Statistik Labor

April 18, 2022

1 Statistik Labor Aufgabe 1

1.0.1 Importieren von Bibliotheken

```
[1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime
```

1.0.2 Funktionen

Einlesen der Daten

Daten bereinigen

```
cleandata = cleandata.drop(indizes)
cleandata.at[7, 'Geburtsdatum'] = '16.02.1963'
errorframe.loc[7, 'Datensatz?'] = 'Korrektur'
errorframe.loc[7, 'Typ'] = 'Falsche Spalte'
cleandata.at[21, 'Geburtsdatum'] = '01.02.1965'
errorframe.loc[21, 'Datensatz?'] = 'Korrektur'
errorframe.loc[21, 'Typ'] = 'Monat reicht für Alter'
return cleandata, errorframe
```

Geburtsdatum zu Alter konvertieren

```
[4]: def from_dob_to_age(dob):
    st = datetime(2005,12,31)
    #st = datetime.today()
    a = st.year - dob.year - ((st.month, st.day) < (dob.month, dob.day))
    return a</pre>
```

Alter aller Personen eines Geschlechts

```
[5]: def get_gender_based_birthdays(data, gender=None):

# Alle Geburtsdaten des angegebenen Geschlechts

# Wenn kein Geschlecht angegeben ist gibt diese Funktion alle Geburtstage

→ zurück

if gender is not None:

data = data[data['Anrede'] == gender]

# Alter ausrechnen

age = pd.DataFrame(columns=['age'])

age['age'] = pd.to_datetime(data['Geburtsdatum'], format="%d.%m.%Y").

→ apply(lambda x: from_dob_to_age(x) if from_dob_to_age(x) < 100 else np.nan)

age = age.dropna()

return age
```

Werte berrechnen (Mittelwert, Varianz, Std.-Abw, Median, Spannweite)

```
[6]: def age_average(data):
    # Berechne durchschnittliches Alter
    return data['age'].mean()

def age_variance(data):
    # Berechne altersvarianz
    variance = data['age'].var()
    return variance
```

```
def age_standard_deviation(data):
    # Berechne Standadabweichung
    return data['age'].std()
def get_median(data):
    # Berechne Median
    return data['age'].median()
def get range(data):
    # Berechne Range
    return data['age'].max() - data['age'].min()
```

```
1.0.3 Code
[7]: dt = readData('sr_aufg_1_35.txt')
[8]: dt_clean, err = clean(dt)
[9]: gbb = get_gender_based_birthdays(dt_clean, 'Herr')
     male average = age average(gbb)
    male variance = age variance(gbb)
     male standard deviation = age standard deviation(gbb)
     male_median = get_median(gbb)
    male_range = get_range(gbb)
     male_a020 = gbb[gbb['age'].apply(lambda y: y >= 0 and y < 20)]
     male_a2030 = gbb[gbb['age'].apply(lambda y: y >= 20 and y < 30)]
     male_a3040 = gbb[gbb['age'].apply(lambda y: y >= 30 and y < 40)]
    male_a4050 = gbb[gbb['age'].apply(lambda y: y >= 40 and y < 50)]
     male_a50 = gbb[gbb['age'].apply(lambda y: y >= 50)]
     male_all = gbb['age']
     gbb = get_gender_based_birthdays(dt_clean, 'Frau')
     female_average = age_average(gbb)
     female_variance = age_variance(gbb)
     female standard deviation = age standard deviation(gbb)
     female_median = get_median(gbb)
     female_range = get_range(gbb)
     female_a020 = gbb[gbb['age'].apply(lambda y: y >= 0 and y < 20)]
     female_a2030 = gbb[gbb['age'].apply(lambda y: y >= 20 and y < 30)]
     female_a3040 = gbb[gbb['age'].apply(lambda y: y >= 30 and y < 40)]
     female_a4050 = gbb[gbb['age'].apply(lambda y: y >= 40 and y < 50)]
     female_a50 = gbb[gbb['age'].apply(lambda y: y >= 50)]
     female_all = gbb['age']
     gbb = get_gender_based_birthdays(dt_clean)
     average = age_average(gbb)
     variance = age_variance(gbb)
```

```
standard_deviation = age_standard_deviation(gbb)
median = get_median(gbb)
rng = get_range(gbb)
```

```
[11]: dataf = pd.DataFrame(dat, columns=['gesamt', 'Frauen', 'Männer'], index=['Mittelwert', 'Varianz', 'Std.-Abw', 'Median', 'Spannweite'])
```

1.0.4 Ausgabe

Mittelwerte, Varianzen und Std.-Abw

```
[12]: dataf = dataf.round(4)
print(dataf.to_string())
```

```
gesamt
                     Frauen
                               Männer
            39.9412 36.0196
                              43.8627
Mittelwert
Varianz
           153.7589 98.9796 180.2408
Std.-Abw
            12.4000
                    9.9488 13.4254
Median
            39.0000 35.0000
                              47.0000
Spannweite
            46.0000 45.0000
                              46.0000
```

Korrekturen und Bereinigungen

```
[13]: print(err[['Nachname', 'Geburtsdatum', 'Datensatz?', 'Typ']].to_string()) # Nuru → einzele Spalten ausgeben # Bessere Lesbarkeit
```

	Nachname	Geburtsdatum	Datensatz?	Тур
7	16.02.1963	NaN	Korrektur	Falsche Spalte
21	Rau	im Februar 1965	Korrektur	Monat reicht für Alter
23	Wagner	VHVeHvZZXM	NaN	NaN
39	Hartung	27.09.814	NaN	NaN
41	Weiß		NaN	NaN
54	Schneider	unbekannt	NaN	NaN
64	Berger	XXXX	NaN	NaN
65	Alt	20.11.	NaN	NaN
73	Walter	24.10.2824	NaN	NaN

 81
 Seidel
 xxxx
 NaN
 NaN

 100
 Kaiser
 12.12.2540
 NaN
 NaN

Balkendiagramm

```
[14]: labels = np.array(['(0,20]','(20,30]','(30,40]','(40,50]','(50,]'])
      male = np.array([
          len(male_a020.index),
          len(male a2030.index),
          len(male_a3040.index),
          len(male a4050.index),
          len(male_a50.index)
      ])
      female = np.array([
          len(female_a020.index),
          len(female_a2030.index),
          len(female_a3040.index),
          len(female_a4050.index),
          len(female_a50.index)
      ])
      x = np.arange(len(labels))
      width = 0.35
      fig, ax = plt.subplots()
      rect1 = ax.bar(x-width/2,male,width,label="Männer")
      rect2 = ax.bar(x+width/2,female,width,label="Frauen")
      ax.set_ylabel("Häufigkeit")
      ax.set_title("Altersverteilung zum Stichtag 31.12.2005")
      ax.set_xticks(x)
      ax.set_xticklabels(labels)
      ax.legend()
      #ax.bar(rect1, padding=6)
      #ax.bar(rect2, padding=6)
      fig.tight_layout()
      plt.show()
```

Altersverteilung zum Stichtag 31.12.2005

Tortendiagramme

