REPORT, DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

			orate for Information Operations and Reports, 1215 Jefferson ion Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	1	E AND DATES COVERED
	01/03/97	Final Re	
4. TITLE AND SUBTITLE Computational Nonlinear	r Control		5. FUNDING NUMBERS デリタルるの A FOE R-95-1-0169
6. AUTHOR(S)			
Arthur J. Krener			1
			AFOSR-TR-97
7. PERFORMING ORGANIZATION NAME	S) AND ADDRESS(ES)	~ 101
Institute of Theoretica University of Californi	046		
Davis, CA 95616			
,			
9. SPONSORING/MONITORING AGENCY	NAME(S) AND ADDI	RESS(ES)	10. SPONSORING / MONITORING
AFOSR/NM			AGENCY REPORT NUMBER
110 Duncan Avenue, Suit	D115		
Bolling AFB, DC 20332-			
bolling Arb, bc 20332-	-0001		
44 6000 5000 5000			
11. SUPPLEMENTARY NOTES			
		•	·
12a. DISTRIBUTION/AVAILABILITY STAT	EMENT		12b. DISTRIBUTION CODE
		DESTRUCTION ST.	HANDLING II
1201	1	Approved for put	O THE THE PRODUCT OF
Unlimi	Ted	Distribution U	Duc Islocici
			Address to the state of the sta
12 10070107 (14 : 200			
13. ABSTRACT (Maximum 200 words)			
The goals of this re	search projec	t were the develop	ment of control and estimatio
algorithms for nonlinear	systems which	are computational	ly feasible with robust
performance despite numer	ical and mode	ling errors. The	approach was based on the
recent generalization of	linear worst	case (H-infinity)	controllers to nonlinear

The goals of this research project were the development of control and estimation algorithms for nonlinear systems which are computationally feasible with robust performance despite numerical and modeling errors. The approach was based on the recent generalization of linear worst case (H-infinity) controllers to nonlinear systems. The construction of nonlinear H-infinity controllers depends on the solution of two PDE's of Hamilton-Jacobi type. The first is the one associated with the problem of H-infinity suboptimal control by state feedback that has appeared previously in the work of several authors. Numerical methods to compute a Taylor series solution term by term have been developed. The second PDE is a new Hamilton-Jacobi equation associated with H-infinity suboptimal estimation. A hybrid computational method to solve such problems has been developed.

DTIC QUALITY INSPECTED &

14. SUBJECT TERMS			15. NUMBER OF PAGES		
	9				
Nonlinear Control and	16. PRICE CODE				
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT		
Unclassified	Unclassified	Unclassified			

Final Technical Report Computational Nonlinear Control AFOSR-95-1-0169

A. J. Krener
Department of Mathematics and
Institute of Theoretical Dynamics
University of California
Davis, CA 95616-8633

Abstract

The goals of this research project were the development of control and estimation algorithms for nonlinear systems which are computationally feasible with robust performance despite numerical and modeling errors. The approach was based on the recent generalization of linear worst case (H_{∞}) controllers to nonlinear systems. The construction of nonlinear H_{∞} controllers depends on the solution of two PDE's of Hamilton-Jacobi type. The first is the one associated with the problem of H_{∞} suboptimal control by state feedback that has appeared previously in the work of several authors. Numerical methods to compute a Taylor series solution term by term have been developed. The second PDE is a new Hamilton-Jacobi equation associated with H_{∞} suboptimal estimation. A hybrid computational method to solve such problems has been developed .

1 Nonlinear H_{∞} Control by State Feedback

In this section an algorithm for computing term by term a state feedback H_{∞} control law for a nonlinear system is described. The MATLAB code to impliment this algorithm is available from http://scad.utdallas.edu/scad/ in the Nonlinear Systems Toolbox. The function "hji.m" impliments the following algorithm.

Consider a nonlinear system of the form

$$\dot{x} = f(x, u). \tag{1}$$

where the input u consists of two subvectors $u = [u_c; u_d]$, a control u_c and a disturbance u_d . The goal is to compute the feedback law for u_c that minimizes the maximum over all u_d the cost

$$\int_0^\infty l(x,u) \ dt. \tag{2}$$

See [K1] for further details. It is assumed that for each x, l is strictly convex in u_c , strictly concave in u_d .

When it exists and is smooth the optimal cost $\pi(x)$ starting at x will satisfy the Hamilton-Jacobi-Isaacs PDE

$$\Pi_x f + l = 0 \tag{3}$$

$$\Pi_x f_u + l_u = 0 \tag{4}$$

where for each x the evaluation is at the minmax u satisfying (4).

It is further assumed that f, l have series expansions

$$f(x,u) = f^{[1]}(x,u) + f^{[2]}(x,u) + f^{[3]}(x,u) + \dots + f^{[d]}(x,u)$$
 (5)

$$l(x,u) = l^{[2]}(x,u) + l^{[3]}(x,u) + l^{[4]}(x,u) + \dots + l^{[d+1]}(x,u)$$
(6)

where $f^{[j]}(x,u)$, $l^{[j]}(x,u)$ denote homogeneous polynomials of degree j. The leading terms are of the familiar linear-quadratic form

$$f^{[1]}(x,u) = Ax + Bu \tag{7}$$

$$l^{[2]}(x,u) = \frac{1}{2} (x'Qx + 2x'Su + u'Ru).$$
 (8)

The matrix R is symmetric and invertible but not positive definite because of the assumption that l is strictly convex in u_c , strictly concave in u_d .

Following Al'brekht [A], it is assumed that the optimal cost $\pi(x)$ and feedback $\kappa(x)$ have similar power series expansions

$$\pi(x) = \pi^{[2]}(x) + \pi^{[3]}(x) + \pi^{[4]}(x) + \dots + \pi^{[d+1]}(x)$$
(9)

$$u = \begin{bmatrix} u_c \\ u_d \end{bmatrix} = \kappa(x) = \kappa^{[1]}(x) + \kappa^{[2]}(x) + \kappa^{[3]}(x) + \dots + \kappa^{[d]}(x)$$
 (10)

where the leading terms are

$$\pi^{[2]}(x) = \frac{1}{2}x'Px \tag{11}$$

$$\kappa^{[1]}(x) = Kx \tag{12}$$

Note that the feedback is the optimal one for both the control u_c and the disturbance u_d .

These expansions are plugged into the Hamilton-Jacobi-Isaacs equations and terms of the same degree are collected. The leading terms in (3) are degree 2 and those in (4) are of degree 1, and yield the familiar Riccati equation and state feedback,

$$0 = PA + A'P + Q - (PB + S)R^{-1}(B'P + S')$$
(13)

$$K = -R^{-1}(B'P + S') (14)$$

The next step is to collect terms in (3) of degree 3 and those in (4) of degree 2, this yields a system of linear equations for $\pi^{[3]}$, $\kappa^{[2]}$ involving P, K which are then solved. The process is repeated through terms in (3) of degree d+1 and those in (4) of degree d yielding linear equations for $\pi^{[d+1]}$, $\kappa^{[d]}$ that depend on the lower degree solutions.

The call of "hji.m" is of the form

$$[ka, fk, py, lk] = hji(f, l, n, m, d);$$

The input parameters f, l are the dynamics and lagrangian as above. More precisely, they are matrices of coefficients of the various monomials in f, l in block lexographic order as described in the Read Me First file in the Nonlinear Systems Toolbox. The parameters n, m are the dimensions of x, u respectively and d is the degree of the series expansion of f.

The first output parameter is $ka = \kappa$ and the third output parameter is $py = \pi$ as described above. More precisely they are matrices of their coefficients in block lexographic order. The other output parameters are the matrices of the coefficients of the closed loop dynamics $fk(x) = f(x, \kappa(x))$ and the closed loop lagrangian $lk(x) = l(x, \kappa(x))$

The routine "hji.m" differs from "hjb.m" by calling "care.m" instead of "lqr2.m" to solve the Riccati equation. The routine "care.m" can handle indefinte Q and R while "lqr2.m" requires that Q be nonnegative definite and R be positive definite. The current release of the MATLAB Control Toolbox contains "lqr2.m" and the next release will contain "care.m".

Both "hji.m" and "hjb.m" can solve the Hamilton-Jacobi PDE for dynamics and lagrangians that depend on static or dynamic parameters. Such problems arise in designing servos [K2] and model matching controllers [K3]. Certain restrictions apply. See the comments in the m-files.

2 Hybrid Nonlinear Estimation

A hybrid algorithm for a nonlinear state observer that utilizes two levels of computation has been developed [KrD]. On the higher level one approximately computes a negative log liklihood function Q(x,t) for the currnt state given the past observations and initial state liklihood. The most likely estimate of x(t) is $\hat{x}(t) = \operatorname{argmin} Q(x,t)$ At the lower level, we initiate local observers that resemble extended Kalman filters at the local minima of Q(x,t). These are computed on a much faster time scale. One also computes how well they explain the observations. and takes as the estimate, the one that best explains the observations to date. This algorithm can be suitably modified to calculate nonlinear H_{∞} estimators [K1].

Since the computation of the Q function is expensive, it is done on a relatively coarse spatial and temporal grid. Hence the minimum of Q converges slowly to the true state and is never very accurate due to the coarseness of the grid. The local observers are computationally inexpensive especially since the filter gains are derived from Q rather than solutions of Riccati equations. Moreover when initialized close to the true value, they converge quickly and accurately. However if they are initialized far from the true value, they don't always converge to it. The coarse information in Q allows one to initialize the local observers properly.

Mortensen [M] and Hijab [H] introduced the concept of minimum energy estimation. Given an initial state estimate \hat{x}^0 , an observation history $\{y(s): 0 \le s \le t\}$ and an endpoint x one seeks the minimum "energy" triple x^0 , w(s), v(s) satisfying

$$\dot{x}(s) = f(x(s)) + w(s) \tag{15}$$

$$y(s) = h(x(s)) + v(s)$$

$$(16)$$

$$x(0) = x^0 \tag{17}$$

$$x(t) = x. (18)$$

The "energy" of the triple x^0 , w(s), v(s) is defined as

$$\frac{1}{2} \int_0^t e^{-\alpha(t-s)} \left| \frac{w(s)}{v(s)} \right|^2 ds + \frac{e^{-\alpha t}}{2} \left| \hat{x}^0 - x^0 \right|^2.$$
 (19)

Increasing the forgetting factor α decreases the importance of the initial state estimate and earlier observations and increases the importance of the later observations. The value Q(x,t) is a measure of the likelihood that x(t)=x given the initial state estimate and the observations to date. The smaller Q(x,t) is, the more likely x(t)=x. Let Q(x,t) denote the infimum of (19) over all triples satisfying (15-18), then the minimum energy estimate is

$$\hat{x}(t) = \operatorname{argmin} Q(x, t). \tag{20}$$

It is not hard to see that Q is a solution in the viscosity sense of the Hamilton Jacobi Bellman (HJB) PDE

$$\alpha Q + Q_t + Q_x f + \frac{1}{2} Q_x Q_x' - \frac{1}{2} |y - h|^2 = 0.$$
 (21)

For H_{∞} estimation the PDE is slightly different, [K1],

$$Q_t + Q_x f + \frac{1}{2\gamma^2} Q_x Q_x' - \frac{\gamma^2}{2} |y - c|^2 + \frac{1}{2} |k - \widehat{u}|^2 = 0$$
 (22)

Following Kushner and Dupuis [KD], we compute Q not by approximately solving the HJB PDE but rather by solving an approximating nonlinear program. Let r, k be relatively coarse spatial and temporal steps. Choose a subdomain of $\mathbf{R}^{\mathbf{n}}$ where the state is known to be and consider the rectangular lattice of points in the subdomain with spacing r. Following the dynamic program approach (in forward time), we define the approximate solution Q(x,t) of (21) at lattice points x and time steps t by

$$Q(x,t+k) = \inf \left\{ (1-\alpha k)Q(z,t) + \left| \frac{x-z}{k} - \frac{f(x,t+k) + f(z,t)}{2} \right|^2 \frac{k}{2} + \left| y(t) - \frac{h(x,t) + h(z,t)}{2} \right|^2 \frac{k}{2} \right\}$$

$$Q(x,0) = \frac{1}{2} \left| x - \hat{x}^0 \right|^2$$
(23)

where the infimum is over z in the whole lattice in the subdomain or some subset such as the 2n nearest neighbors of x.

Notice that the computation of Q must be done in real time because of the presence of y(t). The complexity of the computation is inversly proportional to the spatial step r to the power of the state dimension n. Hence there is a tradeoff between accuracy (small r) and computational ease (large r). Of course similar difficulties arise in all nonlinear estimation

algorithms, for example, nonlinear filtering requires solving the Zakai stochastic PDE in real

The extended Kalman Filtering is an alternative approach which can be very accurate when it converges. However it may fail to converge if the problem is highly nonlinear. If we assume that the w, v in (15,16) are independent standard white Gaussian noises and the initial state estimate is an independent Gaussian random vector with mean \hat{x}^0 and covariance P^0 then the extended Kalman Filter (EKF) takes the form

$$\dot{\hat{x}} = f(\hat{x}, t) + Ph'_{x}(\hat{x}, t)(y - h(\hat{x}, t))$$
 (25)

 $\dot{P} = f_r(\hat{x},t)P + Pf_r(\hat{x},t)' + I$

$$-Ph_x'(\hat{x},t)h_x(\hat{x},t)P\tag{26}$$

$$\begin{array}{rcl}
 & - \int_{x}(x,t) + \int_{x}(x,t) + 1 \\
 & - P h'_{x}(\hat{x},t) h_{x}(\hat{x},t) P \\
\hat{x}(0) & = \hat{x}^{0} \\
P(0) & = P^{0}
\end{array} \tag{26}$$

$$P(0) = P^0 (28)$$

An example of a highly nonlinear problem where an EKF may fail to converge is

$$\dot{x} = x(1-x^2) \tag{29}$$

$$y = x^2 + \epsilon x. (30)$$

If $\epsilon = 0$ the states x, -x are indistinguishable but for nonzero ϵ the system is observable. The dynamics has stable equilibria at $x = \pm 1$ and an unstable equilibrium at x = 0. If $\epsilon > 0$, the system is initialized near -1 and the EKF is initialized near 1, the EKF will fail to converge to the true value [KrD].

Suppose Q(x,t) is a smooth solution to HJB PDE (21), $\hat{x}(t)$ is a relative minimum of Q(x,t) and $q(t) = Q(\hat{x}(t),t)$ then

$$0 = \frac{\partial Q}{\partial x}(\hat{x}(t), t) \tag{31}$$

$$0 = Q_{xx}(\hat{x}(t), t)\hat{x}(t) + Q_{xt}(\hat{x}(t), t). \tag{32}$$

If one partially differentiates (21) with respect to x and evaluates at $\hat{x}(t)$, t one obtains

$$0 = Q_{tx}(\hat{x}(t), t) + Q_{xx}(\hat{x}(t), t)f + h'_{x}(\hat{x}(t), t)(y - h(\hat{x}(t), t).$$
(33)

From the last two equations one obtains

$$\dot{\hat{x}} = f(\hat{x}, t) + Q_{xx}^{-1}(\hat{x}, t)h_x'(\hat{x}, t)(y - h(\hat{x}, t))$$
(34)

and evaluating (21) at $\hat{x}(t)$, t yields

$$\dot{q} = -\alpha \ q + \frac{1}{2} |y - h(\hat{x}, t)|.$$
 (35)

These are the equations of a local observer based on Q. Notice the similarity of (34) to (25) of an EKF.

The hybid approach is as follows.

- 1) Compute Q(x,t) by a nonlinear programming approximation (23) on a coarse spatial and temporal grid,
- 2) At each relative minimum of Q(x,t), initialize a local observer $\hat{x}(t), q(t)$
- 3) Let the various local observers $\hat{x}(t), q(t)$ evolve according to (34, 35) on a fast time scale,
- 4) Eliminate redundant local observers when they come close together,
- 5) Choose as the current estimate, the $\hat{x}(t)$ of the local observer with smallest q(t).

While this algorithm can result in a large number of local observers, the computational burden associated with each one is quite small, less than an EKF. Each local observer invloves integrating n+1 differential equations instead of $(n^2+3n)/2$ for an EKF. The total computational burden associated with computing Q(x,t) on a coarse spatial and temporal grid and computing many local observers on a fine temporal scale is considerably lighter than computing Q(x,t) on a fine spatial and temporal grid. Moreover the accuracy of the solution of the HJB PDE (21) is limited by the fineness of the spatial grid while machine precision is the limit on the spatial accuracy of a local observer. In [KrD] this observer is applied to a pair of examples.

References

- [A] E. G. Al'brekht, On the optimal stabilization of nonlinear systems, PMM-J. Appl. Math. Mech., 25, (1961), 1254-1266.
- [H] O. B. Hijab, *Minimum Energy Estimation*, Ph.D. Dissertation, Univ. of Calif., Berkeley, 1980.
- [K1] A. J. Krener, Nonlinear worst case (H-Infinity) control and estimation, J. Math. Sys. Est. Con 7, (1996), 81-106.
- [K2] A. J. Krener, The construction of optimal linear and nonlinear regulators, In Systems, Models and Feedback: Theory and Applications. A. Isidori and T.J. Tarn, (eds.) Birkhauser-Boston, (1992), 301-322.
- [K3] A. J. Krener, Optimal model matching controllers for linear and nonlinear systems, In Nonlinear Control System Design 1992, M. Fliess, (ed.), Pergamon Press, Oxford, (1994), 209-214.
- [KrD] A. J. Krener and A. Duarte, A Hybrid computational approach to nonlinear estimation, Proc. of 1996 Conference on Decision and Control.
- [KD] H. J. Kushner and P. G. Dupuis, Numerical Methods for Stochastic Control Problems in Continuous Time, Springer-Verlag, New York, 1992.
- [M] R. E. Mortensen, Maximum likelihood recursive nonlinear filtering. J. Optimization Theory and Applic., 2(1968), 386-394.

Participants in AFOSR-F49620-95-1-0169"I"

- A.J. Krener
- A. Banaszuk
- A. Duarte
- J. Humbert
- T. Swanston

Publications supported in part by AFOSR-95-1-0169

December 12, 1996

- 1. A. J. Krener, Nonlinear worst case (H-Infinity) control and estimation, J. Math. Sys. Est. Con 7, (1996), 81-106.
- 2. A. J. Krener and A. Duarte, A Hybrid computational approach to nonlinear estimation, Proc. of 1996 Conference on Decision and Control
- 3. A. J. Krener, *Nonlinear Systems Toolbox V. 1.0*, (1996) A MATLAB based toolbox available from http://scad.utdallas.edu/scad/

(Pursuant to "Patent Rights" Contract Clause) (See Instructions on Reverse Side.) REPORT OF INVENTIONS AND SUBCONTRACTS

form Approved OMB No 0104 0191 Expres Ion 10, 1991 Public reputing burden for this collection of information is estimated to average 5 minutes per response, Including the time for reviewing instructions, searching easts nources, gathering and maintaining the data needed, and completing and reviewing this collection of information, including togestions for reducing this burden, to washington Headquarters Services, Directorate for information (increasing this burden), to Management and Budget, Paperwork Reduction Project (0104-0197), Washington, DC 2050)

37 172 õ Completion (2) Estimated 01/03/97 XX P TINAL 4. REPORTING PERIOD (TYMMOO) (2) Foreign Countries of Patent Application JISSHMENT TOAWARDED 1 CONTRACTING OFFICE c. I certify that the reporting party has procedures for prompt identification and timely disclosure of "Subject inventions," that such procedures have been followed and that all "Subject inventions" have been reported. * DATE SIGNED 1. SUBCOMTRACT DATES (Y' INSTRUMENT OR CONFIRMATORY rrow 950201 961031 3. TYPE OF REPORT . INTERIM (I) AWard 3 73 о 10 ! (e) Yes (b) Ho 9. ELECTED FOREIGH COUNTRIES IN WHICH A PATENT APPLICATION WILL BE FILED (2) foreloan Mon-Profit organization.) (X appropriate box) PATENT APPLICATIONS ELECTION TO FILE DESCRIPTION OF WORK TO BE PERFORMED UNDER SUBCONTRACT(S) ļ d. AWARD DATE (YYMMDO) (a) Yes (b) No (1) United States C CONTRACT NUMBER 1 SECTION II - SUBCONTRACTS (Containing a "Patent Rights" clause) FATERT APPLICATION KAILAL NO. OR DISCLOSURE NO., PATENT NO. 24. HAME OF GOVERNMENT PRIME CONTRACTOR d. DFAR "PATENT RIGHTS" (YYMM) (2) SECTION I - SUBJECT INVENTIONS SECTION III - CERTIFICATION Prexidus editions are obsolete. (1) Title of invention Small Business or Number (1) Clause b. ADDAESS (Include 218 Code) SUBCONTRACT NO.(S) S YOULEST INVENTIONS" REQUIRED TO BE REPORTED BY CONTRACTOR/SUBCONTRACTOR (II "Mone," so state) (Not required If SIGNATURE HILL OF INVENTION(S) (1) Addies of Employer (Inchede IIP Code) AFOSR-F49620-95-1-0169" ö (2) (a) Name of Inventor (Lest, first, MI) A HAME OF AUTHORITED CONTRACTOR SUBCONTRACTOR OFFICIAL (Last, FIRST, MI) 6. SUICOMITACTS AWARDED BY CONTRACTOR/SUICONTRACTOR (II "Hone," to state) d. AWARD DAIL (YYMMDO) ADDRESS (Include 21P Code) IMPLOYER OF INVENTORIS) NOT EMPLOYED BY CONTRACTOR/SUICONTRACTOR (b) Name of Employer CONTRACT NUMBER none CENTIFICATION OF REPORT BY CONTRACTOR/SUICOHTRACTOR SuiteB115 20332-0001 IN HAME OF CONTRACTOR/SUBCONTRACTOR 11) Addies of Employer (Include 219 Code) WAME (S) OF INVENTOR(S) (1)(a) Hame of Inventor (Last, First, All) Krener KRENER, Arthur J. HAME OF SUBCOMINACTOR(S) DD Form 882, OCT 89 110 Duncan Ave., Bolline, AFB, DC (1 a.1. / / / / / / / / / AFOSK/NK 11" code) US Air Force Arthur J. Professor (b) Name of Employe none 1111