2018年第八届MathorCup高校数学建模挑战赛

D题 公交移动支付问题的评估方案

特等奖答辩

小组成员: 王倩妮、秦启瑄、徐松源

学校:西南交通大学

指导老师: 谢军

目录 content

01 整体思路框架

02 商业盈利数学模型建立

03 数据处理与分析

04 敏感性分析与建议

05 整体优缺点分析

01 整体思路框架

01 有形收益: 沉淀资金的利息模型

第1、2、3月沉淀资金利息计算模型:

- 利息模型中的特例
- 充值金额的个数在逐步 增加
- 沉淀资金的利率为定值

其他月沉淀资金利息计 算模型:

- 3个月为1个计算周期
- 每3个月后利息清空
- *n* > 3 时普遍适用

$$I_{1n} = \begin{cases} n = 1 & I_{1n} = x_1 \cdot r_1 \\ n = 2 & I_{1n} = (x_1 + x_2 + x_1 \cdot r_1) \cdot r_1 \\ n = 3 & I_{1n} = x_1 + x_2 + x_3 + x_1 \cdot r_1 + (x_1 + x_2 + x_1 \cdot r_1) \cdot r_1 \\ n \mod 3 = 1; n \neq 1 \\ I_{1n} = x_n \cdot r_1 + x_{n-1} \cdot r_1 + x_{n-2} \cdot r_1 \\ n \mod 3 = 2; n \neq 2 \\ I_{1n} = x_n \cdot r_1 + x_{n-1} \left(r_1^2 + r_1\right) + x_{n-2} \left(r_1^2 + r_1\right) + x_{n-3} \cdot r_1^2 \\ n \mod 3 = 0; n \neq 3 \\ I_{1n} = x_n \cdot r_1 + x_{n-1} \left(r_1^2 + r_1\right) + x_{n-2} \left(r_1^3 + 2r_1^2 + r_1\right) + x_{n-3} \left(r_1^3 + 2r_1^2\right) + x_{n-4} \left(r_1^3 + r_1^2\right) \end{cases}$$

其中有:

n—— 开始收益的第n月

 I_{1n} —— 第n月的沉淀资金利息

x_n—— 第n月的充值金额总数(沉淀资金)

 r_1 —— 沉淀资金的利率; 值为4%, $f_1 = a_1 \cdot a_2 \cdot (1 - a_3)$, 其中 $a_1 = 4.5$ %为协议存款率;

 $a_2 = 90\%$ 为沉淀资金利息的最高获得率; $a_3 = 0.78\%$ 为与银行协议的手续费

02 有形收益: 手续费收入模型

手续费用收入计算模型:

- 收取比例与充值金额有关
- 计算模型为区间函数
- 阈值与协商的政策相关

$$I_{2} = \sum_{i=1}^{N_{s1}} r_{s1} \cdot x_{sij} + \sum_{i=1}^{N_{s2}} r_{s2} \cdot x_{sij}$$

$$\begin{cases} r_{s1} = 0.1\% & x_{sij} \leq X_{0} \\ r_{s2} = 0.08\% & x_{sij} > X_{0} \end{cases}$$

其中有:

 r_{s1} 、 r_{s2} —— 月手续费的收取比例;值为0.1%和0.08%

 x_{sij} —— 第i人第j月的充值金额

 X_0 — 充值金额阈值, $X_0 = 60$

03

有形收益:广告费用收入模型

广告费用收入计算模型:

- 函数模型与第三方支付 比例有关
- 计算模型为区间函数
- 阈值与影响范围相关

$$I_{3} = \begin{cases} A_{g} \cdot m & \rho \leq \rho_{0} \\ A_{g} \cdot m + G(\rho - \rho_{0}) & \rho > \rho_{0} \end{cases}$$

其中有:

I₃——每个月的广告盈利费用

 A_g — 每日保底广告盈利,此处设定值为10000

m —— 每月天数

 ρ —— 当月移动支付方式的比例

 ρ_0 — 移动支付比例阈值;此处设定值为0.48

G —— 广告费用提成基数;此处设定值为1000000

01 有形支出:固定成本支出模型

固定成本计算模型:

- 固定成本设为设备费用
- 机器个数与覆盖线路的车辆数相等
- 设备的价格为定值且设备 2年(24月)进行升级改进

$$O_2 = \frac{Sum_{bus} \cdot \beta \cdot b}{24}$$

其中有:

02 —— 固定成本支出的费用

Sum_{bus}——该城市公交车的总保有量;值为6000

β — 第三方支付平台的线路覆盖率;值为0.25,后期推广后值为1

b —— 设备的单价; 值为480

02 有形支出:维护费用支出模型

维护费用计算模型:

- 维护费用分为平台维护费用和设备维护费用
- 平台维护费用与平台使用次数成正比
- 设备2年进行一次更换

$$O_3 = O_{31} + O_{32}$$

其中有:

03——维护总费用

 O_{31} ——平台维护费用; O_{32} —— 设备维护费用

$$O_{31} = s \cdot c$$

s—— 第三方支付平台的使用次数

c—— 单个平台的维护费用; 值为0.01

$$O_{32} = Sum_{bus} \cdot \beta \cdot \gamma \cdot d$$

Sum_{bus}——该城市公交车的总保有量;值为6000

 β —— 第三方支付平台的线路覆盖率;值为0.25

 γ —— 每个月的设备损坏率;值为0.01 d—— 单个设备的维护费用;值为100

01

定值收益与定值支出

服务费用收入计算模型:

第三方支付平台与公共交 通相结合所收取的服务费 用为定值

宣传费用计算模型:

前期宣传费用为定值

$$I_4 = x_f$$

其中有:

 I_4 ——服务费收入

 x_f 一每个月的服务费用收入;值为30000

$$O_1 = x_c$$

其中有:

01——前期宣传费用

 x_c 一每个月的宣传费用;值为20000

数据预处理:

原始数据: 29360100

去除缺失数据: 23369688

(去除/原始=20.4%)

去除重复数据: 23325386

(去除/原始=0.15%)

去除异常数据: 23266007

(去除/原始=0.20%)

02

数据分析——整体角度

支付次数随小时变化

呈明显<mark>双峰</mark>趋势 早高峰移动支付次数少于刷卡次数 晚高峰移动支付次数高于刷卡次数

支付次数随星期天数变化

两种方式均在<mark>周四至周末升至较高值</mark> 刷卡支付普遍<mark>高于</mark>移动支付 以外类别是大,周四和国口时次数类别是

周三时次数差别最大; 周四和周日时次数差别最小

支付次数热点分布

02

数据分析——整体角度

支付方式月份占比

两种支付方式消费次数月份占比条形图

支付方式变化趋势

两种支付方式消费次数随月份变动图图

而随月份变化,数据总量减少,但移动支付占比几乎呈现上升趋势。

02

数据分析——用户角度

28天出行次数分布

用户28天出行次数和分布图

0次到20次人数最多最高峰占总人数15%

用户28天出行移动支付次数和分布图

0次到25次人数最多最高峰占总人数10%

用户28天刷卡支付出行次数和分布图

0次到20次人数最多最高峰占总人数18%

02

数据分析——用户角度

移动支付次数占比分布

用户移动支付次数与出行总次数比值分布图

比值在0.5处最高,比值在0和1处次之 概率相同和单一选择的人数比较多

高频用户移动支付次数与出行总次数比值分布图

集中于0.4~0.6的区间, 0.5处为峰值 基本呈现正态分布

03

0.501

0.500

0.499

Onelinepay ratio

0.497

0.496

0.495

Feb

数据特征

May

Month

各月移动支付总次数 各月移动支付占比 = 各月支付总次数

各月支付总次数 各月用户平均出行次数 = 各月用户数

注:每月沉淀资金金额=票价单价*全市总人数*公交出行比例*A*B

Aug

模型计算

将以上数据特征带入模型进行计算,得到:

项目	2月	5月
A移动支付占比(7天)	0.497249	0.496264
B平均出行次数(7天)	6.092963	5.360207
C移动支付总次数(7天)	3280472	2940686
盈利结果	4433783	6294800
项目	8月	11月
项目 A移动支付占比(7天)	8月 0.498440	11月 0.500136
		7.5
A移动支付占比(7天)	0.498440	0.500136
A移动支付占比(7天) B平均出行次数(7天)	0.498440 5.262065	0.500136 5.175880

趋势分析

数据结果与模型结果未得到有价值趋势

按用户记录出现的<mark>月份数量</mark>分组 尝试采用不同的 分组模式 按高频低频用户分组

尝试采用<mark>抽样</mark>, 克服每月数据量 之间的差异 每月抽取相等数量的记录

每月抽取相等数量用户

数据特征趋势、 模型结果趋势 与未处理相同 目前数据为非全样本数 据,若获知全样本数据, 结果可能有所改善,并 可以利用趋势进行预测

覆盖率变化(范围拓展预测)

计算结果

每月盈利总额: 9891457元

其中:

沉淀资金利息: 10053801; 手续费收入: 149151; 服务费收入: 30000; 广告费收入: 670000; 宣传费支出: -20000; 固定支出费用: -120000;

维护费用: -871495

E.M.Roger创新扩散模型结果

04 敏感性分析与建议

自变量增加自身值的5%为步长至增加50%

移动支付比例变化敏感性

Month

4000000

平均出行次数变化敏感性

移动支付次数变化敏感性

04 敏感性分析与建议

自变量增加自身值的5%为步长至增加50%

移动支付比例变化敏感性

平均出行次数变化敏感性

移动支付次数变化敏感性

04 敏感性分析与建议

增加公司盈利方案建议——

为提高移动支付占比,吸引更多的乘客选择第三方移动支付平台——

- 通过给予乘客一定的补贴去鼓励使用第三方支付;
- 推出更为便捷的充值、查询服务;
- 在第三方支付平台的其它服务方面进行关于公交服务的宣传和引导;
- 第三方支付平台可增加多种服务方向和简化移动支付过程;
- 第三方支付平台可以扩大融资、增加平台的商业影响力和规模
- •

05 整体优缺点分析

优点:

- 多方法处理数据;多角度、多维度分析数据;做出了更多的尝试
- 结合资料和经济学知识构建模型,模型合理可靠
- 将数据特征与模型相结合,从整体角度解决问题,更为严谨
- 利用灵敏度分析得出最重要的因素;从定量的角度提出定性的建议,建 议合理有效。

缺点:

• 没有真实的盈利数据,不能进行对比分析与模型标定,模型在实际应用中存在误差。

2018年第八届MathorCup高校数学建模挑战赛

D题 公交移动支付问题的评估方案

特等奖答辩

谢谢大家!