$\overline{}$,		0.0
	RROGAT	ION ÉC	RIND	$\mathbf{N}^{\omega}(\mathbf{J})$

NOM: Prénom: Note:

1. Soit $f_n: x \mapsto e^{-nx}$. La suite (f_n) converge-t-elle uniformément sur $]0, +\infty[$? Justifier.

Première méthode. Supposons que (f_n) converge uniformément sur \mathbb{R}_+^* . D'après le théorème de la double limite, on aurait alors

$$\lim_{n \to +\infty} \lim_{x \to 0^+} f_n(x) = \lim_{x \to 1^-} \lim_{n \to +\infty} f_n(x)$$

et donc 1 = 0. Ainsi (f_n) ne converge pas uniformément sur \mathbb{R}_+^* .

Deuxième méthode. On montre que (f_n) converge simplement vers la fonction nulle sur \mathbb{R}_+^* . Mais $||f_n||_{\infty,\mathbb{R}_+^*} = 1$ donc (f_n) ne converge pas uniformément vers la fonction nulle.

2. On pose $f_n: x \mapsto x^n(1-x)$. La suite de fonctions (f_n) converge-t-elle simplement sur [0,1]? uniformément sur [0,1]? Justifier. Remarquons que $f_n(1) = 0$ et que pour $x \in [0,1[$, la suite géométrique $(f_n(x))$ converge vers 0. Ainsi (f_n) converge simplement vers la fonction nulle sur [0,1]. Une étude de fonctions montre que f_n est positive et atteint son maximum en $\frac{n}{n+1}$. Par conséquent,

$$||f_n||_{\infty,[0,1]} = f_n\left(\frac{n}{n+1}\right) \le \frac{1}{n+1}$$

Ainsi $\lim_{n\to +\infty} \|f_n\|_{\infty,[0,1]} = 0$ i.e. (f_n) converge uniformément vers la fonction nulle sur [0,1].

3. On pose ζ : $x \mapsto \sum_{n=1}^{+\infty} \frac{1}{n^x}$. Montrer que ζ est continue sur $]1, +\infty[$.

On pose $f_n: x \mapsto \frac{1}{n^x}$. Les fonctions f_n sont bien continues sur $]1, +\infty[$. Fixons a > 1. Alors $||f_n||_{\infty,[a,+\infty[} = \frac{1}{n^a}]$. Or $\sum \frac{1}{n^a}$ converge donc $\sum f_n$ converge normalement sur $[a, +\infty[]$. On en déduit que ζ est continue sur $[a, +\infty[]$ pour tout a > 1. Finalement, ζ est continue sur $]1, +\infty[$.

4. On pose $f(x) = \sum_{n=0}^{+\infty} \frac{1}{1 + n^2 x}$. Déterminer la limite de f en $+\infty$.

Posons $f_n: x \mapsto \frac{1}{n^2+x}$. Il est clair que $\|f_n\|_{\infty,[1,+\infty[} = \frac{1}{n^2+1} \le \frac{1}{n^2}$. On en déduit que $\sum f_n$ converge normalement et donc uniformément sur $[1,+\infty[$. De plus, pour tout $n \in \mathbb{N}$, $\lim_{n \to \infty} f_n = \delta_{0,n}$. D'après le théorème d'interversion série/limite, $\lim_{n \to \infty} f_n = 1$.

5. On pose $f(x) = \sum_{n=1}^{+\infty} (-1)^n \frac{e^{-nx}}{n^2}$. Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R}_+ .

Posons $f_n: x \mapsto \frac{(-1)^n e^{-nx}}{n^2}$. Fixons $x \in \mathbb{R}_+$. Alors $|f_n(x)| \le \frac{1}{n^2}$ donc $\sum f_n(x)$ converge (absolument). Ainsi $\sum f_n$ converge simplement sur \mathbb{R}_+ .

Les fonctions f_n sont de classe \mathcal{C}^1 sur \mathbb{R}_+ et pour tout $x \in \mathbb{R}_+$, $f'_n(x) = \frac{(-1)^{n+1}e^{-nx}}{n}$. Fixons $x \in \mathbb{R}_+$. La suite de terme général $\frac{e^{-nx}}{n}$ est décroissante de limite nulle donc la série $\sum f'_n(x)$ vérifie le critère spécial des séries alternées. Notamment $\sum f'_n(x)$ converge simplement sur \mathbb{R}_+ . Notons $\mathbb{R}_n = \sum_{k=n+1}^{+\infty} f'_k$. D'après le critère spécial des séries alternées,

$$\forall x \in \mathbb{R}_+, \ |R_n(x)| \le |f'_{n+1}(x)| = \frac{e^{-(n+1)x}}{n+1} \le \frac{1}{n+1}$$

de sorte que (R_n) converge uniformément vers la fonction nulle. On en déduit que $\sum f'_n$ converge uniformément sur \mathbb{R}_+ . On en conclut que f est de classe \mathcal{C}^1 sur \mathbb{R}_+ .