

FCC RF TEST REPORT

Shenzhen Santiago Technology Ltd. **APPLICANT**

DUO Bluetooth Communication Accessory PRODUCT NAME

DUO-A1 MODEL NAME

TRADE NAME DUOSIM

DUO **BRAND NAME**

2AIU7-1508A01 FCC ID

STANDARD(S) 47 CFR Part 22 Subpart H

47 CFR Part 24 Subpart E

ISSUE DATE 2016-07-11

SHENZHEN MORLAB COMMUNICATIONS TESHNOLOGY Co., Ltd.

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

DIRECTORY

TEST	REPORT DECLARATION			 		
<u>1.</u> (GENERAL INFORMATION			 		5
1.1	EUT DESCRIPTION			 		5
1.2	TEST STANDARDS AND RESULTS			 		6
1.3	FACILITIES AND ACCREDITATIONS					
1.3.1				 		7
1.3.2				 		····· ·
2. 4	17 CFR PART 2, PART 22H & 24E REQU	JIREMENTS ·	<u> </u>	 		8
RLAN						
2.1	CONDUCTED RF OUTPUT POWER	o			<u> </u>	8
2.1.1	CONDUCTED RF OUTPUT POWER		<u> </u>	 		8
2.1.2				 		8
2.1.3						
2.2	PEAK TO AVERAGE RADIO					
2.2.1						
2.2.2						
2.2.3						
2.3	99% OCCUPIED BANDWIDTH			 <u> </u>		16
2.3.1	DEFINITION ·····			 		16
2.3.2	TEST DESCRIPTION ······			 		16
2.3.3	TEST VERDICT······			 		16
2.4	FREQUENCY STABILITY					
2.4.1	REQUIREMENT			 		20
2.4.2	TEST DESCRIPTION			 		20
2.4.3						
2.5	CONDUCTED OUT OF BAND EMISSIONS			 		22
2.5.1				 		22
2.5.2						
2.5.3						
2.6	BAND EDGE ·····					
2.6.1						
2.6.2	TEST DESCRIPTION ······			 		29

2.6.3	TEST RESULT·····	2 9
2.7	TRANSMITTER RADIATED POWER (EIRP/ERP)	32
	REQUIREMENT	
	TEST DESCRIPTION	
2.7.3	Test Result	33
2.8	RADIATED OUT OF BAND EMISSIONS	36
2.8.1	REQUIREMENT	36
2.8.2	Test Description	36
2.8.3	Test Result	37

	Change History							
Issue	Issue Date Reason for change							
1.0	1.0 2016-07-11 First edition							
HIC	.0	TARE TOPE HOLD TO						

TEST REPORT DECLARATION

Applicant	Shenzhen Santiago Technology Ltd.
Applicant Address	REITH INTERNATIONAL 11A, LUOHU DISTRICT, SHENZHEN
Manufacturer	Shenzhen Santiago Technology Ltd.
Manufacturer Address	REITH INTERNATIONAL 11A, LUOHU DISTRICT, SHENZHEN
Product Name	DUO Bluetooth Communication Accessory
Model Name	DUO-A1
Brand Name	DUO
HW Version	ST-5106
SW Version	DuoPlus_v1.2.018
Test Standards	47 CFR Part 22 Subpart H 47 CFR Part 24 Subpart E
Test Date	2016-06-03 to 2016-06-13
Test Result	PASS

Tested by

Reviewed by

Approved by Peng Huarui

1. GENERAL INFORMATION

1.1 EUT Description

EUT Type DUO Bluetooth Communication Accessory

Serial No. (n.a, marked #1 by test site)

Hardware Version: ST-5106

Software Version.....: DuoPlus_v1.2.018

Applicant Shenzhen Santiago Technology Ltd.

REITH INTERNATIONAL 11A, LUOHU DISTRICT, SHENZHEN

Manufacturer.....: Shenzhen Santiago Technology Ltd.

REITH INTERNATIONAL 11A, LUOHU DISTRICT, SHENZHEN

Frequency Range GSM 850MHz:

Tx: 824.20 - 848.80MHz (at intervals of 200kHz);

Rx: 869.20 - 893.80MHz (at intervals of 200kHz)

GSM 1900MHz:

Tx: 1850.20 - 1909.80MHz (at intervals of 200kHz);

Rx: 1930.20 - 1989.80MHz (at intervals of 200kHz)

Modulation Type...... GSM Mode with GMSK Modulation

Antenna Type PCB Antenna

Emission Designators: GSM 850:243KGXW,GSM 1900:246KGXW

- Note 1: The transmitter (Tx) frequency arrangement of the Cellular 850MHz band used by the EUT can be represented with the formula F(n)=824.2+0.2*(n-128), 128<=n<=251; the lowest, middle, highest channel numbers (ARFCHs) used and tested in this report are separately 128 (824.2MHz), 190 (836.6MHz) and 251 (848.8MHz).
- Note 2: The transmitter (Tx) frequency arrangement of the PCS 1900MHz band used by the EUT can be represented with the formula F(n)=1850.2+0.2*(n-512), 512<=n<=810; the lowest, middle and highest channel numbers (ARFCHs) used and tested in this report are separately 512 (1850.2MHz), 661 (1880.0MHz) and 810 (1909.8MHz).
- Note 3: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.2 Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 2, Part 22 and Part 24 for the EUT FCC ID Certification:

No.	Identity	Document Title			
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General			
AB	(10-1-12 Edition)	Rules and Regulations			
2	47 CFR Part 22	Dublic Makile Comises			
ORL	(10-1-12 Edition)	Public Mobile Services			
3	47 CFR Part 24	Derecal Communications Convince			
-4	(10-1-12 Edition)	Personal Communications Services			

Test detailed items/section required by FCC rules and results are as below:

NIa	Caption	Description	Dogult	
No.	Section	Description	Result	
1	2.1046	Conducted RF Output Power	PASS	
2.	24.232(d)	Peak to average radio	PASS	
2	2.1049,22.917, 24.238,	99% Occupied Bandwidth	PASS	
3	2.1055,22.355, 24.235	Frequency Stability	PASS	
4	2.1051,2.1057, 22.917,	Canduated Out of Rand Emissions	PASS	
4	24.238,	Conducted Out of Band Emissions	PASS	
5	2.1051, 2.1057, 22.917,	Pand Edge	PASS	
5	24.238	Band Edge	PASS	
6	22.913, 24.232	Transmitter Radiated Power (EIPR/ERP)	PASS	
101	2.1053, 2.1057, 22.917,	Radiated Out of Band Emissions	PASS	
1	24.238	Radiated Out of Band Emissions	PASS	

NOTE: Measurement method according to TIA/EIA 603.D-2010.

1.3 Facilities and Accreditations

1.3.1 Facilities

Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L3572.

All measurement facilities used to collect the measurement data are located at FL.1, Building A, FeiYang Science Park, No.8 LongChang Road,Block 67, BaoAn District, ShenZhen, GuangDong Province,P. R. China 518101. The test site is constructed in conformance with the requirements of ANSI C63.7-2009, ANSI C63.4-2009 and CISPR Publication 22:2010; the FCC registration number is 695796.

1.3.2 Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

2. 47 CFR PART 2, PART 22H & 24E REQUIREMENTS

2.1 Conducted RF Output Power

2.1.1 Requirement

According to FCC section 2.1046(a), for transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in FCC section 2.1033(c)(8).

2.1.2 Test Description

Test Setup:

The EUT, which is powered by the Battery, is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.

The Power Meter was just used for the Conducted RF Output Power test of WCDMA Model.

Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
System Simulator	Agilent	E5515C	GB43130131	2016.03.02	2017.03.01
Spectrum Analyzer	Agilent	E7405A	US44210471	2016.03.02	2017.03.01
Power Meter	Agilent	E4418B	GB43318055	2016.03.02	2017.03.01
Power Sensor	Agilent	8482A	MY41091706	2016.03.02	2017.03.01
Power Splitter	Weinschel	1506A	NW521	2016.03.02	2017.03.01
Attenuator 1	Resnet	20dB	(n.a.)	2016.03.02	2017.03.01
Attenuator 2	Resnet	3dB	(n.a.)	2016.03.02	2017.03.01

2.1.3 Test Results

Here the lowest, middle and highest channels are selected to perform testing to verify the conducted RF output power of the EUT.

GSM Model Test Verdict:

Dond	Channal	Frequency	Measured	Limit	\/o.wd:o4		
Band	Channel	(MHz)	dBm	Refer to Plot	dBm	Verdict	
CCM	128	824.2	33.09	Diet A4 to	AB.	PASS	
GSM 950MH=	190	836.6	32.94	Plot A1 to A3	35	PASS	
850MHz	251	848.8	32.87	AS		PASS	
GSM 1900MHz	512	1850.2	25.35	Diet D4 to	Mo	PASS	
	661	1880.0	25.30	Plot B1 to	32	PASS	
	810	1909.8	25.61	B3	N.B	PASS	

GSM Model Test Plots:

(Plot A1: GSM 850MHz Channel = 128)

(Plot A2: GSM 850MHz Channel = 190)

(Plot A3: GSM 850MHz Channel = 251)

(Plot B1: GSM 1900MHz Channel = 512)

(Plot B2: GSM 1900MHz Channel = 661)

(Plot B3: GSM 1900Hz Channel = 810)

2.2 Peak to Average Radio

2.2.1 Definition

According to FCC section 2.1049 and FCC 24.232(d) the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

2.2.2 Test Description

See section 2.1.2 of this report.

2.2.3 Test Verdict

Here the lowest, middle and highest channels are selected to perform testing to verify the peak-to-average ratio.

Test procedures:

- A .For GSM/EGPRS operating mode:
- a. Set RBW=1MHz, VBW=3MHz, peak detector in spectrum analyzer.
- b. Set EUT in maximum output power, and triggered the bust signal.
- c. Measured respectively the peak level and mean level, and the deviation was recorded as Peak to Average radio.
- B. For UMTS operating mode:
- a. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- b. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1%.

Test Verdict:

Dond	Channal	Frequency Peak to Av		verage radio	Limit	Verdict
Band	Channel	(MHz)	dB	Refer to Plot	dB	verdict
GSM 1900MHz	512	1850.2	8.90	RLAL	_	PASS
	661	1880.0	9.24	Plot A1 to A3	13	PASS
	810	1909.8	10.41	MORL	Mo.	PASS

(Plot A1: GSM 1900 MHz Channel = 512)

(Plot A2: GSM 1900 MHz Channel = 661)

(Plot A3: GSM 1900MHz Channel = 810)

2.3 99% Occupied Bandwidth

2.3.1 Definition

According to FCC section 2.1049 and FCC § 22.917 &24.238, the occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission. Occupied bandwidth is also known as the 99% emission bandwidth.

2.3.2 Test Description

See section 2.1.2 of this report.

2.3.3 Test Verdict

Here the lowest, middle and highest channels are selected to perform testing to verify the 99% occupied bandwidth.

Test Verdict:

Dond	Channel	Frequency 26dB		99% Occupied	Refer to
Band	Channel	(MHz)	bandwidth	Bandwidth	Plot
CCM	128	824.2	309.446 KHz	240.9650 KHz	Dlat
GSM 950MHz	190	836.6	308.299 KHz	239.9665 KHz	Plot A1 to A3
850MHz	251	848.8	312.239 KHz	243.3762 KHz	AT IO AS
CCM	512	1850.2	301.461 KHz	244.3206 KHz	Diet
GSM 1900MHz	661	1880.0	308.103 KHz	243.5450 KHz	Plot
	810	1909.8	305.758 KHz	246.2774 KHz	B1 to B3

Test Plots:

(Plot A1: GSM 850MHz Channel = 128)

(Plot A2: GSM 850MHz Channel = 190)

(Plot A3: GSM 850MHz Channel = 251)

(Plot B1: GSM1900MHz Channel = 512)

(Plot B2: GSM1900MHz Channel = 661)

(Plot B3: GSM 1900MHz Channel = 810)

2.4 Frequency Stability

2.4.1 Requirement

According to FCC section 22.355 and FCC section 24.235, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. According to FCC section 2.1055, the test conditions are:

- (a) The temperature is varied from -30°C to +50°C at intervals of not more than 10°C.
- (b) For hand carried battery powered equipment, the primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacture. The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided.

2.4.2 Test Description

Test Setup:

The EUT, which is powered by the DC Power Supply directly, is located in the Temperature Chamber. The EUT is commanded by the System Simulator (SS) to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS via a Common Antenna.

Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
System Simulator	Agilent	E5515C	GB43130131	2016.03.02	2017.03.01
DC Power Supply	Good Will	GPS -3030DD	EF920938	2016.03.02	2017.03.01
Temperature Chamber	YinHe Experimental Equip.	HL4003T	(n.a.)	2016.03.02	2017.03.01

2.4.3 Test Verdict

The nominal, highest and lowest extreme voltages are separately 3.8VDC, 4.2VDC and 3.45VDC, which are specified by the applicant; the normal temperature here used is 25°C. The frequency deviation limit of 850MHz band is ±2.5ppm, and 1900MHz is ±1ppm.

1. GSM 850MHz Band

Test	Conditions							
Power	Temperature	Channel = 128 (824.2MHz)		Channel = 190 (836.6MHz)		Channel = 251 (848.8MHz)		Verdict
(VDC)	(°C)	Hz	Limits	Hz	Limits	Hz	Limits	
LAL	-20	5.8	RL.P	4.48	ORL	-6.48	,B	RLAB
AB	-10	-16.83		3.36	RLAB	15.36	Mc	AB.
MORL	0	-12.32		3.44	Mo.	-13.78	RLAB	MORL
-8	+10	1.83		7.56	MORI	26.95	lo.	-01
3.80	+20	-7.66		0.58	OB III	28.36	MORL	MO.
LAB	+30	5.76	±2060.5	6.9	±2091.5	-7.77	±2122	PASS
AB.	+40	23.73		-5.42	RLAB	26.95	Mo	
MORL	+50	-16.33		-3.29	Mo.	21.56	QLAB	MORLE
	+60	-6.64		6.78	, ORI	-6.41	lo,	W. 01
4.35	+25	-16.83		8.35	OB W.	15.36	NORLA	More
3.40	+25	-12.32		10.58	RL	-7.85	B W.	2LAB

2. GSM 1900MHz Band

Test Conditions								
Power (VDC)	Temperature (°C)	Channel = 512 (1850.2MHz)			Channel = 661 (1880.0MHz)		Channel = 810 (1909.8MHz)	
(VDC)	(0)	Hz	Limits	Hz	Limits	Hz	Limits	
LAB	-20	-18.21	S Un	12.46	ORLA	-13.41	B W	LAB
MORE	-10	15.31		22.25	3 111	0.26	ORLAN	MORE
OP	0	-14.2		-14.09	MOE	24.98	LAB	ORI
BANG	+10	-19.84		-12.72	LAB	23.39	MORE	S W
3.80	+20	-30.2		36.45	Jan B	-11.82	, S	al.Al
LAB	+30	6.96	±1850.2	-7.07	±1880.0	25.98	±1909.8	PASS
MORE	+40	-20.64		-12.68	We I	19.59	ORLAN	MORR
OR	+50	17.48		15.65	MOR	-8	AB	ORI
S MIC	+60	11.13		22.79	AB	13.6	MORE	Z MC
4.35	+25	29.34		-23.13	Jan a	0.26	.5	ALAI.
3.40	+25	-23.96	2 MIC	12.26	RLAD	25	2 Mg	A.B

2.5 Conducted Out of Band Emissions

2.5.1 Requirement

According to FCC section 22.917(a) and FCC section 24.238(a) the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P)dB. This calculated to be -13dBm.

2.5.2 Test Description

See section 2.1.2 of this report.

2.5.3 Test Result

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the out of band emissions.

Equipment List

6.7						
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due	
System Simulator	Agilent	E5515C	GB43130131	2016.03.02	2017.03.01	
Spectrum Analyzer	Agilent	E7405A	US44210471	2016.03.02	2017.03.01	
Power Meter	Agilent	E4418B	GB43318055	2016.03.02	2017.03.01	
Power Sensor	Agilent	8482A	MY41091706	2016.03.02	2017.03.01	
Power Splitter	Weinschel	1506A	NW521	2016.03.02	2017.03.01	
Attenuator 1	Resnet	20dB	(n.a.)	2016.03.02	2017.03.01	
Attenuator 2	Resnet	3dB	(n.a.)	2016.03.02	2017.03.01	

2. Test Verdict:

Band	Channel	Frequency (MHz)	Measured Max. Spurious Emission (dBm)	Refer to Plot	Limit (dBm)	Verdict
CCM	128	824.2	-30.01	Plot A1 to A1.1	. 1	PASS
GSM 850MHz	190	836.6	-31.06	Plot A2 to A2.1	-13	PASS
ODUIVINZ	251	848.8	-30.31	Plot A3 to A3.1	9	PASS
CCM	512	1850.2	-20.59	Plot B1 to B1.1	4	PASS
GSM	661	1880.0	-19.60	Plot B2 to B2.1 -13		PASS
1900MHz	810 1909.8		-21.03	Plot B3 to B3.1	0,	PASS

Test Plots for the Whole Measurement Frequency Range:

Note: the power of the EUT transmitting frequency should be ignored.

(Plot A1: GSM 850MHz Channel = 128, 30MHz to 1GHz)

(Plot A1.1: GSM 850MHz Channel = 128, 1GHz to 9GHz)

(Plot A2: GSM 850MHz Channel = 190, 30MHz to 1GHz)

(Plot A2.1: GSM 850MHz Channel = 190, 1GHz to 9GHz)

(Plot A3: GSM 850MHz Channel = 251, 30MHz to 1GHz)

(Plot A3.1: GSM 850MHz Channel = 251, 1GHz to 9GHz)

(Plot B1: GSM 1900MHz Channel = 512, 30MHz to 1GHz)

(Plot B1.1: GSM 1900MHz Channel = 512, 1GHz to 20GHz)

(Plot B2: GSM 1900MHz Channel = 661, 30MHz to 1GHz)

(Plot B2.1: GSM 1900MHz Channel = 661, 1GHz to 20GHz)

(Plot B3: GSM 1900MHz Channel = 810, 30MHz to 1GHz)

(Plot B3.1: GSM 1900MHz Channel = 810, 1GHz to 20GHz)

2.6 Band Edge

2.6.1 Requirement

According to FCC section 22.917(b) and FCC section 24.238(b) in the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth (26dB emission bandwidth) of the fundamental emission of the transmitter may be employed.

2.6.2 Test Description

See section 2.1.2 of this report.

2.6.3 Test Result

The lowest and highest channels are tested to verify the band edge emissions.

Test Verdict:

	C. C			2.7		
Band	Channel	Frequency (MHz)	Measured Max. Band Edge Emission (dBm)	Refer to Plot	Limit (dBm)	Verdict
GSM	128	824.2	-19.81	Plat A1	-13	PASS
850MHz	251	848.8	-17.50	Plot A2	M-12	PASS
GSM	512	1850.2	-26.12	Plat B1	12	PASS
1900MHz	810	1909.8	-27.76	Plot B2	-13	PASS

Test Plots:

(Plot A1: GSM 850 Channel = 128)

(Plot A2: GSM 850 Channel = 251)

(Plot B1: GSM 1900 Channel = 512)

(Plot B2: GSM 1900 Channel = 810)

2.7 Transmitter Radiated Power (EIRP/ERP)

2.7.1 Requirement

According to FCC section 22.913, the Effective Radiated Power (ERP) of mobile transmitters and auxiliary test transmitters must not exceed 7Watts, and FCC section 24.232, the broadband PCS mobile station is limited to 2 Watts e.i.r.p. peak power.

2.7.2 Test Description

Test Setup:

The EUT, which is powered by the Battery charged with the AC Adapter, is located in a 3m Full-Anechoic Chamber; the cable loss, air loss and so on of the site as factors are pre-calibrated using the "Substitution" method, and calculated to correct the reading.

A call is established between the EUT and the SS via a Common Antenna. The EUT is commanded by the SS to operate at the maximum and minimum output power (i.e. GSM850MHz band Power Control Level (PCL) = 5/19 and Power Class = 4, GSM1900MHz band Power Control Level (PCL) = 0/15 and Power Class = 1), and only the test result of the maximum output power was recorded.

- GSM Maximum RF output power: GSM 850 33.03dBm, GSM 1900 29.35dBm. WCDMA 850 24.77 dBm, WCDMA 1900 24.44 dBm .Please refer to section 2.1.3 of this report.
- Step size (dB): 3dB
- Minimum RF power: GSM 850 2.6dBm, GSM 1900 1.1dBm, WCDMA 850 0.50dBm, WCDMA 1900 0.61dBm.

The Test Antenna is a Bi-Log one (used for 30MHz to 1GHz) or a Horn one (used for above 3GHz), and it's located at the same height as the EUT. The Filters consists of Notch Filters and High Pass Filter.

Equipments List:

. 10					
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
System Simulator	Agilent	E5515C	GB43130131	2016.03.02	2017.03.01
Spectrum Analyzer	Agilent	E7405A	US44210471	2016.03.02	2017.03.01
Full-Anechoic Chamber	Albatross	9m*6m*6m	(n.a.)	2016.03.02	2017.03.01
Test Antenna - Bi-Log	Schwarzbeck	VULB 9163	9163-274	2016.03.02	2017.03.01
Test Antenna - Horn	Schwarzbeck	BBHA 9120C	9120C-384	2016.03.02	2017.03.01
Substitution Antenna	Schwarzbeck	BBHA 9120C	9120C-384	2016.03.02	2017.03.01
Pre-AMPs	lucix	S10M100L3802	S020180L3203	2016.03.02	2017.03.01
Notch Filter	COM-MW	ZBSF-C836.5-2 5-X	NA	2016.03.02	2017.03.01
Notch Filter	COM-MW	ZBSF-C1747.5- 75-X2	NA NA	2016.03.02	2017.03.01
Notch Filter	COM-MW	ZBSF-C1880-60 -X2	NA	2016.03.02	2017.03.01

2.7.3 Test Result

The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. The lowest, middle and highest channels are tested.

The substitution corrections are obtained as described below:

$$A_{SUBST} = P_{SUBST_TX} - P_{SUBST_RX} - L_{SUBST_CABLES} + G_{SUBST_TX_ANT}$$

 $A_{TOT} = L_{CABLES} + A_{SUBST}$

Where A_{SUBST} is the final substitution correction including receive antenna gain.

P_{SUBST_TX} is signal generator level,

P_{SUBST RX} is receiver level,

L_{SUBST_CABLES} is cable losses including TX cable,

 $G_{\text{SUBST_TX_ANT}}$ is substitution antenna gain.

A_{TOT} is total correction factor including cable loss and substitution correction

During the test, the data of A_{TOT} was added in the Test Spectrum Analyze, so Spectrum Analyze reading is the final values which contain the data of A_{TOT} .

GSM Model Test Verdict:

810

1909.8

	9.	A 3			400					
Dond	Channel	Frequency	PCL	Measured ERP			Limit		Verdict	
Band	Channel	(MHz)	PCL	dBm	W	Refer to Plot	dBm	W	verdict	
CCM	128	824.20	5	34.35	2.723	MOEST W		B	PASS	
GSM	190	836.60	5	34.49	2.812	Plot A	Plot A	Plot A 38.5	7	PASS
850MHz	251	848.80	5	33.76	2.377	Mo.	3	21.0	PASS	
A.B	RLAL	MORL	MIC	A.B		alak MORL	1	NO.	AB	
Band	Channel Frequency		PCL	Measured EIRP		Lim	it	Verdict		
Dallu	Channel	(MHz)	POL	dBm	W	Refer to Plot	dBm	W	verdict	
CCM	512	1850.2	0	27.79	0.601	RLAB	MORE		PASS	
GSM 1900MHz	661	1880.0	0	27.08	0.511	Plot D	33	2	PASS	
						4.3	1			

0572

Test Plots:

(Plot A: GSM 850MHz Channel = 128, 190, 251)

PASS

(Plot D: GSM 1900MHz Channel = 512, 661, 810)

2.8 Radiated Out of Band Emissions

2.8.1 Requirement

According to FCC section 22.917(a) and section 24.238(a) the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P)dB. This calculated to be -13dBm.

The spurious emission with frequency band 1900 according to FCC section 2.1057.

2.8.2 Test Description

See section 2.7.2 of this report.

Equipment List:

Description	Manufacturer	Model	Serial No.	Cal.Date	Cal.Due
System Simulator	Agilent	E5515C	GB43130131	2016.03.02	2017.03.01
Spectrum Analyzer	Agilent	E7405A	US44210471	2016.03.02	2017.03.01
Full-Anechoic Chamber	Albatross	9m*6m*6m	(n.a.)	2016.03.02	2017.03.01
Test Antenna - Bi-Log	Schwarzbeck	VULB 9163	9163-274	2016.03.02	2017.03.01
Test Antenna - Horn	Schwarzbeck	BBHA 9120C	9120C-384	2016.03.02	2017.03.01
Substitution Antenna	Schwarzbeck	BBHA 9120C	9120C-384	2016.03.02	2017.03.01
Pre-AMPs	lucix	S10M100L3802	S020180L3203	2016.03.02	2017.03.01
Notch Filter	COM-MW	ZBSF-C836.5-25-X	NA	2016.03.02	2017.03.01
Notch Filter	COM-MW	ZBSF-C1747.5-75-X2	NA	2016.03.02	2017.03.01
Notch Filter	COM-MW	ZBSF-C1880-60-X2	NA NA	2016.03.02	2017.03.01

Note: when doing measurements above 1GHz, the EUT has been within the 3dB cone width of the horn antenna during horizontal antenna.

2.8.3 Test Result

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. The lowest, middle and highest channels are tested to verify the out of band emissions.

1. Test Verdict:

Band	Observation 1	Frequency	Measured M Emissio	ax. Spurious n (dBm)	Refer to	Limit	Manaliat
	Channel	(MHz)	Test Antenna Horizontal	Test Antenna Vertical	Plot	(dBm)	Verdict
20 ^{RL}	128	824.2	< -25	< -25	Plot A1/A2	9	PASS
GSM	190	836.6	< -25	< -25	Plot A3/A4	-13	PASS
850MHz	251	848.8	< -25	< -25	Plot A5/A6	ORLA	PASS
CCM	512	1850.2	< -25	< -25	Plot B1/B2	ZLA.	PASS
GSM 1900MHz	661	1880.0	< -25	< -25	Plot B3/B4	-13	PASS
	810	1909.8	< -25	< -25	Plot B5/B6	3	PASS

2. Test Plots for the Whole Measurement Frequency Range:

Note1: the power of the EUT transmitting frequency should be ignored.

Note2: All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

(Plot A1: GSM 850MHz Channel = 128, Test Antenna Horizontal)

(Plot A2: GSM 850MHz Channel = 128, Test Antenna Vertical)

(Plot A3: GSM850MHz Channel = 190, Test Antenna Horizontal)

(Plot A4: GSM 850MHz Channel = 190, Test Antenna Vertical)

(Plot A5: GSM 850MHz Channel = 251, Test Antenna Horizontal)

(Plot A6: GSM 850MHz Channel = 251, Test Antenna Vertical)

(Plot B1: GSM 1900MHz Channel = 512, Test Antenna Horizontal)

(Plot B2: GSM 1900MHz Channel = 512, Test Antenna Vertical)

(Plot B3: GSM 1900MHz Channel = 661, Test Antenna Horizontal)

(Plot B4: GSM 1900MHz Channel = 661, Test Antenna Vertical)

(Plot B5: GSM 1900MHz Channel = 810, Test Antenna Horizontal)

(Plot B6: GSM 1900MHz Channel = 810, Test Antenna Vertical)

***** END OF REPORT *****

