SC310005 Artificial Intelligence

Lecture 10: Deep Learning (Part 1)

teerapong.pa@chula.ac.th

Reference:

- https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html
- http://introtodeeplearning.com/
- 3. https://www.simplilearn.com/tutorials/deep-learning-tutorial/introduction-to-deep-learning
- 4. https://www.geeksforgeeks.org/introduction-deep-learning/
- 5. https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks

Artificial Intelligence Projects

Al vs Machine Learning vs Deep Learning

- Artificial Intelligence (AI) is the concept of creating smart intelligent machines.
- Machine Learning (ML) is a subset of artificial intelligence that helps you build Al-driven applications.
- Deep Learning is a subset of machine learning that uses vast volumes of data and complex algorithms to train a model.

Applications of Artificial Intelligence

- Machine Translation such as Google Translate
- Self Driving Vehicles such as Google's Waymo
- Al Robots such as Sophia and Aibo
- Speech Recognition applications like Apple's Siri or OK Google

https://www.voutube.com/watch?v=kJoAcEl2PXQ&t=14s

Machine Learning

Deep Learning

What is Deep Learning?

Deep Learning is a subset of Machine Learning that uses mathematical functions to map the input to the output.

These functions can extract non-redundant information or patterns from the data, which enables them to form a relationship between the input and the output.

Artificial Neural Network (ANN)

This section provides an overview of the architecture behind deep learning, artificial neural networks (ANN), and discusses some of the key terminology.

As shown in the following figure, each perceptron is made up of the following parts:

Neuron

How does Deep Learning work?

The Convolutional Neural Networks or CNNs

The Convolutional Neural Networks or CNNs are primarily used for tasks related to computer vision or image processing.

CNNs are extremely good in modeling spatial data such as 2D or 3D images and videos.

They can extract features and patterns within an image, enabling tasks such as image classification or object detection.

Convolutional Neural Networks

Convolutional Neural Network

Convolution Neural Network (CNN)

The Convolution Operation

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:

1,	1,0	1,	0	0					_	
0,0	1,	1,0	1	0	C	1	0	1	4	
0,1	0,0	1,	1	1	\otimes	0	1	0		
0	0	1	1	0		1	0	1		
0	1	1	0	0	filter			feat	ure map	

Visualize
Feature
Maps of CNN
Layers to
Understand

What Layers are Learning

Original Image: 5 x 5

Feature Map: 5 x 5

Calculating Output Sizes

Calculate Output Size of Convolutional and Pooling layers

Floor
$$\left(\frac{(W-F+2P)}{S}+1\right)$$

Calculate Output Size of Convolutional and Pooling layers

Floor
$$\left(\frac{(W-F)}{S} + 1\right)$$

Fully Connected layer

Standard Neural Network

After Applying Dropout

TensorFlow 2 Classification Model Zoo

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_classification_zoo.md

The Keras Model Zoo

Ready to go, downloadable models for Keras

hosted with (from Infinite Red

TensorFlow 2 Classification Model Zoo

We provide a collection of classification models pre-trained on the Imagenet. These can be used to initilize detection model parameters.

Model name
EfficientNet B0
EfficientNet B1
EfficientNet B2
EfficientNet B3
EfficientNet B4
EfficientNet B5
EfficientNet B6
EfficientNet B7
Resnet V1 50
Resnet V1 101
Resnet V1 152
Inception Resnet V2
MobileNet V1
MobileNet V2

Resnet Architecture Explained

	22	ConvNet C	onfiguration						
A	A-LRN	В	С	D	Е				
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight				
layers	layers	layers	layers	layers	layers				
	i	nput (224×2	24 RGB image	e)					
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64				
	LRN	conv3-64	conv3-64	conv3-64	conv3-64				
	maxpool								
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128				
		conv3-128	conv3-128	conv3-128	conv3-128				
	\$3 A	max	pool		2				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
			conv1-256	conv3-256	conv3-256				
					conv3-256				
		max	pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
				3895 94850000 6555000	conv3-512				
		max	pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
			pool						
FC-4096									
			4096						
FC-1000									
		soft	-max						

https://medium.com/@siddheshb008/vgg-net-architecture-explained-71179310050f

VGG-16 Summary

Layer		Feature Map	Size	Kernel Size	Stride	Activation
Input	Image	1	224 x 224 x 3	-	-	- relu
1	2 X Convolution	64	224 x 224 x 64	3x3	1	
	Max Pooling	64	112 x 112 x 64	3x3	2	relu
3	2 X Convolution	128	112 x 112 x 128	3x3	1	relu
	Max Pooling	128	56 x 56 x 128	3x3	2	relu
5	2 X Convolution	256	56 x 56 x 256	3x3	1	relu
	Max Pooling	256	28 x 28 x 256	3x3	2	relu
7	3 X Convolution	512	28 x 28 x 512	3x3	1	relu
	Max Pooling	512	14 x 14 x 512	3x3	2	relu
10	3 X Convolution	512	14 x 14 x 512	3x3	1	relu
	Max Pooling	512	7 x 7 x 512	3x3	2	relu
13	FC	-	25088	-	-	relu
14	FC	-	4096	-	-	relu
15	FC	-	4096	-	-	relu
Output	FC		1000	-	-	Softmax

EfficientNet

Feature Map

EfficientNet Performance

Deep Learning Exercise:

Week 10: Assignment

Build Your Own Image Classification in TensorFlow

This assignment will help you understand the fundamentals of image classification, TensorFlow, and neural network architectures.

