Лабораторная работа 1.3.3

"Измерение вязкости воздуха по течению в тонких трубках"

Колинько Кира, Б04-207

22 марта 2023 г.

1 Введение

Цель работы: экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха.

Оборудование и материалы: система подачи воздуха (компрессор, поводящие трубки); газовый счетчик барабанного типа; спиртовой микроманометр с регулируемым наклоном; набор трубок различного диаметра с выходами для подсоединения микроманометра; секундомер.

2 Теоретические сведения

Сила вязкого трения как в жидкостях, так и в газах описывается законом Ньютона:

$$\tau_{xy} = -\eta \frac{\partial u_x}{\partial y} \tag{1}$$

Величину η называют коэффициентом динамической вязкости. Характер течения может быть ламинарным либо турбулентным. Он определяется безразмерным параметром задачи - числом Рейнольдса:

$$Re = \frac{\rho ua}{\eta} \tag{2}$$

Формула Пуазейля позволяет найти вязкость газа по зависимости расхода от перепада давления в трубе:

$$Q = \frac{\pi R^4 \Delta P}{8\eta l} \tag{3}$$

Длина установления:

$$l_{\text{vct}} \approx 0,2RRe$$
 (4)

В общем виде связь скорости течения и перепада давления представима как:

$$\frac{\Delta P}{l} = C(Re) \frac{\rho \overline{u}^2}{R} \tag{5}$$

где C - некоторая произвольная функция числа Рейнольдса. Будем рассматривать простейшую модель: предположим, что при больших числах Рейнольдса жидкость можно считать практически идеальной, следовательно параметры её течения не зависят от коэффициента вязкости. При $\mathrm{Re} \to \infty, \, \mathrm{C} \approx \mathrm{const.}$ Отсюда находим:

$$Q = const \cdot R^{5/2} \sqrt{\frac{\Delta P}{\rho l}} \tag{6}$$

3 Экспериментальная установка

Рис. 1: Схема установки

Поток воздуха под давлением, немного превышающим атмосферное, поступает через газовый счётчик в тонкие металлические трубки. Воздух нагнетается компрессором, интенсивность его подачи регулируется краном К. Трубки снабжены съёмными заглушками на концах и рядом миллиметровых отверстий, к которым можно подключать микроманометр. В рабочем состоянии открыта заглушка на одной (рабочей) трубке, микроманометр подключён к двум её выводам, а все остальные отверстия плотно закрыты пробками. Перед входом в газовый счётчик установлен водяной U-образный манометр. Он служит для измерения давления газа на входе, а также предохраняет счётчик от выхода из строя. При превышении максимального избыточного давления на входе счётчика (30 см вод. ст.) вода выплёскивается из трубки в защитный баллон Б, создавая шум и привлекая к себе внимание экспериментатора

4 Ход работы

1. Проведм предварительные рассчеты. В работе используем три трубки различных диаметров. Для каждой трубки по формуле (4) оценим расстояние, пройдя которое течение станет установившимся. Полученные значения запишем в таблицу 1

d, mm	Δd , mm	$l_{ m yct}$, M
5,3	0,05	0,53
3	0,1	0,3
3,95	0,05	0,395

Таблица 1: Длина установления для трубок различного диаметра

2. Для каждой трубки измерим зависимость $Q(\Delta P)$. Давление, измеряемое микроманометром получим по формуле P=9,8067NKn, где K=0,2 - угловой коэффициент, n - поправочный множитель, учитывающий отличие плотности залитого спирта от табличной (в

нашем эксперименте $n=0,9953),\,\mathrm{N}$ - количество делений на шкале микроманометра. Полученные для трубок диаметрами 3,95 мм, 3 мм и 5,3 мм результаты запишем в таблицы 2, 3 и 4 соответственно

N	ΔV , л	σV , л	t, c	$Q * 10^2, \pi/c$	$P, \Pi a$	$\sigma P, \Pi a$
3	0,20	0,02	47,40	0,42	5,86	1,95
5	0,30	0,02	40,93	0,73	9,76	1,95
7	0,40	0,02	41,32	0,97	13,66	1,95
9	0,30	0,02	23,91	1,25	17,57	1,95
11	0,30	0,02	19,84	1,51	21,47	1,95
15	0,30	0,02	15,81	1,90	29,28	1,95
18	0,30	0,02	13,22	2,27	35,14	1,95
20	0,40	0,02	15,87	2,52	39,04	1,95
22	0,30	0,02	8,43	3,56	42,95	1,95
25	0,30	0,02	9,53	3,15	48,80	1,95
27	0,30	0,02	7,87	3,81	52,71	1,95
29	0,30	0,02	7,09	4,23	56,61	1,95
31	0,30	0,02	6,12	4,90	60,52	1,95
34	0,30	0,02	6,88	4,36	66,37	1,95
38	0,30	0,02	6,19	4,85	74,18	1,95
40	0,50	0,02	9,75	5,13	78,08	1,95
42	0,80	0,02	15,12	5,29	81,99	1,95
46	0,70	0,02	11,18	6,26	89,80	1,95
50	0,80	0,02	12,62	6,34	97,61	1,95
56	0,80	0,02	11,22	7,13	109,32	1,95
60	1,30	0,02	17,06	7,62	117,13	1,95
64	1,00	0,02	12,12	8,25	124,94	1,95
67	0,70	0,02	8,46	8,27	130,79	1,95
71	0,70	0,02	7,94	8,82	138,60	1,95
73	1,00	0,02	10,56	9,47	142,50	1,95
77	1,00	0,02	10,54	9,49	150,31	1,95
82	1,00	0,02	10,56	9,47	160,07	1,95
95	1,50	0,02	14,50	10,34	185,45	1,95

Таблица 2: $Q(\Delta P)$ для трубки диаметром 3,95мм

N	ΔV , π	σV , л	t, c	$Q * 10^2, \pi/c$	$P,\Pi a$	$\sigma P, \Pi a$
6	0,30	0,02	19,69	1,52	11,71	1,95
12	0,50	0,02	16,63	3,01	23,43	1,95
17	0,30	0,02	7,60	3,95	33,19	1,95
21	0,40	0,02	8,12	4,93	40,99	1,95
25	0,50	0,02	8,38	5,97	48,80	1,95
30	0,60	0,02	8,81	6,81	58,56	1,95
35	0,60	0,02	8,06	7,44	68,32	1,95
38	0,50	0,02	6,69	7,47	74,18	1,95
42	0,80	0,02	9,72	8,23	81,99	1,95
9	0,40	0,02	17,93	2,23	17,57	1,95
39	1,00	0,02	12,41	8,06	76,13	1,95
48	1,50	0,02	17,46	8,59	93,70	1,95

Таблица 3: $Q(\Delta P)$ для трубки диаметром 3мм

N	ΔV , π	σV , л	t, c	$Q * 10^2, \pi/c$	$P, \Pi a$	$\sigma P, \Pi a$
4	0,30	0,02	27,97	1,07	7,81	1,95
7	0,30	0,02	14,16	2,12	13,66	1,95
13	0,40	0,02	13,10	3,05	$25,\!38$	1,95
16	0,50	0,02	13,28	3,77	31,23	1,95
19	0,50	0,02	11,31	4,42	37,09	1,95
23	0,80	0,02	13,06	6,13	44,90	1,95
26	0,70	0,02	10,22	6,85	50,76	1,95
30	1,20	0,02	17,60	6,82	$58,\!56$	1,95
33	1,00	0,02	13,44	7,44	64,42	1,95
37	0,90	0,02	10,72	8,40	72,23	1,95
40	1,00	0,02	10,96	9,12	78,08	1,95
45	1,00	0,02	9,84	10,16	87,85	1,95
49	0,90	0,02	8,28	10,87	$95,\!65$	1,95
55	1,70	0,02	14,38	11,82	107,37	1,95
61	1,00	0,02	7,81	12,80	119,08	1,95
65	0,70	0,02	5,15	13,59	126,89	1,95
71	1,00	0,02	7,00	14,29	138,60	1,95
80	1,30	0,02	8,91	14,59	156,17	1,95
85	2,00	0,02	13,34	14,99	165,93	1,95
93	1,20	0,02	8,13	14,76	181,55	1,95

Таблица 4: $Q(\Delta P)$ для трубки диаметром 5,3мм

	d=3 mm	d = 3,95 mm	$d=5,3\mathrm{mm}$
$k \cdot 10^2, \frac{\pi}{c\Pi a}$	0,107	0,063	0,111
$\sigma_k, \frac{\pi}{c\Pi a}$	0,005	0,004	0,004
$\eta \cdot 10^6, \Pi a \cdot c$	18,6	23,4	34,8
$\sigma_{\eta} \cdot 10^6, \Pi a \cdot c$	1,1	1,6	1,4

Таблица 5: Вязкость воздуха для различных трубок

3. По полученным данным построим графики зависимости $Q(\Delta P)$ для различных трубок. Затем по графикам определим границу перехода от ламинарного течения к турбулентному, вычислим угловые коэффициенты наклона графиков (точнее их линейных участков), и по этим коэффициентам и формуле (7) определим вязкость воздуха

$$\eta = \frac{\pi R^4}{8lk} \tag{7}$$

$$k = \frac{\langle Q\Delta P \rangle - \langle Q \rangle \langle \Delta P \rangle}{\langle (\Delta P)^2 \rangle - \langle \Delta P \rangle^2} \tag{8}$$

$$\sigma_k = \frac{1}{\sqrt{N-2}} \sqrt{\frac{\langle Q^2 \rangle - \langle Q \rangle^2}{\langle (\Delta P)^2 \rangle - \langle \Delta P \rangle^2} - k^2}$$
(9)

Полученные результаты занесем в таблицу 5

Рис. 2: График 1. Зависимость $\mathrm{Q}(\mathrm{P})$ для трубки $\mathrm{d}=3{,}95$ мм

Рис. 3: График 2. Зависимость $\mathrm{Q}(\mathrm{P})$ для трубки $\mathrm{d}=3$ мм

Рис. 4: График 3. Зависимость Q(P) для трубки d=5,3 мм

4. Рассчитаем критическое число Рейнольдса для каждой трубки. Значения $Q_{\rm kp}$ определим из графиков

$$Re_{\rm kp} = \frac{\rho Q}{\pi R \eta} \tag{10}$$

- $\mathbf{d}=\mathbf{3}$ мм: $Q_{\mathrm{\kappa p}}=74, 4\cdot 10^{-6}\mathrm{m}^3/c$, тогда $Re_{\mathrm{\kappa p}}=(1022, 8\pm 62, 8)$
- ullet d = 3,95 мм: $Q_{
 m kp}=94,8\cdot 10^{-6}{
 m M}^3/c$, тогда $Re_{
 m kp}=(786,8\pm 54,7)$
- ullet d = 5,3 мм: $Q_{\mathrm{\kappa p}}=108,7\cdot 10^{-6}\mathrm{m}^3/c$, тогда $Re_{\mathrm{\kappa p}}=(452,1\pm 18,7)$
- 5. Определим длину участка трубы, на котором происходит установление потока. Для этого построим графики зависимостей P(x) для каждой трубы. По графику определим примерную длину участка, на котором устанавливается ламинарный поток

Рис. 5: График 4

 \bullet d=3мм по графику поток устанавливается приблизительно через 30 см, что соответствует теоретическому предположению

- \bullet d=3,95мм по графику поток устанавливается приблизительно через 40 см, что соответствует теоретическому предположению
- d=5,3мм по графику поток устанавливается приблизительно через 40 см, что соответствует теоретическому предположению
- 6. Для проверки пропорциональности расхода к радиусу трубы при ламинарном течении построим график зависимости $\ln Q(\ln R)$

Рис. 6: График 6

Из графика видим, что зависимость линейна, а коэффициент $\beta = 2, 26 \pm 1, 21$

5 Выводы

- В работе исследовались свойства течения газов по тонким трубкам. В ходе работы удалось выявить область пррименимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха
- Были получены три различных значения вязкости воздуха, и только одно из них достаточно точно: $(18,6\pm1,1)\Pi a \cdot c$ для трубки диаметром 3 мм. Остальные значения получены с небольшими погрешностями, но значительно отличаются от табличного при данной температуре
- В ходе работы было доказано, что расход пропорционален радиусу в некоторой степени. Для ламинарного течения было получено значение $\beta=2,26\pm1,21,$ что сходится с теоретическим значением $\beta=4$ в пределах двух погрешностей. Значение было получено недостаточно точно, и лучше сходится со значением для турбулентного течения. Для получения более точного значения следовало использовать большее количество трубок различных радиусов и провести большее количество измерений расхода при выбранном градиенте давления
- Для увеличения точности эксперимента необходимо использовать более длинные трубки, для того, чтобы течение в любой трубке (даже в трубке большого диаметра) успевало установиться

6 Дополнительные вопросы

6.1 Коэффициент теплопроводности. Закон Фурье

Теплопроводность - один из видов переноса тепла от более нагретогых частей вещества к менее нагретым. Теплопроводность осуществляется путем непосредственной передачи энергии от частиц с большей энергией к частицам с меньшей энергией и приводит к выравниванию температуры вво всем веществе. Теплопроводность - неравновесный процесс. Плотность потока тепла - количество тепловой энергии, пересекающей единичную площадку за единицу времени. Для одномерного переноса теплаплотность потока тепла определяется законом Фурье:

$$q = -\chi \frac{dT}{dx} \tag{11}$$

Величина χ называется коэффициентом теплопроводности и имеет размерность $[\chi] = \frac{\text{эрг}}{\text{см·c·K}}$ В трехмерном случае плотность потока тепла - это вектор $q = -\chi gradT$ Коэффициент теплопроводности - тепловой поток, передаваемый через единичную поверхность при единичном значении температурного градиента

 $\chi = \frac{\partial Q}{Fgrad(t)} \tag{12}$

Для каждого тела χ имеет свое численное значение и, зависит от природы, пористости, влажности, давления, температуры и других параметров. Численное значение определяется опытным путем (в справочных таблицах). При выводе уравнения принято, что χ не зависит от температуры. Как показывают опыты, для многих материалов, зависимость коэффициента теплопроводности от температуры можно принять линейной во всем рассматриваемом интервале

6.2 Распределение молекул по длинам свободного пробега

В слое толщиной dx одна молекула испытает $n\sigma dx$ сстолкновений с молекулами среды (n - концентрация молекул, σ - эффективное газокинетическое сечение молекулы в отсутствие дальнего межмолекулярного взаимодействия). Запустим в среду N_0 молекул. Пусть число молекул равное N пройдет трассу длиной х не испытав столкновений. Тогда убыль из числа на последующем участке dx составит $Nn\sigma dx$, т.е $dN=-Nn\sigma dx=-N\frac{dx}{I}$, отсюда следует, что

$$N(x) = N_0 e^{\frac{x}{l}} \tag{13}$$

Величина

$$dN_{\text{pacc}} = -dN = N_0 exp(-\frac{x}{l})\frac{dx}{l}$$
(14)

Равна числу молекул рассеявшихся на участке. Поэтому, вероятность того, что молекула пройдет без столкновений такой путь, т.е будет иметь длину свободного пробега x составляет

$$dW(x) = \frac{dN_{\text{pacc}}}{N_0} = exp(-\frac{x}{l})\frac{dx}{l}$$
(15)

Данной формулой задается распределение вероятностей различных значений длины пробега

6.3 Коэффициент всестороннего сжатия

Всестороннее сжатие - вид деформации, возникающий, когда сила действующая на тело распределена по всей его поверхности. В качестве величины деформации в данном случае понимают относительное изменение объема тела. По закону Гука можно написать $B=\frac{pV}{\Delta V}$, где В - модуль всестороннего сжатия (численно равен напряжению, изменяющему объем тела вдвое). Запишем формулу в виде: $\frac{\Delta V}{V}=\chi p$. Коэффициент χ равный обратной величине модуля всестороннего сжатия, называется коэффициентом всестороннего сжатия, или сжимаемостью