Théorie et codage de l'information Examen final

Documents interdits

Ce document comporte 10 pages.

Nom:	
Prénom : .	
Signature :	

Exercice 1 : Codes correcteurs

1. On considère le code linéaire systématique C_1 décrit par le tableau ci-dessous. Remplacer les "x" par les éléments binaires manquants.

mots source	mots code C_1
000	XXXXX
001	00101
0xx	010xx
011	xx1x1
100	1001x
101	101x1
110	1100x
111	111xx

2. Expliciter une matrice génératrice et une matrice de test de $\mathcal{C}_1.$

3. Calculer la capacité de détection et de correction d'erreurs du code $\mathcal{C}_1.$

4. On s'intéresse maintenant au code C_2 tel que $C_2(b_1b_2b_3) = b_1b_2b_3c_1c_2c_3$, où les bits de contrôle c_1 , c_2 et c_3 sont définis par $c_1 = (b_1 \times b_2) + b_3$, $c_2 = b_1 + (b_2 \times b_3)$ et $c_3 = (b_1 \times b_3) + b_2$. Afin de gagner du temps, on précise que

mots source	mots code \mathcal{C}_2
000	000000
001	001100
010	010001
100	100010
011	011111
101	101111
110	110111
111	111000

Le code \mathcal{C}_2 est-il linéaire ? Donner si possible une matrice génératrice, ou sinon expliquer pourquoi.

5. Calculer la capacité de détection et de correction d'erreurs du code C_2 .

6. Décoder selon la méthode qui vous paraît la plus judicieuse, et que vous préciserez, les mots 001101 et 100011 du code C_2 .

Exercice 2 : Capacité de canaux en série

On considère un canal résultant de la mise en série de deux canaux binaires symétriques de même probabilité d'erreur α , comme indiqué sur la figure suivante.

1. Montrer que $P(Z = 0|X = 0) = P(Z = 1|X = 1) = 1 - 2\alpha + 2\alpha^2$.

2. En déduire P(Z=1|X=0) et P(Z=0|X=1).

3. Représenter le canal binaire symétrique équivalent, et préciser sa capacité.

Problème

Remarque. Les groupes de questions suivants peuvent être traités indépendamment les uns des autres, même si leur enchaînement est parfaitement cohérent : $\{1, 2, 3\}, \{4\}, \{5, 6, 7\}$ et $\{8, 9, 10\}$.

Une source sans mémoire S délivre des "0" avec une probabilité de 0.98, et des "1" avec une probabilité de 0.02, à un débit binaire de 300 bits par seconde. En outre, on dispose d'un canal binaire symétrique de probabilité d'erreur $\alpha=0.05$ par élément binaire, fonctionnant à un débit de 280 bits par seconde.

1. Calculer l'entropie de la source S, puis son débit d'entropie.

2. Calculer la capacité du canal, en Shannon par bit, puis en Shannon par seconde.

3. Le canal est-il adapté à la source? Expliquer.

4.	Calculer l'ordre minimum d'extension de la source S permettant de faire chuter le débit binaire en deçà de 150 bits par seconde.
5.	On considère une extension d'ordre 3 de la source S , que l'on note S^3 . Calculer les probabilités d'apparition de chacun des mots possibles, puis construire un code de Huffman.

6.	Calculer le nombre moyen de bits par symbole de S^3 pour ce code. En déduire le débit binaire moyen de la source S^3 .
7.	Combien de bits de contrôle peut-on ajouter par bits d'information de S^3 si on veut utiliser le canal à un débit aussi proche que possible de son débit nominal de 280 bits par seconde?
8.	On propose de faire suivre systématiquement 2 bits d'information de 3 bits de contrôle destinés à la détection/correction d'erreur. Si on exige de ce $[5,2]$ -code qu'il corrige 1 erreur par mot, quelle doi être la valeur minimum de sa distance minimum ?

9.	Construire la matrice génératrice d'un code mots du code en indiquant le poids de cha	le possédant le .cun.	es propriétés	énoncées (ci-dessus.	Expliciter les
		9				

10. Dresser le tableau standard, puis le tableau de	e syndromes après avoir calculé la matrice de contrôle.
	10