

ME 471/571

Week 3 - Collective Communication

MESSAGE PASSING MODEL

Example of data parallelism - compute the derivative of sin(x)

Divide and Conquer: We can divide the work among available ranks, where each rank performs a fraction of the work

DERIVATIVE EXAMPLE

EXAMPLE – INTEGRATE A FUNCTION

Integrate
$$f(x) = \sin(x)$$
 on $x \in [0, 2\pi]$ using trapezoidal rule:
$$\int_a^b f(x) dx \approx \sum_{i=0}^{N-1} \frac{1}{2} h\left(f(x_i) + f(x_{i+1})\right)$$

TRAPEZOIDAL RULE EXAMPLE

TRAPEZOIDAL RULE EXAMPLE

Reduction

MPI_Reduce(input, output, count, datatype, operation, root, communicator); MPI SUM which variable what type? variable for which MPI_MAX which rank to reduce the result MPI_MIN communicat how many data elements is receiving? or to use? to send per rank

TRAPEZOIDAL RULE EXAMPLE

Broadcast

MPI_Bcast(data, count, datatype, root, communicator);

Reduction + Broadcast = Allreduce

MPI_Allreduce(input, output, count, datatype, operator, communicator);

CLASSROOM EXAMPLE

- 1. An instructor is announcing the date of the test.
- 2. The students write the test and the instructor is collecting their individual papers.
- 3. The instructor gives the papers back to students.
- 4. The instructor computes the average score.

broadcast

gather

scatter

reduction

Broadcast

Reduction

Scatter

DERIVATIVE EXAMPLE

DERIVATIVE EXAMPLE

EXAMPLE

Imagine you need to compute a standard deviation of a large set of numbers saved in a file. How would you design a parallel algorithm using Reduce, Broadcast, Scatter, Gather, ... functionalities?

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)} \quad \text{where} \quad \mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i$$