$$\begin{cases} 1 & \text{in } 2 - \text{in } 1 \\ \text{otherwise} \end{cases} = \begin{cases} 1 & \text{otherwise} \end{cases}$$

$$\begin{cases} 1 & \text{otherwise} \end{cases} = \begin{cases} 1 & \text{otherwise} \end{cases}$$

$$\begin{cases} 1 & \text{otherwise} \end{cases} = \begin{cases} 1 & \text{otherwise} \end{cases}$$

$$\begin{cases} 1 & \text{otherwise} \end{cases} = \begin{cases} 1 & \text{otherwise} = \begin{cases} 1 & \text{otherwise} \end{cases} = \begin{cases} 1 & \text{otherwise} = \begin{cases}$$

 $\frac{\partial A}{\partial x}(x, y) = 2x + y$

$$\frac{2}{2} + (x, x) = x$$

$$\frac{2}{2} + (1, 0) = (2, 1)$$

 $(x,y) = (x,y) = x^2 + xy = x^2 + xy - 2 = 0$

S (x,3,7)

24-175-271-0=1247-2-1=0 => == 2x+4-1

2)
$$\frac{1}{a^2}$$
 $\frac{1}{b^2}$ = 1

=> elapse = the level set = $\frac{1}{2}$ (x, 3) ($\frac{1}{2}$ (x, 3) = 1 $\frac{1}{2}$

They level of.

They level of.

They could be set in the level set = $\frac{1}{2}$ (x, 3) ($\frac{1}{2}$ (x, 3) = 1 $\frac{1}{2}$

=> $\frac{1}{2}$ (x, 3) (x, -x, 2) + $\frac{1}{2}$ (x, 3) (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, 3) (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) + $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3) = 0

=> $\frac{1}{2}$ (x, -x, 3)

$$\frac{\partial f}{\partial x^{2}} = \frac{\partial f}{\partial x} \left(\frac{d(x)}{dx} \right) = \frac{1}{2},$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} \left(\frac{d(x)}{dx} \right) = \frac{1}{2},$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} \left(\frac{d(x)}{dx} \right) = \frac{1}{2},$$

$$\frac{\partial f}{\partial x} = \frac{1}{2},$$

b)
$$f(x/3, 2) = \int x^2 + y^2 + z^2$$
 $x = \cos t$; $y = \min t$; $z = t > 0$.

 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$
 $f(x/3, 2) = \int x^2 + y^2 + z^2$

$$\begin{cases}
\frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} \\
\frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} \\
\frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} \\
\frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} \\
\frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} \\
\frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} \\
\frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \\
\frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \\
\frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \\
\frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \\
\frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \\
\frac{1}{2} = \frac{1}{2} + \frac{1}{2} \\
\frac{1}{2} = \frac{1}{2} + \frac$$

$$\frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial y} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial y} = \frac{\partial f}{\partial y} \cdot \frac{\partial f}{\partial y} = \frac{\partial f}{\partial y} = \frac{\partial f}{\partial y} = \frac{\partial f}{\partial y} = \frac{\partial f}{\partial y} =$$

 $\int (\left(\frac{1}{98} \right) (v_{1}v_{1}) = \left(\frac{31}{9x} \cdot \frac{3x}{9x} + \frac{31}{9x} \cdot \frac{3x}{9x} \right)$