$newen viron ment prob [1] [] \begin{tabular}{l} \bf Problema 1: \\ \end{tabular}$

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS
DEPARTAMENTO DE MATEMÁTICA
Primer Semestre de 2019

Tarea 3

Fundamentos de la Matemática — MAT 2405 Fecha de Entrega: 2019/06/05

> Integrantes del grupo: Nicholas Mc-Donnell, Maximiliano Norbu

Índice

-Dado una relación antisimétrica $R \neq \emptyset$, muestre que $R \cap R^{-1}$ es una función.

Solución problema 1: -Se puede asumir que $R \cap R^{-1} \neq \emptyset$, si no, es función por vacuidad. Sea $\langle x,y \rangle$, $\langle x,z \rangle \in R \cap R^{-1}$, entonces $\langle y,x \rangle$, $\langle z,x \rangle \in R \cap R^{-1}$, por esto, también $\langle y,x \rangle$, $\langle z,x \rangle \in R$ como R antisimétrica, x=y,x=z, por lo que y=z. En conclusión, o bien $R \cap R^{-1}$ una relación vacía o bien $R \cap R^{-1}$ la relación identidad, en ambos casos, $R \cap R^{-1}$ es función.

-Sea A un conjunto, y sea $F = \{\langle x, \langle x, x \rangle \rangle : x \in A\}$, muestre que F es función biyectiva entre A y $I_A = \{\langle y, y \rangle : y \in A\}$.

Solución problema 2: -Claramente F es función, se recuerdan las definiciones de inyectividad y de sobreyectividad:

$$\forall x \forall y \forall z \forall w \left(\left(\left(\langle x, y \rangle \in F \right) \land \left(\langle z, w \rangle \in F \right) \right) \implies \left(\left(x = z \right) \iff \left(y = w \right) \right) \right)$$

$$\forall y \left(\left(y \in I_A \right) \implies \left(\exists x \left(\langle x, y \rangle \in F \right) \right) \right)$$

Para la primera, si $\langle x, y \rangle$ o $\langle z, w \rangle$, no pertenecen a F, no hay problema, ya que la función no está definida en esos casos, entonces no hay problema. Si ambas pertenecen a F entonces $y = \langle x, x \rangle$ y $w = \langle z, z \rangle$. Claramente si x = z entonces $\langle x, x \rangle = \langle z, z \rangle$ (por axioma 1)(y, por ende y = w). Ahora, si y = w, $\langle x, x \rangle = \langle z, z \rangle$, entonces x = z, pues $\langle x, x \rangle = \{\{x\}\}$ y $\langle z, z \rangle = \{\{z\}\}$ y por axioma 1. Luego para la segunda, si $y \notin I_A$ no hay problema, ya que no es parte del codominio. Si $y \in I_A$ entonces $y = \langle x, x \rangle$ para algún $x \in A$, luego por definición $\langle x, y \rangle = \langle x, \langle x, x \rangle \rangle \in F$, con lo que se tiene que F sobreyectiva. Entonces se tiene que F es biyectiva.

-Muestre que dado un conjunto A, un elemento $a \in A$ y una función

$$f: A \times \omega \to A$$
,

entonces existe una única función $h: \omega \to A$ tal que h(0) = a y que cumple $h(n^+) = f(h(n), n)$.

Solución problema 3: -Se puede definir la siguiente función

$$F: A \times \omega \to A \times \omega$$

 $\langle b, k \rangle \mapsto \langle f(b, k), k^+ \rangle$

Luego, por el teorema de la recursión, existe H tal que $H(0) = \langle a, 0 \rangle$ y $H(n^+) = F(H(n))$. Sea $h : \omega \to A$ tal que $h = \pi_a \circ H$ (siendo π_a la proyección del primer elemento). Ahora falta solo demostrar $N = \{n \in \omega : H(n) = \langle h(n), n \rangle\}$ es inductivo. Por enunciado y la definición de H, $0 \in N$. Ahora,

$$H(n^+) = F(H(n))$$

= $\langle f(H(n)), n^+ \rangle$ (por definición de H)

Ahora, como:

$$h(n^+) = \pi_a \circ H(n^+)$$
$$= \pi_a \circ (f(H(n)), n^+)$$
$$= f(H(n))$$

Entonces se tiene que $H(n^+) = \langle f(H(n), n^+) = \langle h(n^+), n^+ \rangle$, por lo que N es inductivo. Ahora veremos que h es unico. Asumamos que existe otro, sea g tal que g(0) = a y $g(n^+) = f(g(n), n)$. Entonces $N' = \{n \in \omega : h(n) = g(n)\}$ y eso es inductivo pues $0 \in N'$ y la otra parte sale de que si $n \in N'$, entonces g(n) = h(n) pero $g(n^+) = f(g(n), n) = f(h(n), n) = h(n^+)$. Por ende ω es inductivo, g = h y h es única.

[Bonus] -Sea $\varphi(x)$ una fórmula del lenguaje de la teoría de conjuntos con única variable libre x. Suponga que \emptyset verifica $\varphi(x)$ y que para cada $a \in \omega$ si a verifica $\varphi(x)$, entonces a^+ también verifica $\varphi(x)$. Demuestre que todo $b \in \omega$ verifica $\varphi(x)$.

Solución problema Bonus: -Se nota que solo es necesario demostrar que el siguiente conjunto es inductivo:

$$A = \{ a \in \omega : \varphi(a) \}$$

Se nota que $\emptyset \in A$, ya que $\emptyset \in \omega$ y \emptyset verifica $\varphi(x)$. Luego, se sabe que $\forall a \ (a \in A \implies a^+ \in A)$,

ya que si $a \in A$, se tiene que a verifica $\varphi(x)$, por lo que a^+ también verifica $\varphi(x)$, pero entonces $a^+ \in A$. Con esto se tiene que A es un conjunto inductivo, por lo que $\omega \subseteq A$, y por definición de A se tiene $A \subseteq \omega$, entonces $A = \omega$. Con lo que todo $b \in \omega$ verifica $\varphi(x)$.