La subcapa de control de acceso al medio

- * Redes que utilizan canales de difusión

Contenido

- Las subcapas de la capa de enlace de datos
- **# El problema de la asignación de canales**
- Protocolos de acceso múltiple
- # Protocolos de acceso múltiple con detección de portadora
- **# Protocolos con detección de colisiones**
- ж Protocolos libres de colisiones

La IEEE subdividió la capa de enlace de datos en dos subcapas:

 La subcapa LLC (Logical Link Control) o subcapa de control de enlace lógico

 La subcapa MAC (Media Access Control) o subcapa de control de acceso al medio

Comparando OSI e IEEE 802.3

Capas del modelo OSI

Especificación de LAN

La subcapa LLC

Fue creada con el propósito de proporcionar a las capas superiores (capa de red) una interfaz independiente de la tecnología empleada en la capa de enlace de datos y en la capa física

La subcapa MAC

Los protocolos usados para determinar quien sigue en un canal multiacceso pertenecen a una SubCapa de la Capa de enlace llamada

MAC (Control de Acceso al Medio)

Se encarga de la topología lógica de la red y del método de acceso a ésta.

第 En la subcapa MAC residen las direccionesMAC

El problema de asignación de canales

#Asignación estática de canales en LAN y MAN ejemplo: FDM / TDM (Multiplexación por División de Frecuencia / Tiempo)

Tiene sentido, cuando existe un número pequeño y constante, N, de usuarios y cada uno tiene suficientes datos para mantener ocupado el canal

Existe desperdicio potencial del ancho de banda cuando algunos usuarios no transmiten o transmiten por ráfagas

X Asignación dinámica de canales en LAN y MAN

Puede hacer mejor uso del ancho de banda

Asignación estática de canales

- \Re Eficiencia, como el tiempo promedio de retardo T con λ tramas/segundo y $1/\mu$ bits/trama
 - a) Un solo canal con velocidad de datos C bps

$$T = \frac{1}{\mu C - \lambda}$$

b) El canal con velocidad de datos C bps se divide en N subcanales

$$T_{\text{FDM}} = \frac{1}{\mu(C/N) - (\lambda/N)} = \frac{N}{\mu C - \lambda} = NT$$

Asignación estática de canales

- # <u>Ejemplo</u>: λ=5000 tramas/segundo, 1/μ=12.144 bits/trama, C=100 Mbps
 - a) Con Contención

$$T = \frac{1}{\mu C - \lambda} = 0,00030916 = 309 \mu s/trama$$

b) Sin Contención

$$T = \frac{1}{\mu C} = 0,00012144 = 121 \mu s/trama$$

Asignación dinámica de canales - 5 supuestos-

- Modelo de estación: N <u>estaciones independientes</u>, después de generar una trama cada estación se bloquea hasta que su trama es transmitida. **Probabilidad** de Tx de trama $\lambda \Delta t$. (λ = tasa de llegasa de tramas nuevas)
- La suposición de canal único: Solamente hay un canal para todas las estaciones y todas son equivalentes.
- La suposición de colisión: Si dos estaciones transmiten simultáneamente hay colisión y las estaciones reconocen las colisiones. La trama colisionada debe retransmitirse después. Son los únicos errores.
 - (a) <u>Tiempo continuo:</u> La transmisión puede iniciar en cualquier instante del tiempo, no hay reloj maestro
 - (b) <u>Tiempo Ranurado</u>: El tiempo se divide en ranuras de tiempo o slots, la transmisión se inicia siempre al inicio del slot
 - (a) <u>Detección de portadora</u>: Las estaciones no transmiten si el canal está ocupado y pueden detectar esta situación
 - **(b)** Sin detección de portadora: Las estaciones no pueden detectar el canal antes de intentar usarlo. Simplemente transmiten. Solo despues pueden determinar si la transmisión tuvo exito

4.

5.

Protocolos de acceso múltiple

ALOHA

- # Protocolos de Acceso Múltiple con Detección de Portadora (Carrier Sense Multiple Access Protocols)
- # Protocolos de Contienda Limitada (Limited- Contention Protocols)
- # Protocolos de Acceso Míltiple por División de Longitud de Onda
- 器 Protocolos de LAN's Inalambricas

Definiciones

Colisión:

Cuando dos o más tramas son enviadas simultáneamente por el canal único

<u>Contienda = Contención = Competencia</u>:

Cuando múltiples sistemas deben tratar de ganar el canal común para su uso irrestricto

Persistencia:

La característica de un protocolo de iniciar la transmisión al encontrar el canal libre después de esperar por él

13

Protocolos de acceso múltiple

ALOHA

- # Protocolos de Acceso Múltiple con Detección de Portadora (Carrier Sense Multiple Access Protocols)
- # Protocolos de Contienda Limitada (Limited- Contention Protocols)
- # Protocolos de Acceso Míltiple por División de Longitud de Onda
- 器 Protocolos de LAN's Inalambricas

- En <u>ALOHA puro</u>, las tramas son trasmitidas en tiempos completamente arbitrarios, **no se verifica si el canal está ocupado antes de transmitir**.
- No requiere sincronización global del tiempo.

Jse	r						
Α							
В]				
С	325						
D	00						
Е]				
	_		Time	3			

Eficiencia de ALOHA puro

- Las tramas son de longitud fija
- La estación tiene dos estados: escribiendo y esperando.
 Se bloquea esperando la transmisión exitosa de una trama
- Múmero infinito de usuarios generando nuevas tramas, segun una distribución de Poisson con una media de N tramas por tiempo de trama.
 - 0 < N < 1 tramas por tiempo de trama. N>1 colisión.
- También existe la retransmisión de tramas que sufrieron colisiones por lo que G≥N (Si N≅0 => G≅N, poca colisión). G es intentos por tiempo de trama.

- 策 En ALOHA ranurado (slotted), el tiempo es discreto, cada ventana de tiempo corresponde al tiempo de una trama.
- # Las estaciones únicamente inician la transmisión al principio de la ventana de tiempo
- 策 El tiempo vulnerable se reduce a la mitad
- # La eficiencia es $S = Ge^{-G}$

El rendimiento versus el tráfico ofrecido en los sistemas ALOHA

Protocolos de acceso múltiple

ALOHA

- # Protocolos de Acceso Múltiple con Detección de Portadora(Carrier Sense Multiple Access Protocols)
- # Protocolos de Contienda Limitada (Limited- Contention Protocols)
- # Protocolos de Acceso Míltiple por División de Longitud de Onda
- 器 Protocolos de LAN's Inalambricas

Protocolos de acceso múltiple

Los protocolos en los que las estaciones ESCUCHAN LA PORTADORA (es decir, una transmisión) y actuan de acuerdo con ello se llaman PROTOCOLOS DE DETECCION DE PORTADORA

CSMA = (Acceso Multiple con Deteccion de Portadora)

CSMA 1-persistente

CSMA no persistente

CSMA p-persistente

CSMA/CD

Protocolos de acceso múltiple con detección de portadora CSMA

CSMA 1-persistente:

El protocolo inicia la transmisión con una probabilidad 1 cuando encuentra el canal libre después de esperar

CSMA 1-persistente

Protocolos de acceso múltiple con detección de portadora CSMA

CSMA no persistente:

Antes de enviar, una estación escucha el canal. Si nadie más está transmitiendo, la estación comienza a hacerlo. Sin embargo, si el canal ya está en uso, la estación no lo escucha de manera continua a fin de tomarlo de inmediato al detectar el final de la transmisión previa. En cambio, espera un periodo aleatorio y repite el algoritmo.

CSMA no persistente

Protocolos de acceso múltiple con detección de portadora CSMA

CSMA p-persistente:

En <u>canales de tiempo discreto</u>, el protocolo inicia la transmisión con una probabilidad "p" cuando encuentra el canal libre/inactivo después de esperar o la difiere con probabilidad q = (1-p)

CSMA p-persistente

Canales RANURADOS

CSMA persistente y no persistente

Comparación de la utilización del canal en función de la carga para varios protocolos de acceso aleatorio

CSMA/CD: CSMA con detección de colisiones

- # Al detectar la colisión, todas las estaciones que están transmitiendo se callan, esperan un tiempo aleatorio y luego lo intentan de nuevo
- CSMA/CD puede estar en uno de tres estados: contienda, transmisión, o en reposo .

CSMA/CD: CSMA con detección de colisiones (2)

El tiempo que se tarda en detectar la colisión es como máximo el doble del tiempo de propagación de un extremo a otro del cable

 $\mbox{\em \mathbb{H}}$ Se modela el intervalo de contienda como un ALOHA ranurado (slotted) con un ancho 2τ

La colisión debe poder detectarse; por ello la codificación de la señal debe permitir la detección (no puede haber bits de 0 voltios)

#El sistema es inherentemente half-duplex

CSMA/CD puede estar en tres estados: contención, transmisión, u ociosa.

Protocolos de acceso múltiple

ALOHA

Protocolos de Acceso Múltiple con Detección de Portadora (Carrier Sense Multiple Access Protocols)

X Protocolos sin Colisiones (Collision-Free Protocols)

- # Protocolos de Contienda Limitada (Limited- Contention Protocols)
- # Protocolos de Acceso Míltiple por División de Longitud de Onda
- 器 Protocolos de LAN's Inalambricas

Protocolos libres de colisiones

Mapa de bits

El protocolo básico de mapa de bits (bit-map) es un protocolo de reservación

d = bits (cantidad de datos) N = Estaciones

- **** No escala bien para miles de estaciones**

Protocolos libres de colisiones (2)

sees this 1

and gives up

Conteo descendente binario

- Cada estación envía su dirección binaria con el bit de mayor peso primero
- Las direcciones son combinadas en OR
- La estación que encuentra que su 0 fue sobrescrito por un 1 se rinde
- # Eficiencia = $d/(d+log_2 N)$

and 0100 see this

1 and give up

Modificación Mok y Ward (1979)

Se baja la prioridad de cliente cuando logra uso del canal. Se agregan bits para manejar la prioridad. ppppnnnn (p=prioridad, n=número dispositivo.

Eficiencia de uso de canal d/(d+2log2 N)

Descripción						
Una banda de frecuencias dedicada a cada estación						
Una ventana de tiempo dedicada a cada estación						
Transmisión sin sincronía en cualquier instante						
Transmisión aleatoria en ventanas de tiempo bien definidas. Duplica el rendimiento de ALOHA puro						
Acceso múltiple con detección de portadora estándar con probabilidad igual a 1. El rendimiento decae exponencialmente con el aumento de carga						

Método	Descripción				
CSMA no	Retardo aleatorio después de detectar el canal				
persistente	ocupado. El rendimiento mejora con la carga; pero el retardo aumenta mucho				
CSMA	CSMA pero con probabilidad p de persistir.				
p-persistente	Con p < 1 cambia rendimiento por retardo				
CSMA/CD	CSMA; pero aborta al detectar la colisión				
Mapa de bits	Usa un mapa de bits para turnarse en forma de margarita				
Cuenta binaria	La estación con el número binario mayor es la				
regresiva	que tiene el turno siguiente				
Ethernet	CSMA/CD con espera exponencial binaria 27				

Protocolos de acceso múltiple

ALOHA

- # Protocolos de Acceso Múltiple con Detección de Portadora (Carrier Sense Multiple Access Protocols)
- # Protocolos sin Colisiones (Collision-Free Protocols)
- 器 Protocolos de Contienda Limitada (Limited- Contention Protocols)
- **X Protocolos de Acceso Míltiple por División de Longitud de Onda**
- 器 Protocolos de LAN's Inalambricas

Protocolos de acceso múltiple por división de longitud de onda

Acceso múltiple por división de longitud de onda.

Protocolos de acceso múltiple

ALOHA

- # Protocolos de Acceso Múltiple con Detección de Portadora (Carrier Sense Multiple Access Protocols)
- **#** Protocolos sin Colisiones (Collision-Free Protocols)
- 器 Protocolos de Contienda Limitada (Limited- Contention Protocols)
- # Protocolos de Acceso Míltiple por División de Longitud de Onda
- **X Protocolos de LAN's Inalambricas X Protocolos de LAN's Inalambricas Alberta Alberta Alberta X Protocolos de LAN's Inalambricas X Protocolos de LAN's Inalambricas Alberta Alberta Alberta Alberta Alberta Alberta Alberta Albert**

Protocolos para LANs inalámbricas

LAN inalámbrica. (a) A transmitiendo. (b) B transmitiendo.

Protocolos de LANs inalámbricas (2)

Portocolo MACA. (a) Envío RTS a B. (b) B responde con un CTS a A.

Ethernet

- Cableado Ethernet
- Codificación Manchester
- Protocolo de la subcapa MAC Ethernet
- Algoritmo de retroceso exponencial binario
- Rendimiento de ethernet
- Conmutación ethernet
- Fast Ethernet
- Gigabit Ethernet
- IEEE 802.2: Control Lógico de enlace
- Retrospectiva de Ethernet

Cableado ethernet

Los tipos más comunes de cableados

Name	Cable	Max. seg.	Nodes/seg.	Advantages
10Base5	Thick coax	500 m	100	Original cable; now obsolete
10Base2	Thin coax	185 m	30	No hub needed
10Base-T	Twisted pair	100 m	1024	Cheapest system
10Base-F	Fiber optics	2000 m	1024	Best between buildings

Cableado Ethernet (2)

Cableado Ethernet (3)

Topologás de cables. (a) Lineal, (b)

Cableado Ethernet (4)

(a) Codificación binaria, (b) Codificación Manchester,(c) Codificación Manchester Diferencial.

Protocolo de subcapa MAC de Ethernet

Bytes	8	6	6	2	0-1500	0-46	4
(a)	Preamble	Destination address	Source address	Туре	Data	Pad	Check- sum
)) ((
(b)	Preamble S F	Destination address	Source address	Length	Data	Pad	Check- sum

Protocolo de subcapa MAC de Ethernet (2)

Detección de colisión puede tardar tanto com 2τ

Rendimiento de Ethernet

Eficiencia de Ethernet a 10 Mbps con ranuras de tiempo de 512-bit.

Conmutación Ethernet

Fast Ethernet

El cableado original de Fast Ethernet.

Name	Cable	Max. segment	Advantages
100Base-T4	Twisted pair	100 m	Uses category 3 UTP
100Base-TX	Twisted pair	100 m	Full duplex at 100 Mbps
100Base-FX	Fiber optics	2000 m	Full duplex at 100 Mbps; long runs

Gigabit Ethernet

Gigabit Ethernet (2)

Cableado Gigabit Ethernet.

Name	Cable	Max. segment	Advantages
1000Base-SX	Fiber optics	550 m	Multimode fiber (50, 62.5 microns)
1000Base-LX	Fiber optics	5000 m	Single (10 μ) or multimode (50, 62.5 μ)
1000Base-CX	2 Pairs of STP	25 m	Shielded twisted pair
1000Base-T	4 Pairs of UTP	100 m	Standard category 5 UTP

IEEE 802.2: Logical Link Control

(a) Posición de LLC. (b) Formatos del protocolo.

LANs inalámbricas

- La pila de protocolos 802.11
- La capa física del 802.11
- El protocolo de subcapa MAC 802.11
- La estructura de la trama 802.11
- Servicios

La pila de protocolos 802.11

El protocolo de la subcapa MAC 802.11

- (a) El problema de la estación oculta.
- (b) El problema de la estación expuesta.

Protcolo de la subcapa MAC 802.11 (2)

El uso de la detección del canal virtual

Time —

Protcolo de la subcapa MAC 802.11 (3)

Protocolo de la subcapa MAC 802.11 (4)

Estructura de la trama 802.11

Servicios 802.11

Distribución de servicios

- Asociación
- Desasociación
- Reasociación
- Distribución
- Integración

Servicios 802.11

Servicios intracélulas

- Autenticación
- Desautenticación
- Privacidad
- Entrega de datos

* Tanenbaum, Andrew S.. Redes de Computadoras 4ª Edición