Matematika I

18. január 2018 09:00

Meno a priezvisko: Podpis: Podpis:
Ročník: Študijný program:
1. (7b) Daná je všeobecná rovnica kužeľosečky $9x^2 + 4y^2 - 54x + 80 = 0$.
Doplňte:
a) (2b) Kanonická rovnica (rovnica v štandardnom tvare) kužeľosečky je
b) (1b) Typ kužeľosečky je
c) (3b) Napíšte, ak existujú
c_1) súradnice stredu kužeľosečky:
d) (1b) Znázornite kužeľosečku a v náčrte popíšte jej charakteristické prvky.

2. (2b) Vyberte funkciu, ktorej definičný obor je znázornený na obrázku.

a)
$$f(x,y) = \frac{\ln(x^2 + y^2 - 1)}{\sqrt{4 - x^2 - y^2}}$$

b)
$$f(x,y) = \frac{\ln(4-x^2-y^2)}{\sqrt{x^2+y^2-1}}$$

c)
$$f(x,y) = \frac{\sqrt{x^2 + y^2 - 1}}{\ln(4 - x^2 - y^2)}$$

d)
$$f(x,y) = \frac{\sqrt{4-x^2-y^2}}{\ln(x^2+y^2-1)}$$

3. (6b) Vypočítajte

$$\iint_{M} xy^2 \, \mathrm{d}x \mathrm{d}y,$$

kde množina M je mnohouholník s vrcholmi $A=[-1,-1],\,B=[1,-1],\,C=[4,3],\,D=[-4,3].$

Výsledok:

- 4. (4b) Bod M má v pravouhlej súradnicovej sústave súradnice: $M = [3, \sqrt{3}, 3]$.
 - a) (2b) Vyberte správnu odpoveď: Súradnice bodu M v cylindrickej súradnicovej sústave sú:

a)
$$M = \left[2\sqrt{3}, \frac{11\pi}{6}, 3 \right]$$

c)
$$M = \left[2\sqrt{3}, \frac{\pi}{3}, 3\right]$$

b)
$$M = \left[2\sqrt{3}, \frac{5\pi}{3}, 3\right]$$

d)
$$M = \left[2\sqrt{3}, \frac{\pi}{6}, 3\right]$$

b) (2b) Znázornite tento bod M v cylindrickej súradnicovej sústave.

Náčrt:

5. (8b) Daná je lineárna obyčajná diferenciálna rovnica (LODR) $y''(x) + 6y'(x) + 9y(x) = e^{3x}$.
a) ((2b) Napíšte charakteristickú rovnicu k danej diferenciálnej rovnici.
(Charakteristická rovnica je:
, ,	(2b) Nájdite fundamentálny systém riešení diferenciálnej rovnice s nulovou pravou stranou.
I	Fundamentálny systém riešení je
b) ((2b) Nájdite partikulárne riešenie uvedenej nehomogénnej rovnice.
I	Partikulárne riešene je
c) ((2b) Napíšte všeobecné riešenie danej lineárnej diferenciálnej rovnice.
7	Všeobecné riešenie danej LODR je
(18) Vypočítajte, ak existuje $\lim_{[x,y]\to[1,1]}\frac{x-1}{x+y-2}.$
•	Výsledok:
7. (6b) Nájdite rovnicu dotykovej roviny τ ku grafu funkcie $f(x,y)=\frac{1}{x+y^2}$ v bode $T=\left[x_0,0,\frac{1}{3}\right]$.
`	(2b) Nájdite y_0 a uveďte súradnice dotykového bodu :
8. (6b) Daná je funkcia $f(x,y) = \ln(x^2 + y^2)$, bod $A = [-1, 2]$ a vektor $\vec{l} = (1, -2)$.
a) ((3b) Nájdite gradient funkcie $f(x,y)$ v bode A .
(Gradient funkcie $f(x,y)$ v bode A je
b) ((3b) Vypočítajte deriváciu funkcie $f(x,y)$ v bode A v smere vektora \vec{l} .
Ι	Derivácia funkcie $f(x,y)$ v bode A v smere vektora \vec{l} je

9. (27b) Daná je funkcia $f(x,y)=8xy-x^2-2y^2$ a oblasť M . Oblasť M je mnohouholník $ABCD$ s vrcholmi $A=[-1,-1],\ B=[1,-1],\ C=[5,1]$ a $D=[-5,1].$
a) Načrtnite oblasť M :
Náčrt:
Pomocou matematických vzťahov popíšte hranice oblasti M :
(a) (2b) <i>AB</i>
(b) (2b) BC
(c) (2b) CD
(d) (2b) AD
b) (5b) Nájdite lokálne extrémy danej funkcie $f(x,y)$ v oblasti M . Ak hľadané lokálne extrémy nie sú, napíšte "nie sú".
Doplňte odpoveď: Funkcia $f(x,y)$ má v bode lokálne
c) Nájdite viazané lokálne extrémy danej funkcie $f(x,y)$ na hraniciach oblasti M . Ak hľadany lokálny extrém nejestvuje, napíšte "nie je".
(a) (3b) Na hranici AB má funkcia $f(x,y)$ v bode viazané lokálne
(b) (3b) Na hranici BC má funkcia $f(x,y)$ v bode viazané lokálne
(c) (3b) Na hranici CD má funkcia $f(x,y)$ v bode viazané lokálne
(d) (3b) Na hranici AD má funkcia $f(x,y)$ v bode viazané lokálne
d) (2b) Nájdite najväčšiu a najmenšiu hodnotu funkcie $f(x,y)$ na oblasti $M.$
$\mathbf{Najv\ddot{a}\check{c}\check{s}ia}$ hodnota funkcie $f(x,y)$ je:
Najmenšia hodnota funkcie $f(x,y)$ je: