



# FCC PART 15.231 MEASUREMENT AND TEST REPORT

For

# **Aurum Electronics Corp.**

No. 160, Dayong Rd., Yongkang City, Tainan Hsien, 710, Taiwan

FCC ID: VQX-939ASD-MIC

| This Report Concerns: |                                                                                                                                                                                                                              | Equipment Type: Smart Guard Halogen Light |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|
| Test Engineer:        | Cinderallar Chen                                                                                                                                                                                                             |                                           |  |
| Report No.:           | RSZ07092701                                                                                                                                                                                                                  |                                           |  |
| Test Date:            | 2007-10-23 to 2007-12-06                                                                                                                                                                                                     |                                           |  |
| Report Date:          | 2007-12-06                                                                                                                                                                                                                   |                                           |  |
| Reviewed By:          | EMC Manager: Boni Baniqued                                                                                                                                                                                                   |                                           |  |
| Prepared By:          | Bay Area Compliance Laboratories Corp. (Shenzhen)<br>6/F, the 3rd Phase of WanLi Industrial Building,<br>ShiHua Road, FuTian Free Trade Zone<br>Shenzhen, Guangdong, China<br>Tel: +86-755-33320018<br>Fax: +86-755-33320008 |                                           |  |

**Note:** This test report is for the customer shown above and their specific product only. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Shenzhen) This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

# **TABLE OF CONTENTS**

| GENERAL INFORMATION                                | 4  |
|----------------------------------------------------|----|
| PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) | 4  |
| Objective                                          | 4  |
| RELATED SUBMITTAL(S)/GRANT(S)                      |    |
| TEST METHODOLOGY                                   |    |
| TEST FACILITY                                      | 4  |
| SYSTEM TEST CONFIGURATION                          | 6  |
| JUSTIFICATION                                      | 6  |
| EQUIPMENT MODIFICATIONS                            | 6  |
| External I/O Cable                                 |    |
| CONFIGURATION OF TEST SETUP                        |    |
| BLOCK DIAGRAM OF TEST SETUP                        | 7  |
| SUMMARY OF TEST RESULTS                            | 8  |
| §15.203 - ANTENNA REQUIREMENT                      | 9  |
| STANDARD APPLICABLE                                |    |
| §15.207 (A) - CONDUCTED EMISSIONS                  |    |
| MEASUREMENT UNCERTAINTY                            |    |
| EUT SETUP.                                         |    |
| EMI TEST RECEIVER SETUP.                           |    |
| TEST EQUIPMENT LIST AND DETAILS                    |    |
| TEST PROCEDURE                                     |    |
| TEST RESULTS SUMMARY                               |    |
| TEST DATA                                          |    |
| PLOT(S) OF TEST DATA                               | 12 |
| §15.205, §15.209, §15.231 (B) - RADIATED EMISSIONS | 15 |
| MEASUREMENT UNCERTAINTY                            | 15 |
| EUT SETUP                                          | 15 |
| EMI TEST RECEIVER SETUP                            |    |
| TEST EQUIPMENT LIST AND DETAILS                    |    |
| TEST PROCEDURE                                     |    |
| STANDARD APPLICABLE                                |    |
| CORRECTED AMPLITUDE & MARGIN CALCULATION           |    |
| TEST RESULTS SUMMARYTEST DATA                      |    |
|                                                    |    |
| §15.231(C) - 20DB BANDWIDTH TESTING                |    |
| REQUIREMENT                                        | 19 |
| TEST EQUIPMENT LIST AND DETAILS                    |    |
| TEST PROCEDURE TEST DATA                           | -  |
|                                                    |    |
| §15.231(A) - DEACTIVATION TESTING                  |    |
| REQUIREMENT                                        |    |
| EUT SETUP                                          |    |
| TEST EQUIPMENT LIST AND DETAILS                    |    |
| 1E311 ROCEDUKE                                     | 21 |

| Test Data                       | 22 |
|---------------------------------|----|
| §15.231- DUTY CYCLE             | 23 |
| Limit                           | 23 |
| TEST EQUIPMENT LIST AND DETAILS | 23 |
| TEST PROCEDURE                  | 23 |
| TEST DATA                       | 23 |
|                                 |    |

#### **GENERAL INFORMATION**

#### **Product Description for Equipment Under Test (EUT)**

The *Aurum Electronics Corp*.'s product, model *AEC-939ASD-MIC* or the "EUT" as referred to in this report is a *Smart Guard Halogen Light*. The EUT is measured approximately 32.0 cm L x 19.0 cm W x 18.0 cm H, rated input voltage: 120V/60Hz.

\*Note: The series products, model AEC-939ASD-MIC, AEC-939ASD, AEC-939AD, AEC-939AS, AEC-939AU, AEC-936ASD-MIC, AEC-936ASD, AEC-936ASD, AEC-936ASD, AEC-936ASD, AEC-936ASD, AEC-936ASD, AEC-936ASD only model number have difference.

\* All measurement and test data in this report was gathered from production sample serial number: 0709050 (Assigned by BACL, Shenzhen). The EUT was received on 2007-09-27.

#### **Objective**

This document is a test report based on the Electromagnetic Interference (EMI) tests performed on the EUT. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4-2003.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.209 and 15.231 rules.

#### **Related Submittal(s)/Grant(s)**

No Related Submittals

#### **Test Methodology**

All measurements contained in this report were conducted with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

#### **Test Facility**

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located in the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 04, 2004. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratories Corp. (Shenzhen) is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200707-0).



NVLAP LAB CODE 200707-0

The current scope of accreditations can be found at <a href="http://ts.nist.gov/Standards/scopes/2007070.htm">http://ts.nist.gov/Standards/scopes/2007070.htm</a>

# **SYSTEM TEST CONFIGURATION**

#### **Justification**

The system was configured for testing in a typical fashion (as normally used by a typical user).

# **Equipment Modifications**

Bay Area Compliance Laboratories Corp. (Shenzhen) has not done any modification on the EUT.

#### **External I/O Cable**

| Cable Description                   | Length (M) | From/Port | То       |
|-------------------------------------|------------|-----------|----------|
| Unshielded Undetachable Power Cable | 1.2        | EUT       | AC Mains |

# **Configuration of Test Setup**

**EUT** 

# **Block Diagram of Test Setup**



# **SUMMARY OF TEST RESULTS**

| FCC Rules      | Description of Test     | Result    |
|----------------|-------------------------|-----------|
| §15.203        | Antenna Requirement     | Compliant |
| §15.205        | Restricted Band         | Compliant |
| §15.207 (a)    | Conducted Emissions     | Compliant |
| §15.209        | General Requirement     | Compliant |
| §15.231 (b)    | Radiated Emissions      | Compliant |
| §15.231 (c)    | 20dB Band Width Testing | Compliant |
| §15.231 (a)(1) | Deactivation Testing    | Compliant |
| §15.231        | Duty Cycle              | Compliant |

# §15.203 - ANTENNA REQUIREMENT

#### **Standard Applicable**

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The antenna of the EUT is an integral antenna (PCB antenna) which, in accordance to the above section, is considered sufficient to comply with the provision of this section.

**Result:** Compliant.

Please refer to the internal photos of EUT.

#### §15.207 (a) - CONDUCTED EMISSIONS

#### **Measurement Uncertainty**

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at Bay Area Compliance Laboratories Corp. (Shenzhen) is  $\pm 2.4$  dB.

#### **EUT Setup**



Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.4-2003 measurement procedure. The specification used was with the FCC Part 15 Class B limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The EUT was connected to a 120 VAC/60 Hz power source.

#### **EMI Test Receiver Setup**

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

#### **Test Equipment List and Details**

| Manufacturer    | Description       | Model   | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|-----------------|-------------------|---------|------------------|---------------------|-------------------------|
| Com-Power       | L.I.S.N.          | LI-200  | 12005            | N/A                 | N/A                     |
| Com-Power       | L.I.S.N.          | LI-200  | 12208            | N/A                 | N/A                     |
| Rohde & Schwarz | EMI Test Receiver | ESCS30  | DE25330          | 2007-03-26          | 2008-03-26              |
| Rohde & Schwarz | L.I.S.N.          | ESH2-Z5 | 892107/021       | 2007-03-26          | 2008-03-26              |

<sup>\*</sup> Com-Power's LISN were used as the supporting equipment.

#### **Test Procedure**

During the conducted emission test, the EUT was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

#### **Test Results Summary**

According to the recorded data in following table, the EUT complied with the FCC Part 15.207, with the worst margin reading of:

1.20 dB at 27.1150 MHz in the Neutral conductor mode.

<sup>\*</sup> **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 25 ° C    |
|--------------------|-----------|
| Relative Humidity: | 54%       |
| ATM Pressure:      | 100.0 kPa |

The testing was performed by Cinderallar Chen on 2007-10-23.

Test Mode: Lighting & Videotape

| Line Conducted Emissions |                  |                     |                         | FCC Pa          | rt 15.207   |
|--------------------------|------------------|---------------------|-------------------------|-----------------|-------------|
| Frequency<br>(MHz)       | Amplitude (dBµV) | Detector<br>(QP/AV) | Phase<br>(Live/Neutral) | Limit<br>(dBµV) | Margin (dB) |
| 27.1150                  | 48.80            | AV                  | Neutral                 | 50.00           | 1.20        |
| 27.1150                  | 48.60            | AV                  | Live                    | 50.00           | 1.40        |
| 24.0000                  | 44.40            | AV                  | Live                    | 50.00           | 5.60        |
| 24.0000                  | 43.00            | AV                  | Neutral                 | 50.00           | 7.00        |
| 27.1150                  | 52.70            | QP                  | Neutral                 | 60.00           | 7.30        |
| 0.5700                   | 38.50            | AV                  | Neutral                 | 46.00           | 7.50        |
| 27.1150                  | 51.40            | QP                  | Live                    | 60.00           | 8.60        |
| 0.4050                   | 37.10            | AV                  | Live                    | 47.75           | 10.65       |
| 0.3800                   | 36.90            | AV                  | Neutral                 | 50.00           | 13.10       |
| 0.1900                   | 40.60            | AV                  | Neutral                 | 54.04           | 13.44       |
| 12.0000                  | 36.00            | AV                  | Neutral                 | 50.00           | 14.00       |
| 0.5700                   | 41.90            | QP                  | Neutral                 | 56.00           | 14.10       |
| 0.4050                   | 43.50            | QP                  | Live                    | 57.75           | 14.25       |
| 0.8100                   | 31.20            | AV                  | Live                    | 46.00           | 14.80       |
| 24.0000                  | 45.00            | QP                  | Live                    | 60.00           | 15.00       |
| 12.0000                  | 34.70            | AV                  | Live                    | 50.00           | 15.30       |
| 24.0000                  | 43.70            | QP                  | Neutral                 | 60.00           | 16.30       |
| 0.3800                   | 42.40            | QP                  | Neutral                 | 60.00           | 17.60       |
| 0.1900                   | 46.40            | QP                  | Neutral                 | 64.04           | 17.64       |
| 0.8100                   | 37.40            | QP                  | Live                    | 56.00           | 18.60       |
| 1.6100                   | 26.10            | AV                  | Live                    | 46.00           | 19.90       |
| 12.0000                  | 38.30            | QP                  | Neutral                 | 60.00           | 21.70       |
| 1.6100                   | 33.40            | QP                  | Live                    | 56.00           | 22.60       |
| 12.0000                  | 37.30            | QP                  | Live                    | 60.00           | 22.70       |

# Plot(s) of Test Data

Plot(s) of Test Data is presented hereinafter as reference.

# Conducted Emission Test FCC15 B

23. Oct 07 09:01

EUT: Smart Guard Halogen Light M/N: AEC-939ASD-MIC

Manuf: Aurum
Op Cond: Running
Operator: Cinderallar
Test Spec: AC 120V/60Hz L
Comment: temp: 26 Humi 56%



# Conducted Emission Test FCC15 B

23. Oct 07 09:13

EUT: Smart Guard Halogen Light M/N: AEC-939ASD-MIC

Manuf: Aurum
Op Cond: Running
Operator: Cinderallar
Test Spec: AC 120V/60Hz N
Comment: temp: 26 Humi 56%



#### §15.205, §15.209, §15.231 (b) - RADIATED EMISSIONS

#### **Measurement Uncertainty**

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Bay Area Compliance Laboratories Corp. (Shenzhen) is  $\pm 4.0 \text{ dB}$ .

#### **EUT Setup**



The radiated emission tests were performed in the 3 meters chamber B test site, using the setup accordance with the ANSI C63.4-2003. The specification used was the FCC 15 § 15.209 and 15.231.

#### **EMI Test Receiver Setup**

The system was investigated from 30 MHz to 5 GHz.

During the radiated emission test, the test receiver was set with the following configurations:

| Frequency Range | RBW     | VBW     |
|-----------------|---------|---------|
| 30 – 1000 MHz   | 100 kHz | 300 kHz |
| 1000 MHz –5 GHz | 1 MHz   | 3 MHz   |

#### **Test Equipment List and Details**

| Manufacturer    | Description       | Model   | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|-----------------|-------------------|---------|------------------|---------------------|-------------------------|
| Agilent         | Spectrum Analyzer | 8564E   | 3943A01781       | 2006-11-22          | 2007-11-22              |
| HP              | Amplifier         | 8449B   | 3008A00277       | 2007-09-29          | 2008-09-29              |
| Sunol Sciences  | Horn Antenna      | DRH-118 | A052604          | 2007-07-20          | 2008-07-20              |
| Rohde & Schwarz | EMI Test Receiver | ESCI    | 100035           | 2007-09-29          | 2008-09-29              |
| НР              | Amplifier         | 8447E   | 1937A01046       | 2006-11-15          | 2007-11-15              |
| Sunol Sciences  | Bilog Antenna     | JB1     | A040904-2        | 2007-08-14          | 2008-08-14              |

<sup>\*</sup> **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

#### **Test Procedure**

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the Peak and Average detection mode.

#### **Standard Applicable**

According to §15.231(b), the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

| Fundamental frequency (MHz) | Field Strength of Fundamental<br>(Microvolts /meter) | Field Strength of spurious emissions ((Microvolts /meter) |
|-----------------------------|------------------------------------------------------|-----------------------------------------------------------|
| 40.66-40.70                 | 2,250                                                | 225                                                       |
| 70-130                      | 1,250                                                | 125                                                       |
| 130-174                     | 1,250 to 3,370 *                                     | 125 to375 *                                               |
| 174-260                     | 3,750                                                | 375                                                       |
| 260-470                     | 3,750 to12, 500 *                                    | 375 to 1,250 *                                            |
| Above 470                   | 12,500                                               | 1,250                                                     |

<sup>\*</sup> Linear interpolations for frequency range 130 - 174 MHz and 260 - 470 MHz.

The above field strength limits are specified at a distance of 3-meters the tighter limits apply at the band edges.

#### **Corrected Amplitude & Margin Calculation**

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit for Class B. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

#### **Test Results Summary**

According to the data in the following table, the EUT complied with the <u>FCC Part 15.231</u>, with the worst margin reading of:

30-1000MHz: 14.069 dB at 868.08 MHz in the Horizontal polarization.

Above 1GHz: 26.619 dB at 1736 MHz in the Vertical polarization.

#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 25 ° C   |
|--------------------|----------|
| Relative Humidity: | 56%      |
| ATM Pressure:      | 100.2kPa |

The testing was performed by Cinderallar Chen on 2007-10-23.

Test Mode: Transmitting

#### **30-1000MHz:**

| Freq.  | Meter<br>Reading<br>(dBuV) Detector Direction<br>(PK/AV) (Degree) |         |          |            | Cable Cycle    |               | Pre- | Corrected Amp. | FC        | C Part 1     | 5.231             |                |          |
|--------|-------------------------------------------------------------------|---------|----------|------------|----------------|---------------|------|----------------|-----------|--------------|-------------------|----------------|----------|
| (MHz)  | (dBuV)                                                            | (PK/AV) | (Degree) | Height (m) | Polar<br>(H/V) | Factor (dB/m) |      | factor<br>(dB) | Amp. (dB) | (dB<br>uV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Remarks  |
| 868.08 | 55.86                                                             | PK      | 45       | 1.2        | Н              | 22.2          | 3.93 | -8.59          | 26.67     | 46.73        | 60.8              | 14.069         | Harmonic |
| 868.08 | 50.53                                                             | PK      | 60       | 1.0        | V              | 22.2          | 3.93 | -8.59          | 26.67     | 41.40        | 60.8              | 19.399         | Harmonic |
| 433.92 | 71.86                                                             | AV      | 35       | 1.2        | Н              | 16.8          | 3.12 | -8.59          | 27.36     | 55.83        | 80.8              | 24.969         | Fund.    |
| 868.08 | 55.86                                                             | PK      | 45       | 1.2        | Н              | 22.2          | 3.93 | 0              | 26.67     | 55.32        | 80.8              | 25.480         | Harmonic |
| 433.92 | 67.17                                                             | AV      | 180      | 1.2        | V              | 16.8          | 3.12 | -8.59          | 27.36     | 51.14        | 80.8              | 29.659         | Fund.    |
| 868.08 | 50.53                                                             | PK      | 60       | 1.0        | V              | 22.2          | 3.93 | 0              | 26.67     | 49.99        | 80.8              | 30.810         | Harmonic |
| 433.92 | 71.86                                                             | PK      | 35       | 1.2        | Н              | 16.8          | 3.12 | 0              | 27.36     | 64.42        | 100.8             | 36.380         | Fund.    |
| 433.92 | 67.17                                                             | PK      | 180      | 1.2        | V              | 16.8          | 3.12 | 0              | 27.36     | 59.73        | 100.8             | 41.070         | Fund.    |

#### **Above 1GHz:**

|             | Meter          |                     |                       |               | Anteni         | ıa   | Cable | Duty                    | Pre-      | Corrected            | FCC               | Part 15.2      | 231/209  |
|-------------|----------------|---------------------|-----------------------|---------------|----------------|------|-------|-------------------------|-----------|----------------------|-------------------|----------------|----------|
| Freq. (MHz) | Reading (dBuV) | Detector<br>(PK/AV) | Direction<br>(Degree) | Height<br>(m) | Polar<br>(H/V) |      | Loss  | cycle<br>factor<br>(dB) | Amp. (dB) | Amp.<br>(dB<br>uV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Remarks  |
| 1736        | 46.41          | PK                  | 45                    | 1.0           | V              | 27.1 | 4.26  | -8.59                   | 35        | 34.181               | 60.8              | 26.619         | Harmonic |
| 1736        | 45.37          | PK                  | 45                    | 1.2           | Н              | 27.1 | 4.26  | -8.59                   | 35        | 33.141               | 60.8              | 27.659         | Harmonic |
| 2604        | 42.96          | PK                  | 45                    | 1.0           | Н              | 28.5 | 4.53  | -8.59                   | 35        | 32.401               | 60.8              | 28.399         | Harmonic |
| 2172        | 43.39          | PK                  | 45                    | 1.0           | V              | 27.3 | 4.38  | -8.59                   | 35        | 31.481               | 60.8              | 29.319         | Harmonic |
| 2172        | 43.33          | PK                  | 45                    | 1.0           | Н              | 27.3 | 4.38  | -8.59                   | 35        | 31.421               | 60.8              | 29.379         | Harmonic |
| 2604        | 39.97          | PK                  | 45                    | 1.2           | V              | 28.5 | 4.53  | -8.59                   | 35        | 29.411               | 60.8              | 31.389         | Harmonic |
| 1300        | 40.73          | PK                  | 45                    | 1.2           | V              | 26.8 | 4.15  | -8.59                   | 35        | 28.091               | 60.8              | 32.709         | Harmonic |
| 1300        | 39.54          | PK                  | 45                    | 1.0           | Н              | 26.8 | 4.15  | -8.59                   | 35        | 26.901               | 60.8              | 33.899         | Harmonic |
| 1736        | 46.41          | PK                  | 45                    | 1.0           | V              | 27.1 | 4.26  | 0                       | 35        | 42.77                | 80.8              | 38.030         | Harmonic |
| 1736        | 45.37          | PK                  | 45                    | 1.2           | Н              | 27.1 | 4.26  | 0                       | 35        | 41.73                | 80.8              | 39.070         | Harmonic |
| 2604        | 42.96          | PK                  | 45                    | 1.0           | Н              | 28.5 | 4.53  | 0                       | 35        | 40.99                | 80.8              | 39.810         | Harmonic |
| 2172        | 43.39          | PK                  | 45                    | 1.0           | V              | 27.3 | 4.38  | 0                       | 35        | 40.07                | 80.8              | 40.730         | Harmonic |
| 2172        | 43.33          | PK                  | 45                    | 1.0           | Н              | 27.3 | 4.38  | 0                       | 35        | 40.01                | 80.8              | 40.790         | Harmonic |
| 2604        | 39.97          | PK                  | 45                    | 1.2           | V              | 28.5 | 4.53  | 0                       | 35        | 38                   | 80.8              | 42.800         | Harmonic |
| 1300        | 40.73          | PK                  | 45                    | 1.2           | V              | 26.8 | 4.15  | 0                       | 35        | 36.68                | 80.8              | 44.120         | Harmonic |
| 1300        | 39.54          | PK                  | 45                    | 1.0           | Н              | 26.8 | 4.15  | 0                       | 35        | 35.49                | 80.8              | 45.310         | Harmonic |

#### **Note:**

\* AV value based on the duty cycle correction factor

AV =PK + Duty cycle Factor.

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

Margin = Limit – Corrected Amplitude

### §15.231(c) - 20dB BANDWIDTH TESTING

#### Requirement

Per 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

#### **Test Equipment List and Details**

| Manufacturer    | Description       | Model | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|-----------------|-------------------|-------|------------------|---------------------|-------------------------|
| Rohde & Schwarz | EMI Test Receiver | ESCI  | 100035           | 2007-09-29          | 2008-09-29              |
| НР              | Amplifier         | 8447E | 1937A01046       | 2007-11-15          | 2008-11-15              |
| Sunol Sciences  | Bilog Antenna     | JB1   | A040904-2        | 2007-08-14          | 2008-08-14              |

<sup>\*</sup> **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

#### **Test Procedure**

With the EUT's antenna attached, the EUT's 20dB Bandwidth power was received by the test antenna which was connected to the spectrum analyzer with the START and STOP frequencies set to the EUT's operation band.

#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 25 ° C   |
|--------------------|----------|
| Relative Humidity: | 56%      |
| ATM Pressure:      | 100.2kPa |

The testing was performed by Cinderallar Chen on 2007-12-05.

**20 dB BW Limit** = Frequency  $\times 0.25\% = 433.92 \times 0.25\% = 1.0848$  MHz

**Test Result:** Compliant.

Please refer to the following table and plot.

| Channel Frequency | 20dB Bandwidth | Limit  | Result    |
|-------------------|----------------|--------|-----------|
| (MHz)             | (MHz)          | (MHz)  |           |
| 433.92            | 0.052          | 1.0848 | Compliant |

#### 20 dB Bandwidth





---

-40 –

-30-

-20-

-10-

# §15.231(a) - DEACTIVATION TESTING

#### Requirement

Per 15.231(a) (1), a manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

#### **EUT Setup**



The deactivation test was performed in the 3 meters chamber B test site, using the setup accordance with the ANSI C63.4-2003. The specification used was the FCC 15.231(a) limits.

#### **Test Equipment List and Details**

| Manufacturer    | Description       | Model | Serial<br>Number | Calibration<br>Date | Calibration<br>Due Date |
|-----------------|-------------------|-------|------------------|---------------------|-------------------------|
| Rohde & Schwarz | EMI Test Receiver | ESCI  | 100035           | 2007-09-29          | 2008-09-29              |
| НР              | Amplifier         | 8447E | 1937A01046       | 2007-11-15          | 2008-11-15              |
| Sunol Sciences  | Bilog Antenna     | JB1   | A040904-2        | 2007-08-14          | 2008-08-14              |

<sup>\*</sup> **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

#### **Test Procedure**

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 25 ° C   |
|--------------------|----------|
| Relative Humidity: | 50%      |
| ATM Pressure:      | 103.2kPa |

The testing was performed by Cinderallar Chen on 2007-12-05.

Test Mode: Transmitting

Deactivation time=2.52 S < 5 S

Test Result: Compliant.

Please refer to the following plot.





Page 22 of 26

Deactivation Testing

Date: 5.DEC.2007 02:38:05

#### **§15.231- DUTY CYCLE**

#### Limit

Nil (No dedicated limit specified in the Rules).

#### **Test Equipment List and Details**

| Manufacturer    | Description       | Model | Serial Number | Calibration<br>Date | Calibration<br>Due Date |
|-----------------|-------------------|-------|---------------|---------------------|-------------------------|
| Rohde & Schwarz | EMI Test Receiver | ESCI  | 100035        | 2007-09-29          | 2008-09-29              |

<sup>\*</sup> **Statement of Traceability:** Bay Area Compliance Laboratory Corp. (ShenZhen) attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

#### Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer=operating frequency.
- 4. Set the spectrum analyzer as RBW, VBW=100 kHz, Span=0Hz, Adjust Sweep=100ms.
- 5. Repeat above procedures until all frequency measured was complete.

#### **Test Data**

#### **Environmental Conditions**

| Temperature:       | 25 ° C   |
|--------------------|----------|
| Relative Humidity: | 50%      |
| ATM Pressure:      | 103.2kPa |

The testing was performed by Cinderallar Chen on 2007-12-05, 2007-12-06.

Test Mode: Transmitting

Ton=8\*0.426+17\*0.168=6.264ms

Duty cycle factor =  $20 \text{ Log (ton/tp)} = 20*\log (6.264/16.84) = -8.59$ 

AV=PK +Duty cycle factor



Duty Cycle

Date: 6.DEC.2007 05:41:51



Т2

Date: 5.DEC.2007 02:23:38



Duty Cycle

Date: 6.DEC.2007 05:45:50

# \*\*\*\*\* END OF REPORT \*\*\*\*\*