# Introducción al Análisis Matemático Tema 2 Clase Práctica 5

Licenciatura en Matemática Curso 2022





# Al estudiante:

Bienvenido a la Clase Práctica 5 del Tema 2 del curso *Introducción al Análisis Matemático*. Los siguientes ejercicios pueden ser abordados con los conocimientos adquiridos en las conferencias. ¡Esperamos que le vaya bien!

Colectivo de la asignatura

#### **EJERCICIOS**

# Ejercicio 1.

¿Cómo debe ser torcido un alambre de longitud L de modo que se forme un rectángulo cuya área sea la mayor posible?

## Ejercicio 2.

(Kepler) Encontrar el cilindro de volumen máximo inscrito en una esfera de radio R.

# Ejercicio 3.

(Johann Bernoulli) Hallar el valor de x tal que tenga área máxima el rectágulo de dimensiones x e y tales que el punto (x,y) esté sobre el círculo  $y = \sqrt{x - x^2}$ .

## Ejercicio 4.

Entre los triángulos isósceles inscritos en un círculo dado halle el que tiene perímetro máximo.

#### Ejercicio 5.

Hallar el punto de la hipérbola  $\frac{x^2}{2} - y^2 = 1$  que está más cerca de (3;0).

# Ejercicio 6.

Hallar el área máxima del trapecio inscrito en un semicírculo de radio R de forma que la base inferior del trapecio sea el diámetro del semicírculo.

# Ejercicio 7.

Halle en el intervalo [-2; 2] el menor y el mayor valor de la distancia del punto (0; 1) a la parábola  $y = x^2$ 

# Ejercicio 8.

Halla la ecuación de la recta que pasa por Q(3;5) y corta un área mínima en el primer cuadrante.

# Ejercicio 9.

Dados n números reales  $\{a_i\}_{i=1}^n$  prueba que el mínimo de la suma  $\sum_{i=1}^n (x-a_i)^2$  se alcanza cuando x es la media aritmética de  $\{a_i\}_{i=1}^n$ .

## Ejercicio 10.

Halle el polinomio de menor grado que tiene máximo local igual a 6 en x=1 y mínimo local igual a 2 en x=3.

#### Ejercicio 11.

A las 9:00am un barco B se encontraba a 65 millas marítimas (mm) al este de otro barco A. El barco B viaja hacia el oeste a una velocidad de 10mm/h y A viajaba hacia el sur a una velocidad de 15mm/h. ¿Cuándo se encontrarán a una distancia mínima y cuál es esa distancia?

#### Ejercicio 12.

Una ventana tiene forma de un ractángulo coronado por un semicírculo. Si el perímetro de las ventanas es de 30 pies, exprese el área A de ella como función del ancho de la misma.

#### Ejercicio 13.

Debe construirse una caja con la parte superior abierta a partir de un trozo rectangular de cartón que tiene las dimensiones de 12 pulgadas por 20 pulgadas, recortando cuadrados



Figura 1: Ventana

iguales de lade x en cada una de las esquinas y, a continuación, doblando los lados como se ilustra en la figura. Expresa el volúmen de la caja como función de x.



Figura 2: Caja

# Ejercicio 14.

Calcula el volumen máximo de un cilindro cuya área total en  $4u^2$ . ¿Cuál será la relación óptima entre la altura y el diámetro de la base?

# Ejercicio 15.

Halla el radio de la base del cilindro de mayor volumen inscrito en una esfera de radio R.

# Ejercicio 16.

Encuentre el área del rectángulo más grande que puede inscribirse en un semicírculo de radio R.

# Ejercicio 17.

Si x > 0 y  $f(x) = 5x^2 + Ax^5$ , siendo A > 0, halle el menor valor de A tal que f(x) > 2A.

# Ejercicio 18.

Elige A y B tales que el punto (2;25) sea de inflexión de  $x^2y + Ax + By = 0$ . ¿Qué otros puntos de inflexión tiene la curva?

## Ejercicio 19.

Demuestre que:

- a)  $\arctan x > \frac{x}{x^2 + 1}$   $\forall x > 0$ .
- b)  $\ln x < \frac{x}{e}$   $x > 0, x \neq e.$

# Ejercicio 20.

Halla máximos y mínimos de:

$$f(x) = x \arcsin x + \sqrt{1 - x^2}, \quad x \in [-1; 1].$$

# Ejercicio 21.

Halle la ecuación de la recta tangente a  $3x^2y-y^2=27$  cuando x=2.

## Ejercicio 22.

Dado que  $xy = \ln x$ , pruebe que:

$$x^{3}\frac{d^{2}y}{dx^{2}} + x^{2}\frac{dy}{dx} - xy = -2$$