

Când discutăm de sisteme distribuite?

Când discutăm de sisteme distribuite?

- P2P
- Server-Client
- Clustere
- Cloud
- Sisteme de calcul intensiv (supercomputer)
- Rețele ad-hoc (ex. rețele formate doar din senzori WiFi sau telefoane mobile)

Când discutăm de sisteme distribuite?

Oricând avem mai mult de un sistem

The INTERNET

Distributed Systems – The INTERNET

DISTRIBUTED WEB-BASED SYSTEMS

maintain collections of documents, while clients provide users an use interface for presenting and accessing those documents.

Web started as a project at CERN, the European Particle Physics ory in Geneva, to let its large and geographically dispersed group

Cine a construit Internetul?

Cine a construit Internetul? - Vint Cerf

A Protocol for Packet Network Intercommunication

VINTON G. CERF AND ROBERT E. KAHN, MEMBER, IEEE

Abstract — A protocol that supports the sharing of resources that exist in different packet switching networks is presented. The protocol provides for variation in individual network packet sizes, transmission failures, sequencing, flow control, end-to-end error checking, and the creation and destruction of logical process-to-process connections. Some implementation issues are considered, and problems such as internetwork routing, accounting, and timeouts are exposed.

INTRODUCTION

IN THE LAST few years considerable effort has been expended on the design and implementation of packet switching networks [1]-[7],[14],[17]. A principle reason for developing such networks has been to facilitate the sharing of computer resources. A packet communication network includes a transportation mechanism for delivering data between computers or between computers and terminals. To make the data meaningful, computer and terminals

of one or more packet sv communication media th switches. Within each н exist *processes* which processes in their own o definition of a process purposes [13]. These pr ultimate source and de network. Typically, with there exists a protocol for any source and destination and destination processes convention for commi Processes in two distinct use different protocols ensemble of packet swi media is called the pack

Stiva OSI?

Stiva OSI?

	OSI Model				
Layer		ayer	Protocol data unit (PDU)	Function ^[3]	
Host layers	7	Application	Data	High-level APIs, including resource sharing, remote file access	
	6	Presentation		Translation of data between a networking service and an application; including character encoding, data compression and encryption/decryption	
	5	Session		Managing communication sessions, i.e. continuous exchange of information in the form of multiple back-and-forth transmissions between two nodes	
	4	Transport	Segment, Datagram	Reliable transmission of data segments between points on a network, including segmentation, acknowledgement and multiplexing	
Media layers	3	Network	Packet	Structuring and managing a multi-node network, including addressing, routing and traffic control	
	2	Data link	Frame	Reliable transmission of data frames between two nodes connected by a physical layer	
	1	Physical	Symbol	Transmission and reception of raw bit streams over a physical medium	

Stiva TCP/IP?

Stiva TCP/IP?

OSI	TCP/IP
Application	
Presentation	
Session	Data
Transport	TCP
Network	IP
Data link	Ethernet
Physical	Cupru

OSI	TCP/IP	Garanții
Application		
Presentation		
Session	Data (HTTP)	
Transport	TCP	
Network	IP	
Data link	Ethernet	
Physical	Cupru	Mesajul e transmis

OSI	TCP/IP	Garanții
Application		
Presentation		
Session	Data (HTTP)	
Transport	TCP	
Network	IP	
Data link	Ethernet	Best efort ca mesajul să ajungă unde trebuie în rețea
Physical	Cupru	Mesajul e transmis

OSI	TCP/IP	Garanții
Application		
Presentation		
Session	Data (HTTP)	
Transport	TCP	
Network	IP	Best efort ca mesajul să ajungă unde trebuie în Internet
Data link	Ethernet	Best efort ca mesajul să ajungă unde trebuie în rețea
Physical	Cupru	Mesajul e transmis

OSI	TCP/IP	Garanții
Application		
Presentation		
Session	Data (HTTP)	
Transport	TCP	Mesajul ajunge
Network	IP	Best efort ca mesajul să ajungă unde trebuie în Internet
Data link	Ethernet	Best efort ca mesajul să ajungă unde trebuie în rețea
Physical	Cupru	Mesajul e transmis

OSI	TCP/IP	Garanții	
Application			
Presentation			
Session	Data (HTTP)	Mesajul va fi înțeles de server/browser	
Transport	TCP	Mesajul ajunge	
Network	IP	Best efort ca mesajul să ajungă unde trebuie în Internet	
Data link	Ethernet	Best efort ca mesajul să ajungă unde trebuie în rețea	
Physical	Cupru	Mesajul e transmis	

Deci cât de bun e internetul ca sistem distribuit?

Cine a inventat Ethernet?

Cine a inventat Ethernet? - Robert Metcalfe

Computer Systems G. Bell, S. Fuller and D. Siewiorek, Editors

Ethernet: Distributed Packet Switching for Local Computer Networks

Robert M. Metcalfe and David R. Boggs Xerox Palo Alto Research Center

Ethernet is a branching broadcast communication system for carrying digital data packets among locally distributed computing stations. The packet transport mechanism provided by Ethernet has been used to build systems which can be viewed as either local computer networks or loosely coupled multiprocessors. An Ethernet's shared communication facility, its Ether, is a pas-

1. Background

One can characterize distributed computing as a spectrum of activities varying in their degree of decentralization, with one extreme being remote computer networking and the other extreme being multiprocessing. Remote computer networking is the loose interconnection of previously isolated, widely separated, and rather large computing systems. Multiprocessing is the construction of previously monolithic and serial computing systems from increasingly numerous and smaller pieces computing in parallel. Near the middle of this spectrum is local networking, the interconnection of computers to gain the resource sharing of computer networking and the parallelism of multiprocessing.

The separation between computers and the associated bit rate of their communication can be used to divide the distributed computing spectrum into broad activities. The product of separation and bit rate, now about 1 gigabit-meter per second (1 Gbmps), is an indication of the limit of current communication technology and can be expected to increase with time:

Activity	Separation	Bit rate	
Remote networks	> 10 km	< .1 Mbps	
Local networks	10–.1 km	.1-10 Mbps	
Multiprocessors	< .1 km	> 10 Mbps	

1.1 Remote Computer Networking

Ethernet – CAM table

Ethernet – CAM table

Cum eliminăm cicluri dintr-un graf?

Cum eliminăm cicluri dintr-un graf?

Spanning Tree Protocol

Distributed Spanning Tree – soluția

Distributed Spanning Tree - soluția

Distributed Spanning Tree - soluția

Distributed Spanning Tree – Inițiator

Initiator (leader)

- Send Probe to all neighbors
- Receive response from all neighbors
- Compute the entire graph
- Send graph to everyone

Everyone else

- Receive probe from someone
- That someone is marked as parent
- Forward probe to all neighbors except parent
- Receive response from all neighbors
- Merge responses
- Send response to parent

Node	Parent
0	-
1	
2	
3	

Node 2

Recv probe
Mark parent
Send probe children
Recv response children
Merge responses
Send response parent

3 Node 3

Recv probe
Mark parent
Send probe children
Recv response children
Merge responses
Send response parent

Node	Parent
0	-
1	0
2	
3	

Node 2

Recv probe
Mark parent
Send probe children
Recv response children
Merge responses
Send response parent

3 Node 3

Recv probe
Mark parent
Send probe children
Recv response children
Merge responses
Send response parent

Node	Parent
0	-
1	0
2	1
3	1

Node 2

Recv probe

Mark parent

Send probe children
Recv response children
Merge responses

Send response parent

3 Node 3

Recv probe

Mark parent

Send probe children
Recv response children

Merge responses

Send response parent

Distributed Spanning Tree – Inițiator

2 și 3 tratează probele unul altuia ca răspunsuri

Node	Parent
0	-
1	0
2	1
3	1

Node 2

Recv probe
Mark parent
Send probe children
Recv response children

Merge responses
Send response parent

3 Node 3

Recv probe
Mark parent
Send probe children

Recv response children
Merge responses
Send response parent

Distributed Spanning Tree – Initiator

Funcționează doar dacă proba are același format ca ecou

Node	Parent
0	-
1	0
2	1
3	1

Node 2

Recv probe
Mark parent
Send probe children

Recv response children
Merge responses
Send response parent

3 Node 3

Recv probe
Mark parent
Send probe children

Recv response children
Merge responses
Send response parent

Node	Parent
0	-
1	0
2	1
3	1

Node 2

Recv probe Mark parent Send probe children Recv response children Merge responses Send response parent

Node 3

Recv probe Mark parent Send probe children Recv response children Merge responses Send response parent

Node	Parent
0	-
1	0
2	1
3	1

Node 2

Recv probe
Mark parent
Send probe children
Recv response children
Merge responses
Send response parent

3 Node 3

Recv probe
Mark parent
Send probe children
Recv response children
Merge responses
Send response parent

Comunicație full sincronă

Cum alegem inițiatorul?

Alegere lider

Alegere lider

Scopul este transformarea automată a unui sistem distribuit, decentralizat, într-un sistem cu topologie client-server;

Mai mult, dacă serverul moare, poate fi ales un nou "lider".

Alegere lider Le Lann

DISTRIBUTED SYSTEMS—TOWARDS A FORMAL APPROACH

GÉRARD LE LANN IRISA—Université de Rennes—BP 25 A 35 031 Rennes Cedex, France

Packet-switching computer communication networks are examples of distributed systems. With the large scale emergence of mini and micro-computers, it is now possible to design special or general purpose

distributed systems. However, as new problems have devised to operate such distributed systems in a tics of distributed systems are analysed and fund shown that distributed systems are not just simple techniques used in some planned or existing systems problems is illustrated by the study of a mutual ronment.

1. INTRODUCTION

Computer communication networks using packet-switching technology provide for the interconnection of data-processing equipments of any kind. Such systems,

Algoritmul Le Lann

Fiecare transmite ID-ul său în dreapta

Până își primește ID-ul său Primește ID din stânga Trimite ID primit în dreapta

Cel mai mare/mic/etc. este ales lider

De ce mai discutăm despre topologii inel?

Una e topologia fizică

Una e topologia fizică

Alta e topologia software

Dar dacă nu știm deja ID-urile?

UUID sau GUID (Global Unique Identifier)

Network Working Group Request for Comments: 4122 Category: Standards Track P. Leach
Microsoft
M. Mealling
Refactored Networks, LLC
R. Salz
DataPower Technology, Inc.
July 2005

A Universally Unique IDentifier (UUID) URN Namespace

Status of This Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright (C) The Internet Society (2005).

Abstract

This specification defines a Uniform Resource Name namespace for UUIDs (Universally Unique IDentifier), also known as GUIDs (Globally Unique IDentifier). A UUID is 128 bits long, and can guarantee uniqueness across space and time. UUIDs were originally used in the Apollo Network Computing System and later in the Open Software

Stabilirea Topologiei IP

În alte cuvinte: stabilirea rutelor și tabelelor de rutare.

Algoritmi de stabilire rute în IP?

Algoritmi de stabilire rute în IP?

- BGP
- RIP
- IGRP
- EIGRP
- OSPF

. . .

Trimite topologie cunoscută tuturor vecinilor Primește de la toți vecinii topologiile cunoscute de ei Adaugă informații la topologia cunoscută.

Repetă la infinit!!

Trimite topologie cunoscută tuturor vecinilor Primește de la toți vecinii topologiile cunoscute de ei Adaugă informații la topologia cunoscută.

Repetă la infinit!!

Atenție în forma actuală nu se pot șterge conexiuni.

Trimite topologie cunoscută tuturor vecinilor Primește de la toți vecinii topologiile cunoscute de ei Adaugă informații la topologia cunoscută.

Dacă topologia s-a modificat, repetă.

Alegere lider în graf

Alegere lider în graf

Cine a construit The World-Wide Web?

Cine a construit The World-Wide Web? Tim Berners-Lee

Network Working Group Request for Comments: 2068 Category: Standards Track R. Fielding
UC Irvine
J. Gettys
J. Mogul
DEC
H. Frystyk
T. Berners-Lee
MIT/LCS
January 1997

Hypertext Transfer Protocol -- HTTP/1.1

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Abstract.

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed, collaborative, hypermedia information systems. It is a generic, stateless, object-oriented protocol which can be used for many tasks, such as name servers and distributed object management systems, through extension of its request methods. A feature of HTTP is the typing and negotiation of data representation, allowing systems to be built independently of the data being transferred.

Cine a construit The World-Wide Web? Tim Berners-Lee

Network Working Group

Request for Comments: 1738 Category: Standards Track

T. Berners-Lee
CERN
L. Masinter
Xerox Corporation
M. McCahill
University of Minnesota
Editors
December 1994

Uniform Resource Locators (URL)

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Abstract

This document specifies a Uniform Resource Locator (URL), the syntax and semantics of formalized information for location and access of resources via the Internet.

1. Introduction

This document describes the syntax and semantics for a compact string

URL

Sisteme distribuite extreme

Comunicare Epidemic

Epidemic

Epidemic

Cât timp avem conexiune nodurile schimbă mesaje.

Comunicare Epidemic Topologia se poate schimba în orice moment

Epidemic – Avantaje

Nu mai există entități centralizate gen ISP

Funcționează în cazuri extreme (cutremur/potop) când cablurile ar putea fi rupte

Epidemic – De ce nu e folosit în loc de IP?

Epidemic – De ce nu e folosit în loc de IP?

Necesită multe transmisii inutile pentru orice mesaj

Necesită spațiu de stocare mare pe fiecare dispozitiv pentru a evita cicluri

Şi tot aşa...

Cristian Chilipirea – Sisteme Tolerante la Defecte

$$\frac{1}{0.0909} = 11 \text{(numărul nodurilor)}$$