Lecture 5: Model-free RL (Part II)

Max(Chong) Li

Outline

- TD Learning
- TD Control
- Summary: DP vs. TD

(Readings: Chapter 5.1, 5.2, 5.3.1, 5.3.2, 5.4.1 in RL-CPS book)

^{*}Some materials are modified from David Silver's RL lecture notes

Outline

- TD Learning
- TD Control
- Summary: DP vs. TD

MC Learning (Refresher)

• Update V(s) incrementally after episode $S_1, A_1, R_2, ..., S_T$ For each state S_t with return G_t

$$N(S_t) \leftarrow N(S_t) + 1$$

$$V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)} (G_t - V(S_t))$$

 In non-stationary problems, it can be useful to track a running mean, i.e. forget old episodes.

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t) \right)$$

Temporal Difference (TD) Learning

- TD methods learn directly from episodes of experience
- TD is *model-free*: no knowledge of MDP transitions / rewards
- TD learns from *incomplete* episodes, by *bootstrapping*
- TD updates a guess towards a guess

TD Learning

Goal: learn v_{π} online from experience under policy π Incremental every-visit Monte-Carlo

• Update value $V(S_t)$ toward actual return G_t

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t - V(S_t) \right)$$

Simplest temporal-difference learning algorithm: TD(0)

• Update value $V(S_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

- $R_{t+1} + \gamma V(S_{t+1})$ is called the *TD target*
- $\delta_t = R_{t+1} + \gamma V(S_{t+1}) V(S_t)$ is called the *TD error*

6

MC backup

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$$

TD Backup

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

DP Backup

$$V(S_t) \leftarrow \mathbb{E}_{\pi} \left[R_{t+1} + \gamma V(S_{t+1}) \right]$$

9

Bootstrapping & Sampling

Bootstrapping: update involves an estimate

- MC does not bootstrap
- DP bootstraps
- TD bootstraps

Sampling: update samples an expectation

- MC samples
- DP does not sample
- TD samples

MC vs. TD

TD can learn before knowing the final outcome

- TD can learn online after every step
- MC must wait until end of episode before return is known

TD can learn without the final outcome

- TD can learn from incomplete sequences
- MC can only learn from complete sequences
- TD works in continuing (non-terminating) environments
- MC only works for episodic (terminating) environments

MC vs. TD

- Return $G_t = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{T-1} R_T$ is unbiased estimate of $v_{\pi}(S_t)$
- True TD target $R_{t+1} + \gamma v_{\pi}(S_{t+1})$ is unbiased estimate of $v_{\pi}(S_t)$
- TD target $R_{t+1} + \gamma V(S_{t+1})$ is biased estimate of $v_{\pi}(S_t)$
- TD target is much lower variance than the return:
 - Return depends on many random actions, transitions, rewards
 - TD target depends on one random action, transition, reward

MC vs. TD

MC has high variance, zero bias

- Good convergence properties
- (even with function approximation)
- Not very sensitive to initial value
- Very simple to understand and use

TD has low variance, some bias

- Usually more efficient than MC
- TD(0) converges to $v_{\pi}(s)$
- (but not always with function approximation)
- More sensitive to initial value

In practice, TD methods have usually been found to converge faster than constant- MC methods on stochastic tasks

Example: Random Walk

Example: Random Walk

Outline

- TD Learning
- TD Control
- Summary: DP vs. TD

TD Control

- Temporal-difference (TD) learning has several advantages over Monte-Carlo (MC)
 - Lower variance
 - Online
 - Incomplete sequences
- Natural idea: use TD instead of MC in our control loop
 - Apply TD to Q(S, A)
 - Use ϵ -greedy policy improvement
 - Update every time-step

SARSA

$$Q(S,A) \leftarrow Q(S,A) + \alpha (R + \gamma Q(S',A') - Q(S,A))$$

SARSA for On-policy Control

```
Initialize Q(s,a), \forall s \in \mathbb{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
  Initialize S
Choose A from S using policy derived from Q (e.g., \varepsilon\text{-}greedy)
  Repeat (for each step of episode):
  Take action A, observe R, S'
  Choose A' from S' using policy derived from Q (e.g., \varepsilon\text{-}greedy)
  Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]
  S \leftarrow S'; A \leftarrow A';
  until S is terminal
```

Q-Learning

- One of the most important breakthroughs in RL
- An Off-policy TD control algorithm (Watkins, 1989), why off-policy?

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \gamma \max_{a'} Q(S',a') - Q(S,A)\right)$$

Example: Cliff

- ε = 0.1, Q-learning is worse than Sarsa, why?
- If E -> 0, Q-learning v.s. Sarsa?

Outline

- TD Learning
- TD Control
- Summary: DP vs. TD

Summary: DP vs. TD

	Full Backup (DP)	Sample Backup (TD)
Bellman Expectation	$v_{\pi}(s) \leftrightarrow s$ a $v_{\pi}(s') \leftrightarrow s'$	
Equation for $v_\pi(s)$	Iterative Policy Evaluation	TD Learning
Bellman Expectation	$q_{\pi}(s,a) \leftrightarrow s,a$ r $q_{\pi}(s',a') \leftrightarrow a'$	S arca
Equation for $q_{\pi}(s, a)$	Q-Policy Iteration	Sarsa
Bellman Optimality Equation for $q_*(s,a)$	$q_{\bullet}(s,a) \leftrightarrow s,a$ $q_{\bullet}(s',a') \leftrightarrow a'$ Q-Value Iteration	Q-Learning

Summary: DP vs. TD

Full Backup (DP)	Sample Backup (TD)	
Iterative Policy Evaluation	TD Learning	
$V(s) \leftarrow \mathbb{E}\left[R + \gamma V(S') \mid s\right]$	$V(S) \stackrel{\alpha}{\leftarrow} R + \gamma V(S')$	
Q-Policy Iteration	Sarsa	
$Q(s, a) \leftarrow \mathbb{E}\left[R + \gamma Q(S', A') \mid s, a\right]$	$Q(S,A) \stackrel{\alpha}{\leftarrow} R + \gamma Q(S',A')$	
Q-Value Iteration	Q-Learning	
$Q(s, a) \leftarrow \mathbb{E}\left[R + \gamma \max_{a' \in \mathcal{A}} Q(S', a') \mid s, a\right]$	$Q(S,A) \stackrel{\alpha}{\leftarrow} R + \gamma \max_{a' \in \mathcal{A}} Q(S',a')$	

where
$$x \stackrel{\alpha}{\leftarrow} y \equiv x \leftarrow x + \alpha(y - x)$$

24