Advanced Statistics DS2003 (BDS-4A) Lecture 10

Instructor: Dr. Syed Mohammad Irteza
Assistant Professor, Department of Computer Science, FAST
17 March, 2022

Previous Lecture

- Inference for a single proportion
- Difference of two proportions
 - Melting ice cap survey → bothered *a great deal* or not?
 - Pooled estimate of a proportion
 - Cl and HT for proportions

Recap - comparing two proportions

- Population parameter: $(p_1 p_2)$, point estimate: $(\hat{p}_1 \hat{p}_2)$
- Conditions:
 - independence within groups
 - random sample and 10% condition met for both groups
 - independence between groups
 - at least 10 successes and failures in each group
 - if not → randomization (Section 6.4)

$$SE_{(\hat{p}_1-\hat{p}_2)} = \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$$

- for CI: use \hat{p}_1 and \hat{p}_2
- for HT:
 - o when H_0 : $p_1 = p_2$: use $\hat{p}_{pool} = \frac{\# suc_1 + \# suc_2}{n_1 + n_2}$
 - when H_0 : $p_1 p_2$ = (some value other than 0): use \hat{p}_1 and \hat{p}_2
 - this is pretty rare

Reference - standard error calculations

	one sample	two samples
mean	$SE = \frac{s}{\sqrt{n}}$	$SE = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
proportion	$SE = \sqrt{\frac{p(1-p)}{n}}$	$SE = \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$

- When working with means, it's very rare that σ is known, so we usually use s.
- When working with proportions,
 - if doing a hypothesis test, p comes from the null hypothesis
 - \circ if constructing a confidence interval, use \hat{p} instead

Comparing Two Proportions

- A study of births in Liverpool, England, investigated a possible association between parental smoking during pregnancy and the gender of the baby
- In a sample of 5045 babies born to non-smoking parents, 2685 were male
- In a sample of 363 babies born to heavy-smoking parents, 158 were male

- A study of births in Liverpool, England, investigated a possible association between parental smoking during pregnancy and the gender of the baby
- In a sample of 5045 babies born to non-smoking parents, 2685 were male

•
$$\hat{p}_1 = \frac{2685}{5045} = 0.532$$

• In a sample of 363 babies born to heavy-smoking parents, 158 were male

•
$$\hat{p}_2 = \frac{158}{363} = 0.435$$

- $\hat{p}_1 \hat{p}_2$ estimates $p_1 p_2$ where:
 - p_1 is the true proportion for males born to non-smoking parents, and
 - p_2 is the true proportion for males born to heavy-smoking parents

- Common points of interest:
 - Construct a CI for $p_1 p_2$
 - Test the null hypothesis $\rightarrow H_0$: $p_1 p_2 = 0$
 - That is, no association between parental smoking and male birth rate
- Sampling distribution of $\hat{p}_1 \hat{p}_2$:
 - Has a mean of $p_1 p_2$
 - Has a standard deviation of $\sigma_{\hat{p}_1-\hat{p}_2}=\sqrt{\frac{p_1(1-p_1)}{n_1}+\frac{p_2(1-p_2)}{n_2}}$
 - Is approximately normal if the sample sizes are large

- The assumption of the 2 sample inference procedures on proportions:
 - We have independent simple random samples from the populations of interest
 - The sample sizes are large enough for the normal approximation to be reasonable
- A $(1-\alpha)100\%$ CI for $p_1 p_2$ is given by:
 - $\hat{p}_1 \hat{p}_2 \pm z_{\frac{\alpha}{2}} * SE(\hat{p}_1 \hat{p}_2)$
- Don't have p_1 or p_2 so we use estimators:

•
$$SE_{(\hat{p}_1 - \hat{p}_2)} = \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

- Alternative hypothesis?
 - H_A : $p_1 < p_2$ or H_A : $p_1 > p_2$ or H_A : $p_1 \neq p_2$ (two-sided alternative)

• To test null hypothesis $p_1 - p_2 = 0$ we calculate:

•
$$z = \frac{\hat{p}_1 - \hat{p}_2}{SE_0(\hat{p}_1 - \hat{p}_2)}$$

- \hat{p} is the pooled sample proportion:
 - $\hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$ = # of individuals with the characteristic/# of total individuals

 If H₀ is true, the z-test statistic has approximately the standard normal distribution

Hypothesis testing for two proportions

• H_0 : $p_1 = p_2$; H_A : $p_1 < p_2$

• Suppose Z = -1.2

Hypothesis testing for two proportions

• H_0 : $p_1 = p_2$; H_A : $p_1 > p_2$

• Suppose Z = -1.2

Hypothesis testing for two proportions

• H_0 : $p_1 = p_2$; H_A : $p_1 \neq p_2$

• Suppose Z = -1.2

Drawing Conclusions

- Draw a conclusion in the usual ways:
 - A very small p-value gives very strong evidence against H_0
 - If we have a set significance level α , reject H_0 if p-value $\leq \alpha$

Example of *male babies* and *smoking parents*

 $\hat{p}_1 = 0.532$ (non-smoking parents); $\hat{p}_2 = 0.435$ (heavy-smoking parents)

- H_0 : $p_1 = p_2$ (true proportion of male births is same for both groups)
- H_A : $p_1 \neq p_2$

Z = 3.57, p-value = 0.00035 (strong evidence against H_0)

• A 95% Confidence Interval for : $p_1 - p_2$: (0.044, 0.150)

$$\frac{0.532 - 0.435}{\sqrt{\frac{0.5257(0.4743)}{5045}}} = \frac{2 = \frac{\hat{R}_1 - \hat{R}_2}{\sqrt{\frac{\hat{P}(1-\hat{P})}{n_1} + \frac{\hat{P}(1-\hat{P})}{n_2}}}}{\sqrt{\frac{\hat{P}(1-\hat{P})}{5045} + \frac{\hat{P}(1-\hat{P})}{363}}} = \frac{\frac{\hat{P}_1 - \hat{R}_2}{\sqrt{\frac{\hat{P}(1-\hat{P})}{n_1} + \frac{\hat{P}(1-\hat{P})}{n_2}}}}{\sqrt{\frac{0.24934}{5045} + \frac{0.24934}{363}}} = \frac{0.097}{0.02713} = \frac{3.5747}{3.5747}$$

$$95\% \quad C. I. \quad P_1 - P_2 \quad (0.044, 0.150)$$

Sources

- openintro.org/os (Chapter 6)
- An Introduction to Inference for Two Proportions YouTube