Self-Attention Modeling for Visual Recognition

Han Hu

Visual Computing Group

Microsoft Research Asia (MSRA)

CVPR2020 Tutorial

Overview

- Part I: Applications of Self-Attention Models for Visual Recognition
 - Pixel-to-pixel relationship
 - Object-to-pixel relationship
 - Object-to-object relationship

- Part II: Diagnosis and Improvement of Self-Attention Modeling
 - Are self-attention models learnt well on visual tasks?
 - How can it be more effective?

Overview

- Part I: Applications of Self-Attention Models for Visual Recognition
 - Pixel-to-pixel relationship
 - Object-to-pixel relationship
 - Object-to-object relationship

- Part II: Diagnosis and Improvement of Self-Attention Modeling
 - Are self-attention models learnt well on visual tasks?
 - How can it be more effective?

Visual Recognition Paradigm

An Object Detection Example

Relationship Modeling of Basic Visual Elements

object-to-pixel object-to-object pixel-to-pixel Convolution RolAlign None Variants Self-attention Self-attention Self-attention

What is a Self-Attention Module?

- Transforms the pixel/object input feature by encoding its relationship with other pixels/objects
- A weighted average of Value, where the weight is the normalized inner product of Query and Key

output feats

input feats

$$\mathbf{y}_i = \sum_{j \in \Omega} w(\mathbf{q}_i, \mathbf{k}_j) \, \mathbf{v}_j$$

$$w(\mathbf{q}_i, \mathbf{k}_j) \sim exp(\mathbf{q}_i^T \mathbf{k}_j)$$

Pixel-to-Pixel Relation Modeling

pixel-to-pixel

Convolution Variants

Usage

- ✓ Complement convolution
- ✓ Replace convolution

Complement Convolution

• "Convolution is too local"

Figure credit: Van Den Oord et al.

Complement Convolution

• Non-Local Networks [Wang et al, CVPR'2018]

non-local block

Replace Convolution

"Convolution is exponentially inefficient"

fixed filters

channel #2

channel #3

convolution

Convolution =Template Matching

We need 3 channels/filters/templates to encode these bird heads!

Inefficient!

Replace Convolution

Adaptive filters (composition) vs. fixed filters (template)

Han Hu, Zheng Zhang, Zhenda Xie and Stephen Lin. Local Relation Networks for Visual Recognition. ICCV 2019

Local Relation Network (LR-Net)

Replace all convolution layers by local relation layers

Han Hu, Zheng Zhang, Zhenda Xie and Stephen Lin. Local Relation Networks for Visual Recognition. ICCV 2019

Classification on ImageNet (26 Layers)

Han Hu, Zheng Zhang, Zhenda Xie and Stephen Lin. Local Relation Networks for Visual Recognition. ICCV 2019

Object-to-Pixel Relation Modeling

object-to-pixel

RolAlign — Self-Attention

- Learn Region Features [ECCV'2018]
- Transformer Detector [Tech Report'2020]

Learnable Object-to-Pixel Relation

Jiayuan Gu, Han Hu, Liwei Wang, Yichen Wei and Jifeng Dai. Learning Region Features for Object Detection. ECCV 2018

Transformer Detectors (DETR)

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-End Object Detection with Transformers. Tech Report 2020

Object-to-Object Relation Modeling

object-to-object

None ----- Self-Attention

- Object Detection
 - Relation Networks [CVPR'2018]
- Video Action Recognition
 - Videos as Space-Time Region Graphs [ECCV'2018]
- Multi-Object Tracking
 - Spatial-Temporal Relation Network [ICCV'2019]
- Video Object Detection
 - RDN [ICCV'2019]
 - MEGA [CVPR'2020]

Object-to-Object Relation Modeling

It is much easier to detect the *glove* if we know there is a *baseball player*.

Object Relation Module

Han Hu*, Jiayuan Gu*, Zheng Zhang*, Jifeng Dai and Yichen Wei. Relation Networks for Object Detection. CVPR 2018

The First Fully End-to-End Object Detector

back propagation steps

Han Hu*, Jiayuan Gu*, Zheng Zhang*, Jifeng Dai and Yichen Wei. Relation Networks for Object Detection. CVPR 2018

On Stronger Base Detectors

backbone	setting	mAP	mAP_{50}	mAP_{75}	#. params	FLOPS	
faster RCNN	2fc+SoftNMS	32.2/32.7	52.9/53.6	34.2/34.7	58.3M	122.2B	
	2fc+RM+SoftNMS	34.7/35.2	55.3/ 56.2	37.2/37.8	64.3M	124.6B	+3.0 mAP
	2fc+RM+e2e	35.2/35.4	55.8 /56.1	38.2/38.5	64.6M	124.9B	
FPN	2fc+SoftNMS	36.8/37.2	57.8/58.2	40.7/41.4	56.4M	145.8B	
	2fc+RM+SoftNMS	38.1/38.3	59.5/59.9	41.8/42.3	62.4M	157.8B	+2.0 mAP
	2fc+RM+e2e	38.8/38.9	60.3/60.5	42.9/43.3	62.8M	158.2B	
DCN	2fc+SoftNMS	37.5/38.1	57.3/58.1	41.0/41.6	60.5M	125.0B	
	2fc+RM+SoftNMS	38.1/38.8	57.8/ 58.7	41.3/42.4	66.5M	127.4B	+1.0 mAP
	2fc+RM+e2e	38.5/39.0	57.8 /58.6	42.0/42.9	66.8M	127.7B	

^{*}Faster R-CNN with ResNet-101 model are used (evaluation on *minivall test-dev* are reported)

ResNeXt-101-64x4d-FPN-DCN

Part I Summary

- Part I: Self-Attention Models for Visual Recognition (Application View)
 - Pixel-to-Pixel, Object-to-Pixel, Object-to-Object
 - A strong competitor; complementary to existing architectures; SOTA in video applications
 - There is still much room to improve!

Overview

- Part I: Applications of Self-Attention Models for Visual Recognition
 - Pixel-to-Pixel
 - Object-to-Pixel
 - Object-to-Object
- Part II: Diagnosis and Improvement of Self-Attention Modeling
 - Are self-attention models learnt well on visual tasks?
 - How can it be more effective?
 - [GCNet, ICCVW'2019] https://arxiv.org/pdf/1904.11492.pdf
 - [Disentangled Non-Local Networks, Arxiv'2020] https://arxiv.org/pdf/2006.06668.pdf

Self-Attention Encodes Pairwise Relationship

Does it learn pairwise relationship well?

Expectation of Learnt Relation

• Different queries affected by **different** key

What does the Self-Attention Learn?

- Different queries affected by the **same** keys
- Pairwise in expectation → Unary in actual

Query Key

Visualizations on Real Tasks

- The activation map for different queries are similar
- The self-attention model degenerates to a unary model

Object Detection

Semantic Segmentation

[GCNet, ICCVW'2019]

https://arxiv.org/pdf/1904.11492.pdf

Revisit Self-Attention Formulation

• The self-attention formulation has a 'hidden' unary term:

$$w(\mathbf{q}_{i}, \mathbf{k}_{j}) \sim exp(\mathbf{q}_{i}^{T} \mathbf{k}_{j}) = exp((\mathbf{q}_{i} - \mathbf{\mu}_{q})^{T} (\mathbf{k}_{j} - \mathbf{\mu}_{k}) + \mathbf{\mu}_{q}^{T} \mathbf{k}_{j})$$
(whitened) pairwise (hidden) unary

* μ_q and μ_k are global average of ${f q}$ and ${f k}$

Behavior of the Pairwise and Unary Terms

method	fomulation	mloU	
Baseline	none	75.8%	
Joint (Self-Attention)	$\sim exp(\mathbf{q}_i^T\mathbf{k}_j)$	78.5%	
Pairwise Alone	$\sim exp((\mathbf{q}_i-\mathbf{\mu}_q)^T(\mathbf{k}_j-\mathbf{\mu}_k)$	77.5%	
Unary Alone	$\sim exp(\mathbf{\mu}_q^T\mathbf{k}_j)$	79.3%	

Quantitative results on semantic segmentation (Cityscapes)

- The unary term alone outperforms the standard joint model
- The pairwise and unary terms are **not well learnt** when combined in the self-attention formulation

• The pairwise term tends to learn relations within the same category region

- The pairwise term tends to learn relations within the same category region
- The unary term tends to focus on **boundary pixels**

Statistical correlation

Comparison with Standard 'Joint' Model

Statistical correlation

Why is 'Joint' Worse than 'Alone'?

• Self-Attention is the **multiplicative** combination of pairwise term $(\boldsymbol{w_p})$ and unary term $(\boldsymbol{w_u})$:

$$w(\mathbf{q}_{i}, \mathbf{k}_{j}) \sim exp((\mathbf{q}_{i} - \mathbf{\mu}_{q})^{T}(\mathbf{k}_{j} - \mathbf{\mu}_{k}) + \mathbf{\mu}_{q}^{T}\mathbf{k}_{j})$$

$$= exp((\mathbf{q}_{i} - \mathbf{\mu}_{q})^{T}(\mathbf{k}_{j} - \mathbf{\mu}_{k})) \times exp(\mathbf{\mu}_{q}^{T}\mathbf{k}_{j})$$
Pairwise \mathbf{w}_{p} Unary \mathbf{w}_{u}

Combination by Multiplication is Bad

• Multiplication couples two terms in gradient computation

$$\frac{\partial L}{\partial w_p} = \frac{\partial L}{\partial w} \frac{\partial w}{\partial w_p} \sim \frac{\partial L}{\partial w} w_u$$

$$\left| \frac{\partial L}{\partial w_u} \right| = \frac{\partial L}{\partial w} \frac{\partial w}{\partial w_u} \sim \frac{\partial L}{\partial w} w_p$$

• Multiplication acts like **intersection**, resulting in empty if two terms encode different visual clues

From Intersection (Mul) to Union (Add)

• **Union** instead of intersection:

Implement by addition

$$w(\mathbf{q}_i, \mathbf{k}_j) \sim exp((\mathbf{q}_i - \boldsymbol{\mu}_q)^T (\mathbf{k}_j - \boldsymbol{\mu}_k)) + exp(\boldsymbol{\mu}_q^T \mathbf{k}_j)$$

Gradients are disentangled by addition

From Intersection (Mul) to Union (Add)

- 0.7 mIoU improvements on Cityscapes
- Significantly clearer visual meaning

method	mloU
Baseline	75.8%
Mul(Self-Attention)	78.5%
Add (Ours)	79.2%

Are There Other Coupling Factors?

- The key is **shared** in the pairwise term and unary term
- The shared key can be further **disentangled**:

$$w(\mathbf{q}_{i}, \mathbf{k}_{j}) \sim exp((\mathbf{q}_{i} - \mathbf{\mu}_{q})^{T}(\mathbf{k}_{j} - \mathbf{\mu}_{k})) + exp(\mathbf{k}_{j})$$

$$exp((\mathbf{q}_{i} - \mathbf{\mu}_{q})^{T}(\mathbf{W}^{p}\mathbf{k}_{j} - \mathbf{\mu}_{k})) + exp(\mathbf{W}^{u}\mathbf{k}_{j})$$

Disentangle the Key Transformations

• The pairwise and unary terms learn clearer visual meaning

Results by Two Disentangle Techniques

- 2.0 mIoU improvements than self-attention
- 4.7 mIoU improvements than baseline

method	mloU
Baseline	75.8%
Mul (Self-Attention)	78.5%
Add(Shared key)	79.2%
Add(Disentangled key)	80.5%

On Three Semantic Segmentation Benchmarks

- Disentangled Non-Local Neural Networks
 - Multiplication to Addition
 - Shared keys to Disentangled keys

method	backbone	mloU(%)
Deeplab v3	ResNet101	81.3
OCNet	ResNet101	81.7
Self-Attention	ResNet101	80.8
Ours	ResNet101	82.0
HRNet	HRNetV2-W48	81.9
Self-Attention	HRNetV2-W48	82.5
Ours	HRNetV2-W48	83.0

method		backbone	mloU(%)
ANN		ResNet101	52.8
EMANet		ResNet101	53,1
Self-Attenti	on	ResNet101	50.3
Ours		ResNet101	54.8
HRNet va	2	HRNetV2-W48	54.0
Self-Attenti	on	HRNetV2-W48	54.2
Ours		HRNetV2-W48	55.3

method	backbone	mloU(%)
ANN	ResNet101	45.24
OCNet	ResNet101	45.45
Self-Attention	ResNet101	44.67
Ours	ResNet101	45.90
HRNet v2	HRNetV2-W48	42.99
Self-Attention	HRNetV2-W48	44.82
Ours	HRNetV2-W48	45.82

Cityscapes

ADE20K

PASCAL-Context

Disentangled Non-Local Network is General

• Object detection & instance segmentation, COCO2017 dataset

method	mAP ^{bbox}	mAP ^{mask}
Baseline	38.8	35.1
Self-Attention	40.1	36.0
Disentangled Self-Attention (ours)	41.4	37.3

• Action recognition, Kinetics dataset

method	Top-1 Acc	Top-5 Acc
Baseline	74.9	91.9
Self-Attention	75.9	92.2
Disentangled Self-Attention (ours)	76.3	92.7

Visualization (Object Detection)

Visualization (Action Recognition)

Summary

- Part I: Self-Attention Models for Visual Recognition (Application View)
 - Pixel-to-Pixel, Object-to-Pixel, Object-to-Object
 - A strong competitor; complementary to existing architectures; SOTA in video applications
 - There is still much room to improve!
- Part II: Diagnosis and Improvement (Modeling View)
 - Are self-attention models learnt well on visual tasks?
 - No [GCNet, ICCVW2019],
 - How can it be more effective?
 - [DNL, Tech Report 2020]

Yue Cao*, Jiarui Xu*, Stephen Lin, Fangyun Wei and Han Hu. *GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond*. ICCVW'2019

Minghao Yin*, Zhuliang Yao*, Yue Cao, Xiu Li, Zheng Zhang, Stephen Lin, and Han Hu. *Disentangled Non-Local Neural Networks*. Tech Report 2020

Thanks All!