Лабораторная работа 4.3.2 Дифракция света на ультразвуковой волне в жидкости

Гаврилин Илья Дмитриевич Б01-101

8 апреля 2023 г.

1 Аннотация

В работе определили скорость звуковой волны в жидкости при помощи дифракционной картины. Также в качестве второго способа воспользовались методом темного поля.

2 Теоретические сведения

В работе используются оптическая скамья, осветитель, два длиннофокусных объектива, кювета с жидкостью, кварцевый излучатель с микрометрическим винтом, генератор звуковой частоты, линза, горизонтальная нить на рейтере, микроскоп.

При прохождении ультразвуковой волны через жидкость в ней возникают периодические неоднородности коэффициента преломления, создается фазовая решетка, которую мы считаем неподвижной ввиду малости скорости звука относительно скорости света. Показатель преломления п изменяется по закону:

$$n = n_0(1 + m\cos\Omega x) \tag{1}$$

Здесь $\Omega = 2\pi/\Lambda$ — волновое число для ультразвуковой волны, m — глубина модуляции n ($m \ll 1$). Положим фазу ϕ колебаний световой волны на передней стенке кюветы равной нулю, тогда на задней поверхности она равна:

$$\phi = knL = \phi_0(1 + m\cos\Omega x) \tag{2}$$

Здесь L — толщина жидкости в кювете, $k = 2\pi/\lambda$ — волновое число для света.

После прохождения через кювету световое поле есть совокупность плоских волн, распространяющихся под углами θ , соответствующими максимумам в дифракции Фраунгофера:

$$\Lambda \sin \theta_m = m\lambda \tag{3}$$

Этот эффект проиллюстрирован на рисунке 1.

Рис. 1: Дифракция световых волн на акустической решетке

Зная положение дифракционных максимумов, по формуле (1) легко определить длину ультразвуковой волны, учитывая малость θ : $\sin \theta \approx \theta \approx l_m/F$, где l_m — расстояние от нулевого до последнего видимого максимума, F — фокусное расстояние линзы. Тогда получим:

$$\Lambda = m\lambda F/l_m \tag{4}$$

Скорость ультразвуковых воли в жидкости, где ν — частота колебаний излучателя:

$$v = \Lambda \nu \tag{5}$$

3 Ход работы

3.1 Определение скорости ультразвука по дифракционной картине

Рис. 2: Схема экспериментальной установки

Для получения картинки в данном случае на кювету с водой подается сигнал с ультразвукового излучателя, после с помощью подстройки частоты и положения излучателя в воде подбирается момент образования стоячей волны. В микроскоп наблюдаем дифракцию на данной акустической решетке. В ходе работы была замечена сильная нестабильность показаний генератора на частотах больше 3-4 МГи, также отсутствовала возможность полноценно сфокусироваться на нижней поверхности щели, ввиду чего пострадало качество получаемых дифракционных картин. Ввиду вышеперечисленного замеры проводились на частотах до 2 МГи, пока картинка была различима.

Построим зависимости координаты минимума от его номера для различных частот.

n	-1	0	1	2
X, MKM	2.62	2.36	2	1.69

Таблица 1: Зависимость координаты от порядка минимума ($f = 983.321 \text{ к}\Gamma\mu$)

Рис. 3: График зависимости координаты от порядка минимума (f = 983.321 к Γ ц)

n	-2	-1	0	1	2
X, MKM	2.67	2.32	2.29	1.64	1.23

Таблица 2: Зависимость координаты от порядка минимума (f = $1.137~\mathrm{M}\Gamma$ ц)

Рис. 4: График зависимости координаты от порядка минимума ($f=1.137~\mathrm{M}\Gamma$ ц)

n	-1	0	1	
X, MKM	2.57	2.16	1.47	

Таблица 3: Зависимость координаты от порядка минимума ($f = 1.9 \ \mathrm{M}\Gamma$ ц)

Рис. 5: График зависимости координаты от порядка минимума ($f = 1.9 \text{ M}\Gamma$ ц)

Сведем полученные данные в одну таблицу и произведем рассчет скорости распространения волны в жидкости.

ſ	f , М Γ ц	к, мкм	δk , mkm	Λ , mkm	$\delta\Lambda$, mkm	v, м/с	δv , м/с
	0.983	126.0	1.6	1523.8	20.3	1497.9	19.0
	1.137	142.4	7.9	1348.3	75.8	1533.0	85.2
Γ	1.900	220.0	6.9	872.7	27.3	1658.2	52.0

Таблица 4: Результаты расчета скорости ультразвука

Итого получили для скорости распространения ультразвука в жидкости: $v=1562\pm85.2~\mathrm{m/c}$. Полученные значения хорошо сходятся с теоретическими.

3.2 Определение скорости ультразвука методом темного поля

Для наблюдения акустической решетки используется метод темного поля, который заключается в устранении центрального дифракционного максимума с помощью непрозрачного экрана. Схема установки показана на рисунке 6.

Рис. 6: Схема наблюдения дифракции методом темного поля

Приставим к задней стенке (для светового луча) кюветы стеклянную пластинку с миллиметровыми делениями; сфокусируем микроскоп на изображение пластинки. Определим цену деления

окулярной шкалы микроскопа, совместив ее с миллиметровыми делениями: в 6 делениях миллиметровой шкалы убирается 100 маленьких делений окулярной. Значит, цена деления окулярной шкалы: C=0.06 мм.

Без применения метода темного поля звуковая решетка не наблюдается. Закроем нулевой максимум горизонтальной нитью. Таким образом, осевая составляющая фазово-модулированной волны поглощается, а боковые остаются без изменения. Получившееся поле:

$$f(x) = \frac{im}{2}e^{i\Omega x} + \frac{im}{2}e^{-i\Omega x} = im\cos\Omega x; I(x) = m^2\cos^2\Omega x = m^2\frac{1+\cos^22\Omega x}{2}$$
 (6)

Отсюда получаем, что расстояние между темными полосами есть $\Lambda/2$.

Проведем измерение длины ультразвуковой волны, приняв ошибку равной цене деления окулярной шкалы. В таблице 6 содержатся количество маленьких делений окулярной шкалы N (цена деления $C=0{,}06$), соответствующее n темным полосам акустической решетки. Формулы для расчета длины волны ультразвука Λ и скорости распространения v в воде:

$$\Lambda/2 = NC/(n-1), \qquad v = \nu\Lambda \tag{7}$$

Расчеты также приведены в таблице 6. Ошибка при таком определении скорости звука больше, чем в первой части работы, и составляет около 5%. Сами значения тоже получились больше.

ν , Мгц	Кол.дел. N	Кол. т.полос п	Λ , mm	v, 10 m/c	Δv , $10~{ m m/c}$
1,220	150	15	1,29	157	7
1,259	150	16	1,20	151	8
1,271	175	18	1,24	157	8

Вычисление длины ультразвуковой волны Λ и скорости распространения ее в воде v методом темного поля

4 Выводы

В работе измерили скорость распространения ультразвука в воде. Получили: $v=1562\pm85.2~{\rm m/c},$ табличное значение: $v=1500~{\rm m/c}.$ Полученное значение совпадает с теоретическим в пределах погрешности.

Значение полученное при помощи метода темного поля совпадает с теоретическим