

ITRI613 Databases I

Chapter 4 – Relational Algebra (Part A)

Learning outcomes

After engaging with the materials and activities in this study unit you should be able to:

- Use Linear algebra for constructing Queries and manipulate of a DBMS;
- Use the relational model which can rigorously define query languages that are simple and powerful.

Relational Query Languages

- Query languages: Allow manipulation and retrieval of data from a database.
- Relational model supports simple, powerful QLs:
 - Strong formal foundation based on logic.
 - Allows for much optimization.
- Query Languages != programming languages!
 - QLs not expected to be "Turing complete".
 - QLs not intended to be used for complex calculations.
 - QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

- ❖ Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:
 - Relational Algebra: More operational(procedural), very useful for representing execution plans.
 - <u>Relational Calculus</u>: Lets users describe what they want, rather than how to compute it. (Non-operational, <u>declarative</u>.)

Preliminaries

- * A query is applied to *relation instances*, and the result of a query is also a relation instance.
 - *Schemas* of input relations for a query are fixed (but query will run regardless of instance!)
 - The schema for the *result* of a given query is also fixed! Determined by definition of query language constructs.
- * Positional vs. named-field notation:
 - Positional notation easier for formal definitions, named-field notation more readable.
 - Both used in SQL

Example Instances

R1

sid	<u>bid</u>	<u>day</u>
22	101	10/10/96
58	103	11/12/96

- "Sailors" and "Reserves" relations for our examples."bid" = boats. "sid": sailors
- We'll use positional or named field notation, assume that names of fields in query results are `inherited' from names of fields in query input relations.

 S_1

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

*S*2

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Relational Algebra

- Basic operations:
 - Selection (σ) Selects a subset of rows from relation.
 - *Projection* (π) Deletes unwanted columns from relation.
 - $\underline{Cross-product}$ (\times) Allows us to combine two relations.
 - *Set-difference* (—) Tuples in reln. 1, but not in reln. 2.
 - Union (\cup) Tuples in reln. 1 and in reln. 2.
- * Additional operations:
 - Intersection, <u>join</u>, division, renaming: Not essential, but (very!) useful. (Part B)
- Since each operation returns a relation, operations can be composed! (Algebra is "closed".)

Projection

- Deletes attributes that are not in projection list.
- * *Schema* of result contains exactly the fields in the projection list, with the same names that they had in the (only) input relation.
- Projection operator has to eliminate *duplicates*! (Why??, what are the consequences?)
- Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it. (Why not?) CSCD343- Introduction to databases- A. Va

sname	rating
yuppy	9
lubber	8
guppy	5
rusty	10

π sname, rating (S2)

age 35.0 55.5

Selection

- Selects rows that satisfy selection condition.
- Schema of result identical to schema of (only) input relation.
- * Result relation can be the *input* for another relational algebra operation! (Operator composition.)

sid	sname	rating	age
28	yuppy	9	35.0
58	rusty	10	35.0

$$\sigma_{rating>8}(S2)$$

sname	rating
yuppy	9
rusty	10

$$\pi_{sname,rating}(\sigma_{rating} > 8^{(S2)})$$

Union, Intersection, Set-Difference

- * All of these operations take two input relations, which must be *union-compatible*:
 - Same number of fields.
 - Corresponding' fields have the same type.
- What is the *schema* of result?

sid	sname	rating	age
22	dustin	7	45.0

$$S1-S2$$

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

$$S1 \cup S2$$

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

$$S1 \cap S2$$

Cross-Product

- ❖ Each row of S1 is paired with each row of R1.
- * Result schema has one field per field of S1 and R1, with field names `inherited' if possible.
 - *Conflict*: Both S1 and R1 have a field called *sid*.

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

• Renaming operator: $\rho(C(1 \rightarrow sid1, 5 \rightarrow sid2), S1 \times R1)$

Summary

- The relational model has rigorously defined query languages that are simple and powerful.
- * Relational algebra is more operational; useful as internal representation for query evaluation plans.
- ❖ Several ways of expressing a given query; a query optimizer should choose the most efficient version.

PARTB

Joins

* Condition Join:
$$R \bowtie_{c} S = \sigma_{c}(R \times S)$$

- * Result schema same as that of cross-product.
- ❖ Fewer tuples than cross-product, might be able to compute more efficiently – On the Fly without materialiasation

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	58	103	11/12/96

$$S1 \bowtie S1.sid < R1.sid$$

Joins

* <u>Equi-Join</u>: A special case of condition join where the condition *c* contains only *equalities*.

- * Result schema similar to cross-product, but only one copy of fields for which equality is specified.
- * *Natural Join*: Equijoin on *all* common fields.

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96

$$S1 \bowtie_{sid} R1$$

Division

Not supported as a primitive operator, but useful for expressing queries like:

Find sailors who have reserved <u>all</u> boats.

❖ Let A have 2 fields, x and y; B have only field y:

•
$$A/B = \{\langle x \rangle | \exists \langle x, y \rangle \in A \ \forall \langle y \rangle \in B\}$$

- i.e., A/B contains all x tuples (sailors) such that for <u>every</u> y tuple (boat) in B, there is an xy tuple in A.
- Or: If the set of y values (boats) associated with an x value (sailor) in A contains all y values in B, the x value is in A/B.
- * In general, x and y can be any lists of fields; y is the list of fields in B, and x, y is the list of fields of A.

Examples of Division A/B

sno	pno	pno	pno	pno
s1	p1	p2	p2	p1
s1	p2 p3 p4	В1	p4	p2
s1	p3	DI	B2	p4
s1	p4		DZ	<i>B3</i>
s2	p1	sno		$D\mathcal{J}$
s2	p2	s1		
s3	p2	s2	sno	
s4	p2 p2	s3	s1	sno
s4	p4	s4	s4	s1
	$A^{}$	A/B1	A/B2	A/B3

Examples

(Q1) <mark>Find names</mark> of <mark>sailors</mark> who've <mark>reserved boat</mark> <mark>#103</mark>

* Solution 1:
$$\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie Sailors)$$

* Solution 2:
$$\rho$$
 (Temp1, $\sigma_{bid=103}$ Reserves)

$$\rho$$
 (Temp2, Temp1 \bowtie Sailors)

$$\pi_{sname}$$
 (Temp2)

* Solution 3:
$$\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \bowtie Sailors))$$

Solution 3 is not a good idea, the join is done with much larger tables. One could also reduce the Sailors table with a projection at the start to remove the rating and age first.

(Q2) Find names of sailors who've reserved a red

Information about boat color only available in Boats; so need an extra join:

$$\pi_{sname}((\sigma_{color='red'}, Boats) \bowtie Reserves \bowtie Sailors)$$

* A more efficient solution:

$$\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red'}Boats)\bowtie \operatorname{Re}s)\bowtie Sail$$

A query optimizer can find this, given the first solution!

(Q3) Find the colors of the boats reserved by Lubber

First reduce the Sailors to only Lubber

$$\pi_{color}((\sigma_{sname='Lubber'}Sailors) \bowtie Reserves \bowtie Boats)$$

(Q4) Find the names of the sailors who have reserved at least one boat

No other information about the boats are required

 $\pi_{name}(Sailors \bowtie Reserves)$

(Q5) <mark>Find sailors</mark> who've reserved a <mark>red or a green</mark> boat

Can identify all red or green boats, then find sailors who've reserved one of these boats:

```
\rho \ (\textit{Tempboats}, (\sigma_{color = 'red' \lor color = 'green'}, \textit{Boats}))
```

 π_{sname} (Temphoats \bowtie Reserves \bowtie Sailors)

(Q6) Find sailors who've reserved a red <u>and</u> a green boat

It won't work to make a list of all the boats with color red and green first, why not?

(*Q7) Find sailors who've reserved at least two boat

Very important – example of a cross-product

(Q8) Find the sid's of sailors with age over 20 who have not reserve a red boat.

Hint – Use set-difference operator

(Q9) Find the names of sailors who've reserved all boats

Hint - Use Division;

Q(10) To find sailors who've reserved all 'Interlake' boats:

Answers to above questions

(Q1) Find names of sailors who've reserved boat #103

* Solution 1:
$$\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie Sailors)$$

* Solution 2:
$$\rho$$
 (Temp1, $\sigma_{bid=103}$ Reserves)

$$\rho$$
 (Temp2, Temp1 \bowtie Sailors)

$$\pi_{sname}$$
 (Temp2)

* Solution 3:
$$\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \bowtie Sailors))$$

Solution 3 is not a good idea, the join is done with much larger tables. One could also reduce the Sailors table with a projection at the start to remove the rating and age first.

(Q2) Find names of sailors who've reserved a red boat

Information about boat color only available in Boats; so need an extra join:

$$\pi_{sname}((\sigma_{color='red'}, Boats) \bowtie Reserves \bowtie Sailors)$$

* A more efficient solution:

$$\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red'}Boats)\bowtie \operatorname{Re}s)\bowtie Sail$$

A query optimizer can find this, given the first solution!

(Q3) Find the colors of the boats reserved by Lubber

First reduce the Sailors to only Lubber

$$\pi_{color}((\sigma_{sname='Lubber'}Sailors) \bowtie Reserves \bowtie Boats)$$

(Q4) Find the names of the sailors who have reserved at least one boat

No other information about the boats are required

 $\pi_{name}(Sailors \bowtie Reserves)$

- (Q5) Find sailors who've reserved a red or a green boat
- ❖ Can identify all red or green boats, then find sailors who've reserved one of these boats:

$$\rho \ (\textit{Tempboats}, (\sigma_{color = 'red' \lor color = 'green'}, \textit{Boats}))$$

 π_{sname} (Temphoats \bowtie Reserves \bowtie Sailors)

(Q6) Find sailors who've reserved a red <u>and</u> a green boat

It won't work to make a list of all the boats with color red and green first, why not?

$$\rho$$
 (Tempred, π_{sid} (($\sigma_{color=red}$, Boats) \bowtie Reserves))

$$\rho$$
 (Tempgreen, $\pi_{sid}((\sigma_{color=green}, Boats)) \bowtie Reserves))$

 $\pi_{sname}((Tempred \cap Tempgreen) \bowtie Sailors)$

(*Q7) Find sailors who've reserved at least two boat

Very important – example of a cross-product

$$\rho(\text{Reservations}, \pi_{sid, sname, bid}(\text{Sailors}) \bowtie \text{Reserves}))$$

 $\rho(\text{ResPairs}, \text{Reservations} \times \text{Reservations})$

$$\rho((1 \rightarrow sid1, 2 \rightarrow sname1, 3 \rightarrow bid1, 4 \rightarrow sid2, 5 \rightarrow sname2, 6 \rightarrow bid2), ResPairs)$$

$$\pi_{sname}((\sigma_{(sid1=sid2)\land(bid1\neq bid2)}^{(sid1=sid2)\land(bid1\neq bid2)}^{(sid1=sid2)}^{(sid1=$$

(Q8) Find the sid's of sailors with age over 20 who have not reserve a red boat.

Very important – example of set-difference operator $\pi sid^{(\sigma)}(age>20)^{(Sailors)}$

$$\pi_{sid}((\sigma_{(color='red')}Boats) \bowtie Reserves \bowtie Sailors)$$

(Q9) Find the names of sailors who've reserved all boats

* Uses division; schemas of the input relations to / must be carefully chosen: $\rho(Tempsids, (\pi_{sid,bid} Reserves)/(\pi_{bid} Boats))$ $\pi_{sname} (Tempsids \bowtie Sailors)$

Q(10) To find sailors who've reserved all 'Interlake' boats:

....
$$/\pi_{bid}(\sigma_{bname=Interlake'}Boats)$$

Summary

- ❖ The relational model has rigorously defined query languages that are simple and powerful.
- * Relational algebra is more operational; useful as internal representation for query evaluation plans.
- * Several ways of expressing a given query; a query optimizer should choose the most efficient version.