APSC 1001 & CS 1010

Deep dive into Raspberry Pi with Python

Prof. Kartik Bulusu, MAE Dept.

From LED Madness to Ultrasound Cacophony

Sara Tenaglio, BME Dept.

Catherine Karpova, BME Dept.

Zachary Stecher, CEE Dept.

Learning Assistants:

Jonathan Terry, CS Dept.

Ethan Frink, MAE Dept.

Jack Umina, CS Dept.

Olivia Legault, CS Dept.

Alexis Renderos, MAE Dept.

School of Engineering & Applied Science

THE GEORGE WASHINGTON UNIVERSITY

Photo: Kartik Bulusu

Raspberry Pi Hardware and Connections

Source: https://opensensorhub.org/2019/05/19/kinect-support-on-raspberrypi-3b/

School of Engineering & Applied Science

Connect the Raspberry Pi Model 3 B+ (RPi) to a bread board

School of Engineering & Applied Science

GW

Access to the RPi in the laboratory

Login to DEBIAN

Each RPi is assigned a unique

- IP address <161.253.xx.xx>
- username & password

Source: https://upload.wikimedia.org/wikipedia/commons/f/f1/XRDP Screenshot.png

Recap from last week [LED Madness]

School of Engineering & Applied Science

Dr. Kartik Bulusu, MAE Dept.

Dual-Color LED

APSC 1001 (Fall 2019) Introduction to Engineering for Undeclared Majors How a python code lit up your LED with Raspberry Pi Model 3 B+ (RPi)

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BOARD)

GPIO.setup(12, GPIO.OUT)

(For) How many times do you want to execute a piece of code ?


```
for i in range(0,15):

    GPIO.output(12, GPIO.HIGH)
    time.sleep(0.5)
    GPIO.output(12, GPIO.LOW)
    time.sleep(0.5)
    print(i)
GPIO.cleanup()
```

School of Engineering & Applied Science

Ultrasound Signals and its Applications

 $Distance\ traversed = (Speed\ of\ sound) \times (Time\ elapsed)$

Image Credit:

http://www.robaid.com/bionics/bat-biosonar-biomimicry-for-improved-sonar-technology.htm

School of Engineering & Applied Science

Know your Ultrasonic Sensor

The Ultrasonic sensor sends out ultrasonic waves to detect objects and measure distances.

Connector:

4-pin anti-reverse cable

Goal of the lab segment:

- Co-work
 - Observe, ask and try in groups
- Make
 - Build-a-hack
 - Ultrasound sensors and Raspberry Pi 3B + boards
- Analyze data using Python
- Record
 - Challenges, Opportunities, Gaps and Surprises

School of Engineering & Applied Science

THE GEORGE WASHINGTON UNIVERSITY

Know some programming paradigms

Loops

Functions

School of Engineering & Applied Science

A simple python code to kick start your Raspberry Pi Model 3 B+ (RPi)

GPIO Extension Board

```
2

    3V3

                      5V0 •
         SDA1
                      5V0 •
        SCL1
                      GND •

    GPIO4

                                  8
                     TXDO •
        GND
                     RXDO •
        GPI017
                                 12
                    GPI 018 •
    13 • GPI027
                     GND ● 14
15 —

    GPIO22

                    GPIO23 •
                                  16
                    GP1024 •
        3V3
        SPMOSI
                      GND •
                                  20
    21 • SPMOSO
                   GP1025 •
                                 - 24

    SPISCLK

                   SPISCEO .
                    SPISCEI • 26
    25 • GND
        D SD
                                  28
                     D_SC •
                     GND ● 30

    GPI 05

                                  32
        GPI06
                    GPI 012 •
                      GND ● 34
    33 • GPI013
        GPIO19
                    GPI 016 •
                    GPI020 • 38
    37 • GPI026
                                  40
39 ——
        GND
                    GPI 021 •
```

```
import RPi.GPIO as GPIO
import time
```

```
TRIG = 16
ECHO = 15
def setup():
    GPIO.setmode(GPIO.BOARD)
    GPIO.setup(TRIG, GPIO.OUT)
    GPIO.setup(ECHO, GPIO.IN))
```

```
def distance():
    GPIO.output(TRIG, 0)
    time.sleep(0.000002)
    GPIO.output(TRIG, 1)
    time.sleep(0.00001)
    GPIO.output(TRIG, 0)

while GPIO.input(ECHO) == 0:
    time1 = time.time()

while GPIO.input(ECHO) == 1:
    time2 = time.time()
```

```
def loop():
    while True:
        dist = distance()
        print(dist, 'cm')
        print('')
        time.sleep(0.1)
```

```
def destroy():
    GPIO.cleanup()
```

```
if __name__ == "__main__":
    setup():
    try:
       loop()
    except KeyboardInterrupt:
       destroy()
```

School of Engineering & Applied Science

