STA401: CC2-Partiel

Durée: 1 heure 30

Documents autorisés : Tables statistiques - Calculatrice (lycée)

Exercice 1:

- 1. Soient X et Y deux variables de lois Normales indépendantes, $X \leadsto \mathcal{N}(2;4)$ et $Y \leadsto \mathcal{N}(3;25)$
 - a) Quelle est la loi de $\frac{1}{5}(Y-3)$?
 - b) Quelle est la loi de 3X 2Y? En déduire P(3X > 2Y).
- 2. On suppose que X suit une loi Normale de moyenne $\mu = 40$ et de variance $\sigma^2 = 100$.
 - a) Calculez P(X < 45). Donnez la valeur à 10^{-4} avec les tables statistiques, et à 10^{-6} avec la calculatrice.
 - b) Calculez la valeur a telle que P(X > a) = 0,02.
- 3. Soit X une variable de loi Binomiale de paramètres n=1000, et p=0.25. Citez le nom du théorème utilisé pour obtenir une loi approchée de cette loi Binomiale; calculez les paramètres exacts, et vérifiez les conditions.
- 4. Soit X une variable aléatoire dont on a mesuré les valeurs suivantes : 1; 2 ; 3 ; 2 ; 3 ; 4 ; 6. Calculez la variance estimée sans biais de X. Donnez la commande exacte du logiciel R qui permet de retrouver cette variance.

Exercice 2 (filières MIN-MAT)

Soit X une variable aléatoire de loi exponentielle de paramètre θ ($\theta > 0$).

On rappelle que la fonction de densité est définie par : $f(x) = \frac{1}{\theta}e^{-\frac{x}{\theta}}$ pour $x \ge 0$, et f(x) = 0 pour x < 0.

- 1. Montrer que l'estimateur du maximum de vraisemblance de θ est \overline{X} . [vous pourrez poser $\theta = \frac{1}{\lambda}$ si nécessaire]
- 2. Montrer que cet estimateur est sans biais et de variance asymptotiquement nulle.

Exercice 2 (filière INM)

Soit X une variable aléatoire de loi inconnue, mais dont on sait que E[X] = 16 et V[X] = 16.

- 1. À l'aide de l'inégalité de Bienaymé Tchebychev, calculez une **minoration** de P(10 < X < 22).
- 2. On suppose maintenant que X suit la loi $\mathcal{N}(16;16)$. Calculer la valeur exacte de P(10 < X < 22) et vérifier la compatibilité avec le résultat précédent.

Exercice 3:

On étudie un nouveau type d'ordinateur dont la probabilité p d'apparition d'un certain évènement E est de 20%.

- 1. On prend un échantillon de 6 ordinateurs de ce type.
 - (a) Soit X la variable aléatoire égale au nombre d'ordinateurs sur lesquels est survenu l'évènement E. Quelle est la loi exacte de X? Justifier explicitement.
 - (b) Quelle est la probabilité qu'il n'y ait aucun ordinateur sur lequel E soit apparu?
 - (c) La probabilité qu'il y ait au moins 5 apparitions de E est-elle inférieure à 1%?
- 2. On prend maintenant un échantillon de 500 ordinateurs. On note X la variable aléatoire égale au nombre d'ordinateurs sur lesquels l'évènement E est survenu dans cet échantillon.
 - (a) Par quelle loi peut-on approcher la loi de X (justifiez tout précisément) ?
 - (b) Calculer la probabilité pour qu'il y ait moins de 80 ordinateurs sur lesquels E soit apparu.
 - (c) Calculer N pour que $P(X \ge N) = 0, 3$. Vous donnerez les calculs qui permettent de trouver le résultat avec les tables statistiques. [N représente le nombre minimum d'ordinateurs sur lesquels E est apparu avec une probabilité de 30%]
- 3. Dans l'échantillon précédent des 500 ordinateurs, on compte 97 ordinateurs sur lesquels est survenu l'évènement E. Avec un niveau de 0.99, peut-on conclure que cet échantillon est repésentatif des ordinateurs de ce nouveau type ?

Exercice 4:

On étudie le temps de compilation de programmes de 10 étudiants. On suppose que cette variable aléatoire X suit une loi Normale de moyenne μ et de variance σ^2 .

14,4 13,4 13,6 14,15 13,3 14,7 14,44 14,9 13,5 12,89
--

- 1. a) Calculer la moyenne et variance empiriques.
 - b) Calculer la moyenne et variance estimées sans biais de X.
- 2. a) Donner un intervalle de confiance de niveau 0,99 pour la moyenne de X. Interprétez
 - b) Donner un intervalle de confiance de niveau 0,99 pour l'écart type de X.
- 3. On suppose maintenant que l'écart type de X est connu et égal à 0,65. Dans les deux questions suivantes, on suppose que la moyenne est inchangée et toujours égale à celle obtenue en 1.
 - a) Quel niveau de confiance faudrait-il prendre pour que l'intervalle de confiance de μ ait une précision de \pm 0,3 ?
 - b) Combien de programmes d'étudiants devrait-on prendre pour estimer μ au niveau de confiance de 99% avec une précision de \pm 0,3 ?