

Art of Problem Solving 2002 Balkan MO

Balkan MO 2002

_	April 27th
1	Consider n points $A_1, A_2, A_3, \ldots, A_n$ ($n \geq 4$) in the plane, such that any three are not collinear. Some pairs of distinct points among $A_1, A_2, A_3, \ldots, A_n$ are connected by segments, such that every point is connected with at least three different points. Prove that there exists $k > 1$ and the distinct points X_1, X_2, \ldots, X_{2k} in the set $\{A_1, A_2, A_3, \ldots, A_n\}$, such that for every $i \in \overline{1, 2k-1}$ the point X_i is connected with X_{i+1} , and X_{2k} is connected with X_1 .
2	Let the sequence $\{a_n\}_{n\geq 1}$ be defined by $a_1=20$, $a_2=30$ and $a_{n+2}=3a_{n+1}-a_n$ for all $n\geq 1$. Find all positive integers n such that $1+5a_na_{n+1}$ is a perfect square.
3	Two circles with different radii intersect in two points A and B . Let the common tangents of the two circles be MN and ST such that M, S lie on the first circle, and N, T on the second. Prove that the orthocenters of the triangles AMN , AST , BMN and BST are the four vertices of a rectangle.
4	Determine all functions $f: \mathbb{N} \to \mathbb{N}$ such that for every positive integer n we have: $2n+2001 \le f(f(n))+f(n) \le 2n+2002.$