2^a Avaliação de Lógica Matemática (LMA) - Joinville, 18 de maio de 2015

"É capaz quem pensa que é capaz."

Buda

Acadêmico(a): ______ Turma: _____

- 1. Verificar a validade dos argumentos (dedução natural) que se seguem:
 - (a) $\{p \to q, \sim r \to (s \to t), r \lor (p \lor s), \sim r\} \vdash q \lor t$
 - (b) $\{p \to q, q \to r, r \to s, \sim s, p \lor t\} \vdash t$
 - (c) $\{p \to q, q \to r, p \lor s, s \to t, \sim t\} \vdash r$
- 2. Utilizando o método de **demonstração condicional**, demonstre a validade das consequências abaixo:
 - (a) $\{p \land q \rightarrow \sim r, r \lor (s \land t), p \leftrightarrow q\} \vdash p \rightarrow s$
 - (b) $\{p \to q, q \leftrightarrow s, t \lor (r \land \sim s)\} \vdash p \to t$
 - (c) $\{q \to p, \ t \lor s, \ q \lor \sim s\} \vdash \sim (p \lor r) \to t$
- 3. Demonstrar que o conjunto das proposições abaixo geram uma contradição (**demonstração por absurdo ou indireta**), (isto é, derivam uma inconsistência do tipo: $(\Box \Leftrightarrow (\sim x \land x))$
 - (a) $\{(p \to q) \land r, \ q \lor s \to t \land u, \ v \to s, \ v \lor p\} \vdash t \lor x$
 - (b) $\{ \sim r \lor \sim s, \ q \to s \vdash r \to \sim q \}$
 - (c) $\{ \sim (p \rightarrow \sim q) \rightarrow ((r \leftrightarrow s) \lor t), p, q, \sim t \} \vdash r \rightarrow s$

Equivalências Notáveis:

Idempotência (ID): $P \Leftrightarrow P \land P \text{ ou } P \Leftrightarrow P \lor P$

Comutação (COM): $P \land Q \Leftrightarrow Q \land P$ ou $P \lor Q \Leftrightarrow Q \lor P$

Associação (ASSOC): $P \land (Q \land R) \Leftrightarrow (P \land Q) \land R \text{ ou } P \lor (Q \lor R) \Leftrightarrow (P \lor Q) \lor R$

Distribuição (DIST): $P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R)$ ou $P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$

Dupla Negação (DN): $P \Leftrightarrow \sim \sim P$

De Morgan (DM): $\sim (P \land Q) \Leftrightarrow \sim P \lor \sim Q \text{ ou } \sim (P \lor Q) \Leftrightarrow \sim P \land \sim Q$

Equivalência da Condicional (COND): $P \to Q \Leftrightarrow \sim P \lor Q$

Bicondicional (BICOND): $P \leftrightarrow Q \Leftrightarrow (P \rightarrow Q) \land (Q \rightarrow P)$

Contraposição (CP): $P \rightarrow Q \Leftrightarrow \sim Q \rightarrow \sim P$

Exportação-Importação (EI): $P \land Q \rightarrow R \Leftrightarrow P \rightarrow (Q \rightarrow R)$

Contradição: $P \land \sim P \Leftrightarrow \square$ Tautologia: $P \lor \sim P \Leftrightarrow \blacksquare$

Regras Inferências Válidas (Teoremas):

Adição (AD): $P \vdash P \lor Q$ ou $P \vdash Q \lor P$

Simplificação (SIMP): $P \wedge Q \vdash P$ ou $P \wedge Q \vdash Q$

Conjunção (CONJ) $P, Q \vdash P \land Q \text{ ou } P, Q \vdash Q \land P$

Absorção (ABS): $P \rightarrow Q \vdash P \rightarrow (P \land Q)$

Modus Ponens (MP): $P \rightarrow Q, P \vdash Q$

Modus Tollens (MT): $P \to Q, \sim Q \vdash \sim P$

Silogismo Disjuntivo (SD): $P \vee Q, \sim P \vdash Q \text{ ou } P \vee Q, \sim Q \vdash P$

Silogismo Hipotético (SH): $P \rightarrow Q, Q \rightarrow R \vdash P \rightarrow R$

Dilema Construtivo (DC): $P \rightarrow Q, R \rightarrow S, P \lor R \vdash Q \lor S$

Dilema Destrutivo (DD): $P \to Q, R \to S, \sim Q \lor \sim S \vdash \sim P \lor \sim R$

Observações:

- 1. Qualquer dúvida, desenvolva a questão e deixe tudo explicado, detalhadamente, que avaliaremos o seu conhecimentos sobre o assunto;
- 2. Clareza e legibilidade;