

2017~2018 Mid-Term Quality Inspection of the First Semester in Hefei City, Anhui Province

Examination time: 120 minutes Full score: 150 points

Name:_____ Grade:

One, multiple choice (10 questions, 4 points per question, full score 40 points)

1 · -2017 has a reciprocal of ()

$$A \cdot 2017 \quad B \cdot \frac{1}{2017} \quad C \cdot -\frac{1}{2017} \quad D \cdot \pm 2017$$

2 · 482.2 billion written in scientific notation is ()

$$\text{A} \cdot 4822 \times 10^{8} \quad \text{B} \cdot 4.822 \times 10^{11} \quad \text{C} \cdot 48.22 \times 10^{10} \quad \text{D} \cdot 0.4822 \times 10^{12}$$

3 · Of the following groups of numbers, the equal group is (

$$A \cdot 2^3$$
 and 3^2 $B \cdot 2^3$ and $(-2)^3$ $C \cdot 3^2$ and $(-3)^2$ $D \cdot -2^3$ and -3^2

4 ⋅ In the following equation variants, which of the following is invalid? ()

A · If a=b, then a+5=b+5 B · If a=b, then
$$\frac{a}{-3} = \frac{b}{3}$$

C · If
$$x+2=y+2$$
, then $x=y$ D · If $-3x=-3y$, then $x=y$

5 · Out of the following: abc · $2\pi R \cdot x + 3y \cdot 0 \cdot \frac{x - y}{2}$ · how many monomials are there? (

6 · Which of the following equations has $x = \frac{5}{4}$ as a solution? ()

A.
$$-6x + 2 = 1$$
 B. $-3x + 4 = 3$ C. $\frac{2}{3}x + 1 = \frac{1}{3}x - 2$ D.2x+3= $\frac{11}{2}$

7 · Given that |a|=5 · $b^3=-27$ · and a > b · then the value of a-b would be (

- $\mathbf{8} \cdot \mathbf{x} \cdot \mathbf{y}$ are two rational numbers. Express "The reciprocal of the square of the sum of \mathbf{x} and \mathbf{y} " using an algebraic expression. ()
 - A. $\frac{1}{x+y}$ B. $\frac{1}{x^2+y^2}$ C. $\frac{1}{(x+y)^2}$ D. None of the above
- $\mathbf{9} \cdot \text{If A is a three-degreed polynomial, and B is also a three-degreed polynomial, then A + B has to be ($

A. a six-degreed polynomial

B. a four-degreed polynomial

C. a polynomial (or monomial) that has a degree of no more than 3 D. three-degreed polynomial

10 · There is a machine that conducts certain input values into output values according to a certain function. If the input x value is 7, then the first output would be 12. Its second output would be 6. What would be the 2016^{th} output? ()

A · 3

B · 8

 $\text{C}\cdot \text{4}$

D · 2

Two, fill in the blanks (5 points per question, full score 20 points)

- **11** The highest temperature today was 2°C, and the lowest was -8°C. Therefore, the difference between the highest and lowest temperatures today is ____°C.
- **12** · If $5a^3b^n 8a^mb^2 = -3a^3b^2$, then $m = ____ · n = ____ ·$
- 13 · If a whole expression added with x^2-2y^2 equals x^2+y^2 , then this whole expression is _____.

14 · As shown below, the following figures are all made of identical sun-shaped icons according to certain patterns: the first pattern requires 2 suns, the second figure requires 4 suns, and the third figure requires 7 suns, ..., according to this pattern, the number of suns required for the fifth pattern is _____.

Three, (8 points per question, full score 16 points)

15. Calculate

$$(1) -3 \times 2^3 - (-3 \times 2)^2 + 48 \div (-4)$$

(2)
$$(\frac{2}{9} - \frac{1}{4} + \frac{1}{18}) \div (-\frac{1}{36})$$

16 • Plot the following numbers on a number line, and then order than from greatest to least using the > symbol.

$$-3.5 \cdot 0 \cdot 2 \cdot \frac{2}{3} \cdot -2\frac{1}{3} \cdot 0.75 \cdot -1 \cdot$$

Four, (8 points per question, full score 16 points)

17 · When x=1, ax^3+bx+4 has a value of 0. Find when the value of ax^3+bx+4 when x=-1.

18 · Given that $A=3a^2b+3ab^2+b^4$ · $B=a^2b+11ab^2+a^4$ · find 2A-B ·

Five, (2 questions, 10 points per question, full score 20 points)

19 • First simplify, then substitute: $3x^2-[7x-(4x-2x^2)]$; Among them x=-2.

- **20** Kangbin bought 10 pens with 50 dollars and planned to sell them at a certain price. If the standard price of each pen is 6 dollars, the excess is recorded as a positive number, and the deficiency is recorded as a negative number, and the records are as follows: 0.5, 0.7, -1, -1.5, 0.8, 1, -1.5, -2.1, 9, 0.9.
- (1) What are the highest and lowest prices of these 10 pens?
- (2) Does Kangbin make a profit or a loss after selling the pen?

Six, (this question is worth 12 points)

- ${\bf 21}\,\cdot$ The quadrilaterals ABCD and ECGF are both squares.
- (1) Use algebra to express the area of the shaded part; (the result requires simplification)
- (2) When a=4, find the shaded area.

Seven, (this question is worth 14 points)

22 · Observe and think:

- (1) When a=3 and b=-1, $a^2-b^2=$ ____; (a+b)(a-b)=____; When a=-5 and b=3, $a^2-b^2=$ ____; (a+b)(a-b)=____;
- (2) Think: Choose a set of values and substitute them into the calculation. What is the relationship between these two algebraic expressions?
- (3) Based on your answers to the previous questions, can you quickly and accurately find the value of a^2-b^2 when a=2016 and b=2017?

Eight, (this question is worth 12 points)

23 · In order to find the value of $2+2^2+2^3...+2^{n-1}+2^n$, Karen wrote down the following solution:

Let:
$$S=2+2^2+2^3...+2^{n-1}+2^n(1)$$

Multiply both sides by two to get: $2S=2^2+2^3...+2^{n-1}+2^n+2^{n+1}$ (2)

Subtract((2)-((1)):S= $(2^{n+1}-2)$

- (1) Conclusion: $2+2^2+2^3...+2^{100}=$ _____;
- (2) Find the value of $4+4^2+4^3...+4^{n-1}+4^n$;
- (3) Karen designed a geometric figure as shown in the figure to represent the value of

$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \dots + \frac{1}{2^n}$$
. Just like in Figure 1, the side length of the square in Figure 2 is also 1.

Split up the square in Figure 2 so that it models the expression $\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \dots + \frac{1}{2^n}$ geometrically.

Figure 1

Figure 2

Answers and Solutions

One, multiple choice (10 questions, 4 points per question, full score 40 points)

C, B, C, B, B, D, C, B, C, D

Two, fill in the blanks (5 points per question, full score 20 points)

- **11** · The highest temperature today was 2°C, and the lowest was -8°C. Therefore, the difference between the highest and lowest temperatures today is 10 °C.
- **12** · If $5a^3b^n-8a^mb^2=-3a^3b^2$, then $m=3 \cdot n=2$
- 13 · If a whole expression added with x^2-2y^2 equals x^2+y^2 , then this whole expression is 3 y^2 .
- **14** · As shown below, the following figures are all made of identical sun-shaped icons according to certain patterns: the first pattern requires 2 suns, the second figure requires 4 suns, and the third figure requires 7 suns, ..., according to this pattern, the number of suns required for the fifth pattern is 21.

Three, (8 points per question, full score 16 points)

15. Calculate

$$(1) -3 \times 2^3 - (-3 \times 2)^2 + 48 \div (-4)$$

(2)
$$(\frac{2}{9} - \frac{1}{4} + \frac{1}{18}) \div (-\frac{1}{36})$$

S: Original Equation=
$$(\frac{2}{9} - \frac{1}{4} + \frac{1}{18}) \times (-36)$$

=-8+9-2

16 • Plot the following numbers on a number line, and then order than from greatest to least using the > symbol.

$$-3.5 \cdot 0 \cdot 2 \cdot \frac{2}{3} \cdot -2\frac{1}{3} \cdot 0.75 \cdot -1 \cdot$$

S: As shown:
$$-2\frac{1}{3}$$
 -1 0 $\frac{2}{3}$ 0.75 $\frac{2}{3}$ $\frac{1}{3}$ $\frac{1$

Using ">" to order:
$$2 > 0.75 > \frac{2}{3} > 0 > -1 > -2\frac{1}{3} > -3.5$$

Four, (8 points per question, full score 16 points)

17 · When x=1, ax^3+bx+4 has a value of 0. Find when the value of ax^3+bx+4 when x=-1.

S: ::When
$$x=1$$
, $ax^3+bx+4=0$.

:When
$$x=1$$
, $ax^3+bx=-4$.

$$ax^3+bx+4=4+4=8$$
.

18 · Given that $A=3a^2b+3ab^2+b^4$ · $B=a^2b+11ab^2+a^4$ · find 2A-B ·

S:
$$2A - B = 2 (3a^2b + 3ab^2 + b^4) - (a^2b + 11ab^2 + a^4)$$

= $6a^2b + 6ab^2 + 2b^4 - a^2b - 11ab^2 - a^4$
= $+5a^2b - 5ab^2 + 2b^4 - a^4$

Five, (2 questions, 10 points per question, full score 20 points)

19 • First simplify, then substitute: $3x^2-[7x-(4x-2x^2)]$; Among them x=-2.

S: Original equation=
$$3x^2-(7x-4x+2x^2)$$

$$=3x^2-7x+4x-2x^2$$

$$=x^2-3x$$

When
$$x=-2$$
,

Original equation=
$$(-2)^2-3\times(-2)=4-(-6)=10$$

20 · Kangbin bought 10 pens with 50 dollars and planned to sell them at a certain price. If the standard price of each pen is 6 dollars, the excess is recorded as a positive number, and the

deficiency is recorded as a negative number, and the records are as follows: 0.5, 0.7, -1, -1.5, 0.8, 1, -1.5, -2.1, 9, 0.9.

- (1) What are the highest and lowest prices of these 10 pens?
- (2) Does Kangbin make a profit or a loss after selling the pens?
- S: (1) The highest price is 6+1.9=7.9 dollars, and the lowest price is 6+(-2)=4 dollars; (2) (6+0.5)+(6+0.7)+(6-1)+(6-1.5)+(6+0.8)+(6+1)+(6-1.5)+(6-2)+(6+1.9)+(6+0.9) = 59.8 > 50.
 - ::Kangbin did make a profit after selling the pens.

Six, (this question is worth 12 points)

- **21** · The quadrilaterals ABCD and ECGF are both squares.
- (1) Use algebra to express the area of the shaded part; (the result requires simplification)

- (2) When a=4, find the shaded area.
- S: As shown, we can set the equation: $S_{shaded} = S_{ABCD} + S_{CEFG} S_{\triangle ABD} S_{\triangle BGF}$.
- :The side length of ABCD is a, and the side length of CEFG.

$$\text{.:} \mathsf{S}_{\mathsf{ABCD}} = \mathsf{a}^2 \, \cdot \, \mathsf{S}_{\mathsf{CEFG}} = \mathsf{6}^2 \, \cdot \, \mathsf{S}_{\triangle \mathsf{ABD}} = \frac{1}{2} \, \mathsf{a}^2 \, \cdot \, \mathsf{S}_{\triangle \mathsf{BGF}} = \frac{1}{2} \, \times (\mathsf{a} + \mathsf{6}) \times \mathsf{6}.$$

$$\therefore S_{\text{shaded}} = a^2 + 6^2 - \frac{1}{2} a^2 - \frac{1}{2} \times (a+6) \times 6 = \frac{1}{2} a^2 - 3a + 18.$$

(2) When a=4,
$$S_{shaded} = \frac{1}{2} \times 4^2 - 3 \times 4 + 18 = 14$$
.

Seven, (this question is worth 14 points)

- 22 · Observe and think:
- (1) When a=3 and b=-1, $a^2-b^2=\underline{8}$; $(a+b)(a-b)=\underline{8}$; When a=-5 and b=3, $a^2-b^2=\underline{16}$; $(a+b)(a-b)=\underline{16}$;
- (2) Think: Choose a set of values and substitute them into the calculation. What is the relationship between these two algebraic expressions?

- (3) Based on your answers to the previous questions, can you quickly and accurately find the value of a^2-b^2 when a=2016 and b=2017?
- S: (2) When a=3 and b=2, $a^2-b^2=3^2-2^2=9-4=5$ (a+b) (a-b)= $(3-2)\times(3+2)=1\times5=5$

(3)
$$a=2016 \cdot b=2017$$
, $a^2-b^2=(a+b) (a-b)=(2016+2017)\times(2016-2017)=4033\times(-1)=-4033$

Eight, (this question is worth 12 points)

 $23 \cdot$ In order to find the value of $2+2^2+2^3...+2^{n-1}+2^n$, Karen wrote down the following solution:

Let:
$$S=2+2^2+2^3...+2^{n-1}+2^n(1)$$

Multiply both sides by two to get: $2S = 2^2 + 2^3 ... + 2^{n-1} + 2^n + 2^{n+1} (2)$

Subtract((2)-((1)):S= $(2^{n+1}-2)$

- (1) Conclusion: $2+2^2+2^3...+2^{100}=$ _____;
- (2) Find the value of $4+4^2+4^3...+4^{n-1}+4^n$;
- (3) Karen designed a geometric figure as shown in the figure to represent the value of

$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \dots + \frac{1}{2^n}$$
 Just like in Figure 1, the side length of the square in Figure 2 is also 1.

Split up the square in Figure 2 so that it models the expression $\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \dots + \frac{1}{2^n}$ geometrically.

Figure 1

Figure 2

S: (1) Set
$$S=1+2+2^2+2^3+...+2^{100}$$
 Then $2S=2+2^2+2^3+...+2^{100}+2^{101}$ · (2)
 (2)-(1) gets us $S=2^{101}-1$.

(2) Set $S=4+4^2+4^3...+4^{n-1}+4^n$; 1

Therefore $4S=4^2+4^3...+4^{n-1}+4^n+4^{n+1}$; 2

②-① gives us $3S=4^{n+1}-4$.

Therefore $S = \frac{4^{n+1} - 4}{3}$

(3) As shown:

1	$\frac{1}{2^2}$
2	$\frac{1}{2^3} \frac{\frac{1}{2^4}}{\cdots}$

