Bioinformatics and Statistical Genetics	Hardy-Weinberg equilibrium (20p)
Jan Graffelman	November 13, 2018
Name:	
Name:	
You can make use of the R-packages HardyWeinberg and generation	tics (and other packages) to compute
your answers. Prepare a .pdf file with all your answers and figur	res. Send your work by email to the
course instructor (jan.graffelman@upc.edu) before the 20^{th} of N	ovember 2018.
1. The file YRIChr1.rda contains genotype information (10000	SNPs) of individuals from an African
population of unrelated individuals. Load this data into the	e R environment. The file contains a
data objects, ${\tt X},$ with genotype information. This data is in (6	(0,1,2) format, where 0 and 2 represent
the homozygotes AA and BB, and 1 represents the heterozyg	gote AB.
2. (2p) How many individuals does the database contain? What	percentage of the variants is monomor-
phic? Remove all monomorphic SNPs from the data bases	a. How many variants remain in the
database? Determine the genotype counts for these variants	s, and store them in matrix. Apply a
chi-square test without continuity correction for Hardy-Wei	nberg equilibrium to each SNP. How
many SNPs are significant (use $\alpha = 0.05$)?	
3. (1p) How many markers of the remaining non-monomorphic	· -
of equilibrium by the effect of chance alone?	
4. (1p) Apply an Exact test for Hardy-Weinberg equilibrium	to each SNP. You can use function
HWExactStats for fast computation. How many SNPs are significant	gnificant (use $\alpha = 0.05$). Is the result
consistent with the chi-square test?	
5. (1p) Apply a likelihood ratio test for Hardy-Weinberg equilibration	rium to each SNP, using the HWLratio
function. How many SNPs are significant (use $\alpha=0.05$). Is the	ne result consistent with the chi-square
test?	

6. (1p) Apply a permutation test for Hardy-Weinberg equilibrium to the first 10 SNPs, using the

classical chi-square test (without continuity correction) as a test statistic. List the 10 p-values,

together with the 10 p-values of the exact tests. Are the result consistent?

7.	(1p) Depict all SNPs simultaeneously in a ternary plot, and comment on your result (because many genotype counts repeat, you may use UniqueGenotypeCounts to speed up the computations)
8.	(1p) Can you explain why half of the ternary diagram is empty?
9.	(2p) Make a histogram of the p -values obtained in the chi-square test. What distribution would you expect if HWE would hold for the data set? Make a Q-Q plot of the p values obtained in the chi-square test against the quantiles of the distribution that you consider relevant. What is your conclusion?.
10.	(1p) Imagine that for a particular marker the counts of the two homozygotes are accidentally interchanged. Would this affect the statistical tests for HWE? Try it on the computer if you want. Argue your answer
11.	(3p) Compute the inbreeding coefficient (\hat{f}) for each SNP, and make a histogram of \hat{f} . You can use function HWf for this purpose. Give descriptive statistics (mean, standard deviation, etc) of \hat{f} calculated over the set of SNPs. What distribution do you expect \hat{f} to follow theoretically? Use a probability plot to confirm your idea
12.	(2p) Make a plot of the observed chi-square statistics against the inbreeding coefficient (\hat{f}) . What do you observe? Can you give an equation that relates the two statistics?
13.	(1p) Simulate SNPs under the assumption of Hardy-Weinberg equilibrium. Simulate the SNPs of this database, and take care to match each of the SNPs in your database with a simulated SNP that has the same sample size and allele frequency. You can use function HwData of the HardyWeinberg package for this purpose. Compare the distribution of the observed chi-square statistics with the distribution of the chi-square statistics of the simulated SNPs by making a Q-Q plot. What do you observe? State your conclusions
14.	(2p) We reconsider the exact test for HWE, using different significant levels. Report the number and percentage of significant variants using an exac test for HWE with $\alpha=0.10,0.05,0.01$ and

0.001. State your conclusions.

15.	(1p) Do	you th	nink g	genot	ypin	g er	ror	is a	pro	oblen	n for	the	data	abase	you	just	stu	died?	E	rplai	n y	our
	opinion.																	• • • • •				