STAT 525

Chapter 17 Analysis of Factor Level Means

Dr. Qifan Song

The Cell Means Model

Expressed numerically

$$Y_{ij} = \mu_i + \varepsilon_{ij}$$

where μ_i is the theoretical mean of all observations at level i (or in cell i)

- The ε_{ij} are iid $N(0,\sigma^2)$ which implies the Y_{ij} are independent $N(\mu_i,\sigma^2)$
- Parameters
 - $-\mu_1, \mu_2, ..., \mu_r$
 - $-\sigma^2$

Estimates

ullet Estimate μ_i by the sample mean of the observations at level i

$$\widehat{\mu}_i = \overline{Y}_{i.}$$

 \bullet Pool s_i^2 using weights proportional to sample size (i.e., df) to get s^2

$$s^{2} = \frac{\sum (n_{i} - 1)s_{i}^{2}}{\sum (n_{i} - 1)}$$
$$= \frac{\sum (n_{i} - 1)s_{i}^{2}}{n_{T} - r}$$

Confidence Intervals of μ_i 's

From model

$$\overline{Y}_{i.} \sim N(\mu_i, \sigma^2/n_i)$$

• (sub-optimal) Confidence interval (one-sample t CI)

$$\overline{Y}_{i.} \pm t(1-lpha/2;n_i-1)s_i/\sqrt{n_i}$$

Confidence interval

$$\overline{Y}_{i.} \pm t(1-\alpha/2; n_T-r)s/\sqrt{n_i}$$

• Degrees of freedom larger than n_i-1 because pooling variance estimates across treatments (i.e., borrowing information from other groups)

Example (Page 685)

```
options nocenter;
data a1;
    infile 'u:\.www\datasets525\CH16TA01.TXT';
    input cases design store;

proc means data=a1
    mean std stderr clm maxdec=2;
    class design;
    var cases;
run; quit;
```

Analysis Variable : cases

Des	N	Mean	Std Dev	Std Err		Upper 95% CL for Mean
1	5	14.60	2.30	1.03	11.74	17.46
2	5	13.40	3.65	1.63	8.87	17.93
3	4	19.50	2.65	1.32	15.29	23.71
4	5	27.20	3.96	1.77	22.28	32.12

- $4 \times 2.30^2 + 4 \times 3.65^2 + 3 \times 2.65^2 + 4 \times 3.96^2 = 158.24$. Except for rounding, this is equal to SSE.
- 19-4=15, which is the df error in the ANOVA table.
- There is no pooling of error (or df) when computing these confidence intervals.

```
proc glm data=a1;
    class design;
    model cases=design;
    means design/t clm;
run; quit;
```

t Confidence Intervals for cases

Alpha	0.05
Error Degrees of Freedom	15
Error Mean Square	10.54667
Critical Value of t	2.13145

			95% Conf	idence
design	N	Mean	Limi	ts
4	5	27.200	24.104	30.296
3	4	19.500	16.039	22.961
1	5	14.600	11.504	17.696
2	5	13.400	10.304	16.496

- Very important for there to be a common variance.
 - These confidence intervals are often narrower due to the increase of degrees of freedom.

Multiplicity

- ullet Have generates r confidence intervals
- ullet Overall confidence level (all intervals contain its true mean) is less than 1-lpha
- Many different approaches have been proposed
- Previously discussed the Bonferroni

Example (Page 685)

```
proc glm data=a1;
   class design;
   model cases=design;
   means design/bon clm;
run; quit;
Bonferroni t Confidence Intervals for cases
                            0.05
Alpha
Error Degrees of Freedom
                              15
Error Mean Square
                        10.54667
Critical Value of t
                         2.83663
                                   Simultaneous 95%
                                   Confidence Limits
design
                         Mean
                       27.200
                                   23.080
                                               31.320
4
3
              4
                       19.500
                                   14.894
                                              24.106
              5
                       14.600
                                   10.480
                                               18.720
1
2
                                    9.280
                       13.400
                                               17.520
```

Hypothesis Tests on μ_i 's

- Not usually done
- SAS often gives output for H_0 : $\mu_i = 0$ which rarely is of any interest
- If interested in H_0 : $\mu_i = c$, it is easiest to subtract of c from all observations in a data step and then test whether the new mean is equal to zero.

Differences in Means

From model

$$\overline{Y}_{i.} - \overline{Y}_{k.} \sim N\left(\mu_i - \mu_k, \sigma^2\left(\frac{1}{n_i} + \frac{1}{n_k}\right)\right)$$

Confidence interval

$$\overline{Y}_{i.} - \overline{Y}_{k.} \pm t(1-lpha/2; n_T - r)s\sqrt{1/n_i + 1/n_k}$$

- In this case H_0 : $\mu_i \mu_k = 0$ is of interest
- Similar multiplicity problem
- Now have $\frac{r(r-1)}{2}$ pairwise comparisons

Multiplicity Adjustment

- Approaches adjust multiplier of the SE
 - Alter α level (e.g., Bonferroni)
 - Use different distribution
- \bullet Conservative \to strong control of overall Type I error avoids false positives
- \bullet Powerful \to able to pick up differences that exist avoids false negatives
- All approaches try to strike a balance

Least Significant Difference

- Simply ignores multiplicity issue
- Uses $t(1-\alpha/2; n_T-r)$ to determine multiplier
- Called T or LSD in SAS

Tukey Multiple Comparison Procedure

- Based on studentized range distribution q
- Range refers to $max(\overline{Y}_{i.}) min(\overline{Y}_{i.})$ in r levels
- Accounts for any possible pair being furthest apart
- Controls overall experimentwise error rate
- Uses $q(1-\alpha; r, n_T-r)/\sqrt{2}$ to determine multiplier
- Called TUKEY in SAS

Scheffé Multiple Comparison Procedure

- Based on the F distribution
- Accounts for multiplicity for <u>all</u> linear combinations of means, not just pairwise comparisons
- Protects against data snooping
- Uses $\sqrt{(r-1)F(1-\alpha;r-1,n_T-r)}$ to determine multiplier
- Called SCHEFFE in SAS

Bonferroni Multiple Comparison Procedure

ullet Replaces lpha by

$$\alpha^* = \frac{\alpha}{r(r-1)/2}$$

- Uses $t(1-\alpha^*/2; n_T-r)$ to determine multiplier
- Called BON in SAS

Holm Multiple Comparison Procedure

- Refinement of Bonferroni
- Instead of using

$$\alpha^* = \frac{\alpha}{g}$$

for all comparisons

Rank P-values from smallest to largest

$$p_{(1)} \le p_{(2)} \le \cdots \le p_{(g)}$$

- Continue to reject until $p_{(k)} \ge \alpha/(g-k+1)$
- Available in PROC MULTTEST in SAS

False Discovery Rate

- FDR defined as expected proportion of false positives in the collection of rejected null hypotheses
- Becoming more popular, especially when # of tests in the thousands
- Rank P-values from smallest to largest

$$p_{(1)} \le p_{(2)} \le \dots \le p_{(g)}$$

- Continue to reject until $p_{(k)} \ge k\alpha/g$
- Available in PROC MULTTEST in SAS

Others: Dunnett's and Hsu's procedure

• Dunnett's procedure: compare r-1 levels against one predetermined control level (say the first level).

$$\overline{Y}_{i.} - \overline{Y}_{1.} \pm D_{2-sided,crit} s \sqrt{1/n_i + 1/n_k}$$

- SAS option dunnett('control')
- Hsu's MCB: Multiple Comparisons with the Best sample mean level
- If best means largest: all groups with group mean satisfying

$$\overline{Y}_{i.} \ge \max_{j} \overline{Y}_{j.} - D_{1-sided,crit} s \sqrt{1/n_i + 1/n_k}$$

are included in the set G, and the probability that G contains the real best level is $1 - \alpha$.

- SAS option dunnettl('max level') or dunnettu('min level')
- Not recommended for severely unbalanced data

Example (Page 685)

```
/* Compare all pairs */
proc glm data=a1;
   class design;
   model cases=design;
   means design/lsd tukey bon scheffe cldiff;
run; quit;
```

t Tests (LSD) for cases

 ${\tt NOTE:}$ This test controls the Type I comparisonwise error rate, not the experimentwise error rate.

Alpha	0.05
Error Degrees of Freedom	15
Error Mean Square	10.54667
Critical Value of t	2.13145

	Difference			
design	Between	95% Conf	idence	
Comparison	Means	Limi	ts	
4 - 3	7.700	3.057	12.343	***
4 - 1	12.600	8.222	16.978	***
4 - 2	13.800	9.422	18.178	***
3 - 4	-7.700	-12.343	-3.057	***
3 - 1	4.900	0.257	9.543	***
3 - 2	6.100	1.457	10.743	***
1 - 4	-12.600	-16.978	-8.222	***
1 - 3	-4.900	-9.543	-0.257	***
1 - 2	1.200	-3.178	5.578	
2 - 4	-13.800	-18.178	-9.422	***
2 - 3	-6.100	-10.743	-1.457	***
2 - 1	-1.200	-5.578	3.178	

Tukey's Studentized Range (HSD) Test for cases

NOTE: This test controls the Type I experimentwise error rate.

Alpha	0.05
Error Degrees of Freedom	15
Error Mean Square	10.54667
Critical Value of Studentized Range	4.07597

	Difference			
design	Between	Simultane	ous 95%	
Comparison	Means	Confidence	Limits	
4 - 3	7.700	1.421	13.979	***
4 - 1	12.600	6.680	18.520	***
4 - 2	13.800	7.880	19.720	***
3 - 4	-7.700	-13.979	-1.421	***
3 - 1	4.900	-1.379	11.179	
3 - 2	6.100	-0.179	12.379	
1 - 4	-12.600	-18.520	-6.680	***
1 - 3	-4.900	-11.179	1.379	
1 - 2	1.200	-4.720	7.120	
2 - 4	-13.800	-19.720	-7.880	***
2 - 3	-6.100	-12.379	0.179	
2 - 1	-1.200	-7.120	4.720	

Bonferroni (Dunn) t Tests for cases

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than Tukey's for all pairwise comparisons.

Alpha	0.05
${\tt Error \ Degrees \ of \ Freedom}$	15
Error Mean Square	10.54667
Critical Value of t	3.03628

	Difference			
design	Between	Simultane	ous 95%	
Comparison	Means	Confidence	Limits	
4 - 3	7.700	1.085	14.315	***
4 - 1	12.600	6.364	18.836	***
4 - 2	13.800	7.564	20.036	***
3 - 4	-7.700	-14.315	-1.085	***
3 - 1	4.900	-1.715	11.515	
3 - 2	6.100	-0.515	12.715	
1 - 4	-12.600	-18.836	-6.364	***
1 - 3	-4.900	-11.515	1.715	
1 - 2	1.200	-5.036	7.436	
2 - 4	-13.800	-20.036	-7.564	***
2 - 3	-6.100	-12.715	0.515	
2 - 1	-1.200	-7.436	5.036	

Scheffe's Test for cases

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than Tukey's for all pairwise comparisons.

Alpha	0.05
${\tt Error \ Degrees \ of \ Freedom}$	15
Error Mean Square	10.54667
Critical Value of F	3.28738

	Difference			
design	Between	Simultane	ous 95%	
Comparison	Means	Confidence	Limits	
4 - 3	7.700	0.859	14.541	***
4 - 1	12.600	6.150	19.050	***
4 - 2	13.800	7.350	20.250	***
3 - 4	-7.700	-14.541	-0.859	***
3 - 1	4.900	-1.941	11.741	
3 - 2	6.100	-0.741	12.941	
1 - 4	-12.600	-19.050	-6.150	***
1 - 3	-4.900	-11.741	1.941	
1 - 2	1.200	-5.250	7.650	
2 - 4	-13.800	-20.250	-7.350	***
2 - 3	-6.100	-12.941	0.741	
2 - 1	-1.200	-7.650	5.250	

```
/* LINES: group factor levels based on test results */
proc glm data=a1;
   class design;
   model cases=design;
   means design/lines tukey;
run;
```

Tukey's Studentized Range (HSD) Test for cases

NOTE: Cell sizes are not equal.

Means with the same letter are not significantly different.

	Mean	N	design
A	27.200	5	4
B B	19.500	4	3
В	14.600	5	1
B B	13.400	5	2

Linear Combination of Means

- Would like to test $H_0: L = \sum c_i \mu_i = L_0$
- Hypotheses usually planned but can be "after the fact"
- Can use statistical model to construct t-test

$$\widehat{L} = \sum c_i \overline{Y}_i.$$

$$Var(\widehat{L}) = Var(\sum c_i \overline{Y}_i.) = \sum c_i^2 \text{Var}(\overline{Y}_i.)$$

$$\Longrightarrow \widehat{Var}(\widehat{L}) = \text{MSE} \sum (c_i^2/n_i)$$

$$\Longrightarrow t^* = \frac{\widehat{L} - L_0}{\sqrt{\widehat{Var}(\widehat{L})}}$$

• Under H_0 : $t^* \sim t_{n_T-r}$

Contrasts

- Special case of linear combination
 - Requires $\sum c_i = 0$
- Example 1: $\mu_1 \mu_2 = 0$
- Example 2: $\mu_1 (\mu_2 + \mu_3)/2 = 0$
- Example 3: $(\mu_1 + \mu_2) (\mu_3 + \mu_4) = 0$

Example (Page 685)

- contrast does an F test while estimate does a t-test and gives an estimate of the linear combination.
- ullet contrast actually performs a general linear F test, hence allows you to simultaneously test a collection of contrast

```
/* Joint test of several contrasts */
proc glm data=a1;
  class design;
  model cases=design;
  contrast '1 v 2&3&4' design 1 -.3333 -.3333;
  estimate '1 v 2&3&4' design 3 -1 -1 -1 /divisor=3;
  contrast '2 v 3 v 4' design 0 1 -1 0,
                     design 0 0 1 -1;
run; quit;
Contrast DF Contrast SS
                            Mean Square F Value
                                                  Pr > F
1 v 2&3&4 1 108.4739502
                            108.4739502
                                           10.29
                                                   0.0059
                                          22.66
2 v 3 v 4 2 477.9285714 238.9642857
                                                   <.0001
                          Standard
Parameter
                                     t Value Pr > |t|
            Estimate
                             Error
1 v 2&3&4 -5.433333333 1.69441348
                                       -3.21
                                                 0.0059
```

contrast	_value_	_se_	_nval_	raw_p	stpbon_p	idr_p
12	22.8	39.0248	15	0.56774	0.56774	0.56774
13	-93.1	41.3921	15	0.03995	0.07990	0.04794
14	-239.4	39.0248	15	0.00002	0.00010	0.00006
23	-115.9	41.3921	15	0.01346	0.04038	0.02019
24	-262.2	39.0248	15	0.00001	0.00004	0.00004
34	-146.3	41.3921	15	0.00300	0.01201	0.00601

• Instead of comparing each raw p-value to a different α level, the p-values are adjusted based on the procedure.

```
proc multtest data=a1 holm fdr out=out2 noprint;
   class design;
   contrast '12vs34' 1 1 -1 -1;
   contrast '13vs24' 1 -1 1 -1;
   contrast '12' 1 -1 0 0;
   contrast '13' 1 0 -1 0:
   contrast '24' 0 1 0 -1;
   contrast '34' 0 0 1 -1;
   test mean(cases);
proc print data=out2; run; quit;
_contrast_ _value_ _se_ _nval_
                                            stpbon_p
                                                       fdr_p
                                    raw_p
 12vs34
         -355.3 56.8880
                             15
                                   0.00002
                                            0.00008
                                                      0.00005
 13vs24 -123.5 56.8880
                             15
                                   0.04639
                                             0.11984
                                                      0.05567
 12
            22.8 39.0248
                             15
                                   0.56774
                                             0.56774
                                                      0.56774
         -93.1 41.3921
                                             0.11984
 13
                             15 0.03995
                                                      0.05567
                             15 0.00001
 24
          -262.2 39.0248
                                             0.00004
                                                      0.00004
```

• Instead of comparing each raw p-value to a different α level, the p-values are adjusted based on the procedure.

0.00300

0.01201

0.00601

15

- stpbon_
$$p_{(k)}$$
 = raw_ $p_{(k)} \times (g - k + 1)$
- fdr_ $p_{(k)}$ = raw_ $p_{(k)} \times g/k$

-146.3 41.3921

/* HOLM & FDR */

34

Chapter Review

Inference for

- Means
- Differences in cell means
- Contrasts

Multiplicity

- The Tukey procedure can be modified to handle general contrasts of factor level means
- If only pairwise comparisons are to be made, the Tukey procedure gives narrower confidence limits and is therefore the preferred method than the Sheffé procedure
- For general contrasts of factor level means, the Sheffé procedure is preferred than the Tukey procedure
- Bonferroni, Sheffé and Tukey procedures are of the form "estimator \pm multiplier \times SE" with different multipliers. For any given problem, one may select the one with the smallest multiplier