# 文件的物理 结构 (文件分配方式)

知识总览

对非空闲磁盘块的管理(存放了文件数据的磁盘块)

对空闲磁盘块的管理

对空闲磁盘块的管理

"文件的物理结构/文件分配方式"要探讨的问题
管理"要探讨的问题

王道考研/CSKAOYAN.COM









## 文件分配方式——连续分配

连续分配方式要求每个文件在磁盘上占有一组连续的块。



读取某个磁盘块时,需要移动磁头。访问的两个磁盘块相隔越远,移动磁头所需时间就越长。

结论: 连续分配的文件在顺序读/写时速度最快

王道考研/CSKAOYAN.COM

王道考研/CSKAOYAN.COM

7

# 文件分配方式——连续分配 文件A的后面已 经没有相邻的 空闲块 整色区域为其 他文件已经占 用的磁盘块 次件A占用的磁盘块 次件A占用的磁盘块 次件A占用的磁盘块 次件A占用的磁盘块 次件A占用的磁盘块 次件A占用的磁盘块 次件A占用的磁盘块 海透纹的 不为便格



### 连续分配(总结)

连续分配方式要求每个文件在磁盘上占有一组连续的块。

优点: 支持顺序访问和直接访问(即随机访问); 连续分配的文件在顺序访问时速度最快

缺点: 不方便文件拓展; 存储空间利用率低, 会产生磁盘碎片

王道考研/CSKAOYAN.COM



### 文件分配方式——链接分配

链接分配采取离散分配的方式,可以为文件分配离散的磁盘块。分为隐式链接和显式链接两种。

王道考研/CSKAOYAN.COM

11

### 链接分配——隐式链接



如何实理块号

如何实现文件的逻辑块号到物 理块号的转变?

用户给出要访问的逻辑块号 i,操作系统找 到该文件对应的目录项(FCB)...

从目录项中找到起始块号(即0号块),将0号逻辑块读入内存,由此知道1号逻辑块存放的物理块号,于是读入1号逻辑块,再找到2号逻辑块的存放位置……以此类推。因此,读入i号逻辑块,总共需要 i+1 次磁盘 I/O。

结论:采用链式分配(隐式链接)方式的文件,只支持顺序访问,不支持随机访问,查 找效率低。另外,指向下一个盘块的指针也 需要耗费少量的存储空间。

王道考研/CSKAOYAN.COM





起始块号

结束块号



结论:采用隐式链接的链接分配方式,很方便文件拓展。 另外, 所有的空闲磁盘块都可以被利用, 不会有碎片问题, 外存利用率高。

王道考研/CSKAOYAN.COM

13

# 链接分配——隐式链接

链接分配采取离散分配的方式,可以为文件分配离散的磁盘块。分为隐式链接和显式链接两种。

隐式链接——除文件的最后一个盘块之外,每个盘块中都存有指向下一个盘块的指针。文件目录 包括文件第一块的指针和最后一块的指针。

优点:很方便文件拓展,不会有碎片问题,外存利用率高。 缺点:只支持顺序访问,不支持随机访问,查找效率低,指向下一个盘块的指针也需要耗费少量 的存储空间。





王道考研/CSKAOYAN.COM



### 链接分配——显式链接

| 文件名 | <br>起始块号 |  |
|-----|----------|--|
| aaa | <br>2    |  |
| bbb | <br>4    |  |



目录中只需记录 文件的起始块号

| 物理块号 | 下一块 |
|------|-----|
| 0    | 1   |
| 1    | -1  |
| 2    | 5   |
| 3    | -1  |
| 4    | 23  |
| 5    | 0   |
|      |     |
| 22   |     |
| 23   | 3   |
|      |     |

FAT (文件分配表)

把用于链接文件各物理块的指针显 式地存放在一张表中。即 文件分配 表(FAT,File Allocation Table)

假设某个新创建的文件"aaa"依次存放在磁盘块 2 →5 →0 →1

假设某个新创建的文件"bbb"依次存放在磁盘块 4 →23 →3

注意:一个磁盘仅设置一张FAT。 开机时,将FAT读入内存,并常驻 内存。FAT 的各个表项在物理上 连续存储,且每一个表项长度相 同,因此"物理块号"字段可以 是隐含的。

王道考研/CSKAOYAN.COM

15

### 链接分配——显式链接



| 物理块号 | 下一块 |
|------|-----|
| 0    | 1,5 |
| 1    | -1  |
| 2    | 5   |
| 3 20 | -1  |
| 4    | 23  |
| 5    | 0   |
|      |     |
| 22   |     |
| 23   | 3   |
|      |     |

FAT (文件分配表)



如何实现文件的逻辑块号到物 理块号的转变?

用户给出要访问的逻辑块号 i,操作系统找到该文件对应的目录项(FCB)...

从目录项中找到起始块号,若i>0,则查询内存中的文件分配表FAT,往后找到i号逻辑块对应的物理块号。逻辑块号转换成物理块号的过程不需要读磁盘操作。

结论:采用链式分配(显式链接)方式的文件,支持顺序访问,也支持随机访问(想访问i号逻辑块时,并不需要依次访问之前的0~i-1号逻辑块),由于块号转换的过程不需要访问磁盘,因此相比于隐式链接来说,访问速度快很多。

显然,显式链接也不会产生外部碎片,也可以很方便地对文件进行拓展。

王道考研/CSKAOYAN.COM



链接分配采取离散分配的方式,可以为文件分配离散的磁盘块。分为隐式链接和显式链接两种。

**隐式链接——**除文件的最后一个盘块之外,每个盘块中都存有指向下一个盘块的指针。文件目录包括文件第一块的指针和最后一块的指针。

优点: 很方便文件拓展, 不会有碎片问题, 外存利用率高。

<mark>缺点:</mark> 只支持顺序访问,不支持随机访问,查找效率低,指向下一个盘块的指针也需要耗费少量的存储空间。

考试题目中遇到未指明隐式/显式的"链接分配",默认指的是<mark>隐式链接</mark>的链接分配

<mark>显式链接——</mark>把用于链接文件各物理块的指针显式地存放在一张表中,即 文件分配表(FAT,File Allocation Table)。一个磁盘只会建立一张文件分配表。开机时文件分配表放入内存,并<mark>常驻内</mark>

优点: 很方便文件拓展, 不会有碎片问题, 外存利用率高, 并且支持随机访问。相比于隐式链接

来说,地址转换时不需要访问磁盘,因此文件的访问效率更高。

缺点: 文件分配表的需要占用一定的存储空间。

王道考研/CSKAOYAN.COM

17

### 本节内容

文件的物理 结构 (文件分配方式)

王道考研/CSKAOYAN.COM





索引分配允许文件离散地分配在各个磁盘块中,系统会<mark>为每个文件建立一张索引表</mark>,索引表中<mark>记录了文件的各个逻辑块对应的物理块</mark>(索引表的功能类似于内存管理中的页表——建立逻辑页面到物理页之间的映射关系)。索引表存放的磁盘块称为<mark>索引块</mark>。文件数据存放的磁盘块称为<mark>数据块</mark>。



目录中需要记录 文件的索引块是 几号磁盘块

| 逻辑块号 | 物理块号 |
|------|------|
| 0    | 2    |
| 1    | 5    |
| 2    | 13   |
| 3    | 9    |

文件 "aaa" 的索引表

类似的,文件"bbb"的索 引块是23号磁盘块,其中存 放了文件"bbb"的索引表 假设某个新创建的文件"aaa"的数据依次存放在磁盘块2→5→13→9。 7号磁盘块作为"aaa"的索引块, 索引块中保存了索引表的内容。

注:在显式链接的链式分配方式中,文件分配表FAT是一个磁盘对应一张。而索引分配方式中,索引表是一个文件对应一张。

可以用固定的长度表示物理块号(如:假设磁盘总容量为1TB=2<sup>40</sup>B,磁盘块大小为1KB,则共有 2<sup>30</sup>个磁盘块,则可用 4B 表示磁盘块号),因此,索引表中的"逻辑块号"可以是隐含的。

王道考研/CSKAOYAN.COM



索引分配允许文件离散地分配在各个磁盘块中,系统会为每个文件建立一张索引表,索引表中记录了文件的各个逻辑块对应的物理块。索引表存放的磁盘块称为索引块。文件数据存放的磁盘块称为数据块。



目录中需要记录 文件的索引块是 几号磁盘块

| 逻辑块号    | 物理块号  |
|---------|-------|
| 0       | 2     |
| 1       | 5     |
| 2       | 13    |
| 3       | 9     |
| 4       | 19    |
| 文件"aaa" | '的索引表 |



如何实现文件的逻辑块号到物理块号的转换?

用户给出要访问的逻辑块号i,操作系统找到该文件对应的目录项(FCB)...

从目录项中可知索引表存放位置,将索引表 从外存读入内存,并查找索引表即可只 i 号 逻辑块在外存中的存放位置。

可见,索引分配方式可以支持随机访问。 文件拓展也很容易实现(只需要给文件分配 一个空闲块,并增加一个索引表项即可) 但是索引表需要占用一定的存储空间

王道考研/CSKAOYAN.COM

21

## 文件分配方式——索引分配

索引分配允许文件离散地分配在各个磁盘块中,系统会为每个文件建立一张索引表,索引表中记录了文件的各个逻辑块对应的物理块。索引表存放的磁盘块称为索引块。文件数据存放的磁盘块称为数据块。



索引块

文件名

目录中需要记录 文件的索引块是 几号磁盘块



文件 "aaa" 的索引表

(???)

若每个磁盘块1KB,一个索引表项4B,则一个磁盘块只能存放 256 个索引项。

如果一个文件的大小超过了256 块,那么一个磁盘块是装不下 文件的整张索引表的,如何解 决这个问题?

- ①链接方案
- ②多层索引
- ③混合索引

王道考研/CSKAOYAN.COM



①链接方案: 如果索引表太大,一个索引块装不下,那么可以将多个索引块链接起来存放。



假设磁盘块大小为1KB,一个索引表项占4B,则一个磁盘块只能存放256个索引项。

若一个文件大小为 256\*256KB = 65,536 KB = 64MB

该文件共有 256\*256 个块,也就对应 256\*256个索引项,也就需要 256 个 索引块来存储,这些索引块用链接方案连起来。

若想要访问文件的最后一个逻辑块,就必须找到最后一个索引块(第256个索引块),而各个索引块之间是用指针链接起来的,因此必须先顺序地读入前255个索引块。

这显然是很低效的。如何解决呢?

王道考研/CSKAOYAN.COM

23

### 文件分配方式——索引分配

②<mark>多层索引:</mark>建立多层索引(<mark>原理类似于多级页表</mark>)。使第一层索引块指向第二层的索引块。还可根据文件大小的要求再建立第三层、第四层索引块。



假设磁盘块大小为1KB,一个索引表项占4B,则一个磁盘块只能存放256个索引项。

若某文件采用两层索引,则该文件的最大长度可以到 256\*256\*1KB = 65,536 KB = 64MB

可根据逻辑块号算出应该查找索引表中的哪个表项。 如:要访问 1026 号逻辑块,则

1026/256 = 4, 1026%256 = 2

因此可以先将一级索引表调入内存,查询 4 号表项,将其对应的二级索引表调入内存,再查询二级索引表的2号表项即可知道 1026 号逻辑块存放的磁盘块号了。访问目标数据块,需要3次磁盘I/O。

若采用 采用 K 层索引结构,且<mark>顶级索引表未调入256\*2</mark> 内存,则访问一个数据块只需要 K+1 次 类似的 读磁盘操作

王道考研/CSKAOYAN.COM

③<mark>混合索引</mark>:多种索引分配方式的结合。例如,一个文件的顶级索引表中,既包含<mark>直接地址索引</mark>(直接 指向<mark>数据块</mark>),又包含一<mark>级间接索引</mark>(指向单层索引表)、还包含<mark>两级间接索引</mark>(指向两层索引表)。



25

### 索引分配(总结)

索引分配允许文件离散地分配在各个磁盘块中,系统会为每个文件建立一张索引表,索引表中记录了文件的各个逻辑块对应的物理块(索引表的功能类似于内存管理中的页表——建立逻辑页面到物理页之间的映射关系)。索引表存放的磁盘块称为索引块。文件数据存放的磁盘块称为数据块。

若文件太大,索引表项太多,可以采取以下三种方法解决:

①链接方案:如果索引表太大,一个索引块装不下,那么可以将多个索引块链接起来存放。缺点:若文件很大,索引表很长,就需要将很多个索引块链接起来。想要找到 i 号索引块,必须先依次读入 0~i-1 号索引块,这就导致磁盘I/O次数过多,查找效率低下。

②<mark>多层索引</mark>:建立多层索引(<mark>原理类似于多级页表</mark>)。使第一层索引块指向第二层的索引块。还可根据文件大小的要求再建立第三层、第四层索引块。采用 K 层索引结构,且<mark>顶级索引表未调入内存</mark>,则访问一个数据块只需要 K+1 次读磁盘操作。<mark>缺点</mark>:即使是小文件,访问一个数据块依然需要 K+1 次读磁盘

③<mark>混合索引</mark>:多种索引分配方式的结合。例如,一个文件的顶级索引表中,既包含<mark>直接地址索引</mark>(直接指向数据块),又包含一级间接索引(指向单层索引表)、还包含<mark>两级间接索引</mark>(指向两层索引表)。 优点:对于小文件来说,访问一个数据块所需的读磁盘次数更少。

超级超级超级重要考点:①要会根据多层索引、混合索引的结构计算出文件的最大长度(Key: 各级索引表最大不能超过一个块);②要能自己分析访问某个数据块所需要的读磁盘次数(Key: FCB中会存有指向顶级索引块的指针,因此可以根据FCB读入顶级索引块。每次读入下一级的索引块都需要一次读磁盘操作。另外,要注意题目条件——顶级索引块是否已调入内存)

王道考研/CSKAOYAN.COM

### 知识点回顾与重要考点

|          |          |                                                 |                                       |                                               | _                                                                        |
|----------|----------|-------------------------------------------------|---------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------|
|          |          | How?                                            | 目录项内容                                 | 优点                                            | 缺点                                                                       |
| 顺序分      | 配        | 为文件分配的必须是连续<br>的磁盘块                             | 起始块号、文件长<br>度                         | 顺序存取速度快,<br>支持随机访问                            | 会产生碎片,不利于文件<br>拓展                                                        |
| 链接<br>分配 | 隐式<br>链接 | 除文件的最后一个盘块之<br>外,每个盘块中都存有指<br>向下一个盘块的指针         | 起始块号、结束块<br>号                         | 可解决碎片问题,<br>外存利用率高,文<br>件拓展实现方便               | 只能顺序访问,不能随机<br>访问。                                                       |
|          | 显式<br>链接 | 建立一张文件分配表(FAT),<br>显式记录盘块的先后关系<br>(开机后FAT常驻内存)  | 起始块号                                  | 除了拥有隐式链接<br>的优点之外,还可<br>通过查询内存中的<br>FAT实现随机访问 | FAT需要占用一定的存储空<br>间                                                       |
| 索引分      | 酒已       | 为文件数据块建立索引表。<br>若文件太大,可采用链接<br>方案、多层索引、混合索<br>引 | 链接方案记录的是第一个索引块的块号,多层/混合索引记录的是顶级索引块的块号 | 支持随机访问,易<br>于实现文件的拓展                          | 索引表需占用一定的存储<br>空间。访问数据块前需要<br>先读入索引块。若采用链<br>接方案,查找索引块时可<br>能需要很多次读磁盘操作。 |

王道考研/CSKAOYAN.COM

27



# 你还可以在这里找到我们

快速获取第一手计算机考研信息&资料



微博: @王道计算机考研教育

B站: @王道计算机教育

₩ 小红书: @王道计算机考研

知 知乎: @王道计算机考研

抖音: @王道计算机考研

淘宝: @王道论坛书店