COMP 3602 Assignment 1

Question 1a)

Question 1b)

1

Question 2a)

Question 2b)

Question 2c)

Question 3)

$$\mathbf{M} = (\{q0,q1,q2,q3,q4,q5\},\{0,1\},\delta,\mathbf{q}0,\{q0,q2,q4\})$$
 where δ is

Question 4)

$$\mathbf{M} = (\{q0,q1,q2,q3,q4,q4,q5,q6,q7\},\{0,1\},\delta,\mathbf{q}0,\{q7\})$$
 where δ is

	0	1
q0	q1	q4
q1	q2	q3
q2	q1	q3
q3	q3	q3
q4	q3	q5
q5	q3	q4

	0	1	ϵ
q0	Ø	q1	Ø
q1	q2	Ø	Ø
q2	Ø	q3	Ø
q3	q3	q3	q4
q4	Ø	q5	Ø
q5	q6	Ø	Ø
q6	Ø	q7	Ø
q7	Ø	Ø	Ø

Question 5 (with 5c pieces)


```
Question 7) L_1 - L_2 = L_1 \cap \overline{L_2}
```

Since L_1 is regular, $\overline{L_2}$ (complement of L_2) is regular and intersection are all closed under the set of regular languages then $L_1 \cap \overline{L_2}$ is regular.

```
Question 8) We assume that ADD is regular.
   Let p be the puming length given by the pumping lemma
   we let s be the string
   1^p = 0 + 1^p
   Because s \in B \land s > p we guarentee that s can be split into three piece s = xyz
where these three things must hold
i) xy^iz \in ADD, i >= 0
ii)|xy| <= p
|iii\rangle|y|>0
   Suppose y contains only 1's
   let y = 1^m such that m >= 1
   xy = 1^p
x = 1^{p-m}
z = (= 0 + 1^p)
xyz(1^{p-m})(1^m)(=0+1^p)
suppose i = 0
xy^{i}z = (1^{p-m}(1^{m})^{0}(=0+1^{p})= 1^{p-m} = 0+1^{p}
if m >= 1, p - m \neq p
   Hence \exists i such that xy^iz \notin ADD
```

Question 9)
a)
Accept: a b Reject: ba bbaa b) Accept: a aba Reject: b ba c) Accept: a bb Reject: aa aab $\begin{array}{c} \text{d)} \\ \text{Accept:} \\ \epsilon \text{b} \\ \text{ab} \end{array}$

Reject:

aab bb