Chapter 16 Exercises Gallian's Book on Abstract Algebra

Spencer T. Parkin

March 6, 2014

Exercise 5

Prove Corollary 1 of Theorem 16.2.

Let F be a field, $a \in F$, and f(x) = F[x]. Then f(a) is the remainder in the division of f(x) by x - a.

Proof: The case when $\deg f = 0$ is easily verified. Now let $\deg f > 0$ and suppose the statement is true for all polynomials of degrees $\deg f - 1$. Let $f(x) = a_n x^n + \cdots + a_0$. As we begin to divide x - a into f using the defintion algorithm, we get $f(x) = (x - a)a_n x^{n-1} + g(x)$, where $g(x) = f(x) - (x - a)a_n x^{n-1}$. Now since $\deg g = \deg f - 1$, we see, by our inductive hypothesis, that for a quotient g(x), we have g(x) = (x - a)g(x) + g(a). It now follows that

$$f(x) = (x - a)a_n x^{n-1} + g(x)$$

= $(x - a)a_n x^{n-1} + (x - a)q(x) + g(a)$
= $(x - a)(a_n x^{n-1} + g(x)) + f(a)$.

Here, the quotient upon dividing f(x) by x - a is $a_n x^{n-1} + q(x)$ and the remainder is f(a), as claimed in the statement of the theorem.

Exercise 7

Prove Corollary 2 of Theorem 16.2.

Let F be a field, $a \in F$, and $f(x) \in F[x]$. Then a is a zero of f(x) if and only if x - a is a factor of f(x).

Proof: by Corollary 1 of Theorem 16.2, there exists a quotient q(x) such that

$$f(x) = (x - a)q(x) + f(a).$$

Using this equation, it is clear that if a is a zero of f, then x - a is a factor of f. Conversely, if x - a is a factor of f, then a is a zero of f.

Exercise 10

If the rings R and S are isomorphic, show that R[x] and S[x] are isomorphic. Let ϕ be an isomorphism between the rings R and S. Now define the function $\Psi: R[x] \to S[x]$ as

$$\Psi(f) = \phi(a_n)x^n + \phi(a_{n-1})x^{n-1} + \dots + \phi(a_0),$$

where $f \in R[x]$ is the polynomial given by

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0.$$

Clearly Ψ is onto S[x] since ϕ is onto S, and Ψ is one-to-one since ϕ is one-to-one. Lastly, Ψ preserves the addition and multiplication, because ϕ does. It can be shown, but I'm going to be lazy.

Exercise 16

Show that Corollary 3 of Theorem 16.2 is false for any commutative ring that has a zero divisor.

Let R be such a ring, and consider R[x]. Let $a \in R$ be a zero-divisor. Then there exists a non-zero element $b \in R$ such that ab = 0. Now consider the polynomial f(x) = ax in R[x], and realize that $\deg f = 1$, yet 0 and b are distinct zeros of f.

Exercise 18

Prove that the ideal $\langle x \rangle$ in Q[x] is maximal.

Let $\phi: Q[x] \to Q$ be defined as $\phi(f) = f(0)$. This is a homomorphism from Q[x] to Q and $\ker \phi = \langle x \rangle$. It then follows by Theorem 15.3, that

$$Q[x]/\langle x \rangle = Q[x]/\ker \phi \approx \phi(Q[x]) = Q.$$

Now since Q is a field, we know that $Q[x]/\langle x \rangle$ is a field. We can now claim that $\langle x \rangle$ is a maximal ideal of Q[x] by Theorem 14.4.

Exercise 24

Let $f(x) \in R[x]$. Suppose that f(a) = 0 but $f'(a) \neq 0$, where f'(x) is the derivative of f(x). Show that a is a zero of f(x) of multiplicity 1.

It follows immediately that

$$f(x) = (x - a)^k q(x),$$

where k is the multiplicity of a as a zero of f. (The integer k here in this equation is as large as it can be so that there exists such a quotient $q(x) \in R[x]$ with no remainder.) The derivative of f is then given by

$$f'(x) = k(x-a)^{k-1}q(x) + (x-a)^k q'(x) = (x-a)^{k-1}(kq(x) + (x-a)q'(x)).$$

But a is not a zero f', so we must have k = 1.

Exercise 26

Show that Corollary 3 of Theorem 16.2 is true for polynomials over integral domains.

Revisiting the proof of this theorem in the text, it only used the fact that a field is an integral domain. (No where did the proof depend upon properties of a field that set it apart from an integral domain.) The theorem therefore holds for integral domains as well.

Exercise 30

Find infinitely many polynomials f(x) in $Z_3[x]$ such that f(a) = 0 for all a in Z_3 .

Consider the set of polynomials $\{x^k(x-1)(x-2)\}_{k=1}^{\infty}$.

Exercise 36

If I is an ideal of a ring R, prove that I[x] is an ideal of R[x].

Let $f \in R[x]$ and $g \in I[x]$. Then $fg \in I[x]$ and $gf \in I[x]$, since all coefficients of fg and gf are in I, since I is an ideal of R.

Exercise 44

For any field F, recall that F(x) denotes the field of quotients of the ring F[x]. Prove that there is no element in F(x) whose square is x.

Elements of F(x) are of the form f(x)/g(x) where $f(x), g(x) \in F[x]$ with $g(x) \neq 0$. Now see that $(f(x)/g(x))^2 = x$ if and only if $f(x)^2 = xg(x)^2$. But deg f^2 is even while deg xg^2 is odd, so this can't happen.