# Exploration of chaos in shock waves

Jithin D. George

June 11, 2017

#### Outline

#### Introduction

Background

Model Equation

The nature of the source term

The steady state solution

Effects of  $\beta$ 

Numerical setup

#### Behaviou

 $\alpha = 2$ 

 $\alpha = 3$ 

 $\alpha = 4.6$ 

 $\alpha = 4.85$ 

 $\alpha = 5.1$ 

#### Conclusions

Bifurcation diagram

HE

Weird pdes and insights

## Background: Reactive Euler equations and detonation

$$\frac{D\rho}{Dt} = -\rho \nabla . u$$

$$\rho \frac{Du}{Dt} = -\nabla P$$

$$\rho \frac{D}{Dt} \left( h + \frac{|u|^2}{2} \right) = \frac{\partial P}{\partial t}$$

$$\frac{DY_i}{Dt} = \dot{\omega_i}$$



### Model Equation

$$u_t + rac{1}{2}(u^2 - uu_s)_x = f(x, u_s)$$
  $x \in (-\infty, 0)$  Characteristic speed  $= u - rac{u_s}{2}$ 

#### The nature of the source term

$$f(x, u_s) = \frac{q}{2\sqrt{4\pi\beta}} e^{-\frac{[x - x_f(u_s)]^2}{4\beta}}$$
$$x_f(u_s) = \left(\frac{u_{0s}}{u_s}\right)^{\alpha}$$



# The steady state solution (The fixed point of a pde)

$$\frac{1}{2}(u_0^2 - u_0 u_{0s})' = f(x, u_{0s})$$

$$u_0(x) = \frac{u_{0s}}{2} + \sqrt{2 \int_{-\infty}^x f(y, u_{0s}) dy}$$

$$f = \frac{q}{2\sqrt{4\pi\beta}} e^{-\frac{[x - x_f(u_s)]^2}{4\beta}}$$

$$u_0(x) = \frac{1}{2} \left[ 1 + \sqrt{\frac{1 + erf((x+1)/2\sqrt{\beta})}{1 + erf(1/2\sqrt{\beta})}} \right]$$

## Effects of $\beta$



Figure 1:  $u_0$  for various values of  $\beta$ 

### Numerical setup

$$u_t + \frac{1}{2}(u^2 - uu_s)_x = ae^{-\frac{(x+us^{-\alpha})^2}{4\beta}}$$

$$x \in (-10,0)$$

- Outflow boundary conditions
- Godunov splitting
- ► Lax-Wendroff fluxes with MC limiters

### Outline

#### Introduction

Background

Model Equation

The nature of the source term

The steady state solution

Effects of

Numerical setup

### Behaviour

$$\alpha = 2$$

$$\alpha = 3$$

$$\alpha = 4.6$$

$$\alpha = 4.85$$

$$\alpha = 5.1$$

#### Conclusions

Bifurcation diagram

HE

Weird pdes and insights

 $\alpha = 2$ 

### Behaviour of $u_s$



 $\alpha = 3$ 

## Behaviour of $u_s$



 $\alpha = 4.6$ 

# Asymptotic behaviour of $u_s$



## Limit cycle



 $\alpha = 4.85$ 

# Asymptotic behaviour of $u_s$



## Limit cycle



 $\alpha = 5.1$ 

# Asymptotic behaviour of $u_s$



## Limit cycle



### Outline

#### Introduction

Background

Model Equation

The nature of the source term

The steady state solution

Effects of 6

Numerical setup

#### Behaviou

 $\alpha = 2$ 

 $\alpha = 3$ 

 $\alpha = 4.6$ 

 $\alpha = 4.85$ 

 $\alpha = 5.1$ 

#### Conclusions

Bifurcation diagram

LLE

Weird pdes and insights

### Bifurcation diagram



FIG. 3. The long-time values of the local maxima,  $u_s^{\max}$ , of the shock strength as a function of  $\alpha$ .

# Largest Lyapunov Exponents

|       | 4.85   | 4.96  | 4.97   | 5.1    |
|-------|--------|-------|--------|--------|
| LLE   | 0      | 0     | 0.0042 | 0.0315 |
| $D_C$ | 1.0006 | 1.002 | 1.67   | 1.91   |

Weird pdes and insights

#### Resources

- Kasimov, Aslan R., Luiz M. Faria, and Rodolfo R. Rosales. "Model for shock wave chaos." Physical review letters 110.10 (2013): 104104.
- ► Faria, Luiz M., Aslan R. Kasimov, and Rodolfo R. Rosales. "Study of a model equation in detonation theory." SIAM Journal on Applied Mathematics 74.2 (2014): 547-570.
- https://github.com/Dirivian/apps\_detonation

