Etude des matrices de Wigner à entrées gaussiennes complexes

- Documents autorisés.
- La clarté et la précision de la rédaction seront prises en compte dans l'évaluation finale.
- Il n'est pas nécessaire de répondre à toutes les questions pour avoir la note maximale.

Le modèle de Wigner à entrées gaussiennes complexes

On dit qu'une variable X est une gaussienne complexe centrée réduite, notée $X \sim \mathcal{N}_{\mathbb{C}}(0,1)$, si

$$X = \frac{U + iV}{\sqrt{2}} ,$$

où U et V sont des gaussiennes réelles indépendantes, centrées et réduites, i.e. $U, V \sim \mathcal{N}(0, 1)$. On vérifiera que pour une telle variable,

$$\mathbb{E}(X) = 0$$
, $\mathbb{E}|X|^2 = 1$, $\mathbb{E}(X^2) = 0$.

On appelera matrice de Wigner a entrées gaussiennes complexes une matrice $X = (X_{k\ell}; 1 \le k, \ell \le n)$ de dimensions $n \times n$ définie par

- Les $X_{k\ell}$ sont indépendantes pour $1 \le k \le n$ et $k \le \ell \le n$ (= entrées sur et au dessus de la diagonale indépendantes).
- Pour $k > \ell$, $X_{k\ell} = \overline{X_{\ell k}}$.
- $X_{kk} \sim \mathcal{N}(0,1)$ et $X_{k\ell} \sim \mathcal{N}_{\mathbb{C}}(0,1)$ pour k < n.

Une telle matrice est hermitienne, avec entrées réelles sur la diagonale et complexes au dessus. L'objectif du problème est d'étudier les propriétés du spectre de $\frac{1}{\sqrt{n}}X$ lorsque $n \to \infty$.

Rappels et compléments

La loi du demi-cercle

La loi du demi-cercle est une distribution de probabilité sur $\mathbb R$ définie par

$$\mathbb{P}_{sc}(dx) = \frac{1}{2\pi} \sqrt{(4-x^2)_+}$$
 où $x_+ = \max(x,0)$.

La transformée de Stieltjes $g_{sc}(z)=\int_{\mathbb{R}}\frac{\mathbb{P}_{sc}(d\lambda)}{\lambda-z}$ est l'unique solution X de l'équation

$$X^2 + zX + 1 = 0$$

qui est une transformée de Stieltjes.

Formules de dérivation de la résolvante

Étant donnée une matrice hermitienne X $n \times n$ et la résolvante

$$Q(z) = \left(\frac{1}{\sqrt{n}}X - zI_n\right)^{-1} . \tag{1}$$

On peut montrer facilement les formules de différentiation suivantes :

$$\frac{\partial Q_{ij}}{\partial \text{Re}(X_{k\ell})} = -\frac{1}{\sqrt{n}} \left(Q_{ik} Q_{\ell j} + Q_{i\ell} Q_{kj} \right) \quad \text{pour} \quad k \neq \ell, \tag{2}$$

$$\frac{\partial Q_{ij}}{\partial \text{Im}(X_{k\ell})} = -\frac{\mathbf{i}}{\sqrt{n}} \left(Q_{ik} Q_{\ell j} - Q_{i\ell} Q_{kj} \right) \quad \text{pour} \quad k \neq \ell,$$
(3)

$$\frac{\partial Q_{ij}}{\partial X_{kk}} = -\frac{1}{\sqrt{n}} Q_{ik} Q_{kj} . \tag{4}$$

On rappelle que pour z = x + iy,

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$$
 et $\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$.

Formule d'intégration par parties et inégalité de Poincaré

Étant donné un vecteur gaussien **réel** centré $\vec{x} = (X_1, \dots, X_n)^T$, de matrice de covariance $R = \mathbb{E}(\vec{x}\vec{x}^T)$ et $\Phi : \mathbb{R}^n \to \mathbb{C}$ une fonction régulière de croissance au plus polynomiale à l'infini, alors on a l'identité suivante :

$$\mathbb{E}X_i\Phi(X_1,\cdots,X_n) = \sum_{k=1}^n R_{ik}\mathbb{E}\frac{\partial}{\partial X_k}\Phi(X_1,\cdots,X_n) ,$$

appelée formule d'intégration par parties.

Si de plus Φ admet des dérivées partielles de croissance au plus polynomiale à l'infini, alors

$$\operatorname{var}(\Phi(\vec{x})) \leq \sum_{1 \leq i,j \leq n} R_{ij} \mathbb{E} \frac{\partial \Phi}{\partial X_i} \overline{\left(\frac{\partial \Phi}{\partial X_j}\right)} .$$

En particulier, si les composantes X_i du vecteur \vec{x} sont indépendantes, chacune de variance σ_i^2 , alors

$$\mathbb{E}X_i\Phi(X_1,\cdots,X_n) = \sigma_i^2 \mathbb{E}\frac{\partial}{\partial X_i}\Phi(X_1,\cdots,X_n) \quad \text{et} \quad \text{var}(\Phi(\vec{x})) \leq \sum_{i=1}^n \sigma_i^2 \mathbb{E}\left|\frac{\partial\Phi}{\partial X_i}\right|^2.$$

Préliminaires

Soit X une matrice de Wigner et Q la résolvante définie en (1).

1. [1 pt] Montrer que pour $k \neq \ell$,

$$\frac{\partial Q_{ij}}{\partial X_{k\ell}} = -\frac{1}{\sqrt{n}} Q_{ik} Q_{\ell j} \; , \quad \frac{\partial Q_{ij}}{\partial \overline{X}_{k\ell}} = -\frac{1}{\sqrt{n}} Q_{i\ell} Q_{kj} \; .$$

Soit $\Phi: \mathbb{C}^{n \times n} \to \mathbb{C}$ une fonction satisfaisant les hypothèses pour l'i.p.p. et l'inégalité de Poincaré.

2. [2 pts] Montrer que

$$\mathbb{E} X_{k\ell} \Phi(X) = \mathbb{E} \frac{\partial}{\partial \overline{X_{k\ell}}} \Phi(X) \quad \text{et} \quad \mathbb{E} \overline{X_{k\ell}} \Phi(X) = \mathbb{E} \frac{\partial}{\partial X_{k\ell}} \Phi(X) \; .$$

3. [2 pts] Soit $\varphi : \mathbb{C} \to \mathbb{C}$ différentiable et z = x + iy. Montrer que

$$\left|\frac{\partial\varphi}{\partial z}\right|^2 + \left|\frac{\partial\varphi}{\partial \bar{z}}\right|^2 = \frac{1}{2}\left\{\left|\frac{\partial\varphi}{\partial x}\right|^2 + \left|\frac{\partial\varphi}{\partial y}\right|^2\right\}$$

4. [2 pts] En remarquant que

$$\Phi(X) = \Phi(X_{kk}, \operatorname{Re}(X_{k\ell}), \operatorname{Im}(X_{k\ell}); 1 \le k, \ell \le n; k < \ell)$$

montrer que

$$\operatorname{var} \Phi(X) \leq \sum_{k=1}^{n} \mathbb{E} \left| \frac{\partial \Phi(X)}{\partial X_{kk}} \right|^{2} + \frac{1}{2} \sum_{k < \ell} \mathbb{E} \left| \frac{\partial \Phi(X)}{\partial \operatorname{Re}(X_{k\ell})} \right|^{2} + \frac{1}{2} \sum_{k < \ell} \mathbb{E} \left| \frac{\partial \Phi(X)}{\partial \operatorname{Im}(X_{k\ell})} \right|^{2} ,$$

$$\leq \sum_{k=1}^{n} \mathbb{E} \left| \frac{\partial \Phi(X)}{\partial X_{kk}} \right|^{2} + \sum_{k < \ell} \mathbb{E} \left| \frac{\partial \Phi(X)}{\partial X_{k\ell}} \right|^{2} + \sum_{k < \ell} \mathbb{E} \left| \frac{\partial \Phi(X)}{\partial \overline{X}_{k\ell}} \right|^{2} .$$

5. [3 pts] Soit $g_n(z) = \frac{1}{n} \operatorname{Trace} Q(z)$. Montrer pour $k < \ell$

$$\frac{\partial g_n(z)}{\partial X_{kk}} = \alpha_n[Q^2]_{kk} , \quad \frac{\partial g_n(z)}{\partial X_{k\ell}} = \beta_n[Q^2]_{\ell k} , \quad \frac{\partial g_n(z)}{\partial \overline{X}_{k\ell}} = \delta_n[Q^2]_{k\ell} ,$$

où α_n , β_n et δ_n sont des constantes dépendant de n à déterminer.

6. [4 pts] Démontrer que

$$\operatorname{var} g_n(z) \leq \frac{1}{n^3} \mathbb{E} \operatorname{Trace} Q^2(z) Q^2(\bar{z}) = \mathcal{O}_z\left(\frac{1}{n^2}\right)$$

7. [1 pt] Soit f la transformée de Stieltjes d'une probabilité sur \mathbb{R} . Montrer que

$$g(z) = -\frac{1}{z + f(z)}$$

est la transformée de Stieltjes d'une probabilité sur \mathbb{R} . En déduire une majoration de $|z+f(z)|^{-1}$.

8. [3 pts] Soit $z \mapsto g_{\delta}(z)$ la transformée de Stieltjes d'une mesure de probabilité sur \mathbb{R} , solution de l'équation

$$g_{\delta}^2 + zg_{\delta} + 1 = \delta .$$

Montrer que $g_{\delta}(z) - g_{sc}(z) = \mathcal{O}_z(\delta)$

Convergence de la mesure spectrale

On prendra $z \in \mathbb{C}^+$.

9. [1 pt] En utilisant l'identité $Q^{-1}Q = I$, montrer que pour $i, j \in \{1, \dots, n\}$

$$\frac{1}{\sqrt{n}} \mathbb{E} X_{ii} Q_{ij} + \frac{1}{\sqrt{n}} \sum_{k \neq i} \mathbb{E} \left(X_{ik} Q_{kj} \right) - z \mathbb{E} Q_{ij} = \delta_{ij}$$

10. **[2 pts]** En déduire que

$$-\frac{1}{n}\mathbb{E}\left(Q_{ij}\sum_{k=1}^{n}Q_{kk}\right) - z\mathbb{E}Q_{ij} = \delta_{ij}.$$

11. **[3 pts]** Puis que

$$[\mathbb{E}g_n(z)]^2 + z\mathbb{E}g_n(z) + 1 = \mathcal{O}_z\left(\frac{1}{n^2}\right).$$

12. [2 pts] En déduire que

$$\mathbb{E}g_n(z) - g_{sc}(z) = \mathcal{O}_z\left(\frac{1}{n^2}\right) . \tag{5}$$

13. [2 pts] Soit L_n la mesure spectrale de la matrice $\frac{1}{\sqrt{n}}X$. Montrer que presque sûrement

$$L_n \xrightarrow{\mathcal{D}} \mathbb{P}_{sc}$$
,

où $\xrightarrow{\mathcal{D}}$ représente la convergence en distribution.