Graph Convolution Networks

Arka Sadhu

IIT Bombay

September 1, 2017

Outline

- Graph Convolutional Networks
 - Why GCN
 - How to extend convolution to graphs?

Spatial Approach

Introduction to Graph Convolutional Networks

- CNN are extremely efficient architectures for image and audio classification tasks.
- But CNN donot directly generalize to irregular domains such as graph.

Introduction to Graph Convolutional Networks

- CNN are extremely efficient architectures for image and audio classification tasks.
- But CNN donot directly generalize to irregular domains such as graph.
- Want to generalize CNN to Graphs.

There are two main approaches

 Spatial Approach : Generalization of CNN in the spatial domain itself.

There are two main approaches

- Spatial Approach : Generalization of CNN in the spatial domain itself.
 - ▶ Learning Convolutional Neural Networks for Graphs [ICML 2016].[1]

There are two main approaches

- Spatial Approach : Generalization of CNN in the spatial domain itself.
 - ▶ Learning Convolutional Neural Networks for Graphs [ICML 2016].[1]
- Spectral Approach : Using the frequency characterization of CNN and using that to generalize to Graphical domain

There are two main approaches

- Spatial Approach : Generalization of CNN in the spatial domain itself.
 - ▶ Learning Convolutional Neural Networks for Graphs [ICML 2016].[1]
- Spectral Approach : Using the frequency characterization of CNN and using that to generalize to Graphical domain
 - Spectral Networks and Deep Locally Connected Networks on Graphs.
 - Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
 - Semi-Supervised Classification with Graph Convolutional Networks

Direct extension of convolution

M. Niepert, M. Ahmed, and K. Kutzkov, "Learning convolutional neural networks for graphs," *CoRR*, vol. abs/1605.05273, 2016.