Title

David Rosenberg

January 14, 2018

Introduction

What we'll be thinking about for each ML Algorithm

- what's the hypothesis space?
- what's our objective function?
- what's our loss function?
- what's the learning algorithm? (i.e. how use \mathcal{D} to choose f from \mathcal{F} ?)
 - most often framed as an optimization problem, but not always
- how does it compare to and relate to other ML algorithms

David Rosenberg DS-GA 1003 January 14, 2018 3 / 14

Generalization

• Algorithm works well on new data... data not from training data

David Rosenberg DS-GA 1003 January 14, 2018 4 / 14

Sources of Prediction Error

- Irreducible error (in the true distribution)
 - error of the Bayes prediction funtion
 - labeling error (can think of as part of the response distribution)
 - (even Bayes prediction function will have error)
- Hypothesis space deficiency
 - Bayes prediction function not contained in hypothesis space
 - missing a feature / variable
- Estimation Error
- Search / Optimization error

David Rosenberg DS-GA 1003 January 14, 2018 5 / 14

Evaluation Metrics

Eval Matric

- give example of evaluation challenges
- spam classification / medical diagnosis
- ranking challenge
- Precision / Recall
- F1 Harmonic mean
- ROC AUC
- Lift Curves

Confidence Intervals and Test Set Size

asdf a

Model Selection

Comparing models: Error bars and Statistical Testing

asdf

David Rosenberg DS-GA 1003 January 14, 2018 10 / 14

Issue of Multiple Hypothesis Testing

- Reference to jupyter notebook / writeup
- give 1 sd heuristic (simplest within 1 SD)

Hypothesis Spaces

Goal is to Learn the Building Blocks

- Large majority of our machine learning algorithms take the following form
- FIND f in HYPOTHESIS SPACE \mathcal{H} , subject to constraint $\psi(f) \leqslant \lambda$, for REGULARIZATION PARAMETER λ , that minimizes the average training LOSS
- To solve the resulting minimization problem, need an OPTIMIZATION METHOD
- objective
- We'll consider each of these pieces:
- Week 2: regularization (I1, I2, elastic net)
- Week 3: loss functions for classification and regression (I1, I2, huber, hinge, logistic, etc)
- Week 4: hypothesis space: kernel methods (kind of nonlinear)
- Week 5: hypothesis space: neural networks (nonlinear)
- Week 6: hypothesis space: trees and ensembles (nonlinear)
- Week 7: loss functions / hypothesis space: multiclass & intro to structured prediction
- Week 8-14: Probabilistic modeling (negative log-likelihood loss function)

Example deconstructions into building blocks

Name	Loss	Regularization	Hypothesis space	Ор
Linear regression	Square loss	None	Linear	
Ridge regression	Square	ℓ_2	Linear	
Lasso regression	Square	ℓ_1	Linear	
Logistic regression	Logistic	None	Linear	
SVM classification	Hinge	ℓ_2	Linear	
Adaboost	Exponential		Span(Base hypothesis space)	Fo
Neural network (MLP)	Any differentiable	Any	Neural network	

David Rosenberg DS-GA 1003 January 14, 2018 14 / 14