Furstenberg's Proof.

Assume you two are both familiar with $Ch\ 1$ in \dot{T} 's book. Here is a super cool stuff I'd like to show: Furstenberg's proof of the infinitude of primes.

Problem. Try to prove there are infinite primes in a super cool style.

Furstenberg's proof. Define the topology on \mathbb{Z} , that is, open sets are generated by arithmetic sequences (in the form of $a\mathbb{Z}+b$). We denote

$$S(a,b) := a\mathbb{Z} + b := \{an + b \mid n \in \mathbb{Z}\}.$$

Then S(a,b) are both open and closed.

Assume that prime numbers are finite. Then $\cup_{p \text{ is prime}} S(p,0)$ is a finite union of closed sets, thus closed. As a result, $\{\pm 1\} = \mathbb{Z} - \cup_{p \text{ is prime}} S(p,0)$ is open. This would be a contradiction!

Here is another thought-provoking problem we shall discuss in several days.

Definition 1-5 seems trivial yet referenced for the sake of rigor.

Definiton 1. We call G = G(V, E) a **simple graph** whenenver V is a set and $E \subset \{\{x,y\} \mid x,y \in V, x \neq y\}$. Here V (or E) is the set of vertices (or edges).

Simple graph is always unweighted, undirected, without self-loops and multi-edges.

Definition 2. Let G be a simple graph. G is k-colourable on vertices whenever there exists a function $f \in \{1,2,\ldots,k\}^V$ s.t. $f(x) \neq f(y)$ when $\{x,y\} \in E$.

Definition 3. The **minimal number for vertex colouring** is the minimal positive integer $k_{\min} =: \chi(G)$, such that G is k_{\min} -colourable on vertices.

Definition 4. The **vertex-deleted graphs** of G are in the form of

$$G_{x_0}(V',E') := G_{x_0}(\{x \in V \mid x
eq x_0\}, \{\{x,y\} \in E \mid x,y
eq x_0\}).$$

Informally speaking, G_{x_0} is obtained from G by deleting x_0 and all edges connecting to it.

Definition 5. We call a simple graph G critical whenever $\chi(G) < \infty$ and

$$\sup_{x \in G} \chi(G_x) = \max_{x \in G} \chi(G_x) < \chi(G).$$

Problem. Proves that all critical graph is finite, that is, $|V| < \infty$.

The *axiom of chioce* is required when necessary.