

INHALT

01.

MEINE ARBEIT

Umfang meiner Arbeit

02.

HERAUSFORDERUNGEN

Probleme und Workarounds 03.

FAZIT

Gelerntes und Verbesserungen

O1.

MEINE ARBEIT

Umfang meiner Arbeit

UMFANG MEINER ARBEIT

- Programmieren und trainieren einer Künstlichen Intelligenz im theoretischen Umfeld in Python
- Programmieren eines Spiels zur Implementierung der KI in GameMaker
- Herausarbeiten der theoretischen Funktionsweise
- Praktische Umsetzung in einem Prototyp (4 Entwicklungsversionen)
- Finale Umsetzung/Zusammensetzung der verschiedenen Entwicklungsversionen
- Veröffentlichung auf GitHub

<<<<

02.

HERAUSFORDERUNGEN

Probleme und Workarounds

PROBLEME UND WORKAROUNDS

SPRACHE

POSITIV

Einfach im Bezug auf Fachsprache

NEGATIV

Schwerer um "gängige" Dinge zu erklären

TIPP

Ohne Hilfssoftware teilweise doch sehr Umgangssprachlich geschrieben

WORKFLOW

<u>ARTIFICIAL</u>

KRITIK

Unstrukturierte persönliche Arbeitsweise (glaub ich)

BASICS

Strukturiertes herangehen an die Arbeit ist essentiell (Trello/Azure DevOps)

PLAN

(Versuchen) den Überblick zu behalten → ToDo Liste essentiell

ZITIERFÄHIGE QUELLEN

ARTI

ANZAHL

Die schiere Masse bringt viele gut verfasste Artikel zum Vorschein

PAYWALLS

Teilweise hinter Paywalls versteckt, dann aber meistens Abstract ausreichend

DIGITAL

Wenig schriftliche Literatur (Buchquellen)

CODE

DEBUGGING

Viel zeitintensiver als gedacht

KOMPATIBILITÄT

Tf nur mit Python Versionen 3.7 bis 3.9 kompatibel etc.

"Tensorflow" und "keras" sowie openAl "gym"

CODE DOCUMENTATION

Auf eine einheitliche Formatierung achten

SERVERAUSFÄLLE

Server Downtime kann nicht genutzt werden

ARTIFICIAL

GITHUB

Verständliche gestalltung der Repos

BILDER

Veranschaulichung mithilfe von Bildern

FORKS

"post_deadline" fork für Veränderungen nach Abgabetermin / LAIJ

03.

FAZIT

Gelerntes und Verbesserungen

GELERNTES UND VERBESSERUNGEN

LEHRREICH

Sehr informativ und lehrreich in Bereichen der praktischen Arbeit und der theoretischen Auseinandersetzung mit den Funktionsweisen von Künstlicher Intelligenz

GITHUB

Öffentlich einsehbar unter github.com/Pytonballoon810/ Seminar-paper-Al-2022

<><>

<><>

ZEITMANAGMENT

Viel Debugging notwendig → Zeitdruck ist dringlichst zu vermeiden

K

Lange Trainingsdauer erforderlich für annähernd gute Resultate (2 Tage max.)

Al_training_python

How does this training work? - This is the question that will be answered in this portion of the README. For starters: The Tensorflow Keras model is being use as a framework for training and building the Al. The environment in which the Al is trained is built by the Gym library and modified using a custom environment. To have some variation in sample data (in this case the start condition of the environment) I calculated between 2.000 and 20.000 ("NUM_OF_START_ENVS") possible start-variations in the "create_environments.py". It would be possible to iterate over all of them in order to train the Al but was not done here because of time and computing-power reasons. One of the biggest bottlenecks of the Al environment is the fact that I can't seem to find a way to pass in a 2D array or an array that is larger than 100 items.

Structure of the network

The structure of a network with 6 dense layers looks like this:

model.add(Dense(8, activation="relu", input_shape=states)) # Dense node layer as standard keras neuron to generate deep reinforcement learning algorithms

model.add(Dense(8, activation="relu"))

model.add(Dense(8, activation="relu"))

model.add(Dense(8, activation="relu"))

model.add(Dense(8, activation="relu"))

model.add(Dense(actions, activation="softmax"))

GITHUB.COM/PYTONBALLOON810/SEMINAR-PAPER-AI-2022

Keras - The official Keras website

Keras-RL Documentation - The Keras build used in this implementation

OpenAl - The library used for the custom environment

Gym - The indepth explanation of how the gym library works

ARTIFICIAL

INTE (AI)

"ALLES BRAUCHT"

VIFI 7FIT "

Mehr als man denkt auf jeden Fall ~Ich

RESOURSEN

QUELLEN:

- Fonts: Raleway Medium, Bebas Neue
- MS Piktogramme
- Artificial intelligence concept illustration

TOOLS:

- Obsidian.md
- Trello/Azure DevOps
- **VS** Code
 - Extensions:
- GitHub Desktop
- **CMD**

Special Thanks: Meine Grafikkarte

3 808ms

3 452ms

3 375m

(I)