RANDOM TREE RECURSIONS: WHICH FIXED POINTS CORRESPOND TO TANGIBLE SETS OF TREES?

Toby Johnson, Moumanti Podder, Fiona Skerman arxiv:1808.03019

Czech Academy of Sciences

$$\mathcal{T}_{\mathsf{inf}} = \{ \mathsf{ infinite rooted trees } \}$$

$$p = \mathsf{Pr}[\mathcal{T}_{\lambda} \in \mathcal{T}_{\mathsf{inf}}]$$

EXAMPLE 1: Survival

$$\mathcal{T}_{inf} = \{ \text{ infinite rooted trees } \}$$

$$p = \Pr[\mathcal{T}_{\lambda} \in \mathcal{T}_{inf}]$$

metaproperty: a tree survives if root has at least one child who survives

$$p$$
 satisfies $p = \Pr[\operatorname{Po}(\lambda p) \ge 1] = 1 - e^{-\lambda p}$

\mathcal{T}_λ Galton-Watson tree with offspring distribution $\mathsf{Po}(\lambda)$

 $\mathcal{T}_{\mbox{bin}}=\{\mbox{ tree contains infinite binary at root }\}$ $p=\Pr[\mathcal{T}_{\lambda}\in\mathcal{T}_{\mbox{bin}}\]$ $metaproperty:\ ?$

 $\mathcal{T}_{\mathsf{bin}} = \{ \text{ tree contains infinite binary at root } \}$ $p = \mathsf{Pr}[T_{\lambda} \in \mathcal{T}_{\mathsf{bin}}]$ metaproperty:

 $\mathcal{T}_{\text{bin}} = \{ \text{ tree contains infinite binary at root } \}$ $p = \Pr[T_{\lambda} \in \mathcal{T}_{\text{bin}}]$ metaproperty: $tree \ t \in \mathcal{T}_{bin} \ iff \ children \ u,v \ \& \ t_u,t_v \in \mathcal{T}_{bin}$ $\text{hence } p \ \text{satisfies} \ p = 1 - (1 + \lambda p)e^{-\lambda p}$

 T_{λ} Galton-Watson tree with offspring distribution Po(λ) EXAMPLE 2 (AGAIN): start with metaproperty

metaproperty:

tree $t \in \mathcal{T}^*$ iff children $u, v \ \& \ t_u, t_v \in \mathcal{T}^*$

EXAMPLE 2 (AGAIN): start with metaproperty

metaproperty:

tree $t \in \mathcal{T}^*$ iff children $u, v \ \& \ t_u, t_v \in \mathcal{T}^*$

$$p = \mathsf{Pr}(\mathsf{T}_{\lambda} \in \mathcal{T}^*)$$
 satisfies $p = 1 - (1 + \lambda p)e^{-\lambda p}$

EXAMPLE 2 (AGAIN): start with metaproperty

metaproperty:

tree $t \in \mathcal{T}^*$ iff children $u, v \& t_u, t_v \in \mathcal{T}^*$

$$p = \Pr(T_{\lambda} \in \mathcal{T}^*)$$
 satisfies $p = 1 - (1 + \lambda p)e^{-\lambda p}$

T_{λ} Galton-Watson tree with offspring distribution Po(λ) EXAMPLE 2 (AGAIN): start with metaproperty

metaproperty:

subsets of trees

tree $t \in \mathcal{T}^*$ iff children $u,v \ \& \ t_u,t_v \in \mathcal{T}^*$

 $\mathcal{T}_{\mathsf{bin}}$

$$p = \mathsf{Pr}(\mathcal{T}_{\lambda} \in \mathcal{T}^*)$$
 satisfies $p = 1 - (1 + \lambda p)e^{-\lambda p}$

EXAMPLE 2 (AGAIN): start with metaproperty

metaproperty:
tree
$$t \in \mathcal{T}^*$$
 iff children $u, v \& t_u, t_v \in \mathcal{T}^*$

$$t_u, t_v \in \mathcal{T}^*$$

$$p = \mathsf{Pr}(\mathit{T}_{\lambda} \in \mathcal{T}^*)$$
 satisfies $p = 1 - (1 + \lambda p)e^{-\lambda p}$

$$\mathcal{T}_{\mathsf{bin}}$$

subsets of trees

$$\mathcal{T}_{\varnothing}=\varnothing$$

EXAMPLE 2 (AGAIN): start with metaproperty

metaproperty: tree $t \in \mathcal{T}^*$ iff children $u, v \& t_u, t_v \in \mathcal{T}^*$ subsets of trees $\mathcal{T}_{\mathsf{bin}}$

 $p = \mathsf{Pr}(\mathcal{T}_{\lambda} \in \mathcal{T}^*)$ satisfies $p = 1 - (1 + \lambda p)e^{-\lambda p}$

$$\mathcal{T}_{\varnothing}=\varnothing$$

EXAMPLE 2 (AGAIN): start with metaproperty

metaproperty:

tree $t \in \mathcal{T}^*$ iff children $u, v \& t_u, t_v \in \mathcal{T}^*$

subsets of trees

 $\mathcal{T}_{\mathsf{bin}}$

$$p = \mathsf{Pr}(T_{\lambda} \in \mathcal{T}^*)$$
 satisfies $p = 1 - (1 + \lambda p)e^{-\lambda p}$

$$\mathcal{T}_{\varnothing}=\varnothing$$

fixed points

QUESTION:

Is there set of trees \mathcal{T}' satisfying metaproperty with $\Pr(\mathcal{T}_{\lambda} \in \mathcal{T}') = \mathsf{blue}$ line

EXAMPLE 2 (AGAIN): start with metaproperty

metaproperty:

tree $t \in \mathcal{T}^*$ iff children $u, v \& t_u, t_v \in \mathcal{T}^*$

subsets of trees

 $\mathcal{T}_{\mathsf{bin}}$

$$p = \mathsf{Pr}(T_{\lambda} \in \mathcal{T}^*)$$
 satisfies $p = 1 - (1 + \lambda p)e^{-\lambda p}$

$$\mathcal{T}_{\varnothing}=\varnothing$$

fixed points

QUESTION:

Is there set of trees \mathcal{T}' satisfying metaproperty with $\Pr(\mathcal{T}_{\lambda} \in \mathcal{T}') = \mathsf{blue}$ line

TREE AUTOMATA

- nodes states '0' and '1'
- automata $A \sim$ rules to determine the state of a parent from the number of children with states '0', '1'.
- examples, n_i number of children state i

at-least-one
$$A(n_0, n_1) = \mathbf{1}[n_1 \ge 1]$$

at-least-two $A(n_0, n_1) = \mathbf{1}[n_1 \ge 2]$
three musketeers $A(n_0, n_1) = \mathbf{1}[((n_0 = 0) \land (n_1 = 3)) \lor ((n_0 = 3) \land (n_1 = 0))]$

DISTRIBUTION MAP for automaton A

 $\Phi_A(p)$ probability a root has state '1' after applying automaton to children which have indep. state '1' with prob. p, '0' otherwise

$$\bullet \qquad \Phi_A(p) = \Pr[A(\mathsf{Po}((1-p)\lambda),\mathsf{Po}(p\lambda)) = 1]$$

INTERPRETATION for automaton A

- intuitively (indicator of) set of trees satisfying the automaton.
- $\iota:\mathcal{T} \to \{0,1\}$ measurable map. ι interpretation if $\forall t \notin \mathcal{T}_{\mathsf{bad}}$, assigned states $\iota(v) = \iota(t_v)$ compatible with A for some exceptional set $\Pr(\mathcal{T}_\lambda \in \mathcal{T}_{\mathsf{bad}}) = 0$

QUESTION

Given a two state automaton A which fixed pts of Φ_A have an interpretation?

EXAMPLE 2 (AGAIN AGAIN): start with automaton

let
$$A(n_0, n_1) = \mathbf{1}[n_1 \ge 2]$$

states '0':∘ and '1':•

EXAMPLE 2 (AGAIN AGAIN): start with automaton

let $A(n_0, n_1) = \mathbf{1}[n_1 \ge 2]$ states '0': \circ and '1': \bullet

EXAMPLE 2 (AGAIN AGAIN): start with automaton

let $A(n_0, n_1) = \mathbf{1}[n_1 \ge 2]$ states '0': \circ and '1': \bullet

EXAMPLE 2 (AGAIN AGAIN): start with automaton

let $A(n_0, n_1) = \mathbf{1}[n_1 \ge 2]$ states '0':o and '1':•

EXAMPLE 2 (AGAIN AGAIN): start with automaton

let $A(n_0, n_1) = \mathbf{1}[n_1 \ge 2]$ states '0':\(\infty\) and '1':\(\infty\)

EXAMPLE 2 (AGAIN AGAIN): start with automaton

let
$$A(n_0, n_1) = \mathbf{1}[n_1 \ge 2]$$

states '0':∘ and '1':•

$$\Phi_A(p) = 1 - (1 + \lambda p)e^{-\lambda p}$$

EXAMPLE 2 (AGAIN AGAIN): start with automaton

let
$$A(n_0, n_1) = \mathbf{1}[n_1 \ge 2]$$

states '0':∘ and '1':•

$$\Phi_A(p) = 1 - (1 + \lambda p)e^{-\lambda p}$$

EXAMPLE 2 (AGAIN AGAIN): start with automaton

let
$$A(n_0, n_1) = \mathbf{1}[n_1 \ge 2]$$

states '0':∘ and '1':•

$$\Phi_A(p) = 1 - (1 + \lambda p)e^{-\lambda p}$$

interpretations for fixed pts

$$\iota_1(v) = \mathbf{1}[t_v \in \mathcal{T}_{\mathsf{bin}}]$$
$$\iota_{\varnothing}(v) = 0$$

RESULT: there is NO interpretation for blue fixed pts

PIVOTAL VERTICES

- a vertex is pivotal if switching its colour and applying automaton to its ancestors switches the colour at the root.
- parent of a pivotal node is pivotal

PIVOT TREE for zero-one labelled tree (t,ω)

- \bullet $t_{
 m piv}$ is the subgraph induced by pivotal vertices
- Observe t_{piv} is a tree from the root

at-least-two

$$A(n_0, n_1) = \mathbf{1}[n_1 \geq 2]$$

states '0':○ and '1':●

at-least-two

$$A(n_0, n_1) = \mathbf{1}[n_1 \geq 2]$$

states '0':○ and '1':●

multiple-that-agree

$$A(n_0, n_1) = \mathbf{1}[((n_0 = 0) \land (n_1 \ge 2)) \lor ((n_0 \ge 2) \land (n_1 = 0))]$$

states '0':○ and '1':●

multiple-that-agree

$$A(n_0, n_1) = \mathbf{1}[((n_0 = 0) \land (n_1 \ge 2)) \lor ((n_0 \ge 2) \land (n_1 = 0))]$$

states '0':∘ and '1':•

multiple-that-agree

$$A(n_0, n_1) = \mathbf{1}[((n_0 = 0) \land (n_1 \ge 2)) \lor ((n_0 \ge 2) \land (n_1 = 0))]$$

states '0':∘ and '1':•

RANDOM STATE TREE (T,ω) for automaton A and p a fixed pt of Φ_A

- •(i) $T \sim T_{\lambda}$
- •(ii) for every n the conditional distribution of $(\omega(v):d(v)=n)$ given $T|_n$ is i.i.d. Ber(p).
- \bullet (iii) ω almost surely compatible with A

Thm (Johnson, Podder, S. 2018+)

Given automata A and p a fixed point of Φ_A . Let $T_{\text{piv}}(\lambda)$ denote the pivot tree of the random state tree of A and p. The fixed point p admits an interpretation iff T_{piv} is subcritical or critical.

BOOLEAN FUNCTIONS AND INFLUENCE

function
$$f:\{0,1\}^m \to \{0,1\}$$

say $\sigma=\sigma_1\dots\sigma_m$ pivotal at i if flipping i -th bit flips value of f $I_i(f)=$ influence of i is probability the i -th co-ordinate pivotal $I(f)=\sum_i I_i(f)$

DICTATOR
$$f(\sigma) = \sigma_1$$

 $I_1(f) = 1$ and $i > 1$ $I_i = 0$ so $I(f) = 1$

MAJORITY
$$f(\sigma) = \mathbf{1}[\sum_i \sigma_i > m/2]$$
 $I_i(f)$ is probability $\sigma \setminus \sigma_i$ has same #'1's and #'0's, order $m^{-\frac{1}{2}}$. $I(f) \sim m^{1/2}$.

PARITY
$$f(\sigma) = (-1)^{\sum_i \sigma_i}$$

 $I_i(f) = 1$ for each i . $I(f) = m$.

THM (BKKKL)

 $\exists c$ such that:

Given
$$g: \{0,1\}^m \to \{0,1\}$$
, $x = \mathbb{P}[g(S_1,\ldots,S_m) = 1]$, $S_i \sim \text{Ber}(p)$ independent we have
$$I(g) \ge c \min\{1-x,x\} \log \frac{1}{\max_i I_i(g)}.$$

'if total influence and max influence small then g nearly constant'

SKETCH T_{piv} subcritical implies p interpretable

SET-UP Condition on
$$T|n$$
 and colour n -level $S_v \sim \text{Ber}(p)$, $g = \omega(\text{root}|T|_n)$
 $I_v(g)$ is probability that $v \in T_{piv}$.

 $\max_{v} I_{v}(g) \leq$ the probability T_{piv} survives to height n.

$$p = \mathbb{P}[\omega(\mathsf{root}) = 1 \mid T|_n] \to \{0, 1\}$$
 almost surely.

multiple-that-agree

$$A(n_0, n_1) = \mathbf{1}[((n_0 = 0) \land (n_1 \ge 2)) \lor ((n_0 \ge 2) \land (n_1 = 0))]$$

multiple-that-agree

$$A(n_0, n_1) = \mathbf{1}[((n_0 = 0) \land (n_1 \ge 2)) \lor ((n_0 \ge 2) \land (n_1 = 0))]$$

multiple-that-agree

$$A(n_0, n_1) = \mathbf{1}[((n_0 = 0) \land (n_1 \ge 2)) \lor ((n_0 \ge 2) \land (n_1 = 0))]$$

multiple-that-agree

$$A(n_0, n_1) = \mathbf{1}[((n_0 = 0) \land (n_1 \ge 2)) \lor ((n_0 \ge 2) \land (n_1 = 0))]$$

multiple-that-agree

$$A(n_0, n_1) = \mathbf{1}[((n_0 = 0) \land (n_1 \ge 2)) \lor ((n_0 \ge 2) \land (n_1 = 0))]$$

multiple-that-agree

$$A(n_0, n_1) = \mathbf{1}[((n_0 = 0) \land (n_1 \ge 2)) \lor ((n_0 \ge 2) \land (n_1 = 0))]$$

multiple-that-agree

$$A(n_0, n_1) = \mathbf{1}[((n_0 = 0) \land (n_1 \ge 2)) \lor ((n_0 \ge 2) \land (n_1 = 0))]$$

multiple-that-agree

$$A(n_0, n_1) = \mathbf{1}[((n_0 = 0) \land (n_1 \ge 2)) \lor ((n_0 \ge 2) \land (n_1 = 0))]$$

$$A((n_0, n_1)) = \mathbf{1}\{n_1 \ge 2\}$$
 interpretable rogue

$$A((n_0, n_1)) = \mathbf{1}\{n_1 = 0\}$$
 interpretable rogue

$$A((n_0, n_1)) = \mathbf{1}\{(n_1 \in \{0, 6, 7\}) \lor (n_1 \ge 12)\}$$
 interpretable rogue