第二章 随机变量及其分布

- § 2.1 随机变量
- § 2. 2 离散型随机变量的概率分布
- § 2. 3 随机变量的分布函数
- § 2. 4 连续型随机变量的概率密度
- § 2.5 随机变量的函数的分布

§ 2.5 随机变量的函数的分布

问题的提出:

已知圆轴截面直径 d 的分布,

求截面面积 $A = \frac{\pi d^2}{4}$ 的分布.

再如,已知 $t = t_0$ 时刻噪声电压V的分布,

求功率 $W=V^2/R$ (R为电阻)的分布.

在实际中,人们常常对随机变量X的函数Y=g(X)(设g是连续函数)所表示的随机变量Y感兴趣

在分析和解决实际问题时,常常会遇到一些随机变量,它们的分布难于直接得到,但其与一些已知随机变量之间具有函数关系.本节主要解决如何由随机变量X的概率分布求出随机变量Y=g(X)的概率分布.

对于随机变量X的函数的分布的讨论分两部分

- 一、离散型随机变量函数的分布律
- 二、连续型随机变量函数的概率密度

一、离散型随机变量函数的分布律

例1 设随机变量X的分布律为

\boldsymbol{X}	—1	0	1	2	3
p_k	1/5	1/10	1/10	3/10	3/10

解:

\boldsymbol{X}	- 1	0	1	2	3
X-1	- 2	- 1	0	1	2
-2 X	2	0	- 2	-4	-6
X 2	1	0	1	4	9
p_k	1/5	1/10	1/10	3/10	3/10

一、离散型随机变量函数的分布律

例1 设随机变量X的分布律为

\boldsymbol{X}	—1	0	1	2	3
p_k	1/5	1/10	1/10	3/10	3/10

解:

\boldsymbol{X}	-1	0	1	2	3
X - 1	- 2	- 1	0	1	2
-2 X	2	0	- 2	-4	-6
X 2		0	1	4	9
p_k		1/10	3/10	3/10	3/10

如果X是离散型随机变量,其函数 Y = g(X)也是离散型随机变量.若 X的分布律为

X	\boldsymbol{x}_1	\boldsymbol{x}_{2}	• • •	\boldsymbol{x}_{k}	• • •
$p_{_k}$	$p_{_1}$	p_2	• • •	$p_{_k}$	• • •

则Y = g(X)的分布律为

Y = g(X)	$g(x_1)$	$g(x_2)$	• • •	$g(x_k)$	• • •
	$p_{\scriptscriptstyle 1}$				

注意 若 $g(x_k)$ 中有值相同的,应将相应的 p_k 合并.

二、连续型随机变量函数的概率密度

对于连续型随机变量,需要由随机变量X的概率密度 $f_X(x)$ 去求随机变量 Y=g(X) 的概率密度.解决这类问题的一般方法是:——分布函数法

第一步: 求出Y的分布函数的表达式,

$$F_{Y}(y) = P\{Y \le y\} = P\{g(X) \le y\} = P\{X \in C_{y}\}$$

其中 $C_{y} = \{x \mid g(x) \le y\}$

第二步:利用连续型随机变量分布函数与概率密度的关系,求导数即可得到所求概率密度.

例2 设随机变量X具有概率密度 $f_X(x) = \begin{cases} \frac{x}{8}, & 0 < x < 4 \\ 0, & \text{其它} \end{cases}$

解 先求Y=2X+8的分布函数 $F_Y(y)$

$$F_Y(y) = P\{Y \le y\} = P\{2X + 8 \le y\} = P\{X \le \frac{y - 8}{2}\} = F_X(\frac{y - 8}{2})$$

于是,得 Y=2X+8的 概率密度为

$$f_{Y}(y) = f_{X}\left(\frac{y-8}{2}\right)\left(\frac{y-8}{2}\right)' = \begin{cases} \frac{1}{8}\left(\frac{y-8}{2}\right) \cdot \frac{1}{2}, & 0 < \frac{y-8}{2} < 4\\ 0, & \sharp \dot{\Xi} \end{cases}$$

$$= \begin{cases} \frac{y-8}{32}, & 8 < y < 16 \\ 0, & \cancel{\cancel{4}} \end{aligned}$$

例2 设随机变量X具有概率密度 $f_X(x) = \begin{cases} \frac{x}{8}, & 0 < x < 4 \\ 0, & \text{其它} \end{cases}$ 求 Y=2X+8 的概率密度.

解 先求Y=2X+8的分布函数 $F_V(y)$

$$F_Y(y) = P\{Y \le y\} = P\{2X + 8 \le y\} = P\{X \le \frac{y - 8}{2}\} = F_X(\frac{y - 8}{2})$$

于是,得 Y=2X+8的 概率密度为

$$f_Y(y) = f_X\left(\frac{y-8}{2}\right)\left(\frac{y-8}{2}\right)' = \begin{cases} \frac{1}{8}\left(\frac{y-8}{2}\right) \cdot \frac{1}{2}, & 0 < \frac{y-8}{2} < 4 \end{cases}$$

特别 若 $X \sim N(\mu, \sigma^2)$, 则 $aX + b \sim N(a\mu + b, a^2\sigma^2)$

$$a = \frac{1}{\sigma}, b = -\frac{\mu}{\sigma} \Rightarrow \frac{X - \mu}{\sigma} \sim N(0, 1)$$

例3 设随机变量X具有概率密度 $f_{x}(x)$, $-\infty < x < \infty$

解 先求Y的分布函数 $F_{\nu}(y)$. 因为 $Y = X^2 \ge 0$ 故当 $y \le 0$ 时, $F_Y(y) = P\{Y \le y\} = 0$

当
$$y>0$$
 时, $F_Y(y) = P\{X^2 \le y\} = P\{-\sqrt{y} \le X \le \sqrt{y}\}$

$$= F_X(\sqrt{y}) - F_X(\sqrt{y})$$

于是,得Y的概率密度为

于是,得了的概率密度为
$$f_Y(y) = \begin{cases} \frac{1}{2\sqrt{y}} [f_X(\sqrt{y}) + f_X(-\sqrt{y})], & y > 0\\ 0, & y \le 0 \end{cases}$$

例如,设 $X\sim N(0,1)$,其概率密度为

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, -\infty < x < \infty$$

则 $Y=X^2$ 的概率密度为

$$f_{Y}(y) = \begin{cases} \frac{1}{\sqrt{2\pi}} y^{-\frac{1}{2}} e^{-\frac{y}{2}}, & y > 0\\ 0, & y \le 0 \end{cases}$$

注: (1) 此时称 Y 服从自由度为 1 的 χ^2 分布;

(2) 若Y=g(X)中的g(.)是严格单调函数时,可由 下面定理求出Y的概率密度. 定理 设随机变量X具有概率密度 $f_X(x)$,又设函数g(x)处处可导且有g'(x)>0(或恒有g'(x)<0),则Y=g(X)是连续型随机变量,其概率密度为

$$f_Y(y) = \begin{cases} f_X[h(y)]|h'(y)|, & \alpha < y < \beta \\ 0, & \text{其它} \end{cases}$$

其中 $\alpha = \min(g(-\infty), g(\infty)), \beta = \max(g(-\infty), g(\infty))$ h(y)是g(x)的反函数.

注: (1)若g(x)不是单调函数不能用此定理.

(2)若 f(x)在有限区间[a,b]以外等于零,则只需假设在[a,b]上恒有g'(x)>0(或恒有 g'(x)<0),此时

$$\alpha = \min\{g(a), g(b)\}, \beta = \max\{g(a), g(b)\}\$$

证 我们只证 g'(x) > 0的情况.

此时 g(x)在 $(-\infty,\infty)$ 严格单调增加,其反函数 h(y) 存在,且在 (α,β) 严格单调增加,可导. 分别记 X,Y 的分布函数为 $F_X(x)$, $F_Y(y)$. 现在先求 Y 的分布函数 $\mathcal{F}_Y(y)$.

因为Y = g(X)在 (α, β) 内取值, 故当 $y \le \alpha$ 时,有 $F_Y(y) = P\{Y \le y\} = 0$; 当 $y \ge \beta$ 时, $F_Y(y) = P\{Y \le y\} = 1$. 当 $\alpha < y < \beta$ 时,

$$F_Y(y) = P\{Y \le y\} = P\{g(X) \le y\}$$

= $P\{X \le h(y)\} = F[h(y)].$

将 $F_Y(Y)$ 关于y求导数,即得Y的概率密度

$$f_Y(y) = \begin{cases} f_X[h(y)]h'(y), & \alpha < y < \beta, \\ 0, & \text{ 其他.} \end{cases}$$

对于g'(x) < 0的情况可以同样地证明,此时有

$$f_Y(y) = \begin{cases} f_X[h(y)][-h'(y)], & \alpha < y < \beta, \\ 0, & 其他. \end{cases}$$

合并以上两式,定理得证.

补充定理:

若g(x)在不相叠的区间 I_1,I_2,\cdots 上逐段严格单调且处处可导,其反函数分别为 $h_1(y),h_2(y),\cdots$ 且均为连续函数,那么Y=g(X)是连续型随机变量,其概率密度为

$$f_Y(y) = f_X(h_1(y)) |h_1(y)| + f_X(h_2(y)) |h_2(y)| + \cdots$$

例4 设电压 $V=A\sin\Theta$,其中A是一个已知的正常数,相角 Θ 是一个随机变量,在区间($-\pi/2$, $\pi/2$)服从均匀分布,试求电压 V的概率密度.

$$\mathfrak{P}$$
 和,风水电压 \mathfrak{P} 的概率密度为 $f(\theta) = \begin{cases} \frac{1}{\pi}, -\frac{\pi}{2} < \theta < \frac{\pi}{2} \\ 0, 其它 \end{cases}$

由于
$$v = g(\theta) = A \sin \theta$$
, $g'(\theta) = A \cos \theta > 0$, $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
其反函数 $\theta = h(v) = \arcsin \frac{v}{A}$, $h'(v) = \frac{1}{\sqrt{A^2 - v^2}}$

由定理得 $V=A\sin\Theta$ 的概率密度为

$$\psi(v) = \begin{cases} \frac{1}{\pi} \cdot \frac{1}{\sqrt{A^2 - v^2}}, -A < v < A \\ 0, & \sharp \\ \end{cases}$$

例4 设电压 $V=A\sin\Theta$, 其中A是一个已知的正常数, 相角 Θ 是一个随机变量,在区间($-\pi/2$, $\pi/2$)服从均匀分布, 试求电压 V的概率密度.

分布, 试求电压
$$V$$
的概率密度.
$$\mathbf{\hat{H}}: \ \mathbf{\Theta}$$
的概率密度为 $f(\theta) = \begin{cases} \frac{1}{\pi}, -\frac{\pi}{2} < \theta < \frac{\pi}{2} \\ \mathbf{0}, \mathbf{j} \in \mathbf{C} \end{cases}$

由于
$$v = g(\theta) = A \sin \theta$$
, $g'(\theta) = A \cos \theta > 0$, $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
其反函数 $\theta = h(v) = \arcsin \frac{v}{A}$, $h'(v) = \frac{1}{\sqrt{A^2 - v^2}}$

注意

若 $\Theta \sim U(0,\pi)$,此时 $v = g(\theta) = A \sin \theta$ 在 $(0,\pi)$ 上不是单调函数.

练习题(正态分布)

设随机变量 $X \sim N(\mu, \sigma^2)$. 试证明X 的线性函数Y=aX+b (a \neq 0)也服从正态分布.

解: X的概率函数为

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$

现在y=g(x)=ax+b,由这一式子解得

$$x = h(y) = \frac{y - b}{a}$$
,且有 $h'(y) = \frac{1}{a}$

由定理得Y=aX+b的概率密度为

$$f_Y(y) = \frac{1}{|a|} f_X(\frac{y-b}{a}) , -\infty < y < \infty$$

即

$$f_Y(y) = \frac{1}{|a|} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{\left(\frac{y-b}{a} - \mu\right)^2}{2\sigma^2}}$$

$$= \frac{1}{|a|\sigma\sqrt{2\pi}}e^{-\frac{[y-(b+a\mu)]^2}{2(a\sigma)^2}}, -\infty < y < \infty$$

即有
$$Y = aX + b \sim N(a\mu + b, (a\sigma)^2)$$

注: (1) 正态随机变量的线性函数仍然服从正态分布.

(2) 若
$$a = \frac{1}{\sigma}, b = -\frac{\mu}{\sigma}$$

则 $Y = \frac{X - \mu}{\sigma} \sim N(0,1)$

2.某厂装配车间准备实行计件超产奖,为此需对生产定额做出规定.据以往纪录,工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求工人每月需完成多少件产品才能获奖?

解:设需完成件n件产品才能获奖,

记工人每月装配产品数为 $X\sim N(4000,3600)$.

则依题意,有 $P{X>n}=10\%$,

$$\exists P \ 90\% = P\{X \le n\} = P\{\frac{X - 4000}{60} \le \frac{n - 4000}{60}\} = \Phi(\frac{n - 4000}{60})$$

查表得 $\frac{n-4000}{60}$ = 1.28, 解得 $n = 4000 + 76.8 \approx 4077$.

故每月需完成4077件以上才能获奖.

小结

1. 离散型随机变量的函数的分布

若Y = g(X)且X的分布律为:

X	\boldsymbol{x}_1	\boldsymbol{x}_{2}	• • •	\boldsymbol{x}_{k}	• • •
$p_{_k}$	$p_{_1}$	p_2	• • •	$p_{_k}$	• • •

则Y = g(X)的分布律为

注意 若 $g(x_k)$ 中有值相同的,应将相应的 p_k 合并.

2. 连续型随机变量的函数的分布

方法1
$$F_Y(y) = P\{Y \le y\} = P\{g(X) \le y\}$$
$$= \int_{g(x) \le y} f_X(x) dx, \quad (-\infty < y < +\infty),$$

再对 $F_Y(y)$ 求导得到 Y 的密度函数 $f_Y(y)$.

方法2

$$f_Y(y) = \begin{cases} f_X[h(y)]h'(y), & \alpha < y < \beta, \\ 0, & 其他. \end{cases}$$

注意条件.

作业

• 第二章习题33,35