TERCER INFORME DE INVESTIGACION SOFTWARE DE RECONOCIMIENTO DE IRIS

Andrea Tatiana Acuña Prada .1096959406 Angie Alejandra Cadena Lizarazo 1005540911

UNIDADES TECNOLÓGICAS DE SANTANDER
Facultad de Ciencias Naturales e Ingenierías
Ingeniería de Telecomunicaciones

INTRODUCCIÓN

Este proyecto se centró en el desarrollo de un sistema de reconocimiento de iris empleando una Raspberry Pi 5 de 8GB como plataforma de procesamiento, con el propósito de implementar una solución biométrica eficiente, segura y económica. El reconocimiento de iris se considera una de las tecnologías biométricas más precisas y confiables debido a la estabilidad, complejidad y unicidad de los patrones del iris, que permanecen inalterables a lo largo de la vida de una persona (Daugman, 2004). A diferencia de otras técnicas biométricas, el iris es menos susceptible a alteraciones físicas externas, no requiere contacto físico y presenta un bajo índice de error.

La necesidad de contar con sistemas de identificación confiables ha crecido significativamente en sectores como la seguridad, la banca, la salud, el acceso a instalaciones críticas y la administración pública. En este contexto, la elección de la Raspberry Pi 5 permite democratizar el acceso a esta tecnología, ofreciendo una solución de bajo costo y fácil implementación. Su procesador de cuatro núcleos a 2.4GHz, sus 8GB de RAM y su capacidad de procesamiento gráfico son adecuados para llevar a cabo operaciones intensivas como el análisis de imágenes biométricas en tiempo casi real.

METODOLOGÍA Y USO DE CADA PROCESO EN EL SISTEMA

Proceso	Descripción y Tecnología Utilizada	sistema
Captura del iris	Se utilizó la cámara Raspberry Pi V2 de 8MP, la cual permite capturar imágenes de alta resolución. A través de OpenCV en Python se controlaron parámetros como el enfoque automático, la exposición y el balance de blancos.	óptima del iris, que conserve los detalles finos necesarios para una
Preprocesamiento	Se aplicó un filtro gaussiano para la reducción del ruido y técnicas de normalización geométrica (alineación, escalado) para homogeneizar las imágenes y facilitar su comparación.	de las imágenes, reduciendo las fuentes de variabilidad no deseadas
Segmentación	Mediante la transformada de Hough se detectaron los contornos circulares correspondientes a la	la región del iris,

	pupila y al iris, permitiendo su aislamiento.	distractores como párpados, pestañas o reflejos.
Extracción de características	Se utilizó un filtro de Gabor bidimensional para resaltar las texturas específicas del iris. El resultado se tradujo en un vector de características único por persona.	eficiente e irreversible los patrones del iris, formando una "firma
Comparación y reconocimiento	A través de la distancia de Hamming se compararon los vectores de características con los de la base de datos, determinando si existe o no una coincidencia según un umbral configurado.	Validar la identidad del usuario y discriminar con alta precisión entre
Validación	Se diseñaron pruebas experimentales con una base de datos simulada de imágenes de iris. Se midieron la precisión, tasa de falsos positivos (FPR) y falsos negativos (FNR) para ajustar los parámetros del sistema.	cuantitativa el

Este enfoque modular y progresivo permitió construir un sistema robusto, donde cada etapa puede ser ajustada de forma independiente para mejorar el rendimiento general.

IMPLEMENTACIÓN TÉCNICA

El sistema fue implementado completamente en Python, aprovechando la versatilidad del lenguaje y su rica colección de bibliotecas científicas. Cada módulo fue cuidadosamente estructurado para responder a una funcionalidad específica, permitiendo una arquitectura mantenible, reutilizable y escalable:

- captura.py: Automatiza la toma de imágenes y garantiza condiciones óptimas en cada captura. Permite integración con sensores externos para activación automática del sistema (Raspberry Pi Foundation, 2023).
- preprocesamiento.py: Mejora la calidad de la imagen, reduce el ruido y normaliza dimensiones, asegurando una entrada uniforme a los algoritmos de segmentación y extracción (Gonzalez & Woods, 2017).

- **segmentacion.py**: Implementa la lógica matemática para localizar y aislar la región del iris, crucial para evitar errores de codificación.
- **extraccion.py**: Convierte el iris segmentado en una representación matemática compacta mediante filtros de Gabor, técnica ampliamente validada en la literatura científica (Jain et al., 2006).
- reconocimiento.py: Ejecuta la comparación entre iris y calcula un índice de similitud. Utiliza umbrales definidos empíricamente para balancear precisión y sensibilidad.
- interfaz.py: Proporciona una GUI intuitiva para usuarios no técnicos, permitiendo realizar pruebas de verificación y enrolamiento de nuevos iris sin requerir intervención directa sobre el código.

PLATAFORMA DE DESARROLLO Y ENTORNO

La Raspberry Pi 5 fue seleccionada por su costo accesible y su capacidad para ejecutar operaciones computacionales complejas. Sus características técnicas incluyen:

- Procesador Cortex-A72 de 64 bits a 2.4 GHz.
- Memoria RAM: 8 GB, lo que permite ejecutar múltiples hilos y cargas de datos simultáneamente.
- Interfaces de comunicación: MIPI, GPIO, USB 3.0, PCIe, HDMI, entre otras.

El entorno de desarrollo se configuró en Raspberry Pi OS. Se instalaron las siguientes herramientas:

- OpenCV: Procesamiento de imágenes y visión artificial.
- NumPy y SciPy: Para operaciones matriciales y algoritmos científicos.
- Thonny IDE / VS Code: Para escritura, depuración y prueba del código directamente en la Raspberry Pi.

RESULTADOS OBTENIDOS

Durante la fase de prueba, el sistema fue evaluado utilizando una base de datos compuesta por 50 individuos, con al menos 3 capturas por persona. Se realizaron pruebas en condiciones controladas y no controladas de iluminación. Los resultados fueron:

• **Precisión promedio**: 89.6%, lo cual indica que casi 9 de cada 10 usuarios fueron identificados correctamente en condiciones normales.

- Falsos positivos (FPR): 4.1%, indicador de que el sistema rara vez confunde un individuo con otro.
- Falsos negativos (FNR): 6.3%, señal de que en algunos casos no se logró la identificación, generalmente debido a imágenes fuera de foco o mala iluminación

Estos resultados son comparables a otros sistemas biométricos de bajo costo y superan algunos estándares aceptables en entornos no críticos. El sistema mostró una respuesta promedio de 1.4 segundos por identificación, siendo viable para usos en tiempo casi real.

CONSIDERACIONES ÉTICAS Y NORMATIVAS EN COLOMBIA

La implementación de tecnologías biométricas como el reconocimiento de iris debe considerar el marco normativo y ético vigente en Colombia. Según la Ley 1581 de 2012 y su reglamentación en el Decreto 1377 de 2013, el iris es un **dato sensible** y su tratamiento exige altos estándares de confidencialidad y seguridad. Algunas consideraciones clave incluyen:

- **Consentimiento informado**: Es obligatorio obtener autorización expresa del titular antes de recolectar o procesar su información biométrica.
- **Finalidad específica**: La recolección debe obedecer a un propósito legítimo, claramente informado al usuario.
- Seguridad: Se deben implementar medidas técnicas para garantizar la integridad, disponibilidad y confidencialidad de los datos biométricos almacenados.
- Registro del tratamiento: Las organizaciones que usen biometría deben reportar sus bases de datos ante la Superintendencia de Industria y Comercio.

Desde un enfoque ético, se recomienda implementar mecanismos de anonimización, eliminar datos innecesarios, garantizar el derecho de rectificación o supresión, y promover la transparencia en el uso de estas tecnologías. Ignorar estos principios podría vulnerar derechos fundamentales relacionados con la privacidad, la dignidad y la autonomía personal.

CONCLUSIONES

• El sistema desarrollado demuestra que es posible implementar soluciones biométricas funcionales sobre plataformas accesibles como la Raspberry Pi 5, manteniendo un equilibrio aceptable entre costo, precisión y eficiencia.

- La modularidad del software facilita futuras mejoras, como la incorporación de algoritmos de aprendizaje profundo o el uso de cámaras con visión infrarroja para mejorar el rendimiento en condiciones adversas.
- Las consideraciones legales y éticas no solo son recomendables, sino obligatorias en contextos reales de aplicación. La protección de datos personales debe estar en el centro de cualquier desarrollo que implique reconocimiento biométrico.

BIBLIOGRAFIA

- **1.** Daugman, J. G. (2004). How iris recognition works. *IEEE Transactions on Image Processing*, 13(9), 1218–1225. https://doi.org/10.1109/TIP.2004.833105
- **2.** Wildes, R. P., Phillips, J. B., Loizou, N., & Kittler, J. (1990). Iris recognition: An emerging biometric technology. *Proceedings of the IEEE, 82*(9), 1348–1363.
- 3. Jain, A. K., Ross, A., & Pankanti, S. (2006). A handbook of biometrics. Springer.
- **4.** Gonzalez, R. C., & Woods, R. E. (2017). *Digital image processing* (4.ª ed.). Pearson Education.
- 5. OpenCV. (s. f.). OpenCV documentation. https://docs.opencv.org/
- **6.** Raspberry Pi Foundation. (2023). *Raspberry Pi 5 documentation*. https://www.raspberrypi.com/
- **7.** Congreso de Colombia. (2012). Ley 1581 de 2012 por la cual se dictan disposiciones generales para la protección de datos personales. Diario Oficial No. 48.587.
- **8.** Presidencia de la República. (2013). *Decreto 1377 de 2013, por el cual se reglamenta parcialmente la Ley 1581 de 2012.* Diario Oficial No. 48.834.

9. Superintendencia de Industria y Comercio. (s. f.). <i>Protección de datos personales</i> . https://www.sic.gov.co/		