#### Discretization Methods

Must replace the problem of computing the unknown function f with a discrete problem that we can solve on a computer.

Linear integral equation  $\Rightarrow$  system of linear algebraic equations.

#### Quadrature Methods.

Compute approximations  $\tilde{f}_j = \tilde{f}(t_j)$  to the solution f at the abscissas  $t_1, t_2, \ldots, t_n$ .

#### Expansions Methods.

Compute an approximation of the form

$$f^{(f)}(t) = \sum_{j=1}^{n} \zeta_j \, \phi_j(t),$$

where  $\phi_1(t), \ldots, \phi_n(t)$  are expansion/basis functions.

02906 - DIP - Chapter 3: Discretization and SVD

## Quadrature Discretization

Recall the quadrature rule

$$\int_0^1 \varphi(t) dt = \sum_{j=1}^n w_j \varphi(t_j) + E_n ,$$

where  $E_n$  is the quadrature error, and

$$w_j = \text{weights}, \quad t_j = \text{abscissas}, \qquad j = 1, \dots, n.$$

Now apply this rule formally to the integral,

$$\Psi(s) = \int_0^1 K(s,t) f(t) dt = \sum_{j=1}^n w_j K(s,t_j) f(t_j) + E_n(s) .$$

## Quadrature Discretization + Collocation

Now enforce the collocation requirement that  $\Psi$  equals the right-hand side g at n selected points:

$$\Psi(s_i) = g(s_i) , \qquad i = 1, \dots, n ,$$

where  $g(s_i)$  are sampled/measured values of the function g.

Must neglect the error term  $R_n(s)$ , and thus replace  $f(t_j)$  by  $\tilde{f}_j$ :

$$\sum_{j=1}^{n} w_j K(s_i, t_j) \tilde{f}_j = g(s_i), \quad i = 1, \dots, n.$$

Could use m > n collocation points  $\rightarrow$  overdetermined system.

02906 - DIP - Chapter 3: Discretization and SVD

#### The Discrete Problem in Matrix Form

Write out the last equation to obtain

$$\begin{pmatrix} w_1K(s_1,t_1) & w_2K(s_1,t_2) & \cdots & w_nK(s_1,t_n) \\ w_1K(s_2,t_1) & w_2K(s_2,t_2) & \cdots & w_nK(s_2,t_n) \\ \vdots & & \vdots & & \vdots \\ w_1K(s_n,t_1) & w_2K(s_n,t_2) & \cdots & w_nK(s_n,t_n) \end{pmatrix} \begin{pmatrix} \tilde{f}_1 \\ \tilde{f}_2 \\ \vdots \\ \tilde{f}_n \end{pmatrix} = \begin{pmatrix} g(s_1) \\ g(s_2) \\ \vdots \\ g(s_n) \end{pmatrix}$$

or simply

$$A x = b$$

where A is  $n \times n$  with

$$\begin{cases}
 a_{ij} = w_j K(s_i, t_j) \\
 x_j = \tilde{f}(t_j) \\
 b_i = g(s_i)
\end{cases}$$

$$i, j = 1, \dots, n.$$

The midpoint rule  $t_j = \frac{j-0.5}{n}$  gives  $a_{ij} = n^{-1}K(s_i, t_j)$ .

#### Discretization: the Galerkin Method

Select two sets of functions  $\phi_i$  and  $\psi_j$ , and write

$$f(t) = f^{(n)}(t) + E_f(t), f^{(n)}(t) \in \text{span}\{\phi_1, \dots, \phi_n\}$$
  
 $g(s) = g^{(n)}(s) + E_g(s), g^{(n)}(s) \in \text{span}\{\psi_1, \dots, \psi_n\}$ .

Write  $f^{(n)}$  as the expansion

$$f^{(n)}(t) = \sum_{j=1}^{n} \zeta_j \,\phi_j(t)$$

and define the function

$$\vartheta(s) = \int_0^1 K(s,t) f^{(n)}(t) dt = \sum_{j=1}^n \zeta_j \int_0^1 K(s,t) \phi_j(t) dt$$
$$= \vartheta^{(n)}(s) + E_{\vartheta}(s) , \qquad \vartheta^{(n)} \in \operatorname{span}\{\psi_1, \dots, \psi_n\} .$$

Note that, in general,  $\vartheta$  does not lie in the same subspace as  $g^{(n)}$ .

02906 - DIP - Chapter 3: Discretization and SVD

# Computation of the Galerkin Solution

The best we can do is to require that  $\vartheta^{(n)}(s) = g^{(n)}(s)$  for  $s \in [0, 1]$ .

This is equivalent to requiring that the residual  $g(s) - \vartheta(s)$  is orthogonal to span $\{\psi_1, \ldots, \psi_n\}$ , which is enforced by

$$\langle \psi_i, g \rangle = \langle \psi_i, \vartheta \rangle = \left\langle \psi_i, \int_0^1 K(s, t) f^{(n)}(t) dt \right\rangle, \quad i = 1, \dots, n.$$

Inserting the expansion for  $f^{(n)}$ , we obtain the  $n \times n$  system

$$A x = b$$

with  $x_i = \zeta_i$  and

$$a_{ij} = \int_0^1 \int_0^1 \psi_i(s) K(s, t) \phi_j(t) ds dt$$

$$b_i = \int_0^1 \psi_i(s) g(s) ds.$$

## The Singular Value Decomposition

Assume that A is  $m \times n$  and, for simplicity, also that  $m \ge n$ :

$$A = U \Sigma V^T = \sum_{i=1}^n u_i \, \sigma_i \, v_i^T.$$

Here,  $\Sigma$  is a diagonal matrix with the singular values, satisfying

$$\Sigma = \operatorname{diag}(\sigma_1, \dots, \sigma_n) , \qquad \sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_n \ge 0 .$$

The matrices U and V consist of singular vectors

$$U = (u_1, \ldots, u_n) , \qquad V = (v_1, \ldots, v_n)$$

and both matrices have orthonormal columns:  $U^TU = V^TV = I_n$ .

Then 
$$||A||_2 = \sigma_1$$
,  $||A^{-1}||_2 = ||V \Sigma^{-1} U^T||_2 = \sigma_n^{-1}$ , and

$$\operatorname{cond}(A) = ||A||_2 ||A^{-1}||_2 = \sigma_1/\sigma_n.$$

02906 - DIP - Chapter 3: Discretization and SVD

# SVD Software for Dense Matrices

| Software package  | Subroutine |
|-------------------|------------|
| ACM TOMS          | HYBSVD     |
| EISPACK           | SVD        |
| IMSL              | LSVRR      |
| LAPACK            | _GESVD     |
| LINPACK           | _SVDC      |
| NAG               | F02WEF     |
| Numerical Recipes | SVDCMP     |
| Matlab            | svd, ssvd  |

Complexity of SVD algorithms:  $\mathcal{O}(m n^2)$ .

#### Important SVD Relations

Relations similar to the SVE

$$A v_i = \sigma_i u_i, \qquad ||A v_i||_2 = \sigma_i, \qquad i = 1, \dots, n.$$

Also, if A is nonsingular, then

$$A^{-1}u_i = \sigma_i^{-1} u_i, \qquad ||A^{-1}v_i||_2 = \sigma_i^{-1}, \qquad i = 1, \dots, n.$$

These equations are related to the (least squares) solution:

$$x = \sum_{i=1}^{n} (v_i^T x) v_i$$

$$A x = \sum_{i=1}^{n} \sigma_i (v_i^T x) u_i , \quad b = \sum_{i=1}^{n} (u_i^T b) u_i$$

$$A^{-1}b = \sum_{i=1}^{n} \frac{u_i^T b}{\sigma_i} v_i .$$

02906 - DIP - Chapter 3: Discretization and SVD

#### What the SVD Looks Like

The following figures show the SVD of the  $64 \times 64$  matrix A, computed by means of csvd from REGULARIZATION TOOLS:

>> help csvd

CSVD Compact singular value decomposition.

```
s = csvd(A)
[U,s,V] = csvd(A)
[U,s,V] = csvd(A,'full')
```

Computes the compact form of the SVD of A:

A = U\*diag(s)\*V',

where

U is m-by-min(m,n)
s is min(m,n)-by-1

V is n-by-min(m,n).

If a second argument is present, the full U and V are returned.



– DIP – Chapter 3: Discretization and SVD



#### Some Observations

- The singular values decay gradually to zero.
- No gap in the singular value spectrum.
- Condition number  $cond(A) = \infty$ .
- $\bullet$  Singular vectors have more oscillations as i increases.
- In this problem, # sign changes = i 1.

The following pages: Picard plots with increasing noise.







– DIP – Chapter 3: Discretization and SVD





02906 - DIP - Chapter 3: Discretization and SVD

# The Discrete Picard Condition

The relative decay of the singular values  $\sigma_i$  and the right-hand side's SVD coefficients  $u_i^T b$  plays a major role!

The Discrete Picard Condition is satisfied if the coefficients  $|u_i^T b^{\text{exact}}|$ , on the average, decay to zero faster than the corresponding singular values  $\sigma_i$ .

#### Computation of the SVE

Based on the Galerkin method with orthonormal  $\phi_i$  and  $\psi_j$ .

- 1. Discretize K to obtain  $n \times n$  matrix A, and compute its SVD.
- 2. Then  $\sigma_j^{(n)} \to \mu_j$  as  $n \to \infty$ .
- 3. Define the functions

$$u_j^{(n)}(s) = \sum_{i=1}^n u_{ij} \, \psi_i(s) \,, \qquad j = 1, \dots, n$$

$$v_j^{(n)}(t) = \sum_{i=1}^n v_{ij} \, \phi_i(t) \,, \qquad j = 1, \dots, n \,.$$

Then  $u_j^{(n)}(s) \to u_j(s)$  and  $v_j^{(n)}(t) \to v_j(t)$  as  $n \to \infty$ .

4. Finally, the right-hand side coefficients satisfy

$$u_j^T b = \langle u_j^{(n)}, g^{(n)} \rangle \to \langle u_j, g \rangle$$
 as  $n \to \infty$ .

02906 - DIP - Chapter 3: Discretization and SVD

## More Precise Results

Let

$$||K||_2^2 \equiv \int_0^1 \int_0^1 |K(s,t)|^2 ds dt$$
,  $\delta_n^2 \equiv ||K||_2^2 - ||A||_F^2$ .

Then for  $i = 1, \ldots, n$ 

$$0 \le \mu_i - \sigma_i^{(n)} \le \delta_n$$

$$\sigma_i^{(n)} \le \sigma_i^{(n+1)} \le \mu_i$$

Also it can be shown that

$$\max \{ \|u_1 - u_1^{(n)}\|_2, \|v_1 - v_1^{(n)}\|_2 \} \le \left(\frac{2\delta_n}{\mu_1 - \mu_2}\right)^{1/2}.$$

Similar, but more complicated, results hold for the remaining singular functions.

# **Noisy Problems**

Real problems have noisy data! Recall that we consider problems

$$\boxed{A x = b} \qquad \text{or} \qquad \boxed{\min_x \|A x - b\|_2}$$

with a very ill-conditioned coefficient matrix A,

$$cond(A) \gg 1$$
.

#### Noise model:

$$b = b^{\text{exact}} + e$$
, where  $b^{\text{exact}} = A x^{\text{exact}}$ .

The ingredients:

- $x^{\text{exact}}$  is the exact (and unknown) solution,
- $b^{\text{exact}}$  is the exact data, and
- $\bullet$  the vector e represents the noise in the data.

02906 - DIP - Chapter 3: Discretization and SVD

Statistical Issues

Let Cov(b) be the covariance for the right-hand side.

Then the covariance matrix for the (least squares) solution is

$$Cov(x) = A^{-1} Cov(b) A^{-T}.$$

$$Cov(x_{LS}) = (A^T A)^{-1} A^T Cov(b) A (A^T A)^{-1}.$$

Unless otherwise stated, we assume for simplicity that  $b^{\text{exact}}$  and e are uncorrelated, and that

$$Cov(b) = Cov(e) = \eta^2 I,$$

then

$$Cov(x) = Cov(x_{LS}) = \eta^2 (A^T A)^{-1}.$$

$$cond(A) \gg 1 \Rightarrow$$

Cov(x) and  $Cov(x_{LS})$  are likely to have very large elements.

# ${\bf Need\ for\ Stabilization = Noise\ Reduction}$

Recall that the (least squares) solution is given by

$$x = \sum_{i=1}^{n} \frac{u_i^T b}{\sigma_i} v_i.$$

Must get rid of the "noisy" SVD components. Note that

$$u_i^T b = u_i^T b^{\text{exact}} + u_i^T e \approx \begin{cases} u_i^T b^{\text{exact}}, & |u_i^T b^{\text{exact}}| > |u_i^T e| \\ u_i^T e, & |u_i^T b^{\text{exact}}| < |u_i^T e|. \end{cases}$$

Hence, due to the DPC:

- "noisy" SVD components are those for which  $|u_i^T b^{\text{exact}}|$  is small,
- and therefore they correspond to the smaller singular values  $\sigma_i$ .