Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники» Институт информационных технологий

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ВСТРОЕННЫХ СИСТЕМ

Контрольная работа для специальности «Программное обеспечение информационных технологий» группы 581072

Программирование встроенных систем

Номер варианта соответствует порядковому номеру в списке группы.

№ n/n	Студент	Номер З.К.
1	Амелькович Никита Александрович	5810531
2	Бакир Манар Манхалович	5810532
3	Богданова Кристина Евгеньевна	5810551
4	Васенович Роман Александрович	281021-3
5	Вежновец Виталина Валерьевна	5810504
6	Винярский Глеб Олегович	5810533
7	Вовнов Валерий Валерьевич	5810506
8	Годун Андрей Владимирович	5810510
9	Костюк Анастасия Александровна	5810537
10	Кривой Вячеслав Вячеславович	5810513
11	Лапко Артемий Юрьевич	5810538
12	Лисовский Андрей Антонович	5810540
13	Мальчик Дмитрий Александрович	5810543
14	Матвейчук Ирина Александровна	5810544
15	Минчук Наталья Михайловна	5810520
16	Мордасова Ксения Александровна	5810545
17	Нагорный Евгений Олегович	5810546
18	Османов Александр Константинович	5810549
19	Руденко Максим Сергеевич	981011-19
20	Савончик Александр Сергеевич	5810525
21	Селило Андрей Александрович	5810552
22	Скоп Дмитрий Александрович	5810554
23	Сороко Михаил Юрьевич	5810555
24	Шакола Александр Юрьевич	5810557
	Швед Артем Олегович	5810558
	Шершень Николай Михайлович	5810559
	Яковлев Дмитрий Владимирович	5810560

Вариант 1. Светофор

Напишите программу, управляющую тремя светофорами на Т-образном перекрестке.

Машины с дороги А и В могут двигаться прямо или поворачивать направо.

Машины с дороги С могут поворачивать налево и направо (налево). Для каждого светофора имеется предопределенная последовательность цветов:

Цвет	1	2	3	4	5	1
Красный:	ON	ON	OFF	OFF	OFF	ON
Желтый:	OFF	ON	OFF	OFF	ON	OFF
Зеленый:	OFF	OFF	ON	Blink	OFF	OFF

Светофоры 1 и 3 имеют наивысший приоритет. Диаграмма:

Вариант 2. Музыкальная шкатулка

Напишите программу управления музыкальной шкатулкой на основе микроконтроллера PIC16F84A, одного динамика и кнопки. Устройство распознает два виде нажатия на кнопку — одиночное и двойное. При одиночном нажатии контроллер воспроизводит на динамике мелодию №1. При повторном нажатии на кнопку в течении 1 сек. Контроллер воспроизводит на динамике мелодию №2. Обе мелодии хранятся в памяти EEPROM микроконтроллера. Обе мелодии прекращаются при следующем нажатии на кнопку.

Вариант 3. Генератор двоичной увеличивающейся последовательности

Генератор кодов состоит из микроконтроллера PIC16F84A, матричной клавиатуры и 4-х выводов для генерируемых кодов.

Увеличивающаяся двоичная последовательность (0000,...,1111); Микроконтроллер генерирует последовательность кодов при нажатии на клавиатуре кнопки «1».

Задержка между кодами равна 1 сек. При нажатии на другие кнопки микроконтроллер прекращает генерацию кодов. Схема устройства:

Вариант 4. Секундомер

Напишите программу управления электронным цифровым секундомером на основе микроконтроллера PIC16F84A, одной кнопки и 7-сегментного индикатора.

Секундомер позволяет замерять временные интервалы меду двумя нажатиями кнопки (в мс.). Первое нажатие кнопки запускает секундомер, значения отсчетов отображаются на индикаторе. Второе нажатие кнопки останавливает секундомер.

Вариант 5. Музыкальная шкатулка 2

Напишите программу управления музыкальной шкатулкой на основе микроконтроллера PIC16F84A, одного динамика и кнопки. При нажатии на кнопку контроллер воспроизводит на динамике мелодию «Имперский марш». Мелодия хранится в памяти EEPROM микроконтроллера.

Вариант 6. Генератор двоичной уменьшающейся последовательности

Генератор кодов состоит из микроконтроллера PIC16F84A, матричной клавиатуры и 4-х выводов для генерируемых кодов.

Увеличивающаяся двоичная последовательность (1111,...,0000);

Микроконтроллер генерирует последовательность кодов при нажатии на клавиатуре кнопки «2».

Задержка между кодами равна 1 сек. При нажатии на другие кнопки микроконтроллер прекращает генерацию кодов.

Схема устройства:

Вариант 7. Цифровые часы

Напишите программу управления цифровыми часами на основе микроконтроллера PIC16F84A, шести 7-сегментных индикаторов. Часы отображают текущее время в формате: <секунды> (индикаторы номер 1 и 2) <минуты> (индикаторы номер 3 и 4) <> (индикаторы номер 5 и 6). Начальное время задается в коде программы.

Вариант 8. Музыкальная шкатулка 3

Напишите программу управления музыкальной шкатулкой на основе микроконтроллера PIC16F84A, одного динамика и кнопки. При нажатии на кнопку контроллер воспроизводит на динамике мелодию «Mario» из игры для 8-битной игровой приставки. Мелодия хранится в памяти EEPROM микроконтроллера.

Схема устройства:

Вариант 9. Генератор последовательности кодов Грея

Генератор кодов состоит из микроконтроллера PIC16F84A, матричной клавиатуры и 4-х выводов для генерируемых кодов.

Последовательность кодов Грея (0000,0001,0011,...,1111);

Микроконтроллер генерирует последовательность кодов при нажатии на клавиатуре кнопки «3».

Задержка между кодами равна 1 сек. При нажатии на другие кнопки микроконтроллер прекращает генерацию кодов.

Схема устройства:

Вариант 10. Электронный кодовый замок

Напишите программу управления электронным кодовым замком на основе микроконтроллера PIC16F84A microcontroller, матричной клавиатуры и одного 7-сегментного индикатора. Открытие замка производится после выполнения пользователем следующих действий:

- 1. Нажать кнопку "*".
- 2. Ввести 4-символьный идентификатор пользователя.
- 3. Нажать кнопку "#".
- 4. Ввести 4-символьный правильный пароль.

Замок помнит до 4-х пользователей. По умолчания на индикаторе отображается символ "-". При неправильном вводе пароля выводится символ "Е". При правильном вводе пароля выводится символ "О". Пароли и идентификаторы пользователей хранятся в памяти EEPROM микроконтроллера.

Вариант 11. Музыкальная шкатулка 4

Напишите программу управления музыкальной шкатулкой на основе микроконтроллера PIC16F84A, одного динамика и кнопки. При нажатии на кнопку контроллер воспроизводит на динамике мелодию «Tank» из игры для 8-битной игровой приставки. Мелодия хранится в памяти EEPROM микроконтроллера.

Вариант 12. Генератор последовательности «Только один»

Генератор кодов состоит из микроконтроллера PIC16F84A, матричной клавиатуры и 4-х выводов для генерируемых кодов.

Последовательность "Только один" (0001,0010,...,1000);

Микроконтроллер генерирует последовательность кодов при нажатии на клавиатуре кнопки «4».

Задержка между кодами равна 1 сек. При нажатии на другие кнопки микроконтроллер прекращает генерацию кодов.

Схема устройства: OSC1/CLKIN 18 RA1 OSC2/CLKOUT RA2 MCLR RA3 RA4/TOCKI RB0/INT RB1 RB2 RB3 RB4 11 RB5 RB6 RB7 PIÇ16F84A R1 .

Вариант 13. Кнопочный телефон

Напишите программу управления кнопочным телефоном на основе микроконтроллера PIC16F84A, матричной клавиатуры 3х4 и динамика. При нажатии на любую кнопку микроконтроллер посылает на динамик звуковой сигнал с уникальным для данной клавиши тоном. Звуковые тоны для каждой клавиши хранятся в памяти EEPROM микроконтроллера. Схема устройства:

Вариант 14. Музыкальная шкатулка 5

Напишите программу управления музыкальной шкатулкой на основе микроконтроллера PIC16F84A, одного динамика и кнопки. При нажатии на кнопку контроллер воспроизводит на динамике мелодию «Jingle Bells». Мелодия хранится в памяти EEPROM микроконтроллера. Схема устройства:

Вариант 15. Генератор последовательности Джонсона

Генератор кодов состоит из микроконтроллера PIC16F84A, матричной клавиатуры и 4-х выводов для генерируемых кодов.

Последовательность Джонсона (0000,1000,1100,...,1111).

Микроконтроллер генерирует последовательность кодов при нажатии на клавиатуре кнопки «6».

Задержка между кодами равна 1 сек. При нажатии на другие кнопки микроконтроллер прекращает генерацию кодов. Схема устройства:

Вариант 16. Триггерные кнопки

Имеются две кнопки (Button1 and Button2) и один световой индикатор, подключенные к микроконтроллеру PIC16F84A. В самом начале индикатор не горит. Если нажата одна кнопка, то индикатор загорается. Выключается индикатор по нажатию кнопки Button1 или Button2. Схема устройства:

Вариант 17. Музыкальная шкатулка 6

Напишите программу управления музыкальной шкатулкой на основе микроконтроллера PIC16F84A, одного динамика и кнопки. При нажатии на кнопку контроллер воспроизводит на динамике мелодию «В лесу родилась ёлочка». Мелодия хранится в памяти EEPROM микроконтроллера.

Вариант 18. Светодиоды

Соберите в среде моделирования цифровых устройств PROTEUS Simulator Integration схему на основе микроконтроллера PIC и 4 жидкокристаллических индикаторов LED:

Напишите программу, которая выводит на индикаторах следующие последовательности сигналов "Все вместе":

1111

0000

В этом случае все 4 индикатора одновременно загораются и гаснут.

Вариант 19. Музыкальная шкатулка 7

Напишите программу управления музыкальной шкатулкой на основе микроконтроллера PIC16F84A, одного динамика и кнопки. При нажатии на кнопку контроллер воспроизводит на динамике мелодию «Smoke on the water». Мелодия хранится в памяти EEPROM микроконтроллера. Схема устройства:

Вариант 20. Генератор

Генератор кодов состоит из микроконтроллера PIC16F84A, матричной клавиатуры и 4-х выводов для генерируемых кодов. Заданы 5 предопределенных последовательностей кодов:

- 1. Увеличивающаяся двоичная (0000,...,1111);
- 2. Уменьшающаяся двоичная (1111,...,0000);
- 3. Последовательность кодов Грея (0000,0001,0011,...,1111);
- 4. Последовательность "Только один" (0001,0010,...,1000);
- 5. Последовательность Джонсона (0000,1000,1100,...,1111).

Микроконтроллер генерирует ту последовательность кодов, номер которой выбран с помощью клавиатуры. Например, после нажатия на кнопку "4" генерируется последовательность кодов "Только один". Задержка между кодами равна 1 сек. При нажатии на другие кнопки (7,8...,*,#) микроконтроллер прекращает генерацию кодов. Схема устройства:

Вариант 21. Счётчик нажатий

Соберите в среде моделирования цифровых устройств PROTEUS Simulator Integration цифровую схему на основе микроконтроллера PIC, одного 7-сегментного индикатора, одного простого индикатора и одной кнопки:

Напишите программу, которая по нажатию кнопки переключает состояние индикатора (горит — не горит) и выводит на 7-сегментный индикатор количество нажатий на кнопку.

Вариант 22. Светодиоды 2

Соберите в среде моделирования цифровых устройств PROTEUS Simulator Integration схему на основе микроконтроллера PIC и 4 жидкокристаллических индикаторов LED:

Напишите программу, которая выводит на индикаторах следующие последовательности сигналов "Только один":

1000

0100

0010

0001

Вариант 23. Преобразование последовательного кода в параллельный

Соберите в среде моделирования цифровых устройств PROTEUS Simulator Integration цифровую схему на основе микроконтроллера PIC, одного сдвигового регистра 74HC165 и одного двухразрядного 7-сегментного индикатора 7S-LEDs:

Напишите программу, выводящую на один из индикаторов символ, загруженный в сдвиговый регистр. Входные данные для сдвигового регистра представляются в формате:

Бит L обозначает, на какой из индикаторов следует выводить символ: L='0'- первый индикатор 7S-LED, L='1'- второй индикатор.

Биты S0...S6 задают вид символа на индикаторе:

Например, символу 'h', выводимому на второй индикатор, соответствует код: "00101111"(0x2F): S0=0', S1=0', S2=1', S3=0', S4...S6=1', L=1'

Вариант 24. Светодиоды 3

Соберите в среде моделирования цифровых устройств PROTEUS Simulator Integration схему на основе микроконтроллера PIC и 4 жидкокристаллических индикаторов LED:

Напишите программу, которая выводит на индикаторах следующие последовательности сигналов "2 из 4":

Вариант 25. Программирование матричной клавиатуры

Соберите в среде моделирования цифровых устройств PROTEUS Simulator Integration цифровую схему на основе микроконтроллера PIC, клавиатуры 3х4 и одного 7-сегментного индикатора:

Напишите программу, которая отображает значение нажатой кнопки на 7-сегментном индикаторе.

Вариант 26. Светодиоды 4

Соберите в среде моделирования цифровых устройств PROTEUS Simulator Integration схему на основе микроконтроллера PIC и 4

Напишите программу, которая выводит на индикаторах следующие последовательности сигналов "двоичный код"

0000

0001

0010

0011

0100

.... 1111

Вариант 27. Программирование дисплея

Соберите в среде моделирования цифровых устройств PROTEUS Simulator Integration схему на основе микроконтроллера PIC и двухстрочного дисплея LM016L:

Напишите программу, которая выводит на мониторе следующие данные:

1-я строка: « БГУИР»,

2-я строка: «РОІТ».