Predicting Airbnb Prices in New York City

Avila Cañibe Aiza Chen Yaqi Ela Essola Michele Natacha He Xingshan Hong Victor

What's the problem?

A brief description of what we are doing

What's our goal?

Goal

Given the data of Airbnb accommodations in NY, we aim to find a model that best predicts the price of the accommodation given fixed and engineered features

Methodology

For this purpose we propose to compare the results of the following methods:

Decision Tree Regressor RandomForestRegressor ExtraTreesRegressor XGB Regressor AdaBoost CatBoost (Best Accuracy)

As well as modifications and tuning of data, in order to determine the model that best predicts the price of the accommodation

What data do we have?

Summary of the key elements of the data

Exploratory Analysis of the data

Facts

The data contains information collected in 2019 about the various homes available on the Airbnb hosting platform.

These are the features:

- name (string)
- host_id (key)
- host_name (string)
- neighborhood_group (string)
- neighborhood (string)
- latitude (varchar)
- o longitude (varchar)
- room_type (string)
- oprice (numeric)
- minimum_nights (numeric)
- number_of_reviews (numeric)
- last_review (date)
- reviews_per_month (numeric)
- calculated_host_listings_count (numeric)
- availability_365 (numeric)

Detected issues

Accommodation prices were heavily right skewed Variables show correlation with the price feature, such as:

minimum_nights

number_of_review

In some neighborhood groups, the prices are more concentrated in the lower end, while in others the prices are more loosely scattered.

Data engineering

Changes applied to the data to get the best fit

Enhancing of the data

Target encoding

Technique that replaces each category with the average target value for that category

- Group the data by neighborhood_group and neighborhood
- Calculate the mean price for each combination
- Create mapping dictionary that maps each neighborhood_group and neighborhood combination to its mean price
- Replace the neighborhood column with the mean prices

Methodology & results

Summary of the methods done and their results

Methodology & Results (Part 1)

Methodology & Results (Part 2)

Principles Guiding Choice of Models and Hyperparameter Tuning:

- 1. **Simplicity of Model:** Start with easy to implement models and observe initial results
- 2. **Progressive Testing:** Progressively implement more sophisticated models and compare results
- 3. **Gradual Improvements:** Employ hyperparameter tuning to improve results further (with GridSearch and bagging)
- 4. **Balancing Trade-offs:** Hyperparameter tuning was decided by improvements in score vs. computational time

No.	Model Choice	Parameters Tuned with GridSearch	Best Parameters	Results (R-squared)
1.	Decision Tree	pgrid = {max_depth: [4,6,8,10], min_samples_leaf: [0.12,0.14,0.16]}	Max_depth = 6 Min_samples = 0.12	0.5202
2.	Random Forests (with bootstrap)	pgrid = {n_estimators: [600,700,800], max_depth: [4,6,8,10,12,14]}	Max_depth = 10, N_estimators = 600	0.6244
3.	Extra Trees (with bootstrap)	pgrid = {max_depth: [4,6,8,10,12,14,16,18,20]}	Max_depth = 18	0.6268
4.	XGBoost	pgrid = {max_depth: [4,6,8,10,12,14,16,18,20]}	Max_depth = 6	0.6218
5.	AdaBoost	pgrid = {n_estimators: [300,400,500,600,700]}	N_estimators = 300	0.2383
6.	CatBoost	pgrid = {max_depth: [4,6,8,10]}		0.6327

Conclusions

- Performance between decision tree, bagging and boosting methods did not differ significantly in terms of predictive accuracy
- 2. However, boosting methods required larger computational resources
- 3. Given the relative similarity in results, we conclude that we need to revisit the data (skewness was observed) to explore further feature engineering to improve the performance of predictions

Scratch Trees

Scratch trees

For this section we have 2 proposals available on Github

Proposal 1

Classification Tree (Entropy)

Algorithm:

Proposal 2

Classification Tree (Entropy)

Algorithm:

```
Define a class for classification{
    if the maximum depth of the tree hasn't been reached nor the minimum amount of elements in the sample continue for features in data{
        select the unique values of the feature select a split calculate information gain using entropy per split
} select best possible split and divide data recursively by calling create tree
}
```

Scratch trees

For this section we have 2 proposals available on Github

Proposal 1

Regression Tree

Algorithm:

```
Define regression tree as class

for maximum levels of the tree update the tree by best partitions until the node is a leaf {
	For parameters in data{
		split data in half
	For each half{
		Determine the indexes for best partition by squared error if reached min squared error settle the partition
	}

}

stop growth if min samples in the partition are met
```

Proposal 2

Classification Tree (Entropy)

Algorithm:

```
Define a class for regression{
    if the maximum depth of the tree hasn't been reached nor the minimum amount of elements in the sample continue for features in data{
        select the unique values of the feature select a split calculate information gain using variance reduction
    } select best possible split and divide data recursively by calling create tree
}
```