Introduction to Binary Decision Diagram

Prof. Chien-Nan Liu

TEL: 03-5712121 ext:31211

Email: jimmyliu@nctu.edu.tw

Outlines

- Representing Boolean Functions
 - Decision graph structure
 - Reduction to canonical form
 - Effect of variable ordering
 - Variants to reduce storage
- Algorithms
 - General framework
 - Basic operations
 - » Restriction (Cofactor)
 - » If-Then-Else
 - Derived operations
 - Computing functional properties

1

Decision Structures

Truth	X1	X2	X3	f
Table	0	0	0	0
	0	0	1	0
	0	1	0	0
	0	1	1	1
	1	0	0	0
	1	0	1	1
	1	1	0	0
	1	1	1	1

- Vertex represents decision
- Follow dashed line for value 0
- Follow solid line for value 1
- Function value determined by leaf value

3

Binary Decision Diagram (BDD)

$$f = x_1 x_2 + x_3$$

---: 0

____ · 1

terminal node:

- attribute
 - value(v) = 0
 - value(v) = 1

nonterminal node:

- index(v) = i
- two children
 - -low(v)
 - high(v)

BDD

A BDD graph which has a vertex v as root corresponds to the function F_v :

- (1) If v is a terminal node:
 - a) if value(v) is 1, then $F_v = 1$
 - b) if value(v) is 0, then $F_v = 0$
- (2) If F is a nonterminal node (with index(v) = i)

$$F_{v}(x_{1}, ..., x_{n}) = x_{i} F_{low(v)}(x_{i+1}, ..., x_{n}) + x_{i} F_{high(v)}(x_{i+1}, ..., x_{n})$$

5

Variable Ordering

- Assign arbitrary total ordering to variable
 e.g. X1 < X2 < X3
- Variable must appear in ascending order along all paths

- Properties
 - No conflicting variable assignments along path
 - Simplifies manipulation

Reduction Rule #1

• Merge equivalent leaves

7

Reduction Rule #2

• Merge isomorphic nodes

Reduction Rule #3

Eliminate Redundant Tests

9

Example ROBDD

- Canonical representation of Boolean function for given variable ordering
 - Two functions equivalent iff graphs isomorphic» can be tested in linear time
 - Desirable property : The simplest form is canonical

Reduce

- Visit OBDD bottom up and label each vertex with an identifier
- Redundancy
 - if id(low(v)) = id(high(v)), then vertex v is redundant \Rightarrow set id(v) = id(low(v))
 - if id(low(v)) = id(low(u)) and id(high(v)) = id(high(u), then set id(v) = id(u)
- A different identifier is given to each vertex at level i
- Terminated when root is reached
- An ROBDD is identified by a subset of vertices with different identifiers

11

Reduce

----: 1

Construct ROBDD Directly

- Using a hash table called unique table
 - Contain a key for each vertex of an OBDD
 - Key: (variable, right children, left children)
 - Constructed bottom up
 - Each key uniquely identify the specific function
 - Look up the table can determine if another vertex in the table implements the same function

13

The Unique Table

- Represent an ROBDD
- A strong canonical form
- Check equivalence of two Boolean functions by comparing the corresponding identifiers
- Can represent multiple-output functions

Multi-Rooted ROBDD

Unique table

Key

Identifier	Variable	Right child	Left child
5	a	3	4
4	ь	3	1
3	c	2	1

15

Multi-Rooted ROBDD

f = (a+b) cg = b c d

variable order (d, a, b, c)

f is constructed first and is associated with *id*=5 g: *id*=6

Unique table

Key

Identifier	Variable	Right child	Left child
6	d	4	1
5	a	3	4
4	b	3	1
3	c	2	1

The Unique Table

Hash Table Mapping

$$(X1, T1, 1) \longrightarrow U1$$

$$(X1, T2, T1) --> U2$$

$$(X2, T3, 1) \longrightarrow T1$$

$$(X2, 0, T3) \longrightarrow T2$$

$$(X3, 0, 1) \longrightarrow T3$$

- Unique table: hash table mapping (Xi, G, H) into a node in the DAG
 - before adding a node to the DAG, check to see if it already exists
 - avoids creating two nodes with the same function
 - strong canonical form : pointer equality determines function equality

17

Non-Shared ROBDD

$$U1 = X1' + X2' + X3'$$

$$U2 = X1'X2' + X1'X3'$$

Multi-Rooted (Shared) ROBDD

$$U_{1} = X_{1}' + X_{2}' + X_{3}' = (X_{1}, T_{1}, 1)$$

$$U_{2} = X_{1}' X_{2}' + X_{1}' X_{3}' = (X_{1}, T_{2}, T_{1})$$

$$T_{1} = X_{2}' + X_{3}' = (X_{2}, T_{3}, 1)$$

$$T_{2} = X_{2}' X_{3}' = (X_{2}, 0, T_{3})$$

$$T_{3} = X_{3}' = (X_{3}, 0, 1)$$

$$0 = (X_{\infty}, 0, 0)$$

$$1 = (X_{\infty}, 1, 1)$$

External functions
User functions

Internal functions

- A DAG node F is represented by a tuple (Xi, G, H)
 - Xi is called the top variable of F
 - node (Xi, G, H) represents the function ite(Xi, G, H) = XiG + Xi'H
- DAG contains both external and internal functions

19

Separated vs. Shared

- Separated
 - 51 nodes for 4-bit adder
 - 12481 nodes for 64-bit adder
 - Quadratic growth
- Shared
 - 31 nodes for 4-bit adder
 - 571 nodes for 64-bit adder
 - Linear growth

Maintaining Shared ROBDD

- Storage Model
 - Single, multiple-rooted DAG
 - Function represented by pointer to node in DAG
 - Maintain Unique (hash) table to keep canonical
- Storage Management
 - User cannot know when storage for node can be freed
 - Must implement automatic garbage collection
- Algorithmic Efficiency
 - Functions equivalent iff pointer equal» if (p1 == p2) ...
 - Can test in constant time

21

Ordering Effects

• The size of ROBDD depends on the ordering of variables

$$ex: x_1x_2 + x_3x_4$$

$$x_1 < x_2 < x_3 < x_4$$

Ordering Effects (cont'd)

$$x_1 < x_3 < x_2 < x_4$$

23

Sample Function Classes

Function Class	Best	Worst	Ordering Sensitivity
ALU (Add/Sub)	Linear	Exponential	High
Symmetric	Linear	Quadratic	None
Multipication	Exponential	Exponential	Low

General Experience

- Many tasks have reasonable ROBDD representations
- Algorithms remain practical for up to 100,000 vertex ROBDD
- Heuristic ordering methods generally satisfactory

Symbolic Manipulation

- Strategy
 - Represent data as set of ROBDDs
 - » with identical variable orderings
 - Express solution method as sequence of symbolic operations
 - Implement each operation by ROBDD manipulation
- Algorithmic Properties
 - Arguments are ROBDDs with identical variable orderings
 - Result is ROBDD with same ordering
 - "Closure Property"
- Two Basic Operations
 - Restriction
 - If-Then-Else

25

Restriction Operation

- Concept
 - Effect of setting function argument Xi to constant K(0,1)
 - Also called Cofactor operation

- Implementation
 - Depth-first traversal
 - Complexity near-linear in argument graph size

Restriction Algorithm

Restrict (F, x, k)

Bypass any nodes for variable x

Choose Hi child for k = 1

Choose Lo child for k = 0

Reduce result

Special cases of Restriction

• Case 1 : Restrict on root node variable

- Case 2: Restrict on variable less than root node
 - e.g. x < y

If-Then-Else Operation

- Concept
 - Basic technique for building ROBDD from network or formula
- Argument I (if), T (then), E (else)
 - Functions over variables X
 - Represented as ROBDDs
- Result
 - ROBDD representing composite function
 - -IT + I'E
- Implementation
 - combination of depth-first traversal and dynamic programming
 - Worst case complexity : product of argument graph sizes

29

If-Then-Else Algorithm

Recursive Formulation

- General Algorithm
 - Select top root variable x of I, T and E
 - Compute restrictions
 - » Guaranteed to be one of special cases
 - Apply recursively to get results Lo and Hi
 - Still remain canonical form
- Termination Conditions

$$- I = 1$$
 ==> Return T
 $- I = 0$ ==> Return E
 $- T = 1, E = 0$ ==> Return I
 $- T = E$ ==> Return T

An ITE Example

- Given f = ab + bc + ac, g = c under the order a < b < cITE (f, g, 0)
 - = ITE[a, ITE(f(a=1), g(a=1), 0), ITE(f(a=0), g(a=0), 0)]
 - = ITE[a, ITE(b+bc+c, c, 0), ITE(bc, c, 0)]

31

sel1

T1

T2

Algorithmic Issues & Derived Operations

- Efficiency
 - Maintain computed table and unique table to increase efficiency
 - Worst case complexity product of graph sizes for I, T, E
- Derived operations

T1

E1 = sel2

- Express as combination of If-Then-Else and Restrict
- Preserve closure property
 - » Result is a ROBDD with the same variable ordering

Detailed ITE Algorithm

```
ITE(f, g, h) {
   if (terminal case)
      return (r = trivial result);
                                                        /* exploit previous information */
      if (computed table has entry \{(f, g, h), r\})
          return (r from computed table);
          x = top variable of f, g, h;
          t = ITE(f_x, g_x, h_x);
          e = ITE(f_{x'}, g_{x'}, h_{x'});
                                                        /* children with isomorphic OBDDs */
          if(t == e)
             return (t);
          r = find or add unique table(x, t, e);
                                                        /* add r to unique table if not present */
          Update computed table with \{(f, g, h), r\};
          return (r);
}
                                                                                                 33
```

Derived Algebraic Operations

 Other common operations can be expressed in terms of If-Then-Else

ITE Operators

Operator	Equivalent ite for
0	0
$f^{ullet}g$	<i>ite</i> (<i>f</i> , <i>g</i> , 0)
$f^{\bullet}g$	ite $(f, g', 0)$
f	f
f '• g	ite(f, 0, g)
g	g
$f \oplus g$	ite (f, g', g)
f+g	<i>ite</i> (<i>f</i> , 1, <i>g</i>)
(f+g),	ite $(f, 0, g')$
$(f \oplus g)$ '	ite (f, g, g')
g'	<i>ite</i> (<i>g</i> , 0, 1)
f+g,	ite $(f, 1, g')$
f,	ite(f, 0, 1)
f'+g	<i>ite</i> (<i>f</i> , <i>g</i> , 1)
$(f \bullet g)$	ite (f, g', 1)
1	1

Generating ROBDD from Network

• Task: Represent output functions of gate network as ROBDDs

35

Functional Composition

- Create new function by composing functions F and G
- Useful for composing hierarchical modules

37

Variable Qualification

• Eliminate dependency on some argument through qualification

Variants & Optimizations

- Concept
 - Refinements to ROBDD representation
 - Do not change fundamental properties
- Objective
 - Reduce memory requirement
 - Improve algorithmic efficiency
 - Make commonly performed operations faster
- Common Optimizations
 - Share nodes among multiple functions
 - Negated arcs

39

40

Negation Arcs

- Concept
 - Dot on arc represents complement operator
 » Invert function value
 - Can appear internal or external arc

internal

Effect of Negation Arcs

- Storage Savings
 - At most 2X reduction in numbers of nodes
- Algorithmic Improvement
 - Can complement function in constant time
- Problem
 - Negation arc allow multiple representations of a function

- Modify algorithms with restricted conversions for use of negative arcs

41

Density Computation

- Definition
 - p(F): fraction of variable assignments for which F = 1
- Applications
 - Testability measures
 - Probability computations
- Recursive Formulation
 - p(F) = [p(F[x=1]) + p(F[x=0])]/2
- Computation
 - Compute bottom-up, starting at leaves
 - At each node, average density of children

Characteristic Function

Let E be a set and $A \subseteq E$

The characteristic function of A is the function

$$X_A : E \rightarrow \{ 0, 1 \}$$

 $X_A(x) = 1 \text{ if } x \in A$
 $X_A(x) = 0 \text{ if } x \notin A$
 $Ex :$

$$E = \{ 1, 2, 3, 4 \}$$

$$A = \{ 1, 2 \}$$

$$X_{A}(1) = 1$$

$$X_A(3) = 0$$

43

Characteristic Function

Given a Boolean function

$$f: B^n \rightarrow B^m$$

the mapping relation denoted as $F \subseteq B^n \times B^m$ is defined as

$$F(x, y) = \{ (x, y) \in B^n \times B^m \mid y = f(x) \}$$

The characteristic function of a function f is defined for (x, y) s.t. $X_f(x, y) = 1$ iff $(x, y) \in F$

Characteristic Function

45

Summary

ROBDD

- Reduced graph representation of Boolean Function
- Canonical for given variable ordering
- Size sensitive to variable ordering

• Algorithmic Principles

- Operations maintain closure property
 - » Result ROBDD with same ordering as arguments
 - » Can perform further operations on results
- Limited set of basic operations to implement
 - » Restrict, If-Then-Else
 - » Other operations defined in terms of basic operations