World Indicators

Introduction

The analysis period spans from 1990 to 2024 on a global scale, but focuses on countries that allow for relevant comparisons, particularly to situate Chile within the Latin American context.

The aim is to contrast opinions with objective data on Chile, especially when it is described as a leading country in the region. Likewise, it examines the demands for greater state funding—based on the argument that Chile has sufficient resources—versus those who claim that resources are limited and advocate for private sector involvement to meet social demands.

```
In [204... #Libraries to use
   import pandas as pd
   from pandas_datareader import wb
   import seaborn as sns
   import numpy as np
   import matplotlib.pyplot as plt
   from collections import defaultdict
   from matplotlib.patches import Patch
   import warnings
```

Países del Banco Mundial

```
In [206... countries = wb.get countries()
         countries.head(2)
                                       region adminregion incomeLevel lendingType
Out[206...
            iso3c iso2c
                            name
                                         Latin
            ABW
                     AW
                                    America &
                                                              High income Not classified
         0
                            Aruba
                                    Caribbean
                            Africa
                           Eastern
         1
              AFE
                     ZΗ
                                   Aggregates
                                                                            Aggregates
                                                               Aggregates
                              and
                          Southern
```

```
In [207... # Contar países por regiones
    conteo_paises_region = countries['region'].value_counts().reset_index()
    conteo_paises_region.columns = ['region', 'número_de_países']
    print(conteo_paises_region)
```

```
region número_de_países
0
                   Aggregates
1
        Europe & Central Asia
                                             58
          Sub-Saharan Africa
                                             48
2
3 Latin America & Caribbean
                                             42
          East Asia & Pacific
                                             37
5 Middle East & North Africa
                                             21
                   South Asia
                                              8
6
                North America
7
                                              3
```

In [208... # Contar países por su clasificación
 conteo_paises_clasificacion = countries['incomeLevel'].value_counts().reset_
 print(conteo_paises_clasificacion)

```
incomeLevel count
0
          High income
                         85
1
           Aggregates
                         79
2 Upper middle income
                         54
3 Lower middle income
                        51
           Low income
                         26
5
       Not classified
                         1
```

Países

Aquí se detalla el país o los países utilizados en el análisis. Se crearan listas según se va avanzando el analisis y se requiera revisar algun conjunto de países, etc.

```
In [210... #Primer grupo. Países que son parte de la OCDE
         #Lista de países (actualizada a 2023).
         oecd countries = [
             'Australia', 'Austria', 'Belgium', 'Canada', 'Chile', 'Colombia', 'Costa
             'Czech Republic', 'Denmark', 'Estonia', 'Finland', 'France', 'Germany',
             'Hungary', 'Iceland', 'Ireland', 'Israel', 'Italy', 'Japan', 'Korea, Rep
             'Latvia', 'Lithuania', 'Luxembourg', 'Mexico', 'Netherlands', 'New Zeala
             'Norway', 'Poland', 'Portugal', 'Slovak Republic', 'Slovenia', 'Spain',
             'Sweden', 'Switzerland', 'Turkey', 'United Kingdom', 'United States']
         #Segundo grupo. Países de América Central y del Sur
         central south america = ['Belize', 'Costa Rica', 'El Salvador', 'Guatemala',
             'Honduras', 'Nicaragua', 'Panama', 'Antigua and Barbuda', 'Bahamas',
             'Barbados', 'Cuba', 'Dominica', 'Grenada', 'Haiti', 'Jamaica',
             'Dominican Republic', 'Saint Kitts and Nevis', 'Saint Vincent and the Gr
             'Saint Lucia', 'Trinidad and Tobago', 'Argentina', 'Bolivia', 'Brazil',
             'Colombia', 'Ecuador', 'Guyana', 'Paraguay', 'Peru', 'Suriname', 'Urugua
In [211... type(central south america)
```

Out[211... list

Función para obtener los datos del indicador

```
In [213... | def descargar datos wb(indicadores, paises, inicio, fin):
             dfs = []
             for nombre, indicador in indicadores.items():
                     # Descargar datos para el indicador actual
                     df = wb.download(
                          indicator=indicador,
                         country=paises,
                          start=inicio,
                         end=fin
                     )
                     df.reset index(inplace=True)
                     df['indicador'] = nombre # Agregar columna con nombre del indic
                     df.rename(columns={indicador: 'valor'}, inplace=True)
                     dfs.append(df)
                 except Exception as e:
                     print(f"Error al descargar el indicador {nombre} ({indicador}):
             # Combinar todos los DataFrames
                 df final = pd.concat(dfs, ignore index=True)
                 return df final
             else:
                 return pd.DataFrame()
```

Gross Domestic Product (GDP)

To analyze the relationship between GDP and fiscal spending, it is necessary to select the most appropriate indicator. For this purpose, the available indicators on the relevant portal will be reviewed to identify which one allows for a valid comparison with public expenditure. Additionally, the GDP measurement units will be assessed to choose the most suitable one for this analysis.

```
In [215... # Buscar indicadores relacionados con "gdp"
    resultados = wb.search('gdp')

# Convertir a DataFrame
    df_resultados = pd.DataFrame(resultados)

# Mostrar las primeras filas y también generar un archivo excel por una sola #df_resultados.to_excel('GPD.xlsx')
    df_resultados.head(3)
```

Out[215		id	name	unit	source	sourceNote	sourceOrganization
	688	6.0.GDP_current	GDP (current \$)		LAC Equity Lab	GDP is the sum of gross value added by all res	b'World Development Indicators (World Bank)'
	689	6.0.GDP_growth	GDP growth (annual %)		LAC Equity Lab	Annual percentage growth rate of GDP at market	b'World Development Indicators (World Bank)'
	690	6.0.GDP_usd	GDP (constant 2005 \$)		LAC Equity Lab	GDP is the sum of gross value added by all res	b'World Development Indicators (World Bank)'

```
In [216... type(df_resultados)
```

Out[216... pandas.core.frame.DataFrame

The selection of the indicator **NY.GDP.MKTP.KD.ZG** refers to the Annual percentage growth rate of Gross Domestic Product (GDP) at market prices in constant local currency. The data, expressed as a percentage, will initiate an introductory research process that will strengthen the analysis due to the correct and timely choice of indicators, which will reflect the political and social economy of post-dictatorship Chile.

Comparative GDP Analysis: OECD Countries vs. Chile (1990-1993 vs. 2020-2023)

This study examines the evolution of Gross Domestic Product (GDP) in OECD member countries, comparing their performance with Chile's across two key periods: the early 1990s (1990-1993) and recent years (2020-2023). It is worth noting that some analyzed countries, including Chile, were not OECD members during the first period (Chile joined in 2010), allowing for an assessment of their economic trajectory both before and after joining the organization.

The analysis aims to identify:

- Comparative economic growth trends
- Chile's relative evolution compared to OECD countries
- Changes in growth patterns between both periods

```
In [219... # Indicador seleccionado y los países del OCDE
indicadores = {
    'crecimiento del PIB': 'NY.GDP.MKTP.KD.ZG'
}
```

```
paises = [
     'AUS', 'AUT', 'BEL', 'CAN', 'CHL', 'COL', 'CRI',
     'CZE', 'DNK', 'EST', 'FIN', 'FRA', 'DEU', 'GRC',
     'HUN', 'ISL', 'IRL', 'ISR', 'ITA', 'JPN', 'KOR',
     'LVA', 'LTU', 'LUX', 'MEX', 'NLD', 'NZL',
     'NOR', 'POL', 'PRT', 'SVK', 'SVN', 'ESP',
     'SWE', 'CHE', 'TUR', 'GBR', 'USA'
 1
 df pib = descargar datos wb(indicadores, paises, '1990', '2023')
 #df pib.to excel('pib.xlsx') #Exportar archivo para revisar la consistencia
 df pib.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1292 entries, 0 to 1291
Data columns (total 4 columns):
# Column Non-Null Count Dtype
--- -----
               -----
 0 country 1292 non-null object
 1 year 1292 non-null object
2 valor 1285 non-null float64
   indicador 1292 non-null object
 3
dtypes: float64(1), object(3)
memory usage: 40.5+ KB
C:\Users\Paula\AppData\Local\Temp\ipykernel 9652\2667942121.py:7: FutureWarn
ing: errors='ignore' is deprecated and will raise in a future version. Use t
o_numeric without passing `errors` and catch exceptions explicitly instead
 df = wb.download(
```

```
In [221... # Convertir 'year' a numérico (si aún no lo está)
         df pib['year'] = pd.to numeric(df pib['year'], errors='coerce')
         # Filtrar y sumar valores para 1990-1993
         df_90 = df_pib[(df_pib['year'] >= 1990) & (df_pib['year'] <= 1995)].groupby(
         df 90 = df 90.rename(columns={'valor': 'sum 1990 1995'}) # Renombrar column
         # Ordenar el dataframe por sum 1990 1995 de forma descendente y agregar rank
         df_90 = df_90.sort_values('sum_1990_1995', ascending=False).reset index(drop
         df 90['ranking 1990 1995'] = df 90.index + 1 # +1 para que empiece en 1 en
         # Filtrar y sumar valores para 2010-2015
         df 20 = df pib[(df pib['year'] >= 2010) & (df_pib['year'] <= 2015)].groupby(
         df 20 = df 20.rename(columns={'valor': 'sum 2010 2015'}) # Renombrar column
         # Hacer un left join para mantener todas las filas de df 20
         df 20 = pd.merge(
             df 20,
             df_90[['country', 'ranking_1990_1995']], # Seleccionar solo las columna
             on='country', # Columna común para unir
                          # Mantener todas las filas del dataframe izquierdo
             how='left'
         # Filtrar y sumar valores para 2020-2023
         df 2020 = df pib[(df pib['year'] >= 2020) & (df pib['year'] <= 2023)].groupt
         df 2020 = df 2020.rename(columns={'valor': 'sum 2020 2023'}) # Renombrar cd
```

```
In [222... df 90.head(2)
              country sum_1990_1995 ranking_1990_1995
Out[222...
          0 Korea, Rep.
                              52.614957
                                                          2
                  Chile
                              42.856943
In [223... df 20.head(2)
             country sum_2010_2015 ranking_1990_1995
Out [223...
          0 Australia
                           15.931417
                                                       12
              Austria
                             7.173292
                                                       14
In [224... df 2020.head(2)
            country sum_2020_2023
Out[224...
          O Australia
                             9.675955
              Austria
                             2.800006
In [225... #countries es el dataframe con los países del Banco Mundial.
         #el cual tiene una variable llamada 'name' y que contiene los nombres de los
         #y para complementar los dataframe anteriores: df 90 y df 20 con otros datos
         #perentorio que alguna variable tenga el mismo nombre en todos los data df d
         #sino se da el caso, se renombra alguna columna, la que es igual en todos lo
         #name tiene los nombres de los países, pero en los otros data se llama esta
         #por lo tanto, se le renombra con ese nombre 'country'
         countries.rename(columns={'name': 'country'}, inplace=True)
In [226... # Hacer un left join para mantener todas las filas de df 90
         df 90 completo = pd.merge(
             df 90,
             countries[['country', 'region', 'incomeLevel']], # Seleccionar solo las
             on='country', # Columna común para unir
             how='left' # Mantener todas las filas del dataframe izquierdo (df 96
         df 90 completo.head(1)
                                                               region incomeLevel
             country sum_1990_1995 ranking_1990_1995
Out [226...
                                                           East Asia &
               Korea.
          0
                            52.614957
                                                                        High income
                                                                Pacific
                 Rep.
In [227... # Hacer un left join para mantener todas las filas de df 20
         df 20 completo = pd.merge(
             df 20,
             countries[['country', 'region', 'incomeLevel']], # Seleccionar solo las
             on='country', # Columna común para unir
                            # Mantener todas las filas del dataframe izquierdo
```

```
df_20_completo.head(40)
```

Out[227		country	sum_2010_2015	ranking_1990_1995	region	incomeLevel
	0	Australia	15.931417	12	East Asia & Pacific	High income
	1	Austria	7.173292	14	Europe & Central Asia	High income
	2	Belgium	8.402469	22	Europe & Central Asia	High income
	3	Canada	13.832913	25	North America	High income
	4	Chile	25.483988	2	Latin America & Caribbean	High income
	5	Colombia	27.944112	6	Latin America & Caribbean	Upper middle income
	6	Costa Rica	24.335052	5	Latin America & Caribbean	Upper middle income
	7	Czechia	10.878536	33	Europe & Central Asia	High income
	8	Denmark	7.663356	17	Europe & Central Asia	High income
	9	Estonia	20.646183	36	Europe & Central Asia	High income
	10	Finland	3.044536	31	Europe & Central Asia	High income
	11	France	7.468081	23	Europe & Central Asia	High income
	12	Germany	12.587471	13	Europe & Central Asia	High income
	13	Greece	-25.609848	27	Europe & Central Asia	High income
	14	Hungary	11.434913	35	Europe & Central Asia	High income
	15	Iceland	10.752980	30	Europe & Central Asia	High income

	country	sum_2010_2015	ranking_1990_1995	region	incomeLevel
16	Ireland	39.076566	4	Europe & Central Asia	High income
17	Israel	24.166182	3	Middle East & North Africa	High income
18	Italy	-1.834415	26	Europe & Central Asia	High income
19	Japan	9.358411	19	East Asia & Pacific	High income
20	Korea, Rep.	22.069289	1	East Asia & Pacific	High income
21	Latvia	14.654743	37	Europe & Central Asia	High income
22	Lithuania	21.786006	38	Europe & Central Asia	High income
23	Luxembourg	14.519275	8	Europe & Central Asia	High income
24	Mexico	18.026779	16	Latin America & Caribbean	Upper middle income
25	Netherlands	5.817771	11	Europe & Central Asia	High income
26	New Zealand	16.223961	10	East Asia & Pacific	High income
27	Norway	9.532330	9	Europe & Central Asia	High income
28	Poland	18.972688	20	Europe & Central Asia	High income
29	Portugal	-2.679723	18	Europe & Central Asia	High income
30	Slovak Republic	19.510332	34	Europe & Central Asia	High income
31	Slovenia	3.184402	32	Europe & Central Asia	High income

	country	sum_2010_2015	ranking_1990_1995	region	incomeLevel
32	Spain	0.743118	21	Europe & Central Asia	High income
33	Sweden	16.343802	28	Europe & Central Asia	High income
34	Switzerland	12.022412	29	Europe & Central Asia	High income
35	Turkiye	43.925727	7	Europe & Central Asia	Upper middle income
36	United Kingdom	12.098123	24	Europe & Central Asia	High income
37	United States	14.135913	15	North America	High income

Out [228...countrysum_2020_2023regionincomeLevel0Australia9.675955East Asia & PacificHigh income

```
In []:
In [229... # Configuración de estilo y parámetros
bar_width = 0.7
space_between_bars = 0.3

# Configurar figura y subgráficos
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(22, 11)) # 1 fila, 2 columnas

# Añadir título principal centrado sobre ambos gráficos
fig.suptitle('Comparación del Crecimiento del PIB en los Países de la OCDE e
fontsize=20, y=1.05)

# Ajustar diseño
plt.tight_layout()
fig.subplots_adjust(top=0.9, bottom=0.25) # Ajustamos top para el título pr

# --- Definir colores únicos para todas las regiones ---
regiones totales = pd.concat([df 90 completo['region'], df 20 completo['region']
```

```
colores = plt.cm.tab20.colors[:len(regiones totales)]
color por region = dict(zip(regiones totales, colores))
# --- Gráfico 1: 1990-1993 ---
df sorted 90 = df 90 completo.sort values('sum 1990 1995', ascending=False)
x positions = np.arange(len(df sorted 90['country'])) * (1 + space between b
bars1 = ax1.bar(
   x positions,
    df sorted 90['sum_1990_1995'],
   width=bar width,
    color=[color por region[region] for region in df sorted 90['region']]
ax1.set title('Suma del PIB. Período (1990-1995)\n', fontsize=18)
ax1.set xlabel('Países', fontsize=16)
ax1.set ylabel('Crecimiento del PIB en %', fontsize=16)
ax1.set xticks(x positions)
ax1.set xticklabels(df sorted 90['country'], rotation=80, ha='right', fontsi
ax1.grid(axis='y', linestyle='--', alpha=0.7)
# --- Gráfico 2: 2020-2023 ---
df sorted 20 = df 20 \text{ completo.sort values('sum 2010 2015', ascending=False)}
bars2 = ax2.bar(
   x positions,
    df sorted 20['sum 2010 2015'],
   width=bar width,
    color=[color por region[region] for region in df sorted 20['region']]
# Ajustar límites del eje Y para dar más espacio superior
max valor = df sorted 20['sum 2010 2015'].max()
ax2.set ylim(0, max valor * 1.10) # Añade 10% de espacio extra arriba
# Resto de configuraciones del gráfico 2 (títulos, ejes, etc.)
ax2.set title('Suma del PIB. Período (2010-2015)\n(El número sobre la barra
ax2.set xlabel('Países', fontsize=16)
ax2.set xticks(x positions)
ax2.set xticklabels(df sorted 20['country'], rotation=80, ha='right', fontsi
ax2.grid(axis='y', linestyle='--', alpha=0.7)
# Agregar ranking de 1990-1993 sobre cada barra
for bar, valor, ranking in zip(bars2, df sorted 20['sum 2010 2015'], df sort
    ax2.text(
        bar.get_x() + bar.get width()/2,
        valor + (0.02 * max(df sorted 20['sum 2010 2015'])),
        str(int(ranking)),
        ha='center',
        va='bottom',
        fontsize=12.
        bbox=dict(facecolor='white', alpha=0.7, edgecolor='none')
    )
# --- Leyenda común debajo de ambos gráficos ---
handles = [plt.Rectangle((0, 0), 1, 1, color=color_por_region[region], label]
           for region in regiones totales]
```

```
# Ajustar diseño y añadir leyenda
plt.tight layout()
fig.subplots adjust(bottom=0.35) # Aumentamos el espacio inferior para acon
# Crear leyenda más abajo
legend = fig.legend(
    handles=handles,
   title='Región\n',
   loc='lower center'
    bbox to anchor=(0.5, -0.01), # Ajustamos posición vertical (más negativ
    ncol=min(len(regiones totales), 5),
    frameon=False.
    prop={'size': 16},
    title fontsize='16',
# Guardar figura asegurando que la leyenda no se corte
plt.savefig('comparacion pib.png', bbox extra artists=(legend,), bbox inches
plt.show()
```

Comparación del Crecimiento del PIB en los Países de la OCDE en distintos períodos.


```
In [230... # Configuración de estilo
    sns.set_theme(style="whitegrid")

# Parámetros de visualización
    bar_width = 0.7
    space_between_bars = 0.3

# Crear figura con disposición personalizada
    fig = plt.figure(figsize=(24, 16))

# Primer gráfico (arriba izquierda)
    ax1 = plt.subplot2grid((3, 2), (0, 0), colspan=1)
    # Segundo gráfico (arriba derecha)
    ax2 = plt.subplot2grid((3, 2), (0, 1), colspan=1)
    # Tercer gráfico (abajo centrado)
```

```
ax3 = plt.subplot2grid((3, 2), (1, 0), rowspan=2, colspan=2)
# Título principal
fig suptitle ('Comparación del Crecimiento del PIB en los Países de la OCDE e
             fontsize=22, y=0.98)
# --- Definir colores únicos para todas las regiones ---
regiones totales = pd.concat([
    df 90 completo['region'].dropna(),
    df 20 completo['region'].dropna(),
    df 2020 completo['region'].dropna()
]).unique()
palette = sns.color palette("husl", len(regiones totales))
color por region = dict(zip(regiones totales, palette))
# Posiciones x comunes (ajustar según necesidad)
x positions = np.arange(len(df 90 completo['country'])) * (1 + space betweer
# --- Gráfico 1: 1990-1995 ---
df sorted 90 = df 90 completo.sort values('sum 1990 1995', ascending=False)
bars1 = ax1.bar(
   x positions,
   df sorted 90['sum 1990 1995'],
   width=bar width,
   color=[color por region.get(region, 'gray') for region in df sorted 90['
ax1.set title('Período 1990-1995', fontsize=18)
ax1.set xlabel('Países', fontsize=14)
ax1.set ylabel('Crecimiento del PIB (%)', fontsize=14)
ax1.set xticks(x positions)
ax1.set xticklabels(df sorted 90['country'], rotation=80, ha='right', fontsi
ax1.grid(axis='y', linestyle='--', alpha=0.7)
# --- Gráfico 2: 2010-2015 ---
df sorted 20 = df 20 completo.sort values('sum 2010 2015', ascending=False)
bars2 = ax2.bar(
   x positions,
    df sorted 20['sum 2010 2015'],
   width=bar width,
    color=[color por region.get(region, 'gray') for region in df sorted 20['
ax2.set title('Período 2010-2015', fontsize=18)
ax2.set xlabel('Países', fontsize=14)
ax2.set xticks(x positions)
ax2.set xticklabels(df sorted 20['country'], rotation=80, ha='right', fontsi
ax2.grid(axis='y', linestyle='--', alpha=0.7)
# Añadir rankings al segundo gráfico
for bar, valor, ranking in zip(bars2, df sorted 20['sum 2010 2015'], df sort
    ax2.text(
        bar.get x() + bar.get width()/2,
        valor + (0.02 * df sorted 20['sum 2010 2015'].max()),
        str(int(ranking)),
        ha='center',
        va='bottom',
```

```
fontsize=10,
        bbox=dict(facecolor='white', alpha=0.7, edgecolor='none')
    )
# --- Gráfico 3: 2020-2023 ---
df sorted 2020 = df 2020 completo sort values('sum 2020 2023', ascending=Fal
bars3 = ax3.bar(
   x positions,
   df sorted 2020['sum 2020 2023'],
   width=bar width,
   color=[color_por_region.get(region, 'gray') for region in df_sorted_202@
)
ax3.set title('Período 2020-2023', fontsize=18)
ax3.set xlabel('Países', fontsize=14)
ax3.set ylabel('Crecimiento del PIB (%)', fontsize=14)
ax3.set xticks(x positions)
ax3.set xticklabels(df sorted 2020['country'], rotation=80, ha='right', font
ax3.grid(axis='y', linestyle='--', alpha=0.7)
# --- Leyenda común ---
handles = [Patch(color=color por region[region], label=region) for region in
legend = fig.legend(
   handles=handles,
   title='Región',
   loc='lower center',
    bbox to anchor=(0.5, -0.05),
    ncol=min(len(regiones totales), 5),
   fontsize=12,
   title fontsize=14
# Ajustar layout para hacer espacio
plt.tight layout()
plt.subplots adjust(bottom=0.12, hspace=0.4, wspace=0.3) # Ajustar espacios
# Guardar figura
plt.savefig(
    'comparacion pib disposicion personalizada.png',
    bbox extra artists=(legend,),
    bbox inches='tight',
    dpi=300
plt.show()
```


Comparative GDP, year 2023: American Latin Countries vs. OCDE Countries

```
In [232... # Indicador a explorar:
        indicadores = {
           'crecimiento del PIB': 'NY.GDP.MKTP.KD.ZG'
        'PRY', 'PER', 'SUR', 'URY', 'VEN']
        pib america = descargar datos wb(indicadores, paises, '2023', '2023')
        pib america.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 32 entries, 0 to 31
       Data columns (total 4 columns):
                    Non-Null Count Dtype
           Column
       #
                     -----
           country
                    32 non-null
                                  object
       1
           year
                    32 non-null
                                  object
       2
                    31 non-null
                                  float64
           valor
           indicador 32 non-null
       3
                                  object
       dtypes: float64(1), object(3)
       memory usage: 1.1+ KB
```

C:\Users\Paula\AppData\Local\Temp\ipykernel_9652\2667942121.py:7: FutureWarn
ing: errors='ignore' is deprecated and will raise in a future version. Use t
o_numeric without passing `errors` and catch exceptions explicitly instead
 df = wb.download(

```
In [233... pib_america.to_excel('pib_america.xlsx')
```

In [234... pib_america.head(2)

Out [234...]countryyearvalorindicador0Argentina2023-1.611002crecimiento del PIB1Antigua and Barbuda20233.862012crecimiento del PIB

		_			
Out[235		country	year	valor	indicador
	0	Australia	2023	3.441992	crecimiento del PIB
	1	Australia	2022	4.242386	crecimiento del PIB
	2	Australia	2021	2.111168	crecimiento del PIB
	3	Australia	2020	-0.119591	crecimiento del PIB
	4	Australia	2019	2.171545	crecimiento del PIB
	1287	United States	1994	4.029023	crecimiento del PIB
	1288	United States	1993	2.751796	crecimiento del PIB
	1289	United States	1992	3.522497	crecimiento del PIB
	1290	United States	1991	-0.108313	crecimiento del PIB
	1291	United States	1990	1.885966	crecimiento del PIB

1292 rows × 4 columns

Out[236... country year valor indicador

```
In [238... # Mapeo de códigos ISO a nombres de países en inglés
          iso to country = {
              'AUS': 'Australia',
              'AUT': 'Austria',
              'BEL': 'Belgium',
              'CAN': 'Canada',
              'CHL': 'Chile',
              'COL': 'Colombia',
              'CRI': 'Costa Rica',
              'CZE': 'Czech Republic',
              'DNK': 'Denmark',
              'EST': 'Estonia'.
              'FIN': 'Finland',
              'FRA': 'France',
              'DEU': 'Germany',
              'GRC': 'Greece',
              'HUN': 'Hungary',
              'ISL': 'Iceland',
              'IRL': 'Ireland',
              'ISR': 'Israel',
              'ITA': 'Italy',
              'JPN': 'Japan',
              'KOR': 'South Korea',
              'LVA': 'Latvia',
              'LTU': 'Lithuania',
              'LUX': 'Luxembourg',
              'MEX': 'Mexico',
              'NLD': 'Netherlands',
              'NZL': 'New Zealand',
              'NOR': 'Norway',
              'POL': 'Poland',
              'PRT': 'Portugal',
              'SVK': 'Slovakia',
              'SVN': 'Slovenia',
              'ESP': 'Spain',
              'SWE': 'Sweden',
              'CHE': 'Switzerland',
              'TUR': 'Turkey',
              'GBR': 'United Kingdom',
              'USA': 'United States'
          }
          # Lista de códigos de países (la que proporcionaste)
          paises = [
              'AUS', 'AUT', 'BEL', 'CAN', 'CHL', 'COL', 'CRI',
              'CZE', 'DNK', 'EST', 'FIN', 'FRA', 'DEU', 'GRC',
              'HUN', 'ISL', 'IRL', 'ISR', 'ITA', 'JPN', 'KOR',
              'LVA', 'LTU', 'LUX', 'MEX', 'NLD', 'NZL', 'NOR', 'POL', 'PRT', 'SVK', 'SVN', 'ESP',
              'SWE', 'CHE', 'TUR', 'GBR', 'USA'
          ]
          # Crear el DataFrame
```

```
OCDE = pd.DataFrame({
             'country': [iso to country[code] for code in paises], # Nombres en ingl
             'entidad': 'OCDE' # Valor constante
         })
         # Mostrar las primeras filas
         OCDE.head()
Out[238... country entidad
         0 Australia
                        OCDE
         1 Austria
                        OCDE
         2 Belgium
                       OCDE
                     OCDE
         3
            Canada
         4
               Chile OCDE
In [239... # Hacer el left join
         pib america = pd.merge(
             pib america,
             OCDE[['country', 'entidad']], # Seleccionar solo las columnas necesaria
             on='country',
             how='left'
In [240... pib america.head(2)
                                                       indicador entidad
                      country year
                                         valor
Out[240...
                      Argentina 2023 -1.611002 crecimiento del PIB
                                                                      NaN
         1 Antigua and Barbuda 2023 3.862012 crecimiento del PIB
                                                                      NaN
In [241... # 1. Definir colores basados en la columna 'entidad'
         colors = ['indigo' if entidad == 'OCDE' else 'plum' for entidad in pib_ameri
         # 2. Ordenar los valores para mejor visualización
         pib america = pib america.sort values('valor', ascending=False)
         # 3. Crear el gráfico de barras vertical
         plt.figure(figsize=(14, 8))
         bars = plt.bar(
             pib america['country'],
             pib america['valor'],
             color=colors # Usar la lista de colores personalizada
         # --- Agregar línea del promedio OCDE ---
         OCDE prom = 1.05
         plt.axhline(
             y=OCDE prom,
             color='red',
             linestyle='--',
             linewidth=1.5,
```

```
label=f'Promedio OCDE ({OCDE prom:.1f}%)'
# 4. Personalizar el gráfico
plt.title('Crecimiento del PIB en 2023 - Países de América', fontsize=16, pa
plt.xlabel('País', fontsize=12)
plt.ylabel('Crecimiento anual del PIB (%)', fontsize=12)
plt.xticks(rotation=45, ha='right', fontsize=10)
plt.grid(axis='y', linestyle='--', alpha=0.7)
# 5. Añadir etiquetas de valor en las barras
for bar in bars:
    height = bar.get height()
    plt.text(
        bar.get x() + bar.get width()/2.,
        height,
        f'{height:.1f}%',
        ha='center',
       va='bottom',
        fontsize=9
    )
# 6. Leyenda personalizada para los colores
from matplotlib.patches import Patch
legend elements = [
    Patch(facecolor='plum', label='Países no OCDE'),
    Patch(facecolor='indigo', label='Países OCDE'),
    plt.Line2D([0], [0], color='red', linestyle='--', label=f'Promedio OCDE
plt.legend(handles=legend elements, loc='upper right')
# 7. Ajustar diseño y mostrar
plt.tight layout()
plt.show()
```

posx and posy should be finite values posx and posy should be finite values


```
In [ ]:
```

```
In [242... # Indicador a explorar:
   indicadores = {
        'gasto_militar': 'MS.MIL.XPND.GD.ZS',
        'gasto_corriente_salud': 'SH.XPD.CHEX.GD.ZS',
        'gasto_publico_educacion': 'SE.XPD.TOTL.GD.ZS',
        'gasto_investigacion_desarrollo':'GB.XPD.RSDV.GD.ZS',
}

paises = ['CHL']

df_datos = descargar_datos_wb(indicadores, paises, '1990', '2024')
        df_datos.info()
```

C:\Users\Paula\AppData\Local\Temp\ipykernel_9652\2667942121.py:7: FutureWarn
ing: errors='ignore' is deprecated and will raise in a future version. Use t
o_numeric without passing `errors` and catch exceptions explicitly instead
 df = wb.download(

C:\Users\Paula\AppData\Local\Temp\ipykernel_9652\2667942121.py:7: FutureWarn
ing: errors='ignore' is deprecated and will raise in a future version. Use t
o_numeric without passing `errors` and catch exceptions explicitly instead
 df = wb.download(

C:\Users\Paula\AppData\Local\Temp\ipykernel_9652\2667942121.py:7: FutureWarn
ing: errors='ignore' is deprecated and will raise in a future version. Use t
o_numeric without passing `errors` and catch exceptions explicitly instead
 df = wb.download(

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 140 entries, 0 to 139
Data columns (total 4 columns):
# Column Non-Null Count Dtype
--- -----
            -----
   country 140 non-null
                            object
0
    year
            140 non-null
                            obiect
    valor 101 non-null
2
                            float64
3
   indicador 140 non-null
                            object
dtypes: float64(1), object(3)
memory usage: 4.5+ KB
```

C:\Users\Paula\AppData\Local\Temp\ipykernel_9652\2667942121.py:7: FutureWarn
ing: errors='ignore' is deprecated and will raise in a future version. Use t
o_numeric without passing `errors` and catch exceptions explicitly instead
 df = wb.download(

```
In [243... # Agrupar por 'indicador' y aplicar describe() a 'valor'
descripcion_por_indicador = df_datos.groupby('indicador')['valor'].describe(
descripcion_por_indicador
```

Out[243... count mean std min 25%

indicador					
gasto_corriente_salud	24.0	7.845917	1.279334	6.072356	6.887610
gasto_investigacion_desarrollo	15.0	0.358137	0.021188	0.311430	0.347655
gasto_militar	34.0	2.336439	0.412634	1.548322	1.973986
gasto_publico_educacion	28.0	3.941245	1.044306	2.250160	3.184907

```
In [244... plt.figure(figsize=(12, 7))
         df datos['year'] = df datos['year'].astype(int) # Antes de graficar
         # Iterar por cada indicador único
         for indicador in df datos['indicador'].unique():
             subset = df datos[df datos['indicador'] == indicador]
             plt.plot(subset['year'], subset['valor'],
                      label=indicador,
                      marker='o',
                      linewidth=2)
         # Configuración del eje X (años)
         years = df datos['year'].unique() # Obtener todos los años únicos
         pares = [year for year in years if year % 2 == 0] # Filtrar solo pares
         plt.xticks(pares) # Establecer ticks solo para años pares
         # Asegurar orden cronológico (de menor a mayor)
         plt.xlim(min(years), max(years)) # Limites del eje X
         plt.title('Evolución de indicadores en Chile (1990-2024)', fontsize=16)
         plt.xlabel('Año', fontsize=12)
         plt.ylabel('Valor', fontsize=12)
         plt.legend(bbox to anchor=(1.05, 1), loc='upper left')
         plt.grid(True, linestyle='--', alpha=0.6)
```

```
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```


NY.GDP.PCAP.CD GDP per capita (current US\$) (2023)

```
In [246... min_wave= pd.read_csv('sueldo_minimo_historico.csv')
    min_wave
```

Out[246		ref_area.label	source.label	indicator.label	classif1.label	time	obs_va
	0	Bulgaria	ADM - Legislación Laboral	Salario mínimo nominal mensual bruto	Divisa: Moneda local	2024	933.(
	1	Bulgaria	ADM - Legislación Laboral	Salario mínimo nominal mensual bruto	Divisa: \$ PPA 2021	2024	1109.{
	2	Bulgaria	ADM - Legislación Laboral	Salario mínimo nominal mensual bruto	Divisa: Dólar estadounidense	2024	516.(
	3	Bulgaria	ADM - Legislación Laboral	Salario mínimo nominal mensual bruto	Divisa: Moneda local	2023	780.0
	4	Bulgaria	ADM - Legislación Laboral	Salario mínimo nominal mensual bruto	Divisa: \$ PPA 2021	2023	980.3
	610	Polonia	ADM - Legislación Laboral	Salario mínimo nominal mensual bruto	Divisa: \$ PPA 2021	1996	247.3
	611	Polonia	ADM - Legislación Laboral	Salario mínimo nominal mensual bruto	Divisa: Dólar estadounidense	1996	137.2
	612	Polonia	ADM - Legislación Laboral	Salario mínimo nominal mensual bruto	Divisa: Moneda local	1995	305.0
	613	Polonia	ADM - Legislación Laboral	Salario mínimo nominal mensual bruto	Divisa: \$ PPA 2021	1995	237.3
	614	Polonia	ADM - Legislación Laboral	Salario mínimo nominal mensual bruto	Divisa: Dólar estadounidense	1995	125.7

615 rows × 8 columns

```
# Gráfico
plt.figure(figsize=(10, 6))
plt.plot(df_chile['time'], df_chile['obs_value'], marker='o', color='blue')
plt.title('Salario Mínimo en Chile (1996-2023)')
plt.xlabel('Año')
plt.ylabel('Salario Mínimo')
plt.grid(True)
plt.legend()
plt.show()
```

No artists with labels found to put in legend. Note that artists whose labe l start with an underscore are ignored when legend() is called with no argum ent.

In [249... df chile

Out[249 ref_area.label source.label indicator.label classif1.label	time	obs_val	
--	------	---------	--

		504.00450.	maicatomasci			0.05_1
78	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local		500000
81	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local	2023- 01-01	41000
84	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local	2022- 01-01	40000
87	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local		33700
90	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local	2020- 01-01	32050(
93	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local		301000
96	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local	2018- 01-01	288000
99	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local		27000
102	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local	2016- 01-01	25750
105	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local	2015- 01-01	24100
108	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local	2014- 01-01	225000
111	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local	2013- 01-01	210000
114	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local	2012- 01-01	193000
117	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local	2011- 01-01	182000
120	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local	2010- 01-01	172000
123	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local	2009- 01-01	165000

	ref_area.label	source.label	indicator.label	classif1.label	time	obs_val
126	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local	2008- 01-01	159000
129	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local	2007- 01-01	13950
132	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local	2006- 01-01	13125(
135	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local	2005- 01-01	123750
138	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local	2004- 01-01	11782
141	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local	2003- 01-01	11342
144	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local	2002- 01-01	10882!
147	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local	2001- 01-01	10320
150	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local	2000- 01-01	9604;
153	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local	1999- 01-01	8633:
156	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local	1998- 01-01	8050(
159	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local	1997- 01-01	71400
162	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local	1996- 01-01	6550(

		ref_area.label	source.label	indicator.label	classif1.label	time	obs_val
	165	Chile	OIT - SIALC Estimaciones	Salario mínimo nominal mensual bruto	Divisa: Moneda local		5890(
In []:							