Inicial primer ap	ellido				
Cálculo II 1º del Grado en Matem 1º de Doble titulación Curso 2020-2021		rmática-Matem	ÁTICAS		JPO MAÑANA 🗌 RUPO TARDE 🗍
				5 DE 1	MARZO DE 2021
	I	Parcial 1			
Apellidos y Nombre .				D.N.I	
Justifique todas las re	espuestas.				
1. Consideramos la función	f(x,y) =	$= \min \left\{ \frac{1}{ x }, \frac{1}{ y } \right\}$			
1. (1 pt) Determine el do	ominio de f .				
2. (2 pts) Determine y di	· ·	el de f correspond	iente a los 1	niveles $c = 0$) y $c = 1$.
2. (3 pts) Se considera la fu	nción $f: \mathbb{R}^2 \to \mathbb{R}$ defin	nida como			
	$f(x,y) = \begin{cases} \frac{x^3 - x^3}{x^2 + x^3} \\ 0, \end{cases}$	$\frac{y^3}{y^2}$, si $(x,y) \neq$ si $(x,y) =$	(0,0)		
Calcule $\lim_{(x,y)\to(0,0)} f(x,y)$					
3. (2 pts) En \mathbb{R}^n consideran $\mathbf{u} = ($	nos los dos vectores $\left(1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \dots, \frac{(-1)^2}{4}\right)$	$\left(\frac{1}{n}\right)^{n+1}$, $\mathbf{v} = 0$	$(1, 2, 3, 4, \dots$	$\ldots, n)$.	
Elija (y justifique) la opción					
1. son paralelos para algu	4. son per	4. son perpendiculares si n es par;			
2. son paralelos si n es in		1 1		1	,
3. son perpendiculares pa	ara todo $n \in \mathbf{N}$;	5. ninguna	de las ante	eriores.	
4. (2 pts) Sea E el conjunto					
	•	$\mathbb{R}^2 : \operatorname{sen}(\pi y) = 0$	-		
Halle el conjunto de puntos	límite de $E.$ ¿Es E ce	rrado? ¿Es E com	pacto?		

Soluciones:

1. El dominio de la función son todos aquellos puntos donde la expresión dada en la definición de f tenga sentido. Como no se puede dividir por cero,

$$Dom(f) = \{ (x, y) : x \neq 0, y \neq 0 \}.$$

Esto es, todo el plano salvo por la unión de los dos ejes coordenados.

La curva de nivel correspondiente al nivel c=0 son aquellos $(x,y)\in \mathrm{Dom}(f)$ tal que f(x,y)=0. Pero esto requeriría que al menos uno de los valores 1/|x| o 1/|y| se anulara, lo que es imposible. Por lo tanto esa curva de nivel es el conjunto vacío.

La curva de nivel correspondiente al nivel c=1 son aquellos puntos $(x,y)\in \mathrm{Dom}(f)$ con f(x,y)=1. Esto da dos posibilidades:

1. O bien mín $\left\{\frac{1}{|x|}, \frac{1}{|y|}\right\} = \frac{1}{|x|} = 1$, en cuyo caso

$$\frac{1}{|y|} \ge \frac{1}{|x|} = 1, \Rightarrow |y| \le |x| = 1, \text{ con } y \ne 0,$$

lo que deja los dos casos

 $x = 1, -1 \le y < 0, \quad y \quad x = 1, \quad 0 < y \le 1.$

 $x = -1, -1 \le y < 0, y \quad x = -1, 0 < y \le 1;$

2. o bien mín $\left\{\frac{1}{|x|}, \frac{1}{|y|}\right\} = \frac{1}{|y|} = 1$, en cuyo caso

$$\frac{1}{|x|} \ge \frac{1}{|y|} = 1, \Rightarrow |x| \le |y| = 1, \text{ con } x \ne 0,$$

lo que deja los dos casos

 $y = 1, -1 \le x < 0, \quad y \quad y = 1, \quad 0 < x \le 1.$

 $y = -1, -1 \le x < 0, y \quad y = -1, 0 < x \le 1.$

La gráfica es el borde del cuadrado $[-1,1] \times [-1,1]$ salvo por los cuatro puntos $(\pm 1,0), (0,\pm 1)$.

2. Acercándonos al punto (0,0) por el eje de las x's, tenemos

$$\lim x \to 0 \frac{x^3 - 0^3}{x^2 + 0^2} = \lim_{x \to 0} x = 0,$$

así que el límite, caso de existir debe ser cero. Probando algunas formas más de acercarse a (0,0) se sigue obteniendo cero, así que lo intentamos calcular directamente de la definición. Para ellos, estimamos, usando $|x^3 - y^3| \le |x^3| + |y^3|$

$$\left| \frac{x^3 - y^3}{x^2 + y^2} \right| \le \left| \frac{x^3}{x^2 + y^2} \right| + \left| \frac{y^3}{x^2 + y^2} \right| \le \left| \frac{x^3}{x^2} \right| + \left| \frac{y^3}{y^2} \right| = |x| + |y|.$$

Pero

$$|x| \le \sqrt{x^2 + y^2}, \quad |y| \le \sqrt{x^2 + y^2}$$

Así que, si $\varepsilon > 0$, tomando $\delta = \varepsilon/2$, tenemos que siempre que $0 < \|(x,y) - (0,0)\| < \delta$, entonces

$$\left|\frac{x^3-y^3}{x^2+y^2}\right| \leq |x|+|y| \leq \sqrt{x^2+y^2}+\sqrt{x^2+y^2} < \delta+\delta = \epsilon,$$

por lo que

$$\lim_{(x,y)\to(0,0)}\frac{x^3-y^3}{x^2+y^2}=0.$$

3. La respuesta correcta es la (4). Las dos primeras son claramente falsas, ya que si n=3, por ejemplo, tenemos los vectores

$$\mathbf{u} = \left(1, -\frac{1}{2}, \frac{1}{3}\right), \quad \mathbf{v} = (1, 2, 3),$$

que no son paralelos al no ser uno múltiplo del otro.

La respuesta (3) también es falsa: por ejemplo, para el caso n=3, tenemos

$$\langle \mathbf{u}, \mathbf{v} \rangle = 1 \cdot 1 + 2 \cdot \left(-\frac{1}{2} \right) + 3 \cdot \frac{1}{3} = 1 - 1 + 1 = 1 \neq 0.$$

Finalmente, la (4) es correcta, ya que

$$\langle \mathbf{u}, \mathbf{v} \rangle = 1 \cdot 1 + 2 \cdot \left(-\frac{1}{2} \right) + 3 \cdot \frac{1}{3} + \dots + n \cdot \frac{(-1)^{n+1}}{n} = 1 - 1 + \dots + 1 - 1 = 0,$$

ya que al ser n par, hay el mismo número de 1's que de (-1)'s.

4. sen $\pi y = 0$ si y solo si $y \in \mathbb{Z}$, así que E se puede escribir como el conjunto

$$E = \{ (x, k) : x \in \mathbb{R}, \ell \in \mathbb{Z} \}.$$

Si (x_0, y_0) es un punto límite de E, entonces hay una sucesión de puntos $p_k = (x_k, y_k) \in E$ con $\lim_{k \to \infty} p_k = (x_0, y_0)$. Por lo tanto,

$$\lim_{k \to \infty} x_k = x_0, \qquad \lim_{k \to \infty} y_k = y_0.$$

Pero todos los $y_k \in \mathbb{Z}$, así que si converge a algún y_0 , debe haber un natural N tal que para todo k > N $y_k = y_0$. Esto es inmediato de la definición de límite: tomando $\epsilon = 1/4$, tendríamos un N natural tal que

para todo k > N, $|y_k - y_0| < 1/4$; como el único entero en el intervalo $(y_0 - 1/4, y_0 + 1/4)$ es el mismo y_0 , y todos los y_k son enteros, entonces $y_k = y_0$ para todo k > N.

Observamos que E contiene entonces todos sus puntos límites, por lo que gracias a lo visto en clase, es un conjunto cerrado.

Finalmente, observamos que E no es acotado (pero no recurriendo al dibujo, o diciendo que k es muy grande, u otra razón poco justificada). Lo demostramos viendo que, no importa que R > 0 tomemos, hay algún punto en E que no está en la bola B((0,0),R) de centro el origen y rradio R. El punto (R+1,0) está en E, pero su distancia al origen es $\sqrt{(R+1-0)^2+0^2} = R+1 > R$, por lo que no está en esa bola.