

AGENDA

O1Introduction

Overview of the project and its goals

04

Modelling and Evaluation

Algorithms used and performance metrics

02Data Collection

Details about sources, cleaning, and preprocessing.

05Deployment and Challenges

Different challenges faced and deployment.

03Exploratory
Data Analysis

Key insights and trends observed in the data.

06 Conclusion

Conclusion and Potential improvements.

MEET OUR TEAM

MODEL DEVELOPMENT

DATA COLLECTION / EDA

Clifford Addison Sub-Team Lead

Aparna J R Documentation Expert

Yugahang Limbu Data Analyst

Riya Shah

Data Analyst

Nischal Pradhan UI/UX Designer

Serene Sebastian Data Analyst

Abdullah Iftegar Sub-Team Lead

Subash Pavan Data Scientist & PPT Expert

Sauray Risal

Database

Manager

Sangeeth Full Stack Developer

Amruth Raj

DevOps Engineer

Data Scientist &

MODEL DEVELOPMENT

Abdullah Iftegar Sub-Team Lead

Jbash Pavan ata Scientist & **PPT Expert**

Amruth Raj DevOps Engineer

Sangeeth Full Stack Developer

Alen C Saji Data Scientist & PPT Expert

Alen C Saii **PPT Expert**

uray Risal Database Manager

01 Introduction

2024 U.S. Election

Global Impact:

- International relations, National security concerns, trade agreements, economic policies, economic policies, social dynamics, etc.

Kamala D. Harris

OBJECTIVE

- A machine learning model that can accurately predict the winning party based on census - demographics, socioeconomic indicators, and polling data.
- The insights generated can help stakeholders, including campaign strategists, analysts, and policymakers, make informed decisions.

Approach

- Data Pre-processing
- Exploratory Data Analysis (EDA)
- Feature engineering & selection

- Random Forest
- XGBoost
- Model Ensembling
- Performance Evaluation

- Database setup
- Google Cloud Platform (GCP)

- Interactive
- Accessibility features

02 Data Collection

https://census.gov

Census data, voter registrations, age, employment status, etc were sourced from official government databases.
United States Census Bureau.

https://fivethirtyeight.com

Election forecasts were sourced from 538, a well-known political forecasting site.

03 Exploratory Data Analysis

Demographic Impact

Higher education and diversity trends suggest shifts towards Democratic preferences in key states.

Economic Factors

Middle-income groups lean towards Democrats,
Democrats, while high-income groups prefer
prefer Republicans.

State Variations

California dominates with Democratic support, while Florida and Texas are key key battlegrounds.

Model Building

Performance Evaluation

Ensemble Model

Accuracy: 0.90

F1- Score: 0.89

Predicted Result (November 3 - 96% accuracy)

0 Democrat 2361 Republican 302		party	electoral_college_seats
1 Republican 302	0	Democrat	236
	1	Republican	302

Party Difference
Democrat #10
Republican

Actual Result (November 5)

ODonald Trump wins

The AP has called this race

226

270 to win

312 (

75,522,869 votes (50.2%)

04 Modelling and Evaluation

Important features

Model Robustness and Responsiveness

Unit Testing

Completed in 0.360 second, which means functionalities are stable and efficient.

Edge Case Testing

Model successfully handled potential edge cases like errors and empty datasets.

Speed/Latency

Training latency at 0.1269 seconds and single prediction latency at 0 seconds

Scalability and Extensibility

Training Time

Model was trained in 0.1611 seconds.

Load Testing

 Model handles 1000 calls in 5.0759 seconds.

05 Model Deployment

Google Cloud Platform (GCP)

https://ovalofficeproject.nn.r.appspot.com/

Deployed the election prediction model to provide real-time predictions, ensuring scalability, and ease of access.

The deployment utilizes Google App Engine for API hosting, and BigQuery for analyzing large datasets.

Challenges

06 Conclusion

Model Accuracy:

Achieved almost 97% accuracy in predicting the election results.

Future Potential:

With continuous improvements, the model can provide even more precise predictions.

Real-World Applications:

Offers valuable insights for future election forecasting and decisionmaking.

Resources

