IPTV и субъективные методы оценки QoE

Технология IPTV

• IPTV – телевидение поверх IP. Один из вариантов построения сетей кабельного телевидения, в качестве протокола сетевого уровня использующего IP. Использует сеть оператора. Это закрытая или полузакрытая сеть. Вся инфраструктура принадлежит оператору и не доступна целиком из Интернет. Более того, все устройства, подключенные к сети, контролируются оператором.

• Свойства IPTV:

- Поддержка интерактивного ТВ;
- Персонализация;
- Отложенный просмотр (Time Shifting);
- Доступность услуг IPTV при использовании терминалов разных типов.

Телевизионные сервисы (1)

- BTV Broadcast Television вещание телевизионных каналов по IP сети.
 - Способ оплаты абонентская плата.
 - Пакеты каналов с возможностью переподписки.
- EPG Electronic Program Guide электронная программа передач.
 - Способ оплаты без оплаты.
 - Используется для информирования абонентов о программах и для использования PVR сервисов.

Телевизионные сервисы (2)

- NPVR Network PVR сетевой видеомагнитофон заказ «записи» будущих программ через EPG.
 - Способ оплаты за заказ.
 - Просмотр «записанной» программы в течение определенного времени (н-р, 72 ч.) неограниченное количество раз.
- SO Start Over перезапуск программ возможность просмотра текущей телепередачи сначала.
 - Способ оплаты за просмотр.
 - Отсутствие возможности прокрутки.

Телевизионные сервисы (3)

PVR – сервисы:

- **PLTV-Pause Live TV** пауза прямого эфира. Абонент в любое время прямой трансляции может нажать кнопку "pause" на ПДУ. После паузы, нажав кнопку "play", можно продолжить просмотр с места остановки.
- **Instant PVR** реализация записи не через заказ по EPG, а по нажатию абонентом кнопки "record" на ПДУ в режиме полноэкранного просмотра. В результате осуществляется запись временного интервала между нажатиями кнопок "record" и "stop".
- *TSTV Time-shift TV* телевидение со сдвигом во времени. Это наиболее широкая реализация всех "PVR-based" сервисов. TSTV позволяет в любой момент времени нажать на «прямой трансляции» кнопку "rewind" и перемотать телеканал на любое время назад (10 минут, час, день, и т.д.).

Услуги VoD

- VOD Video on Demand видео по запросу.
 - Способ оплаты за заказ.
 - Возможна вариация цены в зависимости от срока аренды (н-р, 6/12/24 часа).
 - Механизм закладок быстрые переходы к эпизодам.
 - Бесплатный просмотр трейлеров.
- SVOD Subscription Video on Demand видео по запросу по подписке. Позволяет оплатить абоненту неограниченный доступ к определенной категории VOD контента.
 - □ Способ оплаты за заказ.
 - Возможна вариация цены в зависимости от срока аренды (н-р, 6/12/24 часа).
 - Механизм закладок быстрые переходы к эпизодам.
 - Бесплатный просмотр трейлеров.
- NVOD Near Video on Demand виртуальный кинозал, трансляция видеоконтента по расписанию в широковещательном режиме (multicast).
 - Способ оплаты за заказ.
 - Возможна вариация цены в зависимости от срока аренды (н-р, 6/12/24 часа).
 - Механизм закладок быстрые переходы к эпизодам.
 - Бесплатный просмотр трейлеров.

Internet-TV и IPTV

- Internet-TV возможность просмотра телепрограмм через Интернет. Использует общедоступную сеть. Открыта для любого пользователя на любом континенте, более того, каждый может опубликовать информацию, которая глобально доступна.
- *IPTV* телевидение поверх IP. Один из вариантов построения сетей кабельного телевидения, в качестве протокола сетевого уровня использующего IP. Использует сеть оператора. Это закрытая или полузакрытая сеть. Вся инфраструктура принадлежит оператору и не доступна целиком из Интернет. Более того, все устройства, подключенные к сети, контролируются оператором.

Основные проблемы реализации услуг IPTV на базе существующих сетей:

- Поддержка абонентской сетью услуги IPTV;
- Достаточный ресурс транспортной сети;
- Обеспечение гарантированного качества обслуживания (QoS);
- Совместимость оборудования различных производителей;
- Разработка видеоконтента с учетом запросов пользователей.

Традиционное решение IPTV

Агентская схема

- Middleware перемещается на клиентские приставки;
- Контент поступает уже «закрытый» и «упакованный в нужный формат»;
- Появление контент-агрегаторов.

Состав типового комплекса

- Система условного доступа (подсистема защиты контента);
- Система middleware;
- Система VoD;
- Головная станция приема телепрограмм;
- Узел кодирования;
- Абонентские устройства.

Система условного доступа

Система условного доступа (Conditional Access System, CAS) или подсистема защиты контента обеспечивает:

- Разграничение доступа абонентов к мультимедийным услугам;
- Обеспечение защиты контента от несанкционированного доступа/копирования;
- Соблюдение авторских прав. Обычно состоит из системы шифрования вещательных каналов и VoD;
- Шифрование;
- Обнаружение клонов.

Шифрование вещательных каналов

Шифрование VoD

Middleware, MW

Middleware - система управления услугами и абонентским интерфейсом.

Обеспечивает:

- Интерфейс пользователя для управления и организации доступа к мультимедийным услугам;
- Поддержку абонентских устройств (STB);
- Поддержку контентного наполнения мультимедиа услуг;
- Обеспечение контроля и управления мультимедийными услугами, предоставляемыми при помощи комплекса;
- Обеспечение обмена данными с внешними информационными системами.

Аппаратная архитектура для инсталляции альтернативной конфигурации

Система видеосерверов VoD

Основные компоненты:

- *Центральный узел* аппаратно-программный комплекс, расположенный, как правило, в «центре» сети вблизи системы условного доступа и головной станции;
- *Система управления контентом* программное обеспечение, управляющее видеосерверами и распределением контента;
- Видеосервер аппаратно-программный комплекс, устанавливаемый для обслуживания групп пользователей в определенной территории, например, в пределах одного узла агрегации.

Узел кодирования эфирных каналов

Абонентские устройства

MiddleWare Authorization

Network settings, image

Специализированные протоколы многоадресной рассылки

- <u>IGMP</u> Internet Group Management Protocol. Относится к управляющим протоколам. Интегрируется в IP на сетевом уровне. Позволяет маршрутизатору определять принадлежность хостов к группе. Ориентирован на минимизацию служебного трафика.
- <u>PIM</u> Protocol Independent Multicast MIB for IPv4. Позволяет строить покрывающее дерево в группе, причем между двумя хостами существует только один путь. Работает с базами MIB, в основе него лежит протокол SNMP, поэтому протокол PIM также является протоколом запросов и ответов.

Версии IGMP

- Действующие версии IGMPv2, v3 и IGMP snooping, IGMPv1 устаревшая.
- Версии IGMP 1, 2 и 3 совместимы между собой.
- В IGMPv1 предусмотрено два типа сообщений:
 - запрос участника группы
 - ответ участника группы.
- В IGMPv2 существует 4 типа сообщений:
 - запрос участника группы,
 - ответ участника группы для v1,
 - ответ участника группы для v2,
 - отключение от группы.

• IGMPv1

• IGMPv2

• В IGMPv3 добавляется поддержка фильтрации источников, которая позволяет узлу-получателю многоадресной рассылки сообщить маршрутизатору группы об источниках, от которых он желает получать данные многоадресной рассылки, и источники, от которых такие потоки данных ожидаются. Такая информация о составе группы позволяет программному обеспечению пересылать потоки данных только от источников, запрошенных получателями.

0	7		15					
тип = 0х11			максимальное время ответа	контрольная сумма				
Адрес группы								
	S	QRV	QQIC	количество источников (N)				
адрес источника [1]								
адрес источника [2]								
-								
-								
адрес источника [N]								

- IGMP snooping предназначен для непосредственной работы с коммутаторами третьего уровня.
- IGMP snooping запрашивает коммутатор локальной сети третьего уровня о наличии пакетов IGMP, посылаемых между оконечными узлами и маршрутизатором.
- В случае наличия запроса участника группы, коммутатор добавляет номер порта, на который подключен данный участник, в соответствующую таблицу коммутатора. В случае наличия пакета отключения от группы, порт отключается.

Версии PIM, DM

- **PIM-DM** (Dense Mode) уплотненный режим. Используется для работы в сетях, где пользователи расположены плотно, задержки небольшие, отсутствует дефицит пропускной способности.
- Обеспечивает гарантированную доставку, не предусматривает методов уменьшения нагрузки на сеть.
- Использует метод широковещания и отсечения (пересылка широковещательных сообщений прекращается только после получения явного запроса на отсечение).
- Для маршрутизации используется любой протокол маршрутизации (чаще всего OSPF). Кратчайший путь вычисляется к каждому получателю.

Версии PIM, SM

- PIM-SM (Sparse Mode) разреженный режим. Рассчитан на работу в сетях с небольшой плотностью пользователей и ограниченными ресурсами.
- Использует метод управления по запросу:
 - Определяется точка сбора RP (Rendez-vous Point), в которую отсылаются сообщения о присоединении. Маршрутизатор RP называется центральным.
 - При получении IGMP запроса, локальный маршрутизатор отсылает центральному одноадресный запрос о присоединении.
 - Все маршрутизаторы, находящиеся на маршруте, анализируют этот запрос о присоединении, и любой из них может ответить на запрос, если является частью дерева.

- Оптимизирует возможность подключения к точке сбора с помощью процедур реконфигурации.
- Структура дерева может быть перестроена в случае недоступности центрального маршрутизатора или при наличии нескольких альтернативных точек сбора. Т.е. происходит переключение с общего дерева на дерево кратчайшего пути.
- Содержит механизм, позволяющий переключаться между общим деревом и деревом кратчайшего пути. Например, в качестве критерия переключения может служить интенсивность трафика, но в силу высокой пачечности трафика требуется отдельная процедура усреднения интенсивности.

Дерево PIM-SM

Основные стандарты кодеков по годам создания

Сравнение стандартов видеокодеков

Название	Год	Разрешение и поток	Аудио	Применение
MPEG1	1992	352/240/30 352/288/25, 1.5 Мбит/с	MPRG1 Layer 11	Ранние VideoCD
H.261	1993	352/288/30, 176/144/30, 0,04-2 Мбит/с		
MPEG2	1995	Универсальный, 3-15 Мбит/с	MPRG1 Layer 11, Dolby Digital 5.1, DTS	DVD
MPEG3 не принят	1993-1995	Телевидение высокой четкости, 20-40 Мбит/с		HDTV
MPEG4	1999	Универсальный, 0,0048-20 Мбит/с	MPRG1 Layer 11, MPRG1 Layer 111, Dolby Digital 5.1, DTS	Новые VideoCD

Передача разностной информации кадров

Новый кадр

Предыдущий кадр

Разница кадров

КОДЕР

ДЕКОДЕР

Разница кадров

Предыдущий кадр

Новый кадр

Формирование кадров в MPEG2

I - изображение с внутрикадровым кодированием.

Р - изображение с однонаправленным предсказанием.

В - изображение с двунаправленным предсказанием

Структура чередования кадров в MPEG2

- Чередование кадров при передаче позволяет уменьшить джиттер задержки.
- Использование кадров с двунаправленным предсказанием раньше, чем с однонаправленным также позволяет уменьшить задержку на приеме.

Пример работы с медиаобъектами в MPEG4

Исходный кадр

VOP1 VOP2 VOP3

Особенности MPEG4

- MPEG4 фактически задает правила организации объектноориентированной среды.
- Работает с медиаобъектами это ключевое понятие стандарта. Объекты могут быть аудио—, видео—, аудиовизуальными, графическими (плоскими и трехмерными), текстовыми. Они могут быть как "естественными" (записанными, отснятыми, отсканированными и т. п.), так и синтетическими (т. е. искусственно сгенерированными).
- Примерами объектов могут служить неподвижный фон, видеоперсонажи отдельно от фона (на прозрачном фоне), синтезированная на основе текста речь, музыкальные фрагменты, трехмерная модель, которую можно двигать и вращать в кадре.
- Из объектов строятся сцены.

Структура кадра IPTV

Особенности кадра IPTV

- Заголовок протокола прикладного уровня отсутствует.
- В одном кадре передается информация о звуке, видео, тексте.
- Размер кадра соответствует MTU=1500 байт.
- Используемые типы видео кодеков: MPEG2 и MPEG4.
- Стандарт MPEG4 разработан с опорой на MPEG2, поэтому, несмотря на разницу формирования кадров в MPEG2 и MPEG4, алгоритм формирования потока трафика сохраняется.

Наглядная структура потока MPEG2

Формирование пакетного элементарного потока (PES)

PES - пакет

- Код старта 32 бита:
 - стартового префикса
 - идентификатора потока.
 Идентификатор потока позволяет выделить PES-пакеты, принадлежащие одному элементарному потоку телевизионной программы.
- Флаги 1 и 2 указывают на наличие доп.полей.
 - авторские права
 - скремблирование
 - приоритет
- PST (Presentation Time Stamps) поля с метками времени представления.
 - DTS (Decoding Time Stamps) метка декодирования, обеспечивающая синхронизацию потоков данных в декодере.

Формат программного потока

Формирование транспортного потока

Искажения, обусловленные внутрикадровым кодированием

- *Блочность* (blockiness) заметны границы блока;
- **Эффект «мозаики»** грубое квантование коэффициентов ДКП;
- *Размытие изображения* большой коэффициент сжатия изображения;
- **Окантовки на границах** появление характерных окантовок на резких переходах яркости изображения;
- *Размытие цветов* проявляется на участках изображения с резкими скачками в сигнале яркости;
- *Искажения типа «ступеньки»* результат неправильного восстановления или передачи краев изображений внутри блока.

Искажения, обусловленные межкадровым кодированием

- **Ложные границы** при компенсации движения с использованием опорного кадра;
- **Эффект «комаров»** флуктуация яркости или цветности в блоке на границе между движущимся объектом и фоном;
- Зернистый шум в стационарной области проявляется как медленно движущиеся дрожащие шумы низкой интенсивности в областях, в которых имеется лишь малое движение;
- **Неправильные цвета** неправильный цвет всего макроблока по отношению к собственному цвету и к цвету окружающей области;
- **Эффект «приведения»** след за движущимся объектом.

Качество восприятия

- **QoE** (**Quality of Experience**) рассматривается как общий показатель качества приложения или сервиса, воспринимаемый субъективно конечным пользователем (G.1080).
- **QoE** является более широким показателем, чем QoS, потому что определяется не только параметрами сети или качеством предоставляемого контента как QoS, а также учитывает удобство использования системы, содержание контента и ожидания пользователя.

Качество восприятия, QoE

Субъективные показатели:

- **1. Компоненты восприятия человеком** культурный фон, мотивация, эмоциональное состояние, внимание и т.д.
- 2. Функции управления сервисом опыт работы с конкретной системой и ее уровнем качества, удобство навигации при выборе услуг IPTV, при поиске контента, интуитивно понятный интерфейс.
- **3.** Тарифы.

Объективные показатели:

- 1. Факторы передачи информации минимальная скорость передачи данных, максимальный уровень потерь пакетов, задержки и др.
- **2.** Факторы функционирования приложений параметры кодека, разрешение видеоданных источника, скорость кодирования, схему маскировки ошибок и т.д.
- **3. Факторы услуг** или уровень предоставления услуги Zapping time, возможность выбора контента, EPG.

Субъективная оценка

Этапы тестирования:

- 1.Выбор или сочетание способов демонстрации видеопоследовательностей;
- 2.Определение методики сбора мнений экспертов;
- 3. Выбор методики обработки результатов.

Субъективные методы ВТ.500-13

- Методы «double stimulus» последовательное воспроизведение каждой пары видео, состоящей из опорного и тестируемого видео;
- **Методы** *«single stimulus»* воспроизведение и оценка только тестируемой последовательности;
- Методы «stimulus comparison» воспроизведение пары видеопоследовательностей и оценка их качества относительно друг друга.

Субъективные методы (1)

- SSCQS или DSCQS (Single или Double Stimulus Continuous Quality Scale) тестируемая видеопоследовательность или пара видеопоследовательностей опорная и тестируемая проигрываются и оцениваются по 5-ти бальной шкале:
- **DSIS** (*Double Stimulus Impairment Scale*) аналогична **DSCQS**, только тестируемая последовательность оценивается в сравнении с эталонной последовательностью (другого содержания) по дискретной шкале: незначительно, заметно, но не очень раздражает, немного раздражает, раздражает, очень раздражает;
- **SC** (*Stimulus Comparison*) проигрываются две видеопоследовательности и оценивается качество одной видеопоследовательности относительно другой, например, хуже, одинаково, лучше.

Субъективные методы (2)

- **SAMVIQ** Тест на цветовосприятие, оценка кодеков. Группа экспертов по стобалльной шкале оценивает несколько вариантов видеопоследовательностей, закодированных разными кодеками. Затем оценки усредняются, есть возможность вернуться и изменить оценку. В основном решает одну задачу: позволяет выбрать наиболее по подходящий кодек.
- **PQR** (ITU-R BT.500-11) Оценивает уровень восприятия зрительной системы человека. Группа экспертов сравнивает эталонную и тестируемую последовательности. Не учитывает ситуацию на сети на момент ухудшения качества видео. Оценивает видео при случайном возникновении искажений.
- **SSCQE** Непрерывно оценивает одну программу длительностью 10-20 минут, а не серию тестовых сцен. Группа экспертов по пятибалльной шкале. Оценка зависит в том числе и от содержания программы.