Shallow Neural Networks

10/10 points (100%)

Quiz, 10 questions

	Congra	atulations! You passed!	Next Item		
	~	1/1 points			
	1. Which	of the following are true? (Check all that apply.)			
		$a_4^{[2]}$ is the activation output of the $2^{\it nd}$ layer for the $4^{\it th}$ to example	raining		
Un-selected is correct					
		$a^{[2](12)}$ denotes activation vector of the $12^{\it th}$ layer on the training example.	2 2 nd		
Un-selected is correct					
		$a^{[2](12)}$ denotes the activation vector of the $2^{\it nd}$ layer for training example.	the 12^{th}		
Correct					
		$a^{[2]}$ denotes the activation vector of the $2^{\it nd}$ layer.			
Correct					
		$\it X$ is a matrix in which each column is one training exam	ple.		
	Correct				

 $a_4^{[2]}$ is the activation output by the $4^{\it th}$ neuron of the $2^{\it nd}$ layer

Correct

Shallow Neural Networks in which each row is one training example.

10/10 points (100%)

Quiz, 10 questions

Un-selected is correct

1/1 points

2.

The tanh activation usually works better than sigmoid activation function for hidden units because the mean of its output is closer to zero, and so it centers the data better for the next layer. True/False?

True

Correct

Yes. As seen in lecture the output of the tanh is between -1 and 1, it thus centers the data which makes the learning simpler for the next layer.

1/1 points

3.

Which of these is a correct vectorized implementation of forward propagation for layer l, where $1 \le l \le L$?

•
$$Z^{[l]} = W^{[l]}A^{[l]} + b^{[l]}$$

•
$$A^{[l+1]} = g^{[l]}(Z^{[l]})$$

•
$$Z^{[l]} = W^{[l]}A^{[l-1]} + b^{[l]}$$

•
$$A^{[l]} = g^{[l]}(Z^{[l]})$$

Correct

•
$$Z^{[l]} = W^{[l-1]}A^{[l]} + b^{[l-1]}$$

•
$$A^{[l]} = g^{[l]}(Z^{[l]})$$

•
$$Z^{[l]} = W^{[l]}A^{[l]} + b^{[l]}$$

•
$$A^{[l+1]} = g^{[l+1]}(Z^{[l]})$$

Shallow Neural Networks

10/10 points (100%)

Quiz, 10 questions

1/1 points

4.

You are building a binary classifier for recognizing cucumbers (y=1) vs. watermelons (y=0). Which one of these activation functions would you recommend using for the output layer?

Correct

Yes. Sigmoid outputs a value between 0 and 1 which makes it a very good choice for binary classification. You can classify as 0 if the output is less than 0.5 and classify as 1 if the output is more than 0.5. It can be done with tanh as well but it is less convenient as the output is between -1 and 1.

1/1 points

5.

Consider the following code:

```
1  A = np.random.randn(4,3)
2  B = np.sum(A, axis = 1, keepdims = True)
```

What will be B.shape? (If you're not sure, feel free to run this in python to find out).

- (1, 3)
- (4,)
- (, 3)
- (4, 1)

Correct

 $Shallow \ \ Neural Neural Networks (keep dims = True) \ to \ make \ sure \ that \ A. shape \ is \ (4,1) \ and \ not \ (4,1) \ it \ makes \ our \ code \ more \ rigorous.$

10/10 points (100%)

Quiz, 10 questions

1/1 points

7.

Logistic regression's weights w should be initialized randomly rather than to all zeros, because if you initialize to all zeros, then logistic regression will fail to learn a useful decision boundary because it will fail to "break symmetry", True/False?

parameters will thus keep evolving in their own way.

	True
0	False

Correct

Shallow NeuralsNetworksession doesn't have a hidden layer. If you initialize

10/10 points (100%)

Quiz, 10 questions

the weights to zeros, the first example x fed in the logistic regression will output zero but the derivatives of the Logistic Regression depend on the input x (because there's no hidden layer) which is not zero. So at the second iteration, the weights values follow x's distribution and are different from each other if x is not a constant vector.

1/1 points

8.

You have built a network using the tanh activation for all the hidden units. You initialize the weights to relative large values, using np.random.randn(.,..)*1000. What will happen?

- This will cause the inputs of the tanh to also be very large, thus causing gradients to also become large. You therefore have to set α to be very small to prevent divergence; this will slow down learning.
- It doesn't matter. So long as you initialize the weights randomly gradient descent is not affected by whether the weights are large or small.
- This will cause the inputs of the tanh to also be very large, thus causing gradients to be close to zero. The optimization algorithm will thus become slow.

Correct

Yes. tanh becomes flat for large values, this leads its gradient to be close to zero. This slows down the optimization algorithm.

This will cause the inputs of the tanh to also be very large, causing the units to be "highly activated" and thus speed up learning compared to if the weights had to start from small values.

1/1 points

9.

Consider the following 1 hidden layer neural network:

Shallow Neural Networks

10/10 points (100%)

Quiz, 10 questions

Which of the following statements are True? (Check all that apply).

 $W^{[1]}$ will have shape (2, 4)

Un-selected is correct

 $b^{[1]}$ will have shape (4, 1)

Correct

 $W^{[1]}$ will have shape (4, 2)

Correct

 $b^{[1]}$ will have shape (2, 1)

Un-selected is correct

 $W^{[2]}$ will have shape (1, 4)

Correct

 $b^{[2]}$ will have shape (4, 1)

Un-selected is correct

 $W^{[2]}$ will have shape (4, 1)

Un-selected is correct

Shallow Neural Networks shape (1, 1)

10/10 points (100%)

Quiz, 10 questions

Correct

1/1 points

10.

In the same network as the previous question, what are the dimensions of $Z^{[1]}$ and $A^{[1]}$?

- O
- $Z^{\left[1
 ight]}$ and $A^{\left[1
 ight]}$ are (4,m)

Correct

- $Z^{[1]}$ and $A^{[1]}$ are (4,1)
- $igcup Z^{[1]}$ and $A^{[1]}$ are (1,4)

