

SQL Project

Massachusetts General Hospital Recent Performance

Presented By: MAHESH Y

Tools:

MYSQL - QUERIES | DBDIAGRAM.IO - ERD | DATAWRAPPER - VISUALS

SOURCE: Maven Analytics

Synthetic data on ~1k patients of Massachusetts General Hospital from 2011-2022, including information on patient demographics, insurance coverage, and medical encounters & procedures.

The Hospital Dataset (HSP) is a comprehensive collection of patient encounter data, spanning 10 years. It contains valuable information on patient demographics, encounter descriptions, and associated metrics such as patient counts and encounter frequencies.

Database Schema:

What is the total number of patients who are currently alive and the total number of patients who have deceased?

Query:

```
SELECT COUNT(*) AS 'Total Patients',
    SUM(CASE WHEN deathdate is null THEN 1 END) AS 'Living Patients',
    COUNT(deathdate) AS 'Deceased Patients'
FROM patients;
```

Output: | RESULTS | Total Patients | Living Patients | Deceased Patients | | 1 974 | 820 | 154 | | Deceased Patients | Deceased Patients | | Deceased Patients | 154 | | Created with Datawrapper

Insight:

Analyzing the count of alive and deceased patients helps hospital administrators assess patient outcomes and identify trends in mortality rates.

2. What is the distribution of patients by gender in the hospital?

Query:

```
SELECT

SUM(CASE WHEN gender = 'F' THEN 1 ELSE 0 END) AS 'Female Patients',

SUM(CASE WHEN gender = 'M' THEN 1 ELSE 0 END) AS 'Male Patients',

COUNT(*) AS 'Total Patients'

FROM patients;
```

Output:

	Female Patients	Male Patients	Total Patients	
1	480	494	974	

Insight:

Analyzing the count of alive and deceased patients helps hospital administrators assess patient outcomes and identify trends in mortality rates.

Visual:

3. What is the total cost of care, insurance coverage, and patient-paid amounts for hospital services?

Query:

```
SELECT encounterclass,
    ROUND(SUM(base_encounter_cost + total_claim_cost),2) as 'Total cost',
    ROUND(SUM(payer_coverage),2) AS 'Coverage',
    ROUND(SUM(payer_coverage) / SUM(base_encounter_cost + total_claim_cost)*100, 2) AS 'Coverage (%) ',
    ROUND(SUM(base_encounter_cost + total_claim_cost) - SUM(payer_coverage),2) AS 'Amount Paid by Patients'
    FROM encounters
GROUP BY encounterclass;
```

Output:

⊿ RI	△ RESULTS					
	encounterclass	Total cost	Coverage	Coverage (%)	Amount Paid by Patients	
1	ambulatory	37608966.27	12903495.75	34.31	24705470.52	
2	urgentcare	23872048.24	3058909.73	12.81	20813138.51	
3	emergency	11087318.1	3246828.27	29.28	7840489.83	
4	inpatient	8938154.07	3688764.95	41.27	5249389.12	
5	outpatient	14756717.71	3777758.35	25.6	10978959.36	
6	wellness	8491592.53	4421749.94	52.07	4069842.59	

Insight: Understanding the financial breakdown of hospital services helps administrators identify areas for cost optimization, improve insurance reimbursement processes, and develop patient-centric financial assistance programs.

Visual:

4. What are the top 5 encounter reasons for patient encounters in the hospital?

Query:

```
SELECT TOP 5 reasondescription, COUNT(reasondescription) AS reason_counts
FROM encounters e
JOIN patients p ON p.id = e.patient_id
GROUP BY reasondescription
ORDER BY reason_counts DESC;
```

Output:

Visual:

Insight:

Analyzing the top encounter reasons enables hospital administrators to identify trends and patterns in patient care, informing strategic decisions to improve patient outcomes and reduce readmissions.

5. What are the top 5 procedures reasons for patient encounters in the hospital?

Query:

```
SELECT TOP 5 hp.reason_description 'Procedures Reasons'
FROM hsp_procedures hp
JOIN patients p ON p.id = hp.patient_id
GROUP BY hp.reason_description
ORDER BY COUNT(hp.reason_description) DESC;
```

Output:

Visual:

Insight:

Analyzing the top procedures reasons enables hospital administrators to identify trends and patterns in patient care, informing strategic decisions to improve patient outcomes and reduce readmissions.

6. What is the total revenue trend for the hospital over the last 10 years?

Query:

```
SELECT DATEPART(YEAR, e.start) AS Year_order,
    ROUND(SUM(base_encounter_cost + total_claim_cost),2) as 'Total Revenue'
FROM encounters e
JOIN patients p ON p.id = e.patient_id
GROUP BY DATEPART(YEAR, e.start)
ORDER BY Year_order;
```

Insight:

Analyzing the 10-year revenue trend helps hospital administrators identify patterns of growth or decline.

▲ RESULTS					
	Year_order	Total Revenue			
1	2011	4551090.85			
2	2012	9297715.18			
3	2013	10393917.79			
4	2014	12475264.89			
5	2015	10408385.33			
6	2016	8661174.08			
7	2017	9867939.39			
8	2018	9008830.51			
9	2019	9168579.47			
10	2020	10590217.36			
11	2021	9613963.27			
12	2022	717718.8			

7. What is the year-over-year (YOY) revenue growth rate for the hospital over the last 10 years?

Query:

```
WITH yoy_revenue AS (SELECT DATEPART(YEAR, e.start) AS Year_order,
    ROUND(SUM(base_encounter_cost + total_claim_cost),2) as Total_Revenue

FROM encounters e

JOIN patients p ON p.id = e.patient_id

GROUP BY DATEPART(YEAR, e.start)
),

prev_year_rev as ( SELECT *,

    LAG(Total_Revenue, 1) OVER(ORDER BY Year_order) AS prev_year_revenue

FROM yoy_revenue
)

SELECT Year_order, Total_Revenue, ROUND(((Total_Revenue / prev_year_revenue) * 100)-100, 2) AS YOY_growth
FROM prev_year_rev;
```


Output:

▲ RESULTS				
- N				
	Year_order	Total_Revenue	YOY_growth	
1	2011	4551090.85	NULL	
2	2012	9297715.18	104.3	
3	2013	10393917.79	11.79	
4	2014	12475264.89	20.02	
5	2015	10408385.33	-16.57	
6	2016	8661174.08	-16.79	
7	2017	9867939.39	13.93	
8	2018	9008830.51	-8.71	
9	2019	9168579.47	1.77	
10	2020	10590217.36	15.51	
11	2021	9613963.27	-9.22	
12	2022	717718.8	-92.53	

Visual:

Insight:

The fluctuating YOY revenue growth rate reveals periods of expansion and contraction, enabling hospital administrators to identify factors influencing revenue volatility and make informed decisions to drive sustainable growth.

8. Which payer has the highest total claim amount and insurance coverage percentage?

Query:

```
SELECT p.name AS Payer_name, FLOOR(SUM(total_claim_cost)) AS Total_claim,
   FLOOR(SUM(payer_coverage)) AS 'Insurance_Coverage',
   ROUND(SUM(payer_coverage) / SUM(total_claim_cost)*100, 2) AS 'Insurance Coverage "%" '
FROM encounters e
JOIN payers p on p.id = e.payer_id
GROUP BY p.name
ORDER BY Insurance_Coverage DESC;
```

Output:

⊿ RE	▲ RESULTS				
	Payer_name	Total_claim	Insurance_Coverage	Coverage "%"	
1	Medicare	24647228	19215691	77.96	
2	Medicaid	8954131	8417973	94.01	
3	Blue Cross Blue	3002166	2074496	69.1	
4	Dual Eligible	1546925	1380705	89.25	
5	UnitedHealthca	2563507	3937	0.15	
6	Humana	3543921	1953	0.06	
7	Aetna	2589956	1780	0.07	
8	Cigna Health	2424532	968	0.04	
9	Anthem	2982715	0	0	
10	NO_INSURANCE	49259290	0	0	

Insight:

Analyzing the gap between total claims and covered amounts helps hospital administrators identify trends in insurance reimbursement, optimize billing processes, and negotiate better coverage terms with insurance providers.

9. What is the full name of each patient and how many encounters have they had at the hospital?

Query:

```
with name table AS(
    SELECT p.id,
        REPLACE(TRANSLATE(first, '0123456789', '_____'), '_', '') AS First_name,
       REPLACE(TRANSLATE(last, '0123456789', '_____'), '_', '') AS Last_name
    FROM patients p
SELECT CONCAT(First name, ' ', Last name) Patient Name,
    count(distinct e.id) as No_of_Encounters
FROM name table n
JOIN encounters e on e.patient_id = n.id
GROUP BY n.id, CONCAT(First_name,' ',Last_name)
ORDER BY Patient_Name;
```


Query:

Output:

△ RESULTS				
	Patient_Name	No_of_Encount		
1	Abbie Adams	15		
2	Abel Smitham	27		
3	Abraham Ruec	59		
4	Ad√°n Feliciano	1		
5	Ad√°n Olivera	6		
6	Adolph Kshlerin	25		
7	Adrian Gleason	1		
8	Adrian Upton	43		
9	Adriana Monte	2		
10	Adrianna Barro	8		
11	Ahmed Kreiger	1		
12	Ailene Botsford	3		
13	Alayna Bergstr	64		
14	Aldo Hoeger	2		
15	Alec Little	23		

Message

Started executing query at Line 1

(974 rows affected)

Timestamp

[12:02:57 AM]

Insight:

Accurately tracking patient encounters enables hospital administrators to identify high-utilization patterns, optimize resource allocation, and inform quality improvement initiatives to enhance patient care and satisfaction.

10. Which patients have spent an average of more than 100 hours of encounters in the hospital?

Query:

```
WITH encounter_time AS (
    SELECT
        p.id,
        REPLACE(TRANSLATE(p.first, '0123456789', '_____'), '_', '') AS First_name,
        REPLACE(TRANSLATE(p.last, '0123456789', '_____'), '_', '') AS Last_name,
        DATEDIFF(MINUTE, e.start, e.stop) AS Avg_Hour
    FROM patients p
    JOIN encounters e ON p.id = e.patient_id
SELECT TOP 10
    CONCAT(First_name, ' ', Last_name) AS Patient_name,
    AVG(Avg Hour) / 60 AS Avg Encounter Hours
FROM encounter time
GROUP BY id, First_name, Last_name
ORDER BY Avg Encounter Hours DESC;
```


Output:

▲ RESULTS				
	Patient_name	Avg_Encounter		
1	Nick Tillman	4833		
2	Lynda Lang	973		
3	Florencio Breit	633		
4	Morton Powlo	580		
5	Carla Urrutia	397		
6	Hellen Keebler	312		
7	Ana Luisa Salinas	267		
8	Adrian Upton	190		
9	Denae Lakin	111		
10	Sharolyn Halvo	104		

Visual:

Insight:

Identifying patients with prolonged encounters enables hospital administrators to optimize resource allocation, improve patient flow, and enhance care quality, ultimately reducing healthcare costs and informing data-driven decisions.

11. What is the distribution of patients across different groups (e.g., age, gender in the hospital?

Query:

```
WITH age group as (
    SELECT
        CASE
            WHEN patient age >= 30 AND patient age < 40 THEN '30-40'
            WHEN patient age >= 40 AND patient age < 50 THEN '40-50'
            WHEN patient_age >= 50 AND patient_age < 60 THEN '50-60'
            WHEN patient age >= 60 AND patient age < 70 THEN '60-70'
            WHEN patient age >= 70 AND patient age < 80 THEN '70-80'
            WHEN patient age >= 80 AND patient age < 90 THEN '80-90'
            WHEN patient age >= 90 AND patient age < 100 THEN '90-100'
            WHEN patient_age >= 100 AND patient_age < 110 THEN '100-110'
        END AS age group,
        id, gender
    FROM(
        SELECT DATEDIFF(year, birthdate, GETDATE()) patient age, id, gender
        FROM patients
        WHERE deathdate is NULL) as dob
SELECT age_group, count(id) no_of_patients,
        SUM(CASE WHEN gender = 'F' THEN 1 ELSE 0 END) AS 'Female Patients',
    SUM(CASE WHEN gender = 'M' THEN 1 ELSE 0 END) AS 'Male Patients'
FROM age group
GROUP BY age group
ORDER BY MIN(CAST(REPLACE(age group, '-', '') AS INT));
```


Output:

₄ RI	▲ RESULTS					
	age_group	no_of_patients	Female Patients	Male Patients		
1	30-40	66	32	34		
2	40-50	114	63	51		
3	50-60	109	50	59		
4	60-70	112	64	48		
5	70-80	117	67	50		
6	80-90	128	54	74		
7	90-100	131	64	67		
8	100-110	43	19	24		

Visual:

Age and Gender distribution						
	No of Patients	Female Patients	Male Patients			
30-40	66	32	34			
40-50	114	63	51			
50-60	109	50	59			
60-70	112	64	48			
70-80	117	67	50			
80-90	128	54	74			
90-100	131	64	67			
100-110	43	19	24			
Created with Datawrapper						

Insight:

Patient distribution insights help identify areas for quality improvement, enabling focused initiatives to enhance patient care and satisfaction.

12. Getting Column names before altering table

Query:

SELECT COLUMN_NAME
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = 'patients'


```
COLUMN_NAME
    id
    birthdate
    deathdate
    prefix
    first
    last
    suffix
     maiden
    marital
    race
    ethnicity
    gender
    birthplace
    address
    city
    state
    county
    zip
    last1
    lon
```


13. Altering table patients to get their full name from the first and last name columns

Query:

```
ALTER TABLE patients
ADD patient_name AS (CONCAT(REPLACE(TRANSLATE(first, '0123456789', '_____'), '_', ''), ' , REPLACE(TRANSLATE(last, '0123456789', '____'), '_', '')));
```

Before altering it, there were 20 columns; now we have 21 columns.

First, Last, Full name from table patients

SELECT TOP 5 first, last, patient_name FROM patients

⊿ RE	▲ RESULTS				
	first	last	patient_name		
1	Nikita578	Erdman779	Nikita Erdman		
2	Zane918	Hodkiewicz467	Zane Hodkiewicz		
3	Quinn173	Marquardt819	Quinn Marquar		
4	Abel832	Smitham825	Abel Smitham		
5	Edwin773	Labadie908	Edwin Labadie		

MGH 1811

14. What is the distribution of patients across different payers

Query:

```
SELECT p2.name Insurer_name, COUNT(distinct p.id) No_of_Patients
FROM encounters e

JOIN patients p ON p.id= e.patient_id

JOIN payers p2 ON p2.id = e.payer_id

GROUP BY P2.name;
```

Output:

▲ RESULTS				
	Insurer_name	No_of_Patients		
1	Aetna	207		
2	Anthem	204		
3	Blue Cross Blue	216		
4	Cigna Health	203		
5	Dual Eligible	62		
6	Humana	219		
7	Medicaid	113		
8	Medicare	449		
9	NO_INSURANCE	262		
10	UnitedHealthca	206		

Insight:

Analyzing the distribution of patients across payers reveals opportunities for hospitals to refine market strategies, improve patient retention, and negotiate more favorable reimbursement rates with dominant payers.

15. What are the top patient encounter descriptions, associated patient counts, and encounter frequencies

Query:

```
SELECT e.description,

COUNT(DISTINCT patient_id) AS patients_counts,

COUNT(DISTINCT e.id) no_of_encounters

FROM encounters e

WHERE e.description IS NOT NULL

GROUP BY e.description

ORDER BY patients_counts DESC;
```

Note: This analysis considers a 10-year dataset, where the same patients may have been readmitted multiple times for the same problem, resulting in a higher patient count.

Insight:

Analyzing patient encounter descriptions, patient counts, and encounter frequencies reveals patterns of care utilization, readmission rates, and potential areas for quality improvement, enabling hospitals to optimize care pathways, reduce readmissions, and enhance patient outcomes.

Output:

▲ RESULTS					
	description	patients_counts	no_of_encount		
1	Encounter for s	632	1824		
2	Administration	514	1003		
3	Encounter for '	372	678		
4	Encounter for c	359	2950		
5	Emergency roo	334	472		
6	Encounter for p	226	4308		
7	Urgent care cli	224	3633		
8	General examin	208	1880		
9	Follow-up enco	177	1565		
10	Encounter for p	167	1002		
11	Patient encoun	137	1059		
12	Patient encoun	112	681		
13	Consultation fo	104	469		
14	Follow-up enco	91	263		
15	Prenatal initial	84	195		
⊿ M	ESSAGES				

Timestamp Message

[11:52:51 AM] Started executing query at <u>Line 7</u> (52 rows affected)

THANK YOU

Thanks for checking out this project.

Connect with me on LinkedIn

For more details of this project, <u>Click here</u> to navigate to my GitHub portfolio