Projeto KIntercept

Jonathan Santos Cunha Carolina Santana Louzada

Disciplina: Interface Hardware/Software Prof.: Bruno Otávio Piedade Prado

Ideia

Modificar o firmware de um roteador

Obstáculos iniciais

- Encontrar código de firmware disponível, com documentação.
- Saber o que de fato seria útil extender ou modificar no firmware no espaço do kernel.

O que foi decidido?

 Criar um módulo para o kernel de um firmware baseado em Linux chamado OpenWrt

Quais ferramentas/plataformas foram utilizadas?

- 1. VSCode
- 2. OpenWRT SDK > Linux 4.14.131
- 3. GNS3
 - a. QEMU
 - b. Docker para VMS
 - c. Outras appliances

Qual a funcionalidade desse módulo?

Interceptar pacotes e modificar seu conteúdo (payload).

Conceitos necessários para o desenvolvimento do módulo

- Interface entre roteador e firmware
- Noções sobre redes de computadores e configuração
- Conhecimento sobre compilação do Kernel do Linux -> Gerenciamento de dispositivos

Protocolo UDP

Cabeçalho UDP + payload

Protocolo TCP

Cabeçalho TCP + payload

Utilizando NetFilter

```
struct nf hook ops {
        /* User fills in from here down. */
        nf hookfn
                                 *hook;
        struct net device
                                 *dev;
        void
                                 *priv;
        u int8 t
                        pf;
        unsigned int
                                 hooknum;
        /* Hooks are ordered in ascending priority. */
                                 priority;
        int
};
```


Utilizando sk_buff para lidar com os pacotes

skb_reserve()

skb_push()

skb_pull()

skb_put()

skb_trim()

Como foi montado o experimento de teste?

