QUESTIONS - REMARQUES

Question 1. Soit K un corps de nombres. Comment préciser les nombres premiers p tels que pO_K soit un idéal de Carmichael de O_K ?

Remarque 0.1. Si p est totalement décomposé dans K, alors pO_K est un idéal de Carmichael dans O_K . En effet, pO_K est sans facteurs carrés et p-1 divise $p^{[K:\mathbb{Q}]}-1$. On a Norm $(\mathfrak{p})=p$ et Norm $(p)=p^{[K:\mathbb{Q}]}$, d'où l'assertion. Si d est le degré sur \mathbb{Q} de la clôture galoisenne \tilde{K} de K, il y a une densité 1/d de tels nombres premiers. (En fait, p est totalement décomposé dans K si et seulement si p est totalement décomposé dans \tilde{K} .)

Remarque 0.2. D'après le th. 2.3, si K est galoisien sur \mathbb{Q} , il faut et il suffit que p soit non ramifié (pour qu'il soit sans facteurs carrés) et non inerte dans K (pour qu'il soit composé).

Lemme 1. Soit K/\mathbb{Q} un corps de nombres de degré un nombre premier. Soit p un nombre premier. Alors, pO_K est un idéal de Carmichael si et seulement si p est totalement décomposé dans K.

Démonstration. Supposons p non totalement décomposé dans K. Si p est ramifié dans K, pO_K n'est pas un idéal de Carmichael (il n'est pas sans facteurs carrés). Supposons p non ramifié dans K. Il existe alors un idéal premier \mathfrak{p} de O_K divisant p de degré résiduel $f \geq 2$. On a Norm(\mathfrak{p}) = p^f . Par ailleurs, si $p^f - 1$ divise $p^{[K:\mathbb{Q}]} - 1$ alors f divise $[K:\mathbb{Q}]$. Par suite, $f = [K:\mathbb{Q}]$ et p est inerte dans K i.e. pO_K est un idéal premier de O_K , donc n'est pas un idéal de Carmichael, d'où l'assertion avec la première remarque.

Question 2. Soit $n \ge 1$ un entier composé. Soit K un corps de nombres tel que nO_K soit un idéal de Carmichael. Soit $L \subseteq K$ un sous-corps de K. Est-il vrai que nO_L est un idéal de Carmichael de O_L ? (c'est faux si on ne suppose pas n composé).

Question 4. Soit N un nombre de Carmichael d'ordre 2, par exemple celui donné dans l'article :

 $N = 443372888629441 = 17 \times 31 \times 41 \times 43 \times 89 \times 97 \times 167 \times 331.$

(29 est un témoin d'Euler pour N). D'après le th. 2.7, pour tout corps quadratique K, de discriminant premier avec N, l'idéal NO_K est de Carmichael. Comment expliciter des extensions cubiques abéliennes K/\mathbb{Q} (une infinité?), de discriminant premier avec N, telles que NO_K ne soit pas un idéal de Carmichael dans O_K ?

Date: 17 février 2020.

Remarque 0.3. Soit n un nombre de Carmichael. Il est facile d'expliciter tous les corps quadratiques K tels que nO_K ne soit pas un idéal de Carmichael dans O_K , $\operatorname{pgcd}(D_K, n) = 1$, pourvu que l'on connaisse la décomposition de n en facteurs premiers. Par exemple, les corps quadratiques K tels que $561O_K$ soit un idéal de Carmichael sont exactement ceux tels que 3 soit non ramifié dans K et que 11,17 soient décomposés dans K (à vérifier).

Question 5. Existe-t-il un nombre de Carmichael n plus petit que 10^{10} , non divisible par 5, qui ne soit pas un produit de nombres premiers congrus à 1 modulo 5, dans lequel (n) soit de Carmichael dans $\mathbb{Q}(\mu_5)$ (il y a des tables de nombres de Carmichael plus petits qu'une borne donnée, sans doute jusqu'à 10^{15} ou 10^{16})?

561 n'est pas de Carmichael dans $\mathbb{Q}(\mu_5)$ car 17 est inerte dans $\mathbb{Q}(\mu_5)$ et $17^4 - 1$ ne divise pas $561^4 - 1$. On peut ausi vérifier que

$$(1 - \zeta_5)^{\text{Norm}(561)} \not\equiv 1 - \zeta_5 \pmod{561\mathbb{Z}[\zeta_5]},$$

et que

$$(1+\zeta_5)^{\text{Norm}(561)} \not\equiv 1+\zeta_5 \pmod{561\mathbb{Z}[\zeta_5]}.$$

Avec le th. 2.3 cela montre aussi que 561 est composé en utilisant le test de Fermat sur les corps de nombres.

Question 6. Soit n un nombre de Carmichael ayant plusieurs centaines de chiffres décimaux (par exemple ceux de type Chernick ou des analogues). Peut-on démontrer facilement avec le test de Fermat sur les corps quadratiques que n est composé?

Par exemple, posons

$$p = 29674495668685510550154174642905332730771991799853$$

$$04335099507553127683875317177019959423859642812118$$

$$8033664754218345562493168782883.$$

Alors p est premier et l'entier

$$N = p(313(p-1)+1)(353(p-1)+1)$$

est un nombre de Carmichael, produit de trois nombres premiers, qui possède 397 chifrres décimaux.

D'après le th. 2.5 il y a une infinité de corps quadratiques K tels que NO_K ne soit pas de Carmichael. Quel est celui de plus petit discriminant pour lequel NO_K ne soit pas de Carmichael? $(K = \mathbb{Q}(\sqrt{-1}), K = \mathbb{Q}(\sqrt{2}) \cdots ?)$

Remarque 0.4. Voici une autre démonstration du th. 2.3 qui n'utilise pas le critère de Korselt. Soit f le degré résiduel des idéaux premiers de O_K au-dessus de p (c'est le même pour tous car K/\mathbb{Q} est galoisenne). Soit \mathfrak{p} un idéal premier de O_K au-dessus de p. Par hypothèse, p est non ramifié dans K, donc le sous-groupe de décomposition $D_{\mathfrak{p}}$ en \mathfrak{p} de $\mathrm{Gal}(K/\mathbb{Q})$ est isomorphe au groupe de Galois $\mathrm{Gal}(k/\mathbb{F}_p)$ où $k = O_K/\mathfrak{p}$. Le groupe $D_{\mathfrak{p}}$ est cyclique d'ordre f engendré par l'automorphisme de Frobenius σ , qui est caractérisé par le fait que pour tout a dans O_K on ait $\sigma(a) \equiv a^p \pmod{\mathfrak{p}}$. On a $\sigma^f = 1$. Parce que f divise le degré $[K:\mathbb{Q}]$, on

a donc $\sigma^{[K:\mathbb{Q}]}=1$, d'où $a^{p^{[K:\mathbb{Q}]}}\equiv a\pmod{\mathfrak{p}}$. D'après le th. chinois on obtient ainsi pour tout $a\in O_K$

$$a^{p^{[K:\mathbb{Q}]}} \equiv a \pmod{pO_K}.$$

On a Norm(p) = $p^{[K:\mathbb{Q}]}$, d'où $a^{\text{Norm}(p)} \equiv a \pmod{p}$.

Notons que l'on a en fait, pour tout $a \in O_K$

$$a^{p^f} \equiv a \pmod{pO_K}.$$

Remarquons aussi que la conclusion du th. 2.3 est fausse si p est ramifié dans K: avec $K = \mathbb{Q}(\sqrt{2}), p = 2$ et $a = \sqrt{2}$, on a $a^4 = 4 \not\equiv \sqrt{2} \pmod{2}$.