kNN и SVM

Total points 8

1.	Как	: решается задача классификации методом k ближайших соседей?	1 point
	•	Для объекта, который нужно классифицировать, находятся k ближайших к нему объектов из обучающей выборки («соседей»), и исходный объект относится к тому классу, который преобладает среди соседей.	
	0	Для объекта, который нужно классифицировать, находятся k ближайших к нему объектов из обучающей выборки («соседей»), и исходный объект относится к тому классу, к которому относится k -тый сосед, чтобы не переобучаться на более близких объектах.	
	0	Обучающая выборка делится на группы по k объектов, а в областях внутри выпуклой оболочки этих объектов классификатор отвечает классом, преобладающим среди этих объектов.	
2.	Как	: работает центроидный классификатор?	1 point
	0	Обучающая выборка делится на группы по k объектов, а в областях внутри выпуклой оболочки этих объектов классификатор отвечает классом, преобладающим среди этих объектов.	
	•	Для каждого класса вычисляется «центр» - среднее арифметическое входящих в него точек из обучающей выборки, новый объект относится к тому классу, чей центр ближе к объекту.	
	0	Для объекта, который нужно классифицировать, находятся k ближайших к нему объектов из обучающей выборки («соседей»), и исходный объект относится к тому классу, который преобладает среди соседей.	
3.	Как	; решается задача регрессии методом k ближайших соседей?	1 point
	0	Для объекта, на котором нужно сделать прогноз, находятся k ближайших к нему объектов из обучающей выборки («соседей»), и на исходном объекте прогнозируется то значение целевой переменной, которое преобладает среди соседей.	
	•	Для объекта, на котором нужно сделать прогноз, находятся k : ближайших к нему объектов из обучающей выборки («соседей»), и на исходном объекте в качестве прогноза используется среднее значение целевой переменной по соседям.	
4.		ким получится оптимальное значение количества соседей k в методе ближайших соседей, если страивать его по качеству работы алгоритма на обучающей выборке?	1 point
	•	Зависит от выборки.	
	0	2	
	0	1	
	0	3	
5.	Me	тод опорных векторов — это линейный классификатор, использующий:	1 point
	•	Кусочно-линейную функцию потерь (hinge loss) и L_2 регуляризатор.	
	0	Логистическую функцию потерь и L_1 регуляризатор.	
	0	Экспоненциальную функцию потерь и ${\cal L}_2$ регуляризатор.	
	0	Квадратичную функцию потерь и L_1 регуляризатор.	
	\circ	Логистическую функцию потерь и L_2 регуляризатор.	

6.	Выберите выражение, которое задает функцию потерь (как функцию от отступа) в методе опорных векторов:	1 point		
	$\bigcirc \ L(M) = e^{-M}$			
	• $L(M) = max(0, 1 - M)$			
	$\bigcirc L(M) = \ln(1 - e^{-M})$			
	$\bigcirc L(M) = (1-M)^2$			
7.	Метод опорных векторов строится из соображений:	1 point		
	Минимизации ширины разделяющей полосы.			
	Максимизации ширины разделяющей полосы.			
	Минимизации квадратичных потерь.			
8.	Использование ядер в методе опорных векторов заключается в:	1 point		
	○ Замене обычного скалярного произведения произвольной нелинейной функцией, которая достаточно быстро вычисляется, чтобы итерационный процесс, применяемый для решения оптимизационной задачи сходился за разумное время.			
	 Замене скалярного произведения в исходном пространстве признаков скалярным произведением в спрямляющем пространстве, т.е. некоторой, возможно нелинейной, симметричной и положительно определенной функцией. 			
Coursera Honor Code Learn more I, Anton Alexandrovich Troitskii, understand that submitting work that isn't my own may result in permanent failure of this				
course or deactivation of my Coursera account.				
Submit Save draft				
∆ Like				