

LOG1810 STRUCTURES DISCRÈTES

TD 4 : ENSEMBLES ET FONCTIONS A2023

SOLUTIONNAIRE

Ania élabore son emploi du temps hebdomadaire en envisageant toutes les possibilités d'activités. Elle se base sur deux ensembles : \mathcal{S} pour les jours de la semaine et \mathcal{W} pour les jours de la fin de semaine, définis comme suit :

- $S = \{lun, mar, mer, jeu, ven\}$
- $\mathcal{W} = \{sam, dim\}$
- a) Définissez par énumération l'ensemble $\mathcal{P}(\mathcal{P}(\mathcal{W}))$.

Solution:

```
 \mathcal{P}(\mathcal{W}) = \{\phi, \{sam\}, \{dim\}, \{sam, dim\}\} \}  Ainsi, \mathcal{P}(\mathcal{P}(\mathcal{W})) = \{  \{\phi, \{sam\}, \{\{dim\}\}, \{\{sam, dim\}\}, \{sam, dim\}\}, \{\{sam\}, \{sam, dim\}\}, \{\{sam\}, \{sam, dim\}\}, \{\{sam\}, \{dim\}\}, \{\{sam\}, \{dim\}, \{dim\}\}, \{\{sam\}, \{dim\}, \{dim\}
```

b) Définissez par énumération l'ensemble $\mathcal{P}\left(\mathcal{P}(\mathcal{S}\cap\mathcal{W})\right)$.

Solution:

```
\mathcal{S} \cap \mathcal{W} = \phi \mathsf{Donc}, \mathcal{P}(\mathcal{S} \cap \mathcal{W}) = \mathcal{P}(\phi) = \{\phi\} \mathsf{Par suite}, \mathcal{P}\big(\mathcal{P}(\mathcal{S} \cap \mathcal{W})\big) = \mathcal{P}\big(\mathcal{P}(\phi)\big) = \{\phi, \ \{\phi\}\} \mathsf{Ainsi}, \, \mathsf{on \, obtient} \, \mathcal{P}\big(\mathcal{P}\big(\mathcal{P}(\mathcal{S} \cap \mathcal{W})\big)\big) = \mathcal{P}\big(\mathcal{P}\big(\mathcal{P}(\phi)\big)\big) = \{\phi, \ \{\phi\}, \ \{\{\phi\}\}, \ \{\phi, \{\phi\}\}\}\}
```

Exercice 2

Soit \mathcal{G} et \mathcal{H} deux sous-ensembles d'un ensemble Ω .

L'ensemble ${m G}$ différence symétrique de l'ensemble ${m H}$ est définit comme suit :

$$G \Delta \mathcal{H} = (G \cup \mathcal{H}) - (G \cap \mathcal{H})$$

Montrez que $\mathbf{G} \Delta \mathcal{H} = \overline{\mathbf{G}} \Delta \overline{\mathcal{H}}$.

```
Soit x est un élément de \Omega.
x \in (\mathcal{G} \Delta \mathcal{H}) \Leftrightarrow x \in [(\mathcal{G} \cup \mathcal{H}) - (\mathcal{G} \cap \mathcal{H})]
                                     \Leftrightarrow [x \in (\mathcal{G} \cup \mathcal{H})] \land \neg [x \in (\mathcal{G} \cap \mathcal{H})]
                                     \Leftrightarrow [(x \in \mathcal{G}) \lor (x \in \mathcal{H})] \land \neg [(x \in \mathcal{G}) \land (x \in \mathcal{H})]
                                     \Leftrightarrow [(x \in \mathcal{G}) \lor (x \in \mathcal{H})] \land [\neg (x \in \mathcal{G}) \lor \neg (x \in \mathcal{H})]
                                     \Leftrightarrow [(x \in \mathcal{G}) \lor (x \in \mathcal{H})] \land [(x \notin \mathcal{G}) \lor (x \notin \mathcal{H})]
                                     \Leftrightarrow [(x \in \mathcal{G}) \lor (x \in \mathcal{H})] \land [(x \in \overline{\mathcal{G}}) \lor (x \in \overline{\mathcal{H}})]
                                     \Leftrightarrow [(x \in \overline{\mathcal{G}}) \lor (x \in \overline{\mathcal{H}})] \land [(x \in \mathcal{G}) \lor (x \in \mathcal{H})]
                                     \Leftrightarrow [(x \in \overline{\mathcal{G}}) \lor (x \in \overline{\mathcal{H}})] \land \neg [\neg (x \in \mathcal{G}) \land \neg (x \in \mathcal{H})]
                                     \Leftrightarrow [(x \in \overline{\mathcal{G}}) \lor (x \in \overline{\mathcal{H}})] \land \neg [(x \notin \mathcal{G}) \land (x \notin \mathcal{H})]
                                     \Leftrightarrow [(x \in \overline{G}) \lor (x \in \overline{\mathcal{H}})] \land \neg [(x \in \overline{G}) \land (x \in \overline{\mathcal{H}})]
                                     \Leftrightarrow [x \in (\overline{G} \cup \overline{\mathcal{H}})] \land \neg [x \in (\overline{G} \cap \overline{\mathcal{H}})]
                                     \Leftrightarrow x \in [(\overline{G} \cup \overline{H}) - (\overline{G} \cap \overline{H})]
                                     \Leftrightarrow x \in (\overline{\mathcal{G}} \Delta \overline{\mathcal{H}})
D'où \mathbf{G} \Delta \mathbf{H} = \overline{\mathbf{G}} \Delta \overline{\mathbf{H}}.
CQFD
```

Soit Ψ l'ensemble univers et A, B, C trois ensembles de cet univers. Simplifiez l'expression :

$$\overline{A \cup \overline{C}} \cap \overline{A \cup \overline{B} \cup C} \cap (A \cap B)$$

Justifiez toutes les étapes de votre réponse.

$\overline{A \cup \overline{C}} \cap \overline{A \cup \overline{B}} \cup \overline{C} \cap (A \cap B) = \overline{A \cup \overline{C}} \cup \overline{A \cup \overline{B}} \cup \overline{C} \cup \overline{A \cap B}$	Loi de De Morgan
$= (A \cup \overline{C}) \cup (A \cup \overline{B} \cup C) \cup \overline{A \cap B}$	Loi de complémentation
$= (A \cup \overline{C}) \cup (A \cup \overline{B} \cup C) \cup (\overline{A} \cup \overline{B})$	Loi de De Morgan
$= A \cup \overline{C} \cup A \cup \overline{B} \cup C \cup \overline{A} \cup \overline{B}$	Loi d'associativité
$= A \cup A \cup \overline{A} \cup \overline{B} \cup \overline{B} \cup C \cup \overline{C}$	Loi de commutativité
$= (A \cup A \cup \overline{A}) \cup (\overline{B} \cup \overline{B}) \cup (C \cup \overline{C})$	Loi d'associativité
$= \left((A \cup A) \cup \overline{A} \right) \cup \left(\overline{B} \cup \overline{B} \right) \cup \left(C \cup \overline{C} \right)$	Loi d'associativité
$= (A \cup \overline{A}) \cup \overline{B} \cup (C \cup \overline{C})$	Loi d'idempotence
$=\Psi\cup\overline{B}\cup\Psi$	Loi du complément
$= \left(\Psi \cup \overline{B}\right) \cup \Psi$	Loi d'associativité
$=\Psi\cup\Psi$	Loi de domination
$=\Psi$	Loi d'idempotence

Considérez l'ensemble des codes IATA des aéroports internationaux suivant :

•
$$\mathcal{A} = \{YUL, JFK, CDG, ZHR, NRT\}$$

Et l'ensemble des heures de départ suivant :

$$\mathbf{D} = \{8, 10, 14, 18, 22\}$$

Dans chaque cas, précisez s'il s'agit (I.) d'une fonction, (II.) d'une fonction injective, (III.) d'une fonction surjective ou (IV.) d'une fonction bijective définie de \mathcal{A} vers \mathcal{D} . Justifiez vos réponses pour chacune des propriétés.

a)
$$\{(YUL, 10), (JFK, 22), (CDG, 14), (ZHR, 8), (NRT, 18)\}$$

Solution:

- (I.) **Fonction**: OUI. Les éléments YUL, JFK, CDG, ZHR et NRT de \mathcal{A} sont associés chacun à exactement un élément de \mathcal{D} .
- (II.) Fonction injective : OUI. Chaque élément de ${\cal A}$ a une image distincte de celle des autres éléments de ${\cal D}$.
- (III.) Fonction surjective : OUI. Chaque élément de \mathcal{D} a au moins un antécédent (pré-image) dans \mathcal{A} .
- (IV.) **Fonction bijective**: OUI. Étant une fonction injective et une fonction surjective, elle est une fonction bijective.
- b) $\{(YUL, 18), (JFK, 8), (CDG, 18), (YUL, 22), (NRT, 10)\}$

(I.)

Fonction: NON. L'élément YUL de \mathcal{A} est associé à deux éléments de \mathcal{D} ; à savoir: 18 et 22.

- (II.) Fonction injective : NON. N'étant pas une fonction.
- (III.) **Fonction surjective**: NON. N'étant pas une fonction.
- (IV.) **Fonction bijective**: NON. N'étant pas une fonction, ou n'étant ni une fonction injective, ni une fonction surjective.
- c) $\{(ZHR, 8), (JFK, 10), (CDG, 14), (YUL, 18)\}$

Solution:

- (I.) **Fonction**: OUI. Les éléments ZHR, JFK, CDG et YUL de \mathcal{A} sont associés chacun à exactement un élément de \mathcal{D} . L'élément NRT de \mathcal{A} quant à lui n'est associé à aucun élément de de \mathcal{D} .
- (II.) Fonction injective : NON. L'élément NRT de \mathcal{A} n'a pas d'image.
- (III.) Fonction surjective : NON. L'élément 22 de \mathcal{D} n'a pas d'antécédent (pré-image) dans \mathcal{A} .
- (IV.) **Fonction bijective**: NON. Elle n'est ni une fonction injective, ni une fonction surjective.
- d) $\{(YUL, 22), (JFK, 18), (CDG, 8), (ZHR, 10), (NRT, 8)\}$

- (I.) **Fonction** : OUI. Les éléments YUL, JFK, CDG, ZHR et NRT de \mathcal{A} sont associés chacun à exactement un élément de \mathcal{D} .
- (II.) **Fonction injective** : NON. Les éléments CDG et NRT de \mathcal{A} ont tous les deux comme image l'élément 8 de \mathcal{D} , alors que CDG et NRT sont deux éléments distincts de \mathcal{A} .
- (III.) Fonction surjective : NON. L'élément 14 de \mathcal{D} n'a pas d'antécédent (pré-image) dans \mathcal{A} .
- (IV.) **Fonction bijective**: NON. Elle n'est ni une fonction injective, ni une fonction surjective.

On définit une fonction de \mathbb{N}^2 vers \mathbb{N}^* tel que :

$$f(a,c) = 2^a(1+2c)$$

La fonction est-elle injective ? Justifiez votre réponse.

Solution:

Soient (a,c) et (b,d) deux éléments de \mathbb{N}^2 tels que f(a,c)=f(b,d).

Alors, on a

$$2^a(1+2c) = 2^b(1+2d)$$

Ou encore,

$$2^{a}(2c+1) = 2^{b}(2d+1) \tag{I.}$$

Montrons que (a, c) = (b, d) pour conclure que la fonction est injective, i.e. a = b et c = d.

Commençons par prouver que a = b.

Raisonnons par l'absurde.

Supposons par hypothèse que $a \neq b$.

Sans perte de généralité, si a > b, on obtient donc

$$2^{a-b}(2c+1) = 2d+1$$
 (II.)

Maintenant, examinons les parités des termes de cette équation :

- Terme de gauche : $2^{a-b}(2c+1)$ est pair, car c'est un produit de puissances de 2.
- Terme de droite : 2d + 1 est impair, car il est de la forme 2k + 1 où k est entier.

Ce qui est une contradiction par rapport à l'équation obtenue en (II.) puisque le terme de gauche est pair, alors que celui de droite est impair.

Il faut donc que

$$a = b$$
 (III.)

Prouvons maintenant que c = d.

En utilisant (I.) et (III.) comme équations précédemment établies, on obtient par suite

$$2c + 1 = 2d + 1$$

En simplifiant davantage, on trouve

$$c = d$$

Ainsi, on a bien

$$(a,c)=(b,d)$$

Par conséquent, la fonction est injective. CQFD

Exercice 6

On considère l'ensemble $\mathbb{T} = \{-3, 3\}$ et la fonction suivante :

$$h: (\mathbb{Z} - \mathbb{T}) \to \mathbb{R}$$
$$x \mapsto \frac{1}{x^2 - 9}$$

a) **h** est-elle injective ? Justifiez votre réponse.

Solution:

Méthode (I.):

Soient a et b deux entiers

Si **h** est injective, alors $(h(a) = h(b)) \rightarrow (a = b)$.

Supposons que h(a) = h(b).

Alors, on a
$$(h(a) = h(b)) \rightarrow ((a^2 - 9) = (b^2 - 9))$$

 $\rightarrow (a^2 = b^2)$
 $\rightarrow ((a = b) \lor (a = -b))$

Ainsi, a n'est pas toujours égal à b.

h n'est donc pas injective.

CQFD

Méthode (II.):

Alternativement, la preuve par contre-exemple peut être utilisée.

Lorsque x = -4, on a

$$h(-4) = \frac{1}{(-4)^2 - 9} = \frac{1}{16 - 9} = \frac{1}{7}$$

Et lorsque x = 4, on obtient

$$h(4) = \frac{1}{(4)^2 - 9} = \frac{1}{16 - 9} = \frac{1}{7}$$

Donc,

$$h(-4) = h(4) = \frac{1}{7}$$

Or,

$$-4 \neq 4$$

 ${\it h}$ n'est donc pas injective.

CQFD

b) **h** est-elle surjective ? Justifiez votre réponse.

Solution:

Soit y un réel.

Lorsque y=0, aucun entier x ne vérifie l'équation y=h(x). 0 n'ayant donc pas d'antécédant (pré-image), \boldsymbol{h} nest pas surjective. CQFD

Exercice 7

Déterminez si les affirmations suivantes sont vraies ou fausses. Il n'est pas nécessaire de justifier votre réponse ici.

a) $0 \in \phi$

Solution:

L'affirmation $0 \in \phi$ est **fausse** puisque l'ensemble vide ne contient aucun élément. Donc l'élément 0 n'appartient pas à l'ensemble ϕ .

b) $\{0\} \subset \phi$

Solution:

L'affirmation $\{0\} \subset \phi$ est **fausse** puisqu'encore une fois, l'élément vide ne contient aucun élément.

c) $\{0\} \in \{0\}$

Solution:

L'affirmation $\{0\} \in \{0\}$ est **fausse**, car $\{0\}$ est un ensemble qui contient l'élément 0, mais pas $\{0\}$ luimême.

d) $\phi \in \{0\}$

Solution:

L'affirmation $\phi \in \{0\}$ est **fausse**, car ϕ n'est pas un élément de l'ensemble $\{0\}$, mais plutôt un ensemble à part entière.

e) $\phi \subset \{0\}$

L'affirmation $\phi \subset \{0\}$ est **vraie**, car ϕ est un sous-ensemble de tous ensembles non vides, y compris $\{0\}$. Or, l'élément 0 de $\{0\}$ n'appartient pas à l'ensemble vide.

f) $\{\phi\} \subseteq \{\phi\}$

Solution:

L'affirmation $\{\phi\} \subseteq \{\phi\}$ est **vraie** puisque tous ensembles vides ou non sont des sous-ensembles d'eux-mêmes.

Exercice 8 (Facultatif)

Soit $(V_n)_{n\in\mathbb{N}}$ une suite tel que :

$$V_n = \frac{\left(\sqrt{2}\right)^n}{3^{n+1}}$$

a) Montrez que $(V_n)_{n\in\mathbb{N}}$ est une suite géométrique.

Solution:

$$V_0 = \frac{\left(\sqrt{2}\right)^{(0)}}{3^{(0)+1}} = \frac{1}{3}$$

$$V_{n+1} = \frac{\left(\sqrt{2}\right)^{(n+1)}}{3^{(n+1)+1}} = \frac{\sqrt{2}}{3} \frac{\left(\sqrt{2}\right)^n}{\underbrace{3^{n+1}}_{V_n}} = \frac{\sqrt{2}}{3} V_n$$

Ainsi, $(V_n)_{n\in\mathbb{N}}$ est donc une suite géométrique de raison $\frac{\sqrt{2}}{3}$ et de premier terme $V_0=\frac{1}{3}$.

b) Calculez la somme suivante :

$$\sum_{k=50}^{100} V_k$$

Montrez toutes les étapes de votre réponse.

Solution:

$$\sum_{k=0}^{100} V_k = \sum_{k=0}^{49} V_k + \sum_{k=50}^{100} V_k \Leftrightarrow \sum_{k=50}^{100} V_k = \underbrace{\sum_{k=0}^{100} V_k}_{\text{(I)}} - \underbrace{\sum_{k=0}^{49} V_k}_{\text{(II)}}$$

(I.) D'une part, on a

$$\sum_{k=0}^{100} V_k = \sum_{k=0}^{100} \frac{\left(\sqrt{2}\right)^k}{3^{k+1}} = \frac{1}{3} \sum_{k=0}^{100} \left(\frac{\sqrt{2}}{\frac{3}{3}}\right)^k = \frac{1}{3} \left(\frac{\left(\frac{\sqrt{2}}{3}\right)^{101} - 1}{\frac{\sqrt{2}}{3} - 1}\right), car \ r \neq 1$$

$$= \frac{1}{3} \left(\frac{\left(\frac{\sqrt{2}}{3}\right)^{101} - 1}{\frac{\sqrt{2} - 3}{3}}\right)$$

$$= \frac{\left(\frac{\sqrt{2}}{3}\right)^{101} - 1}{\sqrt{2} - 3}$$

(II.) D'autre part, on a

$$\sum_{k=0}^{49} V_k = \sum_{k=0}^{49} \frac{\left(\sqrt{2}\right)^k}{3^{k+1}} = \frac{1}{3} \sum_{k=0}^{49} \left(\frac{\sqrt{2}}{\frac{3}{3}}\right)^k = \frac{1}{3} \left(\frac{\left(\frac{\sqrt{2}}{3}\right)^{50} - 1}{\frac{\sqrt{2}}{3} - 1}\right), car \ r \neq 1$$

$$= \frac{1}{3} \left(\frac{\left(\frac{\sqrt{2}}{3}\right)^{50} - 1}{\frac{\sqrt{2} - 3}{3}}\right)$$

$$= \frac{\left(\frac{\sqrt{2}}{3}\right)^{50} - 1}{\sqrt{2} - 3}$$

Ainsi, à partir de (I.) et (II.), on obtient

$$\sum_{k=50}^{100} V_k = \frac{\left(\frac{\sqrt{2}}{3}\right)^{50} \left(\left(\frac{\sqrt{2}}{3}\right)^{51} - 1\right)}{\sqrt{2} - 3}$$

Alternativement, en utilisant le glissement d'indice, on obtient

$$\sum_{k=50}^{100} V_k = \sum_{k=50}^{100} \frac{\left(\sqrt{2}\right)^k}{3^{k+1}} = \sum_{k=50-50}^{100-50} \frac{\left(\sqrt{2}\right)^{k+50}}{3^{k+1+50}} = \left(\frac{\sqrt{2}}{3}\right)^{50} \cdot \frac{1}{3} \sum_{k=0}^{50} \left(\frac{\sqrt{2}}{3}\right)^k$$

$$= \left(\frac{\sqrt{2}}{3}\right)^{50} \cdot \frac{1}{3} \left(\frac{\left(\frac{\sqrt{2}}{3}\right)^{50} - 1}{\frac{\sqrt{2}}{3} - 1}\right), car r \neq 1$$

$$= \left(\frac{\sqrt{2}}{3}\right)^{50} \cdot \frac{1}{3} \left(\frac{\left(\frac{\sqrt{2}}{3}\right)^{50} - 1}{\frac{\sqrt{2} - 3}{3}}\right)$$

$$= \frac{\left(\frac{\sqrt{2}}{3}\right)^{50} \left(\left(\frac{\sqrt{2}}{3}\right)^{51} - 1\right)}{\sqrt{2} - 3}$$