Adaptive Control - Assignment 2

Self Tuning Regulators

Student: Murtaza Asaadi, mergenelos@gmail.com **Lecturer:** Prof. Baqeri, peyman.bk@gmail.com

May, 2025

Contents

Li	List of Figures						
List of Program Codes							
1	Pole	placement	1				
	1.1	Question 1	4				
	1.2	Question 2	7				
	1.3	Question 3	9				
	1.4	Question 4	11				
2	STR	for minimum phase system	13				
	2.1	Question 1	14				
	2.2	Question 2	17				
	2.3	Question 3	19				
	2.4	Question 4	23				
	2.5	Question 5	25				
	2.6	Question 6	27				
	2.7	Question 7	30				
	2.8	Question 8	34				

List of Figures

1	Original system step response	2
2	Discrete & contineus stable system step response	2
3	Pulse input and response	4
4	Continues system poles & zeros	6
5	Discrete system poles & zeros	6
6	Step response of closed system without cancellation	8
7	Pulse response of closed system without cancellation	8
8	Step response of closed system with cancellation	10
9	Pulse response of closed system with cancellation	10
10	Step response of system with mirrored zero	12
11	Pulse response of closed system without cancellation	12
12	Pulse response of system with mirrored zero	13
13	System response without zero cancelling Indirect STR	16
14	System parameters in indirect STR without zero cancellation	16
15	Indirect STR ystem response with zero cancellation	18
16	System parameters in indirect STR with zero cancellation	18
17	System response without zero cancelling direct STR	22
18	System parameters in direct STR without zero cancellation	22
19	direct STR ystem response with zero cancellation	24
20	System parameters in direct STR with zero cancellation	24
21	Over-parameterized system response	26
22	Parameter changes of over-parameterized system	26
23	Smaller P values with random teta	28
24	Bigger P values with random teta	28
25	P = 1e6*eye(Nv) and zero initial values for teta	29
26	P = 1e6*eye(Nv) and more accurate initial values for teta	29
27	System output with white noise	31
28	System parameters with white noise	31
29	Compensating for system with white nois	32
30	System output with colored noise	32
31	System parameters with colored noise	33
32	Compensating for system with colored noise	33
33	Output with disturbance	36
34	Fixing the disturbance	36

35	Integral windup	37
36	Integral windup fix	37
37	System parameters with integral windup fix	38

List of Program Codes

1	Original system	1
2	Discrete stable system	1
3	Discrete stable system	3
4	Zeros & poles	5
5	Pole placement without cancellation	7
6	Pole placement with cancellation	9
7	Poles & zeros with a mirrored zero	11
8	RLS function	13
9	Diophantine function	14
10	Basic impelementation of Indirect STR without zero cancellation	15
11	Impelementation of Indirect STR with zero cancellation	17
12	Parameters of direct STR without zero cancellation	20
13	Basic impelementation of direct STR	21
14	Determining P and teta initial values	27
15	Noise implementation in Indirect STR	30
16	Disturbance effect on Indirect STR implementation	34
17	Impelementation of Indirect STR with disturbance and integral windup fix	35

1 Pole placement

The Matlab implementation of the original system's transfer function is given in Code 1. Its step response, shown in Figure 1, indicates that the original system is unstable.

```
12
    s = tf('s');
13
    G_Original =
    \rightarrow ((5*((0.7*s)+1)*(s+0.8))/((((3*s)+1)^2)*((2*s)-1)));
    if drawPlot
14
             figure;
15
             step(G_Original, 'b');
16
             legend('Step response');
17
             title('Step Response of Original System');
18
             fontsize( 24 , "points");
19
20
    end
```

Code 1: Original system

To enable the calculation of the system's settling time, the unstable pole was mirrored and the system was discretized, as implemented in the code shown in Code 2. The step response of the resulting, modified system is presented in Figure 2.

```
56
    %% Discrete transfer function of stable transfer
        function
   G_discrete = c2d(G, sampleTimeIntervals, 'zoh');
57
   % Compare step responses
58
   if drawPlot
59
            figure;
60
            step(G, 'b');
61
            hold on;
62
            step(G_discrete, 'r');
63
            legend('Continuous', 'Discrete');
64
            title('Step Response Comparison');
65
            fontsize( 24 , "points");
66
67
   end
```

Code 2: Discrete stable system

Additionally, we generated the pulse train required for subsequent sections. We then evaluated various pulse periods and widths to determine the required configuration based on the resulting settling time. The code for generating these pulses is depicted in Code 3, while Fig-

Figure 1: Original system step response

Figure 2: Discrete & contineus stable system step response

ure 3 presents the stable system's output responses to each corresponding pulse input.

```
k = 5; % 4x settling time
70
   Tp_min = k * Ts; % Minimum recommended period between
71
    → pulses
72
73
   fprintf('Minimum Recommended Pulse Period (Tp): %.2f

    seconds\n', Tp_min);

74
   %Simulation Time
75
   Tsim = 20 * Tp_min;
76
   t = 0:sampleTimeIntervals:Tsim;
77
78
79
   %Pulse Train 1 (Respecting Settling Time)
   u1 = gensig('square' ,Tp_min , Tsim , Gz.Ts);
80
   u2 = gensig('square', Tp_min/k, Tsim, Gz.Ts);
81
82
   y1 = lsim(G_discrete, u1, t);
83
   y2 = lsim(G_discrete, u2, t);
84
85
   if drawPlot
86
87
           figure;
           subplot (2,1,1);
88
           plot(t, u1, 'r-', t, y1, 'b-'); fontsize( 24
89
            → , "points");
            title(sprintf('Response with fpulse Allows
90

    Settling '));

           xlabel('Time (s)'); ylabel('Amplitude');
91
            → legend('Input Pulse', 'System Output');
            → grid on;
92
           ylim([-0.1 4.5]);
93
           subplot(2,1,2);
94
           plot(t, u2, 'r-', t, y2, 'b-'); fontsize( 24
95
            → , "points");
           title(sprintf('Response with fpulse Too Fast'));
96
97
            xlabel('Time (s)'); ylabel('Amplitude');
            → legend('Input Pulse', 'System Output');
            ylim([-0.1 4.5]);
98
99
   end
```

Code 3: Discrete stable system

The code for this section is available at assignment2/part1/PP1_0.m.

Figure 3: Pulse input and response

1.1 Question 1

Code 4 outlines the steps required to plot the zero and pole locations for both continuous and discrete systems. The resulting plots are shown in Figure 4 for the continuous system and

Figure 5 for the discrete system.

```
fprintf('Roots of continues transfer function:\n');
   continuesRoots = roots(G_Original.den{1});
9
   display(continuesRoots);
10
   figure;
11
12
   pzplot(G_Original);
   ee = findobj(gca, 'type', 'line');
13
   for i = 1:length(ee)
14
            set (ee(i), 'markersize', 24);
15
16
            set(ee(i), 'linewidth',2);
17
   end
   xlim([-2 1]);title('Pole-Zero map of continues
18

    system'); fontsize( 24 , "points");

19
20
   fprintf('Roots of discrete transfer function:\n');
   discreteRoots = roots(Gz.den{1});
21
   display(discreteRoots);
22
   figure;
23
24
   pzplot(Gz);
25
   ee = findobj(gca, 'type', 'line');
   for i = 1:length(ee)
26
27
            set (ee(i), 'markersize', 24);
28
            set(ee(i), 'linewidth',2);
29
   end
30
   title('Pole-Zero map of discrete system'); fontsize( 24
        , "points");
```

Code 4: Zeros & poles

As shown in Figure 5, the system has a pole located outside the unit circle, indicating that it is unstable. To design our reference model, we will relocate this unstable pole inside the unit circle and determine B_m such that the step response approaches a steady-state value of 1.

The code for this section is available at assignment2/part1/PP1_1.m.

Figure 4: Continues system poles & zeros

Figure 5: Discrete system poles & zeros

1.2 Question 2

In this section, we place our desired poles as shown in Code 5. Our located poles does not cancell out the system zeros. Figure 6 shows the step response of the closed loop system. Using the pulse input generated in last section, the system output and control signals are plotted at Figure 7.

```
10
    % Convert to state-space representation
   [A, B, C, D] = ssdata(Gz);
11
12
   % Check controllability
13
   Co = ctrb(A, B);
14
   if rank (Co) == size (A, 1)
15
   disp('System is controllable');
16
17
18
   error('System is not controllable');
19
   end
20
   % Choose desired poles to improve settling time
21
   desired_poles = [0.4, 0.5, 0.8];
22
23
   K = place(A, B, desired_poles);
24
25
   sys_cl_no_kr = ss(A - B*K, B, C, D, sampleTimeIntervals);
26
   kr = 1 / dcgain(sys_cl_no_kr);
27
28
   % Create closed-loop system with precompensator
29
30
   B_cl = B * kr;
31
   sys_cl = ss(A - B*K, B_cl, C, D, sampleTimeIntervals);
```

Code 5: Pole placement without cancellation

The code for this section is available at assignment2/part1/PP1_2.m.

Figure 6: Step response of closed system without cancellation

Figure 7: Pulse response of closed system without cancellation

1.3 Question 3

In this section, we place the desired poles as demonstrated in Code 6. The step response of the resulting closed-loop system is shown in Figure 8. Using the pulse input generated in the previous section, the system output and control signals are plotted in Figure 9. As shown, the desired pole locations effectively cancel the zeros of the original discrete system.

```
desired_poles = [roots(Gz.num{1}); 0.8];
22
                                              % Cancel zeros
        with poles and add fast pole
23
   % Compute state feedback gain
24
   K = place(A, B, desired_poles);
25
26
   % Create closed-loop system with precompensator
27
   sys_ol = ss(A, B, C, D, sampleTimeIntervals);
28
   sys_cl = ss(A-B*K, B, C, D, sampleTimeIntervals);
29
30
   sys_cl = minreal(sys_cl);
   % Adjust DC gain for unity steady-state
31
   kr = 1/dcgain(sys_cl);
32
   sys_cl = ss(A-B*K, B*kr, C, D, sampleTimeIntervals);
33
```

Code 6: Pole placement with cancellation

The code for this section is available at assignment2/part1/PP1_3.m.

Figure 8: Step response of closed system with cancellation

Figure 9: Pulse response of closed system with cancellation

1.4 Question 4

In this section, we mirror one of the zeros to a location outside the unit circle, as shown in Code 7. The poles and zeros of the modified system are illustrated in Figure 10. The step response of the system with the mirrored zero is presented in Figure 11, while the system's response to the pulse input is shown in Figure 12.

```
9 G_mirrored =

\leftrightarrow ((5*((0.7*s)+1)*(s-0.8))/((((3*s)+1)^2)*((2*s)-1)));

10 Gz = c2d(G_mirrored, sampleTimeIntervals, 'zoh');
```

Code 7: Poles & zeros with a mirrored zero

The code for this section is available at assignment2/part1/PP1_4.m.

Figure 10: Step response of system with mirrored zero

Figure 11: Pulse response of closed system without cancellation

Figure 12: Pulse response of system with mirrored zero

2 STR for minimum phase system

In this section, we implement a Self-Tuning Regulator (STR)-based controller for the system. We begin with an indirect STR approach without pole-zero cancellation, followed by an indirect STR implementation with pole-zero cancellation. The same steps are then applied to the direct STR approach. Next, we analyze the effects of noise and disturbance on the indirect STR. Finally, we examine the impact of parameter variations on the performance of the direct STR. Throughout this section, we utilize Recursive Least Squares (RLS) and Diophantine equation functions, as shown in Code 8 and Code 9, respectively.

```
1
  function [teta , P] = RLS(U , V ,Y, teta , P , Nv,
       lamda)
2
           U = U(:)';
           V = V(:);
3
           phi = [U, V]';
4
           K = P*phi*(lamda+phi'*P*phi)^(-1);
5
           P = ((eye(Nv) - K*phi')*P)/lamda;
6
           teta = teta + K*(Y - phi'*teta);
7
8
  end
```

Code 8: RLS function

```
1
   function [R , S , Ac_result] = Diophantine(A , B , Ac)
2
            n = numel(A) - 1; % degree of A polynomial
3
            m = numel(B)-1; % degree of B polynomial
4
5
            B = [zeros(1, n-m), B];
6
7
            E = zeros(2*n, 2*n);
8
9
            for i = 1:n
            E(:, i) = [zeros(i-1, 1); A'; zeros(n-i, 1)]
10
            E(: , i+n) = [zeros(i-1 , 1) ; B' ; zeros(n-i ,
11
                1) ];
            end
12
13
            nc = numel(Ac) - 1;
14
            Ac = [zeros(1, 2*n-(nc+1)), Ac];
15
16
            RS = E \setminus Ac';
17
18
            R = RS(1:n);
19
            S = RS(n+1:end);
20
2.1
            % Ac\_result = A*R+B*S;
22
            AR = conv(A, R);
23
            BS = conv(B, S);
2.4
            Ac_result = poly2sym(AR) + poly2sym(BS) ;
25
            Ac_result = sym2poly(Ac_result);
26
27
            S = S(:)';
28
            R = R(:)';
29
30
31
   end
```

Code 9: Diophantine function

2.1 Question 1

Our reference model is based on the approach presented in the textbook and is implemented as $sys_{ref} = tf(beta*B, Am, Gz.Ts)$, where beta*B is chosen such that the step response of the reference model approaches 1. We define $A_o = [0,0]$ and compute Ac = poly([A0, roots(Am)']).

Code 10 outlines the necessary steps to compute the control output. The system polynomials are estimated using the Recursive Least Squares (RLS) method, and the R and S polynomials are determined using the Diophantine equation. Figure 13 shows the system output and control effort for the indirect STR without zero cancellation, while Figure 14 illustrates the evolution

of parameter estimates over the course of the simulation.

```
%% Parameters
1
    cancel = 0; % 0 no zero cancel, 1 all zero cancel
2
   noise = 0; % if 1 white noise, 2 colored noise
   distrubance = 1; % set to 1 for step disturbance
   distrubance_fix = 0; % set to 1 to fix system
   integral_fix = 0; % set 1 to limit u
7
   vlimit = 4; % limit of u
   lamda = 1;
8
9
10
   beta = sum(Am)/sum(B);
    sys_ref_dis = tf(beta*B, Am, Gz.Ts);
11
12
    for i = Nv+1:N
13
14
15
             y(i) = -A(2:end) *y(i-1:-1:i-na) +B*(u(i-d0:-1:i-n_1))
                 a) +vdist(i-(numel(A)-numel(B)):-1:i-(numel(_
              \rightarrow A)-1))+ynoise(i-(numel(A)-numel(B)):-1:i-(n<sub>1</sub>
             \rightarrow umel(A)-1)));
             Y = [-y(i-1), -y(i-2), -y(i-3)];
16
17
             U = [u(i-1) + vdist(i-1), u(i-2) + vdist(i-2),
             \rightarrow u(i-3)+vdist(i-3)];
18
             [teta , P] = RLS(Y ,U , y(i) , teta , P ,
19
             → Nv, lamda) ;
20
             tetas(:,\dot{1})=teta;
21
            Aes = [1 \text{ teta}(1:Nv/2)'];
22
            Bes = teta(Nv/2+1:end)';
2.3
2.4
25
             [R , S] = Diophantine(Aes , Bes , Ac) ;
             AcBm = conv(Ac, Bm);
26
             AmB = conv(Am, Bes);
27
             T = [(sum(AcBm) / sum(AmB)) *poly(A0)];
28
29
30
             u(i) = (-R(2:end)*u(i-1:-1:i-(numel(R)-1))+T*uc_1
              \rightarrow (i-(numel(R)-numel(T)):-1:i-(numel(R)-1))-S<sub>1</sub>
                *y(i-(numel(R)-numel(S)):-1:i-(numel(R)-1))_{I}
              \rightarrow )/R(1);
31
    end
```

Code 10: Basic impelementation of Indirect STR without zero cancellation

The code for this section is available at assignment2/part2/STR1_indirect.m. The Diophantine equation solver code is at assignment2/part2/Diophantine.m and RLS impelementation is located at assignment2/part2/RLS.m.

Figure 13: System response without zero cancelling Indirect STR

Figure 14: System parameters in indirect STR without zero cancellation

2.2 Question 2

By cancelling out the zeros of system, A_o will be of degre 0. The refrence model will be calculated based on Code 11. The main difference in zero cancellation is the calculations required for determining S and R parameters. The system polynomials are estimated using RLS method. Figure 13 shows the system output and control effort for indirect STR with zero cancellation. Figure 14 demonstrates the variation of parameter values over simulation time.

```
%% Parameters
    cancel = 1; % 0 no zero cancel, 1 all zero cancel
2
    noise = 0; % if 1 white noise, 2 colored noise
    distrubance = 1; % set to 1 for step disturbance
    distrubance_fix = 0; % set to 1 to fix system
 5
    integral_fix = 0; % set 1 to limit u
    vlimit = 4; % limit of u
7
    lamda = 1;
8
9
    if cancel
10
             sys\_ref\_dis = tf([0 sum(Am) 0], Am, Gz.Ts);
11
12
    if cancel
13
14
             A0 = 0;
             Ac = poly([A0 roots(B)']);
15
16
    if cancel
17
             S = zeros(1, numel(Am) - 1);
18
             R = zeros(1, numel(Am) - 1);
19
             R(1) = 1;
20
21
             for j = 1: numel(Am) - 1
                       S(\dot{\gamma}) = (Am(\dot{\gamma}+1) - Aes(\dot{\gamma}+1)) / Bes(1);
22
             end
23
24
             for j = 2:3
25
                      R(\dot{j}) = Bes(\dot{j})/Bes(1);
26
             end
             T = [0, Bm(2)/Bes(1), 0];
27
```

Code 11: Impelementation of Indirect STR with zero cancellation

The code for this section is available at assignment2/part2/STR1_indirect.m. By changing the change=0 to 1 system will calculate the R and S and determine other parameters required for Indirect STR with zero cancellation. The Diophantine equation solver code is at assignment2/part2/Diophantine.m and RLS impelementation is located at assignment2/part2/RLS.m.

Figure 15: Indirect STR ystem response with zero cancellation

Figure 16: System parameters in indirect STR with zero cancellation

2.3 Question 3

Since we are not cancelling the zeros of the system $degA_o = degA - degB - 1 = 0$ so we implement $A_o = [1]$ as a constant. Code 12 and Code 13 show the required steps to calculate the proper control output. The values of R, S and T are directly estimated using RLS . Figure 17 shows the system output and control effort for direct STR without zero cancellation. Figure 18

demonstrates the variation of parameter values over simulation time.

```
cancel = 0; % 0 no zero cancel, 1 all zero cancel
2
  %% generate Data
uc = u1;
  lamda = 1;
  system_dig = Gz; %system
  [B ,A] = tfdata(system_dig);
7
  A = cell2mat(A);
  B = cell2mat(B); B = B(2:end);
  % reference model
9
10 Am = [1 -1.7 0.92 -0.16];
11 if cancel
           sys\_ref\_dig = tf([0 sum(Am) 0], Am, Gz.Ts);
12
13
           A0 = [roots(B)'];
14
  else
15
           beta = sum(Am)/sum(B);
           sys_ref_dig = tf(beta*B, Am, Gz.Ts);
16
           A0 = [1];
17
18
  end
19
   [Bm , Am] = tfdata(sys_ref_dig);
20 Am = cell2mat(Am);
21 Bm = cell2mat(Bm); Bm = Bm(2:end);
22 y_ref = lsim(sys_ref_dig , uc , t) ;
23 %% initial parameters
24 n = numel(A) - 1;
25 m = numel(B) - 1;
26 d0 = n-m;
27 AOAm = conv(AO, Am);
Na0am = numel(A0Am)-1;
L = Na0am-d0;
30 Nv = 3*(L+1);
31 teta = zeros(Nv, 1);
32 P = 1e4 \times eye(Nv);
33 u = randn(Nv, 1); % initial effort control
34 y = randn(Nv, 1); % initial output
35 uf = randn(Nv , 1) ; % initial filtered effort control
36 yf = randn(Nv , 1) ; % initial filtered output
  ucf = randn(Nv , 1) ; % initial filtered command signal
37
38 N = numel(t);
39 for i = 1:Nv
           tetas(:,i) = teta;
40
41 end
```

Code 12: Parameters of direct STR without zero cancellation

```
1
   %% main loop
2
   for i = Nv+1:N
            y(i) =
3
             \rightarrow -A(2:end) *y(i-1:-1:i-n)+B*(u(i-d0:-1:i-n));
4
            U = uf(i-d0:-1:i-L-d0);
            V = [yf(i-d0:-1:i-L-d0)]'
5
             → -ucf(i-d0:-1:i-L-d0)']';
6
            Y = y(i) - y_ref(i);
7
8
            [teta, P] = RLS(U, V, Y, teta, P,
             → Nv,lamda);
9
            tetas(:,i)=teta;
10
            Rst = teta(1:Nv/3)';
11
12
            Sst = teta(Nv/3+1:2*Nv/3)';
            Tst = teta(2*Nv/3+1:Nv)';
13
14
            u(i) = (-Rst(2:end)*u(i-1:-1:i-L)+Tst*uc(i:-1:i|
15
             \rightarrow -L)-Sst*y(i:-1:i-L))/Rst(1);
16
            uf(i) = -A0Am(2:end) *uf(i-1:-1:i-Na0am) +u(i) ;
            yf(i) = -A0Am(2:end) * yf(i-1:-1:i-Na0am) + y(i) ;
17
            ucf(i) = -A0Am(2:end) * ucf(i-1:-1:i-Na0am) + uc(i)
18
             → ;
19
   end
```

Code 13: Basic impelementation of direct STR

The code for this section is available at assignment2/part2/STR1_direct.m. RLS impelementation is located at assignment2/part2/RLS.m.

Figure 17: System response without zero cancelling direct STR

Figure 18: System parameters in direct STR without zero cancellation

2.4 Question 4

By changing the *cancel* variable to 1 in Code 12, we can get the system response when all zeros are cancelled out. Figure 13 shows the system output and control effort for direct STR with zero cancellation. Figure 18 demonstrates the variation of parameter values over simulation time.

The code for this section is available at assignment2/part2/STR1_direct.m. By changing the change=0 to 1 system will determine values of R and S and T that are required for direct STR with zero cancellation.

Figure 19: direct STR ystem response with zero cancellation

Figure 20: System parameters in direct STR with zero cancellation

2.5 Question 5

Figure 21 presents the system output when R, S and T are over-parameterized. Figure 22 shows the respective parameters over time.

Figure 21: Over-parameterized system response

Figure 22: Parameter changes of over-parameterized system

2.6 Question 6

In this section, we vary the P and teta matrix using Code 14. In Question 3 of this section, we reported the results when teta = 1 * randn(Nv, 1); and P = 1e6 * eye(Nv);. Figure 23 and Figure 24 compares the system output results when P is chosen to have components smaller and bigger than 1e6 accordingly. Figure 25 demonstrates the system outputs when initial teta values are set to zero and P = 1e6 * eye(Nv). Figure 26 is the result of setting closer values to actual calculated parameters for initial teta.

Code 14: Determining P and teta initial values

The code for this section is available at assignment2/part2/STR1_direct.m.

Figure 23: Smaller P values with random teta

Figure 24: Bigger P values with random teta

Figure 25: P = 1e6*eye(Nv) and zero initial values for teta

Figure 26: P = 1e6*eye(Nv) and more accurate initial values for teta

2.7 Question 7

Code 15 is the necessary changes in the codebase to implement white and colored noise and related fixes in Indirect STR controller. Effect of white noise on the system is shown in Figure 27. Figure 28 represents the variation on estimation parameters when white noise is present. By varying the lamda of RLS, we can compensate for white noise as shown in Figure 29. Figure 30 and Figure 31 present the output and parameter changes of the system when colored noise is applied to the output. Figure 32 presents the fixed output of the system with colored noise. By varying the R parameter and Lamda and introducing further A_o polynomial roots we can compensate for colored noise.

```
1
   noise = 1; % if 1 white noise, 2 colored noise
2
   lamda = 0.9;
3
    . . .
4
   if noise
            e = 0.05*randn(length(t), 1);
5
            if noise == 2
 6
7
                     sys_{dist} = tf(1, [1 -1], Gz.Ts);
8
                     ynoise = lsim(sys_dist , e , t) ;
9
            else
10
                     ynoise = e;
11
            end
12
   else
            ynoise = zeros(length(t), 1);
13
14
   end
15
        y(i) =
16
            -A(2:end)*y(i-1:-1:i-na)+B*(u(i-d0:-1:i-na)+vdi_1
            st(i-(numel(A)-numel(B)):-1:i-(numel(A)-1))+yno
            ise(i-(numel(A)-numel(B)):-1:i-(numel(A)-1)));
17
```

Code 15: Noise implementation in Indirect STR

The code for this section is available at assignment 2/part 2/STR1 indirect. m. By changing the noise=0 to 1 we can introduce white noise to the system. changing the same variable to 2 implements a colored noise in the system. lamda is used as a forgetting factor for RLS.

Figure 27: System output with white noise

Figure 28: System parameters with white noise

Figure 29: Compensating for system with white nois

Figure 30: System output with colored noise

Figure 31: System parameters with colored noise

Figure 32: Compensating for system with colored noise

2.8 Question 8

Code 16 and Code 17 present the necessary modifications to the codebase for introducing a disturbance and implementing corresponding fixes in the indirect STR controller. A steady disturbance, vdist, is generated by filtering the signal e through a first-order filter. This disturbance affects both y(i) and U. The impact of the disturbance on the system output is illustrated in Figure 33. By incorporating the characteristics of the step disturbance into the R polynomial, the system response can be corrected, as demonstrated in Figure 34. However, with sufficiently large disturbances, the implemented R may experience windup, severely degrading system performance, as shown in Figure 35. A corrected version of the system, accounting for this issue, is shown in Figure 36. The evolution of parameter estimates over time is depicted in Figure 37.

```
%% Parameters
1
   distrubance = 1; % set to 1 for step disturbance
2
   distrubance_fix = 1; % set to 1 to fix system
3
   integral_fix = 1; % set 1 to limit u
 4
5
   vlimit = 4; % limit of u
6
7
    if distrubance
8
            e = 0.1 * randn(length(t), 1);
            for i =50:length(e)
9
10
                     e(i) = 0;
11
            end
            sys_dist = tf(1, [1 -1], Gz.Ts);
12
            vdist = lsim(sys_dist , e , t) ;
13
14
    else
            vdist = zeros(length(t), 1);
15
16
    end
17
    if distrubance fix
18
            A0 = [0 \ 0 \ 0 \ 0];
19
20
    else
            A0 = [0 \ 0];
21
            %A0 = q^2 -0,5 q +0.06
22
23
    end
24
```

Code 16: Disturbance effect on Indirect STR implementation

```
1
    %main loop
    for i = Nv+1:N
2
 3
             y(i) = -A(2:end) *y(i-1:-1:i-na) +B*(u(i-d0:-1:i-1))
                 na) +vdist(i-(numel(A)-numel(B)):-1:i-(numel_
                 (A) -1)) + ynoise(i - (numel(A) - numel(B)) : -1:i - (_|
             \rightarrow numel(A)-1)));
             Y = [-y(i-1), -y(i-2), -y(i-3)];
4
5
             U = [u(i-1) + vdist(i-1), u(i-2) + vdist(i-2),
             \rightarrow u(i-3)+vdist(i-3)];
6
             [teta , P] = RLS(Y ,U , y(i) , teta , P ,
7
             → Nv,lamda);
             tetas(:,i)=teta;
8
9
            Aes = [1 \text{ teta}(1:Nv/2)'];
10
11
            Bes = teta(Nv/2+1:end)';
12
13
            if distrubance_fix
                      [Rbar , S] = Diophantine(conv(Aes,[1
14
                      \rightarrow -1]) , Bes , Ac) ;
15
                      R = conv(Rbar, [1 -1]);
                      AcBm = conv(Ac, Bm);
16
                      AmB = conv(Am, Bes);
17
                      T = [0, 0, sum (AcBm) / sum (AmB)];
18
19
             else
20
                      [R , S] = Diophantine(Aes , Bes , Ac)
                      AcBm = conv(Ac, Bm);
21
22
                      AmB = conv(Am, Bes);
23
                      T = [(sum(AcBm) / sum(AmB))*poly(A0)];
                      end
24
25
             end
26
            u(i) = (-R(2:end)*u(i-1:-1:i-(numel(R)-1))+T*uc_{||}
27
                 (i-(numel(R)-numel(T)):-1:i-(numel(R)-1))-S_{+}
                *y(i-(numel(R)-numel(S)):-1:i-(numel(R)-1))_{1}
                )/R(1);
28
             if integral_fix
                      if u(i) <-vlimit</pre>
29
                              u(i) = -vlimit;
30
                      elseif u(i) > vlimit
31
32
                              u(i) = vlimit;
33
                      end
             end
34
35
    end
```

Code 17: Impelementation of Indirect STR with disturbance and integral windup fix

Figure 33: Output with disturbance

Figure 34: Fixing the disturbance

Figure 35: Integral windup

Figure 36: Integral windup fix

Figure 37: System parameters with integral windup fix

The code for this section is available at assignment2/part2/STR1_indirect.m. By changing the distrubance=0 to 1 we can introduce disturbance to the system. Variables $distrubance_fix$ and $integral_fix$ are used to enable respective system fixes. vlimit is used to limit the control output when fixing integral windup.