${\bf 3ад.1}$ От данните 'survey' на пакета 'MASS' определете средно $\overline{X_n}$ и стандартно отклонение S_n за височината на студентите. Направете отделни изчисления за мъжете и за жените. Каква част от студентите попадат в интервалите: a) $(X_n - S_n, X_n + S_n)$; 6) $(X_n - 2S_n, X_n + 2S_n)$; B) $(X_n - 3S_n, X_n + 3S_n)$? > summary(Height) Min. 1st Qu. Median Mean 3rd Qu. NA's Max. 150.0 165.0 171.0 172.4 180.0 200.0 28 Оценките могат да бъдат пресметнати и с отделни функции, например средното $\overline{X_n}$ и стандартното отклонение S_n . > m = mean(Height, na.rm = T)172.38 > s = sd(Height, na.rm = T)9.84 Ще пресметнем само за мъжете. > m.m = mean(Height[Sex == "Male"], na.rm = T) 178.82 > s.m = sd(Height[Sex == "Male"], na.rm = T)8.38 Ще определеим студентите попадащи в интервала $(X_n - S_n, X_n + S_n)$. a) $(\overline{X_n} - S_n, \overline{X_n} + S_n)$; > p = sum(m - s < Height & Height < m + s, na.rm = T)143 > 100 * p / sum(!is.na(Height)) 68.4 % Алтернативен начин: > ct = cut(Height, breaks = c(0, m-s, m+s, 300))> table(ct) (0,163] (163,182](182,300]143 28 38 > prop.table(table(ct)) (0,163] (163,182](182,300]

Аналогично се намират 96,6% за втория и 100% за третия интервал.

0.1339713 0.6842105 0.1818182

Зад.2 Представете графично височината на студентите. Постройте боксплот и хистограма, добавете полигона и плътността. Направете отделни графики за мъжете и за жените. Начертайте на една графика плътностите за ръстта на мъжете и жените.

$$> boxplot(Height \sim Sex)$$

От боксплота се вижда, че жените са по-ниски от мъжете. А също и данните за мъжете са с по-голям размах, т.е. с по-голямо разсейване.

Ще направим хистограма за ръстта на мъжете, ще добавим и полигона.

$$>$$
 HM = Height[Sex == 'Male']
 $>$ h = hist(HM)

Histogram of Height[Sex == "Male"]

> lines(h\$mids, h\$counts)

Хистограмата показва, че болшинството мъже са с ръст около 180.

Ще добавим и плътността.

```
> hist(HM, probability = T) \\ > lines(density(HM, na.rm = T))
```

Емперичната (пресметнатата по данните) плътност дава идея за истинската плътност на данните. В случая, разпределението е симетрично със средна стойност около 180, има вид на нормално.

150

160

170

180

Height[Sex == "Male"]

190

200

Ще начертаем на една графика плътността на височината за мъжете и жените.

- > HF = Height[Sex == 'Female']
- > plot(density (HF, na.rm = T), xlim = c(140, 210), col = 'red', main = ")
- > lines(density (HM, na.rm = T), col = 'blue')
- > legend('topright', legend = c('Female', 'Male'), fill = c('red', 'blue'))

Отново можем да отчетем, жените са по-ниски от мъжете, освен това са и с по-малка вариация, т.е. стойностите са по-скупчени около средната стойност.

Зад.4 Разглеждаме таблицата 'homedata' от пакета 'UsingR'. Пред-ставете променливите графично - поотделно, както и заедно. Пресметнете корелацията.

> boxplot(homedata)

Вижда се, че в 2000 година къщите са значително по-скъпи от 1970. В 2000г. има и по-голяма вариация в цените.

> plot(homedata)

Изглежда съществува линейна връзка между цената в 1970 и в 2000г.

 $> l = lm(y2000 \sim y1970)$ > abline(l)> cor(y1970, y2000)0.8962

Ще потърсим аутлайерите, т.е. наблюденията, които най-съществено се отличават от останалите в случая са най-далеч от правата.

> identify(y1970, y2000)220 1064 2048

