#Microatividade 1: Descrever a manipulação #da estrutura de dados lista em Python lista_mesclada = [1, 2, 3, "Olá, Python", True, 12.6] print(type(lista_mesclada)) print(lista_mesclada) lista_mesclada.append("Lista alinhada") print(lista_mesclada) lista_mesclada.insert(4, 5) print(lista_mesclada) print(len(lista_mesclada)) lista_mesclada.remove(2) print(lista_mesclada) print(lista_mesclada[1])

Códigos

Aluno: Rodrigo de Paula Pedrosa

Professor: Raul Carlos Costa Queiros

Missão Prática | Nível 3 | Mundo 1

Disciplina: Nível 3: Estruturando dados

MICROATIVIDADE 1

E-mail: 202311035761@alunos.estacio.br ou d2_rodrigod2@hotmail.com

Turma: 2024.1

listas.py

nova_lista_mesclada = lista_mesclada[:4] print("Conteúdo da nova lista mesclada é:", nova_lista_mesclada) **MICORATIVIDADE 2** primeira_tupla = 1,2,3,4, "Olá, Tupla" print(type(primeira_tupla)) print("O conteúdo da tupla é:", primeira_tupla)

tuplas.py #Microatividade 2: Descrever a manipulação #da estrutura de dados tupla em Python indice_4 = primeira_tupla.index(4) print("O indice do 4° elemento é:", indice_4) contem_3 = 3 in primeira_tupla print("A tupla contém o elemento 3?", contem_3) contem_33 = 33 in primeira_tupla print("A tupla contém o elemento 33?", contem_33) **MICORATIVIDADE 3** sets.py #Microatividade 3: Descrever a manipulação #da estrutura de dados set em Python

set_inicial = {11, 12, 13, 14} print(type(set_inicial)) print("O conteúdo inicial do set é: ", set_inicial) set_inicial.add(15) print("O conteúdo do set com o elemento 15 adicionado:", set_inicial) set_inicial.update([1,2,3,4,5]) print("O conteúdo do set com os novos elementos adicionados é:", set_inicial) set_inicial.discard(13) print("Conteúdo do set_inicial após remover 13:", set_inicial) novo_set = {20, 21, 23, 1, 2} print("Conteúdo do novo_set:", novo_set) print("União entre set_inicial e novo_set:", set_inicial.union(novo_set))

print("Interseção entre set_inicial e novo_set:", set_inicial.intersection(novo_set)) print("Diferença entre set_inicial e novo_set:", set_inicial.difference(novo_set)) print("Diferença simétrica entre set_inicial e novo_set:", set_inicial.symmetric_difference(novo_set)) **MICORATIVIDADE 4** dicionarios.py #Microatividade 4: Descrever a criação da #estrutura de dados dicionário em Python meu_dicionario = { 1: "Python",

2: "Java", 3: "PHP" print("Conteúdo do meu_dicionario:", meu_dicionario) print("Tipo de dados de meu_dicionario:", type(meu_dicionario)) print("Valor da chave 'linguagem' para o código 1:", meu_dicionario.get(1)) print("Valor da chave 'linguagem' para o código 2:", meu_dicionario.get(2)) print("Valor da chave 'linguagem' para o código 3:", meu_dicionario.get(3)) print("Tamanho de meu_dicionario:", len(meu_dicionario)) dicionario_frutas = {

1: {"nome": "limão", "tipo": "ácida"}, 2: {"nome": "laranja", "tipo": "ácida"}, 3: {"nome": "manga", "tipo": "semiácida"}, 4: {"nome": "maçã", "tipo": "semiácida"}, 5: {"nome": "banana", "tipo": "doce"}, 6: {"nome": "mamão", "tipo": "doce"} print("Valores da chave 1 em dicionario_frutas:", dicionario_frutas[1]) print("Valores da chave 2 em dicionario_frutas:", dicionario_frutas[2]) for chave, valor in dicionario_frutas.items(): print(f"Valores da chave {chave} em dicionario_frutas: nome = {valor['nome']}, tipo = {valor['tipo']}") **MICORATIVIDADE 5**

dicionarios2.py

#de dados em um dicionário

dicionario_pessoas = {

novos_elementos = {

dicionario_pessoas.clear()

main.py

novo_dicionario_pessoas.clear()

#Microatividade 5: Descrever a atualização

dicionario_pessoas.update(novos_elementos)

1: {'nome': 'Maria', 'idade': 26, 'nacionalidade': 'brasileira'}

2: {'nome': 'João', 'idade': 30, 'nacionalidade': 'portuguesa'},

3: {'nome': 'Ana', 'idade': 22, 'nacionalidade': 'espanhola'}

print("Dicionário de pessoas atualizado:", dicionario_pessoas)

print("Novo dicionário de pessoas:", novo_dicionario_pessoas)

print("Conteúdo do primeiro dicionário após remover o elemento:", dicionario_pessoas)

raise ValueError("A lista de notas deve conter exatamente 4 elementos.")

from main import calcular_media, verificar_reprovacao, alunos_reprovados

print ("Conteúdo do primeiro dicionário após remover o último elemento:", dicionario_pessoas)

Missão Prática | Estruturando os

Dados =

reprovados.append(f"Aluno Reprovado: {nome} - Matrícula: {matricula} - Média Final: {media:.2f}")

novo_dicionario_pessoas = dicionario_pessoas.copy()

elemento_removido = dicionario_pessoas.pop(2)

print("Elemento removido:", elemento_removido)

Missão Prática | Estruturando os Dados 💻

funções da missão prática

def calcular_media(notas):

return sum(notas) / len(notas)

def alunos_reprovados(dados_alunos):

media = calcular_media(notas)

if verificar_reprovacao(media):

#Missão Prática | Estruturando os Dados 💻

alunos_reprovados = alunos_reprovados(dados_alunos)

#Operações da missão prática

(26, "Maria", [8, 7, 5, 9]),

(101, "Ana", [9, 9, 8, 9]),

(13, "João", [6, 5, 5, 5]),

(5, "Félix", [10, 8, 8, 8])

(37, "Ágatha", [8, 6, 7.5, 9]),

(72,"Joaquin", [6, 5.5, 5, 7]),

for aluno in alunos_reprovados:

for matricula, nome, notas in dados_alunos:

def verificar_reprovacao(media):

if len(notas) != 4:

return media < 6

reprovados = []

return reprovados

operacoes.py

dados_alunos = [

print(aluno)

elemento_removido = dicionario_pessoas.popitem()