Unified Framework for Quasi-Monte Carlo Software

Aleksei G. Sorokin Fred J. Hickernell, Jagadeeswaran Rathinavel, Sou-Cheng T. Choi

Illinois Institute of Technology, Department of Applied Mathematics

June 29, 2023

Outline

- Monte Carlo and Quasi-Monte Carlo formulation and components
- Node generators
 - LatNetBuilder for finding generating vectors and matrices
 - Magic Point Shop and QRNG for generating points from static vectors / matrices
- Distribution transforms
 - SciPy for finite dimensional distributions
 - GaussianRandomFields.jl for infinite dimensional distributions
- Example problems from FEniCSx / DOLFINx and UM-Bridge
- Adaptive sampling to meet tolerance
 - GAIL for finite dimensional distributions
 - MultilevelEstimators.jl for infinite dimensional distributions
 - QMCPy for vectorized algorithms

(Q)MC Methods

Monte Carlo Methods

True Mean =
$$\mu = \mathbb{E}[g(T)] = \mathbb{E}[f(X)] = \int_{[0,1]^d} f(x) \mathrm{d}x$$

- g, the original integrand of the original random variable T.
- f, the transformed integrand of the transformed random variable $X \sim \mathcal{U}[0,1]^d$.

Approximate Mean
$$= \hat{\mu} = \frac{1}{n} \sum_{i=0}^{n-1} f(X_i)$$

	Crude Monte Carlo	Quasi-Monte Carlo
$X_0, X_1, \dots \sim \mathcal{U}[0,1]^d$	independent identically distributed (IID)	low discrepancy (LD)
	gaps and clusters	even coverage
Rate of $\hat{\mu}$ to μ	$\mathcal{O}(n^{-1/2})$	$\mathcal{O}(n^{-1+\delta})$, any $\delta > 0$
Generally	slower	faster
Integrands require	finite variance	low order interactions

Discrte Distribution

Generate sampling locations X_0, X_1, \dots

QMCPy ¹: Python. IID generators from NumPy². LD Generators from others (next).

¹https://github.com/QMCSoftware/QMCSoftware

²Travis Oliphant. *Guide to NumPy*. Vol. 1. Trelgol Publishing USA, 2006. urL: https://ecs.wgtn.ac.nz/foswiki/pub/Support/ManualPagesAndDocumentation/numpybook.pdf.

Construct LD Generating Vectors / Matrices

LatNetBuilder³: C++.

Features	Lattice rules		Digital nets	
Point set types	Rank-1 ordinary lattice rules	Rank-1 polynomial lattice rules	Sobol' nets Polynomial lattice rules Nets with explicit generating matrices	
Figures of merit	P_{α_i} R_{α_i} spectral test	P _α , R	P_{α} , R, t-value, resolution-gap	
Types of weights	projection-dependent, order-dependent, product, product-order-dependent and combined weights			
Exploration methods	evaluation, exhaustive, random, full CBC and random CBC, fast CBC			
Multilevel point sets		Digital sequences		
Additional features	Extensible lattices, normalizations and filters	Extensible lattices, normalizations and filters, interlaced polynomial lattice rules	Interlaced digital nets	

³Pierre L'Ecuyer et al. A Tool for Custom Construction of QMC and RQMC Point Sets. 2021. arXiv: 2012.10263 [stat.CO].

Generate LD Points from Static Generating Vectors / Matrices

Magic Point Shop⁴: C++, MATLAB, Python, Julia⁵.

Rank 1 Lattice in base 2.

Discrete Distributions

000

• Digital nets and sequences in base 2, including higher order versions.

QRNG⁶: R

- Rank 1 lattice in base 2.
- Sobol', special cases of Digital nets in base 2.
- Halton, optionally generalized.

⁴Frances Y Kuo and Dirk Nuyens. "Application of quasi-Monte Carlo methods to elliptic PDEs with random diffusion coefficients: a survey of analysis and implementation". In: Foundations of Computational Mathematics 16 (2016), pp. 1631-1696.

⁵https://github.com/alegresor/QMCGenerators.jl

⁶Marius Hofert and Christiane Lemieux. qrng: (Randomized) Quasi-Random Number Generators. R package version 0.0-7. 2023. URL: https://CRAN.R-project.org/package=qrng.

True Measures

Define original distribution T and facilitate automatically transform so $\mathbb{E}[g(T)] = \mathbb{E}[f(X)]$ SciPy⁷: Univariate and multivariate distributions. Python.

⁷Pauli Virtanen et al. "SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python". In: *Nature Methods* 17 (2020), pp. 261–272. DOI: https://doi.org/10.1038/s41592-019-0686-2.

Infinite Dimensional Distributions Truncated to Finite Dimensions GaussianRandomFields.jl 8: Julia.

- Isotropic and anisotropic kernels with support for custom kernels.
- Implemented standard kernels e.g. Gaussian, Exponential, and Matérn.
- Generate with Cholesky, PCA, KL expansion, circulant embedding.
- Generate on a Finite Element mesh.

⁸https://github.com/PieterjanRobbe/GaussianRandomFields.jl

Integrands

Define original g, stores transformed f

FEniCSx⁹ / **DOLFINx**¹⁰: Finite Element methods for PDEs. Python, C++. **UM-Bridge**¹¹: Clients in C++, MATLAB, Python, R.

- Containerize complex models for easy evaluation.
- Distribute models written in different languages.
- Support evaluation on HPC systems seamlessly.

⁹M. W. Scroggs et al. "Construction of arbitrary order finite element degree-of-freedom maps on polygonal and polyhedral cell meshes". In: ACM Transactions on Mathematical Software (2022). To appear, DOI: 10.1145/3524456.

¹⁰ A. Logg, G. N. Wells, and J. Hake. "DOLFIN: a C++/Python Finite Element Library". In: Automated Solution of Differential Equations by the Finite Element Method. Ed. by A. Logg, K.-A. Mardal, and G. N. Wells. Vol. 84. Lecture Notes in Computational Science and Engineering. Soringer, 2012. Chap. 10.

¹¹Linus Seelinger et al. "UM-Bridge: Uncertainty quantification and modeling bridge". In: Journal of Open Source Software 8.83 (2023), p. 4748.

Stopping Criteria

Adaptively increase n until error $|\hat{\mu} - \mu| \le \epsilon$ tolerance

GAIL: Guaranteed Automatic Integration Library¹²: MATLAB.

- Crude Monte Carlo by Berry-Esseen inequality, accounts for variance estimation.
- Quasi-Monte Carlo by IID randomizations.
- Quasi-Monte Carlo by decay of fourier coefficients.
- Quasi-Monte Carlo by Kriging with circulant embedding.

¹²Xin Tong et al. "Guaranteed Automatic Integration Library (GAIL): An Open-Source MATLAB Library for Function Approximation, Optimization, and Integration". In: Journal of Open Research Software 10.1 (2022).

MultilevelEstimators.il¹³: For PDEs with random coefficients. Julia.

- Multilevel (Quasi-)Monte Carlo for 1D spacial domain.
- Multi-index (Quasi-)Monte $Carlo^{14}$ for > 1D spacial domain, see figure below.
- Adaptive, unbiased versions of multi-index (Quasi-)Monte Carlo.

¹³https://github.com/PieterjanRobbe/MultilevelEstimators.jl

¹⁴Pieterjan Robbe, Dirk Nuyens, and Stefan Vandewalle. "A multi-index quasi-Monte Carlo algorithm for lognormal diffusion problems". In: SIAM Journal on Scientific Computing 39.5 (2017), S851-S872.

QMCPy¹⁵: Vectorized stopping criterion. Python.

QOIs $s \in \mathbb{R}^{\eta}$ are combination $C : \mathbb{R}^{\rho} \to \mathbb{R}^{\eta}$ of multiple expectations $(\mu_1, \dots, \mu_{\rho})$

Vector of expectations

$$s = (\mu_1, \dots, \mu_\rho)$$

• Bayesian posterior mean of $\Theta \in \mathbb{R}^{\eta}$ given (y_1, \ldots, y_n)

$$s_{\ell} = \mathbb{E}\left[\Theta_{\ell} \prod_{i=1}^{N} \rho(y_i \mid \Theta)\right] / \mathbb{E}\left[\prod_{i=1}^{N} \rho(y_i \mid \Theta)\right]$$

 Sensitivity indices (normalized Sobol' indices) for quantifying importance of function inputs

¹⁵Aleksei G. Sorokin and Rathinavel Jagadeeswaran. "Monte Carlo for Vector Functions of Integrals". In preparation for the 2022 Monte Carlo and Quasi-Monte Carlo Methods Conference Proceedings.

Bayesian Optimization: Vector of utility function evaluations (expectations)

Sensitivity Indices of Neural Network Classifier

Classify Iris species from Sepal Length, Sepal Width, Petal Length, Petal Width. How important are subsets of attributes to each class?

Conclusions

- Unify (Q)MC software into common framework.
 - Discrete Distributions to generating sampling nodes
 - True Measures to automatically transform between distributions
 - *Integrands* to define user problems
 - Stopping Criteria to adaptively sample to meet tolerance
- Additional details and libraries: Sou-Cheng T. Choi et al. "Quasi-Monte Carlo Software". In: Monte Carlo and Quasi-Monte Carlo Methods. Ed. by Alexander Keller. Cham: Springer International Publishing, 2022, pp. 23–47. ISBN: 978-3-030-98319-2

Thank you for listening!

References L

- [1] Sou-Cheng T. Choi et al. "Quasi-Monte Carlo Software". In: Monte Carlo and Quasi-Monte Carlo Methods. Ed. by Alexander Keller. Cham: Springer International Publishing, 2022, pp. 23–47. ISBN: 978-3-030-98319-2.
- [2] Marius Hofert and Christiane Lemieux. qrng: (Randomized) Quasi-Random Number Generators. R package version 0.0-7. 2023. URL: https://CRAN.R-project.org/package=qrng.
- [3] Frances Y Kuo and Dirk Nuyens. "Application of quasi-Monte Carlo methods to elliptic PDEs with random diffusion coefficients: a survey of analysis and implementation". In: Foundations of Computational Mathematics 16 (2016), pp. 1631–1696.
- [4] Pierre L'Ecuyer et al. A Tool for Custom Construction of QMC and RQMC Point Sets. 2021. arXiv: 2012.10263 [stat.CO].

References II

- [5] A. Logg, G. N. Wells, and J. Hake. "DOLFIN: a C++/Python Finite Element Library". In: Automated Solution of Differential Equations by the Finite Element Method. Ed. by A. Logg, K.-A. Mardal, and G. N. Wells. Vol. 84. Lecture Notes in Computational Science and Engineering. Springer, 2012. Chap. 10.
- [6] Travis Oliphant. Guide to NumPy. Vol. 1. Trelgol Publishing USA, 2006. URL: https://ecs.wgtn.ac.nz/foswiki/pub/Support/ManualPagesAndDocumentation/numpybook.pdf.
- [7] Pieterjan Robbe, Dirk Nuyens, and Stefan Vandewalle. "A multi-index quasi–Monte Carlo algorithm for lognormal diffusion problems". In: SIAM Journal on Scientific Computing 39.5 (2017), S851–S872.

References III

- [8] M. W. Scroggs et al. "Construction of arbitrary order finite element degree-of-freedom maps on polygonal and polyhedral cell meshes". In: ACM Transactions on Mathematical Software (2022). To appear. DOI: 10.1145/3524456.
- [9] Linus Seelinger et al. "UM-Bridge: Uncertainty quantification and modeling bridge". In: Journal of Open Source Software 8.83 (2023), p. 4748.
- [10] Aleksei G. Sorokin and Rathinavel Jagadeeswaran. "Monte Carlo for Vector Functions of Integrals". In preparation for the 2022 Monte Carlo and Quasi-Monte Carlo Methods Conference Proceedings.
- [11] Xin Tong et al. "Guaranteed Automatic Integration Library (GAIL): An Open-Source MATLAB Library for Function Approximation, Optimization, and Integration". In: Journal of Open Research Software 10.1 (2022).

References IV

[12] Pauli Virtanen et al. "SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python". In: *Nature Methods* 17 (2020), pp. 261–272. DOI: https://doi.org/10.1038/s41592-019-0686-2.