Generalized assignment E' dato un insieme di jobs ciascuno dei quali deve essere eseguito da una macchina scelta da un insieme di macchine disponibili. Il tempo di esecuzione di ogni job è in generale diverso da macchina a macchina ed è noto. Anche il costo di esecuzione di ogni job su ogni macchina è noto e può essere diverso da macchina a macchina. Le macchine hanno un tempo di funzionamento massimo noto.

Si vuole determinare a quale macchina assegnare ogni job in modo da eseguirli tutti senza eccedere il tempo disponibile su ogni macchina e minimizzando il costo complessivo.

Formulare il problema, classificarlo e risolvere l'esempio descritto dai dati indicati di seguito, discutendo ottimalità e unicità della soluzione ottenuta.

Esempio

I job sono 9; le macchine sono 3.

Macchina	Tempo
1	380
2	360
3	350

Tabella 1: Tempo disponibile su ogni macchina [min].

Job	1	2	3
1	100	102	97
2	111	110	113
3	98	103	96
4	132	130	135
5	120	123	117
6	115	112	118
7	142	145	140
8	123	120	125
9	90	93	88

Tabella 2: Tempo di esecuzione di ogni job (riga) su ogni macchina (colonna) [min].

Job	1	2	3
1	24	42	23
2	30	45	23
3	33	54	16
4	37	45	18
5	34	47	22
6	31	42	25
7	30	41	19
8	28	47	15
9	25	50	20

Tabella 3: Costo di esecuzione di ogni job (riga) su ogni macchina (colonna) [€].

Soluzione

Dati. Indichiamo con J l'insieme indicizzato dei jobs e con M l'insieme indicizzato della macchine. Indichiamo con b_m il tempo disponibile per ogni macchina $m \in M$. Indichiamo con c_{jm} il costo di assegnamento di ogni job $j \in J$ ad ognoii macchina $m \in M$. Indichiamo con t_{jm} il tempo di esecuzione di ogni job $j \in J$ su ogni macchina $m \in M$.

Variabili. Variabili binarie x_{jm} indicano se ogni job $j \in J$ è assegnato ad ogni macchina $m \in M$ o no.

Vincoli. I vincoli di assegnamento impongono che tutti i jobs vengano eseguiti:

$$\sum_{m \in M} x_{jm} = 1 \quad \forall j \in J.$$

I vincoli di capacità impongono che il totale tempo di esecuzione dei jobs assegnati ad ogni macchina non ecceda il tempo disponoibile su quella macchina:

$$\sum_{j \in I} t_{jm} x_{jm} \le b_m \quad \forall m \in M.$$

Funzione obiettivo. Si vuole minimizzare il costo totale degli assegnamenti:

$$\text{minimize } z = \sum_{j \in J, m \in M} c_{jm} x_{jm}$$

Si ottiene un modello di PLI con variabile binarie.

La soluzione calcolata dal solutore è garantita essere ottima ($z^* = 264 \in$), non necessariamente unica.