

LOG1810 STRUCTURES DISCRÈTES

TD 3 : INFÉRENCE ET TECHNIQUES DE PREUVES A2023

SOLUTIONNAIRE

Exercice 1

Michel-Ange est un célèbre peintre italien qui a vécu au XVIe siècle. Il est connu pour ses fresques à la chapelle Sixtine. En se préparant pour une nouvelle œuvre d'art, Michel-Ange essaie de se rappeler les couleurs de peinture qu'il a emportées. Il se souvient que :

- (I.) Il n'a pas de blanc
- (II.) Il a toujours du jaune lorsqu'il n'a pas de vert
- (III.) S'il a du rouge, alors il n'a ni marron ni noir
- (IV.) Des trois couleurs : vert, blanc et rouge, il en a au moins deux
- (V.) Des deux couleurs : noir et gris, il en a exactement une

On suppose qu'il n'a jamais d'autres couleurs que celles citées. Quelle(s) couleur(s) a-t-il emportée(s) avec **certitude** ? Qu'en est-il des autres couleurs ? Montrez toutes les étapes de votre réponse.

Solution:

Pour résoudre ce problème, nous allons définir les propositions suivantes :

- B : Michel-Ange a du blanc
- J: Michel-Ange a du jaune
- V : Michel-Ange a du vert
- R: Michel-Ange a du rouge
- M: Michel-Ange a du marron
- N: Michel-Ange a du noir
- G: Michel-Ange a du gris

Ensuite, nous pouvons traduire les énoncés en utilisant ces propositions.

```
\begin{array}{l} H1: \neg B \\ H2: \neg V \rightarrow J \\ H3: R \rightarrow (\neg M \land \neg N) \\ H4: (V \land B) \lor (V \land R) \lor (B \land R) \\ H5: N \bigoplus G \end{array}
```

Maintenant, nous allons utiliser les règles d'inférence pour déduire les couleurs de peinture que Michel-Ange a emportées avec certitude. Le raisonnement est le suivant :

1.	$\neg B$	H1
2.	$(V \wedge B) \vee (V \wedge R) \vee (B \wedge R)$	H4
3.	$(V \wedge R)$	Étapes 1 et 2 et résolution
4.	R	Étape 3 et règle de la simplification
5.	$R \to (\neg M \land \neg N)$	Н3
6.	$(\neg M \land \neg N)$	Étapes 4 et 5 et règle du modus ponens
7.	$\neg N$	Étape 6 et règle de la simplification
8.	$\neg M$	Étape 6 et règle de la simplification

À partir des étapes 1, 7 et 8, nous pouvons affirmer avec certitude qu'il y n'y a pas de blanc, de noir ou de marron. Résumons à partir de l'étape 8 pour en déduire les informations sur les autres couleurs :

Nous pouvons ainsi conclure que Michel-Ange a les couleurs de peinture suivantes avec certitude : vert, rouge et gris. Et enfin :

12.
$$V$$
 Étape 11 et règle de la simplification 13. $\neg J \rightarrow V$ Contraposée de $H2$

Cependant, nous ne pouvons pas déduire jaune, car avec les étapes 11 et 12, $([V \land (\neg J \rightarrow V)] \rightarrow \neg J)$ n'est pas une tautologie. Cela correspond à un sophisme et en particulier à l'affirmation du conséquent, ce qui n'est pas une règle d'inférence valide.

En somme, nous pouvons conclure avec certitude que Michel-Ange a les couleurs de peinture suivantes : vert, rouge et gris. De plus, nous pouvons affirmer avec certitude qu'il n'y a pas de blanc, de marron ou de noir. Cependant, nous ne pouvons pas conclure que Michel-Ange a emporté la couleur jaune.

Exercice 2

En utilisant la preuve par l'absurde (preuve par contradiction), démontrez que :

$$\forall x \in \mathbb{R}_+^*, \forall y \in \mathbb{R}_+^* \left[\left(\frac{\sqrt{2} + x}{y} = \frac{y + \sqrt{2}}{x} \right) \to (x = y) \right]$$

Solution:

Puisqu'on suggère une preuve par l'absurde, on doit supposer l'hypothèse vraie et la conclusion fausse pour arriver à une contradiction, donc :

$$\exists x \in \mathbb{R}_+^*, \exists y \in \mathbb{R}_+^* \left[\left(\frac{\sqrt{2} + x}{y} = \frac{y + \sqrt{2}}{x} \right) \land (x \neq y) \right]$$

x et y étant positifs, $y + \sqrt{2}$ et $\sqrt{2} + x$ sont non nuls.

On a que :
$$x(\sqrt{2} + x) = y(y + \sqrt{2}) \Leftrightarrow (\sqrt{2})x + x^2 = y^2 + (\sqrt{2})y$$

$$\Leftrightarrow ((\sqrt{2})x - (\sqrt{2})y) + (x^2 - y^2) = 0$$

$$\Leftrightarrow \sqrt{2}(x - y) + (x - y)(x + y) = 0$$

$$\Leftrightarrow (x - y)(\sqrt{2} + x + y) = 0$$

Or, puisque $x \neq y$, on a donc $(\sqrt{2} + x + y) = 0$, soit $x + y = -\sqrt{2}$.

Leur somme est donc négative.

Cela contredit l'hypothèse comme quoi il existe des x et y positifs satisfaisant l'énoncé. Ce qui est absurde. Il faut donc,

$$\forall x \in \mathbb{R}_+^*, \forall y \in \mathbb{R}_+^* \left[\left(\frac{\sqrt{2} + x}{y} = \frac{y + \sqrt{2}}{x} \right) \to (x = y) \right]$$

CQFD

Exercice 3

Soit n un entier positif. En utilisant la preuve directe, démontrez que :

n est pair si et seulement si n^2 est pair si et seulement si n-1 est impair

Solution:

Soit les propositions suivantes :

- $p_1:n$ est pair
- $p_2: n^2$ est pair
- $p_3: n-1$ est impair

En utilisant ces propositions, nous pouvons traduire l'énoncé par

$$p_1 \leftrightarrow p_2 \leftrightarrow p_3$$

Ceci est logiquement équivalent à

$$p_1 \leftrightarrow p_3 \leftrightarrow p_2$$

Ou encore à

$$(p_1 \rightarrow p_3) \land (p_3 \rightarrow p_2) \land (p_2 \rightarrow p_1)$$

Alors, il nous faut donc démontrer trois implications, soit :

- (I.) $(p_1 \rightarrow p_3)$: Si n est pair, alors n-1 est impair
- (II.) $(p_3 \rightarrow p_2)$: Si n-1 est impair, alors n^2 est pair
- (III.) $(p_2 \rightarrow p_1)$: Si n^2 est pair, alors n est pair
- (I.) Démontrons que si n est pair, alors n-1 est impair, en utilisant la **preuve directe**. Supposons par hypothèse que n est pair. Il existe donc un entier k tel que n=2k.

Donc, que
$$n - 1 = (2k) - 1$$

= $2k - 1 + 1 - 1$
= $2k - 2 + 1$
= $2(k - 1) + 1$

$$= \underbrace{2k' + 1}_{impair} \text{ où } k' = k - 1 \text{ est entier}$$

Il existe donc un entier k' tel que n-1=2k'+1. L'implication $(p_1 \rightarrow p_3)$ est ainsi prouvé.

(II.) Démontrons que si n-1 est impair, alors n^2 est pair, en utilisant la **preuve directe**. Par hypothèse, supposons que n-1 est impair. Il existe donc un entier k tel que n-1=2k+1. On déduit que n=2k+2.

Donc,
$$n^2 = (2k + 2)^2$$

= $(2k + 2)(2k + 2)$
= $4k^2 + 8k + 4$
= $2(2k^2 + 4k + 2)$
= $2k'$ où $k' = 2k^2 + 4k + 2$ est entier

Il existe donc un entier k' tel que $n^2 = 2k'$. L'implication $(p_3 \rightarrow p_2)$ est ainsi prouvé.

(III.) Démontrons que si n^2 est pair, alors n est pair, en utilisant la **preuve par contraposition (preuve indirecte)**.

On démontrera la contraposée : Si n est impair, alors n^2 est impair. Supposons par hypothèse que n est impair. Il existe donc un entier k tel que n=2k+1.

Alors,
$$n^2 = (2k + 1)^2$$

= $(2k + 1)(2k + 1)$
= $4k^2 + 4k + 1$
= $2(2k^2 + 2k) + 1$
= $2k' + 1$ où $k' = 2k^2 + 2k$ est entier

Il existe ainsi un entier k' tel que $n^2=2k'+1$. Et donc, n^2 est impair. Ainsi par contraposition, l'implication $(p_2\to p_1)$ est ainsi prouvé.

Les trois implications étant prouvées, nous pouvons conclure que n est pair si et seulement si n^2 est pair si et seulement si n-1 est impair. CQFD

Exercice 4

En utilisant la preuve par cas, démontrez que si $x \in \mathbb{R}$, alors $0 \le \frac{x+|x|}{2} \le |x|$.

Solution:

Les deux cas sont :

- Cas (I.) $x \ge 0$
- Cas (II.) x < 0

Cas (I.) $x \ge 0$

Procédons avec une preuve directe :

Supposons que $x \ge 0$. Dans ce cas, |x| = x.

Donc,
$$\frac{x+|x|}{2} = \frac{x+x}{2}$$
$$= \frac{2x}{2}$$
$$= x$$

Par hypothèse, $0 \le x$ donc $0 \le \frac{x+|x|}{2}$.

De plus $\frac{x+|x|}{2} = |x|$, ce qui implique que $\frac{x+|x|}{2} \le |x|$.

Ainsi dans ce cas, $0 \le \frac{x+|x|}{2} \le |x|$ est vraie.

Cas (II.) x < 0

Procédons avec une preuve directe :

Supposons que x < 0. Dans ce cas, |x| = -x.

Donc,
$$\frac{x+|x|}{2} = \frac{x+(-x)}{2}$$
$$= \frac{x-x}{2}$$

Comme x < 0, on a également |x| = -x > 0, donc $\frac{x+|x|}{2} \le |x|$.

Ainsi dans ce cas, $0 \le \frac{x+|x|}{2} \le |x|$ est également vraie.

Dans les deux cas, nous avons montré que $0 \le \frac{x+|x|}{2} \le |x|$.

Par conséquent, nous avons démontré que si $x \in \mathbb{R}$, alors $0 \le \frac{x+|x|}{2} \le |x|$.

CQFD

Exercice 5

Soit a et b deux entiers. En utilisant la preuve par contraposition (preuve indirecte), démontrez que

Si le produit de a et b est pair, alors au moins l'un des entiers a ou b est pair.

Solution:

Puisqu'on suggère une preuve une preuve indirecte, on démontrera la contraposée :

Si a et b sont impairs tous les deux, alors le produit de a et b est impair.

Supposons donc par hypothèse que a et b sont impairs. Il existe ainsi k_1 et k_2 entiers tels que $a=2k_1+1$ et $b=2k_2+1$.

On a que
$$a \cdot b = (2k_1 + 1)(2k_2 + 1)$$

= $4k_1k_2 + 2k_1 + 2k_2 + 1$
= $2\underbrace{(2k_1k_2 + k_1 + k_2)}_{k_r} + 1$
= $\underbrace{2k' + 1}_{impair}$ où $k' = 2k_1k_2 + k_1 + k_2$ est entier

Alors, il existe un entier k' tel que $a \cdot b = 2k' + 1$.

Donc, le produit de a et b est impair.

Ainsi par contraposition, si le produit de a et b est pair, alors au moins l'un des entiers a ou b est pair. CQFD

Indication pour les Exercice 6 et Exercice 7 :

Un nombre q est rationnel si et seulement s'il existe deux entiers $a \in \mathbb{Z}$ et $b \in \mathbb{Z}^*$ tels que $q = \frac{a}{b}$.

Exercice 6

En utilisant la preuve directe, démontrez que la moyenne de deux nombres rationnels q_1 et q_2 est aussi un nombre rationnel.

Solution:

Supposons par hypothèse que q_1 et q_2 sont des nombres rationnels. Il existe des entiers a_1,a_2 et des entiers non nuls b_1,b_2 tels que $q_1=\frac{a_1}{b_1}$ et $q_2=\frac{a_2}{b_2}$. Si on note m la moyenne des nombres q_1 et q_2 , on obtient :

$$m = \frac{q_1 + q_2}{\frac{2}{b_1} + \frac{a_2}{b_2}}$$
$$= \frac{a_1b_2 + a_2b_1}{2b_1b_2}$$

 $=rac{a\prime}{b\prime}$, en posant $a'=a_1b_2+a_2b_1$ entier et $b'=2b_1b_2$ entier non nul

Donc, il existe des entiers a' et des entiers non nuls b' tels que $m=\frac{a'}{b'}$. Ainsi, la moyenne de q_1 et q_2 est un nombre rationnel. CQFD

Exercice 7

Soit a < b des nombres rationnels. En utilisant la preuve par contradiction (preuve par l'absurde), démontrez qu'il existe une infinité de nombres rationnels x satisfaisant a < x < b.

Solution:

Puisqu'on suggère une preuve par l'absurde, on doit supposer l'hypothèse vraie et la conclusion fausse pour arriver à une contradiction, donc que :

a < b sont rationnels, mais il existe seulement un nombre fini de nombres rationnels x satisfaisant a < x < b

Supposons donc par hypothèse que a < b sont rationnels et qu'il existe seulement un nombre fini de nombres rationnels x tels que a < x < b.

Notons n la quantité de tous ces nombres x, et notons ces x en ordre croissant :

$$a < x_1 < x_2 < \cdots < x_n < b$$
.

Donc, x_1 est le plus petit de tous les nombres rationnels x tels que a < x < b.

Soit $x' = \frac{a + x_1}{2}$ la moyenne des nombres rationnels a et x_1 . On a donc que

- x' est rationnel, car il est la moyenne de deux nombres rationnels
- $a < x' < x_1$, car la moyenne de deux nombres réels distincts est strictement comprise entre ces nombres

Et donc $a < x' < x_1 < b$.

Cela contredit que x_1 est le plus petit des nombres rationnels x tels que a < x < b. Il faut donc que, si a < b rationnels, qu'il existe une infinité de nombres rationnels x tels que a < x < b. CQFD