Course 2: Tools for Data Science

Week 1:

Lesson 1: Languages of Data Science

Course Introduction

- Data science tooling
- Tasks needed to be performed
- Top open source and commercial tools
- How tools overlap, pros and cons
- Data manipulation
- Automation with data science tooling
- Visual programming & modeling
- Cloud computing with Data Science

Languages of Data Science

- Main Ones: Python, R, SQL
- Alternatives: Scala, Java, C++, julia
- Specific use cases: JS, php, go, ruby, visual basic
- Language choice depends on problems needed to be solved
- Roles:
 - Business analyst
 - Database Engineer
 - Data Analyst
 - Data Engineer
 - Data Scientist
 - Research Scientist
 - Software Engineer
 - Statistician
 - Product Manager
 - Project Manager
 - Etc.

Introduction to Python

- Powerhouse language
- Most popular
- 2019: 75% of people use python on regular basis
- Glassdoor: 75% of data science positions require python
- Large orgs that use Python for Data Science: IBM, Wikipedia, Google, Yahoo, CERN, NASA, Facebook, Amazon, Instagram, Spotify, Reddit

- General purpose language
- Large standard library
- Data Science Uses:
 - Scientific Computing
 - Pandas
 - NumPy
 - SciPy
 - Matplotlib
 - Artificial Intelligence
 - PyTorch
 - TensorFlow
 - Keras
 - Scikit-learn
 - Natural Language Processing (NLP)
 - Natural Language Toolkit (NLTK)

Introduction to R

- Learning up to 3 languages can increase your salary!
- Python is Open Source (OSI, Open Source Initiative), R is free software (FSF, Free Software Foundation)
- Open Source & Free Software are similar but not the same
- Used by
 - Statisticians
 - Mathematicians
 - Data miners
- Most learn a few year into their career
- 2018: 15000 publicly released packages

Introduction to SQL

- Structured Query Language
- Older than Python and R by 20 years
- Useful in handling structured data
- Why Great?
 - Business and data analyst positions, data engineering
 - Data accessed directly
 - SQL is interpreter between you and database
 - ANSI standard, can apply SQL knowledge to many different databases
- Databases available:
 - MySQL
 - IBM DB2
 - PostgreSQL
 - Apache Open Office Space
 - SQLite
 - Oracle

- MariaDB
- Microsoft SQL server

Other Languages

- Scala, Java, C++, julia
- JS, php, go, ruby, visual basic
- Java
 - General purpose object oriented language
 - Designed to be fast and scalable
 - Java applications are compiled to bytecode and run on JVM
 - Data science uses:
 - Weka (data mining)
 - Java-ML (machine learning)
 - Apache MLlib(scaleable ML
 - Deeplearning4j
 - Hadoop: data processing and storage for big data applications running in clustered systems
- Scala
 - General purpose
 - Strong static type system
 - Addresses criticisms of Java
 - Runs on JVM
 - Data Science
 - Apache Spark
 - Shark
 - MLib
 - GraphX
 - Spark Streaming
- C++
 - Improves processing speed
 - System programming
 - TensorFlow made in C++ but runs on Python interface
 - MongoDB (no SQL) made in C++
- . JS
- Tensorflow JS
- Node.js brings it beyond web programming
- Julia
 - Designed in MIT
 - Speedy development while running fast programs
 - Code is executed directly on processor
 - JuliaDB

Lesson 2: Data Science Tools

Categories of Data Science Tools

- Data Management
 - Retrieving data
- Data Integration and Transformation
 - Extract, transform, load
- Data Visualization
 - Data exploration process
- Model Building
 - Create ML model with appropriate algorithm
- Model Deployment
 - Make model available to 3rd party applications
- Model Monitoring and Assessment
 - Quality checks on model
- Code Asset Management
 - Versioning to facilitate teamwork
- Data Asset Management
 - Supports replication, backup, asset rights
- Development Environments
 - IDEs
 - implement, execute, test, deploy work
- Execution Environments
 - Deployment and model training take place
- Fully Integrated Visual Tooling
 - Covers all other tooling stuff

Open Source Tools

Part 1:

- Data Management
 - Relational Databases
 - MySQL
 - PostgreSQL
 - NoSQL Databases
 - MongoDB
 - CouchDB
 - Cassandra
 - File Based Tools
 - Hadoop (hdfs)
 - Ceph (cloud)
 - Elasticsearch (fast document retrieval)
- Data Integration and Transformation
 - Apache Airflow

- KubeFlow
- Kafka
- Nifi
- SparkSQL
- Node-RED
- Data Visualization
 - Hue
 - Kibana
 - Superset
- Model Deployment
 - Apache PredictionIO
 - Seldon
 - mleap
 - TensorFlow Service
 - TensorFlow Lite
 - TensorFlow.js
- Model Monitoring and Assessment
 - ModelDB
 - Prometheus
 - Al Fairness 360 Open Source
 - Adversarial Robustness 360 Toolbox
 - Al Explainability 360
- Code Asset Management
 - Git
 - Github
 - Gitlab
 - bitbucket
- Data Asset Management
 - Apache Atlas
 - ODPI Egeria
 - Kylo

Part 2:

- Development Environments
 - Jupyter
 - Jupyter lab
 - Apache Zeppelin
 - R Studio
 - Spyder
- Execution Environments
 - Apache Spark
 - Apache Flink
 - Riselab Ray
- Fully Integrated Visual Tooling

- Knime
- Orange

Commercial Tools for Data Science

- Data Management
 - Oracle
 - Microsoft SQL Server
 - IBM DB2
- Integration and Transformation (ETL tools)
 - Informatica
 - IBM Infosphere DataStage
 - Talend
 - Watson Studio Desktop
- Data Visualization
 - Tableau
 - Microsoft PowerBI
 - IBM Cognos Analytics
- Model Building
 - SPSS
 - SAS
- Model Deployment
 - SPSS
- Model Monitoring and Assessment
 - None available for commercial
- Data Asset Management
 - Informatica
 - IBM Infosphere Information Governance Catalog
- Development Environments
 - Watson Studio Desktop
- Fully Integrated Visual Tools
 - Watson Studio
 - Watson OpenScale
 - H2O.ai

Cloud Based Tools for Data Science

- Fully Integrated Visual Tools and Platforms
 - Watson Studio
 - Watson OpenScale
 - Microsoft Azure ML
 - H2O.ai
- Data Management
 - Amazon DynamoDB (NoSQL database and SaaS(Software as a Service))
 - Cloudant / CouchDB
 - Db2

- Data Integration and Transformation
 - Informatica
 - Data Refinery
- Data Visualization
 - Datameer
 - IBM Cognos Analytics
 - IBM Data Refinery
 - Watson Studio
- Model Building
 - Watson ML
 - Al Platform Training (Google Cloud)
- Model Deployment
 - SPSS
 - Watson Machine Learning (using REST interface)
 - Amazon SageMaker Model
 - Watson Studio

Lesson 3: Packages, APIs, Data Sets and Models

Libraries for Data Science

- Python
 - Scientific computing
 - Pandas (data structures & tools)
 - NumPy (arrays & matrices)
 - Visualization
 - Matplotlib (plots / graphs, most popular)
 - Seaborn (heat maps, time series, violin plots)
 - High-level machine learning
 - Scikit-learn (regression, classification)
 - Keras (deep learning neural networks)
 - Deep learning libraries
 - Keras (deep learning neural networks)
 - TensorFlow (Deep learning: production and deployment)
 - PyTorch (used for testing)
- Apache Spark
 - Process data in clusters simultaneously
 - Python, R, Scala, SQL
- Scala
 - Vegas
 - Deep Learning: Big DL
- R
- Has built in functionality for ML and data visualization
- Ggplot2
- Others which interface with Keras and TensorFlow

Application Programming Interface (API)

- Lets two pieces of software talk to each other
- Your program communicates with other software component using an API (Pandas object for example)
- REST (REpresentational State Transfer) APIs
 - Communication using the internet
 - Advantages:
 - Storage
 - Data access
 - Al algorithms
 - Other resources
 - Your program is called "Client"
 - Interacts with a web service using a REST API

Data Sets: Powering Data Science

- Data set?

- Collection of data
- Data structures:
 - Tabular data
 - Hierarchical data, network data
 - Raw files (images or audio)
- Data Ownership
 - Private data
 - Confidential
 - private/personal information
 - Commercially sensitive
 - Open Data
 - Scientific institutions
 - Government
 - Organizations
 - Companies
 - Publicly available
- Find Open Data
 - Datacatalogs.org
 - Data.un.org
 - Kaggle
 - Google
- Community Data License Agreement
 - CDLA Sharing
 - Permission to use and modify data
 - Publication only under same terms
 - CDLA Permissive
 - Permission to use and modify data: no obligations

Sharing Enterprise Data

- Data Asset eXchange (DAX)
 - Curated collection of data sets
 - IBM research and 3rd parties
 - Data science friendly licenses
 - Getting started
 - Download data set
 - Explore data set
 - Metadata
 - Example records

Machine Learning Models

- Data contains a wealth of information
- ML models identify patterns in data
- Model must be trained on data before it can be used to make predictions
- Supervised

- Most commonly used
- Human provides input data and correct outputs
- Used to solve regression and classification models
- Regression
 - Predict real numeric values
 - Home sale prices, stock market
- Classification
 - Classify things into categories
 - Email spam filters, fraud detection, image classification
- Unsupervised
 - Data is not labeled
 - Model tries to identify patterns without external help
 - Clustering and anomaly detection
- Reinforcement
 - Conceptually similar to human learning processes
 - Robot learning to walk, chess, Go, other games of skill
- Deep Learning
 - Tries to loosely emulate how the human brain works
 - Applications
 - Natural Language Processing
 - Image, Audio, Video analysis
 - Time series forecasting
 - Much more
 - Requires very large data sets of labeled data
 - Computationally intensive
 - Build from scratch or download from public model repositories
 - Built using
 - Tensorflow
 - Pytorch
 - Keras
 - Popular Model Repositories
 - "Model zoo"
 - ONNX model zoo
- Using Models to Solve a Problem
 - What is this?
 - Prepare data
 - Build Model
 - Train Model (iterative process up til this point)
 - Deploy Model
 - Use model
 - This is a teddy bear

Week 2:

Lesson 1: Jupyter Notebook and JupyterLab

Introduction

- Tool for recording data science experiments
- Allows data scientists to combine text and code blocks in a single file
- Generates plots and tables within the file
- Can be exported as pdf and html files
- JupyterLab
 - Extends notebook
 - Interactive environment
 - Real time editing
 - Can be used with a cloud based service
 - "Pip install jupyterlab"

Getting Started

- Can use Skills Network Virtual Environment to run JupyterLab

Jupyter Kernels

- Notebook kernel is a computational engine that executes the code contained in a notebook file
- Kernels for other languages exist

Jupyter Architecture

- Jupyter implements a two-process model: kernel and client
- Client: interface to send code to the kernel
 - It's the browser when using a Jupyter Notebook
- Kernel: executes code and returns result to client to display

Shortcuts for jupyter:

- Shift+enter -> run
- A -> insert cell above
- B -> insert cell below

Lesson 2: RStudio IDE

Introduction to R and RStudio

- R: statistical programming language
 - Most use by academics, healthcare, and the government
 - Great for visualization
- RStudio: environment to run R code
- Popular R libraries
 - dplyr: Data Manipulation
 - stringr: String Manipulation
 - ggplot: Data Visualization
 - caret: Machine Learning

Plotting with RStudio

- Ggplot
 - Histograms, bar charts, etc.
 - library(ggplot2)
- Plotly
 - Web-based data visualizations
 - Displayed or saved as individual html files
- Lattice
 - Used to implement complex multi-variable data sets
- Leaflet
 - Popular for creating interactive plots
- How to install: install.packages("package name")
- Plot function (just plot creates a scatterplot)

Lesson 3: Github

Overview of Glt/Github

- Version control
- Git
 - free/open source
 - Distributed version control system
 - Accessible anywhere in the world
 - Version control images, documents, etc.
- Glossary of Terms
 - SSH protocol
 - Method for secure remote login from one computer to another
 - Repository
 - Folders of your project set up for version control
 - Fork
 - Copy of the repository
 - Pull Request
 - Process used to request that someone reviews and approves your changes before they become final
 - Working Directory
 - Directory on your file system, including its files and subdirectories, that is associated with a git repository
- Basic Git Commands
 - Init: starting a new repository / cloning an existing one
 - Add: moves changes from working directory to staging area
 - Status: state of working directory and state of your changes
 - Commit: takes changes and commits them to the project
 - **Reset**: undoes changes made to the working directory
 - Log: browse previous changes to a project
 - **Branch**: create isolated environment within repository to make changes
 - Checkout: see and change existing branches
 - **Merge**: puts everything back together

Working with Branches

- Branch = snapshot of repository
- Master = main branch
 - Official working version of project
 - Meant to be stable
- Child Branch
 - Changes and experiments are done
 - Build and test, then merge once changes are working and approved

Week 3:

Lesson 1: Watson Studio

What is IBM Watson Studio?

- Simplify data projects
- Collaborative data science and machine learning environment
- Easy to create visualizations
- Works with open source tools

Lesson 2: Other IBM Tools

Other tools for Data Science

- Watson knowledge catalog
- Data refinery
- Modeler Flows in Watson Studio
- IBM SPSS Statistics and IBM SPSS Modeler
- Model deployment strategies
- AutoAl and Watson OpenScale

IBM Watson Knowledge Catalog

- Data Asset Management
- Code Asset Management
- Data Management
- Data Integration and Transformation
- Main Features
 - Find Data
 - Catalog...
 - Govern..
 - Understand...
 - Power..
 - Prepare..
 - Connect..
 - Deploy Anywhere

Data Refinery

- Cleane, Shape, and Prepare data
- Interactive visual interface in order to streamline data preparation
- Kinda works like database operations

SPSS Modeler Flows

Data Management

- Data Integration and Transformation
- Data Visualization
- Model Building

IBM SPSS Modeler

- Data Management
- Data Integration and Transformation
- Data Visualization
- Model Building
- Model Deployment

Model Deployment with Watson ML

- Model Deployment
- Some Solutions
 - Sage Maker (Amazon)
 - MLFlow (Databricks)
 - Airflow (AirBnB)
 - Kubeflow (Google)
- PMML (Predictive Model Markup Language)
- PFA (Portable Format for Analytics)
- ONNX (Open Neural Network eXchange)

AutoAl in Watson Studio

- Data Preparation
- Model Development
- Feature Engineering
- Hyper-parameter Optimization

IBM Watson OpenScale

- Fairness: monitor bias
- Explainability: explain model decisions
- Model Monitoring: help find causes when there is model drift detected, possibly retrain
- Business Impact: Correlate model metrics and KPIs to measure business impact