DIALOG(R) File 351:Derwent WPI (c) 2002 Thomson Derwent. All rts. reserv.

007123877

WPI Acc No: 1987-123874/198718

XRAM Acc No: C87-051405 XRPX Acc No: N87-092550

Glutamine dipeptide and tripeptide use - in cell culture media contg.

amino acids, glucose and mineral salts Patent Assignee: PFRIMMER & CO J (PFRJ)

Inventor: ROTH E

Number of Countries: 011 Number of Patents: 004

Patent Family:

Date Applicat No Kind Kind Date Patent No 19851028 198718 B A A 19870430 DE 3538310 DE 3538310 19860703 198718 19870506 EP 86109103 A Α EP 220379 199019 В 19900509 EP 220379 199025 G 19900613 DE 3671040

Priority Applications (No Type Date): DE 3538310 A 19851028

Cited Patents: 2.Jnl.Ref; EP 87750

Patent Details:

Main IPC Filing Notes Patent No Kind Lan Pg

DE 3538310 A 6

A G EP 220379

Designated States (Regional): AT BE CH DE FR GB IT LI LU NL SE

EP 220379

Designated States (Regional): AT BE CH DE FR GB IT LI LU NL SE

Abstract (Basic): DE 3538310 A

The use of di- and/or tripeptides of glutamine in cell culture media contg. amino acids, glucose and mineral salts for the cultivation of isolated tissue cells is new. Pref. peptides are the dipeptides glycyl-glutamine and alanyl-glutamine.

USE/ADVANTAGE - Culture media for animal and plant cells, partic. cell culture media for extracorporeal insemination and cell culture media for the prodn. of monoclonal antibodies. Glutamine di- and tripeptides are stable to heat-sterilisation (glutamine is not), but can be utilised by cells (esp. mammalian cells) on a glutamine source (unlike masked glutamine deriv. such as acetylglutamine).

0/3

Title Terms: GLUTAMINE; DI; PEPTIDE; TRI; PEPTIDE; CELL; CULTURE; MEDIUM; CONTAIN; AMINO; ACID; GLUCOSE; MINERAL; SALT

Derwent Class: B04; D16; P13

International Patent Class (Additional): A01H-001/00; A61K-035/52;

C07K-015/04; C12N-005/02 File Segment: CPI; EngPI

11 Veröffentlichungsnummer:

0 220 379 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(1) Anmeldenummer: 86109103.1

(1) Int. Cl.4: C12N 5/02

- 2 Anmeldetag: 03.07.86
- n Priorität: 28.10.85 DE 3538310
- (3) Veröffentlichungstag der Anmeldung: 06.05.87 Patentblatt 87/19
- Benannte Vertragsstaaten: AT BE CH DE FR GB IT LI LU NL SE
- 7) Anmelder: Pfrimmer & Co. Pharmazeutische Werke Erlangen GmbH & Co. KG Hofmannstrasse 26 D-8520 Erlangen(DE)
- ② Erfinder: Roth, Erich, Dr. Alser Strasse 4 A-1090 Wien IX(AT)
- Vertreter: Freiherr von Pechmann, Eckehart et al Patentanwälte Wuesthoff- v. Pechmann-Behrens-Goetz Schweigerstrasse 2 D-8000 München 90(DE)
- (9) Verwendung von Glutamin in Form seiner DI- und Tripeptide im Nährmedium für Zelikulturen.
- Die in wäßriger Lösung hitzestabilen Di-und/oder Tripeptide des Glutamins eignen sich, im Gegensatz zu dem Acetylglutamin, dazu, in den Kulturmedien zur Züchtung isolierter Gewebszellen das Glutamin zu ersetzen.

EP 0 220 379 A1

Verwendung von Glutamin in Form seiner Di-und Tri-peptide im Nährmedium für Zellkulturen

Die in vitro-Kultivierung von tierischen und pflanzlichen Zellen ist ein wichtiges Instrument in der biologischen Forschung geworden. So werden in zunehmenden Maße Zellkulturen meist als biologische Modelle verwendet, um z.B. pharmakologische Wirkungen neuer chemischer Substanzen zu testen, wodurch bisher notwendige Tierversuche bei der Untersuchung derartiger Substanzen zum Teil ersetzt werden können. Auch ist es möglich geworden, bestimmte Stoffe, z.B. monoklonale Antikörper in derartigen Zellkulturen im industriellen Maßstab herzustellen. Ferner werden auch Zellkulturen im großen Maße bei der Tumorforschung eingesetzt. Auch in Verbindung mit der extrakorporalen Befruchtung zur Überwindung der Sterilität wird die isolierte Eizelle in Nährlösungen mit den Spermien in Kontakt gebracht und dann das befruchtete Ei bis zum Stadium des Vier -oder Achtzell-Embryos 48 -60 Stunden inkubiert bevor der Transfer in den Uterus erfolgt. vgl. Arch. Gynerol 231, 171-176 und 321 -323 (1982) sowie Dtsch. med. Wschr. Bd 109, 547 -552 (1984).

-552 (1984).

Bei der künstlichen Züchtung der Zellen tierischer Gewebe hat sich das Glutamin schon vor vielen Jahren als wertvoller Wachstumfaktor für die Zellentwicklung erwiesen, weshalb es in den Kulturmedien bis Jahren als wertvoller Wachstumfaktor für die Zellentwicklung erwiesen, weshalb es in den Kulturmedien bis zu einer 20-fachen größeren Konzentration als andere Aminosäure zugesetzt wird; vgl. H. Eagle, Nature 1955, Seiten 501 -504. Glutamin wurde inzwischen auch neben Glukose als die wichtigste Energiequelle für das Wachstum von isolierten Säugetierzellen und auch Krebszellen erkannt. vgl. H.R. Zielke et al, Federation proceedings, Bl. 43, Nr.1, Seiten 121 bis 125, 1984 bzw. L.J. Reitzer et al, Journ. Biol. Chem., Seiten 2669 bis 2676, 1979.

Die notwendigen Kulturmedien zur Züchtung von isolierten Zellen werden bereits industriell hergestellt und kommerziell verwertet. Allerdings ist die Herstellung glutaminhaltiger Kulturmedien vom technologischen und vertriebstechnischen Standpunkt aus gesehen sehr schwierig, da Glutamin eine relativ instabile Verbindung ist. Deshalb werden die Kulturmedien meist im wesentlichen glutaminfrei geliefert und die Anwender müssen dann das Glutamin unter erhöhtem Aufwand steril zusetzen, was nicht immer durchführbar ist, u.a. wegen des Kontaminationsrisikos.

Der Grund für die Instabilität des Glutamins ist seine Neigung zur intramolekularen Cyclisierung insbesondere bei der thermischen Sterilisierung der glutaminhaltigen Lösungen. Diese cyclische Produkt besitzt jedoch toxische Eigenschaften auch gegenüber isolierten Zellen.

Bei Infusionslösungen für die künstliche Ernährung von Patienten hat man bereits maskiertes Glutamin in Form des α-N acylierten Glutamins bzw. Di-und Tri-peptide des Glutamins eingesetzt, da dieses acylierte Glutamin bzw. diese Peptide bei der Hitzesterilisierung der betreffenden Lösungen stabil bleiben, jedoch dann im Organismus z.B. durch die im Blut oder Serum vorhandenden Hydrolasen, aufgespalten werden. vgl. Europäische Patentschrift 87 750.

Gegen die Verwendung eines in dieser Weise maskierten Glutamins, sprach bisher die Tatsache, daß in einem Kulturmedium, das für die künstliche Züchtung von Gewebszellen verwendet wird, die betreffenden Substrate in einer von den Zellen unmittlebar metabolisierbaren Form vorliegen müssen, da die Auffassung besteht, daß anders als z.B. die Mikroorganismen, wie Bakterien, Schimmelpilze, die Säugetierzellen keine Exoenzyme an die Kulturlösungen abgeben, die dann die Spaltung derartig maskierter Verbindungen bewirken können. Daher enthalten die Nährlösungen für Zellkulturen anders als diejenigen für das Züchten von Mikroorganismen nur freie Aminosäuren, also keine Oligopeptide oder diese enthaltenden Abbauprodukte von Proteinen oder Disacchariden und dgl. aufzuspaltende Substrate.

Es hat sich nun überraschenderweise gezeigt, daß bestimmte Di-/Tripeptide des Glutamins doch von den Zellen, insbesondere von den Säugetierzellen, als Glutaminquelle verwertet werden können. Dies ist deshalb besonders überraschend, weil z.B. das an der α-Aminosäuregruppe acyliertes Glutamin - (Acetylglutamin) von den Zellkulturen nicht oder nur sehr schlecht verwertet wird. Die niederen Peptide sind dagegen universell verwertbar, auch bei Zellen der verschiedensten Gewebe.

Erfindungsgemäß wird daher bei den Kulturmedien für das Wachstum von Säugetierzellen bzw. pflanzlichen Zellen das Glutamin in Form der bestimmten Di-und/oder Tripeptide, wie sie im Patentanspruch genannt sind, verwendet, wodurch nunmehr die wäßrigen Kulturmedien hinsichtlich der Aminosäuren-und Peptidkomponenten ohne Schwierigkeiten hitzesterilisierbar sind. Diese neuen Kulturmedien sind dann auch bei längerer Lagerung ausreichend stabil.

Die erfindungsgemäß verwendeten niederen Peptide des Glutamins zeigen -wie aus beigefügten Figuren mit den Diagrammen der Ergebnisse von Wachstumstests isolierter Säuretierzellen ersichtlich -ein sehr gutes Wachstum der Zellen, während mit dem glutaminfreuen Medium oder bei Verwendung des an der α-Aminogruppe acetylierten Glutamins nur ein langsammes bzw. ein verspätet einsetzendes Wachstum der Zellen festzustellen ist.

Auch als Kulturmedien für die Entwicklung der Eizelle zum mehrzelleigen Embryo bei der extrakorporalen Befruchtung eignen sich die unter Verwendung der Glutaminpeptide hergestellten Nährlösungen besonders gut. Die Zellentwicklung und -teilung setzt bereits kurz nach der künstlichen Befruchtung der Eizelle ein, so daß dann der entstandene Zellhaufen schon bald in den Uterus implantiert werden kann.

Aber auch zur Entwicklung pflanzlicher Zellen bei der Kultur von pflanzlichen Protoplasten oder pflanzlicher Gewebe und spezieller Organe sowie bei Meristemkulturen für die vegetative Vermehrung können diese Kulturmedien vorteilhaft verwendet werden.

Nachfolgend wird eine für die Kulturen verschiedener Zellen geeignete Zusammensetzung eines erfindungsgemäßen Kulturmediums angegeben.

Beispiel

5

10

15 E	Bestandteil	mg/Liter	Bestandteil	mg/Liter
_			-	
I	L-Arginin	200,00	Biotin	0,20
20 I	L-Asparagin H ₂ O	56,82	D-Calciumpantothenat	0,25
	L-Asparaginsäure	20,00	Cholinchlorid	3,00
	L-Cystin Na ₂	59,15	Folsäure	1,00
	L-Glutaminsäure	20,00	i-Inosit	35,00
	L-Alanyl-glutami	n 500,0	Nicotinamid	1,00
	Glutathion	1,00	p-Aminobenzoesäure	1,00
	Glycin	10,00	Pyridoxin HCl	1,00
20	L-Histidin	15,00	Riboflavin	0,20
	L-hydroxyprolin	20,00	Thiamin HCl	1,00
	L-Isoleucin	50,00	Vitamin B12	0,005
	L-Leucin	50,00	Ca(NO ₃) ₂	69,49
	L-Lysin HCl	40,00	KCl	400,0
	L-Methionin	15,00	MgSO ₄ 7H ₂ O	100,0
	L-Phenylalanin	15,00	NaCl	6000
40	L-Prolin	20,00	NaHCO ₃	2000
	L-Serin	30,00	Na ₂ HPO ₄	800,7
	L-Threonin	20,00	Glucose	2000
45	L-Tryptophan	5,00		5,00
	-	20,00	Aqua dest.	ad 1 Liter
	L-Tyrosin	20,00		
50	L-Valin	20,00		

Bei den nachfolgend beschriebenen Tests mit Zellkulturen von drei verschiedenen Zellinien (K-562; Fibroblasten: Flow 4000; HELA 1L Passage) wurde untersucht, inwieweit die Dipeptide Alanyl-Glutamin oder Glycyl-Alanin das Glutamin als Wachstumsfaktor ersetzen können. Die Zellen wurden in glutaminfreiem RPMI 1640 (5% CO₂-Inkubator) gezüchtet. Ein Liter Medium enthielt 900 ml RPMI-1640, 100 ml fötales Kälberserum (über Nacht gegen PBS dialysiert) und 2 ml Gentamycinlösung. Dem Medium wurden 10 ml einer Lösung, die 200 mmol an Glutamin oder an ALA-GLN, GLY-GLN oder Acetylglutamin enthielt, zugesetzt (Sterilfiltration mit Acro Disc 200 µm Filter). Die K-562 Zellen wurden dreimal in der Woche auf

1/3 die HELA-Zellen dreimal auf 1/5 und die Fibroblasten zweimal auf 1/3 gespalten. Die Spaltung der HELA-Zellen und Fibroblasten erfolgte mittels Trypsin nach einmaliger Waschung mit PBS. Die Zellzahl wurde mit einem Sysmex-Microcell-Counter CC-10 ermittelt und nach jeder Spaltung hochgerechnet. Die Diagramme der Fig. 1 -3 zeigen die Zellentwicklung mit und ohne Zugabe von Glutamin (GLN) und der jeweiligen Dipeptide bzw. des Acetylglutamins (Acet.GLN).

Wie hieraus ersichtlich, ist die Wachstumsgeschwindigkeit der einzelnen Zellinien bei Supplimentation des Mediums mit Glutamin oder den Dipeptiden: Alanyl-Glutamin und GlycylGlutamin annähernd gleich, während das Acetylglutamin eine wesentlich eingeschränkte Wachstumsgeschwindigkeit bewirkt.

In weiteren Versuchen wurde das Wachstumsverhalten der Zellinie K-562 in Kulturmedien mit und ohne Zusatz der erfindungsgemäß zu verwendenden Peptide des Glutamins näher untersucht. Aus dem Diagramm der Fig. 4 ist ersichtlich, daß in glutaminfreiem Nährmedium weder ALA-ALA noch GLY-ALA zu einer Wachstumsstimulation führen, während bei Zusatz der Glutaminpeptide ALA-GLN und GLY-GLN die Zellzahl signifikant höher als im glutaminfreien Kulturmedium war, auch wenn dieses foetales Kalbserum - (FKS)enthielt.

Untersucht wurde auch die Dipeptidhydrolyse im zellfreien, sterilfiltrierten Kulturüberstand. Wie aus Fig. 5 ersichtlich, werden die Dipeptide mit unterschiedlicher Geschwindigkeit von einem zellfreien, sterilfiltrierten K-562-Kulturüberstand hydrolysiert. Diese Untersuchung bestätigt die Befunde, die aus Fig. 4 erkennbar sind, nämlich, daß das ALA-GLN besser als GLY-GLN von der Zellinie K-562 gespalten wird.

Die Spaltung von ALA-GLN durch wachsende Zellkulturen (K-562 und Fibroblasten: Flow 4000) ist den Fig. 6 und 7 zu entnehmen, die den Konzentrationsverlauf von ALA-GLN sowie den von Alanin und Glutamin während des Wachstums der zwei verschiedenen Zellinien zeigen. Hieraus ist ersichtlich, daß das ALA-GLN während des Wachstums kontinuierlich gespalten wird, wobei die Konzentrationen von Alanin und Glutamin zunehmen. Der geringere Konzentrationsanstieg von Glutamin im Verhältnis zu Alanin ist dadurch erklärbar, daß Glutamin während des Wachstums der Zellen stärker verstoffwechselt wird als das Alanin.

Diese Ergebnisse zeigen, daß Dipeptide von Zellkulturen unterschiedlich verwertet werden, wobei aber die Glutaminpeptide gut metabolisieren und zu einem signifikant besseren Zellwachstum führen.

Ansprüche

15

30

35

40

45

50

1. Verwendung von Di-und/oder Tripeptiden des Glutamins in Aminosäuren, Glucose und Mineralsalze enthaltenden Zellkulturmedien zur Züchtung isolierter Gewebszellen.

2. Verwendung der Dipeptide Glycyl-Glutamin und Alanyl-Glutamin in Zellkulturmedien nach Anspruch

 Verwendung der Di-und/oder Tripeptide des Glutamins nach Anspruch 1 oder 2 in Zellkulturmedien für die extrakorporale Insemination.

4. Verwendung der Di-und/odr Tripeptide des Glutamins nach Anspruch 1 -3 in Zellkulturmedien für die Herstellung monoklonaler Antikörper.

FIG. 1

FIG. 2

FIG. 3

٠.

FIG. 7
KONZENTRATION IM KULTURÜBERSTAND VON K 562

EP 86 10 9103

	EINSCHLÄG	VI ACCIEII	KLASSIFIKATION DER		
tegorie	Kennzeichnung des Dokument der maßge	s mit Angabe, soweit erforderlich, iblichen Teile	Betrifft Anspruch		ING (Int CI 4)
Y,D	EP-A-0 087 750 (* Insgesamt *	PFRIMMER & CO.)	1-4	C 12 N	5/02
Y	D.W. BARNES et al PREPARATION OF ME SUPPLEMENTS, AND SERUM-FREE ANIMAL 1984, Seite 41, A Inc., New York, U * Seite 41; Absch	DIA, SUBSTRATA FOR CELL CULTURE", Llan R. Liss, US	1-4		
A	JOURNAL OF CHROMM 294, 1984, Seiter Elsevier Science B.V., Amsterdam, et al.: "Isotache analysis of a syn dipeptide L-alan Evidence for sta	n 507-512, Publishers NL; P. STEHLE ophoretic nthetic yl-L-glutamine. bility during	1		ERCHIERTE BIETE (Int. Cl.4)
	heat sterilization" * Insgesamt *			C 12 N	5/00
			•		
D	er varliegende Recherchenbericht wur				
	DEN HAAC	Apt Binganu 14 Behard	. SK	ELLY J.M	· · · · · · · · · · · · · · · · · · ·
X : v Y : v	KATEGORIE DER GENANNTEN Di von besonderer Bedeutung allein t von besonderer Bedeutung in Vert anderen Veröffentlichung derselbe lechnologischer Hintergrund nichtschriftliche Offenbarung	petrachtet na pindung miteiner D.: in	teres Patentdok ach dem Anmeld der Anmeldung us andern Gründ	ledatum veröffel Langeführtes Di	ntlicht worden i okument '