MATHEMATICS 271 FALL 2015 Practice Problems 1 Solutions

1. $\forall n \in \mathbb{Z}, \ n^2 + 2n \text{ is even.}$

Solution: This statement is false. Its negation is "There exists an integer n so that $n^2 + 2n$ is odd." For example, in the case n = 1, we have $n^2 + 2n = 1 + 2 = 3$ which is odd, because $3 = 2 \times 1 + 1$ where $1 \in \mathbb{Z}$.

2. $\exists n \in \mathbb{Z} \text{ such that } n^3 + n \text{ is odd.}$

Solution: This statement is false. Its negation is " $\forall n \in \mathbb{Z}$, $n^3 + n$ is even." What follows is a proof of the negation. Suppose that $n \in \mathbb{Z}$. We have two cases:

Case 1: n is even, that is, n = 2k for some $k \in \mathbb{Z}$. Then $n^3 + n = n(n^2 + 1) = 2k(n^2 + 1)$ where $k(n^2 + 1)$ is an integer and therefore, $n^3 + n$ is even.

Case 2: n is odd, that is, n = 2k + 1 for some $k \in \mathbb{Z}$. Then

$$n^{3} + n = n(n^{2} + 1)$$

$$= n((2k + 1)^{2} + 1)$$

$$= n(4k^{2} + 4k + 1 + 1)$$

$$= n(4k^{2} + 4k + 2)$$

$$= 2n(2k^{2} + 2k + 1)$$

where $n(2k^2 + 2k + 1)$ is an integer and therefore, $n^3 + n$ is even.

3. $\forall x \in \mathbb{R}, \ x^2 - x \ge 0.$

Solution: This statement is false. Its negation is "There exists $x \in \mathbb{R}$ so that $x^2 - x < 0$." For example, consider the case $x = \frac{1}{3}$. Then $x \in \mathbb{R}$, and $x^2 - x = \frac{1}{9} - \frac{1}{3} = -\frac{2}{9} < 0$.

 $4. \ \forall x \in \mathbb{Z}, \ x^2 - x \ge 0.$

Solution: This statement is true. Suppose that $x \in \mathbb{Z}$. Then

$$x^{2} - x = x^{2} - 2 \times \frac{1}{2} \times x + \left(\frac{1}{2}\right)^{2} - \left(\frac{1}{2}\right)^{2}$$
$$= \left(x - \frac{1}{2}\right)^{2} - \frac{1}{4}$$
$$\geq -\frac{1}{4}.$$

Thus, $x^2 - x$ is an **integer** larger or equals $-\frac{1}{4}$ and so $x^2 - x \ge 0$.

5. $\forall x, y \in \mathbb{Z}$, if $x^2 + 2x = y^2 + 2y$ then x = y.

Solution: This statement is false. Its negation is " $\exists x,y \in \mathbb{Z}$ so that $x^2 + 2x = y^2 + 2y$ but $x \neq y$." For example, consider the case x = 0 and y = -2. Then $x,y \in \mathbb{Z}$ and $x^2 + 2x = 0 = y^2 + 2y$ but $x \neq y$.

The converse of this statement is " $\forall x, y \in \mathbb{Z}$, if x = y then $x^2 + 2x = y^2 + 2y$." and the contrapositive of this statement is " $\forall x, y \in \mathbb{Z}$, if $x \neq y$ then $x^2 + 2x \neq y^2 + 2y$."

It is clear that the converse is true. The contrapositive is false because it is logically equivalent to the original statement which is false as proven above.

6. $\forall x, y \in \mathbb{Z}$, if $2x^2 + x = 2y^2 + y$ then x = y.

Solution: This statement is true and here is a proof. Suppose that $x, y \in \mathbb{Z}$, and suppose that $2x^2 + x = 2y^2 + y$. Then $2x^2 + x - 2y^2 - y = 0$ which can be simplified as

$$(x-y)(2(x+y)+1) = 0.$$
 (1)

We note that 2(x + y) + 1 is an odd integer, and therefore, $2(x + y) + 1 \neq 0$ and hence from (1), we get x - y = 0 and so x = y.

The converse of this statement is " $\forall x, y \in \mathbb{Z}$, if x = y then $2x^2 + x = 2y^2 + y$." and the contrapositive of this statement is " $\forall x, y \in \mathbb{Z}$, if $x \neq y$ then $2x^2 + x \neq 2y^2 + y$."

It is clear that the converse is true. The contrapositive is also true because it is logically equivalent to the original statement which is true as proven above.

7. $\forall a, b, c \in \mathbb{Z}$, if $a \mid b + c$ and $a \mid b - c$ then $a \mid b$ and $a \mid c$.

Solution: This statement is false. Its negation is " $\exists a, b, c \in \mathbb{Z}$ so that $a \mid b + c$ and $a \mid b - c$, but $a \nmid b$ or $a \nmid c$." For example, consider the case a = 2, b = 1 and c = -1. Then $a, b, c \in \mathbb{Z}$, $a \neq 0$ and $b + c = 0 = a \times 0$ and $b - c = 2 = a \times 1$ where $0, 1 \in \mathbb{Z}$. That implies $a \mid b + c$ and $a \mid b - c$, but it is clear that $a \nmid b$.

The converse of this statement is " $\forall a, b, c \in \mathbb{Z}$, if $a \mid b$ and $a \mid c$ then $a \mid b + c$ and $a \mid b - c$." and the contrapositive of this statement is " $\forall a, b, c \in \mathbb{Z}$, if $a \nmid b$ or $a \nmid c$ then $a \nmid b + c$ or $a \nmid b - c$."

It is easy to prove that the converse is true. The contrapositive is false because it is logically equivalent to the original statement which is proven to be false above.

8. $\forall a, b, c \in \mathbb{Z}$, if $a \mid b + c$ and $a \mid 2b + c$ then $a \mid b$ and $a \mid c$.

Solution: This statement is true and here is a proof. Suppose that $a, b, c \in \mathbb{Z}$, and suppose that $a \mid b + c$ and $a \mid 2b + c$. Since $a \mid b + c$ and $a \mid 2b + c$, we know $a \neq 0$ and there are integers m and n so that b + c = am and 2b + c = an. Now,

$$b = (2b + c) - (b + c) = an - am = a(n - m)$$
, and

Since b = a(n-m), and c = a(2m-n), where $a \neq 0$, and n-m and 2m-n are integers, we can conclude that $a \mid b$ and $a \mid c$.

The converse of this statement is " $\forall a, b, c \in \mathbb{Z}$, if $a \mid b$ and $a \mid c$ then $a \mid b + c$ and $a \mid 2b + c$." and the contrapositive of this statement is " $\forall a, b, c \in \mathbb{Z}$, if $a \nmid b$ or $a \nmid c$ then $a \nmid b + c$ or $a \nmid 2b + c$."

It is an easy exercise to prove that the converse is true. The contrapositive is also true because it is logically equivalent to the original statement which is true as proven above.

9. $\forall n \in \mathbb{Z}, \exists m \in \mathbb{Z} \text{ such that } n+m \text{ is even.}$

Solution: This statement is true and here is a proof. Suppose $n \in \mathbb{Z}$. We choose m = -n. Then $m \in \mathbb{Z}$ and n + m = 0 which is even.

10. $\exists m \in \mathbb{Z} \text{ such that } \forall n \in \mathbb{Z}, n+m \text{ is even.}$

Solution: This statement is false. Its negation is " $\forall m \in \mathbb{Z}$, $\exists n \in \mathbb{Z}$ so that n+m is odd." We now prove the negation. Suppose $m \in \mathbb{Z}$. We choose n = 1 - m. Then $n \in \mathbb{Z}$ and n + m = 1 which is odd.

11. $\forall r \in \mathbb{Q}, \exists m \in \mathbb{Z} \text{ such that } rm \in \mathbb{Z}.$

Solution: This statement is true and here is a proof. Suppose $r \in \mathbb{Q}$. Then $r = \frac{p}{q}$ for some integers p and q where $q \neq 0$. Now, put m = q. Then $m \in \mathbb{Z}$ and $rm = p \in \mathbb{Z}$.

12. $\exists m \in \mathbb{Z}$ such that $\forall r \in \mathbb{Q}, rm \in \mathbb{Z}$.

Solution: This statement is true. Consider the case m=0. Then $m\in\mathbb{Z}$ and for any $r\in\mathbb{Q},\ rm=0\in\mathbb{Z}$.

13. For all positive integers n, there exists a positive integer m so that $3 \mid n + m$.

Solution: This statement is true. Suppose that n is a positive integer. Put m = 2n. Then m is a positive integer and n + m = 3n which is divisible by 3.

14. There exists a positive integer m so that for all positive integers $n, 3 \mid n+m$.

Solution: This statement is false. Its negation is "For all positive integer m, there is a positive integers n so that $3 \nmid n + m$." We now prove the negation. Suppose that m is a positive integer. We choose n = 2m + 1. Then n is a positive integer and n + m = 3m + 1 which is not divisible by 3.