Université A. Mira - Béjaia Faculté des Sciences Exactes Département de Mathématiques L3 Maths et Master 1 P.S.A.

Série de TD d'Optimisation Avec Contraintes

Exercice 1. Considérons le problème (P1) suivant:

(P1)
$$\begin{cases} \min f(x,y) = -2x - y, \\ -2x + y \le 4, \\ x + y \le 10, \\ x - y \le 6, \\ x \ge 0 \text{ et } y \ge 0, \end{cases}$$

- 1. Résoudre graphiquement le problème (P1);
- 2. Le vecteur $d_0 = (1,3)^t$ est-il une direction de descente pour f au point $X^0 = (1,1)^t$?
- 3. Posons $X_{\rho}^1 = X^0 + \rho d_0$. Déterminer les valeurs de ρ pour lesquelles X_{ρ}^1 est réalisable.
- 4. Déterminer, ρ_{min} , la valeur de ρ qui minimise f le long de la direction d_0 . Notons $X^1 = X^0 + \rho_{min}d_0$.
- 5. Le vecteur $d_1 = (1, -1)^t$ est-il une direction de descente pour f au point X^1 ?
- 6. Posons $X_{\rho}^2 = X^1 + \rho d_1$. Déterminer les valeurs de ρ pour lesquelles X_{ρ}^2 est réalisable.
- 7. Déterminer, ρ_{min} , la valeur de ρ qui minimise f le long de la direction d_1 . Notons $X^2 = X^1 + \rho_{min}d_1$. Conclure.
- 8. Déterminer toutes les directions de descente au point X^2 ;
- 9. Déterminer toutes les directions admissibles au point X^2 ;
- 10. y'a t-il des directions admissibles et de descente à la fois au points X^2 . Conclure.

Exercice 2. Soit le sous-ensemble Ω de \mathbb{R}^2 défini par

$$\Omega = \{(x,y) \in \mathbb{R}^2 : (x-1)^2 + y^2 - 1 = 0 \text{ et } x^2 + (y-1)^2 - 1 = 0\}.$$

- 1. Le point $(0,0)^t$ est-il un point régulier? Déterminer l'ensemble des directions admissibles en $(0,0)^t$.
- 2. Même questions si on suppose maintenant que Ω est défini par

$$\Omega = \{(x,y) \in \mathbb{R}^2 : (x-1)^2 + y^2 - 1 \le 0 \text{ et } x^2 + (y-1)^2 - 1 \le 0\}.$$

Exercice 3. Résoudre graphiquement les programmes linéaires suivants:

• 1^{er} problème

(P2)
$$\begin{cases} min \ Z_1 = x_2 - x_1 \\ -2x_1 + x_2 \ge 2 \\ x_1 - 2x_2 \ge 2 \\ x_1 + x_2 \le 1 \\ x_1 \ge 0, \ x_2 \ge 0 \end{cases}$$

• 2^{ième} problème

$$(P3) \begin{cases} max \ Z_3 = 3x_1 + 3x_2 \\ -2x_1 + x_2 \le 2 \\ x_1 - 2x_2 \le 2 \\ x_1 + x_2 \le 5 \\ x_1 \ge 0, \ x_2 \ge 0 \end{cases}$$

• 3^{ième} problème

$$(P4) \begin{cases} max \ Z_4 = x_1 + x_2 \\ -2x_1 + x_2 \le 2 \\ x_1 - 2x_2 \le 2 \\ x_1 + 2x_2 \ge 2 \\ x_1 \ge 0, \ x_2 \ge 0 \end{cases}$$

Exercice 4. Considérons le problème d'optimisation suivant:

(P5)
$$\begin{cases} max \ f(x_1, x_2) = x_1 + 3x_2, \\ 2x_1 + x_2 \le 18, \\ \frac{1}{3}x_1 + x_2 \le 8, \\ x_2 \le \alpha, \\ x_1 \le 8, \\ x_1 \ge 0, \ x_2 \ge 0. \end{cases}$$

Résoudre graphiquement le problème (P5) suivant les valeurs du paramètre réel α .

Exercice 5. Considérons le problème de minimisation suivant:

(P6)
$$\begin{cases} \min f(x,y) = 2x^2 + 2xy + y^2 - 10x - 10y, \\ g_1(x,y) = x^2 + y^2 - 5 \le 0, \\ g_2(x,y) = 3x + y - 6 \le 0, \end{cases}$$

- 1. Le problème (P6) admet-t-il une solution? Est-elle unique?
- 2. Soit $X = (2,0)^t$.
 - (a) Quelles sont les contraintes actives en X?

- (b) Ce point est-il régulier?
- (c) Vérifie-t-il les conditions de Karush-Kuhn-Tucker? Conclure.

Exercice 6. Soit $x = (x_1, x_2, x_3)^t$ un élément de \mathbb{R}^3 muni de la norme euclidienne. Considérons le problème de minimisation suivant:

(P7)
$$\begin{cases} \min f(x) = ||x||^2, \\ \text{s.c.} \quad x_1 + 2x_2 + 3x_3 = 1, \end{cases}$$

- 1. Résoudre le problème (P7) en éliminant une variable à l'aide de la contrainte $x_1 + 2x_2 + 3x_3 = 1$, puis traiter les variables qui restent sans contraintes;
- 2. Résoudre le problème (P7) en utilisant les conditions de Karush-Kuhn-Tucker.

Exercice 7. Considérons le problème (P8) suivant:

(P8)
$$\begin{cases} \min f(x, y, z) = -yz - xy, \\ h_1(x, y, z) = xy - 1 = 0, \\ h_2(x, y, z) = y^2 + z^2 - 1 = 0, \end{cases}$$

Résoudre le problème (P8) en utilisant les conditions de Karush-Kuhn-Tucker.

Exercice 8. Considérons le problème (P9) suivant:

(P9)
$$\begin{cases} \min f(x,y) = x^2 + xy + y^2, \\ h(x,y) = x - y - 2 = 0, \\ g(x,y) = x + y - 1 \le 0, \\ (x,y) \in \mathbb{R}^2 \end{cases}$$

- 1. Montrer que le problème (P9) admet une solution unique;
- 2. Résoudre le problème (P9) en utilisant les conditions de Karush-Kuhn-Tucker.

Exercice 9. Le but est de déterminer la projection du point $X^0 = (2, 1, 1)^t$ sur le sous-ensemble C de \mathbb{R}^3 défini par:

$$C = \{X = (x, y, z) \in \mathbb{R}^3 : x + y + z = 1 \text{ et } x^2 + y^2 + z^2 \le 1\}.$$

- 1. Modéliser ce problème sous forme d'un problème d'optimisation.
- 2. Résoudre le problème (de minimisation avec contraintes) obtenu.

Exercice 10. On cherche à calculer la distance d'un point $x_0 \in \mathbb{R}^n$ au plan défini par l'équation Ax = b, où $A \in \mathcal{M}_{\mathbb{R}}(p, n)$, avec $Rang\ A = p$. Ce problème se pose sous la forme:

$$(P10) \quad \begin{cases} \min_{x \in \mathbb{R}^n} \frac{1}{2} ||x_0 - x||^2 \\ Ax = b \end{cases}$$

1. Montrer que la solution x^* et le vecteur λ^* (multiplicateurs de Lagrange associés aux contraintes) de ce problème vérifient le système d'optimalité suivant:

$$\begin{cases} (x^* - x_0) + A^t \lambda^* = 0, \\ Ax = b, \end{cases}$$

- 2. Ecrire λ^* en fonction de A, A^t , x_0 et b;
- 3. En déduire l'expression de x^* .

Exercice 11. Considérons le problème de minimisation suivant:

(P11)
$$\begin{cases} min \ f(x,y,z) = x^2 + y^2 + z^2 - xy - yz, \\ \text{s.c.} \quad h_1(x,y,z) = x - z = 0, \\ h_2(x,y,z) = y + z - 1 = 0. \end{cases}$$

Résoudre le problème (P11) par la méthode de Lagrange-Newton.

Exercice 12. Résoudre le problème (P12) ci-dessous en utilisant la méthode de pénalités extérieures:

(P12)
$$\begin{cases} min \ f(x,y) = x^2 + y^2 - x - y, \\ \text{s.c.} \quad h(x,y) = x + y - 2 = 0. \end{cases}$$

Exercice 13. Considérons le problème (P13) de minimisation suivant:

(P13)
$$\begin{cases} \min f(x), \\ h_i(x) = 0, & i = 1, \dots, p; \\ g_j(x) \le 0, & j = 1, \dots, q. \end{cases}$$

Le Lagrangien de ce problème est alors

$$\mathcal{L}(x,\lambda,\mu) = f(x) + \sum_{i=1}^{p} \lambda_i \ h_i(x) + \sum_{j=1}^{q} \mu_j \ g_j(x)$$

Où $x \in \mathbb{R}^n$ et $(\lambda, \mu) \in \mathbb{R}^p \times (\mathbb{R}^+)^q$, avec $\lambda = (\lambda_1, \dots, \lambda_p)$ et $\mu = (\mu_1, \dots, \mu_q)$. On appelle **point selle** de \mathcal{L} sur $\mathbb{R}^n \times \mathbb{R}^p \times (\mathbb{R}^+)^q$ tout triplet $(x^*, \lambda^*, \mu^*) \in \mathbb{R}^n \times \mathbb{R}^p \times (\mathbb{R}^+)^q$ vérifiant l'équation

$$\mathcal{L}(x^*,\lambda,\mu) \ \leq \ \mathcal{L}(x^*,\lambda^*,\mu^*) \ \leq \ \mathcal{L}(x,\lambda^*,\mu^*)$$

pour tous $(x, \lambda, \mu) \in \mathbb{R}^n \times \mathbb{R}^p \times (\mathbb{R}^+)^q$.

- 1. Montrer que si f, g et h sont \mathcal{C}^1 et que le triplet $(x^*, \lambda^*, \mu^*) \in \mathbb{R}^n \times \mathbb{R}^p \times (\mathbb{R}^+)^q$ est un point selle de \mathcal{L} sur $\mathbb{R}^n \times \mathbb{R}^p \times (\mathbb{R}^+)^q$, alors ce triplet vérifie les conditions de Karush-Kuhn-Tucker.
- 2. Montrer que si f, g et h sont convexes et \mathcal{C}^1 . Alors le triplet $(x^*, \lambda^*, \mu^*) \in \mathbb{R}^n \times \mathbb{R}^p \times (\mathbb{R}^+)^q$ est un point selle de \mathcal{L} sur $\mathbb{R}^n \times \mathbb{R}^p \times (\mathbb{R}^+)^q$ si et seulement si il vérifie les conditions de Karush-Kuhn-Tucker.

- 3. Les résultats précédent ont permis de développer l'algorithme d'Uzawa donné ci-dessous:
 - (1) Initialisation k = 0: choix de $\lambda^0 \in \mathbb{R}^p$ et de $\mu^0 \in (\mathbb{R}^+)^q$
 - (2) Iteration k

$$\lambda^k = (\lambda_1^k, \dots, \lambda_p^k) \in \mathbb{R}^p$$
 et $\mu^k = (\mu_1^k, \dots, \mu_q^k) \in (\mathbb{R}^+)^q$ sont connus; puis (a) Calcul de x^k solution de

$$(P^k)$$
 min $\mathcal{L}(x, \lambda^k, \mu^k), x \in \mathbb{R}^n$.

(b) Calcul de λ^{k+1} et μ^{k+1} avec:

$$\lambda_i^{k+1} = \lambda_i^k + \rho \ h_i(x^k), \quad i = 1, \dots, p$$

$$\mu_j^{k+1} = max(0, \mu_j^k + \rho \ g_j(x^k)), \quad j = 1, \dots, q.$$

Où $\rho > 0$ est un réel fixé (choisi par l'utilisateur).

(3) Critère d'arrêt

Si $||x^{k+1} - x^k|| < \varepsilon$, STOP. Sinon, on pose k = k+1 et on retourne à (2).

Résoudre en utilisant l'algorithme d'Uzawa le problème ci-dessous (prendre $\lambda^0=0,\ \rho=1$ et $\varepsilon=10^{-6}$):

(P14)
$$\begin{cases} \min f(x_1, x_2) = x_1^2 + x_2^2, \\ s.c. \quad x_1 + x_2 = 1, \end{cases}$$