the basis of shaft horsepower per blade, indicating that the fan noise is basically a function of loading on the blade. The usefulness of the model-scale sound power level in characterizing counterrotating fan noise data is demonstrated by relating it to scaled farfield acoustic metrics such as dBA and EPNL. Author

A91-22370#

THE INTERIM PREDICTION FOR AIRCRAFT NOISE

DIYI TANG, WENLAN LI, WEIYANG QIAO, and ZHENXIA LIU (Northwestern Polytechnical University, Xian, People's Republic of China) Acta Aeronautica et Astronautica Sinica (ISSN 1000-6893), vol. 11, Aug. 1990, p. B334-B342. In Chinese, with abstract in English. refs

The acoustic emission from an aircraft during the flight is a dynamic process. The emitting acoustic power and received mean square acoustic pressure are the function of time. The paper deals with this problem as a quasi-steady one. The whole process is resolved into several elementary procedures, for example, the flight trajectory, the geometric relation between the noise sources and observers, the noise source characteristics, the air propagation, and ground effect. Two calculation examples are given, one for a long-range passenger aircraft with high bypass-ratio turbofan engine, another for a three-bladed propeller. The composition of aircraft noise, and its time record, frequency spectrum and directivity can be clearly described by these curves.

A91-22493#

EFFECT OF SLOTTING ON THE NOISE OF AN AXISYMMETRIC SUPERSONIC JET

ANJANEYULU KROTHAPALLI (Florida Agricultural and Mechanical University; Florida State University, Tallahassee), JAMES MCDANIEL (Virginia, University, Charlottesville), and DONALD BAGANOFF (Stanford University, CA) AIAA Journal (ISSN 0001-1452), vol. 28, Dec. 1990, p. 2136-2138. Previously cited in issue 17, p. 2685, Accession no. A89-41042. refs

N91-15167# Thomson-CSF, Orsay (France). SPECIAL OPTICAL FIBRES AND SENSORS FOR AERONAUTICS

JEAN-PIERRE LEPESANT and MARC TURPIN In AGARD, Advances in Components for Active and Passive Airborne Sensors

10 p Sep. 1990

Copyright Avail: NTIS HC/MF A09; Non-NATO Nationals requests available only from AGARD/Scientific Publications Executive

The primary motivations for using fiber optics for onboard communications, flight, and engine control in aircrafts, are immunity from electromagnetic interference and lightnings, lighter weight, smaller size, and a high degree of data formatting flexibility. The present status of the optical fiber fabrication technologies is presented along with some of the applications currently accessible for optical fibers in terms of inflight communications, navigation, and physical data collection and optical power transmission. Typical values are given of the characteristics made achievable by the evolution of the technologies.

N91-15842*# National Aeronautics and Space Administration. Lewis Research Center, Cleveland, OH.

POTENTIAL REDUCTION OF EN ROUTE NOISE FROM AN ADVANCED TURBOPROP AIRCRAFT

JAMES H. DITTMAR Dec. 1990 19 p (NASA-TM-103635; E-5809; NAS 1.15:103635) Avail: NTIS HC/MF A03 CSCL 20/1

When the en route noise of a representative aircraft powered by an eight-blade SR-7 propeller was previously calculated, the noise level was cited as a possible concern associated with the acceptance of advanced turboprop aircraft. Some potential methods for reducing the en route noise were then investigated and are reported. Source noise reductions from increasing the blade number and from operating at higher rotative speed to reach a local minimum noise point were investigated. Greater atmospheric attenuations for higher blade passing frequencies were also indicated. Potential en route noise reductions from these methods were calculated as 9.5 dB (6.5 dB(A)) for a 10-blade redesigned propeller and 15.5 dB (11 dB(A)) for a 12-blade redesigned propeller.

N91-15843 ESDU International Ltd., London (England). AIRFRAME NOISE PREDICTION Abstract Only Nov. 1990 30 p

(ESDU-90023; ISBN-0-85679-749-9; ISSN-0307-0115) Avail: ESDU

This Data Item 90023, an addition to the Noise Sub-series, provides the FORTRAN listing of a computer program for a semi-empirical method that calculates the far-field airframe aerodynamic noise generated by turbo-fan powered transport aircraft or gliders in one-third octave bands over a frequency range specified by the user. The overall sound pressure level is also output. The results apply for a still, lossless atmosphere; other ESDU methods may be used to correct for atmospheric attenuation, ground reflection, lateral attenuation, and wind and temperature gradients. The position of the aircraft relative to the observer is input in terms of the height at minimum range, and the elevation and azimuthal angles to the aircraft; if desired the user may obtain results over a range of those angles in 10 degree intervals. The method sums the contributions made by various components. results for which can also be output individually. The components are: the wind (conventional or delta), tailplane, fin, flaps (single/double slotted or triple slotted), leading-edge slats, and undercarriage legs and wheels (one/two wheel or four wheel units). The program requires only geometric data for each component (area and span in the case of lifting elements, flap deflection angle, and leg length and wheel diameter for the undercarriage). The program was validated for aircraft with take-off masses from 42,000 to 390,000 kg (92,000 to 860,000 lb) at airspeeds from 70 to 145 m/s (135 to 280 kn). Comparisons with available experimental data suggest a prediction rms accuracy of 1 dB at minimum range, rising to between 2 and 3 dB at 60 degrees to either side.

N91-16693*# National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.

LONG-RANGE VERTICAL PROPAGATION

WILLIAM L. WILLSHIRE, JR. and DONALD P. GARBER (Lockheed Engineering and Sciences Co., Hampton, VA.) In its 4th

International Symposium on Long-Range Sound Propagation p 127-132 Dec. 1990

Avail: NTIS HC/MF A12 CSCL 20/1

Development of the advanced turboprop has led to concerns about en route noise. Advanced turboprops generate low-frequency, periodic noise signatures at relatively high levels. As demonstrated in a flight test of NASA Lewis Research Center's Propfan Test Assessment (PTA) airplane in Alabama in October 1987, the noise of an advanced turboprop operating at cruise altitudes can be audible on the ground. The assessment of the en route noise issue is difficult due to the variability in received noise levels caused by atmospheric propagation and the uncertainty in predicting community response to the relatively low-level en route noise, as compared to noise associated with airport operations. The En Route Noise Test was designed to address the atmospheric propagation of advanced turboprop noise from cruise altitudes and consisted of measuring the noise of an advance turboprop at cruise in close proximity to the turboprop and on the ground. Measured and predicted ground noise levels are presented. Author

17

SOCIAL SCIENCES

Includes social sciences (general); administration and management; documentation and information science; economics and cost analysis; law and political science; and urban technology and transportation.

A91-22322

AIRCRAFT COST ESTIMATING - WEIGHT COMMONALITY AS A PREDICTOR

MARY MONICA SCOTT (U.S. Navy, Naval Air Systems Command, Washington, VA) SAWE, Annual International Conference, 48th, Alexandria, VA, May 22-24, 1989. 21 p. (SAWE PAPER 1909) Copyright

The Naval Air Systems Command has developed a Weight Commonality Statement (WCS) for defining common and peculiar weights, with a view to estimating the costs of derivative aircraft. It is in principle possible to identify points were peculiar weight, defined as weight that is added or reduced, has an impact on design and production factors. Attention is presently given to the initial assumptions for, and preliminary treatment of, the weight data used in the cost-estimating relationship, as well as to two illustrative WCS applications: (1) estimates of nonrecurring tooling requirements, and (2) projections of recurring manufacturing costs.

N91-15928# Wichita State Univ., KS. National Inst. for Aviation Research.

INTERNATIONAL AIRCRAFT OPERATOR INFORMATION SYSTEM, PHASE 2 Program Plan

JOHN J. HUTCHINSON and BARBARA K. SMITH Dec. 1990

(Contract DTFA03-89-C-00057)

(NIAR-90-31; DOT/FAA/CT-90) Avail: NTIS HC/MF A03

This program plan outlines the development of an International Aircraft Operator Information System as described in the Master Requirements and Implementation Plan. The program plan outlines the process of data development, prototype development, prototype testing, prototype operation, and system operation. This information system will assist the Federal Aviation Administration with the distribution of aircraft safety information to aircraft operators, and others, in a cost effective manner using an automated, menu driven system.

19

GENERAL

N91-15975*# National Aeronautics and Space Administration, Washington, DC.

ENGINES AND INNOVATION: LEWIS LABORATORY AND *CAN PROPULSION TECHNOLOGY

VIRGINIA PARKER DAWSON 1991 277 p
(NASA-SP-4306: NAS 1 21:4306: L C-90:20747)

(NASA-SP-4306; NAS 1.21:4306; LC-90-20747) Avail: NTIS HC/MF A13 CSCL 05/4

This book is an institutional history of the NASA Lewis Research Center, located in Cleveland, Ohio, from 1940, when Congress authorized funding for a third laboratory for the National Advisory Committee for Aeronautics, through the 1980s. The history of the laboratory is discussed in relation to the development of American propulsion technology, with particular focus on the transition in the 1940s from the use of piston engines in airplanes to jet propulsion and that from air-breathing engines to rocket technology when the National Aeronautics and Space Administration was established in 1958. The personalities and research philosophies of the people who shaped the history of the laboratory are discussed, as is the relationship of Lewis Research Center to the Case Institute of Technology.

Typical Subject Index Listing

The subject heading is a key to the subject content of the document. The title is used to provide a description of the subject matter. When the title is insufficiently descriptive of document content, a title extension is added, separated from the title by three hyphens. The accession number and the page number are included in each entry to assist the user in locating the abstract in the abstract section. If applicable, a report number is also included as an aid in identifying the document. Under any one subject heading, the accession numbers are arranged in sequence.

~	170.011
	Robotic

abrasive water jet cutting of aerostructure

(SME PAPER MS89-812)

p 316 A91-21116

Waterjet/hydrobrasive cutting in the automotive,

aerospace and appliance industries [SME PAPER MS89-833]

p 316 A91-21118

ACCIDENT PREVENTION

Development of a workstation-based flight data analysis

[AIAA PAPER 91-0668]

p 279 A91-21585

ACOUSTIC EXCITATION

The interim prediction for aircraft noise

p 332 A91-22370

A steadying effect of acoustic excitation on transitory stall

p 269 A91-22499 [AIAA PAPER 91-0043]

ACOUSTIC PROPERTIES

Effect of the initial flow conditions on the aerodynamic and acoustic characteristics of turbulent jets

p 272 A91-23903

ACTIVE CONTROL

The development and testing of active control techniques to minimise helicopter vibration

p 284 A91-20946 Active control of a dump combustor with fuel

modulation [AIAA PAPER 91-0368] p 299 A91-21471 Active control of combustion instability in a ramjet using

large-eddy simulations [AIAA PAPER 91-0411] p 299 A91-21482

Computer-aided control law research: From concept to p 329 N91-15731 flight test

ADAPTIVE CONTROL

An identification method of fast time varying parameter adapted to aircraft control systems p 327 A91-22758

Optimizing aircraft performance with adaptive, integrated flight/propulsion control
[ASME PAPER 90-GT-252]

ADAPTIVE FILTERS

p 290 A91-23644

An adaptive filter for tracking the maneuvering target p 327 A91-22756

ADHESION TESTS

Theory of the resonance method for the quality control p 321 A91-23814 of adhesive joints ADHESIVE BONDING

Materials and processes used for bonded repairs of F/A-18 advanced composite honeycomb sandwich

(SME PAPER EM90-107) p 316 A91-21108 Theory of the resonance method for the quality control p 321 A91-23814

of adhesive joints **ADHESIVES**

Composite patch reinforcement of cracked aircraft upper longeron - Analysis and specimen simulation p 249 A91-20784

AEROACOUSTICS

A study of loudness as a metric for sonic boom

[AIAA PAPER 91-0496] p 331 A91-21511 Directivity and prediction of low frequency rotor noise [AIAA PAPER 91-0592] p 331 A91-21545 advanced full-scale In-flight source noise of an

single-rotation propeller [AIAA PAPER 91-0594] p 331 A91-21547 Acoustic power level comparisons of model-scale

counterrotating unducted fans [AIAA PAPER 91-0595] A91-21548

Long-range vertical propagation AERODYNAMIC BALANCE p 332 N91-16693

A state of the art Mass Properties

p 309 Á91-22308 (SAWE PAPER 1883) Effects of external loads on onboard weight and balance

[SAWE PAPER 1895] p 289 A91-22317 A review of ice accretion data from a model rotor icing test and comparison with theory
[AIAA PAPER 91-0661]

p 280 A91-22500

AERODYNAMIC CHARACTERISTICS

Concept and specification for the Hermes Training Aircraft (HTA) p 310 A91-20618 Aerodynamic design for supersonic nozzles of arbitrary p 251 A91-20745 cross section

The aerodynamic characteristics of power-law bodies in continuum and transitional hypersonic flow

p 253 A91-21180 Dynamic effects of hypersonic separated flow

p 254 A91-21192 Progress in laser-spectroscopic techniques for aerodynamic measurements - An overview

[AIAA PAPER 91-0059] p 317 A91-21351 Aerodynamic characteristics of three generic forebodies at high angles of attack

[AIAA PAPER 91-0275] p 260 A91-21437 Flight and wind tunnel tests of the aerodynamic effects of aircraft ground deicing/anti-icing fluids

[AIAA PAPER 91-0762] p 267 A91-21608 Wind tunnel tests of aerodynamic effects of type I and Il ground de/anti-icing fluids on small transport and general tion aircraft during takeoff

[AIAA PAPER 91-0763] p 288 A91-21609 Manned versus unmanned - The implications to NASP [AIAA PAPER 90-5265] p 311 A91-22888 Effect of the initial flow conditions on the aerodynamic

and acoustic characteristics of turbulent jets p 272 A91-23903 effects of canard aerodynamic

characteristics of forward-swept wing

p 273 A91-24156 The aerodynamic characteristics of vortex indestion for

p 311 N91-15303 [NASA-TM-103703] Large-scale numerical aerodynamic simulations for complete aircraft configurations

p 277 N91-15984 Optimal trajectories for an aerospace plane. Part 1: ormulation, results, and analysis

INASA-CR-1878681 p 293 N91-16013

AERODYNAMIC COEFFICIENTS

Optimization of multi-element airfoils for maximum lifts p 268 A91-22367 in separated flow A practical method for the aerodynamic calculations of blunt bodies of revolution p 268 A91-22392

AERODYNAMIC CONFIGURATIONS

AM-X high incidence trials, development and results

p 304 A91-21004 Numerical simulation of supersonic unsteady flow for

multibody configurations
[AIAA PAPER 91-0023] p 257 A91-21341 Optimum spacing control of the marching grid

[AIAA PAPER 91-0103] p 258 A91-21368 A rapidly converging viscous/inviscid coupling code for

multi-element airfoil configurations [AIAA PAPER 91-0177] p 259 A91-21397 Aerodynamic shane design

stream-function-coordinate (SFC) formulation [AIAA PAPER 91-0189] Aerodynamic effects of distributed roughness on a NACA 63(2)-015 airfoil

[AIAA PAPER 91-0443] p 262 A91-21492 Aerodynamic design optimization using sensitivity analysis and computational fluid dynamics

p 262 A91-21505 [AIAA PAPER 91-0471] Aerodynamic shape design and optimization

[AIAA PAPER 91-0476] p 263 A91-21506 High alpha aerodynamic control by tangential fuselage blowing [AIAA PAPER 91-0620]

p 264 A91-21561 Aerothermodynamic phenomena and the design of atmospheric hypersonic airplanes

[MBB/FE122/S/PUB/0408] p 293 N91-16015 Hypersonic model configurations [MBB/FE122/S/PUB/411] p 293 N91-16016

AERODYNAMIC DRAG

Numerical influence of upwind TVD schemes on

transonic airfoil drag prediction [AIAA PAPER 91-0184] p 259 A91-21402 Maximum-rate deceleration of an object during controlled motion under the effect of aerodynamic drag and gravity forces p 268 A91-21940

An introduction to aircraft excrescence drag ESDU-90029] p 275 N91-15132

AERODYNAMIC FORCES

computational

supersonic speeds

experimental aerodynamics research on a hypersonic vehicle. II - Computational [AIAA PAPER 91-0321] p 261 A91-21458

A theory for tangential fuselage blowing [AIAA PAPER 91-0621] p 26 p 264 A91-21562

Influence of aerodynamic forces in ice shedding [AIAA PAPER 91-0664] p 279 A91-21582

ADAM 2.0 - An ASE analysis code for aircraft with digital flight control systems p 327 A91-23742 A method for calculating the aerodynamic forces of elliptical circulation control airfoils p 273 A91-24155 Normal force and pitching moment of low aspect ratio cropped-delta wings up to high angles of attack at

p 292 · N91-15152 AERODYNAMIC HEAT TRANSFER

Boundary-layer transition and heat transfer on slender

p 254 A91-21194 AERODYNĂMIC HEATING

Finite element thermo-viscoplastic analysis of aerospace structures NASA-TM-102761 p 324 N91-16407

AERODYNAMIC INTERFERENCE

Thin-layer Navier-Stokes solutions for transonic multi-body interference

[AIAA PAPER 91-0071] p 258 A91-21357 Finite element thermo-viscoplastic analysis

aerospace structures [NASA-TM-102761] p 324 N91-16407 AERODYNAMIC LOADS

Fracture instability of a layered conical composite p 315 A91-20791 resisting the aerodynamic load Numerical study of the effects of icing on fixed and rotary ing performance

[AIAA PAPER 91-0662] p 265 A91-21580

An improved three-dimensional aerodynamics model for	AEROSPACE INDUSTRY	AIR NAVIGATION
helicopter airloads prediction	The production of PREP titanium powder Plasma	Special optical fibres and sensors for aeronautics
[AIAA PAPER 91-0767] p 267 A91-21610	Rotating Electrode Process p 312 A91-20881	p 332 N91-15167
A new method for subsonic lifting-surface theory	Waterjet/hydrobrasive cutting in the automotive,	Integration of a realistic airline/aircrew/aircraft component in ATC simulations p 329 N91-15738
Calculation of unsteady aerodynamic loads on wings	aerospace and appliance industries [SME PAPER MS89-833] p 316 A91-21118	AIR TO AIR MISSILES
with an oscillatory leading edge flap p 270 A91-22764	Current research on schedulers for aerospace industry	A calculating method of the kill probability attack area
A coupled rotor aeroelastic analysis utilizing advanced	software	for AAM p 305 A91-22352
aerodynamic modeling p 292 N91-16006 Finite element thermo-viscoplastic analysis of	[SAE PAPER 901014] p 326 A91-21235	AIR TO SURFACE MISSILES Air-to-ground attack fighter improvements through
aerospace structures	Advanced technology - Constant challenge and evolutionary process in aeronautics	multi-function nozzles
[NASA-TM-102761] p 324 N91-16407	p 251 A91-23547	[SAE PAPER 901002] p 304 A91-21231
AERODYNAMIC NOISE	AEROSPACE PLANES	AIR TRAFFIC
Propeller noise minimization without thrust loss due to asymmetric blade distribution p 331 A91-20614	Additional fuel component application for hydrogen	Activities report of the Dutch Civil Aeronautics Board [ETN-91-98472] p 283 N91-16005
A study of loudness as a metric for sonic boom	scramjet boosting	AIR TRAFFIC CONTROL
acceptability	[SAE PAPER 900990] p 312 A91-21226	North Atlantic air traffic control p 282 A91-20900
[AIAA PAPER 91-0496] p 331 A91-21511	CFD validation and wind tunnel test for a NASP single expansion ramp nozzle in the transonic regime	Soviet ATC research p 309 A91-22172
Directivity and prediction of low frequency rotor noise [AIAA PAPER 91-0592] p 331 A91-21545	[AIAA PAPER 91-0015] p 256 A91-21334	Planning support system for air traffic control p 282 A91-22203
[AIAA PAPER 91-0592] p 331 A91-21545 Effect of slotting on the noise of an axisymmetric	An approach to air-breathing high speed vehicle	Future aeronautic environment - FMS/ATC/pilot
supersonic jet p 332 A91-22493	synthesis	p 283 A91-23548
Airframe noise prediction	[AIAA PAPER 91-0225] p 287 A91-21415	Aircraft incident report: USAir flight 105, Boeing 737-200,
[ESDU-90023] p 332 N91-15843	The aerospace plane design challenge - Credible computational fluid dynamics results	N283AU, Kansas City International Airport, Missouri, September 8, 1989
AERODYNAMIC STALLING On the formation and control of the dynamic stall vortex	[AIAA PAPER 90-5248] p 310 A91-22877	[PB90-910404] p 280 N91-15140
on a pitching airfoil	Titanium aluminides development for NASP airframe	Report of the workshop on Aviation Safety/Automation
[AIAA PAPER 91-0006] p 255 A91-21328	applications	Program
A study of dynamic stall using real time interferometry [AIAA PAPER 91-0007] p 256 A91-21329	[AIAA PAPER 90-5261] p 313 A91-22884	[NASA-CP-10054] p 281 N91-15141 Aeronautical Mobile Satellite Service (AMSS) capacity
Simulation of stall departure using a nonlinear lifting line	Aerospace system development directions and some aspects of their construction and application	analysis and protocol performance simulation plan
model	[AIAA PAPER 90-5266] p 311 A91-22889	[DOT/FAA/CT-TN90/35] p 311 N91-15295
[AIAA PAPER 91-0340] p 261 A91-21465	National aerospace plane longitudinal long-period	Integration of a realistic airline/aircrew/aircraft
Study of dynamic stall mechanism using simulation of	dynamics p 305 A91-22962	component in ATC simulations p 329 N91-15738
two-dimensional unsteady Navier-Stokes equations [AIAA PAPER 91-0546] p 263 A91-21525	Optimal trajectories for an aerospace plane. Part 2: Data,	The European flight safety crisis: Costs and solution [ETN-91-98490] p 281 N91-16000
A steadying effect of acoustic excitation on transitory	tables, and graphs	Activities report of the German Federal Institute for Flight
stall	[NASA-CR-187848] p 292 N91-16011 Optimal trajectories for an aerospace plane, Part 1:	Safety
[AIAA PAPER 91-0043] p 269 A91-22499	Formulation, results, and analysis	[ETN-91-98644] p 281 N91-16002
A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006	[NASA-CR-187868] p 293 N91-16013	Activities report of the Dutch Civil Aeronautics Board [ETN-91-98472] p 283 N91-16005
Numerical simulation of separated flows around a wing	AEROSPACE SAFETY	Results of the Kansas City 1989 Terminal Doppler
section at steady and unsteady motion by a discrete vortex	Activities report of the Dutch Civil Aeronautics Board	Weather Radar (TDWR) operational evaluation testing
method p 278 N91-16268	[ETN-91-98472] p 283 N91-16005	[AD-A228784] p 323 N91-16206
AERODYNAMICS International Conference on Hypersonic Aerodynamics,	AEROSPACE TECHNOLOGY TRANSFER Aerospace system development directions and some	AIR TRAFFIC CONTROLLERS (PERSONNEL) Report of the workshop on Aviation Safety/Automation
Victoria University of Manchester, England, Sept. 4-6,	aspects of their construction and application	Program
1989, Proceedings p 253 A91-21176	[AIAA PAPER 90-5266] p 311 A91-22889	[NASA-CP-10054] p 281 N91-15141
Asymptotic theory in aerodynamics	AEROSPACE VEHICLES	AIR TRANSPORTATION
[AIAA PAPER 91-0028] p 257 A91-21344 Dynamic analysis of rotor blade undergoing rotor power	Modeling two-point spatial turbulence spectra for analysis of gust variations over aerospace vehicles	The vertical flight commuter - A solution to urban transportation problems p 280 A91-24120
shutdown	[AIAA PAPER 91-0449] p 262 A91-21495	Overcoming obstacles to vertical flight public transport
[NASA-TM-102865] p 251 N91-15124	AEROTHERMODYNAMICS	operations p 280 A91-24121
Documents on the history of the Aerodynamic Research	Ground facilities for hypersonic simulation	The civil tiltrotor aircraft's potential in developing
Establishment at Goettingen, 1907 - 1925 (DLR-MITT-90-05) p 251 N91-15977	p 308 A91-21179	economies p 280 A91-24122 To capture the market put the real 'V' in VTOL
[DLR-MITT-90-05] p 251 N91-15977 AEROELASTICITY	Trends in current heat transfer computations [AIAA PAPER 91-0157] p 317 A91-21384	p 280 A91-24123
The development and testing of active control	High temperature heat flux measurements	AIRBORNE EQUIPMENT
techniques to minimise helicopter vibration	[AIAA PAPER 91-0165] p 317 A91-21388	Observations of severe turbulence near thunderstorm
p 284 A91-20946	The investigation of the hypersonic vehicle	tops p 324 A91-20695
Random air turbulence as a flutter test excitation source p 286 A91-21002	aerothermodynamics [AIAA PAPER 90-5271] p 270 A91-22893	ARTISt - Airborne Real Time Instrumentation System p 294 A91-20982
ADAM 2.0 - An ASE analysis code for aircraft with digital	Aerothermodynamic phenomena and the design of	Airborne lidar for profiling of surface topography
flight control systems p 327 A91-23742	atmospheric hypersonic airplanes	p 295 A91-23134
Integrated aeroelastic control optimization	[MBB/FE122/S/PUB/0408] p 293 N91-16015	Advances in Components for Active and Passive
p 305 A91-23743 Dynamic analysis of rotor blade undergoing rotor power	Hypersonic model configurations [MBB/FE122/S/PUB/411] p 293 N91-16016	Airborne Sensors [AGARD-CP-482] p 295 N91-15154
shutdown	Finite element thermo-viscoplastic analysis of	Specific aspects of advanced components for airborne
[NASA-TM-102865] p 251 N91-15124	aerospace structures	applications p 295 N91-15155
Integrated design analysis and optimization	[NASA-TM-102761] p 324 N91-16407	MMIC impact on airborne avionic systems
[MBB/FE2/S/PUB/0398] p 291 N91-15145 Optical measurement of unducted fan flutter	AFTERBURNING On the leading odge. Combining maturity and advanced	p 296 N91-15166
[NASA-TM-103285] p 302 N91-15174	On the leading edge - Combining maturity and advanced technology on the F404 turbofan engine	AIRBORNE LASERS Evaluation of hand held laser communicators for
A coupled rotor aeroelastic analysis utilizing advanced	[ASME PAPER 90-GT-149] p 301 A91-23634	airborne applications p 282 A91-22815
aerodynamic modeling p 292 N91-16006	AIR BREATHING ENGINES	AIRBORNE SURVEILLANCE RADAR
The integration of structural optimization in the general	An approach to air-breathing high speed vehicle synthesis	Modern airborne early warning radars
design process for aircraft [MBB/FE122/S/PUB/0405] p 293 N91-16017	[AIAA PAPER 91-0225] p 287 A91-21415	p 283 A91-23145
Aeroservoelastic tailoring for lateral control	Progress in hypersonic combustion technology with	AIRCRAFT ACCIDENT INVESTIGATION
enhancement p 307 N91-16025	computation and experiment	Development of a workstation-based flight data analysis package
AERONAUTICAL ENGINEERING	[AIAA PAPER 90-5254] p 300 A91-22879	[AIAA PAPER 91-0668] p 279 A91-21585
Documents on the history of the Aerodynamic Research Establishment at Goettingen, 1907 - 1925	AIR CONDITIONING Aircraft fuel weight penalty due to air conditioning	Aircraft accident report: United Airlines flight 232,
[DLR-MITT-90-05] p 251 N91-15977	[SAE AIR 1168/8] p 287 · A91-21258	McDonnell Douglas DC-10-10, Sioux Gateway Airport,
AFRONAUTICAL SATELLITES	AIR DATA SYSTEMS	Sioux City, Iowa, 19 July 1989
Aeronautical Mobile Satellite Service (AMSS) capacity	Testing air data systems on aircraft - Problems and	[PB90-910406] p 281 N91-15143 AIRCRAFT ACCIDENTS
analysis and protocol performance simulation plan	solutions p 297 A91-21205 AIR FLOW	Aircraft accident flight profile simulation and animation
AFROSPACE ENGINEERING	Calculations on total temperature and pressure in	[AIAA PAPER 91-0422] p 278 A91-21486
Aircraft structures for engineering students (2nd revised	hypersonic air flow p 271 A91-23095	Aircraft accident report: United Airlines flight 232,
and enlarged edition) Book p 321 A91-24114	AIR INTAKES	McDonnell Douglas DC-10-10, Sioux Gateway Airport,
Ishida tiit-wing project takes cues from history p 290 A91-24119	Boundary layer three-dimensionality in plane compression flows p 321 A91-23905	Sioux City, Iowa, 19 July 1989 [PB90-910406] p 281 N91-15143
An integrated approach to system design, reliability, and	compression flows p 321 A91-23905 AIR JETS	AIRCRAFT BRAKES
diagnosis	Velocity field of an axisymmetric pulsed, subsonic air	Flight testing antiskid/brake systems
[NASA-TM-102861] p 322 N91-15426	jet p 269 A91-22479	p 285 A91-20989

SUBJECT INDEX		AINCHAFI MAINIENANCE
Computerized procedure for vibration diagnostics of	Selectable towline spin chute system	Optimization studies for the PW305 turbofan
aircraft brakes p 320 A91-23679	[NASA-CASE-LAR-14322-1] p 276 N91-15138	p 297 A91-21222
AIRCRAFT COMMUNICATION	A real-time distributed optimal autopilot	Numerical simulations of auxiliary power units with
The Radio Trials Centre at A&AEE Boscombe Down,	[RR-398] p 307 N91-15181 A decentralized controller for highly augmented	different configurations
United Kingdom - A description p 308 A91-20978 Evaluation of hand held laser communicators for	aircraft p 327 N91-15717	[SAE PAPER 901028] p 298 A91-21240 An approach to air-breathing high speed vehicle
airborne applications p 282 A91-22815	Aircraft control system design, synthesis, analysis, and	synthesis
Modulation and coding for the aeronautical satellite	simulation tools at Aermacchi p 328 N91-15729 The use of system simulation during the definition phase	[AIAA PAPER 91-0225] . p 287 A91-21415
channel p 283 A91-22904 Future aeronautic environment - FMS/ATC/pilot	of the passenger transport aircraft MPC75	On the leading edge - Combining maturity and advanced
p 283 A91-23548	p 330 N91-15741	technology on the F404 turbofan engine {ASME PAPER 90-GT-149} p 301 A91-23634
Special optical fibres and sensors for aeronautics	Selection of weights in optimal control	Engine performance monitoring and troubleshooting
p 332 N91-15167	[RR-397] p 330 N91-15796 Aeroservoelastic tailoring for lateral control	techniques for the CF-18 aircraft
AIRCRAFT CONFIGURATIONS 2-D and 3-D mixing flow analyses of a scramjet-afterbody	enhancement p 307 N91-16025	[ASME PAPER 90-GT-357] p 301 A91-23635
configuration p 253 A91-21188	AIRCRAFT DESIGN	SNECMA M88 engine development status [ASME PAPER 90-GT-118] p 301. A91-23636
Numerical prediction of the unsteady flowfield around	Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615	EJ200 - The engine for the new European Fighter
the F-18 aircraft at large incidence [AIAA PAPER 91-0020] p 256 A91-21338	The development and design integration of a variable	Aircraft
Numerical investigation of the flow over a double delta	camber wing for long/medium range aircraft	[ASME PAPER 90-GT-119] p 301 A91-23637
wing at high incidence	p 284 A91-20898 Wings for the 21st century p 250 A91-21218	Advanced technology programs for small turboshaft
[AIAA PAPER 91-0753] p 266 A91-21605 Analytical weight estimation of unconventional landing	Wings for the 21st century p 250 A91-21218 Relationships between agility metrics and flying	engines - Past, present, future [ASME PAPER 90-GT-267] p 301 A91-23638
gear designs	qualities	Airframe/propulsion integration at transonic speeds
[SAWE PAPER 1905] p 289 A91-22320	[SAE PAPER 901003] p 304 A91-21232	[ASME PAPER 90-GT-338] p 271 A91-23640
Aircraft cost estimating - Weight commonality as a	Design limits of compressible NLF airfoils [AIAA PAPER 91-0067] p 257 A91-21355	Integrated propulsion system requirements for control of STOVL aircraft
predictor [SAWE PAPER 1909] p 333 A91-22322	An approach to air-breathing high speed vehicle	[ASME PAPER 90-GT-364] p 305 A91-23641
Aircraft configuration study for experimental 2-place	synthesis	Simulation of aircraft gas turbine engines
aircraft and RPVs	[AIAA PAPER 91-0225] p 287 A91-21415	[ASME PAPER 90-GT-342] p 301 A91-23645
[AD-A227604] p 291 N91-15149 Computer aided design and simulation of the automatic	Hypersonic propulsion system force accounting [AIAA PAPER 91-0228] p 299 A91-21418	Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure
approach and landing phase of a combat aircraft	Aerodynamic design optimization using sensitivity	[ASME PAPER 90-GT-115] p 302 A91-23646
p 328 N91-15719	analysis and computational fluid dynamics	An algorithm and criteria for compressor characteristics
Large-scale numerical aerodynamic simulations for	[AIAA PAPER 91-0471] p 262 A91-21505 Aerodynamic shape design and optimization	real time modeling and approximation
complete aircraft configurations [NAL-TR-1073-T] p 277 N91-15984	[AIAA PAPER 91-0476] p 263 A91-21506	[ASME PAPER 90-GT-336] p 302 A91-23648 Thermal barrier coating evaluation needs
AIRCRAFT CONSTRUCTION MATERIALS	Application of turbulence modeling to the design of	[NASA-TM-103708] p 314 N91-15390
Composite materials in aircraft structures Book	military aircraft [AIAA PAPER 91-0513] p 287 A91-21515	AIRCRAFT FUEL SYSTEMS
p 313 A91-22109 Aluminum lithium for the F/A-18, Homet 2000	[AIAA PAPER 91-0513] p 287 A91-21515 Rotorcraft weight trends in light of structural material	Aircraft fuel weight penalty due to air conditioning [SAE AIR 1168/8] p 287 A91-21258
[SAWE PAPER 1913] p 289 A91-22326	characteristics	Improved design of the error-proof filler cover of aircraft
Rotorcraft weight trends in light of structural material	[SAWE PAPER 1873] p 289 A91-22327	fuel system p 288 A91-22266
characteristics	The fuzzy synthetic judgement of correlating parameter of fighter design p 289 A91-22354	AIRCRAFT FUELS
[SAWE PAPER 1873] p 289 A91-22327 Proceedings of the 2nd E-3 AWACS Corrosion	Introduction to the basic technology of stealth aircraft.	In-flight and simulated aircraft fuel temperature measurements
Prevention Advisory Board (CPAB)	 Basic considerations and aircraft self-emitted signals 	[NASA-TM-103611] p 314 N91-15418
[AD-A227627] p 291 N91-15150	(passive considerations). II - Illumination by the enemy	AIRCRAFT GUIDANCE
TF89 aircraft centre fuselage [ETN-91-98579] p 294 N91-16018	(active considerations) [ASME PAPER 90-GT-116] p 290 A91-23643	New general guidance method in constrained optimal control. I - Numerical method p 326 A91-20506
AIRCRAFT CONTROL	Aircraft structures for engineering students (2nd revised	Flight Management/Guidance System in air transport
Fundamental concepts of vectored propulsion	and enlarged edition) — Book p 321 A91-24114	using Airbus A320 as an example p 304 A91-22201
p 283 A91-20746	Ishida tilt-wing project takes cues from history p 290 A91-24119	Integration of a realistic airline/aircrew/aircraft
Reliability analysis of structure and control mechanism of aircraft flap p 315 A91-20916	To capture the market put the real 'V' in VTOL	component in ATC simulations p 329 N91-15738 AIRCRAFT INSTRUMENTS
Minimum control speed - A 'thrustless' approach	p 280 A91-24123	The equipment of a research aircraft with emphasis on
p 285 A91-20980	Aircraft configuration study for experimental 2-place	meteorological experiments p 249 A91-21001
Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system	aircraft and RPVs [AD-A227604] p 291 N91-15149	Identification of time delays in flight measurements p 327 A91-22953
p 303 A91-20992	Flight flutter test techniques at ARL	Effect of shaping sensor data on pilot response
Air-to-ground attack fighter improvements through	[AD-A227754] p 306 N91-15178	[NASA-TM-102737] p 297 N91-15173
multi-function nozzles	Aircraft control system design, synthesis, analysis, and simulation tools at Aermacchi p 328 N91-15729	AIRCRAFT LANDING Engine water ingestion test p 286 A91-21003
[SAE PAPER 901002] p 304 A91-21231 Relationships between agility metrics and flying	Computer-aided control law research: From concept to	Engine water ingestion test p 286 A91-21003 Planning support system for air traffic control
qualities	flight test p 329 N91-15731	p 282 A91-22203
[SAE PAPER 901003] p 304 A91-21232	Integrated technology development laboratories p 330 N91-15743	Integrated flight/propulsion control system design based
Integrated control and avionics for air superiority - A program overview	The development of avionics-intensive, multi-sensor	on a centralized approach p 305 A91-22950 AIRCRAFT MAINTENANCE
[SAE PAPER 901049] p 294 A91-21248	cockpits: Simulation does not always equal success	Materials and processes used for bonded repairs of
SAE aerospace flight deck and handling qualities	p 330 N91-15746	F/A-18 advanced composite honeycomb sandwich
standards for transport aircraft	Aerothermodynamic phenomena and the design of atmospheric hypersonic airplanes	structures [SME PAPER EM90-107] p 316 A91-21108
[SAE ARP 4100] p 287 A91-21259 On the formation and control of the dynamic stall vortex	[MBB/FE122/S/PUB/0408] p 293 N91-16015	North Island F/A-18 aircraft advanced composites
on a pitching airfoil	Hypersonic model configurations	repair
[AIAA PAPER 91-0006] p 255 A91-21328	[MBB/FE122/S/PUB/411] p 293 N91-16016 The integration of structural optimization in the general	[SME PAPER EM90-108] p 316 A91-21109
Control concept of modern avionics in the service of pitot relief - Presented using the example of DO 328	design process for aircraft	Maintenance of modern avionics systems; Proceedings of the Conference, Heathrow, England, May 9, 1989
p 295 A91-22202	[MBB/FE122/S/PUB/0405] p 293 N91-16017	p 250 A91-21201
Control law study of aircraft maneuvers at high attack	TF89 aircraft centre fuselage	Limitations of BITE Built In Test Equipment for
angle p 305 A91-22251	[ETN-91-98579] p 294 N91-16018 TF89 tactical fighter outer wing design	transport aircraft p 250 A91-21202 ACARS — air/ground communication facilities for
An identification method of fast time varying parameters adapted to aircraft control systems p 327 A91-22758	[ETN-91-98580] p 294 N91-16019	transport aircraft maintenance p 282 A91-21203
Identification of time delays in flight measurements	AIRCRAFT DETECTION	Testing air data systems on aircraft - Problems and
p 327 A91-22953	A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft	solutions p 297 A91-21205
High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956	positioning system p 282 A91-20979	Development of onboard maintenance systems on Boeing airplanes p 250 A91-21206
New technique for aircraft flight control reconfiguration	GPS - The logical choice for flight test tracking of	Helicopter Weight and Torque Advisory system
p 305 A91-22959	aircraft p 282 A91-20998	[SAWE PAPER 1872] p 295 A91-22301
Integrated propulsion system requirements for control	Introduction to the basic technology of stealth aircraft. I - Basic considerations and aircraft self-emitted signals	Maintenance standards p 250 A91-23546 Aircraft accident report: United Airlines flight 232,
of STOVL aircraft [ASME PAPER 90-GT-364] p 305 A91-23641	(passive considerations). II - Illumination by the enemy	McDonnell Douglas DC-10-10, Sioux Gateway Airport,
Optimizing aircraft performance with adaptive, integrated	(active considerations)	Sioux City, Iowa, 19 July 1989
flight/propulsion control	[ASME PAPER 90-GT-116] p 290 A91-23643	[PB90-910406] p 281 N91-15143
[ASME PAPER 90-GT-252] p 290 A91-23644 Automatic flight control systems Book	AIRCRAFT ENGINES How safe is flying? Or - The AIMS onboard integrated	International aircraft operator information system, phase 2
p 306 A91-24113	monitoring systems p 294 A91-20609	[NIAR-90-31] p 333 N91-15928

AIRCRAFT MANEUVERS SUBJECT INDEX

AIHCHAFI MANEUVERS		SUBJECT INDEX
AIRCRAFT MANEUVERS	Numerical modeling of an advanced pneumatic impulse	A composite grid approach to study the flow surrounding
X-31Flight test in the 90's p 286 A91-20995	ice protection system (PIIP) for aircraft	a pitch-up airfoil in a wind tunnel
An analysis of the Su-27 flight demonstration at the 1989	[AIAA PAPER 91-0555] p 288 A91-21529	(AIAA PAPER 91-0599) p 263 A91-21550
Paris Air Show	Nonlinear multi-point modeling and parameter estimation	 Optimization of multi-element airfoils for maximum lifts
[SAE PAPER 901001] p 304 A91-21230	of the DO 28 research aircraft p 289 A91-22357	in separated flow p 268 A91-22367
Relationships between agility metrics and flying qualities	Aircraft incident report: USAir flight 105, Boeing 737-200, N283AU, Kansas City International Airport, Missouri,	Inviscid analysis of two-dimensional airfoils in unsteady motion using conformal mapping p 268 A91-22477
[SAE PAPER 901003] p 304 A91-21232	September 8, 1989	Optimum hypersonic airfoil with power law shock
Measures of merit for aircraft dynamic maneuvering	[PB90-910404] p 280 N91-15140	waves p 269 A91-22492
[SAE PAPER 901005] p 304 A91-21233	AIRCRAFT SPECIFICATIONS	Solution of Euler equations to 2-D and axisymmetric
Control law study of aircraft maneuvers at high attack	The compatibility check of the flight test data of the	compressible flows using conformal mapping
angle p 305 A91-22251 Unsteady separation over maneuvering bodies —	DO 28 research aircraft p 290 A91-22757	coordinates p 272 A91-24152 A method of estimating a separation boundary of
perturbed aerodynamics of flying aircraft	AIRCRAFT SPIN AM-X high incidence trials, development and results	two-dimensional aerofoil sections in transonic flow
p 269 A91-22481	p 304 A91-21004	[ESDU-81020-AMEND-A] p 275 N91-15133
Prediction of the dynamic characteristics of helicopters	Selectable towline spin chute system	AIRFOILS
in constrained flight p 290 A91-23549	[NASA-CASE-LAR-14322-1] p 276 N91-15138	A study of dynamic stall using real time interferometry
Energy height method for flight path optimisation (ESDU-90012) p 291 N91-15151	AIRCRAFT STABILITY	[AIAA PAPER 91-0007] p 256 A91-21329 Design limits of compressible NLF airfoils
[ESDU-90012] p 291 N91-15151 AIRCRAFT MODELS	Society of Flight Test Engineers, Annual Symposium, 20th, Reno, NV, Sept. 18-21, 1989, Proceedings	[AIAA PAPER 91-0067] p 257 A91-21355
Concept and specification for the Hermes Training	p 284 A91-20976	Numerical influence of upwind TVD schemes on
Aircraft (HTA) p 310 A91-20618	Flight-test-derived stability derivatives for the Advanced	transonic airfoil drag prediction
Nonlinear multi-point modeling and parameter estimation	Technology Tactical Transport p 303 A91-20991	[AIAA PAPER 91-0184] p 259 A91-21402
of the DO 28 research aircraft p 289 A91-22357 AIRCRAFT NOISE	Relationships between agility metrics and flying	Aerodynamic effects of distributed roughness on a NACA 63(2)-015 airfoil
Propeller noise minimization without thrust loss due to	qualities [SAE PAPER 901003] p 304 A91-21232	[AIAA PAPER 91-0443] p 262 A91-21492
asymmetric blade distribution p 331 A91-20614	Prediction of the dynamic characteristics of helicopters	Influence of aerodynamic forces in ice shedding
Airframe noise prediction	in constrained flight p 290 A91-23549	[AIAA PAPER 91-0664] p 279 A91-21582
[ESDU-90023] p 332 N91-15843	Parameter space design of robust flight control	A steadying effect of acoustic excitation on transitory
Long-range vertical propagation p 332 N91-16693	systems p 328 N91-15718	stall [AIAA PAPER 91-0043] p 269 A91-22499
AIRCRAFT PARTS Three-dimensional numerical simulation of	Symbolic generation of aircraft simulation programmes p 328 N91-15727	[AIAA PAPER 91-0043] p 269 A91-22499 An introduction to aircraft excrescence drag
electrothermal deicing systems	AIRCRAFT STRUCTURES	[ESDU-90029] p 275 N91-15132
[AIAA PAPER 91-0267] p 287 A91-21433	The stability of light structures - An area of research	Thermal barrier coating evaluation needs
Assembly of aircraft components — Russian book	with a tradition and a future p 315 A91-20616	[NASA-TM-103708] p 314 N91-15390
p 250 A91-22104	Design for strength and rigidity of a thermoplastic	Computation of turbulent flow about unconventional airfoil shapes p 278 N91-15992
Specific aspects of advanced components for airborne applications p 295 N91-15155	composite speed brake p 284 A91-20783 Composite patch reinforcement of cracked aircraft upper	airfoil shapes p 278 N91-15992 Far-field boundaries and their numerical treatment
AIRCRAFT PERFORMANCE	longeron - Analysis and specimen simulation	p 323 N91-16281
A measurement system for production flight tests of new	p 249 A91-20784	Smoothing and scaling airfoil coordinates on a personal
aircraft p 308 A91-20984	Robotic abrasive water jet cutting of aerostructure	computer
RPAS - Runway performance analysis system	components	[DE89-000878] p 330 N91-16582
p 285 A91-20987 Use of onboard data for takeoff performance	[SME PAPER MS89-812] p 316 A91-21116 Comparison of rime and glaze deformation and failure	AIRFRAME MATERIALS An evaluation of the pressure proof test concept for
determination p 285 A91-20988	properties	thin sheet 2024-T3 p 315 A91-20788
Numerical simulation of an electrothermally de-iced	[AIAA PAPER 91-0446] p 279 A91-21494	Analysis and certification of the Starship all-composite
aircraft surface using the finite element method	Analysis of infrared thermography data for icing	airframe
[AIAA PAPER 91-0268] p 287 A91-21434	applications	[SAE PAPER 900997] p 278 A91-21229
Experimental water droplet impingement data on modern aircraft surfaces	[AIAA PAPER 91-0666] p 279 A91-21584 Pulsed eddy current inspection of cracks under installed	Titanium aluminides development for NASP airframe applications
[AIAA PAPER 91-0445] p 262 A91-21493	fasteners p 318 A91-22188	[AIAA PAPER 90-5261] p 313 A91-22884
A program to improve aircraft icing forecasts - Status	Determination of rivet diameter and edge distance in	AIRFRAMES
report	aircraft riveted structure p 319 A91-22267	Definition of service life for frame of an airplane
[AIAA PAPER 91-0557] p 325 A91-21530 Certification of Fokker 50 and Fokker 100 for operation	Technological forecast of VTOL weight empty fraction	p 288 A91-22262 Structural tests for the Domier 328
in icing conditions	in the year 2020 [SAWE PAPER 1871] p 288 A91-22302	p 309 A91-22863
[AIAA PAPER 91-0561] p 279 A91-21532	Aircraft platform scales without sideload induced	Airframe-induced upwash at subsonic speeds
Flight tests of the aerodynamic effects of type I and	weighing errors	[ESDU-90020] p 275 N91-15130
type II ground de-/anti-icing fluids on the Fokker 50 and	[SAWE PAPER 1882] p 309 A91-22307	Development and application of a technique for reducing
Fokker 100 aircraft [AIAA PAPER 91-0785] p 288 A91-21617	A state of the art Mass Properties Laboratory	airframe finite element models for dynamics analysis [NASA-CR-187448] p 323 N91-15607
An introduction to aircraft excrescence drag	[SAWE PAPER 1883] p 309 A91-22308 An equivalent calculation of load spectrums	Airframe noise prediction
[ESDU-90029] p 275 N91-15132	p 319 A91-22369	[ESDU-90023] p 332 N91-15843
Aircraft configuration study for experimental 2-place	Corrosion fatigue crack growth of 30CrMnSiNi2A steel	AIRLINE OPERATIONS
aircraft and RPVs	in airplane environments p 313 A91-22383	Airport technology international 1990/1991
[AD-A227604] p 291 N91-15149 AIRCRAFT PILOTS	A closed form solution of stress intensity factors for the shaft of aeroplane all-moving stabilizer with corner cracks	p 309 A91-21200 AIRPORT PLANNING
International aircraft operator information system, phase	emanating from a hole p 319 A91-22752	Airport technology international 1990/1991
2	Structural tests for the Dornier 328	p 309 A91-21200
[NIAR-90-31] p 333 N91-15928	p 309 A91-22863	AIRPORTS
AIRCRAFT POWER SUPPLIES	Qualification of primary composite aircraft structures	Aircraft incident report: USAir flight 105, Boeing 737-200,
Advanced U.S. military aircraft battery systems [SAE PAPER 901054] p 325 A91-21252	p 313 A91-23714 Tests for integrating measurements of gas pressures	N283AU, Kansas City International Airport, Missouri, September 8, 1989
AIRCRAFT PRODUCTION	in aircraft mechanisms	[PB90-910404] p 280 N91-15140
Painting technology for civil aircraft and helicopters (2nd	[ETN-91-98558] p 293 N91-16014	Radioluminescent (RL) airfield lighting system program
revised and enlarged edition) — Russian book	Finite element thermo-viscoplastic analysis of	[DE91-001007] p 309 N91-15186
p 250 A91-22102	aerospace structures	Fine scale analysis of the kinematic, dynamic and
Assembly of aircraft components — Russian book p 250 A91-22104	[NASA-TM-102761] p 324 N91-16407 AIRCRAFT WAKES	thermodynamic features of a multiple microburst-producing
Derivation of a fuselage weight estimating relationship	Pressure-time history of pylon wake on a pusher	Storm - 205 Not 15057
[SAWE PAPER 1901] p 289 A91-22319	propeller in flight p 331 A91-20747	[AD-A227733] p 325 N91-15657 Evaluation procedure for reinforced concrete box
AIRCRAFT PRODUCTION COSTS	AIRFOIL OSCILLATIONS	culverts under airfield pavements
Formal tools and simulation tools: A coherent workshop p 328 N91-15728	Unsteady transonic flow calculations for multiple	[AD-A227920] p 310 N91-16031
workshop p 328 N91-15728 AIRCRAFT RELIABILITY	oscillating airfoil p 273 A91-24154 AIRFOIL PROFILES	Results of the Kansas City 1989 Terminal Doppler
Improved design of the error-proof filler cover of aircraft	Profile measurements in transonic wind tunnel	Weather Radar (TDWR) operational evaluation testing
tuel system p 288 A91-22266	Braunschweig p 308 A91-20613	[AD-A228784] p 323 N91-16206
International aircraft operator information system, phase	Application of an implicit relaxation method solving the	AIRSPEED Minimum control coord A 'thoustless' approach
2 [NIAR-90-31] p 333 N91-15928	Euler equations for time-accurate unsteady problems	Minimum control speed - A 'thrustless' approach p 285 A91-20980
[NIAR-90-31] p 333 N91-15928 AIRCRAFT SAFETY	p 253 A91-21066 A rapidly converging viscous/inviscid coupling code for	ALGORITHMS
Windshields and canopies - A pilot's best friends	multi-element airfoil configurations	Numerical simulation of icing, deicing, and shedding
p 286 A91-21125	[AIAA PAPER 91-0177] p 259 A91-21397	[AIAA PAPER 91-0665] p 279 A91-21583
SAE aerospace flight deck and handling qualities	Calculation of three-dimensional low Reynolds number	Parameter identification for nonlinear aerodynamic
standards for transport aircraft [SAE ARP 4100] p 287 A91-21259	flows [AIAA PAPER 91-0187] p 259 A91-21403	systems [NASA-CR-187410] p 274 N91-15126
[page minared	hsta (42(-12150

methodology APPLICATIONS PROGRAMS (COMPUTERS) Algorithms development Automatic flight control systems --- Book performance-optimized multicyclic rotor commands Research to application: Supercomputing trends for the p 306 A91-24113 p 327 N91-15716 90's - Opportunities for interdisciplinary computations [AIAA PAPER 91-0002] p 326 A91-21326 **AUTOMATIC PILOTS** [AIAA PAPER 91-0002] Computer aided design and simulation of the automatic Control concept of modern avionics in the service of A method of estimating a separation boundary of approach and landing phase of a combat aircraft pilot relief - Presented using the example of DO 328 p 328 N91-15719 two-dimensional aerofoil sections in transonic flow p 295 A91-22202 p 275 N91-15133 [ESDU-81020-AMEND-A] A successive partial-relaxation Gaussian algorithm for A real-time distributed optimal autopilot NAVPACK: Simulation tools for design of high FRR-3981 p 307 N91-15181 area navigation operations with the Microwave Landing System (MLS) performance integrated navigation systems **AUTOMATIC TEST EQUIPMENT** p 329 N91-15739 [AD-A228871] p 283 N91-16004 The development of a Flight Test Engineer's Workstation Evaluation of rotorwash characteristics for tiltrotor and Optimal trajectories for an aerospace plane. Part 2: Data, for the Automated Flight Test Management System tiltwing aircraft in hovering flight tables, and graphs p 326 A91-20999 p 277 N91-15989 p 292 N91-16011 [NASA-CR-187848] Limitations of BITE --- Built In Test Equipment for APPROACH INDICATORS p 250 A91-21202 Smoothing and scaling airfoil coordinates on a personal transport aircraft VASI systems for helicopter operations --- Visual **AUXILIARY POWER SOURCES** p 294 A91-21221 roach Slope Indicator (DE89-0008781 p 330 N91-16582 Numerical simulations of auxiliary power units with APPROXIMATION ALTERNATING DIRECTION IMPLICIT METHODS different configurations Finite element approximations for transonic flows Numerical simulation of icing, deicing, and shedding ETN-91-98491] p 277 N91-15988 (SAE PAPER 901028) p 298 A91-21240 p 279 A91-21583 [AJAA PAPER 91-0665] ARCHITECTURE (COMPUTERS) New family of low cost electronic fuel control units for small gas turbine engines [SAE PAPER 901039] ALTITUDE TESTS DISCUS - A failure-tolerant Fbw/Fbl-experimental An application of automatic ignitor DDK-1 to turboiet p 303 A91-20610 p 298 A91-21245 engine test under simulated altitude condition AREA NAVIGATION **AVIATION METEOROLOGY** A successive partial-relaxation Gaussian algorithm for n 300 A91-23100 A program to improve aircraft icing forecasts - Status **ALUMINIDES** area navigation operations with the Microwave Landino System (MLS) Titanium aluminides development for NASP airframe [AIAA PAPER 91-0557] p 325 A91-21530 p 283 N91-16004 IAD-A228871 AVIONICS ARITHMETIC AND LOGIC UNITS [AIAA PAPER 90-5261] n 313 A91-22884 How safe is flying? Or - The AIMS onboard integrated Broadband coupling structures for microwave arithmeti p 294 A91-20609 Fatique and fracture of titanium aluminides monitoring systems circuits and phased arrays p 322 N91-15163 [AD-A226737] p 314 N91-15374 Society of Flight Test Engineers, Annual Symposium, ARTIFICIAL INTELLIGENCE ALUMINUM ALLOYS 20th, Reno, NV, Sept. 18-21, 1989, Proceedings Computerized procedure for vibration diagnostics of A mechanism of fretting fatigue failure in the joining lug p 284 A91-20976 p 320 A91-23679 aircraft brakes p 319 A91-22252 The Radio Trials Centre at A&AEE Boscombe Down, United Kingdom - A description p 308 A91-20978 of a wing structure **ASYMPTOTIC METHODS** Aluminum lithium for the F/A-18, Hornet 2000 p 308 A91-20978 Asymptotic theory in aerodynamics [AIAA PAPER 91-0028] (SAWE PAPER 1913) p 289 A91-22326 Cost conscious design for data acquisition system o 257 A91-21344 Fatigue of aluminium alloy joints with various fastener ground support equipment p 308 A91-20983 ATLANTIC OCEAN ystems. High load transfer A measurement system for production flight tests of new p 282 A91-20900 North Atlantic air traffic control p 322 N91-15597 p 308 A91-20984 FESDU-900181 aircraft ATMOSPHERIC CHEMISTRY AMPLIFIER DESIGN takeoff performance p 285 A91-20988 Use of onboard data for A controlled-environment chamber for atmospheric Logarithmic amplification for passive airborne direction determination chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 finding in the 1990s p 296 N91-15164 Testing the new Swedish multirole A/C - The JAS 39 **AMPLITUDES** The atmospheric effects of stratospheric aircraft: A Gripen p 285 A91-20990 Nonlinear large amplitude vibration of composite current consensus Maintenance of modern avionics systems; Proceedings elicopter rotor blade at large static deflection [NASA-RP-1251] p 325 N91-16467 of the Conference, Heathrow, England, May 9, 1989 (AD-A2279331 p 307 N91-15183 ATMOSPHERIC COMPOSITION p 250 A91-21201 ANECHOIC CHAMBERS The atmospheric effects of stratospheric aircraft: A ACARS - air/ground communication facilities for topical review Acoustic power level comparisons of model-scale transport aircraft maintenance p 282 A91-21203 p 325 N91-16466 unterrotating unducted fans (NASA-RP-12501 The aircraft avionic interconnection system [AIAA PAPER 91-0595] ATMOSPHERIC EFFECTS p 332 A91-21548 p 317 A91-21204 The atmospheric effects of stratospheric aircraft: A ANGLE OF ATTACK Development of onboard maintenance systems on topical review AM-X high incidence trials, development and res p 250 A91-21206 Boeing airplanes p 325 N91-16466 [NASA-RP-1250] p 304 A91-21004 Integrated control and avionics for air superiority - A The atmospheric effects of stratospheric aircraft: A Numerical prediction of the unsteady flowfield around current consensus the F-18 aircraft at large incidence [AIAA PAPER 91-0020] p 294 A91-21248 [SAE PAPER 901049] [NASA-RP-1251] p 325 N91-16467 p 256 A91-21338 ATMOSPHERIC ENTRY Control concept of modern avionics in the service of Numerical algorithm comparison for the accurate and pilot relief - Presented using the example of DO 328 Maximum-rate deceleration of an object during efficient computation of high-incidence vortical flow controlled motion under the effect of aerodynamic drag p 295 A91-22202 p 259 A91-21395 [AIAA PAPER 91-0175] p 268 A91-21940 Advances in Components for Active and Passive and gravity forces Aerodynamic characteristics of three generic forebodies ATMOSPHERIC MODELS Airborne Sensors at high angles of attack The atmospheric effects of stratospheric aircraft: A [AGARD-CP-482] p 295 N91-15154 p 260 A91-21437 [AIAA PAPER 91-0275] current consensus wave components: Microwave and millimeter Simulation of stall departure using a nonlinear lifting line [NASA-RP-1251] p 325 N91-16467 Performances, perspectives, and applications to avionics mode MOSPHERIC SOUNDING p 295 N91-15156 [AIAA PAPER 91-0340] p 261 A91-21465 The equipment of a research aircraft with emphasis on MMIC impact on airborne avionic systems Slender wing rock revisited p 249 A91-21001 meteorological experiments p 296 N91-15166 p 262 A91-21484 [AIAA PAPER 91-0417] ATMOSPHERIC TURBULENCE Laser obstacle and cable update sensor p 296 N91-15169 Aerodynamic effects of distributed roughness on a NACA Observations of severe turbulence near thunderstorm p 324 A91-20695 63(2)-015 airfoil tops An integrated approach to system design, reliability, and Random air turbulence as a flutter test excitation [AlAA PAPER 91-0443] p 262 A91-21492 diagnosis High alpha aerodynamic control by tangential fusetage p 286 A91-21002 [NASA-TM-102861] p 322 N91-15426 Modeling two-point spatial turbulence spectra for Formal tools and simulation tools: A coherent porkshop p 328 N91-15728 blowing [AIAA PAPER 91-0620] nalysis of gust variations over aerospace vehicles p 264 A91-21561 workshop p 262 A91-21495 [AIAA PAPER 91-0449] Multi-sensor investigation of delta wing high-alpha The use of system simulation during the definition phase The dynamics of the stratospheric polar vortex and its aerodynamics of the passenger transport aircraft MPC75 p 266 A91-21600 relation to springtime ozone depletions p 330 N91-15741 TAIAA PAPER 91-07351 p 325 A91-21712 Control law study of aircraft maneuvers at high attack Integrated technology development laboratories ATTACK AIRCRAFT p 305 A91-22251 p 330 N91-15743 Normal force and pitching moment of low aspect ratio AM-X high incidence trials, development and results The development of avionics-intensive, multi-sensor p 304 A91-21004 cropped-delta wings up to high angles of attack at cockpits: Simulation does not always equal success Air-to-ground attack and Integrated Flight/Fire Control p 330 N91-15746 supersonic speeds p 305 A91-22265 (ESDU-900131 p 292 N91-15152 A successive partial-relaxation Gaussian algorithm for ATTACKING (ASSAULTING) area navigation operations with the Microwave Landing System (MLS) ANNULAR FLOW Air-to-ground attack fighter improvements through On the stability of conduction dominated natural multi-function nozzles AD-A228871 p 283 N91-16004 convection in near-vertical slots and horizontal cylindrical p 304 A91-21231 **ISAE PAPER 9010021** AWACS AIRCRAFT [AIAA PAPER 91-0027] p 257 A91-21343 AUTOCORRELATION Modern airborne early warning radars ANTIICING ADDITIVES Modeling two-point spatial turbulence spectra for p 283 A91-23145 Proceedings of the 2nd E-3 AWACS Corrosion Prevention Advisory Board (CPAB) analysis of gust variations over aerospace vehicles Flight and wind tunnel tests of the aerodynamic effects p 262 A91-21495 [AIAA PAPER 91-0449] of aircraft ground deicing/anti-icing fluids **AUTOMATIC FLIGHT CONTROL** [AIAA PAPER 91-0762] p 267 A91-21608 [AD-A227627] p 291 N91-15150 Flight tests of the aerodynamic effects of type I and Estimation of aerodynamic and mode parameters of AXIAL LOADS aircraft's open and closed-loop system Fatigue of aluminium alloy joints with various fastener type II ground de-/anti-icing fluids on the Fokker 50 and p 303 A91-20992 systems. High load transfer Fokker 100 aircraft

[AIAA PAPER 91-0785]

p 288 A91-21617

Soviet ATC research

p 309 A91-22172

(ESDU-900181

p 322 N91-15597

AXISYMMETRIC BODIES SUBJECT INDEX

AXISYMMETRIC BODIES Far-field boundaries and their numerical treatment BRIGHTNESS AF-2 iteration and its parallel algorithm for transonic flow p 323 N91-16281 Radioluminescent (RL) airfield lighting system program p 309 N91-15186 with large disturbances in freestream-direction around **BOEING AIRCRAFT** [DE91-001007] axisymmetric bodies at zero angle of attack BROADBAND Development of onboard maintenance systems on oeing airplanes p 250 A91-21206 p 270 A91-22763 Broadband coupling structures for microwave arithmetic Boeing airplanes Simplified modeling of blunt nose effects on vehicle flow **BOLTS** circuits and phased arrays p 322 N91-15163 fields **BURNING RATE** Failure analysis of a main rotor pitch horn bolt located [AIAA PAPER 90-5259] p 270 A91-22883 on the AH-1 Cobra helicopter Gasdynamic features of supersonic AXISYMMETRIC FLOW p 292 N91-16007 combustion in a model combustion chamber [AD-A2276791 Aerodynamic design for supersonic nozzles of arbitrary [AIAA PAPER 90-5268] p 313 A91-22891 **BOUNDARY CONDITIONS** p 251 A91-20745 Far-field boundaries and their numerical treatment cross section Velocity field of an axisymmetric pulsed, subsonic air p 323 N91-16281 C p 269 A91-22479 **BOUNDARY ELEMENT METHOD** Effect of slotting on the noise of an axisymmetric Numerical analyses of stress near the hole of p 332 A91-22493 CABLES (ROPES) supersonic iet compressor disk by boundary element method Selectable towline spin chute system
[NASA-CASE-LAR-14322-1] p Three-dimensional boundary layer effects in convergent p 319 A91-22754 p 321 A91-23910 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary p 276 N91-15138 compression flows Calculation of averaged axisymmetric flow of an ideal CAMBERED WINGS p 321 A91-23938 gas in turbomachine stages element method The development and design integration of a variable Solution of Euler equations to 2-D and axisymmetric [NAL-TR-1065] BOUNDARY LAYER FLOW p 277 N91-15985 camber wing for long/medium range aircraft compressible using conformal flows p 284 A91-20898 p 272 A91-24152 coordinates Calculation of three-dimensional compressible boundary CANADA Static internal performance of an axisymmetric nozzle p 252 A91-20936 lavers on slender bodies Potential use of tiltrotor aircraft in Canadian aviation with multiaxis thrust-vectoring capability laminar hypersonic Modellization and calculation of [NASA-TM-102245] p 281 N91-16001 p 274 N91-15125 INASA-TM-42371 p 254 A91-21190 boundary layer flows CANARD CONFIGURATIONS The symmetric turbulent plane wake downstream of a Three-dimensional unsteady flow fields elicited by sharp trailing edge В pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 [AIAA PAPER 91-0612] p 264 A91-21558 [AIAA PAPER 91-0005] Macroscopic model of vibrational relaxation in heat close-coupled **BACKWARD FACING STEPS** Navier-Stokes simulation transfer problems for supersonic flow past hard bodi canard-wing-body configuration A steadying effect of acoustic excitation on transitory p 268 A91-21979 [AIAA PAPER 91-0070] p 257 A91-21356 receptivity Boundary layer phenomena [AIAA PAPER 91-0043] p 269 A91-22499 The effects of canard position aerodynamic three-dimensional and high-speed boundary layers characteristics of forward-swept wing **BALL BEARINGS** [AIAA PAPER 90-5258] p 270 A91-22882 Wear measurement of ceramic bearings in gas p 273 A91-24156 BOUNDARY LAYER SEPARATION turbines CANOPIES Cross-flow vortex structure and transition measurements [AD-A227505] p 324 N91-16382 Windshields and canopies - A pilot's best friends using multi-element hot films **BEARING (DIRECTION)** p 286 A91-21125 [AIAA PAPER 91-0166] p 258 A91-21389 An evaluation of shape methods for helicopter classification and orientation determination Correlation of separation shock motion in a cylinder-induced, Mach 5, turbulent interaction with **CANTILEVER BEAMS** Flexural-flexural-torsional parametric vibrations of a p 291 N91-15148 ssure fluctuations in the separated flow cantilever beam p 321 A91-23745 BENDING VIBRATION p 265 A91-21578 [AIAA PAPER 91-0650] CANTILEVER PLATES Nonlinear large amplitude vibration of composite Three-dimensional boundary layer effects in convergent Free vibration of a cantilever annular sector plate with helicopter rotor blade at large static deflection p 321 A91-23910 curved radial edges and varying thickness p 307 N91-15183 [AD-A227933] A method of estimating a separation boundary of p 316 A91-20943 BENZENE two-dimensional aerofoil sections in transonic flow CARBON DIOXIDE LASERS A comparison of three prospective analytical methods [ESDU-81020-AMEND-A] p 275 N91-15133 Laser obstacle and cable update sensor for benzene analysis in jet fuel environments BOUNDARY LAYER STABILITY p 296 N91-15169 [AD-A227489] p 314 N91-16170 Nonlinear disturbances in a hypersonic laminar boundary **CARBON FIBER REINFORCED PLASTICS BIRD-AIRCRAFT COLLISIONS** Bump examinations of integrally strengthened carbon fiber reinforced plastic panels Prediction of penetration of curved metal stiffened [AIAA PAPER 91-0320] p 261 A91-21457 panels due to birdstrike p 315 A91-20899 Nonparallel instability of supersonic and hypersonic [MBB/FE281/CFK/PUB/0013] p 314 N91-16076 BLADE TIPS boundary layers [AIAA PAPER 91-0324] CASCADE FLOW Propeller noise minimization without thrust loss due to p 261 A91-21461 asymmetric blade distribution p 331 A91-20614 Development of a solution adaptive unstructured An experimental study of the evolution of harmonic Optical measurement of unducted fan flutter scheme for quasi-3D inviscid flows through advanced perturbations in a boundary layer on a flat plate at Mach [NASA-TM-103285] p 302 N91-15174 turbomachinery cascades p 272 A91-23842 [AIAA PAPER 91-0132] p 258 A91-21374 **BLADE-VORTEX INTERACTION** Effect of surface temperature on the stability of the Navier-Stokes simulation of transonic blade-vortex Experimental study of the three-dimensional flow field attachment line boundary layer of a swept wing p 272 A91-23845 p 253 A91-21065 in a turbine stator preceded by a full stage interactions **BLOCKING** Investigation of the influence of constant adverse The method for extending the range of attack angle and blockage in transonic wind tunnel testing - Using low Double linearization theory for a rotating subsonic pressure gradients on laminar boundary-layer stability at annular cascade of oscillating blades. I - Mathematical Mach number 8 supersonic nozzle instead of sonic nozzle expressions of disturbance flow field. II - Numerical study [AD-A228231] p 324 N91-16293 p 273 A91-24163 of unsteady aerodynamic forces p 272 A91-24115 **BOUNDARY LAYER TRANSITION** BLOWING Boundary-layer transition and heat transfer on slende CAST ALLOYS Strip blowing from a wedge at hypersonic speeds Development of cast superalloys for gas turbines in p 313 A91-22340 p 254 A91-21194 delta wings p 257 A91-21346 [AIAA PAPER 91-0032] China Calculation of three-dimensional low Reynolds number A theory for tangential fuselage blowing [AIAA PAPER 91-0621] p 26 CASTING p 264 A91-21562 [AIAA PAPER 91-0187] p 259 A91-21403 Resin transfer molding of composite aircraft interior · BLUNT BODIES Boundary-layer transition - Analysis and prediction furnishings [NIAR-90-19] Molecular dynamics computations of two dimensional p 292 N91-15153 TAIAA PAPER 91-07371 supersonic rarefied gas flow past blunt bodies n 318 A91-21601 **CATASTROPHE THEORY** p 261 A91-21459 Comment on 'Optical boundary-layer transition detection [AIAA PAPER 91-0322] Control law study of aircraft maneuvers at high attack A practical method for the aerodynamic calculations of in a transonic wind tunnel' p 319 A91-22496 angle p 305 A91-22251 p 268 A91-22392 Boundary layer receptivity phenomena three-dimensional and high-speed boundary layers phenomena blunt bodies of revolution CENTER OF GRAVITY Simplified modeling of blunt nose effects on vehicle flow Effects of external loads on onboard weight and balance [AIAA PAPER 90-5258] p 270 A91-22882 systems p 270 A91-22883 **BOUNDARY LAYERS** (SAWE PAPER 1895) [AIAA PAPER 90-5259] p 289 A91-22317 Development of a boundary layer noise prediction code CENTER OF MASS BODIES OF REVOLUTION and its application to advanced propellers Numerical, experimental, and theoretical study of A state of the art Mass Properties Laboratory [AIAA PAPER 91-0593] AIAA PAPER 91-0593] p 331 A91-21546 Fine scale analysis of the kinematic, dynamic and convective instability of flows over pointed bodies at [SAWE PAPER 1883] p 309 A91-22308 incidence **CENTRIFUGAL COMPRESSORS** thermodynamic features of a multiple microburst-producing [AIAA PAPER 91-0291] p 260 A91-21443 A three-dimensional Euler code for calculating flow fields A practical method for the aerodynamic calculations of in centrifugal compressor diffusers p 267 A91-21744 [AD-A2277331 p 268 A91-22392 blunt bodies of revolution CENTRIFUGAL FORCE Investigation of transonic flow over segmented slotted **BODY-WING AND TAIL CONFIGURATIONS** Optical measurement of unducted fan flutter wind tunnel wall with mass transfer [NASA-TM-103285] p 302 N91-15174 Viscous flow simulation of fighter aircraft [NASA-CR-187760] p 276 N91-15981 [AIAA PAPER 91-0278] p 260 A91-21438 CERAMICS **BOXES (CONTAINERS) BODY-WING CONFIGURATIONS** Advanced Turbine Technology Applications Project Evaluation procedure for reinforced concrete box (ATTAP) [NASA-CR-187039] Navier-Stokes simulation close-coupled ulverts under airfield pavements p 302 N91-16021 canard-wing-body configuration (AD-A2279201 p 310 N91-16031

[AIAA PAPER 91-0070]

[ESDU-90020]

Airframe-induced upwash at subsonic speeds

p 257 A91-21356

p 275 N91-15130

BRANCHING (MATHEMATICS)

Control law study of aircraft maneuvers at high attack

p 305 A91-22251

Wear measurement of ceramic bearings in gas

p 324 N91-16382

[AD-A227505]

CERTIFICATION	COMBAT	COMPLEX VARIABLES
Aircraft accident report: United Airlines flight 232, McDonnell Douglas DC-10-10, Sioux Gateway Airport,	Measures of merit for aircraft dynamic maneuvering [SAE PAPER 901005] p 304 A91-21233	Solution and sensitivity analysis of a complex transcendental eigenproblem with pairs of real
Sioux City, Iowa, 19 July 1989	COMBUSTIBLE FLOW	eigenvalues p 320 A91-23685
[PB90-910406] p 281 N91-15143	Structure of a supersonic reacting jet	COMPONENT RELIABILITY
CHANNEL FLOW	[AIAA PAPER 91-0376] p 299 A91-21475	Development of onboard maintenance systems on
Numerical investigation of drag reduction in flow over surfaces with streamwise aligned riblets	Compressibility effects on the supersonic reacting mixing layer	Boeing airplanes p 250 A91-21206
[AIAA PAPER 91-0518] p 263 A91-21517	[AIAA PAPER 91-0739] p 266 A91-21603	Review of the transmissions of the Soviet helicopters [NASA-TM-103634] p 291 N91-15146
An experimental investigation of heat transfer	COMBUSTION CHAMBERS	COMPOSITE MATERIALS
coefficients in a spanwise rotating channel with two	Flowfield measurements in an unstable ramjet burner	Design for strength and rigidity of a thermoplastic
opposite rib-roughened walls	p 297 A91-20737 Flow measurements in a model ramjet secondary	composite speed brake p 284 A91-20783
[ASME PAPER 89-GT-150] p 320 A91-23661 CHANNELS (DATA TRANSMISSION)	combustion chamber p 310 A91-20743	Designing and manufacturing the F-111 advanced
Modulation and coding for the aeronautical satellite	Radiative interactions in a hydrogen-fueled supersonic	composite forward vental strake [SME PAPER EM90-105] p 249 A91-21106
channel p 283 A91-22904	combustor [AIAA PAPER 91-0373] p 312 A91-21473	Advanced composites F-4 rudder
CHAOS Same observations of observa vibration observations in	[AIAA PAPER 91-0373] p 312 A91-21473 Multi-dimensional modelling of gas turbine combustion	[SME PAPER EM90-106] p 249 A91-21107
Some observations of chaotic vibration phenomena in high-speed rotordynamics p 320 A91-23665	using a flame sheet model in KIVA II	Materials and processes used for bonded repairs of
Application of chaos methods to helicopter vibration	[AIAA PAPER 91-0414] p 299 A91-21483	F/A-18 advanced composite honeycomb sandwich
reduction using higher harmonic control	Experimental and theoretical studies in a gas-fueled	structures [SME PAPER EM90-107] p 316 A91-21108
[AD-A226736] p 306 N91-15177	research combustor [AIAA PAPER 91-0639] p 300 A91-21575	[SME PAPER EM90-107] p 316 A91-21108 Composite materials in aircraft structures Book
CHEMICAL ANALYSIS A controlled-environment chamber for atmospheric	Effect of the penetration depth of fuel jets on combustion	p 313 A91-22109
chemistry studies using FT-IR spectroscopy	in a supersonic combustion chamber	TF89 tactical fighter outer wing design
[AD-A227532] p 309 N91-15185	p 312 A91-21962	[ETN-91-98580] p 294 N91-16019
CHEMICAL EFFECTS	Gasdynamic features of supersonic kerosene combustion in a model combustion chamber	COMPOSITE STRUCTURES
Effects of runway anti-icing chemicals on traction [DOT/FAA/CT-TN90/53] p 310 N91-15189	[AIAA PAPER 90-5268] p 313 A91-22891	Composite patch reinforcement of cracked aircraft upper
CHIPS (ELECTRONICS)	Experimental investigation of a 2-D dual mode scramjet	longeron - Analysis and specimen simulation p 249 A91-20784
MMIC impact on airborne avionic systems	with hydrogen fuel at Mach 4-6	Fracture instability of a layered conical composite
p 296 N91-15166	[AIAA PAPER 90-5269] p 300 A91-22892	resisting the aerodynamic load p 315 A91-20791
CHLORIDES	COMBUSTION EFFICIENCY Combustion efficiency determined from wall pressure	Designing and manufacturing the F-111 advanced
Failure analysis of a main rotor pitch horn bolt located on the AH-1 Cobra helicopter	and temperature measurement in a Mach 2 combustor	composite forward vental strake
[AD-A227679] p 292 N91-16007	[AIAA PAPER 91-0017] p 298 A91-21336	[SME PAPER EM90-105] p 249 A91-21108
CHOKES	A computational investigation of dump combustor	North Island F/A-18 aircraft advanced composites
Performance of conical diffusers in subsonic	performance p 300 A91-23106	repair [SME PAPER EM90-108] p 316 A91-21109
compressible flow	COMBUSTION PHYSICS Comparison of combustion experiments and theory in	Analysis and certification of the Starship all-composite
[ESDU-90025] p 275 N91-15131 CHROMIUM STEELS	polyethylene solid fuel ramjets p 297 A91-20744	airframe
Corrosion fatigue crack growth of 30CrMnSiNi2A steel	Progress in laser-spectroscopic techniques for	[SAE PAPER 900997] p 278 A91-21229
in airplane environments p 313 A91-22383	aerodynamic measurements - An overview	Structural tests for the Dornier 328
CIRCULATION CONTROL AIRFOILS	[AIAA PAPER 91-0059] p 317 A91-21351	p 309 A91-22863
A method for calculating the aerodynamic forces of	COMBUSTION STABILITY Flowfield measurements in an unstable ramjet burner	Qualification of primary composite aircraft structures
elliptical circulation control airfoils p 273 A91-24155 CIVIL AVIATION	p 297 A91-20737	p 313 A91-23714 Nonlinear large amplitude vibration of composite
Airport technology international 1990/1991	Active control of a dump combustor with fuel	helicopter rotor blade at large static deflection
p 309 A91-21200	modulation	[AD-A227933] p 307 N91-15183
Painting technology for civil aircraft and helicopters (2nd	[AIAA PAPER 91-0368] p 299 A91-21471 Active control of combustion instability in a ramjet using	COMPRESSIBILITY EFFECTS
revised and enlarged edition) Russian book p 250 A91-22102	large-eddy simulations	Compressibility effects on the supersonic reacting mixing layer
Testing Soviet civil aircraft p 288 A91-22173	[AIAA PAPER 91-0411] p 299 A91-21482	[AIAA PAPER 91-0739] p 266 A91-21603
Advanced technology - Constant challenge and	COMMERCIAL AIRCRAFT	An experiment on supersonic turbulent mixing layers:
evolutionary process in aeronautics	Airframe-engine integration - Task for future commercial	Supersonic-subsonic two-stream layers
p 251 A91-23547	aircraft evolution p 251 A91-20615 Airport technology international 1990/1991	[NAL-TR-1066] p 276 N91-15983 COMPRESSIBLE BOUNDARY LAYER
The civil tiltrotor aircraft's potential in developing economies p 280 A91-24122	p 309 A91-21200	Calculation of three-dimensional compressible boundary
Aircraft accident report: United Airlines flight 232,	Analysis and certification of the Starship all-composite	layers on slender bodies p 252 A91-20936
McDonnell Douglas DC-10-10, Sioux Gateway Airport,	airframe	A study of compressible laminar boundary layer at Mach
Sioux City, Iowa, 19 July 1989	[SAE PAPER 900997] p 278 A91-21229	numbers 4 to 30
[PB90-910406] p 281 N91-15143	Development of a workstation-based flight data analysis package	[AIAA PAPER 91-0323] p 261 A91-21460 COMPRESSIBLE FLOW
Potential use of tiltrotor aircraft in Canadian aviation	[AIAA PAPER 91-0668] p 279 A91-21585	A study of dynamic stall using real time interferometry
[NASA-TM-102245] p 281 N91-16001 CLASSIFICATIONS	Testing Soviet civil aircraft p 288 A91-22173	[AIAA PAPER 91-0007] p 256 A91-21329
An evaluation of shape methods for helicopter	Effects of external loads on onboard weight and balance	Design limits of compressible NLF airfoils
classification and orientation determination	systems [SAWE PAPER 1895] p 289 A91-22317	[AIAA PAPER 91-0067] p 257 A91-21355
[AD-A227326] p 291 N91-15148	[SAWE PAPER 1895] p 289 A91-22317 Aircraft accident report: United Airlines flight 232,	Aerodynamic shape design using stream-function-coordinate (SFC) formulation
CLIMATOLOGY	McDonnell Douglas DC-10-10, Sioux Gateway Airport,	
The atmospheric effects of stratospheric aircraft. A	MCDOINER Douglas DC-10-10, Sloux Galeway Airport,	[AIAA PAPER 91-0189] p 260 A91-21404
The atmospheric effects of stratospheric aircraft: A topical review	Sioux City, Iowa, 19 July 1989	[AIAA PAPER 91-0189] p 260 A91-21404 Numerical modeling of an advanced pneumatic impulse
The atmospheric effects of stratospheric aircraft: A topical review [NASA-RP-1250] p 325 N91-16466	Sioux City, Iowa, 19 July 1989 [PB90-910406] p 281 N91-15143	Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft
topical review [NASA-RP-1250] p 325 N91-16466 CLOSURE LAW	Sioux City, Iowa, 19 July 1989 [PB90-910406] p 281 N91-15143 COMMONALITY	Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529
topical review [NASA-RP-1250] p 325 N91-16466 CLOSURE LAW Computation of turbulent flow about unconventional	Sioux City, Iowa, 19 July 1989 [PB90-910406] p 281 N91-15143 COMMONALITY Aircraft cost estimating - Weight commonality as a	Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 Computation of steady and unsteady compressible
topical review [NASA-RP-1250] p 325 N91-16466 CLOSURE LAW Computation of turbulent flow about unconventional airfoil shapes p 278 N91-15992	Sioux City, Iowa, 19 July 1989 [PB90-910406] p 281 N91-15143 COMMONALITY	Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] Computation of steady and unsteady compressible quasi-axisymmetric vortex flow and breakdown
topical review [NASA-RP-1250] p 325 N91-16466 CLOSURE LAW Computation of turbulent flow about unconventional airfoil shapes p 278 N91-15992 COCKPIT SIMULATORS	Sioux City, Iowa, 19 July 1989 [PB90-910406] p 281 N91-15143 COMMONALITY Aircraft cost estimating - Weight commonality as a predictor	Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-055] p 288 A91-21529 Computation of steady and unsteady compressible quasi-axisymmetric vortex flow and breakdown [AIAA PAPER 91-0752] p 266 A91-21604
topical review [NASA-RP-1250] p 325 N91-16466 CLOSURE LAW Computation of turbulent flow about unconventional airfoil shapes p 278 N91-15992 COCKPIT SIMULATORS Programmable cockpit-flight dynamic model [AD-A227748] p 296 N91-15171	Sioux City, Iowa, 19 July 1989 [PB90-910406] p 281 N91-15143 COMMONALITY Aircraft cost estimating - Weight commonality as a predictor [SAWE PAPER 1909] p 333 A91-22322 COMMUTER AIRCRAFT RPAS - Runway performance analysis system	Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 Computation of steady and unsteady compressible quasi-axisymmetric vortex flow and breakdown [AIAA PAPER 91-0752] p 266 A91-21604 Flux-difference split scheme for turbulent transport equations
topical review [NASA-RP-1250] p 325 N91-16466 CLOSURE LAW Computation of turbulent flow about unconventional airfoil shapes p 278 N91-15992 COCKPIT SIMULATORS Programmable cockpit-flight dynamic model [AD-A227748] p 296 N91-15171 Programmable cockpit-head-up display and outside	Sioux City, Iowa, 19 July 1989 [PB90-910406] p 281 N91-15143 COMMONALITY Aircraft cost estimating - Weight commonality as a predictor [SAWE PAPER 1909] p 333 A91-22322 COMMUTER AIRCRAFT RPAS - Runway performance analysis system p 285 A91-20987	Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 Computation of steady and unsteady compressible quasi-axisymmetric vortex flow and breakdown [AIAA PAPER 91-0752] p 266 A91-21604 Flux-difference split scheme for turbulent transport equations [AIAA PAPER 90-5251] p 270 A91-22878
topical review [NASA-RP-1250] p 325 N91-16466 CLOSURE LAW Computation of turbulent flow about unconventional airfoit shapes p 278 N91-15992 COCKPIT SIMULATORS Programmable cockpit-flight dynamic model [AD-A227748] p 296 N91-15171 Programmable cockpit-head-up display and outside view	Sioux City, Iowa, 19 July 1989 [PB90-910406] p 281 N91-15143 COMMONALITY Aircraft cost estimating - Weight commonality as a predictor [SAWE PAPER 1909] p 333 A91-22322 COMMUTER AIRCRAFT RPAS - Runway performance analysis system	Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 Computation of steady and unsteady compressible quasi-exisymmetric vortex flow and breakdown [AIAA PAPER 91-0752] p 266 A91-21604 Flux-difference split scheme for turbulent transport equations [AIAA PAPER 90-5251] p 270 A91-22878 Boundary layer three-dimensionality in plane
topical review [NASA-RP-1250] p 325 N91-16466 CLOSURE LAW Computation of turbulent flow about unconventional airfoil shapes p 278 N91-15992 COCKPIT SIMULATORS Programmable cockpit-flight dynamic model [AD-A227748] p 296 N91-15171 Programmable cockpit-head-up display and outside view [AD-A227751] p 297 N91-15172	Sioux City, Iowa, 19 July 1989 [PB90-910406] p 281 N91-15143 COMMONALITY Aircraft cost estimating - Weight commonality as a predictor [SAWE PAPER 1909] p 333 A91-22322 COMMUTER AIRCRAFT RPAS - Runway performance analysis system p 285 A91-20987 Optimization studies for the PW305 turbofan p 297 A91-21222 The vertical flight commuter - A solution to urban	Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 Computation of steady and unsteady compressible quasi-axisymmetric vortex flow and breakdown [AIAA PAPER 91-0752] p 266 A91-21604 Flux-difference split scheme for turbulent transport equations [AIAA PAPER 90-5251] p 270 A91-22878 Boundary layer three-dimensionality in plane compression flows p 321 A91-23905
topical review [NASA-RP-1250] p 325 N91-16466 CLOSURE LAW Computation of turbulent flow about unconventional airfoit shapes p 278 N91-15992 COCKPIT SIMULATORS Programmable cockpit-flight dynamic model [AD-A227748] p 296 N91-15171 Programmable cockpit-head-up display and outside view [AD-A227751] p 297 N91-15172 Cockpit Mock Up (CMU): A design and development tool p 328 N91-15730	Sioux City, Iowa, 19 July 1989 [PB90-910406] p 281 N91-15143 COMMONALITY Aircraft cost estimating - Weight commonality as a predictor [SAWE PAPER 1909] p 333 A91-22322 COMMUTER AIRCRAFT RPAS - Runway performance analysis system p 285 A91-20987 Optimization studies for the PW305 turbotan p 297 A91-21222 The vertical flight commuter - A solution to urban transportation problems p 280 A91-24120	Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 Computation of steady and unsteady compressible quasi-axisymmetric vortex flow and breakdown [AIAA PAPER 91-0752] p 266 A91-21604 Flux-difference split scheme for turbulent transport equations [AIAA PAPER 90-5251] p 270 A91-22878 Boundary layer three-dimensionality in plane compression flows p 321 A91-23910 Three-dimensional boundary layer effects in convergence compression flows p 321 A91-23910
topical review [NASA-RP-1250] p 325 N91-16466 CLOSURE LAW Computation of turbulent flow about unconventional airfoil shapes p 278 N91-15992 COCKPIT SIMULATORS Programmable cockpit-flight dynamic model [AD-A227748] p 296 N91-15171 Programmable cockpit-head-up display and outside view [AD-A227751] p 297 N91-15172 Cockpit Mock Up (CMU): A design and development tool p 328 N91-15730 The development of avionics-intensive, multi-sensor	Sioux City, Iowa, 19 July 1989 [PB90-910406] p 281 N91-15143 COMMONALITY Aircraft cost estimating - Weight commonality as a predictor [SAWE PAPER 1909] p 333 A91-22322 COMMUTER AIRCRAFT RPAS - Runway performance analysis system	Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 Computation of steady and unsteady compressible quasi-axisymmetric vortex flow and breakdown [AIAA PAPER 91-0752] p 266 A91-21604 Flux-difference split scheme for turbulent transport equations [AIAA PAPER 90-5251] p 270 A91-22878 Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 Three-dimensional boundary layer effects in convergent compression flows p 321 A91-23910 Solution of Euler equations to 2-D and axisymmetric
topical review [NASA-RP-1250] p 325 N91-16466 CLOSURE LAW Computation of turbulent flow about unconventional airfoil shapes p 278 N91-15992 COCKPIT SIMULATORS Programmable cockpit-flight dynamic model [AD-A227748] p 296 N91-15171 Programmable cockpit-head-up display and outside view [AD-A227751] p 297 N91-15172 Cockpit Mock Up (CMU): A design and development tool p 328 N91-15730 The development of avionics-intensive, multi-sensor cockpits: Simulation does not always equal success	Sioux City, Iowa, 19 July 1989 [PB90-910406] p 281 N91-15143 COMMONALITY Aircraft cost estimating - Weight commonality as a predictor [SAWE PAPER 1909] p 333 A91-22322 COMMUTER AIRCRAFT RPAS - Runway performance analysis system p 285 A91-20987 Optimization studies for the PW305 turbofan p 297 A91-21222 The vertical flight commuter - A solution to urban transportation problems p 280 A91-24120 Development of a crashworthy seat for commuter aircraft	Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 Computation of steady and unsteady compressible quasi-axisymmetric vortex flow and breakdown [AIAA PAPER 91-0752] p 266 A91-21604 Flux-difference split scheme for turbulent transport equations [AIAA PAPER 90-5251] p 270 A91-22878 Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 Three-dimensional boundary layer effects in convergent compression flows p 321 A91-23910 Solution of Euler equations to 2-D and axisymmetric compressible flows using conformal mapping
topical review [NASA-RP-1250] p 325 N91-16466 CLOSURE LAW Computation of turbulent flow about unconventional airfoit shapes p 278 N91-15992 COCKPIT SIMULATORS Programmable cockpit-flight dynamic model [AD-A227748] p 296 N91-15171 Programmable cockpit-head-up display and outside view [AD-A227751] p 297 N91-15172 Cockpit Mock Up (CMU): A design and development tool p 328 N91-15730 The development of avionics-intensive, multi-sensor cockpits: Simulation does not always equal success p 330 N91-15746	Sioux City, Iowa, 19 July 1989 [PB90-910406] p 281 N91-15143 COMMONALITY Aircraft cost estimating - Weight commonality as a predictor [SAWE PAPER 1909] p 333 A91-22322 COMMUTER AIRCRAFT RPAS - Runway performance analysis system p 285 A91-20987 Optimization studies for the PW305 turbofan p 297 A91-21222 The vertical flight commuter - A solution to urban transportation problems p 280 A91-24120 Development of a crashworthy seat for commuter aircraft [AD-A227486] p 281 N91-15999	Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 Computation of steady and unsteady compressible quasi-axisymmetric vortex flow and breakdown [AIAA PAPER 91-0752] p 266 A91-21604 Flux-difference split scheme for turbulent transport equations [AIAA PAPER 90-5251] p 270 A91-22978 Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 Three-dimensional boundary layer effects in convergent compression flows p 321 A91-23910 Solution of Euler equations to 2-D and axisymmetric compressible flows using conformal mapping coordinates p 272 A91-24152
topical review [NASA-RP-1250] p 325 N91-16466 CLOSURE LAW Computation of turbulent flow about unconventional airfoit shapes p 278 N91-15992 COCKPIT SIMULATORS Programmable cockpit-flight dynamic model [AD-A227748] p 296 N91-15171 Programmable cockpit-head-up display and outside view [AD-A227751] p 297 N91-15172 Cockpit Mock Up (CMU): A design and development tool p 328 N91-15730 The development of avionics-intensive, multi-sensor cockpits: Simulation does not always equal success p 330 N91-15746	Sioux City, Iowa, 19 July 1989 [PB90-910406] p 281 N91-15143 COMMONALITY Aircraft cost estimating - Weight commonality as a predictor [SAWE PAPER 1909] p 333 A91-22322 COMMUTER AIRCRAFT RPAS - Runway performance analysis system p 285 A91-20987 Optimization studies for the PW305 turbofan p 297 A91-21222 The vertical flight commuter - A solution to urban transportation problems p 280 A91-24120 Development of a crashworthy seat for commuter aircraft [AD-A227486] p 281 N91-15999 COMPATIBILITY The compatibility check of the flight test data of the	Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 Computation of steady and unsteady compressible quasi-axisymmetric vortex flow and breakdown [AIAA PAPER 91-0752] p 266 A91-21604 Flux-difference split scheme for turbulent transport equations [AIAA PAPER 90-5251] p 270 A91-22878 Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 Three-dimensional boundary layer effects in convergent compression flows p 321 A91-23910 Solution of Euler equations to 2-D and axisymmetric compressible flows using conformal mapping
topical review [NASA-RP-1250] p 325 N91-16466 CLOSURE LAW Computation of turbulent flow about unconventional airfoit shapes p 278 N91-15992 COCKPIT SIMULATORS Programmable cockpit-flight dynamic model [AD-A227748] p 296 N91-15171 Programmable cockpit-head-up display and outside view [AD-A227751] p 297 N91-15172 Cockpit Mock Up (CMU): A design and development tool p 328 N91-15730 The development of avionics-intensive, multi-sensor cockpits: Simulation does not always equal success p 330 N91-15746 COCKPITS Programmable cockpit-flight dynamic model [AD-A227748] p 296 N91-15171	Sioux City, lowa, 19 July 1989 [PB90-910406] p 281 N91-15143 COMMONALITY Aircraft cost estimating - Weight commonality as a predictor [SAWE PAPER 1909] p 333 A91-22322 COMMUTER AIRCRAFT RPAS - Runway performance analysis system p 285 A91-20987 Optimization studies for the PW305 turbofan p 297 A91-21222 The vertical flight commuter - A solution to urban transportation problems p 280 A91-24120 Development of a crashworthy seat for commuter aircraft [AD-A227486] p 281 N91-15999 COMPATIBILITY The compatibility check of the flight test data of the DO 28 research aircraft p 290 A91-22757	Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 Computation of steady and unsteady compressible quasi-axisymmetric vortex flow and breakdown [AIAA PAPER 91-0752] p 266 A91-21604 Flux-difference split scheme for turbulent transport equations [AIAA PAPER 90-5251] p 270 A91-22978 Boundary layer three-dimensionality in plane compression flows p 321 A91-23910 Three-dimensional boundary layer effects in convergent compression flows p 321 A91-23910 Solution of Euler equations to 2-D and axisymmetric compressible flows using conformal mapping coordinates p 272 A91-24152 Numerical computation of shock in the front of blunt body p 273 A91-24164 Direct numerical simulations of a plane compressible
topical review [NASA-RP-1250] p 325 N91-16466 CLOSURE LAW Computation of turbulent flow about unconventional airfoil shapes p 278 N91-15992 COCKPIT SIMULATORS Programmable cockpit-flight dynamic model [AD-A227748] p 296 N91-15171 Programmable cockpit-head-up display and outside view [AD-A227751] p 297 N91-15172 Cockpit Mock Up (CMU): A design and development tool p 328 N91-15730 The development of avionics-intensive, multi-sensor cockpits: Simulation does not always equal success p 330 N91-15746 COCKPITS Programmable cockpit-flight dynamic model	Sioux City, Iowa, 19 July 1989 [PB90-910406] p 281 N91-15143 COMMONALITY Aircraft cost estimating - Weight commonality as a predictor [SAWE PAPER 1909] p 333 A91-22322 COMMUTER AIRCRAFT RPAS - Runway performance analysis system	Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 Computation of steady and unsteady compressible quasi-exisymmetric vortex flow and breakdown [AIAA PAPER 91-0752] p 266 A91-21604 Flux-difference split scheme for turbulent transport equations [AIAA PAPER 90-5251] p 270 A91-22878 Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 Three-dimensional boundary layer effects in convergent compression flows p 321 A91-23910 Solution of Euler equations to 2-D and exisymmetric compressible flows using conformal mapping coordinates p 272 A91-24152 Numerical computation of shock in the front of blunt body Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology
topical review [NASA-RP-1250] p 325 N91-16466 CLOSURE LAW Computation of turbulent flow about unconventional airfoil shapes p 278 N91-15992 COCKPIT SIMULATORS Programmable cockpit-flight dynamic model [AD-A227748] p 296 N91-15171 Programmable cockpit-head-up display and outside view [AD-A227751] p 297 N91-15172 Cockpit Mock Up (CMU): A design and development tool p 328 N91-15730 The development of avionics-intensive, multi-sensor cockpits: Simulation does not always equal success p 330 N91-15746 COCKPITS Programmable cockpit-flight dynamic model [AD-A227748] p 296 N91-15171 Programmable cockpit-head-up display and outside view	Sioux City, Iowa, 19 July 1989 [PB90-910406] p 281 N91-15143 COMMONALITY Aircraft cost estimating - Weight commonality as a predictor [SAWE PAPER 1909] p 333 A91-22322 COMMUTER AIRCRAFT RPAS - Runway performance analysis system	Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 Computation of steady and unsteady compressible quasi-axisymmetric vortex flow and breakdown [AIAA PAPER 91-0752] p 266 A91-21604 Flux-difference split scheme for turbulent transport equations [AIAA PAPER 90-5251] p 270 A91-22878 Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 Three-dimensional boundary layer effects in convergent compression flows p 321 A91-23910 Solution of Euler equations to 2-D and axisymmetric compressible flows using conformal mapping coordinates p 272 A91-24152 Numerical computation of shock in the front of blunt body p 273 A91-24164 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129
topical review [NASA-RP-1250] p 325 N91-16466 CLOSURE LAW Computation of turbulent flow about unconventional airfoil shapes p 278 N91-15992 COCKPITS Programmable cockpit-flight dynamic model [AD-A227748] p 296 N91-15171 Programmable cockpit-head-up display and outside view [AD-A227751] p 297 N91-15172 Cockpit Mock Up (CMU): A design and development tool p 328 N91-15730 The development of avionics-intensive, multi-sensor cockpits: Simulation does not always equal success p 330 N91-15746 COCKPITS Programmable cockpit-flight dynamic model [AD-A227748] p 296 N91-15171 Programmable cockpit-head-up display and outside view [AD-A227751] p 297 N91-15172	Sioux City, lowa, 19 July 1989 [PB90-910406] p 281 N91-15143 COMMONALITY Aircraft cost estimating - Weight commonality as a predictor [SAWE PAPER 1909] p 333 A91-22322 COMMUTER AIRCRAFT RPAS - Runway performance analysis system	Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 Computation of steady and unsteady compressible quasi-axisymmetric vortex flow and breakdown [AIAA PAPER 91-0752] p 266 A91-21604 Flux-difference split scheme for turbulent transport equations [AIAA PAPER 90-5251] p 270 A91-22978 Boundary layer three-dimensionality in plane compression flows p 321 A91-23910 Three-dimensional boundary layer effects in convergent compression flows p 321 A91-23910 Solution of Euler equations to 2-D and axisymmetric compressible flows using conformal mapping coordinates p 272 A91-24152 Numerical computation of shock in the front of blunt body p 273 A91-24164 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 Performance of conical diffusers in subsonic
topical review [NASA-RP-1250] p 325 N91-16466 CLOSURE LAW Computation of turbulent flow about unconventional airfoil shapes p 278 N91-15992 COCKPIT SIMULATORS Programmable cockpit-flight dynamic model [AD-A227748] p 296 N91-15171 Programmable cockpit-head-up display and outside view [AD-A227751] p 297 N91-15172 Cockpit Mock Up (CMU): A design and development tool p 328 N91-15730 The development of avionics-intensive, multi-sensor cockpits: Simulation does not always equal success p 330 N91-15746 COCKPITS Programmable cockpit-flight dynamic model [AD-A227748] p 296 N91-15171 Programmable cockpit-head-up display and outside view	Sioux City, Iowa, 19 July 1989 [PB90-910406] p 281 N91-15143 COMMONALITY Aircraft cost estimating - Weight commonality as a predictor [SAWE PAPER 1909] p 333 A91-22322 COMMUTER AIRCRAFT RPAS - Runway performance analysis system	Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 Computation of steady and unsteady compressible quasi-axisymmetric vortex flow and breakdown [AIAA PAPER 91-0752] p 266 A91-21604 Flux-difference split scheme for turbulent transport equations [AIAA PAPER 90-5251] p 270 A91-22878 Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 Three-dimensional boundary layer effects in convergent compression flows p 321 A91-23910 Solution of Euler equations to 2-D and axisymmetric compressible flows using conformal mapping coordinates p 272 A91-24152 Numerical computation of shock in the front of blunt body p 273 A91-24164 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 Performance of conical diffusers in subsonic compressible flow [ESDU-90025] p 275 N91-15131
topical review [NASA-RP-1250] p 325 N91-16466 CLOSURE LAW Computation of turbulent flow about unconventional airfoit shapes p 278 N91-15992 COCKPIT SIMULATORS Programmable cockpit-flight dynamic model [AD-A227748] p 296 N91-15171 Programmable cockpit-head-up display and outside view [AD-A227751] p 297 N91-15172 Cockpit Mock Up (CMU): A design and development tool p 328 N91-15730 The development of avionics-intensive, mutti-sensor cockpits: Simulation does not always equal success p 330 N91-15746 COCKPITS Programmable cockpit-flight dynamic model [AD-A227748] p 296 N91-15171 Programmable cockpit-head-up display and outside view [AD-A227751] p 297 N91-15172 CODES	Sioux City, lowa, 19 July 1989 [PB90-910406] p 281 N91-15143 COMMONALITY Aircraft cost estimating - Weight commonality as a predictor [SAWE PAPER 1909] p 333 A91-22322 COMMUTER AIRCRAFT RPAS - Runway performance analysis system	Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 Computation of steady and unsteady compressible quasi-axisymmetric vortex flow and breakdown [AIAA PAPER 91-0752] p 266 A91-21604 Flux-difference split scheme for turbulent transport equations [AIAA PAPER 90-5251] p 270 A91-22878 Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 Three-dimensional boundary layer effects in convergent compression flows p 321 A91-23910 Solution of Euler equations to 2-D and axisymmetric compressible flows using conformal mapping coordinates p 272 A91-24152 Numerical computation of shock in the front of blunt body p 273 A91-24164 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 Performance of conical diffusers in subsonic compressible flow

COMPRESSOR BLADES SUBJECT INDEX Numerical, experimental, and theoretical study of

convective instability of flows over pointed bodies at

Calculations for unsteady aerodynamic characteristics

on a 3-D lifting body in subsonic flow using boundary element method incidence p 277 · N91-15985 [AIAA PAPER 91-0291] p 260 A91-21443 of unsteady aerodynamic forces (NAL-TR-1065) Unsteady COMPRESSOR BLADES computational experimental aerodynamics oscillating airfoil Optimization of process routes in the repair of gas turbine research on a hypersonic vehicle. II - Computational engine components using capillary testing results p 321 A91-23817 [AIAA PAPER 91-0321] elliptical circulation control airfoils COMPRESSORS Molecular dynamics computations of two dimensional essure distribution of wing Numerical analyses of stress near the hole of supersonic rarefied gas flow past blunt bodies compressor disk by boundary element method Calculation of transonic nozzle flow [AIAA PAPER 91-0322] p 261 A91-21459 p 319 A91-22754 Radiative interactions in a hydrogen-fueled supersonic An algorithm and criteria for compressor characteristics real time modeling and approximation [ASME PAPER 90 •3T-336] dimensional transonic flow [AIAA PAPER 91-0373] p 312 A91-21473 p 302 A91-23648 The aerodynamic characteristics of vortex ingestion for Aerodynamic design optimization using sensitivity analysis and computational fluid dynamics COMPUTATIONAL CHEMISTRY the F/A-18 inlet duct [NASA-TM-103703] Multi-dimensional modelling of gas turbine combustion p 262 A91-21505 [AIAA PAPER 91-0471] using a flame sheet model in KIVA II Aerodynamic shape design and optimization [AIAA PAPER 91-0414]
COMPUTATIONAL FLUID DYNAMICS p 299 A91-21483 complete aircraft configurations p 263 A91-21506 IAIAA PAPER 91-04761 [NAL-TR-1073-T] Application of turbulence modeling to the design of Computation of unsteady viscous flow p 251 A91-20933 military aircraft profiles [NASA-CR-187769] Calculation of three-dimensional compressible boundary [AIAA PAPER 91-0513] p 287 A91-21515 p 252 A91-20936 Turbulence modeling in gas turbine design and layers on slender bodies aerodynamics Navier-Stokes simulation of transonic blade-vortex [NASA-CR-187767] p 277 N91-15987 analysis p 253 A91-21065 [AIAA PAPER 91-0514] p 299 A91-21516 interactions Application of an implicit relaxation method solving the Numerical investigation of drag reduction in flow over **COMPUTATIONAL GRIDS** Euler equations for time-accurate unsteady problems p 253 A91-21066 surfaces with streamwise aligned riblets [AIAA PAPER 91-0518] p 263 A91-21517 Hypersonic flow calculations using locally body-fitting Eigenfunction analysis of turbulent mixing phenomena and overlapping grids p 253 A91-21183 p 318 A91-21519 [AIAA PAPER 91-0520] p 318 A91-21519 Study of dynamic stall mechanism using simulation of and overlapping grids Three-dimensional simulations of hypersonic flows expansion ramp nozzle in the transonic regime two-dimensional unsteady Navier-Stokes e [AIAA PAPER 91-0546] p 26 [AIAA PAPER 91-0015] p 253 A91-21184 quations p 263 A91-21525 On hypersonic shock layer and its extension beyond embedding techniques Techniques for accurate, efficient computation of the Navier-Stokes level p 254 A91-21189 unsteady transonic flow [AIAA PAPER 91-0149] Modellization and calculation of laminar hypersonic [AIAA PAPER 91-0597] p 263 A91-21549 p 254 A91-21190 boundary layer flows A composite grid approach to study the flow surrounding Prediction of transitional (laminar-turbulent) hypersonic a pitch-up airfoil in a wind tunnel flows using the parabolized Navier-Stokes equations [AIAA PAPER 91-0599] [AIAA PAPER 91-0600] p 263 A91-21550 p 255 A91-21195 Unstructured Euler flow solutions using hexahedral cell Flow studies in close-coupled ventral nozzles for STOVL refinement refinement [AIAA PAPER 91-0637] [AIAA PAPER 91-0637] p 264 A91-21574 p 255 A91-21242 [SAE PAPER 901033] A validation technique Infrared imaging Turbulence modeling for complex ground effects flows computational fluid dynamics codes used in STOVL aerodynamics [SAE PAPER 901062] p 255 A91-21257 applications [NASA-CR-187767] Research to application: Supercomputing trends for the [AIAA PAPER 91-0675] p 318 A91-21587 COMPUTER AIDED DESIGN Opportunities for interdisciplinary computations Computation of steady and unsteady compressible Designing and manufacturing the F-111 advanced p 326 A91-21326 composite forward vental strake [AIAA PAPER 91-0002] quasi-axisymmetric vortex flow and breakdown [AIAA PAPER 91-0752] p 266 A91-21604 [SME PAPER EM90-105] Numerical simulation of supersonic unsteady flow for Numerical investigation of the flow over a double delta multibody configurations [AIAA PAPER 91-0023] ring at high incidence Jet engine turbine blade design p 257 A91-21341 [SME PAPER MS89-727] On the stability of conduction p 266 A91-21605 dominated natural [AIAA PAPER 91-0753] Calculation of impinging jet flows with Reynolds stress convection in near-vertical slots and horizontal cylindrical [MBB/FE2/S/PUB/0398] annuli p 257 A91-21343 [AIAA PAPER 91-0754] p 266 A91-21606 [AIAA PAPER 91-0027] [AGARD-CP-473] shock-layer theory based on thirteen-moment Navier-Stokes simulation of close-coupled equations and DSMC calculations of rarefied hypersonic canard-wing-body configuration .
[AIAA PAPER 91-0070] approach and landing phase of a combat aircraft p 257 A91-21356 [AIAA PAPER 91-0783] p 267 A91-21616 An analytical study of a supersonic mixer-ejector exhaust A three-dimensional Euler code for calculating flow fields p 267 A91-21744 simulation tools at Aermacchi in centrifugal compressor diffusers (AIAA PAPER 91-0126) D 298 A91-21372 Inviscid steady/unsteady flow calculations Application of three-dimensional viscous analysis to p 267 A91-21748 turbofan forced mixers Integration of a realistic component in ATC simulations Flowfield computation of 2-C-D nozzle airline/aircrew/aircraft p 258 A91-21373 [AIAA PAPER 91-0131] p 268 A91-22382 Development of a solution adaptive unstructured A practical method for the aerodynamic calculations of scheme for quasi-3D inviscid flows through advanced blunt bodies of revolution A91-22392 of the passenger transport aircraft MPC75 turbomachinery cascades Inviscid analysis of two-dimensional airfoils in unsteady p 258 A91-21374 [AIAA PAPER 91-0132] otion using conformal mapping p 268 A91-22477 Vortical flow computations on swept flexible wings using motion using conformal mapping Viscous high speed flow computations by adaptive mesh optimization p 269 A91-22483 (NASA-CR-1775731 embedding techniques Navier-Stokes equations COMPUTER AIDED MANUFACTURING [AIAA PAPER 91-0149] p 258 A91-21381 Numerical solution of the equation for a thin airfoil in p 269 A91-22491 Trends in current heat transfer computations ground effect p 317 A91-21384 [AIAA PAPER 91-0157] Flow separation patterns over an F-14A aircraft wing [AIAA PAPER 90-0596] p 269 A91-22497 composite forward vental strake (SME PAPER EM90-105) p 269 A91-22497 Calculation of vortex flowfields around forebodies and AF-2 iteration and its parallel algorithm for transonic flow COMPUTER AIDED TOMOGRAPHY delta wings [AIAA PAPER 91-0176] p 259 A91-21396 with large disturbances in freestream-direction around [AD-A227227] p 314 N91-15322 axisymmetric bodies at zero angle of attack A rapidly converging viscous/inviscid coupling code for p 270 A91-22763 COMPUTER ANIMATION mutti-element airfoil configurations Calculation of unsteady aerodynamic loads on wings [AIAA PAPER 91-0177] p 259 A91-21397 [AIAA PAPER 91-0422] with an oscillatory leading edge flap p 270 A91-22764 Numerical influence of upwind TVD schemes on The aerospace plane design challenge - Credible COMPUTER PROGRAMMING transonic airfoil drag prediction Programmable cockpit-head-up display and outside computational fluid dynamics results p 259 A91-21402 [AIAA PAPER 91-0184] p 310 A91-22877 [AIAA PAPER 90-5248] Calculation of three-dimensional low Reynolds number [AD-A227751] Flux-difference split scheme for turbulent transport equations [AIAA PAPER 91-0187] p 259 A91-21403 p 270 A91-22878 [AIAA PAPER 90-5251] Aerodynamic characteristics of three generic forebodies Progress in hypersonic combustion technology with [DE89-000878] COMPUTER PROGRAMS computation and experiment p 260 A91-21437 [AIAA PAPER 91-0275] [AIAA PAPER 90-5254] p 300 A91-22879 Viscous flow simulation of fighter aircraft Manned versus unmanned - The implications to NASP software p 260 A91-21438 [AIAA PAPER 91-0278] p 311 A91-22888 [SAE PAPER 901014] [AIAA PAPER 90-5265] Analysis of flow on cones and cylinders using discrete Computational fluid dynamic applications for let

ASME PAPER 90-GT-3431

p 271 A91-23639

Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study p 272 A91-24115 transonic flow calculations for multiple p 273 A91-24154 A method for calculating the aerodynamic forces of p 273 A91-24155 A Green's Function Method for calculating the transonic p 273 A91-24157 p 273 A91-24167 Viscous-inviscid interactive semi-inverse code for three p 274 A91-24168

p 311 N91-15303 Large-scale numerical aerodynamic simulations for

p 277 N91-15984 Hypersonic shock/boundary-layer interaction database p 277 N91-15986 Rotorcraft application of advanced computational

Far-field boundaries and their numerical treatment

p 323 N91-16281

Hypersonic flow calculations using locally body-fitting p 253 A91-21183 CFD validation and wind tunnel test for a NASP single

p 256 A91-21334 Viscous high speed flow computations by adaptive mesh

p 258 A91-21381 Calculation of flow about two-dimensional bodies by means of the velocity-vorticity formulation on a staggered

p 263 A91-21551 Unstructured Euler flow solutions using hexahedral cell

Rotorcraft application of advanced computational

p 277 N91-15987

p 249 A91-21106

Knowledge-based engineering technology case study p 316 A91-21115

Integrated design analysis and optimization p 291 N91-15145

Computer Aided System Design and Simulation

Computer aided design and simulation of the automatic

p 328 N91-15719 Aircraft control system design, synthesis, analysis, and p 328 N91-15729 Cockpit Mock Up (CMU): A design and development p 328 N91-15730

p 329 N91-15738 The use of system simulation during the definition phase

p 330 N91-15741 Applications of fuzzy theories to multi-objective system

p 293 N91-16012

Designing and manufacturing the F-111 advanced p 249 A91-21106

X ray computed tomography of composites

Aircraft accident flight profile simulation and animation p 278 A91-21486

p 297 N91-15172 Smoothing and scaling airfoil coordinates on a personal

p 330 N91-16582

Current research on schedulers for aerospace industry

p.326 A91-21235 Development of a boundary layer noise prediction code and its application to advanced propellers

p 331 A91-21546

[AIAA PAPER 91-0593]

(AIAA PAPER 91-0288)

p 260 A91-21442

SUBJECT INDEX		COST ANALYSIS
Coupled LEWICE/Navier-Stokes code development [AIAA PAPER 91-0804] p 326 A91-21624	NAVPACK: Simulation tools for design of high performance integrated navigation systems	New technique for aircraft flight control reconfiguration p 305 A91-22959
IMPP - The Integrated Mass Properties Program [SAWE PAPER 1894] p 326 A91-22325	p 329 N91-15739 The use of system simulation during the definition phase of the passenger transport aircraft MPC75	Integrated aeroelastic control optimization p 305 A91-23743
Identification of time detays in flight measurements p 327 A91-22953 Computerized procedure for vibration diagnostics of	p 330 N91-15741 Integrated technology development laboratories	Automatic flight control systems — Book p 306 A91-24113
aircraft brakes p 320 A91-23679 ADAM 2.0 - An ASE analysis code for aircraft with digital	p 330 N91-15743 Simulation of nap-of-Earth flight in helicopters	A decentralized controller for highly augmented aircraft p 327 N91-15717
flight control systems p 327 A91-23742 An integrated approach to system design, reliability, and	p 330 N91-15744 The development of avionics-intensive, multi-sensor	Parameter space design of robust flight control systems p 328 N91-15718.
diagnosis [NASA-TM-102861] p 322 N91-15426	cockpits: Simulation does not always equal success p 330 N91-15746	Computer aided design and simulation of the automatic approach and landing phase of a combat aircraft
Symbolic generation of aircraft simulation programmes p 328 N91-15727	Large-scale numerical aerodynamic simulations for complete aircraft configurations	p 328 N91-15719 Aircraft control system design, synthesis, analysis, and
Computer-aided control law research: From concept to flight test p 329 N91-15731	[NAL-TR-1073-T] p 277 N91-15984 Numerical analysis of viscous hypersonic flow past a generic forebody	simulation tools at Aermacchi p 328 N91-15729 Selection of weights in optimal control [RR-397] p 330 N91-15796
Analytic Patch Configuration (APC) gateway version 1.0 user's guide [NASA-CR-187464] p 330 N91-15751	[MBB/FE122/S/PUB/0407] p 278 N91-15997 Far-field boundaries and their numerical treatment	An introduction to modern aero-engine control design
Airframe noise prediction [ESDU-90023] p 332 N91-15843	p 323 N91-16281	[ETN-91-98583] p 303 N91-16024 CONTROL THEORY Control law study of aircraft maneuvers at high attack
Evaluation procedure for reinforced concrete box culverts under airfield pavements	An integrated approach to system design, reliability, and diagnosis	angle p 305 A91-22251 New technique for aircraft flight control reconfiguration
[AD-A227920] p 310 N91-16031 COMPUTER TECHNIQUES	[NASA-TM-102861] p 322 N91-15426 CONCRETES	p 305 A91-22959 Algorithms development methodology for
Report of the workshop on Aviation Safety/Automation Program	Evaluation procedure for reinforced concrete box culverts under airfield pavements [AD-A227920] p.310 N91-16031	performance-optimized multicyclic rotor commands p 327 N91-15716
[NASA-CP-10054] p 281 N91-15141 IFDIS: an expert system for diagnosis of failures in jet	[AD-A227920] p 310 N91-16031 CONFERENCES Society of Flight Test Engineers, Annual Symposium,	Computer-aided control law research: From concept to flight test p 329 N91-15731
aircraft engines [AD-A227757] p 302 N91-16020 COMPUTER VISION	20th, Reno, NV, Sept. 18-21, 1989, Proceedings	Wind tunnel tests on flutter control of a high-aspect-ratio cantilevered wing: Control with leading-edge and trailing-edge control surfaces
Aircraft accident flight profile simulation and animation [AIAA PAPER 91-0422] p 278 A91-21486	International Conference on Hypersonic Aerodynamics, Victoria University of Manchester, England, Sept. 4-6,	[NAL-TR-1070] p 276 N91-15982
COMPUTERIZED SIMULATION Simulation and study of shear flows surrounding propfan	1989, Proceedings p 253 A91-21176 Maintenance of modern avionics systems; Proceedings	Longitudinal stability augmentation of a lightweight fighter aircraft model
engine models p 297 A91-20612 Research to application: Supercomputing trends for the	of the Conference, Heathrow, England, May 9, 1989 p 250 A91-21201	[ETN-91-98585] p 308 N91-16026 CONTROLLED ATMOSPHERES
90's - Opportunities for interdisciplinary computations [AIAA PAPER 91-0002] p 326 A91-21326	1989 Spring Convention - Flight Simulation: Assessing the Benefits and Economics, London, England, May 17, 18, 1989, Proceedings p 250 A91-21324	A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy
Trends in current heat transfer computations [AIAA PAPER 91-0157] p 317 A91-21384 Numerical simulation of an electrothermally de-iced	Report of the workshop on Aviation Safety/Automation Program	[AD-A227532] p 309 N91-15185 CONTROLLERS
aircraft surface using the finite element method [AIAA PAPER 91-0268] p 287 A91-21434	[NASA-CP-10054] p 281 N91-15141 Proceedings of the 2nd E-3 AWACS Corrosion	Integrated control-structure design [NASA-CR-182020] p 307 N91-15180 A decentralized controller for highly augmented
Simulation of stall departure using a nonlinear lifting line model	Prevention Advisory Board (CPAB) [AD-A227627] p 291 N91-15150	aircraft p 327 N91-15717 Parameter space design of robust flight control
[AIAA PAPER 91-0340] p 261 A91-21465 Active control of combustion instability in a ramjet using	Advances in Components for Active and Passive Airborne Sensors	systems p 328 N91-15718 Wind tunnel tests on flutter control of a high-aspect-ratio
large-eddy simulations [AIAA PAPER 91-0411] p 299 A91-21482 Effect of a simulated ice accretion on the aerodynamics	[AGARD-CP-482] p 295 N91-15154 CONFORMAL MAPPING Inviscid analysis of two-dimensional airfoils in unsteady	cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p. 276 N91-15982
of a swept wing [AIAA PAPER 91-0442] p 262 A91-21491	motion using conformal mapping p 268 A91-22477 Solution of Euler equations to 2-D and axisymmetric	[NAL-TR-1070] p 276 N91-15982 An introduction to modern aero-engine control design [ETN-91-98583] p 303 N91-16024
Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft	compressible flows using conformal mapping coordinates p 272 A91-24152	CONVECTION Numerical, experimental, and theoretical study of
[AIAA PAPER 91-0555] p 288 . A91-21529 The symmetric turbulent plane wake downstream of a	CONICAL BODIES Fracture instability of a layered conical composite	convective instability of flows over pointed bodies at incidence
sharp trailing edge [AIAA PAPER 91-0612] p 264 A91-21558	resisting the aerodynamic load p 315 A91-20791 Analysis of flow on cones and cylinders using discrete vortex methods	[AIAA PAPER 91-0291] p 260 A91-21443 CONVECTIVE FLOW
Numerical simulation of icing, deicing, and shedding [AIAA PAPER 91-0665] p 279 A91-21583 Boundary-layer transition - Analysis and prediction	[AlAA PAPER 91-0288] p 260 A91-21442 The inviscid stability of supersonic flow past a sharp	Computation of turbulent flow about unconventional airful shapes p 278 N91-15992 CONVERGENT-DIVERGENT NOZZLES
revisited [AIAA PAPER 91-0737] p 318 A91-21601	cone p 269 A91-22511 CONICAL FLOW	Nonideal isentropic gas flow through converging-diverging nozzles p 252 A91-21064
Simulation of aircraft gas turbine engines [ASME PAPER 90-GT-342] p 301 A91-23645	Performance of conical diffusers in subsonic compressible flow	Static internal performance of an axisymmetric nozzle with multiaxis thrust-vectoring capability
An algorithm and criteria for compressor characteristics real time modeling and approximation IASME PAPER 90-GT-3361 p 302 A91-23648	(ESDU-90025) p 275 N91-15131 CONSERVATION EQUATIONS Finite element approximations for transonic flows	[NASA-TM-4237] p 274 N91-15125 COOLING SYSTEMS
[ASME PAPER 90-GT-336] p 302 A91-23648 Computer Aided System Design and Simulation [AGARD-CP-473] p 327 N91-15715	[ETN-91-98491] p 277 N91-15988	Aircraft fuel weight penalty due to air conditioning [SAE AIR 1168/8] p 287 A91-21258 COORDINATES
Algorithms development methodology for performance-optimized multicyclic rotor commands	Acoustic power level comparisons of model-scale counterrotating unducted fans	Smoothing and scaling airfoil coordinates on a personal computer
p 327 N91-15716 Computer aided design and simulation of the automatic	[AIAA PAPER 91-0595] p 332 A91-21548 CONTROL SIMULATION	[DE89-000878] p 330 N91-16582 CORIOLIS EFFECT
approach and landing phase of a combat aircraft p 328 N91-15719	Closed-loop assessment of flight simulator fidelity p 311 A91-22960	Unsteady separation over maneuvering bodies — perturbed aerodynamics of flying aircraft
Symbolic generation of aircraft simulation programmes p 328 N91-15727 Formal tools and simulation tools: A coherent	Symbolic generation of aircraft simulation programmes p 328 N91-15727	p 269 A91-22481 CORRELATION COEFFICIENTS The fuzzy synthetic judgement of correlating parameter
workshop p 328 N91-15728 Aircraft control system design, synthesis, analysis, and	Computer-aided control law research: From concept to flight test p 329 N91-15731	of fighter design p 289 A91-22354 CORROSION PREVENTION
simulation tools at Aermacchi p 328 N91-15729 Cockpit Mock Up (CMU): A design and development	CONTROL SURFACES A new method for subsonic lifting-surface theory p 268 A91-22351	Painting technology for civil aircraft and helicopters (2nd revised and enlarged edition) — Russian book
tool p 328 N91-15730 Computer-aided control law research: From concept to	Aeroservoelastic tailoring for lateral control enhancement p 307 N91-16025	p 250 A91-22102 Proceedings of the 2nd E-3 AWACS Corrosion
flight test p 329 N91-15731 Real-time hardware-in-the-loop simulation for ATTAS and ATTHES advanced technology flight test vehicles	CONTROL SYSTEMS DESIGN Verification of flight critical systems	Prevention Advisory Board (CPAB) [AD-A227627] p 291 N91-15150
and ATTHES advanced technology light test venices p 329 N91-15732 A new approach to hardware-in-the-loop simulation	[SAE PAPER 901051] p 304 A91-21249 Integrated flight/propulsion control system design based	CORROSION TESTS Corrosion fatigue crack growth of 30CrMnSiNi2A steel in airplane environments p 313 A91-22383
(FALKE shuttle) p 329 N91-15735 Integration of a realistic airline/aircrew/aircraft	on a centralized approach p 305 A91-22950 High performance linear-quadratic and H-infinity designs	COST ANALYSIS How safe is flying? Or - The AIMS onboard integrated
component in ATC simulations p 329 N91-15738	for a 'supermaneuverable' aircraft p 290 A91-22956	monitoring systems p 294 A91-20609

COST EFFECTIVENESS SUBJECT INDEX

Cost conscious design for data acquisition system Analysis of flow on cones and cylinders using discrete Numerical investigation of the flow over a double delta p 308 A91-20983 wing at high incidence [AIAA PAPER 91-0753] ground support equipment vortex methods Aircraft cost estimating - Weight commonality as a [AIAA PAPER 91-0288] p 260 A91-21442 p 266 A91-21605 predictor [SAWE PAPER 1909] influences of oscillations toward p 270 A91-22762 Numerical solutions for a cylindrical laser diffuser forced p 333 A91-22322 p 274 · N91-15127 vortex-breakdown flow-field COST EFFECTIVENESS Normal force and pitching moment of low aspect ratio Cost-effective use of liquid nitrogen in cryogenic wind cropped-delta wings up to high angles of attack at D tunnels, phase 2 [NASA-CR-182088] supersonic speeds p 309 N91-15188 p 292 N91-15152 COST ESTIMATES Unsteady vortex lattice calculation of the flow around a slender delta wing p 278 N91-16272 DAMAGE ASSESSMENT Current research on schedulers for aerospace industry Assessment of impact damage in toughened resin p 312 A91-20776 DENSITY DISTRIBUTION composites p 326 A91-21235 [SAE PAPER 9010141 North Island F/A-18 aircraft advanced composites Comment on 'Optical boundary-layer transition detection in a transonic wind tunnel' COSTS p 319 A91-22496 [SME PAPER EM90-108] The European flight safety crisis: Costs and solution DEPLOYMENT p 316 A91-21109 p 281 N91-16000 Selectable towline spin chute system DAMPING [FTN-91-98490] COUNTER ROTATION [NASA-CASE-LAR-14322-1] p 276 N91-15138 Damping estimation in helicopter rotor stability testing Optical measurement of unducted fan flutter [NASA-TM-103285] p 302 l p 306 N91-15176 Initial flight test of a ground deployed system for flying p 302 N91-15174 DATA ACQUISITION qualities assessment [NASA-TM-101700] COVERINGS Cost conscious design for data acquisition system p 307 N91-15182 Improved design of the error-proof filler cover of aircraft ground support equipment p 308 A91-20983 DESCENT Aircraft incident report: USAir flight 105, Boeing 737-200, p 288 A91-22266 Use of onboard data for takeoff performance etermination p 285 A91-20988 fuel system CRACK GEOMETRY determination N283AU, Kansas City International Airport, Missouri, Pulsed eddy current inspection of cracks under installed DATA BASES September 8, 1989 [PB90-910404] p 318 A91-22188 IMPP - The Integrated Mass Properties Program [SAWE PAPER 1894] p 326 A91p 280 N91-15140 fasteners CRACK INITIATION p 326 A91-22325 **DESIGN ANALYSIS** Metallurgical control of fatigue crack propagation in Hypersonic shock/boundary-layer interaction database [NASA-CR-187769] p 277 N91-15986 Propeller noise minimization without thrust loss due to asymmetric blade distribution p 311 A91-20677 p 277 N91-15986 p 331 A91-20614 superallovs A mechanism of fretting fatigue failure in the joining lug The development and design integration of a variable Jet engine performance estimation from minimal input p 319 A91-22252 camber wing for long/medium range aircraft of a wing structure **CRACK PROPAGATION** p 284 A91-20898 [ETN-91-98582] p 303 N91-16023 Metallurgical control of fatigue crack propagation in DATA FLOW ANALYSIS Design limits of compressible NLF airfoils [AIAA PAPER 91-0067] p 311 A91-20677 A91-21355 superallovs Analysis of infrared thermography data for icing o 257 Fracture instability of a layered conical composite Aircraft structures for engineering students (2nd revised applications p 315 A91-20791 p 321 A91-24114 resisting the aerodynamic load AIAA PAPER 91-0666] p 279 A91-21584 and enlarged edition) --- Book Properties of advanced rapidly solidified titanium Integrated design analysis and optimization DATA INTEGRATION loys p 312 A91-20864 Corrosion fatigue crack growth of 30CrMnSiNi2A steel [MBB/FE2/S/PUB/0398] alloys p 291 N91-15145 Flight test management and integration program p 286 A91-20996 Analytic Patch Configuration (APC) gateway version 1.0 p 313 A91-22383 user's guide in airplane environments **DATA PROCESSING** A closed form solution of stress intensity factors for the International aircraft operator information system, phase [NASA-CR-187464] p 330 N91-15751 Applications of fuzzy theories to multi-objective system shaft of aeroplane all-moving stabilizer with corner cracks p 319 A91-22752 [NIAR-90-31] emanating from a hole optimization p 333 N91-15928 [NASA-CR-177573] A comparison of fatigue life prediction methodologies DECELERATION p 293 N91-16012 DESIGN TO COST Maximum-rate deceleration of an object during for rotorcraft [NASA-TM-102759] p 323 N91-15604 controlled motion under the effect of aerodynamic drag Rotorcraft structural weight and cost aspects
[SAWE PAPER 1908] p 289 A CRACK TIPS p 268 A91-21940 and gravity forces p 289 A91-22321 Aircraft cost estimating - Weight commonality as a Composite patch reinforcement of cracked aircraft upper DEFENSE PROGRAM Aircraft compatibility tasks required for the release of predictor longeron - Analysis and specimen simulation [SAWE PAPER 1909] p 249 A91-20784 an Aircraft Compatibility Control Drawing (ACCD) p 333 A91-22322 CRASHES [DE91-004698] p 307 N91-15179 DETECTION Aircraft accident report: United Airlines flight 232, McDonnell Douglas DC-10-10, Sioux Gateway Airport, Sioux City, Iowa, 19 July 1989 Fine scale analysis of the kinematic, dynamic and DEFLECTION thermodynamic features of a multiple microburst-producing Nonlinear large amplitude vibration of composite helicopter rotor blade at large static deflection [PB90-9104061 p 281 N91-15143 [AD-A227733] p 325 N91-15657 (AD-A2279331 p 307 N91-15183 CRASHWORTHINESS DIAMETERS DÉICERS Determination of rivet diameter and edge distance in Development of a crashworthy seat for commuter Three-dimensional numerical simulation electrothermal deicing systems aircraft riveted structure p 319 A91-22267 aircraft p 281 N91-15999 DIESEL ENGINES [AD-A227486] [AIAA PAPER 91-0267] p 287 A91-21433 CREEP TESTS Certification of Fokker 50 and Fokker 100 for operation Thermal barrier coating evaluation needs
[NASA-TM-103708] p 314 p 314 N91-15390 Properties of advanced rapidly solidified titanium in icing conditions
[AIAA PAPER 91-0561] DIFFERENTIAL EQUATIONS p 312 A91-20864 allovs p 279 A91-21532 CRITICAL POINT Parameter identification for nonlinear aerodynamic Effects of runway anti-icing chemicals on traction p 310 N91-15189 Analysis of rarefied gas flow near a critical point [DOT/FAA/CT-TN90/53] svstems p 268 A91-21879 [NASA-CR-187410] p 274 N91-15126 DEICING **CROSS CORRELATION** Numerical simulation of an electrothermally de-iced DIFFUSERS A three-dimensional Euler code for calculating flow fields Spatial correlation velocimetry in unsteady flows aircraft surface using the finite element method [AIAA PAPER 91-0271] p 318 A91-21435 [AIAA PAPER 91-0268] p 287 A91-21434 in centrifugal compressor diffusers p 267 A91-21744 CROSS FLOW Numerical simulation of icing, deicing, and shedding A steadying effect of acoustic excitation on transitory Cross-flow vortex structure and transition measurements [AIAA PAPER 91-0665] p 279 A91-21583 Flight and wind tunnel tests of the aerodynamic effects stall using multi-element hot films [AIAA PAPER 91-0043] D 269 A91-22499 of aircraft ground deicing/anti-icing fluids DIFFUSION FLAMES p 267 A91-21608 Multi-dimensional modelling of gas turbine combustion [AIAA PAPER 91-0762] Wind tunnel tests of aerodynamic effects of type I and using a flame sheet model in KIVA II [AIAA PAPER 91-0414] The ground vortex formed by impinging jets in Il ground de/anti-icing fluids on small transport and general p 299 A91-21483 aviation aircraft during takeoff cross-flow Compressibility effects on the supersonic reacting mixing [AIAA PAPER 91-0768] p 267 A91-21611 [AIAA PAPER 91-0763] CRYOGENIC WIND TUNNELS

Eight channel pressure measuring system for cryogenic Flight tests of the aerodynamic effects of type I and [AIAA PAPER 91-0739] p 266 A91-21603 type II ground de-/anti-icing fluids on the Fokker 50 and DIGITAL COMPUTERS use in the European Transonic Wind-tunnel over the Fokker 100 aircraft ADAM 2.0 - An ASE analysis code for aircraft with digital p 318 A91-21722 p 288 A91-21617 temperature range 78-300 K TAIAA PAPER 91-07851 flight control systems Cost-effective use of liquid nitrogen in cryogenic wind **DELTA WINGS** DIGITAL ELECTRONICS tunnels, phase 2 [NASA-CR-182088] A three-dimensional visualization technique applied to Simulation, testing and optimization of a new low cost p 309 N91-15188 flow around a delta wing p 315 A91-20728 electronic fuel control unit for small gas turbine engines Boundary-layer transition and heat transfer on slender CRYSTAL OSCILLATORS [SAE PAPER 901027] p 298 A91-21239 Low-noise oscillators for airborne radar applications delta wings p 254 A91-21194 DIGITAL SIMULATION p 296 N91-15159 Vorticity dynamics of 2-D and 3-D wings in unsteady Numerical simulations of auxiliary power units with **CURVED PANELS** free stream different configurations Prediction of penetration of curved metal stiffened [AIAA PAPER 91-0010] p 256 A91-21331 [SAE PAPER 901028] p 315 A91-20899 p 298 A91-21240 panels due to birdstrike Calculation of vortex flowfields around forebodies and Numerical simulation of supersonic unsteady flow for delta wings Robotic abrasive water jet cutting of aerostructure [AIAA PAPER 91-0176] p 259 A91-21396 multibody configurations [AIAA PAPER 91-0023] p 257 A91-21341 components Slender wing rock revisited [AIAA PAPER 91-0417] [SME PAPER MS89-812] p 262 A91-21484 DIHEDRAL ANGLE CYLINDRICAL BODIES Multi-sensor investigation of delta wing high-alpha Turbulent three-dimensional separated flows in a Interference drag of a turbulent junction vortex [ASME PAPER 90-WA/FE-2] p 252 A9 aerodynamics supersonic stream near obstacles at the edge of dihedral [AIAA PAPER 91-0735] p 252 A91-21063 p 266 A91-21600

corners

p 272 A91-23913

SUBJECT INDEX ENGINE DESIGN

DIRECT CURRENT	DYNAMIC CONTROL	ELECTRONIC CONTROL
Advanced U.S. military aircraft battery systems	Application of chaos methods to helicopter vibration	Simulation, testing and optimization of a new low cost
[SAE PAPER 901054] p 325 A91-21252	reduction using higher harmonic control	electronic fuel control unit for small gas turbine engines
DIRECTION FINDING Logarithmic amplification for passive airborne direction	[AD-A226736] p 306 N91-15177 Integrated control-structure design	[SAE PAPER 901027] p 298 A91-21239 New family of low cost electronic fuel control units for
finding in the 1990s p 296 N91-15164	[NASA-CR-182020] p 307 N91-15180	small gas turbine engines
DISKS (SHAPES)	DYNAMIC MODELS	[SAE PAPER 901039] p 298 A91-21245
Numerical analyses of stress near the hole of	Simutation of stall departure using a nonlinear lifting line model	ELECTRONIC COUNTERMEASURES
compressor disk by boundary element method	[AIAA PAPER 91-0340] p 261 A91-21465	GaAs MMICs in selfaligned gate technology for phased
p 319 A91-22754	Acoustic power level comparisons of model-scale	алгау radar application p 296 N91-15160 ELLIPTIC DIFFERENTIAL EQUATIONS
DISPLAY DEVICES Programmable cockpit-flight dynamic model	counterrotating unducted fans	Finite element approximations for transonic flows
[AD-A227748] p 296 N91-15171	[AIAA PAPER 91-0595] p 332 A91-21548 Programmable cockpit-flight dynamic model	[ETN-91-98491] p 277 N91-15988
Programmable cockpit-head-up display and outside	[AD-A227748] p 296 N91-15171	EMBEDDED COMPUTER SYSTEMS
view	DYNAMIC STRUCTURAL ANALYSIS	Viscous high speed flow computations by adaptive mesh
[AD-A227751] p 297 N91-15172	General approach to dynamic analysis of rotorcraft	embedding techniques [AIAA PAPER 91-0149] p 258 A91-21381
Effect of shaping sensor data on pilot response [NASA-TM-102737] p 297 N91-15173	p 284 A91-20973	EMERGENCIES
DISTRIBUTED PROCESSING	Statistical structural analysis of rotor impact ice shedding	Selectable towline spin chute system
A real-time distributed optimal autopilot	[AIAA PAPER 91-0663] p 279 A91-21581	[NASA-CASE-LAR-14322-1] p 276 N91-15138
[RR-398] p 307 N91-15181	Flexural-flexural-torsional parametric vibrations of a	END EFFECTORS
DOPPLER NAVIGATION	cantilever beam p 321 A91-23745	Robotic abrasive water jet cutting of aerostructure
Activities report of the German Federal Institute for Flight	DYNAMIC TESTS Structural tests for the Dornier 328	components [SME PAPER MS89-812] p 316 A91-21116
Safety [ETN-91-98644] p 281 N91-16002	p 309 A91-22863	ENERGY ABSORPTION
DOPPLER RADAR	F 444 714 - 1244	Development of a crashworthy seat for commuter
Fine scale analysis of the kinematic, dynamic and	E	aircraft
thermodynamic features of a multiple microburst-producing	•	[AD-A227486] p 281 N91-15999
storm - 235 NO. 15657	EARLY WARNING SYSTEMS	ENERGY METHODS Energy height method for flight path optimisation
[AD-A227733] p 325 N91-15657 Results of the Kansas City 1989 Terminal Doppler	Modern airborne early warning radars	[ESDU-90012] p 291 N91-15151
Weather Radar (TDWR) operational evaluation testing	p 283 A91-23145	ENGINE AIRFRAME INTEGRATION
[AD-A228784] p 323 N91-16206	ECONOMIC ANALYSIS 1989 Spring Convention - Flight Simulation: Assessing	Airframe-engine integration - Task for future commercial
DORNIER AIRCRAFT	the Benefits and Economics, London, England, May 17,	aircraft evolution p 251 A91-20615
The equipment of a research aircraft with emphasis on	18, 1989, Proceedings p 250 A91-21324	An approach to air-breathing high speed vehicle
meteorological experiments p 249 A91-21001	ECONOMICS	synthesis [AIAA PAPER 91-0225] p 287 A91-21415
Nonlinear multi-point modeling and parameter estimation of the DO 28 research aircraft p 289 A91-22357	The civil tiltrotor aircraft's potential in developing	Hypersonic propulsion system force accounting
Structural tests for the Dornier 328	economies p 280 A91-24122 EDDY CURRENTS	[AIAA PAPER 91-0228] p 299 A91-21418
p 309 A91-22863	Pulsed eddy current inspection of cracks under installed	Airframe/propulsion integration at transonic speeds
DOWNWASH	fasteners p 318 A91-22188	[ASME PAPER 90-GT-338] p 271 A91-23640
Downwash measurement at the horizontal tail	EDDY VISCOSITY	ENGINE CONTROL
p 286 A91-21000	An algebraic RNG-based turbulence model for three-dimensional turbomachinery flows	Integrated propulsion system requirements for control
Evaluation of rotorwash characteristics for tiltrotor and	[AIAA PAPER 91-0172] p 259 A91-21393	of STOVL aircraft [ASME PAPER 90-GT-364] p 305 A91-23641
tiltwing aircraft in hovering flight [SCT-90RR-18] p 277 N91-15989	Computation of turbulent flow about unconventional	Optimizing aircraft performance with adaptive, integrated
DRAG	airfoil shapes p 278 N91-15992	flight/propulsion control
An introduction to aircraft excrescence drag	A study of loudness as a metric for sonic boom	[ASME PAPER 90-GT-252] p 290 A91-23644
[ESDU-90029] p 275 N91-15132	acceptability	An introduction to modern aero-engine control design
DRAG CHUTES	[AIAA PAPER 91-0496] p 331 A91-21511	[ETN-91-98583] p 303 N91-16024 ENGINE DESIGN
Selectable towline spin chute system [NASA-CASE-LAR-14322-1] p 276 N91-15138	EIGENVALUES	New family of low cost electronic fuel control units for
DRAG REDUCTION	Solution and sensitivity analysis of a complex transcendental eigenproblem with pairs of real	small gas turbine engines
Design limits of compressible NLF airfoils	eigenvalues p 320 A91-23685	[SAE PAPER 901039] p 298 A91-21245
[AIAA PAPER 91-0067] p 257 A91-21355	EIGENVECTORS	Parametric study on thrust production in the two dimensional scramjet
Numerical investigation of drag reduction in flow over surfaces with streamwise aligned riblets	Eigenfunction analysis of turbulent mixing phenomena	[AIAA PAPER 91-0227] p 298 A91-21417
[AIAA PAPER 91-0518] p 263 A91-21517	[AIAA PAPER 91-0520] p 318 A91-21519 ELASTIC DEFORMATION	Turbulence modeling in gas turbine design and
DRAINAGE	General approach to dynamic analysis of rotorcraft	analysis
Evaluation procedure for reinforced concrete box	p 284 A91-20973	[AIAA PAPER 91-0514] p 299 A91-21516 Progress in hypersonic combustion technology with
culverts under airfield pavements [AD-A227920] p 310 N91-16031	ELASTIC PROPERTIES	computation and experiment
DROPS (LIQUIDS)	Estimation of the engineering elastic constants of a directionally solidified superalloy for finite element	[AIAA PAPER 90-5254] p 300 A91-22879
Experimental water droplet impingement data on modern	structural analysis	On the leading edge - Combining maturity and advanced
aircraft surfaces [AIAA PAPER 91-0445] p 262 A91-21493	[NASA-CR-187036] p 322 N91-15598	technology on the F404 turbofan engine [ASME PAPER 90-GT-149] p 301 A91-23634
[AIAA PAPER 91-0445] p 262 A91-21493 DUCTED FLOW	Evaluation procedure for reinforced concrete box	SNECMA M88 engine development status
Calculation of the flow in a circular S-duct inlet	culverts under airfield pavements	[ASME PAPER 90-GT-118] p 301 A91-23636
[AIAA PAPER 91-0174] p 259 A91-21394	[AD-A227920] p 310 N91-16031 ELASTODYNAMICS	EJ200 - The engine for the new European Fighter
Computation of three-dimensional subsonic flows in	Flexural-flexural-torsional parametric vibrations of a	Aircraft [ASME PAPER 90-GT-119] p 301 A91-23637
ducts using the PNS approach p 271 A91-23186 DUCTED ROCKET ENGINES	cantilever beam p 321 A91-23745	Advanced technology programs for small turboshaft
Recent developments in ramjets, ducted rockets and	ELECTRIC CONDUCTORS	engines - Past, present, future
scramjets p 297 A91-20489	The aircraft avionic interconnection system p 317 A91-21204	[ASME PAPER 90-GT-267] p 301 A91-23638
DUCTS	ELECTRIC CONNECTORS	Computational fluid dynamic applications for jet propulsion system integration
Numerical solutions for a cylindrical laser diffuser flow-field p 274 N91-15127	The aircraft avionic interconnection system	[ASME PAPER 90-GT-343] p 271 A91-23639
flow-field p 2/4 N91-1512/ The aerodynamic characteristics of vortex ingestion for	p 317 A91-21204	STOVL Hot Gas Ingestion control technology
the F/A-18 inlet duct	ELECTRIC POWER TRANSMISSION Special optical fibres and sensors for aeronautics	[ASME PAPER 89-GT-323] p 301 A91-23642
[NASA-TM-103703] p 311 N91-15303	p 332 N91-15167	Simulation of aircraft gas turbine engines
DUMP COMBUSTORS Active control of a dump combustor with fuel	ELECTRICAL INSULATION	[ASME PAPER 90-GT-342] p 301 A91-23645 Determination of cycle configuration of gas turbines and
Modulation	The aircraft avionic interconnection system	aircraft engines by an optimization procedure
[AIAA PAPER 91-0368] p 299 A91-21471	p 317 A91-21204	[ASME PAPER 90-GT-115] p 302 A91-23646
A computational investigation of dump combustor	Weight penalties for electromagnetic interference	A new method of predicting the performance of gas
performance p 300 A91-23106	control	turbine engines [ASME PAPER 90-GT-337] p 302 A91-23647
DYNAMIC CHARACTERISTICS Measures of merit for aircraft dynamic maneuvering	[SAWE PAPER 1914] p 319 A91-22323	An algorithm and criteria for compressor characteristics
[SAE PAPER 901005] p 304 A91-21233	ELECTROMAGNETIC INTERFERENCE	real time modeling and approximation
Prediction of the dynamic characteristics of helicopters	Weight penalties for electromagnetic interference	[ASME PAPER 90-GT-336] p 302 A91-23648
in constrained flight p 290 A91-23549	control [SAWE PAPER 1914] p 319 A91-22323	Aircraft accident report: United Airlines flight 232,
Simulated rotor test apparatus dynamic characteristics	Special optical fibres and sensors for aeronautics	McDonnell Douglas DC-10-10, Sioux Gateway Airport, Sioux City, Iowa, 19 July 1989
in the 80- by 120-foot wind tunnel (NASA-TM-102870) p 291 N91-15147	p 332 N91-15167	[PB90-910406] p 281 N91-15143
	•	

p 303 N91-16022

Optimal trajectories for an aerospace plane. Part 2: Date	, EXHAUST EMISSION	FATIGUE LIFE
tables, and graphs	The atmospheric effects of stratospheric aircraft: A	Metallurgical control of fatigue crack propagation i superalloys p 311 A91-2067
[NASA-CR-187848] p 292 N91-1601 Advanced Turbine Technology Applications Project		Composite patch reinforcement of cracked aircraft upper
(ATTAP)	EXHAUST FLOW SIMULATION	longeron - Analysis and specimen simulation
[NASA-CR-187039] p 302 N91-1602		p 249 A91-2078
Jet engine performance estimation from minimal input		An evaluation of the pressure proof test concept to thin sheet 2024-T3 p 315 A91-2078
data [ETN-91-98582] p 303 N91-1602	EXHAUST SYSTEMS An analytical study of a supersonic mixer-ejector exhaust	Wings for the 21st century p 250 A91-2121
ENGINE INLETS	evetorn	A mechanism of fretting fatigue failure in the joining tu
Prediction of penetration of curved metal stiffene	d [ÁIAA PAPER 91-0126] p 298 A91-21372	of a wing structure p 319 A91-2225
panels due to birdstrike p 315 A91-2089	9 EVDEDT OVOTENO	A comparison of fatigue life prediction methodologie for rotorcraft
Experimental investigation of a 2-D scramjet inlet at Mach numbers of 8 to 18 and stagnation temperature	ea.	[NASA-TM-102759] p 323 N91-1560
of 4,100K	nocitioning evetern p. 282 A01-20979	Probabilistic fatigue methodology for six nine
[AIAA PAPER 91-0013] p 256 A91-2133	Computer aided design and simulation of the automatic	reliability
Calculation of the flow in a circular S-duct inlet [AIAA PAPER 91-0174] p 259 A91-2139	approach and landing phase of a combat aircraft	[NASA-TM-102757] p 323 N91-1560 FATIGUE TESTS
[AIAA PAPER 91-0174] p 259 A91-2139 Further assessment of a scramjet inlet mass flor	" h 250 Mai-13/19	Properties of advanced rapidly solidified titanium
measurement technique for use in hypersonic puls	IFDIS: An expert system for diagnosis of failures in jet aircraft engines	alloys p 312 A91-2086
facilities	[AD-A227757] n 302 NG1-16020	FAULT TOLERANCE
[AIAA PAPER 91-0551] p 300 A91-2152	7 (DISCUS - A failure-tolerant Fbw/Fbl-experiments system p 303 A91-2061
ENGINE MONITORING INSTRUMENTS Engine performance monitoring and troubleshootin	, F	system p 303 A91-2061 Parameter space design of robust flight control
techniques for the CF-18 aircraft	•	systems p 328 N91-1571
[ASME PAPER 90-GT-357] p 301 A91-2363	F-111 AIRCRAFT	FAULT TREES
ENGINE NOISE	AFTI/F-111 airplane mission adaptive wing operational	An integrated approach to system design, reliability, an
The interim prediction for aircraft noise p 332 A91-2237	flight evaluation technique using uplinked pilot command cues p 285 A91-20993	diagnosis [NASA-TM-102861] p 322 N91-1542
ENGINE PARTS	Designing and manufacturing the F-111 advanced	FEASIBILITY ANALYSIS
Titanium compressor eggshølls p 312 A91-2087	9 composite forward vental strake	Potential use of tiltrotor aircraft in Canadian aviation
On the leading edge - Combining maturity and advance	(SME PAPER EM90-105) p 249 A91-21106	[NASA-TM-102245] p 281 N91-1600
technology on the F404 turbofan engine [ASME PAPER 90-GT-149] p 301 A91-2363	F-14 AIRCRAFT Flow separation patterns over an F-14A aircraft wing	FEEDBACK CONTROL New general guidance method in constrained optimal
Advanced technology programs for small turbosha		control. I - Numerical method p 326 A91-2050
engines - Past, present, future	F-16 AIRCRAFT	Active control of a dump combustor with fu
[ASME PAPER 90-GT-267] p 301 A91-2363	Longitudinal ordanity degineritation of a lightnesser	modulation
ENGINE TESTS Flowfield measurements in an unstable ramjet burner	fighter aircraft model [ETN-91-98585] p 308 N91-16026	[AIAA PAPER 91-0368] p 299 A91-2147 A decentralized controller for highly augmente
p 297 A91-2073	7 F-18 AIRCRAFT	aircraft p 327 N91-1571
An application of automatic ignitor DDK-1 to turboje	Materials and processes used for bonded repairs of	Parameter space design of robust flight control
engine test under simulated altitude condition p 300 A91-2310	F/A-18 advanced composite honeycomb sandwich	systems p 328 N91-1571 FIBER COMPOSITES
STOVI. Hot Gas Ingestion control technology	U structures [SME PAPER EM90-107] p 316 A91-21108	The stability of light structures - An area of research
[ASME PAPER 89-GT-323] p 301 A91-2364	North Island F/A-18 aircraft advanced composites	with a tradition and a future p 315 A91-2061
Advanced Turbine Technology Applications Project	t repair	FIBER OPTICS
(ATTAP)	[SME PAPER EM90-108] p 316 A91-21109	High-precision fiber-optic position sensing using diod laser radar techniques p 295 A91-2409
[NASA-CR-187039] p 302 N91-1602 ENVIRONMENT EFFECTS	Numerical prediction of the unsteady flowfield around the F-18 aircraft at large incidence	laser radar techniques p 295 A91-2409 FIGHTER AIRCRAFT
The atmospheric effects of stratospheric aircraft:	A [AIAA PAPER 91-0020] p 256 A91-21338	Fundamental concepts of vectored propulsion
topical review	Aluminum lithium for the F/A-18, Hornet 2000	p 283 A91-2074
[NASA-RP-1250] p 325 N91-1646		Testing the new Swedish multirole A/C - The JAS 3 Gripen p 285 A91-2099
Proceedings of the 2nd E-3 AWACS Corrosio	High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956	Gripen p 285 A91-2099 X-31Flight test in the 90's p 286 A91-2099
Prevention Advisory Board (CPAB)	The aerodynamic characteristics of vortex ingestion for	An analysis of the Su-27 flight demonstration at the 198
[AD-A227627] p 291 N91-1515	0 the F/A-18 inlet duct	Paris Air Show
ENVIRONMENTAL SURVEYS	[NASA-TM-103703] p 311 N91-15303	[SAE PAPER 901001] p 304 A91-2123 Air-to-ground attack fighter improvements throug
The atmospheric effects of stratospheric aircraft: topical review	IFDIS: An expert system for diagnosis of failures in jet aircraft engines	multi-function nozzles
[NASA-RP-1250] p 325 N91-1646		[SAE PAPER 901002] p 304 A91-2123
EQUATIONS OF MOTION	F-4 AIRCRAFT	Measures of merit for aircraft dynamic maneuverin
Symbolic generation of aircraft simulation programme: p 328 N91-1572	Advanced composites F-4 rudder	[SAE PAPER 901005] p 304 A91-2123
ERROR ANALYSIS	7 [SME PAPER EM90-106] p 249 A91-21107 FAILURE ANALYSIS	Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-2124
Aircraft platform scales without sideload induce	Failure analysis of a main rotor pitch horn bolt located	Integrated control and avionics for air superiority -
weighing errors	on the AH-1 Cobra helicopter	program overview
[SAWE PAPER 1882] p 309 A91-2230		[SAE PAPER 901049] p 294 A91-2124
IFDIS: An expert system for diagnosis of failures in je aircraft engines	Advanced Turbine Technology Applications Project (ATTAP)	Viscous flow simulation of fighter aircraft [AIAA PAPER 91-0278] p 260 A91-2143
[AD-A227757] p 302 N91-1602		A mechanism of fretting fatigue failure in the joining lu
ESTIMATES	FAILURE MODES	of a wing structure p 319 A91-2225
Damping estimation in helicopter rotor stability testing	Reliability analysis of structure and control mechanism	IMPP - The Integrated Mass Properties Program
p 306 N91-1517		[SAWE PAPER 1894] p 326 A91-2232 The fuzzy synthetic judgement of correlating parameter
EULER EQUATIONS OF MOTION Application of an implicit relaxation method solving th	Comparison of rime and glaze deformation and failure properties	of fighter design p 289 A91-2235
Euler equations for time-accurate unsteady problems	[AIAA PAPER 91-0446] p 279 A91-21494	A method of developing load spectrum for a fighter
p 253 A91-2106		aircraft p 290 A91-2238
Asymptotic theory in aerodynamics	Airframe noise prediction	High performance linear-quadratic and H-infinity design for a 'supermaneuverable' aircraft p 290 A91-2295
[AIAA PAPER 91-0028] p 257 A91-2134		for a 'supermaneuverable' aircraft p 290 A91-2295 Engine performance monitoring and troubleshootin
A systematic comparative study of several high	n - 000 Not 10001	techniques for the CF-18 aircraft
resolution schemes for complex problems in high spee flows	FAST FOURIER TRANSFORMATIONS	[ASME PAPER 90-GT-357] p 301 A91-2363
[AIAA PAPER 91-0636] p 264 A91-2157	Modeling two-point spatial turbulence spectra for	EJ200 - The engine for the new European Fights Aircraft
Unstructured Euler flow solutions using hexahedral ce	analysis of gust variations over aerospace vehicles [AIAA PAPER 91-0449] p 262 A91-21495	[ASME PAPER 90-GT-119] p 301 A91-2363
refinement	FASTENERS	TF89 aircraft centre fuselage
[AIAA PAPER 91-0637] p 264 A91-2157	Pulsed eddy current inspection of cracks under installed	[ETN-91-98579] p 294 N91-1601
The European flight safety crisis: Costs and solution	fasteners p 318 A91-22188	TF89 tactical fighter outer wing design
[ETN-91-98490] p 281 N91-1600	Fatigue of aluminium alloy joints with various fastener systems. High load transfer	[ETN-91-98580] p 294 N91-1601
EUROPEAN AIRBUS	systems. riigh load transfer [ESDU-90018] p 322 N91-15597	Effects of a fillet on the flow past a wing-body junction
Flight Management/Guidance System in air transpo	f FATIGUE (MATERIALS)	p 268 A91-2247
using Airbus A320 as an example p 304 A91-2220	1 A method of developing load spectrum for a fighter	FILM COOLING
Advanced technology - Constant challenge an	d aircraft p 290 A91-22381	Experimental and theoretical examinations of file
evolutionary process — in aeronautics p 251 A91-2354	Ovalification of primary composite aircraft structures p 313 A91-23714	cooling of gas turbine blades [ETN-91-98554] p 303 N91-1602
p 201 1/31-2004	. polo noveoria	[=:::01 p 303 Na1-1002

SUBJECT INDEX FLIGHT TESTS

FINITE DIFFERENCE THEORY	High precision real time airplane positioning system with	FLIGHT SIMULATION
A computational investigation of dump combustor	full navigational capabilities for flight testing	Concept and specification for the Hermes Training
performance p 300 A91-23106	p 282 A91-20985	Aircraft (HTA) p 310 A91-20618
Solution of Euler equations to 2-D and axisymmetric	X-31Flight test in the 90's p 286 A91-20995	1989 Spring Convention - Flight Simulation: Assessing
compressible flows using conformal mapping coordinates p 272 A91-24152	Verification of flight critical systems [SAE PAPER 901051] p 304 A91-21249	the Benefits and Economics, London, England, May 17, 18, 1989, Proceedings p 250 A91-21324
Flowfield of a lifting hovering rotor: A Navier-Stokes	Flight Management/Guidance System in air transport	Aircraft accident flight profile simulation and animation
simulation	using Airbus A320 as an example p 304 A91-22201	[AIAA PAPER 91-0422] p 278 A91-21486
[NASA-TM-102862] p 274 N91-15128	Control concept of modern avionics in the service of	Closed-loop assessment of flight simulator fidelity
FINITE ELEMENT METHOD	pilot relief - Presented using the example of DO 328	p 311 A91-22960
Method of strength evaluation of radial fan rotors	p 295 A91-22202 Air-to-ground attack and Integrated Flight/Fire Control	Programmable cockpit-flight dynamic model
p 316 A91-20932	p 305 A91-22265	[AD-A227748] · p 296 N91-15171
Numerical simulation of an electrothermally de-iced	Predictive control of optimal path terrain following	The use of system simulation during the definition phase
aircraft surface using the finite element method [AIAA PAPER 91-0268] p 287 A91-21434	system p 305 A91-22371	of the passenger transport aircraft MPC75
Panel flutter analysis using high precision shear flexible	A maximum likelihood method for flight test data compatibility check p 327 A91-22373	p 330 N91-15741 Simulation of nap-of-Earth flight in helicopters
element p 319 A91-23423	compatibility check p 327 A91-22373 Integrated flight/propulsion control system design based	p 330 N91-15744
Higher harmonic control analysis for vibration reduction	on a centralized approach p 305 A91-22950	FLIGHT SIMULATORS
of helicopter rotor systems p 306 N91-15175	New technique for aircraft flight control reconfiguration	Closed-loop assessment of flight simulator fidelity
Development and application of a technique for reducing	p 305 A91-22959	p 311 A91-22960
airframe finite element models for dynamics analysis	Technique for predicting longitudinal pilot-induced	A new approach to hardware-in-the-loop simulation
[NASA-CR-187448] p 323 N91-15607	oscillations p 305 A91-22961 Optimizing aircraft performance with adaptive, integrated	(FALKE shuttle) p 329 N91-15735
Finite element approximations for transonic flows [ETN-91-98491] p 277 N91-15988	flight/propulsion control	FLIGHT TEST INSTRUMENTS ARTIST Airborne Real Time Instrumentation System
A coupled rotor aeroelastic analysis utilizing advanced	[ASME PAPER 90-GT-252] p 290 A91-23644	ARTISt - Airborne Real Time Instrumentation System p 294 A91-20982
aerodynamic modeling p 292 N91-16006	ADAM 2.0 - An ASE analysis code for aircraft with digital	FLIGHT TEST VEHICLES
Finite element thermo-viscoplastic analysis of	flight control systems p 327 A91-23742	Real-time hardware-in-the-loop simulation for ATTAS
aerospace structures	Aircraft accident report: United Airlines flight 232,	and ATTHES advanced technology flight test vehicles
[NASA-TM-102761] p 324 N91-16407	McDonnell Douglas DC-10-10, Sioux Gateway Airport, Sioux City, Iowa, 19 July 1989	p 329 N91-15732
FINITE VOLUME METHOD	[PB90-910406] p 281 N91-15143	A new approach to hardware-in-the-loop simulation
Viscous non equilibrium flow calculations by an implicit	Parameter space design of robust flight control	(FALKE shuttle) p 329 N91-15735
finite volume method [AIAA PAPER 91-0702] p 265 A91-21592	systems p 328 N91-15718	FLIGHT TESTS
Coupled LEWICE/Navier-Stokes code development	Computer-aided control law research: From concept to	Pressure-time history of pylon wake on a pusher propeller in flight p 331 A91-20747
[AIAA PAPER 91-0804] p 326 A91-21624	flight test p 329 N91-15731 FLIGHT ENVELOPES	The development and testing of active control
FINS	An analysis of the Su-27 flight demonstration at the 1989	techniques to minimise helicopter vibration
Wall pressure fluctuations near separation in a Mach	Paris Air Show	p 284 A91-20946
5, sharp fin-induced turbulent interaction	[SAE PAPER 901001] p 304 A91-21230	Society of Flight Test Engineers, Annual Symposium,
[AIAA PAPER 91-0646] p 264 A91-21576	Testing Soviet civil aircraft p 288 A91-22173	20th, Reno, NV, Sept. 18-21, 1989, Proceedings
FIRE CONTROL	FLIGHT HAZARDS	p 284 A91-20976
Air-to-ground attack and Integrated Flight/Fire Control p 305 A91-22265	Statistical structural analysis of rotor impact ice shedding	Tornado AFDS/TF flight testing - Lessons learned
FLAME IONIZATION	[AIAA PAPER 91-0663] p 279 A91-21581	p 284 A91-20977
A comparison of three prospective analytical methods	FLIGHT INSTRUMENTS	Minimum control speed - A 'thrustless' approach p 285 A91-20980
for benzene analysis in jet fuel environments	Programmable cockpit-flight dynamic model	ARTISt - Airborne Real Time Instrumentation System
[AD-A227489] p 314 N91-16170	[AD-A227748] p 296 N91-15171	p 294 A91-20982
FLAME PROPAGATION	FLIGHT MANAGEMENT SYSTEMS	A measurement system for production flight tests of new
Experimental and theoretical studies in a gas-fueled	Flight test management and integration program p 286 A91-20996	aircraft p 308 A91-20984
research combustor [AIAA PAPER 91-0639] p 300 A91-21575	The development of a Flight Test Engineer's Workstation	High precision real time airplane positioning system with
FLAMMABILITY	for the Automated Flight Test Management System	full navigational capabilities for flight testing
Resin transfer molding of composite aircraft interior	p 326 A91-20999	p 282 A91-20985
furnishings	Development of onboard maintenance systems on	RPAS - Runway performance analysis system
[NIAR-90-19] p 292 N91-15153	Boeing airplanes p 250 A91-21206 Flight Management/Guidance System in air transport	p 285 A91-20987 Use of onboard data for takeoff performance
FLAPS (CONTROL SURFACES) Reliability analysis of structure and control mechanism	using Airbus A320 as an example p 304 A91-22201	determination p 285 A91-20988
of aircraft flap p 315 A91-20916	Planning support system for air traffic control	Flight testing antiskid/brake systems
Calculation of unsteady aerodynamic loads on wings	p 282 A91-22203	p 285 A91-20989
with an oscillatory leading edge flap p 270 A91-22764	Future aeronautic environment - FMS/ATC/pilot	Testing the new Swedish multirole A/C - The JAS 39
FLAT PLATES	p 283 A91-23548	Gripen p 285 A91-20990
Experimental and theoretical investigation of a vortex	Report of the workshop on Aviation Safety/Automation	Flight-test-derived stability derivatives for the Advanced Technology Tactical Transport p 303 A91-20991
street in the wake of a flat plate p 252 A91-20935 Interference drag of a turbulent junction vortex	Program	Technology Tactical Transport p 303 A91-20991 Estimation of aerodynamic and mode parameters of
[ASME PAPER 90-WA/FE-2] p 252 A91-21063	[NASA-CP-10054] p 281 N91-15141	aircraft's open and closed-loop system
Linear stability analysis of measured near-wake profiles	The European flight safety crisis: Costs and solution (ETN-91-984901 p 281 N91-16000	p 303 A91-20992
for a flat plate in longitudinal flow p 271 A91-23189	[ETN-91-98490] p 281 N91-16000 FLIGHT MECHANICS	AFTI/F-111 airplane mission adaptive wing operational
An experimental study of the evolution of harmonic	National aerospace plane longitudinal long-period	flight evaluation technique using uplinked pilot command
perturbations in a boundary layer on a flat plate at Mach 4 p 272 A91-23842	dynamics p 305 A91-22962	cues p 285 A91-20993 X-31Flight test in the 90's p 286 A91-20995
FLEXIBLE SPACECRAFT	Prediction of the dynamic characteristics of helicopters	Flight test management and integration program
Integrated control-structure design	in constrained flight p 290 A91-23549	p 286 A91-20996
[NASA-CR-182020] p 307 N91-15180	FLIGHT OPTIMIZATION	DOD nonlethal Unmanned Aerial Vehicles Joint Project
FLEXIBLE WINGS	Energy height method for flight path optimisation	test and evaluation p 249 A91-20997
Vortical flow computations on swept flexible wings using	[ESDU-90012] p 291 N91-15151	GPS - The logical choice for flight test tracking of aircraft p 282 A91-20998
Navier-Stokes equations p 269 A91-22483 FLIGHT CHARACTERISTICS	FLIGHT PATHS North Atlantic air traffic control p 282 A91-20900	aircraft p 282 A91-20998 The development of a Flight Test Engineer's Workstation
Relationships between agility metrics and flying	Energy height method for flight path optimisation	for the Automated Flight Test Management System
qualities	[ESDU-90012] p 291 N91-15151	p 326 A91-20999
[SAE PAPER 901003] p 304 A91-21232	FLIGHT RECORDERS	Downwash measurement at the horizontal tail
Initial flight test of a ground deployed system for flying	Development of a workstation-based flight data analysis	p 286 A91-21000
qualities assessment [NASA-TM-101700] p 307 N91-15182	package	Random air turbulence as a flutter test excitation source p 286 A91-21002
Evaluation of rotorwash characteristics for tiltrotor and	[AIAA PAPER 91-0668] p 279 A91-21585	Engine water ingestion test p 286 A91-21003
tiltwing aircraft in hovering flight	FLIGHT SAFETY	AM-X high incidence trials, development and results
[SCT-90RR-18] p 277 N91-15989	How safe is flying? Or - The AIMS onboard integrated monitoring systems p 294 A91-20609	p 304 A91-21004
FLIGHT CONDITIONS	Probabilistic fatigue methodology for six nines	Certification of Fokker 50 and Fokker 100 for operation
Aircraft accident flight profile simulation and animation	reliability	in icing conditions [AIAA PAPER 91-0561] p 279 A91-21532
[AIAA PAPER 91-0422] p 278 A91-21486 FLIGHT CONTROL	[NASA-TM-102757] p 323 N91-15605	[AIAA PAPER 91-0561] p 279 A91-21532 In-flight source noise of an advanced full-scale
Fundamental concepts of vectored propulsion	The European flight safety crisis: Costs and solution	single-rotation propeller
p 283 A91-20746	[ETN-91-98490] p 281 N91-16000	[AIAA PAPER 91-0594] p 331 A91-21547
Society of Flight Test Engineers, Annual Symposium,	Activities report of the German Federal Institute for Flight	Flight and wind tunnel tests of the aerodynamic effects
20th, Reno, NV, Sept. 18-21, 1989, Proceedings p 284 A91-20976	Safety [ETN-91-98644] p 281 N91-16002	of aircraft ground deicing/anti-icing fluids [AIAA PAPER 91-0762] p 267 A91-21608
9 204 A31-203/0	[=111-01-00002	[

FLOQUET THEOREM SUBJECT INDEX

Flight tests of the aerodynamic effects of type I and Investigation of transonic flow over segmented slotted **FLUID-SOLID INTERACTIONS** type II ground de-/anti-icing fluids on the Fokker 50 and wind tunnel wall with mass transfer Thin-layer Navier-Stokes solutions for transonic p 276 N91-15981 Fokker 100 aircraft [NASA-CR-187760] multi-body interference [AIAA PAPER 91-0785] p 288 A91-21617 Numerical analysis of viscous hypersonic flow past a [AIAA PAPER 91-0071] p 258 A91-21357 p 288 A91-22173 Testing Soviet civil aircraft Numerical investigation of drag reduction in flow over generic forebody A maximum likelihood method for flight test data [MBB/FE122/S/PUB/0407] p 278 N91-15997 surfaces with streamwise aligned riblets Unsteady vortex lattice calculation of the flow around slender delta wing p 278 N91-16272 p 263 A91-21517 compatibility check p 327 A91-22373 [AIAA PAPER 91-0518] The compatibility check of the flight test data of the FLUTTER p 290 A91-22757 DO 28 research aircraft Optical measurement of unducted fan flutter **FLOW GEOMETRY** Technique for predicting longitudinal pilot-induced [NASA-TM-103285] p 302 N91-15174 On the stability of conduction dominated natural p 305 A91-22961 Flight flutter test techniques at ARL AD-A2277541 oscillations convection in near-vertical slots and horizontal cylindrical Wind tunnel tests on flutter control of a high-aspect-ratio cantilevered wing: Control with leading-edge and annuli trailing-edge control surfaces [NAL-TR-1070] p 306 N91-15178 [AD-A227754] [AIAA PAPER 91-0027] p 257 A91-21343 Aircraft compatibility tasks required for the release of Multi-dimensional modelling of gas turbine combustion p 276 N91-15982 an Aircraft Compatibility Control Drawing (ACCD) FLUTTER ANALYSIS using a flame sheet model in KIVA II [DE91-004698] p 307 N91-15179 [AIAA PAPER 91-0414] p 299 A91-21483 Random air turbulence as a flutter test excitation Initial flight test of a ground deployed system for flying Computation of three-dimensional subsonic flows in ducts using the PNS approach p 271 A91-23186 ource p 286 A91-21002
Panel flutter analysis using high precision shear flexible source [NASA-TM-101700] p 307 N91-15182 FLOW MEASUREMENT p 319 A91-23423 element FLOQUET THEOREM Flight flutter test techniques at ARL Flowfield measurements in an unstable ramjet burner A coupled rotor aeroelastic analysis utilizing advance [AD-A2277541 p 306 N91-15178 p 297 A91-20737 p 292 N91-16006 aerodynamic modeling Flow measurements in a model ramjet secondary Propfan supersonic panel method analysis and flutter FLOW DISTORTION p 310 A91-20743 predictions p 278 N91-15993 combustion chamber Turbulent shear flow over surface mounted obstacles FLUX VECTOR SPLITTING Experimental measurements of the flow in a scramjet p 251 A91-20750 p 252 A91-21057 A systematic comparative study of several high resolution schemes for complex problems in high speed at Mach 4 Nonlinear disturbances in a hypersonic laminar boundary Further assessment of a scramiet inlet mass flow measurement technique for use in hypersonic pulse [AIAA PAPER 91-0320] p 261 A91-21457 [AIAA PAPER 91-0636] p 264 A91-21573 -2 iteration and its parallel algorithm for transonic flow Flux-difference split scheme for turbulent transport [AIAA PAPER 91-0551] p 300 A91-21527 with large disturbances in freestream-direction around p 319 A91-22259 equations Measurements of vorticity field [AIAA PAPER 90-5251] p 270 A91-22878 axisymmetric bodies at zero angle of attack **FLOW STABILITY** p 270 A91-22763 On the stability of conduction dominated natural FLY BY WIRE CONTROL DISCUS - A failure-tolerant Fbw/Fbl-experimental Effect of the initial flow conditions on the aerodynamic convection in near-vertical slots and horizontal cylindrical and acoustic characteristics of turbulent jets p 303 A91-20610 p 272 A91-23903 AFTI/F-111 airplane mission adaptive wing operational [AIAA PAPER 91-0027] p 257 A91-21343 FLOW DISTRIBUTION Numerical, experimental, and theoretical study of flight evaluation technique using uplinked pilot command Three-dimensional unsteady flow fields elicited by p 285 A91-20993 convective instability of flows over pointed bodies at Verification of flight critical systems [SAE PAPER 901051] pitching a canard and forward swept wing configuration
[AIAA PAPER 91-0005] p 255 A91-21327 [AIAA PAPER 91-0291] p 260 A91-21443 p 304 A91-21249 On the formation and control of the dynamic stall vortex Nonlinear disturbances in a hypersonic laminar boundary **FOKKER AIRCRAFT** on a pitching airfoil Certification of Fokker 50 and Fokker 100 for operation [AIAA PAPER 91-0006] p 261 A91-21457 p 255 A91-21328 in icing conditions [AIAA PAPER 91-0561] [AIAA PAPER 91-0320] Numerical prediction of the unsteady flowfield around Boundary-layer transition - Analysis and prediction p 279 A91-21532 the F-18 aircraft at large incidence [AIAA PAPER 91-0020] Flight tests of the aerodynamic effects of type I and p 256 A91-21338 [AIAA PAPER 91-0737] p 318 A91-21601 type II ground de-/anti-icing fluids on the Fokker 50 and Strip blowing from a wedge at hypersonic speeds

AIAA PAPER 91-0032] p 257 A91-21346 The inviscid stability of supersonic flow past a sharp Fokker 100 aircraft (AIAA PAPER 91-00321 p 269 A91-22511 [AIAA PAPER 91-0785] p 288 A91-21617 Analysis of flow on cones and cylinders using discrete Linear stability analysis of measured near-wake profiles FORCE DISTRIBUTION ortex methods for a flat plate in longitudinal flow p 271 A91-23189 Hypersonic propulsion system force accounting (AIAA PAPER 91-0288) p 260 A91-21442 Effect of surface temperature on the stability of the [AIAA PAPER 91-0228] p 299 A91-21418 computational experimental aerodynamics attachment line boundary layer of a swept wing Normal force and pitching moment of low aspect ratio research on a hypersonic vehicle. Il - Computational p 272 A91-23845 cropped-delta wings up to high angles of attack at results Direct numerical simulations of a plane compressible supersonic speeds [ESDU-90013] [AIAA PAPER 91-0321] p 261 A91-21458 wake: Stability, vorticity dynamics, and topology p 292 N91-15152 Turbulence modeling in gas turbine design and [NASA-CR-187737] p 274 N91-15129 **FOREBODIES** analysis FLOW THEORY Calculation of vortex flowfields around forebodies and [AIAA PAPER 91-0514] p 299 A91-21516 Theoretical analysis of supersonic gas-particle delta wings Calculation of flow about two-dimensional bodies by wo-phase flow and its application to relatively complicated [AIAA PAPER 91-0176] p 259 A91-21396 means of the velocity-vorticity formulation on a staggered flow fields p 255 A91-21198 Aerodynamic characteristics of three generic forebodies The aerodynamic characteristics of vortex ingestion for at high angles of attack [AIAA PAPER 91-0600] p 263 A91-21551 the F/A-18 inlet duct [AIAA PAPER 91-0275] A validation technique for p 260 A91-21437 Infrared imaging -[NASA-TM-103703] p 311 N91-15303 computational fluid dynamics codes used in STOVL FORMAT FLOW VELOCITY Viscous high speed flow computations by adaptive mesh applications Programmable cockpit-head-up display and outside [AIAA PAPER 91-0675] p 318 A91-21587 embedding techniques Numerical investigation of the flow over a double delta [AIAA PAPER 91-0149] p 258 A91-21381 [AD-A227751] p 297 N91-15172 wing at high incidence Curved vortex elements for numerical wake modeling p 273 A91-24162 Analytic Patch Configuration (APC) gateway version 1.0 [AIAA PAPER 91-0753] p 266 A91-21605 user's guide [NASA-CR-187464] A three-dimensional Euler code for calculating flow fields The laminar free jet problem, using Newtonian media p 330 N91-15751 in centrifugal compressor diffusers p 267 A91-21744 Flowfield computation of 2-C-D nozzle (ETN-91-98494) p 276 N91-15136 FOURIER TRANSFORMATION Investigation of transonic flow over segmented slotted A controlled-environment chamber for atmospheric p 268 A91-22382 chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 rind tunnel wall with mass transfer Optimum hypersonic airfoil with power law shock p 276 N91-15981 [NASA_CR_187760] [AD-A227532] p 269 A91-22492 FLOW VISUALIZATION waves FRACTURE MECHANICS A steadying effect of acoustic excitation on transitory A three-dimensional visualization technique applied to An evaluation of the pressure proof test concept for thin sheet 2024-T3 p 315 A91-20788 flow around a delta wing p 315 A91-20728 stall p 315 A91-20788 [AIAA PAPER 91-0043] p 269 A91-22499 Exploratory study of vortex-generating devices for FRACTURE STRENGTH Simplified modeling of blunt nose effects on vehicle flow irbulent flow separation control Fracture instability of a layered conical composite p 317 A91-21348 fields [AIAA PAPER 91-0042] p 315 A91-20791 resisting the aerodynamic load [AIAA PAPER 90-5259] p 270 A91-22883 Cross-flow vortex structure and transition measurements FRACTURES (MATERIALS) A computational investigation of dump combustor using multi-element hot films Fatigue and fracture of titanium aluminides AD-A226737] p 314 N91-15374 p 300 A91-23106 [AIAA PAPER 91-0166] p 258 A91-21389 performance [AD-A226737] An investigation of supersonic oscillatory cavity flows Multi-sensor investigation of delta wing high-alpha p 271 A91-23550 FREE CONVECTION driven by thick shear layers On the stability of conduction dominated natural A study of flow structure in nozzles with a constant-height [AIAA PAPER 91-0735] p 266 A91-21600 p 272 A91-23848 convection in near-vertical slots and horizontal cylindrical section in the throat region FLUID DYNAMICS Numerical solutions for a cylindrical laser diffuser An experiment on supersonic turbulent mixing layers: [AIAA PAPER 91-0027] p 274 N91-15127 Supersonic-subsonic two-stream layers p 257 A91-21343 flow-field [NAL-TR-1066] Flowfield of a lifting hovering rotor: A Navier-Stokes FREE FLOW simulation FLUID FLOW Vorticity dynamics of 2-D and 3-D wings in unsteady [NASA-TM-102862] p 274 N91-15128 free stream Far-field boundaries and their numerical treatment p 323 N91-16281 [AIAA PAPER 91-0010] p 256 A91-21331 Airframe-induced upwash at subsonic spee [ESDU-90020] p 275 N91-15130 FLUID MECHANICS AF-2 iteration and its parallel algorithm for transonic flow The aerodynamic characteristics of vortex ingestion for the F/A-18 inlet duct Performance of conical diffusers in subsonic with large disturbances in freestream-direction around compressible flow

[ESDU-90025]

p 311 N91-15303

p 275 N91-15131

exisymmetric bodies at zero angle of attack

p 270 A91-22763

[NASA-TM-103703]

OODOEO/ INDEX		and one-am-and one commonication
An experiment on supersonic turbulent mixing layers:	GAS CHROMATOGRAPHY	GENERAL AVIATION AIRCRAFT
Supersonic-subsonic two-stream layers	A comparison of three prospective analytical methods	Wind tunnel tests of aerodynamic effects of type I and
[NAL-TR-1066] p 276 N91-15983	for benzene analysis in jet fuel environments	Il ground de/anti-icing fluids on small transport and general
FREE JETS	[AD-A227489] p 314 N91-16170 GAS FLOW	aviation aircraft during takeoff [AIAA PAPER 91-0763] p 288 A91-21609
The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136	Nonideal isentropic gas flow through	GEOMETRY P200 A31-21009
FREE VIBRATION	converging-diverging nozzles p 252 A91-21064	Analytic Patch Configuration (APC) gateway version 1.0
Free vibration of a cantilever annular sector plate with	Theoretical analysis of supersonic gas-particle	user's guide
curved radial edges and varying thickness	two-phase flow and its application to relatively complicated flow fields p 255 A91-21198	[NASA-CR-187464] p 330 N91-15751
p 316 A91-20943	Infrared imaging - A validation technique for	GLAZES Comparison of rime and glaze deformation and failure
FRETTING A mechanism of fretting fatigue failure in the joining lug	computational fluid dynamics codes used in STOVL	properties
of a wing structure p 319 A91-22252	applications	[AIAA PAPER 91-0446] p 279 A91-21494
FRICTION	[AlAA PAPER 91-0675] p 318 A91-21587 Analysis of rarefied gas flow near a critical point	GLOBAL POSITIONING SYSTEM
Effects of runway anti-icing chemicals on traction [DOT/FAA/CT-TN90/53] p 310 N91-15189	p 268 A91-21879	High precision real time airplane positioning system with
[DOT/FAA/CT-TN90/53] p 310 N91-15189 FRICTION MEASUREMENT	Macroscopic model of vibrational relaxation in heat	full navigational capabilities for flight testing p 282 A91-20985
Internally mounted thin-liquid-film skin-friction meter -	transfer problems for supersonic flow past hard bodies	GPS - The logical choice for flight test tracking of
Comparison with floating element method with and without	p 268 A91-21979 Finite element approximations for transonic flows	aircraft p 282 A91-20998
pressure gradient	[ETN-91-98491] p 277 N91-15988	Optimal Kalman filter integration of a global positioning
[AIAA PAPER 91-0060] p 317 A91-21352 FUEL COMBUSTION	GAS INJECTION	system receiver and an LN-94 inertial navigation system
Comparison of combustion experiments and theory in	Experimental study on mixing phenomena in supersonic	[AD-A227222] p 283 N91-16003
polyethylene solid fuel ramjets p 297 A91-20744	flows with slot injection	GOVERNMENTS Potential use of tiltrotor aircraft in Canadian aviation
Active control of a dump combustor with fuel	[AIAA PAPER 91-0016] p 256 A91-21335 Strip blowing from a wedge at hypersonic speeds	[NASA-TM-102245] p 281 N91-16001
modulation - 000 A04 04474	[AIAA PAPER 91-0032] p 257 A91-21346	GRAPHITE-EPOXY COMPOSITES
[AIAA PAPER 91-0368] p 299 A91-21471 Effect of the penetration depth of fuel jets on combustion	GAS JETS	Analysis and certification of the Starship all-composite
in a supersonic combustion chamber	Effect of the penetration depth of fuel jets on combustion	airframe
p 312 A91-21962	in a supersonic combustion chamber	[SAE PAPER 900997] p 278 A91-21229
FUEL CONSUMPTION	p 312 A91-21962 GAS PRESSURE	GRAVITATIONAL EFFECTS Maximum rate deceleration of an object during
Aircraft fuel weight penalty due to air conditioning	Tests for integrating measurements of gas pressures	Maximum-rate deceleration of an object during controlled motion under the effect of aerodynamic drag
[SAE AIR 1168/8] p 287 A91-21258 Energy height method for flight path optimisation	in aircraft mechanisms	and gravity forces p 268 A91-21940
[ESDU-90012] p 291 N91-15151	[ETN-91-98558] p 293 N91-16014	GREEN'S FUNCTIONS
FUEL CONTROL	GAS TEMPERATURE Numerical investigation of hot streaks in turbines	A Green's Function Method for calculating the transonic
Simulation, testing and optimization of a new low cost	p 251 A91-20748	pressure distribution of wing p 273 A91-24157
electronic fuel control unit for small gas turbine engines	GAS TURBINE ENGINES	Calculations for unsteady aerodynamic characteristics
[SAE PAPER 901027] p 298 A91-21239 New family of low cost electronic fuel control units for	Titanium compressor eggshells p 312 A91-20879	on a 3-D lifting body in subsonic flow using boundary element method
small gas turbine engines	Simulation, testing and optimization of a new low cost	[NAL-TR-1065] p 277 N91-15985
[SAE PAPER 901039] p 298 A91-21245	electronic fuel control unit for small gas turbine engines	GRID GENERATION (MATHEMATICS)
FUEL INJECTION	[SAE PAPER 901027] p 298 A91-21239 Numerical simulations of auxiliary power units with	Thin-layer Navier-Stokes solutions for transonic
Effect of the penetration depth of fuel jets on combustion	different configurations	multi-body interference
in a supersonic combustion chamber p 312 A91-21962	[SAE PAPER 901028] p 298 A91-21240	[AlAA PAPER 91-0071] p 258 A91-21357
FUEL TANKS	New family of low cost electronic fuel control units for	Optimum spacing control of the marching grid generation
Optimization and validation of a fuselage fuel tank	small gas turbine engines [SAE PAPER 901039] p 298 A91-21245	[AIAA PAPER 91-0103] p 258 A91-21368
structural concept for the NASP	Multi-dimensional modelling of gas turbine combustion	A composite grid approach to study the flow surrounding
[AIAA PAPER 90-5262] p 300 A91-22885	using a flame sheet model in KIVA II	a pitch-up airfoil in a wind tunnel
In-flight and simulated aircraft fuel temperature measurements	[AIAA PAPER 91-0414] p 299 A91-21483	[AIAA PAPER 91-0599] p 263 A91-21550
[NASA-TM-103611] p 314 N91-15418	Turbulence modeling in gas turbine design and	Coupled LEWICE/Navier-Stokes code development
FUEL-AIR RATIO	analysis [AIAA PAPER 91-0514] p 299 A91-21516	[AIAA PAPER 91-0804]. p 326 A91-21624
Multi-dimensional modelling of gas turbine combustion	[AIAA PAPER 91-0514] p 299 A91-21516 Development of cast superalloys for gas turbines in	The aerodynamic characteristics of vortex ingestion for the F/A-18 inlet duct
using a flame sheet model in KIVA II [AIAA PAPER 91-0414] p 299 A91-21483	China p 313 A91-22340	[NASA-TM-103703] p 311 N91-15303
FUNCTIONAL ANALYSIS	Magnetron sputtered CoCrAIY coatings on superalloy	Rotorcraft application of advanced computational
An integrated approach to system design, reliability, and	IN738 p 313 A91-22346	aerodynamics ,
diagnosis	Advanced technology programs for small turboshaft	[NASA-CR-187767] p 277 N91-15987
[NASA-TM-102861] p 322 N91-15426	engines - Past, present, future	GROUND BASED CONTROL
FUSELAGES An evaluation of the pressure proof test concept for	[ASME PAPER 90-GT-267] p 301 A91-23638	Results of the Kansas City 1989 Terminal Doppler Weather Radar (TDWR) operational evaluation testing
thin sheet 2024-T3 p 315 A91-20788	Simulation of aircraft gas turbine engines [ASME PAPER 90-GT-342] p 301 A91-23645	[AD-A228784] p 323 N91-16206
High alpha aerodynamic control by tangential fuselage	A new method of predicting the performance of gas	GROUND EFFECT (AERODYNAMICS)
blowing	turbine engines	Small-scale experiments in STOVL ground effects
[AIAA PAPER 91-0620] p 264 A91-21561 A theory for tangential fuselage blowing	[ASME PAPER 90-GT-337] p 302 A91-23647	[SAE PAPER 901060] p 287 A91-21256
[AIAA PAPER 91-0621] p 264 A91-21562	Experimental study of the three-dimensional flow field	Turbulence modeling for complex ground effects flows [SAE PAPER 901062] p 255 A91-21257
Derivation of a fuselage weight estimating relationship	in a turbine stator preceded by a full stage p 271 A91-23656	[SAE PAPER 901062] p 255 A91-21257 Numerical solution of the equation for a thin airfoil in
[SAWE PAPER 1901] p 289 A91-22319	Optimization of process routes in the repair of gas turbine	ground effect p 269 A91-22491
A review of ice accretion data from a model rotor icing	engine components using capillary testing	GROUND SUPPORT EQUIPMENT
test and comparison with theory [AIAA PAPER 91-0661] p 280 A91-22500	p 321 A91-23817	Cost conscious design for data acquisition system
Optimization and validation of a fuselage fuel tank	Thermal barrier coating evaluation needs	ground support equipment p 308 A91-20983
structural concept for the NASP	[NASA-TM-103708] p 314 N91-15390	GROUND SUPPORT SYSTEMS
[AIAA PAPER 90-5262] p 300 A91-22885	Advanced structural instrumentation, volume 2	The Radio Trials Centre at A&AEE Boscombe Down, United Kingdom - A description p 308 A91-20978
An evaluation of shape methods for helicopter	[AD-A227473] p 324 N91-16330	GROUND TESTS
classification and orientation determination [AD-A227326] p 291 N91-15148	Wear measurement of ceramic bearings in gas turbines	RPAS - Runway performance analysis system
TF89 aircraft centre fuselage	[AD-A227505] p 324 N91-16382	p 285 A91-20987
[ETN-91-98579] p 294 N91-16018	GAS TURBINES	Flight testing antiskid/brake systems
FUZZY SETS	Determination of cycle configuration of gas turbines and	p 285 A91-20989 Estimation of aerodynamic and mode parameters of
The fuzzy synthetic judgement of correlating parameter	aircraft engines by an optimization procedure	aircraft's open and closed-loop system
of fighter design p 289 A91-22354 FUZZY SYSTEMS	[ASME PAPER 90-GT-115] p 302 A91-23646	p 303 A91-20992
Applications of fuzzy theories to multi-objective system	Advanced Turbine Technology Applications Project	Ground facilities for hypersonic simulation
optimization	(ATTAP) [NASA-CR-187039] p 302 N91-16021	p 308 A91-21179
[NASA-CR-177573] p 293 N91-16012	Experimental and theoretical examinations of film	Initial flight test of a ground deployed system for flying qualities assessment
_	cooling of gas turbine blades	[NASA-TM-101700] p 307 N91-15182
G	[ETN-91-98554] p 303 N91-16022	GROUND-AIR-GROUND COMMUNICATION
	GASEOUS FUELS	ACARS — air/ground communication facilities for
GALLIUM ARSENIDES	Experimental and theoretical studies in a gas-fueled	transport aircraft maintenance p 282 A91-21203 Future aeronautic environment - FMS/ATC/pilot
GaAs MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160	research combustor [AIAA PAPER 91-0639] p 300 A91-21575	p 283 A91-23548
and the appropriate production		P = 00 - 1.01 200 TO

G

HARMONIC CONTROL SUBJECT INDEX

HARMONIC CONTROL Higher harmonic control analysis for vibration reduction of helicopter rotor systems p 306 N91-15175 Application of chaos methods to helicopter vibration HELICOPTER PROPELLER DRIVE reduction using higher harmonic control p 306 N91-15177 HARMONIC OSCILLATION HÈLICOPTERS An experimental study of the evolution of harmonic perturbations in a boundary layer on a flat plate at Mach Approach Slope Indicator D 272 A91-23842 HEAD-UP DISPLAYS Programmable cockpit-head-up display and outside p 297 N91-15172 Initial flight test of a ground deployed system for flying [NASA-TM-102865] qualities assessment p 307 N91-15182 NASA-TM-1017001 classification and orientation determination HEAT FLUX [AD-A227326] High temperature heat flux measurements p 317 A91-21388 [AIAA PAPER 91-0165] HEAT MEASUREMENT [AD-A227933] High temperature heat flux measurements p 317 A91-21388 [AIAA PAPER 91-0165] HEAT RESISTANT ALLOYS [NASA-TM-1027571 Metallurgical control of fatigue crack propagation in p 311 A91-20677 superallovs Development of cast superalloys for gas turbines in p 313 A91-22340 Magnetron sputtered CoCrAIY coatings on superalloy ontimization p 313 A91-22346 [NASA-CR-177573] Estimation of the engineering elastic constants of a HELIPORTS directionally solidified superalloy for finite element p 322 N91-15598 INASA-CR-1870361 HERMES MANNED SPACEPLANE HEAT TRANSFER Trends in current heat transfer computations Aircraft (HTA) p 317 A91-21384 [AIAA PAPER 91-0157] HIGH SPEED simulation Three-dimensional receptivity Boundary layer electrothermal deicing systems [AIAA PAPER 91-0267] p 287 A91-21433 [AIAA PAPER 90-5258] Numerical simulation of an electrothermally de-iced high-speed rotordynamics aircraft surface using the finite element method [AIAA PAPER 91-0268] p 287 A91-21434 HIGH STRENGTH Numerical simulation of icing, deicing, and shedding [AIAA PAPER 91-0665] p 279 A91-21583 p 279 A91-21583 [AD-A226737] Analysis of rarefied gas flow near a critical point HIGH STRENGTH STEELS p 268 A91-21879 Macroscopic model of vibrational relaxation in heat in airolane environments transfer problems for supersonic flow past hard bodies HIGH TEMPERATURE ENVIRONMENTS p 268 A91-21979 Experimental and theoretical examinations of film [AD-A227473] cooling of gas turbine blades [ETN-91-98554] HIGH TEMPERATURE GASES p 303 N91-16022 HEAT TRANSFER COEFFICIENTS Heat transfer in rotating passages with smooth walls and radial outward flow [AIAA PAPER 91-0165] [ASME PAPER 89-GT-272] p 320 A91-23659 An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two ASME PAPER 89-GT-323] HIGHLY MANEUVERABLE AIRCRAFT opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 for the Automated Flight Test Manage HEATING EQUIPMENT simulation Three-dimensional numerical **HIGHWAYS** electrothermal deicing systems [AIAA PAPER 91-0267] p 287 A91-21433 culverts under airfield pavements HELICOPTER CONTROL [AD-A2279201 DISCUS - A failure-tolerant Fbw/Fbl-experimental HISTORIES p 303 A91-20610 system Higher harmonic control analysis for vibration reduction ropulsion technology of helicopter rotor systems p 306 N91-15175 INASA-SP-43061 Application of chaos methods to helicopter vibration HOLES (MECHANICS) reduction using higher harmonic control p 306 N91-15177 [AD-A226736] **HELICOPTER DESIGN** HOLOGRAPHIC INTERFEROMETRY The development and testing of active control techniques to minimise helicopter vibration street in the wake of a flat plate p 284 A91-20946 HONEYCOMB STRUCTURES Rotorcraft structural weight and cost aspects [SAWE PAPER 1908] Advanced composites F-4 rudder p 289 A91-22321 [SME PAPER EM90-106] Cockpit Mock Up (CMU): A design and development tool p 328 N91-15730 HELICOPTER PERFORMANCE Statistical structural analysis of rotor impact ice ISME PAPER EMON-1071 shedding HORIZONTAL TAIL SURFACES [AIAA PAPER 91-0663] p 279 A91-21581 An improved three-dimensional aerodynamics model for helicopter airtoads prediction

p 267 A91-21610

p 290 A91-23549

p 291 N91-15148

Cross-flow vortex structure and transition measurements

p 258 A91-21389

using multi-element hot films

[ALAA PAPER 91-0166]

HOT-WIRE ANEMOMETERS Algorithms development methodology for performance-optimized multicyclic rotor commands An experimental study of the evolution of harmonic p 327 N91-15716 perturbations in a boundary layer on a flat plate at Mach p 272 A91-23842 Simulation of nap-of-Earth flight in helicopters p 330 N91-15744 **HOT-WIRE FLOWMETERS** Unsteady measurement of skin friction in adverse Review of the transmissions of the Soviet helicopters [NASA-TM-103634] p 291 N91-15146 pressure gradient - A new approach to a well known p 291 N91-15146 [AIAA PAPER 91-0168] p 318 A91-21391 HÕUSINGS VASI systems for helicopter operations --- Visual Selectable towline spin chute system p 294 A91-21221 [NASA-CASE-LAR-14322-1] Painting technology for civil aircraft and helicopters (2nd p 276 N91-15138 revised and enlarged edition) --- Russian book p 250 A91-22102 Flowfield of a lifting hovering rotor: A Navier-Stokes simulation Dynamic analysis of rotor blade undergoing rotor power [NASA-TM-102862] p 251 N91-15124 Evaluation of rotorwash characteristics for tiltrotor and An evaluation of shape methods for helicopter tiltwing aircraft in hovering flight SCT-90RR-181 p 277 N91-15989 HOVERING STABILITY p 291 N91-15148 Nonlinear large amplitude vibration of composite Navier-Stokes computation of wing/rotor interaction for elicopter rotor blade at large static deflection a tilt rotor in hover [AIAA PAPER 91-0707] p 307 N91-15183 p 265 A91-21593 HUMAN FACTORS ENGINEERING Probabilistic fatigue methodology for six nines Effect of shaping sensor data on pilot response [NASA-TM-102737] p 297 N91 p 297 N91-15173 p 323 N91-15605 HYDRAULIC CONTROL Development and application of a technique for reducing airframe finite element models for dynamics analysis (NASA-CR-187448) p 323 N91-15607 Aircraft accident report: United Airlines flight 232, McDonnell Douglas DC-10-10, Sioux Gateway Airport, Sioux City, Iowa, 19 July 1989 Applications of fuzzy theories to multi-objective system [PB90-910406] p 281 N91-15143 HYDRAULIC JETS p 293 N91-16012 Robotic abrasive water jet cutting of aerostructure VASI systems for helicopter operations --- Visual Approach Slope Indicator p 294 A91-21221 components [SME PAPER MS89-812] p 316 A91-21116 Waterjet/hydrobrasive cutting in the automotive, aerospace and appliance industries Concept and specification for the Hermes Training p 310 A91-20618 [SME PAPER MS89-833] p 316 A91-21118 HYDRAULIC TEST TUNNELS phenomena A review of ice accretion data from a model rotor icing three-dimensional and high-speed boundary layers test and comparison with theory [AIAA PAPER 91-0661] p 270 A91-22882 p 280 A91-22500 Some observations of chaotic vibration phenomena in **HYDROCARBONS** Experimental and theoretical studies in a gas-fueled p 320 A91-23665 research combustor Fatigue and fracture of titanium aluminides [AIAA PAPER 91-0639] p 300 A91-21575 HYDROGEN ENGINES p 314 N91-15374 Additional fuel component application for hydrogen scramjet boosting Corrosion fatigue crack growth of 30CrMnSiNi2A steel p 313 A91-22383 [SAE PAPER 900990] p 312 A91-21226 Radiative interactions in a hydrogen-fueled supersonic Advanced structural instrumentation, volume 2 combustor [AIAA PAPER 91-0373] p 324 N91-16330 p 312 A91-21473 HYDROGEN FUELS Synergistic effects of hydrogen transpiration on compression surfaces for hypersonic vehicles Numerical investigation of hot streaks in turbines o 251 A91-20748 [AIAA PAPER 91-0699] p 265 A91-21591 p 317 A91-21388 Experimental investigation of a 2-D dual mode scramjet STOVL Hot Gas Ingestion control technology rith hydrogen fuel at Mach 4-6 p 301 A91-23642 [AIAA PAPER 90-5269] p 300 A91-22892 HYDROGEN OXYGEN ENGINES Structure of a supersonic reacting jet
[AIAA PAPER 91-0376] p The development of a Flight Test Engineer's Workstation p 299 A91-21475 HYPERSONIC AIRCRAFT p 326 A91-20999 An approach to air-breathing high speed vehicle Evaluation procedure for reinforced concrete box synthesis [AIAA PAPER 91-0225] p 287 A91-21415 Aerothermodynamic phenomena and the design of p 310 N91-16031 atmospheric hypersonic airplanes [MBB/FE122/S/PUB/0408] Engines and innovation: Lewis Laboratory and American p 293 N91-16015 HYPERSONIC BOUNDARY LAYER p 333 N91-15975 Modellization and calculation of laminar hypersonic p 254 A91-21190 boundary layer flows Numerical analyses of stress near the hole of Hypersonic interactions and flow transition compressor disk by boundary element method p 254 A91-21193 p 319 A91-22754 Nonlinear disturbances in a hypersonic laminar boundary Experimental and theoretical investigation of a vortex [AIAA PAPER 91-0320] p 261 A91-21457 p 252 A91-20935 A study of compressible laminar boundary layer at Mach [AIAA PAPER 91-0323] p 261 A91-21460 p 249 A91-21107 Nonparallel instability of supersonic and hypersonic Materials and processes used for bonded repairs of boundary lavers F/A-18 advanced composite honeycomb sandwich [AIAA PAPER 91-0324] p 261 A91-21461 Boundary layer receptivity phenomena p 316 A91-21108 three-dimensional and high-speed boundary layers [AIAA PAPER 90-5258] p 270 A91-22882 Downwash measurement at the horizontal tail HYPERSONIC COMBUSTION p 286 A91-21000 Progress in hypersonic combustion technology with HORSESHOE VORTICES computation and experiment [AIAA PAPER 90-5254] Interference drag of a turbulent junction vortex p 252 A91-21063 p 300 A91-22879 [ASME PAPER 90-WA/FE-2] HOT-FILM ANEMOMETERS HYPERSONIC FLIGHT Additional fuel component application for hydrogen

scramjet boosting

[SAE PAPER 900990]

p 312 A91-21226

[AIAA PAPER 91-0767]

in constrained flight

[AD-A227326]

Prediction of the dynamic characteristics of helicopters

An evaluation of shape methods for helicopter

classification and orientation determination

Optimization and guidance of flight trajectories for the	HYPERSONICS	INCOMBRECCIBLE ELOW
national aerospace plane	Optimal trajectories for an aerospace plane. Part 1:	INCOMPRESSIBLE FLOW Symmetry plane model for turbulent flows with vortex
[NASA-CR-187837] p 292 N91-16010	Formulation, results, and analysis	generators
Optimal trajectories for an aerospace plane. Part 2: Data,	[NASA-CR-187868] p 293 N91-16013	[AIAA PAPER 91-0723] p 266 A91-21598
tables, and graphs [NASA-CR-187848] p 292 N91-16011	HYPERVELOCITY FLOW A study of compressible laminar boundary layer at Mach	An introduction to aircraft excrescence drag [ESDU-90029] p 275 N91-15132
Hypersonic model configurations	numbers 4 to 30	[ESDU-90029] p 275 N91-15132 INERTIAL NAVIGATION
[MBB/FE122/S/PUB/411] p 293 N91-16016	[AIAA PAPER 91-0323] p 261 A91-21460	NAVPACK: Simulation tools for design of high
HYPERSONIC FLOW	HYSTERESIS Numerical simulation of separated flows around a wing	performance integrated navigation systems
International Conference on Hypersonic Aerodynamics,	section at steady and unsteady motion by a discrete vortex	p 329 N91-15739
Victoria University of Manchester, England, Sept. 4-6, 1989, Proceedings p 253 A91-21176	method p 278 N91-16268	Optimal Kalman filter integration of a global positioning system receiver and an LN-94 inertial navigation system
The aerodynamic characteristics of power-law bodies	_	[AD-A227222] p 283 N91-16003
in continuum and transitional hypersonic flow	ļ .	INFORMATION SYSTEMS
p 253 A91-21180		International aircraft operator information system, phase
Hypersonic flow calculations using locally body-fitting and overlapping grids p 253 A91-21183	ICE FORMATION Effect of a simulated ice accretion on the aerodynamics	2 [NIAR-90-31] p 333 N91-15928
Three-dimensional simulations of hypersonic flows	of a swept wing	INFRARED IMAGERY
p 253 A91-21184	[AIAA PAPER 91-0442] p 262 A91-21491	Analysis of infrared thermography data for icing
On hypersonic shock layer and its extension beyond	Comparison of rime and glaze deformation and failure	applications
the Navier-Stokes level p 254 A91-21189	properties [AIAA PAPER 91-0446] p 279 A91-21494	[AIAA PAPER 91-0666] p 279 A91-21584 Infrared imaging - A validation technique for
Hypersonic viscous interaction revisited p 254 A91-21191	Numerical modeling of an advanced pneumatic impulse	computational fluid dynamics codes used in STOVL
Dynamic effects of hypersonic separated flow	ice protection system (PIIP) for aircraft	applications
p 254 A91-21192	[AIAA PAPER 91-0555] p 288 A91-21529 A program to improve aircraft icing forecasts - Status	[AIAA PAPER 91-0675] p 318 A91-21587
Prediction of transitional (laminar-turbulent) hypersonic	report	INFRARED SPECTROSCOPY A controlled-environment chamber for atmospheric
flows using the parabolized Navier-Stokes equations p 255 A91-21195	[AIAA PAPER 91-0557] p 325 A91-21530	chemistry studies using FT-IR spectroscopy
Experimental investigation of a 2-D scramjet inlet at	Certification of Fokker 50 and Fokker 100 for operation	[AD-A227532] p 309 N91-15185
Mach numbers of 8 to 18 and stagnation temperatures	in icing conditions [AIAA PAPER 91-0561] p 279 A91-21532	INGESTION (ENGINES)
of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333	Numerical study of the effects of icing on fixed and rotary	Engine water ingestion test p 286 A91-21003 STOVL Hot Gas Ingestion control technology
A systematic comparative study of several high	wing performance	[ASME PAPER 89-GT-323] p 301 A91-23642
resolution schemes for complex problems in high speed	[AIAA PAPER 91-0662] p 265 A91-21580 Statistical structural analysis of rotor impact ice	INLET FLOW
flows	shedding	Experimental measurements of the flow in a scramjet
[AIAA PAPER 91-0636] p 264 A91-21573 Correlation of separation shock motion in a	[AIAA PAPER 91-0663] p 279 A91-21581	inlet at Mach 4 p 251 A91-20750 Calculation of the flow in a circular S-duct inlet
cylinder-induced, Mach 5, turbulent interaction with	Influence of aerodynamic forces in ice shedding	[AIAA PAPER 91-0174] p 259 A91-21394
pressure fluctuations in the separated flow	[AlAA PAPER 91-0664] p 279 A91-21582 Numerical simulation of icing, deicing, and shedding	Computation of three-dimensional subsonic flows in
[AIAA PAPER 91-0650] p 265 A91-21578 A shock-layer theory based on thirteen-moment	[AIAA PAPER 91-0665] p 279 A91-21583	ducts using the PNS approach p 271 A91-23186 INSPECTION
equations and DSMC calculations of rarefied hypersonic	Analysis of infrared thermography data for icing	Aircraft accident report: United Airlines flight 232,
flows	applications [AIAA PAPER 91-0666] p 279 A91-21584	McDonnell Douglas DC-10-10, Sioux Gateway Airport,
[AIAA PAPER 91-0783] p 267 A91-21616 The investigation of the hypersonic vehicle	Coupled LEWICE/Navier-Stokes code development	Sioux City, Iowa, 19 July 1989
The investigation of the hypersonic vehicle aerothermodynamics	[AIAA PAPER 91-0804] p 326 A91-21624	[PB90-910406] p 281 N91-15143 INSTRUMENT ERRORS
[AIAA PAPER 90-5271] p 270 A91-22893	A review of ice accretion data from a model rotor icing test and comparison with theory	A maximum likelihood method for flight test data
Calculations on total temperature and pressure in	[AIAA PAPER 91-0661] p 280 A91-22500	compatibility check p 327 A91-22373
hypersonic air flow p 271 A91-23095 Hypersonic shock/boundary-layer interaction database	ICE PREVENTION	INTEGRAL EQUATIONS Numerical solution of the equation for a thin airfoil in
[NASA-CR-187769] p 277 N91-15986	Experimental water droplet impingement data on modern	ground effect p 269 A91-22491
Numerical analysis of viscous hypersonic flow past a	aircraft surfaces [AIAA PAPER 91-0445] p 262 A91-21493	INTEGRATED CIRCUITS
generic forebody [MBB/FE122/S/PUB/0407] p 278 N91-15997	Certification of Fokker 50 and Fokker 100 for operation	Advances in Components for Active and Passive Airborne Sensors
HYPERSONIC SPEED	in icing conditions	[AGARD-CP-482] p 295 N91-15154
Strip blowing from a wedge at hypersonic speeds	[AIAA PAPER 91-0561] p 279 A91-21532 Effects of runway anti-icing chemicals on traction	Specific aspects of advanced components for airborne
[AIAA PAPER 91-0032] p 257 A91-21346	[DOT/FAA/CT-TN90/53] p 310 N91-15189	applications p 295 N91-15155
Hypersonic propulsion system force accounting [AIAA PAPER 91-0228] p 299 A91-21418	IDEAL GAS	GaAs MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160
Experimental investigation of a 2-D dual mode scramjet	Calculation of averaged axisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938	MMIC impact on airborne avionic systems
with hydrogen fuel at Mach 4-6	IGNITERS	p 296 N91-15166
[AIAA PAPER 90-5269] p 300 A91-22892 Optimal trajectories for an aerospace plane. Part 1:	An application of automatic ignitor DDK-1 to turbojet	INTEGRATED MISSION CONTROL CENTER Results of the Kansas City 1989 Terminal Doppler
Formulation, results, and analysis	engine test under simulated altitude condition	Weather Radar (TDWR) operational evaluation testing
[NASA-CR-187868] p 293 N91-16013	p 300 A91-23100 ILLUMINATING	[AD-A228784] p 323 N91-16206
investigation of the influence of constant adverse	Radioluminescent (RL) airfield lighting system program	INTERACTIONAL AERODYNAMICS
pressure gradients on laminar boundary-layer stability at Mach number 8	[DE91-001007] p 309 N91-15186	Hypersonic viscous interaction revisited p 254 A91-21191
[AD-A228231] p 324 N91-16293	IMPACT DAMAGE Assessment of impact damage in toughened resin	Hypersonic interactions and flow transition
HYPERSONIC VEHICLES	composites p 312 A91-20776	p 254 A91-21193
International Conference on Hypersonic Aerodynamics, Victoria University of Manchester, England, Sept. 4-6,	IMPACT TESTS	Experimental study on mixing phenomena in supersonic flows with slot injection
1989, Proceedings p 253 A91-21176	Development of a crashworthy seat for commuter	[AIAA PAPER 91-0016] p 256 A91-21335
Ground facilities for hypersonic simulation	aircraft [AD-A227486] p 281 N91-15999	Calculation of flow about two-dimensional bodies by
p 308 A91-21179 Dynamic effects of hypersonic separated flow	IMPINGEMENT	means of the velocity-vorticity formulation on a staggered grid
p 254 A91-21192	Experimental water droplet impingement data on modern	[AIAA PAPER 91-0600] p 263 A91-21551
Joint computational experimental aerodynamics	aircraft surfaces [AIAA PAPER 91-0445] p 262 A91-21493	The effects of mass removal on turbulence properties
research on a hypersonic vehicle. If - Computational results	IN-FLIGHT MONITORING	in a normal-shock/turbulent-boundary-layer interaction [AIAA PAPER 91-0647] p 264 A91-21577
[AIAA PAPER 91-0321] p 261 A91-21458	The aircraft avionic interconnection system	[AIAA PAPER 91-0647] p 264 A91-21577 Correlation of separation shock motion in a
Synergistic effects of hydrogen transpiration on	p 317 A91-21204 Testing air data systems on aircraft - Problems and	cylinder-induced, Mach 5, turbulent interaction with
compression surfaces for hypersonic vehicles	solutions p 297 A91-21205	pressure fluctuations in the separated flow
[AIAA PAPER 91-0699] p 265 A91-21591 Optimum hypersonic airfoil with power law shock	Development of onboard maintenance systems on	[AIAA PAPER 91-0650] p 265 A91-21578 Navier-Stokes computation of wing/rotor interaction for
waves p 269 A91-22492	Boeing airplanes p 250 A91-21206	a tilt rotor in hover
Simplified modeling of blunt nose effects on vehicle flow	In-flight source noise of an advanced full-scale single-rotation propeller	[AIAA PAPER 91-0707] p 265 A91-21593
fields [AIAA PAPER 90-5259] p 270 A91-22883	[AIAA PAPER 91-0594] p 331 A91-21547	Turbulent three-dimensional separated flows in a supersonic stream near obstacles at the edge of dihedral
The investigation of the hypersonic vehicle	Engine performance monitoring and troubleshooting	corners p 272 A91-23913
aerothermodynamics	techniques for the CF-18 aircraft	Hypersonic shock/boundary-layer interaction database
[AIAA PAPER 90-5271] p 270 A91-22893 Finite element thermo-viscoplastic analysis of	[ASME PAPER 90-GT-357] p 301 A91-23635 In-flight and simulated aircraft fuel temperature	[NASA-CR-187769] p 277 N91-15986 Rotorcraft application of advanced computational
aerospace structures	measurements	aerodynamics
[NASA-TM-102761] p 324 N91-16407	[NASA-TM-103611] p 314 N91-15418	[NASA-CR-187767] p 277 N91-15987

SUBJECT INDEX INTERACTIVE CONTROL

IMPP - The Integrated Mass Properties Program	propulsion technology	Progress in laser-spectroscopic techniques for
[SAWE PAPER 1894] p 326 A91-22325	[NASA-SP-4306] p 333 N91-15975	aerodynamic measurements - An overview
INTERFERENCE DRAG	JOINTS (JUNCTIONS)	[AIAA PAPER 91-0059] p 317 A91-21351
Interference drag of a turbulent junction vortex [ASME PAPER 90-WA/FE-2] p 252 A91-21063	Theory of the resonance method for the quality control of adhesive joints p 321 A91-23814	LASER INTERFEROMETRY Comment on 'Optical boundary-layer transition detection
INTERFERENCE IMMUNITY	of authorite posts posts A91-23014	in a transonic wind tunnel' p 319 A91-22496
Special optical fibres and sensors for aeronautics	V	LASER SPECTROSCOPY
p 332 N91-15167	K	Progress in laser-spectroscopic techniques for
INTERFEROMETRY A study of dynamic stall using real time interferometry	K-EPSILON TURBULENCE MODEL	aerodynamic measurements - An overview [AIAA PAPER 91-0059] p 317 A91-21351
[AIAA PAPER 91-0007] p 256 A91-21329	Coupled LEWICE/Navier-Stokes code development	LASERS
INTERNATIONAL COOPERATION	[AIAA PAPER 91-0804] p 326 A91-21624	Numerical solutions for a cylindrical laser diffuser
Aerospace system development directions and some	KALMAN FILTERS	flow-field ρ 274 N91-15127
aspects of their construction and application [AIAA PAPER 90-5266] p 311 A91-22889	Optimal Kalman filter integration of a global positioning	LATERAL CONTROL Optimum spacing control of the marching grid
INTERPROCESSOR COMMUNICATION	system receiver and an LN-94 inertial navigation system [AD-A227222] p 283 N91-16003	generation
Computer communication using Logic Cell Arrays (LCA)	KEROSENE	[AIAA PAPER 91-0103] p 258 A91-21368
in ATTAS p 294 A91-20617	Gasdynamic features of supersonic kerosene	Aeroservoelastic tailoring for lateral control enhancement p 307 N91-16025
INVISCID FLOW Development of a solution adaptive unstructured	combustion in a model combustion chamber	LATTICES (MATHEMATICS)
scheme for quasi-3D inviscid flows through advanced	[AIAA PAPER 90-5268] p 313 A91-22891	. Unsteady vortex lattice calculation of the flow around
turbomachinery cascades	KINEMATICS . Fine scale analysis of the kinematic, dynamic and	a slender delta wing p 278 N91-16272
[AIAA PAPER 91-0132] p 258 A91-21374 A rapidly converging viscous/inviscid coupling code for	thermodynamic features of a multiple microburst-producing	LAUNCH VEHICLES Ground facilities for hypersonic simulation
multi-element airfoil configurations	storm	p 308 A91-21179
[AIAA PAPER 91-0177] p 259 A91-21397	[AD-A227733] p 325 N91-15657	LEADING EDGES
Aerodynamic shape design using	Applications of fuzzy theories to multi-objective system	Slender wing rock revisited
stream-function-coordinate (SFC) formulation [AIAA PAPER 91-0189] p 260 A91-21404	optimization [NASA-CR-177573] p 293 N91-16012	[AIAA PAPER 91-0417] p 262 A91-21484 Calculation of unsteady aerodynamic loads on wings
[AIAA PAPER 91-0189] p 260 A91-21404 Inviscid steady/unsteady flow calculations.	KINETIC EQUATIONS	with an oscillatory leading edge flap p 270 A91-22764
p 267 A91-21748	Analysis of rarefied gas flow near a critical point	Effect of surface temperature on the stability of the
The inviscid stability of supersonic flow past a sharp	p 268 A91-21879	attachment line boundary layer of a swept wing
cone p 269 A91-22511 Unsteady transonic flow calculations for multiple	KNOWLEDGE REPRESENTATION	p 272 A91-23845 Finite element thermo-viscoplastic analysis of
oscillating airfoil p 273 A91-24154	Knowledge-based engineering technology case study - Jet engine turbine blade design	aerospace structures
Viscous-inviscid interactive semi-inverse code for three	[SME PAPER MS89-727] p 316 A91-21115	[NASA-TM-102761] p 324 N91-16407
dimensional transonic flow p 274 A91-24168	Aircraft accident flight profile simulation and animation	LIFT
ISENTROPIC PROCESSES Nonideal isentropic gas flow through	[AIAA PAPER 91-0422] p 278 A91-21486	A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow
Nonideal isentropic gas flow through converging-diverging nozztes p 252 A91-21064		[ESDU-81020-AMEND-A] p 275 N91-15133
ISOTROPY	L	LIFT DRAG RATIO
Estimation of the engineering elastic constants of a	_	Aircraft fuel weight penalty due to air conditioning
directionally solidified superalloy for finite element	LAMINAR BOUNDARY LAYER	[SAE AIR 1168/8] p 287 A91-21258
structural analysis [NASA-CR-187036] p 322 N91-15598	Modellization and calculation of laminar hypersonic	LIFTING BODIES Simulation of stall departure using a nonlinear lifting line
ITERATIVE SOLUTION	boundary layer flows p 254 A91-21190 Nonlinear disturbances in a hypersonic laminar boundary	model
AF-2 iteration and its parallel algorithm for transonic flow	layer	[AIAA PAPER 91-0340] p 261 A91-21465
with large disturbances in freestream-direction around	[AIAA PAPER 91-0320] p 261 A91-21457	A new method for subsonic lifting-surface theory
with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763	[ÁIAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach	p 268 A91-22351
axisymmetric bodies at zero angle of attack	[AÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30	p 268 A91-22351 Integrated aeroelastic control optimization
axisymmetric bodies at zero angle of attack	[ÁÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AÍAA PAPER 91-0323] p 261 A91-21460	p 268 A91-22351 Integrated aeroelastic control optimization p 305 A91-23743
axisymmetric bodies at zero angle of attack	[AÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30	p 268 A91-22351 Integrated aeroelastic control optimization p 305 A91-23743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary
axisymmetric bodies at zero angle of attack p 270 A91-22763	[AÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AÍAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp	p 268 A91-22351 Integrated aeroelastic control optimization p 305 A91-23743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method
axisymmetric bodies at zero angle of attack p 270 A91-22763 J JET BOUNDARIES The laminar free jet problem, using Newtonian media	[ÁÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AÍAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at	p 268 A91-22351 Integrated aeroelastic control optimization p 305 A91-23743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985
axisymmetric bodies at zero angle of attack p 270 A91-22763 J JET BOUNDARIES The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136	[AÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AÍAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8	p 268 A91-22351 integrated aeroelastic control optimization p 305 A91-23743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS
JET BOUNDARIES The laminar free jet problem, using Newtonian media [ETN-91-98491] p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods	[AÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AÍAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293	p 268 A91-22351 Integrated aeroelastic control optimization p 305 A91-23743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation
JET BOUNDARIES The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods for benzene analysis in jet fuel environments	[AÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AÍAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8	p 268 A91-22351 Integrated aeroelastic control optimization p 305 A91-23743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128
J JET BOUNDARIES The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170	[AİAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 LAMINAR FLOW Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer	p 268 A91-22351 integrated aeroelastic control optimization p 305 A91-23743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 LIGHT SOURCES
J JET BOUNDARIES The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 JET ENGINES	[AÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 LAMINAR FLOW Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354	p 268 A91-22351 Integrated aeroelastic control optimization p 305 A91-22743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 LIGHT SOURCES Radioluminescent (RL) airfield lighting system program
JET BOUNDARIES The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 JET ENGINES Knowledge-based engineering technology case study - Jet engine turbine blade design	[AÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AÍAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 LAMINAR FLOW Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Design limits of compressible NLF airfoils	p 268 A91-22351 Integrated aeroelastic control optimization p 305 A91-23743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 LIGHT SOURCES Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186
J JET BOUNDARIES The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 JET ENGINES Knowledge-based engineering technology case study Jet engine turbine blade design [SME PAPER MS99-727] p 316 A91-21115	[AÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AÍAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 LAMINAR FLOW Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AÍAA PAPER 91-0066] p 257 A91-21354 Design limits of compressible NLF airfoils [AIAA PAPER 91-0067] p 257 A91-21355	p 268 A91-22351 integrated aeroelastic control optimization p 305 A91-23743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NAS-TM-102862] p 274 N91-15128 LIGHT SOURCES Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 LINEAR QUADRATIC GAUSSIAN CONTROL Integrated flight/propulsion control system design based
J JET BOUNDARIES The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 JET ENGINES Knowledge-based engineering technology case study Jet engine turbine blade design [SME PAPER MS89-727] p 316 A91-21115 IFDIS: An expert system for diagnosis of failures in jet	[AÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AÍAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 LAMINAR FLOW Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Design limits of compressible NLF airfoils	p 268 A91-22351 Integrated aeroelastic control optimization p 305 A91-23743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 LIGHT SOURCES Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 LINEAR QUADRATIC GAUSSIAN CONTROL Integrated flight/propulsion control system design based on a centralized approach p 305 A91-22950
axisymmetric bodies at zero angle of attack p 270 A91-22763 J JET BOUNDARIES The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 JET ENGINES Knowledge-based engineering technology case study - Jet engine turbine blade design [SME PAPER MS89-727] p 316 A91-21115 IFDIS: An expert system for diagnosis of failures in jet aircraft engines [AD-A227757] p 302 N91-16020	[AÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 LAMINAR FLOW Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Design limits of compressible NLF airfoils [AIAA PAPER 91-0067] p 257 A91-21355	p 268 A91-22351 Integrated aeroelastic control optimization p 305 A91-23743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 LIGHT SOURCES Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 LINEAR QUADRATIC GAUSSIAN CONTROL Integrated flight/propulsion control system design based on a centralized approach p 305 A91-22950 High performance linear-quadratic and H-infinity designs
J JET BOUNDARIES The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 JET ENGINES Knowledge-based engineering technology case study-Jet engine turbine blade design [SME PAPER MS89-727] p 316 A91-21115 IFDIS: An expert system for diagnosis of failures in jet aircraft engines	[AÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AÍAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 LAMINAR FLOW Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AÍAA PAPER 91-0066] p 257 A91-21354 Design limits of compressible NLF airfoils [AÍAA PAPER 91-0067] p 257 A91-21355 Boundary-layer transition - Analysis and prediction revisited [AÍAA PAPER 91-0737] p 318 A91-21601 Effect of surface temperature on the stability of the	p 268 A91-22351 integrated aeroelastic control optimization p 305 A91-23743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 LIGHT SOURCES Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 LINEAR QUADRATIC GAUSSIAN CONTROL Integrated flight/propulsion control system design based on a centralized approach p 305 A91-22950 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956
J JET BOUNDARIES The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 JET ENGINES Knowledge-based engineering technology case study-Jet engine turbine blade design [SME PAPER MS89-727] p 316 A91-21115 IFDIS: An expert system for diagnosis of failures in jet aircraft engines [AD-A227757] p 302 N91-16020 Jet engine performance estimation from minimal input data	[AÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 LAMINAR FLOW Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Design limits of compressible NLF airfoils [AIAA PAPER 91-0067] p 257 A91-21355 Boundary-layer transition - Analysis and prediction revisited [AIAA PAPER 91-0737] p 318 A91-21601 Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing	p 268 A91-22351 integrated aeroelastic control optimization p 305 A91-23743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 LIGHT SOURCES Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 LINEAR QUADRATIC GAUSSIAN CONTROL Integrated flight/propulsion control system design based on a centralized approach p 305 A91-22950 High performance linear-quadratic and H-infinity design for a 'supermaneuverable' aircraft p 290 A91-22956 Wind tunnel tests on flutter control of a high-aspect-ratio
J JET BOUNDARIES The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 JET ENGINES Knowledge-based engineering technology case study-Jet engine turbine blade design [SME PAPER MS89-727] p 316 A91-21115 IFDIS: An expert system for diagnosis of failures in jet aircraft engines [AD-A227757] p 302 N91-16020 Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023	[AÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 LAMINAR FLOW Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Design limits of compressible NLF airfoils [AIAA PAPER 91-0067] p 257 A91-21355	p 268 A91-22351 integrated aeroelastic control optimization p 305 A91-23743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 LIGHT SOURCES Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 LINEAR QUADRATIC GAUSSIAN CONTROL Integrated flight/propulsion control system design based on a centralized approach p 305 A91-22950 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Wind tunnel tests on flutter control of a high-aspect-ratio cantilevered wing: Control with leading-edge and trailing-edge control surfaces
J JET BOUNDARIES The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 JET ENGINES Knowledge-based engineering technology case study-Jet engine turbine blade design [SME PAPER MS89-727] p 316 A91-21115 IFDIS: An expert system for diagnosis of failures in jet aircraft engines [AD-A227757] p 302 N91-16020 Jet engine performance estimation from minimal input data	[AÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 LAMINAR FLOW Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Design limits of compressible NLF airfoils [AIAA PAPER 91-0067] p 257 A91-21355 Boundary-layer transition - Analysis and prediction revisited [AIAA PAPER 91-0737] p 318 A91-21601 Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing p 272 A91-23845 LAMINATES Fracture instability of a layered conical composite	p 268 A91-22351 integrated aeroelastic control optimization p 305 A91-23743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 LIGHT SOURCES Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 LINEAR QUADRATIC GAUSSIAN CONTROL Integrated flight/propulsion control system design based on a centralized approach p 305 A91-22950 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Wind tunnel tests on flutter control of a high-aspect-ratio cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982
J JET BOUNDARIES The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 JET ENGINES Knowledge-based engineering technology case study-Jet engine turbine blade design [SME PAPER MS89-727] p 316 A91-21115 IFDIS: An expert system for diagnosis of failures in jet aircraft engines [AD-A227757] p 302 N91-16020 Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023 An introduction to modern aero-engine control design [ETN-91-98583] p 303 N91-16024 JET FLOW	[AÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 LAMINAR FLOW Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Design limits of compressible NLF airfoils [AIAA PAPER 91-0067] p 257 A91-21355 Boundary-layer transition - Analysis and prediction revisited [AIAA PAPER 91-0737] p 318 A91-21601 Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing p 272 A91-23845 LAMINATES Fracture instability of a layered conical composite resisting the aerodynamic load p 315 A91-20791	p 268 A91-22351 Integrated aeroelastic control optimization p 305 A91-23743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 LIGHT SOURCES Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 LINEAR QUADRATIC GAUSSIAN CONTROL Integrated flight/propulsion control system design based on a centralized approach p 305 A91-22950 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Wind tunnel tests on flutter control of a high-aspect-ratio cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] LINEARIZATION
J JET BOUNDARIES The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 JET ENGINES Knowledge-based engineering technology case study Jet engine turbine blade design [SME PAPER MS89-727] p 316 A91-21115 IFDIS: An expert system for diagnosis of failures in jet aircraft engines [AD-A227757] p 302 N91-16020 Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023 An introduction to modern aero-engine control design [ETN-91-98583] p 303 N91-16024 JET FLOW The laminar free jet problem, using Newtonian media	[AÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 LAMINAR FLOW Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Design limits of compressible NLF airfoils [AIAA PAPER 91-0067] p 257 A91-21355	p 268 A91-22351 Integrated aeroelastic control optimization p 305 A91-23743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 LIGHT SOURCES Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 LINEAR QUADRATIC GAUSSIAN CONTROL Integrated flight/propulsion control system design based on a centralized approach p 305 A91-22950 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Wind tunnel tests on flutter control of a high-aspect-ratio cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 LINEARIZATION Double linearization theory for a rotating subsonic
JET BOUNDARIES The laminar free jet problem, using Newtonian media (ETN-91-98494) p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 JET ENGINES Knowledge-based engineering technology case study-Jet engine turbine blade design [SME PAPER MS89-727] p 316 A91-21115 IEDIS: An expert system for diagnosis of failures in jet aircraft engines [AD-A227757] p 302 N91-16020 Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023 An introduction to modern aero-engine control design [ETN-91-98583] p 303 N91-16024 JET FLOW The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136	[AÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 LAMINAR FLOW Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Design limits of compressible NLF airfoils [AIAA PAPER 91-0067] p 257 A91-21355 Boundary-layer transition - Analysis and prediction revisited [AIAA PAPER 91-0737] p 318 A91-21601 Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing p 272 A91-23845 LAMINATES Fracture instability of a layered conical composite resisting the aerodynamic load p 315 A91-20791 LANDING GEAR Flight testing antiskid/brake systems	p 268 A91-22351 Integrated aeroelastic control optimization p 305 A91-23743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 LIGHT SOURCES Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 LINEAR QUADRATIC GAUSSIAN CONTROL Integrated flight/propulsion control system design based on a centralized approach p 305 A91-22950 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Wind tunnel tests on flutter control of a high-aspect-ratio cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] LINEARIZATION
J JET BOUNDARIES The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 JET ENGINES Knowledge-based engineering technology case study Jet engine turbine blade design [SME PAPER MS89-727] p 316 A91-21115 IFDIS: An expert system for diagnosis of failures in jet aircraft engines [AD-A227757] p 302 N91-16020 Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023 An introduction to modern aero-engine control design [ETN-91-98583] p 303 N91-16024 JET FLOW The laminar free jet problem, using Newtonian media	[AÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 LAMINAR FLOW Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Design limits of compressible NLF airfoils [AIAA PAPER 91-0067] p 257 A91-21355 Boundary-layer transition - Analysis and prediction revisited [AIAA PAPER 91-0737] p 318 A91-21601 Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing p 272 A91-23845 LAMINATES Fracture instability of a layered conical composite resisting the aerodynamic load p 315 A91-20791 LANDING GEAR Flight testing antiskid/brake systems	p 268 A91-22351 Integrated aeroelastic control optimization p 305 A91-23743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 LIGHT SOURCES Radioluminescent (RL) airfield lighting system program (DE91-001007) p 309 N91-15186 LINEAR QUADRATIC GAUSSIAN CONTROL Integrated flight/propulsion control system design based on a centralized approach p 305 A91-22950 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Wind tunnel tests on flutter control of a high-aspect-ratio cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 LINEARIZATION Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115
JET BOUNDARIES The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 JET ENGINES Knowledge-based engineering technology case study-Jet engine turbine blade design [SME PAPER MS89-727] p 316 A91-21115 IFDIS: An expert system for diagnosis of failures in jet aircraft engines [AD-A227757] p 302 N91-16020 Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023 An introduction to modern aero-engine control design (ETN-91-98583) p 303 N91-16024 JET FLOW The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET IMPINGEMENT Turbulence modeling for complex ground effects flows [SAE PAPER 901062] p 255 A91-21257	[AÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AÍAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 LAMINAR FLOW Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Design limits of compressible NLF airfoils [AIAA PAPER 91-0067] p 257 A91-21355 Boundary-layer transition - Analysis and prediction revisited [AIAA PAPER 91-0737] p 318 A91-21601 Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing p 272 A91-23845 LAMINATES Fracture instability of a layered conical composite resisting the aerodynamic load p 315 A91-20791 LANDING GEAR Flight testing antiskid/brake systems p 285 A91-20989 Analytical weight estimation of unconventional landing gear designs	p 268 A91-22351 integrated aeroelastic control optimization p 305 A91-23743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 LIGHT SOURCES Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 LINEAR QUADRATIC GAUSSIAN CONTROL Integrated flight/propulsion control system design based on a centralized approach p 305 A91-22950 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Wind tunnel tests on flutter control of a high-aspect-ratio cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 LINEARIZATION Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LIQUID CHROMATOGRAPHY
J JET BOUNDARIES The laminar free jet problem, using Newtonian media (ETN-91-98494) p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 JET ENGINES Knowledge-based engineering technology case study Jet engine turbine blade design [SME PAPER MS99-727] p 316 A91-21115 IFDIS: An expert system for diagnosis of failures in jet aircraft engines [AD-A227757] p 302 N91-16020 Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023 An introduction to modern aero-engine control design (ETN-91-98583) p 303 N91-16024 JET FLOW The laminar free jet problem, using Newtonian media (ETN-91-98494) p 276 N91-15136 JET IMPINGEMENT Turbulence modeling for complex ground effects flows [SAE PAPER 901062] p 255 A91-21257 Calculation of impinging jet flows with Reynolds stress	[AÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 LAMINAR FLOW Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Design limits of compressible NLF airfoils [AIAA PAPER 91-0067] p 257 A91-21355 Boundary-layer transition - Analysis and prediction revisited [AIAA PAPER 91-0737] p 318 A91-21601 Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing p 272 A91-23845 LAMINATES Fracture instability of a layered conical composite resisting the aerodynamic load p 315 A91-20791 LANDING GEAR Flight testing antiskid/brake systems p 285 A91-20989 Analytical weight estimation of unconventional landing gear designs [SAWE PAPER 1905] p 289 A91-22320	p 268 A91-22351 Integrated aeroelastic control optimization p 305 A91-23743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 LIGHT SOURCES Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 LINEAR QUADRATIC GAUSSIAN CONTROL Integrated flight/ propulsion control system design based on a centralized approach p 305 A91-22950 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Wind tunnel tests on flutter control of a high-aspect-ratio cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 LINEARIZATION Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces LIQUID CHROMATOGRAPHY A comparison of three prospective analytical methods
JET BOUNDARIES The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 JET ENGINES Knowledge-based engineering technology case study-Jet engine turbine blade design [SME PAPER MS89-727] p 316 A91-21115 IFDIS: An expert system for diagnosis of failures in jet aircraft engines [AD-A227757] p 302 N91-16020 Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023 An introduction to modern aero-engine control design (ETN-91-98583) p 303 N91-16024 JET FLOW The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET IMPINGEMENT Turbulence modeling for complex ground effects flows [SAE PAPER 901062] p 255 A91-21257	[AIAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 LAMINAR FLOW Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Design limits of compressible NLF airfoils [AIAA PAPER 91-0067] p 257 A91-21355 - Boundary-layer transition - Analysis and prediction revisited [AIAA PAPER 91-0737] p 318 A91-21601 - Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing p 272 A91-23845 LAMINATES Fracture instability of a layered conical composite resisting the aerodynamic load p 315 A91-20791 LANDING GEAR Flight testing antiskid/brake systems - p 285 A91-20989 - Analytical weight estimation of unconventional landing gear designs [SAWE PAPER 1905] p 289 A91-22320 LARGE SPACE STRUCTURES	p 268 A91-22351 Integrated aeroelastic control optimization p 305 A91-23743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 LIGHT SOURCES Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 LINEAR QUADRATIC GAUSSIAN CONTROL Integrated flight/propulsion control system design based on a centralized approach p 305 A91-22950 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Wind tunnel tests on flutter control of a high-aspect-ratio cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 LINEARIZATION Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LIQUID CHROMATOGRAPHY
J JET BOUNDARIES The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 JET ENGINES Knowledge-based engineering technology case study Jet engine turbine blade design [SME PAPER MS89-727] p 316 A91-21115 IFDIS: An expert system for diagnosis of failures in jet aircraft engines [AD-A227757] p 302 N91-16020 Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16024 An introduction to modern aero-engine control design [ETN-91-98583] p 303 N91-16024 JET FLOW The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET IMPINGEMENT Turbulence modelling for complex ground effects flows [SAE PAPER 901062] p 255 A91-21257 Calculation of impinging jet flows with Reynolds stress models	[AIAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 LAMINAR FLOW Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Design limits of compressible NLF airfoils [AIAA PAPER 91-0067] p 257 A91-21355 Boundary-layer transition - Analysis and prediction revisited [AIAA PAPER 91-0737] p 318 A91-21601 Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing p 272 A91-23845 LAMINATES Fracture instability of a layered conical composite resisting the aerodynamic load p 315 A91-20791 LANDING GEAR Flight testing antiskid/brake systems p 285 A91-20989 Analytical weight estimation of unconventional landing gear designs [SANE PAPER 1905] p 289 A91-22320 LARGE SPACE STRUCTURES Integrated control-structure design	integrated aeroelastic control optimization p 305 A91-23743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 LIGHT SOURCES Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 LINEAR QUADRATIC GAUSSIAN CONTROL Integrated flight/propulsion control system design based on a centralized approach p 305 A91-22950 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Wind tunnel tests on flutter control of a high-aspect-ratio cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 LINEARIZATION Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LIQUID CHROMATOGRAPHY A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] LIQUID NITROGEN
J JET BOUNDARIES The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 JET ENGINES Knowledge-based engineering technology case study Jet engine turbine blade design [SME PAPER MS99-727] p 316 A91-21115 IFDIS: An expert system for diagnosis of failures in jet aircraft engines [AD-A227757] p 302 N91-16020 Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16024 An introduction to modern aero-engine control design [ETN-91-98583] p 303 N91-16024 JET FLOW The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET IMPINGEMENT Turbulence modelling for complex ground effects flows [SAE PAPER 901062] p 255 A91-21257 Calcutation of impinging jet flows with Reynolds stress models [AIAA PAPER 91-0754] p 266 A91-21606 The ground vortex formed by impinging jets in cross-flow	[AIAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 LAMINAR FLOW Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Design limits of compressible NLF airfoils [AIAA PAPER 91-0067] p 257 A91-21355 - Boundary-layer transition - Analysis and prediction revisited [AIAA PAPER 91-0737] p 318 A91-21601 - Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing p 272 A91-23845 LAMINATES Fracture instability of a layered conical composite resisting the aerodynamic load p 315 A91-20791 LANDING GEAR Flight testing antiskid/brake systems - p 285 A91-20989 - Analytical weight estimation of unconventional landing gear designs [SAWE PAPER 1905] p 289 A91-22320 LARGE SPACE STRUCTURES	integrated aeroelastic control optimization p 305 A91-23743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 LIGHT SOURCES Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 LINEAR QUADRATIC GAUSSIAN CONTROL Integrated flight/propulsion control system design based on a centralized approach p 305 A91-22950 High performance linear-quadratic and H-infinity designs for a supermaneuverable aircraft p 290 A91-22950 Wind tunnel tests on flutter control of a high-aspect-ratio cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 LINEARIZATION Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LIQUID CHROMATOGRAPHY A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 LIQUID NITROGEN Cost-effective use of liquid nitrogen in cryogenic wind
J JET BOUNDARIES The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 JET ENGINES Knowledge-based engineering technology case study-Jet engine turbine blade design [SME PAPER MS89-727] p 316 A91-21115 IPDIS: An expert system for diagnosis of failures in jet aircraft engines [AD-A227757] p 302 N91-16020 Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023 An introduction to modern aero-engine control design [ETN-91-98583] p 303 N91-16024 JET FLOW The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET IMPINGEMENT Turbulence modeling for complex ground effects flows [SAE PAPER 901062] p 255 A91-21257 Calculation of impinging jet flows with Reynolds stress models [AIAA PAPER 91-0754] p 266 A91-21606 The ground vortex formed by impinging jets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611	[AIAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 LAMINAR FLOW Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Design limits of compressible NLF airfoils [AIAA PAPER 91-0067] p 257 A91-21355 Boundary-layer transition - Analysis and prediction revisited [AIAA PAPER 91-0737] p 318 A91-21601 Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing p 272 A91-23845 LAMINATES Fracture instability of a layered conical composite resisting the aerodynamic load p 315 A91-20791 LANDING GEAR Flight testing antiskid/brake systems p 285 A91-20989 Analytical weight estimation of unconventional landing gear designs [SAWE PAPER 1905] p 289 A91-22320 LARGE SPACE STRUCTURES Integrated control-structure design [NASA-CR-182020] p 307 N91-15180 LASER ALTIMETERS Airborne lidar for profiling of surface topography	p 268 A91-22351 Integrated aeroelastic control optimization p 305 A91-23743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 LIGHT SOURCES Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 LINEAR QUADRATIC GAUSSIAN CONTROL Integrated flight/propulsion control system design based on a centralized approach p 305 A91-22950 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Wind tunnel tests on flutter control of a high-aspect-ratio cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 LINEARIZATION Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LIQUID CHROMATOGRAPHY A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 LIQUID NITROGEN Cost-effective use of liquid nitrogen in cryogenic wind
JET BOUNDARIES The laminar free jet problem, using Newtonian media (ETN-91-98494) p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 JET ENGINES Knowledge-based engineering technology case study-Jet engine turbine blade design [SME PAPER MS89-727] p 316 A91-21115 IFDIS: An expert system for diagnosis of failures in jet aircraft engines [AD-A227757] p 302 N91-16020 Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023 An introduction to modern aero-engine control design (ETN-91-98583) p 303 N91-16024 JET FLOW The laminar free jet problem, using Newtonian media (ETN-91-98494) p 276 N91-15136 JET IMPINGEMENT Turbulence modeling for complex ground effects flows (SAE PAPER 901062) p 255 A91-21257 Calculation of impinging jet flows with Reynolds stress models [AIAA PAPER 91-0754] p 266 A91-21606 The ground vortex formed by impinging jets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611 JET MIXING FLOW	[AÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 LAMINAR FLOW Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Design limits of compressible NLF airfoils [AIAA PAPER 91-0067] p 257 A91-21355 Boundary-layer transition - Analysis and prediction revisited [AIAA PAPER 91-0737] p 318 A91-21601 Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing p 272 A91-23845 LAMINATES Fracture instability of a layered conical composite resisting the aerodynamic load p 315 A91-20791 LANDING GEAR Flight testing antiskid/brake systems p 285 A91-20989 Analytical weight estimation of unconventional landing gear designs [SAWE PAPER 1905] p 289 A91-22320 LARGE SPACE STRUCTURES Integrated control-structure design [NASA-CR-182020] p 307 N91-15180 LASER ALTIMETERS Airborne lidar for profiling of surface topography p 295 A91-23134	p 268 A91-22351 Integrated aeroelastic control optimization p 305 A91-23743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 LIGHT SOURCES Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 LINEAR QUADRATIC GAUSSIAN CONTROL Integrated flight/propulsion control system design based on a centralized approach p 305 A91-22950 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Wind tunnel tests on flutter control of a high-aspect-ratio cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 LINEARIZATION Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LIQUID CHROMATOGRAPHY A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 LIQUID NITROGEN Cost-effective use of liquid nitrogen in cryogenic wind tunnels, phase 2 [NASA-CR-182088] p 309 N91-15188
J JET BOUNDARIES The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 JET ENGINES Knowledge-based engineering technology case study-Jet engine turbine blade design [SME PAPER MS89-727] p 316 A91-21115 IPDIS: An expert system for diagnosis of failures in jet aircraft engines [AD-A227757] p 302 N91-16020 Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023 An introduction to modern aero-engine control design [ETN-91-98583] p 303 N91-16024 JET FLOW The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET IMPINGEMENT Turbulence modeling for complex ground effects flows [SAE PAPER 901062] p 255 A91-21257 Calculation of impinging jet flows with Reynolds stress models [AIAA PAPER 91-0754] p 266 A91-21606 The ground vortex formed by impinging jets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611	[AÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 LAMINAR FLOW Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Design limits of compressible NLF airfoils [AIAA PAPER 91-0067] p 257 A91-21355 Boundary-layer transition - Analysis and prediction revisited [AIAA PAPER 91-0737] p 318 A91-21601 Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing p 272 A91-23845 LAMINATES Fracture instability of a layered conical composite resisting the aerodynamic load p 315 A91-20791 LANDING GEAR Flight testing antiskid/brake systems p 285 A91-20989 Analytical weight estimation of unconventional landing gear designs [SAWE PAPER 1905] p 289 A91-22320 LARGE SPACE STRUCTURES Integrated control-structure design [NASA-CR-182020] p 307 N91-15180 LASER ALTIMETERS Airborne lidar for profiling of surface topography p 295 A91-23134	p 268 A91-22351 Integrated aeroelastic control optimization p 305 A91-23743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 LIGHT SOURCES Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 LINEAR QUADRATIC GAUSSIAN CONTROL Integrated flight/propulsion control system design based on a centralized approach p 305 A91-22950 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Wind tunnel tests on flutter control of a high-aspect-ratio cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 LINEARIZATION Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LIQUID CHROMATOGRAPHY A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 LIQUID NITROGEN Cost-effective use of liquid nitrogen in cryogenic wind
JET BOUNDARIES The laminar free jet problem, using Newtonian media (ETN-91-98494) p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 JET ENGINES Knowledge-based engineering technology case study-Jet engine turbine blade design [SME PAPER MS89-727] p 316 A91-21115 IFDIS: An expert system for diagnosis of failures in jet aircraft engines [AD-A227757] p 302 N91-16020 Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023 An introduction to modern aero-engine control design [ETN-91-98583] p 303 N91-16024 JET FLOW The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET IMPINGEMENT Turbulence modeling for complex ground effects flows [SAE PAPER 91-0754] p 266 A91-21606 The ground vortex formed by impinging jets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611 JET MIXING FLOW Flow measurements in a model ramjet secondary combustion chamber p 310 A91-20743 Effect of the penetration depth of fuel jets on combustion	[AÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 LAMINAR FLOW Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Design limits of compressible NLF airfoils [AIAA PAPER 91-0067] p 257 A91-21355 Boundary-layer transition - Analysis and prediction revisited [AIAA PAPER 91-0737] p 318 A91-21601 Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing p 272 A91-23845 LAMINATES Fracture instability of a layered conical composite resisting the aerodynamic load p 315 A91-20791 LANDING GEAR Flight testing antiskid/brake systems p 285 A91-20989 Analytical weight estimation of unconventional landing gear designs [SAWE PAPER 1905] p 289 A91-22320 LARGE SPACE STRUCTURES Integrated control-structure design [NASA-CR-182020] p 307 N91-15180 LASER ALTIMETERS Airborne lidar for profiling of surface topography p 295 A91-23134 LASER APPLICATIONS Evaluation of hand held laser communicators for airborne applications p 282 A91-22815	p 268 A91-22351 Integrated aeroelastic control optimization p 305 A91-23743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 LIGHT SOURCES Radioluminescent (RL) airfield lighting system program (DE91-001007) p 309 N91-15186 LINEAR QUADRATIC GAUSSIAN CONTROL Integrated flight/propulsion control system design based on a centralized approach p 305 A91-22956 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Wind tunnel tests on flutter control of a high-aspect-ratio cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 LINEARIZATION Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LIQUID CHROMATOGRAPHY A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 LIQUID NITROGEN Cost-effective use of liquid nitrogen in cryogenic wind tunnels, phase 2 [NASA-CR-182088] p 309 N91-15188 LIQUID SURFACES Internally mounted thin-liquid-film skin-friction meter - Comparison with floating element method with and without
JET BOUNDARIES The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 JET ENGINES Knowledge-based engineering technology case study-Jet engine turbine blade design [SME PAPER MS98-727] p 316 A91-21115 IFDIS: An expert system for diagnosis of failures in jet aircraft engines [AD-A227757] p 302 N91-16020 Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023 An introduction to modern aero-engine control design [ETN-91-98583] p 303 N91-16024 JET FLOW The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET IMPINGEMENT Turbulence modeling for complex ground effects flows [SAE PAPER 901062] p 255 A91-21257 Calcutation of impinging jet flows with Reynolds stress models [AIAA PAPER 91-0754] p 266 A91-21606 The ground vortex formed by impinging jets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611 JET MIXING FLOW Flow measurements in a model ramjet secondary combustion chamber Effect of the penetration depth of fuel jets on combustion in a supersonic combustion chamber	[AÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 LAMINAR FLOW Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0060] p 257 A91-21354 Design limits of compressible NLF airfoils [AIAA PAPER 91-0067] p 257 A91-21355 Boundary-layer transition - Analysis and prediction revisited [AIAA PAPER 91-0737] p 318 A91-21601 Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing p 272 A91-23845 LAMINATES Fracture instability of a layered conical composite resisting the aerodynamic load p 315 A91-20791 LANDING GEAR Flight testing antiskid/brake systems p 285 A91-20989 Analytical weight estimation of unconventional landing gear designs [SAWE PAPER 1905] p 289 A91-22320 LARGE SPACE STRUCTURES Integrated control-structure design [NASA-CR-182020] p 307 N91-15180 LASER ALTIMETERS Airborne lidar for profiling of surface topography p 295 A91-23134 LASER APPLICATIONS Evaluation of hand held laser communicators for airborne applications p 282 A91-22815 LASER DOPPLER VELOCIMETERS	integrated aeroelastic control optimization p 305 A91-22743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 LIGHT SOURCES Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 LINEAR QUADRATIC GAUSSIAN CONTROL Integrated flight/ propulsion control system design based on a centralized approach p 305 A91-22956 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Wind tunnel tests on flutter control of a high-aspect-ratio cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 LINEARIZATION Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LIQUID CHROMATOGRAPHY A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 LIQUID NITROGEN Cost-effective use of liquid nitrogen in cryogenic wind tunnels, phase 2 [NAS-CR-182088] p 309 N91-15188 LIQUID SURFACES Internally mounted thin-liquid-film skin-friction meter - Comparison with floating element method with and without pressure gradient
JET BOUNDARIES The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 JET ENGINES Knowledge-based engineering technology case study Jet engine turbine blade design [SME PAPER MS99-727] p 316 A91-21115 IFDIS: An expert system for diagnosis of failures in jet aircraft engines [AD-A227757] p 302 N91-16020 Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023 An introduction to modern aero-engine control design [ETN-91-98583] p 303 N91-16024 JET FLOW The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET IMPINGEMENT Turbulence modelling for complex ground effects flows [SAE PAPER 901062] p 255 A91-21257 Calcutation of impinging jet flows with Reynolds stress models [AIAA PAPER 91-0754] p 266 A91-21606 The ground vortex formed by impinging jets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611 JET MIXING FLOW Flow measurements in a model ramjet secondary combustion chamber p 310 A91-20743 Effect of the penetration depth of fuel jets on combustion in a supersonic combustion chamber	[AIAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 LAMINAR FLOW Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Design limits of compressible NLF airfoils [AIAA PAPER 91-0067] p 257 A91-21355 Boundary-layer transition - Analysis and prediction revisited [AIAA PAPER 91-0737] p 318 A91-21601 Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing p 272 A91-23845 LAMINATES Fracture instability of a layered conical composite resisting the aerodynamic load p 315 A91-20791 LANDING GEAR Flight testing antiskid/brake systems p 285 A91-20989 Analytical weight estimation of unconventional landing gear designs [SAWE PAPER 1905] p 289 A91-22320 LASER APPLICATIONS Evaluation of hand held laser communicators for airborne applications p 282 A91-22815 LASER APPLICATIONS Every and the surface temperature of a vortex experimental and theoretical investigation of a vortex	integrated aeroelastic control optimization p 305 A91-22743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 LIGHT SOURCES Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 LINEAR QUADRATIC GAUSSIAN CONTROL Integrated flight/propulsion control system design based on a centralized approach p 305 A91-22950 High performance linear-quadratic and H-infinity designs for a supermaneuverable aircraft p 290 A91-22950 Wind tunnel tests on flutter control of a high-aspect-ratio cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 LINEARIZATION Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LIQUID CHROMATOGRAPHY A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 LIQUID NITROGEN Cost-effective use of liquid nitrogen in cryogenic wind tunnels, phase 2 [NASA-CR-182088] p 309 N91-15188 LIQUID SURFACES Internally mounted thin-liquid-film skin-friction meter - Comparison with floating element method with and without pressure gradient [AIAA PAPER 91-0060] p 317 A91-21352
JET BOUNDARIES The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 JET ENGINES Knowledge-based engineering technology case study-Jet engine turbine blade design [SME PAPER MS89-727] p 316 A91-21115 IPDIS: An expert system for diagnosis of failures in jet aircraft engines [AD-A227757] p 302 N91-16020 Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16020 An introduction to modern aero-engine control design [ETN-91-98583] p 303 N91-16024 JET FLOW The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET IMPINGEMENT Turbulence modeling for complex ground effects flows [SAE PAPER 91-0754] p 266 A91-21257 Calculation of impinging jet flows with Reynolds stress models [AIAA PAPER 91-0754] p 266 A91-21606 The ground vortex formed by impinging jets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611 JET MIXING FLOW Flow measurements in a model ramjet secondary combustion chamber p 310 A91-20743 Effect of the penetration depth of fuel jets on combustion in a supersonic combustion chamber	[AÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 LAMINAR FLOW Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0060] p 257 A91-21354 Design limits of compressible NLF airfoils [AIAA PAPER 91-0067] p 257 A91-21355 Boundary-layer transition - Analysis and prediction revisited [AIAA PAPER 91-0737] p 318 A91-21601 Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing p 272 A91-23845 LAMINATES Fracture instability of a layered conical composite resisting the aerodynamic load p 315 A91-20791 LANDING GEAR Flight testing antiskid/brake systems p 285 A91-20989 Analytical weight estimation of unconventional landing gear designs [SAWE PAPER 1905] p 289 A91-22320 LARGE SPACE STRUCTURES Integrated control-structure design [NASA-CR-182020] p 307 N91-15180 LASER ALTIMETERS Airborne lidar for profiling of surface topography p 295 A91-23134 LASER APPLICATIONS Evaluation of hand held laser communicators for airborne applications p 282 A91-22815 LASER DOPPLER VELOCIMETERS	integrated aeroelastic control optimization p 305 A91-22743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 LIGHT SOURCES Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 LINEAR QUADRATIC GAUSSIAN CONTROL Integrated flight/ propulsion control system design based on a centralized approach p 305 A91-22956 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Wind tunnel tests on flutter control of a high-aspect-ratio cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 LINEARIZATION Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LIQUID CHROMATOGRAPHY A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 LIQUID NITROGEN Cost-effective use of liquid nitrogen in cryogenic wind tunnels, phase 2 [NAS-CR-182088] p 309 N91-15188 LIQUID SURFACES Internally mounted thin-liquid-film skin-friction meter - Comparison with floating element method with and without pressure gradient
JET BOUNDARIES The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET ENGINE FUELS A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 JET ENGINES Knowledge-based engineering technology case study Jet engine turbine blade design [SME PAPER MS99-727] p 316 A91-21115 IFDIS: An expert system for diagnosis of failures in jet aircraft engines [AD-A227757] p 302 N91-16020 Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023 An introduction to modern aero-engine control design [ETN-91-98583] p 303 N91-16024 JET FLOW The laminar free jet problem, using Newtonian media [ETN-91-98494] p 276 N91-15136 JET IMPINGEMENT Turbulence modelling for complex ground effects flows [SAE PAPER 901062] p 255 A91-21257 Calcutation of impinging jet flows with Reynolds stress models [AIAA PAPER 91-0754] p 266 A91-21606 The ground vortex formed by impinging jets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611 JET MIXING FLOW Flow measurements in a model ramjet secondary combustion chamber p 310 A91-20743 Effect of the penetration depth of fuel jets on combustion in a supersonic combustion chamber	[AÍAA PAPER 91-0320] p 261 A91-21457 A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 LAMINAR FLOW Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Design limits of compressible NLF airfoils [AIAA PAPER 91-0067] p 257 A91-21355 Boundary-layer transition - Analysis and prediction revisited [AIAA PAPER 91-0737] p 318 A91-21601 Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing p 272 A91-23845 LAMINATES Fracture instability of a layered conical composite resisting the aerodynamic load p 315 A91-20791 LANDING GEAR Flight testing antiskid/brake systems p 285 A91-20989 Analytical weight estimation of unconventional landing gear designs [SAWE PAPER 1905] p 289 A91-22320 LARGE SPACE STRUCTURES Integrated control-structure design [NASA-CR-182020] p 307 N91-15180 LASER ALTIMETERS Airbornel index for profiling of surface topography p 295 A91-23134 LASER APPLICATIONS Evaluation of hand held laser communicators for airborne applications p 282 A91-22815 LASER DOPPLER VELOCIMETERS Experimental and theoretical investigation of a vortex street in the wake of a flat plate p 252 A91-20935	integrated aeroelastic control optimization p 305 A91-22743 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 LIFTING ROTORS Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 LIGHT SOURCES Radioluminescent (RL) airfield lighting system program (DE91-001007) p 309 N91-15186 LINEAR QUADRATIC GAUSSIAN CONTROL Integrated flight/propulsion control system design based on a centralized approach p 305 A91-22956 Wind tunnel tests on flutter control of a high-aspect-ratio cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 LINEARIZATION Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LIQUID CHROMATOGRAPHY A comparison of three prospective analytical methods for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170 LIQUID NITROGEN Cost-effective use of liquid nitrogen in cryogenic wind tunnels, phase 2 [NASA-CR-182088] p 309 N91-15188 LIQUID SURFACES Internally mounted thin-liquid-film skin-friction meter - Comparison with floating element method with and without pressure gradient [AIAA PAPER 91-0060] p 317 A91-21352

LITHIUM ALLOYS	IMPP - The Integrated Mass Properties Program	The equipment of a research aircraft with emphasis on
Aluminum lithium for the F/A-18, Hornet 2000	(SAWE PAPER 1894) p 326 A91-22325	meteorological experiments p 249 A91-21001
[SAWE PAPER 1913] p 289 A91-22326	Cockpit Mock Up (CMU): A design and development	MICROCOMPUTERS
LOAD DISTRIBUTION (FORCES)	tool p 328 N91-15730	Programmable cockpit-flight dynamic model
An equivalent calculation of load spectrums	MANAGEMENT PLANNING	[AD-A227748] p 296 N91-15171
p 319 A91-22369	Planning support system for air traffic control	Programmable cockpit-head-up display and outside
A method of developing load spectrum for a fighter	p 282 A91-22203 MANEUVERABILITY	View - 007 Alp4 45470
aircraft p 290 A91-22381	High performance linear-quadratic and H-infinity designs	[AD-A227751] p 297 N91-15172 MICROWAVE CIRCUITS
TF89 aircraft centre fuselage	for a 'supermaneuverable' aircraft p 290 A91-22956	GaAs MMICs in selfaligned gate technology for phased
[ETN-91-98579] p 294 N91-16018	MANNED SPACECRAFT	array radar application p 296 N91-15160
LOADS (FORCES)	Manned versus unmanned - The implications to NASP	Broadband coupling structures for microwave arithmetic
Simulated rotor test apparatus dynamic characteristics	[AIAA PAPER 90-5265] p 311 A91-22888	circuits and phased arrays p 322 N91-15163
in the 60- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147	MANUFACTURING	MMIC impact on airborne evionic systems
[NASA-TM-102870] p 291 N91-15147 LOGARITHMS	 Review of the transmissions of the Soviet helicopters 	p 296 N91-15166
Logarithmic amplification for passive airborne direction	[NASA-TM-103634] p 291 N91-15146	MICROWAVE COUPLING
finding in the 1990s p 296 N91-15164	MASS BALANCE	Broadband coupling structures for microwave arithmetic
LOGIC CIRCUITS	Effects of external loads on onboard weight and balance	circuits and phased arrays p 322 N91-15163
Logarithmic amplification for passive airborne direction	systems	MICROWAVE EQUIPMENT
finding in the 1990s p 296 N91-15164	[SAWE PAPER 1895] p 289 A91-22317 MASS FLOW	Microwave and millimeter wave components:
LONGERONS	Further assessment of a scramjet inlet mass flow	Performances, perspectives, and applications to avionics
TF89 aircraft centre fuselage	measurement technique for use in hypersonic pulse	p 295 N91-15156 MICROWAVE LANDING SYSTEMS
[ETN-91-98579] p 294 · N91-16018	facilities	Activities report of the German Federal Institute for Flight
LONGITUDINAL CONTROL	[AIAA PAPER 91-0551] p 300 A91-21527	Safety
National aerospace plane longitudinal long-period	MASS TRANSFER	[ETN-91-98644] p 281 N91-16002
dynamics p 305 A91-22962 LONGITUDINAL STABILITY	The effects of mass removal on turbulence properties	A successive partial-relaxation Gaussian algorithm for
Longitudinal stability augmentation of a lightweight	in a normal-shock/turbulent-boundary-layer interaction	area navigation operations with the Microwave Landing
fighter aircraft model	[AIAA PAPER 91-0647] p 264 A91-21577	System (MLS)
[ETN-91-98585] p 308 N91-16026	Investigation of transonic flow over segmented slotted	[AD-A228871] p 283 N91-16004
LOW ASPECT RATIO WINGS	wind tunnel wall with mass transfer	MICROWAVE SENSORS
Normal force and pitching moment of low aspect ratio	[NASA-CR-187760] p 276 N91-15981	Broadband coupling structures for microwave arithmetic
cropped-delta wings up to high angles of attack at	MATERIALS TESTS	circuits and phased arrays p 322 N91-15163
supersonic speeds	An evaluation of the pressure proof test concept for thin sheet 2024-T3 p 315 A91-20788	MILITARY AIRCRAFT
[ESDU-90013] p 292 N91-15152		Advanced U.S. military aircraft battery systems
LOW FREQUENCIES	Qualification of primary composite aircraft structures p 313 A91-23714	[SAE PAPER 901054] p 325 A91-21252
Long-range vertical propagation p 332 N91-16693	MATHEMATICAL MODELS	Application of turbulence modeling to the design of
LOW NOISE	Symbolic generation of aircraft simulation programmes	military aircraft [AIAA PAPER 91-0513] p 287 A91-21515
Microwave and millimeter wave components:	p 328 N91-15727	Introduction to the basic technology of stealth aircraft.
Performances, perspectives, and applications to avionics	A coupled rotor aeroelastic analysis utilizing advanced	Basic considerations and aircraft self-emitted signals
p 295 N91-15156	aerodynamic modeling p 292 N91-16006	(passive considerations). II - Illumination by the enemy
Low-noise oscillators for airborne radar applications p:296 N91-15159	Optimal trajectories for an aerospace plane. Part 2: Data,	(active considerations)
LOW REYNOLDS NUMBER	tables, and graphs	[ASME PAPER 90-GT-116] p 290 A91-23643
Calculation of three-dimensional low Reynolds number	[NASA-CR-187848] p 292 N91-16011	MILITARY HELICOPTERS
flows	Experimental and theoretical examinations of film	Helicopter Weight and Torque Advisory system
[AIAA PAPER 91-0187] p 259 A91-21403	cooling of gas turbine blades	[SAWE PAPER 1872] p 295 A91-22301
LOW TEMPERATURE TESTS	[ETN-91-98554] p 303 N91-16022	A state of the art Mass Properties Laboratory
	Smoothing and scaling airfoil coordinates on a personal	[SAWE PAPER 1883] p 309 A91-22308
Eight channel pressure measuring system for cryogenic		
use in the European Transonic Wind-tunnel over the	computer	MILLIMETER WAVES
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722	computer [DE89-000878] p 330 N91-16582	Microwave and millimeter wave components:
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE	computer [DE89-000878] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program	computer [DE89-000878] p 330 N91-16582	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE	computer [DE89-000878] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186	computer [DE89-000878] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program	computer [DE89-000878] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186	computer [DE89-000878] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186	computer [DE89-000878] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a	computer [DE89-000878] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20993
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934	computer [DE89-000878] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES p 295 N91-15156 A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-2093 MIXERS
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramjet	computer [DE89-000678] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20993 MIXERS Application of three-dimensional viscous analysis to
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-8	computer [DE89-000878] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP)	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p. 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p. 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p. 285 A91-20993 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-0 dual mode scramjet with hydrogen fuel at Mach 4-8 [AIAA PAPER 90-5269] p 300 A91-22892	computer [DE89-000878] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302. N91-16021	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20993 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-8 [AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle	computer [DE89-000878] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP)	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-2093 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373 MIXING LAYERS (FLUIDS)
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle aerothermodynamics	computer [DE89-000878] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 MECHANICAL PROPERTIES Titanium compressor eggshells p 312 A91-20879 Determination of rivet diameter and edge distance in	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20993 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-8 [AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle aerothermodynamics [AIAA PAPER 90-5271] p 270 A91-22893 An experimental study of the evolution of harmonic	computer [DE89-000678] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 MECHANICAL PROPERTIES Titanium compressor eggshells p 312 A91-20879 Determination of rivet diameter and edge distance in aircraft riveted structure p 319 A91-22267	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-2093 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373 MIXING LAYERS (FLUIDS) An analytical study of a supersonic mixer-ejector exhaust system [AIAA PAPER 91-0126] p 298 A91-21372
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramlet with hydrogen fuel at Mach 4-8 [AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle aerothermodynamics [AIAA PAPER 90-5271] p 270 A91-22893 An experimental study of the evolution of harmonic perturbations in a boundary layer on a flat plate at Mach	computer [DE89-000878] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 MECHANICAL PROPERTIES Titanium compressor eggshells p 312 A91-20879 Determination of rivet diameter and edge distance in aicraft inveted structure p 319 A91-22267 MESSAGES	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20993 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373 MIXING LAYERS (FLUIDS) An analytical study of a supersonic mixer-ejector exhaust system
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-8 [AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle aerothermodynamics [AIAA PAPER 90-5271] p 270 A91-22893 An experimental study of the evolution of harmonic perturbations in a boundary layer on a flat plate at Mach 4	computer [DE89-000878] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 MECHANICAL PROPERTIES Titanium compressor eggshells p 312 A91-20879 Determination of rivet diameter and edge distance in aircraft niveted structure p 319 A91-22267 MESSAGES Aeronautical Mobile Satellite Service (AMSS) capacity	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20993 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373 MIXING LAYERS (FLUIDS) An analytical study of a supersonic mixer-ejector exhaust system [AIAA PAPER 91-0126] p 298 A91-21372 Compressibility effects on the supersonic reacting mixing layer
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle aerothermodynamics [AIAA PAPER 90-5271] p 270 A91-22893 An experimental study of the evolution of harmonic perturbations in a boundary layer on a flat plate at Mach 4 Direct numerical simulations of a plane compressible	computer [DE89-000878] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 MECHANICAL PROPERTIES Titanium compressor eggshells p 312 A91-20879 Determination of rivet diameter and edge distance in aircraft riveted structure p 319 A91-22267 MESSAGES Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-2093 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] An analytical study of a supersonic mixer-ejector exhaust system [AIAA PAPER 91-0126] P 298 A91-21372 Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] P 266 A91-21603
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-8 [AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle aerothermodynamics [AIAA PAPER 90-5271] p 270 A91-22893 An experimental study of the evolution of harmonic perturbations in a boundary layer on a flat plate at Mach 4 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology	computer [DE89-000678] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 MECHANICAL PROPERTIES Titanium compressor eggshells p 312 A91-20879 Determination of rivet diameter and edge distance in aircraft riveted structure p 319 A91-22267 MESSAGES Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-2093 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373 MIXING LAYERS (FLUIDS) An analytical study of a supersonic mixer-ejector exhaust system [AIAA PAPER 91-0126] p 298 A91-21372 Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 MIXING LENGTH FLOW THEORY
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-8 [AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle aerothermodynamics [AIAA PAPER 90-5271] p 270 A91-22893 An experimental study of the evolution of harmonic perturbations in a boundary layer on a flat plate at Mach 4 p 272 A91-23842 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129	computer [DE89-000878] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 MECHANICAL PROPERTIES Titanium compressor eggshells p 312 A91-20879 Determination of rivet diameter and edge distance in aircraft nyeted structure p 319 A91-22267 MESSAGES Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 METAL CUTTING	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20993 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373 MIXING LAYERS (FLUIDS) An analytical study of a supersonic mixer-ejector exhaust system [AIAA PAPER 91-0126] p 298 A91-21372 Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 MIXING LENGTH FLOW THEORY MIXING LENGTH FLOW THEORY
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle aerothermodynamics [AIAA PAPER 90-5271] p 270 A91-22893 An experimental study of the evolution of harmonic perturbations in a boundary layer on a flat plate at Mach 4 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 A method of estimating a separation boundary of	computer [DE89-000878] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 MECHANICAL PROPERTIES Titanium compressor eggshells p 312 A91-20879 Determination of rivet diameter and edge distance in aircraft riveted structure p 319 A91-22267 MESSAGES Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 METAL CUTTING Waterjet/hydrobrasive cutting in the automotive,	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20993 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373 MIXING LAYERS (FLUIDS) An analytical study of a supersonic mixer-ejector exhaust system [AIAA PAPER 91-0126] p 298 A91-21372 Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 MIXING LENGTH FLOW THEORY Numerical solutions for a cylindrical laser diffuser flow-field p 274 N91-15127
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-8 [AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle aerothermodynamics [AIAA PAPER 90-5271] p 270 A91-22893 An experimental study of the evolution of harmonic perturbations in a boundary layer on a flat plate at Mach 4 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow	computer [DE89-000678] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302. N91-16021 MECHANICAL PROPERTIES Titanium compressor eggshells p 312 A91-20879 Determination of rivet diameter and edge distance in aircraft riveted structure p 319 A91-22267 MESSAGES Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 METAL CUTTING Waterjet/hydrobrasive cutting in the automotive, aerospace and appliance industries	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-2093 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373 MIXING LAYERS (FLUIDS) An analytical study of a supersonic mixer-ejector exhaust system [AIAA PAPER 91-0126] p 298 A91-21372 Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 MIXING LENGTH FLOW THEORY Numerical solutions for a cylindrical laser diffuser flow-field MOBILE COMMUNICATION SYSTEMS
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-8 [AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle aerothermodynamics [AIAA PAPER 90-5271] p 270 A91-22893 An experimental study of the evolution of harmonic perturbations in a boundary layer on a flat plate at Mach 4 p 272 A91-23842 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133	computer [DE89-000878] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 MECHANICAL PROPERTIES Titanium compressor eggshells p 312 A91-20879 Determination of rivet diameter and edge distance in aicraft inveted structure p 319 A91-22267 MESSAGES Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 METAL CUTTING Waterjel/hydrobrasive cutting in the automotive, aerospace and appliance industries [SME PAPER MS89-833] p 316 A91-21118	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20993 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373 MIXING LAYERS (FLUIDS) An analytical study of a supersonic mixer-ejector exhaust system [AIAA PAPER 91-0126] p 298 A91-21372 Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 MIXING LENGTH FLOW THEORY Numerical solutions for a cylindrical laser diffuser flow-field p 274 N91-15127 MOBILE COMMUNICATION SYSTEMS Aeronautical Mobile Satellite Service (AMSS) capacity
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle aerothermodynamics [AIAA PAPER 90-5271] p 270 A91-22893 An experimental study of the evolution of harmonic perturbations in a boundary layer on a flat plate at Mach 4 p 272 A91-23842 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Pseudo Reynolds number effects in transonic wind	computer [DE89-000878] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 MECHANICAL PROPERTIES Titanium compressor eggshells p 312 A91-20879 Determination of rivet diameter and edge distance in aircraft riveted structure p 319 A91-22267 MESSAGES Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 METAL CUTTING Waterjel/hydrobrasive cutting in the automotive, aerospace and appliance industries [SME PAPER MS89-833] p 316 A91-21118 METAL FATIGUE	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20993 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373 MIXING LAYERS (FLUIDS) An analytical study of a supersonic mixer-ejector exhaust system [AIAA PAPER 91-0126] p 298 A91-21372 Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 MIXING LENGTH FLOW THEORY Numerical solutions for a cylindrical laser diffuser flow-field MOBILE COMMUNICATION SYSTEMS Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramlet with hydrogen fuel at Mach 4-8 [AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle aerothermodynamics [AIAA PAPER 90-5271] p 270 A91-22893 An experimental study of the evolution of harmonic perturbations in a boundary layer on a flat plate at Mach 4 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Pseudo Reynolds number effects in transonic wind tunnels	computer [DE89-000678] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 MECHANICAL PROPERTIES Titanium compressor eggshells p 312 A91-20879 Determination of rivet diameter and edge distance in aircraft riveted structure p 319 A91-22267 MESSAGES Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 METAL CUTTING Waterjet/hydrobrasive cutting in the automotive, aerospace and appliance industries [SME PAPER MS89-833] p 316 A91-21118 METAL FATIGUE Corrosion fatigue crack growth of 30CrMnSiNi2A steel	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-2093 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373 MIXING LAYERS (FLUIDS) An analytical study of a supersonic mixer-ejector exhaust system [AIAA PAPER 91-0126] p 298 A91-21372 Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 MIXING LENGTH FLOW THEORY Numerical solutions for a cylindrical laser diffuser flow-field p 274 N91-15127 MOBILE COMMUNICATION SYSTEMS Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramlet with hydrogen fuel at Mach 4-8 [AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle aerothermodynamics [AIAA PAPER 90-5271] p 270 A91-22893 An experimental study of the evolution of harmonic perturbations in a boundary layer on a flat plate at Mach 4 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Pseudo Reynolds number effects in transonic wind tunnels [ETN-91-98493] p 276 N91-15135	computer [DE89-000678] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 MECHANICAL PROPERTIES Titanium compressor eggshells p 312 A91-20879 Determination of rivet diameter and edge distance in aicraft riveted structure p 319 A91-22267 MESSAGES Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 METAL CUTTING Waterjet/hydrobrasive cutting in the automotive, aerospace and appliance industries [SME PAPER MS89-833] p 316 A91-21118 METAL FATIGUE Corrosion fatigue crack growth of 30CrMnSiNi2A steel in airplane environments p 313 A91-22383	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20993 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373 MIXING LAYERS (FLUIDS) An analytical study of a supersonic mixer-ejector exhaust system [AIAA PAPER 91-0126] p 298 A91-21372 Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 MIXING LENGTH FLOW THEORY Numerical solutions for a cylindrical laser diffuser flow-field MOBILE COMMUNICATION SYSTEMS Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle aerothermodynamics [AIAA PAPER 90-5271] p 270 A91-22893 An experimental study of the evolution of harmonic perturbations in a boundary layer on a flat plate at Mach 4 P 272 A91-23842 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Pseudo Reynolds number effects in transonic wind tunnels MAGNETRON SPUTTERING	computer [DE89-000878] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 MECHANICAL PROPERTIES Titanium compressor eggshells p 312 A91-20879 Determination of rivet diameter and edge distance in aircraft riveted structure p 319 A91-22267 MESSAGES Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 METAL CUTTING Waterjet/hydrobrasive cutting in the automotive, aerospace and appliance industries [SME PAPER MS89-833] p 316 A91-21118 METAL FATIGUE Corrosion fatigue crack growth of 30CrMnSiNi2A steel in iriplane environments p 313 A91-22383 Fatigue and fracture of titanium aluminides	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-2093 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373 MIXING LAYERS (FLUIDS) An analytical study of a supersonic mixer-ejector exhaust system [AIAA PAPER 91-0126] p 298 A91-21372 Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 MIXING LENGTH FLOW THEORY Numerical solutions for a cylindrical laser diffuser flow-field p 274 N91-15127 MOBILE COMMUNICATION SYSTEMS Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 MODELS Longitudinal stability augmentation of a lightweight fighter aircraft model
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramlet with hydrogen fuel at Mach 4-8 [AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle aerothermodynamics [AIAA PAPER 90-5271] p 270 A91-22893 An experimental study of the evolution of harmonic perturbations in a boundary layer on a flat plate at Mach 4 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Pseudo Reynolds number effects in transonic wind tunnels [ETN-91-98493] p 276 N91-15135	computer [DE89-000878] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 MECHANICAL PROPERTIES Titanium compressor eggshells p 312 A91-20879 Determination of rivet diameter and edge distance in aircraft riveted structure p 319 A91-22267 MESSAGES Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 METAL CUTTING Waterjet/hydrobrasive cutting in the automotive, aerospace and appliance industries [SME PAPER MS89-833] p 316 A91-21118 METAL FATIGUE Corrosion fatigue crack growth of 30CrMnSiNi2A steel in airplane environments p 313 A91-22383 Fatigue and fracture of titanium aluminides [AD-A226737] p 314 N91-15374	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20933 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373 MIXING LAYERS (FLUIDS) An analytical study of a supersonic mixer-ejector exhaust system [AIAA PAPER 91-0126] p 298 A91-21372 Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 MIXING LEMGTH FLOW THEORY Numerical solutions for a cylindrical laser diffuser flow-field p 274 N91-15127 MOBILE COMMUNICATION SYSTEMS Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 MODELS Longitudinal stability augmentation of a lightweight fighter aircraft model [ETN-91-98585] p 308 N91-16026
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle aerothermodynamics [AIAA PAPER 90-5271] p 270 A91-22893 An experimental study of the evolution of harmonic perturbations in a boundary layer on a flat plate at Mach 4 P 272 A91-23842 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Pseudo Reynolds number effects in transonic wind tunnels [ETN-91-98493] p 276 N91-15135 MAGNETRON SPUTTERING Magnetron sputtered CoCrAIY coatings on superalloy IN738 MAINTENANCE	computer [DE89-000678] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302. N91-16021 MECHANICAL PROPERTIES Titanium compressor eggshells p 312 A91-20879 Determination of rivet diameter and edge distance in aircraft riveted structure p 319 A91-22267 MESSAGES Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 METAL CUTTING Waterjet/hydrobrasive cutting in the automotive, aerospace and appliance industries [SME PAPER MS89-833] p 316 A91-21118 METAL FATIGUE Corrosion fatigue crack growth of 30CrMnSiNi2A steel in airplane environments p 313 A91-22383 Fatigue and fracture of titanium aluminides [AD-A226737] METAL JOINTS	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20993 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373 MIXING LAYERS (FLUIDS) An analytical study of a supersonic mixer-ejector exhaust system [AIAA PAPER 91-0126] p 298 A91-21372 Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 MIXING LENGTH FLOW THEORY Numerical solutions for a cylindrical laser diffuser flow-field p 274 N91-15127 MOBILE COMMUNICATION SYSTEMS Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 MODELS Longitudinal stability augmentation of a lightweight fighter aircraft model [ETN-91-98585] p 308 N91-16026
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle aerothermodynamics [AIAA PAPER 90-5271] p 270 A91-22893 An experimental study of the evolution of harmonic perturbations in a boundary layer on a flat plate at Mach 4 p 272 A91-23842 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Pseudo Reynolds number effects in transonic wind tunnels [ETN-91-98493] p 276 N91-15135 MAGNETRON SPUTTERING Magnetron sputtered CoCrAIY coatings on superalloy IN738 MAINTENANCE Optimization of process routes in the repair of gas turbine	computer [DE89-000878] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 MECHANICAL PROPERTIES Titanium compressor eggshells p 312 A91-20879 Determination of rivet diameter and edge distance in aicraft inveted structure p 319 A91-22267 MESSAGES Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 METAL CUTTING Waterjel/hydrobrasive cutting in the automotive, aerospace and appliance industries [SME PAPER MS89-833] p 316 A91-21118 METAL FATIGUE Corrosion fatigue crack growth of 30CrMnSiNi2A steel in airplane environments p 313 A91-22383 Fatigue and fracture of titanium aluminides [AD-A226737] p 314 N91-15374 METAL JOINTS Fatigue of aluminium alloy joints with various fastener	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-2093 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373 MIXING LAYERS (FLUIDS) An analytical study of a supersonic mixer-ejector exhaust system [AIAA PAPER 91-0126] p 298 A91-21372 Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 MIXING LENGTH FLOW THEORY Numerical solutions for a cylindrical laser diffuser flow-field p 274 N91-15127 MOBILE COMMUNICATION SYSTEMS Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 MODELS Longitudinal stability augmentation of a lightweight fighter aircraft model [ETN-91-98585] p 308 N91-16026 MODULATION Modulation and coding for the aeronautical satellite
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramfet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle aerothermodynamics [AIAA PAPER 90-5271] p 270 A91-22893 An experimental study of the evolution of harmonic perturbations in a boundary layer on a flat plate at Mach 4 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Pseudo Reynolds number effects in transonic wind tunnels [ETN-91-98493] p 276 N91-15135 MAGNETRON SPUTTERING Magnetron sputtered CoCralY coatings on superalloy IN738 p 313 A91-22346 MAINTENANCE Optimization of process routes in the repair of gas turbine engine components using capillary testing	computer [DE89-000878] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 MECHANICAL PROPERTIES Titanium compressor eggshells p 312 A91-20879 Determination of rivet diameter and edge distance in aircraft riveted structure p 319 A91-22267 MESSAGES Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 METAL CUTTING Waterjel/hydrobrasive cutting in the automotive, aerospace and appliance industries [SME PAPER MS89-833] p 316 A91-21118 METAL FATIGUE Corrosion fatigue crack growth of 30CrMnSiNi2A steel in airplane environments p 313 A91-22383 Fatigue and fracture of titanium alluminides [AD-A226737] p 314 N91-15374 METAL JOINTS Fatigue of aluminium alloy joints with various fastener systems. High load transfer	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20933 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373 MIXING LAYERS (FLUIDS) An analytical study of a supersonic mixer-ejector exhaust system [AIAA PAPER 91-0126] p 298 A91-21372 Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 MIXING LENGTH FLOW THEORY Numerical solutions for a cylindrical laser diffuser flow-field MOBILE COMMUNICATION SYSTEMS Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 MODELS Longitudinal stability augmentation of a lightweight fighter aircraft model [ETN-91-98585] p 308 N91-16026 MODULATION Modulation and coding for the aeronautical satellite channel
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle aerothermodynamics [AIAA PAPER 90-5271] p 270 A91-22893 An experimental study of the evolution of harmonic perturbations in a boundary layer on a flat plate at Mach 4 p 272 A91-23842 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [INSA-CR-187737] p 274 N91-15129 A method of estimating a separation boundary of two-dimensional aerofoli sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Pseudo Reynolds number effects in transonic wind tunnels [ETN-91-98493] p 276 N91-15135 MAGNETRON SPUTTERING Magnetron sputtered CoCrAIY coatings on superalloy IN738 p 313 A91-22346 MAINTENANCE Optimization of process routes in the repair of gas turbine engine components using capillary testing	computer [DE89-000678] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302. N91-16021 MECHANICAL PROPERTIES Titanium compressor eggshells p 312 A91-20879 Determination of rivet diameter and edge distance in aircraft riveted structure p 319 A91-22267 MESSAGES Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 METAL CUTTING Waterjet/hydrobrasive cutting in the automotive, aerospace and appliance industries [SME PAPER MS89-833] p 316 A91-21118 METAL FATIGUE Corrosion fatigue crack growth of 30CrMnSiNi2A steel in airplane environments p 313 A91-22383 Fatigue and tracture of titanium aluminides [AD-A226737] p 314 N91-15374 METAL JOINTS Fatigue of aluminium alloy joints with various fastener systems. High load transfer [ESDU-90018] p 322 N91-15597	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20993 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373 MIXING LAYERS (FLUIDS) An analytical study of a supersonic mixer-ejector exhaust system [AIAA PAPER 91-0126] p 298 A91-21372 Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 MIXING LAYERS (FLUIDS) MIXING LAYERS (FLUIDS) A manalytical study of a supersonic mixer-ejector exhaust system [AIAA PAPER 91-0126] p 298 A91-21372 Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 MIXING LENGTH FLOW THEORY Numerical solutions for a cylindrical laser diffuser flow-field p 274 N91-15127 MOBILE COMMUNICATION SYSTEMS Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 MODELS Longitudinal stability augmentation of a lightweight fighter aircraft model [ETN-91-98585] p 308 N91-16026 MODULATION Modulation and coding for the aeronautical satellite channel p 283 A91-22904 Parameter identification for nonlinear aerodynamic
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle aerothermodynamics [AIAA PAPER 90-5271] p 270 A91-22893 An experimental study of the evolution of harmonic perturbations in a boundary layer on a flat plate at Mach 4 p 272 A91-23842 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Pseudo Reynolds number effects in transonic wind tunnels [ETN-91-98493] p 276 N91-15135 MAGNETRON SPUTTERING Magnetron sputtered CoCrAIY coatings on superalloy IN738 MAINTENANCE Optimization of process routes in the repair of gas turbine engine components using capillary testing	computer [DE89-000678] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 MECHANICAL PROPERTIES Titanium compressor eggshells p 312 A91-20879 Determination of rivet diameter and edge distance in aircraft riveted structure p 319 A91-22267 MESSAGES Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 METAL CUTTING Waterjet/hydrobrasive cutting in the automotive, aerospace and appliance industries [SME PAPER MS89-833] p 316 A91-21118 METAL FATIGUE Corrosion fatigue crack growth of 30CrMnSiNi2A steel in airplane environments p 313 A91-22383 Fatigue and fracture of titanium aluminides [AD-A226737] p 314 N91-15374 METAL JOINTS Fatigue of aluminium alloy joints with various fastener systems. High load transfer [ESDU-90018] p 322 N91-15597	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-2093 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373 MIXING LAYERS (FLUIDS) An analytical study of a supersonic mixer-ejector exhaust system [AIAA PAPER 91-0126] p 298 A91-21372 Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 MIXING LENGTH FLOW THEORY Numerical solutions for a cylindrical laser diffuser flow-field p 274 N91-15127 MOBILE COMMUNICATION SYSTEMS Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 MODELS Longitudinal stability augmentation of a lightweight fighter aircraft model [ETN-91-98585] p 308 N91-16026 MODULATION Modulation and coding for the aeronautical satellite channel p 283 A91-22904 Parameter identification for nonlinear aerodynamic systems
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramfet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle aerothermodynamics [AIAA PAPER 90-5269] p 300 A91-22893 An experimental study of the evolution of harmonic perturbations in a boundary layer on a flat plate at Mach 4 p 272 A91-23842 Oirect numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Pseudo Reynolds number effects in transonic wind tunnels [ETN-91-98493] p 276 N91-15135 Magnetron Sputtered CoCraly coatings on superalloy IN738 p 313 A91-22346 MAINTENANCE Optimization of process routes in the repair of gas turbine engine components using capillary testing p 321 A91-23817 MAN MACHINE SYSTEMS How safe is flying? Or - The AIMS onboard integrated	computer [DE89-000678] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302. N91-16021 MECHANICAL PROPERTIES Titanium compressor eggshells p 312 A91-20879 Determination of rivet diameter and edge distance in aircraft riveted structure p 319 A91-22267 MESSAGES Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 METAL CUTTING Waterjet/hydrobrasive cutting in the automotive, aerospace and appliance industries [SME PAPER MS89-833] p 316 A91-21118 METAL FATIGUE Corrosion fatigue crack growth of 30CrMnSiNi2A steel in airplane environments p 313 A91-22383 Fatigue and tracture of titanium aluminides [AD-A226737] p 314 N91-15374 METAL JOINTS Fatigue of aluminium alloy joints with various fastener systems. High load transfer [ESDU-90018] p 322 N91-15597	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20933 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373 MIXING LAYERS (FLUIDS) An analytical study of a supersonic mixer-ejector exhaust system [AIAA PAPER 91-0126] p 298 A91-21372 Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 MIXING LENGTH FLOW THEORY Numerical solutions for a cylindrical laser diffuser flow-field MOBILE COMMUNICATION SYSTEMS Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 MODELS Longitudinal stability augmentation of a lightweight fighter aircraft model [ETN-91-98585] p 308 N91-16026 MODULATION Modulation and coding for the aeronautical satellite channel p 283 A91-22904 Parameter identification for nonlinear aerodynamic systems [NASA-CR-187410] p 274 N91-15126
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle aerothermodynamics [AIAA PAPER 90-5271] p 270 A91-22893 An experimental study of the evolution of harmonic perturbations in a boundary layer on a flat plate at Mach 4 p 272 A91-23842 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [INSA-CR-187737] p 274 N91-15129 A method of estimating a separation boundary of two-dimensional aerofoli sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Pseudo Reynolds number effects in transonic wind tunnels [ETN-91-98493] p 276 N91-15135 MAGNETRON SPUTTERING Magnetron sputtered CoCrAIY coatings on superalloy IN738 p 313 A91-22346 MAINTENANCE Optimization of process routes in the repair of gas turbine engine components using capillary testing p 321 A91-23817 MAN MACHINE SYSTEMS How safe is flying? Or - The AIMS onboard integrated monitoring systems p 294 A91-2069	computer [DE89-000878] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302. N91-16021 MECHANICAL PROPERTIES Titanium compressor eggshells p 312 A91-20879 Determination of rivet diameter and edge distance in aircraft riveted structure p 319 A91-22267 MESSAGES Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 METAL CUTTING Waterjet/hydrobrasive cutting in the automotive, aerospace and appliance industries [SME PAPER MS89-833] p 316 A91-21118 METAL FATIGUE Corrosion fatigue crack growth of 30CrMnSiNi2A steel in airplane environments p 313 A91-22383 Fatigue and fracture of titanium aluminides [AD-A226737] p 314 N91-15374 METAL JOINTS Fatigue of aluminium alloy joints with various fastener systems. High load transfer [ESDU-90018] p 322 N91-15597 METAL PLATES Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20899	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20993 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373 MIXING LAYERS (FLUIDS) An analytical study of a supersonic mixer-ejector exhaust system [AIAA PAPER 91-0126] p 298 A91-21372 Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 MIXING LENGTH FLOW THEORY Numerical solutions for a cylindrical laser diffuser flow-field p 274 N91-15127 MOBILE COMMUNICATION SYSTEMS Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 MODELS Longitudinal stability augmentation of a lightweight fighter aircraft model [ETN-91-98585] p 308 N91-16026 MODULATION Modulation and coding for the aeronautical satellite channel p 283 A91-22904 Parameter identification for nonlinear aerodynamic systems [NASA-CR-187410] p 274 N91-15126
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-8 [AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle aerothermodynamics [AIAA PAPER 90-5271] p 270 A91-22893 An experimental study of the evolution of harmonic perturbations in a boundary layer on a flat plate at Mach 4 p 272 A91-23842 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Pseudo Reynolds number effects in transonic wind tunnels [ETN-91-98493] p 276 N91-15135 MAGNETRON SPUTTERING Magnetron Sputtered CoCrAIY coatings on superalloy IN738 MAINTENANCE Optimization of process routes in the repair of gas turbine engine components using capitllary testing p 313 A91-23817 MAN MACHINE SYSTEMS How safe is flying? Or - The AIMS onboard integrated monitoring systems Planning support system for air traffic control	computer [DE89-000878] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 MECHANICAL PROPERTIES Titanium compressor eggshells p 312 A91-20879 Determination of rivet diameter and edge distance in aircraft riveted structure p 319 A91-22267 MESSAGES Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 METAL CUTTING Waterjel/hydrobrasive cutting in the automotive, aerospace and appliance industries [SME PAPER MS89-833] p 316 A91-21118 METAL FATIGUE Corrosion fatigue crack growth of 30CrMnSiNi2A steel in airplane environments p 314 N91-15374 METAL JOINTS Fatigue and fracture of titanium aluminides [AD-A226737] p 314 N91-15374 METAL JOINTS Fatigue of aluminium alloy joints with various fastener systems. High load transfer [ESDU-90018] p 322 N91-15597 METAL PLATES Prediction of penetration of curved metal stiffened	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20993 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373 MIXING LAYERS (FLUIDS) An analytical study of a supersonic mixer-ejector exhaust system [AIAA PAPER 91-0126] p 298 A91-21372 Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 MIXING LENGTH FLOW THEORY Numerical solutions for a cylindrical laser diffuser flow-field p 274 N91-15127 MOBILE COMMUNICATION SYSTEMS Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 MODULS Longitudinal stability augmentation of a lightweight fighter aircraft model [ETN-91-98585] p 308 N91-16026 MODULATION Modulation and coding for the aeronautical satellite channel p 283 A91-22904 Parameter identification for nonlinear aerodynamic systems [NASA-CR-187410] p 274 N91-15126
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramfet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle aerothermodynamics [AIAA PAPER 90-5269] p 300 A91-22893 An experimental study of the evolution of harmonic perturbations in a boundary layer on a flat plate at Mach 4 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Pseudo Reynolds number effects in transonic wind tunnels [ETN-91-98493] p 276 N91-15135 MAGNETRON SPUTTERING Magnetron Sputtered Cocraly coatings on superalloy IN738 p 313 A91-22346 MAINTENANCE Optimization of process routes in the repair of gas turbine engine components using capillary testing p 321 A91-23817 MAN MACHINE SYSTEMS How safe is flying? Or - The AIMS onboard integrated monitoring systems p 284 A91-22009 Planning support system for air traffic control	computer [DE89-000678] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302. N91-16021 MECHANICAL PROPERTIES Titanium compressor eggshells p 312 A91-20879 Determination of rivet diameter and edge distance in aircraft riveted structure p 319 A91-22267 MESSAGES Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 METAL CUTTING Waterjet/hydrobrasive cutting in the automotive, aerospace and appliance industries [SME PAPER MS89-833] p 316 A91-21118 METAL FATIGUE Corrosion fatigue crack growth of 30CrMnSiNi2A steel in airplane environments p 313 A91-22383 Fatigue and fracture of titanium aluminides (AD-A226737) METAL JOINTS Fatigue of aluminium alloy joints with various fastener systems. High load transfer [ESDU-90018] p 322 N91-15597 METAL PLATES Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20899 METEOROLOGICAL RADAR	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-2093 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373 MIXING LAYERS (FLUIDS) An analytical study of a supersonic mixer-ejector exhaust system [AIAA PAPER 91-0126] p 298 A91-21372 Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 MIXING LENGTH FLOW THEORY Numerical solutions for a cylindrical laser diffuser flow-field MOBILE COMMUNICATION SYSTEMS Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 MODELS Longitudinal stability augmentation of a lightweight fighter aircraft model [ETN-91-98585] p 308 N91-16026 MODULATION Modulation and coding for the aeronautical satellite channel p 283 A91-22904 Parameter identification for nonlinear aerodynamic systems [NASA-CR-187410] p 274 N91-15126 MODULUS OF ELASTICITY Comparison of rime and glaze deformation and failure properties
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-8 [AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle aerothermodynamics [AIAA PAPER 90-5271] p 270 A91-22893 An experimental study of the evolution of harmonic perturbations in a boundary layer on a flat plate at Mach 4 p 272 A91-23842 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Pseudo Reynolds number effects in transonic wind tunnels [ETN-91-98493] p 276 N91-15135 MAGNETRON SPUTTERING Magnetron Sputtered CoCrAIY coatings on superalloy IN738 MAINTENANCE Optimization of process routes in the repair of gas turbine engine components using capitllary testing p 313 A91-23817 MAN MACHINE SYSTEMS How safe is flying? Or - The AIMS onboard integrated monitoring systems Planning support system for air traffic control	computer [DE89-000678] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 MECHANICAL PROPERTIES Titanium compressor eggshells p 312 A91-20879 Determination of rivet diameter and edge distance in aircraft riveted structure p 319 A91-22267 MESSAGES Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 METAL CUTTING Waterjet/hydrobrasive cutting in the automotive, aerospace and appliance industries [SME PAPER MS89-833] p 316 A91-21118 METAL FATIGUE Corrosion fatigue crack growth of 30CrMnSiNi2A steel in airplane environments p 313 A91-22383 Fatigue and fracture of titanium aluminides [AD-A226737] p 314 N91-15374 METAL JOINTS Fatigue of aluminium alloy joints with various fastener systems. High load transfer [ESDU-90018] p 322 N91-15597 METAL PLATES Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20899 METCOROLOGICAL RADAR Results of the Kansas City 1989 Terminal Doppler	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20993 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373 MIXING LAYERS (FLUIDS) An analytical study of a supersonic mixer-ejector exhaust system [AIAA PAPER 91-0126] p 298 A91-21372 Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 MIXING LENGTH FLOW THEORY Numerical solutions for a cylindrical laser diffuser flow-field p 274 N91-15127 MOBILE COMMUNICATION SYSTEMS Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 MODULS Longitudinal stability augmentation of a lightweight fighter aircraft model [ETN-91-98585] p 308 N91-16026 MODULATION Modulation and coding for the aeronautical satellite channel p 283 A91-22904 Parameter identification for nonlinear aerodynamic systems [NASA-CR-187410] p 274 N91-15126
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-8 [AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle aerothermodynamics [AIAA PAPER 90-5271] p 270 A91-22893 An experimental study of the evolution of harmonic perturbations in a boundary layer on a flat plate at Mach 4 p 272 A91-23842 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 A method of estimating a separation boundary of two-dimensional aerofoli sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Pseudo Reynolds number effects in transonic wind tunnels [ETN-91-98493] p 276 N91-15135 MAGNETRON SPUTTERING Magnetron sputtered CoCrAIY coatings on superalloy IN738 p 313 A91-22346 MAINTENANCE Optimization of process routes in the repair of gas turbine engine components using capillary testing p 321 A91-23817 MAN MACHINE SYSTEMS how safe is flying? Or - The AIMS onboard integrated monitoring systems p 294 A91-20609 Planning support system for air traffic control p 282 A91-2203 Closed-loop assessment of flight simulator fidelity	computer [DE89-000878] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 MECHANICAL PROPERTIES Titanium compressor eggshells p 312 A91-20879 Determination of rivet diameter and edge distance in aircraft riveted structure p 319 A91-22267 MESSAGES Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 METAL CUTTING Waterjet/hydrobrasive cutting in the automotive, aerospace and appliance industries [SME PAPER MS89-833] p 316 A91-21118 METAL FATIGUE Corrosion fatigue crack growth of 30CrMnSiNi2A steel in airplane environments p 313 A91-22383 Fatigue and fracture of titanium aluminides [AD-A226737] p 314 N91-15374 METAL JOINTS Fatigue of aluminium alloy joints with various fastener systems. High load transfer [ESDU-90018] p 322 N91-15597 METAL PLATES Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20899 METEOROLOGICAL RADAR Results of the Kansas City 1989 Terminal Doppler Weather Radar (TDWR) operational evaluation testing	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20993 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373 MIXING LAYERS (FLUIDS) An analytical study of a supersonic mixer-ejector exhaust system [AIAA PAPER 91-0126] p 298 A91-21372 Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 MIXING LENGTH FLOW THEORY Numerical solutions for a cylindrical laser diffuser flow-field p 274 N91-15127 MOBILE COMMUNICATION SYSTEMS Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 MODELS Longitudinal stability augmentation of a lightweight fighter aircraft model [ETN-91-98585] p 308 N91-16026 MODULATION Modulation and coding for the aeronautical satellite channel p 283 A91-22904 Parameter identification for nonlinear aerodynamic systems [NASA-CR-187410] p 274 N91-15126 MODULUS OF ELASTICITY Comparison of rime and glaze deformation and failure properties [AIAA PAPER 91-0446] p 279 A91-21494
use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 LUMINESCENCE Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-15186 M MACH NUMBER Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle aerothermodynamics [AIAA PAPER 90-5271] p 270 A91-22893 An experimental study of the evolution of harmonic perturbations in a boundary layer on a flat plate at Mach 4-4 p 272 A91-23842 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [INASA-CR-187737] p 274 N91-15129 A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Pseudo Reynolds number effects in transonic wind tunnels [ETN-91-98493] p 276 N91-15135 MAGNETRON SPUTTERING Magnetron sputtered CoCrAIY coatings on superalloy IN738 p 311 A91-22346 MAINTENANCE Optimization of process routes in the repair of gas turbine engine components using capillary testing p 321 A91-23817 MAN MACHINE SYSTEMS How safe is flying? Or - The AIMS onboard integrated monitoring systems p 294 A91-20609 Planning support system for air traffic control p 282 A91-22203 Closed-loop assessment of flight simulator fidelity	computer [DE89-000678] p 330 N91-16582 MAXIMUM LIKELIHOOD ESTIMATES A maximum likelihood method for flight test data compatibility check p 327 A91-22373 Identification of time delays in flight measurements p 327 A91-22953 MEASURING INSTRUMENTS Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722 MECHANICAL ENGINEERING Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302. N91-16021 MECHANICAL PROPERTIES Titanium compressor eggshells p 312 A91-20879 Determination of rivet diameter and edge distance in aircraft riveted structure p 319 A91-22267 MESSAGES Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 METAL CUTTING Waterjet/hydrobrasive cutting in the automotive, aerospace and appliance industries [SME PAPER MS89-833] p 316 A91-21118 METAL FATIGUE Corrosion fatigue crack growth of 30CrMnSiNi2A steel in airplane environments p 313 A91-22383 Fatigue and fracture of titanium aluminides [AD-A226737] p 314 N91-15374 METAL JOINTS Fatigue of aluminium alloy joints with various fastener systems. High load transfer [ESDU-90018] p 322 N91-15597 METAL PLATES Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20899 METEOROLOGICAL RADAR Results of the Kansas City 1989 Terminal Doppler Weather Radar (TDWR) operational	Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156 MISSILE TRAJECTORIES A calculating method of the kill probability attack area for AAM p 305 A91-22352 MISSION ADAPTIVE WINGS AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20993 MIXERS Application of three-dimensional viscous analysis to turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373 MIXING LAYERS (FLUIDS) An analytical study of a supersonic mixer-ejector exhaust system [AIAA PAPER 91-0126] p 298 A91-21372 Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 MIXING LENGTH FLOW THEORY Numerical solutions for a cylindrical laser diffuser flow-field p 274 N91-15127 MOBILE COMMUNICATION SYSTEMS Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295 MODULS MODULATION Modulation and coding for the aeronautical satellite channel p 283 A91-22904 Parameter identification for nonlinear aerodynamic systems [NASA-CR-187410] p 274 N91-15126 MODULUS OF ELASTICITY Comparison of rime and glaze deformation and failure properties [AIAA PAPER 91-0446] p 279 A91-21494 MOLDS

ΕX

MOLECULAR FLOW		SUBJECT INDEX
MOLECULAR FLOW	Computation of three-dimensional subsonic flows in	NONLINEAR SYSTEMS
Molecular dynamics computations of two dimensional	ducts using the PNS approach p 271 A91-23186	Identification of time delays in flight measurements
supersonic rarefied gas flow past blunt bodies [AIAA PAPER 91-0322] p 261 A91-21459	Numerical solutions for a cylindrical laser diffuser flow-field p 274 N91-15127	p 327 A91-22953 Parameter identification for nonlinear aerodynamic
MOLECULAR RELAXATION	Flowfield of a lifting hovering rotor: A Navier-Stokes	systems
Macroscopic model of vibrational relaxation in heat	simulation	[NASA-CR-187410] p 274 · N91-15126 Selection of weights in optimal control
transfer problems for supersonic flow past hard bodies p 268 A91-21979	[NASA-TM-102862] p 274 N91-15128 The aerodynamic characteristics of vortex ingestion for	[RR-397] p 330 N91-15796
MONTE CARLO METHOD	the F/A-18 inlet duct	NONLINEARITY
A shock-layer theory based on thirteen-moment equations and DSMC calculations of rarefied hypersonic	[NASA-TM-103703] p 311 N91-15303 Large-scale numerical aerodynamic simulations for	Optical measurement of unducted fan flutter [NASA-TM-103285] p 302 N91-15174
flows	complete aircraft configurations	Nonlinear large amplitude vibration of composite
[AIAA PAPER 91-0783] p 267 A91-21616	[NAL-TR-1073-T] p 277 N91-15984	helicopter rotor blade at large static deflection [AD-A227933] p.307 N91-15183
MOVING TARGET INDICATORS Low-noise oscillators for airborne radar applications	NAVIGATION AIDS DISCUS - A failure-tolerant Fbw/Fbl-experimental	[AD-A227933] p 307 N91-15183 NONUNIFORM FLOW
p 296 N91-15159	system p 303 A91-20610	Effect of the initial flow conditions on the aerodynamic
MRCA AIRCRAFT Tomado AFDS/TF flight testing - Lessons learned	NEAR FIELDS Detailed documentation of the near field effects of Large	and acoustic characteristics of turbulent jets p 272 A91-23903
p 284 A91-20977	Eddy Break Up devices on the oncoming vortical structures	NOSE CONES
MULTISENSOR APPLICATIONS The development of avionics-intensive, multi-sensor	in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518	Simplified modeling of blunt nose effects on vehicle flow fields
cockpits: Simulation does not always equal success	NEWTON METHODS	[AIAA PAPER 90-5259] p 270 A91-22883
p 330 N91-15746	A coupled rotor aeroelastic analysis utilizing advanced	NOTCH TESTS
AI .	aerodynamic modeling p 292 N91-16006 NEWTONIAN FLUIDS	A comparison of fatigue life prediction methodologies for rotorcraft
N ·	The laminar free jet problem, using Newtonian media	[NASA-TM-102759] p 323 N91-15604
NACELLES	[ETN-91-98494] p 276 N91-15136 NICKEL ALLOYS	NOZZLE DESIGN Aerodynamic design for supersonic nozzles of arbitrary
Airframe-induced upwash at subsonic speeds	Estimation of the engineering elastic constants of a	cross section p 251 A91-20745
[ESDU-90020] p 275 N91-15130 NAP-OF-THE-EARTH NAVIGATION	directionally solidified superalloy for finite element	Static internal performance of an axisymmetric nozzle
Prediction of the dynamic characteristics of helicopters	structural analysis [NASA-CR-187036] p 322 N91-15598	with multiaxis thrust-vectoring capability [NASA-TM-4237] p 274 N91-15125
in constrained flight p 290 A91-23549 Simulation of nap-of-Earth flight in helicopters	NICKEL CADMIUM BATTERIES	NOZZLE FLOW
p 330 N91-15744	Advanced U.S. military aircraft battery systems [SAE PAPER 901054] p 325 A91-21252	Nonideal isentropic gas flow through
NASA PROGRAMS	NIGHT FLIGHTS (AIRCRAFT)	converging-diverging nozztes p 252 A91-21064 CFD validation and wind tunnel test for a NASP single
Engines and innovation: Lewis Laboratory and American propulsion technology	Laser obstacle and cable update sensor p 296 N91-15169	expansion ramp nozzle in the transonic regime
[NASA-SP-4306] p 333 N91-15975	NITROGEN OXIDES	[AIAA PAPER 91-0015] p 256 A91-21334
NATIONAL AEROSPACE PLANE PROGRAM Optimization and validation of a fuselage fuel tank	The atmospheric effects of stratospheric aircraft: A	Experimental study on mixing phenomena in supersonic flows with slot injection
structural concept for the NASP	current consensus [NASA-RP-1251] p 325 N91-16467	[AIAA PAPER 91-0016] p 256 A91-21335
[AIAA PAPER 90-5262] p 300 A91-22885 Optimization and guidance of flight trajectories for the	NOISE GENERATORS	The ground vortex formed by impinging jets in
national aerospace plane	In-flight source noise of an advanced full-scale single-rotation propeller	cross-flow [AIAA PAPER 91-0768] p 267 A91-21611
[NASA-CR-187837]. p 292 N91-16010	[AIAA PAPER 91-0594] p 331 A91-21547	Flowfield computation of 2-C-D nozzle
NAVIER-STOKES EQUATION Computation of unsteady viscous flows around wing	Long-range vertical propagation p 332 N91-16693	p 268 A91-22382
profiles p 251 A91-20933	NOISE INTENSITY Long-range vertical propagation p 332 N91-16693	A study of flow structure in nozzles with a constant-height section in the throat region p 272 A91-23848
Navier-Stokes simulation of transonic blade-vortex interactions p 253 A91-21065	NOISE MEASUREMENT	Calculation of transonic nozzle flow
On hypersonic shock layer and its extension beyond	Long-range vertical propagation p 332 N91-16693 NOISE PREDICTION (AIRCRAFT)	p 273 A91-24167
the Navier-Stokes level p 254 A91-21189	The prediction of STOVL noise - Current semiempirical	NOZZLE GEOMETRY Flow measurements in a model ramjet secondary
Prediction of transitional (laminar-turbulent) hypersonic flows using the parabolized Navier-Stokes equations	methods and comparisons with jet noise data [SAE PAPER 901058] p 331 A91-21255	combustion chamber p 310 A91-20743
p 255 A91-21195	Directivity and prediction of low frequency rotor noise	Aerodynamic design for supersonic nozzles of arbitrary
Flow studies in close-coupled ventral nozzles for STOVL aircraft	[AIAA PAPER 91-0592] p 331 A91-21545	cross section p 251 A91-20745 Flow studies in close-coupled ventral nozzles for STOVL
[SAE PAPER 901033] p 255 A91-21242	Development of a boundary layer noise prediction code and its application to advanced propellers	aircraft
On the formation and control of the dynamic stall vortex on a pitching airfoil	[AIAA PAPER 91-0593] p 331 A91-21546	[SAE PAPER 901033] p 255 A91-21242 Effect of slotting on the noise of an exisymmetric
[AIAA PAPER 91-0006] p 255 A91-21328	The interim prediction for aircraft noise p 332 A91-22370	supersonic jet p 332 A91-22493
Navier-Stokes simulation of a close-coupled	Airframe noise prediction	NOZZLES
canard-wing-body configuration [AIAA PAPER 91-0070] p 257 A91-21356	[ESDU-90023] p 332 N91-15843 NOISE PROPAGATION	Air-to-ground attack fighter improvements through multi-function nozzies
Thin-layer Navier-Stokes solutions for transonic	Long-range vertical propagation p 332 N91-16693	[SAE PAPER 901002] p 304 A91-21231
multi-body interference [AIAA PAPER 91-0071] p 258 A91-21357	NOISE REDUCTION Propeller noise minimization without thrust loss due to	NUCLEAR WEAPONS
Calculation of vortex flowfields around forebodies and	asymmetric blade distribution p 331 A91-20614	Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD)
delta wings [AIAA PAPER 91-0176] p 259 A91-21396	Effect of slotting on the noise of an axisymmetric	[DE91-004698] p 307 N91-15179
Joint computational experimental aerodynamics	supersonic jet p 332 A91-22493 Potential reduction of en route noise from an advanced	NUMERICAL CONTROL Limitations of BITE Built In Test Equipment for
research on a hypersonic vehicle. II - Computational	turboprop aircraft	transport aircraft p 250 A91-21202
results [AIAA PAPER 91-0321] p 261 A91-21458	[NASA-TM-103635] p 332 N91-15842 NOISE SPECTRA	Testing air data systems on aircraft - Problems and
Study of dynamic stall mechanism using simulation of	Low-noise oscillators for airborne radar applications	solutions p 297 A91-21205 NUMERICAL FLOW VISUALIZATION
two-dimensional unsteady Navier-Stokes equations [AIAA PAPER 91-0546] p 263 A91-21525	p 296 N91-15159	Numerical prediction of the unsteady flowfield around
High alpha aerodynamic control by tangential fuselage	NONDESTRUCTIVE TESTS Assessment of impact damage in toughened resin	the F-18 aircraft at large incidence
blowing [AIAA PAPER 91-0620] p 264 A91-21561	composites p 312 A91-20776	[AIAA PAPER 91-0020] p 256 A91-21338 Curved vortex elements for numerical wake modeling
Unstructured Euler flow solutions using hexahedral cell	Testing air data systems on aircraft - Problems and solutions p 297 A91-21205	p 273 A91-24162
refinement [AIAA PAPER 91-0637] p 264 A91-21574	Pulsed eddy current inspection of cracks under installed	NUTATION
Navier-Stokes computation of wing/rotor interaction for	fasteners p 318 A91-22188 Optimization of process routes in the repair of gas turbine	Cost-effective use of liquid nitrogen in cryogenic wind tunnels, phase 2
a tilt rotor in hover	engine components using capillary testing	[NASA-CR-182088] p 309 N91-15188
[AIAA PAPER 91-0707] p 265 A91-21593 Coupled LEWICE/Navier-Stokes code development	p 321 A91-23817	_
[AIAA PAPER 91-0804] p 326 A91-21624	X ray computed tomography of composites [AD-A227227] ρ 314 N91-15322	0
Unsteady separation over maneuvering bodies	NONEQUILIBRIUM FLOW	ALL INT OVERTICE
perturbed aerodynamics of flying aircraft p 269 A91-22481	Viscous non equilibrium flow calculations by an implicit finite volume method	ON-LINE SYSTEMS X ray computed tomography of composites
Vortical flow computations on swept flexible wings using	[A!AA PAPER 91-0702] p 265 A91-21592	[AD-A227227] p 314 N91-15322
Navier-Stokes equations p 269 A91-22483	NONLINEAR EQUATIONS Finite element expressions for transcoir flows	ONBOARD EQUIPMENT
Flow separation patterns over an F-14A aircraft wing [AIAA PAPER 90-0596] p 269 A91-22497	Finite element approximations for transonic flows [ETN-91-98491] p 277 N91-15988	Future aeronautic environment - FMS/ATC/pilot p 283 A91-23548
-	•	F =:: ======

OPERATING SYSTEMS (COMPUTERS)	Optimal trajectories for an aerospace plane. Part 1:	PEEK
NAVPACK: Simulation tools for design of high	Formulation, results, and analysis	Design for strength and rigidity of a thermoplastic
performance integrated navigation systems	[NASA-CR-187868] p 293 N91-16013	composite speed brake p 284 A91-20783
p 329 N91-15739 OPERATIONS RESEARCH	The integration of structural optimization in the general design process for aircraft	TF89 tactical fighter outer wing design
Formal tools and simulation tools: A coherent	[MBB/FE122/S/PUB/0405] p 293 N91-16017	[ETN-91-98580] p 294 N91-16019 PERFORMANCE PREDICTION
workshop p 328 N91-15728	OSCILLATING FLOW	A new method of predicting the performance of gas
OPERATORS (MATHEMATICS)	Velocity field of an axisymmetric pulsed, subsonic air	turbine engines
Parameter identification for nonlinear aerodynamic	jet p 269 A91-22479	[ASME PAPER 90-GT-337] p 302 A91-23647
systems	The influences of forced oscillations toward vortex-breakdown p 270 A91-22762	Airframe-induced upwash at subsonic speeds
[NASA-CR-187410] p 274 N91-15126	An investigation of supersonic oscillatory cavity flows	[ESDU-90020] p 275 N91-15130 Jet engine performance estimation from minimal input
OPTICAL COMMUNICATION Evaluation of hand held laser communicators for	driven by thick shear layers p 271 A91-23550	data portormanos estimation from marinar input
airborne applications p 282 A91-22815	Effect of the initial flow conditions on the aerodynamic	[ETN-91-98582] p 303 N91-16023
OPTICAL COUPLING	and acoustic characteristics of turbulent jets	PERFORMANCE TESTS
Computer communication using Logic Cell Arrays (LCA)	p 272 A91-23903 OSCILLATIONS	Flow studies in close-coupled ventral nozzles for STOVL
in ATTAS p 294 A91-20617	Dynamic analysis of rotor blade undergoing rotor power	aircraft [SAE PAPER 901033] p 255 A91-21242
OPTICAL FIBERS	shutdown	Advanced Turbine Technology Applications Project
The aircraft avionic interconnection system p 317 A91-21204	[NASA-TM-102865] p 251 N91-15124	(ATTAP)
Special optical fibres and sensors for aeronautics	OZONE	[NASA-CR-187039] p 302 N91-16021
p 332 N91-15167	The atmospheric effects of stratospheric aircraft: A topical review	PERSONAL COMPUTERS
Tests for integrating measurements of gas pressures	[NASA-RP-1250] p 325 N91-16466	Smoothing and scaling airfoil coordinates on a personal computer
in aircraft mechanisms	The atmospheric effects of stratospheric aircraft: A	[DE89-000878] p 330 N91-16582
[ETN-91-98558] p 293 N91-16014	current consensus	PHASED ARRAYS
Advanced structural instrumentation, volume 2	[NASA-RP-1251] p 325 N91-16467	Broadband coupling structures for microwave arithmetic
[AD-A227473] p 324 N91-16330	OZONE DEPLETION The dynamics of the stratospheric polar vortex and its	circuits and phased arrays p 322 N91-15163
OPTICAL MATERIALS	relation to springtime ozone depletions	PHOTOGRAPHS Jet engine performance estimation from minimal input
Windshields and canopies - A pilot's best friends p 286 A91-21125	p 325 A91-21712	data
OPTICAL MEASUREMENT	,	[ETN-91-98582] p 303 N91-16023
Optical measurement of unducted fan flutter	P	PILOT INDUCED OSCILLATION
[NASA-TM-103285] p 302 N91-15174	•	Technique for predicting longitudinal pilot-induced
OPTICAL RADAR	PAINTS	oscillations p 305 A91-22961 PILOT PERFORMANCE
Airborne lidar for profiling of surface topography	Painting technology for civil aircraft and helicopters (2nd	Control concept of modern avionics in the service of
p 295 A91-23134	revised and enlarged edition) Russian book	pilot relief - Presented using the example of DO 328
High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095	p 250 A91-22102 Proceedings of the 2nd E-3 AWACS Corrosion	p 295 A91-22202
laser radar techniques p 295 A91-24095 Advances in Components for Active and Passive	Prevention Advisory Board (CPAB)	Closed-loop assessment of flight simulator fidelity
Airborne Sensors	[AD-A227627] p 291 N91-15150	p 311 A91-22960
[AGARD-CP-482] p 295 N91-15154	PALMGREN-MINER RULE	Effect of shaping sensor data on pilot response [NASA-TM-102737] p 297 N91-15173
Laser obstacle and cable update sensor	A comparison of fatigue life prediction methodologies	The development of avionics-intensive, multi-sensor
p 296 N91-15169	for rotorcraft	cockpits: Simulation does not always equal success
OPTIMAL CONTROL	[NASA-TM-102759] p 323 N91-15604	p 330 N91-15746
New general guidance method in constrained optimal	PANEL FLUTTER Free vibration of a cantilever annular sector plate with	PIPES (TUBES)
control. I - Numerical method p 326 A91-20506 Maximum-rate deceleration of an object during	curved radial edges and varying thickness	Performance of conical diffusers in subsonic compressible flow
controlled motion under the effect of aerodynamic drag	p 316 A91-20943	[ESDU-90025] p 275 N91-15131
and gravity forces p 268 A91-21940	Panel flutter analysis using high precision shear flexible	PITCH (INCLINATION)
Predictive control of optimal path terrain following	element p 319 A91-23423	An analysis of the Su-27 flight demonstration at the 1989
system p 305 A91-22371	Integrated design analysis and optimization	Paris Air Show
Technique for predicting longitudinal pilot-induced oscillations p 305 A91-22961	[MBB/FE2/S/PUB/0398] p 291 N91-15145	[SAE PAPER 901001] p 304 A91-21230 Three-dimensional unsteady flow fields elicited by
Integrated aeroelastic control optimization	PANEL METHOD (FLUID DYNAMICS) Propfan supersonic panel method analysis and flutter	pitching a canard and forward swept wing configuration:
p 305 A91-23743	predictions panel metrod analysis and notice	[AIAA PAPER 91-0005] p 255 A91-21327
Optimal conditions for controlling the intensity of	Numerical simulation of separated flows around a wing	PITCHING MOMENTS
turbulent flow by means of screens p 321 A91-23904	section at steady and unsteady motion by a discrete vortex	On the formation and control of the dynamic stall vortex
A real-time distributed optimal autopilot [RR-398] p 307 N91-15181	method p 278 N91-16268	on a pitching airfoil [AIAA PAPER 91-0006] p 255 A91-21328
Selection of weights in optimal control	PANELS	Normal force and pitching moment of low aspect ratio
[RR-397] p 330 N91-15796	The stability of light structures - An area of research	cropped-delta wings up to high angles of attack at
Optimization and guidance of flight trajectories for the	with a tradition and a future p 315 A91-20616 Bump examinations of integrally strengthened carbon	supersonic speeds
national aerospace plane	fiber reinforced plastic panels	[ESDU-90013] p 292 N91-15152
[NASA-CR-187837] p 292 N91-16010	[MBB/FE281/CFK/PUB/0013] p 314 N91-16076	Numerical simulation of separated flows around a wing section at steady and unsteady motion by a discrete vortex
Optimal trajectories for an aerospace plane. Part 2; Data, tables, and graphs '	PARABOLIC FLIGHT	method p 278 N91-16268
[NASA-CR-187848] p 292 N91-16011	Economical test method and ease of access under	PITTING
Aeroservoelastic tailoring for lateral control	microgravity: The zero-g Caravelle p 322 N91-15276	Failure analysis of a main rotor pitch horn bolt-located
enhancement : p 307 N91-16025	PARALLEL PROCESSING (COMPUTERS)	on the AH-1 Cobra helicopter
OPTIMIZATION	A real-time distributed optimal autopilot [RR-398] p 307 N91-15181	[AD-A227679] p 292 N91-16007
Optimization studies for the PW305 turbofan p 297 A91-21222	[RR-398] p 307 N91-15181 PARAMETER IDENTIFICATION	PLASMA ELECTRODES The production of PREP titanium powder Plasma
Aerodynamic design optimization using sensitivity	Nonlinear multi-point modeling and parameter estimation	Rotating Electrode Process p 312 A91-20881
analysis and computational fluid dynamics	of the DO 28 research aircraft p 289 A91-22357	PLASTIC AIRCRAFT STRUCTURES
[AIAA PAPER 91-0471] p 262 A91-21505	An identification method of fast time varying parameters	Design for strength and rigidity of a thermoplastic
Aerodynamic shape design and optimization	adapted to aircraft control systems p 327 A91-22758	composite speed brake p 284 A91-20783
[AIAA PAPER 91-0476] p 263 A91-21506 Improved design of the error-proof filler cover of aircraft	Parameter identification for nonlinear aerodynamic	Advanced composites F-4 rudder [SME PAPER EM90-106] p 249 A91-21107
fuel system p 288 A91-22266	systems	Composite materials in aircraft structures Book
Optimization of multi-element airfoils for maximum lifts	[NASA-CR-187410] p 274 N91-15126	p 313 A91-22109
in separated flow p 268 A91-22367	PARTICLE SIZE DISTRIBUTION	PLASTIC DEFORMATION
	The production of PREP titanium nowder Plasma	
Optimizing aircraft performance with adaptive, integrated	The production of PREP titanium powder Plasma Rotating Electrode Process p 312 A91-20881	Finite element thermo-viscoplastic analysis of
flight/propulsion control		aerospace structures
flight/propulsion control [ASME PAPER 90-GT-252] p 290 A91-23644	Rotating Electrode Process p 312 A91-20881 PARTICLE TRAJECTORIES Theoretical analysis of supersonic gas-particle	aerospace structures [NASA-TM-102761] p 324 N91-16407
flight/propulsion control [ASME PAPER 90-GT-252] p 290 A91-23644 Determination of cycle configuration of gas turbines and	Rotating Electrode Process p 312 A91-20881 PARTICLE TRAJECTORIES Theoretical analysis of supersonic gas-particle two-phase flow and its application to relatively complicated	aerospace structures
flight/propulsion control [ASME PAPER 90-GT-252] p 290 A91-23644 Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646	Rotating Electrode Process p 312 A91-20881 PARTICLE TRAJECTORIES Theoretical analysis of supersonic gas-particle two-phase flow and its application to relatively complicated flow fields p 255 A91-21198	aerospace structures [NASA-TM-102761] p 324 N91-16407 PLATES (STRUCTURAL MEMBERS) A study of flow structure in nozzles with a constant-height section in the throat region p 272 A91-23848
flight/propulsion control [ASME PAPER 90-GT-252] p 290 A91-23644 Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 Integrated design analysis and optimization	Rotating Electrode Process p 312 A91-20881 PARTICLE TRAJECTORIES Theoretical analysis of supersonic gas-particle two-phase flow and its application to relatively complicated flow fields p 255 A91-21198 Experimental water droplet impingement data on modern	aerospace structures [NASA-TM-102761] p 324 N91-16407 PLATES (STRUCTURAL MEMBERS) A study of flow structure in nozzles with a constant-height section in the throat region p 272 A91-23848 PNEUMATIC EQUIPMENT
flight/propulsion control [ASME PAPER 90-GT-252] p 290 A91-23644 Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 Integrated design analysis and optimization [MBB/FEZ/S/PUB/0398] p 291 N91-15145	Rotating Electrode Process p 312 A91-20881 PARTICLE TRAJECTORIES Theoretical analysis of supersonic gas-particle two-phase flow and its application to relatively complicated flow fields p 255 A91-21198 Experimental water droplet impingement data on modern aircraft surfaces	aerospace structures [NASA-TM-102761] p 324 N91-16407 PLATES (STRUCTURAL MEMBERS) A study of flow structure in nozzles with a constant-height section in the throat region p 272 A91-23848 PNEUMATIC EQUIPMENT Numerical modeling of an advanced pneumatic impulse
flight/propulsion control [ASME PAPER 90-GT-252] p 290 A91-23644 Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 Integrated design analysis and optimization [MBB/FE2/S/PUB/0398] p 291 N91-15145 Algorithms development methodology for	Rotating Electrode Process p 312 A91-20881 PARTICLE TRAJECTORIES Theoretical analysis of supersonic gas-particle two-phase flow and its application to relatively complicated flow fields p 255 A91-21198 Experimental water droplet impingement data on modern aircraft surfaces [AIAA PAPER 91-0445] p 262 A91-21493	aerospace structures [NASA-TM-102761] p 324 N91-16407 PLATES (STRUCTURAL MEMBERS) A study of flow structure in nozzles with a constant-height section in the throat region p 272 A91-23848 PNEUMATIC EQUIPMENT Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft
flight/propulsion control [ASME PAPER 90-GT-252] p 290 A91-23644 Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 Integrated design analysis and optimization [MBB/FEZ/S/PUB/0398] p 291 N91-15145	Rotating Electrode Process p 312 A91-20881 PARTICLE TRAJECTORIES Theoretical analysis of supersonic gas-particle two-phase flow and its application to relatively complicated flow fields p 255 A91-21198 Experimental water droplet impingement data on modern aircraft surfaces [AIAA PAPER 91-0445] p 262 A91-21493 PAVEMENTS Evaluation procedure for reinforced concrete box	aerospace structures [NASA-TM-102761] p 324 N91-16407 PLATES (STRUCTURAL MEMBERS) A study of flow structure in nozzles with a constant-height section in the throat region p 272 A91-23848 PNEUMATIC EQUIPMENT Numerical modeling of an advanced pneumatic impulse
flight/propulsion control [ASME PAPER 90-GT-252] p 290 A91-23644 Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 Integrated design analysis and optimization [MBB/FE2/S/PUB/0398] p 291 N91-15145 Algorithms development methodology for performance-optimized multicyclic rotor commands p 327 N91-15716 Formal tools and simulation tools: A coherent	Rotating Electrode Process p 312 A91-20881 PARTICLE TRAJECTORIES Theoretical analysis of supersonic gas-particle two-phase flow and its application to relatively complicated flow fields p 255 A91-21198 Experimental water droplet impingement data on modern aircraft surfaces [AIAA PAPER 91-0445] p 262 A91-21493 PAVEMENTS Evaluation procedure for reinforced concrete box culverts under airfield pavements	aerospace structures [NASA-TM-102761] p 324 N91-16407 PLATES (STRUCTURAL MEMBERS) A study of flow structure in nozzles with a constant-height section in the throat region p 272 A91-23848 PNEUMATIC EQUIPMENT Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 POINTING CONTROL SYSTEMS A decentralized controller for highly augmented
flight/propulsion control [ASME PAPER 90-GT-252] p 290 A91-23644 Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 Integrated design analysis and optimization [MBB/FE2/S/PUB/0398] p 291 N91-15145 Algorithms development methodology for performance-optimized multicyclic rotor commands p 327 N91-15716	Rotating Electrode Process p 312 A91-20881 PARTICLE TRAJECTORIES Theoretical analysis of supersonic gas-particle two-phase flow and its application to relatively complicated flow fields p 255 A91-21198 Experimental water droplet impingement data on modern aircraft surfaces [AIAA PAPER 91-0445] p 262 A91-21493 PAVEMENTS Evaluation procedure for reinforced concrete box	aerospace structures [NASA-TM-102761] p 324 N91-16407 PLATES (STRUCTURAL MEMBERS) A study of flow structure in nozzles with a constant-height section in the throat region p 272 A91-23848 PNEUMATIC EQUIPMENT Numerical modeling of an advanced pneumatic impulse ice protection system (PiIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 POINTING CONTROL SYSTEMS

POLAR REGIONS SUBJECT INDEX

POLAR REGIONS	PRESSURE GRADIENTS	PROPULSION SYSTEM PERFORMANCE
The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions	Unsteady measurement of skin friction in adverse pressure gradient - A new approach to a well known	The prediction of STOVL noise - Current semiempirica methods and comparisons with jet noise data
p 325 A91-21712	gauge	[SAE PAPER 901058] p 331 A91-2125
POLLUTION CONTROL	(AIAA PAPER 91-0168) p 318 A91-21391	Hypersonic propulsion system force accounting
Proceedings of the 2nd E-3 AWACS Corrosion	Pseudo Reynolds number effects in transonic wind	[AIAA PAPER 91-0228] p 299 A91-2141
Prevention Advisory Board (CPAB) [AD-A227627] p 291 N91-15150	tunnels [ETN-91-98493] p 276 N91-15135	Integrated flight/propulsion control system design base on a centralized approach p 305 A91-2295
POLYETHYLENES	Investigation of the influence of constant adverse	Engine performance monitoring and troubleshooting
Comparison of combustion experiments and theory in	pressure gradients on laminar boundary-layer stability at	techniques for the CF-18 aircraft
polyethylene solid fuel ramjets p 297 A91-20744	Mach number 8	[ASME PAPER 90-GT-357] p 301 A91-2363
POLYMER MATRIX COMPOSITES	[AD-A228231] p 324 N91-16293	SNECMA M88 engine development status [ASME PAPER 90-GT-118] p 301 A91-2363
X ray computed tomography of composites [AD-A227227] p 314 N91-15322	PRESSURE MEASUREMENT	[ASME PAPER 90-GT-118] p 301 A91-2363 Computational fluid dynamic applications for je
POSITION ERRORS	Pressure-time history of pylon wake on a pusher propeller in flight p 331 A91-20747	propulsion system integration
Position error calibration of a pressure survey aircraft	propeller in flight p 331 A91-20747 Eight channel pressure measuring system for cryogenic	[ASME PAPER 90-GT-343] p 271 A91-2363
using a trailing cone p 285 A91-20986	use in the European Transonic Wind-tunnel over the	Integrated propulsion system requirements for control
POSITION SENSING High-precision fiber-optic position sensing using diode	temperature range 78-300 K p 318 A91-21722	of STOVL aircraft [ASME PAPER 90-GT-364] p 305 A91-2364
laser radar techniques p 295 A91-24095	Tests for integrating measurements of gas pressures	[ASME PAPER 90-GT-364] p 305 A91-2364 Optimizing aircraft performance with adaptive, integrate
POTENTIAL FLOW	in aircraft mechanisms	flight/propulsion control
Numerical simulation of separated flows around a wing	[ETN-91-98558] p 293 N91-16014	[ASME PAPER 90-GT-252] p 290 A91-2364
section at steady and unsteady motion by a discrete vortex	PRESSURE PULSES	Simulation of aircraft gas turbine engines
method p 278 N91-16268	Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft	[ASME PAPER 90-GT-342] p 301 A91-2364
POWDER METALLURGY Titanium compressor eggshells p 312 A91-20879	[AIAA PAPER 91-0555] p 288 A91-21529	A new method of predicting the performance of gaturbine engines
The production of PREP titanium powder Plasma	PRESSURE RECOVERY	[ASME PAPER 90-GT-337] p 302 A91-2364
Rotating Electrode Process p 312 A91-20881	Performance of conical diffusers in subsonic	PROTECTIVE COATINGS
POWER AMPLIFIERS	compressible flow	Magnetron sputtered CoCrAIY coatings on superallo
GaAs MMICs in selfaligned gate technology for phased	[ESDU-90025] p 275 N91-15131	IN738 p 313 A91-2234 PROTOCOL (COMPUTERS)
array radar application p 296 N91-15160 POWER SPECTRA	PROBABILITY THEORY A calculating method of the kill probability attack area	Aeronautical Mobile Satellite Service (AMSS) capacit
Acoustic power level comparisons of model-scale	for AAM p 305 A91-22352	analysis and protocol performance simulation plan
counterrotating unducted fans	Probabilistic fatigue methodology for six nines	[DOT/FAA/CT-TN90/35] p 311 N91-1529
[AIAA PAPER 91-0595] p 332 A91-21548	reliability	PROTUBERANCES
POWER SUPPLY CIRCUITS	[NASA-TM-102757] p 323 N91-15605	Bump examinations of integrally strengthened carbo
Advanced U.S. military aircraft battery systems [SAE PAPER 901054] p 325 A91-21252	PRODUCT DEVELOPMENT	fiber reinforced plastic panels [MBB/FE281/CFK/PUB/0013] p 314 N91-1607
POWERED LIFT AIRCRAFT	A measurement system for production flight tests of new	PULSE COMMUNICATION
Downwash measurement at the horizontal tail	aircraft p 308 A91-20984 PROFILOMETERS	ACARS air/ground communication facilities for
p 286 A91-21000	Profile measurements in transonic wind tunnel	transport aircraft maintenance p 282 A91-2120
PREDICTION ANALYSIS TECHNIQUES	Braunschweig p 308 A91-20613	PULSE DOPPLER RADAR
Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20899	PROGRAM VERIFICATION (COMPUTERS)	Modern airborne early warning radars
Technique for predicting longitudinal pilot-induced	Hypersonic shock/boundary-layer interaction database	р 283 А91-2314
oscillations p 305 A91-22961	[NASA-CR-187769] p 277 N91-15986	PULTRUSION X ray computed tomography of composites
A new method of predicting the performance of gas	PROGRAMMING LANGUAGES	[AD-A227227] p 314 N91-1532
turbine engines [ASME PAPER 90-GT-337] p 302 A91-23647	Real-time hardware-in-the-loop simulation for ATTAS and ATTHES advanced technology flight test vehicles	PURSUIT TRACKING
[ASME PAPER 90-GT-337] p 302 A91-23647 An introduction to aircraft excrescence drag	p 329 N91-15732	An adaptive filter for tracking the maneuvering target
	PROJECT PLANNING	p 327 A91-2275
[ESDU-90029] p 275 N91-15132		
A method of estimating a separation boundary of	Potential use of tiltrotor aircraft in Canadian aviation	PYLONS Granuse time history of pylon wake an a pylon
A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001	Pressure-time history of pylon wake on a pushe
A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY	· · · · ·
A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2
A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 297 A91-20612	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS
A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2
A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p. 297 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p. 251 A91-20615 Propfan supersonic panel method analysis and flutter	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-1633
A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 297 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2
A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 297 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15693 Long-range vertical propagation p 332 N91-16693	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-1633
A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines reliability	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 287 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 Long-range vertical propagation p 332 N91-16693 PROPELLER BLADES	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-1633 Q QUALITY CONTROL Maintenance standards p 250 A91-2354
A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines reliability [NASA-TM-102757] p 323 N91-15605	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 297 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 Long-range vertical propagation p 332 N91-16693 PROPELLER BLADES Profile measurements in transonic wind tunnel	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-1633 Q QUALITY CONTROL Maintenance standards p 250 A91-2354 Theory of the resonance method for the quality control
A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines reliability [NASA-TM-102757] p 323 N91-15605 Propfan supersonic panel method analysis and flutter	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 297 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 Long-range vertical propagation p 332 N91-16693 PROPELLER BLADES Profile measurements in transonic wind tunnel Braunschweig p 308 A91-20613	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-1633 Q Q QUALITY CONTROL Maintenance standards p 250 A91-2354 Theory of the resonance method for the quality control adhesive joints p 321 A91-2381.
A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines reliability [NASA-TM-102757] p 323 N91-15605 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 297 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 Long-range vertical propagation p 332 N91-16693 PROPELLER BLADES Profile measurements in transonic wind tunnel	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-1633 Q QUALITY CONTROL Maintenance standards p 250 A91-2354 Theory of the resonance method for the quality controf adhesive joints p 321 A91-2381. Optimization of process routes in the repair of gas turbin
A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines reliability [NASA-TM-102757] p 323 N91-15605 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 PREDICTIONS A review of ice accretion data from a model rotor icing	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 287 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 Long-range vertical propagation p 332 N91-16693 PROPELLER BLADES Profile measurements in transonic wind tunnel Braunschweig p 308 A91-20613 Propeller noise minimization without thrust loss due to	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-1633 Q QUALITY CONTROL Maintenance standards p 250 A91-2354 Theory of the resonance method for the quality control of adhesive joints p 321 A91-2381. Optimization of process routes in the repair of gas turbin engine components using capillary testing
A method of estimating a separation boundary of two-dimensional aerofoli sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines reliability [NASA-TM-102757] p 323 N91-15605 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 PREDICTIONS A review of ice accretion data from a model rotor icing test and comparison with theory	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 297 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 Long-range vertical propagation p 332 N91-16693 PROPELLER BLADES Profile measurements in transonic wind tunnel Braunschweig p 308 A91-20613 Propeller noise minimization without thrust loss due to asymmetric blade distribution p 331 A91-20614 Pressure-time history of pylon wake on a pusher propeller in flight p 331 A91-20747	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-1633 Q QUALITY CONTROL Maintenance standards p 250 A91-2354 Theory of the resonance method for the quality controf adhesive joints p 321 A91-2381. Optimization of process routes in the repair of gas turbin
A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines reliability [NASA-TM-102757] p 323 N91-15605 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 PREDICTIONS A review of ice accretion data from a model rotor icing test and comparison with theory [AIAA PAPER 91-0661] p 280 A91-22500	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 287 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15893 Long-range vertical propagation p 332 N91-16693 PROPELLER BLADES Profile measurements in transonic wind tunnel Braunschweig p 308 A91-20613 Propeller noise minimization without thrust loss due to asymmetric blade distribution p 331 A91-20614 Pressure-time history of pylon wake on a pusher propeller in flight p 331 A91-20747 Potential reduction of en route noise from an advanced	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-1633 Q QUALITY CONTROL Maintenance standards p 250 A91-2354 Theory of the resonance method for the quality control adhesive joints p 321 A91-2381. Optimization of process routes in the repair of gas turbin engine components using capillary testing p 321 A91-2381
A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines reliability [NASA-TM-102757] p 323 N91-15605 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 PREDICTIONS A review of ice accretion data from a model rotor icing test and comparison with theory [AIAA PAPER 91-0661] p 280 A91-22500 PREDICTOR-CORRECTOR METHODS	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 297 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 Long-range vertical propagation p 332 N91-16693 PROPELLER BLADES Profile measurements in transonic wind tunnel Braunschweig p 308 A91-20613 Propeller noise minimization without thrust loss due to asymmetric blade distribution p 331 A91-20614 Pressure-time history of pylon wake on a pusher propeller in flight p 331 A91-20747 Potential reduction of en route noise from an advanced turboprop aircraft	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-1633 Q QUALITY CONTROL Maintenance standards p 250 A91-2354 Theory of the resonance method for the quality control of adhesive joints p 321 A91-2381. Optimization of process routes in the repair of gas turbin engine components using capillary testing
A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines reliability [NASA-TM-102757] p 323 N91-15605 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 PREDICTIONS A review of ice accretion data from a model rotor icing test and comparison with theory [AIAA PAPER 91-0661] p 280 A91-22500 PREDICTOR-CORRECTOR METHODS Three-dimensional numerical simulation of	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 297 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersortic panel method analysis and flutter predictions p 278 N91-15993 Long-range vertical propagation p 332 N91-16693 PROPELLER BLADES Profile measurements in transonic wind tunnel Braunschweig p 308 A91-20613 Propeller noise minimization without thrust loss due to asymmetric blade distribution p 331 A91-20747 Potential reduction of en route noise from an advanced turboprop aircraft [NASA-TM-103635] p 332 N91-15842	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-1633 Q QUALITY CONTROL Maintenance standards p 250 A91-2354 Theory of the resonance method for the quality control adhesive joints p 321 A91-2381 Optimization of process routes in the repair of gas turbin engine components using capillary testing p 321 A91-2381
A method of estimating a separation boundary of two-dimensional aerofoli sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines reliability [NASA-TM-102757] p 323 N91-15605 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 PREDICTIONS A review of ice accretion data from a model rotor icing test and comparison with theory [AIAA PAPER 91-0561] p 280 A91-22500 PREDICTOR-CORRECTOR METHODS Three-dimensional numerical simulation of electrothermal deicing systems	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 297 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15893 Long-range vertical propagation p 332 N91-16693 PROPELLER BLADES Profile measurements in transonic wind tunnel Braunschweig p 398 A91-20613 Propeller noise minimization without thrust loss due to asymmetric blade distribution p 331 A91-20614 Pressure-time history of pylon wake on a pusher propeller in flight p 331 A91-20747 Potential reduction of en route noise from an advanced turboprop aircraft [NASA-TM-103635] p 332 N91-15842	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-1633 Q QUALITY CONTROL Maintenance standards p 250 A91-2354 Theory of the resonance method for the quality control of adhesive joints p 321 A91-2381 Optimization of process routes in the repair of gas turbin engine components using capillary testing p 321 A91-2381
A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines reliability [NASA-TM-102757] p 323 N91-15605 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 PREDICTIONS A review of ice accretion data from a model rotor icing test and comparison with theory [AIAA PAPER 91-0661] p 280 A91-22500 PREDICTOR-CORRECTOR METHODS Three-dimensional numerical simulation of electrothermal deicing systems	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 297 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersortic panel method analysis and flutter predictions p 278 N91-15993 Long-range vertical propagation p 332 N91-16693 PROPELLER BLADES Profile measurements in transonic wind tunnel Braunschweig p 308 A91-20613 Propeller noise minimization without thrust loss due to asymmetric blade distribution p 331 A91-20747 Potential reduction of en route noise from an advanced turboprop aircraft [NASA-TM-103635] p 332 N91-15842	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-1633 Q QUALITY CONTROL Maintenance standards p 250 A91-2354 Theory of the resonance method for the quality control of adhesive joints p 321 A91-2381. Optimization of process routes in the repair of gas turbin engine components using capillary testing p 321 A91-2381 R RADAR Activities report of the German Federal Institute for Flighten and the standard of the German Federal Institute for Flighten and the standard of the German Federal Institute for Flighten and the standard of the German Federal Institute for Flighten and the standard of the German Federal Institute for Flighten and the standard of the German Federal Institute for Flighten and the standard of the German Federal Institute for Flighten and the standard of the German Federal Institute for Flighten and the standard of the german Federal Institute for Flighten and the standard of the german Federal Institute for Flighten and the standard of the german Federal Institute for Flighten and the standard of the german Federal Institute for Flighten and the standard of the german Federal Institute for Flighten and the standard of the german Federal Institute for Flighten and the standard of the german Federal Institute for Flighten and the standard of the german Federal Institute for Flighten and the standard of the standar
A method of estimating a separation boundary of two-dimensional aerofoli sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines reliability [NASA-TM-102757] p 323 N91-15605 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 PREDICTIONS A review of ice accretion data from a model rotor icing test and comparison with theory [AIAA PAPER 91-0661] p 280 A91-22500 PREDICTOR-CORRECTOR METHODS Three-dimensional numerical simulation of electrothermal deicing systems [AIAA PAPER 91-0267] p 287 A91-21433 PRESSURE DISTRIBUTION Position error calibration of a pressure survey aircraft	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 287 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15939 Long-range vertical propagation p 332 N91-16693 PROPELLER BLADES Profile measurements in transonic wind tunnel Braunschweig p 308 A91-20613 Propeller noise minimization without thrust loss due to asymmetric blade distribution p 331 A91-20614 Pressure-time history of pylon wake on a pusher propeller in flight p 331 A91-20747 Potential reduction of en route noise from an advanced turboprop aircraft [NASA-TM-103635] p 332 N91-15842 PROPELLER FANS Propfan supersonic panel method analysis and flutter predictions Long-range vertical propagation p 332 N91-15993	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-1633 Q QUALITY CONTROL Maintenance standards p 250 A91-2354 Theory of the resonance method for the quality control of adhesive joints p 321 A91-2381 Optimization of process routes in the repair of gas turbin engine components using capillary testing p 321 A91-2381
A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines reliability [NASA-TM-102757] p 323 N91-15605 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 PREDICTIONS A review of ice accretion data from a model rotor icing test and comparison with theory [AIAA PAPER 91-0661] p 280 A91-22500 PREDICTOR-CORRECTOR METHODS Three-dimensional numerical simulation of electrothermal deicing systems [AIAA PAPER 91-0267] p 287 A91-21433 PRESSURE DISTRIBUTION Position error calibration of a pressure survey aircraft using a trailing cone p 285 A91-20986	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 297 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15893 Long-range vertical propagation p 332 N91-16693 PROPELLER BLADES Profile measurements in transonic wind tunnel Braunschweig p 308 A91-20613 Propeller noise minimization without thrust loss due to asymmetric blade distribution p 331 A91-20614 Pressure-time history of pylon wake on a pusher propeller in flight p 331 A91-20747 Potential reduction of en route noise from an advanced turboprop aircraft [NASA-TM-103635] p 332 N91-15842 PROPELLER FANS Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 Long-range vertical propagation p 332 N91-15693	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-1633 Q Q QUALITY CONTROL Maintenance standards p 250 A91-2354 Theory of the resonance method for the quality control of adhesive joints p 321 A91-2381 Optimization of process routes in the repair of gas turbin engine components using capillary testing p 321 A91-2381 R RADAR Activities report of the German Federal Institute for Fligh Safety
A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines reliability [NASA-TM-102757] p 323 N91-15605 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 PREDICTIONS A review of ice accretion data from a model rotor icing test and comparison with theory [AIAA PAPER 91-0661] p 280 A91-22500 PREDICTOR-CORRECTOR METHODS Three-dimensional numerical simulation of electrothermal deicing systems [AIAA PAPER 91-0267] p 287 A91-21433 PRESSURE DISTRIBUTION Position error calibration of a pressure survey aircraft using a trailing cone p 285 A91-20986 Strip blowing from a wedge at hypersonic speeds	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 297 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 Long-range vertical propagation p 332 N91-16693 PROPELLER BLADES Profile measurements in transonic wind tunnel Braunschweig p 308 A91-20613 Propeller noise minimization without thrust loss due to asymmetric blade distribution p 331 A91-20614 Pressure-time history of pylon wake on a pusher propeller in flight p 331 A91-20747 Potential reduction of en route noise from an advanced turboprop aircraft [NASA-TM-103635] p 332 N91-15842 PROPELLER FANS Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 Long-range vertical propagation p 332 N91-15693 PROPELLER NOISE Development of a boundary layer noise prediction code	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-1633 Q QUALITY CONTROL Maintenance standards p 250 A91-2354. Theory of the resonance method for the quality control of adhesive joints p 321 A91-2381. Optimization of process routes in the repair of gas turbin engine components using capillary testing p 321 A91-2381. R RADAR Activities report of the German Federal Institute for Flight Safety [ETN-91-98644] p 281 N91-1600. RADAR ANTENNAS Gas MMICs in selfaligned gate technology for phase
A method of estimating a separation boundary of two-dimensional aerofoli sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines reliability [NASA-TM-102757] p 323 N91-15605 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 PREDICTIONS A review of ice accretion data from a model rotor icing test and comparison with theory [AIAA PAPER 91-0661] p 280 A91-22500 PREDICTOR-CORRECTOR METHODS Three-dimensional numerical simulation of electrothermal deicing systems [AIAA PAPER 91-0267] p 287 A91-21433 PRESSURE DISTRIBUTION Position error calibration of a pressure survey aircraft using a trailing cone p 285 A91-20986 Strip blowing from a wedge at hypersonic speedss [AIAA PAPER 91-0032] p 257 A91-21346	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 287 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15939 Long-range vertical propagation p 332 N91-16693 PROPELLER BLADES Profile measurements in transonic wind tunnel Braunschweig p 308 A91-20613 Propeller noise minimization without thrust loss due to asymmetric blade distribution p 331 A91-20614 Pressure-time history of pylon wake on a pusher propeller in flight p 331 A91-20747 Potential reduction of en route noise from an advanced turboprop aircraft [NASA-TM-103635] p 332 N91-15842 PROPELLER FANS Propfan supersonic panel method analysis and flutter predictions Long-range vertical propagation p 332 N91-15993 Long-range vertical propagation p 332 N91-1693 PROPELLER NOISE Development of a boundary layer noise prediction code and its application to advanced propellers	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] Q Q QUALITY CONTROL Maintenance standards p 250 A91-2354 Theory of the resonance method for the quality control of adhesive joints p 321 A91-2381 Optimization of process routes in the repair of gas turbin engine components using capillary testing p 321 A91-2381 R RADAR Activities report of the German Federal Institute for Flight Safety [ETN-91-98644] p 281 N91-1600. RADAR ANTENNAS Gask MMICs in selfaligned gate technology for phase array radar application p 296 N91-1516
A method of estimating a separation boundary of two-dimensional aerofoli sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines reliability [NASA-TM-102757] p 323 N91-15605 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 PREDICTIONS A review of ice accretion data from a model rotor icing test and comparison with theory [AIAA PAPER 91-0661] p 280 A91-22500 PREDICTOR-CORRECTOR METHODS Three-dimensional numerical simulation of electrothermal deicing systems [AIAA PAPER 91-0267] p 287 A91-21433 PRESSURE DISTRIBUTION Position error calibration of a pressure survey aircraft using a trailing cone p 285 A91-20986 Strip blowing from a wedge at hypersonic speeds [AIAA PAPER 91-0032] p 257 A91-21446 Calculations on total temperature and pressure in	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 297 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 Long-range vertical propagation p 332 N91-16693 PROPELLER BLADES Profile measurements in transonic wind tunnel Braunschweig p 308 A91-20613 Propeller noise minimization without thrust loss due to asymmetric blade distribution p 331 A91-20614 Pressure-time history of pylon wake on a pusher propeller in flight p 331 A91-20747 Potential reduction of en route noise from an advanced turboprop aircraft [NASA-TM-103635] p 332 N91-15842 PROPELLER FANS Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 Long-range vertical propagation p 332 N91-15693 PROPELLER NOISE Development of a boundary layer noise prediction code and its application to advanced propellers [AIAA PAPER 91-0593] Lin-flight source noise of an advanced full-scale	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-1633 Q QUALITY CONTROL Maintenance standards p 250 A91-2354 Theory of the resonance method for the quality control of adhesive joints p 321 A91-2381 Optimization of process routes in the repair of gas turbin engine components using capillary testing p 321 A91-2381 R RADAR Activities report of the German Federal Institute for Flight Safety [ETN-91-98644] p 281 N91-1600 RADAR ANTENNAS GaAs MMICs in selfaligned gate technology for phase array radar application p 296 N91-15166 RADAR MEASUREMENT
A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines reliability [NASA-TM-102757] p 323 N91-15605 Propfan supersonic panel method analysis and flutter predictions A review of ice accretion data from a model rotor icing test and comparison with theory [AIAA PAPER 91-0661] p 280 A91-22500 PREDICTORS Three-dimensional numerical simulation of electrothermal deicing systems [AIAA PAPER 91-0267] p 287 A91-21433 PRESSURE DISTRIBUTION Position error calibration of a pressure survey aircraft using a trailing cone p 285 A91-20986 Strip blowing from a wedge at hypersonic speeds [AIAA PAPER 91-0032] p 257 A91-21346 Calculations on total temperature and pressure in typersonic air flow p 271 A91-23095	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 297 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15939 Long-range vertical propagation p 332 N91-16693 PROPELLER BLADES Profile measurements in transonic wind tunnel Braunschweig p 308 A91-20613 Propeller noise minimization without thrust loss due to asymmetric blade distribution p 331 A91-20614 Pressure-time history of pylon wake on a pusher propeller in flight p 331 A91-20747 Potential reduction of en route noise from an advanced turboprop aircraft [NASA-TM-103635] p 332 N91-15842 PROPELLER FANS Propfan supersonic panel method analysis and flutter predictions Long-range vertical propagation p 332 N91-1693 PROPELLER NOISE Development of a boundary layer noise prediction code and its application to advanced propellers [AIAA PAPER 91-0593] p 331 A91-21546 In-flight source noise of an advanced full-scale single-rotation propeller	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-1633 Q QUALITY CONTROL Maintenance standards p 250 A91-2354 Theory of the resonance method for the quality control of adhesive joints p 321 A91-2381 Optimization of process routes in the repair of gas turbin engine components using capillary testing p 321 A91-2381 R RADAR Activities report of the German Federal Institute for Flight Safety [ETN-91-98644] p 281 N91-1600. RADAR ANTENNAS GaAs MMICs in selfaligned gate technology for phase array radar application p 296 N91-1516 RADAR MEASUREMENT Observations of severe turbulence near thunderstory
A method of estimating a separation boundary of two-dimensional aerofoli sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines reliability [NASA-TM-102757] p 323 N91-15605 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 PREDICTIONS A review of ice accretion data from a model rotor icing test and comparison with theory [AIAA PAPER 91-0661] p 280 A91-22500 PREDICTOR-CORRECTOR METHODS Three-dimensional numerical simulation of electrothermal deicing systems [AIAA PAPER 91-0267] p 287 A91-21433 PRESSURE DISTRIBUTION Position error calibration of a pressure survey aircraft using a trailing cone p 285 A91-20986 Strip blowing from a wedge at hypersonic speeds [AIAA PAPER 91-0032] p 257 A91-21446 Calculations on total temperature and pressure in	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 297 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15893 Long-range vertical propagation p 332 N91-16693 PROPELLER BLADES Profile measurements in transonic wind tunnel Braunschweig p 308 A91-20613 Propeller noise minimization without thrust loss due to asymmetric blade distribution p 331 A91-20614 Pressure-time history of pylon wake on a pusher propeller in flight p 331 A91-20747 Potential reduction of en route noise from an advanced turboprop aircraft [NASA-TM-103635] p 332 N91-15842 PROPELLER FANS Propfan supersonic panel method analysis and flutter predictions Long-range vertical propagation p 332 N91-15993 PROPELLER NOISE Development of a boundary layer noise prediction code and its application to advanced propellers [AIAA PAPER 91-0593] p 331 A91-21546 In-flight source noise of an advanced full-scale single-rotation propeller [AIAA PAPER 91-0594] p 331 A91-21547	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] Q Q QUALITY CONTROL Maintenance standards p 250 A91-2354 Theory of the resonance method for the quality control of adhesive joints p 321 A91-2381 Optimization of process routes in the repair of gas turbin engine components using capillary testing p 321 A91-2381 R RADAR Activities report of the German Federal Institute for Fligh Safety [ETN-91-98644] p 281 N91-1600. RADAR ANTENNAS GaAs MMICs in selfaligned gate technology for phase array radar application p 296 N91-1516 RADAR MEASUREMENT Observations of severe turbulence near thunderstorr tops
A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines reliability [NASA-TM-102757] p 323 N91-15605 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 PREDICTIONS A review of ice accretion data from a model rotor icing test and comparison with theory [AIAA PAPER 91-0661] p 280 A91-22500 PREDICTOR-CORRECTOR METHODS Three-dimensional numerical simulation of electrothermal deicing systems [AIAA PAPER 91-0267] p 287 A91-21433 PRESSURE DISTRIBUTION Position error calibration of a pressure survey aircraft using a trailing cone p 285 A91-20986 Strip blowing from a wedge at hypersonic speeds [AIAA PAPER 91-0032] p 257 A91-21346 Calculations on total temperature and pressure in hypersonic air flow p 271 A91-23095 A Green's Function Method for calculating the transonic	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 297 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 Long-range vertical propagation p 332 N91-16693 PROPELLER BLADES Profile measurements in transonic wind tunnel Braunschweig p 308 A91-20613 Propeller noise minimization without thrust loss due to asymmetric blade distribution p 331 A91-20614 Pressure-time history of pylon wake on a pusher propeller in flight p 331 A91-20747 Potential reduction of en route noise from an advanced turboprop aircraft [NASA-TM-103635] p 332 N91-15842 PROPELLER FANS Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 Long-range vertical propagation p 332 N91-16693 PROPELLER NOISE Development of a boundary layer noise prediction code and its application to advanced propellers [AIAA PAPER 91-0593] p 331 A91-21546 In-flight source noise of an advanced full-scale single-rotation propeller [AIAA PAPER 91-0594] p 331 A91-21547 Potential reduction of en route noise from an advanced	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-1633 Q QUALITY CONTROL Maintenance standards p 250 A91-2354 Theory of the resonance method for the quality control of adhesive joints p 321 A91-2381 Optimization of process routes in the repair of gas turbin engine components using capillary testing p 321 A91-2381 R RADAR Activities report of the German Federal Institute for Flight Safety [ETN-91-98644] p 281 N91-1600. RADAR ANTENNAS GaAs MMICs in selfaligned gate technology for phase array radar application p 296 N91-1516 RADAR MEASUREMENT Observations of severe turbulence near thunderstory
A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines reliability [NASA-TM-102757] p 323 N91-15605 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 PREDICTIONS A review of ice accretion data from a model rotor icing test and comparison with theory [AIAA PAPER 91-0661] p 280 A91-22500 PREDICTOR-CORRECTOR METHODS Three-dimensional numerical simulation of electrothermal deicing systems [AIAA PAPER 91-0267] p 287 A91-21433 PRESSURE DISTRIBUTION Position error calibration of a pressure survey aircraft using a trailing cone p 285 A91-20986 Strip blowing from a wedge at hypersonic speeds [AIAA PAPER 91-0032] p 257 A91-21346 Calculations on total temperature and pressure in typersonic air flow p 271 A91-23095 A Green's Function Method for calculating the transonic pressure distribution of wing p 273 A91-24157 Large-scale numerical aerodynamic simulations for complete aircraft configurations	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 297 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15933 Long-range vertical propagation p 332 N91-16693 PROPELLER BLADES Profile measurements in transonic wind tunnel Braunschweig p 308 A91-20613 Propeller noise minimization without thrust loss due to asymmetric blade distribution p 331 A91-20614 Pressure-time history of pylon wake on a pusher propeller in flight p 331 A91-20747 Potential reduction of en route noise from an advanced turboprop aircraft [NASA-TM-103635] p 332 N91-15842 PROPELLER FANS Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 Long-range vertical propagation p 332 N91-16693 PROPELLER NOISE Development of a boundary layer noise prediction code and its application to advanced propellers [AIAA PAPER 91-0593] p 331 A91-21546 In-flight source noise of an advanced full-scale single-rotation propeller [AIAA PAPER 91-0594] p 331 A91-21547 Potential reduction of en route noise from an advanced turboprop aircraft	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] Q Q Q Q QUALITY CONTROL Maintenance standards p 250 A91-2354 Theory of the resonance method for the quality control of adhesive joints p 321 A91-2381 Optimization of process routes in the repair of gas turbin engine components using capillary testing p 321 A91-2381 R RADAR Activities report of the German Federal Institute for Fligh Safety [ETN-91-98644] p 281 N91-1600. RADAR ANTENNAS GaAs MMICs in selfaligned gate technology for phase array radar application p 296 N91-1516 RADAR MEASUREMENT Observations of severe turbulence near thunderstor tops p 324 A91-2069 RADIAL FLOW Heat transfer in rotating passages with smooth wall and radial outward flow
A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines reliability [NASA-TM-102757] p 323 N91-15605 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 PREDICTIONS A review of ice accretion data from a model rotor icing test and comparison with theory [AIAA PAPER 91-0661] p 280 A91-22500 PREDICTOR-CORRECTOR METHODS Three-dimensional numerical simulation of electrothermal deicing systems [AIAA PAPER 91-0267] p 287 A91-21433 PRESSURE DISTRIBUTION Position error calibration of a pressure survey aircraft using a trailing cone p 285 A81-20986 Strip blowing from a wedge at hypersonic speeds [AIAA PAPER 91-0032] p 257 A91-21346 Calculations on total temperature and pressure in hypersonic air flow p 271 A91-23095 A Green's Function Method for calculating the transonic pressure distribution of wing p 273 A91-24157 Large-scale numerical aerodynamic simulations for complete aircraft configurations [NAL-TR-1073-T] p 277 N91-15984	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 297 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15933 Long-range vertical propagation p 332 N91-16693 PROPELLER BLADES Profile measurements in transonic wind tunnel Braunschweig p 308 A91-20613 Propeller noise minimization without thrust loss due to asymmetric blade distribution p 331 A91-20614 Pressure-time history of pylon wake on a pusher propeller in flight p 331 A91-20747 Potential reduction of en route noise from an advanced turboprop aircraft [NASA-TM-103635] p 332 N91-15842 PROPELLER FANS Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 Long-range vertical propagation p 332 N91-16693 PROPELLER NOISE Development of a boundary layer noise prediction code and its application to advanced propellers [AIAA PAPER 91-0593] p 331 A91-21546 In-flight source noise of an advanced full-scale single-rotation propeller [AIAA PAPER 91-0594] p 331 A91-21547 Potential reduction of en route noise from an advanced turboprop aircraft	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-1633 Q Q QUALITY CONTROL Maintenance standards p 250 A91-2354 Theory of the resonance method for the quality control of adhesive joints p 321 A91-2381 Optimization of process routes in the repair of gas turbin engine components using capillary testing p 321 A91-2381 R RADAR Activities report of the German Federal Institute for Flight Safety [ETN-91-98644] p 281 N91-1600. RADAR ANTENNAS GaAs MMICs in selfaligned gate technology for phase array radar application p 296 N91-1516 RADAR MEASUREMENT Observations of severe turbulence near thunderstorr tops p 324 A91-2069 RADIAL FLOW Heat transfer in rotating passages with smooth wall and radial outward flow [ASME PAPER 89-GT-272] p 320 A91-2365
A method of estimating a separation boundary of two-dimensional aerofoli sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines reliability [NASA-TM-102757] p 323 N91-15605 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 PREDICTIONS A review of ice accretion data from a model rotor icing test and comparison with theory [AIAA PAPER 91-0661] p 280 A91-22500 PREDICTOR-CORRECTOR METHODS Three-dimensional numerical simulation of electrothermal deicing systems [AIAA PAPER 91-0267] p 287 A91-21433 PRESSURE DISTRIBUTION Position error calibration of a pressure survey aircraft using a trailing cone wedge at hypersonic speeds [AIAA PAPER 91-032] p 257 A91-21346 Calculations on total temperature and pressure in hypersonic air flow p 271 A91-23095 A Green's Function Method for calculating the transonic pressure distribution of wing p 273 A91-24157 Large-scale numerical aerodynamic simulations for complete aircraft configurations [NAL-TR-1073-T] PRESSURE EFFECTS	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 287 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersonic panel method analysis and flutter predictions Long-range vertical propagation p 332 N91-16693 PROPELLER BLADES Profile measurements in transonic wind tunnel Braunschweig p 308 A91-20613 Propeller noise minimization without thrust loss due to asymmetric blade distribution p 331 A91-20614 Pressure-time history of pylon wake on a pusher propeller in flight p 331 A91-20747 Potential reduction of en route noise from an advanced turboprop aircraft [NASA-TM-103635] p 332 N91-15842 PROPELLER FANS Propfan supersonic panel method analysis and flutter predictions Long-range vertical propagation p 332 N91-15993 Long-range vertical propagation p 332 N91-15693 PROPELLER NOISE Development of a boundary layer noise prediction code and its application to advanced propellers [AIAA PAPER 91-0593] p 331 A91-21546 In-flight source noise of an advanced full-scale single-rotation propeller [AIAA PAPER 91-0594] p 331 A91-21547 Potential reduction of en route noise from an advanced turboprop aircraft [NASA-TM-103635] p 332 N91-15842 PROPULSION SYSTEM CONFIGURATIONS National aerospace plane longitudinal long-period	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-1633 Q QUALITY CONTROL Maintenance standards p 250 A91-2354 Theory of the resonance method for the quality control of adhesive joints p 321 A91-2381 Optimization of process routes in the repair of gas turbin engine components using capillary testing p 321 A91-2381 R RADAR Activities report of the German Federal Institute for Flight Safety [ETN-91-98644] p 281 N91-1600 RADAR ANTENNAS GaAs MMICs in selfaligned gate technology for phase array radar application p 296 N91-1516 RADAR MEASUREMENT Observations of severe turbulence near thunderstor tops p 324 A91-2069 RADIAL FLOW Heat transfer in rotating passages with smooth wall and radial outward flow [ASME PAPER 89-GT-272] p 320 A91-2365 RADIATION EFFECTS
A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines reliability [NASA-TM-102757] p 323 N91-15605 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 PREDICTIONS A review of ice accretion data from a model rotor icing test and comparison with theory [AIAA PAPER 91-0661] p 280 A91-22500 PREDICTOR-CORRECTOR METHODS Three-dimensional numerical simulation of electrothermal deicing systems [AIAA PAPER 91-0267] p 287 A91-21433 PRESSURE DISTRIBUTION Position error calibration of a pressure survey aircraft using a trailing cone p 285 A91-20986 Strip blowing from a wedge at hypersonic speeds [AIAA PAPER 91-032] p 257 A91-21346 Calculations on total temperature and pressure in hypersonic air flow p 271 A91-23095 A Green's Function Method for calculating the transonic pressure distribution of wing p 273 A91-24157 Large-scale numerical aerodynamic simulations for complete aircraft configurations [NAL-TR-1073-T] p 277 N91-15984	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 297 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15593 Long-range vertical propagation p 332 N91-16693 PROPELLER BLADES Profile measurements in transonic wind tunnel Braunschweig p 308 A91-20613 Propeller noise minimization without thrust loss due to asymmetric blade distribution p 331 A91-20614 Pressure-time history of pylon wake on a pusher propeller in flight p 331 A91-20747 Potential reduction of en route noise from an advanced turboprop aircraft [NASA-TM-103635] p 332 N91-15842 PROPELLER FANS Propfan supersonic panel method analysis and flutter predictions Long-range vertical propagation p 332 N91-16693 PROPELLER NOISE Development of a boundary layer noise prediction code and its application to advanced propellers [AIAA PAPER 91-0593] p 331 A91-21546 In-flight source noise of an advanced full-scale single-rotation propeller [AIAA PAPER 91-0594] p 331 A91-21547 Potential reduction of en route noise from an advanced turboprop aircraft [NASA-TM-103635] p 332 N91-15842 PROPULSION SYSTEM CONFIGURATIONS National aerospace plane longitudinal long-period dynamics p 305 A91-22962	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-1633 Q QUALITY CONTROL Maintenance standards p 250 A91-2354 Theory of the resonance method for the quality control of adhesive joints p 321 A91-2381 Optimization of process routes in the repair of gas turbinengine components using capillary testing p 321 A91-2381 R RADAR Activities report of the German Federal Institute for Flights afety [ETN-91-98644] p 281 N91-1600. RADAR ANTENNAS GaAs MMICs in selfaligned gate technology for phase array radar application p 296 N91-1516 RADAR MEASUREMENT Observations of severe turbulence near thunderstorm tops p 324 A91-2069 RADIAL FLOW Heat transfer in rotating passages with smooth wall and radial outward flow [ASME PAPER 89-GT-272] p 320 A91-2365 RADIATION EFFECTS Radioluminescent (RL) airfield lighting system program
A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines reliability [NASA-TM-102757] p 323 N91-15605 Propfan supersonic panel method analysis and flutter predictions A review of ice accretion data from a model rotor icing test and comparison with theory [AIAA PAPER 91-0661] p 280 A91-22500 PREDICTORS Three-dimensional numerical simulation of electrothermal deicing systems [AIAA PAPER 91-0267] p 287 A91-21433 PRESSURE DISTRIBUTION Position error calibration of a pressure survey aircraft using a trailing cone p 285 A91-20986 Strip blowing from a wedge at hypersonic speeds [AIAA PAPER 91-0032] p 257 A91-21346 Calculations on total temperature and pressure in hypersonic air flow p 271 A91-23095 A Green's Function Method for calculating the transonic pressure distribution of wing p 273 A91-24157 Large-scale numerical aerodynamic simulations for complete aircraft configurations [NAL-TR-1073-T] p 277 N91-15984 PRESSURE EFFECTS An evaluation of the pressure proof test concept for thin sheet 2024-T3 p 315 A91-20788	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 297 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 Long-range vertical propagation p 332 N91-16693 PROPELLER BLADES Profile measurements in transonic wind tunnel Braunschweig p 308 A91-20613 Propeller noise minimization without thrust loss due to asymmetric blade distribution p 331 A91-20614 Pressure-time history of pylon wake on a pusher propeller in flight p 331 A91-20747 Potential reduction of en route noise from an advanced turboprop aircraft [NASA-TM-103635] p 332 N91-15842 PROPELLER FANS Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 Long-range vertical propagation p 332 N91-16693 PROPELLER NOISE Development of a boundary layer noise prediction code and its application to advanced propellers [AIAA PAPER 91-0593] p 331 A91-21546 In-flight source noise of an advanced full-scale single-rotation propeller [AIAA PAPER 91-0594] p 331 A91-21547 Potential reduction of en route noise from an advanced turboprop aircraft [NASA-TM-103635] p 332 N91-15842 PROPULSION SYSTEM CONFIGURATIONS National aerospace plane longitudinal long-period dynamics 9 305 A91-22962 SNECMA M88 engine development status	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-1633 Q Q QUALITY CONTROL Maintenance standards p 250 A91-2354 Theory of the resonance method for the quality control of adhesive joints p 321 A91-2381 Optimization of process routes in the repair of gas turbin engine components using capillary testing p 321 A91-2381 R RADAR Activities report of the German Federal Institute for Flight Safety [ETN-91-98644] p 281 N91-1600. RADAR ANTENNAS GaAS MMICs in selfaligned gate technology for phase array radar application p 296 N91-1516 RADAR MEASUREMENT Observations of severe turbulence near thunderstorm tops p 324 A91-2069 RADIAL FLOW Heat transfer in rotating passages with smooth wall and radial outward flow [ASME PAPER 89-GT-272] p 320 A91-2365 RADIATION EFFECTS Radioluminescent (RL) airfield lighting system program (DE91-001007) p 309 N91-1518
A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines reliability [NASA-TM-102757] p 323 N91-15605 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 PREDICTIONS A review of ice accretion data from a model rotor icing test and comparison with theory [AIAA PAPER 91-0661] p 280 A91-22500 PREDICTOR-CORRECTOR METHODS Three-dimensional numerical simulation of electrothermal deicing systems [AIAA PAPER 91-0267] p 287 A91-21433 PRESSURE DISTRIBUTION Position error calibration of a pressure survey aircraft using a trailing cone p 285 A91-20986 Strip blowing from a wedge at hypersonic speeds [AIAA PAPER 91-032] p 257 A91-21346 Calculations on total temperature and pressure in hypersonic air flow p 271 A91-23095 A Green's Function Method for calculating the transonic pressure distribution of wing p 273 A91-24157 Large-scale numerical aerodynamic simulations for complete aircraft configurations [NAL-TR-1073-T] p 277 N91-15984	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 287 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersonic panel method analysis and flutter predictions p 278 N91-1593 Long-range vertical propagation p 332 N91-16693 PROPELLER BLADES Profile measurements in transonic wind tunnel Braunschweig p 308 A91-20613 Propeller noise minimization without thrust loss due to asymmetric blade distribution p 331 A91-20614 Pressure-time history of pylon wake on a pusher propeller in flight p 331 A91-20747 Potential reduction of en route noise from an advanced turboprop aircraft [NASA-TM-103635] p 332 N91-15842 PROPELLER FANS Propfan supersonic panel method analysis and flutter predictions p 327 N91-16693 PROPELLER NOISE Development of a boundary layer noise prediction code and its application to advanced propellers [AIAA PAPER 91-0593] p 331 A91-21546 In-flight source noise of an advanced full-scale single-rotation propeller [AIAA PAPER 91-0594] p 331 A91-21547 Potential reduction of en route noise from an advanced turboprop aircraft [NASA-TM-103635] p 332 N91-15842 PROPULSION SYSTEM CONFIGURATIONS National aerospace plane longitudinal long-period dynamics p 305 A91-22962 SNECMA M88 engine development status [ASME PAPER 90-GT-118] p 301 A91-23636	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-1633 Q QUALITY CONTROL Maintenance standards p 250 A91-2354 Theory of the resonance method for the quality control of adhesive joints p 321 A91-2381 Optimization of process routes in the repair of gas turbin engine components using capillary testing p 321 A91-2381 R RADAR Activities report of the German Federal Institute for Flight Safety [ETN-91-98644] p 281 N91-1600 RADAR ANTENNAS GaAs MMICs in selfaligned gate technology for phase array radar application p 296 N91-1516 RADAR MEASUREMENT Observations of severe turbulence near thunderstor tops RADIAL FLOW Heat transfer in rotating passages with smooth wall and radial outward flow [ASME PAPER 89-GT-272] p 320 A91-2365 RADIATION EFFECTS Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-1518
A method of estimating a separation boundary of two-dimensional aerofoli sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines reliability [NASA-TM-102757] p 323 N91-15605 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 PREDICTIONS A review of ice accretion data from a model rotor icing test and comparison with theory [AIAA PAPER 91-0661] p 280 A91-22500 PREDICTOR-CORRECTOR METHODS Three-dimensional numerical simulation of electrothermal deicing systems [AIAA PAPER 91-0267] p 287 A91-21433 PRESSURE DISTRIBUTION Position error calibration of a pressure survey aircraft using a trailing cone p 285 A91-20986 Strip blowing from a wedge at hypersonic speeds [AIAA PAPER 91-0032] p 257 A91-21346 Calculations on total temperature and pressure in hypersonic air flow p 271 A91-23095 A Green's Function Method for calculating the transonic pressure distribution of wing p 273 A91-24157 Large-scale numerical aerodynamic simulations for complete aircraft configurations [NAL-TR-1073-T] p 277 N91-15984 PRESSURE EFFECTS An evaluation of the pressure proof test concept for thin sheet 2024-T3 p 315 A91-20788 An introduction to aircraft excrescence drag	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 297 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 Long-range vertical propagation p 332 N91-16693 PROPELLER BLADES Profile measurements in transonic wind tunnel Braunschweig p 308 A91-20613 Propeller noise minimization without thrust loss due to asymmetric blade distribution p 331 A91-20614 Pressure-time history of pylon wake on a pusher propeller in flight p 331 A91-20747 Potential reduction of en route noise from an advanced turboprop aircraft [NASA-TM-103635] p 332 N91-15842 PROPELLER FANS Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 Long-range vertical propagation p 332 N91-16693 PROPELLER NOISE Development of a boundary layer noise prediction code and its application to advanced propellers [AIAA PAPER 91-0593] p 331 A91-21546 In-flight source noise of an advanced full-scale single-rotation propeller [AIAA PAPER 91-0594] p 331 A91-21547 Potential reduction of en route noise from an advanced turboprop aircraft [NASA-TM-103635] p 332 N91-15842 PROPULSION SYSTEM CONFIGURATIONS National aerospace plane longitudinal long-period dynamics 9 305 A91-22962 SNECMA M88 engine development status	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-1633 Q Q QUALITY CONTROL Maintenance standards p 250 A91-2354 Theory of the resonance method for the quality control of adhesive joints p 321 A91-2381 Optimization of process routes in the repair of gas turbin engine components using capillary testing p 321 A91-2381 R RADAR Activities report of the German Federal Institute for Flight Safety [ETN-91-98644] p 281 N91-1600. RADAR ANTENNAS GaAS MMICs in selfaligned gate technology for phase array radar application p 296 N91-1516 RADAR MEASUREMENT Observations of severe turbulence near thunderstorm tops p 324 A91-2069 RADIAL FLOW Heat transfer in rotating passages with smooth wall and radial outward flow [ASME PAPER 89-GT-272] p 320 A91-2365 RADIATION EFFECTS Radioluminescent (RL) airfield lighting system program (DE91-001007) p 309 N91-1518 Introduction to the basic technology of stealth aircraft I - Basic considerations and aircraft self-emitted signal
A method of estimating a separation boundary of two-dimensional aerofoli sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines reliability [NASA-TM-102757] p 323 N91-15605 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 PREDICTIONS A review of ice accretion data from a model rotor icing test and comparison with theory [AIAA PAPER 91-0661] p 280 A91-22500 PREDICTOR-CORRECTOR METHODS Three-dimensional numerical simulation of electrothermal deicing systems [AIAA PAPER 91-0267] p 287 A91-21433 PRESSURE DISTRIBUTION Position error calibration of a pressure survey aircraft using a trailing cone p 285 A91-20986 Strip blowing from a wedge at hypersonic speeds [AIAA PAPER 91-032] p 257 A91-21346 Calculations on total temperature and pressure in hypersonic air flow p 271 A91-23095 A Green's Function Method for calculating the transonic pressure distribution of wing p 273 A91-21457 Large-scale numerical aerodynamic simulations for complete aircraft configurations [NAL-TR-1073-T] p 277 N91-15984 PRESSURE EFFECTS An evaluation of the pressure proof test concept for thin sheet 2024-T3 p 275 N91-15132	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 287 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15931 Long-range vertical propagation p 332 N91-16693 PROPELLER BLADES Profile measurements in transonic wind tunnel Braunschweig p 308 A91-20613 Propeller noise minimization without thrust loss due to asymmetric blade distribution p 331 A91-20614 Pressure-time history of pylon wake on a pusher propeller in flight p 331 A91-20747 Potential reduction of en route noise from an advanced turboprop aircraft [NASA-TM-103635] p 332 N91-15842 PROPELLER FANS Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 Long-range vertical propagation p 332 N91-16693 PROPELLER NOISE Development of a boundary layer noise prediction code and its application to advanced propellers [AIAA PAPER 91-0594] p 331 A91-21546 In-flight source noise of an advanced full-scale single-rotation propeller [AIAA PAPER 91-0594] p 331 A91-21547 Potential reduction of en route noise from an advanced turboprop aircraft [NASA-TM-103635] p 332 N91-15842 PROPULSION SYSTEM CONFIGURATIONS National aerospace plane longitudinal long-period dynamics p 305 A91-22962 SNECMA M88 engine development status [ASME PAPER 90-GT-118] p 301 A91-23636 EJ200 - The engine for the new European Fighter Aircraft [ASME PAPER 90-GT-119] p 301 A91-23637	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-1633 Q QUALITY CONTROL Maintenance standards p 250 A91-2354 Theory of the resonance method for the quality control of adhesive joints p 321 A91-2381 Optimization of process routes in the repair of gas turbin engine components using capillary testing p 321 A91-2381 R RADAR Activities report of the German Federal Institute for Flight Safety [ETN-91-98644] p 281 N91-1600 RADAR ANTENNAS GaAs MMICs in selfaligned gate technology for phase array radar application p 296 N91-1516 RADAR MEASUREMENT Observations of severe turbulence near thunderstom tops RADIAL FLOW Heat transfer in rotating passages with smooth wall and radial outward flow [ASME PAPER 89-GT-272] p 320 A91-2365 RADIATION EFFECTS Radioluminescent (RL) airfield lighting system program [DE91-001007] p 309 N91-1518 Introduction to the basic technology of steatht aircraft I - Basic considerations and aircraft self-emitted signal (passive considerations). II - Illumination by the enem
A method of estimating a separation boundary of two-dimensional aerofoil sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-15133 Aircraft configuration study for experimental 2-place aircraft and RPVs [AD-A227604] p 291 N91-15149 A comparison of fatigue life prediction methodologies for rotorcraft [NASA-TM-102759] p 323 N91-15604 Probabilistic fatigue methodology for six nines reliability [NASA-TM-102757] p 323 N91-15605 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 PREDICTIONS A review of ice accretion data from a model rotor icing test and comparison with theory [AIAA PAPER 91-0661] p 280 A91-22500 PREDICTOR-CORRECTOR METHODS Three-dimensional numerical simulation of electrothermal deicing systems [AIAA PAPER 91-0267] p 287 A91-21433 PRESSURE DISTRIBUTION Position error calibration of a pressure survey aircraft using a trailing cone p 285 A91-20986 Strip blowing from a wedge at hypersonic speeds [AIAA PAPER 91-0032] p 257 A91-21346 Calculations on total temperature and pressure in hypersonic air flow p 271 A91-23095 A Green's Function Method for calculating the transonic pressure distribution of wing p 273 A91-24157 Large-scale numerical aerodynamic simulations for complete aircraft configurations [NAL-TR-1073-T] p 277 N91-15984 PRESSURE EFFECTS An evaluation of the pressure proof test concept for thin sheet 2024-T3 p 275 N91-15132 Investigation of the influence of constant adverse	Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 PROP-FAN TECHNOLOGY Simulation and study of shear flows surrounding propfan engine models p 297 A91-20612 Airframe-engine integration - Task for future commercial aircraft evolution p 251 A91-20615 Propfan supersonic panel method analysis and flutter predictions p 278 N91-15993 Long-range vertical propagation p 332 N91-16693 PROPELLER BLADES Profile measurements in transonic wind tunnel Braunschweig p 308 A91-20613 Propeller noise minimization without thrust loss due to asymmetric blade distribution p 331 A91-20614 Pressure-time history of pylon wake on a pusher propeller in flight p 331 A91-20747 Potential reduction of en route noise from an advanced turboprop aircraft [NASA-TM-103635] p 332 N91-15842 PROPELLER FANS Propfan supersonic panel method analysis and flutter predictions p 332 N91-15693 PROPELLER NOISE Development of a boundary layer noise prediction code and its application to advanced propellers [AIAA PAPER 91-0593] p 331 A91-21546 In-flight source noise of an advanced full-scale single-rotation propeller [AIAA PAPER 91-0594] p 331 A91-21547 Potential reduction of en route noise from an advanced turboprop aircraft [NASA-TM-103635] p 332 N91-15842 PROPULSION SYSTEM CONFIGURATIONS National aerospace plane longitudinal long-period dynamics p 305 A91-22962 SNECMA M88 engine development status [ASME PAPER 90-GT-118] p 301 A91-23636 EJ200 - The engine for the new European Fighter	Pressure-time history of pylon wake on a pushe propeller in flight p 331 A91-2074 PYROMETERS Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-1633 Q Q QUALITY CONTROL Maintenance standards p 250 A91-2354 Theory of the resonance method for the quality control of adhesive joints p 321 A91-2381 Optimization of process routes in the repair of gas turbin engine components using capillary testing p 321 A91-2381 R RADAR Activities report of the German Federal Institute for Flight Safety [ETN-91-98644] p 281 N91-1600. RADAR ANTENNAS GaAS MMICs in selfaligned gate technology for phase array radar application p 296 N91-1516 RADAR MEASUREMENT Observations of severe turbulence near thunderstorm tops p 324 A91-2069 RADIAL FLOW Heat transfer in rotating passages with smooth wall and radial outward flow [ASME PAPER 89-GT-272] p 320 A91-2365 RADIATION EFFECTS Radioluminescent (RL) airfield lighting system program (DE91-001007) p 309 N91-1518 Introduction to the basic technology of stealth aircraft I - Basic considerations and aircraft self-emitted signal

p 290 A91-23643

SUBJECT INDEX **ROTATING BODIES**

RADIATIVE TRANSFER	REDUNDANT COMPONENTS	RESIN MATRIX COMPOSITES
Radiative interactions in a hydrogen-fueled supersonic combustor	TF89 tactical fighter outer wing design [ETN-91-98580] p 294 N91-16019	Assessment of impact damage in toughened resin
[AIAA PAPER 91-0373] p 312 A91-21473	REENTRY VEHICLES	composites p 312 A91-20776 RESINS
RADIO NAVIGATION	Three-dimensional simulations of hypersonic flows	Resin transfer molding of composite aircraft interior
The Radio Trials Centre at A&AEE Boscombe Down,	p 253 A91-21184	furnishings
United Kingdom - A description p 308 A91-20978	Modellization and calculation of laminar hypersonic boundary layer flows p 254 A91-21190	[NIAR-90-19] p 292 N91-15153
GPS - The logical choice for flight test tracking of aircraft p 282 A91-20998	REFRIGERATING MACHINERY	RESONANT FREQUENCIES Flexural-flexural-torsional parametric vibrations of a
RADIOMETERS	Cost-effective use of liquid nitrogen in cryogenic wind	cantilever beam p 321 A91-23745
A program to improve aircraft icing forecasts - Status	tunnels, phase 2	Theory of the resonance method for the quality control
report	[NASA-CR-182088] p 309 N91-15188 REGULATIONS	of adhesive joints p 321 A91-23814
[AIAA PAPER 91-0557] p 325 A91-21530	Resin transfer molding of composite aircraft interior	Flight flutter test techniques at ARL
RAMAN SPECTRA Progress in laser-spectroscopic techniques for	furnishings	[AD-A227754] p 306 N91-15178
aerodynamic measurements - An overview	[NIAR-90-19] p 292 N91-15153	REVERSED FLOW Simulation and study of shear flows surrounding propfan
(AIAA PAPER 91-0059) p 317 A91-21351	REINFORCEMENT (STRUCTURES) Evaluation procedure for reinforced concrete box	engine models p 297 A91-20612
RAMJET ENGINES	culverts under airfield pavements	REYNOLDS NUMBER
Recent developments in ramjets, ducted rockets and scramiets p 297 A91-20489	[AD-A227920] p 310 N91-16031	The investigation of the hypersonic vehicle
Flowfield measurements in an unstable ramjet burner	REINFORCING FIBERS	aerothermodynamics [AIAA PAPER 90-5271] p 270 A91-22893
p 297 A91-20737	Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20783	Pseudo Reynolds number effects in transonic wind
Flow measurements in a model ramjet secondary	RELAXATION METHOD (MATHEMATICS)	tunnels
combustion chamber p 310 A91-20743	Application of an implicit relaxation method solving the	[ETŅ-91-98493] p 276 N91-15135
Active control of combustion instability in a ramjet using	Euler equations for time-accurate unsteady problems p 253 A91-21066	The laminar free jet problem, using Newtonian media
large-eddy simulations [AIAA PAPER 91-0411] p 299 A91-21482	A Green's Function Method for calculating the transonic	[ETN-91-98494] p 276 N91-15136 REYNOLDS STRESS
RAPID QUENCHING (METALLURGY)	pressure distribution of wing p 273 A91-24157	The symmetric turbulent plane wake downstream of a
Properties of advanced rapidly solidified titanium	A successive partial-relaxation Gaussian algorithm for	sharp trailing edge
alloys p 312 A91-20864	area navigation operations with the Microwave Landing	[AIAA PAPER 91-0612] p 264 A91-21558
RAREFIED GAS DYNAMICS	System (MLS) [AD-A228871] p 283 N91-16004	Calculation of impinging jet flows with Reynolds stress models
Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies	RELIABILITY	[AlAA PAPER 91-0754] p 266 A91-21606
[AIAA PAPER 91-0322] p 261 A91-21459	An integrated approach to system design, reliability, and	RIBS (SUPPORTS)
A shock-layer theory based on thirteen-moment	diagnosis	An experimental investigation of heat transfer
equations and DSMC calculations of rarefied hypersonic	[NASA-TM-102861] p 322 N91-15426 RELIABILITY ANALYSIS	coefficients in a spanwise rotating channel with two
flows [AIAA PAPER 91-0783] p 267 A91-21616	Reliability analysis of structure and control mechanism	opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661
Analysis of rarefied gas flow near a critical point	of aircraft flap p 315 A91-20916	RIEMANN WAVES
p 268 A91-21879	A comparison of fatigue life prediction methodologies	A systematic comparative study of several high
RAREFIED GASES	for rotorcraft [NASA-TM-102759] p 323 N91-15604	resolution schemes for complex problems in high speed
The aerodynamic characteristics of power-law bodies in continuum and transitional hypersonic flow	Probabilistic fatigue methodology for six nines	flows [AIAA PAPER 91-0636] p 264 A91-21573
p 253 A91-21180	reliability	RIGID STRUCTURES
RAYLEIGH-RITZ METHOD	[NASA-TM-102757] p 323 N91-15605	Macroscopic model of vibrational relaxation in heat
Integrated aeroelastic control optimization	RELIABILITY ENGINEERING	transfer problems for supersonic flow past hard bodies
p 305 A91-23743 REAL GASES	MMIC impact on airborne avionic systems p 296 N91-15166	p 268 A91-21979 RIMS
Nonideal isentropic gas flow through	REMOTELY PILOTED VEHICLES	Comparison of rime and glaze deformation and failure
converging-diverging nozzles p 252 A91-21064	DOD nonlethal Unmanned Aerial Vehicles Joint Project	properties
Numerical analysis of viscous hypersonic flow past a	test and evaluation p 249 A91-20997	[AIAA PAPER 91-0446] p 279 A91-21494
generic forebody [MBB/FE122/S/PUB/0407] p 278 N91-15997	Simulation, testing and optimization of a new low cost	Free vibration of a cantilever annular sector plate with
REAL TIME OPERATION	electronic fuel control unit for small gas turbine engines [SAE PAPER 901027] p 298 A91-21239	curved radial edges and varying thickness
A real time expert-aided trajectory estimator using	New family of low cost electronic fuel control units for	p 316 A91-20943
multiple TSPI sources including a unique on-aircraft	small gas turbine engines	RIVETED JOINTS
positioning system p 282 A91-20979 ARTISt - Airborne Real Time Instrumentation System	[SAE PAPER 901039] p 298 A91-21245	Determination of rivet diameter and edge distance in aircraft riveted structure p 319 A91-22267
p 294 A91-20982	Aircraft configuration study for experimental 2-place	ROLL
High precision real time airplane positioning system with	aircraft and RPVs [AD-A227604] p 291 N91-15149	Aeroservoelastic tailoring for lateralcontrol
full navigational capabilities for flight testing	RENORMALIZATION GROUP METHODS	enhancement p 307 N91-16025
p 282 A91-20985 A study of dynamic stall using real time interferometry	An algebraic RNG-based turbulence model for	ROTARY WING AIRCRAFT General approach to dynamic analysis of rotorcraft
[AIAA PAPER 91-0007] p 256 A91-21329	three-dimensional turbomachinery flows	p 284 A91-20973
An algorithm and criteria for compressor characteristics	[AIAA PAPER 91-0172] p 259 'A91-21393	Rotorcraft structural weight and cost aspects
real time modeling and approximation	RESEARCH AIRCRAFT Nonlinear multi-point modeling and parameter estimation	[SAWE PAPER 1908] p 289 A91-22321
[ASME PAPER 90-GT-336] p 302 A91-23648 A real-time distributed optimal autopilot	of the DO 28 research aircraft p 289 A91-22357	Rotorcraft application of advanced computational aerodynamics
[RR-398] p 307 N91-15181	The compatibility check of the flight test data of the	[NASA-CR-187767] p 277 N91-15987
X ray computed tomography of composites	DO 28 research aircraft p 290 A91-22757	ROTARY WINGS
[AD-A227227] p 314 N91-15322	Aircraft configuration study for experimental 2-place	Numerical study of the effects of icing on fixed and rotary
Real-time hardware-in-the-loop simulation for ATTAS and ATTHES advanced technology flight test vehicles	aircraft and RPVs	wing performance [AIAA PAPER 91-0662] p 265 A91-21580
p 329 N91-15732	[AD-A227604] p 291 N91-15149 RESEARCH AND DEVELOPMENT	Influence of aerodynamic forces in ice shedding
A new approach to hardware-in-the-loop simulation	Aerospace system development directions and some	[AIAA PAPER 91-0664] p 279 A91-21582
(FALKE shuttle) p 329 N91-15735	aspects of their construction and application	An improved three-dimensional aerodynamics model for
The use of system simulation during the definition phase	(AIAA PAPER 90-5266) p 311 A91-22889	helicopter airloads prediction
of the passenger transport aircraft MPC75 p 330 N91-15741	RESEARCH FACILITIES	[AIAA PAPER 91-0767] p 267. A91-21610 Dynamic analysis of rotor blade undergoing rotor power
REATTACHED FLOW	Integrated technology development laboratories p 330 N91-15743	shutdown
Effects of sweep angle and passive relaminarization	Engines and innovation: Lewis Laboratory and American	[NASA-TM-102865] p 251 ·N91-15124
devices on a supersonic swept-cylinder boundary layer	propulsion technology	An evaluation of shape methods for helicopter
[AIAA PAPER 91-0066] p 257 A91-21354 RECEIVERS	[NASA-SP-4306] p 333 N91-15975	classification and orientation determination [AD-A227326] p 291 N91-15148
Optimal Kalman filter integration of a global positioning	Documents on the history of the Aerodynamic Research	Higher harmonic control analysis for vibration reduction
system receiver and an LN-94 inertial navigation system	Establishment at Goettingen, 1907 - 1925	of helicopter rotor systems p 306 N91-15175
[AD-A227222] p 283 N91-16003	[DLR-MITT-90-05] p 251 N91-15977 RESIDUAL STRENGTH	Damping estimation in helicopter rotor stability testing
RECONNAISSANCE AIRCRAFT DOD nonlethal Unmanned Aerial Vehicles Joint Project	Bump examinations of integrally strengthened carbon	p 306 N91-15176 Nonlinear large amplitude vibration of composite
test and evaluation p 249 A91-20997	fiber reinforced plastic panels	helicopter rotor blade at large static deflection
RECOVERY PARACHUTES	[MBB/FE281/CFK/PUB/0013] p 314 N91-16076	[AD-A227933] p 307 N91-15183
Selectable towline spin chute system	RESIDUAL STRESS	ROTATING BODIES
[NASA-CASE-LAR-14322-1] p 276 N91-15138 RECTANGULAR WINGS	Evaluation procedure for reinforced concrete box culverts under airfield pavements	In-flight source noise of an advanced full-scale single-rotation propeller
Measurements of vorticity field p 319 A91-22259	[AD-A227920] p 310 N91-16031	[AIAA PAPER 91-0594] p 331 A91-21547

HUIATING ENVIRONMENTS		SUBJECT INDEX
An experimental investigation of heat transfer	RUNGE-KUTTA METHOD	Optimization of multi-element airfoils for maximum lifts
coefficients in a spanwise rotating channel with two	A systematic comparative study of several high	in separated flow p 268 A91-22367
opposite rib-roughened walls	resolution schemes for complex problems in high speed	Unsteady separation over maneuvering bodies
[ASME PAPER 89-GT-150] p 320 A91-23661 ROTATING ENVIRONMENTS	flows [AIAA PAPER 91-0636] p 264 A91-21573	perturbed aerodynamics of flying aircraft p 269 A91-22481
Damping estimation in helicopter rotor stability testing	RUNWAY CONDITIONS	Flow separation patterns over an F-14A aircraft wing
p 306 N91-15176	Engine water ingestion test p 286 A91-21003	[AIAA PAPER 90-0596] p 269 A91-22497
ROTOR AERODYNAMICS	RUNWAYS	A steadying effect of acoustic excitation on transitory
An improved three-dimensional aerodynamics model for helicopter airloads prediction	RPAS - Runway performance analysis system	stali (AIAA PAPER 91-0043) p 269 A91-22499
[AIAA PAPER 91-0767] p 267 A91-21610	p 285 A91-20987	Turbulent three-dimensional separated flows in a
A review of ice accretion data from a model rotor icing	Aircraft incident report: USAir flight 105, Boeing 737-200, N283AU, Kansas City International Airport, Missouri,	supersonic stream near obstacles at the edge of dihedral
test and comparison with theory	September 8, 1989	corners p 272 A91-23913
[AIAA PAPER 91-0661] p 280 A91-22500	[PB90-910404] p 280 N91-15140	The effects of canard position aerodynamic characteristics of forward-swept wing
Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical	Effects of runway anti-icing chemicals on traction [DOT/FAA/CT-TN90/53] p 310 N91-15189	p 273 A91-24156
expressions of disturbance flow field. II - Numerical study	[DOT/FAA/CT-TN90/53] p 310 N91-15189 Evaluation procedure for reinforced concrete box	Numerical simulation of separated flows around a wing
of unsteady aerodynamic forces p 272 A91-24115	culverts under airfield pavements	section at steady and unsteady motion by a discrete vortex
Damping estimation in helicopter rotor stability testing	[AD-A227920] p 310 N91-16031	method p 278 N91-16268 SERVICE LIFE
p 306 N91-15176	_	Definition of service life for frame of an airplane
ROTOR BLADES Profile measurements in transonic wind tunnel	S	p 288 A91-22262
Braunschweig p 308 A91-20613		Specific aspects of advanced components for airborne
Directivity and prediction of low frequency rotor noise	S-N DIAGRAMS	applications p 295 N91-15155 Fatigue and fracture of titanium aluminides
(AIAA PAPER 91-0592) p 331 A91-21545	An equivalent calculation of load spectrums p 319 A91-22369	[AD-A226737] p 314 N91-15374
Influence of aerodynamic forces in ice shedding	SAFETY DEVICES	SHAFTS (MACHINE ELEMENTS)
[AIAA PAPER 91-0664] p 279 A91-21582	Effect of shaping sensor data on pilot response	A closed form solution of stress intensity factors for the
ROTOR BLADES (TURBOMACHINERY) Numerical investigation of hot streaks in turbines	[NASA-TM-102737] p 297 N91-15173	shaft of aeroplane all-moving stabilizer with corner cracks emanating from a hole p 319 A91-22752
p 251 A91-20748	SANDWICH STRUCTURES Materials and processes used for bonded repairs of	Dynamic analysis of rotor blade undergoing rotor power
ROTOR DYNAMICS	F/A-18 advanced composite honeycomb sandwich	shutdown
Statistical structural analysis of rotor impact ice	structures	[NASA-TM-102865] p 251 N91-15124
shedding	[SME PAPER EM90-107] p 316 A91-21108	Review of the transmissions of the Soviet helicopters [NASA-TM-103634] p 291 N91-15146
[AIAA PAPER 91-0663] p 279 A91-21581 Some observations of chaotic vibration phenomena in	SATELLITE COMMUNICATION Modulation and coding for the aeronautical satellite	SHAPES P 291 N31-13146
high-speed rotordynamics p 320 A91-23665	channel p 283 A91-22904	An evaluation of shape methods for helicopter
Simulated rotor test apparatus dynamic characteristics	Aeronautical Mobile Satellite Service (AMSS) capacity	classification and orientation determination
in the 80- by 120-foot wind tunnel	analysis and protocol performance simulation plan [DOT/FAA/CT-TN90/35] p 311 N91-15295	[AD-A227326] p 291 N91-15148 SHARP LEADING EDGES
[NASA-TM-102870] p 291 N91-15147	[DOT/FAA/CT-TN90/35] p 311 N91-15295 SCHEDULING	Numerical investigation of the flow over a double delta
Higher harmonic control analysis for vibration reduction of helicopter rotor systems p 306 N91-15175	Current research on schedulers for aerospace industry	wing at high incidence
of helicopter rotor systems p 306 N91-15175 ROTORCRAFT AIRCRAFT	software	[AIAA PAPER 91-0753] p 266 A91-21605
Rotorcraft weight trends in light of structural material	[SAE PAPER 901014] p 326 A91-21235 SCREENS	The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511
characteristics	Optimal conditions for controlling the intensity of	SHEAR FLOW
[SAWE PAPER 1873] p 289 A91-22327	turbulent flow by means of screens p 321 A91-23904	Simulation and study of shear flows surrounding propfan
Overcoming obstacles to vertical flight public transport operations p 280 A91-24121	SE-210 AIRCRAFT	engine models p 297 A91-20612
To capture the market put the real 'V' in VTOL	Economical test method and ease of access under microgravity: The zero-g Caravelle p 322 N91-15276	Turbulent shear flow over surface mounted obstacles p 252 A91-21057
p 280 A91-24123	SEATS	Direct numerical simulations of a plane compressible
A comparison of fatigue life prediction methodologies	Development of a crashworthy seat for commuter	wake: Stability, vorticity dynamics, and topology
for rotorcraft [NASA-TM-102759] p 323 N91-15604	aircraft [AD-A227486] p 281 N91-15999	[NASA-CR-187737] p 274 N91-15129
Probabilistic fatigue methodology for six nines	SECONDARY FLOW	SHEAR LAYERS Structure of a supersonic reacting jet
reliability	Experimental study of the three-dimensional flow field	[AIAA PAPER 91-0376] p 299 A91-21475
[NASA-TM-102757] p 323 N91-15605	in a turbine stator preceded by a full stage	Compressibility effects on the supersonic reacting mixing
Evaluation of rotorwash characteristics for tiltrotor and	p 271 A91-23656 SECONDARY INJECTION	layer
tiltwing aircraft in hovering flight [SCT-90RR-18] p 277 N91-15989	Flow measurements in a model ramjet secondary	[AIAA PAPER 91-0739] p 266 A91-21603
ROTORS	combustion chamber p 310 A91-20743	An investigation of supersonic oscillatory cavity flows driven by thick shear layers p 271 A91-23550
Method of strength evaluation of radial fan rotors	SEMICONDUCTOR DEVICES	Numerical simulation of separated flows around a wing
p 316 A91-20932	Advances in Components for Active and Passive Airborne Sensors	section at steady and unsteady motion by a discrete vortex
A review of ice accretion data from a model rotor icing	[AGARD-CP-482] p 295 N91-15154	method p 278 N91-16268
test and comparison with theory [AIAA PAPER 91-0661] p 280 A91-22500	SEMICONDUCTOR LASERS	SHEAR STRESS
Dynamic analysis of rotor blade undergoing rotor power	High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095	Unsteady measurement of skin friction in adverse pressure gradient - A new approach to a well known
shutdown	SEMICONDUCTORS (MATERIALS)	gauge
[NASA-TM-102865] p 251 N91-15124	Specific aspects of advanced components for airborne	[AIAA PAPER 91-0168] p 318 A91-21391
Aircraft accident report: United Airlines flight 232,	applications p 295 N91-15155	SHOCK LAYERS
McDonnell Douglas DC-10-10, Sioux Gateway Airport, Sioux City, Iowa, 19 July 1989	SEMIEMPIRICAL EQUATIONS The prediction of STOVL noise - Current semiempirical	On hypersonic shock layer and its extension beyond the Navier-Stokes level p 254 A91-21189
[PB90-910406] p 281 N91-15143	methods and comparisons with jet noise data	the Navier-Stokes level p 254 A91-21189 The effects of mass removal on turbulence properties
Simulated rotor test apparatus dynamic characteristics	[SAE PAPER 901058] p 331 A91-21255	in a normal-shock/turbulent-boundary-layer interaction
in the 80- by 120-foot wind tunnel	Normal force and pitching moment of low aspect ratio	[AIAA PAPER 91-0647] p 264 A91-21577
[NASA-TM-102870] p 291 N91-15147	cropped-delta wings up to high angles of attack at supersonic speeds	A shock-layer theory based on thirteen-moment
Optical measurement of unducted fan flutter [NASA-TM-103285] p 302 N91-15174	[ESDU-90013] p 292 N91-15152	equations and DSMC calculations of rarefied hypersonic
Damping estimation in helicopter rotor stability testing	SEMISPAN MODELS	flows [AIAA PAPER 91-0783] p 267 A91-21616
p 306 N91-15176	Effect of a simulated ice accretion on the aerodynamics	Performance of conical diffusers in subsonic
Algorithms development methodology for	of a swept wing [AIAA PAPER 91-0442] p 262 A91-21491	compressible flow
performance-optimized multicyclic rotor commands	SENSITIVITY P 202 AST-21431	[ESDU-90025] p 275 N91-15131
p 327 N91-15716	Solution and sensitivity analysis of a complex	SHOCK WAVE INTERACTION
A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 · N91-16006	transcendental eigenproblem with pairs of real	Experimental study on mixing phenomena in supersonic flows with slot injection
Failure analysis of a main rotor pitch horn bolt located	eigenvalues p 320 A91-23685 SEPARATED FLOW	[AIAA PAPER 91-0016] p 256 A91-21335
on the AH-1 Cobra helicopter	Dynamic effects of hypersonic separated flow	Wall pressure fluctuations near separation in a Mach
[AD-A227679] p 292 N91-16007	p 254 A91-21192	5, sharp fin-induced turbulent interaction
Applications of fuzzy theories to multi-objective system optimization	Exploratory study of vortex-generating devices for	[AlAA PAPER 91-0646] p 264 A91-21576 The effects of mass removal on turbulence properties
[NASA-CR-177573] p 293 N91-16012	turbulent flow separation control [AIAA PAPER 91-0042] p 317 A91-21348	in a normal-shock/turbulent-boundary-layer interaction
RUDDERS	Wall pressure fluctuations near separation in a Mach	[AIAA PAPER 91-0647] p 264 A91-21577
Advanced composites F-4 rudder	5, sharp fin-induced turbulent interaction	Hypersonic shock/boundary-layer interaction database
[SME PAPER EM90-106] p 249 A91-21107	[AIAA PAPER 91-0646] p 264 A91-21576	[NASA-CR-187769] p 277 N91-15986

SHOCK WAVE PROPAGATION SLOTTED WIND TUNNELS SPACECRAFT STRUCTURES Numerical computation of shock in the front of blunt Investigation of transonic flow over segmented slotted The stability of light structures - An area of research p 273 A91-24164 rind tunnel wall with mass transfer vith a tradition and a future p 315 A91-20616 SHOCK WAVES [NASA-CR-187760] p 276 N91-15981 Integrated control-structure design SMALL PERTURBATION FLOW Navier-Stokes simulation of transonic blade-vortex [NASA-CR-182020] p 307 N91-15180 Optimum hypersonic airfoil with power law shock p 253 A91-21065 SPACECRAFT TRAJECTORIES p 269 A91-22492 Correlation of separation shock motion in a cylinder-induced, Mach 5, turbulent interaction with waves Optimization and guidance of flight trajectories for the SMOOTHING national aerospace plane Smoothing and scaling airfoil coordinates on a personal pressure fluctuations in the separated flow INASA-CR-1878371 p 292 N91-16010 p 265 A91-21578 (AIAA PAPER 91-0650) computer SPATIAL MARCHING [DE89-000878] p 330 N91-16582 SHORT TAKEOFF AIRCRAFT Optimum spacing control of the marching grid SOFTWARE ENGINEERING Fundamental concepts of vectored propulsion generation Flight test management and integration program p 283 A91-20746 [AIAA PAPER 91-0103] p 258 A91-21368 p 286 A91-20996 Downwash measurement at the horizontal tail SPECIFIC HEAT Current research on schedulers for aerospace industry p 286 A91-21000 Calculations on total temperature and pressure in Assessment of a post 2000 STOVL fighter hypersonic air flow p 271 A91-23095 p 326 A91-21235 [SAE PAPER 901031] p 286 A91-21241 [SAE PAPER 901014] SPECIFICATIONS The prediction of STOVL noise - Current semiempirical An integrated approach to system design, reliability, and Smoothing and scaling airfoil coordinates on a personal diagnosis [NASA-TM-102861] methods and comparisons with jet noise data n 322 N91-15426 [SAE PAPER 901058] p 331 A91-21255 [DE89-000878] p 330 N91-16582 Small-scale experiments in STOVL ground effects
[SAE PAPER 901060] p 287 A91-21
Infrared imaging - A validation technique SOFTWARE TOOLS STABILITY AUGMENTATION p 287 A91-21256 Limitations of BITE --- Built In Test Equipment for Infrared imaging - A validation technique for computational fluid dynamics codes used in STOVL Parameter space design of robust flight control transport aircraft n 250 A91-21202 p 328 N91-15718 Trends in current heat transfer computations systems p 317 A91-21384 [AIAA PAPER 91-0157] Longitudinal stability augmentation of a lightweight applications Formal tools and simulation tools: A coherent porkshop p 328 N91-15728 p 318 A91-21587 (AIAA PAPER 91-0675) fighter aircraft model [ETN-91-98585] p 308 N91-16026 SHUTDOWNS Real-time hardware-in-the-loop simulation for ATTAS STABILITY TESTS Dynamic analysis of rotor blade undergoing rotor power and ATTHES advanced technology flight test vehicles shutdown Damping estimation in helicopter rotor stability testing p 329 N91-15732 [NASA-TM-102865] p 251 N91-15124 p 306 N91-15176 NAVPACK: Simulation tools for design of high SIGNAL ENCODING A coupled rotor aeroelastic analysis utilizing advanced performance integrated navigation systems Modulation and coding for the aeronautical satellite p 292 N91-16006 aerodynamic modeling p 329 N91-15739 p 283 A91-22904 channe STABILIZERS (FLUID DYNAMICS) Analytic Patch Configuration (APC) gateway version 1.0 SIGNAL TO NOISE RATIOS A closed form solution of stress intensity factors for the user's guide [NASA-CR-187464] Microwave and millimeter Wave components: shaft of aeroplane all-moving stabilizer with corner cracks Performances, perspectives, and applications to avionic p 330 N91-15751 emanating from a hole p 319 A91-22752 SOLID PROPELLANT COMBUSTION p 295 N91-15156 STAGNATION TEMPERATURE Comparison of combustion experiments and theory in SIMULATION Experimental investigation of a 2-D scramiet inlet at polyethylene solid fuel ramiets p 297 A91-20744 Flowfield of a lifting hovering rotor: A Navier-Stokes Mach numbers of 8 to 18 and stagnation temperatures SOLID PROPELLANT ROCKET ENGINES simulation of 4.100K [NASA-TM-102862] Recent developments in ramjets, ducted rockets and p 274 N91-15128 [AIAA PAPER 91-0013] p 256 A91-21333 p 297 A91-20489 SIMULATORS A study of compressible laminar boundary layer at Mach In-flight and simulated aircraft fuel temperature SOLIDIFICATION numbers 4 to 30 measurements Estimation of the engineering elastic constants of a directionally solidified superalloy for finite element [AIAA PAPER 91-0323] p 261 A91-21460 [NASA-TM-103611] p 314 N91-15418 STANDARDIZATION SINGLE CRYSTALS structural analysis The European flight safety crisis: Costs and solution Development of cast superalloys for gas turbines in hina p 313 A91-22340 [NASA-CR-1870361 n 322 N91-15598 [ETN-91-98490] p 281 N91-16000 China SOLUTIONS Estimation of the engineering elastic constants of a STANDARDS Solution and sensitivity analysis of a complex SAE aerospace flight deck and handling qualities directionally solidified superalloy for finite element transcendental eigenproblem with pairs standards for transport aircraft structural analysis p 320 A91-23685 eigenvalues (SAE ARP 4100) p 287 A91-21259 [NASA-CR-187036] p 322 N91-15598 SONIC BOOMS SINGLE STAGE TO ORBIT VEHICLES Maintenance standards p 250 A91-23546 A study of loudness as a metric for sonic boom STATIC TESTS Optimization and validation of a fuselage fuel tank acceptability structural concept for the NASP Structural tests for the Dornier 328 [AIAA PAPER 91-0496] [AIAA PAPER 90-5262] p 300 A91-22885 p 309 A91-22863 SONIC NOZZLES SIZE DETERMINATION Static internal performance of an axisymmetric nozzle The method for extending the range of attack angle with multiaxis thrust-vectoring capability Determination of rivet diameter and edge distance in and blockage in transonic wind tunnel testing - Using low p 274 N91-15125 p 319 A91-22267 aircraft riveted structure [NASA-TM-4237] supersonic nozzle instead of sonic nozzle STATISTICAL ANALYSIS SKIDDING p 273 A91-24163 Statistical structural analysis of rotor impact ice Flight testing antiskid/brake systems p 285 A91-20989 **SOUND PRESSURE** shedding [AIAA PAPER 91-0663] Acoustic power level comparisons of model-scale SKIN FRICTION p 279 A91-21581 ounterrotating unducted fans Internally mounted thin-liquid-film skin-friction meter STATOR BLADES p 332 A91-21548 [AIAA PAPER 91-0595] Comparison with floating element method with and without Experimental study of the three-dimensional flow field SPACE SHUTTLE ORBITERS in a turbine stator preceded by a full stage pressure gradient New general guidance method in constrained optimal control. I - Numerical method p 326 A91-20506 p 317 A91-21352 [AIAA PAPER 91-0060] p 271 A91-23656 Unsteady measurement of skin friction in adverse STEADY FLOW shape pressure gradient - A new approach to a well known SPACE-TIME FUNCTIONS Aerodynamic design gauge [AIAA PAPER 91-0168] Detailed documentation of the near field effects of Large stream-function-coordinate (SFC) formulation [AIAA PAPER 91-0189] p 318 A91-21391 Eddy Break Up devices on the oncoming vortical structures p 260 A91-21404 Computation of steady and unsteady compressible SLENDER BODIES in turbulent boundary layers n 263 A91-21518 Calculation of three-dimensional compressible boundary [AIAA PAPER 91-0519] quasi-axisymmetric vortex flow and breakdown [AIAA PAPER 91-0752] SPACECRAFT CONFIGURATIONS lavers on slender bodies p 252 A91-20936 p 266 A91-21604 The aerodynamic characteristics of power-law bodies Concept and specification for the Hermes Training Inviscid steady/unsteady flow calculations p 267 A91-2174A in continuum and transitional hypersonic flow p 310 A91-20618 Aircraft (HTA) p 253 A91-21180 STIFFENING SPACECRAFT DESIGN SLENDER WINGS Prediction of penetration of curved metal stiffened The aerospace plane design challenge - Credible Boundary-layer transition and heat transfer on slender panels due to birdstrike p 315 A91-20899 computational fluid dynamics results STRATOSPHERE p 254 A91-21194 delta wings [AIAA PAPER 90-5248] p 310 A91-22877 The dynamics of the stratospheric polar vortex and its Slender wing rock revisited Aerospace system development directions and some [AIAA PAPER 91-0417] p 262 A91-21484 relation to springtime ozone depletions aspects of their construction and application Multi-sensor investigation of delta wing high-alpha p 325 A91-21712 p 311 A91-22889 [AIAA PAPER 90-5266] The atmospheric effects of stratospheric aircraft: A Integrated control-structure design [AIAA PAPER 91-0735] p 266 A91-21600 topical review [NASA-CR-182020] p 307 N91-15180 Wind tunnel tests on flutter control of a high-aspect-ratio [NASA-RP-1250] p 325 N91-16466 SPACECRAFT GUIDANCE cantilevered wing: Control with leading-edge and The atmospheric effects of stratospheric aircraft: A New general guidance method in constrained optimal control, I - Numerical method p 326 A91-20506 trailing-edge control surfaces current consensus p 276 N91-15982 p 325 N91-16467 [NAL-TR-1070] Optimization and guidance of flight trajectories for the Unsteady vortex lattice calculation of the flow around STREAM FUNCTIONS (FLUIDS) national aerospace plane a slender delta wing p 278 N91-16272 using Aerodynamic shape desian p 292 N91-16010 [NASA-CR-187837] stream-function-coordinate (SFC) formulation SLOTS On the stability of conduction dominated natural SPACECRAFT PROPULSION (AIAA PAPER 91-0189) p 260 A91-21404 Engines and innovation: Lewis Laboratory and American STRENGTH convection in near-vertical slots and horizontal cylindrical propulsion technology Method of strength evaluation of radial fan rotors annuli

(AIAA PAPER 91-0027)

p 257 A91-21343

INASA-SP-43061

p 333 · N91-15975

p 316 A91-20932

STRESS ANALYSIS SUBJECT INDEX

STRESS ANALYSIS	Aluminum lithium for the F/A-18, Hornet 2000	Parametric study on thrust production in the two
Method of strength evaluation of radial fan rotors	[SAWE PAPER 1913] p 289 A91-22326	dimensional scramjet
p 316 A91-20932 Numerical analyses of stress near the hole of	Rotorcraft weight trends in light of structural material characteristics	[AIAA PAPER 91-0227] p 298 A91-21417 Further assessment of a scramjet inlet mass flow
compressor disk by boundary element method	[SAWE PAPER 1873] p 289 A91-22327	measurement technique for use in hypersonic pulse
p 319 A91-22754	SUBSONIC FLOW	facilities
Evaluation procedure for reinforced concrete box	Viscous flow simulation of fighter aircraft	[AIAA PAPER 91-0551] p 300 A91-21527
culverts under airfield pavements [AD-A227920] p 310 N91-16031	[AIAA PAPER 91-0278] p 260 A91-21438	Synergistic effects of hydrogen transpiration on compression surfaces for hypersonic vehicles
STRESS CORROSION CRACKING	Inviscid steady/unsteady flow calculations p 267 A91-21748	[AIAA PAPER 91-0699] p 265 A91-21591
Failure analysis of a main rotor pitch horn bolt located	A new method for subsonic lifting-surface theory	Experimental investigation of a 2-D dual mode scramjet
on the AH-1 Cobra helicopter	p 268 A91-22351	with hydrogen fuel at Mach 4-6
[AD-A227679] p 292 N91-16007 STRESS DISTRIBUTION	Velocity field of an axisymmetric pulsed, subsonic air	[AIAA PAPER 90-5269] p 300 A91-22892 SUPERSONIC DIFFUSERS
Fatique of aluminium alloy joints with various fastener	jet p 269 A91-22479 Computation of three-dimensional subsonic flows in	Three-dimensional boundary layer effects in convergent
systems. High load transfer	ducts using the PNS approach p 271 A91-23186	compression flows p 321 A91-23910
[ESDU-90018] p 322 N91-15597	Calculation of averaged axisymmetric flow of an ideal	Numerical solutions for a cylindrical laser diffuser
STRESS INTENSITY FACTORS A closed form solution of stress intensity factors for the	gas in turbomachine stages p 321 A91-23938	flow-field p 274 N91-15127 SUPERSONIC FLOW
shaft of aeroplane all-moving stabilizer with corner cracks	Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical	Theoretical analysis of supersonic gas-particle
emanating from a hole p 319 A91-22752	expressions of disturbance flow field. II - Numerical study	two-phase flow and its application to relatively complicated
STRUCTURAL ANALYSIS	of unsteady aerodynamic forces p 272 A91-24115	flow fields p 255 A91-21198
A closed form solution of stress intensity factors for the shaft of aeroplane all-moving stabilizer with corner cracks	Performance of conical diffusers in subsonic	Experimental study on mixing phenomena in supersonic flows with slot injection
emanating from a hole p 319 A91-22752	compressible flow [ESDU-90025] p 275 N91-15131	[AIAA PAPER 91-0016] p 256 A91-21335
Panel flutter analysis using high precision shear flexible	Calculations for unsteady aerodynamic characteristics	Numerical simulation of supersonic unsteady flow for
element p 319 A91-23423	on a 3-D lifting body in subsonic flow using boundary	multibody configurations
Flight flutter test techniques at ARL [AD-A227754] p 306 N91-15178	element method	[AIAA PAPER 91-0023] p 257 A91-21341 An analytical study of a supersonic mixer-ejector exhaust
Nonlinear large amplitude vibration of composite	[NAL-TR-1065] p 277 N91-15985 SUBSONIC SPEED	system
helicopter rotor blade at large static deflection	Airframe-induced upwash at subsonic speeds	[AIAA PAPER 91-0126] p 298 A91-21372
[AD-A227933] p 307 N91-15183	[ESDU-90020] p 275 N91-15130	High temperature heat flux measurements
Estimation of the engineering elastic constants of a directionally solidified superalloy for finite element	SUBSONIC WIND TUNNELS	[AIAA PAPER 91-0165] p 317 A91-21388 Molecular dynamics computations of two dimensional
structural analysis	Effect of a simulated ice accretion on the aerodynamics of a swept wing	supersonic rarefied gas flow past blunt bodies
[NASA-CR-187036] p 322 N91-15598	[AIAA PAPER 91-0442] p 262 A91-21491	[AIAA PAPER 91-0322] p 261 A91-21459
The integration of structural optimization in the general	SUCTION	Wall pressure fluctuations near separation in a Mach
design process for aircraft [MBB/FE122/S/PUB/0405] p 293 N91-16017	Investigation of transonic flow over segmented slotted	5, sharp fin-induced turbulent interaction [AIAA PAPER 91-0646] p 264 A91-21576
Aeroservoelastic tailoring for lateral control	wind tunnel wall with mass transfer [NASA-CR-187760] p 276 N91-15981	Correlation of separation shock motion in a
enhancement p 307 N91-16025	SUPERCHARGERS	cylinder-induced, Mach 5, turbulent interaction with
Evaluation procedure for reinforced concrete box	Application of three-dimensional viscous analysis to	pressure fluctuations in the separated flow
culverts under airfield pavements [AD-A227920] p 310 N91-16031	turbofan forced mixers	[AIAA PAPER 91-0650] p 265 A91-21578 Compressibility effects on the supersonic reacting mixing
[AD-A227920] p 310 N91-16031 Finite element thermo-viscoplastic analysis of	[AIAA PAPER 91-0131] p 258 A91-21373 SUPERCOMPUTERS	layer:
aerospace structures	Research to application: Supercomputing trends for the	[AIAA PAPER 91-0739] p 266 A91-21603
[NASA-TM-102761] p 324 N91-16407	90's - Opportunities for interdisciplinary computations	Inviscid steady/unsteady flow calculations
STRUCTURAL DESIGN The development and design integration of a variable	[AIAA PAPER 91-0002] p 326 A91-21326 SUPERSONIC AIRCRAFT	p 267 A91-21748 Macroscopic model of vibrational relaxation in heat
camber wing for long/medium range aircraft	A study of loudness as a metric for sonic boom	transfer problems for supersonic flow past hard bodies
p 284 A91-20898	acceptability	p 268 A91-21979
Aircraft structures for engineering students (2nd revised	[AIAA PAPER 91-0496] p 331 A91-21511	A practical method for the aerodynamic calculations of
and enlarged edition) Book p 321 A91-24114 Integrated design analysis and optimization	The atmospheric effects of stratospheric aircraft: A current consensus	blunt bodies of revolution p 268 A91-22392
[MBB/FE2/S/PUB/0398] p 291 N91-15145	[NASA-RP-1251] p 325 N91-16467	The inviscid stability of supersonic flow past a sharp cone p 269 A91-22511
Integrated control-structure design	SUPERSONIC BOUNDARY LAYERS	Flux-difference split scheme for turbulent transport
[NASA-CR-182020] p 307 N91-15180	Effects of sweep angle and passive relaminarization	equations
STRUCTURAL RELIABILITY Wings for the 21st century p 250 A91-21218	devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354	[AIAA PAPER 90-5251] p 270 A91-22878
STRUCTURAL STABILITY	A study of compressible laminar boundary layer at Mach	An investigation of supersonic oscillatory cavity flows driven by thick shear layers p 271 A91-23550
The stability of light structures - An area of research	numbers 4 to 30	driven by thick shear layers p 271 A91-23550 A study of flow structure in nozzles with a constant-height
with a tradition and a future p 315 A91-20616	[AIAA PAPER 91-0323] p 261 A91-21460	section in the throat region p 272 A91-23848
STRUCTURAL VIBRATION Free vibration of a cantilever annular sector plate with	Nonparallel instability of supersonic and hypersonic boundary layers	Turbulent three-dimensional separated flows in a
curved radial edges and varying thickness	[AIAA PAPER 91-0324] p 261 A91-21461	supersonic stream near obstacles at the edge of dihedral
p 316 A91-20943	SUPERSONIC COMBUSTION	corners p 272 A91-23913
Some observations of chaotic vibration phenomena in	Radiative interactions in a hydrogen-fueled supersonic	Numerical computation of shock in the front of blunt
high-speed rotordynamics p 320 A91-23665 Computerized procedure for vibration diagnostics of	combustor [AIAA PAPER 91-0373] p 312 A91-21473	body p 273 A91-24164 SUPERSONIC INLETS
aircraft brakes p 320 A91-23679	Structure of a supersonic reacting jet	Experimental measurements of the flow in a scramjet
STRUCTURAL WEIGHT	[AIAA PAPER 91-0376] p 299 A91-21475	inlet at Mach 4 p 251 A91-20750
The stability of light structures - An area of research	Effect of the penetration depth of fuel jets on combustion	SUPERSONIC JET FLOW
with a tradition and a future p 315 A91-20616 Helicopter Weight and Torque Advisory system	in a supersonic combustion chamber	Structure of a supersonic reacting jet
[SAWE PAPER 1872] p 295 A91-22301	p 312 A91-21962 Gasdynamic features of supersonic kerosene	[AIAA PAPER 91-0376] p 299 A91-21475 Effect of slotting on the noise of an axisymmetric
Technological forecast of VTOL weight empty fraction	combustion in a model combustion chamber	supersonic jet p 332 A91-22493
in the year 2020	[AIAA PAPER 90-5268] p 313 A91-22891	SUPERSONIC NOZZLES
[SAWE PAPER 1871] p 288 A91-22302	SUPERSONIC COMBUSTION RAMJET ENGINES	Aerodynamic design for supersonic nozzles of arbitrary
Aircraft platform scales without sideload induced	Recent developments in ramjets, ducted rockets and scramjets p 297 A91-20489	cross section p 251 A91-20745
weighing errors [SAWE PAPER 1882] p 309 A91-22307	Comparison of combustion experiments and theory in	The method for extending the range of attack angle
A state of the art Mass Properties Laboratory	polyethylene solid fuel ramjets p 297 A91-20744	and blockage in transonic wind tunnel testing - Using low supersonic nozzle instead of sonic nozzle
[SAWE PAPER 1883] p 309 A91-22308	Experimental measurements of the flow in a scramjet	p 273 A91-24163
Derivation of a fuselage weight estimating relationship	inlet at Mach 4 p 251 A91-20750 2-D and 3-D mixing flow analyses of a scramjet-afterbody	SUPERSONIC SPEED
[SAWE PAPER 1901] p 289 A91-22319	configuration p 253 A91-21188	An experiment on supersonic turbulent mixing layers:
Rotorcraft structural weight and cost aspects [SAWE PAPER 1908] p 289 A91-22321	Additional fuel component application for hydrogen	Supersonic-subsonic two-stream layers [NAL-TR-1066] p 276 N91-15983
[SAWE PAPER 1908] p 289 A91-22321 Aircraft cost estimating - Weight commonality as a	scramjet boosting	[NAL-TH-1066] p 276 N91-15983 Propfan supersonic panel method analysis and flutter
predictor	[SAE PAPER 900990] p 312 A91-21226 Experimental investigation of a 2-D scramjet inlet at	predictions parel metrod analysis and nuller
[SAWE PAPER 1909] p 333 A91-22322	Mach numbers of 8 to 18 and stagnation temperatures	Optimal trajectories for an aerospace plane. Part 2: Data,
Weight penalties for electromagnetic interference	of 4,100K	tables, and graphs
control [SAWE PAPER 1914] p 319 A91-22323	[AIAA PAPER 91-0013] p 256 A91-21333	[NASA-CR-187848] p 292 N91-16011
[SAWE PAPER 1914] p 319 A91-22323 IMPP - The Integrated Mass Properties Program	Combustion efficiency determined from wall pressure and temperature measurement in a Mach 2 combustor	Optimal trajectories for an aerospace plane. Part 1: Formulation, results, and analysis
[SAWE PAPER 1894] p 326 A91-22325	[AIAA PAPER 91-0017] p 298 A91-21336	[NASA-CR-187868] p 293 N91-16013

SUPERSONIC TRANSPORTS	The use of system simulation during the definition phase	Calculations on total temperature and pressure in
The atmospheric effects of stratospheric aircraft: A	of the passenger transport aircraft MPC75	hypersonic air flow p 271 A91-23095
topical review	p 330 N91-15741	TEMPERATURE GRADIENTS
[NASA-RP-1250] p 325 N91-16466	SYSTEMS INTEGRATION	In-flight and simulated aircraft fuel temperature
SUPERSONIC WAKES	Flight test management and integration program	measurements
Linear stability analysis of measured near-wake profiles	p 286 A91-20996	[NASA-TM-103611] p 314 N91-15418
for a flat plate in longitudinal flow p 271 A91-23189	Integrated control and avionics for air superiority - A program overview	TEMPERATURE MEASUREMENT
Direct numerical simulations of a plane compressible	[SAE PAPER 901049] p 294 A91-21248	In-flight and simulated aircraft fuel temperature
wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129	Integrated flight/propulsion control system design based	measurements
· ·	on a centralized approach p 305 A91-22950	[NASA-TM-103611] p 314 N91-15418 TEMPERATURE PROFILES
SUPERSONIC WIND TUNNELS Experimental investigation of the transonic flow on a	Computational fluid dynamic applications for jet	In-flight and simulated aircraft fuel temperature
supercritical wing profile p 252 A91-20934	propulsion system integration	measurements
Boundary layer three-dimensionality in plane	[ASME PAPER 90-GT-343] p 271 A91-23639	[NASA-TM-103611] p 314 N91-15418
compression flows p 321 A91-23905	Integrated propulsion system requirements for control	TEMPERATURE SENSORS
SURFACE FINISHING	of STOVL aircraft	Advanced structural instrumentation, volume 2
Painting technology for civil aircraft and helicopters (2nd	[ASME PAPER 90-GT-364] p 305 A91-23641	[AD-A227473] p 324 N91-16330
revised and enlarged edition) Russian book	Optimizing aircraft performance with adaptive, integrated flight/propulsion control	TENSILE PROPERTIES
p 250 A91-22102	[ASME PAPER 90-GT-252] p 290 A91-23644	Properties of advanced rapidly solidified titanium
SURFACE ROUGHNESS	Integrated control-structure design	alloys p 312 A91-20864
Experimental and theoretical investigation of a vortex	[NASA-CR-182020] p 307 N91-15180	TERRAIN ANALYSIS
street in the wake of a flat plate p 252 A91-20935	Integrated technology development laboratories	Laser obstacle and cable update sensor
Aerodynamic effects of distributed roughness on a NACA	p 330 N91-15743	p 296 N91-15169
63(2)-015 airfoil	Optimal Kalman filter integration of a global positioning	TERRAIN FOLLOWING AIRCRAFT
[AIAA PAPER 91-0443] p 262 A91-21492	system receiver and an LN-94 inertial navigation system	Tornado AFDS/TF flight testing - Lessons learned
Heat transfer in rotating passages with smooth walls	[AD-A227222] p 283 N91-16003	p 284 A91-20977
and radial outward flow	SYSTEMS SIMULATION	TEST CHAMBERS
[ASME PAPER 89-GT-272] p 320 A91-23659	Computer Aided System Design and Simulation [AGARD-CP-473] p 327 N91-15715	A controlled-environment chamber for atmospheric
An experimental investigation of heat transfer	NAVPACK: Simulation tools for design of high	chemistry studies using FT-IR spectroscopy
coefficients in a spanwise rotating channel with two	performance integrated navigation systems	[AD-A227532] p 309 N91-15185
opposite rib-roughened walls	p 329 N91-15739	TEST FACILITIES
[ASME PAPER 89-GT-150] p 320 A91-23661	F • • • • • • • • • • • • • • • • • • •	Recent developments in ramjets, ducted rockets and scramjets p 297 A91-20489
SURFACE ROUGHNESS EFFECTS	Ŧ	•
Linear stability analysis of measured near-wake profiles for a flat plate in longitudinal flow p 271 A91-23189	1	The Radio Trials Centre at A&AEE Boscombe Down,
for a flat plate in longitudinal flow p 271 A91-23189 SURFACE TEMPERATURE	TAIL AGGRESS 150	United Kingdom - A description p 308 A91-20978
Analysis of infrared thermography data for icing	TAIL ASSEMBLIES	Ground facilities for hypersonic simulation p 308 A91-21179
applications	Downwash measurement at the horizontal tail p 286 A91-21000	_ · · · · · · · · · · · · · · · · · · ·
[AIAA PAPER 91-0666] p 279 A91-21584	TAKEOFF	Testing Soviet civil aircraft p 288 A91-22173 Simulation of nap-of-Earth flight in helicopters
Effect of surface temperature on the stability of the	Engine water ingestion test p 286 A91-21003	p 330 N91-15744
attachment line boundary layer of a swept wing	Wind tunnel tests of aerodynamic effects of type I and	THERMAL ANALYSIS
p 272 A91-23845	Il ground de/anti-icing fluids on small transport and general	Finite element thermo-viscoplastic analysis of
SURFACE TREATMENT	aviation aircraft during takeoff	aerospace structures
Composite patch reinforcement of cracked aircraft upper	[AIAA PAPER 91-0763] p 288 A91-21609	[NASA-TM-102761] p 324 N91-16407
longeron - Analysis and specimen simulation	TAKEOFF RUNS	THERMAL CONTROL COATINGS
p 249 A91-20784	Use of onboard data for takeoff performance	Thermal barrier coating evaluation needs
SWEAT COOLING	determination p 285 A91-20988	[NASA-TM-103708] p 314 N91-15390
Synergistic effects of hydrogen transpiration on	TARGET ACQUISITION	THERMAL INSULATION
compression surfaces for hypersonic vehicles	An adaptive filter for tracking the maneuvering target p 327 A91-22756	Thermal barrier coating evaluation needs
[AIAA PAPER 91-0699] p 265 A91-21591	p 321 A31-22130	[NASA-TM-103708] p 314 N91-15390
•	TASKS	
SWEEP ANGLE	TASKS Initial flight test of a ground deployed system for flying	Advanced Turbine Technology Applications Project
SWEEP ANGLE Effects of sweep angle and passive relaminarization	Initial flight test of a ground deployed system for flying	Advanced Turbine Technology Applications Project (ATTAP)
SWEEP ANGLE Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer		Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021
SWEEP ANGLE Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION
SWEEP ANGLE Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on
SWEEP ANGLE Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hypersonic vehicles
SWEEP ANGLE Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on
SWEEP ANGLE Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hypersonic vehicles [AIAA PAPER 91-0699] p 265 A91-21591
SWEEP ANGLE Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing SWEPT WINGS Three-dimensional unsteady flow fields elicited by	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hypersonic vehicles [AIAA PAPER 91-0699] p 265 A91-21591 THERMAL STRESSES Finite element thermo-viscoplastic analysis of aerospace structures
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hydrogen transpiration on compression surfaces. [NASA-TM-102761] p 302 N91-16021
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hydrogen transpiration on compression surfaces. [ALSA THERMOCOUPLES] P 302 N91-16021 P 265 A91-21591 THERMOCOUPLES
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 Effects of sweep angle and passive relaminarization	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT Integrated control and avionics for air superiority - A	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hypersonic vehicles [AIAA PAPER 91-0699] p 265 A91-21591 THERMAL STRESSES Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOCOUPLES Advanced structural instrumentation, volume 2
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hydrogen transpiration of accordance in the technology of the compression o
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066) p 257 A91-21354	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT Integrated control and avionics for air superiority - A program overview [SAE PAPER 901049] p 294 A91-21248 Research to application: Supercomputing trends for the	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hydrogen transpiration of acrospace structures [NASA-TM-102761] p 324 N91-16407 THERMOCOUPLES Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-16330 THERMODYNAMIC CYCLES
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Cross-flow vortex structure and transition measurements	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT Integrated control and avionics for air superiority - A program overview [SAE PAPER 901049] p 294 A91-21248 Research to application: Supercomputing trends for the 90's Opportunities for interdisciplinary computations	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hypersonic vehicles [AIAA PAPER 91-0699] p 265 A91-21591 THERMAL STRESSES Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOCOUPLES Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-16330 THERMODYNAMIC CYCLES Determination of cycle configuration of gas turbines and
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing P 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER. 91-0066] p 257 A91-21354 Cross-flow vortex structure and transition measurements using multi-element hot films	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT Integrated control and avionics for air superiority - A program overview [SAE PAPER 901049] p 294 A91-21248 Research to application: Supercomputing trends for the 90's Opportunities for interdisciplinary computations [AIAA PAPER 91-0002] p 326 A91-21326	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hydrogen transpiration on acrospace structures [ALAP APPER 91-0699] p 265 A91-21591 THERMAL STRESSES Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOCOUPLES Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-16330 THERMODYNAMIC CYCLES Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT Integrated control and avionics for air superiority - A program overview [SAE PAPER 901049] p 294 A91-21248 Research to application: Supercomputing trends for the 90's Opportunities for interdisciplinary computations [AIAA PAPER 91-0002] p 326 A91-21326 Manned versus unmanned - The implications to NASP	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hypersonic vehicles [AIAA PAPER 91-0699] p 265 A91-21591 THERMAL STRESSES Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOCOUPLES Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-16330 THERMODYNAMIC CYCLES Determination of cycle configuration of gas turbines and
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing P 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER. 91-0066] p 257 A91-21354 Cross-flow vortex structure and transition measurements using multi-element hot films	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT Integrated control and avionics for air superiority - A program overview [SAE PAPER 901049] p 294 A91-21248 Research to application: Supercomputing trends for the 90's Opportunities for interdisciplinary computations [AIAA PAPER 91-0002] p 326 A91-21326 Manned versus unmanned - The implications to NASP [AIAA PAPER 90-5265] p 311. A91-22888	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hydrogen transpiration on page 5 A91-21591 THERMAL STRESSES Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOCOUPLES Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-16330 THERMODYNAMIC CYCLES Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 Calculation of three-dimensional low Reynolds number flows [AIAA PAPER 91-0187] p 259 A91-21403	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT Integrated control and avionics for air superiority - A program overview [SAE PAPER 901049] p 294 A91-21248 Research to application: Supercomputing trends for the 90's - Opportunities for interdisciplinary computations [AIAA PAPER 91-0002] p 326 A91-21326 Manned versus unmanned - The implications to NASP [AIAA PAPER 90-5265] p 311 A91-2288 Advanced technology - Constant challenge and	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hydrogen transpiration on compression surfaces [AIAA PAPER 91-0699] p 265 A91-21591 THERMAL STRESSES Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOCOUPLES Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-16330 THERMODYNAMIC CYCLES Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 THERMODYNAMICS Fine scale analysis of the kinematic, dynamic and thermodynamic features of a multiple microburst-producing
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 Calculation of three-dimensional low Reynolds number flows [AIAA PAPER 91-0187] p 259 A91-21403 Viscous flow simulation of fighter aircraft	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT Integrated control and avionics for air superiority - A program overview [SAE PAPER 901049] p 294 A91-21248 Research to application: Supercomputing trends for the 90's Opportunities for interdisciplinary computations [AIAA PAPER 91-0002] p 326 A91-21326 Manned versus unmanned - The implications to NASP [AIAA PAPER 90-5265] p 311 A91-22888 Advanced technology Constant challenge and evolutionary process — in aeronautics	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hypersonic vehicles [AIAA PAPER 91-0699] p 265 A91-21591 THERMAL STRESSES Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOCOUPLES Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-16330 THERMODYNAMIC CYCLES Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 THERMODYNAMICS Fine scale analysis of the kinematic, dynamic and thermodynamic features of a multiple microburst-producing storm
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 Calculation of three-dimensional low Reynolds number flows [AIAA PAPER 91-0187] p 259 A91-21403 Viscous flow simulation of fighter aircraft [AIAA PAPER 91-078] p 260 A91-21438	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT Integrated control and avionics for air superiority - A program overview [SAE PAPER 901049] p 294 A91-21248 Research to application: Supercomputing trends for the 90's Opportunities for interdisciplinary computations [AIAA PAPER 91-0002] p 326 A91-21326 Manned versus unmanned - The implications to NASP [AIAA PAPER 90-5265] p 311 A91-22888 Advanced technology - Constant challenge and evolutionary process in aeronautics	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hypersonic vehicles [AIAA PAPER 91-0699] p 265 A91-21591 THERMAL STRESSES Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOCOUPLES Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-16330 THERMODYNAMIC CYCLES Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 THERMODYNAMICS Fine scale analysis of the kinematic, dynamic and thermodynamic features of a multiple microburst-producing storm [AD-A227733] p 325 N91-15657
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 Calculation of three-dimensional low Reynolds number flows [AIAA PAPER 91-0187] p 259 A91-21403 Viscous flow simulation of fighter aircraft [AIAA PAPER 91-0278] p 260 A91-21438 Effect of a simulated ice accretion on the aerodynamics	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT Integrated control and avionics for air superiority - A program overview [SAE PAPER 901049] p 294 A91-21248 Research to application: Supercomputing trends for the 90's Opportunities for interdisciplinary computations [AIAA PAPER 91-0002] p 326 A91-21326 Manned versus unmanned - The implications to NASP [AIAA PAPER 90-5265] p 311 A91-22888 Advanced technology Constant challenge and evolutionary process — in aeronautics	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hydrogen transpiration on compression surfaces [ALAP APER 91-0699] p 265 A91-21591 THERMODYNAMIC CYCLES Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 THERMODYNAMICS Fine scale analysis of the kinematic, dynamic and thermodynamic features of a multiple microburst-producing storm [AD-A227733] p 325 N91-15657 THERMOELASTICITY
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-005] p 255 A91-21327 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 Calculation of three-dimensional low Reynolds number flows [AIAA PAPER 91-0187] p 259 A91-21403 Viscous flow simulation of fighter aircraft [AIAA PAPER 91-0278] p 260 A91-21438 Effect of a simulated ice accretion on the aerodynamics of a swept wing	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT Integrated control and avionics for air superiority - A program overview [SAE PAPER 901049] p 294 A91-21248 Research to application: Supercomputing trends for the 90's - Opportunities for interdisciplinary computations [AIAA PAPER 91-0002] p 326 A91-21326 Manned versus unmanned - The implications to NASP [AIAA PAPER 90-5265] p 311. A91-2288 Advanced technology - Constant challenge and evolutionary process in aeronautics	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hypersonic vehicles [AIAA PAPER 91-0699] p 265 A91-21591 THERMAL STRESSES Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOCOUPLES Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-16330 THERMODYNAMIC CYCLES Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 THERMODYNAMICS Fine scale analysis of the kinematic, dynamic and thermodynamic features of a multiple microburst-producing storm [AD-A227733] p 325 N91-15657 THERMOELASTICITY Finite element thermo-viscoplastic analysis of
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing P 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-005] p 255 A91-21327 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Cross-flow yortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 Calculation of three-dimensional low Reynolds number flows [AIAA PAPER 91-0187] p 259 A91-21403 Viscous flow simulation of fighter aircraft [AIAA PAPER 91-0278] p 260 A91-21438 Effect of a simulated ice accretion on the aerodynamics of a swept wing [AIAA PAPER 91-0442] p 262 A91-21491	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT Integrated control and avionics for air superiority - A program overview [SAE PAPER 901049] p 294 A91-21248 Research to application: Supercomputing trends for the 90's - Opportunities for interdisciplinary computations [AIAA PAPER 91-0002] p 326 A91-21326 Manned versus unmanned - The implications to NASP [AIAA PAPER 90-5265] p 311 A91-22888 Advanced technology - Constant challenge and evolutionary process — in aeronautics p 251 A91-23547 TECHNOLOGY UTILIZATION Potential use of tiltrotor aircraft in Canadian aviation	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hydrogen transpiration on compression surfaces for hypersonic vehicles [AIAA PAPER 91-0699] p 265 A91-21591 THERMAL STRESSES Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOCOUPLES Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-16330 THERMODYNAMIC CYCLES Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 THERMODYNAMICS Fine scale analysis of the kinematic, dynamic and thermodynamic features of a multiple microburst-producing storm [AD-A227733] p 325 N91-15657 THERMOELASTICITY Finite element thermo-viscoplastic analysis of aerospace structures
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing P 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 Calculation of three-dimensional low Reynolds number flows [AIAA PAPER 91-0187] p 259 A91-21403 Viscous flow simulation of fighter aircraft [AIAA PAPER 91-0187] p 260 A91-21438 Effect of a simulated ice accretion on the aerodynamics of a swept wing [AIAA PAPER 91-0442] p 262 A91-21491 Numerical study of the effects of icing on fixed and rotary	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT Integrated control and avionics for air superiority - A program overview [SAE PAPER 901049] p 294 A91-21248 Research to application: Supercomputing trends for the 90's - Opportunities for interdisciplinary computations [AIAA PAPER 91-0002] p 326 A91-21326 Manned versus unmanned - The implications to NASP [AIAA PAPER 90-5265] p 311 A91-22888 Advanced technology Constant challenge and evolutionary process — in aeronautics p 251 A91-23547 TECHNOLOGY UTILIZATION Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 Advanced Turbine Technology Applications Project (ATTAP)	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hydrogen p 265 A91-21591 THERMAL STRESSES Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOCUPLES Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-16330 THERMODYNAMIC CYCLES Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 THERMODYNAMICS Fine scale analysis of the kinematic, dynamic and thermodynamic features of a multiple microburst-producing storm [AD-A227733] p 325 N91-15657 THERMOELASTICITY Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 Calculation of three-dimensional low Reynolds number flows [AIAA PAPER 91-0187] p 259 A91-21403 Viscous flow simulation of fighter aircraft [AIAA PAPER 91-0278] p 260 A91-21438 Effect of a simulated ice accretion on the aerodynamics of a swept wing [AIAA PAPER 91-0442] p 262 A91-21491 Numerical study of the effects of icing on fixed and rotary wing performance	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT Integrated control and avionics for air superiority - A program overview [SAE PAPER 901049] p 294 A91-21248 Research to application: Supercomputing trends for the 90's Opportunities for interdisciplinary computations [AIAA PAPER 91-0002] p 326 A91-21326 Manned versus unmanned - The implications to NASP [AIAA PAPER 90-5265] p 311 A91-22888 Advanced technology Constant challenge and evolutionary process — in aeronautics	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hypersonic vehicles [AIAA PAPER 91-0699] p 265 A91-21591 THERMAL STRESSES Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMODYNAMIC CYCLES Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 THERMODYNAMICS Fine scale analysis of the kinematic, dynamic and thermodynamic features of a multiple microburst-producing storm [AD-A227733] p 325 N91-15657 THERMOELASTICITY Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOGRAPHY
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-005] p 255 A91-21327 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 Calculation of three-dimensional low Reynolds number flows [AIAA PAPER 91-0187] p 259 A91-21403 Viscous flow simulation of fighter aircraft [AIAA PAPER 91-0278] p 260 A91-21438 Effect of a simulated ice accretion on the aerodynamics of a swept wing [AIAA PAPER 91-0442] p 262 A91-21491 Numerical study of the effects of icing on fixed and rotary wing performance [AIAA PAPER 91-0662] p 265 A91-21580	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT Integrated control and avionics for air superiority - A program overview [SAE PAPER 901049] p 294 A91-21248 Research to application: Supercomputing trends for the 90's - Opportunities for interdisciplinary computations [AIAA PAPER 91-0002] p 326 A91-21326 Manned versus unmanned - The implications to NASP [AIAA PAPER 90-5265] p 311. A91-22888 Advanced technology - Constant challenge and evolutionary process — in aeronautics p 251 A91-23547 TECHNOLOGY UTILIZATION Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hydrogen p 265 A91-21591 THERMAL STRESSES Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOCUPLES Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-16330 THERMODYNAMIC CYCLES Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 THERMODYNAMICS Fine scale analysis of the kinematic, dynamic and thermodynamic features of a multiple microburst-producing storm [AD-A227733] p 325 N91-15657 THERMOELASTICITY Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 Calculation of three-dimensional low Reynolds number flows [AIAA PAPER 91-0187] p 259 A91-21403 Viscous flow simulation of fighter aircraft [AIAA PAPER 91-0278] p 260 A91-21438 Effect of a simulated ice accretion on the aerodynamics of a swept wing [AIAA PAPER 91-0442] p 262 A91-21491 Numerical study of the effects of icing on fixed and rotary wing performance [AIAA PAPER 91-0662] p 265 A91-21580 Vortical flow computations on swept flexible wings using Navier-Stokes equations	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT Integrated control and avionics for air superiority - A program overview [SAE PAPER 901049] p 294 A91-21248 Research to application: Supercomputing trends for the 90's - Opportunities for interdisciplinary computations [AIAA PAPER 91-0002] p 326 A91-21326 Manned versus unmanned - The implications to NASP [AIAA PAPER 90-5265] p 311 A91-22888 Advanced technology Constant challenge and evolutionary process in aeronautics p 251 A91-23547 TECHNOLOGY UTILIZATION Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 TEMPERATURE CONTROL A controlled-environment chamber for atmospheric	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hypersonic vehicles [AIAA PAPER 91-0699] p 265 A91-21591 THERMAL STRESSES Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOCOUPLES Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-16330 THERMODYNAMIC CYCLES Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 THERMODYNAMICS Fine scale analysis of the kinematic, dynamic and thermodynamic features of a multiple microburst-producing storm [AD-A227733] p 325 N91-15657 THERMOELASTICITY Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOGRAPHY Analysis of infrared thermography data for icing
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-005] p 255 A91-21327 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 Calculation of three-dimensional low Reynolds number flows [AIAA PAPER 91-0187] p 259 A91-21403 Viscous flow simulation of fighter aircraft [AIAA PAPER 91-0278] p 260 A91-21438 Effect of a simulated ice accretion on the aerodynamics of a swept wing [AIAA PAPER 91-0442] p 262 A91-21491 Numerical study of the effects of icing on fixed and rotary wing performance [AIAA PAPER 91-0662] p 265 A91-21580 Vortical flow computations on swept flexible wings using Navier-Stokes equations Effect of surface temperature on the stability of the	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT Integrated control and avionics for air superiority - A program overview [SAE PAPER 901049] p 294 A91-21248 Research to application: Supercomputing trends for the 90's Opportunities for interdisciplinary computations [AIAA PAPER 91-0002] p 326 A91-21326 Manned versus unmanned - The implications to NASP [AIAA PAPER 90-5265] p 311 A91-22888 Advanced technology Constant challenge and evolutionary process — in aeronautics	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hydrogen transpiration on compression surfaces for hypersonic vehicles [AIAA PAPER 91-0699] p 265 A91-21591 THERMAL STRESSES Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOCOUPLES Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-16330 THERMODYNAMIC CYCLES Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 THERMODYNAMICS Fine scale analysis of the kinematic, dynamic and thermodynamic features of a multiple microburst-producing storm [AD-A227733] p 325 N91-15657 THERMOELASTICITY Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOGRAPHY Analysis of infrared thermography data for icing applications [AIAA PAPER 91-0666] p 279 A91-21584 THERMOPLASTICITY
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing P 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 Calculation of three-dimensional low Reynolds number flows [AIAA PAPER 91-0187] p 259 A91-21403 Viscous flow simulation of fighter aircraft [AIAA PAPER 91-0187] p 260 A91-21438 Effect of a simulated ice accretion on the aerodynamics of a swept wing [AIAA PAPER 91-0442] p 262 A91-21491 Numerical study of the effects of icing on fixed and rotary wing performance [AIAA PAPER 91-0662] p 265 A91-21580 Vortical flow computations on swept flexible wings using Navier-Stokes equations p 269 A91-22483 Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT Integrated control and avionics for air superiority - A program overview [SAE PAPER 901049] p 294 A91-21248 Research to application: Supercomputing trends for the 90's - Opportunities for interdisciplinary computations [AIAA PAPER 91-0002] p 326 A91-21326 Manned versus unmanned - The implications to NASP [AIAA PAPER 90-5265] p 311. A91-22888 Advanced technology - Constant challenge and evolutionary process — in aeronautics	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hydrogen transpiration on compression surfaces for hypersonic vehicles [AIAA PAPER 91-0699] p 265 A91-21591 THERMAL STRESSES Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOCOUPLES Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-16330 THERMODYNAMIC CYCLES Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 THERMODYNAMICS Fine scale analysis of the kinematic, dynamic and thermodynamic features of a multiple microburst-producing storm [AD-A227733] p 325 N91-15657 THERMOELASTICITY Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOGRAPHY Analysis of infrared thermography data for icing applications [AIAA PAPER 91-0666] p 279 A91-21584 THERMOPLASTICITY Design for strength and rigidity of a thermoplastic
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-005] p 255 A91-21327 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 Calculation of three-dimensional low Reynolds number flows [AIAA PAPER 91-0187] p 259 A91-21403 Viscous flow simulation of fighter aircraft [AIAA PAPER 91-0278] p 260 A91-21438 Effect of a simulated ice accretion on the aerodynamics of a swept wing [AIAA PAPER 91-0442] p 262 A91-21491 Numerical study of the effects of icing on fixed and rotary wing performance [AIAA PAPER 91-0662] p 265 A91-21580 Vortical flow computations on swept flexible wings using Navier-Stokes equations p 269 A91-22483 Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing p 272 A91-23845	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT Integrated control and avionics for air superiority - A program overview [SAE PAPER 901049] p 294 A91-21248 Research to application: Supercomputing trends for the 90's - Opportunities for interdisciplinary computations [AIAA PAPER 91-0002] p 326 A91-21326 Manned versus unmanned - The implications to NASP [AIAA PAPER 91-05265] p 311 A91-23547 TECHNOLOGY UTILIZATION Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 251 A91-23547 TECHNOLOGY UTILIZATION Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 302 N91-16001 Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 TEMPERATURE CONTROL A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hypersonic vehicles [AIAA PAPER 91-0699] p 265 A91-21591 THERMAL STRESSES Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOCOUPLES Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-16330 THERMODYNAMIC CYCLES Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 THERMODYNAMICS Fine scale analysis of the kinematic, dynamic and thermodynamic features of a multiple microburst-producing storm (AD-A227733] p 325 N91-15657 THERMODLASTICITY Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOGRAPHY Analysis of infrared thermography data for icing applications [AIAA PAPER 91-0666] p 279 A91-21584 THERMOPLASTICITY Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20783
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-005] p 255 A91-21327 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 Calculation of three-dimensional low Reynolds number flows [AIAA PAPER 91-0187] p 259 A91-21403 Viscous flow simulation of fighter aircraft [AIAA PAPER 91-0278] p 260 A91-21438 Effect of a simulated ice accretion on the aerodynamics of a swept wing [AIAA PAPER 91-0442] p 262 A91-21491 Numerical study of the effects of icing on fixed and rotary wing performance [AIAA PAPER 91-0662] p 265 A91-21580 Vortical flow computations on swept flexible wings using Navier-Slokes equations p 269 A91-22483 Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing p 272 A91-23845 TF89 tactical fighter outer wing design	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT Integrated control and avionics for air superiority - A program overview [SAE PAPER 901049] p 294 A91-21248 Research to application: Supercomputing trends for the 90's - Opportunities for interdisciplinary computations [AIAA PAPER 91-0002] p 326 A91-21326 Manned versus unmanned - The implications to NASP [AIAA PAPER 90-5265] p 311. A91-22888 Advanced technology Constant challenge and evolutionary process — in aeronautics p 251 A91-23547 TECHNOLOGY UTILIZATION Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 TEMPERATURE CONTROL A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hydrogen transpiration on compression surfaces for hypersonic vehicles [AIAA PAPER 91-0699] p 265 A91-21591 THERMAL STRESSES Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOCOUPLES Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-16330 THERMODYNAMIC CYCLES Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 THERMODYNAMICS Fine scale analysis of the kinematic, dynamic and thermodynamic features of a multiple microburst-producing storm [AD-A227733] p 325 N91-15657 THERMOELASTICITY Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOGRAPHY Analysis of infrared thermography data for icing applications [AIAA PAPER 91-0666] p 279 A91-21584 THERMOPLASTICITY Design for strength and rigidity of a thermoplastic composite speed brake THIN AIRFOILS
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 Calculation of three-dimensional low Reynolds number flows [AIAA PAPER 91-0187] p 259 A91-21403 Viscous flow simulation of fighter aircraft [AIAA PAPER 91-0278] p 260 A91-21438 Effect of a simulated ice accretion on the aerodynamics of a swept wing [AIAA PAPER 91-0442] p 262 A91-21491 Numerical study of the effects of icing on fixed and rotary wing performance [AIAA PAPER 91-0662] p 265 A91-21580 Vortical flow computations on swept flexible wings using Navier-Stokes equations p 269 A91-22483 Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing [ETN-91-98580] p 294 N91-18019	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT Integrated control and avionics for air superiority - A program overview [SAE PAPER 901049] p 294 A91-21248 Research to application: Supercomputing trends for the 90's - Opportunities for interdisciplinary computations [AIAA PAPER 91-0002] p 326 A91-21326 Manned versus unmanned - The implications to NASP [AIAA PAPER 90-5265] p 311 A91-22888 Advanced technology - Constant challenge and evolutionary process — in aeronautics	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hydrogen transpiration on compression surfaces finite element thermo-viscoplastic analysis of aerospace structures instrumentation, volume 2 [AD-A227473] p 324 N91-16330 THERMODYNAMIC CYCLES Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 THERMODYNAMICS Fine scale analysis of the kinematic, dynamic and thermodynamic features of a multiple microburst-producing storm [AD-A227733] p 325 N91-15657 THERMOELASTICITY Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOGRAPHY Analysis of infrared thermography data for icing applications [AIAA PAPER 91-0666] p 279 A91-21584 THERMOPLASTICITY Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20783 THIN AIRFOILS Numerical solution of the equation for a thin airfoil in
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 Calculation of three-dimensional low Reynolds number flows [AIAA PAPER 91-0187] p 259 A91-21403 Viscous flow simulation of fighter aircraft [AIAA PAPER 91-0278] p 260 A91-21438 Effect of a simulated ice accretion on the aerodynamics of a swept wing [AIAA PAPER 91-0442] p 262 A91-21491 Numerical study of the effects of icing on fixed and rotary wing performance [AIAA PAPER 91-0662] p 265 A91-21580 Vortical flow computations on swept flexible wings using Navier-Stokes equations p 269 A91-22483 Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing p 272 A91-23845 TF89 tactical fighter outer wing design [ETN-91-98580] p 294 N91-16019	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT Integrated control and avionics for air superiority - A program overview [SAE PAPER 901049] p 294 A91-21248 Research to application: Supercomputing trends for the 90's - Opportunities for interdisciplinary computations [AIAA PAPER 91-0002] p 326 A91-21326 Manned versus unmanned - The implications to NASP [AIAA PAPER 91-0002] p 311 A91-22888 Advanced technology - Constant challenge and evolutionary process — in aeronautics p 251 A91-23547 TECHNOLOGY UTILIZATION Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 TEMPERATURE CONTROL A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 TEMPERATURE DEPENDENCE Estimation of the engineering elastic constants of a directionally solidified superalloy for finite element structural analysis	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hypersonic vehicles [AIAA PAPER 91-0699] p 265 A91-21591 THERMAL STRESSES Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOCOUPLES Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-16330 THERMODYNAMIC CYCLES Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 THERMODYNAMICS Fine scale analysis of the kinematic, dynamic and thermodynamic features of a multiple microburst-producing storm (AD-A227733] p 325 N91-15657 THERMODYNAMICSTHERMOCLASTICITY Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOGRAPHY Analysis of infrared thermography data for icing applications [AIAA PAPER 91-0666] p 279 A91-21584 THERMOPLASTICITY Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20783 THIN AIRFOILS Numerical solution of the equation for a thin airfoil in ground effect p 269 A91-22491
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-005] p 255 A91-21327 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 Calculation of three-dimensional low Reynolds number flows [AIAA PAPER 91-0187] p 259 A91-21403 Viscous flow simulation of fighter aircraft [AIAA PAPER 91-0278] p 260 A91-21438 Effect of a simulated ice accretion on the aerodynamics of a swept wing [AIAA PAPER 91-0442] p 262 A91-21491 Numerical study of the effects of icing on fixed and rotary wing performance [AIAA PAPER 91-0662] p 265 A91-21580 Vortical flow computations on swept flexible wings using Navier-Slokes equations p 269 A91-22483 Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing p 272 A91-23845 TF89 tactical fighter outer wing design [ETN-91-98580] p 294 N91-16019	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT Integrated control and avionics for air superiority - A program overview [SAE PAPER 901049] p 294 A91-21248 Research to application: Supercomputing trends for the 90's - Opportunities for interdisciplinary computations [AIAA PAPER 91-0002] p 326 A91-21326 Manned versus unmanned - The implications to NASP [AIAA PAPER 91-0002] p 311 A91-22888 Advanced technology - Constant challenge and evolutionary process — in aeronautics p 251 A91-23547 TECHNOLOGY UTILIZATION Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 TEMPERATURE CONTROL A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 TEMPERATURE DEPENDENCE Estimation of the engineering elastic constants of a directionally solidified superalloy for finite element structural analysis	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hypersonic vehicles [AIAA PAPER 91-0699] p 265 A91-21591 THERMAL STRESSES Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOCOUPLES Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-16330 THERMODYNAMIC CYCLES Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 THERMODYNAMICS Fine scale analysis of the kinematic, dynamic and thermodynamic features of a multiple microburst-producing storm [AD-A227733] p 325 N91-15657 THERMOELASTICITY Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOGRAPHY Analysis of infrared thermography data for icing applications [AIAA PAPER 91-0666] p 279 A91-21584 THERMOPLASTICITY Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20783 THIN AIRFOILS Numerical solution of the equation for a thin airfoil in ground effect p 269 A91-22491
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-005] p 255 A91-21327 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 Calculation of three-dimensional low Reynolds number flows [AIAA PAPER 91-0187] p 259 A91-21403 Viscous flow simulation of fighter aircraft [AIAA PAPER 91-0278] p 260 A91-21438 Effect of a simulated ice accretion on the aerodynamics of a swept wing [AIAA PAPER 91-0442] p 262 A91-21491 Numerical study of the effects of icing on fixed and rotary wing performance [AIAA PAPER 91-0662] p 265 A91-21580 Vortical flow computations on swept flexible wings using Navier-Stokes equations p 269 A91-22483 Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing [ETN-91-98580] p 294 N91-16019 SYMBOLIC PROGRAMMING Computer aided design and simulation of the automatic approach and landing phase of a combat aircraft	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT Integrated control and avionics for air superiority - A program overview [SAE PAPER 901049] p 294 A91-21248 Research to application: Supercomputing trends for the 90's - Opportunities for interdisciplinary computations [AIAA PAPER 91-002) p 326 A91-21326 Manned versus unmanned - The implications to NASP [AIAA PAPER 90-5265] p 311. A91-22888 Advanced technology - Constant challenge and evolutionary process — in aeronautics TECHNOLOGY UTILIZATION Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 TEMPERATURE CONTROL A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 TEMPERATURE DEPENDENCE Estimation of the engineering elastic constants of a directionally solidified superalloy for finite element structural analysis [NASA-CR-187036] p 322 N91-15598	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hydrogen transpiration on compression from the emocratic field of the property
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-005] p 255 A91-21327 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 Calculation of three-dimensional low Reynolds number flows [AIAA PAPER 91-0187] p 259 A91-21403 Viscous flow simulation of fighter aircraft [AIAA PAPER 91-0278] p 260 A91-21438 Effect of a simulated ice accretion on the aerodynamics of a swept wing [AIAA PAPER 91-0442] p 262 A91-21491 Numerical study of the effects of icing on fixed and rotary wing performance [AIAA PAPER 91-0662] p 265 A91-21580 Vortical flow computations on swept flexible wings using Navier-Stokes equations p 269 A91-22483 Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing [ETN-91-98580] p 294 N91-16019 SYMBOLIC PROGRAMMING Computer aided design and simulation of the automatic approach and landing phase of a combat aircraft p 328 N91-15719	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT Integrated control and avionics for air superiority - A program overview [SAE PAPER 901049] p 294 A91-21248 Research to application: Supercomputing trends for the 90's Opportunities for interdisciplinary computations [AIAA PAPER 91-0002] p 326 A91-21326 Manned versus unmanned - The implications to NASP [AIAA PAPER 90-5265] p 311 A91-22888 Advanced technology Constant challenge and evolutionary process — in aeronautics	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hypersonic vehicles [AIAA PAPER 91-0699] p 265 A91-21591 THERMAL STRESSES Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOCOUPLES Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-16330 THERMODYNAMIC CYCLES Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 THERMODYNAMICS Fine scale analysis of the kinematic, dynamic and thermodynamic features of a multiple microburst-producing storm [AD-A227733] p 325 N91-15657 THERMOELASTICITY Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOGRAPHY Analysis of infrared thermography data for icing applications [AIAA PAPER 91-0666] p 279 A91-21584 THERMOPLASTICITY Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20783 THIN AIRFOILS Numerical solution of the equation for a thin airfoil in ground effect p 269 A91-22491
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-005] p 255 A91-21327 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 Calculation of three-dimensional low Reynolds number flows [AIAA PAPER 91-0187] p 259 A91-21403 Viscous flow simulation of fighter aircraft [AIAA PAPER 91-0278] p 260 A91-21438 Effect of a simulated ice accretion on the aerodynamics of a swept wing [AIAA PAPER 91-0442] p 262 A91-21491 Numerical study of the effects of icing on fixed and rotary wing performance [AIAA PAPER 91-0662] p 265 A91-21580 Vortical flow computations on swept flexible wings using Navier-Stokes equations p 269 A91-22483 Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing [ETN-91-98580] p 294 N91-16019 SYMBOLIC PROGRAMMING Computer aided design and simulation of the automatic approach and landing phase of a combat aircraft	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT Integrated control and avionics for air superiority - A program overview [SAE PAPER 901049] p 294 A91-21248 Research to application: Supercomputing trends for the 90's - Opportunities for interdisciplinary computations [AIAA PAPER 91-0002] p 326 A91-21326 Manned versus unmanned - The implications to NASP [AIAA PAPER 90-5265] p 311. A91-22888 Advanced technology - Constant challenge and evolutionary process — in aeronautics p 251 A91-23547 TECHNOLOGY UTILIZATION Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 TEMPERATURE CONTROL A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 TEMPERATURE DEPENDENCE Estimation of the engineering elastic constants of a directionally solidified superalloy for finite element structural analysis [NASA-CR-187036] p 322 N91-15598 TEMPERATURE DISTRIBUTION Numerical investigation of hot streaks in turbines	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hypersonic vehicles [AIAA PAPER 91-0699] p 265 A91-21591 THERMAL STRESSES Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOCOUPLES Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-16330 THERMODYNAMIC CYCLES Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 THERMODYNAMICS Fine scale analysis of the kinematic, dynamic and thermodynamic features of a multiple microburst-producing storm (AD-A227733] p 325 N91-15657 THERMODYNAMICS THERMOCLASTICITY Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOGRAPHY Analysis of infrared thermography data for icing applications [AIAA PAPER 91-0666] p 279 A91-21584 THERMOPLASTICITY Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20783 THIN AIRFOILS Numerical solution of the equation for a thin airfoil in ground effect p 269 A91-22491 Thin FILMS Internally mounted thin-liquid-film skin-friction meter— Comparison with floating element method with and without
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-005] p 255 A91-21327 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 Calculation of three-dimensional low Reynolds number flows [AIAA PAPER 91-0187] p 259 A91-21403 Viscous flow simulation of fighter aircraft [AIAA PAPER 91-0278] p 260 A91-21438 Effect of a simulated ice accretion on the aerodynamics of a swept wing [AIAA PAPER 91-0442] p 262 A91-21491 Numerical study of the effects of icing on fixed and rotary wing performance [AIAA PAPER 91-0662] p 265 A91-21580 Vortical flow computations on swept flexible wings using Navier-Stokes equations p 269 A91-22483 Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing [ETN-91-98580] p 294 N91-16019 SYMBOLIC PROGRAMMING Computer aided design and simulation of the automatic approach and landing phase of a combat aircraft p 328 N91-15719	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT Integrated control and avionics for air superiority - A program overview [SAE PAPER 901049] p 294 A91-21248 Research to application: Supercomputing trends for the 90's - Opportunities for interdisciplinary computations [AIAA PAPER 91-0002] p 326 A91-21326 Manned versus unmanned - The implications to NASP [AIAA PAPER 90-5265] p 311. A91-22888 Advanced technology Constant challenge and evolutionary process — in aeronautics p 251 A91-23547 TECHNOLOGY UTILIZATION Potential use of tilitrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 TEMPERATURE CONTROL A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 TEMPERATURE DEPENDENCE Estimation of the engineering elastic constants of a directionally solidified superalloy for finite element structural analysis [NASA-CR-187036] p 322 N91-15598 TEMPERATURE DISTRIBUTION Numerical investigation of hot streaks in turbines p 251 A91-20748 Combustion efficiency determined from wall pressure and temperature measurement in a Mach 2 combustor	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hypersonic vehicles [AIAA PAPER 91-0699] p 265 A91-21591 THERMAL STRESSES Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOCOUPLES Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-16330 THERMODYNAMIC CYCLES Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 THERMODYNAMICS Fine scale analysis of the kinematic, dynamic and thermodynamic features of a multiple microburst-producing storm (AD-A227733] p 325 N91-15657 THERMODYNAMICS THERMOCLASTICITY Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOGRAPHY Analysis of infrared thermography data for icing applications [AIAA PAPER 91-0666] p 279 A91-21584 THERMOPLASTICITY Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20783 THIN AIRFOILS Numerical solution of the equation for a thin airfoil in ground effect p 269 A91-22491 THIN FILMS Internally mounted thin-liquid-film skin-friction meter—Comparison with floating element method with and without pressure gradient [AIAA PAPER 91-0600] p 317 A91-21352
Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 SWEPT FORWARD WINGS The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 SWEPT WINGS Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-005] p 255 A91-21327 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 Calculation of three-dimensional low Reynolds number flows [AIAA PAPER 91-0187] p 259 A91-21403 Viscous flow simulation of fighter aircraft [AIAA PAPER 91-0278] p 260 A91-21438 Effect of a simulated ice accretion on the aerodynamics of a swept wing [AIAA PAPER 91-0442] p 262 A91-21491 Numerical study of the effects of icing on fixed and rotary wing performance [AIAA PAPER 91-0662] p 265 A91-21580 Vortical flow computations on swept flexible wings using Navier-Stokes equations p 269 A91-22483 Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing p 272 A91-23845 TE89 tactical fighter outer wing design [ETN-91-98580] SYMBOLIC PROGRAMMING Computer aided design and simulation of the automatic approach and landing phase of a combat aircraft p 328 N91-15719	Initial flight test of a ground deployed system for flying qualities assessment [NASA-TM-101700] p 307 N91-15182 TECHNOLOGICAL FORECASTING Wings for the 21st century p 250 A91-21218 Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241 Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 TECHNOLOGY ASSESSMENT Integrated control and avionics for air superiority - A program overview [SAE PAPER 901049] p 294 A91-21248 Research to application: Supercomputing trends for the 90's - Opportunities for interdisciplinary computations [AIAA PAPER 91-0002] p 326 A91-21326 Manned versus unmanned - The implications to NASP [AIAA PAPER 90-5265] p 311 A91-22888 Advanced technology Constant challenge and evolutionary process — in aeronautics p 251 A91-23547 TECHNOLOGY UTILIZATION Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001 Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 TEMPERATURE CONTROL A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 TEMPERATURE DEPENDENCE Estimation of the engineering elastic constants of a directionally solidified superalloy for finite element structural analysis [NASA-CR-187036] p 322 N91-15598 TEMPERATURE DISTRIBUTION Numerical investigation of hot streaks in turbines p 251 A91-20748 Combustion efficiency determined from wall pressure	Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 THERMAL PROTECTION Synergistic effects of hydrogen transpiration on compression surfaces for hydrogen transpiration on compression surfaces finite element thermo-viscoplastic analysis of nearospace structural instrumentation, volume 2 [AD-A227473] p 324 N91-16330 THERMODYNAMIC CYCLES Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 THERMODYNAMICS Fine scale analysis of the kinematic, dynamic and thermodynamic features of a multiple microburst-producing storm [AD-A227733] p 325 N91-15657 THERMOELASTICITY Finite element thermo-viscoplastic analysis of aerospace structures [NASA-TM-102761] p 324 N91-16407 THERMOGRAPHY Analysis of infrared thermography data for icing applications [AIAA PAPER 91-0666] p 279 A91-21584 THERMOPLASTICITY Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20783 THIN AIRFOILS Numerical solution of the equation for a thin airfoil in ground effect p 269 A91-22491 THIN FILMS Internally mounted thin-liquid-film skin-friction meter Comparison with floating element method with and without pressure gradient [AIAA PAPER 91-0600] p 317 A91-21532

THIN WINGS THIN WINGS

A new method for subsonic lifting-surface theory p 268 A91-22351

THREE DIMENSIONAL BOUNDARY LAYER

Calculation of three-dimensional compressible boundary p 252 A91-20936 layers on slender bodies Boundary layer receptivity phenomena three-dimensional and high-speed boundary layers phenomena

[AIAA PAPER 90-5258] p 270 A91-22882 Boundary layer three-dimensionality in plane p 321 A91-23905 compression flows Three-dimensional boundary layer effects in convergent p 321 A91-23910 compression flows

THREE DIMENSIONAL FLOW

A three-dimensional visualization technique applied to p 315 A91-20728 flow around a delta wing Three-dimensional simulations of hypersonic flows

p 253 A91-21184 2-D and 3-D mixing flow analyses of a scramjet-afterbody p 253 configuration A91-21188 Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration p 255 A91-21327 [AIAA PAPER 91-0005] Vorticity dynamics of 2-D and 3-D wings in unsteady

p 256 A91-21331 [AIAA PAPER 91-0010] Application of three-dimensional viscous analysis to turbofan forced mixers

[AIAA PAPER 91-0131] p 258 A91-21373 Development of a solution adaptive unstructured scheme for quasi-3D inviscid flows through advanced

turbomachinery cascades [AIAA PAPER 91-0132] p 258 A91-21374 Cross-flow vortex structure and transition measurements using multi-element hot films

[AIAA PAPER 91-0166] p 258 A91-21389 An algebraic RNG-based turbulence model for three-dimensional turbomachinery flows

p 259 A91-21393 [AIAA PAPER 91-0172] Calculation of three-dimensional low Reynolds number

[AIAA PAPER 91-0187] p 259 A91-21403 Nonparallel instability of supersonic and hypersonic boundary layers

[AIAA PAPER 91-0324] p 261 A91-21461 High alpha aerodynamic control by tangential fuselage

[AIAA PAPER 91-0620] p 264 A91-21561 A three-dimensional Euler code for calculating flow fields p 267 A91-21744 in centrifugal compressor diffusers Computation of three-dimensional subsonic flows in ducts using the PNS approach p 271 A91-23186 Experimental study of the three-dimensional flow field

in a turbine stator preceded by a full stage p 271 A91-23656 Three-dimensional boundary layer effects in convergent p 321 A91-23910 compression flows

Turbulent three-dimensional separated flows in a supersonic stream near obstacles at the edge of dihedral corners p 272 A91-23913 Viscous-inviscid interactive semi-inverse code for three p 274 A91-24168 dimensional transonic flow

Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128

THREE DIMENSIONAL MODELS

Numerical simulation of an electrothermally de-iced aircraft surface using the finite element method p 287 A91-21434 [AIAA PAPER 91-0268]

Numerical investigation of drag reduction in flow over surfaces with streamwise aligned riblets

p 263 A91-21517 [AIAA PAPER 91-0518] Unstructured Euler flow solutions using hexahedral cell refinement

[AIAA PAPER 91-0637] p 264 A91-21574 THRUST AUGMENTATION

Additional fuel component application for hydrogen scramjet boosting [SAE PAPER 900990] p 312 A91-21226 THRUST CONTROL

Parametric study on thrust production in the two dimensional scramiet [AIAA PAPER 91-0227] p 298 A91-21417

THRUST DISTRIBUTION

Parametric study on thrust production in the two dimensional scramjet [AIAA PAPER 91-0227] p 298 A91-21417

THRUST VECTOR CONTROL

Fundamental concepts of vectored propulsion

p 283 A91-20746 Static internal performance of an axisymmetric nozzle

with multiaxis thrust-vectoring capability [NASA-TM-4237] p 274 N91-15125 THUNDERSTORMS

Observations of severe turbulence near thunderstorm p 324 A91-20695 tops

Fine scale analysis of the kinematic, dynamic and thermodynamic features of a multiple microburst-producing storm [AD-A227733] p 325 N91-15657

TILT ROTOR AIRCRAFT

Navier-Stokes computation of wing/rotor interaction for a tilt rotor in hover p 265 A91-21593 [AIAA PAPER 91-0707]

The vertical flight commuter - A solution to urban p 280 A91-24120 transportation problems Overcoming obstacles to vertical flight public transport

p 280 A91-24121 The civil tiltrotor aircraft's potential in developing

p 280 A91-24122 Evaluation of rotorwash characteristics for tiltrotor and tiltwing aircraft in hovering flight

[SCT-90RR-18] p 277 N91-15989 Potential use of tiltrotor aircraft in Canadian aviation INASA-TM-1022451 p 281 N91-16001

TILT WING AIRCRAFT

Ishida tilt-wing project takes cues from history

p 290 A91-24119 Evaluation of rotorwash characteristics for tiltrotor and tiltwing aircraft in hovering flight [SCT-90RR-18] p 277 N91-15989

TILTING ROTORS

Navier-Stokes computation of wing/rotor interaction for a tilt rotor in hover

[AIAA PAPER 91-0707] p 265 A91-21593

TIME LAG

Identification of time delays in flight measurements p 327 A91-22953

TIME OPTIMAL CONTROL

Energy height method for flight path optimisation (ESDU-90012) p 291 N91-15151

TITANIUM ALLOYS

Properties of advanced rapidly solidified titanium p 312 A91-20864 Titanium compressor eggshells p 312 A91-20879 The production of PREP titanium powder --- Plasma p 312 A91-20881 Rotating Electrode Process Wateriet/hydrobrasive cutting in the automotive. aerospace and appliance industries

[SME PAPER MS89-833] p 316 A91-21118 Titanium aluminides development for NASP airframe pplications

[AIAA PAPER 90-5261] p 313 A91-22884 Fatigue and fracture of titanium aluminides (AD-A226737) p 314 N91-15374

TOOLING

Resin transfer molding of composite aircraft interior furnishings [NIAR-90-19]

p 292 N91-15153 TÖPOGRAPHY Airborne lidar for profiling of surface topography

Helicopter Weight and Torque Advisory system

p 295 A91-23134

[SAWE PAPER 1872] p 295 A91-22301 TORSIONAL VIBRATION

Flexural-flexural-torsional parametric vibrations of a p 321 A91-23745 Nonlinear large amplitude vibration of composite helicopter rotor blade at large static deflection

[AD-A227933] p 307 N91-15183 TOXICITY

A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy p 309 N91-15185 (AD-A2275321

TRACKING (POSITION) GPS - The logical choice for flight test tracking of

aircraft p 282 A91-20998 Predictive control of optimal path terrain following system p 305 A51-22371 Initial flight test of a ground deployed system for flying qualities assessment

(NASA-TM-1017001 p 307 N91-15182

TRACKING FILTERS An adaptive filter for tracking the maneuvering target

p 327 A91-22756 TRACTION

Effects of runway anti-icing chemicals on traction p 310 N91-15189 [DOT/FAA/CT-TN90/53] TRAILING EDGES

Advanced composites F-4 rudder [SME PAPER EM90-106] p 249 A91-21107 The symmetric turbulent plane wake downstream of a

[AIAA PAPER 91-0612] p 264 A91-21558 TRAINING AIRCRAFT

Concept and specification for the Hermes Training Aircraft (HTA)
TRAINING SIMULATORS p 310 A91-20618

Soviet ATC research p 309 A91-22172 **TRAJECTORIES**

Economical test method and ease of access under microgravity: The zero-g Caravelle p 322 N91-15276 Optimal trajectories for an aerospace plane. Part 1: Formulation, results, and analysis

[NASA-CR-187868] p 293 N91-16013 TRAJECTORY ANALYSIS

National aerospace plane longitudinal long-period p 305 A91-22962

TRAJECTORY CONTROL

Optimization and guidance of flight trajectories for the national aerospace plane [NASA-CR-187837] p 292 N91-16010

TRAJECTORY MEASUREMENT

A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 positioning system
TRAJECTORY OPTIMIZATION

Energy height method for flight path optimisation p 291 N91-15151 [ESDU-90012] Optimization and guidance of flight trajectories for the national aerospace plane

[NASA-CR-187837] p 292 N91-16010 Optimal trajectories for an aerospace plane. Part 2: Data, tables, and graphs

[NASA-CR-187848] p 292 N91-16011 Applications of fuzzy theories to multi-objective system optimization

[NASA-CR-177573] p 293 N91-16012

TRAJECTORY PLANNING

A calculating method of the kill probability attack area for AAM p 305 A91-22352

TRANSCENDENTAL FUNCTIONS

Solution and sensitivity analysis of a complex transcendental eigenproblem with pairs of real eigenvalues p 320 A91-23685

TRANSFER FUNCTIONS Parameter identification for nonlinear aerodynamic

[NASA-CR-187410] p 274 N91-15126

TRANSITION FLOW

Hypersonic interactions and flow transition

p 254 A91-21193 Prediction of transitional (laminar-turbulent) hypersonic flows using the parabolized Navier-Stokes equations

p 255 A91-21195 Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354 AIAA PAPER 91-0066] p 257 A91-21354 Direct numerical simulations of a plane compressible

wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129

TRANSMISSIONS (MACHINE ELEMENTS) Review of the transmissions of the Soviet helicopters [NASA-TM-103634] p 291 N91-15146

TRANSMITTER RECEIVERS

GaAs MMICs in selfaligned gate technology for phased rray radar application p 296 N91-15160 array radar application

North Atlantic air traffic control p 282 A91-20900 TRANSONIC FLOW

Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Navier-Stokes simulation of transonic blade-vortex p 253 A91-21065 interactions Application of an implicit relaxation method solving the

Euler equations for time-accurate unsteady problems p 253 A91-21066

CFD validation and wind tunnel test for a NASP single expansion ramp nozzle in the transonic regime [AIAA PAPER 91-0015] p 256 A p 256 A91-21334 Navier-Stokes simulation of close-coupled

canard-wing-body configuration [AIAA PAPER 91-0070] p 257 A91-21356 Thin-layer Navier-Stokes solutions for transonic

rulti-body interference [AIAA PAPER 91-0071] p 258 A91-21357 Numerical influence of upwind TVD schemes on

transonic airfoil drag prediction [AIAA PAPER 91-0184] p 259 A91-21402

Techniques for accurate, efficient computation of unsteady transonic flow [AIAA PAPER 91-0597] p 263 A91-21549

A three-dimensional Euler code for calculating flow fields in centrifugal compressor diffusers p 267 A91-21744 AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack

p 270 A91-22763 A study of flow structure in nozzles with a constant-height section in the throat region p 272 A91-23848 Calculation of averaged axisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 Unsteady transonic flow calculations for multiple

oscillating airfoil

p 273 A91-24154

A Green's Function Method for calculating the transonic	EJ200 - The engine for the new European Fighter	Detailed documentation of the near field effects of Large
pressure distribution of wing p 273 A91-24157	Aircraft	Eddy Break Up devices on the oncoming vortical structures
Numerical computation of shock in the front of blunt	[ASME PAPER 90-GT-119] p 301 A91-23637 TURBINES	in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518
body p 273 A91-24164 Viscous-inviscid interactive semi-inverse code for three	Advanced Turbine Technology Applications Project	Wall pressure fluctuations near separation in a Mach
dimensional transpric flow p 274 A91-24168	(ATTAP)	5, sharp fin-induced turbulent interaction
A method of estimating a separation boundary of	[NASA-CR-187039] p 302 N91-16021	[AIAA PAPER 91-0646] p 264 A91-21576
two-dimensional aerofoil sections in transonic flow	TURBOCOMPRESSORS	The effects of mass removal on turbulence properties
[ESDU-81020-AMEND-A] p 275 N91-15133	Calculation of averaged axisymmetric flow of an ideal	in a normal-shock/turbulent-boundary-layer interaction
Investigation of transonic flow over segmented slotted	gas in turbomachine stages p 321 A91-23938 TURBOFAN ENGINES	[AIAA PAPER 91-0647] p 264 A91-21577
wind tunnel wall with mass transfer [NASA-CR-187760] p 276 N91-15981	Optimization studies for the PW305 turbofan	Symmetry plane model for turbulent flows with vortex
Large-scale numerical aerodynamic simulations for	p 297 A91-21222	generators
complete aircraft configurations	Application of three-dimensional viscous analysis to	[AIAA PAPER 91-0723] p 266 A91-21598
[NAL-TR-1073-T] p 277 N91-15984	turbofan forced mixers	Effects of a fillet on the flow past a wing-body junction p 268 A91-22476
Finite element approximations for transonic flows	[AIAA PAPER 91-0131] p 258 A91-21373	Viscous-inviscid interactive semi-inverse code for three
[ETN-91-98491] p 277 N91-15988	On the leading edge - Combining maturity and advanced technology on the F404 turbofan engine	dimensional transonic flow p 274 A91-24168
TRANSONIC FLUTTER	[ASME PAPER 90-GT-149] p 301 A91-23634	Hypersonic shock/boundary-layer interaction database
Techniques for accurate, efficient computation of unsteady transonic flow	TURBOJET ENGINES	[NASA-CR-187769] p 277 N91-15986
[AIAA PAPER 91-0597] p 263 A91-21549	The prediction of STOVL noise - Current semiempirical	TURBULENT DIFFUSION
TRANSONIC NOZZLES	methods and comparisons with jet noise data	Computation of turbulent flow about unconventional
Calculation of transonic nozzle flow	[SAE PAPER 901058] p 331 A91-21255	airfoil shapes p 278 N91-15992
p 273 A91-24167	An application of automatic ignitor DDK-1 to turbojet	TURBULENT FLOW
TRANSONIC SPEED	engine test under simulated altitude condition p 300 A91-23100	Turbulent shear flow over surface mounted obstacles
Investigation of transonic flow over segmented slotted wind tunnel wall with mass transfer	TURBOMACHINE BLADES	p 252 A91-21057
[NASA-CR-187760] p 276 N91-15981	Double linearization theory for a rotating subsonic	Interference drag of a turbulent junction vortex [ASME PAPER 90-WA/FE-2] p 252 A91-21063
TRANSONIC WIND TUNNELS	annular cascade of oscillating blades. I - Mathematical	Exploratory study of vortex-generating devices for
Profile measurements in transonic wind tunnel	expressions of disturbance flow field. II - Numerical study	turbulent flow separation control
Braunschweig p 308 A91-20613	of unsteady aerodynamic forces p 272 A91-24115	[AIAA PAPER 91-0042] p 317 A91-21348
Experimental investigation of the transonic flow on a	TURBOMACHINERY	Design limits of compressible NLF airfoils
supercritical wing profile p 252 A91-20934	Development of a solution adaptive unstructured	[AIAA PAPER 91-0067] p 257 A91-21355
Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the	scheme for quasi-3D inviscid flows through advanced turbomachinery cascades	Correlation of separation shock motion in a
temperature range 78-300 K p 318 A91-21722	[AIAA PAPER 91-0132] p 258 A91-21374	cylinder-induced, Mach 5, turbulent interaction with
Comment on 'Optical boundary-layer transition detection	An algebraic RNG-based turbulence model for	pressure fluctuations in the separated flow
in a transonic wind tunnel' p 319 A91-22496	three-dimensional turbomachinery flows	[AIAA PAPER 91-0650] p 265 A91-21578
Airframe/propulsion integration at transonic speeds	[AIAA PAPER 91-0172] p 259 A91-21393	Symmetry plane model for turbulent flows with vortex generators
[ASME PAPER 90-GT-338] p 271 A91-23640	TURBOPROP AIRCRAFT	[AIAA PAPER 91-0723] p 266 A91-21598
The method for extending the range of attack angle and blockage in transonic wind tunnel testing - Using low	Potential reduction of en route noise from an advanced	Boundary-layer transition - Analysis and prediction
supersonic nozzle instead of sonic nozzle	turboprop aircraft	revisited
p 273 A91-24163	[NASA-TM-103635] p 332 N91-15842	[AIAA PAPER 91-0737] p 318 A91-21601
Static internal performance of an axisymmetric nozzle	Long-range vertical propagation p 332 N91-16693	Optimal conditions for controlling the intensity of
with multiaxis thrust-vectoring capability	TURBOSHAFTS	turbulent flow by means of screens p 321 A91-23904
[NASA-TM-4237] p 274 N91-15125	Advanced technology programs for small turboshaft engines - Past, present, future	Turbulent three-dimensional separated flows in a
Pseudo Reynolds number effects in transonic wind	[ASME PAPER 90-GT-267] p 301 A91-23638	supersonic stream near obstacles at the edge of dihedral corners p 272 A91-23913
tunnels [ETN-91-98493] p 276 N91-15135	TURBULENCE	corners p 272 A91-23913 Computation of turbulent flow about unconventional
TRANSPORT AIRCRAFT	Numerical analysis of viscous hypersonic flow past a	airfoil shapes p 278 N91-15992
Flight-test-derived stability derivatives for the Advanced	generic forebody	TURBULENT JETS
Technology Tactical Transport p 303 A91-20991	[MBB/FE122/S/PUB/0407] p 278 N91-15997	Eigenfunction analysis of turbulent mixing phenomena
Limitations of BITE Built In Test Equipment for	TURBULENCE EFFECTS	[AIAA PAPER 91-0520] p.318 A91-21519
transport aircraft p 250 A91-21202	Optimal conditions for controlling the intensity of	Calculation of impinging jet flows with Reynolds stress
ACARS air/ground communication facilities for transport aircraft maintenance p 282 A91-21203	turbulent flow by means of screens p 321 A91-23904 TURBULENCE MODELS	models [AIAA PAPER 91-0754] p 266 A91-21606
SAE aerospace flight deck and handling qualities	Turbulence modeling for complex ground effects flows	Effect of the initial flow conditions on the aerodynamic
standards for transport aircraft	[SAE PAPER 901062] p 255 , A91-21257	and acoustic characteristics of turbulent jets
[SAE ARP 4100] p 287 A91-21259	An algebraic RNG-based turbulence model for	p 272 A91-23903
Wind tunnel tests of aerodynamic effects of type I and	three-dimensional turbomachinery flows	TURBULENT MIXING
Il ground de/anti-icing fluids on small transport and general	[AIAA PAPER 91-0172] p 259 A91-21393	Eigenfunction analysis of turbulent mixing phenomena
aviation aircraft during takeoff [AIAA PAPER 91-0763] p 288 A91-21609	 Calculation of the flow in a circular S-duct inlet 	[AIAA PAPER 91-0520] p 318 A91-21519
[AIAA PAPER 91-0763] p 288 A91-21609 TRANSPORT PROPERTIES	[AIAA PAPER 91-0174] p 259 A91-21394	An experiment on supersonic turbulent mixing layers: Supersonic-subsonic two-stream layers
Viscous non equilibrium flow calculations by an implicit	Numerical algorithm comparison for the accurate and	[NAL-TR-1066] p 276 N91-15983
finite volume method	efficient computation of high-incidence vortical flow	TURBULENT WAKES
[AIAA PAPER 91-0702] p 265 A91-21592	[AIAA PAPER 91-0175] p 259 A91-21395	The symmetric turbulent plane wake downstream of a
TRANSPORT THEORY	Modeling two-point spatial turbulence spectra for analysis of gust variations over aerospace vehicles	sharp trailing edge
Flux-difference split scheme for turbulent transport	[AIAA PAPER 91-0449] p 262 A91-21495	[AIAA PAPER 91-0612] p 264 A91-21558
equations [AIAA PAPER 90-5251] p 270 A91-22878	Application of turbulence modeling to the design of	Linear stability analysis of measured near-wake profiles for a flat plate in longitudinal flow p 271 A91-23189
TRANSPUTERS	military aircraft	Direct numerical simulations of a plane compressible
A new approach to hardware in the loop simulation	[AIAA PAPER 91-0513] p 287 × A91-21515	wake: Stability, vorticity dynamics, and topology
(FALKE shuttle) p 329 N91-15735	Turbulence modeling in gas turbine design and	[NASA-CR-187737] p 274 N91-15129
TRITIUM	analysis	TVD SCHEMES
Radioluminescent (RL) airfield lighting system program	[AIAA PAPER 91-0514] p 299 A91-21516	Numerical influence of upwind TVD schemes on
[DE91-001007] p 309 N91-15186	Calculation of impinging jet flows with Reynolds stress	transonic airfoil drag prediction
TURBINE BLADES Knowledge-based engineering technology case study -	models [AIAA PAPER 91-0754] p 266 A91-21606	[AIAA PAPER 91-0184] p 259 A91-21402 A systematic comparative study of several high
Jet engine turbine blade design		resolution schemes for complex problems in high speed
[SME PAPER MS89-727] p 316 A91-21115	Flux-difference split scheme for turbulent transport equations	flows
Heat transfer in rotating passages with smooth walls	[AIAA PAPER 90-5251] p 270 A91-22878	[AIAA PAPER 91-0636] p 264 A91-21573
and radial outward flow	Numerical solutions for a cylindrical laser diffuser	Large-scale numerical aerodynamic simulations for
[ASME PAPER 89-GT-272] p 320 A91-23659	flow-field p 274 N91-15127	complete aircraft configurations
Optimization of process routes in the repair of gas turbine	Hypersonic shock/boundary-layer interaction database	[NAL-TR-1073-T] p 277 N91-15984 TWO DIMENSIONAL BODIES
engine components using capillary testing p 321 A91-23817	[NASA-CR-187769] p 277 N91-15986	Aerodynamic shape design using
Experimental and theoretical examinations of film	Computation of turbulent flow about unconventional	stream-function-coordinate (SFC) formulation
cooling of gas turbine blades	airfoil shapes p 278 N91-15992	[AIAA PAPER 91-0189] p 260 A91-21404
[ETN-91-98554] p 303 N91-16022	TURBULENT BOUNDARY LAYER	TWO DIMENSIONAL FLOW
TURBINE ENGINES	Turbulent shear flow over surface mounted obstacles p 252 A91-21057	2-D and 3-D mixing flow analyses of a scramjet-afterbody
Metallurgical control of fatigue crack propagation in superalloys p 311 A91-20677	Experimental study on mixing phenomena in supersonic	configuration .p 253 A91-21188 Vorticity dynamics of 2-D and 3-D wings in unsteady
superalloys p 311 A91-20677 SNECMA M88 engine development status	Experimental study on mixing phenomena in supersonic flows with slot injection	free stream
(ASME PAPER 90-GT-118) p 301 A91-23636	[AIAA PAPER 91-0016] p 256 A91-21335	[AIAA PAPER 91-0010] p 256 A91-21331

· "		
Experimental investigation of a 2-D scramjet inlet at Mach numbers of 8 to 18 and stagnation temperatures of 4,100K	Higher harmonic control analysis for vibration reduction of helicopter rotor systems p 306 N91-15175 Calculations for unsteady aerodynamic characteristics	VELOCITY DISTRIBUTION Calculation of flow about two-dimensional bodies by means of the velocity-vorticity formulation on a staggered
[AIAA PAPER 91-0013] p 256 A91-21333	on a 3-D lifting body in subsonic flow using boundary	grid
Parametric study on thrust production in the two	element method	[AIAA PAPER 91-0600] p 263 A91-21551
dimensional scramjet	[NAL-TR-1065] p 277 N91-15985	Velocity field of an axisymmetric pulsed, subsonic air
[AIAA PAPER 91-0227] p 298 A91-21417 Spatial correlation velocimetry in unsteady flows	Propfan supersonic panel method analysis and flutter	jet p 269 A91-22479 Simplified modeling of blunt nose effects on vehicle flow
[AIAA PAPER 91-0271] p 318 A91-21435	predictions p 278 N91-15993 A coupled rotor aeroelastic analysis utilizing advanced	fields
Molecular dynamics computations of two dimensional	aerodynamic modeling p 292 N91-16006	[AIAA PAPER 90-5259] p 270 A91-22883
supersonic rarefied gas flow past blunt bodies	UNSTEADY FLOW	Performance of conical diffusers in subsonic
[AtAA PAPER 91-0322] p 261 A91-21459 Nonparallel instability of supersonic and hypersonic	Flowfield measurements in an unstable ramjet burner	compressible flow [ESDU-90025] . p 275 N91-15131
boundary layers	p 297 A91-20737	An experiment on supersonic turbulent mixing layers:
[AIAA PAPER 91-0324] p 261 A91-21461	Computation of unsteady viscous flows around wing	Supersonic-subsonic two-stream layers
Study of dynamic stall mechanism using simulation of	profiles p 251 A91-20933 Three-dimensional unsteady flow fields elicited by	[NAL-TR-1066] p 276 N91-15983
two-dimensional unsteady Navier-Stokes equations [AIAA PAPER 91-0546] p 263 A91-21525	pitching a canard and forward swept wing configuration	VELOCITY MEASUREMENT Spatial correlation velocimetry in unsteady flows
Inviscid analysis of two-dimensional airfoils in unsteady	(AIAA PAPER 91-0005) p 255 A91-21327	[AIAA PAPER 91-0271] p 318 A91-21435
motion using conformal mapping p 268 A91-22477	Numerical prediction of the unsteady flowfield around	VENTILATION
Solution of Euler equations to 2-D and axisymmetric	the F-18 aircraft at large incidence	Investigation of transonic flow over segmented slotted
compressible flows using conformal mapping coordinates p 272 A91-24152	[AIAA PAPER 91-0020] p 256 A91-21338	wind tunnel wall with mass transfer [NASA-CR-187760] p 276 N91-15981
Superconvergence in two-dimensional vortex-lattice	Numerical simulation of supersonic unsteady flow for multibody configurations	VERTICAL FLIGHT
methods p 322 A91-24153	[AIAA PAPER 91-0023] p 257 A91-21341	The vertical flight commuter - A solution to urban
An introduction to aircraft excrescence drag	Unsteady measurement of skin friction in adverse	transportation problems p 280 A91-24120
[ESDU-90029] p 275 N91-15132	pressure gradient - A new approach to a well known	Overcoming obstacles to vertical flight public transport operations p 280 A91-24121
TWO DIMENSIONAL MODELS Calculation of flow about two-dimensional bodies by	gauge [AIAA PAPER 91-0168] p 318 A91-21391	VERTICAL LANDING
means of the velocity-vorticity formulation on a staggered	Spatial correlation velocimetry in unsteady flows	Assessment of a post 2000 STOVL fighter
grid	[AIAA PAPER 91-0271] p 318 A91-21435	[SAE PAPER 901031] p 286 A91-21241
[AIAA PAPER 91-0600] p. 263 A91-21551 Flowfield computation of 2-C-D nozzle	Viscous flow simulation of fighter aircraft	Flow studies in close-coupled ventral nozzles for STOVL aircraft
p 268 A91-22382	[AIAA PAPER 91-0278] p 260 A91-21438	[SAE PAPER 901033] p 255 A91-21242
TWO PHASE FLOW	Techniques for accurate, efficient computation of	The prediction of STOVL noise - Current semiempirical
Theoretical analysis of supersonic gas-particle	unsteady transonic flow [AIAA PAPER 91-0597] p 263 A91-21549	methods and comparisons with jet noise data
two-phase flow and its application to relatively complicated flow fields p 255 A91-21198	A composite grid approach to study the flow surrounding	[SAE PAPER 901058] p 331 A91-21255 VERTICAL TAKEOFF AIRCRAFT
flow fields p 255 A91-21198	a pitch-up airfoil in a wind tunnel	Turbulence modeling for complex ground effects flows
U	[AIAA PAPER 91-0599] p 263 A91-21550	[SAE PAPER 901062] p 255 A91-21257
. •	Computation of steady and unsteady compressible	Technological forecast of VTOL weight empty fraction
U.S.S.R. SPACE PROGRAM	quasi-axisymmetric vortex flow and breakdown [AIAA PAPER 91-0752] p 266 A91-21604	in the year 2020 [SAWE PAPER 1871] p 288 A91-22302
Aerospace system development directions and some	Unsteady transonic flow calculations for multiple	[SAWE PAPER 1871] p 288 A91-22302 VERY LARGE SCALE INTEGRATION
aspects of their construction and application	oscillating airfoil p 273 A91-24154	· Computer communication using Logic Cell Arrays (LCA)
[AIAA PAPER 90-5266] p 311 A91-22889	Calculations for unsteady aerodynamic characteristics	in ATTAS p 294 A91-20617
UH-60A HELICOPTER A review of ice accretion data from a model rotor icing	on a 3-D lifting body in subsonic flow using boundary	VIBRATION DAMPING
test and comparison with theory	element method	The development and testing of active control techniques to minimise helicopter vibration
[AIAA PAPER 91-0661] p 280 A91-22500	[NAL-TR-1065] p 277 N91-15985 Rotorcraft application of advanced computational	p 284 A91-20946
ULTRASONIC SCANNERS	aerodynamics	Higher harmonic control analysis for vibration reduction
Assessment of impact damage in toughened resin composites p 312 A91-20776	[NASA-CR-187767] p 277 N91-15987	of helicopter rotor systems p 306 N91-15175
ULTRASONIC WAVE TRANSDUCERS	Unsteady vortex lattice calculation of the flow around	Application of chaos methods to helicopter vibration reduction using higher harmonic control
Theory of the resonance method for the quality control	a slender delta wing p 278 N91-16272	[AD-A226736] p 306 N91-15177
of adhesive joints p 321 A91-23814	UPWASH	Development and application of a technique for reducing
UNCAMBERED WINGS Normal force and pitching moment of low aspect ratio	Airframe-induced upwash at subsonic speeds [ESDU-90020] p 275 N91-15130	airframe finite element models for dynamics analysis [NASA-CR-187448] p 323 N91-15607
cropped-delta wings up to high angles of attack at	URBAN TRANSPORTATION	[NASA-CR-187448] p 323 N91-15607 VIBRATION EFFECTS
supersonic speeds	The vertical flight commuter - A solution to urban	Low-noise oscillators for airborne radar applications
[ESDU-90013] p 292 N91-15152	transportation problems p 280 A91-24120	p 296 N91-15159
Evaluation procedure for reinforced concrete box	Overcoming obstacles to vertical flight public transport operations p 280 A91-24121	VIBRATION MODE Optical measurement of unducted fan flutter
culverts under airfield pavements	operations p 280 A91-24121 USER MANUALS (COMPUTER PROGRAMS)	[NASA-TM-103285] p 302 N91-15174
[AD-A227920] p 310 N91-16031	Analytic Patch Configuration (APC) gateway version 1.0	VIBRATION TESTS
UNMANNED SPACECRAFT	user's guide	Random air turbulence as a flutter test excitation
Manned versus unmanned - The implications to NASP (AIAA PAPER 90-5265) p 311 A91-22888	[NASA-CR-187464] p 330 N91-15751	source p 286 A91-21002
UNSTEADY AERODYNAMICS		Computerized procedure for vibration diagnostics of aircraft brakes p 320 A91-23679
Application of an implicit relaxation method solving the	V	Simulated rotor test apparatus dynamic characteristics
Euler equations for time-accurate unsteady problems	-	in the 80- by 120-foot wind tunnel
p 253 A91-21066 Vorticity dynamics of 2-D and 3-D wings in unsteady	V/STOL AIRCRAFT	[NASA-TM-102870] p 291 N91-15147
free stream	Flow studies in close-coupled ventral nozzles for STOVL aircraft	VISCOPLASTICITY Finite element thermo-viscoplastic analysis of
[AIAA PAPER 91-0010] p 256 A91-21331	[SAE PAPER 901033] p 255 A91-21242	Finite element thermo-viscoplastic analysis of aerospace structures
Study of dynamic stall mechanism using simulation of	Infrared imaging - A validation technique for	[NASA-TM-102761] p 324 N91-16407
two-dimensional unsteady Navier-Stokes equations [AIAA PAPER 91-0546] p 263 A91-21525	computational fluid dynamics codes used in STOVL	VISCOUS FLOW
An improved three-dimensional aerodynamics model for	applications [AIAA PAPER 91-0675] p 318 A91-21587	Computation of unsteady viscous flows around wing
helicopter airloads prediction	Calculation of impinging jet flows with Reynolds stress	profiles p 251 A91-20933 Hypersonic viscous interaction revisited
[AIAA PAPER 91-0767] p 267 A91-21610	models	nypersonic viscous interaction revisited p 254 A91-21191
Inviscid steady/unsteady flow calculations p 267 A91-21748	[AIAA PAPER 91-0754] p 268 A91-21606	Optimum spacing control of the marching grid
Inviscid analysis of two-dimensional airfoils in unsteady	Integrated propulsion system requirements for control	generation
motion using conformal mapping p 268 A91-22477	of STOVL aircraft [ASME PAPER 90-GT-384] p 305 A91-23641	[AIAA PAPER 91-0103] p 258 A91-21368
Unsteady separation over maneuvering bodies	STOVL Hot Gas Ingestion control technology	Application of three-dimensional viscous analysis to
perturbed aerodynamics of flying aircraft	[ASME PAPER 89-GT-323] p 301 A91-23642	turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373
p 269 A91-22481 The influences of forced oscillations toward	To capture the market put the real "V" in VTOL	[AIAA PAPER 91-0131] p 258 A91-21373 Viscous high speed flow computations by adaptive mesh
The influences of forced oscillations toward vortex-breakdown p 270 A91-22762	p 280 A91-24123 Evaluation of rotowash characteristics for tiltrotor and	embedding techniques
Calculation of unsteady aerodynamic loads on wings	Evaluation of rotorwash characteristics for tiltrotor and tiltwing aircraft in hovering flight	[AIAA PAPER 91-0149] p 258 A91-21381
with an oscillatory leading edge flap p 270 A91-22764	[SCT-90RR-18] p 277 N91-15989	A rapidly converging viscous/inviscid coupling code for
Double linearization theory for a rotating subsonic	VARIABLE GEOMETRY STRUCTURES	multi-element airfoil configurations
annular cascade of oscillating blades. I - Mathematical	The development and design integration of a variable	[AIAA PAPER 91-0177] p 259 A91-21397
expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115	camber wing for long/medium range aircraft p 284 A91-20898	Viscous flow simulation of fighter aircraft [AIAA PAPER 91-0278] p 260 A91-21438
of unsteady aerodynamic forces p 272 A91-24115	h 504 V91-50090	LUMPATION COLORED P 200 AS1-21430

	Calculation of flow about two-dimensional bodies by	WIND SHEAR
finite volume method	means of the velocity-vorticity formulation on a staggered	How safe is flying? Or - The AIMS onboard integrated
[AIAA PAPER 91-0702] p 265 A91-21592 Viscous-inviscid interactive semi-inverse code for three	grid [AIAA PAPER 91-0600] p 263 A91-21551	monitoring systems p 294 A91-20609
dimensional transonic flow p 274 A91-24168	Measurements of vorticity field p 319 A91-22259	Fine scale analysis of the kinematic, dynamic and thermodynamic features of a multiple microburst-producing
Flowfield of a lifting hovering rotor: A Navier-Stokes		storm
simulation	W	[AD-A227733] p 325 N91-15657
[NASA-TM-102862] p 274 N91-15128 Rotorcraft application of advanced computational	••	WIND TUNNEL APPARATUS
aerodynamics	WAKES	Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the
[NASA-CR-187767] p 277 N91-15987	A method for calculating the aerodynamic forces of elliptical circulation control airfoils p 273 A91-24155	temperature range 78-300 K p 318 A91-21722
Numerical analysis of viscous hypersonic flow past a	Curved vortex elements for numerical wake modeling	WIND TUNNEL MODELS
generic forebody [MBB/FE122/S/PUB/0407] p 278 N91-15997	p 273 A91-24162	Airframe-engine integration - Task for future commercial
VISIBILITY	WALL FLOW	aircraft evolution p 251 A91-20615 A composite grid approach to study the flow surrounding
Windshields and canopies - A pilot's best friends	Turbulent shear flow over surface mounted obstacles p 252 A91-21057	a pitch-up airfoil in a wind tunnel
p 286 A91-21125 VISUAL FLIGHT RULES	Heat transfer in rotating passages with smooth walls	[AIAA PAPER 91-0599] p 263 A91-21550
VASI systems for helicopter operations Visual	and radial outward flow	WIND TUNNEL TESTS
Approach Slope Indicator p 294 A91-21221	[ASME PAPER 89-GT-272] p 320 A91-23659 An experimental investigation of heat transfer	Simulation and study of shear flows surrounding proprian engine models p 297 A91-20612
VOICE COMMUNICATION	coefficients in a spanwise rotating channel with two	A three-dimensional visualization technique applied to
ACARS — air/ground communication facilities for transport aircraft maintenance p 282 A91-21203	opposite rib-roughened walls	flow around a delta wing p 315 A91-20728
VORTEX BREAKDOWN	[ASME PAPER 89-GT-150] p 320 A91-23661	Experimental measurements of the flow in a scramjet
Calculation of vortex flowfields around forebodies and	WALL PRESSURE Combustion efficiency determined from wall pressure	inlet at Mach 4 p 251 A91-20750
delta wings [AIAA PAPER 91-0176] p 259 A91-21396	and temperature measurement in a Mach 2 combustor	Experimental and theoretical investigation of a vortex street in the wake of a flat plate p 252 A91-20935
Detailed documentation of the near field effects of Large	[AIAA PAPER 91-0017] p 298 A91-21338	The aerodynamic characteristics of power-law bodies
Eddy Break Up devices on the oncoming vortical structures	Wall pressure fluctuations near separation in a Mach 5, sharp fin-induced turbulent interaction	in continuum and transitional hypersonic flow
in turbulent boundary layers	[AIAA PAPER 91-0646] p 264 A91-21576	p 253 A91-21180
[AIAA PAPER 91-0519] p 263 A91-21518 Computation of steady and unsteady compressible	Pseudo Reynolds number effects in transonic wind	Small-scale experiments in STOVL ground effects [SAE PAPER 901060] p 287 A91-21256
quasi-axisymmetric vortex flow and breakdown	tunnels	CFD validation and wind tunnel test for a NASP single
[AIAA PAPER 91-0752] p 266 A91-21604	[ETN-91-98493] p 276 N91-15135 WATER	expansion ramp nozzle in the transonic regime
The influences of forced oscillations toward vortex-breakdown p 270 A91-22762	Experimental water droplet implingement data on modern	[AIAA PAPER 91-0015] p 256 A91-21334
vortex-breakdown p 270 A91-22762 VORTEX GENERATORS	aircraft surfaces	Aerodynamic effects of distributed roughness on a NACA 63(2)-015 airfoil
Exploratory study of vortex-generating devices for	[AIAA PAPER 91-0445] p 262 A91-21493 WATER INJECTION	[AIAA PAPER 91-0443] p 262 A91-21492
turbulent flow separation control	Engine water ingestion test p 288 A91-21003	Directivity and prediction of low frequency rotor noise
[AIAA PAPER 91-0042] p 317 A91-21348 Symmetry plane model for turbulent flows with vortex	WEAR TESTS	[AIAA PAPER 91-0592] p 331 A91-21545 Flight and wind tunnel tests of the aerodynamic effects
generators	Wear measurement of ceramic bearings in gas	of aircraft ground deicing/anti-icing fluids
[AIAA PAPER 91-0723] p 266 A91-21598	turbines [AD-A227505] p 324 N91-16382	[AIAA PAPER 91-0762] p 267 A91-21608
VORTEX SHEDDING	WEATHER FORECASTING	Wind tunnel tests of aerodynamic effects of type I and
Measurements of vorticity field p 319 A91-22259 Unsteady vortex lattice calculation of the flow around	Observations of severe turbulence near thunderstorm	Il ground de/anti-icing fluids on small transport and general aviation aircraft during takeoff
a slender delta wing p 278 N91-16272	tops p 324 A91-20695	[AIAA PAPER 91-0763] p 288 A91-21609
VORTEX SHEETS	A program to improve aircraft icing forecasts - Status report	The method for extending the range of attack angle
Numerical simulation of separated flows around a wing section at steady and unsteady motion by a discrete vortex	[AIAA PAPER 91-0557] p 325 A91-21530	and blockage in transonic wind tunnel testing - Using low supersonic nozzle instead of sonic nozzle
method p 278 N91-16268	Fine scale analysis of the kinematic, dynamic and	p 273 A91-24163
VORTEX STREETS	thermodynamic features of a multiple microburst-producing storm	Static internal performance of an axisymmetric nozzle
Experimental and theoretical investigation of a vortex	[AD-A227733] p 325 N91-15657	with multiaxis thrust-vectoring capability
street in the wake of a flat plate p 252 A91-20935 VORTICES	Results of the Kansas City 1989 Terminal Doppler	[NASA-TM-4237] p 274 N91-15125 An introduction to aircraft excrescence drag
On the formation and control of the dynamic stall vortex	Weather Radar (TDWR) operational evaluation testing (AD-A228784) p 323 N91-18206	[ESDU-90029] p 275 N91-15132
on a pitching airfoil	[AD-A228784] p 323 N91-16206 WEDGE FLOW	Simulated rotor test apparatus dynamic characteristics
[AIAA PAPER 91-0006] p 255 A91-21328 Analysis of flow on cones and cylinders using discrete	Strip blowing from a wedge at hypersonic speeds	in the 80- by 120-foot wind turinel [NASA-TM-102870] p 291 N91-15147
vortex methods	[AIAA PAPER 91-0032] p 257 A91-21346	Wind tunnel tests on flutter control of a high-aspect-ratio
		Trivo tunites tests on nutter control of a high-aspect-raso
[AIAA PAPER 91-0288] p 260 A91-21442	WEIGHT ANALYSIS	cantilevered wing: Control with leading-edge and
Active control of combustion instability in a ramjet using	WEIGHT ANALYSIS Derivation of a fuselage weight estimating relationship [SAWE PAPER 1901] p 289 A91-22319	cantilevered wing: Control with leading-edge and trailing-edge control surfaces
Active control of combustion instability in a ramjet using large-eddy simulations	Derivation of a fuselage weight estimating relationship [SAWE PAPER 1901] p 289 A91-22319 Analytical weight estimation of unconventional landing	cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982
Active control of combustion instability in a ramjet using	Derivation of a fusetage weight estimating relationship [SAWE PAPER 1901] p 289 A91-22319 Analytical weight estimation of unconventional landing gear designs	cantilevered wing: Control with leading-edge and trailing-edge control surfaces
Active control of combustion instability in a ramjet using large-eddy simulations [AIAA PAPER 91-0411] p 299 A91-21482 Numerical investigation of the flow over a double delta wing at high incidence	Derivation of a fusetage weight estimating relationship [SAWE PAPER 1901] p 289 A91-22319 Analytical weight estimation of unconventional landing gear designs [SAWE PAPER 1905] p 289 A91-22320	cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8
Active control of combustion instability in a ramjet using large-eddy simulations [AIAA PAPER 91-0411] p 299 A91-21482 Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605	Derivation of a fusetage weight estimating relationship [SAWE PAPER 1901] p 289 A91-22319 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 WEIGHT REDUCTION Wings for the 21st century p 250 A91-21218	cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293
Active control of combustion instability in a ramjet using large-eddy simulations [AIAA PAPER 91-0411] p 299 A91-21482 Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605 The ground vortex formed by impinging lets in	Derivation of a fusetage weight estimating relationship [SAWE PAPER 1901] p 289 A91-22319 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 WEIGHT REDUCTION Wings for the 21st century p 250 A91-21218 Analytical weight estimation of unconventional landing	cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 WIND TUNNEL WALLS
Active control of combustion instability in a ramjet using large-eddy simulations [AIAA PAPER 91-0411] p 299 A91-21482 Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605	Derivation of a fuselage weight estimating relationship [SAWE PAPER 1901] p 289 A91-22319 Analytical weight estimation of unconventional landing gear designs [SAWE PAPER 1905] p 289 A91-22320 WEIGHT REDUCTION Wings for the 21st century p 250 A91-21218 Analytical weight estimation of unconventional landing gear designs	cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 WIND TUNNEL WALLS Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20834
Active control of combustion instability in a ramjet using large-eddy simulations [AIAA PAPER 91-0411] p 299 A91-21482 Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605 The ground vortex formed by impinging jets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611 Effects of a fillet on the flow past a wing-body junction	Derivation of a fusetage weight estimating relationship [SAWE PAPER 1901] p 289 A91-22319 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 WEIGHT REDUCTION Wings for the 21st century p 250 A91-21218 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320	cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 Investigation of the Influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 WIND TUNNEL WALLS Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Boundary layer three-dimensionality in plane
Active control of combustion instability in a ramjet using large-eddy simulations [AIAA PAPER 91-0411] p 299 A91-21482 Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605 The ground vortex formed by impinging jets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611 Effects of a fillet on the flow past a wing-body junction p 268 A91-22476	Derivation of a fusetage weight estimating relationship [SAWE PAPER 1901] p 289 A91-22319 Analytical weight estimation of unconventional landing gear designs [SAWE PAPER 1905] p 289 A91-22320 WEIGHT REDUCTION Wings for the 21st century p 250 A91-21218 Analytical weight estimation of unconventional landing gear designs [SAWE PAPER 1905] p 289 A91-22320 Rotorcraft structural weight and cost aspects [SAWE PAPER 1908] p 289 A91-22321	cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 Investigation of the Influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 WIND TUNNEL WALLS Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Boundary layer three-dimensionality in plane compression flows p 321 A91-23905
Active control of combustion instability in a ramjet using large-eddy simulations [AIAA PAPER 91-0411] p 299 A91-21482 Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605 The ground vortex formed by impinging jets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611 Effects of a fillet on the flow past a wing-body junction p 268 A91-22476 Linear stability analysis of measured near-wake profiles	Derivation of a fusetage weight estimating relationship [SAWE PAPER 1901] p 289 A91-22319 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 WEIGHT REDUCTION Wings for the 21st century p 250 A91-21218 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 Rotorcraft structural weight and cost aspects [SAWE PAPER 1908] p 289 A91-22321 Aluminum lithium for the F/A-18, Hornet 2000	cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 Investigation of the Influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 WIND TUNNEL WALLS Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Boundary layer three-dimensionality in plane
Active control of combustion instability in a ramjet using large-eddy simulations [AIAA PAPER 91-0411] p 299 A91-21482 Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605 The ground vortex formed by impinging jets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611 Effects of a fillet on the flow past a wing-body junction p 268 A91-22476 Linear stability analysis of measured near-wake profiles for a flat plate in longitudinal flow p 271 A91-23189 Superconvergence in two-dimensional vortex-lattice	Derivation of a fuselage weight estimating relationship [SAWE PAPER 1901] p 289 A91-22319 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 WEIGHT REDUCTION Wings for the 21st century p 250 A91-21218 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 Rotorcraft structural weight and cost aspects [SAWE PAPER 1908] p 289 A91-22321 Aluminum lithium for the F/A-18, Hornet 2000 [SAWE PAPER 1913] p 289 A91-22326	cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 Investigation of the Influence of constant, adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 WIND TUNNEL WALLS Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 Investigation of transonic flow over segmented slotted wind tunnel wall with mass transfer [NASA-CR-187760] p 276 N91-15981
Active control of combustion instability in a ramjet using large-eddy simulations [AIAA PAPER 91-0411] p 299 A91-21482 Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605 The ground vortex formed by impinging jets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611 Effects of a fillet on the flow past a wing-body junction p 268 A91-22476 Linear stability analysis of measured near-wake profiles for a flat plate in longitudinal flow p 271 A91-23189 Superconvergence in two-dimensional vortex-lattice methods p 322 A91-24153	Derivation of a fusetage weight estimating relationship [SAWE PAPER 1901] p 289 A91-22319 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 WEIGHT REDUCTION Wings for the 21st century p 250 A91-21218 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 Rotorcraft structural weight and cost aspects [SAWE PAPER 1908] p 289 A91-22321 Aluminum lithium for the F/A-18, Hornet 2000	cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 WIND TUNNEL WALLS Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 Investigation of transonic flow over segmented stotted wind tunnel wall with mass transfer [NASA-CR-187760] p 276 N91-15981 WINDSHIELDS
Active control of combustion instability in a ramjet using large-eddy simulations [AIAA PAPER 91-0411] p 299 A91-21482 Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605 The ground vortex formed by impinging jets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611 Effects of a fillet on the flow past a wing-body junction p 268 A91-22476 Linear stability analysis of measured near-wake profiles for a flat plate in longitudinal flow p 271 A91-23189 Superconvergence in two-dimensional vortex-lattice methods The effects of canard position aerodynamic	Derivation of a fuselage weight estimating relationship [SAWE PAPER 1901] p 289 A91-22319 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 WEIGHT REDUCTION Wings for the 21st century p 250 A91-21218 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 Rotorcraft structural weight and cost aspects [SAWE PAPER 1908] p 289 A91-22321 Ahmirum lithium for the F/A-18, Homet 2000 [SAWE PAPER 1913] p 289 A91-22326 Optimization and validation of a fuselage fuel tank structural concept for the NASP [AIAA PAPER 90-5262] p 300 A91-22885	cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 Investigation of the Influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 WIND TUNNEL WALLS Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Boundary layer three-dimensionality in plane compression flows or the transonic flow over segmented stotted wind tunnel wall with mass transfer [NASA-CR-187760] p 276 N91-15981 WINDSHIELDS WINDSHIELDS
Active control of combustion instability in a ramjet using large-eddy simulations [AIAA PAPER 91-0411] p 299 A91-21482 Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605 The ground vortex formed by impinging jets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611 Effects of a fillet on the flow past a wing-body junction p 268 A91-22476 Linear stability analysis of measured near-wake profiles for a flat plate in longitudinal flow p 271 A91-23189 Superconvergence in two-dimensional vortex-lattice methods p 322 A91-24153	Derivation of a fuselage weight estimating relationship [SAWE PAPER 1901] p 289 A91-22319 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 WEIGHT REDUCTION Wings for the 21st century p 250 A91-21218 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 Rotorcraft structural weight and cost aspects [SAWE PAPER 1908] p 289 A91-22321 Atuminum lithium for the F/A-18, Hornet 2000 [SAWE PAPER 1913] p 289 A91-22328 Optimization and validation of a fuselage fuel tank structural concept for the NASP [AIAA PAPER 90-5262] p 300 A91-22885 Review of the transmissions of the Soviet helicopters	cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 WIND TUNNEL WALLS Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 Investigation of transonic flow over segmented stotted wind tunnel wall with mass transfer [NASA-CR-187760] p 276 N91-15981 WINDSHIELDS
Active control of combustion instability in a ramjet using large-eddy simulations [AIAA PAPER 91-0411] p 299 A91-21482 Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605 The ground vortex formed by impinging jets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611 Effects of a fillet on the flow past a wing-body junction p 268 A91-22476 Linear stability analysis of measured near-wake profiles for a flat plate in longitudinal flow p 271 A91-23189 Superconvergence in two-dimensional vortex-lattice methods The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 Curved vortex elements for numerical wake modeling	Derivation of a fuselage weight estimating relationship [SAWE PAPER 1901] p 289 A91-22319 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 WEIGHT REDUCTION Wings for the 21st century p 250 A91-21218 Analytical weight estimation of unconventional landing gear designs [SAWE PAPER 1905] p 289 A91-22320 Rotorcraft structural weight and cost aspects [SAWE PAPER 1908] p 289 A91-22321 Atuminum lithium for the F/A-18, Hornet 2000 [SAWE PAPER 1913] p 289 A91-22328 Optimization and validation of a fuselage fuel tank structural concept for the NASP [AIAA PAPER 90-5262] p 300 A91-22885 Review of the transmissions of the Soviet helicopters [NASA-TM-103634] p 291 N91-15148	cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 Investigation of the Influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 WIND TUNNEL WALLS Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 Investigation of transonic flow over segmented skotted wind tunnel wall with mass transfer [NASA-CR-187760] p 276 N91-15981 WINDSHIELDS Windshields and canoples - A pilot's best friends p 286 A91-21125 WING CAMBER Superconvergence in two-dimensional vortex-lattice
Active control of combustion instability in a ramjet using large-eddy simulations [AIAA PAPER 91-0411] p 299 A91-21482 Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605 The ground vortex formed by impinging jets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611 Effects of a fillet on the flow past a wing-body junction p 268 A91-22476 Linear stability analysis of measured near-wake profiles for a flat plate in longitudinal flow p 271 A91-23189 Superconvergence in two-dimensional vortex-lattice methods p 322 A91-24153 The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 Curved vortex elements for numerical wake modeling p 273 A91-24162	Derivation of a fuselage weight estimating relationship [SAWE PAPER 1901] p 289 A91-22319 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 WEIGHT REDUCTION Wings for the 21st century p 250 A91-21218 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 Rotorcraft structural weight and cost aspects [SAWE PAPER 1908] p 289 A91-22321 Atuminum lithium for the F/A-18, Hornet 2000 [SAWE PAPER 1913] p 289 A91-22326 Optimization and validation of a fuselage fuel tank structural concept for the NASP [AIAA PAPER 90-5262] p 300 A91-22885 Review of the transmissions of the Soviet helicopters [NASA-TM-103634] p 291 N91-15148 WEIGHTING FUNCTIONS	cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 Investigation of the Influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 WIND TUNNEL WALLS Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Boundary layer three-dimensionality in plane compression flows Investigation of transonic flow over segmented stotted wind turnel wall with mass transfer [NASA-CR-187760] p 276 N91-15981 WINDSHIELDS Windshields and canopies - A pilot's best friends p 286 A91-21125 WING CAMBER Superconvergence in two-dimensional vortex-lattice methods p 322 A91-24153
Active control of combustion instability in a ramjet using large-eddy simulations [AIAA PAPER 91-0411] p 299 A91-21482 Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605 The ground vortex formed by impinging jets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611 Effects of a fillet on the flow past a wing-body junction p 268 A91-22476 Linear stability analysis of measured near-wake profiles for a flat plate in longitudinal flow p 271 A91-23189 Superconvergence in two-dimensional vortex-lattice methods p 322 A91-24153 The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 Curved vortex elements for numerical wake modeling p 273 A91-24162 Direct numerical simulations of a plane compressible	Derivation of a fuselage weight estimating relationship [SAWE PAPER 1901] p 289 A91-22319 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 WEIGHT REDUCTION Wings for the 21st century p 250 A91-21218 Analytical weight estimation of unconventional landing gear designs [SAWE PAPER 1905] p 289 A91-22320 Rotorcraft structural weight and cost aspects [SAWE PAPER 1908] p 289 A91-22321 Aluminum lithium for the F/A-18, Hornet 2000 [SAWE PAPER 1913] p 289 A91-22328 Optimization and validation of a fuselage fuel tank structural concept for the NASP [AIAA PAPER 90-5262] p 300 A91-22885 Review of the transmissions of the Soviet helicopters (NASA-TM-103634) p 291 N91-15148 WEIGHTING FUNCTIONS Selection of weights in optimal control [RR-397] p 330 N91-15796	cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 Investigation of the Influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 WIND TUNNEL WALLS Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 Investigation of transonic flow over segmented skotted wind tunnel wall with mass transfer [NASA-CR-187760] p 276 N91-15981 WINDSHIELDS Windshields and canoples - A pilot's best friends p 286 A91-21125 WING CAMBER Superconvergence in two-dimensional vortex-lattice
Active control of combustion instability in a ramjet using large-eddy simulations [AIAA PAPER 91-0411] p 299 A91-21482 Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605 The ground vortex formed by impinging lets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611 Effects of a fillet on the flow past a wing-body junction p 268 A91-22476 Linear stability analysis of measured near-wake profiles for a flat plate in longitudinal flow p 271 A91-23189 Superconvergence in two-dimensional vortex-lattice methods p 322 A91-24153 The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 Curved vortex elements for numerical wake modeling p 273 A91-24162 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129	Derivation of a fuselage weight estimating relationship [SAWE PAPER 1901] p 289 A91-22319 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 WEIGHT REDUCTION p 250 A91-21218 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 Rotorcraft structural weight and cost aspects [SAWE PAPER 1905] p 289 A91-22321 Aluminum lithium for the F/A-18, Hornet 2000 [SAWE PAPER 1913] p 289 A91-22321 Aluminum lithium for the F/A-18, Hornet 2000 [SAWE PAPER 1913] p 289 A91-22328 Optimization and validation of a fuselage fuel tank structural concept for the NASP [AIAA PAPER 90-5262] p 300 A91-22885 Review of the transmissions of the Soviet helicopters [NASA-TM-103634] p 291 N91-15146 WEIGHTING FUNCTIONS Selection of weights in optimal control [RR:397] p 330 N91-15796 WEIGHTILESSNESS	cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 Investigation of the Influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 WIND TUNNEL WALLS Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 Investigation of transonic flow over segmented stotted wind tunnel wall with mass transfer [NASA-CR-187760] p 276 N91-15981 WINDSHIELDS Windshields and canopies - A pilot's best friends p 286 A91-21125 WING CAMBER Superconvergence in two-dimensional vortex-lattice methods P 322 A91-24153 Wing FLAPS Navier-Stokes computation of wing/rotor interaction for a tilt rotor in hover
Active control of combustion instability in a ramjet using large-eddy simulations [AIAA PAPER 91-0411] p 299 A91-21482 Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605 The ground vortex formed by impinging jets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611 Effects of a fillet on the flow past a wing-body junction p 268 A91-22476 Linear stability analysis of measured near-wake profiles for a flat plate in longitudinal flow p 271 A91-23189 Superconvergence in two-dimensional vortex-lattice methods p 322 A91-24153 The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 Curved vortex elements for numerical wake modeling p 273 A91-24162 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 The aerodynamic characteristics of vortex ingestion for	Derivation of a fuselage weight estimating relationship [SAWE PAPER 1901] p 289 A91-22319 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 WEIGHT REDUCTION Wings for the 21st century p 250 A91-21218 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 Rotorcraft structural weight and cost aspects [SAWE PAPER 1908] p 289 A91-22321 Anainum lithium for the F/A-18, Homet 2000 [SAWE PAPER 1913] p 289 A91-22326 Optimization and validation of a fuselage fuel tank structural concept for the NASP [AIAA PAPER 90-5262] p 300 A91-22885 Review of the transmissions of the Soviet helicopters (NASA-TM-103634) p 291 N91-15148 WEIGHTING FUNCTIONS Selection of weights in optimal control [RR:397] p 330 N91-15796 WEIGHTLESSNESS	cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 WIND TUNNEL WALLS Experimental investigation of the transonic flow on a supercritical wing profile Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 Investigation of transonic flow over segmented slotted wind tunnel wall with mass transfer [NASA-CR-187760] p 276 N91-15981 WINDSHIELDS Windshields and canopies - A pilot's best friends p 286 A91-21125 WING CAMBER Superconvergence in two-dimensional vortex-lattice methods p 322 A91-24153 WING FLAPS Navier-Stokes computation of wing/rotor interaction for a tilt rotor in hover [AIAA PAPER 91-0707] p 265 A91-21533
Active control of combustion instability in a ramjet using large-eddy simulations [AIAA PAPER 91-0411] p 299 A91-21482 Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605 The ground vortex formed by impinging jets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611 Effects of a fillet on the flow past a wing-body junction p 268 A91-22476 Linear stability analysis of measured near-wake profiles for a flat plate in longitudinal flow p 271 A91-23189 Superconvergence in two-dimensional vortex-lattice methods p 322 A91-24153 The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 Curved vortex elements for numerical wake modeling p 273 A91-24162 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 The aerodynamic characteristics of vortex ingestion for the F/A-18 Inlet duct	Derivation of a fuselage weight estimating relationship [SAWE PAPER 1901] p 289 A91-22319 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 WEIGHT REDUCTION Wings for the 21st century p 250 A91-21218 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 Rotorcraft structural weight and cost aspects [SAWE PAPER 1905] p 289 A91-22321 Aluminum lithium for the F/A-18, Hornet 2000 [SAWE PAPER 1913] p 289 A91-22328 Optimization and validation of a fuselage fuel tank structural concept for the NASP [AIAA PAPER 90-5262] p 300 A91-22885 Review of the transmissions of the Soviet helicopters [NASA-TM-103634] p 291 N91-15148 WEIGHTING FUNCTIONS Selection of weights in optimal control [RR:397] p 330 N91-15796 WEIGHTLESSNESS Economical test method and ease of access under microgravity: The zero-g Caravelle p 322 N91-15276 WEIGHTLESSNESS SIMULATION	cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 Investigation of the Influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 WIND TUNNEL WALLS Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 Investigation of transonic flow over segmented slotted wind tunnel wall with mass transfer [NASA-CR-187760] p 276 N91-15981 WINDSHIELDS WINDSHIELDS WING CAMBER Superconvergence in two-dimensional vortex-lattice methods p 322 A91-24153 WING FLAPS Navier-Stokes computation of wing/rotor interaction for a tit rotor in hover [AIAA PAPER 91-0707] p 265 A91-21593 WING FLOW METHOD TESTS
Active control of combustion instability in a ramjet using large-eddy simulations [AIAA PAPER 91-0411] p 299 A91-21482 Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605 The ground vortex formed by impinging jets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611 Effects of a fillet on the flow past a wing-body junction p 268 A91-22476 Linear stability analysis of measured near-wake profiles for a flat plate in longitudinal flow p 271 A91-23189 Superconvergence in two-dimensional vortex-lattice methods p 322 A91-24153 The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 Curved vortex elements for numerical wake modeling p 273 A91-24162 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 The aerodynamic characteristics of vortex ingestion for	Derivation of a fuselage weight estimating relationship [SAWE PAPER 1901] p 289 A91-22319 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 WEIGHT REDUCTION p 250 A91-21218 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 Rotocraft structural weight and cost aspects [SAWE PAPER 1905] p 289 A91-22321 Ahminum lithium for the F/A-18, Hornet 2000 [SAWE PAPER 1913] p 289 A91-22321 Ahminum lithium for the F/A-18, Hornet 2000 [SAWE PAPER 1913] p 289 A91-22326 Optimization and validation of a fuselage fuel tank structural concept for the NASP [AIAA PAPER 90-5262] p 300 A91-22885 Review of the transmissions of the Soviet helicopters (NASA-TM-103834] p 291 N91-15146 WEIGHTING FUNCTIONS Selection of weights in optimal control [RR-397] p 330 N91-15796 WEIGHTILESSNESS Economical test method and ease of access under microgravity. The zero-g Caravelle p 322 N91-15276 WEIGHTLESSNESS SIMULATION Economical test method and ease of access under	cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 WIND TUNNEL WALLS Experimental investigation of the transonic flow on a supercritical wing profile Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 Investigation of transonic flow over segmented slotted wind tunnel wall with mass transfer [NASA-CR-187760] p 276 N91-15981 WINDSHIELDS Windshields and canopies - A pilot's best friends p 286 A91-21125 WING CAMBER Superconvergence in two-dimensional vortex-lattice methods p 322 A91-24153 WING FLAPS Navier-Stokes computation of wing/rotor interaction for a tilt rotor in hover [AIAA PAPER 91-0707] p 265 A91-21533
Active control of combustion instability in a ramjet using large-eddy simulations [AIAA PAPER 91-0411] p 299 A91-21482 Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605 The ground vortex formed by impinging jets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611 Effects of a fillet on the flow past a wing-body junction p 268 A91-22476 Linear stability analysis of measured near-wake profiles for a flat plate in longitudinal flow p 271 A91-23189 Superconvergence in two-dimensional vortex-lattice methods p 322 A91-24153 The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 Curved vortex elements for numerical wake modeling p 273 A91-24162 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 The aerodynamic characteristics of vortex ingestion for the F/A-18 inlet duct [NASA-TM-103703] p 311 N91-15303 Unsteady vortex lattice calculation of the flow around a slender delta wing p 278 N91-16272	Derivation of a fuselage weight estimating relationship [SAWE PAPER 1901] p 289 A81-22319 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 WEIGHT REDUCTION Wings for the 21st century p 250 A91-21218 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 Rotorcraft structural weight and cost aspects [SAWE PAPER 1908] p 289 A91-22321 Aluminum lithium for the F/A-18, Hornet 2000 [SAWE PAPER 1908] p 289 A91-22326 Optimization and validation of a fuselage fuel tank structural concept for the NASP [AIAA PAPER 90-5262] p 300 A91-22885 Review of the transmissions of the Soviet helicopters [NASA-TM-103634] WEIGHTING FUNCTIONS Selection of weights in optimal control [RR-397] WEIGHTLESSNESS Economical test method and ease of access under microgravity: The zero-g Caravelle p 322 N91-15276 WEIGHTLESSNESS SIMULATION Economical test method and ease of access under microgravity: The zero-g Caravelle p 322 N91-15276	cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 WIND TUNNEL WALLS Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 Investigation of transonic flow over segmented slotted wind tunnel wall with mass transfer [NASA-CR-187760] p 276 N91-15981 WINDSHIELDS Windshields and canoples - A pilot's best friends p 286 A91-21125 WING CAMBER Superconvergence in two-dimensional vortex-lattice methods p 322 A91-24153 WING FLAPS Navier-Stokes computation of wing/rotor interaction for a tilt rotor in hover [AIAA PAPER 91-0707] p 265 A91-21593 WING FLOW METHOD TESTS Effects of a fillet on the flow past a wing-body junction p 268 A91-22476 WING LOADING
Active control of combustion instability in a ramjet using large-eddy simulations [AIAA PAPER 81-0411] p 299 A91-21482 Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605 The ground vortex formed by impinging jets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611 Effects of a fillet on the flow past a wing-body junction p 268 A91-22476 Linear stability analysis of measured near-wake profiles for a flat plate in longitudinal flow p 271 A91-23189 Superconvergence in two-dimensional vortex-lattice methods p 322 A91-24153 The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 Curved vortex elements for numerical wake modeling p 273 A91-24162 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 The aerodynamic characteristics of vortex ingestion for the F/A-18 inlet duct [NASA-TM-103703] p 311 N91-15303 Unstaedy vortex lattice calculation of the flow around a slender delta wing p 278 N91-16272	Derivation of a fuselage weight estimating relationship [SAWE PAPER 1901] p 289 A91-22319 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 WEIGHT REDUCTION Wings for the 21st century p 250 A91-21218 Analytical weight estimation of unconventional landing gear designs [SAWE PAPER 1905] p 289 A91-22320 Rotorcraft structural weight and cost aspects [SAWE PAPER 1908] p 289 A91-22321 Aluminum lithium for the F/A-18, Hornet 2000 [SAWE PAPER 1908] p 289 A91-22328 Optimization and validation of a fuselage fuel tank structural concept for the NASP [AIAA PAPER 90-5262] p 300 A91-22885 Review of the transmissions of the Soviet helicopters [NASA-TM-103634] p 291 N91-15148 WEIGHTING FUNCTIONS Selection of weights in optimal control [RR-397] p 330 N91-15796 WEIGHTLESSNESS SIMULATION Economical test method and ease of access under microgravity. The zero-g Caravelle p 322 N91-15276 WEIGHTLESSNESS SIMULATION Economical test method and ease of access under microgravity. The zero-g Caravelle p 322 N91-15276 WEST GERMANY	cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 Investigation of the Influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 WIND TUNNEL WALLS Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 Investigation of transonic flow over segmented stotted wind tunnel wall with mass transfer [NASA-CR-187760] p 276 N91-15981 WINDSHIELDS Windshields and canoples - A pilot's best friends p 286 A91-21125 WING CAMBER Superconvergence in two-dimensional vortex-lattice methods p 322 A91-24153 WING FLAPS Navier-Stokes computation of wing/rotor interaction for a tilt rotor in hower [AIAA PAPER 91-0707] p 265 A91-21593 WING FLOW METHOD TESTS Effects of a fillet on the flow past a wing-body junction p 268 A91-22476 WING LOADING An improved three-dimensional aerodynamics model for
Active control of combustion instability in a ramjet using large-eddy simulations [AIAA PAPER 91-0411] p 299 A91-21482 Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605 The ground vortex formed by impinging jets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611 Effects of a fillet on the flow past a wing-body junction p 268 A91-22476 Linear stability analysis of measured near-wake profiles for a flat plate in longitudinal flow p 271 A91-23189 Superconvergence in two-dimensional vortex-lattice methods p 322 A91-24153 The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 Curved vortex elements for numerical wake modeling p 273 A91-24162 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 The aerodynamic characteristics of vortex ingestion for the F/A-18 inlet duct [NASA-TM-103703] p 311 N91-15303 Unsteady vortex lattice calculation of the flow around a slender delta wing p 278 N91-16272 VORTICITY	Derivation of a fuselage weight estimating relationship [SAWE PAPER 1901] p 289 A81-22319 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 WEIGHT REDUCTION Wings for the 21st century p 250 A91-21218 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 Rotorcraft structural weight and cost aspects [SAWE PAPER 1908] p 289 A91-22321 Aluminum lithium for the F/A-18, Hornet 2000 [SAWE PAPER 1908] p 289 A91-22326 Optimization and validation of a fuselage fuel tank structural concept for the NASP [AIAA PAPER 90-5262] p 300 A91-22885 Review of the transmissions of the Soviet helicopters [NASA-TM-103634] WEIGHTING FUNCTIONS Selection of weights in optimal control [RR-397] WEIGHTLESSNESS Economical test method and ease of access under microgravity: The zero-g Caravelle p 322 N91-15276 WEIGHTLESSNESS SIMULATION Economical test method and ease of access under microgravity: The zero-g Caravelle p 322 N91-15276	cartilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 WIND TUNNEL WALLS Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 Investigation of transonic flow over segmented slotted wind turnel wall with mass transfer [NASA-CR-187760] p 276 N91-15981 WINDSHIELDS Windshields and canopies - A pilot's best friends p 286 A91-21125 WING CAMBER Superconvergence in two-dimensional vortex-lattice methods p 322 A91-24153 WING FLAPS Navier-Stokes computation of wing/rotor interaction for a tilt rotor in hover [AIAA PAPER 91-0707] p 265 A91-21593 WING FLOW METHOD TESTS Effects of a fillet on the flow past a wing-body junction p 268 A91-22476 WING LOADING An improved three-dimensional aerodynamics model for helicopter atrioads prediction
Active control of combustion instability in a ramjet using large-eddy simulations [AIAA PAPER 91-0411] p 299 A91-21482 Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605 The ground vortex formed by impinging jets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611 Effects of a fillet on the flow past a wing-body junction p 268 A91-22476 Linear stability analysis of measured near-wake profiles for a flat plate in longitudinal flow p 271 A91-23189 Superconvergence in two-dimensional vortex-lattice methods p 322 A91-24153 The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24162 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 The aerodynamic characteristics of vortex ingestion for the F/A-18 inlet duct [NASA-TM-103703] unsteady vortex lattice calculation of the flow around a slender delta wing p 278 N91-16272 VORTICITY Vorticity dynamics of 2-D and 3-D wings in unsteady free stream [AIAA PAPER 91-0010] p 256 A91-21331	Derivation of a fuselage weight estimating relationship [SAWE PAPER 1901] p 289 A91-22319 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 WEIGHT REDUCTION Wings for the 21st century p 250 A91-21218 Analytical weight estimation of unconventional landing gear designs [SAWE PAPER 1905] p 289 A91-22320 Rotorcraft structural weight and cost aspects [SAWE PAPER 1908] p 289 A91-22321 Aluminum lithium for the F/A-18, Hornet 2000 [SAWE PAPER 1908] p 289 A91-22328 Optimization and validation of a fuselage fuel tank structural concept for the NASP [AIAA PAPER 90-5262] p 300 A91-22885 Review of the transmissions of the Soviet helicopters (NASA-TM-103634) p 291 N91-15148 WEIGHTING FUNCTIONS Selection of weights in optimal control [RR-397] p 330 N91-15796 WEIGHTLESSNESS SIMULATION Economical test method and ease of access under microgravity. The zero-g Caravelle p 322 N91-15276 WEIGHTLESSNESS SIMULATION Economical test method and ease of access under microgravity. The zero-g Caravelle p 322 N91-15276 WEIGHTLESSNESS SIMULATION Economical test method and ease of access under microgravity. The zero-g Caravelle p 322 N91-15276 WEST GERMANY Documents on the history of the Aerodynamic Research Establishment at Goettingen, 1907 - 1925 [DLR-MITT-90-05] p 251 N91-15977	cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 Investigation of the Influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 WIND TUNNEL WALLS Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 Investigation of transonic flow over segmented slotted wind tunnel wall with mass transfer [NASA-CR-187760] p 276 N91-15981 WINDSHIELDS Windshields and canoples - A pilot's best friends p 286: A91-21125 WING CAMBER Superconvergence in two-dimensional vortex-lattice methods p 322 A91-24153 WING FLAPS Navier-Stokes computation of wing/rotor interaction for a tilt rotor in hover [AIAA PAPER 91-0707] p 265 A91-21593 WING FLOW METHOD TESTS Effects of a fillet on the flow past a wing-body junction p 268 A91-22476 WING LOADING An improved three-dimensional aerodynamics model for helicopter atriboads prediction [AIAA PAPER 91-0767] p 267 A91-21610 A mechanism of tretting fatigue failure in the joining log
Active control of combustion instability in a ramjet using large-eddy simulations [AIAA PAPER 81-0411] p 299 A91-21482 Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605 The ground vortex formed by impinging jets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611 Effects of a fillet on the flow past a wing-body junction p 268 A91-22476 Linear stability analysis of measured near-wake profiles for a flat plate in longitudinal flow p 271 A91-23189 Superconvergence in two-dimensional vortex-lattice methods p 322 A91-24153 The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156 Curved vortex elements for numerical wake modeling p 273 A91-24162 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 The aerodynamic characteristics of vortex ingestion for the F/A-18 inlet duct [NASA-TM-103703] p 311 N91-15303 Unsteady vortex lattice calculation of the flow around a slender delta wing p 278 N91-16272 VORTICITY Vorticity dynamics of 2-D and 3-D wings in unsteady free stream [AIAA PAPER 91-0010] p 256 A91-21331 Numerical algorithm comparison for the accurate and	Derivation of a fuselage weight estimating relationship [SAWE PAPER 1901] p 289 A91-22319 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 WEIGHT REDUCTION Wings for the 21st century p 250 A91-21218 Analytical weight estimation of unconventional landing gear designs [SAWE PAPER 1905] p 289 A91-22320 Rotorcraft structural weight and cost aspects [SAWE PAPER 1908] p 289 A91-22320 Rotorcraft structural weight and cost aspects [SAWE PAPER 1908] p 289 A91-22321 Aluminum lithium for the F/A-18, Hornet 2000 [SAWE PAPER 1913] p 289 A91-22328 Optimization and validation of a fuselage fuel tank structural concept for the NASP [AIAA PAPER 90-5262] p 300 A91-22885 Review of the transmissions of the Soviet helicopters [NASA-TM-103634] p 291 N91-15146 WEIGHTING FUNCTIONS Selection of weights in optimal control [RR:397] p 330 N91-15796 WEIGHTLESSNESS Economical test method and ease of access under microgravity: The zero-g Caravelle p 322 N91-15276 WEIGHTLESSNESS SIMULATION Economical test method and ease of access under microgravity: The zero-g Caravelle p 322 N91-15276 WEIGHTLESSNESS SIMULATION Economical test method and ease of access under microgravity: The zero-g Caravelle p 322 N91-15276 WEIGHTLESSNESS SIMULATION Economical test method and ease of access under microgravity: The zero-g Caravelle p 322 N91-15276 WEIGHTLESSNESS SIMULATION Economical test method and ease of access under microgravity: The zero-g Caravelle p 322 N91-15276 WEIGHTLESSNESS SIMULATION Economical test method and ease of access under microgravity: The zero-g Caravelle p 322 N91-15276 WEIGHTLESSNESS SIMULATION Economical test method and ease of access under microgravity: The zero-g Caravelle p 321 N91-15276 WEIGHTLESSNESS SIMULATION p 251 N91-15276 WEIGHTLESSNESS P 251 N91-15276 WEIG	cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 WIND TUNNEL WALLS Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 Investigation of transonic flow over segmented slotted wind turnel wall with mass transfer [NASA-CR-187760] p 276 N91-15981 WINDSHIELDS Windshields and canopies - A pilot's best friends p 286 A91-21125 WING CAMBER Superconvergence in two-dimensional vortex-lattice methods p 322 A91-24153 WING FLAPS Navier-Stokes computation of wing/rotor interaction for a tilt rotor in hover [AIAA PAPER 91-0707] p 265 A91-21593 WING LOADING An improved three-dimensional aerodynamics model for helicopter airloads prediction [AIAA PAPER 91-0767] p 267 A91-21610 A mechanism of tretting fatigue failure in the joining lug of a wing structure p 319 A91-22252
Active control of combustion instability in a ramjet using large-eddy simulations [AIAA PAPER 91-0411] p 299 A91-21482 Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605 The ground vortex formed by impinging jets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611 Effects of a fillet on the flow past a wing-body junction p 268 A91-22476 Linear stability analysis of measured near-wake profiles for a flat plate in longitudinal flow p 271 A91-23189 Superconvergence in two-dimensional vortex-lattice methods p 322 A91-24153 The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24162 Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N91-15129 The aerodynamic characteristics of vortex ingestion for the F/A-18 inlet duct [NASA-TM-103703] unsteady vortex lattice calculation of the flow around a slender delta wing p 278 N91-16272 VORTICITY Vorticity dynamics of 2-D and 3-D wings in unsteady free stream [AIAA PAPER 91-0010] p 256 A91-21331	Derivation of a fuselage weight estimating relationship [SAWE PAPER 1901] p 289 A91-22319 Analytical weight estimation of unconventional tanding gear designs [SAWE PAPER 1905] p 289 A91-22320 WEIGHT REDUCTION Wings for the 21st century p 250 A91-21218 Analytical weight estimation of unconventional landing gear designs [SAWE PAPER 1905] p 289 A91-22320 Rotorcraft structural weight and cost aspects [SAWE PAPER 1908] p 289 A91-22321 Aluminum lithium for the F/A-18, Hornet 2000 [SAWE PAPER 1908] p 289 A91-22328 Optimization and validation of a fuselage fuel tank structural concept for the NASP [AIAA PAPER 90-5262] p 300 A91-22885 Review of the transmissions of the Soviet helicopters (NASA-TM-103634) p 291 N91-15148 WEIGHTING FUNCTIONS Selection of weights in optimal control [RR-397] p 330 N91-15796 WEIGHTLESSNESS SIMULATION Economical test method and ease of access under microgravity. The zero-g Caravelle p 322 N91-15276 WEIGHTLESSNESS SIMULATION Economical test method and ease of access under microgravity. The zero-g Caravelle p 322 N91-15276 WEIGHTLESSNESS SIMULATION Economical test method and ease of access under microgravity. The zero-g Caravelle p 322 N91-15276 WEST GERMANY Documents on the history of the Aerodynamic Research Establishment at Goettingen, 1907 - 1925 [DLR-MITT-90-05] p 251 N91-15977	cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 Investigation of the Influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 [AD-A228231] p 324 N91-16293 WIND TUNNEL WALLS Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 Investigation of transonic flow over segmented slotted wind tunnel wall with mass transfer [NASA-CR-187760] p 276 N91-15981 WINDSHIELDS Windshields and canoples - A pilot's best friends p 286 A91-21125 WING CAMBER Superconvergence in two-dimensional vortex-lattice methods p 322 A91-24153 WING FLAPS Navier-Stokes computation of wing/rotor interaction for a tit rotor in hover [AIAA PAPER 91-0707] p 265 A91-21593 WING FLOW METHOD TESTS Effects of a fillet on the flow past a wing-body junction p 268 A91-22476 WING LOADING An improved three-dimensional aerodynamics model for helicopter athoads prediction [AIAA PAPER 91-0767] p 267 A91-21610 A mechanism of fretting fatigue failure in the joining lug

WING OSCILLATIONS SUBJECT INDEX

A Green's Function Method for calculating the transonic pressure distribution of wing p 273 A91-24157 TF89 tactical fighter outer wing design . p.294 N91-16019 [ETN-91-98580] WING OSCILLATIONS Slender wing rock revisited
[AIAA PAPER 91-0417] p 262 A91-21484
Wind tunnel tests on flutter control of a high-aspect-ratio cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 276 N91-15982 WING PROFILES Computation of unsteady viscous flows around wing p 251 A91-20933 Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 WING TANKS In-flight and simulated aircraft fuel temperature measurements [NASA-TM-103611] WING TIP VORTICES p 314 N91-15418 Calculation of vortex flowfields around forebodies and delta wings [AIAA PAPER 91-0176] p 259 A91-21396 p 319 A91-22259 Measurements of vorticity field Vortical flow computations on swept flexible wings using Navier-Stokes equations p 269 A91-22483 Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 WINGS virings for the 21st century p 250 A91-21218
Flow separation patterns over an F-14A aircraft wing
[AIAA PAPER 90-0596] p 269 A91-22407
Airframe-indirect Airframe-induced upwash at subsonic speeds [ESDU-90020] p 275 N91-15130 Selectable towline spin chute system [NASA-CASE-LAR-14322-1] p 276 N91-15138 Wind tunnel tests on flutter control of a high-aspect-ratio cantilevered wing: Control with leading-edge and trailing-edge control surfaces [NAL-TR-1070] p 278 N91-15982 Numerical simulation of separated flows around a wing section at steady and unsteady motion by a discrete vortex method p 278 N91-16268
WORKLOADS (PSYCHOPHYSIOLOGY)
Effect of shaping sensor data on pilot response
[NASA-TM-102737] p 297 N41-15179
WORKSTATANA WORKSTATIONS The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 Development of a workstation-based flight data analysis [AIAA PAPER 91-0668] p 279 A91-21585 Report of the workshop on Aviation Safety/Automation [NASA-CP-10054] p 281 N91-15141 Programmable cockpit-flight dynamic model [AD-A227748] p 296 p 296 N91-15171

X RAY IMAGERY

X ray computed tomography of composites

ND-A227227] p 314 N91-15322

X-30 VEHICLE

anned versus unmanned - The implications to NASP [AIAA PAPER 90-5265] p 311 A91-22888

YAW

DISCUS - A failure-tolerant Fbw/Fbl-experimental p 303 A91-20610 highly augmented system
A decentralized controller for

p 327 N91-15717 aircraft

YAWING MOMENTS

A theory for tangential fusetage blowing (AIAA PAPER 91-0621) p 26

p 264 A91-21562

Typical Personal Author Index Listing

Listings in this index are arranged alphabetically by personal author. The title of the document provides the user with a brief description of the subject matter. The report number helps to indicate the type of document listed (e.g., NASA report, translation, NASA contractor report). The page and accession numbers are located beneath and to the right of the title. Under any one author's name the accession numbers are arranged in sequence.

ABBAS, GREGORY L

High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095

ABDUL-AZIZ, ALI

Estimation of the engineering elastic constants of a directionally solidified superalloy for finite element structural analysis p 322 N91-15598 [NASA-CR-187036]

ABOLFADL, MOHAMED A.

Application of three-dimensional viscous analysis to turbofan forced mixers

[AIAA PAPER 91-0131]

p 258 A91-21373

ADAMSON, T. C., JR.

Strip blowing from a wedge at hypersonic speeds [AIAA PAPER 91-0032] p 257 A91-21346

ADELSON, RICHARD L

Helicopter Weight and Torque Advisory system p 295 A91-22301 **ISAWE PAPER 18721**

AFTOSMIS, MICHAEL

A systematic comparative study of several high resolution schemes for complex problems in high speed

[AIAA PAPER 91-0636] p 264 A91-21573

AGARWAL, N. K.

Effects of a fillet on the flow past a wing-body junction p 268 A91-22476

AGARWAL, NAVAL K.

Cross-flow vortex structure and transition measurements using multi-element hot films

[AIAA PAPER 91-0166]

p 258 A91-21389

AGARWAL, R. K.

Calculation of vortex flowfields around forebodies and delta wings p 259 A91-21396 [AIAA PAPER 91-0176]

AGRAWAL, OM P.

General approach to dynamic analysis of rotorcraft p 284 A91-20973

AHMED, S.

A study of dynamic stall using real time interferometry p 256 A91-21329 [AIAA PAPER 91-0007]

AHMED, SALAHUDDIN

Computation of turbulent flow about unconventional airfoil shapes p 278 N91-15992

ALLEN, GARY A., JR.

Parametric study on thrust production in the two dimensional scramie [AIAA PAPER 91-0227]

ALTHAUS, W.

Experimental and theoretical investigation of a vortex p 252 A91-20935 street in the wake of a flat plate Linear stability analysis of measured near-wake profiles p 271 A91-23189 for a flat plate in longitudinal flow

ALTON, LARRY

Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001

ALTON, LARRY R.

The civil tiltrotor aircraft's potential in developing p 280 A91-24122 economies

ALVERMANN. K.

A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735

AMATO, R. A. Properties of advanced rapidly solidified titanium allovs p 312 A91-20864

AMUEDO, K. C.

STOVL Hot Gas Ingestion control technology [ASME PAPER 89-GT-323] p 301 A p 301 A91-23642

ANANTHASWAMY, V.

Influence of aerodynamic forces in ice shedding [AIAA PAPER 91-0664] p 279 A91-21582

ANDERSON, BERNHARD H.

The aerodynamic characteristics of vortex ingestion for the F/A-18 inlet duct [NASA-TM-103703] p 311 N91-15303

ANDERSON, GRIFFIN Y.

Progress in hypersonic combustion technology with computation and experiment [AIAA PAPER 90-5254] p 300 A91-22879

ANDERSON, O. L.

An analytical study of a supersonic mixer-ejector exhaust system

[AIAA PAPER 91-0126]

p 298 A91-21372

ANDO, YASUNORI

Experimental study on mixing phenomena in supersonic flows with slot injection

[AIAA PAPER 91-0016] p 256 A91-21335

ARABSHAHI, ABDOLLAH

Numerical simulation of supersonic unsteady flow for nultibody configurations [AIAA PAPER 91-0023] p 257 A91-21341

ARMINI, A. J.

Wear measurement of ceramic bearings in gas turbines p 324 N91-16382

[AD-A227505]

ARNAUD, GILLES L. Symmetry plane model for turbulent flows with vortex

[AIAA PAPER 91-0723] n 266 A91-21598

ASLAN, A. R.

Computation of three-dimensional subsonic flows in

ducts using the PNS approach p 271 A91-23186 ASO SHIGERU

Experimental study on mixing phenomena in supersonic ws with slot injection p 256 A91-21335

[AIAA PAPER 91-0016]

Numerical simulation of separated flows around a wing section at steady and unsteady motion by a discrete vorter p 278 N91-16268 method

ASTOLFI, MAURIZIO

Tornado AFDS/TF flight testing - Lessons learned p 284 A91-20977

AULEHLA, FELIX

Pseudo Reynolds number effects in transonic wind [ETN-91-984931 p 276 N91-15135

AVRASHKOV, V. N.

Gasdynamic features of supersonic combustion in a model combustion chamber [AIAA PAPER 90-5268] p 313 A91-22891

В

BABBITT, W. RANDALL

High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095 BACHELIER, P.

Future aeronautic environment - FMS/ATC/pilot p 283 A91-23548

BAEDER, J. D.

Flowfield of a lifting hovering rotor: A Navier-Stokes simulation

[NASA-TM-102862] BAGANOFF, DONALD

p 274 N91-15128

Effect of slotting on the noise of an axisymmetric p 332 A91-22493 BAL LINXIANG

Magnetron sputtered CoCrAIY coatings on superalloy p 313 A91-22346

BAILEY, ROGER M.

Effect of shaping sensor data on pilot response [NASA-TM-102737] p 297 N91-15173

BÁRANOVSKII. S. I.

Effect of the penetration depth of fuel jets on combustion in a supersonic combustion chamber

p 312 A91-21962 Gasdynamic features of supersonic kerosene combustion in a model combustion chamber

[AIAA PAPER 90-5268]

p 313 A91-22891 BARBER, T. J. An analytical study of a supersonic mixer-ejector exhaust

[AIAA PAPER 91-0126] p 298 A91-21372

Eigenfunction analysis of turbulent mixing phenomen [AIAA PAPER 91-0520] p 318 A91-21519

BARLOW, R. S. Structure of a supersonic reacting jet

[AIAA PAPER 91-0376] p 299 A91-21475 BARTLETT, F. D., JR.

Probabilistic fatigue methodology for six nines [NASA-TM-102757] p 323 N91-15605

BASSI, F.

Viscous high speed flow computations by adaptive mesh embedding techniques [AIAA PAPER 91-0149]

p 258 A91-21381

BAYSAL OKTAY

2-D and 3-D mixing flow analyses of a scramjet-afterbody p 253 A91-21188 configuration Aerodynamic design optimization using sensitivity analysis and computational fluid dynamics
[AIAA PAPER 91-0471] p 26

p 262 A91-21505 BÈHENNA, J. EJ200 - The engine for the new European Fighter

Aircraft [ASME PAPER 90-GT-119] p 301 A91-23637

BENAK, T.

Assessment of impact damage in toughened resin composites p 312 A91-20776 BENDER, KLAUS

DISCUS - A failure-tolerant Fbw/Fbl-experimental p 303 A91-20610 **BENOIT, ANDRE**

Integration of a realistic airline/aircrew/aircraft component in ATC simulations p 329 N91-15738 BENZ. M. G.

Metallurgical control of fatigue crack propagation in superalloys p 311 A91-20677

BERGER, HARALD

Finite element approximations for transonic flows [ETN-91-98491] p 277 N91-15988 BERRY, DONALD T.

National aerospace plane longitudinal long-period dynamics

p 305 A91-22962 BERRY, PETER North Atlantic air traffic control p 282 A91-20900 BEYER, UWE

Hypersonic viscous interaction revisited

p 254 A91-21191

BHAT, M. K. Investigation of transonic flow over segmented slotted wind tunnel wall with mass transfer [NASA-CR-187760] p 276 N91-15981 BHATT, DHANANJAY D. BRESINA, JOHN J. CARLTON, R. A. Titanium aluminides development for NASP airframe AFTI/F-111 airplane mission adaptive wing operational Integrated propulsion system requirements for control of STOVL aircraft flight evaluation technique using uplinked pilot command applications [AIAA PAPER 90-5261] p 313 A91-22884 p 285 A91-20993 [ASME PAPER 90-GT-364] p 305 A91-23641 BRICE, JEAN-MICHEL BHINDER, F. S. CARR, L. W. Specific aspects of advanced components for airborn A study of dynamic stall using real time interferometry Simulation of aircraft gas turbine engines p 295 N91-15155 [AIAA PAPER 91-0007] p 301 A91-23645 applications [ASME PAPER 90-GT-342] p 256 A91-21329 BRIDGEMAN, JOHN O. CARRESE, G. BIDWELL, COLIN S. An improved three-dimensional aerodynamics model for Simulation, testing and optimization of a new low cost Experimental water droplet impingement data on modern helicopter airloads prediction electronic fuel control unit for small gas turbine engines aircraft surfaces [AIAA PAPER 91-0767] p 267 A91-21610 ISAE PAPER 9010271 p 298 A91-21239 [AIAA PAPER 91-0445] p 262 A91-21493 BRIERE, PIERRE CARROLL, M. A. BINGEL BRADFORD D. Microwave and millimeter wave components: The atmospheric effects of stratospheric aircraft: A Analytic Patch Configuration (APC) gateway version 1.0 Performances, perspectives, and applications to avionics current consensus user's guide [NASA-CR-187464] p 295 N91-15156 [NASA-RP-1251] p 325 N91-16467 p 330 N91-15751 BRILEY, W. R. CARSON, GEORGE T., JR. BLACK, GARY D. Navier-Stokes simulation of transonic blade-vortex Static internal performance of an axisymmetric nozzle Aircraft configuration study for experimental 2-place p 253 A91-21065 interactions with multiaxis thrust-vectoring capability aircraft and RPVs BRINDLEY, WILLIAM J. (NASA-TM-4237) p 274 N91-15125 [AD-A227604] p 291 N91-15149 Thermal barrier coating evaluation needs CARSTENSEN, RUSSELL V. BLACKWELL, J. p 314 N91-15390 NASA-TM-1037081 Weight penalties for electromagnetic interference Identification of time delays in flight measurements BRITTON, RANDALL K. control p 327 A91-22953 A review of ice accretion data from a model rotor icing (SAWE PAPER 1914) p.319 A91-22323 BOBER, W. test and comparison with theory CÁVALLO, A. isentropic [AIAA PAPER 91-0661] Nonideal p 280 A91-22500 Parameter space design of robust flight control ystems p 328 N91-15718 BROCK, N. J.

A study of dynamic stall using real time interferometry p 252 A91-21064 converging-diverging nozzles systems BOCCHI, WILLIAM J., JR. CAVANAUGH, JOHN F. [AIAA PAPER 91-0007] p 256 A91-21329 MMIC impact on airborne avionic systems Airborne lidar for profiling of surface topography p 296 N91-15166 BROCKHAUS, R. p 295 A91-23134 Nonlinear multi-point modeling and parameter estimation **CEBECI. TUNCER** of the DO 28 research aircraft p 289 A91-22357 Certification of Fokker 50 and Fokker 100 for operation Calculation of three-dimensional low Reynolds number The compatibility check of the flight test data of the flows in icing conditions DO 28 research aircraft p 290 A91-22757 [AIAA PAPER 91-0187] [AIAA PAPER 91-0561] p 279 A91-21532 p 259 A91-21403 BROWN, EDWARD N. CENTER, KENNETH B. BOGUCZ, E. A. Position error calibration of a pressure survey aircraft The symmetric turbulent plane wake downstream of a Development of a workstation-based flight data analysis using a trailing cone p 285 A91-20986 package [AIAA PAPER 91-0668] sharp trailing edge BROWN, FRANK S. [AIAA PAPER 91-0612] p 264 A91-21558 p 279 A91-21585 Use of onboard data for takeoff performance etermination p 285 A91-20988 CHADERJIAN, NEAL M. BOITSOV, VASILII V. determination Numerical algorithm comparison for the accurate and efficient computation of high-incidence vortical flow Assembly of aircraft components p 250 A91-22104 BROWN, S. N. **BOLETIS, E.** Hypersonic interactions and flow transition AIAA PAPER 91-0175] p 259 A91-21395 Experimental study of the three-dimensional flow field p 254 A91-21193 CHAIKO, LEV I. in a turbine stator preceded by a full stage BRUMBAUGH, RANDAL W. Review of the transmissions of the Soviet helicopters p 271 A91-23656 The development of a Flight Test Engineer's Workstation [NASA-TM-103634] p 291 N91-15146 BONATTI, C. A. for the Automated Flight Test Management System CHAMPAGNE, VICTOR K., JR. Aircraft control system design, synthesis, analysis, and p 326 A91-20999 Failure analysis of a main rotor pitch horn bolt located p 328 N91-15729 simulation tools at Aermacchi BRUNNER, K. on the AH-1 Cobra helicopter Bump examinations of integrally strengthened carbon BOND, THOMAS H. [AD-A2276791 p 292 N91-16007 fiber reinforced plastic panels [MBB/FE281/CFK/PUB/0013] A review of ice accretion data from a model rotor icing CHANDRASEKHAR, R. test and comparison with theory p 314 N91-16076 Radiative interactions in a hydrogen-fueled supersonic [AIAA PAPER 91-0661] p 280 · A91-22500 combustor BORONOW, WALTER Correlation of separation shock motion in [AIAA PAPER 91-0373] p 312 A91-21473 cylinder-induced, Mach 5, turbulent interaction with Three-dimensional numerical simulation CHANDRASEKHARA, M. S. pressure fluctuations in the separated flow electrothermal deicing systems A study of dynamic stall using real time interferometry p 265 A91-21578 p 287 A91-21433 [AIAA PAPER 91-0267] [AIAA PAPER 91-0650] [AIAA PAPER 91-0007] p 256 A91-21329 BUFTON, JACK L. CHANG K-M BOSSI, JOSEPH A. Airborne lidar for profiling of surface topography Integrated control-structure design [NASA-CR-182020] Metallurgical control of fatigue crack propagation in p 295 A91-23134 p 311 A91-20677 p 307 N91-15180 BULLARD, RANDY E. CHANG YI BOSSI, RICHARD H. Integrated flight/propulsion control system design based A computational investigation of dump combustor X ray computed tomography of composites p 305 A91-22950 p 300 A91-23106 on a centralized approach p 314 N91-15322 [AD-A227227] BULLOCK, C. K. CHEN, BAISONG BOYD, CHRISTOPHER F. Laser obstacle and cable update sensor Flowfield computation of 2-C-D nozzle Experimental measurements of the flow in a scramjet p 296 N91-15169 p 268 A91-22382 p 251 A91-20750 inlet at Mach 4 BUNKER, S. N. CHEN, BENGANG BOYD, LINDA SMITH Wear measurement of ceramic bearings in gas Predictive control of optimal path terrain following Analysis of infrared thermography data for icing turbines system p 305 A91-22371 applications [AD-A227505] p 324 N91-16382 CHEN, HSUN H. p 279 A91-21584 [AIAA PAPER 91-0666] BURLEY, C. L. Calculation of three-dimensional low Reynolds number BRADLEY, R. Directivity and prediction of low frequency rotor noise flows [AIAA PAPER 91-0187] Prediction of the dynamic characteristics of helicopters [AIAA PAPER 91-0592] p 331 A91-21545 p 259 A91-21403 p 290 A91-23549 in constrained flight CHEN, J. RRAFMAN M. RPAS - Runway performance analysis system C Economical test method and ease of access under p 285 A91-20987 microgravity: The zero-g Caravelle p 322 N91-15276 CHEN, JACQUELINE H. CALKINS, D. E. Direct numerical simulations of a plane compressible wake: Stability, vorticity dynamics, and topology BRAGG, M. B. Aircraft accident flight profile simulation and animation Effect of a simulated ice accretion on the aerodynamics [AIAA PAPER 91-0422] p 278 A91-21486 [NASA-CR-187737] p 274 N91-15129 of a swept wing CAMPBELL, JOE [AIAA PAPER 91-0442] p 262 A91-21491 CHEN, MEIYING Pulsed eddy current inspection of cracks under installed BRAHNEY, JAMES Corrosion fatigue crack growth of 30CrMnSiNi2A steel p 318 A91-22188 p 313 A91-22383 in airplane environments p 250 A91-21218 Wings for the 21st century CANTWELL BRIAN J. CHEN, RONGZHANG BRAY, D. Direct numerical simulations of a plane compressible The ground vortex formed by impinging jets in Development of cast superalloys for gas turbines in hina p 313 A91-22340 wake: Stability, vorticity dynamics, and topology China cross-flow NASA-CR-1877371 p 274 N91-15129 [AIAA PAPER 91-0768] CHEN, T. H. p 267 A91-21611 CAO. JIANFA BREER, MARLIN D. Experimental and theoretical studies in a gas-fueled Optimization of multi-element airfoils for maximum lifts Experimental water droplet impingement data on modern research combustor in separated flow p 268 A91-22367 [AIAA PAPER 91-0639] p 300 A91-21575 aircraft surfaces CAPONE, FRANCIS J. p 262 A91-21493 [AIAA PAPER 91-0445] CHEN, WANHUA Static internal performance of an axisymmetric nozzle Development of cast superalloys for gas turbines in BREMHORST, KLAUS China p 313 A91-22340 with multiaxis thrust-vectoring capability Velocity field of an axisymmetric pulsed, subsonic air [NASA-TM-4237] p 274 N91-15125 p 269 A91-22479 CHEN. XINHAI-CAPPUCCIO, GELSOMINA Nonlinear multi-point modeling and parameter estimation BRENNEIS, A. of the DO 28 research aircraft Application of an implicit relaxation method solving the Unstructured Euler flow solutions using hexahedral cell p 289 A91-22357 Euler equations for time-accurate unsteady problems The compatibility check of the flight test data of the

efinement

[AIAA PAPER 91-0637]

p.264 A91-21574

DO 28 research aircraft

p 290 A91-22757

p 253 A91-21066

PERSONAL AUTHOR INDEX

DODSON, LORI J.

An identification method of fast time varying parameters CONBOY, DENNIS M. Numerical modeling of an advanced pneumatic impulse adapted to aircraft control systems p 327 A91-22758 Designing and manufacturing the F-111 advanced ice protection system (PIIP) for aircraft CHEN YANGING [AIAA PAPER 91-0555] composite forward vental strake p 288 A91-21529 Optimization of multi-element airfoils for maximum lifts [SME PAPER EM90-105] p 249 A91-21106 ANDREA, JAY in separated flow p 268 A91-22367 CONDON, GREGORY W. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration CHEN, YANQIU Simulation of nap-of-Earth flight in helicopters The influences of forced oscillations AIAA PAPER 91-0005] p 255 A91-21327 p 330 N91-15744 DECHAUMPHAI, PRAMOTE vortex-breakdown p 270 A91-22762 COOPER, JAMES A. Finite element thermo-viscoplastic analysis of CHENG, H. K. The development of a Flight Test Engineer's Workstation On hypersonic shock layer and its extension beyond aerospace structures for the Automated Flight Test Management System the Navier-Stokes level p 254 A91-21189
A shock-layer theory based on thirteen-moment equations and DSMC calculations of rarefied hypersonic [NASA-TM-102761] p 324 N91-16407 p 326 A91-20999 DECOLATOR, M. COOPRIDER, KAREN K. A real time expert-aided trajectory estimator using X ray computed tomography of composites [AD-A227227] p 314 multiple TSPI sources including a unique on-aircraft p 314 N91-15322 [AIAA PAPER 91-0783] positioning system p 267 A91-21616 p 282 A91-20979 COQUEL F. DÈESE, J. Ě. CHENG, W. K. Viscous non equilibrium flow calculations by an implicit Multi-dimensional modelling of gas turbine combustion Calculation of vortex flowfields around forebodies and finite volume method using a flame sheet model in KIVA II delta wings [AIAA PAPER 91-0176] [AIAA PAPER 91-0702] p 265 A91-21592 [AIAA PAPER 91-0414] p 299 A91-21483 p 259 A91-21396 CORDE, J. C. CHILDS, ROBERT E. DÈGANI, DAVID SNECMA M88 engine development status Turbulence modeling for complex ground effects flows Numerical, experimental, and theoretical study of [ASME PAPER 90-GT-118] p 301 A91-23636 (SAE PAPER 901062) convective instability of flows over pointed bodies at p 255 A91-21257 CORPENING, G. P. Calculation of impinging jet flows with Reynolds stress incidence [AIAA PAPER 91-0291] Further assessment of a scramjet inlet mass flow D 260 A91-21443 measurement technique for use in hypersonic pulse [AIAA PAPER 91-0754] p 266 A91-21606 DEHEL, THOMAS Aeronautical Mobile Satellite Service (AMSS) capacity facilities [AIAA PAPER 91-0551] p 300 A91-21527 analysis and protocol performance simulation plan Design for strength and rigidity of a thermoplastic composite speed brake CHINZEI, NOBUO CORSIGLIA, VICTOR R. [DOT/FAA/CT-TN90/35] p 284 A91-20783 p 311 N91-15295 Small-scale experiments in STOVL ground effects [SAE PAPER 901060] p 287 A91-2 DELUCA, D. P. p 287 A91-21256 Fatigue and fracture of titanium aluminides An experiment on supersonic turbulent mixing layers: Supersonic-subsonic two-stream layers COUTLEY, RAYMOND L [AD-A226737] p 314 N91-15374 p 276 N91-15983 Numerical investigation of the flow over a double delta DEMARIA G. INAL-TR-10661 Parameter space design of robust flight control CHISHOLM, J. D. wing at high incidence [AIAA PAPER 91-0753] Optimizing aircraft performance with adaptive, integrated eveteme p 328 N91-15718 o 266 A91-21605 DEMORE, W. B. flight/propulsion control [ASME PAPER 90-GT-252] COVERT, EUGENE E. p 290 A91-23644 The atmospheric effects of stratospheric aircraft: A Unsteady measurement of skin friction in adverse CHITTILAPILLY, LAZAR T. pressure gradient - A new approach to a well known current consensus [NASA-RP-1251] Flow measurements in a model ramiet secondary p 325 N91-16467 gauge DENKER, IL'IA I. combustion chamber p 310 A91-20743 [AIAA PAPER 91-0168] p 318 A91-21391 Painting technology for civil aircraft and helicopters (2nd CHOI, D. H. COWLES, B. A. Inviscid analysis of two-dimensional airfoils in unsteady revised and enlarged edition) p 250 A91-22102 Fatigue and fracture of titanium aluminides motion using conformal mapping
CHOUDHARI, MEELAN p 268 A91-22477 DENNIS, A. J. [AD-A226737] p 314 N91-15374 Advanced structural instrumentation, volume 2 CRAIG. NEIL C. Boundary layer receptivity phenomenthree-dimensional and high-speed boundary layers (AD-A2274731 p 324 · N91-16330 phenomena Experimental water droplet impingement data on modern DENNIS, SIMON P. aircraft surfaces Tornado AFDS/TF flight testing - Lessons learned p 270 A91-22882 **FAIAA PAPER 90-52581** [AIAA PAPER 91-0445] p 262 A91-21493 CHOW, W. L. p 284 A91-20977 converging-diverging nozzles
HRIST. DIETMAP CREEL, T. R. flow through DEQUE, R. Effects of sweep angle and passive relaminarization devices on a supersonic swept-cylinder boundary layer p 252 A91-21064 Future aeronautic environment - FMS/ATC/pilot CHRIST, DIETMAR p 283 A91-23548 p 257 A91-21354 [AIAA PAPER 91-0066] Simulation and study of shear flows surrounding propfan DERBUNOVICH, G. I. CUE, R. W. p 297 A91-20612 Optimal conditions for controlling the intensity of engine models Engine performance monitoring and troubleshooting turbulent flow by means of screens p 321 A91-23904 DEVASENAPATHY, C. techniques for the CF-18 aircraft Numerical investigation of drag reduction in flow over p 301 A91-23635 surfaces with streamwise aligned riblets (ASME PAPER 90-GT-357) VASI systems for helicopter operations [AIAA PAPER 91-0518] p 263 A91-21517 CUI. HONG p 294 A91-21221 The fuzzy synthetic judgement of correlating parameter DEVENPORT, W. J. CHU M. L. Effects of a fillet on the flow past a wing-body junction of fighter design p 289 A91-22354 Statistical structural analysis of rotor impact ice p 268 A91-22476 shedding CUMMING, A. C. D. [AIAA PAPER 91-0663] p 279 A91-21581 DEWEY, DONALD E. Maintenance standards p 250 A91-23546 Influence of aerodynamic forces in ice shedding Integrated technology development laboratories CZYSZ, P. [AIAA PAPER 91-0664] p 279 A91-21582 p 330 N91-15743 An approach to air-breathing high speed vehicle DEWITT, K. J. CHU. R. C. Numerical simulation of icing, deicing, and shedding [AIAA PAPER 91-0665] p 279 A91-21583 Composite patch reinforcement of cracked aircraft upper [AIAA PAPER 91-0225] p 287 A91-21415 longeron - Analysis and specimen simulation p 249 A91-20784 DÈWITZ, M. B. ח Effects of a fillet on the flow past a wing-body junction Multi-dimensional modelling of gas turbine combustion p 268 A91-22476 using a flame sheet model in KIVA II DARDEN, CHRISTINE M. DEY, DIETER [AIAA PAPER 91-0414] p 299 A91-21483 A study of loudness as a metric for sonic boom The use of system simulation during the definition phase acceptability of the passenger transport aircraft MPC75 CIOFFI, L. V. [AIAA PAPER 91-0496] p 330 N91-15741 p 331 A91-21511 Aircraft control system design, synthesis, analysis, and simulation tools at Aermacchi p 328 N91-15729 DAVIS, DAREN C. DHINGRA, A. K. Robotic abrasive water jet cutting of aerostructure Applications of fuzzy theories to multi-objective system CLAYTON, R. E. ACARS p 282 A91-21203 components ontimization [SME PAPER MS89-812] p 316 A91-21116 [NASA-CR-177573] CLEM, THOMAS D. p 293 N91-16012 DAVOUDZADEH, F. Airborne lidar for profiling of surface topography DIBBLE, R. W. Navier-Stokes simulation of transonic blade-vortex p 295 A91-23134 Structure of a supersonic reacting jet p 253 A91-21065 [AIAA PAPER 91-0376] p 299 A91-21475 COCHRAN, R. J. DAWICKE, D. S. Trends in current heat transfer computations DIJKSTRA, F. An evaluation of the pressure proof test concept for p 317 A91-21384 Comparison of combustion experiments and theory in [AIAA PAPER 91-0157] p 315 A91-20788 thin sheet 2024-T3 polyethylene solid fuel ramjets p 297 A91-20744 COLE, J. D. DAWSON, VIRGINIA PARKER DILLER, T. E. Asymptotic theory in aerodynamics Engines and innovation: Lewis Laboratory and American [AIAA PAPER 91-0028] p 257 A91-21344 High temperature heat flux measurements ropulsion technology [AIAA PAPER 91-0165] p 317 A91-21388 COLEMAN, DAVID M. p 333 N91-15975 [NASA-SP-4306] DITTMAR, JAMES H. Evaluation procedure for reinforced concrete box DE LA CHAPELLE, MICHAEL culverts under airfield pavements Potential reduction of en route noise from an advanced High-precision fiber-optic position sensing using diode turboprop aircraft [NASA-TM-103635] [AD-A227920] p 310 N91-16031 p 295 A91-24095 laser radar techniques p 332 N91-15842 COLLIER, ARNOLD S. DE WITT, KENNETH J. DOBRZYNSKI, WERNER Experimental measurements of the flow in a scramjet Three-dimensional numerical simulation p 251 A91-20750 Propeller noise minimization without thrust loss due to inlet at Mach 4 electrothermal deicing systems

[AIAA PAPER 91-0267]

[AIAA PAPER 91-0268]

Numerical simulation of an electrothermally de-iced

aircraft surface using the finite element method

COLLIER, FAYETTE S., JR.

[AIAA PAPER 91-0166]

using multi-element hot films

Cross-flow vortex structure and transition measurements

p 258 A91-21389

p 331 A91-20614

p 277 N91-15986

asymmetric blade distribution

Hypersonic shock/boundary-layer interaction database

DODSON, LORI J.

[NASA-CR-187769]

p 287 A91-21433

p 287 A91-21434

DOGRA, V. N.		TENSONAL ACTION INDEX
DOGRA, V. K.	EL-GAMMAL, A. M.	FEJTEK, IAN
A shock-layer theory based on thirteen-moment	An algorithm and criteria for compressor characteristics	Navier-Stokes computation of wing/rotor interaction for
equations and DSMC calculations of rarefied hypersonic	real time modeling and approximation	a tilt rotor in hover
flows	[ASME PAPER 90-GT-336] p 302 A91-23648	[AIAA PAPER 91-0707] p 265 A91-21593
[AIAA PAPER 91-0783] p 267 A91-21616	EL-HADY, NABIL M. Nonparallel instability of supersonic and hypersonic	FELDMANN, ROBERT J.
DOLLING, D. S. Correlation of separation shock motion in a	boundary layers	Evaluation of hand held laser communicators for airborne applications p 282 A91-22815
cylinder-induced, Mach 5, turbulent interaction with	[AIAA PAPER 91-0324] p 261 A91-21461	FENG, Y. S.
pressure fluctuations in the separated flow	ELANDS, P. J. M.	Reliability analysis of structure and control mechanism
[AIAA PAPER 91-0650] p 265 A91-21578	Comparison of combustion experiments and theory in	of aircraft flap p 315 A91-20916
DOLLING, DAVID S.	polyethylene solid fuel ramjets p 297 A91-20744	FERGUSON, SAMUEL W.
Wall pressure fluctuations near separation in a Mach	ELBER, WOLF Probabilistic fatigue methodology for six nines	Evaluation of rotorwash characteristics for tiltrotor and
5, sharp fin-induced turbulent interaction	Probabilistic fatigue methodology for six nines reliability	tiltwing aircraft in hovering flight
[AIAA PAPER 91-0646] p 264 A91-21576	[NASA-TM-102757] p 323 N91-15605	[SCT-90RR-18] p 277 N91-15989 FERNIE, W. A.
DONALDSON, J. C. Investigation of the influence of constant adverse	ELESHAKY, MOHAMED E.	Longitudinal stability augmentation of a lightweight
pressure gradients on laminar boundary-layer stability at	2-D and 3-D mixing flow analyses of a scramjet-afterbody	fighter aircraft model
Mach number 8	configuration p 253 A91-21188	[ETN-91-98585] p 308 N91-16026
[AD-A228231] p 324 N91-16293	Aerodynamic design optimization using sensitivity	FEUERSENGER, H.
DONG, XIANGLIN	analysis and computational fluid dynamics [AIAA PAPER 91-0471] p 262 A91-21505	Control concept of modern avionics in the service of
A mechanism of fretting fatigue failure in the joining lug	ELLIS, D. C.	pilot relief - Presented using the example of DO 328
of a wing structure p 319 A91-22252	TF89 aircraft centre fuselage	p 295 A91-22202 FILIMONOV, S. A.
DOROSHENKO, V. M. Macroscopic model of vibrational relaxation in heat	[ETN-91-98579] p 294 N91-16018	Theory of the resonance method for the quality control
transfer problems for supersonic flow past hard bodies	ELLIS, N.	of adhesive joints p 321 A91-23814
p 268 A91-21979	Wind tunnel tests of aerodynamic effects of type I and	FILLER, RAYMOND L.
DORTMANN, K.	Il ground de/anti-icing fluids on small transport and general	Low-noise oscillators for airborne radar applications
Computation of unsteady viscous flows around wing	aviation aircraft during takeoff [AIAA PAPER 91-0763] p 288 A91-21609	p 296 N91-15159
profiles p 251 A91-20933	[AIAA PAPER 91-0763] p 288 A91-21609 EMERY, A. F.	FINDLAY, A. S.
DOUGHERTY, F. CARROLL	Trends in current heat transfer computations	IFDIS: An expert system for diagnosis of failures in jet aircraft engines
Development of a workstation-based flight data analysis	[AIAA PAPER 91-0157] p 317 A91-21384	[AD-A227757] p 302 N91-16020
package [AIAA PAPER 91-0668] p 279 A91-21585	ENGELUND, WALTER C.	FISCHER, BRAD
[AIAA PAPER 91-0668] p 279 A91-21585 DOUGLASS, A. R.	2-D and 3-D mixing flow analyses of a scramjet-afterbody	IMPP - The Integrated Mass Properties Program
The atmospheric effects of stratospheric aircraft: A	configuration p 253 A91-21188	[SAWE PAPER 1894] p.326 A91-22325
current consensus	ERDOS, JOHN I.	FITZGERALD, JIM
[NASA-RP-1251] p 325 N91-16467	Progress in hypersonic combustion technology with computation and experiment	Flight testing antiskid/brake systems
DRACOPOULOS, T. N.	[AIAA PAPER 90-5254] p 300 A91-22879	p 285 A91-20989 FLAHERTY, JOSEPH E.
Integrated aeroelastic control optimization	ERICSSON, LARS E.	A study of compressible laminar boundary layer at Mach
p 305 A91-23743	Slender wing rock revisited	numbers 4 to 30
DRAGOS, LAZAR Numerical solution of the equation for a thin airfoil in	[AIAA PAPER 91-0417] p 262 A91-21484	[AIAA PAPER 91-0323] p 261 A91-21460
ground effect p 269 A91-22491	ESKRA, MICHAEL D.	FLAKE, RICHARD A.
DRAJESKE, MARK H.	Advanced U.S. military aircraft battery systems	Advanced U.S. military aircraft battery systems
Relationships between agility metrics and flying	[SAE PAPER 901054] p 325 A91-21252	[SAE PAPER 901054] p 325 A91-21252
qualities	EVANS, J. E.	FLAMENT, C.
[SAE PAPER 901003] p 304 A91-21232	Results of the Kansas City 1989 Terminal Doppler	Viscous non equilibrium flow calculations by an implicit finite volume method
DRUMMOND, J. P. Radiative interactions in a hydrogen-fueled supersonic	Weather Radar (TDWR) operational evaluation testing [AD-A228784] p 323 N91-16206	[AIAA PAPER 91-0702] p 265 A91-21592
combustor	EVERETT, R. A., JR.	FLATER, MORRIS E.
[AIAA PAPER 91-0373] p 312 A91-21473	A comparison of fatigue life prediction methodologies	The vertical flight commuter - A solution to urban
DUCK, PETER W.	for rotorcraft	transportation problems p 280 A91-24120
The inviscid stability of supersonic flow past a sharp	[NASA-TM-102759] p 323 N91-15604	FLESHNER, MARK L.
cone p 269 A91-22511	Probabilistic fatigue methodology for six nines	High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095
DUGUNDJI, JOHN	reliability	FLOOD, J. D.
Nonlinear large amplitude vibration of composite helicopter rotor blade at large static deflection	[NASA-TM-102757] p 323 N91-15605	STOVL Hot Gas Ingestion control technology
[AD-A227933] p 307 N91-15183	EVERSON, R. M.	[ASME PAPER 89-GT-323] p 301 A91-23642
DUKE, EUGENE L.	Eigenfunction analysis of turbulent mixing phenomena [AIAA PAPER 91-0520] p 318 A91-21519	FLUTIE, KIRK J.
The development of a Flight Test Engineer's Workstation	[NIAN FAFER 81-0020] P 316 A91-21318	Unsteady measurement of skin friction in adverse
for the Automated Flight Test Management System	· ·	pressure gradient - A new approach to a well known gauge
p 326 A91-20999	F	[AIAA PAPER 91-0168] p 318 A91-21391
DULIKRAVICH, GEORGE S. Aerodynamic shape design using		FONT, G. I.
Aerodynamic shape design using stream-function-coordinate (SFC) formulation	FAN, WEICHENG	High alpha aerodynamic control by tangential fuselage
[AIAA PAPER 91-0189] p 260 A91-21404	Numerical computation of shock in the front of blunt	blowing
Aerodynamic shape design and optimization	body p 273 A91-24164	[AIAA PAPER 91-0620] p 264 A91-21561
[AIAA PAPER 91-0476] p 263 A91-21506	FAN, XIAOHONG An application of automatic ignitor DDK-1 to turbojet	FOURGUETTE, D. C. Structure of a supersonic reacting jet
DURHAM, JOSEPH E., JR.	engine test under simulated altitude condition	[AIAA PAPER 91-0376] p 299 A91-21475
Modeling two-point spatial turbulence spectra for	p 300 A91-23100	FREDETTE, R. E.
analysis of gust variations over aerospace vehicles [AIAA PAPER 91-0449] p 262 A91-21495	FANG, DINGYOU	Assessment of a post 2000 STOVL fighter
[MINA PAPELL STOOMS] PESE MOTETIONS	Calculation of transonic nozzle flow	[SAE PAPER 901031] p 286 A91-21241
E	p 273 A91-24167	FREYER, U.
E	FANT, D. B.	GaAs MMICs in selfaligned gate technology for phased
- An	On the stability of conduction dominated natural	array radar application p 296 N91-15160 FRIEDMAN, GERALD
E, QIN Unsteady transonic flow calculations for multiple	convection in near-vertical slots and horizontal cylindrical	Titanium compressor eggshells p 312 A91-20879
oscillating airfoil p 273 A91-24154	annuli [AIAA PAPER 91-0027] p 257 A91-21343	FRIEDRICHS, REINHARD
EAST. R. A.	FAROKHI, SAEED	Simulation and study of shear flows surrounding propfan
Dynamic effects of hypersonic separated flow	Pressure-time history of pylon wake on a pusher	engine models p 297 A91-20612
p 254 A91-21192	propeller in flight p 331 A91-20747	FRITH, D. A.
EBERLE, A.	FARRELL, P. A.	IFDIS: An expert system for diagnosis of failures in jet
Application of an implicit relaxation method solving the Euler equations for time-accurate unsteady problems	Flight flutter test techniques at ARL	aircraft engines .[AD-A227757] p 302 N91-16020
p 253 A91-21066	[AD-A227754] p 306 N91-15178	[AD-A227757] p 302 N91-16020 FROST, WALTER
EDWARDS, J. A.	FAWCETT, P. A.	Modeling two-point spatial turbulence spectra for
An investigation of supersonic oscillatory cavity flows	Spatial correlation velocimetry in unsteady flows	analysis of gust variations over aerospace vehicles
driven by thick shear layers p 271 A91-23550	[AIAA PAPER 91-0271] p 318 A91-21435	[AIAA PAPER 91-0449] p 262 A91-21495
EHRICH, F. F.	FEDUNOV, B. E.	FU, XIANGJIONG
Some observations of chaotic vibration phenomena in high-speed rotordynamics p 320 A91-23665	Maximum-rate deceleration of an object during controlled motion under the effect of aerodynamic drag	Definition of service life for frame of an airplane
high-speed rotordynamics p 320 A91-23665 EKATERINARIS, JOHN A.	and gravity forces p 268 A91-21940	p 288 A91-22262 FUJIMOTO, ATSUSHI
Numerical investigation of the flow over a double delta	FEIK, R. A.	Numerical simulation of separated flows around a wing
wing at high incidence	Identification of time delays in flight measurements	section at steady and unsteady motion by a discrete vortex
[AIAA PAPER 91-0753] p 266 A91-21605	p 327 A91-22953	method p 278 N91-16268
[/#/4(1)# 2// 4// 4// 4// 4// 4// 4// 4// 4// 4//	•	

FUJIMOTO, HITOSHI	GHIA, K. N.	GUEZENNEC, Y. G.
Theoretical analysis of supersonic gas-particle two-phase flow and its application to relatively complicated	Study of dynamic stall mechanism using simulation of two-dimensional unsteady Navier-Stokes equations	Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures
flow fields p 255 A91-21198	[AIAA PAPER 91-0546] p 263 A91-21525	in turbulent boundary layers
FULLERTON, C. GORDON AFTI/F-111 airplane mission adaptive wing operational	GHIA, U. Study of dynamic stall mechanism using simulation of	[AIAA PAPER 91-0519] p 263 A91-21518 GURSUL, ISMET
flight evaluation technique using uplinked pilot command	two-dimensional unsteady Navier-Stokes equations	Vorticity dynamics of 2-D and 3-D wings in unsteady
cues p 285 A91-20993 FULTON, GRAHAM B.	[AIAA PAPER 91-0546] p 263 A91-21525 GIBBS, MARTIN	free stream [AIAA PAPER 91-0010] p 256 A91-21331
Advanced structural instrumentation, volume 2	Putsed eddy current inspection of cracks under installed	GURUSWAMY, GURU P.
[AD-A227473] p 324 N91-16330 FUNG, KY.	fasteners p 318 A91-22188	Vortical flow computations on swept flexible wings using Navier-Stokes equations p 269 A91-22483
Techniques for accurate, efficient computation of	GIBSON, BERRY T. Wall pressure fluctuations near separation in a Mach	GUSEV, V. N.
unsteady transonic flow [AIAA PAPER 91-0597] p 263 A91-21549	5, sharp fin-induced turbulent interaction [AIAA PAPER 91-0646] p 264 A91-21576	The investigation of the hypersonic vehicle aerothermodynamics
FUNK, JOHN D., JR.	GIGLIOTTI, M. F. X.	[AIAA PAPER 90-5271] p 270 A91-22893 GUTMARK, E.
Simulation of stall departure using a nonlinear lifting line model	Properties of advanced rapidly solidified titanium alloys p 312 A91-20864	Active control of a dump combustor with fuel
[AIAA PAPER 91-0340] p 261 A91-21465 FUTATSUDERA, NAOKI	alloys p 312 A91-20864 GILES, MICHAEL B.	modulation [AIAA PAPER 91-0368] p 299 A91-21471
Numerical simulation of separated flows around a wing	Numerical investigation of hot streaks in turbines	(AIM FAFEIT 81-000) \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
section at steady and unsteady motion by a discrete vortex method p 278 N91-16268	p 251 A91-20748 GIMONET, BERNARD J.	Н
_	Algorithms development methodology for	HAAKE, F. K.
G	performance-optimized multicyclic rotor commands p 327 N91-15716	Fatigue and fracture of titanium aluminides
GAINER, THOMAS G.	GINEVSKII, A. S.	[AD-A226737] p 314 N91-15374 HAAS, WOLFGANG
Analysis of flow on cones and cylinders using discrete	Effect of the initial flow conditions on the aerodynamic and acoustic characteristics of turbulent jets	Experimental and theoretical examinations of film
vortex methods [AIAA PAPER 91-0288] p 260 A91-21442	p 272 A91-23903	cooling of gas turbine blades [ETN-91-98554] p 303 N91-16022
GAITONDE, DATTA	GLAGOLEV, A. I. Turbulent three-dimensional separated flows in a	HADDAD, A.
A systematic comparative study of several high resolution schemes for complex problems in high speed	supersonic stream near obstacles at the edge of dihedral	Aerodynamic design for supersonic nozzles of arbitrary cross section p 251 A91-20745
flows	corners p 272 A91-23913 GLAZKOV, IU. A.	HAENEL, D.
[AIAA PAPER 91-0636] p 264 A91-21573 GAL-OR, BENJAMIN	Optimization of process routes in the repair of gas turbine	Numerical influence of upwind TVD schemes on transonic airfoil drag prediction
Fundamental concepts of vectored propulsion	engine components using capillary testing p 321 A91-23817	[AIAA PAPER 91-0184] p 259 A91-21402
p 283 A91-20746 GALLOPS, G. W.	GLIEBE, P. R.	HAFF, K. W. Radioluminescent (RL) airfield lighting system program
Integrated propulsion system requirements for control of STOVL aircraft	Acoustic power level comparisons of model-scale counterrotating unducted fans	[DE91-001007] p 309 N91-15186
[ASME PAPER 90-GT-364] p 305 A91-23641	[AIAA PAPER 91-0595] p 332 A91-21548	HAGER, J. M. High temperature heat flux measurements
GANDERT, R. A new approach to hardware-in-the-loop simulation	GOEDEL, H. Integrated design analysis and optimization	[AIAĀ PAPER 91-0165] p 317 A91-21388 HAJEK, T. J.
(FALKE shuttle) p 329 N91-15735	[MBB/FE2/S/PUB/0398] p 291 N91-15145	Heat transfer in rotating passages with smooth walls
GANIKHANOV, SHARAFUTDIN F. Assembly of aircraft components p 250 A91-22104	The integration of structural optimization in the general design process for aircraft	and radial outward flow [ASME PAPER 89-GT-272] p 320 A91-23659
GAO, DEPING	[MBB/FE122/S/PUB/0405] p 293 N91-16017	HAKIM, ALLEGRA D.
Numerical analyses of stress near the hole of compressor disk by boundary element method	GOOSSEN, EMRAY Verification of flight critical systems	Designing and manufacturing the F-111 advanced composite forward vental strake
p 319 A91-22754	[SAE PAPER 901051] p 304 A91-21249	[SME PAPER EM90-105] p 249 A91-21106
GAO, HAO Control law study of aircraft maneuvers at high attack	GOULD, R. Assessment of impact damage in toughened resin	HALL, I. M. Hypersonic flow calculations using locally body-fitting
angle p 305 A91-22251	composites p 312 A91-20776	and overlapping grids p 253 A91-21183
GARBER, DONALD P. Long-range vertical propagation p 332 N91-16693	GOWDY, VAN Development of a crashworthy seat for commuter	HALL, P. D. Limitations of BITE p 250 A91-21202
GARCIA, JOSE	aircraft	HAMMOND, D. L.
A state of the art Mass Properties Laboratory [SAWE PAPER 1883] p 309 A91-22308	[AD-A227486] p 281 N91-15999	Assessment of a post 2000 STOVL fighter [SAE PAPER 901031] p 286 A91-21241
GARG, SANJAY	GRACHEV, V. A. Experimental investigation of a 2-D dual mode scramjet	HANEY, J. W.
Integrated flight/propulsion control system design based on a centralized approach p 305 A91-22950	with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892	Simplified modeling of blunt nose effects on vehicle flow fields
GARVIN, JAMES B.	GRAHAM, T. A.	[AIAA PAPER 90-5259] p 270 A91-22883
Airborne lidar for profiling of surface topography p 295 A91-23134	Simulated rotor test apparatus dynamic characteristics	Concept and specification for the Hermes Training
GAZDAG, DENYSE	in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147	Aircraft (HTA) p 310 A91-20618
Potential use of tiltrotor aircraft in Canadian aviation [NASA-TM-102245] p 281 N91-16001	GRASSO, F. Viscous high speed flow computations by adaptive mesh	HANKERS, RUDOLF The equipment of a research aircraft with emphasis on
GEE, KEN	embedding techniques	meteorological experiments p 249 A91-21001
Numerical prediction of the unsteady flowfield around the F-18 aircraft at large incidence	[AIAA PAPER 91-0149] p 258 A91-21381	HARDEGEN, HELMUT How safe is flying? Or - The AIMS onboard integrated
[AIAA PAPER 91-0020] p 256 A91-21338	GREATHOUSE, RICHARD M. Current research on schedulers for aerospace industry	monitoring systems p 294 A91-20609
GEIER, BODO The stability of light structures - An area of research	SOftware	HARDMAN, R. R. Infrared imaging - A validation technique for
with a tradition and a future p 315 A91-20616	[SAE PAPER 901014] p 326 A91-21235 GREBER ISAAC	computational fluid dynamics codes used in STOVL
GELHAAR, B. A new approach to hardware-in-the-loop simulation	Molecular dynamics computations of two dimensional	applications [AIAA PAPER 91-0675] p 318 A91-21587
(FALKE shuttle) p 329 N91-15735	supersonic rarefied gas flow past blunt bodies [AIAA PAPER 91-0322] p 261 A91-21459	HARRIS, C. E.
GELHAUSEN, P. A. Infrared imaging - A validation technique for	GREFF, E.	An evaluation of the pressure proof test concept for thin sheet 2024-T3 p 315 A91-20788
computational fluid dynamics codes used in STOVL	The development and design integration of a variable camber wing for long/medium range aircraft	HARRISON, D. T.
applications [AIAA PAPER 91-0675] p 318 A91-21587	p 284 A91-20898	The aircraft avionic interconnection system p 317 A91-21204
GEORGANTAS, A. I.	GROGAN, TIMOTHY A. An evaluation of shape methods for helicopter	HARRISON, JAMES A.
New family of low cost electronic fuel control units for	classification and orientation determination	Evaluation procedure for reinforced concrete box culverts under airfield pavements
small gas turbine engines [SAE PAPER 901039] p 298 A91-21245	[AD-A227326] p 291 N91-15148 GRUBB, J. P.	[AD-A227920] p 310 N91-16031
GEORGESON, GARY E.	Investigation of the influence of constant adverse	HARTMANN, DENNIS L. The dynamics of the stratospheric polar vortex and its
X ray computed tomography of composites [AD-A227227] p 314 N91-15322	pressure gradients on laminar boundary-layer stability at Mach number 8	relation to springtime ozone depletions
GERMANETTI, S.	[AD-A228231] p 324 N91-16293	p 325 A91-21712 HARVEY, R. A.
Algorithms development methodology for performance-optimized multicyclic rotor commands	GRUNDMANN, R. Computation of three-dimensional subsonic flows in	Optimization studies for the PW305 turbofan
p 327 N91-15716	ducts using the PNS approach p 271 A91-23186	p 297 A91-21222

HACUENI MA MOCTAFA	HOANG, N. T.	1
HASHEMI-KIA, MOSTAFA Development and application of a technique for reducing	Multi-sensor investigation of delta wing high-alpha	•
airframe finite element models for dynamics analysis	aerodynamics	IAROSHEVSKII, V. A.
[NASA-CR-187448] p 323 N91-15607	[AIAA PAPER 91-0735] p 266 A91-21600	Aerospace system development directions and some
HASS, A.	HOCHART, JP. Economical test method and ease of access under	aspects of their construction and application [AIAA PAPER 90-5266] p 311 A91-22889
RPAS - Runway performance analysis system p 285 A91-20987	microgravity: The zero-g Caravelle p 322 N91-15276	INGALLS, C. C.
HATTA, NATSUO	HOEFENER, CARL E.	Rotorcraft weight trends in light of structural material
Theoretical analysis of supersonic gas-particle	GPS - The logical choice for flight test tracking of	characteristics
two-phase flow and its application to relatively complicated flow fields p 255 A91-21198	aircraft p 282 A91-20998	[SAWE PAPER 1873] p 289 A91-22327
HATZIS, PATRICIA M.	HOEY, ROBERT G. Flight-test-derived stability derivatives for the Advanced	INOKUCHI, HAMAKI Downwash measurement at the horizontal tail
A successive partial-relaxation Gaussian algorithm for	Technology Tactical Transport p 303 A91-20991	p 286 A91-21000
area navigation operations with the Microwave Landing	HOHEISEL, HEINZ	IOB, M.
System (MLS) [AD-A228871] p 283 N91-16004	Airframe-engine integration - Task for future commercial	Programmable cockpit-flight dynamic model
HAYASHI, MASANORI	aircraft evolution p 251 A91-20615 HOLCOMB, J. ERIC	[AD-A227748] p 296 N91-15171
Numerical simulation of separated flows around a wing	Coupled LEWICE/Navier-Stokes code development	ISAKSEN, I. S. A. The atmospheric effects of stratospheric aircraft: A
section at steady and unsteady motion by a discrete vortex method p 278 N91-16268	[AIAA PAPER 91-0804] p 326 A91-21624	current consensus
method p 278 N91-16268 HAYASHI, YOSHIO	HOLLAND, K. P.	[NASA-RP-1251] p 325 N91-16467
Downwash measurement at the horizontal tail	Fatigue and fracture of titanium aluminides	ISHII, RYUJI
p 286 A91-21000	[AD-A226737] p 314 N91-15374	Theoretical analysis of supersonic gas-particle two-phase flow and its application to relatively complicated
HE, QINGZHI A closed form solution of stress intensity factors for the	HOLLANDERS, H. Viscous non equilibrium flow calculations by an implicit	flow fields p 255 A91-21198
shaft of aeroplane all-moving stabilizer with corner cracks	finite volume method	ISMAIL, I. H.
emanating from a hole p 319 A91-22752	[AIAA PAPER 91-0702] p 265 A91-21592	Simulation of aircraft gas turbine engines
HE, XIAOYI	HOLLE, KLAUS-DIETER	[ASME PAPER 90-GT-342] p 301 A91-23645
Viscous-inviscid interactive semi-inverse code for three dimensional transonic flow p 274 A91-24168	DISCUS - A failure-tolerant Fbw/Fbl-experimental system p 303 A91-20610	IVERSON, DAVID L. An integrated approach to system design, reliability, and
HE. XIONG	HOLLIS. PETER G.	diagnosis
Control law study of aircraft maneuvers at high attack	Velocity field of an axisymmetric pulsed, subsonic air	[NASA-TM-102861] p 322 N91-15426
angle p 305 A91-22251	jet p 269 A91-22479	
HEDMAN, P. O. Experimental and theoretical studies in a gas-fueled	HOLTON, J. R.	J
research combustor	The atmospheric effects of stratospheric aircraft: A current consensus	
[AIAA PAPER 91-0639] p 300 A91-21575	[NASA-RP-1251] p 325 N91-16467	JACOB, TH.
HEGDE, U. G.	HOQUE, M. S.	High precision real time airplane positioning system with
Flowfield measurements in an unstable ramjet burner p 297 A91-20737	Simulated rotor test apparatus dynamic characteristics	full navigational capabilities for flight testing p 282 A91-20985
HENDERSON, W. P.	in the 80- by 120-foot wind tunnel	JANARDAN, B. A.
Airframe/propulsion integration at transonic speeds	[NASA-TM-102870] p 291 N91-15147 HORKOVICH, JAMES ANDREW	Acoustic power level comparisons of model-scale
[ASME PAPER 90-GT-338] p 271 A91-23640	Numerical solutions for a cylindrical laser diffuser	counterrotating unducted fans
HENRY, M. F. Metallurgical control of fatigue crack propagation in	flow-field p 274 N91-15127	[AIAA PAPER 91-0595] p 332 A91-21548 JIA, PEIZHANG
superalloys p 311 A91-20677	HORNUNG, HANS	An adaptive filter for tracking the maneuvering target
HEPBURN, JOHN S. A.	Internally mounted thin-liquid-film skin-friction meter -	p 327 A91-22756
NAVPACK: Simulation tools for design of high	Comparison with floating element method with and without pressure gradient	JIANG, YI-TSANN
performance integrated navigation systems p 329 N91-15739	[AIAA PAPER 91-0060] p 317 A91-21352	Development of a solution adaptive unstructured scheme for quasi-3D inviscid flows through advanced
HERBERT, TH.	HOSSAIN, MOHAMMAD A.	turbomachinery cascades
Boundary-layer transition - Analysis and prediction	A comparison of three prospective analytical methods	[AIAA PAPER 91-0132] p 258 A91-21374
revisited	for benzene analysis in jet fuel environments [AD-A227489] p 314 N91-16170	JOHNS, A. L.
[AIAA PAPER 91-0737] p 318 A91-21601	[AD-A227489] p 314 N91-16170 HOWARD, F. G.	STOVL Hot Gas Ingestion control technology [ASME PAPER 89-GT-323] p 301 A91-23642
HERRICK, PAUL W. Air-to-ground attack fighter improvements through	Exploratory study of vortex-generating devices for	JOHNSON, B. V.
multi-function nozzles	turbulent flow separation control	Heat transfer in rotating passages with smooth walls
[SAE PAPER 901002] p 304 A91-21231	[AIAA PAPER 91-0042] p 317 A91-21348	and radial outward flow
HESS, R. A. Technique for predicting longitudinal pilot-induced	HOWE, D.	[ASME PAPER 89-GT-272] p 320 A91-23659 JOHNSON, E. T.
oscillations predicting longitudinal photeinduced	Introduction to the basic technology of stealth aircraft. I - Basic considerations and aircraft self-emitted signals	Advanced technology programs for small turboshaft
HESS, RONALD A.	(passive considerations). II - Illumination by the enemy	engines - Past, present, future
Closed-loop assessment of flight simulator fidelity	(active considerations)	[ASME PAPER 90-GT-267] p 301 A91-23638
р 311 А91-22960	[ASME PAPER 90-GT-116] p 290 A91-23643	JOHNSON, J. G. Calculation of vertex flowfields around forehooding and
HESSELINK, L. A three-dimensional visualization technique applied to	HOWES, JOHN The Radio Trials Centre at A&AEE Boscombe Down.	Calculation of vortex flowfields around forebodies and delta wings
flow around a delta wing p 315 A91-20728	United Kingdom - A description p 308 A91-20978	[AIAA PAPER 91-0176] p 259 A91-21396
HEWETT, MARLE D.	HUANG, J. R.	JOHNSON, JON C.
The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System	Numerical simulation of an electrothermally de-iced	Aluminum lithium for the F/A-18, Hornet 2000 [SAWE PAPER 1913] p 289 A91-22326
p 326 A91-20999	aircraft surface using the finite element method	JOHNSTON, H. S.
HILL, EUGENE G.	[AIAA PAPER 91-0268] p 287 A91-21434 HUANG, LEJIN	The atmospheric effects of stratospheric aircraft: A
Flight and wind tunnel tests of the aerodynamic effects	Air-to-ground attack and Integrated Flight/Fire Control	current consensus
of aircraft ground deicing/anti-icing fluids [AIAA PAPER 91-0762] p 267 A91-21608	p 305 A91-22265	[NASA-RP-1251] p 325 N91-16467 JOHNSTON, HAROLD S.
HINDASH, ISMAIL O.	HUANG, MINGKE	The atmospheric effects of stratospheric aircraft: A
CFD validation and wind tunnel test for a NASP single	Solution of Euler equations to 2-D and axisymmetric	topical review
expansion ramp nozzle in the transonic regime	compressible flows using conformal mapping coordinates p 272 A91-24152	[NASA-RP-1250] p 325 N91-16466
[AIAA PAPER 91-0015]. p 256 A91-21334	HUDSON, MAURICE G.	JOHNSTON, STEPHEN L. Modern airborne early warning radars
HINTZ, R. T. Laser obstacle and cable update sensor	Airport technology international 1990/1991	p 283 A91-23145
p 296 N91-15169	p 309 A91-21200	JOHST, EBERHARD
HIRNING, JAMES LAWRENCE	HUGHES, RICHARD SMITH	Structural tests for the Dornier 328
Optimal Kalman filter integration of a global positioning system receiver and an LN-94 inertial navigation system	Logarithmic amplification for passive airborne direction finding in the 1990s p 296 N91-15164	p 309 A91-22863 JONES, EDWARD J.
[AD-A227222] p 283 N91-16003	HUNZIKER, K. SCOTT	MMIC impact on airborne avionic systems
HIRSCHEL, E. H.	Integrated control-structure design	p 296 N91-15166
Aerothermodynamic phenomena and the design of	[NASA-CR-182020] p 307 N91-15180	JONES, H. CLAUDE
atmospheric hypersonic airplanes [MBB/FE122/S/PUB/0408] p 293 N91-16015	HUTCHINSON, JOHN J.	DOD nonlethal Unmanned Aerial Vehicles Joint Project test and evaluation p 249 A91-20997
Hypersonic model configurations	International aircraft operator information system, phase	JONES, H. E.
[MBB/FE122/S/PUB/411] p 293 N91-16016	2 (NIAR-90-31) p. 232 No.1-15028	Directivity and prediction of low frequency rotor noise
HO, CHIH-MING	[NIAR-90-31] p 333 N91-15928	[AIAA PAPER 91-0592] p 331 A91-21545
Vorticity dynamics of 2-D and 3-D wings in unsteady free stream	HWANG, CHING-CHYWAN Propfan supersonic panel method analysis and flutter	JU, XUENING Corrosion fatigue crack growth of 30CrMnSiNi2A steel
[AIAA PAPER 91-0010] p 256 A91-21331	predictions p 278 N91-15993	in airplane environments p 313 A91-22383
	•	

K KHORRAMI, A. F. KRAUSS, ROLAND H. Hypersonic interactions and flow transition Combustion efficiency determined from wall pressure o 254 A91-21193 KAIN, HILLEL and temperature measurement in a Mach 2 combustor [AIAA PAPER 91-0017] p 298 A91-21338 Engine water ingestion test p 286 A91-21003 KHOSLA P K KALLURI, SREERAMESH KREPEC. T. Inviscid steady/unsteady flow calculations Simulation, testing and optimization of a new low cost Estimation of the engineering elastic constants of a p 267 A91-21748 directionally solidified superalloy for finite element electronic fuel control unit for small gas turbine engines KILLBERG, C. G. [SAE PAPER 901027] p 298 A91-21239 structural analysis The development of avionics-intensive, multi-sensor New family of low cost electronic fuel control units for [NASA-CR-187036] p 322 N91-15598 cockpits: Simulation does not always equal succe small gas turbine engines [SAE PAPER 9010391 KÄLTEIS. R. M. p 330 N91-15746 Technique for predicting longitudinal pilot-induced scillations p 305 A91-22961 p 298 A91-21245 KIM. TAEHYOUN KRIUCHENKO, V. V. oscillations Nonlinear large amplitude vibration of composite KALVISTE, JURI Additional fuel component application for hydrogen helicopter rotor blade at targe static deflection Measures of merit for aircraft dynamic maneuvering scramiet boosting o 307 N91-15183 [AD-A2279331 p 304 A91-21233 [SAE PAPER 901005] [SAE PAPER 900990] p 312 A91-21226 KIMMEL ROGER L KANDIL, HAMDY A. KROEGER, AUGUST Nonlinear disturbances in a hypersonic laminar boundary Computation of steady and unsteady compressible uasi-axisymmetric vortex flow and breakdown The use of system simulation during the definition phase of the passenger transport aircraft MPC75 [AIAA PAPER 91-0320] p 261 A91-21457 p 266 A91-21604 p 330 N91-15741 [AIAA PAPER 91-0752] KIRTLEY, K. R. KANDIL, OSAMA A. KROLL NORBERT An algebraic RNG-based turbulence model for Computation of steady and unsteady compressible A systematic comparative study of several high three-dimensional turbomachinery flows quasi-axisymmetric vortex flow and breakdown resolution schemes for complex problems in high speed [AIAA PAPER 91-0172] p 259 A91-21393 [AIAA PAPER 91-0752] p 266 A91-21604 KISEL', G. A. [AIAA PAPER 91-0636] KÀRANJIA, D. J. p 264 A91-21573 Three-dimensional boundary layer effects in convergent Optimization studies for the PW305 turbofan KROTHAPALLI, ANJANEYULU p 297 A91-21222 compression flows p 321 A91-23910 Effect of slotting on the noise of an axisymmetric KARAVOSOV, R. K.

Effect of the initial flow conditions on the aerodynamic KNOFDLER HARRY supersonic iet p 332 A91-22493 The laminar free jet problem, using Newtonian media KROUTHEN, BJORN p 276 N91-15136 and acoustic characteristics of turbulent iets [ETN-91-98494] Numerical investigation of hot streaks in turbines p 272 A91-23903 p 251 A91-20748 KNOWLES, K. KARCH, LAWRENCE G. KRYSIN, VLADIMIR N. The ground vortex formed by impinging jets in DOD nonlethal Unmanned Aerial Vehicles Joint Project Assembly of aircraft components p 250 A91-22104 KUDOU, KENJI p 249 A91-20997 test and evaluation [AIAA PAPER 91-0768] p 267 A91-21611 An experiment on supersonic turbulent mixing layers: KARNI, S. KO, M. K. W. Supersonic-subsonic two-stream layers Far-field boundaries and their numerical treatment The atmospheric effects of stratospheric aircraft: A p 323 N91-16281 p 276 N91-15983 [NAL-TR-1066] urrent consensus KUDRIAYTSEV, N. N. KARNIADAKIS, GEORGE E. p 325 N91-16467 [NASA-RP-1251] Numerical investigation of drag reduction in flow over surfaces with streamwise aligned riblets Macroscopic model of vibrational relaxation in heat KO. T. C. transfer problems for supersonic flow past hard bodies Composite patch reinforcement of cracked aircraft upper p 268 A91-21979 [AIAA PAPER 91-0518] p 263 A91-21517 longeron - Analysis and specimen simulation KUGELMANN, B. KASTEN, TERRY D. p 249 A91-20784 New general guidance method in constrained optimal Manned versus unmanned - The implications to NASP KOBAYASHI, Y. p 311 A91-22888 AIAA PAPER 90-5265] control, I - Numerical method p 326 A91-20506 Free vibration of a cantilever annular sector plate with KUHN, RICHARD E. KAUL UPENDER K. curved radial edges and varying thickness Small-scale experiments in STOVL ground effects [SAE PAPER 901060] p 287 A91-2 Prediction of transitional (laminar-turbulent) hypersonic p 316 A91-20943 p 287 A91-21256 flows using the parabolized Navier-Stokes equations p 255 A91-21195 KOCHER, JAMES A. KÙMAR, AJAY Integrated control and avionics for air superiority - A KAWAI, MASAFUMI Progress in hypersonic combustion technology with Experimental study on mixing phenomena in supersonic computation and experiment [SAE PAPER 901049] p 294 A91-21248 AIAA PAPER 90-5254] flows with slot injection p 300 A91-22879 KOEHLER, RUTHARD [AIAA PAPER 91-0016] p 256 A91-21335 KURKOV, ANATOLE P. Initial flight test of a ground deployed system for flying Optical measurement of unducted fan flutter KAZAKOV. A. V. qualities assessment [NASA-TM-103285] p 302 N91-15174 Effect of surface temperature on the stability of the attachment line boundary layer of a swept wing
p 272 A91-23845 [NASA-TM-101700] p 307 N91-15182 KUSUNOSE, KAZUHIRO A rapidly converging viscous/inviscid coupling code for multi-element airfoil configurations KOKADO, JUN-ICHI Theoretical analysis of supersonic gas-particle KEGELMAN, JEROME T. [AIAA PAPER 91-0177] p 259 A91-21397 Aerodynamic characteristics of three generic forebodies two-phase flow and its application to relatively complicated at high angles of attack p 255 A91-21198 KWON, OH J. [AIAA PAPER 91-0275] p.260 A91-21437 KOLARIK, ANN L Viscous flow simulation of fighter aircraft [AIAA PAPER 91-0278] p 260 A91-21438 KEITH, T. G., JR. Analysis and certification of the Starship all-composite Numerical study of the effects of icing on fixed and rotary Numerical simulation of icing, deicing, and shedding airframe p 279 A91-21583 wing performance [AIAA PAPER 91-0662] AIAA PAPER 91-0665] [SAE PAPER 900997] p 278 A91-21229 p 265 A91-21580 KEITH, THEO G., JR. KOMERATH, N. M. Three-dimensional numerical simutation Spatial correlation velocimetry in unsteady flows [AIAA PAPER 91-0271] p 318 A91electrothermal deicing systems p 318 A91-21435 (AIAA PAPER 91-0267) p 287 A91-21433 KOMURO, TOMOYUKI Numerical simulation of an electrothermally de-iced An experiment on supersonic turbulent mixing layers: LAI, M.-C. aircraft surface using the finite element method Supersonic-subsonic two-stream layers Multi-dimensional modelling of gas turbine combustion [AIAA PAPER 91-0268] p 287 A91-21434 [NAL-TR-1066] p 276 N91-15983 using a flame sheet model in KIVA II Numerical modeling of an advanced pneumatic impulse KONOVALOV, I. V. [AIAA PAPER 91-0414] p 299 A91-21483 ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] Effect of the penetration depth of fuel jets on combustion LANDWEBER, L. p 288 A91-21529 Inviscid analysis of two-dimensional airfoils in unsteady in a supersonic combustion chamber KELLACKY, C. J. p 312 A91-21962 motion using conformal mapping p 268 A91-22477 Statistical structural analysis of rotor impact ice KORTING, P. A. O. G. LANE, J. R. sheddina EJ200 - The engine for the new European Fighter Comparison of combustion experiments and theory in [AIAA PAPER 91-0663] p 279 A91-21581 p 297 A91-20744 polyethylene solid fuel ramjets Aircreft KEMPEL, ROBERT W. [ASME PAPER 90-GT-119] p 301 A91-23637 KOSINOV, A. D. AFTI/F-111 airplane mission adaptive wing operational LANE, THEODORE flight evaluation technique using uplinked pilot command An experimental study of the evolution of harmonic The civil tiltrotor aircraft's potential in developing perturbations in a boundary layer on a flat plate at Mach p 285 A91-20993 p 272 A91-23842 p 280 A91-24122 KENDALL JAMES M. LANGER, F. D. KOSOLAPOV, IU. S. Nonlinear disturbances in a hypersonic laminar boundary Computer aided design and simulation of the automatic Calculation of averaged axisymmetric flow of an ideal approach and landing phase of a combat aircraft gas in turbomachine stages p 321 A91-23938 [AIAA PAPER 91-0320] p 261 A91-21457 p 328 N91-15719 KERHO. M. KRABILL, WILLIAM B. LANGLEY, L. W. Effect of a simulated ice accretion on the aerodynamics Airborne lidar for profiling of surface topography p 295 A91-23134 High temperature heat flux measurements of a swept wing [AIAA PAPER 91-0442] [AIAA PAPER 91-0165] p 317 A91-21388 p 262 A91-21491 KRAFT, RAYMOND H. LARKIN, M. D.

Integrated control-structure design [NASA-CR-182020]

[MBB/FE2/S/PUB/0398]

layers on stender bodies

Integrated design analysis and optimization

Calculation of three-dimensional compressible boundary

KRAMMER, H.

p 307 N91-15180

p 291 N91-15145

p 252 A91-20936

KESSEL-HUNTER, KATHY

(SME PAPER MS89-7271

of a swept wing [AIAA PAPER 91-0442]

KHODADOUST, A.

Jet engine turbine blade design

Knowledge-based engineering technology case study -

Effect of a simulated ice accretion on the aerodynamics

o 316 A91-21115

p 262 A91-21491

[AD-A227757] p 302 N91-16020 LASCHKA, B. effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156

IFDIS: An expert system for diagnosis of failures in jet

aircraft engines

LEAHY, A. M.	101 6 11	
	LIU, C. H.	MANGALAM, SIVA M.
TF89 tactical fighter outer wing design	Computation of steady and unsteady compressible	Cross-flow vortex structure and transition measurements
[ETN-91-98580] p 294 N91-16019	quasi-axisymmetric vortex flow and breakdown	using multi-element hot films
LEE, BENG P.	[AIAA PAPER 91-0752] p 266 A91-21604	[AIAA PAPER 91-0166] p 258 A91-21389
Calculation of three-dimensional low Reynolds number	LIU, NS.	MANGIACASALE, L.
flows	Navier-Stokes simulation of transonic blade-vortex interactions p 253 A91-21065	Aircraft control system design, synthesis, analysis, and
[AIAA PAPER 91-0187] p 259 A91-21403	interactions p 253 A91-21065 LIU, QIANGANG	simulation tools at Aermacchi p 328 N91-15729
LEE, CHUN-HIAN	A Green's Function Method for calculating the transonic	MANSFELD, GUENTER
The influences of forced oscillations toward	pressure distribution of wing p 273 A91-24157	DISCUS - A failure-tolerant Fbw/Fbl-experimental
vortex-breakdown p 270 A91-22762	LIU, RUNQUAN	system p 303 A91-20610
LEE, W. Y.	A calculating method of the kill probability attack area	MANSOUR, NAGI N.
Optimal trajectories for an aerospace plane. Part 2: Data,	for AAM p 305 A91-22352	Direct numerical simulations of a plane compressible
tables, and graphs	LIU, WENQI	wake: Stability, vorticity dynamics, and topology.
[NASA-CR-187848] p 292 Ng1-16011	A method of developing load spectrum for a fighter	[NASA-CR-187737] p 274 N91-15129
Optimal trajectories for an aerospace plane. Part 1:	aircraft p 290 A91-22381	MARCHETTO, B.
Formulation, results, and analysis	LIU. ZHENXIA	AM-X high incidence trials, development and results
[NASA-CR-187868] p 293 N91-16013	The interim prediction for aircraft noise	p 304 A91-21004
LEONARD, KENNETH R.	p 332 A91-22370	MARCOLINI, M. A.
Cost-effective use of liquid nitrogen in cryogenic wind	LOFFLER, IRVIN J.	Directivity and prediction of low frequency rotor noise
tunnels, phase 2	In-flight source noise of an advanced full-scale	[AIAA PAPER 91-0592] p 331 A91-21545
[NASA-CR-182088] p 309 N91-15188	single-rotation propeller	MARINELLI, RICK
LEPESANT, JEAN-PIERRE	[AIAA PAPER 91-0594] p 331 A91-21547	Effects of runway anti-icing chemicals on traction
Special optical fibres and sensors for aeronautics	LOGAN. E.	[DOT/FAA/CT-TN90/53] p 310 N91-15189
p 332 N91-15167	Turbulent shear flow over surface mounted obstacles	
•		MARMIGNON, C.
LESTER, PETER F.	p 252 A91-21057 LOGAN, TRENT R.	Viscous non equilibrium flow calculations by an implicit
Observations of severe turbulence near thunderstorm tops p 324 A91-20695	Titanium aluminides development for NASP airframe	finite volume method
		[AIAA PAPER 91-0702] p 265 A91-21592
LEVERTON, JOHN W.	applications (AIAA PAPER 90-5261) p 313 A91-22884	MARTIN, ANTHONY J.
Overcoming obstacles to vertical flight public transport		Development of onboard maintenance systems on
operations p 280 A91-24121	Optimization and validation of a fuselage fuel tank	Boeing airplanes p 250 A91-21206
LEVI, GADY	structural concept for the NASP	MARTIN, CHARLES A.
Flight test management and integration program	[AIAA PAPER 90-5262] p 300 A91-22885	Numerical modeling of an advanced pneumatic impulse
p 286 A91-20996	LOMBARD, DAVID S.	ice protection system (PIIP) for aircraft
Engine water ingestion test p 286 A91-21003	Cost-effective use of liquid nitrogen in cryogenic wind	[AIAA PAPER 91-0555] p 288 A91-21529
LEVIN, V. M.	tunnels, phase 2	MASLOV, A. A.
Gasdynamic features of supersonic kerosene	[NASA-CR-182088] p 309 N91-15188	An experimental study of the evolution of harmonic
combustion in a model combustion chamber	LOTH, ALICIO LOTHARIO, JR.	perturbations in a boundary layer on a flat plate at Mach
[AIAA PAPER 90-5268] p 313 A91-22891	Minimum control speed - A 'thrustless' approach	4 p 272 A91-23842
	p 285 A91-20980	MASUYA, GORO
LEVY, DAVID R.	LOTZE, A.	An experiment on supersonic turbulent mixing layers:
Initial flight test of a ground deployed system for flying	The integration of structural optimization in the general	Supersonic-subsonic two-stream layers
qualities assessment	design process for aircraft	[NAL-TR-1066] p 276 N91-15983
[NASA-TM-101700] p 307 N91-15182	[MBB/FE122/S/PUB/0405] p 293 N91-16017	MATARRESE, M. D.
LI, FENGWEI	LOU, HANYI	Strip blowing from a wedge at hypersonic speeds
Unsteady transonic flow calculations for multiple	Magnetron sputtered CoCrAIY coatings on superalloy	[AIAA PAPER 91-0032] p 257 A91-21346
oscillating airfoil p 273 A91-24154	IN738 p 313 A91-22346	MATTERN, DUANE L.
LI, LINGFANG	LOU, WUJIANG	Integrated flight/propulsion control system design based
An equivalent calculation of load spectrums	Curved vortex elements for numerical wake modeling	on a centralized approach p 305 A91-22950
p 319 A91-22369	p 273 A91-24162	MATTES, L. A.
LI, PING		Further assessment of a scramjet inlet mass flow
	LU, ZHIYONG	measurement technique for use in hypersonic pulse
Double literization media to a lotating subscribe		
Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical	The influences of forced oscillations toward	
annular cascade of oscillating blades. I - Mathematical	vortex-breakdown p 270 A91-22762	facilities
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings	facilities [AIAA PAPER 91-0551] p 300 A91-21527
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115	vortex-breakdown p 270 A91-22762	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L.
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD)
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGUIE	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G.
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic multi-body interference	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE High-precision fiber-optic position sensing using diode
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM The interim prediction for aircraft noise p 305 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic multi-body interference	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095 MCCORMICK, BARNES W.
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LI, YANJUN	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic multi-body interference [AIAA PAPER 91-0071] p 258 A91-21357	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095 MCCORMICK, BARNES W. Simulation of stall departure using a nontinear lifting line
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LI, YANJUN An identification method of fast time varying parameters	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic multi-body interference	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095 MCCORMICK, BARNES W. Simulation of stall departure using a nonlinear lifting line model
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LI, YANJUN An identification method of fast time varying parameters adapted to aircraft control systems p 327 A91-22758	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic multi-body interference [AIAA PAPER 91-0071] p 258 A91-21357	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095 MCCORMICK, BARNES W. Simulation of stall departure using a nonlinear lifting line model [AIAA PAPER 91-0340] p 261 A91-21465
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LI, YANJUN An identification method of fast time varying parameters adapted to aircraft control systems p 327 A91-22758 LI, ZHENHAO	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic multi-body interference [AIAA PAPER 91-0071] p 258 A91-21357	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095 MCCORMICK, BARNES W. Simulation of stall departure using a nonlinear lifting line model [AIAA PAPER 91-0340] p 261 A91-21465 MCCORMICK, JAMES B.
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around adsymmetric bodies at zero angle of attack p 270 A91-22763 LI, YANJUN An identification method of fast time varying parameters adapted to aircraft control systems p 327 A91-22758 LI, ZHENHAO A new method for subsonic lifting-surface theory	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic multi-body interference [AIAA PAPER 91-0071] p 258 A91-21357	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095 MCCORMICK, BARNES W. Simulation of stall departure using a nonlinear lifting line model [AIAA PAPER 91-0340] p 261 A91-21465 MCCORMICK, JAMES B. Cost conscious design for data acquisition system
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LI, YANJUN An identification method of fast time varying parameters adapted to aircraft control systems p 327 A91-22758 LI, ZHENHAO A new method for subsonic lifting-surface theory p 268 A91-22351	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic multi-body interference [AIAA PAPER 91-0071] p 258 A91-21357	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095 MCCORMICK, BARNES W. Simulation of stall departure using a nonlinear lifting line model [AIAA PAPER 91-0340] p 261 A91-21465 MCCORMICK, JAMES B. Cost conscious design for data acquisition system ground support equipment p 308 A91-20983
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LI, YANJUN An identification method of fast time varying parameters adapted to aircraft control systems p 327 A91-22758 LI, ZHENHAO A new method for subsonic lifting-surface theory p 268 A91-22351 LIAGUSHIN, B. E.	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic multi-body interference [AIAA PAPER 91-0071] p 258 A91-21357	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095 MCCORMICK, BARNES W. Simulation of stall departure using a nonlinear lifting line model [AIAA PAPER 91-0340] p 261 A91-21465 MCCORMICK, JAMES B. Cost conscious design for data acquisition system ground support equipment p 308 A91-20983 MCCROSKEY, W. J.
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LI, YANJUN An identification method of fast time varying parameters adapted to aircraft control systems p 327 A91-22758 LI, ZHENHAO A new method for subsonic lifting-surface theory p 268 A91-22351 LIAGUSHIN, B. E. Turbulent three-dimensional separated flows in a	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic multi-body interference [AIAA PAPER 91-0071] p 258 A91-21357 MACK, ROBERT J. A study of loudness as a metric for sonic boom acceptability [AIAA PAPER 91-0496] p 331 A91-21511 MACLENNAN, JOYCE E.	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095 MCCORMICK, BARNES W. Simulation of stall departure using a nonlinear lifting line model [AIAA PAPER 91-0340] p 261 A91-21465 MCCORMICK, JAMES B. Cost conscious design for data acquisition system ground support equipment p 308 A91-20983 MCCROSKEY, W. J. Flowfield of a lifting hovering rotor: A Navier-Stokes
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LI, YANJUN An identification method of fast time varying parameters adapted to aircraft control systems p 327 A91-22758 LI, ZHENHAO A new method for subsonic lifting-surface theory p 268 A91-22351 LIAGUSHIN, B. E. Turbulent three-dimensional separated flows in a supersonic stream near obstacles at the edge of dihedral	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic multi-body interference [AIAA PAPER 91-0071] p 258 A91-21357	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095 MCCORMICK, BARNES W. Simulation of stall departure using a nonlinear lifting line model [AIAA PAPER 91-0340] p 261 A91-21465 MCCORMICK, JAMES B. Cost conscious design for data acquisition system ground support equipment p 308 A91-20983 MCCROSKEY, W. J. Flowfield of a lifting hovering rotor: A Navier-Stokes simulation
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LI, YANJUN An identification method of fast time varying parameters adapted to aircraft control systems p 327 A91-22758 LI, ZHENHAO A new method for subsonic lifting-surface theory p 268 A91-22351 LIAGUSHIN, B. E. Turbulent three-dimensional separated flows in a supersonic stream near obstacles at the edge of dihedral corners p 272 A91-23913	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 Iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic multi-body interference [AIAA PAPER 91-0071] p 258 A91-21357 MACK, ROBERT J. A study of loudness as a metric for sonic boom acceptability [AIAA PAPER 91-0496] p 331 A91-21511 MACLENNAN, JOYCE E. Technological forecast of VTOL weight empty fraction in the year 2020	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095 MCCORMICK, BARNES W. Simulation of stall departure using a nonlinear lifting line model [AIAA PAPER 91-0340] p 261 A91-21465 MCCORMICK, JAMES B. Cost conscious design for data acquisition system ground support equipment p 308 A91-20983 MCCROSKEY, W. J. Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LI, YANJUN An identification method of fast time varying parameters adapted to aircraft control systems p 327 A91-22758 LI, ZHENHAO A new method for subsonic lifting-surface theory p 268 A91-22351 LIAGUSHIN, B. E. Turbulent three-dimensional separated flows in a supersonic stream near obstacles at the edge of dihedral corners p 272 A91-23913 LIM, E.	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic multi-body interference [AIAA PAPER 91-0071] p 258 A91-21357 MACK, ROBERT J. A study of loudness as a metric for sonic boom acceptability [AIAA PAPER 91-0496] p 331 A91-21511 MACLENNAN, JOYCE E. Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095 MCCORMICK, BARNES W. Simulation of stall departure using a nonlinear lifting line model [AIAA PAPER 91-0340] p 261 A91-21465 MCCORMICK, JAMES B. Cost conscious design for data acquisition system ground support equipment p 308 A91-20983 MCCROSKEY, W. J. Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 MCDANIEL, JAMES
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LI, YANJUN An identification method of fast time varying parameters adapted to aircraft control systems p 327 A91-22758 LI, ZHENHAO A new method for subsonic lifting-surface theory p 268 A91-22351 LIAGUSHIN, B. E. Turbulent three-dimensional separated flows in a supersonic stream near obstacles at the edge of dihedral corners p 272 A91-23913 LIM, E. Wind tunnel tests of aerodynamic effects of type I and	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 Iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic multi-body interference [AIAA PAPER 91-0071] p 258 A91-21357 MACK, ROBERT J. A study of loudness as a metric for sonic boom acceptability [AIAA PAPER 91-0496] p 331 A91-21511 MACLENNAN, JOYCE E. Technological forecast of VTOL weight empty fraction in the year 2020	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095 MCCORMICK, BARNES W. Simulation of stall departure using a nonlinear lifting line model [AIAA PAPER 91-0340] p 261 A91-21465 MCCORMICK, JAMES B. Cost conscious design for data acquisition system ground support equipment p 308 A91-20983 MCCROSKEY, W. J. Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 MCDANIEL, JAMES Effect of slotting on the noise of an axisymmetric
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LI, YANJUN An identification method of fast time varying parameters adapted to aircraft control systems p 327 A91-22758 LI, ZHENHAO A new method for subsonic lifting-surface theory p 268 A91-22351 LIAGUSHIN, B. E. Turbulent three-dimensional separated flows in a supersonic stream near obstacles at the edge of dihedral corners p 272 A91-23913 LIM, E. Wind tunnel tests of aerodynamic effects of type I and II ground de/anti-icing fluids on small transport and general	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic multi-body interference [AIAA PAPER 91-0071] p 258 A91-21357 MACK, ROBERT J. A study of loudness as a metric for sonic boom acceptability [AIAA PAPER 91-0496] p 331 A91-21511 MACLENNAN, JOYCE E. Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095 MCCORMICK, BARNES W. Simulation of stall departure using a nonlinear lifting line model [AIAA PAPER 91-0340] p 261 A91-21465 MCCORMICK, JAMES B. Cost conscious design for data acquisition system ground support equipment p 308 A91-20983 MCCROSKEY, W. J. Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 MCDANIEL, JAMES Effect of slotting on the noise of an axisymmetric supersonic jet p 332 A91-22493
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LI, YANJUN An identification method of fast time varying parameters adapted to aircraft control systems p 327 A91-22758 LI, ZHENHAO A new method for subsonic lifting-surface theory p 268 A91-22351 LIAGUSHIN, B. E. Turbulent three-dimensional separated flows in a supersonic stream near obstacles at the edge of dihedral concers LIM, E. Wind tunnel tests of aerodynamic effects of type I and Il ground de/anti-cing fluids on small transport and general aviation aircraft during takeoff	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic multi-body interference [AIAA PAPER 91-0071] p 258 A91-21357 MACK, ROBERT J. A study of loudness as a metric for sonic boom acceptability [AIAA PAPER 91-0496] p 331 A91-21511 MACLENNAN, JOYCE E. Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 MADDALON, DAL V. Cross-flow vortex structure and transition measurements using multi-element hot films	facilities [AIAA PAPER 91-0551] p 300 A81-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095 MCCORMICK, BARNES W. Simulation of stall departure using a nonlinear lifting line model [AIAA PAPER 91-0340] p 261 A91-21465 MCCORMICK, JAMES B. Cost conscious design for data acquisition system ground support equipment p 308 A91-20983 MCCROSKEY, W. J. Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 MCDANIEL, JAMES Effect of slotting on the noise of an axisymmetric supersonic jet p 332 A91-22493 MCDANIEL, JAMES C.
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM The interim prediction for aircraft noise p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LI, YANJUN An identification method of fast time varying parameters adapted to aircraft control systems p 327 A91-22758 LI, ZHENHAO A new method for subsonic lifting-surface theory p 268 A91-22351 LIAGUSHIN, B. E. . Turbulent three-dimensional separated flows in a supersonic stream near obstacles at the edge of dihedral corners p 272 A91-23913 LIM, E. Wind tunnel tests of aerodynamic effects of type I and II ground de/anti-cring fluids on small transport and general aviation aircraft duriffuids on small transport and general aviation aircraf	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic multi-body interference [AIAA PAPER 91-0071] p 258 A91-21357 MACK, ROBERT J. A study of loudness as a metric for sonic boom acceptability [AIAA PAPER 91-0496] p 331 A91-21511 MACLENNAN, JOYCE E. Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 MADDALON, DAL V. Cross-flow vortex structure and transition measurements	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095 MCCORMICK, BARNES W. Simulation of stall departure using a nonlinear lifting line model [AIAA PAPER 91-0340] p 261 A91-21465 MCCORMICK, JAMES B. Cost conscious design for data acquisition system ground support equipment p 308 A91-20983 MCCROSKEY, W. J. Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 MCDANIEL, JAMES Effect of slotting on the noise of an axisymmetric supersonic jet p 332 A91-22493 MCDANIEL, JAMES C. Combustion efficiency determined from wall pressure
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LI, YANJUN An identification method of fast time varying parameters adapted to aircraft control systems p 327 A91-22758 LI, ZHENHAO A new method for subsonic lifting-surface theory p 268 A91-22351 LIAGUSHIN, B. E. Turbulent three-dimensional separated flows in a supersonic stream near obstacles at the edge of dihedral corners p 272 A91-23913 LIM, E. Wind tunnel tests of aerodynamic effects of type I and Il ground de/anti-icing fluids on small transport and general aviation aircraft during takeoff [AIAA PAPER 91-0763] p 288 A91-21609 LIN, HANK	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic multi-body interference [AIAA PAPER 91-0071] p 258 A91-21357 MACK, ROBERT J. A study of loudness as a metric for sonic boom acceptability [AIAA PAPER 91-0496] p 331 A91-21511 MACLENNAN, JOYCE E. Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 MADDALON, DAL V. Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095 MCCORMICK, BARNES W. Simulation of stall departure using a nonlinear lifting line model [AIAA PAPER 91-0340] p 261 A91-21465 MCCORMICK, JAMES B. Cost conscious design for data acquisition system ground support equipment p 308 A91-20983 MCCROSKEY, W. J. Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 MCDANIEL, JAMES Effect of slotting on the noise of an axisymmetric supersonic jet p 332 A91-22493 MCDANIEL, JAMES C. Combustion efficiency determined from wall pressure and temperature measurement in a Mach 2 combustor
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LI, YANJUN An identification method of fast time varying parameters adapted to aircraft control systems p 327 A91-22758 LI, ZHENHAO A new method for subsonic lifting-surface theory p 268 A91-22351 LIAGUSHIN, B. E. Turbulent three-dimensional separated flows in a supersonic stream near obstacles at the edge of dihedral corners LIM, E. Wind tunnel tests of aerodynamic effects of type I and Il ground de/anti-icing fluids on small transport and general aviation aircraft during takeoff [AIAA PAPER 91-0763] p 288 A91-21609 LIN, HANK Vorticity dynamics of 2-D and 3-D wings in unsteady	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic multi-body interference [AIAA PAPER 91-0071] p 258 A91-21357 MACK, ROBERT J. A study of loudness as a metric for sonic boom acceptability [AIAA PAPER 91-0496] p 331 A91-21511 MACLENNAN, JOYCE E. Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 MADDALON, DAL V. Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 MAES, P.	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J DOYLE High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095 MCCORMICK, BARNES W. Simulation of stall departure using a nonlinear lifting line model [AIAA PAPER 91-0340] p 261 A91-21465 MCCORMICK, JAMES B. Cost conscious design for data acquisition system ground support equipment p 308 A91-20983 MCCROSKEY, W. J. Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TIM-102862] p 274 N91-15128 MCDANIEL, JAMES Effect of slotting on the noise of an axisymmetric supersonic jet MCDANIEL, JAMES C. Combustion efficiency determined from wall pressure and temperature measurement in a Mach 2 combustor [AIAA PAPER 91-0017] p 298 A91-21336
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM The interim prediction for aircraft noise p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LI, YANJUN An identification method of fast time varying parameters adapted to aircraft control systems p 327 A91-22758 LI, ZHENHAO A new method for subsonic lifting-surface theory p 268 A91-22351 LIAGUSHIN, B. E. Turbulent three-dimensional separated flows in a supersonic stream near obstacles at the edge of dihedral corners p 272 A91-23913 LIM, E. Wind tunnel tests of aerodynamic effects of type I and II ground de/anti-cing fluids on small transport and general aviation aircraft during takeoff [AIAA PAPER 91-0763] p 288 A91-21609 LIN, HANK Vorticity dynamics of 2-D and 3-D wings in unsteady free stream	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic multi-body interference [AIAA PAPER 91-0071] p 258 A91-21357 MACK, ROBERT J. A study of loudness as a metric for sonic boom acceptability [AIAA PAPER 91-0496] p 331 A91-21511 MACLENNAN, JOYCE E. Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 MADDALON, DAL V. Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 MAES, P. Symbolic generation of aircraft simulation programmes	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095 MCCORMICK, BARNES W. Simulation of stall departure using a nonlinear lifting line model [AIAA PAPER 91-0340] p 261 A91-21465 MCCORMICK, JAMES B. Cost conscious design for data acquisition system ground support equipment p 308 A91-20983 MCCROSKEY, W. J. Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 MCDANIEL, JAMES Effect of slotting on the noise of an axisymmetric supersonic jet p 332 A91-22493 MCDANIEL, JAMES C. Combustion efficiency determined from wall pressure and temperature measurement in a Mach 2 combustor [AIAA PAPER 91-0017] p 298 A91-21336 MCINTOSH, GLEN E.
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LI, YANJUN An identification method of fast time varying parameters adapted to aircraft control systems p 327 A91-22758 LI, ZHENHAO A new method for subsonic lifting-surface theory p 268 A91-22351 LIAGUSHIN, B. E. Turbulent three-dimensional separated flows in a supersonic stream near obstacles at the edge of dihedral corners LIM, E. Wind tunnel tests of aerodynamic effects of type I and II ground de/anti-icing fluids on small transport and general aviation aircraft during takeoff [AIAA PAPER 91-0763] p 288 A91-21609 LIN, HANK Vorticity dynamics of 2-D and 3-D wings in unsteady free stream [AIAA PAPER 91-0010] p 256 A91-21331	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic multi-body interference [AIAA PAPER 91-0071] p 258 A91-21357 MACK, ROBERT J. A study of loudness as a metric for sonic boom acceptability [AIAA PAPER 91-0496] p 331 A91-21511 MACLENNAN, JOYCE E. Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 MADDALON, DAL V. Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 MAES, P. Symbolic generation of aircraft simulation programmes	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095 MCCORMICK, BARNES W. Simulation of stall departure using a nonlinear lifting line model [AIAA PAPER 91-0340] p 261 A91-21465 MCCORMICK, JAMES B. Cost conscious design for data acquisition system ground support equipment p 308 A91-20983 MCCROSKEY, W. J. Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 MCDANIEL, JAMES Effect of slotting on the noise of an axisymmetric supersonic jet p 332 A91-22493 MCDANIEL, JAMES C. Combustion efficiency determined from wall pressure and temperature measurement in a Mach 2 combustor [AIAA PAPER 91-0017] p 298 A91-21336 MCINTOSH, GLEN E. Cost-effective use of liquid nitrogen in cryogenic wind
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LI, YANJUN An identification method of fast time varying parameters adapted to aircraft control systems p 327 A91-22758 LI, ZHENHAO A new method for subsonic lifting-surface theory p 268 A91-22351 LIAGUSHIN, B. E. Turbulent three-dimensional separated flows in a supersonic stream near obstacles at the edge of dihedral corners LIM, E. Wind tunnel tests of aerodynamic effects of type I and Il ground de/anti-icing fluids on small transport and general aviation aircraft during takeoff [AIAA PAPER 91-0763] p 288 A91-21609 LIN, HANK Vorticity dynamics of 2-D and 3-D wings in unsteady free stream [AIAA PAPER 91-0010] p 256 A91-21331 LIN, J. C.	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic multi-body interference [AIAA PAPER 91-0071] p 258 A91-21357 MACK, ROBERT J. A study of loudness as a metric for sonic boom acceptability [AIAA PAPER 91-0496] p 331 A91-21511 MACLENNAN, JOYCE E. Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1971] p 288 A91-22302 MADDALON, DAL V. Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 MAES, P. Symbolic generation of aircraft simulation programmes p 328 N91-15727	[AIAA PAPER 91-0551] p 300 A81-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft compatibility tasks required for the release of an Aircraft compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095 MCCURRICK, BARNES W. Simulation of stall departure using a nonlinear lifting line model [AIAA PAPER 91-0340] p 261 A91-21465 MCCORMICK, JAMES B. Cost conscious design for data acquisition system ground support equipment p 308 A91-20983 MCCROSKEY, W. J. Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TIM-102662] p 274 N91-15128 MCDANIEL, JAMES Effect of slotting on the noise of an axisymmetric supersonic jet p 332 A91-22493 MCDANIEL, JAMES C. Combustion efficiency determined from wall pressure and temperature measurement in a Mach 2 combustor [AIAA PAPER 91-0017] p 298 A91-21336 MCINTOSH, GLEN E. Cost-effective use of liquid nitrogen in cryogenic wind tunnels, phase 2
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LI, YANJUN An identification method of fast time varying parameters adapted to aircraft control systems p 327 A91-22758 LI, ZHENHAO A new method for subsonic lifting-surface theory p 268 A91-22351 LIAGUSHIN, B. E. Turbulent three-dimensional separated flows in a supersonic stream near obstacles at the edge of dihedral corners p 272 A91-23913 LIM, E. Wind tunnel tests of aerodynamic effects of type I and II ground de/anti-cing fluids on small transport and general aviation aircraft during takeoff [AIAA PAPER 91-0763] p 288 A91-21609 LIN, HANK Vorticity dynamics of 2-D and 3-D wings in unsteady free stream [AIAA PAPER 91-0010] p 256 A91-21331 LIN, J. C. Exploratory study of vortex-generating devices for	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic multi-body interference [AIAA PAPER 91-0071] p 258 A91-21357 MACK, ROBERT J. A study of loudness as a metric for sonic boom acceptability [AIAA PAPER 91-0496] p 331 A91-21511 MACLENNAN, JOYCE E. Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 MADDALON, DAL V. Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 MAES, P. Symbolic generation of aircraft simulation programmes p 328 N91-15727 MAHAN, J. R. Infrared imaging - A validation technique for	facilities [AIAA PAPER 91-0551] p 300 A81-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095 MCCORMICK, BARNES W. Simulation of stall departure using a nonlinear lifting line model [AIAA PAPER 91-0340] p 261 A91-21465 MCCORMICK, JAMES B. Cost conscious design for data acquisition system ground support equipment p 308 A91-20983 MCCROSKEY, W. J. Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 MCDANIEL, JAMES C. Combustion efficiency determined from wall pressure and temperature measurement in a Mach 2 combustor p 298 A91-21336 MCINTOSH, GLEN E. Cost-effective use of liquid nitrogen in cryogenic wind tunnels, phase 2 [NASA-CR-182088] p 309 N91-15188
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LI, YANJUN An identification method of fast time varying parameters adapted to aircraft control systems p 327 A91-22758 LI, ZHENHAO A new method for subsonic lifting-surface theory p 268 A91-22351 LIAGUSHIN, B. E. Turbulent three-dimensional separated flows in a supersonic stream near obstacles at the edge of dihedral comers p 272 A91-23913 LIM, E. Wind tunnel tests of aerodynamic effects of type I and Il ground de/anti-icing fluids on small transport and general aviation aircraft during takeoff [AIAA PAPER 91-0763] p 288 A91-21609 LIN, HANK Vorticity dynamics of 2-D and 3-D wings in unsteady free stream [AIAA PAPER 91-0010] p 256 A91-21331 LIN, J. C. Exploratory study of vortex-generating devices for turbulent flow separation control	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic multi-body interference [AIAA PAPER 91-0071] p 258 A91-21357 MACK, ROBERT J. A study of loudness as a metric for sonic boom acceptability [AIAA PAPER 91-0496] p 331 A91-21511 MACLENNAN, JOYCE E. Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 MADDALON, DAL V. Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 MAES, P. Symbolic generation of aircraft simulation programmes p 328 N91-15727 MAHAN, J. R. Infrared imaging - A validation technique for computational fluid dynamics codes used in STOVL	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095 MCCORMICK, BARNES W. Simulation of stall departure using a nonlinear lifting line model [AIAA PAPER 91-0340] p 261 A91-21465 MCCORMICK, JAMES B. Cost conscious design for data acquisition system ground support equipment p 308 A91-20983 MCCROSKEY, W. J. Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 MCDANIEL, JAMES Effect of slotting on the noise of an axisymmetric supersonic jet p 332 A91-22493 MCDANIEL, JAMES C. Combustion efficiency determined from wall pressure and temperature measurement in a Mach 2 combustor [AIAA PAPER 91-0017] p 298 A91-21336 MCINTOSH, GLEN E. Cost-effective use of liquid nitrogen in cryogenic wind turnels, phase 2 [NASA-CR-182088] p 309 N91-15188
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LI, YANJUN An identification method of fast time varying parameters adapted to aircraft control systems p 327 A91-22758 LI, ZHENHAO A new method for subsonic lifting-surface theory p 268 A91-22351 LIAGUSHIN, B. E. Turbulent three-dimensional separated flows in a supersonic stream near obstacles at the edge of dihedral comers LIM, E. Wind tunnel tests of aerodynamic effects of type I and Il ground de/anti-icing fluids on small transport and general aviation aircraft during takeoff [AIAA PAPER 91-0763] p 288 A91-21609 LIN, HANK Vorticity dynamics of 2-D and 3-D wings in unsteady free stream [AIAA PAPER 91-0010] p 256 A91-21331 LIN, J. C. Exploratory study of vortex-generating devices for turbulent flow separation control [AIAA PAPER 91-0042] p 317 A91-21348	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic multi-body interference [AIAA PAPER 91-0071] p 258 A91-21357 MACK, ROBERT J. A study of loudness as a metric for sonic boom acceptability [AIAA PAPER 91-0496] p 331 A91-21511 MACLENNAN, JOYCE E. Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 MADDALON, DAL V. Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 MAES, P. Symbolic generation of aircraft simulation programmes p 328 N91-15727 MAHAN, J. R. Infrared imaging - A validation technique for computational fluid dynamics codes used in STOVL applications	[AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095 MCCORMICK, BARNES W. Simulation of stall departure using a nonlinear lifting line model [AIAA PAPER 91-0340] p 261 A91-21465 MCCORMICK, JAMES B. Cost conscious design for data acquisition system ground support equipment p 308 A91-20983 MCCROSKEY, W. J. Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [INSA-TIM-102862] p 274 N91-15128 MCDANIEL, JAMES Effect of slotting on the noise of an axisymmetric supersonic jet p 332 A91-22493 MCDANIEL, JAMES C. Combustion efficiency determined from wall pressure and temperature measurement in a Mach 2 combustor [AIAA PAPER 91-0017] p 298 A91-21336 MCCHOSH, GLEN E. Cost-effective use of liquid nitrogen in cryogenic wind tunnels, phase 2 [NASA-CR-182088] p 309 N91-15188 MCKENZIE, ROBERT L. Progress in laser-spectroscopic techniques for
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LI, YANJUN An identification method of fast time varying parameters adapted to aircraft control systems p 327 A91-22758 LI, ZHENHAO A new method for subsonic lifting-surface theory p 268 A91-22351 LIAGUSHIN, B. E. Turbulent three-dimensional separated flows in a supersonic stream near obstacles at the edge of dihedral corners p 272 A91-23913 LIM, E. Wind tunnel tests of aerodynamic effects of type I and II ground de/anti-icing fluids on small transport and general aviation aircraft during takeoff [AIAA PAPER 91-0763] p 288 A91-21609 LIN, HANK Vorticity dynamics of 2-D and 3-D wings in unsteady free stream [AIAA PAPER 91-0010] p 256 A91-21331 LIN, J. C. Exploratory study of vortex-generating devices for turbulent flow separation control [AIAA PAPER 91-0042] p 317 A91-21348 LINDSAY, H.	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic multi-body interference [AIAA PAPER 91-0071] p 258 A91-21357 MACK, ROBERT J. A study of loudness as a metric for sonic boom acceptability [AIAA PAPER 91-0496] p 331 A91-21511 MACLENNAN, JOYCE E. Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 MADDALON, DAL V. Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 MAES, P. Symbolic generation of aircraft simulation programmes p 328 N91-15727 MAHAN, J. R. Infrared imaging A validation technique for computational fluid dynamics codes used in STOVL applications [AIAA PAPER 91-0675] p 318 A91-21587	facilities [AIAA PAPER 91-0551] p 300 A81-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095 MCCORMICK, BARNES W. Simulation of stall departure using a nonlinear lifting line model [AIAA PAPER 91-0340] p 261 A91-21465 MCCORMICK, JAMES B. Cost conscious design for data acquisition system ground support equipment p 308 A91-20983 MCCROSKEY, W. J. Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 MCDANIEL, JAMES C. Combustion efficiency determined from wall pressure and temperature measurement in a Mach 2 combustor [AIAA PAPER 91-0017] p 298 A91-21336 MCCINTOSH, GLEN E. Cost-effective use of liquid nitrogen in cryogenic wind turnels, phase 2 [NASA-CR-182088] p 309 N91-15188 MCKENZIE, ROBERT L. Progress in laser-spectroscopic techniques for aerodynamic measurements - An overview
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LI, YANJUN An identification method of fast time varying parameters adapted to aircraft control systems p 327 A91-22758 LI, ZHENHAO A new method for subsonic lifting-surface theory p 268 A91-22351 LIAGUSHIN, B. E. Turbulent three-dimensional separated flows in a supersonic stream near obstacles at the edge of dihedral corners p 272 A91-23913 LIM, E. Wind tunnel tests of aerodynamic effects of type I and II ground de/anti-icing fluids on small transport and general aviation aircraft during takeoff [AIAA PAPER 91-0763] p 288 A91-21609 LIN, HANK Vorticity dynamics of 2-D and 3-D wings in unsteady free stream [AIAA PAPER 91-0010] p 256 A91-21331 LIN, J. C. Exploratory study of vortex-generating devices for turbulent flow separation control [AIAA PAPER 91-0042] p 317 A91-21348 LINDSAY, H. Advanced technology programs for small turboshaft	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic multi-body interference [AIAA PAPER 91-0071] p 258 A91-21357 MACK, ROBERT J. A study of loudness as a metric for sonic boom acceptability [AIAA PAPER 91-0496] p 331 A91-21511 MACLENNAN, JOYCE E. Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 MADDALON, DAL V. Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 MAES, P. Symbolic generation of aircraft simulation programmes p 328 N91-15727 MAHAN, J. R. Infrared imaging A validation technique for computational fluid dynamics codes used in STOVL applications [AIAA PAPER 91-0675] p 318 A91-21567 MALSBURY, TERRY	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095 MCCORMICK, BARNES W. Simulation of stall departure using a nonlinear lifting line model [AIAA PAPER 91-0340] p 261 A91-21465 MCCORMICK, JAMES B. Cost conscious design for data acquisition system ground support equipment p 308 A91-20983 MCCROSKEY, W. J. Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 MCDANIEL, JAMES Effect of slotting on the noise of an axisymmetric supersonic jet p 332 A91-22493 MCDANIEL, JAMES C. Combustion efficiency determined from wall pressure and temperature measurement in a Mach 2 combustor [AIAA PAPER 91-0017] p 298 A91-21336 MCCINTOSH, GLEN E. Cost-effective use of liquid nitrogen in cryogenic wind turnels, phase 2 [NASA-CR-182088] p 309 N91-15188 MCKENZIE, ROBERT L. Progress in laser-spectroscopic techniques for aerodynamic measurements - An overview [AIAA PAPER 91-0059] p 317 A91-21351
annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 LI, SHUWEN A method of developing load spectrum for a fighter aircraft p 290 A91-22381 LI, TINGJIE A calculating method of the kill probability attack area for AAM p 305 A91-22352 LI, WENLAN The interim prediction for aircraft noise p 332 A91-22370 LI, XIUYING AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LI, YANJUN An identification method of fast time varying parameters adapted to aircraft control systems p 327 A91-22758 LI, ZHENHAO A new method for subsonic lifting-surface theory p 268 A91-22351 LIAGUSHIN, B. E. Turbulent three-dimensional separated flows in a supersonic stream near obstacles at the edge of dihedral corners p 272 A91-23913 LIM, E. Wind tunnel tests of aerodynamic effects of type I and II ground de/anti-icing fluids on small transport and general aviation aircraft during takeoff [AIAA PAPER 91-0763] p 288 A91-21609 LIN, HANK Vorticity dynamics of 2-D and 3-D wings in unsteady free stream [AIAA PAPER 91-0010] p 256 A91-21331 LIN, J. C. Exploratory study of vortex-generating devices for turbulent flow separation control [AIAA PAPER 91-0042] p 317 A91-21348 LINDSAY, H.	vortex-breakdown p 270 A91-22762 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 LUNDBERG, BO Testing the new Swedish multirole A/C - The JAS 39 Gripen p 285 A91-20990 LUO, SHIJUN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 LYNCH, PRISCA L Thin-layer Navier-Stokes solutions for transonic multi-body interference [AIAA PAPER 91-0071] p 258 A91-21357 MACK, ROBERT J. A study of loudness as a metric for sonic boom acceptability [AIAA PAPER 91-0496] p 331 A91-21511 MACLENNAN, JOYCE E. Technological forecast of VTOL weight empty fraction in the year 2020 [SAWE PAPER 1871] p 288 A91-22302 MADDALON, DAL V. Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389 MAES, P. Symbolic generation of aircraft simulation programmes p 328 N91-15727 MAHAN, J. R. Infrared imaging A validation technique for computational fluid dynamics codes used in STOVL applications [AIAA PAPER 91-0675] p 318 A91-21587	facilities [AIAA PAPER 91-0551] p 300 A91-21527 MAXAM, GARTH L. Aircraft compatibility tasks required for the release of an Aircraft Compatibility Control Drawing (ACCD) [DE91-004698] p 307 N91-15179 MCARDLE, JACK G. Flow studies in close-coupled ventral nozzles for STOVL aircraft [SAE PAPER 901033] p 255 A91-21242 MCARTHUR, J. CRAIG Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750 MCCLURE, J. DOYLE High-precision fiber-optic position sensing using diode laser radar techniques p 295 A91-24095 MCCORMICK, BARNES W. Simulation of stall departure using a nonlinear lifting line model [AIAA PAPER 91-0340] p 261 A91-21465 MCCORMICK, JAMES B. Cost conscious design for data acquisition system ground support equipment p 308 A91-20983 MCCROSKEY, W. J. Flowfield of a lifting hovering rotor: A Navier-Stokes simulation [NASA-TM-102862] p 274 N91-15128 MCDANIEL, JAMES Effect of slotting on the noise of an axisymmetric supersonic jet p 332 A91-22493 MCDANIEL, JAMES C. Combustion efficiency determined from wall pressure and temperature measurement in a Mach 2 combustor [AIAA PAPER 91-0017] p 298 A91-21336 MCINTOSH, GLEN E. Cost-effective use of liquid nitrogen in cryogenic wind turnels, phase 2 [NASA-CR-182088] p 309 N91-15188 MCKENZIE, ROBERT L. Progress in laser-spectroscopic techniques for aerodynamic measurements - An overview

		•
MCQUILKIN, FREDERICK T.	MORITA, TOSHIYUKI	NEUL, ANDREAS
Optimization and validation of a fuselage fuel tank structural concept for the NASP	Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary	Modulation and coding for the aeronautical satellite channel p 283 A91-22904
[AIAA PAPER 90-5262] p 300 A91-22885	element method	channel p 283 A91-22904 NEUMANN. H.
MEGSON, THOMAS HENRY GORDON	(NAL-TR-1065) p 277 N91-15985	Flight Management/Guidance System in air transport
Aircraft structures for engineering students (2nd revised	MORRIS, M. J.	using Airbus A320 as an example p 304 A91-22201
and entarged edition) p 321 A91-24114 MEHMED. ORAL	The effects of mass removal on turbulence properties	NEWMAN, J. C., JR.
Optical measurement of unducted fan flutter	in a normal-shock/turbulent-boundary-layer interaction [AIAA PAPER 91-0647] p 264 A91-21577	An evaluation of the pressure proof test concept for thin sheet 2024-T3 p 315 A91-20788
[NASA-TM-103285] p 302 N91-15174	MORRISON, J. H.	NGUYEN, KHANH QUOC
MEHTA, UNMEEL B.	Flux-difference split scheme for turbulent transport	Dynamic analysis of rotor blade undergoing rotor power
The aerospace plane design challenge - Credible computational fluid dynamics results	equations	Shutdown
[AIAA PAPER 90-5248] p 310 A91-22877	[AIAA PAPER 90-5251] p 270 A91-22878	[NASA-TM-102865] p 251 N91-15124 Higher harmonic control analysis for vibration reduction
MELTON, JOHN E.	MOSKO, JOSEPH A. Broadband coupling structures for microwave arithmetic	of helicopter rotor systems p 306 N91-15175
Unstructured Euler flow solutions using hexahedral cell	circuits and phased arrays p 322 N91-15163	NICHOLS, R. H.
refinement	MOSS, J. B.	Calculation of the flow in a circular S-duct inlet
[AIAA PAPER 91-0637] p 264 A91-21574	Aerodynamic design for supersonic nozzles of arbitrary	[AIAA PAPER 91-0174] p 259 A91-21394
MENG, FANPEI	cross section p 251 A91-20745	NISS, GOSTA
An equivalent calculation of load spectrums p 319 A91-22369	MUIR, D. E.	Testing the new Swedish multirole A/C - The JAS 39
MENNE, S.	Engine performance monitoring and troubleshooting	Gripen p 285 A91-20990 NIU, KANGMIN
Three-dimensional simulations of hypersonic flows	techniques for the CF-18 aircraft [ASME PAPER 90-GT-357] p 301 A91-23635	Corrosion fatigue crack growth of 30CrMnSiNi2A steel
p 253 A91-21184	MUKUNDA, H. S.	in airplane environments p 313 A91-22383
MENON, SURESH	Flow measurements in a model ramjet secondary	NOLAN, MATTHEW L
Active control of combustion instability in a ramjet using	combustion chamber p 310 A91-20743	Effects of external loads on onboard weight and balance
large-eddy simulations	MULLINEAUX, J. L.	systems
[AIAA PAPER 91-0411] p 299 A91-21482 MENSO. G.	Qualification of primary composite aircraft structures	[SAWE PAPER 1895] p 289 A91-22317
AM-X high incidence trials, development and results	p 313 A91-23714	NORTON, WILLIAM J.
p 304 A91-21004	MUNGAL, M. G.	Random air turbulence as a flutter test excitation source p 286 A91-21002
MEREDITH, PAUL T.	Structure of a supersonic reacting jet [AIAA PAPER 91-0376] p 299 A91-21475	NOVELLI, JOHN L
A rapidly converging viscous/inviscid coupling code for	MURAKAMI. ATSUO	Derivation of a fuselage weight estimating relationship
multi-element airfoil configurations	An experiment on supersonic turbulent mixing layers:	[SAWE PAPER 1901] p 289 A91-22319
[AIAA PAPER 91-0177] p 259 A91-21397	Supersonic-subsonic two-stream layers	NUMBERS, KEITH
MESSITER, A. F.	[NAL-TR-1066] p 276 N91-15983	Hypersonic propulsion system force accounting
Strip blowing from a wedge at hypersonic speeds [AIAA PAPER 91-0032] p 257 A91-21346	MURTHY, D. V.	[AIAA PAPER 91-0228] p 299 A91-21418
MIDDLETON, DONALD H.	Solution and sensitivity analysis of a complex	
Composite materials in aircraft structures	transcendental eigenproblem with pairs of real eigenvalues p 320 A91-23685	0
p 313 A91-22109	eigenvalues p 320 A91-23685 MURTHY, S. N. B.	
MIELE, ANGELO	An approach to air-breathing high speed vehicle	OBARA, C. J.
Optimization and guidance of flight trajectories for the	synthesis	Comment on 'Optical boundary-layer transition detection
national aerospace plane	[AIAA PAPER 91-0225] p 287 A91-21415	in a transonic wind tunnel' p 319 A91-22496
[NASA-CR-187837] p 292 N91-16010	••	OBAYASHI, S.
Optimal trajectories for an aerospace plane. Part 2: Data,	N _i	Flowfield of a lifting hovering rotor: A Navier-Stokes simulation
tables, and graphs [NASA-CR-187848] p 292 N91-16011	· '	[NASA-TM-102862] p 274 N91-15128
Optimal trajectories for an aerospace plane. Part 1:	NAGAMATSU, H. T.	OBERKAMPF, WILLIAM L.
Formulation, results, and analysis	Experimental investigation of a 2-D scramjet inlet at	Joint computational experimental aerodynamics
Formulation, results, and analysis [NASA-CR-187868] p 293 N91-16013	Mach numbers of 8 to 18 and stagnation temperatures	research on a hypersonic vehicle. II - Computational
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A.	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K	research on a hypersonic vehicle. II - Computational results
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow	Mach numbers of 8 to 18 and stagnation temperatures	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p 261 A91-21458
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p'261 A91-21458 OERTEL, CH.
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p'261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, ROBERT A.	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p'261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M.	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p 261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, ROBERT A. Thermal barrier coating evaluation needs	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p'261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, ROBERT A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SAJJIN AF-2 iteration and its parallel algorithm for transonic flow	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p 261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection [AIAA PAPER 91-0016] p 256 A91-21335
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, ROBERT A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SAJJIN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 NAKAHASHI, KAZUHIRO	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p 261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection [AIAA PAPER 91-0016] p 256 A91-21335 ONG, C. L.
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, ROBERT A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SAJIN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 NAKAHASHI, KAZUHIRO Optimum spacing control of the marching grid	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p'261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection [AIAA PAPER 91-0016] p 256 A91-21335 ONG, C. L. Design for strength and rigidity of a thermoplastic
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, ROBERT A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SAJIN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 NAKAHASHI, KAZUHIRO Optimum spacing control of the marching grid generation	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p'261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection [AIAA PAPER 91-0016] p 256 A91-21335 ONG, C. L. Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20783
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, ROBERT A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SANIN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 NAKAHASHI, KAZUHIRO Optimum spacing control of the marching grid generation [AIAA PAPER 91-0103] p 258 A91-21368	research on a hypersonic vehicle. II - Computational results [AlAA PAPER 91-0321] p 261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection [AlAA PAPER 91-0016] p 256 A91-21335 ONG, C. L Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20783 Composite patch reinforcement of cracked aircraft upper
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, ROBERT A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SAJIN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 NAKAHASHI, KAZUHIRO Optimum spacing control of the marching grid generation [AIAA PAPER 91-0103] p 258 A91-21368 NAKATANI, IWAO Ishida tilt-wing project takes cues from history	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p'261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection [AIAA PAPER 91-0016] p 256 A91-21335 ONG, C. L. Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20783
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, ROBERT A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SAJIN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 MININ, S. N. A study of flow structure in nozzles with a constant-height	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 NAKAHASHI, KAZUHIRO Optimum spacing control of the marching grid generation [AIAA PAPER 91-0103] p 258 A91-21368 NAKATANI, IWAO Ishida tilt-wing project takes cues from history p 290 A91-24119	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p 261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection [AIAA PAPER 91-0016] p 256 A91-21335 ONG, C. L. Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20783 Composite patch reinforcement of cracked aircraft upper longeron - Analysis and specimen simulation p 249 A91-20784 ONISHI, S.
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, ROBERT A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SAJIN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 MININ, S. N. A study of flow structure in nozzles with a constant-height section in the throat region p 272 A91-23848 MINUCCI, M. A. S. Experimental investigation of a 2-D scramjet inlet at	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 NAKAHASHI, KAZUHIRO Optimum spacing control of the marching grid generation [AIAA PAPER 91-0103] p 258 A91-21368 NAKATANI, IWAO Ishida tilt-wing project takes cues from history p 290 A91-24119 NAM, CHANGHO	research on a hypersonic vehicle. II - Computational results [AlAA PAPER 91-0321] p 261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with soit injection [AlAA PAPER 91-0016] p 256 A91-21335 ONG, C. L. Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20783 Composite patch reinforcement of cracked aircraft upper longeron - Analysis and specimen simulation p 249 A91-20784 ONISHI, S. High temperature heat flux measurements
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, ROBERT A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SAIJIN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 MININ, S. N. A study of flow structure in nozzles with a constant-height section in the throat region p 272 A91-23848 MINUCCI, M. A. S. Experimental investigation of a 2-D scramjet inlet at Mach numbers of 8 to 18 and stagnation temperatures	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 NAKAHASHI, KAZUHIRO Optimum spacing control of the marching grid generation [AIAA PAPER 91-0103] p 258 A91-21368 NAKATANI, IWAO Ishida tilt-wing project takes cues from history p 290 A91-24119 NAM, CHANGHO Aeroservoelastic tailoring for lateral control	research on a hypersonic vehicle. II - Computational results [AlAA PAPER 91-0321] p 261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection [AlAA PAPER 91-0016] p 256 A91-21335 ONG, C. L. Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20783 Composite patch reinforcement of cracked aircraft upper longeron - Analysis and specimen simulation p 249 A91-20784 ONISHI, S. High temperature heat flux measurements [AlAA PAPER 91-0165] p 317 A91-21388
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, ROBERT A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SAJIN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 MININ, S. N. A study of flow structure in nozzles with a constant-height section in the throat region p 272 A91-23848 MINUCCI, M. A. S. Experimental investigation of a 2-D scramjet inlet at Mach numbers of 8 to 18 and stagnation temperatures of 4,100K	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 NAKAHASHI, KAZUHIRO Optimum spacing control of the marching grid generation [AIAA PAPER 91-0103] p 258 A91-21368 NAKATANI, IWAO Ishida tilt-wing project takes cues from history p 290 A91-24119 NAM, CHANGHO Aeroservoelastic tailoring for lateral control enhancement p 307 N91-16025	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p 261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection [AIAA PAPER 91-0016] p 256 A91-21335 ONG, C. L. Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20783 Composite patch reinforcement of cracked aircraft upper longeron - Analysis and specimen simulation p 249 A91-20784 ONISHI, S. High temperature heat flux measurements [AIAA PAPER 91-0165] p 317 A91-21388 OOLBEKKINK, B.
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, ROBERT A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SAJIIN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 MININ, S. N. A study of flow structure in nozzles with a constant-height section in the throat region p 272 A91-23848 MINUCCI, M. A. S. Experimental investigation of a 2-D scramjet inlet at Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 NAKAHASHI, KAZUHIRO Optimum spacing control of the marching grid generation [AIAA PAPER 91-0103] p 258 A91-21368 NAKATANI, IWAO Ishida tilt-wing project takes cues from history p 290 A91-24119 NAM, CHANGHO Aeroservoelastic tailoring for lateral control enhancement p 307 N91-16025	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p 261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection [AIAA PAPER 91-0016] p 256 A91-21335 ONG, C. L. Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20763 Composite patch reinforcement of cracked aircraft upper longeron - Analysis and specimen simulation p 249 A91-20784 ONISHI, S. High temperature heat flux measurements [AIAA PAPER 91-0165] p 317 A91-21388 OOLBEKKINK, B. Aerodynamic effects of distributed roughness on a NACA
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, ROBERT A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SAJIN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 MININ, S. N. A study of flow structure in nozzles with a constant-height section in the throat region p 272 A91-23848 MINUCCI, M. A. S. Experimental investigation of a 2-D scramjet inlet at Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 MIURA, S.	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 NAKAHASHI, KAZUHIRO Optimum spacing control of the marching grid generation [AIAA PAPER 91-0103] p 258 A91-21368 NAKATANI, IWAO Ishida tilt-wing project takes cues from history p 290 A91-24119 NAM, CHANGHO Aeroservoelastic tailoring for lateral control enhancement p 307 N91-16025 NAMBA, MASANOBU Double linearization theory for a rotating subsonic anular cascade of oscillating blades. I - Mathematical	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p '261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection [AIAA PAPER 91-0016] p 256 A91-21335 ONG, C. L. Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20783 Composite patch reinforcement of cracked aircraft upper longeron - Analysis and specimen simulation p 249 A91-20784 ONISHI, S. High temperature heat flux measurements [AIAA PAPER 91-0165] p 317 A91-21388 OOLBEKKINK, B. Aerodynamic effects of distributed roughness on a NACA 63(2)-015 airfoil
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, ROBERT A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SAJIN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 MININ, S. N. A study of flow structure in nozzles with a constant-height section in the throat region p 272 A91-23848 MINUCCI, M. A. S. Experimental investigation of a 2-D scramjet inlet at Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 MIURA, S. Free vibration of a cartillever annular sector plate with	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 NAKAHASHI, KAZUHIRO Optimum spacing control of the marching grid generation [AIAA PAPER 91-0103] p 258 A91-21368 NAKAHASHI, IWAO Ishida tilt-wing project takes cues from history p 290 A91-24119 NAM, CHANGHO Aeroservoelastic tailoring for lateral control enhancement p 307 N91-16025 NAMBA, MASANOBU Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. III - Numerical study	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p 261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection [AIAA PAPER 91-0016] p 256 A91-21335 ONG, C. L. Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20763 Composite patch reinforcement of cracked aircraft upper longeron - Analysis and specimen simulation p 249 A91-20784 ONISHI, S. High temperature heat flux measurements [AIAA PAPER 91-0165] p 317 A91-21388 OOLBEKKINK, B. Aerodynamic effects of distributed roughness on a NACA 63(2)-015 airfoil [AIAA PAPER 91-0443] p 262 A91-21492
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, ROBERT A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SAJIN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 MININ, S. N. A study of flow structure in nozzles with a constant-height section in the throat region p 272 A91-23848 MINUCCI, M. A. S. Experimental investigation of a 2-D scramjet inlet at Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 MIURA, S.	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 NAKAHASHI, KAZUHIRO Optimum spacing control of the marching grid generation [AIAA PAPER 91-0103] p 258 A91-21368 NAKATANI, IWAO Ishida tilt-wing project takes cues from history p 290 A91-24119 NAM, CHANGHO Aeroservoelastic tailoring for lateral control enhancement p 307 N91-16025 NAMBA, MASANOBU Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p 261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection [AIAA PAPER 91-0016] p 256 A91-21335 ONG, C. L. Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20783 Composite patch reinforcement of cracked aircraft upper longeron - Analysis and specimen simulation p 249 A91-20784 ONISHI, S. High temperature heat flux measurements [AIAA PAPER 91-0165] p 317 A91-21388 OOLBEKKINK, B. Aerodynamic effects of distributed roughness on a NACA 63(2)-015 airfoil [AIAA PAPER 91-0443] p 262 A91-21492 OSOVIK, A. P.
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, R. A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SAJIM AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 NAKAHASHI, KAZUHIRO Optimum spacing control of the marching grid generation [AIAA PAPER 91-0103] p 258 A91-21368 NAKATANI, IWAO Ishida tilt-wing project takes cues from history p 290 A91-24119 NAM, CHANGHO Aeroservoelastic tailoring for lateral control enhancement p 307 N91-16025 NAMBA, MASANOBU Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p 261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection [AIAA PAPER 91-0016] p 256 A91-21335 ONG, C. L. Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20763 Composite patch reinforcement of cracked aircraft upper longeron - Analysis and specimen simulation p 249 A91-20764 ONISHI, S. High temperature heat flux measurements [AIAA PAPER 91-0165] p 317 A91-21388 OOLBEKKINK, B. Aerodynamic effects of distributed roughness on a NACA 63(2)-015 airfoil [AIAA PAPER 91-0443] p 262 A91-21492 OSOVIK, A. P.
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, R.OBERT A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SAJIN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 MININ, S. N. A study of flow structure in nozzles with a constant-height section in the throat region p 272 A91-23848 MINUCCI, M. A. S. Experimental investigation of a 2-D scramjet inlet at Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 MIURA, S. Free vibration of a cantilever annular sector plate with curved radial edges and varying thickness p 316 A91-20943 MOORE, B. A. An introduction to modern aero-engine control design	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 NAKAHASHI, KAZUHIRO Optimum spacing control of the marching grid generation [AIAA PAPER 91-0103] p 258 A91-21368 NAKATANI, IWAO Ishida tilt-wing project takes cues from history p 290 A91-24119 NAM, CHANGHO Aeroservoelastic tailoring for lateral control enhancement p 307 N91-16025 NAMBA, MASANOBU Double linearization theory for a rotating subsonic anular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 NAMDAR, BAHMAN Coupled LEWICE/Navier-Stokes code development	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p 261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection [AIAA PAPER 91-0016] p 256 A91-21335 ONG, C. L. Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20783 Composite patch reinforcement of cracked aircraft upper longeron - Analysis and specimen simulation p 249 A91-20784 ONISHI, S. High temperature heat flux measurements [AIAA PAPER 91-0165] p 317 A91-21388 OOLBEKKINK, B. Aerodynamic effects of distributed roughness on a NACA 63(2)-015 airfoil [AIAA PAPER 91-0443] p 262 A91-21492 OSOVIK, A. P. Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 OSSWALD, G. A.
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, R. A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SAJIIM AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 NAKAHASHI, KAZUHIRO Optimum spacing control of the marching grid generation [AIAA PAPER 91-0103] p 258 A91-21368 NAKATANI, IWAO Ishida tilt-wing project takes cues from history p 290 A91-24119 NAM, CHANGHO Aeroservoelastic tailoring for lateral control enhancement p 307 N91-16025 NAMBA, MASANOBU Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 NAMDAR, BAHMAN Coupled LEWICE/Navier-Stokes code development [AIAA PAPER 91-0804]	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p 261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection [AIAA PAPER 91-0016] p 256 A91-21335 ONG, C. L. Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20763 Composite patch reinforcement of cracked aircraft upper longeron - Analysis and specimen simulation p 249 A91-20764 ONISHI, S. High temperature heat flux measurements [AIAA PAPER 91-0165] p 317 A91-21388 OOLBEKKINK, B. Aerodynamic effects of distributed roughness on a NACA 63(2)-015 airfoil [AIAA PAPER 91-0443] p 262 A91-21492 OSOVIK, A. P. Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 OSSWALD, G. A. Study of dynamic stall mechanism using simulation of
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, ROBERT A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SANIN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 MININ, S. N. A study of flow structure in nozzles with a constant-height section in the throat region p 272 A91-23848 MINUCCI, M. A. S. Experimental investigation of a 2-D scramjet inlet at Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 MIURA, S. Free vibration of a cantilever annular sector plate with curved radial edges and varying thickness p 316 A91-20943 MOORE, B. A. An introduction to modern aero-engine control design [ETN-91-98583] p 303 N91-16024	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 NAKAHASHI, KAZUHIRO Optimum spacing control of the marching grid generation [AIAA PAPER 91-0103] p 258 A91-21368 NAKAHASHI, IWAO Ishida tilt-wing project takes cues from history p 290 A91-24119 NAM, CHANGHO Aeroservoelastic tailoring for lateral control enhancement p 307 N91-16025 NAMBA, MASANOBU Double linearization theory for a rotating subsonic annutar cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 NAMDAR, BAHMAN Coupled LEWICE/Navier-Stokes code development [AIAA PAPER 91-0804] p 326 A91-21624 NAPOLITANO, MARCELLO R. New technique for aircraft flight control reconfiguration	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p'261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection [AIAA PAPER 91-0016] p 256 A91-21335 ONG, C. L. Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20783 Composite patch reinforcement of cracked aircraft upper longeron - Analysis and specimen simulation p 249 A91-20784 ONISHI, S. High temperature heat flux measurements [AIAA PAPER 91-0165] p 317 A91-21388 OOLBEKKINK, B. Aerodynamic effects of distributed roughness on a NACA 63(2)-015 airfoil [AIAA PAPER 91-0443] p 262 A91-21492 OSOVIK, A. P. Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 OSSWALD, G. A. Study of dynamic stall mechanism using simulation of two-dimensional unsteady Navier-Stokes equations
[NASA-CR-167868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, R. A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SAJIN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 MININ, S. N. A study of flow structure in nozzles with a constant-height section in the throat region p 272 A91-23848 MINUCCI, M. A. S. Experimental investigation of a 2-D scramjet inlet at Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 MIURA, S. Free vibration of a caritiever annular sector plate with curved radial edges and varying thickness p 316 A91-20943 MOORE, B. A. An introduction to modern aero-engine control design [ETN-91-98583] p 303 N91-16024 MORAES, AUGUSTO C. M. A study of compressible laminar boundary layer at Mach	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 NAKAHASHI, KAZUHIRO Optimum spacing control of the marching grid generation [AIAA PAPER 91-0103] p 258 A91-21368 NAKATANI, IWAO Ishida tilt-wing project takes cues from history p 290 A91-24119 NAM, CHANGHO Aeroservoelastic tailoring for lateral control enhancement p 307 N91-16025 NAMBA, MASANOBU Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 NAMDAR, BAHMAN Coupled LEWICE/Navier-Stokes code development [AIAA PAPER 91-0804] p 326 A91-21624 NAPOLITANO, MARCELLO R. New technique for aircraft flight control reconfiguration p 305 A91-22959	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p 261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection [AIAA PAPER 91-0016] p 256 A91-21335 ONG, C. L. Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20783 Composite patch reinforcement of cracked aircraft upper longeron - Analysis and specimen simulation p 249 A91-20784 ONISHI, S. High temperature heat flux measurements [AIAA PAPER 91-0165] p 317 A91-21388 OOLBEKKINK, B. Aerodynamic effects of distributed roughness on a NACA 63(2)-015 airfoil [AIAA PAPER 91-0443] p 262 A91-21492 OSOVIK, A. P. Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 OSSWALD, G. A. Study of dynamic stall mechanism using simulation of two-dimensional unsteady Navier-Stokes equations [AIAA PAPER 91-0546] p 263 A91-21525
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, R.OBERT A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SANIM AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 MININ, S. N. A study of flow structure in nozzles with a constant-height section in the throat region p 272 A91-23848 MINUCCI, M. A. S. Experimental investigation of a 2-D scramjet inlet at Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 MIURA, S. Free vibration of a caritilever annular sector plate with curved radial edges and varying thickness p 316 A91-20943 MOORE, B. A. An introduction to modern aero-engine control design [ETN-91-98583] p 303 N91-16024 MORAES, AUGUSTO C. M. A study of compressible laminar boundary layer at Mach numbers 4 to 30	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 NAKAHASHI, KAZUHIRO Optimum spacing control of the marching grid generation [AIAA PAPER 91-0103] p 258 A91-21368 NAKATANI, IWAO Ishida tilt-wing project takes cues from history p 290 A91-24119 NAM, CHANGHO Aeroservoelastic tailoring for lateral control enhancement p 307 N91-16025 NAMBA, MASANOBU Double linearization theory for a rotating subsonic annular cascade of oscillating blades. 1 - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 NAMDAR, BAHMAN Coupled LEWICE/Navier-Stokes code development [AIAA PAPER 91-0804] n 9 326 A91-21624 NAPOLITANO, MARCELLO R. New technique for aircraft flight control reconfiguration p 305 A91-22959 NATH, S. K.	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p 261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection [AIAA PAPER 91-0016] p 256 A91-21335 ONG, C. L. Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20763 Composite patch reinforcement of cracked aircraft upper longeron - Analysis and specimen simulation p 249 A91-20764 ONISHI, S. High temperature heat flux measurements [AIAA PAPER 91-0165] p 317 A91-21388 OOLBEKKINK, B. Aerodynamic effects of distributed roughness on a NACA 63(2)-015 airfoil [AIAA PAPER 91-0443] p 262 A91-21492 OSOVIK, A. P. Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 OSSWALD, G. A. Study of dynamic stall mechanism using simulation of two-dimensional unsteady Navier-Stokes equations [AIAA PAPER 91-0546] p 263 A91-21525 OZ, H.
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, R. A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SANIN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 NAKAHASHI, KAZUHIRO Optimum spacing control of the marching grid generation [AIAA PAPER 91-0103] p 258 A91-21368 NAKAHASHI, KIAZUHIRO Ishida tilt-wing project takes cues from history p 290 A91-24119 NAM, CHANGHO Aeroservoelastic tailoring for lateral control enhancement p 307 N91-16025 NAMBA, MASANOBU Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 NAMDAR, BAHMAN Coupled LEWICE/Navier-Stokes code development [AIAA PAPER 91-0804] p 326 A91-21624 NAPOLITANO, MARCELLO R. New technique for aircraft flight control reconfiguration p 305 A91-22959 NATH, S. K. Interference drag of a turbulent junction vortex	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p 261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection [AIAA PAPER 91-0016] p 256 A91-21335 ONG, C. L. Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20783 Composite patch reinforcement of cracked aircraft upper longeron - Analysis and specimen simulation p 249 A91-20784 ONISHI, S. High temperature heat flux measurements [AIAA PAPER 91-0165] p 317 A91-21388 OOLBEKKINK, B. Aerodynamic effects of distributed roughness on a NACA 63(2)-015 airfoil [AIAA PAPER 91-0443] p 262 A91-21492 OSOVIK, A. P. Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 OSSWALD, G. A. Study of dynamic stall mechanism using simulation of two-dimensional unsteady Navier-Stokes equations [AIAA PAPER 91-0546] p 263 A91-21525
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, R.OBERT A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SANIM AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 MININ, S. N. A study of flow structure in nozzles with a constant-height section in the throat region p 272 A91-23848 MINUCCI, M. A. S. Experimental investigation of a 2-D scramjet inlet at Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 MIURA, S. Free vibration of a caritilever annular sector plate with curved radial edges and varying thickness p 316 A91-20943 MOORE, B. A. An introduction to modern aero-engine control design [ETN-91-98583] p 303 N91-16024 MORAES, AUGUSTO C. M. A study of compressible laminar boundary layer at Mach numbers 4 to 30	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 NAKAHASHI, KAZUHIRO Optimum spacing control of the marching grid generation [AIAA PAPER 91-0103] p 258 A91-21368 NAKATANI, IWAO Ishida tilt-wing project takes cues from history p 290 A91-24119 NAM, CHANGHO Aeroservoelastic tailoring for lateral control enhancement p 307 N91-16025 NAMBA, MASANOBU Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 NAMDAR, BAHMAN Coupled LEWICE/Navier-Stokes code development [AIAA PAPER 91-0804] p 326 A91-21624 NAPOLITANO, MARCELLO R. New technique for aircraft flight control reconfiguration p 305 A91-22959 NATH, S. K. Interference drag of a turbulent junction vortex [ASME PAPER 90-WA/FE-2] p 252 A91-21063	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p 261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection [AIAA PAPER 91-0016] p 256 A91-21335 ONG, C. L. Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20783 Composite patch reinforcement of cracked aircraft upper longeron - Analysis and specimen simulation p 249 A91-20784 ONISHI, S. High temperature heat flux measurements [AIAA PAPER 91-0165] p 317 A91-21388 OOLBEKKINK, B. Aerodynamic effects of distributed roughness on a NACA 63(2)-015 airfoil [AIAA PAPER 91-0443] p 262 A91-21492 OSOVIK, A. P. Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 OSSWALD, G. A. Study of dynamic stall mechanism using simulation of two-dimensional unsteady Navier-Stokes equations [AIAA PAPER 91-0546] p 263 A91-21525 OZ, H. Integrated aeroelastic control optimization
[NASA-CR-167868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, R. A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SAJJIN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 MININ, S. N. A study of flow structure in nozzles with a constant-height section in the throat region p 272 A91-23848 MINUCCI, M. A. S. Experimental investigation of a 2-D scramjet inlet at Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 MIURA, S. Free vibration of a cantilever annular sector plate with curved radial edges and varying thickness p 316 A91-20943 MOORE, B. A. An introduction to modern aero-engine control design [ETN-91-98583] p 303 N91-16024 MORAES, AUGUSTO C. M. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 MORCHIN, WILLIAM C.	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 NAKAHASHI, KAZUHIRO Optimum spacing control of the marching grid generation [AIAA PAPER 91-0103] p 258 A91-21368 NAKAHASHI, KIAZUHIRO Ishida tilt-wing project takes cues from history p 290 A91-24119 NAM, CHANGHO Aeroservoelastic tailoring for lateral control enhancement p 307 N91-16025 NAMBA, MASANOBU Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 NAMDAR, BAHMAN Coupled LEWICE/Navier-Stokes code development [AIAA PAPER 91-0804] p 326 A91-21624 NAPOLITANO, MARCELLO R. New technique for aircraft flight control reconfiguration p 305 A91-22959 NATH, S. K. Interference drag of a turbulent junction vortex	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p 261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection [AIAA PAPER 91-0016] p 256 A91-21335 ONG, C. L. Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20783 Composite patch reinforcement of cracked aircraft upper longeron - Analysis and specimen simulation p 249 A91-20784 ONISHI, S. High temperature heat flux measurements [AIAA PAPER 91-0165] p 317 A91-21388 OOLBEKKINK, B. Aerodynamic effects of distributed roughness on a NACA 63(2)-015 airfoil [AIAA PAPER 91-0443] p 262 A91-21492 OSOVIK, A. P. Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 OSSWALD, G. A. Study of dynamic stall mechanism using simulation of two-dimensional unsteady Navier-Stokes equations [AIAA PAPER 91-0546] p 263 A91-21525 OZ, H. Integrated aeroelastic control optimization p 305 A91-23743 OZGULER, A. BULENT A decentralized controller for highly augmented
[NASA-CR-167868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, R. A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SAIJIN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 MININ, S. N. A study of flow structure in nozzles with a constant-height section in the throat region p 272 A91-23848 MINUCCI, M. A. S. Experimental investigation of a 2-D scramjet inlet at Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 MIURA, S. Free vibration of a cantilever annular sector plate with curved radial edges and varying thickness p 316 A91-20943 MOORE, B. A. An introduction to modern aero-engine control design [ETN-91-88583] p 303 N91-16024 MORAES, AUGUSTO C. M. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 MORCHIN, WILLIAM C. Modern airborne early warning radars p 283 A91-23145	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 NAKAHASHI, KAZUHIRO Optimum spacing control of the marching grid generation [AIAA PAPER 91-0103] p 258 A91-21368 NAKATANI, IWAO Ishida tilt-wing project takes cues from history p 290 A91-24119 NAM, CHANGHO Aeroservoelastic tailoring for lateral control enhancement p 307 N91-16025 NAMBA, MASANOBU Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 NAMDAR, BAHMAN Coupled LEWICE/Navier-Stokes code development [AIAA PAPER 91-0804] p 326 A91-21624 NAPOLITANO, MARCELLO R. New technique for aircraft flight control reconfiguration p 305 A91-22959 NATH, S. K. Interference drag of a turbulent junction vortex [ASME PAPER 90-WA/FE-2] p 252 A91-21063 NAYFEH, A. H. Flexural-flexural-torsional parametric vibrations of a cantilever beam	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p 261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection [AIAA PAPER 91-0016] p 256 A91-21335 ONG, C. L Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20763 Composite patch reinforcement of cracked aircraft upper longeron - Analysis and specimen simulation p 249 A91-20764 ONISHI, S. High temperature heat flux measurements [AIAA PAPER 91-0165] p 317 A91-21388 OOLBEKKINK, B. Aerodynamic effects of distributed roughness on a NACA 63(2)-015 airfoil [AIAA PAPER 91-0443] p 262 A91-21492 OSOVIK, A. P. Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 OSSWALD, G. A. Study of dynamic stall mechanism using simulation of two-dimensional unsteady Navier-Stokes equations [AIAA PAPER 91-0546] p 263 A91-21525 OZ, H. Integrated aeroelastic control optimization p 305 A91-23743
[NASA-CR-167868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, R. ROBERT A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SAJIN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 MININ, S. N. A study of flow structure in nozzles with a constant-height section in the throat region p 272 A91-23848 MINUCCI, M. A. S. Experimental investigation of a 2-D scramjet inlet at Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 MIURA, S. Free vibration of a caritiever annular sector plate with curved radial edges and varying thickness p 316 A91-20943 MOORE, B. A. An introduction to modern aero-engine control design [ETN-91-98583] p 303 N91-16024 MORAES, AUGUSTO C. M. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 MORCHIN, WILLIAM C. Modern airborne early warning radars p 283 A91-23145 MORELLO, SAMUEL A. Report of the workshop on Aviation Safety/Automation	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 NAKAHASHI, KAZUHIRO Optimum spacing control of the marching grid generation [AIAA PAPER 91-0103] p 258 A91-21368 NAKATANI, IWAO Ishida tilt-wing project takes cues from history p 290 A91-24119 NAM, CHANGHO Aeroservoelastic tailoring for lateral control enhancement p 307 N91-16025 NAMBA, MASANOBU Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 NAMDAR, BAHMAN Coupled LEWICE/Navier-Stokes code development [AIAA PAPER 91-0804] p 326 A91-21624 NAPOLITANO, MARCELLO R. New technique for aircraft flight control reconfiguration p 305 A91-22959 NATH, S. K. Interference drag of a turbulent junction vortex [ASME PAPER 90-WA/FE-2] p 252 A91-21063 NAYFEH, A. H. Flexural-flexural-torsional parametric vibrations of a cantilever beam p 201 A91-23745	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p 261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection [AIAA PAPER 91-0016] p 256 A91-21335 ONG, C. L. Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20763 Composite patch reinforcement of cracked aircraft upper longeron - Analysis and specimen simulation p 249 A91-20784 ONISHI, S. High temperature heat flux measurements [AIAA PAPER 91-0165] p 317 A91-21388 OOLBEKKINK, B. Aerodynamic effects of distributed roughness on a NACA 63(2)-015 airfoil [AIAA PAPER 91-0443] p 262 A91-21492 OSOVIK, A. P. Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 OSSWALD, G. A. Study of dynamic stall mechanism using simulation of two-dimensional unsteady Navier-Stokes equations [AIAA PAPER 91-0546] p 263 A91-21525 OZ, H. Integrated aeroelastic control optimization p 305 A91-23743 OZGULER, A. BULENT A decentralized controller for highly augmented
[NASA-CR-167868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, R. A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SANIM AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 NAKAHASHI, KAZUHIRO Optimum spacing control of the marching grid generation [AIAA PAPER 91-0103] p 258 A91-21368 NAKATANI, IWAO Ishida tilt-wing project takes cues from history p 290 A91-24119 NAM, CHANGHO Aeroservoelastic tailoring for lateral control enhancement p 307 N91-16025 NAMBA, MASANOBU Double linearization theory for a rotating subsonic annutar cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 NAMDAR, BAHMAN Coupled LEWICE/Navier-Stokes code development [AIAA PAPER 91-0804] p 326 A91-21624 NAPOLITANO, MARCELLO R. New technique for aircraft flight control reconfiguration p 305 A91-22959 NATH, S. K. Interference drag of a turbulent junction vortex [ASME PAPER 90-WA/FE-2] p 252 A91-21063 NAYFEH, A. H. Flexural-flexural-torsional parametric vibrations of a cantilever beam p 321 A91-23745 NEEDLEMAN, KATHY E. A study of loudness as a metric for sonic boom	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p 261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection [AIAA PAPER 91-0016] p 256 A91-21335 ONG, C. L. Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20763 Composite patch reinforcement of cracked aircraft upper longeron - Analysis and specimen simulation p 249 A91-20784 ONISHI, S. High temperature heat flux measurements [AIAA PAPER 91-0165] p 317 A91-21388 OOLBEKKINK, B. Aerodynamic effects of distributed roughness on a NACA 63(2)-015 airfoil [AIAA PAPER 91-0443] p 262 A91-21492 OSOVIK, A. P. Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 OSSWALD, G. A. Study of dynamic stall mechanism using simulation of two-dimensional unsteady Navier-Stokes equations [AIAA PAPER 91-0546] p 263 A91-21525 OZ, H. Integrated aeroelastic control optimization p 305 A91-23743 OZGULER, A. BULENT A decentralized controller for highly augmented ircraft
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, ROBERT A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SANIN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 NAKAHASHI, KAZUHIRO Optimum spacing control of the marching grid generation [AIAA PAPER 91-0103] p 258 A91-21368 NAKATANI, IWAO Ishida tilt-wing project takes cues from history p 290 A91-24119 NAM, CHANGHO Aeroservoelastic tailoring for lateral control enhancement p 307 N91-16025 NAMBA, MASANOBU Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 NAMDAR, BAHMAN Coupled LEWICE/Navier-Stokes code development [AIAA PAPER 91-0804] p 326 A91-21624 NAPOLITANO, MARCELLO R. New technique for aircraft flight control reconfiguration p 305 A91-22959 NATH, S. K. Interference drag of a turbulent junction vortex [ASME PAPER 90-WA/FE-2] p 252 A91-21063 NAYFEH, A. H. Flexural-flexural-torsional parametric vibrations of a cantilever beam p 321 A91-23745 NEEDLEMAN, KATHY E. A study of loudness as a metric for sonic boom acceptability	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p 261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection [AIAA PAPER 91-0016] p 256 A91-21335 ONG, C. L. Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20763 Composite patch reinforcement of cracked aircraft upper longeron - Analysis and specimen simulation p 249 A91-20784 ONISHI, S. High temperature heat flux measurements [AIAA PAPER 91-0165] p 317 A91-21388 OOLBEKKINK, B. Aerodynamic effects of distributed roughness on a NACA 63(2)-015 airfoil [AIAA PAPER 91-0443] p 262 A91-21492 OSOVIK, A. P. Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 OSSWALD, G. A. Study of dynamic stall mechanism using simulation of two-dimensional unsteady Navier-Stokes equations [AIAA PAPER 91-0546] p 263 A91-21525 OZ, H. Integrated aeroelastic control optimization p 305 A91-23743 OZGULER, A. BULENT A decentralized controller for highly augmented
[NASA-CR-167868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, R. ROBERT A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SAJIN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack p 270 A91-22763 MININ, S. N. A study of flow structure in nozzles with a constant-height section in the throat region p 272 A91-23848 MINUCCI, M. A. S. Experimental investigation of a 2-D scramjet inlet at Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 MIURA, S. Free vibration of a caritiever annular sector plate with curved radial edges and varying thickness p 316 A91-20943 MOORE, B. A. An introduction to modern aero-engine control design [ETN-91-98583] p 303 N91-16024 MORAES, AUGUSTO C. M. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 MORCHIN, WILLIAM C. MORCHIN, WILLIAM C. MORCHIN, WILLIAM C. Report of the workshop on Aviation Safety/Automation Program [NASA-CP-10054] p 281 N91-15141 MORHORST, GERALD D.	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 NAKAHASHI, KAZUHIRO Optimum spacing control of the marching grid generation [AIAA PAPER 91-0103] p 258 A91-21368 NAKATANI, IWAO Ishida tilt-wing project takes cues from history p 290 A91-24119 NAM, CHANGHO Aeroservoelastic tailoring for lateral control enhancement p 307 N91-16025 NAMBA, MASANOBU Double linearization theory for a rotating subsonic annutar cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 NAMDAR, BAHMAN Coupled LEWICE/Navier-Stokes code development [AIAA PAPER 91-0804] p 326 A91-21624 NAPOLITANO, MARCELLO R. New technique for aircraft flight control reconfiguration p 305 A91-22959 NATH, S. K. Interference drag of a turbulent junction vortex [ASME PAPER 90-WA/FE-2] p 252 A91-21063 NAYFEH, A. H. Flexural-flexural-torsional parametric vibrations of a cantilever beam p 321 A91-23745 NEEDLEMAN, KATHY E. A study of loudness as a metric for sonic boom	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p 261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection [AIAA PAPER 91-0016] p 256 A91-21335 ONG, C. L. Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20763 Composite patch reinforcement of cracked aircraft upper longeron - Analysis and specimen simulation p 249 A91-20784 ONISHI, S. High temperature heat flux measurements [AIAA PAPER 91-0165] p 317 A91-21388 OOLBEKKINK, B. Aerodynamic effects of distributed roughness on a NACA 63(2)-015 airfoil [AIAA PAPER 91-0443] p 262 A91-21492 OSOVIK, A. P. Boundary layer three-dimensionality in plane compression flows p 321 A91-23905 OSSWALD, G. A. Study of dynamic stall mechanism using simulation of two-dimensional unsteady Navier-Stokes equations [AIAA PAPER 91-0546] p 263 A91-21525 OZ, H. Integrated aeroelastic control optimization p 305 A91-23743 OZGULER, A. BULENT A decentralized controller for highly augmented ircraft
[NASA-CR-187868] p 293 N91-16013 MILLER, B. A. Simplified modeling of blunt nose effects on vehicle flow fields [AIAA PAPER 90-5259] p 270 A91-22883 MILLER, ROBERT A. Thermal barrier coating evaluation needs [NASA-TM-103708] p 314 N91-15390 MIN, SANIN AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around axisymmetric bodies at zero angle of attack	Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] p 256 A91-21333 NAGAMATSU, HENRY T. A study of compressible laminar boundary layer at Mach numbers 4 to 30 [AIAA PAPER 91-0323] p 261 A91-21460 NAGAOKA, M. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 NAKAHASHI, KAZUHIRO Optimum spacing control of the marching grid generation [AIAA PAPER 91-0103] p 258 A91-21368 NAKATANI, IWAO Ishida tilt-wing project takes cues from history p 290 A91-24119 NAM, CHANGHO Aeroservoelastic tailoring for lateral control enhancement p 307 N91-16025 NAMBA, MASANOBU Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 NAMDAR, BAHMAN Coupled LEWICE/Navier-Stokes code development [AIAA PAPER 91-0804] p 326 A91-21624 NAPOLITANO, MARCELLO R. New technique for aircraft flight control reconfiguration p 305 A91-22959 NATH, S. K. Interference drag of a turbulent junction vortex [ASME PAPER 90-WA/FE-2] p 252 A91-21063 NAYFEH, A. H. Flexural-flexural-torsional parametric vibrations of a cantilever beam p 321 A91-23745 NEEDLEMAN, KATHY E. A study of loudness as a metric for sonic boom acceptability [AIAA PAPER 91-0496] p 331 A91-21511	research on a hypersonic vehicle. II - Computational results [AIAA PAPER 91-0321] p 261 A91-21458 OERTEL, CH. A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735 OKUYAMA, SATOSHI Experimental study on mixing phenomena in supersonic flows with slot injection [AIAA PAPER 91-016] p 256 A91-21335 ONG, C. L. Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20783 Composite patch reinforcement of cracked aircraft upper longeron - Analysis and specimen simulation p 249 A91-20784 ONISHI, S. High temperature heat flux measurements [AIAA PAPER 91-0165] p 317 A91-21388 OOLBEKKINK, B. Aerodynamic effects of distributed roughness on a NACA 63(2)-015 airfoil [AIAA PAPER 91-0443] p 262 A91-21492 OSOVIK, A. P. Boundary layer three-dimensionality in plane compression flows OSSWALD, G. A. Study of dynamic stall mechanism using simulation of two-dimensional unsteady Navier-Stokes equations [AIAA PAPER 91-0546] p 263 A91-21525 OZ, H. Integrated aeroelastic control optimization p 305 A91-23743 OZGULER, A. BULENT A decentralized controller for highly augmented aircraft

PAGE, ANDREW G.	POLITOVICH, MARCIA K.	REICH, A. D.
Programmable cockpit-head-up display and outside	A program to improve aircraft icing forecasts - Status	Comparison of rime and glaze deformation and failure
view.	report	properties [AIAA PAPER 91-0446] p 279 A91-21494
[AD-A227751] p 297 N91-15172	[AIAA PAPER 91-0557] p 325 A91-21530 POLL, D. I. A.	REN. BINGYI
PAI, P. F. Flexural-flexural-torsional parametric vibrations of a	Boundary-layer transition and heat transfer on slender	A closed form solution of stress intensity factors for the
cantilever beam p 321 A91-23745	delta wings p 254 A91-21194	shaft of aeroplane all-moving stabilizer with corner cracks
PANDEY, AJAY K.	PONS, DOMINIQUE Microwave and millimeter wave components:	emanating from a hole p 319 A91-22752
Finite element thermo-viscoplastic analysis of	Performances, perspectives, and applications to avionics	REPIK, E. U. Optimal conditions for controlling the intensity of
aerospace structures [NASA-TM-102761] p 324 N91-16407	p 295 N91-15156	turbulent flow by means of screens p 321 A91-23904
PANOV. IU. A.	POON, C. Assessment of impact damage in toughened resin	RESHOTKO, E.
Turbulent three-dimensional separated flows in a	composites p 312 A91-20776	Synergistic effects of hydrogen transpiration on
supersonic stream near obstacles at the edge of dihedral corners p 272 A91-23913	PORDAL, H. S.	compression surfaces for hypersonic vehicles [AIAA PAPER 91-0699] p 265 A91-21591
PANTLEY, K. C.	Inviscid steady/unsteady flow calculations	REU, TAEKYU
Observations of severe turbulence near thunderstorm	p 267 A91-21748 POST, M. E.	A composite grid approach to study the flow surrounding
tops p 324 A91-20695	Experimental and theoretical studies in a gas-fueled	a pitch-up airfoil in a wind tunnel [AIAA PAPER 91-0599] p 263 A91-21550
PAPADAKIS, MICHAEL	research combustor	REUTER. D. M.
Experimental water droplet impingement data on modern aircraft surfaces	[AIAA PAPER 91-0639] p 300 A91-21575 POWEL, S. F.	Flowfield measurements in an unstable ramjet burner
[AIAA PAPER 91-0445] p 262 A91-21493	On the leading edge - Combining maturity and advanced	p 297 A91-20737
PASSALACQUA, M	technology on the F404 turbofan engine	REYNOLDS, W. C.
Viscous high speed flow computations by adaptive mesh	[ASME PAPER 90-GT-149] p 301 A91-23634 POWELL, FREDERIC D.	Compressibility effects on the supersonic reacting mixing layer
embedding techniques [AIAA PAPER 91 0149] p 258 A91-21381	A successive partial-relaxation Gaussian algorithm for	[AIAA PAPER 91-0739] p 266 A91-21603
PATTERSON-HINE, F. A.	area navigation operations with the Microwave Landing	RILEY, DAVID R.
An integrated approach to system design, reliability, and	System (MLS)	Relationships between agility metrics and flying
diagnosis [NASA-TM-102861] p 322 N91-15426	[AD-A228871] p 283 N91-16004 PRASAD. M. S. R.	qualities [SAE PAPER 901003] p 304 A91-21232
PAUL, P. J.	Panel flutter analysis using high precision shear flexible	RIZK, MAGDI H.
Flow measurements in a model ramjet secondary	element p 319 A91-23423	Thin-layer Navier-Stokes solutions for transonic
combustion chamber p 310 A91-20743	PRATHER, M. J. The atmospheric effects of stratospheric aircraft: A	multi-body interference [AIAA PAPER 91-0071] p 258 A91-21357
PEARSON, ALLAN E. Parameter identification for nonlinear aerodynamic	topical review	[AIAA PAPER 91-0071] p 258 A91-21357 RIZK, YEHIA M.
systems	[NASA-RP-1250] p 325 'N91-16466	Numerical prediction of the unsteady flowfield around
[NASA-CR-187410] p 274 N91-15126	PROTSENKO, E. IU. Calculation of averaged axisymmetric flow of an ideal	the F-18 aircraft at large incidence
PEPPER, D. W. Trends in current heat transfer computations	gas in turbomachine stages p 321 A91-23938	[AIAA PAPER 91-0020] p 256 A91-21338 ROACHE, JAMES W.
[AIAA PAPER 91-0157] p 317 A91-21384	PUFFERT-MEISSNER, WOLFGANG	Three-dimensional unsteady flow fields elicited by
PERL, DOUGLAS FI.	Profile measurements in transonic wind tunnel	pitching a canard and forward swept wing configuration
Materials and processes used for bonded repairs of F/A-18 advanced composite honeycomb sandwich	Braunschweig p 308 A91-20613 PUTT, JAMES C.	[AIAA PAPER 91-0005] p 255 A91-21327 ROBERTS, LEONARD
structures	Numerical modeling of an advanced pneumatic impulse	Navier-Stokes computation of wing/rotor interaction for
[SME PAPER EM90-107] p 316 A91-21108	ice protection system (PIIP) for aircraft	a tilt rotor in hover
PESCH, H. J.	[AlAA PAPER 91-0555] p 288 A91-21529	[AIAA PAPER 91-0707] p 265 A91-21593
New general guidance method in constrained optimal		ROBERTS, P. R.
control I. Numerical method p 326 A91-20506	lack	The production of PREP titanium powder
control. I - Numerical method p 326 A91-20506 PETERSON, R. L.	Q .	The production of PREP titanium powder p 312 A91-20881
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics		p 312 A91-20881 ROBERTS, T. P.
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel	Q QIAO, WEIYANG The interim prediction for aircraft noise	p 312 A91-20881 ROBERTS, T. P. Dynamic effects of hypersonic separated flow
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV. M. D.	QIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370	ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C.
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet	QIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 QUAN, CHANG-YE	p 312 A91-20881 ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6	QIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370	P 312 A91-20881 ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration
control. J - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 PETTENPAUL E.	QIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 QUAN, CHANG-YE Estimation of aerodynamic and mode parameters of	P 312 A91-20881 ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 RODRIGUES, DAVID J.
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 PETTENPAUL, E. GaAS MMICs in selfaligned gate technology for phased	QIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 QUAN, CHANG-YE Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system p 303 A91-20992	ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 RODRIGUES, DAVID J. X-31Flight test in the 90's p 286 A91-20995
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnet [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 PETTENPAUL, E. GaAs MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160	QIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 QUAN, CHANG-YE Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system	ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 RODRIGUES, DAVID J. X-31Flight test in the 90's p 286 A91-20995 ROHWER, KLAUS
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 PETTENPAUL, E. GaAs MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160	QIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 QUAN, CHANG-YE Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system p 303 A91-20992	ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 RODRIGUES, DAVID J. X-31Flight test in the 90's p 286 A91-20995
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 PETTENPAUL, E. GaAs MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160 PFISTER, K. Bump examinations of integrally strengthened carbon fiber reinforced plastic panels	QIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 QUAN, CHANG-YE Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system p 303 A91-20992	ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 RODRIGUES, DAVID J. X-31Flight test in the 90's p 266 A91-20995 ROHWER, KLAUS The stability of light structures - An area of research with a tradition and a future p 315 A91-20616 ROMBERG, HJ.
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 PETTENPAUL, E. GaAs MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160 PFISTER, K. Bump examinations of integrally strengthened carbon fiber reinforced plastic panels [MBB/FE281/CFK/PUB/0013] p 314 N91-16076	QIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 QUAN, CHANG-YE Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system p 303 A91-20992 R RAHMAN, A. An experimental investigation of heat transfer	P 312 A91-20881 ROBERTS, T. P. Dynamic effects of hypersonic separated flow
control. J - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 PETTENPAUL, E. GaAs MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160 PFISTER, K. Bump examinations of integrally strengthened carbon fiber reinforced plastic panels [MBB/FE281/CFK/PUB/0013] p 314 N91-16076	QIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 QUAN, CHANG-YE Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system p 303 A91-20992	ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 RODRIGUES, DAVID J. X-31Flight test in the 90's p 266 A91-20995 ROHWER, KLAUS The stability of light structures - An area of research with a tradition and a future p 315 A91-20616 ROMBERG, HJ.
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 PETTENPAUL, E. GaAs MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160 PFISTER, K. Bump examinations of integrally strengthened carbon fiber reinforced plastic panels [MBB/FE281/CFK/PUB/0013] p 314 N91-16076	QIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 QUAN, CHANG-YE Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system p 303 A91-20992 R RAHMAN, A. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661	ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 RODRIGUES, DAVID J. X-31Flight test in the 90's p 286 A91-20995 ROHWER, KLAUS The stability of light structures - An area of research with a tradition and a future p 315 A91-20616 ROMBERG, HJ. Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 ROOS, FREDERICK W. Aerodynamic characteristics of three generic forebodies
control. J - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 PETTENPAUL, E. GaAs MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160 PFISTER, K. Bump examinations of integrally strengthened carbon fiber reinforced plastic panels [MBB/FE281/CFK/PUB/0013] p 314 N91-16076 PFITZNER, M. Three-dimensional simulations of hypersonic flows p 253 A91-21184	CIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 CUAN, CHANG-YE Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system p 303 A91-20992 RAHMAN, A. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] P 320 A91-23661 RAMAMURTHY, SUBRAMANIAM	ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 RODRIGUES, DAVID J. X-31Flight test in the 90's p 286 A91-20995 ROHWER, KLAUS The stability of light structures - An area of research with a tradition and a future p 315 A91-20616 ROMBERG, HJ. Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 ROOS, FREDERICK W. Aerodynamic characteristics of three generic forebodies at high angles of attack
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 PETTENPAUL, E. GaAs MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160 PFISTER, K. Bump examinations of integrally strengthened carbon fiber reinforced plastic panels [MBB/FE281/CFK/PUB/0013] p 314 N91-16076 PFITZNER, M. Three-dimensional simulations of hypersonic flows p 253 A91-21184 PHILLIPS, PAUL W. AFTI/F-111 similane mission adaptive wing operational	CIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 CUAN, CHANG-YE Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system p 303 A91-20992 RAHMAN, A. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 RAMAMURTHY, SUBRAMANIAM Numerical modeling of an advanced pneumatic impulse	ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 RODRIGUES, DAVID J. X-31Flight test in the 90's p 286 A91-20995 ROHWER, KLAUS The stability of light structures - An area of research with a tradition and a future p 315 A91-20616 ROMBERG, HJ. Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 ROOS, FREDERICK W. Aerodynamic characteristics of three generic forebodies
control. J - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 PETTENPAUL, E. GaAs MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160 PFISTER, K. Bump examinations of integrally strengthened carbon fiber reinforced plastic panels [MBB/FE281/CFK/PUB/0013] p 314 N91-16076 PFITZNER, M. Three-dimensional simulations of hypersonic flows p 253 A91-21184	CIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 CUAN, CHANG-YE Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system p 303 A91-20992 RAHMAN, A. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] P 320 A91-23661 RAMAMURTHY, SUBRAMANIAM	ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 RODRIGUES, DAVID J. X-31Flight test in the 90's p 286 A91-20995 ROHWER, KLAUS The stability of light structures - An area of research with a tradition and a future p 315 A91-20616 ROMBERG, HJ. Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 ROOS, FREDERICK W. Aerodynamic characteristics of three generic torebodies at high angles of attack [AIAA PAPER 91-0275] p 260 A91-21437 ROQUEMORE, W. M. Experimental and theoretical studies in a gas-fueled
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 PETTENPAUL, E. GaAs MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160 PFISTER, K. Bump examinations of integrally strengthened carbon fiber reinforced plastic panels [MBB/FE281/CFK/PUB/0013] p 314 N91-16076 PFITZNER, M. Three-dimensional simulations of hypersonic flows p 253 A91-21184 PHILLIPS, PAUL W. AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20993 PIERCE, F. J.	CIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 CUAN, CHANG-YE Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system p 303 A91-20992 RAHMAN, A. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 RAMAMURTHY, SUBRAMANIAM Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 RAMOS-IZQUIERDO, LUIS	ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 RODRIGUES, DAVID J. X-31Flight test in the 90's p 286 A91-20995 ROHWER, KLAUS The stability of light structures - An area of research with a tradition and a future p 315 A91-20616 ROMBERG, HJ. Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 ROOS, FREDERICK W. Aerodynamic characteristics of three generic forebodies at high angles of attack [AIAA PAPER 91-0275] p 260 A91-21437 ROQUEMORE, W. M. Experimental and theoretical studies in a gas-fueled research combustor
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 PETTENPAUL, E. GaAs MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160 PFISTER, K. Bump examinations of integrally strengthened carbon fiber reinforced plastic panels [MBB/FE281/CFK/PUB/0013] p 314 N91-16076 PFITZNER, M. Three-dimensional simulations of hypersonic flows p 253 A91-21184 PHILLIPS, PAUL W. AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues PIERCE, F. J. Interference drag of a turbulent junction vortex	CIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 CUAN, CHANG-YE Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system p 303 A91-20992 RAHMAN, A. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 RAMAMURTHY, SUBRAMANIAM Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 RAMOS-IZQUIERDO, LUIS Alrborne lidar for profiling of surface topography	ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] RODRIGUES, DAVID J. X-31Flight test in the 90's p 266 A91-20995 ROHWER, KLAUS The stability of light structures - An area of research with a tradition and a future p 315 A91-20616 ROMBERG, HJ. Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 ROOS, PREDERICK W. Aerodynamic characteristics of three generic forebodies at high angles of attack [AIAA PAPER 91-0275] p 260 A91-21437 ROQUEMORE, W. M. Experimental and theoretical studies in a gas-fueled research combustor [AIAA PAPER 91-0639] p 300 A91-21575
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 PETTENPAUL, E. GaAs MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160 PFISTER, K. Bump examinations of integrally strengthened carbon fiber reinforced plastic panels [MBB/FE281/CFK/PUB/0013] p 314 N91-16076 PFITZNER, M. Three-dimensional simulations of hypersonic flows p 253 A91-21184 PHILLIPS, PAUL W. AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-2099 PIERCE, F. J. Interference drag of a turbulent junction vortex [ASME PAPER 90-WA/FE-2] p 252 A91-21063	CIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 CUAN, CHANG-YE Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system p 303 A91-20992 RAHMAN, A. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 RAMAMURTHY, SUBRAMANIAM Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 RAMOS-IZQUIERDO, LUIS Airborne lidar for profiling of surface topography p 295 A91-23134	ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 RODRIGUES, DAVID J. X-31Flight test in the 90's p 286 A91-20995 ROHWER, KLAUS The stability of light structures - An area of research with a tradition and a future p 315 A91-20616 ROMBERG, HJ. Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 ROOS, FREDERICK W. Aerodynamic characteristics of three generic forebodies at high angles of attack [AIAA PAPER 91-0275] p 260 A91-21437 ROQUEMORE, W. M. Experimental and theoretical studies in a gas-fueled research combustor [AIAA PAPER 91-0639] p 300 A91-21575 ROTHMAYER, A. P. On the stability of conduction dominated natural
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 PETTENPAUL, E. GaAs MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160 PFISTER, K. Bump examinations of integrally strengthened carbon fiber reinforced plastic panels [MBB/FE281/CFK/PUB/0013] p 314 N91-16076 PFITZNER, M. Three-dimensional simulations of hypersonic flows p 253 A91-21184 PHILLIPS, PAUL W. AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20993 PIERCE, F. J. Interference drag of a turbulent junction vortex [ASME PAPER 90-WA/FE-2] p 252 A91-21063 PITT, MARK Jet engine performance estimation from minimal input	QIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 QUAN, CHANG-YE Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system p 303 A91-20992 RAHMAN, A. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 RAMAMURTHY, SUBRAMANIAM Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-055] p 288 A91-21529 RAMOS-12QUIERDO, LUIS Airborne tidar for profiling of surface topography p 295 A91-23134 RAO, S. S. Applications of fuzzy theories to multi-objective system	ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] RODRIGUES, DAVID J. X-31Flight test in the 90's p 266 A91-20995 ROHWER, KLAUS The stability of light structures - An area of research with a tradition and a future p 315 A91-20616 ROMBERG, HJ. Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 ROOS, FREDERICK W. Aerodynamic characteristics of three generic forebodies at high angles of attack [AIAA PAPER 91-0275] p 260 A91-21437 ROQUEMORE, W. M. Experimental and theoretical studies in a gas-fueled research combustor [AIAA PAPER 91-0639] p 300 A91-21575 ROTHMAYER, A. P. On the stability of conduction dominated natural convection in near-vertical slots and horizontal cylindrical
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 PETTENPAUL, E. GaAs MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160 PFISTER, K. Bump examinations of integrally strengthened carbon fiber reinforced plastic panels [MBB/FE281/CFK/PUB/0013] p 314 N91-16076 PFITZNER, M. Three-dimensional simulations of hypersonic flows p 253 A91-21184 PHILLIPS, PAUL W. AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues PIERCE, F. J. interference drag of a turbulent junction vortex [ASME PAPER 90-WA/FE-2] p 252 A91-21063 PITT, MARK Jet engine performance estimation from minimal input data	CIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 CUAN, CHANG-YE Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system p 303 A91-20992 RAHMAN, A. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 RAMAMURTHY, SUBRAMANIAM Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 RAMOS-IZQUIERDO, LUIS Airborne lidar for profiling of surface topography p 295 A91-23134 RAO, S. S. Applications of fuzzy theories to multi-objective system optimization	ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-005] p 255 A91-21327 RODRIGUES, DAVID J. X-31Flight test in the 90's p 286 A91-20995 ROHWER, KLAUS The stability of light structures - An area of research with a tradition and a future p 315 A91-20616 ROMBERG, HJ. Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 ROOS, FREDERICK W. Aerodynamic characteristics of three generic torebodies at high angles of attack [AIAA PAPER 91-0275] p 260 A91-21437 ROQUEMORE, W. M. Experimental and theoretical studies in a gas-fueled research combustor [AIAA PAPER 91-0639] p 300 A91-21575 ROTHMAYER, A. P. On the stability of conduction dominated natural convection in near-vertical slots and horizontal cylindrical annuli
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 PETTENPAUL, E. GaAs MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160 PFISTER, K. Bump examinations of integrally strengthened carbon fiber reinforced plastic panels [MBB/FE281/CFK/PUB/0013] p 314 N91-16076 PFITZNER, M. Three-dimensional simulations of hypersonic flows p 253 A91-21184 PHILLIPS, PAUL W. AFTI/F-111 airplane mission adaptive wing operational fight evaluation technique using uplinked pilot command cues PIERCE, F. J. Interference drag of a turbulent junction vortex [ASME PAPER 90-WA/FE-2] p 252 A91-21063 PITT, MARK Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023	CIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 CUAN, CHANG-YE Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system p 303 A91-20992 R RAHMAN, A. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 RAMAMURTHY, SUBRAMANIAM Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 RAMOS-IZQUIERDO, LUIS Airborne tidar for profiling of surface topography p 295 A91-23134 RAO, S. S. Applications of fuzzy theories to multi-objective system optimization [NASA-CR-177573] p 293 N91-16012	ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 RODRIGUES, DAVID J. X-31Flight test in the 90's p 286 A91-20995 ROHWER, KLAUS The stability of light structures - An area of research with a tradition and a future p 315 A91-20616 ROMBERG, HJ. Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 ROOS, FREDERICK W. Aerodynamic characteristics of three generic forebodies at high angles of attack [AIAA PAPER 91-0275] p 260 A91-21437 ROQUEMORE, W. M. Experimental and theoretical studies in a gas-fueled research combustor [AIAA PAPER 91-0639] p 300 A91-21575 ROTHMAYER, A. P. On the stability of conduction dominated natural convection in near-vertical slots and horizontal cylindrical annuli [AIAA PAPER 91-0027] p 257 A91-21343 ROTTA, JULIUS C.
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 PETTENPAUL, E. GaAs MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160 PFISTER, K. Bump examinations of integrally strengthened carbon fiber reinforced plastic panels [MBB/FE281/CFK/PUB/0013] p 314 N91-16076 PFITZNER, M. Three-dimensional simulations of hypersonic flows p 253 A91-21184 PHILLIPS, PAUL W. AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues PIERCE, F. J. Interference drag of a turbulent junction vortex [ASME PAPER 90-WA/FE-2] p 252 A91-21063 PITT, MARK Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023 PLANCHE, O. H. Compressibility effects on the supersonic reacting mixing	CIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 CUAN, CHANG-YE Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system p 303 A91-20992 RAHMAN, A. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 RAMAMURTHY, SUBRAMANIAM Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 RAMOS-IZQUIERDO, LUIS Airborne lidar for profiling of surface topography p 295 A91-23134 RAO, S. S. Applications of fuzzy theories to multi-objective system optimization	ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 RODRIGUES, DAVID J. X-31Flight test in the 90's p 286 A91-20995 ROHWER, KLAUS The stability of light structures - An area of research with a tradition and a future p 315 A91-20616 ROMBERG, HJ. Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 ROOS, FREDERICK W. Aerodynamic characteristics of three generic torebodies at high angles of attack [AIAA PAPER 91-0275] p 260 A91-21437 ROQUEMORE, W. M. Experimental and theoretical studies in a gas-fueled research combustor [AIAA PAPER 91-0639] p 300 A91-21575 ROTHMAYER, A. P. On the stability of conduction dominated natural convection in near-vertical stost and horizontal cylindrical annuli [AIAA PAPER 91-0027] p 257 A91-21343 ROTTA, JULIUS C. Documents on the history of the Aerodynamic Research
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 PETTENPAUL, E. GaAs MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160 PFISTER, K. Bump examinations of integrally strengthened carbon fiber reinforced plastic panels [MBB/FE281/CFK/PUB/0013] p 314 N91-16076 PFITZNER, M. Three-dimensional simulations of hypersonic flows p 253 A91-21184 PHILLIPS, PAUL W. AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues PAPER 90-WA/FE-2] p 252 A91-21063 PITT, MARK Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023 PLANCHE, O. H. Compressibility effects on the supersonic reacting mixing layer	CIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 CUAN, CHANG-YE Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system p 303 A91-20992 RAHMAN, A. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 RAMAMURTHY, SUBRAMANIAM Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 RAMOS-IZQUIERDO, LUIS Airborne lidar for profiling of surface topography p 295 A91-23134 RAO, S. S. Applications of fuzzy theories to multi-objective system optimization [NASA-CR-177573] p 293 N91-16012 REDDY, V. K. Experimental and theoretical studies in a gas-fueled research combustor	ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 RODRIGUES, DAVID J. X-31Flight test in the 90's p 286 A91-20995 ROHWER, KLAUS The stability of light structures - An area of research with a tradition and a future p 315 A91-20616 ROMBERG, HJ. Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 ROOS, FREDERICK W. Aerodynamic characteristics of three generic forebodies at high angles of attack [AIAA PAPER 91-0275] p 260 A91-21437 ROQUEMORE, W. M. Experimental and theoretical studies in a gas-fueled research combustor [AIAA PAPER 91-0639] p 300 A91-21575 ROTHMANER, A. P. On the stability of conduction dominated natural convection in near-vertical slots and horizontal cylindrical annuli [AIAA PAPER 91-0027] p 257 A91-21343 ROTTA, JULIUS C. Documents on the history of the Aerodynamic Research Establishment at Goettingen, 1907 - 1925
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-569] p 300 A91-22892 PETTENPAUL, E. GaAs MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160 PFISTER, K. Bump examinations of integrally strengthened carbon fiber reinforced plastic panels [MBB/FE281/CFK/PUB/0013] p 314 N91-16076 PFITZNER, M. Three-dimensional simulations of hypersonic flows p 253 A91-21184 PHILLIPS, PAUL W. AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20993 PIERCE, F. J. Interference drag of a turbulent junction vortex (ASME PAPER 90-WA/FE-2) p 252 A91-21063 PITT, MARK Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023 PLANCHE, O. H. Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603	CIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 CUAN, CHANG-YE Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system p 303 A91-20992 R RAHMAN, A. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 RAMAMURTHY, SUBRAMANIAM Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 RAMOS-IZQUIERDO, LUIS Airborne lidar for profiling of surface topography p 295 A91-23134 RAO, S. S. Applications of fuzzy theories to multi-objective system optimization [NASA-CR-177573] p 293 N91-16012 REDDY, V. K. Experimental and theoretical studies in a gas-fueled research combustor [AIAA PAPER 91-0639] p 300 A91-21575	ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 RODRIGUES, DAVID J. X-31Flight test in the 90's p 286 A91-20995 ROHWER, KLAUS The stability of light structures - An area of research with a tradition and a future p 315 A91-20616 ROMBERG, HJ. Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 ROOS, FREDERICK W. Aerodynamic characteristics of three generic forebodies at high angles of attack [AIAA PAPER 91-0275] p 260 A91-21437 ROQUEMORE, W. M. Experimental and theoretical studies in a gas-fueled research combustor [AIAA PAPER 91-0639] p 300 A91-21575 ROTHMAYER, A. P. On the stability of conduction dominated natural convection in near-vertical slots and horizontal cylindrical annuli [AIAA PAPER 91-0027] p 257 A91-21343 ROTTA, JULIUS C. Documents on the history of the Aerodynamic Research Establishment at Goettingen, 1907 - 1925 [DLR-MIT-90-05] p 251 N91-15977 ROWE, R. G.
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 PETTENPAUL, E. GASA MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160 PFISTER, K. Bump examinations of integrally strengthened carbon fiber reinforced plastic panels [MBB/FE281/CFK/PUB/0013] p 314 N91-16076 PFITZNER, M. Three-dimensional simulations of hypersonic flows p 253 A91-21184 PHILLIPS, PAUL W. AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues PAPER 90-WA/FE-2] p 252 A91-21063 PITT, MARK Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023 PLANCHE, O. H. Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 PLATZER, MAX F. Numerical investigation of the flow over a double delta	CIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 CUAN, CHANG-YE Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system p 303 A91-20992 RAHMAN, A. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 RAMAMURTHY, SUBRAMANIAM Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 RAMOS-IZQUIERDO, LUIS Airborne lidar for profiling of surface topography p 295 A91-23134 RAO, S. S. Applications of fuzzy theories to multi-objective system optimization [NASA-CR-177573] p 293 N91-16012 REDDY, V. K. Experimental and theoretical studies in a gas-fueled research combustor [AIAA PAPER 91-0639] p 300 A91-21575 REDINIOTIS, O. K.	ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 RODRIGUES, DAVID J. X-31Flight test in the 90's p 286 A91-20995 ROHWER, KLAUS The stability of light structures - An area of research with a tradition and a future p 315 A91-20616 ROMBERG, HJ. Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 ROOS, FREDERICK W. Aerodynamic characteristics of three generic forebodies at high angles of attack [AIAA PAPER 91-0275] p 260 A91-21437 ROQUEMORE, W. M. Experimental and theoretical studies in a gas-fueled research combustor [AIAA PAPER 91-0639] p 300 A91-21575 ROTHMAYER, A. P. On the stability of conduction dominated natural convection in near-vertical slots and horizontal cylindrical annuli [AIAA PAPER 91-0027] p 257 A91-21343 ROTTA, JULIUS C. Documents on the history of the Aerodynamic Research Establishment at Goettingen, 1907 - 1925 [DLR-MITT-90-05] p 251 N91-15977 ROWE, R. G. Properties of advanced rapidly solidified titanium
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 PETTENPAUL, E. GaAs MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160 PFISTER, K. Bump examinations of integrally strengthened carbon fiber reinforced plastic panels [MBB/FE281/CFK/PUB/0013] p 314 N91-16076 PFITZNER, M. Three-dimensional simulations of hypersonic flows p 253 A91-21184 PHILLIPS, PAUL W. AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20993 PIERCE, F. J. Interference drag of a turbulent junction vortex [ASME PAPER 90-WA/FE-2] p 252 A91-21063 PITT, MARK Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023 PLANCHE, O. H. Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 PLATZER, MAX F. Numerical investigation of the flow over a double delta wing at high incidence	CIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 CUAN, CHANG-YE Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system p 303 A91-20992 R RAHMAN, A. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 RAMAMURTHY, SUBRAMANIAM Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 RAMOS-IZQUIERDO, LUIS Airborne lidar for profilling of surface topography p 295 A91-23134 RAO, S. S. Applications of fuzzy theories to multi-objective system optimization [NASA-CR-177573] p 293 N91-16012 REDDY, V. K. Experimental and theoretical studies in a gas-fueled research combustor [AIAA PAPER 91-0639] p 300 A91-21575 REDINIOTIS, O. K. Multi-sensor investigation of delta wing high-alpha aerodynamics	ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] RODRIGUES, DAVID J. X-31Flight test in the 90's p 286 A91-2095 ROHWER, KLAUS The stability of light structures - An area of research with a tradition and a future p 315 A91-20616 ROMBERG, HJ. Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 ROOS, FREDERICK W. Aerodynamic characteristics of three generic forebodies at high angles of attack [AIAA PAPER 91-0275] p 260 A91-21437 ROQUEMORE, W. M. Experimental and theoretical studies in a gas-fueled research combustor [AIAA PAPER 91-0639] p 300 A91-21575 ROTHMAYER, A. P. On the stability of conduction dominated natural convection in near-vertical slots and horizontal cylindrical annuli [AIAA PAPER 91-0027] p 257 A91-21343 ROTTA, JULIUS C. Documents on the history of the Aerodynamic Research Establishment at Goettingen, 1907 - 1925 [DLR-MITT-90-05] p 251 N91-15977 ROWE, R. G. Properties of advanced rapidly solidified titanium alloys p 312 A91-20864
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 PETTENPAUL, E. GaAs MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160 PFISTER, K. Bump examinations of integrally strengthened carbon fiber reinforced plastic panels [MBB/FE281/CFK/PUB/0013] p 314 N91-16076 PFITZNER, M. Three-dimensional simulations of hypersonic flows p 253 A91-21184 PHILLIPS, PAUL W. AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20993 PIERCE, F. J. Interference drag of a turbulent junction vortex [ASME PAPER 90-WA/FE-2] p 252 A91-21063 PITT, MARK Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023 PLANCHE, O. H. Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0753] p 266 A91-21603 PLATZER, MAX F. Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605	QIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 QUAN, CHANG-YE Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system p 303 A91-20992 RAHMAN, A. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 RAMAMURTHY, SUBRAMANIAM Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 RAMOS-12QUIERDO, LUIS Airborne lidar for profiling of surface topography p 295 A91-23134 RAO, S. S. Applications of fuzzy theories to multi-objective system optimization [NASA-CR-177573] p 293 N91-16012 REDDY, V. K. Experimental and theoretical studies in a gas-fueled research combustor [AIAA PAPER 91-0639] p 300 A91-21575 REDINIOTIS, O. K. Multi-sensor investigation of delta wing high-alpha aerodynamics [AIAA PAPER 91-0735] p 266 A91-21600	ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 RODRIGUES, DAVID J. X-31Flight test in the 90's p 286 A91-20995 ROHWER, KLAUS The stability of light structures - An area of research with a tradition and a future p 315 A91-20616 ROMBERG, HJ. Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 ROOS, FREDERICK W. Aerodynamic characteristics of three generic forebodies at high angles of attack [AIAA PAPER 91-0275] p 260 A91-21437 ROQUEMORE, W. M. Experimental and theoretical studies in a gas-fueled research combustor [AIAA PAPER 91-0639] p 300 A91-21575 ROTHMAYER, A. P. On the stability of conduction dominated natural convection in near-vertical slots and horizontal cylindrical annuti [AIAA PAPER 91-0027] p 257 A91-21343 ROTTA, JULIUS C. Documents on the history of the Aerodynamic Research Establishment at Goettingen, 1907 - 1925 [DLR-MITT-90-05] p 251 N91-15977 ROWE, R. G. Properties of advanced rapidly solidified titanium alloys RUBIN, S. G. Inviscid steady/unsteady flow calculations
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 PETTENPAUL, E. GaAs MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160 PFISTER, K. Bump examinations of integrally strengthened carbon fiber reinforced plastic panels [MBB/FE281/CFK/PUB/0013] p 314 N91-16076 PFITZNER, M. Three-dimensional simulations of hypersonic flows p 253 A91-21184 PHILLIPS, PAUL W. AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20993 PIERCE, F. J. Interference drag of a turbulent junction vortex [ASME PAPER 90-WA/FE-2] p 252 A91-21063 PITT, MARK Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023 PLANCHE, O. H. Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 PLATZER, MAX F. Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605 PLOKHIKH, V. P. Aerospace system development directions and some	CIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 CUAN, CHANG-YE Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system p 303 A91-20992 RAHMAN, A. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 RAMAMURTHY, SUBRAMANIAM Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 RAMOS-1ZQUIERDO, LUIS Airborne lidar for profiling of surface topography p 295 A91-23134 RAO, S. S. Applications of fuzzy theories to multi-objective system optimization [NASA-CR-177573] p 293 N91-16012 REDDY, V. K. Experimental and theoretical studies in a gas-fueled research combustor [AIAA PAPER 91-0639] p 300 A91-21575 REDINIOTIS, O. K. Multi-sensor investigation of delta wing high-alpha aerodynamics [AIAA PAPER 91-0735] p 266 A91-21600 REGAN, BRADLEY TODD	ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] ROPRIGUES, DAVID J. X-31Flight test in the 90's p 286 A91-2095 ROHWER, KLAUS The stability of light structures - An area of research with a tradition and a future p 315 A91-20616 ROMBERG, HJ. Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 ROOS, FREDERICK W. Aerodynamic characteristics of three generic forebodies at high angles of attack [AIAA PAPER 91-0275] p 260 A91-21437 ROQUEMORE, W. M. Experimental and theoretical studies in a gas-fueled research combustor [AIAA PAPER 91-0639] p 300 A91-21575 ROTHMAYER, A. P. On the stability of conduction dominated natural convection in near-vertical slots and horizontal cylindrical annuli [AIAA PAPER 91-0027] p 257 A91-21343 ROTTA, JULIUS C. Documents on the history of the Aerodynamic Research establishment at Goettingen, 1907 - 1925 [DLR-MITT-90-05] p 251 N91-15977 ROWE, R. G. Properties of advanced rapidly solidified titanium alloys p 312 A91-20864 RUBIN, S. G. Inviscid steady/unsteady flow calculations p 267 A91-21438
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 (AIAA PAPER 90-5269] p 300 A91-22892 PETTENPAUL, E. GaAs MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160 PFISTER, K. Bump examinations of integrally strengthened carbon fiber reinforced plastic panels [MBB/FE281/CFK/PUB/0013] p 314 N91-16076 PFITZNER, M. Three-dimensional simulations of hypersonic flows p 253 A91-21184 PHILLIPS, PAUL W. AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20993 PIERCE, F. J. Interference drag of a turbulent junction vortex [ASME PAPER 90-WA/FE-2] p 252 A91-21063 PITT, MARK Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023 PLANCHE, O. H. Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 PLATZER, MAX F. Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605 PLOKHIKH, V. P. Aerospace system development directions and some aspects of their construction and application	QIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 QUAN, CHANG-YE Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system p 303 A91-20992 RAHMAN, A. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 RAMAMURTHY, SUBRAMANIAM Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 RAMOS-12QUIERDO, LUIS Airborne lidar for profiling of surface topography p 295 A91-23134 RAO, S. S. Applications of fuzzy theories to multi-objective system optimization [NASA-CR-177573] p 293 N91-16012 REDDY, V. K. Experimental and theoretical studies in a gas-fueled research combustor [AIAA PAPER 91-0639] p 300 A91-21575 REDINIOTIS, O. K. Multi-sensor investigation of delta wing high-alpha aerodynamics [AIAA PAPER 91-0735] p 266 A91-21600	ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 RODRIGUES, DAVID J. X-31Flight test in the 90's p 286 A91-20995 ROHWER, KLAUS The stability of light structures - An area of research with a tradition and a future p 315 A91-20616 ROMBERG, HJ. Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 ROOS, FREDERICK W. Aerodynamic characteristics of three generic forebodies at high angles of attack [AIAA PAPER 91-0275] p 260 A91-21437 ROQUEMORE, W. M. Experimental and theoretical studies in a gas-fueled research combustor [AIAA PAPER 91-0639] p 300 A91-21575 ROTHMAYER, A. P. On the stability of conduction dominated natural convection in near-vertical slots and horizontal cylindrical annuli [AIAA PAPER 91-0027] p 257 A91-21343 ROTTA, JULIUS C. Documents on the history of the Aerodynamic Research Establishment at Goettingen, 1907 - 1925 [DLR-MITT-90-05] p 251 N91-15977 ROWE, R. G. Properties of advanced rapidly solidified titanium alloys p 267 A91-20864 RUBIN, S. G. Inviscid steady/unsteady flow calculations p 267 A91-21748
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 PETTENPAUL, E. GaAs MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160 PFISTER, K. Bump examinations of integrally strengthened carbon fiber reinforced plastic panels [MBB/FE281/CFK/PUB/0013] p 314 N91-16076 PFITZNER, M. Three-dimensional simulations of hypersonic flows p 253 A91-21184 PHILLIPS, PAUL W. AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20993 PIERCE, F. J. Interference drag of a turbulent junction vortex [ASME PAPER 90-WA/FE-2] p 252 A91-21063 PITT, MARK Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023 PLANCHE, O. H. Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 PLATZER, MAX F. Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605 PLOKHIKH, V. P. Aerospace system development directions and some aspects of their construction and application [AIAA PAPER 90-5266) p 311 A91-22889	CIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 CUAN, CHANG-YE Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system p 303 A91-20992 RAHMAN, A. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 RAMAMURTHY, SUBRAMANIAM Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 RAMOS-1ZQUIERDO, LUIS Airborne lidar for profiling of surface topography p 295 A91-23134 RAO, S. S. Applications of fuzzy theories to multi-objective system optimization [NASA-CR-177573] p 293 N91-16012 REDDY, V. K. Experimental and theoretical studies in a gas-fueled research combustor [AIAA PAPER 91-0639] p 300 A91-21575 REDINIOTIS, O. K. Multi-sensor investigation of delta wing high-alpha aerodynamics [AIAA PAPER 91-0735] p 266 A91-21600 REGAN, BRADLEY TODD Fine scale analysis of the kinematic, dynamic and thermodynamic features of a multiple microburst-producing storm	ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 RODRIGUES, DAVID J. X-31Flight test in the 90's p 286 A91-20995 ROHWER, KLAUS The stability of light structures - An area of research with a tradition and a future p 315 A91-20616 ROMBERG, HJ. Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 ROOS, FREDERICK W. Aerodynamic characteristics of three generic forebodies at high angles of attack [AIAA PAPER 91-0275] p 260 A91-21437 ROQUEMORE, W. M. Experimental and theoretical studies in a gas-fueled research combustor [AIAA PAPER 91-0639] p 300 A91-21575 ROTHMAYER, A. P. On the stability of conduction dominated natural convection in near-vertical stots and horizontal cylindrical annuli [AIAA PAPER 91-0027] p 257 A91-21343 ROTTA, JULIUS C. Documents on the history of the Aerodynamic Research Establishment at Goettingen, 1907 - 1925 [DLR-MITT-90-05] p 251 N91-15977 ROWE, R. Q. Properties of advanced rapidly solidified titanium alloys p 312 A91-20864 RUBIN, S. G. Inviscid steady/unsteady flow calculations p 267 A91-21748 RUDAKOV, A. S. Additional fuel component application for hydrogen scramjet boosting
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 PETTENPAUL, E. GaAs MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160 PFISTER, K. Bump examinations of integrally strengthened carbon fiber reinforced plastic panels [MBB/FE281/CFK/PUB/0013] p 314 N91-16076 PFITZNER, M. Three-dimensional simulations of hypersonic flows p 253 A91-21184 PHILLIPS, PAUL W. AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20993 PIERCE, F. J. Interference drag of a turbulent junction vortex [ASME PAPER 90-WA/FE-2] p 252 A91-21063 PITT, MARK Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023 PLANCHE, O. H. Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0753] p 266 A91-21603 PLATZER, MAX F. Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605 PLOKHIKH, V. P. Aerospace system development directions and some aspects of their construction and application [AIAA PAPER 90-5266] p 311 A91-22889 PODDAR, K. Effects of a fillet on the flow past a wing-body junction	CIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 CUAN, CHANG-YE Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system p 303 A91-20992 RAHMAN, A. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 RAMAMURTHY, SUBRAMANIAM Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 RAMOS-IZQUIERDO, LUIS Airborne lidar for profiling of surface topography p 295 A91-23134 RAO, S. S. Applications of fuzzy theories to multi-objective system optimization [NASA-CR-177573] p 293 N91-16012 REDDY, V. K. Experimental and theoretical studies in a gas-fueled research combustor [AIAA PAPER 91-0639] p 300 A91-21575 REDINIOTIS, O. K. Multi-sensor investigation of delta wing high-alpha aerodynamics [AIAA PAPER 91-0735] p 266 A91-21600 REGAN, BRADLEY TODD Fine scale analysis of the kinematic, dynamic and thermodynamic features of a multiple microburst-producing storm [AD-A227733] p 325 N91-15657	ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 RODRIGUES, DAVID J. X-31Flight test in the 90's p 286 A91-20995 ROHWER, KLAUS The stability of light structures - An area of research with a tradition and a future p 315 A91-20616 ROMBERG, HJ. Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 ROOS, FREDERICK W. Aerodynamic characteristics of three generic forebodies at high angles of attack [AIAA PAPER 91-0275] p 260 A91-21437 ROQUEMORE, W. M. Experimental and theoretical studies in a gas-fueled research combustor [AIAA PAPER 91-0639] p 300 A91-21575 ROTHMAYER, A. P. On the stability of conduction dominated natural convection in near-vertical slots and horizontal cylindrical annuli [AIAA PAPER 91-0027] p 257 A91-21343 ROTTA, JULIUS C. Documents on the history of the Aerodynamic Research Establishment at Goettingen, 1907 - 1925 [DLR-MITT-90-05] p 251 N91-15977 ROWE, R. G. Properties of advanced rapidly solidified titanium alloys p 267 A91-21748 RUDAKOV, A. S. Additional fuel component application for hydrogen scramjet boosting [SAE PAPER 90090] p 312 A91-21266
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 PETTENPAUL, E. GaAs MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160 PFISTER, K. Bump examinations of integrally strengthened carbon fiber reinforced plastic panels [MBB/FE281/CFK/PUB/0013] p 314 N91-16076 PFITZNER, M. Three-dimensional simulations of hypersonic flows p 253 A91-21184 PHILLIPS, PAUL W. AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues PIERCE, F. J. interference drag of a turbulent junction vortex [ASME PAPER 90-WA/FE-2] p 252 A91-21063 PITT, MARK Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023 PLANCHE, O. H. Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0739] p 266 A91-21603 PLATZER, MAX F. Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605 PLOKHIKH, V. P. Aerospace system development directions and some aspects of their construction and application [AIAA PAPER 90-5268] p 311 A91-22889 PODDAR, K. Effects of a fillet on the flow past a wing-body junction p 268 A91-22476	CIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 CUAN, CHANG-YE Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system p 303 A91-20992 RAHMAN, A. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 RAMAMURTHY, SUBRAMANIAM Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 RAMOS-IZQUIERDO, LUIS Airborne lidar for profiling of surface topography p 295 A91-23134 RAO, S. S. Applications of fuzzy theories to multi-objective system optimization [NASA-CR-177573] p 293 N91-16012 REDDY, V. K. Experimental and theoretical studies in a gas-fueled research combustor [AIAA PAPER 91-0639] p 300 A91-21575 REDINIOTIS, O. K. Multi-sensor investigation of delta wing high-alpha aerodynamics [AIAA PAPER 91-0735] p 266 A91-21600 REGAN, BRADLEY TODD Fine scale analysis of the kinematic, dynamic and thermodynamic features of a multiple microburst-producing storm	ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 RODRIGUES, DAVID J. X-31Flight test in the 90's p 286 A91-20995 ROHWER, KLAUS The stability of light structures - An area of research with a tradition and a future p 315 A91-20616 ROMBERG, HJ. Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 ROOS, PREDERICK W. Aerodynamic characteristics of three generic forebodies at high angles of attack [AIAA PAPER 91-0275] p 260 A91-21437 ROQUEMORE, W. M. Experimental and theoretical studies in a gas-fueled research combustor [AIAA PAPER 91-0639] p 300 A91-21575 ROTHMAYER, A. P. On the stability of conduction dominated natural convection in near-vertical slots and horizontal cylindrical annuli [AIAA PAPER 91-0027] p 257 A91-21343 ROTTA, JULIUS C. Documents on the history of the Aerodynamic Research Establishment at Goettingen, 1907 - 1925 [DLR-MITT-90-05] p 251 N91-15977 ROWE, R. G. Properties of advanced rapidly solidified titanium alloys p 312 A91-20864 RUBAKOV, A. S. Additional fuel component application for hydrogen scramjet boosting [SAE PAPER 900990] p 312 A91-21226 RUSSELL, DAVID A.
control. I - Numerical method p 326 A91-20506 PETERSON, R. L. Simulated rotor test apparatus dynamic characteristics in the 80- by 120-foot wind tunnel [NASA-TM-102870] p 291 N91-15147 PETROV, M. D. Experimental investigation of a 2-D dual mode scramjet with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892 PETTENPAUL, E. GaAs MMICs in selfaligned gate technology for phased array radar application p 296 N91-15160 PFISTER, K. Bump examinations of integrally strengthened carbon fiber reinforced plastic panels [MBB/FE281/CFK/PUB/0013] p 314 N91-16076 PFITZNER, M. Three-dimensional simulations of hypersonic flows p 253 A91-21184 PHILLIPS, PAUL W. AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command cues p 285 A91-20993 PIERCE, F. J. Interference drag of a turbulent junction vortex [ASME PAPER 90-WA/FE-2] p 252 A91-21063 PITT, MARK Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023 PLANCHE, O. H. Compressibility effects on the supersonic reacting mixing layer [AIAA PAPER 91-0753] p 266 A91-21603 PLATZER, MAX F. Numerical investigation of the flow over a double delta wing at high incidence [AIAA PAPER 91-0753] p 266 A91-21605 PLOKHIKH, V. P. Aerospace system development directions and some aspects of their construction and application [AIAA PAPER 90-5266] p 311 A91-22889 PODDAR, K. Effects of a fillet on the flow past a wing-body junction	CIAO, WEIYANG The interim prediction for aircraft noise p 332 A91-22370 CUAN, CHANG-YE Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system p 303 A91-20992 R RAHMAN, A. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 98-GT-150] p 320 A91-23661 RAMAMURTHY, SUBRAMANIAM Numerical modeling of an advanced pneumatic impulse ice protection system (PIIP) for aircraft [AIAA PAPER 91-0555] p 288 A91-21529 RAMOS-IZQUIERDO, LUIS Airborne tidar for profilling of surface topography p 295 A91-23134 RAO, S. S. Applications of fuzzy theories to multi-objective system optimization [NASA-CR-177573] p 293 N91-16012 REDDY, V. K. Experimental and theoretical studies in a gas-fueled research combustor [AIAA PAPER 91-0639] p 300 A91-21575 REDINIOTIS, O. K. Multi-sensor investigation of delta wing high-alpha aerodynamics [AIAA PAPER 91-0735] p 266 A91-21600 REGAN, BRADLEY TODD Fine scale analysis of the kinematic, dynamic and thermodynamic features of a multiple microburst-producing storm [AD-A227733] p 325 N91-15657	ROBERTS, T. P. Dynamic effects of hypersonic separated flow p 254 A91-21192 ROBINSON, MICHAEL C. Three-dimensional unsteady flow fields elicited by pitching a canard and forward swept wing configuration [AIAA PAPER 91-0005] p 255 A91-21327 RODRIGUES, DAVID J. X-31Flight test in the 90's p 286 A91-20995 ROHWER, KLAUS The stability of light structures - An area of research with a tradition and a future p 315 A91-20616 ROMBERG, HJ. Experimental investigation of the transonic flow on a supercritical wing profile p 252 A91-20934 ROOS, FREDERICK W. Aerodynamic characteristics of three generic forebodies at high angles of attack [AIAA PAPER 91-0275] p 260 A91-21437 ROQUEMORE, W. M. Experimental and theoretical studies in a gas-fueled research combustor [AIAA PAPER 91-0639] p 300 A91-21575 ROTHMAYER, A. P. On the stability of conduction dominated natural convection in near-vertical slots and horizontal cylindrical annuli [AIAA PAPER 91-0027] p 257 A91-21343 ROTTA, JULIUS C. Documents on the history of the Aerodynamic Research Establishment at Goettingen, 1907 - 1925 [DLR-MITT-90-05] p 251 N91-15977 ROWE, R. G. Properties of advanced rapidly solidified titanium alloys p 267 A91-21748 RUDAKOV, A. S. Additional fuel component application for hydrogen scramjet boosting [SAE PAPER 90090] p 312 A91-21266

Turbulent shear flow over surface mounted obstacles p 252 A91-21057

RYALL, T. G.	SCHROEDER, W.	SHI, ZHONGKE
Flight flutter test techniques at ARL	Three-dimensional simulations of hypersonic flows	A maximum likelihood method for flight test data
[AD-A227754] p 306 N91-15178	p 253 A91-21184	compatibility check p 327 A91-22373
•	SCHULTZ, F. J. Radioluminescent (RL) airfield lighting system program	SHIEH, T. H. Techniques for accurate, efficient computation of
S	[DE91-001007] p 309 N91-15186	unsteady transonic flow
CAACED DETER	SCHWANECK, HANS-PETER	[AIAA PAPER 91-0597] p 263 A91-21549
SAAGER, PETER Real-time hardware-in-the-loop simulation for ATTAS	Computer communication using Logic Cell Arrays (LCA)	SHIKHMAN, IU. M.
and ATTHES advanced technology flight test vehicles	in ATTAS p 294 A91-20617	Experimental investigation of a 2-D dual mode scramjet
p 329 N91-15732	SCHWEIGER, J.	with hydrogen fuel at Mach 4-6 [AIAA PAPER 90-5269] p 300 A91-22892
SAITO, MASAKI	The integration of structural optimization in the general	SHIPLEY, KELLY L.
Downwash measurement at the horizontal tail	design process for aircraft [MBB/FE122/S/PUB/0405] p 293 N91-16017	Current research on schedulers for aerospace industry
p 286 A91-21000 SAJBEN. M.	SCOTT, GEORGE N.	software
The effects of mass removal on turbulence properties	Smoothing and scaling airfoil coordinates on a personal	[SAE PAPER 901014] p 326 A91-21235
in a normal-shock/turbulent-boundary-layer interaction	computer	SHIPOVSKIKH, A. V. A study of flow structure in nozzles with a constant-height
[AIAA PAPER 91-0647] p 264 A91-21577	[DE89-000878] p 330 N91-16582	section in the throat region p 272 A91-23848
SAKURAI, AKIRA	SCOTT, MARY MONICA	SHKADOV, L. M.
Unsteady vortex lattice calculation of the flow around a slender delta wing p 278 N91-16272	Aircraft cost estimating - Weight commonality as a	Aerospace system development directions and some
a slender delta wing p 278 N91-16272 SALLEE, J.	predictor [SAWE PAPER 1909] p 333 A91-22322	aspects of their construction and application
ADAM 2.0 - An ASE analysis code for aircraft with digital	SCOTT, PAUL W.	[AIAA PAPER 90-5266] p 311 A91-22889 SHTEINHAUZ, G. D.
flight control systems p 327 A91-23742	Derivation of a fuselage weight estimating relationship	Computerized procedure for vibration diagnostics of
SAND, WAYNE R.	[SAWE PAPER 1901] p 289 A91-22319	aircraft brakes p 320 A91-23679
A program to improve aircraft icing forecasts - Status	SCURLOCK, R. G.	SIEVERDING, C. H.
report [AIAA PAPER 91-0557] p 325 A91-21530	Eight channel pressure measuring system for cryogenic	Experimental study of the three-dimensional flow field
SANKAR, LAKSHMI N.	use in the European Transonic Wind-tunnel over the temperature range 78-300 K p 318 A91-21722	in a turbine stator preceded by a full stage
Viscous flow simulation of fighter aircraft	SEGAL, CORIN	p 271 A91-23656 SIMPSON, R. L.
[AIAA PAPER 91-0278] p 260 A91-21438	Combustion efficiency determined from wall pressure	Effects of a fillet on the flow past a wing-body junction
Numerical study of the effects of icing on fixed and rotary	and temperature measurement in a Mach 2 combustor	p 268 A91-22476
wing performance [AIAA PAPER 91-0662] p 265 A91-21580	[AIAA PAPER 91-0017] p 298 A91-21336	SINCLAIR, D. W.
SARIGUL-KLIJN, MARTINUS M.	SEHRA, ARUN K.	Investigation of the influence of constant adverse
Application of chaos methods to helicopter vibration	Application of three-dimensional viscous analysis to	pressure gradients on laminar boundary-layer stability at Mach number 8
reduction using higher harmonic control	turbofan forced mixers [AIAA PAPER 91-0131] p 258 A91-21373	[AD-A228231] p 324 N91-16293
[AD-A226736] p 306 N91-15177	SEIDER, G.	SIROVICH, L
SARMA, B. S.	Numerical influence of upwind TVD schemes on	Eigenfunction analysis of turbulent mixing phenomena
Panel flutter analysis using high precision shear flexible element p 319 A91-23423	transonic airfoil drag prediction	[AIAA PAPER 91-0520] p 318 A91-21519
SAVINI, M.	[AIAA PAPER 91-0184] p 259 A91-21402	SKOW, ANDREW M.
Viscous high speed flow computations by adaptive mesh	SEKULSKI, ZYGMUNT	An analysis of the Su-27 flight demonstration at the 1989 Paris Air Show
embedding techniques	Method of strength evaluation of radial fan rotors p 316 A91-20932	[SAE PAPER 901001] p 304 A91-21230
[AIAA PAPER 91-0149] p 258 A91-21381	SELBY, G. V.	SLEDJESKI, L.
SAWLEY, M. L.	Exploratory study of vortex-generating devices for	A real time expert-aided trajectory estimator using
Modelization and calculation of laminar hypersonic boundary layer flows p 254 A91-21190	turbulent flow separation control	multiple TSPI sources including a unique on-aircraft
SCAVUZZO, R. J.	[AIAA PAPER 91-0042] p 317 A91-21348	positioning system p 282 A91-20979 SMETANIN, V. V.
Statistical structural analysis of rotor impact ice	SENSBURG, O.	Macroscopic model of vibrational relaxation in heat
shedding	The integration of structural optimization in the general design process for aircraft	transfer problems for supersonic flow past hard bodies
[AIAA PAPER 91-0663] p 279 A91-21581	[MBB/FE122/S/PUB/0405] p 293 N91-16017	p 268 A91-21979
Influence of aerodynamic forces in ice shedding	SETO, JEFFREY	SMITH, BARBARA K.
[AIAA PAPER 91-0664] p 279 A91-21582 SCHADOW, K. C.	Internally mounted thin-liquid-film skin-friction meter -	International aircraft operator information system, phase 2
Active control of a dump combustor with fuel	Comparison with floating element method with and without	[NIAR-90-31] p 333 N91-15928
modulation	pressure gradient [AIAA PAPER 91-0060] p 317 A91-21352	SMITH, BRIAN R.
(AIAA PAPER 91-0368) p 299 A91-21471	SETTLES, GARY S.	Application of turbulence modeling to the design of
SCHAENZER, G.	Hypersonic shock/boundary-layer interaction database	military aircraft
High precision real time airplane positioning system with	[NASA-CR-187769] p 277 N91-15986	[AIAA PAPER 91-0513] p 287 .A91-21515
full navigational capabilities for flight testing p 282 A91-20985	SHAFER, MARY F.	SMITH, C. FREDERIC
SCHERZINGER, BRUNO M.	Initial flight test of a ground deployed system for flying qualities assessment	Flow studies in close-coupled ventral nozzles for STOVL aircraft
NAVPACK: Simulation tools for design of high	[NASA-TM-101700] p 307 N91-15182	[SAE PAPER 901033] p 255 A91-21242
performance integrated navigation systems	SHAHPAR, S.	SMITH, F. T.
p 329 N91-15739	Hypersonic flow calculations using locally body-fitting	Hypersonic interactions and flow transition
SCHIFF, LEWIS B. Numerical investigation of the flow over a double delta	and overlapping grids p 253 A91-21183	p 254 A91-21193
wing at high incidence	SHAKHOV, E. M. Analysis of rarefied gas flow near a critical point	SMITH, M. H.
[AIAA PAPER 91-0753] p 266 A91-21605	p 268 A91-21879	Infrared imaging A validation technique for computational fluid dynamics codes used in STOVL
SCHIRLE, PATRICK	SHAMROTH, S. J.	applications
Formal tools and simulation tools: A coherent	Navier-Stokes simulation of transonic blade-vortex	[AIAA PAPER 91-0675] p 318 A91-21587
workshop p 328 N91-15728	interactions p 253 A91-21065	SMITH, P. R.
SCHMATZ, M. A.	SHANKAR, VIJAYA Research to application: Supercomputing trends for the	Computer-aided control law research: From concept to
Numerical analysis of viscous hypersonic flow past a	90's - Opportunities for interdisciplinary computations	flight test p 329 N91-15731
generic forebody [MBB/FE122/S/PUB/0407] p 278 N91-15997	[AIAA PAPER 91-0002] p 326 A91-21326	SMITH, R. A. Active control of a dump combustor with fuel
SCHMITT, D.	SHARMA, O. P.	modulation
Advanced technology - Constant challenge and	Turbulence modeling in gas turbine design and	[AIAA PAPER 91-0368] p 299 A91-21471
evolutionary process p 251 A91-23547	analysis [AIAA PAPER 91-0514] p 299 A91-21516	SMITH, R. H.
SCHNEIDER, G.	SHAW, STEPHEN J.	Optimizing aircraft performance with adaptive, integrated
Integrated design analysis and optimization [MBB/FE2/S/PUB/0398] p 291 N91-15145	The inviscid stability of supersonic flow past a sharp	flight/propulsion control
[MBB/FE2/S/PUB/0398] p 291 N91-15145 SCHOEBERL, MARK R.	cone p 269 A91-22511	[ASME PAPER 90-GT-252] p 290 A91-23644 SODERMAN, PAUL T.
The dynamics of the stratospheric polar vortex and its	SHEN, S. B. Composite patch reinforcement of cracked aircraft upper	The prediction of STOVL noise - Current semiempirical
relation to springtime ozone depletions	longeron - Analysis and specimen simulation	methods and comparisons with jet noise data
p 325 A91-21712	p 249 A91-20784	[SAE PAPER 901058] p 331 A91-21255
SCHORN, JEFFREY G.	SHEN, S. F.	SOLTANI, R.
Techniques for accurate, efficient computation of unsteady transonic flow	Unsteady separation over maneuvering bodies	Effect of a simulated ice accretion on the aerodynamics of a swept wing
[AIAA PAPER 91-0597] p 263 A91-21549	p 269 A91-22481 SHEVEL'KOV, S. G.	[AIAA PAPER 91-0442] p 262 A91-21491
SCHOFIELD, W. H.	An experimental study of the evolution of harmonic	SOSEDKO, IU. P.

perturbations in a boundary layer on a flat plate at Mach
4 p 272 A91-23842

Optimal conditions for controlling the intensity of turbulent flow by means of screens p 321 A91-23904

SPAID, FRANK W.	SWAIM, ROBERT L.	THOMSON, D. G.
CFD validation and wind tunnel test for a NASP single expansion ramp nozzle in the transonic regime	New technique for aircraft flight control reconfiguration p 305 A91-22959	Prediction of the dynamic characteristics of helicopters in constrained flight p 290 A91-23549
[AIAA PAPER 91-0015] p 256 A91-21334	SWIERSTRA, SIP	THORNTON, EARL A.
SPENCE, PETER L	Integration of a realistic airline/aircrew/aircraft	Finite element thermo-viscoplastic analysis of
Development of a boundary layer noise prediction code	component in ATC simulations p 329 N91-15738 SYED, S. A.	aerospace structures
and its application to advanced propellers [AIAA PAPER 91-0593] p 331 A91-21546	Turbulence modeling in gas turbine design and	[NASA-TM-102761] p 324 N91-16407 TIMNAT, Y. M.
SPLETTSTOESSER, W. R.	analysis	Recent developments in ramjets, ducted rockets and
Directivity and prediction of low frequency rotor noise	[AIAA PAPER 91-0514] p 299 A91-21516	scramjets p 297 A91-20489
[AIAA PAPER 91-0592] p 331 A91-21545	SZYC, WACLAW Method of strength evaluation of radial fan rotors	TINDELL, R. H.
SPRING, S. D. An experimental investigation of heat transfer	p 316 A91-20932	Computational fluid dynamic applications for jet
coefficients in a spanwise rotating channel with two		propulsion system integration [ASME PAPER 90-GT-343] p 271 A91-23639
opposite rib-roughened walls	T .	TIRTOSUDIRO, M. MULIA
[ASME PAPER 89-GT-150] p 320 A91-23661		ARTISt - Airborne Real Time Instrumentation System
SPRING, W. CHARLES, III	TAGGART, A. M.	p 294 A91-20982
Experimental measurements of the flow in a scramjet inlet at Mach 4 p 251 A91-20750	Synergistic effects of hydrogen transpiration on compression surfaces for hypersonic vehicles	TIWARI, S. N. Radiative interactions in a hydrogen-fueled supersonic
SRINIVASAN, G. R.	[AIAA PAPER 91-0699] p 265 A91-21591	combustor
Flowfield of a lifting hovering rotor: A Navier-Stokes	TAHIR, J. M.	[AIAA PAPER 91-0373] p 312 A91-21473
simulation	A real-time distributed optimal autopilot (RR-398) p 307 N91-15181	TO, C. H.
[NASA-TM-102862] p 274 N91-15128	[RR-398] p 307 N91-15181 Selection of weights in optimal control	Simulation, testing and optimization of a new low cost electronic fuel control unit for small gas turbine engines
SRIYONO, MR. ARTISt - Airborne Real Time Instrumentation System	[RR-397] p 330 N91-15796	[SAE PAPER 901027] p 298 A91-21239
p 294 A91-20982	TAI, TSZE C.	New family of low cost electronic fuel control units for
STANAWAY, SHARON	Flow separation patterns over an F-14A aircraft wing [AIAA PAPER 90-0596] p 269 A91-22497	small gas turbine engines
Rotorcraft application of advanced computational	TAKANASHI, SUSUMU	[SAE PAPER 901039] p 298 A91-21245
aerodynamics [NASA-CR-187767] p 277 N91-15987	Large-scale numerical aerodynamic simulations for	TOBAK, MURRAY Numerical, experimental, and theoretical study of
STAPLE, ALAN E.	complete aircraft configurations	convective instability of flows over pointed bodies at
The development and testing of active control	[NAL-TR-1073-T] p 277 N91-15984 TAMPLIN. G. C.	incidence
techniques to minimise helicopter vibration	Assessment of a post 2000 STOVL fighter	[AIAA PAPER 91-0291] p 260 A91-21443
p 284 A91-20946	[SAE PAPER 901031] p 286 A91-21241	TOMLINSON, B. N. Computer-aided control law research: From concept to
STEENDIJK, ANNE MARIE Activities report of the Dutch Civil Aeronautics Board	TANAKA, K.	flight test p 329 N91-15731
[ETN-91-98472] p 283 N91-16005	Free vibration of a cantilever annular sector plate with curved radial edges and varying thickness	TOMPKINS, J. A.
STEPNIEWSKI, W. Z.	p 316 A91-20943	Radioluminescent (RL) airfield lighting system program
Rotorcraft structural weight and cost aspects	TANAKA, W.	[DE91-001007] p 309 N91-15186
[SAWE PAPER 1908] p 289 A91-22321 Rotorcraft weight trends in light of structural material	Laser obstacle and cable update sensor p 296 N91-15169	TOOSSI, MOSTAFA Development and application of a technique for reducing
characteristics	TANG, DENNIS	airframe finite element models for dynamics analysis
[SAWE PAPER 1873] p 289 A91-22327	Advanced composites F-4 rudder	[NASA-CR-187448] p 323 N91-15607
STEWART, J. F.	[SME PAPER EM90-106] p 249 A91-21107	TORELLA, GIOVANNI
Optimizing aircraft performance with adaptive, integrated	TANG, DIYI The interim prediction for aircraft noise	Numerical simulations of auxiliary power units with different configurations
flight/propulsion control [ASME PAPER 90-GT-252] p 290 A91-23644	p 332 A91-22370	[SAE PAPER 901028] p 298 A91-21240
[1.0.1.2 (TARET GAVID II	
STOLLERY, JOHN L.	TARTT, DAVID M.	TOROK, MICHAEL SCOTT
STOLLERY, JOHN L. Hypersonic viscous interaction revisited	The development of a Flight Test Engineer's Workstation	A coupled rotor aeroelastic analysis utilizing advanced
Hypersonic viscous interaction revisited p 254 A91-21191	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A.	The development of a Flight Test Engineer's Workstation	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A.	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L. A real time expert-aided trajectory estimator using	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N.
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L. A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 STORM VAN LEEUWEN, S.	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N. Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures in turbulent boundary layers
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L. A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 STORM VAN LEEUWEN, S. A measurement system for production flight tests of new	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N. Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 STORM VAN LEEUWEN, S. A measurement system for production flight tests of new aircraft p 308 A91-20984	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 TATSUMI, SHIGEFUMI Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N. Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L. A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 STORM VAN LEEUWEN, S. A measurement system for production flight tests of new	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 TATSUMI, SHIGEFUMI Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N. Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L. A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 STORM VAN LEEUWEN, S. A measurement system for production flight tests of new aircraft p 308 A91-20984 STRAWN, ROGER C. An improved three-dimensional aerodynamics model for helicopter airloads prediction	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 TATSUM, SHIGEFUMI Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N. Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518 TSUJIKAWA, Y. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 STORM VAN LEEUWEN, S. A measurement system for production flight tests of new aircraft p 308 A91-20984 STRAWN, ROGER C. An improved three-dimensional aerodynamics model for helicopter airloads prediction [AIAA PAPER 91-0767] p 267 A91-21610	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 TATSUMI, SHIGEFUMI Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N. Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518 TSUJIKAWA, Y. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 TSUJIMOTO, TAKASHI
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L. A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 STORM VAN LEEUWEN, S. A measurement system for production flight tests of new aircraft p 308 A91-20984 STRAWN, ROGER C. An improved three-dimensional aerodynamics model for helicopter airloads prediction [AIAA PAPER 91-0767] p 267 A91-21610 STREETT, CRAIG L	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 TATSUMI, SHIGEFUMI Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 TAYELLA, DOMINGO A. High alpha aerodynamic control by tangential fuselage blowing	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N. Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518 TSUJIKAWA, Y. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23648 TSUJIMOTO, TAKASHI Downwash measurement at the horizontal tail
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 STORM VAN LEEUWEN, S. A measurement system for production flight tests of new aircraft p 308 A91-20984 STRAWN, ROGER C. An improved three-dimensional aerodynamics model for helicopter airloads prediction [AIAA PAPER 91-0767] p 267 A91-21610 STREETT, CRAIG L Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 TATSUMI, SHIGEFUMI Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 TAYELLA, DOMINGO A. High alpha aerodynamic control by tangential fuselage blowing [AIAA PAPER 91-0620] p 264 A91-21561	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N. Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518 TSUJIKAWA, Y. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 TSUJIMOTO, TAKASHI
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L. A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 STORM VAN LEEUWEN, S. A measurement system for production flight tests of new aircraft p 308 A91-20984 STRAWN, ROGER C. An improved three-dimensional aerodynamics model for helicopter airloads prediction [AIAA PAPER 91-0767] p 267 A91-21610 STREETT, CRAIG L Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers [AIAA PAPER 90-5258] p 270 A91-22882	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 TATSUMI, SHIGEFUMI Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 TAYELLA, DOMINGO A. High alpha aerodynamic control by tangential fuselage blowing	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N. Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518 TSUJIKAWA, Y. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23648 TSUJIMOTO, TAKASHI Downwash measurement at the horizontal tail p 286 A91-21000 TU, EUGENE L. Navier-Stokes simulation of a close-coupled
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 STORM VAN LEEUWEN, S. A measurement system for production flight tests of new aircraft p 308 A91-20984 STRAWN, ROGER C. An improved three-dimensional aerodynamics model for helicopter airloads prediction [AIAA PAPER 91-0767] p 267 A91-21610 STREETT, CRAIG L Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers [AIAA PAPER 90-5258] p 270 A91-22882 STREMEL, PAUL M.	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 TATSUMI, SHIGEFUMI Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 TAVELLA, DOMINGO A. High alpha aerodynamic control by tangential fuselage blowing [AIAA PAPER 91-0620] p 264 A91-21561 A theory for tangential fuselage blowing [AIAA PAPER 91-0621] p 264 A91-21562 TAYLOR, M.	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N. Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518 TSUJIKAWA, Y. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 TSUJIMOTO, TAKASHI Downwash measurement at the horizontal tail p 286 A91-21000 TU, EUGENE L. Navier-Stokes simulation of a close-coupled canard-wing-body configuration
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 STORM VAN LEEUWEN, S. A measurement system for production flight tests of new aircraft p 308 A91-20984 STRAWN, ROGER C. An improved three-dimensional aerodynamics model for helicopter airloads prediction [AIAA PAPER 91-0767] p 267 A91-21610 STREETT, CRAIG L Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers [AIAA PAPER 90-5258] p 270 A91-22882 STREMEL, PAUL M. Calculation of flow about two-dimensional bodies by	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 TATSUMI, SHIGEFUMI Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 TAYELLA, DOMINGO A. High alpha aerodynamic control by tangential fuselage blowing [AIAA PAPER 91-0620] p 264 A91-21561 A theory for tangential fuselage blowing [AIAA PAPER 91-0621] p 264 A91-21562 TAYLOR, M. New family of low cost electronic fuel control units for	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N. Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518 TSUJIKAWA, Y. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 TSUJIMOTO, TAKASHI Downwash measurement at the horizontal tail p 286 A91-21000 TU, EUGENE L. Navier-Stokes simulation of a close-coupled canard-wing-body configuration [AIAA PAPER 91-0070] p 257 A91-21356
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L. A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 STORM VAN LEEUWEN, S. A measurement system for production flight tests of new aircraft p 308 A91-20984 STRAWN, ROGER C. An improved three-dimensional aerodynamics model for helicopter airloads prediction [AIAA PAPER 91-0767] p 267 A91-21610 STREETT, CRAIG L. Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers [AIAA PAPER 90-5258] p 270 A91-22882 STREMEL, PAUL M. Calculation of flow about two-dimensional bodies by means of the velocity-vorticity formulation on a staggered grid	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 TATSUMI, SHIGEFUMI Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 TAVELLA, DOMINGO A. High alpha aerodynamic control by tangential fuselage blowing [AIAA PAPER 91-0620] p 264 A91-21561 A theory for tangential fuselage blowing [AIAA PAPER 91-0621] p 264 A91-21562 TAYLOR, M. New family of low cost electronic fuel control units for small gas turbine engines	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N. Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518 TSUJIKAWA, Y. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 TSUJIMOTO, TAKASHI Downwash measurement at the horizontal tail p 286 A91-21000 TU, EUGENE L. Navier-Stokes simulation of a close-coupled canard-wing-body configuration
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 STORM VAN LEEUWEN, S. A measurement system for production flight tests of new aircraft p 308 A91-20984 STRAWN, ROGER C. An improved three-dimensional aerodynamics model for helicopter airloads prediction [AIAA PAPER 91-0767] p 267 A91-21610 STREETT, CRAIG L Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers [AIAA PAPER 90-5258] p 270 A91-22882 STREMEL, PAUL M. Calculation of flow about two-dimensional bodies by means of the velocity-vorticity formulation on a staggered grid [AIAA PAPER 91-0600] p 263 A91-21551	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 TATSUMI, SHIGEFUMI Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 TAYELLA, DOMINGO A. High alpha aerodynamic control by tangential fuselage blowing [AIAA PAPER 91-0620] p 264 A91-21561 A theory for tangential fuselage blowing [AIAA PAPER 91-0621] p 264 A91-21562 TAYLOR, M. New family of low cost electronic fuel control units for	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N. Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518 TSUJIKAWA, Y. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 TSUJIMOTO, TAKASHI Downwash measurement at the horizontal tail p 286 A91-21000 TU, EUGENE L. Navier-Stokes simulation of a close-coupled canard-wing-body configuration [AIAA PAPER 91-070] p 257 A91-21356 TU, PETER K. C. Smoothing and scaling airfoil coordinates on a personal computer
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L. A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 STORM VAN LEEUWEN, S. A measurement system for production flight tests of new aircraft p 308 A91-20984 STRAWN, ROGER C. An improved three-dimensional aerodynamics model for helicopter airloads prediction [AIAA PAPER 91-0767] p 267 A91-21610 STREETT, CRAIG L. Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers [AIAA PAPER 90-5258] p 270 A91-22882 STREMEL, PAUL M. Calculation of flow about two-dimensional bodies by means of the velocity-vorticity formulation on a staggered grid [AIAA PAPER 91-0600] p 263 A91-21551	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 TATSUMI, SHIGEFUMI Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 TAVELLA, DOMINGO A. High alpha aerodynamic control by tangential fuselage blowing [AIAA PAPER 91-0620] p 264 A91-21561 A theory for tangential fuselage blowing [AIAA PAPER 91-0621] p 264 A91-21562 TAYLOR, M. New family of low cost electronic fuel control units for small gas turbine engines [SAE PAPER 901039] p 298 A91-21245 TEELING, P. Wind tunnel tests of aerodynamic effects of type I and	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N. Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518 TSUJIKAWA, Y. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 TSUJIMOTO, TAKASHI Downwash measurement at the horizontal tail p 286 A91-21000 TU, EUGENE L. Navier-Stokes simulation of a close-coupled canard-wing-body configuration [AIAA PAPER 91-0070] p 257 A91-21356 TU, PETER K. C. Smoothing and scaling airfoil coordinates on a personal computer [DE89-000878] p 330 N91-16582
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 STORM VAN LEEUWEN, S. A measurement system for production flight tests of new aircraft p 308 A91-20984 STRAWN, ROGER C. An improved three-dimensional aerodynamics model for helicopter airloads prediction [AIAA PAPER 91-0767] p 267 A91-21610 STREETT, CRAIG L Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers [AIAA PAPER 90-5258] p 270 A91-22882 STREMEL, PAUL M. Calculation of flow about two-dimensional bodies by means of the velocity-vorticity formulation on a staggered grid [AIAA PAPER 91-0600] p 263 A91-21551 STUDLIEN, EARL Aircraft platform scales without sideload induced weighing errors	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 TATSUMI, SHIGEFUMI Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 TAVELLA, DOMINGO A. High alpha aerodynamic control by tangential fuselage blowing [AIAA PAPER 91-0620] p 264 A91-21561 A theory for tangential fuselage blowing [AIAA PAPER 91-0620] p 264 A91-21562 TAYLOR, M. New family of low cost electronic fuel control units for small gas turbine engines [SAE PAPER 901039] p 298 A91-21245 TEELING, P. Wind tunnel tests of aerodynamic effects of type I and Il ground de/anti-icing fluids on small transport and general	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N. Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518 TSUJIKAWA, Y. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 TSUJIMOTO, TAKASHI Downwash measurement at the horizontal tail p 286 A91-21000 TU, EUGENE L. Navier-Stokes simulation of a close-coupled canard-wing-body configuration [AIAA PAPER 91-0070] p 257 A91-21356 TU, PETER K. C. Smoothing and scaling airfoil coordinates on a personal computer [DE89-000878] p 330 N91-16582
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 STORM VAN LEEUWEN, S. A measurement system for production flight tests of new aircraft p 308 A91-20984 STRAWN, ROGER C. An improved three-dimensional aerodynamics model for helicopter airloads prediction [AIAA PAPER 91-0767] p 267 A91-21610 STREETT, CRAIG L Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers [AIAA PAPER 90-5258] p 270 A91-22882 STREMEL, PAUL M. Calculation of flow about two-dimensional bodies by means of the velocity-vorticity formulation on a staggered grid [AIAA PAPER 91-0600] p 263 A91-21551 STUDLIEN, EARL Aircraft platform scales without sideload induced weighing errors [SAWE PAPER 1882] p 309 A91-22307	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 TATSUMI, SHIGEFUMI Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1066] p 277 N91-15985 TAYELLA, DOMINGO A. High alpha aerodynamic control by tangential fuselage blowing [AIAA PAPER 91-0620] p 264 A91-21561 A theory for tangential fuselage blowing [AIAA PAPER 91-0621] p 264 A91-21562 TAYLOR, M. New family of low cost electronic fuel control units for small gas turbine engines [SAE PAPER 901039] p 298 A91-21245 TEELING, P. Wind tunnel tests of aerodynamic effects of type I and II ground de/anti-icing fluids on small transport and general aviation aircraft during takeoff	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N. Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518 TSUJIKAWA, Y. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 TSUJIMOTO, TAKASHI Downwash measurement at the horizontal tail p 286 A91-21000 TU, EUGENE L. Navier-Stokes simulation of a close-coupled canard-wing-body configuration [AIAA PAPER 91-0070] p 257 A91-21356 TU, PETER K. C. Smoothing and scaling airfoil coordinates on a personal computer [DE89-000878] p 330 N91-16582 TULEY, GEORGE W. A state of the art Mass Properties Laboratory [SAWE PAPER 1883] p 309 A91-22308
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L. A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 STORM VAN LEEUWEN, S. A measurement system for production flight tests of new aircraft p 308 A91-20984 STRAWN, ROGER C. An improved three-dimensional aerodynamics model for helicopter airloads prediction [AIAA PAPER 91-0767] p 267 A91-21610 STREETT, CRAIG L. Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers [AIAA PAPER 90-5258] p 270 A91-22882 STREMEL, PAUL M. Calculation of flow about two-dimensional bodies by means of the velocity-vorticity formulation on a staggered grid [AIAA PAPER 91-0600] p 263 A91-21551 STUDLIEN, EARL Aircraft platform scales without sideload induced weighing errors [SAWE PAPER 1882] p 309 A91-22307	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 TATSUMI, SHIGEFUMI Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 TAYELLA, DOMINGO A. High alpha aerodynamic control by tangential fuselage blowing [AIAA PAPER 91-0620] p 264 A91-21561 A theory for tangential fuselage blowing [AIAA PAPER 91-0621] p 264 A91-21562 TAYLOR, M. New family of low cost electronic fuel control units for small gas turbine engines [SAE PAPER 901039] p 298 A91-21245 TEELING, P. Wind tunnel tests of aerodynamic effects of type I and Il ground de/anti-icing fluids on small transport and general aviation aircraft during takeoff [AIAA PAPER 91-0763] p 288 A91-21609 TEIPEL, INGOLF	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N. Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518 TSUJIKAWA, Y. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 TSUJIMOTO, TAKASHI Downwash measurement at the horizontal tail p 286 A91-21000 TU, EUGENE L. Navier-Stokes simulation of a close-coupled canard-wing-body configuration [AIAA PAPER 91-0070] p 257 A91-21356 TU, PETER K. C. Smoothing and scaling airfoil coordinates on a personal computer [DE89-000878] p 330 N91-16582 TULEY, GEORGE W. A state of the art Mass Properties Laboratory [SAWE PAPER 1883] p 309 A91-22308
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 STORM VAN LEEUWEN, S. A measurement system for production flight tests of new aircraft p 308 A91-20984 STRAWN, ROGER C. An improved three-dimensional aerodynamics model for helicopter airloads prediction [AIAA PAPER 91-0767] p 267 A91-21610 STREETT, CRAIG L Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers [AIAA PAPER 90-5258] p 270 A91-22882 STREMEL, PAUL M. Calculation of flow about two-dimensional bodies by means of the velocity-vorticity formulation on a staggered grid [AIAA PAPER 91-0600] p 263 A91-21551 STUDLIEN, EARL Aircraft platform scales without sideload induced weighing errors [SAWE PAPER 1882] p 309 A91-22307	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 TATSUMI, SHIGEFUMI Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 TAYELLA, DOMINGO A. High alpha aerodynamic control by tangential fuselage blowing [AIAA PAPER 91-0620] p 264 A91-21561 A theory for tangential fuselage blowing [AIAA PAPER 91-0621] p 264 A91-21562 TAYLOR, M. New family of low cost electronic fuel control units for small gas turbine engines [SAE PAPER 901039] p 298 A91-21245 TEELING, P. Wind tunnel tests of aerodynamic effects of type I and Il ground de/anti-icing fluids on small transport and general aviation aircraft during takeoff [AIAA PAPER 91-0763] p 288 A91-21609 TEIPEL, INGOLF A three-dimensional Euler code for calculating flow fields	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N. Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518 TSUJIKAWA, Y. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 TSUJIMOTO, TAKASHI Downwash measurement at the horizontal tail p 286 A91-21000 TU, EUGENE L. Navier-Stokes simulation of a close-coupled canard-wing-body configuration [AIAA PAPER 91-0070] p 257 A91-21356 TU, PETER K. C. Smoothing and scaling airfoil coordinates on a personal computer [DE89-000878] p 330 N91-16582 TULEY, GEORGE W. A state of the art Mass Properties Laboratory [SAWE PAPER 1883] p 309 A91-22308 TURPIN, MARC Special optical fibres and sensors for aeronautics
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L. A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 STORM VAN LEEUWEN, S. A measurement system for production flight tests of new aircraft positioning and three-dimensional aerodynamics model for helicopter airloads prediction [AIAA PAPER 91-0767] p 267 A91-21610 STREETT, CRAIG L. Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers [AIAA PAPER 90-5258] p 270 A91-22882 STREMEL, PAUL M. Calculation of flow about two-dimensional bodies by means of the velocity-vorticity formulation on a staggered grid [AIAA PAPER 91-0600] p 263 A91-21551 STUDLIEN, EARL Aircraft platform scales without sideload induced weighing errors [SAWE PAPER 1882] p 309 A91-22307 SUDHARMONO, F. X. ARTISI - Airborne Real Time Instrumentation System p 294 A91-20982	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 TATSUMI, SHIGEFUMI Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 TAVELLA, DOMINGO A. High alpha aerodynamic control by tangential fuselage blowing [AIAA PAPER 91-0620] p 264 A91-21561 A theory for tangential fuselage blowing [AIAA PAPER 91-0621] p 264 A91-21562 TAYLOR, M. New family of low cost electronic fuel control units for small gas turbine engines [SAE PAPER 901039] p 298 A91-21245 TEELING, P. Wind tunnel tests of aerodynamic effects of type I and Il ground de/anti-icing fluids on small transport and general aviation aircraft during takeoff [AIAA PAPER 91-0763] p 288 A91-21609 TEIPEL, INGOLF A three-dimensional Euler code for calculating flow fields in centrifugal compressor diffusers p 267 A91-21744	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N. Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518 TSUJIKAWA, Y. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 TSUJIMOTO, TAKASHI Downwash measurement at the horizontal tail p 286 A91-21000 TU, EUGENE L. Navier-Stokes simulation of a close-coupled canard-wing-body configuration [AIAA PAPER 91-0070] p 257 A91-21356 TU, PETER K. C. Smoothing and scaling airfoil coordinates on a personal computer [DE89-000878] p 330 N91-16582 TULEY, GEORGE W. A state of the art Mass Properties Laboratory [SAWE PAPER 1883] p 309 A91-22308
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 STORM VAN LEEUWEN, S. A measurement system for production flight tests of new aircraft p 308 A91-20984 STRAWN, ROGER C. An improved three-dimensional aerodynamics model for helicopter airloads prediction [AIAA PAPER 91-0767] p 267 A91-21610 STREETT, CRIG L Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers [AIAA PAPER 90-5258] p 270 A91-22882 STREMEL, PAUL M. Calculation of flow about two-dimensional bodies by means of the velocity-vorticity formulation on a staggered grid [AIAA PAPER 91-0600] p 263 A91-21551 STUDLIEN, EARL Aircraft platform scales without sideload induced weighing errors [SAWE PAPER 1882] p 309 A91-22307 SUDHARMONO, F. X. ARTISI - Airborne Real Time Instrumentation System p 294 A91-20982 SUN, MAO A method for calculating the aerodynamic forces of	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 TATSUMI, SHIGEFUMI Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 TAVELLA, DOMINGO A. High alpha aerodynamic control by tangential fuselage blowing [AIAA PAPER 91-0620] p 264 A91-21561 A theory for tangential fuselage blowing [AIAA PAPER 91-0620] p 264 A91-21562 TAYLOR, M. New family of low cost electronic fuel control units for small gas turbine engines [SAE PAPER 901039] p 298 A91-21245 TEELING, P. Wind tunnel tests of aerodynamic effects of type I and Il ground de/anti-icing fluids on small transport and general aviation aircraft during takeoff [AIAA PAPER 91-0763] p 288 A91-21609 TEIPEL, INGOLF A three-dimensional Euler code for calculating flow fields in centrifugal compressor diffusers p 267 A91-21744 TELIONIS, D. P.	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N. Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518 TSUJIKAWA, Y. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 TSUJIMOTO, TAKASHI Downwash measurement at the horizontal tail p 286 A91-21000 TU, EUGENE L. Navier-Stokes simulation of a close-coupled canard-wing-body configuration [AIAA PAPER 91-0070] p 257 A91-21356 TU, PETER K. C. Smoothing and scaling airfoil coordinates on a personal computer [DE89-000878] p 330 N91-16582 TULEY, GEORGE W. A state of the art Mass Properties Laboratory [SAWE PAPER 1883] p 309 A91-22308 TURPIN, MARC Special optical fibres and sensors for aeronautics p 332 N91-15167
STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 STORM VAN LEEUWEN, S. A measurement system for production flight tests of new aircraft positioning system p 308 A91-20984 STRAWN, ROGER C. An improved three-dimensional aerodynamics model for helicopter airloads prediction [AIAA PAPER 91-0767] p 267 A91-21610 STREETT, CRAIG L Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers [AIAA PAPER 90-5258] p 270 A91-22882 STREMEL, PAUL M. Calculation of flow about two-dimensional bodies by means of the velocity-vorticity formulation on a staggered grid [AIAA PAPER 91-0600] p 263 A91-21551 STUDLIEN, EARL Aircraft platform scales without sideload induced weighing errors [SAWE PAPER 1882] p 309 A91-22307 SUDHARMONO, F. X. ARTISI - Airborne Real Time Instrumentation System p 294 A91-20982 SUN, MAO A method for calculating the aerodynamic forces of elliptical circulation control airfoils p 273 A91-24155	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 TATSUMI, SHIGEFUMI Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 TAYELLA, DOMINGO A. High alpha aerodynamic control by tangential fuselage blowing [AIAA PAPER 91-0620] p 264 A91-21561 A theory for tangential fuselage blowing [AIAA PAPER 91-0621] p 264 A91-21562 TAYLOR, M. New family of low cost electronic fuel control units for small gas turbine engines [SAE PAPER 901039] p 298 A91-21245 TEELING, P. Wind tunnel tests of aerodynamic effects of type I and Il ground de/anti-icing fluids on small transport and general aviation aircraft during takeoff [AIAA PAPER 91-0763] p 288 A91-21609 TEIPEL, INGOLF A three-dimensional Euler code for calculating flow fields in centrifugal compressor diffusers p 267 A91-21744 TELIONIS, D. P. Multi-sensor investigation of delta wing high-alpha aerodynamics	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N. Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518 TSUJIKAWA, Y. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 TSUJIMOTO, TAKASHI Downwash measurement at the horizontal tail p 286 A91-21000 TU, EUGENE L. Navier-Stokes simulation of a close-coupled canard-wing-body configuration [AIAA PAPER 91-0070] p 257 A91-21356 TU, PETER K. C. Smoothing and scaling airfoil coordinates on a personal computer [DE89-000878] p 330 N91-16582 TULEY, GEORGE W. A state of the art Mass Properties Laboratory [SAWE PAPER 1883] p 309 A91-22308 TURPIN, MARC Special optical fibres and sensors for aeronautics p 332 N91-15167
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 STORM VAN LEEUWEN, S. A measurement system for production flight tests of new aircraft p 308 A91-20984 STRAWN, ROGER C. An improved three-dimensional aerodynamics model for helicopter airloads prediction [AIAA PAPER 91-0767] p 267 A91-21610 STREETT, CRIG L Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers [AIAA PAPER 90-5258] p 270 A91-22882 STREMEL, PAUL M. Calculation of flow about two-dimensional bodies by means of the velocity-vorticity formulation on a staggered grid [AIAA PAPER 91-0600] p 263 A91-21551 STUDLIEN, EARL Aircraft platform scales without sideload induced weighing errors [SAWE PAPER 1882] p 309 A91-22307 SUDHARMONO, F. X. ARTISI - Airborne Real Time Instrumentation System p 294 A91-20982 SUN, MAO A method for calculating the aerodynamic forces of	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 TATSUMI, SHIGEFUMI Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 TAVELLA, DOMINGO A. High alpha aerodynamic control by tangential fuselage blowing [AIAA PAPER 91-0620] p 264 A91-21561 A theory for tangential fuselage blowing [AIAA PAPER 91-0621] p 264 A91-21562 TAYLOR, M. New family of low cost electronic fuel control units for small gas turbine engines [SAE PAPER 901039] p 298 A91-21245 TEELING, P. Wind tunnel tests of aerodynamic effects of type I and Il ground de/anti-icing fluids on small transport and general aviation aircraft during takeoff [AIAA PAPER 91-0763] p 288 A91-21609 TEIPEL, INGOLF A three-dimensional Euler code for calculating flow fields in centrifugal compressor diffusers p 267 A91-21744 TELIONIS, D. P. Multi-sensor investigation of delta wing high-alpha aerodynamics [AIAA PAPER 91-0735] p 266 A91-21600	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N. Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518 TSUJIKAWA, Y. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 TSUJIMOTO, TAKASHI Downwash measurement at the horizontal tail p 286 A91-21000 TU, EUGENE L. Navier-Stokes simulation of a close-coupled canard-wing-body configuration [AIAA PAPER 91-0070] p 257 A91-21356 TU, PETER K. C. Smoothing and scaling airfoil coordinates on a personal computer [DE89-000878] p 330 N91-16582 TULEY, GEORGE W. A state of the art Mass Properties Laboratory [SAWE PAPER 1883] p 309 A91-22308 TURPIN, MARC Special optical fibres and sensors for aeronautics p 332 N91-15167 TZOU, D. Y. Fracture instability of a layered conical composite resisting the aerodynamic load p 315 A91-20791
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 STORM VAN LEEUWEN, S. A measurement system for production flight tests of new aircraft p 308 A91-20984 STRAWN, ROGER C. An improved three-dimensional aerodynamics model for helicopter airloads prediction [AIAA PAPER 91-0767] p 267 A91-21610 STREETT, CRAIG L Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers [AIAA PAPER 90-5258] p 270 A91-22882 STREMEL, PAUL M. Calculation of flow about two-dimensional bodies by means of the velocity-vorticity formulation on a staggered grid [AIAA PAPER 91-0600] p 263 A91-21551 STUDLIEN, EARL Aircraft platform scales without sideload induced weighing errors [SAWE PAPER 1882] p 309 A91-22307 SUDHARMONO, F. X. ARTIST - Airborne Real Time Instrumentation System p 294 A91-20982 SUN, MAO A method for calculating the aerodynamic forces of elliptical circulation control airfoils p 273 A91-24155 SUN, XIDING Improved design of the error-proof filler cover of aircraft fuel system p 288 A91-22266	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 TATSUMI, SHIGEFUMI Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 TAVELLA, DOMINGO A. High alpha aerodynamic control by tangential fuselage blowing [AIAA PAPER 91-0620] p 264 A91-21561 A theory for tangential fuselage blowing [AIAA PAPER 91-0621] p 264 A91-21562 TAYLOR, M. New family of low cost electronic fuel control units for small gas turbine engines [SAE PAPER 901039] p 298 A91-21245 TEELING, P. Wind tunnel tests of aerodynamic effects of type I and Il ground de/anti-icing fluids on small transport and general aviation aircraft during takeoff [AIAA PAPER 91-0763] p 288 A91-21609 TEIPEL, INGOLF A three-dimensional Euler code for calculating flow fields in centrifugal compressor diffusers p 267 A91-21744 TELIONIS, D. P. Multi-sensor investigation of delta wing high-alpha aerodynamics [AIAA PAPER 91-0735] p 266 A91-21600 THERIAULT, GUY	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N. Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518 TSUJIKAWA, Y. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 TSUJIMOTO, TAKASHI Downwash measurement at the horizontal tail p 286 A91-21000 TU, EUGENE L. Navier-Stokes simulation of a close-coupled canard-wing-body configuration [AIAA PAPER 91-0070] p 257 A91-21356 TU, PETER K. C. Smoothing and scaling airfoil coordinates on a personal computer [DE89-000878] p 330 N91-16582 TULEY, GEORGE W. A state of the art Mass Properties Laboratory [SAWE PAPER 1883] p 309 A91-22308 TURPIN, MARC Special optical fibres and sensors for aeronautics p 332 N91-15167
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L. A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 STORM VAN LEEUWEN, S. A measurement system for production flight tests of new aircraft p 308 A91-20984 STRAWN, ROGER C. An improved three-dimensional aerodynamics model for helicopter airloads prediction [AIAA PAPER 91-0767] p 267 A91-21610 STREETT, CRAIG L. Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers [AIAA PAPER 90-5258] p 270 A91-22882 STREMEL, PAUL M. Calculation of flow about two-dimensional bodies by means of the velocity-vorticity formulation on a staggered grid [AIAA PAPER 91-0600] p 263 A91-21551 STUDLIEN, EARL Aircraft platform scales without sideload induced weighing errors [SAWE PAPER 1882] p 309 A91-22307 SUDHARMONO, F. X. ARTIST - Airborne Real Time Instrumentation System p 294 A91-20982 SUN, MAO A method for calculating the aerodynamic forces of elliptical circulation control airfoils p 273 A91-24155 SUN, XIDING Improved design of the error-proof filler cover of aircraft fuel system p 288 A91-2266	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 TATSUMI, SHIGEFUMI Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 TAVELLA, DOMINGO A. High alpha aerodynamic control by tangential fuselage blowing [AIAA PAPER 91-0620] p 264 A91-21561 A theory for tangential fuselage blowing [AIAA PAPER 91-0621] p 264 A91-21562 TAYLOR, M. New family of low cost electronic fuel control units for small gas turbine engines [SAE PAPER 901039] p 298 A91-21245 TEELING, P. Wind tunnel tests of aerodynamic effects of type I and Il ground de/anti-icing fluids on small transport and general aviation aircraft during takeoff [AIAA PAPER 91-0783] p 288 A91-21609 TEIPEL, INGOLF A three-dimensional Euler code for calculating flow fields in centrifugal compressor diffusers p 267 A91-21744 TELIONIS, D. P. Multi-sensor investigation of delta wing high-alpha aerodynamics [AIAA PAPER 91-0735] p 266 A91-21600 THERIAULT, GUY North Island F/A-18 aircraft advanced composites	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N. Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518 TSUJIKAWA, Y. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 TSUJIMOTO, TAKASHI Downwash measurement at the horizontal tail p 286 A91-21000 TU, EUGENE L. Navier-Stokes simulation of a close-coupled canard-wing-body configuration [AIAA PAPER 91-0070] p 257 A91-21356 TU, PETTER K. C. Smoothing and scaling airfoil coordinates on a personal computer [DE89-000878] p 330 N91-16582 TULEY, GEORGE W. A state of the art Mass Properties Laboratory [SAWE PAPER 1883] p 309 A91-22308 TURPIN, MARC Special optical fibres and sensors for aeronautics p 332 N91-15167 TZOU, D. Y. Fracture instability of a layered conical composite resisting the aerodynamic load p 315 A91-20791
STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 STORM VAN LEEUWEN, S. A measurement system for production flight tests of new aircraft positioning system p 308 A91-20984 STRAWN, ROGER C. An improved three-dimensional aerodynamics model for helicopter airloads prediction [AIAA PAPER 91-0767] p 267 A91-21610 STREETT, CRAIG L Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers [AIAA PAPER 90-5258] p 270 A91-22882 STREMEL, PAUL M. Calculation of flow about two-dimensional bodies by means of the velocity-vorticity formulation on a staggered grid [AIAA PAPER 91-0600] p 263 A91-21551 STUDLIEN, EARL Aircraft platform scales without sideload induced weighing errors [SAWE PAPER 1882] p 309 A91-22307 SUDHARMONO, F. X. ARTISt - Airborne Real Time Instrumentation System p 294 A91-20982 SUN, MAO A method for calculating the aerodynamic forces of elliptical circulation control airfoils SUN, XIDING Improved design of the error-proof filler cover of aircraft fuel system p 288 A91-22266 SUTTON, OLIVER Soviet ATC research	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 TATSUMI, SHIGEFUMI Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 TAVELLA, DOMINGO A. High alpha aerodynamic control by tangential fuselage blowing [AIAA PAPER 91-0620] p 264 A91-21561 A theory for tangential fuselage blowing [AIAA PAPER 91-0621] p 264 A91-21562 TAYLOR, M. New family of low cost electronic fuel control units for small gas turbine engines [SAE PAPER 901039] p 298 A91-21245 TEELING, P. Wind tunnel tests of aerodynamic effects of type I and Il ground de/anti-icing fluids on small transport and general aviation aircraft during takeoff [AIAA PAPER 91-0763] p 288 A91-21609 TEIPEL, INGOLF A three-dimensional Euler code for calculating flow fields in centrifugal compressor diffusers p 267 A91-21744 TELIONIS, D. P. Multi-sensor investigation of delta wing high-alpha aerodynamics [AIAA PAPER 91-0735] p 266 A91-21600 THERIAULT, GUY	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N. Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518 TSUJIKAWA, Y. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 TSUJIMOTO, TAKASHI Downwash measurement at the horizontal tail p 286 A91-21000 TU, EUGENE L. Navier-Stokes simulation of a close-coupled canard-wing-body configuration [AIAA PAPER 91-070] p 257 A91-21356 TU, PETER K. C. Smoothing and scaling airfoil coordinates on a personal computer [DE89-000878] p 330 N91-16582 TULEY, GEORGE W. A state of the art Mass Properties Laboratory [SAWE PAPER 1883] p 309 A91-22308 TURPIN, MARC Special optical fibres and sensors for aeronautics p 332 N91-15167 TZOU, D. Y. Fracture instability of a layered conical composite resisting the aerodynamic load p 315 A91-20791
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 STORM VAN LEEUWEN, S. A measurement system for production flight tests of new aircraft positioning system p 308 A91-20984 STRAWN, ROGER C. An improved three-dimensional aerodynamics model for helicopter airloads prediction [AIAA PAPER 91-0767] p 267 A91-21610 STREETT, CRAIG L Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers [AIAA PAPER 90-5258] p 270 A91-22882 STREMEL, PAUL M. Calculation of flow about two-dimensional bodies by means of the velocity-vorticity formulation on a staggered grid [AIAA PAPER 91-0600] p 263 A91-21551 STUDLIEN, EARL Aircraft platform scales without sideload induced weighing errors [SAWE PAPER 1882] p 309 A91-22307 SUDHARMONO, F. X. ARTISI - Airborne Real Time Instrumentation System p 294 A91-20982 SUN, MAO A method for calculating the aerodynamic forces of elliptical circulation control airfoils p 273 A91-24155 SUN, XIDING Improved design of the error-proof filler cover of aircraft fuel system p 288 A91-22172 Testing Soviet A7C research p 309 A91-22172 Testing Soviet civil aircraft SVENLA, ROGER A.	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 TATSUMI, SHIGEFUMI Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 TAVELLA, DOMINGO A. High alpha aerodynamic control by tangential fuselage blowing [AIAA PAPER 91-0620] p 264 A91-21561 A theory for tangential fuselage blowing [AIAA PAPER 91-0621] p 264 A91-21562 TAYLOR, M. New family of low cost electronic fuel control units for small gas turbine engines [SAE PAPER 901039] p 298 A91-21245 TEELING, P. Wind tunnel tests of aerodynamic effects of type I and Il ground de/anti-icing fluids on small transport and general aviation aircraft during takeoff [AIAA PAPER 91-0763] p 288 A91-21609 TEIPEL, INGOLF A three-dimensional Euler code for calculating flow fields in centrifugal compressor diffusers p 267 A91-21744 TELIONIS, D. P. Multi-sensor investigation of delta wing high-alpha aerodynamics [AIAA PAPER 91-0735] p 266 A91-21600 THERIAULT, GUY North Island F/A-18 aircraft advanced composites repair [SME PAPER EM90-108] p 316 A91-21109 THOMAS, SCOTT D.	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N. Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518 TSUJIKAWA, Y. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 TSUJIMOTO, TAKASHI Downwash measurement at the horizontal tail p 286 A91-21000 TU, EUGENE L. Navier-Stokes simulation of a close-coupled canard-wing-body configuration [AIAA PAPER 91-0070] p 257 A91-21356 TU, PETER K. C. Smoothing and scaling airfoil coordinates on a personal computer [DE89-000878] p 330 N91-16582 TULEY, GEORGE W. A state of the art Mass Properties Laboratory [SAWE PAPER 1883] p 309 A91-22308 TURPIN, MARC Special optical fibres and sensors for aeronautics p 332 N91-15167 TZOU, D. Y. Fracture instability of a layered conical composite resisting the aerodynamic load p 315 A91-20791 UCHIHORI, HIROSHI Unsteady vortex lattice calculation of the flow around a slender delta wing p 278 N91-16272
STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 STORM VAN LEEUWEN, S. A measurement system for production flight tests of new aircraft positioning system p 308 A91-20984 STRAWN, ROGER C. An improved three-dimensional aerodynamics model for helicopter airloads prediction [AIAA PAPER 91-0767] p 267 A91-21610 STREETT, CRAIG L. Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers [AIAA PAPER 90-5258] p 270 A91-22882 STREMEL, PAUL M. Calculation of flow about two-dimensional bodies by means of the velocity-vorticity formulation on a staggered grid [AIAA PAPER 91-0600] p 263 A91-21551 STUDLIEN, EARL Aircraft platform scales without sideload induced weighing errors [SAWE PAPER 1882] p 309 A91-22307 SUDHARMONO, F. X. ARTISt - Airborne Real Time Instrumentation System p 294 A91-20982 SUN, MAO A method for calculating the aerodynamic forces of elliptical circulation control airfoils p 273 A91-24155 SUN, XIDING Improved design of the error-proof filler cover of aircraft fuel system p 288 A91-22266 SUTTON, OLIVER Soviet ATC research p 309 A91-22172 Testing Soviet civil aircraft fuel temperature	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 TATSUMI, SHIGEFUMI Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 TAVELLA, DOMINGO A. High alpha aerodynamic control by tangential fuselage blowing [AIAA PAPER 91-0620] p 264 A91-21561 A theory for tangential fuselage blowing [AIAA PAPER 91-0621] p 264 A91-21562 TAYLOR, M. New family of low cost electronic fuel control units for small gas turbine engines [SAE PAPER 901039] p 298 A91-21245 TEELING, P. Wind tunnel tests of aerodynamic effects of type I and Il ground de/anti-icing fluids on small transport and general aviation aircraft during takeoff [AIAA PAPER 91-0763] p 288 A91-21609 TEPEL, INGOLF Attree-dimensional Euler code for calculating flow fields in centrifugal compressor diffusers p 267 A91-21744 TELIONIS, D. P. Multi-sensor investigation of delta wing high-alpha aerodynamics [AIAA PAPER 91-0735] p 266 A91-21600 THERIAULT, GUY North Island F/A-18 aircraft advanced composites repair [SME PAPER EM90-108] p 316 A91-21109 THOMAS, SCOTT D. Unstructured Euler flow solutions using hexahedral cell	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N. Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518 TSUJIKAWA, Y. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 TSUJIMOTO, TAKASHI Downwash measurement at the horizontal tail p 286 A91-21000 TU, EUGENE L. Navier-Stokes simulation of a close-coupled canard-wing-body configuration [AIAA PAPER 91-070] p 257 A91-21356 TU, PETER K. C. Smoothing and scaling airfoil coordinates on a personal computer [DE89-000878] p 330 N91-16582 TULEY, GEORGE W. A state of the art Mass Properties Laboratory [SAWE PAPER 1883] p 309 A91-22308 TUPIN, MARC Special optical fibres and sensors for aeronautics p 332 N91-15167 TZOU, D. Y. Fracture instability of a layered conical composite resisting the aerodynamic load p 315 A91-20791 UCHIHORI, HIROSHI Unsteady vortex lattice calculation of the flow around a slender delta wing p 278 N91-16272 UDO, R.
Hypersonic viscous interaction revisited p 254 A91-21191 STONE, DANIEL A. A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy [AD-A227532] p 309 N91-15185 STONE, L A real time expert-aided trajectory estimator using multiple TSPI sources including a unique on-aircraft positioning system p 282 A91-20979 STORM VAN LEEUWEN, S. A measurement system for production flight tests of new aircraft positioning system p 308 A91-20984 STRAWN, ROGER C. An improved three-dimensional aerodynamics model for helicopter airloads prediction [AIAA PAPER 91-0767] p 267 A91-21610 STREETT, CRAIG L Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers [AIAA PAPER 90-5258] p 270 A91-22882 STREMEL, PAUL M. Calculation of flow about two-dimensional bodies by means of the velocity-vorticity formulation on a staggered grid [AIAA PAPER 91-0600] p 263 A91-21551 STUDLIEN, EARL Aircraft platform scales without sideload induced weighing errors [SAWE PAPER 1882] p 309 A91-22307 SUDHARMONO, F. X. ARTISI - Airborne Real Time Instrumentation System p 294 A91-20982 SUN, MAO A method for calculating the aerodynamic forces of elliptical circulation control airfoils p 273 A91-24155 SUN, XIDING Improved design of the error-proof filler cover of aircraft fuel system p 288 A91-22172 Testing Soviet A7C research p 309 A91-22172 Testing Soviet civil aircraft SVENLA, ROGER A.	The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System p 326 A91-20999 TASKER, FREDERICK ABAYOMI Damping estimation in helicopter rotor stability testing p 306 N91-15176 TASLIM, M. E. An experimental investigation of heat transfer coefficients in a spanwise rotating channel with two opposite rib-roughened walls [ASME PAPER 89-GT-150] p 320 A91-23661 TATSUMI, SHIGEFUMI Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method [NAL-TR-1065] p 277 N91-15985 TAVELLA, DOMINGO A. High alpha aerodynamic control by tangential fuselage blowing [AIAA PAPER 91-0620] p 264 A91-21561 A theory for tangential fuselage blowing [AIAA PAPER 91-0621] p 264 A91-21562 TAYLOR, M. New family of low cost electronic fuel control units for small gas turbine engines [SAE PAPER 901039] p 298 A91-21245 TEELING, P. Wind tunnel tests of aerodynamic effects of type I and Il ground de/anti-icing fluids on small transport and general aviation aircraft during takeoff [AIAA PAPER 91-0763] p 288 A91-21609 TEIPEL, INGOLF A three-dimensional Euler code for calculating flow fields in centrifugal compressor diffusers p 267 A91-21744 TELIONIS, D. P. Multi-sensor investigation of delta wing high-alpha aerodynamics [AIAA PAPER 91-0735] p 266 A91-21600 THERIAULT, GUY North Island F/A-18 aircraft advanced composites repair [SME PAPER EM90-108] p 316 A91-21109 THOMAS, SCOTT D.	A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 TOSHIMITSU, KAZUHIKO Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115 TRIGUI, N. Detailed documentation of the near field effects of Large Eddy Break Up devices on the oncoming vortical structures in turbulent boundary layers [AIAA PAPER 91-0519] p 263 A91-21518 TSUJIKAWA, Y. Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646 TSUJIMOTO, TAKASHI Downwash measurement at the horizontal tail p 286 A91-21000 TU, EUGENE L. Navier-Stokes simulation of a close-coupled canard-wing-body configuration [AIAA PAPER 91-0070] p 257 A91-21356 TU, PETER K. C. Smoothing and scaling airfoil coordinates on a personal computer [DE89-000878] p 330 N91-16582 TULEY, GEORGE W. A state of the art Mass Properties Laboratory [SAWE PAPER 1883] p 309 A91-22308 TURPIN, MARC Special optical fibres and sensors for aeronautics p 332 N91-15167 TZOU, D. Y. Fracture instability of a layered conical composite resisting the aerodynamic load p 315 A91-20791 UCHIHORI, HIROSHI Unsteady vortex lattice calculation of the flow around a slender delta wing p 278 N91-16272

Selection of weights in optimal control

On the formation and control of the dynamic stall vortex

(RR-397)

VISBAL, MIGUEL R.

on a pitching airfoil
[AIAA PAPER 91-0006]

p 330 N91-15796

p 255 A91-21328

WANG, ZHI

aircraft

WANG, ZUFENG

Measurements of vorticity field

UNYELIOGLU, KONUR ALP

WANIE, K. M.

A decentralized controller for highly augmented	Painting technology for civil aircraft and helicopters (2nd	Numerical analysis of viscous hypersonic flow past a
aircraft p 327 N91-15717	revised and enlarged edition) p 250 A91-22102	generic forebody [MBB/FE122/S/PUB/0407] p 278 N91-15997
USAB, WILLIAM J., JR. Development of a solution adaptive unstructured	VLASOV, E. V. Effect of the initial flow conditions on the aerodynamic	[MBB/FE122/S/PUB/0407] p 278 N91-15997 Hypersonic model configurations
scheme for quasi-3D inviscid flows through advanced	and acoustic characteristics of turbulent jets	[MBB/FE122/S/PUB/411] p 293 N91-16016
turbomachinery cascades	p 272 A91-23903	WARD, JOHN F.
(AIAA PAPER 91-0132) p 258 A91-21374	VOELCKERS, U.	To capture the market put the real 'V' in VTOL
	Planning support system for air traffic control	p 280 A91-24123
V	p 282 A91-22203	WARDWELL, DOUGLAS A.
•	VOLKERS, D. F.	Small-scale experiments in STOVL ground effects [SAE PAPER 901060] p 287 A91-21256
VAIRO, DANIEL M.	Aerodynamic effects of distributed roughness on a NACA	WASIELEWSKI, G. E.
Selectable towline spin chute system	63(2)-015 airfoil	Properties of advanced rapidly solidified titanium
[NASA-CASE-LAR-14322-1] p 276 N91-15138	[AIAA PAPER 91-0443] p 262 A91-21492	alloys p 312 A91-20864
VAKILI, A. D.	VOS, J. B. Modellization and calculation of laminar hypersonic	WATSON, A.
Investigation of transonic flow over segmented slotted wind tunnel wall with mass transfer	boundary layer flows p 254 A91-21190	Ground facilities for hypersonic simulation
(NASA-CR-187760) p 276 N91-15981	VOULGARIS, PETROS	p 308 A91-21179
VALAVANI, LENA	High performance linear-quadratic and H-infinity designs	WATSON, R. T. The atmospheric effects of stratospheric aircraft: A
High performance linear-quadratic and H-infinity designs	for a 'supermaneuverable' aircraft p 290 A91-22956	topical review
for a 'supermaneuverable' aircraft p 290 A91-22956		[NASA-RP-1250] p 325 N91-16466
VAN DALSEM, W. R.	W	WEBB, R.
Infrared imaging - A validation technique for	• • • • • • • • • • • • • • • • • • •	Eight channel pressure measuring system for cryogenic
computational fluid dynamics codes used in STOVL applications	WACHMAN, HAROLD Y.	use in the European Transonic Wind-tunnel over the
[AIAA PAPER 91-0675] p 318 A91-21587	Molecular dynamics computations of two dimensional	temperature range 78-300 K p 318 A91-21722
VAN DAM, C. P.	supersonic rarefied gas flow past blunt bodies	WEBER, CHRISTOPH Cockpit Mock Up (CMU): A design and development
Comment on 'Optical boundary-layer transition detection	[AIAA PAPER 91-0322] p 261 A91-21459	tool p 328 N91-15730
in a transonic wind tunnel' p 319 A91-22496	WADSWORTH, MARK	WEILAND, C.
VAN DE LEIJGRAAF, R.	Resin transfer molding of composite aircraft interior	Three-dimensional simulations of hypersonic flows
A measurement system for production flight tests of new	furnishings	p 253 A91-21184
aircraft p 308 A91-20984	[NIAR-90-19] p 292 N91-15153	WEISS, C. F.
VAN DORP., W. A. A measurement system for production flight tests of new	WAGNER, B. A.	Integrated propulsion system requirements for control
aircraft p 308 A91-20984	Optimum hypersonic airfoil with power law shock	of STOVL aircraft [ASME PAPER 90-GT-364] p 305 A91-23641
VAN HENGST, J.	waves p 269 A91-22492	WELLS, S. p 303 A91-23641
Certification of Fokker 50 and Fokker 100 for operation	WAGNER, J. H. Heat transfer in rotating passages with smooth walls	Effect of a simulated ice accretion on the aerodynamics
in icing conditions	and radial outward flow	of a swept wing
[AIAA PAPER 91-0561] p 279 A91-21532	[ASME PAPER 89-GT-272] p 320 A91-23659	[AIAA PAPER 91-0442] p-262 A91-21491
Flight tests of the aerodynamic effects of type I and	WAGNER, R. D.	WEN, GONGBI
type II ground de-/anti-icing fluids on the Fokker 50 and Fokker 100 aircraft	Design limits of compressible NLF airfoils	Viscous-inviscid interactive semi-inverse code for three
[AIAA PAPER 91-0785] p 288 A91-21617	[AIAA PAPER 91-0067] p 257 A91-21355	dimensional transonic flow p 274 A91-24168 WEN, WEIDONG
VAN WECHEL, ROBERT	WAIBEL, PETER	Numerical analyses of stress near the hole of
GPS - The logical choice for flight test tracking of	Structural tests for the Dornier 328	compressor disk by boundary element method
aircraft p 282 A91-20998	p 309 A91-22863	p 319 A91-22754
VAN WIE, D. M.	WAKE, A. J. Ground facilities for hypersonic simulation	WESTBY, M. F.
Further assessment of a scramjet inlet mass flow measurement technique for use in hypersonic pulse	p 308 A91-21179	The aerodynamic characteristics of power-law bodies
facilities	WALKER, MARY	in continuum and transitional hypersonic flow
[AIAA PAPER 91-0551] p 300 A91-21527	Joint computational experimental aerodynamics	p 253 A91-21180 WHEELER, R. L., III
VARADAN, T. K.	research on a hypersonic vehicle. Il - Computational	Computerized procedure for vibration diagnostics of
Panel flutter analysis using high precision shear flexible	results	aircraft brakes p 320 A91-23679
element p 319 A91-23423	[AIAA PAPER 91-0321] p 261 A91-21458	WHIPPLE, RAYMOND D.
VASIL'EV, O. A.	WALLE, GERARDO	Selectable towline spin chute system
A study of flow structure in nozzles with a constant-height section in the throat region p 272 A91-23848	Tests for integrating measurements of gas pressures	[NASA-CASE-LAR-14322-1] p 276 N91-15138
VAUGHAN, A.	in aircraft mechanisms	WHITEHEAD, R. S.
Limitations of BITE p 250 A91-21202	[ETN-91-98558] p 293 N91-16014 WANG, CHAOZHI	Qualification of primary composite aircraft structures p 313 A91-23714
VENKATESWARAN, S.	A calculating method of the kill probability attack area	WHITEHURST, ROBERT B.
Flow measurements in a model ramjet secondary	for AAM p 305 A91-22352	Combustion efficiency determined from wall pressure
combustion chamber p 310 A91-20743	WANG, CHING-HUA	and temperature measurement in a Mach 2 combustor
VERDE, L.	A computational investigation of dump combustor	[AIAA PAPER 91-0017] p 298 A91-21336
Parameter space design of robust flight control	performance p 300 A91-23106	WHITFIELD, DAVID L
systems p 328 N91-15718	WANG, FUHUI	Numerical simulation of supersonic unsteady flow for
VETLUTSKII, V. N.	Magnetron sputtered CoCrAIY coatings on superalloy	multibody configurations [AIAA PAPER 91-0023] p 257 A91-21341
Calculation of three-dimensional compressible boundary layers on slender bodies p 252 A91-20936	IN738 p 313 A91-22346	WIEDERMANN, ALEXANDER
VICTER, IRA F.	WANG, LIZHEN	A three-dimensional Euler code for calculating flow fields
Titanium aluminides development for NASP airframe	A calculating method of the kill probability attack area	in centrifugal compressor diffusers p 267 A91-21744
applications	for AAM ρ 305 A91-22352	WIERZBANOWSKI, THEODORE
[AIAA PAPER 90-5261] p 313 A91-22884	WANG, QIZHI A closed form solution of stress intensity factors for the	Manned versus unmanned - The implications to NASP
VIG, JOHN R.	shaft of aeroplane all-moving stabilizer with corner cracks	[AIAA PAPER 90-5265] p 311 A91-22888
Low-noise oscillators for airborne radar applications	emanating from a hole p 319 A91-22752	WIGHTMAN, DAVID F.
p 296 N91-15159	WANG, SHAQQING	Waterjet/hydrobrasive cutting in the automotive,
VIJGEN, P. M. H. W.	Calculations on total temperature and pressure in	aerospace and appliance industries
Comment on 'Optical boundary-layer transition detection	hypersonic air flow p 271 A91-23095	[SME PAPER MS89-833] p 316 A91-21118
in a transonic wind tunnel' p 319 A91-22496	WANG, SHICUN	WIGTON, LAURENCE B.
VIKEN, JEFF	Curved vortex elements for numerical wake modeling	A rapidly converging viscous/inviscid coupling code for multi-element airfoil configurations
Design limits of compressible NLF airfoils [AIAA PAPER 91-0067] p 257 A91-21355	p 273 A91-24162	[AIAA PAPER 91-0177] p 259 A91-21397
VINOGRADOV, V. A.	WANG, WEI	WIJCHERS, T.
Experimental investigation of a 2-D dual mode scramjet	Nonlinear multi-point modeling and parameter estimation	Comparison of combustion experiments and theory in
with hydrogen fuel at Mach 4-6	of the DO 28 research aircraft p 289 A91-22357 The compatibility check of the flight test data of the	polyethylene solid fuel ramjets p 297 A91-20744
[AIAA PAPER 90-5269] p 300 A91-22892	DO 28 research aircraft p 290 A91-22757	WILLE, ROBERT H.
VIRK, G. S.	WANG, YONGHONG	Analytical weight estimation of unconventional landing
A real-time distributed optimal autopilot	A new method of predicting the performance of gas	gear designs
[RR-398] p 307 N91-15181	turbine engines	[SAWE PAPER 1905] p 289 A91-22320
Selection of weights in optimal control	[ASME PAPER 90-GT-337] p 302 A91-23647	WILLEMS, P. Y.

VLADIMIRSKII, VIKTOR N.

viscous hypersonic flow past a p 278 N91-15997 igurations p 293 N91-16016 put the real "V" in VTOL p 280 A91-24123 ts in STOVL ground effects p 287 A91-21256 ced rapidly solidified titanium p 312 A91-20864 personic simulation p 308 A91-21179 ts of stratospheric aircraft: A p 325 N91-16466 measuring system for cryogenic fransonic Wind-tunnel over the p 318 A91-21722 IU): A design and development p 328 N91-15730 ulations of hypersonic flows p 253 A91-21184 system requirements for control p 305 A91-23641 e accretion on the aerodynamics p²62 A91-21491 tive semi-inverse code for three p 274 A91-24168 of stress near the hole of idary element method p 319 A91-22754 racteristics of power-law bodies onal hypersonic flow p 253 A91-21180 re for vibration diagnostics of p 320 A91-23679 chute system , p 276 N91-15138 2-11 composite aircraft structures p 313 A91-23714 determined from wall pressure rement in a Mach 2 combustor p 298 A91-21336 of supersonic unsteady flow for p 257 A91-21341 ER ler code for calculating flow fields diffusers p 267 A91-21744 DORE ned - The implications to NASP p 311 A91-22888 cutting in the automotive, industries p 316 A91-21118 scous/inviscid coupling code for igurations p 259 A91-21397 stion experiments and theory in

p 328 N91-15727

p 301 A91-23642

Symbolic generation of aircraft simulation programmes

STOVL Hot Gas Ingestion control technology

WILLIAMS, B. R.

[ASME PAPER 89-GT-323]

p 290 A91-22381

p 319 A91-22259

A method of developing load spectrum for a fighter

WILLSHIRE,	WILLIAM L., JH.	

Long-range vertical propagation p 332 N91-16693

WILSON, EDWARD M.

Initial flight test of a ground deployed system for flying qualities assessment p 307 N91-15182

[NASA-TM-101700] WILSON, K. J.

Active control of a dump combustor with fuel modulation

[AIAA PAPER 91-0368]

p 299 A91-21471

WINTER, M.

Eigenfunction analysis of turbulent mixing phenomena [AIAA PAPER 91-0520] p 318 A91-21519

WISER, GEORGE L

Windshields and canopies - A pilot's best friends p 286 A91-21125

Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20899

WITT G.R.

Testing air data systems on aircraft - Problems and p 297 A91-21205

WONG, ERIC Y.

shock-layer theory based on thirteen-moment equations and DSMC calculations of rarefied hypersonic flows

[AIAA PAPER 91-0783]

p 267 A91-21616

WOO, MYEUNG-JOUH

Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies [AIAA PAPER 91-0322] p 261 p 261 A91-21459

WOODSON, STANLEY C.

Evaluation procedure for reinforced concrete box culverts under airfield pavements

p 310 N91-16031 [AD-A2279201

WOODWARD, RICHARD P.

In-flight source noise of an advanced full-scale single-rotation propeller [AIAA PAPER 91-0594] p 331 A91-21547

WRIGHT, W. B.

Numerical simulation of icing, deicing, and shedding [AIAA PAPER 91-0665] p 279 A91-21583

WU, DA

Flowfield computation of 2-C-D nozzle

p 268 A91-22382

WU. G. D. Optimal trajectories for an aerospace plane. Part 2: Data, tables, and graphs p 292 N91-16011 [NASA-CR-187848]

Optimal trajectories for an aerospace plane. Part 1: Formulation, results, and analysis [NASA-CR-187868] p 293 N91-16013

WU. J. M.

Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 Investigation of transonic flow over segmented slotted wind tunnel wall with mass transfer

[NASA-CR-187760]

p 276 N91-15981

A Green's Function Method for calculating the transonic p 273 A91-24157 pressure distribution of wing

WU. TZUYIN

Unsteady separation over maneuvering bodies p 269 A91-22481

WU. WANGYI

Viscous-inviscid interactive semi-inverse code for three p 274 A91-24168 dimensional transonic flow

Modellization and calculation of laminar hypersonic p 254 A91-21190 boundary layer flows

X

XIAO, SHUNDA

Nonlinear multi-point modeling and parameter estimation p 289 A91-22357 of the DO 28 research aircraft Predictive control of optimal path terrain following p 305 A91-22371 system The compatibility check of the flight test data of the DO 28 research aircraft p 290 A91-22757 XIE. FANGLIN

Determination of rivet diameter and edge distance in aircraft riveted structure p 319 A91-22267 XIN. DINGDING

Measurements of vorticity field p 319 A91-22259 XIN, QINGXIANG

A mechanism of fretting fatigue failure in the joining lug p 319 A91-22252 of a wing structure

YAMADA, G.

Free vibration of a cantilever annular sector plate with curved radial edges and varying thickness p 316 A91-20943

YAN, XIAOMING

An identification method of fast time varying parameters identification method of fast time varying parameters adapted to aircraft control systems p 327 A91-22758 YANAGIZAWA, MITSUNORI

Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method

[NAL-TR-1065]

p 277 N91-15985 YÀNG, J.

Study of dynamic stall mechanism using simulation of two-dimensional unsteady Navier-Stokes equations p 263 A91-21525 [AIAA PAPER 91-0546]

YANG. L Reliability analysis of structure and control mechanis

p 315 A91-20916 of aircraft flap YANTA, WILLIAM J.

Experimental measurements of the flow in a scramjet p 251 A91-20750 inlet at Mach 4 YAŞLIK, ALAN D.

Three-dimensional numerical simulation electrothermal deicing systems [AIAA PAPER 91-0267] p 287 A91-21433

YING, SUSAN X.

A composite grid approach to study the flow surrounding a pitch-up airfoil in a wind tunnel [AIAA PAPER 91-0599] p 263 A91-21550 YODA. M.

A three-dimensional visualization technique applied to flow around a delta wing p 315 A91-20728 YUAN, LI

Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764

Z

ZAGAINOV, G. I.

Aerospace system development directions and some aspects of their construction and application AIAA PAPER 90-5266] p 311 A91-22889

ZAMAN, K. B. M. Q.

A steadying effect of acoustic excitation on transitory etall

[AIAA PAPER 91-0043] p 269 A91-22499 ZATOLOKA, V. V.

Boundary layer three-dimensionality compression flows p 321 A91-23905 Three-dimensional boundary layer effects in convergent compression flows p 321 A91-23910

ZEMSKAIA, A. S. Optimal conditions for controlling the intensity of

turbulent flow by means of screens p 321 A91-23904 ZHANG, BINQIAN

The effects of canard position aerodynamic characteristics of forward-swept wing p 273 A91-24156

ZHANG, HUI

Numerical computation of shock in the front of blunt p 273 A91-24164 ZHANG. LINCHANG

Air-to-ground attack and Integrated Flight/Fire Control p 305 A91-22265

ZHANG, WEIQUAN

A practical method for the aerodynamic calculations of blunt bodies of revolution p 268 A91-22392 ZHANG, X.

An investigation of supersonic oscillatory cavity flows

driven by thick shear layers p 271 A91-23550 ZHANG, XING A closed form solution of stress intensity factors for the

shaft of aeroplane all-moving stabilizer with corner crack p 319 A91-22752 emanating from a hole ZHAO, YONG

The fuzzy synthetic judgement of correlating parameter

p 289 A91-22354 of fighter design ZHOU, CHANGHAI

The method for extending the range of attack angle and blockage in transonic wind tunnel testing - Using low supersonic nozzle instead of sonic nozzle p 273 A91-24163

ZHU, GUXIANG

A calculating method of the kill probability attack area for AAM p 305 A91-22352

ZHU. KEQIN

Superconvergence in two-dimensional vortex-lattice p 322 A91-24153 methods

An application of automatic ignitor DDK-1 to turbojet engine test under simulated altitude condition

p 300 A91-23100

Wind tunnel tests of aerodynamic effects of type I and Il ground de/anti-icing fluids on small transport and general riation aircraft during takeoff

[AIAA PAPER 91-0763]

p 288 A91-21609

ZIERTEN, THOMAS A. Flight and wind tunnel tests of the aerodynamic effects

of aircraft ground deicing/anti-icing fluids [AIAA PAPER 91-0762] p 2 p 267 A91-21608 ZINN. B. T.

Flowfield measurements in an unstable ramjet burner p 297 A91-20737

ZUBKOV, A. I.

Turbulent three-dimensional separated flows in a supersonic stream near obstacles at the edge of dihedral p 272 A91-23913 corners

ZYWIEL, JAN Z.

NAVPACK: Simulation tools for design of high performance integrated navigation systems

p 329 N91-15739

Typical Corporate Source Index Listing

Listings in this index are arranged alphabetically by corporate source. The title of the document is used to provide a brief description of the subject matter. The page number and the accession number are included in each entry to assist the user in locating the abstract in the abstract section. If applicable, a report number is also included as an aid in identifying the document.

Advisory Group for Aerospace Research and Development, Neullly-Sur-Seine (France).

Advances in Components for Active and Passive Airborne Sensors [AGARD-CP-482] p 295 N91-15154 Computer Aided System Design and Simulation

[AGARD-CP-473] Aerometrics, Inc., Sunnyvale, CA.

A study of dynamic stall using real time interferometry p 256 A91-21329 [AIAA PAPER 91-0007]

p 327 N91-15715

Aeronautica Macchi S.p.A., Varese (Italy).

Aircraft control system design, synthep 328 N91-15729 simulation tools at Aermacchi

Aeronautical Research Labs., Melbourne (Australia).

Programmable cockpit-flight dynamic model p 296 N91-15171 [AD-A227748]

Programmable cockpit-head-up display and outside

p 297 N91-15172 [AD-A227751]

Flight flutter test techniques at ARL

p 306 N91-15178 [AD-A227754] IFDIS: An expert system for diagnosis of failures in jet

aircraft engines [AD-A227757] p 302 N91-16020

Aerospatiale, Marignane (France).

development Algorithms methodology for performance-optimized multicyclic rotor commands p 327 N91-15716

Air Force Engineering and Services Center, Tyndail

A controlled-environment chamber for atmospheric chemistry studies using FT-IR spectroscopy p 309 N91-15185

Air Force Flight Test Center, Edwards AFB, CA.

AFTI/F-111 airplane mission adaptive wing operational flight evaluation technique using uplinked pilot command

Air Force Geophysics Lab., Hanscom AFB, MA.

Observations of severe turbulence near thunderstorm toos p 324 A91-20695

Air Force Inst. of Tech., Wright-Patterson AFB, OH. Numerical solutions for a cylindrical laser diffuser p 274 N91-15127 flow-field Fine scale analysis of the kinematic, dynamic and

thermodynamic features of a multiple microburst-producing

p 325 N91-15657 [AD-A227733] Optimal Kalman filter integration of a global positioning system receiver and an LN-94 inertial navigation system p 283 N91-16003 [ÁD-A227222]

Air Force Wright Research and Development Center, Wright-Patterson AFB, OH.

Nonlinear disturbances in a hypersonic laminar boundary

[AIAA PAPER 91-0320]

p 261 A91-21457 Akron Univ., OH.

Statistical structural analysis of rotor impact ice

sheddina [AIAA PAPER 91-0663] p 279 A91-21581

Influence of aerodynamic forces in ice shedding AIAA PAPER 91-06641 p 279 A91-21582

Analytical Services and Materials, Inc., Hampton, VA. An evaluation of the pressure proof test concept for thin sheet 2024-T3 p 315 A91-20788

Design limits of compressible NLF airfoils p 257 A91-21355 [AIAA PAPER 91-0067]

Cross-flow vortex structure and transition measurements using multi-element hot films [AIAA PAPER 91-0166] p 258 A91-21389

Nonparallel instability of supersonic and hypersonic boundary layers [AIAA PAPER 91-0324] p 261 A91-21461

Flux-difference split scheme for turbulent transport

p 270 A91-22878

[AIAA PAPER 90-5251]

Army Aviation Systems Command, Cleveland, OH. Review of the transmissions of the Soviet helicopters

[NASA-TM-103634] p 291 N91-15146 Army Aviation Systems Command, Hampton, VA.

Directivity and prediction of low frequency rotor noise [AIAA PAPER 91-0592] p 331 A91-21545

Army Aviation Systems Command, Moffett Field, CA. study of dynamic stall using real time interferom p 256 A91-21329

[AIAA PAPER 91-0007] An improved three-dimensional aerodynamics model for helicopter airloads prediction

[AIAA PAPER 91-0767] p 267 A91-21610 Flowfield of a lifting hovering rotor: A Navier-Stokes

simulation [NASA-TM-102862] p 274 N91-15128

Army Electronics Technology and Devices Lab., Fort

Monmouth, NJ.

Low-noise oscillators for airborne radar applications p 296 N91-15159

Army Engineer Waterways Experiment Station, Vicksburg, MS.

Evaluation procedure for reinforced concrete box culverts under airfield pavements [AD-A227920] p 310 N91-16031

Army Lab. Command, Watertown, MA.

Failure analysis of a main rotor pitch horn bolt located on the AH-1 Cobra helicopter [AD-A227679] p 292 N91-16007

Avions Marcel Dassault, Saint-Cloud (France). coherent

tools: A coherent p 328 N91-15728 Formal tools and simulation workshop

В

Battelle Columbus Labs., Research Triangle Park, NC. An evaluation of shape methods for helicopter classification and orientation determination N91-15148 (AD-A2273261

Bilkent Univ., Ankara (Turkey). A decentralized controller

p 327 N91-15717 Boeing Aerospace and Electronics Co., Seattle, WA. ray computed tomography of compo p 314 N91-15322 [AD-A227227]

Boeing Aerospace Co., Seattle, WA. Integrated control-structure design

p 307 N91-15180 [NASA-CR-182020]

Boeing Co., Seattle, WA.

Integrated technology development laboratories

p 330 N91-15743

Boeing Co., Wichita, KS.

Experimental water droplet impingement data on modern aircraft surfaces [AIAA PAPER 91-0445] p 262 A91-21493

Brown Univ., Providence, RI.

Parameter identification for nonlinear aerodynamic

[NASA-CR-187410] p 274 N91-15126

Bundesanstalt fuer Flugsicherung, Frankfurt am Main (Germany, F.R.). Activities report of the German Federal Institute for Flight

[ETN-91-98644] p 281 N91-16002

California Inst. of Tech., Pasadena.

Internally mounted thin-liquid-film skin-friction meter -Comparison with floating element method with and without

AIAA PAPER 91-00601

p 317 A91-21352

California Univ., Davis.

Closed-loop assessment of flight simulator fidelity p 311 A91-22960

Technique for predicting longitudinal pilot-induced p 305 A91-22961 oscillations

Calspan Corp., Arnold AFS, TN.

Investigation of the influence of constant adverse pressure gradients on laminar boundary-layer stability at Mach number 8 fAD-A2282311 p 324 N91-16293

Case Western Reserve Univ., Cleveland, OH.

Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies [AIAA PAPER 91-0322] p 261 A91-21459

Cincinnati Univ., OH.

Inviscid steady/unsteady flow calculations

p 267 A91-21748 Civil Aeromedical Inst., Oklahoma City, OK. Development of a crashworthy seat for commuter

[AD-A227486] p 281 N91-15999

Computer Sciences Corp., Hampton, VA. Analytic Patch Configuration (APC) gateway version 1.0

user's guide [NASA-CR-187464] p 330 N91-15751 Computer Technology Associates, Inc., McKee City,

Aeronautical Mobile Satellite Service (AMSS) capacity analysis and protocol performance simulation plan

p 311 N91-15295 [DOT/FAA/CT-TN90/35] Council for National Academic Awards (England).

Far-field boundaries and their numerical treatment

Cranfield Inst. of Tech., Bedford (England).

TF89 aircraft centre fuselage [ETN-91-98579] p 294 N91-16018 TF89 tactical fighter outer wing design

p 294 N91-16019 [ETN-91-98580]

Cryolab, Inc., San Luis Obispo, CA. Cost-effective use of liquid nitrogen in cryogenic wind tunnels, phase 2 [NASA-CR-182088] p 309 N91-15188

D

Deutsche Airbus G.m.b.H., Hamburg (Germany, F.R.). The use of system simulation during the definition phase of the passenger transport aircraft MPC75

p 330 N91-15741.

Deutsche Forschungsanstalt fuer Luft- und Raumfahrt,	l	McDonnell Aircraft Co., Saint Louis, MO.
Brunswick (Germany, F.R.).		STOVL Hot Gas Ingestion control technology
Directivity and prediction of low frequency rotor noise [AIAA PAPER 91-0592] p 331 A91-21545	Illinois Univ., Urbana.	[ASME PAPER 89-GT-323] p 301 A91-23642 Optimizing aircraft performance with adaptive, integrated
[AIAA PAPER 91-0592] p 331 A91-21545 Real-time hardware-in-the-loop simulation for ATTAS	Effect of a simulated ice accretion on the aerodynamics of a swept wing	flight/propulsion control
and ATTHES advanced technology flight test vehicles	[AIAA PAPER 91-0442] p 262 A91-21491	[ASME PAPER 90-GT-252] p 290 A91-23644
p 329 N91-15732	Implant Sciences Corp., Danvers, MA.	McDonnell-Douglas Helicopter Co., Mesa, AZ.
A new approach to hardware-in-the-loop simulation (FALKE shuttle) p 329 N91-15735	Wear measurement of ceramic bearings in gas	Development and application of a technique for reducing airframe finite element models for dynamics analysis
(FALKE shuttle) p 329 N91-15735 Deutsche Forschungsanstalt fuer Luft- und Raumfahrt,	turbines	[NASA-CR-187448] p 323 N91-1560
Goettingen (Germany, F.R.).	[AD-A227505] p 324 N91-16382 lowa State Univ. of Science and Technology, Ames.	Messerschmitt-Boelkow-Blohm G.m.b.H., Munich
Documents on the history of the Aerodynamic Research	Computation of turbulent flow about unconventional	(Germany, F.R.).
Establishment at Goettingen, 1907 - 1925	airfoil shapes p 278 N91-15992	Integrated design analysis and optimization
[DLR-MITT-90-05] p 251 N91-15977	<u>-</u>	[MBB/FE2/S/PUB/0398] p 291 N91-15145 Computer aided design and simulation of the automation
.	J	approach and landing phase of a combat aircraft
E		p 328 N91-15719
Electronic System G.m.b.H., Munich (Germany, F.R.).	Jet Propulsion Lab., California Inst. of Tech., Pasadena.	Numerical analysis of viscous hypersonic flow past a generic forebody
Cockpit Mock Up (CMU): A design and development	Nonlinear disturbances in a hypersonic laminar boundary	[MBB/FE122/S/PUB/0407] p 278 N91-1599
tool p 328 N91-15730	layer	Aerothermodynamic phenomena and the design of
EMA, Mansfield, TX.	[AIAA PAPER 91-0320] p 261 A91-21457	atmospheric hypersonic airplanes
Évaluation of rotorwash characteristics for tiltrotor and tiltwing aircraft in hovering flight	••	[MBB/FE122/S/PUB/0408] p 293 N91-16019 Hypersonic model configurations
[SCT-90RR-18] p 277 N91-15989	K	[MBB/FE122/S/PUB/411] p 293 N91-16016
ESDU International Ltd., London (England).		The integration of structural optimization in the general
Airframe-induced upwash at subsonic speeds	Kansas Univ., Lawrence.	design process for aircraft
[ESDU-90020] p 275 N91-15130	Pressure-time history of pylon wake on a pusher propeller in flight p 331 A91-20747	[MBB/FE122/S/PUB/0405] p 293 N91-1601
Performance of conical diffusers in subsonic	Karlsruhe Univ. (Germany, F.R.).	Bump examinations of integrally strengthened carbor fiber reinforced plastic panels
compressible flow [ESDU-90025] p 275 N91-15131	Experimental and theoretical examinations of film	[MBB/FE281/CFK/PUB/0013] p 314 N91-16076
An introduction to aircraft excrescence drag	cooling of gas turbine blades	Midwest Research Inst., Golden, CO.
[ESDU-90029] p 275 N91-15132	[ETN-91-98554] p 303 N91-16022 Kyushu Univ., Fukuoka (Japan).	Smoothing and scaling airfoil coordinates on a persona
A method of estimating a separation boundary of	Numerical simulation of separated flows around a wing	computer [DE89-000878] p 330 N91-1658;
two-dimensional aerofoil sections in transonic flow	section at steady and unsteady motion by a discrete vortex	Mitre Corp., Bedford, MA.
[ESDU-81020-AMEND-A] p 275 N91-15133 . Energy height method for flight path optimisation	method p 278 N91-16268	A successive partial-relaxation Gaussian algorithm to
[ESDU-90012] p 291 N91-15151	Unsteady vortex lattice calculation of the flow around a slender delta wing p 278 N91-16272	area navigation operations with the Microwave Landing
Normal force and pitching moment of low aspect ratio	a slender delta wing p 278 N91-16272	System (MLS)
cropped-delta wings up to high angles of attack at	1 .	[AD-A228871] p 283 N91-1600-
supersonic speeds	L	
[ESDU-90013] p 292 N91-15152	Lockheed Engineering and Sciences Co., Hampton,	N
Fatigue of aluminium alloy joints with various fastener systems. High load transfer	VA.	
[ESDU-90018] p 322 N91-15597	A study of loudness as a metric for sonic boom	Naples Univ. (Italy).
Airframe noise prediction	acceptability [AIAA PAPER 91-0496] p 331 A91-21511	Parameter space design of robust flight control systems p 328 N91-1571
[ESDU-90023] p 332 N91-15843	Loughborough Univ. of Technology (England).	National Aeronautics and Space Administration,
European Organization for the Safety of Air	Jet engine performance estimation from minimal input	Washington, DC.
Navigation, Brussells (Belglum). Integration of a realistic airline/aircrew/aircraft	data	Engines and innovation: Lewis Laboratory and America
component in ATC simulations p 329 N91-15738	[ETN-91-98582] p 303 N91-16023 An introduction to modern aero-engine control design	propulsion technology [NASA-SP-4306] p 333 N91-1597:
	[ETN-91-98583] p 303 N91-16024	The atmospheric effects of stratospheric aircraft:
F	Longitudinal stability augmentation of a lightweight	topical review
•	fighter aircraft model	[NASA-RP-1250] p 325 N91-1646
Federal Aviation Administration, Atlantic City, NJ.	[ETN-91-98585] p 308 N91-16026	National Aeronautics and Space Administration. Ames Research Center, Moffett Field, CA.
Effects of runway anti-icing chemicals on traction	М	Prediction of transitional (laminar-turbulent) hypersoni
[DOT/FAA/CT-TN90/53] p 310 N91-15189	IVI	flows using the parabolized Navier-Stokes equations
Florida Atlantic Univ., Boca Raton.	Manchester Univ. (England).	p 255 A91-2119
Nonideal isentropic gas flow through converging-diverging nozzles p 252 A91-21064	The inviscid stability of supersonic flow past a sharp	The prediction of STOVL noise - Current semiempirical
CONVENIENT NOTE NO.	The inviscio stability of supersonic now past a snarp	
	cone p 269 A91-22511	methods and comparisons with jet noise data
	cone p 269 A91-22511 Maryland Univ., College Park.	[SAE PAPER 901058] p 331 A91-2125
G	cone p 269 A91-22511 Maryland Univ., College Park. Higher harmonic control analysis for vibration reduction	[SAE PAPER 901058] p 331 A91-2125 Small-scale experiments in STOVL ground effects
G	cone p 269 A91-22511 Maryland Univ., College Park.	[SAE PAPER 901058] p 331 A91-2125
G General Applied Science Labs., Inc., Ronkonkoma, NY.	cone p 269 A91-22511 Maryland Univ., College Park. Higher harmonic control analysis for vibration reduction of helicopter rotor systems p 306 N91-15175	[SAE PAPER 901058] p 331 A91-2125: Small-scale experiments in STOVL ground effects [SAE PAPER 901060] p 287 A91-2125:
General Applied Science Labs., Inc., Ronkonkoma, NY. Progress in hypersonic combustion technology with	cone p 269 A91-22511 Maryland Univ., College Park. Higher harmonic control analysis for vibration reduction of helicopter rotor systems p 306 N91-15175 Damping estimation in helicopter rotor stability testing p 306 N91-15176 A coupled rotor aeroelastic analysis utilizing advanced	[SAE PAPER 901058] p 331 A91-2125: Small-scale experiments in STOVL ground effects [SAE PAPER 901060] p 287 A91-2125: A study of dynamic stall using real time interferometr [AIAA PAPER 91-0007] p 256 A91-2132: Numerical prediction of the unsteady flowfield around
G General Applied Science Labs., Inc., Ronkonkoma, NY.	cone p 269 A91-22511 Maryland Univ., College Park. Higher harmonic control analysis for vibration reduction of helicopter rotor systems p 306 N91-15175 Damping estimation in helicopter rotor stability testing p 306 N91-15176 A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006	[SAE PAPER 901058] p 331 A91-2125: Small-scale experiments in STOVL ground effects [SAE PAPER 901060] p 287 A91-2125: A study of dynamic stall using real time interferometr [AIAA PAPER 91-0007] p 256 A91-2132: Numerical prediction of the unsteady flowfield around the F-18 aircraft at large incidence
General Applied Science Labs., Inc., Ronkonkoma, NY. Progress in hypersonic combustion technology with computation and experiment [AIAA PAPER 90-5254] p 300 A91-22879 General Motors Corp., Indianapolis, IN.	cone p 269 A91-22511 Maryland Univ., College Park. Higher harmonic control analysis for vibration reduction of helicopter rotor systems p 306 N91-15175 Damping estimation in helicopter rotor stability testing p 306 N91-15176 A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 Massachusetts Inst. of Tech., Cambridge.	[SAE PAPER 901058] p 331 A91-2125: Small-scale experiments in STOVL ground effects [SAE PAPER 901060] p 287 A91-2125: A study of dynamic stall using real time interferometr [AIAA PAPER 91-0007] p 256 A91-2132: Numerical prediction of the unsteady flowfield around the F-18 aircraft at large incidence [AIAA PAPER 91-0020] p 256 A91-2133:
General Applied Science Labs., Inc., Ronkonkoma, NY. Progress in hypersonic combustion technology with computation and experiment [AIAA PAPER 90-5254] p 300 A91-22879 General Motors Corp., Indianapolis, IN. Advanced Turbine Technology Applications Project	cone p 269 A91-22511 Maryland Univ., College Park. Higher harmonic control analysis for vibration reduction of helicopter rotor systems p 306 N91-15175 Damping estimation in helicopter rotor stability testing p 306 N91-15176 A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006	[SAE PAPER 901058] p 331 A91-2125: Small-scale experiments in STOVL ground effects [SAE PAPER 901060] p 287 A91-2125: A study of dynamic stall using real time interferometr [AIAA PAPER 91-0007] p 256 A91-2132: Numerical prediction of the unsteady flowfield around the F-18 aircraft at large incidence [AIAA PAPER 91-0020] p 256 A91-2133: Progress in laser-spectroscopic techniques for
General Applied Science Labs., Inc., Ronkonkoma, NY. Progress in hypersonic combustion technology with computation and experiment [AIAA PAPER 90-5254] p 300 A91-22879 General Motors Corp., Indianapolis, IN. Advanced Turbine Technology Applications Project (ATTAP)	cone p 269 A91-22511 Maryland Univ., College Park. Higher harmonic control analysis for vibration reduction of helicopter rotor systems p 306 N91-15175 Damping estimation in helicopter rotor stability testing p 306 N91-15176 A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 Massachusetts Inst. of Tech., Cambridge. Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies [AIAA PAPER 91-0322] p 261 A91-21459	[SAE PAPER 901058] p 331 A91-2125: Small-scale experiments in STOVL ground effects [SAE PAPER 901060] p 287 A91-2125: A study of dynamic stall using real time interferometr [AIAA PAPER 91-0007] p 256 A91-2132: Numerical prediction of the unsteady flowfield around the F-18 aircraft at large incidence [AIAA PAPER 91-0020] p 256 A91-2133:
General Applied Science Labs., Inc., Ronkonkoma, NY. Progress in hypersonic combustion technology with computation and experiment [AIAA PAPER 90-5254] p 300 A91-22879 General Motors Corp., Indianapolis, IN. Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021	cone p 269 A91-22511 Maryland Univ., College Park. Higher harmonic control analysis for vibration reduction of helicopter rotor systems p 306 N91-15175 Damping estimation in helicopter rotor stability testing p 306 N91-15176 A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 Massachusetts Inst. of Tech., Cambridge. Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies [AIAA PAPER 91-0322] p 261 A91-21459 Multi-dimensional modelling of gas turbine combustion	[SAE PAPER 901058] p 331 A91-2125: Small-scale experiments in STOVL ground effects [SAE PAPER 901060] A study of dynamic stall using real time interferometr [AIAA PAPER 91-0007] p 256 A91-2132: Numerical prediction of the unsteady flowfield around the F-18 aircraft at large incidence [AIAA PAPER 91-0020] p 256 A91-2133: Progress in laser-spectroscopic techniques for aerodynamic measurements - An overview [AIAA PAPER 91-0059] p 317 A91-2135 Navier-Stokes simulation of a close-couple
General Applied Science Labs., Inc., Ronkonkoma, NY. Progress in hypersonic combustion technology with computation and experiment [AIAA PAPER 90-5254] p 300 A91-22879 General Motors Corp., Indianapolis, IN. Advanced Turbine Technology Applications Project (ATTAP)	cone p 269 A91-22511 Maryland Univ., College Park. Higher harmonic control analysis for vibration reduction of helicopter rotor systems p 306 N91-15175 Damping estimation in helicopter rotor stability testing p 306 N91-15176 A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 Massachusetts Inst. of Tech., Cambridge. Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies [AIAA PAPER 91-0322] p 261 A91-21459 Multi-dimensional modelling of gas turbine combustion using a flame sheet model in KIVA II	[SAE PAPER 901058] p 331 A91-2125: Small-scale experiments in STOVL ground effects [SAE PAPER 901060] p 287 A91-2125: A study of dynamic stall using real time interferometr [AIAA PAPER 91-0007] p 256 A91-2132: Numerical prediction of the unsteady flowfield around the F-18 aircraft at large incidence [AIAA PAPER 91-0020] p 256 A91-2133: Progress in laser-spectroscopic techniques for aerodynamic measurements - An overview [AIAA PAPER 91-0059] p 317 A91-2135 Navier-Stokes simulation of a close-couple canard-wing-body configuration
General Applied Science Labs., Inc., Ronkonkoma, NY. Progress in hypersonic combustion technology with computation and experiment [AIAA PAPER 90-5254] p 300 A91-22879 General Motors Corp., Indianapolis, IN. Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 Georgia Inst. of Tech., Atlanta. Numerical study of the effects of icing on fixed and rotary wing performance	cone p 269 A91-22511 Maryland Univ., College Park. Higher harmonic control analysis for vibration reduction of helicopter rotor systems p 306 N91-15175 Damping estimation in helicopter rotor stability testing p 306 N91-15176 A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 Massachusetts Inst. of Tech., Cambridge. Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies [AIAA PAPER 91-0322] p 261 A91-21459 Multi-dimensional modelling of gas turbine combustion	[SAE PAPER 901058] p 331 A91-2125: Small-scale experiments in STOVL ground effects [SAE PAPER 901060] p 287 A91-2125: A study of dynamic stall using real time interferometr [AIAA PAPER 91-0007] p 256 A91-2132: Numerical prediction of the unsteady flowfield around the F-18 aircraft at large incidence [AIAA PAPER 91-0020] p 256 A91-2133: Progress in laser-spectroscopic techniques to aerodynamic measurements - An overview [AIAA PAPER 91-0059] p 317 A91-2135 Navier-Stokes simulation of a close-coupled canard-wing-body configuration [AIAA PAPER 91-0070] p 257 A91-2135
General Applied Science Labs., Inc., Ronkonkoma, NY. Progress in hypersonic combustion technology with computation and experiment [AIAA PAPER 90-5254] p 300 A91-22879 General Motors Corp., Indianapolls, IN. Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 Georgia Inst. of Tech., Atlanta. Numerical study of the effects of icing on fixed and rotary	cone p 269 A91-22511 Maryland Univ., College Park. Higher harmonic control analysis for vibration reduction of helicopter rotor systems p 306 N91-15175 Damping estimation in helicopter rotor stability testing p 306 N91-15176 A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 Massachusetts Inst. of Tech., Cambridge. Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies [AIAA PAPER 91-0322] p 261 A91-21459 Multi-dimensional modelling of gas turbine combustion using a flame sheet model in KIVA II [AIAA PAPER 91-0414] p 299 A91-21483 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956	[SAE PAPER 901058] p 331 A91-2125: Small-scale experiments in STOVL ground effects [SAE PAPER 901060] p 287 A91-2125: A study of dynamic stall using real time interferometr [AIAA PAPER 91-0007] p 256 A91-2132: Numerical prediction of the unsteady flowfield around the F-18 aircraft at large incidence [AIAA PAPER 91-0020] p 256 A91-2133: Progress in laser-spectroscopic techniques for aerodynamic measurements - An overview [AIAA PAPER 91-0059] p 317 A91-2135: Navier-Stokes simulation of a close-coupled canard-wing-body configuration [AIAA PAPER 91-0070] p 257 A91-2135: Numerical algorithm comparison for the accurate and content of the accura
General Applied Science Labs., Inc., Ronkonkoma, NY. Progress in hypersonic combustion technology with computation and experiment [AIAA PAPER 90-5254] p 300 A91-22879 General Motors Corp., Indianapolis, IN. Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 Georgia Inst. of Tech., Atlanta. Numerical study of the effects of icing on fixed and rotary wing performance [AIAA PAPER 91-0662] p 265 A91-21580	cone p 269 A91-22511 Maryland Univ., College Park. Higher harmonic control analysis for vibration reduction of helicopter rotor systems p 306 N91-15175 Damping estimation in helicopter rotor stability testing p 306 N91-15176 A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 Massachusetts Inst. of Tech., Cambridge. Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies [AIAA PAPER 91-0322] p 261 A91-21459 Multi-dimensional modelling of gas turbine combustion using a flame sheet model in KIVA II [AIAA PAPER 91-0414] p 299 A91-21483 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Nonlinear large amplitude vibration of composite	[SAE PAPER 901058] p 331 A91-2125: Small-scale experiments in STOVL ground effects [SAE PAPER 901060] p 287 A91-2125: A study of dynamic stall using real time interferometr [AIAA PAPER 91-0007] p 256 A91-2132: Numerical prediction of the unsteady flowfield around the F-18 aircraft at large incidence [AIAA PAPER 91-0020] p 256 A91-2133: Progress in laser-spectroscopic techniques to aerodynamic measurements - An overview [AIAA PAPER 91-0059] p 317 A91-2135 Navier-Stokes simulation of a close-coupled canard-wing-body configuration [AIAA PAPER 91-0070] p 257 A91-2135
General Applied Science Labs., Inc., Ronkonkoma, NY. Progress in hypersonic combustion technology with computation and experiment [AIAA PAPER 90-5254] p 300 A91-22879 General Motors Corp., Indianapolis, IN. Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 Georgia Inst. of Tech., Atlanta. Numerical study of the effects of icing on fixed and rotary wing performance	cone p 269 A91-22511 Maryland Univ., College Park. Higher harmonic control analysis for vibration reduction of helicopter rotor systems p 306 N91-15175 Damping estimation in helicopter rotor stability testing p 306 N91-15176 A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 Massachusetts Inst. of Tech., Cambridge. Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies [AIAA PAPER 91-0322] p 261 A91-21459 Multi-dimensional modelling of gas turbine combustion using a flame sheet model in KIVA II [AIAA PAPER 91-0414] p 299 A91-21463 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Nonlinear large amplitude vibration of composite helicopter rotor blade at large static deflection	[SAE PAPER 901058] p 331 A91-2125: Small-scale experiments in STOVL ground effects [SAE PAPER 901060] p 27 A91-2125: A study of dynamic stall using real time interferometr [AlAA PAPER 91-0007] p 256 A91-2132: Numerical prediction of the unsteady flowfield around the F-18 aircraft at large incidence [AlAA PAPER 91-0020] p 256 A91-2133: Progress in laser-spectroscopic techniques for aerodynamic measurements - An overview [AlAA PAPER 91-0059] p 317 A91-2135 Navier-Stokes simulation of a close-couple canard-wing-body configuration [AlAA PAPER 91-0070] p 257 A91-2135 Numerical algorithm comparison for the accurate an efficient computation of high-incidence vortical flow [AlAA PAPER 91-0175] p 259 A91-2139 Numerical, experimental, and theoretical study of
General Applied Science Labs., Inc., Ronkonkoma, NY. Progress in hypersonic combustion technology with computation and experiment [AIAA PAPER 90-5254] p 300 A91-22879 General Motors Corp., Indianapolls, IN. Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 Georgia Inst. of Tech., Atlanta. Numerical study of the effects of icing on fixed and rotary wing performance [AIAA PAPER 91-0662] p 265 A91-21580	cone p 269 A91-22511 Maryland Univ., College Park. Higher harmonic control analysis for vibration reduction of helicopter rotor systems p 306 N91-15175 Damping estimation in helicopter rotor stability testing p 306 N91-15176 A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 Massachusetts Inst. of Tech., Cambridge. Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies [AIAA PAPER 91-0322] p 261 A91-21459 Multi-dimensional modelling of gas turbine combustion using a flame sheet model in KIVA II [AIAA PAPER 91-0414] p 299 A91-21483 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Nonlinear large amplitude vibration of composite	[SAE PAPER 901058] p 331 A91-2125: Small-scale experiments in STOVL ground effects [SAE PAPER 901060] A study of dynamic stall using real time interferometr [AIAA PAPER 91-0007] p 256 A91-2132: Numerical prediction of the unsteady flowfield around the F-18 aircraft at large incidence [AIAA PAPER 91-0020] p 256 A91-2133: Progress in laser-spectroscopic techniques for aerodynamic measurements - An overview [AIAA PAPER 91-0059] p 317 A91-2135: Navier-Stokes simulation of a close-couple canard-wing-body configuration [AIAA PAPER 91-0070] p 257 A91-2135: Numerical algorithm comparison for the accurate an efficient computation of high-incidence vortical flow [AIAA PAPER 91-0175] p 259 A91-2139 Numerical, experimental, and theoretical study of convective instability of flows over pointed bodies a
General Applied Science Labs., Inc., Ronkonkoma, NY. Progress in hypersonic combustion technology with computation and experiment [AIAA PAPER 90-5254] p 300 A91-22879 General Motors Corp., Indianapolls, IN. Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 Georgia Inst. of Tech., Atlanta. Numerical study of the effects of icing on fixed and rotary wing performance [AIAA PAPER 91-0662] p 265 A91-21580	cone p 269 A91-22511 Maryland Univ., College Park. Higher harmonic control analysis for vibration reduction of helicopter rotor systems p 306 N91-15175 Damping estimation in helicopter rotor stability testing p 306 N91-15176 A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 Massachusetts Inst. of Tech., Cambridge. Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies [AIAA PAPER 91-0322] p 261 A91-21459 Multi-dimensional modelling of gas turbine combustion using a flame sheet model in KIVA II [AIAA PAPER 91-0414] p 299 A91-21483 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Nonlinear large amplitude vibration of composite helicopter rotor blade at large static deflection [AD-A227933] Massachusetts Inst. of Tech., Lexington. Results of the Kansas City 1989 Terminal Doppler	[SAE PAPER 901058] p 331 A91-2125: Small-scale experiments in STOVL ground effects [SAE PAPER 901060] A study of dynamic stall using real time interferometr [AIAA PAPER 91-0007] p 256 A91-2132: Numerical prediction of the unsteady flowfield arount the F-18 aircraft at large incidence [AIAA PAPER 91-0020] p 256 A91-2133: Progress in laser-spectroscopic techniques for aerodynamic measurements - An overview [AIAA PAPER 91-0059] p 317 A91-2135: Navier-Stokes simulation of a close-couple canard-wing-body configuration [AIAA PAPER 91-0070] p 257 A91-2135: Numerical algorithm comparison for the accurate an efficient computation of high-incidence vortical flow [AIAA PAPER 91-0175] p 259 A91-2139: Numerical, experimental, and theoretical study of convective instability of flows over pointed bodies a incidence
General Applied Science Labs., Inc., Ronkonkoma, NY. Progress in hypersonic combustion technology with computation and experiment [AIAA PAPER 90-5254] p 300 A91-22879 General Motors Corp., Indianapolls, IN. Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 Georgia Inst. of Tech., Atlanta. Numerical study of the effects of icing on fixed and rotary wing performance [AIAA PAPER 91-0662] p 265 A91-21580 H High Technology Corp., Hampton, VA. Boundary layer receptivity phenomena in	cone p 269 A91-22511 Maryland Univ., College Park. Higher harmonic control analysis for vibration reduction of helicopter rotor systems p 306 N91-15175 Damping estimation in helicopter rotor stability testing p 306 N91-15176 A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 Massachusetts Inst. of Tech., Cambridge. Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies [AIAA PAPER 91-0322] p 261 A91-21459 Multi-dimensional modelling of gas turbine combustion using a flame sheet model in KIVA II [AIAA PAPER 91-0414] p 299 A91-21483 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Nonlinear large amplitude vibration of composite helicopter rotor blade at large static deflection [AD-A227933] Massachusetts Inst. of Tech., Lexington. Results of the Kansas City 1989 Terminal Doppler Weather Radar (TDWR) operational evaluation testing	[SAE PAPER 901058] p 331 A91-2125: Small-scale experiments in STOVL ground effects [SAE PAPER 901060] p 287 A91-2125: A study of dynamic stall using real time interferometr [AlAA PAPER 91-0007] p 256 A91-2132: Numerical prediction of the unsteady flowfield around the F-18 aircraft at large incidence [AlAA PAPER 91-0020] p 256 A91-2133: Progress in Isser-spectroscopic techniques for aerodynamic measurements - An overview [AlAA PAPER 91-0059] p 317 A91-2135: Navier-Stokes simulation of a close-coupled canard-wing-body configuration [AlAA PAPER 91-0070] p 257 A91-2135: Numerical algorithm comparison for the accurate an efficient computation of high-incidence vortical flow [AlAA PAPER 91-0175] p 259 A91-2139 Numerical, experimental, and theoretical study convective instability of flows over pointed bodies a incidence [AlAA PAPER 91-0291] p 260 A91-2144
General Applied Science Labs., Inc., Ronkonkoma, NY. Progress in hypersonic combustion technology with computation and experiment [AIAA PAPER 90-5254] p 300 A91-22879 General Motors Corp., Indianapolls, IN. Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 Georgia Inst. of Tech., Atlanta. Numerical study of the effects of icing on fixed and rotary wing performance [AIAA PAPER 91-0662] p 265 A91-21580 H High Technology Corp., Hampton, VA. Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers	cone p 269 A91-22511 Maryland Univ., College Park. Higher harmonic control analysis for vibration reduction of helicopter rotor systems p 306 N91-15175 Damping estimation in helicopter rotor stability testing p 306 N91-15176 A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 Massachusetts Inst. of Tech., Cambridge. Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies [AIAA PAPER 91-0322] p 261 A91-21459 Multi-dimensional modelling of gas turbine combustion using a flame sheet model in KIVA II [AIAA PAPER 91-0414] p 299 A91-21483 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Nonlinear large amplitude vibration of composite helicopter rotor blade at large static deflection [AD-A227933] p 307 N91-15183 Massachusetts Inst. of Tech., Lexington. Results of the Kansas City 1989 Terminal Doppler Weather Radar (TDWR) operational evaluation testing [AD-A228784] p 323 N91-16206	[SAE PAPER 901058] p 331 A91-2125: Small-scale experiments in STOVL ground effects [SAE PAPER 901060] p 287 A91-2125: A study of dynamic stall using real time interferometr [AIAA PAPER 91-0007] p 256 A91-2132: Numerical prediction of the unsteady flowfield around the F-18 aircraft at large incidence [AIAA PAPER 91-0020] p 256 A91-2133: Progress in Igser-spectroscopic techniques for aerodynamic measurements - An overview [AIAA PAPER 91-0059] p 317 A91-2135: Navier-Stokes simulation of a close-couple canard-wing-body configuration [AIAA PAPER 91-0070] p 257 A91-2135: Numerical algorithm comparison for the accurate an efficient computation of high-incidence vortical flow [AIAA PAPER 91-0175] p 259 A91-2139: Numerical, experimental, and theoretical study of convective instability of flows over pointed bodies a incidence [AIAA PAPER 91-0291] p 260 A91-2144. Calculation of flow about two-dimensional bodies be
General Applied Science Labs., Inc., Ronkonkoma, NY. Progress in hypersonic combustion technology with computation and experiment [AIAA PAPER 90-5254] p 300 A91-22879 General Motors Corp., Indianapolls, IN. Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 Georgia Inst. of Tech., Atlanta. Numerical study of the effects of icing on fixed and rotary wing performance [AIAA PAPER 91-0662] p 265 A91-21580 H High Technology Corp., Hampton, VA. Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers [AIAA PAPER 90-5258] p 270 A91-22882	cone p 269 A91-22511 Maryland Univ., College Park. Higher harmonic control analysis for vibration reduction of helicopter rotor systems p 306 N91-15175 Damping estimation in helicopter rotor stability testing p 306 N91-15176 A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 Massachusetts Inst. of Tech., Cambridge. Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies [AIAA PAPER 91-0322] p 261 A91-21459 Multi-dimensional modelling of gas turbine combustion using a flame sheet model in KIVA II [AIAA PAPER 91-0414] P 299 A91-21483 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Nonlinear large amplitude vibration of composite helicopter rotor blade at large static deflection [AD-A227933] Massachusetts Inst. of Tech., Lexington. Results of the Kansas City 1989 Terminal Doppler Weather Radar (TDWR) operational evaluation testing [AD-A228784] MCAT Inst., Moffett Field, CA.	[SAE PAPER 901058] p 331 A91-2125: Small-scale experiments in STOVL ground effects [SAE PAPER 901060] p 287 A91-2125: A study of dynamic stall using real time interferometr [AlAA PAPER 91-0007] p 256 A91-2132: Numerical prediction of the unsteady flowfield around the F-18 aircraft at large incidence [AlAA PAPER 91-0020] p 256 A91-2133: Progress in Isser-spectroscopic techniques for aerodynamic measurements - An overview [AlAA PAPER 91-0059] p 317 A91-2135: Navier-Stokes simulation of a close-coupled canard-wing-body configuration [AlAA PAPER 91-0070] p 257 A91-2135: Numerical algorithm comparison for the accurate an efficient computation of high-incidence vortical flow [AlAA PAPER 91-0175] p 259 A91-2139 Numerical, experimental, and theoretical study convective instability of flows over pointed bodies a incidence [AlAA PAPER 91-0291] p 260 A91-2144 Calculation of flow about two-dimensional bodies be means of the velocity-vorticity formulation on a staggere grid
General Applied Science Labs., Inc., Ronkonkoma, NY. Progress in hypersonic combustion technology with computation and experiment [AIAA PAPER 90-5254] p 300 A91-22879 General Motors Corp., Indianapolis, IN. Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 Georgia Inst. of Tech., Atlanta. Numerical study of the effects of icing on fixed and rotary wing performance [AIAA PAPER 91-0662] p 265 A91-21580 High Technology Corp., Hampton, VA. Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers [AIAA PAPER 90-5258] p 270 A91-22882 Honeywell Advanced Technology Centre, Markham (Ontario).	cone p 269 A91-22511 Maryland Univ., College Park. Higher harmonic control analysis for vibration reduction of helicopter rotor systems p 306 N91-15175 Damping estimation in helicopter rotor stability testing p 306 N91-15176 A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 Massachusetts Inst. of Tech., Cambridge. Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies [AIAA PAPER 91-0322] p 261 A91-21459 Multi-dimensional modelling of gas turbine combustion using a flame sheet model in KIVA II [AIAA PAPER 91-0414] p 299 A91-21483 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Nonlinear large amplitude vibration of composite helicopter rotor blade at large static deflection [AD-A227933] p 307 N91-15183 Massachusetts Inst. of Tech., Lexington. Results of the Kansas City 1989 Terminal Doppler Weather Radar (TDWR) operational evaluation testing [AD-A228784] p 323 N91-16206	[SAE PAPER 901058] p 331 A91-2125: Small-scale experiments in STOVL ground effects [SAE PAPER 901060] p 287 A91-2125: A study of dynamic stall using real time interferometr [AIAA PAPER 91-0007] p 256 A91-2132: Numerical prediction of the unsteady flowfield around the F-18 aircraft at large incidence [AIAA PAPER 91-0020] p 256 A91-2133: Progress in laser-spectroscopic techniques for aerodynamic measurements - An overview [AIAA PAPER 91-0059] p 317 A91-2135: Navier-Stokes simulation of a close-couple canard-wing-body configuration [AIAA PAPER 91-0070] p 257 A91-2135: Numerical algorithm comparison for the accurate an efficient computation of high-incidence vortical flow [AIAA PAPER 91-0175] p 259 A91-2139: Numerical, experimental, and theoretical study of convective instability of flows over pointed bodies a incidence [AIAA PAPER 91-0291] p 260 A91-2144. Calculation of flow about two-dimensional bodies be means of the velocity-vorticity formulation on a staggere grid
General Applied Science Labs., Inc., Ronkonkoma, NY. Progress in hypersonic combustion technology with computation and experiment [AIAA PAPER 90-5254] p 300 A91-22879 General Motors Corp., Indianapolls, IN. Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 Georgia Inst. of Tech., Atlanta. Numerical study of the effects of icing on fixed and rotary wing performance [AIAA PAPER 91-0662] p 265 A91-21580 H High Technology Corp., Hampton, VA. Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers [AIAA PAPER 90-5258] p 270 A91-22882 Honeywell Advanced Technology Centre, Markham (Ontario). NAVPACK: Simulation tools for design of high	cone p 269 A91-22511 Maryland Univ., College Park. Higher harmonic control analysis for vibration reduction of helicopter rotor systems p 306 N91-15175 Damping estimation in helicopter rotor stability testing p 306 N91-15176 A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 Massachusetts Inst. of Tech., Cambridge. Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies [AIAA PAPER 91-0322] p 261 A91-21459 Multi-dimensional modelling of gas turbine combustion using a flame sheet model in KIVA II [AIAA PAPER 91-0414] P 299 A91-21483 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Nonlinear large amplitude vibration of composite helicopter rotor blade at large static deflection [AD-A227933] Massachusetts Inst. of Tech., Lexington. Results of the Kansas City 1989 Terminal Doppler Weather Radar (TDWR) operational evaluation testing [AD-A228784] MCAT Inst., Moffett Field, CA. Numerical prediction of the unsteady flowfield around the F-18 aircraft at large incidence [AIAA PAPER 91-0200] p 256 A91-21338	[SAE PAPER 901058] p 331 A91-2125: Small-scale experiments in STOVL ground effects [SAE PAPER 901060] p 287 A91-2125: A study of dynamic stall using real time interferometr [AIAA PAPER 91-0007] p 256 A91-2132: Numerical prediction of the unsteady flowfield around the F-18 aircraft at large incidence [AIAA PAPER 91-0020] p 256 A91-2133: Progress in laser-spectroscopic techniques for aerodynamic measurements - An overview [AIAA PAPER 91-0059] p 317 A91-2135: Navier-Stokes simulation of a close-coupled canard-wing-body configuration [AIAA PAPER 91-0070] p 257 A91-2135: Numerical algorithm comparison for the accurate an efficient computation of high-incidence vortical flow [AIAA PAPER 91-0175] p 259 A91-2139: Numerical, experimental, and theoretical study of convective instability of flows over pointed bodies a incidence [AIAA PAPER 91-0291] p 260 A91-2144 Calculation of flow about two-dimensional bodies be means of the velocity-vorticity formulation on a staggere grid [AIAA PAPER 91-0600] p 263 A91-2155 Unstructured Euler flow solutions using hexahedral ce
General Applied Science Labs., Inc., Ronkonkoma, NY. Progress in hypersonic combustion technology with computation and experiment [AIAA PAPER 90-5254] p 300 A91-22879 General Motors Corp., Indianapolls, IN. Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 Georgia Inst. of Tech., Atlanta. Numerical study of the effects of icing on fixed and rotary wing performance [AIAA PAPER 91-0662] p 265 A91-21580 H High Technology Corp., Hampton, VA. Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers [AIAA PAPER 90-5258] p 270 A91-22882 Honeywell Advanced Technology Centre, Markham (Ontario). NAVPACK: Simulation tools for design of high performance integrated navigation systems	cone p 269 A91-22511 Maryland Univ., College Park. Higher harmonic control analysis for vibration reduction of helicopter rotor systems p 306 N91-15175 Damping estimation in helicopter rotor stability testing p 306 N91-15176 A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 Massachusetts Inst. of Tech., Cambridge. Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies [AIAA PAPER 91-0322] p 261 A91-21459 Multi-dimensional modelling of gas turbine combustion using a flame sheet model in KIVA II [AIAA PAPER 91-0414] p 299 A91-21483 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Nonlinear large amplitude vibration of composite helicopter rotor blade at large static deflection [AD-A227933] p 307 N91-15183 Massachusetts Inst. of Tech., Lexington. Results of the Kansas City 1989 Terminal Doppler Weather Radar (TDWR) operational evaluation testing [AD-A228784] p 323 N91-16206 MCAT Inst., Moffett Field, CA. Numerical prediction of the unsteady flowfield around the F-18 aircraft at large incidence [AIAA PAPER 91-0020] p 256 A91-21338	[SAE PAPER 901058] p 331 A91-2125: Small-scale experiments in STOVL ground effects [SAE PAPER 901060] A study of dynamic stall using real time interferometr [AIAA PAPER 91-0007] p 256 A91-2132: Numerical prediction of the unsteady flowfield arounthe F-18 aircraft at large incidence [AIAA PAPER 91-0020] p 256 A91-2133: Progress in laser-spectroscopic techniques for aerodynamic measurements - An overview [AIAA PAPER 91-0059] p 317 A91-2135 Navier-Stokes simulation of a close-coupled canard-wing-body configuration [AIAA PAPER 91-0070] p 257 A91-2135 Numerical algorithm comparison for the accurate an efficient computation of high-incidence vortical flow [AIAA PAPER 91-0175] p 259 A91-2139 Numerical algorithm comparison for the accurate an efficient computation of high-incidence vortical flow [AIAA PAPER 91-0175] p 259 A91-2139 Numerical, experimental, and theoretical study of convective instability of flows over pointed bodies a incidence [AIAA PAPER 91-0291] p 260 A91-2144 Calculation of flow about two-dimensional bodies b means of the velocity-vorticity formulation on a staggere grid [AIAA PAPER 91-0600] p 263 A91-2155 Unstructured Euler flow solutions using hexahedral ce refinement
General Applied Science Labs., Inc., Ronkonkoma, NY. Progress in hypersonic combustion technology with computation and experiment [AIAA PAPER 90-5254] p 300 A91-22879 General Motors Corp., Indianapolls, IN. Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 Georgia Inst. of Tech., Atlanta. Numerical study of the effects of icing on fixed and rotary wing performance [AIAA PAPER 91-0662] p 265 A91-21580 H High Technology Corp., Hampton, VA. Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers [AIAA PAPER 90-5258] p 270 A91-22882 Honeywell Advanced Technology Centre, Markham (Ontario). NAVPACK: Simulation tools for design of high performance integrated navigation systems	cone Maryland Univ., College Park. Higher harmonic control analysis for vibration reduction of helicopter rotor systems p 306 N91-15175 Damping estimation in helicopter rotor stability testing p 306 N91-15176 A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 Massachusetts Inst. of Tech., Cambridge. Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies [AIAA PAPER 91-0322] Multi-dimensional modelling of gas turbine combustion using a flame sheet model in KIVA II [AIAA PAPER 91-0414] P 299 A91-21483 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Nonlinear large amplitude vibration of composite helicopter rotor blade at large static deflection [AD-A227933] Massachusetts Inst. of Tech., Lexington. Results of the Kansas City 1989 Terminal Doppler Weather Radar (TDWR) operational evaluation testing [AD-A228784] MCAT Inst., Moffett Field, CA. Numerical prediction of the unsteady flowfield around the F-18 aircraft at large incidence [AIAA PAPER 91-0020] p 256 A91-21338 MCAT Inst., San Jose, CA. A study of dynamic stall using real time interferometry	[SAE PAPER 901058] p 331 A91-2125: Small-scale experiments in STOVL ground effects [SAE PAPER 901060] p 287 A91-2125: A study of dynamic stall using real time interferometr [AlAA PAPER 91-0007] p 256 A91-2132: Numerical prediction of the unsteady flowfield around the F-18 aircraft at large incidence [AlAA PAPER 91-0020] p 256 A91-2133: Progress in laser-spectroscopic techniques for aerodynamic measurements - An overview [AlAA PAPER 91-0059] p 317 A91-2135: Navier-Stokes simulation of a close-couple canard-wing-body configuration [AlAA PAPER 91-0070] p 257 A91-2135: Numerical algorithm comparison for the accurate an efficient computation of high-incidence vortical flow [AlAA PAPER 91-0175] p 259 A91-2139 Numerical, experimental, and theoretical study convective instability of flows over pointed bodies a incidence [AlAA PAPER 91-0291] p 260 A91-2144 Calculation of flow about two-dimensional bodies be means of the velocity-vorticity formulation on a staggere grid [AlAA PAPER 91-0600] p 263 A91-2155 Unstructured Euler flow solutions using hexahedral ce refinement [AlAA PAPER 91-0637] p 264 A91-2157
General Applied Science Labs., Inc., Ronkonkoma, NY. Progress in hypersonic combustion technology with computation and experiment [AIAA PAPER 90-5254] p 300 A91-22879 General Motors Corp., Indianapolls, IN. Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 Georgia Inst. of Tech., Atlanta. Numerical study of the effects of icing on fixed and rotary wing performance [AIAA PAPER 91-0662] p 265 A91-21580 H High Technology Corp., Hampton, VA. Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers [AIAA PAPER 90-5258] p 270 A91-22882 Honeywell Advanced Technology Centre, Markham (Ontario). NAVPACK: Simulation tools for design of high performance integrated navigation systems p 329 N91-15739 Human Systems Div., Brooks AFB, TX.	cone p 269 A91-22511 Maryland Univ., College Park. Higher harmonic control analysis for vibration reduction of helicopter rotor systems p 306 N91-15175 Damping estimation in helicopter rotor stability testing p 306 N91-15176 A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 Massachusetts Inst. of Tech., Cambridge. Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies [AIAA PAPER 91-0322] p 261 A91-21459 Multi-dimensional modelling of gas turbine combustion using a flame sheet model in KIVA II [AIAA PAPER 91-0414] p 299 A91-21483 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Nonlinear large amplitude vibration of composite helicopter rotor blade at large static deflection [AD-A227933] p 307 N91-15183 Massachusetts Inst. of Tech., Lexington. Results of the Kansas City 1989 Terminal Doppler Weather Radar (TDWR) operational evaluation testing [AD-A228784] p 323 N91-16206 MCAT Inst., Moffett Field, CA. Numerical prediction of the unsteady flowfield around the F-18 aircraft at large incidence [AIAA PAPER 91-0020] p 256 A91-21338	[SAE PAPER 901058] p 331 A91-2125: Small-scale experiments in STOVL ground effects [SAE PAPER 901060] A study of dynamic stall using real time interferometr [AIAA PAPER 91-0007] p 256 A91-2132: Numerical prediction of the unsteady flowfield arounthe F-18 aircraft at large incidence [AIAA PAPER 91-0020] p 256 A91-2133: Progress in laser-spectroscopic techniques for aerodynamic measurements - An overview [AIAA PAPER 91-0059] p 317 A91-2135 Navier-Stokes simulation of a close-coupled canard-wing-body configuration [AIAA PAPER 91-0070] p 257 A91-2135 Numerical algorithm comparison for the accurate an efficient computation of high-incidence vortical flow [AIAA PAPER 91-0175] p 259 A91-2139 Numerical algorithm comparison for the accurate an efficient computation of high-incidence vortical flow [AIAA PAPER 91-0175] p 259 A91-2139 Numerical, experimental, and theoretical study of convective instability of flows over pointed bodies a incidence [AIAA PAPER 91-0291] p 260 A91-2144 Calculation of flow about two-dimensional bodies b means of the velocity-vorticity formulation on a staggere grid [AIAA PAPER 91-0600] p 263 A91-2155 Unstructured Euler flow solutions using hexahedral ce refinement
General Applied Science Labs., Inc., Ronkonkoma, NY. Progress in hypersonic combustion technology with computation and experiment [AIAA PAPER 90-5254] p 300 A91-22879 General Motors Corp., Indianapolls, IN. Advanced Turbine Technology Applications Project (ATTAP) [NASA-CR-187039] p 302 N91-16021 Georgia Inst. of Tech., Atlanta. Numerical study of the effects of icing on fixed and rotary wing performance [AIAA PAPER 91-0662] p 265 A91-21580 H High Technology Corp., Hampton, VA. Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers [AIAA PAPER 90-5258] p 270 A91-22882 Honeywell Advanced Technology Centre, Markham (Ontario). NAVPACK: Simulation tools for design of high performance integrated navigation systems	cone p 269 A91-22511 Maryland Univ., College Park. Higher harmonic control analysis for vibration reduction of helicopter rotor systems p 306 N91-15175 Damping estimation in helicopter rotor stability testing p 306 N91-15176 A coupled rotor aeroelastic analysis utilizing advanced aerodynamic modeling p 292 N91-16006 Massachusetts Inst. of Tech., Cambridge. Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies [AIAA PAPER 91-0322] p 261 A91-21459 Multi-dimensional modelling of gas turbine combustion using a flame sheet model in KIVA II [AIAA PAPER 91-0414] p 299 A91-21483 High performance linear-quadratic and H-infinity designs for a 'supermaneuverable' aircraft p 290 A91-22956 Nonlinear large amplitude vibration of composite helicopter rotor blade at large static deflection [AD-A227933] Massachusetts Inst. of Tech., Lexington. Results of the Kansas City 1989 Terminal Doppler Weather Radar (TDWR) operational evaluation testing [AD-A228784] MCAT Inst., Moffett Field, CA. Numerical prediction of the unsteady flowfield around the F-18 aircraft at large incidence [AIAA PAPER 91-0020] p 256 A91-21338 MCAT Inst., San Jose, CA. A study of dynamic stall using real time interferometry [AIAA PAPER 91-0007] p 256 A91-21329	[SAE PAPER 901058] p 331 A91-2125: Small-scale experiments in STOVL ground effects [SAE PAPER 901060] p 287 A91-2125: A study of dynamic stall using real time interferometr [AIAA PAPER 91-0007] p 256 A91-2132: Numerical prediction of the unsteady flowfield around the F-18 aircraft at large incidence [AIAA PAPER 91-0020] p 256 A91-2133: Progress in Igser-spectroscopic techniques for aerodynamic measurements - An overview [AIAA PAPER 91-0059] p 317 A91-2135: Navier-Stokes simulation of a close-couple canard-wing-body configuration [AIAA PAPER 91-0070] p 257 A91-2135: Numerical algorithm comparison for the accurate an efficient computation of high-incidence vortical flow [AIAA PAPER 91-0175] p 259 A91-2139: Numerical, experimental, and theoretical study of convective instability of flows over pointed bodies a incidence [AIAA PAPER 91-0291] p 260 A91-2144. Calculation of flow about two-dimensional bodies be means of the velocity-vorticity formulation on a staggere grid [AIAA PAPER 91-0600] p 263 A91-2155. Unstructured Euler flow solutions using hexahedral ce refinement [AIAA PAPER 91-0637] p 264 A91-2157. Infrared imaging A validation technique for

CORPORATE SOURCE		Rice Univ.
Numerical investigation of the flow over a double delta	Selectable towline spin chute system	Aircraft configuration study for experimental 2-place
wing at high incidence	[NASA-CASE-LAR-14322-1] p 276 N91-15138	aircraft and RPVs
(AIAA PAPER 91-0753) p 266 A91-21605 An improved three-dimensional aerodynamics model for	Report of the workshop on Aviation Safety/Automation Program	[AD-A227604] p 291 N91-15149 Application of chaos methods to helicopter vibration
helicopter airloads prediction	[NASA-CP-10054] p 281 N91-15141	reduction using higher harmonic control
[AIAA PAPER 91-0767] p 267 A91-21610	Effect of shaping sensor data on pilot response	(AD-A226736) p 306 N91-15177
Vortical flow computations on swept flexible wings using	[NASA-TM-102737] p 297 N91-15173 A comparison of fatigue life prediction methodologies	Naval Test Pilot School, Patuxent River, MD.
Navier-Stokes equations p 269 A91-22483	for rotorcraft	Numerical investigation of the flow over a double delta wing at high incidence
The aerospace plane design challenge - Credible computational fluid dynamics results	[NASA-TM-102759] p 323 N91-15604	[AIAA PAPER 91-0753] p 266 A91-21605
[AIAA PAPER 90-5248] p 310 A91-22877	Probabilistic fatigue methodology for six nines reliability	Naval Weapons Center, China Lake, CA.
The civil tiltrotor aircraft's potential in developing	[NASA-TM-102757] p 323 N91-15605	Broadband coupling structures for microwave arithmetic
economies p 280 A91-24122	Finite element thermo-viscoplastic analysis of	circuits and phased arrays p 322 N91-15163 Logarithmic amplification for passive airborne direction
Dynamic analysis of rotor blade undergoing rotor power shutdown	aerospace structures (NASA-TM-102761) p 324 N91-16407	finding in the 1990s p 296 N91-15164
[NASA-TM-102865] p 251 N91-15124	[NASA-TM-102761] p 324 N91-16407 Long-range vertical propagation p 332 N91-16693	Laser obstacle and cable update sensor
Flowfield of a lifting hovering rotor: A Navier-Stokes	National Aeronautics and Space Administration. Lewis	p 296 N91-15169
simulation [NASA-TM-102862] p 274 N91-15128	Research Center, Cleveland, OH. Navier-Stokes simulation of transonic blade-vortex	Novespace, Paris (France). Economical test method and ease of access under
Simulated rotor test apparatus dynamic characteristics	interactions p 253 A91-21065	microgravity: The zero-g Caravelle p 322 N91-15276
in the 80- by 120-foot wind tunnel	Flow studies in close-coupled ventral nozzles for STOVL	•
[NASA-TM-102870] p 291 N91-15147	aircraft [SAE PAPER 901033] p 255 A91-21242	0
An integrated approach to system design, reliability, and diagnosis	An algebraic RNG-based turbulence model for	•
[NASA-TM-102861] p 322 N91-15426	three-dimensional turbomachinery flows	Oak Ridge National Lab., TN.
Simulation of nap-of-Earth flight in helicopters	[AIAA PAPER 91-0172] p 259 A91-21393 Experimental water droplet impingement data on modern	Radioluminescent (RL) airfield lighting system program
p 330 N91-15744 Potential use of tiltrotor aircraft in Canadian aviation	aircraft surfaces	[DE91-001007] p 309 N91-15186 Oklahoma City Air Logistics Center, Tinker AFB, OK.
[NASA-TM-102245] p 281 N91-16001	[AIAA PAPER 91-0445] p 262 A91-21493	Proceedings of the 2nd E-3 AWACS Corrosion
National Aeronautics and Space Administration.	In-flight source noise of an advanced full-scale	Prevention Advisory Board (CPAB)
Goddard Space Filight Center, Greenbelt, MD. The dynamics of the stratospheric polar vortex and its	single-rotation propeller [AIAA PAPER 91-0594] p 331 A91-21547	[AD-A227627] p 291 N91-15150
relation to springtime ozone depletions	A steadying effect of acoustic excitation on transitory	Old Dominion Univ., Norfolk, VA. 2-D and 3-D mixing flow analyses of a scramjet-afterbody
p 325 A91-21712	stall	configuration p 253 A91-21188
Airborne lidar for profiling of surface topography p 295 A91-23134	[AIAA PAPER 91-0043] p 269 A91-22499 A review of ice accretion data from a model rotor icing	Exploratory study of vortex-generating devices for
The atmospheric effects of stratospheric aircraft: A	test and comparison with theory	turbulent flow separation control [AlAA PAPER 91-0042] p 317 A91-21348
current consensus	[AIAA PAPER 91-0661] p 280 A91-22500	Radiative interactions in a hydrogen-fueled supersonic
[NASA-RP-1251] p 325 N91-16467 National Aeronautics and Space Administration. Hugh	Integrated flight/propulsion control system design based on a centralized approach p 305 A91-22950	combustor
L. Dryden Flight Research Facility, Edwards, CA.	STOVL Hot Gas Ingestion control technology	[AIAA PAPER 91-0373] p 312 A91-21473
AFTI/F-111 airplane mission adaptive wing operational	[ASME PAPER 89-GT-323] p 301 A91-23642	Aerodynamic design optimization using sensitivity analysis and computational fluid dynamics
flight evaluation technique using uplinked pilot command	Solution and sensitivity analysis of a complex transcendental eigenproblem with pairs of real	[AIAA PAPER 91-0471] p 262 A91-21505
cues p 285 A91-20993 The development of a Flight Test Engineer's Workstation	eigenvalues p 320 A91-23685	Computation of steady and unsteady compressible
for the Automated Flight Test Management System	Review of the transmissions of the Soviet helicopters	quasi-axisymmetric vortex flow and breakdown [AIAA PAPER 91-0752] p 266 A91-21604
p 326 A91-20999	[NASA-TM-103634] p 291 N91-15146 Optical measurement of unducted fan flutter	[//// TAPEN 81-0732] p 200 A81-21004
National aerospace plane longitudinal long-period dynamics p 305 A91-22962	[NASA-TM-103285] p 302 N91-15174	P
Optimizing aircraft performance with adaptive, integrated	The aerodynamic characteristics of vortex ingestion for	
flight/propulsion control	the F/A-18 inlet duct [NASA-TM-103703] p 311 N91-15303	Pennsylvania State Univ., University Park.
[ASME PAPER 90-GT-252] p 290 A91-23644 Initiat flight test of a ground deployed system for flying	Thermal barrier coating evaluation needs	Hypersonic shock/boundary-layer interaction database [NASA-CR-187769] p 277 N91-15986
qualities assessment	[NASA-TM-103708] p 314 N91-15390	Planungsbuero Luftraumnutzer, Frankfurt (Germany,
[NASA-TM-101700] p 307 N91-15182	In-flight and simulated aircraft fuel temperature measurements	F.R.).
National Aeronautics and Space Administration. Langley Research Center, Hampton, VA.	[NASA-TM-103611] p 314 , N91-15418	The European flight safety crisis: Costs and solution [ETN-91-98490] p 281 N91-16000
An evaluation of the pressure proof test concept for	Potential reduction of en route noise from an advanced	[ETN-91-98490] p 281 N91-16000 Pratt and Whitney Aircraft, East Hartford, CT.
thin sheet 2024-T3 p 315 A91-20788 Exploratory study of vortex-generating devices for	turboprop aircraft [NASA-TM-103635] p 332 N91-15842	Heat transfer in rotating passages with smooth walls
turbulent flow separation control	National Aeronautics and Space Administration.	and radial outward flow [ASME PAPER 89-GT-272] p 320 A91-23659
[AIAA PAPER 91-0042] p 317 A91-21348	Wallops Flight Facility, Wallops Island, VA.	Pratt and Whitney Aircraft, West Palm Beach, FL
Effects of sweep angle and passive relaminarization	Airborne lidar for profiling of surface topography p 295 A91-23134	Fatigue and fracture of titanium aluminides
devices on a supersonic swept-cylinder boundary layer [AIAA PAPER 91-0066] p 257 A91-21354	National Aerospace Lab., Tokyo (Japan).	[AD-A226737] p 314 N91-15374 PRC Kentron, Inc., Edwards, CA.
Design limits of compressible NLF airfoils	Wind tunnel tests on flutter control of a high-aspect-ratio	The development of a Flight Test Engineer's Workstation
[AIAA PAPER 91-0067] p 257 A91-21355	cantilevered wing: Control with leading-edge and trailing-edge control surfaces	for the Automated Flight Test Management System
Cross-flow vortex structure and transition measurements using multi-element hot films	[NAL-TR-1070] p 276 N91-15982	p 326 A91-20999 PRC Systems Services Co., Edwards, CA.
[AIAA PAPER 91-0166] p 258 A91-21389	An experiment on supersonic turbulent mixing layers:	AFTI/F-111 airplane mission adaptive wing operational
Analysis of flow on cones and cylinders using discrete	Supersonic-subsonic two-stream layers [NAL-TR-1066] p 276 N91-15983	flight evaluation technique using uplinked pilot command
vortex methods [AIAA PAPER 91-0288] p 260 A91-21442	Large-scale numerical aerodynamic simulations for	cues p 285 A91-20993 Purdue Univ., West Lafayette, IN.
Radiative interactions in a hydrogen-fueled supersonic	complete aircraft configurations	Development of a solution adaptive unstructured
combustor	[NAL-TR-1073-T] p 277 N91-15984 Calculations for unsteady aerodynamic characteristics	scheme for quasi-3D inviscid flows through advanced
[AIAA PAPER 91-0373] p 312 A91-21473 A study of loudness as a metric for sonic boom	on a 3-D lifting body in subsonic flow using boundary	turbomachinery cascades [AIAA PAPER 91.0132] n 258 A91.21374
acceptability	element method	[AIAA PAPER 91-0132] p 258 A91-21374 Propfan supersonic panel method analysis and flutter
[AIAA PAPER 91-0496] p 331 A91-21511	[NAL-TR-1065] p 277 N91-15985 National Transportation Safety Board, Washington,	predictions p 278 N91-15993
Directivity and prediction of low frequency rotor noise [AIAA PAPER 91-0592] p 331 A91-21545	DC.	Applications of fuzzy theories to multi-objective system
Computation of steady and unsteady compressible	Aircraft incident report: USAir flight 105, Boeing 737-200,	optimization [NASA-CR-177573] p 293 N91-16012
quasi-axisymmetric vortex flow and breakdown	N283AU, Kansas City International Airport, Missouri, September 8, 1989	Aeroservoelastic tailoring for lateral control
[AIAA PAPER 91-0752] p 266 A91-21604 Progress in hypersonic combustion technology with	[PB90-910404] p 280 N91-15140	enhancement p 307 N91-16025
computation and experiment	Aircraft accident report: United Airlines flight 232,	B
[AIAA PAPER 90-5254] p 300 A91-22879	McDonnell Douglas DC-10-10, Sioux Gateway Airport,	R
Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers	Sioux City, Iowa, 19 July 1989 [PB90-910406] p 281 N91-15143	Rice Univ., Houston, TX.
[AIAA PAPER 90-5258] p 270 A91-22882	Naval Postgraduate School, Monterey, CA.	Optimization and guidance of flight trajectories for the
Airframe/propulsion integration at transonic speeds	A study of dynamic stall using real time interferometry	national aerospace plane
[ASME PAPER 90-GT-338] p 271 A91-23640 Static internal performance of an axisymmetric nozzle	[AIAA PAPER 91-0007] p 256 A91-21329 Numerical investigation of the flow over a double delta	[NASA-CR-187837] p 292 N91-16010 Optimal trajectories for an aerospace plane. Part 2: Data,
with multiaxis thrust-vectoring capability	wing at high incidence	tables, and graphs
[NASA-TM-4237] p 274 N91-15125	[AIÃA PAPER 91-0753] p 266 A91-21605	[NASA-CR-187848] p 292 N91-16011

Rijksluchtvaartdienst

Optimal trajectories for an aerospace plane. Part 1: Formulation, results, and analysis [NASA-CR-187868] p 293 N91-16013

Rijksluchtvaartdienst, Schiphol (Netherlands).

Activities report of the Dutch Civil Aeronautics Board [ETN-91-98472] p 283 N91-16005 p 283 N91-16005

Rockwell International Science Center, Thousand Oaks, CA.

Research to application: Supercomputing trends for the Opportunities for interdisciplinary computations p 326 A91-21326 [AIAA PAPER 91-0002]

Rome Air Development Center, Griffiss AFB, NY.

MMIC impact on airborne avionic systems

p 296 N91-15166

Royal Aerospace Establishment, Bedford (England). Computer-aided control law research: From concept to ght test p 329 N91-15731 flight test

S

San Jose State Univ., CA.

Observations of severe turbulence near thunderstorm p 324 A91-20695 tops

Sandia National Labs., Albuquerque, NM.
Aircraft compatibility tasks required for the release of

an Aircraft Compatibility Control Drawing (ACCD) p 307 N91-15179 [DE91-004698]

Scientific Research Associates, Inc., Glastonbury, CT. Navier-Stokes simulation of transonic blade-vortex p 253 A91-21065 interactions

Sheffield Univ. (England).

A real-time distributed optimal autopilot

p 307 N91-15181 FRR-3981

Selection of weights in optimal control [RR-397] p 330 N91-15796

Siemens A.G., Munich (Germany, F.R.).

GaAs MMICs in selfaligned gate technology for phase array radar application p 296 N91-15160

Sparta, Inc., Laguna Hills, CA. The development of a Flight Test Engineer's Workstation for the Automated Flight Test Management System

p 326 A91-20999

Stanford Univ., CA

High alpha aerodynamic control by tangential fuselage

[AIAA PAPER 91-0620] p 264 A91-21561

Navier-Stokes computation of wing/rotor interaction for a tilt rotor in hover

p 265 A91-21593 [AIAA PAPER 91-0707] Direct numerical simulations of a plane compressible

wake: Stability, vorticity dynamics, and topology [NASA-CR-187737] p 274 N p 274 N91-15129

Sterling Federal Systems, Inc., Palo Alto, CA

Prediction of transitional (laminar-turbulent) hypersonic flows using the parabolized Navier-Stokes equations

p 255 A91-21195 Unstructured Euler flow solutions using hexahedral cell

[AIAA PAPER 91-0637] p 264 A91-21574

Stuttgart Univ. (Germany, F.R.).

Finite element approximations for transonic flows p 277 N91-15988 [ETN-91-98491]

Sverdrup Technology, Inc., Brook Park, OH.

An algebraic RNG-based turbulence three-dimensional turbomachinery flows model for p 259 A91-21393 [AIAA PAPER 91-0172]

A review of ice accretion data from a model rotor icing

test and comparison with theory

[AIAA PAPER 91-0661] p 280 A91-22500 Estimation of the engineering elastic constants of a

directionally solidified superalloy for finite element structural analysis

p 322 N91-15598 [NASA-CR-187036]

Sverdrup Technology, Inc., Cleveland, OH.

Flow studies in close-coupled ventral nozzles for STOVL

p 255 A91-21242 [SAE PAPER 901033]

Integrated flight/propulsion control system design based p 305 A91-22950 on a centralized approach

Syracuse Univ., NY.

The symmetric turbulent plane wake downstream of a sharp trailing edge

[AIAA PAPER 91-0612] Systems Control Technology, Inc., Arlington, VA.

Evaluation of rotorwash characteristics for tiltrotor and tiltwing aircraft in hovering flight

p 277 N91-15989 (SCT-90RR-181

Technion - Israel Inst. of Tech., Halfa.

Numerical, experimental, and theoretical study of convective instability of flows over pointed bodies at

[AIAA PAPER 91-0291] p 260 A91-21443 Technische Hochschule, Aachen (Germany, F.R.).

Pseudo Revnolds number effects in transonic wind

[ETN-91-98493] p 276 N91-15135 Technische Hochschule, Darmstadt (Germany, F.R.). The laminar free jet problem, using Newtonian media (ETN-91-984941 p 276 N91-15136 Technische Univ., Brunswick (Germany, F.R.).

Tests for integrating measurements of gas pressures in aircraft mechanisms

[ETN-91-98558]

Tennessee Univ. Space Inst., Tullahoma.
Investigation of transonic flow over segmented slotted wind tunnel wall with mass transfer [NASA-CR-187760] p 276 N91-15981

Test Squadron (6515th), Edwards AFB, CA. The development of avionics-intensive, multi-sensor

cockpits: Simulation does not always equal success p 330 N91-15746

Texas Univ., Austin.

Wall pressure fluctuations near separation in a Mach fin-induced turbulent interaction

AIAA PAPER 91-0646] p 264 A91-21576 Correlation of separation shock motion in a [AIAA PAPER 91-0646] cylinder-induced, Mach 5, turbulent interaction with pressure fluctuations in the separated flow [AIAA PAPER 91-0650]

p 265 A91-21578

omson Composants, Orsay (France).

Microwave and millimeter wave components: Performances, perspectives, and applications to avionics p 295 N91-15156

Thomson Composants, Saint Egreve (France). Specific aspects of advanced components for airborn applications p 295 N91-15155

Thomson-CSF, Orsay (France).

Special optical fibres and sensors for aeronautics p 332 N91-15167

Toledo Univ., OH.

Numerical simulation of icing, deicing, and shedding AIAA PAPER 91-0665] p 279 A91-21583 [AIAA PAPER 91-0665] Solution and sensitivity analysis of a complex with pairs of real p 320 A91-23685 transcendental eigenproblem eigenvalues

U

United Technologies Research Center, East Hartford,

ĆT. Heat transfer in rotating passages with smooth walls and radial outward flow

[ASME PAPER 89-GT-272] p 320 A91-23659 Advanced structural instrumentation, volume 2 [AD-A227473] p 324 N91-16330

Universite Catholique de Louvain (Belgium). Symbolic generation of aircraft simulation programmes p 328 N91-15727

University of Southern California, Los Angeles.

On hypersonic shock layer and its extension beyond the Navier-Stokes level p 254 A91-21189 the Navier-Stokes level p 254 A91-21189
A shock-layer theory based on thirteen-moment equations and DSMC calculations of rarefied hypersonic

[AIAA PAPER 91-0783] p 267 A91-21616

Vigyan Research Associates, Inc., Hampton, VA.

A shock-layer theory based on thirteen-moment equations and DSMC calculations of rarefied hypersonic

[AIAA PAPER 91-0783] rginia Polytechnic Inst. and State Univ., Blacksburg. Infrared imaging - A validation technique for computational fluid dynamics codes used in STOVL

anolications [AIAA PAPER 91-0675] p 318 A91-21587 Virginia Univ., Charlottesville.

Combustion efficiency determined from wall pressure and temperature measurement in a Mach 2 combustor [AIAA PAPER 91-0017] p 298 A91-21336

Washington Univ., Seattle,

Symmetry plane model for turbulent flows with vortex [AIAA PAPER 91-0723]

p 266 A91-21598

The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions

p 325 A91-21712

Wayne State Univ., Detroit, MI. Multi-dimensional modelling of gas turbine combustion using a flame sheet model in KIVA II

[AIAA PAPER 91-0414] p 299 A91-21483

Wichita State Univ., KS.

Experimental water droplet impingement data on modern aircraft surfaces [AIAA PAPER 91-0445] p 262 A91-21493

Resin transfer molding of composite aircraft interior furnishings [NIAR-90-19] p 292 N91-15153

International aircraft operator information system, phase

[NIAR-90-31] p 333 N91-15928 Woodside Summit Group, Inc., Mountain View, CA.

An improved three-dimensional aerodynamics model for helicopter airloads prediction [AIAA PAPER 91-0767] p 267 A91-21610

May 1991

FOREIGN TECHNOLOGY INDEX

AERONAUTICAL ENGINEERING / A Continuing Bibliography (Supplement 265)

Typical Foreign Technology Index Listing

Listings in this index are arranged alphabetically by country of intellectual origin. The title of the document is used to provide a brief description of the subject matter. The page number and the accession number are included in each entry to assist the user in locating the citation in the abstract section. If applicable, a report number is also included as an aid in identifying the document.

AUSTRALIA

Turbulent shear flow over surface mounted obstacles p 252 A91-21057 Parametric study on thrust production in the two dimensional scramjet [AIAA PAPER 91-0227] p 298 A91-21417 Velocity field of an axisymmetric pulsed, subsonic air p 269 A91-22479 Identification of time delays in flight measurements p 327 A91-22953 Programmable cockpit-flight dynamic model p 296 N91-15171 [AD-A227748] Programmable cockpit-head-up display and outside [AD-A227751] p 297 N91-15172 Flight flutter test techniques at ARL p 306 N91-15178 [AD-A227754] IFDIS: An expert system for diagnosis of failures in jet aircraft engines [AD-A227757] p 302 N91-16020

BELGIUM

Symbolic generation of aircraft simulation programmes p 328 N91-15727 realistic Integration of airline/aircrew/aircraft component in ATC simulations p 329 N91-15738

Minimum control speed - A 'thrustless' approach p 285 A91-20980

Experimental investigation of a 2-D scramjet inlet at Mach numbers of 8 to 18 and stagnation temperatures of 4,100K [AIAA PAPER 91-0013] · p 256 A91-21333

CANADA

Assessment of impact damage in toughened resin VASI systems for helicopter operations p 294 A91-21221 Optimization studies for the PW305 turbofan

p 297 A91-21222 Simulation, testing and optimization of a new low cost electronic fuel control unit for small gas turbine engines [SAE PAPER 901027] p 298 A91-21239 [SAE PAPER 901027]

New family of low cost electronic fuel control units for small gas turbine engines [SAE PAPER 901039]

p 298 A91-21245 Wind tunnel tests of aerodynamic effects of type I and Il ground de/anti-icing fluids on small transport and general aviation aircraft during takeoff

[AIAA PAPER 91-0763] p 288 A91-21609 Engine performance monitoring and troubleshooting techniques for the CF-18 aircraft

p 301 A91-23635 [ASME PAPER 90-GT-357] NAVPACK: Simulation tools for design of high performance integrated navigation systems p 329 N91-15739

CHINA, PEOPLE'S REPUBLIC OF

Reliability analysis of structure and control mechanism p 315 A91-20916 of aircraft flap Estimation of aerodynamic and mode parameters of aircraft's open and closed-loop system

p 303 A91-20992 Control law study of aircraft maneuvers at high attack p 305 A91-22251 angle A mechanism of fretting fatigue failure in the joining lug p 319 A91-22252 of a wing structure Measurements of vorticity field p 319 A91-22259 Definition of service life for frame of an airplane

p 288 A91-22262 Air-to-ground attack and Integrated Flight/Fire Control p 305 A91-22265 Improved design of the error-proof filler cover of aircraft

p 288 A91-22266 Determination of rivet diameter and edge distance in aircraft riveted structure D 319 A91-22267 Development of cast superalloys for gas turbines in p 313 A91-22340

Magnetron sputtered CoCrAlY coatings on superalloy p 313 A91-22346

A new method for subsonic lifting-surface theory p 268

A91-22351 A calculating method of the kill probability attack area p 305 A91-22352 for AAM The fuzzy synthetic judgement of correlating paramete

p 289 A91-22354 of fighter design p 289 A91-22354 Nonlinear multi-point modeling and parameter estimation

p 289 A91-22357 of the DO 28 research aircraft Optimization of multi-element airfoils for maximum lifts p 268 A91-22367 in separated flow An equivalent calculation of load spectrums

p 319 A91-22369

The interim prediction for aircraft noise p 332 A91-22370 Predictive control of optimal path terrain following

p 305 A91-22371 A maximum likelihood method for flight test data p 327 A91-22373 compatibility check

A method of developing load spectrum for a fighter p 290 A91-22381 Flowfield computation of 2-C-D nozzle

p 268 A91-22382 Corrosion fatigue crack growth of 30CrMnSiNi2A steel p 313 A91-22383 in airplane environments A practical method for the aerodynamic calculations of blunt bodies of revolution p 268 A91-22392

A closed form solution of stress intensity factors for the shaft of aeroplane all-moving stabilizer with corner cracks emanating from a hole p 319 Numerical analyses of stress near the hole of compressor disk by boundary element method

p 319 A91-22754 An adaptive filter for tracking the maneuvering target p 327 A91-22756

The compatibility check of the flight test data of the p 290 A91-22757 DO 28 research aircraft An identification method of fast time varying parameters p 327 adapted to aircraft control systems The influences of forced oscillations vortex-breakdown p 270 A91-22762 AF-2 iteration and its parallel algorithm for transonic flow with large disturbances in freestream-direction around

axisymmetric bodies at zero angle of attack p 270 A91-22763 Calculation of unsteady aerodynamic loads on wings with an oscillatory leading edge flap p 270 A91-22764 Calculations on total temperature and pressure in hypersonic air flow D 271 A91-23095 An application of automatic ignitor DDK-1 to turbojet

engine test under simulated altitude condition p 300 A91-23100 A new method of predicting the performance of gas

turbine engines [ASME PAPER 90-GT-337] p 302 A91-23647 Solution of Euler equations to 2-D and axisymmetric

compressible flows using conformal mapping p 272 A91-24152 coordinates Superconvergence in two-dimensional vortex-lattice p 322 A91-24153 methods

Unsteady transonic flow calculations for multiple scillating airfoil p 273 A91-24154 oscillating airfoil

A method for calculating the aerodynamic forces of elliptical circulation control airfoils p 273 A91-24155 The effects of canard aerodynamic characteristics of forward-swept wing

p 273 A91-24156 A Green's Function Method for calculating the transonic pressure distribution of wing p 273 A91-24157 Curved vortex elements for numerical wake modeling p 273 A91-24162

The method for extending the range of attack angle and blockage in transonic wind tunnel testing - Using low supersonic nozzle instead of sonic nozzle

p 273 A91-24163 Numerical computation of shock in the front of blunt p 273 A91-24164

Calculation of transonic nozzle flow

p 273 A91-24167 erse code for three Viscous-inviscid interactive semi-in dimensional transonic flow p 274 A91-24168

Viscous non equilibrium flow calculations by an implicit finite volume method [AIAA PAPER 91-0702] p 265 A91-21592 Soviet ATC research p 309 A91-22172 Testing Soviet civil aircraft p 288 A91-22173 Future aeronautic environment -FMS/ATC/pilot A91-23548 SNECMA M88 engine development status p 301 A91-23636 [ASME PAPER 90-GT-118] Advances in Components for Active and Passive Airborne Sensors [AGARD-CP-482] p 295 N91-15154 Specific aspects of advanced components for airborne applications

p 295 N91-15155 Microwave and millimeter components: wave Performances, perspectives, and applications to avionics p 295 N91-15156

Special optical fibres and sensors for aeronautics

p 332 N91-15167 Economical test method and ease of access under microgravity: The zero-g Caravelle p 322 N91-15276 Computer Aided System Design and Simulation

[AGARD-CP-473] p 327 N91-15715 Algorithms development methodology for performance-optimized multicyclic rotor commands

p 327 N91-15716 Formal tools and simulation tools: A coherent p 328 N91-15728 workshop

G	
GERMANY, FEDERAL REPUBLIC OF	
New general guidance method in	constrained optimal
control, I - Numerical method	p 326 A91-20506
How safe is flying? Or - The AIMS monitoring systems	p 294 A91-20609
DISCUS - A failure-tolerant Fbw	/Fbl-experimental
system Simulation and study of shear flows	p 303 A91-20610
engine models	p 297 A91-20612
Profile measurements in trans	
Braunschweig Propeller noise minimization withou	p 308 A91-20613
asymmetric blade distribution	p 331 A91-20614
Airframe-engine integration - Task for	
aircraft evolution The stability of light structures - A	p 251 A91-20615 An area of research
with a tradition and a future	p 315 A91-20616
Computer communication using Log in ATTAS	gic Cell Arrays (LCA) p 294 A91-20617
Concept and specification for the	
Aircraft (HTA)	p 310 A91-20618
The development and design integ camber wing for long/medium range	
	p 284 A91-20898
Computation of unsteady viscous	flows around wing p 251 A91-20933
profiles Experimental investigation of the	
supercritical wing profile	p 252 A91-20934
Experimental and theoretical investigation the wake of a flat plate	p 252 A91-20935
High precision real time airplane pos	sitioning system with
full navigational capabilities for flight	
The equipment of a research aircre	p 282 A91-20985 aft with emphasis on
meteorological experiments	p 249 A91-21001
Application of an implicit relaxation Euler equations for time-accurate uns	method solving the
Euler equations for unle-accorate uns	p 253 A91-21066
Three-dimensional simulations of h	
Numerical influence of upwind	p 253 A91-21184 TVD schemes on
transonic airfoil drag prediction	
[AIAA PAPER 91-0184] A systematic comparative study	p 259 A91-21402
resolution schemes for complex prob	
flows	
[AIAA PAPER 91-0636] A three-dimensional Euler code for c	p 264 A91-21573 calculating flow fields
in centrifugal compressor diffusers	p 267 A91-21744
Flight Management/Guidance Sys using Airbus A320 as an example	tem in air transport p 304 A91-22201
Control concept of modern avioni	
pilot relief - Presented using the exam	nple of DO 328
Planning support system for air traf	p 295 A91-22202 ffic control
•	p 282 A91-22203
Structural tests for the Dornier 328	p 309 A91-22863
Modulation and coding for the a	
channel	p 283 A91-22904
Linear stability analysis of measured for a flat plate in longitudinal flow	p 271 A91-23189
Pseudo Reynolds number effects	
tunnels	p 276 N91-15135
[ETN-91-98493] The laminar free jet problem, usin	
[ETN-91-98494]	p 276 N91-15136
Integrated design analysis and opti [MBB/FE2/S/PUB/0398]	mization p 291 N91-15145
GaAs MMICs in selfaligned gate tec	chnology for phased
array radar application	p 296 N91-15160
Computer aided design and simulat approach and landing phase of a con	nbat aircraft
	p 328 N91-15719
Cockpit Mock Up (CMU): A desig tool	n and development p 328 N91-15730
Real-time hardware-in-the-loop sir	
and ATTHES advanced technology fl	
A new approach to hardware-in-ti	p 329 N91-15732 ne-loop simulation
(FALKE shuttle)	p 329 N91-15735
The use of system simulation during	
of the passenger transport aircraft Mi	p 330 N91-15741
Documents on the history of the Aer	rodynamic Research
Establishment at Goettingen, 1907 - [DLR-MITT-90-05]	1925 p 251 N91-15977
Finite element approximations for t	ransonic flows
[ETN-91-98491]	p 277 N91-15988
Numerical analysis of viscous hyp generic forebody	ersonic flow past a
[MBB/FE122/S/PUB/0407]	p 278 N91-15997
The European flight safety crisis:	Costs and solution p 281 N91-16000
[ETN-91-98490]	P 201 1491-10000

Activities report of the German Federal Institute for Flight Safety [ETN-91-98644] p 281 N91-16002 Tests for integrating measurements of gas pressures in aircraft mechanisms [ETN-91-98558] p 293 N91-16014 Aerothermodynamic phenomena and the design of atmospheric hypersonic airplanes [MBB/FE122/S/PUB/0408] p 293 N91-16015 Hypersonic model configurations [MBB/FF122/S/PUB/411] n 293 N91-16016 The integration of structural optimization in the general design process for aircraft [MBB/FE122/S/PUB/04051 p 293 N91-16017 Experimental and theoretical examinations of film cooling of gas turbine blades [ETN-91-98554] p 303 N91-16022 Bump examinations of integrally strengthened carbon fiber reinforced plastic panels [MBB/FE281/CFK/PUB/0013] p 314 N91-16076

INDIA

Flow measurements in a model ramjet secondary combustion chamber p 310 A91-20743 Panel flutter analysis using high precision shear flexible element p 319 A91-23423 INDONESIA

ARTISt - Airborne Real Time Instrumentation System p 294 A91-20982

INTERNATIONAL ORGANIZATION

Computation of three-dimensional subsonic flows in ducts using the PNS approach p 271 A91-23186 Advanced technology - Constant challenge and p 251 A91-23547 evolutionary process Experimental study of the three-dimensional flow field in a turbine stator preceded by a full stage p 271 A91-23656

ISRAEL

Recent developments in ramjets, ducted rockets and p 297 A91-20489 scramiets Fundamental concepts of vectored propulsion p 283 A91-20746

RPAS - Runway performance analysis system p 285 A91-20987

Flight test management and integration program p 286 A91-20996

Engine water ingestion test p 286 A91-21003 Numerical, experimental, and theoretical study of convective instability of flows over pointed bodies at incidence [AIAA PAPER 91-0291] p 260 A91-21443

Tornado AFDS/TF flight testing - Lessons learned

p 284 A91-20977 AM-X high incidence trials, development and results p 304 A91-21004

Numerical simulations of auxiliary power units with different configurations (SAE PAPER 901028) p 298 A91-21240

Viscous high speed flow computations by adaptive mesh embedding techniques (AIAA PAPER 91-0149) p 258 A91-21381

Parameter space design of robust flight control svstems p 328 N91-15718

Aircraft control system design, synthesis, analysis, and p 328 N91-15729 simulation tools at Aermacchi

JAPAN

Free vibration of a cantilever annular sector plate with curved radial edges and varying thickness

p 316 A91-20943

Downwash measurement at the horizontal tail p 286 A91-21000

Theoretical analysis of supersonic gas-particle two-phase flow and its application to relatively complicated p 255 A91-21198

Experimental study on mixing phenomena in supersonic flows with slot injection [AIAA PAPER 91-0016] p 256 A91-21335

Optimum spacing control of the marching grid generation

[AIAA PAPER 91-0103] p 258 A91-21368

Determination of cycle configuration of gas turbines and aircraft engines by an optimization procedure [ASME PAPER 90-GT-115] p 302 A91-23646

Double linearization theory for a rotating subsonic annular cascade of oscillating blades. I - Mathematical expressions of disturbance flow field. II - Numerical study of unsteady aerodynamic forces p 272 A91-24115

Wind tunnel tests on flutter control of a high-aspect-ratio cantilevered wing: Control with leading-edge trailing-edge control surfaces [NAL-TR-1070]

p 276 N91-15982 An experiment on supersonic turbulent mixing layers: personic-subsonic two-stream layers

p 276 N91-15983 [NAL-TR-10661 Large-scale numerical aerodynamic simulations for complete aircraft configurations

[NAL-TR-1073-T] p 277 N91-15984 Calculations for unsteady aerodynamic characteristics on a 3-D lifting body in subsonic flow using boundary element method

INAL-TR-10651 p 277 N91-15985 Numerical simulation of separated flows around a wing section at steady and unsteady motion by a discrete vortex p 278 N91-16268

Unsteady vortex lattice calculation of the flow around a slender delta wing p 278 N91-16272

K

KOREA(SOUTH)

Inviscid analysis of two-dimensional airfoils in unsteady motion using conformal mapping p 268 A91-22477

N

NETHERLANDS

Comparison of combustion experiments and theory in polyethylene solid fuel ramjets p 297 A91-20744 A measurement system for production flight tests of new p 308 A91-20984 Aerodynamic effects of distributed roughness on a NACA 63(2)-015 airfoil

[AIAA PAPER 91-0443] p 262 A91-21492 Certification of Fokker 50 and Fokker 100 for operation

icing conditions [AIAA PAPER 91-0561] p 279 A91-21532 Flight tests of the aerodynamic effects of type I and type II ground de-/anti-icing fluids on the Fokker 50 and

Fokker 100 aircraft [AIAA PAPER 91-0785] IAA PAPER 91-0785] p 288 A91-21617 Activities report of the Dutch Civil Aeronautics Board

[ETN-91-98472] p 283 N91-16005

P

POLAND

Method of strength evaluation of radial fan rotors p 316 A91-20932

ROMANIA (RUMANIA)

Numerical solution of the equation for a thin airfoil in ground effect p 269 A91-22491

S

SWEDEN

Testing the new Swedish multirole A/C - The JAS 39 p 285 A91-20990 SWITZERI AND

Modellization and calculation of laminar hypersonic boundary layer flows p 254 A91-21190

Т

TAIWAN

Design for strength and rigidity of a thermoplastic composite speed brake p 284 A91-20783 Composite patch reinforcement of cracked aircraft upper longeron - Analysis and specimen simulation

A91-20784 p 249

A computational investigation of dump combustor performance p 300 A91-23106 TURKEY

A decentralized controller for highly augmented ircraft p 327 N91-15717 aircraft

U.S.S.R.

Calculation of three-dimensional compressible boundary layers on slender bodies p 252 A91-20936 Additional fuel component application for hydrogen scramiet boosting [SAE PAPER 900990] p 312 A91-21226 Analysis of rarefied gas flow near critical point

p 268 A91-21879

FOREIGN TECHNOLOGY INDEX

YUGOSLAVIA

Maximum-rate deceleration of an object during
controlled motion under the effect of aerodynamic drag and gravity forces p 268 A91-21940
Effect of the penetration depth of fuel jets on combustion
in a supersonic combustion chamber
p 312 A91-21962 Macroscopic model of vibrational relaxation in heat
transfer problems for supersonic flow past hard bodies
p 268 A91-21979
Painting technology for civil aircraft and helicopters (2nd revised and enlarged edition) p 250 A91-22102
Assembly of aircraft components p 250 A91-22104
Aerospace system development directions and some aspects of their construction and application
[AIAA PAPER 90-5266] p 311 A91-22889
Gasdynamic features of supersonic kerosene
combustion in a model combustion chamber [AlAA PAPER 90-5268] p 313 A91-22891
Experimental investigation of a 2-D dual mode scramjet
with hydrogen fuel at Mach 4-6
[AIAA PAPER 90-5269] p 300 A91-22892 The investigation of the hypersonic vehicle
aerothermodynamics
[AIAA PAPER 90-5271] p 270 A91-22893 Theory of the resonance method for the quality control
of adhesive joints p 321 A91-23814
Optimization of process routes in the repair of gas turbine
engine components using capillary testing p 321 A91-23817
An experimental study of the evolution of harmonic
perturbations in a boundary layer on a flat plate at Mach
4 p 272 A91-23842 Effect of surface temperature on the stability of the
attachment line boundary layer of a swept wing
p 272 A91-23845 A study of flow structure in nozzles with a constant-height
section in the throat region p 272 A91-23848
Effect of the initial flow conditions on the aerodynamic
and acoustic characteristics of turbulent jets p 272 A91-23903
Optimal conditions for controlling the intensity of
turbulent flow by means of screens p 321 A91-23904
Boundary layer three-dimensionality in plane compression flows p 321 A91-23905
Three-dimensional boundary layer effects in convergent
compression flows p 321 A91-23910
Turbulent three-dimensional separated flows in a supersonic stream near obstacles at the edge of dihedral
corners p 272 A91-23913
Calculation of averaged axisymmetric flow of an ideal
Calculation of averaged axisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary
Calculation of averaged axisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary cross section p 251 A91-20745
Calculation of averaged axisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary p 251 A91-20745 Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20899
Calculation of averaged axisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary cross section p 251 A91-20745 Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20899 North Atlantic air traffic control p 282 A91-20900
Calculation of averaged axisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary p 251 A91-20745 Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20899
Calculation of averaged axisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary cross section p 251 A91-20745 Prediction of penetration of curved metal siffened panels due to birdstrike p 315 A91-20899 North Atlantic air traffic control p 282 A91-20900 The development and testing of active control techniques to minimise helicopter vibration p 284 A91-20946
Calculation of averaged exisymmetric flow of an ideal gas in turbornachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary cross section Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20949 North Atlantic air traffic control p 282 A91-20900 The development and testing of active control techniques to minimise helicopter vibration p 284 A91-20946 The Radio Trials Centre at A&AEE Boscombe Down,
Calculation of averaged axisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary cross section p 251 A91-20745 Prediction of penetration of curved metal siffened panels due to birdstrike p 315 A91-20899 North Atlantic air traffic control p 282 A91-20900 The development and testing of active control techniques to minimise helicopter vibration p 284 A91-20946
Calculation of averaged axisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary cross section p 251 A91-20745 Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20899 North Atlantic air traffic control p 282 A91-20900 The development and testing of active control techniques to minimise helicopter vibration p 284 A91-20946 The Radio Trials Centre at A&AEE Boscombe Down, United Kingdom - A description p 308 A91-20978 International Conference on Hypersonic Aerodynamics, Victoria University of Manchester, England, Sept. 4-6,
Calculation of averaged exisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary cross section Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20946 North Atlantic air traffic control p 282 A91-20909 The development and testing of active control techniques to minimise helicopter vibration p 284 A91-20946 The Radio Trials Centre at A&AEE Boscombe Down, United Kingdom - A description p 308 A91-20978 International Conference on Hypersonic Aerodynamics, Victoria University of Manchester, England, Sept. 4-6, 1989, Proceedings p 253 A91-21176
Calculation of averaged axisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary cross section p 251 A91-20745 Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20899 North Atlantic air traffic control p 282 A91-20900 The development and testing of active control techniques to minimise helicopter vibration p 284 A91-20946 The Radio Trials Centre at A&AEE Boscombe Down, United Kingdom - A description p 308 A91-20978 International Conference on Hypersonic Aerodynamics, Victoria University of Manchester, England, Sept. 4-6,
Calculation of averaged exisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary cross section Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20949 North Atlantic air traffic control p 282 A91-20909 The development and testing of active control techniques to minimise helicopter vibration p 284 A91-20946 The Radio Trials Centre at A&AEE Boscombe Down, United Kingdom - A description p 308 A91-20978 International Conference on Hypersonic Aerodynamics, Victoria University of Manchester, England, Sept. 4-6, 1989, Proceedings p 253 A91-21176 Ground facilities for hypersonic simulation p 308 A91-21177 The aerodynamic characteristics of power-law bodies
Calculation of averaged axisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary pcoss section p 251 A91-20745 Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20899 North Atlantic air traffic control The development and testing of active control techniques to minimise helicopter vibration p 284 A91-20946 The Radio Trials Centre at A&AEE Boscombe Down, United Kingdom - A description p 308 A91-20978 International Conference on Hypersonic Aerodynamics, Victoria University of Manchester, England, Sept. 4-6, 1989, Proceedings p 253 A91-21176 Ground facilities for hypersonic simulation p 308 A91-21179 The aerodynamic characteristics of power-law bodies in continuum and transitional hypersonic flow
Calculation of averaged axisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary pcoss section p 251 A91-20745 Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20899 North Atlantic air traffic control The development and testing of active control techniques to minimise helicopter vibration p 284 A91-20946 The Radio Trials Centre at A&AEE Boscombe Down, United Kingdom - A description p 308 A91-20978 International Conference on Hypersonic Aerodynamics, Victoria University of Manchester, England, Sept. 4-6, 1989, Proceedings p 253 A91-21176 Ground facilities for hypersonic simulation p 308 A91-21177 The aerodynamic characteristics of power-law bodies in continuum and transitional hypersonic flow p 253 A91-21180
Calculation of averaged axisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary pcoss section p 251 A91-20745 Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20899 North Atlantic air traffic control The development and testing of active control techniques to minimise helicopter vibration p 284 A91-20946 The Radio Trials Centre at A&AEE Boscombe Down, United Kingdom - A description p 308 A91-20978 International Conference on Hypersonic Aerodynamics, Victoria University of Manchester, England, Sept. 4-6, 1989, Proceedings p 253 A91-21176 Ground facilities for hypersonic simulation p 308 A91-21179 The aerodynamic characteristics of power-law bodies in continuum and transitional hypersonic flow
Calculation of averaged axisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary pcross section p 251 A91-20745 Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20899 North Atlantic air traffic control The development and testing of active control techniques to minimise helicopter vibration p 284 A91-20946 The Radio Trials Centre at A&AEE Boscombe Down, United Kingdom - A description p 308 A91-20978 International Conference on Hypersonic Aerodynamics, Victoria University of Manchester, England, Sept. 4-6, 1989, Proceedings p 253 A91-21176 Ground facilities for hypersonic simulation p 308 A91-21177 The aerodynamic characteristics of power-law bodies in continuum and transitional hypersonic flow p 253 A91-21180 Hypersonic flow calculations using locally body-fitting and overlapping grids p 253 A91-21183 Hypersonic viscous interaction revisited
Calculation of averaged axisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary pcoss section p 315 A91-20745 Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20899 North Atlantic air traffic control p 282 A91-20980 The development and testing of active control techniques to minimise helicopter vibration p 284 A91-20946 The Radio Trials Centre at A&AEE Boscombe Down, United Kingdom - A description p 308 A91-20978 International Conference on Hypersonic Aerodynamics, Victoria University of Manchester, England, Sept. 4-6, 1989, Proceedings p 253 A91-21176 Ground facilities for hypersonic simulation p 308 A91-21177 The aerodynamic characteristics of power-law bodies in continuum and transitional hypersonic flow p 253 A91-21180 Hypersonic flow calculations using locally body-fitting and overtapping grids p 254 A91-21191
Calculation of averaged axisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary cross section prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20745 North Atlantic air traffic control p 282 A91-20909 The development and testing of active control techniques to minimise helicopter vibration p 284 A91-20946 The Radio Trials Centre at A&AEE Boscombe Down, United Kingdom - A description p 308 A91-20978 International Conference on Hypersonic Aerodynamics, Victoria University of Manchester, England, Sept. 4-6, 1989, Proceedings p 253 A91-21176 Ground facilities for hypersonic simulation p 308 A91-21177 The aerodynamic characteristics of power-law bodies in continuum and transitional hypersonic flow p 253 A91-21180 Hypersonic flow calculations using locally body-fitting and overtapping grids p 254 A91-21191 Dynamic effects of hypersonic separated flow
Calculation of averaged axisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary pcoss section p 315 A91-20745 Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20899 North Atlantic air traffic control p 282 A91-20980 The development and testing of active control techniques to minimise helicopter vibration p 284 A91-20946 The Radio Trials Centre at A&AEE Boscombe Down, United Kingdom - A description p 308 A91-20978 International Conference on Hypersonic Aerodynamics, Victoria University of Manchester, England, Sept. 4-6, 1989, Proceedings p 253 A91-21176 Ground facilities for hypersonic simulation p 308 A91-21177 The aerodynamic characteristics of power-law bodies in continuum and transitional hypersonic flow p 253 A91-21180 Hypersonic flow calculations using locally body-fitting and overtapping grids p 254 A91-21191
Calculation of averaged axisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary pross section p 251 A91-20745 Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20899 North Atlantic air traffic control p 282 A91-20980 The development and testing of active control techniques to minimise helicopter vibration p 284 A91-20946 The Radio Trials Centre at A&AEE Boscombe Down, United Kingdom - A description p 308 A91-20978 International Conference on Hypersonic Aerodynamics, Victoria University of Manchester, England, Sept. 4-6, 1989, Proceedings p 253 A91-21176 Ground facilities for hypersonic simulation p 308 A91-21177 The aerodynamic characteristics of power-law bodies in continuum and transitional hypersonic flow p 253 A91-21180 Hypersonic flow calculations using locally body-fitting and overlapping grids p 253 A91-21183 Hypersonic viscous interaction revisited p 254 A91-21191 Dynamic effects of hypersonic separated flow p 254 A91-21192 Hypersonic interactions and flow transition p 254 A91-21193
Calculation of averaged exisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary cross section Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20745 North Atlantic air traffic control The development and testing of active control techniques to minimise helicopter vibration p 284 A91-20906 The Radio Trials Centre at A&AEE Boscombe Down, United Kingdom - A description p 308 A91-20978 International Conference on Hypersonic Aerodynamics, Victoria University of Manchester, England, Sept. 4-6, 1989, Proceedings p 253 A91-21176 Ground facilities for hypersonic simulation p 308 A91-21179 The aerodynamic characteristics of power-law bodies in continuum and transitional hypersonic flow p 253 A91-21180 Hypersonic flow calculations using locally body-fitting and overlapping grids p 253 A91-21181 Hypersonic viscous interaction revisited p 254 A91-21191 Dynamic effects of hypersonic separated flow p 254 A91-21192 Hypersonic interactions and flow transition p 254 A91-21193 Boundary-layer transition and heat transfer on slender
Calculation of averaged exisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary pross section p 251 A91-20745 Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20899 North Atlantic air traffic control The development and testing of active control techniques to minimise helicopter vibration p 284 A91-20946 The Radio Trials Centre at A&AEE Boscombe Down, United Kingdom - A description p 308 A91-20978 International Conference on Hypersonic Aerodynamics, Victoria University of Manchester, England, Sept. 4-6, 1989, Proceedings p 253 A91-21176 Ground facilities for hypersonic simulation p 308 A91-21176 Ground facilities for hypersonic simulation p 308 A91-21178 Hypersonic flow calculations using locally body-fitting and overlapping grids p 253 A91-21180 Hypersonic viscous interaction revisited p 254 A91-21191 Dynamic effects of hypersonic separated flow p 254 A91-21191 Hypersonic interactions and flow transition p 254 A91-21193 Boundary-layer transition and heat transfer on slender delta wings p 254 A91-21194
Calculation of averaged exisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary cross section Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20745 North Atlantic air traffic control The development and testing of active control techniques to minimise helicopter vibration p 284 A91-20906 The Radio Trials Centre at A&AEE Boscombe Down, United Kingdom - A description p 308 A91-20978 International Conference on Hypersonic Aerodynamics, Victoria University of Manchester, England, Sept. 4-6, 1989, Proceedings p 253 A91-21176 Ground facilities for hypersonic simulation p 308 A91-21179 The aerodynamic characteristics of power-law bodies in continuum and transitional hypersonic flow p 253 A91-21180 Hypersonic flow calculations using locally body-fitting and overlapping grids p 253 A91-21181 Hypersonic viscous interaction revisited p 254 A91-21191 Dynamic effects of hypersonic separated flow p 254 A91-21192 Hypersonic interactions and flow transition p 254 A91-21193 Boundary-layer transition and heat transfer on slender
Calculation of averaged exisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary cross section p 251 A91-20745 Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20899 North Atlantic air traffic control The development and testing of active control techniques to minimise helicopter vibration p 284 A91-20906 The Radio Trials Centre at A&AEE Boscombe Down, United Kingdom - A description p 308 A91-20978 International Conference on Hypersonic Aerodynamics, Victoria University of Manchester, England, Sept. 4-6, 1989, Proceedings p 253 A91-21176 Ground facilities for hypersonic simulation p 308 A91-21179 The aerodynamic characteristics of power-law bodies in continuum and transitional hypersonic flow p 253 A91-21180 Hypersonic flow calculations using locally body-fitting and overtapping grids p 253 A91-21181 Hypersonic viscous interaction revisited p 254 A91-21191 Dynamic effects of hypersonic separated flow p 254 A91-21191 Dynamic effects of hypersonic separated flow p 254 A91-21193 Boundary-layer transition and heat transfer on slender delta wings p 254 A91-21194 Airport technology international 1990/1991 p 309 A91-21200 Maintenance of modern avionics systems; Proceedings
Calculation of averaged axisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary pross section p 251 A91-20745 Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20899 North Atlantic air traffic control The development and testing of active control techniques to minimise helicopter vibration p 284 A91-20900 P 308 A91-20900 P 308 A91-20900 P 308 A91-20978 International Conference on Hypersonic Aerodynamics, Victoria University of Manchester, England, Sept. 4-6, 1989, Proceedings p 253 A91-21176 Ground facilities for hypersonic simulation p 308 A91-21176 Ground facilities for hypersonic simulation p 308 A91-21176 Hypersonic flow calculations using locally body-fitting and overtapping grids p 253 A91-21180 Hypersonic viscous interaction revisited p 254 A91-21191 Dynamic effects of hypersonic separated flow p 254 A91-21191 Dynamic effects of hypersonic separated flow p 254 A91-21191 Boundary-layer transition and heat transfer on slender delta wings p 254 A91-21194 Airport technology international 1990/1991 p 309 A91-21200 Maintenance of modern avionics systems; Proceedings of the Conference, Heathrow, England, May 9, 1989
Calculation of averaged exisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary cross section p 251 A91-20745 Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20899 North Atlantic air traffic control The development and testing of active control techniques to minimise helicopter vibration p 284 A91-20906 The Radio Trials Centre at A&AEE Boscombe Down, United Kingdom - A description p 308 A91-20978 International Conference on Hypersonic Aerodynamics, Victoria University of Manchester, England, Sept. 4-6, 1989, Proceedings p 253 A91-21176 Ground facilities for hypersonic simulation p 308 A91-21179 The aerodynamic characteristics of power-law bodies in continuum and transitional hypersonic flow p 253 A91-21180 Hypersonic flow calculations using locally body-fitting and overtapping grids p 253 A91-21181 Hypersonic viscous interaction revisited p 254 A91-21191 Dynamic effects of hypersonic separated flow p 254 A91-21191 Dynamic effects of hypersonic separated flow p 254 A91-21193 Boundary-layer transition and heat transfer on slender delta wings p 254 A91-21194 Airport technology international 1990/1991 p 309 A91-21200 Maintenance of modern avionics systems; Proceedings
Calculation of averaged exisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary cross section p 251 A91-20745 Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20899 North Atlantic air traffic control The development and testing of active control techniques to minimise helicopter vibration p 284 A91-20906 The Radio Trials Centre at A&AEE Boscombe Down, United Kingdom - A description p 308 A91-20978 International Conference on Hypersonic Aerodynamics, Victoria University of Manchester, England, Sept. 4-6, 1989, Proceedings p 253 A91-21176 Ground facilities for hypersonic simulation p 308 A91-21179 The aerodynamic characteristics of power-law bodies in continuum and transitional hypersonic flow p 253 A91-21180 Hypersonic flow calculations using locally body-fitting and overtapping grids p 253 A91-21181 Hypersonic viscous interaction revisited p 254 A91-21191 Dynamic effects of hypersonic separated flow p 254 A91-21191 Boundary-layer transition and heat transfer on slender delta wings p 254 A91-21193 Airport technology international 1990/1991 p 309 A91-21200 Maintenance of modern avionics systems; Proceedings of the Conference, Heathrow, England, May 9, 1989 p 250 A91-21202 Limitations of BITE p 250 A91-21203
Calculation of averaged axisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary pross section p 251 A91-20745 Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20899 North Atlantic air traffic control The development and testing of active control techniques to minimise helicopter vibration p 284 A91-20906 The Radio Trials Centre at A&AEE Boscombe Down, United Kingdom - A description p 308 A91-20978 International Conference on Hypersonic Aerodynamics, Victoria University of Manchester, England, Sept. 4-6, 1989, Proceedings p 253 A91-21176 Ground facilities for hypersonic simulation p 308 A91-21179 The aerodynamic characteristics of power-law bodies in continuum and transitional hypersonic flow p 253 A91-21180 Hypersonic flow calculations using locally body-fitting and overtapping grids p 253 A91-21183 Hypersonic viscous interaction revisited p 254 A91-21191 Dynamic effects of hypersonic separated flow p 254 A91-21191 Boundary-layer transition and heat transfer on slender delta wings p 254 A91-21194 Airport technology international 1990/1991 p 309 A91-21200 Maintenance of modern avionics systems; Proceedings of the Conference, Heathrow, England, May 9, 1989 p 250 A91-21201 Limitations of BITE p 250 A91-21203 The aircraft avionic interconnection system
Calculation of averaged exisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary cross section p 251 A91-20745 Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20989 North Atlantic air traffic control p 282 A91-20900 The development and testing of active control techniques to minimise helicopter vibration p 284 A91-20946 The Radio Trials Centre at A&AEE Boscombe Down, United Kingdom - A description p 308 A91-20978 International Conference on Hypersonic Aerodynamics, Victoria University of Manchester, England, Sept. 4-6, 1989, Proceedings p 253 A91-21176 Ground facilities for hypersonic simulation p 308 A91-21179 The aerodynamic characteristics of power-law bodies in continuum and transitional hypersonic flow p 253 A91-21180 Hypersonic flow calculations using locally body-fitting and overtapping grids p 253 A91-21183 Hypersonic viscous interaction revisited p 254 A91-21191 Dynamic effects of hypersonic separated flow p 254 A91-21191 Hypersonic interactions and flow transition p 254 A91-21192 Hypersonic interactions and flow transition p 254 A91-21193 Boundary-layer transition and heat transfer on slender delta wings p 254 A91-21191 p 309 A91-21200 Maintenance of modern avionics systems; Proceedings of the Conference, Heathrow, England, May 9, 1989 p 250 A91-21201 Limitations of BITE p 250 A91-21203 The aircraft avionic interconnection system p 317 A91-21204
Calculation of averaged axisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary pross section p 251 A91-20745 Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20899 North Atlantic air traffic control The development and testing of active control techniques to minimise helicopter vibration p 284 A91-20906 The Radio Trials Centre at A&AEE Boscombe Down, United Kingdom - A description p 308 A91-20978 International Conference on Hypersonic Aerodynamics, Victoria University of Manchester, England, Sept. 4-6, 1989, Proceedings p 253 A91-21176 Ground facilities for hypersonic simulation p 308 A91-21179 The aerodynamic characteristics of power-law bodies in continuum and transitional hypersonic flow p 253 A91-21180 Hypersonic flow calculations using locally body-fitting and overtapping grids p 253 A91-21183 Hypersonic viscous interaction revisited p 254 A91-21191 Dynamic effects of hypersonic separated flow p 254 A91-21191 Boundary-layer transition and heat transfer on slender delta wings p 254 A91-21194 Airport technology international 1990/1991 p 309 A91-21200 Maintenance of modern avionics systems; Proceedings of the Conference, Heathrow, England, May 9, 1989 p 250 A91-21201 Limitations of BITE p 250 A91-21203 The aircraft avionic interconnection system
Calculation of averaged axisymmetric flow of an ideal gas in turbomachine stages p 321 A91-23938 UNITED KINGDOM Aerodynamic design for supersonic nozzles of arbitrary cross section Prediction of penetration of curved metal stiffened panels due to birdstrike p 315 A91-20946 North Atlantic air traffic control The development and testing of active control techniques to minimise helicopter vibration p 284 A91-20906 The Radio Trials Centre at A&AEE Boscombe Down, United Kingdom - A description p 308 A91-20978 International Conference on Hypersonic Aerodynamics, Victoria University of Manchester, England, Sept. 4-6, 1989, Proceedings p 253 A91-21176 Ground facilities for hypersonic simulation p 308 A91-21179 The aerodynamic characteristics of power-law bodies in continuum and transitional hypersonic flow p 253 A91-21180 Hypersonic flow calculations using locally body-fitting and overlapping grids p 253 A91-21181 Hypersonic viscous interaction revisited p 254 A91-21191 Dynamic effects of hypersonic separated flow p 254 A91-21192 Hypersonic interactions and flow transition p 254 A91-21193 Boundary-layer transition and heat transfer on slender delta wings p 254 A91-21193 Airport technology international 1990/1991 p 309 A91-21200 Maintenance of modern avionics systems; Proceedings of the Conference, Heathrow, England, May 9, 1989 p 250 A91-21202 The aircraft avionic interconnection system p 317 A91-21204 Testing air data systems on aircraft - Problems and

The ground vortex formed by impinging jets in cross-flow [AIAA PAPER 91-0768] p 267 A91-21611 Eight channel pressure measuring system for cryogenic use in the European Transonic Wind-tunnel over the p 318 A91-21722 temperature range 78-300 K p 318 Composite materials in aircraft structures p 313 A91-22109 The inviscid stability of supersonic flow past a sharp one p 269 A91-22511 Maintenance standards p 250 A91-23546 cone Prediction of the dynamic characteristics of helicopters in constrained flight p 290 A91-23549 An investigation of supersonic oscillatory cavity flows driven by thick shear layers p 271 A91-23550 p 271 A91-23550 EJ200 - The engine for the new European Fighter Aircraft [ASME PAPER 90-GT-119] p 301 A91-23637 Introduction to the basic technology of stealth aircraft.

1 - Basic considerations and aircraft self-emitted signals. (passive considerations). II - Illumination by the enemy (active considerations) [ASME PAPER 90-GT-116] p 290 A91-23643 Simulation of aircraft gas turbine engines p 301 A91-23645 p 306 A91-24113 Automatic flight control systems Aircraft structures for engineering students (2nd revised no entarged edition) p 321 A91-24114
Airframe-induced upwash at subsonic speeds
SDU-90020] p 275 N91-15130
Performance of conicel difference and enlarged edition) [ESDU-90020] compressible flow [ESDU-90025] p 275 N91-15131 SDU-90025]
An introduction to aircraft excrescence drag
SDU-90029]
p 275 N91-15132 [ESDU-90029] p 275 N91-15132 A method of estimating a separation boundary of two-dimensional aerofoli sections in transonic flow [ESDU-81020-AMEND-A] p 275 N91-Energy height method for flight path optimisation
[ESDU-90012] [ESDU-90012] p 291 N91-15151 Normal force and pitching moment of low aspect ratio cropped-delta wings up to high angles of attack at supersonic speeds [ESDU-90013] A real-time distributed optimal autopilot [RR-398] RR-398] p 307 N91-15181 Fatigue of aluminium alloy joints with various fastener systems. High load transfer [ESDU-90018] p 322 N91-15597 Computer-aided control law research: From concept to flight test p 329 N91-15731 Selection of weights in optimal control [RR-397] p 330 N91-15796 Airframe noise prediction [ESDU-90023] p 332 N91-15843 TF89 aircraft centre fuselage p 294 N91-1601B [ETN-91-98579] TF89 tactical fighter outer wing design p 294 N91-16019 [ETN-91-98580] Jet engine performance estimation from minimal input data [ETN-91-98582] p 303 N91-16023 An introduction to modern aero-engine control design TN-91-98583] p 303 N91-16024 [ETN-91-98583] Longitudinal stability augmentation of a lightweight fighter aircraft model [ETN-91-98585] p 308 N91-16026 Far-field boundaries and their numerical treatment p 323 N91-16281

Y

YUGOSLAVIA

An algorithm and criteria for compressor characteristics real time modeling and approximation [ASME PAPER 90-GT-336] p 302 A91-23648

Typical Contract Number Index Listing

Listings in this index are arranged alphanumerically by contract number. Under each contract number, the accession numbers denoting documents that have been produced as a result of research done under the contract are shown. The accession number denotes the number by which the citation is identified in the abstract section. Preceding the accession number is the page number on which the citation may be found.

AF PROJ. 0100	p 309	N91-15185
AF PROJ. 2420	p 314	N91-15374
AF PROJ. 3005	p 324	N91-16382
15.0001	p 324	N91-16330
	•	
AF PROJ. 3153	p 314	N91-15322
AF PROJ. 5420	p 283	N91-16004
AF-AFOSR-ISSA-89-0067	p 256	A91-21329
AF-AFOSR-81-0282	p 318	A91-21391
AF-AFOSR-83-0071	p 263	A91-21549
AF-AFOSR-86-0090	p 321	A91-23745
AF-AFOSR-86-0328	p 269	A91-22481
AF-AFOSR-88-0037	p 257	A91-21344
	p 269	A91-22492
AF-AFOSR-88-0146	p 254	A91-21189
AF-AFOSR-89-0283	p 266	A91-21600
AF-AFOSR-89-0434	p 263	A91-21518
AF-AFOSR-90-0249	p 263 p 271	A91-21525 A91-23186
BMVG-T/RF42/G022/G1412		
DA PROJ. 1L1-61102-AH-45	p 291	N91-15146
DAAG29-81-D-0100	p 291	N91-15148
DAAL03-87-K-0024	p 307	N91-15183
DAAL03-88-C-0003	p 318	A91-21435
DAAL03-90-G-0096	p 261	A91-21460 N91-16582
DE-AC02-83CH-10093	p 330	
DE-AC04-76DP-00789	p 261	A91-21458
	p 307	N91-15179
DE-AC04-76DR-00789	p 307 p 274	N91-15179 N91-15129
DE-AC04-76DR-00789 DE-AC05-84OR-21400	p 307 p 274 p 309	N91-15179 N91-15129 N91-15186
DE-AC04-76DR-00789 DE-AC05-84OR-21400 DE-AI01-85CE-50111	p 307 p 274 p 309 p 302	N91-15179 N91-15129 N91-15186 N91-16021
DE-AC04-76DR-00789 DE-AC05-84OR-21400 DE-AI01-85CE-50111 DE-FC05-85ER-25000	p 307 p 274 p 309 p 302 p 263	N91-15179 N91-15129 N91-15186 N91-16021 A91-21550
DE-AC04-76DR-00789 DE-AC05-84OR-21400 DE-AI01-85CE-50111 DE-FC05-85ER-25000 DEN3-336	p 307 p 274 p 309 p 302 p 263 p 302	N91-15179 N91-15129 N91-15186 N91-16021 A91-21550 N91-16021
DE-AC04-76DR-00789 DE-AC05-84OR-21400 DE-Ai01-85CE-50111 DE-FC05-85ER-25000 DEN3-336 DTFA01-83-4-10579	p 307 p 274 p 309 p 302 p 263 p 302 p 323	N91-15179 N91-15129 N91-15186 N91-16021 A91-21550 N91-16021 N91-16206
DE-AC04-76DR-00789 DE-AC05-84OR-21400 DE-AI01-85CE-50111 DE-FC05-85ER-25000 DEN3-336 DTFA01-83-4-10579 DTFA01-87-C-00014	p 307 p 274 p 309 p 302 p 263 p 302 p 323 p 277	N91-15179 N91-15129 N91-15186 N91-16021 A91-21550 N91-16021 N91-16206 N91-15989
DE-AC04-76DR-00789 DE-AC05-84OR-21400 DE-AI01-85CE-50111 DE-FC05-85ER-25000 DEN3-336 DTFA01-83-4-10579 DTFA01-87-C-00014 DTFA01-90-Z-02005	p 307 p 274 p 309 p 302 p 263 p 302 p 323 p 277 p 325	N91-15179 N91-15129 N91-15186 N91-16021 A91-21550 N91-16021 N91-16206 N91-15989 A91-21530
DE-AC04-76DR-00789 DE-AC05-84OR-21400 DE-AI01-85CE-50111 DE-FC05-85ER-25000 DEN3-336 DTFA01-83-4-10579 DTFA01-87-C-00014 DTFA01-90-Z-02005 DTFA03-89-C-00023	p 307 p 274 p 309 p 302 p 263 p 302 p 323 p 277 p 325 p 311	N91-15179 N91-15129 N91-15186 N91-16021 A91-21550 N91-16021 N91-16206 N91-15989 A91-21530 N91-15295
DE-AC04-76DR-00789 DE-AC05-84OR-21400 DE-Ai01-85CE-50111 DE-FC05-85ER-25000 DEN3-336 DTFA01-83-4-10579 DTFA01-87-C-00014 DTFA01-90-Z-02005 DTFA03-89-C-00023 DTFA03-89-C-00057	p 307 p 274 p 309 p 302 p 263 p 302 p 323 p 277 p 325 p 311 p 333	N91-15179 N91-15129 N91-15186 N91-16021 A91-21550 N91-16021 N91-16206 N91-15295 N91-15295 N91-15298
DE-AC04-76DR-00789 DE-AC05-84OR-21400 DE-AI01-85CE-50111 DE-FC05-85ER-25000 DEN3-336 DTFA01-83-4-10579 DTFA01-87-C-00014 DTFA01-90-Z-02005 DTFA03-89-C-00023 DTFA03-89-C-00057 F08635-87-K-0031	P 307 P 274 P 309 P 302 P 263 P 302 P 323 P 277 P 325 P 311 P 333 P 290	N91-15179 N91-15129 N91-15186 N91-16021 A91-21550 N91-16021 N91-16206 N91-15989 A91-21530 N91-15295 N91-15295
DE-AC04-76DR-00789 DE-AC05-84OR-21400 DE-AI01-85CE-50111 DE-FC05-85ER-25000 DEN3-336 DTFA01-83-4-10579 DTFA01-87-C-00014 DTFA01-90-Z-02005 DTFA03-89-C-00023 DTFA03-89-C-00057 F08635-87-K-0031 F19628-89-C-0001	p 307 p 274 p 309 p 302 p 263 p 302 p 323 p 277 p 325 p 311 p 333 p 290 p 283	N91-15179 N91-15129 N91-15186 N91-16021 A91-21550 N91-16206 N91-16206 N91-15989 A91-21530 N91-15929 N91-15928 N91-15928 N91-16004
DE-AC04-76DR-00789 DE-AC05-84OR-21400 DE-AI01-85CE-50111 DE-FC05-85ER-25000 DEN3-336 DTFA01-83-4-10579 DTFA01-87-C-00014 DTFA01-90-C-02005 DTFA03-89-C-00023 DTFA03-89-C-00057 F08635-87-K-0031 F19628-89-C-0001 F33615-83-C-2330	p 307 p 274 p 309 p 302 p 263 p 302 p 323 p 277 p 325 p 311 p 333 p 290 p 283 p 324	N91-15179 N91-15129 N91-15186 N91-16021 A91-21550 N91-16021 N91-16206 N91-15989 A91-21530 A91-1595 N91-1595 N91-15928 A91-22956 N91-16004 N91-16330
DE-AC04-76DR-00789 DE-AC05-84OR-21400 DE-AI01-85CE-50111 DE-FC05-85ER-25000 DEN3-336 DTFA01-83-4-10579 DTFA01-87-C-00014 DTFA01-90-Z-02005 DTFA03-89-C-00023 DTFA03-89-C-00057 F08635-87-K-0031 F19628-89-C-0001 F33615-83-C-2330 F33615-83-C-5034	P 307 P 274 P 309 P 302 P 263 P 302 P 323 P 277 P 325 P 311 P 333 P 290 P 283 P 324 P 312	N91-15179 N91-15129 N91-15186 N91-16021 A91-21550 N91-16021 N91-16206 N91-15295 A91-21530 N91-15295 N91-15295 N91-15928 A91-22956 N91-16004 N91-16330 A91-20864
DE-AC04-76DR-00789 DE-AC05-84OR-21400 DE-AI01-85CE-50111 DE-FC05-85ER-25000 DEN3-336 DTFA01-83-4-10579 DTFA01-87-C-00014 DTFA01-89-C-00055 DTFA03-89-C-00057 F0863-89-K-00031 F19628-89-C-0001 F33615-83-C-2330 F33615-83-C-5034 F33615-85-C-5029	P 307 P 274 P 309 P 302 P 263 P 302 P 323 P 277 P 325 P 311 P 333 P 283 P 283 P 324 P 312 P 314	N91-15179 N91-15129 N91-15186 N91-16021 A91-21550 N91-16026 N91-16026 N91-15989 A91-21530 N91-1598 N91-15925 N91-15926 N91-16004 N91-16330 A91-20864 N91-15374
DE-AC04-76DR-00789 DE-AC05-84OR-21400 DE-Ai01-85CE-50111 DE-FC05-85ER-25000 DEN3-336 DTFA01-83-4-10579 DTFA01-87-C-00014 DTFA01-90-Z-02005 DTFA03-89-C-00023 DTFA03-89-C-00057 F08635-87-K-0031 F19628-89-C-0001 F33615-83-C-2330 F33615-83-C-5034 F33615-85-C-5029 F33615-87-C-3006	P 307 P 274 P 309 P 302 P 263 P 302 P 323 P 277 P 325 P 311 P 333 P 290 P 283 P 314 P 314 P 299	N91-15179 N91-15129 N91-15186 N91-16021 A91-21550 N91-16021 N91-16206 N91-15295 A91-21530 N91-15295 N91-15295 N91-15928 A91-22956 N91-16004 N91-16330 A91-20864
DE-AC04-76DR-00789 DE-AC05-84OR-21400 DE-Ai01-85CE-50111 DE-FC05-85ER-25000 DEN3-336 DTFA01-83-4-10579 DTFA01-87-C-00014 DTFA01-90-Z-02005 DTFA03-89-C-00023 DTFA03-89-C-00057 F08635-87-K-0031 F19628-89-C-0001 F33615-83-C-2330 F33615-83-C-5034 F33615-83-C-5029 F33615-88-C-5006 F33615-88-C-5404	P 307 P 274 P 309 P 302 P 263 P 302 P 325 P 315 P 317 P 325 P 311 P 290 P 283 P 312 P 312 P 312 P 314	N91-15179 N91-15129 N91-15186 N91-16021 A91-21550 N91-16020 N91-16020 N91-15989 A91-21530 N91-15295 N91-15928 A91-22956 N91-16004 N91-16330 A91-20864 N91-15374 A91-21418
DE-AC04-76DR-00789 DE-AC05-84OR-21400 DE-AI01-85CE-50111 DE-FC05-85ER-25000 DEN3-336 DTFA01-83-4-10579 DTFA01-87-C-00014 DTFA01-89-C-00055 DTFA03-89-C-00023 DTFA03-89-C-00057 F0863-87-K-0031 F19628-89-C-0001 F33615-83-C-2030 F33615-88-C-5029 F33615-88-C-5029 F33615-88-C-5044 F33615-89-C-2942	P 307 P 274 P 309 P 302 P 263 P 302 P 323 P 277 P 325 P 311 P 333 P 290 P 283 P 312 P 314 P 314 P 314 P 324	N91-15179 N91-15129 N91-15186 N91-16021 A91-21550 N91-16026 N91-16026 N91-15989 N91-15989 N91-15928 N91-15928 N91-16004 N91-16330 A91-20864 N91-15374 A91-21418 N91-15322 N91-16332
DE-AC04-76DR-00789 DE-AC05-84OR-21400 DE-Ai01-85CE-50111 DE-FC05-85ER-25000 DEN3-336 DTFA01-83-4-10579 DTFA01-87-C-00014 DTFA01-90-Z-02005 DTFA03-89-C-00023 DTFA03-89-C-00057 F08635-87-K-0031 F19628-89-C-0001 F33615-83-C-2330 F33615-83-C-5034 F33615-85-C-5029 F33615-85-C-5029 F33615-85-C-5040 F33615-88-C-5404 F33615-88-C-2942 F49620-79-C-0226	P 307 P 274 P 309 P 309 P 363 P 302 P 323 P 375 P 311 P 333 P 290 P 383 P 312 P 314 P 299 P 314 P 318	N91-15179 N91-15129 N91-15186 N91-16021 A91-21550 N91-16020 N91-16020 N91-15989 A91-21530 N91-15295 N91-15928 A91-22956 N91-16004 N91-16330 A91-20864 N91-15374 A91-21418 N91-15374 A91-21418 N91-15322 A91-21418
DE-AC04-76DR-00789 DE-AC05-84OR-21400 DE-AI01-85CE-50111 DE-FC05-85ER-25000 DEN3-336 DTFA01-83-4-10579 DTFA01-87-C-00014 DTFA01-90-C-02005 DTFA03-89-C-00023 DTFA03-89-C-00023 DTFA03-89-C-00057 F08635-87-K-0031 F19628-89-C-0001 F33615-83-C-5304 F33615-83-C-5034 F33615-85-C-5029 F33615-87-C-3006 F33615-88-C-5404 F33615-89-C-2942 F49620-85-C-0027	P 307 P 274 P 309 P 309 P 363 P 302 P 323 P 277 P 325 P 311 P 333 P 290 P 314 P 314 P 314 P 314 P 318 P 318	N91-15179 N91-15129 N91-15186 N91-16021 A91-21550 N91-16021 N91-16206 N91-15989 A91-21530 N91-15295 N91-15295 N91-16304 N91-16330 A91-20864 N91-16340 N91-16340 N91-16341 N91-16441
DE-AC04-76DR-00789 DE-AC05-84OR-21400 DE-AI01-85CE-50111 DE-FC05-85ER-25000 DEN3-336 DTFA01-83-4-10579 DTFA01-87-C-00014 DTFA01-89-C-00055 DTFA03-89-C-00057 F0863-87-K-0031 F19628-89-C-0001 F33615-83-C-2030 F33615-83-C-5024 F33615-88-C-5029 F33615-88-C-5404 F33615-89-C-2942 F49620-79-C-0226 F49620-85-C-0027 F49620-85-C-0027	P 307 P 274 P 309 P 302 P 263 P 302 P 325 P 311 P 333 P 283 P 324 P 312 P 314 P 399 P 314 P 399 P 314 P 315 P 367 P 315	N91-15179 N91-15129 N91-15186 N91-16021 A91-21550 N91-16020 N91-16020 N91-15989 A91-21530 N91-15295 N91-15928 A91-22956 N91-16004 N91-16330 A91-20864 N91-15374 A91-21418 N91-15374 A91-21418 N91-15322 A91-21418
DE-AC04-76DR-00789 DE-AC05-84OR-21400 DE-Ai01-85CE-50111 DE-FC05-85ER-25000 DEN3-336 DTFA01-83-4-10579 DTFA01-87-C-00014 DTFA01-90-Z-02005 DTFA03-89-C-00023 DTFA03-89-C-00057 F08635-87-K-0031 F19628-89-C-0001 F33615-83-C-2330 F33615-83-C-5034 F33615-83-C-5034 F33615-83-C-5049 F33615-89-C-9040 F33615-89-C-9029 F33615-89-C-9029 F33615-89-C-9029 F33615-89-C-9029 F33615-89-C-9029 F33615-89-C-9029 F349620-85-C-0027 F49620-85-C-0027 F49620-87-C-0088	P 307 P 274 P 309 P 302 P 263 P 302 P 325 P 327 P 325 P 311 P 290 P 314 P 299 P 314 P 314 P 318 P 317 P 318 P 317 P 318 P 318	N91-15179 N91-15129 N91-15186 N91-16021 A91-21550 N91-16026 N91-16026 N91-15989 A91-21530 N91-15295 N91-15295 N91-1528 A91-22956 N91-16004 N91-16004 N91-16330 A91-20864 N91-15374 A91-21418 N91-15374 A91-21418 N91-15322 A91-21748 A91-21748 A91-21748
DE-AC04-76DR-00789 DE-AC05-84OR-21400 DE-AI01-85CE-50111 DE-FC05-85ER-25000 DEN3-336 DTFA01-83-4-10579 DTFA01-87-C-00014 DTFA01-90-C-02005 DTFA03-89-C-00023 DTFA03-89-C-00023 DTFA03-89-C-00057 F08635-87-K-0031 F19628-89-C-0001 F33615-83-C-5034 F33615-83-C-5034 F33615-83-C-5034 F33615-85-C-5029 F33615-87-C-3006 F33615-88-C-5040 F33615-89-C-2942 F49620-88-C-0027 F49620-88-C-0027 F49620-88-C-0028 F49620-88-C-0088 F49620-88-C-0061	P 307 P 274 P 309 P 302 P 263 P 302 P 325 P 311 P 333 P 324 P 314 P 314 P 314 P 315 P 315 P 315 P 315 P 326	N91-15179 N91-15129 N91-15186 N91-16021 A91-21550 N91-16026 N91-16206 N91-15989 A91-21530 N91-15295 N91-15295 N91-15295 N91-16304 N91-16304 N91-16344 N91-16344 N91-16382 N91-16382 N91-16382 N91-16382 N91-16382 N91-21748 A91-21748 A91-21748 A91-21731
DE-AC04-76DR-00789 DE-AC05-84OR-21400 DE-Ai01-85CE-50111 DE-FC05-85ER-25000 DEN3-336 DTFA01-83-4-10579 DTFA01-87-C-00014 DTFA01-90-Z-02005 DTFA03-89-C-00023 DTFA03-89-C-00057 F08635-87-K-0031 F19628-89-C-0001 F33615-83-C-2330 F33615-83-C-5034 F33615-83-C-5034 F33615-83-C-5049 F33615-89-C-9040 F33615-89-C-9029 F33615-89-C-9029 F33615-89-C-9029 F33615-89-C-9029 F33615-89-C-9029 F33615-89-C-9029 F349620-85-C-0027 F49620-85-C-0027 F49620-87-C-0088	P 307 P 274 P 309 P 302 P 263 P 302 P 325 P 327 P 325 P 311 P 290 P 314 P 299 P 314 P 314 P 318 P 317 P 318 P 317 P 318 P 318	N91-15179 N91-15129 N91-15186 N91-16021 A91-21550 N91-16026 N91-16026 N91-15989 A91-21530 N91-15295 N91-15295 N91-1528 A91-22956 N91-16004 N91-16004 N91-16330 A91-20864 N91-15374 A91-21418 N91-15374 A91-21418 N91-15322 A91-21748 A91-21748 A91-21748

NACW 1001	- 054	404 0440
NAGW-1061	p 254 p 267	A91-21189 A91-21616
NAGW-964	p 264	A91-21576
	p 265	A91-21578
NAG1-1005 NAG1-1029		A91-21576
NAG1-1029	p 292 p 292	N91-16010 N91-16011
	p 293	N91-16013
NAG1-1065	p 274	N91-15126
NAG1-1188	p 262	A91-21505
NAG1-363 NAG1-423	p 312 p 312	A91-21473 A91-21473
NAG1-795	p 298	A91-21336
NAG1-811	p 253	A91-21188
NAG1-867	p 331	A91-20747
NAG1-994 NAG2-193	p 266 p 276	A91-21604 N91-15981
NAG2-283	p 266	A91-21598
NAG2-297	p 290	A91-22956
NAG2-482	p 311	A91-22960
NAG2-565NAG2-621	p 277 p 317	N91-15986 A91-21352
NAG2-621NAG3-1023	p 265	A91-21578
NAG3-1127	p 258	A91-21374
NAG3-1140	p 299	A91-21483
NAG3-479	p 279	A91-21581
NAG3-566	p 279 p 262	A91-21582 A91-21493
NAG3-716	p 267	A91-21748
NAG3-768	p 265	A91-21580
NAS1-17498	p 323	N91-15607
NAS1-18240 NAS1-18481	p 270 p 309	A91-22882 N91-15188
NAS1-18599	p 261	A91-21461
	p 270	A91-22878
NAS1-18605	p 269	A91-22511
NAS1-18762 NAS1-19038	p 307 p 330	N91-15180 N91-15751
NAS2-11555	p 252	A91-21064
NAS2-12635	p 253	A91-21065
NAS3-23691	p 320	A91-23659
NAS3-25266	p 259 p 322	A91-21393 N91-15598
NCA2-223	p 293	N91-16012
NCC2-315	p 324	A91-20695
NCC2-490	p 305	A91-22961
NCC2-55	p 264 p 265	A91-21561 A91-21593
NCC2-579	p 277	N91-15987
NSF CBT-88-14364	p 317	A91-21388
NSF CTS-89-06432	p 263	A91-21517
NSF CTS-89-14422 NSF MSM-87-09154	p 263 p 263	A91-21517 A91-21518
N00014-84-K-0470	p 297	A91-20737
N00014-88-C-0291	p 268	A91-22476
N00014-90-C-0089	p 299	A91-21482
N00019-88-C-0357 N0014-90-J-1520	p 260 p 318	A91-21437 A91-21601
SERC-GR/E/25702	p 269	A91-22511
TATP-003604020	p 293	N91-16013
324-02-00	p 309	N91-15188
476-84-03 505-61-51	p 322 p 251	N91-15426 N91-15124
300 01 01	p 291	N91-15147
505-61-71-03	p 330	N91-15751
- 505-61-71		N91-15182
505-62-OK 505-62-21		N91-15146 N91-15418
	p 311	N91-15303
505-62-71-01	p 274	N91-15125
505-63-1A		N91-15390
	p 302	N91-15174
505-63-36-01 505-63-50-04		N91-15607 N91-15604
	p 323	N91-15605
505-64-13-22		N91-15141
505-67-01		N91-15173
505-69-51 506-14-51-01		N91-16001 N91-15180
506-40-21		N91-15180
535-03-10	p 332	N91-15842
663.13.00	n 322	N91.15500

553-13-00

Listings in this index are arranged alphanumerically by report number. The page number indicates the page on which the citation is located. The accession number denotes the number by which the citation is identified. An asterisk (*) indicates that the item is a NASA report. A pound sign (#) indicates that the item is available on microfiche.

A-89269	p 281	N91-16001 * #
A-90272	p 322	N91-15426 * #
A-90274	p 274	N91-15128 * #
A-90284	p 251	N91-15124 * #
A-90301	p 291	N91-15147 * #
A-91029	p 293	N91-16012 * #
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<i>p</i> 200	
AAR-247	p 293	N91-16013 * #
AAR-248-PT-2		N91-16011 * #
AAR-252	p 292	N91-16010 * #
7411-232	p LuL	5
AD-A226736	р 306	N91-15177 #
AD-A226737	p 314	N91-15374 #
AD-A227222	p 283	N91-16003 #
AD-A227227		N91-15322 #
	p 291	N91-15148 #
	p 324	N91-16330 #
	p 281	N91-15999 #
	p 314	N91-16170 #
AD-A227489	p 324	N91-16382 #
AD-A227505AD-A227532	p 309	N91-16362 #
		N91-15149 #
AD-A227604	p 291	N91-15150 #
AD-A227627	p 291	N91-16007 #
AD-A227679		N91-15657 #
AD-A227733	p 325 p 296	N91-15037 # N91-15171 #
AD-A227748	p 297	N91-15171 #
AD-A227751	p 306	N91-15172 #
AD-A227754	p 302	N91-16020 #
AD-A227757	p 310	N91-16020 #
AD-A227920	p 307	N91-15183 #
AD-A227933		N91-16293 #
AD-A228231	p 324	N91-16206 #
AD-A228784		N91-16004 #
AD-A228871	p 283	N91-10004 #
AD-E402098	p 291	N91-15148 #
AEDC-TSR-90-V13	p 324	N91-16293 #
AFESC/ESL-TR-89-44	p 309	N91-15185 #
AFIT/CI/CIA-90-083	p 325	N91-15657 #
AFIT/GE/ENG/90S-02	p 283	N91-16003 #
AGARD-CP-473	p 327	N91-15715 #
AGARD-CP-482		N91-15154 #
.,0.0.0		
AIAA PAPER 90-0596	p 269	A91-22497 #
AIAA PAPER 90-5248		A91-22877 * #
		A91-22878 * #
	•	
AIAA PAPER 90-5254	p 300	A91-22879 #
AIAA PAPER 90-5258		A91-22882 * #
AIAA PAPER 90-5259	p 270	A91-22883 # /
ALAA DADED OO.5261	n 313	A91-22884 #

AIAA PAPER 90-5261 p 313 A91-22884 #

·			
AIAA PAPER 90-5262		p 300	A91-22885 #
AIAA PAPER 90-5265		p 311	A91-22888 * #
AIAA PAPER 90-5266		p 311	A91-22889 #
AIAA PAPER 90-5268		p 313	
AIAA PAPER 90-5269		p 300	A91-22892 #
		p 270	A91-22893 #
AIAA PAPER 91-0002		p 326	A91-21326 #
AIAA PAPER 91-0005		p 255	A91-21327 #
AIAA PAPER 91-0006		p 255	A91-21328 #
AIAA PAPER 91-0007		p 256	A91-21329 * #
AIAA PAPER 91-0010		p 256	A91-21331 #
AIAA PAPER 91-0013		p 256	A91-21333 #
AIAA PAPER 91-0015		p 256	A91-21334 #
AIAA PAPER 91-0016		p 256	A91-21335 #
AIAA PAPER 91-0017		p 298	A91-21336 * #
AIAA PAPER 91-0020		p 256	A91-21338 ° #
AIAA PAPER 91-0023		p 257	A91-21341 #
AIAA PAPER 91-0027		p 257	A91-21343 #
AIAA PAPER 91-0028			A91-21344 #
AIAA PAPER 91-0032		p 257	A91-21346 #
AIAA PAPER 91-0042		p 317	A91-21348 * #
AIAA PAPER 91-0043			A91-22499 * #
AIAA PAPER 91-0059		p 317	A91-21351 * #
AIAA PAPER 91-0060		p 317	A91-21352 * #
AIAA PAPER 91-0066		p 257	A91-21354 * #
AIAA PAPER 91-0067		p 257	A91-21355 * #
AIAA PAPER 91-0070		p 257	A91-21356 * #
AIAA PAPER 91-0071			A91-21357 #
AIAA PAPER 91-0103		p 258	A91-21368 #
AIAA PAPER 91-0126		p 298	A91-21372 #
AIAA PAPER 91-0131		p 258	A91-21373 #
AIAA PAPER 91-0132		p 258	A91-21374 * #
AIAA PAPER 91-0149			A91-21381 #
AIAA PAPER 91-0157			A91-21384 #
AIAA PAPER 91-0165		p 317	A91-21388 #
AIAA PAPER 91-0166		p 258	A91-21389 * #
AIAA PAPER 91-0168			A91-21391 #
AIAA PAPER 91-0172		p 259	A91-21393 * #
AIAA PAPER 91-0174		ρ 259	A91-21394 #
AIAA PAPER 91-0175		p 259	A91-21395 * #
AIAA PAPER 91-0176		p 259	A91-21396 #
AIAA PAPER 91-0177			A91-21397 #
AIAA PAPER 91-0184		p 259	A91-21402 #
AIAA PAPER 91-0187		p 259	A91-21403 #
AIAA PAPER 91-0189		p 260	A91-21404 #
AIAA PAPER 91-0225		p 287	A91-21415 #
AIAA PAPER 91-0227			A91-21417 #
AIAA PAPER 91-0228		p 299	A91-21418 #
AIAA PAPER 91-0267	•••••		A91-21433 #
AIAA PAPER 91-0268	•••••		A91-21434 #
AIAA PAPER 91-0271		p 318	A91-21435 #
AIAA PAPER 91-0275		р 260	A91-21437 #
AIAA PAPER 91-0278			A91-21438 #
AIAA PAPER 91-0288		p 260	A91-21442 * #
AIAA PAPER 91-0291		p 260	A91-21443 * #
AIAA PAPER 91-0320			A91-21457 * #
AIAA PAPER 91-0321	***************************************	p 261	A91-21458 #
AIAA PAPER 91-0322	***************************************		A91-21459 * #
AIAA PAPER 91-0323	••••••	p 261	A91-21460 #
AIAA PAPER 91-0324		p 261	A91-21461 * #
AIAA PAPER 91-0340			A91-21465 #
AIAA PAPER 91-0368		p 299	A91-21471 #
AIAA PAPER 91-0373		p 312	A91-21473 * #
AIAA PAPER 91-0376		p 299	A91-21475 #
AIAA PAPER 91-0411		p 299	A91-21482 #
AIAA PAPER 91-0414		p 299	A91-21483 * # .
AIAA PAPER 91-0417		p 262	A91-21484 #
AIAA PAPER 91-0422		p 278	A91-21486 #
AIAA PAPER 91-0442		p 262	A91-21491 * #
AIAA PAPER 91-0443			A91-21492 #
AIAA PAPER 91-0445			A91-21493 * #
AIAA PAPER 91-0446		p 279	A91-21494 #
AIAA PAPER 91-0449			A91-21495 #
AIAA PAPER 91-0471			A91-21505 * #
AIAA PAPER 91-0476			A91-21506 #
AIAA PAPER 91-0496			A91-21511 * #
AIAA PAPER 91-0513			A91-21515 #
AIAA PAPER 91-0514			A91-21516 #
AIAA PAPER 91-0518			A91-21517 #
AIAA PAPER 91-0519		p 263	A91-21518 #
AIAA PAPER 91-0520			A91-21519 #
AIAA PAPER 91-0546			A91-21525 #
AIAA PAPER 91-0551			A91-21527 #

		p 288	A91-21529	#
		p 325	A91-21530	#
*** * * * * * * * * * * * * * * * * * *		p 279	A91-21532	#
*** * * * * * * * * * * * * * * * * * *		p 331	A91-21545	*#
		p 331 p 331	A91-21546 A91-21547	. #
		p 332	A91-21548	#
		p 263	A91-21549	#
		p 263	A91-21550	#
		p 263	A91-21551	• #
		p 264	A91-21558	* #
*** * * * * * * * * * * * * * * * * * *	••••••	p 264	A91-21561	• #
*** * * * * * * * * * * * * * * * * * *		p 264 p 264	A91-21562 A91-21573	#
		p 264	A91-21574	• #
*** * - *		p 300	A91-21575	#
		p 264	A91-21576	#
		p 264	A91-21577	#
		p 265	A91-21578	. #
		p 280 p 265	A91-22500 A91-21580	•#
		p 279	A91-21581	• #
*** * - *	•••••	p 279	A91-21582	• #
AIAA PAPER 91-0665		p 279	A91-21583	
		p 279	A91-21584	Ħ
*** * * * * * * * * * * * * * * * * * *		p 279	A91-21585	Ħ
		p 318	A91-21587	• #
		p 265 p 265	A91-21591 A91-21592	Ħ
*** * - *		p 265	A91-21593	• #
		p 266	A91-21598	• #
AIAA PAPER 91-0735		p 266	A91-21600	Ħ
AIAA PAPER 91-0737			A91-21601	Ħ
*** * * * * * * * * * * * * * * * * * *	······	p 266	A91-21603	. #
*** * * * * * * * * * * * * * * * * * *		p 266 p 266	A91-21604 A91-21605	• #
*** * * * * * * * * * * * * * * * * * *		p 266	A91-21606	* .# #
		p 267	A91-21608	Ħ
		p 288	A91-21609	Ħ
	·····	p 267	A91-21610	• #
	••••••	p 267	A91-21611	. f
*** * - *		p 267	A91-21616	• #
		p 288 p 326	A91-21617 A91-21624	#
74771174 E1101-0004		p ozo	731-21024	7
AIAA-89-3359		p 307	N91-15182	• #
Alaa-91-0130		p 311	N91-15303	• #
4DE0D 0D 00040		4		
ARFSD-CR-90016	•••••••••••••••••••••••••••••••••••••••	₹p 291	N91-15148	ŧ
ARL-PROP-TM-439		n 303	N91-16020	Ħ
701E-711O1-710-403	***************	p 002	143 (-10020	n
ARL-STRUC-TM-569		р 306	N91-15178	#
		•		
			N91-15172	ŧ
ARL-SYS-TM-138		p 296	N91-15171	ŧ
ADO 24022 4 EC		- 207	NO4 45400	
ARO-24023.4-EG		p 307	N91-15183	ŧ
ASME PAPER 89-GT-15	0	p 320	A91-23661	ŧ
ASME PAPER 89-GT-27				٠,
ASME PAPER 89-GT-32		p 301	A91-23642	٠,
ASME PAPER 90-GT-11		p 302	A91-23646	ŧ
ASME PAPER 90-GT-11			A91-23643	ŧ
ASME PAPER 90-GT-11 ASME PAPER 90-GT-11			A91-23643	1
ASME PAPER 90-GT-11			A91-23636 A91-23637	#
ASME PAPER 90-GT-14			A91-23634	ž
ASME PAPER 90-GT-25			A91-23644	• #
ASME PAPER 90-GT-26	7	p 301	A91-23638	ŧ
ASME PAPER 90-GT-33		•	A91-23648	ŧ
ASME PAPER 90-GT-33		•	A91-23647	#
ASME PAPER 90-GT-33		•	A91-23640	* #
ASME PAPER 90-01-34	2	n 301	A01-23645	4

ATR-1 p 274 N91-15126 * #

AVSCOM-TM-90-C-015

								•	
AVSCOM-TM-90-C-015	. p 291	N91-15146 * #	ISSN-0141-397X	p 292	N91-15152	NASA-TM-101700	p 307	N91-15182 * #	
			ISSN-0141-4011			NASA-TM-102245			
AVSCOM-TR-90-B-009	n 323	N91-15605 * #	ISSN-0141-4054			NASA-TM-102737			
AVSCOM-TR-90-B-011	. b 353	NO1-15604 * # '	ISSN-0141-4356			NASA-TM-102757			
AVSCOM-11-90-D-011	p 323	1131-13004 #	ISSN-0176-7739			NASA-TM-102759			
		NO4 40500 #	ISSN-0307-0115						
DE89-000878	р 330	N91-16582 #	ISSN-0389-4010			NASA-TM-102761			
DE90-007934	р 274	N91-15129 * #				NASA-TM-102861			
DE91-001007			ISSN-0389-4010			NASA-TM-102862			
DE91-004698	. р 307	N91-15179 #	ISSN-0389-4010			NASA-TM-102865			
			ISSN-0389-4010			NASA-TM-102870	p 291	N91-15147 * #	
DLR-MITT-90-05	. p 251	N91-15977 #	ISSN-0958-0379	p 322	N91-15597	NASA-TM-103285			
52.7.1.1.7.7.00.00					•	NASA-TM-103611			
DODA-AR-004-515	n 302	N91-16020 #	L-16809	D 274	N91-15125 * #	NASA-TM-103634			
DODA-AR-006-077				F		NASA-TM-103635			
			LC-90-20747	n 333	NQ1-15075 * #	NASA-TM-103703			
DODA-AR-006-078			20-00-20147	p 000	1101-10070 #				
DODA-AR-006-121	р 306	N91-15178 #	MDD (EE400 (0 (DUD (040E	- 000	NO. 40047 #	NASA-TM-103708			
			MBB/FE122/S/PUB/0405			NASA-TM-4237	p 274	N91-15125 * #	
DOE/NASA/0336-2	р 302	N91-16021 * #	MBB/FE122/S/PUB/0407						
			MBB/FE122/S/PU8/0408			NIAR-90-19	p 292	N91-15153 #	
DOT/FAA/AM-90/11	. p 281	N91-15999 #	MBB/FE122/S/PU8/411			NIAR-90-31	p 333	N91-15928 #	
			MBB/FE2/S/PUB/0398	p 291	N91-15145 #				
DOT/FAA/CT-TN90/35	. p.311	N91-15295 #	MBB/FE281/CFK/PUB/0013	p 314	N91-16076 #	NTSB/AAR-90/04	p 280	N91-15140 #	
DOT/FAA/CT-TN90/53						NTSB/AAR-90/06			
DO 17170 / O1 11100 / O0	р о . о		MCAT-91-001	D 277	N91-15987 * #		F	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
DOT/FAA/CT-90	- 222	NO1-15029 #				ORNL/TM-11503	n 300	N91-15186 #	
DU1/FAA/C1-90	р 333	1431-13320 #	MTL-TR-90-44	n 292	N91-16007 #	OTHER 1800	p 303	1431-13100 #	
	- 000	NO4 40000 #	WITE-111-00-77	PLUE	, , , , , , , , , , , , , , , , , , , ,	DD00 040404	- 000	NO4 45440 #	
DOT/FAA/NR-90/1	р 323	N91-16206 #	MTR-10910	- 202	NO1 16004 #	PB90-910404			
			MIH-10910	p 283	N91-10004 #	PB90-910406	p 281	N91-15143 #	
DOT/FAA/RD-90/16	p 277	N91-15989 #	NAL #0 4007		NO4 45005 "				
•			NAL-TR-1065			PSU-ME-90/91-003	p 277	N91-15986 * #	
D6-44238-5	р 309	N91-15188 * #	NAL-TR-1066						
			NAL-TR-1070			PW/ED/FR-20781	p 314	N91-15374 #	
E-5596	p.314	N91-15390 * #	NAL-TR-1073-T						
E-5741			•	•		RR-397	0.330	N91-15796 #	
			NAS 1.15:101700	p.307	N91-15182 * #	RR-398	0 207	N91-15181 #	
E-5765	p 314	NO1-10410 #	NAS 1.15:102245			111-030	p 301	1431-13101 #	
E-5803			NAS 1.15:102737			CAE AID 4400/0	- 007		
E-5809						SAE AIR 1168/8	p 287	A91-21258	
E-5832	р 322	N91-15598 " #	NAS 1.15:102757						
E-5925	р 311	N91-15303 * #	NAS 1.15:102759			SAE ARP 4100	p 287	A91-21259	
			NAS 1.15:102761						
EDR-14585	р 302	N91-16021 * #	NAS 1.15:102861			SAE PAPER 900990	p 312	A91-21226	
	•	•	NAS 1.15:102862	p 274	N91-15128 * #	SAE PAPER 900997	p 278	A91-21229	
ESD-TR-90-326	n 283	N91-16004 #	NAS 1.15:102865	p 251	N91-15124 * #	SAE PAPER 901001			
LOD-111-00-0E0	200	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	NAS 1.15:102870	p 291	N91-15147 * #	SAE PAPER 901002			
ESDU-PERF-EG3/3	n 201	NO1-15151	NAS 1.15:103285			SAE PAPER 901003			
			NAS 1.15:103611			SAE PAPER 901005			
ESDU-PERF-EG3/4	p 291	N91-15151	NAS 1.15:103634						
ESDU-PERF-EG3/5	p 291	N91-15151				SAE PAPER 901014			
			NAS 1.15:103635			SAE PAPER 901027			
ESDU-81020-AMEND-A	p 275	N91-15133	NAS 1.15:103703			SAE PAPER 901028			
ESDU-90012	p 291	N91-15151	NAS 1.15:103708			SAE PAPER 901031			
ESDU-90013	p 292	N91-15152	NAS 1.15:4237			SAE PAPER 901033	p 255	A91-21242 *	
ESDU-90018	p 322	N91-15597	NAS 1.21:4306	p 333	N91-15975 * #	SAE PAPER 901039	p 298	A91-21245	
ESDU-90020	0 275	N91-15130	NAS 1.26:177573	p 293	N91-16012 * #	SAE PAPER 901049	p 294	A91-21248	
ESDU-90023	332	N91-15843	NAS 1.26:182020	p 307	N91-15180 * #	SAE PAPER 901051			
ESDU-90023	p 002	NO1-15131	NAS 1.26:182088			SAE PAPER 901054			
ESDU-90025	p 2/5	NO1-15151	NAS 1.26:187036			SAE PAPER 901058			
ESDU-90029	p 2/5	N91-13132	NAS 1.26:187039						
			NAS 1.26:187410			SAE PAPER 901060			
ETN-90-98154	р 291	N91-15145 #				SAE PAPER 901062	p 255	A91-21257	
ETN-91-98261	p 251	N91-15977 #	NAS 1.26:187448						
ETN-91-98472			NAS 1.26:187464			SAND-90-2373			
ETN-91-98490	p 281	N91-16000 #	NAS 1.26:187737			SAND-90-8201	p 274	N91-15129 ° #	
ETN-91-98491	p 277	N91-15988 #	NAS 1.26:187760					. •	
ETN-91-98493	p 276	N91-15135 #	NAS 1.26:187767			SATR-2	p 274	N91-15126 ° #	
ETN-91-98494	p 276	N91-15136 #	NAS 1.26:187769	. p 277	N91-15986 * #				
ETN-91-98525	D 330	N91-15796 #	NAS 1.26:187837	p 292	N91-16010 ° #	SAWE PAPER 1871	p 288	A91-22302	
ETN-91-98526	n 207	N91-15181 #	NAS 1.26:187848			SAWE PAPER 1872			
ETN-91-90520	p 307	N91-15997 #	NAS 1.26:187868			SAWE PAPER 1873			
ETN-91-98544	p 2/0	NO1-16015 #	NAS 1.55:10054			SAWE PAPER 1882			
ETN-91-98545	p 293	N91-16015 #	NAS 1.61:1250						
ETN-91-98546	p 293	N91-16016 #	NAS 1.61:1251			SAWE PAPER 1883			
ETN-91-98547	р 293	N91-16017 #	NAS 1.01:1251 NAS 1.71:LAR-14322-1			SAWE PAPER 1894			
ETN-91-98548	р 314	N91-16076 #	1143 1.7 1.LAR-14324-1	. p 2/0	1401-13130 7	SAWE PAPER 1895			
ETN-91-98554	p 303	N91-16022 #	NAOA 0407 1 47 45555 1		NO4 45400 5 "	SAWE PAPER 1901			
ETN-91-98558	p 293	N91-16014 #	NASA-CASE-LAR-14322-1	. р 276	N91-15138 * #	SAWE PAPER 1905			
ETN-91-98579						SAWE PAPER 1908			
ETN-91-98580	p 294	N91-16019 #	NASA-CP-10054	. p 281	N91-15141 * #	SAWE PAPER 1909			
ETN-91-98582	p 303	N91-16023 #				SAWE PAPER 1913			
ETN-91-98583			NASA-CR-177573 ,	p 303	NO4 40040 1 #				
ETN-91-98585	D 3U3	N91-16024 #	14/10/4-011-17/3/3 ,	. p 250	N91-10012 - #	JAWE PAPER 1914	D 319		
F 1 N-21-20055	р 303	N91-16024 #	NASA-CR-182020			SAWE PAPER 1914	· p 319		
ETN 04 00044	p 303 p 308	N91-16024 # N91-16026 #	NASA-CR-182020	. p 307	N91-15180 * #				
ETN-91-98644	p 303 p 308	N91-16024 # N91-16026 #	NASA-CR-182020 NASA-CR-182088	. р 307 . р 309	N91-15180 * # N91-15188 * #	SCT-90RR-18			
ETN-91-98644	p 303 p 308 p 281	N91-16024 # N91-16026 # N91-16002	NASA-CR-182020 NASA-CR-182088 NASA-CR-187036	. р 307 . р 309 . р 322	N91-15180 * # N91-15188 * # N91-15598 * #	SCT-90RR-18	p 277	N91-15989 #	
ETN-91-98644	p 303 p 308 p 281	N91-16024 # N91-16026 # N91-16002	NASA-CR-182020 NASA-CR-182088 NASA-CR-187036 NASA-CR-187039	. p 307 . p 309 . p 322 . p 302	N91-15180 * # N91-15188 * # N91-15598 * # N91-16021 * #		p 277	N91-15989 #	
ETN-91-98644	p 303 p 308 p 281 p 307	N91-16024 # N91-16026 # N91-16002 N91-15182 * #	NASA-CR-182020 NASA-CR-182088 NASA-CR-187036 NASA-CR-187039 NASA-CR-187410	. p 307 . p 309 . p 322 . p 302 . p 274	N91-15180 * # N91-15188 * # N91-15598 * # N91-16021 * # N91-15126 * #	SCT-90RR-18	р 277 . р 330	N91-15989 # N91-16582 #	
ETN-91-98644	p 303 p 308 p 281 p 307	N91-16024 # N91-16026 # N91-16002 N91-15182 * #	NASA-CR-182080 NASA-CR-182088 NASA-CR-187036 NASA-CR-187039 NASA-CR-187410 NASA-CR-187448	p 307 p 309 p 322 p 302 p 274 p 323	N91-15180 ° # N91-15188 ° # N91-15598 ° # N91-16021 ° # N91-15126 ° # N91-15607 ° #	SCT-90RR-18	р 277 . р 330 . р 249	N91-15989 # N91-16582 # A91-21106	
ETN-91-98644	p 303 p 308 p 281 p 307	N91-16024 # N91-16026 # N91-16002 N91-15182 * #	NASA-CR-182020 NASA-CR-182088 NASA-CR-187036 NASA-CR-187039 NASA-CR-187410 NASA-CR-187448 NASA-CR-187464	p 307 p 309 p 322 p 302 p 274 p 323 p 330	N91-15180 ° # N91-15188 ° # N91-15598 ° # N91-15021 ° # N91-15126 ° # N91-15607 ° # N91-15751 ° #	SCT-90RR-18	р 277 . р 330 . р 249	N91-15989 # N91-16582 # A91-21106	
H-1554ICAS-90-6.7.2	p 303 p 308 p 281 p 307	N91-16024 # N91-16026 # N91-16002 N91-15182 * # N91-15997 #	NASA-CR-182020 NASA-CR-182088 NASA-CR-187036 NASA-CR-187039 NASA-CR-187410 NASA-CR-187446 NASA-CR-187464 NASA-CR-187737	. p 307 . p 309 . p 322 . p 302 . p 274 . p 323 . p 330 . p 274	N91-15180 ° # N91-15188 ° # N91-15598 ° # N91-16021 ° # N91-15126 ° # N91-15607 ° # N91-15751 ° #	SCT-90RR-18	p 277 p 330 p 249 p 249	N91-15989 # N91-16582 # A91-21106 A91-21107	
ETN-91-98644	p 303 p 308 p 281 p 307 p 278	N91-16024 # N91-16026 # N91-16002 N91-15182 * # N91-15997 #	NASA-CR-182020 NASA-CR-182088 NASA-CR-187036 NASA-CR-187039 NASA-CR-187410 NASA-CR-187448 NASA-CR-187464	. p 307 . p 309 . p 322 . p 302 . p 274 . p 323 . p 330 . p 274	N91-15180 ° # N91-15188 ° # N91-15598 ° # N91-16021 ° # N91-15126 ° # N91-15607 ° # N91-15751 ° #	SCT-90RR-18	p 277 p 330 p 249 p 249 p 316	N91-15989 # N91-16582 # A91-21106 A91-21107 A91-21108	
ETN-91-98644	p 303 p 308 p 281 p 307 p 278 p 291 p 292	N91-16024 # N91-16026 # N91-16002 N91-15182 * # N91-15997 # N91-15151	NASA-CR-182020 NASA-CR-182088 NASA-CR-187036 NASA-CR-187039 NASA-CR-187410 NASA-CR-187448 NASA-CR-187464 NASA-CR-187767 NASA-CR-187767	p 307 p 309 p 322 p 302 p 274 p 323 p 330 p 274 p 276	N91-15180 ° # N91-15188 ° # N91-15598 ° # N91-15598 ° # N91-15126 ° # N91-15607 ° # N91-15751 ° # N91-15129 ° # N91-15981 ° #	SCT-90RR-18	p 277 p 330 p 249 p 249 p 316	N91-15989 # N91-16582 # A91-21106 A91-21107 A91-21108	
ETN-91-98644	p 303 p 308 p 281 p 307 p 278 p 291 p 292 p 322	N91-16024 # N91-16026 # N91-16002 N91-15182 * # N91-15997 # N91-15151 N91-15152 N91-15597	NASA-CR-182020 NASA-CR-182088 NASA-CR-187036 NASA-CR-187039 NASA-CR-187410 NASA-CR-187448 NASA-CR-187464 NASA-CR-187767 NASA-CR-187767	p 307 p 309 p 322 p 302 p 274 p 323 p 330 p 274 p 276	N91-15180 * # N91-15188 * # N91-15598 * # N91-16021 * # N91-15607 * # N91-15607 * # N91-15751 * # N91-15129 * # N91-15981 * # N91-15987 * #	SCT-90RR-18	p 277 p 330 p 249 p 249 p 316 p 316	N91-15989 # N91-16582 # A91-21106 A91-21107 A91-21108 A91-21109	
ETN-91-98644 H-1554 ICAS-90-6.7.2 ISBN-0-85679-738-3 ISBN-0-85679-744-8 ISBN-0-85679-746-4	p 303 p 308 p 281 p 307 p 278 p 291 p 292 p 322 p 275	N91-16024 # N91-16026 # N91-16002 N91-15182 * # N91-15597 # N91-15151 N91-15597 N91-15130	NASA-CR-182020 NASA-CR-182088 NASA-CR-187036 NASA-CR-187039 NASA-CR-187410 NASA-CR-187448 NASA-CR-187464 NASA-CR-187767 NASA-CR-187767 NASA-CR-187767 NASA-CR-187769	. p 307 . p 309 . p 322 . p 302 . p 274 . p 323 . p 330 . p 274 . p 276 . p 277	N91-15180 ° # N91-15188 ° # N91-15598 ° # N91-16021 ° # N91-15607 ° # N91-15751 ° # N91-15751 ° # N91-15981 ° # N91-15986 ° #	SCT-90RR-18	p 277 p 330 p 249 p 249 p 316 p 316	N91-15989 # N91-16582 # A91-21106 A91-21107 A91-21108 A91-21109 A91-21115	
ETN-91-98644 H-1554 ICAS-90-6.7.2 ISBN-0-85679-738-3 ISBN-0-85679-744-8 ISBN-0-85679-746-4 ISBN-0-85679-746-9	p 303 p 308 p 281 p 307 p 278 p 291 p 292 p 322 p 332	N91-16024 # N91-16002 # N91-15182 * # N91-15197 # N91-15151 N91-15152 N91-15597 N91-15130 N91-15843	NASA-CR-182020 NASA-CR-182088 NASA-CR-187039 NASA-CR-187410 NASA-CR-187448 NASA-CR-187444 NASA-CR-187737 NASA-CR-187760 NASA-CR-187767 NASA-CR-187767 NASA-CR-187769 NASA-CR-187769 NASA-CR-187769 NASA-CR-187769	. p 307 . p 309 . p 322 . p 302 . p 274 . p 323 . p 330 . p 274 . p 276 . p 277 . p 292	N91-15180 ° # N91-15188 ° # N91-15598 ° # N91-16021 ° # N91-15126 ° # N91-15751 ° # N91-15751 ° # N91-15981 ° # N91-15986 ° # N91-15986 ° # N91-16010 ° #	SCT-90RR-18	p 277 p 330 p 249 p 249 p 316 p 316 p 316	N91-15989 # N91-16582 # A91-21106 A91-21107 A91-21108 A91-21109 A91-21115 A91-21116	
ETN-91-98644	p 303 p 308 p 281 p 307 p 276 p 291 p 292 p 322 p 332 p 332	N91-16024 # N91-16002 # N91-16002 N91-15182 * # N91-15151 N91-15151 N91-15152 N91-15597 N91-15130 N91-15843 N91-15131	NASA-CR-182020 NASA-CR-182088 NASA-CR-187036 NASA-CR-187039 NASA-CR-187448 NASA-CR-187448 NASA-CR-187464 NASA-CR-187767 NASA-CR-187767 NASA-CR-187769 NASA-CR-187769 NASA-CR-1878637 NASA-CR-1878648	. p 307 . p 309 . p 322 . p 302 . p 274 . p 323 . p 330 . p 274 . p 276 . p 277 . p 292 . p 292	N91-15180 * # N91-15188 * # N91-15598 * # N91-16021 * # N91-15607 * # N91-15607 * # N91-15751 * # N91-15981 * # N91-15986 * # N91-15986 * # N91-15986 * # N91-16010 * # N91-16010 * #	SCT-90RR-18	p 277 p 330 p 249 p 249 p 316 p 316 p 316	N91-15989 # N91-16582 # A91-21106 A91-21107 A91-21108 A91-21109 A91-21115 A91-21116	
ETN-91-98644 H-1554 ICAS-90-6.7.2 ISBN-0-85679-738-3 ISBN-0-85679-744-8 ISBN-0-85679-746-4 ISBN-0-85679-749-9 ISBN-0-85679-751-0 ISBN-0-85679-755-3	p 303 p 308 p 281 p 307 p 276 p 292 p 292 p 322 p 332 p 275	N91-16024 # N91-16002 # N91-16002 N91-15182 * # N91-15997 # N91-15151 N91-15152 N91-15597 N91-15130 N91-15843 N91-15131 N91-15132	NASA-CR-182020 NASA-CR-182088 NASA-CR-187039 NASA-CR-187410 NASA-CR-187448 NASA-CR-187444 NASA-CR-187737 NASA-CR-187760 NASA-CR-187767 NASA-CR-187767 NASA-CR-187769 NASA-CR-187769 NASA-CR-187769 NASA-CR-187769	. p 307 . p 309 . p 322 . p 302 . p 274 . p 323 . p 330 . p 274 . p 276 . p 277 . p 292 . p 292	N91-15180 * # N91-15188 * # N91-15598 * # N91-16021 * # N91-15607 * # N91-15607 * # N91-15751 * # N91-15981 * # N91-15986 * # N91-15986 * # N91-15986 * # N91-16010 * # N91-16010 * #	SCT-90RR-18	p 277 p 330 p 249 p 249 p 316 p 316 p 316 p 316	N91-15989 # N91-16582 # A91-21106 A91-21107 A91-21108 A91-21109 A91-21115 A91-21116 A91-21118	
ETN-91-98644 H-1554 ICAS-90-6.7.2 ISBN-0-85679-738-3 ISBN-0-85679-734-4 ISBN-0-85679-746-4 ISBN-0-85679-751-0 ISBN-0-85679-755-3 ISBN-0-858-679-758-6	p 303 p 308 p 281 p 307 p 278 p 291 p 292 p 322 p 332 p 275 p 275 p 275	N91-16024 # N91-16002 # N91-16002	NASA-CR-182020 NASA-CR-182088 NASA-CR-187036 NASA-CR-187039 NASA-CR-187410 NASA-CR-187448 NASA-CR-187444 NASA-CR-187746 NASA-CR-187760 NASA-CR-187760 NASA-CR-187767 NASA-CR-18789 NASA-CR-187868	. p 307 . p 309 . p 322 . p 302 . p 274 . p 323 . p 330 . p 274 . p 277 . p 277 . p 292 . p 293	N91-15180 ° # N91-15188 ° # N91-15598 ° # N91-16021 ° ; N91-15126 ° # N91-15607 ° ; N91-15751 ° ; N91-15987 ° ; N91-15987 ° ; N91-15986 ° ; N91-16010 ° ; N91-16011 ° ; N91-16013 ° ;	SCT-90RR-18	p 277 p 330 p 249 p 249 p 316 p 316 p 316 p 316	N91-15989 # N91-16582 # A91-21106 A91-21107 A91-21108 A91-21109 A91-21115 A91-21116 A91-21118	
ETN-91-98644 H-1554 ICAS-90-6.7.2 ISBN-0-85679-738-3 ISBN-0-85679-734-4 ISBN-0-85679-746-4 ISBN-0-85679-751-0 ISBN-0-85679-755-3 ISBN-0-858-679-758-6	p 303 p 308 p 281 p 307 p 278 p 291 p 292 p 322 p 332 p 275 p 275 p 275	N91-16024 # N91-16002 # N91-16002	NASA-CR-182020 NASA-CR-182088 NASA-CR-187036 NASA-CR-187039 NASA-CR-187448 NASA-CR-187448 NASA-CR-187464 NASA-CR-187760 NASA-CR-187767 NASA-CR-187767 NASA-CR-187769 NASA-CR-187769 NASA-CR-187868 NASA-CR-187868	. p 307 . p 309 . p 322 . p 302 . p 274 . p 330 . p 274 . p 276 . p 277 . p 277 . p 292 . p 293 . p 325	N91-15180 * # N91-15188 * # N91-15598 * # N91-16021 * # N91-15607 * # N91-15607 * # N91-15751 * # N91-15751 * # N91-15981 * # N91-15986 * # N91-15986 * # N91-16010 * # N91-16010 * # N91-16013 * #	SCT-90RR-18	p 277 p 330 p 249 p 249 p 316 p 316 p 316 p 316 p 316	N91-15989 # N91-16582 # A91-21106 A91-21107 A91-21109 A91-21115 A91-21116 A91-21118 N91-15183 #	
ETN-91-98644 H-1554 ICAS-90-6.7.2 ISBN-0-85679-738-3 ISBN-0-85679-744-8 ISBN-0-85679-746-4 ISBN-0-85679-749-9 ISBN-0-85679-751-0 ISBN-0-85679-755-3	p 303 p 308 p 281 p 307 p 278 p 291 p 292 p 322 p 332 p 275 p 275 p 275	N91-16024 # N91-16002 # N91-16002	NASA-CR-182020 NASA-CR-182088 NASA-CR-187036 NASA-CR-187039 NASA-CR-187410 NASA-CR-187448 NASA-CR-187444 NASA-CR-187746 NASA-CR-187760 NASA-CR-187760 NASA-CR-187767 NASA-CR-18789 NASA-CR-187868	. p 307 . p 309 . p 322 . p 302 . p 274 . p 330 . p 274 . p 276 . p 277 . p 277 . p 292 . p 293 . p 325	N91-15180 * # N91-15188 * # N91-15598 * # N91-16021 * # N91-15607 * # N91-15607 * # N91-15751 * # N91-15751 * # N91-15981 * # N91-15986 * # N91-15986 * # N91-16010 * # N91-16010 * # N91-16013 * #	SCT-90RR-18	p 277 p 330 p 249 p 249 p 316 p 316 p 316 p 316 p 316	N91-15989 # N91-16582 # A91-21106 A91-21107 A91-21109 A91-21115 A91-21116 A91-21118 N91-15183 #	
ETN-91-98644 H-1554 ICAS-90-6.7.2 ISBN-0-85679-738-3 ISBN-0-85679-744-8 ISBN-0-85679-744-4 ISBN-0-85679-749-9 ISBN-0-85679-751-0 ISBN-0-85679-755-3 ISBN-92-835-0578-6 ISBN-92-835-0584-0	p 303 p 308 p 308 p 281 p 307 p 278 p 292 p 292 p 322 p 275 p 332 p 275 p 332 p 275 p 275 p 295	N91-16024 # N91-16002 # N91-16002	NASA-CR-182020 NASA-CR-182088 NASA-CR-187036 NASA-CR-187039 NASA-CR-187410 NASA-CR-187448 NASA-CR-187444 NASA-CR-187746 NASA-CR-187767 NASA-CR-187767 NASA-CR-187767 NASA-CR-187769 NASA-CR-187769 NASA-CR-187837 NASA-CR-187848 NASA-CR-187848 NASA-CR-187868	. p 307 . p 309 . p 322 . p 302 . p 374 . p 323 . p 330 . p 274 . p 276 . p 277 . p 277 . p 292 . p 292 . p 293 . p 325	N91-15180 * # N91-15188 * # N91-15598 * # N91-16021 * # N91-15607 * # N91-15751 * # N91-15751 * # N91-15981 * # N91-15987 * # N91-15986 * # N91-16010 * # N91-16013 * # N91-16013 * # N91-16013 * #	SCT-90RR-18	p 277 p 330 p 249 p 249 p 316 p 316 p 316 p 316 p 316	N91-15989 # N91-16582 # A91-21106 A91-21107 A91-21109 A91-21115 A91-21116 A91-21118 N91-15183 #	
ETN-91-98644 H-1554 ICAS-90-6.7.2 ISBN-0-85679-738-3 ISBN-0-85679-734-4 ISBN-0-85679-746-4 ISBN-0-85679-751-0 ISBN-0-85679-755-3 ISBN-0-858-679-758-6	p 303 p 308 p 308 p 281 p 307 p 278 p 292 p 275 p 332 p 275 p 332 p 275 p 327 p 275 p 275	N91-16024 # N91-16026 # N91-16002 # N91-15182 * # N91-15197 # N91-15151 N91-15152 N91-15597 N91-15130 N91-15131 N91-15132 N91-15132 N91-15134 # N91-15154 #	NASA-CR-182020 NASA-CR-182088 NASA-CR-187036 NASA-CR-187039 NASA-CR-187448 NASA-CR-187448 NASA-CR-187464 NASA-CR-187760 NASA-CR-187767 NASA-CR-187767 NASA-CR-187769 NASA-CR-187769 NASA-CR-187868 NASA-CR-187868	. p 307 . p 309 . p 322 . p 302 . p 374 . p 323 . p 330 . p 274 . p 276 . p 277 . p 277 . p 292 . p 292 . p 293 . p 325	N91-15180 * # N91-15188 * # N91-15598 * # N91-16021 * # N91-15607 * # N91-15751 * # N91-15751 * # N91-15981 * # N91-15987 * # N91-15986 * # N91-16010 * # N91-16013 * # N91-16013 * # N91-16013 * #	SCT-90RR-18	p 277 p 330 p 249 p 249 p 316 p 316 p 316 p 316 p 316 p 316	N91-15989 # N91-16582 # A91-21106 A91-21107 A91-21108 A91-21109 A91-21115 A91-21118 N91-15183 # N91-15138 *#	

UTRC-R-89-2330-VOL-2	p 324	N91-16330	#
UTSI-90	p 276	N91-15981 *	#
WES/TR/GL-90-25	p 310	N91-16031	#
WRDC-TR-89-4136	p 314	N91-15374	#
WRDC-TR-90-2020-V2-VOL-2	p 324	N91-16330	#
WRDC-TR-90-2078	p 324	N91-16382	#
WRDC-TR-90-4014		N91-15322	#

May 1991

Typical Accession Number Index Listing

Listings in this index are arranged alphanumerically by accession number. The page number listed to the right indicates the page on which the citation is located. An asterisk (*) indicates that the item is a NASA report. A pound sign (#) indicates that the item is available on microfiche.

A91-20489		p 297	A91-20990	p 285
A91-20506		p 326	A91-20991	p 303
A91-20609		p 294	A91-20992	p 303
A91-20610		p 303	A91-20993 *	p 285
A91-20612		p 297	A91-20995	p 286
A91-20613		p 308		
A91-20614		p 331	A91-20996 A91-20997	p 286
A91-20615		ρ 251	A91-20997 A91-20998	p 249
A91-20616		ρ 315	A91-20998 *	p 282
A91-20617		p 294	A91-20999 A91-21000	p 326 p 286
A91-20618		p 310	A91-21001	p 249
A91-20677		p 311	A91-21001	p 286
A91-20695 *		p 324	A91-21003	p 286
A91-20728		p 315	A91-21004	p 304
A91-20737	#	p 297	A91-21057 #	p 252
A91-20743	#	p 310	A91-21063 #	p 252
A91-20744	#	p 297	A91-21064 *#	p 252
A91-20745	#	p 251	A91-21065 * #	p 253
A91-20746 A91-20747	#	p 283	A91-21066 #	p 253
A91-20747	#	p 331 p 251	A91-21106	p 249
A91-20746	#	p 251	A91-21107	p 249
A91-20776	#	p 312	A91-21108	p 316
A91-20783		p 284	A91-21109	p 316
A91-20784		p 249	A91-21115	p 316
A91-20788 *		p 315	A91-21116	p 316
A91-20791		ρ315	A91-21118	p 316
A91-20864		p 312	A91-21125	p 286
A91-20879		p 312	A91-21176	p 253
A91-20881		p 312	A91-21179	p 308
A91-20898		p 284	A91-21180	p 253
A91-20899		p 315	A91-21183	p 253
A91-20900		p 282	A91-21184	p 253
A91-20916		p 315	A91-21188 *	p 253
A91-20932	#	p 316	A91-21189 *	p 254
A91-20933	#	p 251	A91-21190	p 254
A91-20934	#	p 252	A91-21191	p 254
A91-20935	#	p 252	A91-21192	p 254
A91-20936	#	p 252	A91-21193	p 254
A91-20943		p 316	A91-21194	p 254
A91-20946		p 284	A91-21195 *	p 255
A91-20973		p 284	A91-21198 # A91-21200	p 255 p 309
A91-20976		ρ 284	A91-21200 A91-21201	p 250
A91-20977		p 284	A91-21201	p 250
A91-20978		р 308	A91-21202 A91-21203	p 282
A91-20979		p 282	A91-21203 A91-21204	p 317
A91-20980		p 285	A91-21205	p 297
A91-20982		p 294	A91-21205 A91-21206	p 250
A91-20983		p 308	A91-21218	p 250
A91-20984		p 308	A91-21221	p 294
A91-20985		p 282	A91-21222	p 297
A91-20986		p 285	A91-21226	p 312
A91-20987		p 285	A91-21229	p 278
A91-20988		p 285	A91-21230	p 304
A91-20989		p 285	A91-21231	p 304

A91-21232	p 304
A91-21233	p 304
A91-21235	
A91-21239	p 298
A91-21240	p 298
A91-21241	p 286
A91-21242 *	p 255
A91-21245	p 298
A91-21248	p 294
	•
A91-21249	p 304
A91-21252	p 325
A91-21255 *	p 331
A01 01056 *	p 287
A91-21256 *	
A91-21257	p 255
A91-21258	p 287
	p 287
A91-21259	
A91-21324	p 250
A91-21326 #	p 326
A91-21327 #	p 255
A91-21328 #	p 255 .
A91-21329 *#	p 256
A91-21331 #	p 256
A91-21333 #	p 256
A91-21334 #	p 256
A91-21335 #	p 256
A91-21336 *#	p 298
M81-21330 #	
A91-21338 *#	p 256
A91-21341 #	p 257
A91-21343 #	p 257
A91-21344 #	p 257
A91-21346 #	p 257
A91-21348 *#	p 317
A91-21351 *#	p 317
A91-21352 *#	p 317
A91-21354 *#	p 257
A91-21355 *#	p 257
A91-21356 °#	p 257
A91-21357 #	p 258
A91-21368 #	p 258
A91-21372 #	р 298
A91-21373 #	p 258
A91-21374 *#	p 258
A91-213B1 #	p 258
A91-21384 #	p 317
A91-21388 #	p 317
A91-21389 *#	p 258
A91-21391 #	p 318
A91-21393 *#	p 259
A91-21394 #	p 259
A91-21395 *#	p 259
A91-21396 #	p 259
A91-21397 #	p 259
A91-21402 #	p 259
A91-21403 #	p 259
A91-21404 #	p 260
	p 287
A91-21417 #	p 298
A91-21418 #	p 299
A91-21433 #	p 287
	·
A91-21434 #	
A91-21435 #	p 318
A91-21437 #	p 260
A91-21438 #	p 260
A91-21442 *#	p 260
A91-21443 *#	p 260
A91-21457 *#	p 261
A91-21458 #	p 261
A91-21459 °#	p 261
A91-21460 #	p 261
A91-21461 *#	p 261
A91-21465 #	p 261
A91-21471 #	p 299
A91-21473 *#	- p 312
A91-21475 #	p 299
A91-21482 #	p 299
A91-21483 *#	p 299
A91-21484 #	p 262
A91-21486 #	p 278
A91-21491 *#	p 262
	•
A91-21492 #	p 262
A91-21493 *#	
	p 262
	p 262
A91-21494 #	p 262 p 279

A91-21495 #

p 262

A91-21505 *#	p 262	
A91-21506 # A91-21511 *#	p 263 p 331	
A91-21515 #	p 287	
A91-21516 # A91-21517 #	p 299 p 263	
A91-21518 #	p 263	
A91-21519 # A91-21525 #	p 318 p 263	
A91-21527 # A91-21529 #	p 300 p 288	
A91-21530 #	p 325	
A91-21532 # A91-21545 *#	р 279 р 331	
A91-21546 # A91-21547 *#	p 331 p 331	
A91-21548 #	p 332	
A91-21549 # A91-21550 #	p 263 p 263	
A91-21551 * # A91-21558 * #	p 263	
A91-21561 *#	p 264	
A91-21562 # A91-21573 #	p 264 p 264	
A91-21574 *# A91-21575 #	p 264	
A91-21576 #	p 264	
A91-21577 # A91-21578 #	p 264 p 265	,
A91-21580 * # A91-21581 * #	p 265 p 279	
A91-21582 * #	p 279	
A91-21583 ° # A91-21584 #	p 279 p 279	
A91-21585 # A91-21587 *#	р 279 р 318	
A91-21591 #	p 265	
A91-21592 # A91-21593 *#	p 265 p 265	
A91-21598 * # A91-21600 #	p 266	
A91-21601 #	p 318	
A91-21603 # A91-21604 *#	p 266 p 266	
A91-21605 * # A91-21606 #	p 266 p 266	
A91-21608 #	p 267	
A91-21609 # A91-21610 *#	p 288 p 267	
A91-21611 # A91-21616 *#	p 267 p 267	
A91-21617 #	p 288	
A91-21624 # A91-21712 *	p 326 p 325	
A91-21722 A91-21744	p 318	
A91-21748 *	p 267	
A91-21879 A91-21940	p 268 p 268	
A91-21962 A91-21979	p 312 p 268	
A91-22102	p 250	
A91-22104 A91-22109	p 250 p 313	
A91-22172	р 309	
A91-22173 A91-22188	p 288 p 318	
A91-22201 # A91-22202 #	p 304 p 295	
A91-22203 #	p 282	
A91-22251 # A91-22252 #	p 305 p 319	
A91-22259 # A91-22262 #	p 319 p 288	
A91-22265 #	p 305	
A91-22266 # A91-22267 #	р 288 р 319	
A91-22301 A91-223u2	p 295 p 288	
A91-22307	p 309	
A91-22308 A91-22317	р 309 р 289	
A91-22319	p 289	

A91-22320		p 289
A91-22321		p 289
A91-22322 A91-22323		p 333 p 319
A91-22325		p 326
A91-22326		p 289
A91-22327		p 289
A91-22340 A91-22346		p 313 p 313
A91-22351	#	p 268
A91-22352	#	p 305
A91-22354	#	p 289
A91-22357 A91-22367	#	p 289 p 268
A91-22369 A91-22370	#	p 319
A91-22370	#	р 332
A91-22371 A91-22373	#	p 305 p 327
A91-22381	#	p 290
A91-22382	#	p 268
A91-22383	#	p 313
A91-22392 A91-22476	# #	p 268 p 268
A91-22477	#	p 268
A91-22479	#	p 269
A91-22481	#	p 269
A91-22483 A91-22491	*#	p 269 p 269
A91-22492	#	p 269
A91-22493	#	p 332
A91-22496 A91-22497	#	p 319 p 269
A91-22499	•#	p 269
A91-22500	*#	p 280
A91-22511	• ,,	p 269
A91-22752 A91-22754	#	p 319 p 319
A91-22756	#	p 327
A91-22757	#	p 290
A91-22758 A91-22762	#	p 327
A91-22762 A91-22763	#	p 270 p 270
A91-22764	#	p 270
A91-22815		p 282
A91-22863	•#	р 309 р 310
A91-22877 A91-22878	• #	p 270
A91-22879 A91-22882	#	p 300
A91-22882	•#	p 270
A91-22883 A91-22884	#	p 270 p 313
	#	p 300
A91-22885 A91-22888	•#	p 311
A91-22889 A91-22891	#	p 311 p 313
A91-22892	#	p 300
A91-22893	#	p 270
A91-22904	. ,,	p 283
A91-22950 A91-22953	•#	р 305 р 327
A91-22956	• #	p 290
A91-22959	#	p 305
A91-22960	*#	p 311
A91-22961 A91-22962	•#	p 305 p 305
A91-23095	#	p 271
A91-23100	#	p 300
A91-23106	#	p 300 p 295
A91-23134 A91-23145		p 283
A91-23186		p 271
A91-23189		p 271
A91-23423 A91-23546		p 319 p 250
A91-23546 A91-23547		p 250
A91-23548		p 283
A91-23549		p 290
A91-23550 A91-23634	#	p 271 p 301
A91-23635	#	p 301
A91-23636	#	p 301
A91-23637	#	p 301
A91-23638	#	0.301

p 301

A91-23638

A91-23639	#			
		p 271	N91-15180 *#	p 307
			N91-15181 #	p 307
A91-23640		p 271	N91-15182 *#	p 307
A91-23641	#	р 305	N91-15183 #	p 307
A91-23642	* #	p 301		
A91-23643	#	p 290	N91-15185 #	p 309
A91-23644	*#	p 290	N91-15186 #	p 309
A91-23645	#	p 301	N91-15188 *#	p 309
A91-23646	#	p 302	N91-15189 #	p 310
A91-23647	#	p 302	N91-15276 #	p 322
A91-23648	#	p 302	N91-15295 #	p 311
A91-23656			N91-15303 *#	p 311
	#	p 271	N91-15322 #	p 314
A91-23659		p 320	N91-15374 #	p 314
A91-23661	#	p 320	N91-15390 *#	p 314
A91-23665	#	p 320	N91-15418 *#	p 314
A91-23679		p 320	N91-15426 * #	p 322
A91-23685	-	p 320	N91-15597	p 322
A91-23714		p 313	N91-15598 *#	p 322
A91-23742	#	p 327	N91-15604 *#	p 323
A91-23743	#	p 305	N91-15605 * #	p 323
A91-23745	#	p 321	N91-15607 * #	p 323
A91-23814		p 321	N91-15657 #	p 325
A91-23817		p 321	N91-15715 #	p 327
A91-23842		p 272	N91-15716 #	p 327
A91-23845		p 272	N91-15717 #	p 327
A91-23848		p 272	N91-15718 #	p 328
A91-23903		p 272		
A91-23904		p 321	. N91-15719 #	p 328
A91-23905		p 321	N91-15727 # N91-15728 #	p 328
A91-23910		p 321		p 328
A91-23913		p 272	N91-15729 #	p 328
A91-23938		p 321	N91-15730 #	p 328
A91-24095		p 295	N91-15731 #	p 329
A91-24113		p 306	N91-15732 #	p 329
A91-24114		p 321	N91-15735 #	p 329
A91-24115	#	p 272	N91-15738 #	p 329
A91-24119	π	p 290	N91-15739 #	p 329
A91-24120		p 280	N91-15741 #	p 330
			N91-15743 #	p 330
A91-24121 A91-24122		p 280	N91-15744 *#	p 330
		p 280	N91-15746 #	p 330
A91-24123	ш	p 280	N91-15751 *#	р 330
A91-24152	#	p 272	N91-15796 #	p 330
A91-24153	#	p 322	N91-15842 * #	p 332
A91-24154	#	p 273	N91-15843	p 332
A91-24155	#	p 273	N91-15928 #	p 333
A91-24156	#	p 273	N91-15975 * #	p 333
A91-24157	#	p 273	N91-15977 #	p 251
A91-24162	.#	p 273	N91-15981 * #	p 276
A91-24163	#	p 273	N91-15982 #	p 276
A91-24164	#	p 273	N91-15983 #	p 276
A91-24167	#	p 273	N91-15984 #	p 277
A91-24168	#	p 274	N91-15985 #	p 277
			N91-15986 *#	p 277
N91-15124	*#	p 251	N91-15987 *#	p 277
N91-15125	* #	p 274	N91-15988 #	p 277
N91-15126	*#	p 274	N91-15989 #	p 277
N91-15127		p 274	N91-15992	p 278
N91-15128	*#	p 274	N91-15993	p 278
N91-15129	• #	p 274	N91-15997 #	
N91-15130				
	"	p 275		p 278
N91-15131	H	p 275	N91-15999 #	p 278 p 281
	"	p 275 p 275	N91-15999 # N91-16000 #	p 278 p 281 p 281
N91-15131 N91-15132 N91-15133	"	p 275 p 275 p 275	N91-15999 # N91-16000 # N91-16001 *#	p 278 p 281 p 281 p 281
N91-15132 N91-15133	#	p 275 p 275 p 275 p 275 p 275	N91-15999 # N91-16000 # N91-16001 * # N91-16002	p 278 p 281 p 281 p 281 p 281 p 281
N91-15132 N91-15133 N91-15135	#	p 275 p 275 p 275 p 275 p 275 p 276	N91-15999 # N91-16000 # N91-16001 * # N91-16002 N91-16003 #	p 278 p 281 p 281 p 281 p 281 p 281 p 283
N91-15132 N91-15133 N91-15135 N91-15136	#	p 275 p 275 p 275 p 275 p 276 p 276	N91-15999 # N91-16000 # N91-16001 * N91-16002 N91-16003 # N91-16004 #	p 278 p 281 p 281 p 281 p 281 p 281 p 283 p 283
N91-15132 N91-15133 N91-15135 N91-15136 N91-15138	# #· *#:	p 275 p 275 p 275 p 275 p 276 p 276 p 276 p 276	N91-15999 # N91-16000 # N91-16001 # N91-16002 N91-16003 # N91-16003 # N91-16005 #	p 278 p 281 p 281 p 281 p 281 p 283 p 283 p 283
N91-15132 N91-15133 N91-15135 N91-15136 N91-15138 N91-15140	# # *#.	p 275 p 275 p 275 p 275 p 276 p 276 p 276 p 276 p 280	N91-15999 # N91-16000 # N91-16001 * N91-16002 N91-16003 # N91-16004 # N91-16005 # N91-16006	p 278 p 281 p 281 p 281 p 281 p 283 p 283 p 283 p 292
N91-15132 N91-15133 N91-15135 N91-15136 N91-15138 N91-15140 N91-15141	####	p 275 p 275 p 275 p 275 p 276 p 276 p 276 p 280 p 281	N91-15999 # N91-16000 # N91-16000 # N91-16002 N91-16003 # N91-16004 # N91-16006 N91-16007 #	p 278 p 281 p 281 p 281 p 281 p 283 p 283 p 283 p 292 p 292
N91-15132 N91-15133 N91-15135 N91-15136 N91-15138 N91-15140 N91-15141 N91-15143	#####	p 275 p 275 p 275 p 275 p 276 p 276 p 276 p 280 p 281 p 281	N91-15999 # N91-16000 # N91-16001 * N91-16002 N91-16003 # N91-16005 # N91-16005 N91-16006 N91-16007 # N91-16010 *	p 278 p 281 p 281 p 281 p 281 p 283 p 283 p 283 p 292 p 292 p 292
N91-15132 N91-15133 N91-15135 N91-15136 N91-15138 N91-15140 N91-15141 N91-15143	######	P 275 P 275 P 275 P 275 P 276 P 276 P 276 P 280 P 281 P 281 P 291	N91-15999 # N91-16000 # N91-16001 # N91-16002 N91-16003 # N91-16006 # N91-16006 N91-16007 # N91-16010 *#	p 278 p 281 p 281 p 281 p 281 p 283 p 283 p 283 p 292 p 292 p 292 p 292
N91-15132 N91-15133 N91-15135 N91-15136 N91-15138 N91-15140 N91-15141 N91-15143 N91-15145	#######	p 275 p 275 p 275 p 275 p 276 p 276 p 276 p 280 p 281 p 281 p 291 p 291	N91-15999 # N91-16000 # N91-16001 * N91-16002 N91-16003 # N91-16006 # N91-16006 N91-16007 # N91-16011 * N91-16011 *	p 278 p 281 p 281 p 281 p 281 p 283 p 283 p 283 p 292 p 292 p 292 p 292 p 293
N91-15132 N91-15133 N91-15135 N91-15136 N91-15138 N91-15141 N91-15141 N91-15143 N91-15145 N91-15146	########	P 275 P 275 P 275 P 275 P 276 P 276 P 276 P 280 P 281 P 281 P 291 P 291	N91-15999 # N91-16000 # N91-16001 * N91-16003 # N91-16003 # N91-16005 # N91-16007 # N91-16010 * N91-16011 * N91-16013 * N91-16013 *	P 278 P 281 P 281 P 281 P 281 P 283 P 283 P 283 P 283 P 292 P 292 P 292 P 292 P 293 P 293
N91-15132 N91-15133 N91-15135 N91-15138 N91-15138 N91-15140 N91-15141 N91-15143 N91-15146 N91-15146 N91-15147	##########	P 275 P 275 P 275 P 275 P 276 P 276 P 276 P 276 P 280 P 281 P 281 P 291 P 291 P 291 P 291	N91-15999 # N91-16000 # N91-16001 # N91-16003 # N91-16006 # N91-16006 N91-16007 # N91-16010 * N91-16011 * N91-16011 * N91-16012 * N91-16014 #	p 278 p 281 p 281 p 281 p 281 p 283 p 283 p 283 p 292 p 292 p 292 p 292 p 293 p 293 p 293 p 293
N91-15132 N91-15135 N91-15136 N91-15138 N91-15138 N91-15141 N91-15143 N91-15145 N91-15147 N91-15147 N91-15148	###########	p 275 p 275 p 275 p 275 p 276 p 276 p 276 p 280 p 281 p 281 p 291 p 291 p 291 p 291 p 291	N91-15999 # N91-16000 # N91-16001 * N91-16002 N91-16003 # N91-16006 N91-16007 N91-16010 * N91-16011 * N91-16011 * N91-16013 * N91-16014 * N91-16014 * N91-16015 #	p 278 p 281 p 281 p 281 p 281 p 283 p 283 p 283 p 283 p 292 p 292 p 292 p 292 p 293 p 293 p 293
N91-15132 N91-15133 N91-15136 N91-15136 N91-15138 N91-15140 N91-15143 N91-15143 N91-15145 N91-15146 N91-15147 N91-15148 N91-15149 N91-15149	##########	P 275 P 275 P 275 P 275 P 276 P 276 P 276 P 276 P 280 P 281 P 281 P 291 P 291 P 291 P 291 P 291 P 291	N91-15999 # N91-16000 # N91-16001 * N91-16002 N91-16003 # N91-16005 # N91-16007 # N91-16007 * N91-16010 * N91-16011 * N91-16013 * N91-16013 * N91-16014 # N91-16014 # N91-16014 # N91-16014 #	p 278 p 281 p 281 p 281 p 281 p 283 p 283 p 283 p 2892 p 292 p 292 p 292 p 293 p 293 p 293 p 293
N91-15132 N91-15133 N91-15136 N91-15138 N91-15138 N91-15141 N91-15145 N91-15145 N91-15146 N91-15147 N91-15149 N91-15149 N91-15150 N91-15150	###########	P 275 P 275 P 275 P 275 P 276 P 276 P 276 P 276 P 280 P 281 P 281 P 291	N91-15999 # N91-16000 # N91-16001 # N91-16002 N91-16003 # N91-16005 # N91-16006 N91-16007 # N91-16010 * N91-16010 * N91-16011 * N91-16012 # N91-16013 * N91-16015 # N91-16014 # N91-16016 # N91-16017 #	p 278 p 281 p 281 p 281 p 283 p 283 p 283 p 292 p 292 p 292 p 292 p 293 p 293 p 293 p 293 p 293
N91-15132 N91-15133 N91-15136 N91-15136 N91-15140 N91-15141 N91-15141 N91-15145 N91-15147 N91-15147 N91-15148 N91-15149 N91-15150 N91-15151	############	P 275 P 275 P 275 P 275 P 276 P 276 P 276 P 280 P 281 P 291 P 292	N91-15999 # N91-16000 # N91-16001 # N91-16002 N91-16003 # N91-16006 N91-16007 # N91-16010 # N91-16010 # N91-16011 * N91-16012 * N91-16013 # N91-16015 # N91-16015 # N91-16015 # N91-16017 # N91-16018 #	P 278 P 281 P 281 P 281 P 281 P 283 P 283 P 283 P 292 P 292 P 292 P 292 P 293
N91-15132 N91-15133 N91-15136 N91-15136 N91-15138 N91-15141 N91-15143 N91-15145 N91-15146 N91-15146 N91-15149 N91-15149 N91-15150 N91-15150 N91-15155	#######################################	P 275 P 275 P 275 P 275 P 276 P 276 P 276 P 276 P 280 P 281 P 291 P 292	N91-15999 # N91-16000 # N91-16001 * N91-16002 N91-16003 # N91-16005 # N91-16007 # N91-16007 * N91-16011 * N91-16013 * N91-16014 * N91-16014 # N91-16016 # N91-16017 * N91-16017 * N91-16017 # N91-16019 #	P 278 P 281 P 281 P 281 P 281 P 283 P 283 P 283 P 292 P 292 P 292 P 292 P 293 P 293 P 293 P 293 P 293 P 294
N91-15132 N91-15133 N91-15135 N91-15136 N91-15138 N91-15140 N91-15141 N91-15143 N91-15145 N91-15146 N91-15149 N91-15150 N91-15153 N91-15153 N91-15153	#######################################	P 275 P 275 P 275 P 275 P 276 P 276 P 276 P 280 P 281 P 281 P 291 P 292 P 295	N91-15999 # N91-16000 # N91-16001 # N91-16003 # N91-16003 # N91-16005 # N91-16006 N91-16007 # N91-16010 * N91-16010 * N91-16011 * N91-16012 # N91-16015 # N91-16016 # N91-16017 # N91-16018 # N91-16018 # N91-16010 #	P 278 P 281 P 281 P 281 P 281 P 283 P 283 P 283 P 292 P 292 P 292 P 293 P 293 P 293 P 293 P 293 P 294 P 294 P 302
N91-15132 N91-15133 N91-15135 N91-15136 N91-15138 N91-15138 N91-15141 N91-15145 N91-15145 N91-15146 N91-15147 N91-15147 N91-15150 N91-15151 N91-15154 N91-15154 N91-15154	* * * * * * * * * * * * * * * * * * * *	P 275 P 275 P 275 P 275 P 276 P 276 P 276 P 280 P 281 P 291 P 292 P 292 P 292 P 292 P 292 P 295	N91-15999 # N91-16000 # N91-16001 # N91-16003 # N91-16005 # N91-16006 N91-16007 # N91-16010 * N91-16010 * N91-16011 * N91-16012 * N91-16013 # N91-16016 # N91-16017 # N91-16018 # N91-16018 # N91-16018 # N91-16019 # N91-16010 # N91-16021 *	P 278 P 281 P 281 P 281 P 281 P 283 P 283 P 283 P 292 P 292 P 292 P 292 P 293 P 293 P 293 P 293 P 293 P 294
N91-15132 N91-15133 N91-15135 N91-15136 N91-15138 N91-15140 N91-15141 N91-15146 N91-15146 N91-15147 N91-15147 N91-15152 N91-15155 N91-15155 N91-15155 N91-15155	* * * * * * * * * * * * * * * * * * * *	P 275 P 275 P 275 P 275 P 275 P 276 P 276 P 276 P 281 P 281 P 291	N91-15999 # N91-16000 # N91-16001 # N91-16003 # N91-16003 # N91-16005 # N91-16006 N91-16007 # N91-16010 * N91-16010 * N91-16011 * N91-16012 # N91-16015 # N91-16016 # N91-16017 # N91-16018 # N91-16018 # N91-16010 #	P 278 P 281 P 281 P 281 P 283 P 283 P 283 P 292 P 292 P 292 P 293 P 293 P 293 P 293 P 293 P 294 P 300 P 300
N91-15132 N91-15133 N91-15136 N91-15136 N91-15138 N91-15140 N91-15141 N91-15145 N91-15146 N91-15149 N91-15149 N91-15150 N91-15151 N91-15155 N91-15156 N91-15156 N91-15156 N91-15156 N91-15156 N91-15156 N91-15156	*******************	P 275 P 275 P 275 P 275 P 276 P 276 P 280 P 281 P 281 P 291 P 292 P 292 P 295 P 295 P 296	N91-15999 # N91-16000 # N91-16001 # N91-16003 # N91-16005 # N91-16006 N91-16007 # N91-16010 * N91-16010 * N91-16011 * N91-16012 * N91-16013 # N91-16016 # N91-16017 # N91-16018 # N91-16018 # N91-16018 # N91-16019 # N91-16010 # N91-16021 *	P 278 P 281 P 281 P 281 P 281 P 283 P 283 P 283 P 292 P 292 P 292 P 292 P 293
N91-15132 N91-15133 N91-15135 N91-15136 N91-15138 N91-15138 N91-15141 N91-15143 N91-15145 N91-15146 N91-15147 N91-15150 N91-15150 N91-15155 N91-15155 N91-15155 N91-15155 N91-15155 N91-15156 N91-15156 N91-15156	***************************************	P 275 P 275 P 275 P 275 P 276 P 276 P 276 P 280 P 281 P 291 P 292 P 295 P 296	N91-15999 # N91-16000 # N91-16001 * N91-16002 N91-16003 # N91-16005 # N91-16007 # N91-16010 * N91-16011 * N91-16011 * N91-16013 * N91-16014 # N91-16016 # N91-16017 # N91-16017 # N91-16017 # N91-16017 # N91-16010 # N91-16012 # N91-16021 # N91-16022 #	P 278 P 281 P 281 P 281 P 283 P 283 P 283 P 292 P 292 P 292 P 293 P 293 P 293 P 293 P 293 P 294 P 300 P 300
N91-15132 N91-15133 N91-15135 N91-15136 N91-15138 N91-15140 N91-15141 N91-15145 N91-15145 N91-15146 N91-15147 N91-15150 N91-15155 N91-15155 N91-15155 N91-15155 N91-15156 N91-15150 N91-15156 N91-15150 N91-15156 N91-15156	***************************************	P 275 P 275 P 275 P 275 P 275 P 276 P 276 P 280 P 281 P 281 P 291 P 292 P 295 P 296 P 322	N91-15999 # N91-16000 # N91-16001 # N91-16002 N91-16003 # N91-16005 # N91-16007 # N91-16007 # N91-16010 * N91-16011 * N91-16011 * N91-16011 * N91-16011 # N91-16011 # N91-16011 # N91-16011 # N91-16012 # N91-16012 # N91-16012 # N91-16021 # N91-16022 # N91-16022 # N91-16022 # N91-16023 # N91-16023 # N91-16023 # N91-16024 # N91-16024 # N91-16024 # N91-16025 #	P 278 P 281 P 281 P 281 P 281 P 283 P 283 P 283 P 292 P 292 P 292 P 293
N91-15132 N91-15133 N91-15136 N91-15136 N91-15136 N91-15140 N91-15141 N91-15143 N91-15146 N91-15147 N91-15152 N91-15156 N91-15156 N91-15156 N91-15156 N91-15156 N91-15153	***************************************	P 275 P 275 P 275 P 275 P 276 P 276 P 281 P 281 P 281 P 291 P 292 P 292 P 295 P 296 P 296 P 296	N91-15999 # N91-16000 # N91-16001 # N91-16003 # N91-16003 # N91-16006 # N91-16006 N91-16007 # N91-16010 * N91-16010 * N91-16011 * N91-16012 * N91-16015 # N91-16017 # N91-16017 # N91-16017 # N91-16017 # N91-16019 # N91-16019 # N91-16019 # N91-16020 # N91-16021 * N91-16022 # N91-16022 # N91-16022 # N91-16024 #	P 278 P 281 P 281 P 281 P 283 P 283 P 283 P 292 P 292 P 292 P 292 P 293 P 293 P 293 P 293 P 294 P 294 P 294 P 302 P 303 P 303 P 303
N91-15132 N91-15133 N91-15135 N91-15136 N91-15138 N91-15138 N91-15141 N91-15143 N91-15145 N91-15146 N91-15147 N91-15150 N91-15150 N91-15155 N91-15155 N91-15155 N91-15155 N91-15156 N91-15156 N91-15156 N91-15156 N91-15156	***************************************	P 275 P 275 P 275 P 275 P 276 P 276 P 276 P 280 P 281 P 281 P 291 P 292 P 295 P 295 P 296 P 326 P 326 P 326	N91-15999 # N91-16000 # N91-16001 # N91-16002 N91-16003 # N91-16005 # N91-16007 # N91-16007 # N91-16010 * N91-16011 * N91-16011 * N91-16011 * N91-16011 # N91-16011 # N91-16011 # N91-16011 # N91-16012 # N91-16012 # N91-16012 # N91-16021 # N91-16022 # N91-16022 # N91-16022 # N91-16023 # N91-16023 # N91-16023 # N91-16024 # N91-16024 # N91-16024 # N91-16025 #	P 278 P 281 P 281 P 281 P 281 P 283 P 283 P 292 P 292 P 292 P 293 P 293 P 293 P 293 P 293 P 294 P 302 P 303 P 303 P 303 P 307
N91-15132 N91-15133 N91-15135 N91-15135 N91-15138 N91-15140 N91-15141 N91-15143 N91-15145 N91-15146 N91-15149 N91-15155 N91-15155 N91-15155 N91-15155 N91-15156 N91-15156 N91-15156 N91-15156 N91-15156 N91-15156 N91-15156 N91-15166	***************************************	P 275 P 275 P 275 P 275 P 275 P 276 P 276 P 281 P 281 P 291 P 292 P 295 P 295 P 296 P 322 P 296 P 332	N91-15999 # N91-16000 # N91-16001 * N91-16003 # N91-16003 # N91-16005 # N91-16007 # N91-16007 # N91-16010 * N91-16011 * N91-16013 * N91-16013 * N91-16016 # N91-16017 # N91-16018 # N91-16019 # N91-16019 * N91-16019 * N91-16010 # N91-16020 # N91-16022 # N91-16022 # N91-16024 # N91-16024 * N91-16026 #	P 278 P 281 P 281 P 281 P 281 P 283 P 283 P 283 P 292 P 292 P 292 P 293
N91-15132 N91-15133 N91-15135 N91-15136 N91-15138 N91-15140 N91-15140 N91-15140 N91-15146 N91-15147 N91-15148 N91-15150 N91-15155 N91-15155 N91-15155 N91-15156 N91-15156 N91-15156 N91-15156 N91-15157 N91-15157 N91-15157 N91-15157 N91-15157 N91-15157 N91-15157 N91-15157 N91-15157 N91-15157 N91-15157 N91-15157 N91-15157 N91-15167 N91-15167 N91-15167 N91-15167	***************************************	P 275 P 275 P 275 P 275 P 275 P 276 P 276 P 281 P 281 P 291 P 292 P 295 P 296 P 296 P 296 P 296 P 296	N91-15999 # N91-16000 # N91-16001 # N91-16003 # N91-16003 # N91-16005 # N91-16006 N91-16007 # N91-16010 * N91-16010 * N91-16011 * N91-16012 * N91-16013 # N91-16016 # N91-16017 # N91-16018 # N91-16018 # N91-16019 # N91-16019 # N91-16020 # N91-16020 # N91-16021 * N91-16022 # N91-16024 # N91-16024 # N91-16024 # N91-16024 # N91-16026 # N91-16026 # N91-16026 # N91-16031 #	P 278 P 281 P 281 P 281 P 283 P 283 P 283 P 292 P 292 P 292 P 292 P 293 P 293 P 293 P 293 P 294 P 294 P 302 P 303 P 307 P 307
N91-15132 N91-15133 N91-15135 N91-15138 N91-15138 N91-15138 N91-15141 N91-15143 N91-15145 N91-15146 N91-15147 N91-15150 N91-15150 N91-15155 N91-15155 N91-15156 N91-15156 N91-15156 N91-15156 N91-15156 N91-15156 N91-15160	并并并并并并并并并并 并并并并并并并并并并	P 275 P 275 P 275 P 275 P 275 P 276 P 276 P 280 P 281 P 281 P 291 P 292 P 295 P 296 P 296 P 392 P 296 P 396 P 396 P 296	N91-15999 # N91-16000 # N91-16001 # N91-16003 # N91-16003 # N91-16005 # N91-16007 # N91-16010 "# N91-16011 "# N91-16012 "# N91-16012 # N91-16012 # N91-16021 #	P 278 P 281 P 281 P 281 P 281 P 283 P 283 P 283 P 292 P 292 P 292 P 293 P 293 P 293 P 293 P 294 P 302 P 303 P 303 P 307 P 308 P 314
N91-15132 N91-15133 N91-15135 N91-15135 N91-15138 N91-15138 N91-15140 N91-15141 N91-15145 N91-15146 N91-15146 N91-15146 N91-15155 N91-15155 N91-15155 N91-15156 N91-15156 N91-15156 N91-15156 N91-15156 N91-15166 N91-15166 N91-15167	并并并并并并并并并 并并并并并并并并并并并并	P 275 P 275 P 275 P 275 P 275 P 276 P 276 P 276 P 281 P 281 P 281 P 291 P 292 P 295 P 296 P 322 P 296 P 332 P 296 P 332 P 296 P 297	N91-15999 # N91-16000 # N91-16001 # N91-16002 N91-16003 # N91-16006 N91-16006 N91-16010 * N91-16010 * N91-16010 * N91-16011 * N91-16011 * N91-16015 # N91-16016 N91-16017 N91-16016 N91-16017 N91-16018 N91-16019 N91-16019 N91-16020 N91-16020 # N91-16021 * N91-16022 # N91-16022 # N91-16023 N91-16024 N91-16026 N91-16031 N91-16031 N91-16031 N91-16036 N91-16036 N91-16036 N91-16037 N91-16037 N91-16030 N91-16030 N91-16030 N91-16031 N91-16030 N91-16	P 278 P 281 P 281 P 281 P 283 P 283 P 283 P 292 P 292 P 292 P 292 P 293 P 294 P 294 P 302 P 303 P 303 P 303 P 307 P 310 P 314 P 323
N91-15132 N91-15133 N91-15135 N91-15136 N91-15138 N91-15140 N91-15141 N91-15146 N91-15146 N91-15147 N91-15151 N91-15155 N91-15155 N91-15155 N91-15156 N91-15156 N91-15160 N91-15160 N91-15160 N91-15167 N91-15160 N91-15160 N91-15160 N91-15160 N91-15160 N91-15160 N91-15160 N91-15160 N91-15160 N91-15160 N91-15160 N91-15160 N91-15160 N91-15160 N91-15160 N91-15160 N91-15160 N91-15161 N91-15171 N91-15171	并并并并并并并并并并 并并并并并并并并并并并并	P 275 P 275 P 275 P 275 P 275 P 276 P 276 P 281 P 281 P 291 P 292 P 295 P 296 P 297 P 297	N91-15999 # N91-16000 # N91-16001 # N91-16003 # N91-16003 # N91-16005 # N91-16006 N91-16007 # N91-16010 "# N91-16011 "# N91-16010 "# N91-16010 "# N91-16010 # N91-16010 # N91-16010 # N91-16020 # N91-16021 "# N91-16026 "# N91-16076 "# N91-16076 "# N91-16076 # N91-16076 # N91-16206 "#	P 278 P 281 P 281 P 281 P 281 P 283 P 283 P 283 P 292 P 292 P 292 P 293 P 293 P 293 P 293 P 294 P 302 P 303 P 303 P 307 P 306 P 314 P 314 P 314 P 3143 P 278
N91-15132 N91-15133 N91-15135 N91-15138 N91-15138 N91-15138 N91-15140 N91-15141 N91-15145 N91-15146 N91-15147 N91-15150 N91-15150 N91-15150 N91-15150 N91-15156 N91-15156 N91-15156 N91-15160 N91-15172 N91-15172	并并并并并并并并并 并并并并并并并并并并并并	P 275 P 275 P 275 P 275 P 275 P 276 P 276 P 280 P 281 P 281 P 291 P 292 P 295 P 296 P 296 P 302 P 296 P 296 P 296 P 296 P 296 P 297 P 302	N91-15999 # N91-16000 # N91-16001 * N91-16003 # N91-16003 # N91-16005 # N91-16006 * N91-16007 # N91-16010 * N91-16011 * N91-16012 * N91-16016 # N91-16017 # N91-16016 # N91-16018 # N91-16019 # N91-16019 # N91-16019 # N91-16019 # N91-16019 # N91-16020 # N91-16020 # N91-16020 # N91-16021 * N91-16022 # N91-16023 # N91-16024 # N91-16026 # N91-16026 # N91-16026 # N91-16026 # N91-16076 # N91-16076 # N91-16076 # N91-16076 # N91-16078 # N91-16079 #	P 278 P 281 P 281 P 281 P 281 P 283 P 283 P 283 P 292 P 292 P 292 P 293 P 294 P 302 P 303 P 303 P 307 P 308 P 3114 P 323 P 278
N91-15132 N91-15133 N91-15135 N91-15135 N91-15138 N91-15138 N91-15141 N91-15143 N91-15145 N91-15146 N91-15146 N91-15155 N91-15155 N91-15155 N91-15156 N91-15156 N91-15156 N91-15156 N91-15156 N91-15157 N91-15164 N91-15157 N91-15167 N91-15167 N91-15167 N91-15167 N91-15167 N91-15167 N91-15167	并并并并并并并并并并 并并并并并并并并并并并并	P 275 P 275 P 275 P 275 P 275 P 275 P 276 P 276 P 280 P 281 P 281 P 291 P 292 P 292 P 292 P 295 P 296 P 322 P 296 P 332 P 296 P 332 P 296 P 297 P 297 P 297 P 300	N91-15999 # N91-16000 # N91-16001 * N91-16002 N91-16003 # N91-16003 # N91-16005 N91-16006 N91-16007 # N91-16010 * N91-16011 * N91-16011 * N91-16013 * N91-16016 # N91-16017 # N91-16018 # N91-16018 # N91-16019 * N91-16019 * N91-16019 # N91-16019 # N91-16019 # N91-16019 # N91-16020 # N91-16020 # N91-16021 * N91-16024 # N91-16026 # N91-16026 # N91-16026 # N91-16026 # N91-16026 # N91-16026 # N91-16206 # N91-16206 # N91-16206 # N91-16206 # N91-16272 # N91-16227 # N91-16227 # N91-16227 # N91-16227 # N91-16227 #	P 278 P 281 P 281 P 281 P 283 P 283 P 283 P 292 P 292 P 292 P 292 P 293 P 294 P 294 P 302 P 303
N91-15132 N91-15133 N91-15135 N91-15138 N91-15138 N91-15138 N91-15140 N91-15141 N91-15145 N91-15146 N91-15147 N91-15150 N91-15150 N91-15150 N91-15150 N91-15156 N91-15156 N91-15156 N91-15160 N91-15172 N91-15172	并并并并并并并并并并 并并并并并并并并并并并并	P 275 P 275 P 275 P 275 P 275 P 276 P 276 P 280 P 281 P 281 P 291 P 292 P 295 P 296 P 296 P 302 P 296 P 296 P 296 P 296 P 296 P 297 P 302	N91-15999 # N91-16000 # N91-16001 # N91-16003 # N91-16003 # N91-16006 # N91-16006 N91-16007 # N91-16010 * N91-16010 * N91-16010 * N91-16011 * N91-16016 # N91-16017 # N91-16018 # N91-16018 # N91-16019 # N91-16020 # N91-16020 # N91-16021 * N91-16021 * N91-16021 * N91-16021 * N91-16021 * N91-16022 # N91-16022 # N91-16021 * N91-16026 # N91-16026 # N91-16026 # N91-16026 # N91-16026 # N91-16027 # N91-16027 # N91-16028 # N91-16028 # N91-16029 # N91-16288 # N91-16288 # N91-16281 N91-16283 # N91-16283 #	P 278 P 281 P 281 P 281 P 283 P 283 P 283 P 292 P 292 P 292 P 293 P 294 P 302 P 303 P 303 P 307 P 306 P 314 P 314 P 314 P 314 P 314 P 315 P 378 P 378 P 378
N91-15132 N91-15133 N91-15135 N91-15135 N91-15138 N91-15138 N91-15141 N91-15143 N91-15145 N91-15146 N91-15146 N91-15155 N91-15155 N91-15155 N91-15156 N91-15156 N91-15156 N91-15156 N91-15156 N91-15157 N91-15164 N91-15157 N91-15167 N91-15167 N91-15167 N91-15167 N91-15167 N91-15167 N91-15167	并并并并并并并并并并 并并并并并并并并并并并并	P 275 P 275 P 275 P 275 P 275 P 275 P 276 P 276 P 280 P 281 P 281 P 291 P 292 P 292 P 292 P 295 P 296 P 322 P 296 P 332 P 296 P 332 P 296 P 297 P 297 P 297 P 300	N91-15999 # N91-16000 # N91-16001 * N91-16003 # N91-16003 # N91-16005 # N91-16006 N91-16007 # N91-16010 * N91-16010 * N91-16011 * N91-16010 # N91-16010 # N91-16010 # N91-16010 # N91-16010 * N91-16020 # N91-16021 * N91-16021 * N91-16021 * N91-16021 * N91-16021 * N91-16021 # N91-16022 # N91-16021 # N91-16021 # N91-16021 # N91-16021 # N91-16022 # N91-16021 # N91-16020 #	P 278 P 281 P 281 P 281 P 283 P 283 P 283 P 282 P 292 P 292 P 292 P 293 P 293 P 293 P 293 P 293 P 293 P 294 P 302 P 303 P 303 P 307 P 308 P 314
N91-15132 N91-15133 N91-15135 N91-15136 N91-15138 N91-15140 N91-15141 N91-15143 N91-15146 N91-15146 N91-15147 N91-15155 N91-15155 N91-15155 N91-15156 N91-15156 N91-15160 N91-15176 N91-15176 N91-15176	并并并并并并并并并并 并并并并并并并并并并并并	P 275 P 275 P 275 P 275 P 275 P 276 P 276 P 281 P 281 P 291 P 291 P 291 P 291 P 291 P 291 P 292 P 295 P 296 P 297 P 306 P 306 P 306	N91-15999 # N91-16000 # N91-16001 # N91-16003 # N91-16003 # N91-16006 # N91-16006 N91-16007 # N91-16010 * N91-16010 * N91-16010 * N91-16011 * N91-16016 # N91-16017 # N91-16018 # N91-16018 # N91-16019 # N91-16020 # N91-16020 # N91-16021 * N91-16021 * N91-16021 * N91-16021 * N91-16021 * N91-16022 # N91-16022 # N91-16021 * N91-16026 # N91-16026 # N91-16026 # N91-16026 # N91-16026 # N91-16027 # N91-16027 # N91-16028 # N91-16028 # N91-16029 # N91-16288 # N91-16288 # N91-16281 N91-16283 # N91-16283 #	P 278 P 281 P 281 P 281 P 283 P 283 P 283 P 292 P 292 P 292 P 293 P 294 P 302 P 303 P 303 P 307 P 306 P 314 P 314 P 314 P 314 P 314 P 315 P 378 P 378 P 378

N91-16466 * # p 325 N91-16467 * # p 325 N91-16582 # p 330 N91-16693 * # p 332

AVAILABILITY OF CITED PUBLICATIONS

IAA ENTRIES (A91-10000 Series)

Publications announced in *IAA* are available from the AIAA Technical Information Service as follows: Paper copies of accessions are available at \$10.00 per document (up to 50 pages), additional pages \$0.25 each. Standing order microfiche are available at the rate of \$1.45 per microfiche for *IAA* source documents and \$1.75 per microfiche for AIAA meeting papers.

Minimum air-mail postage to foreign countries is \$2.50. All foreign orders are shipped on payment of pro-forma invoices.

All inquiries and requests should be addressed to: Technical Information Service, American Institute of Aeronautics and Astronautics, 555 West 57th Street, New York, NY 10019. Please refer to the accession number when requesting publications.

STAR ENTRIES (N91-10000 Series)

One or more sources from which a document announced in *STAR* is available to the public is ordinarily given on the last line of the citation. The most commonly indicated sources and their acronyms or abbreviations are listed below. If the publication is available from a source other than those listed, the publisher and his address will be displayed on the availability line or in combination with the corporate source line.

Avail: NTIS. Sold by the National Technical Information Service. Prices for hard copy (HC) and microfiche (MF) are indicated by a price code preceded by the letters HC or MF in the STAR citation. Current values for the price codes are given in the tables on NTIS PRICE SCHEDULES.

Documents on microfiche are designated by a pound sign (#) following the accession number. The pound sign is used without regard to the source or quality of the microfiche.

Initially distributed microfiche under the NTIS SRIM (Selected Research in Microfiche) is available at greatly reduced unit prices. For this service and for information concerning subscription to NASA printed reports, consult the NTIS Subscription Section, Springfield, VA 22161.

NOTE ON ORDERING DOCUMENTS: When ordering NASA publications (those followed by the * symbol), use the N accession number. NASA patent applications (only the specifications are offered) should be ordered by the US-Patent-Appl-SN number. Non-NASA publications (no asterisk) should be ordered by the AD, PB, or other *report number* shown on the last line of the citation, not by the N accession number. It is also advisable to cite the title and other bibliographic identification.

Avail: SOD (or GPO). Sold by the Superintendent of Documents, U.S. Government Printing Office, in hard copy. The current price and order number are given following the availability line. (NTIS will fill microfiche requests, as indicated above, for those documents identified by a # symbol.)

- Avail: BLL (formerly NLL): British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England. Photocopies available from this organization at the price shown. (If none is given, inquiry should be addressed to the BLL.)
- Avail: DOE Depository Libraries. Organizations in U.S. cities and abroad that maintain collections of Department of Energy reports, usually in microfiche form, are listed in *Energy Research Abstracts*. Services available from the DOE and its depositories are described in a booklet, *DOE Technical Information Center Its Functions and Services* (TID-4660), which may be obtained without charge from the DOE Technical Information Center.
- Avail: ESDU. Pricing information on specific data, computer programs, and details on Engineering Sciences Data Unit (ESDU) topic categories can be obtained from ESDU International Ltd. Requesters in North America should use the Virginia address while all other requesters should use the London address, both of which are on the page titled ADDRESSES OF ORGANIZATIONS.
- Avail: Fachinformationszentrum, Karlsruhe. Sold by the Fachinformationszentrum Energie, Physik, Mathematik GMBH, Eggenstein Leopoldshafen, Federal Republic of Germany, at the price shown in deutschmarks (DM).
- Avail: HMSO. Publications of Her Majesty's Stationery Office are sold in the U.S. by Pendragon House, Inc. (PHI), Redwood City, CA. The U.S. price (including a service and mailing charge) is given, or a conversion table may be obtained from PHI.
- Avail: NASA Public Document Rooms. Documents so indicated may be examined at or purchased from the National Aeronautics and Space Administration, Public Documents Room (Room 126), 600 Independence Ave., S.W., Washington, DC 20546, or public document rooms located at each of the NASA research centers, the NASA Space Technology Laboratories, and the NASA Pasadena Office at the Jet Propulsion Laboratory.
- Avail: Univ. Microfilms. Documents so indicated are dissertations selected from *Dissertation Abstracts* and are sold by University Microfilms as xerographic copy (HC) and microfilm. All requests should cite the author and the Order Number as they appear in the citation.
- Avail: US Patent and Trademark Office. Sold by Commissioner of Patents and Trademarks, U.S. Patent and Trademark Office, at the standard price of \$1.50 each, postage free.
- Avail: (US Sales Only). These foreign documents are available to users within the United States from the National Technical Information Service (NTIS). They are available to users outside the United States through the International Nuclear Information Service (INIS) representative in their country, or by applying directly to the issuing organization.
- Avail: USGS. Originals of many reports from the U.S. Geological Survey, which may contain color illustrations, or otherwise may not have the quality of illustrations preserved in the microfiche or facsimile reproduction, may be examined by the public at the libraries of the USGS field offices whose addresses are listed in this Introduction. The libraries may be queried concerning the availability of specific documents and the possible utilization of local copying services, such as color reproduction.
- Avail: Issuing Activity, or Corporate Author, or no indication of availability. Inquiries as to the availability of these documents should be addressed to the organization shown in the citation as the corporate author of the document.

FEDERAL DEPOSITORY LIBRARY PROGRAM

In order to provide the general public with greater access to U.S. Government publications, Congress established the Federal Depository Library Program under the Government Printing Office (GPO), with 51 regional depositories responsible for permanent retention of material, inter-library loan, and reference services. At least one copy of nearly every NASA and NASA-sponsored publication, either in printed or microfiche format, is received and retained by the 51 regional depositories. A list of the regional GPO libraries, arranged alphabetically by state, appears on the inside back cover. These libraries are *not* sales outlets. A local library can contact a Regional Depository to help locate specific reports, or direct contact may be made by an individual.

PUBLIC COLLECTION OF NASA DOCUMENTS

An extensive collection of NASA and NASA-sponsored publications is maintained by the British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England for public access. The British Library Lending Division also has available many of the non-NASA publications cited in *STAR*. European requesters may purchase facsimile copy or microfiche of NASA and NASA-sponsored documents, those identified by both the symbols # and * from ESA - Information Retrieval Service European Space Agency, 8-10 rue Mario-Nikis, 75738 CEDEX 15, France.

STANDING ORDER SUBSCRIPTIONS

NASA SP-7037 supplements and annual index are available from the National Technical Information Service (NTIS) on standing order subscription as PB91-914100, at price code A04. Current values for the price codes are listed on page APP-5. Standing order subscriptions do not terminate at the end of a year, as do regular subscriptions, but continue indefinitely unless specifically terminated by the subscriber.

18-30-11-11

Programme Commence

A SERVICE CONTRACTOR OF THE SERVICE CONTRACT

Paragraphy of the State of the

Jan Jan Brand

化乳化物 机氯化 化硫酸镁

Company of the

Track to the 19 chest

· 李 经 医类

ETTO, MARKET LASSOCIES

PASS OF THE SWITZERS

分割 医动物试验 医静脉丛

3. 化弹的线 他成战的战

Market San Harris (1986) Seat the Cart of the Ballion of

TO A MODERN SERVICE COMPANIES

The same of the property of the Williams

MINERAL OF PLANTINGS OF

2000年 · 中国的企业也通过统计 进程

李严 副级 海绵点 大河 化烷

工 经线额 施护费

bruiged amongst

738 S.2 987

人员 数点 問意

The state of the first and seems a second in the seems that the

27、新加加州市、西督州城市村市、大安的西洋村镇

一边大学 医胆囊病 化氯化甲基 医眼镜 医性脓肿磷酸 眼睛

ADDRESSES OF ORGANIZATIONS

American Institute of Aeronautics and Astronautics Technical Information Service 555 West 57th Street, 12th Floor New York, New York 10019

British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England

Commissioner of Patents and Trademarks U.S. Patent and Trademark Office Washington, DC 20231

Department of Energy Technical Information Center P.O. Box 62 Oak Ridge, Tennessee 37830

European Space Agency-Information Retrieval Service ESRIN Via Galileo Galilei 00044 Frascati (Rome) Italy

Engineering Sciences Data Unit International P.O. Box 1633 Manassas, Virginia 22110

Engineering Sciences Data Unit International, Ltd. 251-259 Regent Street London, W1R 7AD, England

Fachinformationszentrum Energie, Physik, Mathematik GMBH 7514 Eggenstein Leopoldshafen Federal Republic of Germany

Her Majesty's Stationery Office P.O. Box 569, S.E. 1 London, England

NASA Center for AeroSpace Information P.O. Box 8757 BWI Airport, Maryland 21240 National Aeronautics and Space Administration Scientific and Technical Information Program (NTT) Washington, DC 20546

National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161

Pendragon House, Inc. 899 Broadway Avenue Redwood City, California 94063

Superintendent of Documents U.S. Government Printing Office Washington, DC 20402

University Microfilms A Xerox Company 300 North Zeeb Road Ann Arbor, Michigan 48106

University Microfilms, Ltd. Tylers Green London, England

U.S. Geological Survey Library National Center MS 950 12201 Sunrise Valley Drive Reston, Virginia 22092

U.S. Geological Survey Library 2255 North Gemini Drive Flagstaff, Arizona 86001

U.S. Geological Survey 345 Middlefield Road Menlo Park, California 94025

U.S. Geological Survey Library Box 25046 Denver Federal Center, MS914 Denver, Colorado 80225

NTIS PRICE SCHEDULES

(Effective January 1, 1991)

Schedule A STANDARD PRICE DOCUMENTS AND MICROFICHE**

PRICE CODE	NORTH AMERICAN PRICE	FOREIGN PRICE	
A01	\$ 8.00	\$ 16.00	
· A02	11.00	22.00	
A03	15.00	30.00	
A04-A05	17.00	34.00	
A06-A09	23.00	46.00	
A10-A13	31.00	62.00	
A14-A17	39.00	78.00	
A18-A21	45.00	90.00	
A22-A25	53.00	106.00	
A99	•	•	
N01	60.00	120.00	
N02	59.00	118.00	
N03	20.00	40.00	

Schedule E EXCEPTION PRICE DOCUMENTS AND MICROFICHE**

PRICE CODE	NORTH AMERICAN PRICE	FOREIGN PRICE	
E01	\$10.00	\$ 20.00	
E02	12.00	24.00	
E03	14.00	28.00	
E04	16.50	33.00	
E05	18.50	37.00	
E06	21.50	43.00	
E07	24.00	48.00	
E08	27.00	54.00	
E09	29.50	59.00	
E10	32.50	65.00	
E11	35.00	70.00	
E12	38.50	77.00	
E13	41.00	82.00	
E14	45.00	90.00	
E15-	48.50	97.00	
E16	53.00	106.00	
E17	57.50	115.00	
E18	62.00	124.00	
E19	69.00	138.00	
E20	80.00	160.00	
E99	•	•	

^{*} Contact NTIS for price quote.

IMPORTANT NOTICE

NTIS Shipping and Handling Charges
U.S., Canada, Mexico — ADD \$3.00 per TOTAL ORDER
All Other Countries — ADD \$4.00 per TOTAL ORDER

Exceptions — Does NOT apply to:

ORDERS REQUESTING NTIS RUSH HANDLING ORDERS FOR SUBSCRIPTION OR STANDING ORDER PRODUCTS ONLY

NOTE: Each additional delivery address on an order requires a separate shipping and handling charge.

^{**} Effective January 1, 1991, the microfiche copy of any new document entering the NTIS collection will be priced the same as the paper copy of the document.

1. Report No.	2. Government Acces	sion No.	Recipient's Catalog No.	
NASA SP-7037(265)				
4. Title and Subtitle			5. Report Date	
Aeronautical Engineering			May 1991	
A Continuing Bibliography (Supplement 265)			6. Performing Organization Code	
			NTT	
7. Author(s)			8. Performing Organization Report No.	
			10. Work Unit No.	
Performing Organization Name and Address				
NASA Scientific and Technical Informa	tion Program		11. Contract or Grant No.	
			13. Type of Report and Period Covered	
12. Sponsoring Agency Name and Address			Special Publication	
National Aeronautics and Space Admi	inistration			
Washington, DC 20546	,		14. Sponsoring Agency Code	
,	-			
15. Supplementary Notes				
·		•	· -	
16. Abstract			a sha NISCA animaisia	
This bibliography lists 554 reports, a and technical information system in A		cuments introduced int	o the NASA scientific	
and toomical mornation dystom in				
	•			
·	•		•	
	() () () () () () () () () ()			
·	•			
		• •		
	-			
	•			
17. Key Words (Suggested by Authors(s))		18. Distribution Statement		
17. Key Words (Suggested by Authors(s)) Aeronautical Engineering		18. Distribution Statement Unclassified - Unlin		
Aeronautical Engineering Aeronautics			mited	
Aeronautical Engineering		Unclassified - Unlii	mited	
Aeronautical Engineering Aeronautics		Unclassified - Unlii	mited	
Aeronautical Engineering Aeronautics Bibliographies		Unclassified - Unlii Subject Category -	nited 01	
Aeronautical Engineering Aeronautics	20. Security Classif. (Unclassified - Unlii Subject Category -	mited	

FEDERAL REGIONAL DEPOSITORY LIBRARIES

ALABAMA

AUBURN UNIV. AT MONTGOMERY LIBRARY

Documents Department Montgomery, AL 36193 (205) 279-9110 ext.253

UNIV. OF ALABAMA LIBRARY

Reference Department/Documents Box S Tuscaloosa, AL 35486 (205) 348-6046

ARIZONA

DEPT. OF LIBRARY, ARCHIVES, AND PUBLIC RECORDS

Third Floor State Capitol 1700 West Washington Phoenix, AZ 85007 (602) 255-4121

ARKANSAS

ARKANSAS STATE LIBRARY

Documents Service Section One Capitol Mall Little Rock, AR 72201 (501) 371-2090

CALIFORNIA

CALIFORNIA STATE LIBRARY

Govt. Publications Section 914 Capitol Mall Sacramento, CA 95814 (916) 322-4572

COLORADO

UNIV. OF COLORADO

Norlin Library Government Publications Division Campus Box 184 Boulder, CO 80309 (303) 492-8834

DENVER PUBLIC LIBRARY

Govt. Pub. Department 1357 Broadway Denver, CO 80203 (303) 571-2346

CONNECTICUT

CONNECTICUT STATE LIBRARY

231 Capitol Avenue Hartford, CT 06106 (203) 566-4971

FLORIDA

UNIV. OF FLORIDA LIBRARIES

Documents Department Library West Gainesville, FL 32611 (904) 392-0367

GEORGIA

UNIV. OF GEORGIA LIBRARIES

Government Documents Dept. Athens, GA 30602 (404) 542-8949

HAWAII

UNIV. OF HAWAII

Hamilton Library Government Documents Collection 2550 The Mall Honolulu, HI 96822 (808) 948-8230

IDAHO

UNIV. OF IDAHO LIBRARY

Documents Section Moscow, ID 83843 (208) 885-6344

ILLINOIS

ILLINOIS STATE LIBRARY

Federal Documents Centannial Building Springfield, IL 62756 (217) 782-5012

INDIANA

INDIANA STATE LIBRARY

Serials Section 140 North Senate Avenue Indianapolis, IN 46204 (317) 232-3686

IOWA

UNIV. OF IOWA LIBRARIES

Government Publications Dept. Iowa City, IA 52242 (319) 335-5926

KANSAS

UNIVERSITY OF KANSAS

Spencer Research Library Government Documents Lawrence, KS 66045 (913) 864-4662

KENTUCKY

UNIV. OF KENTUCKY LIBRARIES

Government Publications/Maps Dept. Lexington, KY 40506 (606) 257-8400

LOUISIANA

LOUISIANA STATE UNIVERSITY

Middleton Library Government Documents Dept. Baton Rouge, LA 70803 (504) 388-2570

LOUISIANA TECHNICAL UNIV.

Prescott Memorial Library Government Documents Dept. Ruston, LA 71272 (318) 257-4962

MAINE

UNIVERSITY OF MAINE

Raymond H. Fogler Library
Govt. Documents & Microforms Dept.
Orono, ME 04469
(207) 581-1680

MARYLAND

UNIVERSITY OF MARYLAND

McKeldin Library Documents/Maps Room College Park, MD 20742 (301) 454-3034

MASSACHUSETTS

BOSTON PUBLIC LIBRARY

Government Documents Dept. 666 Boylston Street Boston, MA 02117 (617) 536-5400 ext.226

MICHIGAN

DETROIT PUBLIC LIBRARY

5201 Woodward Avenue Detroit, MI 48202 (313) 833-1409

LIBRARY OF MICHIGAN

Government Documents P.O. Box 30007 735 E. Michigan Avenue Lansing, MI 48909 (517) 373-1593

MINNESOTA

UNIVERSITY OF MINNESOTA

Wilson Library Government Publications 309 Nineteenth Avenue South Minneapolis, MN 55455 (612) 373-7813

MISSISSIPPI

UNIV. OF MISSISSIPPI LIB.

Government Documents Dept. 106 Old Gym Bldg. University, MS 38677 (601) 232-5857

MISSOURI

University of Missouri at

Columbia Library Government Documents Columbia, MO 65201 (314) 882-6733

MONTANA

UNIV. OF MONTANA

Mansfield Library Documents Division Missoula, MT 59812 (406) 243-6700

NEBRASKA

UNIVERSITY OF NEBRASKA - LINCOLN

Love Memorial Library Documents Department Lincoln, NE 68588 (402) 472-2562

NEVADA

UNIV. OF NEVADA-RENO LIB.

Govt. Pub. Department Reno, NV 89557 (702) 784-6579

NEW JERSEY

NEWARK PUBLIC LIBRARY

U.S. Documents Division 5 Washington Street P.O. Box 630 Newark, NJ 07101 (201) 733-7812

NEW MEXICO

UNIVERSITY OF NEW MEXICO

General Library Government Publications/Maps Dept. Albuquerque, NM 87131 (505) 277-5441

NEW MEXICO STATE LIBRARY

325 Don Gaspar Avenue Santa Fe, NM 87501 (505) 827-3826

NEW YORK

NEW YORK STATE LIBRARY

Documents Sect. Cultural Educ. Ctr. Empire State Plaza Albany, NY 12230 (518) 474-5563

NORTH CAROLINA

UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL

Davis Library 080A BA/SS Department Documents Chapel Hill, NC 27514 (919) 962-1151

NORTH DAKOTA

NORTH DAKOTA STATE

UNIVERSITY LIBRARY

Government Documents Dept. Fargo, ND 58105 (701) 237-8352 In cooperation with Univ. of North Dakota, Chester Fritz Library Grand Forks

OHIO

STATE LIBRARY OF OHIO

Documents Section 65 South Front Street Columbus, OH 43266 (614) 644-7051

OKLAHOMA

OKLAHOMA DEPT. OF LIBRARIES

Government Documents 200 NE 18th Street Oklahoma City, OK 73105 (405) 521-2502, ext. 252

OKLAHOMA STATE UNIV. LIB.

Documents Department Stillwater, OK 74078 (405) 624-0489

OREGON

PORTLAND STATE UNIV.

Millar Library 934 SW Harrison - P.O. Box 1151 Portland, OR 97207 (503) 229-3673

PENNSYLVANIA

STATE LIBRARY OF PENN.

Government Publications Section Box 1601 Walnut St. & Commonwealth Ave. Harrisburg, PA 17105 (717) 787-3752

SOUTH CAROLINA

CLEMSON UNIV. COOPER LIB. Documents Department

Clements Department
Clemson, SC 29634
(803) 656-5174
In cooperation with Univ. of South
Carolina, Thomas Cooper Library,
Columbia

TEXAS

TEXAS STATE LIBRARY

Public Services Department P.O. Box 12927 - 1201 Brazos Austin, TX 78711 (512) 463-5455

TEXAS TECH. UNIV. LIBRARY

Documents Department Lubbock, TX 79409 (806) 742-2268

UTAH

UTAH STATE UNIVERSITY

Merrill Library & Learning Resources Center, UMC-30 Documents Department Logan, UT 84322 (801) 750-2682

VIRGINIA

UNIVERSITY OF VIRGINIA

Alderman Library Government Documents Charlottesville, VA 22903 (804) 924-3133

WASHINGTON

WASHINGTON STATE LIBRARY

Document Section Olympia, WA 98504 (206) 753-4027

WEST VIRGINIA

WEST VIRGINIA UNIV. LIB.

Government Documents Section P.O. Box 6069 Morgantown, WV 26506 (304) 293-3640

WISCONSIN

ST. HIST SOC. OF WISCONSIN LIB.

Government Pub. Section 816 State Street Madison, WI 53706 (608) 262-2781 In cooperation with Univ. of Wisconsin-

Madison, Memorial Library MILWAUKEE PUBLIC LIBRARY

Documents Division 814 West Wisconsin Avenue Milwaukee, WI 53233 (414) 278-3065

WYOMING

WYOMING STATE LIBRARY

Supreme Court & Library Bldg. Cheyenne, WY 82002 (307) 777-5919 National Aeronautics and Space Administration Code NTT Washington, D.C.

20546-0001

Official Business Penalty for Private Use, \$300

National Aeronautics and Space Administration

Washington, D.C. . SPECIAL FOURTH CLASS MAIL

Postage an Fees Paid National Aeronautics and Space Administration NASA-451 Official Business Penalty for Private Use \$300

Li 001 SP7037-265910528S090569A NASA CENTER FOR AEROSPACE INFORMATION ACCESSIONING DEPT P O BOX 8757 BWI ARPRT BALTIMORE MD 21240

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return