

3.3 乘法运算

刘 芳 副教授 国防科学技术大学计算机学院

── 计算机原理 ───

继续从上一个算式说起

继续从上一个算式说起

从十进制乘法谈起

口十进制乘法,例:

$$X$$
 A
 A <

一计算机原理。

由十进制乘法到二进制乘法

口进制乘法,例: ²⁴⁵

位积 AXB;

AXB = 10001111

3.3.1 二进制乘法

					1	1	0	1
			X		1	0	1	1_
$M_0 = A \& B_4$	0	0	0	0	1	1	0	1
$M_1 = A \& B_3$	0	0	0	1	1	0	1	0
$M_2 = A \& B_2$	0	0	0	0	0	0	0	0
$M_3 = A \& B_1$	0	1	1	0	1	0	0	0
AXB	1	0	0	0	1	1	1	1

手工运算过程

位积 AXB;

AXB = 10001111

计算机中怎 么实现? 问题:1.加法器只有两个输入端,无法支持多路输入!

2.需要2n+1位加法器,不能有效利用全加器操作!

改进方案1:引入部分积P,改一次求和为累加求和

一计算机原理一

能否等同于部分积右移1位?

X 1011

只需要n+1位加法器

改进方案2:将部分积右移一位再求和,移出部分保存

- 被乘数寄存器X: 存放被乘数
- 部分积寄存器P: 初始置 $P_0 = 0$; 结束肘存放64位聚积的高32位
- 乘数寄存器B:初始置乘数;结束时存放64位乘积的低32位

- 进位触发器C:保存加法器的进位信号
- 循环计数器 C_n : 循环次数(初值31), 每循环一次 C_n -1, C_n =0结束
- ALU: 乘法核心部件。在"加"逻辑控制下对P和A的内容进行运算,在"写使能"逻辑控制下运算结果被送回P,进位存放在C中

一计算机原理

每次循环都要对进位C、部分积寄存器P和乘数寄存器B 实现同步"右移"

一计算机原理一

COMPUTER PRINCIPLE

- ■进位触发器C:保存加法器的进位信号
- ■循环计数器 C_n :循环次数(初值31),每循环一次 C_n -1, C_n =0结束
- ■ALU: 乘法核心部件。在"加"逻辑控制下对P和B的内容进行运算,在"写使能"逻辑控制下运算结果被送回P,进位存放在C中

一计算机原理

3.3.2 原码一位乘法

□二进制乘法,例:

无符号数乘法

位积 AXB;

AXB = 10001111

有符号怎么办?

原码一位乘法:符号位异或,数值部分绝对值相乘

一计算机原理一

COMPUTER PRINCIPLE

机器运算算法

$$=A\times(0.1011)$$

$$=0.1A+0.00A+0.001A+0.0001A$$

分析: 机器运算算法的特点

- 乘法的数值部分由多次累加和移位完成
- n次n+1位加法 (此例中n=4)
- · n次右移操作

$$P_0 = 0$$

$$P_1 = 2^{-1}(B_1|A| + P_0)$$

$$P_2 = 2^{-1}(B_2|A| + P_1)$$

$$P_3 = 2^{-1}(B_3|A| + P_2)$$

$$P_4 = 2^{-1}(B_4|A| + P_3)$$

 $C=(A_0 \oplus B_0) \cdot P_4$

□原码一位乘法递推公式

$$P_2=2^{-1}(P_1+B_{n-1}|A|)$$

• • •

$$P_i=2^{-1}(P_{i-1}+B_{n-i+1}|A|)$$

• • •

$$P_n=2^{-1}(P_{n-1}+B_1|A|)=|A|\times |B|$$

$$C=(A_0 \oplus B_0) \cdot P_n$$

- □原码一位乘法器 的组成
 - ■被乘数寄存器
 - ■乘数寄存器
 - ■乘积寄存器
 - ■加法器
 - ■输入选择开关
 - ■控制电路

□原码一位乘法过程

■初始化

 $Cnt_{\times} \leftarrow n, T_{\times} \leftarrow 1$

■乘法:

$$\Sigma \leftarrow 0.P_{1\sim n} + B_n \times 0.A_{1\sim n};$$

$$P_{1\sim n} \leftarrow \Sigma_{0\sim n-1}$$
;

ASHR $B_{1\sim n}$, $B_1 \leftarrow \Sigma_n$;

Cnt x-1

■完成:

 $Cnt_{\times}=0$, $T_{\times}\leftarrow 0$

3.3.3 补码一位乘法

- □在原码一位乘法的基础上发展
- □比较法,由英国Booth夫妇首先提出,故又称为Booth乘法

被乘数
$$[A]_{\dot{\uparrow}} = A_{01} A_{02} A_1 A_2 ... A_n$$

乘数 $[B]_{\dot{\uparrow}} = B_0 ... B_1 B_2 ... B_n$

乘数
$$[B]_{*} = B_0.B_1B_2...B_n$$

符号位参与运算

乘积
$$[C]_{i} = C_0.C_1C_2...C_nC_{n+1}C_{n+2}...C_{2n}$$

被乘数A采用模4补码(变形补码),根据定义有:

$$[A]_{i}=2^2+A \pmod{4}$$
 A $2^2+A=2^{n+2}+A \pmod{4}$

如果A>0,则
$$A_{01}A_{02}=00$$
;如果A<0,则 $A_{01}A_{02}=11$

分两种情况讨论:

- □乘数非负(B≥0)
- □乘数为负(B<0)

□A符号任意,B为非负数

- 当被乘数A ≥0时:[A]_补=[A]_原,[B]_补=[B]_原
 - 乘法过程与原码乘法相同,但符号位参加运算
- 当被乘数A<0时:采用模4补码(变形补码)

$$[A]_{\lambda h} \cdot [B]_{\lambda h} = [A]_{\lambda h} \cdot B = (2^{n+2} + A) \cdot B$$

$$= 2^{n+2} \cdot \sum_{i} B_{i} 2^{-i} + AB$$

$$=2^2+A\cdot B \pmod{4} = [A\cdot B]_{\nmid h}$$

□A符号任意,B为非负数

- 1、符号位按照补码规则参加运算
- 2、移位肘按照补码规则移位

[A-B] _原 =[A] _原 ·[B] _原	$[\mathbf{A} \cdot \mathbf{B}]_{\nmid h} = [\mathbf{A}]_{\nmid h} \cdot [\mathbf{B}]_{\nmid h}$
$P_0 = 0$	[P ₀] _{ネh} ≡0
$P_1 = 2^{-1}(P_0 + B_n A)$	$[P_1]_{\dot{k}h} = 2^{-1}([P_0]_{\dot{k}h} + B_n \cdot [A]_{\dot{k}h})$
$P_2 = 2^{-1}(P_1 + B_{n-1} A)$	$[P_2]_{\dot{k}h} = 2^{-1}([P_1]_{\dot{k}h} + B_{n-1} \cdot [A]_{\dot{k}h})$
$P_i = 2^{-1}(P_{i-1} + B_{n-i+1} A)$	$[P_i]_{\dot{k}h} = 2^{-1}([P_{i-1}]_{\dot{k}h} + B_{n-i+1} \cdot [A]_{\dot{k}h})$
$P_n = 2^{-1}(P_{n-1} + B_1 A) = A \times B $	$[P_n]_{\dot{k}h} = 2^{-1}([P_{n-1}]_{\dot{k}h} + B_1 \cdot [A]_{\dot{k}h})$

分两种情况讨论:

- □乘数非负(B≥0)
- □乘数为负(B<0)

补码—位乘法

口A符号任意, B为负数 [B]*=B+2 (mod 2)

$$B = [B]_{\downarrow h} - 2 = 1.B_1B_2...B_n - 2 = 0.B_1B_2...B_n - 1$$

$$[A \cdot B]_{\not |_{1}} = [A \cdot (0.B_{1}B_{2}...B_{n}) - A]_{\not |_{1}}$$

$$= [A \cdot (0.B_{1}B_{2}...B_{n})]_{\not |_{1}} + [-A]_{\not |_{1}}$$

$$= [A]_{\not |_{1}} \cdot (0.B_{1}B_{2}...B_{n}) + [-A]_{\not |_{1}}$$

$$= [A]_{\not |_{1}} \cdot ([B]_{\not |_{1}})_{\not |_{2}} + [-A]_{\not |_{1}}$$

分两种情况讨论:

B为负数:[A·B]_补=[A]_补·([B]_补)_尾+[-A]_补

B为非负数: [A·B]_补=[A]_补·[B]_补

两种情况可以 综合吗?

$$[A \cdot B]_{\nmid h} = [C]_{\nmid h} = [A]_{\nmid h} \cdot (0.B_1B_2...B_n) + [-A]_{\nmid h} \cdot B_0$$

B_i为B的补码的第i位的值

补码-

补码一位乘法

$$[A \cdot B]_{\nmid h} = [C]_{\nmid h} = [A]_{\nmid h} (0 \cdot B_1 B_2 ... B_n) + [-A]_{\nmid h} \cdot B_0$$

$$[C]_{*} = [A]_{*}(B_1 - B_0) + 2^{-1}\{[A]_{*}(B_2 - B_1) + 2^{-1}\{[A]_{*}(B_3 - B_2) + 2^{-1}[\cdots + 2^{-1}\{[A]_{*}(B_{n+1} - B_n) + 0\} \cdots \}\}$$

$$[P_0]_{i} = 0;$$

$$[P_1]_{ik} = 2^{-1}\{[P_0]_{ik} + (B_{n+1} - B_n)[A]_{ik}\};$$

$$[P_2]_{*} = 2^{-1}[\{[P_1]_{*} + (B_n - B_{n-1})[A]_{*}\};$$

• • •

$$[P_i]_{i} = 2^{-1}\{[P_{i-1}]_{i} + (B_{n-i+2} - B_{n-i+1})[A]_{i}\};$$

• • •

$$[P_n]_{*} = 2^{-1}\{[P_{n-1}]_{*} + (B_2 - B_1)[A]_{*}\}$$

所以,
$$[C]_{*}=[P_{n+1}]_{*}=[P_n]_{*}+(B_1-B_0)[A]_{*}$$

当前乘数寄存器的最后两位

□Booth乘法

比较法

判断位 (B _n ,B _{n+1})	新部分积 [P _{i+1}] _补 =	操作	说明
0 0	2-1[P _i]*	→1	右移一位
0 1	$2^{-1}\{[P_i]_{i}+[A]_{i}\}$	+,→1	加[A] _补 后再右移一位
1 0	$2^{-1}\{[P_i]_{i}+[-A]_{i}\}$	-,→1	加[-A] _补 后再右移一位
1 1	2-1[P _i]*	→1	右移一位
	1- 41		

一计算机原理一

补码—位乘法

Booth乘法运算规则

- ■被乘数A和部分积P均取两位符号位即变形码,乘数取一位符号位,符号位参与运算
- ■乘数末尾增设附加位B_{n+1},其初始值为0
- ■B_n和B_{n+1}构成各步运算的乘数判断位
- ■按补码移位规则:部分积为正(第1符号位为0),右移时有效位最高位补0;部分积为负,右移时有效位最高位补1
- ■按Booth乘法表算法进行到第n+1步,但第n+1步的部分积不再 移位

一计算机原理=

□例1

被乘数:A=-0.011

乘数:B= 0.101

$$[A]_{ab} = 11.101$$

$$[-A]_{k} = 00.011$$

$$[B]_{k} = 0.101$$

$$[P_0]_{k} = 00.000$$

计算机原理 =

□例1

被乘数:A=-0.011

乘数:B= 0.101

$$[A]_{ab} = 11.101$$

$$[-A]_{k} = 00.011$$

$$[B]_{k} = 0.101$$

$$[P_0]_{k} = 00.000$$

$$[A \times B]_{\#} = 1.110001$$

□例2

被乘数:A=-1

乘数:B=-1

$$[A]_{k} = 11.000$$

$$[-A]_{k} = 01.000$$

$$[B]_{k} = 1.000$$

$$[P_0]_{k} = 00.000$$

гъ	1
I۲a	补

$$[P_1]_{\stackrel{\wedge}{\mathbb{N}}}$$
 $\rightarrow 1$

$$[P_4]_{\stackrel{.}{\uparrow}\!h}$$
 + $[-A]_{\stackrel{.}{\uparrow}\!h}$

00.00

部分积

01. 000

溢出,超出定点小 数表示范围

1.

 $[A \times B]_{k} = [C]_{k} = 01.000000 = 1$

定点小数补码乘法中 唯一溢出情况!

1.

 B_{n+1}

数

0

- □补码—位乘法 器的组成
 - ■被乘数寄存器
 - ■乘数寄存器
 - ■乘积寄存器
 - ■加法器
 - ■输入选择开关
 - ■控制电路

- □补码—位乘法 器的组成
 - ■被乘数寄存器
 - ■乘数寄存器
 - ■乘积寄存器
 - ■加法器
 - ■输入选择开关
 - ■控制电路

■计算机原理■

3.3.4 快速乘法

□提高乘法速度的方法

加速乘法的执行

每步处理多位乘数,实现快 速乘法

例如:Booth两位乘法

加速加法的执行

一步完成多个位积的相加, 实现快速乘法

例如:使用伪加器构成柱形 乘法器、利用实现多位乘的 专用芯片构成阵列乘法器

口加速加法的执行——柱形乘法<u>是</u>

■一位全加器和存储进位加法器(伪加器)

加法器

快速乘法

一次伪加,一次普通加

普通并行加法器CPA

三个位积的和需将<mark>伪加和Sp</mark>i与左移一位的<mark>伪加进位Cp</mark>i相加求得:

$$S = Sp3Sp2Sp1Sp0 + 2 * Cp3Cp2Cp1Cp0$$

快速乘法

m个操作数加法网络:

m-2级存储进位加法器CSA的多级连接+1级CPA

一级

CPA

加速加法的执行——阵列乘法器

◆利用若干全加器,完全由硬件直接计算乘法结果

一计算机原理=

快速乘法

加速加法的执行——阵列乘法器

◆利用若干全加器, 完全由硬件直接计算乘法结果

◆手算乘法过程(以4位无符号数为例)

快速乘法

				1	1	0	1
×				1	0	1	1
				1	1	0	1
			1	1	0	1	
		0	0	0	0		
+	1	1	0	1			
1	0	0	0	1	1	1	1

乘法速度取决于逻辑门 和加法器的传输延迟

