Эллиптические кривые

Лекция 5. Алгоритмы подсчета \mathbb{F}_q -рациональных точек кривой. Часть I

Семён Новосёлов

БФУ им. И. Канта

2023

Мотивация

Криптография на **DLOG** в группе G:

(почти) простое #G \implies стойкость к атаке Полига-Хелмана 1

Нужно уметь генерировать кривые с (почти) простым числом точек.

¹вкратце: сведение задачи к подгруппам

Задачи:

- ① подобрать кривую с **заданным** (простым) числом точек над полем $\mathbb{F}_{\mathfrak{q}} \implies CM$ -метод
- 2 подобрать кривую с простым числом точек над полем $\mathbb{F}_{\mathfrak{a}}$:
 - выбирать случайную кривую и считать число точек пока не получится простое число точек
 - ожидаемое число попыток: $O(\log |G|)$ (следует из теоремы о распределении простых чисел)

СМ-метод даёт лучшие кривые, но при этом существенно сложнее.

Эндоморфизм Фробениуса

Алгоритмы подсчёта точек базируются на свойствах эндоморфизма:

$$\phi_q:\overline{\mathbb{F}}_q\to\overline{\mathbb{F}}_q\\ \chi\mapsto \chi^q$$

$$2 x^q = x, \forall x \in \mathbb{F}_q$$

Действие $\phi_{\mathfrak{q}}$ на точки из $\mathsf{E}(\overline{\mathbb{F}}_{\mathfrak{q}})$:

$$\varphi_{\mathfrak{q}}(x,y) = (x^{\mathfrak{q}}, y^{\mathfrak{q}}), \varphi_{\mathfrak{q}}(\mathcal{O}) = \mathcal{O}.$$

E – кривая над \mathbb{F}_a , $(x,y) \in E(\overline{\mathbb{F}}_a)$.

Свойства Фа:

- $\mathbf{0}$ $\varphi_{\mathbf{q}}(\mathbf{x},\mathbf{y}) \in \mathsf{E}(\overline{\mathbb{F}}_{\mathbf{q}})$
- $\langle (y^2)^q = (x^3 + ax + b)^q \Leftrightarrow$
 - $(u^q)^2 = (x^q)^3 + ax^q + b \Leftrightarrow (x^q, u^q) \in E(\overline{\mathbb{F}}_q) \triangleright$
- $(x,y) \in E(\mathbb{F}_{\mathfrak{q}}) \Leftrightarrow \varphi_{\mathfrak{q}}(x,y) = (x,y)$

 $\triangleleft x \in \mathbb{F}_a \Leftrightarrow \varphi_a(x) = x \triangleright$

Граница Хассе-Вейля

Теорема

Для любой кривой E/\mathbb{F}_q выполняется:

$$|q+1-\#E(\mathbb{F}_q)|\leqslant 2\sqrt{q}$$

⊲ Выводится из свойств (1)–(4) для ϕ_q (см. [Washington, § 4.2]). ⊳

След эндоморфизма Фробениуса:

$$t=q+1-\#E(\mathbb{F}_q)=q+1-\deg(\phi_q-1)$$

• Асимптотически: $\#E(\mathbb{F}_q) \sim O(q)$

Характеристический многочлен эндоморфизма Фробениуса

Теорема

E – эллиптическая кривая над \mathbb{F}_q и $\mathrm{t}=q+1-\#\mathsf{E}(\mathbb{F}_q).$ Тогда

$$\phi_q^2 - t\phi_q + q = 0$$

как эндоморфизм на E и t определено уникально. Другими словами $\forall (x,y) \in E(\overline{\mathbb{F}}_q)$:

$$(x^{q^2}, y^{q^2}) - t(x^q, y^q) + q(x, y) = \mathcal{O}.$$

Кривые в подполе

Кривая E задана над $\mathbb{F}_q \implies$ можем выразить $\#E(\mathbb{F}_{q^n})$ через $\#E(\mathbb{F}_q)$.

Теорема

Пусть $\#\mathsf{E}(\mathbb{F}_q)=q+1-t.$ Запишем $X^2-tX+q=(X-\alpha)(X-\beta).$ Тогда:

$$\#E(\mathbb{F}_{q^n}) = q^n + 1 - (\alpha^n + \beta^n) \quad \forall n \geqslant 1.$$

Лемма

Пусть $t_n=\alpha^n+\beta^n.$ Тогда $t_0=2, t_1=t$ и $t_{n+1}=tt_n-qt_{n-1}$ для всех $n\geq 1.$

• Т.о., если известно $\#E(\mathbb{F}_q)$, то $\#E(\mathbb{F}_{q^n})$ находится за время O(n) операций в \mathbb{Z} .

Подсчёт точек на основе символа Лежандра

Экспоненциальные алгоритмы подсчёта точек

Лемма

Для $E: y^2 = x^3 + ax + b$ над \mathbb{F}_q имеем:

$$\#E(\mathbb{F}_q) = q + 1 + \sum_{x \in \mathbb{F}_q} \left(\frac{x^3 + ax + b}{\mathbb{F}_q} \right).$$

Сложность: O(q polylog q).

Алгоритм Baby Step-Giant Step (BSGS)

Экспоненциальные алгоритмы подсчёта точек

Идея: Пусть $N=\#E(\mathbb{F}_q)$ – неизвестно. По теореме Лагранжа: $[N]P=\mathcal{O}, \forall P.$

Т.к. $q+1-2\sqrt{q} \le N \le q+1+2\sqrt{q} \implies$ можем перебирать все N проверяя условие $[N]P=\mathcal{O}.$

- Наивный метод (brute force): $O(\sqrt{q})$.
- Алгоритм поиска коллизий/циклов (BSGS): $O(\sqrt[4]{q})$.
 - Основан на парадоксе дней рождений.

Алгоритм (BSGS). Нахождение порядка точки

```
Вход: P \in E(\mathbb{F}_q). Выход: ord(P).
```

- $\mathbf{0} \ Q = (q+1)P.$
- 2 Выбрать $m>\sqrt[4]{q}$, вычислить и сохранить в списке L все пары (j,[j]P) для $j=0,\ldots,m$. (baby steps)
- f 3 Вычислять точки Q+k(2mP) для $k=-m,-(m-1),\ldots,m$ пока в L не найдётся точка $\pm [j]P$ т.ч. $Q+k(2mP)=\pm [j]P$ (giant steps)
- **4** Имеем $[q + 1 + 2mk \mp j]P = \mathcal{O}$. $M = q + 1 + 2mk \mp j$.
- **5** Найдём p_1, \dots, p_r различные простые делители M.
- $oldsymbol{6}$ Если $[M/\mathfrak{p}_i]P=\mathcal{O}$ для нек. i, то $M=M/\mathfrak{p}_i$ и перейти к шагу 5.
- Вернуть М.

Алгоритм (BSGS). Нахождение порядка точки

Анализ сложности

- **Шаг 1.** (быстрое умножение) $O(\log q)$ сложений на кривой $\Longrightarrow \widetilde{O}(\log^2 q)$ бит. операций
- Шаг 2. $\widetilde{O}(\mathfrak{m}) = \widetilde{O}(\mathfrak{q}^{1/4})$ время, $O(\mathfrak{q}^{1/4})$ память.
- Шаг 3. $\widetilde{O}(2\mathfrak{m})=\widetilde{O}(\mathfrak{q}^{1/4})$ ожидаемое количество переборов k.
- **Шаг 4.** Элементарные операции в \mathbb{Z} .
- **War 5.** $L_q(1/3, c) = \exp(c(\log q)^{1/3}(\log \log q)^{2/3}).$
- **Шаг 6.** $O(\log M) = O(\log q)$ сложений на кривой.

Итого: самый затратный шаг 3: $\widetilde{O}(q^{1/4})$.

Замечания

- ① Для оптимизации памяти достаточно хранить только координату x.
- **2** С помощью ρ -метода Полларда можно реализовать алгоритм, использующий только $\operatorname{polylog} q$ памяти.

Алгоритм (BSGS). Нахождение $\#E(\mathbb{F}_q)$

```
Вход: E/\mathbb{F}_q. Выход: \#E(\mathbb{F}_q).
```

- 1 L = 1.
- **2** Выбрать случайную точку $P \in E(\mathbb{F}_q)$.
- 3 r = ord(P).
- **4** L = lcm(L, r).
- **5** Если L делит только одно целое N т.ч. $q+1-2\sqrt{q} \le N \le q+1+2\sqrt{q}$, то вернуть N. В противном случае перейти к шагу 2.

Литература

- H. Cohen и др.
 Handbook of elliptic and hyperelliptic curve cryptography.
 2005.
- L. C. Washington.Elliptic curves: number theory and cryptography. 2008.

Контакты snovoselov@kantiana.ru

Страница курса:

crypto-kantiana.com/semyon.novoselov/teaching/elliptic_curves_2023