1 Cartesian coordinate system

 $\triangle \overline{r}(t)$ displacement over time interval $(t, t + \triangle t)$

parametric equations of trajectory $\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}$

Position

$$\overline{r}(t) = x(t)\hat{n}_x + y(t)\hat{n}_y + z(t)\hat{n}_z = (x(t), y(t), z(t))$$
 (1)

 $\hat{n}_x,\hat{n}_y,\hat{n}_z$ - fixed unit vectors (time independent) i.e. $\dot{\hat{n}}_x=\dot{\hat{n}}_y=\dot{\hat{n}}_z=0$ Velocity

$$\overline{v}_{av} = \frac{\Delta \overline{r}}{\Delta t} \qquad \text{(average)}$$

$$\overline{v}(t) = \lim_{\Delta t \to 0} \frac{\Delta \overline{r}}{\Delta t} = \lim_{\Delta t \to 0} \frac{\overline{r}(t + \Delta t) - \overline{r}(t)}{\Delta t}$$

$$= \lim_{\Delta t \to 0} \left[\frac{x(t + \Delta t) - x(t)}{\Delta t} \hat{n}_y + \frac{y(t + \Delta t) - y(t)}{\Delta t} \hat{n}_y + \frac{z(t + \Delta t) - z(t)}{\Delta t} \hat{n}_z \right]$$

$$= \underbrace{\dot{x}(t)}_{=v_x(t)} \hat{n}_x + \underbrace{\dot{y}(t)}_{=v_y(t)} \hat{n}_y + \underbrace{\dot{z}(t)}_{=v_z(t)} \hat{n}_z = (\dot{x}(t), \dot{y}(t), \dot{z}(t)) \qquad \text{(instantaneous)}$$
(3)

speed

$$v(t) = |\overline{v}(t)| = \sqrt{[\dot{x}(t)]^2 + [\dot{y}(t)]^2 + [\dot{z}(t)]^2}$$
(4)

[Velocity vector \overline{v} is always tagent to the trajectory!]

Acceleration

analogously
$$\overline{a}_{av} = \frac{\triangle \overline{v}}{\triangle t}$$
 (average), $\triangle \overline{v} = \overline{v}(t + \triangle t) - \overline{v}(t)$

(5)

$$\overline{a}(t) = \lim_{\Delta t \to 0} \frac{\Delta \overline{v}}{\Delta t} = \dot{v}_x(t) \hat{n}_x + \dot{v}_y(t) \hat{n}_y + \dot{v}_z(t) \hat{n}_z$$

$$= \underbrace{\ddot{x}(t)}_{=a_x(t)} \hat{n}_x + \underbrace{\ddot{y}(t)}_{=a_y(t)} \hat{n}_y + \underbrace{\ddot{z}(t)}_{=a_z(t)} \hat{n}_z \quad \text{(instantaneous)}$$

$$a(t) = |\overline{a}(t)| = \sqrt{[\ddot{x}(t)]^2 + [\ddot{y}(t)]^2 + [\ddot{z}(t)]^2} \tag{7}$$

magnitude

$$a(t) = |\overline{a}(t)| = \sqrt{|\ddot{x}(t)|^2 + |\ddot{y}(t)|^2 + |\ddot{z}(t)|^2}$$
(7)

Tangential and normal components of acceleration 2

acceleration parallel to velocity (i.e. tangent to trajectory)

changes magnitude of \overline{v} (speed)

acceleration perpendicular to velocity (i.e. normal to trajectory)

changes direction of \overline{v} (curves trajectory)

magnitude & direction of \overline{v} both change

special cases

constant speed along curved path

increasing speed along curved path

decreasing speed along curved path

Example(2D) projectile motion

Initial conditions (t=0)

$$\begin{cases} x(0) = 0 \\ y(0) = 0 \end{cases} \begin{cases} v_x(0) = v_{0x} = v_0 \cos \alpha \\ v_y(0) = v_{0y} = v_0 \sin \alpha \end{cases}$$

Accleration

$$a_x(t) \equiv 0$$
 that is
$$\frac{\mathrm{d}v_x}{\mathrm{d}t} = 0$$
$$\frac{\mathrm{d}v_y}{\mathrm{d}t} = -g$$

Velocity

$$\int_{v_{0x}}^{v_{x}(t)} dv_{x} = \int_{0}^{t} 0dt = 0 \qquad \Rightarrow \qquad v_{x}(t) = \text{const} = v_{0} \cos \alpha \tag{8}$$

$$\int_{v_{0x}}^{v_{y}(t)} dv_{y} = -\int_{0}^{t} gdt \qquad \Rightarrow \qquad v_{y}(t) = v_{0} \sin \alpha - gt \tag{9}$$

$$\int_{0}^{v_y(t)} dv_y = -\int_{0}^{t} g dt \qquad \Rightarrow \qquad v_y(t) = v_0 \sin \alpha - gt \tag{9}$$

Position

$$v_{x}(t) = \frac{\mathrm{d}x}{\mathrm{d}t} = v_{0}\cos\alpha \quad \Rightarrow \quad \int_{0}^{x(t)} \mathrm{d}x = \int_{0}^{t} v_{0}\cos\alpha \mathrm{d}t \quad \Rightarrow \quad x(t) = v_{0}t\cos\alpha \tag{10}$$

$$v_{y}(t) = \frac{\mathrm{d}y}{\mathrm{d}t} = v_{0}\sin\alpha - gt \quad \Rightarrow \quad \int_{0}^{y(t)} \mathrm{d}y = \int_{0}^{t} \left[v_{0}\sin\alpha - gt\right] \mathrm{d}t \quad \Rightarrow \quad y(t) = v_{0}t\sin\alpha - \frac{1}{2}gt^{2} \tag{11}$$

Trajectory

parmetric form
$$\begin{cases} x(t) = v_0 t \cos \alpha & \Rightarrow t = \frac{x}{v_0 \cos \alpha} \\ y(t) = v_0 t \sin \alpha - \frac{1}{2} g t^2 \end{cases}$$
 (12)
$$\Rightarrow \text{trajectory (implicit form)} \qquad y(x) = x \tan \alpha - \frac{1}{2} \frac{g}{v_0^2 \cos^2 \alpha} x^2 \quad \text{(parabola)}$$
 (13)

$$\Rightarrow$$
 trajectory (implicit form) $y(x) = x \tan \alpha - \frac{1}{2} \frac{g}{v_0^2 \cos^2 \alpha} x^2$ (parabola) (13)

Height and range

Height

At the highest point
$$v_y(t_h) = 0 \Rightarrow t_h = \frac{v_0 \sin \alpha}{g}$$
 (14)

and
$$y(t_h) = \frac{v_0^2 \sin^2 \alpha}{2g} = h$$
 use (11) (15)

Range

$$y(x_R) = 0 \implies x_R \tan \alpha - \frac{1}{2} \frac{g}{v_0^2 \cos^2 \alpha} x_R^2 = 0$$
 use (13)
 $\Rightarrow x_R = 0$ (starting point) or $x_R = \frac{v_0^2 \sin 2\alpha}{g}$ (16)

What angle gives maximum (a)height? $\alpha = 90^{\circ}$ (b)range? $\alpha = 45^{\circ}$

Acceleration in projectile motion

Polar coordinates (2D kinematics) 3

Position vector Trajectory

$$\overline{r} = r\hat{n}_r$$

parametric form
$$\begin{cases} r = r(t) \\ \varphi = \varphi(t) \end{cases}$$
 implicit form $r = r(\varphi)$ or $\varphi = \varphi(r)$ (18)

or implicit form
$$r = r(\varphi)$$
 or $\varphi = \varphi(r)$ (18)

Velocity

$$\overline{v} = \dot{\overline{r}} = \dot{r}\hat{n}_r + r\dot{\hat{n}}_r \tag{19}$$

Note that $\dot{\hat{n}}_r$ is not zero, unlike in Cartesian coordinates, here $\hat{n}_r, \hat{n}_\varphi$ are not fixed.

How to find $\dot{\hat{n}}_r$ and $\dot{\hat{n}}_{\varphi}$?

$$\begin{cases} \hat{n}_r = \cos\varphi \hat{n}_x + \sin\varphi \hat{n}_y \\ \hat{n}_\varphi = -\sin\varphi \hat{n}_x + \cos\varphi \hat{n}_y \end{cases}$$
 (20)

Now using (20)

$$\dot{\hat{n}}_r = -\dot{\varphi}\sin\varphi \hat{n}_x + \dot{\varphi}\cos\varphi \hat{n}_y = \dot{\varphi}(-\sin\varphi \hat{n}_x + \cos\varphi \hat{n}_y) = \dot{\varphi}\hat{n}_\varphi \tag{21}$$

$$\dot{\hat{n}}_{\varphi} = -\dot{\varphi}\cos\varphi\hat{n}_x - \dot{\varphi}\sin\varphi\hat{n}_y = -\dot{\varphi}(\cos\varphi\hat{n}_x + \sin\varphi\hat{n}_y) = -\dot{\varphi}\hat{n}_r$$
 (22)

So velocity

$$\overline{v} = \dot{r}\hat{n}_r + r\dot{\hat{n}}_r = \underbrace{\dot{r}\hat{n}_r}_{\text{radial component}} + \underbrace{r\dot{\varphi}\hat{n}_{\varphi}}_{\text{transversal component}}$$
(23)

speed
$$v = |\overline{v}| = \sqrt{(\dot{r})^2 + (r\dot{\varphi})^2} \tag{24}$$

Accelearation

CAUTION!

in general,

 $radial \neq normal$

 $transversal \neq tangential$

Example(kinematics in the polar coordinates)

Circular motion:

 $r=R={
m const} \quad \Rightarrow \quad \dot{r}=\ddot{r}=0$ arphi=arphi(t) - in general: any function of time

(a) uniform circular motion (particle travels at constant speed, assume counter-clockwise) Velocity

$$\overline{v} = \dot{r}_{=0} \hat{n}_r + r \dot{\varphi} \hat{n}_{\varphi} = R \dot{\varphi} \hat{n}_{\varphi}$$
 (26)

uniform motion, so $|\overline{v}| = |v_{\varphi}| = v = \text{const}$

$$R\dot{\varphi} = v \quad \Rightarrow \quad \frac{\mathrm{d}\varphi}{t} = \frac{v}{R} \quad \Rightarrow \quad \int_{0}^{\varphi(t)} \mathrm{d}\varphi = \int_{0}^{t} \frac{v}{R} \mathrm{d}t$$

Hence

$$\varphi = \varphi(t) = \frac{v}{R}t = \omega t \tag{27}$$

 ω is angular velocity (here constant) Angular velocity is a vector, in general,

Acceleration

$$\overline{a} = (\ddot{r}_{=0} - r\dot{\varphi}^2)\hat{n}_r + (r\ddot{\varphi} + 2\dot{r}_{=0}\dot{\varphi})\hat{n}_{\varphi} = -R\omega^2\hat{n}_r$$
(28)

Summary

$$\overline{v} = R\omega \hat{n}_{\varphi}$$
$$\overline{a} = -R\omega^2 \hat{n}_{\varphi}$$

(b) non-uniform circular motion: $\varphi=\varphi(t)$ - arbitrary function of time

$$\dot{\varphi} = \dot{\varphi}(t) = \omega(t)$$

Now
$$\dot{\varphi} = \dot{\varphi}(t) = \omega(t) \qquad \text{angular velocity} \qquad \overline{\omega}$$

$$\ddot{\varphi} = \ddot{\varphi}(t) = \dot{\omega}(t) = \varepsilon(t) \quad \text{angular acceleration (in general)} \quad \overline{\varepsilon} = \frac{\mathrm{d}^2 \overline{\varphi}}{\mathrm{d}t^2} \qquad \qquad \overline{v} = R\omega(t)\hat{n}_{\varphi} \qquad (29)$$

$$\overline{v} = R\omega(t)\hat{n}_{\varphi}$$

$$\overline{a} = \underbrace{-R\omega^{2}(t)\hat{n}_{r}}_{\text{curves the trajectory}} + \underbrace{R\varepsilon(t)\hat{n}_{\varphi}}_{\text{changes the magnitude of } \overline{v}}$$

$$\text{(i.e. } v = R|\omega(t)| \neq \text{const})$$

Natural coordinate system 4

unit vectors (versors)

 \hat{n}_{τ} - tagent (along \overline{v}) \hat{n}_n - normal

 \hat{n}_b - binormal

 $\overline{v}(t) = v\hat{n}_{\tau} \text{ or } \qquad \hat{n}_{\tau} = \frac{\frac{\text{velocity(vector)}}{\overline{v}}}{v_{\text{speed(scalar)}}} = \frac{\dot{\overline{r}}}{|\dot{\overline{r}}|}$ Velocity

Note: Normal unit vector - perpendicular (orthogonal) to \hat{n}_{τ} - many choices possible ! (in 3D)

Unique choice:

$$\hat{n}_n = \frac{\frac{d\hat{n}_{\tau}}{dt}}{\left|\frac{d\hat{n}_{\tau}}{dt}\right|}$$
 because $\frac{d\hat{n}_{\tau}}{dt}$ in general is not a unit

vector.

Is
$$\hat{n}_n \perp \hat{n}_\tau$$
? Yes!

$$\hat{n}_{\tau} \cdot \hat{n}_{\tau} = 1 \qquad \Longrightarrow_{\text{with respect to } t} \frac{\mathrm{d}\hat{n}_{\tau}}{\mathrm{d}t} \cdot \hat{n}_{\tau} + \hat{n}_{\tau} \cdot \frac{\mathrm{d}\hat{n}_{\tau}}{\mathrm{d}t} = 0$$

$$\frac{\mathrm{d}\hat{n}_{\tau}}{\mathrm{d}t} \cdot \hat{n}_{\tau} = 0 \qquad \Longrightarrow \qquad \frac{\mathrm{d}\hat{n}_{\tau}}{\mathrm{d}t} \perp \hat{n}_{\tau} \quad \text{and} \quad \hat{n}_{n} \perp \hat{n}_{\tau}$$

The normal versor \hat{n}_n points along the radius of curvature.

The binormal unit vector determined by

$$\hat{n}_b = \hat{n}_\tau \times \hat{n}_n$$
 (right-handed system)

 \hat{n}_{τ} , \hat{n}_{n} and \hat{n}_{b} are the three unit vectors of the natural coordinate system, "sliding" along the particle's trajectory.

Velocity

$$\overline{v} = v\hat{n}_{\tau} \tag{31}$$

Acceleration

$$\overline{a} = \dot{\overline{v}} = \dot{v} \hat{n}_{\tau} + v \dot{\hat{n}}_{\tau} = \dot{v} \hat{n}_{\tau} + v \left| \frac{\mathrm{d}\hat{n}_{\tau}}{\mathrm{d}t} \right| \hat{n}_{n}$$

Define the (instantaneous) radius of trajectory's curvature $R_c \stackrel{\text{def}}{=} \frac{v}{\left|\frac{d\hat{n}_{\tau}}{dt}\right|}$. Then

$$\overline{a} = \underbrace{\dot{v}\hat{n}_{\tau}}_{\text{tangential component } \overline{a}_{\tau}} + \underbrace{\frac{v^{2}}{R_{C}}\hat{n}_{n}}_{\text{normal component } \overline{a}_{n}} \tag{32}$$
mutually perpendicular $(|\overline{a}| = \sqrt{a_{\tau}^{2} + a_{n}^{2}})$

Note Interpretation of R_C

Example Uniform circular motion ($|\overline{v}| = \text{const}$)

$$R_C = R \qquad \text{(exercise)}$$

$$a_\tau = 0$$

$$a_n = v^2/R$$

Again:

$$a_{\tau} = \dot{v}$$
 changes the magnitude of \overline{v} $a_n = v^2/R_C$ changes the direction of \overline{v}

Example Projectile motion (also see hm2)

$$\overline{v} = (v_0 \cos \alpha) \hat{n}_x + (v_0 \sin \alpha - gt) \hat{n}_y$$

$$|\overline{v}| = v = \sqrt{[v_x(t)]^2 + [v_y(t)]^2}$$
and $a_t = \dot{v}$

$$a_n = \sqrt{g^2 - (\dot{v})^2}$$

5 Concluding remarks

5.1 average speed vs average time

5.2 relative motion and Galilean transformation

$$\overline{r} = \overline{r}_{o'} + r'$$

Assume $\dot{\overline{r}}_{o'} = \overline{v}_{o'} = \text{const}$, that is x'y'z' moves along a straight line (no rotations, either)

$$\Rightarrow \overline{v} = \overline{v}_{o'} + \overline{v}'$$

Use $\overline{r}_{o'} = \overline{v}_{o'}t + \overline{r}_{o',init}$ (choose to be 0) (i.e. O = O' at t = 0)

$$\Rightarrow \overline{r} = \overline{v}_{o'}t + \overline{r'}$$
 Galilean transformation (33)