CLAIMS:

1	1. A method of diagnosing pathologic heart conditions comprising:		
2	parsing a time series of heart sounds into a sequence of individual heart cycles;		
3	determining the systolic interval of the heart cycles;		
4	identifying a subinterval for each systolic interval of the heart cycles;		
5 .	filtering the time series of heart sounds using a time-frequency transformation;		
6	identifying anomalously high wavelet coefficients using a constant false alarm rate		
7	(CFAR) detector;		
8	assembling the series of anomalously high detections into a matrix;		
9	convolving the matrix with an averaging vector, said vector's length derived from the		
10	expected time spread of a click occurrence, the convolution yielding detection statistics		
11	across heart cycles and time intervals consistent with an observed spread of click occurrence		
12	times;		
13	calculating a click score as the maximum element of a vector formed by the median		
14	wavelet coefficient amplitude across heart cycles squared at each time sample multiplied		
15	element-wise by a vector formed by the sum across heart cycles of the number of detections		
16	at each time sample; and		
17	comparing the click score to a threshold level in order to distinguish between a normal		
18	heart and a pathologic heart.		
1	2. The method of claim 1 further comprising ranking the click score relative to other click		
2	scores in a database to establish its standing amongst a population of other click scores of		
3	known pathologic and non-pathologic hearts.		
1	3. The method of claim 1 wherein parsing the time series of heart sounds into a sequence of		
2	individual heart cycles uses electro-cardiogram (ECG) data to transform a time series of		
3	heart sounds into a sequence of individual heart cycles.		

1	4.	The method of claim 1 wherein parsing the time series of heart sounds into a sequence of
2		individual heart cycles uses acoustic heart sounds obtained directly from a patient to
3		transform a time series of heart sounds into a sequence of individual heart cycles.
1	5.	The method of claim 1 wherein determining the systolic interval of the heart cycles is
2		achieved by identifying pulses on an electro-cardiogram (ECG).
1	6.	The method of claim 1 wherein determining the systolic interval of the heart cycles is
2		achieved by acoustically locating a first and a second heart sound using a bandpass filter,
3	;	said bandpass filter applied to the time series of heart sounds.
1	7.	The method of claim 1 wherein the systolic sub-interval is centered in the systolic
2		interval.
1	8.	The method of claim 1 wherein the systolic sub-interval is centered in systole and spans
2		half of the systolic interval.
1	9.	The method of claim 1 wherein filtering the time series of heart sounds using a time-
2		frequency transformation is implemented by a second order coiflet continuous wavelet
3		transform (CWT).
1	10	. The method of claim 1 wherein filtering the time series of heart sounds using a time-
2		frequency transformation is implemented by a Fourier transform.
1	11	. A system for diagnosing pathologic heart conditions comprising:
2		means for parsing a time series of heart sounds into a sequence of individual heart cycles

means for identifying a subinterval for each systolic interval of the heart cycles;

means for filtering the time series of heart sounds using a time-frequency transformation;

means for identifying anomalously high wavelet coefficients using a constant false alarm

means for determining the systolic interval of the heart cycles;

3

4

5 6

7

rate (CFAR) detector;

means for assembling the series of anomalously high detections into a matrix; 1 2 means for convolving the matrix with an averaging vector, said vector's length derived 3 from the expected time spread of a click occurrence, the convolution yielding detection statistics across heart cycles and time intervals consistent with an observed spread of click 4 5 occurrence times: 6 means for calculating a click score as the maximum element of a vector formed by the 7 median wavelet coefficient amplitude across heart cycles squared at each time sample 8 multiplied element-wise by a vector formed by the sum across heart cycles of the number of 9 detections at each time sample; 10 means for comparing the click score to a threshold level in order to distinguish between a 11 normal heart and a pathologic heart; and 12 means for ranking the click score relative to others in a database to establish its standing 13 amongst a population of other scores of known pathologic and non-pathologic cases. 1 12. The system of claim 11 further comprising means for ranking the click score relative to 2 other click scores in a database to establish its standing amongst a population of other click scores of known pathologic and non-pathologic hearts. 3 13. The system of claim 11 wherein the means for parsing the time series of heart sounds into 1 2 a sequence of individual heart cycles uses electro-cardiogram (ECG) data to transform a 3 time series of heart sounds into a sequence of individual heart cycles. 1 14. The system of claim 11 wherein the means for parsing the time series of heart sounds into 2 a sequence of individual heart cycles uses acoustic heart sounds obtained directly from a 3 patient to transform a time series of heart sounds into a sequence of individual heart 4 cycles. 1 15. The system of claim 11 wherein the means for determining the systolic interval of the 2 heart cycles is achieved by identifying pulses on an electro-cardiogram (ECG).

1	16. The system of claim 11 wherein the means for determining the systolic interval of the
2	heart cycles is achieved by acoustically locating a first and a second heart sound using a
3	bandpass filter, said bandpass filter applied to the time series of heart sounds.
1	17. The system of claim 11 wherein the systolic sub-interval is centered in the systolic
2	interval.
1	18. The system of claim 11 wherein the systolic sub-interval is centered in systole and spans
2	half of the systolic interval.
1	19. The system of claim 11 wherein the means for filtering the time series of heart sounds
2	using a time-frequency transformation is implemented by a second order coiflet
3	continuous wavelet transform (CWT).
1	20. The system of claim 11 wherein the means for filtering the time series of heart sounds
2	using a time-frequency transformation is implemented by a Fourier transform.
1	21. A computer program product for diagnosing pathologic heart conditions, the computer
2	program product comprising:
3	computer program code for parsing a time series of heart sounds into a sequence of
4	individual heart cycles;
5	computer program code for determining the systolic interval of the heart cycles;
6	computer program code for identifying a subinterval for each systolic interval of the heart
7	cycles;
8	computer program code for filtering the time series of heart sounds using a time-
9	frequency transformation;
10	computer program code for identifying anomalously high wavelet coefficients using a
11	constant false alarm rate (CFAR) detector;
12	computer program code for assembling the series of anomalously high detections into a
13	matrix;

computer program code for convolving the matrix with an averaging vector, said vector's length derived from the expected time spread of a click occurrence, the convolution yielding detection statistics across heart cycles and time intervals consistent with an observed spread of click occurrence times;

computer program code for calculating a click score as the maximum element of a vector formed by the median wavelet coefficient amplitude across heart cycles squared at each time sample multiplied element-wise by a vector formed by the sum across heart cycles of the number of detections at each time sample;

computer program code for comparing the click score to a threshold level in order to distinguish between a normal heart and a pathologic heart; and

computer program code for ranking the click score relative to others in a database to establish its standing amongst a population of other scores of known pathologic and non-pathologic cases.

- 22. The computer program product of claim 21 further comprising computer program code for ranking the click score relative to other click scores in a database to establish its standing amongst a population of other click scores of known pathologic and non-pathologic hearts.
- 23. The computer program product of claim 21 wherein the computer program code for parsing the time series of heart sounds into a sequence of individual heart cycles uses electro-cardiogram (ECG) data to transform a time series of heart sounds into a sequence of individual heart cycles.
- 24. The computer program product of claim 21 wherein the computer program code for parsing the time series of heart sounds into a sequence of individual heart cycles uses acoustic heart sounds obtained directly from a patient to transform a time series of heart sounds into a sequence of individual heart cycles.

1	25. The computer program product of claim 21 wherein the computer program code for
2	determining the systolic interval of the heart cycles is achieved by identifying pulses on
3	an electro-cardiogram (ECG).
1	26. The computer program product of claim 21 wherein the computer program code for
2	determining the systolic interval of the heart cycles is achieved by acoustically locating a
3	first and a second heart sound using a bandpass filter, said bandpass filter applied to the
4	time series of heart sounds.
1	27. The computer program product of claim 21 wherein the systolic sub-interval is centered
2	in the systolic interval.
1	28. The computer program product of claim 21 wherein the systolic sub-interval is centered
2	in systole and spans half of the systolic interval.
1	29. The computer program product of claim 21 wherein the computer program code for
2	filtering the time series of heart sounds using a time-frequency transformation is
3	implemented by a second order coiflet continuous wavelet transform (CWT).
1	30. The computer program product of claim 21 wherein the computer program code for
2	filtering the time series of heart sounds using a time-frequency transformation is
3	implemented by a Fourier transform.