- 1. Који од сљедећих скупова су потпростори векторског простора реалних низова (сабирање низова и множење низа скаларом су дефинисани на уобичајен начин, то јест по координатама).
 - (а) Скуп свих опадајућих реалних низова.
 - (б) Скуп свих константних реалних низова.
 - (в) Скуп свих реалних низова који имају коначно много чланова различитих од нуле.
 - (г) Скуп свих конвергентних реалних низова.
 - (д) Скуп свих реалних низова који имају паран број чланова различитих од нуле.
 - (ђ) Скуп свих реалних низова чија је гранична вриједност једнака 0.
 - (е) Скуп свих ограничених реалних низова.
- 2. (а) Показати да скуп позитивних реалних бројева чини реалан векторски простор у односу на сабирање вектора дефинисано као x+y := xy (производ реалних бројева) и множење вектора скаларом дефинисано као $\alpha x := x^{\alpha}$ (степеновање позитивног реалног броја реалним бројем).
 - (б) Шта је нула-вектор тог векторског простора?
- 3. За свако од сљедећих тврђења, рећи је ли тачно или није па онда образложити одговор.
 - (a) Скуп $S = \left\{ A \in \mathcal{M}_2\left(\mathbb{R}\right) : \left[1, 2\right]^T \in R\left(A\right) \right\}$ је векторски простор.
 - (б) Скуп $U=\{A\in\mathcal{M}_3\left(\mathbb{R}\right):\det A=0\}$ је векторски потпростор простора $\mathcal{M}_3\left(\mathbb{R}\right).$
 - (в) Ако се скуп S састоји од m вектора простора \mathbb{R}^n при чему је m>n, тада скуп S некад генерише а некад не генерише простор \mathbb{R}^n .
 - (г) Нека је $\mathcal{B}_S = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ стандардна база простора \mathbb{R}^n . Ако су $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ вектори из простора \mathbb{R}^n такви да $\mathbf{e}_i \in L\left(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\right), i = 1:n$, тада је и скуп $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ база простора \mathbb{R}^n .
 - (д) Ако вектори $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ чине базу простора V и ако је $\mathbf{w}_1 = \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3,$

 $\mathbf{w}_2 = \mathbf{v}_1 + \mathbf{v}_2, \, \mathbf{w}_3 = \mathbf{v}_3, \,$ тада вектори $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$ не чине базу простора V.

- 4. Показати да сљедећи подскупови векторског простора $\mathcal{M}_3(\mathbb{R})$ јесу и његови потпростори па им одредити димензије и наћи по једну базу.
 - (a) Скуп симетричних матрица у \mathcal{M}_3 (\mathbb{R}).
 - (б) Скуп кососиметричних матрица у $\mathcal{M}_3(\mathbb{R})$.
 - (в) Скуп дијагоналних матрица у \mathcal{M}_3 (\mathbb{R}).
 - (г) Скуп матрица у $\mathcal{M}_3(\mathbb{R})$ чији траг јесте једнак 0.
- 5. Нека је $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$. Који од сљедећих скупова су потпростори векторског простора $\mathcal{M}_3(\mathbb{R})$?
 - (a) $\{X \in \mathcal{M}_3(\mathbb{R}) : XA = AX\}.$
 - (6) $\{X \in \mathcal{M}_3(\mathbb{R}) : X + A = A + X\}.$
 - (B) $\{X \in \mathcal{M}_3(\mathbb{R}) : \det(XA) = 0\}.$
- 6. Нека је S скуп свих матрица код којих је збир елемената по врстама, по колонама и по дијагоналама једнак 0 (имате 8 услова). Провјерити да ли је скуп S потпростор простора $\mathcal{M}_3(\mathbb{R})$ па, ако се испостави да јесте, одредити његову димензију и једну базу.
- 7. Наћи подскуп простора \mathbb{R}^2 који је
 - (а) затворен у односу на сабирање вектора али није затворен у односу на одузимање вектора и множење вектора скаларом.
 - (б) затворен у односу на сабирање и одузимање вектора али није затворен у односу на множење вектора скаларом.
 - (в) затворен у односу на множење вектора скаларом али није затворен у односу на сабирање вектора.
- 8. Нека је F скуп свих реалних полинома φ степена не већег од 4 који задовољавају услове $\varphi(1)=\varphi'(1)=0$. Нека је G скуп свих реалних полинома φ степена не већег од 4 који задовољавају услове $\varphi(1)=\varphi(2)=0$. Доказати да су F и G потпростори па одредити димензије и по једну базу за $F\cap G$ и F+G.

- 9. Нека су U, W_1 и W_2 потпростори векторског простора V.
 - (a) Испитати да ли $U+W_1=U+W_2$ повлачи $W_1=W_2.$
 - (б) Испитати да ли $U \oplus W_1 = V = U \oplus W_2$ повлачи $W_1 = W_2$.
- 10. Нека је дат векторски простор V и његова два потпростора W_1 и W_2 . Доказати да $W_1 \cup W_2$ јесте потпростор простора V ако и само ако је тачна дисјункција: $W_1 \subset W_2$ или $W_2 \subset W_1$.
- 11. Скуп парних реалних функција дефинисаних на \mathbb{R} , означимо са U_e . Скуп непарних реалних функција дефинисаних на \mathbb{R} , означимо са U_o . Доказати да је $\mathbb{R}^\mathbb{R} = U_e \oplus U_o$, гдје је $\mathbb{R}^\mathbb{R}$ скуп свих реалних функција дефинисаних на \mathbb{R} .
- 12. Доказати сљедећа тврђења.
 - (a) Ако посматрамо $\mathbb C$ као векторски простор над $\mathbb R$, скуп $\{1+i,1-i\}$ је линеарно независан.
 - (б) Ако посматрамо $\mathbb C$ као векторски простор над $\mathbb C$, скуп $\{1+i,1-i\}$ је линеарно зависан.
- 13. Испитати да ли су u, v и w линеарно независни вектори у векторском простору $\mathbb{R}^{\mathbb{R}}$, гдје су u(x) = |x-2|, v(x) = |x-3| и w(x) = |x-5|.