Dimension Intuitive idea about size	
Dimension - If S is a subspace, then dim/A) is the no of vectors in the basis of	
Rank- of a matrix is the dimension of its row/col space.	
Nullity- of a mothix is the dimention of its null space, nullity (A)	
Thrm (3.21/3.27) - Fundamental Theorem of Invertable Motrices Let A be an nxm motinix, the following are equivalent;	
a. A is invertable b. $Ax = b$ has a unique solution c. $Ax = 0$ has only the trivial solution d. The REF of A is I_n e. A is the product of elementary mate	l mn(A) = n
3,6 Linear Transformations	
· Matrices can transform vectors as a type of function; $\omega = Tv$ · Linear Transformation A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if $T(u+v) = Tu + Tv + Tu + Tv + u + u$	
Linear Transformation A transformation 1) $I(u+v) = Tu + Tv + V + v + v + v + v + v + v + v + v + $	1:R→K is a linear transformation iff and;
· Transformation Matrices	
Refliction in x-axis [3]	Reflection in $y=-\infty$ [$\frac{0}{-1}$]
Reflection in y-axis [39]	Rotation & antichockwise [050 -sin 0]
Reflection in line x=y [3]	Dialation, scale factor k [& c)
Thrm 3.30 - All matrix transformations are linear transformations. Thrm 3.31 - Standard matrix of a linear transformation. Let TR ⁿ -> R ^m be a linear transformation, then T is a matrix transformation, Specifically, T=TA, where A is the Mxn matrix;	
A = $[T(e_i): T(e_i): \cdots: T(e_k)]$ AKA we can find a bransformation matrix of a LT by determining its effect on the basis vectors Them 3.32- $(S \circ T)_V = S(T(V))$ where $S \circ T = [S][T]$	

