数据库系统概论新技术篇

键值对数据库 陈跃国

中国人民大学信息学院 2017年4月

概述

- ❖本节课讲述键值对数据库系统的概念、应用场景、基本原理、和典型实现案例
- ❖通过学习加深其与传统数据库应用定位的不同,以及在关键技术上如何应对大数据的数据服务需求

键值对数据库

- 1 数据服务与键值对数据库
- 2 键值对数据模型
- 3 键值对数据库原理

数据服务

❖数据服务(data serving)

服务: 指程序化的解决众多 个体提出个性化的简单请求。 数据服务:数据的简单读写 数据库事务: 也算一种数据 服务,但属于mission-critical 并可以较为复杂的数据服务

数据服务起源

- 门户网站页面优化布局,需要读取 用户众多的属性
- 日志分析,用户画像,写用户属性
- 高并发简单数据读写
- 数据规模大: 亿*千
- 属性动态增减

键值对数据库

- ❖ 键值对数据库/键值对系统的定义:一个针对关 联数组(字典或Hash表)提供高吞吐数据服务 (存储、读取和管理)的数据库系统
- ❖ 关联数组包含了很多记录,每个记录又有不同的属性
- ❖ 系统通过唯一标识记录的键(key)来迅速存储和读取单行记录中的数据,实现对关联数组的高并发读写服务

数据库 v.s. 键值对数据库

❖ Bigtable: 需求带来新的技术突破

指标	Database	KV-stores
数据量	ТВ	PB
吞吐量	<100K TPS	1M TPS
列数	100(固定schema)	1000-10000(可扩展)
复杂性	较为复杂	极为简单
一致性	Mission critical (严格一致性)	马马虎虎 (最终一致性)
接口	SQL	API(是NoSQL的一种)
成本	高	低

键值对数据库

- 1 数据服务与键值对数据库
- 2 键值对数据模型
- 3 键值对数据库原理

键值对数据库设计

- ❖为什么不直接使用Hashtable?
- ■多列、动态列增减、列族
- ❖为什么不直接使用关系数据库表?
- 大量空值、高并发
- 动态列增减、列族

Users	a ₁	a_2		a _n
U_1				
U_2				
			C_{ij}	
<i>u_n</i>				

All introduction to Database System

键值对数据模型

- ❖ 数据模型
 - ■持久化的、分布式的、多维Hashtable
 - 键值排序(实现按键的快速数据检索)
 - ■列族、Tablet(分片)、Timestamp

4	Α	В	С	D	Е	F
1					Column Fa	mily: 地址
2	Tablet	Row Name	名字	性别	家庭地址	工作地址
3	Tablet1	310101	小吴	男	SH1	BJ1
4	rabiett	310102	小朱	女	SH2	BJ2
5	Tablet2	310103	小华	男	SH2	BJ2

数据模型示例

ColumnFamily: Rocke	ts	
Key	Value	
1	Name	Value
	name	Rocket-Powered Roller Skates
	toon	Ready, Set, Zoom
	inventoryQty	5
	brakes	false
2	Name	Value
	name	Little Giant Do-It-Yourself Rocket-Sled Kit Beep Prepared
	toon	
	inventoryQty	4
	brakes	false
3	Name	Value
	name	Acme Jet Propelled Unicycle
	toon	Hot Rod and Reel
	inventoryQty	1
	wheels	1

键值对系统操作接口

❖API操作接口

- **■** get(key), put(key, value), delete(key)
- **■** execute(key, operation, parameters)
- 指定列的数据读取
- ■有的允许在一定范围内的键值读取
- rowkey与columnkey

键值对数据库

- 1 数据服务与键值对数据库
- 2 键值对数据模型
- 3 键值对数据库原理

CAP理论

分布式系统的3个属性 只能满足2个,要舍弃1个

最终一致性

- ❖ 很长时间没有数据更新后,最终所有更新会传播到整个系统,所有节点的数据保持一致
- ❖ 如果一个节点没有离开服务,最终系统接受的和这个节点数据相关的更新操作会作用在该节点上
- ❖ BASE协议 (Basically Available, Soft state, Eventual consistency), 区别于ACID
 - ■数据的副本之间可能不一致
 - 该数据没有更新,最终副本之间会一致

键值对系统设计考虑

- ❖牺牲掉以下数据库特性
 - 链接操作
 - **■** group by
 - order by
 - ACID事务处理
 - SQL

换取高性能、高吞吐、可 扩展和高容错的键值对数 据读写解决方案

HBase系统架构

- ❖ 当Table随着不断变大后,会逐渐分裂成多份splits,成为 regions,一个region由[startkey,endkey)表示,不同的 region会被Master分配给相应的RegionServer进行管理
- ❖ Client: HBase Client使用HBase的RPC机制与HMaster和HRegionServer进行通信;对于数据读写类操作,Client与HRegionServer进行RPC
- ❖ HRegionServer: 用户I/O请求,向HDFS文件系统中读写数据,是HBase中最核心的模块。HRegionServer内部管理了一系列HRegion,每个HRegion对应了Table中的一个 Region,HRegion中由多个HStore组成。每个HStore对应了Table中的一个Column Family的存储
- ◆ HMaster: HBase 中可以启动多个HMaster,通过 Zookeeper的Master Election机制保证总有一个Master运行,HMaster在功能上负责Table和Region的管理工作

HMaster

- 1. 管理用户对Table的增、删、改、查操作
- 2. 管理HRegionServer的负载均衡,调整 Region分布
- 3. 在Region Split后,负责新Region的分配
- 4. 在HRegionServer停机后,负责失效 HRegionServer 上的Regions迁移

An Introduction to Database System

HBase存储格式

- ❖ HBase中的所有数据文件都存储在Hadoop HDFS文件系统上
- ❖ HFile, HBase中KeyValue数据的存储格式,是Hadoop的二进制格式文件
- ❖ HFile里面的每个KeyValue对就是一个简单的byte数组。但是这个byte数组里面包含了很多项,并且有固定的结构
- ❖ 开始是两个固定长度的数值,分别表示Key的长度和Value的长度。紧接着是Key,开始是固定长度的数值,表示RowKey 的长度,紧接着是RowKey,然后是固定长度的数值,表示Family的长度,然后是Family,接着是Qualifier,然后是两个固定长度的数值,表示TimeStamp和Key Type (Put/Delete)。Value部分是纯粹的二进制数据

存储模型与实现原理

- ❖ 写操作
 - 写日志、同时写入memtable
 - memtable批量持久化
- ❖ 读操作
 - 内存和磁盘都要读
 - 键值排序索引支持
- ❖ 内部Compaction操作
 - 涉及memtable和次SSTable的整合, 回收修改/删除记录所占的空间

典型键值对数据库

❖大Hashtable

■ Amazon S3 (Dynamo), Voldemort, Scalaris

❖列族

■ Cassandra, BigTable, HBase, Sherpa/Pnuts, Hypertable

❖内存型

■ Redis, Memcached...

NoSQL数据库

❖NoSQL: Not Only SQL

- 键值对数据库
- 图数据库
- 文档数据库
- MapReduce (不是数据库)

❖ NewSQL

■ 保证ACID,扩展性好

小结

- ❖大数据带来新的数据服务需求
- ❖追求更好的数据服务吞吐率就需要牺牲一些数据库系统的特性,在特定应用下,有些特性是可以牺牲的
- ❖典型应用
 - ■用户画像管理
 - 非结构化数据的元数据管理
 - 多版本数据管理
 - 键值对数据管理

