Лабораторна робота №2 з курсу «Мікроконтролери Ч.1»

ПРОСТЕ КЕРУВАННЯ МІКРОКОНТРОЛЕРАМИ ЗА ДОПОМОГОЮ КЛІЄНТСЬКОЇ ПРОГРАМИ НА ВЕБ-СТОРІНІІ

Порядок виконання роботи

- 1. Поділитись на пари за порядковим номером у списку. (Перший і другий роблять варіант №1, третій і четвертий роблять № 2 і т.д.).
- 2. Згідно варіанту завдання (таблиця 1) зібрати в одному з пакетів симуляції схему на основі МК Esp8266/Esp32.
- 3. Написати програму мовою C/C++ в Arduino IDE для реалізації вказаного завдання.
 - 3.1 Додати на веб-сторінку кнопку відсилання команди.
 - 3.2 Добавити обробку читання і відсилання даних по UART
- 4. Залити програму в пам'ять контролера.
- 5. Налаштувати параметри протоколу обміну в PuTTY (або любій схожій програмі)
- 6. Отримані результати представити викладачу.

Завлання

- 1. Необхідно встановити однакові налаштування СОМ-портів з партнером.
- 2. Запуск роботи алгоритмів зі світлодіодами виконуєтьсяшляхом натиску відповідних кнопок (на клієнтській формі).
- 3. При натисканні кнопок на МК запускаються відповідні алгоритми блимання іконок на клієнтській формі.
- 4. При натисканні другої кнопки на веб сторінці відправляється відповідна команда по UART і запускається алгоритм на контролері партнера.

5. При наявності нових даних на порті зчитати і перевірити чи прийшла зазначена команда. Якщо так, то активувати свій алгоритм блимання.

зазначена команда. Укщо так, то активувати сви алгоритм олимання.					
№	Data Bits	Stop Bits	Parity	Speed	Command
п/п					& Algo
1	5	1	even	9600	A, HEX
2	6	1	even	115200	B, BIN
3	7	1	even	57600	C, DEC
4	8	1	even	28800	D, OCT
5	5	2	even	9600	E, BIN
6	6	2	even	115200	F, HEX
7	7	2	even	57600	G, OCT
8	8	2	even	28800	H, DEC
9	5	1	odd	9600	I, HEX
10	6	1	odd	115200	J, BIN
11	7	1	odd	57600	K, DEC
12	8	1	odd	28800	L, OCT
13	5	2	odd	9600	M, HEX
14	6	2	odd	115200	N, BIN
15	7	2	odd	57600	O, DEC
16	8	2	odd	28800	P, OCT

Таблиця 2. Варіанти алгоритмів роботи для світлодіодів

N₂	1 wonting 2. Buptanina ancopaniano possina siar continosisoto				
п/п	Опис алгоритму				
11/11	(за замовчуванням діоди блимають				
	почергово: $L1 \rightarrow L2 \rightarrow L3 \rightarrow L1$)				
1	Лінійка світлодіодів змінює напрямок руху при кожному новому запуску алгоритму. (Було $L1 \to L2 \to L3$, стає $L3 \to L2 \to L1$)				
2	Лінійка світлодіодів рухається в іншому напрямку.				
3	Збільшує швидкість блимання світлодіодів.				
4	При спрацюванні переключення діодів зупиняється і запускається таймер на 15 секунд. По проходженню таймера відновлюється переключення діодів.				
5	Лінійка світлодіодів починає працювати в циклі $L3 \rightarrow L2 \rightarrow L1 \rightarrow L2 \rightarrow L3$ до наступного спрацювання. Друге спрацювання вертає початкову чергу				
6	При натиску наступний діод стає активним, активує наступний від нього в черзі діод. При наступному спрацюванні вимикає наступний в черзі діод.				
7	Збільшує час перемикання на наступний діод в черзі				
8	Зупиняє виконання базового алгоритму. Повторний виклик продовжує його виконання з останнього активного в черзі діода. (де зупинили, там і продовжили)				

Рис. 1. Типова схема підключення в пакеті Wokwi

Рис. 2. Вигляд конструктора вікна клієнтської програми

Рис. 3. Типова схема підключення в пакеті Fritzing

Рис. 4. Схема підключення в пакеті Fritzing

З'єднання мікроконтролера з персональним комп'ютером

Підключається до фізичного СОМ-порту комп'ютера. Компонента підключається безпосередньо до виводів порту UART мікроконтролера. У властивостях компоненти необхідно вказати параметри підключення (рис. 5-9): СОМ-порт ПК, з яким компонента буде працювати, швидкість обміну, кількість стоп-бітів і т.п.

Рис.5. Параметри протоколу обміну в РиТТУ

Рис. 6. Параметри протоколу обміну в Serial Studio

```
| Materials | Mate
```

Рис.7. Параметри протоколу обміну в VSCode

Рис.8. Параметри протоколу обміну в Fritzing

Рис.9. Параметри протоколу обміну в ArduinoIDE

Рис. 10. Параметри протоколу обміну в Тега Тегт