MAE-DFER: Efficient Masked Autoencoder for Self-supervised Dynamic

Facial Expression Recognition

Licai Sun^{1&2}, Zheng Lian², Bin Liu^{1&2}, Jianhua Tao³

¹UCAS ²CASIA ³ Tsinghua University

Motivation: Supervised Dillema in DFER

- Current efforts in DFER focus on developing various deep supervised models, but only achieving incremental progress due to the longstanding lack of large-scale high-quality datasets.
- Due to the ambiguity and subjectivity in facial expression perception, acquiring large-scale high-quality DFER samples is pretty *time-consuming* and *labor-intensive*.

MAE-DFER: Overview

elf-supervised Pre-training + Downstream Fine-tuning

MAE-DFER: Details

Key Module 1: Efficient Local-Global Interaction Transfomer (LGI-Former)

Key Module 2: *Joint* Masked Appearance and Motion Modeling

 $\mathcal{L}_{\text{MAE-DFER}} = \lambda \cdot \text{MSE}(\Phi_d(\Phi_e(\mathbf{X} \odot \mathbf{M})), \mathbf{V}_a \odot \Psi(1 - \mathbf{M})) + (1 - \lambda) \cdot \text{MSE}(\Phi_d(\Phi_e(\mathbf{X} \odot \mathbf{M})), \mathbf{V}_m \odot \Psi(1 - \mathbf{M}))$

Stage 1:

 $\hat{\mathbf{X}}_i = \text{Concat}(\mathbf{S}_i, \mathbf{X}_i)$ $\hat{\mathbf{X}}_i = \text{MHSA}(\text{LN}(\hat{\mathbf{X}}_i)) + \hat{\mathbf{X}}_i$

$S = Concat(S_1, ..., S_M)$ S = MHSA(LN(S)) + S

Stage 2:

Stage 3:

 $X_i = MHCA(LN(X_i), LN(S)) + X_i$

 $X_i = FFN(LN(X_i)) + X_i$ S = FFN(LN(S)) + S

Complexity Comparison:

Ours: $O((\frac{1}{M} + \frac{1}{N^2} + \frac{1}{N})K^2)$

VIT: $O(K^2)$ $M \ll K$ $N \ll K$

Quantitative Results

 MAE-DFER consistently outperforms the previous best supervised methods by significant margins (+5~8% UAR on three in-the-wild datasets and +7~12% WAR on three lab-controlled datasets)

UAR WAR

77.33 77.38 MAE-DFER (ours)

Method

DFEW: +6.30% UAR

#Params (M) FLOPs (G)

Method

MAE-DFER (ours)

Video

MAFW: +8.34% UAR

#Params (M) FLOPs (G) UAR WAR

75.91 75.56 MAE-DFER (ours) 61.67 61.64

Supervised methods						Supervised metho	ods				
C3D [55]	78	39		42.74	53.54	ResNet-18 [23]		11		25.58	36.65
R(2+1)D-18 [56]	33	42		42.79	53.22	ViT [13]		-	(=)	32.36	45.04
3D ResNet-18 [21]	33	8		46.52	58.27	C3D [55]		78	39	31.17	42.25
EC-STFL [25]	-	8		45.35	56.51	ResNet-18+LSTM	[32]	1-1	1-1	28.08	39.38
ResNet-18+LSTM [69]] -	8		51.32	63.85	ViT+LSTM [32]		_	_	32.67	45.56
ResNet-18+GRU [69]	-	8		51.68	64.02	C3D+LSTM [32]		19_2		29.75	43.76
Former-DFER [69]	18	9		53.69	65.70	Former-DFER [69]	İ	18	9	31.16	43.27
CEFLNet [33]	13	_		51.14	65.35	T-ESFL [32]		-	-	33.28	48.18
EST [35]	43	-		53.43	65.85	1-ESITE [32]				33.20	40.10
STT [37]	-			54.58	66.65	Self-supervised methods					
NR-DFERNet [30]	-		6	54.21	68.19	VideoMAE [54]		86	81	38.43	51.74
DPCNet [65]	51		10	57.11	66.32	VideoMAE [54] †		86	81	40.87	53.51
IAL [29]	19	10		55.71	69.24	MAE-DFER (ours)		85	50	41.62	54.31
M3DFEL [60]	_		2	56.10	69.25						
				00.10	07.20						
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	hods					CRE	ΕΝΛΛ	-D·	±10 58%	\ Λ/ΛΕ)
Self-supervised met			1000		8	CRE	EMA	-D:	+10.58%	WAF	R
Self-supervised meta VideoMAE [54]	86	{	81	58.49	70.61						
Self-supervised met VideoMAE [54] VideoMAE [54]	86 86	8	81 81	58.49 63.60	70.61 74.60				+10.58% +12.57%		
Self-supervised meta VideoMAE [54]	86	8	81	58.49	70.61	RA	VDE	SS:	+12.57%	WAR	
Self-supervised met VideoMAE [54] VideoMAE [54] † MAE-DFER (ours)	86 86 85	8	81 81	58.49 63.60	70.61 74.60	RAN eNTE	VDE	SS:	+12.57% 5: +7.029	WAR % WA	
Self-supervised met VideoMAE [54] VideoMAE [54] † MAE-DFER (ours)	86 86 85 CREMA-D	{ }	81 81 50	58.49 63.60 63.41	70.61 74.60 74.43	RAN eNTE	VDE:	SS:	+12.57% 5: +7.029	WAR % WA FACE05	AR
Self-supervised metal VideoMAE [54] VideoMAE [54] MAE-DFER (ours) Method	86 86 85 CREMA-D Modality	UAR	81 81 50 WAR	58.49 63.60 63.41	70.61 74.60 74.43	RAN eNTE RAVDESS Modality	VDE:	SS: CEO	+12.57% 5: +7.029 eNTER Method	WAR % WA	AR WAR
Self-supervised met VideoMAE [54] VideoMAE [54] VideoMAE [54] MAE-DFER (ours) Method VO-LSTM [19]	86 86 85 CREMA-D Modality Video	UAR	81 81 50 WAR 66.80	58.49 63.60 63.41 Method	70.61 74.60 74.43 d FM [19]	RAVDESS Modality Video	VDE ERFA UAR	SS: • CEC WAR 60.50	+12.57% 5: +7.029 eNTER Method 3DCNN [4]	WAR WAR WAR FACE05 UAR	WAR 41.05
Self-supervised met VideoMAE [54] VideoMAE [54] VideoMAE [54] MAE-DFER (ours) Method VO-LSTM [19] Goncalves et al. [20]	86 86 85 CREMA-D Modality Video Video	UAR - -	81 81 50 WAR 66.80 62.20	58.49 63.60 63.41 Method VO-LS	70.61 74.60 74.43 IM [19] NeXt-50 [5	RAN eNTE RAVDESS Modality Video Video Video	VDE ERFA UAR	WAR 60.50 62.99	+12.57% 5: +7.029 eNTER Method 3DCNN [4] 3DCNN-DAP [4]	WAR WAR WAR FACE05 UAR	WAR 41.05 41.36
Self-supervised met VideoMAE [54] VideoMAE [54] VideoMAE [54] MAE-DFER (ours) Method VO-LSTM [19] Goncalves et al. [20] Lei et al. [28]	86 86 85 CREMA-D Modality Video Video Video	UAR 64.68	WAR 66.80 62.20 64.76	58.49 63.60 63.41 Method VO-LS7 3D Res	70.61 74.60 74.43 IM [19] NeXt-50 [5	RAVDESS Modality Video Video Video+Audio	VDE RFA UAR	WAR 60.50 62.99 65.80	+12.57% 5: +7.029 eNTER Method 3DCNN [4] 3DCNN-DAP [4] STA-FER [43]	WAR WAR WAR FACE05 UAR	WAR 41.05 41.36 42.98
Self-supervised met VideoMAE [54] VideoMAE [54] VideoMAE [54] MAE-DFER (ours) Method VO-LSTM [19] Goncalves et al. [20] Lei et al. [28] AV-LSTM [19]	86 86 85 CREMA-D Modality Video Video Video Video Video Video	UAR 64.68	WAR 66.80 62.20 64.76 72.90	58.49 63.60 63.41 Method VO-LS7 3D Res AV-LS7 AV-Gat	70.61 74.60 74.43 IM [19] NeXt-50 [5 IM [19]	RAN eNTE RAVDESS Modality Video Video Video+Audio Video+Audio	VDE ERFA UAR	WAR 60.50 62.99 65.80 67.70	+12.57% 5: +7.029 eNTER Method 3DCNN [4] 3DCNN-DAP [4] STA-FER [43] TSA-FER [42]	WAR WAR WAR FACE05 UAR	WAR 41.05 41.36 42.98 43.72
Self-supervised metal VideoMAE [54] VideoMAE [54] MAE-DFER (ours) Method VO-LSTM [19] Goncalves et al. [20] Lei et al. [28] AV-LSTM [19] AV-Gating [19]	86 86 85 CREMA-D Modality Video Video Video Video Video Video+Audio Video+Audio	UAR 64.68	WAR 66.80 62.20 64.76 72.90 74.00	58.49 63.60 63.41 Method VO-LST 3D Resi AV-LST AV-Gat MCBP	70.61 74.60 74.43 TM [19] NeXt-50 [5 TM [19] ting [19] [50]	RAN eNTE RAVDESS Modality Video Video Video+Audio Video+Audio Video+Audio Video+Audio	VDE RFA UAR	WAR 60.50 62.99 65.80 67.70 71.32	+12.57% 5: +7.029 eNTER Method 3DCNN [4] 3DCNN-DAP [4] STA-FER [43] TSA-FER [42] C-LSTM [40]	WAR WAR WAR FACE05 UAR	WAR 41.05 41.36 42.98 43.72 45.29
Self-supervised met VideoMAE [54] VideoMAE [54] VideoMAE [54] MAE-DFER (ours) Method VO-LSTM [19] Goncalves et al. [20] Lei et al. [28] AV-LSTM [19]	86 86 85 CREMA-D Modality Video Video Video Video Video Video	UAR 64.68	WAR 66.80 62.20 64.76 72.90	58.49 63.60 63.41 Method VO-LS7 3D Res AV-LS7 AV-Gat	70.61 74.60 74.43 TM [19] NeXt-50 [5 TM [19] ting [19] [50] [50]	RAN eNTE RAVDESS Modality Video Video Video+Audio Video+Audio	VDE ERFA UAR	WAR 60.50 62.99 65.80 67.70	+12.57% 5: +7.029 eNTER Method 3DCNN [4] 3DCNN-DAP [4] STA-FER [43] TSA-FER [42]	WAR WAR WAR FACE05 UAR	WAR 41.05 41.36 42.98 43.72

Video

MAE-DFER has comparable or even better results than VideoMAE,

while largely reducing the computational cost (about 38% FLOPs)

Embedding Space usi

Visualization

Qualitative Results

Paper:

Code:

Conclusion:
MAE-DFER, as an early attempt to leverage large-scale self-supervised pretraining on unlabeled facial videos, has paved a new way for the advancement of DFER.