Assignment 2

Artificial Dataset

- a) Generate 20 real number for the variable X from the uniform distribution U [0,1]
- b) Construct the training set $T = \{(x_1,y_1),(x_2,y_2),...,(x_{20},y_{20})\}$ using the relation

1. Yi =
$$\sin(2 \pi x_i) + \epsilon_i$$
 where $\epsilon_i \sim N(0,0.25)$

- c) In the similar way construct a testing set of size 50
 - a. I,e. Test = $\{(x'_1,y'_1),(x'_2,y'_2),...,(x'_{50},y'_{50})\}$
- d) Estimate the regularized least squared polynomial regression model of order M= 1,2, 3, 9, using the training set T.
 - i. For example for M=1, we need to estimate
 - ii. $F(x) = \beta_1 x + \beta_0$
 - iii. For M = 2
 - iv. $F(x) = \beta_2 x^2 + \beta_1 x + \beta_0$.
- e) List the value of coefficients of estimated regularized least squared polynomial regression models for each case.
- f) Obtain the prediction on testing set and compute the RMSE for regularized least squared polynomial regression models for order M =1,2,3 and 9.
- g) Plot the estimate obtained by regularized least squared polynomial regression models for order M =1,2,3 and 9 for training set along with y_1, y_2, y_{20} . Also plot our actual mean estimate $E(Y/X) = \sin(2\pi x_i)$.
- h) Plot the estimate obtained by regularized least squared polynomial regression models for order M =1,2,3 and 9 for testing set along with y'_{1}, y'_{2} , y'_{50} . Also plot the sin(2 π x'_{i}).
- i) Study the effect of regularization parameter λ on testing RMSE and flexibility of curve and list your observations.