

Conceitos Elementares e Representação de Dados

ESTATÍSTICA

O que é?

Ramo da matemática que transforma dados em informações úteis para tomadores de decisão.

ESTATÍSTICA

1) Ciência dos dados:

- Produtor de informações.
- Consumidor de informações.
- 2) Coleta, classificação, sumarização, organização, análise e interpretação de dados.

3) Por que estudar estatística?

- Aprender a lidar com incertezas.
- Fazer previsões/inferências.
- Verificar relações entre variáveis.
- Conhecer melhor uma população de interesse.
- Errar com precisão "chute calibrado".

POR QUE CONHECER A ESTATÍSTICA?

Para saber como:

- Apresentar e descrever informações de forma adequada.
- Tirar conclusões a partir de grandes populações, com base somente em informações obtidas de amostras.
- Melhorar os processos.
- Obter previsões confiáveis a partir de variáveis de interesse.

ÁREAS DE APLICAÇÃO

- Pesquisa de mercado.
- Pesquisa de opinião.
- Caracterização de populações.
- Estudo de tendências.
- Preferência dos consumidores.
- Efeitos de campanhas de marketing.
- Apresentação de dados.
- Lançamento de produtos.

- Avaliação de influência de uma variável.
- Avaliação de associação entre variáveis.
- Planejamento de vendas.
- Rejeição de lotes.
- Agrupamentos.
- Previsões.
- Análise de risco.

População: conjunto de indivíduos com pelo menos uma característica comum observável.

Se todos podem ser pesquisados \rightarrow censo.

Se não, pesquisa-se um subconjunto finito da população → amostra.

População:

- Conjunto de todos os elementos que constituem a abrangência do estudo.

Amostra:

- Subconjunto finito da população.

MEDIDAS ESTATÍSTICAS

Caracterizam a população ou a amostra.

- População → parâmetros.
- Amostra → estatísticas ou medidas.

Permitem reduzir a totalidade dos dados a apenas algumas medidas.

- Exemplos: média, mediana, moda, frequências, desvio padrão etc.

TIPOS DE ESTATÍSTICAS

ESTATÍSTICA DESCRITIVA

Técnicas que permitem:

- representar,
- mensurar,
- resumir e
- analisar...

... um conjunto de dados (população ou amostra).

ESTATÍSTICA INFERENCIAL

Os parâmetros da população geralmente são desconhecidos, porque normalmente a população inteira é inacessível e são estimados a partir das **medidas** (estatísticas) da amostra, processo conhecido como **inferência estatística**.

As **decisões** sobre características da população são baseadas em informações obtidas na amostra.

Teoria da probabilidade

- Provê e regula a possibilidade de acerto das inferências.

Observação:

- Portadora da característica que se deseja investigar. Exemplo: cada aluno da turma.

Variável:

- Representação simbólica da característica ou propriedade que se deseja investigar. Exemplos: idade dos alunos, altura dos alunos, bairro.

ORGANIZAÇÃO DOS DADOS

Variáveis

Observação 1 →

Observação 2 →

Observação 3 →

. . .

Observação n →

Funcionário	Sexo	Função	Anos de casa	Salário
Abel	M	Montador	10	1.650
Botelho	M	Montador	5	1.750
Cristina	F	Soldador	7	1.850
Djalma	M	Montador	9	1.500
Eduardo	M	Soldador	8	1.555
Fernando	M	Torneiro	11	1.510
Iracema	F	Torneiro	6	2.125

TIPOS DE VARIÁVEL

VARIÁVEIS QUALITATIVAS NOMINAIS

Muito utilizadas em ciências sociais.

Categorias: não constituem uma escala. Exemplos: estado civil, naturalidade, formação etc.

- Exclusivas e exaustivas.
- Não possuem ordenação sem hierarquia.

Menor nível de mensuração.

- Análise: frequências associadas e proporções.
- Medidas disponíveis: moda, proporção.

VARIÁVEIS QUALITATIVAS NOMINAIS

Exemplo: amostra de 500 indivíduos em uma grande empresa – variável (característica de interesse): estado civil.

Estado civil	Frequência	%
Solteiro	125	25
Casado	175	35
Divorciado	50	10
Viúvo	75	15
Outro	75	15
Total	500	100

VARIÁVEIS QUALITATIVAS ORDINAIS

Categorias ordenáveis.

Não se podem medir distâncias entre as categorias, uma vez que não existem origem nem unidade. Exemplos:

Embora cabo seja uma patente menor que sargento, não se pode afirmar que esteja mais próximo de soldado do que de sargento.

- Análise: frequências associadas, absolutas e relativas, simples ou acumuladas.
- Medidas disponíveis: moda, proporção.

VARIÁVEIS QUALITATIVAS ORDINAIS

Exemplo: amostra de 200 frequentadores de um restaurante, classificados pelo nível de instrução mais elevado (variável).

	Frequência	a simples	Frequência	acumulada
Nível	Absoluta	Relativa	Absoluta	Relativa
Sem formação	4	0,02	4	0,02
Fundamental	18	0,09	22	0,11
Médio	42	0,21	64	0,32
Superior	86	0,43	150	0,75
Pós-graduação	50	0,25	200	1,00
Total	200	1,00		

Obs.: frequência relativa é a proporção da frequência absoluta em relação ao total; por exemplo, frequência relativa do nível sem formação = 4 / 200 = 0,02.

VARIÁVEIS QUALITATIVAS

Resumo:

- Nominais.
- Ordinais.
- Menor nível de mensuração → não possuem escala.

VARIÁVEIS QUANTITATIVAS

Expressam alguma quantidade mensurável de um evento de interesse e, em geral, resultam de medições, enumerações, contagens ou cálculos, podendo ser: **discretas** ou **contínuas**.

VARIÁVEIS QUANTITATIVAS DISCRETAS

Em geral, representam pontos isolados, não podendo a distância entre eles ser fracionada.

Resultam de contagens de elementos, tais como:

- Número de pontos de atendimento.
- Número de veículos em uma frota.
- Quantidade de clientes atendidos em um dia.

VARIÁVEIS QUANTITATIVAS CONTÍNUAS

Podem assumir qualquer valor em um intervalo e têm seus valores associados ao conjunto dos números reais (\mathbb{R}).

Resultam de medidas como:

- Tempo de deslocamento.
- Valores monetários.
- Volume de um contêiner.
- Peso de um volume de carga.

VARIÁVEIS QUANTITATIVAS

Possuem o maior nível de mensuração possível – "podem-se fazer mais contas".

Uma variável quantitativa pode ser transformada em qualitativa, mas o inverso não é possível. **Exemplo**: pode-se transformar a variável salário em outra variável ordinal, como faixa salarial.

VARIÁVEIS QUANTITATIVAS

Resumo:

- Discretas.
- Contínuas.
- Maior nível de mensuração.
- Distância entre observações com significado lógico.
- Mais ferramentas disponíveis para análise.
- Unidade de medida.
- Zero absoluto (quantitativas de razão).

EXERCÍCIOS

Exercícios de fixação 1, 2 e 3

REPRESENTANDO E ORGANIZANDO DADOS

Gráficos e tabelas

A escolha do elemento adequado depende do tipo de informação a ser representado ou organizado.

REPRESENTANDO E ORGANIZANDO DADOS

DESCREVENDO DADOS QUALITATIVOS

- Dados que expressam categorias, classes ou rótulos.
- Não numéricos por natureza.
- Obtidos por meio de pesquisas qualitativas.
- Vasto espectro de aplicação nas ciências sociais e comportamentais.
- Denotam características individuais sexo, estado civil, raça etc.
- Permitem estratificar as unidades para serem analisadas de acordo com outras variáveis.

DADOS QUALITATIVOS

DESCREVENDO DADOS QUALITATIVOS

Exemplo: aceitação de quatro programas alternativos de vendas por parte de uma equipe de 40 vendedores. Votos:

В	Α	D	С	Α	С	D	В	D	В
D	D	В	Α	D	В	D	Α	D	С
D	В	С	D	Α	D	В	D	В	С
В	Α	D	В	Α	В	Α	С	D	В

- Estudo feito a partir de uma amostra ou uma população?
- Qual é a variável em questão?
- Qual é o tipo dessa variável?
- Quais são as observações?
- Qual foi o plano mais votado?

Obs.: Use a função cont.se do Excel.

DADOS QUALITATIVOS – VARIÁVEL NOMINAL

	Frequência simples		
	Absoluta (F)	Relativa (f)	
Planos	Votos	%	
А	8	20	
В	12	30	
С	6	15	
D	14	35	
Total	40	100	

DADOS QUALITATIVOS – VARIÁVEL ORDINAL

Exemplo: amostra de 200 frequentadores de um restaurante, classificados pelo nível de instrução mais elevado.

	Frequência simples		simples Frequência acumulada	
Nível	Absoluta	Relativa	Absoluta	Relativa
Sem formação	4	0,02	4	0,02
Fundamental	18	0,09	22	0,11
Médio	42	0,21	64	0,32
Superior	86	0,43	450	0,75
Pós-graduação	50	0,25	200	1,00
Total	200	1,00		

DADOS QUALITATIVOS

GRÁFICOS

DESCREVENDO DADOS QUANTITATIVOS

Valores expressos em uma escala métrica.

- Origem: ponto central ou referencial.
- Unidade: distâncias entre os valores.

Tabelas: simplificação/resumo visual dos valores da distribuição dos dados.

Gráficos: representações mais intuitivas.

DADOS QUANTITATIVOS

MÉTODOS TABULARES

Distribuição de frequências por classes

Exemplo: temperaturas quinzenais da cidade de Brasília em determinado ano.

22	26	36	28	37	38	40	42
34	30	28	24	17	19	22	23
34 27	29	30	34	32	25	31	38

Podemos agrupar as temperaturas em classes:

- 15 a 20 °C 2 vezes.
- 21 a 25 °C 5 vezes.
- 26 a 30 °C 7 vezes.
- 31 a 35 °C 4 vezes.
- 36 a 40 °C 5 vezes.
- 41 a 45 °C 1 vez.

DISTRIBUIÇÃO DE FREQUÊNCIAS POR CLASSES

Procedimentos para construção:

- 1. Colocar em ordem crescente os dados rol de dados.
- 2. Determinar o nº de classes (k) ver critérios (no próximo slide).
- 3. Calcular a amplitude das classes (h) $\Rightarrow h = \frac{X x}{k}$

X = valor máximo do conjunto de dados; <math>x = valor mínimo.

- 4. Estabelecer os limites e os pontos médios de cada classe (xi).
- 5. Alocar o nº de observações em cada classe (Fi).

DISTRIBUIÇÃO DE FREQUÊNCIAS POR CLASSES

Critérios para o número de classes (k):

- Fórmula de Sturges: $k \cong 1+3,33\log n$

- Regra empírica:

Elementos	Classes
Menor que 25	5 ou 6
Entre 25 e 50	7 a 14
Maior que 50	15 a 20

Sugestão: $k \cong \sqrt{n}$

EXEMPLO

Dados originais: 22, 26, 24, 17, 27, 27, 30, 44, 32, 38

- 1. Dados ordenados (rol): 17, 22, 24, 26, 27, 27, 30, 32, 38, 44
- 2. Número de classes k:

$$k = 1+3,33 \log n = 1 + 3,33(1) = 4,33 \rightarrow k = 4 \text{ (qtde. classes)}$$

- → Mas usaremos três classes por termos poucos dados.
- 3. Amplitude das classes \rightarrow h = (44-17) / 3 = 9 \rightarrow h = 10
- 4. Limites inferior e superior das classes, ponto médio da classe (xi) e alocação das frequências em cada classe:

Classes	Fi	fi	Xi
15 25	3	0,3	20
25 35	5	0,5	30
35 45	2	0,2	40
Total	10	1	

- Representa graficamente uma tabela de distribuição de frequências por classes de valores.
- Condensa dados, agrupando valores em classes.
- Altura das barras reflete frequências absolutas ou relativas (percentuais).
- Auxilia na identificação da forma de distribuição dos dados, com seu grau de simetria (dispersão dos dados).

EXEMPLO

Amostra de idade de 40 pessoas

(já ordenadas – rol de dados)

41	45	49	50	53	54	55	56
56	57	58	58	58	60	60	62
62	64	64	64	65	65	68	68
69	71	72	73	73	74	74	75
76	78	82	83	85	86	86	90

DISTRIBUIÇÃO DE FREQUÊNCIAS POR CLASSES

Classes	Frequência absoluta F _i	Frequência relativa f _i	Frequência acumulada Fac	Freq. relativa acumulada fac	Ponto médio x _i
40 50	3	0,075	3	0,075	45
50 60	10	0,25	13	0,325	55
60 70	12	0,3	25	0,625	65
70 80	9	0,225	34	0,85	75
80 90	6	0,15	40	1	85
Total	40	1			

No Excel:

- Selecione as colunas das classes e das frequências absolutas.
- Inserir > Gráfico > Coluna.
- Clique com o botão direito em uma das barras e selecione **Formatar série de dados**.
- Coloque 0 em Largura do espaçamento.

No SPSS:

- Gráficos > Caixas de diálogo legadas > Histograma.
- Selecione a variável e clique em **OK**.
- Clique duas vezes no histograma.
- Clique novamente duas vezes em uma das barras do histograma.
- Na caixa **Eixo X**, selecione **Personalizado** e defina a largura do intervalo.
- Selecione **Valor personalizado para ancorar** e informe o limite inferior da primeira classe.

EXERCÍCIO

Exercício de fixação 4

REFERÊNCIAS

