

Sergio Ibarra-Espinosa, Amanda Rehbein e possivelmente outros (u r invited to collaborate) 2018-04-29

Contents

1	Pre-requisitos do sistema	5
	1.1 Pacotes usados neste curso	5
	1.2 Colaborar	6
	1.3 Aportar com dados	6
2	Intro	7
	2.1 IMPORTANTE	7
3	R!	9
	3.1 Objetos de R	9
	3.2 Classe	
	3.3 Vetores	
	3.4 Convertir objetos com as	10
	3.5 Matrices e a função matrix	
	3.6 Array	
	3.7 list	
	3.8 Tempo e Data	
	3.9 Fatores	13
	$3.10~{\tt data.frames}~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots$	14
4	Importando e exportando dados em R	17
	4.1 data-frames	17
	4.2 Processando nossa data-frame	21
	4.3 aggregate	23
	4.4 subset	23
	4.5 data.table, read_xl e mais	23
	4.6 NetCDF	23
	4.7 Binarios	23
5	Applications	25
	5.1 Example one	25
	5.2 Example two	
6	Final Words	27

4 CONTENTS

Pre-requisitos do sistema

Em Windows, instale além do R, Rtools https://cran.r-project.org/bin/windows/Rtools/

Em MAC instale netcdf e:

```
brew unlink gdal
brew tap osgeo/osgeo4mac && brew tap --repair
brew install proj
brew install geos
brew install udunits
brew install gdal2 --with-armadillo --with-complete --with-libkml --with-unsupported
brew link --force gdal2
```

Em Ubuntu:

```
- sudo add-apt-repository ppa:ubuntugis/ubuntugis-unstable --yes
- sudo apt-get --yes --force-yes update -qq
# install tmap dependencies
- sudo apt-get install --yes libprotobuf-dev protobuf-compiler libv8-3.14-dev
# install tmap dependencies; for 16.04 libjq-dev this ppa is needed:
- sudo add-apt-repository -y ppa:opencpu/jq
- sudo apt-get --yes --force-yes update -qq
- sudo apt-get install libjq-dev
# units/udunits2 dependency:
- sudo apt-get install --yes libudunits2-dev
# sf dependencies:
- sudo apt-get install --yes libproj-dev libgeos-dev libgdal-dev libnetcdf-dev netcdf-bin gdal-bin
```

1.1 Pacotes usados neste curso

Para fazer este curso instale os seguintes pacotes como indicado:

```
install.packages("devtools")
devtools::install_github("tidyverse/tidyverse")
devtools::install_github("r-spatial/sf")
devtools::install_github("r-spatial/mapview")
devtools::install_github("r-spatial/stars")
install.packages(c("raster", "sp", "rgdal", "maptools", "ncdf4"))
install.packages(c("cptcity", "data.table", "openair"))
```

- devtools é um pacote para instalar pacotes de diferentes repositórios
- tidyverse é o universo de pacotes do Hadley Wickham. A instalação tem que ser usando devtools, pois precisamos plotar os objetos espacias sf usando geom sf.
- sf e mapview, stars, raster, sp, rgdal e maptools são para a parte espacial. Lembrar que os objetos em meteorologias são espaço-temporais.
- ncdf4 é um pacote para manipular arquivos NetCDF.
- cptcity é um pacote que tem 7140 paletas de cores do arquivo web cpt-city (http://soliton.vm.bytemark.co.uk/pub/cpt-city/index.html).
- openair é um pacote para trabalhar com dados de qualidade do ar e meteorologia.

Se faltarem dependencias de sistema, instale elas e instale os pacotes.

1.2 Colaborar

A forma preferida de colaboração é com pull-requests em https://github.com/ibarraespinosa/cursoR/pull/new/master. Lembre de aplicar a Guia de Estilo de R de Google (https://google.github.io/styleguide/Rguide.xml) ou com o formato de formatR https://yihui.name/formatr/. Em poucas palavras, lembre que seu código vai ser lido por seres humanos. Se quiser tem acesso no repositório deste curso, me contate. Tem um botão para editar qualquer página.

1.3 Aportar com dados

Se você tem dados para fazer este curso mais legal, por favor, edite este aquivo e com pull request, eu vou fazer um merge para poder.

- 1. NCEP: ftp://nomads.ncdc.noaa.gov/GFS/analysis only/
- 2.
- 3.

Intro

Este curso é para pos, então vamos ver conteúdo rapidamente e se não da tempo, este curso esta online no sitio https://github.com/atmoschem/cursorIAG.

Eu tento usar BASE sempre que posso, e se não da ai vou para outros paradigmas.

Outros pacotes de BASE: utils, stats, datasets, graphics, gr
Devices, grid, methods, tools, parallel, compiler, splines, tcltk , stats
4.

Veja outros pacotes.

Este curso esta baseado no livro R Programming for Data Science.

Vamos usar Rstudio

Dica:

- Se não sabe como usar uma função, escreva: ?função.
- As funções tem argumentos, use TAB para ver eles numa função.

2.1 IMPORTANTE

teu novo melhor amigo, besti friendi, BFF, parceiro, mano, tabarish, komrade, compaheiro, colega, buisiness partner amd whatever meanningful is

• TAB no RSTUDIO.

Esta combinação é tão boa, como o cafe com leite, pizza e abacaxi, vitamina de acabate com amendoim Manaus, a melhor combinação.

8 CHAPTER 2. INTRO

Porque quando se tu não lembra os argumentos da função, e não quer ver o help ? de cada função, so clica ${\bf TAB}$ e RSTUDIO te mostrara a lista de argumentos.

Vamos lá!

R!

- Quase em qualquer sistema operacional mas eu vou focar em Linux.
- Muita documentação:
- Intro.
- I/O.
- Quer fazer um pacote? Veja, aqui e aqui.
- Stackoverflow provides a great source of resources.

3.1 Objetos de R

- Character a
- numeric 1
- integer 1
- complex 0+1i
- logical TRUE

3.2 Classe

class função permite ver a classe dos objetos

3.3 Vetores

- c("A", "C", "D")
- 1:5 = c(1, 2, 3, 4, 5)
- c(TRUE, FALSE)
- c(1i, -1i)
- c(1, "C", "D") qual é a classe???
- c(1, NA, "D") qual é a classe???
- c(1, NA, NaN) qual é a classe???

10 CHAPTER 3. R!

Convertir objetos com as 3.4

```
as.numeric(c(1, "C", "D"))
## Warning: NAs introduzidos por coerção
## [1] 1 NA NA
```

Matrices e a função matrix 3.5

[linhas, colunas]

```
• permitidos elementos da mesma clase!
vamos ver os argumentos da função matrix
args(matrix)
## function (data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)
## NULL
usando TAB
(m <- matrix(data = 0, nrow = 4, ncol = 4))
        [,1] [,2] [,3] [,4]
## [1,]
                0
## [2,]
           0
                0
                           0
## [3,]
           0
                0
                      0
## [4,]
                      0
(m1 <- matrix(data = 1:(4*4), nrow = 4, ncol = 4))
##
        [,1] [,2] [,3] [,4]
## [1,]
           1
                5
                          13
## [2,]
           2
                     10
                          14
## [3,]
           3
                7
                          15
                     11
## [4,]
dim(m1)
## [1] 4 4
(m2 <- matrix(data = 1:(4*4), nrow = 4, ncol = 4, byrow = TRUE))
##
        [,1] [,2] [,3] [,4]
## [1,]
           1
                2
## [2,]
           5
                6
                      7
                           8
## [3,]
               10
                     11
                          12
## [4,]
          13
               14
                     15
                          16
```

3.6 Array

```
É como uma matriz de matrizes de matrizes de matrizes..... and so on.
```

```
args(array)
```

3.6. ARRAY 11

```
## function (data = NA, dim = length(data), dimnames = NULL)
## NULL
lembre usar TAB
(a \leftarrow array(data = 0, dim = c(1,1)))
## [,1]
## [1,] 0
class(a)
## [1] "matrix"
(a \leftarrow array(data = 0, dim = c(1,1,1)))
## , , 1
##
## [,1]
## [1,] 0
class(a)
## [1] "array"
(a \leftarrow array(data = 0, dim = c(2,2,2)))
## , , 1
##
## [,1] [,2]
## [1,] 0 0
## [2,] 0 0
##
## , , 2
##
## [,1] [,2]
## [1,] 0 0
## [2,] 0 0
(a \leftarrow array(data = 0, dim = c(2,4,4)))
## , , 1
## [,1] [,2] [,3] [,4]
## [1,] 0 0 0 0
## [2,] 0 0 0 0
##
## , , 2
##
    [,1] [,2] [,3] [,4]
## [1,] 0 0 0 0
## [2,] 0 0 0 0
##
## , , 3
##
## [,1] [,2] [,3] [,4]
## [1,] 0 0 0 0
## [2,] 0 0 0
##
```

CHAPTER 3. R!

3.7 list

As listas são como sacolas, e dentro delas, tu pode colocar mais sacolas... então, tu pode ter sacolas, dentro de sacolas, dentro de sacolas... ou

```
list(list(list(1))))
## [[1]]
## [[1]][[1]]
## [[1]][[1]][[1]]
## [[1]][[1]][[1]]
## [1] 1
a diferença das matrices, tu pode colocar cualquer coisa nas listas, por exemplo: funções, characters, etc.
(x \leftarrow list(1, "a", TRUE, 1 + 4i))
## [[1]]
## [1] 1
##
## [[2]]
## [1] "a"
##
## [[3]]
## [1] TRUE
##
## [[4]]
## [1] 1+4i
```

3.8 Tempo e Data

```
R tem classes de tempo e data:
```

```
(a <- ISOdate(year = 2018, month = 4, day = 5))
## [1] "2018-04-05 12:00:00 GMT"

class(a)
## [1] "POSIXct" "POSIXt"

(b <- ISOdate(year = 2018, month = 4, day = 5, tz = "Americas/Sao_Paulo"))
## [1] "2018-04-05 12:00:00 Americas"</pre>
```

3.9. FATORES 13

tempo

```
(d \leftarrow ISOdatetime(year = 2018, month = 4, day = 5, hour = 0, min = 0, sec = 0,
                  tz = "Americas/Sao_Paulo"))
## [1] "2018-04-05 Americas"
O pacote nanotime permite trabalhar com nano segundos.
Da pra fazer secuencias:
hoje <- Sys.time()
(a <- seq.POSIXt(from = hoje, by = 3600, length.out = 24))
##
    [1] "2018-04-29 19:54:51 -03" "2018-04-29 20:54:51 -03"
##
   [3] "2018-04-29 21:54:51 -03" "2018-04-29 22:54:51 -03"
   [5] "2018-04-29 23:54:51 -03" "2018-04-30 00:54:51 -03"
   [7] "2018-04-30 01:54:51 -03" "2018-04-30 02:54:51 -03"
##
   [9] "2018-04-30 03:54:51 -03" "2018-04-30 04:54:51 -03"
## [11] "2018-04-30 05:54:51 -03" "2018-04-30 06:54:51 -03"
## [13] "2018-04-30 07:54:51 -03" "2018-04-30 08:54:51 -03"
## [15] "2018-04-30 09:54:51 -03" "2018-04-30 10:54:51 -03"
## [17] "2018-04-30 11:54:51 -03" "2018-04-30 12:54:51 -03"
## [19] "2018-04-30 13:54:51 -03" "2018-04-30 14:54:51 -03"
## [21] "2018-04-30 15:54:51 -03" "2018-04-30 16:54:51 -03"
## [23] "2018-04-30 17:54:51 -03" "2018-04-30 18:54:51 -03"
funções bacana: weekdays, month, julian
weekdays(a)
   [1] "domingo" "domingo" "domingo" "domingo" "segunda" "segunda"
   [8] "segunda" "segunda" "segunda" "segunda" "segunda" "segunda" "segunda"
## [15] "segunda" "segunda" "segunda" "segunda" "segunda" "segunda" "segunda"
## [22] "segunda" "segunda" "segunda"
months(a)
   [1] "abril" "abril" "abril" "abril" "abril" "abril" "abril" "abril"
   [9] "abril" "abril" "abril" "abril" "abril" "abril" "abril" "abril"
## [17] "abril" "abril" "abril" "abril" "abril" "abril" "abril" "abril"
julian(a) #olha ?julian... dias desde origin
## Time differences in days
   [1] 17650.95 17651.00 17651.04 17651.08 17651.12 17651.16 17651.20
  [8] 17651.25 17651.29 17651.33 17651.37 17651.41 17651.45 17651.50
## [15] 17651.54 17651.58 17651.62 17651.66 17651.70 17651.75 17651.79
## [22] 17651.83 17651.87 17651.91
## attr(,"origin")
```

3.9 Fatores

[1] "1970-01-01 GMT"

Os factors podem ser um pouco infernais. Olha R INFERNO

olha https://en.wikipedia.org/wiki/Julian_day:

Usados para representar categorias, ejemplo clasico para nos, dias da semana.

CHAPTER 3. R!

```
a <- seq.POSIXt(from = hoje, by = 3600, length.out = 24*7)
aa <- weekdays(a)
class(aa)
## [1] "character"
factor(aa)
##
    [1] domingo domingo domingo domingo segunda segunda segunda
    [9] segunda segunda segunda segunda segunda segunda segunda
##
##
   [17] segunda segunda segunda segunda segunda segunda segunda
##
  [25] segunda segunda segunda segunda terça
                                                  terça
                                                         terça
##
  [33] terça
              terça
                    terça
                             terça
                                    terça
                                           terça
                                                  terça
                                                         terça
##
   [41] terça
              terça
                     terça
                             terça
                                           terça
                                    terça
                                                  terça
                                                         terça
##
   [49] terça
              terça terça
                             terça terça
                                           quarta quarta quarta
##
  [57] quarta quarta quarta quarta quarta quarta quarta
  [65] quarta quarta quarta quarta quarta quarta quarta
##
  [73] quarta quarta quarta
                            quarta quarta quinta quinta
                                                        quinta
## [81] quinta quinta quinta quinta quinta quinta quinta
  [89] quinta quinta quinta quinta quinta quinta quinta
## [97] quinta quinta quinta quinta sexta
                                                  sexta
                                                         sexta
## [105] sexta
              sexta sexta
                            sexta sexta
                                                  sexta
                                           sexta
                                                         sexta
                                          sexta sexta
## [113] sexta sexta sexta
                            sexta sexta
                                                         sexta
## [121] sexta sexta sexta sexta sábado sábado sábado
## [129] sábado sábado sábado sábado sábado sábado sábado
## [137] sábado sábado sábado sábado sábado sábado sábado
## [145] sábado sábado sábado sábado domingo domingo domingo
## [153] domingo domingo domingo domingo domingo domingo domingo
## [161] domingo domingo domingo domingo domingo domingo domingo
## Levels: domingo quarta quinta sábado segunda sexta terça
olha os Levels
Então:
ab <- factor(x = aa,
           levels = c("Monday", "Tuesday", "Wednesday", "Thursday",
                     "Friday", "Saturday", "Sunday"))
levels(ab)
## [1] "Monday"
                "Tuesday"
                           "Wednesday" "Thursday" "Friday"
                                                           "Saturday"
## [7] "Sunday"
```

3.10 data.frames

 $lembre\ ?data.frame$

São como planilha EXCEL.... mais o menos

É uma classe bem especial, tem elementos de matriz mas o modo é lista

```
(df <- data.frame(a = 1:3))
##    a
## 1 1</pre>
```

```
## 2 2
## 3 3
```

3.10. DATA.FRAMES

```
names(df)
## [1] "a"
class(df)
## [1] "data.frame"
mode(df)
## [1] "list"
Então
nrow(df)
## [1] 3
ncol(df)
## [1] 1
dim(df)
```

16 CHAPTER 3. R!

Importando e exportando dados em R

4.1 data-frames

Probabelmente um dos promeiros objetos que vamos usar quando começamos usar R. Pensa num data-frame como uma planilha de Libreoffice (o excel). Os data-frame pode ser criaos como foi visto na seção anterior. O principal, é que temos varias funções para ler data-frames no R, entre elas

- read.csv
- read.csv2
- read.table

Agora vamos a ler dados do repositorio usando read.table, mas primeiro vamos lembrar que se tu precisar ver a ajuda da função, tem que escrever no R ?read.table. Então, agora vamos ver os argumentos da função:

args(read.table)

```
## function (file, header = FALSE, sep = "", quote = "\"", dec = ".",
## numerals = c("allow.loss", "warn.loss", "no.loss"), row.names,
## col.names, as.is = !stringsAsFactors, na.strings = "NA",
## colClasses = NA, nrows = -1, skip = 0, check.names = TRUE,
## fill = !blank.lines.skip, strip.white = FALSE, blank.lines.skip = TRUE,
## comment.char = "#", allowEscapes = FALSE, flush = FALSE,
## stringsAsFactors = default.stringsAsFactors(), fileEncoding = "",
## encoding = "unknown", text, skipNul = FALSE)
## NULL
```

Aqui vem-se os valores default dos argumentos da função read.table. O terceiro argumento é sep, com valores por default = "".

```
df <- read.table("https://raw.githubusercontent.com/ibarraespinosa/cursoR/master/dados/NOXIPEN2014.txt"</pre>
```

Agora vamos usar a funções head and tail para ver as primeiras e as ultimas 6 linhas do data-frame.

head(df)

```
## TipodeRede TipodeMonitoramento Tipo Data Hora
## 2 Automático CETESB Dados Primários 01/01/2014 01:00
## 3 Automático CETESB Dados Primários 01/01/2014 02:00
## 4 Automático CETESB Dados Primários 01/01/2014 03:00
## 5 Automático CETESB Dados Primários 01/01/2014 04:00
## 6 Automático CETESB Dados Primários 01/01/2014 05:00
## 7 Automático CETESB Dados Primários 01/01/2014 06:00
```

```
CodigoEstação
                                   NomeEstação
                                                             NomeParâmetro
##
## 2
                95 Cid.Universitária-USP-Ipen NOx (Óxidos de Nitrogênio)
                95 Cid. Universitária-USP-Ipen NOx (Óxidos de Nitrogênio)
## 3
                95 Cid.Universitária-USP-Ipen NOx (Óxidos de Nitrogênio)
## 4
## 5
                95 Cid.Universitária-USP-Ipen NOx (Óxidos de Nitrogênio)
                95 Cid.Universitária-USP-Ipen NOx (Óxidos de Nitrogênio)
## 6
                95 Cid.Universitária-USP-Ipen NOx (Óxidos de Nitrogênio)
     UnidadedeMedida MediaHoraria MediaMovel Valido
##
## 2
                                 9
                 ppb
                                 9
## 3
                 ppb
                                                 Sim
## 4
                                 5
                                                 Sim
                 ppb
                                 4
                                                 Sim
## 5
                 ppb
## 6
                                 5
                                                 Sim
                 ppb
                                                 Sim
## 7
                 ppb
                                 5
tail(df)
```

```
TipodeRede TipodeMonitoramento
                                                  Tipo
                                                             Data Hora
                               CETESB Dados Primários 01/01/2015 19:00
## 8577 Automático
## 8578 Automático
                               CETESB Dados Primários 01/01/2015 20:00
                             CETESB Dados Primários 01/01/2015 21:00
## 8579 Automático
                              CETESB Dados Primários 01/01/2015 22:00
## 8580 Automático
                                CETESB Dados Primários 01/01/2015 23:00
## 8581 Automático
## 8582 Automático
                                CETESB Dados Primários 01/01/2015 24:00
##
       CodigoEstação
                                     NomeEstação
                                                              NomeParâmetro
## 8577
                  95 Cid.Universitária-USP-Ipen NOx (Óxidos de Nitrogênio)
                   95 Cid.Universitária-USP-Ipen NOx (Óxidos de Nitrogênio)
## 8578
## 8579
                  95 Cid.Universitária-USP-Ipen NOx (Óxidos de Nitrogênio)
## 8580
                  95 Cid.Universitária-USP-Ipen NOx (Óxidos de Nitrogênio)
## 8581
                  95 Cid.Universitária-USP-Ipen NOx (Óxidos de Nitrogênio)
                   95 Cid.Universitária-USP-Ipen NOx (Óxidos de Nitrogênio)
## 8582
       UnidadedeMedida MediaHoraria MediaMovel Valido
##
## 8577
                  ppb
                                 3
## 8578
                                  8
                                                   Sim
                   ppb
## 8579
                                                   Sim
                                 11
                   ppb
## 8580
                                                   Sim
                                  11
                   ppb
## 8581
                                  16
                                                   Sim
                   ppb
## 8582
                                  NA
                                                   Sim
                    ppb
```

Agora vamos ler os mesmos dados com outro formato e testar e read.table funciona do mesmo jeito

```
df2 <- read.table("https://raw.githubusercontent.com/ibarraespinosa/cursoR/master/dados/NOXIPEN2014v2.t
# Error in scan(file = file, what = what, sep = sep, quote = quote, dec = dec, :
# linha 1 não tinha 6 elementos</pre>
```

Vemos a mensagem de error, mas o que quer dizer.

Se tu recever um banco de dados tipo .txt e quer abrir no R... ABRE ELE COM BLOCO DE NOTAS PRIMEIRO!!!

O primeiro arquivo:

4.1. DATA-FRAMES


```
"TipodeRede"; "TipodeMonitoramento"; "Tipo"; "Data"; "Hora"; "CodigoEstação"; "Nome
"2"; "Automático"; "CETESB"; "Dados Primários"; "01/01/2014"; "01:00"; 95; "Cid.Univ
"3"; "Automático"; "CETESB"; "Dados Primários"; "01/01/2014"; "02:00"; 95; "Cid.Univ
"4"; "Automático"; "CETESB"; "Dados Primários"; "01/01/2014"; "03:00"; 95; "Cid.Univ
"5"; "Automático"; "CETESB"; "Dados Primários"; "01/01/2014"; "04:00"; 95; "Cid.Univ
"6"; "Automático"; "CETESB"; "Dados Primários"; "01/01/2014"; "05:00"; 95; "Cid.Univ
"7"; "Automático"; "CETESB"; "Dados Primários"; "01/01/2014"; "06:00"; 95; "Cid.Univ
"8"; "Automático"; "CETESB"; "Dados Primários"; "01/01/2014"; "07:00"; 95; "Cid.Univ
"9"; "Automático"; "CETESB"; "Dados Primários"; "01/01/2014"; "08:00"; 95; "Cid.Univ
"10"; "Automático"; "CETESB"; "Dados Primários"; "01/01/2014"; "09:00"; 95; "Cid.Uni
"11"; "Automático"; "CETESB"; "Dados Primários"; "01/01/2014"; "10:00"; 95; "Cid.Uni
"12"; "Automático"; "CETESB"; "Dados Primários"; "01/01/2014"; "11:00"; 95; "Cid.Uni
"13"; "Automático"; "CETESB"; "Dados Primários"; "01/01/2014"; "12:00"; 95; "Cid.Uni
"14"; "Automático"; "CETESB"; "Dados Primários"; "01/01/2014"; "13:00"; 95; "Cid.Uni
"15"; "Automático"; "CETESB"; "Dados Primários"; "01/01/2014"; "14:00"; 95; "Cid.Uni
"16"; "Automático"; "CETESB"; "Dados Primários"; "01/01/2014"; "15:00"; 95; "Cid.Uni
"17"; "Automático"; "CETESB"; "Dados Primários"; "01/01/2014"; "16:00"; 95; "Cid.Uni
"18"; "Automático"; "CETESB"; "Dados Primários"; "01/01/2014"; "17:00"; 95; "Cid.Uni
"19"; "Automático"; "CETESB"; "Dados Primários"; "01/01/2014"; "18:00"; 95; "Cid.Uni
"20"; "Automático"; "CETESB"; "Dados Primários"; "01/01/2014"; "19:00"; 95; "Cid.Uni
"21"; "Automático"; "CETESB"; "Dados Primários"; "01/01/2014"; "20:00"; 95; "Cid.Uni
"22"; "Automático"; "CETESB"; "Dados Primários"; "01/01/2014"; "21:00"; 95; "Cid.Uni
"23"; "Automático"; "CETESB"; "Dados Primários"; "01/01/2014"; "22:00"; 95; "Cid.Uni
"24"; "Automático"; "CETESB"; "Dados Primários"; "01/01/2014"; "23:00"; 95; "Cid.Uni
"25"; "Automático"; "CETESB"; "Dados Primários"; "01/01/2014"; "24:00"; 95; "Cid.Uni
"26"; "Automático"; "CETESB"; "Dados Primários"; "02/01/2014"; "01:00"; 95; "Cid.Uni
"27"; "Automático"; "CETESB"; "Dados Primários"; "02/01/2014"; "02:00"; 95; "Cid.Uni
"28"; "Automático"; "CETESB"; "Dados Primários"; "02/01/2014"; "03:00"; 95; "Cid.Uni
"29"; "Automático"; "CETESB"; "Dados Primários"; "02/01/2014"; "04:00"; 95; "Cid.Uni
"30"; "Automático"; "CETESB"; "Dados Primários"; "02/01/2014"; "05:00"; 95; "Cid.Uni
```

qual é a diferença?

Como vemos o segundo arquivo tem separação de ";", entao, temos que lero arquivo assim:

df2 <- read.table("https://raw.githubusercontent.com/ibarraespinosa/cursoR/master/dados/NOXIPEN2014v2.ta head(df2)

```
## Z PripodeRede TipodeMonitoramento Tipo Data Hora
## Z Automático CETESB Dados Primários 01/01/2014 01:00
## 3 Automático CETESB Dados Primários 01/01/2014 02:00
## 4 Automático CETESB Dados Primários 01/01/2014 03:00
## 5 Automático CETESB Dados Primários 01/01/2014 04:00
## 6 Automático CETESB Dados Primários 01/01/2014 05:00
```

```
## 7 Automático
                              CETESB Dados Primários 01/01/2014 06:00
     CodigoEstação
##
                                   NomeEstação
                                                             NomeParâmetro
## 2
                95 Cid.Universitária-USP-Ipen NOx (Óxidos de Nitrogênio)
## 3
                95 Cid.Universitária-USP-Ipen NOx (Óxidos de Nitrogênio)
## 4
                95 Cid.Universitária-USP-Ipen NOx (Óxidos de Nitrogênio)
                95 Cid.Universitária-USP-Ipen NOx (Óxidos de Nitrogênio)
## 5
                95 Cid.Universitária-USP-Ipen NOx (Óxidos de Nitrogênio)
## 6
                95 Cid.Universitária-USP-Ipen NOx (Óxidos de Nitrogênio)
## 7
##
     UnidadedeMedida MediaHoraria MediaMovel Valido
## 2
                 ppb
                                 9
## 3
                                 9
                                                 Sim
                 ppb
                                 5
                                                 Sim
## 4
                 ppb
## 5
                                 4
                                                 Sim
                 ppb
                                 5
## 6
                 ppb
                                                 Sim
## 7
                                 5
                 ppb
                                                 Sim
tail(df2)
        TipodeRede TipodeMonitoramento
                                                               Data Hora
                                                   Tipo
## 8577 Automático
                                 CETESB Dados Primários 01/01/2015 19:00
## 8578 Automático
                                 CETESB Dados Primários 01/01/2015 20:00
                                 CETESB Dados Primários 01/01/2015 21:00
## 8579 Automático
## 8580 Automático
                                 CETESB Dados Primários 01/01/2015 22:00
## 8581 Automático
                                 CETESB Dados Primários 01/01/2015 23:00
                                 CETESB Dados Primários 01/01/2015 24:00
  8582 Automático
##
                                      NomeEstação
                                                                NomeParâmetro
        CodigoEstação
## 8577
                   95 Cid.Universitária-USP-Ipen NOx (Óxidos de Nitrogênio)
## 8578
                   95 Cid.Universitária-USP-Ipen NOx (Óxidos de Nitrogênio)
## 8579
                   95 Cid.Universitária-USP-Ipen NOx (Óxidos de Nitrogênio)
                   95 Cid.Universitária-USP-Ipen NOx (Óxidos de Nitrogênio)
## 8580
## 8581
                   95 Cid.Universitária-USP-Ipen NOx (Óxidos de Nitrogênio)
                   95 Cid.Universitária-USP-Ipen NOx (Óxidos de Nitrogênio)
## 8582
##
        UnidadedeMedida MediaHoraria MediaMovel Valido
## 8577
                                    3
                                                    Sim
                    ppb
## 8578
                                    8
                                                    Sim
                    ppb
## 8579
                                   11
                                                    Sim
                    ppb
## 8580
                                                    Sim
                                   11
                    ppb
## 8581
                                   16
                                                    Sim
                    ppb
## 8582
                                   NΑ
                                                    Sim
                    ppb
```

4.1.1 Qua dificultades tu já enfrentou importando dados?

4.2 Processando nossa data-frame

Tem numeroas formas e pacotes para ordenar, arrangiar (Arrange), mutar e cambiar as data-frames. As mais conhecidas são provablemente do universe *tidyverse* com o famoso pacote *dplyr*. Mas, nesta curso vamos focar em **base**.

Vamos então revisar a classe de cada columna do nosso data-frame com a função sapply, apresentada em outro capitulo, mas se quiser, da uma olhada em ?sapply.

```
sapply(df, class)
```

```
"factor"
                                    "factor"
                                                          "factor"
##
##
                   Data
                                        Hora
                                                    CodigoEstação
               "factor"
                                    "factor"
##
                                                         "integer"
##
                                                  {\tt UnidadedeMedida}
           NomeEstação
                              NomeParâmetro
##
               "factor"
                                    "factor"
                                                          "factor"
                                                            Valido
##
          MediaHoraria
                                  MediaMovel
                                                          "factor"
              "integer"
                                    "factor"
```

Quando nos trabalhamos com series de tempo, é importante ter a variabel de tempo reconhecida como "tempo", especificamente como classe "POSIXct". Mas, a classe de Data é "factor" e de Hora tambem "factor", o que é ruim. Então, vamos criar uma variabel de tempo mais standard com formato 2018-04-29 19:54:54.

Para isso temos que grudar as variabel Data e Hora. Faremios isso numa nova varaibel chamada tempo_char, adicionando ela diretamente no df com o cifrão DOLLAR \$. O grude pode ser feito com as funções paste

```
df$tempo_char <- paste(df$Data, df$Hora)</pre>
head(df$tempo_char)
## [1] "01/01/2014 01:00" "01/01/2014 02:00" "01/01/2014 03:00"
## [4] "01/01/2014 04:00" "01/01/2014 05:00" "01/01/2014 06:00"
class(df$tempo char)
## [1] "character"
```

Esta melhorando mas ainda tem clase character.

head(df\$mes)

Para convertir a nossa classe POSIXct podemos usar a função as.POSIXct (olha as.POSIXct). Seus argu-

```
mentos são:
args(as.POSIXct)
## function (x, tz = "", ...)
## NULL
Então, vamos criar outra variabel tempo o formato POSIXct
df$tempo <- as.POSIXct(x = df$tempo_char, tz = "Americas/Sao_Paulo",</pre>
                        format = "%d/%m/%Y %H:%M")
head(df$tempo)
## [1] "2014-01-01 01:00:00 Americas" "2014-01-01 02:00:00 Americas"
## [3] "2014-01-01 03:00:00 Americas" "2014-01-01 04:00:00 Americas"
## [5] "2014-01-01 05:00:00 Americas" "2014-01-01 06:00:00 Americas"
class(df$tempo)
## [1] "POSIXct" "POSIXt"
Agora, vamos a extraer os dias da semana do tempo, mes e dia juliano:
df$weekdays <- weekdays(df$tempo)</pre>
head(df$weekdays)
## [1] "quarta" "quarta" "quarta" "quarta" "quarta"
df$mes <- months(df$tempo)</pre>
```

```
## [1] "janeiro" "janeiro" "janeiro" "janeiro" "janeiro" "janeiro"
```

4.3. AGGREGATE 23

```
df$diajuliano <- julian(df$tempo)
head(df$diajuliano)

## Time differences in days
## [1] 16071.04 16071.08 16071.12 16071.17 16071.21 16071.25</pre>
```

4.3 aggregate

4.4 subset

4.5 data.table, read_xl e mais

data.table é um pacote que apresenta a classe data.table, que é como uma versão melhorada da classe data-frame O termo específico é que data-table tem herencia (inherits) da classe data.frame

Vamos ver como funciona data table lendo o dois arquivos e comparar quanto tempo demoram cada um.

```
df1 <- print(system.time(read.table("https://raw.githubusercontent.com/ibarraespinosa/cursoR/master/dad
## user system elapsed
## 0.085 0.001 1.627</pre>
```

```
library(data.table)
df2 <- print(system.time(fread("https://raw.githubusercontent.com/ibarraespinosa/cursoR/master/dados/NO.
## Warning in fread("https://raw.githubusercontent.com/ibarraespinosa/
## cursoR/master/dados/NOXIPEN2014.txt", : Starting data input on line 2
## and discarding line 1 because it has too few or too many items to be
## column names or data: "TipodeRede" "TipodeMonitoramento" "Tipo" "Data"
## "Hora" "CodigoEstação" "NomeEstação" "NomeParâmetro" "UnidadedeMedida"
## "MediaHoraria" "MediaMovel" "Valido"
## user system elapsed</pre>
```

olha que estamos usando a função fread.

0.219

0.000

read_xl é mais uma função do universo tidyverse que permite importar excel no R, diretamente e inteligentemente.

4.6 NetCDF

0.028

4.7 Binarios

Applications

Some significant applications are demonstrated in this chapter.

- 5.1 Example one
- 5.2 Example two

Final Words

We have finished a nice book.