Geometry Manifolds Qualifying Exam Spring 1995

Part A. Do all parts.

- 1. A Riemannian metric is a cross section of what bundle on a manifold?
- 2. Is the two handled torus (connected sum of two $S^1 \times S^1$'s) parallelizable?
- **3.** Give an example of a compact manifold which is not orientable.
- 4. If we are given a 3-form on the unit ball in \mathbb{R}^3 , when will Stoke's theorem allow us to rewrite its integral as an integral on \mathbb{S}^2 ?
- **5.** Describe the universal covering space of (a) S^2 , (b) $S^2 \times S^1$.
- **6.** Consider the vector field on $R^3(y^2+z^2+1)\partial/\partial x$. Describe the family of its flows.
- 7. What is the dimension of the fiber of the bundle of 7-forms on a 9-manifold?
- 8. (a) Give an example of a lie group which is contractible as topological space and has dimension seven.
 - (b) Give an example of a lie group which is not contractable as a topological space. Is its lie algebra contractible?
 - Part B. Calculate Do 3 of the following 5.
- 1. Let an atlas for the 2-sphere be given by choosing stereographic projection from two antipodal points. Pick a geodesic joining the two as 0-ray and write polar coordinates on each patch.
 - (a) Find the transition function $(r, \theta) \to (r', \theta')$.
 - (b) Write the round metric of radius 1 in each patch.
 - (c) Find the $\{\theta_r^{\theta}\}$ component of the Levi-Civita connection in one patch.
- **2.** Write generators and relations for π_1 of the once punctured torus.
- **3.** Give a set of generators for the lie algebra su(2), and compute the bracket of each pair.
- **4.** Use Stokes theorem to compute $\int_{S^2} z dx \wedge dy y dx \wedge dz$ on the unit sphere in R^3 .
- **5.** Find the scalar curvature of the surface $z = x^2 y^2$ at the point (0,0,0).