3D Data Processing 3D Sensor

Department of Software Convergence Hyoseok Hwang

Range sensing and 3D technologies

 Complementary range sensing and 3D technologies used in a modern car

- LiDAR (Light Detection and Ranging)
 - Light pulses sent out, reflected off object and received for interpretation.
 - Produces high resolution, accurate, land-elevation information
 - The LASER system, employed for monitoring the nature of environment is called LIDAR.
 - In some cases, it is also called "Laser Imaging, Detection and Ranging"

Principles

- Laser generates an optical pulse
- Pulse is transmitted, reflected and returned to the receiver
- Return beam/pulse is collected and processed to obtain property of target.
- Receiver accurately measures the travel time

- Why LiDar?
 - LiDAR is most accurate perception sensor
 - 3D shape with width/height information
 - Distance with high accuracy

	Lidar	Radar	Video
Range	+++	+++	-
Range Rate	++	+++	-
Field of View	+++	++	+
Width & Height	+++	-	+
3D Shape	+++	-	-
Object Rec @ Long Range	+++	-	-
Accuracy	+++	-	+
Rain, Snow, Dust	++	+++	-
Fog	+	+++	-
Night time	+++	+++	-
Read Signs & See Color	+	-	+++

- Components
 - Laser
 - 600-1000nm lasers used for non-scientific application
 - Inexpensive
 - Easily absorbed by eye
 - 1500nm lasers
 - less advanced, longer range, lower accuracy
 - Eye safe at much higher power level
 - Used in military application
 - Optics
 - They affect angular resolution and range
 - Hole mirror , Beam splitter
 - Photo detector and receiver electronic
 - photo detectors
 - Photodiodes
 - (optional) Mechanical system for dimension expansion

LiDAR classification

A statistics of the statistics

- How it measures
 - TOF (Pulse laser)
 - AMCW TOF
 - FMCW
- How it works
 - Mechanical LiDAR
 - Solid-state LiDAR

Gen 2 Solid State (S3 MCM)

Volume Pricing:

Gen 1: <\$1,000

Gen 2: <\$250

Gen 3: <\$100

- Types of LiDAR
 - ToF (Time of Flight) Pulsed Time-of-Flight (TOF) dTOF
 - Resolve distance between the camera and the subject for each point of the image, by measuring the round trip time of an artificial light signal provided by a laser or an LED.
 - 6.7 ns per 1 m of distance!!

$$d = \frac{ct}{2}$$

d: distance

t: time

c: light speed

- Types of LiDAR
 - ToF (Time of Flight) Amplitude Modulated Continuous Wave (AMCW) Lidar
 - Phase-shift method
 - By comparing the phase difference, the difference in radians of the peaks of the waves, the distance to the object can be found.

$$d = \frac{c\Delta\phi}{2\pi f}$$

d: distance c: light speed Δφ: phase shift f: frequency

- Types of LiDAR
 - FMCW: The Frequency Modulated Continuous Wave
 - FMCW radar can change its operating frequency during the measurement

LiDAR classification

Mechanical LiDAR

- uses a motor to physically rotate the sensor to scan the environment.
- Pros
 - Wide horizontal field of view (360 degrees)
 - Relatively good data accuracy.
- Cons.
 - Cost
 - Poor durability
 - Pop-up
- Product
 - Robosense, Velodyne

Velodyne Puck Processor

Velodyne Puck Motor

Velodyne Puck Laser Diode

Velodyne Puck Photodiode

Mechanical LiDAR

- Dimension extension
 - Some Lidar can only measure distances in one dimension.
 - How can we extend the dimensions?
 - Continuously measurement following axis
 - Using 2D Array

Mechanical LiDAR

- 2D Lidar (LDS, Laser Distance Sensor)
 - In a short time, repeat distance measurements based on different angles.
 - Distance measurement in polar coordinate system based on the sensor.

LMS111

Mechanical LiDAR

- 3D Lidar
 - Rotate 2D (measured simultaneously) LiDAR along axis

Puck

MRS1000 (Outdoor)

LiDAR classification

- Solid-State Lidar
 - Fixed, motor-less
 - Pros
 - High durability
 - Embedded type
 - High resolution
 - Cons.
 - Narrow FOV
 - Accuracy
 - Product
 - Livox, Cepton

Cepton Vista P60 Processor

Cepton Vista P60 Photodiode

Cepton Vista P60 Opto-Mechanical Unit

Cepton Vista P60 Laser Diode

LiDAR classification

- Solid-State Lidar
 - Scanning Lidar (MEMS Lidar)
 - Mirror reflect the beam in the particular direction (piezzo)
 - Optical Phase Array(OPA)
 - Control direction using Optical Phase Array
 - Flash Lidar
 - a laser forward and capturing the scattered light reflected from a receiver

Scanning Lidar

OPA

Flash Lidar

Comparison LiDAR by method

파라미터	TOF	FMCW	Phase shift
레이저 소스	Nd:YAG, CO2	반도체	반도체
파우어	1.5MW	3mW	1 OmW
파강	1,064nm	650nm	1,100nm
검출 소자	APD	APD	APD
측정 거리	300~20km	2~30m	2~400m
sampling rate	1~20kHz	4kHz	52kHz
최소 감지 파우어	12.7nW	200nW	23pW
정밀도	5m	36mm	21mm
oscillator frequency	30Mz	4~60Mb	1 MHz

소프트웨어용납득파

LiDAR - Pros. And Cons.

- Advantages
 - Higher accuracy
 - Fast acquisition and processing
 - Acquisition of 1000 km2 in 12 hours.
 - DEM generation of 1000 km2 in 24 hours.
 - Minimum human dependence
 - As most of the processes are automatic unlike photogrammetric, GPS or land surveying.
 - Weather/Light independence
 - Data collection independent of sun inclination and at night and slightly bad weather.
 - Higher data density
 - Up to 167,000 pulses per second. More than 24 points per Square meter can be measured.
 - Multiple returns to collect data in 3D.

LiDAR - Pros. And Cons.

- Disadvantages
 - Ineffective during heavy rain and fog (snow).
 - High operational cost.
 - Indirect response
 - No texture

- Point cloud
 - Representation of measurement to 3D position (point)
 - is a group (set) of points
 - 2D or 3D representation is Point cloud acceptable, however, generally in 3D.

- RGBD sensor
 - Combination of two types of sensors
 - RGB camera + depth camera
 - In this case, depth camera is similar to LiDAR, but employs 2D array instead of sequential sensing
 - Microsoft Kinect and Intel RealSense are widely used.

Azure Kinect

Realsense

RGB

- Kinect
 - color camera (takes RGB values)
 - IR camera (takes depth data)
 - Microphone array (for speech recognition)

- Kinect-1
 - Depth sensor
 - IR projector emits predefined Dotted Pattern
 - Lateral shift between projector and sensor
 - Shift in dots determines Depth of Region
 - Distance accuracy

- Azure kinect
 - AMCW(Amplitude Modulated Continuous Wave) ToF(Time-of-Flight)

And Andrew Andre

• I-Phone

End of the class

QnA