SYNCHRONISERS: ATTEMPT TO SYNCHRONISE ASYNC NETWORKS (SEE LYNCH CH 16) Assosintaged with second even less, with byz) failures

o ensures that all messages are sent befor

U1

o collects all sent messages and then delivers them to their targets

LocSync (Local Synchronizer)

- o similar to GlobSync
- o but only ensures that *all* neighborhood messages are sent before receiving

Assignment Project Exam Help

o Synchronizers need to keep the round

er, explicitly or implicitly.

https://eduassistpro.gifhulphodes are present,

s from different rounds may

SimpleSync (Simple Synchronizer) an implementation of the december Chat edu assister (fast, slow).

ocess U3 may receive a round 2 message from U2, before receiving its round 1 message from U1!

Assignment Project Exam: Charges Help?

Add WeChat edu_assist_pro

o Using a simpler sync algorithm in

more complex async!

o E.g. Sync Distributed MST instead of the Async Distributed MST (GHS)

Assignment Project Exam Help

- Obtaining a faster runtim
 - E.g. could this avoi https://eduassistpro.github.io/ry costly in the end?
 - What if we apply a synchroniser to hat; edu_assist_pro

COMPSCI 711

https://eduassistpro.github.io/

radu/2020

COMMUNICATION FAILURES

Assignment Project Exam Help
Is it possible to reach a distributed agreement with (unbounded) communication failures?

AddaWeChat edu_assist_pro

o Termination:

o All processes eventually decide.

o Agreement:

o No two processes ever signment Project. Exam

o Validity:

- If all processes start with https://eduassistpro all messages are properly delivered, then 1 is t one possible decision value de Chat edu a
 - relaxation: allow fallback on 0 if communications fail (approx. v0 could be 0)

and

o If all processes start with the same initial value 0, then 0 is the only one possible decision value. [STRONG]

We also assume that a decision once taken can be immediately acted upon (by *all processes in sync*).

Diagrams				
	Initial	Decision		
No comm fault	$\forall 0$	$\forall 0$		
Comm faults	$\forall 0$	A0		

.aithub.io/		
9	Initial	Decision
omm fault	$\forall 1$	$\forall 1$
m faults	$\forall 1$	$\forall 1 \ or \ \forall 0$

	Initial	Decision
No comm fault	∃0,∃1	$\forall 1 \ or \ \forall 0$
Comm faults	∃0,∃1	$\forall 1 \ or \ \forall 0$

Fundamental result: Even under such relaxed conditions, no deterministic agreement is possible if unlimited combination described but the possible (but the possible possible). It was done internet work?)

Proof: by induction, using the gi

In our diagrams, Add We Chatredu_assister and termination conditions

eement and termination conditions

eement and termination conditions

(even if no more messages are received)

Assignment Projects Report Colors

- 2 Phase Commit W ION ("BLOCKING")
 3 Phase Commit W ION ("BLOCKING")
 3 Phase Commit W ION ("BLOCKING")

Termination: All non-faulty processes eventually decide [STRONG]. (3PC)

or

If there are no failures then Algeoremen eventually decide [WEAK].

Agreement: No two processes (e https:// faulty) ever decide on different va [STRONG]. (2&3**RG)**d

Validity: If any process starts with the initial value 0, then 0 is the only one possible decision value.

initial $0 \rightarrow \text{can start}$ as decided 0!and If all processes start with the same initial value 1 and there are no failures, then 1 is the only one possible decision value.

[WEAK]. (2&3PC)

Diagrams				
Process	Initial	Decision		
Decided, not failing		$\forall 1 \ or \ \forall 0^{\dagger}$		
Decided, before failing	$\forall 1$	$\forall 1 \ or \ \forall 0^{\dagger}$		
laduaaaiatora aitbub is	1			
/eduassistpro.gi̯tիլվե, ic) /			

VeChat edu_assist_pro	Initial	Decision
Decided, not failing		A0
Decided, before failing	<mark>∃0</mark>	Argoration 0
Non-decided, failed		
Non-decided, not failing (2PC*)		_

- Decision 0 is allowed only if one/more processes fail
- The 2PC weak termination condition allows non-faulty process (with initial value 1) that never decide, that remain "blocked" (unless they receive some "magical" help).

https://eduassistpro.github.io/ COMPSCI 711 radu/2020 THE 2 PHASE COMMIT – WEAK TERMINATION ("BLOCKING")

Assignment Project Exam Help
cuss here:

• Participants: coordinator (leader), cohorts. We do not discuss here: o how the processes start this $We Chareedu_assisting prejn(1) \rightarrow decided(1)$, or +failedo how do they recover after final: **decided(0)** failures. $(1,\mathbf{u})$ (0,d)final: **decided**(1) Assigninent Project Exam H (0,d)(1,u)(1,d) $(1,\mathbf{u})$ $(1,\mathbf{u})$ (0,d)https://eduassistpro.github. (1,u)(1,u)(1.u)If #1 fails, then #2&3 cannot differentiate between left edu_assist_pro

attempted **decision(0) blocked** for ever (0,d)(0,d)(0,d) $(1,\mathbf{u})$ (1,u) $(1,\mathbf{u})$ $(1,\mathbf{u})$ $(1,\mathbf{u})$ $(1,\mathbf{u})$

(0,d)

(0,d)

(0,d)

(0.d)

o 2PC blocks because the leader is too greedy to decide on 1 and fails before sending its messages

COMPSCI 711

https://eduassistpro.github.io/

radu/2020

THE 3 PHASE COMMIT – STRONG TERMINATION ("NON-BLOCKING")

Assignment Project Exam Help

3PC algorithm is less greedy than 2PC and new coordinators arise in place of failed ones

States (one more, ready): decided(1), or +failed

O State transition rules are "natural" and similar for all rounds, except:

- In the first 3 rounds:
- decided(0)!

Add WeChat edu_assist $\overset{\circ}{\text{pro}}$ If all are $\frac{\text{uncertain}}{\text{decided(1)}}$, they will

- o In round 4 and following:
 - Any missing message is ignored!
 - o If all the rest are uncertain, they will *certainly* \Rightarrow decided(0)!

final: **decide**(0) (0.d)(1,u)(0,d)(0,d)(0,d)(0,d)(0,d)(0,d)(0.d) $(1,\mathbf{u})$ (1,u)(0,d) COMPSCI 711

https://eduassistpro.github.io/

radu/2020

Assignment Project Exam Help

