PATENT SPECIFICATION

(11)1 422 679

5

10

15

20

25

(21) Application No. 49608/73

(22) Filed 24 Oct. 1973

(31) Convention Application No. 115068/72

(32) Filed 16 Nov. 1972

(31) Convention Application Nos. 2933/72 and 2934/72

(32) Filed 26 Dec. 1972 in

(33) Japan (JA)

(44) Complete Specification published 28 Jan 1976

(51) INT CL2 CO7C 65/02, 69/76, 93/16

(52) Index at acceptance

C2C 200 21X 220 227 22Y 231 233 240 264 29X 29Y 313 31Y 323 32Y 338 359 364 366 367 368 36Y 43X 490 491 496 499 500 50Y 620 624 628 634 650 658 65X 662 682 699 790 BX LQ YV

5

20

25

(54) SUBSTITUTED PHENOXY- a-METHYLPROPIONIC ACID DERIVATIVES AND A PROCESS FOR PRODUCING THE SAME

(71) We, FUNAI PHARMACEUTICAL INDUSTRIES, LTD., a Corporation organized and existing under the laws of Japan of No. 40 2-chome, Tsurigane-cho, Higashi-ku, Osáka, Japan, do hereby declare the invention; for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:-

This invention relates to novel substituted phenoxy-a-methylpropionic acid derivatives and more particularly it relates to the compounds represented by the

wherein Y stands for —CH₂—, —CH₂O—, —CH₂CH₂— or —CH=CH—, r stands for a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or

10

$$-(CH_2)_nN$$
 R_1

n stands for an integer of 1 to 5 and R₁ stands for an alkyl group having 1 to 6

This invention further relates to a process for producing substituted phenoxy- α -methylpropionic acid derivatives. 15

Since the initial discovery that substituted phenoxy-a-methylpropionic acid derivatives were effective in the treatment of high concentrations of cholesterol in the blood serum, a number of other related compounds have been prepared as described in British Patent Specifications No. 860,303 and 898,596. The present inventors have found that the novel compounds of the formula (I) possess extremely high activity for reducing the level of cholesterol in the blood serum as well as low toxicity compared with the other related compounds

well as low toxicity compared with the other related compounds.

It is, therefore, one object of this invention to provide novel compounds extremely effective in the treatment and prophylaxis of arteriosclerosis and hyperlipemia, such as severe cholesteremia.

It is another object of this invention to provide substituted phenoxy- α methylpropionic acid derivatives having the formula (I).

is a further object of this invention to provide a process for

10

15

20

25

30

5

10

15

20

25

.30

producing substituted phenoxy- α -methylpropionic acid derivatives represented

These and other objects, features and advantages of the present invention will

become more fully apparent from the following description.

As suitable values of R in the formula (I), there may be mentioned, for example, a hydrogen atom, an alkyl group such as a methyl, ethyl, nor.-propyl, iso.-propyl, nor.-butyl, nor.-pentyl and nor.-hexyl group, and an N,N-dialkylamino-alkyl group such as a dimethylaminoethyl and diethylaminoethyl

According to the present invention, the compounds having the formula (I) are produced as follows:

wherein A stands for a hydrogen atom or alkali or alkaline earth metal, X stands for a halogen atom, and Y and R are the same as heretofore defined.

That is, the present invention provides a process for producing substituted phenoxy-\alpha-methylpropionic acid derivatives having the formula (I) which comprises reacting a p-substituted phenol or metallic salt thereof (II) with an \alpha-halocarboxylic acid (III).

As suitable metallic salts (II) in the present process, there may be mentioned, for example, alkali metal salts such as potassium and sodium salts, and alkaline earth metal salts such as calcium and barium salts, while there may be mentioned halogen atoms such as bromine and chlorine as suitable values of X contained in the starting materials (III).

In carrying out the process of the present invention, starting materials (II) are reacted with starting materials (III) in such organic solvents as benzene, toluene, xylene and alcohols. The reaction may be conducted at room temperature, but the reaction is preferably conducted at an elevated temperature ranging from 60° to 140°C., thereby shortening the reaction time.

Alternatively, the compounds in which R stands for a hydrogen atom may be also produced as follows:

$$CI \longrightarrow CI \longrightarrow V \longrightarrow CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

wherein Y is the same as heretofore defined.

This invention provides a process for producing a substituted phenoxy-amethylpropionic acid (I) which comprises reacting a p-substituted phenol (IV) with acetone (V) and a trihalogenomethane (VI) in the presence of a base.

Suitable bases which may be used in this reaction include such strong bases as potassium hydroxide and sodium hydroxide.

35

10

20

25

30

35

40

In carrying out this process, p-substituted phenols (IV) are dissolved in acetone (V), to the resulting solution a trihalogenomethane (VI) such as chloroform is added dropwise under reflux conditions in the presence of a base, and then the reaction is continued during 5 to 8 hours, and there is obtained the

Moreover, the compound in which R stands for an alkyl group having 1 to 6 carbon atoms or

$$-(CH_2)_n N$$
 R_1

(n and R₁ are the same as heretofore defined), may be also produced as follows:

10

15

20

25

30

35

40

$$C \leftarrow \bigcirc \qquad \qquad \downarrow \qquad \qquad$$

wherein R₂ stands for an alkyl group having 1 to 6 carbon atoms or

$$-(CH_2)_nN$$
 R_1

(n and R₁ are the same as heretofore defined), X stands for a hydroxyl group or a halogen, an acyloxy group or an alkoxy group except OR2, and Y is the same as 15 heretofore defined.

This invention provides a process for producing substituted phenoxy- α -methylpropionic acid derivatives (I) which comprises reacting an α -(p-substituted alcohol (VIII).

Suitable reactive derivatives of an α -(4-substituted phenoxy)- α -methyl propionic acid include the acid halides, acid anhydrides, mixed acid anhydrides and esters, wherein preferred acid halides to be used are, for example, bromides or

In carrying out this process, the reaction is, as a rule, preferably conducted in organic solvents, when using an acid halide as a starting material (VII). As suitable organic solvents, there may be mentioned, for example, basic solvents such as pyridine and quinoline, and neutral solvents such as benzene, toluene and xylene. The reaction may be conducted under conditions ranging from ice-cooling to room temperature, but the reaction is preferably carried out by heating to 40°—140°C., thereby the reaction time may be shortened.

When using the neutral solvents, the reaction may be conducted in the presence of a base such as tertiary amines or heterocyclic compounds containing

nitrogen to afford good results.

When using the carboxylic acid (i.e. when X stands for a hydroxyl group) as a starting material (VII), a usual esterification method by dehydration is applied. That is, when the other starting material (VIII) is such a lower alcohol as methanol and ethanol, a starting material (VII) is reacted with excess starting material (VIII)

under reflux conditions with or without such a catalyst as p-toluenesulfonic acid.

In the case where the starting material (VIII) is an N,N-di-alkylamino-alcohol, the reaction is conducted in organic solvent such as benzene, toluene and xylene under reflux conditions, while removing water formed from the reaction system

10

15

5

10

15

25

In the further case where an acid anhydride is used as the starting material (VII), whilst the reaction can be conducted in the absence of a solvent, the reaction proceeds more preferably when an organic solvent is used.

Suitable organic solvents which may be used in this reaction include heterocyclic compounds containing nitrogen such as pyridine and quinoline, basic solvents such as tertiary amines, and neutral solvents such as benzene, ether, dioxane, toluene and xylene.

The reaction is preferably conducted at room temperature, but increased temperatures ranging from 40° to 140°C. bring about a reduction in reaction time. When a neutral solvent is used, the solvent may be used as a mixed solvent with a base such as a tertiary amine and a heterocyclic compound containing nitrogen. Further, catalysts such as sulfuric acid and boron hydrides may be used.

Of the compounds of the formula (I) obtained as described above, the compound in which R stands for an N,N-di-alkylamino-alkyl group may be converted to the corresponding organic or inorganic acid addition salts.

The pharmacological effects of the compounds of the formula (I) obtained according to the invention are as follows:

(1) Effects on the concentration of cholesterol in the blood serum. The tests were carried out in 80 male SD (Sprague Dawley) strain rats, weighing approximately 160 g. There are 8 groups, that is, test compounds-treated and control group, either of which includes 10 animals. After fasting during sixteen hours prior to the administration, each test compound and control solution was administered orally. Eighteen hours after the last administration, the rats were killed by decapitation and the blood serum was obtained by a centrifugal procedure. Total cholesterol level in the blood serum was determined by a modification of the method of Zurkowski-Shibata. These results are given in Table 1. The dose is 100 mg/kg body weight at rat. The rate of inhibition of blood serum cholesterol level in rats is represented in the terms of per cent.

Table 1.

Т	est Compounds	ċн _з
Y	R	Rate of inhibition of serum cholesterol level (%)
CH ₂	C ₂ H ₅	26.0
CH ₂ O	CH ₃	36.0
CH ₂	CH ₃	24.0
CH ₂ O	C ₂ H ₄ N C ₂ H ₅	18.7
199	HC1	· · · · · · · · · · · · · · · · · · ·
CH=CH	C₂H₄N	16.9
	°C₂H₅ HCl	
CH ₂	Н	18.4
CH ₂ CH ₂	Н	14.7

20

10

15

20

25

(2) Acute toxicity in mice.

5

20

25

To dd (Deutschland Denken.) strain male mice, weighting approximately 20..., the test compounds were administered orally.

Each value of their LD50 was measured by the method of Lichfield-Wilcoxon [J. Pharmac. exp. Ther, 96, 99 (1949)]. These results are given in Table 2.

Table 2.

The Compound	cı-O	> v -⟨ <u>¯</u>)-∘	CH ₃ - C - COOR
	Y .	R	LD50 (mg/kg)
•	CH ₂	CH,	2,950
	CH ₂ O	C ₂ H _s	>8,000
•	CH ₂ O	CH,	>8 000

(3) Comparison of pharmacological effects between known and present

(a) Male SD strain rats weighting about 160 g. were divided into 5 groups consisting of ten in each. The test compounds which had been suspended in 0.5% dose of 100 mg/kg per day for seven days. To the control group, 0.5% CMC was freely all through the term, and body weight was measured at the administration of the test compounds.

After fasting for eighteen hours after completion of the last administration, the rats were killed by decapitation, their livers were immediately isolated and the blood was collected.

The blood samples were immediately centrifuged at 3000 r.p.m. for 15 minutes to separate serum. Cholesterol and triglyceride in the serum were determined by the modified Zurkowski-Shibata method and Banhander's method, serum GPT (Glutamic pyruvic transaminase) activity was measured by a immediately, and the ratio of liver weight to 100 gms of body weight was These results are immediately.

These results are given in Table 3 and Table 4.

	•		,	
			•	
		Ÿ		١
	۰	1		
ĺ	ĺ	4		,

eight day Ratio (%) 97.6 70.2 97.6	ann sride Decrease (%) 30,5 27.0 55.7	23:0 23:0 39.1 46.1	4 6		Test compounds Known Compounds H Present Compounds Control
			310.00		
7.701			102 614		
101.2	64.2	1.01	T		-
9.76		17. 3	_	_	
1	55.7	39.1	7	Т	il Compounds
70.2		20.1	50.0+3	-	
	27.0	33.0	7	7	
97.6	000		+	H	
(91.)	300	23.0	64.412	H CH	- chimodiii
Ratio		(%)			Compounds
	Γ		p/gm:	-	
	triglyoeride	olesterol	ວົ	ſ	
	Corne	Serum		, P	Test compour
	eight day Ratio (%) 97.6 70.2 97.6	m Body weight gain a day Decrease g Ratio (%) 30.5 8.2±0.6 97.6 27.0 5.9±0.7 97.6 64.2 8.5±1.1 101.2	Serum Serum Body weight	Serum Serum Serum Body weight gain a day mg/dl Decrease mg/dl Decrease B Ratio (%) 64:412.8 23.0 37.312.1 30.5 8.210.6 97.6 56:042.5 33.0 39.212.7 27.0 5.910.4 70.2 50.913.2 39.1 23.811.6 55.7 8.210.7 97.6 45.113.1 46.1 19.211.9 64.2 8.511.1 101.7	Serum Serum Serum Serum Cholesterol triglyceride gain a day T mg/dl Decrease mg/dl Decrease Body weight CH ₂ 64:412.8 23:0 37.312.1 30:5 Ratio CH ₃ O 56:042.5 33.0 37.312.1 30:5 8.240.6 97.6 CH ₂ 50.943.2 39:1 23.841.6 55.7 8.240.7 97.6 CH ₂ O 45.143.1 46.1 19.241.9 64.2 8.541.1 101.7

TABLE 4

	Liver weight/	body weight (100g
	Body weight	gain a day
-5 -5	Serum triglyceride	mg/dl Decrease
	Serum Cholesterol	mg/dl Decrease (%)
	spunds 7	1 10
	Test compo	wn Compounds

BNSDOCID: <GB 1422879

(b) Male SD strain rats weighing about 190 g. were divided into 5 groups

The test compounds which had been suspended in 0.5% CMC were udministered to each of four groups in a dose of 50 mg/kg per day or 200 mg/kg per % CMC was administered in the same manner as described above. Water and feed were given freely all through the term,

blood was collected. The blood samples were immediately centrifuged at 3000 After fasting for eighteen hours after completion of the last administration and a body weight was measured at the administration of the test compounds. r.p.m.for 15 minutes to separate serum. Cholesterol and triglyceride in the serum td.). The isolated liver was weighed immediately, and the ratio of liver weight to respectively, and the rate of inhibition by each test compound was calculated were determined by the modified Zurkowski method and Banhander's method s activity was measured by a transaminase reagent kit (Yatolon Co. rats were killed by decapitation, their livers were immediately isolated and the

Holk's method, respectively, and the rate of inhibition by each test compound was These results are given in Table 5.

1. by volume) for 24 hours to obtain lipids, and then

g. of the liver was extracted

cholesterol and total lipids in the liver were determined by the above method and

chloroform-methanol (7

		Liver Total 1	10 I DUR	mg in Liver Ratio	1		513 0121 1	_			247.9+9.1	8.24	433 6113 8	123.0±13.8 100
	Liver Total	Cholesterol	Decrease mg in Liver Ret:	(%)	39.5±1.4 -4.8		31.9±1.1 15,4		33.8±1.5 103		32.8 ± 2.3 13.0		37.7±1.9 100	
TABLE 5-1	Serum	(18.)	mg/dl	20 212 0	Jo. 612.0 34.8	1	52.7	1	39.8	29.8+3.3		T		
- 1	Serum Cholesteroj	1.	(%)	Test test		21.1		11.2		28,0	_	,		
		Ib/gm		50 46.4±3.4	III BY NB	290 44.2±3.3	mg/kg	50 49.7±4.3	+	mg/kg 40.3±1.5	+	56.0±2,3		
	:			Ethyl 2-(p-Chlorophenoxv).	180butyrate		Bthyl a-[p-(p'-chlore	benzyloxy)phenoxy].	d-incury i-propionate		Control			

				_	_									
	3PT	ity	Ratio	<u>@</u>	103.4		122.4		105.2		109.8	?	T _S	2007
٠	Serum GPT	activity	Karmen	Onit	18.0±1.7		21,3±1,9		18.3±0.9		19,1±1,4		17 411 7	
	eight/ ht (100c)	(900)	Ratio	- 1	112.1		142,4		103,0		115.2		100	
	Liver weight/ body weight (1000x)		50		3.7±0.09		4.7±0.13		3.4±0.06		5.8±0.12		3.3±0.05	
IABLE 5-2	reight 1 day	Ratio	(%)	100	00.1	7 00	30°4	7	101.4	07.3		1	001	+
IAB	Body weight gain a day	60	52 4	7.3+0.7		6 6±0 d		7 4+0 5	٠.	7.1+0.6		7 210 4	$\overline{}$	
	·			20	mg/kg	200	mg/kg	50	mg/kg	200	mg/kg		1	
			,	Hebrit of Control	isobutyrate			,	$ a _{0xy}$ $ a _{0xy}$ $ a _{0xy}$ $ a _{0xy}$	propionate	C	Control		

As can be seen from Tables 3 to 5, it may conclude that the effectiveness of an gloscelerosis and lipid metabolism, compared with known compounds. The following Examples are given by way of illustration only and as limiting unless otherwise specified.

9 added to 100 ml, of xylene. The resulting mixture was refluxed with stirring for 3 dropwise thereto for a period of approximately 20 minutes. The mixture obtained was then added dropwise thereto for a period of approximately 20 minutes. The mixture obtained was then refluxed with stirring for 6 hours, followed by addition of water, thereby separating the organic layer. The water layer was extracted with ether. The combined crops of ethereal layer and the original organic layer were washed with water, dried, and the solvents were distilled off. Recrystallization of the resulting 2 15

· 40

10

residue from methanol afforded white crystals of α- [p(p'chlorobenzyloxy)phenoxyl-α-methylpropionic acid methyl melting point of 0.00	
[p(p'chlorobenzyloxy)phenoxy]-α-methylpropionic acid methyl ester having Elemental Analysis: as C ₁₈ H ₁₉ O ₄ Cl	tals of α -ester having a

	Elemental Analysis: as C.	H ₁₉ O ₄ Cl	. Je obiot navnig	a
5		С	H	
	Calculated (%)	64.58	5.72	
	Found (%)	64.47	5.57	
	66g of a ablances	Example 2.		
10	stirring under reflux for a per	stilbene and 0 mixture was ro acid ethyl est iod of appro	.7 g. of metallic sodium were added efluxed with stirring for 4 hours. 5.5 er was added dropwise thereto with kimatly 20 minutes. The	10
15	treated in the same	re, and the org lescribed in E r-[p-)p'-chloros	anic layer was separated, and then	15
		С	Н	
20	Calculated (%)	69.70	6.09	
	Found (%)	69.88	6.00	20
25 30	added to 30 ml. of xylene. The reshours. 8.8 g. of α -bromo- α -methydropwise thereto for a period of apwas further refluxed for 6 hours. procedure as described in Examp product from isopropyl alcohol a methylpropionic acid norpropyl elemental Analysis: as $C_{20}H_{23}O_4Cl$	ylpropionic ac proximately 1 When the re le I was perf	or minutes. The mixture obtained action was complete, the same	25
		С	Н	
	Calculated (%)	66.20	6.39	
	Found (%)	66.05	6.35	
35	added to 50 ml. of xylene. The resulting	xample 4. phenol and 0. Iting mixture v	57 g. of metallic sodium were	35
40	further refluxed with stirring for 6 h same procedure as described in Example the product having a stribe in Example 1.	ely 15 minute lours. When the ople I was perf	s. The mixture obtained was ne reaction was complete, the	40
	methylpropionic acid methyl ester ha	α -[p-(p'-ch] aving a meltin	orophenethyl)phenoxyl-a- g point of 45° to 48°C	
15	Elemental Analysis: as C ₁₉ H ₂₁ O ₃ Cl	er age of		•
		С	Н	45
	Calculated (%)	68.56	6.36	
	Found (9/)		•	•

6.49

		1,422	,079	•		
5	To 100 ml. of anhydrous er form the corresponding alcohowas added thereto and the rehours. 7.0 g. of α-bromo-α-met thereto with stirring under reflimixture obtained was further rewas complete, the precipitate with the resulting residue was added	sulting mixt thylpropioni ux for a per fluxed with	, 0.7 g. of me then 6.6 g. of ture was refl to acid ethyl- riod of appro stirring for 4	uxed with s ester was ac eximately 15 hours Whe	tirring for 2.5 Ided dropwise minutes. The	I 5 €
10	the resulting residue was adde extract was then washed with Distillation of the resulting rechlorobenzyl)phenoxyl-α-methy of 175° to 180°C/2 mmHg.	d water an water and	d extracted the solvent	with ether.	The ethereal	
٠	Elemental Analysis: as C ₁₉ H ₂₁ O ₃	CI	•			•
15	į.					
15		. С	·	Ŧ		4
	Calculated (%)	68.57	6.3	36		15
	Found (%)	68.38	6.1	4		
		Example 6				
20	2.35 g. of p -(p '-chlorobenzylo added to 50 ml. of ethanol. The r hours. 2.0 g. of α -bromo- α -methyl then added dropwise thereto for mixture obtained was further reflu was complete, the solvent was dist	exy)phenol a esulting mix propionic ac a period exed with sti	nd 1.1 g. of ture was reflected dissolved of approximating for 3 ho	in 10 ml. of eately 10 minutes	thanol was	20
25	was complete, the solvent was dist in water by application of heat to s was acidified with dilute hydrochlo was collected by filtration. Rec- afforded white crystals of α-[p-(p' acid having a melting point of 153	eparate the oric acid, the rystallization	insoluble mae material se thereof fr	terial. After parating out	s dissolved the filtrate	25
30	Elemental Analysis: as C ₁₇ H ₁₇ O ₄ Cl				·	
		C	н			30
	Calculated (%)	63.65	5.34			
	Found (%)	63.43	5.11			
35	acid ethyl ester and 1.3 g. of potassiu The resulting mixture was refused	- Julioonati	- were added	to on mr. of	acetone	35
40	was complete, the solvent was distill and extracted with ether. The ethere the residue obtained was chromato eluent. Recrylstallization of the production of	al layer was ographed or	washed with silica gel	as treated wi water and dusing chloro	th water ried and	40
	Elemental Analysis: as C ₁₉ H ₂₁ O ₄ Cl		omyi cate	· E •		
		C	L			
1 5	Calculated (%)	65.42	H 6.07			
	1		6.07	3.5	e general	45
	(-0)	65.54	6.03	11		

•					11
5	distilled off and the residue of	riod of 15 minu ours. When the obtained was di	lorobenzyl)pheno chloroform was a tes. The resulting reaction was con ssolved in water	mixture was further nplete, acetone was	
10	dilute sodium carbonate solu ether and acidified with dilut therefrom were collected afforded white crystals of α - $[n]$ having a melting point of 79°	tion. The result te hydrochloric	ing alkaline extra	ct was extracted with	10
	Elemental Analysis: as C ₁₇ H ₁₇	O ₃ Cl			
		· C	Н		
15	Calculated (%)	67.00	5.62		
	Found (%)	67.08	5.66		15
20	To the mixture of 4.7 g. hydroxide and 20.0 g. of acetor stirring under reflux for a perisame procedure as described in product from isopropyl all chlorobenzyloxy)phenoxyl-α-meto 155°C.	od of approxin Example 8 was	enzyloxy)phenol, loroform was add nately 15 minutes performed Reco	Thereafter, the	20
25	Elemental Analysis: as C ₁₇ H ₁₇ O ₂		•		
		c			25
	Calculated (%)	63.65	H		
	Found (%)	63.43	5.34		
30 35	To the mixture of 3.0 g. of hydroxide and 12.5 g. of acetone stirring under reflux for a period same procedure as described in Exproduct from cyclohexane chlorophenethyl)phenoxyl-α-meth 120°C.	d of approxima kample 8 was pe afforded w hylpropionic ac	tely 15 minutes.	Thereafter, the	30 35
	Elemental Analysis: as C ₁₈ H ₁₉ O ₃ C	1	·. ·		
•	4	C	H		
4.5	Calculated (%)	67.82	6.09		
40	Found (%)	67.99	6.19	. ·	4 0
45	To the mixture of 3.6 g. of phydroxide and 15 ml. of acetone, 2 stirring under reflux for a period csame procedure as described in Examproduct from acetone afforded white methylpropionic acid.	of approximatel	v. 15 minutes 7	ropwise with	S

, -			•			•
12			1,422,679	·		1:
	Elemental A	nalysis: as C ₁₈ H ₁₇ C)₃Cl			
	•		. С	н		
		Calculated (%)	68.25	5.41		
		Found (%)	68.34	5.44		
5						
10	Stirring unde	r reflux for appr	oximately 20	minutes. The	8.3 g. of potassium ided dropwise with creater, the same rystalization of the	
	CINCICODENZVIA	VI/mhanassi	, , , , , , , , , , , , , , , , , , , ,	WILLIAM CIVE	rystalization of the stals of α - $[p-(p'-t)]$ ing point and the nauthentic sample	10
15	SUITING under r	xture of 7.2 g. of p 31 g. of acetone, eflux for a period of	, 0 - 0.0	oronni was au	uea aronwice with	15
20	procedure as of product from chlorobenzylov	eflux for a period of described in Examon isopropyl alcomosyl-\(\alpha\)-method of the product ample 9.	ple 8 was perfo hol afforded	ormed. Recry white cryst	stallization of the	20
25	was complete, sether and washer residual thus oh	ml. of anhydrous e and the mixture wa colvent was distilled ed with water and	s then refluxed if off and the res the solvent was	for 3 hours. Widue obtained distilled off.	When the reaction I was dissolved in Distillation of the	25
30	of 185° to 186°	enozyl- α -methylpr C./2 mmHg.	opionic acid eth	yl ester havin	inquid of α -lp-(p'- ig a boiling point	30
į.	Elemental Analy	ysis: as C ₁₉ H ₂₁ O ₃ Cl	•			
••			С	н		
		Calculated (%)	68.57	6.36		
35 .	•	Found (%)	68.38	6.53		25
				•		35
40	was complete, me the same manne methanol afford	c-lp-(p'-chlorobenzy c-lp-(p'-chlorobenzy control and control and control control and control and control control and control and control control and control and control and control control and control an	was refluxed for d off and the res Example 14. Re	r 4 hours. Whidue obtained ecrystalization	nen the reaction I was treated in I thereof from	40
	Elemental Analys	is: as C ₁₈ H ₁₉ O ₄ Cl	3			
5	e de la companya de l		С	H		45
	C	alculated (%)	ZA 50			

Calculated (%)

.			1,422,079		•	
·	hours. Treextract so and dried separate of from eth methylpromelting po	g. of α-[p-(p'-chlorosty iethylamino)ethanol was then refluxed with he reaction mixture we olution was washed with the Thereafter, dry hyd out crystals, which we hanol afforded which opionic acid 2-(N,N-coint of 174° to 176.5° Analysis: as C ₂₄ N ₃₁ O	a stirring in a fast poured into the dilute soding the collected by the crystals of the crystal crystals of the crystal crystals of the crystal crystals of the crystal crysta	ca-methylpropio to 40 ml. of x lask fitted with a water and extra im carbonate sol gas was passed y filtration Rec	water separator for cted with ether. So ution and then was into the solution	ing or 6 aid 5 ter to
			С	H	37	
		Calculated (%)	63.86	6.70	N	
1.	5	Found (%)	63.90	7.00	3.10	
20	reaction was performed.	of α -[p -(p '-chlorobenzy limethylamino)ethano is refluxed with stirring is complete, the sam Recrystallization of th α -[p -(p '-chlorobenzyl ino)ethyl ester hydroc	g in a flask fitte le procedure le product fro	l-α-methylpropic to 50 ml. of xyl ed with a water so as described in n isopropyl alco	parator. After the Example 16 was	20
		analysis: as C ₂₁ H ₂₇ O ₄ C		a meiting point	of 101° to 103°C.	
25			C	н	N	25
		Calculated (%)	58.88	6.35	3.27	
		Found (%)	58.10	6.41	2.97	
.35	room tempera was then furt mixture was co were collected alcohol	Example 18. 6.0 g. of α -[p-(p'-chlorostyryl)phenoxyl- α -methylpropionic acid chloride was g. of 2(N,N-dimethylamino)ethanol dissolved in 20 ml. of benzene with stirring at room temperature for a period of approximately 15 minutes. The reaction mixture mixture was cooled to room temperature and the crystals separating out therefrom alcohol afforded white crystals of α -[p-(p'-chlorostyryl)phenoxyl- α -melting point of 188° to 191°C.				
	Elemental Ana	alysis: as C ₂₂ H ₂₇ O ₃ Cl ₂ l	7			
40			С	E.T		•
		Calculated (%)	62.27	H 6.41	N	40
		Found (%)	62.04		3.30	
45 50	overnight. N,N- filtrate was evar from ether-ligh		ample 19. yloxy)phenoxy de were added temperature for rating out ther d pressure. Re	or 2 hours and alloefrom was filtered	owed to stand ed off and the	45 50
•		•				

5

10

15

20

25

30

Elemental Analysis: as C₃₄H₃₂O₇Cl₂

	· C	н
Calculated (%)	65.49	5.17
Found (%)	65.66	5.23

(2) 1.0 g. of α-[p-(p'-chlorobenzyloxy)phenoxy]-α-methylpropionic acid anhydride and 1.2 g. of nor.-propanol were dissolved in 3 ml. of pyridine. The for 4 hours, and allowed to stand overnight at room temperature was maintained mixture was then concentrated under reduced pressure and the residue obtained the ether was distilled off. Recrystallization of the residue from isopropyl alcohol acid nor.-propyl ester having a melting point of 42° to 43.5°C.

Elemental Analysis: as C₂₀H₂₃O₄Cl

C H

Calculated (%) 66.20 6.39

Found (%) 66.37 6.43

WHAT WE CLAIM IS:-

1. Substituted phenoxy- α -methyl-propionic acid derivatives of the following general formula,

CH3

CH3

wherein Y stands for —CH₂—, —CH₂O—, —CH₂CH₂—or—CH=CH—, R stands for a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or

$$-(CH_2)_n N$$

n stands for an integer of 1 to 5 and R₁ stands for an alkyl group having 1 to 6

2. Substituted phenoxyge method

2. Substituted phenoxy- α -methyl-propionic acid derivatives of the following general formula.

wherein R is the same as in Claim 1.
3. Substituted phenoxy-α-methyl-propionic acid derivatives of the following general formula,

10

25

30

5

10

15

wherein R is the same as in Claim 1.

4. Substituted phenoxy- α -methyl-propionic acid derivatives of the following general formula,

wherein R is the same as in Claim 1.

5. Substituted phenoxy- α -methyl-propionic acid derivatives of the following general formula,

wherein R is the same as in Claim 1.
6. Methyl α-[p-(p'-chlorobenzyl)phenoxyl-α-methylpropionate.
7. Methyl α-[p-(p'-chlorobenzyloxy)phenoxyl-α-methylpropionate.
8. Ethyl α-[p-(p'-chlorobenzyl)phenoxyl-α-methylpropionate.
9. Ethyl α-[p-(p'-chlorobenzyloxy)phenoxyl-α-methylpropionate.
10. A process for producing substituted phenoxy-α-methylpropionic acid
derivatives of the following formula.

15 derivatives of the following formula,

wherein Y and R are the same as in Claim 1, which comprises reacting a psubstituted phenol or metallic salt thereof of the following formula,

20 wherein A stands for a hydrogen atom or alkali or alkaline earth metal, with an α -halocarboxylic acid of the following formula,

20

25

30

wherein X stands for a halogen atom, and R is the same as in Claim 1.

11. A process as claimed in Claim 10, wherein the p-substituted phenol is p-12. A process as claimed in Claim 10, wherein the α-halocarboxylic acid is an α-halocarboxylic acid is an α-halocarboxylic acid is an α-halocarboxylic acid.

 α -bromo- α -methylphopionic acid $C_{1-\alpha}$ alkyl ester.

13. A process as claimed in Claim 10, wherein the reaction between the psubstituted phenol or metallic salt thereof and a-halocarboxylic acid is carried out at a temperature ranging from 60°C to 140°C.

14. A process for producing substituted phenoxy-α-methyl-propionic acid derivatives of the following formula,

10

15

20

10

15

20

25

30

wherein R₂ stands for an alkyl group having 1 to 6 carbon atoms or

(n and R₁ are the same as in Claim 1), and Y is the same as in Claim 1, comprises reacting an α -(p-substituted phenoxy)- α -methylpropionic acid reactive derivative thereof of the following formula,

wherein X stands for a hydroxyl group or a halogen, an acyloxy group or an alkoxy group except OR₂, and Y is the same as in Claim 1, with an alcohol of the following formula, R₂OH wherein R₂ is the same as heretofore defined.

15. A process as claimed in Claim 14, wherein the reactive derivative of the α -

(p-substituted phenoxy)-α-methyl-propionic acid is the acid chloride or anhydride.

16. A process as claimed in Claim 14, wherein the reactive derivative of the α
16. A process as claimed in Claim 14, wherein the reaction between the α-(p
substituted phenoxy)-α-methylpropionic acid and alcohol is carried out in the

17. A process as claimed in Claim 15, wherein the reaction between the α -(psubstituted phenoxy)-a-methylpropionic acid chloride or anhydride and alcohol is carried out in a basic organic solvent or a neutral organic solvent in the presence

18. A process for producing a substituted phenoxy-α-methylpropionic acid derivative of the following formula,

wherein Y is the same as in Claim 1 which comprises reacting a p-substituted phenol of the following formula,

25 wherein Y is the same as in Claim 1, with acetone and a trihalogenomethane in the presence of a base.

19. A process as claimed in Claim 10 and substantially as described in any one of the specific Examples 1-7 hereinbefore set forth.

20. Phenoxy-a-methylpropionic acid derivatives whenever produced by the 30 process claimed in any of claims 10 to 19 or by an obvious chemical equivalent

> For the Applicants, F. J. CLEVELAND & COMPANY, (Chartered Patent Agents). Lincoln's Inn Chambers, 40/43 Chancery Lane, London, WC2A 1JQ.

Printed for Her Majesty's Stationery Office by the Courier Press, Learnington Spa, 1976. Published by the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
RADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.