

Computer Graphics (Graphische Datenverarbeitung)

- Light Transport -

WS 2021/2022

Corona

- Regular random lookup of the 3G certificates
- Contact tracing: We need to know who is in the class room
 - New ILIAS group for every lecture slot
 - Register via ILIAS or this QR code (only if you are present in this room)

Overview

3

- Previous lecture
 - Simple shading
 - Light-matter interaction
 - Reflectance function
- Today
 - Physics behind ray tracing
 - Physical light quantities
 - Perception of light
 - Light sources
 - Light transport simulation
- Next Lecture
 - Light Transport II

Describing Light

What is light and how can it be measured?

What is Light?

- Ray
 - Linear propagation
 - Geometrical optics
- Vector
 - Polarization
 - Jones Calculus: matrix representation
- Wave
 - Diffraction, Interference
 - Maxwell equations: propagation of light
- Particle
 - Light comes in discrete energy quanta: photons
 - Quantum theory: interaction of light with matter
- Field
 - Electromagnetic force: exchange of virtual photons
 - Quantum Electrodynamics (QED): interaction between particles

What is Light?

Ray

- Linear propagation
- Geometric optics
- Vector
 - Polarization
 - Jones Calculus: matrix representation
- Wave
 - Diffraction, Interference
 - Maxwell equations: propagation of light
- Particle
 - Light comes in discrete energy quanta: photons
 - Quantum theory: interaction of light with matter
- Field
 - Electromagnetic force: exchange of virtual photons
 - Quantum Electrodynamics (QED): interaction between particles

Light in Computer Graphics

- Based on human visual perception
 - Macroscopic geometry
 - Tristimulus color model
 - Psycho-physics: tone mapping, compression, ...
- Ray optics
 - Light: scalar, real-valued quantity
 - Linear propagation
 - Macroscopic objects
 - Incoherent light
 - Superposition principle: light contributions add up linearly
 - No attenuation in free space
- Limitations
 - Microscopic structures (≈λ)
 - Diffraction, Interference
 - Dispersion
 - Polarization

Radiometry

Physical definition of quantities related to light

Angle and Solid Angle

 θ the angle subtended by a curve in the plane, is the length of the corresponding arc on the unit circle.

 $\Omega,d\omega$ the solid angle subtended by an object, is the surface area of its projection onto the unit sphere,

Units for measuring solid angle: steradians [sr]

Solid Angle – Solar Eclipse

Solid Angle in Spherical Coordinates

Infinitesimally small solid angle

$$du = r d\theta$$

$$dv = r \sin \theta d\phi$$

$$dA = du dv = r^{2} \sin \theta d\theta d\phi$$

$$\Rightarrow d\omega, d\Omega = \frac{dA}{r^{2}} = \sin \theta d\theta d\phi$$

Finite solid angle

$$\Omega = \int_{\varphi_0}^{\varphi_1} \int_{\theta_0(\varphi)}^{\theta_1(\varphi)} \sin\theta \, d\theta \, d\varphi = \int_{\Omega} d\omega$$

Projected Solid Geometry

The solid angle subtended by a small surface patch S with area ΔA is obtained (i) by projecting it orthogonal to the vector r to the origin

$$\Delta A \cos \theta$$

(ii) dividing by the square of the distance to the origin:

$$\Delta\Omega \approx \frac{\Delta A \cos \theta}{r^2}$$

Projected Solid Geometry

The solid angle subtended by a small surface patch S with area ΔA is obtained (i) by projecting it orthogonal to the vector r to the origin

 $\Delta A \cos \theta$

(ii) dividing by the square of the distance to the origin:

$$\Delta\Omega \approx \frac{\Delta A \cos \theta}{r^2}$$

Why cos?

Radiometry

• Definition:

- Radiometry is the science of measuring radiant energy transfers. Radiometric quantities have physical meaning and can be directly measured using proper equipment such as spectral photometers.

Radiometric Quantities

- energy	[watt second]	n · hλ (Photon Energy)
 radiant power (total flux) 	[watt]	Ф
- radiance	[watt/(m ² sr)]	L
- irradiance	[watt/m ²]	E
- radiosity	[watt/m ²]	В
- intensity	[watt/sr]	I

Radiometric Quantities: Radiance

- Radiance is used to describe radiant energy transfer.
- Radiance L is defined as
 - the power (flux) traveling at some point \underline{x}
 - in a specified direction $\underline{\omega} = (\theta, \varphi)$,
 - per unit area perpendicular to the direction of travel,
 - per unit solid angle.
- Thus, the differential power $d^2\Phi$ radiated through the differential solid angle $d\omega$, from the projected differential area $dA\cos\theta$ is:

$$d^2\Phi = L(\underline{x},\underline{\omega}) dA \cos\theta d\omega$$

$$L(\underline{x},\underline{\omega}) = \frac{d^2\Phi}{dA\cos\theta \ d\omega} \quad \left[\frac{W}{m^2sr}\right]$$

Radiance in Space

Flux leaving surface 1 must be equal to flux arriving on surface 2

$$d^2\Phi = L(\underline{x},\underline{\omega}) dA \cos\theta d\omega$$

Radiance in Space

Flux leaving surface 1 must be equal to flux arriving on surface 2

$$L_1 \cdot d\Omega_1 \cdot d_1 \neq L_2 \cdot d\Omega_2 \cdot d_2$$

 $d^2\Phi = L(\underline{x},\underline{\omega}) dA \cos\theta d\omega$

From geometry follows

$$d\Omega_1 = \frac{dA_2}{l^2} \qquad d\Omega_2 = \frac{dA}{l^2}$$

Ray throughput

$$T = d\Omega_1 \cdot d_1 = A\Omega_2 \cdot d_2 = A \frac{d_1 \cdot dA_2}{I^2}$$

$$L_{1} = L_{2}$$

The **radiance** in the direction of a light ray **remains constant** as it propagates along the ray

• Looking at a wall the perceived brightness does not change when we vary the distance.

- Looking at a wall the perceived brightness does not change when we vary the distance
- The wall will not emit / reflect more or less light
- But the area over which we integrate changes

photons / second = flux = energy / time = power angular extend of rod = resolution (\approx 1 arc minute²) projected rod size = area angular extend of pupil aperture ($r \le 4$ mm) = solid angle flux proportional to area and solid angle radiance = flux per unit area per unit solid angle

rod sensitive to flux

 $d\Omega$

$$d A \approx l^2 \cdot d\Omega$$

$$d\Omega' \approx \pi \cdot r^2 / l^2$$

$$\Phi \propto d\Omega' \cdot dA$$

$$L = \frac{\Phi}{d\Omega! \cdot dA}$$

The eye detects radiance

photons / second = flux = energy / time = power angular extend of rod = resolution (\approx 1 arc minute²) projected rod size = area angular extend of pupil aperture ($r \le 4$ mm) = solid angle flux proportional to area and solid angle radiance = flux per unit area per unit solid angle

rod sensitive to flux

 $d\Omega$

$$d A \approx l^2 \cdot d\Omega$$

$$d\Omega' \approx \pi \cdot r^2 / l^2$$

$$\Phi \propto d\Omega' \cdot dA$$

$$L = \frac{\Phi}{d\Omega' \cdot dA}$$

The eye detects radiance

Brightness Perception

As
$$l$$
 increases: $\Phi_0 \propto dA \cdot d\Omega' = l^2 d\Omega \cdot \pi \frac{r^2}{l^2} = \text{const}$

- dA' > dA: photon flux per rod stays constant
- dA' < dA: photon flux per rod decreases

Where does the Sun turn into a star?

- Depends on apparent Sun disc size on retina
- ⇒ Photon flux per rod stays the same on Mercury, Earth or Neptune
- \Rightarrow Photon flux per rod decreases when d Ω ' < 1 arc minute (beyond Neptune)

Brightness Perception

As
$$l$$
 increases: $\Phi_0 \propto dA \cdot d\Omega' = l^2 d\Omega \cdot \pi \frac{r^2}{l^2} = \text{const}$

- dA' > dA: photon flux per rod stays constant
- dA' < dA: photon flux per rod decreases

Where does the Sun turn into a star?

- Depends on apparent Sun disc size on retina
- ⇒ Photon flux per rod stays the same on Mercury, Earth or Neptune
- \Rightarrow Photon flux per rod decreases when d Ω ' < 1 arc minute (beyond Neptune)

Radiometric Quantities: Irradiance

Irradiance E is defined as the total power per unit area (flux density) incident onto a surface. To obtain the total flux incident to dA, the incoming radiance L_i is integrated over the upper hemisphere Ω_{\perp} above the surface:

$$E \equiv \frac{d\Phi}{dA}$$

$$d\Phi = \left[\int_{\Omega_{\perp}} L_i(\underline{x}, \underline{\omega}) \cos \theta \, d\omega \right] dA$$

$$E = \int_{\Omega_{+}} L_{i}(\underline{x}, \underline{\omega}) \cos \theta \, d\omega = \int_{0}^{2\pi} \int_{0}^{\pi/2} L_{i}(\underline{x}, \underline{\omega}) \cos \theta \sin \theta \, d\theta \, d\phi$$

Radiometric Quantities: Radiosity

Radiosity B is defined as the total power per unit area (flux density) leaving a surface. To obtain the total flux radiated from dA, the outgoing radiance L_o is integrated over the upper hemisphere Ω_{+} above the surface.

$$B = \frac{d\Phi}{dA}$$

$$d\Phi = \left[\int_{\Omega} L_o(\underline{x}, \underline{\omega}) \cos \theta \, d\omega\right] dA$$

$$B = \int_{\Omega} L_o(\underline{x}, \underline{\omega}) \cos \theta \, d\omega = \int_{0}^{2\pi} \int_{0}^{\pi/2} L_o(\underline{x}, \underline{\omega}) \cos \theta \sin \theta \, d\theta \, d\phi$$

Spectral Properties

Wavelength

- Since light is composed of electromagnetic waves of different frequencies and wavelengths, most of the energy transfer quantities are continuous functions of wavelength.
- In graphics each measurement $L(\underline{x},\underline{\omega})$ is for a discrete band of wavelength only (often some abstract R, B, G)

Photometry

• Photometry:

- The human eye is sensitive to a limited range of radiation wavelengths (roughly from 380nm to 770nm).
- The response of our visual system is not the same for all wavelengths, and can be characterized by the luminous efficiency function $V(\lambda)$, which represents the average human spectral response.
- A set of photometric quantities can be derived from radiometric quantities by integrating them against the luminous efficiency function $V(\lambda)$.
- Separate curves exist for light and dark adaptation of the eye.

Radiometry vs. Photometry

Physics-based quantities Perception-based quantities

Radiometry		\rightarrow	Photometry	
W	Radiant power	\rightarrow	Luminous power	Lumens (lm)
W/m ²	Radiosity	\rightarrow	Luminosity	Lux (lm/m ²)
	Irradiance		Illuminance	
W/m ² /sr	Radiance	\rightarrow	Luminance	cd/m ² (lm/m ² /sr)

Specifying Light Sources

How to describe the light emitted by a particular source?

Point Light Source

- Point light with isotropic radiance
 - Power (total flux) of a point light source $\forall \Phi_g$ = Power of the light source [watt]
 - Intensity of a light source
 - $I = \Phi_g/(4\pi \operatorname{sr})$ [watt/sr]
 - Irradiance on a sphere with radius $\it r$ around light source:
 - $E_r = \Phi_g / (4\pi r^2)$ [watt/m²]
 - Irradiance on some other surface A

$$E(x) = \frac{d\Phi_g}{dA} = I \frac{d\omega}{dA}$$
$$= \frac{\Phi_g}{4\pi} \cdot \frac{dA \cos \theta}{r^2 dA}$$
$$= \frac{\Phi_g}{4\pi} \cdot \frac{\cos \theta}{r^2}$$

Inverse Square Law

- Irradiance *E*: power per m²
 - Illuminating quantity
- Distance-dependent
 - Double distance from emitter: sphere area four times bigger
- Irradiance falls off with inverse of squared distance
 - For point light sources

Light Source Specifications

- Power (total flux)
 - Emitted energy / time
- Active emission size
 - Point, area, volume
- Spectral distribution
 - Thermal, line spectrum
- Directional distribution
 - Goniometric diagram

Sky Light

- Sun
 - Point source (approx.)
 - White light (by def.)
- Sky
 - Area source
 - Scattering: blue
- Horizon
 - Brighter
 - Haze: whitish
- Overcast sky
 - Multiple scattering in clouds
 - Uniform grey

Courtesy Lynch & Livingston

Light Source Classification

Radiation characteristics

- Directional light
 - Spot-lights
 - Projectors
 - Distant sources
- Diffuse emitters
 - Torchieres
 - Frosted glass lamps
- Ambient light
 - "Photons everywhere"

Emitting area

- Volume
 - neon advertisements
 - sodium vapor lamps
- Area
 - CRT, LCD display
 - (Overcast) sky
- Line
 - Clear light bulb, filament
- Point
 - Xenon lamp
 - Arc lamp
 - Laser diode

Reflected Radiance

How to calculate the amount of reflected light?

Surface Reflectance

$$L(\underline{x},\underline{\omega}_o) = L_e(\underline{x},\underline{\omega}_o) + \int_{\Omega} f_r(\underline{\omega}_i,\underline{x},\underline{\omega}_o) L(\underline{x},\underline{\omega}_i) \cos \theta_i d\underline{\omega}_i$$

- Visible surface radiance
 - Surface position
 - Outgoing direction
 - Incoming illumination direction
- Self-emission
- Reflected light
 - Incoming radiance from all directions
 - Direction-dependent reflectance (BRDF: bidirectional reflectance distribution function)

$$L(\underline{x},\underline{\omega}_o)$$

<u>~</u>

 $\underline{\omega}_{o}$

 $\underline{\omega}_i$

$$L_e(\underline{x},\underline{\omega}_o)$$

$$L_{\iota}(\underline{x},\underline{\omega}_{i})$$

$$f_r(\underline{\omega}_i, \underline{x}, \underline{\omega}_o)$$

Ray Tracing

$$L(\underline{x},\underline{\omega}_o) = L_e(\underline{x},\underline{\omega}_o) + \int_{\Omega} f_r(\underline{\omega}_i,\underline{x},\underline{\omega}_o) L(\underline{x},\underline{\omega}_i) \cos \theta_i d\underline{\omega}_i$$

- Simple ray tracing
 - Illumination from light sources only local illumination (integral → sum)
 - Evaluates angle-dependent reflectance function shading
- Advanced Techniques
 - Distribution ray tracing
 - Multiple reflections/refractions (for specular surfaces)
 - Forward/Backward ray tracing
 - Stochastic sampling (Monte Carlo methods)
 - Photon mapping

- ...

Light Transport in a Scene

- Scene
 - Lights (emitters)
 - Object surfaces (partially absorbing)
- Illuminated object surfaces become emitters, too!
 - Radiosity = Irradiance absorbed photons flux density
 - Radiosity: photons per second per m^2 leaving surface
 - Irradiance: photons per second per m^2 incident on surface
- Light bounces between all mutually visible surfaces
- Invariance of radiance in free space
 - No absorption in-between objects
- Dynamic Energy Equilibrium
 - emitted photons = absorbed photons (+ escaping photons)
- → Global Illumination

The Rendering Equation

How to express the nature of global illumination? (The single, most important formula)

(Surface) Rendering Equation

- In Physics: Radiative Transport Equation
- Expresses energy equilibrium in scene

$$L(\underline{x},\underline{\omega}_o) = L_e(\underline{x},\underline{\omega}_o) + \int_{\Omega} f_r(\underline{\omega}_i,\underline{x},\underline{\omega}_o) L(\underline{x},\underline{\omega}_i) \cos \theta_i d\underline{\omega}_i$$

- total radiance = emitted radiance + reflected radiance
- First term: emissivity of the surface
 - non-zero only for light sources
- Second term: reflected radiance
 - integral over all possible incoming directions of irradiance times angle-dependent surface reflection function
- Fredholm integral equation of 2nd kind
 - unknown radiance appears on lhs and inside the integral
 - Numerical methods necessary to compute approximate solution

(Surface) Rendering Equation

- In Physics: Radiative Transport Equation
- Expresses energy equilibrium in scene

$$L(\underline{x},\underline{\omega}_o) = L_e(\underline{x},\underline{\omega}_o) + \int_{\Omega} f_r(\underline{\omega}_i,\underline{x},\underline{\omega}_o) L(\underline{x},\underline{\omega}_i) \cos \theta_i d\underline{\omega}_i$$

- total radiance = radiance + reflected radiance
- First term: emissivity of the reface
 - non-zero only for light sources
- Second term: reflected radiance
 - integral over all possible incoming directions of irradiance times angle-dependent surface reflection function
- Fredholm integral equation of 2nd kind
 - unknown radiance appears on lhs and inside the integral
 - Numerical methods necessary to compute approximate solution

Rendering Equation II

Outgoing illumination at a point

$$\begin{split} L(\underline{x}, \underline{\omega}_o) &= L_e(\underline{x}, \underline{\omega}_o) + L_r(\underline{x}, \underline{\omega}_o) \\ &= L_e(\underline{x}, \underline{\omega}_o) + \int_{\Gamma_r} f_r(\underline{\omega}_i, \underline{x}, \underline{\omega}_o) L(\underline{x}, \underline{\omega}_i) \cos \theta_i \ d\underline{\omega}_i \end{split}$$

- Linking with other surface points
 - Incoming radiance at x is outgoing radiance at y

$$L_i(\underline{x},\underline{\omega}_i) = L(\underline{y},-\underline{\omega}_i) = L(RT(\underline{x},\underline{\omega}_i),-\underline{\omega}_i)$$

- Ray-Tracing operator

$$L(\underline{y}, -\underline{w}_{\underline{i}}) \quad \underline{y}$$

$$\underline{y} = RT(\underline{x}, \underline{\omega}_i)$$

$$L(\underline{x}, \underline{w}_i)$$

Rendering Equation III

Directional parameterization

$$L(\underline{x},\underline{\omega}_o) = L_e(\underline{x},\underline{\omega}_o) + \int_{\Omega_+} f_r(\underline{\omega}_i,\underline{x},\underline{\omega}_o) L(\underline{y}(\underline{x},\underline{\omega}_i),-\underline{\omega}_i) \cos\theta_i \ d\omega_i$$

Re-parameterization over surfaces S

$$d\omega_i = \frac{\cos\theta_y}{\|\underline{x} - \underline{y}\|^2} dA_y$$

$$L(\underline{x}, \underline{\omega}_o) = L_e(\underline{x}, \underline{\omega}_o) + \int_{\underline{y} \in S} f_r(\underline{\omega}_i, \underline{x}, \underline{\omega}_o) L(\underline{y}, \underline{\omega}_i(\underline{x}, \underline{y})) V(\underline{x}, \underline{y}) \frac{\cos \theta_i \cos \theta_y}{\left\|\underline{x} - \underline{y}\right\|^2} dA_y$$

Rendering Equation IV

$$L(\underline{x}, \underline{\omega}_o) = L_e(\underline{x}, \underline{\omega}_o) + \int_{\underline{y} \in S} f_r(\underline{\omega}_i, \underline{x}, \underline{\omega}_o) L(\underline{y}, \underline{\omega}_i(\underline{x}, \underline{y})) V(\underline{x}, \underline{y}) \frac{\cos \theta_i \cos \theta_y}{\left\|\underline{x} - \underline{y}\right\|^2} dA_y$$

Geometry term

$$G(\underline{x}, \underline{y}) = V(\underline{x}, \underline{y}) \frac{\cos \theta_i \cos \theta_y}{\|\underline{x} - y\|^2}$$

Visibility term

$$V(\underline{x}, \underline{y}) = \begin{cases} 1 & \text{if visible} \\ 0 & \text{if not visible} \end{cases}$$

Integration over all surfaces

$$L(\underline{x},\underline{\omega}_o) = L_e(\underline{x},\underline{\omega}_o) + \int_{\underline{y} \in S} f_r(\underline{\omega}_i,\underline{x},\underline{\omega}_o) L(\underline{y},\underline{\omega}_i(\underline{x},\underline{y})) G(\underline{x},\underline{y}) dA_y$$

Rendering Equation: Approximations

- Using RGB instead of full spectrum
 - follows roughly the eye's sensitivity
- Dividing scene surfaces into small patches
 - Assumes locally constant reflection, visibility, geometry terms
- Sampling hemisphere along finite, discrete directions
 - simplifies integration to summation
- Reflection function model
 - Parameterized function
 - ambient: constant, non-directional, background light
 - diffuse: light reflected uniformly in all directions
 - specular: light of higher intensity in mirror-reflection direction
 - Lambertian surface (only diffuse reflection) → Radiosity
- Approximations based on empirical foundations
 - An example: polygon rendering in OpenGL

Questions

- Why is radiance so important for ray tracing?
- What is described by the rendering equation?
- Which terms does it consist of?
- How does it describe global light transport?

Wrap-up

- Physical Quantities in Rendering
 - Radiance
 - Radiosity
 - Irradiance
 - Intensity
- Light Perception
- Light Sources
- Rendering Equation
 - Integral equation
 - Balance of radiance