環論 (12回目)の解答

問題 12-1

 $f(x) \in I$ より $(f(x)) \subseteq I$ である. $g(x) \in I$ とし、

$$g(x) = q(x)f(x) + r(x), \quad \deg r(x) < \deg f(x)$$

を満たす $q(x), r(x) \in K[x]$ をとる. このとき,

$$r(x) = g(x) - q(x)f(x) \in I.$$

f(x) の最小性から r(x)=0. よって $g(x)=q(x)f(x)\in (f(x))$. 従って $I\subseteq (f(x))$ であり, I=(f(x)) が示せた.

問題 12-2

(1) $1 \in I$ と仮定する. $1 \in I = (x, p)$ より, 1 = xa(x) + pb(x) を満たす $a(x), b(x) \in A$ がある. 上式に x = 0 を代入すれば 1 = pb(0) だが, 1 が p の倍数となり矛盾. よって $1 \notin I$.

(2) $f(x) \mid p$ より, p = f(x)g(x) $(g(x) \in A)$ と表せる. 次数を考えれば, $\deg f(x) = \deg g(x) = 0$. よって f(x) = a, g(x) = b $(a, b \in \mathbb{Z})$ と表せる. p は素数より, $f(x) = a = \pm 1$, $\pm p$.

(3) I が単項イデアルと仮定する. このとき, I=(f(x)) $(f(x)\in A)$ とかける. $p\in I=(f(x))$ より $f(x)\mid p$. (2) から f(x) は $\pm 1, \pm p$ のいずれか. $f(x)=\pm 1$ のときは (1) に矛盾. $f(x)=\pm p$ とする と I=(p) である. $x\in I=(p)$ より, x=pg(x) $(g(x)\in A)$ と表せる. これに x=1 を代入すれば 1=pg(1) となり矛盾. 以上より I は単項イデアルではない.

問題 12-3

IをAの(0)でない素イデアルとする. また $I \subseteq J$ を満たすイデアルJをとる. AはPIDより

$$I = (a), J = (b) (a, b \in A)$$

と表せる. $a \in I \subsetneq J = (b)$ より a = bc $(c \in A)$ と表せる. $bc = a \in I$ であり, I は素イデアルであるから, $b \in I$ または $c \in I$ となる. $I \subsetneq J$ より $b \not\in I$ であるから $c \in I$ となる. 従って c = ad $(d \in A)$ と表せる. よって

$$a = bc = abd$$

であり, $a \neq 0$ に注意すれば, bd = 1 となる. $b \in A^{\times}$ より, J = A が従う. 以上より, I は A の極大イデアルである.

copyright ⓒ 大学数学の授業ノート