Sprawozdanie z projektu:

Wykrywanie naczyń dna siatkówki oka

1. Zastosowane technologie:

Kod projektu został w całości stworzony w Pythonie. Dodatkowo wykorzystywane były biblioteki: opency, numpy, matplotlib, skimage, os i errno, a do korzystania z sieci neuronowej: tensorflow oraz keras

2. Opis zastosowanych metod:

2.1. techniki przetwarzania obrazu

Idea wykorzystana w algorytmie:

Przebieg działania algorytmu:

- 1. Wyodrębnienie kanału zielonego (zapewnia on najlepsze rozróżnienie naczyń od tła)
- 2. Normalizacja histogramu (wyostrzenie różnic w obrazie, metoda CLAHE)
- 3. Erozja i dylatacja (usunięcie szumu tła, zwiększenie czytelności obrazu)
- 4. Usunięcie tła obrazu

- 5. Ponowna normalizacja histogramu
- 6. Usunięcie pozostałych szumów
- 7. Progowanie (thresholding), stworzenie maski binarnej

2.2. Sieć neuronowa

Zastosowana została głęboka sieć neuronowa UNet, ucząca się na danych w postaci całych obrazów naczyń dna siatkówki oka oraz ręcznie sporządzonych masek binarnych ukazujących przebieg naczyń.

W projekcie został wykorzystany zbiór danych CHASE, składający się z obrazu oraz jego maski.

Podział zbioru:

- Zbiór trenujący zawiera 21 obrazy.
- Zbiór walidujący składa się z 2 obrazów.
- Zbiór testowy to 5 obrazów.

Obraz wejściowy jest skalowany do wymiarów: 1024x1024

Budowa sieci:

Parametry sieci neuronowej:

- Wielkość próbki (batch size): 2
- Liczba epok (epochs): 100 (przy 61 epoce sieć zakończyła dalsze uczenie z powodu braku istotnej poprawy na zbiorze walidującym w ciągu ostatnich 5 epok)
- Wyniki nauki sieci neuronowej:

Zbiór trenujący

loss: 0.0764
accuracy: 0.9704

Zbiór walidacyjny:

val_loss: 0.1000
val_accuracy: 0.9635

3. Wizualizacja działania

3.1. techniki przetwarzania obrazu

Notacja układu obrazów: obraz wejściowy -> obraz wyjściowy -> idealna maska

1)

True	

True Negative

Predicted Positive

36497

22339

Predicted Negative

22874

877330

accuracy: 0.9529

sensitivity: 0.6147

specificity: 0.9752

geometric mean: 0.7743

2)

True Positive

True Negative

Predicted Positive

41236

32971

Predicted Negative

9883

874950

accuracy: 0.9553

sensitivity: 0.8067

specificity: 0.9637

geometric mean: 0.8817

3)

True Positive

True Negative

Predicted Positive

44462

20836

Predicted Negative

26029

867713

accuracy: 0.9511

sensitivity: 0.6307

specificity: 0.9766

geometric mean: 0.7848

4)

True Positive

True Negative

Predicted Positive

32006

14078

Predicted Negative

26978

885978

accuracy: 0.9572

sensitivity: 0.5426

specificity: 0.9844

geometric mean: 0.7308

5)

	True Positive	True Negative
Predicted Positive	26050	9305
Predicted Negative	30059	893626

accuracy: 0.9590

sensitivity: 0.4643

specificity: 0.9897

geometric mean: 0.6779

3.2. sieć neuronowa

Notacja układu obrazów: obraz wejściowy -> obraz wyjściowy -> idealna maska

1)

True Positive

True Negative

Predicted Positive

70336

43771

Predicted Negative

12054

922415

accuracy: 0.9468

sensitivity: 0.8537

specificity: 0.9547

geometric mean: 0.9028

True Positive

True Negative

Predicted Positive

60318

24934

Predicted Negative

9781

953543

accuracy: 0.9669

sensitivity: 0.8605

specificity: 0.9745

geometric mean: 0.9157

3)

True Positive

True Negative

Predicted Positive

85369

37535

Predicted Negative

9972

915700

accuracy: 0.9547

sensitivity: 0.8954

specificity: 0.9606

geometric mean: 0.9274

4)

True Positive

True Negative

Predicted Positive

64970

24775

Predicted Negative

14003

944828

accuracy: 0.9630

sensitivity: 0.8227

specificity: 0.9744

geometric mean: 0.8954

5)

	True Positive	True Negative
Predicted Positive	63450	32273
Predicted Negative	10244	942609

accuracy: 0.9595

sensitivity: 0.8610

specificity: 0.9669

geometric mean: 0.9124

4. Analiza wyników

Porównanie podejścia przetwarzania obrazu oraz podejścia sieci neuronowej:

image:		image processing:	neural network:
1	accuracy	0.9529	0.9468
	sensitivity	0.6147	0.8537
	specificity	0.9752	0.9547
	geometric mean	0.7743	0.9028
2	accuracy	0.9553	0.9669
	sensitivity	0.8067	0.8605
	specificity	0.9637	0.9745
	geometric mean	0.8817	0.9157
3	accuracy	0.9511	0.9547
	sensitivity	0.6307	0.8906
	specificity	0.9766	0.9606
	geometric mean	0.7848	0.9274
4	accuracy	0.9572	0.9630
	sensitivity	0.5426	0.8227
	specificity	0.9844	0.9744
	geometric mean	0.7308	0.8954
5	accuracy	0.9590	0.9595
	sensitivity	0.4643	0.8610
	specificity	0.9897	0.9669
	geometric mean	0.6779	0.9124

Notacja układu: obraz wejściowy -> obraz wyjściowy z przetwarzania obrazu -> obraz wyjściowy z sieci neuronowej -> idealna maska

Na podstawie danych statystycznych i wizualnych możemy jednoznacznie stwierdzić, że sieć neuronowa poradziła sobie z problemem znacznie lepiej. Jest to szczególnie widocznie w przypadku czułości oraz miar bardziej odpornych na niezbalansowane klasy decyzyjne, tj. średnia geometryczna czułości i swoistości.