Metodi Matematici per l'Informatica - Esercizi 4 (a.a. 22/23, I canale)

Docente: Lorenzo Carlucci (korenzo.carlucci@uniroma1.it)

Nota: Gli esercizi riguardano il principio di induzione.

Esercizio 1 Dimostrare usando il Principio di Induzione la seguente proposizione: Con francobolli da 4 e da 5 centesimi posso ottenere ogni affrancatura di valore $n \ge 12$.

Esercizio 2 Dimostrare usando il Principio di Induzione la seguente proposizione: Ogni affrancatura ottenibile con francobolli da 10 e da 15 centesimi è divisibile per 5.

Esercizio 3 Dimostrare usando il Principio di Induzione la seguente proposizione: Per ogni $n \ge 1$ vale la seguente identità:

$$\sum_{i=1}^{n} i^{2} = \frac{n \times (n+1) \times (2n+1)}{6}.$$

Esercizio 4 Dimostrare usando il Principio del Minimo Numero la seguente proposizione: Per ogni $n \ge 1$ vale la seguente identità:

$$1+3+5+7+\cdots+2n-1=n^2$$
.

Esercizio 5 Dimostrare per Induzione la seguente proposizione: Per ogni $n \ge 1$

$$(n+1)^2 - (n-1)^2 = 4n.$$

Esercizio 6 Dimostrare per Induzione la seguente proposizione: Per ogni $n \ge 0$, $n(n^2 + 5)$ è divisibile per 6.

Esercizio 7 Dimostrare per Induzione la seguente proposizione: Per ogni $n \ge 12$, esistono $\ell, p \in \mathbb{N} \cup \{0\}$ tali che $n = 5 \times \ell + 4 \times p$.

Esercizio 8 Dimostrare per Induzione la seguente proposizione: Per ogni $n \ge 1$, il prodotto dei primi n numeri naturali positivi pari è uguale a $2^n \times n!$

Esercizio 9 Dimostrare per Induzione la seguente proposizione: Per ogni $n \ge 4$, $2^n < n!$.

Esercizio 10 Dimostrare per Induzione la seguente proposizione: Per ogni $n \ge 1$ vale la seguente identità:

$$\sum_{i=1}^{n} i \times 2^{i} = (n-1) \times 2^{n+1} + 2.$$

Esercizio 11 Dimostrare per Induzione la seguente proposizione: Per ogni $n \geq 2$ vale la seguente diseguaglianza:

$$1 + 1/4 + 1/9 + \dots + 1/n^2 < 2 - 1/n.$$

Esercizio 12 Dimostrare per Induzione la sequente proposizione: Per ogni $n \geq 0$,

$$F_0 + F_2 + F_4 + \dots + F_{2n} = F_{2n+1} - 1$$
,

dove gli F_n sono i numeri di Fibonacci così definiti: $F_0 = 0$, $F_1 = 1$ e, per $n \ge 2$, $F_n = F_{n-2} + F_{n-1}$.

Esercizio 13 Trovare l'errore nella sequente dimostrazione per induzione.

Dimostriamo che per ogni $n \ge 1$ vale

$$\sum_{i=1}^{n} i = \frac{(n+1/2)^2}{2}.$$

Base. Per n = 1 la verifica è banale.

Passo. Evidenziamo il caso n nel caso n + 1:

$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1)$$

Per ipotesi induttiva abbiamo

$$\sum_{i=1}^{n} i + (n+1) = \frac{(n+1/2)^2}{2} + (n+1).$$

Per algebra abbiamo

$$\frac{(n+1/2)^2}{2} + (n+1) = \frac{n^2 + n + 1/4 + 2n + 2}{2} = \frac{((n+1) + 1/2)^2}{2}.$$

Esercizio 14 Trovare l'errore nella seguente dimostrazione per induzione.

Dimostriamo che tutti i numeri naturali sono uguali, dimostrando: per ogni $n \ge 1$, per ogni insieme A di n numeri naturali, tutti i numeri in A sono identici.

Base $Per\ il\ caso\ base\ n=1\ la\ proposizione\ \grave{e}\ ovvia.$

Passo Sia $n \ge 1$. Sia $A = \{a_1, a_2, \ldots, a_{n+1}\}$ un insieme di n+1 numeri naturali. Consideriamo $A_1 = \{a_1, a_2, \ldots, a_n\}$ e $A_2 = \{a_2, a_3, \ldots, a_{n+1}\}$. Per ipotesi induttiva applicata ad A_1 abbiamo $a_1 = a_2 = \cdots = a_n$. Per ipotesi induttiva applicata ad A_2 abbiamo $a_2 = a_3 = \cdots = a_{n+1}$. Dunque tutti gli $a_1, a_2, \ldots, a_n, a_{n+1}$ sono identici.

1 Esercizi d'esame

Esercizio 15 Dimostrare per Induzione che, per ogni $n \ge 1$, se X e Y sono insiemi di n elementi, il numero di funzioni biiettive tra X e Y è n!.

- 1. Caso Base:
- 2. L'ipotesi induttiva (che posso assumere quando dimostro il caso generico n+1) è:
- 3. Dimostrazione del passo induttivo:

Esercizio 16 Dimostrare per Induzione Forte che per ogni $n \ge 0$ vale

$$F_0 + F_1 + F_2 + \cdots + F_n = F_{n+2} - 1$$

dove gli F_i sono i numeri di Fibonacci definiti come segue: $F_0 = 0$, $F_1 = 1$, e, $per i \ge 2$, $F_i = F_{i-2} + F_{i-1}$.

1. Caso Base:

- 2. L'Ipotesi Induttiva Forte (che posso assumere quando dimostro il caso generico n > 0) è:
- 3. Dimostrazione del passo induttivo:

Esercizio 17 Dimostrare per Induzione che il prodotto di tre numeri interi positivi consecutivi è sempre un multiplo di 6. Specificare caso base, ipotesi induttiva e passo induttivo.

Esercizio 18 Trovare l'errore (o gli errori) nella seguente dimostrazione per Induzione.

Tesi: Se il massimo di due numeri naturali è un numero naturale allora i due numeri sono uguali.

Dimostriamo la tesi dimostrando la seguente proposizione: Per ogni $k \geq 0$, per ogni n, m naturali, se $\max(n, m) = k$ allora n = m.

Base: Caso k = 0. Siano n, m naturali tali che max(n, m) = 0. Ovviamente n = m = 0.

Passo: Assumiamo l'**Ipotesi Induttiva**: per ogni $k \ge 0$, per ogni n, m naturali, se $\max(n, m) = k$ allora n = m. Dimostriamo che la tesi vale anche per k + 1, ossia: per ogni n, m naturali, se $\max(n, m) = k + 1$ allora n = m. Siano n, m naturali tali che $\max(n, m) = k + 1$. Dunque $\max(n - 1, m - 1) = k$. Per ipotesi induttiva segue n - 1 = m - 1. Dunque n = m.

Esercizio 19 Trovare l'errore (o gli errori) nella seguente dimostrazione per induzione forte.

Tesi: Per ogni $n \ge 0$, $3 \times n = 0$.

Base: Se n = 0 allora $3 \times n = 3 \times 0 = 0$.

Passo: Assumiamo che la tesi sia vera per tutti i numeri da 0 a n, per un generico intero $n \ge 0$. Dimostriamo che è vera per n+1. Possiamo scrivere n+1=a+b con a,b interi $0 \le a,b \le n$. Per ipotesi induttiva abbiamo $3 \times a = 0$ e $3 \times b = 0$. Dunque $3 \times (n+1) = 3 \times (a+b) = 3 \times a + 3 \times b = 0 + 0 = 0$.

Esercizio 20 Dimostrare la seguente proposizione: Per ogni $n \ge 1$

$$\sum_{m=1}^{n} 2^m \times m = (n-1) \times 2^{n+1} + 2.$$

Se il vostro mese di nascita è dispari dimostrare per Induzione Semplice; se il vostro mese di nascita è pari dimostrare usando il Principio del Minimo Numero.

Esercizio 21 Consideriamo la sequenza di numeri definita per ricorsione come segue: $A_1 = 1$, $A_2 = 1$, e, per n > 2, $A_n = A_{n-1} + A_{n-2}$.

Dimostrare per Induzione semplice che, per ogni $n \ge 1$,

$$\sum_{i=1}^{n} A_i = A_{n+2} - 1.$$

Specificare il Caso Base, l'Ipotesi Induttiva e la dimostrazione del Passo Induttivo.

Esercizio 22 Dimostrare per Induzione che, per ogni $n \ge 0$, $n^2 + n$ è pari.

- 1. Caso Base:
- 2. L'ipotesi induttiva è:
- 3. Dimostrazione del passo induttivo: