USN					

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)

III Semester B. E. Fast Track Examinations Oct-2020

Computer Science and Engineering

FOUNDATIONS OF COMPUTER SYSTEMS DESIGN

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

1	1.1	Consider the following bit pattern and represent the floating point	
		number in IEEE754 single precision format.	
		1100001111111000000000 0000000000	02
	1.2	Find prime implicants and essential prime implicants of the following	
		boolean fiction using K-map	
		$f(a,b,c,d) = \sum m(0,2,5,7,8,10,13,15) + dc(1,4,11,14)$	02
	1.3	Implement the following function using a 3 – 8 decoder with active low	
		output $f(a, b, c) = \pi M(0,1,3,5,6)$	01
	1.4	Construct positive-edge-triggered <i>T</i> flip flop using <i>D</i> flip flop.	02
	1.5	Registers R4 and R5 contain the decimal numbers 2000 and 3000	
		before each of the addressing modes is used to access a memory	
		operand. What is the effective addresses (EA) in each case	
		i) Add 12(R4), R5	
		ii) Move – (R4), R1	02
	1.6	Write the Booth's recoded and bit pair recoded multiplier values for	
		the number –6.	02
	1.7	Give the RTN(Register Transfer Notation) equivalent of the following	
		instructions:	
		i) Move LOC, R1	
		ii) Add R1, R2, R3	01
	1.8	Give the characteristic equation for The Toggle flip flop.	01
	1.9	Draw a state diagram of 7536 code sequence for mod 10 counter.	02
	1.10	Draw the state diagram of the serial binary adder.	02
	1.11	Define "Relative mode" in finding effective address (<i>EA</i>).	01
	1.12	List out the analysis procedure in designing a synchronous sequential	
1		networks	02

PART-B

2	а	Divide the following numbers using restoring division method	
		Divisor = 0011 , Dividend = 1000 .	05
	b	With a neat diagram describe how carry look ahead adder overcomes	
		the problems of ripple carry adder	06
	С	Analyse the boolean function $f(a, b, c, d) = \sum m(0,1,5,6,7,9,10,15)$ using	
		4 to 1 mux(consider a, b as select lines)	05

3	a	Design and explain a synchronous mod-10 counter using positive					
		edge triggered JK flip flops, whose counting sequence corresponds to	10				
	b	the 5421 code by obtaining its minimal sum equations Describe how edge triggered 'D' flip flop over comes the problems of					
		0's and 1's catching problems.					
		OR					
4	a	Design a self correcting mod-6 counter using SR flip flops(redirect all					
	L.	invalid states to 000)	08				
	b	With a neat diagram, illustrate the working of universal shift register 08					
5	a	Analyse and interpret the working of the sequential circuit given in fig 5a					
	b	Fig 5a List and explain the basic steps needed to execute the machine instruction Add <i>LOCA</i> , <i>R</i> 0 in terms of transfer between the components of processor, memory and some control commands with the help of	08				
		neat diagram 08					
		OR					
6	a	With implication table method achieve minimal state table for the state table given below: **Present state Nest state Output(z)**					
		$\frac{input(x)}{input(x)} = \frac{input(x)}{input(x)}$					
		$egin{array}{c cccc} A & A & B & 0 & 0 \\ B & D & C & 0 & 1 \\ \end{array}$					
		$egin{array}{c ccccccccccccccccccccccccccccccccccc$					
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
		$E \qquad \qquad B \qquad G \qquad 0 \qquad 0$					
		$F \qquad \qquad G \qquad C \qquad 0 \qquad 1$					
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	06				
	b	Differentiate between Mealy model and Moore model of a clocked synchronous sequential network					
	С	synchronous sequential network Discuss how the performance equation 'T' behaves in CISC and RISC					
		instruction set	06				

7		White on ecceptal language magnetic for finding the number of				
'	a	Write an assemble language program for finding the number of				
		negative integers in a list of 'n' 32-bit integers and store in location	05			
		NEGNUM.				
	b	Illustrate the significance of the following assembler directives:				
		i) Origin				
		ii) DATA WORD				
		iii) RESERVE				
		iv) EQU				
		v) END .	05			
	С	Register R5 is used in a program to point to the top of a stack				
		containing 32-bit number. Write a sequence of instructions using the				
		index, Auto-increment and Auto-decrement addressing modes to				
		perform each of the following tasks:				
		i) Pop the top two items off the stack, add them, then push the				
		result onto the stack				
		ii) Copy the fifth item from the top into register R3				
		iii) Remove the top ten items from the stack				
		For each case, assume that the stack contains ten or more elements.	06			
<u></u>						
8	a	Design $2M \times 8$ memory module using $512K \times 8$ memory chip and				
		explain various external connections & its requirements in detail	06			
	b	Mention different types memory mapping techniques of cache				
		memory. Also explain each technique with the help of a neat diagram				
	c	With the neat diagram explain three bus organization of the data				
		path.	04			