Chapitre 10

Arithmétique

Sommaire

I	Divisibilité	5
	1) La propriété fondamentale	5
	2) La division euclidienne	6
	3) Congruences	6
	4) Diviseurs communs	6
II	Éléments premiers entre eux	7
	1) Théorème de Bézout	7
	2) Conséquences	8
Ш	Le plus grand diviseur commun	8
	1) Définition	8
	2) Propriétés	9
	3) Généralisation	0
IV	Le plus petit multiple commun	1
	1) Définition	1
	2) Propriétés	1
V	Nombres premiers, décomposition	2
	1) Définition	2
	2) Décomposition en facteurs premiers	3
	Notion de valuation p -adique	3
	4) Applications	4
VI	Solution des exercices	5

I DIVISIBILITÉ

1) La propriété fondamentale

🔛 Théorème 10.1

Toute partie de $\mathbb Z$ non vide et minorée admet un plus petit élément.

Preuve: Soit A une partie de \mathbb{Z} non vide et minorée par un entier n_0 . Soit M l'ensemble des minorants de A, on a $n_0 \in M$, supposons que $n \in M \implies n+1 \in M$, alors d'après le principe de récurrence, $\forall n \in \mathbb{Z}, n \geqslant n_0 \implies n \in M$. Soit $p \in A$, $p \geqslant n_0$, donc $p+1 \in M$ ce qui entraîne que $p+1 \leqslant p$: absurde, donc il existe un entier n_1 tel que $n_1 \in M$ et $n_1+1 \notin M$, mais alors il existe un élément p_1 de A tel que $p_1 < n_1+1$, d'où $n_1 \leqslant p_1 < n_1+1$, ce qui entraîne $p_1 = n_1$, et donc $n_1 \in A$, nécessairement n_1 est le plus petit élément de A.

-****

À retenir

- Toute partie non vide et majorée de \mathbb{Z} admet un plus grand élément. En effet, si A est non vide majorée, alors $-A = \{-a \mid a \in A\}$ est non vide minorée, donc -A admet un plus petit élément $-n_0$, ce qui signifie que n_0 est le plus grand élément de A.
- Toute partie non vide de № admet un plus petit élément (propriété fondamentale de №).

La division euclidienne

Soient $a \in \mathbb{Z}$ et $b \in \mathbb{Z}^*$, il existe un unique couple d'entiers (q, r) tel que a = bq + r avec $0 \le r < |b|, q$ est appelé le quotient, et r le reste.

Preuve: Supposons b > 0: soit B = $\{b(n+1) \mid n \in \mathbb{Z}\}$, alors B est non majoré et non minoré, donc il existe un entier n_1 tel que $a < b(n_1 + 1)$ et il existe un entier n_2 tel que $b(n_2 + 1) < a$. Soit $A = \{n \in \mathbb{Z} \mid a < b(n+1)\}$, alors A est non vide $(n_1 \in A)$ et minoré par n_2 , donc A admet un plus petit élément q, d'où $bq \le a < b(q+1)$, en posant r = a - bq, on a $a = bq + r \text{ et } 0 \le r < b = |b|.$

Supposons b < 0: on applique ce qui précède à -b > 0, il existe un entier q et un entier r tels que a = (-b)q + r = $b(-q) + r \text{ avec } 0 \le r < -b = |b|.$

Montrons l'unicité : si a = bq + r = bq' + r' avec $0 \le r < |b|$ et $0 \le r' < |b|$, alors |r - r'| = |bq' - bq| = |b||q' - q| < |b|, d'où q' = q (ce sont des entiers) et donc r' = r.

Définition 10.1

Soient $a, b \in \mathbb{Z}$, on dit que b divise a lorsqu'il existe $k \in \mathbb{Z}$ tel que a = bk. Notation : $b \mid a$.

Remarque 10.1 – On a ainsi défini une relation dans \mathbb{Z} , elle est réflexive, non symétrique, non antisymétrique, et transitive.

🙀 Théorème 10.3

Soient $a, b \in \mathbb{Z}$ avec $b \neq 0$, alors $b \mid a$ ssi le reste dans la division euclidienne de a par b est nul.

Preuve : Celle-ci est simple et laissée en exercice.

Notation: Soit $n \in \mathbb{Z}$, on note $n\mathbb{Z}$ l'ensemble des multiples de n, $n\mathbb{Z} = \{kn \mid k \in \mathbb{Z}\}$.

👺 Théorème 10.4

- $b \mid a \iff a \in b\mathbb{Z}$.
- Si $a \neq 0$, alors $b \mid a \implies |b| \leq |a|$.
- $(a \mid b \text{ et } b \mid a) \iff a\mathbb{Z} = b\mathbb{Z} \iff a = \lambda b \text{ avec } \lambda = \pm 1 \text{ [on dit que } a \text{ et } b \text{ sont associés]}.$
- Si $b \mid a$ et $b \mid c$ alors $\forall u, v \in \mathbb{Z}, b \mid au + cv$.
- Si $nb \mid na$ et si $n \neq 0$, alors $b \mid a$.

3) Congruences

Définition 10.2 (congruences)

Soient $a, b, n \in \mathbb{Z}$, on dit que a est congru à b modulo n lorsque $n \mid a - b$. Notation : $a \equiv b \pmod{n}$.

Maria Propied Propied

- ullet La relation de congruence modulo n est une relation d'équivalence.
- Soient $a, b, c, d, n \in \mathbb{Z}$, $si \ a \equiv b \pmod{n}$ et $c \equiv d \pmod{n}$ alors :

 $ac \equiv bd \pmod{n}$ et $a + c \equiv b + d \pmod{n}$.

On dit que la relation de congruence est compatible avec les opérations.

Preuve : Celle-ci est simple et laissée en exercice.

Exemple: Dans \mathbb{Z} , si $n = a_0 + 10a_1 + \dots + 10^p a_p$ (écriture décimale) alors $n \equiv a_0 + \dots + a_p \pmod{3}$ car $10^k \equiv 1$ (mod 3)

4) **Diviseurs communs**

Définition 10.3 (diviseurs communs)

Pour $a \in \mathbb{Z}$, on note D_a l'ensemble des diviseurs de a. Si $a, b \in \mathbb{Z}$, on note $D_{a,b}$ l'ensemble des diviseurs communs à a et b, on a donc $D_{a,b} = D_a \cap D_b$, cet ensemble contient toujours ± 1 .

Remarque 10.2 -

- Pour tout élément $a \in \mathbb{Z}$, $\pm 1 \mid a$.
- $Si \ a \neq 0$, $alors D_a$ est un ensemble fini, plus précisément $D_a \subset [-|a|;|a|]$.
- $D_0 = \mathbb{Z}$, $D_{\pm 1} = \{\pm 1\}$.
- $Si\ a\ et\ b\ sont\ dans\ \mathbb{Z}: D_a=D_{|a|}\ (on\ en\ d\'eduit\ que\ D_{a,b}=D_{|a|,|b|}).$

🛂 Théorème 10.6

Soient $a, b, q, r \in \mathbb{Z}$, $si\ a = bq + r$, $alors\ D_{a,b} = D_{b,r}$.

Preuve : Si $d \in D_{a,b}$, alors $d \mid a$ et $d \mid b$ donc $d \mid a - bq$ i.e. $d \mid r$, donc $d \in D_{b,r}$. Réciproquement, si $d \in D_{b,r}$, alors $d \mid b$ et $d \mid r$ donc $d \mid bq + r$ i.e. $d \mid a$, d'où $d \in D_{a,b}$.

Application – Le théorème ci-dessus fournit un algorithme pour la recherche des diviseurs communs à a et b (entiers naturels) basé sur la division euclidienne : c'est **l'algorithme d'**Euclide ¹, voici son principe :

On remarque que si b = 0 alors $D_{a,b} = D_a$. On peut supposer désormais que $b \neq 0$ et on cherche à calculer $D = D_{a,b}$:

Étape 1: on effectue la division euclidienne de *a* par *b*, $a = bq_1 + r_1$ avec $0 \le r_1 < b$. On a D = D_{b,r1}, donc si $r_1 = 0$ alors D = D_b, sinon on passe :

Étape 2: on effectue la division euclidienne de *b* par r_1 , $b = r_1q_2 + r_2$ avec $0 \le r_2 < r_1$. On a D = D_{r_1,r_2} , donc si $r_2 = 0$ alors D = D_{r_1}, sinon on passe :

Étape 3: on effectue la division euclidienne de r_1 par r_2 ; $r_1 = r_2 q_3 + r_3$ avec $0 \le r_3 < r_2$. On a $D = D_{r_2, r_3}$, donc si $r_3 = 0$ alors D = D_{r_2}, sinon on passe à l'étape 4...

La suite des restes obtenus est une suite strictement décroissante d'entiers positifs, elle est donc nécessairement finie, *i.e.* il existe un entier $n \ge 1$ tel que $r_n = 0$, l'ensemble cherché est donc $D = D_{r_{n-1}}$ (avec la convention $r_0 = b$).

🎖 À retenir

 $D_{a,b} = D_r$ où r est le dernier reste non nul dans l'algorithme d'Euclide.

- **Exemple**: Cherchons les diviseurs communs à a = 336 et b = 210
 - on effectue la division de *a* par *b* : 336 = $1 \times 210 + 126$, donc $D_{a,b} = D_{210,126}$.
 - on effectue la division de 210 par 126 : 210 = $1 \times 126 + 84$, donc $D_{a,b} = D_{210,126} = D_{126,84}$.
 - on effectue la division de 126 par 84 : $126 = 1 \times 84 + 42$, donc $D_{a,b} = D_{84,42}$.
 - on effectue la division de 84 par 42 : 84 = $2 \times 42 + 0$, donc $D_{a,b} = D_{42,0} = D_{42}$, c'est à dire :

 $D_{336,210} = \{\pm 1, \pm 2, \pm 3, \pm 6, \pm 7, \pm 14, \pm 21, \pm 42\}.$

ÉLÉMENTS PREMIERS ENTRE EUX

Théorème de Bézout

d Définition 10.4

Soient $a, b \in \mathbb{Z}$, on dit que a et b sont premiers entre eux (ou a est premier avec b) lorsque le seul diviseur commun positif est 1, i.e. $D_{a,b} = \{\pm 1\}$.

^{1.} EUCLIDE (300 av. J.C. - 275 av. J.C. environ): on ne sait pratiquement rien de sa vie, il était vraisemblablement grec. Son œuvre est colossale et son ouvrage fondamental « Les éléments » regroupe toutes les connaissances de l'époque, il faudra près de vingt siècles pour dépasser son œuvre.

Remarque 10.3 –

- Dire que a est premier avec b revient à dire que le dernier reste non nul dans l'algorithme d'Euclide est 1.
- Si a est premier avec b, alors au moins un des deux est non nul (sinon l'ensemble des diviseurs communs $est \mathbb{Z}$).
- a est premier avec a si et seulement si $a \pm 1$.

Théorème 10.7 (théorème de Bézout²)

Soient $a, b \in \mathbb{Z}$, alors a et b sont premiers entre eux si et seulement si il existe $u, v \in \mathbb{Z}$ tels que au + bv = 1. Les entiers u et v sont appelés coefficients de Bézout (non uniques en général).

Preuve: Supposons que u et v existent et soit d un diviseur commun à a et b, alors $d \mid a$ et $d \mid b$, donc $d \mid au + bv$ i.e. $d \mid 1$, donc $d = \pm 1$ ce qui prouve que a et b sont premiers entre eux.

Réciproquement : si a est premier avec b. En appliquant l'algorithme d'Euclide on vérifie qu'à chaque étape le reste r_k peut se mettre sous la forme $r_k = au_k + bv_k$ avec u_k et v_k dans \mathbb{Z} (récurrence) (algorithme d'Euclide étendu), comme le dernier reste non nul est 1, il existe bien u et v dans \mathbb{Z} tels que 1 = au + bv (de plus on sait les calculer!). \square

Exemple: $\forall n \in \mathbb{Z}, n \text{ et } n+1 \text{ sont premiers entre eux, puisque } n+1-n=1.$

2) Conséquences

🔛 Théorème 10.8

Si a est premier avec b et si a est premier avec c, alors a est premier avec le produit bc. On en déduit que si a est premier avec c_1, \ldots, c_n , alors a est premier avec le produit $c_1 \times \ldots \times c_n$.

Preuve: Il existe $u, v \in \mathbb{Z}$ tels que au + bv = 1, il existe $p, q \in \mathbb{Z}$ tels que ap + cq = 1. On effectue le produit de ces deux relations, ce qui donne a(ucq + uap + pbv) + bc(vq) = 1, d'après le théorème de Bézout, a et bc sont premiers entre eux. Une simple récurrence sur n permet de démontrer la généralisation.

👺 Théorème 10.9

Si a est premier avec c, si $a \mid b$ et si $c \mid b$, alors $ac \mid b$.

Preuve: Il existe $u, v \in \mathbb{Z}$ tels que au + cv = 1, on multiplie par b, ce qui donne : bau + bcv = b, or $c \mid b$ donc $ac \mid bau$, et $a \mid b$ donc $ac \mid bcv$, ce qui entraîne $ac \mid bau + bcv$ i.e. $ac \mid b$.

Remarquons que ce théorème est faux lorsque a et c ne sont pas premiers entre eux, par exemple : $2 \mid 12$ et $4 \mid 12$ mais $2 \times 4 = 8 / 12$.

Théorème 10.10 (théorème de Gauss)

Si $a \mid bc$ et si a est premier avec c, alors $a \mid b$.

Preuve: Il existe $u, v \in \mathbb{Z}$ tels que au + cv = 1, on multiplie par b, ce qui donne bau + bvc = b, or $a \mid bc$ donc $a \mid bau + bcv$, *i.e. a* | *b*.

\bigstarExercice 10.1 *Résoudre dans* \mathbb{Z} *l'équation* 17x + 12y = 3.

III LE PLUS GRAND DIVISEUR COMMUN

1) Définition

Soient $a, b \in \mathbb{Z}$ non tous deux nuls (i.e. $a \neq 0$ ou $b \neq 0$), on sait que $D_{a,b} = D_r$ où r est le dernier reste non nul dans l'algorithme d'Euclide, on voit que les diviseurs communs à a et b ont une valeur absolue inférieure ou égale à celle de r et donc r est le plus grand diviseur commun.

Définition 10.5

Soient $a, b \in \mathbb{Z}$ non tous deux nuls, on appelle pgcd de a et de b le plus grand diviseur commun. Notation: pgcd(a, b) ou $a \land b$, c'est le dernier reste non nul dans l'algorithme d'Euclide.

^{2.} BÉZOUT Étienne (1730 – 1783) : mathématicien français, l'un des précurseurs de la géométrie algébrique.

Remarque 10.4 – Il en découle que deux éléments a et b de \mathbb{Z} , non tous deux nuls, sont premiers entre eux si et $seulement \ si \ pgcd(a, b) = 1.$

Théorème 10.11 (Calcul pratique d'un pgcd)

Si $a, b \in \mathbb{Z}$ sont non tous deux nuls alors $\forall q \in \mathbb{Z}$, pgcd(a, b) = pgcd(a - bq, b).

Preuve: Soit r = a - bq, on a a = bq + r et on sait alors que $D_{a,b} = D_{b,r}$, le résultat en découle.

listing 10.1: euclide pour a et b positifs

```
def pgcd(a,b):
    A, B = a, b
    while B != 0:
        A, B = B, A%B
    return(A) #dernier reste non nul
```

★Exercice 10.2

1/ Prouver la terminaison de l'algorithme.

2/ Montrer que l'on a l'invariant de boucle de boucle $P(k) = (pgcd(a, b) = pgcd(A_k, B_k))$.

Exemple: Soit à calculer d = pgcd(3282, 1281):

```
-3282 = 2 \times 1281 + 720, donc d = pgcd(1281, 720),
```

- $-1281 = 1 \times 720 + 561$, donc d = pgcd(720, 561),
- $-720 = 1 \times 561 + 159$, donc d = pgcd(561, 159),
- $-561 = 3 \times 159 + 84$, donc d = pgcd(159, 84),
- $-159 = 1 \times 84 + 75$, donc d = pgcd(84, 75),
- $-84 = 1 \times 75 + 9$, donc d = pgcd(75, 9),
- $-75 = 8 \times 9 + 3$, donc d = pgcd(9,3),
- $-9 = 3 \times 3 + 0$, donc d = 3.

2) **Propriétés**

🧐 Théorème 10.12 (caractérisations du pgcd)

Soient $a, b \in \mathbb{Z}$ non tous deux nuls, et soit $d \in \mathbb{N}^*$. On a alors :

- $d = \operatorname{pgcd}(a, b) \iff d \mid a, d \mid b \text{ et } \exists u, v \in \mathbb{Z} \text{ tels que } au + bv = d.$
- $d = \operatorname{pgcd}(a, b) \iff \exists u, v \in \mathbb{Z}$ premiers entre eux, tels que a = du et b = dv.

Preuve: Pour le premier point : Si d = pgcd(a, b), cela découle d l'algorithme d'Euclide étendu.

Si $d \mid a, d \mid b$ et $\exists u, v \in \mathbb{Z}$ tels que au + bv = d, alors d est diviseur commun à a et b, et la deuxième relation entraîne que tout diviseur commun à a et b est un diviseur de d, donc d = pgcd(a, b) (d étant positif).

Pour le second point : Si $d = \operatorname{pgcd}(a, b)$ alors il existe $u, v \in \mathbb{Z}$ tels que a = du et b = dv, soit $k = u \land v$, alors kddivise a et b, donc $|kd| \le |d|$ ce qui entraı̂ne $|k| \le 1$ et donc k = 1.

Si a = du, b = dv avec $u \wedge v = 1$, alors d est un diviseur commun à a et b, d'après le théorème de Bézout, il existe $\alpha, \beta \in \mathbb{Z}$ tels que $\alpha u + \beta v = 1$, d'où $d = \alpha a + \beta b$, et donc d'après le premier point, *i.e.* $d = a \wedge b$.

Théorème 10.13 (quelques propriétés du pgcd)

Soient $a, b \in \mathbb{Z}$ non tous deux nuls :

- a) $\forall n \in \mathbb{Z}$, $si \ n \mid a \ et \ n \mid b$, $alors \ n \mid pgcd(a,b)$.
- b) $\forall k \in \mathbb{N}^*, \operatorname{pgcd}(ka, kb) = k \operatorname{pgcd}(a, b)$.
- c) $\forall n \in \mathbb{N}, \operatorname{pgcd}(a^n, b^n) = \operatorname{pgcd}(a, b)^n$.
- d) Si a et c sont premiers entre eux, alors pgcd(a, bc) = pgcd(a, b).

Preuve: Pour le premier point : Soit $d = \operatorname{pgcd}(a, b)$, alors $D_{a,b} = D_d$ donc tout diviseur commun à a et b est un diviseur de d.

Pour le deuxième point : soit $d = \operatorname{pgcd}(a, b)$, alors il existe $u, v \in \mathbb{Z}$ premiers entre eux tels que a = du et b = dv, d'où ka = kdu et kb = kdv, donc kd = pgcd(ka, kb).

Pour le troisième point : en reprenant les notations ci-dessus, $a^n = d^n u^n$ et $b^n = d^n v^n$, or u et v sont premiers entre eux, donc u^n et v^n aussi (conséquence du théorème de *Bézout*), par conséquent $d^n = \operatorname{pgcd}(a^n, b^n)$.

Pour le dernier point : on reprend les notations ci-dessus, a = du et bc = dcv mais $u \mid a$ et a est premier avec c, donc u est premier avec c, d'où u est premier avec cv, et donc $d = \operatorname{pgcd}(a, bc)$.

Généralisation

Soient a, b, c trois entiers non tous nuls, l'ensemble des diviseurs communs à a, b et c est :

$$D_{a,b,c} = D_a \cap D_b \cap D_c = (D_a \cap D_b) \cap D_c = D_a \cap (D_b \cap D_c)$$

or on sait que $D_a \cap D_b = D_{a \wedge b}$, donc $D_{a,b,c} = D_{(a \wedge b) \wedge c} = D_{a \wedge (b \wedge c)}$. Ces deux entiers étant strictement positifs, on a $(a \land b) \land c = a \land (b \land c)$ et ce nombre est le plus grand diviseur positif commun à a, b et c. Par définition ce nombre est le pgcd de a, b et c, on le note : pgcd(a, b, c) .

Théorème 10.14 (associativité du pgcd)

Soient a, b, c trois entiers avec b non nul, alors $pgcd(a, b, c) = (a \land b) \land c = a \land (b \land c)$.

À retenir

L'associativité du pgcd permet de ramener le calcul au cas de deux entiers.

Notons $d' = a \wedge b$ et $d = \operatorname{pgcd}(a, b, c)$, alors $d = d' \wedge c$, donc il existe deux entiers u' et w tels que $d = a \wedge b$ d'u' + cw, de même, il existe deux entiers α et β tels que $d' = \alpha a + \beta b$, d'où en remplaçant, $d = a\alpha u' + b\beta u' + b\alpha u' + b$ cw = au + bv + cw avec $u, v, w \in \mathbb{Z}$.

Réciproquement, si d est un diviseur commun positif, et si d = au + bv + cw, alors il est facile de voir que tout diviseur commun à a, b et c est un diviseur de d et donc $d = \operatorname{pgcd}(a, b, c)$, d'où le théorème :

🔛 Théorème 10.15

Soient a, b, c trois entiers non tous nuls et $d \in \mathbb{N}^*$, alors :

$$d = \operatorname{pgcd}(a, b, c) \iff d \in D_{a,b,c} \text{ et } \exists u, v, w \in \mathbb{Z}, d = au + bv + cw.$$

Définition 10.6

Soient *a*, *b*, *c* trois entiers non tous nuls, on dira que ces trois nombres sont :

- premiers entre eux dans leur ensemble lorsque pgcd(a, b, c) = 1.
- premiers entre eux deux à deux lorsque pgcd(a, b) = pgcd(b, c) = pgcd(a, c) = 1.

Attention!

Les deux notions ne sont pas équivalentes, la deuxième entraîne la première mais la réciproque est fausse comme le montre l'exemple suivant :

$$pgcd(6, 15, 20) = 1 \ mais \ pgcd(6, 15) = 3, \ pgcd(6, 20) = 2 \ et \ pgcd(15, 20) = 5.$$

Il découle du théorème précédent :

Théorème 10.16 (de Bézout)

Soient a, b, c trois entiers non tous nuls, alors a, b et c sont premiers entre eux dans leur ensemble si et seulement si :

$$\exists u, v, w \in \mathbb{Z}, au + bv + cw = 1.$$

🔛 Théorème 10.17 (caractérisation)

Soient a, b, c trois entiers non tous nuls et $d \in \mathbb{N}^*$, alors :

$$d = \operatorname{pgcd}(a, b, c) \iff \exists u, v, w \in \mathbb{Z}, a = du, b = dv \text{ et } c = dw \text{ avec } \operatorname{pgcd}(u, v, w) = 1.$$

Preuve: Si $d = \operatorname{pgcd}(a, b, c)$ alors il existe $\exists u, v, w \in \mathbb{Z}, a = du, b = dv$ et c = dw. Il existe également des entiers α, β et γ tels que $d = \alpha a + \beta b + \gamma c$ d'où $1 = \alpha u + \beta v + \gamma c$ et donc pgcd(u, v, w) = 1.

Réciproquement, si a = du, b = dv et c = dw avec pgcd(u, v, w) = 1. Il existe des entiers α, β et γ tels que 1 = 1 $\alpha u + \beta v + \gamma w$, en multipliant par d il vient alors que $d = \alpha a + \beta b + \gamma c$, ce qui entraîne que $d = \operatorname{pgcd}(a, b, c)$ (car $d \in \mathbb{N}^*$ et $d \in D_{a,b,c}$).

Remarque 10.5 – Nous avons étendu la notion de pgcd à trois entiers, mais on pourrait l'étendre de la même manière à n entiers.

LE PLUS PETIT MULTIPLE COMMUN

1) **Définition**

🔛 Théorème 10.18

Si a et b sont non nuls, il existe un unique élément m positif dans \mathbb{Z} tel que $(a\mathbb{Z}) \cap (b\mathbb{Z}) = m\mathbb{Z}$.

Preuve : $a\mathbb{Z} \cap b\mathbb{Z}$ contient |ab| > 0, on note m le plus petit élément strictement positif dans $a\mathbb{Z} \cap b\mathbb{Z}$, alors il est facile de voir que $m\mathbb{Z} \subset a\mathbb{Z} \cap b\mathbb{Z}$. Si $p \in a\mathbb{Z} \cap b\mathbb{Z}$, on effectue la division de p par m, p = mq + r avec $0 \le r < m$, d'où r = p - mq, on vérifie alors que r est aussi dans $a\mathbb{Z} \cap b\mathbb{Z}$ (car a et b divisent p et m donc p-mq). Si r>0 alors $r\geqslant m$ car m est le plus petit élément strictement positif dans $a\mathbb{Z} \cap b\mathbb{Z}$, ceci est absurde, donc r=0 et p=mq, d'où $a\mathbb{Z} \cap b\mathbb{Z} \subset m\mathbb{Z}$, et finalement on a bein l'inégalité.

Si $m'\mathbb{Z} = m\mathbb{Z}$ avec m' > 0, alors m et m' se divisent muutuellement, d'où m = m'.

Il découle de ce théorème que c est un multiple commun à a et b si et seulement si $c \in (a\mathbb{Z}) \cap (b\mathbb{Z})$, ce qui équivaut à $c \in m\mathbb{Z}$, c'est à dire $m \mid c$. Ceci entraîne en particulier : $m \leq |c|$.

Définition 10.7

Soit $a, b \in \mathbb{Z}$, non nuls, et soit $m \in \mathbb{N}^*$, on dit que m est le ppcm de a et b lorsque $(a\mathbb{Z}) \cap (b\mathbb{Z}) = m\mathbb{Z}$. Notation : m = ppcm(a, b) ou encore $m = a \lor b$.

Théorème 10.19 (caractérisation du ppcm)

Soient $a, b \in \mathbb{Z}$, non nuls, et soit $m \in \mathbb{N}^*$ alors :

 $m = \operatorname{ppcm}(a, b) \iff \exists \ u, v \in \mathbb{Z} \text{ premiers entre eux; tels que } m = au = bv.$

Preuve: On suppose $a, b \in \mathbb{Z}$, non nuls. Si $m = \operatorname{ppcm}(a, b)$: alors $a \mid m$ et $b \mid m$. Donc il existe $u, v \in \mathbb{Z}$ tels que m = au = bv, soit d = pgcd(u, v) alors il existe $\alpha, \beta \in \mathbb{Z}$ premiers entre eux tels que $u = d\alpha$ et $v = d\beta$, d'où $m = ad\alpha = bd\beta$, mais alors $m' = a\alpha = b\beta$ est un multiple commun à a et b donc $|m| \le |m'|$ ce qui entraîne d = 1.

Si $\exists u, v \in \mathbb{Z}$ premiers entre eux tels que m = au = bv, alors $a \mid m$ et $b \mid m$, il existe α, β tels que $u\alpha + v\beta = 1$, soit m'un multiple commun non nul, alors $m' = m' u \alpha + m' v \beta$, on en déduit que $m \mid m'$ et donc $|m| \leq |n|$, ce qui prouve que $m = \operatorname{ppcm}(a, b)$.

2) **Propriétés**

Théorème 10.20

Soient $a, b \in \mathbb{Z}$, non nuls :

- a) $\forall n \in \mathbb{Z}$, si $a \mid n$ et $b \mid n$ alors $ppcm(a, b) \mid n$.
- b) Si a et b sont premiers entre eux, alors ppcm(a, b) = |ab|.
- c) $\forall k \in \mathbb{N}$, non nul, ppcm(ka, kb) = k ppcm(a, b).
- d) $ppcm(a, b) \times pgcd(a, b) = |ab|$.
- e) $\forall n \in \mathbb{N}, \operatorname{ppcm}(a^n, b^n) = \operatorname{ppcm}(a, b)^n$.

Preuve: Pour le deuxième point : a et b sont premiers entre eux, alors ab = ba par conséquent ppcm(a, b) = ab d'après le théorème précédent.

Pour le troisième point : soit m = ppcm(a, b), alors m = au = bv avec u et v premiers entre eux, d'où km = kau = bvkbv et donc km = ppcm(ka, kb).

Pour le quatrième point : soit $m = \operatorname{ppcm}(a, b)$ et $d = \operatorname{pgcd}(a, b)$, il existe u et v premiers entre eux tels que a = dv et b = du, or au = bv donc m = au = bv par conséquent md = adu = ab.

 $b^n v^n$ avec u^n et v^n premiers entre eux, donc $m^n = \operatorname{ppcm}(a^n, b^n)$.

NOMBRES PREMIERS, DÉCOMPOSITION

Définition

Définition 10.8

Un entier $p \in \mathbb{Z}$ est dit **premier** lorsque $p \ge 2$, et que ses seuls diviseurs positifs sont 1 et p. L'ensemble des nombres premiers est noté P.

Exemples:

- 2,3,5,7,11,13,17,19,23,... sont des nombres premiers.
- Les nombres de Fermat³: $F_n = 2^{2^n} + 1$ sont premiers pour n = 0, 1, 2, 3, 4 mais pas pour n = 5, car $F_5 = 641 \times 6700417$.
- Les nombres de Mersennes 4 : $M_p = 2^p 1$ où $p \in P$, sont premiers pour $p = 2, 3, 5, 7, 127, \dots$ mais pas pour p = 11, car $M_{11} = 23 \times 89$.

★Exercice 10.3

1/ Soient $a, b \in \mathbb{Z}$ et $n \in \mathbb{N}$, montrer que $a - b \mid a^n - b^n$. Si n est impair, montrer que $a + b \mid a^n + b^n$.

2/ Montrer que si $2^p + 1$ est un nombre premier alors p est une puissance de 2.

3/ Montrer que si $2^p - 1$ est un nombre premier, alors p est un nombre premier.

Propriétés élémentaires :

a)	Si p est premier, alors $\forall n \in \mathbb{Z}$, soit $p \mid n$, soit $\operatorname{pgcd}(n, p) = 1$.	
	Preuve : Soit $d = \operatorname{pgcd}(p, n)$, alors $d \mid p$ donc $d = 1$ ou $d = p$, mais p ne divise pas n , donc $d \neq p$, <i>i.e.</i> $d = 1$.	

b) Si $n \ge 2$, alors n possède au moins un diviseur premier.

Preuve : Soit B = { $ d / d n$ et $d \neq 1$ }, alors B est une partie de \mathbb{N} non vide ($ n \in B$), soit p un divi	iseur de n avec
$ p \in B$ minimal , si $d \mid p$ avec d positif et $d \neq 1$, alors $d \mid n$ et donc $ d \in B$, d'où $ d \geqslant p $, or $d \mid p$, d	onc $ d \leqslant p $ et
finalement $ d = p $, d'où $d = p$ et donc p est premier.	

c) L'ensemble P est infini.

Preuve : Si \mathscr{P} est fini, alors $\mathscr{P} = \{p_1, \dots, p_n\}$, posons $N = 1 + p_1 \times \dots \times p_n$, alors $N > 1$, donc N admet au	moins un
diviseur premier q , comme $q \in \mathcal{P}$, on a $q \mid p_1 \times \times p_n$, et comme $q \mid N$, on a $q \mid 1$ ce qui est absurde, d	lonc 🏈 est
infini.	

d) Si p est premier et si $p \mid nm$, alors $p \mid n$ ou $p \mid m$.

Preuve: Supposons que p ne divise pas n, alors $n \notin p\mathbb{Z}$ donc pgcd(p, n) = 1 et par conséquent $p \mid m$ (d'après le théorème de Gauss).

e) Si n > 1 n'a pas de diviseur autre que 1 dans l'intervalle $[1; \sqrt{n}]$, alors n est premier.

Preuve : Si n est non premier alors on peut écrire n = pq avec p > 1 et q > 1. Si les deux étaient strictement supérieurs à \sqrt{n} alors on aurait pq > n ce qui est absurde, donc un des deux est dans $[1; \sqrt{n}]$. Le résultat s'en déduit par contraposée.

f) Si p est premier, alors $\forall k \in [1; p-1], p \mid {p \choose k}$. On en déduit que pour tout entier a et b, on a $(a+b)^p \equiv$ $a^p + b^p \pmod{p}$.

Preuve: On a $k\binom{p}{k} = p\binom{p-1}{k-1}$ qui est donc divisible par p, mais comme $k \in [1; p-1]$, p est premier avec k, par conséquent, d'après le théorème de *Gauss*, $p \mid \binom{p}{k}$. Pour le second point, on développe le binôme.

Compléments: Soit $(p_n)_{n\geq 1}$ la suite strictement croissante des nombres premiers, la répartition de ces nombres encore aujourd'hui mal connue, cependant on a les quelques résultats suivants :

- Tout segment de la forme [n;2n] contient au moins un nombre premier (théorème de *Bertrand*).
- Si $a, b \in \mathbb{N}^*$ sont premier entre eux, alors il existe une infinité de nombre premiers de la forme an + b(théorème de Dirichlet).
- $-p_n \sim n \ln(n)$ (théorème de *Hadamard*).

^{3.} FERMAT Pierre De (1601 - 1665): mathématicien amateur (éclairé!) l'un des plus féconds de son époque mais qui faisait peu de démonstrations et publiait peu.

^{4.} MERSENNES Marin (1588 - 1648): moine français qui entretenait une correspondance suivie avec les mathématiciens de son époque.

Théorème 10.21 (petit théorème de Fermat)

Si p est un nombre premier, alors pour tout entier n on a $n^p \equiv n \pmod{p}$. Et si $n \notin p\mathbb{Z}$, alors $n^{p-1} \equiv 1$ \pmod{p} .

Preuve : Pour $n \in \mathbb{N}$ on fait une récurrence : la propriété est vraie au rang 0, supposons la vraie au rang n, alors $(n+1)^p \equiv n^p + 1 \pmod p$, en appliquant l'hypothèse de récurrence, on a $(n+1)^p \equiv n+1 \pmod p$.

On remarque ensuite que $(-1)^p \equiv -1 \pmod{p}$ car soit p = 2, soit p est premier impair, on en déduit que $(-n)^p \equiv -n$ (mod p). On a donc pour tout entier n, $p \mid n^p - n = n(n^{p-1} - 1)$, si p ne divise pas n alors p est premier avec n, donc $p \mid n^{p-1} - 1$, c'est à dire $n^{p-1} \equiv 1 \pmod{p}$.

Décomposition en facteurs premiers

Théorème 10.22 (décomposition en produit de facteurs premiers)

Tout élément $n \in \mathbb{Z}$, autre que ± 1 , est un produit de nombres premiers. Plus précisément, il existe $r \geqslant 1$, il existe $p_1, \ldots, p_r \in \mathcal{P}$ (distincts), il existe des entiers $\alpha_1, \ldots, \alpha_r \in \mathbb{N}^*$, il existe $\lambda \in \{-1; 1\}$ tels que : $n = \lambda \times p_1^{\alpha_1} \times p_2^{\alpha_2} \times \ldots \times p_r^{\alpha_r}$.

Preuve: On a $n = \lambda \times |n|$ avec $\lambda = \pm 1$. On se ramène ainsi au cas où n est positif.

Par récurrence sur n: pour n = 2 il n'y a rien à montrer car 2 est premier. Supposons le théorème démontré jusqu'au rang $n \ge 2$, alors n + 1 admet au moins un diviseur premier p, donc n + 1 = pk, si k = 1 alors n + 1 est premier, sinon kest un produit de facteurs premiers (HR), donc n + 1 aussi.

Théorème 10.23 (unicité de la décomposition)

Si $n \in \mathbb{Z}$ s'écrit sous la forme :

$$n = \lambda \times p_1^{\alpha_1} \times ... \times p_r^{\alpha_r} = \mu \times q_1^{\beta_1} \times ... \times q_s^{\beta_s}$$

 $n = \lambda \times p_1^{\alpha_1} \times \ldots \times p_r^{\alpha_r} = \mu \times q_1^{\beta_1} \times \ldots \times q_s^{\beta_s},$ avec $p_1, \ldots, p_r \in \mathcal{P}$ (distincts), $\alpha_1, \ldots, \alpha_r \in \mathbb{N}^*$, $q_1, \ldots, q_s \in \mathcal{P}$ (distincts), $\beta_1, \ldots, \beta_s \in \mathbb{N}^*$, et $\lambda, \mu \in \{-1; 1\}$ alors r = s, $\lambda = \mu$ et il existe une permutation σ de [1; r] telle que pour $i \in [1; r]$, $p_i = q_{\sigma(i)}$, $\alpha_i = \beta_{\sigma(i)}$. La décomposition est unique (à l'ordre près).

Preuve: Si $p_1 \notin \{q_1, ..., q_s\}$, alors p_1 est premier avec $q_1, ..., q_s$, donc p_1 est premier avec $q_1^{\beta_1} \times ... \times q_s^{\beta_s}$, i.e. p_1 est premier avec n, ce qui est absurde puisque $p_1 \mid n$, donc $p_1 \in \{q_1, \dots, q_s\}$. Finalement on a $\{p_1, \dots, p_r\} \subset \{q_1, \dots, q_s\}$ et par symétrie on a l'égalité des deux ensembles, donc r = s. Quitte à permuter les indices que la famille (q_i) , on peut supposer que

Le théorème de *Gauss* entraı̂ne que $p_k^{\alpha_k} \mid p_k^{\beta_k}$, donc $\alpha_k \leqslant \beta_k$, par symétrie on a $\beta_k \leqslant \alpha_k$, et donc $\alpha_k = \beta_k$, ce qui termine la preuve.

Notion de valuation *p*-adique 3)

Si n est un entier naturel non nul et p un nombre premier, alors l'ensemble $\{k \in \mathbb{N} \mid p^k \mid n\}$ est non vide (contient 0) et majoré par n (on peut montrer par récurrence que $p^n \ge n$), cet ensemble admet donc un maximum:

Définition 10.9

Soit $p \in \mathcal{P}$ et $n \in \mathbb{N}^*$ on appelle valuation p-adique de n, notée $v_p(n)$, le plus grand entier k tel que $p^k \mid n$. La définition s'étend à \mathbb{Z} , en posant $v_p(-n) = v_p(n)$ si n < 0 et $v_p(0) = +\infty$.

- premiers.
- $-\{k \in \mathbb{N} / p^k \mid n\} = [0; \nu_n(n)].$

À retenir

Pour tout entier $n \ge 2$, la décomposition de n en produit de facteurs premiers s'écrit : $n = \prod p^{\nu_p(n)}$

En effet, seul un nombre fini de valuations sont non nulles (les autres donnent un facteur égal à 1).

🙀 Théorème 10.24 (Propriétés)

 $\forall n, m \in \mathbb{Z}$, on a:

- a) $\forall p \in \mathcal{P}, v_p(nm) = v_p(n) + v_p(m).$
- b) $\forall p \in \mathcal{P}, v_p(n+m) \ge \min(v_p(n); v_p(m)).$
- c) $n \mid m \iff \forall p \in \mathcal{P}, \ v_p(n) \leqslant v_p(m)$.
- d) Si n et m sont non nuls alors $\forall p \in \mathscr{P}$:

$$v_p(n \wedge m) = \min(v_p(n); v_p(m)) \text{ et } v_p(n \vee m) = \max(v_p(n); v_p(m)).$$

Preuve:

- a) Si un des deux est nul, c'est évident. Supposons n et m non nuls, soit $n=p^kq$ avec $p \land q=1$ et $m=p^{k'}q'$ avec $p \wedge q' = 1$, d'où $nm = p^{k+k'}qq'$ et $p \wedge (qq') = 1$, donc $v_n(nm) = kk'$.
- b) Si un des deux est nul, c'est évident. Supposons n et m non nuls, et avec les mêmes notations, supposons $k \leq k'$, alors $n + m = p^k [q + p^{k'-k}q']$ donc $v_p(n+m) \ge k$. On remarque qu'il y a égalité lorsque $k \ne k'$.
- c) Si m = 0 c'est évident, supposons $m \neq 0$ et $n \mid m$, alors pour tout premier p, $\{k \in \mathbb{N} \mid p^k \mid n\} \subset \{k \in \mathbb{N} \mid p^k \mid m\}$ donc $v_p(n) \leq v_p(m)$. La réciproque est évidente.
- d) Soit $d = n \land m$ alors $v_p(d) \leqslant v_p(n)$ et $v_p(d) \leqslant v_p(m)$, donc $v_p(d) \leqslant \min(v_p(n); v_p(m))$. D'autre part $p^{\min(v_p(n); v_p(m))}$ divise n et m donc divise d d'où $\min(v_p(n); v_p(m)) \leq v_p(d)$, par conséquent $\min(v_p(n); v_p(m)) = v_p(d)$. Pour le ppcm on peut utiliser le fait que $(n \wedge m)(n \vee m) = |nm|$ et donc $v_p(n \vee m) = v_p(nm) - v_p(n \wedge m) = v_p(n) + v_p($ $v_n(m) - \min(v_n(n); v_n(m)) = \max(v_n(n); v_n(m)).$

À retenir : formules du pgcd et du ppcm

Il découle du théorème ci-dessus que :

$$\operatorname{pgcd}(n,m) = \prod_{p \in \mathscr{P}} p^{\min(\nu_p(n);\nu_p(m))} \text{ et } \operatorname{ppcm}(n,m) = \prod_{p \in \mathscr{P}} p^{\max(\nu_p(n);\nu_p(m))}.$$

★Exercice 10.4 Soient n et m deux naturels non nuls, premiers entre eux, tels que le produit nm est un carré, montrer que n et m sont des carrés.

4) **Applications**

- Si $n \neq \pm 1$, alors la décomposition de n en produit de facteurs premiers permet de trouver tous les diviseurs de n.

En effet : Si $n = \lambda \times p_1^{\alpha_1} \times ... \times p_r^{\alpha_r}$, soit d est un diviseur positif de n, si p est un diviseur premier de d, alors p est un diviseur premier de n, donc $p \in \{p_1, ..., p_r\}$, donc d s'écrit sous la forme :

$$d = p_1^{\beta_1} \times ... \times p_r^{\beta_r} \text{ avec } 0 \leqslant \beta_k \leqslant \alpha_k$$

– Si *n*, *m* ∉ {−1; 1}, alors à partir de leur décomposition en produit de facteurs premiers, on peut calculer $\operatorname{pgcd}(n,m) = \prod_{p \in \mathscr{P}} p^{\min(\bar{\nu}_p(n); \nu_p(m))}$ et $\operatorname{ppcm}(n,m) = \prod_{n \in \mathscr{P}} p^{\max(\nu_p(n); \nu_p(m))}$. Plus précisément : Si $n = \lambda \times 1$

 $p_1^{\alpha_1} \times ... \times p_r^{\alpha_r}$ et $m = \mu \times q_1^{\beta_1} \times ... \times q_s^{\beta_s}$, alors les diviseurs premiers communs à n et m doivent appartenir à $\{p_1,\ldots,p_r\}\cap\{q_1,\ldots,q_s\}$, d'où la discussion :

- $\{p_1, ..., p_r\} \cap \{q_1, ..., q_s\} = \emptyset$, alors n et m sont premiers entre eux, *i.e.* $\operatorname{pgcd}(n, m) = 1$ et donc ppcm(n, m) = |nm|.
- $\{p_1, ..., p_r\} \cap \{q_1, ..., q_s\} = \{v_1, ..., v_t\}$, alors quitte à changer la numérotation, on peut supposer que $p_1 = q_1 = v_1, \dots, p_t = q_t = v_t$ sont les diviseurs premiers communs à n et m.

$$\boxed{\operatorname{pgcd}(n,m) = v_1^{k_1} \times \ldots \times v_t^{k_t} | \operatorname{avec} k_i = \min(\alpha_i, \beta_i) \operatorname{pour} i \in [1; t]}.$$

Et:

$$\operatorname{ppcm}(n, m) = v_1^{k_1} \times ... \times v_t^{k_t} \times p_{t+1}^{\alpha_{t+1}} \times ... \times p_r^{\alpha_r} \times q_{t+1}^{\beta_{t+1}} \times ... \times q_s^{\beta_s}$$

$$\operatorname{avec} k_i = \max(\alpha_i, \beta_i) \text{ pour } i \in [1; t].$$

Exemple: $336 = 2^4 \times 3 \times 7$ et $420 = 2^2 \times 3 \times 5 \times 7$, donc pgcd $(336, 420) = 2^2 \times 3 \times 7 = 84$, et ppcm $(336, 420) = 2^2 \times 3 \times 7 = 84$ $2^4 \times 3 \times 5 \times 7$.

VI SOLUTION DES EXERCICES

Solution 10.1 a = 17 et b = 12 sont premiers entre eux, appliquons l'algorithme d'Euclide :

```
a = b \times 1 + 5 \ d'où \ r_1 = 5 = a - b
```

 $b = r_1 \times 2 + 2$, d'où $r_2 = 2 = b - 2r_1 = b - 2(a - b) = -2a + 3b$

 $r_1 = r_2 \times 2 + 1$, d'où $r_3 = 1 = r_1 - 2r_2 = a - b + 4a - 6b = 5a - 7b$

On a ainsi une relation de Bézout entre a et b, on en déduit une solution particulière en multipliant par 3:15a-21b=3, donc ($x_0=15, y_0=-21$) est une solution particulière.

L'équation équivaut alors à $a(x-x_0)=b(y_0-y)$, d'après le théorème de Gauss, a et b étant premiers entre eux, on a $b \mid x-x_0$ et $a \mid y_0-y$, i.e. $x=x_0+bk$ et $y=y_0-bk'$, en reportant dans la relation on voit que k=k' et donc les solutions sont les couples (x_0+bk,y_0-ak) avec $k \in \mathbb{Z}$.

Solution 10.2

- 1/ À l'itération 0, on $a B_0 = b \in \mathbb{N}$. Si la boucle ne se termine jamais, alors on a une suite B_i de nombres non nuls. À l'itération i+1, on $a A_{i+1} = B_i$ et B_{i+1} est le reste de la division de A_i par B_i , on en déduit par récurrence sur i, que (B_i) est une suite d'entiers positifs $(B_0 = b \in \mathbb{N})$ et strictement décroissante car $B_{i+1} < B_i$, ce qui est absurde, donc la boucle while se termine.
- 2/ Montrons l'invariant de boucle P(i): $pgcd(a,b) = pgcd(A_i,B_i)$, par récurrence sur i, au rang 0, on $aA_0 = a$ et $B_0 = b$, P(0) est donc vraie. Supposons P(i) vraie et qu'il y a une itération i+1, donc $B_i \neq 0$, à l'itération i+1 on $aA_{i+1} = B_i$, et $A_i = B_iQ_i + B_{i+1}$ (division euclidienne de A_i par B_i), donc $pgcd(A_i,B_i) = pgcd(B_i,B_{i+1}) = pgcd(A_{i+1},B_{i+1})$, ce qui montre P(i+1).
- 3/ Soit n le nombre d'itérations, à l'issue de l'itération n, on a $\operatorname{pgcd}(a,b) = \operatorname{pgcd}(A_n,B_n)$ (invariant), et comme il n'y a pas d'itération n+1 cela signifie que $B_n=0$, finalement $\operatorname{pgcd}(a,b) = \operatorname{pgcd}(A_n,0) = A_n$. La valeur de la variable A qui est renvoyée est bien le pgcd cherché.

Solution 10.3

```
1/ a \equiv b \pmod{a-b} d'où a^n \equiv b^n \pmod{a-b}, c'est à dire a-b \mid a^n-b^n.

a \equiv -b \pmod{a+b} d'où a^n \equiv (-b)^n \pmod{a+b}, si n est impair alors a^n \equiv -b^n \pmod{a+b}, et donc a+b \mid a^n+b^n.
```

- 2/ Soit $N = 2^p + 1$ un nombre premier, on peut écrire $p = 2^r q$ avec q impair (r est valuation 2-adique de p), on a alors $N = 2^{2^r q} + 1 = \left(2^{2^r}\right)^q + 1^q$, q étant impair, N est divisible par $2^{2^r} + 1$, ce nombre est plus grand que 1 et N est premier, donc $2^{2^r} + 1 = N = 2^p + 1$, ce qui entraîne $p = 2^r$ (et donc q = 1).
- 3/ Soit $N = 2^p 1$ un nombre premier, soit d un diviseur positif de p, on peut écrire p = dq avec $q \in \mathbb{N}$, on a alors $N = 2^{dq} + 1 = 2^{dq} 1^q$, donc N est divisible par $2^d 1$, or N est premier, donc $2^d 1 = 1$ ou bien $2^d 1 = N = 2^p 1$, ce qui entraîne d = 1 ou d = p, donc p est premier.

Solution 10.4 Soit p un nombre premier, comme $n \land m = 1$, on a $v_p(n \land m) = 0$, or $v_p(n \land m) = \min(v_p(n); v_p(m))$, on a donc $v_p(n) = 0$ ou $v_p(m) = 0$, d'autre part, nm étant un carré d'entier, $v_p(nm)$ est pair, or $v_p(nm) = v_p(n) + v_p(m)$ et une des deux valuations est nulle, donc l'autre est forcément paire. Finalement, pour tout premier p, $v_p(n)$ est pair et $v_p(m)$ est pair, donc n et m sont des carrés d'entiers.