

SILABO MECÁNICA DE FLUIDOS II

ÁREA CURRICULAR: TECNOLOGÍA

I. DATOS GENERALES

1.1 Departamento Académico : Ingeniería y Arquitectura

1.2 Semestre Académico : 2019-l1.3 Código de la asignatura : 09026907050

1.4Ciclo: VII1.5Créditos: 51.6Horas semanales totales: 12

1.6.1 Horas lectivas (Teoría, Práctica, Laboratorio) : 6 (T=4, P=0, L=2))

1.6.2 Horas no lectivas : 6

1.7 Condición del curso : Obligatorio

1.8 Requisitos : 09026506050 Mecánica de Fluidos I

1.9 Docentes : Ing. Gonzalo Fano Miranda

II. SUMILLA

El curso es teórico - práctico. Su propósito es brindar al estudiante los conceptos básicos del comportamiento de un flujo estático y en movimiento en sistemas de tuberías y canales, interactuando con sus estructuras de control de flujo que se requieren en el mismo.

La asignatura comprende las siguientes unidades de aprendizaje: I. Flujo interno y externo. II. Energía específica y flujo rápidamente variado en canales. III. Flujo uniforme en canales. IV. Flujo gradualmente variado y medición de flujos.

III. COMPETENCIAS Y SUS COMPONENTES COMPRENDIDOS EN LA ASIGNATURA

3.1 Competencias

- Desempeña criterios de aplicación de la hidráulica de tuberías y canales en el campo laboral de la ingeniería civil
- Elabora estudios de flujo para los canales de conducción y distribución
- Reconoce la hidráulica en los estudios para edificaciones de gran envergadura en los cauces de ríos y canales.
- Elabora estudios para la determinación de alturas de muros de encausamiento.

3.2 Componentes

Capacidades

- Reconoce los principios de los flujo interno y externo y su aplicación en la construcción de canales
- Estudia la acción de energía específica y flujo rápidamente variado en canales
- Aplica al flujo uniforme en canales
- Aplica al flujo gradualmente variado y medición de flujo

• Contenidos actitudinales

- Trabaja, en equipo, los proyectos de obras hidráulicas.
- Considera que un estudio de hidráulica se puede trabajar en equipo multidisciplinario
- Colabora con la Gerencia de operaciones de una empresa
- Adopta los criterios desarrollados en los principios de la hidráulica

IV. PROGRAMACIÓN DE CONTENIDOS

UNIDAD I : FLUJO INTERNO Y EXTERNO CAPACIDAD: Reconoce los principios de los flujo interno y externo y su aplicación en la construcción de canales HORAS **CONTENIDOS CONCEPTUALES** SEMANA **CONTENIDOS PROCEDIMENTALES** ACTIVIDAD DE APRENDIZAJE T.I. Lectivas (L): Primera sesión: · Trabaja en equipos en la aplicación de flujos externos e internos, flujo en Definición de flujos externos e internos, flujo en conductos conductos cerrados y abiertos, perfil de velocidad, concepto de capa límite, Introducción al tema - 1 h cerrados y abiertos, perfil de velocidad, concepto de capa teoría de Prandtl, espesor de capa límite. Desarrollo del tema – 3 h límite, teoría de Prandtl, espesor de capa límite. Ejercicios en aula - 2 h 6 Resuelve problemas donde se tiene que aplicar flujo completamente De trabajo Independiente (T.I): 1 Segunda sesión: desarrollado entre placas paralelas, flujo completamente desarrollado en un Flujo Interno: flujo de entrada, flujo completamente Resolución tareas - 2 h desarrollado entre placas paralelas, flujo completamente tubo, ecuación de Poiseuille Trabajo de investigación – 2 h desarrollado en un tubo, ecuación de Poiseuille Trabajo grupal - 2 h Lectivas (L): Trabaja en equipos en la aplicación de lujos efecto de la edad en tuberías, Primera sesión: Introducción al tema - 1 h presión mínima en tuberías. Inconvenientes de presiones bajas, golpe de Práctica dirigida Nº 1 Desarrollo del tema – 3 h Segunda sesión: ariete, aplicación a redes de tuberías Eiercicios en aula - 2 h Flujos Internos: efecto de la edad en tuberías, presión 6 De trabajo Independiente (T.I): mínima en tuberías. Inconvenientes de presiones bajas, Resuelve problemas donde se tiene que aplicar flujo efecto de la edad en Resolución tareas - 2 h tuberías, presión mínima en tuberías. Inconvenientes de presiones bajas, golpe de ariete, aplicación a redes de tuberías. Práctica Trabajo de investigación – 2 h diriqida N° 2 golpe de ariete, aplicación a redes de tuberías Trabajo grupal - 2 h Primera sesión: Lectivas (L): Flujo Externo: Fuerzas de Arrastre y Sustentación. Presión Introducción al tema - 1 h Trabaja en equipos en la aplicación de Fuerzas de Arrastre y Sustentación. de arrastre. Coeficiente de arrastre. Fricción de arrastre Desarrollo del tema – 3 h Presión de arrastre. Coeficiente de arrastre. Fricción de arrastre sobre sobre esferas, cilindros y otros cuerpos. Práctica dirigida Eiercicios en aula - 2 h esferas, cilindros y otros cuerpos. 3 6 Segunda sesión: De trabajo Independiente (T.I): Resuelve problemas Clasificación de flujos en conductos abiertos, flujo Clasificación de fluios en conductos abiertos, fluio uniforme Resolución tareas - 2 h uniforme v variado, número de Revnolds v número de Froude, sección y variado, número de Reynolds y número de Froude, Trabaio de investigación – 2 h transversal y elementos geométricos de un conducto sección transversal y elementos geométricos de un Trabajo grupal - 2 h conducto. Lectivas (L): Primera sesión: Trabaja en equipos en la aplicación de Ecuaciones básicas en conductos Introducción al tema - 1 h Práctica calificada Nº 1 abiertos: continuidad, energía, coeficiente de Coriolis y momentum, Desarrollo del tema – 3 h Segunda sesión: coeficiente de Bousinesq, Ejercicios en aula - 2 h Ecuaciones básicas en conductos abiertos: continuidad. 4 6 De trabaio Independiente (T.I): energía, coeficiente de Coriolis v momentum, coeficiente - Resuelve problemas Ecuaciones básicas en conductos abiertos: Resolución tareas - 2 h de Bousinesq, Práctica dirigida Nº 3. continuidad, energía, coeficiente de Coriolis y momentum, coeficiente de Trabajo de investigación – 2 h Bousinesq, Trabajo grupal - 2 h

UNIDAD II: ENERGÍA ESPECÍFICA Y FLUJO RAPIDAMENTE VARIADO EN CANALES

CAPACIDAD: Estudia la acción de energía específica y flujo rápidamente variado en canales

CEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROSERIMENTALES	ACTIVIDAD DE APRENDIZAJE	HORAS	
SEMANA		CONTENIDOS PROCEDIMENTALES		L	T.I
5	Primera sesión: Energía específica. Tipos de flujo: crítico, subcrítico, supercrítico, fuerza específica. Continuación Práctica dirigida Nº 3. Segunda sesión: Flujo rápidamente variado, caída hidráulica, caída libre, ecuación del resalto hidráulico en sección rectangular.	 Trabaja en equipos en la aplicación de Energía específica. Tipos de flujo: crítico, subcrítico, supercrítico, fuerza específica., Resuelve problemas de Flujo rápidamente variado, caída hidráulica, caída libre, ecuación del resalto hidráulico en sección rectangular. 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 3 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo de investigación - 2 h Trabajo grupal - 2 h	- 6	6
6	Primera sesión: Ecuación del resalto hidráulico en sección trapezoidal. Práctica dirigida Nº 4. Segunda sesión: Longitud de resalto hidráulico, tipos de resalto hidráulico, estabilidad del resalto hidráulico.	 Trabaja en equipos en la aplicación de Ecuación del resalto hidráulico en sección trapezoidal. Resuelve problemas de Longitud de resalto hidráulico, tipos de resaltohidráulico, estabilidad del resalto hidráulico. 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 3 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo de investigación - 2 h Trabajo grupal - 2 h	6	6
7	Primera sesión: Continuación Práctica dirigida Nº 4. Segunda sesión: Práctica calificada Nº 2	 Trabaja en equipos en la aplicación de Ecuación del resalto hidráulico en sección trapezoidal. Resuelve problemas de Longitud de resalto hidráulico, tipos de resaltohidráulico, estabilidad del resalto hidráulico 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 3 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo de investigación - 2 h	6	6
8	Examen Parcial		Trabajo grupal - 2 h Trabajo grupal - 2 h		

UNIDAD III: FLUJO UNIFORME EN CANALES

CAPACIDAD: Aplica al flujo uniforme en canales

SEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HO L	RAS T.I.
9	Primera sesión: Flujo uniforme. Fórmulas de Chezy y Manning, coeficiente de rugosidad, distribución de velocidades, factor de sección para flujo uniforme, conductos cerrados. Segunda sesión: Práctica dirigida Nº 5	 Trabaja en equipos en la aplicación de Flujo uniforme. Fórmulas de Chezy y Manning, coeficiente de rugosidad, distribución de velocidades, factor de sección para flujo uniforme, conductos cerrados. Resuelve problemas de Flujo uniforme. Fórmulas de Chezy y Manning, coeficiente de rugosidad, distribución de velocidades, factor de sección para flujo uniforme, conductos cerrados. 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 3 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo de investigación - 2 h Trabajo grupal - 2 h	6	6
10	Primera sesión: Diseño de canales no erosionables, condición del lecho, velocidad permisible, fuerza tractiva crítica. Segunda sesión: Sección de máxima eficiencia hidráulica, máxima eficiencia hidráulica en conductos abovedados, detalles de diseño. Práctica Dirigida Nº 6.	 Trabaja en equipos en la aplicación de Diseño de canales no erosionables, condición del lecho, velocidad permisible, fuerza tractiva crítica. Resuelve problemas de Sección de máxima eficiencia hidráulica, máxima eficiencia hidráulica en conductos abovedados, detalles de diseño 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 3 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo de investigación - 2 h Trabajo grupal - 2 h	- 6	6
11	Primera sesión: Secciones de mínima infiltración, canales con rugosidad compuesta, canales con sección compuesta. Continuación Práctica dirigida Nº 6. Segunda sesión: Práctica calificada Nº 3	 Trabaja en equipos en la aplicación de Secciones de mínima infiltración, canales con rugosidad compuesta, canales con sección compuesta. Resuelve problemas de Secciones de mínima infiltración, canales con rugosidad compuesta, canales con sección compuesta. 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 3 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo de investigación - 2 h Trabajo grupal - 2 h	- 6	6
12	Primera sesión: Flujo gradualmente variado, ecuación dinámica del FGV. Teoría y análisis, perfiles de flujo, curvas de remanso. Práctica dirigida № 7. Segunda sesión: Métodos de cálculo de los perfiles de flujo gradualmente variado: método de integración gráfica y de tramos fijos, software HCanales	 Trabaja en equipos en la aplicación de Flujo gradualmente variado, ecuación dinámica del FGV. Teoría y análisis, perfiles de flujo, curvas de remanso. Resuelve problemas de Métodos de cálculo de los perfiles de flujo gradualmente variado: método de integración gráfica y de tramos fijos, software HCanales 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 3 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo de investigación - 2 h Trabajo grupal - 2 h	6	6

UNIDAD IV: FLUJO GRADUALMENTE VARIADO Y MEDICIÓN DE FLUJO

CAPACIDAD: Aplica al flujo gradualmente variado y medición de flujo

CEMANA	CONTENIDOS CONCEPTUALES	CONTENIDOS PROCEDIMENTALES	ACTIVIDAD DE APRENDIZAJE	HORAS		
SEMANA				L	T.I.	
13	Primera sesión: Continuación Práctica dirigida Nº 7. Segunda sesión: Introducción, medición de flujo en conductos abiertos Sistemas de control de flujo.	 Trabaja en equipos en la aplicación medición de flujo en conductos abiertos Sistemas de control de flujo Resuelve problemas de Métodos de cálculo de los perfiles de flujo gradualmente variado: método de integración gráfica y de tramos fijos, software HCanales 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 3 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo de investigación - 2 h Trabajo grupal - 2 h	- 6	6	
14	Primera sesión: Orificios, compuertas. Práctica dirigida Nº 8 Segunda sesión: Vertederos, fórmulas para vertederos de sección: rectangular, triangular, trapezoidal. con flujo modular y ahogado, medidor Parshall, otros métodos de medición. Práctica dirigida Nº 9.	 Trabaja en equipos en la aplicación de orificios, compuertas. Resuelve problemas de Vertederos, fórmulas para vertederos de sección: rectangular, triangular, trapezoidal. con flujo modular y ahogado, medidor Parshall, otros métodos de medición. 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 3 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo de investigación - 2 h Trabajo grupal - 2 h	- 6	6	
15	Primera sesión: Medición de flujo en conducto cerrado, medidor de orificio, medidor Venturi. Práctica dirigida Nº 10. Exposiciones de proyectos de investigación. Segunda sesión: Práctica calificada Nº 4	 Trabaja en equipos en la aplicación de Medición de flujo en conducto cerrado, medidor de orificio, medidor Venturi. Resuelve problemas Medición de flujo en conducto cerrado, medidor de orificio, medidor Venturi. 	Lectivas (L): Introducción al tema - 1 h Desarrollo del tema - 3 h Ejercicios en aula - 2 h De trabajo Independiente (T.I): Resolución tareas - 2 h Trabajo de investigación - 2 h Trabajo grupal - 2 h	6	6	
16	Examen final					
17	Entrega de promedios finales y acta del curso					

V. ESTRATEGIAS METODOLÓGICAS

- Método Expositivo Interactivo. Disertación docente, exposición del estudiante.
- Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- Método de Demostración Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

VI. RECURSOS DIDÁCTICOS

Equipos: computadora, ecran, proyector de multimedia.

Materiales: Separatas, pizarra, plumones.

VII. EVALUACIÓN DEL APRENDIZAJE

El promedio final de la asignatura se obtiene mediante la fórmula siguiente:

PF= (2*PE+EP+EF)/4 PE= ((P1+P2+P3+P4-MN)/3 + W1 + PL)/3 PL = (Lb1 + Lb2 + Lb3 + Lb4)/4

PF=Promedio Final

EP=Examen parcial

EF=Examen Final

PE =Promedio de evaluaciones

P1 = Práctica Calificada 1

P2 = Práctica Calificada 2

P3 = Práctica Calificada 3

P4 = Práctica Calificada 4

MN= Menor nota de prácticas calificadas

W1 = Trabajo 1

PL = Promedio de laboratorio Lb1...Lb4: Nota de laboratorio

VIII. FUENTES DE CONSULTA.

8.1 Bibliográficas

- Cengel, Y., y Cimbala J. (2011). Fluid Mechanics Fundamentals and Applications. México: Mc Graw Hill.
- Mott, R. (2015). Mecánica De Fluidos Aplicada. México: Prentice Hall Hispanoamérica S.A
- Naudascher, E. (2003). Hidráulica de Canales. 3ª edición. Editorial Limus
- Potter, M., y Wiggert, D. (2012). Mecánica de Fluidos. México: Prentice Hall Hispanoamérica S. A.
- Villón, M. (2012). Hidráulica de Canales. 1ª edición. Editorial Villón. Costa Rica
- White, F. (2009). Fluid Mechanics. VI Edition. USA: Mc Graw Hill.

IX. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería Civil, se establece en la tabla siguiente:

	K = clave R = relacionado Recuadro vacío = no aplica	
(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas	
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario	
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería	
(f)	Comprensión de lo que es la responsabilidad ética y profesional	
(g)	Habilidad para comunicarse con efectividad	
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global	
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	
(j)	Conocimiento de los principales temas contemporáneos	
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	K