# Neural Networks Lab

Lecture 1



## There are two ways to create a neural network in Python:

**From Scratch** – this can be a good learning exercise, as it will teach you how neural networks work from the ground up

**Using a Neural Network Library** – packages like Keras and TensorFlow simplify the building of neural networks by abstracting away the low-level code. If you're already familiar with how neural networks work, this is the fastest and easiest way to create one.

No matter which method you choose, working with a neural network to make a prediction is essentially the same:

Prepare Data set(Text, number, Image, Audio file, Video files etc..)

Import the libraries. For example import NumPy as np

**Define Neural Networks (there are sequential and Functional Networks)** 

**Add weights and bias** (if applicable) to input features. These are learnable parameters, meaning that they can be adjusted during training.

- 1. Weights = input parameters that influence output
- 2. Bias = an extra threshold value added to the output

**Train the network** against known, good data in order to find the correct values for the weights and biases.

**Test the Network** against a set of test data to see how it performs.

**Fit the model** with hyperparameters (parameters whose values are used to control the learning process), calculate accuracy, and make a prediction.

Sequential



### **Functional**



### Please refer to these two models

https://www.tensorflow.org/guide/keras/sequential\_model

https://www.tensorflow.org/guide/keras/functional

### Task1

### Reading

Please refer NumPY which is very important to implement NN

https://numpy.org/doc/stable/reference/generated/numpy.dot.html

Please refer scikit library https://scikit-learn.org/stable/

Please refer Keras and try to understand how to implement API https://keras.io/api/models/

# Lab

# **Neural Networks in Python**

### Task2

Students should attempt to answer these questions. The solutions will be discussed during the practical sessions.

### **Question 1**

Hand "wire" (manually configure) a perceptron so that it computes the Boolean NAND (NOT AND) of its two inputs.

### **Question 2**

Using the perceptron training rule, train a perceptron (with 2 inputs and one output) to learn the AND function. Assume the initial weights of your perceptron are -0.5 and 0.5, the threshold is 1.5 and the learning rate is 0.9. Make sure you train the threshold.

### **Question 3**

Consider a perceptron with 5 inputs and one output, where all of the inputs and the output are either 0 or 1.

- 1. Hand "wire" this perceptron (specify the weights and the bias) so that it computes the "majority" function for the 5 inputs. That is, it should output 1 if at least half of the inputs are 1 (in our case 3), and 0 otherwise.
- 2. The same problem, but computing the "minority" function for the 5 inputs. The output is 1 if not more than half of the inputs are 1 (in our case 0, 1 or 2 inputs high), otherwise 0.
- 3. Generalize for n inputs, n an odd number.

#### Task 3

Please download the jupyter notebook and understand basic implementation of Perceptron https://files.coventry.aula.education/67f53523c6167a60e990f971e1ce2d 09perceptron\_or\_xor\_and.ipynb

The file is in the same folder