Problem Set 2 (for Lectures 3 and 4) Solutions

April 8, 2017

- A1. This is equivalent to saying: For $n \in \mathbb{N}$, $6|n \Longrightarrow condition$.
 - (a) TRUE. ($6|n \Longrightarrow 3|n$)
 - (b) FALSE. ($\neg [6|n \Longrightarrow 9|n]$)
 - (c) FALSE. ($\neg [6|n \Longrightarrow 12|n]$)
 - (d) FALSE. ($\neg [6|n \Longrightarrow (n=24)]$)
 - (e) TRUE. ($6|n \Longrightarrow 3|n^2$)
 - (f) TRUE ($6|n \Longrightarrow (n = 2k) \land 3|n$)
- A2. This is equivalent to saying: For $n \in \mathbb{N}$, condition $\Longrightarrow 6|n$.
 - (a) FALSE. $(\neg [3|n \Longrightarrow 6|n])$
 - (b) FALSE. ($\neg [9|n \Longrightarrow 6|n]$)
 - (c) TRUE. ($12|n \Longrightarrow 6|n$)
 - (d) TRUE. ($(n = 24) \Longrightarrow 6|n|$)
 - (e) FALSE. ($\neg[3|n^2 \Longrightarrow 6|n]$)
 - (f) TRUE. ($(n = 2k) \land 3|n \Longrightarrow 6|n$)
- A3.
- (a) FALSE
- (b) FALSE
- (c) FALSE
- (d) FALSE
- (e) FALSE
- (f) TRUE
- A4. THE APPLES ARE RED
- A5. f IS DIFFERENTIABLE
- A6. f IS INTEGRABLE

- A7. S IS CONVERGENT
- A8. $2^n 1$ IS PRIME
- A9. THE TEAM WINS
- A10. KARL IS PLAYING
- A11. KARL IS PLAYING
- A12. FALSE. (Proved in Assignment 4, A10)
- A13. TRUE. (Proved in Assignment 4, A9)
- A14.
- (a) Equivalent
- (b) Equivalent
- (c) Not Equivalent
- (d) Equivalent
- (e) Equivalent. (from $[P \Longrightarrow (Q \land R)] \iff [(P \Longrightarrow Q) \land (P \Longrightarrow R)]$)
- (f) Equivalent
- A15. 18 pts. Logical Correctness (2 pts) + Clarity (4 pts) + Opening (4 pts) + Stating the conclusion (4 pts) + Reasons (2 pts) + Overall valuation (2 pts)