

Internship Report

On

FLAVOR FORECAST

- Personalized Recipe Suggestion Based on Mood and Weather

Submitted by

Chatla Chetan Kumar 21K91A6622 TKR College of Engineering and Technology Submitted to

Mallika Srivastava Head, Training Delivery Eisystems Services

&

Mayur Dev Sewak Head, Internships & Trainings Eisystems Services

Student's Declaration

I, CHATLA CHETAN KUMAR, a student of B. Tech program, Roll No. 21K91A6622 of the Department of CSE (AI & ML) College do hereby declare that I have completed the mandatory internship in Eisystems Technologies under the faculty guideship of Dr. D JAGADISWARY, Department of CSE (AI & ML), TKR College of Engineering and Technology.

(Signature and Date)

Endorsements

Dr. D JAGADISWARY
Department of CSE (AI & ML)
TKR College of Engineering and Technology

Dr. B Sunil Srinivas
Department of CSE (AI & ML)
TKR College of Engineering and Technology

Table of Content

Serial No.	Title	Page No.
1.	Executive Summary	6
2.	Overview of the Organization	7
3.	Project Summary	8-9
4.	Data Flow Diagram / Process Flow Diagram	10
5.	Code	11-18
6.	Input / Output with Datasets and Supported Screenshots	19-22
7.	References	23
8.	Student Self Evaluation of the Short-Term Internship	24
9.	Annexure 1	25-27
10.	Annexure 2	28

List of Figures

Serial No.	Image Caption	Page No.
1.	Process Flow Diagram	10
2.	Frontend Code (index.html)	11-13
3.	Backend Code (recipe.ipynb)	13-18
4.	Normal index.html page	20
5.	Selecting the current mood (happy/neutral/sad)	20
6.	Entering the Temperature in °C	21
7.	Entering the Humidity in g/m ³	21
8.	Selecting the weather condition (sunny/cloudy/rainy)	22
9.	Clicking on the Get Recipe and displaying the Suggested Recipe	22

List of Tables

Serial No.	Table Caption	Page No.
1.	Recipe.csv dataset	19
2.	Daily Activity Report	26-27
3.	Weekly Activity Report	28

Executive Summary

This internship spanned a period of eight weeks, during which I was part of both the training and project phases at EISystems, focusing on course Python with Machine Learning. The primary objective of this internship was to gain practical exposure and applying theoretical knowledge to real-world scenarios, and enhancing my professional skills.

Learning Objectives:

The main Objective to take this internship in field of Python with Machine Learning is to be able to formulate machine learning problems corresponding to different applications and range of machine learning algorithms along with their strengths and weaknesses.

Learning Outcomes:

Upon completion of the internship, I achieved the following outcomes:

- **Technical Proficiency:** Enhanced my skills in field of Machine Learning and gained hands-on experience by doing Project.
- **Project Management:** Learned to manage time and resources effectively, contributing to the successful completion of my Flavor Forecast Project.
- **Professional Development:** Improved problem-solving skills and logical thinking ability.

Summary of Activities:

- During the training phase,
 - ➤ I have studied in detail about the Python Programming which includes foundations of python, variables, data types, data structures etc.
 - After learning about the Python Programming, I have studied the various libraries which are used for machine learning and learned about the various machine learning model such as linear regression, classifications etc.
- During the project phase,
 - We have team up and chosen the project named Flavor Forecast which is a Personalized Recipe Suggestion Based on Mood and Weather where I undertook the following key activities:
 - Created the required dataset manually by considering the key moods and the weather conditions.
 - Developed a machine learning model to train and test the dataset which was created manually.
 - Collaborated with team members to troubleshoot and resolve issues, ensuring the project's successful completion.

Overview of Organization

EISystems

India's leader in workshops & trainings at IITs, NITs & top engineering colleges

EISystems Services is a leading Indian technology identity with operations across India. EISystems (We call it EISys) offers trainings in Cybersecurity, Machine Learning, Automobiles, Internet of Things, Robotics and social media for enterprises and student community. Till date we have trained approximately 50000 students and impacted around 2 lakhs students through our various outreach initiatives since our founding.

Project Summary

Objective:

People often seek different types of food based on how they feel. For example, someone feeling happy might crave something light and refreshing, while someone feeling sad might prefer comfort food. By incorporating mood into the recipe recommendation process, the application aims to offer more relevant and satisfying suggestions.

Weather conditions also play a crucial role in our food choices. On a cold, rainy day, a person might prefer a warm, hearty meal, whereas on a hot, sunny day, they might lean towards something cool and hydrating. Integrating weather data ensures that the recipe suggestions are contextually appropriate, enhancing the user's overall experience.

The inspiration for the project Flavor Forcast comes from the understanding that our emotions and environmental factors significantly influence our food preferences and cravings.

Abstract:

The project Flavor Forecast aims to develop a machine learning-powered web application that suggests recipe based on the user's mood and current weather conditions. By leveraging data preprocessing techniques and a Random Forest Classifier, the system predicts the most suitable recipe for the user. The application is built using Python's Flask web framework, making it accessible through a user-friendly web interface.

Software Requirements:

1. Programming Language

• Python: The language used for data processing, machine learning, and backend development.

2. Libraries and Frameworks

- Pandas: For data manipulation and analysis.
- Scikit-Learn: For machine learning model building, including preprocessing, training, and evaluation.
- Flask: A lightweight web framework for building the web application.
- Numpy: For numerical operations and array handling.

3. Machine Learning Libraries

- RandomForestClassifier: Part of Scikit-Learn, used for building the classification model.
- LabelEncoder: From Scikit-Learn, used to encode target labels with value between 0 and n_classes-1.
- OneHotEncoder: From Scikit-Learn, used to convert categorical data to a format that can be provided to ML algorithms.

• StandardScaler: From Scikit-Learn, used to standardize features by removing the mean and scaling to unit variance.

4. Development Environment

• Jupyter Notebook: For developing and experimenting with the data preprocessing, model training, and evaluation.

• IDE/Text Editor: Visual Studio Code

7. HTML/CSS/JavaScript

• HTML: For creating the web form and user interface.

• CSS: For styling the web pages.

• JavaScript: For adding interactivity to the web pages, including AJAX for asynchronous form submission.

Hardware Requirements:

Devices: Computer or Laptop

RAM: as per requirement

Hard Disk: as per requirement

Working of this Project:

The core functionality involves preprocessing the input data, which includes categorical features (mood, weather condition) and numerical features (temperature, humidity). These inputs are transformed using One-Hot Encoding for categorical features and Standard Scaling for numerical features to ensure they are suitable for the model.

The machine learning model is trained on a labeled dataset containing various recipe categories and corresponding mood and weather conditions. The Random Forest Classifier is employed due to its robustness and effectiveness in handling both numerical and categorical data. Once trained, the model can predict the recipe category based on new inputs provided by users.

The web interface allows users to input their mood, temperature, humidity, and current weather condition. Upon submission, the application processes the input through the pre-trained model to generate a recipe category suggestion. The use of AJAX in the frontend ensures that the prediction result is displayed seamlessly on the same page without requiring a page reload.

This project demonstrates the integration of machine learning with web development to create an interactive and intelligent application. It provides a practical example of how data science techniques can be applied to enhance user experience in everyday activities such as cooking, making it more personalized and enjoyable.

Data Flow Diagram / Process Flow

Code:

Frontend Code (HTML)

```
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-</pre>
scale=1.0">
    <title>Recipe Suggestion</title>
    <style>
        body {
            font-family: Arial, sans-serif;
            margin: 50px;
            background-color: #b2dfdb;
        form {
            max-width: 500px;
            margin: auto;
            padding: 10px;
            border: 1px solid #ccc;
            border-radius: 10px;
            background-color: #00796b;
        div {
            margin-bottom: 15px;
            background-color: #afb42b;
        header {
            background-color: #00796b;
            text-align: center;
            padding: 10px;
        }
        h1 {
            color: #e6ee9c;
        }
        p {
            color: #f0f4c3;
        label {
            display: block;
            margin-bottom: 5px;
        input, select {
            width: 100%;
```



```
padding: 10px;
            box-sizing: border-box;
        button {
            padding: 10px 15px;
            background-color: #004d40;
            border: none;
            color: #e0f7fa;
            cursor: pointer;
            border-radius: 5px;
        button:hover {
            background-color: #827717;
        #result {
            background-color: #00796b;
            color: #e6ee9c;
            text-align: center;
            padding: 10px;
            font-size: 30px;
    </style>
<script src="https://code.jquery.com/jquery-3.6.0.min.js"></script>
    <script>
        $(document).ready(function() {
            $('form').on('submit', function(event) {
                event.preventDefault();
                $.ajax({
                    url: '/predict',
                    method: 'POST',
                    data: $('form').serialize(),
                    success: function(response) {
                        $('#result').text('Suggested Recipe is: ' +
response.recipe_category);
                });
            });
        });
    </script>
</head>
<body>
    <header>
        <h1>Flavour Forecast</h1>
        This is a machine learning model to suggest recipes based
on user-provided mood and weather conditions.
    </header>
    <br><br><br><
```



```
<form action="/predict" method="post">
        <div>
            <label for="mood">Mood:</label>
            <select name="mood" id="mood">
                <option disabled="" selected="">Select Your Current
Mood</option>
                <option value="happy">Happy</option>
                <option value="sad">Sad</option>
                <option value="neutral">Neutral</option>
            </select>
        </div>
        <div>
            <label for="temperature">Temperature (°C):</label>
            <input type="text" name="temperature" id="temperature">
        </div>
        <div>
            <label for="humidity">Humidity (g/m3):</label>
            <input type="text" name="humidity" id="humidity">
        </div>
        <div>
            <label for="weather_condition">Weather
Condition:</label>
            <select name="weather_condition" id="weather_condition">
                <option disabled="" selected="">Select The Current
Weather Condition</option>
                <option value="sunny">Sunny</option>
                <option value="rainy">Rainy</option>
                <option value="cloudy">Cloudy</option>
            </select>
        </div>
        <button type="submit">Get Recipe</button>
    </form>
    <br><br><br>>
    <div id="result"></div>
</body>
</html>
```

Backend Code (Python)

```
In [1]: !pip install flask
```


Requirement already satisfied: flask in c:\users\chetan\anaconda3\lib\site-packages (2.2.5)

Requirement already satisfied: Werkzeug>=2.2.2 in c:\users\chetan\anacond3\lib\

site-packages (from flask) (2.2.3)

Requirement already satisfied: Jinja2>=3.0 in c:\users\chetan\anaconda3\lib\site-packages (from flask) (3.1.3) Requirement already satisfied: its dangerous>=2.0 in c:\users\chetan\anaconda3\lib\ site-packages (from flask) (2.0.1)

Requirement already satisfied: click >=8.0 in c:\users\chetan\anaconda3\lib\ site-packages (from flask) (8.1.7)

Requirement already satisfied: colorama in c:\users\chetan\anaconda3\lib\ site-packages (from click >=8.0->flask) (0.4.6)

Requirement already satisfied: MarkupSafe>=2.0 in c:\users\chetan\anaconda3\lib\ site-packages (from Jinja2>=3.0->flask) (2.1.3)

In [2]: # Reading the recipe data from CSV file

import pandas as pd

df = pd.read_csv('recipe.csv')

In [3]: #displaying the data

df

Out [3]:

n	nood	temperature	humidity	weather_con	dition recipe_cate
0	happy	22	50	sunny	Biryani
1	sad	15	70	rainy	Soup
2	neutral	30	30	sunny	Icecream
3	happy	25	45	cloudy	Grill
4	sad	10	80	rainy	Tea
5	neutral	35	25	sunny	Smoothie
6	happy	20	55	sunny	Biryani
7	sad	5	85	rainy	Soup
8	neutral	40	20	sunny	Icecream
9	happy	36	30	cloudy	Maggie
10	sad	17	60	cloudy	Tea
11	sad	23	68	sunny	Smoothie
12	happy	24	58	rainy	Maggie
13	happy	40	50	rainy	Grill
	neutral	30	40	cloudy	Tea
	neutral	40	69	sunny	Biryani
16	sad	49	60	sunny	Icecream
17	sad	17	22	rainy	Grill
18	sad	23	34	cloudy	Smoothie
19	happy	40	67	sunny	Smoothie
	happy	29	10	cloudy	Soup
21	sad	40	30	sunny	Biryani
	neutral	20	40	rainy	Soup
23	neutral	50	40	sunny	Icecream
24	happy	10	10	cloudy	Tea
25	sad	40	20	cloudy	Soup
26	happy	30	40	sunny	Biryani
	neutral	20	10	rainy	Tea
28	sad	40	89	sunny	Smoothie
29	happy	50	10	cloudy	Grill
30	neutral	20	10	rainy	Grill
31	happy	30	50	cloudy	Biryani
32	sad	20	50	cloudy	Maggie

33 sad	50	90	sunny	Icecream
34 happy	60	90	sunny	Biryani
35 neutral	80	70	sunny	Smoothie
36 sad	30	30	cloudy	Soup
37 sad	90	80	sunny	Icecream
38 happy	35	52	cloudy	Biryani
39 happy	20	59	cloudy	Grill

Separate dependent and independent attributes

In [4]: x = df.drop("recipe_category", axis=1)

Σ

Out [4]:

mood temperature humidity weather_condition

0 happy	22	50	sunny
1 sad	15	70	rainy
2 neutral	30	30	sunny
3 happy	25	45	cloudy
4 sad	10	80	rainy
5 neutral	35	25	sunny
6 happy	20	55	sunny
7 sad	5	85	rainy
8 neutral	40	20	sunny
9 happy	36	30	cloudy
10 sad	17	60	cloudy
11 sad	23	68	sunny
12 happy	24	58	rainy
13 happy	40	50	rainy
14 neutral	30	40	cloudy
15 neutral	40	69	sunny
16 sad	49	60	sunny
17 sad	17	22	rainy
18 sad	23	34	cloudy
19 happy	40	67	sunny
20 happy	29	10	cloudy
21 sad	40	30	sunny
22 neutral	20	40	rainy
23 neutral	50	40	sunny
24 happy	10	10	cloudy
25 sad	40	20	cloudy
26 happy	30	40	sunny
27 neutral	20	10	rainy
28 sad	40	89	sunny
29 happy	50	10	cloudy
30 neutral	20	10	rainy
31 happy	30	50	cloudy
32 sad	20	50	cloudy
33 sad	50	90	sunny
34 happy	60	90	sunny
35 neutral	80	70	sunny
36 sad	30	30	cloudy
37 sad	90	80	sunny
38 happy	35	52	cloudy
39 happy	20	59	cloudy


```
y = df["recipe_category"]
In [5]:
Out [5]:
               1
                  Biryani
               2
                  Soup
               3
                  Icecream
                  Grill
               5
                  Tea
               6
                  Smoothie
               7
                  Biryani
                  Soup
               9
                  Icecream
               10 Maggie
               11 Tea
               12 Smoothie
               13 Maggie
               14 Grill
               15 Tea
               16 Biryani
               17 Icecream
               18 Grill
               19 Smoothie
               20 Smoothie
               21 Soup
               22 Biryani
               23 Soup
               24 Icecream
               25 Tea
               26 Soup
               27 Biryani
               28 Tea
               29 Smoothie
               30 Grill
               31 Grill
               32 Biryani
               33 Maggie
               34 Icecream
               35 Biryani
               36 Smoothie
               37 Soup
               38 Icecream
               39 Biryani
               40 Grill
               Name: recipe_category, dtype: object
           # Preprocessing the data since we have target attribute as string type
            from sklearn.preprocessing import LabelEncoder
           label_encoder = LabelEncoder()
           y = label_encoder.fit_transform(y)
```

y


```
array ([0, 5, 2, 1, 6, 4, 0, 5, 2, 3, 6, 4, 3, 1, 6, 0, 2, 1, 4, 4, 5, 0,
 Out [6]:
                  5, 2, 6, 5, 0, 6, 4, 1, 1, 0, 3, 2, 0, 4, 5, 2, 0, 1])
          #Differentiating the categorical and numerical data
  In [7]:
          categorical_features = ['mood', 'weather_condition']
          numerical_features = ['temperature', 'humidity']
          # Define column transformer with one-hot encoding for categorical features
 In [8]:
          #StandardScaler is for transforming numerical_features
          from sklearn.preprocessing import OneHotEncoder, StandardScaler
          from sklearn.preprocessing import OneHotEncoder, StandardScaler
          from sklearn.compose import ColumnTransformer
          preprocessor = ColumnTransformer(
            transformers=[
               ('num', StandardScaler(), numerical_features),
               ('cat', OneHotEncoder(), categorical_features)
            1)
         # Create and train the model pipeline
In [9]:
          from sklearn.pipeline import Pipeline
          from sklearn.ensemble import RandomForestClassifier
          model = Pipeline(steps=[
            ('preprocessor', preprocessor),
            ('classifier', RandomForestClassifier(n_estimators=100, random_state=42))
          1)
In [10]: # Split data into training and test sets
          from sklearn.model_selection import train_test_split
         train_X, test_X, train_y, test_y = train_test_split(x, y, test_size= 0.3, random_state= 42)
In [11]: # Train the model
         model.fit(train_X, train_y)
Out [11]:
                                 Pipeline
              preprocessor: ColumnTransformer
                        num
                                                 cat
              StandardScaler
                     RandomForestClassifier
```



```
# Prediction function
 In [11]:
            def suggest_recipe(mood, temperature, humidity, weather_condition):
              user data = pd.DataFrame({
                 'mood': [mood],
                 'temperature': [temperature],
                 'humidity': [humidity],
                 'weather_condition': [weather_condition]
              })
              predicted_category = model.predict(user_data)[ 0]
              recipe_category = label_encoder.inverse_transform([predicted_category])[ 0]
              return recipe_category
           #removing all the warnings
In [12]:
           import warnings
           warnings.filterwarnings("ignore")
           from flask import Flask, request, jsonify, render_template
In [13]:
           from threading import Thread
           app = Flask(__name__)
In [14]:
           @app.route("/")
           def home():
              return render_template('index.html')
           @app.route('/predict', methods=['POST'])
           def predict():
             mood = request.form.get('mood')
             temperature = float(request.form.get('temperature'))
             humidity = float(request.form.get('humidity'))
             weather_condition = request.form.get('weather_condition')
             # Predict the recipe category
             recipe_category = suggest_recipe(mood, temperature, humidity, weather_condition)
             return jsonify({'recipe_category': recipe_category})
           def run_app():
              app.run()
           # Run Flask app in a separate thread to prevent blocking
           Thread(target=run_app).start()
              *Serving Flask app '_main_'
              *Debug mode: off
         WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead.
          * Running on http://127.0.0.1:5000
         Press CTRL+C to quit
```

*

Input / Output with Datasets & Supported Screenshots

Input Dataset:

moodtemperaturehumidityweather_conditionrecipe_catehappy2250sunnyBiryanisad1570rainySoupneutral3030sunnyIcecreamhappy2545cloudyGrillsad1080rainyTeaneutral3525sunnySmoothie	egory
sad 15 70 rainy Soup neutral 30 30 sunny Icecream happy 25 45 cloudy Grill sad 10 80 rainy Tea neutral 35 25 sunny Smoothie	
neutral3030sunnyIcecreamhappy2545cloudyGrillsad1080rainyTeaneutral3525sunnySmoothie	
happy2545cloudyGrillsad1080rainyTeaneutral3525sunnySmoothie	
sad 10 80 rainy Tea neutral 35 25 sunny Smoothie	
neutral 35 25 sunny Smoothie	
happy 20 55 sunny Biryani	
sad 5 85 rainy Soup	
neutral 40 20 sunny Icecream	
happy 36 30 cloudy Maggie	
sad 17 60 cloudy Tea	
sad 23 68 sunny Smoothie	
happy 24 58 rainy Maggie	
happy 40 50 rainy Grill	
neutral 30 40 cloudy Tea	
neutral 40 69 sunny Biryani	
sad 49 60 sunny Icecream	
sad 17 22 rainy Grill	
sad 23 34 cloudy Smoothie	
happy 40 67 sunny Smoothie	
happy 29 10 cloudy Soup	
sad 40 30 sunny Biryani	
neutral 20 40 rainy Soup	
neutral 50 40 sunny Icecream	
happy 10 10 cloudy Tea	
sad 40 20 cloudy Soup	
happy 30 40 sunny Biryani	
neutral 20 10 rainy Tea	
sad 40 89 sunny Smoothie	
happy 50 10 cloudy Grill	
neutral 20 10 rainy Grill	
happy 30 50 cloudy Biryani	
sad 20 50 cloudy Maggie	
sad 50 90 sunny Icecream	
happy 60 90 sunny Biryani	
neutral 80 70 sunny Smoothie	
sad 30 30 cloudy Soup	
sad 90 80 sunny Icecream	
happy 35 52 cloudy Biryani	
happy 20 59 cloudy Grill	

Output Screenshots:

1. Normal index.html page:

2. Selecting the current mood (happy/neutral/sad):

3. Entering the Temperature in °C:

4. Entering the Humidity in g/m³:

5. Selecting the weather condition (sunny/cloudy/rainy):

6. Clicking on the Get Recipe and displaying the Suggested Recipe:

References

GitHub link: https://github.com/priyanshrastogi/mood-based-food-recommender

GitHub link: https://github.com/diggyg97/Mood-Based-Recommendation-System

Student Self Evaluation of the Short-Term Internship

Please rate your performance in the following areas:

1) Oral communication	1	2	3		5
2) Written communication	1	2	3	4	
3) Initiative	1	2	3		5
4) Interaction with staff	1	2	3	4	
5) Attitude	1	2	3		5
6) Dependability	1	2	3	4	
7) Ability to learn	1	2	3	4	
8) Planning and organization	1	2	3		5
ss9) Professionalism	1	2	3		
10) Creativity	1	2	3		5
11) Quality of work	1	2		4	5
12) Productivity	1	2	3		5
13) Progress of learning	1	2	3		5
14) Adaptability to organization's culture/policies	1	2	3	4	
15) OVERALL PERFORMANCE	1	2		4	5

Rating Scale: 5 will be Best while 1 will be Worst

CHATLA CHETAN KUMAR
Signature of the Student

Annexure 1 Daily Activity Report

Week No: 08

Day &	Brief Description of Daily	Learning Outcome	Person In-Charge
Date	Activity		
Day 1	Foundations of Python	Learned the Introduction of Python Programming	Ms. Mallika Srivastava
Day 2	Installation of Python	Learned How to install Python	Ms. Mallika Srivastava
Day 3	Variables and keywords in python	Learned the basics of Python Programming	Ms. Mallika Srivastava
Day 4	First Python Program (print function & comments)	Printed the hello world! program	Ms. Mallika Srivastava
Day 5	Data Types (number Data Types)	Learned about the numeric Data Types	Ms. Mallika Srivastava
Day 6	Data Types (string Data Types)	Learned about the String Data Types	Ms. Mallika Srivastava
Day 7	Introduction to the Data Structures	Introduction to the various Data Structures in Python Programming	Ms. Mallika Srivastava
Day 8	List Data Structure	Learned working with Lists	Ms. Mallika Srivastava
Day 9	List Methods	Understood the various functions used in Lists	Ms. Mallika Srivastava
Day 10	Tuple Data Structure	Learned working with Tuples	Ms. Mallika Srivastava
Day 11	Dictionary Data Structure	Learned working with Dictionaries	Ms. Mallika Srivastava
Day 12	Set Data Structure	Learned working with Sets	Ms. Mallika Srivastava
Day 13	Boolean Data Structure	Learned working with Boolean data	Ms. Mallika

			Srivastava
Day 14	User Input & Type Casting	Understood how to take input from user and concept of type casting	Ms. Mallika Srivastava
Day 15	Control Statements	Understood the syntax for the control statements in Python Programming	Ms. Mallika Srivastava
Day 16	Quiz game and Introduction to loops	Developed a Quiz game and introduced to the Looping	Ms. Mallika Srivastava
Day 17	Loop in Python	Understood the for and while loop	Ms. Mallika Srivastava
Day 18	File Handling in Python	Learned about File handlings in Python	Ms. Mallika Srivastava
Day 19	Functions in Python	Learned about user-defined and pre- defined functions	Ms. Mallika Srivastava
Day 20	Packages and Modules	Introduced to the various packages and modules in Python	Ms. Mallika Srivastava
Day 21	Exception Handling	Learned about Exception Handling Techniques	Ms. Mallika Srivastava
Day 22	OOPS Concepts	Understood the OOPS in Python	Ms. Mallika Srivastava
Day 23	Installation of Jupyter Notebook	Learned to handle the Jupyter Notebook	Ms. Mallika Srivastava
Day 24	NumPy	Learned how to create NumPy arrays	Ms. Mallika Srivastava
Day 25	Pandas	Learned working with data frames using pandas.	Ms. Mallika Srivastava
Day 26	Matplotlib	Learned data visualization using Matplotlib	Ms. Mallika Srivastava
Day 27	Introduction to Machine Learning	Understood the correct meaning of Machine Learning	Ms. Mallika Srivastava
Day 28	Linear Regression Model	Learned about Linear Regression Model	Ms. Mallika Srivastava

Day 29	Types of Machine Learning	Understood about the Supervised,	Ms. Mallika
	Model	Unsupervised and Reinforcement models	Srivastava
Day 30	Create a Linear Regression	Developed Area Price Prediction	Ms. Mallika
	Model	Project	Srivastava
Day 31	Create Multi Regression Model	Developed a project using Iris	Ms. Mallika
		dataset	Srivastava
Day 32	Create a Binary Classification	Developed a project using Titanic	Ms. Mallika
	Model	Survival dataset	Srivastava
Day 33	Support Vector Machine	Learned about SVM	Ms. Mallika
			Srivastava
Day 34	Create Image Classification	Developed a project of image	Ms. Mallika
		classification	Srivastava
Day 35	Model Deployment	Created the user interfaces for the	Ms. Mallika
		above-mentioned projects	Srivastava
Day 36	Choosing the Project for	Selected a project named Flavor	Ms. Mallika
	Internship	Forecast	Srivastava
Day 37	Dataset Creation and Model	Created dataset manually and	Ms. Mallika
	Demonstration	Developed the	Srivastava
		RandomForestClassifier model to	
		predict the recipe	
Day 38	Model Deployment	Created the user interface using	Ms. Mallika
		Flask library and HTML	Srivastava
Day 39	Project Report	Created the Project Report	Ms. Mallika
			Srivastava
Day 40	Project report Submission	Submission of the project report	Ms. Mallika
			Srivastava

Annexure 2 Weekly Progress Report

Week No: 08

Week(s)	Summary of Weekly Activity	
Week 1	Foundations of Python, Installation of Python, Variables and keywords in python, First Python Program (print function & comments), Data Types (number Data Types).	
Week 2	Data Types (string Data Types), Introduction to the Data Structures, List Data Structure, List Methods, Tuple Data Structure.	
Week 3	Dictionary Data Structure, Set Data Structure, Boolean Data Structure, User Input & Type Casting, Control Statements.	
Week 4	Quiz game and Introduction to loops, Loop in Python, File Handling in Python, Functions in Python, Packages and Modules.	
Week 5	Exception Handling, OOPS Concepts, Installation of Jupyter Notebook, NumPy, Pandas.	
Week 6	Matplotlib, Introduction to Machine Learning, Linear Regression Model, Types of Machine Learning Model, Create a Linear Regression Model.	
Week 7	Create Multi Regression Model, create a Binary Classification Model, Support Vector Machine, Create Image Classification, Model Deployment.	
Week 8	Choosing the Project for Internship, Dataset Creation and Model Demonstration, Model Deployment, Project Report, Project Report Submission.	