EJERCICIOS IMPRESCINDIBLES

► Integrales inmediatas

(1) Calcula:

a)
$$\int (3x^2 + 5x - 2) \, \mathrm{d}x \qquad d) \int \, \mathrm{d}x$$

$$d$$
) $\int dx$

$$f) \int \frac{9dx}{\sqrt{1-x^2}}$$

g) $\int (\cos x + \sin x) dx$

b)
$$\int 2e^x dx$$

$$c) \int 3^x dx$$

$$e)$$
 $\int \frac{4dx}{1+x^2}$

▶ Método de sustitución

(2) Calcula:

a)
$$\int \cos(ax+b) dx$$
 d) $\int e^{2x+4} dx$

$$d) \int e^{2x+4} \, \mathrm{d}x$$

$$g) \int \frac{e^x}{(1+e^x)^2} \, \mathrm{d}x$$

b)
$$\int (x+1)^2 dx$$

$$e) \int \frac{xdx}{x^2 + 4}$$

$$c) \int \frac{\mathrm{d}x}{x+5}$$

$$f$$
) $\int x \sin x^2 dx$

(3) Calcula:

$$a) \int (1-x)^3 \, \mathrm{d}x$$

b) $\int \frac{\mathrm{d}x}{(x-3)^2}$

$$c) \int \frac{\mathrm{d}x}{(2x+1)^4}$$

$$d) \int \frac{3xdx}{(x^2-1)^3}$$

(4) Calcula:

a)
$$\int \cos x \sin^2 x \, dx$$
 c) $\int \frac{\operatorname{tg} x}{\cos^2 x} \, dx$

$$c) \int \frac{\operatorname{tg} x}{\cos^2 x} \, \mathrm{d}x$$

$$e) \int 2 \sin x \cos x \, dx$$

b)
$$\int \sin x \cos^3 x \, dx$$

$$d) \int \frac{\operatorname{tg}^3 x}{\cos^2 x} \, \mathrm{d}x$$

(5) Calcula:

$$a) \int \frac{\mathrm{d}x}{x}$$

$$d) \int \frac{\mathrm{d}x}{x \ln x}$$

$$f) \int \frac{e^{-x}}{e^{-x} + 1} \, \mathrm{d}x$$

$$b) \int \frac{\mathrm{d}x}{x-1}$$

$$c) \int \frac{\mathrm{d}x}{2x+4}$$

$$e) \int \frac{xdx}{1+x^2}$$

$$g) \int \frac{\ln^2 x}{x} \, \mathrm{d}x$$

(6) Calcula:

$$a) \int a^x dx$$

$$c) \int 4^{3x} dx$$

b)
$$\int e^x dx$$

$$d$$
) $\int e^{3x+1} dx$

(7) Calcula:

$$a) \int \operatorname{sen} x \, \mathrm{d}x$$

$$d$$
) $\int \operatorname{sen}(4x) \, \mathrm{d}x$

d)
$$\int \operatorname{sen}(4x) dx$$
 g) $\int \cos(x-4) dx$

b)
$$\int \operatorname{sen}(x+1) dx$$
 e) $\int \cos x dx$ h) $\int x \cos x^2 dx$

$$e) \int \cos x \, \mathrm{d}x$$

$$h) \int x \cos x^2 dx$$

$$c) \int \frac{\sin \ln x}{x} \, \mathrm{d}x$$

$$f$$
) $\int \cos(2x) dx$ i) $\int \cos\frac{x}{2} dx$

$$i) \int \cos \frac{x}{2} \, \mathrm{d}x$$

(8) Calcula:

$$a) \int \frac{\mathrm{d}x}{\sqrt{1-x^2}}$$

$$b) \int \frac{\mathrm{d}x}{\sqrt{1-9x^2}}$$

(9) Calcula:

$$a) \int \frac{\mathrm{d}x}{1+x^2}$$

c)
$$\int \frac{\mathrm{d}x}{1+3x^2}$$

$$e) \int \frac{\mathrm{d}x}{2+3x^2}$$

$$b) \int \frac{\mathrm{d}x}{1+4x^2}$$

$$d) \int \frac{\mathrm{d}x}{9+x^2}$$

(10) Calcula:

$$a) \int \frac{x dx}{\sqrt{1 - x^2}}$$

$$f) \int \frac{e^x dx}{2 + e^x}$$

$$k) \int \operatorname{tg} x \, \mathrm{d}x$$

$$b) \int \frac{xdx}{3 - 2x^2}$$

$$g) \int \frac{\mathrm{d}x}{e^x + e^{-x}}$$

$$l) \int \cot x \, dx$$

$$c) \int \frac{xdx}{(1+x^2)^2}$$

$$h) \int \frac{\ln^2 x}{x} \, dx$$
$$i) \int \sin^3 x \cos x \, dx$$

$$m) \int \frac{\arctan x}{1+x^2} \, \mathrm{d}x$$

$$d) \int \frac{xdx}{4+x^4}$$

$$e) \int \sin\frac{1}{x} \frac{dx}{x^2}$$

$$j$$
) $\int \frac{\sin x}{\sqrt{\cos^3 x}} dx$

$$n) \int \frac{x^4 dx}{(x^5+1)^4}$$

(11) **PAEU2008S.** Calcular $\int \frac{dx}{\sqrt{9-(x-1)^2}}$

(solución)

(12) **PAEU2012S.** Calcular $\int \frac{\operatorname{sen}(2x)}{3 + \operatorname{son}^2 x} dx$

- (solución)
- (13) **PAEU2004J.** De todas las primitivas de la función $f(x) = 2 \operatorname{tg} x \operatorname{sec}^2 x$ hállese la que pasa por el punto $P\left(\frac{\pi}{4}, 1\right)$. (solución)

(14) Calcula
$$\int (\cos^2 x - \sin^2 x) dx$$
 (solución)

► Integración por partes

(15) Calcula:

a)
$$\int \arcsin x \, dx$$
 (solución) g) $\int \ln x \, dx$ (solución)

b)
$$\int \operatorname{arc} \operatorname{tg} x \, dx$$
 (solución) h) $\int \ln x^2 \, dx$ (solución)

b)
$$\int \operatorname{arc} \operatorname{tg} x \, dx$$
 (solución) h) $\int \ln x^2 \, dx$ (solución)
c) $\int (x^2 - 1) \operatorname{sen} x \, dx$ (solución)
d) $\int 2x^3 \operatorname{cos} x \, dx$ (solución)
e) $\int (x + 1)e^{-x} \, dx$ (solución) j) $\int x^2 \ln x \, dx$ (solución)

e)
$$\int (x+1)e^{-x} dx$$
 (solución) j) $\int x^2 \ln x dx$ (solución)

f)
$$\int e^x \cos x \, dx$$
 (solución) k) $\int x \ln x^2 \, dx$ (solución)

(16) **PAEU2010S**, apartado b. Calcular
$$\int (x+3)e^{x+2}dx$$
. (solución)

(17) **PAEU2015J, apartado b.** Hallar la función f(x) que cumple $f'(x) = x \ln(x^2 + 1)$ y f(0) = 1.(solución)

► Integrales racionales

(18) Calcula:

a)
$$\int \frac{dx}{9+x^2}$$
 (solución) d) $\int \frac{dx}{25+x^2}$ (solución)
b) $\int \frac{xdx}{x^2+9}$ (solución) e) $\int \frac{3xdx}{x^2+36}$ (solución)
c) $\int \frac{x^3dx}{16+x^4}$ (solución)

(19) Calcula:

a)
$$\int \frac{x-1}{x+1} dx$$
 (solución) d) $\int \frac{dx}{3x^2 - 2x - 1}$ (solución)
b) $\int \frac{x}{x^2 + 4} dx$ (solución) e) $\int \frac{2x+3}{(x-2)(x+5)} dx$ (solución)
c) $\int \frac{dx}{a+bx^2}$ (solución)

(20) **PAEU2008S.** Calcular
$$\int \frac{\mathrm{d}x}{x(x+1)}$$
 (solución)

(21) **PAEU2009J.** Calcular
$$\int \frac{1}{1-x^2} dx$$
 (solución)

(22) **PAEU2013S.** Calcular
$$\int \frac{1}{x^2 - x - 2} dx$$
. (solución)

(23) **PAEU2012J.** Calcular
$$\int \frac{1}{x^2 + x + 3} dx$$
 (solución)

► Integrales varias

(24) Calcula:

Sugerencia: escribe sen^2x usando la fórmula del ángulo mitad.

(25) Calcula:

a)
$$\int \frac{8x+5}{\sqrt[3]{4x^2+5x+1}} \, \mathrm{d}x$$
 (solución)

b)
$$\int \frac{24x^2 - 2x + 1}{(8x^3 - x^2 + x)^{\frac{7}{2}}} dx$$
 (solución)

c)
$$\int (4x+6)\sqrt{x^2+3x-4} \, dx$$
 (solución)

$$d) \int \frac{3x^2 + 10x}{\left(\sqrt{x^3 + 5x^2 - 2}\right)^5} dx$$
 (solución)

e)
$$\int \frac{6x^2 + 14x + 3}{(2x^3 + 7x^2 + 3x)^{\frac{5}{3}}} dx$$
 (solución)

(26) Calcula:

(solución)

a)
$$\int \frac{x^2}{x^2 + 1} dx$$
 (solución) c) $\int \cos^2 x dx$ (solución)
b) $\int \frac{2dx}{x^3 - x} dx$ (solución)

(27) **PAEU2004J.** Calcúlese
$$\int \frac{(x-1)^2}{\sqrt{x}} dx$$
 (solución)

- (28) **PAEU2004S.** Calcúlese una función primitiva de $f(x) = \frac{1}{x} + \ln x$ que pase por el punto P(e,2). (solución)
- (29) **PAEU2005S.** Calcúlese $\int \frac{dx}{x^2 + 4x + 13}$ (Ya lo he resuelto como ejemplo).

(30) **PAEU2008J.** Calcular
$$\int \frac{\ln x}{x^2} dx$$
 (solución)

(31) **PAEU2010J.** Calcular
$$\int \frac{\cos x}{1 + \sin^2 x} dx$$
 (solución)

(32) **PAEU2010S.** De $f: \mathbb{R} \to \mathbb{R}$ se sabe que $f''(x) = x^2 + 2x + 2$ y que su gráfica tiene tangente horizontal en el punto P(1,2). Hallar la expresión de f. (solución)

▶ Regla de Barrow

(33) Calcula:

a)
$$\int_{1}^{2} x \, dx$$
 (solución) c) $\int_{1}^{2} \frac{dx}{x}$ (solución)
b) $\int_{0}^{\pi/2} \sin x \, dx$ (solución) d) $\int_{0}^{2\pi} \cos^{2} x \, dx$ (corregido en un ejemplo)

(34) **PAEU2006S.** Calcúlese
$$\int_{1}^{\sqrt{2}} \frac{(4-2x^2)}{x} \cdot \ln(x) dx$$
 (solución)

(35) **PAEU2005J.** Calcúlese
$$\int_{1}^{3} x \cdot e^{1-x^2} dx$$
 (solución)

(36) **PAEU2008J.** Dada
$$f(x) = \begin{cases} \frac{\sin x^2}{x} & \text{si } x > 0 \\ x^2 - 2x & \text{si } x \le 0 \end{cases}$$
, calcular $\int_{\sqrt{\pi}}^{\sqrt{2\pi}} x^2 f(x) dx$

(solución)

► Cálculo de áreas

(37) Calcular el área comprendida entre la gráfica de $y = \cos x$, el eje OX, en el intervalo $[0, 2\pi]$. (solución)

- (38) **PAEU2004S.** Hállese el área del recinto limitado por las parábolas de ecuaciones respectivas $y = 6x x^2$ e $y = x^2 2x$. (solución)
- (39) **PAEU2006J.** Hállese el área del recinto limitado por la parábola $y = -x^2$ y la recta y = 2x 3 (solución)
- (40) **PAEU2006J.** Dada la función $f(x) = \frac{x-1}{x+1}$, calcúlese el área de la región limitada por dicha gráfica y las rectas x = 0, y = 0. (solución)
- (41) **PAEU2007J.** Sea la función $f(x) = \frac{x}{x^2 1}$. Calcular el área de la región limitada por dicha gráfica y las rectas x = -4, x = -2 y el eje x. (solución)
- (42) PAEU2007J. Hallar el área del recinto limitado por las curvas de ecuaciones:

$$y = x^2 - 4$$
, $y = 3x - 6$

(solución)

- (43) **PAEU2009J.** Calcular los valores de a para los cuales el área comprendida entre la gráfica de la función $y = -x^2 + a^4$ y el eje OX es de $\frac{256}{3}$ unidades de superficie. (solución)
- (44) **PAEU2009S.** Sea la función $f(x) = \sin x + \cos x$, definida en el intervalo $[0, 2\pi]$. Calcular el área del recinto limitado por la gráfica de f y las rectas de ecuaciones $x = 0, x = \frac{\pi}{4}$, e y = 2. (solución)
- (45) **PAEU2011J.** Calcular el área de la región finita y limitada por la gráfica de la función $f(x) = x^3 x + 1$ y la recta tangente a la gráfica de f en el punto de abcisa x = 1.
- (46) Calcular el valor positivo de a para que $\int_0^{a-1} (x+1) dx = \frac{a}{2}$ (solución)

► Varios

(47) **PAEU2005S.** Sea P(a, sen a) un punto de la gráfica de la función f(x) = sen x en el intervalo $[0, \pi]$. Sea r_P la recta tangente a dicha gráfica en el punto P y A_P el área de la región determinada por las rects r_P , x = 0, $x = \pi$, y = 0. Calcúlese el punto P para el cual el área A_P es mínima. (Nota: Puede asumirse, sin demostrar, que la recta r_P se mantiene por encima del eje OX entre 0 y π)

Solución: parte 1 - parte 2 - parte 3 - parte 4

(48) **PAEU2013J.** Sea la función $f(x) = \begin{cases} a\sqrt{x} + bx & \text{si } 0 \le x \le 1 \\ c \ln x & \text{si } 1 < x \end{cases}$. Hallar a, b y c sabiendo que f(x) es continua en $(0, \infty)$, la recta tangente a f(x) en el punto de abcisa $x = \frac{1}{16}$ es paralela a la recta y = -4x + 3, y se cumple que $\int_1^e f(x) \mathrm{d}x = 2$.

- (49) **PAEU2012S.** Hallar el área de la región comprendida entre las rectas x = 1, x = 4 y que está limitada por dichas rectas, la gráfica de la función $f(x) = |x^2 4|$ y el eje OX.
- (50) **PAEU2014J.** Hallar la función polinómica de grado 3 sabiendo que su gráfica pasa por el punto P(1,0), que tiene por tangente en el punto de abcisa x=0 la recta de ecuación y=2x+1, y que su integral entre 0 y 1 vale 3.
- (51) **PAEU2015J.** Calcular el área del recinto delimitado por las gráficas de las funciones $f(x) = \frac{1}{x}$, $g(x) = \frac{1}{x^2}$ y la recta x = e.

► Algunos ejercicios sencillos

- (52) **PAEU2007S.** Calcular el área del recinto limitado por la curva de ecuación $y = \ln x$, el eje OX y las rectas x = 1 y x = 2.
- (53) **PAEU2007S.** Sea la función $f(x) = \frac{x}{x^2 + 4}$. Se pide hallar: El área de la región limitada por la gráfica de f, el eje OX y las rectas x = -2, x = 2.
- (54) **PAEU2010J.** Dadas las funciones $f(x) = \ln x$ y g(x) = 1 2x, hallar el área del recinto plano limitado por las rectas x = 1, x = 2 y las gráficas de f(x) y g(x).
- (55) **PAEU2011S.** Calcular el área del recinto delimitado en el primer cuadrante, por la gráfica de la función $y = \ln x$ y las rectas y = 0, y = 1 y x = 0.
- (56) **PAEU2014S.** Calcular el área delimitada por la parábola de ecuación $y = 2x^2$ y la recta y = 2x + 4.