ПРИКЛАД

обчислення пріоритетів альтернатив за матрицею парних порівнянь

Задано матрицю А парних порівнянь альтернатив а1, а2, а3:

Необхідно визначити пріоритети альтернатив

1. Встановлення ступеня узгодженості МПП А

Для обчислення пріоритетів альтернатив за матрицею парних порівнянь А необхідно встановити ступінь узгодженості матриці. Для цього обчислимо індекс узгодженості:

$$CI = (\lambda_{max} - k)/(k-1), \tag{1}$$

де λ_{max} — максимальне характеристичне число (власне значення) матриці A, k — кількість альтернатив.

Обчислити максимальне характеристичне число матриці А можна, наприклад, за допомогою метода простої векторної ітерації.

Для цього необхідно побудувати векторну послідовність:

$$x^{(m+1)} = A x^{(m)} = A^{m+1} x^{(0)},$$
 (2)

де $\mathbf{x}^{(0)}$ — заданий. Тоді максимальне характеристичне число λ_{max} визначається так:

$$\lambda_{\max} = \lim_{m \to \infty} \frac{x_i^{(m+1)}}{x_i^{(m)}} \tag{3}$$

Отже, задамо $x^{(0)} = (1, 1, 1)^T$ і побудуємо векторну послідовність (2):

X ⁽⁰⁾	$x^{(1)} = Ax^{(0)}$	$x^{(2)} = Ax^{(1)}$	$x^{(3)} = Ax^{(2)}$	x ⁽⁴⁾ =Ax ⁽³⁾	x ⁽⁵⁾ =Ax ⁽⁴⁾	$x^{(6)} = Ax^{(5)}$	$x^{(7)} = Ax^{(6)}$	$x^{(8)} = Ax^{(7)}$	x ⁽⁹⁾ =Ax ⁽⁸⁾
1	4,5	12,5	38	116,25	355	1084	3310,125	10107,88	30865,63
1	1,666667	5,166667	16	48,83333	149,0833	455,25	1390,167	4245,042	12962,75
1	6	20	60,5	184,5	563,5	1720,75	5254,5	16045,25	48996,13

Побудуємо послідовність $\frac{x_i^{(m+1)}}{x_i^{(m)}}$ наприклад, для i=1:

m	0	1	2	3	4	5	6	7	8
$\frac{\mathcal{X}_1^{(m+1)}}{\mathcal{X}_1^{(m)}}$	4,5/1=4,5	12,5/4,5= 2,777778	38/12,5= 3,04	3,059211	3,053763	3,053521	3,053621	3,053623	3,053622

Отже, λ_{max} = 3,0536. Тоді індекс узгодженості (1) дорівнює:

CI = (3,0536-3)/(3-1) = 0,0268.

Оскільки CI<0,1, можна зробити висновок, що ступінь неузгодженості матриці A є прийнятною і її можна використовувати для визначення вектора ваг альтернатив.

2. Обчислення пріоритетів альтернатив як середніх геометричних рядків МПП

	$v_i = \sqrt[k]{\prod_{j=1}^k a_{ij}}$	$\omega_i = v_i / \sum_{j=1}^k v_j$		
<i>i</i> =1	1,144714	0,332516		
i=2	0,48075	0,139648		
i=3	1,817121	0,527836		

Отже,
$$W = [\omega_1, \omega_2, \omega_3]^T = [0,33; 0,14; 0,53]^T$$

3. Обчислення пріоритетів альтернатив методом степеня

Побудуємо послідовність матриць $A, A^2, A^3, ..., A^r, ...$

Для кожної матриці послідовності обчислимо

$$\omega_{i}^{(r)} = \sum_{j=1}^{k} a_{ij} / \sum_{i=1}^{k} \sum_{j=1}^{k} a_{ij}$$

для $\forall i = (1,...,3)$.

Тоді
$$\omega_i = \omega_i^{(r^*)} \ \forall i = (1,...,3),$$

де |
$$\mathcal{O}_i^{(\mathsf{r}^*)}$$
- $\mathcal{O}_i^{(\mathsf{r}^*-1)}$ |< $\mathcal{E} \ \forall i$ =(1,.., k)

$$r^* = \operatorname{arg\,min} \{ \varepsilon - | \omega_i^{(r)} - \omega_i^{(r-1)} | \}$$

r

Отже, послідовність матриць A, A^2, A^3 :

	a1	a2	а3
a1	1	3	1/2
a2	1/3	1	1/3
а3	2	3	1

	аі	aZ	as
a1	3,000	7,500	2,000
a2	1,333	3,000	0,833
а3	5,000	12,000	3,000

	a1	a2	а3
a1	9,5	22,5	6
a2	4	9,5	2,5
а3	15	36	9,5

	r=1		r=2		r=3	
сума і-го			сума і-го		сума і-го	
	рядка		рядка		рядка	
	матр.		матр.		матр.	
	A ^r	wi	A ^r	wi	A ^r	wi
i=1	4,5000	0,3699	12,5000	0,3319	38,0000	0,3319
i=2	1,6667	0,1370	5,1667	0,1372	16,0000	0,1397
i=3	6,0000	0,4932	20,0000	0,5310	60,5000	0,5284

Оберемо задану точність ϵ =0,01

r=2:

$$|w_1^{(2)}-w_1^{(1)}|=|0,3319-0,3699|=0,038>\epsilon,$$

отже збільшуємо r=3:

$$|w_1^{(3)} - w_1^{(2)}| = 0,0000 < \epsilon$$

$$|w_2^{(3)}-w_2^{(2)}|=0,0026<\epsilon$$

$$|w_3^{(3)}-w_3^{(2)}|=0,0026<\epsilon$$

Отже, пріоритети визначаються так: $w_i = w_i^{(3)}$

Тобто

	wi
i=1	0,3319
i=2	0,1397
i=3	0,5284