```
import os
import numpy as np
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
```

In [5]: #First Let's add the Python code to change directories - I was doing this using the Spyder Gl
#which is a bit Lazy.

path = "C:\Work\Machine Learning experiments\Kaggle\House Price"
os.chdir(path)

```
In [7]: train_data = pd.read_csv("train.csv")
  test_data = pd.read_csv("test.csv")
```

Out[8]:		ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	Р
	0	1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	AllPub	
	1	2	20	RL	80.0	9600	Pave	NaN	Reg	Lvl	AllPub	
	2	3	60	RL	68.0	11250	Pave	NaN	IR1	Lvl	AllPub	
	3	4	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	AllPub	
	4	5	60	RL	84.0	14260	Pave	NaN	IR1	Lvl	AllPub	
	5	6	50	RL	85.0	14115	Pave	NaN	IR1	Lvl	AllPub	
	6	7	20	RL	75.0	10084	Pave	NaN	Reg	Lvl	AllPub	
	7	8	60	RL	NaN	10382	Pave	NaN	IR1	Lvl	AllPub	
	8	9	50	RM	51.0	6120	Pave	NaN	Reg	Lvl	AllPub	
	9	10	190	RL	50.0	7420	Pave	NaN	Reg	Lvl	AllPub	
	10	11	20	RL	70.0	11200	Pave	NaN	Reg	Lvl	AllPub	
	11	12	60	RL	85.0	11924	Pave	NaN	IR1	Lvl	AllPub	
	12	13	20	RL	NaN	12968	Pave	NaN	IR2	Lvl	AllPub	
	13	14	20	RL	91.0	10652	Pave	NaN	IR1	Lvl	AllPub	
	14	15	20	RL	NaN	10920	Pave	NaN	IR1	Lvl	AllPub	
	15	16	45	RM	51.0	6120	Pave	NaN	Reg	Lvl	AllPub	
	16	17	20	RL	NaN	11241	Pave	NaN	IR1	Lvl	AllPub	
	17	18	90	RL	72.0	10791	Pave	NaN	Reg	Lvl	AllPub	
	18	19	20	RL	66.0	13695	Pave	NaN	Reg	Lvl	AllPub	
	19	20	20	RL	70.0	7560	Pave	NaN	Reg	Lvl	AllPub	

20 rows × 81 columns

In [9]: #We've certainly got lots of columns to work with - each row represents a sale, most of the
#columns describe the property itself, but over to the right we've also got some info on the
#sale (year sold, sale type, sale condition, etc.), and importantly - the variable we will be
#trying to predict - the sale price.

#Next let's try the .describe command:
train_data.describe()

Out[9]:		Id	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt	YearRen
	count	1460.000000	1460.000000	1201.000000	1460.000000	1460.000000	1460.000000	1460.000000	1460
	mean	730.500000	56.897260	70.049958	10516.828082	6.099315	5.575342	1971.267808	1984
	std	421.610009	42.300571	24.284752	9981.264932	1.382997	1.112799	30.202904	20
	min	1.000000	20.000000	21.000000	1300.000000	1.000000	1.000000	1872.000000	1950
	25%	365.750000	20.000000	59.000000	7553.500000	5.000000	5.000000	1954.000000	1967
	50%	730.500000	50.000000	69.000000	9478.500000	6.000000	5.000000	1973.000000	1994
	75%	1095.250000	70.000000	80.000000	11601.500000	7.000000	6.000000	2000.000000	2004
	max	1460.000000	190.000000	313.000000	215245.000000	10.000000	9.000000	2010.000000	2010

8 rows × 38 columns

```
In [10]: #Let's pick out a few important features of the above - we've for 1460 rows, each row has a :
# price - so far so good. The average sale price is $ 180,921. House prices in Iowa cira 2001.
# are certainly a lot lower than London! We can read off the min and max house price - 35k, 0
# 750k respectively. In order to start to build up some intuition around the dataset, let's s
# to pick out some variables we think will be useful and graph them against house price:

#Let's start with neighbourhood:
#First we need to pivot on Neighbourhood, sort by sales price, and then produce a bar chart:

NeighbourhoodPivot = train_data.groupby("Neighborhood")['SalePrice'].mean()
NeighbourhoodPivot = NeighbourhoodPivot.sort_values()
NeighbourhoodPivot.plot.bar()
```

Out[10]: <AxesSubplot:xlabel='Neighborhood'>

In [11]:

#The built-in .plot functionality is definitely not the prettiest, but at least it seems to I well straight out of the box. I've used Seaborn in the past, but since this is just a rough # cut, let's not go to the effort right now just for the sake of appearance.

#So what can we deduce from the chart? We see that Neighbourhood is clearly going to be useful # NoRidge has an average sale price almost double that of the average across our entire datase # MedaowV has an average almost half of the whole population. We'll definitely want to include this in our modelling.

#Let's repeat the above with a few more variables, just eyeballing the list of variables, I # the look of OverallQuality, OverallCondition, BuildingType, Housestyle, and YearSold

#Overall Quality:

OverallQualPivot = train_data.groupby("OverallQual")['SalePrice'].mean().sort_values()
OverallQualPivot.plot.bar()

Out[11]: <AxesSubplot:xlabel='OverallQual'>

In [12]:

OverallCondPivot = train_data.groupby("OverallCond")['SalePrice'].mean().sort_values()
OverallCondPivot.plot.bar()

Out[12]: <AxesSubplot:xlabel='OverallCond'>

In [13]: BldgTypePivot = train_data.groupby("BldgType")['SalePrice'].mean().sort_values()
BldgTypePivot.plot.bar()

Out[13]: <AxesSubplot:xlabel='BldgType'>

Out[14]: <AxesSubplot:xlabel='HouseStyle'>

Out[15]: <AxesSubplot:xlabel='YrSold'>

columns = X.columns

ColList = columns.tolist()

```
missing_cols = set( X_test.columns ) - set( X.columns )
missing_cols2 = set( X.columns ) - set( X_test.columns )
# Add a missing column in test set with default value equal to 0
for c in missing_cols:
    X[c] = 0

for c in missing_cols2:
    X_test[c] = 0
# Ensure the order of column in the test set is in the same order than in train set
X = X[X_test.columns]
```

```
In [17]: RFmodel = RandomForestRegressor(random_state=1)
    RFmodel.fit(X,Y)
    predictions = RFmodel.predict(X_test)
```

```
In [ ]: output = pd.DataFrame({'ID': test_data.Id, 'SalePrice': predictions})
  output.to_csv('my_submission - V1 - RF.csv',index=False)
```