2/7/24, 8:57 PM about:blank

Sem Fee Submission Receipt

TRANSACTION DETAILS				
Application Number:	8082401118	Payment Status:	Done On 07/02/2024	同公共取得 外间
Payment Mode:	NETBANKING	Channel Id:	CITIZEN	
Transaction Id:	24020757290922816034	Portal Fee:	40 Rs.	
Sem Fees	38211	Late Fee (Rs.):	0	
Total Fee:	38251			

EDUCATIONAL DETAILS			
Enrollment No:	DE21507	Installment: 1	
Semester:	6SEM	Year Term: (JAN-2024)	
College Name:	[808] INSTITUTE OF ENGINEERING & TECHNOLOGY (IET), INDORE MPO-808(808)		
Course Name:	BE		
Branch Name:	Information Technology		

Header Wise Fee Details			
Academic Fee Development and Maintainence Fee: 32000			
Exam fees:	University Fees:	6211	
Caution Money:	Alumini Fees:		

STUDENT DETAILS			
Full Name: SAKET KUMAR JAIN			
Fathers Name:	SHAILESH KUMAR JAIN	Mothers Name:	SANDHYA JAIN

OTHER DETAIL	
Remarks	

Print

about:blank 1/1

The **Media Access Control** (**MAC**) data communication protocol sub-layer, also known as the Medium Access Control, is a sublayer of the Data Link Layer specified in the seven-layer OSI model (layer 2). The hardware that implements the MAC is referred to as a **Medium Access Controller**. The MAC sub-layer acts as an interface between the Logical Link Control (LLC) sublayer and the network's physical layer. The MAC layer emulates a full-duplex logical communication channel in a multi-point network. This channel may provide unicast, multicast or broadcast communication service.

LLC and MAC sublayers

Motivation for a specialized MAC

One of the most commonly used MAC schemes for wired networks is carrier sense multiple access with collision detection (CSMA/CD). In this scheme, a sender senses the medium (a wire or coaxial cable) to see if it is free. If the medium is busy, the sender waits until it is free. If the medium is free, the sender starts transmitting data and continues to listen into the medium. If the sender detects a collision while sending, it stops at once and sends a jamming signal. But this scheme doest work well with wireless networks. The problems are:

- Signal strength decreases proportional to the square of the distance
- The sender would apply CS and CD, but the collisions happen at the receiver
- It might be a case that a sender cannot "hear" the collision, i.e., CD does not work

• Furthermore, CS might not work, if for e.g., a terminal is "hidden"

Hidden and Exposed Terminals

Consider the scenario with three mobile phones as shown below. The transmission range of A reaches B, but not C (the detection range does not reach C either). The transmission range of C reaches B, but not A. Finally, the transmission range of B reaches A and C, i.e., A cannot detect C and vice versa.

Hidden terminals

- A sends to B, C cannot hear A
- C wants to send to B, C senses a "free" medium (CS fails) and starts transmitting
- Collision at B occurs, A cannot detect this collision (CD fails) and continues with its transmission to B
- A is "hidden" from C and vice versa

Exposed terminals

- B sends to A, C wants to send to another terminal (not A or B) outside the range
- C senses the carrier and detects that the carrier is busy.
- C postpones its transmission until it detects the medium as being idle again
- but A is outside radio range of C, waiting is **not** necessary
- C is "exposed" to B

Hidden terminals cause collisions, where as Exposed terminals causes unnecessary delay.

Near and far terminals

Consider the situation shown below. A and B are both sending with the same transmission power.

- Signal strength decreases proportional to the square of the distance
- So, B's signal drowns out A's signal making C unable to receive A's transmission
- If C is an arbiter for sending rights, B drown out A's signal on the physical layer making C unable to hear out A.

The **near/far effect** is a severe problem of wireless networks using CDM. All signals should arrive at the receiver with more or less the same strength for which Precise power control is to be implemented.

SDMA

Space Division Multiple Access (SDMA) is used for allocating a separated space to users in wireless networks. A typical application involves assigning an optimal base station to a mobile phone user. The mobile phone may receive several base stations with different quality. A MAC algorithm could now decide which base station is best, taking into account which frequencies (FDM), time slots (TDM) or code (CDM) are still available. The basis for the SDMA algorithm is formed by cells and sectorized antennas which constitute the infrastructure implementing **space division multiplexing (SDM).** SDM has the unique advantage of not requiring any multiplexing equipment. It is usually combined with other multiplexing techniques to better utilize the individual physical channels.

FDMA

Frequency division multiplexing (FDM) describes schemes to subdivide the frequency dimension into several non-overlapping frequency bands.

Frequency Division Multiple Access is a method employed to permit several users to transmit simultaneously on one satellite transponder by assigning a specific frequency within the channel to each user. Each conversation gets its own, unique, radio channel. The channels are relatively narrow, usually 30 KHz or less and are defined as either transmit or receive channels. A full duplex conversation requires a transmit & receive channel pair. FDM is often used for simultaneous access to the medium by base station and mobile station in cellular networks establishing a duplex channel. A scheme called **frequency division duplexing (FDD)** in which the two directions, mobile station to base station and vice versa are now separated using different frequencies.

FDM for multiple access and duplex

The two frequencies are also known as **uplink**, i.e., from mobile station to base station or from ground control to satellite, and as **downlink**, i.e., from base station to mobile station or from

satellite to ground control. The basic frequency allocation scheme for GSM is fixed and regulated by national authorities. All uplinks use the band between 890 and 915 MHz, all downlinks use 935 to 960 MHz. Each channel (uplink and downlink) has a bandwidth of 200 kHz.

TDMA

A more flexible multiplexing scheme for typical mobile communications is time division multiplexing (TDM). Compared to FDMA, time division multiple access (TDMA) offers a much more flexible scheme, which comprises all technologies that allocate certain time slots for communication. Now synchronization between sender and receiver has to be achieved in the time domain. Again this can be done by using a fixed pattern similar to FDMA techniques, i.e., allocating a certain time slot for a channel, or by using a dynamic allocation scheme.

Listening to different frequencies at the same time is quite difficult, but listening to many channels separated in time at the same frequency is simple. Fixed schemes do not need identification, but are not as flexible considering varying bandwidth requirements.

The above figure shows how these fixed TDM patterns are used to implement multiple access and a duplex channel between a base station and mobile station. Assigning different slots for uplink and downlink using the same frequency is called **time division duplex (TDD)**. As shown in the figure, the base station uses one out of 12 slots for the downlink, whereas the mobile station uses one out of 12 different slots for the uplink. Uplink and downlink are separated in time. Up to 12 different mobile stations can use the same frequency without interference using this scheme.

Pure Aloha

In this scheme, TDM is applied without controlling medium access. Here each station can access the medium at any time as shown below:

This is a random access scheme, without a central arbiter controlling access and without coordination among the stations. If two or more stations access the medium at the same time, a **collision** occurs and the transmitted data is destroyed. Resolving this problem is left to higher layers (e.g., retransmission of data). The simple Aloha works fine for a light load and does not require any complicated access mechanisms.

Slotted Aloha

The first refinement of the classical Aloha scheme is provided by the introduction of time slots (**slotted Aloha**). In this case, all senders have to be **synchronized**, transmission can only start at the beginning of a **time slot** as shown below.

The introduction of slots raises the throughput from 18 per cent to 36 per cent, i.e., slotting doubles the throughput. Both basic Aloha principles occur in many systems that implement distributed access to a medium. Aloha systems work perfectly well under a light load, but they cannot give any hard transmission guarantees, such as maximum delay before accessing the medium or minimum throughput.

Comparison SDMA/TDMA/FDMA/CDMA

Omversion Derim				
Approach	SDMA	TDMA	FDMA	CDMA
Idea	segment space into cells/sectors	segment sending time into disjoint time-slots, demand driven or fixed patterns	segment the frequency band into disjoint sub-bands	spread the spectrum using orthogonal codes
Terminals	only one terminal can be active in one cell/one sector	all terminals are active for short periods of time on the same frequency	every terminal has its own frequency, uninterrupted	all terminals can be active at the same place at the same moment, uninterrupted
Signal separation	cell structure, directed antennas	synchronization in the time domain	filtering in the frequency domain	code plus special receivers
Advantages	very simple, increases capacity per km²	established, fully digital, flexible	simple, established, robust	flexible, less frequency planning needed, soft handover
Dis- advantages	inflexible, antennas typically fixed	guard space needed (multipath propagation), synchronization difficult	inflexible, frequencies are a scarce resource	complex receivers, needs more complicated power control for senders
Comment	only in combination with TDMA, FDMA or CDMA useful	standard in fixed networks, together with FDMA/SDMA used in many mobile networks	typically combined with TDMA (frequency hopping patterns) and SDMA (frequency reuse)	still faces some problems, higher complexity, lowered expectations; will be integrated with TDMA/FDMA