Stephen Ace Sy | Assignment 1

Using k-Nearest Neighbours, predict if a student will **Pass (1)** or **Fail (0)** based on:

- X1 = Hours Studied
- X2 = Sleep Hours

Training Data (10 Students)								
Student	Hours Studied X ₁	Sleep Hours X ₂	Pass/Fail (Y)					
1	1.0	5.0	0 (Fail)					
2	2.0	5.5	0 (Fail)					
3	3.0	6.0	0 (Fail)					
4	4.5	5.0	0 (Fail)					
5	5.0	6.5	1 (Pass)					
6	5.5	7.0	1 (Pass)					
7	6.0	6.0	1 (Pass)					
8	7.0	7.0	1 (Pass)					
9	8.0	6.0	1 (Pass)					
10	9.0	7.5	1 (Pass)					

Task

A new student studied **4 hours** and slept **6 hours**. We want to predict whether they **Pass** or **Fail** using **KNN with k = 3**.

1. Plot all data points using a scatter plot (10 points)

- Use a circle of for students who failed.
- Use a square for students who passed.
- Use a star 🌟 for the unknown data point.

2. Compute Distances (10 points)

• Note: Please show all solutions.

• For the new student, compute the **Euclidean distance** from all data points:

• $d = \sqrt{((X_1 - 4)^2 + (X_2 - 6)^2)}$

# Student 🗸	# Hours Studied (X1) 🗸	# Sleep Hours (X2) V	# Pass/Fail (Y) V	# Euclidean Distance 🗸
1	1	5	0	3.162
2	2	5.5	0	2.062
3	3	6	0	1
4	4.5	5	0	1.118
5	5	6.5	1	1.118
6	5.5	7	1	1.803
7	6	6	1	2
8	7	7	1	3.162
9	8	6	1	4
10	9	7.5	1	5.22

3. Find the 3 Nearest Neighbors (3 points)

3	3	6	0	1
4	4.5	5	0	1.118
5	5	6.5	1	1.118

4. Majority Vote (2 points)

Fail (0): 2 votes

Pass (1): 1 vote

Prediction: So the prediction is the new student will fail the exam

5. Discussion Questions (5 points)

1. What was your final prediction?

o The final prediction is the new student will fail the exam.

2. How would the prediction change if we used k = 5 instead of k = 3?

With k=5, the neighbors would be Students 3, 4, 5, 6, and 7. The vote would be 2
Fails vs. 3 Passes, changing the prediction to Pass.