RBSE BOARD COORDINATE GEOMETRY [PREVIOUS YEAR 2015-19] CLASS-X O write the distance of the point (-5,4) from x-axis [RBSE-2015] Given, point is (-5,4)
Then

x-axis is 4 -5 +5 x 2 If K(5,4) is the mid-point of the line segment PQ and coordinates of Q are (2,3) then find the coordinates of point P. [RBSE 2015] $\frac{301}{6}$. Given that, g=(2,3)Mid point K= (5,4) we know that, build point of coordinate = $\left(\frac{x_1+x_2}{2}\right)\left(\frac{y_1+y_2}{2}\right)$ Here $x = \frac{x_1 + x_2}{2}$ $y = \frac{y_1 + y_2}{2}$ $y = \frac{y_1 + y_2}{2}$ $y = \frac{y_1 + y_2}{2}$ $y = \frac{y_1 + y_2}{2}$ Hence, $y = \frac{y_1 + y_2}{2}$ $y = \frac{y_1 + y_2}{2}$

Tuen, Area of through = 0

SHARMA TUTION CLASSES [Lot's Rule it

So,
$$A = \frac{1}{2} \left(\frac{x}{3}, (y_2 - y_3) + \frac{x}{2}, (y_3 - y_1) + \frac{x}{3}, (y_1 - y_2) \right)$$

$$0 = \frac{1}{2} \left[2(k+3) + 4(-3-3) + 6(3-k) \right]$$

$$2k + 84 - 84 - 6k$$

$$-4k = 0 = \sqrt{\frac{k=0}{k}}$$

To the middle point of two points $A = (-2, 5)$ and $A = (-2,$

Find the area of
$$\triangle$$
 whose vertices are $(-5,7)$ (4,5) and $(-4,-5)$. [RESE 2016]

By Consider,

Area of $\triangle = \frac{1}{2} \left[\chi_1 (y_2 - y_3) + \chi_2 (y_3 - y_1) + \chi_3 (y_1 - y_2) \right]$

Here, $[-5,7)$ $[-5,7)$ $[-4,5)$ $[-4,-5)$

So $\triangle = \frac{1}{2} \left[-5(5-(-5)+4(-5-7)+(-4)(7-5)) \right]$
 $= \frac{1}{2} \left[-5x_{10}+4x_{-12}+(-4)(2) \right]$
 $= \frac{1}{2} \left[-106 \right] = -53$

So, Acua of $\triangle = +53$ whith 2 .

⑤ Find the arrea of the \triangle volvose vertices are (-3,-2) (5,-2) and (5,4). Also prove it is right angle \triangle .

(consider

B(5,-2) (5,4)

Area of
$$\Delta = \frac{1}{2} \left[(x_1 | y_2 - y_3) + x_2 (y_3 - y_1) + x_3 (y_1 - y_2) \right]$$

Given, $(-3, -2)$ $(5, -2)$ $(5, 4)$

So, Area = $\frac{1}{2} \left[(-3(-2 - 4) + 5(4 - (-2) + 5(-2 - (-2))) \right]$

= $\frac{1}{2} \left[(-3x - 6 + 5x + 6 + 5x + 6) \right]$

= $\frac{1}{2} \left[(-3x - 6 + 5x + 6 + 5x + 6) \right]$

= $\frac{1}{2} \left[(-3x - 6 + 5x + 6 + 5x + 6) \right]$

= $\frac{1}{2} \left[(-3x - 6 + 5x + 6 + 5x + 6) \right]$

Now, to prove it is an right angle triangle

A $(-3, -2)$, B $(5, -2)$, C $(5, 4)$

AB = $\sqrt{(5 - (-3)^2 + (-2 + 2)^2} = 8$

BC = $\sqrt{(5 - 5)^2 + (4 + 2)^2} = 6$

CA = $\sqrt{(5 + 3)^2 + (4 + 2)^2} = 10$

CA² = AB² + BC²

100 = 64 + 36 \Rightarrow 100 = 100 Mp.

To the aistance $b(w)$ points $(x, 3)$ and $(5, 7)$ is 5. Then find the value by x .

(1) Find the point (1,3) and (2,7), [RBSF 2018]

80] (i) Let
$$(x, y_1) = (x, 3)$$

 $(x_2, y_2) = (5, 7)$
 $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
 $d = 5$
 $5 = \sqrt{(5 - x)^2 + (7 - 3)^2}$
Squarry both side
 $25 = (5 - x)^2 + 16$
 $25 - 16 = (5 - x)^2$
 $9 = (5 - x)^2$
 $(5 - x) = \pm 93$
 80 , $5 - x = 93$
 $x = 2$
 $5 - x = -3$
 $x = 8$
 $x = 2$, 8

If there are Four points P(2,-1) 9(3,4), R(-2,3) and S(-3,2) in a plane, then prove that PQRS is not a square but Rhombus [RBSE 2019]

80)
$$PS = \sqrt{(3-2)^2 + (4+1)^2} = \sqrt{1^2 + 5^2} = \sqrt{26}$$
 with $SR = \sqrt{-2-3})^2 + (3-4)^2 = \sqrt{85+1} = \sqrt{26}$ with $RS = \sqrt{(-3+2)^2 + (-2-3)^2} = \sqrt{1+25} = \sqrt{26}$ with $SP = \sqrt{(-3-2)^2 + (-2-3)^2} = \sqrt{26}$ with Now , Diagonal $PR = \sqrt{(-2-2)^2 + (3+1)^2} = \sqrt{16+16} = 4\sqrt{2}$ with $SS = \sqrt{(-3-3)^2 + (-2-4)^2} = \sqrt{36+36} = 6\sqrt{2}$ with $PS = \sqrt{16+16}$ But $PS = \sqrt{16+16}$ $PS = \sqrt{16+16}$