Siddhardhan

Cross Validation,
Hyperparameter Tuning,
& Evaluation metrics

Module 8 - Outline

Cross Validation

Hyperparameter Tuning

GridSearchCV

RandomizedSearchCV

Model Selection

Accuracy & Confusion Matrix

Precision, Recall, F1 Score

Metrics for Regression

In K-Fold Cross Validation, we split the dataset into "K" number of **folds** (subsets). One chunk of data is used as test data for evaluation & the remaining part of the data is used for training the model. Each time, a different chunk will be used as the test data.

Support Vector Machine

Logistic Regression

Support Vector Machine

$$K = 5$$

	Dataset					Accuracy
Iteration 1	Train	Train	Train	Train	Test	88%
Iteration 2	Train	Train	Train	Test	Train	83%
Iteration 3	Train	Train	Test	Train	Train	86%
Iteration 4	Train	Test	Train	Train	Train	81%
Iteration 5	Test	Train	Train	Train	Train	84%

Mean Accuracy =
$$\frac{90 + 88 + 86 + 91 + 85}{5}$$
 = 88 %

✓ Accuracy score for SVM = 84.4 %

✓ Accuracy score for Logistic Regression = 88 %

Advantages of using K-Fold Cross-validation:

- > Better alternative for train-test split when the dataset is small
- > Better for multiclass classification problems
- More reliable
- Useful for Model Selection

Siddhardhan

Hyperparameter Tuning:

- GridSearchCV
- RandomizedSearchCV

Types of Parameters

Parameters

Model Parameters

These are the parameters of the model that can be determined by training with training data. These can be considered as internal Parameters.

- Weights
- > Bias

Y = w*X + b

Hyperparameters

Hyperparameters are parameters whose values control the learning process. These are adjustable parameters used to obtain an optimal model. External Parameters.

- Learning rate
- Number of Epochs
- n_estimators

Hyperparameter Tuning

Hyperparameter Tuning

Hyperparameter Tuning refers to the process of choosing the optimum set of hyperparameters for a Machine Learning model. This process is also called **Hyperparameter Optimization**.

Hyperparameter Tuning Types:

Support Vector Classifier:

C: [1,5,10]

kernel: ('linear', 'poly', 'rbf', 'sigmoid')

Siddhardhan

Model Selection in Machine Learning

Model Selection

Model Selection in Machine Learning is the process of choosing the best suited model for a particular problem. Selecting a model depends on various factors such as the dataset, task, nature of the model, etc.

Two factors to be considered:

- 1. Logical Reason to select a model
- 2. Comparing the performance of the models

Model Selection

Models can be selected based on:

1. Type of Data available:

- a. Images & Videos CNN
- b. Text data or Speech data RNN
- c. Numerical data SVM, Logistic Regression, Decision trees, etc.

2. Based on the task we need to carry out:

- a. Classification tasks SVM, Logistic Regression, Decision trees, etc.
- b. Regression tasks Linear regression, Random Forest, Polynomial regression, etc.
- c. Clustering tasks K-Means Clustering, Hierarchical Clustering

Linear Regression

Advantages:

- 1. Very simple to implement
- 2. Performs well on data with linear relationship

Disadvantages:

- 1. Not suitable for data having non-linear relationship
- 2. Underfitting issue
- Sensitive to Outliers

Logistic Regression

Advantages:

- 1. Easy to implement
- 2. Performs well on data with linear relationship
- 3. Less prone to over-fitting for low dimensional dataset

Disadvantages:

- High dimensional dataset causes over-fitting
- 2. Difficult to capture complex relationships in a dataset
- 3. Sensitive to Outliers
- 4. Needs a larger dataset

Decision Tree

Advantages:

- 1. Can be used for both Classification & Regression
- 2. Easy to interpret
- 3. No need for normalization or scaling
- 4. Not sensitive to outliers

Disadvantages:

- Overfitting issue
- Small changes in the data alter the tree structure causing instability
- Training time is relatively higher

Siddhardhan

Accuracy Score & Confusion Matrix with Python implementation

Types of Supervised Learning

Classification is about predicting a class or discrete values Eg: Red or Green; True or False

Evaluation metric for

Classification: Accuracy score

Regression is about predicting a quantity or continuous values Eg: Salary; age; Price.

Evaluation metric for

Regression: Mean Absolute Error

Accuracy Score

In Classification, Accuracy Score is the ratio of number of correct predictions to the total number of input data points.

Number of correct predictions = 128

Accuracy Score = 85.3 %

Total Number of data points = 150

from sklearn.metrics import accuracy_score

Limitation of Accuracy Score

Accuracy Score is not reliable when the dataset has an uneven distribution of classes

Number of dog images = 800

Number of cat images = 200

Number of images predicted as dog = 1000

Number of images predicted as cat = 0

Number of correct predictions = 800

Total Number of data points = 1000

Accuracy Score =
$$\frac{800}{1000}$$
 x 100 %

Accuracy Score = 80 %

Limitation of Accuracy Score

Accuracy Score is not reliable when the dataset has an uneven distribution of classes

Test data: Number of dog images = 20%

Number of cat images = 200

Number of images predicted as dog = 400

Number of images predicted as cat = 0

Number of correct predictions = 200

Total Number of data points = 400

Accuracy Score =
$$\frac{200}{400}$$
 x 100 %

Accuracy Score = 50 %

Confusion Matrix

Confusion Matrix is a matrix used for evaluating the performance of a Classification Model. It gives more information than the accuracy score.

TP + TN = Correct Predictions
FP + FN = Wrong Predictions

sklearn.metrics.confusion_matrix

Precision

Precision is the ratio of number of **True Positive** to the **total number of Predicted Positive**. It measures, out of the total predicted positive, how many are actually positive.

Precision measures the error caused by **False Positives**. Hence it is a good evaluation metric when **False Positive** predictions are critical.

Example: Face Authentication

Precision

Precision is the ratio of number of **True Positive** to the **total number of Predicted Positive**. It measures, out of the total predicted positive, how many are actually positive.

Precision measures the error caused by **False Positives**. Hence it is a good evaluation metric when **False Positive** predictions are critical.

Example: Face Authentication

Recall

Recall is the ratio of number of **True Positive** to the **total number of Actual Positive**. It measures, out of the total actual positive, how many are predicted as True Positive.

Recall measures the error caused by **False Negatives**. Hence it is a good evaluation metric when **False Negative** predictions are critical.

Example: Cancer Diagnosis

F1 Score

F1 Score is an important evaluation metric for binary classification that combines Precision & Recall. F1 Score is the **harmonic mean** of Precision & Recall.

This is a very useful metric when a dataset has imbalanced classes.

Precision, Recall & F1 Score

Example:

Predicted

	Positive	Negative
Positive	TP = 50	FN = 10
Negative	FP = 5	TN = 20

Precision = 0.91

F1 Score = 2 x
$$\frac{\text{Precision x Recall}}{\text{Precision + Recall}}$$
 = 2 x $\frac{0.91 \times 0.83}{0.91 + 0.83}$ F1 Score = 0.87