Convex Sets (III)

Lecture 3, Convex Optimization (Part a)

National Taiwan University

March 10, 2023

Table of contents

- Separating and supporting hyperplanes (§2.5)
 - Separating hyperplane theorem
 - Supporting hyperplanes

- Separating and supporting hyperplanes (§2.5)
 - Separating hyperplane theorem
 - Supporting hyperplanes

Separating Hyperplane Theorem (1/2)

Separating Hyperplane

The hyperplane $\{x \mid a^Tx = b\}$ is called a **separating hyperplane** for the sets C and D, or is said to **separate** the sets C and D if $a^Tx \leq b$ for all $x \in C$ and $a^Tx \geq b$ for all $x \in D$.

Separating Hyperplane Theorem (2/2)

Separating Hyperplane Theorem

Suppose C and D are two convex sets that do not intersect, i.e., $C\cap D=\varnothing$. Then, there exist $a\neq 0$ and b such that the hyperplane $\left\{x\mid a^Tx=b\right\}$ separates C and D.

Separating Hyperplane Theorem – Proof of a Special Case (1/2)

- Consider that C and D are both convex, closed, and bounded.
- Assume that the Euclidean distance between C and D, defined as

$$dist(C, D) = \inf \{ ||u - v||_2 \mid u \in C, v \in D \},\$$

is positive.

• Since C and D are both closed and bounded, there exist $c \in C$ and $d \in D$ such that

$$||c - d||_2 = \mathsf{dist}(C, D).$$

Separating Hyperplane Theorem – Proof of a Special Case (2/2)

Let

$$a = d - c$$
, $b = \frac{||d||_2^2 - ||c||_2^2}{2}$.

• Then, it can be shown that the affine function

$$f(x) = a^{T}x - b = (d - c)^{T} \left(x - \frac{d + c}{2}\right)$$

is nonpositive on C and nonnegative on D.

Example - A Convex Set and An Affine Set

- Suppose $C \subseteq \mathbf{R}^n$ is convex and $D \subseteq \mathbf{R}^n$ is affine, i.e., $D = \{Fu + g | u \in \mathbf{R}^m\}$, where $F \in \mathbf{R}^{n \times m}$, $g \in \mathbf{R}^n$.
- Suppose C and D are disjoint, so by the separating hyperplane theorem there are $a \neq 0$ and b such that $a^T x \leq b$ for all $x \in C$ and $a^T x > b$ for all $x \in D$.
- : $a^T x \ge b$ for all $x \in D$, : $a^T F u \ge b a^T g$ for all $u \in \mathbf{R}^m$.
- But a linear function is bounded below on \mathbf{R}^m only when it is zero, so we conclude $a^TF=0$ (and hence, $b\leq a^Tg$).
- Thus we conclude that there exists $a \neq 0$ such that $F^T a = 0$ and $a^T x \leq a^T g$ for all $x \in C$.

Strict Separation of Convex Sets

Strict separation

For two sets $C, D \subseteq \mathbf{R}^n$, if there exists $a \in \mathbf{R}^n, b \in \mathbf{R}$ such that

$$a^T x < b \ \forall x \in C \ \text{and} \ a^T x > b \ \forall x \in D,$$

then C and D are said to be strictly separable, and the hyperplane $\{x \mid a^Tx = b\}$ is called strict separation of C and D.

 Remark: The separating hyperplane theorem only dictates that two disjoint convex sets are separated by a hyperplane. A strict separation is not guaranteed (even when the sets are closed).

Example – A Point and A Closed Convex Set

- Let C be a closed convex set and $x_0 \notin C$. Then there exists a hyperplane that strictly separates $\{x_0\}$ from C.
- Proof idea:
 - The two sets C and $B(x_0, \epsilon)$ do not intersect for some $\epsilon > 0$.
 - Apply the separating hyperplane theorem on C and $B(x_0,\epsilon)$ (getting a^T and b).
 - The affine function

$$f(x) = a^T x - b - \epsilon ||a||_2/2$$

strictly separates C and $\{x_0\}$.

 Corollary: A closed convex set is the intersection of all halfspaces that contain it.

Convex Sets as Intersection of Halfspaces (Revisit)

- We have seen that the intersection of (possibly infinite) halfspaces is convex.
- It will be shown that a converse is true: every closed convex set S is the intersection of (usually infinite) halfspaces.
- ullet A closed convex set S is the intersection of all halfspaces that contain it:

$$S = \bigcap_{\substack{S \subseteq \mathcal{H} \subseteq \mathbf{R}^n \\ \mathcal{H} \text{ is a halfspace}}} \mathcal{H}.^1$$

In the text book, it was written as $S=\bigcap\{\mathcal{H}\mid\mathcal{H}\; \text{halfspace},S\subseteq\mathcal{H}\}$.

Converse of Separating Hyperplane Theorems

- Question: If there exists a hyperplane that separates convex sets C and D, does this imply C and D are disjoint?
 - (No. Consider $C = D = \{0\} \subseteq \mathbf{R}$.)
- Suppose C and D are convex sets, with C open, and there exists an affine function f that is nonpositive on C and nonnegative on D. Then C and D are disjoint.
 - Hint: f is negative on C.

Theorem

Any two convex sets, at least one of which is open, are disjoint if and only if there exists a separating hyperplane.

Supporting Hyperplanes (1/2)

Supporting hyperplanes

Suppose $C \subseteq \mathbf{R}^n$, and x_0 is a point in its boundary \mathbf{bd} C, i.e.,

$$x_0 \in \mathbf{bd} \ C = \mathbf{cl} \ C \setminus \mathbf{int} \ C.^2$$

If $a \neq 0$ satisfies $a^Tx \leq a^Tx_0$ for all $x \in C$, then the hyperplane $\left\{x \mid a^Tx = a^Tx_0\right\}$ is called a **supporting hyperplane** to C at the point x_0 .

• This is equivalent to the statement that $\{x_0\}$ and C are separated by the hyperplane $\{x \mid a^Tx = a^Tx_0\}$.

²The notation cl means the closure of a set, a concept that will be formally introduced soon

Supporting Hyperplanes (2/2)

• The hyperplane is tangent to C at x_0 , and the halfspace $\{x \mid a^Tx \leq a^Tx_0\}$ contains C.

Supporting Hyperplane Theorem

Supporting Hyperplane Theorem

For any nonempty convex set C, and any $x_0 \in \mathbf{bd}$ C, there exists a supporting hyperplane to C at x_0 .

Proof: Use the separating hyperplane theorem.

- If int $C \neq \emptyset$: then by applying the separating hyperplane theorem on $\{x_0\}$ and int C, the statement is proved.
- If $\operatorname{int} C = \varnothing$: then C lies in an affine set of dimension less than n. Then any hyperplane that contains this affine set contains both C and x_0 and therefore is a supporting hyperplane.

Converse of the Supporting Hyperplane Theorem

Converse of the Supporting Hyperplane Theorem

If a set C is closed, has nonempty interior, and has a supporting hyperplane at any $x_0 \in \mathbf{bd}(C)$, then C is convex.