

- 1. Спочатку покажемо що  $(A, \cdot)$  група.
  - (а) асоціативність. Множення матриць асоціативне за означенням.
  - (b) нейтральний елемент. У множині A є нейтральний елемент:  $e = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ .
  - (c) обернений елмент.  $a_1 \cdot a_1 = e$ ,  $a_2 \cdot a_2 = e$ ,  $a_3 \cdot a_4 = e$ ,  $a_4 \cdot a_3 = e$ ,  $a_5 \cdot a_5 = e$ .

Отже  $(A,\cdot)$  є групою. Побудуємо таблицю Келі для A. Також візьмемо  $\mod 2$  від кожного множення, шоб у відповіді отримати елементи з множини A. Тобто  $a_1 \cdot a_3$  рахуватиметься так:  $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix} \mod 2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = a_2$ . Отже таблиця Келі:

| •     | e     | $a_1$ | $a_2$ | $a_3$ | $a_4$ | $a_5$ |
|-------|-------|-------|-------|-------|-------|-------|
| e     | e     | $a_1$ | $a_2$ | $a_3$ | $a_4$ | $a_5$ |
| $a_1$ | $a_1$ | e     | $a_3$ | $a_2$ | $a_5$ | $a_4$ |
| $a_2$ | $a_2$ | $a_4$ | e     | $a_5$ | $a_1$ | $a_3$ |
| $a_3$ | $a_3$ | $a_5$ | $a_1$ | $a_4$ | e     | $a_2$ |
| $a_4$ | $a_4$ | $a_2$ | $a_5$ | e     | $a_3$ | $a_1$ |
| $a_5$ | $a_5$ | $a_3$ | $a_4$ | $a_1$ | $a_2$ | e     |

Згадаємо таблицю Келі для  $\sigma_3$ :

| •       | e       | $\pi_1$ | $\pi_2$ | $\pi_3$ | $\pi_4$ | $\pi_5$ |
|---------|---------|---------|---------|---------|---------|---------|
| e       | e       | $\pi_1$ | $\pi_2$ | $\pi_3$ | $\pi_4$ | $\pi_5$ |
| $\pi_1$ | $\pi_1$ | e       | $\pi_3$ | $\pi_2$ | $\pi_5$ | $\pi_4$ |
| $\pi_2$ | $\pi_2$ | $\pi_4$ | e       | $\pi_5$ | $\pi_1$ | $\pi_3$ |
| $\pi_3$ | $\pi_3$ | $\pi_5$ | $\pi_1$ | $\pi_4$ | e       | $\pi_2$ |
| $\pi_4$ | $\pi_4$ | $\pi_2$ | $\pi_5$ | e       | $\pi_3$ | $\pi_1$ |
| $\pi_5$ | $\pi_5$ | $\pi_3$ | $\pi_4$ | $\pi_1$ | $\pi_2$ | e       |

З даних таблиць Келі легко бачити, що  $A \cong \sigma_3$ 

2. (a) Доведемо що  $f(e_H) = e_G$ . Скористаємося тим, що  $e_H \cdot e_H = e_H$ :

$$f(e_H) = f(e_H \cdot e_H) = f(e_H) \times f(e_H)$$

Тепер домножимо на оберенене до  $f(e_H)$ :

$$f(e_H) \times f^{-1}(e_H) = (f(e_H) \times f(e_H)) \times f^{-1}(e_H)$$

Так як × - асоціативна, можемо сказати, що

$$f(e_H) = e_G$$

(b) Доведемо що  $f(a^{-1}) = f(a)^{-1}$ . Вже знаємо, що  $e_G = f(e_h)$ . Отже

$$e_G = f(e_h) = f(a \cdot a^{-1})$$

За означенням гомомрфізму

$$e_G = f(e_h) = f(a \cdot a^{-1}) = f(a) \times f(a^{-1})$$

Перепишемо і отримаємо:

$$f(a)^{-1} = f(a)^{-1} \times e_H = f(a)^{-1} \times f(a) \times f(a^{-1}) = e_H \times f(a^{-1}) = f(a^{-1})$$

- 3. Порахуємо порядки елементів  $\langle a \rangle$ : ord  $(a^1) = \text{ord } (a^5) = \text{ord } (a^7) = \text{ord } (a^{11}) = 12$ , ord  $(a^2) = \text{ord } (a^{10}) = 6$ , ord  $(a^3) = \text{ord } (a^9) = 4$ , ord  $(a^4) = \text{ord } (a^8) = 3$ , ord  $(a^6) = 2$ , ord  $(a^{12} = e) = 1$ .
  - Запишемо підгрупи: порядок 1:  $H_1 = \{e\}$ , порядок 12:  $H_{12} = \langle a \rangle$ , порядок 6:  $H_6 = \{e, a^2, a^4, a^6, a^8, a^{10}\}$ , порядок 4:  $H_4 = \{e, a^3, a^6, a^9\}$ , порядок 3:  $H_3 = \{e, a^4, a^8\}$ , порядок 2:  $H_2 = \{e, a^6\}$ .
  - $(H_1.)$   $aH_1 = \{a\}, \quad a^2H_1 = \{a^2\}, \quad \cdots, \quad a^{11}H_1 = \{a^{11}\}$  $\langle a \rangle = H_1 \cup aH_1 \cup \cdots \cup a^{11}H_1, \quad \langle a \rangle / H_1 \cong (Z_{12}, \oplus)$
  - $(H_2.) \ aH_2 = \{a^1, a^7\}, \quad a^2H_2 = \{a^2, a^8\}, \quad a^3H_2 = \{a^3, a^9\}, \quad a^4H_2 = \{a^4, a^{10}\}, \quad a^5H_2 = \{a^5, a^{11}\}, \quad \langle a \rangle = H_2 \cup aH_2 \cup a^2H_2 \cup a^3H_2 \cup a^4H_2 \cup a^5H_2, \quad \langle a \rangle / H_2 \cong (\mathbb{Z}_6, \oplus)$
  - $(H_3.) \ aH_3 = \{a, a^5, a^9\}, \ a^2H_3 = \{a^2, a^6, a^{10}\}, \ a^3H_3 = \{a^3, a^7, a^{11}\}, \\ \langle a \rangle = H_4 \cup aH_3 \cup a^2H_3 \cup a^3H_3, \ \langle a \rangle / H_3 \cong (\mathbb{Z}_4, \oplus)$
  - $(H_4.)$   $aH_4 = \{a, a^4, a^7, a^{10}\}, \quad a^2H_4 = \{a^2, a^5, a^8, a^{11}\},$  $\langle a \rangle = H_4 \cup aH_4 \cup a^2H_4, \quad \langle a \rangle / H_4 \cong (\mathbb{Z}_3, \oplus)$
  - $(H_6.) \ aH_6 = \{a, a^3, a^5, a^7, a^9, a^{11}\}$  $\langle a \rangle = H_6 \cup aH_6, \ \langle a \rangle / H_6 \cong (\mathbb{Z}_2, \oplus)$
- $(H_{12}.) \langle a \rangle = H_{12}, \quad \langle a \rangle / H_{12} \cong (\mathbb{Z}_0, \oplus)$