

Synergistic Image and Feature Adaptation:

Towards Cross-Modality Domain Adaptation for Medical Image Segmentation

Cheng Chen¹, Qi Dou¹, Hao Chen^{1,2}, Jing Qin³ and Pheng-Ann Heng^{1,4}

¹The Chinese University of Hong Kong

² ImSight Medical Technology Co., Ltd.

³ The Hong Kong Polytechnic University

⁴ Shenzhen Institutes of Advanced Technology

Problem & Challenge

- Success of deep neural networks
 - Assumption: training and testing data are drawn from the *same distribution*.
- Performance degradation
 - Domain shift: training and testing data present different distributions.
 - Common situation in medical applications.

Related works

Unsupervised domain adaptation: adapt from labeled source domain to unlabeled target domain

- Image adaptation: align image appearance [Zhu et al. ICCV 2017; Zhang et al. MICCAI 2018]
- Feature adaptation: align feature distributions [Tzeng et al. CVPR 2017; Dou et al. IJCAI 2018]
- **Joint adaptation**: combine image and feature adaptation [Hoffman et al. ICML 2018; Zhang et al. CVPR 2018]

Synergistic image and feature adaptation (SIFA) for unsupervised domain adaptation

- Synergistic fusion of adaptations from both image and feature perspectives
- Feature encoder is shared to simultaneously transform image appearance and extract domain-invariant representations
- Challenging cross-modality medical image segmentation under severe domain shift

MR images (Source)

CT images (Target)

$$\mathcal{L}_{adv}^{t}(G_t, D_t) = \mathbb{E}_{x^t \sim X^t}[\log D_t(x^t)] + \\ \mathbb{E}_{x^s \sim X^s}[\log(1 - D_t(G_t(x^s)))]$$

$$\mathcal{L}_{adv}^t(G_t,D_t) = \mathbb{E}_{x^t \sim X^t}[\log D_t(x^t)] + \qquad \mathcal{L}_{adv}^s(E,U,D_s) = \mathbb{E}_{x^s \sim X^s}[\log D_s(x^s)] + \qquad \mathcal{L}_{cyc}(G_t,E,U) = \mathbb{E}_{x^s \sim X^s}||U(E(G_t(x^s))) - x^s||_1 + \\ \mathbb{E}_{x^s \sim X^s}[\log(1 - D_t(G_t(x^s)))] \qquad \qquad \mathbb{E}_{x^t \sim X^t}[\log(1 - D_s(U(E(x^t))))] \qquad \qquad \mathbb{E}_{x^t \sim X^t}||G_t(U(E(x^t))) - x^t||_1$$

$$\mathcal{L}_{seg}(E,C) = H(y^s, \hat{y}^{s \to t}) + \alpha \cdot Dice(y^s, \hat{y}^{s \to t})$$

$$\mathcal{L}_{adv}^{p}(E, C, D_{p}) = \mathbb{E}_{x^{s \to t} \sim X^{s \to t}} [\log D_{p}(C(E(x^{s \to t})))] + \mathbb{E}_{x^{t} \sim X^{t}} [\log(1 - D_{p}(C(E(x^{t}))))]$$

$$\mathcal{L}_{adv}^{p}(E, C, D_{p}) = \mathbb{E}_{x^{s \to t} \sim X^{s \to t}} [\log D_{p}(C(E(x^{s \to t})))] + \mathbb{E}_{x^{t} \sim X^{t}} [\log(1 - D_{p}(C(E(x^{t}))))]$$

$$\mathcal{L}_{adv}^{\tilde{s}}(E, D_s) = \mathbb{E}_{x^s \to t \sim X^s \to t} [\log D_s(U(E(x^{s \to t})))] + \mathbb{E}_{x^t \sim X^t} [\log (1 - D_s(U(E(x^t))))]$$

Inference

Experiments

Dataset

- Multi-Modality Whole Heart Segmentation Challenge 2017 dataset
- Unpaired 20 MR and 20 CT volumes collected at different clinical sites
- Multi-class segmentation: ascending aorta (AA), the left atrium blood cavity (LAC), the left ventricle blood cavity (LVC), and the myocardium of the left ventricle (MYO).

Evaluation metrics

- Dice coefficient

$$Dice = \frac{2TP}{2TP + FP + FN}$$

- Average surface distance (ASD)

Quantitative results

Compare with the state-of-the-art unsupervised domain adaptation methods

Methods	Adaptation		Dice				ASD					
	Image	Feature	AA	LAC	LVC	MYO	Average	AA	LAC	LVC	MYO	Average
W/o adaptation			28.4	27.7	4.0	8.7	17.2	20.6	16.2	N/A	48.4	N/A
DANN (Ganin et al. 2016)		✓	39.0	45.1	28.3	25.7	34.5	16.2	9.2	12.1	10.1	11.9
ADDA (Tzeng et al. 2017)		\checkmark	47.6	60.9	11.2	29.2	37.2	13.8	10.2	N/A	13.4	N/A
CycleGAN (Zhu et al. 2017)	✓		73.8	75.7	52.3	28.7	57.6	11.5	13.6	9.2	8.8	10.8
CyCADA (Hoffman et al. 2018)	✓	✓	72.9	77.0	62.4	45.3	64.4	9.6	8.0	9.6	10.5	9.4
Dou et al. (Dou et al. 2018)		✓	74.8	51.1	57.2	47.8	57.7	27.5	20.1	29.5	31.2	27.1
Joyce et al. (Joyce et al. 2018)		✓	-	-	66	44	-	-	-	-	-	-
SIFA (Ours)	✓	✓	81.1	76.4	75.7	58.7	73.0	10.6	7.4	6.7	7.8	8.1

Visual comparison results

Evaluation of key components

Methods	IA	\mathcal{L}^p_{adv}	$\mathcal{L}_{adv}^{ ilde{s}}$	Average Dice
W/o adaptation				17.2
+ Image adaptation	✓			58.0
+ FA-P	✓	\checkmark		65.7
+ FA-I	✓	\checkmark	\checkmark	73.0

Conclusion

- Propose synergistic image and feature adaptation to achieve unsupervised domain adaptation from complementary perspectives.
- Without using any annotations from the target domain, recovers performance from 17.2% to 73.0%, outperforming the state-of-the-art methods.

Code is available at:

https://github.com/cchen-cc/SIFA

Thank you! Q & A