Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement ou de déterminer des actions mécaniques en utilisant le PFD

Chapitre 1 – Introduction à la dynamique du solide indéformable

l'Ingénieur

Activation

Activation – Système de dépose de composants électroniques

Émilien Durif - E3A PSI 2011

Savoirs et compétences :

Le système étudié permet de déposer automatiquement des composants électroniques sur un circuit. On s'intéresse ici à la modélisation d'un seul axe (selon la direction notée $\overrightarrow{y_0}$). actionné par un moteur électrique et utilisant un mécanisme de transformation de mouvement.

Hypothèses:

- le référentiel associé au repère $R_0 = (O_0; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ est supposé galiléen;
- les solides seront supposés indéformables;
- on notera J_1 le moment d'inertie du solide 1 selon l'axe $(O_0, \overrightarrow{y_0})$: $J_1 = I_{(O_0, \overrightarrow{y_0})}(S_1)$;
- on note M₃ et G₃ respectivement la masse et le centre d'inertie du solide S₃;
- la position de G_3 est définie par $\overrightarrow{O_0G_3} = x \overrightarrow{x_0} + y \overrightarrow{y_0} + z \overrightarrow{z_0}$
- les liaisons sont supposées parfaites (sans jeu ni frottement).

Le système est modélisé par le schéma cinématique ci-dessous :

On note :

- S₀: poutre transversale considérée comme fixe par rapport au bâti;
- S_1 : vis à billes (hélice à droite) de pas $p = 20 \,\mathrm{mm}$;
- S₂ : écrou de la vis à billes;
- S_3 : chariot supportant la tête de dépose (masse M_3). On donne les caractéristiques du moteur entraînant l'axe et la vis S_1 :
 - moment d'inertie du moteur suivant l'axe $\overrightarrow{y_0}$: $I_m = 1.6 \, 10^{-4} \, \text{kg} \, \text{m}^2$;
 - moment d'inertie de la vis à billes suivant l'axe $\overrightarrow{y_0}$: $I_v = 2, 110^{-4} \text{kg m}^2$.

De plus $\overrightarrow{\Omega}(S_1/R_0) = \dot{\theta}(t) \cdot \overrightarrow{v_0}$

Objectif L'objectif de cette étude est de relier les grandeurs liées à l'actionneur du système (moteur) :

- couple transmis à $S_1 : \overrightarrow{C}_{\text{Moteur} \to S_1}$;
- vitesse de rotation de $S_1 : \overrightarrow{\Omega}(S_1/R_0) \cdot \overrightarrow{y}_0 = \dot{\theta}$.

à celles liée à l'effecteur (tête de dépose S_3) :

- masse: M_3 ;
- cinématique de S_3 : $\Gamma(G_3 \in S_3/R_0) \cdot \overrightarrow{y}_0 = \ddot{y}$.

Question 1 Réaliser le graphe de structure associé au mécanisme.

Question 2 Proposer une stratégie pour répondre à l'objectif.

Question 3 Déterminer la relation entre l'effort de poussée dans la liaison linéaire annulaire et l'accélération du chariot.

Question 4 Déterminer la relation entre le couple moteur et le couple transmis dans la liaison hélicoïdale.

Question 5 Donner la relation entre le couple transmis par la liaison hélicoïdale et l'effort axial.

Question 6 Déterminer la relation entre l'effort axial dans la liaison hélicoïdale et l'effort de poussée dans la liaison sphère – cylindre.

Question 7 Quel doit être le couple moteur pour déplacer le chariot S_3 ?

Le cahier des charges impose les performances dynamiques suivantes :

- l'accélération minimale de l'axe transversal est de 21 ms⁻²;
- la vitesse minimale pour respecter la cadence souhaitée est de $7\,\mathrm{m\,s^{-1}}$;
- la course de l'axe est de 2 m.

La loi de commande est une loi en trapèze de vitesse.

Question 8 Donner les caractéristiques dynamiques que doit respecter le moteur.

Question 9 Quel est le temps nécessaire pour parcourir la course de la machine? Commenter.

Question 10 *Quel est le couple que doit fournir le moteur pour déplacer le chariot dans le « pire des cas » ?*