Demium.

NNUWE

HACK THAT STARTUP

V0L2

ARMACEDON EDITOR

Nodejs & Mongoll

Reto grupal

Chicxulub Insurance:
Tu seguro de vida para
meteoritos

RETO GRUPAL -HACK THAT STARTUP 2-

BACKGROUND

Tras ver el proyecto de Lebron, la aseguradora 'Chicxulub Insurance' (llamada así en honor al meteorito que muy probablemente fue el causante de la extinción de los dinosaurios) se ha interesado por el partido que podrían sacarle a esa bases de datos y le han propuesto colaborar en la creación de una plataforma que les permita estimar el coste de una póliza de vida añadiendo a la ecuación una variable basada en la posibilidad de morir por culpa de la caída de un asteroide.

El coste de esta póliza de vida viene determinada por dos variables principales, que son la edad y un parámetro que depende de la cantidad de asteroides potencialmente peligrosos sobre la posición.

El modelo cliente de la base de datos de la aseguradora viene determinado por los siguientes atributos:

- **Name** : Nombre del cliente
- **Lastname** : Apellido del cliente
- **Age** : Edad del cliente
- *Latitude* : Latitud de la posición de los clientes en grados
- **Longitude** : Longitud de la posición de los clientes en grados
- *Hotspot_asteroids*: Número de asteroides dentro del cuadrante del cliente
- **Price**: Precio mensual del seguro

Atributos del modelo de asteroides PHA en esta DB serán:

- full_name : Nombre completo del asteroide.
- a : Semieje mayor de la órbita.
- e : excentricidad de la órbita.
- *i* : Inclinación de la órbita.
- om: longitude of the ascending node.
- w: argumento del perihelio.
- **ma** : Anomalía Media.
- *Latitude*: Latitud de la posición del PHA sobre la superficie terrestre en grados
- Longitude: Longitud de la posición del PHA sobre la superficie terrestre en grados

RETO

Se debe construir una API Rest que devuelva información básica sobre estos asteroides. El API será un microservicio conectado a MongoDB y se utilizará para quardar nueva información y consultar información ya quardada.

1) MODELO DE CLIENTE Y MODELO DE LOS PHAS

2) PASA LOS DATOS DEL 'List_Of_People.csv' y de 'OrbitalParameters_PHAs.csv' A TU DB MEDIANTE UN MÉTODO CREADO PARA ELLO

3) ENCUENTRA LA POSICIÓN DE LOS PHAS SOBRE LA SUPERFICIE TERRESTRE EN LATITUD Y LONGITUD Y GUÁRDALA EN EL MODELO ASTEROIDE

Para encontrar la posición de los asteroides potencialmente peligrosos sobre la superficie terrestre en latitud y longitud recomendamos emplear el paquete que hemos creado para ello: https://www.npmjs.com/package/keplerjs.

4) DETERMINA CUANTOS PHAS HAY PRÓXIMOS A CADA CLIENTE:

A partir de la posición de cada cliente en latitud y longitud, calcula cuantos asteroides hay en un rango de +-15° en latitud y longitud respecto la posición del cliente.

La cantidad de asteroides dentro de este cuadrante serán el atributo *Hotspot_asteroids* de cada cliente. (Ej: 2 asteroides dentro del cuadrante => Hotspot_asteroids = 2)

5) GENERAD UNA FUNCIÓN QUE COMPUTE EL PRECIO MENSUAL DEL SEGURO PARA METEORITOS DE CADA CLIENTE Y GUÁRDALO EN EL OBJETO DE CADA CLIENTE

Price = FIXED_PRICE + VARIABLE_PRICE FIXED_PRICE = 170 € VARIABLE_PRICE = (100 * **Age**)/35 + 10 * **Hotspot_asteroids**

6) CRUD + findAll + addList de Clients y PHAs
7) CREAD UN Sistema de LOGIN/REGISTER UTILIZANDO GITHUB
OAUTH

8) TESTING DE UNITARIO, INTEGRACIÓN Y END TO END

EXTRAS:

9)UTILIZAR MOC DE LA BASE DE DATOS O UN MEMORY SERVER PARA HACER EL TESTING Y NO TIRAR DE LA BASE DE DATOS CREADA

10) AÑADIR UN MIDDLEWARE PARA EL MANEJO DE ERRORES 11) PROTECCIÓN DE RUTAS

RETO GRUPAL -HACK THAT STARTUP 2-

RECURSOS

Archivo 'OrbitalParameters_PHAs.csv'. Contiene los parametros orbitales de 120 asteroides potencialmente peligrosos para la raza humana.

Formato del csv:

full_name	a	e	i	om	w	ma
1566 Icarus (1949 MA)	1.078076432	0.827072914	22.81881892	87.98911327	31.40697081	8.16059889
1620 Geographos (1951 RA)	1.245655278	0.33545381	13.33739043	337.1856335	276.9638903	16.89243
1862 Apollo (1932 HA)	1.470372413	0.559950159	6.354774105	35.61719647	285.9919159	199.087018
1981 Midas (1973 EA)	1.7763363	0.650335103	39.83111805	356.8629785	267.8249087	35.9911584
2101 Adonis (1936 CA)	1.874240001	0.763956935	1.322075868	349.4986766	43.60366893	52.9687242
2102 Tantalus (1975 YA)	1.290033303	0.29927236	64.00479642	94.36039279	61.53675306	216.514041
2135 Aristaeus (1977 HA)	1.599790251	0.503134536	23.06648429	191.1342704	290.9712244	240.289838

El csv ha sido obtenido de https://ssd.jpl.nasa.gov/sbdb_query.cgi

Archivo 'List_Of_Clients.csv'. Contiene los parametros de 30 clientes, su nombre, apellido, edad y posición en latitud y longitud en grados.

Name	Lastaname	Age	Latitude	Longitude
lgor	Sweet	27	42	144
Elizabeth	Whyte	40	-44	-106
Siobhan	Howard	22	-27	68
Julius	Hodge	54	7	53
Connar	Sullivan	44	1	-26

ENTREGA

Pega el enlace a tu repositorio en el registro del evento (Hack That Startup V2) antes de las 23:59 PM

EVALUACIÓN

- Implementación de diferentes objetivos

- Code coverage (Automatic + Post/Anima)

- Calidad del código (Syntaxis y complejidad)
- Code quality
- Documentación
- Estructuración y escalabilidad

JUST FOR FUN

Explicación de Latitud y Longitud: https://www.youtube.com/watch?v=swKBi6hHHMA

¿ Nos deberiamos preocupar por los Asteroides ?: https://www.youtube.com/watch?v=swKBi6hHHMA Misión de la NASA para evitar el impacto de un PHAs: https://www.youtube.com/watch?v=KpmuzduOjhE

