Suites arithmético-géométriques.

Exercice 1:Soit la suite (u_n) définie par $u_0=2$ et $u_{n+1}=2$ u_n-5 pour tout $n \in \mathbb{N}$.

1. Calculer u_1 , u_2 , u_3 .

La suite est-elle arithmétique ? Géométrique ? Justifier.

- 2. Soit la suite (v_n) définie pour tout $n \ge 0$ par $v_n = 5 u_n$.
 - a. Calculer v_0 , v_1 , v_2 et v_3 .
 - b. Conjecturer la nature de la suite, puis démontrer votre conjecture.
 - c. Exprimer V_n en fonction de n.
 - d. Exprimer U_n en fonction de n.
 - e. Déterminer u_{20} .

Exercice 2 :Le 1er janvier 2012, Jean ouvre un compte en banque et dépose 150€. Il décide de verser 150€ tous les 1er de l'an.

Son compte est rémunéré à 2% par an et on calcule les intérêts tous les ans.

On note u_0 le montant de son compte le 1er janvier 2012 et u_n le montant donc il dispose l'année 2012+n .

- 1. Calculer u_1 , u_2 et u_3 au centième prés.
- 2. Montrer que, pour tout entier naturel n, $u_{n+1}=1,02u_n+150$.
- 3. Soit la suite (v_n) définie pour tout entier naturel n par $v_n = u_n + 3$. Démontrer que la suite (v_n) est une suite géométrique de raison 1,02 dont vous déterminerez le premier terme.
- 4. En déduire l'expression de v_n en fonction de n, puis celle de u_n en fonction de n.
- 5. De quelle somme disposera Jean le 1er janvier 2022 ? Quel est le montant total des intérêts perçus par Jean depuis l'ouverture de son compte ?

Exercice 3: Utiliser votre calculatrice!

Des relevés statistiques effectués sur une riviére montrent que sa population de truites diminue de 20% chaque année. Le nombre de truites en 2010 est estimé à 200 truites par hectare.

On note T_n le nombre de truites par hectare l'année 2010+n.

- 1. a. Exprimer T_{n+1} en fonction de T_n pour $n \ge 0$.
 - b. Exprimer T_n en fonction de n.
 - c. Au bout de combien d'années les truites auront-elles totalement disparu de la rivière ?
- 2. On décide d'introduire par alevinage 200 truites chaque année et on suppose qu'il n'y a pas de pertes.
 - a. Montrer que pour tout $n \ge 0$, $T_{n+1} = 0.8 T_n + 200$.
 - b. En utilisant votre calculatrice, observer l'évolution du nombre de truites à l'aide de votre calculatrice. Commenter.
 - c. Soit $u_n = T_n 1000$ pour tout $n \ge 0$

Déterminer la nature de la suite (u_n) .

- d. Exprimer u_n en fonction de n.
- e. En déduire T_n en fonction de n, puis justifier que la disparition des truites est enrayée.

Suites arithmético-géométriques.

Exercice 1:Soit la suite (u_n) définie par $u_0=2$ et $u_{n+1}=2u_n-5$ pour tout $n \in \mathbb{N}$.

1. Calculer u_1 , u_2 , u_3 .

La suite est-elle arithmétique ? Géométrique ? Justifier.

- 2. Soit la suite (v_n) définie pour tout $n \ge 0$ par $v_n = 5 u_n$.
 - a. Calculer v_0 , v_1 , v_2 et v_3 .
 - b. Conjecturer la nature de la suite, puis démontrer votre conjecture.
 - c. Exprimer V_n en fonction de n.
 - d. Exprimer u_n en fonction de n.
 - e. Déterminer u_{20} .

Exercice 2 :Le 1er janvier 2012, Jean ouvre un compte en banque et dépose 150€. Il décide de verser 150€ tous les 1er de l'an.

Son compte est rémunéré à 2% par an et on calcule les intérêts tous lesans.

On note u_0 le montant de son compte le 1er janvier 2012 et u_n le montant donc il dispose l'année 2012+n .

- 1. Calculer u_1 , u_2 et u_3 au centième prés.
- 2. Montrer que, pour tout entier naturel n, $u_{n+1} = 1,02 u_n + 150$.
- 3. Soit la suite (v_n) définie pour tout entier naturel n par $v_n = u_n + 3$. Démontrer que la suite (v_n) est une suite géométrique de raison 1,02 dont vous déterminerez le premier terme.
- 4. En déduire l'expression de v_n en fonction de n, puis celle de u_n en fonction de n.
- 5. De quelle somme disposera Jean le 1er janvier 2022 ? Quel est le montant total des intérêts perçus par Jean depuis l'ouverture de son compte ?

Exercice 3: Utiliser votre calculatrice!

Des relevés statistiques effectués sur une riviére montrent que sa population de truites diminue de 20% chaque année. Le nombre de truites en 2010 est estimé à 200 truites par hectare.

On note T_n le nombre de truites par hectare l'année 2010+n.

- 1. a. Exprimer T_{n+1} en fonction de T_n pour $n \ge 0$.
 - b. Exprimer T_n en fonction de n.
 - c. Au bout de combien d'années les truites auront-elles totalement disparu de la rivière ?
- 2. On décide d'introduire par alevinage 200 truites chaque année et on suppose qu'il n'y a pas de pertes.
 - a. Montrer que pour tout $n \ge 0$, $T_{n+1} = 0.8 T_n + 200$.
 - b. En utilisant votre calculatrice, observer l'évolution du nombre de truites à l'aide de votre calculatrice. Commenter.
 - c. Soit $u_n = T_n 1000$ pour tout $n \ge 0$.

Déterminer la nature de la suite (u_n)

- d. Exprimer $\, \mathcal{U}_n \,$ en fonction de $\, \mathcal{N} \,$.
- e. En déduire T_n en fonction de n, puis justifier que la disparition des truites est enrayée.