Logaritmo en Base 2 log₂A

Juan Manuel Marmolejo Tejada EIEE, Universidad del Valle

Algoritmo del Logaritmo

▶ El algoritmo para obtener Y=log₂A consta de dos partes:

Determinación de la parte entera del resultado:

- Para este paso, se divide el número A entre 2 y se cuentan las veces que se puede operar el número antes de que el valor resultante a cumpla $1 \le a < 2$.
- El conteo del número de veces corresponde al incremento del valor de *Y*, pues esta es la parte entera del resultado y las cifras significativas se le irán agregando con el paso a continuación.

Algoritmo del Logaritmo

Cálculo de las cifras significativas:

- Asumiendo $a=2^y$, donde y corresponde a las cifras significativas del resultado, la idea es elevar al cuadrado ambas partes de la ecuación $a^2=2^{2y}$.
- De allí, 2y debe ser visto como e.sssss, donde las s' representan el número de los dígitos binarios desconocidos, y e es 0 o 1. De esta forma:
 - Si y=1, $a=2^{1.5555} \ge 2$.
 - Si y=0, $a=2^{0.5555}<2$.
- De esta forma, la comparación entre a y 2, indica el valor del dígito más significativo de y.
- Lo anterior se repite hasta encontrar suficientes cifras significativas del resultado *Y*.

Algoritmo del Logaritmo

Sumando los pasos, el algoritmo en lenguaje de programación para Y=log₂A es:

```
X=A; //número
Y=0; //exponente
Z=1; //cuenta cifras significativas
while (X>=2)
       X=X/2;
       Y=Y+1;
while (Z>0.0001) //esta condición se puede manipular
       X=X*X;
        Z=Z/2;
        if (X > = 2)
               Y=Y+Z;
               X=X/2i
```

Utilización del Algoritmo

En primera instancia, se harán pruebas pequeñas con registros de 8 bits, es decir, se utilizarán los registro X, Y y Z, que son las variables necesarias para el programa.

X es el número a operar. Los MSB serán la parte entera y los LSB serán las cifras significativas: $x_7x_6x_5x_4.x_3x_2x_1x_0$.

Como el máximo número que se podría operar es 15.9375, el resultado máximo esperado es 3.9943, indicando que el exponente Y podría tener 2 cifras enteras y 6 significativas: $y_7y_6.y_5y_4y_3y_2y_1y_0$.

Z debe también tener 6 cifras significativas, pues será adicionado al registro Y: $z_7z_6.z_5z_4z_3z_2z_1z_0$.

Prueba Inicial

Se realiza una prueba inicial para determinar log₂5:

```
X=A;
Y=0;
Z=1;
while (X>=2)
        X=X/2;
        Y=Y+1;
while (Z>0.01)
        X=X*X;
        Z=Z/2;
        if (X > = 2)
                 Y=Y+Z;
                 X=X/2;
```

Х		Υ		Ž	7
0101,0000	5	00,000000	0	01,000000	1
0010,1000	2,5	01,000000	1	01,000000	1
0001,0100	1,25	10,000000	2	01,000000	1
0001,1001	1,5625			00,100000	0,5
0010,0111	2,4375			00,010000	0,25
0001,0011	1,1875	10,010000	2,25		
0001,0110	1,375			00,001000	0,125
0001,1110	1,875			00,000100	0,0625
0011,1000	3,5			00,000010	0,03125
0001,1100	1,75	10,010010	2,28125		
0011,0001	3,0625			00,000001	0,015265
0001,1000	1,5	10,010011	2,296875		

Prueba Inicial

- En la tabla anterior se omitieron los cálculos de las multiplicaciones.
- El resultado de $log_2 5$ obtenido es 2.96875. $2^{2.96875} = 4.9139$.
- La prueba definitiva se obtiene utilizando los registros X, Y y Z:
 - $X^{Z*}2^{Y}=(1.00635)(4.9139)=4.9451\cong 5$
- Se ha obtenido un resultado no muy preciso, pero que satisface el objetivo inicial de una aproximación hacia el cálculo del logaritmo. Con registros más grandes y más cifras significativas, el cálculo se puede optimizar.

Concepción del data-path

Se presenta el siguiente data-path, el cual consta de 8 registros de tamaño *n* y una ALU para operandos de tamaño *n*.

Diagrama ASM

Logaritmo de Números entre 0 y 1

- Teniendo en cuenta que log(A) = -log(1/A), se puede calcular el logaritmo de un número A tal que 0 < A < 1, mediante el cálculo del logaritmo de 1/A y la inclusión de un signo negativo, como se ve a continuación.
- Luego, se realiza una prueba del algoritmo para calcular $log_20,625$.

Logaritmo de Números entre 0 y 1

```
X=A; //número
Y=0; //exponente
Z=1; //cuenta cifras significativas
S=0; //signo
if (X<1)
        X=1/X;
        S=1;
while (X>=2)
        X=X/2;
        Y=Y+1;
while (Z>0.0001)
        X=X*X;
        Z=Z/2;
        if (X > = 2)
                Y=Y+Z;
                X=X/2;
```

Prueba del Algoritmo

```
X=A;
Y=0;
Z=1;
S=0;
if (X<1)
        X=1/X;
        S=1;
while (X>=2)
        X=X/2;
        Y=Y+1;
while (Z>0.0001)
        X=X*X;
        Z=Z/2;
        if (X \ge 2)
                 Y=Y+Z;
                X=X/2;
```

X		Υ		Z		S
00,1010	0,6250	0	0	01,000000	1	0
01,1001	1,5625					1
10,0111	2,4375			00,100000	0,5	
01,0011	1,1875	00,100000	0,5			
01,0110	1,3750			00,010000	0,25	
01,1110	1,8750			00,001000	0,125	
11,1000	3,5000			00,000100	0,0625	
01,1100	1,7500	00,100100	0,5625			
11,0001	3,0625			00,000010	0,03125	
01,1000	1,5000	00,100110	0,5937			
10,0100	2,2500			00,000001	0,015625	
01,0010	1,1250	00,100111	0,6093			1

$$2^{-0,6093} = 0,655$$

Prueba del Algoritmo

- Como se aprecia en la prueba, se pierde bastante precisión desde el momento de invertir el número que se quiere calcular.
- Esto indica que se puede optimizar el resultado en la medida en la que se aumenten los tamaños de los registros.
- Con lo anterior, se puede proceder a ver el logaritmo como un bit se signo (1 negativo y 0 positivo), seguido de una serie de bits que determinan la magnitud para realizar entonces operaciones aritméticas con ellos.

Aritmética con Logaritmos

Teniendo el resultado, almacenado en el registro Y, se puede proceder a hacer operaciones con logaritmos bajo la siguiente notación:

$$(SA, LA) = (signo (A), log_2|A|)$$

```
Suma – Resta (SX, LX) \pm (SY, LY) = (SZ, LZ) Multiplicación (SX, LX) \times (SY, LY) = (SX \oplus SY, LX + LY) División (SX, LX) / (SY, LY) = (SX \oplus SY, LX - LY)
```