WHAT IS ORGANIC CHEMISTRY?

- Organic chemistry is the chemistry of carbon compounds.
- Organic compounds contain H as well as C, while other common elements are O, N, the halogens, S and P.

Examples of organic compound

CH₃

methyl salicylic acid (aspirin)

glucose

4.1 Molecular and Structural Formulae

At the end of the lesson, student should be able to:

- a) Define structural formula. (C1)
- b) Show structural formula in the form of expanded, condensed and skeletal structures based on molecular formula. (C2)
- c) Classify carbons into primary, secondary, tertiary or quarternary and hydrogen into primary, secondary or tertiary. (C2)

Structural Formula

Formula that shows how the atoms of a molecule are bonded to one another

Structural formula

Expanded structure

<u>Condensed</u> <u>structure</u>

<u>Skeletal</u> structure

Expanded structure

A structural formula that shows all atoms in a

molecule and all bonds connecting the atoms.

Example:

Skeletal structure

- C chains are drawn zigzag, and rings are drawn as polygons
- C atoms and H atoms are usually not shown
- Functional groups are shown

Example

Condensed structure

■ C-H and C-C single bonds are normally not shown

Example

EXPANDED	CONDENSED
H H H H H H C H H H C H H H H H H H H	(CH ₃) ₃ CH

USES OF () IN CONDENSED STRUCTURE

To show heteroatoms, functional groups, alkyl groups, at the side chain

Example 2-propanol (C₃H₈O)

EXPANDED	CONDENSED	
H H H H H H H H H H H H H H H H H H H	CH ₃ CHCH ₃ OH CH ₃ CH(OH)CH ₃ CH ₃ CHOHCH ₃ (CH ₃) ₂ CHOH	
	(31.3/2	

Example

EXPANDED

CONDENSED

Multiple bond in condensed structure (show double bond / triple bond)

Condensed structure containing C = O bond

$$CH_2$$

 $/ \setminus$
 $H_2C - CH_2$

Condensed structure of cyclic compound

EXAMPLE 1:

Butane, C₄H₁₀

Expanded structure

Condensed structure

Skeletal structure

Convert each molecule into skeletal structure.

(a) $(CH_3)_2CHCH_2CH_2CH(CH_3)_2$

Convert each molecule into skeletal structure.

(b) CH₃CH(CI)CH(OH)CH₃

Exercise 1

Convert each molecule into skeletal structure.

Exercise 2

Write a condensed structural formula for each of the following compounds.

Exercise 2

(d)

CLASSIFICATION OF C ATOMS

primary carbon (1°)

Number of C atoms attached to it = 1

tertiary carbon (3°)

Number of C atoms attached to it = 3

secondary carbon (2°)

Number of C atoms attached to it = 2

$$c - \frac{c}{c} - c$$

quaternary carbon (4°)

Number of C atoms attached to it = 4

- No classification for C atoms in methane and in multiple bonds
- Only for sp³ C atom

Example

2-butene

Example 1

Identify the types of carbons (1°, 2°, 3°, or 4°) in the following molecules. Label at each C atom.

Answer

EXERCISE 3:

Count the amount of primary carbon, secondary carbon, tertiary carbon and quaternary carbon present in the following structure:

Primary Carbon = ____

Secondary Carbon = ___

Tertiary Carbon = ___

Quaternary Carbon =___

4.2 Functional Group and Homologous Series

At the end of the lesson, student should be able to:

- a) define functional group (C1)
- b) state functional groups of the following class of compounds. (C1)
- identify functional groups in a given compound.(C1,C2)
- d) define homologous series. (C1)
- e) explain general characteristics of homologous series. (C2)

Functional group

Definition

Is an atom or group of atoms in an organic molecule which characterised the molecule and enables it to react in specific ways which determines its chemical properties.

(h) & (c) Identifying and Classifying Functional groups of different class of compounds

Class of	Functi	onal Group	Everale
compounds	Structure	Name	- Example
Alkane	none	-	CH ₃ -CH ₃
C_nH_{2n+2}			
Alkene	— C=C —	carbon-carbon	H ₂ C=CH ₂
C _n H _{2n}		double bond	
Alkyne C _n H _{2n-2}	-C≡C-	carbon-carbon triple bond	HÇ≡ÇH

Class of	Functio	Example	
compounds	Structure	Name	
Aromatic/Arene C _n H _{2n-6}		Aromatic ring	CH ₃
Alcohol C _n H _{2n+1} OH	-OH	Hydroxyl	CH ₃ CH ₂ OH
Haloalkane C _n H _{2n+1} X	-X (F,Cl,Br,I)	Halogen	CH ₃ CH ₂ CI
Ether C _n H _{2n+2} O		Alkoxy	H ₃ COCH ₃ .

Class of	Functional Group		Example	
compounds	Structure	Name		
Aldehyde C _n H _{2n} O	0=0 	Carbonyl	H ₃ C - C - H	
Ketone C _n H _{2n} O	0 	Carbonyl	$H_3C - C - CH_3$	
Carboxylic acid C _n H _{2n} O ₂	0=0 H	Carboxyl	H ₃ C-C-OH-	
Ester C _n H _{2n} O ₂	0 	Ester /carboalkoxy	H ₃ C - C - O - CH ₃	
Acyl chloride C _n H _{2n+1} COCI	0=0 	Acyl	H ₃ C-C-CI	

Class of	Functional Group		Example
compounds	Structure	Name	
Anhydride	O = C - C -	Anhydride	0 0
$(C_nH_{2n+1}CO)_2O$	-ü-o-ü-		$H_3C - C - O - C - CH_3$
Amide C _n H _{2n+1} CONH ₂	X 0=C R-	Amide / carboxamide	H_3CC-NH_2
Amine C _n H _{2n+1} NH ₂	-C-N-	Amino	H ₃ C·-N-CH ₃
Nitrile C _n H _{2n+1} CN	-C≡N	Cyano	CH ₃ -C≡N

example

1. Identify the function groups in the following molecules.

Carboxamide / Amide

Carbon – carbon double bond

Alkoxy

Aromatic ring

Carboalkoxy / Ester

cyano

Identify the functional groups in the following molecule:

Identify and name the functional groups in the given organic compound: CH₂CH₂OH

Identify the functional groups in the following structures. Name the functional group.

Homologous Series

- is series of compounds where each member differs from the next member by a constant – CH₂ unit
- Members of the same homologous series are called homologs.

General Formula Homologous Series

SERIES	GENERAL FORMULA	ENDING NAME
ALKANE	C_nH_{2n+2}	ane
ALKENE	C _n H _{2n}	ene
ALKYNE	C _n H _{2n-2}	yne
ALCOHOL	R-OH	ol
ALDEHYDE	RCHO	al
KETONE	RCOR'	one
CARBOXYLIC ACID	RCOOH	oic acid
AMINE	RNH ₂	amine
AMIDE	RCONH ₂	amide

Note: R normally refer to alkyl group: C_nH_{2n+1}

Reduce 2 atom H for cyclic compound

R normally refer to alkyl group: C_nH_{2n+1} (reduced 1 H atom from alkane formula)

ALKANE	C_nH_{2n+2}	ALKYL	C_nH_{2n+1}
METHANE	CH ₄	METHYL	— CH ₃
ETHANE	CH ₃ CH ₃	ETHYL	— CH₂CH₃
PROPANE	CH ₃ CH ₂ CH ₃	PROPYL	-CH ₂ CH ₂ CH ₃
BUTANE	CH ₃ CH ₂ CH ₂ CH ₃	BUTYL	-CH ₂ CH ₂ CH ₃
PENTANE	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	PENTYL	-CH ₂ CH ₂ CH ₂ CH ₃

Reduce 2 atom H for cyclic compound EXAMPLE: ALKANE AND CYCLOALKANE

ALKANE	C_nH_{2n+2}	CYCLOALKANE	C _n H _{2n}
METHANE	CH ₄	_	
ETHANE	CH ₃ CH ₃	_	
PROPANE	CH ₃ CH ₂ CH ₃	CYCLOPROPANE	C ₃ H ₆
BUTANE	CH ₃ CH ₂ CH ₂ CH ₃	CYCLOBUTANE	C ₄ H ₈
PENTANE	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	CYCLOPENTANE	C ₅ H ₁₀

Reduce 2 atom H for cyclic compound

EXAMPLE: ALKENE AND CYCLOALKENE

ALKENE	C _n H _{2n}	CYCLOALKENE	C_nH_{2n-2}
ETHENE	CH ₂ = CH ₂	_	_
PROPENE	CH ₂ =CHCH ₃	CYCLOPROPENE	C ₃ H ₄
BUTENE	$CH_2 = CH CH_2CH_3$ $1-BUTENE$ $CH_3CH = CH CH_3$ $2-BUTENE$	CYCLOBUTENE	C ₄ H ₆
PENTENE	CH ₂ =CHCH ₂ CH ₂ CH ₃ 1-PENTENE	CYCLOPENTENE	C ₅ H ₈

Keep in Mind

Alkanes and cycloalkanes belong to the same class of compounds but different homologous series

HOMOLOGOUS SERIES		HOMOLOGOUS SERIES		
	OF ALKANES		OF CYCLOALKANES	
methane CH ₄		cyclopropane	C ₃ H ₆	
eth	nane	C ₂ H ₆	cyclobutane	C ₄ H ₈
pro	opane	C ₃ H ₈	cyclopentane	C ₅ H ₁₀
bu	itane	C ₄ H ₁₀	cyclohexane	C ₆ H ₁₂
pe	ntane	C ₅ H ₁₂	cycloheptane	C ₇ H ₁₄

4.3 Isomerism

At the end of the lesson, student should be able to:

- a) define isomerism, constitutional isomerism and stereoisomerism. (C1)
- b) construct constitutional isomers: (C3)
 - i. chain isomers
 - ii. Positional isomers
 - iii. Functional group isomers
- c) describe cis-trans isomerism due to restricted rotation about: (C2)
 - i. C=C bond
 - ii. C-C bond in cyclic compounds
- d) identify cis-trans isomerism of a given structural formula.(C1,C2)
- e) define chirality centre and enantiomers.(C1)
- f) identify chirality centre(s) in a molecule. (C1,C2)
- g) determine optical activity of a compound. (C3)
- h) draw a pair of enentiomers using 3-dimensional formula. (C3) *restricted to molecules with one chirality centre

ISOMERISM

Definition

TYPES OF ISOMER

STRUCTURAL ISOMERISM/ CONSTITUTIONAL ISOMERISM

- molecules that have same molecular formula but different structure.
- 3 types:
- a) Chain isomerism
- b) Positional isomerism
- c) Functional group isomerism

Draw structural isomers of compound with the molecular formula C_6H_{14}

Strategy: First draw all possible skeletal structures (without the H atoms), beginning with the longest possible structure.

CHAIN ISOMERS

due to different in carbon skeleton

Question: How many structural isomers does pentane, C₅H₁₂, have?

Step 1: draw the longest carbon skeleton, in this case 5-C

Condensed structure of cyclic compound

Step 2: Shorten the carbon backbone to 4-C, so now you will get one branch

Step 3: Shorten it some more to 3-C carbon backbone, and now you will get 2 branches!

Can you further shorten the carbon backbone?

Example 1: Draw structural isomers of alkene (C₅H₁₀)

$$CH_3CH_2CH_2CH = CH_2$$

POSITIONAL ISOMERS

due to different position of functional group

Example

Molecular formula = C_3H_8O

3
CH₃- 2 CH₂- 1 CH₂-OH 3 CH₃- 2 CH - 1 CH₃ 2 1-propanol OH

Both isomers have same carbon skeleton. They are only different in the position of -OH group!

Example 1: C₃H₇Cl

Example 2: C₄H₈

Example 3: $C_6H_{14}O$ (alcohol)

iii) Functional Group Isomerism

➤ These isomers have different functional groups and belong to different homologous series with the same general formula.

Classes of compounds	General Formula
Alcohol & Ether	$C_nH_{2n+2}O$
Aldehyde & Ketone	$C_nH_{2n}O$
Carboxylic acid & Ester	$C_nH_{2n}O_2$
Alkene & Cycloalkane	C_nH_{2n}

Example 3: C₆H₁₂ (General Formula : C_nH_{2n})

Carbon carbon double bond (alkene)

or

(Cycloalkane)

STEREOISOMERISM

Definition

TYPES OF STEREOISOMERISM

HOW TO IDENTIFY CIS-TRANS ISOMERS

Restricted rotation of carbon–carbon bonds due to:

- cyclic (ring) structure
- Two different atoms or group of atoms attached to each of C atoms which form double bond or cyclic structure

Example

CH₃CH=CHCH₃ 2-butene

trans-2-butene

cis-2-butene

- Two groups on the same side cis
- Two groups on opposite side
 * trans

Example CH3 1,2-dimethylcyclopentane CH₃ CH₃ cis-1,2-dimethylcyclopentane CH₃

CH₃

trans–1,2–dimethylcyclopentane

Exercise 1

Draw the structure of cis—trans isomer of 1,2—cyclobutanediol.

1,2-cyclobutanediol

Enantiomers

- Stereoisomers that nonsuperimposable mirror images of one another.
- □ occur only with compounds whose molecules are chiral molecule

CHIRALITY CENTER

Definition

- sp³ hybridized carbon bonded to four different atoms or groups.
- Also called chiral carbon, asymetric center, stereogenic center
- Labeled as "*"

Example

molecule is not superimposab with its mirror image

a pair of stereoisomers with structures that are mirrorimages of each other but nonsuperimposable.

3-D REPRESENTATION

How to show the 3-D structure on paper?

- Wedge-line:
 - bond in front
- Wedge-dashed:
 - bond behind
- Solid-line:
 - bond lies in the plane

DRAWING A PAIR OF ENANTIOMERS IN 3D

Example

This formula is called 3–D formula or wedge–dashed–wedge–line formula

Example: 1

enantiomers

2-butanol

Example : 2

a pair of enantiomers

Exercise 1

Label("*") at the chiral carbons (chirality center) in each of the following molecules:

- a) CH₃CH₂CHOHCH₃
- b) CH₃CHOHCHOHCH₂CH₃
- c) CH₃CHFCH₃
- d) CH₃CH(CH₃)CH₂CH₃

Exercise 2

Label ("*") at the chiral carbons (if any) in each of the following molecules:

a)

b)

c)

Optical activity

- Molecules that are optically active is the molecules that have the <u>ability to rotate the plane polarized</u> <u>light.</u>
- ✓ Polarimeter is used to determine the optical activity of a compound.

polarimeter

Optical activity

The requirements for optical active compounds:

- molecule contains a chirality centre / stereogenic centre / asymmetric carbon(*).
- molecule is not superimposable with its mirror image.

Exercise 3

Some of the molecules listed here have a stereogenic (chiral) carbon; some do not. Write the three dimensional formula for both enantiomers of those molecules that do have a chiral carbon.

a) CH₃CHCICH₂CH₃ 2-chlorobutane

b) CH₃CH₂CH(CH₃)CH₂OH 2-methyl-1-butanol

4.4 Reactions of Organic Compounds

At the end of the lesson, student should be able to:

- a) explain covalent bond cleavage: homolytic & heterolytic. (C2)
- b) Differentiate between homolytic cleavage and heterolytic cleavage.
 (C3)
- c) state the relative stabilities of 1°,2°,3° free radicals, carbocations and carbanions. (C1)
- d) compare the stabilities of carbocations and carbanions by using the inductive effect of alkyl group. (C4)
- e) define: (C1)
 - i) electrophile and nucleophile
 - ii) Lewis acid and Lewis base.
- f) explain the types of organic reactions: (C2) addition, substitution, elimination, rearrangement.
- g) predict the type of organic reaction given a reaction equation. (C3)

REACTIONS IN ORGANIC COMPOUNDS

HOMOLYTIC CLEAVAGE

- Occurs in a non-polar bond involving two atoms of similar electronegativity.
- A single bond breaks symmetrically into two equal parts, leaving each atom with one unpaired electron.
- Formed free radicals.

Example:

HETEROLYTIC CLEAVAGE

- Occurs in a polar bond involving unequal sharing of electron pair between two atoms of different electronegativities.
- A single bond breaks unsymmetrically.
- Both the bonding electrons are transferred to the more electronegative atom.
- Formed cation and anion.

$$A : B \longrightarrow A^+ + B^-$$

Example of homolytic cleavage:

Example of heterolytic cleavage:

H—Br
$$\rightarrow$$
 H+ + Br-
hydrogen bromide
(CH₃)₃C—CI \rightarrow (CH₃)₃C+ + CI-
2-chloro-2-methylpropane

Use half-headed curved arrows to show the movement of electrons in each reaction:

a)
$${}^{\bullet}CH_3 + {}^{\bullet}CH_3 \longrightarrow CH_3 - CH_3$$

b)
$$HO-OH \longrightarrow 2HO$$

c)
$$H - C - H + CI: \longrightarrow H - CI: H$$

Exercise 2

Use full-headed curved arrows to show the movement of electron in each equation:

a)
$$CH_3$$
 CH_3 CH_3

Arrow types in chemical reactions:

EFFECT OF ALKYL SUBSTITUTION ON FREE RADICAL

- Radical carbon is electron deficient
- Has an unfilled 2p obital
- Stabilized by substituents such as alkyl groups; CH₃-, CH₃CH₂-, etc
- Alkyl group electron releasing

number of alkyl groups ↑ stability of radical ↑

Exercise 3

List the following radicals in order of decreasing stability:

CARBOCATION AND CARBANION

Heterolysis of a bond to C atom:

Carbocations and carbanions can be intermediates in polar reactions

RELATIVE STABILITIES OF CARBOCATION

EFFECT OF ALKYL SUBSTITUTION ON CARBOCATION

- Carbocation is electron deficient
- Has an empty 2p obital
- Stabilized by substituents such as alkyl groups; CH₃-, CH₃CH₂-, etc.
- Alkyl group electron releasing

number of alkyl groups \(\gamma\) stability of carbocation \(\gamma\)

Exercise 4

Rank the following carbocations in order of decreasing stability. Classify each as primary, secondary, or tertiary.

- a) (CH₃)₂CHCH₂
- b) CH₃CHCH(CH₃)₂
- c) CH₃C(CH₃)CH₂CH₃

RELATIVE STABILITIES OF CARBANION

EFFECT OF ALKYLSUBSTITUTION ON CARBANION

$$R-C R-C H-C H-C H$$
 tertiary secondary primary methyl

- Carbanion is electron-rich
- High electron density
- Destabilized by substituents such as alkyl groups; CH₃-, CH₃CH₂-, etc.
- Alkyl group electron releasing

number of alkyl groups \(\) stability of carbanion \(\)

REAGENTS AND SITES OF ORGANIC REACTIONS

A) Electrophile

Definition: A species that can accept an electron pair from a nucleophile

Means 'electron loving'.

Can be either neutral or positively charged.

Examples of electrophiles:

- **Lewis acids such as AICl₃, FeCl₃, BF₃**, cations and carbocations.
- Definition lewis acid: A substance that can accept one or more lone pairsof electrons into its valence shell: an electron pair acceptor.
- Oxidizing agents such as Cl₂, Br₂, etc.

Electrophilic sites are molecules with low electron density around a polar bond.

Examples:

$$\overset{\delta^+}{C} \overset{\delta^-}{=} \overset{\delta^-}{O}$$

$$\delta$$
+ Σ Σ

$$\begin{array}{c}
\delta + I \\
-C \\
\end{array}$$
OH

(carbonyl) (haloalkanes)

(hydroxyl compounds)

B. Nucleophile

Definition: An electron-rich species that can donate a pair of electrons to form a bond

means 'nucleus loving'.

A nucleophile can be either neutral or negatively charged.

Examples of nucleophiles :

- Lewis base such as
 - Anions (OH⁻, RO⁻, Cl⁻, CN⁻, etc)
 - Carbanions (species with a negative charge on carbon atoms).
- ♣ Definition lewis base: A substance that can donate a lone pair electrons into the valence shell of a Lewis acid; an electron pair donor.

EXAMPLE: Nucleophilic Site

i)Electrophile

- □ An electron-deficient species
- □ An electron-pair acceptor
- ☐ Either neutral or positively charged species.
- ☐ Greek word means 'electron loving'.

ii) Nucleophile

- ☐ An electron-rich species
- □ An electron-pair donor
- ☐ Either neutral or negatively charged species
- Greek word means 'nucleus loving'.

Examples of electrophiles:

- cations such as H+, H₃O+, +NO₂, Br+ etc.
- carbocations (species with a positive charge on carbon atoms). e.g CH₃
- Lewis acids such as AlCl₃, FeCl₃, BF₃ and etc.
- Site of low electron density

$$\delta$$
+ δ - C = O $C - X$

Carbonyl haloalkane

 oxidizing agents such as Cl₂, Br₂ etc.

Examples of nucleophiles :

- anions such as OH, RO, CI, CN and etc.
- carbanions (species with a negative charge on carbon atoms). e.g CH₃⁻
- ♣ Lewis bases which can donate lone pair electrons such as NH₃, H₂O, H₂S etc.
 - Site of high electron density (carbon-carbon multiple bonds):

C = C (alkenes, arenes);C ≡ C (alkynes)

Exercise 5

Label the electrophilic and nucleophilic sites in each molecule:

a)

b)

C)

d)

Addition

Elimination

GENERAL TYPES OF ORGANIC REACTIONS

Substitution

Rearrangement

ADDITION REACTION

- All parts of the adding reagent appear in the product
- Two molecules become one
- Characteristic reaction of compounds with multiple bonds

Example:

ethylene (an alkene) bromoethane (an alkyl halide)

ELECTROPHILIC ADDITION

- Reactions involving C=C and C≡C
- π bonds are electron-rich and located above and below the plane of the bond
 - susceptible to attack by electrophiles

Come attack me,
Mr. electrophile!
You love electrons, right?
I'm electron-rich!

Example:

$$H = C = C + H = OH \longrightarrow H = C = C = H$$

NUCLEOPHILIC ADDITION

- Most common reaction of aldehydes and ketones
- Nucleophile approach to the electrophilic C of carbonyl group

Example:

SUBSTITUTION REACTION

- Two reactants exchange parts to give new products
- Characteristic reaction of saturated and aromatic compounds

Example:

methane (an alkane)

chloromethane (an alkyl halide)

ELECTROPHILIC AROMATIC SUBSTITUTION

- The characteristic of all aromatic compounds
- Benzene has $\sin \pi$ electrons delocalized in $\sin \pi$ orbitals that overlap above and below plane of the ring (electron-rich)
 - susceptible to attack by electrophiles

benzene

Example:

NUCLEOPHILIC SUBSTITUTION

Most common reaction of alkyl halides (haloalkanes)

Nu:- +
$$R-X$$
 \rightarrow $R-Nu$ + X^-

Example:

$$HO^- + CH_3-I \rightarrow CH_3-OH + I^ I^- + CH_2CH_3-CI \rightarrow CH_3CH_2-I + CI^-$$

SUMMARY OF TYPES OF ORGANIC REACTIONS

Electrophilic addition

🥗 alkenes, alkyne<mark>s</mark>

Electrophilic aromatic substitution aromatic compounds

Nucleophilic addition

aldehydes, ketones

- **Nucleophilic** substitution
- alkyl halides

- Free radical substitution
- alkanes

ELIMINATION REACTION

- Opposite of addition reaction
- A single reactant splits into two products
- Method for preparing compounds with double and triple bonds

Example:

eliminated

REARRANGEMENT REACTION

A single reactant undergoes a reorganization of bonds and atoms

Example:

1-butene

2-butene

Exercise 6

Classify each of the following reactions as an addition, elimination, substitution, or rearrangement:

- a) CH₃Br + KOH → CH₃OH + KBr
- b) $CH_3CH_2OH \rightarrow H_2C=CH_2 + H_2O$
 - **F**
- c) $H_2C=CH_2 + H_2 \rightarrow CH_3CH_3$
 - **F**
- d) $CH_2=CHOH \rightarrow CH_3CHO$

- Structural Formula: Formula that shows how the atoms of a molecule are bonded to one another.
- 2. Functional group: Is an atom or group of atoms in an organic molecule which <u>characterised</u> the molecule and <u>enables it to react in specific</u> <u>ways</u> which determines its chemical properties.
- 3. Homologous series: is series of compounds where each member differs from the next member by a constant $-CH_2$ unit
- 4. Expanded structure: A structural formula that shows all atoms in a molecule and all bonds connecting the atoms.
- Isomerism: The existance of chemical compounds that have same molecular formula but different molecular structure or arrangement in space.
- 6. Constitutional Isomerism: molecules that have same molecular formula but different structure.
- 7. Stereoisomerism: The existence of chemical compounds which have their atoms connected in same order but differ in arrangement in space.

- 8. Chirality center: sp³ hybridized carbon bonded to four different atoms or groups.
- 9. Enantiomers: Stereoisomers that nonsuperimposable mirror images of one another.
- 10. Electrophile: A species that can accept an electron pair from a nucleophile.
- 11. Nucleophile: An electron-rich species that can donate a pair of electrons to form a bond.
- 12. Definition lewis acid: A substance that can accept one or more lone pairsof electrons into its valence shell: an electron pair acceptor.
- 13. Definition lewis base: A substance that can donate a lone pair electrons into the valence shell of a Lewis acid; an electron pair donor.