

UNIVERSIDADE FEDERAL DO CEARÁ Campus Russas

Disciplina: Inteligência Artificial

Professor: Alexandre Matos Arruda

[Allan Cardoso de Oliveira, Pedro Henrique Ferreira Da Silva, Rafael Freitas Dantas]

Trabalho 3 Aprendizado Supervisionado com Regressão Linear e Logística

Russas - Ceará Data: 04/09/2024

1. Introdução:

- 1.1. Foi requisitada a implementação dos algoritmos regressão linear e logística utilizando a técnica de backpropagation como aprendizagem.
- 1.2. Durante o desenvolvimento foi implementada uma rede neural que pode ser modelada de forma que seja equivalente a uma regressão linear ou logística.
- 1.3. Na modelagem da regressão logística foi utilizado a técnica um contra todos, onde cada classe tem um modelo próprio de regressão logística, de forma que para prever dados é analisado o modelo que contém a maior confiança.
- 1.4. O otimizador utilizado para aprendizagem foi a descida do gradiente, no caso das redes neurais foi utilizado uma variação chamada adaptive moment estimation.
- 1.5. As funções de perdas utilizadas foram o MSE(Erro quadrático médio) e BCE (Entropia Binária Cruzada).

2. Pré-processamento de dados

2.1. No pré-processamento de dados foi realizada a normalização das entradas utilizando a distribuição normal padrão.

3. Regressão linear

Parâmetros	Valores
Taxa de aprendizagem	0,0001
Épocas	200
Tamanho do lote	50
Pipeline	8 -> 1

4. Rede neural com regressão

Parâmetros	Valores
Taxa de aprendizagem	0,0001
Épocas	200
Tamanho do lote	50
Camadas escondidas	3
Ativação	Rectified Linear Unit (ReLU)
Pipeline	8 -> 24 -> 12 -> 6 -> 1

5. Regressão logística

Parâmetros	Valores
Taxa de aprendizagem	0,01
Épocas	2000
Tamanho do lote	50
Pipeline	4 -> 3

6. Rede neural com classificação:

Parâmetros	Valores
Taxa de aprendizagem	0,01
Épocas	2000
Tamanho do lote	50
Camadas escondidas	2
Ativação	Rectified Linear Unit (ReLU)
Ativação de saída	Soft Max
Pipeline	4 -> 100 -> 100 -> 3

7. Funções de Ativação

7.1. Softmax Function:

A função de ativação softmax é usada em redes neurais de classificação. Ela força a saída de uma rede neural a representar a probabilidade dos dados serem de uma das classes definidas. Sem ela as saídas dos neurônios são simplesmente valores numéricos onde o maior indica a classe vencedora.

7.2. ReLU Function:

A função de ativação de um nó em uma rede neural artificial é uma função que calcula a saída do nó com base em suas entradas individuais e seus

pesos. Problemas não triviais podem ser resolvidos usando apenas alguns nós se a função de ativação for não linear.

8. Conclusões:

Os modelos de regressão linear e logística, mesmo sendo simples, conseguem entregar resultados satisfatórios com um tempo de treinamento bem rápido. Eles são eficazes em identificar padrões importantes nos dados, o que os torna ótimos em situações onde a velocidade é essencial. Embora não sejam tão precisos quanto técnicas mais avançadas, como redes neurais, sua simplicidade e rapidez fazem com que sejam ideais quando se precisa de resultados rápidos e com poucos recursos, oferecendo um bom equilíbrio entre desempenho e eficiência.

9. Resultados:

https://docs.google.com/spreadsheets/d/1GJCSP8c4U8CQoFfMskhjQVxH11axM-KKR7w31hPK3bs/edit?usp=sharing