

Método do Ponto Fixo (MPF)

Dada uma função f(x) contínua no intervalo [a,b] onde existe uma raiz única, f(x)=0, é possível transformar tal equação em uma equação equivalente x=g(x) e, a partir de uma aproximação inicial x_0 , gerar uma seqüência $\{x_k\}$ de aproximações para ξ pela relação $x_{k+1}=g(x_k)$, uma vez que g(x) é tal que $f(\xi)=0$ se e somente se $g(\xi)=\xi$.

- Método do Ponto Fixo (MPF) Método da Iteração Linear (MIL)
- Seja uma função f(x) contínua em um intervalo [a,b] que contenha uma raiz de f(x). O Método do Ponto Fixo inicia-se reescrevendo a função f(x) como:

$$f(x) = g(x) - x$$

■ Essa forma de escrever f(x) é bastante útil. No ponto x que corresponde à raiz de f(x), isto é, f(x) = 0, teremos que:

$$f(x) = g(x) - x = 0$$
$$g(x) = x$$

■ g(x) é a Função de Iteração para f(x)=0

- Por exemplo, a função $f(x) = x^2 x 2$ pode ser reescrita como, $f(x) = x^2 2 x = g(x) x$, onde $g(x) = x^2 2$.
- Essa função tem como ponto fixo o valor x=2, pois $g(2) = 2^2 2 = 2$.
- E esse é exatamente o valor da raiz de f(x), pois $f(2) = 2^2 2 2 = 0$.
- Ou seja, no ponto x que corresponde à raiz de f(x), ao substituirmos o valor de x na função g(x), teremos como resultado o próprio valor de x.
- Portanto, a raiz de f(x) será o **ponto fixo** de g(x), ou seja, o valor que ao ser substituído em g(x) retorna o próprio valor de x.

- Método do Ponto Fixo (MPF)
 - □ Implicação de tal procedimento:

 Mais importante a abordagem conceitual do que a eficiência computacional.

Método do Ponto Fixo (MPF)
Forma geral das funções de iteração:

$$g(x) = x + A(x)f(x)$$

com $A(\xi) \neq 0$ em ξ , ponto fixo de g(x).

- Interpretação Gráfica
 - x = g(x) tem como raiz a abcissa do ponto de intersecção da reta r(x) = x e da curva g(x).

Análise Gráfica - Determinar os pontos fixos de uma função g(x) é determinar os pontos de intersecção entre as curvas:

Exemplo 11: Encontre uma estimativa para a raiz de $f(x) = x^2 - e^x$, usando o Método da Iteração Linear (Pontos Fixos).

1 - Encontrando o intervalo da raiz:

$$f(x) = g(x) - h(x)$$

$$g(x) = x^2 e h(x) = e^x$$

2 - Escolha uma função de iteração φ(x):

$$f(x) = 0$$
$$x^2 - e^x = 0$$
$$x - \pm \sqrt{e^x}$$

Ou seja, podemos ter como função de iteração:

$$\phi(x) = \sqrt{e^x}$$

$$\phi(x) = -\sqrt{e^x}$$

3 – Usando $\phi(x) = -\sqrt{e^x}$ e $x_0 = -1$, temos:

$$x_0 = -1 \rightarrow \phi(x_0) = \phi(-1) = -\sqrt{e^{-1}} = -0.606$$

 $x_1 = -0.606 \rightarrow \phi(x_1) = \phi(-0.606) = -\sqrt{e^{-0.606}} = -0.738$
 $x_2 = -0.738 \rightarrow \phi(x_2) = \phi(-0.738) = -\sqrt{e^{-0.738}} = -0.691$
 $x_3 = -0.691 \rightarrow \phi(x_3) = \phi(-0.691) = -\sqrt{e^{-0.691}} = -0.707$
 $x_4 = -0.707$

4 – Substituindo os valores de x_k em f(x) para cada iteração k, observamos que a cada etapa, nos aproximamos da raiz de f(x), conforme tabela abaixo:

$f(x) = x^2 - e^x$
0,632
-0,178
0,067
-0,024
0,007

Exemplo 12:

Seja a equação $x^2 + x - 6 = 0$.

Funções de iteração possíveis:

$$g_3(x) = 6/x - 1$$

$$g_4(x) = 6/(x+1)$$

Dada uma equação do tipo f(x) = 0, há para tal equação *mais de uma* função de iteração g(x), tal que: $f(x) = 0 \Leftrightarrow x = g(x)$

- Não há necessidade de uso de método numérico para a determinação das raízes $\xi_1 = -3$ e $\xi_2 = 2$
- Utilização desta exemplo para demonstrar a convergência ou divergência numérica e gráfica do processo iterativo
- Seja a raiz $\xi_2 = 2 e g_1(x) = 6 x^2$
- Considere-se $x_0 = 1.5$ e $g(x) = g_1(x)$

Seja a raiz
$$\xi_2 = 2$$
, $x_0 = 1.5$ e $g_1(x) = 6 - x^2$:

$$x_1 = g(x_0) = 6 - 1,5^2 = 3,75 \Leftrightarrow x_1$$

$$x_2 = g(x_1) = 6 - 3,75^2 = -8,0625$$

$$x_3 = g(x_2) = 6 - (-8,0625)^2 = -59,003906$$

$$x_4 = g(x_3) = 6 - (-59,003906)^2 = -3475,4609$$

■ Conclui-se que $\{x_k\}$ não convergirá para $\xi_2 = 2$

M

Cálculo Numérico – **Ponto Fixo** Exemplo 12: Análise Gráfica:

Exemplo 13: Seja a raiz
$$\xi_2 = 2$$
, $g_2(x) = \sqrt{6 - x}$ e $x_0 = 1,5$

$$x_1 = g(x_0) = \sqrt{6 - 1.5} = 2.121320343$$

$$x_2 = g(x_1) = \sqrt{6 - 2,121320343} = 1,969436380$$

$$x_3 = g(x_2) = \sqrt{6 - 1,969436380} = 2,007626364$$

$$x_4 = g(x_3) = \sqrt{6 - 2,007626364} = 1,998092499$$

$$x_5 = g(x_4) = \sqrt{6 - 1,998092499} = 2,000476818$$

• Conclui-se que $\{x_k\}$ tende a convergir para $\xi_2 = 2$

Cálculo Numérico – **Ponto Fixo** Exemplo 13: Análise Gráfica

Exemplo 14: Seja a equação $x^3 - x - 1 = 0$, Tem-se as seguintes funções de iteração possíveis:

$$\oplus g_1(x) = x^3 - 1$$

$$\oplus g_2(x) = \pm \sqrt[3]{1+x}$$

$$\phi g_3(x) = 1/x^3 - 1$$

Exemplo 14: Seja
$$\xi = 1,32493, g_2(x) = \sqrt[3]{1+x}$$
 e $x_0 = 1$

$$x_1 = g(x_0) = \sqrt[3]{1+1} = 1,259921$$

$$x_2 = g(x_1) = \sqrt[3]{1 + 1,259921} = 1,312294$$

$$x_3 = g(x_2) = \sqrt[3]{1 + 1.312294} = 1.322354$$

$$x_5 = g(x_4) = \sqrt[3]{1 + 1,324269} = 1,324633$$

• Conclui-se que $\{x_k\}$ tende a convergir para $\xi = 1,324930$

M

Cálculo Numérico - Ponto Fixo

Exemplo 14: Análise Gráfica

NA.

Cálculo Numérico - Ponto Fixo

■ TEOREMA 2 (convergência):

Sendo ξ uma raiz de f(x) = 0, isolada em um intervalo I = [a,b]centrado em ξ e g(x) uma função de iteração para f(x) = 0. Se

- 1. g(x) e g'(x) são contínuas em I
- 2. |g'(x)| < 1, $\forall x \in I = [a,b]$, e
- 3. $X_1 \in I$

então a seqüência $\{x_k\}$ gerada pelo processo iterativo $x_{k+1} = g(x_k)$ convergirá para ξ .

Exemplo 15: Resgatando os Exemplos 12 e 13, verificou-se que:

- $g_1(x)$ \Rightarrow geração de uma seqüência divergente de $\xi_2 = 2$
- $g_2(x)$ \Rightarrow geração de uma seqüência convergente p/ $\xi_2 = 2$
- $g_1(x) = 6 x^2 e g'_1(x) = -2x \Rightarrow \text{continuas}$ em I(Condição 1)

Exemplo 15: Resgatando os Exemplos 12 e 13, verificou-se que:

- $|g'_1(x)| < 1 \Leftrightarrow |-2x| < 1$ (Condição 2)

 □ $x_0=1.5 \Leftrightarrow |g'_1(x_0)| = |g'_1(1.5)| = |-3| > 1$, ou seja a condição 2 falha.
- Não existe um intervalo I centrado em $\xi_2=2$, tal que |g'(x)| < 1, $\forall x \in I \Rightarrow g_1(x)$ não satisfaz a condição 2 do Teorema 2 com relação a $\xi_2=2$.

Cálculo Numérico – **Ponto Fixo** Exemplo 15:

- $g_2(x) = \sqrt{6 x}$ e $g'_2(x) = -(1/2)\sqrt{6 x}$ $\Rightarrow g_2(x)$ é contínua em $S = \{x \in R \mid x \le 6\}$ $\Rightarrow g'_2(x)$ é contínua em $S' = \{x \in R \mid x < 6\}$
- $|g'_2(x)| < 1 \Leftrightarrow |1/2 \sqrt{6} x| < 1 \Leftrightarrow x < 5,75$ □ $x_0=1,5 \Leftrightarrow |g'_2(x_0)| = |g'_2(1,5)| = |-0.2357| < 1$, ou seja a condição 2 é cumprida, para X_0 e os pontos seguintes.
- É possível obter um intervalo I centrado em $\xi_2=2$, tal que todas as condições do Teorema 2 sejam satisfeitas.

Ŋ4

Cálculo Numérico - Ponto Fixo

Critérios de parada

▶ Se os valores fossem *exatos*

$$f(x_k) = 0$$

$$|x_k - x_{k-1}| = 0$$

- Não o sendo
 - $|f(x_k)| \leq tolerância$
 - $|x_k x_{k-1}| \le tolerância$

<u>Algoritmo</u>

```
k := 0; x_0 := x;
while critério de interrupção não satisfeito and k \le L
k := k + 1;
x_{k+1} := g(x_k);
endwhile
```


Vantagens:

- Rapidez processo de convergência;
- Desempenho regular e previsível.

Desvantagens:

- Um inconveniente é a necessidade da obtenção de uma função de iteração g(x);
- Difícil sua implementação.

Método de Newton-Raphson

Dada uma função f(x) contínua no intervalo [a,b] onde existe uma raiz única, é possível determinar uma aproximação de tal raiz a partir da interseção da tangente à curva em um ponto x_0 com o eixo das abscissas.

 x_0 - atribuído em função da geometria do método e do comportamento da curva da equação nas proximidades da raiz.

- Considerações Iniciais
 - ☐ Método do *Ponto Fixo* (*MPF*)
 - Uma das condições de convergência é que |g(x)| < 1, $\forall x \in I$, onde I é um intervalo centrado na raiz
 - A convergência será tanto mais rápida quanto menor for |g(x)|
 - □ O método de *Newton* busca garantir e acelerar a convergência do *MPF*
 - Escolha de g(x), tal que $g'(\xi) = 0$, como função de iteração

Considerações Iniciais

□ Dada a equação f(x) = 0 e partindo da forma geral para g(x)

$$g(x) = x + A(x)f(x)$$

 \Box Busca-se obter a função A(x) tal que $g'(\xi) = 0$

$$g(x) = x + A(x)f(x) \Rightarrow$$

$$g'(x) = 1 + A'(x)f(x) + A(x)f'(x) \Rightarrow$$

$$g'(\xi) = 1 + A'(\xi)f(\xi) + A(\xi)f'(\xi) \Rightarrow f(\xi) = 0$$

$$g'(\xi) = 1 + A(\xi)f'(\xi)$$

Considerações Iniciais

- Assim $g'(\xi) = 1 + A(\xi)f'(\xi)$ $g'(\xi) = 0 \Leftrightarrow 1 + A(\xi)f'(\xi) = 0 \Leftrightarrow A(\xi) = -1/f'(\xi)$ daí se toma A(x) = -1/f'(x)
- \square Como g(x) = x + A(x)f(x)

$$g(x) = x + \left(\frac{-1}{f'(x)}\right).f(x)$$

então:

$$g(x) = x - \frac{f(x)}{f'(x)}$$

Considerações Iniciais

□ Deste modo, escolhido x_0 , a seqüência $\{x_k\}$ será determinada por

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

onde k = 0, 1, 2, ...

Motivação Geométrica

- \square Dado o ponto $(x_k, f(x_k))$
 - Traça-se a reta $L_k(x)$ tangente à curva neste ponto:

$$L_k(x) = f(x_k) + f'(x_k)(x-x_k)$$

■Determina-se o zero de $L_k(x)$, um modelo linear que aproxima f(x) em uma vizinhança x_k

$$L_k(x) = 0 \Leftrightarrow x = x_k - f(x_k)/f'(x_k)$$

■Faz-se $X_{k+1} = X$

Análise Gráfica

Estudo da Convergência

TEOREMA 3:

Sendo f(x), f'(x) e f''(x) contínuas em um intervalo I que contém uma raiz $x = \xi$ de f(x) = 0 e supondo $f'(\xi) \neq 0$, existirá um intervalo $\bar{I} \subseteq I$ contendo a raiz ξ , tal que se $x_0 \in \bar{I}$, a seqüência $\{x_k\}$ gerada pela fórmula recursiva

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

convergirá para a raiz.

- Testes de Parada
 - A cada iteração, testa-se se a aproximação encontrada poderá ser considerada como a solução do problema.
 - $|f(x_k)| \le tolerância$
 - $|((x_{k+1} x_k)/x_{k+1})| \le tolerância$

<u>Algoritmo</u>

```
k := 0; x_0 := x;
while critério de interrupção não satisfeito and k \le L
k := k + 1;
x_{k+1} := x_k - f(x_k)/f'(x_k)
endwhile
```


Exemplo 17: No Exemplo 13, no qual $x^2 + x - 6 = 0$:

- Seja a raiz $\xi_2 = 2$ e $x_0 = 1,5$
- Assim:

$$\Box g(x) = x - f(x)/f'(x) = x - (x^2 + x - 6)/(2x + 1)$$

$$\Box x_1 = g(x_0) = 1.5 - (1.5^2 + 1.5 - 6)/(2.1.5 + 1)$$
$$x_1 = 2.062500000$$

$$\Box x_2 = g(x_1) = 2,000762195$$

$$\Box x_3 = g(x_2) = 2,000000116$$

•

Cálculo Numérico - Newton-Raphson

Exemplo 17: Comentários:

- A parada poderá ocorrer na 3ª iteração (x = 2,000000116), caso a precisão do cálculo com 6 casas decimais for satisfatória para o contexto do trabalho
- Observe-se que no Exemplo 10, no Método do Ponto Fixo com $g(x) = \sqrt{6 x}$ só veio a produzir x = 2,000476818 na 5ª iteração

Cálculo Numérico - Newton-Raphson

Exemplo 18: Considere-se a função $f(x) = x^3 - x - 1$, e $tol = 0,0002 \cdot 10^{-8}$ cujos zeros encontram-se nos intervalos:

$$\xi_1 \in I_1 = (-1, 0), \ \xi_2 \in I_2 = (1, 2)$$

- Seja $x_0 = 1$
- $= e g(x) = x (x^3 x 1)/(3x^2 1)$

Cálculo Numérico – **Newton-Raphson** Exemplo 18:

Cálculo da 1^a aproximação

$$g(x_0) = 1 - [(1)^3 - 1 - 1] = 1,5$$

$$[3*(1)^2 - 1]$$

Teste de Parada

•
$$|f(x_0)| = |0.875| = 0.875 > \varepsilon$$

Cálculo Numérico – **Newton-Raphson** Exemplo 18:

Cálculo da 2^a aproximação

$$g(x_1) = 1.5 - [(1.5)^3 - 1.5 - 1] = 1,3478261$$

 $[3*(1.5)^2 - 1]$

- Teste de Parada
 - $|f(x_1)| = |0,100682| = 0,100682 > \varepsilon$

Cálculo Numérico - Newton-Raphson

Exemplo 18:

Cálculo da 3^a aproximação

$$g(x_2) = 1,3478261 - [(1,3478261)^3 - 1,3478261 - 1]$$

$$[3*(1,3478261)^2 - 1]$$

$$g(x_2) = 1,3252004$$

Teste de Parada

•
$$|f(x_2)| = |0,0020584| = 0,0020584 > \varepsilon$$

Cálculo Numérico - Newton-Raphson

Exemplo 18:

A sequência $\{x_k\}$ gerada pelo método de Newton será:

Iteração	X	F(x)
1	1,5	0,875
2	1,3478261	0,1006822
3	1,3252004	0,0020584
4	1,3247182	9,24378.10 ⁻⁷
5	1,3247178	1,86517.10 ⁻¹³

 $\varepsilon = 0,0002.10-8$

Cálculo Numérico – **Newton-Raphson**Vantagens:

- Rapidez processo de convergência;
- Desempenho elevado.

Cálculo Numérico - Newton-Raphson

Desvantagens:

- Necessidade da obtenção de f(x), o que pode ser impossível em determinados casos;
- O cálculo do valor numérico de f(x) a cada iteração;
- Difícil implementação.

Método da Secante

Dada uma função f(x) contínua no intervalo [a,b] onde existe uma raiz única, é possível determinar uma aproximação de tal raiz a partir da interseção da secante à curva em dois pontos x_0 e x_1 com o eixo das abscissas.

 x_0 e x_1 - atribuídos em função da geometria do método e do comportamento da curva da equação nas proximidades da raiz.

- Considerações Iniciais
 - Método de Newton-Raphson
 - Um grande inconveniente é a necessidade da obtenção de f(x) e o cálculo de seu valor numérico a cada iteração
 - Forma de desvio do inconveniente
 - Substituição da derivada f(x_k) pelo quociente das diferenças

$$f'(x_k) \approx [f(x_k) - f(x_{k-1})]/(x_k - x_{k-1})$$

onde x_{k-1} e x_k são duas aproximações para a raiz

Considerações Iniciais

□ A função de iteração será

$$g(x) = x_k - f(x_k) / [(f(x_k) - f(x_{k-1})) / (x_k - x_{k-1})]$$

$$= (x_k - x_{k-1}) \cdot f(x_k) / [f(x_k) - f(x_{k-1})]$$

$$= [x_{k-1} \cdot f(x_k) - x_k \cdot f(x_{k-1})] / [f(x_k) - f(x_{k-1})]$$

$$g(x) = \frac{[x_{k-1}.f(x_k)-x_k.f(x_{k-1})]}{[f(x_k)-f(x_{k-1})]}$$

Interpretação Geométrica

- \square A partir de duas aproximações x_{k-1} e x_k
 - •Obtém-se o ponto x_{k+1} como sendo a abscissa do ponto de intersecção do eixo ox e da reta que passa pelos pontos $(x_{k-1}, f(x_{k-1}))$ e $(x_k, f(x_k))$ (secante à curva da função)

Análise Gráfica

- Testes de Parada
 - A cada iteração, testa-se se a aproximação encontrada poderá ser considerada como a solução do problema.
 - $|f(x_k)| \leq \mathcal{E}$
 - $|((X_{k+1} X_k)/X_{k+1})| \leq \mathcal{E}$

<u>Algoritmo</u>

```
k := 0; x_0 := X_0; x_1 := X_1

while critério de interrupção não satisfeito and k \le L

k := k + 1;

x_{k+1} := (x_{k-1} * f(x_k) - x_k * f(x_{k-1})) / (f(x_k) - f(x_{k-1}))

endwhile
```


Exemplo 19: Considere-se a função $f(x) = x^3 - x - 1$, e $\varepsilon = 0,002$ cujos zeros encontram-se nos intervalos:

- Seja $x_{k-1} = 1.5 e x_k = 1.7$
- $g(x) = \underbrace{[x_{k-1} . f(x_k) x_k . f(x_{k-1})]}_{[f(x_k) f(x_{k-1})]}$

M

Cálculo Numérico - Secante

Exemplo 19:

• Cálculo da 1^a aproximação $x_0 = 1.5 x_1 = 1.7$ $f(x_0) = 0.875 > 0$

$$f(x_1) = 2,213 > 0$$

$$x_2 = [1,5.(2,213) - 1,7.(0,875)] = 1,36921$$

$$[2,213 - (0,875)]$$

Teste de Parada

- $|f(x_2)| = |0,19769| = 0,19769 > \varepsilon$
- Escolha do Novo Intervalo
 - $x_1 = 1,36921 e x_2 = 1,5$

Exemplo 19:

■ Cálculo da 2^a aproximação: $x_1 = 1,36921$ e $x_2 = 1,5$ $f(x_1) = 0,19769 > 0$ $f(x_2) = 0,875 > 0$ $x_3 = [1,36921.(0,875) - 1,5.(0,19769)] \Rightarrow [0,875-(0,19769)]$ $x_3 = 1,33104$

Exemplo 19:

- Cálculo da 2^a aproximação: $x_1 = 1,36921$ e $x_2 = 1,5$
 - Teste de Parada
 - $|f(x_3)| = |0,02712| = 0,02712 > \varepsilon$
 - Escolha do Novo Intervalo
 - $x_2 = 1,33104 e x_3 = 1,36921$

Exemplo 19:

■ Cálculo da 3ª aproximação: $x_2 = 1,33104$ e $x_3 = 1,36921$ $f(x_2) = 0,02712 > 0$ $f(x_3) = 0,19769 > 0$ $x_4 = \frac{[1,33104.(0,19769) - 1,36921.(0,02712)]}{[0,19769 - (0,02712)]}$ $x_4 = 1,324971$

Exemplo 19:

- Cálculo da 3^a aproximação: $x_2 = 1,33104$ e $x_3 = 1,36921$
 - ▶ Teste de Parada
 - $|f(x_4)| = |0,00108| = 0,00108 < \varepsilon$

(valor aceitável para a raiz)

Exemplo 20: Resgatando o Exemplo 13, no qual $x^2 + x - 6 = 0$:

- Sejam $x_0 = 1,5$ e $x_1 = 1,7$
- Assim:

$$x_2 = [x_0 .f(x_1) - x_1 . f(x_0)]/[f(x_1) - f(x_0)]$$

$$= [1,5.(-1,41)-1,7.(2,25)]/(-1,41+2,25)$$

$$= 2,03571$$

$$x_3 = [x_1 .f(x_2) - x_2 .f(x_1)]/[f(x_2) - f(x_1)]$$

$$= 1,99774$$

Exemplo 20: Resgatando o Exemplo 13, no qual $x^2 + x - 6 = 0$:

Assim:

$$x_4 = [x_2 .f(x_3) - x_3 .f(x_2)]/[f(x_3) - f(x_2)]$$

$$= 1,99999$$

$$\vdots$$

- Comentários:
 - □ A parada poderá ocorrer na 3^a iteração (x = 1,99999), caso a precisão do cálculo com 5 casas decimais for satisfatória para o contexto do trabalho

Vantagens:

- Rapidez processo de convergência;
- Cálculos mais convenientes que do método de Newton;
- Desempenho elevado.

Desvantagens:

- Se o cálculo f(x) não for difícil, então o método logo será substituído pelo de Newton-Raphson;
- Se o gráfico da função for paralela a um dos eixos e/ou tangencia o eixo das abscissas em um ou mais pontos, logo não se deve usar o método da Secante;
- Difícil implementação.

Exercício

- Utilize os Métodos da Bissecção e da Falsa Posição para encontrar soluções com precisão de 10⁻² para x⁴ - 2x³ - 4x² + 4x + 4 = 0 no seguinte intervalo: [0; 2]
- Resolva a mesma equação utilizando os métodos de Newton e das Secantes, com $x_0=1,3$ e $x_1=1,5$.