反函数

Dezeming Family

2022年1月5日

DezemingFamily 系列书和小册子因为是电子书,所以可以很方便地进行修改和重新发布。如果您获得了 DezemingFamily 的系列书,可以从我们的网站 [https://dezeming.top/] 找到最新版。对书的内容建议和出现的错误欢迎在网站留言。

目录

_	- 一对	一函数与反函	≦数										1
=	. 反函	数的导数											1
	2 1	证明方法一		 	 	 	 	 	 			 	1
	2 2	证明方法二		 	 	 	 		 			 	2
参	考文庫	狀											2

一 一对一函数与反函数

对于函数而言,如果对定义域内任何 $x_1 \neq x_2$ 都满足 $f(x_1) \neq f(x_2)$,则它是一个一对一函数 (one-to-one function)。

定义域在 $[0,\infty]$ 的函数 $y=x^2$ 是一个一对一函数;但是如果定义域在 $[-\infty,\infty]$,函数 $y=x^2$ 则不是一个一对一函数。

对于一对一函数, f(x) 定义域为 A, 值域为 B, 则定义反函数 $f^{-1}(y)$ 的定义域为 B, 值域为 A:

$$f^{-1}(y) = x \iff f(x) = y \tag{-.1}$$

二 反函数的导数

21 证明方法一

如果 f 是一个一对一可微函数,反函数是 f^{-1} 且 $f'(f^{-1}(a)) \neq 0$,则反函数在 a 点就是可微的。由于:

$$(f^{-1})'(a) = \lim_{x \to a} \frac{f^{-1}(x) - f^{-1}(a)}{x - a} \tag{-.1}$$

如果 f(b) = a,则 $f^{-1}(a) = b$ 。如果我们让 $y = f^{-1}(x)$,则 f(y) = x,由于 f 可微且连续,所以 f^{-1} 也是连续的,当 $x \to a$ 则 $f^{-1}(x) \to f^{-1}(a) = b$ 。因此:

$$(f^{-1})'(a) = \lim_{x \to a} \frac{f^{-1}(x) - f^{-1}(a)}{x - a} = \lim_{y \to b} \frac{y - b}{f(y) - f(b)} = \lim_{y \to b} \frac{1}{\frac{f(y) - f(b)}{y - b}}$$
 ($\stackrel{\sim}{-}$.2)

$$= \frac{1}{\lim_{y \to b} \frac{f(y) - f(b)}{y - b}} = \frac{1}{f'(b)} = \frac{1}{f'(f^{-1}(a))}$$
 (=.3)

注意在证明中我们希望计算 $(f^{-1})(a)$ 处的导数,我们已知量是 f'(x) 和 $(f^{-1})(x)$ 的计算方法,基于此构造了上述的证明过程。

22 证明方法二

如果我们令 $y=f^{-1}(x)$,则 f(y)=x,也就是说 x 是 y 的函数,同时 y 也是 x 的函数。对于一个函数 f(y),我们根据链式法则求其导数:

$$f'(y)\frac{dy}{dx} = 1 \tag{-.4}$$

$$\Longrightarrow \frac{dx}{dx} = \frac{1}{f'(y)} = \frac{1}{\frac{dx}{dy}} \tag{1.5}$$

所以上式可以表示为莱布尼兹表示 (Leibniz notation):

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} \tag{-.6}$$

参考文献

[1] James Stewart. Calculus, Eighth Edition. 2016.