# Lab 7: Single-Cycle Processor

Digital Design and Computer Architecture: RISC-V Edition (Harris & Harris, Elsevier © 2021)

### **Objective**

In this lab, you will extend the single-cycle RISC-V processor from the textbook and lecture to support two additional instructions: lui and xor.

# 1. Single-cycle RISC-V Processor

Figure 1 shows the complete single-cycle processor from the textbook. Figure 2 shows the Control Unit, and Figure 3 shows the ALU. Tables 1 and 2 are the Main Decoder and ALU Decoder truth tables. Table 3 lists the ImmSrc encoding. Figure 4 shows the test program for the RISC-V single-cycle processor in the textbook.

#### Hint

You can download the sample code and finish this lab by sample code.

#### What to Turn In

(Make sure your code can read the *riscvtest.s* file. We will grade this lab by our *riscvtest.s* file. Therefore, if your code cannot load *riscvtest.s*, you will have no grade for this lab.)

- 1. Please indicate how many hours you spent on this lab. This will be helpful for calibrating the workload for next time the course is taught.
- 2. A marked-up version of Figure 1 (single-cycle processor) showing the needed modifications (lui and xor)
- 3. A marked-up version of Figures 2 and 3 (if modified) showing the needed modifications for the additional instructions (lui and xor)
- 4. Amended Main Decoder, ALU Decoder, and ImmSrc truth tables to support lui and xor
- 5. Amended SystemVerilog code to add support for lui and xor
- 6. Modified test program that uses lui and xor
- 7. Simulation waveforms (in the order listed above: clk, reset, PC, Instr, SrcA, SrcB, ALUResult, DataAdr, WriteData, and MemWrite all displayed in hexadecimal for ease of reading). Does your system pass your testbench? Circle or highlight the waves showing that the correct value is written to the correct address, and make sure it is legible.
- 8. RTL Viewer schematics.

Please indicate any bugs you found in this lab manual, or any suggestions you would have to improve the lab.



Figure 1: RISC-V single-cycle processor



Figure 2: RISC-V single-cycle processor control unit



Figure 3: ALU

# **Table 1. Main Decoder Truth Table**

| Instruction | Opcode  | RegWrite | ImmSrc | ALUSrcA | ALUSrcB | MemWrite | ResultSrc | Branch | ALUOp | Jump |
|-------------|---------|----------|--------|---------|---------|----------|-----------|--------|-------|------|
| lw          | 0000011 | 1        | 00     | 0       | 1       | 0        | 01        | 0      | 00    | 0    |
| sw          | 0100011 | 0        | 01     | 0       | 1       | 1        | XX        | 0      | 00    | 0    |
| R-type      | 0110011 | 1        | XX     | 0       | 0       | 0        | 00        | 0      | 10    | 0    |
| beq         | 1100011 | 0        | 10     | 0       | 0       | 0        | XX        | 1      | 01    | 0    |
| I-type ALU  | 0010011 | 1        | 00     | 0       | 0       | 0        | 00        | 0      | 10    | 0    |
| jal         | 1101111 | 1        | 11     | X       | X       | 0        | 10        | 0      | XX    | 1    |

# **Table 2. ALU Decoder Truth Table**

| ALUOp <sub>1:0</sub> | funct32:0     | { <i>op</i> 5, <i>funct</i> 75} | ALUControl <sub>2:0</sub> | Operation |  |
|----------------------|---------------|---------------------------------|---------------------------|-----------|--|
| 00                   | X             | X                               | 000                       | Add       |  |
| 01                   | X             | X                               | 001                       | Subtract  |  |
| 10                   | 000 00, 01, 1 |                                 | 000                       | Add       |  |
|                      | 000           | 11                              | 001                       | Subtract  |  |
|                      | 010           | X                               | 101                       | SLT       |  |
|                      | 110           | X                               | 011                       | OR        |  |
|                      | 111           | X                               | 010                       | AND       |  |

Table 3. *ImmSrc* encoding

| ImmSrc | ImmExt                                                          | Type | Description             |
|--------|-----------------------------------------------------------------|------|-------------------------|
| 00     | {{20{ <i>Instr</i> [31]}}, <i>Instr</i> [31:20]}                | I    | 12-bit signed immediate |
| 01     | {{20{Instr[31]}}}, Instr[31:25], Instr[11:7]}                   | S    | 12-bit signed immediate |
| 10     | {{20{Instr[31]}}}, Instr[7], Instr[30:25], Instr[11:8], 1'b0}   | В    | 13-bit signed immediate |
| 11     | {{12{Instr[31]}}}, Instr[19:12], Instr[20], Instr[30:21], 1'b0} | J    | 21-bit signed immediate |

|    | #       | RISC | -V Assembly    | I   | Description                   | Address    | Machine  |
|----|---------|------|----------------|-----|-------------------------------|------------|----------|
| 2  | main:   | addi | x2, x0, 5      | 4   | # x2 = 5                      | 0          | 00500113 |
|    |         | addi | x3, x0, 12     | 4   | # x3 = 12                     | 4          | 00C00193 |
|    |         | addi | x7, x3, -9     | 4   | # x7 = (12 - 9) = 3           | 8          | FF718393 |
|    |         | or   | x4, x7, x2     | #   | # x4 = (3 OR 5) = 7           | С          | 0023E233 |
|    |         | and  | x5, x3, x4     | 4   | # x5 = (12  AND  7) = 4       | 10         | 0041F2B3 |
|    |         | add  | x5, x5, x4     | #   | # x5 = (4 + 7) = 11           | 14         | 004282B3 |
|    |         | beq  | x5, x7, end    | #   | # shouldn't be taken          | 18         | 02728863 |
|    |         | slt  | x4, x3, x4     | #   | # x4 = (12 < 7) = 0           | <b>1</b> C | 0041A233 |
| 10 |         | beq  | x4, x0, around | 1   | # should be taken             | 20         | 00020463 |
| 11 |         | addi | x5, x0, 0      |     | # shouldn't happen            | 24         | 00000293 |
| 12 | around: | slt  | x4, x7, x2     | #   | $\# x4 = (3 < 5)^{\circ} = 1$ | 28         | 0023A233 |
| 13 |         | add  | x7, x4, x5     | 4   | # x7 = (1 + 11) = 12          | 2C         | 005203B3 |
| 14 |         | sub  | x7, x7, x2     | 4   | # x7 = (12 - 5) = 7           | 30         | 402383B3 |
| 15 |         | SW   | x7, 84(x3)     |     | # [96] = 7                    | 34         | 0471AA23 |
| 16 |         | 1w   | x2, 96(x0)     | 4   | # x2 = [96] = 7               | 38         | 06002103 |
| 17 |         | add  | x9, x2, x5     | 4   | # x9 = (7 + 11) = 18          | 3C         | 005104B3 |
| 18 |         | jal  | x3, end        | 4   | # jump to end, $x3 = 0x44$    | 40         | 008001EF |
| 19 |         | addi | x2, x0, 1      | - 4 | # shouldn't happen            | 44         | 00100113 |
| 20 | end:    | add  | x2, x2, x9     |     | # x2 = (7 + 18) = 25          | 48         | 00910133 |
| 21 |         | SW   | x2, 0x20(x3)   | ‡   | # mem[100] = 25               | 4C         | 0221A023 |
| 22 | done:   | beq  | x2, x2, done   | 4   | # infinite loop               | 50         | 00210063 |
|    |         |      |                |     |                               |            |          |

Figure 4. RISC-V test program