

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

1 0 1

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁵: C07K 15/00, C12N 15/12, 5/10

(11) Numéro de publication internationale:

WO 94/24162

(43

A1

(43) Date de publication internationale: 27 octobre 1994 (27.10.94)

(21) Numéro de la demande internationale: PCT/FR94/00447

21 avril 1994 (21.04.94)

(81) Etats désignés: AU, CA, JP, NZ, US, brevet européen (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Données relatives à la priorité:

(22) Date de dépôt international:

93/04670

21 avril 1993 (21.04.93)

FR

(71) Déposants (pour tous les Etats désignés sauf US): VETIGEN [FR/FR]; 66, rue de Javel, F-75015 Paris (FR). VIRBAC [FR/FR]; 1ère Avenue - 2065 M - L.I.D., F-06516 Carros (FR).

(72) Inventeurs; et

- (75) Inventeurs/Déposants (US seulement): LENZEN, Gerlinda [DE/FR]; 55, rue des Cévennes, F-75015 Paris (FR). KAPOOR, Archana [IN/US]; 8328 Regents Road, no. 38, San Diego, Ca 92122 (US).
- (74) Mandataire: CABINET ORES: 6, avenue de Messine, F-75008 Paris (FR).

Publiée

Avec rapport de recherche internationale.

Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si de telles modifications sont

(54) Title: NUCLEOTIDE SEQUENCES CODING FOR THE BOVINE β 3-ADRENERGIC RECEPTOR, AND APPLICATIONS THEREOF

(54) Titre: SEQUENCES NUCLEOTIDIQUES CODANT POUR LE RECEPTEUR β 3-ADRENERGIQUE (RA β 3) BOVIN ET LEURS APPLICATIONS

(57) Abstract

Nucleotide sequences coding for the bovine β 3-adrenergic receptor (RA β 3), use of said sequences as probes and for the expression of peptides and/or fragments thereof having a bovine RA β 3 activity, vector useful for said expression as well as cellular hosts containing said vectors. Method for screening a substance having an agonist or antagonist action with respect to peptides having a β 3-adrenergic receptor activity, particularly selective with respect to the bovine receptor.

(57) Abrégé

Séquences nucléotidiques codant pour le récepteur β 3-adrénergique (RA β 3) bovin, utilisation desdites séquences comme sondes et pour l'expression de peptides et/ou de fragments de ceux-ci ayant une activité de RA β 3 bovin, vecteur utile pour ladite expression ainsi que les hôtes cellulaires contenant ledit vecteur. Procédé de criblage d'une substance, à action agoniste ou antagoniste vis-à-vis des peptides ayant une action de récepteur β 3-adrénergiques, particulièrement sélective vis-à-vis du récepteur bovin.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AT	Autriche	GB	Royaumo-Uni	MIR	Mauritanie
ΑU	Australie	GE	Géorgie	MW	Malawi
BB	Barbade	GN	Guinée	NE	Niger
BE	Belgique	GR	Grèce	NL	Pays-Bas
BF	Burkina Faso	BU	Hongrie	NO	Norvège
BG	Bulgarie	Œ	Irlande	NZ	Nouvelle-Zélande
BJ	Bénin	П	Italie	PL	Pologne
BR	Br éa il	JP	Japon	PT	Portugal
BY	Bélans	KE	Kenya	RO	Roumanie
CA	Canada	KG	Kirghizistan	RU	Fédération de Russie
CF	République centrafricaine	KP	République populaire démocratique	SD	Soudan
CG	Congo		de Corée	SE	Subde
CB	Suisse	KR	République de Corée	SI	Stovénie
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovaquie
CM	Cameroun	u	Liechtenstein	SN	Sénégal
CN	Chine	LK	Sri Lanka	TD	Tched
cs	Tchécoslovaquie	LU	Luxembourg	TG	Togo
CZ	République tchèque	LV	Lettonie	ŢŢ	Tediikistan
DE	Allemagne	MC	Monaco	π	Trimité-et-Tobago
DK	Danemark	MD	République de Moldova	ÜA	Ulcraine
ES	Espagne	MG	Madagascar	US	Etats-Unis d'Amérique
Fī	Finlande	MIL	Mali	UZ	Ouzhekistan
FR	France	MIN	Mongolie'	VN	Viet Nam
GA	Gabon			7.4	·

SEQUENCES NUCLEOTIDIQUES CODANT POUR LE RECEPTEUR β 3-ADRENERGIQUE (RA β 3) BOVIN ET LEURS APPLICATIONS.

La présente invention est relative à des séquences nucléotidiques codant pour le récepteur β 35 adrénergique (RA β 3) bovin, à l'utilisation desdites séquences comme sondes et pour l'expression de peptides et/ou de fragments de ceux-ci ayant une activité de Ra β 3 bovin, au vecteur utile pour ladite expression ainsi qu'aux hôtes cellulaires contenant ledit vecteur.

La présente invention est également relative à un procédé de criblage de substances, à action agoniste ou antagoniste vis-à-vis des peptides d'origine bovine ayant une activité de récepteur β 3-adrénergique.

Il est connu que les catécholamines telles que l'adrénaline et la noradrénaline, les agonistes synthétiques de ces catécholamines, qui miment leurs fonctions biologiques et les antagonistes, qui bloquent ces fonctions biologiques, exercent leurs effets en se liant à des sites de reconnaissance (récepteurs membranaires) spécifiques, situés sur les membranes cellulaires.

Deux classes principales de récepteurs adrénergiques ont été définies, les récepteurs adrénergiques α et les récepteurs adrénergiques β .

Dans l'ensemble de ces deux classes, on dis25 tingue, maintenant, cinq sous-types de récepteurs aux catécholamines (α1, α2, β1, β2 et β3-RA). Leurs gènes ont été récemment isolés et identifiés (S. COTECCHIA et al., 1988, Proc. Natl. Acad. Sci. USA, 85, 7159-7163;
B.K. KOBILKA et al., 1987, Science, 238, 650-656;

- T. FRIELLE et al., 1987, Proc. Natl. Acad. Sci. USA <u>84</u>, 7920-7924; L.J. EMORINE et al., 1987, Proc. Natl. Acad. Sci., USA, <u>84</u>, 6995-6999; L.J. EMORINE et al., 1989, Science, <u>245</u>, 1118-1121). L'analyse de ces gènes a permis de reconnaître leur appartenance à une famille de récep-
- 35 teurs membranaires intégraux présentant certaines homologies (R.A.F. DIXON et al., 1988, Annual Reports in Medicinal Chemistry, 221-233; L.J. EMORINE et al., 1988,

10

Proc. NATO Adv. Res. Workshop), notamment au niveau de 7 régions transmembranaires, qui sont couplées à des protéines régulatrices, appelées protéines G, susceptibles de fixer des molécules de guanosine triphosphate (GTP).

Ces récepteurs membranaires, lorsqu'ils ont fixé le ligand approprié (agoniste ou antagoniste), subissent un changement de conformation, qui induit un signal intracellulaire, qui modifie le comportement de la cellule cible.

Dans le cas des récepteurs β -adrénergiques, lorsqu'ils se lient avec des agonistes des catécholamines, ils catalysent l'activation d'une classe de protéines G, qui stimule à son tour l'activité de l'adénylate cyclase, alors que les antagonistes des RAeta agissent en compétition 15 avec les agonistes pour la liaison au récepteur et empêchent l'activation de l'adénylate cyclase.

Lorsque l'adénylate cyclase est activée, elle catalyse la production d'un médiateur intracellulaire ou second messager, notamment l'AMP cyclique.

Les Inventeurs ont récemment mis en évidence 20 de nouveaux récepteurs β-adrénergiques chez l'Homme, dénommés RA-Huβ3, et chez la souris (Demande Internationale WO 92/12246), dénommés RA-Muβ3, et caractérisés par des propriétés différentes de celles des récepteurs $\beta 1$ et β 2, notamment en ce qu'ils se comportent de façon différente vis-à-vis de substances respectivement antagonistes et agonistes des récepteurs $\beta1$ et $\beta2$ (Demande Internationale WO 90/08775).

En particulier, le récepteur RA-Huß3 est plus 30 particulièrement constitué par une séquence de 408 aminoacides et est considéré comme comportant sept régions transmembranaires hydrophobes séparées par des boucles hydrophiles intra- et extra-cellulaires et le récepteur $RA-Mu\beta 3$ est constitué par une séquence de 400 amino-acides et comporte également 7 régions transmembranaires.

Les travaux antérieurs concernant le RA-Hu β 3 et le RA-Mu β 3 ont particulièrement montré que le récepteur β 3-adrénergique intervient dans les maladies telles que le diabète et/ou l'obésité, dans la mesure où il est exprimé dans des tissus qui jouent un rôle important dans le métabolisme (tissus adipeux, muscles squelettiques notamment).

Poursuivant ses travaux dans cette voie, l'un des Inventeurs a cherché à mettre en évidence un tel récepteur adrénergique β 3 chez les bovins (RA-Bo β 3), afin de pouvoir disposer d'un outil de régulation de la quantité de graisses chez ces animaux, notamment dans un but d'amélioration de la qualité de la viande.

La présente invention a pour objet une séquence nucléotidique, caractérisée en ce qu'elle cor-15 respond à l'ADNc du gène bovin codant pour le récepteur adrénergique β3 bovin.

Selon un mode de réalisation avantageux de ladite séquence nucléotidique, elle comprend la séquence en nucléotides et la séquence déduite en aminoacides de 20 formule (I) (SEQ ID n° 1) suivante :

CCCAGGCCAG GGAAATCGCT CCCACGCCCC GATGCCCCCG CCGCTGAGCA GGGTGAGCTG 60

GGAGACCCTT TCCCTCATTC CTTCCCGCCC CACGCGCGAC GCGGGG ATG GCT CCG 115

Met Ala Pro
1

TGG CCT CCT GGG AAC AGC TCT CTG ACC CCG TGG CCA GAT ATC CCC ACC
Trp Pro Pro Gly Asn Ser Ser Leu Thr Pro Trp Pro Asp Ile Pro Thr
5

CTG GCA CCC AAT ACT GCC AAC GCG AGT GGG CTG CCA GGG GTG CCC TGG 211
Leu Ala Pro Asn Thr Ala Asn Ala Ser Gly Leu Pro Gly Val Pro Trp
20 25 30 35

35 GCG GTG GCG CTG GCG GGG GCG CTG TTG GCG CTA GCG GTG CTG GCC ACC 259
Ala Val Ala Leu Ala Gly Ala Leu Leu Ala Leu Ala Val Leu Ala Thr
40 45

GTG GGA GGC AAC CTG CTG GTA ATC GTG GCC ATC GCC CGG ACG CCG AGA 307 40 Val Gly Gly Asn Leu Leu Val Ile Val Ala Ile Ala Arg Thr Pro Arg 55 60 65

CTC CAG ACC ATG ACC AAC GTG TTC GTG ACT TCG CTG GCC ACA GCC GAC

Leu Gln Thr Met Thr Asn Val Phe Val Thr Ser Leu Ala Thr Ala Asp

70

75

80

									Δ								
	CTG Leu	GTG Val 85	GTG Val	GGG Gly	CTC Leu	CTG L u	GTC Val 90	GTG Val	CCC	CCG Pro	GGG Gly	GCC Ala 95	ACG Thr	TTG Leu	GCG Ala	CTG Le u	403
.5.	ACC Thr 100	GGC Gly	CAC His	TGG Trp	CCC Pro	CTG Leu 105	GGC Gly	GTC Val	ACC Thr	GGT Gly	TGC Cys 110	GAG Glu	CTG Leu	TGG Trp	ACC Thr	TCA Ser 115	451
10	GTG Val	GAC Asp	GTG Val	CTG Leu	TGT Cys 120	GTG Val	ACC Thr	GCC Ala	AGC Ser	ATC Ile 125	GAA Glu	ACC Thr	CTG Leu	TGC Cys	GCC Ala 130	CTG Leu	499
15	GCG Ala	GTG Val	GAC Asp	CGC Arg 135	TAC Tyr	CTG Leu	GCC Ala	GTG Val	ACC Thr 140	AAC Asn	CCG Pro	CTG Leu	CGC Arg	TAC Tyr 145	GGC Gly	GCG Ala	547
	CTG Leu	GTC Val	ACC Thr 150	AAA Lys	CGC Arg	CGC Arg	GCC Ala	CTA Leu 155	GCA Ala	GCC Ala	GTG Val	GTC Val	CTG Leu 160	GTG Val	TGG Trp	GTG Val	595
20	GTG Val	TCC Ser 165	GCC Ala	GCG Ala	GTG Val	TCG Ser	TTT Phe 170	GCG Ala	CCC Pro	ATC Ile	ATG Met	AGC Ser 175	AAA Lys	TGG Trp	TGG Trp	CGC Arg	643
25	ATC Ile 180	GGG Gly	GCC Ala	GAT Asp	GCC Ala	GAG Glu 185	GCG Ala	CAG Gln	CGT Arg	TGC Cys	CAC His 190	TCC Ser	AAC Asn	CCG Pro	CGC Arg	TGC Cys 195	691
30	TGC Cys	ACC Thr	TTC Phe	GCC Ala	TCC Ser 200	AAC Asn	ATG Met	CCC Pro	TAC Tyr	GCG Ala 205	CTG Leu	CTC Leu	TCC Ser	TCC Ser	TCG Ser 210	GTC Val	739
·35	TCG Ser	TTC Phe	TAT Tyr	CTT Leu 215	CCG Pro	CTC Leu	CTG Leu	GTG Val	ATG Met 220	CTC Leu	TTC Phe	GTC Val	TAC Tyr	GCA Ala 225	CGA Arg	GTT Val	787
4.0	TTC Phe	GTG Val	GTG Val 230	GCC Ala	ACG Thr	CGC Arg	CAG Gln	CTG Leu 235	CGC Arg	TTG Leu	CTG Leu	CGC Arg	CGG Arg 240	GAG Glu	CTG Leu	GGT Gly	835
40	CGC Arg	TTC Phe 245	Pro	CCA Pro	GAG Glu	GAG Glu	TCT Ser 250	Pro	CCG Pro	GCT Ala	CCT Pro	TCT Ser 255	CGC Arg	TCC	GGA Gly	TCC Ser	883
45	CCT Pro 260	GGC Gly	CTG Leu	GCG Ala	GGG Gly	CCG Pro 265	TGC Cys	GCC Ala	TCG Ser	CCC Pro	GCG Ala 270	Gly	GTG Val	CCC Pro	TCC Ser	TAC Tyr 275	931
50	GGC Gly	CGG Arg	CGG Arg	CCG Pro	GCG Ala 280	Arg	CTT Leu	CTG Leu	CCT Pro	CTG Leu 285	Arg	GAA Glu	CAC His	CGC Arg	GCC Ala 290	Leu	979
55	CGC Arg	ACC Thr	TTG Leu	GGG Gly 295	Leu	ATC Ile	ATG Met	GGA Gly	ACC Thr 300	Phe	ACT Thr	CTC Leu	TGC Cys	TGG Trp 305	Leu	CCT	1027
60	TTC Phe	TTT Phe	GTG Val 310	Val	AAC Asn	GTG Val	GTG Val	CGC Arg 315	Ala	CTC Leu	GGG Gly	GGC Gly	Pro 320	Ser	CTG	GTG Val	1075
60	TCC Ser	GGC Gly 325	Pro	ACT Thr	TTC Phe	CTC Leu	GCC Ala 330	Leu	AAC Asn	TGG Trp	CTC Leu	GGC Gly 335	Tyr	GCC Ala	AAC Asn	TCT Ser	1123

PCT/FR94/00447

WO 94/24162

									5								
	GCC Ala 340	TTC Phe	AAC Asn	CCG Pro	CTC Leu	ATC Ile 345	TAC Tyr	TGC Cys	CGC Arg	AGC Ser	CCG Pro 350	GAC Asp	TTT Phe	CGG Arg	AGC Ser	GCC Ala 355	1171
5	TTC Phe	CGC Arg	CGC Arg	CTG Leu	CTG Leu 360	TGT Cys	CGC Arg	TGC Cys	CGG Arg	CCG Pro 365	GAG Glu	GAG Glu	CAC His	CTC Leu	GCC Ala 370	GCT Ala	1219
10	GCC Ala	TCC Ser	CCG Pro	CCC Pro 375	CGA Arg	GCC Ala	CCC Pro	TCC Ser	GGC Gly 380	GCC Ala	CCC Pro	ACG Thr	GCC Ala	CTG Leu 385	ACC Thr	AGC Ser	1267
15	CCC Pro	GCT Ala	GGC Gly 390	CCC Pro	ATG Met	CAG Gln	CCC Pro	CCA Pro 395	GAG Glu	CTC Leu	GAC Asp	GGG Gly	GCT Ala 400	TCC Ser	TGC Cys	GGA Gly	1315
20	CTT Leu		TAG	GCCTI	rga <i>i</i>	\G AA J	ACAA	CT CO	CATTO	GATCO	GG/	AACC!	rttg	GAA	AGCC:	гст	1371
20	GGC	CGGCC	etc (GGTT	CAGA	AT G	AGCC	CCGTC	G GAG	STTTC	CCA	GCT	GAA	AAC '	rctgo	CCTCC	1431
	CCAC	CCTC	SAC (SACTO	GGT	C TO	GGGA	GGAGG	G CG	GGGG	GGCT	GACT	rggg	GAG (GGGA/	AATCCI	1491
25	TAC	AAG1	rgg (GTTTT	rcgc	C TO	CTTTC	ETGAC	G AG	AAGT	TTTC	TAC	ACCC	CAG	CCT	GAACTI	1551
	CAC	CGCTC	GCC 1	rcago	CAGCT	rc co	GCG1	rctgo	3 TTT	rccci	ATGC	CCAC	GTG	cc (GGC?	AGGAGC	1611
30	TGG	CTG	GT 1	TTAGO	cccc	G G/	ACCC	GCACO	TG	rccc <i>i</i>	ACTC	GGGT	rGCTC	TG T	rgcgo	CAGGGG	1671
																CCGGGG	
																CTGTCC	
35	CTG	CTT	CT (CACTO	STAGA	AC AC	CACC	racci	r cac	CAGC	ATTT	TCAC	GGAC?	TTT /	ACTT:	ragcci	1851
	TTG	GGT	GGG (GGTG	GGGG	G C	GCTC	TGG1	TT	CTG	GGAA	GGT	GAACO	CAT '	TAGA	ATGGGT	1911
40	CCC	TTTT	CT 1	TTTGA	TAAL	CA A	ATTA	ATAA	A TG	TACT	IGAA	TGC	AGTT	AA1	AAAA	SAAAA	1971
20	AAA	\AAA/	AAA	AAA A	AAAA	LA AA	AAAA	AAAA									2000
											_		_		. ,		(I)

Dans cette séquence, l'ATG souligné qui se trouve en position 107, correspond probablement au codon 45 d'initiation de la synthèse protéique.

Il existe 85 % d'homologie entre les séquences nucléotidiques bovine et humaine codant pour le récepteur adrénergique β 3 et il existe 76 % d'homologie entre les séquences nucléotidiques bovine et murine codant pour le 50 récepteur adrénergique β 3.

Ladite séquence comprend notamment les sites de restriction uniques suivants :

Bpull02 I, Fok I, EcoR V, Bcg I, Nhe I, BspM I, Afl III, Age I, BstE II, BspH I, Bsg I, Nsp I,

 ϵ

Nsp7524 I, NspC I, Sap I, BamH I, BstY I, Asc I, Sty I, Hinc II, Apa I, Bsp120 I, Bbe I, Ehe I, Kas I, Nar I, Ecl136 I, Sac I, Stu I, Fse I, Drd I, Tthlll I, Srf I, Bsu36 I, Sfc I, BstX I, Ase I, Bsm I, Dra I.

L'invention a également pour objet les fragments de ladite séquence, utiles pour l'expression du peptide correspondant et/ou la détection du gène bovin codant pour le récepteur adrénergique β 3 bovin.

Parmi lesdits fragments, on peut citer :

- le fragment de 78 paires de bases, qui correspond aux nucléotides 218-295 de la séquence de formule I, et qui code pour la région transmembranaire TM1,
 - le fragment de 72 paires de bases, qui correspond aux nucléotides 332-403 de la séquence de formule I, et qui code pour la région transmembranaire TM2,
 - le fragment de 66 paires de bases, qui correspond aux nucléotides 434-499 de la séquence de formule I, et qui code pour la région transmembranaire TM3,
- le fragment de 69 paires de bases, qui cor-20 respond aux nucléotides 572-640 de la séquence de formule I, et qui code pour la région transmembranaire TM4,
 - le fragment de 72 paires de bases, qui correspond aux nucléotides 713-784 de la séquence de formule I, et qui code pour la région transmembranaire TM5,
- le fragment de 66 paires de bases, qui correspond aux nucléotides 983-1048 de la séquence de formule I, et qui code pour la région transmembranaire TM6,
- le fragment de 78 paires de bases, qui correspond aux nucléotides 1070-1147 de la séquence de for-30 mule I, et qui code pour la région transmembranaire TM7.
 - La présente invention a également pour objet des clones d'ADNc, caractérisés en ce qu'ils comprennent un fragment de séquence codant pour le récepteur $\beta 3$ bovin (RA-Bo $\beta 3$).
- 35 Conformément à l'invention, le clone dénommé M13-6.6 comprend 2979 paires de bases, inclut la séquence

de formule I et comprend les sites de restriction uniques suivants : EcoR V, Bcg I, Nhe I, BstE II, BspH I, Bsg I, Sap I, BamH I, Asc I, Stu I, Fse I, Drd I, Srf I, Sfc I, Ase I, Bsm I, Dra I, Bsp1407 I, Csp6 I, Rsa I, Ssp I, Dra III, Bgl II, Afl II, Spe I, Tfi I, Hpa I, Nde I, EcoN I, BsaB I, Pvu I.

La présente invention a également pour objet des sondes nucléotidiques, caractérisées en ce qu'elles sont constituées par une séquence nucléotidique telle que définie ci-dessus, ou un fragment de celle-ci, marquée à l'aide d'un marqueur tel qu'un isotope radioactif, une enzyme appropriée ou un fluorochrome.

Les dites sondes nucléotidiques sont caractérisées en ce qu'elles s'hybrident avec les séquences nucléotidiques telles que définies ci-dessus mais ne s'hybrident pas avec les gènes codant pour les récepteurs $\beta 1$ et $\beta 2$ adrénergiques, ni avec l'ARN messager desdits récepteurs $\beta 1$ et $\beta 2$ adrénergiques.

Selon un mode de réalisation avantageux de la-20 dite sonde, sa séquence est homologue ou complémentaire de celle d'un segment d'au moins 10 pb de la séquence I.

Au sens de la présente invention, "séquence homologue" englobe non seulement les séquences identiques à la séquence I, ou à un fragment de celle-ci, mais également celles n'en différant que par la substitution, la délétion ou l'addition d'un petit nombre de nucléotides, à condition que les séquences ainsi modifiées aient une spécificité d'hybridation équivalente à celle de la séquence (I) ou du segment non modifié considéré.

De même, on entend par "séquence complémentaire", non seulement les séquences strictement complémentaires de la séquence (I) ou de ses segments, mais également des séquences modifiées, comme indiqué précédemment, possédant une spécificité d'hybridation équiva-

35 lente à celle desdites séquences strictement complémentaires.

Les conditions d'hybridation sont définies comme suit :

Pour les sondes les plus courtes, c'est-à-dire d'environ 10 à environ 100 nucléotides, les conditions d'hybridation appropriées sont les suivantes : 750 mM de NaCl, 75 mM de Tris-sodium citrate, 50 μg/ml d'ADN de sperme de saumon, 50 mM de phosphate de sodium, 1 mM de pyrophosphate de sodium, 100 μM d'ATP, 10 à 25 % de formamide, 1 % Ficoll ("PHARMACIA" poids moléculaire moyen de 400,00), 1 % de polyvinylpyrrolidone, 1 % de sérum albumine bovine, pendant 14 à 16 h à 42°C.

Pour les sondes les plus longues, c'est-à-dire présentant plus d'environ 100 nucléotides, des conditions d'hybridation appropriées sont celles indiquées précédem15 ment pour les sondes les plus courtes, mais dans lesquelles le milieu sus-défini contient 40 % de formamide au lieu de 10 à 25 % de formamide.

Selon une disposition avantageuse de ce mode de réalisation, ladite sonde peut être avantageusement définie par l'une quelconque des séquences nucléotidiques ci-dessus et notamment par le fragment de 2 kbases, qui correspond à la totalité de la séquence de formule I.

La présente invention a également pour objet un peptide et/ou un fragment de peptide, caractérisé en ce 25 qu'il est codé par une séquence nucléotidique telle que définie ci-dessus et en ce qu'il présente une activité de récepteur β3-adrénergique.

Une activité de récepteur β3-adrénergique est celle définie dans la Demande de Brevet français n° 89 00918, à savoir que, lorsque le fragment est exposé à la surface d'une cellule, il est capable de participer à l'activation de l'adénylate cyclase en présence d'un des agonistes suivants : BRL 28410, BRL 37344, CGP 12177A, (1)-isoprotérénol et carazolol ; soit il est susceptible d'être reconnu par des anticorps qui ne reconnaissent ni le récepteur adrénergique β1, ni le récepteur adrénergique

 $\beta 2$; soit il est susceptible de générer des anticorps qui ne reconnaissent ni le récepteur $\beta 1$, ni le récepteur $\beta 2$.

Selon un mode de réalisation avantageux dudit peptide, il comprend 405 amino-acides et présente la séquence en amino-acides de formule II (SEQ ID n° 2) suivante :

Met Ala Pro Trp Pro Gly Asn Ser Ser Leu Thr Pro Trp Pro Asp 1 10 15

- 10 Ile Pro Thr Leu Ala Pro Asn Thr Ala Asn Ala Ser Gly Leu Pro Gly 20 25 30
 - Val Pro Trp Ala Val Ala Leu Ala Gly Ala Leu Leu Ala Leu Ala Val 35 → TM1 40 45
- Leu Ala Thr Val Gly Gly Asn Leu Leu Val Ile Val Ala Ile Ala Arg
 50 55 60 TM1 ←
- Thr Pro Arg Leu Gln Thr Met Thr Asn Val Phe Val Thr Ser Leu Ala 20 65 70 75 \rightarrow TM2 80
 - Thr Ala Asp Leu Val Val Gly Leu Leu Val Val Pro Pro Gly Ala Thr 85 90 95
- 25 Leu Ala Leu Thr Gly His Trp Pro Leu Gly Val Thr Gly Cys Glu Leu
 TM2 ← 100 105 110
 - Trp Thr Ser Val Asp Val Leu Cys Val Thr Ala Ser Ile Glu Thr Leu 115 120 125
- 30

 Cys Ala Leu Ala Val Asp Arg Tyr Leu Ala Val Thr Asn Pro Leu Arg
 130 TM3←
 135
 140
- Tyr Gly Ala Leu Val Thr Lys Arg Arg Ala Leu **Ala Ala Val Val Leu** 35 145 150 155 \rightarrow TM4 160
 - Val Trp Val Val Ser Ala Ala Val Ser Phe Ala Pro Ile Met Ser Lys 165 170 175
- 40 Trp Trp Arg Ile Gly Ala Asp Ala Glu Ala Gln Arg Cys His Ser Asn TM4 \leftarrow 180 185 190
- Pro Arg Cys Cys Thr Phe Ala Ser Asn Met **Pro Tyr Ala Leu Leu Ser** 195 200 \rightarrow **TM5** 205
- Ser Ser Val Ser Phe Tyr Leu Pro Leu Leu Val Met Leu Phe Val Tyr
 210 215 220
- Ala Arg Val Phe Val Val Ala Thr Arg Gln Leu Arg Leu Leu Arg Arg 50 225 TM5← 230 235 240
 - Glu Leu Gly Arg Phe Pro Pro Glu Glu Ser Pro Pro Ala Pro Ser Arg 245 250 255
- 55 Ser Gly Ser Pro Gly Leu Ala Gly Pro Cys Ala Ser Pro Ala Gly Val
 260 270

(II)

25

Arg Ala Leu Arg Thr Leu Gly Leu Ile Met Gly Thr Phe Thr Leu Cys \rightarrow TM6 Trp Lou Pro Phe Phe Val Val Asn Val Val Arg Ala Leu Gly Gly Pro TM6← 315 310 Ser Leu Val Ser Gly Pro Thr Phe Leu Ala Leu Asn Trp Leu Gly Tyr \rightarrow TM7 325 10 Ala Asn Ser Ala Phe Asn Pro Leu Ile Tyr Cys Arg Ser Pro Asp Phe 345 TM7← Arg Ser Ala Phe Arg Arg Leu Leu Cys Arg Cys Arg Pro Glu Glu His 15 Leu Ala Ala Ser Pro Pro Arg Ala Pro Ser Gly Ala Pro Thr Ala Leu Thr Ser Pro Ala Gly Pro Met Gln Pro Pro Glu Leu Asp Gly Ala 20 Ser Cys Gly Leu Ser 405

Ce peptide est dénommé ci-après récepteur β 3-adrénergique bovin (RA-Bo β 3).

L'invention comprend également les peptides variants de ceux définis ci-dessus, qui comportent certaines mutations, sans que les peptides ne perdent les propriétés de récepteur \$3-adrénergique.

Parmi ces variants, on peut mentionner ceux qui sont reconnus par des anticorps reconnaissant les régions transmembranaires, ainsi que ceux qui sont reconnus par des anticorps reconnaissant les régions autres que les régions transmembranaires.

La présente invention a également pour objet des fragments ou des combinaisons de fragments du RA-Bo β 3, conforme à l'invention, et notamment :

- un fragment de 26 amino-acides, correspondant au segment 38-63 de la formule II et constituant la région transmembranaire TM1,
- un fragment de 24 amino-acides, correspondant au segment 76-99 de la formule II et constituant la 45 région transmembranaire TM2,

PCT/FR94/00447

11

- un fragment de 22 amino-acides, correspondant au segment 110-131 de la formule II et constituant la région transmembranaire TM3,
- un fragment de 23 amino-acides, correspon-5 dant au segment 156-178 de la formule II et constituant la région transmembranaire TM4,
 - un fragment de 24 amino-acides, correspondant au segment 203-226 de la formule II et constituant la région transmembranaire TM5,
- un fragment de 22 amino-acides, correspondant au segment 293-314 de la formule II et constituant la région transmembranaire TM6,
 - un fragment de 26 amino-acides, correspondant au segment 322-347 de la formule II et constituant la 5 région transmembranaire TM7.

Lesdits fragments peuvent avantageusement être obtenus par synthèse, notamment par la méthode de Merrifield.

La présente invention a également pour objet 20 un vecteur recombinant de clonage et/ou d'expression, caractérisé en ce qu'il comprend une séquence nucléotidique conforme à l'invention.

On entend, au sens de la présente invention, par vecteur recombinant, aussi bien un plasmide, un cos-25 mide, qu'un phage.

Selon un mode de réalisation avantageux dudit vecteur, il est constitué par un vecteur recombinant approprié, comprenant en particulier une origine de réplication dans un microorganisme hôte approprié, notamment une bactérie ou une cellule eucaryote, au moins un gène dont l'expression permet la sélection soit des bactéries, soit des cellules eucaryotes ayant reçues ledit vecteur, une séquence régulatrice appropriée, notamment un promoteur permettant l'expression des gènes dans lesdites bacteries bacteries de la contratte de la contratte

35 téries ou cellules eucaryotes, et dans lequel est insérée une séquence nucléotidique ou un fragment de séquence tels

30

35

lequel vecteur est un vecteur que définis ci-dessus, d'expression d'un peptide, d'un fragment de peptide ou d'une combinaison de fragments de peptide ayant une activité de récepteur β3 adrénergique bovin.

Selon une disposition avantageuse de ce mode de réalisation, ledit vecteur est constitué d'un vecteur d'expression pRc/CMV dans lequel est inséré, au niveau du lieur multisite, au moins le fragment codant pour le récepteur β 3-adrénergique bovin ; un tel plasmide a été 10 dénommé pRc/CMV-Boβ3-ADR, et a été déposé auprès de la Collection Nationale de Cultures de Microorganismes (CNCM) tenue par l'INSTITUT PASTEUR, en date du 15 avril 1993 sous le n° I-1297.

La présente invention a également pour objet 15 une cellule hôte appropriée, obtenue par transformation génétique, caractérisée en ce qu'elle est transformée par un vecteur d'expression conforme à l'invention.

Une telle cellule est capable d'exprimer un peptide, d'origine bovine, ayant une activité de récepteur 20 β 3-adrénergique.

Selon un mode de réalisation avantageux, cellule hôte est notamment constituée par les cellules de la lignée CHO (Chinese Hamster Ovary).

Un autre des microorganismes utilisés peut 25 être constitué par une bactérie, notamment Escherichia coli.

Il n'était pas évident que les bovins aient des récepteurs β3-adrénergiques, dont l'activation permet, de manière inattendue, de réguler la quantité et la qualité des graisses, ce qui permet d'améliorer la qualité de la viande bovine.

les récepteurs β3-De manière avantageuse, adrénergiques bovins conformes à l'invention constituent un outil pour la sélection de ligands intervenant dans l'activation de ces récepteurs et permettent d'identifier et de sélectionner des ligands β -adrénergiques spécifiques

des récepteurs β 3-adrénergiques et en particulier des ligands plus affins et plus sélectifs pour le récepteur β 3-adrénergique bovin que pour le récepteur β 3-adrénergique humain.

Conformément à l'invention, le procédé de sélection et d'identification de substances capables de se comporter comme ligand spécifique vis-à-vis d'un peptide (récepteur β 3-adrénergique bovin) conforme à l'invention comprend :

la mise en contact de ladite substance avec une cellule hôte préalablement transformée par un vecteur d'expression tel que défini ci-dessus, laquelle cellule hôte exprime ledit peptide bovin (récepteur adrénergique β3 bovin), le cas échéant après induction physique ou chimique appropriée, et laquelle mise en contact est réalisée dans des conditions permettant la formation d'une liaison entre l'un au moins des sites spécifiques et ladite substance s'il y a lieu, et

- la détection de la formation éventuelle d'un 20 complexe du type ligand-peptide.

Un tel procédé permet la sélection, soit de ligands spécifiques du récepteur $\beta 3$ -adrénergique, soit de ligands spécifiques du récepteur $\beta 3$ -adrénergique bovin exclusivement.

- Outre les dispositions qui précèdent, l'invention comprend encore d'autres dispositions, qui ressortiront de la description qui va suivre, avec référence aux dessins annexés dans lesquels :
- la figure la représente la carte de restric-30 tion du fragment codant de 2 000 pb, qui correspond à la formule I;
 - la figure 1b représente la carte de restriction du clone 6.6 qui contient le gène β 3-adrénergique bovin et comprend 3 kb, en tout ;
- la figure 2 est une comparaison des récepteurs β3 humain, murin (souris et rat) et bovin ;

PCT/FR94/00447

15

- la figure 3 représente une comparaison des séquences codantes pour le RA-Hu β 3 et le RA- β 3 bovin ;
- la figure 4 représente le vecteur d'expression pRc/CMV-Bo β 3-ADR ;
- la figure 5 représente le vecteur d'expression pRc/CMV incluant un lieur multisite comprenant les sites uniques de restriction suivants : Hind III, BstX I, Not I, Xba I et Apa I.

Il doit être bien entendu, toutefois, que ces 10 exemples sont donnés uniquement à titre d'illustration de l'objet de l'invention, dont ils ne constituent en aucune manière une limitation.

EXEMPLE 1 : Isolement et identification du gène β 3-adrénergique bovin.

- <u>Préparation d'ARN</u> :

Le gène β 3-adrénergique bovin a été isolé à partir d'une banque d'ADNc de tissu adipeux brun de veau, construite dans le bactériophage λ gtll.

Pour ce faire, les ARN totaux sont extraits de tissu adipeux brun de veau, par la méthode utilisant le thiocyanate de guanidinium, puis on purifie les ARN messagers poly A+ à l'aide de colonnes oligo(dT) (Pharmacia réf.: 27-9258-01).

Les ARN totaux et les ARN messagers ont été analysés en Northern blot pour vérifier la présence et la taille des messagers du gène recherché. Après électrophorèse, l'ARN a été transféré sur une membrane de nylon chargée positivement (Amersham Hybond[®] N+ réf. RPN 203B). Cette membrane est ensuite hybridée avec une sonde radiomarquée (radiomarquage voir criblage des phages recombinants, ci-après), constituée par un fragment d'ADN de 2900 paires de bases contenant la totalité du gène β3-adrénergique murin précédemment isolé dans le laboratoire (NAHMIAS et al., 1991, EMBO J., 10, 3721-3727; Demande Internationale WO 92/12246). Après hybridation avec la sonde radiomarquée, les filtres sont lavés et exposés pen-

3.0

dant plusieurs jours sur film d'autoradiographie (KODAK X-OMAT AR), on observe un fragment d'environ 2,0 kilobases, aussi bien dans la fraction d'ARN totaux que dans la fraction des ARN messagers purifiés. Ceci confirme que le gène correspondant au récepteur β 3-adrénergique est exprimé dans le tissu adipeux brun de veau et que l'on peut construire la banque d'ADNc à partir de ces ARN messagers poly A+ purifiés.

Pour vérifier que la source d'ARN est bien du tissu adipeux brun, le Northern blot obtenu ci-dessus a été hybridé avec une sonde radiomarquée correspondant au gène de la protéine découplante humaine (hUCP). Cette protéine est seulement présente dans ce type de tissu adipeux, et peut être considérée comme une sorte de "marqueur" du tissu adipeux brun. Avec cette sonde, un signal fortement positif est décelé.

- Synthèse d'ADNc :

Cn synthétise ensuite l'ADNc correspondant, en prenant comme matrice les ARN messagers poly A+ purifiés, et comme amorce pour la synthèse du premier brin un primer oligo(dT)₁₅ provenant du kit "RiboClone cDNA synthèsis system" (Promega réf. C 2100). La synthèse du premier brin d'ADNc se fait en présence d'AMV réverse transcriptase, et la synthèse du deuxième brin est réalisée à l'aide de deux enzymes agissant simultanément (E. coli polymérase I et E. coli RNase H). Ensuite l'ADNc double brin est traité par la T4 DNA polymérase, afin d'obtenir des bouts francs. Le kit Promega C 2100 est utilisé pour l'ensemble de ces réactions.

Ensuite, des adaptateurs comportant des sites EcoRI sont ajoutés, afin de pouvoir insérer l'ADNc obtenu dans le bactériophage $\lambda gt11$, dans les conditions suivantes, décrites dans le kit EcoR I Adaptor Ligation System I (Promega, réf.: C 1900) :

35 l'ADNc est centrifugé à travers une matrice Sephacryl® S-400 (kit) pour éliminer les molécules de pe-

tite taille ; puis les adaptateurs sont ajoutés à l'ADNC par ligature, en présence de T4 ADN ligase, pendant une nuit et une deuxième centrifugation est effectuée à travers une colonne Sephacryl[®] S-400, de manière à éliminer les adaptateurs non fixés.

Avant d'insérer l'ADNc ainsi traité dans le vecteur $\lambda gt11$, on phosphoryle les adaptateurs, en présence de T4 polynucléotide kinase.

- Insertion de l'ADNc dans le bactériophage

10 $\lambda at11$:

15

20

Le bactériophage λ gtll, utilisé comme vecteur, provient du kit "Protoclone Lambda gtll System" (Promega réf. T 301/0-2). L'ADN du phage est digéré par EcoRI et déphosphorylé. La déphosphorylation empêche le vecteur de se refermer sur lui-même.

On effectue plusieurs ligations avec des quantités variables de l'ADNc obtenu, avec $0.5~\mu g$ d'ADN de vecteur, dans les conditions suivantes, pour chaque ligation : pendant 3 heures à température ambiante, en présence de T4 ADN ligase (kit Promega C1900).

On procède ensuite à une encapsidation in vitro, à l'aide des extraits "Packagene" présents dans le kit Promega T301/0-2.

Après une incubation à 22°C, durant 2 heures, les particules de phages reconstituées sont utilisées pour 25 infecter des bactéries, notamment la souche Y1090(r-) (Genotype: $\Delta(lacU169)$, proA+, $\Delta(lon)$, araD139, strA, supF, (trpC22::Tn10), (pMC9), hsd(r-, m+)), conditions suivantes : on dilue très fortement (1/1 000 ou 1/10 000) les phages encapsidés; chaque dilution de 30 phages est incubée avec des cellules Y1090(r-) à 37°C, durant 30 minutes, et ensuite, ces bactéries infectées sont étalées sur un milieu nutritif (LB agar) contenu dans des boîtes de Pétri. Les boîtes sont incubées une nuit à 37°C, et le lendemain, on observe des plages de lyse, 35 chaque plage correspond à un phage recombinant. En comptant les nombres de plages de lyse et en multipliant avec le facteur de dilution donné, le titre de la banque d'ADNc est déterminé et est d'environ 4 millions de phages recombinants. Le bruit de fond du vecteur seul sans insert est 5 de 3,5 %, ce qui est tout à fait acceptable.

- Criblage des phages recombinants :

En se basant sur les résultats obtenus, environ 200 000 phages ont été étalés sur boîte de Pétri (milieu LB agar), afin de pouvoir les cribler avec une sonde radiomarquée, dans les conditions suivantes :

- souche bactérienne utilisée : LE 392 (Genotype : F-, hsdR 574 (r-, m+), supE44, supF58, lacY1 or Δ (lac1ZY)6, galk2, galT22, metB1, trpR55, λ -).
- sonde : fragment d'ADN de 2900 paires de 15 bases (gène β 3-adrénergique murin), tel que précisé cidessus pour le Northern Blot, radiomarqué par Random priming (Kit Boehringer réf. 1004 760), en incorporant 50 μ Ci de dATP (α^{32} P) et 50 μ Ci de dCTP (α^{32} P) (références Amersham : PB 10204 et PB 10205).
- Après transfert de l'ADN des plages de lyse sur des membranes Hybond[®] N+ (Amersham réf. RPN 132B), ces dernières sont hybridées avec la sonde radiomarquée, puis lavées et exposées une nuit sur film d'autoradiographie.
- 25 17 signaux d'hybridation ont été observés, dont 11 se sont, par la suite, révélés être des faux positifs. Les 6 clones restant (1, 3, 5, 6, 8 et 9) ont été purifiés par quatre isolements successifs, suivis d'une hybridation avec la sonde β 3-adrénergique murine décrite 30 ci-dessus.

- Analyse des clones positifs :

Pour identifier le(s) clone(s) contenant le gène β 3-adrénergique bovin en entier, c'est-à-dire l'ADNc correspondant à la région codante pour toute la protéine,

35 2 méthodes ont été utilisées : l'amplification par PCR et la coupure par une endonucléase de restriction, avec le

but de trouver parmi les clones positifs celui qui comporte l'insert le plus grand.

1) L'amplification par PCR a été faite sur lysat de phages (particules de phages encapsidées) à 1'aide des deux amorces suivantes :

1218 : amorce $\lambda gt11$ (brin sens) de 24 mers, de formule : 5' d(GGTGGCGACGACTCCTGGAGCCCG)3', et

1222 : amorce $\lambda gt11$ (brin anti-sens) de 24 mers également, de formule : 5'

10 d(TTGACACCAGACCAACTGGTAATG)3' (New England Biolabs).

Etant donné que ces amorces s'hybrident de part et d'autre du site d'insertion de l'ADNc dans le phage, il a été possible de connaître ainsi la taille des fragments insérés dans les différents clones positifs.

- 2) L'ADN des 6 phages intéressants a été préparé et coupé par l'enzyme de restriction EcoRI, afin de vérifier la taille des inserts ; l'hybridation avec la sonde β 3-adrénergique murine a permis de déceler le clone comportant le plus grand insert positif.
- Issu de ces deux approches, le clone n° 6 a été choisi pour une analyse plus poussée étant donnée qu'il comporte le plus grand insert d'ADNc recherché (3 kilobases).

Après coupure du phage λ par l'enzyme de res-25 triction EcoR I, le fragment comportant l'ADNc a été inséré dans le bactériophage M13 tg 131 afin de pouvoir séquencer le gène.

EXEMPLE 2 : Séquençage du gène β 3-adrénergique bovin.

On a séquencé le fragment d'ADN d'environ 3 kb 30 délimité par les sites de l'enzyme EcoR I.

Ce fragment d'ADN a été purifié à partir de l'ADN du clone 6 et sous-cloné dans le site EcoR I du vecteur M13tg131. Les clones M13 ayant intégrés le fragment d'ADN dans les 2 orientations opposées (6.3 et 6.6) ont été identifiés et séguencés.

Pour effectuer les réactions de séquençage, le kit USB Sequenase Version 2.0 (United States Biochemical réf.: 70770) a été utilisé.

La séquence a été réalisée en utilisant des amorces spécifiques, qui s'hybrident sur le brin sens (clone M13-6.6) ou sur le brin anti-sens (clone M13-6.3), conformément à la méthode de Sanger (MANIATIS et al., Molecular Cloning, 2ème édition, pages 13.3-13.10).

Les résultats obtenus, à partir de la séquence du fragment EcoR I de 3 kilobases, montrent la séquence nucléotidique du RAβ3 bovin (1215 pb) et des régions non codantes (106 pb en 5' et 638 pb en 3') (formule I). Les sites de restriction contenus dans le fragment de 2 000 pb sont positionnés sur la figure la (bov 6.6 court(pA)).

La figure 1b montre les sites de restriction uniques contenus dans le fragment de 3 kb qui a été séquencé.

La comparaison des régions codantes des gènes β 3 humain et bovin (figure 3), indique une forte homologie 20 (85 % au niveau des séquences nucléotidiques entre RA bovin et humain); la comparaison des régions codants des gènes β 3 bovin et murin montre également une forte homologie (76 % au niveau des séquences nucléotidiques entre RA bovin et RA murin).

Le gène β 3 bovin code pour le peptide de 405 aminoacides, qui présente une très grande homologie avec le peptide β 3 humain ou le peptide β 3 murin (figure 2), comme indiqué plus haut.

EXEMPLE 3 : Construction d'un vecteur pour l'expression du 30 RA- $\beta3$ bovin.

La carte de restriction du fragment de 2 kb qui a été séquencé (figure la) indique la présence d'un site de coupure par l'enzyme Srf I à la position 1598, soit 270 nucléotides en aval de la région codante du gène

 β 3 de boeuf. L'ADN du clone M13-6.6 a été digéré avec les enzymes EcoR I et Srf I pour libérer le fragment de

1598 paires de bases contenant la région codante du gène β3 bovin et une partie de la région 3' non traduite. Ce fragment d'ADN a été purifié, puis inséré dans le vecteur d'expression pRc/CMV, aux sites de coupure Hind III et Xba I (figure 5).

Comme les extrémités générées par les enzymes Hind III et Xba I d'une part et EcoR I et Srf I d'autre part, ne sont pas compatibles, on a pris soin de traiter les extrémités EcoR I et Srf I de l'insert d'une part avec le fragment Klenow de la polymérase I, et les extrémités Hind III et Xba I du vecteur d'autre part, avec le fragment Klenow de la polymérase I, de façon à obtenir des bouts francs (MANIATIS et al., Molecular Cloning, 2ème édition, pages 5.40-5.42).

On a ainsi obtenu le plasmide recombinant $pRc/CMV-Bo\beta3-ADR$, représenté sur la figure 4.

EXEMPLE 4 : Propriétés pharmacologiques du produit d'expression du gène β 3 bovin.

a) Transfection de cellules CHO-K1

Pour mieux caractériser le récepteur adrénergique $\beta 3$ bovin, on exprime le gène $\beta 3$ bovin à la surface de cellules eucaryotes, qui possèdent tous les éléments nécessaires à la transduction du signal.

Le plasmide recombinant pRc/CMV de l'exemple 3 25 a été transfecté dans des cellules CHO-K1 par une méthode de transfection à la lypofectine ; les cellules transfectées sont sélectionnées avec de la généticine (G418) (dérivé de la néomycine).

De manière plus précise, ladite méthode de 30 transfection est réalisée comme suit :

Les cellules CHO-K1 (ATCC CCL 61) sont cultivées à confluence dans un milieu de culture contenant : du milieu DMEM à 45 %, du milieu F12-Ham à 45 %, du sérum de veau foetal inactivé à la chaleur à 10 %, de la glutamine 2 mM, de la pénicilline 100 U/ml et de la streptomycine 100 μ g/ml.

 $1~\mu g$ d'ADN du plasmide pRc/CMV $\beta 3$ bovin est mélangé avec 5 μl de lipofectine (GIBCO) et 1 000 μl du milieu de culture précité, dépourvu de sérum.

On ajoute ce mélange à des cellules en cul-5 ture, que l'on laisse incuber à 37°C, pendant 5 heures.

Le milieu est remplacé avec un milieu de culture précité, contenant du sérum et les cellules sont à nouveau incubées à 37°C, pendant 48 heures. Les cellules sont alors réparties dans 96 puits selon des dilutions variables et incubées en présence de généticine (G418, Gibco) à 400 μg/ml, dans un milieu complet, pendant environ 10 jours, le milieu étant changé tous les deux jours.

Les différentes colonies obtenues sont ensuite sous-clonées, d'abord dans 48 puits, puis dans 6 puits, 15 avant le criblage.

Les colonies stables sont criblées pour leur capacité à lier de manière spécifique l'[125]-cyanopindolol et également pour leur capacité à stimuler l'adénylate cyclase, en présence d'isoprotérénol, conformément au protocole décrit dans TATE et al., Eur. J. Biochem., 1991, 196, 357-361.

Les cellules transfectées et exprimant de façon stable le RA\$3, lient le [125]-cyanopindolol, avec une affinité équivalente à celle des RA\$3 correspondants chez l'Homme ou chez la Souris, également obtenus par clonage.

On a sélectionné, à partir des clones stables, un ensemble de sous-clones ; l'un d'entre eux, dénommé 62- 26, a été utilisé pour l'évaluation pharmacologique du RA β 3 bovin.

b) Caractéristiques pharmacologiques du récepteur RAeta 3 bovin

La caractérisation pharmacologique du récepteur RA β 3 bovin a été réalisée en utilisant le clone

35 stable 62-26. Les propriétés pharmacologiques de 10 ligands β 3-adrénergiques ont été déterminées par des

études de stimulation de l'adénylate cyclase et de liaison du [125]-cyanopindolol.

Les expériences d'activation de l'adénylate cyclase ont été réalisées suivant le protocole détaillé 5 dans BLIN et al., Mol. Pharmacol., 1991, 44, 1094-1104.

Brièvement, les cellules préconfluentes en plaques six puits $(0.6 \times 10^6 \text{ cellules/puits})$ sont mises en présence, ou non, de doses croissantes de ligands pendant 30 minutes à 37°C. La réaction est arrêtée par lavage en 10 PBS à 4°C et addition de 500 μl de NaOH 1N. Après centrifugation et neutralisation avec de l'acide acétique 1N, les lysats cellulaires sont récupérés et la quantité totale d'AMPc accumulé est déterminée à l'aide d'un kit de dosage commercial.

L'étude de la liaison des ligands en compéti-15 tion a été réalisée sur cellules intactes suivant le protocole détaillé dans BLIN et al., Mol. Pharmacol., 1991, 44, 1094-1104. Brièvement, 10⁵ cellules sont incubées avec 0,5 nM d'[125]-cyanopindolol en présence ou en absence de 20 concentrations croissantes de compétiteurs, pendant 30 minutes à 37°C. La réaction est stoppée par dilution avec du PBS glacé, les cellules sont filtrées et la radioactivité est mesurée dans un compteur gamma. Les résultats ont été analysés en utilisant le logiciel Graph-Pad[©].

Parmi les ligands testés, quatre sont décrits agonistes des récepteurs **B1**, β2⁻, B3-RA : comme (-)isoprotérénol, (-)épinéphrine, (-)norépinéphrine, BRL 37344 ; trois sont décrits comme spécifiques du récepteur $RA\beta3$ ($\beta1-$, $\beta2-RA$ antagonistes): CGP12177A, ICI201651, 30 bucindolol. Le bupranolol a été également testé car décrit comme antagoniste des trois sous types de récepteur (BLIN et al., Br. J. Pharmacol., 1994, sous presse). Enfin, on a testé le (-)propranolol décrit comme agoniste partiel du récepteur RA\$3 humain et antagoniste du récepteur RA\$3 de 35 souris (NAHMIAS et al., EMBO J., 1991, <u>10</u>, 3721-3727).

WO 94/24162 PCT/FR94/00447

23

Les valeurs des constantes d'activation de l'adénylate cyclase (Kact), des constantes d'inhibition (Ki) et de l'activité intrinsèque (AI) correspondant au rapport effet du ligand à 10⁻⁴ M/effet de l'isoprotérénol à 10⁻⁴ M, obtenus pour les différents ligands sont présentés dans le Tableau ci-après. Les quatres ligands agonistes des trois sous types de récepteurs (β1, β2, β3-RA) ont des valeurs de Kact et de Ki voisines de celles obtenues pour le récepteur RAβ3 humain (BLIN et al., Br. J. Pharmacol., 1994, sous presse), de souris (NAHMIAS et al., EMBO J., 1991, 10, 3721-3727), et de rat (GRANNEMAN et al., J. Pharmacol. Exp. Therap., 1991, 40, 895-899; MUZZIN et al., J. Biol. Chem., 1991, 266, 24053-24058).

Les ligands spécifiques du récepteur RAβ3 ont tous une valeur de Kact plus faible pour le récepteur RAβ3 bovin comparée aux récepteurs RAβ3 humain, de souris, et donc une meilleure efficacité à stimuler l'adénylate cyclase. Le (-)propranolol est agoniste partiel sur RAβ3 bovin comme pour le récepteur RAβ3 humain. Par contre, le bupranolol, qui est décrit comme un antagoniste puissant pour les récepteurs RAβ3 humain et murin, est agoniste partiel sur le récepteur RAβ3 bovin.

35

				2	4				
• •	in AMPc AI		0,91±0,1 0,8±0,3 1,00±0,5 0,84±0,1		0,93±0,20 0,85±0,1 0,99±0,10		0,71±0,08		0,34±0,01
5	RAB3-CHO bovin Accumul. AM Kact(nM)		14±2,7 50,7±3,7 54±4,3 0,3±0,07		1,41±0,5 1,1±0,9 12,8±5,0		661±78		507±75
10	RA Liaison Ki(nM)		84±81 11.105±7.345 423±255 2,13±1,4		218±161 27,7±24 73±42		589±74		85±40
15	nain 1. AMPc M) AI		0,9 1,00±0,04 7 1,00 1,11±0,12		0,68±0,02 1,14±0,14 2 1,01±0,10		1.490±550 0,51±0,12		ste -
	RAB3-CHO humain Accumul. Av Kact(nM)		4 810 49±5 6,3±0, 15±3		139±44 20±9 7,0±1,		1.490±55		antagoniste
20	RA Liaison Ki(nM)		620 20.650±2.810 475±75 287±92		88±22 85±12 23±10		145±8		50±14
25	souris ul. AMPc M) AI		1,4±0,1 0,91±0,03 1,06±0,06 1,07±0,08		0,75±0,08 1,02±0,02 1,11±0,06	y	•		
30	RA\$3-CHO de so son Accumul M) Kact(nM)		99±44 850 23±0,3 0 13±4 0,4±0,1		41±9 15±1 40±14		antagoniste 406±98		antagoniste 12±1
30	RAβ3 Liaison Ki(nM)		4.600±1.850 1.840±600 290±136		152±19 239±104 21±5		150±22		42±19
35	LIGANDS	agonist s β1/β2/β3	(-)isoprotérénol (-)épinéphrine (-)norépinéphrine BRL 37344	antagonistes \$1/\$2/agonist \$3	CGP 12177A ICI 201651 Bucindolol	ag niste/antag - niste partiel	(-)propranolol	antagonistes 81/82/83	(-)bupranolol

Ainsi que cela ressort de ce qui précède, l'invention ne se limite nullement à ceux de ses modes de mise en oeuvre, de réalisation et d'application qui viennent d'être décrits de façon plus explicite; elle en embrasse au contraire toutes les variantes qui peuvent venir à l'esprit du technicien en la matière, sans s'écarter du cadre, ni de la portée de la présente invention.

LISTE DE SEQUENCES

26

(1) INFORMATION GENERALE:

- (i) DEPOSANT:
 - (A) NOM: VETIGEN
 - (B) RUE: 66 rue de Javel
 - (C) VILLE: PARIS
 - (E) PAYS: FRANCE
 - (F) CODE POSTAL: 75015
 - (A) NOM: VIRBAC
 - (B) RUE: lere Avenue 2065 M L.I.D.
 - (C) VILLE: CARROS
 - (E) PAYS: FRANCE
 - (F) CODE POSTAL: 06516
 - (ii) TITRE DE L' INVENTION: SEQUENCES NUCLEOTIDIQUES CODANT POUR LE RECEPTEUR BETA3-ADRENERGIQUE BOVIN ET LEURS APPLICATIONS.
 - (iii) NOMBRE DE SEQUENCES: 2
 - (iv) FORME LISIBLE PAR ORDINATEUR:
 - (A) TYPE DE SUPPORT: Floppy disk
 - (B) ORDINATEUR: IBM PC compatible
 - (C) SYSTEME D' EXPLOITATION: PC-DOS/MS-DOS
 - (D) LOGICIEL: PatentIn Release #1.0, Version #1.25 (OEB)
 - (vi) DONNEES DE LA DEMANDE ANTERIEURE:
 - (A) NUMERO DE DEPOT: FR 93 04670
 - (B) DATE DE DEPOT: 21-APR-1993
- (2) INFORMATION POUR LA SEQ ID NO: 1:
 - (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 2000 paires de bases
 - (B) TYPE: acide nucléique
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: ADNo
 - (ix) CARACTERISTIQUE ADDITIONELLE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT: 107..1324
 - (D) AUTRES RENSEIGNEMENTS: /function= "Bovin beta-3 receptor" /product= "Adrenergic, Beta Receptor"
 - (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 1:

CCCAGGCCAG GGAAATCGCT	CCCACGCCCC GATGCCCCCG	CCGCTGAGCA GGGTGAGCTG	60
GGAGACCCTT TCCCTCATTC	CTTCCCGCCC CACGCGCGAC	GCGGGG ATG GCT CCG Met Ala Pro 1	115
TGG CCT CCT GGG AAC AG Trp Pro Pro Gly Asn Se 5			163

CTG GCA CCC AAT ACT GCC AAC GCG AGT GGG CTG CCA GGG GTG CCC TGG
Leu Ala Pro Asn Thr Ala Asn Ala Ser Gly Leu Pro Gly Val Pro Trp
20 25 30 35

GCG GTG GCG CTG GCG GCG CTG TTG GCG CTA GCG GTG CTG GCC ACC
Ala Val Ala Leu Ala Gly Ala Leu Leu Ala Leu Ala Val Leu Ala Thr

								2	7							
				40					45					50		
				Leu					Ala						AGA Arg	307
															GAC Asp	355
CTG Leu	GTG Val 85	GTG Val	GGG Gly	CTC Leu	CTG Leu	GTC Val 90	GTG Val	CCC Pro	CCG Pro	GGG Gly	GCC Ala 95	ACG Thr	TTG Leu	GCG Ala	CTG Leu	403
ACC Thr 100	GGC Gly	CAC His	TGG Trp	CCC Pro	CTG Leu 105	GGC Gly	GTC Val	ACC Thr	GGT Gly	TGC Cys 110	GAG Glu	CTG Leu	TGG Trp	ACC Thr	TCA Ser 115	451
GTG Val	GAC Asp	GTG Val	CTG Leu	TGT Cys 120	GTG Val	ACC Thr	GCC Ala	AGC Ser	ATC Ile 125	GAA Glu	ACC Thr	CTG Leu	TGC Cys	GCC Ala 130	CTG Leu	499
GCG Ala	GTG Val	GAC Asp	CGC Arg 135	TAC Tyr	CTG Leu	GCC Ala	GTG Val	ACC Thr 140	AAC Asn	CCG Pro	CTG Leu	CGC Arg	TAC Tyr 145	GGC Gly	GCG Ala	547
CTG Leu	GTC Val	ACC Thr 150	AAA Lys	CGC Arg	CGC Arg	GCC Ala	CTA Leu 155	GCA Ala	GCC Ala	GTG Val	GTC Val	CTG Leu 160	GTG Val	TGG Trp	GTG Val	595
GTG Val	TCC Ser 165	GCC Ala	GCG Ala	GTG Val	TCG Ser	TTT Phe 170	GCG Ala	CCC Pro	ATC Ile	ATG Met	AGC Ser 175	AAA Lys	TGG Trp	TGG Trp	CGC Arg	643
ATC Ile 180	GGG Gly	GCC Ala	GAT Asp	GCC Ala	GAG Glu 135	GCG Ala	CAG Gln	CGT Arg	TGC Cys	CAC His 190	TCC Ser	AAC Asn	CCG Pro	CGC Arg	TGC Cys 195	691
TGC Cys	ACC Thr	TTC Phe	GCC Ala	TCC Ser 200	AAC Asn	ATG Met	CCC Pro	TAC Tyr	GCG Ala 205	CTG Leu	CTC Leu	TCC Ser	TCC Ser	TCG Ser 210	GTC Val	739
TCG Ser	TTC Phe	TAT Tyr	CTT Leu 215	CCG Pro	CTC Leu	Leu	GTG Val	Met	Leu	Phe	Val	TAC Tyr	Ala	Arg	GTT Val	787
TTC Phe	GTG Val	GTG Val 230	GCC Ala	ACG Thr	CGC Arg	CAG Gln	CTG Leu 235	CGC Arg	TTG Leu	CTG Leu	CGC Arg	CGG Arg 240	GAG Glu	CTG · Leu	GGT Gly	· 835
CGC Arg	TTC Phe 245	CCG Pro	CCA Pro	GAG Glu	GAG Glu	TCT Ser 250	CCG Pro	CCG Pro	GCT Ala	CCT Pro	TCT Ser 255	CGC Arg	TCC Ser	GGA Gly	TCC Ser	883
CCT Pro 260	GGC Gly	CTG Leu	GCG Ala	GGG Gly	CCG Pro 265	TGC Cys	GCC Ala	TCG Ser	CCC Pro	GCG Ala 270	GGG Gly	GTG Val	CCC Pro	TCC Ser	TAC Tyr 275	931
GGC Gly	CGG Arg	CGG Arg	CCG Pro	GCG Ala 280	CGC Arg	CTT Leu	CTG Leu	CCT Pro	CTG Leu 285	CGG Arg	GAA Glu	CAC His	CGC Arg	GCC Ala 290	CTG Leu	979
CGC Arg	ACC Thr	TTG Leu	GGG Gly 295	CTC Leu	ATC Ile	ATG Met	GGA Gly	ACC Thr 300	TTC. Phe	ACT Thr	CTC Leu	TGC Cys	TGG Trp 305	TTG Leu	CCT Pro	1027
TTC Phe	Phe	GTG Val 310	GTC Val	AAC Asn	GTG Val	GTG Val	CGC Arg 315	GCC Ala	CTC Leu	GGG Gly	GGC Gly	CCC Pro 320	TCT Ser	CTG Leu	GTG Val	1075

TCC Ser	GGC Gly 325	CCC Pro	ACT Thr	TTC Phe	CTC Leu	GCC Ala 330	CTT Leu	AAC Asn	TGG Trp	CTG Leu	GGC Gly 335	TAT Tyr	GCC Ala	AAC Asn	TCT Ser	1123
GCC Ala 340	TTC Phe	AAC Asn	CCG Pro	CTC Leu	ATC Ile 345	TAC Tyr	TGC Cys	CGC Arg	AGC Ser	CCG Pro 350	GAC Asp	TTT Phe	CGG	AGC Ser	GCC Ala 355	1171
TTC Phe	CGC Arg	CGC Arg	CTG Leu	CTG Leu 360	TGT Cys	CGC Arg	TGC Cys	CGG Arg	CCG Pro 365	GAG Glu	GAG Glu	CAC His	CTC Leu	GCC Ala 370	GCT Ala	1219
GCC Ala	TCC Ser	CCG Pro	CCC Pro 375	CGA Arg	GCC Ala	CCC Pro	TCC Ser	GGC Gly 380	GCC Ala	CCC Pro	ACG Thr	GCC Ala	CTG Leu 385	ACC Thr	AGC Ser	1267
CCC Pro	GCT Ala	GGC Gly 390	CCC Pro	ATG Met	CAG Gln	CCC	CCA Pro 395	GAG Glu	CTC Leu	GAC Asp	GGG Gly	GCT Ala 400	TCC Ser	TGC Cys	GGA Gly	1315
	TCT Ser 405	TAG	GCCT"	rga i	AGAA	ACAA(et c	CATTO	GATC	C GG	AACC'	rttg	GAA	AGCC'	rct	1371
GGC	CGGC	CTC (GGTT	CAGA	AT G	AGCC	CCGT	G GAG	GTT T (CCCA	GCT	GGAA	AAC	TCTG	CCCTCC	1431
CCA	GCCT	GAC (GACT	GGT	CC TO	GGGA	GAG	g. CG	CGGG	GGCT	GAC	TGGG	GAG	GGGA	AATCCT	1491
TAC	CAAG'	rgg (GTTT'	rcgc'	rc T	CTTT	CTGAG	G AG	aagt'	TTTC	TAC.	ACCC	CAG	CCCT	GAACTT	1551
CAC	CGCT	GCC '	TCAG	CAGC'	rc c	CGCG'	rctg	G TT	rccc.	ATGC	CCA	GGTG	ccc	GGC.	AGGAGC	1611
TGG	GCTG	CGT '	TTAG	CCCC	GG G	ACCC	GCAC	C TG	rccc.	ACTC	GGG	TGCT	GTG	TGCG	CAGGGG	1671
CAA	GGCG	GGC .	ACCT	TCAT	rc T	GTTC	CTTC'	T GC	CGCC	CAGA	CCC	TGAG	GAA	CCCA	CCGGGG	1731
TGC	TGGA	GGC	CCAG	GCTG	AG A	AGAG	GAAG	G TG	GGGA	AGGT	CAC	GGTT	TGG	GCTT	CTGTCC	1791
CTG	GCTT	CCT	CACT	GTAG	AC A	CACC	TACC	T CA	CAGC	ATTT	TCA	GGAC	TTT	ACTT	TAGCCT	1851
TTG	GGGT	GGG	GGTG	GGGĢ	GG C	GCTC	CTGG	T TT	CCTG	GGAA	GGT	GAAC	CAT	TAGA	ATGGGT	191
CCC	TTTT	CCT	TTTG	TAAA	CA A	ATTA	ATAA	A TG	TTAC	TGAA	TGC	AGTT	TAA	AAAA	AAAAA	1971
AAA	AAAA	AAA	AAAA	AAAA	AA A	аааа	AAAA									2000

(2) INFORMATION POUR LA SEQ ID NO: 2:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 405 acides aminés

 - (B) TYPE: acide aminé(D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: protéine
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 2:

Met Ala Pro Trp Pro Pro Gly Asn Ser Ser Leu Thr Pro Trp Pro Asp 1 5 10

Ile Pro Thr Leu Ala Pro Asn Thr Ala Asn Ala Ser Gly Leu Pro Gly

Val Pro Trp Ala Val Ala Leu Ala Gly Ala Leu Leu Ala Leu Ala Val 35

Leu Ala Thr Val Gly Gly Asn Leu Leu Val Ile Val Ala Ile Ala Arg 55

							29)							
Thr 65	Pro	Arg	Leu	Gln	Thr 70	Met			Val	Phe 75	Val	Thr	Ser	Leu	Ala 80
Thr	Ala	Asp	Leu	Val 85	Val	Gly	Leu	Leu	Val 90	Val	Pro	Pro	Gly	Ala 95	Thr
Leu	Ala	Leu	Thr 100	Gly	His	Trp	Pro	Leu 105	Gly	Val	Thr	Gly	Cys 110	Glu	Leu
Trp	Thr	Ser 115	Val	Asp	Val	Leu	Cys 120	Val	Thr	Ala	Ser	Ile 125	Glu	Thr	Leu
Cys	Ala 130	Leu	Ala	Val	Asp	Arg 135	Tyr	Leu	Ala	Val	Thr 140	Asn	Pro	Leu	Arg
Tyr 145	Gly	Ala	Leu	Val	Thr 150	Lys	Arg	Arg	Ala	Leu 155	Ala	Ala	Val	Val	Leu 160
Val	Trp	Val	Val	Ser 165	Ala	Ala	Val	Ser	Phe 170	Ala	Pro	Ile	Met	Ser 175	Lys
Trp	Trp	Arg	Ile 180	Gly	Ala	Asp	Ala	Glu 185	Ala	Gln	Arg	Cys	His 190	Ser	Asn
Pro	Arg	Cys 195	Cys	Thr	Phe	Ala	Ser 200	Asn	Met	Pro	Tyr	Ala 205	Leu	Leu	Ser
Ser	Ser 210	Val	Ser	Phe	Tyr	Leu 215	Pro	Leu	Leu	Val	Met 220	Leu	Phe	Val	Tyr
Ala 225	Arg	Val	Phe	Val	Val 230	Ala	Thr	Arg	Gln	Leu 235	Arg	Leu	Leu	Arg	Arg 240
Glu	Leu	Gly	Arg	Phe 245	Pro	Pro	Glu	Glu	Ser 250	Pro	Pro	Ala	Pro	Ser 255	Arg
Ser	Gly	Ser	Pro 260	Gl <u>y</u>	Leu	Ala	Gly	2ro 265	Cys	Ala	Ser	Pro	Ala 270	Gly	Val
		275					280					285	Arg		
	290					295					300				Cys
305					310					315					Pro 320
				325					330					115	
			340					345					350		Phe
		355					360					365			His
	370					375	1				380				Ala
Leu 385		Ser	Pro	Ala	. Gly 390	Prc	Met	Gln	Pro	395	Glu	Leu	ASP	GIY	Ala 400

Ser Cys Gly Leu Ser 405

No do la domando internationale: PCY/

MICRO-ORGANISMES
Founds to evaluation or micro-organisms months as a comp. 12-13 do la docençaca i
A IDENTIFICATION DU DEPOT
D'Outros docta sem isontifics our una fouste supplementation (
Nom do l'indepution de depti s
Collection Nationale de Cultures de Microorganismes
Adrosco do l'Institution de depât (y compne le cade pastal el le paye) *
28 rue du Docteur Roux, 75724 PARIS CEDEX 15
Dato de dópét * N° d'erdro ¢
15 avril 1993 I-1297
D. INDICATIONS SUPPLEMENTAINED! (à no romain que si nocessaire). Une feuille coperes est jainte pour le bune de ces renacignaments
"En ce qui concerne les désignations dans lesquelles un brevet européen est demandé, un échantillon du micro-organisme dépose ne sera accessible, jusqu'à la publication de la mention de la délivrance du brevet européen ou jusqu'à la date à laquelle la demande sera rejetée, retirée ou réputée retirée, que par la remise d'un échantillon à un expert désigné par le requérant. (règle 28.4) de la CBE)".
C. CTATO DESIGNES POUR LESQUELS LES INDICATIONS SONT DONNESS (S) too indications no sont pas connect past tous los Elais ecolonos)
AUSTRALIE CANADA ETATS-UNIS D'AMERIQUE EUROPE JAPON NOUVELLE-ZELANDE
D. INDICATIONS FOURNIES SEPAREMENT . (6 no romain que a nécospante)
Les indications enumerees ci-sores serent seumises untériourament su Duroeu international ⁹ (appethar la natura ganorala des indi- cations s. es., « ne d'arare au dépat »)
E La presente reunite a ete rocue avoc la demande internationale lorsque callo-ci a été dépeace (à vérifier par l'effice rocaptour) (Fenctionnaire autorité) Date de réception (en prevenance du dépeacnt) par la Durocu International 10
(Fonctionnaire automot)

Janvier 1985]

31

REVENDICATIONS

- 1°) Séquence nucléotidique, caractérisée en ce qu'elle correspond à l'ADNc du gène bovin codant pour le récepteur adrénergique β 3 bovin.
- 5 2°) Séquence nucléotidique selon la revendication 1, caractérisée en ce qu'elle comprend la séquence en nucléotides et la séquence déduite en aminoacides SEQ ID n° 1.
- 3°) Séquence selon la revendication 2, carac-10 térisée en ce qu'elle comprend notamment les sites de restriction uniques suivants :

Bpull02 I, Fok I, EcoR V, Bcg I, Nhe I, BspM I, Afl III, Age I, BstE II, BspH I, Bsg I, Nsp I, Nsp7524 I, NspC I, Sap I, BamH I, BstY I, Asc I, Sty I, Hinc II, Apa I, Bspl20 I, Bbe I, Ehe I, Kas I, Nar I, Ecl136 I, Sac I, Stu I, Fse I, Drd I, Tthl11 I, Srf I, Bsu36 I, Sfc I, BstX I, Ase I, Bsm I, Dra I.

- 4') Fragment de la séquence selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il
 20 est constitué d'un segment de 78 paires de bases, qui
 correspond aux nucléotides 218-295 de la séquence ID n° 1,
 lequel fragment code pour la région transmembranaire TM1.
 - 5°) Fragment de la séquence selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il est constitué d'un segment de 72 paires de bases, qui correspond aux nucléotides 332-403 de la séquence ID n° 1, lequel fragment code pour la région transmembranaire TM2.
- 6') Fragment de la séquence selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il 30 est constitué d'un segment de 66 paires de bases, qui correspond aux nucléotides 434-499 de la séquence ID n° 1, lequel fragment code pour la région transmembranaire TM3.
 - 7°) Fragment de la séquence selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il
- 35 est constitué d'un segment de 69 paires de bases, qui

correspond aux nucléotides 572-640 de la séquence ID n° 1, lequel fragment code pour la région transmembranaire TM4.

- 8°) Fragment de la séquence selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il 5 est constitué d'un segment de 72 paires de bases, qui correspond aux nucléotides 713-784 de la séquence ID n° 1, lequel fragment code pour la région transmembranaire TM5.
- 9°) Fragment de la séquence selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il
 10 est constitué d'un segment de 66 paires de bases, qui
 correspond aux nucléotides 983-1048 de la séquence ID
 n° 1, lequel fragment code pour la région transmembranaire
 TM6.
- 10°) Fragment de la séquence selon l'une quel15 conque des revendications 1 à 3, caractérisé en ce qu'il
 est constitué d'un segment de 78 paires de bases, qui
 correspond aux nucléotides 1070-1147 de la séquence ID
 n° 1, lequel fragment code pour la région transmembranaire
 TM7.
- 20 11') Clones d'ADNc, caractérisés en ce qu'ils comprennent un fragment de séquence codant pour le récepteur $\beta 3$ bovin (RA-Bo $\beta 3$), selon l'une quelconque des revendications 1 à 10.
- 12') Clone selon la revendication 11, caracté25 risé en ce qu'il comprend 2979 paires de bases, inclut la
 séquence ID n' 1 selon la revendication 2 et comprend les
 sites de restriction uniques suivants : EcoR V, Bcg I,
 Nhe I, BstE II, BspH I, Bsg I, Sap I, BamH I, Asc I,
 Stu I, Fse I, Drd I, Srf I, Sfc I, Ase I, Bsm I, Dra I,
 30 Bsp1407 I, Csp6 I, Rsa I, Ssp I, Dra III, Bgl II, Afl II,
 Spe I, Tfi I, Hpa I, Nde I, EcoN I, BsaB I, Pvu I.
- 13°) Sondes nucléotidiques, caractérisées en ce qu'elles sont constituées par une séquence nucléotidique selon l'une quelconque des revendications 1 à 10 ou un fragment de celles-ci, marquées à l'aide d'un marqueur tel qu'un isotope radioactif, une enzyme appropriée ou un

fluorochrome et en ce qu'elles s'hybrident avec les séquences nucléotidiques selon l'une quelconque des revendications 1 à 10 mais ne s'hybrident pas avec les gènes codant pour les récepteurs $\beta 1$ et $\beta 2$ adrénergiques, ni avec l'ARN messager desdits récepteurs $\beta 1$ et $\beta 2$ adrénergiques.

- 14') Sonde selon la revendication 13, caractérisée en ce que sa séquence est homologue ou complémentaire de celle d'un segment d'au moins 10 pb de la séquence ID n° 1.
- 15') Peptide et/ou un fragment de peptide, caractérisé en ce qu'il est codé par une séquence nucléotidique selon l'une quelconque des revendications 1 à 10 et en ce qu'il présente une activité de récepteur β 3-adrénergique.
- 16°) Peptide selon la revendication 15, caractérisé en ce qu'il comprend 405 amino-acides et présente la séquence en amino-acides SEQ ID n° 2.
- 17°) Fragment de peptide selon la revendication 16, caractérisé en ce qu'il comprend un fragment de 20 26 amino-acides, correspondant au segment 38-63 de la séquence ID n° 2 et constituant la région transmembranaire TM1.
- 18') Fragment de peptide selon la revendication 16, caractérisé en ce qu'il comprend un fragment de 25 24 amino-acides, correspondant au segment 76-99 de la séquence ID n° 2 et constituant la région transmembranaire TM2.
- 19°) Fragment de peptide selon la revendication 16, caractérisé en ce qu'il comprend un fragment de 30 22 amino-acides, correspondant au segment 110-131 de la séquence ID n° 2 et constituant la région transmembranaire TM3.
 - 20°) Fragment de peptide selon la revendication 16, caractérisé en ce qu'il comprend un fragment de
- 35 23 amino-acides, correspondant au segment 156-178 de la

séquence ID n° 2 et constituant la région transmembranaire TM4.

- 21°) Fragment de peptide selon la revendication 16, caractérisé en ce qu'il comprend un fragment de 5 24 amino-acides, correspondant au segment 203-226 de la séquence ID n° 2 et constituant la région transmembranaire TM5.
- 22°) Fragment de peptide selon la revendication 16, caractérisé en ce qu'il comprend un fragment de 10 22 amino-acides, correspondant au segment 293-314 de la séquence ID n° 2 et constituant la région transmembranaire TM6.
- 23°) Fragment de peptide selon la revendication 16, caractérisé en ce qu'il comprend un fragment de 15 26 amino-acides, correspondant au segment 322-347 de la séquence ID n° 2 et constituant la région transmembranaire TM7.
- 24') Vecteur recombinant de clonage et/ou d'expression, caractérisé en ce qu'il comprend une sé20 quence nucléotidique selon l'une quelconque des revendications 1 à 12.
- 25°) Vecteur selon la revendication 24, caractérisé en ce qu'il est constitué par un vecteur recombinant approprié, comprenant en particulier une origine de réplication dans un microorganisme hôte approprié, notamment une bactérie ou une cellule eucaryote, au moins un gène dont l'expression permet la sélection soit des bactéries, soit des cellules eucaryotes ayant reçues ledit vecteur, une séquence régulatrice appropriée, notamment un promoteur permettant l'expression des gènes dans lesdites bactéries ou cellules eucaryotes, et dans lequel est insérée une séquence nucléotidique ou un fragment de séquence selon l'une quelconque des revendications 1 à 12, lequel vecteur est un vecteur d'expression d'un peptide, d'un fragment de peptide ou d'une combinaison de fragments de

peptide ayant une activité de récepteur $\beta 3$ adrénergique bovin.

- 26°) Vecteur selon la revendication 25, caractérisé en ce qu'il est constitué d'un vecteur d'expression pRc/CMV dans lequel est inséré, au niveau du lieur multisite, au moins le fragment codant pour le récepteur β 3-adrénergique bovin, et en ce qu'il a été déposé auprès de la Collection Nationale de Cultures de Microorganismes (CNCM) tenue par l'INSTITUT PASTEUR, en date du 15 avril 1993 sous le n° I-1297.
 - 27') Cellule hôte appropriée, obtenue par transformation génétique, caractérisée en ce qu'elle est transformée par un vecteur d'expression selon l'une quel-conque des revendications 24 à 26.
- 28') Cellule hôte selon la revendication 27, caractérisée en ce qu'elle est constituée par les cellules de la lignée CHO (Chinese Hamster Ovary).
- 29') Cellule hôte selon la revendication 27, caractérisée en ce qu'elle est constituée par une bacté-20 rie, notamment Escherichia coli.
 - 30°) Procédé de sélection et d'identification de substances capables de se comporter comme ligand spécifique vis-à-vis d'un peptide (récepteur β 3-adrénergique bovin) selon l'une quelconque des revendications 15 à 23,

25 lequel procédé comprend :

- la mise en contact de ladite substance avec une cellule hôte préalablement transformée par un vecteur d'expression selon l'une quelconque des revendications 24 à 26, laquelle cellule hôte exprime ledit peptide bovin (récepteur adrénergique β3 bovin), le cas échéant après induction physique ou chimique appropriée, et laquelle mise en contact est réalisée dans des conditions permettant la formation d'une liaison entre l'un au moins des sites spécifiques et ladite substance s'il y a lieu, et
- la détection de la formation éventuelle d'un complexe du type ligand-peptide.

FIGURE 1a

FIGURE 1b

•			•	
	ì		•	
ŀ			ı	
	•			

GADAEAÕECHSNPRCCSFASNMPYALLSSSVSFYLPLLVMLFVYARVFVVAKRÕRHLLRR GADAEAQRCHSNPRCCTFASNMPYALLSSSVSFYLPLLVMLFVYARVFVVATRQLRLLRR GADAEAÕRCHSNPRCCAFASNMPYVLLSSSVSFYLPLLVMLFVYARNFVVATRÕLRLLRG GADAEAQECHSNPRCCSFASNMPYALLSSSVSFYLPLLVMLFVYARNFVVAKRÕRRLLRR

VTASIETLCALAVDRYLAVTNPLRYGTLVTKRRARAAVVLVWIVSAAVSFAPIMSOWW

TM5

VTASIETLCALAVDRYLAVTNPLRYGTLVTKRRARAAVVLVWIVSATVSFAPIMSQWW VTASIETLCALJAVDRYLAVTNPLRYGALVTKRCARJTAVVLVWVVSAAVSFAPIMSQW

VTASIETLCALAVDRYLAVTNPLRYGALVTKRRALAAVVLVWVVSAAVSFAPIMSKWW

BOV

BETA3

HO

BETA3 BETA3

RA Ã

BETA3

BOV

BETA3

HC RA

BE'I'A3

BETA3 BETA3

Q

2.1 FIGURE

ELGRFPPEESPPAPSRSGSPGLAGPCASPAGVPSYGRRPARLLPLREHRALRTLGLIMGT ELGRFPPEESPPAPSRSLAPAPVGTCAPPEGVPACGRRPARLLPLREHRALCTLGLIMGT ELGRFPPEESPRSPSRSPSRATVGTPTASDGVPSCGRRPARLLPLGEHRALRTLGLIMGT	ELGKESPESPPSPSRSPSPATGGTPAAPDGVPPCGRRPARLLPLREHRALRINGLIMGI ***********************************	FTLCWLPFFLANVLRALGGPSUVPGPAFLALNWLGYANSAFNPLIYCRSPDFRSAFRRLL FSLCWLPFFLANVLRALVGPSUVPSGVFIALNWLGYANSAFNPLIYCRSPDFRDAFRRLL	FSLCWLPFFLANVLRALAGPSLVPSGVFIALNWLGYANSAFNPVIYORSPDFRDAFRRLL	CRCRPEEHLAAASPPRAPSGAPTALTSPAGPMQPPELDGASCGLS CRCGRRLPPEPCAAARPALFPSGVPAARSSPAOPRLCORLDGASWGVS	CSYGGRGPEEPRVVTFPASPVASRQNSPLNRF-DGYEGERPFPT	CSYGGRGPEEPRAVTFPASPVEARQSPPLNRF-DGYEGARPFPT
BOV HU RA	_	HU RA		BOV HU	RA	O W
BETA3 BETA3 BETA3	BETA3	BETA3 BETA3	BETA3	BETA3 BETA3	BETA3	BETA3

IGURE 2.2

80 	160 	240 GGCC GGCC 1 240	320
Huß3 épissé (en haut); ADN ß3 bov : cadre de lecture ouvert (en bas) 10 20 30 10 50 60 70 8(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	90 100 110 120 130 140 150 1 	170 180 190 200 210 220 230 2 GCAACCTGGTCATCGTGGCCATCGCCTGGACTCCGAGACCATGACCATGACCATGGTGACTTCGTGGCTGGC	250 260 270 280 290 300 310 3:0 GCAGCCGACCTGGTGATGGGACTCCTGGTGCCGCGGGGGCCACTTGGCGCTGACTGGCCGTTGGGCGC ACAGCCGACCTGGTGGGGCTCCTGGTCGTGCCCCCGGGGGCCACTTGCGCTTGCGCTTGGCGCTTGGGCCTTGGGCCTTGGGCCTTGGGCCTTGGGCCTTGGGCCTTGGGCCTTGGGCCTTGGGCCTTGGGCCTTGGGCCTTGGGCCTTGGGCGTTGGGCCTTGGGCCTTGGGCCTTGGGCCTTGGGCCTTGGGCCTTGGGCCTTGGGCCTTGGGCGTTGGGCCTTGGGCCTTGGGCCTTGGGCCTTGGGCCTTGGGCCTTGGGCCTTGGGCCTTGGGCGTTGGGCGTTGGGCGTTGGGCGTTGGGCGTTGGGCGTTGGGCGTTGGGCGTTGGGCCTTGGGCGTTGGGCCTTGGGCCTTGGGCCTTGGGCGTTGGGGCGTTGGGGCGTTGGGGCGTTGGGGCGTTGGGGGG
ADN Hu83 épissé (en haut); ADN 83 bov : cadre de lecture ouvert (en bas) 10 20 30 40 50 60 3 40 50 60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	140 	220 	300 i IGACTGGCCAC
lecture ou 50 1 ACCTCCCCAC ATTCCCCAC 1 50	130 	210 	290 ACCTTGGCGC ACGTTGGCGC' 290
haut); ADN 83 bov : cadre de le 20 30 40 CGAGAACAGCTCTTGCCCCATGGCCGGAC TGGGAACAGCTCTCTGACCCCGTGGCCAGAT	120 	200 1 	280 GCCGGCGGCC. CCCGGGGGCCC
N 63 bov : 30 1 SCICTCTGACC 30 1	110 	190 	270 1
n haut); AI 20 1 CACGAGAACAC	100 	180 	260
Huß3 épissé (en 10 1 ATGGCTCCGTGGCCTCA ATGGCTCCGTGGCCTCC 10	90 	170 	250 - -
ADN Huß3 ATGGC ATGGC ATGGC	CAGTG •••	GCAAC	GCAG(

FIGURE 3.1

400 	3TGG 400	480 CCTG	CCTG 1 480	560 	560 	640
390 GCCCTGGCC	ccccrcccc	470 SAGCTGTGGT	CAGCCGTGGTCCTV	550 3ACGCCGAGG	3416CCAAGG	630
380 AACCCTGTG	AACCCTGTGC I 380	460 - GCGCCCGGAC	GCGCCCTAGG	540 CTAGGGGCC	.Aicececce 540	620 TGCTGTCCTC TGCTCTCCTC
370 CCAGCATCGA	ccagcarcga 370	450 SACCAAGCGCT	ACCAAACGCC	530 	AA166166C6C 530	59C 600 610 620 630 6
360 hctgtgaccc	STGTGTGACCC	440 SCGCACTGGTC	3CGCGCTGGFPC 440	520 ATCATGAGCCZ	41.CA1GAGCAA 	600
350 IGGACGIGCITC	rgacgrgcrc I 350	430 CTGCGTTACGC	CTGCGCTACGC	510 	510	590
3.40 GGACCTCGG1	rggacctcag1	420 SACCAACCCGG	SACCAACCGG	500 CCGCGGTGTC	500 	580
330 340 360 370 380 390 4	CACCGGTTGCGAGCTGTGTGTGTGTGTGTGTGTGTGACCGCCAGCATCGAAACCCTGTGCGCCGTGGGTGG	410 420 430 440 450 460 470 4 	accectaccreaceaacececreacerracecreacerracereaacececerraceagecerracerra	490 500 510 520 530 540 550 5 	GTGTGGGTGTCGCCCGCGGTGTCGTTTGCGCCCAAATGGTGGCGCATCGGGCCCGATGCCGAGGCGCAAGGCGCAAATGGTGGCGCAAATGGTGGCGCAAATGGTGGCGCAAATGGTGGCGCAAATGGTGGCGCAAATGGTGGCGCAAATGGTGGCGCAAATGGTGGCGCAAATGGTGGCGCAAATGGTGGGCGCAAATGGTGGCGCAAATGGTGGCGCAAATGGTGGCGCAAATGGTGGCGCAAATGGTGGCAATGGTGGCAAATGGTGGCGCAAATGGTGGCAAATGGTGGCAATGGTGGCAAATGGTGGCAAATGCAAATGGTGAAATGGTGGCAAATGGTGAAATGGTGAAATGGTGAAATGGTGAAATGGTGAAATGGTGAAATGGTGAAATGGTGAAATGGTGAAATGGTGAAATGGTGAAATGGTGAAATGGTGAAATGGTGAAATGGTGAAATGAAATGAAATGAAATGAAAATGAAAATGAAAATGAAAATGAAAATGAAAAATGAAAAATGAAAATGAAAATGAAAAATGAAAAATGAAAAATGAAAAAA	570 580 59C 600 610 620 630 6 GCGCTGCCAACCCGCGCTGCTTCGCCTTCGCCTCCAACATGCCCTACGTGCTGCTCCTCCTCCTCCTTCTTCTTCTTCTTCTTCTT
CACTIGG	CACCGC	ACCGC	ACCGC	GTGTG	Grara	GCGCTGC

FIGURE 3.2

FIGURE 3.3

	086	066	1000	1010	1020	1030	1040
1050	1060	1070	1080	1090	1100	1110	1120
SACTTTCCK SACTTTCCK 1050	CAGCGCCTTC SAGCGCCTTC 1060	ccaccarctr	ccaccarctretaraccacracaaa ccaccacctacratacactaccac	60000000000000000000000000000000000000	SERVICE CONTROL CONTRO	GAGCCCTGCG GCCGCTGCCT	
1130 - - 	1140 TCCCCFCGG	1150 GCGFFCCTGC	1160 - -	1170 	1130 1140 1150 1160 1170 1180 1190 1 	1190 rttgccaacg	1200
ccccrco	GCGCCCCCA 1 1140	cggcccrgac 1150	CAGCCCCCT	GGCCCCATGC	GCCCCGAGCCCCTCCGGCCCCTGACCAGCCCCGCTGGCCCCCATGCAGCCCCCAGA-)	-GCTC 1190
1210	1220						
TCTTGGGGA(TCCTGCGGA(dacgggcrrcrrggggagrrrcrrag						

9/10

FIGURE 4

FIGURE 5

A. CLASSIFICATION OF SUBJECT MATTER IPC 5 C07K15/00 C12N15/12 C12N5/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 5 CO7K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

	ENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Category *	CISTOR OF COCHMENT, AND INDICATE AND CASE OF THE PROPERTY OF T	
X	WO,A,92 12246 (CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE) 23 July 1992 cited in the application see the whole document	1-30
X	FR,A,2 642 075 (INSTITUT PASTEUR) 27 July 1990 see the whole document & WO,A,90 08775 cited in the application	1-30
X	EMBL DATA LIBRARY Acc.Nr.: X67214, 18 janviers 1993, B.Stoffel et al., "Bovine beta3-adrenergic receptor, partial genomic sequence"	4,5

Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
*Special categories of cited documents: A document defining the general state of the art which is not considered to be of particular relevance E earlier document but published on or after the international filing date L document which may throw doubts on priority claim(0) or which is cited to establish the publication date of another citation or other special reason (as specified) O document referring to an oral disclosure, use, exhibition or other means P document published prior to the international filing date but later than the priority date claimed	The document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention. 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone. 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such document is combined with one or more other such documents, such combination being obvious to a person shilled in the art. '&' document member of the same patent family
Date of the actual completion of the international search 26 July 1994	Date of mailing of the international search report 98-98-1994
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiann 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tz. 31 651 epo nl, Fax (+31-70) 340-3016	De Kok, A

International application No.

PCT/FR 94/00447

tegory°	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
A	EP,A,O 351 921 (MERCK & CO. INC) 24 January 1990 see the whole document	1-30
	-,-,-,-	

IN RNATIONAL SEARCH REPORT

securities on patent family members

PCT/FR 94/00447

Patent document cited in search report	Publication date		family ber(s)	Publication date
₩O-A-9212246	23-07-92	FR-A- EP-A- JP-T-	2671559 0567577 6504915	17-07-92 03-11-93 09-06-94
FR-A-2642075	27-07-90	DE-D- DE-T- EP-A- WO-A- JP-T- US-A-	69005620 69005620 0455682 9008775 4504354 5288607	10-02-94 21-07-94 13-11-91 09-08-90 06-08-92 22-02-94
₩O-A-9008775	09-08-90	FR-A- DE-D- DE-T- EP-A- JP-T- US-A-	2642075 69005620 69005620 0455682 4504354 5288607	27-07-90 10-02-94 21-07-94 13-11-91 06-08-92 22-02-94
EP-A-0351921	24-01-90	JP-A-	2084121	26-03-90

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 5 CO7K15/00 C12N15/12 C12N5/10

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)

CIB 5 CO7K

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relevent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et zi cela est réalisable, termes de recherche utilises)

X WO,A,92 12246 (CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE) 23 Juillet 1992 cité dans la demande voir le document en entier X FR,A,2 642 075 (INSTITUT PASTEUR) 27 Juillet 1990 voir le document en entier & WO,A,90 08775 cité dans la demande X EMBL DATA LIBRARY Acc.Nr.: X67214, 18 janviers 1993, B.Stoffel et al., "Bovine beta3-adrenergic receptor, partial genomic sequence".	Categorie *	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications vistes
Juillet 1990 voir le document en entier & WO,A,90 08775 cité dans la demande X EMBL DATA LIBRARY Acc.Nr.: X67214, 18 janviers 1993, B.Stoffel et al., "Bovine beta3-adrenergic receptor, partial genomic sequence".	X	RECHERCHE SCIENTIFIQUE) 23 Juillet 1992 cité dans la demande	1-30
Acc.Nr.: X67214, 18 janviers 1993, B.Stoffel et al., "Bovine beta3-adrenergic receptor, partial genomic sequence".	X	Juillet 1990 voir le document en entier & HO,A,90 08775	1-30
	X	Acc.Nr.: X67214, 18 janviers 1993, B.Stoffel et al., "Bovine beta3-adrenergic receptor, partial genomic sequence".	4,5

* Catégories spéciales de documents cités: A' document définissant l'état général de la technique, non considéré comme particulièrement pertinent	T' document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenement pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
ou apres cette date 'L' document pouvant jeter un doute sur une revendication de priorite ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) 'O' document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens	X' document particulièrement pertinent; l'invention revendiquée ne peut être considerée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré notement. Y' document particulièrement pertinent, l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du mêtier. &' document qui fait partie de la même famille de brevets
Date à laquelle la recherche internationale a été effectivement achevée	Date d'expédition du présent rapport de recherche internationale
26 Juillet 1994	1 8 -08- 1994
Nom et adresse postole de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentiann 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016	De Kok, A

regone .	OCUMENTS CONSIDERES COMME PERTINENTS [dentification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendscations visces
	EP,A,O 351 921 (MERCK & CO. INC.) 24 Janvier 1990 voir le document en entier	1-30
	#5000	

RAPPORT DE ECHERCHE INTERNATIONALE

Demar / Epternationals No PCT/FR 94/00447

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)		Date de publication
₩0-A-9212246	23-07-92	FR-A- EP-A- JP-T-	2671559 0567577 6504915	17-07-92 03-11-93 09-06-94
FR-A-2642075	27-07-90	DE-D- DE-T- EP-A- ₩O-A- JP-T- US-A-	69005620 69005620 0455682 9008775 4504354 5288607	10-02-94 21-07-94 13-11-91 09-08-90 06-08-92 22-02-94
₩O-A-9008775	09-08-90	FR-A- DE-D- DE-T- EP-A- JP-T- US-A-	2642075 69005620 69005620 0455682 4504354 5288607	27-07-90 10-02-94 21-07-94 13-11-91 06-08-92 22-02-94
EP-A-0351921	24-01-90	JP-A-	2084121	26-03-90

. •