CONTENTS

CONTENTS

13	多變	數函數		1
	13.1	多變數	(函數導論	2
		13.1.1	多變數函數	2
		13.1.2	兩變數函數的圖形	2
		13.1.3	等高線	2
		13.1.4	等位面	2
		13.1.5	電腦繪圖	2
	13.2	極限與	1連續	2
		13.2.1	平面上的鄰域	2
		13.2.2	兩變數函數的極限	2
		13.2.3	兩變數函數的連續性	3
		13.2.4	三變數函數的連續性	3
	13.3	偏導函	數	3
		13.3.1	兩變數函數的偏導函數	3
		13.3.2	三個或三個以上變數函數的偏導函數	4
		13.3.3	高階偏導函數	4
	13.4	微分		4
		13.4.1	增量與微分	4
		13.4.2	可微分性	4
		13.4.3	以微分求近似值	5
	13.5		[函數的連鎖率	5
		13.5.1	多變數函數的連鎖率	5
		13.5.2	隱(偏)微分	5
	13.6	方向導	數和梯度向量	6
		13.6.1	方向導數	6
		13.6.2	兩變數函數的梯度向量	6
		13.6.3	梯度向量的應用	7
		13.6.4	三個變數的函數	7
	13.7	切平面	1和法線	8
		13.7.1	曲面的切平面和法線	8
		13.7.2	平面傾斜的角度	8
		13.7.3	梯度向量 $ abla f(x,y)$ 和 $ abla F(x,y,z)$ 的比較 $\dots \dots \dots \dots$	8
	13.8		[函數的極值	8
		13.8.1	絕對和相對極值	8
		13.8.2	二階偏導數檢定	9
	13.9	兩變數	函數極值的應用	9
		13.9.1	最佳化問題的應用	9
		13.9.2	最小平方法	9

CONTENTS	ii

13.1	0拉格朗1	日乘子法																10
	13.10.1	拉格朗日	1乘子法	.												 		10
	13.10.2	-																
	13.10.3	雙重限制	引條件下	的拉	格朗	日乘	子	法	•		 •			•	•		 •	10
Index																		11

LIST OF TABLES

LIST OF TABLES

LIST OF FIGURES iv

LIST OF FIGURES

13.1	連鎖率: w 是 x 和 y 的函數,而後兩者同時又是 t 的函數,本圖代表 w 對 t	
	的導函數。	5
13.2	f 的梯度向量是 xy -平面上的向量。	6

13

多變數函數

Contents

13.1 多變勢	數函數導論	2
13.1.1	多變數函數	. 2
13.1.2	雨變數函數的圖形	. 2
13.1.3	等高線	. 2
13.1.4	等位面	. 2
13.1.5	電腦繪圖	. 2
13.2 極限 9	與連續	2
13.2.1	平面上的鄰域	. 2
13.2.2	雨變數函數的極限	. 2
13.2.3	雨變數函數的連續性	. 3
13.2.4	三變數函數的連續性	. 3
13.3 偏導	函數	3
13.3.1	雨變數函數的偏導函數	. 3
13.3.2	三個或三個以上變數函數的偏導函數	. 4
13.3.3	高階偏導函數	. 4
13.4 微分		4
13.4.1	增量與微分	. 4
13.4.2	可微分性	. 4
13.4.3	以微分求近似值	. 5
13.5 多變	數函數的連鎖率	5
13.5.1	多變數函數的連鎖率	. 5
13.5.2	隱(偏)微分	. 5
13.6 方向	導數和梯度向量	6
13.6.1	方向導數	. 6
13.6.2	雨變數函數的梯度向量	. 6
13.6.3	梯度向量的應用	. 7
13.6.4	三個變數的函數	. 7
13.7 切平式	面和法線	8
13.7.1	曲面的切平面和法線	. 8

13.7.2	平面傾斜	斗的角度																				. 8
13.7.3	梯度向量	$\nabla f(x)$	$,y)$ \dot{z}	for 7	7F	(x,	y,	z)	的	比卓	蛟											. 8
13.8 兩變	数函数的	極値			•				•			•		•		•	•	•	•	•		8
13.8.1	絕對和村	目對極值																				. 8
13.8.2	二階偏望	數檢定																				. 9
13.9 兩變	數函數極個	值的應用]																•	•	•	9
13.9.1	最佳化品	問題的應	用.																			. 9
13.9.2	最小平方	方法 .																				. 9
13.10拉格)	朗日乘子》	去										•		•	•	•		•	•	•		10
13.10.	1 拉格朗日	1乘子法																				. 10
13.10.5	2限制條件	丰下的最	佳化	問題	題																	. 10
13.10.3	3雙重限#	间條件下	的拉	格員	月日	乘	子》	去														. 10

13.1 多變數函數導論

13.1.1 多變數函數

Definition 13.1 (兩變數函數). 設 D 是一個有序實數對的集合。如果對 D 中任一個序對 (x,y) 恆有唯一的實數 f(x,y) 與之對應,則 f 就稱爲一個 x 和 y 的函數。集合 D 是 f 的定義域 (domain),所對應的 f(x,y) 的全體稱爲 f 的值域 (range)。

- 13.1.2 兩變數函數的圖形
- 13.1.3 等高線
- 13.1.4 等位面
- 13.1.5 電腦繪圖
- 13.2 極限與連續
- 13.2.1 平面上的鄰域
- 13.2.2 兩變數函數的極限

Definition 13.2 (兩變數函數極限). 設 f 是一個在以 (x_0,y_0) 爲心的開圓盤上,頂多除了 (x_0,y_0) ,到處都有定義的函數,L 是一個實數,則記號

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$$

的意思是任予一個 $\varepsilon > 0$,恆有一 $\delta > 0$ 與之對應,使得只要

就會成立。

13.2.3 兩變數函數的連續性

Definition 13.3 (兩變數函數的連續性). 如果在一個含 (x_0,y_0) 的開區間 R 中,當 (x,y) 趨近 (x_0,y_0) 時,恆有

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

我 們 就 稱 f <u>在點 (x_0, y_0) 是連續的</u> (<u>continuous at a point (x_0, y_0) </u>), 如果 f 在 R 中 的 每 一 點 都 連 續 , 我 們 就 稱 f <u>在開區域 R 是連續的</u> (<u>continuous in the open region R) \circ </u>

Theorem 13.1 (兩變數的連續函數).

假設 k 是實數,並且 f 和 g 在 (x_0,y_0) 連續,則下列函數均在 (x_0,y_0) 連續。

- 1. 常數倍:kf 2. 乘積:fg
- 3. $n \not\equiv f \not\equiv g$ 4. $n \not\equiv f/g, g(x_0, y_0) \not\equiv 0$

Theorem 13.2 (合成函數的連續性). 如果 h 在 (x_0,y_0) 連續 , 並且 g 在 $h(x_0,y_0)$ 連續 , 則合成函數 $(g\circ h)(x,y)=g(h(x,y))$ 也在 (x_0,y_0) 連續 。亦即

$$\lim_{(x,y)\to(x_0,y_0)} g(h(x,y)) = g(h(x_0,y_0))$$

13.2.4 三變數函數的連續性

Definition 13.4 (三 變 數 函 數 連 續). 如 果 f <u>在一個含 (x_0, y_0, z_0) 是連續的</u> $(continuous\ at\ a\ point\ (x_0, y_0, z_0))$,並且當 (x, y, z) 趨近 (x_0, y_0, z_0) 時,恆有

$$\lim_{(x,y,z)\to(x_0,y_0,z_0)} f(x,y,z) = f(x_0,y_0,z_0)$$

我們就稱 f 在 (x_0,y_0,z_0) 連續。如果 f 在 R 中的每一點都連續,我們就稱 f 在開區域 R 是連續的 (continuous in the open region R)。

13.3 偏導函數

13.3.1 兩變數函數的偏導函數

Definition 13.5 (兩變數函數的偏導函數). 如果 z = f(x,y) 是一個兩變數的函數,則 f 對 x 和 y 的第一階偏導數 (first partial derivatives) f_x 和 f_y 的定義分別是

$$f_x(x,y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} \quad \text{ for } \quad f_y(x,y) = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$$

(如果極限存在的話)。

13.4. 微分

(一階偏導函數的記號) 函數 z = f(x,y) 的偏導函數 f_x 和 f_y 的各種記法如下

$$\frac{\partial}{\partial x}f(x,y) = f_x(x,y) = z_x = \frac{\partial z}{\partial x} \quad \text{$\not =$} \quad \frac{\partial}{\partial y}f(x,y) = f_y(x,y) = z_y = \frac{\partial z}{\partial y}$$

而偏導數在點 (a,b) 的值則記爲

$$\left. \frac{\partial z}{\partial x} \right|_{(a,b)} = f_x(a,b) \quad \bigstar \quad \left. \frac{\partial z}{\partial y} \right|_{(a,b)} = f_y(a,b)$$

13.3.2 三個或三個以上變數函數的偏導函數

13.3.3 高階偏導函數

Theorem 13.3 (混合偏導數的恆等式 (Equality of mixed partial derivatives)). 如果 f 是 x 和 y 的函數並且 f_{xy} 和 f_{yx} 在一個開圓盤 R 上各自連續,則在 R 上的每一點 (x,y) 有

$$f_{xy}(x,y) = f_{yx}(x,y)$$

13.4 微分

13.4.1 增量與微分

Definition 13.6 (全微分). 如果 z = f(x,y) 並且 Δx 和 Δy 是 x 和 y 的增量,則獨立 變數 x 和 y 的微分 (differentials) 是

$$dx = \Delta x$$
 \Leftrightarrow $dy = \Delta y$

我們定義應變數 z 的全微分 (total differential) dz 如下

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy = f_x(x, y) dx + f_y(x, y) dy$$

13.4.2 可微分性

Definition 13.7 (可微). 如果函數 z = f(x,y) 在點 (x_0,y_0) 相應於 Δz , Δy 兩個增量所得的增量可以表成

$$\Delta z = f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$$

其中 ϵ_1 和 ϵ_2 會隨著 $(\Delta x, \Delta y) \to (0,0)$ 而同時趨近於 0,函數 f(x,y) 就稱爲在 (x_0,y_0) 可微 $(\frac{\textit{differentiable}}{\textit{differentiable}})$ 。如果 f <u>在區域 R 上可微的</u> $(\frac{\textit{differentiable}}{\textit{differentiable}})$,就稱 f 在 R 上可微。

Theorem 13.4 (可微的充分條件). 假設 f 是兩變數 x 和 y 的函數,如果 f_x 和 f_y 在開 區域 R 上連續,則 f 在 R 上可微。

13.4.3 以微分求近似值

Theorem 13.5 (可微性隱含連續性 (Differentiability implies continuity)). 如果一個x 和 y 的函數 f 在 (x_0, y_0) 可微,則 f 必在 (x_0, y_0) 連續。

13.5 多變數函數的連鎖率

13.5.1 多變數函數的連鎖率

Theorem 13.6 (連鎖律: 一個獨立變數的情形 (Chain Rule: one independent variable)). 假設 w=f(x,y) 是 x 和 y 的可微函數,x=g(t) 和 y=h(t) 又是 t 的可微函數,則 w 是 t 的可微函數,並且

$$\frac{\mathrm{d}w}{\mathrm{d}t} = \frac{\partial w}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial w}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t} \qquad \mathbf{\cancel{b}} \mathbf{\cancel{B}} \mathbf{13.1}$$

Figure 13.1: 連鎖率:w 是 x 和 y 的函數,而後兩者同時又是 t 的函數,本圖代表 w 對 t 的 導函數。

Theorem 13.7 (連鎖律:兩個獨立變數的情形 (Chain Rule: two independent variables)). 假設 w = f(x,y) 是 x 和 y 的可微函数,x = g(s,t) 和 y = h(s,t) 又是 s 和 t 的函数满足 $\frac{\partial x}{\partial s}$, $\frac{\partial x}{\partial t}$, $\frac{\partial y}{\partial s}$ 和 $\frac{\partial y}{\partial t}$ 同時存在,則 $\frac{\partial w}{\partial s}$ 和 $\frac{\partial w}{\partial t}$ 也會存在,並且由下式給出

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial s} \quad \text{ fo } \quad \frac{\partial w}{\partial t} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial t}$$

13.5.2 隱(偏)微分

Theorem 13.8 (連 鎖率: **隱函數**微分 (implicit differentiation)). 如果方程式 F(x,y)=0 定出一個x 的可微隱函數y,則

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{F_x(x,y)}{F_y(x,y)}, \quad F_y(x,y) \neq 0$$

如果方程式 F(x,y,z)=0 定出一個 x 和 y 的可微隱函數 z ,則

$$\frac{\partial z}{\partial x} = -\frac{F_x(x, y, z)}{F_z(x, y, z)} \quad \text{fo} \quad \frac{\partial z}{\partial y} = -\frac{F_y(x, y, z)}{F_z(x, y, z)}, \quad F_z(x, y, z) \neq 0$$

13.6 方向導數和梯度向量

13.6.1 方向導數

Definition 13.8 (方向導數). 假設 f 是兩變數 x 和 y 的函數, $\mathbf{u} = \cos\theta \, \mathbf{i} + \sin\theta \, \mathbf{j}$ 是一個單位向量。如果極限

$$D_{\mathbf{u}}f(x,y) = \lim_{t \to 0} \frac{f(x + t\cos\theta, y + t\sin\theta) - f(x,y)}{t}$$

存在,我們稱此極限爲 f 沿 u 方向的方向導數,以 D_uf 表示。

Theorem 13.9 (方向導數 (Directional derivative)). 如果 f 是 x 和 y 的可微函數,則沿方向 $\mathbf{u} = \cos\theta \, \mathbf{i} + \sin\theta \, \mathbf{j}$ 的方向導數是

$$D_{\mathbf{u}}f(x,y) = f_x(x,y)\cos\theta + f_y(x,y)\sin\theta$$

13.6.2 兩變數函數的梯度向量

Definition 13.9 (兩變數函數的梯度向量). 假設 z=f(x,y) 是 x,y 的函數並且 f_x 和 f_y 都存在,則向量

$$\nabla f(x,y) = f_x(x,y)\,\mathbf{i} + f_y(x,y)\,\mathbf{j}$$

稱爲 f 的梯度(向量)以 $\nabla f(x,y)$ 表示。 ∇f 讀做 $\lceil del\ f\ \rfloor$,另一個常用的記號是 $\operatorname{grad} f(x,y)$ 。在圖 13.2 中,注意到對每一個點 (x,y) 而言,梯度向量 (x,y) 而言,梯度向量 $\nabla f(x,y)$ 都是一個平面向量(而非空間向量)。

Figure 13.2: f 的梯度向量是 xy-平面上的向量。

Theorem 13.10 (方向導數的內積公式). 假設 f 是 x 和 y 的可微函數,則沿單位向量 \mathbf{u} 方向的方向導數是

$$D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \cdot \mathbf{u}$$

13.6.3 梯度向量的應用

Theorem 13.11 (梯度向量的性質). 已知 f 在點 (x,y) 可微。

- (a) 如果 $\nabla f(x,y) = \mathbf{0}$,則對所有方向 \mathbf{u} 而言,其方向導數 $D_{\mathbf{u}}f(x,y) = \mathbf{0}$ 。
- (b) 令 f 遞增最快的方向是 $\nabla f(x,y)$ 的方向,所有方向導數的最大值是 $\|\nabla f(x,y)\|$ 。
- (c) 令 f 遞減最快的方向是 $-\nabla f(x,y)$ 的方向,所有方向導數的最小值是 $-\|\nabla f(x,y)\|$ 。

Theorem 13.12 (梯度向量與等高線垂直). 已知 f 在 (x_0, y_0) 可微並且 $\nabla f(x_0, y_0) \neq 0$,则 $\nabla f(x_0, y_0)$ 與通過 (x_0, y_0) 的等高線在 (x_0, y_0) 互相垂直。

13.6.4 三個變數的函數

Definition 13.10 (三個變數的方向導數和梯度向量). 假設 f 是 x, y 和 z 的函數,其一階偏導數都是連續函數,沿單位向量 $\mathbf{u}=a\,\mathbf{i}+b\,\mathbf{j}+c\,\mathbf{k}$

$$D_{\mathbf{u}}f(x,y,z) = af_x(x,y,z) + bf_y(x,y,z) + cf_z(x,y,z)$$

f 的梯度 (gradient)向量定為

$$\nabla f(x, y, z) = f_x(x, y, z) \mathbf{i} + f_y(x, y, z) \mathbf{j} + f_z(x, y, z) \mathbf{k}$$

其相關性質如下:

- (a) $D_{\mathbf{u}}f(x,y,z) = \nabla f(x,y,z) \cdot \mathbf{u}$
- (b) 如果 $\nabla f(x,y,z) = \mathbf{0}$,則對所有的 \mathbf{u} , $D_{\mathbf{u}}f(x,y,z) = 0$ 。
- (c) $\nabla f(x,y,z)$ 是 f 的最大遞增方向,f 的方向導數 $D_{\mathbf{u}}f(x,y,z)$ 的最大值是

$$\|\nabla f(x, y, z)\|$$

(d) $-\nabla f(x,y,z)$ 是 f 的最小遞增方向,f 的方向導數 $D_{\mathbf{u}}f(x,y,z)$ 的最小值是

$$-\left\|\nabla f(x,y,z)\right\|$$

13.7. 切平面和法線 8

13.7 切平面和法線

13.7.1 曲面的切平面和法線

Definition 13.11 (切平面和法線). 已知方程式 F(x,y,z)=0 定出一個曲面 S 。如果函數 F(x,y,z) 在 S 上一點 $P(x_0,y_0,z_0)$ 可微,並且有 $\nabla F(x_0,y_0,z_0)\neq \mathbf{0}$,我們定義 S 在 P 點的切平面和法線如下:

- (a) S 在 P 點的 $\underline{\mathbf{vPo}}$ $(\underline{\mathbf{tangent\ plane}})$ 就是過 P 點而以 $\nabla F(x_0,y_0,z_0)$ 爲法向量的平面。

Theorem 13.13 (切平面方程式). 如果 F 在 (x_0,y_0,z_0) 可微,並且 (x_0,y_0,z_0) 在 F(x,y,z)=0 所定出的曲面上,則此曲面在 (x_0,y_0,z_0) 的切平面方程式是

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$$

13.7.2 平面傾斜的角度

13.7.3 梯度向量 $\nabla f(x,y)$ 和 $\nabla F(x,y,z)$ 的比較

Theorem 13.14 (梯度向量與等位面垂直). 如果 F 在 (x_0,y_0,z_0) 可微,並且 $\nabla F(x_0,y_0,z_0)\neq \mathbf{0}$,則 $\nabla F(x_0,y_0,z_0)$ 會與過 (x_0,y_0,z_0) 的等位面垂直。

13.8 兩變數函數的極值

13.8.1 絕對和相對極值

Theorem 13.15 (極值定理 (Extreme Value Theorem)). $\Diamond f$ 是定義在 xy-平面中一個有界的閉區域 R 上的兩變數連續函數,則

- (a) f 至少在 R 上的某一點有極小(最小)值。
- (b) f 至少在 R 上的某一點有極大(最大)值。

Definition 13.12 (相對極值). f 是定義在包含 (x_0, y_0) 的一個區域 R 上的函數。

(a) 如果在一個含 (x_0, y_0) 的開圓盤上,對所有的點 (x, y) 恆有

$$f(x,y) > f(x_0,y_0)$$

則稱 f 在 (x_0, y_0) 有相對極小 $(\underline{relative\ minimum})$ 。

(b) 如果在一個含 (x_0, y_0) 的開圓盤上,對所有的點 (x, y) 恆有

$$f(x,y) \le f(x_0,y_0)$$

則稱 f 在 (x_0, y_0) 有相對極大 $(\underline{relative\ maximum})$ 。

Definition 13.13 (臨界點). 設 f 定義在一個含 (x_0,y_0) 在開區域上,如果下式之一成立,就稱點 (x_0,y_0) 是 f 的一個監界點 $(critical\ point)$ 。

- (a) $f_x(x_0, y_0) = 0$ $f_y(x_0, y_0) = 0$
- (b) $f_x(x_0, y_0)$ 或 $f_y(x_0, y_0)$ 不存在。

Theorem 13.16 (相對極值一定發生在臨界點). 已知 f 在開區域 R 上一點 (x_0, y_0) 有相對極小值或相對極大值,則 (x_0, y_0) 是 f 的一個臨界點。

13.8.2 二階偏導數檢定

Theorem 13.17 (二階偏導數檢定 (Second Partials Test)). 假設函數 f 在一個含點 (a,b) 的開區域上定義,具連續的二階偏導數,並且在 (a,b) 滿足

$$f_x(a,b) = 0$$
 f $f_y(a,b) = 0$

考慮一個以在 (a,b) 的二階偏導數計算的量

$$d = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^{2}$$

- (a) 如果 d>0 並且 $f_{xx}(a,b)>0$,則 f 在 (a,b) 有相對極小 $(\underline{relative\ minimum})$ 。
- (b) 如果 d>0 並且 $f_{xx}(a,b)<0$,則 f 在 (a,b) 有相對極大 $(\underline{relative\ maximum})$ 。
- (c) 如果 d < 0 則 (a,b,f(a,b)) 是一個整點 (saddle point)。
- (d) 如果 d=0,本檢定無結論。

13.9 兩變數函數極值的應用

13.9.1 最佳化問題的應用

13.9.2 最小平方法

Theorem 13.18 (最小平方回歸直線). 數據 $\{(x_1,y_1), (x_2,y_2), (x_3,y_3), \ldots, (x_n,y_n)\}$ 的最小平方迴歸線 $(\frac{\text{least squares regression line}}{S_x = \sum_{i=1}^n x_i, \, S_y} = \frac{\sum_{i=1}^n y_i, \, S_{xx} = \sum_{i=1}^n x_i^2, \, S_{xy} = \sum_{i=1}^n x_i y_i,}{\sum_{i=1}^n x_i y_i, \, S_{xx} = \sum_{i=1}^n x_i^2, \, S_{xy} = \sum_{i=1}^n x_i y_i,}$

$$a = \frac{nS_{xy} - S_xS_y}{nS_{xx} - S_x^2} \quad \text{fo} \quad b = \frac{S_y - aS_x}{n}$$

13.10 拉格朗日乘子法

13.10.1 拉格朗日乘子法

Theorem 13.19 (拉格朗日定理 (Lagrange's Theorem)). 已知函數 f 和 g 所有的一階 偏導數都是連續函數 ,並且限制在平滑曲線 g(x,y)=c 上討論時 ,函數 f 在點 (x_0,y_0) 有 極値 。如果 $\nabla g(x_0,y_0)\neq \mathbf{0}$,則必存在實數 λ 使得

$$\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)$$

拉格朗日乘子法 (Method of Lagrange Multipliers) 函數 f 和 g 滿足定理 13.19 中 拉格朗日定理的假設,並且 f 在限制條件 g(x,y)=c 上有極值。求極值的步驟是:

(a) 解聯立方程式 $\nabla f(x,y) = \lambda \nabla g(x,y)$ 和 g(x,y) = c,亦即

$$f_x(x,y) = \lambda g_x(x,y)$$
 $f_y(x,y) = \lambda g_y(x,y)$ $g(x,y) = c$

- (\mathbf{b}) 將步驟 (a) 所有的解代入 f(x,y) 中,比較大小以求出 f 在限制條件 g(x,y)=c 之下的最大值和最小值。
- 13.10.2 限制條件下的最佳化問題
- 13.10.3 雙重限制條件下的拉格朗日乘子法

INDEX 11

INDEX

alternative form 另一型式	chain rule 連鎖律, 5
of the directional derivative 方向導數, 6	directional derivative 方向導數, 6
	alternative form of 另一型式, 6
Chain Rule 連鎖律	of a function in three variables 三變數的
implicit differentiation 隱函數微分, 5	函數, 7
one independent variable 一個獨立變數,	domain 定義域
two independent variables 兩個獨立變數,	of a function 函數
two independent variables 两個海里交 級,	of two variables 兩個變數, 2
composite function 合成函數	aquality of mixed partial derivatives 沒人伦
continuity of 連續, 3	equality of mixed partial derivatives 混合偏 導數的恆等式, 4
continuity 連續	equation(s) 方程式
of a composite function 合成函數	of tangent plane 切平面, 8
of two variables 兩個變數, 3	Extreme Value Theorem 極值定理, 8
continuous 連續	Extreme value Theorem & EX. 5
at a point 在一點, 3	first partial derivatives 一階偏導數
function of two variables 兩變數的函數,	notation for 記號, 4
3	first partial derivatives 第一階偏導數, 3
in the open region R 在開區域 R, 3	function(s) 函數
critical point(s) 臨界點	of $x \text{ and } y x \not\triangleq y, 2$
of a function of two variables 雨變數的函	of three variables 三變數
數, 9	continuity of 連續 , 3
relative extrema occur only at 相對極值	directional derivative of 方向導數, 7
僅發生在, 9	gradient of 梯度, 7
derivative(s) 導數	of two variables 兩個變數, 2
Chain Rule 連鎖律	continuity of 連續, 3
implicit differentiation 隱函數微分, 5	critical point of 臨界點, 9
one independent variable 一獨立變數 ,	differentiability implies continuity 可微
5	性隱含連續性,5
two independent variables 二獨立變數,	differentiable 可微, 4
5	domain of 定義域, 2
directional 方向, 6, 7	gradient of 梯度, 6
differentiability 可微分	limit of 極限, 2
implies continuity 隱含連續性, 5	partial derivative of 偏導數, 3
sufficient condition for 充分條件, 4	range of 值域, 2 relative maximum of 相對極大值, 8, 9
differentiable function 可微函數 in a region R 在區域 R, 4	relative minimum of 相對極小值, 8, 9
m a region A 在巨域 K, 4 of two variables 兩個變數, 4	total differential of 全微分, 4
differentiation 微分	relative maximum of 相對極大值, 8
implicit 隱	relative minimum of 相對極小值, 8
milanon is	TOTAUTYO IIIIIIIIIIII OI 7月27年7 厘, 0

INDEX 12

gradient 梯度	range of a function 函數的值域
normal to level curves 垂直於等高線, 7 normal to level surfaces 垂直於等位曲面,	of two variables 兩個變數, 2 region R 區域 R
normal to level surfaces 要直於守位國國, 8	differentiable function in 可微函數, 4
of a function of three variables 三變數的 函數, 7	open 開 continuous in 連續, 3
of a function of two variables 兩變數的 函數, 6	regression, least squares 最小平方迴歸, 9 relative extrema 相對極值
properties of 性質, 7	occur only at critical points 僅發生在臨
implicit differentiation 隱函數微分, 5 Chain Rule 連鎖律, 5	界點, 9 Second Partials Test for 二階偏導數檢定, 9
Lagrange's Theorem 拉格朗日定理, 10 least squares 最小平方 regression 迴歸 line 直線, 9	relative minimum 相對極小值 of a function 函數, 8, 9 Second Partials Test for 二階偏導數檢定, 9
level curve 等高線 gradient is normal to 梯度垂直於, 7 level surface 等位曲面 gradient is normal to 梯度垂直於, 8 limit(s) 極限	saddle point 鞍點, 9 Second Partials Test 二階偏導數檢定, 9 sufficient condition for differentiability 可微 分的充分條件, 4
of a function of two variables 兩個變數函數, 2	tangent plane 切平面, 8 equation of 方程式, 8
line(s) 直線	Theorem 定理
least squares regression 最小平方迴歸, 9 normal 法, 8	Extreme Value 極值, 8 total differential 全微分, 4
Method of 方法	vector(s) 向量
Lagrange multipliers 拉格朗日乘子, 10	zero 零, 9
mixed partial derivatives 混合偏導數 equality of 恆等式 , 4	切平面 tangent plane, 8 方程式 equation of, 8
normal line 法線, 8	方向導數 directional derivative, 6 三變數的函數 of a function in three vari-
notation 記號 for first partial derivatives 一階偏導數, 4	ables, 7 另一型式 alternative form of, 6
open region R 開區域 R	方法 Method of
continuous in 連續, 3	拉格朗日乘子 Lagrange multipliers, 10 方程式 equation(s)
partial derivatives 偏導數	切平面 of tangent plane, 8
first 第一 , 3	一階偏導數 first partial derivatives
mixed 混合	記號 notation for, 4
equality of 恆等式, 4	二階偏導數檢定 Second Partials Test, 9
notation for 記號, 4	可微分 differentiability
of a function of two variables 兩個變數函	充分條件 sufficient condition for, 4
數 , 3	隱含連續性 implies continuity, 5
plane 平面	可微分的充分條件 sufficient condition for dif-
tangent b , 8	ferentiability, 4
equation of 方程式, 8	可微函數 differentiable function
properties 性質	在區域 R in a region R , 4
of the gradient 梯度, 7	兩個變數 of two variables, 4

另一型式 alternative form 方向導數 of the directional derivative, 6 平面 plane 切 tangent, 8 方程式 equation of, 8 全微分 total differential, 4 向量 vector(s) 零 zero, 9 合成函數 composite function 連續 continuity of, 3 函數 function(s) $x \neq y \text{ of } x \text{ and } y, 2$ 三變數 of three variables 方向導數 directional derivative of, 7 梯度 gradient of, 7 連續 continuity of, 3 兩個變數 of two variables, 2 可微 differentiable, 4 可微性隱含連續性 differentiability implies continuity, 5 全微分 total differential of, 4 定義域 domain of, 2 相對極大值 relative maximum of, 8, 9 相對極小值 relative minimum of, 8, 9 值域 range of, 2 偏導數 partial derivative of, 3 梯度 gradient of, 6 連續 continuity of, 3 極限 limit of, 2 臨界點 critical point of, 9 相對極大值 relative maximum of, 8 相對極小值 relative minimum of, 8 函數的值域 range of a function 兩個變數 of two variables, 2 定理 Theorem 極值 Extreme Value, 8 定義域 domain 函數 of a function 兩個變數 of two variables, 2 性質 properties 梯度 of the gradient, 7 拉格朗日定理 Lagrange's Theorem, 10 法線 normal line, 8 直線 line(s) 法 normal, 8 最小平方迴歸 least squares regression, 9 相對極小值 relative minimum 二階偏導數檢定 Second Partials Test for.

9

函數 of a function, 8, 9

相對極值 relative extrema 二階偏導數檢定 Second Partials Test for, 僅發生在臨界點 occur only at critical points, 9 偏導數 partial derivatives 兩個變數函數 of a function of two variables, 3 記號 notation for, 4 **第一** first, 3 混合 mixed 恆等式 equality of, 4 區域 R region R 可微函數 differentiable function in, 4 開 open 連續 continuous in, 3 記號 notation 一階偏導數 for first partial derivatives, 4 梯度 gradient 三變數的函數 of a function of three variables. 7 雨變數的函數 of a function of two variables, 6 性質 properties of, 7 垂直於等位曲面 normal to level surfaces, 垂直於等高線 normal to level curves, 7 第一階偏導數 first partial derivatives, 3 混合偏導數 mixed partial derivatives 恆等式 equality of, 4 混合偏導數的恆等式 equality of mixed partial derivatives, 4 連鎖律 Chain Rule 一個獨立變數 one independent variable, 兩個獨立變數 two independent variables, 隱函數微分 implicit differentiation, 5 連續 continuity 合成函數 of a composite function 兩個變數 of two variables, 3 連續 continuous 在一點 at a point, 3 在開區域 R in the open region R, 3 雨變數的函數 function of two variables, 3 最小平方 least squares 迴歸 regression 直線 line, 9 最小平方迴歸 regression, least squares, 9

INDEX 14

等位曲面 level surface

梯度垂直於 gradient is normal to, 8

等高線 level curve

梯度垂直於 gradient is normal to, 7

開區域 R open region R

連續 continuous in, 3

極限 limit(s)

兩個變數函數 of a function of two variables, 2

極值定理 Extreme Value Theorem, 8

微分 differentiation

隱 implicit

連鎖律 chain rule, 5

導數 derivative(s)

方向 directional, 6, 7

連鎖律 Chain Rule

一獨立變數 one independent variable, 5

二獨立變數 two independent variables, 5

隱函數微分 implicit differentiation, 5

鞍點 saddle point, 9

臨界點 critical point(s)

兩變數的函數 of a function of two variables, 9

相對極值僅發生在 relative extrema occur only at, 9

隱函數微分 implicit differentiation, 5

連鎖律 Chain Rule, 5