roc curve (receiver operating characteristic)

	True Condition				
Decision	1 (+)	0 (-)			
<i>H</i> ₁	True Positive (Correct)	False Positive (Type I Error)			
H ₀	False Negative (Type II Error)	True Negative (Correct)			

- So far we have concentrated on Type I errors.
 - Specificity of a test:

specificity =
$$\frac{\# \text{ true negatives}}{\# \text{ false positives} + \# \text{ true negatives}} = P(H_0|-) = 1-\alpha$$

- α is the type I error rate (false positive rate)
- For Type II errors:
 - Sensitivity of a test:

sensitivity =
$$\frac{\# \text{ true positives}}{\# \text{ true positives} + \# \text{ false negatives}} = P(H_1|+) = 1-\beta$$

• β is the type II error rate (false negative rate)

Fundamental tool used in evaluating the performance of a binary classifier system as its discrimination threshold is varied. It's particularly common in fields like medicine, radiology, and machine learning. Here's an in-depth look at ROC curves:

Concept

- **Binary Classifier**: A system that classifies elements into two categories, such as positive/negative or true/false.
- Thresholds: The classifier's prediction is based on a threshold.
 Changing this threshold affects the classifier's sensitivity and specificity.

Components

 True Positive Rate (TPR): Also known as sensitivity or recall, it is the proportion of actual positives correctly identified by the classifier.

$$\mathrm{TPR} = \tfrac{\mathrm{True\ Positives}}{\mathrm{True\ Positives} + \mathrm{False\ Negatives}}$$

False Positive Rate (FPR): The proportion of actual negatives that are incorrectly classified as positive.

$$FPR = \frac{False\ Positives}{False\ Positives + True\ Negatives}$$

Plotting the ROC Curve

- The ROC curve plots TPR against FPR at various threshold settings.
- The x-axis represents FPR, and the y-axis represents TPR.
- A point in the top left corner (high TPR, low FPR) represents a perfect classification.

Analyzing ROC Curves

- Area Under the Curve (AUC): The area under the ROC curve is a
 measure of the classifier's ability to distinguish between the two
 classes. An AUC of 1 indicates perfect classification, 0.5 suggests no
 discriminative power (equivalent to random guessing), and 0.0
 indicates complete misclassification.
- **Trade-offs**: The curve shows the trade-off between sensitivity and specificity. A higher TPR comes with a higher FPR.

Applications

- Medical Diagnostics: Evaluating the performance of diagnostic tests.
- Machine Learning Models: Assessing the performance of classification algorithms.

Comparing Classifiers

 ROC curves are used to compare the performance of different classifiers. A model whose ROC curve is closer to the top left corner is generally considered better.

Limitations

- **Imbalanced Classes**: ROC curves may present an overly optimistic view of the classifier's performance on imbalanced datasets.
- **Not Sensitive to Threshold Selection**: ROC curves can mask the effects of selecting different thresholds for decision making.

Alternatives

• **Precision-Recall Curves**: Often used in cases of highly imbalanced datasets, focusing on the positive class's perspective.

In summary, ROC curves are a powerful method for assessing and comparing the performance of binary classifiers, helping to visualize the trade-offs between true positive and false positive rates at various thresholds

ROC Curve Example: Fish

Using length:

Length (x)	2	4	8	10	12	14
# Bass	0	1	3	8	10	5
# Salmon	2	5	10	5	1	0

- Assume we say H_0 : Salmon
 - Test statistic is length (x)
 - Reject H_0 if x > x*, e.g.
 - TPR = 2/23, FPR = 0/27 if x* = 2
 - TPR = 7/23, FPR = 1/26 if x* = 4
- What about lightness?

Lightness (I)	1	2	3	4	5
# Bass	0	1	2	10	12
# Salmon	6	10	6	1	0

