LaPIS Diagnostic Test Workbook - Mathematics

Name : Tharun Pranav G J

Class : 7

Section : B

School : AKV Public School

Login ID : AKV149

Tharun Pranav G J's Performance Report

Score: 22/40 Percentage: 55.0%

Tharun Pranav G J's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
	Class Teacher S	Signature	Princi	pal Signature	

Data handling

Topics to be Improved		
Chance of probability Sample space in probability, Basis of probability		
Arithmetic mean, mode and median	Mean, Median and Mode	
Range	Finding the range	

Hi, here in this video you will learn Basics of probability

Question: 1

Which of the following contains list of all possible outcomes.

Probability

Sample space

Sure events

.....

......

Impossible events

Answer:

Probability is the measure of ______ (chance /number) of an events happenings. Sample space consists of ______ (possible/ impossible) outcomes. Sure events always _____ (occurs/don't occurs). Impossible events _____ (occurs/ don't occurs). Therefore, _____ contains list of possible outcomes.

Question: 2

Write the possible outcomes while spinning the given wheel.

Answer:	
Outcomes are (possible/impossible) results of an experiment. The possible outcomes while spinning wheel are $\P0$, $\P10$,	
Question: 3	
A bag contains three balss of colour blue, green and red. Write the possible outcomes if tare taken out.	two balls
Answer:	
A bag contains, and balls. If one of the ball is blue in colour, then other ball can be or	
If one of the ball is green in colour, then other ball can be or	
If one of the ball is red in colour, then other ball can be or	
	基制 国
Hi, here in this video you will learn Mean, Median, Mode	
Question: 4	
Find the mode of the following data: 5, 15, 23, 5, 32, 44, 72, 55, 6, 3, 5, 65, 45, 67, 24, 19	and 98.
Answer:	
Mode is the number that occurs (frequently / rarely) in a given list of ob Arranging the data in ascending order:	servations.
occurs most number of times. Then, mode of the given data is	
Question: 5	
Which shape contains median of the given data 3, 5, 6, 2, 7, 9, 6, 4 and 1	
$\begin{array}{c c} & & & \\ \hline & & \\ \hline & & \\ \hline \end{array}$	
Answer:	
Median is the(first/central/last) value of a data when the data is arrange ascending or descending order. Arrange the given data in ascending order:	
Central value of the given data is and it is the of a data.	
$Question: \ 6$	

Marks scored	100	90	80	70
Number of students	4	5	2	1

 $Mean = \underline{\hspace{1cm}}$, $Median = \underline{\hspace{1cm}}$ and $Mode = \underline{\hspace{1cm}}$. Answer: of all observation number of observation . Mean = ---Here s sum of all observation = ______, number of observation = _____ Therefore, mean = _____ Arrange the data in ascending order: _____ Here, $median = \underline{\hspace{1cm}}$, $mode = \underline{\hspace{1cm}}$. Hi, here in this video you will learn Range Question: 7 Range of the data = _____ Answer: The difference between highest value and lowest value is _____ Example: Find the range of 10, 5, 30, 23, 54, 39 and 16 $Highest value = \underline{\hspace{1cm}}$, $Lowest value = \underline{\hspace{1cm}}$. $Range = \underline{\hspace{1cm}} - \underline{\hspace{1cm}} = \underline{\hspace{1cm}}.$ Question: 8 Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 14, 9 -20+51 $\frac{-38-51}{2}$ 51+38Answer: Arranging the data in ascending order, _____ In the given data, $Highest \ value = \underline{\hspace{1cm}}$, $Lowest \ value = \underline{\hspace{1cm}}$, $Range = \underline{\hspace{1cm}}$ Question: 9 Find the range of first 10 multiple of 5. Answer: First 10 multiple of 5 =Therefore,

 $Highest \ value = \underline{\hspace{1cm}}$, $Lowest \ value = \underline{\hspace{1cm}}$, $Range = \underline{\hspace{1cm}}$

Hi, here in this video you will learn Basics of probability
Question: 10
Identify the sure events and impossible events
(i) The sun rises in the west.
(ii) Water is colourless.
(iii) Clock rotates in clock wise direction.
(iv) Ball is square in shape.
$\underline{Answer:}$
Events that always occur are called (sure/ impossible) events. Events that cannot occur are called (sure/ impossible) events. Here, The sun rises in the west is event. Water is colourless is event. Clock rotates in clock wise direction is event. Ball is square in shape is event.
Question: 11
Probability of sure events is (greater / smaller) than probability of impossible events
$\underline{Answer:}$
Probability of sure event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Probability of impossible event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Therefore, Probability of sure event $\underline{\hspace{1cm}}$ Probability of impossible event.
$Question: \ 12$
Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the probability of getting a pen from his box.
$\underline{Answer:}$
Things Raju have (Yes/ No). Does Raju have pen in his box, (Yes/ No). Then probability of getting pen from his box is (0/1)

Geometry

Topics to be Improved			
Types of triangle Basics of types of triangle (sides)			
Criteria for congruence of triangle	Idenfication of criteria of congruence of triangles		
Angle sum property of triangle	Angle sum property of triangle		
Right angle triangle and pythagoras property	Basics of Pythagoras property		
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle		

Hi, here in this video you will learn **Types of triangle**

Qu	estion:	13

Polygon with three sides is called as ______.

Answer:

A polygon is a simple $___$ (open / closed) curve made up of only line segments.

Polygon with three sides is called ______.

Draw a diagram of polygon with three sides:

Question: 14

Identify the types of triangles.

Answer:

Triangle has sides.
• Triangle with all sides are equal is called triangle.
• Triangle with two sides of equal length is called triangle.
• Triangle with three sides of different length is called triangle.
<u>Question: 15</u>
A park is in the shape of an isosceles triangle. If side length of the park is 30ft and 60ft. then the possible length of third side of park can be
Answer:
The shape of the park is The shapes has sides and this shape has sides of equal length. Given: length of sides of park is The possible length of third side is
Hi, here in this video you will learn Criteria of congruence
<u>Question: 16</u>
Circle the groups that contain congruent images.
Answer:
Two geometrical shapes are said to be congruent if they are (identical/non-identical) in shapes and size. Example: Square and Rectangle are (congruent/not congruent).
Question: 17
If the three sides of the triangle are equal to the corresponding sides of the other triangle, then two triangles are congruent under (SSS/ASA/SAS) criteria .
Answer:
Two triangle are (congruent/not congruent) if they are identical in shapes and size. Criteria for congruence of triangles are SSS, and
1. In SSS Congruence criteria - $(2/3/5)$ sides of the triangle are (equal/not equal) to the three corresponding sides of the other triangle.

- 2. In SAS Congruence criteria (2/3/5) sides and (one/two) angle between them are equal to the corresponding sides and the included angle of the other triangle.
- 3. In ASA Congruence criteria (2/3/5) angles and (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.

SSS	sides and angles are equal
SAS	sides and angles are equal
ASA	sides and angles are equal

.....

Question: 18

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR

Answer:

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ___ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Hi, here in this video you will learn **Angle sum property**

C

Question: 19

Sum of the angles of triangle is _____.

Answer:

$$\angle A + \angle B + \angle C = \underline{\hspace{1cm}}$$

Angle sum formula = $(n-2) \times 180^{\circ}$, n= number of sides Triangle has _____ sides. Sum of the angles of triangle = $(_{----} - 2) \times 180^{\circ} = _{----}$

Question: 20

Which of the following triangle satisfy the angle sum property.

Answer:

Angle sum property of triangle: sum of the angles of a triangle is _______ In $\triangle ABC$, Sum of the angles = $\angle A + \angle B + \angle C =$ _____ = _____ = ____ In $\triangle PQR$, Sum of the angles = _____ = ____ = ____ = ____ In $\triangle XYZ$, Sum of the angles = _____ = ____ = ____ = ____ = ____ = ____ Therefore, the triangles that satisfy the angle sum property are = ______

Question: 21

Find the angles of triangle, if their angles are in the ratio 8:6:4.

Answer:

Ratio of angles in the triangle is ______ Let's consider the angles of triangle be 8x, ____ and ____ We know sum of the angles of a triangle is ____ Therefore, 8x+ ___ + ___ = 180° . The value of x= _____ The angles of the triangle are _____

Hi, here in this video you will learn Pythagoras property

Question: 22

In a right angled triangle, square of the _____ = sum of the squares of the legs.

Answer:

Pythagoras theorem is only applicable for ______ triangle.

Longest side of the triangle is _____ (hypotenuse/ legs) and other two sides are called _____ (hypotenuse/ legs).

Pythagoras theorem states that ______.

Question: 23

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:

Pythagoras theorem states that square of the _____ = sum of the squares of its

Given: Base = _____, Altitude = _____,

Base and altitude are _____ (hypotenuse/legs) of the triangle.

By Pythagoras theorem,
$$(____)^2 = (___)^2 + (___)^2$$

Therefore, hypotenuse of the triangle is _____.

Question: 24

Find the length of the rectangle, if breadth is $3~\mathrm{cm}$ and diagonal is $5~\mathrm{cm}$.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? $_$ (yes/ no).

Given: breadth = $\underline{\hspace{1cm}}$, length of diagonal = $\underline{\hspace{1cm}}$

By Pythagoras theorem, $(____)^2 = (___)^2 + (___)^2$

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 25

Find the greatest distance to reach C from A in the given diagram.

Answer:

The sides of the given triangle are _____.

The possible way to reach point C from point A are _____ and AB then to

 $Side AC = \underline{\hspace{1cm}}$

Side AB + BC = _____ + ____ = ____

Therefore, the greatest distance to reach C from A in the given diagram is ______.

Question: 26

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

.....

 $\underline{Answer:}$

There are ______ sides in a triangle.

The sum of the two sides of a triangle is _____ than the other side of the triangle.

The difference of the two sides of a triangle is ______ than the other side of the triangle.

Example: In triangle XYZ,

Question: 27

The lengths of two sides of a triangle are $7~\mathrm{cm}$ and $10~\mathrm{cm}$. Between which two numbers can length of the third side fall?

$\underline{Answer:}$

1.	The sum of the two sides of a triangle is	than the third side of the triangle.
	Therefore, the third side should be	(less/ greater) than sum of other two sides
	Here, sum of the two sides $=$ \bot $+$	=
	Therefore, the length of the third side is less that	n
2.	The difference of the two sides of a triangle is	than the third side of the
	triangle.	
	Therefore, the third side should be	(less/ greater) than sum of other two sides
	Here, difference of the two sides =	=
	Therefore, the length of the third side is greater	than
Γ her	refore, length of the third side is greater than	but less than

Number system

Topics to be Improved			
Fractions Division of fraction			
Decimals Multiplication and division of decimals			
Operations on rational numbers	Subtraction of rational numbers, Division of rational numbers		
Positive and negative rational numbers	Identification of positive rational numbers		

Hi, here in this video you will learn Division on fractions

Question: 28

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

......

	<u> </u>	
	32	
	7	
\		\int

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is ____ , 2 is ____ and 7 is ____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}} \text{)+Numerator}}{\text{Denominator}}$

$$5\frac{2}{7} = \frac{(--- \times ---) + ---- }{7} = \frac{\square}{\square}$$

Question: 29

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $__$ and divisor = $__$.

1		14	=	1	×		=	
3	•	3		3	^	\Box		

_ -								
Find the half of the fraction	$1 \frac{12}{40}$.							
$\underline{Answer:}$								
To find half of a number, de	ivide the numb	er by _						
	$\frac{12}{40} \div $	_ = -	$\frac{12}{40} \times \boxed{}$	=				
Then the answer is	-							
Hi, here in this video	you will lear	n Bas	ics of	decir	nals			緩緩
Question: 31								
Shade 0.4 part of the given	shape.							
	<u> </u>							
Answer:								
There are boxes.								
0.4 can be expressed as This fraction represents			60118	al parts	.			
So, we need to shade					•			
Question: 32								
Solve the following.								
(i) 0.4×1.2								
(ii) 0.48 × 1.2								
Answer:								
(i) 0.4 × 1.2 : Multiplication of 0.4 : The number of digits Total digits after deci Count that digits from	after decimal pmal point in the	ooint in ne produ	0.4 is _ act of tw	vo num	and 1.2 bers is -	is	. .	S

(ii) 0.48×1.2 : Multiplication of 0.48×1.2 assuming there is no decimal point is The number of digits after decimal point in 0.48 is and 1.2 is
Total digits after decimal point in the product of two numbers is Count that digits from the right towards left and place the decimal point, the result is
$\underline{Question:~33}$
One box of chocolate costs Rs.20.10. What is the cost of 15 chocolates, if a box contains 10 chocolates?
Answer:
One box contains chocolates. The cost of one box is Then cost of one chocolate = ÷ =
(i) Total digits after decimal point in decimal number =
(ii) Divide the two numbers assuming there is no decimal point.
$\frac{2010}{15} = \underline{\hspace{1cm}}$
(iii) Place the decimal point after digits counting from the right in the quotient after division.
Then the cost of one chocolate is The cost of 15 chocolates = cost of one chocolate \times = x =
Hi, here in this video you will learn Operation on rational numbers
Question: 34
Solve: $\frac{-3}{3} + \frac{1}{3}$
Answer:

Fractions with same denominators are called ______ (like/ unlike) fractions. Fraction can be added only if they are ______ (like/ unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{-3}{3} = \frac{-3}{3}$$

Question: 35

Find the addition of shaded part of box A and shaded part of box B.

Total number of square in box $A = \underline{\hspace{1cm}}$. Number of shaded square in box $A = \underline{\hspace{1cm}}$

Shaded part of box A in fraction = _____

Total number of square in box $B = \underline{\hspace{1cm}}$. Number of shaded square in box $B = \underline{\hspace{1cm}}$.

Shaded part of box B in fraction = _____.

Shaded part of box A + Shaded part of box B = $___$ + $___$ = $___$

Question: 36

Find the missing values in the given figure.

Answer:

One litre = $\underline{\hspace{1cm}}$ ml $\frac{7}{10}$ of one liter = $\frac{7}{10}$ x $\underline{\hspace{1cm}}$ ml = $\underline{\hspace{1cm}}$ ml

Given: $1 = \frac{7}{10} + \underline{}$ Transposing $\frac{7}{10}$ to other sides, $1 = \frac{7}{10} = \underline{}$ Therefore, result is $\underline{}$.

Hi, here in this video you will learn **Positive and Negative rational numbers**

Question: 37

Segregate positive and negative rational number. $\,$

......

•	If both the numerator and the denominator of a rational number are
	(positive/negative), then it is positive rational number.

•	If either the numerator and the denominator of a rational number are negative,	then	it is
	(positive/negative) rational number.		

In the given circle, positive rational numbers are _____ and negative rational numbers are

Question: 38

 $\frac{-3}{-4}$ is a _____ (positive /negative / neither positive nor negative) rational number.

Answer:

-3 is a _____ number, -4 is a ____ number.

Division of $\frac{-3}{-4} = \square$ and this _____ rational number.

 $(Positive\ /\ Negative\ /\ Neither\ positive\ nor\ negative\ rational\ number)$

Question: 39

The product of a positive rational number and a negative rational number is ______rational number. (Positive/ Negative/ neither positive nor negative)

Answer:

Examples for positive rational numbers: _____

Examples for negative rational numbers:

Positive rational number \times Negative rational number = ____ \times ___ = ___ and this is ____ rational number

Hi, here in this video you will learn **Operation on rational numbers**

Question: 40

Fill in the boxes to make the given expression correct.

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square$$

When any fraction is divided by a fraction, we multiply the dividend by the ______(same/reciprocal) of the divisor.

Here, dividend = and divisor = =

$$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\boxed{}} \times \boxed{\boxed{}} = \boxed{\boxed{}}$$

Question: 41

Solve: $\frac{18}{7} \div 0.6$

Answer:

Fraction form of $0.6 = \underline{\hspace{1cm}}$,

when any fraction is divided by a fraction, we multiply the dividend by the $___$ (same/reciprocal) of the divisor. Here, dividend = $___$ and divisor = $___$.

$$\frac{18}{7} \div \boxed{ } = \frac{18}{7} \times \boxed{ } = \boxed{ }$$

Question: 42

Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\square} = 2$

Answer:

$$\frac{8}{3} \div \frac{16}{\square} = 2$$

$$\frac{8}{3} \times \frac{\square}{16} = 2$$

Transposing 8/3 to RHS,

$$\frac{\square}{16} = 2 \square \frac{8}{3}$$

$$\frac{\square}{16} = 2 \times \square$$

$$\frac{\square}{16} = \frac{\square}{\square}$$

Comparing Quantities

Topics to be Improved

Conversion of fraction into percentage

Conversion of fraction into percentage

......

Hi, here in this video you will learn Converting fraction into percentage

Question: 43

Complete the box in the given equation.

$$5\% = \frac{5}{}$$

Answer:

Percentage are the fraction with the denominator _____.

Therefore, 5% can be expressed as _____

.....

Question: 44

Mark the correct conversion form of fraction $\frac{1}{2}$ to percentage.

(i)
$$\frac{1}{2} \times \frac{50}{50} = \frac{50}{100} = 50\%$$

(ii)
$$\frac{1}{2} \times \frac{100}{100} = \frac{100}{200} = 200\%$$

(iii)
$$\frac{1}{2} \times 100 = \frac{100}{2} = 50\%$$

Answer:

To convert fraction into percentage, the value of ______ (denominator / numerator)should be 100 or _____ (multiply / divide) the fraction with 100 %.

Therefore, correct conversion form is _____

 $\underline{Question: 45} \qquad \dots$

Find the percentage of shaded part of square.

Answer:	
The square shape is divided into parts. Number of shaded part of square is	
Shaded part of square in fraction is	
To Convert into percentage ,	x 100

Algebra

Topics to be Improved				
subtraction of algebraic expressions	subtraction of algebraic expressions			
Monomials, binomials, trinomials and polynomials	Types of algebraic expression			
Addition and subtraction of algebraic expressions	Like terms and Unlike terms			

Hi, here in this video you will learn Subtraction on expression

Question: 46
Find the sum of two expressions $a + b + c$ and $b + c + d$
$\underline{Answer:}$
The given two expressions are and

The given two expressions are _____ and ____.

The two terms will get added only if they are _____ (Like/ Unlike) terms.

The sum of two expressions = _____ + ____.

The answer is _____.

Question: 47

	School A	School B
Number of boys	100b	250b
Number of girls	150g	200g
Number of teachers	25t	45t

.....

- (i) Total number of boys in school A and B is _____
- (ii) Total number of students in school B is _____
- (iii) How many more teachers are there in school B than school A?

Answer:

(i) Number of boys in school A = _____,

Number of boys in school B = _____.

Total number of boys in school A and school B is _____ + ___ = ____

(ii) Number of boys in school B = _____,

Number of girls in school $B = \underline{\hspace{1cm}}$

Total number of students in school B is $___$ + $___$ = $___$.

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $__$.

Question: 48

Solve the following:

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{ccc}
 & 3a - 5b \\
 & 5a - 7b \\
 & -2a - \underline{\hspace{1cm}}
\end{array}$$

......

 $\operatorname{Hi},$ here in this video you will learn \mathbf{Types} of $\mathbf{expression}$

Question: 49

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

The terms in the expression are _______, ______, and _______.

Therefore, there are ______ terms in the expression.

Question: 50

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$
- $3. \ 7xy + 4m$

- 1. The terms in expression $8x^2 + 0$ are _____. Here, expression has _____ term and it is a ______
- 2. The terms in expression 7xy + 4m are _____. Here, expression has _____ term and it is a _____.
- 3. The terms in expression 7m + n + 2 are _____. Here, expression has ____ term and it is a _____.

Question: 51

 $5m^2 + m + 0$ is a ______ expression. (Monomial/ Binomial/ Trinomial)

Answer:

The terms in expression $5m^2 + m + 0$ are _____. Here, the expression has _____ terms and it is called a _____ expression.

Hi, here in this video you will learn Addition on expression

Question: 52

Shade the like terms.

......

Answer:

Given terms are _____

Two or more term have _____ (same/ different) variables is called like terms.

Here, like terms are _____

Question: 53

Complete the expression $7r^2 + r \square - 2 \square = r^2$

Answer:

_____ (Like / Unlike) terms can be added or subtracted.

$$_{7r^2+ r} \square_{-2} \square = (_{7} + \underline{ } - 2)_{r^2} = \underline{ }$$

Question: 54				
Sam have 3a chocolates	and 9y icecrean	n. Ram have 7	a chocolates	and 5y icecream.
(i) Total chocolates R	am and Sam ha	ve :		
(ii) How many icecrea	ms Sam have me	ore than Ram	:	·
$\underline{Answer:}$				
		Chocolates	Icecream	
	Sam			
	Ram			
(i) Total chocolates R Ram's ((ii) How many icecrea	chocolate + San	n's chocolates ore than Ram	:	+ = =