Подготовка к рубежной контрольной работе №1

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ В ВАКУУМЕ

ЗАДАЧА 1

В вершинах квадрата со стороной a помещены два заряда по +q и два заряда по -q, причем на диагоналях квадрата расположены разноименные заряды. Определить величину силы, действующей на каждый заряд. a=1,15 м, q=5 мкКл, F-?

Ответ: 0,26 Н.

ЗАДАЧА 2

Шесть одинаковых зарядов Q связаны нитями одинаковой длины l с седьмым таким же зарядом q=Q. В результате кулоновского отталкивания они располагаются в вершинах правильного плоского шестиугольника. Определить натяжение T нитей.

Q = 4 мкКл, l = 15 см, T - ?.

Ответ: 18,1 Н

ЗАДАЧА 3

Заряд Q равномерно распределен по кольцу радиусом R. Чему равна максимальная напряженность электрического поля на оси кольца?

Q = 1 мкКл, R = 5 см, $E_{max} - ?$

Ответ: $1.4 \cdot 10^6 \text{ B/м}$

ПОТОК ВЕКТОРА НАПРЯЖЕННОСТИ ЭЛЕКТРИЧЕСКОГО ПО-ЛЯ. ТЕОРЕМА ГАУССА

ЗАДАЧА 1

На некотором расстоянии от бесконечной равномерно заряженной плоскости с поверхностной плотностью σ расположена круглая пластинка. Плоскость пластинки составляет с линиями напряженности угол α . Определить поток вектора напряженности через эту пластинку, если ее радиус R.

 $\sigma = 1,5 \text{ нКл/см}^2, \ \alpha = \pi/4, \ R = 10 \text{ см}, \ \Phi-?$

Ответ: 1,88 кВ⋅м

ЗАДАЧА 2

Шар радиусом R заряжен равномерно с объемной плотностью ρ . Определить напряженность E электростатического поля: 1) на расстоянии r_1 от центра шара; 2) на расстоянии $r_2 = 12$ см от центра шара.

R = 10 см, $\rho = 5$ нКл/м³, $r_1 = 2$ см, $r_2 = 12$ см, $E_1 - ?$, $E_2 - ?$

Ответ: 3,8 В/м; 13,1 В/м

ЗАДАЧА 3

Две концентрические сферы радиусами R_1 и R_2 несут равномерно распределенные заряды с поверхностными плотностями σ_1 и σ_2 соответственно. Найти напряженность электрического поля в точках, находящихся на расстояниях r_1 и r_2 от центра сфер.

 $R_1 = 1$ см, $R_2 = 2$ см, $\sigma_1 = +1$ нКл/м², $\sigma_2 = +0.5$ нКл/м², $r_1 = 3$ см, $r_2 = 1.5$ см, $E_1 - ?$, $E_2 - ?$

Ответ: 37,7 B/м; 50,2 B/м.

ПОТЕНЦИАЛ ЭЛЕКТРИЧЕСКОГО ПОЛЯ

ЗАДАЧА 1

Имеются два тонких проволочных кольца радиуса R каждое, оси которых совпадают. Заряды колец равны +q и -q. Найти разность потенциалов между центрами колец, отстоящими друг от друга на расстоянии l.

R = 30 см, q = 0,40 мкКл, l = 52 см, $\Delta \varphi - ?$

Ответ: 12 кВ.

ЗАДАЧА 2

Тонкое полукольцо радиуса R заряжено равномерно с линейной плотностью τ . Какую работу A нужно совершить, чтобы переместить заряд q из бесконечности в центр кривизны полукольца.

R=20 см, $\tau=0,15$ нКл/см, q=10 нКл, A-?

Ответ: 4,2 мкДж.

ЗАДАЧА 3

Потенциал электрического поля имеет вид $\varphi = \alpha(xy-z^2)$, где α — постоянная. Найти проекцию напряженности электрического поля E_a в точке M(2,1,-3) на направление вектора \vec{a} .

 $\alpha = 5 \text{ B/M}^2, \ \vec{a} = 3\vec{i} + 4\vec{k}, \ E_a - ?$

Ответ: -27 В/м.

ПРОВОДНИКИ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ

ЗАДАЧА 1

Конденсатор емкости C_1 , заряженный до напряжения U, подключили параллельно к концам системы из двух последовательно соединенных незаряженных конденсаторов, емкости которых C_2 и C_3 . Какой заряд протечет при этом по соединительным проводам?

 $C_1 = 2 \text{ MK}\Phi$, $C_2 = 3 \text{ MK}\Phi$, $C_3 = 6 \text{ MK}\Phi$, U = 150 B, $\Delta q - ?$

Ответ: 150 мкКл

ЗАДАЧА 2

Точечный заряд q_1 находится на расстоянии r_1 от центра O незаряженного проводника в форме сферы, радиусы которой R_1 и R_2 . А точечный заряд q_2 - на расстоянии r_2 . Найти потенциал электростатического поля такой системы в точке O, полагая, что потенциал поля на бесконечном удалении от сферы равен нулю.

$$q_1 = +2$$
 нКл, $r_1 = 2$ см, $q_2 = -4$ нКл, $r_2 = 4$ см, $R_1 = 6$ см, $R_2 = 8$ см, $\varphi(O) - ?$

Рисунок 1

Ответ: 75 В.

ЗАДАЧА 3

Имеется плоский воздушный конденсатор, площадь каждой обкладки которого равна S. Какую работу против электрических сил надо совершить, чтобы медленно увеличить расстояние между обкладками от d_1 до d_2 , если при этом поддерживать неизменным:

а) заряд конденсатора q; б) напряжение на конденсаторе U?

 $S = 1 \text{ cm}^2$, $d_1 = 5 \text{ mm}$, $d_2 = 6 \text{ mm}$,

a) $q = const = 17, 7 \cdot 10^{-12} \text{ K}\pi, A_q - ?;$

```
б) U = const = 100 \text{ B}; , A_U - ?
Ответ: а) A_q = 177 \cdot 10^{-12} \text{ Дж}; ; б) A = 147, 5 \cdot 10^{-12} \text{ Дж}.
```

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ В ДИЭЛЕКТРИКАХ

ЗАДАЧА 1

Емкость плоского конденсатора равна C. Диэлектрик, заполняющий пространство между пластинами, — фарфор (диэлектрическая проницаемость ε). Конденсатор зарядили до разности потенциалов U и отключили от источника тока. Какую работу надо совершить, чтобы вынуть диэлектрическую пластину из конденсатора? C=111 п Φ , $\varepsilon=6,5,\,U=600$ B, $q=const,\,A-$?

Ответ: A=110 мкДж

ЗАДАЧА 2

Найти изменение энергии конденсатора из предыдущей задачи при условии, что источник питания не отключается при удалении пластины. Какая работа совершается при удалении пластины в этом случае?

 $C = 111 \text{ m}\Phi, \ \varepsilon = 6, 5, \ U = 600 \text{ B}, \ U = const, \ A-?$

Ответ: A = 16, 9 мкДж

постоянный ток

ЗАДАЧА 1

Проводник из меди имеет форму усеченного конуса с радиусами оснований r_1 и r_2 . Длина проводника L. Найти его сопротивление.

 $r_1 = 1 \text{ mm}, r_2 = 2 \text{ mm}, L = 10 \text{ cm}, \rho = 1, 7 \cdot 10^{-8} \text{ Om·m}, R - ?$

Ответ: R = 0, 27 мОм

ЗАДАЧА 2

Два источника тока с ЭДС $\mathcal E$ и внутренним сопротивлением r соединяются в батарею. Возможны два варианта соединения - последовательное (1) и параллельное (2). При каком соединении - (1) или (2) - ток в нагрузке R будет больше? Найдите отношение I_1/I_2 .

 $\mathcal{E} = 10 \text{ B}, r = 5 \text{ Om}, R = 10 \text{ Om}, I_1/I_2 - ?$

Otbet: $I_1/I_2 = 1,25$

ЗАДАЧА 3

Пусть конденсатор емкостью C, заряженный до разности потенциалов U, разряжается через сопротивление R. Найти полное количество теплоты Q, выделившееся на нагрузке. Какая доля этого тепла выделится на нагрузке в процессе того, как конденсатор потеряет половину своего первоначального заряда?

C=2 мк $\Phi,\,U=12$ В, R=1,5 кОм, $Q-?,\,Q_{1/2}/Q-?$

Ответ: Q = 16, 9 Дж, $Q_{1/2}/Q = 0, 75$

ПОСЛЕДОВАТЕЛЬНОЕ И ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ РЕЗИСТОРОВ

ЗАДАЧА 1

В цепь постоянного тока включен идеальный источник U_0 , три одинаковые лампочки, сопротивление которых R не зависит от силы тока в них, и два идеальных амперметра. Один амперметр (1) включен и показывает ток I_0 , второй амперметр (2) выключен. Определите показания приборов при включении амперметра (2).

 $U_0 = 5 \text{ B}, I_0 = 125 \text{ MA}, I_1 -?, I_2 -?$

Ответ: $I_1 = 167$ мА, $I_2 = 83,3$ мА.

Рисунок 2

ЗАДАЧА 2

В цепь постоянного тока включены три одинаковые лампы, сопротивление R которых не зависит от силы тока в них, два конденсатора емкости C_1 и C_2 , два резистора R_1 и идеальный источник U_0 . Идеальный вольтметр показывает падение напряжения U на одном из резисторов. Определите сопротивление одной лампы R и отношение зарядов Q_1/Q_2 на конденсаторах.

 $C_1=100$ пФ, $C_2=200$ пФ, $R_1=100$ Ом, $U_0=10$ В, U=4,84 В, R-?, $Q_1/Q_2-?$ Ответ: R=19,8 Ом, $Q_1/Q_2=0,27$.

Рисунок 3

ЗАДАЧА 3

Цепь постоянного тока содержит идеальный источник U_0 , батарею E_2 , идеальный амперметр и резистор R_{11} . При изменении полярности идеального источника ток в цепи изменяется от I_{max} до I_{min} . Ток короткого замыкания батареи $I_{\kappa 3}$. Определите ЭДС E_2 и внутреннее сопротивление r батареи.

$$U_0=4$$
 В, $I_{max}=0,40$ А, $I_{min}=-0,08$ А, $I_{\mbox{\tiny K3}}=1,69$ А, $E_2-?,\,r-?$ Ответ: $E_2=2,67$ В, $r=1,6$ Ом.

Рисунок 4