Exercise Sheet 11

Discrete Mathematics, 2020.10.27

- 1. ([R], Page 172, Exercise 2(a)(b)(d)(e)) Determine whether each of these sets is countably infinite, or uncountable. For those that are countably infinite, exhibit a one-to-one correspondence between the set of positive integers and that set.
 - a) the integers greater than 10
 - b) the odd negative integers
 - d) the real numbers between 0 and 2
 - e) the set $A \times Z^+$ where $A = \{2, 3\}$
- 2. Prove that $[0,1) \times [0,1) \approx [0,1)$.
- 3. Prove that for any sets A, B and C, $(A \to (B \to C)) \approx (B \to (A \to C))$.
- 4. Prove that for any sets A, B and C, $(A \to B \times C) \approx (A \to B) \times (A \to C)$.
- 5. Prove that the set of all binary relations on \mathbb{R} is equinumerous to the set of all functions from \mathbb{R} into \mathbb{R} .
- 6. (Optional homework. 1 additional point.) A function $f: \mathbb{R} \to \mathbb{R}$ is monotonically increasing if for any x < y, f(x) < f(y). Prove that the set of monotonically increasing functions from \mathbb{R} into \mathbb{R} is equinumerous to \mathbb{R} . (选做题可以不做)
- 7. (Optional homework. 2 additional points.) We know that $R = \{(x,y) \in \mathbb{R} \times \mathbb{R} \mid x-y \in \mathbb{Q} \}$ is an equivalence relation on \mathbb{R} . Suppose $P = \{[a]_R \mid a \in \mathbb{R}\}$. Prove that $P \approx \mathbb{R}$. (选做题可以不做)