Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

РАЗРАБОТКА СИСТЕМЫ ЦЕНТРАЛИЗОВАННОГО МОНИТОРИНГА СОСТОЯНИЯ НАКОПИТЕЛЕЙ HDD И SSD

Выполнил: Ажель Илья Владимирович, гр. 7304

Руководитель:

Яновский Владислав Васильевич, к.т.н., доцент

Консультант:

Лавров Андрей Александрович, к.т.н.

Санкт-Петербург, 2021

Актуальность

В настоящее время массовое производство персональных компьютеров и развитие Интернета существенно ускорили становление информационного общества во всем мире. Важнейшим ресурсом в обществе является информация, именно на основе владения информацией о различных процессах можно эффективно и оптимально выстроить любую деятельность. Большая информационного общества занимается часть населения информации или использует информационные и коммуникационные технологии производственной деятельности. Для хранения своей информации используются устройства внешней памяти. HDD и SSD накопители являются основными представителями устройств внешней памяти, данные накопители являются важным компонентом большинства компьютерных систем. Выход из строя накопителя может вызвать потерю данных и прекращение работы системы. Таким образом, мониторинг состояния и прогнозирование выхода из строя HDD и SSD накопителей необходим для предотвращения потери данных и стабильной работы различных систем.

Цель и задачи

Цель: формирование и реализация системы, позволяющей отслеживать состояние и предупредить выход из строя SSD и HDD накопителей.

Задачи:

- 1. Обзор существующих решений.
- 2. Формулировка требований / ограничений.
- 3. Выбор необходимой архитектуры системы мониторинга.
- 4. Определение инструментов и технологий, используемых в разработке.
- 5. Разработка настольного приложения для сбора данных о состоянии накопителя.
- 6. Проектирование и разработка веб-приложения.

1. Обзор существующих решений

Критерии сравнения аналогов.

- 1. Способностью работать с несколькими аппаратными платформами или операционными системами.
- 2. Возможность оперативного оповещения пользователя при возникновении проблем с накопителем
- 3. Возможность централизованного мониторинга.
- 4. Возможность удаленного мониторинга.

Таблица 1 Сопоставление аналогов с критериями сравнения

Сравнение	Номера критериев из списка выше						
по критериям	1	2	3	4			
1	-	-	-	-			
2	-	+	-	-			
3	-	+	+	-			
4	-	-	-	-			

2. Формулировка требований / ограничений

На основе анализа выбранных аналогов, можно сделать вывод, что решение должно представлять собой программный продукт для мониторинга работоспособности HDD и SSD накопителей. Данное решение должно обладать следующими качествами:

- Возможностью сбора и обработки параметров S.M.A.R.T. для оценки состояния HDD и SSD накопителей.
- Возможностью мониторинга большого количества накопителей находящихся в одной локальной сети или сети Интернет.
- Возможностью программного обеспечения работать с несколькими аппаратными платформами или операционными системами.
- Возможностью оперативного оповещения пользователя при возникновении критических ситуаций с HDD или SSD накопителем.
- Возможностью удаленного мониторинга состояния накопителей.

3. Выбор необходимой архитектуры системы мониторинга

В качестве решения поставленных задач было выбрано приложение с использованием клиент-серверной архитектуры. Данный подход позволит оперативно сообщать о критическом состоянии и реализовать мониторинг большого количества накопителей находящихся в устройствах имеющих доступ к сети Интернет.

4. Определение инструментов и технологий, используемых в разработке

- HTML5 и CSS
- Bootstrap
- Python
- Django
- PostgreSQL
- S.M.A.R.T.
- Smartmontools
- Qt

5. Разработка настольного приложения для сбора данных о состоянии накопителя

Для получения атрибутов S.M.A.R.T., было принято решение разработки настольного приложения, архив с которым будет размещен на веб-сайте. Данное приложение использует утилиту Smartmontools для получения атрибутов S.M.A.R.T. Для реализации сценария получения данных о состоянии накопителя и отправки их на сервер был разработан модуль monitoring.py на языке Python. На рисунке представлен пример таблицы атрибутов S.M.A.R.T, обрабатываемая monitoring.py.

	= = = = = = = = = = = = = = = = = = =	•					0.,		
ID#	ATTRIBUTE_NAME	FLAG	VALUE	WORST	THRESH	TYPE	UPDATED	WHEN_FAILED	RAW_VALUE
1	Raw_Read_Error_Rate	0x002f	200	200	051	Pre-fail	Always		0
3	Spin_Up_Time	0x0027	148	145	021	Pre-fail	Always		1566
4	Start_Stop_Count	0x0032	097	097	000	Old_age	Always		3603
5	Reallocated_Sector_Ct	0x0033	200	200	140	Pre-fail	Always		0
7	Seek_Error_Rate	0x002f	200	200	051	Pre-fail	Always		0
9	Power_On_Hours	0x0032	080	080	000	Old_age	Always		14641
10	Spin_Retry_Count	0x0033	100	100	051	Pre-fail	Always		0
11	Calibration_Retry_Count	0x0032	100	100	000	Old_age	Always		0
12	Power_Cycle_Count	0x0032	097	097	000	Old_age	Always		3565
183	Runtime_Bad_Block	0x0032	100	100	000	Old_age	Always		0
184	End-to-End_Error	0x0033	100	100	097	Pre-fail	Always		0
187	Reported_Uncorrect	0x0032	100	100	000	Old_age	Always		0
188	Command_Timeout	0x0032	100	100	000	Old_age	Always		0
190	Airflow_Temperature_Cel	0x0022	066	055	040	Old_age	Always		34 (Min/Max 25/34)
191	G-Sense_Error_Rate	0x0032	001	001	000	Old_age	Always		1319
192	Power-Off_Retract_Count	0x0032	200	200	000	Old_age	Always		159
193	Load_Cycle_Count	0x0032	160	160	000	Old_age	Always		122610
194	Temperature_Celsius	0x0022	109	098	000	Old_age	Always		34
196	Reallocated_Event_Count	0x0032	200	200	000	Old_age	Always		0
197	Current_Pending_Sector	0x0032	200	200	000	Old_age	Always		0
198	Offline_Uncorrectable	0x0030	100	253	000	Old_age	Offline		0
199	UDMA_CRC_Error_Count	0x0032	200	200	000	Old_age	Always		0
200	Multi_Zone_Error_Rate	0x0009	100	253	051	Pre-fail	Offline		0
								·	

5. Разработка настольного приложения для сбора данных о состоянии накопителя

Для выполнения поставленной задачи был использован модуль PyQt5 и декларативный язык программирования QML, так как PyQt5 позволяет использовать классы Qt, которые могут обрабатывать QML код. Было создано два файла: login.py и main.qml. Login.py отвечает за запуск приложения и отправку данных на сервер. Main.qml отвечает интерфейс приложения. На рисунке представлен пример взаимодействия пользователя с интерфейсом разработанного приложения.

6. Проектирование и разработка веб-приложения

С помощью фреймворка Django была создана структура вебприложения. В приложении используется реляционная база данных PostgresSQL. При разработке с фреймворком Django стоит учитывать, что Django использует ORM для представления базы данных в виде объектов Python, называемые моделями. Данная технология облегчает разработку, так как разработчику не приходится работать с базой данной напрямую. Для того чтобы задать структуру веб-сайта был создан список urlpatterns в файле urls.py

6. Проектирование и разработка веб-приложения

После проектирования базы данных и разработки моделей были реализованы функции отображения, которые обрабатывают HTTP-запросы, получают данные из базы данных и возвращают, сгенерированную с помощью шаблонов, страницу пользователю в виде HTTP-ответа. Шаблон — это HTML-файл, который определяет структуру и расположение данных на странице. После реализации функций отображения при помощи фреймворка Bootstrap были созданы шаблоны для каждой из страниц. На рисунке 1 предоставлена главная страница вебсайта.

Рисунок 1 – Главная страница

Заключение

В рамках ВКР были выполнены следующие задачи:

- 1. Изучены существующие решения мониторинга накопителей.
- 2. Сформулированы требования и ограничения разрабатываемого программного обеспечения.
- 3. Разработана и обоснована архитектура системы.
- 4. Выбраны и изучены инструменты, используемые в разработке.
- 5. Разработано приложение для сбора данных о состоянии накопителя.
- 6. Разработано веб-приложение.

Дальнейшим этапом разработки станет улучшение интерфейса веб-сайта, упрощение установки настольного приложения и реализация сценария оперативного оповещения пользователя с использованием push-уведомлений.

Пример разработанных веб-страниц

Рисунок 1 – Страница вывода пользователю информации

Пример разработанных веб-страниц

Рисунок 1 – Страница авторизации