CS 511, Fall 2020, Lecture Slides 16 First-Order Logic: Prenex Normal Form and Skolemization

Assaf Kfoury

29 Sept 2020

more on quantifier equivalences

Lemma. For any string of quantifiers

$$\overrightarrow{Qx} \stackrel{\text{def}}{=} Q_1 x_1 Q_2 x_2 \cdots Q_n x_n$$

where $Q_1, Q_2, \dots, Q_n \in \{ \forall, \exists \}$ with $n \geqslant 0$, and for any WFF's φ and ψ :

$$\vdash \qquad \overrightarrow{Qx} \neg \forall y \varphi \leftrightarrow \overrightarrow{Qx} \exists y \neg \varphi$$

$$\vdash \quad \overrightarrow{Qx} \neg \exists y \ \varphi \leftrightarrow \overrightarrow{Qx} \ \forall y \neg \varphi$$

$$\blacktriangleright \qquad \vdash \quad \overrightarrow{Qx} \left(\forall y \, \varphi \, \vee \, \psi \right) \, \leftrightarrow \, \overrightarrow{Qx} \, \forall z \, \left(\varphi \, \left[y := z \right] \, \vee \, \psi \right)$$

$$\vdash \overrightarrow{Qx} (\varphi \lor \forall y \psi) \leftrightarrow \overrightarrow{Qx} \forall z (\varphi \lor \psi \ [y := z])$$

$$\vdash \quad \overrightarrow{Qx} \left(\exists y \, \varphi \, \vee \, \psi \right) \, \leftrightarrow \, \overrightarrow{Qx} \, \exists z \, \left(\varphi \, \left[y := z \right] \, \vee \, \psi \right)$$

$$\vdash \quad \overrightarrow{Qx} \left(\varphi \vee \exists y \, \psi \right) \, \leftrightarrow \, \overrightarrow{Qx} \, \exists z \, (\varphi \vee \psi \, [y := z] \,)$$

where *z* is a fresh variable occurring nowhere else.

Proof. Similar to proof of Theorem 2.13 in LCS, page 117.

prenex normal form

Theorem.

For every WFF φ there is an equivalent WFF ψ with the same free variables where all quantifiers appear at the beginning.

 ψ is called the **prenex normal form** of φ .

Proof. By induction on the structure of φ .

- $\blacktriangleright \quad \text{If } \varphi \text{ is atomic, then } \psi \stackrel{\text{def}}{=} \varphi.$
- If φ is $Qx \varphi_0$ where $Q \in \{\forall, \exists\}$ and ψ_0 is a PNF of φ_0 , then $\psi \stackrel{\text{def}}{=} Qx \psi_0$.
- If φ is $\neg \varphi_0$ and ψ_0 is a PNF of φ_0 , then use the two first cases in the **lemma** (on preceding slide) repeatedly, to obtain ψ .
- If φ is $\varphi_0 \vee \varphi_1$, and ψ_0 and ψ_1 are PNF's of φ_0 and φ_1 , then use the four last cases in the **lemma** repeatedly, to obtain ψ .

prenex normal form (continued)

skolemization

Lemma. A first-order sentence φ of the form

$$\varphi \stackrel{\text{def}}{=} \forall x_1 \cdots \forall x_n \exists y \, \psi$$

over vocabulary/signature Σ is equisatisfiable with the sentence φ'

$$\varphi' \stackrel{\text{def}}{=} \forall x_1 \cdots \forall x_n \, \psi[y := f(x_1, \dots, x_n)]$$

where f is a fresh n-ary function symbol not in Σ .

Proof.

Let \mathcal{M} be a model for Σ and $\mathcal{M}' \stackrel{\mathrm{def}}{=} (\mathcal{M}, f^{\mathcal{M}'})$ a model for $\Sigma \cup \{f\}$. If $\mathcal{M}' \models \varphi'$ then $\mathcal{M} \models \varphi$. Hence, if φ' is satisfiable, then so is φ .

Conversely, let $\mathcal{M}\models\varphi$. Construct a model \mathcal{M}' for $\Sigma\cup\{f\}$ by expanding \mathcal{M} so that for every $a_1,\ldots,a_n\in A$, the function $f^{\mathcal{M}'}$ maps (a_1,\ldots,a_n) to b where $\mathcal{M},a_1,\ldots,a_n,b\models\psi$. Hence, $\mathcal{M}'\models\varphi'$. Hence, if φ is satisfiable, then so is φ' .

skolemization (continued)

Theorem.

If φ is a first-order sentence over the vocabulary/signature Σ , then there is a **universal** first-order sentence φ' over an expanded vocabulary/signature Σ' obtained by adding new function symbols such that φ and φ' are equisatisfiable.

Proof. By repeated use of the **lemma** (on the preceding slide).

Remark. The theorem does NOT claim that φ and φ' are equivalent, only that they are equisatisfiable.

However, it will be always the case that $\vdash \varphi' \to \varphi$, but not always that $\vdash \varphi \to \varphi'$.

exercise on skolemization

Exercise:

Let $\varphi(x,y)$ be an atomic WFF with free variables x and y, and f a unary function symbol not appearing in φ .

1. Show that the sentence $\forall x \varphi(x, f(x)) \to \forall x \exists y \varphi(x, y)$ is semantically valid, *i.e.*, the following sequent is formally derivable:

$$\vdash \ \forall x \, \varphi(x, f(x)) \to \forall x \exists y \, \varphi(x, y)$$

Hint: Use any of the available methods, *i.e.*, try to find a formal proof or try a semantic approach to show $\models \forall x \, \varphi(x, f(x)) \to \forall x \exists y \, \varphi(x, y)$ and then invoke the completeness of the proof rules.

2. Show that the sentence $\forall x \exists y \varphi(x, y) \to \forall x \varphi(x, f(x))$ is NOT semanticalle valid, *i.e.*, the following sequent is NOT derivable:

$$\vdash \forall x \exists y \, \varphi(x, y) \to \forall x \, \varphi(x, f(x))$$

Hint: Try a semantic approach, *i.e.*, define an appropriate φ and a model where the left-hand side of " \rightarrow " is true but the right-hand side of " \rightarrow " is false, and then invoke the completeness of the proof rules.

(THIS PAGE INTENTIONALLY LEFT BLANK)