- If the graph G is a connected then, by the Theorem from the lecture (lecture-9 p. 18 "Suppose G is a connected graph with n vertices and m edges. Then G contains a cycle if and only if m ≥ n.")
 G would contain a cycle if m >= n.
 - If the graph G is not connected. Let us use the Theorem from the lecture (lecture-9 p.23 "Suppose G is a graph with n vertices and m edges. Let F be a spanning forest for G (F is the union of the spanning trees inside each component of G). Let m_F denote the number of edges in F. Then G has a cycle if and only if $m > m_F$ ") it would contain a cycle.
 - Assume each tree in forest has a F_1 , F_2 , ..., F_k vertices. Then $n=F_1+F_2+...+F_k$, and since tree each tree F_i has F_i-1 edges $mF=F_1-1+F_2-1+...+F_k-1=F_1+F_2+...+F_k-k=n-k$. Hence, the graph G has $m>=n-k=m_f$ property and it would contain a cycle by the theorem.
- 2. Since, S and T are a tree and we are connecting this 2 trees with any edge (x,y) in E for which x is in V_S and y is in V_T . Then the total number of the edges in $U = (V_S \cup V_T, E_S \cup E_T \cup \{(x,y)\})$ is $|E_S| + |E_T| + 1 = |V_S| 1 + |V_T| 1 + 1 = |V_S| + |V_T| 1$. Now if we prove that U is connected then by the theorem we learned in lecture (lecture-9 p. 18 "Suppose G is a connected graph with n vertices and m edges. Then G contains a cycle if and only if $m \ge n$.") it will not contain any cycle and it would prove U is a tree.
 - Let (a, b) be 2 distinct vertices from U. If (a, b) both belongs to either V_S or V_T there should exists a path between them. If (a, b) belongs to V_S , and V_T , we can safely assume a belongs to V_S and b belongs to V_T . Then there should a path exists a->x->y->b which shows U is a connected graph.
- 3. Code attached
- 4. Code attached
- 5. Way 1: Prove it by contradiction. Let T be a tree with all vertices have a more than 1 degree. Then the total number of edges >= 2 * N / 2 = N by the theorem it is not a valid tree, hence it is proved by contradiction.
 - Way 2: Let v be any vertex in T and think of T as a rooted tree with vertex v. If the tree has more the 2 leaf vertex then the leaf vertices would have degree of 1. If it has only 1 leaf then the root should have 1 degree.