Computer Intensive Methods using R

Part 3: bootstrap confidence intervals

Prof. Dr. Ziv Shkedy

Master of Statistics Hasselt University

General Information

Overview of the course

- Bootstrap confidence intervals.
 - Bootstrap t intervals.
 - The BCa intervals.
 - The percentile intervals

Overview of the course (part 1)

The Bootstrap algorithm

Introduction:

- Sampling from a population.
- The empirical distribution.
- Plug in principle.

Estimation:

- Accuracy of statistics.
- Confidence intervals.

Inference:

- · One sample tests.
- Two-samples tests.
- Bootstrap and permutation tests.

Modeling:

- Linear regression models.
- Non parametric regression.
- · GLMs.

Reference

- Bradley Efron and Robert J. Tibshirani (1994): An introduction to bootstrap.
- Davison A.C. and Hinkley D.V: Bootstrap Methods and Their Application.

Course materials

- Slides.
- R program.
- R datasets & External datasets.
- YouTube tutorials.
- Videos for the classes (highlights of each class in the course).

YouTube tutorials

- YouTube tutorials about bootstrap using R:
 - 1. One-sample bootstrap CI for the mean (host: <u>LawrenceStats</u>): <u>https://www.youtube.com/watch?v=ZkCDYAC2iFg</u>.
 - Using the non-parametric bootstrap for regression models in R (host:<u>lan</u> <u>Dworkin</u>):https://www.youtube.com/watch?v=ydtOTctg5So.
 - 3. Performing the Non-parametric Bootstrap for statistical inference using R (host: lan.bworkin): https://www.youtube.com/watch?v=TP6r5CTd9yM
 - 4. Using the sample function in R for resampling of data absolute basics (host: lan.nummin):https://www.youtube.com/watch?v=xE3KGVT6VLE
 - 5. Permutation tests in R the basics (host: <u>lan Dworkin</u>):https://www.youtube.com/watch?v=ZiQdzwB12Pk.
 - 6. Bootstrap Sample Technique in R software (host: <u>Sarveshwar Inani</u>):https://www.youtube.com/watch?v=tb6wb9ZdPH0
 - 7. Bootstrap confidence intervals for a single proportion (host: <u>LawrenceStats</u>):https://www.youtube.com/watch?v=ubX4QEPqx5o
 - 8. Bootstrapped prediction intervals (host: <u>James Scott</u>):https://www.youtube.com/watch?v=c3gD_PwsCGM.
- https://www.youtube.com/watch?v=gcPlyeqy mOU

Bootstrap confidence intervals

Topics

- Bootstrap confidence intervals:
 - Bootstrap t intervals.
 - Bootstrap standard normal interval.
 - The percentile interval.
 - The BCa method.
- Examples:
 - Bootstrap interval for the standard error of the mean (the mouse data).
 - Bootstrap interval for correlation (the low school data).

the mouse data

The setting

Consider a population with distribution function

$$X \sim F(\theta)$$

Parameter of primary interest

$$\theta = t(F)$$
 $\hat{\theta} = t(\hat{F})$

Parameter estimate (point estimate)

$$\hat{\theta} = t(\hat{F})$$

$$s.e(\hat{\theta})$$

Confidence interval

$$\left[\hat{\theta} - C_{\alpha} s.e(\hat{\theta}); \hat{\theta} + C_{\alpha} s.e(\hat{\theta})\right]$$

The confidence interval is based on the asymptotic distribution of the parameter estimate

$$\frac{\alpha}{2}$$

$$\frac{\hat{\theta} - \theta}{s.e(\hat{\theta})} \sim G$$

The classical confidence intervals

$$\frac{\hat{\theta} - \theta}{s.e(\hat{\theta})} \sim N(0,1)$$

$$\frac{\hat{\theta} - \theta}{\hat{s}.e(\hat{\theta})} \sim t_{n-1}$$

$$\begin{bmatrix} \hat{\theta} - Z_{\underline{\alpha}} s.e(\hat{\theta}); \hat{\theta} + Z_{\underline{\alpha}} s.e(\hat{\theta}) \\ \gamma \end{bmatrix}$$

$$\left[\hat{\theta} - Z_{\underline{\alpha}} s.e(\hat{\theta}); \hat{\theta} + Z_{\underline{\alpha}} s.e(\hat{\theta})\right] \qquad \left[\hat{\theta} - t_{(n-1,\frac{\alpha}{2})} \hat{s}.e(\hat{\theta}); \hat{\theta} + t_{(n-1,\frac{\alpha}{2})} \hat{s}.e(\hat{\theta})\right]$$

$$\hat{\theta} \in [L, U]$$

The classical confidence intervals Interpretation

$$P(\theta \in [L, U]) = 1 - \alpha$$

Draw B bootstrap samples and calculate the statistic

$$Z^*(b) = \frac{\hat{\theta}^* - \hat{\theta}}{\hat{s}.e^*(\hat{\theta})}$$

Find the quantile of the bootstrap distribution of the replicates of Z

$$\frac{\#\{Z^*(b) > \hat{t}_{\alpha}\}}{B} = \alpha$$

1-2α confidence interval

$$\left[\hat{\theta} - \hat{t}_{(1-\alpha)}\hat{s}.e(\hat{\theta}); \hat{\theta} + \hat{t}_{(\alpha)}s.e(\hat{\theta})\right]$$

Intuition:

We replace the asymptotic distribution with the distribution of the bootstrap replicates for the statistic Z

Bootstrap standard normal interval

Draw B bootstrap replicates from

$$\hat{\theta}^* \sim N(\hat{\theta}, \hat{s}.e(\hat{\theta}))$$

Find the quantile of the bootstrap distribution of the replicates

$$\left[\hat{\theta}_{lo};\hat{\theta}_{up}\right] = \left[\hat{\theta}_{\alpha}^{*};\hat{\theta}_{1-\alpha}^{*}\right]$$

Intuition:

Which type of bootstrap is applied?

Which assumptions we need to make which we did not made for the previous method?

What are the disadvantages of the two methods?

The percentile interval

Draw B bootstrap samples and calculate the bootstrap replicates

$$\hat{\theta}_{1}^{*}, \hat{\theta}_{2}^{*}, \dots \hat{\theta}_{R}^{*}$$

Find the quantile of the bootstrap distribution of the replicates

$$\left[\hat{\theta}_{lo};\hat{\theta}_{up}\right] = \left[\hat{\theta}_{B}^{*(\alpha)};\hat{\theta}_{B}^{*(1-\alpha)}\right]$$

Distribution of the bootstrap replicates

Example 1The mouse data

Bootstrap t interval

Example: the mouse data (first group: treatment)

```
> z<-c(94,197,16,38,99,141,23)
> y<-c(52,104,146,10,51,30,40,27,46)
> z
[1] 94 197 16 38 99 141 23
> y
[1] 52 104 146 10 51 30 40 27
    46
> boxplot(z,y)
```


- 16 mice randomly assigned to treatment and control group.
- Survival time following a test surgery.

Classical C.I.

```
> z <- c(94, 197, 16, 38, 99, 141, 23)
> z
[1] 94 197 16 38 99 141 23
> t.hat<-mean(z)
> se.t.hat<-sqrt(var(z)/7)
> t.hat
[1] 86.85714
> se.t.hat
[1] 25.23549
> mean(z)+1.645*(sd(z)/sqrt(7))
[1] 128.3695
> mean(z)-1.645*(sd(z)/sqrt(7))
[1] 45.34476
```

```
> t.test(z,conf.level=0.9)

One Sample t-test

data: z
t = 3.4419, df = 6, p-value = 0.01377
alternative hypothesis: true mean is not equal to 0

90 percent confidence interval:

37.82004 135.89425
sample estimates:
mean of x
86.85714

\hat{\theta} - t_{\left(n-1,\frac{\alpha}{2}\right)} \hat{s}.e(\hat{\theta}); \hat{\theta} + t_{\left(n-1,\frac{\alpha}{2}\right)} \hat{s}.e(\hat{\theta})
```

Classical C.I. (the critical values)

$$\alpha = 0.05$$
 $C_{\alpha} = 1.645$
 $N(0,1)$
 $C_{\alpha} = 1.9431$
 $t_{(6)}$

Bootstrap standard normal interval

$$\hat{\theta}_i^* \sim N\left(\hat{\theta}, \frac{s^2}{n}\right)$$


```
> B=10000
> t.boot<-c(1:B)
> for(b in 1:B)
+ x.boot<-
   sample(z,size=length(z),replace=T)
+ se.boot<-sqrt(var(x.boot)/length(z))
+ t.boot[b]<-(mean(x.boot)-t.hat)/se.boot
+ }
> quantile(t.boot,probs=c(0.05,0.95))
       5%
                95%
-2.248523
          1.712321
> qt(0.95,6)
[1] 1.943180
> qt(0.05,6)
[1] -1.943180
```

$$Z^*(b) = \frac{\theta^* - \theta}{\hat{s}.e(\hat{\theta})}$$

$$\hat{s}.e(\hat{\theta}) = \frac{s^2}{n}$$

The usual estimate for the standard error at each bootstraap sample

Histogram of t.boot

$$Z^*(b) = \frac{\hat{\theta}^* - \hat{\theta}}{\hat{s}.e^*(\hat{\theta})}$$

 $\hat{s}.e^*(\hat{ heta})$: Bootstrap estimate for the standard error at each bootstrap sample.

A nested bootstrap algorithm:

For each bootstrap sample: an inner of K bootstraps to obtain

The outer loop: B bootstrap samples to obtain

$$\hat{\theta}_{1}^{*}, \hat{\theta}_{2}^{*}, \dots \hat{\theta}_{B}^{*}$$

Histogram of t.boot

Bootstrap t interval: transformation

A $(1-2\alpha)$ % C.I for θ :

$$\begin{bmatrix}
\hat{\theta} - \hat{t}_{(1-\alpha)}\hat{s}.e(\hat{\theta}); \hat{\theta} + \hat{t}_{(\alpha)}s.e(\hat{\theta})
\end{bmatrix}$$

$$\hat{\theta}^{low} \qquad \hat{\theta}^{up}$$

Transformation for θ :

$$\eta = t(\theta)$$

The confidence interval:

$$\left[\eta\left(\hat{ heta}^{low}
ight)\!,\eta\left(\hat{ heta}^{up}
ight)
ight]$$

Does not have a coverage probability of a $(1-2\alpha)\%$.

Bootstrap t interval is not transformation respecting.

Example 2The mouse data

Standard normal interval

Bootstrap standard normal interval

Draw B bootstrap replicates from

$$\hat{\theta}^* \sim N(\hat{\theta}, \hat{s}.e(\hat{\theta}))$$

Find the quantile of the bootstrap distribution of the replicates

$$\left[\hat{\theta}_{lo};\hat{\theta}_{up}\right] = \left[\hat{\theta}_{\alpha}^{*};\hat{\theta}_{1-\alpha}^{*}\right]$$

Intuition:

Which type of bootstrap is applied?

Which assumptions we need to make which we did not made for the previous method?

What are the disadvantages of the two methods?

Bootstrap standard normal interval

```
> B=10000 \hat{\theta}_{i}^{*} \sim N(\hat{\theta}, \frac{s^{2}}{n})

> t.boot<-c(1:B)

> for(b in 1:B)

+ {

+ t.boot[b]<-rnorm(1,t.hat,se.t.hat)

+ }

> quantile(t.boot,probs=c(0.05,0.95))

5% 95%

45.9621 128.2926
```

$$\left[\hat{\theta} - Z_{\underline{\alpha}} s.e(\hat{\theta}); \hat{\theta} + Z_{\underline{\alpha}} s.e(\hat{\theta})\right]$$

```
> t.hat
[1] 86.85714
> se.t.hat
[1] 25.23549
> mean(z)+1.645*(sd(z)/sqrt(7))
[1] 128.3695
> mean(z)-1.645*(sd(z)/sqrt(7))
[1] 45.34476
```


Do we really need this interval?

Example 3 The mouse data

Bootstrap percentiles interval

The percentile interval

- Draw B bootstrap samples from \hat{F} .
- Calculate the bootstrap replicates:

$$\hat{ heta}_1^*,\hat{ heta}_2^*,\ldots,\hat{ heta}_B^*$$

The bootstrap percentile interval:

$$\left[\hat{ heta}_{\!\scriptscriptstyle B}^{*(1-lpha)};\hat{ heta}_{\!\scriptscriptstyle B}^{*(lpha)}
ight]$$

The percentile interval

Bootstrap confidence intervals summary (1)

method	Bootstrap type	Assumption	Symmetry
Classical	None		
Bootstrap t intervals			
Bootstrap Normal intervals			
Percentile confidence interval			

Transformation respecting property

Parameter of primary interest

 θ

Percentile interval

$$\left[\hat{ heta}_{\!lpha}^{*};\hat{ heta}_{\!\scriptscriptstyle 1-lpha}^{*}
ight]$$

Transformation

$$\lambda = m(\theta)$$

Percentile interval

$$\left[\hat{\lambda}_{\alpha}^{*}; \hat{\lambda}_{1-\alpha}^{*}\right] = \left[m(\hat{\theta}_{\alpha}^{*}); m(\hat{\theta}_{1-\alpha}^{*})\right]$$

Both intervals have the same coverage probability.

ExampleThe mouse data

Bootstrap interval for the standard error of the mean

The standard error of the sample mean

population

sample

$$X \sim (\mu_F, \sigma_F^2)$$

$$F \rightarrow (x_1, x_2, ..., x_n)$$

$$\sigma_F^2 = E_F[(x - \mu_F)^2]$$

$$Var(\bar{x}) = \frac{1}{n^2} Var(\sum_{i=1}^{n} x_i) = \frac{\sigma_F^2}{n}$$

$$S.E(\bar{x}) = \frac{\sigma_F}{\sqrt{n}}$$

The percentile interval for the S.E of the sample mean

Population

$$X \sim (\mu_F, \sigma_F^2)$$

Sample

$$F \rightarrow (x_1, x_2, ..., x_n)$$

$$Var(\bar{x}) = \frac{1}{n^2} Var(\sum_{i=1}^{n} x_i) = \frac{\sigma_F^2}{n}$$

$$S.E(\bar{x}) = \frac{\sigma_F}{\sqrt{n}}$$

$$\frac{\hat{\sigma}_F}{\sqrt{n}} = 25.23$$

> quantile(t.boot,probs=c(0.05,0.95))
 5% 95%
13.51895 30.83807

R code: the percentile interval for the S.E of the sample mean

Coefficient of variation

$CV = \frac{\sigma_F}{\mu}$

> sqrt(var(z))/mean(z) [1] 0.768697

Histogram of t.boot

ExampleThe law school data

correlation

The law school data

The non parametric bootstrap algorithm

The observed sample

$$x_1$$
 y_1

$$x_2$$
 y_2

$$x_{15}$$
 y_{15}

We resample the pair (x_i, y_i) with replacement

The bootstrap sample

$$x^{*}$$
 15 y^{*} 15

The non parametric bootstrap algorithm

The bootstrap sample

For each bootstrap sample we calculate the correlation

$$\hat{\rho}_{b}^{*}(x^{*},y^{*})$$

Percentile interval for the correlation

R code

```
> B<-1000
> cor.b<-c(1:B)</pre>
> n<-length(law$LSAT)</pre>
> index<-c(1:n)</pre>
>
> for(i in 1:B)
+ index.b<-sample(index,n,replace=TRUE)
+ LAST.b<-law$LSAT[index.b]
+ GPA.b<-law$GPA[index.b]
+ cor.b[i]<-cor(LAST.b,GPA.b)</pre>
+
                                        We resample the pair
>
                                        (x_i, y_i) with replacement
```

ExampleThe spatial test data

The BCa method

- Bias corrected intervals.
- For the example, two steps:
 - Step 1: produce bootstrap replicates for percentile interval (non parametric and parametric).
 - Step 2: modify the lower and upper limits for the BCa.

Example: the spatial test data

- Twenty-six neurologically impaired children have each taken two tests of spatial perception, called "A" and "B".
- In R:

> help(spatial)

Parameter of interest

The variance of A:

$$\sigma_A^2 = \text{var}(A)$$

- > Ai<-spatial\$A</pre>
- > Bi<-spatial\$B
- > mean(Ai)
- [1] 29.65385
- > mean(Bi)
- [1] 28.88462
- > cov(spatial)

178.3954 116.9585

B 116.9585 113.7862

The covariance matrix of A and B.

Non parametric bootstrap percentile interval

Bootstrap B samples for the empirical distribution (with replacement).

Resampling pairs:

$$x_i^* = (A_i, B_i)^*$$

For each bootstrap sample:

$$\hat{F} \rightarrow (x_1^*, x_2^*, ..., x_n^*)$$

Bootstrap replicates:

$$\theta_1^*, \theta_B^*, ..., \theta_B^*$$

Distribution of the bootstrap replicates and 95% percentile interval

Parametric bootstrap percentile interval

Bootstrap B samples for the bivariate normal distribution:

$$F_{norm} = \begin{bmatrix} A_i \\ B_i \end{bmatrix} \sim N \begin{pmatrix} \mu_A \\ \mu_B \end{pmatrix}, \Sigma$$

Estimate the unknown parameters:

$$\begin{bmatrix} \mu_A \\ \mu_B \end{bmatrix} = \begin{bmatrix} \overline{A} \\ \overline{B} \end{bmatrix}$$
 The mean vector

$$\hat{\Sigma} = \begin{vmatrix} \hat{\sigma}_A^2 & \hat{\sigma}_{AB} \\ \hat{\sigma}_{AB} & \hat{\sigma}_B^2 \end{vmatrix}$$
 Covariance matrix

Bootstrap B samples for the bivariate normal distribution:

$$F_{norm} = \begin{bmatrix} A_i^* \\ B_i^* \end{bmatrix} \sim N \left(\begin{bmatrix} \overline{A} \\ \overline{B} \end{bmatrix}, \hat{\Sigma} \right)$$

Bootstrap replicates:

$$\theta_1^*, \theta_B^*, ..., \theta_B^*$$

Parametric bootstrap percentile interval

Parameter estimates

Distribution of the bootstrap replicates and 95% percentile interval

> ci
 2.5% 97.5%
95.7222 291.3740

The BCa method

Percentile interval

$$\left[\hat{ heta}_{lo};\hat{ heta}_{up}
ight] = \left[\hat{ heta}^{*_{(lpha)}};\hat{ heta}^{*_{(1-lpha)}}
ight]$$

$$\left[\hat{\theta}_{lo};\hat{\theta}_{up}\right] = \left[\hat{\theta}^{*(\alpha)};\hat{\theta}^{*(l-\alpha)}\right] \qquad \left[\hat{\theta}_{lo};\hat{\theta}_{up}\right] = \left[\hat{\theta}^{*(\alpha_{l})};\hat{\theta}^{*(\alpha_{2})}\right]$$

$$\alpha_{1} = \phi \left(\hat{z}_{0} + \frac{\hat{z}_{0} + z^{(\alpha)}}{1 - \hat{a}(\hat{z}_{0} + z^{(\alpha)})} \right)$$

$$\alpha_{2} = \phi \left(\hat{z}_{0} + \frac{\hat{z}_{0} + z^{1 - (\alpha)}}{1 - \hat{a}(\hat{z}_{0} + z^{(1 - \alpha)})} \right)$$

A percentile interval with modification for the upper and lower limits of the intervals.

The BCa method

$$\hat{z}_0 = \phi^{-1} \left(\frac{\# \left\{ \hat{ heta}_b^* < \hat{ heta} \right\}}{B} \right)$$

The proportion of bootstrap replicates smaller than the observed statistic:

$$\frac{\#\left\{\hat{\theta}_{b}^{*}<\hat{\theta}\right\}}{B}$$

$$\hat{a} = \frac{\sum_{i=1}^{n} \left(\hat{\theta}^{(.)} - \hat{\theta}^{(-i)}\right)^{3}}{6\left\{\sum_{i=1}^{n} \left(\hat{\theta}^{(.)} - \hat{\theta}^{(-i)}\right)^{2}\right\}^{\frac{3}{2}}}$$
 Can be estimated using jackknife.

$$se(\theta^*) = se(\hat{\theta}) \times \left[1 + a(\theta^* - \hat{\theta})\right] \Rightarrow se(\theta^*) = se(\hat{\theta}), a = 0$$

The BCa method in R

```
> x < -Ai
> theta <- function(x){var(x)}</pre>
>results <- bcanon(x,1000,theta,alpha=c(0.025,0.975))
> results
                                      The parameter of interest var(A)
$confpoints
       alpha bca point

ightharpoonup \left[\hat{	heta}_{lo};\hat{	heta}_{up}
ight] = \left[\hat{	heta}^{*(lpha_1)};\hat{	heta}^{*(lpha_2)}
ight]
[1,] 0.025 114.8554
[2,] 0.975 298.5046
$z0
[1] 0.2585273 \Rightarrow \hat{z}_0 = \phi^{-1} \left( \frac{\# \left\{ \hat{\theta}_b^* < \hat{\theta} \right\}}{B} \right)
$z0
$acc
[1] 0.06124012
$u
 [1] 171.2433 184.0833 181.7900 185.8100 179.2233 179.2233 181.7900 179.2233
       183.2900 180.2500 175.6233 175.2100 161.5833 147.7233 185.3433 185.7100
      185.0100 157.3100 185.5900 184.4433 172.7900 180.2500 184.4433 185.2500
      185.8233 180.2500
```