Analysis 1 Skript

Dominic Zimmer

28. Oktober 2015

Inhaltsverzeichnis

1	Bew	eisprinzipien 3
	1.1	Logik
	1.2	Axiome
	1.3	Direkter Beweis
		1.3.1 Beispiel
	1.4	Kontraposition
	1.5	Widerspruch
	1.6	Induktion
	1.7	Summennotation
	1.8	Gaußformel
	1.9	Fakultät
		1.9.1 Notation
		1.9.2 Binomailkoeffizient
	1.10	Lemma: Binomialkoeffizient
	1.11	Binomischer Lehrsatz
2	Men	gen 6
_	2.1	Mengen nach Cantor
		2.1.1 Schreibweisen
	2.2	Mengenoperatoren
	2.3	Wichtige Mengen
	2.4	Quantoren
	2.5	Verneinung von Quantoren
	2.6	Vereinigung und Schnitt
	2.7	De Morgan
	2.8	Abbildungen
		2.8.1 Definition
		2.8.2 Eigenschaften
	2.9	Komposition
		Identitätsabbildung
		Umkehrabbildung
		Kardinalitäten
	2.12	2.12.1 Definition
		2.12.2 Abzählbar
		2.12.3 Überabzählbar
	0 19	Vardinalität van D

1 Beweisprinzipien

1.1 Logik

Die Aussagenlogik befasst sich mit Aussagen, welche (w)ahr oder (f)alsch sein können. Aus den Operatoren

• Negation:

$$\neg a = \begin{cases} w & \text{falls } a \equiv f. \\ f & \text{falls } a \equiv w. \end{cases}$$

• Konjunktion:

$$a \vee b = \begin{cases} w & \text{falls } a \equiv w \text{ oder } b \equiv w \text{ (oder beide)}. \\ f & \text{sonst.} \end{cases}$$

• Disjunktion:

$$a \wedge b = \begin{cases} w & \text{falls } a \equiv w \text{ und } b \equiv w. \\ f & \text{sonst.} \end{cases}$$

• Implikation:

$$a \to b = \begin{cases} f & \text{falls } a \equiv w \text{ und } b \equiv f. \\ w & \text{sonst.} \end{cases}$$

• Äquivalenz:

$$a \leftrightarrow b = \begin{cases} w & \text{falls } a \equiv b. \\ f & \text{sonst.} \end{cases}$$

lassen sich aus bereits bestehenden aussagelogischen Ausdrücken Weitere bilden. Auch lassen sich einfach aus den Definitionen Gesetzmäßigkeiten ableiten.

1.2 Axiome

Axiome sind grundliegende Aussagen, die nicht weiter zurückgeführt werden (können). Wir beweisen, indem wir Aussagen auf Axiome zurückführen.

1.3 Direkter Beweis

Ein *Direkter Beweis* wird geführt, indem man eine Aussage A annimmt und ausgehend von dieser eine weitere Aussage B beweist.

1.3.1 Beispiel

Wir wollen zeigen, dass folgende Aussage korrekt ist:

Das Quadrat einer geraden Zahl ist wiederum gerade.

Beweis. Sei $a \in \mathbb{N}$ eine gerade Zahl, welche sich also auch als $a = 2 \cdot k$ darstellen lässt. Betrachten wir nun das Quadrat von a, so gilt:

$$a^2 = (2 \cdot k)^2 = 2^2 \cdot k^2 = 4k^2 = 2 \cdot (2k^2)$$

Somit hat also $a^2 = 2 \cdot (2k^2)$ eine Zwei als Teiler und ist somit gerade.

1.4 Kontraposition

Statt die Implikation $A \to B$ zu beweisen, können wir auch $\neg B \to \neg A$ beweisen. Wir nehmen also an, dass das zu zeigende nicht gilt und folgern daraus, dass unsere Annahme nicht gilt.

1.5 Widerspruch

Wir können eine Aussage A auch beweisen, indem wir $\neg A$ annehmen und daraus einen Widerspruch folgern.

1.6 Induktion

Das Prinzip der vollständigen Induktion besagt:

Ist A(n) eine Aussage mit $n \in \mathbb{N}$, so können wir diese Gültigkeit dieser Aussage für alle $n > n_0$ zeigen, indem wir

- Die Gültigkeit der Aussage $A(n_0)$ zeigen und
- Aus der Annahme, dass die Aussage A(n) für ein festes $n \in \mathbb{N}$ bereits gilt, darauf schließen, dass auch A(n+1) gilt.

1.7 Summennotation

Seien a_i $(i \in \mathbb{N})$ eine Familie von Zahlen. Wir führen folgende Kurzschreibweise ein:

$$\sum_{k=m}^{n} a_i = a_m + \dots + a_n$$

1.8 Gaußformel

Für alle $n \in \mathbb{N}$ gilt:

$$\sum_{k=1}^{n} k = \frac{n \cdot (n+1)}{2}$$

Beweis. Der Beweis erfolg einfach durch Induktion oder alternativ durch geschicktes, zweifaches Summieren obiger Summe.

1.9 Fakultät

1.9.1 Notation

Wir definieren

$$n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n = \prod_{k=1}^{n} k$$

als die Fakultät von $n \in \mathbb{N}$.

1.9.2 Binomailkoeffizient

Wir verwenden die Fakultät zur Definition des Binomialkoeffizientens, den wir als n über k oder k aus n lesen:

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

1.10 Lemma: Binomialkoeffizient

Für alle $1 \le k \le n$ gilt:

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Beweis. Nachrechnen. Eine Intuition für die Korrektheit erhält man leicht durch das Pascal'sche Dreieck.

1.11 Binomischer Lehrsatz

Für alle $x, y \in \mathbb{R}$ und $n \in \mathbb{N}$ gilt:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k \cdot b^{n-k}$$

Beweis. Der Beweis erfolgt leicht durch Induktion über n.

2 Mengen

2.1 Mengen nach Cantor

Cantos naive Mengendefinition besagte:

Eine Menge ist eine Zusammenfassung wohlbestimmter und wohlunterscheidbarer Objekte unserer Anschauung oder unseres Denkens zu einem Ganzen.

Diese naive Definition birgt einige Widersprüche; zum Beispiel erlaubt sie die Menge aller Mengen.

2.1.1 Schreibweisen

Wir benutzen folgende Schreibweisen im Umgang mit Mengen:

- $M = \{x_1, x_2, \dots, x_n\}$: Die Menge mit den Elementen x_1, x_2, \dots, x_n und Kardinalität #M = |M| = n
- $x \in M : x$ ist Element der Menge M
- $N \subset M$: N ist eine Teilmenge der Menge M

2.2 Mengenoperatoren

Außerdem definieren wir für Zwei Mengen M und N

i) die Vereinigung von M und N:

$$M \cup N = \{x \mid x \in M \lor x \in N\}$$

ii) den Schnitt von M und N.

$$M \cap N = \{x \mid x \in M \land x \in N\}$$

iii) das Komplement von M in N.

$$M \setminus N = \{x \mid x \in M \land x \notin N\}$$

2.3 Wichtige Mengen

Einige wichtige Mengen sind:

- $\emptyset = \{\}$, die *Leere Menge*, welche keine Elemente hat.
- $\mathbb{N} = \{1, 2, 3, \dots\}$, die Natürlichen Zahlen
- $\mathbb{Z} = \{0, 1, -1, 2, -2, \dots\}$, die Ganzen Zahlen
- $\mathbb{Q} = \{ \frac{p}{q} \mid p, q \in \mathbb{Z}, q \neq 0 \}$, die Rationalen Zahlen
- \bullet \mathbb{R} , die Menge der Reellen Zahlen
- $\mathbb{C} = \{(a, b \cdot i) \mid a, b \in \mathbb{R}\}\$

2.4 Quantoren

Quantoren sind Kurzschreibweisen für in der Mathematik häufig benutzte Flosskeln. \exists nennt man Existensquantor und \forall Allquantor. Sei nun X eine Menge und P(x) eine Aussage über x.

- $\forall \in X : P(x)$ für "Für alle $x \in X$ gilt die Aussage P(x)."
- $\bullet \ \exists \in X : P(x)$ für "Es gibt (zumindest) ein $x \in X$ für welches die Aussage P(x) gilt."

2.5 Verneinung von Quantoren

Ausdrücke, welche Quantoren enthalten, werden Verneint, indem man den jeweiligen Existens- oder Allquantor mit dem Anderen ersetzt, und den Ausdruck dahinter verneint. Zum Beispiel:

$$\neg \forall x \in X : \exists y \in Y : P(x, y)$$
$$= \exists x \in X : \neg \exists y \in Y : P(x, y)$$
$$= \exists x \in X : \forall y \in Y : \neg P(x, y)$$

2.6 Vereinigung und Schnitt

Sei $I \subseteq \mathbb{N}$ eine Indexmenge und M_i eine Familie von Mengen. Wir notieren

- $\bullet \bigcup_{i \in I} M_i = M_{i_1} \cup M_{i_2} \cup \dots = \{x \mid \exists i \in I : x \in M_i\}$
- $\bullet \bigcap_{i \in I} M_i = M_{i_1} \cap M_{i_2} \cap \dots = \{x \mid \forall i \in I : x \in M_i\}$

2.7 De Morgan

Sei M_i eine Familie von Mengen, so ist

- $\bullet \ \overline{\bigcup_{i \in I} M_i} = \bigcap_{i \in I} \overline{M_i}$
- $\bullet \ \overline{\bigcap_{i \in I} M_i} = \bigcup_{i \in I} \overline{M_i}$

2.8 Abbildungen

2.8.1 Definition

Seien X und Y Mengen. Wir definieren eine Abbildung oder auch Funktion

$$f: x \longrightarrow Y$$

als eine Vorschrift, die jedem $x \in X$ genau ein $y \in Y$ zurodnet. Wir nennen dabei X den Definitionsbereich und Y den Wertebereich.

2.8.2 Eigenschaften

Wir nennen eine Abbildung $f: X \longrightarrow Y$

- injektiv, wenn $\forall x_1, x_2 \in X : f(x_1) = f(x_2) \rightarrow x_1 = x_2$
- surjektiv, wenn $\forall y \in Y : \exists x \in X : f(x) = y$
- bijektiv, wenn f injektiv und surjektiv ist.

2.9 Komposition

Seien $f: x \longrightarrow Y$ und $g: Y \longrightarrow Z$ Abbildungen. Wir definieren die Komposition $g \circ f: X \longrightarrow Z$ definiert durch

$$g \circ f := g(f(x))$$
 für $x \in X$.

2.10 Identitätsabbildung

Wir nennen $id_x: X \to X$ die *Identitätsabbildung* auf X mit

$$id_X(x) = X, \forall x \in X$$

Sie fungier als das Neutrale Element der Komposition von Funktionen.

2.11 Umkehrabbildung

Sei $f: X \to Y$ eine Bijketion. Wir definieren die Umkehrabbildung f^{-1} von f durch

$$f^{-1}: Y \longrightarrow X, f^{-1}(y) = x \text{ mit } f(x) = y$$

Woraus offensichtlich folgt, dass $f \circ f^{-1} = id_X$

2.12 Kardinalitäten

2.12.1 Definition

Zwei Mengen N und M sind gleichmächtig, falls eine Bijektion $f: N \longrightarrow M$ existiert.

2.12.2 Abzählbar

Eine Menge M heißt $abz\ddot{a}hlbar$, falls sie entweder endlich oder $gleichm\ddot{a}chtig$ wie \mathbb{N} ist.

2.12.3 Überabzählbar

Eine Menge M, die nicht abzählbar ist, nennen wir $\ddot{u}berabz\ddot{a}hlbar$.

2.13 Kardinalität von \mathbb{R}

 \mathbb{R} ist überabzählbar.

Beweis. Offensichtlich genügt es zu zeigen, dass eine Teilmenge von \mathbb{R} überabzählbar ist, um zu zeigen, dass \mathbb{R} überabzählbar ist. Betrachten wir also das Intervall [0,1]. Wir wollen einen Widerspruchsbeweis führen. Nehmen wir also an, \mathbb{R} sei abzählbar. So könnten wir also alle Zahlen aus \mathbb{R} abzählen.

 $0.a_1a_2a_3a_4a_5...$ $0.b_1b_2b_3b_4b_5...$ $0.c_1c_2c_3c_4c_5...$ $0.d_1d_2d_3d_4d_5...$ \vdots \vdots

Konstruieren wir nun eine Zahl z, welche stehts in der n-ten Nachkommastelle mit der n-ten Zahl der Liste nicht übereinstimmt. Also kann z nicht die erste Zahl der Liste sein, da sie in der ersten Nachkommastelle nicht mit ihr übereinstimmt. Dies läuft darauf hinaus, dass z mit jeder Zahl aus der Liste in der n-ten Nachkommastelle nicht übereinstimmt. Also ist z nicht in der Liste. Somit ist [0,1] nicht abzählbar und somit ist $\mathbb R$ nicht abzählbar.