2021 年度数学 1B 期末試験

以下の設問 $\boxed{1}$ から $\boxed{5}$ に答えよ、解答は解答用紙の所定の欄に記入すること、

$$\boxed{1} \int \frac{16x+4}{x^4-1} dx を求めよ.$$

 $\boxed{\mathbf{2}}$ a>0 とし、 $V=\{(x,y,z)\mid x^2+|y|+|z|\leq a^2\}$ とおいたとき V の体積を求めよ.

3

- (1) $\mathbf{0} = (0,0,0), \mathbf{a} = (a_1,a_2,a_3), \mathbf{b} = (b_1,b_2,b_3) \in \mathbf{R}^3$ とし、 $\mathbf{0}$ 、 \mathbf{a} , $\mathbf{a} + \mathbf{b}$, \mathbf{b} をそれぞれ O, P, Q, R と する。線分 OP, PQ, QR, RO をパラメーター $t \in [0,1]$ を用いて表せ (答えのみでよい)。 ただし、各線分において始点は初めの文字、終点は後の文字の点とする。 また、 $\mathbf{f}(x,y,z) = (y,x,0),$ $\Gamma = OP + PQ + QR + RO$ としたとき、 $\int_{\Gamma} \mathbf{f} \cdot d\mathbf{r}$ を求めよ。
- (2) $A = \{(x,y,z) \in \mathbb{R}^3 \mid x^4 + y^4 + z^2 = 1, z > 0\}$ とおく. A を $z = \varphi(x,y)$ とグラフで表した とき、 $\varphi(x,y)$ を求めよ (答えのみでよい). また、 $(x,y,\varphi(x,y)) \in A$ に対し、A の単位法線ベクトル n で第 3 成分が正のものを求めよ.

4 正の実数 r > 0 に対し $A_r = \{ (x,y) \in \mathbf{R}^2 \mid |x| \le r, |y| \le r \}, B_r = \{ (x,y) \in \mathbf{R}^2 \mid x^2 + y^2 \le r^2 \}$ とおく.

- (1) $n \ge 1$ を自然数にしたとき, $A_n \subset B_{kn}$ をみたす**最小の実数** k を求めよ (答えのみでよい).
- (2) 極限

$$\lim_{n\to\infty} \iint_{A_n} \frac{1}{(x^2+y^2+1)^2} \, dx dy$$

が存在するかを判断し、存在すればその値を求め、存在しなければその証明をせよ.

- $S \subset \mathbb{R}^3$ を中心が (0,0,1), 半径1の球面とする.
 - (1) \mathbf{R}^3 内の点 $\mathbf{x} = (x, y, z)$ を球座標 $\mathbf{x} = (r \sin \theta \cos \varphi, r \sin \theta \sin \varphi, r \cos \theta)$ $(r \ge 0, 0 \le \varphi \le 2\pi, 0 \le \theta \le \pi)$ で表す。このとき $\mathbf{x} \in S$ となる必要十分条件が 「r = 0 または $r = f(\theta)$ をみたす」となるような関数 $f(\theta)$ を求めよ.
 - (2) $f(\theta)$ を (1) で求めたもの、 $0 < \theta_0 \le \frac{\pi}{2}$ とし、

$$A = \{ (f(\theta)\sin\theta\cos\varphi, f(\theta)\sin\theta\sin\varphi, f(\theta)\cos\theta) \mid 0 \le \varphi \le 2\pi, \ 0 \le \theta \le \theta_0 \}$$

とおく. このとき、Aの曲面積を θ_0 を用いて表せ.

(3) $1 \le a \le 3$ となる実数 a に対し $C = \{(x,y,z) \in \mathbf{R}^3 \mid z^2 - x^2 - y^2 \ge a\}$ とおく. このとき, $S \cap C$ の曲面積を求めよ.