Different ways of representing documents and some similarity measures for document clustering

Representation 1: Binary term-document incidence matrix

- Each document is represented by a binary vector $\in \{0,1\}^{|V|}$, Where |V| is size if vocabulary which will be the unique words in the document

Let two documents containing text:

D1: John likes to watch movies. Mary likes movies too.

D2: John likes to watch football games.

List of words	John	likes	to	watch	movies	Mary	too	football	games
D1	1	1	1	1	1	1	1	0	0
D2	1	1	1	1	0	0	0	1	1

Representation 2: Term-document count matrices

•Represent each word of document in terms of number of occurrence (denoted as - $tf_{t,d}$, the number of times term t occurs in document 'd'):

-Each document is a count vector in |V| dimensional space

Let two documents containing text:

D1: John likes to watch movies. Mary likes movies too.

D2: John likes to watch football games.

List of words	John	likes	to	watch	movies	Mary	too	football	games
D1	1	2	1	1	2	1	1	0	0
D2	1	1	1	1	0	0	0	1	1

Representation 2: Disadvantage

Above representation known as Bag of words model (1-gram)

•Disadvantage:

-Vector representation doesn't consider the ordering of words in a document as documents.

•Example: 'John is quicker than Mary' and 'Mary is quicker than John' have the same vectors

-Solution : Use n-gram model where n>1

Representation 2: Disadvantage

—A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term. But, relevance does not increase proportionally with term frequency.

-Rare terms are more informative than frequent terms (stop words like is, am, are.....)

–Example:

- •Consider a term in the query that is rare in the collection (e.g., arachnocentric)
- •A document containing this term is very likely to be relevant to the query arachnocentric
- → We want a higher weight for rare terms like arachnocentric.

But lower weights than for rare terms

Solution: tf-idf scheme

- Statistical measure used to evaluate how important a word is to a document in a collection or corpus
 - TF: Term Frequency, which measures how frequently a term(word) occurs in a document.
 - TF(t) = (Number of times term t appears in a document) / (Total number of terms in the document)
 - IDF: Inverse Document Frequency, which measures how important a term is.
 - $IDF(t) = log_e(Total number of documents / Number of documents with term t in it).$

Example

- Consider a document containing 100 words
- wherein the word cat appears 3 times.
- The term frequency (i.e., tf) for cat is then (3 / 100) = 0.03.
- Now, assume we have 10 million documents and the word cat appears in one thousand of these.
- Then, the inverse document frequency (i.e., idf) is calculated as log(10,000,000 / 1,000) = 4.

Thus, the Tf-idf weight is the product of these quantities:
 0.03 * 4 = 0.12.

Representation 3: Word2vec

- •Set of models that are used to produce *word embeddings* where words or phrases from the vocabulary are mapped to vectors of real numbers.
- •input a large corpus of text and produces a vector space, typically of *several* hundred dimensions, with each unique word in the corpus being assigned a corresponding vector

•Captures the syntax and semantic relations between two documents.

Word2vec Continued.....

- •The purpose and usefulness of Word2vec is to group the vectors of similar words together in vector space.
- •Given enough data, usage and contexts, Word2vec can make highly accurate guesses about a word's meaning based on past appearances

•Here's a list of words associated with "Sweden" using Word2vec, in order of proximity:

Word	Cosine distance
norway	0.760124
denmark	0.715460
finland	0.620022
switzerland	0.588132
belgium	0.585835
netherlands	0.574631
iceland	0.562368
estonia	0.547621
slovenia	0.531408

Word2vec Continued.....

It does so in one of two ways, either using context to predict a target word (a method known as continuous bag of words, or CBOW), or using a word to predict a target context, which is called skip-gram

Word2vec: A snapshot

Word vector

How to generate document vector using word2vec?

•After generating word vector of all words in the documents, these word vectors are get averaged to obtain the document vector.

•Example:

Let a document have three words w1, w2 w3

their corresponding word vector: v1,v2,v3

document vector= (v1+v2+v3)/3

Computing similarity/dissimilarity between two document vectors

- Cosine Similarity
- Symmetric conditional probability based similarity
- Correlation
- Euclidean Distance
- Squared Euclidean distance
- Jaccard coefficient

Cosine similarity

• $d = (x_1, x_2, x_3, ..., x_n) \rightarrow vector in an n-dimensional vector space.$

Length of x is given by (extension of Pythagoras's theorem):

$$|d|^{2} = x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + ... + x_{n}^{2}$$

$$|d| = (x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + ... + x_{n}^{2}) \frac{1}{2}$$

If d₁ and d₂ are document vectors: Inner product (or dot product) is given by :

$$d_1 . d_2 = x_{11}x_{21} + x_{12}x_{22} + x_{13}x_{23} + ... + x_{1n}x_{2n}$$

Cosine angle between the docs d₁ and d₂ determines doc similarity:

$$Cos(\theta) = \frac{d_1 \cdot d_2}{\|d_1\| \|d_2\|}$$

 $cos(\Theta) = 1$; documents exactly the same; = 0, totally different

Example

	ant	bee	cat	dog	eel	fox	gnu	hog
d_1	1	1						
d_2	1	1		1				1
d_3			1	1	1	1	1	

length
$$\sqrt{2}$$
 $\sqrt{4}$ $\sqrt{5}$

Ex: length $d_1 = (1^2+1^2)^{1/2}$

	d_1	d_2	d_3
d_1	1	0.71	0
d_2	0.71	1	0.22
d_3	0	0.22	1

SCP based similarity

It is calculated as

$$SCP(w_1, w_2) = \frac{P(w_1, w_2)^2}{P(w_1) \times P(w_2)}$$

where,

- P(.,.) is the joint probability of two tokens $(w_1 \text{ and } w_2)$ appearing in the same word feature vector
- *P(.) is the* marginal probability of any token appearing in a word feature vector.

Example input

- they will call to office in Chennai
- he needs to call to his mother in Hyderabad
- why dont you call to your office and take leave today

Corresponding Word vocabulary

- 1. They
- 2. Will
- 3. Call
- 4. To
- 5. Office
- 6. In
- 7. Chennai
- 8. He
- 9. Need
- 10. His
- 11. Mother
- 12. Hyderabad
- 13. Why
- 14. Do-nt
- 15. You
- 16. Your
- 17. And
- 18. Take
- 19. Leave
- 20. today

	Thev	Will	Call	To	Office	_ u	Chennai	He	Need	His	Mother	Hydraba	Why	Dont	You	Your	And	Take	Leave	today	
They	1																				
Will		1																			
Call			1		0.7				Т	Т	Т										
То				1																	
Office			0.7																		
In			0.7								4										
Chennai																					
He																					
Need																					
His																					
Mother								_													
Hydrabad																					
Why											T										\Box
Dont																					
You																					
Your									\perp	\perp	_							L	\perp		Ш
And																					
Take																					
Leave																					
today																					

- Example: To calculate SCP(call,office)
- P(call,office) $^2 \rightarrow (2/3)^2$
- $P(call) \rightarrow (3/3)$
- P(office) \rightarrow (2/3)

• SCP(call,office)={(4/9)*(3/3)*(3/2)}=0.7

In order to calculate similarity between two documents this SCP measure can be used in the following way,

$$S(d_i, d_j) = \frac{1}{\|d_i\| \|d_j\|} \sum_{r=1}^{\|d_i\|} \sum_{b=1}^{\|d_j\|} SCP(w_i^r, w_j^b)$$

Where, $S(d_i, d_j) \rightarrow similarity between two documents <math>d_i$ and d_j .

Correlation

- The dot product of the term vectors of two documents gives an indication to the correlation between the documents.
- This is based on the intuition that documents that describe similar topic are more likely to share words.

The correlation between two documents d_i and d_j due to textual content is given by

$$C_{ij} = d_i \bullet d_j$$

Example of correlation

	ant	bee	cat	dog	eel	fox	gnu	hog
d_1	1	1						
d_2	1	1		1				1
d_3			1	1	1	1	1	

length $\sqrt{2}$ $\sqrt{4}$

Ex: length $d_1 = (1^2 + 1^2)^{1/2}$

$$C_{d1d2} = d_1 \cdot d_2 = (1*1) + (1*1) + (0*0) + (0*1) + (0*0) + (0*0) + (0*0) + (0*1) = 2$$

Euclidean distance

- Adds up all the squared distances between data points x and y, and takes the square root of the result.

$$\sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

-Example: (x1,y1)=(2,4), (x2,y2)=(2,2)

$$\sqrt{(2-2)^2 + (4-2)^2} = 2$$

Euclidean Squared Distance Metric

•The Euclidean Squared distance metric uses the same equation as the Euclidean distance metric.

•It does not take the square root. As a result, clustering with the Euclidean Squared distance metric is faster than clustering with the regular Euclidean distance.

$$\sum_{i=1}^n (x_i - y_i)^2$$

Jaccard Cofficient

- measures similarity between finite sample sets
 - also known as Intersection over Union

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

•
$$J(A,A) = 1$$

• $J(A,B) = 0$ if $A \cap B = 0$

- •A and B don't have to be the same size.
- Always assigns a number between 0 and 1.

$$J(A,B) = \frac{|\{1,4,7\}|}{|\{1,2,3,4,5,7,9\}|} = \frac{3}{7} = 0.429$$

