Esercizi lel

A.Fenu / Spano

November 22, 2019

1

Esistono potenze di 2 tali che, semplicemente riarrangiando le loro cifre (senza zeri iniziali) si ottiene una nuova potenza di 2?

2

Determinare la somma di tutti i possibili valori di f(2019) sapendo che f è una funzione con le seguenti proprietà: f(2) = 2, f(m) > f(n) se m > n, f(mn) = f(m)f(n).

3

Uno dei matematici rivelò agli altri che stava studiando i polinomi, nella speranza di trovare una formula per il terzo grado. "Durante il mio lavoro, mi sono imbattuto in certi polinomi molto particolari: se chiamiamo n la somma dei coefficienti di p(x), allora p(2017) = n!. Qual è il più grande n minore di 10000 tale per cui esista un polinomio p a coefficienti interi che soddisfi queste condizioni?"

4

Innanzi a noi si ergeva Lucifourier, enorme, orribile e puzzolente. "Ma quanto è alto?", chiesi a Cartesio? Ed egli paziente mi rispose: siano a,b,c,d,e,f,g,h le soluzioni reali di x(x-1)(x-2)(x-3)(x-4)(x-5)(x-6)(x-7)=1. La sua altezza è pari a $a^7+b^7+c^7+d^7+e^7+f^7+g^7+h^7$. Determinare il valore.

5

Quante sono le soluzioni reali all'equazione $x^2 + 10000 * |x| = 10000x$?

6 *Difficile

Sia n un intero positivo e siano $a_1, a_2, ..., a_n, a_{n+1} = a_1, a_{n+2} = a_2$ termini di una successione che rispettano la seguende legge: $a_i a_{i+1} + 1 = a_{i+2}$ (per $1 \le i \le n$). Determinare la somma di tutti gli n < 10000 per i quali esiste una tale successione.

7

Andammo poi nel girone degl'ignavi, dov'erano coloro che sono troppo pigri per far di conto. La loro punizione era calcolare, senza posa, i termini d'una sequenza definita come segue: a1=30 e, per ogni $n\geq 1$, chiamasi a_{n+1} il minimo intero positivo maggiore di a_n tale che $mcm(a_1,...,a_{n+1})>mcm(a_1,...,a_n)$. Tutto questo mentre un dimonio urlava loro nelle orecchie: "Lavorare, lavorare, lavorare. . . ". "Sapresti dire—mi chiese Cartesio—quanto vale il più grande elemento della sequenza minore di 2405?"