ECE 630: Statistical Communication Theory

Dr. B.-P. Paris

Dept. Electrical and Comp. Engineering

George Mason University

Last updated: January 24, 2022

Gaussian	Basics
000	
000000	

Random Processes
0000
00000000
0000000
0000

Part I

Mathematical Prerequisites

Gaussian Random Variables — Why we Care

- Gaussian random variables play a critical role in modeling many random phenomena.
 - By central limit theorem, Gaussian random variables arise from the superposition (sum) of many random phenomena.
 - Pertinent example: random movement of very many electrons in conducting material.
 - Result: thermal noise is well modeled as Gaussian.
 - Gaussian random variables are mathematically tractable.
 - In particular: any linear (more precisely, affine) transformation of Gaussians produces a Gaussian random variable.
- Noise added by channel is modeled as being Gaussian.
 - Channel noise is the most fundamental impairment in a communication system.

Gaussian Random Variables

A random variable X is said to be Gaussian (or Normal) if its pdf is of the form

$$p_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right).$$

- ▶ All properties of a Gaussian are determined by the two parameters m and σ^2 .
- ▶ Notation: $X \sim \mathcal{N}(m, \sigma^2)$.
- Moments:

$$\mathbf{E}[X] = \int_{-\infty}^{\infty} x \cdot p_X(x) \, dx = m$$

$$\mathbf{E}[X^2] = \int_{-\infty}^{\infty} x^2 \cdot p_X(x) \, dx = m^2 + \sigma^2.$$

Plot of Gaussian pdf's

The Gaussian Error Integral — Q(x)

- We are often interested in $Pr\{X > x\}$ for Gaussian random variables X.
- These probabilities cannot be computed in closed form since the integral over the Gaussian pdf does not have a closed form expression.
- Instead, these probabilities are expressed in terms of the Gaussian error integral

$$Q(x) = \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz.$$

The Gaussian Error Integral — Q(x)

Example: Suppose $X \sim \mathcal{N}(1, 4)$, what is $Pr\{X > 5\}$?

$$\Pr\{X > 5\} = \int_{5}^{\infty} \frac{1}{\sqrt{2\pi \cdot 2^{2}}} e^{-\frac{(x-1)^{2}}{2 \cdot 2^{2}}} dx \quad \text{substitute } z = \frac{x-1}{2}$$
$$= \int_{2}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} dz = Q(2)$$

Exercises

- Let $X \sim \mathcal{N}(-3,4)$, find expressions in terms of $Q(\cdot)$ for the following probabilities:
 - 1. $Pr\{X > 5\}$?
 - 2. $Pr\{X < -1\}$?
 - 3. $\Pr\{X^2 + X > 2\}$?
- Matlab does not provide a function to compute Q(x). Instead, Matlab provides the *error function* erf and its complement erfc. The complementary error function erfc is defined as

$$\operatorname{erfc}(x) = 1 - \operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} dt.$$

Express Q(x) in terms of erfc(x).

Bounds for the Q-function

- Since no closed form expression is available for Q(x), bounds and approximations to the Q-function are of interest.
- The following bounds are tight for large values of x:

$$\left(1-\frac{1}{x^2}\right)\frac{e^{-\frac{x^2}{2}}}{x\sqrt{2\pi}} \leq Q(x) \leq \frac{e^{-\frac{x^2}{2}}}{x\sqrt{2\pi}}.$$

The following bound is not as quite as tight but very useful for analysis

$$Q(x) \leq \frac{1}{2}e^{-\frac{x^2}{2}}.$$

Note that all three bounds are dominated by the term $e^{-\frac{x^2}{2}}$; this term determines the asymptotic behaviour of Q(x).

Plot of Q(x) and Bounds

Exercise: Chernoff Bound

- For a random variable X, the Chernoff Bound provides a tight upper bound on the probability $Pr\{X > x\}$.
- The Chernoff bound is given by

$$\Pr\left\{X > x\right\} \leq \min_{t>0} \frac{\mathbf{E}[e^{tX}]}{e^{tx}}.$$

Let $X \sim \mathcal{N}(0, 1)$; use the Chernoff bound to show that

$$\Pr\{X > x\} = Q(x) \le e^{-x^2/2}$$

Gaussian Random Vectors

A length N random vector \vec{X} is said to be Gaussian if its pdf is given by

00000

$$p_{\vec{X}}(\vec{x}) = \frac{1}{(2\pi)^{N/2}|K|^{1/2}} \exp\left(-\frac{1}{2}(\vec{x} - \vec{m})^T K^{-1}(\vec{x} - \vec{m})\right).$$

- ▶ Notation: $\vec{X} \sim \mathcal{N}(\vec{m}, K)$.
- Mean vector

$$\vec{m} = \mathbf{E}[\vec{X}] = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \vec{x} p_{\vec{X}}(\vec{x}) d\vec{x}.$$

Covariance matrix

$$K = \mathbf{E}[(\vec{X} - \vec{m})(\vec{X} - \vec{m})^T] = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} (\vec{x} - \vec{m})(\vec{x} - \vec{m})^T p_{\vec{X}}(\vec{x}) c$$

 \triangleright | K | denotes the determinant of K.

GEORGE NO VERSITY

ightharpoonup K must be positive definite, i.e., $\vec{z}^T K \vec{z} > 0$ for all \vec{z} .

Exercise: Important Special Case: N=2

Consider a length-2 Gaussian random vector with

$$\vec{m} = \vec{0}$$
 and $K = \sigma^2 \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$ with $|\rho| \leq 1$.

Find the pdf of \vec{X} .

Exercise: Important Special Case: N=2

Consider a length-2 Gaussian random vector with

$$\vec{m} = \vec{0}$$
 and $K = \sigma^2 \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$ with $|\rho| \leq 1$.

- Find the pdf of \vec{X} .
- Answer:

$$\rho_{\vec{X}}(\vec{x}) = \frac{1}{2\pi\sigma^2\sqrt{1-\rho^2}} \exp\left(\frac{x_1^2 - 2\rho x_1 x_2 + x_2^2}{2\sigma^2(1-\rho^2)}\right)$$

Important Properties of Gaussian Random Vectors

- 1. If the *N* Gaussian random variables X_n comprising the random vector \vec{X} are uncorrelated $(\text{Cov}[X_i, X_j] = 0$, for $i \neq j$), then they are statistically independent.
- 2. Any affine transformation of a Gaussian random vector is also a Gaussian random vector.
 - ▶ Let $\vec{X} \sim \mathcal{N}(\vec{m}, K)$
 - ► Affine transformation: $\vec{Y} = A\vec{X} + \vec{b}$
 - ► Then, $\vec{Y} \sim \mathcal{N}(A\vec{m} + \vec{b}, AKA^T)$

Exercise: Generating Correlated Gaussian Random Variables

▶ Let $\vec{X} \sim \mathcal{N}(\vec{m}, K)$, with

$$\vec{m} = \vec{0}$$
 and $K = \sigma^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

- ightharpoonup The elements of \vec{X} are uncorrelated.
- ► Transform $\vec{Y} = A\vec{X}$, with

$$A = \begin{pmatrix} \sqrt{1 - \rho^2} & \rho \\ 0 & 1 \end{pmatrix}$$

ightharpoonup Find the pdf of \vec{Y} .

