Rudin, Principles of Mathematical Analysis, Chapter 1 Answer Key

1. If r is rational $(r \neq 0)$ and x is irrational, prove that r + x and rx are irrational.

Answer: Assume otherwise that r+x is rational with sum α . We write $r+x=\alpha \implies x=\alpha-r$. This implies that x can be expressed as the difference of two rational rational numbers, $\alpha-r$, which is rational. Thus, r+x must be irrational. $\rightarrow \leftarrow$

We follow a similar argument for the second part. Assume otherwise that rx is rational with product $\frac{\beta}{\gamma}$. We write $rx = \frac{\beta}{\gamma} \implies x = \frac{\frac{\beta}{\gamma}}{r}$. This implies that x can be expressed as a (compound) fraction, which is violates the irrational property. Thus, rx must be irrational. $\rightarrow \leftarrow$

2. Prove that there is no rational number whose square is 12.

Answer: Assume otherwise that there exists a rational $p = \frac{m}{n}$ for m, n not both even, such that:

$$p^2 = 12$$

We can re-arrange as follows:

$$\left(\frac{m}{n}\right)^2 = 12$$

$$m^2 = 12n^2$$

Since 12 is even, and the product of two terms involving an even number is always even, the RHS must be even. So, by the equality, m^2 is also even, which implies that m is even and n is odd. We can write m = 2k for some integer k and substitute:

$$4k^2 = 12n^2$$

$$k^2 = 3n^2$$

We know that n is odd, hence $3n^2$ is odd, which implies k^2 and k are also odd. We can now express k = 2j + 1 and n = 2l + 1 for some integers j, l and substitute:

$$(2j+1)^{2} = 3(2l+1)^{2}$$

$$4j^{2} + 4j + 1 = 3(4l^{2} + 4l + 1)$$

$$4j^{2} + 4j + 1 = 12l^{2} + 12l + 3$$

$$4j^{2} + 4j - 12l^{2} - 12l = 2$$

$$4(j^{2} + j - l^{2} - l) = 2$$

This equality cannot hold because 4 is not a multiple of 2. Thus, p must be irrational. $\rightarrow \leftarrow$

3. Prove Proposition 1.15.

Answer: We want to prove the following statements that follow from the axioms of multiplication:

• If $x \neq 0$ and xy = xz then y = z.

$$xy=xz$$

$$x^{-1}\left(xy\right)=x^{-1}\left(xz\right) \quad \text{Existence of an inverse element}$$

$$\left(x^{-1}x\right)y=\left(x^{-1}x\right)z \quad \text{Associativity}$$

$$(1)y=(1)z \quad \text{Definition of inverse}$$

y = z Identity element

• If $x \neq 0$ and xy = x then y = 1.

$$x^{-1}(xy) = x^{-1}(x)$$
 Existence of an inverse element
$$(x^{-1}x) y = (x^{-1}x)$$
 Associativity

xy = x

(1)y = 1 Definition of inverse

y = 1 Identity element

• If $x \neq 0$ and xy = 1 then $y = x^{-1}$.

$$xy = 1$$

 $x^{-1}(xy) = x^{-1}(1)$ Existence of an inverse element

 $(x^{-1}x) y = x^{-1}$ Associativity, identity element

 $(1)y = x^{-1}$ Definition of inverse

 $y = x^{-1}$ Identity element

• If $x \neq 0$ then $\frac{1}{x^{-1}} = x$.

$$\frac{1}{x^{-1}} = x$$

$$x^{-1}\left(\frac{1}{x^{-1}}\right) = (x^{-1}x) \quad \text{Multiply by } x^{-1}$$

1 = 1 Definition of inverse

4. Let E be a nonempty subset of an ordered set; suppose x is a lower bound of E and β is an upper bound of E. Prove that $x \leq \beta$.

Answer: By Definition 1.7, since β is an upper bound, then this must imply that $\alpha \leq \beta$ for all $\alpha \in E$. Similarly, since x is a lower bound, then this also must imply that $x \leq \alpha$ for all $\alpha \in E$. Hence, $x \leq \alpha \leq \beta$ and $x \leq \beta$ as desired.

5. Let A be a nonempty set of real numbers which is bounded below. Let -A be the set of all numbers -x, where $x \in A$. Prove that

$$\inf A = -\sup(-A).$$

Answer: Denote $\alpha = \inf A$. By definition 1.8, α is a lower bound of A and no $x > \alpha$ is a lower bound of A. So, $\alpha \le x, \forall x \in A$ implies $-\alpha \ge -x$ for $-x \in -A$, which means α is an upper-bound of -A. In order to show $-\alpha$ is the *least* upper bound of -A, take some $\beta < -\alpha$, which implies $-\beta > \alpha$. Since $\alpha = \inf A$, there exists some $x \in A$ such that $\alpha < x < -\beta$ and $-x > \beta$, which implies β is not an upper bound of -A. Hence, $-\alpha = \sup(-A)$ and $\alpha = -\sup(-A)$.

- 6. Fix b > 1.
 - (a) If m, n, p, q are integers, n > 0, q > 0, and r = m/n = p/q, prove that

$$(b^m)^{1/n} = (b^p)^{1/q}.$$

Hence it makes sense to define $b^r = (b^m)^{1/n}$.

- (b) Prove that $b^{r+s} = b^r b^s$ if r and s are rational.
- (c) If x is real, define B(x) to be the set of all numbers b^r , where r is rational and $r \leq x$. Prove that

$$b^x = \sup B(x)$$

when r is rational. Hence it makes sense to define $b^x = \sup B(x)$ for every real x.

- (d) Prove that $b^{x+y} = b^x b^y$ for all real x and y.
- 7. Fix b > 1, y > 0, and prove that there is a unique real x such that $b^x = y$, by completing the following outline. (This is called the *logarithm of y to the base b*.)
 - (a) For any positive integer $n, b^n 1 \ge n(b-1)$.
 - (b) Hence $b-1 > n(b^{1/n} 1)$.
 - (c) If t > 1 and n > (b-1)/(t-1), then $b^{1/n} < t$.
 - (d) If w is such that $b^{-x} < y$, then $b^{1/n}x < y$ for sufficiently large n; to see this, apply part (c) with $t = y \cdot b^x$.
 - (e) If $b^r > y$, then $b^{r-(1/n)} > y$ for sufficiently large n.
 - (f) Let A be the set of all w such that $b^w < y$, and show that $x = \sup A$ satisfies $b^x = y$.
 - (g) Prove that this x is unique.
- 8. Prove that no order can be defined in the complex field that turns it into an ordered field. Hint: -1 is a square.
- 9. Suppose z = a + bi, w = c + di. Define z < w if a < c, and also if a = c but b < d. Prove that this turns the set of all complex numbers into an ordered set. (This type of order relation is called a *dictionary order*, or *lexicographic order*, for obvious reasons.) Does this ordered set have the least-upper-bound property?
- 10. Suppose z = a + bi, w = u + iv, and

$$a = \left(\frac{|w| + u}{2}\right)^{1/2}, \quad b = \left(\frac{|w| - u}{2}\right)^{1/2}.$$

Prove that $z^2 = w$ if $v \ge 0$ and that $(\bar{z})^2 = w$ if $v \le 0$. Conclude that every complex number (with one exception!) has two complex square roots.

4