Предмет: Прикладная биоинформатика

Исполнительница: Смолкина Ю.А

Группа: Адбм

Домашнее задание №1

Смолкина Ю. А.	CP007222.1	ATP synthase subunit alpha
----------------	------------	----------------------------

ЧАСТЬ 1

После чтения файла:

```
| Seq. for seq_record in list(Seq10.parse("/content/CP007222.1.fasta", "fasta"))[:1]:
| print(repr(seq_record.seq))
| my_seq_str = str(seq_record.seq))
| seq. fstr = str(seq_record.seq)
| my_seq_str = str(seq_record.seq)
| seq. fstr = str(seq_record.seq_record.seq)
| seq. fstr = str(seq_record.seq_record.seq)
| seq. fstr = str(seq_record.seq_record.seq_record.seq_record.seq_record.seq_record.seq_record.seq_record.seq_record.seq_record.seq_record.seq_record.seq_record.seq_record.seq_record.seq_record.seq_record.seq_record.seq_record.seq_record.seq_record.seq_record.seq_record.seq_record.seq_record.seq_record.seq
```

- 1.1. Разрезать геном на 10 частей. (команда **splitter**)
- 1.2. Посчитать число слов АААА, ATAT, ATTA, AATT (команда **compseq**)
- 1.3. Перемешать каждую из 10 частей (команда **shuffleseq**)
- 1.4. Посчитать число слов АААА, ATAT, ATTA, AATT в перемешанных последовательностях

Команды выполнялись с помощью : https://www.bioinformatics.nl/cgi-bin/emboss Проверим, действительно исходный файл распарсился, используя **splitter**

```
[102] #SeqIO.read('/content/outseq_split.txt', "fasta")
    zero = list(SeqIO.parse('/content/outseq_split.txt', "fasta"))[0]#.__dict__
    repr(zero.seq)

    'Seq('GGTAATTGCCTCGCATAACGCGGTGTGAAAATGGATTGAAGCCCGGGCGGTGGA...TGA')'

second = list(SeqIO.parse('/content/outseq_split.txt', "fasta"))[2]#.__dict__
repr(second.seq)

'Seq('CAGCTGGCTGCAACTGTTTATTAAAAACACAGCACTGTGCAAACACGAAAGTGG...CAG')'
```

Посчитаем в новом файле outseq_split.txt число слов AAAA, ATAT, ATTA, AATT с помощью **compseq**

AAAA 9018 ATAT 4725 ATTA 4746 AATT 4303

Теперь этот файл compseq_all перемешиваем с помощью **shuffleseq** и опять используем **compseq**

AAAA 3787

ATAT 3650 ATTA 3810 AATT 3757

Вид выгружаемого файла

Word size 4

Total count 1140908

#				
# Word	Obs Count	Obs Frequency	Exp Frequency	Obs/Exp Frequency
#				
AAAA	3787	0.0033193	0.0039062	0.8497372
AAAC	4025	0.0035279	0.0039062	0.9031403
AAAG	4120	0.0036112	0.0039062	0.9244567
AAAT	3791	0.0033228	0.0039062	0.8506348
AACA	4106	0.0035989	0.0039062	0.9213153
AACC	4424	0.0038776	0.0039062	0.9926690
AACG	4385	0.0038434	0.0039062	0.9839181
AACT	4103	0.0035963	0.0039062	0.9206422
AAGA	4107	0.0035998	0.0039062	0.9215397
AAGC	4473	0.0039206	0.0039062	1.0036637
AAGG	4403	0.0038592	0.0039062	0.9879570
AAGT	4120	0.0036112	0.0039062	0.9244567

слово	до	после
AAAA	9018	3787
ATAT	4725	3650
ATTA	4746	3810
AATT	4303	3757

Теорема Бернулли: Вероятность Pn(k) наступления ровно к успехов в n независимых повторениях одного и того же испытания находится во формуле :

$$P_n(k) = C_n^k \cdot p^k \cdot q^{n-k}$$

где p – вероятность «успеха», q = 1-p – вероятность «не удачи» в отдельном испытании.

ЧАСТЬ 2

Сколько результатов найдено в UniprotKB по запросу в виде названия белка ATP synthase subunit alpha? B Swiss-Prot? В TrEMBL?

общее кол-во для UniprotKB - 2441255 Swiss-Prot - 11384

TrEMBL (unreviewed) - 2429871

Сколько результатов найдено при использовании расширенного поиска в поле protein name? В Swiss-Prot? В TrEMBL?

то есть уже

UniprotKB - 564322 Swiss-Prot - 7876 Сколько результатов остается при добавлении фильтра Homo sapiens в поле Taxonomy? В Swiss-Prot? В TrEMBL?

UniprotKB - 5 Swiss-Prot - 1 TrEMBL (unreviewed) - 3

Откройте запись о вашем белке и ответьте на следующие вопросы: Какова функция белка?

К какому семейству он принадлежит?

Family & Domains¹

Sequence similarities i

К скольки кластерам UniRef с идентичностью 1.0, 0.9, 0.5 принадлежит белок (включая изоформы)?

Для 1.0 7

Для 0.9 188

Для 0.5 417

