Log-concavity of Discrete Distributions:

Various Basic Proofs

Nolan R. H. Gagnon

July 18, 2017

Theorem 1 If p(t) is the probability mass function (PMF) of a discrete random variable on \mathbb{Z}^+ , then p(t) is log-concave if $\frac{p(t+1)}{p(t)}$ is a decreasing sequence.

Proof: Let $i \in \mathbb{Z}^+$. If $\frac{p(t+1)}{p(t)}$ is a decreasing sequence, then it must be the case that

$$\frac{p[(i+1)+1]}{p(i+1)} \le \frac{p(i+1)}{p(i)},$$

since i + 1 > i. Now, as p is a PMF, it must satisfy p(t) > 0 for all $t \in \mathbb{Z}^+$. Thus, multiplying by p(i)p(i+1) on both sides of the above inequality cannot change the direction of the inequality sign. Performing this multiplication yields

$$p(i)p(i+2) \le p^2(i+1).$$

This inequality can be rearranged to

$$p^{2}(i+1) - p(i)p(i+2) > 0.$$

Therefore, p is log-concave.

Note 2 A determinant for log-concavity of a PMF p(t) can be defined by

$$\Delta \eta(t) := \frac{p(t+1)}{p(t)} - \frac{p(t+2)}{p(t+1)}.$$

When $\Delta \eta(t) > 0$, the PMF is log-concave. When $\Delta \eta(t) < 0$, the PMF is log-convex.

Definition 3 The Extended Katz family of distributions are distributions whose PMFs satisfy

$$\frac{p(t+1)}{p(t)} = \frac{\alpha + \beta t}{\gamma + t},$$

where $\alpha > 0, \beta < 1, \gamma > 0$.

Theorem 4 Let p(t) be the PMF of a distribution within the Extended Katz family. Let the parameters of the distribution be $\alpha > 0, \beta < 1, \gamma > 0$. If $\alpha - \beta \gamma > 0$, then p(t) is log-concave.

Proof: Since p(t) is the PMF of a distribution within the Extended Katz family, it must satisfy the equation

$$\frac{p(t+1)}{p(t)} = \frac{\alpha + \beta t}{\gamma + t}.$$

In this case,

$$\Delta \eta(t) = \frac{\alpha + \beta t}{\gamma + t} - \frac{\alpha + \beta(t+1)}{\gamma + t + 1}$$

$$= \frac{(\alpha + \beta t)(\gamma + t + 1) - (\alpha + \beta t + \beta)(\gamma + t)}{(\gamma + t)(\gamma + t + 1)}$$

$$= \frac{(\alpha + \beta t)(\gamma + t) + (\alpha + \beta t) - (\alpha + \beta t)(\gamma + t) - \beta(\gamma + t)}{(\gamma + t)(\gamma + t + 1)}$$

$$= \frac{\alpha + \beta t - \beta \gamma - \beta t}{(\gamma + t)(\gamma + t + 1)}$$

$$= \frac{\alpha - \beta \gamma}{(\gamma + t)(\gamma + t + 1)}.$$

Notice that the denominator is always positive, since $\gamma > 0$ and t > 0 (since the support is restricted to the non-negative integers). Therefore, the determinant $\Delta \eta(t)$ is strictly positive only if $\alpha - \beta \gamma > 0$. Hence, p(t) is log-concave only if $\alpha - \beta \gamma > 0$.

Lemma 5 Let $n, m, k \in \mathbb{Z}^+$, with n > m + k. Then

$$\frac{\binom{n}{m+k}}{\binom{n}{m+k-1}} = \frac{n-m-k+1}{m+k}.$$

Proof: Clearly,

$$\frac{\binom{n}{m+k}}{\binom{n}{m+k-1}} = \frac{\binom{\frac{n!}{(n-m-k)!(m+k)!}}{\binom{\frac{n!}{(n-m-k+1)!(m+k-1)!}}}}{\binom{\frac{n!}{(n-m-k+1)!(m+k-1)!}}{n!(n-m-k)!(m+k)!}}$$
$$= \frac{n-m-k+1}{m+k}.$$

Theorem 6 The Binomial Distribution is a member of the Extended Katz family.

Proof: Let $\phi(t)$ denote the PMF of a binomial distribution with probability of success p and number of trials n. If it can be shown that there exist $\alpha > 0, \beta < 1, \gamma > 0$ such that

$$\frac{\phi(t+1)}{\phi(t)} = \frac{\alpha + \beta t}{\gamma + t}$$

then the proof will be complete. The ratio on the left-hand side of the equation is

$$\frac{\phi(t+1)}{\phi(t)} = \frac{\binom{n}{t+1}p^{t+1}(1-p)^{n-t-1}}{\binom{n}{t}p^{t}(1-p)^{n-t}}$$
(1)

$$= \left(\frac{p}{1-p}\right) \left(\frac{n-t}{t+1}\right),\tag{2}$$

where Lemma 5 was used in the simplification. Let $\gamma = 1$, $\beta = \frac{-p}{1-p}$, and $\alpha = \frac{np}{1-p}$. Clearly, $\beta < 1$, $\alpha > 0$, and $\gamma > 0$. Using these parameters, the expression in (2) can be rewritten as

$$\left(\frac{p}{1-p}\right)\left(\frac{n-t}{t+1}\right) = \frac{\alpha+\beta t}{\gamma+t}.$$

Therefore, the Binomial Distribution is a member of the Extended Katz family.

Theorem 7 The PMF of the Binomial Distribution is log-concave.

Proof: Let $\phi(t)$ be the PMF of a binomial distribution with probability of success p and number of trials n. Let $\theta = \frac{p}{1-p}$. Let $\alpha = n\theta$, $\beta = -\theta$, and $\gamma = 1$, as in the previous proof. Since the Binomial Distribution is a member of the Extended Katz family, it must be shown that $\alpha - \beta \gamma > 0$. But

$$\alpha - \beta \gamma = n\theta + \theta$$
$$= \theta(n+1) > 0.$$

Therefore, $\phi(t)$ is log-concave.