$$\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \left(\frac{1}{\sqrt$$

Z) [] [c = [cv = O(n r)

ه ایال میما .

10, 8000 by G. 80, 8 ly 6. by. go

strain.

- by for Kely, Jon, -, log, fin, & O(ly, gam)

J. (E

for segming) of the Kohon of tenso (hom)

140

15: - 15: - cr by: - cr / 1/2 / cr < 1/2 / c

=) cry; (b) k (crlog; -> log" = 0 (lg;)

-10) Tin, = 9 T(η/+)+η 'βη'

α=1, b= " η'θ' η' , tin, Ω(n') , η'ζην (ch'ζη η

—) Tin, = Θ(n'y')

-) T(n) ("T("/c)+"

- in Tin) = " T(1/c) + [n Tin) = (" Tin) = T'(1/c) + (n/c) "

a=1, b=(-> g(n) = n loj' =1 , P(n) = (n/ε) "

fin= s(1), (1/2)" < ((1/2)" -

 $=) \top^{(n)} : \theta ((nk)^{2}) \rightarrow (-(n) = \theta ((nk)^{2}))$

 $\longrightarrow T(n) = \{ e^n e^n ((\sqrt[n]{\epsilon})^n) = \widehat{\theta(n^n)} \}$

$$n^{103}$$
 ω_{0} , ω_{0} ,

$$\frac{\mathbb{E}}{\mathbb{E}} = \frac{\mathbb{E}}{\mathbb{E}} = \frac{\mathbb{E}}{\mathbb{E}} = \frac{\mathbb{E}}{\mathbb{E}} = \mathbb{E} =$$

$$S(r^{n}) = F(r) + r$$
 $S(r^{n}) = F(r) + r$
 $S(r^{n}) = F(r) = F(r) = F(r) + r$

$$T(n) = (T(n-1)+T) = \frac{1}{2}$$

$$= 9(n-1) + 7 \times (1 + 1)$$

$$= (v(n-1) + 9 \times (1 + 1) \times (1 + 1)$$

$$= (v(n-1) + 9 \times (1 + 1) \times (1 + 1)$$

$$= (v(n-1) + 9 \times (1 + 1) \times (1 + 1)$$

$$= (v(n-1) + 9 \times (1 + 1) \times (1 + 1)$$

$$= (v(n-1) + 1) \times (1 + 1)$$

$$= (v(n-1)$$

devider = input ()

divisor = input ()

int, number of digit devider

int R = wirth

int Q = input

int H=, d=.

For (int i= n-1; i <= 0; i+r) \(\)

H= H + devider [8]

d = H/divisor

R = H/divisor

if (Q=0) \(\)

tl *= 10 \(\)

else \(\) Q = push (d) \(\) \(\) H = - \(\)

Print Q: print R

ſ