Математический анализ—2

Винер Даниил, Хоранян Нарек

Версия от 15 сентября 2024 г.

Содержание

1	Kpa	атные интегралы. Брусья. Интегрируемые функции по Риману
	1.1	Брус. Мера бруса
	1.2	Свойства меры бруса в \mathbb{R}^n
	1.3	Разбиение бруса. Диаметр множества. Масштаб разбиения
	1.4	Интегральная сумма Римана. Интегрируемость по Риману
	1.5	Пример константной функции
	1.6	Неинтегрируемая функция
	1.7	Вычисление многомерного интеграла

1 Кратные интегралы. Брусья. Интегрируемые функции по Риману

1.1 Брус. Мера бруса

Определение. Замкнутый брус (координатный промежуток) в \mathbb{R}^n — множество, описываемое как

$$I = \{x \in \mathbb{R}^n \mid a_i \leqslant x_i \leqslant q_i, \ i \in \{1, n\}\}\$$

= $[a_1, b_1] \times \ldots \times [a_n, b_n]$

Примечание. $I = \{a_1, b_1\} \times \ldots \times \{a_n, b_n\}$, где $\{\}$ может быть отрезком, интервалом и т.д.

Определение. Мера бруса — его объём:

$$\mu(I) = |I| = \prod_{i=1}^{n} (b_i - a_i)$$

1.2 Свойства меры бруса в \mathbb{R}^n

- 1. Однородность: $\mu(I_{\lambda a,\lambda b}) = \lambda^n \cdot \mu(I_{a,b})$, где $\lambda \geqslant 0$
- 2. **Аддитивность:** Пусть I, I_1, \dots, I_k брусы

Тогда, если $\forall i,j\,I_i,I_j$ не имею общих внтренних точек, и $\bigcup_{i=1}^k I_i=I$, то

$$|I| = \sum_{i=1}^{k} |I_i|$$

3. Монотонность: Пусть I- брус, покрытый конечной системой брусов, то есть $I\subset \bigcup_{i=1}^k I_i$, тогда

$$|I| < \sum_{i=1}^{k} |I_i|$$

1.3 Разбиение бруса. Диаметр множества. Масштаб разбиения

Определение. I — замкнутый, невырожденный брус и $\bigcup_{i=1}^k I_i = I$, где I_i попарно не имеют общих внутренних точек. Тогда набор $\mathbb{T} = \{\mathbb{T}\}_{i=1}^k$ называется разбиением бруса I

Определение. Диаметр произвольного ограниченного множества $M\subset\mathbb{R}^n$ будем называть

$$d(M) = \sup_{1 \leqslant i \leqslant k} \|x - y\|,$$
 где
$$\|x - y\| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Определение. Масштаб разбиения $\mathbb{T}=\{I_i\}_{i=1}^k$ — число $\lambda(\mathbb{T})=\Delta_{\mathbb{T}}=\max_{1\leq i\leq k}$

Определение. Пусть $\forall \ I_i$ выбрана точка $\xi_i \in I_i$. Тогда, набор $\xi = \{\xi\}_{i=1}^k$ будем называть **отмеченными точками**

2

Определение. Размеченное разбиение — пара (\mathbb{T}, ξ)

1.4 Интегральная сумма Римана. Интегрируемость по Риману

Пусть I — невырожденный, замкнутый брус, функция $f:I\to\mathbb{R}$ определена на I Определение. Интегральная сумма Римана функции f на (\mathbb{T},ξ) — величина

$$\sigma(f, \mathbb{T}, \xi) := \sum_{i=1}^{k} f(\xi_i) \cdot |I_i|$$

Определение. Функция f интегрируема (по Риману) на замкнутом брусе I ($f: I \to \mathbb{R}$), если

$$\exists A \in \mathbb{R} : \forall \varepsilon > 0 \ \exists \delta > 0 : \forall (\mathbb{T}, \xi) : \Delta_{\mathbb{T}} < \delta \ |\sigma(f, \mathbb{T}, \xi)| - A| < \varepsilon$$

Тогда

$$A = \int_{I} f(x)dx = \int \dots \int_{I} f(x_{1}, \dots, x_{n})dx_{1} \dots dx_{n}$$

Обозначение: $f \in \mathcal{R}(I)$

1.5 Пример константной функции

Пуусть у нас есть функция f = const

$$\forall (\mathbb{T}, \xi) : \ \sigma(f, \mathbb{T}, \xi) = \sum_{i=1}^{k} \operatorname{const} \cdot |I_{i}|$$
$$= \operatorname{const} \cdot |I| \Longrightarrow \int_{I} f(x) dx = \operatorname{const} \cdot |I|$$

1.6 Неинтегрируемая функция

Имеется брус $I = [0,1]^n$, а также определена функция, такая что

$$f = \begin{cases} 1, & \forall i = \overline{1, \dots, n} \ x_i \in \mathbb{Q} \\ 0, & \text{иначе} \end{cases}$$

Доказательство. $\forall \mathbb{T}$ можно выбрать $\xi_i \in \mathbb{Q}$, тогда для такой пары $(\mathbb{T}, \overline{\xi})$:

$$\sigma(f, \mathbb{T}, \overline{\xi}) = \sum_{i=1}^{k} 1 \cdot |I_i| = |I| = 1$$

В то же время, $\forall \mathbb{T}$ можно выбрать $\xi_i \notin \mathbb{Q}$, тогда для такой пары $(\mathbb{T}, \hat{\xi})$:

$$\sigma(f, \mathbb{T}, \hat{\xi}) = \sum_{i=1}^{k} 0 \cdot |I_i| = 0 \Longrightarrow f \notin \mathcal{R}(I)$$

1.7 Вычисление многомерного интеграла

Вычислите интеграл

$$\iint_{\substack{0 \leqslant x \leqslant 1 \\ 0 \leqslant y \leqslant 1}} xy dx dy$$

рассматривая его как представление интегральной суммы при сеточном разбиении квадрата

$$I = [0, 1] \times [0, 1]$$

на ячейки — квадраты со сторонами, длины которых равны $\frac{1}{n}$, выбирая в качестве точек ξ_i верхние правые вершины ячеек

Имеется функция
$$f=xy, \ |I|=rac{1}{n^2}$$

$$\sigma(f, \mathbb{T}, \xi) = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{i}{n} \cdot \frac{j}{n} \cdot \frac{1}{n^2}$$

$$= \frac{1}{n^4} \sum_{i=1}^{n} \sum_{j=1}^{n} i \cdot j$$

$$= \frac{1}{n^4} \sum_{i=1}^{n} i \sum_{j=1}^{n} j$$

$$= \frac{n(n+1)}{n^4} \sum_{i=1}^{n} i$$

$$= \frac{n^2(n+1)^2}{4n^4}$$

Заметим, что
$$\lim_{n \to \infty} \frac{n^2(n+1)^2}{4n^4} = \frac{1}{4}$$

