Count Fox Sequences

Problem Statement

A non-decreasing sequence is a called a **Fox** sequence, iff the most frequent element in the sequence is unique.

e.g. The sequence 1, 1, 2, 3, 4 is a **Fox** sequence, because it follows the above definition. The most frequent element is 1. It occurs twice in the series, and is unique.

But the sequence 1, 1, 2, 2 is *not* a **Fox** sequence, because there are two most frequent elements - 1 and 2. It violates the uniqueness property.

Note: Sequence 2, 1, 1 is not a **Fox** sequence, because it is not a non-decreasing sequence.

You need to find the number of all possible **Fox** sequences of length *n* with elements having value between *lo* and *hi* inclusive.

As the number can grow very large, return the number modulo $(10^9 + 7)$.

Input Format

The first line will contain T, i.e., the number of test cases.

For each test case, there will be a single line containing three space separated integers n, lo, hi.

Output Format

For each test case, display a single value corresponding to the number of all possible **Fox** sequences.

Constraints

```
1 \le T \le 5

1 \le lo, hi \le 10^9

lo \le hi

0 \le ||hi - lo|| < 10^5

1 \le n \le 10^5
```

Sample Input

```
5
211
213
312
445
1024
```

Sample Output

```
1
3
4
4
60
```

Explanation

For the first test case, 11 is the only possible **Fox** sequence.

For the second test case, 11, 22, and 33 are three possible Fox sequences.

For the third test case, 111, 222, 112, and 122 are four possible Fox

sequences.
Rest of the test cases are up to you to figure out.