Solutions to Assignment 1: CS6510 - Applied Machine Learning

Vishwak S CS15BTECH11043

Question 1

Part 1

Since X and Y are independent, $P(X) \times P(Y) = P(X \cap Y)$. $P(\bar{X}) = 1 - P(X)$. Due to this:

$$P(\bar{X} \cap Y) = P(Y) - P(X \cap Y) \quad \text{(from Set Theory)}$$

$$\implies P(\bar{X} \cap Y) = P(Y) - P(Y) \times P(X) = P(Y)(1 - P(X)) = P(Y) \times P(\bar{X})$$

Hence \bar{X} and Y are independent.

Part 2

Listing down the information from the question:

$$P(C1 = H) = 0.5$$
 $P(C1 = T) = 0.5$
 $P(C2 = H|C1 = H) = 0.7$ $P(C2 = H|C1 = T) = 0.5$

From Bayes' Theorem: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$. We need to find: $P(C1 = T \cap C2 = H)$.

$$P(C1 = T \cap C2 = H) = P(C2 = H) \times P(C1 = T | C2 = H) \quad \text{(from Conditional probability)}$$

$$\implies P(C1 = T \cap C2 = H) = P(C2 = H) \times \frac{P(C2 = H | C1 = T)P(C1 = T)}{P(C2 = H)} \quad \text{(from Bayes' Theorem)}$$

$$\implies P(C1 = T \cap C2 = H) = P(C1 = T | C2 = H)P(C1 = T) = 0.5 \times 0.5 = \boxed{0.25}$$

Question 2

Part a

A set S is a vector space if the following conditions hold:

- if $u, v \in S$, then $u + v \in S$.
- if $u \in S$, then $\alpha u \in S \quad \forall \alpha$.

 $\nexists u, v \in S = \emptyset$, hence the first condition holds [False \implies True is True]. Similarly, $\nexists u \in S = \emptyset$, hence the second condition holds for the same reason above. Hence the empty set is a vector space.

Part b and c

Let M^{-1} be of the form: $I + \alpha(\mathbf{u}\mathbf{v}^T)$. We know that: $MM^{-1} = I$. Applying this we get:

$$MM^{-1} = I$$

$$(I + \mathbf{u}\mathbf{v}^{T})(I + \alpha(\mathbf{u}\mathbf{v}^{T})) = I$$

$$\implies I + \mathbf{u}\mathbf{v}^{T}(1 + \alpha) + \alpha\mathbf{u}(\mathbf{v}^{T}\mathbf{u})\mathbf{v}^{T} = I$$

$$\implies \mathbf{u}\mathbf{v}^{T}((1 + \alpha) + \alpha(\mathbf{v}^{T}\mathbf{u})) = \mathbf{0}$$

$$\implies \alpha = \frac{-1}{1 + \mathbf{v}^{T}\mathbf{u}}$$

Since there is an α , we can tell that our assumption is true, and hence the inverse of the matrix M is of the form $I + \alpha(\mathbf{u}\mathbf{v}^T)$.

Part d and e

If M is singular: then $\det M = 0$. We know that the eigenvalues of $M = I + \mathbf{u}\mathbf{v}^T$ are of the form: $1 + \lambda_i$, where λ_i s are the eigenvalues of $\mathbf{u}\mathbf{v}^T$. We also know that the determinant of the matrix is the product of its eigenvalues.

$$\det M = 0 \implies \prod_{i=1}^{n} (1 + \lambda_i) = 0$$

$$\implies \exists \lambda_k \text{ such that } (1 + \lambda_k) = 0$$

This means that at least one of the eigenvalues of $\mathbf{u}\mathbf{v}^T$ is exactly -1. From the expression for α , we know that this definitely happens when $\mathbf{v}^T\mathbf{u} = -1$, in which case, α is undefined.

The Null space of M is defined as: $M\mathbf{x} = \mathbf{0}$. This means that:

$$(I + \mathbf{u}\mathbf{v}^T)\mathbf{x} = \mathbf{0}$$
$$\mathbf{x} + \mathbf{u}\mathbf{v}^T\mathbf{x} = \mathbf{0}$$

Recall that if M is singular, then -1 is an eigenvalue of $\mathbf{u}\mathbf{v}^T$ and hence: $\mathbf{u}\mathbf{v}^T\mathbf{x} = -\mathbf{x}$. Resuming from where we left off: consider $\mathbf{x} = \mathbf{u}$. $\mathbf{u} - \mathbf{u} = 0$ (since $\mathbf{v}^T\mathbf{u} = -1$).