Discrete Et Geometrique | CM: 6

Par Lorenzo

18 mars 2025

Soient $A, B_1, B_2 \subset \Omega$ tels que $B_1 \cap B_2 = \emptyset$. On a

$$P_A(B_1 \cup B_2) = P_A(B_1) + P_A(B_2)$$

Proposition 0.1 (formule de Bayes).

Soient $\{A_1, \ldots, A_N\} \subset \Omega$ (une partition de Ω) et $B \subset \Omega$ tels que P(B) > 0. On a Alors $\forall j \in [\![1, N]\!]$,

$$P_B(A_j) = \frac{P_{A_j} P(A_j)}{\sum_{k=1}^{N} P_{A_k}(B) P(A_k)}$$

Démonstration 0.1.

$$P_B(A_j) = \frac{P(A_j \cap B)}{P(B)} = \frac{P_{A_j}(B)P(A_j)}{P(B)} = \frac{P_{A_j}(B)P(A_j)}{P(B)} = \frac{P_{A_j}(B)P(A_j)}{\sum_{k=1}^{N} P_{A_k}(B)P(A_k)}$$

0.1 Evénements indépendants

Définition 0.1. *Soit* $A, B \subset \Omega$.

On dit que A et B sont indépendants si $P(A \cap B) = P(A)P(B)$.

Remarques 0.1. Si $P(A) \neq 0$ alors A et B sont indépendants si et seulement si $P_A(B) = P(B)$.

Proposition 0.2.

Soit $A \subset \Omega$.

- A et Ω sont indépendants.
- A et \emptyset sont indépendants.

Démonstration 0.2.

Je laisse la démonstration à faire par le lecteur.

Proposition 0.3.

Soit
$$A \subset \Omega$$
.

Alors A et A sont indépendants si et seulement si P(A) = 0 ou P(A) = 1. C'est-à-dire si et seulement si A est un événement certain (Ω) ou un événement impossible (\emptyset) .

Proposition 0.4.

Soit
$$A, B \subset \Omega$$
 et $A \subset B$.
Alors $P(A) \leq P(B)$.

Démonstration 0.3.

On peut définir
$$B = A \cup (B \setminus A)$$
, ainsi $P(B) = P(A) + P(B \setminus A)$ (on voit que $P(B \setminus A) \geq 0$). Donc $P(B) \geq P(A)$

Proposition 0.5.

Soient
$$A, B \subset \Omega$$
 et $A \subset B$
Alors A et B indépendants si et seulement si $A = \emptyset$ ou $B = \Omega$

Démonstration 0.4.

$$\iff$$
 : est déjà connu.
 \implies : $P(A \cap B) = P(A)P(B) \iff P(A) = P(A)P(B) \iff P(A) = 0 \lor P(B) = 1$

Définition 0.2. (cas de 3 événements) Soient $A, B, C \subset \Omega$ A, B, C sont indépendants si et seulement si

- A, B sont indépendants
- B, C sont indépendants
- A, C sont indépendants
- $P(A \cap B \cap C) = P(A)P(B)P(C)$

Remarques 0.2. En général la dernière n'est pas impliqué par les autres.

Définition 0.3. (cas d'un nombre fini d'événement) Soient $A_1, \ldots, A_N \subset \Omega$. A_1, \ldots, A_N indépendants si et seulement si

1.
$$si\ N = 2$$
: $P(A_1 \cap A_2) = P(A_1)P(A_2)$

2.
$$si\ N > 2$$
: $\forall k \in \{1, \dots, N\}\ \{A_j | j \in \{1, \dots, N\} \setminus \{k\}\}\ sont\ indépendants$ et $P(\bigcap_{k=1}^N A_k = \prod_{k=1}^N P(A_k))$