Curs 7

Ecuații diferențiale liniare de ordinul n

Definiția 1. O ecuație diferențială liniară de ordinul n este o ecuație de forma

$$a_n(t)x^{(n)} + a_{n-1}(t)x^{(n-1)} + a_{n-2}(t)x^{(n-2)} + \dots + a_1(t)x' + a_0(t)x = f(t),$$
(1)

unde $a_0, a_1, ..., a_n$ (coeficienții ecuației) și f (termenul liber) sunt funcții definite și continue pe un interval $I \subset \mathbb{R}$.

Dacă f(t) = 0 atunci ecuația (1) se numește ecuație diferențială de ordinul n liniară și omogenă.

Dacă $f(t) \neq 0$ atunci ecuația (1) se numește ecuație diferențială de ordinul n liniară și neomogenă.

Definiția 2. Spunem că o funcție $\varphi: I \to \mathbb{R}$ este de clasă $\mathcal{C}^{(p)}$ pe intervalul I dacă φ admite derivate până la ordinul p inclusiv și acestea sunt continue pe I. Notăm $\varphi \in \mathcal{C}^{(p)}(I)$.

Observația 1. $\mathcal{C}^{(p)}$ este un spațiu vectorial al funcțiilor reale definite pe I.

Definiția 3. O funcție $\varphi \in \mathcal{C}^{(p)}$ care verifică ecuația

$$a_n(t)\varphi^{(n)} + a_{n-1}(t)\varphi^{(n-1)} + \dots + a_1(t)\varphi' + a_0(t)\varphi = f(t), \quad t \in I$$

se numeste soluție a ecuației (1).

Ecuații diferențiale de ordinul n liniare și omogene

Teorema 1. Dacă φ este soluție a ecuației diferențiale de ordinul n liniară și omogenă

$$a_n(t)x^{(n)} + a_{n-1}(t)x^{(n-1)} + a_{n-2}(t)x^{(n-2)} + \dots + a_1(t)x' + a_0(t)x = 0,$$
(2)

atunci și $c\varphi$ este soluție a ecuației (2), oricare ar fi constanta c.

Demonstrație. Dacă φ este soluție a ecuației (2), atunci

$$a_n(t)\varphi^{(n)} + a_{n-1}(t)\varphi^{(n-1)} + \dots + a_1(t)\varphi' + a_0(t)\varphi = 0.$$

Înmulțind această ecuație cu c obținem

$$a_n(t)c\varphi^{(n)} + a_{n-1}(t)c\varphi^{(n-1)} + \dots + a_1(t)c\varphi' + a_0(t)c\varphi = 0.$$

$$\Leftrightarrow a_n(t)(c\varphi)^{(n)} + a_{n-1}(t)(c\varphi)^{(n-1)} + \dots + a_1(t)(c\varphi)' + a_0(t)(c\varphi) = 0,$$

deci $c\varphi$ este soluție a ecuației (2).

Teorema 2. Dacă φ_1 şi φ_2 sunt două soluții ale ecuației diferențiale de ordinul n liniare şi omogene (2), atunci şi $\varphi_1 + \varphi_2$ este soluție a ecuației (2).

Demonstrație. Cum φ_1 și φ_2 sunt soluții ale ecuației (2), rezultă

$$a_n(t)\varphi_1^{(n)} + a_{n-1}(t)\varphi_1^{(n-1)} + \dots + a_1(t)\varphi_1' + a_0(t)\varphi_1 = 0,$$

şi

$$a_n(t)\varphi_2^{(n)} + a_{n-1}(t)\varphi_2^{(n-1)} + \dots + a_1(t)\varphi_2' + a_0(t)\varphi_2 = 0.$$

Adunând cele două relații obținem

$$a_n(t)(\varphi_1^{(n)}+\varphi_2^{(n)})+a_{n-1}(t)(\varphi_1^{(n-1)}+\varphi_2^{(n-1)})+\ldots+a_1(t)(\varphi_1'+\varphi_2')+a_0(t)(\varphi_1+\varphi_2)=0$$

$$\Leftrightarrow a_n(t)(\varphi_1 + \varphi_2)^{(n)} + a_{n-1}(t)(\varphi_1 + \varphi_2)^{(n-1)} + \dots + a_1(t)(\varphi_1 + \varphi_2)' + a_0(t)(\varphi_1 + \varphi_2) = 0,$$

de unde rezultă că $\varphi_1 + \varphi_2$ este soluție a ecuației (2).

Teorema 3. Dacă $\varphi_1, \ \varphi_2, ..., \varphi_n$ sunt n soluții ale ecuației (2), atunci și funcția $c_1\varphi_1 + c_2\varphi_2 + ... + c_n\varphi_n$, unde $c_1, \ c_2, ..., c_n$ sunt constante arbitrare, este soluție a ecuației (2).

Demonstrație. Cum $\varphi_1, \ \varphi_2, ..., \varphi_n$ sunt soluții ale ecuației (2), atunci, conform Teoremei 1, rezultă că și $c_1\varphi_1, \ c_2\varphi_2, ..., c_n\varphi_n$ sunt soluții ale ecuației (2). Aplicând acum Teorema 2 rezultă că $c_1\varphi_1 + c_2\varphi_2 + ... + c_n\varphi_n$ este soluție a ecuației (2).

Teorema 4. Dacă ecuația (2) admite ca soluție funcția complexă de variabilă reală x(t) = u(t) + iv(t), $t \in I$, atunci funcțiile reale u și v, fiecare în parte, sunt soluții ale ecuației (2).

Demonstrație. Cum x(t) = u(t) + iv(t) este soluție a ecuației (2), rezultă

$$a_n(t)(u+iv)^{(n)} + a_{n-1}(t)(u+iv)^{(n-1)} + \dots + a_1(t)(u+iv)' + a_0(t)(u+iv) = 0, \Leftrightarrow$$

$$a_n(t)u^{(n)} + a_{n-1}(t)u^{(n-1)} + \dots + a_1(t)u' + a_0(t)u +$$

$$+i\left(a_n(t)v^{(n)} + a_{n-1}(t)v^{(n-1)} + \dots + a_1(t)v' + a_0(t)v\right) = 0,$$

deci

$$a_n(t)u^{(n)} + a_{n-1}(t)u^{(n-1)} + \dots + a_1(t)u' + a_0(t)u = 0$$

şi

$$a_n(t)v^{(n)} + a_{n-1}(t)v^{(n-1)} + \dots + a_1(t)v' + a_0(t)v = 0,$$

de unde rezultă că u și v sunt soluții ale ecuației (2).

Definiția 4. Fie $f_1, f_2, ..., f_n, n$ funcții reale definite și continue pe intervalul $I \subset \mathbb{R}$. Spunem că aceste funcții sunt *liniar independente* dacă din orice combinație liniară

$$\lambda_1 f_1(t) + \lambda_2 f_2(t) + \dots + \lambda_n f_n(t) = 0$$

rezultă $\lambda_1 = \lambda_2 = \dots = \lambda_n = 0$.

Dacă există scalarii $\lambda_1, \lambda_2, ..., \lambda_n$, nu toți nuli astfel încât

$$\lambda_1 f_1(t) + \lambda_2 f_2(t) + \dots + \lambda_n f_n(t) = 0,$$

atunci spunem că funcțiile sunt liniar dependente.

Definiția 5. Fie $f_1, f_2, ..., f_n : I \to \mathbb{R}$ funcții de clasă $\mathcal{C}^{(n-1)}$ pe intervalul I. Determinantul

$$W[f_1, f_2, ..., f_n](t) \equiv W(f_1, f_2, ..., f_n) \equiv W(t) = \begin{vmatrix} f_1 & f_2 & ... & f_n \\ f'_1 & f'_2 & ... & f'_n \\ ... & ... & ... & ... \\ f_1^{(n-1)} & f_2^{(n-1)} & ... & f_n^{(n-1)} \end{vmatrix}$$

se numește determinantul lui Wronski sau wronskianul funcțiilor $f_1, f_2, ..., f_n$.

Propoziția 1. Fie $f_i \in \mathcal{C}^{(n-1)}(I)$, $i = \overline{1,n}$. Dacă $f_1, f_2, ..., f_n$ sunt liniar dependente pe I, atunci $W(f_1, f_2, ..., f_n) = 0$, oricare ar fi $t \in I$.

Demonstrație. Cum $f_i \in \mathcal{C}^{(n-1)}(I)$, $i = \overline{1,n}$ sunt liniar dependente rezultă că există numerele $\lambda_1, \lambda_2, ..., \lambda_n$, nu toate nule, astfel încât

$$\lambda_1 f_1(t) + \lambda_2 f_2(t) + \dots + \lambda_n f_n(t) = 0.$$

Derivând succesiv această relație de n-1 ori, obținem sistemul

$$\begin{cases} \lambda_1 f_1(t) + \lambda_2 f_2(t) + \dots + \lambda_n f_n(t) &= 0 \\ \lambda_1 f_1'(t) + \lambda_2 f_2'(t) + \dots + \lambda_n f_n'(t) &= 0 \\ \dots &\dots &\dots \\ \lambda_1 f_1^{(n-1)}(t) + \lambda_2 f_2^{(n-1)}(t) + \dots + \lambda_n f_n^{(n-1)}(t) &= 0 \end{cases}$$

Sistemul obținut este un sistem liniar omogen în necunoscutele $\lambda_1, \ \lambda_2, ..., \lambda_n$. Cum acest sistem admite soluții nenule, rezultă

$$\begin{vmatrix} f_1 & f_2 & \dots & f_n \\ f'_1 & f'_2 & \dots & f'_n \\ \dots & \dots & \dots & \dots \\ f_1^{(n-1)} & f_2^{(n-1)} & \dots & f_n^{(n-1)} \end{vmatrix} = W(f_1, f_2, \dots, f_n) = 0.$$

Teorema 5 (Liouville). Fie $\varphi_1, \ \varphi_2, ..., \varphi_n, \ n$ soluții particulare ale ecuației omogene (2) și fie $t_0 \in I$ fixat. Dacă $W(\varphi_1, \ \varphi_2, ..., \varphi_n) \equiv W(t)$, atunci

$$W(t) = W_0 \cdot e^{-\int_{t_0}^t \frac{a_1(\tau)}{a_n(\tau)} d\tau}$$

unde $W_0 \equiv W(t_0)$.

Demonstrație. Pentru simplitatea calculelor considerăm n=2. Fie φ_1 și φ_2 două soluții particulare ale ecuației omogene

$$a_2(t)x'' + a_1(t)x' + a_0x = 0.$$

Atunci

$$a_2(t)\varphi_1'' + a_1(t)\varphi_1' + a_0\varphi_1 = 0$$

şi

$$a_2(t)\varphi_2'' + a_1(t)\varphi_2' + a_0\varphi_2 = 0.$$

3

Din prima ecuație rezultă

$$\varphi_1'' = -\frac{a_1(t)}{a_2(t)}\varphi_1' - \frac{a_0(t)}{a_2(t)}\varphi_1,$$

iar din a doua

$$\varphi_2'' = -\frac{a_1(t)}{a_2(t)}\varphi_2' - \frac{a_0(t)}{a_2(t)}\varphi_2.$$

Wronskianul funcțiilor φ_1 și φ_2 este

$$W(\varphi_1, \varphi_2) \equiv W(t) = \begin{vmatrix} \varphi_1 & \varphi_2 \\ \varphi_1' & \varphi_2' \end{vmatrix}.$$

Derivând wronskianul obţinem

$$\frac{dW}{dt} = \begin{vmatrix} \varphi_1' & \varphi_2' \\ \varphi_1' & \varphi_2' \end{vmatrix} + \begin{vmatrix} \varphi_1 & \varphi_2 \\ \varphi_1'' & \varphi_2'' \end{vmatrix} = \begin{vmatrix} \varphi_1 & \varphi_2 \\ \varphi_1'' & \varphi_2'' \end{vmatrix} = \begin{vmatrix} \varphi_1 & \varphi_2 \\ -\frac{a_1}{a_2}\varphi_1' - \frac{a_0}{a_2}\varphi_1 & -\frac{a_1}{a_2}\varphi_2' - \frac{a_0(t)}{a_2(t)}\varphi_2 \end{vmatrix} = -\frac{a_1}{a_2} \begin{vmatrix} \varphi_1 & \varphi_2 \\ \varphi_1' & \varphi_2' \end{vmatrix} = -\frac{a_1}{a_2} \begin{vmatrix} \varphi_1 & \varphi_2 \\ \varphi_1' & \varphi_2' \end{vmatrix} = -\frac{a_1(t)}{a_2(t)} W(t).$$

Deci

$$\frac{dW}{W} = -\frac{a_1(t)}{a_2(t)}dt \Leftrightarrow \ln|W| - \ln|W_0| = -\int_{t_0}^t \frac{a_1(\tau)}{a_2(\tau)}d\tau \Leftrightarrow \ln\frac{|W|}{|W_0|} = -\int_{t_0}^t \frac{a_1(\tau)}{a_2(\tau)}d\tau$$
$$\Leftrightarrow W(t) = W_0 e^{\int_{t_0}^t \frac{a_1(\tau)}{a_2(\tau)}d\tau}.$$

Definiția 6. Se numește sistem fundamental de soluții pentru o ecuație de ordinul n liniară și omogenă orice set de n soluții particulare $\varphi_1, \ \varphi_2, ..., \varphi_n$ cu proprietatea că există $x_0 \in I$ astfel încât

$$W[\varphi_1, \ \varphi_2, ..., \varphi_n](x_0) \neq 0.$$

Corolarul 1. Dacă $\varphi_1, \ \varphi_2, ..., \varphi_n$ este un sistem fundamental de soluții, atunci $\varphi_1, \ \varphi_2, ..., \varphi_n$ sunt liniar independente pe I.

Demonstrație. Fie $t_0 \in I$ astfel încât $W(t_0) \neq 0$. Din Teorema Liouville avem

$$W(t) = W(t_0) \cdot e^{-\int_{t_0}^t \frac{a_1(\tau)}{a_n(\tau)} d\tau}$$

deci $W(t) \neq 0$, de unde rezultă că $\varphi_1, \varphi_2, ..., \varphi_n$ sunt liniar independente pe I.

Teorema 6. Orice sistem fundamental de soluții din S (mulțimea soluțiilor) este o bază în spațiulectorial S.

Observația 2. Dacă $\varphi_1, \ \varphi_2, ..., \varphi_n$ este un sistem fundamental de soluții pentru ecuația liniară omogenă (2), atunci orice altă soluție este de forma

$$x = c_1 \varphi_1 + c_2 \varphi_2 + \dots + c_n \varphi_n, \tag{3}$$

unde $c_1, c_2, ..., c_n$ sunt constante arbitrare.

Formula (3) reprezintă soluția generală a ecuației liniare omogene (3).

Observația 3. Pentru a găsi soluția generală a unei ecuații omogene este suficient să găsim un sistem fundamental de soluții particulare ale acestuia.

4

Ecuații diferențiale de ordinul n liniare și omogene cu coeficienți constanți

Forma generală a ecuațiilor diferențiale de ordinul n liniare și omogene cu coeficienți constanți este

$$x^{n} + a_{n-1}x^{(n-1)} + a_{n-2}x^{(n-2)} + \dots + a_{0}x = 0.$$
(4)

Observația 4. Dacă ecuația este de forma

$$a^{(n)}x^n + a_{n-1}x^{(n-1)} + a_{n-2}x^{(n-2)} + \dots + a_0x = 0,$$

atunci se împarte prin $a^{(n)}$ și se obține ecuația (4).

Observația 5. Conform teoremei de existență și unicitate a problemei Cauchy, rezultă că pentru orice $t_0 \in \mathbb{R}$ și orice $x_0, x_1, ..., x_{n-1} \in \mathbb{R}$ există o singură soluție x a ecuației (4) care satisface condițiile inițiale

$$x(t_0) = x_0, \ x'(t_0) = x_1, \ ..., \ x^{(n-1)} = x_{n-1}.$$

Rezolvarea unei ecuații de forma (4) revine la aflarea unui sistem fundamental de soluții.

Pentru a găsi un sistem fundamental de soluții în cazul unei ecuații cu coeficienți constanți, se folosește *metoda lui Euler*. Această metodă constă în căutarea unei soluții de forma $x = e^{rt}$ pentru ecuația (4). Derivând această soluție până la ordinul n obținem:

Înlocuind aceste derivate în ecuația inițială, obținem

$$r^{n}e^{rt} + a_{n-1}r^{n-1}e^{rt} + a_{n-2}r^{n-2}e^{rt} + \dots + a_{0}re^{rt} = 0$$

$$\Leftrightarrow r^{n} + a_{n-1}r^{n-1} + a_{n-2}r^{n-2} + \dots + a_{0}r = 0.$$

Definiția 7. Ecuația

$$r^{n} + a_{n-1}r^{n-1} + a_{n-2}r^{n-2} + \dots + a_{0}r = 0$$
(5)

se numește ecuație caracteristică a ecuației diferențiale liniare (4).

Definiția 8. Polinomul

$$k(r) = r^{n} + a_{n-1}r^{n-1} + a_{n-2}r^{n-2} + \dots + a_{0}r$$
(6)

se numește polinom caracteristic al ecuației diferențiale liniare (4).

Pentru rezolvarea ecuației (4) trebuie să ținem seama de natura rădăcinilor ecuației caracteristice (5).

În continuare vom studia toate cazurile posibile.

1. Ecuația caracteristică are rădăcini reale și distincte

Propoziția 2. Fie $r_1, r_2, ..., r_n$ rădăcinile ecuației caracteristice. Atunci

$$x_1 = e^{r_1 t}, \ x_2 = e^{r_2 t}, \ \dots, \ x_n = e^{r_n t}$$

formează un sistem fundamental de soluții.

Demonstrație. Funcțiile $x_1, x_2, ..., x_n$ formează un sistem fundamental de soluții dacă wronskianul atașat este nenul, adică $W(x_1, x_2, ..., x_n) \neq 0$. Avem

$$W(x_{1}, x_{2}, ..., x_{n}) = \begin{vmatrix} e^{r_{1}t} & e^{r_{2}t} & ... & e^{r_{n}t} \\ r_{1}e^{r_{1}t} & r_{2}e^{r_{2}t} & ... & r_{n}e^{r_{n}t} \\ ... & ... & ... & ... \\ r_{1}^{n-1}e^{r_{1}t} & r_{2}^{n-1}e^{r_{2}t} & ... & r_{n}^{n-1}e^{r_{n}t} \end{vmatrix}$$

$$= e^{r_{1}t}e^{r_{2}t}...e^{r_{n}t} \begin{vmatrix} 1 & 1 & ... & 1 \\ r_{1} & r_{2} & ... & r_{n} \\ ... & ... & ... & ... \\ r_{1}^{n-1} & r_{2}^{n-1} & ... & r_{n}^{n-1} \end{vmatrix}$$

$$= e^{(r_{1}+r_{2}+...+r_{n})t} \cdot \prod_{1 \le i < j \le n} (r_{i}-r_{j}) \ne 0,$$

de unde rezultă că $x_1, x_2, ..., x_n$ formează un sistem fundamental de soluții.

Soluția generală a ecuației (4) este

$$x(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t} + \dots + c_n e^{r_n t}.$$

Exemplu

Să se afle soluția generală a ecuației

$$x''' - 6x'' + 11x' - 6x = 0.$$

Rezolvare

Căutăm soluții de forma $x = e^{rt}$. Avem:

$$x' = re^{rt}, \ x'' = r^2e^{rt}, \ x''' = r^3e^{rt}.$$

Înlocuind în ecuația inițială obținem

$$r^3e^{rt} - 6r^2e^{rt} + 11re^{rt} - 6e^{rt} = 0$$

Împărțind prin e^{rt} obținem ecuația caracteristică

$$x^3 - 6r^2 + 11r - 6 = 0,$$

ale cărei soluții sunt $r_1=1,\ r_2=2,\ r_3=3.$ Rezultă că

$$e^t$$
, e^{2t} , e^{3t}

reprezintă un sistem fundamental de soluții, deci soluția generală a ecuației este

$$x(t) = c_1 e^t + c_2 e^{2t} + c_3 e^{3t}.$$

2. Ecuația caracteristică are rădăcini reale multiple

Propoziția 3. Dacă ecuația caracteristică are o rădăcină reală $r = r_1$ multiplă cu ordinul de multiplicitate p, atunci funcțiile

$$e^{r_1t}$$
, te^{r_1t} , ..., $t^{p-1}e^{r_1t}$

formează un sistem fundamental de soluții pentru ecuația (4).

Exemplu

Să se afle soluția generală a ecuației

$$x''' + 3x'' + 3x' + x = 0.$$

Rezolvare

Căutăm soluții de forma $x = e^{rt}$. Avem:

$$x' = re^{rt}, \ x'' = r^2e^{rt}, \ x''' = r^3e^{rt}.$$

Inlocuind în ecuația inițială obținem

$$r^3e^{rt} + 3r^2e^{rt} + 3re^{rt} + e^{rt} = 0.$$

Împărțind prin e^{rt} obținem ecuația caracteristică

$$r^3 + 3r^2 + 3r + 1 = 0 \Leftrightarrow (r+1)^3 = 0,$$

ale cărei soluții sunt $r_1=r_2=r_3=-1$. Rezultă că

$$e^{-t}$$
, te^{-t} , t^2e^{-t}

reprezintă un sistem fundamental de soluții, deci soluția generală a ecuației este

$$x(t) = c_1 e^{-t} + c_2 t e^{-t} + c_3 t^2 e^{-t}.$$

Observația 6. Dacă ecuația caracteristică are m rădăcini distincte, fiecare cu un anumit ordin de multiplicitate, adică

 r_1 este rădăcină de ordinul p_1

 r_2 este rădăcină de ordinul p_2

.....

 r_m este rădăcină de ordinul p_m ,

unde $p_1 + p_2 + ... + p_m = n$, atunci

$$e^{r_1t}, te^{r_1t}, ..., t^{p_1-1}e^{r_1t}$$

$$e^{r_2t}, te^{r_2t}, ..., t^{p_2-1}e^{r_2t}$$

$$e^{r_m t}, te^{r_m t}, ..., t^{p_m - 1}e^{r_m t}$$

formează un sistem fundamental de soluții pentru ecuația (4). Rezultă că soluția generală a ecuației (4) este

$$x = c_1 e^{r_1 t} + c_2 t e^{r_1 t} + \ldots + c_{p_1} t^{p_1 - 1} e^{r_1 t} + \ldots + c_{p_1 + p_2 + \ldots + p_m} t^{p_m - 1} e^{r_m t}$$

Exemplu

Să se rezolve următoarea ecuație

$$x''' - 7x'' + 16x' - 12x = 0$$

Rezolvare

Căutăm soluții de forma $x = e^{rt}$. Avem:

$$x' = re^{rt}, \ x'' = r^2e^{rt}, \ x''' = r^3e^{rt}.$$

Înlocuind în ecuația inițială și împărțind prin e^{rt} obținem ecuația caracteristică

$$r^3 - 7r^2 + 16r - 12 = 0,$$

ale cărei soluții sunt $r_1=3,\ r_2=r_3=2.$ Rezultă că

$$e^{3t}$$
. e^{2t} . te^{2t}

reprezintă un sistem fundamental de soluții, deci soluția generală a ecuației este

$$x(t) = c_1 e^{3t} + c_2 e^{2t} + c_3 t e^{2t}.$$

3. Ecuația caracteristică are rădăcini complexe

Propoziția 4. Dacă ecuația caracteristică are o rădăcină complexă $r_1 = \alpha + i\beta$ simplă sau multiplă cu ordinul de multiplicitate p, atunci funcțiile

$$e^{\alpha t}\cos\beta t$$
, $e^{\alpha t}\sin\beta t$

$$te^{\alpha t}\cos\beta t$$
, $te^{\alpha t}\sin\beta t$

.....

$$t^{p-1}e^{\alpha t}\cos\beta t$$
, $t^{t-1}e^{\alpha t}\sin\beta t$

formează un sistem fundamental de soluții pentru ecuația (4).

Exemple

a) Să se rezolve ecuația

$$x'' + 4x' + 5x = 0$$

Rezolvare

Căutăm soluții de forma $x = e^{rt}$. Avem:

$$x' = re^{rt}$$
, $x'' = r^2e^{rt}$.

Înlocuind în ecuația inițială și împărțind prin e^{rt} obținem ecuația caracteristică

$$r^2 + 4r + 5 = 0,$$

ale cărei soluții sunt $r_{1,2}=-2\pm i$. Astfel $\alpha=-2$ și $\beta=1$, iar soluția $\alpha+i\beta=-2+i$ este simplă. Rezultă că

$$e^{2t}\cos t$$
, $e^{2t}\sin t$

reprezintă un sistem fundamental de soluții, deci soluția generală a ecuației este

$$x(t) = c_1 e^{2t} \cos t + c_2 e^{2t} \sin t.$$

b) Să se rezolve ecuația

$$x^{\text{iv}} + 8x'' + 16x = 0$$

Rezolvare

Căutăm soluții de forma $x = e^{rt}$. Avem:

$$x' = re^{rt}, \ x'' = r^2e^{rt}, \ x''' = r^3e^{rt}, \ x^{iv} = r^4e^{rt}.$$

Înlocuind în ecuația inițială și împărțind prin e^{rt} obținem ecuația caracteristică

$$r^4 + 8r^2 + 16 = 0 \Leftrightarrow (r^2 + 4)^2 = 0$$

ale cărei soluții sunt $r_{1,2}=\pm 2i$. Astfel $\alpha=0$ și $\beta=2$, iar soluția $\alpha+i\beta=2i$ este rădăcină dublă. Rezultă că

$$e^{2t}\cos t$$
, $e^{2t}\sin t$, $te^{2t}\cos t$, $te^{2t}\sin t$

reprezintă un sistem fundamental de soluții, deci soluția generală a ecuației este

$$x(t) = c_1 e^{2t} \cos t + c_2 e^{2t} \sin t + c_3 t e^{2t} \cos t + c_4 t e^{2t} \sin t.$$

4. Ecuația caracteristică are și rădăcini reale (simple sau multiple) și rădăcini complexe (simple sau multiple)

În acest caz, pentru fiecare rădăcină a ecuației caracteristice construim soluția corespunzătoare ecuației diferențiale (4), așa cum s-a arătat în cazurile anterioare.

Se obțin astfel pentru ecuația (4) n soluții $x_1, x_2, ..., x_n$ liniar independente, iar soluția generală este

$$x = c_1 x_1 + c_2 x_2 + \dots + c_n x_n.$$

Exemple

a) Să se rezolve ecuația

$$x^{\mathrm{iv}} + 4x' + 5x = 0$$

Rezolvare

Căutăm soluții de forma $x = e^{rt}$. Avem:

$$x' = re^{rt}$$
, $x'' = r^2e^{rt}$, $x''' = r^3e^{rt}$, $x^{iv} = r^4e^{rt}$

Înlocuind în ecuația inițială și împărțind prin e^{rt} obținem ecuația caracteristică

$$r^4 - 4r^3 + 5r^2 - 4r + 4 = 0,$$

ale cărei soluții sunt $r_1=r_2=2, r_{3,4}=\pm i$. Astfel, pentru rădăcina complexă avem $\alpha=0$ și $\beta=1$, iar soluția $\alpha+i\beta=i$ este simplă. Soluția reală este dublă. Rezultă că

$$e^{2t}$$
, te^{2t} , $e^{0\cdot t}\cos t$, $e^{0\cdot t}\sin t$

reprezintă un sistem fundamental de soluții, deci soluția generală a ecuației este

$$x(t) = c_1 e^{2t} + c_2 t e^{2t} + c_3 \cos t + c_4 \sin t.$$

b) Să se rezolve ecuația

$$x^{v} + x^{iv} + 8x''' - 8x'' + 16x' - 16x = 0$$

Rezolvare

Căutăm soluții de forma $x = e^{rt}$. Avem:

$$x' = re^{rt}, \ x'' = r^2e^{rt}, \ x''' = r^3e^{rt}, \ x^{iv} = r^4e^{rt}, \ x^v = r^5e^{rt}$$

Înlocuind în ecuația inițială și împărțind prin e^{rt} obținem ecuația caracteristică

$$r^5 + r^4 + 8r^3 - 8r^2 + 16r - 16 = 0.$$

cu soluțiile $r_1=1,\ r_{2,3}=r_{4,5}=\pm 2i.$ Astfel avem o rădăcină reală simplă și o rădăcină complexă dublă cu $\alpha=0$ și $\beta=2.$ Rezultă că

$$e^{t}$$
, $e^{0}\cos 2t$, $e^{0}\sin 2t$, $te^{0}\cos 2t$, $te^{0}\sin 2t$

reprezintă un sistem fundamental de soluții, deci soluția generală a ecuației este

$$x(t) = c_1 e^t + c_2 \cos 2t + c_3 \sin 2t + c_4 t \cos 2t + c_5 t \sin 2t.$$