Bayesian Neural Networks

Blair, Taylor Sorgmon, Ava Conor

April 1, 2024

Abstract

Bayesian Neural Networks are...

Contents

1	Introduction		2	
	1.1 H	History	2	
2	Neural Network			
	2.1	Convolutional Neural Networks	4	
3	Bayesi	ian Neural Networks	5	
	3.1 E	Bayesian Conolutional Neural Networks	6	
4	Simula	ation	6	
	4.1	CIFAR-10	6	

5	Clos	sing	8
	4.3	Results	7
	4.2	Hyperparamaters	7
RI	lair, So	orgman, Conor	

1 Introduction

1.1 History

2 Neural Network

Figure 1: Example neural network

Neural networks....

Neural networks are made out of a series of neurons.

Figure 2: Neural network neuron

2.1 Convolutional Neural Networks

Figure 3: CNN pipeline [4]

Convolutional neural networks (CNN) are a type of neural network that is better suited for image recognition. Instead of reading the entire image a CNN slides over the image...

The result is that the neural network trains faster..

3 Bayesian Neural Networks

Figure 4: Example BNN [1]

Bayesian neural networks take the same principle as Similar to a Neural network such as...

Figure 5: Example BNN Neuron [2]

3.1 Bayesian Conolutional Neural Networks

Same principle...

4 Simulation

We use a BCNN implementation from Github based on work from ... [6] [5]

4.1 CIFAR-10

Figure 6: Example CIFAR-10 images [3]

The CIFAR-10 dataset...

4.2 Hyperparamaters

We used the following hyperparamaters for training

Hyperparameter	CNN	BCNN
Epochs	500	500
Learning Rate		May be higher
		(0.01 - 0.1) due to
		simpler structure
Regularization	L1/L2 weight de-	Can benefit from
	cay or Dropout	Dropout, but
	common to pre-	weight decay
	vent overfitting	might be less
		crucial
Optimizer	Adamw	Adamw

4.3 Results

Figure 7: Confusion matrices

5 Closing

References

- Fleszar, J. (2023). Bayesian neural networks capturing the uncertainty of the real world!!
- Häse, F., Galván, I. F., Aspuru-Guzik, A., Lindh, R., & Vacher, M. (2019). How machine learning can assist the interpretation of ab initio molecular dynamics simulations and conceptual understanding of chemistry. *Chemical* science, 10(8), 2298–2307.
- Krizhevsky, A., Nair, V., & Hinton, G. (n.d.). Cifar-10 (canadian institute for advanced research). http://www.cs.toronto.edu/~kriz/cifar.html
- Saha, S. (2018). A guide to convolutional neural networks the eli5 way.
- Shridhar, K., Laumann, F., & Liwicki, M. (2018). Uncertainty estimations by softplus normalization in bayesian convolutional neural networks with variational inference. *arXiv preprint arXiv:1806.05978*.
- Shridhar, K., Laumann, F., & Liwicki, M. (2019). A comprehensive guide to bayesian convolutional neural network with variational inference. *arXiv* preprint arXiv:1901.02731.