Solução Numérica de Sistemas Lineares Análise de Estabilidade

Márcio Antônio de Andrade Bortoloti

Departamento de Ciências Exatas e Tecnológicas - DCET Universidade Estadual do Sudoeste da Bahia

Cálculo Numérico

Introdução

Antes de começarmos, vamos apresentar algumas definições e um resultado que serão utilizados.

Definição

Uma transformação linear $A: \mathcal{V} \to \mathcal{V}$, onde \mathcal{V} é um espaço vetorial com produto interno, é limitada se existir uma constante K > 0 tal que, para todo $x \in \mathcal{V}$,

$$||Ax|| \le K||x||.$$

Definição

Para uma norma de vetor dada, definimos uma norma matricial pondo

$$||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}.$$

Introdução

Teorema

Toda transformação linear em um espaço de dimensão finita munido de um produto interno é limitada.

Prova:

- ▶ Seja $A: \mathcal{V} \to \mathcal{V}$ uma transformação linear;
- ▶ Seja $\{e_1, e_2, \cdots, e_n\}$ uma base ortonormal de \mathcal{V} ;
- ► Escreva $K_0 = \max\{\|Ae_1\|, \|Ae_2\|, \cdots, \|Ae_n\|\};$
- lacktriangle Um vetor arbitrário $x \in \mathcal{V}$ pode ser escrito como

$$x = \sum_{i=1}^{n} x_i e_i.$$

Introdução

Notemos que

$$||Ax|| = ||A(\sum_{i=1}^{n} x_{i}e_{i})|| = ||\sum_{i=1}^{n} x_{i}Ae_{i}||$$

$$\leq \sum_{i=1}^{n} ||x_{i}|||Ae_{i}||$$

$$\leq \sum_{i=1}^{n} ||x||||Ae_{i}||$$

$$\leq K_{0} \sum_{i=1}^{n} ||x|| = nK_{0}||x||$$

Análise de Erro - Estabilidade

▶ Vamos analisar o erro na solução de

$$Ax = b$$

examinando a estabilidade da solução x relativa a pequenas pertubações em b.

- ightharpoonup Seja Ax=b um sistema de ordem n com uma única solução.
- Considere uma solução perturbada do sistema

$$A\tilde{x} = b + r.$$

- Considere o erro dado por
- Assim

$$e = \tilde{x} - x$$
.

$$\begin{cases} Ax = b \\ A\tilde{x} = b + r \end{cases}$$

$$\implies A\tilde{x} - Ax = r \implies A(\tilde{x} - x) = r \implies Ae = r.$$

Análise de Erro - Estabilidade

Note que

$$Ae = r \iff e = A^{-1}r.$$

 $Ae = r \iff e = A^{-1}r$.

Para examinar a estabilidade de Ax = b, precisamos estudar o quociente

$$\frac{\|e\|/\|x\|}{\|r\|/\|b\|}$$

► Temos então, que

$$||r|| \le ||A|| ||e||$$
 e $||e|| \le ||A^{-1}|| ||r||$.

Dividindo a primeira inequação por ||A|| ||x|| e a segunda por ||x||, obtemos

$$\frac{\|r\|}{\|A\|\|x\|} \le \frac{\|e\|}{\|x\|} \le \frac{\|A^{-1}\|\|r\|}{\|x\|}$$

- Sabemos que
- Logo
- Segue que

$$\|b\| \leq \|A\| \|x\| \quad \text{ e } \quad \|x\| \leq \|A^{-1}\| \|b\|$$

e
$$||x||$$

$$\frac{1}{\|x\|} \le \frac{\|A\|}{\|b\|} \quad \text{e} \quad \frac{1}{\|A^{-1}\| \|b\|} \le \frac{1}{\|x\|}$$

$$\frac{\|r\|}{\|A\|\|A^{-1}\|\|b\|} \le \frac{\|r\|}{\|A\|\|x\|} \le \frac{\|e\|}{\|x\|} \le \frac{\|A^{-1}\|\|r\|}{\|x\|} \le \frac{\|A\|\|A^{-1}\|\|r\|}{\|b\|}$$

Ou de outra forma

$$\frac{1}{\|A\|\|A^{-1}\|} \cdot \frac{\|r\|}{\|b\|} \le \frac{\|e\|}{\|x\|} \le \frac{\|r\|}{\|b\|} \cdot \|A\| \|A^{-1}\|$$

Estas desigualdades ajudam a definir o número de condicionamento de A $\operatorname{cond}(A) = ||A|| ||A^{-1}||.$

ightharpoonup O número de condicionamento de A vai variar de acordo com a norma utilizada, mas é sempre limitada inferiormente por 1:

$$1 \le ||I|| = ||AA^{-1}|| \le ||A|| ||A^{-1}|| = \operatorname{cond}(A).$$

Assim, observando

$$\frac{1}{\text{cond}(A)} \cdot \frac{\|r\|}{\|b\|} \le \frac{\|e\|}{\|x\|} \le \frac{\|r\|}{\|b\|} \cdot \text{cond}(A),$$

Notamos que

- Se $\operatorname{cond}(A)$ estiver próximo de 1 então pequenas pertubações em b vão gerar pequenas pertubações em x (Solução).
- Mas se $\operatorname{cond}(A)$ for grande então pequenas pertubações em b poderão gerar grandes pertubações em x.

Observação Dependência de $\operatorname{cond}(A)$ da Norma Utilizada

Definição

Seja A uma matriz quadrada arbitrária. O espectro de A é o conjunto de todos os autovalores de A e será denotado por $\sigma(A)$. O raio espectral é o maior módulo tomado desses autovalores e será denotado por

$$r_{\sigma}(A) = \max_{\lambda \in \sigma(A)} |\lambda|.$$

Teorema

Seja A uma matriz quadrada arbitrária. Então para qualquer norma matricial tem-se

$$r_{\sigma}(A) \leq ||A||.$$

Prova:

- ▶ Seja $\|\cdot\|$ uma norma matricial compatível com a norma vetorial $\|\cdot\|_v$.
- ▶ Seja λ um autovalor em $\sigma(A)$ tal que $|\lambda| = r_{\sigma}(A)$ e seja x o autovetor associado com $\|x\|_v = 1$.
- ► Então

$$r_{\sigma}(A) = |\lambda| = |\lambda| ||x||_{v} = ||\lambda x||_{v} = ||Ax||_{v} \le ||A|| ||x||_{v} = ||A||.$$

e o teorema está provado.

Desse teorema tem-se

$$\operatorname{cond}(A) \ge r_{\sigma}(A)r_{\sigma}(A^{-1}).$$

De onde segue que

$$\operatorname{cond}(A) \ge \max_{\lambda \in \sigma(A)} |\lambda| \max_{\lambda \in \sigma(A^{-1})} |\lambda|$$

Definição (Norma Espaços de Matrizes)

Seja $\mathcal M$ um espaço vetorial e seja $\|\cdot\|$ uma função $\mathcal M \to \mathbb R$. Então $\|\cdot\|$ é uma norma se

- $\|X\| \ge 0$ para todo $X \in \mathcal{M}$ e $\|X\| = 0$ se e somente se X = 0.
- $\|\alpha X\| = |\alpha| \|X\|$ para todo $X \in \mathcal{M}$ e todo escalar α .
- ▶ $||X + Y|| \le ||X|| + ||Y||$ para todo $X, Y \in \mathcal{M}$.
- $||XY|| \le ||X|| ||Y||$
- Se $x \in \mathcal{V}$ é um vetor em um espaço vetorial com a norma dada por $\|x\|_v$ então está estabelecida a compatibilidade entre as normas $\|\cdot\|$ e $\|\cdot\|_v$ da forma

$$||Ax||_v \le ||A|| ||x||_v.$$

Como uma ilustração, pode-se comparar algumas normas para vetores e para matrizes.

Normas Vetores	Normas Matrizes
$ x _1 = \sum_{i=1}^n x_i $	$ A _1 = \max_{1 \le j \le n} \sum_{i=1}^n a_{ij} $
$ x _2 = \left[\sum_{j=1}^n x_i ^2\right]^{1/2}$	$ A _2 = \sqrt{\operatorname{tr}(A^T A)}$
$ x _{\infty} = \max_{1 \le i \le n} x_i $	$ A _{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} a_{ij} $

Análise de Erro - Estabilidade - Um Exemplo

Exemplo:

Considere o sistema linear

$$\begin{cases} 7x_1 + 10x_2 = b_1 \\ 5x_1 + 7x_2 = b_2 \end{cases}$$

As matrizes A e A^{-1} do sistema são

$$A = \begin{bmatrix} 7 & 10 \\ 5 & 7 \end{bmatrix} \quad A^{-1} = \begin{bmatrix} -7 & 10 \\ 5 & -7 \end{bmatrix}$$

Temos, para esse exemplo,

$$\operatorname{cond}(A)_2 = 223$$

O número de condicionamento de A sugere que o sistema anterior pode ser sensível à alterações em b e em A.

Um Exemplo

Para ilustrar, vamos observar o sistema abaixo

$$\begin{cases} 7x_1 + 10x_2 = 1\\ 5x_1 + 7x_2 = 0.7 \end{cases}$$

Esse sistema possui a solução $(x_1 = 0, x_2 = 0.1)$.

Agora, observemos o seguinte sistema pertubado

$$\begin{cases} 7\tilde{x}_1 + 10\tilde{x}_2 = 1.01 \\ 5\tilde{x}_1 + 7\tilde{x}_2 = 0.69 \end{cases}$$

Este possui a solução $\tilde{x}_1 = -0.17, \tilde{x}_2 = 0.22.$

Um Exemplo

- Sistema lineares cuja solução é instável com relação a pequenas alterações em b é chamado mal-condicionado.
- O sistema anterior é um exemplo de sistema mal-condicionado.
- ▶ Os números cond(A) e $cond(A)_*$ são bons indicadores de mal-condicionamento.

Mais um Exemplo

Um exemplo de matriz mal-condicionada é a chamada Matriz de Hilbert de ordem n:

$$H_n = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \cdots & \frac{1}{n+1} \\ \vdots & & & & \\ \frac{1}{n} & \frac{1}{n+1} & \cdots & \frac{1}{2n-1} \end{bmatrix}$$

n	$\operatorname{cond}(H_n)_*$	n	$\operatorname{cond}(H_n)_*$
3	5.24E + 02	7	4.75E + 08
4	1.55E + 04	8	1.53E + 10
5	4.77E + 05	9	4.93E + 11
6	1.50E + 07	10	1.60E + 13

Mais um Exemplo

Como um exemplo, considere

$$H_3 = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{bmatrix} \quad H_3^{-1} = \begin{bmatrix} 9 & -36 & 30 \\ -36 & 192 & -180 \\ 30 & -180 & 180 \end{bmatrix}$$

Após o emprego de uma aritmética de ponto flutuante em H_3 e encontrando H_3^{-1} por meio de um programa de inversão de matrizes, obtemos

$$\overline{H}_3 = \begin{bmatrix} 1.0000 & 0.5000 & 0.3333 \\ 0.5000 & 0.3333 & 0.2500 \\ 0.3333 & 0.2500 & 0.2000 \end{bmatrix} \overline{H}_3^{-1} = \begin{bmatrix} 9.062 & -36.32 & 30.30 \\ -36.32 & 193.7 & -181.6 \\ 30.30 & -181.6 & 181.5 \end{bmatrix}$$