Lineare Algebra Übungszettel 1

Moritz Brand, Lian Bubolz

Aufgabe H1. Seien A, B, X, Y Mengen, und sei $f: X \to Y$ eine Abbildung. Geben Sie für jede der folgenden Behauptungen einen Beweis oder ein Gegenbeispiel an:

- 1. Für alle Teilmengen Y_1 und Y_2 von Y gilt: $f^{-1}(Y_1 \cup Y_2) = f^{-1}(Y_1) \cup f^{-1}(Y_2)$.
- 2. Für alle Teilmengen X_1 und X_2 von X gilt: $f(X_1 \cap X_2) = f(X_1) \cap f(X_2)$.
- 3. Für alle $X' \subseteq X$ und $Y' \subseteq Y$ gilt $f(X' \cap f^{-1}(Y')) = f(X') \cap Y'$.
- 4. $(A \times X) \cap (B \times Y) = (A \cap B) \times (X \cap Y)$.
- 5. $(A \times X) \cup (B \times Y) = (A \cup B) \times (X \cup Y)$.

Proof.

- 1. Für alle Teilmengen Y_1 und Y_2 von Y gilt: $f^{-1}(Y_1 \cup Y_2) = f^{-1}(Y_1) \cup f^{-1}(Y_2)$.
- 2. Sei $X = \{-1, 1\}$ mit $X_1 = \{-1\}$, $X_2 = \{1\}$, $Y = \{1\}$ und die Abbildung $f : X \to Y$ durch $x \mapsto 1$ definiert. Dann ist per Definition $X_1 \cap X_2 = \emptyset$ und dadurch auch $f(X_1 \cap X_2) = \emptyset$.

Doch $f(X_1) \cap f(X_2) = \{1\}$ wodurch die Behauptung widerlegt wurde.

Aufgabe H2. Sei $X \neq \emptyset$ eine endliche Menge und sei $f: X \to X$ eine Abbildung. Zeigen Sie: Es existiert ein $m \geq 1$ mit der Eigenschaft: Es gibt ein $x \in X$ mit $f^m(x) = x$. $(f^m = f \circ \cdots \circ f$ ist die m-fache Komposition von f).

Proof. Wir teilen den Beweis in keine Surjektivität und Surjektivität auf:

Wenn f(x) nicht surjektiv ist $\exists ! a \in X : \forall n \geq |X|, n \in \mathbb{N}, : f^n(x) = a$, da X endlich ist und (aufgrund der fehlenden Surjektivität) $\forall b < (|X|-1), b \in \mathbb{N} : |f^{b+1}(X)| < |f^b(X)|$. In diesem Fall wählen wir x = a und m = |X|.

Ist f(x) surjektiv, wählen wir ein beliebiges, festes $x \in X$, wofür zwangsläufig $x \in F = \{f(x), \ldots, f^{|X|+1}(x)\}$ gilt, da es nur |X-1| Elemente ungleich x in f(X) gibt, aber |X| Elemente in der Menge F. Nummerieren wir die Elemente in F mit $i \in \{0, 1, \ldots, n+1\}$, wählen wir m so, dass $m = min(\{n|f^n(x) = x \land n > 0\})$ und haben so, per Definition, eine m-fache Komposition für die $f^m(x) = x$ gilt.

Aufgabe H3. Sei K ein Körper. Zeigen Sie:

- (i) Zu jedem $a \in K$ gibt es nur ein Element $b \in K$ mit a + b = 0; Für alle $a, b, c, d \in K$ gilt:
 - (ii) Falls ab = 0, so gilt a = 0 oder b = 0, d.h. K ist nullteilerfrei;
 - (iii) a/b + c/d = (ad + bc)/(bd) falls $b \neq 0$ und $d \neq 0$;
 - (iv) (-a)(-b) = ab;
 - (v) (-a) = a.

(Geben Sie in jedem Schritt an, welches der Axiome $(A1), \ldots, (A4), (M1), \ldots, (M4), (D)$ Sie benutzen.)

Proof. Wir nutzen in jedem Beweis Kommutativität (A2)

(i) Annahme:
$$\exists b, b' \in K : a + b = 0 = a + b'$$

$$\Rightarrow b \stackrel{\text{(A3)}}{=} b + 0 \stackrel{\text{(A4)}}{=} b + (a + b') \stackrel{\text{(A1)}}{=} (b + a) + b' \stackrel{\text{(A4)}}{=} 0 + b' \stackrel{\text{(A3)}}{=} b'$$

(ii) Annahme: $\exists a, b \in K : a \neq 0 \neq b \land ab = 0$

$$\Rightarrow 0 \stackrel{\text{(Lemma 2.3)}}{=} 0((ab)^{-1}) \stackrel{\text{(Annahme)}}{=} (ab)(ab)^{-1} \stackrel{\text{(M4)}}{=} 1 \text{ Widerspruch zu (M3)} \Rightarrow a = 0 \lor b = 0$$

(iii)
$$ab^{-1} + cd^{-1} \stackrel{()}{=} (ad + bc)(bd)^{-1}$$
 АННННННННННННННН

(iv)
$$(-a)(-b) \stackrel{\text{(A3)}}{=} 0 + (-a)(-b) \stackrel{\text{(Lemma 2.3)}}{=} 0(-b) + (-a)(-b) \stackrel{\text{(A4)}}{=} (a + (-a))(b) + (-a)(-b) \stackrel{\text{(D)}}{=} ab + (-a)(-b) \stackrel{\text{(D)}}{=} ab + (-a)(-b) \stackrel{\text{(D)}}{=} ab + (-a)(-b) \stackrel{\text{(D)}}{=} ab + (-a)(-b) \stackrel{\text{(Lemma 2.3, A3)}}{=} ab$$

$$ab + (-a)b + (-a)(-b) \stackrel{\text{(D)}}{=} ab + (-a)(b + (-b)) \stackrel{\text{(A4)}}{=} ab + (-a)0 \stackrel{\text{(Lemma 2.3, A3)}}{=} ab$$

$$(v) - (-a) \stackrel{\text{(A3)}}{=} -(-a) + 0 \stackrel{\text{(A4)}}{=} -(-a) + ((-a) - a +) \stackrel{\text{(A1)}}{=} (-(-a) + (-a)) + a \stackrel{\text{(A3)}}{=} a$$

Aufgabe H4. Sei K ein Körper, und sei $K^{\times} := K \setminus \{0\}$. Zeigen Sie: Es gibt keine bijektive Abbildung $e: K \to K^{\times}$ mit e(a+b) = e(a)e(b) für alle $a, b \in K$. Sie dürfen verwenden, dass das Polynom $X^2 - 1$ in K nur die Nullstellen 1 und -1 hat. Den Fall char(K) = 2 (d.h. 1+1=0) sollte man getrennt betrachten.

Proof. Wir zeigen per Widerspruchsbeweis, dass es keine bijektive Abbildung geben kann:

Annahme: Es gibt eine bijektive Abbildung.

$$\exists x \in K : e(x) = (-1) \Rightarrow e(x+x) = (-1)(-1) \stackrel{\text{(H3)}}{=} 1_{K^{\times}}$$

Sei
$$y \in K$$
, $y \neq 0_K$, $e(0_K + y) = e(0_K)e(y) \Leftrightarrow e(y) = e(0_K)e(y) \Rightarrow e(0_K) = 1_{K^{\times}}$

$$\Rightarrow e(x+x) = e(0_K) \stackrel{(e^{-1})}{\Rightarrow} x + x = 0_K$$

Wenn
$$x + x = 0_K$$
, dann gilt $0_K = (x + x)x^{-1} = 1_K + 1_K \Rightarrow char(K) = 2$

$$\Rightarrow 1_{K^{\times}} = e(0_K) = e(1_K + 1_K) = e(1_K)e(1_K) = e(1_K)^2$$

Wir wissen, dass das Polynom $X^2 - 1$ nur die Nullstellen 1 und -1 hat.

 $\Rightarrow e(1_K) = 1_K = e(0_K) \Rightarrow 1_K = 0_K$ was ein Widerspruch zu den Körperaxiomen ist.