(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開2000-301053

(P2000-301053A) (43)公開日 平成12年10月31日(2000.10.31)

- (51) Int.Cl. ⁷		識別記号		FΙ			Ŧ	-マコード(参考)	
B05D	3/06	101		B05D	3/06		101Z	4D075	
	5/00				5/00		н	4F071	
-	7/24	301			7/24		301T	4 F 1 0 0	
		302					302L	4H020	
				•			302P	4 J O 1 1	
			Planto state D			O T	/人 17 百	(E) ((A) (F) (**) (**)	

審査請求 未請求 請求項の数2 OL (全 17 頁) 最終頁に続く

(21)出願番号 特願平11-114785

(22)出願日 平成11年4月22日(1999.4.22)

(71)出願人 000226688

日新ハイボルテージ株式会社

京都府京都市右京区梅津高畝町47番地

(72) 発明者 中井 康二

京都府京都市右京区梅津高畝町47番地日新

ハイボルテージ株式会社内

(72)発明者 岡崎 泰三

京都府京都市右京区梅津高畝町47番地日新

ハイポルテージ株式会社内

(74)代理人 100079887

弁理士 川瀬 茂樹

最終頁に続く

(54) 【発明の名称】 ハードコートシートとその製造方法

(57)【要約】

【目的】シート状基材に、防汚性、防暑性、柔軟性、耐 擦傷性に優れたハードコート性塗膜層を形成する方法 と、防汚性、防暑性、柔軟性、耐擦傷性に優れたハード コートシートを与えること。

【構成】 A:アルキルフルオロアクリレート、

B:前記Aと相溶性がなく、且つ疎水性で官能基を3個以上有するアクリル単量体を少なくとも10%含むアクリル系単量体、

C:前記Aと相溶性がなく、且つ親水性のアクリル単量体を少なくとも50%含むアクリル系単量体、

D:前記A、B、Cとそれぞれ相溶性を有する溶剤からなり、前記A:B:Cの比率が、0.05~1:49.95~10:50~89.95、前記A、B、Cの総量対Dの比率が、95~50:5~50である混合組成物をシート状基材の上に1~15 μ mの厚さに塗布し、直ちに電子線を照射することにより、前記混合組成物中の溶剤の蒸発と前記シート状基材上の塗膜の硬化を同時に起こさせる。

【特許請求の範囲】

【請求項1】 A:アルキルフルオロアクリレート、 B:前記Aと相溶性がなく、且つ疎水性で官能基を3個 以上有するアクリル単量体を少なくとも10%含むアク リル系単量体、

1

C:前記Aと相溶性がなく、且つ親水性のアクリル単量 体を少なくとも50%含むアクリル系単量体、

D:前記A、B、Cとそれぞれ相溶性を有する溶剤、 からなり、前記A:B:Cの比率が、0.05~1:4 9.95~10:50~89.95、前記A、B、Cの 10 総量対Dの比率が、95~50:5~50である混合組 成物が基材上に薄層状に形成され、電子線照射により硬 化されたものであることを特徴とするハードコートシー

【請求項2】 A:アルキルフルオロアクリレート、 B:前記Aと相溶性がなく、且つ疎水性で官能基を3個 以上有するアクリル単量体を少なくとも10%含むアク リル系単量体、

C:前記Aと相溶性がなく、且つ親水性のアクリル単量 体を少なくとも50%含むアグリル系単量体、

D:前記A、B、Cとそれぞれ相溶性を有する溶剤、 からなり、前記A:B:Cの比率が、0.05~1:4 9.95~10:50~89.95、前記A、B、Cの 総量対Dの比率が、95~50:5~50である混合組 成物をシート状基材の上に1~15μmの厚さに塗布 し、直ちに電子線を照射することにより、前記混合組成 物中の溶剤の蒸発と前記シート状基材上の塗膜の硬化を 同時に起こさせることを特徴とするハードコートシート の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、シート状基材に優れた 防曇性、防汚性、ハードコート性を兼ね備えた塗膜層を 形成させたハードコートシート及びその製造方法に関す る。本発明の方法は、含フッ素単量体と、親水性アクリ ル系単量体と、疎水性アクリル系単量体と溶剤からなる 組成物をシート状基材に塗布し、直ちに電子線を照射し てハードコートシートを製造するものである。本発明 は、簡単且つ安定した手段、工程により、基材上にハー ドコート層を形成させることができる。この方法によっ 40 て製造されたハードコートシートは防曇性、防汚性、ハ ードコート性、耐擦傷性に優れている。

[0002]

【従来の技術】表面に傷が付いたり、汚れが付着するの を嫌う材料は数多い。例えば建築材料、インテリア材 料、包装材料など、極めて広範囲の技術分野の材料に見 ることができる。例えばガラスやプラスチックでできた ショーケース、鏡、フィルム、装飾箱、床タイル、眼 鏡、ランプカバーなどである。材料の表面をいつまでも 美しく保つための加工を必要とする産業分野は極めて広 50 あり甲は表面だけに局在すればよい。乙の単量体を使用

い。シート状材料の表面を美しく保つための保護処理と して、従来より防汚加工及びハードコート加工があると とはよく知られている。

【0003】防汚加工というのはシートの表面に撥水性 ・撥油性などの性質を付与することにより汚れ難くし、 或いは汚れても容易に取り除くことができるようにする ものである。シートが汚れ難く汚れが容易に除去できる という性質は防汚性と呼ぶ。防汚加工はシートの防汚性 を髙める加工である。

【0004】ハードコート加工というのは表面に硬質の 塗膜を形成し傷つき難くするものである。これは表面を 硬化するものである。塗膜が傷つき難いという性質はハ ードコート性という。また同じ事を耐擦傷性ということ もある。撥水性撥油性を属性とする防汚性と、表面硬化 を属性とする耐擦傷性には直接の相関はない。

【0005】さらにシートには柔軟性も要求されること がある。ハードコート性(耐擦傷性)が高すぎると剛性 が高くなる。衝撃や曲げ応力によって割れ易くなる。だ から柔軟に撓むという性質も必要である。柔軟性は耐擦 20 傷性と相反する傾向にある。

【0006】また、一般にフィルム、ガラス、鏡やレン ズ等が多湿の雰囲気或いは温度差の著しい状態に置かれ ると、結路して昼が生ずる。昼がつくと不透明になり 鏡、ショーケース等の場合は不都合である。昼を防ぐ性 質を防曇性という。昼を防ぐ必要がある場合は、例えば 防曇フィルムと呼ばれるものを、シート部材に張りつけ るということが行われる。従来から用いられる防曇フィ ルムは、界面活性剤を塗布したフィルムである。

[0007]

30

【発明が解決しようとする課題】防汚性と耐擦傷性をシ ート基材に賦与する加工方法として、本発明者らはすで に**①**特願平5-23529号 (特開平6-211945 号)「ハードコートシートとその製造方法」(発明者: 中井康二、向井貞喜、出願人:日新ハイボルテージ株式 会社) に記載されている方法を考案した。これは、

【0008】甲:アルキルフルオロアクリレート 乙:甲と相溶性がなく、3個以上の官能基を有するアク リル単量体を50%以上含むアクリル系単量体 丙:甲と乙を溶かす溶剤

を、甲/(甲+乙)=0.005~0.1、丙/(甲+ 乙) = 0. 1~0. 5 に混合した混合組成物をシート状 基材に塗布し、直ちに電子線照射をして溶剤蒸発塗膜硬 化させる方法である。つまり乙は、官能基が1、2であ るアクリル単量体を50%未満、官能基3以上のアクリ

ル単量体を5.0%以上含む。

【0009】含フッ素単量体であるアルキルフルオロア クリレート甲はフッ素原子を持ち防汚性を賦与すること ができる。ところが、これは極めて高価な材料であり大 量に使用するのは好ましくない。防汚性は表面の性質で

2

するのはアルキルフルオロアクリレート甲を表面に押し 出し表面に局在させるためである。アルキルフルオロア クリレート甲と相溶性のないアクリル単量体乙は硬化の 瞬間に甲を表面に押し退ける。だからアルキルフルオロ アクリレート甲は表面だけに存在する。硬化後は表面だ けに残るから甲は (甲+乙) の全体に対し0.5%~1 0%でよい。高価な材料を節減できる。官能基が結合を 形成するから官能基数が多いと堅固な結合体となる。そ * とで乙は官能基が3以上のアクリル単量体を50%以上 含むものとしている。官能基数の多い乙の存在がハード コート性(耐擦傷性)をシート状基材に与えている。

3

【0010】甲と乙は相溶性が無いからそのままでは混 合できず溶剤が必要である。甲と乙の両方に相溶性を有 する溶剤丙を用いる。甲+乙+丙の混合液を塗布し自然 乾燥すると溶剤丙が内部に残留し甲も内部に残るから防 汚性が不完全である。瞬時に溶剤を蒸発させ残留させな いように電子線照射を行う。好ましい電子線量は1~1 OMradとしている。優れた発明であった。

【0011】この方法にも欠点がある。防汚性を発揮す る材料であるアルキルフルオロアクリレートの配合量が 0. 5~10重量部(%)も必要だということである。 アルキルフルオロアクリレートは、非常に高価である。 経済性を考えるとアルキルフルオロアクリレートを極力 少なくすることが望ましい。また、0.5部以上配合し ているにもかかわらず、その防汚性は汚れの種類によっ ては、容易に取り除くことが困難であった。

【0012】また、多官能アクリレート(官能基数N≥ 3) の配合量が多い(50%以上)ので、ハードコート 性の特徴である耐擦傷性は優れているが、硬化塗膜が硬 すぎるという難点がある。ために塗膜を含むシート状基 材を折り曲げると硬化塗膜が割れやすいという欠点があ った。

【0013】次に防曇性について述べる。従来から防曇 性を高めるために界面活性剤を塗布したフィルムを張り 付ける方法があった。しかし界面活性剤は雨などで簡単 に流出し短時間で消失するから防暴性はほんの一時的な ものである。そとで恒久的な防曇性を与えるため、本発 明者は特願平5-79942号「防曇性フィルムおよび その製造方法」(発明者:中井康二、向井貞喜、出願 人:日新ハイボルテージ株式会社)に記載されている方 法を考案した。

【0014】α:アクリル酸カリウム水溶液 β: エチレン性不飽和結合を一個有する親水性化合物 γ: 官能基を3個以上有するアクリル単量体 ~50(重量%)の比率で含まれる混合組成物を、シー ト状基材に塗布して、電子線を照射して混合組成物を硬 化させるというものである。食品包装材料、ビニールハ ウス、自動車窓、建築物、窓、浴場窓などのガラス、写 真機、双眼鏡レンズなどに対してこのような処理を行う 50 C:前記Aと相溶性がなく、且つ親水性のアクリル単量

ことによって防曇性を賦与することができる。

【0015】3つの成分の役割は相補的である。官能基 3個以上有するアクリル単量体 ~ は結合点が多いので被 膜表面の硬度を高めることができる。しかし、これが多 すぎると防曇性は低下する。アクリル酸カリウム水溶液 αは防盤性を与えるものであり、これが10重量%未満 では防曇性が不十分である。反対にαが50%を越える とγが減るので硬度が低下する。それではβは何をして いるかというと、これはα、γを仲介するためである。 アクリル酸カリウム水溶液αはアクリル単量体γと混合 できない。そとでエチレン性不飽和結合を一個以上有す る親水性化合物 β を加えて両者を混合させる。 β は α と も、γとも任意の割合で混合できる。親水性化合物βは 20~60重量%含むべきである。この他に溶剤を用い ても良い。溶剤を使う場合は、lpha、eta、 γ を溶解できる ものを選ぶ必要がある。電子線によって混合物を一挙に 硬化させるが、電子線の加速電圧は150kV~300 kVであり、線量は1~10Mradの程度であった。 【0016】本発明の第1の目的は、防汚性を発揮する 材料であるアルキルフルオロアクリレートの配合量を少 なくして、且つ優れた防汚性と耐擦傷性と柔軟性及び防 曇性を兼ね備えたハードコート塗膜層を有するシートの 製造方法を提供することである。本発明の第2の目的は 防汚性、耐擦傷性、柔軟性、防暑性に優れたより低価額 のハードコートシートを提供することである。

[0017]

【課題を解決するための手段】本発明者らは、シート状 基材の表面に、アルキルフルオロアクリレートの配合量 を少なくして、且つ優れた防汚性と耐擦傷性と柔軟性及 び防曇性を兼備した加工方法について鋭意研究した。そ して、アクリル単量体の硬化塗膜を主体とし、その表面 に含フッ素単量体であるアルキルフルオロアクリレート の硬化物を共重合の形で偏在せしめた構造の硬化塗膜を 電子線照射によってシート状基材の表面に形成させると とで達成し得るのではないかと推測した。その手段とし て、後述するところの諸限定条件の下で、微量のアルキ ルフルオロアクリレートと、これと相溶性のない親水性 アクリル単量体、及び疎水性多官能アクリル単量体を主 体とするアクリル単量体及びこれらに対しそれぞれ相溶 性のある溶剤との混合組成物をシート状基材に塗布し、 直ちに電子線を照射し、溶剤の蒸発と塗膜硬化を同時に 起こさせることにより、初めて課題が解決し得ることを 見いだしたものである。

【0018】本発明の防曇性と防汚性に優れたハードコ ートシートの製造方法は、次の四つの成分、

A:アルキルフルオロアクリレート、

B:前記Aと相溶性がなく、且つ疎水性で官能基を3個 以上有するアクリル単量体を少なくとも10%含むアク リル系単量体、

-体を少なくとも50%含むアクリル系単量体、D:前記A、B、Cとそれぞれ相溶性を有する溶剤、からなり、前記A:B:Cの比率が、0.05~1:49.95~10:50~89.95、前記A、B、Cの総量対Dの比率が、95~50:5~50である混合組成物をシート状基材の上に1~15μmの厚さに塗布し、直ちに電子線を照射することにより、前記混合組成物中の溶剤の蒸発と前記シート状基材上の塗膜の硬化を同時に起こさせることを特徴とするものである。

5 .

【0019】図1に4つの成分の関係を簡明に示す。ア ルキルフルオロアクリレートA、疎水性アクリル系単量 体B、親水性アクリル系単量体C、溶剤Dを4点に示 す。防汚性の主体となるのはフッ素を含む単量体である アルキルフルオロアクリレートAである。これは防曇性 についても優れた効果がある。従来例として述べた◆ (特開平6-211945号)は防汚性確保のためにア ルキルフルオロアクリレートを0.5~10重量%必要 とした。高価なアルキルフルオロアクリレートAの量を 減らすことが本発明の目的の一つであった。ここではA の量を0.05~1まで低下させている。つまり約1/ 10に減らしているのである。 ②ではアクリル単量体は 疎水性親水性をとわず1種類だけであったが、本発明で は、疎水性アクリル系単量体Bと、親水性アクリル系単 量体Cの2種類のアクリル単量体を要求する。アルキル フルオロアクリレートAと疎水性アクリル系単量体Bは 相溶性がない。アルキルフルオロアクリレートAと親水 性アクリル系単量体Cも相溶性がない。相溶性の無い物 ばかりの組み合わせでは混合物にならない。そこでこれ ら3者をともに溶かすことのできる溶剤Dを用いてこれ らを溶解する。溶剤が5%より少ないと3つの材料が溶 30 解しないし、50%以上であると電子線照射によっても 溶剤が残留することもあるので溶剤の量は5~50%と

【0020】Aと、B+Cとは相溶性がないので電子線照射によって硬化すると、Aが表面に押しやられて表面で硬化する。Aの表面での密度が高くなり表面にフッ素原子が局在する。これが表面の防汚性を高める。内部にはAは殆ど存在しない。もともと防汚性は表面だけの性質であるから、Aが表面に局在し内部にはないというのは極めて好都合な性質である。このように瞬時に溶剤を40蒸発させ塗膜を硬化させるため電子線照射を行うのである。塗膜の内部はB+Cだけということになる。Bは官能基が3以上のものを10%以上含むから結合の手が多くなってハードコート性(耐擦傷性)が高揚する。

【0021】防曇性を賦与するために親水性アクリル系 単量体Cを用いている。シートの上にできる曇は微小の 水滴と、大きい水滴によって作られる。大きい水滴は表 面張力によって丸い大きい水滴となるが、これは表面に 局在するアルキルフルオロアクリレートAのフッ素原子 によって支えられ粒状を保ち転がって消失する。フッ素 50 線である。LKの延長線と辺Aの交点をJとする。点K

原子の間隔より小さい微小水滴はフッ素原子で支えられないので塗膜にまで降下する。塗膜には親水性のアクリル単量体があるから微小水滴を引き寄せる。微小水滴は 塗膜に滲みこんで親水性アクリル単量体に吸収される。 このようなわけで水滴が表面からなくなるので曇が消える。だから、防曇性はAとCの作用によって与えられる

[0022] 本発明の防暴性と防汚性に優れたハードコートシートは、シート状基材に硬化塗膜が形成されているハードコートシートであって、この硬化塗膜は、次の四つの成分、

A: アルキルフルオロアクリレート、

B:前記Aと相溶性がなく、且つ疎水性で官能基を3個以上有するアクリル単量体を少なくとも10%含むアクリル系単量体、

C:前記Aと相溶性がなく、且つ親水性のアクリル単量 体を少なくとも50%含むアクリル系単量体、

D:前記A、B、Cとそれぞれ相溶性を有する溶剤、 からなり、前記A:B:Cの比率が、0.05~1:4 9.95~10:50~89.95、前記A、B、Cの 総量対Dの比率が、95~50:5~50である混合組 成物をシート状基材の上に1~15μmの厚さに塗布 し、直ちに電子線を照射して成ることを特徴とする。 【0023】このハードコートシートは、優れた防汚性 と防曇性と耐擦傷性及び柔軟性を兼ね備えた硬化塗膜を 有する。図2は本発明のハードコートシートの断面を示 す。シート状基材1の上に塗膜2がコーティングされて いる。塗膜2は元々は、A+B+C+Dの4元の混合物 であるが、電子線照射によって溶剤Dを蒸発させている から、A+B+Cの3種類の成分を含む硬質の膜となっ ている。しかもAと、B+Cとは相溶性がないので、A が表面のみに局在している。 図2の右の図は深さ方向の Aの分布を示す。

【0024】図3はA、B、Cの成分の重量比を示すダ イアグラムである。全体の重量を100として、A= 0. $05\sim1$, B=49. $95\sim10$, $C=50\sim8$ 9. 95であるが、図3では正三角形内の領域として示 している。3つの辺をA、B、Cとして、一点から3つ の辺に下した垂線の足a、b、cの長さが成分の比を表 す。1辺の長さを50×31/2とすると、a+b+c= 100となる。アルキルフルオロアクリレートAの量が 少ないから、成分領域は辺Aに極めて近接している。 【0025】そこで図4に辺Aの近傍の拡大図を示す。 成分比の存在領域は台形GHKLである。GLはA=1 %の線、IJはA=0.05%の線である。HGはC= 50%の線である。GHの延長線と辺Aの交点 I は50 %の点である。成分比を(A, B, C)によって表現す ると、点Hは(0.05,49.95,50)である。 点Gは(1,49,50)である。LKはB=10%の

は (0:05:10:89.95) である。 点Lは -- (1,10,89) である。

【0026】図5~図7は製造方法を示す断面図である。出発材料はシート状基材1である。シート状基材1はガラスの他にプラスチック材料である。プラスチックの基材としては、ポリカーボネイト、アクリル、ポリ塩化ビニル、ナイロン、ポリスチレン、ポリエチレン、ポリエチレンである。次に図6のようにシート状基材1に塗膜2を塗布する。その成分は、先述のようにアルキルフルオロアクリレートA、疎水性アクリル系単量体B、親水性アクリル系単量体C、溶剤Dである。すでに何度も述べているように、A、B、Cの内において、A=0.05~1%、B=49.95~10%、C=50~89.95%である。

【0027】ついで塗膜未硬化の内に図7のように塗膜2の電子線3を照射する。電子線の加速電圧は100~300kVである。特に150~300kVが望ましい。電子線量は、3~20Mradである。特に5~15Mradが好ましい範囲である。以下、本発明の構成20に係わる技術内容、事項について詳細に説明する。

【0028】(1)機能発揮の原理

まず、本発明の製造方法により防汚性と防傷性ないし耐擦傷性とを兼備した塗膜形成がなされる原理の基本は、②特願平5-23529号(特開平6-211945号)で述べた通りである。アクリル単量体はアルキルフルオロアクリレートを表面に押しだし、アルキルフルオロアクリレートが表面だけに局在するようにしている。アルキルフルオロアクリレートがフッ素原子をもつのでこれが防汚性をもたらす。アクリル単量体は官能基の多いもの(N≥3)を含むので耐擦傷性をもたらすのである。

【0029】 ここでは耐擦傷性と柔軟性を兼備したハードコート性が得られる理由1)と、アルキルフルオロアクリレートを微量配合することにより、特願平5-23529号より優れた防汚機能を発揮する理由2)と、防曇性が得られる理由3)の3点について述べることにする。

【0030】1)耐擦傷性と柔軟性を兼備したハードコート性が得られる理由

特願平5-23529号(①)では、耐擦傷性を向上させるため、官能基を3個以上有するアクリル単量体を少なくとも50%含む必要があるとした。しかし、これは耐擦傷性のみを追求するため硬化塗膜が硬くなりすぎた。それで塗膜を含むシート状基材を折り曲げると硬化塗膜が割れやすいという欠点があった。そこで、官能基を3個以上有するアクリル単量体の比率を10%に低下させることにした。官能基3個以上のものが10%以上であるから、官能基が1又は2のものが90%未満含まれるということになる。

【0031】2)アルキルフルオロアクリレートを微量配合するととにより、特願平5-23529号より優れた防汚機能を発揮する理由

防汚性を担うのは含フッ素単量体であるアルキルフルオロアクリレートである。特願平5-23539号(①)では0.5~10%としたが高価な材料を大量に使用するのは望ましくない。本発明は0.05~1%というように約1/10にアルキルフルオロアクリレートAの量を減らしている。それでもなおかつ優れた防汚性を達成できるのはどうしてか?という理由を述べる。①では疎水性のアクリル単量体のみを使っていたが、本発明は親水性のアクリル単量体をかなりの分量使う。アルキルフルオロアクリレート量が減っているにもかかわらず、これによって防汚性が高揚する。

【0032】アルキルフルオロアクリレートはかなり極端な疎水性である。だから、疎水性アクリル単量体を使うのはアルキルフルオロアクリレートを完全に上層へ押し上げることができなかった。本発明は親水性のアクリル単量体を多く含ませることにより、その反発性でより一層アルキルフルオロアクリレートを、表面に偏在させることができる。そのため疎水性アクリル単量体とアルキルフルオロアクリレートだけを使う特願平5-23529号(①)の限定条件より少ない量で同等もしくはそれ以上の防汚性を発揮することができる。

【0033】また、お互いに親和性のない(疎水性、親水性)単量体混合物を用いるにもかかわらず、透明で均質な塗膜層が得られる理由は、共通溶剤を用いた均質な配合組成物の薄層を溶剤揮発による層分離が起こる以前に電子線照射により瞬時に硬化させるためである。電子線照射はこのような均質膜構造を瞬時に固定する作用があり、重要である。混合組成物を単に乾燥させたのでは層分離し層構造が不均一になる。また乾燥したあとで電子線照射しても効果はない。塗布後未硬化のうちに電子線照射をしなければならない。

【0034】3)防曇性が得られる理由

防暑性を発揮させるには、霧状の微小水滴を塗膜表面に吸収させるか、小滴同士を融合して大きな水滴にする必要がある。大きな水滴に対しては、球面との界面張力の大きさにより球状の状態で表面に存在する。これが撥水性である。大きい水滴は暑にならないし転がってなくなる。霧状の微小水滴に対しては表面張力が働かず、濡れ現象を起こす。この理由としては大きな水滴が表面のフッ素原子の影響を主として受けるのに対し、微小水滴は表面の親水基の影響を主として受けるためではないかと推察する。つまり、撥水性のあるアルキルフルオロアクリルートAが大きい水滴を表面に保持し、親水性のアクリル単量体Cの親水基が微小水滴を吸収するのである。従って、微小水滴の除去は塗膜成分に親水性のアクリル系単量体を多く含ませることにより可能となる。塗膜表面に霧状の微小水滴を当ててやると、親水性のアクリル

---系単量体により水分を吸収するとともに、アルキルフル オロアクリレートの作用でフィルム表面にて水滴同士が 集まり大きくなり曇は生じなくなる。つまり、AとCの 相補的な作用によって初めて防曇性が得られたのであ る。

_ 【 0 0 3 5 】 (2) 本発明における使用原材料について の説明

シート状基材 1 はガラスやプラスチックである。プラス - チックといってもたくさんあるのでプラスチック基材を 次に述べる。

【0036】①プラスチック基材

シート状、フィルム状、板状であれば良い。その材質 は、ポリカーボネイト、アクリル、ポリ塩化ビニル、ナ イロン、ポリスチレン、ポリエチレン、ポリエチレンテ レフタレート、ポリプロピレンなどがある。

【0037】②アルキルフルオロアクリレート(A) 撥水、撥油性の防汚機能をもたらすアルキルフルオロア カリレートとしては、トリフロオロエチル(メタ)アク リレート、テトラフロオロプロピル(メタ)アクリレー ト、オクタフロオロペンチル(メタ)アクリレート、へ 20 プタデカフロオロデシル(メタ)アクリレートなどがあ げられる。

【0038】③アクリル単量体

アクリル単量体というのはアクリロイル基(-CO-C H=CH、)を含む単量体のことである。ここで単量体 というのは一般にモノマーと呼ばれているものと、オリゴマーと呼ばれているものとを含むものとする。そして 本発明に用い得るアクリル単量体は先に述べたアルキルフルオロアクリレートと相溶性がないものとする。相溶性のあるものを用いると満足すべき防汚性のある硬化皮 30 膜が得られない。

【0039】 ④親水性アクリル単量体(C)

親水性アクリル単量体とは、分子中の基が水分子との間に結合を作りやすいもので、水酸基-OH、カルボキシル基-COOH、アミノ基-NH、ケトン基-CO-、スルホ基-SO。H、エーテル基R-O-R'

(R、R'はアルキル基)が分子中に存在するアクリル 単量体である。

【0040】本発明において使用する親水性アクリル単量体としては、トリプロピレングリコールジアクリレート、ポリエチレングリコールジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、ベンタエリスリトールジアクリレートモノステアレート、イソシアヌル酸E〇変性ジアクリレート、アルキルフェノキシポリエチレングリコールアクリレートなどが使用できる。

【0041】⑤官能基を3個以上有する疎水性アクリル 単量体(B)

疎水性アクリル単量体とは、分子中の基が水分子との間 50 一層アルキルフルオロアクリレートが塗膜表面に偏在す

―に結合を作りにくいものであり、一般にはC。以上の炭化水素基である。フッ素、ケイ素で置換された形の炭化水素基も含むものとする。

【0042】本発明において使用する官能基を3個以上 有する疎水性アクリル単量体としては、トリメチロール プロパントリアクリレート、ペンタエリスリトールテト ラアクリレート、ジペンタエリスリトールペンタアクリ レート、ジペンタエリスリトールへキサアクリレート、 ジペンタエリスリトールカプロラクトン付加物へキサア 10 クリレート及びそれらの変成物、官能基3個以上のエボ キシアクリレートオリゴマー、官能基3個以上のポリエ ステルアクリレートオリゴマー、官能基3個以上のウレ タンアクリレートオリゴマーなどが使用できる。

【0043】6 溶剤(D)

溶剤としては、アルキルフルオロアクリレート、及び疎水性、親水性のアクリル単量体の両者に対し共通溶媒となり得るもので、溶剤を含めて三者の混合物が均一な溶液となることが必要であるが、一般的にはメチルアルコール、エチルアルコール、ブルビルアルコール、ブチルアルコール、アセトン、メチルエチルケトン、酢酸エチル、二塩化エチレン、四塩化炭素などの単独溶媒または混合溶媒を用いることができる。但し、使用前に透明で均質な共通溶剤となることを確認しておくことが重要である。

【0044】(3)限定条件についての説明

① 混合組成物における成分Bの疎水性アクリル単量体 に、官能基3個以上有するアクリル単量体を少なくとも 10%以上含ませる理由は、耐擦傷性と優れた防汚性を 付与するのに欠かせないからである。塗膜の表面に耐擦 傷性を持たせるには高架橋密度の表面でなければならな い。そのためには官能基数が3個以上の単量体を少なく とも10%以上、好ましくは10%~30%を含む疎水 性アクリル単量体を用いる必要がある。一方、かかる多 官能のアクリル単量体の使用が防汚性付与に効果的であ る理由は、官能基数の多い単量体がアルキルフルオロア クリレートと比較した場合硬化速度が著しく速いことと 相互の表面張力が違うことからアルキルフルオロアクリ レートが塗膜表面に偏在するためであると推測される。 【0045】② 混合組成物における成分Cの親水性ア クリル単量体を少なくとも50%以上含ませる理由は、 耐擦傷性と柔軟性及び優れた防汚性を付与するのに欠か せないからである。塗膜の表面に耐擦傷性と柔軟性を持 たせるのは架橋密度のバランスであり、成分Cは架橋密 度が成分Bに比べて弱く、成分BとCの配合量によって 決定される。そのためには少なくとも50%以上、好ま しくは50%~70%を含む親水性アクリル単量体を用 いる必要がある。一方、かかる親水性のアクリル単量体 の使用が防汚性付与に効果的である理由は、極端な疎水 性のアルキルフルオロアクリレートとの反発作用でより

るためであると推測される。・

【0046】③ 混合組成物における成分Aのアルキル フルオロアクリレートと、同BとCのアクリル単量体に 関し、A対B+Cの比率が0.05~1.0:99.9 5~99.0である理由は、アルキルフルオロアクリレ ートが0.05未満では防汚性が不十分になり、1.0 以上でもこれ以上防汚性が向上しないからである。尚、 さらに、好ましいA対B+Cの比率は0.1~0.5: -99.9~99.5である。アルキルフルオロアクリレ が重要である。本発明は0.5%以下でも防汚性を発揮 させることができる。先述のように親水性アクリル単量 体の使用によりこれが可能になっている。

【0047】④ 成分A+B+Cの総量対Dの比率が9 5~50:5~50である理由は、成分Cの側から言う と、5以下では塗工可能な均一な混合組成物が得られ ず、また塗工性も良くない。さらに、硬化物は期待する 防汚性能を示さない。そして成分Cが50以上では硬化 後に溶剤が残存する恐れがあるのと、硬化皮膜と基材と*

* の密着性が不十分になりやすい。

【0048】 ⑤ 混合組成物の塗布厚さを1~15μm とする理由。1μm以下では保護皮膜として十分な性能 (防汚性、耐擦傷性とも)が得られない。15μm以上 でも十分な性能のものが得られなくなるのと、製造上で も溶剤の残存などの問題が起こりやすい。

【0049】 6 電子線照射について

電子線の加速電圧は100~3000kVであり、好ま しくは150~300kVであり、線量は3~20Mr ートは高価な材料であるから使用量を減らすということ 10 ad、好ましくは5~15Mradである。照射雰囲気 は、窒素のような不活性ガス雰囲気が好ましい。

[0050]

【実施例】次に6つの実施例と6つの比較例を挙げて本 発明を具体的に説明する。予め表1に、実施例、比較例 に於ける成分A、B、Cの重量比率、溶剤Dの(A+B +C) に対する比率、塗膜厚みを示す。

[0051]

【表1】

実施例1~6、比較例1~6における

A、B、Cの比率、Dの比率、及び強膜厚み(μm)

	A (%)	B (%)	C (%)	100D/ (A+B+C)	強膜厚み (μm)
実施例1	0.4	3 0	69.6	3 0	1 0
実施例 2	0.05	10	89.95	5	5
実施例3	1	2 0	7 9	50	10
実施例 4	0.8	49.7	5 0	2 0	16
実施例 5	0.1	39.9	6 0	1 0	10
実施例 6	0. B	29. 2	7 0	4 0	5
比較例 1	0.4	30	69.6	3 0	10
比較例 2	0.03	1 0	89.95	5	5
比較何3	1	6.0	3 9	6.0	10
比較例 4	0. 3	Б	94.7	2 0	1 5
比較例 5	0.05	7 0	29.92	1 0	1 0
比較例 6	0.8	29. 2	7 0	4 0	5

【0052】「実施例1]厚さ0. 1mmのポリカーボ ネイトシートを基材として用い、これに下記配合の混合※

※組成物をバーコーターにて塗布厚さ10 µmになるよう に塗布した。

A成分 ビスコート17F(※1)

0. 4重量部

B成分 カヤラッドDPHA(※2)

15 重量部

アロニックスM8100(※3)15 重量部

C成分 NKエステルA400(※4)

30 重量部

カヤラッドPET-30(※5)39.6重量部

D成分 イソプロピルアルコール

3.0 重量部

(※1) アルキルフルオロアクリレート 大阪有機化学工業(株)製

(※2) 6 官能の疎水性アクリル単量体 日本化薬(株)製

(※3) 3 官能の疎水性アクリル単量体 東亜合成化学工業(株) 製

(※4) 2 官能の親水性アクリル単量体 新中村化学工業(株)製

(※5) 3官能の親水性アクリル単量体 日本化薬(株)製

[0053] 本配合における各成分の比率は次のように 50 なる。A対 (B+C)の比率は、0.4:99.6、

11

--(-A-+-B+C) の総量とDの比率は、100:30であ る。A、B、C、D成分の比率及び塗膜厚みを図8に示 す。塗布後直ちに電予線照射装置を用いて、窒素雰囲気 中、加速電圧150kV、線量10Mradの条件にて 照射し、単量体組成物を硬化させると共に溶剤を蒸発さ せた。この条件での塗膜の性能を表2に示す。塗膜性能*

13

*は、耐擦傷性、柔軟性及び防汚性とも良好である。 【0054】[実施例2]厚さ0.2mmのポリカーボ ネイトシートを基材として用い、これに下記配合の混合 組成物をバーコーターにて塗布厚さ5μmになるように 塗布した。

A成分 ビスコート17F

B成分 NKオリゴ15HA(※6)

アロニックスM-450(※7) 5 重量部

C成分 NKエステルA600(※8)

89.95重量部

0.05重量部

5

D成分 メチルエチルケトン

重量部

(※6) 15官能のアクリル単量体

新中村化学工業(株)製

(※7) 4 官能の疎水性アクリル単量体 東亜合成化学工業(株)製 ...

重量部

(※8) 2 官能の親水性アクリル単量体 新中村化学工業(株)製

本配合における各成分の比率は次のようになる。A対 *(B+C) の比率は、0.05:99.95、(A+B +C) の総量とDの比率は、100:5である。A、 B、C、D成分の比率及び塗膜厚みを図9に示す。 【0055】塗布後直ちに電子線照射装置を用いて、窒 素雰囲気中、加速電圧150kV、線量15Mradの 20 ーコーターにて塗布厚さ10μmになるように塗布し 条件にて照射し、単量体組成物を硬化させると共に溶剤※

塗膜性能は、耐擦傷性、柔軟性及び防汚性とも良好であ 【0056】 [実施例3] 厚さ50μmのPETフィル

※を蒸発させた。との条件での塗膜の性能を表2に示す。

ムを基材として用い、これに下記配合の混合組成物をバ た。

A成分 ビスコート17F

1 重量部

B成分 カヤラッドDPCA-60(※9)

20重量部

C成分 NKエステルA200(※10)

35重量部

NKエステルA400

44重量部 50重量部

D成分 アセトン

た。

(※9) 6官能のアクリル単量体 日本化薬(株)製

(※10)2官能の親水性アクリル単量体 新中村化学工業(株)製

【0057】本配合における各成分の比率は次のように なる。A対 (B+C) の比率は、1:99、(A+B+ 30 は、耐擦傷性、柔軟性及び防汚性とも良好である。 C) の総置とDの比率は、100:50である。A、 B、C、D成分の比率及び塗膜厚みを図10k示す。塗 布後直ちに電子線照射装置を用いて、窒素雰囲気中、加 速電圧200kV、線量15Mradの条件にて照射 し、単量体組成物を硬化させると共に溶剤を蒸発させ ★

★た。この条件での塗膜の性能を表2に示す。塗膜性能 【0058】 [実施例4] 厚さ50 µ mのPETフィル ムを基材として用い、とれに下記配合の混合組成物をバ ーコーターにて塗布厚さ15μmになるように塗布し

A成分 ビスコート17F

0.3重量部

15

B成分 NKオリゴ15HA

49.7重量部

C成分 カヤラッドPET-30

35 重量部

重量部

ニユーフロンティアN177E(※11)

D成分 アセトン

20 重量部

(※11) 1官能の親水性アクリル単量体 第一工業製薬(株)製

本配合における各成分の比率は次のようになる。 【0059】A対(B+C)の比率は、0.3:99. 7、(A+B+C)の総量とDの比率は、100:20 である。A、B、C、D成分の比率及び塗膜厚みを図1 1に示す。塗布後直ちに電子線照射装置を用いて、窒素・ 雰囲気中、加速電圧200kV、線量5Mradの条件 にて照射し、単量体組成物を硬化させると共に溶剤を蒸☆

性能は、耐擦傷性、柔軟性及び防汚性とも良好である。 【0060】 [実施例5] 厚さ0. 1mmのポリスチレ ンシートを基材として用い、これに下記配合の混合組成 物をバーコーターにて塗布厚さ10μmになるように塗 布した。

☆発させた。との条件での塗膜の性能を表2に示す。塗膜

A成分 ビスコート17F B成分 NKオリゴ15HA

0.1重量部 20 重量部

カヤラッドTMPTA (※1-2-)--1-9. 9重量部

C成分 カヤラッドPET-30

6.0 重量部

D成分 メチルエチルケトン

重量部 10

(※12) 3官能の疎水性アクリル単量体 日本化薬(株)製

[0061] 本配合における各成分の比率は次のように _なる。A対 (B+C) の比率は、0.1:99.9、 (A+B+C) の総量とDの比率は、100:10であ る。A、B、C、D成分の比率及び塗膜厚みを図12に - 示す。塗布後直ちに電子線照射装置を用いて、窒素雰囲 気中、加速電圧175kV、線量10Mradの条件に*10 ーコーターにて塗布厚さ 5μ 面になるように塗布した。

* て照射し、単量体組成物を硬化させると共に溶剤を蒸発 させた。この条件での塗膜の性能を表2に示す。塗膜性 能は、耐擦傷性、柔軟性及び防汚性とも良好である。 [0062] [実施例6] 厚さ50 µmのPETフィル ムを基材として用い、これに下記配合の混合組成物をバ

A成分 ビスコート17F

B成分 カヤラッドDPHA

29.2重量部 C成分 カヤラッドTPGDA (※13) 35

アロニックスM-215 (※14) 35

D成分 エチルアルコール

(※13) 2官能の親水性アクリル単量体 日本化薬(株)製

(※14) 2官能の親水性アクリル単量体 日本化薬(株)製

"[0063]本配合における各成分の比率は次のように なる。A対 (B+C) の比率は、0.8:99.2、

る。A、B、C、D成分の比率及び塗膜厚みを図13に 示す。塗布後直ちに電子線照射装置を用いて、窒素雰囲 気中、加速電圧175kV、線量15Mradの条件に て照射し、単量体組成物を硬化させると共に溶剤を蒸発 させた。との条件での塗膜の性能を表2に示す。塗膜性 能は、耐擦傷性、柔軟性及び防汚性とも良好である。

【0064】[比較例1]厚さ0.1mmのポリカーボ ネイトシートを基材として用い、これに下記配合の混合 組成物をバーコーターにて塗布厚さ10μmになるよう に塗布した。

A成分 ピスコート17F

0. 4 重量部

B成分 カヤラッドDPHA

15 **部**量重

アロニックスM8100

15 **部量重**

C成分 NKエステルA400

30 重量部

カヤラッドPET-30

39. 6 重量部

D成分 イソプロピルアルコール

30 重量部

【0065】本配合における各成分の比率は次のように※

A成分 ビスコート17F

B成分 NKオリゴ15HA

アロニックスM-450 C成分 NKエステルA600

D成分 メチルエチルケトン

本配合における各成分の比率は次のようになる。A対 (B+C) の比率は、0.03:99.97、(A+B +C) の総量とDの比率は、100:5である。A、 B、C、D成分の比率及び塗膜厚みを図15に示す。 【0067】塗布後直ちに電子線照射装置を用いて、窒 素雰囲気中、加速電圧150kV、線量15Mradの 条件にて照射し、単量体組成物を硬化させると共に溶剤 を蒸発させた。この条件での基材の状態及び塗膜の性能 50

0.8重量部

重量部

40 重量部

※なる。A対(B+C)の比率は、0.4:99.6、

(A+B+C) の総量とDの比率は、100:30であ (A+B+C) の総量とDの比率は、100:40であ 20 る。A、B、C、D成分の比率及び塗膜厚みを図14に 示す。塗布後溶剤を完全に乾燥してから電子線照射装置 を用いて、窒素雰囲気中、加速電圧150kV、線量1 OMradの条件にて照射し、単量体組成物を硬化させ た。との条件での塗膜の性能を表2に示す。溶剤を乾燥 した後、電子線照射を行ったため、防汚性が得られてい

> 【0066】[比較例2]厚さ0.2mmのポリカーボ ネイトシートを基材として用い、これに下記配合の混合 組成物をバーコーターにて塗布厚さ5 μmになるように 塗布した。

0.03重量部

5 電量電

5 重量部

89.97重量部

重量部

を表2に示す。A対(B+C)の比率にてA成分が限定 条件より少ないため、塗膜性能の中の撥水性と防汚性が 低下している。

【0068】 [比較例3] 厚さ50 µ mのPETフィル ムを基材として用い、これに下記配合の混合組成物をバ ーコーターにて塗布厚さ10μmになるように塗布し た。

A成分 ピスコート17F 1 重量部 B成分 カヤラッドDPCA-60 60重量部 C成分 NKエステルA200 20重量部 NKエステルA400 19 重量部 D成分 アセトン 50重量部

17

【0069】本配合における各成分の比率は次のように なる。A対 (B+C) の比率は、1:99、(A+B+ C) の総量とDの比率は、100:50である。A、 - B、C、D成分の比率及び塗膜厚みを図16に示す。塗 布後直ちに電子線照射装置を用いて、窒素雰囲気中、加*10

> A成分 ビスコート17F B成分 NKオリゴ15HA C成分 カヤラッドPET-30 ニユーフロンティアN177E

D成分 アセトン

【0071】本配合における各成分の比率は次のように なる。A対 (B+C) の比率は、0.3:99.7、 -(A+B+C) の総量とDの比率は、100:20であ る。A、B、C、D成分の比率及び塗膜厚みを図17に 気中、加速電圧200kV、線量5Mradの条件にて 照射し、単量体組成物を硬化させると共に溶剤を蒸発さ※

> A成分 ビスコート17F B成分 NKオリゴ15HA カヤラッドTMPTA C成分 カヤラッドPET-30 D成分 メチルエチルケトン

【0073】本配合における各成分の比率は次のように なる。A対 (B+C) の比率は、O. 08:99.9 である。A、B、C、D成分の比率及び塗膜厚みを図1 8に示す。この条件での基材の状態及び塗膜の性能を表 2に示す。B成分が限定条件より多いため、塗膜性能の 中の撥水性と防汚性及び柔軟性が低下している。

【0074】 [比較例6] 厚さ50 μmのPETフィル ムを基材として用い、これに下記配合の混合組成物をバ ーコーターにて塗布厚さ5μmになるように塗布した。

A成分 ピスコート17F 0.8重量部 B成分 カヤラッドDPHA 29. 2重量部 C成分 カヤラッドTPGDA **部量**重 35

アロニックスM-215 3 5 施量重

D成分 エチルアルコール 40 **暗** 量重

[0075] 本配合における各成分の比率は次のように

<u>* 東電圧2.0.0 k.V.</u> 線量15Mradの条件にて照射 し、単量体組成物を硬化させると共に溶剤を蒸発させ た。次いでこの条件での塗膜の性能を表2に示す。B成 分が限定条件より多いため、塗膜性能の中の柔軟性が低 下している。

18

【0070】 [比較例4] 厚さ50 μ mのPETフィル ムを基材として用い、これに下記配合の混合組成物をバ ーコーターにて塗布厚さ15μmになるように塗布し た。

0. 3重量部

重量部

50 重量部

44. 7重量部

20 重量部

※せた。この条件での塗膜の性能を表2に示す。B成分が 限定条件より少ないため、塗膜性能の中の硬度が低下し ている。

【0072】 [比較例5] 厚さ0. 1 mmのポリスチレ 示す。塗布後直ちに電子線照射装置を用いて、窒素雰囲 20 ンシートを基材として用い、これに下記配合の混合組成 物をバーコーターにて塗布厚さ10μmになるように塗 布した。

0.08重量部

3.0 重量部

40 重量部

29.92重量部

10 重量部

なる。A対(B+C)の比率は、0.8:99.2、 (A+B+C)の総量とDの比率は、100:40であ 2、(A+B+C)の総量とDの比率は、100:10 30 る。A、B、C、D成分の比率及び塗膜厚みを図19に 示す。塗布後直ちに電子線照射装置を用いて、窒素雰囲 気中、加速電圧175kV、線量2Mradの条件にて 照射し、単量体組成物を硬化させた。この条件での基材 の状態及び塗膜の性能を表2に示す。電子線照射量が限 定条件より少ないため、塗膜性能中の撥水性と防汚性及 び硬度が低下している。

> [0076] 【表2】

40

実施例1~6、比較例1~6の登膜の

根水性、防汚性、硬度、柔軟性、防暴性の測定結果

	撥水性	防汚性	硬度	柔軟性	防魯性
実施例 1	121度	©	5 H	0	0
実施例 2	110度	0	4 H	0	0
実施例3	125度	0	4 H	0	0
実施例 4	118度	0	5 H	0	0
実施例 5	105度	© ·	6 H	©	•
実施例 6	120度	©	5 H	0	0
比較例1	40度	×	4 H	0	20秒
比较例 2	90度	Δ	2 H	0	338秒
比較例3	110度	0	5 H	×·	18秒
比較例4	118度	0	Н	0	©
比較例 5	9 5度	Δ	6 H	×	15秒
比較例 6	60度	×	нв	0	5 5

[0077] (硬度) JIS-K-5400の8. 4. 2での鉛筆硬度。既知の硬度(例えば6B~7Hの 20 点において水滴に接線を引き接線の水滴内側の面とがな 鉛筆)の鉛筆を柔らかいものから順に塗膜に5本の線を 描き拭き取って3本以上の傷が付くかどうかを調べる。 最初に3本以上の傷を付けた鉛筆の硬度を塗膜の硬度と する。鉛筆硬度が5Hというのは4Hの鉛筆では傷が付 かず(或いは2本以下の傷が付き)5 Hの鉛筆で3本以 上 (3、4、5本) 傷が付くということである。4 H以 上の硬度をもつ膜をハードコートという。

【0078】(撥水性) 水に対する接触角。図20に米

◎:完全に消去されている

態を目視にて判定する。 〇:消去されているがマーキング跡がある

がれの状態を目視にて判定する。

△: 黒色が薄く残っている

×:消去できない

【0080】(柔軟性) JIS-K-5400の8.

1に準じ、屈曲試験器を用い、心棒の直径2mm、補助※

◎: 塗膜割れ、剥がれ無し

○:塗膜に小さなひび跡がある △:塗膜に大きなひび跡がある ×:塗膜が割れて剥がれている

【0081】(防曇性) 図21のようにピーカーに水 を入れて60℃に加熱する。その上に試験体であるハー ドコートシート基材を塗膜を下側にして置く。水滴が塗 膜について曇るかどうかを目視判定する。10分間以内 で昼が発生しなかったものには◎を、10分間以内に発 生した場合はビーカーの上にハードコートシート基材を 40 て柔軟性が得られるのは主に官能基数の少ない親水性ア 置いてから昼が発生するまでの時間を示している。

【0082】疎水性アクリル系単量体Bと、親水性アク リル系単量体Cの官能基の数が、柔軟性と耐擦傷性の評 価において重要である。表3には実施例1~6、比較例

1~6の塗膜材料において、疎水性アクリル系単量体B と親水性アクリル系単量体Cの官能基数とその重量比を 一括して示す。親水性アクリル単量体は官能基数が少な くてとこではN=3、2、1しかない。疎水性アクリル 単量体は官能基数の多い物が幾つもある。本発明におい クリル単量体の比率が多いからである。

* 塗膜の上に水滴が存在する状態を示す。水滴と膜の接触

す角度として定義する。これが小さいと濡れ易い膜だと

いうことで大きい水滴ができない。接触角が大きいと水 をはじき易く濡れにくい面であって大きい水滴ができ

【0079】(防汚性) JIS-K-5400の8. 10に準じ、黒色の油性マーカーにて5cmの円を描

き、5分後にティシュペーパーにてふき取りその消去状

※板の厚さ4mmにて、屈曲試験を行い、塗膜の割れ、剥

る。大きい水滴は転がって消失しやすい。

[0083]

【表3】

奥施例1~6と比較例1~6における疎木性アクリル単量体Bと 親水性アクリル単量体Cの官能基数ごとの原料重量比

	疎水性アクリル単量体B				親水性アクリル単量体C		
官能基数	1 5	6	4	3	3	2	1
実施例1		1 5		1 5	39. 6	30	
実施例 2	5		5			89. 95	
奥施例3		20				7 9	
実施例4	49. 7				3 5		1 5
実施例 5	2 0			19. 9	60		
実施例 6		29. 2				70	
比較例1		1 5		1 5	39. 6	30	
比較例2	5		5			89. 97	
比較例3		60				3 9	
比較例 4	5				5 0		44. 7
比較例 5	3 0			4 0.	29. 92		
比較例6		29. 2				70	

[0084]

【発明の効果】本発明の第一の効果は、防汚性と耐擦傷 性と防曇性及び柔軟性を付与する加工を同時に実現した 点にある。最も新規性ある点は防量性である。防壓性は 親水性アクリル単量体によって微小水滴を吸収すること とアルキルフルオロアクリレートによって大水滴をはじ くようにしたことによって得られる。防汚性はフッ素を 含むアルキルフルオロアクリレートの作用による。耐擦 傷性は官能基3以上の疎水性アクリル単量体による。柔 軟性は官能基の少ない親水性アクリル単量体を50~8 9. 95%も混合することによって得られている。

【0085】第二の効果は、アルキルフルオロアクリレ ートにより防汚性を得ている特開平6-211945号 の改良を与える、ということである。高価なアルキルフ ルオロアクリレートの使用量を少なくしても(約1/1 0)優れた防汚機能を発揮させることができる点であ る。親水性アクリル単量体がアルキルフルオロアクリレ ートをいっそう強力に上部へ押し上げるから、表面だけ にアルキルフルオロアクリレートが局在する。内部には アルキルフルオロアクリレートは全く存在しない。この ような偏在は親水性アクリル単量体による。

【0086】第三の効果は、本発明の製造方法が工業的 な観点から見て極めて容易な工程で安定して実施できる 点にある。混合組成物を作製準備するのは簡単である。 これを単にシート状基材に塗布し、すぐに電子線照射す るだけでよい。電子線照射方法は、髙生産性のものであ るととは言うまでもない。

【図面の簡単な説明】

【図1】本発明においてシート状基板に塗布する塗膜を 構成する4つの成分の関係と重量比の範囲を示す説明 図。

【図2】本発明のハードコートシートの構造を示す概略 断面図。ハードコートシートはシート状基材と塗膜とよ りなる。

【図3】本発明においてシート状基材に塗布する塗膜成 分の重量比の範囲を示す三元図。正三角形の内部の任意 の点が成分比を示す。その点から三辺A、B、Cに下し た垂線の長さa、b、cが成分の重量比を示す。

【図4】図3の成分点のみの近傍の拡大図。

【図5】本発明の方法の出発点であるシート状基材のみ を示す断面図。

【図6】シート状基材の上に、アルキルフルオロアクリ 30 レートA、疎水性アクリル単量体B、親水性アクリル単 量体C、溶剤Dよりなる塗膜を塗布した状態の断面図。

【図7】塗膜が乾燥しない状態で電子線を照射して溶剤 を蒸発させ塗膜を硬化した状態を示す断面図。

【図8】塗膜成分のアルキルフルオロアクリレートA、 疎水性アクリル単量体B、親水性アクリル単量体Cの (A+B+C)の内での重量比、溶剤Dの(A+B+ C) に対する比率の百分比100D/(A+B+C)、 塗膜厚さに関して本発明が指定した範囲に対する、実施 40 例1の採用した値を示す図。

【図9】 塗膜成分のアルキルフルオロアクリレートA、 疎水性アクリル単量体B、親水性アクリル単量体Cの (A+B+C)の内での重量比、溶剤Dの(A+B+ C) に対する比率の百分比100D/(A+B+C)、 **塗膜厚さに関して本発明が指定した範囲に対する、実施** 例2の採用した値を示す図。

【図10】塗膜成分のアルキルフルオロアクリレート A、疎水性アクリル単量体B、親水性アクリル単量体C の (A+B+C) の内での重量比、溶剤Dの (A+B+

50 C) に対する比率の百分比100D/(A+B+C)、

塗膜厚さに関して本発明が指定した範囲に対する、実施 例3の採用した値を示す図。

【図11】塗膜成分のアルキルフルオロアクリレートA、疎水性アクリル単量体B、親水性アクリル単量体Cの(A+B+C)の内での重量比、溶剤Dの(A+B+C)に対する比率の百分比100D/(A+B+C)、塗膜厚さに関して本発明が指定した範囲に対する、実施例4の採用した値を示す図。

【図13】塗膜成分のアルキルフルオロアクリレート A、疎水性アクリル単量体B、親水性アクリル単重体Cの(A+B+C)の内での重量比、溶剤Dの(A+B+C)に対する比率の百分比100D/(A+B+C)、塗膜厚さに関して本発明が指定した範囲に対する、実施例6の採用した値を示す図。

【図14】塗膜成分のアルキルフルオロアクリレートA、疎水性アクリル単量体B、親水性アクリル単量体Cの(A+B+C)の内での重量比、溶剤Dの(A+B+C)に対する比率の百分比100D/(A+B+C)、塗膜厚さに関して本発明が指定した範囲に対する、比較例1の採用した値を示す図。

【図15】塗膜成分のアルキルフルオロアクリレート A、疎水性アクリル単量体B、親水性アクリル単量体Cの(A+B+C)の内での重量比、溶剤Dの(A+B+C)に対する比率の百分比100D/(A+B+C)、塗膜厚さに関して本発明が指定した範囲に対する、比較例2の採用した値を示す図。

【図16】塗膜成分のアルキルフルオロアクリレート A、疎水性アクリル単量体B、親水性アクリル単量体C*

*の(A+B+C)の内での重量比、溶剤Dの(A+B+C)に対する比率の百分比100D/(A+B+C)、 塗膜厚さに関して本発明が指定した範囲に対する、比較例3の採用した値を示す図。

【図17】塗膜成分のアルキルフルオロアクリレートA、疎水性アクリル単量体B、親水性アクリル単量体Cの(A+B+C)の内での重量比、溶剤Dの(A+B+C)に対する比率の百分比100D/(A+B+C)、塗膜厚さに関して本発明が指定した範囲に対する、比較例4の採用した値を示す図。

【図18】塗膜成分のアルキルフルオロアクリレートA、疎水性アクリル単量体B、親水性アクリル単量体Cの(A+B+C)の内での重量比、溶剤Dの(A+B+C)に対する比率の百分比100D/(A+B+C)、塗膜厚さに関して本発明が指定した範囲に対する、比較例5の採用した値を示す図。

【図19】塗膜成分のアルキルフルオロアクリレートA、疎水性アクリル単量体B、親水性アクリル単量体Cの(A+B+C)の内での重量比、溶剤Dの(A+B+20 C)に対する比率の百分比100D/(A+B+C)、塗膜厚さに関して本発明が指定した範囲に対する、比較例6の採用した値を示す図。

【図20】撥水性評価のための、塗膜表面の水に対する 接触角の定義を説明するための図。

【図21】温水上にシートを置いて目視によって昼を見る防曇性評価法の説明図。

【符号の説明】

- 1 シート状基材
- 2 塗膜
- 0 3 電子線
 - 4 水滴
 - 5 ビーカー
 - 6 ヒータ

【図1】

【図2】

【図16】

[図17]

【図18】

フロントページの続き

(51)Int.Cl.	7	識別記号	FΙ			テマコード (参考)
B32B	27/30		B 3 2 B	27/30	D	4 J O 3 8
C08F	2/46		C08F	2/46		4 J 1 0 0
	220/22			220/22		
C 0 9 D	4/02		C 0 9 D	4/02		
C09K	3/18		C 0 9 K	3/18		
// C08J	5/18	CEY	C 0 8 J	5/18	CEY	

Fターム(参考) 4D075 AE03 BB47Z CA02 CA34 CA39 DA04 DB48 DC02 DC24

DC36 EA05 EB17 EB22 EB56

EC30 EC54

4F071 AA33 AF25 AF55 AF56 AH03

AH04 AH19 BC01 BC02 BC17

4F100 AK17B AK17J AK25B AK25J

AK45 AL01B AT00A BA02

EH112 EH462 EJ08B EJ082

EJ53B EJ532 GB08 GB33

GB81 GB90 JB05B JB06B

JK09 JK13 JL06 JL07 JM02B

4H020 AA04 AB02 BA13

4J011 AA03 AC04 BA03 BB15 DA04

HA04 HB14 HB17 QA03 QA13

QA17 QA23 QA24 QA39 QB12

QB16 QB19 QB24 UA03 VA01

VA09 WA02

4J038 FA111 FA121 FA122 FA171

FA211 FA261 FA271 FA281

GA02 GA03 GA06 GA09 GA12

GA13 JA09 JA19 JA33 JA56

KA06 MA09 NA05 NA06 NA07

NA11 PA17

4J100 AL08P AL08R AL63Q AL66P

AL67P AL67Q BA02P BA02Q

BA03P BA03Q BA08P BA20P

BA21Q BB18R BC43P BC75P

CA05 DA48 JA01