

VE 320 – Summer 2012 Introduction to Semiconductor Device

Instructor: Professor Hua Bao

NANO ENERGY LAB

Bao Ve320 S12

1

Previous Lecture

- In order to understand the transport property of semiconductor, we need to understand the chemical composition and atomic arrangements.
- Crystalline structure can be built by repeating basic building blocks... Bravais lattice, basis
- · Diamond and zinc-blende structure
- To identify crystal planes...Miller Indices, vector indices

Bao Ve320 S12

Five Steps to Solve this Problem

- $1) \quad \frac{d^2\psi}{dx^2} + k^2\psi = 0 \quad -$
- 4) Det (coefficient matrix)=0 And find E by graphical or numerical solution
- 2) $\psi(x = -\infty) = 0$ $\psi(x = +\infty) = 0$
- 3) $\psi|_{x=x_B^-} = \psi|_{x=x_B^+}$
- N is very large for crystal, but changing steps 2 and 3 a little bit we can still solve the problem in a few minutes!

Bao Ve320 S12

5

Periodic U(x) and Bloch Theorem

$$\left|\psi(x)\right|^{2} = \left|\psi(x+p)\right|^{2} \implies \psi(x+p) = \psi(x) e^{ikp}$$

p = a + b

Center of Optics and Optoelectronics

Bao Ve320 S12

Step 3: Boundary Conditions

$$\psi\big|_{x=0^{-}} = \psi\big|_{x=0^{+}}$$

$$\frac{d\psi}{dx}\bigg|_{x=0^{-}} = \frac{d\psi}{dx}\bigg|_{x=0^{+}}$$

$$B_{a} = B_{b}$$

 $\alpha A_a = \beta A_b$

$$\psi_a\big|_{x=a} = \psi_b\big|_{x=-b} e^{ikp}$$

$$\alpha \equiv \sqrt{2mE/\hbar^2} \qquad \beta \equiv i\sqrt{2m(U_0 - E)/\hbar^2}$$

$$\psi_b = A_b \sin \beta x + B_b \cos \beta x$$

$$\psi_a = A_a \sin \alpha x + B_a \cos \alpha x$$

$$+ B_a \cos \alpha x$$

$$A_{a} \sin \alpha a + B_{a} \cos \alpha a =$$

$$e^{ik(a+b)} [-A_{b} \sin \beta b + B_{b} \cos \beta b]$$

$$\alpha A_{a} \sin \alpha a - \alpha B_{a} \cos \alpha a =$$

$$e^{ik(a+b)} [\beta A_{b} \sin \beta b + \beta B_{b} \cos \beta b]$$

Bao Ve320 S12

9

Step 4: Det(matrix)=0 for Energy Levels

$$B_a = B_b$$
$$\alpha A_a = \beta A_b$$

 $A_a \sin \alpha a + B_a \cos \alpha a =$

$$e^{ik(a+b)}[-A_b\sin\beta b + B_b\cos\beta b]$$

 $\alpha A_a \sin \alpha a - \alpha B_a \cos \alpha a =$

$$\frac{1-2\xi}{2\xi\sqrt{1-\xi}}\times\dots = \cos kp \qquad \xi \equiv \frac{E}{U_0} \quad \alpha_0 \equiv \sqrt{\frac{2mU_0}{\hbar^2}}$$

Center of Optics and Optoelectronics

Bao Ve320 S12

Graphical Solution to Energy Levels

$$\frac{1-\xi}{2\xi\sqrt{1-\xi}}\times\cdots\ldots=coskp$$

$$k = \pm \frac{2\pi n}{Np}$$
 $n = -\frac{N}{2}, \dots -1,0,1,\dots,\frac{N}{2}$

University of Michigan – Shanghai Jiao Tong University Joint Institute
Center of Optics and Optoelectronics

Bao Ve320 S12

11

Energy Band Diagram

University of Michigan – Shanghai Jiao Tong University Joint Institute
Center of Optics and Optoelectronics

Bao Ve320 S12

Brillouin Zone and Number of States

$$k = \pm \frac{2\pi n}{Np}$$
 $n = -\frac{N}{2}, \dots -1,0,1,\dots,\frac{N}{2}$

$$\frac{States}{Band} = \frac{k_{max} - k_{min}}{\Delta k} = \frac{2\pi/p}{2\pi/Np} = N$$

What is the physical meaning of the energy bands?

Bao Ve320 S12

Bao Ve320 S12

13

14

Center of Optics and Optoelectronics

Group Velocity for a Given Band

$$\psi(x,t)$$

$$= Ae^{ikx - i\frac{E}{\hbar}t} \left[1 + e^{i(\Delta k)x - i\left(\frac{\Delta E}{\hbar}\right)t} \right]$$

$$= Ae^{ikx - i\frac{E}{\hbar}t} \left[1 + e^{i\times const.} \right]$$

$$\upsilon = \frac{\Delta x}{\Delta t} = \frac{\Delta E}{\hbar \Delta k}$$

$$\because \left[x\Delta k - t\frac{\Delta E}{\hbar} \right] = \text{constant.}$$

$$a = \frac{\Delta \upsilon}{\Delta t} = \frac{1}{\hbar} \frac{d}{dt} \left[\frac{\Delta E}{\Delta k} \right] = \frac{1}{\hbar^2} \frac{d}{dk} \left[\frac{\Delta E}{\Delta k} \right] \frac{d(\hbar k)}{dt} = \frac{F}{m^*}$$

University of Michigan – Shanghai Jiao Tong University Joint Institute
Center of Optics and Optoelectronics

Bao Ve320 S12

15

Effective Mass for a Given Band

 $\upsilon = \frac{1}{\hbar} \frac{\Delta E}{\Delta k} \qquad \frac{1}{m^*} = \frac{1}{\hbar^2} \frac{d^2 E}{dk^2}$

mass for each band

University of Michigan – Shanghai Jiao Tong University Joint Institute
Center of Optics and Optoelectronics

Bao Ve320 S12

Filled and Empty Bands

No electrons in the empty bands.

$$J_3 = -\frac{q}{L} \sum_{i(filled)}^{N} v_i = 0$$

How about filled bands?

$$J_2 = -\frac{q}{L} \sum_{i(filled)}^{N} v_i = -\frac{q}{L} \sum_{0}^{k_{max}} v_i - \frac{q}{L} \sum_{-k_{min}}^{0} v_i = 0$$

Neither filled or empty bands can conduct electricity!

Bao Ve320 S12

19

Partially Filled Bands

$$J_3 = -\frac{q}{L} \sum_{i \text{ (filled)}} v_i \neq 0$$

$$\begin{split} J_2 = -\frac{q}{L} \sum_{i (\textit{filled})} \upsilon_i &= -\frac{q}{L} \sum_{\textit{all}} \upsilon_i + \frac{q}{L} \sum_{i (\textit{empty})} \ \left| \upsilon_i \right| \\ &= \frac{q}{L} \sum_{i (\textit{empty})} \ \left| \upsilon_i \right| \end{split}$$

-ve charge moving with -ve mass

+ve charge moving with +ve mass

University of Michigan – Shanghai Jiao Tong University Joint Institut
Center of Optics and Optoelectronics

Bao Ve320 S12

Metal, Semiconductor, Insulator Band Gap

- Metal: has partially filled energy bands at zero temperature.
- **Semiconductor**: does not have partially filled bands at zero temperature, but thermal effect can excite electrons into conduction bands.
- Insulator: does not have partially filled bands at zero temperature, but band gap energy is too large and thermal effect cannot excite electrons on to conduction bands.

Bao Ve320 S12

21

Band Gap Energy

Si ~ 1.12 eV

Ge ~ 0.66 eV

GaAs ~ 1.42 eV

SiO2 ~ 8 eV

Diamond ~ 5 eV

Bao Ve320 S12

Effective Mass

$$a = \frac{\Delta \upsilon}{\Delta t} = \frac{1}{\hbar} \frac{d}{dt} \left[\frac{\Delta E}{\Delta k} \right] = \frac{1}{\hbar^2} \frac{d}{dk} \left[\frac{\Delta E}{\Delta k} \right] \frac{d(\hbar k)}{dt} = \frac{F}{m^*}$$

Do not understand?

Let's consider a simpler example...

Free electrons in a vacuum respond to applied electric fields by the following

he following

E-p relationship of electron.

Force =
$$-q\mathcal{E} = m_0 \frac{dv}{dt} = \frac{dp}{dt}$$

$$E = \frac{1}{2}mv^2 = \frac{p^2}{2m}$$

University of Michigan – Shanghai Jiao Tong University Joint Institute
Center of Optics and Optoelectronics

Bao Ve320 S12

33

Similarly...

The E-k relationship at the conduction band minimum or valance band maximum can be approximated by a parabolic function.

Wave-particle duality:

$$p = \hbar k, \qquad E \approx \frac{p^2}{2m^*}$$

$$\frac{1}{1} = \frac{1}{12} \frac{d^2 E}{dt^2}$$

Effective Mass is inversely proportional to the curvature of E-k diagram!

Electrons moving in a solid:

$$F = -q\mathcal{E} = m_n^* \frac{dv}{dt}$$

Similar equation for holes:

$$F = q\mathcal{E} = m_p^* \frac{dv}{dt}$$

University of Michigan – Shanghai Jiao Tong University Joint Institute
Center of Optics and Optoelectronics

Bao Ve320 S12

The importance of effective mass

$$F = -q\mathcal{E} = m_n^* \frac{dv}{dt}$$

$$F = q\mathcal{E} = m_p^* \frac{dv}{dt}$$

Quote from RFP:

"It allows us to conceive of electrons and holes as quasi-classical particles and to employ classical particle relationships in most device analysis!"

Now you can (mostly) forget about quantum mechanics....

Bao Ve320 S12

35

Heavy Holes and Light Holes

- There is typically degeneracy at the valence band maximum.
- There could be light holes and heavy holes.

Bao Ve320 S12

Effective Mass for Semiconductors

Table 2.1 Density of States Effective Masses at 300 K.

Material	m_n^*/m_0	$m_{\rm p}^*/m_0$
Si	1.18	0.81
Ge	0.55	0.36
GaAs	0.066	0.52

Effective mass is a material property.

University of Michigan – Shanghai Jiao Tong University Joint Institute
Center of Optics and Optoelectronics

Bao Ve320 S12

37

Measurement of Effective Mass

Bao Ve320 S12

Look back ...

- We know what the carriers in semiconductors are. (Electrons, holes)
- We know how they moves inside the semiconductor (effective mass)
- But we still do not know how many carriers are there.

Bao Ve320 S12