

Yluno: Consella a disponisitidade do equipimento e se necessario, substitui alguns dos instrumentos, tendo em conte que a collente no diodo não deveri ultiopissal 2mA, uma vez que quanto muid o volal de collente, maios a energie dissipede pel ejeit joule, e o sobrequemento do diodo podelic destresorras estigito

· Escolled um dos diodos (letificados ou zena);

· Monta os cilcilos AA e AB;

· ligar os multimetros e conjugatoros, belan aptorobre da docentes ligar o geredos,

com a tensar no mínimo,

· Varied a tensar de saide ne jonte, E, e segistal os valales que surjam no amperimetro e no voltimetro, tendo em conta as flutuações;

· Trugal os grégios de d'intertant 1 em

jungio de l'e de mellem jungio de l';

· Desmontal o circuito;

nosigno 1; Repetal os pessos anteneres peletros e AA e 13;

Inverter a polaridede le jonte de tensão par a

polaridede de jonte de tensão par a

polaridede de jonte de tensão par a

Qualit dede -> . de gontos, lemo assm?

> · Raystar os declos (V1, 10, V2, V0) nume tabele, osímbolo, a unidade de medide e a incerteza wm cade quelleza; · Supondo que a tensão de suide do gesedos

e sufficiente mente estivel, executar o procedimento de medide com ejuste 12=14; · Ajusta a tensar-do geredor e medie a constit, Vy, e a collente, 1=10, com o Comutedos po posição 1, registendo os velores, · Mudal o comutados poseção 2 e verisca que os volores de tensora e contente modom · Ajustas à tensão - do gerador de modo a report a collente no vilor anterior (i.e., 15=1/2) mediado o novo ville de tenso, V2; e segistas o seu vold: VD = V1 - V2; · Forex um estado semelhante para o outro d'odo;
Replisentar à cour carelteristice do díodo, 10 (Vo);
Calcular a resistência estrola, RDC = 1 em alguns
pontos de cara 10 (Vp) e estrona a resis tencia dinamica, RACE IV, num ponto de condução genera; y 102? · linewiza a lei de Shockley* com une Vo , comentando a quilidade do ajeste Imaa obbido e il terminando os parmetros lo, in e es incertezas Lespenvis; com o obilo no guistrol lo = heave dos pontos so the a linke de satuligio). * Ver Anexo NoTA) : DiOdos tem lido n e a anodo * Vel Arexo sent dolpoda rosso diute sentido/polarosso muensa Sentido presidencial: ahodo-cehdo. Vp = VA - Ve 70 grif 10 nte e linea mes to = When to de polar zagas

regime de evilenche. Vinuse alto e Vo CO, suture 1 lettite Nunce quernos o hague a zone de avilandes e quenos linvese de prezeros vara corrente de juyo Lei de Shockley (1) V: Tensau 1= 10 (e hor -1) K: (Oh)tente de Boltzmenn, T: temperature de lo: Welsente de situação, n: 1 < n < 2

Silito, d realleutes que depende de Te de inellie de bind gip do Semilandelal talkented to generio White APENAJ: Res. estitic: RDC = V Res. dinômico: PAC = 31 Al MB K=1,32065×10-23 n grefics dedive EXXT T = 296, 15K (aplosprado) e'= 1,602127 ×10-19 6 10 = 62-2 apste · lei de shockley: 1= lo (enxt -1) Explissões utilizados: · lei de shockley: $l=lo(e_{\pi}^{2})$ e values s $lo=e^{s}$ $lo=e^{s}$ $lo=e^{s}$ $lo=e^{s}$ $lo=e^{s}$ $lo=e^{s}$ e'= 1,6022177 x10-19 (· T= 296, 15 K

· Resultados:

Stopped gold door Petipledon the

=> Diodo netificador:

- Cincuito ga:

Dados obtidos:

(V ± 0,000003) (V)	(I ± 0,00005) (mA)	In I	(In I)aj _{preliminar}	(Res In I) _{preliminar}	(In I)aj	laj (mA)	Res de In I	I _D (mA)	In(I _D)	Res In(I _D)
0,566955	0,96815	-0,032368245	0,029973267	0,062341512	-0,00498337	0,995029027	0,027384875	1,004637349	0,00462663	0,03699488
0,565430	0,93845	-0,063525701	-0,006368141	0,05715756	-0,039117512	0,961637698	0,024408189	0,970898375	-0,029533476	0,03399222
0,562860	0,88970	-0,116870952	-0,067612351	0,049258601	-0,096641936	0,907881027	0,020229015	0,916583908	-0,087101663	0,02976929
0,560440	0,84580	-0,167472354	-0,125281996	0,042190358	-0,150808904	0,860012028	0,01666345	0,868220252	-0,141309849	0,02616250
0,558100	0,80550	-0,216292076	-0,181045207	0,03524687	-0,203185228	0,816127058	0,013106848	0,823883585	-0,193726039	0,02256604
0,554680	0,74950	-0,288348961	-0,262545284	0,025803678	-0,27973524	0,755983869	0,008613722	0,763124312	-0,270334336	0,01801463
0,551120	0,69510	-0,363699559	-0,347381621	0,016317938	-0,359418878	0,698081879	0,004280681	0,704632655	-0,350078669	0,01362089
0,546140	0,62560	-0,46904409	-0,466057172	0,002986918	-0,470886439	0,624448487	-0,001842349	0,630254746	-0,461631183	0,00741291
0,543500	0,59160	-0,524924548	-0,528969512	-0,004044964	-0,529977676	0,58861811	-0,005053128	0,594064441	-0,520767479	0,00415707
0,538780	0,53480	-0,625862434	-0,64144915	-0,015586716	-0,635625646	0,52960404	-0,009763212	0,534461247	-0,626496055	-0,00063362
0,533740	0,48000	-0,733969175	-0,761554527	-0,027585352	-0,74843619	0,473105822	-0,014467015	0,477403736	-0,73939274	-0,00542357
0,526190	0,40710	-0,898696423	-0,941474287	-0,042777864	-0,917428175	0,399545281	-0,018731752	0,40312285	-0,908513924	-0,00981750
0,520780	0,36130	-1,018046641	-1,070396924	-0,052350283	-1,038520446	0,353978024	-0,020473805	0,35711447	-1,029698903	-0,01165226
0,510710	0,28840	-1,243406874	-1,310369372	-0,066962499	-1,263917703	0,282544928	-0,020510829	0,284999152	-1,255269076	-0,01186220
0,499490	0,22310	-1,500135178	-1,577746818	-0,07761164	-1,515055461	0,219795994	-0,014920284	0,221662317	-1,50660015	-0,00646497
0,487580	0,16860	-1,780226233	-1,861567261	-0,081341028	-1,78163752	0,168362225	-0,001411287	0,169756813	-1,773388379	0,00683785
0,467300	0,10230	-2,279845606	-2,344848419	-0,065002813	-2,235565661	0,106931626	0,044279945	0,107779181	-2,227670764	0,05217484
0,448550	0,06300	-2,764620553	-2,791669017	-0,027048464	-2,655247744	0,070281425	0,109372809	0,070814917	-2,647685612	0,11693494
0,393960	0,01410	-4,261580482	-4,092572292	0,16900819	-3,877138139	0,02071001	0,384442343	0,020845746	-3,870605384	0,39097510
	amperime two (total)									

Em seguida, Rephesentou-se a constente em junção da tensão nos seus tesminais, V:

Grafico 1:

l em son são de V: Palece existin uma tendência exponencial, pelo que se linealitou o grifico com um log alitmo repeliano. fez-se ainda um ajuste fineal plehminas.

GRAFICOS MAIDRES / na o sigem desta tendência. independente do apiste linea; 10 = e (-127±0,1) = 100 100 51 ×10-6 = (3,1±0,3) x10-6 mA Alson obtin-se un valin de la cottante 2 ver vers 4-to delle -) a intertera obtém-se de expressão: $U(10) = \sqrt{\frac{3e^3}{35}}^2 v^2(5) = \sqrt{(e^{-12,2}v_0,1)^2} =$ ~ 0,3 mA. Pode ainda tomal-se $m = \frac{e'}{m \kappa T}$, sendo m o declive do ajuste: 1,602177 ×10-19 = 1,602177 ×10-19 = 122,4±0,211/19806540-23x296,75 ~ \$ 1,75 ± 0,02 Dayvi, obtemos on volon de lo a segistados na the Tolleting to Millimination of the 10 Calculadola de meesters, uma VEZ que a explessão é Extrememente complicade.

Clésico 6: Caso Sobreposição dos dedos explimentais e a gite tintos interposição es velvies de In Id, em que se verificam suberposições.

Gruficot. Resideos de In 10. A maioria dos Montos encontra-se prósima de O, mes volta a surgis uma Lendincia parabólica

- Circuito 對b:

Pados obtidos:

(V ± 0,000003) (V)	(I ± 0,000005) (mA)
0,664050	0,000003
1,966700	0,000003
3,709000	0,000003
6,058400	0,000003
7,450500	0,000004
9,903000	0,000004
14,894000	0,000005

0,0000055 0,0000045 0,0000040 0,0000035 0,0000035 0,0000025 0,00 2,0 4,0 6,0 8,0 10,0 12,0 14,0 16,0

lem sinsão de V. notese que os viloses de V e de 1, no polarização invess, estrão apresentados como pos. hvos, embou o sentrolos seja contribiso ao do circuito la. Notam-se valules muito reducidos de collente, que se apresentam quase como degravs. Is to mostre que Rehsiados aumenta por com o sentido imentado da collente.

- Diodo Zenes - Ciscuito Ma: Boa condustro

Dados obtidos:

(V ± 0,000003) (V)	(I ± 0,00005) (mA)	In I	(In I)aj _{preliminar}	(Res In I) _{preliminar}	(In I)aj	Res In I
0,75590	0,95930	-0,041551	-0,249143148	-0,207592	-0,279590	-0,238038
0,75369	0,88740	-0,282774	-0,253066491	0,029708	-0,282592	0,000182
0,75122	0,81360	-0,286057	-0,257451403	0,028605	-0,285947	0,000109
0,74903	0,75300	-0,288976	-0,26133924	0,027637	-0,288922	0,000054
0,74483	0,64580	-0,294599	-0,268795366	0,025804	-0,294628	-0,000029
0,74197	0,58690	-0,298446	-0,273872633	0,024574	-0,298513	-0,000067
0,73940	0,53670	-0,301916	-0,278435072	0,023481	-0,302005	-0,000088
0,73256	0,42330	-0,311210	-0,290577906	0,020632	-0,311297	-0,000087
0,72657	0,34470	-0,319420	-0,301211762	0,018209	-0,319434	-0,000013
0,72082	0,28300	-0,327366	-0,311419553	0,015946	-0,327245	0,000121
0,70664	0,17470	-0,347234	-0,336592855	0,010641	-0,346508	0,000726
0,67157	0,05480	-0,398137	-0,398851508	-0,000714	-0,394150	0,003987
0,55250	0,00160	-0,593302	-0,610232681	-0,016931	-0,555903	0,037399

Crésico 9: Collente no ampaimento em junção de V. Notiese Uma tendência exponencial, que leva a uma linealização Logue traico.

1,0							
3,2							
5.8							
				- 1			
9,1			* Dedo	out			
3.6							
5,1 5,1 3,3							
3,1						3	
3,3							
3,2							
2.1							
9,0	9.15	Cos	0.05 V (V)		0.73	0,72	4,1

VI.			
m	1,8	-1,6	b
σm	0,3	0,3	σb
r ²	0,7	0,07	σγ

Laternos ao ajos te
lineas palminas, en
tode a game espermentel
World Valus do fatos
Re e tão baido, que
se passa de saguida
para o glai firo de
susidos, para depois
Se rectiral outro
ajuste lineas.

Gráfico lo: residues preliminas de In I. Jubela 4: Dados selichos ao segundo ejuste lingui, ne geme enperimental dos relaces de tensar entre 0,72082V e 0,75122V.

m	1,358	-1,306	b
σm	0,003	0,002	σb
r ²	0,99997	0,0001	σγ

Cacquio 11: Residuos de In 1: Volte a notal-se ume tendêncie palebolica, agosse mes, mais uma ver, tomus-seré este ajuste como o mais colleto, por os velasos le siduos estalam proximos de o.

Gláfilo 12: In I em singer de V, com os didos expulmentais, o ejeste final, e os pontos devidosos (não oblicado no ejeste).

- Cilcoits Ra: Avalanthe

Dodos oblidos	(V ± 0,000003) (V)	(I ± 0,00005) (mA)
	-10,100400	-0,32280
	-10,009400	-0,22930
		1

-10,100400	-0,32280
-10,009400	-0,22930
-10,008600	-0,10640
-9,917500	-0,00120
-8,977900	-0,00090
-8,027000	-0,00080
-6,923500	-0,00070
-5,619000	-0,00060
-4,825000	-0,00050
-3,586000	-0,00400

Refigicadar:

Didos

V (V)	I (mA)	u(V) (V)	u(I) (mA)
0,566955	0,96815	0,000003	0,00005
0,565430	0,93845	0,000003	0,00005
0,562860	0,88970	0,000003	0,00005
0,560440	0,84580	0,000003	0,00005
0,558100	0,80550	0,000003	0,00005
0,554680	0,74950	0,000003	0,00005
0,551120	0,69510	0,000003	0,00005
0,546140	0,62560	0,000003	0,00005
0,543500	0,59160	0,000003	0,00005
0,538780	0,53480	0,000003	0,00005
0,533740	0,48000	0,000003	0,00005
0,526190	0,40710	0,000003	0,00005
0,520780	0,36130	0,000003	0,00005
0,510710	0,28840	0,000003	0,00005
0,499490	0,22310	0,000003	0,00005
0,487580	0,16860	0,000003	0,00005
0,467300	0,10230	0,000003	0,00005
0,448550	0,06300	0,000003	0,00005
0,393960	0,01410	0,000003	0,00005
-0,664050	-0,000003	0,000003	0,000005
-1,966700	-0,000003	0,000003	0,000005
-3,709000	-0,000003	0,000003	0,000005
-6,058400	-0,000003	0,000003	0,000005
-7,450500	-0,000004	0,000003	0,000005
-9,903000	-0,000004	0,000003	0,000005
-14,894000	-0,000005	0,000003	0,000005

Cufilo 16

Zener: Dados

Gréfico 17

	V (V)	I (mA)	u(V) (V)	u(I) (mA)
	-10,100400	-0,32280	0,000003	0,00005
	-10,009400	-0,22930	0,000003	0,00005
	-10,008600	-0,10640	0,000003	0,00005
	-9,917500	-0,001200	0,000003	0,000005
	-8,977900	-0,000900	0,000003	0,000005
	-8,027000	-0,000800	0,000003	0,000005
	-6,923500	-0,000700	0,000003	0,000005
	-5,619000	-0,000600	0,000003	0,000005
	-4,825000	-0,000500	0,000003	0,000005
	-3,586000	-0,004000	0,000003	0,000005
	-0,165200	-0,000002	0,000003	0,000005
	-0,458100	-0,000001	0,000003	0,000005
	-1,134000	-0,000001	0,000003	0,000005
	-2,046500	-0,000001	0,000003	0,000005
	-3,557700	-0,000001	0,000003	0,000005
	-7,014000	-0,000001	0,000003	0,000005
	-9,185200	-0,000008	0,000003	0,000005
	-10,016700	-0,013620	0,000003	0,000005
	0,552500	0,001600	0,000003	0,000005
	0,755900	0,95930	0,000003	0,00005
	0,753690	0,88740	0,000003	0,00005
	0,751220	0,81360	0,000003	0,00005
Ĭ	0,749030	0,75300	0,000003	0,00005
j	0,744830	0,64580	0,000003	0,00005
	0,741970	0,58690	0,000003	0,00005
	0,739400	0,53670	0,000003	0,00005
	0,732560	0,42330	0,000003	0,00005
	0,726570	0,34470	0,000003	0,00005
	0,720820	0,28300	0,000003	0,00005
	0,706640	0,17470	0,000003	0,00005
	0,671570	0,05480	0,000003	0,00005

Resistancies do de tracion:

Resistancies do de tracion:

Resistancies do de tracion de tracion de la como de

Dudos obbilos:

Tabelo 5:

(V ± 0,000003) (V)	(I ± 0,00000005) (mA)	R _{DC} (Ω)	R _{AC} (Ω)	$u(R_{DC})(\Omega)$	$u(R_{AC})(\Omega)$
0,566955	0,96815000	5,85607E+02	1,576697E-03	3E-03	8E-09
0,565430	0,93845000	6,02515E+02	2,74116E-03	3E-03	1E-08
0,562860	0,88970000	6,32640E+02	2,72261E-03	3E-03	1E-08
0,560440	0,84580000	6,62615E+02	2,76925E-03	4E-03	1E-08
0,558100	0,80550000	6,92862E+02	4,24976E-03	4E-03	2E-08
0,554680	0,74950000	7,40067E+02	4,75424E-03	4E-03	3E-08
0,551120	0,69510000	7,92864E+02	7,17089E-03	4E-03	4E-08
0,546140	0,62560000	8,72986E+02	4,22394E-03	5E-03	2E-08
0,543500	0,59160000	9,18695E+02	7,98558E-03	5E-03	4E-08
0,538780	0,53480000	1,007442E+03	9,43255E-03	6E-03	5E-08
0,533740	0,48000000	1,111958E+03	1,574252E-02	6E-03	9E-08
0,526190	0,40710000	1,292533E+03	1,330092E-02	7E-03	8E-08
0,520780	0,36130000	1,441406E+03	2,78938E-02	8E-03	2E-07
0,510710	0,28840000	1,77084E+03	3,89344E-02	1E-02	2E-07
0,499490	0,22310000	2,23886E+03	5,34245E-02	1E-02	3E-07
0,487580	0,16860000	2,89193E+03	1,203577E-01	2E-02	7E-07
0,467300	0,10230000	4,56794E+03	1,83397E-01	3E-02	1E-06
0,448550	0,06300000	7,11984E+03	8,66702E-01	5E-02	6E-06
0,393960	0,01410000	2,79404E+04	7,50362E+01	2E-01	6E-04
-0,66405	-0,00000300	2,21E+08	22222222	-4E+06	
-1,9667	-0,00000300	6,6E+08		-1E+07	*******
-3,709	-0,00000300	1,24E+09	20000000	-2E+07	2000000
-6,0584	-0,00000300	2,02E+09	1,39E+09	-3E+07	2E+07
-7,4505	-0,00000400	1,86E+09		-2E+07	
-9,903	-0,00000400	2,48E+09	4,99E+09	-3E+07	6E+07
-14,894	-0,00000500	2,98E+09	2,98E+09	-3E+07	3E+07

Resistência Zona min max Boa condução 2,79404E+04 5,8561E+02 DC Retificação 2,98E+09 2,2135E+08 Boa condução 7,50E+01 1,5767E-03 AC Retificação

Não se encontiou um valor de RNC máximo ou mínimo no zone de la hilação, pois a apoximo ou mínimo pose celculo impossível para \$1 = 0. Satomos a \$1=0 de la dijetenças de collente tax pequencs que o devel-se-i a dijetenças de collente tax pequencs que o

ampieline tro não é coper de as détetas; de sats, poule quese assumes-se una resistencia infinita.

· Resistancias do díodo Zener:

Dados

(V ± 0,000003) (V)	(I ± 0,00005) (mA)	R _{DC} (Ω)	R _{AC} (Ω)	u(R _{DC}) (Ω)	$u(R_{DC})(\Omega)$
-10,100400	-0,32280	31290	0,28211	5	4E-05
-10,009400	-0,22930	4,365E+04	0,0034905	1E+01	8E-07
-10,008600	-0,10640	9,407E+04	0,8562	4E+01	4E-04
-9,917500	-0,00120	8,3E+06	7,8E+02	3E+05	3E+01
-8,977900	-0,00090	1,0E+07	1,06E+03	6E+05	6E+01
-8,027000	-0,00080	1,00E+07	1,38E+03	6E+05	9E+01
-6,923500	-0,00070	9,9E+06	1,9E+03	7E+05	1E+02
-5,619000	-0,00060	9,4E+06	1,3E+03	8E+05	1E+02
-4,825000	-0,00050	1E+07	2,5E+03	1E+06	2E+02
-3,586000	-0,00400	9,0E+05	-8,63E+01	1E+04	-1E+00
-0,165200	-43,65198	3,78448	-6,7244E-03	7E-05	-1E-07
-0,458100	-94,06579	4,87000	-7,87751E-03	3E- 0 5	-5E-08
-1,134000	-8264,58333	1,372120E-01	-1,105443E-04	4E-07	-3E-10
-2,046500	-9975,44444	2,051538E-01	-1,516445E-04	3E-07	-2E-10
-3,557700	-10033,75000	3,545733E-01	-3,448073E-04	3E-07	-3E-10
-7,014000	-9890,71429	7,091500E-01	-2,1972708E-04	3E-07	-9E-11
-9,185200	-9365,00000	9,808009E-01	-8,8879625E-05	3E-07	-3E-11
-10,016700	-9650,00000	1,0380000	9,8074611E-04	3E-07	3E-10
-0,552500	-0,00160	3,5E+05	5,1E+02	1E+04	2E+01
0,755900	0,95930	787,97	2,3059E-03	4E-02	1E-07
0,753690	0,88740	849,32	2,7860E-03	5E-02	2E-07
0,751220	0,81360	923,33	2,6942E-03	6E-02	2E-07
0,749030	0,75300	994,73	5,5825E-03	7E-02	4E-07
0,744830	0,64580	1153,34	4,4326E-03	9E-02	3E-07
0,741970	0,58690	1264,2	4,3829E-03	1E-01	4E-07
0,739400	0,53670	1377,7	1,2755E-02	1E-01	1E-06
0,732560	0,42330	1730,6	1,4162E-02	2E-01	2E-06
0,726570	0,34470	2107,8	1,6695E-02	3E-01	2E-06
0,720820	0,28300	2547,1	5,0137E-02	5E-01	9E-06
0,706640	0,17470	4045	0,20081	1	6E-05
0,671570	0,05480	1,2E+04		1E+01	WWW.

Tabele 6:

Resistência	Zona	max	min
DC	Boa condução	9,407E+04	3,1290E+04
	Retificação	1,00E+07	1,3721E-01
	Avalanche	1,2E+04	7,8797E+02
AC	Boa condução	8,56E-01	3,4905E-03
	Retificação	2,50E+03	-8,6E+01
	Avalanche	2,01E-01	2,3059E-03

Resultation Finais?

Discussão e (conclusão:) Sepmm! to possivel tauser curves carecteristicas dos dois d'odos dentro dequito que serve de se espelar. No ontanto, hi que se notas que os ajustes lineares usados não terão sido os = tendentias (maiditationente palabolicas). Isto pode dever-se a ellos sistemáticos ou a esiolhas à un nimero de me suado baixo de medigões. Quanto às desistencias, ho retigicador Velificamos que estes seu semple supervoles n a zone el le tificação, o que justifice os velores de collente proximos de o no grafico 8. A As resistência AC cubem por sea, D 111 infinitas na zone de letificação. No diodo Zenei, sa se se sigiração. Confidential to the state of foi possível velifica que ambas as lesistências (AC, e DC) elem maximas ne zone de le titicação, e que quesentavam a mesmo orden de grandeza nas zonas de sor condesso e de avilanche. Isto explica à tondéncie quese vertical pubo de Un-100 no asive do diocho de Zehes. Pol sim, & possivel notal uma maios vasichilidade que a sesistància métimo do diodo letificados e pelo menos cem vezes superior à do diodo Zenes.