SHIDIX TECHNOLOGIES

CALCULADORA DE TIEMPOS DE EXPOSICIÓN

ESPECIFICACIONES

FRIDA

Preparado por:

Daniel Jacobo Díaz González

Aprobado por: nz José Acosta

18 de noviembre de 2018

1. Requerimientos

El ETC está disponible vía web a través de la url http://frida.shidix.es, alojada en un servidor propio del Instituto de Astrofísica de Canarias. El código fuente está disponible a través de un repositorio git, sujeto a control de versiones.

La interfaz web ha sido implementada utilizando el framework Django, desarrollado en Python, junto con el framework Bootstrap, desarrollado en HTML5 y CSS3; estas herramientas son open source, y están disponibles para su descarga en https://www.djangoproject.com/download/yhttps://getbootstrap.com/docs/3.3/getting-started#download.

El ETC tiene dos modos independientes: modo imagen y modo IFS.

1.1. Requerimientos primarios

- El ETC ofrece dos opciones básicas para la morfología de la fuente: fuente puntual y fuente extendida.
- El brillo de la fuente se especifica como la magnitud en una banda concreta.
- Se contemplan los dos modos de operación del instrumento, el modo imagen y el modo IFS.
- Existen ficheros de configuración a partir de los que se define la transmisión y emisión de la atmósfera terrestre.
- Hay tres escalas espaciales para cada uno de los modos (imagen e IFS).

 El ETC muestra una tabla con los valores de salida, así como varias gráficas con la representación de los mismos.

1.2. Requerimientos secundarios

- Se puede utlizar como entrada un conjunto de modelos para la PSF.
- Se han incluido diferentes distribuciones espectrales: cuerpo negro,
 ley de potencia, plantillas de estrellas y plantillas de galaxias.

2. Estructura de la Web

La interfaz web está dividida en tres pestañas desde la que el usuario puede introducir los datos.

2.1. Definición de la fuente

En esta pestaña se inicarán los parámetros relacionados con la fuente astronómica.

- Distribución espectral. Se podrá escoger entre las siguientes opciones:
 - Cuerpo negro. Habrá que definir la temperatura.
 - Ley de potencias. La ley de potencia se expresa como $S_{\lambda} = \lambda^{x}$, y el usuario deberá indicar la x.
 - *Espectro estelar*. Se da una serie de platillas entre las que se puede escoger.

- *Emisión de línea*. Se deben definir los parámetros de longitud de onda, flujo de línea, unidade del flujo, velocidad, continuo y unidades del continuo.
- *Espectro definido por el usuario*. El usuario deberá subir un fichero en el que vendrá definido el espectro.
- Espectros de objetos no estelares. Se puede escoger entre varias plantillas.
- **Brillo**. Habrá que definir los siguientes parámetros:
 - *Brillo Total*. Hay que indicar el brillo en magnitud y la banda de referencia.
 - Extinción.
 - Redshift / Velocidad radial.
- Perfil espacial. Habrá que escoger entre fuente puntual y fuente extendida uniforme.

2.2. Condiciones de la observación y configuración del GTCAO

En este caso son tres los parámetros a definir.

- Masa de aire.
- Seeing.
- Separación de estrella guía. Estos valores se podrán indicar en segundos de arco.
- Brillo de la estrella guía. La banda de referencia es la R.

REENSHOTS

4

3. Screenshots

Figura 2: Modo IFS

Figura 3: Modo Imagen

4. Estructura de archivos

4.1. Modelo-Vista-Controlador

- frida/views.py. Fichero con la definición de las acciones que gobierna la web.
- frida/calculator.py. Contine las funciones para el cálculo de los tiempos de exposición, así como la definición del instrumento y los modos de observación.
- frida/compute_flux.py.

4.2. Filtros

En el directorio frida/includes podemos encontramos el archivo índice de los filtros que van a estar disponibles, denominado *filters.dat*. Es un fichero ascii, más concretametne un CSV (commar-separate values) en el que vamos a definir los filtros, uno por línea, especificando los siguientes campos:

- Name. Etiqueta con la que se va a mostrar el filtro en el selector de la web. Es de tipo cadena, y debe ser indicado entre comillas dobles.
- Code. Código de referencia. Es de tipo cadena, y debe ser indicado entre comillas dobles.
- **Transmission**. El nombre del fichero con los datos de transmisión para este filtro (veremos después su formato). Se encontrará en *frida/filters*. Es de tipo cadena, y debe ser indicado entre comillas dobles.
- cut-on. Límite inferior del filtro (en micras). Es de tipo float.
- **cut-off**. Límite superior del filtro (en micras). Es de tipo float.
- lambda-center. Longitud de onda de referencia para este filtro (en micras). Es de tipo float.
- dit. Tiempo de integración que el detector usará por defecto. Es de tipo float.
- **diff_limit**. Límite de difracción en mili arcsec. Es de tipo float.

```
Name,Code,Transmission,cut-on,cut-off,lambda_center,dit,diff_lim
"Y","Y","filterY_cold.dat",0.960,1.086,1.020,20,24.7
"J","J","filterJ_cold.dat",1.170,1.330,1.25,20,30.3
"H","H","filterH_cold.dat",1.490,1.780,1.635,5,39.6
"Ks","Ks","filterKs_cold.dat",1.990,2.310,2.145,5,51.9
"[FeII] [1.26 micron]","NB1.26","filterNB1p26_cold.dat",1.250,1.264,1.257,60,30.4
```

Este fichero contiene una línea de cabera en la que se listan los nombres de campo; además, admite líneas de comentarios, para lo cual la línea debe comenzar por #.

Los ficheros de transmisión los podemos encontrar en el directorio *fri-da/filters*. También son ficheros ascii (csv); son ficheros de dos columnas,

en los que la primera columna indica la longitud de onda en micras y la segunda columna la transmisión para esa longitud de onda. No contienen fila de cabecera.

```
    1.60130
    0.0102336

    1.60226
    0.0103185

    1.60322
    0.0104181

    1.60419
    0.0103159

    1.60515
    0.0102234

    1.60611
    0.0104208

    1.60707
    0.0104571

    1.60804
    0.0106585
```

4.3. Rendijas

En el directorio frida/includes podemos encontramos el archivo índice de las rendijas que van a estar disponibles, denominado *gratings.dat*. Es un fichero ascii, más concretametne un CSV (commar-separate values) en el que vamos a definir las rendijas, una por línea, especificando los siguientes campos:

- Name. Etiqueta con la que se va a mostrar el filtro en el selector de la web. Es de tipo cadena.
- **Description**. Código de referencia. Es de tipo cadena.
- Master. Código de fabricante.
- Efficiency. El nombre del fichero con los datos de eficiencia de la rendija (veremos después su formato). Se encontrará en *frida/gratings*.
 Es de tipo cadena.
- Central_wave. Longitud de onda central en esta rendija (en Angstroms).
 Es de tipo float.

- Rcenter. Resolución en la longitud de onda central. Es de tipo float.
- Dispersion. Dispersión de la rendija (en Angstroms/pixel). Es de tipo float.
- Wave_ini. Límite inferior de la rendija (en Angstroms). Es de tipo float.
- Wave_end. Límite superior de la rendina (en Angstroms). Es de tipo float.
- **diff_limit**. Límite de difracción en mili arcsec. Es de tipo float.

Este fichero contiene una línea de cabera en la que se listan los nombres de campo; además, admite líneas de comentarios, para lo cual la línea debe comenzar por #.

```
Name, Description, Master, Efficiency, Central_Wave, Rcenter, Dispersion, Wave_ini, Wave_end, diff_limit zJ Low, z+J R~1400 - 1.15 micron, *-186R, Effic_ZJLow.csv, 11250, 1371, 4.10, 7048, 15450, 27.2 HK Low, H+K R~1250 - 1.97 micron, *-186R, Effic_HKLow.csv, 19750, 1261, 7.83, 11700, 27800, 47.8 z Med, z R~3600 - 1.025 micron, *-596R, Effic_zMed.csv, 10250, 3597, 1.42, 8700, 11708, 24.8 J Med, J R~6700 - 1.25 micron, *-640R, Effic_JMed.csv, 12500, 6701, 0.93, 11500, 13500, 30.3 H Med, H R~4300 - 1.64 micron, *-760R, Effic_HMed.csv, 16350, 4326, 1.89, 14400, 18300, 39.6
```

Los ficheros de eficiencia los podemos encontrar en el directorio *fri-da/gratings*. También son ficheros ascii (csv); son ficheros de dos columnas, en los que la primera columna indica la longitud de onda en micras y la segunda columna, la eficiencia para esa longitud de onda. En este caso, la primera línea es una cabecera en la que podemos definir la unidad a utilizar. Veamos un ejemplo.

```
# schema: astropy-2.0
Wave[nm],Effic[%]
1004.11,49.3485
```

1027.62,53.628

1045.59,55.9055

1102.34,60.2415

1104.24,60.3395

1130.33,60.5

1158.87,61.524

1177.07,61.584

1216.43,61.3695

1223.92,61.8275

1270.72,65.852