OSSA - Lec 3 - Processes.

Learning Topics

- 1. Process Concept
- 2. Process Scheduling
- 3. Operations on Processes
- 4. Inter Process Communication
- 5. Communication in Client-Server Systems

1. Process Concepts

- Process is a Program in its Execution. What is Process?
- A program execution starting via GUI mouse clicks or Command Line entry.
- Process execution is **Sequential.** (Instructions of the program executes one by one.)
- CPU uses a **Register** called **Program Counter / Instruction Pointer** to accessing instructions one by one.
- Process needs like CPU time, memory, files and I/O devices to complete the execution.
- Every process consist of 4 Sections.

Process in a Memory

Process State

Process Control Block (PCB) - Task Control Block

Block of Information about each Process.

- Process State running, waiting, etc.
- Process Number (Process ID)
- Program Counter Location of instruction to next execute.
- CPU Registers Contents of all process-centric registers.
- o **CPU Scheduling Information** priorities, scheduling queue pointers.
- Memory-Management Information memory allocated to the process.
- Accounting Information CPU used, clock time elapsed since start, time limits.
- I/O Status Information I/O devices allocated to process, list of open files.

<mark>2. Process Schedulin</mark>g

- Moving Processes Hard Disk → RAM and RAM → CPU
- There **2 types** of Process Schedulers.

CPU / Short-Term Scheduler	Job / Long-Term Scheduler
RAM → CPU	Hard Disk → RAM
Operating Processes <i>ready</i> state to	Operating Processes <i>new</i> state to <i>ready</i>
<i>running</i> state	state
Speed (it's working with CPU and	Not Speed (compare to the short-term
memory)	scheduler)

• LTS selcts processes doing only CPU operations (CPU bound)

o CPU: busy

○ I/O:idle

• LTS selcts processes doing only I/O operations (I/O bound)

CPU:idle

○ I/O: busy

 LTS selects a good mixture of CPU and I/O bound processes that called degree of multiprogramming

Medium-Term Scheduler

• Uses when Long-Term Scheduler is **not implement**.

Queueing Diagram

Context Switch

- When CPU switches to another process, Saved the State of Old Process and Resume it to New Process. - Use of Context Switch
- The time period for the above process called **Context Switch Time**.
- Context switch time depend on Hardware Support.

3. Operations on Processes

Process Creation

- Parent process creates Child processes.
- 1 Parent can have multiple Child Processes.
- Only change Process ID (PID).
- Both process are running parellaly.
- Everytime Parent must wait untill the Child Processes are Terminated.

fork() System Call

- When fork() system call complie it divide the process into Parent & Child processes.
- Parent Process PID > 0
- Child Process PID = 0
- Error PID < 0

4. Interprocess Communication

- It means Communication between Processes.
- It has 2 types of models

Shared Memory	Message Passing
Created in the User Memory	Created in the <i>Kernel Memory</i>
Faster	Slower (because it accessing the
	Kernel Mode)

5. Communication in Client-Server Systems

Sockets

- Socket consist of IP Address + Port Number.
- It definde as an endpoint for communication.

