

4.2 Lecture Summary

4 Dataflow Synchronization and Pipelining

4.2 Point-to-Point Synchronization with Phasers

Lecture Summary: In this lecture, we looked at a parallel program example in which the span (critical path length) would be 6 units of time if we used a barrier, but is reduced to 5 units of time if we use individual phasers as shown in the following table:

Task 0	Task 1	Task 2
$egin{aligned} 1a:X=\ A();//cost=1 \end{aligned}$	1b:Y=B();//cost= 2	1c:Z=C();//cost= 3
2a: ph0.arrive();	2b: ph1.arrive();	2c: ph2.arrive();
3a: ph1.awaitAdvance(0);	$3b: \\ ph0.awaitAdvance(0);$	3c: ph1.awaitAdvance(0);
$4a:\ D(X,Y);//cost=3$	$4b: \\ ph2.awaitAdvance(0);$	4c:F(Y,Z);//cost= 1
	$5b: \ E(X,Y,Z); //cost = 2$	

Each column in the table represents execution of a separate task, and the calls to arrive() and awaitAdvance(0) represent synchronization across different tasks via phaser objects, ph0, ph1, and ph2, each of which is initialized with a party count of 1 (only one signalling task). (The parameter 0 in awaitAdvance(0) represents a transition from phase 0 to phase 1.)

Optional Reading:

1. Documentation on Java Phaser class.

Mark as completed