Housekeeping

Assignment 1 is due at the beginning of your support class next week (13-17 March).

Mon 13 is not a holiday for Monash. Support classes will run as normal.

Assignment 2, tutorial sheet 2 and tutorial solutions 1 are now available.

MAT1830

Lecture 6: Rules of inference

Last time we saw how to recognise tautologies and logically equivalent sentences by computing their truth tables. Another way is to *infer* new sentences from old by *rules of inference*.

6.1 The rule of replacement

This rule says that any sentence may be replaced by an equivalent sentence. Any series of such replacements therefore leads to a sentence equivalent to the one we started with.

Using replacement is like the usual method of proving identities in algebra – make a series of replacements until the left hand side is found equal to the right hand side.

Why can we say that $(\frac{2x}{2})^2 = x^2$?

And there's a rule of replacement.

Because $\frac{2x}{2} = x$.

It's the same in logic except with \equiv instead of =.

It's the same in logic except with \equiv instead of =.

So we can say that $p \land \neg (q \lor r) \equiv p \land (\neg q \land \neg r)$ because $\neg (q \lor r) \equiv \neg q \land \neg r$.

Examples

1.
$$x \to y \equiv (\neg y) \to (\neg x)$$

Proof.

$$x \to y \equiv (\neg x) \lor y$$
 by implication law
$$\equiv y \lor (\neg x)$$
 by commutative law
$$\equiv (\neg \neg y) \lor (\neg x)$$
 by law of double negation
$$\equiv (\neg y) \to (\neg x)$$
 by implication law

$$x\to y\equiv (\neg y)\to (\neg x)$$
 (\neg y) \to (\neg x) is the contrapositive of $x\to y$.

${\bf Example.}\,$ The contrapositive of

 $MCG flooded \rightarrow cricket is off$

is

Cricket is on \rightarrow MCG not flooded.

An implication and its contrapositive are equivalent: they mean the same thing!

Question 6.1 What does "no pain, no gain" mean as an implication?

"no pain" \rightarrow "no gain"

Question 6.2 What is its contrapositive?

 \neg "no gain" $\rightarrow \neg$ "no pain" OR "gain" \rightarrow "pain"

Contrapositives are not negations!

Don't confuse contrapositives with negations.

We've seen that the contrapositive of $p \to q$ is $\neg q \to \neg p$ and that it is logically equivalent to the original statement.

The negation of $p \to q$ is $\neg(p \to q)$. It is not logically equivalent to the original statement.

$$\neg(p \to q) \equiv \neg(\neg p \lor q)
\equiv \neg \neg p \land \neg q
\equiv p \land \neg q$$

"If he were the dean then he'd have pants on."

Contrapositive: "If he doesn't have pants on then he isn't the dean." Logically equivalent to original statement!

Negation: "He's the dean and he doesn't have pants on." True exactly when the original statement is false!

THEN I TOOK A STATISTICS CLASS. NOW I DON'T.

Question 6.3 Write down the following sentences as implications and then write their contrapositives.

Sentence: "You can't make an omelette without breaking eggs." Implication: "you made an omelette" \rightarrow "you broke eggs" Contrapositive: "you didn't break eggs" \rightarrow "you didn't make an omelette"

Sentence: "If n is even, so is n^2 ." Implication: "n is even" \rightarrow " n^2 is even" Contrapositive: " n^2 is odd" \rightarrow "n is odd"

Sentence: "Haste makes waste." Implication: "haste" \rightarrow "waste" Contrapositive: "no waste" \rightarrow "no haste"

2. $p \to (q \to p) \equiv \mathsf{T}$

Proof.

$$p \to (q \to p)$$

$$\equiv (\neg p) \lor (q \to p)$$
by implication law
$$\equiv (\neg p) \lor ((\neg q) \lor p)$$
by implication law
$$\equiv (\neg p) \lor (p \lor (\neg q))$$
by commutative law
$$\equiv ((\neg p) \lor p) \lor (\neg q)$$
by associative law
$$\equiv (p \lor (\neg p)) \lor (\neg q)$$
by commutative law
$$\equiv T \lor (\neg q)$$
by inverse law
$$\equiv T \lor (\neg q)$$
by annihilation law

Question 6.4 Show that $p \to (q \to (r \to p))$ is a tautology.

$$p \to (q \to (r \to p)) \equiv \neg p \lor (q \to (r \to p))$$

$$\equiv \neg p \lor (\neg q \lor (r \to p))$$

$$\equiv \neg p \lor (\neg q \lor (\neg r \lor p))$$

$$\equiv \neg p \lor \neg q \lor \neg r \lor p$$

$$\equiv (\neg p \lor p) \lor \neg q \lor \neg r$$

$$\equiv T \lor \neg q \lor \neg r$$

= T

Question 6.5 Find a tautology form with n variables which is $p \to (q \to p)$ for n = 2 and $p \to (q \to (r \to p))$ for n = 3.

$$0 \rightarrow (q \rightarrow p)$$
 for $n = 2$ and $p \rightarrow (q \rightarrow (r \rightarrow p))$ for $n = 3$.

 $p_1 \rightarrow (p_2 \rightarrow (p_3 \rightarrow (p_4 \rightarrow \cdots (p_{n-1} \rightarrow (p_n \rightarrow p_1)) \cdots)))$

3. $((p \to q) \land p) \to q \equiv \mathsf{T}$

Proof.

$$((p \to q) \land p) \to q$$

$$\equiv \neg((p \to q) \land p) \lor q$$
by implication law
$$\equiv (\neg(p \to q) \lor (\neg p)) \lor q$$
by de Morgan's law
$$\equiv \neg(p \to q) \lor ((\neg p) \lor q)$$
by associative law
$$\equiv \neg(p \to q) \lor (p \to q)$$
by implication law
$$\equiv (p \to q) \lor \neg(p \to q)$$
by commutative law
$$\equiv T \text{ by inverse law } \square$$

This tautology says that "if p implies q and p is true then q is true".

6.2 Modus ponens

The tautology $((p \to q) \land p) \to q$ also translates into a rule of inference known as *modus ponens*: from sentences $p \to q$ and p we can infer the sentence q.

6.3 Logical consequence

A sentence ψ is a logical consequence of a sentence ϕ , if $\psi = \mathsf{T}$ whenever $\phi = \mathsf{T}$. We write this as $\phi \Rightarrow \psi$.

It is the same to say that $\phi \to \psi$ is a tautology, but $\phi \Rightarrow \psi$ makes it clearer that we are discussing a relation between the sentences ϕ and ψ .

Any sentence ψ logically equivalent to ϕ is a logical consequence of ϕ , but not all consequences of ψ are equivalent to it.

Example. $p \land q \Rightarrow p$

p is a logical consequence of $p \wedge q$, because $p = \mathsf{T}$ whenever $p \wedge q = \mathsf{T}$. However, we can have $p \wedge q = \mathsf{F}$ when $p = \mathsf{T}$ (namely, when $q = \mathsf{F}$). Hence $p \wedge q$ and p are not equivalent.

This example shows that \Rightarrow is not symmetric:

$$(p \land q) \Rightarrow p$$
 but $p \Rightarrow (p \land q)$

This is where \Rightarrow differs from \equiv , because if $\phi \equiv \psi$ then $\psi \equiv \phi$.

In fact, we build the relation \equiv from \Rightarrow the same way \leftrightarrow is built from \rightarrow :

$$\phi \equiv \psi$$
 means $(\phi \Rightarrow \psi)$ and $(\psi \Rightarrow \phi)$.

Example Show that $p \land (q \lor r) \Rightarrow (p \land q) \lor r$ using a truth table.

q	r	$q \vee r$	$p \wedge (q \vee r)$	$p \wedge q$	$(p \land q) \lor r$
Т	Т	Т	Т	Т	Т
Т	F	Т	Т	T	T
F	Т	Т	Т	F	T
F	F	F	F	F	F
Т	Т	Т	F	F	T
Т	F	Т	F	F	F
F	Т	T	F	F	T
F	F	F	F	F	F
	F T T	T T F F T F T T F T T F	T T T T T T F T T T T T T T T T T T T T	T T T T T T T T T T T T T T T T T T T	T T T T T T T T T T T T T T T T T T T