Devoir à la maison n°13

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1

1 D'après le cours, $a_n = \frac{f^{(n)}(0)}{n!}$ pour tout $n \in \mathbb{N}$. Ainsi $f^{(n)}(0) = n!a_n$ pour tout $n \in \mathbb{N}$.

2 2.a Pour tout $x \in]-1/2, 1/2[,$

$$\sum_{n=0}^{+\infty} 2^n x^n = \frac{1}{1 - 2x}$$

2.b Pour tout $x \in \mathbb{R}$,

$$\sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n}}{(2n)!} = \cos(x)$$

3 Comme

$$\frac{|u_{n+1}|}{|u_n|} = (2n+2)(2n+1) \underset{n \to +\infty}{\longrightarrow} +\infty$$

le rayon de convergence de la série entière $\sum u_n x^n$ est nul.

4.a On raisonne par récurrence. La propopriété est vraie au rang p = 0 en posant $Q_0 = 1$. Supposons qu'elle le soit à un rang $p \in \mathbb{N}$. Alors

$$\begin{split} \forall x \in]0,1[; & : g^{(p+1)}(x) = \frac{Q_p'(x)}{(x(x-1))^{2p}} e^{\frac{1}{x(x-1)}} - 2p(2x-1) \frac{Q_p(x)}{(x(x-1))^{2p+1}} e^{\frac{1}{x(x-1)}} - \frac{Q_p(x)}{(x(x-1))^{2p}} \cdot \frac{2x-1}{(x(x-1))^2} e^{\frac{1}{x(x-1)}} \\ & = \frac{(x(x-1))^2 Q_p'(x) - 2p(2x-1)x(x-1)Q_p(x) - (2x-1)Q_p(x)}{(x(x-1))^{2p+2}} e^{\frac{1}{x(x-1)}} \\ & = \frac{(x(x-1))^2 Q_p'(x) - (2x-1)(2px(x-1)+1)Q_p(x)}{(x(x-1))^{2p+2}} e^{\frac{1}{x(x-1)}} \\ & = \frac{Q_{p+1}(x)}{(x(x-1))^{2p+2}} e^{\frac{1}{x(x-1)}} \end{split}$$

en posant $Q_{p+1} = (X(X-1))^2 Q_p' - (2X-1)(2pX(X-1)+1)Q_p$. La propopriété est donc vraie pour tout $p \in \mathbb{N}$. De plus,

$$\forall p \in \mathbb{N}^*, \ \mathbf{Q}_p = (\mathbf{X}(\mathbf{X}-1))^2 \mathbf{Q}_{p-1}' - (2\mathbf{X}-1)(2(p-1)\mathbf{X}(\mathbf{X}-1)+1)\mathbf{Q}_{p-1}$$

4.b On raisonne à nouveau par récurrence.

Comme $Q_0 = 1$, $Q_1 = -(2X - 1)$ et deg $Q_1 = 1 = 3 \times 1 - 2$. Supposons que deg $Q_p = 3p - 2$ pour un certain $p \in \mathbb{N}^*$. Alors

$$\deg\left((X(X-1))^2Q_p'\right) = 4 + \deg Q_p' = 4 + 3p - 3 = 3p + 1$$
$$\deg\left((2X-1)(2pX(X-1)+1)Q_p\right) = 3 + \deg Q_p = 3 + 3p - 2 = 3p + 1$$

De plus, si on note α_p le coefficient dominant de Q_p , les coefficients dominants de $(X(X-1))^2Q_p'$ et $(2X-1)(2pX(X-1)+1)Q_p$ sont respectivement $(3p-1)\alpha_p$ et $4p\alpha_p$ et sont donc distincts. On en déduit que $Q_{p+1}=(X(X-1))^2Q_p'-(2X-1)(2pX(X-1)+1)Q_p$ est de degré 3p+1=3(p+1)-2. Il s'ensuit que deg $Q_p=3p-2$ pout tout $p\in\mathbb{N}^*$.

1

5 5.a Par croissance comparée, $\lim_{u \to -\infty} u^{2p} e^u = 0$. Comme

$$\lim_{x \to 0^+} \frac{1}{x(x-1)} = \lim_{x \to 1^-} \frac{1}{x(x-1)} = -\infty$$

on obtient

$$\lim_{x \to 0^+} \frac{e^{\frac{1}{x(x-1)}}}{(x(x-1))^{2p}} = \lim_{x \to 1^-} \frac{e^{\frac{1}{x(x-1)}}}{(x(x-1))^{2p}} = 0$$

Enfin, Q_p est continue sur $\mathbb R$ donc admet une limite finie en 0^+ et 1^- . On obtient bien

$$\lim_{x \to 0^+} g^{(p)}(x) = \lim_{x \to 1^-} g^{(p)}(x) = 0$$

5.b Il est clair que $g^{(p)}$ est nulle sur $]-\infty,0[$ et sur $]1,+\infty[$ pour tout $p\in\mathbb{N}$. On en déduit notamment que

$$\lim_{x \to 0^{-}} g^{(p)}(x) = \lim_{x \to 1^{+}} g^{(p)}(x) = 0$$

Finalement, g est de classe \mathcal{C}^{∞} sur $]-\infty,0[$,]0,1[, $]1,+\infty[$ et ses dérivées successives admettent des limites finies en 0 et 1. D'après le théorème de prolongement \mathcal{C}^{∞} la restriction de g à $]-\infty,0[\cup]0,1[\cup]1,+\infty[$ admet un unique prolongement de classe \mathcal{C}^{∞} sur \mathbb{R} qui ne peut être que g lui-même puisque g est notamment continue sur \mathbb{R} . g est donc de classe \mathcal{C}^{∞} et nulle en dehors du segment [0,1]: elle appartient donc à \mathcal{W} .

6 Pour tout $x \in \mathbb{R}$,

$$\int_{x-1}^{1} g(t) dt = \int_{x}^{2} g(t-1) dt = -\int_{2}^{x} g(t-1) dt$$

Comme $x \mapsto -g(x-1)$ est continue sur \mathbb{R} , $\psi \colon x \mapsto \int_{x-1}^1 g(t) \, dt$ est de classe \mathcal{C}^1 sur \mathbb{R} et $\psi'(x) = -g(x-1)$ pour tout $x \in \mathbb{R}$. Comme g est de classe \mathcal{C}^∞ sur \mathbb{R} , ψ l'est également, de même que h.

Remarque. Comme g est continue, positive et non constamment nulle sur [0,1], $\int_0^1 g(t) dt > 0$ de sorte que h est bien définie sur \mathbb{R} .

Soit $x \in]-\infty,1]$. Alors g est nulle sur $[x-1,0] \subset]-\infty,0]$ donc, d'après une relation de Chasles, h(x)=1. Soit $x \in [2,+\infty]$. Alors g est nulle sur $[1,x-1] \subset [1,+\infty[$ donc h(x)=0.

7.a Soit $p \in \mathbb{N}^*$. D'après la formule de Leibniz,

$$\forall x \in \mathbb{R}, \ \varphi^{(p)}(x) = \sum_{k=0}^{p} \binom{p}{k} 2^{p-k} (-2)^k h^{(p-k)}(2x) h^{(k)}(-2x) = 2^p \sum_{k=0}^{p} (-1)^k \binom{p}{k} h^{(p-k)}(2x) h^{(k)}(x)$$

Notamment,

$$\varphi^{(p)}(0) = 2^p \sum_{k=0}^p (-1)^k h^{(p-k)}(0) h^{(k)}(0)$$

Mais comme h est constante sur $]-\infty,1]$, ses dérivées d'ordre supérieur ou égal à 1 s'annulent en 0. Ainsi

$$\varphi^{(p)}(0) = 2^p h^{(p)}(0)h(0) = 0$$

 $car p \ge 1$.

7.b Si $x \le -1$, alors $-2x \ge 2$ et on a vu que h était nulle sur $[2, +\infty[$ donc $\varphi(x) = 0$. Si $x \ge 1$, alors $2x \ge 2$ et $\varphi(x) = 0$ à nouveau. φ est bien nulle en dehors de [-1, 1].

7.c Pour tout $k \in [0, p-1], |\varphi^{(k)}|$ est continue sur le segment [0,1] et à valeurs dans \mathbb{R} : elle y admet donc un maximum. Comme [0, p-1] est fini, λ_p est bien défini.

8.a Il suffit de constater que φ est de classe \mathcal{C}^{∞} sur \mathbb{R} .

8.b Il suffit de constater que φ est nulle hors du segment [-1,1].

9 9.a On applique la formule de Leibniz.

$$\begin{aligned} \forall x \in \mathbb{R}, \ g_n^{(j)}(x) &= \sum_{i=0}^j \binom{j}{i} \frac{\mathrm{d}^i}{\mathrm{d}x^i} \left(\varphi(\beta_n x) \right) \frac{\mathrm{d}^{j-i}}{\mathrm{d}x^{i-j}} \left(\frac{x^n}{n!} \right) \\ &= \sum_{i=0}^j \binom{j}{i} \beta_n^i \varphi^{(i)}(\beta_n x) \frac{1}{n!} \cdot \frac{n!}{(n-(i-j))!} x^{n-(i-j)} \\ &= \sum_{i=0}^j \binom{j}{i} \beta_n^i \varphi^{(i)}(\beta_n x) \frac{x^{n-i+j}}{(n-i+j)!} \end{aligned}$$

9.b Puisque j < n, pour tout $i \in [0, j]$, $n - j + i \ge n - j > 0$. On en déduit que $g_n^{(j)}(0) = 0$.

9.c Comme g_n est constamment nulle sur $]-\infty,-1/\beta_n[$ et sur $]1/\beta_n,+\infty[$, $g_n^{(j)}$ est nulle sur $]-\infty,-1/\beta_n[$ et sur $]1/\beta_n,+\infty[$. Par continuité de $g_n^{(j)},g_n^{(j)}$ est nulle sur $]-\infty,-1/\beta_n[$ et sur $[1/\beta_n,+\infty[$.

9.d Soit $x \in \mathbb{R}$ tel que $|x| \le 1/\beta_n$. Par inégalité triangulaire,

$$|g_n^{(j)}(x)| \leq \sum_{i=0}^j \binom{j}{i} |\beta_n|^i |\phi^{(i)}(\beta_n x)| \frac{|x|^{n-j+i}}{(n-j+i)!} \leq \sum_{i=0}^j \binom{j}{i} |\beta_n|^i |\phi^{(i)}(\beta_n x)| \frac{|1/\beta_n|^{n-j+i}}{(n-j+i)!} = \beta_n^{j-n} \sum_{i=0}^j \binom{j}{i} \frac{|\phi^{(i)}(\beta_n x)|}{(n-j+i)!}$$

Puisque $\beta_n x \in [-1, 1]$, on a par définition de λ_n ,

$$\forall i \in \llbracket 0, j \rrbracket, |\varphi^{(i)}(\beta_n x)| \leq \lambda_n$$

Ainsi

$$|g_n^{(j)}(x)| \le \lambda_n \beta_n^{j-n} \sum_{i=0}^j \frac{\binom{j}{i}}{(n-j+i)!}$$

puis

$$|u_n g_n^{(j)}(x)| \le |u_n| \lambda_n \beta_n^{j-n} \sum_{i=0}^j \frac{\binom{j}{i}}{(n-j+i)!}$$

Puisque $n-j \ge 1, \, \beta_n^{j-n} \le 1/\beta_n.$ De plus, $(n-j+i)! \ge 1$ pour tout $i \in [0,j]$ donc

$$|u_n g_n^{(j)}(x)| \le \frac{|u_n|\lambda_n}{\beta_n} \sum_{i=0}^j \binom{j}{i} = 2^j \frac{|u_n|\lambda_n}{\beta_n} \le 2^{n-1} \frac{|u_n|\lambda_n}{\beta_n}$$

Enfin, par définition, $\beta_n \ge 4^n |u_n| \lambda_n$ de sorte que

$$|u_n g_n^{(j)}(x)| \le \frac{2^{n-1}}{4^n} = 2^{-(n+1)}$$

10 On a déjà vu que $g_n^{(j)}(0) = 0$ pour n > j.

Sinon, on peut encore utiliser la formule de Leibniz pour affimer que

$$\forall x \in \mathbb{R}, \ g_n^{(j)}(x) = \sum_{i=0}^j \binom{j}{i} \beta_n^i \varphi^{(i)}(\beta_n x) \frac{\mathrm{d}^{j-i}}{\mathrm{d} x^{i-j}} \left(\frac{x^n}{n!} \right) = \sum_{i=j-n}^j \binom{j}{i} \beta_n^i \varphi^{(i)}(\beta_n x) \frac{x^{n-j+i}}{(n-j+i)!}$$

car les dérivées de $x \mapsto x^n$ d'ordre strictement supérieur à n sont nulles. En évaluant en 0, il reste

$$g_n^{(j)}(0) = \beta_n^{j-n} \varphi^{(j-n)}(0)$$

Or on sait que $\varphi^{(p)}(0) = 0$ pour tout $p \in \mathbb{N}^*$. Ainsi $g_n^{(j)}(0) = 0$ pour j > n.

$$g_n^{(n)}(0) = \varphi(0) = 1$$

11 D'après la question 9, pour tout $j \in \mathbb{N}$,

$$\forall n > j, \ \|u_n g_n(j)\|_{\infty} \le \frac{1}{2^{n+1}}$$

On en déduit que $\sum u_n g_n^{(j)}$ converge normalement et donc uniformément sur \mathbb{R} pour tout $j \in \mathbb{N}$. On en déduit que $\sigma = \sum_{n=0}^{+\infty} u_n g_n$ est de classe \mathcal{C}^{∞} sur \mathbb{R} . De plus, d'après la question précédente,

$$\forall j \in \mathbb{N}, \ \sigma^{(j)}(0) = \sum_{n=0}^{+\infty} u_n g_n^{(j)}(0) = u_j$$

12 Si $x > a_0 > 0$,

$$f_0(x) = \frac{1}{2a_0^2} (x + a_0 + x - a_0 - 2x) = 0$$

Si $x < a_0 < 0$,

$$f_0(x) = \frac{1}{2a_0^2} (-x - a_0 - x + a_0 + 2x) = 0$$

Si $0 \le x \le a_0$,

$$f_0(x) = \frac{1}{2a_0^2}(x + a_0 - x + a_0 - 2x) = \frac{2}{a_0^2}(a_0 - x)$$

 $Si - a_0 \le x \le 0,$

$$f_0(x) = \frac{1}{2a_0^2}(x + a_0 - x + a_0 + 2x) = \frac{2}{a_0^2}(x + a_0)$$

13.a Par inégalité triangulaire,

$$\forall x \in \mathbb{R}, \ f_0(x) \le \frac{1}{2a_0^2} (|x| + |a_0| + |x| + |-a_0| - 2|x|) = \frac{1}{a_0}$$

Toujours par inégalité triangulaire,

$$\forall x \in \mathbb{R}, \ f_0(x) \ge \frac{1}{2a_0^2} (|x + a_0 + x - a_0| - 2|x|) = 0$$

Ainsi

$$\forall x \in \mathbb{R}, \ 0 \le f_0(x) \le \frac{1}{a_0}$$

A fortiori,

$$\forall x \in \mathbb{R}, \ |f_0(x)| \le \frac{1}{a_0}$$

13.b Si on pose $A =]-\infty, -a_0] \cup [a_0, +\infty[$, alors $f_0(x) = kd(x, A)$ quitte à distinguer les cas $x \in]-\infty, a_0]$, $x \in [-a_0, 0]$, $x \in [0, a_0]$ et $x \in [a_0, +\infty[$. On prouve classiquement que $x \in \mathbb{R} \mapsto d(x, A)$ est 1-lipschitzienne. On en déduit que f est k-lipschitzienne.

Comme f_0 est continue sur \mathbb{R} , elle admet une primitive F de classe \mathcal{C}^1 sur \mathbb{R} . Pour tout $x \in \mathbb{R}$, $f_1(x) = \frac{1}{2a_1}(F(x+a_1) - F(x-a_1))$ donc f_1 est également de classe \mathcal{C}^1 sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \ f_1'(x) = \frac{1}{2a_1} \left(F'(x+a_1) - F'(x-a-1) \right) = \frac{1}{2a_1} \left(f_0(x+a_1) - f_0(x-a_1) \right)$$

 $\boxed{\textbf{15}} \text{ Si } x \geq a_0 + a_1 \text{, alors } f_0 \text{ est nulle sur } [x - a_1, x + a_1] \subset [a_0, +\infty[\text{. De même, si } x \leq -a_0 - a_1, \text{ alors } f_0 \text{ est nulle sur } [x - a_1, x + a_1] \subset] - \infty, -a_0].$

16 Par inégalité triangulaire et d'après la question 13,

$$\forall x \in \mathbb{R}, |f_1(x)| \le \frac{1}{2a_1} \int_{x-a_1}^{x+a_1} |f_0(t)| dt \le \frac{1}{2a_1} \int_{x-a_1}^{x+a_1} \frac{1}{a_0} dt = \frac{1}{a_0}$$

Par ailleurs, comme f_0 est k-lipschitzienne sur \mathbb{R} .

$$\forall x \in \mathbb{R}, \ |f_1'(x)| = \frac{1}{2a_1} |f_0(x + a_1) - f_0(x - a_1)| \le \frac{k}{2a_1} |(x + a_1) - (x - a_1)| = k$$

Or (a_n) est décroissante donc $a_0 \ge a_1$ puis $a_0^2 \ge a_0 a_1$ et $k \le \frac{1}{a_0 a_1}$.

17 On prouve aisément par récurrence que f_n est de classe \mathcal{C}^n sur \mathbb{R} . On a alors

$$\forall x \in \mathbb{R}, \ f'_n(x) = \frac{1}{2a_0} \left(f_{n-1}(x + a_n) - f_{n-1}(x - a_n) \right)$$

Posons $S_n = \sum_{i=0}^n a_i$. Tout d'abord f_0 est nulle en dehors de $[-a_0, a_0] = [-S_0, S_0]$. Supposons que f_{n-1} soit nulle en dehors de $[-S_{n-1}, S_{n-1}]$ pour un certain $n \in \mathbb{N}^*$. Soit $x \in \mathbb{R}$. Si $x \geq S_n$, alors f_{n-1} est nulle sur $[x - a_n, x + a_n] \subset [S_{n-1}, +\infty[$ de sorte que $f_n(x) = 0$. Si $x \leq -S_n$, alors f_{n-1} est nulle sur $[x - a_n, x + a_n] \subset [-\infty, S_{n-1}]$ de sorte que $f_n(x) = 0$. f_n est bien nulle en dehors de $[-S_n, S_n]$, ce qui achève la récurrence.

19 Tout d'abord, $|f_0(x)| \le \frac{1}{a_0}$ pour tout $x \in \mathbb{R}$. Supposons que, pour un certain $n \in \mathbb{N}^*$, $|f_{n-1}(x)| \le \frac{1}{a_0}$ pour tout $x \in \mathbb{R}$. Par inégalité triangulaire,

$$|f_n(x)| \le \frac{1}{a_0} \int_{x-a_n}^{x+a_n} |f_{n-1}(t)| \, \mathrm{d}t \le \frac{1}{a_0} \int_{x-a_n}^{x+a_n} \frac{1}{a_0} \, \mathrm{d}t = \frac{a_n}{a_0^2} \le \frac{1}{a_0}$$

car $a_n \le a_0$. On conclut par récurrence.

C'est reparti pour une récurrence. Tout d'abord, $|f_0(x)| \le \frac{1}{a_0}$ pour tout $x \in \mathbb{R}$. Supposons qu'il existe $n \in \mathbb{N}^*$ tel que

$$\forall p \le n-1, \ \forall x \in \mathbb{R}, \ |f_{n-1}^{(p)}(x)| \le \frac{1}{a_0 a_1 \dots a_p}$$

Tout d'abord,

$$\forall x \in \mathbb{R}, \ |f_n(x)| \le \frac{1}{a_0}$$

Soit ensuite $p \in [1, n]$,

$$\forall x \in \mathbb{R}, \ f_n^{(p)}(x) = \frac{1}{2a_0} \left(f_{n-1}^{(p-1)}(x+a_n) - f_{n-1}^{(p-1)(x-a_n)} \right)$$

puis, par inégalité triangulaire,

$$\forall x \in \mathbb{R}, \ |f_n^{(p)}(x)| \leq \frac{1}{2a_0} \left(|f_{n-1}^{(p-1)}(x+a_n)| + |f_{n-1}^{(p-1)(x-a_n)}| \right)$$

Puisque $p-1 \le n-1$, on peut alors appliquer l'hypothèse de récurrence

$$\forall x \in \mathbb{R}, \ |f_n^{(p)}(x)| \leq \frac{1}{2a_0} \cdot \frac{2}{a_0 a_1 \dots a_{p-1}} = \frac{1}{a_0} \cdot \frac{1}{a_0 a_1 \dots a_{p-1}}$$

Mais comme $a_0 \ge a_p > 0$,

$$\forall x \in \mathbb{R}, \ |f_n^{(p)}(x)| \le \frac{1}{a_0 a_1 \cdots a_p}$$

On raisonne par récurrence. On sait que f_0 est k-lipschitzienne sur \mathbb{R} . Supposons que f_{n-1} soit k-lipschitzienne pour un certain $n \in \mathbb{N}^*$. Soit $(x, y) \in \mathbb{R}^2$. Par changement de variable

$$f_n(x) - f_n(y) = \frac{1}{2a_0} \int_{-a_n}^{a_n} f_{n-1}(t+x) dt - \frac{1}{2a_0} \int_{-a_n}^{a_n} f_{n-1}(t+y) dt = \frac{1}{2a_0} \int_{-a_n}^{a_n} (f_{n-1}(t+x) - f_{n-1}(t+y)) dt$$

Par inégalité triangulaire,

$$|f_n(x) - f_n(y)| \le \frac{1}{2a_0} \int_{-a_n}^{a_n} |f_{n-1}(t+x) - f_{n-1}(t+y)| dt$$

puis, par k-lipschitzianité de f,

$$|f_n(x) - f_n(y)| \le \frac{1}{2a_0} \int_{-a_n}^{a_n} k|x - y| dt = \frac{a_n}{a_0} k|x - y|$$

Enfin, $a_0 \le a_n > 0$ donc

$$|f_n(x) - f_n(y)| \le k|x - y|$$

ce qui achève la récurrence.