ФИЗИКА В НГУ

Г.В.Меледин, М. И. Захаров, В.С. Черкасский

ЭКЗАМЕНАЦИОННЫЕ И ОЛИМПИАДНЫЕ ВАРИАНТЫ ЗАДАЧ ПО ЭЛЕКТРОДИНАМИКЕ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Физический факультет

Т.В. Меледин, М. И. Захаров, В.С. Черкасский

ЭКЗАМЕНАЦИОННЫЕ И ОЛИМПИАДНЫЕ ВАРИАНТЫ ЗАДАЧ ПО ЭЛЕКТРОДИНАМИКЕ

Учебное пособие

Новосибирск 2001 ББК В33 я 73-4 УДК 537+538

Меледин Г.В., Захаров М.И., Черкасский В.С. Экзаменационные и олимпиадные варианты задач по электродинамике: Учеб. пособие / Новосиб. ун-т. Новосибирск, 2001. 72 с.

Приведены варианты задач по электродинамике, предлагавшиеся на письменных экзаменах (олимпиадах) и контрольных работах студентам II курса физического факультета НГУ. Для большинства задач даны ответы.

Предназначено для студентов-физиков при подготовке к курсовым контрольным и письменным экзаменам по электродинамике, а также для преподавателей, ведущих курс "Электродинамика".

Печатается по решению методической комиссии физического факультета НГУ.

Рецензент проф. Б.А.Луговцов

Работа выполнена при содействии Федеральной целевой программы "Государственная поддержка интеграции высшего образования и фундаментальной науки на 1997-2000 годы", проект N274

© Новосибирский государственный университет, 2001

Nabhenne

Оглавление

предисловие																		6
2000/2001 учебный год																		6
Контрольная работа 1	•						•										•	6
Экзаменационная работа 1																		7
1999/2000 учебный год																		8
Контрольная работа 1			•	•	•	•	•		•						•			8
Экзаменационная работа 1				•	•	•			•						•			9
Контрольная работа 2																		11
Экзаменационная работа 2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	12
1998/99 учебный год																		13
Контрольная работа 1	•						•										•	13
Экзаменационная работа 1	•		•				•					•	•				•	14
Контрольная работа 2																		15
Экзаменационная работа 2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	16
1997/98 учебный год																		18
Контрольная работа 1				•	•	•			•						•			18
Экзаменационная работа 1																		19
Контрольная работа 2																		20
Экзаменационная работа 2																		
1996/97 учебный год																		22
Контрольная работа 1																		22
Экзаменационная работа 1	•						•										•	23
Контрольная работа 2	•						•										•	24
Экзаменнационная работа 2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	25
1995/96 учебный год																		26
Контрольная работа 1			•	•	•	•	•		•						•			26
Экзаменационная работа 1																	•	27
Контрольная работа 2																		
Экзаменационная работа 2																		

	<i>J</i> 1 <i>J</i> 1	ш	
1994/95 учебный год			30
Контрольная работа 1			. 30
Экзаменационная работа 1	•		. 31
Контрольная работа 2			
Экзаменационная работа 2			
1993/94 учебный год			34
Контрольная работа 1	•		. 34
Экзаменационная работа 1			
Контрольная работа 2			
Экзаменационная работа 2			
1992/93 учебный год			38
Контрольная работа 1			. 38
Экзаменационная работа 1			. 39
Контрольная работа 2	•		. 40
Экзаменационная работа 2	•	•	. 41
1991/92 учебный год			42
Контрольная работа 1			. 42
Экзаменационная работа 1			
Контрольная работа 2			
Экзаменационная работа 2	•	•	. 45
1990/91 учебный год			46
Контрольная работа 1	•		. 46
Контрольная работа 2	•		. 48
Экзаменационная работа 2	•	•	. 48
1989/90 учебный год			50
Экзаменационная работа 1			. 50
Контрольная работа 2			
Экзаменационная работа 2			
1988/89 учебный год			5 3
Контрольная работа 1	•		. 53
Экзаменационная работа 1	•		. 54
Контрольная работа 2			
Экзаменационная работа 2			. 56

OTMADMOTIFIC	0
1987/88 учебный год Экзаменационная работа 2	57 57
ОТВЕТЫ И УКАЗАНИЯ	59
2000/01 учебный год	59
1999/2000 учебный год	59
1998/99 учебный год	60
1997/98 учебный год	62
1996/97 учебный год	63
1995/96 учебный год	64
1994/95 учебный год	65
1993/94 учебный год	67
1992/93 учебный год	68
1991/92 учебный год	69
1990/91 учебный год	70
1989/90 учебный год	71

72

1988/89 учебный год

•

ПРЕДИСЛОВИЕ

Потребность в данном задачнике возникла в связи с введением на физическом факультете НГУ письменного экзамена, ставшего позднее и теоретическим туром студенческой олимпиады.

Задачи для вариантов отбирались на заседании всеми преподавателями, ведущими курс. Необходимые 6-7 задач выбирались из большого числа предлагаемых на конкурсной основе и оценивались в баллах в зависимости от трудности: очень легкие — 1-2 балла, очень трудные — 6-7 баллов. Границы оценок устанавливались в баллах в зависимости от набора задач в варианте.

При решении задач разрешено пользоваться любой литературой, поскольку они, как правило, оригинальные, не встречающиеся в других задачниках, некоторые — явно олимпиадного содержания.

При оценивании решения предусмотрена оценка "автомат — отлично" и ставится в случае, когда студент написал работу на ступень выше "пятерки". При этом обязательным условием является получение студентом оценки "отлично" за работу в семестре.

Студенты, набравшие наибольшее количество баллов, становятся призерами олимпиады. Их работы отмечаются деканатом физического факультета.

2000/2001 учебный год

Контрольная работа 1

1. Два одинаковых тонких равномерно с плотностью \varkappa заряженных кольца, соприкасающихся в одной точке, расположены так, что их оси симметрии пересекаются под прямым углом в точке A. Радиусы колец равны a. Найти напряженность поля \vec{E} и потенциал φ в точке A. (2

балла)

2. В верхнем полупространстве в вакууме на высоте h над диэлектриком с проницаемостью ε висит точечный электрический диполь с дипольным моментом \vec{p} . Этот дипольный момент направлен перпендикулярно границе от нее. Найти силу, действующую

¹Дело в том, что после сдачи письменного экзамена студенты сдают устный, на котором учитываются результаты письменного экзамена. Получивший на письменном экзамене оценку "автомат — отлично" не сдает устный экзамен, а получает сразу итоговую оценку "отлично".

1000/2001 у 100111111 год

на диполь. (3)

3. В однородном внешнем электрическом поле напряженностью \vec{E}_0 находится занимающий все пространство диэлектрик с диэлектрической проницаемостью ε . В диэлектрике появилась сферическая полость радиуса a. Определить распределение плотности связанных зарядов на поверхности полости. (4)

4. У равномерно заряженного зарядом Q шара радиуса a срезали по экватору тонкое кольцо с зарядом $q \ll Q$. Написать два первых ненулевых члена разложения в ряд потенциала $\varphi(r,\theta)$ на больших расстояниях $r(r\gg a)$. (4)

- 5. Сферический конденсатор заполнен однородным диэлектриком с проницаемостью ε . Если приложить напряжение к его обкладкам, то конденсатор оказывает сопротивление R при заполнении однородным проводником с проводимостью σ пространства между обкладками. Найти емкость конденсатора. (3)
- 6. Между анодом и катодом в плоском вакуумном диоде напряжение постоянно, а катод заземлен. Пренебрегая краевыми эффектами и считая начальную скорость электронов у катода равной нулю, найти, во сколько раз быстрее электрон достигает анода в режиме закона 3/2, чем при отсутствии пространственного заряда, когда он движется в одиночку при тех же значениях потенциалов на электродах. (6)

Экзаменационная работа 1

1. Две бесконечных пластины толщиной d каждая равномерно заряжены одна с плотностью $-\rho$, вторая — с плотностью $+\rho$ и расположены вплотную. Найти потенциал $\varphi(z)$. (3 балла)

- 2. Полупространство с полусферическим выступом радиуса a заполнено металлом и помещено в однородное поле \vec{E}_0 , перпендикулярное плоскости раздела на большом расстоянии от выступа. На вершине выступа находится еще один маленький выступ радиуса $b \ll a$. Найти поле \vec{E}_2 на вершине малого выступа. (4)
 - 3. На пластине толщиной 2a сделана цилиндрическая полость,

касающаяся обеих плоскостей пластины. По пластине в направлении оси полости Z идет ток с постоянной плотностью \vec{j} . Найти магнитное поле $B_{\alpha}(R,\alpha)$, $B_{R}(R,\alpha)$ в полости в точке A с координатами R,α . (3)

4. На небольшом кольце, находящемся на расстоянии h от проводящего (проводимость σ) тонкого (толщина d) слоя быстро (т.е. за время $t \ll 4\pi d^2\sigma/c^2$) возбудили ток и кольцо приобрело магнитный момент \vec{m}_0 , перпендикулярный слою. Найти распределение $I(\theta,h)$ поверхност-

ных токов, возникших в слое к этому моменту времени. (5)

5. Внутри сплошного цилиндра радиуса b идет вдоль оси ток с плотностью $\vec{j_1}$, а в цилиндрической области радиуса a, ось которой находится на расстоянии l (a < l < b - a), идет вдоль оси ток с плотностью $\vec{j_2}$. Найти силу \vec{F} , действующую на единицу длины малого цилиндра с плотностью тока j_2 . (4)

6. Индуктивность проводящего тора (ток перпендикулярен сечению) в пустом пространстве равен L_0 . Чему станет равной индуктивность L этого тора, если его поместить в пространство, заполненное двумя магнетиками с магнитными проницаемостями μ_1 и μ_2 так, что границей между ними является плоскость, проходящая

через ось симметрии тора. (6)

1999/2000 учебный год

- 1. В равномерно заряженном с линейной плотностью χ бесконечном цилиндре с сечением радиуса a сделана цилиндрическая полость, параллельная оси цилиндра и касающаяся его внешней границы. Расстояние между осями равно a/2. Найти поле \overrightarrow{E} в полости. (1 балл)
- 2. Найти связь между плотностью тока j(a) на аноде и напряжением U(a) в цилиндрическом диоде для радиального тока уль-

. 000/2000 у чеопын год

трарелятивистских частиц. Радиус катода, расположенного вдоль оси, мал. (2)

3. Найти первый ненулевой член разложения потенциала $\varphi(R,\theta)$, создаваемого двумя параллельными разноименно заряженными с линейной плотностью χ прямыми бесконечными нитями на малых расстояниях от оси Z ($R \ll a$). Расстояние между нитями равно 2a. (3)

4. Над полукруглой (радиуса a) цилиндрической складкой, созданной в бесконечной проводящей плоскости, находится бесконечная прямая, параллельная оси складки на расстоянии 2a от оси, заряженная нить. Заряд единицы длины нити χ . Найти удерживающую нить силу, действующую на единицу ее длины dF/dl. (4)

5. В сферическом конденсаторе с радиусами обкладок a и b < a имеются две концентрические соприкасающиеся между собой и обкладками диэлектрические прокладки с проницаемостями ε_1 и ε_2 . Они, однако, не предохраняют от утечки заряда, поскольку их проводимости σ_1 и σ_2 соответственно. Конденсатор подключен к источнику напряжения U. Найти величины свободного и связанного зарядов на границе между прокладками. Радиус границы c. (3)

Экзаменационная работа 1

- 1. Точечный заряд q расположен на расстоянии l от центра заряженного проводящего шара радиуса a. На большом расстоянии потенциал $\varphi(r,\theta)=p\cos\theta/r^2$. Найти заряд шара и величину коэффициента p. (2 балла)
- 2. Полый конус без дна заряжен с плотностью σ и вращается вокруг своей оси Z с угловой скоростью ω . Высота и радиус основания равны a. Найти магнитное поле $\overrightarrow{B}(r,\theta)$ в вершине конуса и вдали от него. (3)
 - **3.** Сверхпроводящий стакан радиуса b имеет расположенную

вдоль оси тоже сверхпроводящую коаксиальную трубку радиуса a. Пространство между трубкой и стенками стакана замыкает сверхпроводящая поршеньшайба веса P. Когда вначале создали осесимметричное магнитное поле $B_0(r)$ такое, что ток по поверхности трубки равен J_0 , поршень находился на высоте H. Поршень плавно опускают. На какой вы-

соте h он остановится? (4)

- 4. Переменный магнитный диполь с моментом $\overrightarrow{m}_0 \cos \omega t$ находится в центре O тонкой проводящей полусферы радиуса a. Найти: а) среднюю тепловую мощность, выделяющуюся в полусфере (2б); б) силу, действующую на полусферу, $F_z(t)$, если толщина полусферы $\Delta \ll c/\sqrt{2\pi\sigma\omega}$, где σ проводимость ее вещества. (2)
- 5. В пустоте над магнетиком с проницаемостью μ , замыкающего нижнее полупространство, расположен полубесконечный соленоид, ось которого перпендикулярна границе раздела, а конец находится на высоте h от нее. Поле внутри соленоида вдали от конца равно B_0 . Радиус соленоида $a \ll h$. Найти магнитное поле \overrightarrow{B} во всем пространстве. (4)

- 6. Длинный соленоид с диаметром сечения a помещен в длинную медную трубу сечением $2a \times 2a$ (см.рис.). Найти отношение L_1/L_0 индуктивностей соленоида при очень больших и очень маленьких частотах, когда толщина скин-слоя соответственно значительно меньше и существенно больше толщины стенок. Краевыми эффектами пренебречь. (7)
- 7. Полый непроводящий заряженный с плотностью σ цилиндр радиуса a помещают в коаксиальный сверхпроводящий цилиндр радиуса b и начинают вращать вокруг оси. При угловой скоро-

сти ω_0 сверхпроводник переходит в нормальное состояние. Найти критическое поле $B_{\text{крит.}}$ и количество выделившейся теплоты. Длина цилиндров $l \gg a, b$. (4)

- 1. В непроводящей магнито-электрической среде связи между индукциями и напряженностями полей имеют вид $\overrightarrow{D}=\varepsilon\overrightarrow{E}+\gamma\overrightarrow{H},\overrightarrow{B}=\mu\overrightarrow{H}+\gamma\overrightarrow{E}$, где ε,μ,γ константы. Найдя связь между волновым вектором \overrightarrow{k} и частотой ω для электромагнитной волны в такой среде, получить значение показателя преломления n в такой среде. (2 балла)
- 2. На собирающую линзу размером D и фокусным расстоянием F_1 падает широкий параллельный оптической оси пучок света с длиной волны λ . Пройдя первую линзу, свет падает на вторую с фокусным расстоянием F_2 , имеющую общую оптическую ось с первой линзой. Расстояние между линзами F_1+F_2 . Оценить минимальный размер пучка между линзами. (2б). Под каким углом к оси он выйдет из второй линз

- Под каким углом к оси он выйдет из второй линзы? (1)
- 3. Между двумя параллельными идеально проводящими плоскостями распространяется в вакууме монохроматическая с частотой ω электромагнитная волна. Найти все компоненты электрического и магнитного полей для H-волны ($H_z \neq 0$; $E_z \equiv 0$). (3) Найти минимальную в этом случае частоту. (1)
- 4. Дифракционная решетка составлена из чередующихся параллельных полос поляроидов шириной a с взаимно ортогональными направлениями поляризации. Полное число полос 2N. Найти максимальную разрешающую способность $(\lambda/\Delta\lambda)_{max}$ такой решетки для хаотически поляризованного света, падающего на решетку по нормали к ней. Длина волны равна λ . (3)
- 5. Между точечным монохроматическим источником света S и экраном поместили диафрагму с круглым отверстием, радиус которого r можно менять. Максимум освещенности на экране наблюдали впервые при $r=r_1$ следующий при $r=r_2$. Расстояние от диафрагмы до источника и до экрана равны a и b соответственно. Найти длину λ световой волны. (2)

14

Экзаменационная работа 2

1. Узкий параллельный пучок света проходит через центр прозрачного с показателем преломления n шара радиуса R. На каком расстоянии OF от центра шара O пучок сфокусируется в точку F? (3 балла)

 ${f 2.}$ Между экраном с круглой диафрагмой радиуса r_0 и вторым экраном расстояние l. На оси Z отверстия на расстоянии l_0 находится источник S монохроматического излучения с длиной вол-

ны λ . Оценить, при каком радиусе r_0 отверстия радиус R светлого пятна на втором экране будет минимальным. (3)

3. На экран с вырезом, показанном на рисунке, вдоль оси Z по нормали падает плоская монохроматическая волна $\overrightarrow{E}=\overrightarrow{E}_0e^{i(kz-\omega t)}$. Определить амплитуду волны в точке P, находящейся на оси Z на расстоянии z_p от экрана. Ось Z проходит через центр O выреза. Радиус круглой ча-

сти отверстия равен $r_1 = \sqrt{\lambda z_p}$. (3)

4. Две частицы с зарядами q и -q равномерно движутся по окружностям, определяемым уравнениями:

$$\vec{r}_q = (0, R\cos\omega t, h + R\sin\omega t),$$

$$\vec{r}_{-q} = (0, R\cos\omega t, -h - R\sin\omega t); (R\omega \ll c, h \sim R).$$

Определить угловое распределение средней по времени интенсивности $\overline{dJ}/d\Omega$ в волновой зоне и полную интенсивность \overline{J} . (4)

5. Определить энергию, излученную за все время пролета релятивистской ($v \sim c$) заряженной (заряд e) частицей (масса m), пролетевшей на прицельном расстоянии ρ без изменения направления и величины скорости в поле двух равных прямых бесконеч-

ных одинаково направленных постоянных токов J. (3) Получить ограничения на параметры неискривляющейся траектории. (1)

6. На тонкую проводящую пленку падает по нормали плоскополяризованная монохроматическая волна с амплитудой \overrightarrow{E}_0 . Найти среднюю силу \overrightarrow{F} , действующую на единицу площади пленки.

Поверхностная проводимость σ^* , плотность поверхностного тока $\overrightarrow{i} = \sigma^* \overrightarrow{E}$. (4)

7. Плоская монохроматическая волна интенсивностью J_0 с круговой поляризацией интерферирует на экране с плоскополяризованной волной той же частоты и интенсивности J_0 . Найти минимальное и максимальное значения интенсивности на экране.(3)

1998/99 учебный год

Контрольная работа 1

- 1. На горизонтальную пластинку большой площади S с отрицательным зарядом -Q оседают из воздуха пылинки, масса каждой из которых m, а заряд +q. Какова максимальная масса слоя пыли, осевшей на пластинку? Ускорение свободного падения равно g. Краевыми эффектами пренебречь. (2 балла)
- 2. Пространство внутри заземленной проводящей трубы квадратного сечения со стороной a заполнено однородными диэлектриками с проницаемостями ε_1 и ε_2 (см. рис.). Диагональная плоскость раздела заряжена с плотностью σ_0 . Найти поверхностные плотности зарядов σ_1 , на поверхностях трубы. Указание: потенциал трубы считать нулевым, а внутри трубы $\varphi_1 = Axy$, $\varphi_2 = B(a-x)(a-y)$, где A и B неопределенные константы, которые надо найти. (5)

3. Внутри металла, заполняющего все пространство, имеется сферическая полость радиуса a с центром O в начале координат. Внутри полости находится круговой виток радиуса b, плоскость которого удалена от центра O на расстояние h. Виток равномерно заряжен зарядом q. Найти два первых ненулевых члена разложения потенциала $\varphi(r,\theta)$ на малых расстояниях r вблизи точки O ($r \ll a$). (5)

4. В цилиндрическом вакуумном диоде радиуса a с нулевым радиусом заземленного катода и напряжением U на аноде ток I создают разогнанные практически до скорости света c ультрареля-

1000/00 y 1001BM 1

тивистские электроны ($\gamma \gg 1$). Полагая длину катода равной l и пренебрегая краевыми эффектами, найти связь между током I и напряжением U (3) и распределение объемного заряда $\rho(R)$ вдоль радиуса (1).

5. Используя вольт-амперную характеристику для цилиндрического вакуумного диода с ультрарелятивистскими электронами, полученную в задаче 4, найти зависимость U(t) на аноде (начальное напряжение U_0), если диод окружить соосным цилиндрическим экраном радиуса b и той же длины b. Краевыми эффектами и емкостью диода пренебречь. (4)

Экзаменационная работа 1

- 1. Оценить по классической модели магнитное поле B в гауссах в центре атома водорода. Радиус орбиты электрона $a\sim 0, 5\cdot 10^{-8}{\rm cm}$, заряд $e=5\cdot 10^{10}CGSE$, масса $m=0,9\cdot 10^{-27}{\rm r.}$ (3 балла)
- 2. Диэлектрический тонкий длинный прямой стержень однородно поляризован вдоль своей оси. Радиус сечения равен a, длина стержня $l\gg a$. Оценить отношения электрических полей E_A/E_B вблизи центра A торца и около середины стержня у его боковой стороны в точке B. (3)

3. Внутри бесконечного прямого соленоида с плотностью намотки n и радиусом a находится коаксиальный стержень с радиусом b и магнитной проницаемостью μ_1 . Пространство между намоткой и стержнем заполнено магнетиками с проницаемостями μ_2 и μ_3 . Граница между ними проходит по диаметру сечения. Найти индуктивность

на единицу длины L/l. (2)

- 4. Ток J в соленоиде с радиусом сечения a, намотанном с плотностью n на прямой стержень длины l с магнитной проницаемостью μ , возрастает со скоростью dJ/dt. Используя вектор Пойтинга, показать, что накопленная в соленоиде магнитная энергия к моменту времени t равна энергии, вошедшей через боковую поверхность соленоида. (4)
 - 5. В прямом длинном стержне с радиусом сечения а ток созда-

ется однородным электрическим полем вдоль оси стержня. Стержень находится в полом коаксиальном цилиндре с радиусом b. Ток по цилиндру возвращается к источнику. Магнитная проницаемость стержня μ , его проводимость $\sigma = \sigma_0 a/R$, где R – расстояние до оси. Пренебрегая краевыми эффектами, найти индуктивность системы на единицу длины L/l. (5)

- 6. Сверхпроводящий тороидальный соленоид с числом витков $N\gg 1$ имеет размеры: радиус сечения r_0 , радиус соленоида $R_0\gg r_0$. При растяжении соленоида до размера $R=2R_0$ ток в соленоиде поддерживается постоянным за счет работы источника ЭДС. Найти механическую работу, необходимую для этой растяжки. (4)
- 7. Длинный полый короб со сверхпроводящими стенками разделен тонкой мембраной на две полости 1 и 2 (см. рис.). Прямоугольное сечение короба $(a \times b) \times l$. Поверхностный ток, текущий по мембране, подчиняется закону Ома: $I = \sigma E$, где E напря-

женность электрического поля. В начальный момент в полости 1 имеется однородное магнитное поле B_0 . Найти поле в полостях 1 и 2 $B_1(t)$ и $B_2(t)$ к моменту времени t. Краевыми эффектами пренебречь. (6)

- 1. Естественный свет падает под углом Брюстера на плоскую поверхность стекла с показателем преломления n=1,5. Найти коэффициент отражения света R. (2 балла)
- 2. Солнце имеет диаметр $D=1, 4\cdot 10^6$ км и находится от нас на расстоянии $l=1, 5\cdot 10^8$ км. Оцените, с какого минимального расстояния вы увидели бы Солнце как обычную точечную звезду, а не диск. Размер вашего зрачка при наблюдении принять равным d=5 мм, средняя длина световой волны при этом $\lambda=5\cdot 10^{-5}$ см. (2)
- 3. По волноводу сечением $a \times b$ (причем a > b) идет H_{10} -волна с частотой ω . На выходе из торца она встречает собирающую линзу с фокусным расстоянием F и далее экран, находящийся за лин-

зой в ее фокальной плоскости. Найти расстояние между полосами на экране (26) и оценить ширину полос (2).

4. Широкий параллельный пучок света с длиной волны λ падет по нормали на экран с круглой диафрагмой, с помощью которой можно менять радиус отверстия. Сразу за экраном соосно размещены рассеивающая тонкая линза с фокусным расстоянием -F и еще один экран на расстоянии F от линзы. Оптическая ось системы пересекает второй экран в

точке Р. При каком радиусе диафрагмы интенсивность света в точке P максимальна? (2). Во сколько раз изменится интенсивность света в точке P, если убрать первый экран с диафрагмой найденного радиуса? (1)

5. На четверть-волновую пластинку (d = (2q + λ // λ // ные отражения, показать, что коэффициент от-

ражения волны $R=(\frac{n_1n_3-n_2^2}{n_1n_3+n_2^2})^2$. (4). Чему соответствуют для R условия: а) $n_1n_3\gg n_2^2;$ б) $n_1n_3\ll n_2^2;$ в) $n_1n_3=n_2^2$? (1)

6. На плоскую дифракционную решетку с шириной щели a и постоянной решетки 2a (число щелей 3N) падает по нормали плоская монохроматическая волна с длиной волны λ . Каждую третью щель закрыли. Найти угловое распределение интенсивности $I(\theta)$ для излучения, прошедшего через такую решетку. (4)

Экзаменационная работа 2

1. Плоская монохроматическая волна, пройдя вдоль оси стеклянного с показателем преломления n конуса (радиус основания a, высота $h \ll a$) и пройдя через собирающую линзу с фокусным расстоянием F, образует в фокальной плоскости линзы окружность.

Найти радиус R этой окружности. (2 балла)

2. "Усы" элементарного вибратора (каждый длиной

1/2) согнули под прямым углом, как показано на рисунке. Найти угловое распределение интенсивности $dI/d\theta$ на большом расстоянии r от полученного излучателя, если ω – частота, I_0 – амплитуда тока. (3)

3. Плоская монохроматическая волна интенсивностью I_0 падает по нормали на плоскость полубесконечного непрозрачного экрана, показанного на рисунке штриховкой. Найти интенсивность волны в точке P на оси, проведенной через центр O полукруглой вырезки по норма-

ли к экрану. Расстояние OP = l, радиус выемки r_1 равен радиусу первой зоны Френеля для точки P. Длина волны λ . (3)

4. Релятивистская частица массы m с зарядом е движется, практически не меняя скорость $v \sim c$, через центр системы из двух закрепленных равных по величине и противоположных по знаку зарядов q и -q. Расстояние между зарядами 2ρ . Найти потерю энергии ΔE на излучение частицей за все время полета. (3)

6. Плоская электромагнитная волна с TE поляризацией падает на идеальное плоское зеркало под углом θ_0 к его нормали. Найти коэффициент отражения R волны в случае, когда зеркало движется со скоростью $v \sim c$ вдоль своей нормали. (6)

1997/98 учебный год

Контрольная работа 1

1. Нижнее полупространство заполнено металлом и имеет полусферический выступ. На плоской части границы далеко от выступа плотность поверхностных зарядов σ_0 постоянна. Найти плотность зарядов на вершине выступа (3 балла) и на линии, по которой выступ соединяется с граничной плоскостью (1).

2. Равномерно заряженная с линейной плотностью \varkappa нить образует плоскую фигуру из полуокружности радиуса a и двух параллельных касающихся ее лучей. Найти напряженность поля

в точке O. Как она изменится там, если дугу с её плоскостью повернуть на 90° ? На 180° ? (2)

- 3. Внутри равномерно заряженного шара радиуса a на оси Z расположены симметрично относительно центра шара O на расстояниях a от него два точечных отрицательных заряда -q. Полный заряд системы равен нулю. Найти потенциал системы $\varphi(r,\theta)$ на больших расстояниях $(r \gg a)$ от центра сферы. (3)
- 4. В тонком длинном диэлектрическом цилиндре длины 2l с круглым сечением радиуса a поляризация «заморожена» так, что вектор поляризации \overrightarrow{P} постоянен по всему объему цилиндра и направлен по оси цилиндра. Найти поле E_1 на оси цилиндра вблизи его торца. Во сколько раз поле E_1 больше поля E_2 снаружи у середины цилиндра? (3)

5. Постоянный ток однородно с плотностью $\overrightarrow{j_0}$ распределен в проостранстве, где проводимость среды постоянна и равна σ . В это пространство вносят бесконечный с круглым сечением малого радиуса цилиндр, ось которого перпендикулярна вектору $\overrightarrow{j_0}$. Проводимость цилиндра σ_1 . Цилиндр окружают

толстой цилиндрической оболочкой с проводимостью σ_1 и радиусами a и b < a. Оси оболочки и цилиндра не совпадают, причем цилиндр находится далеко от внутренней границы оболочки. Во сколько раз изменится ток через область, перекрываемую цилиндром? (6)

6. Пространство между двумя концентрическими сферами заполнено проводящей средой, проводимость σ которой зависит лишь от расстояния r до центра сфер. При какой степени n этой зависимости $\sigma(r) \sim r^n$ объемная плотность мощности джоулевых потерь при прохождении тока будет однаковой во всех точках среды? (2)

Экзаменационная работа 1

- 1. Точечный магнитный диполь с моментом \overrightarrow{m} находится на расстоянии a от бесконечного прямолинейного проводника с постоянным током I. Вектор \overrightarrow{m} параллелен магнитному полю. С какой силой диполь действует на проводник? (1 балл)
- 2. Между обкладками цилиндрического конденсатора с радиусами R=2 см и 4R расположена цилиндрическая диэлектрическая прокладка с радиусами R и 2R и диэлектрической проницаемостью $\varepsilon=10$. Напряженность поля при пробое воздуха $E_b=30$ кВ/см, а у диэлектрика $E_g=10$ кВ/см. При каком напряжении U на обкладках конденсатор пробъется? (Пробой происходит при превышении критического значения поля хотя бы в одной точке). Какая энергия на единицу длины при этом выделится? (3+1)
- 3. Пространство внутри проводящей трубы квадратного сечения со стороной a заполнено диэлектрическими средами с проницаемостью ε_1 и ε_2 , как показано на рисунке. Плоскость заряжена с постоянной поверхностной плотностью σ_0 . Найти распределение потенциала внутри трубы, считая потенциал самой трубы нулевым. Решение искать в виде $\varphi_1 = Axy, \varphi_2 = B(a-x)(a-y)$, A и B неопределенные константы. (4)

- 4. Медный шарик диаметром d=1 см находится на расстоянии h=1 м от торца прямого соленоида на его оси. Длина соленоида l=10 м, диаметр его сечения D=5 см, плотность намотки n=50 витк./см, амплитуда переменного тока в проводе I=8A, частота
- витк./см, амплитуда переменного тока в проводе I=8A, частота промышленная $\nu=50$ Гц. Найти среднюю силу, действующую на шарик. (3+1)
- 5. Сверхпроводящий контур, по которому идет ток I_0 , имеет индуктивность L_0 . Контур деформировали, затратив на это работу A. Найти величину тока I в деформированном контуре. (3)

U

6. Над полупространством, заполненным сверхпроводником, имелось первоначально однородное поле \overrightarrow{B}_0 , параллельное поверхности сверхпроводника. На границе образовалась сплошная складка в виде бесконечного полуцилиндра радиуса a. Ось полуцилиндра перпендикулярна магнитному полю \overrightarrow{B}_0 . Найти силу dF/dl, действующую на единицу длины складки. (5)

7. В полом сверхпроводящем цилиндре радиуса a соосно с ним находится тонкостенный диэлектрический цилиндр радиуса b, заряженный постоянным поверхностным зарядом σ_0 . Внутренний цилиндр начал вращаться с угловой скоростью ω и одновременно перемещаться вдоль оси с постоянной скоростью v. Найти создавшееся электрическое и магнитное поля. (6)

- 1. Зонная пластинка с радиусом первой зоны r_0 и длиной волны λ фокусирует большую часть энергии (80%) в 1 и -1 порядках дифракции. Найти расстояние между передним и задним фокусами. (2 балла)
- 2. Если на фотопластинку со слоем эмульсии направить тонкий луч света, то на просвет виден темный круг с яркой точкой внутри и ореолом снаружи. Считая, что эмульсия рассеивает свет равномерно во все стороны, найти радиус круга. Показатель преломления стекла пластинки равен n, а ее толщина d. (3)
- 3. По волноводу сечением $a \times b$ (причем a > b) идет H_{10} -волна с частотой ω . На выходе из торца она встречает линзу с фокусным расстоянием F и далее экран, находящийся за линзой в ее фокальной плоскости. Найти расстояние между полосами на экране (2) и оценить их ширину (2).
- 4. Плоская монохроматическая волна с длиной волны λ падает по нормали на синусоидальную амплитудную дифракционную решетку шириной a и с периодом $d(d/a \ll 1)$. На расстоянии l от решетки расположен экран с двумя параллельными щелями с той же осью симметрии, что и решетка. Расстояние между соседними краями щелей равно b. При какой минимальной ширине щели Δb практически весь продифрагировавший свет пройдет сквозь щели? (4)
 - 5. На тонкую диэлектрическую пластинку по нормали пада-

ет плоская монохроматическая волна частоты ω . Дипольный момент единицы площади, наводимый на пластине, $\overrightarrow{P}=\alpha \overrightarrow{E}$, где α – константа. Найти коэффициент пропускания $T=|\overrightarrow{E}_2|^2/|\overrightarrow{E}_0|^2$ этой пластины. (4)

Экзаменационная работа 2

1. Плоский слой O_1O_2 фотоэмульсии толщиной $d\gg\lambda$ находился в поле плоской монохроматической волны, идущей вдоль оси Z, и сферической волны той же частоты, исходящей из точки $S(O_2S=l)$. Получившиеся после проявления слои максимального почернения схема-

тически показаны на рисунке. Показатель преломления эмульсии принять равным единице. Сколько таких слоев пересечет ось Z? (1 балл). Найти в параксиальном приближении радиусы r_m выхода соответствующих слоев на плоскость O_2 . (2)

- 2. Найти среднюю мощность магнито-дипольного излучения в волновой зоне, испускаемого соленоидом с числом витков $N\gg 1$, намотанных тонким слоем на шарообразный сердечник радиуса ρ с постоянной магнитной проницаемостью μ . Витки лежат вдоль линий $\theta=Const$, а плотность намотки меняется по закону: $n(\theta)=N\sin\theta/2\rho$, причем $\int_0^\pi n(\theta)\rho d\theta=N$. По виткам идет переменный ток $J=J_0e^{-i\omega t}, \rho\ll c/\omega\ll r$. (5)
- 3. На прозрачный слой толщиной d с показателем преломления n, покрывающий идеальное зеркало, падает по нормали плоская линейно поляризованная волна с волновым вектором \overrightarrow{k} . При каком значении k амплитуда стоячей волны в слое будет максимальной? (4)
- 4. На систему из двух закрепленных одинаковых шариков с диэлектрической проницаемостью ε и радиусами $a \ll \lambda$, находящихся на расстоянии $l \sim \lambda$ друг от друга, падает плоская линейно поляризованная волна. Ее волновой вектор перпендикулярен прямой, соединяющей центры шариков. Электрическое поле волны параллельно этой прямой. Найти дифференциальное сечение рассеяния $d\sigma/d\Omega$ падающей волны на этой системе. (4)

2 1550/51 y 10011Bit 1

5. По оси равномерно заряженного с плотностью χ закрепленного кольца радиуса ρ пролетает электрон (заряд e, масса m). Скорость электрона $v \sim c$ практически не меняется. Найти излученную электроном за все время полета энергию ΔE . (4)

6. В верхнем полупространстве создано однородное магнитное поле $B=10^4$ Гс, параллельное граничной плоскости. Под углом θ к ней в плоскости, перпендикулярной вектору \overrightarrow{B} , движется электрон (заряд $e=4,8\cdot 10^{-10}, m=9\cdot 10^{-28}$ г). Энергия электрона E=5 ГэВ ($\gamma=10^4$). Оценить, при каком малом значении угла θ элек-

трон не выйдет из области с магнитным полем, растратив часть энергии на излучение. (6)

1996/97 учебный год

Контрольная работа 1

1. Два соосных прижатых друг к другу металлических диска радиуса a находятся в однородном поле напряженностью \overrightarrow{E} , параллельном оси дисков. Какая сила будет действовать на каждый из дисков при их небольшом разведении с сохранением оси симметрии? (2 балла)

2. Заземленная проводящая плоскость имеет выступ в виде полусферы радиуса R. На расстоянии a от плоскости и от вершины полусферы находится точечный заряд q. Найти потенциал электри-

ческого поля на оси Z выступа и силу, действующую на заряд q. (3)

- 3. Два одинаковых соосных кольца с радиусами a, заряженных с линейной плотностью χ , расположены на расстоянии 2h друг от друга. Найти два первых ненулевых члена разложения потенциала $\varphi(r,\theta)$ на большом расстоянии r от колец ($r\gg a,h$). Начало координат точка O находится на общей оси Z посередине между кольцами. (4)
- 4. Найти напряженность E стационарного поля в длинном цилиндрическом конденсаторе, находящемся под напряжением U.

Вещество внутри конденсатора состоит из двух цилиндрических слоев с проницаемостями ε_1 и ε_1 и проводимостями γ_1 и γ_2 . Радиусы обкладок R_1 и R_2 , радиус границы между слоями R_0 . Определить также поверхностные плотности свободного σ и связанного σ_0 зарядов на границе раздела сред. Краевыми эффектами пренебречь. (4)

5. Найти вольт-амперную характеристику "электронной пушки" — плоского диода для ультрарелятивистских электронов: $eU\gg mc^2$. Необходимые для решения параметры задайте сами. (3)

Экзаменационная работа 1

- 1. По двум параллельным бесконечным сплошным цилиндрам с круговыми сечениями радиуса a идет постоянный ток одного направления с плотностью, одинаковой по всему сечению. Расстояние между осями цилиндров равно l>2a. На каких расстояниях от оси цилиндра магнитное поле обращается в нуль? (2 балла)
- 2. Плотность обмотки полубесконечного соленоида равна n, площадь сечения S, по проводу в обмотке идет постоянный ток I. На расстоянии $l\gg \sqrt{S}$ от торца соленоида находится маленький сверхпроводящий шарик радиуса $a\ll l$. Найти силу, действующую на шарик. (3)
- 3. Внутри равномерно заряженного шара радиуса a расположены на оси Z симметрично относительно центра шара на расстояниях a/2 от него два точечных отрицательных заряда -q. Полный заряд системы равен нулю. Найти потенциал системы $\varphi(r,\theta)$ на больших расстояних от центра шара $r \gg a$. (3)
- 4. Нижнее полупространство заполнено металлом и имеет полусферический выступ. На плоской границе далеко от выступа плотность поверхностных зарядов σ_0 постоянна. Найти плотность зарядов на вершине выступа (3) и на линии, по которой выступ соединяется с граничной плоскостью. (1)
- 5. По оси симметрии Z тора с круглым сечением радиуса a и расстоянием между центрами сечений $O_1O_2=2l$ идет бесконечный прямолинейный постоянный ток I. Тор заполнен магнетиком с проницаемостью μ . Найти распределение молекулярных токов на поверхности тора (2б) и полный молекулярный ток (2).
 - 6. Два круговых сверхпроводящих витка, имеющих общую ось

Z, лежат в одной плоскости. По большому витку радиуса a с индуктивностью L_1 идет ток I. Очень маленький виток радиуса $b \ll a$ с индуктивностью L_2 в этот момент без тока. Потом маленький виток удаляют на очень большое расстояние. Найти совершенную при этом работу и ток в маленьком витке. (4)

7. Имеются три бесконечно длинных тонкостенных цилиндра с радиусами $R_1 < R_2 < R_3$ с общей осью Z. Внутренний цилиндр — проводящий, причем поверхностный ток $i_{\varphi} = \sigma * E_{\varphi}$, внешний цилиндр — сверхпроводящий, а цилиндр радиуса R_2 - непроводящий (диэлектрик) и заряжен равномерно так, что на единицу длины приходится заряд χ . Цилиндры могут свободно вращаться вокруг оси Z. При t=0 в пространстве между внутренним и внешним цилиндрами имеется однородное магнитное поле H_0 , параллельное общей оси цилиндров, и цилиндры покоятся. Требуется определить установившуюся угловую скорость вращения ω среднего цилиндра, имеющего на единицу длины массу μ . (7)

- 1. В непроводящей магнито-электрической среде связи между индукциями и напряженностями полей имеют вид $\overrightarrow{D}=\varepsilon \overrightarrow{E}+\gamma \overrightarrow{H}, \overrightarrow{B}=\mu \overrightarrow{H}+\gamma \overrightarrow{E}$, где ε,μ,γ константы. Найдя связь между волновым вектором \overrightarrow{k} и ω для электромагнитной волны в такой среде, получить значение показателя преломления n. (2 балла)
- 2. Плоская граница разделяет два непоглощающих излучения материала с проницаемостями ε_1, μ_1 и ε_2, μ_2 соответственно. Под каким углом α должна падать монохроматическая волна, вектор \overrightarrow{E} которой перпендикулярен плоскости падения, чтобы коэффициент отражения R был равен нулю? (4)
- 3. В волноводе квадратного сечения $a \times a$ область $z \leq 0$ заполнена диэлектриком с проницаемостью ε , а в области z > 0 вакуум. По диэлектрику к плоской границе раздела с вакуумом идет волна H_{10} . В каком диапазоне частот $\omega_1 \div \omega_2$ должна находиться частота волны, чтобы произошло полное отражение от границы раздела? (5)
- 4. К дифракционной решетке периода d приставлен тонкий стеклянный клин с углом при вершине $\alpha \ll 1$, показатель преломления стекла n. При каком значении угла α максимум первого по-

рядка для нормально падающего света с длиной волны λ наблюдается в направлении падающего пучка? (2)

- 5. На проводящую плоскость, разделяющую вакуум и прозрачную среду с показателем преломления $n=\sqrt{\varepsilon}$, падает по нормали линейно поляризованная волна. На плоскости закон Ома имеет вид: $\overrightarrow{I}=\sigma\overrightarrow{E}_{\tau}$, где I поверхностный ток, а σ проводимость. Найти коэффициент поглощения K=1-R-T, где R и T коэффициенты соответственно отражения и преломления. (3)
- 6. Определить форму и описать движение одномерного волнового пакета, составленного из N плоских волн с одинаковыми амплитудами и с частотами $\omega_n = \omega_0 + n\Delta\omega_0$, где n целое число в пределах $0 \le n \le N 1$. Дисперсия среды линейна, т.е. $\omega(k) = \omega_0 + v_q(k-k_0)$. (5)

Экзаменнационная работа 2

- 1. На рассеивающую линзу с фокусным расстоянием -F падает вдоль оси параллельный пучок света с длиной волны λ . Между линзой и экраном, находящимся на расстоянии 3F от линзы, расположен на оси линзы небольшой диск, плоскость которого перпендикулярна оси. При каком максимальном радиусе диска в точке P экрана на оси линзы интенсивность света не изменится, если убрать диск? (3 балла)
- 2. Плоская волна с длиной λ падает по нормали на синусоидальную амплитудную дифракционную решетку с периодом d и шириной $a(a/d\gg 1)$. На расстоянии L от решетки расположен экран с двумя параллельными симметричными щелями. При какой минимальной ширине $\delta b = x_2 x_1$ щелей практически весь продифрагированный свет пройдет через щели? (4)
- 3. На тонкую диэлектрическую пластинку по нормали падает плоская монохроматическая (с частотой ω) электромагнитная волна. Дипольный момент единицы площади $\overrightarrow{P}=\alpha \overrightarrow{E}$, где α константа. Найти коэффициент пропускания $T=|\overrightarrow{E_2}|^2/|\overrightarrow{E_0}|^2$ этой пластиной. (5)
- 4. Электрон ($mc^2=0,5\,$ МэВ) движется по окружности радиусом $R=10^4\,$ км. Напряженность магнитного поля на траектории

частицы равна B=0,1 Гс. Найти энергию, излучаемую электроном за один оборот. (4)

5. Плоский стержень длины l, несущий равномерно распределенный заряд q, совершает поперечные поступательные гармонические колебания с частотой ω и амплитудой a. Найти угловое

распределение $dI(\theta,\alpha)/d\Omega$ излучения, если $a\ll\lambda,r\gg l\geq\lambda$. (4)

6. По бесконечному волноводу с квадратным сечением $a \times a$ распространяется волна H_{10} . В волноводе имеется диэлектрическая пробка длиной l с диэлектрической проницаемостью ε . Показать, что при соотношении

$$l_{\min} = \frac{\lambda}{2\sqrt{\varepsilon - (\lambda/2a)^2}},$$

где λ — длина волны, коэффициент отражения R волны от пробки равен нулю, т. е. волна идет как в отсутствие препятствия. (4)

1995/96 учебный год

- 1. В равномерно заряженном с плотностью ρ шаре радиуса a имеется сферическая полость радиуса a/2, касающаяся центра O_1 шара. В полости перпендикулярно линии центров O_1O_2 шара и полости по ее диаметру натянута нить, равномерно заряженная с линейной плотностью χ . Найти силу, действующую на нить. (2 балла)
- 2. Найти два первых члена разложения потенциала $\varphi(r)$ поля плоского равномерно с поверхностной плотностью σ заряженного кольца с радиусами a и b < a вблизи центра кольца при $r \ll b$ в его плоскости. (6)
- 3. К металлическому заряженному изолированному шару поднесли точечный электрический заряд на расстояние, в n раз превышающее радиус шара. Каким будет при этом отношение заряда на шаре к величине поднесенного заряда, если сила их взаимодействия оказалась равной нулю? (2)

- 4. В неоднородной среде с созданной линейной проводимостью σ от координаты z: $\sigma = \sigma_0(1-z/z_0)$ и постоянной диэлектрической проницаемостью ε поддерживается стационарное распределение тока $\overrightarrow{j} = \overrightarrow{j}(z)$. Найти объемное распределение зарядов в этой среде в интервале координат $[0 \div z_0]$. (4)
- 5. Нижний конец цилиндрического конденсатора, обкладки которого находятся под постоянным напряжением, погружают вертикально в слабо проводящую жидкость на заметную глубину h. При этом сопротивление конденсатора постоянному току равно R. Если глубину погружения увеличить вдвое, то сопротивление станет равным 2R/3. Найти сопротивление конденсатора при погружении нижнего конца на глубину в 4 раза большую первоначальной. (4)

Экзаменационная работа 1

- 1. Бесконечный сплошной цилиндр радиуса a, изготовленный из диэлектрика с вектором поляризации $\overrightarrow{P}=k\overrightarrow{R}$, где R расстояние до оси, вращается с угловой скоростью ω вокруг оси. Найти магнитное поле \overrightarrow{H} во всем пространстве. (4 балла)
- 2. Две проводящие параллельные плоскости соединены перпендикулярным к ним прямолинейным проводником, по которому идет ток I, стекая с одной плоскости и растекаясь по другой. Найти силу давления магнитного поля на кольцо на плоскости с радиусами границ a и b>a и центром на оси симметрии. (2)
- 3. Найти "внутреннюю" индуктивность на единицу длины для сплошного кругового в сечении цилиндра с проводимостью, линейно спадающей до нуля от оси к периферии, при установившемся токе, идущем вдоль оси цилиндра. (4)
- 4. Под действием магнитного поля сверхпроводящего кольца с током непроводящий шарик из магнитного материала с постоянной проницаемостью μ перемещается по оси симметрии из бесконечности. Радиус кольца b, радиус шарика $a \ll b$. Ток в кольце равнялся I_0 , когда шарик находился на бесконечности. 1) Пренебрегая малым изменением тока в кольце, найти кинетическую энергию, приобретенную шариком к моменту пересечения плоскости кольца. (2); 2) Принимая индуктивность кольца равной L, найти малую величину изменения тока в кольце для указанного

1000/00 y 40011bin 10,

конечного положения шарика. (2)

- 5. Соленоид радиуса a длины l с плотностью витков n помещен в сверхпроводящую цилиндрическую оболочку радиуса b. Оси соленоида и оболочки совпадают. По виткам соленоида идет ток $I = I_0 \cos \omega t$. Пренебрегая краевыми эффектами $(l \gg b)$, найти электрическое поле \vec{E} внутри соленоида и между ним и оболочкой. (4)
- 6. Пространство заполнено веществом с проводимостью σ . В нем имеется сферическая полость радиуса a, в центре которой находится точечный магнитный диполь. Дипольный магнитный момент меняется по закону $\overrightarrow{m} = \overrightarrow{m}_0 e^{-i\omega t}$. Найти: 1) магнитное поле в полости (2б); 2) распределение токов (2). Предполагается, что $\omega \gg c^2/\sigma a^2$.

- 1. Естественный свет падает под углом Брюстера на плоскую поверхность стекла с показателем преломления n=3/2. Найти коэффициент отражения света R. (2 балла)
- 2. В интерференционной установке на пути белого света попробовали использовать красный светофильтр, а в другой раз зеленый. Полоса пропускания $\Delta\lambda$ у обоих фильтров одинакова. В каком свете красном или зеленом число интерференционных полос оказалось больше и почему? (1)
- 3. Солнце, находясь от нас на расстоянии $l=1,5\cdot 10^8$ км, имеет угловой размер $\theta\approx 0,01$ рад. Оцените, с какого минимального расстояния Вы увидели бы Солнце как обычную звезду, а не диск? Размер зрачка принять равным d=5 мм, средняя длина световой волны $\lambda=5\cdot 10^{-5}$ см. (2)
- 4. В плоском экране сделано круглое отверстие с осью симметрии Z. На расстоянии l от экрана соосно с отверстием установлена рассеивающая линза с фокусным расстоянием -F. На линзу падает вдоль оси Z плоская монохроматическая волна с длиной λ . При каком минимальном радиусе отверстия интенсивность света в точке на оси Z на расстоянии F+l за экраном будет максимальна? (3)
- 5. Плоская монохроматическая волна с амплитудой E_0 и длиной волны λ падает по нормали на плоский непрозрачный экран, в котором сделано кольцеобразное отверстие с внутренним ради-

усом a и зазором Δa . При какой величине зазора Δa интенсивность максимальна на расстоянии l от центра отверстия на его оси? ($l \gg a, \Delta a$). Найти это максимальное значение. (3)

- 6. Определить форму и описать движение одномерного волнового пакета, составленного из N плоских волн с одинаковыми комплексными амплитудами и с частотами $\omega_n = \omega_0 + n\Delta\omega_0$, где n целое число в пределах $0 \le n \le N-1$. Дисперсия среды линейна, т.е. $\omega(k) = \omega_0 + v_g(k-k_0)$. (5)
- 7. В пустом резонаторе, имеющем форму куба со стороной a=1 см возбуждена основная мода колебаний, в которой отлична от нуля X-компонента электрического поля. Амплитуда поля $E_0=100$ В/м. Найти распределение токов и зарядов на стенках куба. Скорость света $c=3\cdot 10^{10}$ см/с. (4)

Экзаменационная работа 2

- 1. Бесконечная прямая нить равномерно заряжена с линейной плотностью заряда κ (в покое). Найти индукцию магнитного поля \overrightarrow{B} , создаваемого нитью в системе отсчета, где нить движется со скоростью \overrightarrow{v} , направленной вдоль нити. (1 балл)
- 2. Оценить потери электрона на дипольное излучение, если он пролетает на большом расстоянии ρ от бесконечной прямой нити, равномерно заряженной с плотностью κ , со скоростью $v \ll c$, перпендикулярной нити. Искривлением траектории и изменением скорости пренебречь. Заряд электрона e, масса m. Указать область применимости оценки. (3)
- 3. Нарастающее по гармоническому закону с частотой ω магнитное поле бетатрона разгоняет электрон и одновременно удерживает его на орбите постоянного радиуса R. Найти значение кинетической энергии $mv^2/2$ электрона, при которой потери на излучение за оборот сравниваются с приобретаемой энергией. (Заряд электрона e, масса m, скорость $v \ll c$.) (3)
- 4. Шар с диэлектрической проницаемостью ε , радиус которого меняется по закону: $R = R_0(1 + \alpha \cos \omega t)$ движется со скоростью $v \ll c$ в перпендикулярном движению однородном магнитном поле индукции \overrightarrow{B} . Найти угловое распределение интенсивности электромагнитного излучения $dI/d\Omega$ при $\alpha \ll 1$. (4)
 - 5. На узкую щель шириной 2a в непрозрачном экране по нор-

мали к экрану падает плоская монохроматическая волна

$$E = E_0 \exp[i(kz - \omega t)].$$

Для расстояний $\lambda z/2\pi a^2\ll 1$ в приближении Френеля найти: 1) распределение интенсивности I(0,z) в точке P на оси Z; 2) положение экстремумов. (5)

- 6. Электромагнитная линейно поляризованная волна падает на маленький шарик $(R \ll \lambda)$. Электрическая и магнитная поляризуемость вещества шарика равны α и β соответственно. Во сколько раз различаются дифференциальные сечения рассеяния вперед и назад? Чему равно это отношение для идеально проводящего шарика? (5)
- 7. Ультрарелятивистский электрон $(\gamma \gg 1)$ пролетает сквозь плоский конденсатор перпендикулярно его пластинам. Расстояние между пластинами $d \ll \sqrt{S}$. Оценить эффективную ширину $\Delta \omega$ спектра излучения. (4)

1994/95 учебный год

Контрольная работа 1

- 1. В бесконечном цилиндре радиусом сечения *а* плотность заряда линейно спадает от максимальной на оси до нуля на поверхности. На каком расстоянии от оси напряженность электрического поля максимальна? (2 балла)
- 2. В 3 томе курса Сивухина "Электричество и магнетизм"на стр. 71-72 утверждается, что в сферической полости в диэлектрике с проницаемостью ε , находящемся в однородном поле напряженностью $\overrightarrow{E_0}$ внутри полости поле равно $\frac{(\varepsilon+2)}{3}\overrightarrow{E_0}$. Согласны ли Вы с этим? Свой ответ докажите расчетом. (3)

3. Пространство между металлическими пластинами, расстояние между которыми равно d, заполнено проводящей жидкостью. Пластины подключены к источнику постоянного напряжения. Во сколь-

ко раз изменится электрический ток через пластины, если в зазор между ними ввели изогнутую посередине фольгу Ф, расположив ее, как показано на рисунке? Краевыми эффектами и влиянием электроемкости на токи пренебречь. (4)

- 4. В неоднородной среде с созданной линейной зависимостью проводимости σ от координаты z: $\sigma = \sigma_0(1-z/z_0)$ и постоянной диэлектрической проницаемостью ε поддерживается стационарное распределение плотности тока $\vec{j} = \vec{j}(z)$. Найти объемное распределение зарядов в этой среде в интервале $[0, z_0]$. (4)
- 5. Равномерно заряженный с поверхностной плотностью заряда σ полый цилиндр с крышками радиуса a вращается с угловой скоростью ω вокруг своей оси. Длина цилиндра l. Найти магнитное поле H в центре цилиндра. (3)

Экзаменационная работа 1

1. По плоскому контуру, представляющему собой дугу окружности радиуса a с угловым размером α и два касательных луча, пущен постоянный ток J. Найти напряженность магнитного поля в точке

- O центре кривизны дуги. (2 балла)
- 2. Найти силу F взаимодействия (1) и коэффициент взаимной индукции L_{12} (4) двух соосных полубесконечных соленоидов сечением S, плотностью намотки n. Расстояние между концами соленоидов равно $l \gg \sqrt{S}$, ток I.
- 3. Из прямоугольного металлического листа образовали систему двух коаксиальных соосных цилиндров радиусами a и b>a, длины $l\gg a$, соединенных перемычкой в

виде параллельных очень близких плоских участков. Пространство между цилиндрами заполнено магнетиком с проницаемостью μ . Пренебрегая краевыми эффектами, найти индуктивность этого устройства. (2)

4. Две параллельные длинные шины соединенные перемычкой длины l, массой m, сопротивлением R помещены в однородное поле с индукцией \overrightarrow{B} , перпендикулярное плоскости схемы. Кон-

денсатор емкости C_0 имеет заряд Q. Ключ К замыкают. Найти установившуюся скорость перемычки. Она может двигаться вдоль

1004/00 y 400111111 10,

шин практически без трения. (3)

5. По катушке индуктивностью L, подключенной к источнику, течет ток I_0 . При t=0 производится переключение индуктивности на сопротивление R(t), зависящее от времени по закону: $R(t)=\alpha\int_0^t I^2(t')dt'$. Найти максимальное напряжение на сопротивлении R. (4)

6. Тонкостенный цилиндр радиуса R_0 , по которому вдоль оси идет переменный ток $I_0e^{i\omega t}$, разрезали поперек и в разрез впаяли проводящий шар радиуса a, при-

чем $R_0/a = \sin \theta_0$. Найти тепловую мощность, усредненную за период, выделяющуюся в шаре для случая $c/\sqrt{2\pi\sigma\omega} \ll a$, где σ проводимость металла шара. $\int d\theta/\sin\theta = \ln \operatorname{tg} \theta/2$. (6)

- 1. Естественный свет падает под углом Брюстера на плоскую поверхность стекла с показателем преломления n=3/2. Найти коэффициент отражения света R. (3 балла)
- 2. В интерференционной установке на пути белого света попробовали использовать красный светофильтр, а в другой раз зеленый. Полоса пропускания $\Delta \lambda$ у обоих фильтров одинакова. В каком свете красном или зеленом число интерференционных полос оказалось больше и почему? (2)
- 3. Оценить наименьший размер, который может разрешить на Луне телескоп с диаметром линзы D=6 м. Длина волны $\lambda=5\cdot 10^{-5}$ см, расстояние до Луны $l=4\cdot 10^5$ км. (2)
- 4. В пустом резонаторе, имеющем форму куба со стороной a=1 см, возбуждена основная мода колебаний, в которой отлична от нуля x-компонента электрического поля. Найти распределение токов и зарядов на стенках куба. Скорость света $c=3\cdot 10^{10}$ см/с, $E_0=100$ В/м. (5)
- 5. При каком максимальном числе N штрихов дифракционной решетки будет разрешен желтый дублет Na с длинами волны $\lambda_1=5,890\cdot 10^{-5}$ см и $\lambda_2=5,896\cdot 10^{-5}$ см. (2)
 - 6. Плоская квазимонохроматическая волна естественного све-

та с интенсивностью I_0 падает на непрозрачный экран с круговым отверстием, представляющим для точки наблюдения P первую зону Френеля. Отверстие перекрывают двумя одинаковыми по свойствам перпендикулярно ориентированными поляроидами. Один — внутренний — в форме диска, второй — кольцеобразный. Граница между ними — окружность, отделяющая половину первой зоны Френеля. Найти интенсивность света в точке P. Отражением света от поляроидов пренебречь. (3)

Экзаменационная работа 2

- 1. Плоская монохроматическая волна с амплитудой E_0 и длиной волны λ падает по нормали на плоский непрозрачный экран, в котором сделано кольцеобразное отверстие с внутренним радиусом a и зазором Δa . При какой величине зазора Δa интенсивность максимальна на расстоянии l от центра отверстия на его оси? ($l \gg a, \Delta a$). Найти это максимальное значение. (3 балла)
- 2. Определить форму и описать движение одномерного волнового пакета, составленного из N плоских волн с одинаковыми комплексными амплитудами и с частотами $\omega_n = \omega_0 + n\Delta\omega_0$, где n целое число в пределах $0 \le n \le N-1$. Дисперсия среды линейна, т.е. $\omega(k) = \omega_0 + v_g(k-k_0)$. (4)
- 3. Плоская световая волна падает снизу на зеркальный шарик радиуса $R \gg \lambda$. При какой плотности энергии волны сила светового давления уравновесит силу тяжести mq? (3)
- 4. Соленоид произвольной длины l составлен из отдельных, плотно расположенных круговых витков радиуса R. Полное число витков N. В каждом из них возбуждается ток $I = I_0 e^{-i\omega t}$. Рассматривая этот набор витков как антенну, найти угловое распределение $dI(\theta)/d\Omega$. Длина волны излучения $\lambda \gg R$. (4)

- 5. Найти дифференциальное сечение рассеяния $d\sigma(\theta,\alpha)/d\Omega$ плоской монохроматической линейно поляризованной электромагнитной волны на идеально проводящем шарике радиуса $a\ll\lambda$, где λ длина волны. (5)
- 6. Мимо точечного закрепленного диполя с электрическим дипольным моментом \overrightarrow{d} далеко от него пролетает по неискривлен-

ной траектории перпендикулярно вектору \overline{d} релятивистская частица с массой m, зарядом q, скоростью $v \sim c$ и прицельным параметром ρ . Найти излученную за все время пролета энергию. (3)

7. Найти мощность излучения $dP(\theta)/d\Omega$ coгнутого посредине первоначально полуволнового вибратора в направлении его биссектрисы, если угол между концами антенны стал 2θ . Ток

изменяется вдоль вибратора по синусоидальному закону, зануляясь на концах. (5)

1993/94 учебный год

Контрольная работа 1

- 1. Две тонкие равномерно заряженные с линейной плотностью \varkappa скрепки представляют собой каждая дугу полуокружности радиуса a и пару полубесконечных касательных к ней лучей. Скрепки наложены одна на другую в одной плоскости так, что их дуги образуют полную окружность с центром в точке O. Найти в точке O напряженность E(O) и потенциал φ в случаях: а) когда знаки зарядов скрепок одинаковы (1 балл); б) знаки зарядов противоположны (1); в) когда скрепка с отрицательным зарядом отодвинута так, что осталась лишь одна точка соприкосновения, равноудаленная от лучей (1).
- 2. В толстой сфере с радиусами стенок a и b>a, изготовленной из диэлектрика с проницаемостью ε , в диэлектрике создано электрическое поле с потенциалом $\varphi_2(r,\theta) = -E_2r\cos\theta + p_2\cos\theta/r^2$. Найти распределение потенциалов $\varphi_1(r,\theta)$ и $\varphi_3(r,\theta)$ вне и внутри сферы соответственно. (4)
- 3. На сфере радиуса a создано распределение заряда $\sigma = \sigma_0 (1 3\cos^2\theta$). Найти потенциал, создаваемый этим зарядом в направлении $\theta = 0$ на расстоянии 2a от центра сферы. (4)

4. По контуру, описанному в задаче 1, сделав его проводящим, пустили постоянные токи I и -I. Най-

ти магнитное поле H(a) на высоте a над точкой O. (3)

5. Нижний конец цилиндрического длинного конденсатора, обкладки которого находятся под постоянным напряжением, погрузили вертикально в проводящую жидкость на заметную глубину h. При этом сопротивление конденсатора равно R. Если глубину увеличить вдвое, сопротивление станет равным 2R/3. Найти сопротивление конденсатора при погружении нижнего конца на глубину в 4 раза большую первоначальной. Указание: учтите роль краевых эффектов. (5)

6. Показать, что при стационарном пропускании пространственного тока через неоднородную среду с проводимостью $\sigma(\overrightarrow{r})$ и проницаемостью $\varepsilon(\overrightarrow{r})$ создается объемный заряд с плотностью $\rho(\overrightarrow{r})=(j/4\pi\sigma^2)(\sigma grad\varepsilon-\varepsilon grad\sigma)$. (4)

Экзаменационная работа 1

- 1. Все пространство заполнено металлом. В металле сферическая полость радиуса a. В ее экваториальной плоскости расположен равномерно заряженный зарядом Q круговой виток радиуса b < a. Центры витка и полости совпадают. Найти плотность заряда σ над центром витка на поверхности полости. (2 балла)
- 2. Длинный сверхпроводящий соленоид с радиусом сечения a, длины $l \ll a$, с числом витков $N \gg 1$, подключен к источнику ЭДС E_0 с внутренним сопротивлением r_0 . В начальный момент t=0 на одном конце соленоида происходит срыв-разрушение сверхпроводимости, граница которой

продвигается вдоль соленоида с постоянной скоростью v. Проводимость металла провода в нормальной фазе постоянна и равна σ . Найти зависимость тока I в соленоиде от времени. (3)

- 3. На большой высоте h одно над другим соосно в поле тяжести висят два сверхпроводящих кольца. Верхнее малое массы m, радиуса R_1 с индуктивностью L_1 и с током I. Нижнее закрепленное радиуса $R_2 \gg R_1$ с индуктивностью $L_2(R_1, R_2 \ll h)$. В момент, когда верхнее кольцо отпускают, в нижнем тока нет. Найти скорость падающего кольца в момент прохождения плоскости закрепленного кольца. (4)
- 4. В центре сферической полости радиуса a, имеющейся в веществе с проводимостью σ , в вакууме расположен круговой виток радиуса $b \ll a$ с током $I = I_0 e^{-i\omega t}$. Найти в случае сильного скин-

эффекта среднюю мощность, выделяющуюся в веществе. (5)

5. По узкому с сечением S тороидальному соленоиду радиуса $R \gg \sqrt{S}$ с числом витков $N \gg 1$ и магнитной проницаемостью сердечника μ идет постоянный ток I. Тор разрезан.

Расстояние между торцами тора $l \gg \sqrt{S}$. Соленоид с зазором l наполовину помещен в магнетик с проницаемостью $\mu_1 \ll \mu$. Граница раздела магнетика и воздуха плоская. С какой силой притягиваются торцы соленоида? (5)

6. Вдоль оси Z длинного соленоида (радиуса сечения a) летит шарик из материала с проводимостью σ и радиусом $b\ll a$. Соленоид создает на оси магнитное поле $H_z=H_0\cos(kz)$, где $1/k\gg b$. Найти среднюю силу торможения шарика в приближении слабого скин-эффекта. (5)

7. Сверхпроводящее кольцо радиуса a, массы m с индуктивностью L, в начальный момент находится в плоскости z=0, перпендикулярной оси Z в неоднородном магнитном поле $\overrightarrow{B}=(B_r,B_z=B_0+\alpha z)$ и в поле тяжести.

Кольцо отпускают. Найти положение равновесия z_0 и частоту малых колебаний кольца. (5)

- 1. Под каким углом α надо направить солнечный луч на плоскую поверхность стекла, чтобы отраженный и преломленный лучи были ортогональными друг другу? Указать характер поляризации в отраженном свете при этом. Показатель преломления стекла равен n. (1 балл)
- 2. Найти показатель преломления n для непроводящей магнитоэлектрической среды, в которой связи между индукциями и напряженностями полей имеют вид $\overrightarrow{D} = \varepsilon \overrightarrow{E} + \gamma \overrightarrow{H}$, $\overrightarrow{B} = \mu \overrightarrow{H} + \gamma \overrightarrow{E}$; ε , μ , γ константы. (3)
- 3. В отверстие экрана радиуса a симметрично вставлена рассеивающая линза с фокусным расстоянием -F. По нормали к экрану падает плоская волна интенсивности I_0 и длиной λ . При каком значении a в точке P на оси системы на расстоянии F от экрана

будет максимум интенсивности? (2). Чему он равен? (1). Отражением волны от линзы пренебречь.

- 4. Между проводящей плоскостью и идеально отражающей поверхностью (зеркалом) расстояние l. На плоскости поверхностный ток удовлетворяет закону Ома: $I = \sigma E_{\tau}$. При каких условиях на σ и l такая система не отражает (коэффициент отражения R=0), падающую по нормали монохроматическую с длиной волны λ линейно поляризованную волну? (5)
- 5. Плоская волна падает по нормали на прямоугольный плоский сосуд высоты H, шириной d, доверху заполненный прозрачным составом, показатель преломления которого с высотой y меняется по закону: $n(y) = n_0(1+y/a-y^2/2b^2)$. За сосудом поставили экран так, чтобы на нем максимально резко обозначилась горизонтальная полоса. Найти расстояние h по вертикали от этой полосы до плоскости дна сосуда. (2). Оценить, используя соотношение неопределенности, ширину полосы δh на экране. (1). Длина волны λ .

- 1. Найти, за сколько суток Солнце делает один оборот, если при наблюдении спектральной линии $\lambda=0,59\cdot 10^{-6}$ м от крайних точек его экватора различие в наблюдаемых длинах волн оказалось равным $\Delta\lambda_{\bf B}=8\cdot 10^{-12}$ м. Радиус Солнца $R_{\odot}=7\cdot 10^{8}$ м, скорость света $c=3\cdot 10^{8}$ м/с. (2 балла)
- 2. Плоская волна интенсивностью I_0 с длиной λ падает по нормали на прозрачный неотражающий диск, показатель преломления вещества его равен n. Радиус диска равен радиусу первой зоны Френеля для точки P на оси симметрии диска. Найти: а) при какой толщине диска интенсивность в точке P максимальна; б) каково значение этого максимума. (3)
- 3. Плоская монохроматическая волна частоты ω распространяется в среде с диэлектрической проницаемостью ε и при этом с малой проводимостью σ ($\sigma \ll \omega$). На каком расстоянии интенсивность волны падает в e^2 раз? (4)
- 4. Гелий-неоновый лазер мощностью $W=100~{\rm mBr},~\lambda=3,39~{\rm mkm}$ имеет длину $l=140~{\rm cm}$ и квадратное сечение $a\times a=7\times 7{\rm mm}^2$.

Коэффициенты отражения зеркал $R_0=100\%$ и R=90%. Вплотную к выходному зеркалу расположена цилиндрическая линза с фокусным расстоянием F=10 см. Оценить величину средней мощности излучения лазера на единицу площади в фокальной плоскости линзы. (4)

- 5. Заряд совершает одномерное гармоническое колебание. При этом максимальная скорость заряда равна $v \ll c$. Найти отношение полных интенсивностей излучения на основной и удвоенной частотах. (4)
- 6. Найти угловое распределение интенсивностей излучения на больших расстояниях от открытого конца прямоугольного волновода, в котором возбуждена волна H_{01} . Размеры волновода $a \times b$. Частота колебаний $\omega \gg c/a$ и c/b. (4)
- 7. На поверхности сверхпроводящего шара радиуса R распределена сторонняя ЭДС, действующая по касательной к поверхности с напряженностью $E_{\theta}^{\text{стор}} = E_0 \sin \theta \cdot e^{i\omega t}$. Найти среднюю полную интенсивность излучения $\overline{I}(\omega)$. При каком значении ω_0 эта величина максимальна? Указание: искать решение в виде поля электрического диполя, зависящего от времени. (6)

1992/93 учебный год

Контрольная работа 1

1. Показать, что на больших расстояниях l сила взаимодействия F(l) между двумя маленькими по сравнению с l металлическими шариками, один из которых заряжен, а другой нет, изменяется по закону $1/l^5$. (3 балла)

- 2. Какой вклад вносит в потенциал половина бесконечного равномерно заряженного с линейной плотностью \varkappa полого цилиндра радиуса a, если точка A, где надо определить искомый потенциал, создаваемый полуцилиндром, расположена на плоскости разреза на расстоянии l от оси? (5)
- 3. С какой плотностью $\sigma(\theta)$ надо распределить заряд по поверхности сферы радиуса a, чтобы поле внутри оказалось бы однородным и равным $\overrightarrow{E_0}$? (Угол θ отсчитывается от направления вектора $\overrightarrow{E_0}$). (26). Каково поле вне сферы? (16) Внутри сферы далеко от ее

поверхности маленькая капелька воды с диэлектрической проницаемостью ε . Каково поле $\overrightarrow{E_{\mathbf{B}}}$ внутри нее? (1)

4. Один электрод заземлен и представляет собой двугранный угол, другой — с потенциалом φ_0 — гиперболическая поверхность $x \cdot y = A = Const.$ Найти потенциал $\varphi(x, y)$ между электродами. (3)

5. К плоскому конденсатору, заряженному зарядом Q_0 (внутри конденсатора диэлектрик с проницаемостью ε), подсоединяют плоский вакуумный диод. Расстояние между пластинами конденсатора d_1 , меж-

ду анодом и катодом d_2 , площади пластин и электродов велики и равны соответственно S_1 и S_2 . По какому закону будет меняться заряд конденсатора со временем? (4)

6. Для толстой трубы с проводимостью металла σ и радиусами поверхностей a и b>a найти отношение R_z/R_r — сопротивлений для тока вдоль трубы R_z и тока в радиальном направлении R_r . (2)

Экзаменационная работа 1

- 1. В центре кругового витка из сверхпроводника радиуса b максимально возможное магнитное поле B достигает 10 Тл при радиусе сечения сверхпроводника $a \ll b$. Оценить отсюда максимальное значение напряженности поля в сверхпроводнике и критическое значение тока I (b=1 см; a=0,1 см). (2 балла +1 балл)
- 2. Ток I проходит вдоль оси Z по нормали и уходит по нормали к двум параллельным плоскостям, обладающим высокой проводимостью. Между плоскостями зажат диск с той же осью Z радиуса a, высотой $d \ll a$ из материала с проводимостью σ и диэлектрической проницаемостью ε . Найти магнитное поле \overrightarrow{H} во всем пространстве. (3)
- 3. Над полупространством, занятым сверхпроводником, расположено кольцо радиуса a на высоте h с плоскостью кольца, параллельной граничной. По кольцу идет ток I. Найти векторный потенциал

 $A(r,\theta)$ на большом расстоянии $r\gg a,h$ от начала координат под

углом θ . (3)

4. На бесконечную непроводящую пластину с очень высокой магнитной проницаемостью $\mu \to \infty$ положили прямой бесконечно тонкий провод с током I. Найти магнитное поле \overline{H} в пространстве над пластиной, где лежит провод. (5)

- 5. В шаровом слое $a \le r \le b$ распределена однородно по объему электродвижущая сила напряженности $\overrightarrow{E_0}$ одной и той же величины и направления в каждой точке. Проводимость вещества всего шара σ . Найти плотность тока $\overrightarrow{j}(\theta,r)$ (56) и распределения поверхностного заряда $\sigma_1(\theta)$ и $\sigma_2(\theta)$. (2)
- 6. Перпендикулярно оси цилиндра радиуса a с магнитной проницаемостью μ и проводимостью σ включено переменное магнитное поле $\overrightarrow{H} = \overrightarrow{H_0} e^{-i\omega t}$. Для случаев слабого (2) и сильного (3) скинэффекта найти среднюю мощность, выделяющуюся в единице длины цилиндра.

- 1. В опыте Юнга экран с узкими параллельными щелями (расстояние между ними d = 1 мм) освещается параллельной им светящейся нитью через фильтр, пропускающий излучение с $\lambda =$ $5 \cdot 10^{-5}$ см. Расстояние между нитью и экраном со щелями равно $a=10 {\rm cm}$. При какой минимальной толщине нити интерференционная картина пропадет? (1 балл)
- 2. Между двумя параллельными идеально проводящими пластинами, расстояние между которыми равно a, возбуждается стоячая электромагнитная волна. На сколько изменится минимальная частота стоячей волны, если вложить вплотную к одной из пластин слой диэлектрика с $\varepsilon = 4$ толщиной a/2, доходящий до краев пластины? (5)
- 3. На проводящую плоскость, разделяющую вакуум и прозрачную среду с показателем преломления n, падает по нормали линейно поляризованная волна. Проводимость на плоскости удовлетворяет закону $\overrightarrow{i} = \sigma \overrightarrow{E_{\tau}}$, где \overrightarrow{i} – поверхностный ток. Найти коэффициент поглощения A = 1 - R - T, где R и T – коэффициенты соответственно отражения и прохождения. (3)
- ${f 4.}\ {f K}$ дифракционной решетке периода d приставлен тонкий стекляный клин с углом при вершине α ($\alpha \ll 1$), изготовленный из

стекла с коэффициентом преломления n. Найти угол α , при котором для нормального падения света на решетку максимум первого порядка наблюдается в направлении падающего пучка. (1)

- 5. В плоском экране сделано круглое отверстие диаметром D=1 см, в которое вставлена зонная пластинка с диаметром первой зоны $d_1=1$ мм. Вдоль ее оси падает свет с длиной волны $\lambda=5\cdot 10^{-5}$ см интенсивностью I_0 . Найти: а) число зон в пластинке (1); б) размер пятна на экране, поставленном в фокусе пластинки, перпендикулярно ее оси (1); в) интенсивность в фокусе. (2)
- 6. От каждого из двух плоских параллельных стекол, если использовать их порознь, отражается 15% интенсивности света. Какая доля интенсивности света пройдет через эту пару стекол, если расстояние между ними достаточно велико? (3)

Экзаменационная работа 2

- 1. Найти показатель преломления n для непроводящей магнитоэлектрической среды, в которой связи между индукциями и напряженностями полей имеют вид $\overrightarrow{D} = \varepsilon \overrightarrow{E} + \gamma \overrightarrow{H}$, $\overrightarrow{B} = \mu \overrightarrow{H} + \gamma \overrightarrow{E}$; ε , μ , γ – константы. (2 балла)
- 2. В отверстие экрана радиуса r симметрично вставлена рассеивающая линза с фокусным расстоянием -F. По нормали к экрану падает плоская волна интенсивности I_0 и длиной λ . При каком значении r в точке P на оси системы на расстоянии F от экрана будет максимум интенсивности? (1) Чему он равен? (1) Отражением волны от линзы пренебречь.
- 3. Плоская волна падает по нормали на прямоугольный плоский сосуд высоты H, шириной d, доверху заполненный прозрачным составом, показатель прелом-

ления которого с высотой y меняется по закону: $n(y) = n_0(1+y/a-y^2/2b^2)$. За сосудом поставили экран так, чтобы на нем максимально резко обозначилась горизонтальная полоса. Найти расстояние h по вертикали от этой полосы до плоскости дна сосуда. (2). Оценить ширину полосы δh на экране. (2). Длина волны λ .

4. Плоская волна падает вдоль оси Z на прозрачную пластину толщиной d, показателем преломления $n(x) = n_0(1 + \alpha\cos(\beta x) \cdot \cos(2\beta x))$. Непосредственно за пластиной расположена линза, в фо-

1001/02 y 10011bin

кальной плоскости которой (фокусное расстояние линзы равно F) помещен экран. Найти число и положения дифракционных максимумов. (4)

5. При столкновении двух нерелятивистских ядер дейтерия (Z=1, A=2), имеющих на бесконечности одинаковую кинетическую энергию W_D , излучается энергия

 $Q_D \ll W_D$. Прицельный параметр столкновения равен a. Какая энергия Q_α излучится при столкновении двух α -частиц (Z=2, A=4) с той же самой энергией на бесконечности ($W_\alpha=W_D$) и прицельным параметром 4a? Указание: воспользуйтесь соображениями подобия. (5)

6. В полупространстве z < 0 создано однородное магнитное поле $\overrightarrow{H_0}$. В плоскости z = 0 расположена сверхпроводящая пленка, отделяющая поле $\overrightarrow{H_0}$ от пустого пространства z > 0. В момент вре-

мени t=0 пленка переходит в нормальное состояние, для которого поверхностный ток $\overrightarrow{i}=\sigma^*\overrightarrow{E}$. Найти H_2 и E_2 в плоской волне, возникающей в области 2, и H_1 , E_1 в области 1 после прохождения фронта волны, идущей в область 1. (E_1 , H_1 , и E_2 , H_2 не зависят от z). (5)

7. Длинный тонкий прямоугольный волновод с размерами $a \times a \times l$ ($a \ll l$) согнут в кольцо, образуя тороидальный резонатор. Как изменится минимальная частота резонатора, если в него вставить перпендикулярно оси проводящую заслонку, перекрывающую сечение тора? (6)

1991/92 учебный год

- 1. В равномерно с плотностью ρ заряженном слое толщиной 2a имеется сферическая полость радиуса a, касающаяся обеих границ слоя. Найти $\vec{E}(r,\theta)$, отсчитывая r от центра полости. (3 балла)
 - 2. К плоскому заряженному конденсатору с площадью пластин

S и расстоянием между ними d присоединяется плоский вакуумный диод с теми же геометрическими параметрами. Найти изменение напряжения U(t) на обкладках конденсатора. (3)

3. Над полупространством, заполненным металлом, вдоль оси Z расположена полубесконечная равномерно заряженная с плотностью κ нить. Расстояние между концом нити и поверхностью металла h. Найти распределение индуцированного на поверхности металла заряда. (4)

- 4. Для толстой трубы с проводимостью металла σ и радиусами поверхностей a и b>a. Найти отношение сопротивлений продольному и радиальному токам R_z/R_r . (1)
- 5. Равномерно заряженная сфера радиуса a с зарядом Q вращается вокруг оси с угловой скоростью ω . Найти магнитное поле в центре сферы. (3)
- 6. Равномерно заряженный зарядом Q полый цилиндр высотой h с осью, совпадающей с осью Z, поставлен торцом на плоскости X,Y,0. Найти его дипольный момент. (2)

Экзаменационная работа 1

- 1. На плоской границе раздела двух диэлектриков с проницаемостями ε_1 и ε_2 находится направленный вдоль границы точечный диполь с дипольным моментом \overrightarrow{p} . Найти потенциал $\varphi(r,\theta)$ во всем простанстве. (3 балла)
- 2. Один электрод заземлен и представляет собой прямой двугранный угол, другой с потенциалом φ_0 гиперболическая поверхность: $x \cdot y = A = Const.$ Найти $\varphi(x,y)$ между электродами. (4)

3. По плоской спирали, сформированной из полуокружностей, идет ток I. Начало спирали внутри и её конец снаружи замыкает проводник длины \overrightarrow{a} , направленный по радиусу вдоль своего тока. Однородное поле с индукцией \overrightarrow{B} перпендикулярно плоскости витков. Найти силу, действующую на спираль. (3)

1001/02 y 10011bin 1

4. Над сверхпроводящим полупространством перпендикулярно плоской границе нависает полубесконечный соленоид с радиусом сечения R и полем внутри вдали от конца равным H_0 . Найти распределение тока $I(\rho)$ на границе. Расстояние между концом соленоида и границей $h \gg R$. (4)

5. Найти индуктивность единицы длины двух коаксиальных цилиндров (радиусы a и b>a), часть пространства между которыми занята магнетиком (проницаемость μ). Угол между плоски-

ми сторонами магнетика равен α . (5)

- 6. В неограниченном магнетике в центре сферической полости радиуса a находится магнитный диполь с магнитным моментом $\overrightarrow{m_0}$. Найти магнитный момент вне полости и однородную часть поля $\overrightarrow{H_0}$ внутри нее. (4)
- 7. Два параллельных цилиндрических стержня (радиусы a проводимость σ) помещены в перпендикулярное их осям однородное поле $\overrightarrow{H} = \overrightarrow{H_0} e^{-i\omega t}$. Найти силу на единицу длины между цилиндрами. Расстояние между ними $l \gg a$, причем $\omega \gg c^2/\sigma \mu a^2$. (4)
- 8. На шарообразный сердечник радиуса a намотана тонким слоем проволока так, что витки лежат вдоль линий $\theta = Const$, а плотность намотки меняется, по закону: $n(\theta) = (N/2a)\sin(\theta)$, причем $\int_0^\pi n(\theta)ad\theta = N$. Сердечник изготовлен из материала с проводимостью σ и постоянной магнитной проницаемостью μ . По проволоке идет переменный ток $I = I_0 e^{-i\omega t}$. Считая $\omega \ll c^2/\sigma \mu a^2$, найти среднюю тепловую мощность, выделяющуюся в сердечнике. (5)

- 1. Плоская горизонтальная граница разделяет два полупространства, не поглощающих излучения, с проницаемостями: у верхнего $-\varepsilon_2$, μ_2 , у нижнего $-\varepsilon_1$, μ_1 . Под каким углом должна падать такая монохроматическая волна, вектор $\overrightarrow{E_0}$ которой колеблется перпендикулярно плоскости падения, чтобы коэффициент отражения был бы строго равен нулю? (3 балла)
- 2. Между двумя параллельными идеально проводящими пластинами, расстояние между которыми равно a, возбуждается стоячая электромагнитная волна. На сколько изменится минималь-

ная частота стоячей волны, если вложить вплотную к одной из пластин слой диэлектрика с $\varepsilon=4$ толщиной a/2, доходящий до краев пластины? (5)

- 3. На проводящую плоскость, разделяющую вакуум и прозрачную среду с показателем преломления n, падает по нормали линейно поляризованная волна. Проводимость на плоскости удовлетворяет закону: $\overrightarrow{i} = \sigma \overrightarrow{E}_{\tau}$, где i поверхностный ток. Найти коэффициент поглощения A = 1 R T, где R и T коэффициенты отражения и прохождения. (3). При каком значении σ коэффициент A максимален? (2)
- 4. В кубическом резонаторе со стороной a_0 возбуждено основное колебание с \overrightarrow{E} , направленным вдоль оси z. Во сколько раз изменится энергия поля в резонаторе после свободного медленного перемещения одной из стенок вдоль оси x, начиная от расстояния a_0 до другой стенки вплоть до $a=\alpha a_0$? Потерями на нагрев пренебречь. (6)
- 5. В плоском экране сделано круглое отверстие диаметром D=1 см, в которое вставлена зонная пластинка с диаметром первой зоны $d_1=1$ мм. Вдоль ее оси падает свет с длиной волны $\lambda=5\cdot 10^{-5}$ см интенсивностью I_0 . Найти: а) число зон в пластинке (1); б) размер пятна на экране, поставленном в фокусе пластинки, перпендикулярно ее оси (1); в) интенсивность в фокусе (2).
- 6. На зеркальную полоску ширины a, вращающуюся с угловой скоростью Ω вокруг продольной оси z полоски падает широкий параллельный пучок света с длиной волны λ и интенсивностью I_0 . Найти интенсивность I(t) в точке O, расположенной на расстоянии $l \gg a^2/\lambda$ под углом θ к направлению падающего пучка. (6)

Экзаменационная работа 2

1. В паре линз — первая с фокусным расстоянием F, вторая — с -F/2, причем расстояние между линзами равно F/2. Во сколько раз уменьшает сечение параллельного пучка света каскад из n таких пар линз? (2 балла)

2. Каждой точке S источника, испускающего свет с длиной волны λ , после прохождения через собирающую линзу конечных раз-

меров a и фокусным расстоянием F соответствует некоторый малый трехмерный элемент изображения. Оценить поперечные и продольные размеры этого элемента в условиях, когда расстояние l между предметом и линзой таково, что $l \gg F \gg a$. (2)

3. На волнистую поверхность, задаваемую законом: $z=a\cos(2\pi x/\Lambda)$, падает плоская монохроматическая волна с волновым вектором

$$\overrightarrow{k_0} = (2\pi/\lambda)\sin(\theta_0)\cdot\overrightarrow{e_x} - (2\pi/\lambda)\cos(\theta_0)\cdot\overrightarrow{e_z}.$$

Найти, под какими углами θ_m , интенсивность отраженной волны имеет максимумы. (3) Сколько таких максимумов? (1). $(a \ll \lambda)$

4. Найти энергию, излученную релятивист- \mathbf{p} _ской частицей с зарядом e, массой m, пролетевшей со скоростью \overrightarrow{v} , практически не менявшейся по величине и направлению, по середине широкого зазора размером 2ρ между концами уз-

кого ($\sqrt{s} \ll \rho$) тороидального с большим радиусом соленоида, по которому идет ток I, плотность намотки равна n. (3)

5. Между проводящей плоскостью и идеально отражающей поверхностью (зеркалом) расстояние *l*. (На плоскости поверхностный ток удовлетворяет закону Ома: $\overrightarrow{i} = \sigma \overrightarrow{E}_{\tau}$). При ка-

ких условиях для σ и l такая система не отражает (R=0) падающую по нормали монохроматическую с длиной волны λ линейно поляризованную волну? (6)

6. Вычислить в первом приближении энергию, излученную при лобовом "столкновении" двух нерелятивистских одинаково заряженных частиц (массы m_1 и m_2 , $m_1 \neq m_2$, начальные скорости вдали от точек поворота $\pm v_0/2$, $v_0 \ll c$). (7)

1990/91 учебный год

Контрольная работа 1

1. В заряженном шаре радиуса a плотность заряда спадает κ периферии по закону: $\rho = \rho_0(1 - r/a)$. На каком расстоянии r_1 от центра напряженность E максимальна? (2 балла)

1000/01 y 100mm 10

T (

2. Внутри равномерно с плотностью ρ заряженного шара радиуса a имеется сферическая полость радиуса a/2, соприкасающаяся с границей шара. В полости далеко от ее краев находится маленькая шаровая капля. Ее вещество имеет диэлектрическую проницаемость ε . Найти напряженность \overrightarrow{E} внутри капли. (4)

3. В плоский конденсатор с расстоянием между пластинами d_0 вставлена изогнутая в середине проводящая пластина. Расстояние от этой пластины до ближайших обкладок d_1 . Во сколько раз изменилась емкость конденсатора? (3)

- 4. Внутри толстой полой металлической сферы (внешний радиус b, внутренний a) на расстоянии l от центра помещен точечный электрический заряд q. Найти поверхностную плотность заряда в ближайшей к заряду и наиболее удаленной точках на внешней и внутренней поверхностях. (4)
- 5. На высоте h над полупространством, заполненным металлом, висит равномерно заряженное зарядом Q кольцо радиуса a. Считая, что начало координат находится в точке O_1 пересечения оси кольца и поверхности металла, найти два первых ненулевых члена разложения потенциала $\varphi(r,\theta)$ на больших расстояниях $r\gg a$. (4)
- 6. В пространстве с проводимостью σ_0 шел ток с постоянной плотностью. Вокруг небольшой сферической области произошло изменение проводимости до величины σ_1 в сферической области, центр которой не совпадает с центром вышеупомянутой малой сферы, а внешняя сферическая граница большой сферы находится далеко от малой. Оценить, во сколько раз изменился ток через малую сферическую область? (5)
- 7. Полый заряженный с постоянной плотностью σ конус с постоянной угловой скоростью ω вращается вокруг своей оси. Угол между осью и образующей конуса α , радиус основания конуса (дна нет) a. Найти напряженность магнитного поля в вершине конуса. (2)

- 1. В опыте Юнга экран с узкими щелями (расстояние между ними d=1 мм) освещается параллельной им светящейся нитью через фильтр, пропускающий излучение с $\lambda=5\cdot 10^{-5}$ см. Расстояние между нитью и экраном со щелями равно a=10см. При какой минимальной толщине нити интерференционная картина пропадает? (1 балла)
- 2. Плоская горизонтальная граница разделяет два непоглощающих излучение материала с проницаемостями: у верхнего ε_1 , μ_1 , у нижнего ε_2 , μ_2 . Под каким углом должна падать такая монохроматическая электромагнитная волна, вектор $\overrightarrow{E_0}$ которой колеблется перпендикулярно плоскости падения, чтобы коэффициент отражения был бы строго равен нулю? (3)
- 3. В волноводе квадратного сечения $a \times a$ область $z \leq 0$ заполнена диэлектриком с проницаемостью ε , и в области z > 0 вакуум. По диэлектрику к плоской границе раздела с вакуумом идет волна H_{10} . В каком диапазоне $\omega_1 \div \omega_2$ должна находиться её частота, чтобы волна полностью отразилась от границы раздела? (4)
- 4. От каждого из двух плоских параллельных стекол, если их использовать порознь, отражается 10% интенсивности света. Какая доля интенсивности света пройдет через эту пару стекол, если расстояние между ними достаточно велико? (3)
- 5. К горизонтальной решетке периода d приставлен снизу стеклянный клин с углом при вершине $\alpha \ll 1$ и показателем преломления n. Найти угол α , при котором для нормального падения света на решетку сверху максимум первого порядка наблюдается в направлении падающего пучка. (1)
- 6. Плоская волна интенсивности I_0 с длиной волны λ падает на прозрачный полудиск (показатель преломления материала n). Диск перекрывает половину первой зоны Френеля по диаметру для точки P на его оси. Найти толщину, при которой интенсивность в точке P минимальна. Каков этот минимум I? (2)

Экзаменационная работа 2

I. В плоском экране сделано круглое отверстие диаметром D=1 см, в которое вставлена зонная пластинка с диаметром первой

зоны $d_1 = 1$ мм. Вдоль оси пластинки падает монохроматический свет интенсивностью I_0 с длиной волны $\lambda = 5 \cdot 10^{-5}$ см. Найти: а) число зон в пластинке (1 балл); б) размер пятна на экране, поставленном в фокусе пластинки, перпендикулярно ее оси (1 балл); в) интенсивность в фокусе. (1 балл)

- 2. На поверхности тонкой линзы с фокусным расстоянием Fсделаны непрозрачными кольцевые области $\alpha \sqrt{n} < r < \alpha \sqrt{n+1}$, где α – константа, а $n=1,3,5,...,N\,(N\gg1)$. Найти положение фокусов такой системы, при освещении её пучком света с длиной волны λ , параллельным оптической оси. (5)
- 3. На проводящую плоскость, разделяющую вакуум и прозрачную среду с показателем преломления n, падает по нормали плоская монохроматическая линейно поляризованная волна. Проводимость на плоскости удовлетворяет закону: $\overrightarrow{i} = \sigma \overrightarrow{E}$, где \overrightarrow{i} – поверхностный ток. Найти коэффициент поглощения A = 1 - R - T, где R и T – коэффициенты отражения и прохождения. (3) При каком σ значение A максимально? (2)
- 4. Оценить вызванную излучением разницу углов поворота траекторий протона p и позитрона e^+ с одинаковым начальным импуль- $\cos p_0 = 100 \, \Gamma$ эВ/с при прохождении участка длиной $l=1 \, \mathrm{m} \, \mathrm{c}$ поперечным магнитным полем $H=20~{\rm k}$ Э. Начальные условия при входе одинаковы. (3)
- ${f 5.}$ Вследствие молекулярных колебаний с частотой ω_0 поляризуемость молекулы α явно зависит от времени : $\alpha = \alpha_0 + \beta \cos \omega_0 t$. Найти среднюю по времени интенсивность дипольного излучения такой молекулы, находящейся в переменном электрическом поле $\overline{E} = \overline{E_0} exp(-i\omega t)$ (дипольный момент молекулы $\overline{d} = \alpha \overline{E}$). Указать частоты излучаемых волн и вычислить среднюю по времени интенсивность излучения на каждой частоте. (5)
- 6. В кубическом резонаторе со стороной a_0 возбуждено основное колебание с электрическим полем, направленным по оси Z. Одна из стенок допускает свободное перемещение вдоль оси X. Во сколько раз из-

менится энергия поля в резонаторе после медленного увеличения

размера резонатора вдоль оси X от a_0 до $a=\alpha a_0$? Потерями на нагрев пренебречь. (6)

1989/90 учебный год

Экзаменационная работа 1

1. В заряженном шаре радиуса a плотность заряда линейно спадает к периферии по закону: $\varrho = \varrho_0(1-r/a)$. На каком расстоянии r_1 от центра напряженность E максимальна? ($\varepsilon = 1$). (2 балла)

2. Над проводящим полупространством висит на высоте h=1 см равномерно заряженное зарядом $Q=10^{-4}$ Кл кольцо радиуса a=10 см. Найти поверхностную плотность заряда σ в точке по-

верхности O_1 на оси симметрии. (3+1)

3. Коаксиальная линия длины L, состоящая из цилиндрического проводника радиуса a, помещенного соосно внутри проводящей цилиндрической трубы внутреннего радиуса b, закорочена на одном конце и подсоединена к источнику э.д.с. $\mathcal E$ на другом конце. Считая, что линия длинная ($L\gg b$), а ее сопротивление велико по сравнению с внутренним сопротивлением источника, найти распределение плотности заряда $\sigma(z)$ на поверхности проводников. (4)

4. Однородное магнитное поле индукции $\overrightarrow{B_0} = 5~\mathrm{k\Gamma c}$ подходит сверху к горизонтальной проводящей плоскости под углом $\alpha = 45^\circ$, а снизу выходит из плоскости под тем же углом. Вычислить

силу тока через единицу длины и силу, действующую на единицу площади плоскости, указав их направления. (3+1)

5. Тонкая цилиндрическая оболочка из идеально проводящей жидкости находится в однородном магнитном поле, параллельном оси цилиндра. Напряженность поля H, радиус цилиндра a, масса единицы площади μ . Найти период малых радиальных

колебаний. Поверхностное натяжение не учитывать. (6)

6. Полый заряженный с постоянной плотностью σ конус равномерно с угловой скоростью ω врашается вокруг своей оси. Угол между осью и образующей конуса равен α , радиус дна – a. Найти

создаваемые конусом магнитный момент \overrightarrow{m} (2) и напряженность магнитного поля H в вершине конуса. (2)

7. Магнитный диполь с магнитным моментом \overrightarrow{m} , меняющимся с частотой ω по закону: $\overrightarrow{m} = \overrightarrow{m_0} \cos \omega t$, помещен в центр сферической полости радиуса a в проводящей среде с проводимостью σ . Найти среднюю мощность джоулевых потерь в стенках полости при сильном скин-эффекте. (7)

- 1. В волноводе квадратного сечения $a \times a$ область $z \leq 0$ заполнена диэлектриком с проницаемостью ε , а в области z > 0 вакуум. По диэлектрику к границе раздела с вакуумом идёт волна H_{10} . В каком диапазоне частот $\omega_1 \div \omega_2$ должна находиться ее частота, чтобы волна полностью отразилась от границы раздела? (5 баллов)
- 2. В опыте Юнга экран с узкими щелями (расстояние d=1 мм) освещается параллельной им светящейся нитью через фильтр, пропускающий длину волны $\lambda=5\cdot 10^{-5}$ см. Расстояние между нитью и экраном равно a=10 см. При какой предельной толщине нити ещё возможно наблюдать интерференционную картину? (2)
- 3. Коэффициент отражения каждого из двух плоских параллельных стекол одинаков и равен R=0,1. Какая доля света пройдет через эту пару стёкол по нормали к ним, если расстояние между ними достаточно велико по сравнению с длиной волны. (4)
- 4. Плоская граница разделяет два непоглощающих излучение материала с проницаемостями: верхняя $-\varepsilon_1, \mu_1$, нижняя $-\varepsilon_2, \mu_2$. Под каким углом падения должна двигаться такая монохроматическая электромагнитная волна, вектор $\overrightarrow{E_0}$ которой колеблется перпендикулярно плоскости падения, чтобы коэффициент отражения был бы строго равен нулю? (3)
- 5. В схеме Ллойда задано расстояние до экрана l и расстояние между интерференционными полосами на нем d. На сколько можно поднять еще источник над зеркалом, чтобы с расстояния наилучшего зрения l_0 при диаметре зрачка D можно было различать полосы на экране? А при каком дополнительном подъеме Δh интерференционные полосы на экране исчезают? (4)
 - 6. На щель ширины a нанесли покрытие с коэффициентом про-

пускания по амплитуде $\tau(x)=\cos(\pi x/a)$, где x отсчитывается от середины щели. На экран со щелью по нормали пустили плоскую монохроматическую волну с $\overrightarrow{E}=\overrightarrow{E_0}e^{i(kz-\omega t)}$. Найти зависимость интенсивности I от угла дифракции θ . Сколько максимумов в интенсивности? (3)

Экзаменационная работа 2

- 1. Плоская волна интенсивности I_0 с длиной λ падает на прозрачный диск (показатель преломления материала n). Диск перекрывает половину первой зоны Френеля для точки P на его оси. При какой толщине h интенсивность I_p максимальна и чему она равна? (4 балла)
- 2. На равномерно заряженное закрепленное кольцо радиуса R с зарядом Q вдоль оси кольца с большого расстояния, имея там скорость $v \sim c$, налетает частица массы m с зарядом e. Пренебрегая изменением скорости частицы, найти энергию, излученную частицей за все время полета. (3)

3. На зеркальную полоску ширины a, вращающуюся с угловой скоростью Ω , падает широкий параллельный пучок света с длиной волны λ . Найти освещенность E(t) в точке O, расположенной на расстоянии l под углом θ к на-

правлению падающего пучка ($l\gg \lambda^2/a$) . Интенсивность падающего света I_0 . (5)

4. Заряд, распределенный по окружности радиуса r с линейной плотностью $\varkappa = \varkappa_0(1 + a\cos\varphi)$, вращается с линейной скоростью $v = \omega r \ll c$, ($\overrightarrow{v} \perp \overrightarrow{\omega}$). Найти среднюю интенсивность дипольного излучения. (3)

5. На проводящую плоскость z=0 (на ней $\vec{i}=\sigma \overrightarrow{E_{\tau}}$, где \vec{i} – поверхностный ток) под углом к нормали падает плоская монохроматическая линейно поляризованная волна (\overrightarrow{E} – в плоскости падения) заданной амплитуды E_0 .

Найти амплитуды прошедшей E_2 и отраженной E_1 волн. (5)

6. Между двумя параллельными идеально проводящими пластинами, расстояние между которыми равно a, возбуждается стоячая электромагнитная волна. На сколько изменится минималь-

ная частота стоячей волны, если приложить к одной из пластин слой диэлектрика толщиной a/2, доходящей до ее краев? Диэлектрическая проницаемость слоя $\varepsilon=4$. (6)

7. Оценить ширину углового распределения света за щелью шириной d при освещении её протяженным ленточным источником ширины D, параллельным плоскости щели и удаленным на большое расстояние $L\gg D$, в двух предельных случаях: а) $l_{\perp}\gg d$; б) $l_{\perp}\ll d$. (Протяженный источник состоит из взаимно-некогерентных квазимонохроматических линейчатых источников, излучающих свет с длиной волны λ .) (4)

1988/89 учебный год

Контрольная работа 1

- 1. В цилиндрическом вакуумном диоде поток электронов создает между электродами объемный заряд, вследствие чего потенциал там меняется по закону $\varphi(R)=aR^{2/3}$, где R расстояние от оси. Найти зависимость от R объёмной плотности заряда $\rho(R)$. (I балл)
- 2. Прямая бесконечная жёсткая нить с зарядом единица длины κ находится на расстоянии a от точечного диполя с дипольным моментом \overrightarrow{p} , направленным на нить вдоль перпендикуляра к ней. С какой силой диполь действует на нить ? (3)
- 3. Внутри толстой полой металлической сферы (внешний радиус R, внутренний r) на расстоянии a от центра помещен точечный электрический заряд q. Найти поверхностную плотность заряда в ближайшей к заряду и наиболее удаленной точках на внешней и внутренней поверхностях. (4)
- 4. Однородный цилиндрический электронный пучок радиуса a с током I принимается коллектором, соосным с пучком. Коллектор состоит из тонкой шайбы толщиной d с наружным радиусом b, сделанной из материала с проводимостью σ . Шайба насажена на заземленный стер-

жень радиуса c (c < a < b), изготовленный из материала с очень

высокой проводимостью. Найти разность потенциалов U, возникающую между краем шайбы и стержнем. (3)

- 5. Найти электрическое поле вне сферической «льдинки» с диэлектрической проницаемостью ε , в центре которой оказалась частица с дипольным моментом \overrightarrow{p} . (5)
- 6. Оценить по порядку величины время τ_E электрической релаксации для человека, прикинув при численной оценке собственные электрические параметры. (2)

- 1. Два медных диска радиуса ${\bf R}$ с зарядами $+q_1$ и $-q_2$ привели в полное соприкосновение, а потом слегка развели. Оси дисков совпадают. Найти силы электрического взаимодействия дисков до их соприкосновения и после. (3 балла)
- 2. Какую разность полей ΔB должен пройти нейтрон, чтобы набрать энергию E=1 эВ, если его магнитный момент μ_n параллелен постоянному градиенту поля ($\mu_n\approx 10^{-26}$ эрг/гаусс)? (2)
- 3. По бесконечному цилиндру идёт ток с постоянной плотностью \overrightarrow{j} . Параллельно оси цилиндра в нём сделана цилиндрическая полость. Расстояние между осями a. В полости далеко от её поверхности находится маленький шарик с магнитной проницаемостью μ . Найти индукцию \overrightarrow{B} в шарике. (3)
- 4. По сверхпроводящему тороидальному соленоиду (малый радиус a, большой $b\gg a$, число витков $N\gg 1$) идёт ток I_0 . Найти ток I после того, как обмотку соленоида растянули в плоский одновитковый контур индуктивности L. (4)

- 5. В коробке со сверхпроводящими стенками перемещается поршень из фольги, проводимость которой конечна, так что ток через единицу длины $i = I/l = \sigma_* E$. При t = 0 возбуждается поле H_0 , и поршень, уменьшая высоту по закону $h(t) = h_0 vt \ (l \gg b \gg h_0)$, сжимает это
- поле. Найти зависимость H(t). Какому условию должна удовлетворять постоянная скорость v, чтобы поле росло? (6)
- 6. Сфера радиуса a, равномерно заряженная зарядом Q, вращается с угловой скоростью ω . Найти момент импульса \overrightarrow{M} возник-

шего электромагнитного поля. (6)

7. Тонкий диск толщины $\delta \ll R$ однородно намагничен вдоль своей оси. Найти магнитное поле на оси внутри и вне диска. (Кривая намагничивания — на рис.б). (6)

8. Два сгустка из e^- и e^+ с числом частиц по $n=10^{11}$ и с энергией E=1ТэВ $=10^3$ Гэв летят навстречу друг другу. Сгустки-цилиндры радиуса r=

1 мкм. Найти расстояние от точки встречи до точки, на котором эти сгустки сфокусируются. (5+I)

Контрольная работа 2

1. Рассчитать форму поверхности идеальной плосковыпуклой линзы максимальной толщины d, сделанной из стекла с показателем преломления n. (3 балла)

- 2. Под каким углом будет наблюдаться главный максимум излучения с длиной волны λ , если на одну из двух щелей решетки (ширина щели d, расстояние между щелями b) нанесли прозрачное покрытие, меняющее фазу на π ? (2)
- 3. В волноводе квадратного сечения $a \times a$ область $z \geq 0$ заполнена диэлектриком с проницаемостью ε , а в области z < 0 вакуум. В каком диапазоне частот ω волна H_{10} , пущенная по диэлектрику, полностью отразится от границы с вакуумом? (6)
- 4. При каком предельном расстоянии между узкими щелями в опыте Юнга можно ещё наблюдать интерференционную картину, используя в качестве источника свет от Солнца. Фильтр выделил длину волны $\lambda \simeq 5 \cdot 10^{-5}$ см. Угловой размер Солнца $\alpha \approx 0,01$ рад. (2)
- 5. Коэффициент отражения каждого из двух плоских стёкол одинаков и равен 0,1. Какая доля света пройдет через эту пару стёкол, если расстояние между ними достаточно велико по сравнению с длиной волны? (4)
- 6. По нормали к плоскому экрану, в котором имеется круглое отверстие радиуса R, падает плоская монохроматическая (с дли-

00

ной волны λ) волна. В отверстие вставили зонно-поляризационную пластинку, в которой четные и нечетные кольцевые зоны Френеля закрыты поляроидами с взаимно ортогональными ориентациями поляризации у соседних зон. На экране, расположенном на расстоянии l от первого экрана, получается яркое пятно. Оценить размер пятна. (2) Во сколько раз изменится интенсивность в центре пятна, если убрать первый экран с поляроидами? (4)

Экзаменационная работа 2

1. Двухатомная неполярная молекула, состоящая из одинаковых атомов, во внешнем электрическом поле приобретает дипольный момент, направленный вдоль ее оси и равный αE_* , где E_* - величина проекции поля на ось. Найти мощность электромагнитного излучения такой молекулы, вращающейся с угловой скоростью ω во внешнем поле E_0 . Вектор $\overrightarrow{E_0}$ лежит в плоскости вращения. Какова поляризация излучения, идущего вдоль оси вращения молекулы? (5 баллов)

2. К дифракционной решетке периода d приставлен тонкий стекляный клин с углом при вершине α ($\alpha \ll 1$), изготовленный из стекла с коэффициентом преломления n. Найти угол

 α , при котором для нормального падения света на решетку максимум первого порядка наблюдается в направлении падающего пучка. (2)

3. На стопку, составленную из N=20 полупрозрачных параллельных пластин, расположенных на расстоянии d друг от друга, под углом θ падает пучок света, интенсивность которого равна I_0 , а длина волны $\lambda=1,5d$. Коэффициент отражения R от пластины равен 0,1

% , а коэффициент прохождения T - 99,9 % . При каком угле падения θ интенсивность отраженного света максимальна и чему она равна?

Указание: ввиду малости коэффициента R достаточно учесть только однократное отражение света от пластин. (6)

4. Позитрон и протон с одинаковой величиной импульса (pc=5 ГэВ) пролетают участок длины l=10 см с однородным магнит-

ным полем H=17 к \Im , перпендикулярным скорости. Найти излучаемую каждым из них энергию. (2б). Оценить длительность импульса излучения вдоль начальной скорости. (4)

5. По стеклянной трубке длины l со скоростью v ($v \ll c$) протекает жидкость, коэффициент преломления которой равен n. Определить, на сколько время распространения света по жидкости в направлении скорости \overrightarrow{v} отличается от времени распространения по покоящейся жидкости. (4)

- 6. В томсоновской модели атома водорода электрон (масса m, заряд -e) совершает движение внутри неподвижного шара радиуса R, равномерно заряженного положительным зарядом +e. Найти полное сечение рассеяния плоской монохроматической с частотой ω электромагнитной волны ($\lambda = 2\pi c/\omega \gg 2R$). (36)
- 7. Точечные независимые монохроматические излучатели с длиной волны λ расположены на площадке Π радиуса a. Вдоль оси излучения на расстоянии r от источника установлены два небольших зеркала так, что угол падения близок к нормали. Оценить, при каком расстоянии Δr между зеркалами на экране Θ исчезает интерференционная картина ($r\gg\Delta r,a$). (66)

1987/88 учебный год

Экзаменационная работа 2

1. Узкий пучок света, пересекающий под неболь шим углом ось вогнутого сферического зеркала на расстоянии AO = l от центра сферы O, отражается от зеркала. Когда же на пути пучка к зеркалу ставят толстую прозрачную плоскопараллельную пластину (показатель преломления стекла n), плоскости которой перпендикулярны оси зеркала AO, то виден лишь падающий на зеркало пучок, а отраженный исчезает. При какой толщине пластины d это явление возможно? (2 балла)

2. При каком расстоянии d между зеркалами интерферометра Фабри-Перо можно разрешить дублет жёлтой линии натрия $\lambda_1 = 5,890 \cdot 10^{-5}$ см и $\lambda_2 = 5,896 \cdot 10^{-5}$ см? (3)

3. При каком минимальном расстоянии между узкими щелями в опыте Юнга можно наблюдать интерференционную картину, используя в качестве источника свет от Солнца, пропущенный через фильтр, выделяющий достаточно хорошо длину волны $\lambda \approx 5 \cdot 10^{-5}$ см. Угловой размер Солнца α (отношение диаметра к расстоянию) равен 10^{-2} рад. (2)

4. Между двумя параллельными металлическими пластинами, расстояние между которыми равно d, вдоль оси Z распространяется монохроматическая электромагнитная E_1 -волна. Найти распределение плотности зарядов $\sigma(z,t)$ и токов I(z,t) на плоскостях волновода. (4)

5. По нормали к плоскому экрану, в котором имеется круглая диафрагма радиуса R, падает плоская монохроматическая волна длины λ . В диафрагму вставлена зонно-поляризационная пластинка, в которой четные и нечетные кольцевые зоны Френеля закрыты поляроидами с вза-

имно перпендикулярной ориентацией поляризации прошедшего света у соседних зон. На экране, расположенном на расстоянии l от диафрагмы параллельно ее плоскости, расположен второй экран, на котором получается яркое пятно. Во сколько раз изменится интенсивность в центре пятна, если убрать первый экран с поляроидами. (5). Оценить размер пятна. (2)

ο.

ОТВЕТЫ И УКАЗАНИЯ

2000/01 учебный год

Контрольная работа 1

1.
$$E = \pi k / a, \varphi = 2\sqrt{2}\pi k.$$

2.
$$F = \frac{3}{8} \frac{\varepsilon - 1}{\epsilon + 1} \frac{p^2}{h^4}$$
.

3.
$$\sigma_c = \frac{3}{4\pi} \frac{\varepsilon - 1}{1 + 2\varepsilon} E_0 \cos \theta$$
.

4.
$$\varphi\left(r,\theta\right) \approx \frac{Q-q}{r} - \frac{qa^2}{4r^3} \left(1 - 3\cos^2\theta\right)$$
.

5.
$$C = \varepsilon/4\pi\sigma R$$
.

6.
$$t/t_0 = 3/2$$
.

Экзаменационная работа 1

1.
$$\varphi_0 = -2\pi\rho d^2$$
, $\varphi_1 = 2\pi\rho(z+d)^2 - 2\pi\rho d^2$, $\varphi_2 = -2\pi\rho(z-d)^2 + 2\pi\rho d^2$, $\varphi_3 = 2\pi\rho d^2$.

2.
$$E = 9E_0$$
.

3.
$$B_R = \frac{2\pi}{c} jR \sin 2\alpha$$
, $B_\alpha = \frac{2\pi}{c} jR \cos 2\alpha$.

4.
$$I_{\alpha}(\theta, h) = -3m_0c\sin\theta\cos^4\theta/(2\pi h^3)$$
.

5.
$$\overrightarrow{F} = -\left(2\pi^2 a^2/c^2\right) \left(\overrightarrow{j_1} \cdot \overrightarrow{j_2}\right) \overrightarrow{l}$$
.

6.
$$L = L_0 (\mu_1 + \mu_2) / 2$$
.

1999/2000 учебный год

Контрольная работа 1

1.
$$E = \chi/a$$
.

2.
$$j = cU/(4\pi r_a^2)$$
.

$$\mathbf{3.} \varphi(R, \theta) pprox 4(R/a)\chi\cos\theta$$
при $R \ll a.$

4.
$$dF/dl = -31\chi^2/(30)$$
.

5.
$$\sigma_{\mathbf{CBO6}} = \frac{U}{4\pi c^2 A} \left(\frac{\varepsilon_2}{\sigma_2} - \frac{\varepsilon_1}{\sigma_1}\right), \sigma_{\mathbf{CBЯ3}} = \frac{U}{4\pi c^2 A} \left(\frac{\varepsilon_2 - 1}{\sigma_2} - \frac{\varepsilon_1 - 1}{\sigma_1}\right),$$
 где $A = \frac{1}{\sigma_1} \left(\frac{1}{b} - \frac{1}{c}\right) + \frac{1}{\sigma_2} \left(\frac{1}{c} - \frac{1}{a}\right).$

1.
$$Q = -q, p = ql\left(1 - \frac{a^3}{l^3}\right)$$
.

$${f 2.}\ B_z(0)=\pi a\sigma\omega/c;\ \overrightarrow{B}(r, heta)=-rac{\overrightarrow{m}}{r^3}+rac{3\left(\overrightarrow{r},\overrightarrow{m}
ight)\overrightarrow{r}}{r^5},$$
 где $\overrightarrow{m}=rac{\pi\sqrt{2}\sigma a^4}{4c}\overrightarrow{\omega}.$

$$3. h = \frac{J_0 H}{c\sqrt{p}} \sqrt{\ln \frac{b}{a}}.$$

4.
$$\overline{Q} = \frac{2\pi}{3}\sigma\Delta \left(m_0\frac{\omega}{ca}\right)^2$$
, $F_z(t) = -\frac{3\pi}{4}\frac{\sigma\Delta m_0^2\omega}{c^2a^3}\sin(2\omega t)$.

5.
$$\overrightarrow{B}_{\mathbf{Bepx}} = q_m \frac{\overrightarrow{r}}{r} + q_m' \frac{\overrightarrow{r_1}}{r_1}, \ \overrightarrow{B}_{\mathbf{HИЖH}} = \mu q_m'' \frac{\overrightarrow{r}}{r},$$
где $q_m = \frac{a^2}{4} B_0 \ , \ q_m' = \frac{1-\mu}{1+\mu} q_m, \ q_m'' = \frac{2}{1+\mu} q_m \ .$

6.
$$L_1/L_0 = 1 - \pi/16$$
. **7.** $B_{\mathbf{KPMT}} = \frac{4\pi\omega\sigma a^3}{cb^3}$, $Q = \frac{2\pi^2\omega_0^2\sigma^2a^6l}{c^2b^2}$.

1.
$$n = \sqrt{\varepsilon\mu - \gamma^2}$$

2.
$$\Delta x \approx \frac{\lambda}{D} F_1$$
; $\theta_1 \approx \frac{\lambda}{D}$; $\theta_2 \approx \frac{F_1}{F_2} \frac{\lambda}{D}$; $\theta = \theta_1 + \theta_2 \approx \frac{\lambda}{D} \left(1 + \frac{F_1}{F_2} \right)$.

3.
$$H_x = \frac{ik}{k_x^2} \frac{\partial H_z}{\partial x}$$
, $H_y = 0$, $E_x = 0$, $E_y = -\frac{i\omega}{ck_x^2} \frac{\partial H_z}{\partial x}$, где $H_z = H_0 \cos(k_x x) e^{i(kz - \omega t)}$,

$$\omega=c\sqrt{k^2+k_x^2},$$
 причем $k_x=rac{m\pi}{a},\ m=1,2,3,...;\ \omega_{\min}=rac{\pi c}{a}.$ 4. $\left(rac{\lambda}{\Delta\lambda}
ight)_{\max}pproxrac{2aN}{\lambda}.$

$$4. \left(\frac{\lambda}{\Delta\lambda}\right)_{\max} pprox \frac{2aN}{\lambda}.$$

5.
$$\lambda = (r_2^2 - r_1^2)(a+b)/2ab$$
.

Экзаменационная работа 2

1.
$$OF \approx \frac{R}{2} \frac{n}{n-1}$$
.

1.
$$OF \approx \frac{R}{2} \frac{n}{n-1}$$
.
2. $r_0 = \sqrt{\frac{\lambda l l_0}{m(l+l_0)}}$.

3.
$$E = \frac{15}{8} E_0 e^{ikz_P}$$
.

4.
$$\frac{dJ}{d\Omega} = \frac{q^2 R^2 \omega^4}{2\pi c^3} \sin^2 \theta$$
, $J = \frac{4q^2 \omega^4 R^2}{3c^3}$.

5.
$$\Delta W = \frac{16}{3} \frac{\pi e^4 v \gamma^2 J^2}{m^2 c^7 \rho} \;\; \mathrm{при} \; J \ll \frac{\gamma m c^3}{2e}.$$

6.
$$\overline{F} = \frac{\sigma_* E_0^2}{2c(1+2\pi\sigma_*/c)}$$
.

7.
$$I_{\text{max}} = I_0 (2 + \sqrt{2}), I_{\text{min}} = I_0 (2 - \sqrt{2}).$$

1998/99 учебный год

$$1. M = \frac{m}{q} \left(\frac{mgS}{2\pi q} + Q \right).$$

$$-\frac{\varepsilon_2}{4\pi}A(a-y), \sigma_{\mathbf{CBOO}}^{(4)} = -\frac{\varepsilon_1}{4\pi}Ax;$$

3.
$$\varphi(r,\theta) \approx \frac{q}{\sqrt{h^2 + b^2}} \left(1 - \frac{a}{\sqrt{h^2 + a^2}} \right) + \frac{q}{(h^2 + b^2)^{3/2}} \left(1 - \frac{\sqrt{a^2 + h^2}}{a} \right) r \cos \theta.$$

4.
$$I = \frac{cUl}{2a}, \rho = -\frac{U}{4\pi ar}.$$

5.
$$U(t) = U_0 \left(\frac{b}{a}\right)^{-\frac{ct}{a}}$$
.

Экзаменационная работа 1 1.
$$B = \frac{e^2}{ca^2\sqrt{ma}} = 1, 5\cdot 10^5~\Gamma c.$$

$$2. \frac{E_A}{E_B} = \left(\frac{l}{2a}\right)^2$$
 при $l \gg a$.

3.
$$L/l = 4\pi^2 n^2 \left[\mu_1 b^2 + (\mu_2 + \mu_3) \left(a^2 - b^2 \right) / 2 \right]$$
.

5.
$$L/l = \mu + 2 \ln (b/a)$$
.

6.
$$A = \left(\frac{JN}{c}\right)^2 \frac{\pi r_0^2}{2R_0}$$
.

7.
$$B_1(t) = B_0\left[\frac{a}{a+b} + \frac{b}{a+b}e^{-\frac{(a+b)c^2}{4\pi\sigma ab}t}\right], B_2(t) = \frac{a}{b}(B_0 - B_1).$$

1.
$$R = \frac{1}{2} \left(\frac{n^2 - 1}{n^2 + 1} \right)^2 \approx 0,074.$$

2.
$$L_{\min} pprox rac{ heta d}{\lambda} l pprox 100 l = 1, 5 \cdot 10^{10} {
m k}$$
 M.

3.
$$d=2F\tan\alpha$$
, где $\sin\alpha=\frac{\pi c}{a\omega}$; $\Delta=d/2\approx\frac{\pi cF}{a\omega}$ при $\alpha\ll1$.

4.
$$r = \sqrt{\lambda F/2}, I = I_0,$$

5.

6.
$$I(\theta) = 4I_1(\theta) \left(\frac{\sin 3N\beta}{\sin 3\beta}\right)^2 \cos^2 \beta$$
, где $I_1(\theta)$ - угловое распределение излучения, прошедшего через одну щель.

1.
$$R \approx \frac{Fh}{a} (n-1)$$
 при $h \ll a$.

$$2. \frac{\overline{dI}}{d\theta} = \frac{(\omega l I_0)^2 \sin^2 \theta}{32\pi c^3}.$$

3.
$$I = \frac{9}{4}I_0$$
.

4.
$$\Delta E = \pi \left(\frac{e^2}{mc^2}\right)^2 \frac{q^2 \gamma^2}{\rho^3 \beta}$$
 при $v \sim c$.

5.
$$\Delta E = \frac{15\pi^3}{64} \frac{\beta}{\rho^5} \left(\frac{a^2 N J}{c} \frac{e^2}{mc^2} \right)^2$$
 при $v \ll c$.

6.
$$R = \gamma^4 \{ (1 + \beta^2 + 2\beta \cos \theta_0) \cos \theta_0 \} \{ 2\beta + (1 + \beta^2) \cos \theta_0 \} / \cos \theta_0 \}$$

или
$$\sqrt{R}=rac{2eta+\left(1+eta^2
ight)\cos heta_0}{\left(1+eta^2+2eta\cos heta_0
ight)\cos heta_0}\gamma^2$$

1997/98 учебный год

Контрольная работа 1

- 1. $\sigma_{\mathbf{Bepx}} = 3\sigma_0, \, \sigma_{\mathbf{Pp}} = 0.$
- **2.** $E_0 = E_{1x} + E_{2x} = 4\frac{\varkappa}{a}, E_{90} = \sqrt{E_1^2 + E_2^2} = 2\sqrt{2}\frac{\varkappa}{a}, E_{180} = 0.$
- 3. $\varphi(r,\theta) pprox rac{qa^2}{4r^3} \left(1 3\cos^2 \theta
 ight)$ при $r \gg a$.
- **4.** $E_1/E_2 = (l/a)^2$.
- $\mathbf{5.} \ \frac{j}{j_0} = \frac{8\sigma\sigma_1^2}{(\sigma + \sigma_1)^3}$ при b < a.
- **6.** $\sigma \sim r^{-4}$.

Экзаменационная работа 1

- 1. $F = -\frac{2Jm}{ca^2}$.
- 2. $U = \frac{2(\varepsilon+1)}{\varepsilon} R E_b \ln 2 \approx 90$ кв, $W = \frac{CU^2}{2} \sim 3 \cdot 10^{-3} \frac{\text{Дж}}{\text{см}}$.
- 3. $A = B = \frac{4\sqrt{2}\pi\sigma_0}{a(\varepsilon_1 + \varepsilon_2)}$
- ${f 4.}\ F=rac{d^3}{16}\left(rac{\pi d^2}{4c}In
 ight)^2rac{1}{h^5}pprox 4\cdot 10^{-10}$ дин.
- $5. I = I_0 + \frac{2Ac^2}{L_0I_0}.$
- **6.** $\frac{dF}{dl} = \frac{B_0^2 a}{3\pi}$.
- 7. $H_{1z} = \frac{4\pi}{c}\sigma\omega b\left(1 \frac{b^2}{a^2}\right), H_{2z} = -\frac{4\pi\sigma\omega}{ca^2}b^2, H_{\alpha} = \frac{4\pi b\sigma V}{cr}, E_z = \frac{4\pi b\sigma}{r}.$

Контрольная работа 2

- 1.
- **2.** $r = \frac{d}{\sqrt{n^2-1}}$.
- 3. $d=2F \lg \alpha$, где $\sin \alpha = \frac{\pi c}{a\omega}$; $\Delta = d/2 \approx \frac{\pi cF}{a\omega}$ при $\alpha \ll 1$.
- 4. $\Delta b = \frac{2\lambda l}{a}$.
- **5.** $T = \frac{1}{1 + (2\pi\omega\alpha/c)^2}$.

1.
$$m = \frac{2d}{\lambda}, r_m = \sqrt{2\lambda lm} \ (m = 0, 1, 2, ...)$$
.

$$2.\overline{I}=rac{1}{3c^5}rac{\left(2\pi NJ_0\omega^2
ho^2\mu
ight)^2}{\left(\mu+2
ight)^2}$$
 при $ho\llrac{c}{\omega}\ll r.$

3.
$$k_m = \frac{\pi(2m+1)}{2nd} (m = 0, 1, 2, ...)$$
.

3.
$$k_m = \frac{\pi(2m+1)}{2nd} (m = 0, 1, 2, ...).$$

4. $\frac{d\sigma}{d\omega} = \frac{4a^6\omega^4}{c^4} \left(\frac{\varepsilon - 1}{\varepsilon + 1}\right)^2 \cos^2\left(\frac{kl}{2}\cos\theta\right) \sin^2\theta.$

$$5. \Delta E = \frac{\pi^3 \chi^2}{3 \beta \rho} \left(\frac{e^2}{mc^2} \right)^2.$$

6.
$$\theta^2 \leq \frac{8\pi}{3} \left(\frac{e^2}{mc^2}\right)^2 \gamma^2 \frac{B}{l}, \theta \leq 3, 7 \cdot 10^{-2} \sim 2^0$$

1996/97 учебный год

Контрольная работа 1

1.
$$F = \frac{a^2 E^2}{8}$$

2.
$$\varphi(z) \stackrel{\circ}{=} \frac{q}{\sqrt{z^2 - 2az + 2a^2}} - \frac{q}{\sqrt{z^2 + 2az + 2a^2}} - \frac{q}{\sqrt{2z^2 - 2az + a^2}} + \frac{q}{\sqrt{2z^2 + 2az + a^2}},$$

$$F_x = -\left(\frac{q}{a}\right)^2 \left(1 - \frac{1}{5\sqrt{5}}\right), F_z = -\left(\frac{q}{a}\right)^2 \left(\frac{5}{4} - \frac{3}{5\sqrt{5}}\right).$$

3.
$$\varphi(r,\theta) = \frac{4\pi a\chi}{r} \left[1 + \frac{2h^2 - a^2}{4r^2} \left(3\cos^2\theta - 1 \right) \right].$$

4.
$$E_1(z) = -\frac{U_0}{\gamma_1 r} (R_1 \le r \le R_0), E_2(z) = -\frac{U_0}{\gamma_2 r} (R_0 \le r \le R_2),$$

$$\sigma_{\mathbf{CBOO}}^{(1)} = -\tfrac{\epsilon_1}{4\pi\gamma_1} \tfrac{U_0}{R_1}, \, \sigma_{\mathbf{CBS3}}^{(1)} = -\tfrac{1}{4\pi} \tfrac{\varepsilon_1-1}{\gamma_1} \tfrac{U_0}{R_1},$$

$$\sigma_{\mathbf{CBOO}}^{(0)} = -\tfrac{1}{4\pi} (\tfrac{\varepsilon_1}{\gamma_1} - \tfrac{\varepsilon_2}{\gamma_2}) \tfrac{U_0}{R_{\mathbf{O}}}, \, \sigma_{\mathbf{CBSI3}}^{(0)} = -\tfrac{1}{4\pi} (\tfrac{\varepsilon_1 - 1}{\gamma_1 R_1} - \tfrac{\varepsilon_2 - 1}{\gamma_2 K_2}) U_0,$$

$$\sigma_{\mathbf{CBOO}}^{(2)} = \frac{\epsilon_2}{4\pi\gamma_2} \frac{U_0}{R_2}, \ \sigma_{\mathbf{CBS3}}^{(2)} = \frac{\epsilon_2 - 1}{4\pi\gamma_2} \frac{U_0}{R_2}.$$

5.
$$j = \frac{cU}{2\pi d^2}$$
.

1.
$$r_{1,2} = \frac{1}{2} \left(l \pm \sqrt{l^2 - 4a^2} \right), r_3 = \frac{l}{2}.$$

2.
$$F = \frac{a^3}{l^5} \left(\frac{nIS}{c} \right)^2$$
.

3.
$$\varphi(r,\theta) pprox rac{qa^2}{4r^3} \left(1 - 3\cos^2 \theta\right)$$
 при $r \gg a$.

4.
$$\sigma_{\text{Bepx}} = 3\sigma_0, \sigma_{\text{rp}} = 0.$$

5.
$$i_{MOЛ}(\theta) = \frac{I(\mu-1)}{2\pi(l+a\cos\theta)}, I_{MOЛ} = (\mu-1)I.$$

$$\mathbf{6.}\ A = \frac{2}{L_2} \left(\frac{\pi^2 b^2 I}{ca} \right)^2.$$

7.
$$\omega = \frac{(\chi H_0/2c)(R_3^2 - R_2^2)(R_1/R_2)^2}{\mu R_3^2 + (\chi/c)^2(R_3^2 - R_2^2)}.$$

1.
$$n = \sqrt{\varepsilon\mu - \gamma^2}$$
.

2.
$$tg^2\alpha = \frac{\mu_2/\mu_1 - \varepsilon_2/\epsilon_1}{\epsilon_2/\epsilon_1 - \mu_1/\mu_2}$$
.

3.
$$\frac{\pi c}{a\sqrt{\epsilon}} \leq \omega \leq \frac{\pi c}{a}$$
.

4.
$$\alpha = \frac{\lambda}{d(n-1)}$$
.

5.
$$K = \frac{16\pi\sigma/c}{(1+n+4\pi\sigma/c)^2}$$
.

6.
$$|a(\zeta)|^2 = A^2 \left(\frac{\sin(N\zeta)}{\sin\zeta}\right)^2$$
, $\zeta = \frac{\Delta\omega_0}{2} \left(\frac{x}{v_g} - t\right)$; $T = \frac{2\pi}{\Delta\omega_0}$; $\tau = \frac{4\pi}{N\Delta\omega_0}$.

Экзаменационная работа 2

2.
$$\delta b = \frac{2\lambda l}{2}$$
.

2.
$$\delta b = \frac{2\lambda l}{a}$$
.
3. $T = \frac{1}{1 + (2\pi\omega\alpha/c)^2}$.

4. $\Delta W = \frac{4\pi}{3} \gamma^4 \beta^3 \frac{r_e}{R} \approx 10$ кэв при полной энергии частицы, равной

$$W=\gamma mc^2pprox pc=eBR=30$$
Гэв, $r_e=rac{e^2}{mc^2}$.

5.
$$\frac{\overline{dI}}{d\Omega} = \frac{1}{2\pi c} \left(\frac{qa\omega}{l}\right)^2 \frac{\sin^2\left(\frac{kl}{2}\sin\theta\cos\alpha\right)}{\cos^2\alpha}$$
.

1995/96 учебный год

Контрольная работа 1

$$\mathbf{1.} \vec{F} = \frac{2}{3}\pi\rho\chi a\vec{a}.$$

2.
$$\varphi(r,\theta) = 2\pi\sigma \left\{ (a-b) + \frac{1}{4} \left(\frac{1}{a} - \frac{1}{b} \right) \left(3\cos^2\theta - 1 \right) r^2 \right\}.$$

3.
$$Q = \frac{q}{2} \frac{2n^2 - 1}{n(n^2 - 1)^2}$$

3.
$$Q = \frac{q}{2} \frac{2n^2 - 1}{n(n^2 - 1)^2}$$
.
4. $\rho(z) = \frac{\varepsilon j}{4\pi\sigma_0 z_0 (1 - z/z_0)^2}$.
5. $R_{4h} = \frac{2}{5}R$.

5.
$$R_{4h} = \frac{2}{5}R$$
.

1.
$$H_z(R) = \frac{4\pi}{c} k \omega R^2$$
 при $R < a$

2.
$$F = \left(\frac{I}{c}\right)^2 \ln \frac{b}{a}$$
.

3.
$$L = 31l/30$$
.

4.
$$W_{\text{KMH}} = \frac{1}{2} \frac{\mu - 1}{\mu + 1} a^3 \left(\frac{2\pi I_0}{bc} \right)^2$$
, $\Delta I = \frac{c}{L} \frac{2\pi a^3 H(0)(\mu - 1)}{b(\mu + 2)}$.

5.
$$E_a = \frac{2\pi}{c^2} \omega n I_0 \left(1 - \frac{a^2}{b^2} \right) r \sin \omega t \quad (r < a), E_b = \frac{2\pi}{c^2} \omega n I_0 \left(1 - \frac{r^2}{b^2} \right) \frac{a^2}{r} \sin \omega t$$
 $(a < r < b), E_z = -\frac{2}{c^2} \omega I_0 \ln \frac{r}{b} \sin \omega t.$

6.
$$H_{\theta}(x) = \frac{3m_0}{a^3} \sin \theta e^{-\frac{x}{\delta}} e^{i\left(\frac{x}{\delta} - \omega t\right)}, j_{\alpha} = -\frac{3m_0}{a^3} \sqrt{\frac{3\omega\sigma}{2\pi}} \sin \theta e^{-\frac{x}{\delta}} \cos\left(\frac{x}{\delta} - \omega t - \frac{\pi}{4}\right).$$

1.
$$R = \frac{1}{2} \left(\frac{n^2 - 1}{n^2 + 1} \right)^2 \approx 0,074.$$

2.
$$m_{\mathbf{K}\mathbf{p}} \approx \frac{\lambda_{\mathbf{K}\mathbf{p}}}{\Delta\lambda} > m_{\mathbf{3e}\mathbf{J}} \approx \frac{\lambda \mathbf{3e}\mathbf{J}}{\Delta\lambda}$$
.
3. $L \gtrsim l\theta \frac{d}{\lambda} \approx 1, 5 \cdot 10^{10} \mathrm{k} \ \mathrm{m}$.

3.
$$L \gtrsim l\theta \frac{d}{\lambda} \approx 1, 5 \cdot 10^{10} \text{k m}$$

4.
$$r_1 = \sqrt{\frac{\lambda}{2}(l+F)}$$
.

5.
$$\Delta a = \frac{\lambda l}{4a}$$
.

6.
$$|a\left(\zeta\right)|^2 = A^2 \left(\frac{\sin(N\zeta)}{\sin\zeta}\right)^2$$
, $\zeta = \frac{\Delta\omega_0}{2} \left(\frac{x}{v_q} - t\right)$; $T = \frac{2\pi}{\Delta\omega_0}$; $\tau = \frac{4\pi}{N\Delta\omega_0}$.

Экзаменационная работа 2

$$1. H_{\perp} = \frac{2k\gamma v}{c} \frac{1}{R_{\perp}}.$$

2.
$$\Delta W = \frac{8\pi}{3} \left(\frac{e^2}{mc^2}\right)^2 \frac{k^2c}{\rho v} \left(\frac{ek}{mv^2}\right)$$
.

$$3. \frac{mv^2}{2} = \frac{3}{4} \frac{\omega m^2 R^2 c^3}{e^2}.$$

4.
$$\frac{dI}{d\Omega} = \frac{9}{4\pi c^3} \left(\beta H_0 R_0^3 \alpha \omega^2\right)^2 \sin^2 \theta \cos^2 \left(\omega t - kr\right) \left(\omega \ll \frac{c}{R\alpha}\right).$$

5.
$$I(0,z) = I_0 \left[1 + \frac{z}{\pi z_F} - 2\sqrt{\frac{z}{\pi z_F}} \cos\left(\frac{z_F}{z} + \frac{\pi}{4}\right) \right], z \ll z_F = \frac{\pi a^2}{\lambda};$$

$$z_{\text{max}} = \frac{4a^2}{(8m+3)\lambda}, z_{\text{min}} = \frac{4a^2}{(8m+7)\lambda} (m = 0, 1, 2, ...).$$

6.
$$\frac{d\sigma_+}{d\sigma_-} = \left(\frac{\alpha+\beta}{\alpha-\beta}\right)^2 = 9.$$

7.
$$\Delta\omega\sim\gamma^2\frac{c}{d}$$
.

1994/95 учебный год

1.
$$E_{max} = 3\pi \rho_0 a/4$$
 при $r = 3a/4$

2.
$$\vec{E}_{non.} = 3\varepsilon \vec{E}_0/(1+2\varepsilon)$$

3.
$$I/I_0 \cong 9/8$$
, поскольку $R \cong 8d/9\sigma S$

4.
$$\rho = \frac{\varepsilon j_0}{4\pi\sigma_0 z_0 (1-z/z_0)^2}$$

5. $H = \frac{4\pi\sigma\omega}{c\sqrt{4a^2+l^2}} (2a^2 + al + l^2)$

Экзаменационная работа 1

1.
$$H_z = (2 + \alpha)J/ca$$

2.
$$F = \frac{n^2 I^2 S^2}{c^2 l^2}$$
 при $l \gg \sqrt{S}$, $L_{1,2} = (nS)^2/l$

3.
$$L = 4\pi^2 \mu (b^2 - a^2)/l$$

$$4.v_{ycm.} = \frac{BlQc}{mc^2 + C_0B^2l^2}$$

5.
$$U_{max} = \frac{1}{2c} \sqrt{\alpha L} I_0^2$$
, $U = \sqrt{I^2 (I_0^2 - I^2) \alpha L/c^2}$

6.
$$\overline{Q} = -\frac{I_0^2}{c} \sqrt{\frac{\omega}{2\pi\sigma}} \ln |\operatorname{tg} \frac{\theta_0}{2}|$$

Контрольная работа 2

1.
$$R = \frac{1}{2} \left(\frac{n^2 - 1}{n^2 + 1} \right)^2 \approx 0,074.$$

2. $N=2\grave{\lambda}/\Delta\acute{\lambda}$. В красном, в соответствии с указанным результа-

том для числа полос.

3.
$$a = 1, 22 \frac{\lambda}{D} l = 40 \text{m}$$

4.

5.
$$N_{max} = \lambda/\Delta\lambda = 10^3$$

6.
$$I = 2I_0$$

Экзаменационная работа 2

1.
$$\Delta a \cong \lambda l/2a$$
, $I_{max} = 4|E_0|^2$

$$2.|a(x,t)|^2 = A^2 \frac{\sin^2 \frac{N\Delta\omega}{2g(x-v_g t)}}{\sin^2 \frac{\Delta\omega}{2g(x-v_g t)}}$$

— нерасплывающийся пакет, распространяющийся со скоростью v_g . Ширина импульсов ($\Delta \xi = 2\pi/N$), $\tau = 4\pi/N\Delta\omega_0$. А расстояние между ними ($\Delta \xi = \pi$), $\tau = 2\pi/\Delta\omega_0$.

3.
$$E^2/8\pi = mg/\pi R^2$$
.

$$4.\overline{\frac{dI}{d\Omega}} = \pi^2 \frac{J_0^2}{b\pi c} (kR)^4 \frac{\sin^2 \frac{kl}{2} \cos \theta}{\sin^2 \frac{kl}{2N} \cos \theta} \sin^2 \theta$$

5.
$$\frac{d\sigma}{d\Omega} = a^2(ka)^4 \left[\frac{5}{8}(1+\cos^2\theta) - \cos\theta - \frac{3}{8}\sin^2\theta\cos2\alpha \right]$$

$$6.~\Delta arepsilon = rac{7}{8} rac{e^4 \gamma^2 d^2}{m^2 c^4 eta
ho^5} \left(1 - rac{15}{56} eta^2
ight), ~~$$
где $eta = v/c, ~\gamma = arepsilon/mc^2$

$$7.\frac{dP(\theta)}{d\Omega} = \frac{J_0^2}{2\pi c} \frac{1 + \cos^2\theta_0 - 2\cos\theta_0 \sin(\frac{\pi}{2}\cos\theta_0)}{\sin^2\theta_0}$$

1993/94 учебный год

Контрольная работа 1

1. a)
$$E = 0, \varphi = 2\pi\varkappa - 4\varkappa \ln a + C;$$

б)
$$E = 0, \varphi = 0;$$

$$3. \varphi = -\frac{\pi\sigma_0 a}{5}$$

3.
$$\varphi = -\frac{\pi \sigma_0 a}{5}$$

4. $H_z = -\frac{J}{ca}(\frac{\pi}{\sqrt{2}} + 2)$

5.
$$R_{4h} = \frac{2}{5}R$$
.

6.

Экзаменационная работа 1

1.
$$\sigma = \frac{Qa}{4\pi(a^2+b^2)^{3/2}} \left(\frac{b^2}{a^2} - 1\right)$$
.

$$3.\ mv^2/2=mgh-rac{L_1J}{2c^2}rac{L_{12}^2}{L_1L_2-L_{12}^2},$$
где $L_{12}=rac{2\pi^2a^2b^2}{(b^2+h^2)^{3/2}}.$

$$\mathbf{4.}\overline{P} = \frac{3}{8} \frac{J_0^2 b^4}{ac} \sqrt{\frac{2\pi\mu\omega}{\sigma}}.$$

6.
$$\overline{F} = \frac{\pi}{15} \frac{k^2 v \sigma H_0^2 b^5}{c^2} \frac{3\mu^2}{(\mu+2)^2}$$
.

7.
$$z_0 = \frac{Lmg}{\pi^2 a^4 \alpha^2}, \, \omega = \frac{\pi a^2 \alpha}{\sqrt{Lm}}.$$

Контрольная работа 2

1. Под углом Брюстера $\alpha_{\pmb{B}} = arctg(n)$. Вектор \vec{E} перендикулярен плоскости падения. Отраженный свет линейно поляризован.

$$2. n = \sqrt{\varepsilon\mu - \gamma^2}$$
 при $\gamma^2 < \varepsilon\mu$

2.
$$n=\sqrt{\varepsilon\mu-\gamma^2}$$
 при $\gamma^2<\varepsilon\mu$ 3. $a=\sqrt{m\lambda F/2},$ где $m=1,3,5...$ $I=I_0$

4.
$$\sigma = c/4\pi$$
, $\cos kl = 0$, т.е. $l = \lambda(2m+1)/4$, где $m = 0, 1, 2, \dots$

5.
$$h=b^2/a$$
 фокус на расстоянии $l=b^2/(n_0d)$ от сосуда. $\Delta h\sim$

$$l\theta_{\partial u\phi p.} \sim l\lambda/H = lb^2/(n_0 Hd)$$

Экзаменационная работа 2

1.
$$T = 4\pi R_{\odot} \lambda_0/(c\Delta \lambda) \simeq 2, 2 \cdot 10^6 \text{cer.} \simeq 25 \text{cyr.}$$

2.
$$h = \lambda (m + \frac{1}{2})/(n-1)$$
. $I = 9I_0$

3.
$$h = c\sqrt{\varepsilon/\mu}/2\pi\sigma$$

4.
$$N = W/af\theta_0 \simeq 20 \mathrm{Br/cm}^2$$

$$5.I_{2\omega} = \frac{1}{180c^5} \stackrel{\dots^2}{D_{\alpha\beta}} = \frac{8}{15} \frac{e^2 a^4 \omega^6}{c^5}; \frac{I_{2\omega}}{I_{\omega}} = \frac{4}{5} \frac{v^2}{c^2}$$

$$6.E_z = E_0 \sin \frac{\pi y}{b} = \frac{H_0 \omega/c}{\pi/a} \sin \frac{\pi y}{b}; \ E_p = \frac{E_0}{2\pi} \frac{2 \sin \frac{k_x a}{2}}{k_x} 2\pi \frac{\cos \frac{k_y b}{2}}{(k_y b - \pi)(k_y b + \pi)};$$

$$k_x = k\theta_x, k_y = k\theta_y$$

$$7.\overline{I} = \frac{1}{3}E_0^2R^2c\frac{x^4}{(1-x^2)^2+xl},$$
 где $x = \omega R/c, \omega_0 = \sqrt{2}c/R$

1992/93 учебный год

Контрольная работа 1

1.
$$F(l) \sim 2q^2 a^3/l^5 \ (a \ll l)$$
.

2.
$$\varphi_{1/2} = 0, 5\varphi_0$$
 , где φ_0 относится к поверхности целого цилиндра.

3.
$$\sigma(\theta) = \frac{3}{4\pi} E_0 \cos \theta$$
, $\overrightarrow{E} = \frac{3}{\varepsilon+2} \overrightarrow{E_0}$.

4.
$$\varphi = (\varphi_0/A) xy$$
.

5.
$$Q = \left[Q_0^{-1/2} + \frac{2}{9\pi} \frac{S_2}{d_2^2} \sqrt{\frac{2e}{m}} \left(\frac{4\pi d_1}{S_1 \varepsilon} \right)^{3/2} t \right]^{-2}$$
.

6.
$$R_z/R_r = \frac{2l^2}{(b^2-a^2)\ln(b/a)}$$
.

Экзаменационная работа 1
1.
$$B_{\max}^* = B_{\max} \frac{b}{\pi a} \approx 30 \text{ T } \pi$$
; $J_{\mathbf{K}} \mathbf{p} = B_{\max} \frac{cb}{2\pi} \approx 1, 5 \cdot 10^5 A$.
2. $H = \frac{2J}{cr}$ (вне диска), $H = \frac{2Jr}{ca^2}$ (внутри).
3. $A_{\alpha} \approx \frac{3m}{r^2} \frac{h}{r} \sin 2\theta$, $m = \pi a^2 J$ $(r \gg a, h)$.
4. $H = \frac{4J}{cr}$.

2.
$$H = \frac{2J}{cr}$$
 (вне диска), $H = \frac{2Jr}{ca^2}$ (внутри).

3.
$$A_{\alpha} \approx \frac{3m}{r^2} \frac{h}{r} \sin 2\theta, m = \pi a^2 J(r \gg a, h)$$

4.
$$H = \frac{4J}{cr}$$
.

$$\mathbf{5.} \ \overrightarrow{j}_{1} = -\frac{2}{3} \left(1 - \frac{a^{3}}{b^{3}} \right) \sigma \overrightarrow{E}_{0}, \ \overrightarrow{j}_{2} = \sigma a^{3} \left[\frac{1}{3} \left(\frac{2}{b^{3}} + \frac{1}{r^{3}} \right) \overrightarrow{E}_{0} - \frac{\overrightarrow{r} \left(\overrightarrow{r} \overrightarrow{E}_{0} \right)}{r^{5}} \right],$$

$$\overrightarrow{j}_0 = 0; \sigma_b = \frac{E_0}{4\pi} \left(3 - 2\frac{a^3}{b^3} \right) \cos \theta, \sigma_b = -\frac{E_0}{4\pi} \cos \theta.$$

6.
$$\overline{P} = \frac{\pi\sigma}{2} \left(\frac{\mu\omega}{\mu+1} \frac{a^2}{c} H_0 \right)^2 \ (d \gg a) \ , \overline{P} = \frac{\pi a}{2\sigma d} \left(\frac{cH_0}{2\pi} \right)^2 \ , d = \frac{c}{\sqrt{2\pi\sigma\omega\mu}} \ll a.$$

1.
$$h \approx \frac{\lambda}{d} a = 5 \cdot 10^{-3}$$
 cm.

2.
$$\Delta\omega = \frac{2c}{a} \left(\pi - \arctan\sqrt{2}\right) \approx 1, 23\frac{c}{a}$$
.
3. $A = \frac{16\pi\sigma/c}{\left(1 + n + 4\pi\sigma/c\right)^2}$.

3.
$$A = \frac{16\pi\sigma/c}{(1+n+4\pi\sigma/c)^2}$$

4.
$$\alpha = \frac{\lambda}{d(n-1)}$$
.

5.
$$n pprox \left(\frac{D}{d_1}\right)^2 = 100, l pprox \frac{d_1^2}{4D} = 2, 5 \cdot 10^{-3} \, \mathrm{cm}, I \sim 10^4 I_0.$$

6.
$$I/I_0 = (1-R)/(1+R) \approx 0.74.$$

Экзаменационная работа 2

1.
$$n = \sqrt{\varepsilon\mu - \gamma^2}$$
.

1.
$$n = \sqrt{\varepsilon \mu - \gamma^2}$$
.
2. $r_1 = \sqrt{\lambda F/2}$, $I_P = 4I_0/4 = I_0$.

3.
$$h = \frac{b^2}{a}, \Delta h \approx \frac{b^2}{n_0 d} \frac{\lambda}{H}$$
.

4.
$$x_m = F \tan \theta_m, \sin \theta_m = \frac{\lambda \beta}{2\pi} m, m = 0, \pm 1, \pm 2, ..., \pm \frac{2\pi}{\beta \lambda}.$$

5.
$$\frac{Q_{\alpha}}{Q_D} \approx (v_{\alpha}/v_D)^5 = \frac{1}{4\sqrt{2}}$$
.

6.
$$H_2 = E_2 = E_1 = \frac{H_0}{2 + 4\pi\sigma_*/c}$$
, $H_1 = H_2 \left(1 + \frac{4\pi}{c}\sigma_*\right)$.

7.
$$\frac{\Delta\omega}{\omega} \approx \frac{3}{2} \left(\frac{a}{l}\right)^2$$
.

1991/92 учебный год

1.
$$\varphi(r,\theta) = \frac{1}{\varepsilon_1 + \varepsilon_2} \frac{p \cos \theta}{r^2}$$
.

$$\mathbf{2.}\ \varphi = (\varphi_0/A)\,xy.$$

3.
$$\overrightarrow{F} = \frac{J}{c} \left[\overrightarrow{a} \times \overrightarrow{B} \right], \overrightarrow{F}_{\Sigma} = 0.$$

4.
$$I(\rho) = \frac{c\rho R^2 H_0}{8\pi (\rho^2 + h^2)^{3/2}} (h \gg R)$$
.

5.
$$L/z = 2 \ln (b/a) \left[1 - \frac{\alpha}{2\pi} \frac{\mu - 1}{\mu} \right]^{-1}$$
.

6.
$$m_2 = \frac{3}{1+2\mu}m_0$$
, $\overrightarrow{H}_0^L = \frac{2m_0(\mu-1)}{a^3(1+2\mu)}$.

7.
$$\overline{F} = \frac{2m^2}{l^3} \cos 2\alpha \ \left(\omega \gg \frac{c^2}{\sigma \mu a^2}, \ l \gg a\right).$$

8.
$$\overline{W} = \frac{16}{15}\pi^3\sigma a^2 \left(\frac{\mu}{\mu+2}\frac{\omega NJ_0}{c}\right)^2 \left(\omega \ll \frac{c^2}{\sigma\mu a^2}\right).$$

1.
$$tg^2\alpha = \frac{\mu_2/\mu_1 - \epsilon_2/\epsilon_1}{\epsilon_2/\epsilon_1 - \mu_1/\mu_2}$$
.

2.
$$\Delta\omega = \frac{2c}{a} \left(\pi - \arctan\sqrt{2}\right) \approx 1, 23\frac{c}{a}$$
.

2.
$$\Delta \omega = \frac{2c}{a} \left(\pi - \arctan \sqrt{2} \right) \approx 1, 23 \frac{c}{a}.$$

3. $A = \frac{16\pi\sigma/c}{(1+n+4\pi\sigma/c)^2}, \sigma_{\text{max}} = \frac{c}{4\pi} (1+n).$

4.
$$\frac{W}{W_0} = \sqrt{\frac{1+\alpha_0^2}{2\alpha_0^2}}$$
.

5.
$$n \approx \left(\frac{D}{d_1}\right)^2 = 100, l \approx \frac{d_1^2}{4D} = 2, 5 \cdot 10^{-3} \text{c m}, I \sim 10^4 I_0.$$

6.
$$I(t) = I_0 \frac{d^2}{\lambda l} \left(\frac{\sin \xi}{\xi} \right)^2, d = a \cos \frac{\theta}{2}, \xi = \frac{\pi d}{\lambda} \Omega t.$$

Экзаменационная работа 2

1.
$$D/d = 2^n$$
.

2.
$$\Delta x \approx \lambda \frac{F}{R}$$
, $\Delta z \approx 4\lambda \left(\frac{F}{R}\right)^2$.

3.
$$\Lambda |(\sin \theta_m - \sin \theta_0)| = m\lambda$$
, $M = 1 + m_+ + m_-$, $m_\pm =$ целое число от $\left[\frac{\Lambda}{\lambda} (1 \pm \sin \theta_0)\right]$.

4.
$$\Delta W = \frac{\pi \beta \gamma^2}{c^2 \rho^3} \left(\frac{e^2}{mc^2}\right)^2 (nJS)^2 \left(\frac{nJSp}{\beta \gamma mc^2} \ll 1, \sqrt{S} \ll \rho\right).$$

5.
$$\sigma = \frac{c}{4\pi}, l_m = \frac{\lambda}{4} (2m+1).$$

1990/91 учебный год

1.
$$r_1 = \frac{2a}{3}$$

1.
$$r_1 = \frac{2a}{3}$$
.
2. $\overrightarrow{E} = \frac{2\pi\rho}{\varepsilon+2}\overrightarrow{a}$.

$$3. \frac{C_x}{C} = \frac{d_0^2}{4d_1(d_0 - d_1)}.$$

4.
$$\sigma_{ extbf{BHeIII}} = \frac{q}{4\pi b^2}$$
, $\sigma_{ extbf{BHYTP}} = -\frac{q}{4\pi a} \frac{a\pm l}{(a\mp l)^2}$.

5.
$$\varphi(r,\theta) = \frac{2Qh}{r^2} + \frac{Q(2h^2 - a^2)}{r^3} \left(3\cos^2\theta - 1 \right).$$
6. $\frac{J_0}{J} = \frac{9\sigma_0\sigma_1}{(2\sigma_1 + \sigma_0)(2\sigma_0 + \sigma_1)}.$

6.
$$\frac{J_0}{J} = \frac{9\sigma_0\sigma_1}{(2\sigma_1 + \sigma_0)(2\sigma_0 + \sigma_1)}$$
.

7.
$$H_z = 2\pi\omega\sigma a \frac{\sin^2(\alpha)}{c}$$

1.
$$h = \lambda a/d = 5 \cdot 10^3$$
c m.

2.
$$tg^2\alpha = \frac{\mu_2/\mu_1 - \varepsilon_2/\epsilon_1}{\epsilon_2/\epsilon_1 - \mu_1/\mu_2}$$
.
3. $\frac{\pi c}{a\sqrt{\epsilon}} \le \omega \le \frac{\pi c}{a}$.

3.
$$\frac{\pi c}{a\sqrt{\epsilon}} \leq \omega \leq \frac{\pi c}{a}$$

4.
$$I/I_0 = (1-R)/(1+R) \approx 0.8.$$

5. $\alpha = -\frac{2\pi}{kd(n-1)}.$

5.
$$\alpha = -\frac{2\pi}{kd(n-1)}$$
.

6.
$$h = \frac{\lambda}{4n}$$
, $I/I_0 = [(1-R)/(1+R)]^2$.

1989/90 учебный год

Экзаменационная работа 1

1.
$$r_1 = \frac{2a}{3}$$
.

2.
$$\sigma = -\frac{Qh}{2\pi(a^2+h^2)^{3/2}} \approx 1, 6 \cdot 10^{-4} \frac{\mathbf{K} \, \mathbf{J}}{\mathbf{M}^2}.$$

3.
$$\sigma(z,a) = \frac{\varepsilon}{2\pi a} \left(1 - \frac{z}{L}\right) \left[\ln\left(\frac{b}{a}\right)\right]^{-1}, \sigma(z,b) = -\frac{a}{b}\sigma(z,a).$$

4.
$$i_z = \frac{c}{2\pi} \frac{B_0}{\sqrt{2}} \approx 5 \cdot 10^5 \frac{\mathbf{A}}{\mathbf{M}}, F_x = \frac{B_0^2}{4\pi} = 2 \cdot 10^5 \frac{\mathbf{H}}{\mathbf{M}^2}.$$

5.
$$\omega = \frac{\dot{H}}{\sqrt{2\pi\mu a}}$$
.

6.
$$m_z = \frac{\pi \sigma a^4 \omega}{4c} \left(1 + \frac{1}{\sin \alpha} \right), H = \frac{2\pi \sigma a \omega}{c} \left(\sin^2 \alpha + \frac{(1 - \cos \alpha)^2}{\sin \alpha} \right).$$

7.
$$\overline{P} = \frac{3}{2} \frac{m^2 c}{a^4} \sqrt{\frac{\mu \omega}{2\pi \sigma}} \left(a \gg \frac{c}{\sqrt{2\pi \mu \sigma \omega}} \right)$$
.

Контрольная работа 2

1.
$$\frac{\pi c}{a\sqrt{\epsilon}} \le \omega \le \frac{\pi c}{a}$$
.

2.
$$h \approx \frac{\lambda}{d}a = 5 \cdot 10^{-3}$$
 cm.

3.
$$I/I_0 = (1-R)/(1+R) \approx 0.8.$$

4. $tg^2\alpha = \frac{\mu_2/\mu_1 - \varepsilon_2/\epsilon_1}{\epsilon_2/\epsilon_1 - \mu_1/\mu_2}.$

4.
$$tg^2\alpha = \frac{\mu_2/\mu_1 - \varepsilon_2/\epsilon_1}{\epsilon_2/\epsilon_1 - \mu_1/\mu_2}$$

6.
$$I(\varphi) = I_0(0) \left[\frac{\cos(\pi a \sin \varphi/\lambda)}{1 - (2a \sin \varphi/\lambda)^2} \right]^2$$
.

1.
$$h = \frac{8m+3}{n-1} \frac{\lambda}{8}$$

1.
$$h = \frac{8m+3}{n-1} \frac{\lambda}{8}$$
.
2. $\Delta W = \frac{\pi e^4 Q^2}{12m^2 c^3 R^3 v}$.

3.
$$I(t) = I_0 \frac{d^2}{\lambda l} \left(\frac{\sin \xi}{\xi}\right)^2$$
, $d = a \cos \frac{\theta}{2}$, $\xi = \frac{\pi d}{\lambda} \Omega t$.

4.
$$I = \frac{2\pi^3}{3} \frac{v^4 \varkappa_0^2 a^2}{c^3}$$
.

5.
$$E_2 = \frac{E_0}{1 + (2\pi\sigma/c)\cos\alpha}, E_1 = E_0 - E_2.$$

6.
$$\Delta\omega = \frac{2c}{a} \left(\pi - \arctan\sqrt{2}\right) \approx 1, 23\frac{c}{a}$$
.

7.

1988/89 учебный год

Контрольная работа 2

1.
$$r^{2}(z) = (n-1)(d-z)[2(z_{F}-d)-(n+1)(d-z)].$$

$$2. \varphi_0 = \arcsin \frac{\lambda}{2b}.$$

3.
$$\frac{\pi c}{a\sqrt{\epsilon}} \le \omega \le \frac{\pi c}{a}$$
.

4.
$$d < \frac{\lambda}{\alpha} \approx 5 \cdot 10^{-3}$$
cm.

5.
$$I/I_0 = (1-R)/(1+R) \approx 0.8$$
.

6.
$$\Delta x \approx \frac{\lambda}{R} l \ (R \gg \lambda), I_{\Sigma}/I_0 \sim 2 \left(\frac{R^2}{\lambda l}\right)^2$$
.

Экзаменационная работа 2

1. $\frac{dW}{dt} = \frac{8E_0^2}{3c^3}\alpha^2\omega^4$, поляризация круговая. 2. $\alpha = \frac{\lambda}{d(n-1)}$.

2.
$$\alpha = \frac{\lambda}{d(n-1)}$$
.

3.
$$I_{\text{max}} = I_0 (1 - T^N)^2 / R \approx 0, 4I_0, \cos \theta = \lambda / 2d = 0, 75, \theta \approx 41^0.$$

4.
$$\Delta W_{e^+} = 90 \frac{W^4}{R} (\alpha/\pi) \approx 9 \text{ Kəb} = 1, 5 \cdot 10^{-8} \text{spr}, \ \tau_e \sim \frac{R}{c\gamma^3} = 3 \cdot 10^{-20} \text{c},$$
 $\gamma = 10^4, \Delta W_p \approx 9 \text{Kəb} (1850)^{-4} = 0, 7 \cdot 10^{-9} \text{sb}, \ \tau_p \sim \frac{l}{2c\gamma^2} = 0, 7 \cdot 10^{-11} \text{c}.$

$$\gamma = 10^4, \Delta W_p \approx 9 \text{Kəb} (1850)^{-4} = 0, 7 \cdot 10^{-9} \text{əb}, \tau_p \sim \frac{l}{2c\gamma^2} = 0, 7 \cdot 10^{-11} \text{c.}$$

5.
$$\Delta t = lv (n^2 - 1) / c^2$$
.

6.
$$\sigma = \frac{8\pi}{3} r_e^2 \frac{\omega^4}{(\omega_0^2 - \omega^2)^2}$$
.

7.
$$\Delta r \approx \lambda \left(\frac{r}{a}\right)^2$$
.

Генрий Викторович Меледин Михаил Иванович Захаров Валерий Семенович Черкасский

Экзаменационные и олимпиадные варианты задач по электродинамике
Учебное пособие

Подписано в печать Офсетная печать.

Заказ ь

Тираж 250 экз.

Формат $60 \times 84/16$

Уч.-изд. л. 5.5

Цена

Редакционно-издательский отдел Новосибирского университета; участок оперативной полиграфии НГУ; 630090, Новосибирск-90, ул. Пирогова, 2.