Camlin	Page
Date /	1

HW 12 - Trajectory Optimization

$$\frac{I_{\ell} = 1}{1Z}$$

$$q = \lceil q_1 \rceil$$

$$\mathcal{T} = \begin{bmatrix} \mathcal{T}_1 \\ \mathcal{T}_2 \end{bmatrix}$$

$$min \sum_{N=1}^{N-1}$$

$$\sum I(T(t_k) + T(t_{k+1}))(t_{k+1} - t_k)$$

Whit
$$q(t_K)$$
, $\dot{q}(t_K)$, \ddot{z}

$$s \cdot t \cdot q(t_{k+1}) = q(t_k) + \left(q(t_k) + q(t_{k+1})\right)(t_{k+1} - t_k)$$

$$q(t_{k+1}) = q(t_k) + \left(\frac{\dot{q}(t_k) + \dot{q}(t_{k+1})}{2}\right)(t_{k+1} - t_k)$$

$$q(t_0) = \int -\pi/2$$

$$= \begin{bmatrix} -\pi/2 \\ 0 \end{bmatrix}$$

$$g(t_0) = \begin{bmatrix} 0 \end{bmatrix}$$

$$q_{i}(t_{i}) = \left[\pi/2 \right]$$

$$g'(t_j) = \int_0^\infty$$

$$t_{k+1} - t_k = 20 \, \text{ms} \, (\text{Given})$$

6 Constraint

Camlin Page

			Date / /	
Jel, Mez Jez =	$\int_{m}^{2} \int_{sin}^{2} \frac{1}{\theta_{2}} + mI$	(l + 1/05 02) 2 + IZ	$\frac{m\ell(l\cos\theta_2+\ell)+1}{2}$	7
2-2 - 3 -		2	2 2	
	$\frac{m!}{2} \left(los \theta_2 + l \right)$	$+I_z$	$me^2 + I_7$	
	2 2		4	
	_	7		

$$= \frac{\sin^2\theta_2 + (1 + \cos\theta_2)^2 + 1}{2} \frac{1(\cos\theta_2 + 1) + 1}{2}$$

$$= \frac{1(\cos\theta_2 + 1) + 1}{2} \frac{1(\cos\theta_2 + 1) + 1}{2}$$

$$= \frac{1}{2} \frac{(\cos\theta_2 + 1) + 1}{2} \frac{1}{3}$$

$$M = \begin{cases} \sin^2\theta_2 + (\frac{1}{2} + \cos\theta_2)^2 + 5 & \frac{1}{2}(\cos\theta_2 + \frac{1}{2}) + 1 \\ \frac{1}{2}(\cos\theta_2 + \frac{1}{2}) + \frac{1}{2} & \frac{1}{3} \end{cases}$$

C would be a 2x2 matrix st.

$$C_{ij} = 1 \stackrel{?}{\underset{Z}{\sum}} \left(\frac{2M_{ij}}{2g_{ik}} + \frac{2M_{ik}}{2g_{ij}} - \frac{2M_{kj}}{2g_{i}} \right) \stackrel{?}{g_{ik}}$$

20 Solving using MATLAB,

$$C = \begin{bmatrix} -1 & (q_1 + q_2) & sin(q_2) \\ 2 & 2 & 2 \end{bmatrix}$$

$$\frac{1}{2}q_1 sin(q_2)$$

$$\frac{1}{2}q_2 sin(q_2)$$

$$V = \underset{\overline{z}}{mg \, \ell \, sin \, q_1} + \underset{\overline{z}}{mg \, \left(\, \ell \, sin \, q_1 + \frac{\ell}{2} \, sin \, \left(q_1 + q_2 \right) \right)}$$

$$N = \frac{\partial V}{\partial q} = \begin{bmatrix} 3mg \ell \cos q_1 + mg \ell \cos(q_1 + q_2) \\ \overline{2} \end{bmatrix} = \begin{bmatrix} g (3\cos q_1 + \cos(q_1 + q_2)) \\ 2 \end{bmatrix}$$

$$mg \ell \cos(q_1 + q_2)$$

$$\frac{g \cos(q_1 + q_2)}{2}$$

$$X = \begin{bmatrix} T_1 \\ T_2 \end{bmatrix}$$

1.3) (a) When there are no bounds on q:

Value of the cost function: 79.0438

(b) When q1 and q2 are restricted to lie in the interval -3*pi/4 to 3*pi/4

Value of the cost function: 119.7581

The optimal trajectory changes when lower and upper bounds are imposed on q. The value of the cost function increases for the 2nd case in which q is bounded.