Index

Absorbing state, 37 Accessible state, 38 Acyclic (food web), 234 Admissible (sequence), 118 Apportionment, 2 Approval voting, 49 Approximation algorithms, 277–83 Arithmetic mean, 7, 10 Arrangement with forbidden positions, 160 Array clustering, 268 Arrow, Kenneth J., 40 Arrow's Theorem, 45 Assignment problem, 299, 301 Asymmetric, 234 Asymptotic behavior, 134–35 Augmenting chain, 415 Axioms, 58 consistent set of, 61

 (b, v, r, k, λ) -design, 181 Balanced incomplete block design, 181 Bandwidth, 370 Bell number, 98 BIBD, 181 Bin packing, 195–99 Binary relation, 98 Binary symmetric channel, 78 Bland (network), 333, 348 Block, 335 Block design, 180–83 Bolyai, Johann, 60 Borda, Jean-Charles de, 52 Borda method, 52 Boundedness, 445 Boxicity, 231–33 Burnside's Lemma, 213 Burnside-Pólya enumeration theory, 205

CCCP, 204 Capacitated s, t-graph, 410 Capacity (of a cut), 420 Capacity (of an edge), 410 Catalan, Eugene C., 112

I-2 Index

Catalan number (c_n) , 114	Convex set, 151
Caterpillar, 377	Covering, 429
Cayley, Arthur, 245	Critical path, 189
Cayley's Theorem, 249	Cut, 420
Chain, 414	Cut vertex, 334
Markov, 20, 25	Cutwidth, 385
Chinese Postman Problem, 355–56	Cycle, 110
Circuit,	disjoint, 212
Euler, 354	Cycle index, 212
Hamilton, 252–55, 354	Cycle structure of permutation, 211
Class, 97	Cyclic decomposition, 110
Class NP, 193	Cyclic permutation, 110
Clique, 398	•
Clique number, 399	Deadheading, 355
Clustering, 268	Deadlock, 445
Code, 74	Delay, 367
linear, 85	Density, 336–37
minimum distance of, 79	Diameter, 373
perfect, 83	Dictatorship, 45
triple repetition, 75	Dijkstra's algorithm, 322–24, 358
weight of, 85	Dilation, 367
Codeword, 74	minimum possible, 368
Coding theory, 73–74	Dining philosophers problem, 443
Coffman-Graham algorithm, 194–	Direct prey, 234
96	Disjoint (cycles), 212
Communicate, 38	Distance, 367
Competition, 225	Distance function, 77
Competition graph, 228	Distribution, 96–97
Competitive exclusion, principle of,	initial probability, 22
226	Duplicate vertex, 448
Complement, 230	
Condorcet, marquis de, 51	Ecological niche, 226
Condorcet criterion, 51	Ecological phase space, 226
Configuration, 203	Election procedure, 41–42
Congruence-class counting problem	rational, 48
(CCCP), 204	symmetric, 48
Congruent (configurations), 204	Elimination (tournament), 53
Connected (relation), 42	Elliptic geometry, 60
Connectivity, 373	Embedding, 366
Conservative (Petri net), 445	Enabled for firing, 436
Consistent (set of axioms), 61	Equal proportions, 9, 10, 14
Contraction, 345–46	Equilibrium distribution, 34
Convex polygon, 128, 151	Equivalent Latin square, 176

Error correcting code, 75–76	Goldbach conjecture, 57–58
Error string, 87	Graph Ramsey number, 153
η -reduction, 347	Greatest divisors, 8, 11–14
Euclid, 59	Grid, 392
Euclidean geometry, 59	,
Euler, Leonhard, 266	Hamilton circuit, 252–55, 264
Euler circuit, 354	Hamilton, William Rowan, 266
Exponential generating function,	Hamming, Richard, 76
111	Hamming
Externally imposed, 45	bound, 82
r · · · · · · · ·	code of order r , 88
Falling factorial, 102, 134	distance, 76
basis, 104	Hare quota, 6
Finite projective plane, 179–80	Harmonic mean, 9, 11
Fired (transition), 436	Hedetniemi matrix sum, 324
First-fit algorithm, 197–98	Hedetniemi's algorithm, 324–28
First-fit-decreasing algorithm, 198	Hungarian method, 303, 310–313
Fixed-point set, 214	Huntington, E. V., 9
Flow graph, 410	Huntington sequential method, 9
Floyd's algorithm, 323	Hyperbolic geometry, 60
Food web, 227	V1
Fractional arboricity, 340	(i_1,\ldots,i_n,r) -Ramsey property, 147
Frobenius, Georg, 314	$(i_1,\ldots,i_n;2)$ -Ramsey property, 146
Frontier vertex, 448	(i, j)-Ramsey property, 139
Fujii-Ninomiya method, 193–94	I-coloring, 403
Full binary tree, 127	Icosian game, 266
Fundamental basis, 104	Immediately reachable, 444
	Impossibility theorem, 45
Gabai, H., 232	Inclusion-exclusion principle, 160
General possibility theorem, 46	Incomparability graph, 193
Generated subgraph, 230	Independence number, 373
Generating function, 131	Independence of irrelevant alterna-
Generator matrix, 83	tives (IA), 44–46
Geometry	Independent
elliptic, 60	edges, 232
Euclidean, 59	entries in a matrix, 304
hyperbolic, 60	experiments, 20
Global index, 5	set, 373
Gödel, Kurt, 58	Indifference, 46
Gödel number, 65	Indirect prey, 234
Gödel numbering, 64–67	Induced subgraph, 340
Gödel's Undecidability Theorem, 64	Initial probability distribution, 22
Goldbach, Christian, 58	Inner triangle, 129

I-4 Index

Input function, 432	Markov property, 25
Instant Insanity, 288	Marriage problem, 300
Interconnection network, 366	Marriage theorem, 314
Intersection graph, 229	Matching, 255, 429
Interval graph, 229	Mathematical system, 59
Inverse partition, 101	Matrix
Isomer, 246	generator, 83
Iverson truth function, 215	independent entries in, 304
Tressen train ranction, 210	of transition probabilities, 26
J-coloring, 403	reduced, 307
Job assignment, 299	relationship, 268
000 assignment, 2 00	sparse, 369
k-bounded, 445	Max-flow min-cut algorithm, 423
Kirchoff, Gustav, 245	Maximum likelihood decoding, 78
Kirkman triple system, 184	Minimal spanning tree, 251–52
Kirkman's schoolgirl problem, 184	Minimum distance (of a code), 79
Knight's tour, 266	Minimum possible dilation, 368
König, Denes, 313	Multi-Parallel Postulate, 60
König's theorem, 429	Multicoloring, 397
Königsberg bridges, 354	manifesting, our
Kuhn, Harold, 313	<i>n</i> -gon, 128
Kwan, Mei-Ko, 355	<i>n</i> -tuple chromatic number, 397
rwan, mer ito, ooo	<i>n</i> -tuple coloring, 397
Labeling, 415	n-tuple T-coloring, 404
λ -method, 7	Nearest neighbor decoding, 77
Largest fractions, 6, 11	Net flow, 412
Latin square, 175	No-Parallel Postulate, 60
orthogonal, 177–78	Non-Euclidean geometry, 59–60
reduced, 176	Nonnegative (path), 114
Length (of a path), 367	NP complete, 193
Lexicographic ordering, 250, 418	Tit complete, 100
Linear code, 85	Occupancy problem, 96
Linear order, 43	Optimal (map), 368
List coloring, 403	Optimal solution, 302
List processing, 197	Orbit, 210
Lobachevsky, Nikolai, 60	Order
Eobachevsky, Tikolan, oo	linear, 43
Major fractions, 7, 11	of a set coloring, 401
Majority election procedure, 51	of a T-coloring, 402
Marking (a Petri net), 435	Order requirements digraph, 189
Markov, Andrei A., 20	Ordered partition, 97
Markov chain, 20, 25	Orientation, 230
regular, 34	Orthogonal Latin square, 177–78
108 atar, 04	Oronogonai Laom square, 111-10

Outer triangle, 129 Output function, 432	Problème des ménages, 159, 173 Problème des rencontres, 159, 166 Producer/consumer problem, 442–
Pairwise balanced, 181	43
Paradox, 63	Projective plane, 179
Parallel computation network, 366	Provable, 67
Parallel Postulate, 59	Push, 118
Parity check bit, 74	1 4511, 110
Parity check matrix, 86	Quota, 4
Partition, 97	agasta, 1
Path, 113, 242, 367	Ramsey, Frank, 139
length, 367	Ramsey number, 140, 147
nonnegative, 114	Ramsey property, 139
of minimum weight, 358	Ramsey's Theorem, 142, 147
positive, 114	Random process, 20
shortest, 322	Rational election procedure (REP),
Path graph, 370	41, 48
Perfect code, 83	Reachability, 444
Perfect matching, 255–59, 314	Reachability tree, 446
of minimum weight, 361	Readers/writers problem, 440–42
Performance guarantee, 278	Recurrence relation, 131, 134
Permutation, 205, 369	Recurrent state, 33
Permutation group, 209	Reduced Latin square, 176
Petri net, 432	Reduced matrix, 307
conservative, 446	Reduction
marking of a, 435	of a graph, 273
Place, 432	of Type I, 274
Plane triangulation, 349	of Type II, 275
Plurality, 52	Reed-Muller code, 91
Pólya, G., 210	Reed-Solomon code, 91
Pop, 118	Reflexive (relation), 43
Positive (path), 114	Regular (Markov chain), 34
Positively reflect wills of individuals	Rejected fractions, method of, 8
(PR), 44–46	Relation
Postulate, 58	connected, 42
Multi-Parallel, 60	induced by action of a group, 210
No-Parallel, 60	transitive, 42
Parallel, 59	Relationship matrix, 268
Power method, 39	Riemann, Georg, 60
Precedent, 188	Rook, 160
Predecessor, 188	Rook polynomial, 163
Prim's algorithm, 252	Rubik's Magic Cube, 295
Principia Mathematica, 62–63	Runoff, 52

I-6 Index

Russell, Bertrand, 62	96, 98
Russell's Paradox, 63	Stirling's approximation, 135 Strength, 343
s, t-cut, 420	Strict preference, 44
Safe (place), 445	Suitable (string), 125
Sample path, 39	Symmetric (election procedure), 48
Scheduling problem, 187	Symmetric permutation, 369
Schur, Issai, 149	symmetric permutation, soo
Schur's Theorem, 149	T-chromatic number, 402
Score (of a set coloring), 401	T-coloring, 401
Sequential election, 51	<i>t</i> -design, 181
Set coloring, 400	T-span, 402
Short Circuit algorithm, 281	TSP, 263
Shortest path, 322	2-connected, 335
Shortest path problem, 245, 300	Terminal vertex, 449
Shortest weight-constrained path	Tic-tac-toe, 203
problem, 244	Token, 435
Signless Stirling number of the first	Top, 118
kind, 108	Total order, 43
Sink, 410	Tournament, 53
Smallest divisors, 8, 11	Transient state, 33
Social welfare function, 41	Transition, 432
Source, 410	fired, 436
Spanning tree, 245–52	Transition probability, 22
Sparse (matrix), 369	Transitive (relation), 42
Sphere, 81	Traveling salesman problem (TSP),
packing bound, 82	252-55, 263
Stabilizer, 214	Triangle inequality (for graphs), 279
Stable, 321	Triangular number, 108
Stack, 118	Triangulation, 128
Stack permutation, 118	Triple repetition code, 75
Standard basis, 104	Trophic level, 233
State, 21	Trophic status, 233
absorbing, 37	Turing, Alan, 69
accessible, 38	
recurrent, 33	Undefined term, 58
State space, 21	Uniformly dense (multigraph), 348
Steiner triple system, 183–84	Unstable, 321
Stirling, James, 96	
Stirling number, 96, 112	Variety, 181
Stirling number of the first kind, 96,	Vertex cover, 321
105	Vinton, S. F., 7
Stirling number of the second kind,	Vinton method, 6–7

Index I-7

Violate lower/upper quota, 15

Weak order, 42 Weakly γ -perfect, 399 Weight (of codeword), 85

Well-formed sequence of parentheses, 117–18 Well-parenthesized product, 122-26 Whitehead, Alfred North, 62