

32 位 微控制器

HC32F146/HC32M140 系列的 OPA

适用对象

旭川小多	
系列	产品型号
HC32F146	HC32F146F8TA
	HC32F146J8UA
	HC32F146J8TA
	HC32F146KATA
HC32M140	HC32M140F8TA
	HC32M140J8UA
	HC32M140J8TA
	HC32M140KATA

目 录

1	摘要	3
2	OPA 简介	3
3	HC32F146 / HC32M140 系列的 OPA	4
	3.1 简介	4
	3.2 说明	4
	3.2.1 运算放大器主要参数	5
	3.2.2 工作流程介绍	5
4	样例代码	6
	4.1 代码介绍	6
	4.2 代码运行	7
5	总结	9
6	版本信息	1 0

1 摘要

本篇应用笔记主要介绍如何使用 HC32F146 / HC32M140 系列芯片的 OPA 模块。

2 OPA 简介

什么是 OPA?

OPA(运算放大器),是具有很高放大倍数的电路单元。在实际电路中,通常结合反馈网络共同组成某种功能模块。它是一种带有特殊耦合电路及反馈的放大器。

(引自'百度百科')

应用笔记 Page 3 of 10

3 HC32F146 / HC32M140 系列的 OPA

3.1 简介

华大 HC32F146 / HC32M140 系列 MCU 内部集成两个 OPA 模块,用户可根据实际需求扩展运放功能。

3.2 说明

华大 HC32F146 / HC32M140 系列的运算放大器主要由两个部分组成,运放数字控制和运算放大模块:

运放数字模块(OPA_CTL)用于使能运放,当运放是能后,运放可以独立运行,不受芯片运行模式的影响,外部输入 OPAP、OPAM,直接用于产生外部输出 OPAO。

运算放大器的顶层示意图如下:

图 3-1 OPA 顶层示意图

应用笔记 Page 4 of 10

3.2.1 运算放大器主要参数

	da Mil	- 11- tr	. All					
	参数	工作条件		TA	Min.	Typ.	Max.	UNIT
Vio	Innut officet waltage	Vic=VCC/2, Vo=VCC/2,		25℃		0.2	4.5	mV
	Input offset voltage	RL=10K Ω, Rs=50 Ω		full			7	
Vicr	Common-Mode Input Voltage Range			full	0	-	VCC-1.	v
Vidr	Differential Input Voltage Range	• A		full	0	-	VCC	v
CMRR	Common-Mode Rejection Ratio	Vic=0 ~ VCC-0.2V	VCC=2.7V	25℃		107		dB
				full	56			
		Rs=50Ω VCC=5	VCC-EV	25℃		108		
			VCC=5V	full	59			
UGBW	单位增益带宽	RL=10kΩ,	VCC=2.7V	25℃		4.3	-	MHz
		CL=20pF	VCC=5V	25℃		4.5		
PM	相位范围	RL=10kΩ, CL=20pF		25℃	62.2	79	-	deg
GM	增益范围	RL=10kΩ, CL=20pF		25℃	9.1	14.9	-	dB
DCgain	増益	RL=10kΩ, CL=20pF	VCC=2.7V	25℃		106		dB
SR		Vopp=VCC/2,	1100 2 711	25℃	3.31	4.13	-	
	34 12 144 24 Aul 35:		VCC=2.7V	full	3.06			•••
	单位增益斜率 CL=100pF, RL=10kΩ	1100 011	25℃	2.79	3.18		V/us	
		KL=10KM	VCC=5V	full	2.56			
ts	设置时间	V(step)pp=1V,	VCC=2.7V	25℃		1		us
		Av=-1, CL=100pF, RL=2kΩ, 0.1%	VCC=5V	25℃		0.95		

3.2.2 工作流程介绍

- 1) 设置对应 OPA 的 IO 复用功能。
- 2) 使能相应 OPA 模块功能,此时 OPA 已经处于独立工作模式。

应用笔记 Page 5 of 10

4 样例代码

4.1 代码介绍

用户可根据上述的工作流程编写自己的代码来学习验证该模块,也可以直接通过华大半导体的网站下载到设备驱动库(Device Driver Library, DDL)的样例代码并使用其中的 OPA 的 Example 进行验证。

以下部分简要介绍该代码 OPA 模块的使用:

1) 设置 GPIO 复用成 OPA 的功能:

```
/* set io work mode */
Gpio_SetFunc_OPA1O(1u)
Gpio_SetFunc_OPA1M(1u)
Gpio_SetFunc_OPA1P(1u)
Gpio_SetFunc_OPA0O(1u)
Gpio_SetFunc_OPA0M(1u)
Gpio_SetFunc_OPA0P(1u)
```

2) 使能 OPA 功能:

```
/* enable OPA0 */
Opa_en(Opa0_EN);

/* enable OPA1 */
Opa_en(Opa1_EN);
```

应用笔记 Page 6 of 10

4.2 代码运行

用户可以通过华大半导体的网站下载到 OPA 的样例代码,并配合评估用板(SK--HC32F146-64L V10)运行相关代码学习使用 OPA 模块。

以下部分主要介绍如何在评估板上运行 OPA 样例代码并观察结果:

- 一 确认安装正确的 IAR(或 Keil,此处使用 IAR 做样例说明,Keil 中操作方法类似)工具(请 从华大半导体完整下载相应的安装包,并参考用户手册进行安装)。
- 一 从华大半导体网站下载 OPA 样例代码。
- 下载并运行样例代码:
 - 1) 打开 OPA 项目, 并打开'main.c'如下视图:

- 2) 点击 重新编译链接整个项目。
- 3) 点击 4 将代码下载到评估板上。
- 4) 可以看见类似如下的视图:

应用笔记 Page 7 of 10

- 5) 点击 艺运行。
- 6) 运行后按 停止,观察 register 中 OPA_CTL 的值,如果为 1,则设置成功。

7) 运行完毕后可以关闭项目文件。

应用笔记 Page 8 of 10

5 总结

以上章节简要介绍了 HC32F146 / HC32M140 系列的 OPA,并详细说明了 OPA 模块的使用方法和本芯片中运算放大器的几个重要参数,用户可根据实际需求使用本模块。

应用笔记 Page 9 of 10

6 版本信息

日期	版本	修改记录
2017-11-23	Rev1.0	运算放大器 OPA 应用笔记初版发布

如果您在购买与使用过程中有任何意见或建议,请随时与我们联系。

Email: mcu@hdsc.com.cn

网址: www.hdsc.com.cn

通信地址:上海市张江高科园区碧波路 572 弄 39 号

邮编: 201203

应用笔记 Page 10 of 10