Laboratorio de Microprocesadores 2020

TP1: Decoding and Timing

- 1. Se desea conectar una memoria RAM de 8K al bus del HC11 a partir de la posición \$4000. Se pide diseñar el decodificador de direcciones usando:
 - a- Lógica discreta (Compuertas)
 - b- Lógica de baja complejidad (decodificadores Ej.: 74LS138)
 - c- Una PAL (PALCE22V10) escribir solo las ecuaciones

Realizar el análisis del diagrama de tiempos tanto para lectura como escritura Usar como referencia el esquemático de la placa del HC11 y las siguientes tablas (2 MHz).

Figure 9.34. Simplified bus timing for the 6811 in expanded mode.

Num	Characteristic	1.0 MHz	2.0 MHz	2.1 MHz	Units
	Frequency	1.0	2.0	2.1	MHz
t_1	Cycle Time	1000	500	476	ns
t ₂	Pulse Width E low	480	230	218	ns
t_3	Pulse Width E high	480	230	218	ns
t ₄	rise/fall time	20	20	20	ns
t ₉	address hold time	95.5 min	33 min	30 min	ns
t ₁₂	A15-A8,R/W valid time	281.5 min	94 min	85 min	ns
t ₁₇	Read data setup time	30 min	30 min	30 min	ns
t _{18A}	Read data hold time	10 min	10 min	10 min	ns
t _{18B}	Read data goes hiZ	145.5 max	83 max	80 max	ns
t ₁₉	Write data delay time	190.5 max	128 max	125 max	ns
t ₂₁	Write data hold time	95.5 min	33 min	30 min	ns
t ₂₂	A7-A0 valid time	271.5 min	84 min	75 min	ns
t ₂₅	A7-A0 hold time	95.5 min	33 min	30 min	ns
t ₂₆	E to AS rise time	115.5	53	50	ns
t ₂₇	AS pulse width	221	96	90	ns

Laboratorio de Microprocesadores 2020

2. Diseñar el decodificador de direcciones para el siguiente mapa y dibujar el esquemático completo:

Address	Dispositivo
C000	ROM 16K
2000	RAM 4K
A000	Puerto de Salida de 8 bits
A800	Puerto de Entrada de 8 bits

Como decodificador de direcciones usar un 74LS138

- 3. Existe un límite físico respecto de cuantos dispositivos se pueden conectar al bus de un microprocesador. Que soluciones existen cuando se excede dicho limite.
- 4. Investigar cuales son las diferentes soluciones que existen cuando se desea interconectar un sistema de 5V TTL a uno de 3.3V TTL y viceversa. Dar ejemplos. Que es LVTTL?.
- 5. Dado el siguiente programa realizar los diagramas de tiempos ciclo a ciclo (usar la señal E como referencia) e incluir la señal LIR (ver HC11 Reference Manual).

	org \$C000	
	ldaa	#\$A5
L1	staa	\$4000
	jmp	L1

Nota: La señal **LIR** (**L**oad **I**nstrucción **R**egister Activo Bajo – Open Drain) indica cuando se inicia la ejecución de una nueva instrucción (Op-Code-Fetch). Esta señal se activa solo en el primer ciclo E de la dicha instrucción (cuando E=1).

