

RSS Paper Active Preference-Based Learning of Reward Functions

Nikita Jaipuria

Aerospace Controls Laboratory Department of Mechanical Engineering Massachusetts Institute of Technology

August 11, 2017

Overview

- ▶ Objective:
 - model a human's preference for how a dynamical system should act
 - learn $R_H(x^0, \mathbf{u}_R, \mathbf{u}_H) = \sum_{t=0}^{N} r_H(x^t, u_R^t, u_H^t) = \sum_{t=0}^{N} \mathbf{w}^T \phi(x^t, u_R^t, u_H^t)$
- ▶ Problem Domain:
 - difficult to provide demonstrations of desired system trajectory (IRL)
 - assign numerical reward to an action/trajectory
- ▶ Main Idea: active preference-based learning
 - build on label ranking; learn from preferences/comparisons (preference-based)
 - system decides on what preference queries to make (active)
- ▶ Challenges/Contribution
 - complexity and continous nature of queries
 - active synthesis of queries satisfying system dynamics
 - maximize volume removed from continuous hypothesis space by each query

Algorithm

- ▶ Inputs: $\phi, N, f_{HR}, iter$
- ▶ Output: $p(\mathbf{w})$
- ▶ Step 1: Initialize $p(\mathbf{w}) \sim Uniform(B)$
- ▶ Step 1: synthesize query to remove as much volume as possible from the space of possible rewards (constrained optimization)

Slide Title 3

Slide Title 4

Questions?

Backup Slide 1

▶ Blah blah blah ...

References I

