Database Management System

Lecture 15: Database Design

Contents

- Entity Relationship Diagram (ERD)
- Entity
- Attributes
- Relationships (Degree/Types)
- Constraints
 - Mapping Cardinalities/Relationship Types

Database: library management system

- authors (<u>author_id</u>, author_name, author_address)
- publisher (<u>publisher_id</u>, name, address)
- books(<u>book_id</u>, book_title, <u>author_id</u>, <u>publisher_id</u>, price, qunatity)
- borrowers(<u>id</u>, firstname, lastname, phone, email, address)
- borrow_book (<u>id</u>, <u>borrower_id</u>, <u>book_id</u>, borrowing_date, return_date)

Database: ecommerce

- Company(company_id, name, contact, address)
- Customer(<u>cust_id</u>, name, phone, city)
- Product(<u>pro_id</u>, name, description, unit_price, quantity, <u>comp_id</u>)
- Order(<u>order_id</u>, <u>cust_id</u>, <u>pro_id</u>, order_date, total_price)

Database: **student Management System**

- Department(<u>dept_id</u>, dept_name, dept_location)
- Teacher(<u>teacher_id</u>, name, phone, designation, salary, city, <u>dept_id</u>)
- Student(<u>student id</u>, name, roll, phone, cgpa, city, <u>dept_id</u>)
- Courses (<u>course id</u>, title, credit, description, teacher_id)
- Enroll_course(<u>id</u>, <u>course_id</u>, <u>student_id</u>, enroll_date)

Creating Database

 You have to design a database system for **Blood Bank Management** where the system will maintain the list of donors and recipients. It will keep blood history those are available in inventory. Anyone can send request for asking any blood.

Creating Database

- You have to design a database system for Blood Bank Management that requires tables for managing donors, blood inventory, recipients, and requests.
 - The **Donors** table should store details like donor ID, name, blood type, contact information, and donation history.
 - The Blood Inventory table tracks blood units with fields for blood type, available units, and expiry dates.
 - A Recipients table records recipient information, such as name, blood type, contact details, and hospital affiliation.
 - A Blood Requests table manages requests with fields for recipient ID, requested blood type, units needed, request status, and request date.

Entity Relationship Diagram - Internet Sales Model

Entity Relationship Model

Entity:

- An entity is an object that exists and is distinguishable from other objects.
- Example: specific person, company, event, plant

Relationships:

- Correlations/Association among entities
- Example: employee works_for company,
 Instructor teaches students

Attributes

- An entity is represented by a set of attributes
- Descriptive properties possessed by all members of an entity set
- Types
 - Simple
 - Single Valued
 - Multi valued
 - Composite
 - Stored
 - Derived
 - Complex [Composite-multi valued]
 - Simple-single valued, simple-multivalued, single derived, single-composite

Attributes Details

Simple

- Simple attributes are atomic values, which cannot be divided further
- Example: Person(id, name, phone, address, age, dob, email)
- Single Valued
 - It holds only one value
 - Example: Person(id, name, phone, address, age, dob, email)

Multi-valued

It may contain more than one values
 Example: phone, email

Attributes Details

Derived

- Which can be derived from another attribute or set of attributes
- Example: age → dob

Composite

- Composite attributes are made of more than one simple attribute
- Example: full name → firstname, lastname

Complex [Composite multi-valued]

- Combination of composite and multi-valued attributes
- Example: Address
- Present address (post code, district, country)
- Permanent address (Same pattern)
- §/24/Simple-single valued, simple-multivalued, single-derived single-composite

Representing Attributes with Entities

Employees(*id*, name, email, phone, address, dob, gender, designation, salary)

Relationships

- Degree
 - Unary (1 Degree): CR *inform* Students
 - Binary (2 Degree): instructor *teaches* Student
 - Ternary (Three/More degree): instructor, Room, Students (*Teaches*)
- Types/ Mapping Cardinalities Constraints
 - One to One
 - One to Many/ Many to One
 - Many to Many
 - Recursive Relationship
- Attributes for Relationship: Employee works for department (Start Date)

Database: **student Management System**

- Department(<u>dept_id</u>, dept_name, dept_location)
- Teacher(<u>teacher_id</u>, name, phone, designation, salary, city, <u>dept_id</u>)
- Student(<u>student id</u>, name, roll, phone, cgpa, city, <u>dept_id</u>)
- Courses (<u>course id</u>, title, credit, description, teacher_id)
- Enroll_course(<u>id</u>, <u>course_id</u>, <u>student_id</u>, enroll_date)

One to One

- One entity from entity set A can be associated with at most one entity of entity set B and vice versa.
- Example: Employee *manages* department

One to Many

- One entity from entity set A can be associated with more than one entities of entity set B however an entity from entity set B, can be associated with at most one entity.
- Example: Department Controls projects

Many to Many

- One entity from A can be associated with more than one entity from B and vice versa.
- Example: employees works_on projects

END OF LECTURE