

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS, 1963 A

THE COPY

AFGL-TR-82-0368 ENVIRONMENTAL RESEARCH PAPERS, NO. 811

An Evaluation of an Automatic Cell Detection and Tracking Algorithm

JAMES G. WIELER F. IAN HARRIS MICHAEL R. SNAPP, Maj, USAF

3 November 1982

Approved for public release; distribution unlimited.

METEOROLOGY DIVISION PROJECT 2781

AIR FORCE GEOPHYSICS LABORATORY

MANSCOM AFB, MASSACHUSETTS 01731

AIR FORCE SYSTEMS COMMAND, USAF

83 07 7

035

This report has been reviewed by the ESD Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS).

This technical report has been reviewed and is approved for publication.

DR. ALVA T. STAIR, Jr

Chief Scientist

Qualified requestors may obtain additional copies from the Defense Technical Information Center. All others should apply to the National Technical Information Service. SECURITY CLASSIFICATION OF THIS PAGE (When Data Entere),

REPORT DOCUMENTA	•	READ INSTRUCTIONS BEFORE COMPLETING FORM
T REPORT NUMBER AFGL-TR-82-0368	AD-A130	N NO. 3 PECIPIENT'S CATALOS NUMBER
4. TITLE (and Subtitle) AN EVALUATION OF AN AUDETECTION AND TRACKIN	UTOMATIC CELI	5 TYPE OF REPORT & PERIOD COVERED
7 Authoras James G. Wieler F. Ian Harris* Michael R. Snapp, Major, J	SAF	ERP No. 811 B CONTRACT OR GRANT NUMBERS,
9 PERFORMING ORGANIZATION NAME AND AC Air Force Geophysics Labor Hanscom AFB Massachusetts 01731	obress natory (LYR)	10 PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS 637071 27810101
Controlling office name and address Air Force Geophysics Labor Hanseon AFB Massachusetts 04734 Monitoring Agency name & Address.	ratory (LYR)	12 REPORT DATE 3 NOVEMBER OF 1982 13 NUMBER OF PAGES 50 15 SECURITY CLASS (at this report)
NO MONTO ANTENNO MARIE E ADDRESSA	There is a second of the secon	Unclassified 15. DECLASSIFICATION DOWNGRADING SCHEDULE
Approved for public release;		
18. Supplementary notes * System and Applied Sciences 6811 Kenilworth Ave, Riverdale, MI) 20840		ent from Report)
NEY WORDS (Continue on reverse side if necess Doppler weather radar Cell tracking Echo centroid tracking Next generation weather rada Three-dimensional centroids	ar (NENRAD)	3 dB peak Storm tracking Contour regions Reflectivity factor peak
digitized radar data is evaluate containing values within 3 dB of describes storm structure and time and space	m designed to det ed. These fine st of peaks in reflect levolution by cor a comparison of FGL algorithm wh	ect and track fine structure in tructures are defined by regions tivity factor. The algorithm relating these peak regions in the algorithm output with raw nich detects and tracks three-

DD FORM 1473 EDITION OF THOU 65 IS OBSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. (Contd)

It is concluded that the algorithm cannot reliably detect and track significant structures within storms when applied to data sets with a temporal resolution of ~ 6 min and a spatial resolution of 1.0° in azimuth and 0.7° in elevation. The significance of tracking 3 dB peaks is questioned and the implication of defining a larger peak threshold is discussed. The algorithm does track the large features of storms with results similar to the AFGL algorithm. However, it does not run in real time and is not modular, unlike the AFGL algorithm.

Unclassified
SECURITY CLASSIFICATION OF YOUR PAGE When Date Entered.

Contents

1.	INTRODUCTION	5
2.	THE AUTOMATIC CELL DETECTION AND TRACKING ALGORITHM (ACDT)	6
	2.1 Algorithm Overview 2.2 Storm Attributes 2.2.1 3 dB Peaks and Volume Cells 2.2.2 Contours 2.2.3 Clusters	6 7 7
3.	AN AUTOMATED REAL-TIME STORM ANALYSIS AND STORM TRACKING PROGRAM (WEATRK)	10
	3.1 Algorithm Overview	10
4.	CASE STUDIES	10
	4.1 Case Study No. 1 4.1.1 ACDT-WEATRK Product Comparison 4.1.2 Spatial Correlations 4.1.3 Temporal Correlations 4.2 Case Study No. 2	11 13 20 23 25
5.	SUMMARY AND CONCLUSIONS	26
RE	FERENCES	29
API	PENDIX A: ACDT Algorithm Output	31

		lilustrations
ì.	Reflectivity Contour Plot for Volume Scan Beginning at 1555	12
2.	Reflectivity Contour Plot for Volume Scan Beginning at 1601	12
3.	Reflectivity Contour Plot for Volume Scan Beginning at 1608	13
4.	Reflectivity Contour Plot for Volume Scan Beginning at 1615	13
5.	ACDT Contour Region (numbered) and WEATRK Storm Cell (lettered) Centroid Locations For Volume Scans 1-4	21
6.	ACDT Volume Cell Centroid Trajectories for Contour Region No. 1	22
7.	Volume Cell Vertical Extent for Volume Scans 1-4	23
8.	Reflectivity Contour Plot for Volume Scan Beginning at 1534	25
		Tables
1.	List of Attributes Compiled From the Automatic Cell Detection and Tracking Algorithm	n 8
2.	ACDT Volume Scan Output for Volume Scan No. 1	14
3.	ACDT Volume Scan Output for Volume Scan No. 2	15
4.	ACDT Volume Scan Output for Volume Scan No. 3	16
5.	ACDT Volume Scan Output for Volume Scan No. 4	17
6.	ACDT-WEATRK Product Comparison for Case Study No. 1	18
ï.	Comparison of Height Estimates of Selected Volume Cells From ACDT and 4/3 Earth Correction for the Lowest Two Elevation Angles (a)	22
8.	Compilation of Volume Cell Overlap Ratios, for Nearest Neighbor Cells	24
٠.	Synopsis of the ACDT Algorithm Output for 1534-1557 (CST) on 10 April 1979	26
A1.	ACDI Volume Scan Output for Volume Scan No. 1, Case Study	No. 2 32
A2.	ACDI Volume Scan Output for Volume Scan No. 2, Case Study	No. 2 37

ACDI Volume Scan Output for Volume Scan No. 3, Case Study No. 2

ACDT Volume Scan Output for Volume Scan No. 4, Case Study No. 2

42 46

A3.

A4.

An Evaluation of an Automatic Cell Detection and Tracking Algorithm

1. INTRODUCTION

The large amount of data available from Doppler weather radar systems (for example, reflectivity, radial velocity, and velocity variance fields) make it nearly impossible for an operational forecaster to observe, interpret, and integrate all the data into a forecast product. Many of the algorithms developed for the NENRAD software package will automate the analysis of Doppler weather radar data in real time and provide useful, easy to interpret products for the operational meteorologist.

As the Technical Evaluation Facility (TEF) for the NEXRAD project, the Air Force Geophysics Laboratory's (AFGL) Ground Based Remote Sensing Branch is developing and evaluating proposed algorithms for the NEXRAD system. In this report we present an evaluation of the Automatic Cell Detection and Tracking Algorithm proposed and developed by Crane 1, 2, 3, 4, 5 and Gustafson and Crane, 6, 7 as an operational tool.

⁽Received for publication 3 November 1982)

The Next Generation Weather Radar (NENRAD) is a joint agency program to develop and acquire a surveillance Doppler weather radar system for the Departments of Commerce (DOC), Defense (DOD), and Transportation (DOT). The NENRAD system will replace aging DOC and DOD weather radars, and improve severe weather detection capabilities.

⁽Due to the large number of references cited above, they will not be listed here. See References, page 29.)

We have based the evaluation on an analysis of the timing, accuracy, and limitations of the algorithm assuming:

- a 5-6 min elevation angle sequence (volume scan) repeat time;
 and
- products will be useful to at least a range of 230 km.

The analysis consists of checks of the algorithm products against both raw data and output from the Automated Real-Time Storm Analysis and Storm Tracking (WEATRK) developed by Bjerkaas and Forsyth. 8

All the data used in this analysis were archived during the 1979 Joint Doppler Operational Project (JDOP) (Donaldson and Glover⁹) by AFGL's 5-cm radar located at the Doppler Radar Facility of the National Severe Storms Laboratory near Norman, Oklahoma.

2. THE AUTOMATIC CELL DETECTION AND TRACKING ALGORITHM

2.1 Algorithm Overview

The Automatic Cell Detection and Tracking Algorithm (ACDT) was designed to detect and track certain features of precipitation echoes observed in weather radar data. These features are:

- 3 dB peaks defined by contours of reflectivity 3 dBZ below individual peaks in the reflectivity field,
- Volume cells consisting of vertically correlated 3 dB peaks,
- Contour regions defined by one fixed reflectivity value (for example, 30 dBZ) at the lowest available elevation angle,
- Clusters defined as groups of volume cells within a single contour, and with spacings less than some minimum distance.

2.2 Storm Attributes

The following is a discussion of the various attributes which are computed for each of the features listed above.

^{8.} Bjerkaas, C.J., and Forsyth, D.E. (1980) An Automated Real-Time Storm
Analysis and Storm Tracking Program (WEATRK), AFGL-TR-80-0316,
AD A100236.

Donaldson, R.J., Jr., and Glover, K.M. (1980) Joint Agency Doppler Technology Tests, AFGL-TR-80-0357, AD A100208.

2, 2, 1 3 dB PEAKS AND VOLUME CELLS

3 dB peaks are characterized by the attributes listed in Table 1,

These peaks are detected and attributes, compiled and stored for each elevation angle. After a volume scan * is completed the 3 dB peaks are vertically correlated to build three-dimensional structures called volume cells.

The algorithm produces a heirarchy of volume cell types, removes false volume cells, and identifies significant volume cells. Significant cells are characterized as having a high degree of vertical continuity or having high reflectivity and some vertical continuity. Specifically these criteria for significance are:
(1) detection on more than 50% of all azimuth scans in a volume scan and more than 70% of the scans below 6 km; or (2) average reflectivity greater than 40 dBZ in more than 30% of the azimuth scans in a volume scan, with some portion below 6 km.

According to Crane, 4 several types of volume cells are evident in the output from this algorithm. These are large mature (significant) cells, voung growing cells, and ground clutter which is typically identified by cells that do not move and are close to the surface.

2.2.2 CONTOURS

Since contours are defined as regions enclosed by a preselected reflectivity threshold, they may encompass more than one volume cell. The attributes tallied for each contour region are listed in Table 1.

The motions of the volume cells enclosed by a contour are used to establish tracks for the contour regions, and to provide a directory for the mergers and splits of the contour regions. Estimates of liquid water flux averaged over the area of a fixed contour are useful for a relative evaluation of the contoured regions. The algorithm computes the total water mass flux rates only for observations at the lowest elevation angle to avoid contamination by ice.

2.2.3 CLUSTERS

Closely spaced volume cells are associated as belonging to a cluster, each cluster is tracked and attributes are compiled describing its structure and behavior. The cluster attributes are listed in Table 1. Crane and Hardy ¹⁰ state that, at short ranges where the radar beam is sufficiently narrow to resolve the volume cells in a cluster, the cluster will represent active convection. However, at longer ranges, the volume cells in a cluster may not be resolved, in which case the convective element will be detected as a significant cell.

A complete elevation angle sequence from lowest to highest elevation is called a volume scan.

Crane, R.K., and Hardy, K.R. (1980) The Hiplex Program in Colby-Goodland Kansas: 1976-1980, Final Report, Document P1552-F. Environmental Research & Technology, Inc., Concord, Massachusetts.

Table 1. List of Attributes Compiled From the Automatic Cell Detection and Tracking Algorithm (after Crane⁴)

Function	3 dB Peak	Volume Cell	Cluster	Fixed Contour	Volume Scan Summary
Intensity	•Avg. Reflectivity	 Avg. Reflectivity Reflectivity at Lowest Ht. Reflectivity at summit Peak reflectivity 	•Avg, Reflectivity •Peak Reflectivity	•Avg. Reflectivity •Peak Reflectivity	
	•Avg. Tangential Shear	Avg. Tangential ShearPeak Tangential Shear	•Avg. Tangential Shear •Peak Tangential Shear		
				•Water Flux	• Water Flux
Location	•Centroid Position	•Centroid Position	•Centroid Position	•Reflectivity Centroid V. Cell Centroid Sig. Cell Centroid	
Motion		•Velocity of Centroid	•Velocity of Centroid •Velocity of V. Cells	 Velocity of Centroid Velocity of V. Cells Velocity of Sig. Cells 	
Size	•Area	Area at Lowest Ht.Area at Peak Volume		•Area	• Area
Height	• Elevation Angle	•Lowest Height •Height Base •Height Peak •Height Top •Height Sunmit	•Highest Summit Reight	•Highest Summit Height •Avg. Height First Echoes	

Table 1. Last of Attributes Compared From the Automate Cell Detection and x_1 as one Mg automaster (rane) (Contell)

	7 mm 2 mm
Volume Scan Summer:	• Yo. of Contours • No. of X. C.Hs • No. of Sig. Cells and Clusters ars ers ers ells
Exed Confour	Complex Identity Vo. of Clusters No. of Sig. Cells Spread of Clusters Spread of Clusters Spread of Clusters Spread of Clusters Orientation of V. Cells Orientation of V. Cells Correlation of Clusters
Cluster	• Contour Identity • Spread of A. Cell • No. of Clusters • Correlation of A. Cell • No. of Clusters • Correlation of A. Cell • Spread of A. Cell • Spread of A. Cell • Spread of Cluster Cell Centraids • Spread of Cluster Cell Centraids • Orientation of A. • Orientation of A. • Orientation of Cluster • Correlation of Cluster • Correlation of Cluster
Volume Cell	• Contour Identity • Cluster Identity • Spread of Cell • Centroids
3 dB Peak	of Professor (Confour Rentify)
Landton	5.1 11 1.1 1.1 1.1 1.1

*/. Cells are Volume Cells

Sig. Cells are Significant Cells

[†]Correlation of X location (east) vs \ location (north)

3. AN AUTOMATED REALTIME STORM ANALYSIS AND STORM TRACKING PROGRAM (WEATRK)

3.4 Algorithm Overview

The following is an abbreviated description of the Automated Read Time Store. Analysis and Store: Tracking Program (WEATRE).

The WEATRK deporture befores a store, cell as any region, ontained within a predictors has inclicativity contour. The storm attributes randate i by this algorithm medica:

- Storm volume,
- . Storm mass,
- Mass-weighted centroid,
- · Maximum reflectivity and its height,
- Maximum radial velocity at the lowest elevation angle, and
- Maximum spectral variance and its height.

Radar data for this algorithm is acquired via a series of azimuth scans over a volume scan. Reflectivity segments along each radial exceeding a predetermined threshold are identified and correlate fazimuthally to define two-dimensional storm cells. After the completion of a volume scan the storm cells are correlated in the vertical to define a time of incensional storm. Any single level feature that is not correlated with any other in the vertical is not correlated with any other in the vertical is not correlated with any other in the vertical is not correlated with any other in the vertical is not correlated from the vertical is not correlated with a second and correlated using a feature of squares life to the correlated process of the correlated for the correlated states.

to CASE STEDIES

The first of the Common Archer will be designed as the common of the Common section of t

Court of some of the ACDT entertains, a saw than a received a some of acquarge the sense of the ACDT entertains and action with the action of the ACDT were compared to the ACDT were compared.

4.1 Case Study No. 1

The first case study consists of four volume scans recorded between 1555 and 1521 CST on 2 MeV 1579. These four volume scans are a subset of an eleven volume scan run of the algorithm, and are assessed to be representative of the ignorithm's behavior.

The data, for this case, reveals two well-defined storms northwest of the radar tranges from 120 to 200 km. A carsory plance at Figures 1, 2, 5, and 4 reveals some internal structure in each. The control locations of the ACDI contour regions combered) and those of the WillyTRE storm cells (lettered) are marked on the plot.

Output from the ACD1 for Case Study No. 1 can be seen in Tables 2, 3, 4, and 5. The output consists of the parts:

- (1) and once 8 on the other inform starts.
- (2) Fixed Conformate, ron temputes,
- The course collaboration.
- 947 Cluster Strategies, and
- 5) column to an tuminger.

1 selectribates for parts 2-5 are fisted in Table 1. For a more comprehensive fist ission of these attribates and their derivation, see Gustafson and Crane. The first issue of the complete o

From the fixed contour output of Table 2 it can be seen that the ACDT is identified two storms (1 and 2) if the lowest elevation angle (0,4°) along with one other very small teature (3) 217 km from the radar. Six minutes later (Table 3) these same three contours are found along with a new one (4) which is identified as a split from 1 (last column on right). However, with the next sequence (Table 4) the algorithm has declared that contour 4 has merged back with 1 (second to last column on right), and has identified a new cell (5) at a range of 203 km. In the last sequence to be presented here we see that 2 has merged with 1 (Table 5 and 1 igure 4) and 6 has split from 3.

Although some of the merging and splitting may seem a little artificial (that is, contour region 1 and 4), it is a function of the threshold (30 dBz) used to define the contour regions and the perturbations around that value. Contour region 4 is not readily apparent in Figure 2 due to the smoothing in our contouring routine. It is, however, apparent in the raw data, where two adjacent range gates with reflectivities of 28 and 29 dBz separate two areas of reflectivity greater than 30 dBz. The contoured region between contour regions 1 and 2 (marked x in Figure 1) does not contain a 3 dB peak and is therefore not listed by the algorithm.

Ligure 3. Reflectivity Contour Plot for Volume Sc. n Beginning at 1555

CONTOURS OF DBZ

Figure 2. Reflectivity Contour Plot for Volume Scan Beginning \pm 1001

The contour region centroid locations are determined by averaging the centroid locations of the volume cells enclosed by the contour region. The contour region centroids appear to be located in the correct positions judging from the concurrent lowest elevation contour maps. The peak reflectivities enclosed by the contour regions, and the contour region's speed and direction seen to be reasonable within the resolution of our analysis.

CONTOURS OF DBZ

Figure 3. Reflectivity Contour Plot for Volume Scan Beginning . 40.0.

Figure 4. Reflectivity Contour Plot for Volume Scan Beginning $\omega t/\ln t5$

4. 1, 1 ACDT-WEATRK PRODUCT COMPARISON

The output statistics for WEATRK storm cells identified in the four volume scans of this case study, and the closest corresponding contour regions from the ACDT are presented in Table 6. The same threshold value was used for determining the WEATRK storm cells and the ACDT contour regions.

Table 2. ACD1 Volume Scan Output for Volume Scan No. 1

SCAN TIME 122 155507 - 160107 VOL SCAN 11 AZ -137.1-TO-119.8 (CEG)
TRACK REF TIME 1555 7 - 155507 AZM SCAN 10/0 EL - 0.4 TO 6.5 (CEG)

NEN = 10, NVMx = 18

PIXED CONTOUR DUTPUT

CENTROID AV CELL Z N N N S SPR SPR C STR AREA VELCCITY NEAR NX PR SP TRK AZH RNG AZH RNG AV PK V S C X L R FLUX XSCN AV CELL CIST HT ID ID NO DEG KM DEG KP DE CE C C KM RM T MY/P KKMZ EEC M/S KM KP ND ND 1 33C 167 329 164 42 47 6 2 1 3.4 9.629C 4.77 C.61 595 999 6.9 12 C C 2 319 188 32C 18E 43 40 4 2 1 3.C 9.2 62 2.54 C.37 595 999 C.C 1C C O 3 3 229 217 329 217 44 44 1 0 C C.0 O.C C O.61 C.C8 595 959 O.C 6 C O

VOLUME CELL DUTPUT

CENTROIC - - Z - - HGT VEAR CELL SPACIAL (TAN) CCP RAC RAC CS CN D R

TRK FST NOR AV PK LW HI L M H EM/S NM/S SPRD A (SHR) SPD VEL SPC TR TR C E E

NO KM KM DB CC CC W N I CLC IC KM KM2 (MSK) MSK MM5 MM5 NO NO P F . .

1 -131 142 42 43 43 43 55 55 11.8 2.1 C.CC 9.2 1.4 C.O -9.5 4.6 0 2 1 1 1

2--128 136 39 43 40 32 4 610 11.8 2.1 C.CC 3.5 1.7 C.O -9.1 3.3 0 2 2 1 1

5 -112 146 41 44 44 36 4 5 6 11.8 2.1 C.CC 3.5 1.7 C.O -9.1 3.3 0 2 2 1 1

5 -112 146 41 44 44 42 4 6 7 11.8 2.1 C.CC 7.7 C.O C.C-14.2 C.S 1 2 C.C 1

6 -95 139 40 42 34 42 4 6 7 11.8 2.1 C.CC 6.C 1.7 C.O -7.3 4.3 2 1 3 3 1

7 -95 143 43 44 44 44 44 6 6 6 11.8 2.1 C.CC 3.5 1 C.C C.C-14.2 C.C 0 3 C 1 1

9 -23 142 43 47 47 37 4 7 11.8 2.1 C.CC 10.2 C.C C.C-14.2 C.C 0 3 C 1 1

14 -67 137 36 38 35 36 3 4 4 11.8 2.1 C.CC 3.3 1.7 C.O -4.2 3.5 0 1 4 1 1

15 -8C 137 44 44 44 44 45 5 5 11.8 2.1 C.CC 3.3 1.7 C.O -5.4 6.9 2 1 5 5 1

17 -89 137 42 45 45 31 5 712 11.8 2.1 1.43 9.2 1.7 C.C -5.4 6.9 2 1 5 5 1

CLUSTER CUTPUT

CENTROIC Z N SFR SPR ORT CNT VELCCITY SPEAR MX MR SP CELL CELL NOTTEN AZM RNG AV PK V X L ANG ID AV CELL MSKM HT IC IC ROT. DIV. RD NO DEG KM DB DE C KM KM DEG EM/S NM/S KM NC NC MSKM MSKM CS 1 323 186 41 44 1 C.C C.C C 2 C.O C.O C.C 6 C C 0.CC C.CO O 2 326 169 42 45 3 1.4 3.6 316 1 G.O C.C 1.C 12 C 0 0.0C C.CO O

VCL MMMM AREA MFLUX NEAR NEIGHBOR ACT NO NO VELCCITY TRK CLS ONT C CVER

SCAN KKM2 KMT/F CELL CLST CONT VCL CS FC EM/S NM/S NO CTR CTR C

1 1555 1.2 10.12 9.4 C.O C.O 11 4 3 11.8 2.1 18 2 3 C C C C O

Table 3. ACDI Volume Scan Output for Volume Scan No. 2

		10,																													
							-																	-							- •
		ONTO																													
TRK	E en i Aza	ROJE RNG	AV AZ	. € 6	ELL RNC	ΔV	: F R		N V	N S	N '	5 P F	₹ 5 !	P E	0		#1 Fili	K	λ·	₹€ #	٧.	€t.€ A v	-C 1	7 7 1 1		£≜ I≤	₩ 4 T 1	49 47	I.S	5 6	
NG	-066	, **	- 0€	. 6 -	-++	-00	e e	,	€ .	3	Ł	* *	٠	4#	Ŧ		# 7 1	* *	# 1	(# 2	•	e 	, +	4 # 4	_	*		+	N-S	· #1)
		185																													
+	321	163	32	6 1	166	43	49	•	Ž	2	1 1	0.0	. 0	• 0	Ć		ē.(5	€.	61		3 1 4	•	•	5	e.	€ '	t C	6		<i>)</i>
5	331	1 217 2 16 5	3 3	10 6	(17 (46	44	4 4		2	Ċ	ř.	ບ • ໄ ດີ /	. U	• 0	- ((L	Č			ۇ ئىن ئىمۇ	:	1		Ų.	č		- 1. - 2.	. ;	-
,	231	. 107	, ,,	, * '	. 07		4 7	•	٤	Ü		C . Y		•	·	•	~ . (ψ.	· C ·		2 -	•	,	Ü	ः,	•	-	**	·	,
		CELL		TPU	_ · · · -				_	-										-		-		• • •	-						
		ROIC		-	2 -	-		4 G T		v B	AR	5	EL	- 5	P£	CIA	l L	(s)	2.0	۵	ę	ΔC	٤.	4:		ز	r. I	R	F
2 #	651	~ NOR	**	-₽ #	t.w	₩ŧ	Ł	*	*	£ +	15	*	* / *	5 5	Pé	e	•	•	5#	()	50	·t	*	£t	5	PE	70	-	- 6	+	- £
		KM																													
		+45																													
		137																													
5 4 -	104	148	4.3	44	44	3/	3	;	3	11	4	•	۲.	: U	٠٤	C T :	· · ·		۲٠	Ç	٠,	C		٠;	2	٠.	. 0		2 9 2 1	17	
		- 135																													
7	-90	145	44	44	. 44	44	3	1	3	1.7	• • •		3.	5 0		510	1		:	Ś		Č	- 3	. 7	7	,			1	1 1	
A -	107	- 189	44	64	44	44	4	4	4	5 3	?	,	٠.	1 6	. 6	r 4			£ .	ſ	F- :	a-	43	يه ر	F-	-	م		2 f	r. ş	ş.
9	-82	145	45	45	4.5	45	Ž	2	2	7	٠. د		3.	ء د	.:	č 1 (3.3		ì.	5	ċ.	5	- 5	.:	4	. ?	-		;		2
4	-66	138	36	36	36	3 é	4	4	4	ė	. 5		1.	ė e	. 0	c a	2.5		1.	C	Ĉ.	0	ج -	٠,	5	. 1	÷	-	1 5	5	è
5 *	-8:	135	43	47	43	35	4	ć	8	2	. 6	-	3.	: :	. t	7 (5		:.	3	ί.	0	- 4	. :	7	. 7	2		۰1°	?	•
7	-86	136	35	35	35	35	4	4	4	ς	2		4.	1 0	.(((٠.,		ċ.	4	€.	€		٠,	Ĉ.	. (-0	-	1 1	€ €	è
c -	12C	132	4 C	43	43	32	7	7	8	11	. 8		•	1 0	. (C 1 1	. 6		٠.	Ž.	ΰ.	С	- 2	• :	7	. 4	0		2 2	2	!
Ł to S	TER	001	PUT	-																								. ~	*		
-€	ENT	ROIG		2	N	SF	R	SFR		e 1	c	N.T	v	ELO	CI	T Y	5 F	ΕA	Ł	μχ	► €	· 5	-	C i	ELI		c	Éŧ	ι	Νů	
RK	AZM	RNC	AV	PK	٧	X		L	4	IN G		10	- 1	٧.	CE:	LL	M	SK		пŢ	10	1	2	R.	ΞŤ		2	Ιv		£ j	
NG-	966	K#	- 08	9.0		K	*	K #	. 6	€ 6	;		Ę.	4 4 5		4/5	.			* *	N-C	-	6		5#4	4		£¥.		€\$	
5	327	161	43	49	1	С.	(c.c		C		4	2	1,1	- 1	ű. <u></u>	i	٤.	1	10	C		Ĉ		C • i	CC		ί.	<i>: c</i>	C	
r i		₽ AR	F &	u e i	. 1 y	A; E A	e i		· c -	ısr	م ٠		r T			Γ,	, 5 1	. .	T T	v	+ 5		۲,			, ,		-			
		77.75	- TE "	~ ***	A	CEL				ŧυ	, ,	- 7	L L	~ >					1277	- -										/	

Table 4. ACDI Volume Scan Output for Volume Scan No. 3

```
SEAN TIME 122 100827 - 101221 VOL SCAN 5 #2 -145.4 TO TRACK REF TIME 10 742 - 100827 42F SCAN E/C EL - 0.4 10
                                                                                                             5 #2 -145.4 TO 114.3 (050)
                    8 NVMX = 34
 FIXED CONTOUR DUTPUT
EENTROIC AV EELL 2 N N N SFR SPF C TRK AZM RNG AZM RNC AV PK V S C X L F --NO-OEG KM OEG RM OE CB C C L KM AM T 2 321 181 322 175 45 51 5 2 C 3.5 8.C 42 5 31C 203 31O 203 36 41 2 C C C.C C.C G.C G.C G.C G.T 3 532 216 333 217 37 38 2 C C C 0.C C.C C C L 1 333 162 331 161 42 49 8 3 1 5.3 5.3 5.4 44
                                                                                                  NTR AREA VELCCITY NEAR MX MR SP
                                                                                                FLUX XSCN AV CELL DIST HT ID
MT/H RKM2 DEC M/S KM KM NO
                                                                                                                       EEU ...
257 8 7.4
606 060 0.0 7
274 15 0.0 6
556 30 4.5
                                                                                                 6.73 0.37
                                                                                                                                                                  C
                                                                                                           €.08
€.11
                                                                                                0.40
                                                                                                 0.48 (.40
4.08 (.60
 VOLUME CELL BUTPUT
 22 -113 139 50 50 50 50 50 4 4 4 11.8 2.1 0,0010.6 1.7 0.0 -13.6 3.4 23 -98 196 37 37 37 37 6 6 6 11.8 2.1 0,00 4.1 0.0 0.6-14.0 0.0 24 -71 144 45 45 45 45 45 3 3 3 11.8 2.1 0,00 7.6 1.8 0.0 -5.9 0.6 25 -151 131 34 36 16 31 5 5 7 11.8 2.1 0,00 4.4 1.4 0.0 -5.6 3.6
  27 -113 130 37 4C 35 34 5 7 à 11.8
                                                                            2.1 0,0014.3
                                                                                                            1.4 (.0 -5.1 0.4
  30 -73-131 36 38 38 35 4 6 9 11.8 2.1 0.0010.0 1.6 32 -76 140 36 38 28 35 6 7 8 11.8 2.1 2.02 6.8 1.7 33 -59 132 32 32 32 32 36 5 5 5 11.8 2.1 0.00 7.1 2.1
                                                                                                                     0.0 -5.0 7.e
0.0 -5.8 5.4
                                                                                                                       C.0 -4.8 6.5
 CLUSTER DUTPUT
  CENTRCIC Z N SFR SFR GRT CNT VELCCITY SHEAR MX MR SF CELL
TRR AZM RNG AV PK V X L ANG ID AV CELL MSKM MT IC IC ROT.
NC DEG RM D8 C8 C RM KM DEG EM/S NM/S KM NC NC MSNM
3 333 164 42 44 1 C.C C.C C 1 2 C.2 1.6 1.9 5 C C C.CC
                                                                                                                                                   CELL NO
DIV. FO
Makm (S
                                                                                                                                                       €.66 6
                                                                                                                                       1.05
```

VOL HMMP AREA MFLUX NEAR NEIGHBOR ACT NO NO VELOCITY TAK CLS ONT 6
ICAN KKM2 KMT/F CELL CLST CONT VCL GS FC EM/S NM/S NO CTR CTR C
3 1607 1.3 13.52 6.0 13.7 C.O 21 5 4 11.0 1.8 34 3 5 C

SCAN

Table 5. ACDT Volume Scan Output for Volume Scan No. 4

SCAN TIME 122 1e15C6 - 162103 VOL SCAN 4 AZ -141:5 TO 110.G (DEG) TRACK REF TIME 1613 3 - 161506 AZM SCAN 5/C EL - 0.3 TO 6.6 (CEG)

NFN = 9, NVMX = 44

FIXED CONTOUR OUTPUT

CENTROIC AV CELL V S C X K M TRK AZM RNG AZM RNE AV FK L ķ FLLX XSCN AV CELL DIST HT ID ID KP NO 066 KM 066 5 311 199 310 066 KM D6 D8 310 202 39 45 332 212 34 34 325 168 44 52 C C L 2 1 1 1 0 C 18 3 3 MT/H C.57 Ŧ KKM2 €€€ 7 0.C 0.C 0.C C.C 7.518.1 6 0.0 7 7 9.0 5 13 4.6 11 271 297 250 ((65 (.14 0 С 6 332 212 0.Ce 1.08 18 0.0 0.0 C 0.06 6.02 0.0

VCLUME CELL OUTPLT

CENTROIC -HGT VEAR CELL SPACIAL (TAN) CCP RAC RAC CS CN C R F TRK EST NOR AV PK LW HI L M H EM/S NM/S SPRC A (SMR) SFD NO KM KM DB DB CB DB W N I DLD IC KM KM2 (MSK) MSK (SHR) SFD VEL SPE ŦR £ŧ M'/ S NO NO M/S 2*-114 139 48 52 52 47 4 5 8 11.7 3 -104 147 40 4C 4C 4C 4 4 4 4 5.5 2.6 0.0010.2 1.9 €.6 -7.6 7.5 3.6 C.CC 9.5 C.C -3.4 C.C 5 -93 152 32 32 32 32 6 6 6 17.5 6* -8C 14C 47 51 51 44 3 4 6 1C.3 6.6-14.5 C.6 C.C -4.2 3.6 C.G 5.3 0.66 9.2 5 -93 152 32 32 32 32 32 32 32 6 6 6 17.5 5.3 0.CC 9.2 C.G 0* -8C 14C 47 51 51 44 3 4 6 1C.3 4.C C.CG 5.5 2.C 7 -76 153 36 36 36 36 4 4 * 17.4 9.2 0.CG15.C C.C 8 -98 187 34 34 14 34 5 5 5 5.7 -1.3 0.CC 3.8 C.C 9 -71 149 40 43 43 36 4 4 5 10.0 5.2 0.CC 2.1 C.C 15* -75 136 44 48 48 33 5 610 8.4 1.7 0.69 7.4 1.9 17 -83 141 40 41 39 41 5 6 7 6.3 4.3 0.CC 4.2 C.C 20 -114 135 41 42 42 42 4 4 8.5 3.5 0.CC 3.7 4.2 22 -109 137 49 49 49 49 45 5 11.6 -2.3 0.CC 8.9 2.1 23 -92 20C 35 35 35 35 6 6 6 13.5 6.5 0.CC 5.5 C.C 24 -63.444 41 41 41 41 3 3 3 16.1 0.3 0.CC 4.C 1.9 25 -149 131 42 45 45 34 5 5 7 8.5 C.7 0.CC 9.7 1.6 27 -109 133 47 49 46 49 5 7 7 10.2 5.2 0.CC 2.5 0 3 1 €.0-13.6 €.€ Ð C.C-13.9 C.C 0 252021 C.0-12.6 1.8 C.C -5.4 5.E C.G-14.1 G.2 C.C +0.5 C.C C.G -4.2 6.6 C.O-14.5 C.C C Ó €.G-11.5 -6-6 -**D** C.O -8.7 3.2 27 -109 133 47 49 46 49 5 7 7 16.2 2.5 -109 133 47 49 46 49 5 7 7 1C.2
-69 135 39 39 39 39 4 4 4 11.5
-70 142 39 39 39 39 3 3 3 13.7
-57 132 33 33 33 33 6 6 6 6.7
-161 127 33 34 34 32 5 6 7 11 0
-113 129 39 39 39 39 4 4 4 11.0
-101 147 47 47 47 47 47 4 4 4 11.0
-157 123 32 32 32 32 7 7 7 11.0
*108 132 46 50 50 36 5 610 11.0
-114 137 42 45 45 33 7 811 11.0
-65 132 36 39 39 32 7 7 8 11.0 5.2 0.66 2.6 €.G -4.1-3.5 C.O -5.9 1.2 C.O -6.3 2.5 30 6.5 G.CG 4.1 2.0 0 -1 2 0 2 0 - + 2 0 3.0 0.00 2.7 2.5 2.2 C.CC 2.7 3.8 1.8-0.60-8-9 - 0.0 è C.O -7.4 C.C 33 C.0 -7.1 7.1 1.8 0.00 3.6 C.C C.O-15.3 G.C Ċ 7 7 19 7 7 101 147 47 47 47 7 7 -97 141 34 34 34 38 -157 123 32 32 32 40*-108 132 46 50 50 42 -114 137 42 45 45 44 -65 132 34 1.8 0.60 3.4 2.7 C.0 -6.5 0.0 ... 1.8 0.00 6.5 C.C -6.5 2.3 0 1.8 G.CO 6.3 1.8 G.C9 9.4 1.8 G.C0 9.9 1.9 C.0-14.4 G.C 0 € € +-+ C.C -6.3 4.6 7 1 2 4 1 0.0 ē .3. C+0--9+3 ++++ 1.8 0.00 6.4 C.C -4.8 5.4

CLUSTER OUTPUT

N-SPR SPR ORT CHT VELOCITY-SHEAR MX CELL **EELL** ** V X L ANG C KM KM DEG 3 C.9 2.5 251 3 C.2 4.1 3C4 1 C.C C.O C AV CELL EM/S NM/S 11.7 -1.4 9.2 5.5 6.3 -C.1 9.C 7.2 TRK AZM RNG AV PK NO DEG KM DB DE 4 321 178 47 52 5 330 161 45 51 6 311 199 42 45 10 нT 10 10 ROT. DIV. R D K.M #5K# ۸e ₩Đ #5K# -- CS 0 0 1.8 000 11 0.00 0.00 2 2.3 10 1.6 7 2.3 10 -6.47 C.CC C.CC 1 5 4.79 3 0.00

VOL MMMM AREA WELUX NEAR NEIGHEER ACT NO NO VELOCITY TRK CLS CRT 6:- CVER -----SCAN KKM2 KMT/F CELL CLST CONT VCL CS FC EM/S KM/S NO CTR CTR C --4 1613 1:5:15:71 5:2-C.C C.O C.O 26 4 2 11:3-3:6 44 7 6 0 C C C C O

Table 6. ACDT-WEATRK Product Comparison for Case Sudv No. 1

Algorithm	Region No. or Star Cell No.	Azireuth	Range (s.M)	Max Herght (RM)	Centroid Direction	Speed (M/S)	Maxie une Rettectivity	Veryfet Reflectivity
lm.e 1555								
ACTUT	1	330	167	21		,	17	50
WEATER	-	330	160	10.4	,		51	
10.15.1	71	3.1%	188	10	ı		9+	
WEATER	וכ	3. 13.	186	9.8	•	,	9†	9+
WEATER	e s	33.5	18.4	3, 6			91	
ACDI	m	5:55 83	2.17	.9	1	1	7	30 T
W EAT RK		330	2 14	4.6	ŧ		2¢	
Time 1601								
ACDT	-	23.7	163	10	314	12	₹.	
ACDI	_	33.2	165	∵ ∩	296	12	<u>, 1</u>	* t .,
WEATER	_	331	156	10.4	243	10	N.	
ACDT	^1	320	185	σ.	258	15	.,	
W EATER	া	3.20	130	10.2	284	2.5	5.5	
ACDT	~	331	217	ं च	238	17		
WEATRK		332	214	+J*	236	50	31 17	
Time 1608								
ACDI	-	333	162	6:	258	10	1, 1	95
WEATER	-	331	154	10.0	288	σ.	• -	
ACDT	71	321	181	¢:	257	α	ī.	
WEATER	23	321	176	8.0	27.9	1+	ŧċ	
ACDI	200	332	216	9	27.4	15	32 75	
WEATRK	-7'	333	212	±. +	243	16	÷	
ACDT	ıo	3 10	203	[]	ı		-	.;
WEATRE	ın	311	200	4	•	;	:-7	

Table 6. ACDT-WEATRK Product Comparison for Case Study No. 1 (Contd)

Algorithm	Contour Region No. or Storm Cell No.	Azimuth Range (KMI)	Range (kNI)	Max Height (kM)	Centroid Direction	Speed (M/S)	Maximum Reflectivity	Maximum Verivied Reflectivity Reflectivity
ACDT WEATRK	T 21 -	326 322 322	170	111	250 286 277	13	55	ភូទ
ACDT WEATRK	۳ میری ۱	311 309 313	199 202 194	4.8 7.2	27.1 44	10 6 12	t 44.	46
ACDT ACDT) m w	3 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	221 212	6 5. 6 7	327 297	17 7	3 3 4 3 4	

Before the data are compared, it is necessary to discuss the differences in the algorithms' processing schemes. Since WEATRK tracks three-dimensional storm cells, that are large relative to the volume cells tracked by ACDT, the centroid position of the storm cell will be different from that of the contour region given by ACDT.

The centroid locations of the various ACDT contour regions, and WEATRK storm cells are plotted in Figures 1, 2, 3, and 4. Although the centroid locations of the WEATRK storm cells and the ACDT contour regions are derived differently they both represent three-dimensional reflectivity-weighted entities, and are hard to locate on two-dimensional single elevation angle plots. In viewing these figures it must be noted that the contoured data field is slightly smoothed by the coordinate conversion and plotting routines.

Table 6 reveals that the maximum reflectivity values reported by WEATRK are slightly higher than those from ACDT. This is due to the two range gate averaging performed by the ACDT.

The maximum echo heights reported by the ACDT are generally close to those reported by WEATRK. There are, however, some differences of more than 1.5 km (that is, contour region No. 1 at 1555, contour region No. 5 at 1608). These might be explained by the ACDT finding a 3-dB peak in the next higher elevation azimuth scan that does not exceed the WEATRK criterion of reflectivity above threshold in 14 contiguous range gates.

The velocity difference between the ACDT contour region centroids and the WEATRK storm cell centroids shows a bias of +11.8° and -1.7 m sec. These are acceptable since the centroid positioning error for this data is ± 1.5 km.

The net effect of these differences is negligible as both the contour regions and the storm cells propagate in approximately the same direction. Figure 5 is the contour plot for the first volume scan of this case study, with the centroid locations of the ACDT contour regions and WEATRK storm cells for all four volume scans labeled. It is interesting to note the apparent reversal in the motion of contour region 1 at 1615. This is obviously due to the merging of contour regions 1 and 2.

4. 1. 2 SPATIAL CORRELATIONS

Further analysis of the ACDT output reveals that an average 52% of all volume cells are detected at only one height. Out of the nine volume cells tracked over all four volume scans, only volume cell 2 was detected at more then one height at all times.

Some of these "single height" volume cells appear to be oriented in such a way as to suggest that they might be vertically correlated with neighboring "single height" cells (for example, cells 9 and 15 at 1601, 6 and 17 at 1608). This might imply we have reason to doubt the validity of the vertical correlation function used in the

algorithm. The following comments from Gustafson and Crane, page 7, concur with this reasoning: "Relaxation of the height separation criteria of the association logic to accommodate large elevation steps could cause invalid associations such as that of an immature cell at a mid-level with the cirrus overhang from a nearby mature storm. Clearly a trade-off is required; thus, the weight of the height component of the association function is defined such that a separation of between 2.5 and 3.0 km will make an association difficult (that is, require close agreement between the other components), and a separation greater than 3 km will cause the association to be rejected."

Figure 5. ACDT Contour Region (numbered) and WEATRK Storm Cell (leftered) Centroid Locations for Volume Scans 1-1. Motion is from left to right, location marked "1" is centroid location of merged contour regions 1 κ 2 in Volume Scan No. 4

The data were collected at 0.7° elevation angle steps; thus by using the 4/3 earth beam refraction correction we find the height difference between elevation angles is $2.5~\mathrm{km}$ at a range of $150~\mathrm{km}$ and $4.0~\mathrm{km}$ at $230~\mathrm{km}$.

Another factor that may be contributing to the vertical correlation problem is that the height computations for some features appear to be wrong. Although most of the heights are correct within the resolution of the algorithm (1 km), there are a few cases where the height given for a volume cell is in error even when truncated to the nearest kilometer. Table 7 illustrates this discrepancy.

In studying the cluster output for this case it is apparent that 83% of the clusters are not correlated in time, and no single cluster is tracked throughout the entire 4 volume scans.

Table 7. Comparison of Height Estimates of Selected Volume Cells From ACDT and 4/3 Earth Correction for the Lowest Two Elevation Angles (α)

Cell No.	Volume Scan No.	Range	ACDT Height	4 3 Earth α = 0,4°	4.3 Earth $\alpha = 1.3$
1	1	194	5	3.9	6.9
9	1	167	4	3.1	5.6
9	2	167	2	3.1	5.6

Figure 6 is a plot of the positions and trajectories of the volume cells in contour No. 1 starting with volume scan No. 1. These volume cell tracks all look plausible, although it is interesting to note the movement of volume cell 16 around 17 and the almost complete reversal of direction of cell 15.

Figure 6. ACDT Volume Cell Centroid Trajectories for Contour Region No. 1. For volume scans 1-4

Figure 7 is a plot of the vertical extent of selected volume cells throughout the period of interest. This diagram illustrates the rapid structural changes in several volume cells. Cells 6 and 17 seem to alternately lose and gain their significance in volume scans 2 through 4. Cells 7 and 9 behave erratically between volume scans 1 and 2, going from a multi-height entity to a single height entity at

a lower elevation. Volume cell No. 5 is an example of a short lived significant cell, one which does not decay the way one might expect, that is, with reflectivity gradually lowering in time. The behavior of volume cell 20 on the other hand might be indicative of a decaying cell. Volume cell numbers 1, 3, 8 are examples of single height cells that are tracked over several volume scans. Volume cell No. 2 is an example of a relatively long lived significant cell. Volume cell 15 could be an example of a growing storm cell.

Figure 7. Volume Cell Vertical Extent for Volume Scans 1-4. (signifies significant cella, ND - Volume Cell not defined)

4.1.3 TEMPORAL CORRELATIONS

One check of the reliability of a tracking algorithm is the examination of the ratio of the nearest neighbor distance between cells and the distance each cell travels between observation times. This ratio should be greater than 1 to have any meaningful significance. Another parameter to consider is the ratio of the nearest neighbor distance and the average cell diameter to give another indication of possible cell overlap. These ratios were computed for all the nearest neighbor volume cells within a contour region.

Table 3 contains a listing of these ratios for all the nearest neighbor cells that had a lifetime of more than two volume scans (~12 min).

Table 8. Compilation of Volume Cell Overlap Ratios, for Nearest Neighbor Cells

Time	Contour	Cell Group	d/st	d/2r
1601	2	1-2	1, 5	2,2
	2 2 2 1	÷ 2 - 2 0	1. 2	1.5
	2	*3-5	1.2	1.2
	1	*7 - 9	2.1	2.2
	4	* 6 - 15	1.7	1.7
1608	1	*7 -9	0.3	0.4
	1	*6-17	1. 1	1.9
l	1	6. 15	2.2	2.4
	2	*3-5	2.0	2,5
	2	*1-20	2.1	3.7
1615	1	*2-20	2.2	1.3
	1	*6 - 17	0.9	1.3
	1	*30-32	1.4	0.1
	1	15-32	1.9	3.1
	1	24-30	2.0	4.8
	1	*22-27	0.9	1.4
	1	*9-32	1.6	4.1
	1	* 7 -9	1. 1	1.9
	1	3 - 22	2.8	3.2
			· · · · · · · · · · · · · · · · · · ·	
			$\frac{\overline{d}}{at} = 1.4$	$\frac{\overline{d}}{2r} = 1.9$
			$\frac{\overline{d}}{st} = 1.4$	$\frac{a}{2r} = 1$

^{*}Cell groups are counted twice in overall average (that is, is, cell No. 2 is the nearest neighbor to cell No. 20 and vice versa)

The following variables are used to compute these ratios:

- d = Nearest neighbor separation distance (km),
- \overline{s} Average cell speed over the volume scan (km/s),
- t = Volume scan time (s),
- r Average cell radius (km).

The overall average for the nearest neighbor distance over the distance each cell travels between observation times $(\frac{d}{st})$ is 1.4, the overall average for the ratio of nearest neighbor distance to cell diameter $(\frac{d}{2r})$ is 1.9. The error in determining cell position due to the radar beam width is \pm 1.5 km at a range of 175 km. This positioning error results in an uncertainty of \pm 3.0 in $\frac{d}{st}$ and \pm 1.8 $\frac{d}{2r}$. Considering these uncertainties, it is obvious that the above ratios are not large enough to demonstrate that the algorithm can distinguish between adjacent volume cells in subsequent volume scans.

4.2 Case Study No. 2

The second case study consists of four volume scans, recorded from 1534-1557 CST on 10 April 1979. The thunderstorm observed at this time extended in a complex band from the northeast to southwest of the radar. Figure 8 is a contour plot of a small section of this band. The closest identifiable 30-dBz contour was at a range of 20 km.

Figure 8. Reflectivity Contour Plot for Volume Scan Beginning at 1534

A synopsis of the ACDT output (Appendix A) can been seen in Table 9. The high number of contours and volume cells in Table 6 confirms the complex nature of the storm system on this day. The number of fixed contour regions for the time period of interest never drops below 33, vet only three of these are correlated throughout all four volume scans. On the average 77% of all contour regions are not temporally correlated.

The number of volume cells detected for each volume scan is also very large. It was found that on average 49% of all volume cells were uncorrelated in time and 55% were uncorrelated vertically (that is, detected at only one height). There were 21 volume cells that were followed for the entire time, vet only four of these (numbers 42, 53, 126, 131) had vertical continuity at all times. Considering this it is not surprising that 56% of the clusters in this case showed no temporal continuity. This case was run again with 35 dBz as a threshold; the effect of which was

to reduce the number of contour regions from 39 to 32 without changing significantly the number of volume cells that were uncorrelated in time. In comparison, when the WEATRK algorithm was run with a 35-dBz threshold over the dame data, it detected 12 storm cells, and tracked 8 of these throughout this time period. It must be noted, that WEATRK only lists the attributes for what it determines to be the 12 most significant storm cells.

In addition, ACD1 appears to have difficulties in identifying and tracking significant cells in this case. There are 40 significant cells identified over the period of interest, yet only one of these (number 126) is detected in all four volume scans. Over all, 88% of the significant cells are not correlated in time.

Table 9. Synopsis of the ACDT Algorithm Output for 1534-1557 (CST) on 10 April 1979

Volume	No. of Conto	our Regions	No. of Vol	ume Cells	No. of C	lusters
Scan No.	Total	New	Total	New	Total	Zew
1	39		148	-	24	-
2	37	27	148	77	10	8
3	34	24	113	51	18	11
.1	33	29	140	7.2	23	15

5. SUMMARY AND CONCLUSIONS

The ACDT behaves as designed, that is, it locates 3 dB peaks, defines contours, errups clusters, and tracks these entities. Although not all of the individual 3 dB peaks can be identified in the contour plots presented in this report, they can be located in the higher resolution raw data.

It is apparent that the algorithm is experiencing several problems when applied to our data sets; it has however, proved to yield good results using 3 to 5 min volume scan repeat time with greater vertical resolution (Crane and Hardy, ¹⁰ Crane ¹¹). It is thought that several of the problems in this analysis such as, uncorrelated volume cells, single height cells, and uncorrelated significant cells are due to inadequate temporal (6-min volume scan repeat time) and/or inadequate vertical resolution (as much as 2.8 km at ranges of 230 km).

Crane, R.K. (1976) Radar Detection of Thunderstorm Hazards for Air Traffic Control, Vol. I Storm Detection, Project Report ATC-67, Vol. I, MIT Lincoln Laboratory, Lexington, Massachusetts, FAA-RD-76-52; AD A032732.

Previous studies have only been concerned with data out to 150 km (Crane and Hardy 10). Gustafson 12 concurs with these speculations regarding possible areas of algorithm breakdown.

An average 50% of the volume cells detected by the ACD1 are not correlated with another volume cell in the next volume scan. Yet, at the same time the ACDT tracked some single height volume cells over the entire four volume scans of case study No. 1 (that is, cells 3 and 8).

The association of volume cells of considerable vertical extent (that is, ≥ 4 km) in one volume scan to those of little vertical extent (that is, 4 km) in the next volume scan (that is, 6, 17, 9, 5 in Figure 7) causes us to question the ability of the algorithm to vertically correlate the 3-dB peaks and to adequately track these volume cells.

The ratio of the nearest neighbor distance to the distance an average volume cell travels between observation times is shown to be small when compared to the relative error in determining the volume cell positions. This might explain the lifficulties that the ACDT had with cell tracking.

The fact that ACDT sometimes detected higher storm cell peaks is not thought to be a significant advantage over WEATRK as these higher peaks are small (less than 14 range gates) in horizontal extent.

Crane³ found the average lifetime for a significant cell to be approximately 30 minutes. We found the average significant cell to have a lifetime close to 10 minutes.

Crane and Hardy ¹⁰ state that the volume cell clusters may be the most important feature for analyzing storm structure. In our analysis 69% of the clusters were uncorrelated in time, suggesting that they may not be quite as important here. This is obviously a product of the difficulties the ACDT has with the elements within the clusters, namely the volume cells.

Finally, a few comments on the software itself. It was found that the sub-routines for the ACDT contain a substantial amount of residual developmental code. The subroutines are not modular, hence it is difficult to make changes to the processing scheme without altering the code in several subroutines. The algorithm currently runs at approximately two times real time for the simple case and three times real time for the more complex case. However, if this algorithm were to be used operationally, an entirely new software package would be needed; preferably a modular one designed for speed and efficiency.

^{12.} Gustafson, G.B. (1982) Personal communication.

It is apparent that more work must be done to determine what radar data processing methods would yield the best results for a given meteorological scale. WEATRK tracks the large scale features of a storm complex, while ACDT tracks much smaller entities to presumably yield a description of the internal structure of a storm complex. The ACDT was initially developed to process up to 512 volume cells at one time. It is obvious that processing this amount of data is not possible in a real-time environment. To rectify this problem, Crane recommends that the subroutines for cell detection and tracking be maintained while the number of cells be reduced by increasing the reflectivity threshold and by incorporating the tangential shear information in the decision process for saving the most important 12 to 16 cells. It would be more consistent with algorithm development to specify a larger peak size, since raising the threshold level would tend to eliminate growing volume cells.

Since it may well be useful to identify elements within storms, such as significant cells, one might consider an algorithm with resolution capabilities between the two algorithms discussed herein. Perhaps if ACDT were modified to track 6 to 10 dBz peaks, or WEATRK were modified to operate with several thresholds, storm structure would be more readily apparent. If the reflectivity peak processing method were to be explored further it would be prudent to write an algorithm in which the peak size would be an input variable. This would enable the researcher to specify a peak size (feature size) that was consistent with the spatial and temporal resolution of the data set. This type of algorithm could be run repeatedly over the same data altering the peak size to first, observe the large scale features of the storm, then to detect and track the feature of interest, and lastly to determine when the algorithm breaks down (that is, no longer can correlate its derived features).

In reviewing our case studies one can see that it might be necessary to either fine tune the ACDT contour region threshold for each case study, or specify a permissible reflectivity range around the threshold. This would eliminate extraneous contour regions, and eliminate insignificant merges and splits of contour regions due to small fluctuations of the reflectivity field.

The Automatic Cell Detection and Tracking algorithm (ACDT) developed by Crane ^{1, 2, 3, 4} has been evaluated by carefully examining two case studies taken from the 1979 JDOP program. The output products from the ACDT were compared to raw data and to the products from the AFGL storm tracking algorithm WEATRK. We found that the ACDT performs unsatisfactorily when constrained to a 5 to 6 min volume scan repeat time, and when it is required to perform out to a range of 230 km. Therefore, we do not recommend its inclusion in the NEXRAD system at this time.

References

- Crane, R.K. (1977) Parameterization of Weather Radar Data for Use in the Prediction of Storm Motion and Development, Final Report Contract No. F19628-76-C-0264, Environmental Research & Technology, Inc., AFGL-1R-77-0216, AD A052535.
- 2. Crane, R.K. (1978) Development of Techniques for Short-Range Precipitation Forecasts, Final Report Contract No. F19628-77-C-0058, Environmental Research & Technology, Inc.; AFGL-4R-78-0005, AD A057153.
- 3. Crane, R.K. (1979) Automatic Weather Radar Echo Assessment and Tracking, Final Report, Contract No. F19628-78-C-0076, Environmental Research & Technology, Inc.; AFGL-1R-79-0248, AD A081061.
- 4. Crane, R.K. (1979) Automatic cell detection and tracking, IEEE Trans. Geoscience Elect. GE-17:250-262.
- Crane, R.K. (1981) Thunderstorm Turbulence Hazard Detection, ERT Doc. P-2832-F, Environmental Research & Technology, Inc., Concord, Massachusetts.
- 6. Gustafson, G. B. (1980) Software Routines for the Automatic Processing of Weather Radar Data, ERT Doc. P-1552-IP-5, Environmental Research & Technology, Inc., Concord, Massachusetts.
- 7. Gustafson, G. B., and Crane, R.K. (1981) Detection and Tracking Algorithm Refinement, Final Report DOT/FAA/RD-81/80, ER1.
- 8. Bjerkaas, C.J., and Forsyth, D.E. (1980) An Automated Real-Time Storm Analysis and Storm Tracking Program (WEATRK), AFGL-1R-80-0316, AD A100236.
- 9. Donaldson, R.J., Jr., and Glover, K.M. (1980) Joint Agency Doppler Technology 1 ests, AFGL-TR-80-0357, AD A100208.
- 10. Crane, R.K., and Hardy, K.R. (1980) The Hiplex Program in Colby-Goodland Kansas: 1976-1980, Final Report, Document P-1552-F. Environmental Research & Technology, Inc., Concord, Massachusetts.

References

- 11. Crane, R.K. (1976) Radar Detection of Thunderstorm Hazards for Air Traffic Control, Vol. 1 Storm Detection, Project Report ATC-67-67, Vol. 1, MIT Lincoln Laboratory, Lexington, Massachusetts, FAA-RD-76-52; AD A032732.
- 12. Gustafson, G.B. (1982) Personal communication.

Appendix A

ACDT Algorithm Output

Table A1. ACDT Volume Scan Output for Volume Scan No. 1, Case Study No. 2

		<u>scan</u> Trac*												3CAN.											
			. Her	1.1	· z	1324		_	- ' -	3				3644		/ 5 ;	: L			. 4	, .		,,,) E G .
	-																								
								-			-														
_																									
								_															_		
TXE	<u> </u>	ChIC	.R 21	TEL:	Ĺ												_								
,		ecii.	A v (<u>.</u>				SPA	٠,	١-		15					. ·	Ŧ U	. ~ .		ע נג	M F	
		F .						<u> </u>		y E A		L.	2	FLL										10	
		. 1. 1					۔ ت	Ė	. L	s.r.				MILL										ĂĒ.	
1		140		147			î	5	0	0.0	2.		9	0.2				; ; ç			С.		2	C	Ç
- -	272		202			- 2 - 2		1	÷	4.5	٠	÷	<u>-6</u> 34	2.0		-61		; ç ç			<u>ب</u> ي :		C		-
		4- مثد	292	12Ž			1		-	4 • -	<u>.</u>		34	ري. د المحمد ـ				, , , , , , ,					1	_£	_£
5	51			100			_	1	1	J.2	_	_	- - -	U.1				; ; ;			Ç.,		2		-
ع.		53	-1	9.2	37	32	1	÷	٤	2.2				1.1	2_2	.:3		عد		335	غن	_ـــ	_1_	<u> </u>	
?	2+4	127	743	227 123	3.7	37	1	÷	Ç	ن و ز	÷ .	٠. [Ç	0.1				, , ,			0.		4	Ç	C
- 5 -		152		183			<u>;</u>	-	-	بلحتك	معانب رات	<u> </u>		5.0.		.02		;					}- -		- {
ند		121		121				1	1	5.7			15			، ، ، غذ		. ç ç			_ <u>z</u>		Ś		ء_
11		123	6.3	108	3.3	? ?	1	1	-	2.5	÷.	. 0	Ĉ	0.1				, ç ç		999	€ €.	٠.	1	С	C
						3.1	1	-	Č	٤٠٤	Ξ.	÷	- =					53			ب		<u> </u>	Ť	-ř
13	72	214	.153 .153	214		. 1	1	1]•Ç		· -	0	2.0 _2.1				;			. C.		0	C	C
	728	225						Ē	(0.0	Ī,	_		1.1				ζζζ			: 0		-4	Ċ	- c
		119		194.	3.		. 4			2.8			۵5.		٠. نـ	-5.3		:59		999		<u></u>	_&_	<u>-</u> È	ء_
		201					1	-	÷	1.5	į,	٠.	-	2.1				; < 0			ξ.		4	C	5
	245 324		245 322	4.1		51	25	- -	-	7.5	1 .	٠	2	1.21 1.21				59					- 11 .		_
	252	153		152			1	į	Ė		Ω.		1					, , ,			1		2	ů.	<u>.</u>
		124		123	3.	3.7	-:	1	1	0.0	7		- (· :	ΙÜ	.1c	- 0	ςç		935	Ċ,	. :	3	Ç	(
		143					1		Ĺ		. <u>-</u> .		- - -	4				9.9					_2_	<u>ء</u>	ع_
		108						1		1.5		• :	15	1.33				;			. O		6	Ç	
	292 308		291°			3.2 4.0	1		ŗ			-		3.10				;			<u> </u>		1	ī	
26	315	3.7	322		<u> 19</u>		13	3		3.5	_7,	٠.٠	1 ž.	لكمث	-	عد.		وي		999	. 7	ے	4	C	Ċ
	3 C e		300		32		1		í	2.0	Ç,	Ü	Ü	(.(\$ 9			ε.		J	Č	Ç
	<u>305</u> 316	. <u>28</u>	305 312	- 9 = 5 3			1			0.0	- 4	<u>۔</u> پ	٠	يگمڪ. () د)		-11		\$ <u>\$</u>			£.		<u> </u>	_ _	-{
	312		311		33					رون کوک	-							55			<u>.</u> c.		1	ے	
31	319	91	315	Ģ 1	34	3.4			C	5.0		Ĉ	0	0.0	: :	.02	;	, Ç Ç		Ç Q Ç	C.	. ē	1	S	C
32	357		357	<u>51</u>			<u> </u>	1	1	ثعث	ي ي	ب	ب	بيوت				9					<u> 0</u>	<u> </u>	_ č
33	2		355			3 2	1 1			0.0			.j	2.00				; ç ş			Ċ,		3	C	C
-14_ 35	<u>347</u> 17	<u> </u>	341			<u>47</u> 31				C.C			2	نغمو۔ کیون				5 9			بع ـــ		-e-	Ċ	
مُدُ	_11	43	_11	44	-	45	i		Ċ	2.0			Ċ.	1.	-			53			ے۔		ŏ	<u> </u>	<u>.</u> `
37	2 C	4.5	2 C			13				<u>ن.</u> ر			3	0.01				99			c.		c	0	C
38	<u>5</u>	67 96	8_ 26			<u>45</u> 36				5.e				_2.63 C.13				<u> </u>			<u>.</u>		7	- ç -	_ -Ě

Table A1. ACDT Volume Scan Output for Volume Scan No. 1, Case Study No. 2 (Contd)

	1
VOLUME CELL CLIENT	
The state of the s	
CENTROID I HUT VEAK CELL CRACTAL	(TAN) LEF RAD RAD OS ON DIR R
TRK AIM PNG AV PK LW HI L N H 1975 N//S 1992 A	(SHP) SPC - VEL SPC TR TR C E E
1 41 92 37 37 37 37 1 1 1 11.4 2.1 0.00 9.2	1.7 (.C -4.7 C.1 C e 1 1 1
2 42 152 31 31 31 31 3 3 3 1 1 3 3 1 1 3 3 1 3 3 3 1 3	2.5 C.2 C.0 C.0 G 9 C 1 1 C.C. C.2 C.7 2.0 0 8 C 1 1
] 3 40 123 32 32 32 30 1 1 1 11 2.1 0.0001.3	: 0.0. 0.0 0.7 0.0 0 8 0 1 1 l
4 44 127 34 34 34 34 1 1 1 11.5 2.1 0.0020.7	
5 47 131 34 34 34 34 3 2 2 11.0 2.1 0.0015.5	5.0 C.C C.3 C.O 0 1C 0 1 1
6 48 27 32 32 32 32 3 5 11.5 2.1 5.00 2.1	5-5 5-5 2-5 2-5 11
7 50 95 38 38 38 38 3 1 1 1 11.5 2.1 7.00 4.0 3 51 113 36 36 36 36 1 1 1 11.5 2.1 0.00 9.1	1.1 (.0 -4.0 0.1 0 5 1 1 1
3 51 113 36 36 36 26 1 1 1 1 11.3 2.1 3.03 9.1 9 52 122 40 42 42 58 1 2 5 11.5 2.1 3.03 4.6	
9 52 122 40 42 42 58 1 2 5 11.5 2.1 2.02 4.6 10 56 109 38 38 36 35 1 1 1 11.8 2.1 0.00 6.5	
11 56 123 39 42 42 36 1 2 3 11.	C.C C.C 2.4 C.C G 1C C 2 1
12 52 142 34 34 34 34 2 2 2 111.1 2.1 6.5(1).3	0.0 0.0 2.0 0.0 0 1 0 1 1
1 13 59 121 42 43 43 42 1 2 3 11.2 2.1 0.00 5.4	1.1 (.0 3.9 0.9 1 10 1 2 1
14 eq 125 37 38 38 38 10 1 3 5 11.5 2.1 2.20 5.5	1.0 0.0 1.3 1.2 1 10 0 2 1 1
15 61 128 36 36 36 36 1 1 1 11.a 2.1 0.00 a.1	C.C C.C 1.3 C.C 1 1C C 1 1
<u> </u>	<u> </u>
17 69 128 33 33 33 33 1 1 1 11.6 2.1 C.CC 6.7	C.C (.C 3.2 C.O 0 11 C 1 1
18 71 222 31 31 31 31 4 4 4 11 5 2 1 C CC13 5	1.0 C.C -1.2 O.C 0 12 C 1 1
19 72 214 31 31 31 31 4 4 4 11.8 2.1 C.CC13.4	C.C C.C -C.6 C.O O 13 C 1 1
20 153 15 34 34 34 34 C C C 111 2 2 1 3 2 C 1 2	<u> </u>
21 234 227 41 44 44 36 4 5 7 11.c 2.1 5.50 7.7 22 235 193 36 36 36 36 3 3 3 11.c 2.1 5.6633.3	
22 235 192 36 36 36 36 3 3 7 11.6 2.1 0.0033.7 23 236 205 42 44 44 40 4 4 6 11.8 3.1 0.0032.6	0.0 0.0 -0.2 0.0 0 16 0 1 1 0.0 0.0 0 16 0 2 1
24 736 194 38 32 38 38 3 3 3 11.± 2.1 C.GC 6.S	C.C (,C -2.4 C.O 0 16 G 1 1
25 243 227 37 37 37 37 4 4 4 11.0 2.1 6.00 5.7	
26 245 48 33 33 33 33 C C C 11.8 2.1 C.OC 3.2	1.0 0.0 1.8 0.0 0 12 0 1 1
20 245 48 33 33 33 33 3	C.C C.C C.O O.O J 17 C 1 1
<u> </u>	0.0 0.0 0.6 0.0 0 20 0 1 1
l 29 253 162 37 37 37 37 37 3 7 11.3 2.1 0.0011.5	
30 256 126 32 34 34 31 1 2 3 11.5 2.1 C.CC 7.C	C.C C.C -3.2 3.2 2 21 C 2 1
}	
32 * 263 109 39 41 35 36 1 2 4 11.3 2.1 C.CC 3.3	1.8 C.C -C.3 3.4 0 23 3 3 1
33 276 102 36 36 36 36 1 1 1 11.9 2.1 0.0010.7	
36 282 92 34 34 34 34 1 1 1 11.: 2.1 C.CC 7.C 35 286 66 33 33 32 33 C C C 11.: 2.1 C.CC 2.1	
36 286 80 38 38 38 38 C C C 11.8 2.1 C.CC14.5	0.0 C.C -3.2 C.O O 3 C 1 1
36 286 90 38 38 38 38 3 0 0 111.5 2.1 0.0014.5 37 290 64 33 36 36 32 0 1 4 11.5 2.1 1.98 3.7	
38 291 74 32 32 32 32 0 0 0 11.8 2.1 0.00 3.0	
39 293 82 36 37 37 35 1 1 1 11.5 7.1 6.00 7.5	1.2 C.C -3.9 C.7 4 3 1 2 1
1 40 294 87 40 42 42 37 1 1 2 11.6 2.1 5.00 8.6	1.2 (.0 -3.2 1.9 4 3 1 2 1
41 294 91 35 36 36 36 1 1 1 11.8 2.1 0.00 1.7	
42 301 62 37 38 38 34 C 1 2 11.8 2.1 C.0C 4.0	
44 302 86 39 39 35 39 1 1 1 11.5 2.1 C.OC 6.3	
45 305 98 33 33 33 33 1 1 1 11.0 2.1 0.00 2.0	
46 306 52 32 32 32 32 C C C 11.8 2.1 C.CC 3.2 47 307 66 36 38 38 32 C 1 4 11.8 2.1 5.05 6.8	
48 311 31 40 40 40 40 5 0 0 11.8 2.1 0.00 6.3 49 313 39 39 40 40 39 0 0 0 11.8 2.1 0.00 2.7	
50 311 56 32 32 32 32 C C C 11.8 2.1 C.CC 4.C	
* 54 31 70 20 20 20 0 0 1 1 1 1 1 1 1	
<u> </u>	<u> </u>

Table A1. ACDT Volume Scan Output for Volume Scan No. 1, Case Study No. 2 (Contd) $\,$

(COMO)	
51 312 52 33 34 34 32 0 0 1 11.8 2.1 0.90 4.7 5.6 0.0 9.0 0	.8 6 30 1 2 1
52 316 25 36 4C 4C 34 C C 1 11.5 2.1 C.2C 2.1 1.4 C.6 6.8 1	
53 316 74 38 40 40 34 0 2 6 11.8 2.1 3.08 6.1 1.9 0.0 -4.6 3	
54 * 317 42 40 41 40 40 0 0 1 11.8 2.1 0.00 3.8 2.7 0.0 10.1 3	
55 318 61 34 35 35 33 C C 1 11.8 2.1 C.OC 5.1 3.9 C.C 8.5 2	
56 319 67 35 37 37 34 C 1 1 11.3 2.1 C.CC 4.7 1.6 C.C -1.81C	
57 318 91 34 34 34 34 1 1 1 11.8 2.1 0.00 6.1 0.0 0.0 -2.5 0	
58 321 80 33 33 33 33 C C C 11.8 2.1 5.00 6.5 3.0 C.C -1.6 3	
59 322 74 35 35 35 35 C C C 111.5 2.1 C.CC 2.2 1.2 C.C -8.0 D	
20 323 £4 33 35 25 32 1 2 5 11.	
61 327 88 37 37 37 37 1 1 1 11.8 2.1 C.CC 1.7 C.C C.C +1.8 C	
02 326 82 33 33 31 33 1 1 1 11.1 2.1 5.25 3.1 1.4 5.5 4.7 0	
e3 329 71 42 43 43 43 6 0 0 11.0 2.1 0.00 4.8 1.3 0.0-11.2 1 e4 331 e5 44 44 44 44 0 1 1 11.0 1.1 1.00 7.7 1.0 1.0-12.4 1	
-c4 - 331 - c5 - 64 - 64 - 64 - 64 - 61 - 61 - 61 - 61	.5 11 19 1 1 1 .0 11 19 4 3 1
	6 12 19 4 5 1
<u>^66* 336 53 50 51 50 49 0 2 4 11.8 2.1 2.82 2.1 2.7 0.0 8.2 2</u> e7 339 86 41 44 44 33 1 1 3 11.8 2.1 0.00 5.2 1.6 0.0 -7.3 4	
65 341 95 39 40 40 35 1 1 2 11.6 2.1 C.0. 9.4 1.4 C.C ~6.C G	
	.2 13 32 1 1 1
	3 14 34 4 2 1
	.0 15 34 C 1 1
	0 15 34 0 1 1
	.0 13 32 C 1 1
	1 16 34 1 1 1
	.2 16 34 C 3 1
76 359 54 32 32 32 32 C 2 3 11.6 2.1 C.0C 2.C C.C -3.6 4	6 13 33 0 3 1
77 1 61 39 39 35 39 0 0 0 11.5 2.1 0.00 4.5 0.0 0.712.1 0 78 1 76 45 45 45 45 0 0 0 0 11.6 2.1 0.00 6.4 5.4 0.0 3.6 5.	.0 16 38 0 1 1
	9 15 38 2 1 1
	.1 16 38 2 3 1
	1 10 38 3 2 1
181 * 12 57 42 45 42 39 C 1 4 11.8 2.1 1.90 4.0 1.6 C.C -6.7 5	.6 17 38 2 4 1
82 11 52 40 40 40 40 0 0 0 11.3 2.1 0.00 4.1 1.5 C.C +9.4 C	4 17 38 1 1 1
83	
<u>E4 18 58 31 31 31 31 C C 11.3 2.1 C C 2.1 3.1 C C 72.0 4</u>	<u>.7 0 35 2 1 1 </u>
	.0 0 37 0 1 1
	5 12 39 6 4 1
89 344 50 38 4C 35 4C C C 1 11.3 2.1 C.0C 2.6 2.8 C.C 5.4 0	
91 350 80 34 34 34 34 C C 0 11.E 2.1 C.C 3.C 2.4 C.C-1C.8 0	
93 39 81 31 31 31 31 1 1 1 11.5 2.1 C.OC 7.6 3.3 C.C 1.3 O	
	2 0 6 1 1 1
95 129 12 33 33 33 33 C C C 11.3 2.1 C.OC 4.7 1.C C.C-14.8 C	
90 120 17 36 37 56 36 6 1 1 11 8 2 1 4 13 2 4 2 4 6 6 6 1 1 6 8	
97 228 34 31 31 31 31 C C C 11.8 2.1 C.CC 1.7 1.8 C.C -4.8 O	
98 234 185 33 33 32 33 5 5 5 11.6 2.1 C.DC3C.E. C.C. C.C.C.C.	
99 294 61 34 34 34 34 1 1 1 11.8 2.1 0.00 3.0 0.0 0.0 -6.3 0	
	<u>. 0 </u>
101 305 61 36 36 36 36 1 1 1 11.3 2.1 C.OC 1.5 4.3 C.C +8.2	
102 312 48 39 39 35 39 1 1 1 11.8 2.1 C.GC 4.C 2.4 C.C -7.3 4	
103 329 17 35 39 31 39 C 1 2 11.8 2.1 C.CC 1.8 1.1 C.C 9.6 1	
	· 2 10 19 0 4 1
	.9 20 26 1 3 1
106 326 40 34 34 34 34 C C 0 11.8 2.1 C.OC 1.5 1.4 C.C 2.7 2	-1 20 26 2 1 1

Table A1. ACDT Volume Scan Output for Volume Scan No. 1, Case Study No. 2 (Cont f)

107 330 63 36 39 39 31 0 0 4 11.8 2.1 0.00 7.8 1.	
108 333 75 35 38 38 31 1 2 4 11.8 1.1 1.01 4.2 1.	1 [.[-1.7 7.9] 19 [1 1
[109 344 85 31 31 31 31 1 1 1 11.5 1.1 1.2 7.5 1.	e (.5 -5.e S.1 O C 1 1 1
112 350 89 37 42 40 33 2 2 3 11.8 2.1 0.20 3.5 2.	C CaC 6.9 1.5 0 36 1 2 1
111 352 57 32 32 32 32 32 1 1 1 11.8 2.1 2.22 1.2 2.	0 0.0 3.9 0.0 0 0 0 1 1
112 2 34 39 42 42 36 1 2 3 11.5 2.1 1.50 4.6 3.	
113 5 76 36 34 35 33 1 7 / 11.2 2.1 2.025.1 3.	
114 9 71 40 42 42 18 1 1 1 114 241 411 545 34	
115 12 62 42 40 40 41 1 1 11.8 2.1 0.11 6.2 2.	
l	
120 55 11e 33 33 33 33 5 5 5 11.8 2.1 0.00 4.5 0.	
121 150 30 32 34 31 34 1 4 5 11 2 1 4 1 2 2 3 4 1 2 1 2 1 2 1 2 3 4 2 4 2 6 11 2 3 1 3 4 2 4 2 4 3 3	
125_321_30 92 42.42 93 1 1 1 11e2 1e1 (e26 2e5. le	
120* 337 69 41 44 44 34 0 4 7 11.6 0.1 0.00 5.4 1.	
<u> 1817-194-194-94-94-94-94-14-1-14-1-14-1-4-4-4-4</u>	
148 347 61 31 31 31 31 2 3 3 11.6 2.1 (.00 2.1 1.	
129 5 83 31 31 31 31 3 4 5 11 3 Cal Call Bat Ca	
130 12 76 35 37 37 33 3 4 6 11.5 2.1 0.20 1.5 1.	
131 319 78 38 39 32 32 3 5 11 at .2a1 3a2 5 1 4 a	
132 5 74 38 38 38 38 3 3 3 11.8 2.1 0.00 3.0 1.	2 (.C 1.3 0.5 16 38 1 1 1
133 334 27 32 13 32 33 1 2 4 11 2 2 1 3 21 2 1	1 (ac 7a1 1a4 20 20 C 4 1
134* 328 34 40 43 40 41 2 4 7 11.5 0.1 1.73 0.6 2.0	2 (.0 8.3 2.7 20 26 2 6 1
135 316 49 34 34 34 34 2 2 7 11.8 2.1 5.00 4.	4 C.C E.6 C.C 21 26 0 1 1
136 328 28 36 36 36 36 1 1 1 11.7 2.1 1.70 1.7 0	0 0.0 10.5 0.0 20 26 0 1 1
137 20 49 37 37 37 37 3 3 3 11.5 2.1 0.00 2.5 1.	
138 347 55 33 34 34 32 4 5 5 11.4 2.1 0.00 2.5 1.5	0 0.0 1.2 0.3 24 19 0 2 1
139 13 69 35 37 37 33 5 6 7 11.8 2.1 5.16 3.2 1.6	6 0.0 -5.2 0.5 16 38 2 2 1
140 14 67 30 36 36 30 5 5 5 11.5 2.1 C.C. I.e. 1.	3 C.C -6.3 O.C 16 3E C 1 1
141 16 61 42 44 44 46 5 5 6 11.8 2.1 0.26 4.1 2.0	
142 334 68 34 34 74 34 5 5 5 11.8 2.1 0.00 1.9 1.0	
143 341 63 36 36 36 36 5 5 5 11.8 2.1 0.00 1.9 0.1	
144 15 73 33 33 33 33 e e e e e e e e e e e e	
1 145 . 325 -47 34 35 35 33 4 5 c 11 c 2.1 C CC 3 c 1 1 c	
1 146 340 51 37 37 37 6 6 6 11.8 2.1 C.CC 3.C 4.1	
1 147 244 18 35 37 34 3e 2 3 Z 11.8 2.1 C.CC 1.9 1.0	
148 325 40 39 39 39 8 8 8 11.8 2.1 0.00 2.8 3.1	7
140 340 40 37 37 37 6 6 6 11.0 2.1 0.00 2.6 7.7	+ ((.+ c., 0 20 0 F F

Table A1. ACDT Volume Scan Output for Volume Scan No. 1, Case Study No. 2 (Contd)

NC 053 1 e0 2 257 3 290 4 293 5 303 6 310 7 315 8 318 10 320 11 332 11 335 13 358	KM 125 123 03 97 02 53 40 79 58 65	AV PK CS TR 39 +3 34 37 33 36 37 39 32 34 39 41 39 42 39 41 39 42 41 39 42 42 39 41 43 42 45	3 3	1.1	3.6 3.6 3.7 2.5 2.5 2.5	47 363 47 363 54 37 6	10 21 15 19 30 26		15LL NM/S 0.0 0.0 0.0 0.0	C.7 C.S 1.E 1.9	HT 10 AM 63 3 0 4 0 2 0	NC C C C C C C C C C C C C C C C C C C	MSKM C.00 C.CO C.CO C.OO	DIV. MSKM 0.CC 0.CC 0.CC 0.CC	200
1 60 2 257 3 290 4 293 5 303 6 310 7 315 4 320 10 320 11 332 12 333 13 358	125 123 03 97 02 53 40 79 53 65	39 43 34 37 33 36 37 42 37 39 32 34 39 41 36 40 35 38 34 37	3 1	1.1 1.1 1.2	3.6 7.0 3.4 1.2 2.5	47 3C ² 54 37	21 15 15 37 26	0.0	0.0	C.S 1.E 1.9 4.5	5 0 3 0 4 0 2 0		00.1	22.0 22.0 22.0 23.0	- 4
2 257 3 293 4 293 5 303 6 310 7 315 4 320 9 318 10 320 11 332 12 333 13 358	123 63 97 62 53 40 79 58 66	34 37 33 36 37 42 37 59 32 34 39 41 36 40 35 38 34 37	7 1	1.1	3.4 3.4 2.5	47 3C ² 54 37	21 15 15 37 26	2.0 2.0 2.0 2.0	0.0 0.0 0.0	C.S 1.E 1.9 4.5	3 C	, c	00.1	0.00 0.00 0.00 0.00	
3 290 4 293 5 303 6 310 7 315 4 320 9 318 10 320 11 332 12 333 13 358	63 97 62 53 640 79 58 66	33 36 37 42 37 39 32 34 39 41 36 40 35 38 34 37	2 1 2 1	1.1	3.2	3C 2 54 37 C	19 19 30 26	3.0 3.0 9.0	0.0 2.1 3.0 2.1	1.0 1.9 4.5	2 0	Č.	00.0	0.00 20.0 0.00	_
4 293 5 303 6 310 7 315 4 320 9 318 10 320 11 332 12 333 13 358	97 53 53 40 79 53 66	37 42 37 39 32 34 39 41 36 40 35 39 34 37	3 1	1.1 1.6 1.6 1.6	3.2	3C 2 54 37 C	1 4 3 2 5	3.0 3.0 3.0	2.2 2.0 2.1	1.0 1.9 4.5	2 0	Č.	00.0	0.00 0.00	_
5 302 6 310 7 315 4 320 9 318 10 320 11 332 12 333 13 358	62 53 40 79 53 66	37 39 32 34 39 41 36 40 35 39 34 37	_ <u></u>	1.6. 2.6 1.6.		54 - 37 - C	14 30 24	0.0	242	1.9 4.5	2 (-	0.00	0.00	ب_
6 310 7 315 8 320 9 318 10 320 11 332 12 333 13 358	53 40 79 58 66	32 34 39 41 36 40 35 39 34 37	_ <u></u>	1.6. 2.6 1.6.		- 37	3.7 2.4	. 2.0	242	4.5		-			C
7 315 8 320 9 318 10 320 11 332 12 333 13 358	5 40 79 5 8 6 6	39 41 36 40 35 38 34 37	4	3.C 1.E.	2.1 2.1 5.2	(2 :				1 (
4 320 9 318 10 320 11 332 12 333 13 358	79 58 66 65	36 4C 35 38 34 37	4.4	٤.	2.: 5.:2			0.0	6 6				6.00	_ م_دد_	_
9 318 16 320 11 332 12 333 13 358	5 8 6 6 6 5	35 39 34 37	. 4 .	عما	5.2	. 2 .	4.7			3.3	1 (C	(.60	0.00	_ (
16 320 11 332 12 333 13 358	65	34 37	- 2 G	(2.2	عدد .	3.5	c .		0.00	0.00	
11 332 12 333 13 358	6.5		2 .		1.0	Ċ	24	0.0	6.7	4.9	5 0	Ē	0.00	0.00	
12 33 i 13 35 8		/ 7 -		عمد	2.2	-	15	_2.0	(1.3	_ 50	2	03.2	0.00	_(
13 358		43 43	i c	2.0	0.0	- :	1:	3.0		-:	4 3		€.00	0.00	
		47.51	i.	2.4.	2.0	Ţ.	1.7	_2.2	_ C.C	£.6	_ 2 _ 3		00.3	0.00	
14 353	51	33 35	3 1	1.]	1.9	٠.	3.2	5.0	C.C	(3 0		0.00	0.00	. (
	5.3	44 47	_ i_ ;	2.6	. کست		34	0.0	0.0	3.2	30		00.2	0.00	0
15	75	42 45	? 1	1.:	1.7	3 c	3 6	0.0	7.0	4.2	C 5		0.00	0.56	
_168	63	38 45	11 3	3 . 4	7.4	55	3:	0.0	(.(5.7	_ 7 _ 0		0.00	0.00	
17 12	5.7	40 45	3	4	4.1	1 ÷	3:	7.0	0.0	1.9	4 (C.00	0.00	- 0
13 52	103	32 34	2 3	3.0	0.0	5	5	0.0	0.0	(.6	2 0	Ξ.	0.00	0.00	
19 127	15	34 37	7 (: . :	0.0		C	0.0	0.0	2.0	1 (C	(.00	0.00	
20 326	33	4C 47	÷ 1	1.5	4.9	314	Zα	0.0	0.0	1.6	7 0	. ((.00	0.00	(
21 321	4.7	34 3E	1	1.1	2.:	5 ±	25	0.0	-c.5	3.9	6	. (0.00	0.00	_
22 335	6.3	39 44	<i>i</i> :	C • C	0	ζ	_14	_ 0 <u>.c</u>	DŽE	1.3	7 0	<u> </u>	C.00	0.00	_ (
23 340	0.4	41 45	- ;	0.0	3.0		19	2.5	Ĉ.C	1.2	5 0	C	(.00	0.00	-
24 347	, 5 3	32 34	ž i		(.;	ζ	1 4	2.0	€.0	1.0	_ 5_ 0	_ C	[.03	0,00	_ (
				_									_		

Table A2. ACDT Volume Scan Output for Volume Scan No. 2, Case Study No. 2

	SCAN	_I_M_	_16	<u>.</u>	154.	C44.	<u>-</u> .	15.		<u>.</u>	¥ =1		Can.		:	<u>., -</u>	7.	1_1	īr.	Zú.	<u> </u>	C.F.G
	TRAC	REF	TI	• E	153	3 } (-	1 5	454	4									T C		5 (
										-												
									. •									-				
IXEC	CNISL	8 DU	TFL																			
/ C.N.	IRCIO.	A 1/ C							. 0 -													
RK AZI						-		. 4	≟PA X				<u> </u>						DIST			
ישם בא							Ĭ.	Ĺ	<u>. 6. F</u> .		<u>.</u>		MIZE						KM.			7.5
40 100		100		3.5	3.5	Ž	Ç	(2.0	Ĺ.	9	;	Ç. C5	ς.		21			(.(C	ζ
<u>17. 247</u> 41. 161		<u> 242</u> 159	<u> 194</u> 30	31	<u> 31</u>	1	0		<u> </u>	<u>مک</u>				ميَـ	-11	_ <u>25</u>			تعت	<u>4</u>	č	- č
42 14		-			12	1	ć	-		ē.	: :		0.0€ <u>1.6</u> 3			99			0.0	1	- 0	C
16 23					45	4	1		1.3	16.			3.18			13			0.0	7	Ċ	Ċ
43.259					77	- 2	<u>.</u>	٤.	1.1	ſ.	2 _ 1	1	1.4.1.1		L7.	ςç		999	5.0		٦	<u>.</u>
44 240 15 23:		242			3.5	1 2		: ;	• :	Ç.	: :		1.02			Ç			0.0		Ç	C
45 24			227			1		_		اهت	-		4 • 5 7 2 • 4 2			<u>24</u>			2.2	<u>9</u>	ċ	
46 24						1.		Č.					5			99			0.0	5	. c	Ē
47 25	158	251				1	-	(Ĉ.	1 3		0.40	ς.	12	55	Ģ	300	0.0	4	C	C
25					12	1	-	<u>.</u> :	ì	- •	-		تعت			- 5 5			عمير			_£
49 274 23.269		276	70 100	31	- 5 Z	1	ž	1	٠,	•	 		1.12 1.1			3 S 2 1			0.0 1.0	6	Ç	Č
5C 27		272	4 5 5	3.3	34	1	<u>-</u>	-			-		1 45 4		11	9,0			0.0	1	Č	č
51.280		250		31	3.1	1		_ ;		÷.			4.13		1	. 55		999	2 - 2	_ 1	Ē	ءَ
52 286		236			3.2	2	-		. :	ć.,	-		2.06			2.2			C.C	1	C	3
<u>53 280</u> 26 317		2±1 312		34	75	1		1 . 1 (1.02 2.03			<u> </u>			2.2	- <u>1</u>		 -
3 29		299		36	41	Ė	1	1 3		7.	7 35		1.75			23			6.2	2	24	
54 3C	76	304	7 c	7.3	3.4	1	-	()		0.1			2.52			2 t			0.0	1	. ε	Ç
55. 31.			99			1	Ĺ	٠,		-	٤ ـ ٤		1.14				_		-0.0		٤٠	<u>c</u>
56 341 57 327		343 329	-	41	5.2	14	7		1.1	7.	7317		1.96			25			4.0		19	34
58 35		350		34		1	3	Ĺ	1.0				C.C2 C.C5			ζς			2.0	- 6	-	_
5, 35			53	41	<u>. 4 E</u>	٤	<u>.</u>			11.	29		2.05			غة		21		<u> </u>	ž	34
34 32		323		7 G		3.1	3	: (٠.	1	• 3 1 0		3.48			24			4.1		1 9	C
60 <u>33</u> 1933		732 337		<u>د :</u> ع :		1	<u>-</u> -	ŗ,	 -		<u>.</u>		1.12 1.61			<u> 55</u> 17			_ <u>c.c</u>	- 2	_ c	_
61			_63			_ 1_	ì		1.0				C.E.			2 £			0.0	ה מ		34
62 3		34		35	37			Ċ	3.0	Ĵ.	5		0.28			55			Ç.C	1	c	C
63				19	45	1.7	-	_	•••	11.			3.31			_25	_		4.2	ف	3.5	34
64 4		49		32	? 4	1			0.0	٠.			2.03			99			Ç.C	3	C	C
	L. 135. 2 122		<u> 134.</u> 122		3.5	1		ር .i 1 :	1.L	. م.ک.			C.27			<u> </u>				7	ċ	L
	132		132		42	_ i_	i.	<u>.</u> :	د د نمید	، ب امت			C - 5 7			55			2.0	<u>,</u>	٤	ء_
10 59	121	6.0	121			1	ō ¯	ć	2.0	C .			C . C 7			32	7	4	C.C	2		C

Table A2. ACDIA shane Scan Output for Volume Scan No. 2, Case Study No. 2 α on β

Anna Anna and an anna anna anna anna ann	
CALECTION D NOT NOTALIAN CONTROL CONTROL OF A CASE OF	<u>.</u> P
THE DISCHARGE AS AN ASSET OF THE STATE OF TH	: =
	. j
11	2 2
.31: 232 (22 46 43 45 45 6 14 1 6 4 12 4 14 6 2 4 1 6 2 4 12 4 1	
14 250 190 19 40 50 40 4 a m tall sin ol dille til 110 0.6 2.7 0 16 1 1	2 2
17 C48 184 79 79 79 79 74 4 4 4 4 5 19 19 19 19 19 19 19 19 19 19 19 19 19	
<u> </u>	: :
\$\frac{1}{2}	- 2
	جَـن
. <u>- </u>	-
30 08 01 32 32 32 32 32 32 32 32 32 32 32 32 32	
No. 035 91 31 32 32 32 31 31 7 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7
TÎN - ÎNÎ - 13 MÎN TÎ TÎ TÎ TÎ ÎNÎ MÎN ÎNÎ ÎNÎ ÎNÎ BU NÎ TÎNÎ ÎNÎ - ÎNÎ - ÎNÎ - ÎNÎ - ÎNÎ - ÎNÎ - ÎNÎ ÎNÎ	<u> </u>
	•
	1
No.	
#7 211 64 26 36 26 26 20 1 2 1 1 1 4 2 1 1 1 1 4 1 1 1 1 1 1 1 1	<u> </u>
46 313 25 25 25 26 27 20 21 22 24 27 27 27 27 27 27	
<u>. 29 </u>	
15 32 52 74 77 74 75 77 77 78 78 78 78 78	: :
26 322 63 34 14 24 24 24 24 24 24 2	
<u> 59 325 71 32 33 32 32 1 3 3 12 3 2 2 3 2 3 3 3 3</u>	<u> </u>
াভিত্ৰ বিভিন্ন নিৰ্মাণ্ডৰ ভিৰ্মাণ্ডৰ ভিৰ্মাণ কৰি বিভাগৰ নিৰ্মাণ কৰি নিৰ্মাণ কৰি নিৰ্মাণ কৰে। ভিত্ৰি সামি কিন্ত	: 2
<u> </u>	_جَـ
-63 335 76 33 39 36 39 1 1 1 14.9 7.7 1.1 6.7 1.1 7.4 0.6 U 56 1 6	
<u>-64 334 62 31 33 31 31 4 4 4 940 0 24 10 10 10 10 10 10 10 10 11 11 11 2 1</u> -65 340 59 40 40 40 60 0 0 0 17.5 -4.0 1.00 1.0 3.7 0.1 -4.0 0.0 0.0 156 1 0	
23 367 41 31 31 31 31 11 11 16.1 5.1 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	
71	
55 340 37 46 40 40 40 40 40 7	
74	1 2
61* 13 60 39 41 34 41 0 2 3 16.0 7.1 .35 4.7 1.4 1.6 -0.6 4.8 16 63 4 3	2 2
	2
34 21 59 33 33 32 33 3 3 3 3 3 3 3 3 1 3 1 2 2 3 5 1 5 2 3 5 1 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2	
- 95 - 106 - 14 35 35 35 35 35 6 6 6 7 11.6 10.6 6.00 1.7 - 1.5 - 6.0 13.8 0.0 - 0 45 0 1	2
100 334 (8 3 3 34 34 33 4 1 1 1 1.4) 641	2 2
101 308 60 34 36 26 32 1 2 4 7.9 4.5 0.00 2.6 3.4 0.0 49.3 0.6 25 24 2 102 313 66 37 40 40 33 1 1 4 7.0 -2.4 3.70 3.6 7.0 0.0 -5.6 7.3 25 34 3 0	! 2
152 313 66 37 40 40 33 1 1 4 7.0 -0.4 3.10 2.6 3.2 0.0 -5.6 3.3 25 34 3 (}
184 327 63 37 38 38 38 3 1 3 15 2 5 2 4 2 5	: 1
<u>106 334 38 45 46 45 46 C C C 14.3 1.4 C.C. 2.2 2.3 C.C 7.9 3.3 20 34 3 4 10 2.2 2.2 C.C -C.7 7.1 28 56 7 1</u>	<u>- 6</u>
109 347 80 32 32 32 32 6 6 6 14.2 -4.2 C.CC 6.C 1.C C.C -1.8 C.O C.O C.O	1 2
110 355 89 37 37 37 37 1 1 1 17.1 3.7 3.60 1.7 3.0 6.0 -4.7 0.3 3 59 2 0	
112 3 87 37 37 27 37 1 1 1 12.6 5.6 C.CC c.4 5.5 C.C -5.1 C.C U e3 1 (2
113* 6 80 42 44 44 36 1 1 2 13.3 6.5 C.CC 6.7 2.1 C.C C.C 8.3 C 63 6 C	! 2

index value ACPT is a ressert Object for Common Scar No. 2, Case Striv No. 2 in section

1 114 11 14 44 43 43 43 1 1 11.3 5.7 1.61	
1 13 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2	4.1 2.2 C. C.9 6.6 16 63 4 4 1
	1.2 1.4 C.C 3.7 C.9 C-23 2 C 2
	1.5 12.6 2.5 25 34 1 2 2
	1.8 1.7 C.C 9.7 3.4 25 34 4 3 2 1.4 2.5 C.C -1.6 8.3 22 56 3 3 2
120 344 71 30 41 41 57 1 1 2 10.5; 4.2 C.CC	1.4 2.5 C.C -1.6 8.3 22 56 3 3 2 1.7 2.4 C.C 4.1 4.5 12 56 5 2 2
	1.7 1.6 C.C 8.9 D.C 2 C 1 C 2
129 8 84 31 72 32 31 1 2 4 13.3 2.0 1.01	5.1 1.7 C.C -2.4 2.7 0 e3 1 1 2
1 130 14 77 34 34 34 34 14 1 1 7.7 2.6 7.77	T. 5.2 (.C C.1 C.C 16 63 1 C 2
1 1814 322 77 42 43 43 56 1 2 5 17., 5.4 7.77	5.4 2.6 C.C -4.9 5.0 25 34 8 7 1 2.2 2.6 C.C -3.1 2.8 16 63 2 1 2
132 12 29 32 2 33 31 1 1 4 14 de 612 612 6	2.2 2.6 (.0 -3.1 2.8 16 63 2 1 2
133 344 64 40 40 40 6 0 1 17.0 -1.7 2.00	1.4 1.7 (.C e.4 4.1 29-2e C 3 2
<u> 134 34</u> 34	-2.5 3.2 (.0 4.6 3.8 24 34 2 2 2
4 1398 15 72 43 43 43 51 37 1 3 4 9,4 4,4 5,36	- 1.~ 2.9 i.C -C.8 5.7 16 61 5 4 1
	1.5 2.0 5.1 -2.9 2.2 1e e3 3 4 1 4.c 1.3 6.0 -2.7 1.1 1e e3 c + 1
141 14 65 34 41 41 35 3 4 5 13.1 4.6 4.1. 147 344 62.33 33.33 61 7.1 1.154 1.4.1 1.20	2.c 1.3 (.1 -2.7 1.1 10 c3 c + 1 .1.2 £.2 (.2 1.2 4.8 12 56 3 C 2
1 1 27 24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 : 7 : 6 : -/ / 6 6 6-41 1 6 2
1.195* 339. 99 44 97 91 97 1 1 1 17.3 2.3 1.01	2.5 1.4 C.C. E.S 3.0 23 34 2 3 2
<u> </u>	3.4 1.6 C.5 +2.3 8.7 0 42 C.4 1
151 159 30 36 33 38 34 0 0 1 11.8 2.1 C.TC	-3.4
152 136 177 35 35 35 35 3 3 3 11.a 2.1 f.f.	14.7 <u>1.1 1.4 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 </u>
153 242 24 33 35 75 31 0 0 0 11.0 2.1 2.66	1.0 1.5 C.F -C.7 9.3 0 44 C 4 1
154 242 227 37 33 38 37 5 4 6 11.8 2.4 C.CC	15-7 3-6 5-6 -1-8 3-3 5-5 5 7 1
155 244 217 31 31 31 31 51 5 5 11.6 2.1 1.00 156 251 159 36 37 37 15 3 3 4 11.6 2.1 5.00	15.7 0.6 7.6 -1.8 0.3 0.5 0.2 1 32.2 0.1 0.1 -0.7 0.0 0.40 1 1 had 0.6 0.1 1.3 0.1 0.2 0.2 1
156 251 159 36 37 37 15 3 3 4 11.8 2.1 5.21 157 255 146 32 32 32 32 2 2 11.8 2.1 5.01	h.C
158 259 113 32 33 33 32 1 7 2 11.6 2.1 7.50	
159 261 114 32 33 32 33 2 2 3 11.8 2.1 0.00	10.1 G.0 C.C 1.3 C.2 0 43 C 2 1
160 272 92 32 36 34 31 1 1 11 11 2 2 1 C CC	
161 273 95 34 36 72 34 1 2 3 11.8 2.1 0.00	
162 272 99 32 33 33 31 1 1 2 11 a 2-1 [a 26	11.7 C.C C.C C.A C.A 30 23 0 2 1
163 276 70 31 32 31 31 1 1 3 11.2 2.1 6.00	4.5 1.2 C.C 1.5 3.3 C \$9 C 3 1
166 281 77 36 35 3, 35 1 1 1 11 8 2-1 C-CC	
165 280 75 31 31 31 31 1 1 1 11.8 2.1 0.00	
166 286 92 32 32 32 32 1 1 1 11.8 2-1 C-CC 167 290 85 32 32 32 32 1 1 1 1 1 .3 2.1 5.00	
168 307 89 35 35 35 3 1 1 1 11.8 2.1 0.00	
169 311 97 34 34 34 34 1 1 1 11.5 2.1 (.00	
170 315 60 31 32 37 31 C 1 1 11.8 2.1 C.CC	5.E 2.C C.C 5.5 2.0 25 36 1 2 1
171 332 92 35 37 37 34 1 1 2 11.8 2.1 0.00	2.4 0.0 0.0 0.3 0.7 0 60 0 2 1
172 34C 97 33 35 34 32 1 7 3 11 8 2.1 2.CC	
173 343 90 34 34 34 34 1 1 1 11.8 2.1 0.00	
174 34C 1CO 38 40 35 39 1 2 3 11.6 2-1 C.CCC	
175* 350 93 40 44 44 35 1 1 3 11.8 2.1 C.CC	
177* C 91 41 45 45 33 1 2 5 11.8 2.1 2.55	
178 32 100 37 37 37 37 1 1 1 11.8 2.1 0.00	
179 37 91 32 32 32 32 1 1 1 11.8 2.1 C.CC	2.5 0.0 C.C 2.5 0.0 0 62 0 1 1
180 49 114 32 34 31 34 2 3 3 11.8 2.1 C.OC	4-1 O.C C.C 3-2 0-5 0 66 0 2.1
.181 51 134 38 38 38 38 2 2 2 11.8 2.1 C.OC	
182 52 122 31 32 31 32 2 5 7 11 8 2 1 C 56	6.4 0.C C.C 1.4 1.2 34 44 G 4.1
183* 57 132 38 42 42 33 2 3 8 11.8 2.1 1.53 184 302 80 36 36 36 36 1 1 1 11.8 2.1 C.OC	
1 104 205, 00 10 10 10 10 11 11110 511 6.06	110 110 010 1107 011 3

fable A2. ACDT volume Scan Outpur for Volume Scan No. 2, Case Study No. 2 (Cont \hat{p}

	===	==	_	==	=	==	==	=	==	==	_	===	_	=	==		===	===	==	===	===	===	
185	165	2 5	1.4	<u> </u>		÷ •	(1	١.	÷	7.1	:	- :	:	: . :	ί.(0.0	2 /	58	C 1	1
1:7	234	171	3.5			3.3						2.1	ىق	عَث	35.0	2.5	ک ک	. 5.2	· C. O	9	10	0 1	_1_
188	25.	131	3.1	7 1		3.1	7	, ,	1	٠.	ž		-		: . 1	7.0	(.;	2.0	0.0	Ĵ		0 1	1
149	202	٠,١	33	3 2	: :			1 1	1	1.		2.1	· .		1.5	1.7.	خمك		4.7	٥	C	0 2	_ 1_
197	361		7.2	7.2	7.5	ç	:	: :	. 1	٠.	-	0.1	-				(. (1.5	0.0	3	2.3	5 1	1
151	275	22	2.	12	3.1	- ÷	1	1	1	1.	_	1.1	1		3.1	حقامت	خمت	_1_0				<u>. 1</u>	1
192	2 2 9	ÇE	3 -	7 🕶	3 u	2.4		7	٠ 1	٠.,	•	3.1	- 7		1.5		:.:	1.7	0.0	C	€.	: 1	1
193	347	13	3.2	خذ	1.				_1	1.		2.1		<u> </u>	۔ د		4.5	_ 1.1	_0.0	.0		1.1	
10.	717		₹5	3.5	7.	34	•	1 3			-				7.5	٠.:		-1.4	0.5	2.5			7
195	127	4:	37	1:	1:	15	1	1 :	:	: .	_	1.1			1.1	1.1		. E	3.4			_ :	
197	₹ €	÷ •	1.5	7.7	4.3			4 1		١.		Ī.;	-			2.1		7.6	2.7		-	1	1
193	. 5 1		12	1.	32		4	4.4	. :	1.	_	2.1	-				ععت			C	<u>=</u>	<u>î 1</u>	_1_
100	232	210		77	7.1					٠.			- 1	•	17.5			1.5	5.0			7 1	1
									:	: .		نعم			1			. 2.3			15	- 1	
•	: 7.	1.1	1.7	3 .	7	. •	;		•	٠.		• • •	- 1		٠.:	. ^		1.3	1.3	_	: 1	3 3	1
	222	2.	1-	44		14		۰	. 1	1.	<u>.</u>				·	ial.		_ 4.4	بمت			1 :	_1
_ *		٠.	3.7		٠.		÷	<u>.</u> .		٠.			•		1.1	٠.3		7.0	î.,	2.5	3 4	J 4	. 1
x	111	=	16	1.	7	::	:	- :	: 1	:.	٠		-		1.1 4.1	1			لمت		3.4	2 :	
					4.		٠	: :	1	٠.	:	1	-	. ` :		1.1	. ·		7.1	. ÷	3 4	~ ₹	•
				12	_ ; ;			دن		1.		: ::						- 5 - 5		شت	33	2 1	
	3 🕶	٠.	٠.						•	•				. • :	2.5	1.	- '		1.7		÷ e	2 4	. 1
	3.44	2:	1.	<u>:</u>	12	1.	_					2.1				:		7					
	. •				7.	. :				٠.					1.5	1.2	1.0	- ; . q - ; . 7	c.:	Ċ	ĵ.	1 1	
			<u>:</u> _		<u> </u>		•	4 :	. :	i.,	Ŀ	2.:	<u> </u>		1.1	111		-:-7	عبت				1
			:		• :	1.	-			٠.	_	· · ·		•		:::			•••		j 🛶		
. *	* : .	• .	•	• •		2.1	:	4 5		٠.	1	: · '	ĩ		1.1	•	: .:		1.,		. ·	Č 4	. 1
• :	1.5		12			1.0	-		. ;	1.	2	2.1									C		. 1
- la.	121	الم الما	- 1	هـ تـ	3.5	4	-	4. 7	. 1	1	<u>.</u>	1.1	Ĺ.						_1_3		عد.	_	1
	3 2 3	5 7	3.5	3.3	7 7	: 3	?	7	1	١.	:	: ·				2.0	0.1				34	1 1	1
114.	17	٤	3:		5. i.	11.	7	<u>.</u> .	1	1.	i	1.1	- Q	خت	. فرنسا		خعف		بمعل		<u>د ع</u>	ء ۽	
, 1 7	* 5 🗧	2.5	41	u î	٠.	٠.	1	1 1		١.	•	7.1			1.5	• 1	(. (2.3			0 1	
113	279		_	11				-				<u> </u>		خب	خعد	<u> 1. ĉ.</u>	بجعي	5				<u>Ç.1</u>	
	350	4.7	4 4	٠:5	٠ د		4	-		1.					1.5	1.5	(.:		1.2			3 3	
16.	362	4.9	22.	4.4	٠.	-46	<u>-</u>			1,		العثج			1.7	1.2	يَميَــ	عمين				_	1
221	3 - 5		4 1	4 2	~ (42		: :		1.		2.1			7.5	1.5	(1.8				
122	150			-31						1.		1			1.5	<u> چي</u>	چعکِ	11.4			<u> </u>	<u>0 1</u>	
223	195		3 1	31		3 1		1 1		1.		2.1		. 20	1.3	5.5	(• 0						1
224	345			<u> 47</u>				بمست		1.		2.1		٠	خعن	خعب	جِعبِ	<u> </u>				2 2	_
225	338		4.7		4 6			4		1.		2.1			1.8	1.1	(. (0.0			0 2	
220	13¢			35		35		2 2		1.		2-1			1.5	2.1	عِمعِ	_ <u> </u>				<u>0</u> 1	
227	342	5 °	3 1	3.1	3.1	3 1	5	5 5	1	1.	ë	2.1	Ç	. c (2.4	1.1	(,(6.Z	0.0	12) ĉ	U 1	1
							_	_															

Table A2. ACDT Volume Scan Output for Volume Scan No. 2, Case Study No. 2 (Contd) $\,$

CENTR TRA AZM		i	\$ 5 %	385		1 1	4	; ; ; y, _	<u> </u>			SELL	CELL	
NO DEG	KM 08				-	• •	्या इस्र्रुट्	1.4	* 5 * W	HT I		PCT. MSKM	SIV. HSKM	R (
3 2 7 0	59 32	77			1	1	7	11/2			(:	<u> </u>	0.00	٠-
4 351	82 35	<u>41 c</u>	1	٠.:	<u> </u>	3	15.4	۲.,	1.:	<u> </u>	<u> </u>	-(.42	4.52	
25 322	61 39	48 05	• • •	1.0	4.	-	•		1.5	7	_ 1 ع	0.93	3.43	1 4
<u> 26 312</u>	25 38			چَي <u>و</u> جَي	. :	Ę.:.	14.1	-4.7	1	<u> </u>		(.00	0.00	
9 332 11 334	80 32 65 31	34 2 31 1	5	• •		5 t	-4.					0.00	0.00	
-11 334 -	<u>64 35</u>	1	1 -	Ţ.,	15	• •	<u>:</u>	4.2	(C_ 1.3	7	1 10	(.00 (.00	5.50	
16 15	69 39		: . :		31:	6.1	12.1	3.7	ءَ ء	ě 1		(. c o	4.51	
12 345	60 45	5.2 4					16.7		· . 4	5 2		-2.47	4.53	Ė
21 330	. 23 43	. 4.7	1.1	<u>:</u> _	314	3 -	14.		A	1 2		-3,96	4.44	:
28 340	77 38	-4 2				÷ •	17.3		2.2	5	c c	0.00	0.00	(
22 346	-72.45 24.41		£ 4.4.	3,5	303	; :	19,7	120-	1 • Ē -	<u> </u>	<u> </u>		<u> 3.cc</u>	
29 353 31 272	95 33		1.0	2.0	291	٠,			0.7 0.0		מים מים	0.00	0.00	(
31 231	76 33	35 2				53			(0.00	2.00	
32 340	98.36	4.5	<u>.</u> . č.		1	5,3			1.2		<u> </u>	00.0	0.00	Ò
33 354	÷1 44	45 3	1.0	2.0		5.5	= :	ī.:	2.5	5	c (0.00	0.00	- (
34 52	122 31	32 1			Ç	e t	- Q•2		Q• <u>Ş</u> .	<u>7</u>	<u>ç ç</u>	(.0)	<u> </u>	_{
35 32e	F 8 3 3	35 2	- • -	• •	•		. • •	- • -	1.ć	>	((0.00	0.00	•
	···								·					_
VEL HEMM	AREA	a Filix	N.F. & S.	K: *	(H.D	. L:	T +5	ا ا	12211	Y T	EK ČI	S CNT C	CVE	_

Table A3. ACDT Volume Scan Output for Volume Scan No. 3, Case Study No. 2

		SCAN											SCAN						18.		
-		TRACK	* t F		t	1545		_		476	<u> </u>	524	SCAN	976	- E L			- TC		5 (
					_																
		CAICL							_												
													IE.								
		RNG KM_						5	-										ST MT N. KM		
62		109		106							K.		WI/F	0.10		257		t C			- A-L
63	. 31	77		72			1	Ú	-	V - L				0.10		559		25 C		_	C.
69	37		37			33		~	ĺ	<u> </u>	- 			0.00		555) S C .	_		
70	42		- 5 f	_£1			1	-	,	7	ى.ن كىت.		0.01			559		ء ع		-	č
71	50	130		131		15	1	-	-	~~~	2.0					559		94 0.			c
λŻ	56	1.50		14.5				ă.	È.	2 .	1.0		_ 0.01			25.0		Lé D.		7	r
72		133		130		7.7	1	_	<u>-</u> -	0.0	يدويد			0.02		999		9 6 6		C	ō
	126		120	2.0		46	4	·	2	Ç.,		Č		C - C 2		559		19 C		,	Č
	135		135		_	3.2	1	Ö	-		- 			0.00		559		9 0	_		c
		_215		215			. 3		1				4.18			212		 			- č
		221					1		Ċ	5.5				0.13		440		9 5			Ċ
		149		149			1	Š	-					6.11	•	555		ت عد		ř	Č
		183					5	1	1	1.	7.7	5 6		0.64		241		¢ 4.		C	C
		123					í	Ġ	÷	0.0		. 5		0.54		999		25 C.		Ē	Č
	258		261			3.3	1	0	٢	3.0	0.0	. C		0.00		999		G C	. c 3	С	С
		_11û					1	1	ī	3.0	č.0	۵		0.02		277		13 Č.			Ċ
	264		264			3.2	1	С	C	0.0	0.0	_ C	U.C1	0.00	:	999	94	S C	. (1	2,0	C
80	268	. 16		. 1c	31	31	_1	ũ	Č	315	ت م	. <u>0</u> .	22.0	0.00		559	99	5 0	C 0	٠.	<u> </u>
81	285	69	236	67	3.5	3.8	1	1	1	0.0	0.0	0		0.05		559	99	9 0	. C 3		C
82	270	5.3	275	2.3	3.3	3.5	_1	ũ	:	2.0	0.0	<u> </u>	3.61	0.00	·	999	29	25 C	. 4	6	С
5 3	290	7.8	282	78	31	3.2	1	ũ	C	0.0	5.0	Č	0.01	0.00		189		5 C.	. C 4	, C	Č
23	270	97	272	97	36	44	4	1	_1_	3.2	_ 5.7	23	C.EE	C-19		226		5 C	<u>.c 5</u>	<u> </u>	<u>, Ç</u>
83	282	6.5	284			34	1	0	Ć	0.0	0.0		0.03	0.01		2 2 C		15 C.		C	C
34	296	. 73	296	_22.	32	7.7	1	ũ		2.6	C-0		C. 13			215		3.0		0	
	296		296	-	-	<u> </u>	1	C	Ç		0.0		0.01			999		9 C.		C	0
	298		300	<u> </u>		_	_1	û	٢	0.0		ع		لعمعا		559		9 0		Ē	<u> </u>
	306		306			37	3	-	2	4.5	4.9	4.2	C.47			254		ć C.		_	Ç
	331		331			_32	_1	٩.	Ψ.	3.0				0.00		559		ع ع			<u> </u>
		154					1	0	C	0.0	Ü. (0.02		559		S C.		_	0
	343		344	84			_ _ _	1	1	عمي	کم ک			<u></u>		<u> </u>		تخت			
-	358	101						1	1		4.1	-		0.05		999		25 0			C
	339	<u>۔ دہ</u>	337		-	48	<u>ي</u> د	_	<u>۽</u>			_53		0.83	_	<u> 253</u>		\$ 5		<u> </u>	- -È
	•	3.5	A	39	7. 1	/. A		7	7	1.3			0.27			555		/ h	.1 5	٥	€

Table A3. ACDT Volume Sean Output for Volume Sean No. 3, Cast Study No. 2 (Cont.))

VOLUME CELL CUTFUT	
Villa City Co.	
JENTHUID 1 1 H H HUT VEAS USUU SEAC	TAL (TAN) COF FAC PAD CS ON C P R
THE AIM AND AY FE LA HILL Y HIERYA ANYA SPEC	
THE NO DECLERANCE OF LOIDS AND THE CLOSES AND AME	THE (MEK) HER HIS MIS NO NO P F J
- 232	7.5 22.6 2.2 2.3 2.6 2.2 2.1 1
- 131 - 31 - 74 31 32 31 32 1 3 5 13.2 - 5.4 3.11	4.1 1.1 1.0 C.4 2.1 0 68 C 4 1
1232 37 56 33 37 73 37 0 1 13.5 7.3 0.00	2.5 1.1 6.0 4.2 0.0 0 69 0 1 1
1235 44 61 34 37 34 37 3 5 5 12.5 3.5 3.73	2.2 1.3 2.0 3.1 1.6 6 70 1 6 1
- 224 - 51 121 33 JS+30 31 C 7 - 15.5 - 7.9 G.C1	5.4 1.1 (.C 1.5 C.7 0 71 C 3 1
- 236 - 66 141 41 44 44 4 6 39 2 3 4 1 313 - 3. 9 0210	-4.2 1.1 (.C 3.7 1.9 C c7 1 2 1
136 57 150 50 32 72 57 2 131 2 131 3 14 C C C C C C C C C C C C C C C C C C	2.1 1.5 C.C C.2 1.2 C 72 C 2 1
127 127 127 174 37 42 27 27 21 2 1 2 12.2 3.9 2.20 14 14 14 14 14 14 14 14 14 14 14 14 14 1	2.5 1.3 C.C -2.5 6.2 0 73 1 3 1
- 184 - 185 - 28 32 32 32 32 62 6 6 6 7 18.5 - 8.9 6.00	2.c].[(.C+11.1 <u>C.C O 74 C_1 1</u>
236 236 1:5 41 41 41 41 7 3 3 13.5 7.9 0.50	7.c 1.2 (.C +3.5 2.3 36 16 1 1 1
140 140 243 27 12 27 12 15 1 145 149 140 140 140 140 140 140 140 140 140 140	luga luga tak bad dau da 12 bil
- 241 - 352 149 39 42 43 34 2 3 4 1245 - 547 5405	18.5 1.1 C.C 1.7 C.7 C 76 1 2 1 5.9 1.6 C.C -4.5 4.5 C 77 C 2 1
- 248 - 261 - 17 32 23 21 22 C 1 2 11.5 - 7.2 2.46	
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1.2 C.C 2.1 2.1 0 52 C 4 1
245 27 27 27 33 25 32 33 1 2 4 12.5 3.9 6.42	
- 40 /00 10 11 21 21 21 2 0 0 1242 247 4446	1.2 1.5 C.C-11.1 C.C 0 6C G 1 1 3.6 1.0 C.C -C.1 2.7 37 91 0 3 1
147 256 67 35 35 75 37 1 1 3 17.0 2.45 0.00 245 224 67 31 21 31 31 0 4 2 1345 749 0.00	
. 246. 276. 47 31 21 31 31 31 0 4 1.1245	25.4 C.C C.C 1.0 0.1 38 15 C 2 2
	2.3 CaC -c.8 1.4 19 86 1 3 1
- 43 341 6, 13 16 26 18 6 1 3 13.5 3.9 1.22 - 23 23 19 47 47 47 47 47 4 4 4 11.8 4.8 1.00	17.2 6.6 6.6 1.6 6.7 6 16 6 1 2
The state of all all and the artists of the state of the	
A	3.5 4.4 0.0 -0.3 6.1 0 34 2 4 1
\$1 23 24 22 22 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	3.1 1.0 C.C 5.C Q.C 0.57 C 1 1
\$1 23 34 2 12 2 10 1 1 13 2 3 5 1 1 1 1 1 1 1 1 1	3.3 1.4 C.C -3.9 C.3 C 58 2 2 1
153 344 35 31 32 31 30 1 3 4 11.5 1.3 1.63	2.2 1.1 (.6 -[.1 3.3 28 99 1 4 1
	3.4 1.1 0.0 -4.4 0.0 0 90 0 1 1
\$\$\$\\\ 2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2.5 (2.5 -5.5 4.7 40 90 2 2 1
	1 1.1 (.) -1.2 5.2 41 23 3 4 1
· 등학자를 한 학생 점 학교를 가는 것은 것은	3.1 1.1 (at 3.1 3.5 42 51 C 3 1
	2.1 1.1 2.2 -4.6 1.3 2 94 1 1 2
	-1 1 1 1 1 1 1 1.
	1.6 1.6 0.0 1.7 1.6 1.1 19 14 0 5 1 1.6 1.6 0.0 1.7 1.6 1.7 0.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	11:5 1:5 2:5 2:5 2:6 3 15 2 2 1
	1 7.7 7.0 7.1 7.2 3.3 15 0 2 1 2 7.1 7.2 2.3 2.3 2.7 2.16 0 1 1
	1. 1. 2. 2. 2. 2. 2. 2. 3. 3. 3. 5. 5. 2. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
	- 1.4
	10 1 1 1 1 1 1 2 2 2 2 2 1 1 1 2 2 2 2 2
	2.3 2.4 2.4 2.4 2.4 3 4 1 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4
logger reek og tiltt og tilt til til til tilt grade til	2.7 2.0 22 34 1 2 1
	1.0 4.0 75 34 3 2 2
1 - 65 - 748 - 5 - 4, 4 - 4, 42 - 42 - 2 - 1 - 114 - 1 - 114 - 1 - 14	1.5 (4.4 C.2 C 24 1 C 2
} (jege tav. 10 av al at at 1 l a 11.5 like 1.00	
] 연중하는 항4 14성 약 4명 전 1일 5 7 7 19.5 작용 3.33	1.7
269 356 19 14 19 25 27 2 4 17 7. 2 7. 30	2.4 7.7 7.7 47.7 8.3 7 0 0 2 1

Table A3. ACDT Volume Scan Output for Volume Scan No. 3, Case Study No. 2 (Cont.)

777 14 90 30 33	<u> </u>	. 10 3.5 2.5 1.2	-1.0 1.0 0 0 0 0 0
_4.71, 350 70 00 06 35		المَين ووا بووا الم	-1.9 <u>2.2 1. 2 1.</u>
[372] 19 of to 3: 3:	- II i - : 1:.5 - 1.0 1	.77 4.1 1.2 1.0	-5.7 1.6 16 5 2 4 1
<u>273 354</u> 50 45 46 46		.01 4.1 (1.4 (1.5)	3.0 1.1 12 34 5 2 1
1 374* 10 34 41 42 42	-1 1 2 2 12.1 3.9 1	.i. 1.: 1.: 1.:	2.7 2.2 42 91 1 3 1
<u> 175 324 74 33 35 31</u>	<u> </u>	. : <u></u>	1.8 3.8 39 34 1 2 1
80 17 70 34 54 34			-0.7 0.0 1e-e3 0 1 0 -0.3 0.0 0 0 0 1 1
276 269 93 32 12,11 277 1 47 73 33 33	- IQ 5 5 5 5 14.6 7.4 .		<u>-2.3 1.5 3 12 1 1 1 </u>
277 1 47 73 32 33			
278 21 42 37 27 75	17 2 2 5 12 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2		-2.2 1.7 . 91 1 2 1 -2.3 2.1 16 2 1 1 -2.5 2.6 6 6 2 1 1
279 41 63 39 19 79	70	. 10 1.1 1.2 1.3 1.3 . 11 1.4 1.5 1.5 1.5	
- c2 351 29 23 23 25			-1.1 (.7 12 1- 1 5 2
256 362 35 35 35			+5.0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
235 1- 11-11			
70 31 325 70 31 31 31			1.3 1.4 42 91 5 3 1
1 - 22 - 12 12 14 14		•14 (•4 1•1 1•4)	-1-2-1 42.21- <u>2-3-1</u> -
1 1:3 319 41 31 31 11		· [1.4] · [1.5] · [-7.4 0.1 U 0 0 1 1 4.1 0.0 1 1
		·ii. i·i. 1·1 (i·i)	
114 346 67 34 2 77 114 212 61 31 12 31	37	.11 2.4 0.0 .11 2.1 w.T card	-4.4 1.
			-9.9 1.3 39 34 1 1 2
102 315 65 41 40 41 114 231 79 37 39 31	-45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<u> </u>
115 17 68 42 43 43			11.7 C.C 16 63 1 C 2
112 246 51 14 35 75	34 0 3 5 2 4 5 6	.11 1.4	1.9 1.7 1 21 2 2 2
126+ 350 72 45 46 46	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.01 2.7 1.50	2.0 7.5 22 34 2 3 2
1228 349, 33 43 45 42	45 3 5 5 1445 F443 2	.01 2.7 1.50 .11 1.6 2.1 1.1.	7.6 2.9 12 74 2 3 2
128 353 57 36 36 36		101 113 1.7 (.1)	-2.3 0.0 12 34 1 C 2
1.129 11 29 34 16 12			-3.0 4.9 6 43 4 6 2
130 15 79 35 38 38			-7.7 C.C 4. 63.1 C 2
131 - 327 - 81 - 46 - 91 - 46	41.1 <u>7.1144.1746</u>		-3.6 5.9 43 34 7 3 2
132 16 83 42 40 40			-4.7 5.3 44 63 1 1 2
15. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37	EZ 1 1.1 7.5 - 7.4 1	-2-2 EaE 9.5 HD.	-2.5 5.5 u 43 1 5 2
141+ 20 73 42 45 37	37 1 3 6 11.2 6.5 1	.54 3.6 1.7 (.C)	
132 236 176 33 24 33	.32 5 5 5 5.7 3.1 C	<u> </u>	C.2 C.C 36 1c C 1 2
159 260 109 35 37 37	137 î 2 î 12.2 -2.1 î	.00 4.0 1.1 0.0	3.7 2.1 45 43 1 2 2
154 282 72 31 32 31	31 1 2 9 3.2 4.7 4	15 2.1 G.C. C.C.	C.3 C.4 O 53 C 4 1
165 232 72 33 34 34		.00 3.4 0.0 0.0	2.20.3 0 0022
128 311 25 35 27 31	<u> </u>		-3.1 2.8 G 3 1 7 2
178 35 104 33 34 34			-1.7 4.4 0 62 2 2 2 2
1 3 5º 136 34 37 37		<u> </u>	<u> </u>
124 303 75 34 34 74			-9.0 C.2 46 3 1 1 2
192 242 94 32 32 32	32 1 1 1 set 2.5 c	<u> </u>	1.5 5.0 0 23 0 1 2
194 319 65 34 35 35		.00 4.3 4.5 0.0	7.7 2.3 39 34 2 3 2 1.6 6.0 0 15 6 1 2
129 232 209 40 40 40		.00 9.4 0.0 C.C	
201 273 102 36 36 36 202 329 27 32 32 32			2.9 C.O 41 23 C 1 2 2.3 C.2 35-34 2 C 2
202 329 27 32 32 32 203 335 75 34 37 37			6.3 2.8 25 34 3 3 2
254 336 62 37 37 37			11.7 G.G G 34 1 C 2
205 * 342 63 41 43 43			6.0 4.1 12 34 2 3 2
	31 4 4 4 6 6 6 5 6 6		
1	A T S LABOURABLE		

Table A3. ACDT Volume Scan Output for Volume Scan No. 3, Case Study No. 2 (Contd) $\,$

208 352 7 209 2c 7 211 329 8 213 1c 8 -214 353 7 215 308 6 -216 22 8 218 284 6 -219 350 5 -224 347 5	1 40 40 40 41 1 30 36 36 4 30 40 35 6 35 35 25 2 30 30 30 5 31 32 3 1 37 38 3 1 46 42 4 6 38 40 46	C = C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.12_1 3 10.3 6 13.5 2 1.2 6 1.14_7 -1 1.14_9 4 1.16_7 4 1.16_7 4 1.16_7 4 1.16_7 5 1.16_7 5 1.	4 C.OC .4 C.OC .4 C.OC .4 C.OC .7 C.OC .7 C.OC .7 C.OC .7 C.OC .7 C.OC .7 C.OC	1.6 C.C 0.1 2.2 4.2 1.4 5.2 1.5 4.6 1.7 4.1 1.6 4.1 1.C 3.4 1.3 3.5 1.4	C.C -2.6 C.C -1.9 C.C -1.9 C.C -7.3 C.C -7.3 C.C -3.9 C.C -3.9 C.C 2.1 C.C 2.5 C.C 4.7	5.1 35-34 3 3 2
CLUSTER OL	TPUT		·				
36 236 17 37 285 6 38 233 21 39 314 6 28 344 8 40 359 10 41 271 9 42 7 3 43 03 8 25 338 6 43 329 7 22 351 7 12 349 5 16 19 7 44 16 8 45 2cc 1c 46 303 7	G AY PK M DE CE W M DE CE	<u> </u>	ANG IC DEC C 81 C 15 15 34 C 90 C 90 C 23 44 91 C 3 309 34 312 34 322 34 323 34 35 63 C 43 C 43 C 90 C	Ay TELL EM/S NM/ 1.5 3. 9.8 11. 14.4 E 7.7 2. 6.4 E 0.0 C. 13.4 13. 0.0 C. 13.4 13. 14.1 5. 16.4 5. 14.1 3. 13.7 7.	7 1.0 5 7 1.0 4 6 C.C 7 7 2.3 4 1.0 1.7 2 1.0 1.7 2 1.1 2.9 1 1.3 1.9 4 1.3 1.9 4 1.4 6 1.6 2.3 8 1.6 1.4 6 1.6 2.3 8 1.7 1.1 2 1.7 1.1 2 1.8 1.1 2 1.9 1.1 2 1.0 1.0 1 1.0 1 1.0 1.0 1 1.0 1	IT IE R NO NO M C	ELL CELL NC CT. DIY. RE SKW MSKM CS C.GQ 0.GQ 0 C.GQ 0.GC C C.QQ 0.QQ C
	REA WFLUX KM2 KMT/H 3.5 21.83	CELL CLST	GHBCR AC	L CS FC	EM/S NM/S	TRK CLS NC CTR 294 46	CNT G CVER CTR C 91 C O C C C O

Table A4, ACDT Volume Scan Output for Volume Scan No. 4, Case Study No. 2

	SCAN TRACE										VCL 42"	3041 3044	.4. 9/3	A.I E.L	-	45.3 5.4	15 13	<u> </u>	4 () 5 ()	
			_																	
IXEL (ZNIS	3 24	IE'L										<u>.</u>							
CENT	LAZIS.	1 V -	£1.						5 L	12		. 71	165	. Ls	:13	CTTY	NEA.	E M Y	v s	<u> </u>
RK AZ							Š					- 					CIS			::
	<u> </u>				12		C	4.	K۲	. :	5 . T	MIZE								٦٢.
92 5			11-			1	_		• :	· •		1			ς φ		9 0.		£	Ç
	198		خبل		35		. 1	<u>.</u>			جنيا	1.1.			<u> </u>		امتي ع			<u>C</u>
9	123		1.5		1 -	1	•			٠.	: :			- ;	, , y , ç ç	99		- 5	5 1	Ċ
95 5		53		7 1	7.1	1	-	į,					1		1.7	13	9 0.5	7	-	
105			. 22	13	11	1	Ē	ì.				414		3s	çŷ	99	ر ت			2
75 241	215	241	214	→ 3	4 E	-	ς.			÷.	: :	1.43			4 4	2	1 0.3	: c	-	Ţ
16 23					4.		÷	نب	بنا	أحبا	1		1.7		19	1			15	_ ç
27 255				4 1	4 5		1	1.	•	- •		1.53			C 3		9 0.		ξ	Č
<u>93 24</u> 7 97 319			100	7.2	7.	1	-	÷ :			-	1.15	<u></u>	<u></u>	<u> </u>		<u>امت ک</u>		<u> </u>	
ac 250			. 2		2.1	1						1.07			59		9.2.			~
01 26				3.3	3.4	•	_				7		3.3	1 9	ς γ	3.0	ς ξ.;	: :	3	C
02 270		276	42	34	عند	4	2	نت	1.		34	فلمث			11	2	نمتت	. 5	٤	Ċ
23 276			3.1	3.2	3 ?					. i . i		٠. ٠ ١		: <u> </u>	çç		٠ č٠:		0	C
23 27					₹ 5			1 4	2.4	حية!	26	1.46			3.5		5		<u></u>	_ç
34 340 24 301		339		70	31	1	5	; ;	ž	17.4	5 3	1.60 Lace.			5 2 5 9		3 4. 9 C.	-	e c L	נ ב
3 300		295		34		13	1	1 4		15.	. 21	2.17			3.5		7 (.			
35 309			5 1		21.	_ ī	ċ					11.52			59		اء ع		ċ	č
Jc 340		341	107	35	3.5	1	Ĵ	0.00	(: :	₹.10			ς 9		۱. ټ		Ξ.	С
C7 .338				34		i.		ديك	1.1	0.3	2 1	. 111			59		لما و			
C8 34					3.5	1		ι.		Q.,		0.03			59		9 0.0			C
09 34:		. <u>343</u> . 348		31		_ 1.	Ę.	$\frac{1}{c}$		3.0		23.03			5 Q		9		-6	-6
15 34		343				1	5					Cata			59		5 (۲	C
90 35					41		Ĵ	()			_ ^	0.31			. 9		2 C.		c	Ċ
11 2					-34	1.		1	2	نميل	. عد د د		2-2		5 7		لمنك			Ċ
63 1	2 84	19	8.8		4 -	Ģ					4321	2.20			43		4 4.1		С	C
		ع. ــ			42	4_					219	13.2			16		لمكنة		-51	34
	108		107	33		1	Ĉ	į ;	٦.ن	ا و ز	2 0	0.17			17 23		5 C.		Č	9 C
	115		<u>114.</u> 119					+++	<u> </u>	نمت. د ت	1 L	<u> </u>			55		5 0 d			
15 3			112			Ĺ						2.15		_			5 C.		č	Č
16 4		4.2									2310	0.15			30		5 C.W		Ċ	Ċ

Table A4. ACDT Volume Scan Output for Volume Scan No. 4, Case Study No. 2 (Contd) $^{\circ}$

CENTRICL			
THE ARTHUR CRITER TO THE ARCT VEAS CELL SPECIAL CHAIN CERT RATE PROCESS ON THE REPORT OF THE ARCT ARCT ARCT ARCT ARCT ARCT ARCT ARCT			
T9K AZM RNG AV PK LA H1 L K P EM/5 NW/5 CPC AL SEP) SPC VEL SPC TO TO E TO E TO E TO SPC AVEL SPC TO TO E TO E TO E TO AVEL SPC TO TO E	WOLLME CELL CUTPUT		
T9K AZM RNG AV PK LA H1 L K P EM/5 NW/5 CPC AL SEP) SPC VEL SPC TO TO E TO E TO E TO SPC AVEL SPC TO TO E TO E TO E TO AVEL SPC TO TO E	CENTORIO 2	VENE CELL (0.4671) 474	
NO DEG. KM DB CB CB A A C LE LD LD LD APE (MER) PS MS MS ND APE CD CD CD CD CD CD CD C			
330 34 114 33 33 23 31 1 1 1 20.2 5.4 0.00 4.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0			
235		20.2 3.4 0.00 4.7 0.	.C C.C -3.9 C.O 0 62 C 1 2
247 237 128 41 -11 41 41 7 2 8 5.5 8 -7 C.C.C. 9.7 1.7 C.C2.4 C.O. 0 16 3 C. 2 285 48 126 23 24 2 32 32 32 32 32 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3		11.9 10.0 0.00 5.2 1.	
240 240 247 45 45 45 45 45 4 7 4 16.5 7.0 C.0C 5.5 0.C C.C C.C C.O. 0.0 0 75 C.1 2 285 45 126 22 32 32 7C 32 1 2 3 12.5 4.6 C.0C 5.6 5.7 C.C C.C C.O. 0.0 0 75 C.2 1 2 47 291 65 35 32 38 32 C.1 3 10.3 11.8 4.5 6.6 1.2 C.C -1.4 1.5 37 3 2 4 1 248 30C 61 31.22 31 32 2 1 33 12.5 4.5 C.C 5.6 5.6 1.3 C.C -1.6 0.0 0.7 48 C.C 3 2 2 1 233 208 46 46 46 46 44 4 17.9 9.5 C.O. 0.0 C.C C.C C.C C.C C.C C.C C.C 38 16 2 1 2 2 3 3 235 183 44 47 47 38 5 5 4 16.5 5.8 C.C 0.0 C.C C.C C.C C.C C.C C.C C.C C.C			
285			
249 390 61 31 32 21 32 21 32 21 32 21 32 21 32 21 32 21 32 3 20 4 40 40 40 40 40 40 40 40 40 40 40 40			.0 1.1 1.1 0.0 0 75 0 1 2
249 390 61 31 32 21 32 21 32 21 32 21 32 21 32 21 32 21 32 3 20 4 40 40 40 40 40 40 40 40 40 40 40 40	247 291 65 35 37 38 32 T 1 3	10 1 11 8 4 55 6 6 1	
21 233 208 40 40 46 46 40 4 4 17.9 9.5 C.2C1.2 C.C. C.C. C.C. C.C. 10.5 18 16 2 1 2 23 235 183 44 47 47 32 5 5 5 9 16.5 5.3 C.CC 20.6 1.6 C.C. 2.0 1.0 5.9 0-16 C 2 2 24 237 185 44 44 44 44 12 3 4.0 5.5 C.CC 20.6 1.6 C.C. 3.9 1.5 40 16 1 1 2. 25C 317 67 35 37 31 35 C.C. 1 3 16.3 2.2 C.C. 5.5 2.3 3.5 C.C. C.C. 0.0 0.9 4 C.1 1 253 348 86 31 31 31 31 31 1 1 1 1 17.2 5.8 C.CC 20.6 1.6 C.C. 3.0 0.0 9 4 C.1 1 253 348 86 31 31 31 31 31 1 1 1 1 17.2 5.8 C.CC 20.6 1.6 C.C. 3.0 0.0 9 9 1 1 2 254 356 104 34 34 14 4 1 1 1 10.7 1.0 C.CC 3.2 1.2 C.C4.1 C.O 0.9 1 1 2 257 35 108 34 36 37 37 37 37 37 37 3.2 2 2 2 12.5 12.5 12.7 C.2C 3.2 C.C. 1.1 C.O 0.9 1 1 2 258 35 10.3 13 13 13 13 1 1 1 1 1 17.2 5.8 C.CC 2.3 C.C. 0.1 C.O 0.9 1 1 2 259 50 118 34 35 31 31 31 31 31 2 4 12.5 12.5 12.7 C.2C 3.3 C.C. C.C. 1.1 C.O 0.9 2 C 2 1 268 53 160 31 31 31 31 31 31 2 2 2 12.5 4.0 C.CC 14.6 C.C. C.C. C.C. 1.1 C.O 0.9 2 C 2 1 269 50 148 34 34 74 34 2 2 2 12.5 4.0 C.CC 14.6 C.C. C.C. C.C. 0.0 9 9 C 1 1 290 100 20 33 33 32 33 C C 0 12.5 4.0 C.CC 14.6 C.C. C.C. C.C. C.C. 0.0 9 9 C 1 1 290 100 20 33 33 32 33 C C 0 12.5 4.0 C.CC 14.6 C.C. C.C. C.C. C.C. 0.0 9 9 C 1 1 290 40 7 65 35 77 37 31 C.C. C. 12.5 4.0 C.CC 2.5 1.C C.C. 1.4 C.O 0.6 C 1 1 290 207 183 38 39 36 23 2 2 3 2 3 2 C C 1 2.5 4.0 C.CC 2.5 1.C C.C. C.C. 0.0 0.9 9 C 1 1 290 207 183 38 39 36 28 28 2.7 3 11.2 5 4.0 C.CC 2.5 1.C C.C. C.C. C.C. 0.0 0.9 9 C 2 1 291 292 40 116 32 34 34 31 1 2 2 12.5 4.0 C.CC 2.5 1.C C.C. C.C. C.C. 0.0 0.9 9 C 2 1 292 207 183 38 39 38 28 38 28 28 2.7 3 11.2 5 4.0 C.CC 2.5 1.C C.C. C.C. C.C. 0.0 0.9 9 2 1 1 292 207 183 38 39 38 23 38 28 28 2.7 3 11.2 5 4.0 C.CC 2.5 1.C C.C. C.C. C.C. 0.0 0.9 9 2 1 1 292 203 205 143 40 41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		14.9 4.5 C.CC 5.c 1.	
25C 317 67 35 37 32 35 C 1 3 16.3	21 233 208 40 46 46 40 4 4 4	17.9 9.5 C.2016.2 C.	
25C 317 67 35 37 32 35 C 1 3 16.3	23 235 183 44 47 47 38 5 5 9	16.5 5.3 C.DC 7.5 C.	
266			
253 348 86 31 31 31 31 31 1 1 1 17.2 5.8 5.0012.6 1.6 C.C -7.3 C.O 0 29 1 1 2 2 34 356 104 34 34 34 34 1 1 1 1 17.2 5.8 5.0012.6 1.6 C.C -4.1 C.O 0 5C 1 C 2 32 2 271 54 37 37 37 37 37 37 37 37 2 2 1 5.5 11.7 5.0017.3 C.C C.C C.C 1.1 C.O 0 5C 1 C 2 2 6 7 50 118 34 35 31 36 1 7 4 11.5 4.6 5.00 2.3 C.C C.C C.C C.C C.C C.C C.C C.C C.C C	$\begin{bmatrix} \frac{236}{326} & \frac{317}{49} & \frac{67}{35} & \frac{35}{32} & \frac{57}{32} & \frac{55}{32} & \frac{1}{32} & \frac{5}{32} & \frac{1}{32} $		
254			
32 271 94 37 37 37 37 37 3 2 2 1 2.5 12.7 5.2617.3 5.C C.C C.C 1.1 C.O 0-23 0 1 2 207 50 118 34 36 31 31 31 31 2 2 1 2.5 4.6 C.DC 12.3 C.D C.C C.C 1.1 C.1 0.7 0.7 2 1 2 2 8 53 166 31 31 31 31 31 31 2 2 2 1 2.5 4.6 C.DC 12.3 C.D C.C C.C 1.4 C.O 0 67 C 1 1 2 50 C 100 2 6 33 33 22 33 C C C 12.5 4.6 C.DC 12.5 0.C C.C C.C 1.4 C.O 0 67 C 1 1 2 50 C 100 2 6 33 33 22 33 C C C 12.5 4.6 C.DC 12.5 1.C C.C 13.6 C.O 0 96 C 1 1 3 3 2 2 7 6 5 35 37 37 34 2 3 4 15.9 -7.5 C.DC 5.2 1.C C.C 13.6 C.O 0 96 C 1 1 4 2 2 2 6 2 1 2 2 1 2 2 6 2 1 2 2 6 2 1 2 2 1 2 2 6 2 1 2 2 6 2 1 2 2 1 2 2 6 2 1 2 2 6 2 1 2 2 6 2 1 2 2 6 2 1 2 2 6 2 1 2 2 6 2 1 2 2 6 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2			
2c8	<u>32 271 94 37 37 37 37 2 2 2</u>	12.5 12.7 0.0013.3 0.	.C C.C 1.1 C.3 0-23 0 1 2
290 100 26 33 33 32 33 35 C 0 1 25 5 4.6 C.0C 25.7 1.C C.C 15.8 C.O 0 67 C 1 1 38 297 65 35 37 37 34 2 3 4 15.9 -1.5 C.0C 5.7 1.7 C.C -4.1 1.1 48 C 3 3 2 291 222 6 31 31 31 31 C C 0 12.5 4.6 C.0C 25.7 1.7 C.C -4.1 1.1 48 C 3 3 2 291 222 6 31 31 31 31 C C 0 12.5 4.6 C.0C 5.2 C.C C.C -6.3 C.O 0 10C 0 1 1 40 306 83 39 39 39 39 39 39 31 31 31 C C 0 12.5 4.6 C.C 25.2 C.C C.C -6.3 C.O 0 5.8 0 1 1 42 303 01 34 37 37 31 C C 1 3.8 2 2 1 12.5 4.6 C.C 25.8 C.C C.C -6.7 4.2 39 34 1 2 2 2 2 3 255 143 40 41 41 40 2 2 2 1 12.5 4.6 C.C 25.8 C.C C.C -6.7 4.2 39 34 1 2 2 2 2 2 1 116 32 34 34 31 1 2 2 1 2.5 4.6 C.C 25.8 C.C C.C C.C 2.1 1.0 50 97 C 2 1 2 2 2 2 1 116 32 34 37 37 31 C 1 1 2 2 12.5 4.6 C.C 25.8 C.C C.C C.C 1.3 1.1 50 29 7 C 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	267 50 118 34 35 31 36 1 3 4	12.5 4.6 C.OC 2.3 C.	
290 100 26 33 33 32 33 35 C 0 1 25 5 4.6 C.0C 25.7 1.C C.C 15.8 C.O 0 67 C 1 1 38 297 65 35 37 37 34 2 3 4 15.9 -1.5 C.0C 5.7 1.7 C.C -4.1 1.1 48 C 3 3 2 291 222 6 31 31 31 31 C C 0 12.5 4.6 C.0C 25.7 1.7 C.C -4.1 1.1 48 C 3 3 2 291 222 6 31 31 31 31 C C 0 12.5 4.6 C.0C 5.2 C.C C.C -6.3 C.O 0 10C 0 1 1 40 306 83 39 39 39 39 39 39 31 31 31 C C 0 12.5 4.6 C.C 25.2 C.C C.C -6.3 C.O 0 5.8 0 1 1 42 303 01 34 37 37 31 C C 1 3.8 2 2 1 12.5 4.6 C.C 25.8 C.C C.C -6.7 4.2 39 34 1 2 2 2 2 3 255 143 40 41 41 40 2 2 2 1 12.5 4.6 C.C 25.8 C.C C.C -6.7 4.2 39 34 1 2 2 2 2 2 1 116 32 34 34 31 1 2 2 1 2.5 4.6 C.C 25.8 C.C C.C C.C 2.1 1.0 50 97 C 2 1 2 2 2 2 1 116 32 34 37 37 31 C 1 1 2 2 12.5 4.6 C.C 25.8 C.C C.C C.C 1.3 1.1 50 29 7 C 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 5 5 16 53 16 31 31 31 2 2 2 3 3 5 3 1 6 6 5 3 1 3 1 3 1 3 1 3 2 2 3 3 5 3 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		
36 297 65 35 27 37 34 2 2 4 15.9 -7.5 C.CC 5.7 1.7 C.C -4.1 1.1 48 C 3 3 2 291 222 6 31 31 31 31 C C C 12.5 4.0 C.CC 5.7 1.7 C.C -4.1 1.1 48 C 3 3 2 291 222 6 31 31 31 31 C C C 12.5 4.0 C.CC 5.2 C C C C.C -C.5 C.C 01CC 0 1 1 40 3G 83 39 30 35 35 1 1 1 1 3.0 13.0 C.CC 5.2 C C C C.C -C.3 C.C 0 3 0 1 2 2 2 247 183 38 39 39 38 38 38 38 38 38 38 38 38 38 38 38 38	257 30 148 34 34 14 34 4 4 2		
291 222 6 31 31 31 31 C C C 12.5 9.0 C.20 2.1 1.5 C.C -C.5 C.C 01CC 0 1 1 40 366 83 39 35 36 36 1 1 1 5.0 13.6 C.20 5.2 C.C C.C -C.3 C.C 0 2 0 1 2 292 247 185 38 38 38 38 38 38 38 3 3 3 12.5 4.6 C.20 5.2 C.C C.C -6.7 4.2 39 34 1 2 2 293 255 143 40 41 41 40 2 2 2 12.5 5 4.6 C.20 5.2 C.C C.C C.2 2.1 1.0 50 97 C 2 1 294 2 1 116 32 34 34 31 1 2 2 12.5 5 4.6 C.20 5.2 C.C C.C C.2 2.1 1.0 50 97 C 2 1 295 264 166 35 37 27 34 1 1 2 12.5 4.6 C.20 5.2 C.C C.C C.1 3 1.1 51 22 0 2 1 296 262 100 32 32 32 32 32 1 1 2 12.5 4.6 C.20 7.4 C.C C.C C.1 3 1.1 51 22 0 2 1 292 293 8 1 31 31 31 31 1 1 1 10.5 4.6 C.20 3.2 1.1 C.C C.3 2.9 0 7.0 3 1 202 233 8 1 31 31 31 31 1 1 1 12.5 4.6 C.20 5.2 1.1 C.C C.3 2.9 0 7.0 3 1 202 235 8 1 31 21 31 31 1 1 1 12.5 4.6 C.20 5.2 1.1 C.C C.3 2.9 0 7.0 3 1 297 277 8 1 32 73 2 2 1 1 1 2 5 5 6 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7			
242 247 138 38 38 38 38 38 38 38 38 38 38 38 38 3		12.5 4.6 5 25 2 1 1	
242 247 138 38 38 38 38 38 38 38 38 38 38 38 38 3		9.0 13.6 0.00 5.2 0.	
42 303 of 34 27 37 31 C C 1 2.7 c.G C.C 6.7 7.C C.C -6.7 4.2 39 34 1 2 2 293 255 143 40 41 41 40 2 2 11.5 5 .6 C.C 5.6 C.C C.C C.C 2.1 1.0 50 97 C 2 1 294 2 1 116 32 34 34 31 1 2 2 12.5 4.6 C.C 5.6 C.C C.C C.C C.C C.C C.C C.C C.C 1.0 1 52 2 2 1 295 264 1Ce 35 37 37 34 1 1 2 12.5 4.6 C.C C.C 2.6 C.C C.C C.C C.C C.C C.C C.C 1.3 1.1 51 23 0 2 1 296 262 1CO 32 32 32 32 37 1 1 2 10.5 4.6 C.C C.C 7.4 C.C C.C C.C C.1 C.1 51 23 C 2 1 259 272 6.9 34 27 37 32 C 1 3 12.5 4.6 C.C C.C 7.4 C.C C.C C.C C.1 C.1 51 23 C 2 1 259 272 6.9 34 27 37 32 C 1 3 12.5 4.6 C.C C.C 3.2 1 1 1 C.C C.C C.3 2.8 0 1 0 3 1 31 31 31 1 1 1 10.9 1.2 C.C 5.2 C.C C.C C.C C.1 C.1 51 23 C 2 1 259 272 6.9 34 27 37 32 C 1 3 12.5 4.6 C.C C.C 5.5 1.5 C.C C.C C.C C.3 2.8 0 1 0 3 1 2 1 2 2 2 2 2 2 2 3 3 81 31 31 31 1 1 1 12.5 4.6 C.C 5.6 1.2 C.C 5.6 1.2 C.C -1.7 6 0 34 2 2 2 2 2 2 2 3 8 8 36 39 35 33 C 1 3 2.7 -2.2 C.C C.C 5.6 1.2 C.C -1.1 7.6 0 34 2 2 2 2 2 2 2 3 3 8 1 31 32 1 31 1 1 12.5 4.6 C.D C.C 5.6 1.2 C.C -1.1 0.0 0113 1 C 2 2 1 2 3 2 2 3 1 1 1 1 12.5 4.6 C.D C.C 5.6 1.2 C.C -1.1 0.4 37 3 C 2 1 2 3 2 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1			
294 2 1 116 32 34 34 31 1 2 2 12.5 4.6 C.0C 5.2 0.0 C.C C.0 0.0 C1C1 0 2 1 295 264 10c 35 37 27 34 1 1 2 12.5 4.6 C.0C 2.5 C.C C.C 1.3 1.1 51 23 0 2 1 296 262 100 32 32 32 37 1 1 2 12.5 4.6 C.0C 7.4 C.C C.C 1.3 1.1 51 23 0 2 1 259 272 69 34 37 37 32 C 1 3 12.5 4.6 C.0C 7.4 C.C C.C C.1 C.1 51 23 C 2 1 26.2 283 81 31 31 31 31 1 1 1 1 10.9 1.2 C.0C 5.2 C.C C.C C.C 1.3 2.5 0 7 0 3 1 2 53 32 68 30 39 35 33 C 1 3 2.7 7.2 2 C.0C 5.5 1.5	42 303 61 34 37 37 31 ((1	3.9 0.0 0.00 6.7 0.	
295			
290 262 100 32 32 32 32 32 1 1 2 12.5 4.6 C.CC 7.4 C.C C.C C.1 C.1 51 23 C 2 1 259 272 67 34 17 37 32 C 1 3 12.5 4.6 C.CC 5.6 1.2 C.C C.3 2.9 0 1 0 3 1 2 1 2 2 2 2 2 3 5 6 1 31 21 31 31 1 1 1 1 1 1 1 1 1 1 1 1 1			
272			
202 283 81 31 31 31 31 31 1 1 1 1 10.9 1.2 0.00 5.2 0.0 0.0 0.0 52 0 0 1 2 53 323 68 30 39 35 33 0 1 3 2.7 -2.2 0.00 5.5 1.5 0.0 -0.1 7.6 0 24 2 2 2 2 2 2 2 2 2 10.7 33 33 7.3 33 1 1 1 1 12.3 10.9 0.00 5.0 0 1.2 0.0 0.1 1 1 0.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	276 202 160 32 32 32 37 1 2 250 272 40 74 77 73 73 73 73		
53 323 68 36 39 39 37 33 C 1 3 2.7 -2.2 C.0C 5.5 1.5 C.C -6.1 7.6 0 34 2 2 2 2 2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1			
297 277 £1 32 33 32 31 1 1 1 12.5 4.6 C.QC 6.8 1.C C.C -C.9 1.6 C1C3 C 2 1 298 287 72 34 56 36 32 C 1 1 12.5 4.6 C.QC 5.4 C.C C.C -3.1 0.4 37 3 C 2 1 5.8 337 70 36 26 26 26 C C C 2.7 C.QC 2.5 9 7 C.C -4.5 0.0 0 34 1 C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
298 287 72 34 36 36 32 C 1 1 12.5 4.6 C.CC 5.4 C.C C.C -3.1 0.4 37 3 C 2 1 58 337 70 36 26 26 36 C C C 26.0 2.7 C.QC 2.5 9.7 C.C -4.5 3.0 0 34 1 C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		12.3 10.5 0.00 5.6 1.	
-58 337 70 30 26 26 36 6 C C C 26.0 2.7 C.0C 2.5 9.7 C.C -4.5 0.0 0 34 1 C 2 299 285 87 33 33 27 33 1 1 1 12.5 4.6 C.2C 17.8 C.C C.C -C.3 C.C 0 23 C 1 1 265.2 354 66 42 45 42 36 3.4 7 12.5 -C.1 2.16 c.1 1.8 C.C C.7 2.7 12.3 4.5 5 1 300 288 77 32 23 37 31 C 1 1 12.5 4.6 C.CC 4.5 C.C C.C -1.7 1.1 37 3 0 2 1 63 341 73 40 40 40 40 60 C C C 9.3 5.5 0.0013.1 C.C C.7 7.7 1.1 37 3 0 2 1 64 46 5 39 39 73 39 C C C 15.7 5.9 0.0013.1 C.C C.C -1.7 1.1 37 3 0 2 1 2 301 298 82 34 34 34 34 1 1 1 12.5 4.6 C.C 1.6 C.C 1.6 C.C C.C -1.7 0.0 0 3 4 1 C 2 301 298 82 34 34 34 34 34 1 1 1 12.5 4.6 C.C 1.5 0.0 C.C C.C -1.7 0.0 0 3 0 1 1 3 2 3 3 0 3 1 3 3 1 3 1 3 1 C C 1 12.5 4.6 C.C 1.5 0.0 C.C 1.5 0.0 0104 C 1 1 3 0 2 3 0 1 7 4 36 38 38 35 C 1 1 12.5 4.6 C.C 1.5 0.0 1.5 0.0 0104 C 1 1 3 0 2 3 0 1 7 95 33 3 4 32 34 4 5 5 15.4 6.1 0.0013.5 1.C C.C 1.7 0.6 53 63 0 2 2			
299 285 87 33 33 32 33 1 1 1 12.5 4.6 C.2C19.8 C.C C.C -C.3 C.C C 23 C 1 1 265* 354 66 42 45 42 36 3 4 7 12.5 -C.1 2.16 c.1 1.8 C.C C.7 2.7 12.34 5 5 1 300 288 77 32 23 33 31 C 1 1 12.5 4.6 C.CC 4.5 C.C C.C -1.7 1.1 37 3 0 2 1 63 341 73 4C 4C 4C 4C C C.C 9.3 5.5 5.0C13.1 0.0 C.C-15.0 C.O 0.34 C 1 2 64 344 65 39 39 27 39 C C C 15.7 5.9 C.CC 1.8 9.3 C.C 8.5 C.O 0.34 1 C 2 301 298 82 34 34 34 34 1 1 1 1.25 4.6 C.CC 1.6 C.C 1.6 C.C C.C -1.7 0.0 0 3 0 1 1 268 3C1 28 31 31 31 31 C C 1 12.5 4.6 C.CC 1.6 C.C C.C -1.7 0.0 0 3 1 2 1 3 302 301 74 30 38 38 35 C 1 1 1.25 4.6 C.CC 1.5 C.C 1.5 C.C 1.5 C.C 0.5 C.C 0.5 C.C 1.5 C.C 0.5 C.C 1.5 C.C 0.5 C.C 1.5 C.C 0.5 C.C		12.5 4.6 0.00 5.4 0.	
265-354 66 42 45 42 36 2 4 7 12.5 - C.1 2.16 c.1 1.8			
300 288 77 32 73 37 31 C 1 1 10.5 4.6 C.CC 4.5 C.C C.C -1.7 1.1 37 3 0 2 1 03 341 73 40 40 40 40 C C.C 5.3 5.5 0.0013.1 0.0 0.0 0.0 0.3 4 0 1 2 1 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			
03 341 73 40 40 40 40 6 6 6 6 9.3 5.3 0.0013.1 0.0 0.0015.0 0.0 0 34 0 1 2 64 344 65 39 39 73 39 0 0 15.7 5.9 0.00 1.8 9.3 0.0 0.8 5 0.0 3 4 1 0 2 301 298 82 34 34 34 34 1 1 1 12.5 4.6 0.00 1.6 0.0 0.3 0 0 1 1 2 68 30 1 28 31 31 31 31 31 0 0 0 12.5 4.6 0.00 1.9 0.3 0.0 10.2 0.0 0104 0 1 1 302 301 74 30 38 38 35 0 1 1 1 12.5 4.6 0.00 1.9 0.3 0.0 10.2 0.0 0104 0 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
64 344 65 39 39 79 39 C C C 15.7 5.9 C.CC 1.8 9.3 C.C 8.5 C.O 3 34 1 C 2 301 298 82 34 34 34 4.1 1 1.12.5 4.6 C.CC 1.6 C.C C.C -1.7 0.0 0 3 0 1 1 2 68 30 1 28 31 31 31 31 31 3 1 2 C 2 12.5 4.6 C.CC 1.9 0.3 C.C 1C.2 C.O 01C4 C 1 1 302 301 74 30 38 38 35 C 1 1.12.5 4.6 C.OC 1.7 0.0 1.1 C.C -5.1 1.5 0 3 1.2 1 270 17 95 33 34 33 34 4 5 5 15.4 6.1 C.OC 13.5 1.0 C.C 1.7 0.6 53 63 0 2 2		9.3 5.3 0.0013.1 0.	
268 3C1 26 31 31 31 31 C C 2 12.5 4.6 C.DC 1.9 S.3 C.C 1C.2 C.D 01C4 C 1 1 3C2 301 74 36 38 38 35 C 1 1 12.5 4.6 C.DC16.2 1.1 C.C -5.1 1.5 0 3 1 2 1 270 17 95 33 34 33 34 4 5 5 15.4 6.1 C.DC13.5 1.C C.C 1.7 0.6 53 63 0 2 2	64 344 65 39 39 39 39 (C C	15.7 5.9 0.00 1.8 9.	.3 C.C 8.5 C.O 3 34 1 C 2
302 301 74 36 38 38 35 C 1 1 12.5 4.6 C.0C16.2 1.1 C.C -5.1 1.5 0 3 1 2 1 270 17 95 33 34 33 34 4 5 5 15.4 6.1 C.0C13.5 1.C C.C 1.7 0.6 53 63 0 2 2			
270 17 95 33 34 32 34 4 5 5 15.4 6.1 0.0013.5 1.0 0.0 1.7 0.6 53 63 0 2 2			

Table A4. ACDT Volume Scan Output for Volume Scan No. 4, Case Study No. 2 (Contd)

-																	
													- <u>-</u>				
303 3	10 fi 10 fo		31		31	 I 1	ĺ	12.5		ğ. <u>c</u> .	(·)	7.0		.1 [.0			1
1.4 3	21 52	-34.	<u> </u>	34	- 3-2 - 1		-1	12.5			2.1				16 (3		
273	1 5 4	3.6	2.0	2 €	: 8		÷	1:.3	- 4.6 - 4.4 - 4.1 - 10.2	6.00 6.00 3.00				.5 C.C		0 1	2
	4-3	- 1	+ 2 7 7	4	42 (3.0	11.1			1 - 7	5.3		.4 9.9			_
	2 <u>5 73</u> 1e 102	<u> 33</u> .		3.1		. (1	, 1	1.3		: . ; : . ;	1 1	(.C-10	.e (.(2
	10 75	ع د	3 6	. š t	le :	-		12.5	4.:			1.5		.7 1.3			i
307 3	92 F4	4	3 g. 3 g. 3 g.					1	4.1	<u> </u>		1.5	0.0-13	.2 0.0	0 34	C 1	1
277	3 51	32		-:-	3.		<u> </u>	1 . 4	3.4	<u> </u>	<u></u>	3.E		.0 0.0	0112 54 6		2
278	.4 Se	30	∵ e • C		36 (۲.	15.5	2.7	1.17	1.: 1.: 2.:	. c	1.0 - 1	.0 0.0	. 34 c.: : 011e		1
232 2	71 48	3.5	: -	3 4				11.0	11.3	0.10	i i i	1 . ?	- t.	.9 5.0 .7 5.0 .1 0.0	55100		2
1 381 3.	<u>9</u> 77	3.	4 . 7 ;	4	4 5 3 9		÷	11.4	: • :			<u> </u>	<u> </u>	. 7 2	0 34	. 1 1	2
92		33	्रहे इस्	31	3 3		-		11.5	(•) <u>:</u>	1.0	9.7	0.0 :	.1 0.0 0.0	42112		-
	<u>.a ba</u> 36 121	35	- <u>; </u>	? t	Īε	+	-	1 5	- ! - :		1.5	1.1		1 0.0			+
100 3	.g 100	3.3	, :	13	3.3		1	11.5	:		٠.۶	6.5	-	0	0107	0 1	1_
	.1 127	3.5		? ·		1	1	12.5	4.1		4.4		: :: - :	.5 0.0		C 1	1
$\frac{711}{712} - \frac{2}{3}$		3.1	3.1 5.2	7.1	71	1 1		11.5	4.5	2.00	11.4		- 2	.2 C.0			1
101 3		12	7.7	7.							1.7			.6 5.7			ż
313 3		11		7 7	3.1	1 1	1		4.5		•	1.5	1.0	.7 0.0	3113	2 1	1
214 3		9.1	- 1	-1		1 1	1	11.2	٠. 5	4.51	4.4 L	1.45		<u>. 5. 9. 1</u>			1_
	39 - 35 29 - 119	34	74 36	3 - 3¢	34 : 36 :		1	12.5	4.0 4.1	3.63 1.41	7.7	2.2		.4 1.4 4 C.C		1 1	
	35 112	32	3.2	72	33			12.5		0.00		1.1		.8 C.3			
318 2	1 212		1	41	37	_ 4_	٤	11.5	شمه	1.00	7.5	1.2		كمح عما			1
	53 79 59. 19.1		33	38 32		3		10.5		5.00		7.0 1.2		. 8 0 . 1 . 7 G . 0		0.2	
	52. 150				35	7		12.5		0.00	5.7	0.0		.8 G.C		C 1	
	12 31				32	ĹĹ.		12.5		222		2.2	1.1	5.7.5	0 .0	<u> </u>	
	1 196				37	5		12.5		0.00		0.0		.3 0.0			
124 2 117 2	<u>14. 157</u> 35. 178		7.7		32	4		12.5	_4 <u>.</u> &	0.00	11 :	1.0		1 0.0		0 1	1
	12 21							12.5.		22.2		1.8		5		نت	i
119 2	85 63	34	36	3 ć	32	1 ĉ		12.5		0.00		0.0		. 9 3.		0 2	
	54 140							12.5		0.00		0.0			<u>50 97</u>) 51 23		_
	55 102 53 98	37			33	2 2	2	12.5		C - CC		0.0		6 0-0			ż
	39 71	3.2	3.2	32	3.2	1 1	1	12.5	4.6	0.00	13.3	0.0	C.C -	.9 C.C	37 3		
							_3.	12.5		تتمه.		1-1-		.1 0.0	. 551C2	0 1	
329 126* 3	39 116	31 38	31	31		4 4		12.5		2.55		0.C 1.1			0 0		1
		38			38			10.0		0.00		1.3		.1 0.2		2 0	_
1314-3	31 80	3.7	41	4:1		1	4	12.7		تحتد		1-2		يمجيما			<u>ځ</u> .
		38 35						16.1		00.00		1.2			16 63		
	36 /3 54 154		32	32	32			12.5		C . CC		J.C		2.7 0.0		0 1	
332 2	48 81	. 32	33	32	3.2	4	.4	12.5	4.6	0.00	4.2	1.3.	٠- ٢٠٠	3 Ca3		12	1_
		32			32	3		12.5		0.00		3.7		.9 0.0		1 1 1	
.335 2	78 62	33	35	5 2	35	: 3	4	12.5	4.6	c.oc	2.0	1.1	٠.٢ 4	2 و 2 مر	262 '		

Table A4. ACDT Volume Scan Output for Volume Scan No. 4, Case Study No. 2 (Cont θ

139	
	73 244 347 141 143 341 38 14 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
338 334 72 33 33 31 33 3 4 4 12.5 4.5 2.	
339 344 75 32 32 31 32 1 3 12.5 4.6 0.0	30 2.2 1.3 C.C 1.4 1.5 C C 2 1 1
340 350 30 30 37 38 13 4 4 6 12.3 4.6 2.1	
341+ 7 55 43 41 41 42 2 3 4 12.5 4.6 2.	20 3.4 1.2 0.0 -1.5 1.1 59 0 5 3 1
342+ 14 50 45 40 40 40 1 3 c 12.5. 4.0 Co	0 2.4 1.2 0.0 -0.2 1.0 0 0 2 3 1
	31 1.9 1.3 C.C -C.3 C.8 53 e3 1 1 1
344 29 94 33 33 31 33 4 4 - 12.5 4.6 (.)	20 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
345 34 71 32 33 33 33 3 4 + 12.3 4.5 2.1	
346	
152 237 178 40 40 40 40 4 4 4 -4.1 4.5 C. 347 260 56 32 32 32 32 2 2 2 12.5 4.6 0.0	00 5.6 0.3 0.0 -5.5 0.0 0-16 1 0 2
349 335 91 32 32 32 32 5 5 5 12.5 4.6 Ca 350 19 47 42 43 43 43 2 2 12.5 4.6 Ca	10 4.0 2.0 0.0 -1.1 1.5 0 0 1 1 1
351 276 67 33 33 33 33 3 4 10.5 4.6 0.0	
352 44 74 35 35 35 35 5 5 12.5 4.c C.	
152 257 104 31 31 31 31 2 2 2 1742 -3.3 (.)	00 4.6 1.1 C.C 3.3 C.O D C C 1 2
	10 3.5 1.2 0.0 5.4 0.5 60102 0 3 1
354 356 65 41 42 41 42 4 4 4 12.5 4.0 1.	
355 6 39 37 33 36 36 4 5 7 10.5 4.6 0.0	10 3.1 1.3 0.0 -1.4 1.0 59 0 2 2 1
356 318 52 31 31 31 31 4 4 4 12.5 4.6 (.)	15 4.5 4.3 C.C -8.5 C.O 53 C 1 1 1
165 282 69 32 33 34 53 1 2 3 2.4 1.7 0.7	
357 L 65 39 39 39 39 7 7 7 12.2 4.6 C.	
358 279 50 38 39 38 38 5 5 5 12.5 4.6 0.0	
· · · · · · · · · · · · · · · · · ·	1 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
183 56 140 36 36 36 36 2 2 2 3.6 10.5 1. 184 304 69 31 21 21 31 0 0 0 1444.55.4 0.	11 5.3 1.3 C.C -2.5 1.2 C e7 2 C 2
192 279 91 38 38 38 38 1 1 1 7.7 -1.5 0.0	
	00 5.0
203 341 76 46 46 46 40 6 5 5 17.4 11.6 6.1	
	C 5.1 1.2 C.C = 7.6 C.2 C 34 1 1 2
267 351 78 35 78 38 32 5 7 6 11.9 2.7 2.7	9: 4.2 1.3 (.6 -4.0 4.9 22 34 2 5 1
	10 1.6 1.7 0.0 -9.1 0.0 43 34 1 0 2
215 19 99 33 79 37 29 4 4 5 17.4 5.5 (10 2.5 1.1 0.0 -1.1 1.2 16 63 1 2 2
215 312 61 33 35 34 31 0 1 3 15.4 2.6 1.6	tt 4.7 1.1 C.7 -7.2 2.1 39 34 1 3 2
216 24 84 39 39 39 39 4 4 4 14.5 4.7 0.9	CC 1.8 1.1 C.C -3.2 C.2 54 c3 1 1 2
<u> 219 357 56 46 45 46 46 6 6 1 2 1946 1947 54</u>	22 3.c 1.7 C.C -C.1 2.7 12 34 1 2 2
	C 1.9 1.4 C.C -C.3 C.O e1-34 1 C 2
227 351 60 42 43 43 43 6 0 0 14.3 5.5 6.6	CC13.5 5.2 C.C 7.9 C.7 e1 34 1 1 2

Table A4. ACDI Volume Scan Outon for Volume Scan No. 4, a see Study No. 2 (Cont.)

CENTR TRK AZM	DIL I RNS AV PK	· jpi	(F.R.	247		v ² c .	: • •	** 11 0			1100		1.0
NO DEG	AM 25 28	*(KN	χ.,	25.		- 5.7	1, 1		* *	11.5	N I N	4794	
	1-7,-5	1			÷ 7	* % / .	٠	· . :					<u>.</u>
37 087	70 33 33	: 7.2	3.:	31 -	j	7.			•		•		- :
48 299	<u>63 [3 [2</u>			- =			2						
	207 45 46		î	2	1 :	13.5	4.7		: :	-	. • .	• : :	÷
	<u>155 44 44 </u>	<u> </u>	<u> </u>	<u> </u>	1 ¢				<u> </u>				
39 313	63 34 57	4 1.1		1:		11.:		L •	: :	ξ.		5.1.	~
	142.41.52	يؤه و سفد .		_ : : .	9.7				•			بنين	
	100 34 37		• -	ي د د	6.		•			-	1.71	[•I	1
52 293	<u> </u>		÷ .	1.5			-1.		1				
12 358 53 18	95 33 34	2.1	? • :	3.5 :	. 4	1 2 . 1			7 II			4.61	4
16 20	25 32 34 25 32 39	1 .,	<u> </u>	1.				1.:		- -	-1.55		
42 10	45 40 42		•		, , :					- 1	-1.22	I . I .	
5 2 2 4	35 37 39	. <u></u>		7:	1 =		3.1		5 5	1 :			Č
55 273				- :		17		1.3	• ·	1.5		3.00	_
	75 37 33	- \	7.4.			1		•	·	- بـ	-7.21	5.68	- 1
43 334	81 35 -1	1 1.0						•	- 11	-	25	3.50	5
Sc 277	c = 33 35					• • • •			-		3.30	0.00	Ē
57 13	7= 47 47					+			7 :	Ě	3.32	2,00	
53 318	53 32 35		1.1	- :			• •		1		0.00	0.00	
59 6	57 39 41		2.5	1	^	~ .		1.2	7 - Ž.	C		0.00	
60 200	48 30 33	٥.٥	3.:		1	•		• • • •	5 2	:	TC.50	0.00	
e1 351	63 41 43	يّ و ب خ	3.5		3 4			4.1	2 22	1:	0.00	0.60	
		_											