Linear Regression Model for Critical Reviews

Puvit Pracharktam 6031830321

PROCEDURE

- Select all numerical features
- Cleaning data by drop >3 NaN in each column and replace median
- Scaling to log scale by both Min-Max normalisation and standardisation method
- Correlation cutout at **0.6**
- Divide **30%** of data for testing

Scatter plot between Number of Critical Reviews

There are 4 variables show possible linear correlation

Before taking log scaling

After taking log scaling

Judging from the feature's statistic, it is safe to fill all NaN with median.

I cannot taking log scale in num_critic_for_reviews and movies_facebook_likes because there are some value might be -infinity.

CORRELATION ANALYSIS

Not scaled

CORRELATION ANALYSIS

Scaled by log

From comparison, show that we should use log scale before training

Selected features correlated with num_critic_for_reviews > 0.6

log_num_user_for_reviews 0.6	56187
------------------------------	-------

log_num_voted_users 0.682921

movie_facebook_likes 0.683318

	log_num_user_for_reviews	movie_facebook_likes	log_num_voted_users
log_num_user_for_reviews	1.000000	0.363553	0.888058
movie_facebook_likes	0.363553	1.000000	0.411220
log_num_voted_users	0.888058	0.411220	1.000000

gross feature is eliminated since correlation < 0.6

Linear Regression Model Results (Normalized)

```
With num_voted_users, movie_facebook_likes (cutout at 0.6):
   num_critic_for_reviews = 0.5134 * num_voted_users
+ 1.4913 * movie_facebook_likes
+ 0.0957
(R^2 = 0.7828)
(RMSE : 122.14654)
```