

AP3003

General Description

The AP3003 series of regulators are fixed frequency PWM buck (step-down) DC/DC converter, capable of driving a 3A load with excellent line and load regulation. These regulators include internal frequency compensation and a fixed frequency oscillator so that they are easy to use. A system adopting AP3003 requires a minimum number of external components to work.

A standard series of inductors, optimized for use with the AP3003 series, are available from several manufacturers. This feature greatly simplifies the design of switch-mode power supplies.

These ICs are available in TO-220-5 and TO-263-5 packages.

Features

- 3.3V, 5V, 12V Fixed (±4% Tolerance) and Adjustable (±3% Tolerance) Output Versions
- Guaranteed 3A Output Load Current
- 150kHz Fixed Frequency Internal Oscillator
- Input Voltage Range up to 32V
- Requires only 4 external components
- High Efficiency up to 90%
- Excellent Line and Load Regulation
- TTL Shutdown Capability
- Low Power Standby Mode, I_O Typically 80μA
- Built-in Current Limit Protection and Thermal Shutdown Circuit

Applications

- · LCD Monitor and LCD TV
- On-Card DC-DC Converter
- DVD Recorder
- PDP

Figure 1. Package Types of AP3003

AP3003

Pin Configuration

Figure 2. Pin Configuration of AP3003 (Top View)

Pin Description

Pin Number	Pin Name	Function
1	V _{IN}	Unregulated input voltage
2	OUTPUT	Switch driver output
3	GND	Ground
4	FEEDBACK	Feedback Pin. For fixed version, connect it to system output. For adjustable version, connect it with an external resistor and capacitor feedback network to program the system output voltage
5	ON/OFF	The TTL logic compatible input to control the regulator on or off

AP3003

Functional Block Diagram

Figure 3. Functional Block Diagram of AP3003

AP3003

Ordering Information

Package	Temperature	Part N	lumber	Mark	Packing	
1 ackage	Range	Lead Free	Green	Lead Free	Green	Туре
		AP3003T-ADJE1	AP3003T-ADJG1	AP3003T-ADJE1	AP3003T-ADJG1	Tube
TO-220-5	-40 to 85°C	AP3003T-3.3E1	AP3003T-3.3G1	AP3003T-3.3E1	AP3003T-3.3G1	Tube
10-220-3	-40 to 85 C	AP3003T-5.0E1	AP3003T-5.0G1	AP3003T-5.0E1	AP3003T-5.0G1	Tube
		AP3003T-12E1	AP3003T-12G1	AP3003T-12E1	AP3003T-12G1	Tube
	TO-263-5 -40 to 85°C	AP3003S-ADJE1	AP3003S-ADJG1	AP3003S-ADJE1	AP3003S-ADJG1	Tube
		AP3003S-ADJTRE1	AP3003S-ADJTRG1	AP3003S-ADJE1	AP3003S-ADJG1	Tape & Reel
		AP3003S-3.3E1	AP3003S-3.3G1	AP3003S-3.3E1	AP3003S-3.3G1	Tube
TO-263-5		AP3003S-3.3TRE1	AP3003S-3.3TRG1	AP3003S-3.3E1	AP3003S-3.3G1	Tape & Reel
10-203-3		AP3003S-5.0E1	AP3003S-5.0G1	AP3003S-5.0E1	AP3003S-5.0G1	Tube
		AP3003S-5.0TRE1	AP3003S-5.0TRG1	AP3003S-5.0E1	AP3003S-5.0G1	Tape & Reel
		AP3003S-12E1	AP3003S-12G1	AP3003S-12E1	AP3003S-12G1	Tube
		AP3003S-12TRE1	AP3003S-12TRG1	AP3003S-12E1	AP3003S-12G1	Tape & Reel

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant. Products with "G1" suffix are available in green packages.

AP3003

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit	
Input Voltage	V _{IN}	40	V	
ON/OFF Pin Voltage	V _{ON/OFF}	40	V	
Feedback Pin Voltage	V _{FB}	40	V	
Operating Junction Temperature	T_{J}	150	°C	
Thermal Resistance	TO-220-5	P	60	0077
(Junction to Ambient, No Heatsink)	TO-263-5	$ m R_{ heta JA}$	00	°C/W
Lead Temperature (Soldering, 10sec)	T _{LEAD}	260	°C	
Storage Temperature Range		T _{STG}	-65 to 150	°C

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Value	Unit	
	3.3V		32	
Maximum Input Voltage (Note 2)	5.0V		32	
	12V	V_{IN}	32	V
	ADJ (V _{OUT} =3.2V)		32	
	ADJ (V _{OUT} =2.5V)		25	
Operating Junction Temperature	T_{J}	-40 to 125	°C	

Note 2: For ADJ version, the recommended supply voltage depends on the needed output voltage.

AP3003

Electrical Characteristics

For 3.3V Output Voltage Version

Unless otherwise specified, T_J =25°C. The specifications with **boldface type** apply over Full Operating Junction Temperature Range.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	$5.5V \le V_{IN} \le 32V$, $0.2A \le I_{LOAD} \le 3A$	3.168 3.135	3.3	3.432 3.465	V
Efficiency	η	V_{IN} =12V, I_{LOAD} =3A		75		%

For 5V Output Voltage Version

Unless otherwise specified, $T_J=25^{\circ}C$. The specifications with **boldface type** apply over Full Operating Junction Temperature Range.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	$7V \le V_{IN} \le 32V,$ $0.2A \le I_{LOAD} \le 3A$	4.800 4.750	5	5.200 5.250	V
Efficiency	η	V_{IN} =12V, I_{LOAD} =3A		80		%

For 12V Output Voltage Version

Unless otherwise specified, T_J =25°C. The specifications with **boldface type** apply over Full Operating Junction Temperature Range.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Voltage	V _{OUT}	$15V \le V_{IN} \le 32V,$ $0.2A \le I_{LOAD} \le 3A$	11.52 11.40	12.0	12.48 12.60	V
Efficiency	η	V_{IN} =24V, I_{LOAD} =3A		88		%

For ADJ Output Voltage Version

Unless otherwise specified, T_J =25°C. The specifications with **boldface type** apply over Full Operating Junction Temperature Range.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Feedback Voltage	V_{FB}	$4.5 \text{V} \leq \text{V}_{\text{IN}} \leq 25 \text{V},$ $0.2 \text{A} \leq \text{I}_{\text{LOAD}} \leq 3 \text{A},$ V_{OUT} programmed for 2.5 V	1.193 1.18	1.23	1.267 1.28	V
Efficiency	η	V_{IN} =12V, I_{LOAD} =3A, V_{OUT} =2.5V		73		%

Aug. 2008 Rev. 1. 2

BCD Semiconductor Manufacturing Limited

AP3003

Electrical Characteristics (Continued) For All Output Voltage Versions

Unless otherwise specified , V_{IN} =12V for 3.3V, 5V and adjustable version, V_{IN} =24V for 12V version, I_{LOAD} =500mA, T_{J} =25°C. Specifications with **boldface type** apply over Full Operating Junction Temperature Range.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Feedback Bias Current	I_{FB}	Adjustable Version Only, V _{FB} =1.3V		10	50 100	nA
Oscillator Frequency	f	(Note 3)	127 110	150	173 173	kHz
Saturation Voltage	V _{SAT}	I_{LOAD} =3A (No output devices, V_{FB} =0V)		1.2	1.5 1.6	V
Maximum Duty Cycle	D_{MAX}	V _{FB} =0V		100		%
Minimum Duty Cycle	D_{MIN}	V _{FB} =1.3V		0		%
Current Limit	I_{CL}	Peak Current , No output devices, V _{FB} =0V	3.6 3.4	4.5	6.9 7.5	A
Output Leakage Current	$I_{ m SWL}$	Output=0V, No output devices, V _{FB} =1.3V, V _{IN} =32V		50		μА
Output Leakage Current	*SWL	Output=-1V, No output devices, V _{FB} =1.3V, V _{IN} =32V		2	30	mA
Quiescent Current	I_Q	V _{FB} =1.3V		5	10	mA
Standby Quiescent Current	I _{STBY}	ON/OFF Pin=5V, V _{IN} =18V		80	200 250	μА
ON/OFF Pin Logic Input	$V_{\rm IL}$	Regulator ON			0.6	V
Threshold Voltage	V _{IH}	Regulator OFF	2.0			v
ON/OFF Pin Input Current	I _H	V _{PIN5} =2.5V (Regulator OFF)		5	15	μΑ
ON OFF FIII Input Current	I_{L}	V _{PIN5} =0.5V (Regulator ON)		0.02	5	μΑ

Note 3: The switching frequency is reduced when the second stage current limit is activated.

Note 4: The specifications with boldface are GBD (Guaranteed By Design).

Typical Performance Characteristics

Figure 4. Efficiency vs. Output Current

Figure 5. Efficiency vs. Output Current

Figure 6. Efficiency vs. Output Current

Figure 7. Efficiency vs. Output Current

Typical Performance Characteristics (Continued)

Figure 8. Efficiency vs. Input Voltage

Figure 9. Line Regulation

Figure 10. Load Regulation

Figure 11. Switch Saturation Voltage vs. Switch Current

Typical Performance Characteristics (Continued)

Figure 12. Switch Current Limit vs. Junction Temperature

Figure 13. Quiescent Current vs. Supply Voltage

Figure 14. Quiescent Current vs. Junction Temperature

Figure 15. Shutdown Quiescent Current vs. Input Voltage

Typical Performance Characteristics (Continued)

Figure 16. On/Off Threshold Voltage vs. Junction Temperature

Figure 17. $\overline{\text{On}}/\text{Off}$ Pin Current vs. $\overline{\text{On}}/\text{Off}$ Pin Voltage

Figure 18. Switching Frequency vs. Junction Temperature

Typical Application

L1: Sumida CDRH127/LDNP-220MC or Equivalent

Figure 19. Typical Application of AP3003-3.3V

L1: Sumida CDRH127/LDNP-220MC or Equivalent

Figure 20. Typical Application of AP3003-5.0V

Typical Application (Continued)

L1: Sumida CDRH127/LDNP-220MC or Equivalent

Figure 19. Typical Application of AP3003-12V

L1: Sumida CDRH127/LDNP-220MC or Equivalent

Figure 20. Typical Application of AP3003-ADJ

AP3003

Mechanical Dimensions

TO-220-5 Unit: mm(inch)

AP3003

Mechanical Dimensions (Continued)

TO-263-5 Unit: mm(inch)

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

China Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788