TRIGONOMETRY

Chapter 03

SECTOR CIRCULAR

SECTOR CIRCULAR Y SUS APLICACIONES

TRIGONOMETRÍA

SECTOR CIRCULAR

Es la porción de un círculo que está delimitada por dos radios y un respectivo arco de circunferencia.

Donde:

- R: radio de la circunferencia
- θ : N° de radianes del ángulo central ($0 < \theta \le 2\pi$)
- L: longitud del arco AB

$$\mathbf{L} = \mathbf{\Theta} \cdot \mathbf{R}$$

PROPIEDADES DE LONGITUDES DE ARCO

PROPIEDADES DE LONGITUDES DE ARCO

ÁREA DEL SECTOR CIRCULAR

Siendo S el área sombreada del sector circular AOB :

$$S = \frac{\theta \cdot R^2}{2}$$

$$S = \frac{L \cdot R}{2}$$

$$S = \frac{L^2}{2\theta}$$

PROPIEDADES DE ÁREAS

1) Determine la longitud del arco AB en el gráfico mostrado .

Recordamos:

Longitud de arco (L):

$$L = \theta \cdot R$$

Resolución

Convertimos 45° a radianes:

$$45^{\circ} <> \frac{1}{45} \left(\frac{\pi \operatorname{rad}}{180^{\circ}}\right) <> \frac{\pi}{4} \operatorname{rad}$$

Aplicamos la fórmula:

$$L = \theta \cdot R \longrightarrow L = \frac{\pi}{\cancel{4}} \cdot \cancel{16} \text{ m}$$

$$L = 4\pi m$$

2) Del gráfico, determine el valor de L.

Resolución

$$\frac{L_1}{L_2} = \frac{R_1}{R_2}$$

Luego:
$$\frac{L}{8\pi \text{ m}} = \frac{6 \text{ m}}{16 \text{ m}}$$

$$L = 3\pi m$$

3) Del gráfico, reduzca :

$$M = \frac{5L_1 + 2L_2 + L_3}{L_3 - L_1}$$

Recordamos:

Del gráfico, por propiedad:

$$L_1 = L L_2 = 2L L_3 = 3L$$

Resolución

Reemplazamos en M:

$$\longrightarrow M = \frac{5(L) + 2(2L) + (3L)}{(3L) - (L)}$$

$$\mathbf{M} = \frac{\mathbf{5L} + \mathbf{4L} + \mathbf{3L}}{\mathbf{2L}}$$

$$M = \frac{12L}{2L} \qquad \dots \qquad M = 6$$

4 Del gráfico, calcule x + y.

Resolución

$$\langle \rangle$$
 COD: $x = 3 u$

$$\langle AOB : x + 2 u = y \rightarrow y = 5 u$$

$$x + y = 8 u$$

5) Del gráfico, calcule el área de la región sombreada.

Resolución

Analizamos el sector AOB:

Calculamos el área sombreada (S):

Tenemos:

$$\theta = 1$$

$$r = 3 u$$

$$S = \frac{\theta \cdot r^2}{2} = \frac{1(3 \text{ u})^2}{2} \longrightarrow \boxed{5}$$

$$S = 4, 5 u^2$$

6) Determine el área de la región que determina el borde inferior de una puerta de vaivén al girar un ángulo de 160g, sabiendo que dicho borde mide 100 cm.

Resolución

Se observa que la región determinada es un sector circular :

$$m \not \le central = 160^g$$

$$R = 100 cm$$

• 160^g <>
$$\frac{4}{160^g} \left(\frac{\pi \text{ rad}}{200^g} \right) = \frac{4\pi}{5} \text{ rad}$$

Calculamos el área S:

$$S = \frac{1}{2}\theta R^2 = \frac{1}{2}\left(\frac{4\pi}{5}\right)(100 \text{ cm})^2$$

$$S = \frac{2\pi}{5} (10000 \text{ cm}^2)$$

 $S = 4000\pi \text{ cm}^2$

- 7) Choper, un experimentado piloto de carrera, desea saber el costo del asfaltado de una pista circular, tal como se muestra en la figura, sabiendo que por m² pagará \$ 500 .
 - ¿ Cuánto será el costo total ?

Resolución

Del sector circular AOB, se tiene:

$$L = 15 \text{ m}$$
 $R = 20 \text{ m}$

Calculamos el área de la pista circular (S):

$$S = \frac{L \cdot R}{2} = \frac{15 \text{ m} (20 \text{ m})}{2} = 150 \text{ m}^2$$

Calculamos el costo total (CT) del asfaltado:

$$CT = (150)(\$500)$$

