

Lossy compression

Guiding questions

Human Visual System (HVS)

Psychoacoustic model

Outline

Guiding questions

- What is the main difference between lossy and lossless compression?
- Why is understanding human perception important for lossy compression?
- What is the psychoacoustic model, and why is it critical in audio compression? (explore the topics of frequency and temporal masking).
- How does the Human Visual System (HVS) influence image compression?
- How do psychoacoustic and HVS models are used in the standards?

- Humans perceive sound by the sense of hearing. By sound, we commonly mean the vibrations that travel through air and are audible to humans.
- Audio is the electrical representation of sound.
- Generally, humans can perceive variations in sound pressure from 16-20 Hz to 20-22 kHz.

- The auditory system can roughly be described as a bandpass filter-bank, consisting of strongly overlapping bandpass filters.
- These "filters" have bandwidths in the order of 50 to 100 Hz for signals below 500 Hz and up to 5000 Hz for signals at high frequencies.
- They are called critical bands.
- Twenty-five critical bands, covering frequencies of up to 20 kHz, are normally taken into account.

- Simultaneous masking is a frequency domain phenomenon where a low-level signal (maskee) can be made inaudible (masked) by a simultaneously and close in frequency stronger signal (masker).
- Such masking is greatest in the critical band in which the masker is located, and it is effective to a lesser degree in neighboring bands.

- In addition to simultaneous masking, the time domain phenomenon of temporal masking plays an important role in human auditory perception.
- Temporal masking may occur when two sounds appear within a small interval of time.
- Depending on the individual sound pressure levels, the stronger sound may mask the weaker one, even if the maskee precedes the masker. . .
- The pre-masking has a duration of about 5 to 20 ms.
- The post-masking has a duration of about 50 to 200 ms.

Quality assessment of audio

- The audio quality may be evaluated using subjective or objective measures.
- One of the scales used for subjective evaluation of wide band audio codecs is the ITU-R five grade impairment scale
 - 5.0 Imperceptible
 - 4.0 Perceptible, but not annoying
 - 3.0 Slightly annoying
 - 2.0 Annoying
 - 1.0 Very annoying
- Regarding objective measures, the signal-to-noise-ratio (SNR) is the most used.

The visible spectrum

- The typical human eye senses electromagnetic wavelengths between 400 and 700 nm, and has maximum sensitivity around the 555 nm (green zone).
- Normally, the characteristics that allow colors to be distinguished are:
 - The brightness (how bright is the color).
 - The hue (the dominant color).
 - The saturation (how pure is the color).
- Together, the hue and the saturation define the chromaticity.
- Therefore, a color can be characterized by the brightness and the chromaticity.

Spectral colors (pure colors)

Cor	Wavelength
Violet	≈ 380–440 nm
Blue	pprox 440–485 nm
Cyan	pprox 485–500 nm
Green	pprox 500–565 nm
Yellow	pprox 565–590 nm
Orange	pprox 590–625 nm
Red	pprox 625–740 nm

The human perception of color

- The human vision is a complex process, still not completely understood, even after hundreds of years of research.
- The visualization of a physical process involves an almost simultaneous interaction of the eyes and the brain.
- This interaction is performed by a network of neurons, receptors and other specialized cells.
- The human eye is equipped with a variety of optical elements, including the cornea, iris, pupil, a variable lens and the retina.
- The human eye has photoreceptors that are sensitive to short wavelengths (S), medium wavelengths (M) and long wavelengths (L), also known as the blue, green and red photoreceptors.

R component

G component

B component

Color spaces (RGB)

C component

M component

Y component

Color spaces (CMY)

Y component

C_b component

 C_r component

Color spaces (YUV)

YUV color space

- The human eye is more sensitive in the green zone, which is represented mainly by the Y component (the U and V components are related to the blue and red.
- The YUV or YCbCr color spaces separate the chrominance component (UV / CbCr) from the luminance component (Y).
- Because the human eye is less sensitive to the blue and red, it is possible to reduce the bandwidth used to represent the U and V components, without introducing significant perceptual degradation.
- For this reason, it is common to sub-sample the chrominance components UV / CbCr , producing a reduction in the data rate.
- This reduction is used by both the video coding standards (H.261, MPEG-1, MPEG-2, . . .) and the image coding standards (JPEG).

× Luminance

Chrominance

Spatial frequency

- The human visual system is characterized by a bandpass behavior in the spatial frequency domain.
- In zones where large intensity variations occur, small imperfections are masked (i.e., cannot be seen).

Quality assessment of images

- The techniques for assessing the quality of the images can be classified as subjective or objective.
- A subjective evaluation involves a number of human observers, which can perform absolute or relative assessments.
- In relative assessments, the images are ranked according to the perceived quality.
- In absolute assessments, the observers have to assign a classification, according to some predefined scale, such as:
 - 5. Excellent
 - 4. Good
 - 3. Fair
 - 2. Poor
 - 1. Very poor
- The use of objective criteria (mathematical models) is frequently unavoidable.
- Typically, the objective criteria are based on the mean squared error or on some other similar measures.
- One of the most popular is the peak signal to noise ratio.

Emax: 32; PSNR: 18.5 dB

Original

Emax: 123; PSNR: 23.9 dB