Redes Bayesianas: Qué son? (II)

Aritz Pérez¹ Borja Calvo²

Basque Center for Applied Mathematics ${\sf UPV/EHU}$

Donostia, Febrero de 2015

Bibliografía

Castillo97: E. Castillo, J.M. Gutiérrez, y A.S. Hadi (1997). Sistemas Expertos y Modelos de Redes Probabilísticas. Academia de Ingeniería.

Modelo de dependencia

- Modelo de dependencia definido gráficamente: Criterio de separación gráfica (d-separación)
- ullet Si p factoriza conforme a ${f G}$ entonces ${\mathcal I}_{f G} \Rightarrow {\mathcal I}_p$
- $\mathcal{I}_{\mathbf{G}}$ es un modelo **compatible** con p
- Si es compatible se puede modelar p de forma exacta

Criterio gráfico

D-separación [ver Castillo'96, p.186, Def 5.4]

Las variables X_A son independientes de X_B condicionadas a X_C si las variables X_C bloquean TODOS los caminos del subgrafo moral del menor subconjunto ancestral.

- 1 Identificar subgrafo de la unión de conjuntos ancestrales
- Moralizar el subgrafo
- Omprobar si las variables que condicionan bloquean todos los caminos

- i(6,7|3,4)
- i(1,7|5)?
- i(1,7|3,4)?
- i(1,7|6)?

- i(6,7|3,4)?
- i(1,7|5)?
- i(1,7|3,4)?
- i(1,7|6)?

- i(6,7|3,4)?
- i(1,7|5)?
- i(1,7|3,4)?
- i(1,7|6)?

- i(6,7|3,4)?
- i(1,7|5)?
- i(1,7|3,4)?
- i(1,7|6)?

- i(6,7|3,4)? bloquea todos los caminos
- i(1,7|5)?
- i(1,7|3,4)?
- i(1,7|6)?

- i(6,7|3,4)?
- i(1,7|5)? No bloquea todos los caminos
- i(1,7|3,4)?
- i(1,7|6)?

- i(6,7|3,4)?
- i(1,7|5)?
- i(1,7|3,4)? No bloquea todos los caminos
- i(1,7|6)?

- i(6,7|3,4)?
- i(1,7|5)?
- i(1,7|3,4)?
- i(1,7|6)?

- i(6,7|3,4)?
- i(1,7|5)?
- i(1,7|3,4)?
- i(1,7|6)?

- i(6,7|3,4)
- i(1,7|5)?
- i(1,7|3,4)?
- i(1,7|6)?

- i(6,7|3,4)
- i(1,7|5)?
- i(1,7|3,4)?
- i(1,7|6)? Bloquea todos los caminos

Definición

Padres, hijos y padres de los hijos

- $Mb(X_i)$ bloquea todos los caminos a X_i
- Independencia $i(1,...,j-1,j+1,...,n;j|\mathbf{Mb}(X_j))$: $p(X_j|X_1,...,X_{j-1},X_{j+1},...,X_n) = p(X_j|\mathbf{Mb}(X_j))$
- Aplicaciones en el aprendizaje, la clasificación supervisada,...

Mapa perfecto

Modelo de dependencia (definido gráficamente) para el que

$$\mathcal{I}_{\mathbf{G}} \equiv \mathcal{I}_{p}$$

• No es siempre posible construir modelos de dependencia perfectos, e.g. $\mathcal{I}_p = \{i(1; 3|2,4), i(2;4|1,3)\}$

Mapa perfecto

Modelo de dependencia (definido gráficamente) para el que

$$\mathcal{I}_{\mathbf{G}} \equiv \mathcal{I}_{p}$$

• No es siempre posible construir modelos de dependencia perfectos, e.g. $\mathcal{I}_p = \{i(1; 3|2, 4), i(2; 4|1, 3)\}$

Mapa de independencia (I-mapa)

Modelo de dependencia para el que

$$\mathcal{I}_{\mathbf{G}} \subseteq \mathcal{I}_{p}$$

- Son todas las que están pero no están todas las que son
- Los I-mapas son modelos compatibles con p definidos gráficamente
- El I-mapa trivial es el grafo completo: demasiados parámetros

I-mapa minimal

 $\mathcal{I}_{\mathbf{G}}$ es un l-mapa minimal de \mathcal{I}_p si es un l-mapa y **eliminar un arco** de \mathbf{G} hace que pierda la condicion de ser un l-mapa

- Reflejan el máximo número de independencias de p
- Interesa construir grafos que sean l-mapas minimales: mínimo número de parámetros que permiten modelar p de forma exacta
- Todos los semigrafoides tienen un I-mapa minimal

Clases de equivalencia

Dos grafos diferentes pueden determinar un **mismo modelo** de dependencia: **Clases de equivalencia** [Castillo97, Sec. 6.5, p.262]

