

제4차 산업혁명과 소프트파워이슈리포트 2018-제21호

특허로 보는 아마존(Amazon) 드론 물류 혁명

김유중 수석(yjkim@nipa.kr), 지능정보·융합기획팀 ICT융합신산업본부 2018. 5. 21.

목 차

- I. 아마존, 드론으로 물류 패러다임 바꾼다
- Ⅱ. 드론 관련 아마존 주요 특허
 - 물류 저장 관련 주요 특허
 - 비행 및 안전 관련 주요 특허
 - 충전 및 유지보수 관련 주요 특허
 - 물품 고객 전달 관련 주요 특허

Ⅲ. 시사점

I. 아마존, 드론으로 물류 패러다임 바꾼다

□ '아마존 효과(Amazon effect)', '아마존 되다(To be Amazoned)'라는 신조어가 생길만큼 아마존은 세계에서 가장 파괴적인 기업으로 성장 중

< Amazon effect >

아마존의 사업 확장으로 업계에 파급되는 효과를 이르는 말로, 아마존이 해당 분야에 진출한다는 소식만 들려도 해당 산업을 주도하는 기업들의 주가가 추락하고 투자자들이 패닉에 빠지는 현상

- 블룸버그 통신은 지난 3월, '아마존은 현대 기업의 모든 규칙을 깨고 있다. 거의 모든 산업의 대기업들이 한 회사에 의해 전례 없는 위협을 받고 있다'고 보도
 - * 최근 완구유통업체 토이저러스 매출 급락하였으며 50억 달러 빚을 감당 못하고 올해 3월 청산 계획 발표
- 아마존은 美 온라인 소비 지출의 40%를 차지하고 있으며 도서, 의류, 부동산 중개, 티켓 발권업, 은행업 등 전통산업은 물론 최근 주목받는 클라우드 컴퓨팅(AWS), 인공지능 플랫폼(Alexa) 등 신산업 분야에서도 시장을 선도하고 있음
- * 아마존의 글로벌 시장 점유율 : 클라우드 44.1%('16 기준), 음성인식 AI 스피커 69%('17 기준)
- ** 아마존 시가총액은 7,680억 달러(약823조 3,000억원, '18. 3.21.기준)로 세계 상장기업 중 2위

<그림 1> Amazon 주요 사업 영역

- * (출처) 아마존 닷컴의 성공신화, 최재홍
- 주목할 점은 1994년 아마존이 자본금 1만 달러로 **창업한 이래 단 한 번도 배당을** 하지 않고 2017년에만 당기 순이익의 7배가 넘는 226억 달러(24.1조원)를 연구개발(R&D)에 투자하는 등 미래에 끊임없이 투자하고 있는 것
- * 주요 IT기업 R&D 투자현황('17년 기준, 억달러): 알파벳 166, 인텔 131, MS 123, 페이스북 78

- □ 물류·유통 분야에서도 아마존은 혁신적인 실험을 지속적으로 추진하고 있으며 그 중에서도 드론을 활용한 '프라임 에어(Prime Air)'는 상용화를 눈앞에 두고 있어 물류·유통의 기존 패러다임을 파괴할 것으로 전망
 - 2016년 12월, 아마존은 '프라임 에어'를 발표한지 3년 만에 영국 캠브리지에 거주하는 고객에게 드론으로 TV셋톱박스, 팝콘 한 봉지를 배송하는데 성공
 - * 아마존은 드론으로 고객에게 배송을 성공적으로 마친 유일한 기업

<표 1> 아마존 프라임 에어 주요 일지

구 분	주요 내용
2012년	영국 캠브리지大 연구개발센터 설립, '아마존 프라임 에어' 프로젝트 진행
2013년 12월	제프 베조스, '아마존 프라임 에어' 발표
 2016년 7월	영국 정부 허가를 받아 드론 배달 실험 비행 시작
2016년 12월	영국 캠브리지에 거주하는 고객을 대상으로 프라임 에어 배송 서비스 성공
2017년 3월	미국 캘리포니아에서 배송 시연 성공

- * (출처) 인터넷 언론기사 정리
- 아마존은 미국 내 50여 개의 물류창고를 기준으로 **반경 25km 이내에 있는 장소로** 2.5kg 미만의 물품을 드론으로 30분 안에 배송 가능
- * 아마존 매출 중 2.26kg 이하 물품이 86%를 차지하고 있으며, 드론배송료는 1달러로 예상
- ** 아마존 배송용 드론은 수직으로 이륙해 122m 높이에서 시속 24km으로 비행하며 장애물을 인지하고 회피 가능
- 美 FAA(미국연방항공국)와 NASA는 2019년까지 드론 항공 통제시스템의 시험을 와료할 계획
- 드론배송은 초기 투입비용이 많지만 장기적으로 배송에 들어가는 비용이 적어 전자상거래업체 입장에서는 매력적인 물류·유통 수단이 될 것으로 기대

<그림 2> 아마존 배송용 드론 '프라임 에어' <그림 3> 아마존 미국 물류 창고 위치

- □ 아마존은 스마트폰이 디바이스뿐만 아니라 모바일 생태계를 구축해 다양한 비즈니스를 창출한 것처럼, 4차 산업혁명 시대에서 드론이 혁신적인 서비스와 비즈니스 모델의 중심이 될 것으로 예상하고 드론과 관련된 특허를 집중적 으로 확보하고 있는 상황
 - 드론 전문 제조사 DJI, 패럿은 '09~'16년 동안 각각 187개, 119개의 드론 관련 특허 취득(미국, EU, 일본, 한국 특허 기준)
 - 반면 **아마존은 40개 정도에 불과**하지만 특허의 대부분이 **온라인 판매의 효율성을** 높이기 위한 물류창고관리, 운항, 충전, 배송 등에 초점

	· .		·			/ / -		,	
구 분	2009	2010	2011	2012	2013	2014	2015	2016	합계
DJI	_	5	10	_	19	69	65	19	187
패럿	15	14	23	9	14	8	24	12	119
아마존	_	_	_	-	1	20	16	3	40
구글	_	_	1	4	7	11	7	5	35

<표 2> 주요 기업의 드론 특허 수 (미국, EU, 일본, 한국 특허 기준)

- * (출처) 무인항공기(드론) 특허분석보고서, 한국전자통신산업진흥회
- 美 특허청에 등록된 아마존의 드론 관련 특허 점유율은 5% 수준으로 허니웰, IBM, DJI, 보잉, 아마존 順
- 드론 관련 특허 수는 기업규모에 비해 적지만 **물류·택배에 관련된 권리를** 집중적으로 확보 중

<그림 4> 美 특허청 드론 특허권 보유 기업 점유율 현황

* (출처) www.natlawreview.com/article/survey-drone-patent-activity

Ⅱ. 드론 관련 아마존 주요 특허

□ 아마존은 드론을 활용하여 물류저장 및 관리, 비행 및 안전관리, 충전 및 유지 보수, 물품 배송 등과 관련된 혁신적인 특허를 출원하고 있어 향후 드론 배송이 실현될 경우 가장 강력한 배송 네트워크를 구축할 것으로 예상

<표 3> 물류·택배 분야 아마존 주요 특허 현황

구 분	주요 특허
물류 저장	 Multi-Level Fulfillment Center for Unmanned Aerial Vehicles Airborne fulfillment center utilizing unmanned aerial vehicles for item delivery Aquatic storage facilities
비행 및 안전	 Commercial and General Aircraft Avoidance using Light Pattern Detection Countermeasures for threats to an uncrewed autonomous vehicle Directed fragmentation for unmanned airborne vehicles Adjustable landing gear assembly for unmanned aerial vehicles In-flight reconfigurable hybrid unmanned aerial vehicle Collective unmanned aerial vehicle configurations
충전 및 유지보수	 Ground-Based Mobile Maintenance Facilities for Unmanned Aerial Vehicles Multi-use unmanned aerial vehicle docking station Deployment and adjustment of airborne unmanned aerial vehicles
물품 전달	 Human interaction with unmanned aerial vehicles Human interaction with unmanned aerial vehicles Aerial package delivery system Airlift package protection airbag

<그림 5> 물류·택배 분야 아마존 주요 특허 Map

1 물류저장 관련 주요 특허

□ 무인항공기를 위한 다층 물류센터

명칭	Multi-Level Fulfillment Center for Unmanned Aerial Vehicles				
출원번호 (출원일자)	US14975618 (2015.12.18.)	등록번호 (등록일자)	US9777502 (2017.10.03.)		
	400		308 302 306 304 304 20 20 304		

- 뉴욕, LA, 시카고 등 인구가 밀집된 **대도시 중심에 드론 이착륙이 가능한 9층** 높이의 다층 물류센터
 - 기존 물류센터는 대규모의 단층 구조로 인구가 밀집된 도심 가까이에 위치하지 못해 신속한 배송이 어려운 단점
 - 다층 물류센터는 **원통형 타워, 타원형 타워, 나선형 타워, 별표형 타워 등 디자인은** 여러 형태이지만 내부구조는 동일
 - 물류센터의 층마다 뚫린 구멍은 드론이 드나드는 통로로 사용되며, 수십 개의 드론이 착륙하여 신속하게 물품을 싣고 이륙할 수 있도록 설계
 - 타워 안에는 물품 이동 로봇, 드론 운반 로봇, 엘리베이터 로봇 등이 각각 담당 업무를 수행
 - 큰 부피의 물품은 낮은 층에서 처리하고 화물차로 운반하는 기존 지상운송 수단도 지원
- 도시건물 높이 규제뿐만 아니라 시야선 규제* 등의 장애물 극복이 과제
 - * 드론이 사용자의 시야에서 벗어나면 안된다는 규제

□ 공중 물류센터

명칭	Airborne fulfillment cente	er utilizing unmanned aerial v	vehicles for item delivery
출원번호 (출원일자)	US14580046 (2014.12.22.)	등록번호 (등록일자)	US9305280 (2016.04.05.)
512 504		312	350 350 350 350 350

- 주문 급증이 예상되는 물품을 가득 실은 비행선을 특정 지역의 상공에 띄워놓은 뒤 지상의 관제 시스템과 연결해 상시 배송 대기체제를 갖춰놓고 주문이 접수되면 드론을 통해 신속하게 목적지까지 배송
 - * 아마존과 물류경쟁을 벌이고 있는 월마트도 '17년 초에 자율주행이 가능한 공중물류창고 특허 출원 신청
 - 상공에 떠 있기 때문에 **장소에 제한이 없고 날씨와 장소, 물건에 따른 예상 수요에** 유연하게 대응 가능
 - 비행선은 유인 또는 무인으로 운영되며, 특정 물품에 대한 기대수요가 높은 지역 4만 5천피트(약 13km) 상공을 순회
 - * 민간 항공기들은 10km 내의 고도비행으로 비행선과 충돌은 없음
 - 아마존은 비행 물류창고를 사람이 붐비는 지역 근처 상공에 띄웠다가 주문이 들어오면 바로 드론으로 물품을 배달할 계획
 - * 예) 축제나 대규모 스포츠 경기 등 사람이 많이 모여드는 행사가 열리면 비행 물류창고를 근처 상공에 띄어 관객들이 필요로 하는 스포츠 기념품이나 음식(온도를 유지해야 하는 제품) 등을 배달
- 특허에는 물류창고 외에도 비행 셔틀이 묘사되어 있으며, 비행 셔틀을 이용해 지상에서 비행 물류창고까지 물품이나 드론, 사람 이동시킴
 - 재고 담당 상황실과 컴퓨터 원격 제어 등을 이용해 지상과 상공에서 비행 물류창고와 비행 셔틀을 관리
- 배송 이외에도 비행선이 경기장 근처로 날아와 오디오 광고나 아웃도어 디스플레이 광고 혹은 에어쇼 등의 용도로 활용 가능

□ 수중 물류창고

명칭	,	Aquatic storage facilities	3
출원번호	US15483709	등록번호	US9758302
(출원일자)	(2017.04.10.)	(등록일자)	(2017.09.12.)
942 952 d ₁ 960-A h ₁ 941	940 940 944 954 960-B 960-1		

- 특수 탱크나 호수와 같은 물속에 물품을 수납하는 기술
 - ① 방수포장*된 물품을 드론이 공중에서 낙하산으로 물 속**에 떨어뜨리면 밀도에 따라 특정 수위***에 위치
 - * 포장패키지에는 공기를 발사해 주는 압축 공기 탱크, 무게 중심을 잡아주는 밸러스트, 압축공기가 발사됐을 때 풍선처럼 부풀어 오르는 주머니도 함께 장착
 - ** 물이 아니라 등유나 알코올 등 다른 물질 안에 물품 보관 가능
 - *** 제품 부력을 이용해 물속에서 제품이 다양한 깊이에 줄을 맞춰 떠 있도록 조절 가능
 - ② 이후 배달 물품을 선택할 시간이 되면 일련의 음향이 물을 타고 전송
 - ③ 물품을 선택하면 음향이 장치를 활성화하고 물품에 부착된 압축 공기 카트리지가 공기를 뿜어내 풍선을 팽창시켜 물품을 수면으로 상승
 - * 지정된 시간에 물품이 수면 위로 떠오르도록 프로그래밍도 가능
 - ④ 자연적인 혹은 인위적인 물의 흐름을 만들어 물품을 수면 중앙에서 가장자리로 이동
 - ⑤ 검사 후 물품 출하
- 수요 변동이 심한 물품 보관 및 회수가 용이하며, 물품 수요에 따라 위치를 계속 변경하지 않아도 되는 장점
 - 지상 물류센터 시설의 대규모화로 인한 출하 소요시간 증가, 배달 지연에 따른 비용 발생 등을 해결 가능

2 비행 및 안전 관련 주요 특허

□ 빛을 감지하여 항공기와 충돌방지

명칭	Commercial and Ger Detection	neral Aircraft Avoidanc	e using Light Pattern
출원번호	USUS14569125	등록번호	USUS9761147
(출원일자)	(2014.12.12.)	(등록일자)	(2017.09.12.)
120	106(2)	616(4) 626 628 616(5)	618 614 630 630 622 620

- 드론이 비행 중 다른 항공기를 감지해 충돌을 회피하는 기술
 - ① **각종 항공기 정보를 DB로 저장**하여 비행관제시스템 구축
 - * 아마존은 2017년 상반기에 배송 드론이 건물, 나무, 다른 드론과 충돌하지 않도록 관제시스템을 연구하는 연구개발팀(머신러닝·인공지능·항공분야 전문가 등 12명으로 구성)을 발족
 - ② 비행관제시스템의 도움을 받는 드론은 각종 센서*를 탑재하여 비행 중 항로에 있는 다른 항공기를 감지
 - * 빛, 소리, 전자기파, 적외선, 다중스펙트럼 등 다양한 신호 인식 가능
 - ③ 동시에 다른 드론이 수집한 정보도 네트워크를 통해 전달받아 정보를 보완
 - ④ 드론이 감지한 정보는 비행관제시스템으로 실시간 전송하여 기존 DB와 비교· 분석을 한 후 항공기 유형을 식별
 - ⑤ 항공기 유형을 식별하면 속도, 경로, 운행 속성 등을 고려하여 드론이 항공기와 충돌하지 않고 비행할 수 있는 최적의 비행 경로를 설정
- 무인항공기 충돌탐지 및 회피 기술은 항공우주분야 10대 유망기술 중 하나로 미국은 최근 10년간 123건의 충돌회피 관련 특허가 출원
- * 드론과 여객기가 충돌하는 이른바 '드론 스트라이크'는 '16년 4월, 영국 히드로 공항에서 드론으로 추정되는 물체가 A320여객기와 충돌하였으며, '17년 10월에는 캐나다 퀘백시티 인근 공항에서 경비행기와 드론이 충돌하는 사고가 발생하였음

□ 해킹, 화살 등의 공격으로부터 드론 보호 기술

- 해킹에서부터 번개, 활과 화살 등에 이르기까지 잠재적인 공중 위협에 대한 대응 기술
- ① 해킹에 의한 위협 대응 기술
 - 공격자가 해킹을 시도할 경우 드론에 내장된 'compromise system'*이 데이터 소스를 체크하는 메시 네트워크를 제공하여 드론이 따라야 하는 측정값을 확인
 - * 누군가가 통신시스템을 방해하려고 시도하더라도 드론의 경로를 계속 유지할 수 있도록 설계
 - 데이터가 불일치할 경우 드론은 사용 가능한 모든 소스로 부터 의견을 수집 후 대다수의 의견으로 비행을 하는 방식
 - 만약 드론의 방향이 완전히 어긋날 경우에는 안전하게 착륙하고 그 위치를 드론 조종자에게 전송하도록 프로그래밍
- ② 화살 등에 의한 위협 대응 기술
 - 공격자가 화살을 날린 경우 드론은 이를 감지해 'fail-safe module'을 이용해 드론을 하강
 - 경우에 따라 드론이 회피 행동을 취해 안전한 착륙 지점으로 이동
- 번개나 사격 등으로 드론이 혼란을 겪을 수 있는 상황을 가정해 하늘에 있는 **태양의 위치에 따라 무인항공기의 방향을 제어하는 일련의 센서 기법도 탑재**

□ 비상시 드론 자동 파괴 기술

명칭	Directed fragmentation for unmanned airborne vehicles					
출원번호 (출원일자)	US15179773 (2016.06.10.)	등록번호 (등록일자)	US9828097 (2017.11.28.)			
304 303 302 302	302 263 100 311 310 310	100 100 100 100 100 100 100 100 100 100	Adores Carter FIG. 1			

- 드론 비행 중에 배터리 폭발, 프로펠러 고장 등 비상 상황이 발생하는 경우 드론을 자동으로 파괴하는 기술
- ① 드론이 비행경로, 비행조건 및 땅의 지형에 대한 정보를 지속적으로 업데이트
- ② 드론 비행 중에 비상 상황을 인지하는 경우, 자동 파괴 시퀀스에 의해 이러한 각 부품들의 분리 시간 및 낙하 선호 위치가 결정
 - * 선호하는 낙하 위치를 찾는 것과 함께 드론이 주거 및 상업 지역, 도로, 학교 및 경기장을 포함 지역을 식별하고 피할 수 있도록 설계
- ③ 자동 파괴 시퀀스가 실행되면 배송 물품은 낙하시 충격을 최소화하면서 파손되지 않도록 나무 위에 낙하
 - * 해체는 배송 물품 \rightarrow 드론 컴포넌트 \rightarrow 셸(shell) 또는 하우징(housing) \rightarrow 로터(rotor) 시스템 순으로 투하
- ④ 드론의 각 부품들은 지상의 안전을 보장하도록 맨땅이나 연못 위로 떨어지게 분리 낙하
 - * 드론이 여러 조각으로 분해되면 사람과 부딪히더라도 치명상을 줄일 수 있음. 무게 1Kg 드론이 지상 150m에서 떨어지면 중량 2t의 충격 발생
- 드론 부품을 투하하기에는 강, 삼림지대, 평야지대 등이 적합하기 때문에 주거 및 상업 지역, 도로, 학교, 경기장 등이 위치한 도시 환경에는 적합한 기술은 아닌 것으로 전문가들은 평가

□ 집단 무인 공중 비행물

명칭	Collective unmanned aerial vehicle configurations				
출원번호 (출원일자)	US14626376 (2015.02.19.)	등록번호 (등록일자)	US2016037810 (2016.12.29.)		
218-8 218-1 200A 218-8 218-1 200A 218-8 218-1 200A 218-8 218-1 200A 218-8 218-1 200A 218-8 218-1 200A 218-8 218-1 200A	200C 200A 200A 200A 200A 200C 218-2 218-3 218-3 218-3 2218-4 200B		400 400B		

- 독립된 형태의 개별 드론에 비해 무게, 수량, 크기에 상관없이 거의 모든 물품을 더 멀리 배송할 수 있도록 여러 대의 드론을 묶어 비행할 수 있는 기술
 - * 독립된 드론은 4개의 프로펠러를 탑재한 쿼드콥터 드론이며 최대 10파운드(약 4.5kg) 적재 가능
 - 여러 대의 드론이 연결돼 동시에 비행하기 때문에 관제 시설이나 항공기에서 쉽게 식별 가능
 - 또한 헬리콥터처럼 수직으로 이착륙하기 때문에 크기에 비해 **긴 활주로가 필요 없는 장점**
 - 배터리, 내비게이션 능력을 공유할 수 있으며 여러 모형으로 결합 가능
 - 임무를 종료된 후에는 각각의 드론이 독립적으로 비행 가능

3 충전 및 유지보수 관련 주요 특허

□ 복합 운송기관 유지보수 시설

명칭	Ground-Based Mobile	Maintenance Facilities for Un	manned Aerial Vehides
출원번호	US15461038	등록번호	US9718564
(출원일자)	(2017.03.16.)	(등록일자)	(2017.08.01.)
150 150 153 154 154	13	161A 164B 184-n 187-n 161B 187-n 143B	168 160 165

- 드론과 철도·트럭·배 등 운송수단이 융합해 드론의 이착륙, 물품 관리, 드론 재충전 및 수리 등의 작업을 수행하는 모바일 드론 스테이션 특허
 - 모바일 스테이션은 유지보수 컨테이너와 배송 컨테이너로 구성
 - 유지보수를 위한 컨테이너에는 로봇 팔이 설치되어 있어 모터, 전원공급기, 회로 기판 등 드론의 부품을 교환하고 배터리를 교체
 - 배송 컨테이너에는 드론이 상주하며 적재된 물품을 고객에게 배송
 - ① 철도·트럭·배 등 운송수단이 물품 수요가 있거나 예상되는 지역을 따라 이동
 - ② 천장에 자동문이 설치된 컨테이너 모양의 물류센터에 물품이 실려 있고 배송 드론이 상주
 - ③ 고객이 주문하면 내부 로봇 팔이 즉시 물품을 꺼내 드론에 싣고 드론은 천장 자동문을 통해 날아가 배송 후 다시 복귀
 - ④ 복귀 후 배터리를 재충전·교체를 하고 로봇 팔이 모터, 회로기판 등을 유지보수
- 궁극적으로 <mark>아마존은 기존의 운송수단을 활용하여 스스로 돌아다니며 물품을</mark> 배송하고 드론을 유지보수 하는 무인 물류센터를 구상 중

□ 수직구조물을 이용한 드론 도킹 스테이션

- 전봇대, 가로등과 같이 수직 구조물에 드론 도킹 스테이션을 설치하여 기상악화,
 재충전 및 주유, 물품 수집처, 내비게이션 시스템 재설정, 추가 지시를 기다리는
 곳으로 활용하는 기술
 - 배송해야 할 물품을 다른 드론에게 전달하는 기지로 활용 가능하며 더 긴 거리를 비행하거나 악천후를 피할 수 있는 일종의 피난처 등의 성격도 있음
 - 도킹 스테이션에는 **태양광 충전 장비를 갖출 예정이며 액체나 기체 연료 탱크가** 있어 해당 형태의 연료를 드론에게 주입 혹은 교체 가능
 - 아마존은 도킹 스테이션에 광고판이나 고객이 편한 시간에 찾아와 물건을 찾아갈 수 있는 저장소를 달아 매출을 올리겠다는 구상
 - 드론의 중간 기착지 용도 외에 도시의 공원, 빌딩 및 다른 공공지역에서 큰 인프라 부담없이 무료 와이파이 제공 가능
- 가로등이나 교회 첨탑 등 높은 곳에 이를 설치한 뒤 각각의 도킹 스테이션과 교신이 가능한 중앙관제시스템도 계획 중
 - 중앙관제시스템을 활용하며 **강수량, 풍속 등 기상 정보를 실시간으로 송수신이** 가능하고 이를 통해 **효율적인 배송 루트를 검색**하는 것이 가능
- 아마존은 전력선 주변 자기장을 이용한 드론 충전 특허(US9421869)도 보유

4 물품 전달 관련 주요 특허

□ 드론용 상호 언어작용 기술

명칭	Speech interaction for unmanned aerial vehicles					
출원번호 (출원일자)	US14634578 (2015.02.27.)	등록번호 (등록일자)	US9747901 (2017.08.29.)			
200 102 206 SPEECH 204	202	PLEASE STAY	108 AWAYI 102			

○ 드론이 사람과 음성 메시지를 주고받을 수 있는 기술

- 드론은 지정된 배송지점에 도착해 도착 사실을 고객에게 알려주고 고객이 너무 가까이 서 있으면 물러나라고 요청
- 배달 전에는 고객의 신분확인까지 가능하며 불시착 등 사고위험이 있으면 떨어지기 전에 미리 경고하는 것도 가능
- 고객이 드론에게 말을 걸 수도 있으며 드론을 통해 서비스센터 직원과 대화할 수 있도 있음
- 특허에서는 아마존의 인공지능 플랫폼 알렉사를 언급하지 않았지만 아마존이 알렉사를 다양한 곳에 적용시키고 있는 것을 고려할 때 드론에 알렉사를 적용시켜 활용할 것으로 예상
 - 아마존은 AI음성비서 '에코' 외에 AI스마트 스피커 '에코쇼', 카메라가 장착된 '에코룩' 등 다양한 방향으로 알렉사를 활용 중

□ 사람 몸짓, 소리에 반응하는 드론

명칭	Human interaction with unmanned aerial vehicles				
출원번호 (출원일자)	US15213307 (2016.07.18.)	등록번호 (등록일자)	US9921579 (2018.03.20.)		
	104		16. 5		

- 드론이 사람의 시각적, 청각적 표현을 인지하고 반응하는 기술
 - 드론에는 광센서, 깊이 센서, 가시광선 센서, 청각센서, 적외선 카메라, 깊이 인식 카메라, 입출력 마이크, 사운드용 노이즈 필터 등 다양한 수신 장치를 비롯해 스피커나 레이저 프로젝트와 같은 출력 장치를 장착
 - 이러한 장치를 통해 드론은 고객의 손동작, 몸짓, 목소리 등을 인식하여 반응하고 궤도나 속도도 조절 가능
 - * 만약 사람이 환영하는 듯한 자세로 팔을 흔들면, 드론은 그 동작을 소포를 배달하라는 지시 사항으로 해석해 속도와 움직이는 방향도 조정
 - 또한 장착된 카메라를 통해 고객의 외모를 인지하거나 수신자의 스마트폰 확인코드(Confirmation code)를 통해 신원을 확인 가능
 - 데이터베이스는 **사용자마다 독특한 제스처를 저장**할 수 있으며 **향후 배달을** 위해 응답하는 방법을 기억할 수도 있음
- 사람의 눈과 얼굴과 손짓을 감지할 수 있는 드론 관련 특허는 아마존뿐만 아니라 삼성전자, DJI 등에서도 특허를 출원
 - DJI Spark는 PalmControle 기능을 추가해 손동작으로 Spark가 감지하고 제어

□ 송장에 낙하산을 내장하여 물품 배송

명칭	Aerial package delivery system		
출원번호	US14836112	등록번호	US9663234
(출원일자)	(2015.08.26.)	(등록일자)	(2017.05.30.)
212 214a 212 214a 214 202 214	216 208 210a 210a	100	PACK ITEM, ATTACH PARACHUTE SHIPPING LABEL 108 ATTACH TO UAV DROP AT DELIVERY LOCATION

- 드론에 부착된 **송장(Shipping label)에 낙하산을 내장시켜 적정한 고도에서 물품을** 배송하는 기술
 - **송장에는 낙하산, 분리 덮개 등이 내장**되어 있으며 물품이 정확한 위치에 착지하기 위한 **센서, 충격 흡수장치는 물론 바코드, 쿠폰 등도 포함** 가능
 - * 송장에는 여러 형태와 다양한 크기의 낙하산 내장 가능
 - 택배상자를 드론에서 분리하기 위해 자석, 스프링 코일 등을 사용하며 바람이 불어 택배상자가 발코니나 전선, 나무에 걸릴 것이 예상되면 압축공기통, 보조날개 등을 가동해 불시착 방지
 - 낙하산 배송은 지상에 착륙할 필요가 없어 드론의 에너지 소모는 물론 배송시간도 절약할 수 있으며 착륙할 때 발생할 수 있는 행인 또는 물건과의 충돌도 방지 가능
- 아마존은 '17년 2월에 드론을 배달지 상공의 적정한 고도로 옮기고 정확한 지점에 물품이 착지하도록 모니터링 하는 특허(US9567081)도 등록
- 또한 올해 3월에는 에어백이 내장된 특수한 패키지를 활용하여 물품이 안전하게 낙하게 하는 기술도 특허(US9914539) 등록

Ⅲ. 시사점

- □ 아마존은 드론을 자율트럭, 로봇, 인공지능, 스마트데이터 등과 함께 미래 물류 혁명의 강력한 파괴자로 인식
 - 2010년대 이후 아마존은 드론용 물류저장센터를 비롯해 비행, 충전, 유지보수, 고객 전달에 이르기까지 드론 물류와 관련된 다양한 특허를 보유
 - 드론 전문제조사들과 달리 드론의 기능, 제조와 관련된 특허보다는 서비스 및 비즈니스 모델 중심의 특허를 집중적으로 확보
- □ 월마트와 같은 기존 거대 소매업체와의 **라스트 마일***(last mile) 전쟁에서도 드론은 중요한 경쟁요소로 부상
 - * 상품이 물류기자에서 목적지까지 전달되는 모든 과정과 요소를 의미. 최근에는 유통업체가 제품을 주문받아 소비자에게 배송하는 과정도 포함
 - 월마트는 아마존의 공세에 맞서 미국 전역에 있는 5,000개의 매장을 드론을 통한 유통 네트워크로 구축하겠다는 구상
 - 아마존과 유사한 공중물류창고 특허를 출원 신청하였으며, 지난해에는 스토어 넘버 8(Stroe No.8)이라는 자회사를 설립하고 유통환경에 드론, VR 등을 활용하는 프로젝트를 추진 중
- □ 짧은 비행시간, 비행 공역 규제, 안전 문제 등은 드론이 미래 물류혁명의 핵심 요소로 부상하기 위해 극복해야할 과제
 - 30분 내외의 짧은 비행시간은 수소연료전지와 같은 **다양한 연료전지 개발과 드론 충전소 등을 활용하여 극복** 가능
 - 美 FAA, NASA는 내년을 목표로 **드론 항공 통제시스템 시험을 완료할 계획**으로 장기적인 측면에서는 드론의 상용화에 대비
 - * 아마존도 프랑스 파리 인근에 연구개발팀을 상주시켜 드론 전용 항공교통관제 시스템을 자체적으로 구축 중
 - 기술적 제약과 달리 규제, 안전 등과 같은 제약은 드론을 활용하여 상업적으로 이용하려는 기업의 효용성과 실제 서비스를 이용하는 고객의 만족도 그리고 법적 규제를 담당하는 정부의 의지가 모두 일치해야 가능

- □ 공상과학이나 SF영화에서나 나올듯한 **아마존의 드론 특허가 주는 또 다른** 교훈은 상상을 현실로 구현하기 위한 기업의 끊임없는 R&D 투자와 노력
 - 전문가들은 4차 산업혁명을 현재 우리 눈앞에 보여 줄 수 있는 유일한 기업 혹은 가장 앞선 기업이 바로 아마존이라고 역설
 - 아마존은 20여 년간 한 번도 배당을 하지 않으면서도 **R&D와 서비스 확장에 투자**함으로써 기업의 가치를 높여 주주들의 지지를 이끌어냄
 - 이러한 아마존의 행보는 '빠른 추격자(Fast follower)'에서 벗어나 '퍼스트 무버(Fisrt moover)' 되기 위해 고심하는 국내 기업에게도 시사하는 바가 큼

<참고 문헌>

- [1] 나우뉴스(2016.07.20.), 아마존 가로등 이용한 '드론 둥지' 특허 획득
- [2] 전자신문(2018.03.23.), 아마존 엉뚱한 특허 눈길 '인간 몸짓 소리 알아듣는 드론'
- [3] 차원용(2017.02.13.), 아마존의 제4차 산업혁명 전개 방향 분석, 디지에코보고서
- [4] 한국경제(2017.08.07.), 달리는 열차가 물류센터... 아마존 '이동창고' 특허 신청
- [5] 한국전자정보통신산업진흥회(2016.12.), 무인항공기 특허분석보고서
- [6] CB Insight(2017.08.03.), Amazon's 'Beehive,' Drone-Carrying Trains Reinforce Focus On Logistics Tech
- [7] https://patents.google.com
- [8] https://www.ipnomics.co.kr
- [9] itnews(2017.01.14.), 아마존 우주정거장을 모방한 '하늘 정거장+왕복선+무인기'
- [10] TechHolic(2016.12.30.), 화살을 쏴도... 아마존 드론 특허
- [11] TechNeedle(2017.12.03.), 아마존 비상시 드론을 자동 파괴하는 특허 취득
- [12] The National Law Review(2017.06.04.), A Survey of Drone Patent Activity

- ※ 본 이슈리포트의 내용은 무단 전재할 수 없으며, 인용할 경우, 반드시 원문출처를 명시하여야 합니다.
- ※ 본 자료의 내용은 필자의 개인의견으로 정보통신산업진흥원(NIPA)의 공식견해가 아님을 밝힙니다.