

III SEMESTER MCA IN SEMESTER EXAMINATION – I, 23 NOV 2021

SUBJECT: MACHINE LEARNING (MCA-5152)

Time: 110 Minutes MAX. MARKS: 30

Note: Answer ALL the questions.

1	Consider the following data set which predicts whether a customer is a 'Loan									4			
	Non-Defaulter' based on the 'Amount of Savings (in Lakhs)'. The logistic regression analysis on the training data set using the maximum likelihood estimate gave the following output. The coefficients are β_0 = -4.07778 and β_1 = 1.5046. a. For the following test data set predict the class label using Logistic Regression												
	b. Compute the Confusion Matrix of the Classifier Model and comment on the Performance.												
	Savings	0.5	0.85	1	1.25	1.75	1.75	2.25	3.25	4.25	5		
	(in Lakhs)	0.5	0.03	1	1.23	1.73	1.73	2.23	3.23	4.23	3		
	Non-	0	0	0	0	0	1	1	1	1	1		
		U	U	U	U	U	1	1	1	1	1		
	Defaulter		<u> </u>										
2	For the following Neural Network: a. Consider a training instance [0,1,0,1]. Compute the Output at F after feed of the training instance to the neural network. b. After 1 instance of the training, compute the change in weights of the Neural Network.										3		
	0.1												
	0	0.9											
	(5			0.4								
3	With suitable examples, differentiate between:										3		
	a. Bias vs. Variance												
	b. Param			s vs.	Non p	aramet	ric Mo	dels					
					rd Clus								
	1. 2011 0		₀ , 0			5							
4	What is Induc	rtive 1	Riac? I	ict	any tu	n hias	es that	can b	imno	sed on	a m	achine	2
7	learning mode		Dias: 1	_13t	any tw	o oraș	cs mat	Can D	c mpo	sca on	a III	aciiiic	
	rearning mode	71											

5	What is over fitting? What are the strategies to avoid overfitting in a decision tree induction model?								on tree	
6	Ms. Jepkoech, a Data Analyst at the Smart Swiss Biscuits Ltd, summarized statistics of two data sets of biscuit strength measurements as shown below: Sample A: 209 129 194 132 173 381 282 283 518 267 Sample B: 203 274 381 282 283 518 267 309 334 417 422. a. Compute the 5 number summary for the given samples A and B individually. b. Draw the side-by-side boxplot for the data given. Draw your inferences.									
7	Given the following data predict whether the tuple (1.5, 2.5) belongs to Class A or Class B using the principles of Maximum Likelihood Estimation.									
				μχ	μу	σx	$\sigma_{\rm y}$			
			Class	A -0.09	5.83	4.02	0.78			
			Class	B -2.78	-2.04	2.08	0.80			
8		t does the c Accuracy M below. (i) Accura (iii) sensiti	leasures cy Rate	-	ite them	from the		matrix pr		
8		Accuracy M below. (i) Accura	leasures cy Rate vity	-	(ii) Mi (iv) spe	from the sclassificity	e confusion	matrix pr		
8		Accuracy Modelow. (i) Accura (iii) sensiti	leasures cy Rate vity es	and compu	(ii) Mi (iv) spe	from the sclassificity	e confusion cation Rate mputer =	matrix pr		
8		Accuracy Modelow. (i) Accura (iii) sensiti classe buy com	leasures cy Rate vity es puter s	buy com	(ii) Mic (iv) spe	from the sclassificity	e confusion cation Rate mputer =	matrix pr		

9	Write down the basic steps of performing Gradient descent Algorithm with relevant formulae / Equations where necessary. Also write the objective function of Gradient Descent for a Linear Regression problem.						
10	Answer the following: a) Define the terms Line, Plane and Hyperplane in the context of SVM. b) What is MMH (Maximum Margin Hyperplane) in SVM?	2					
	c) Illustrate the concept of MMH with a neat labelled diagram for a binary classification problem.d) Write the distance formula for MMH describing the variables.						
11	What is the role of a Regularizer on a Cost function? Write the mathematical representation of a cost function using a Regularizer and explain all the variables.	2					