Precision Measurement of the Radiative Decay Mode of the Neutron

RDK II Collaboration

Arizona State University

R. Alarcon, B. O'Neill

University of Maryland

E. Beise, H. Breuer

University of Michigan

M. Bales, T. Chupp, R. Cooper

National Institute of Science & Technology (NIST)

C. Bass, K. Coakley, S. Dewey, C. Fu, T. Gentile, P. Mumm, J. Nico, A. Thompson

University of Sussex

J. Byrne

Tulane University

F. Wietfeldt, K. Pulliam

Theory

Overview

- National Institute of Standards & Technology (NIST) NG6 cold neutron beam
- On beam from July 2008 to Nov 2009
- 4.6 T magnetic field traps charged decay products to tight orbits giving large solid angle coverage
- Electrostatic mirror turns around "wrong-way" protons
- Delayed electron-proton coincidence trigger
- Waveform-based data acquisition

Primary detector

- Bismuth germanate (BGO) scintillator crystals coupled to avalanche photo-diodes (APD)
 - 12 detectors
 - 200x12x12mm3 BGOs
 - 14x14mm2 APDs
 - <10keV-endpoint</pre>

Primary detector

- APDs operate in vacuum and high magnetic field (~5 T)
- APD gain increases and noise decreases with cooling
- Light yield of BGO increases with cooling
- Large crystals available at reasonable cost

Direct detector

Large area bare avalanche photo-diode

(bAPD)

- 3 detectors

- 28x28mm2
- ~500eV-20keV

Direct detector

- Lower energy range
- Lower background
- Narrower timing peak
- Smaller cross section

Analysis

	All voltages	Full Mirror
Run time	164.4d	97.8d
Live time	147.1d	87.5d
Total triggers	9.7x107	6.8x107
Run data	6.4Tb	4.4Tb
Total data	22Tb	

- Parameters to extract from waveforms
 - Energy
 - Electron
 - Proton
 - Photon
 - Time of Flight
 - Electron-proton
 - Electron photon

- Fit function
 - A+Be-C(x-t)(1-e-D(x-t))
 - A = signal drift (electronics)
 - B = intensity
 - C = falling rate (electronics)
 - D = rising rate (BGO to APD)
 - t = time
 - E = energy
- Hybrid linear/non-linear regression
- Allows measurement of additional parameters
- Poor fits with some signals

$$x_{\text{max}} = t + \frac{1}{D} \ln \left(1 + \frac{D}{C} \right)$$

$$E = \frac{BD}{C+D} \left(1 + \frac{D}{C}\right)^{-\frac{C}{D}}$$

Smoothing

- Adaptation of locally weighted scatterplot smoothing (LOWESS) algorithm
- Uniform spacing of points allows the use of a simple transformation matrix
- Adjustable smoothing radius R
- Tradeoff between timing resolution and noise reduction

$$X = \begin{bmatrix} 1 & -R \\ 1 & -R+1 \\ \vdots & \vdots \\ 1 & R-1 \\ 1 & R \end{bmatrix} \qquad W_{ii} = 1 - \left| \frac{X_{i1}}{R+1} \right|^{3}$$

$$T = \begin{bmatrix} 1 & 0 \end{bmatrix} \cdot (X^T W X)^{-1} X^T W \qquad y'_x = T \cdot y_{x-R, x+R}$$

Smoothing

Smoothing

Results

Results

Results

