5. DOMAĆA ZADAĆA – AK. GOD. 2017/18

Domaća zadaća

U okviru ove zadaće potrebno je ostvariti metode numeričke integracije po postupku Runge-Kutta 4. reda (u skripti: str. 7-35) te trapeznom postupku. Sustav je općenitog oblika $\dot{\mathbf{x}} = A\mathbf{x} + \mathbf{B}$. Program treba (iz datoteka) učitavati matrice linearnog sustava diferencijalnih jednadžbi (\mathbf{A} i \mathbf{B}) te početno stanje $\mathbf{x}(t=0)$. Za uporabu trapeznog postupka potrebno je zadani linearni sustav prethodno transformirati u eksplicitni oblik (skripta 7-24, 25).

Za izvedbu trapeznog postupka potrebno je razredu *Matrica* iz prve vježbe dodati metodu koja računa **inverziju kvadratne matrice** (**uz pomoć LUP dekompozicije**). Inverzna matrica se računa stupac po stupac, s jednom LUP dekompozicijom i *n* supstitucija unaprijed i unatrag, kako je pokazano na predavanjima (*u skripti: str. 3-30*). Metoda se može definirati kao unarni operator nad matricom. Posebnu pažnju obratiti na slučaj kada je matrica singularna (pojava nule za stožerni element).

Potrebno je bez prevođenja programa omogućiti zadavanje **željenog koraka integracije** (T) i **vremenskog intervala** za koji se provodi postupak $[0,t_{MAX}]$. Program treba rješavati sustav po odabranom ili oba zadana postupka te prilikom rada ispisivati varijable stanja na ekran, no ne u svakoj iteraciji nego svakih nekoliko iteracija (omogućiti da taj broj zadaje korisnik). Osim na ekran, ispis je uputno preusmjeriti i u datoteku. Nakon završetka postupka potrebno je **grafički prikazati kretanje varijabli stanja** za oba postupka izračunavanja (vodoravna os je vrijeme, uspravna su vrijednosti varijabli stanja). Crtanje se može izvesti bilo kakvim alatom, npr. čitanjem izračunatih vrijednosti iz datoteke.

Laboratorijska vježba

1. Korištenjem LUP dekompozicije izračunajte inverz zadane matrice te ispišite dobiveni rezultat:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

2. Korištenjem LUP dekompozicije izračunajte inverz zadane matrice te ispišite dobiveni rezultat:

$$\begin{bmatrix} 4 & -5 & -2 \\ 5 & -6 & -2 \\ -8 & 9 & 3 \end{bmatrix}$$

3. Izračunajte ponašanje sljedećeg sustava za proizvoljne početne vrijednosti:

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \mathbf{x}$$

Sustav predstavlja matematičko njihalo. $x_1(t=0)$ je početni odmak od ravnotežnog položaja a $x_2(t=0)$ je početna brzina. Analitičko rješenje sustava je

$$x_1(t) = x_1(t=0)\cos t + x_2(t=0)\sin t$$

 $x_2(t) = x_2(t=0)\cos t - x_1(t=0)\sin t$

Želimo li npr. dobiti sustav s prigušenjem, element matrice **A** s indeksom (2,2) treba postaviti na negativnu vrijednost.

4. Izračunajte ponašanje sljedećeg sustava:

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ -200 & -102 \end{bmatrix} \mathbf{x}; \quad \mathbf{x}(t=0) = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

Sustav predstavlja fizikalno njihalo s prigušenjem (zadatak s predavanja). Isprobajte rješavanje s periodom integracije T = 0.1 za oba zadana postupka i obratite pažnju na numeričku stabilnost! (uz zadane početne uvjete) Uspredbom rezultata odredite prikladni korak integracije za Runge-Kutta postupak.

Demonstracija funkcionalnosti u MATLAB-u

Ovaj dio vježbe izvodi se na predavanjima.

Rezultate je moguće prikazati i pozivom MATLAB-ovih funkcija za numeričku integraciju - dobiveni grafovi bi trebali biti identični vašim rezultatima, osim u slučaju neprikladno odabrane vrijednosti koraka integracije (T), što je i cilj uočiti.

Nekoć davno pokazivali smo i mogućnost povezivanja vlastite implementacije s MATLABom, primjerice za C/C++/C#/Java programe, što je opisano u repozitoriju:

(http://www.fer.hr/_download/repository/C_MATLAB.html).