För att få poäng på tentan så krävs fullständiga lösningar. Nedan ges endast kortfattade svar.

1)

a)

År	2014	2015	2016
KPI basår 2014	100	99,97	100,93
Värden löpande priser	834	1104	1212
Värden i fasta priser	834	1104,3	1200,8

b) KPI=100 år 2015 med basår 2015

KPI=102,8 år 2017 med basår 2015. Så den allmänna prisutvecklingen har ökat med 2,8% mellan 2015 och 2017

2)

- a) Basbeloppet har ökat i snitt med 411,7kr per år enligt modellen
- b) 411,7+/-2,131*20,42

95% KI för lutningskoefficienten ges av (368,2kr; 455,3kr)

- c) DW=0,55 så vi har positiv autokorrelation
- d) $l_{06} = 39486,6$ $b_{06} = 313,59$

$$l_{07} = 39950,1$$
 $b_{07} = 358,57$

$$l_{08} = 40516,1$$
 $b_{08} = 420,79$

$$\hat{y}_{09}(08) = 40936,9kr$$
 $\hat{y}_{10}(08) = 41357,7kr$ $\hat{y}_{11}(08) = 41778,5kr$

e) 37280 37860 38420 38980 39460 39940

3)

a) $\alpha=0.01$ H_0 : alla autokorrelationer på lag 1 till 24 för residualerna är noll

 $\chi^2=37,99$ $\chi^2_{0,01}(21)=38,93$ 37,99 ligger inte i förkastelseområdet så H_0 kan inte förkastas. Eller p-värdet=0,013 är större än 0,01 så H_0 kan inte förkastas.

- b) mean=57,93%
- c) $\hat{y}_{61}(60) = 56.3$ $\hat{y}_{62}(60) = 54.7$
- d) Fel att använda variabeln månad eftersom månad är en kvalitativ variabel med värden 1 till 12. Modell 3 använder indikatorvariabler för den kvalitativa variabeln månad vilket är korrekt.
- e) $\hat{y}_{61}(60) = 55.1 \quad \hat{y}_{62}(60) = 55.0$
- f) I januari är andelen kvinnliga anställda i snitt 2,11 procentenheter lägre jämfört med december enligt modellen.
- g) 60*0,0516=3,1. Andelen kvinnliga anställda har ökat med 3,1 procentenheter.

Losning uppgift 4) Bo at inte sign. Den bor fas bort Dus Xt-2 sta nog inte vara med Forklarings graden R = 91.9% som ar högt. Residualerna av inte autocorreleracle. De ser aven ut att vara normalfirdelade MSE = 5 = 1.95598 = 3.83 b) 947 (46) = -5.1-0.52 x47 + 7.518 446 -0.667445 +0.908×46-0.212×45 =-5.1-0.52-150.5+1.518-84.1 -0.667.88,3 +0.908-150-0.212-145 = 90.868 = 947 Y48 (46) = -5.1-0.52-150.5 + 1.518-90.868 -0.667·84.1+0.908·150.5-Q.212·150 = 103.337 = 948 $\hat{y}_{49}(46) = -5.1 - 0.52 - 150.5 + 1.518 \cdot 103.337 - 0.667 - 90.868 + 0.908 \cdot 150.5 - 0.212$ = 117.645 = 949 ý50 (46) = -5.1 - 0.52 - 150.5 + 1.518 - 117.645 -0.667-103.337+0.908-150.5-0.212-150.5 = 131.025 = 950

4c et = prognos fel C47 = Y47 - Y47 = 86.5 - 90.9 = -4.4 C48 = 88.2-103.3=-15.1 eyg = 89.5 - 117.6 = -28,1 C50 = 89.5 - 131.0 = -41.5 Prognoserna blir mer och mer fel d, Man skulle keinna anpassa en ARMA-modell bil xe och gera progneser med hjölp av denna modell och sätte in i progneser e AR(2) SAC autar snabbt SPAC har tra spikar i borjan $f) y_t = 16.19 + 0.824 y_{t-1} + a_t + 0.504 a_{t-1} + 0.000 a_{t-1} + 0.000$ +0.33192-2 947 (46) = 16.19 + 0,824 y46 + 0.504 a46 + 0.331 a45 =16-19+0-824-84-1+0.504-(-3.399)+ +0.33/(-3.562)= =82.596 = 947 948 (46) = 16.19 + 0.824 947 + 0.504 a47 + = 16,19 + 0.824.82,596 + 0.40.331 (-3.399)

= 83.124 = 948

 $e_{47} = 86.5 - 82.6 = 3.9$ $e_{48} = 88.2 - 83.1 = 5.1$ $e_{49} = 89.5 - 84.7 = 4.8$ $e_{50} = 89.5 - 86.0 = 3.5$

9) Modell 1: MSE = 5² = 3.826

Myclot stara prognosfel - Alla negative.

Modell 2: MS = 4.93

Mindre prognosfel . Alla positiva

Om man rakner on MSE h'II MSD

Så blir MSD = (46-6) · 5²/46 = 3.3

3.3<4.93 => Modell 1 bast.

men modell 2 har mindre prognosfel

> Modell 2