

Spintronic Devices for Neuromorphic Computing

S.N. Piramanayagam (Prem)
Associate Professor
Division of PAP, SPMS

10th July 2019

Jin Tianli, Durgesh Kumar, Nicolo Sernicola Lew Wen Siang Division of PAP, SPMS, NTU Singapore

Lim Sze Ter IMRE, A*STAR, Singapore

Rachid Sbiaa Sultan Qaboos University Oman

Acknowledgements

We gratefully acknowledge AcRF Tier 1 RG163/15 and NRF-CRP grant

Outline

- Introduction
- Spin-based Neuromorphic Computing Devices
 - Synthetic Neurons and Synthetic synapses
- Domain wall pinning Geometric approach
- Domain wall pinning Magnetic texture approach
- Summary

Motivation

 Traditional scaling of semiconductor technologies – getting stagnated

 New architectures, apart from von Neumann architectures, are needed

Motivation

- Traditional scaling of semiconductor technologies – getting stagnated
- New architectures, apart from von Neumann architectures, are needed

 Artificial Intelligence is widely implemented

Neuromorphic computing

Artificial Intelligence

- Market in 2017 valued at \$16 B
- Market in 2025 \$190 B

(forecast)

Spin-based neuromorphic computing is rich in **science** and **application** potential. Recent (2019) funding → €36 M (Germany), A few M\$ (Singapore)

Motivation

CPU **Central Processing Unit Control Unit** Output Input Arithmetic/ **Devices Device Logic Unit Power Memory Unit**

Existing Hardware Algorithms

Artificial Intelligence

New Hardware Elements

New Algorithms

Neuromorphic Computing

von Neumann Architecture

Neuromorphic Computing

Synapses

- **Bridge between** two neurons
- **Gradually stronger** with learning

Outline

- Introduction
- Spin-based Neuromorphic Computing Devices
 - Synthetic Neurons and Synthetic synapses
- Domain wall pinning Geometric approach
- Domain wall pinning Magnetic texture approach
- Summary

Spin and Nanostructures Lab

Requirements

Neurons

 Respond (analog manner) and produce an output (digital manner)

Grollier et al., STOs

Synapse

- Respond to the other devices (neurons) and change state gradually
- Multiple resistance states
- Fukami et al., AHE

Neuromorphic Computing

A. Sengupta and K. Roy APPLIED PHYSICS REVIEWS 4, 041105 (2017)

Synapses – Multiple Resistance states

- Magnetic Tunnel **Junctions**
 - MRAM 0 and 1
- Domain Wall devices
 - Can show multiple resistance states
- Change domain wall position by current (STT or SOT)

7/17/2019

SpiNLah

Pinning Domain wall motion

 In systems that involve domain, the domain wall motion can be uncontrollable to the precision required of modern devices

Ta/CoFeB/MgO device with a PMA

Domain patterns : No pinning sites

White: Magnetization up

Grey: Magnetization down

DOMAIN WALL PINNING IS ESSENTIAL

Energy Barriers and Energy Wells

Outline

- Introduction
- Spin-based Neuromorphic Computing Devices
 - Synthetic Neurons and Synthetic synapses
- Domain wall pinning Geometric approach
- Domain wall pinning Magnetic texture approach
- Summary

Pinning Domain wall motion – Geometrical approach

 Pinning the domain walls is proposed to be achieved by the use of "notches"

DW design does
 not make use of the
 smallest feature
 size possible with
 lithography →
 density issue

20 nm (l)

500 (L) x 50 (W) x 4 (t) nm3

S. Noh, Y. Miyamoto, M. Okuda, N. Hayashi, Y. Kim, JAP, 111, 07D123 (2012)

(b) Anti-notch type

Spin and Nanostructures Lab

\$6 ~ 10 nm (w)

Staggered Domain Wall Device

M. Al Habri, R. Sbiaa, ... S.N. Piramanayagam... et al. PHYS. REV. APPLIED **11**, 024023 (2019)

7/17/2019

Spin and Nanostructures Lab

Staggered Domain Wall Device

- Domain wall can be pinned
- NiFe films

Rule of Thumb:

 Narrower the nanoconstriction, stronger is the pinning

Outline

- Introduction
- Spin-based Neuromorphic Computing Devices
 - Synthetic Neurons and Synthetic synapses
- Domain wall pinning Geometric approach
- Domain wall pinning Magnetic texture approach
- Summary

Domain wall pinning in non-topographical ways "Synthetic Magnetic textures"

 Diffusion of certain elements and causing magnetic textures

T.L. Jin et al., Sci. Reports 7, 16208 (2017) DOI:10.1038/\$41598-017-16335-Z

Magnetic materials of two different types stacked on each other

S.N. Piramanayagam, TMRC 2018 T.L. Jin et al., JMMM (2019)

Ion-implantation in thin films

17/7/2019

Domain Wall Pinning

Domain wall pinning by ion-implantation

Domain Patterns: With pinning sites

Domain wall without pinning sites

7/17/2019

Synaptic behaviour of nanowires with pinning sites

 $S_{pi}NL_{ab}$

7/17/201

Summary

 Basic Concepts of Neuromorphic Computing were outlined

 Domain wall pinning was demonstrated Geometrical methods and magnetic texture modification (ionimplantation method and DMI modification) 2490 Oe -1626 Oe -1732 Oe -1921 Oe -2212 Oe -2212 Oe

 The potential of such domain wall devices for neuromorphic computing are highlighted.

(a)

H

Si/SiO₂

Spin and Nanostructures Lab

17/7/2019

27