Universidade Federal do Rio Grande do Norte Instituto Metrópole Digital IMD0601 - Bioestatística

Visualização dos dados em R

Prof. Dr. Tetsu Sakamoto Instituto Metrópole Digital - UFRN Sala A224, ramal 182 Email: tetsu@imd.ufrn.br

Baixe a aula (e os arquivos)

- Para aqueles que não clonaram o repositório:
- > git clone https://github.com/tetsufmbio/IMD0601.git
- Para aqueles que já tem o repositório local:
- > cd /path/to/IMD0601
- > git pull

Cientistas de dados;

Combina a área de:

- Estatística: análise gráfica dos dados (Representação e interpretação dos dados);
- Design: Princípios de design (gráficos atrativos e que promove o melhor entendimento e comunicação);

Gráficos exploratórios X Gráficos explanatórios

- Exploratório:
 - Gerado facilmente;
 - Dados pesados;
 - Para uma audiência específica (você e seus colegas);
 - Análise gráfica dos dados;
- Explanatório:
 - Laborioso;
 - Específico para determinados dados;
 - Para uma audiência ampla (publicação ou apresentação);
 - Parte comunicativa do processo.

R Base Graphics

ggplot2 ggvis lattice

R Base Graphics

```
library(swirl)
swirl()
R Programming
R Programming Base Graphics
```

R Base Graphics

```
plot(x = cars$speed, y = cars$dist,
xlab = "Speed", ylab = "Stopping
Distance", col = 2)

boxplot(formula = mpg~cyl, data =
mtcars)

hist(mtcars$mpg)
```


Hadley Wickham

"The Grammar of Graphics"

Adiciona camadas nos gráficos para melhor visualização dos dados;

library(ggplot2)

Data

Dados (tabela) onde se encontram as variáveis a serem representados graficamente.

ggplot(data=mtcars)

ggplot(mtcars)

Aesthetics

Permite especificar as variáveis que queremos utilizar na representação gráfica.

ggplot(mtcars, aes(x=mpg, y=wt))

Geometries

Camada que indica a forma como os

Theme

Coordinates

Facets

Permite colocar múltiplos gráficos em um canvas.

Statistics

Adiciona uma camada que representa uma análise estatística.

Coordinates

Camada que controla como as posições devem ser mapeadas no gráfico (limites do eixo x e y).

Themes

Camada que permite enriquecer a apresentação do gráfico (rótulos, fonte, cor, etc).

Iris dataset

```
data(iris)
str(iris)
'data.frame': 150 obs. of 5 variables:
 $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
 $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
 $ Petal.Length: num   1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
 $ Petal.Width : num    0.2    0.2    0.2    0.2    0.4    0.3    0.2    0.1    ...
 $ Species : Factor w/ 3 levels "setosa", "versicolor", ...: 1 1
1 1 1 1 1 1 1 1 . . .
```

Base plot

Sepal length X Sepal width

> plot(iris\$Sepal.Length, iris\$Sepal.Width)

Base plot

Como adicionar os dados de Petal length e Petal width?

- > plot(iris\$Sepal.Length, iris\$Sepal.Width)
- > points(iris\$Petal.Length, iris\$Petal.Width, col = "red")

Limitações:

- O gráfico não é redesenhado;
- O gráfico gerado é uma imagem;
- A legenda é adicionada manualmente;
- Não há uma framework unificado para gerar diferentes tipos de gráficos.

Sepal length X Sepal width

> ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width))

+ geom_point()

Como adicionar os dados de Petal length e Petal width?

```
> ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width)) +
    geom_point() +
    geom_point(aes(x = Petal.Length, y = Petal.Width),
col = "red")
```


Exercício

Adicione uma coluna na tabela **iris** que corresponda a um identificador único de cada observação.

```
> iris$Flower <- 1:nrow(iris)</pre>
```

Crie uma tabela onde as variáveis Length e Width estejam cada uma em uma coluna, como abaixo.

```
Species Flower part Length Width
1 setosa 1 Petal 1.4 0.2
2 setosa 1 Sepal 5.1 3.5
```

ggplot(iris.wide, aes(Length, Width, col = part)) + geom_point()

Parâmetros típicos da estética

- x → posição no eixo x;
- y → posição no eixo y;
- col → cor dos pontos, ou de outras formas;
- fill → cor a ser preenchido;
- size → diâmetro do ponto, largura da linha;
- alpha → transparência;
- linetype → padrão de tracejamento da linha;
- labels → texto no gráfico;
- shape → formas;

ggplot(iris.wide, aes(Length, Width, col = part, shape = Species))
+ geom_point()

ggplot(iris.wide, aes(Length, Width, col = Species, shape = part))

+ geom_point()

Referência

https://skillgaze.com/2017/10/31/understanding-different-visualization-layers-of-ggpl ot/

Esta aula foi baseada no curso "**Data Visualization with ggplot2 (Part 1)**" de Rick Scavetta (https://www.datacamp.com/courses/data-visualization-with-ggplot2-1)