Implementacja algorytmu do odkrywania reguł asocjacyjnych

Mikołaj Bańkowski

Mateusz Kołacz

Prowadzący: dr inż. Robert Bembenik

Temat projektu

Podstawowo:

Implementacja algorytmu Apriori do odkrywania reguł asocjacyjnych wraz z implementacją obliczania miar: współczynnika podniesienia (*lift*) oraz trzech wybranych spośród: *conviction*, *cosine*, *gini*, *Jaccard/coherence*, *certainty factor*, *improvement*, *mutual information*, *odd ratio*. Przeprowadzić porównanie zachowania się wybranych miar w odniesieniu do wartości współczynnika podniesienia.

Dodatkowo:

Zaimplementować jeszcze jeden z algorytmów do odkrywania reguł asocjacyjnych:

- Algorytm AprioriRuleGen
- Algorytm Eclat
- Algorytm Partition

Zaimplementowane algorytmy do okrywania reguł asocjacyjnych

Algorytm Apriori

Algorytm Eclat

Dodatkowo przeprowadzona analiza

Przeprowadziliśmy porównanie własnej implementacji algorytmu Apriori z implementacją algorytmu Apriori znajdującą się w bibliotece języka Python – apyori oraz dokonaliśmy analizy porównawczej algorytmów Apriori i Eclat

Analiza porównawcza w obu przypadkach bierze pod uwagę:

- Czasy wykonania algorytmu przy różnych parametrach.
- **Uzyskiwane wyniki** dla różnych wartości progów wsparcia (s*upport*) i ufności (*confidence*).
- **Skuteczności algorytmu** na kilku różnych zbiorach danych wejściowych.

Dane

Dane będą pobierane z **UCI Machine Learning Repository** (https://archive.ics.uci.edu)

Wybrane zbiory danych:

<u>Tic-Tac-Toe Endgame</u> - Zbiór ten zawiera 958 rekordów

Car Evaluation - Zbiór ten zawiera 1728 rekordów

Nursery - Zbiór ten zawiera 12960 rekordów

Wszystkie zbiory danych mają reprezentację dyskretną

Pobieranie i preprocessing danych

Została zaimplementowana klasa data_manager.py

To klasa, która jest odpowiedzialna za dostarczenie danych do pozostałych obiektów. Umożliwia czerpanie danych zarówno z lokalnego pliku tekstowego oraz zbiorów danych udostępnianych przez repozytorium UCIML.

Następnie dane są przetwarzane i przygotowywane w taki sposób, aby były zgodne z wymaganiami wybranego algorytmu oraz umożliwiały jego efektywne działanie.

Apriori: Dane są przekształcane na poziome transakcje

Eclat: Dane są przekształcane w pionową strukturę TID-sets

Dane przekazywane do algorytmu **Apriori** są reprezentowane jako **lista transakcji**, gdzie każda transakcja to **frozenset**^[1] zawierający unikalne elementy opisujące produkty lub cechy

```
frozenset({'buns', 'hotdogs', 'ketchup'}),
  frozenset({'buns', 'hotdogs'}),
  frozenset({'chips', 'hotdogs', 'coke'}),
  frozenset({'chips', 'coke'}),
  frozenset({'chips', 'ketchup'}),
  frozenset({'chips', 'hotdogs', 'coke'}),
  frozenset({''}),
  frozenset({''})]
```

python run.py -f DATASET.csv

Dane przekazywane do algorytmu **Eclat** są reprezentowane jako TID-Sets, gdzie kluczami są **frozensety**^[1] zawierające pojedyncze unikalne elementy a wartościami są **zbiory identyfikatorów transakcji** które wskazują, w których transakcjach dany element występuje.

```
frozenset({'buns'}): {0, 1},
  frozenset({'hotdogs'}): {0, 1, 2, 5},
  frozenset({'ketchup'}): {0, 4},
  frozenset({'coke'}): {2, 3, 5},
  frozenset({'chips'}): {2, 3, 4, 5},
  frozenset({''}): {6, 7, 8}
}
```

python run.py -f DATASET.csv -a eclat

Wybrane miary

• Współczynnik podniesienia (lift),

$$Lift(A \to B) = \frac{\operatorname{support}(A \cap B)}{\operatorname{support}(A) \times \operatorname{support}(B)}$$

· Współczynnik pewności (certainty factor),

Relative Support $(A \to B) = \text{support}(A \cap B)$

• Jaacard / coherence,

$$\mathrm{CF}(A \to B) = \frac{\mathrm{support}(A \cap B) - \mathrm{support}(A) \times \mathrm{support}(B)}{1 - \mathrm{support}(B)}$$

• iloraz szans (odds-ratio)

Odd Ratio
$$(A \to B) = \frac{\operatorname{support}(A \cap B) \times \operatorname{support}(\neg A \cap \neg B)}{\operatorname{support}(A \cap \neg B) \times \operatorname{support}(\neg A \cap B)}$$

A→B reprezentuje **regułę asocjacyjną,** jeśli występuje zbiór A (np. pewne produkty w koszyku zakupowym), to z pewnym prawdopodobieństwem występuje także zbiór B

Implementacja sposobu na wyznaczanie miar

Proces obliczania miar:

- 1. Wygenerowanie reguł asocjacyjnych
- 2. Obliczenie wsparcia^[1] i ufności^[2]
- 3. Obliczenie poszczególnych miar jakości

Oba algorytmy, **Apriori** i **Eclat**, bazują na tym samym sposobie wyznaczania miar jakości reguł asocjacyjnych. Wykorzystują te same metody do obliczania wskaźników, takich jak współczynnik podniesienia (lift), wsparcie relatywne (relative support), czy certainty factor.

Sposób działania

Skrypt umożliwiający uruchomienie algorytmu do wykrywania często współwystępujących wzorców w zbiorze danych. Aby korzystać ze skryptu, należy uruchomić go z odpowiednimi flagami w linii poleceń:

- -f, --input-file
- -a, --algorithm
- -u, --UCI-dataset
- -s, --min-support
- -c, --min-confidence

Przykład uruchomienia skryptu z kilkoma flagami jednocześnie:

python script.py -a eclat -u nursery -s 0.2 -c 0.7

Przeprowadzone testy

Porównanie własnej implementacji algorytmu Apriori z algorytmem Apriori dostępnym w bibliotece Python - apyori

Porównanie własnej implementacji algorytmu Apriori z algorytmem Eclat

Porównanie zachowania się wybranych miar w odniesieniu do wartości współczynnika podniesienia

Apriori vs Apriori biblioteka

W ramach tej części testów stworzona implementacja algorytmu Apriori była porównywana z dostępną w języku Python biblioteką **apyori**.

Porównane zostały takie własności jak:

- procent odnalezionych reguł asocjacyjnych,
- procent poprawnie wyznaczonych wartości współczynnika confidence (w odniesieniu do wyników zwracanych przez implementację apyori)
- czasy wykonywania obydwu rozwiązań.

Porównanie odbyło się przy uwzględnieniu **różnych zbiorów danych** i wartości współczynników **min_support** oraz **min_confidence**. Czasy egzekucji były mierzone dla **1 000 000 wywołań funkcji** wyznaczającej reguły asocjacyjne dla każdego zestawu parametrów wejściowych.

+ Dataset	+ Min	Support	+ Min	Confidence	+ R	ules Match	+ Conf	fidence Match	-+ M	ly Exec Time	+ Apy	/ori Exe	c Time
+	+		+		+		+		+		+		
car_evaluation	l	0.15	l	0.15	L	100.00%	I	100.00%	1	2.041 ms	1	0.271	ms
car_evaluation	l I	0.15	l l	0.5	L	100.00%	l	100.00%	1	2.623 ms	1	0.311	ms
car_evaluation	l I	0.15	l	0.8	L	100.00%	l	100.00%	1	2.622 ms	1	0.435	ms
car_evaluation	l I	0.5	l	0.15	L	100.00%	l	100.00%	1	2.271 ms	1	0.353	ms
car_evaluation	l	0.5	l	0.5	L	100.00%	I	100.00%	1	2.919 ms	1	0.281	ms
car_evaluation	l	0.5	l	0.8	L	100.00%	l	100.00%	1	2.063 ms	1	0.268	ms
car_evaluation	l	0.8	l	0.15	L	100.00%	l	100.00%	1	2.473 ms	1	0.329	ms
car_evaluation	l I	0.8	l l	0.5	L	100.00%	l	100.00%	1	2.361 ms	1	0.328	ms
car_evaluation	l I	0.8	l l	0.8	L	100.00%	I	100.00%	1	2.139 ms	1	0.331	ms
tic_tac_toe_endgame	l	0.15	l	0.15	L	100.00%	I	100.00%	1	2.341 ms	1	0.415	ms
tic_tac_toe_endgame	l	0.15	l	0.5	L	100.00%	I	100.00%	1	2.844 ms	1	0.321	ms
tic_tac_toe_endgame	l	0.15	l	0.8	L	100.00%	I	100.00%	1	2.164 ms	1	0.268	ms
tic_tac_toe_endgame	l	0.5	l	0.15	L	100.00%	I	100.00%	1	2.242 ms	1	0.271	ms
tic_tac_toe_endgame	l	0.5	l	0.5	L	100.00%	I	100.00%	1	1.949 ms	1	0.264	ms
tic_tac_toe_endgame	l	0.5	l	0.8	L	100.00%	I	100.00%	1	2.214 ms	1	0.291	ms
tic_tac_toe_endgame	l	0.8	l	0.15	L	100.00%	I	100.00%	1	2.035 ms	1	0.276	ms
tic_tac_toe_endgame	l	0.8	l	0.5	L	100.00%	I	100.00%	1	1.994 ms	1	0.272	ms
tic_tac_toe_endgame	l	0.8	l	0.8	L	100.00%	I	100.00%	1	2.190 ms	1	0.341	ms
nursery	l	0.15	l	0.15	L	100.00%	I	100.00%	1	2.926 ms	1	0.259	ms
nursery	l	0.15	l	0.5	L	100.00%	I	100.00%	1	3.055 ms	1	0.271	ms
nursery	l	0.15	l	0.8	L	100.00%	I	100.00%	1	3.021 ms	1	0.263	ms
nursery	l	0.5	l	0.15	L	100.00%	I	100.00%	1	2.088 ms	1	0.258	ms
nursery	l	0.5	l	0.5	L	100.00%	I	100.00%	1	2.072 ms	1	0.257	ms
nursery	l	0.5	l	0.8	L	100.00%	I	100.00%	1	2.108 ms	1	0.264	ms
nursery	l l	0.8	l	0.15	L	100.00%	I	100.00%	1	2.039 ms	1	0.257	ms
nursery	I	0.8	I	0.5	I	100.00%	I	100.00%	1	2.038 ms	1	0.265	ms
nursery	I	0.8	I	0.8	I	100.00%	I	100.00%	1	2.064 ms	I	0.262	ms
+	+		+		+		+		+		+		

Wnioski (dotyczące Apriori)

Implementacja algorytmu Apriori w ramach projektu osiągnęła pełne pokrycie z wynikami uzyskanymi za pomocą popularnej biblioteki apyori, co świadczy o poprawności jej działania

Pomimo pełnego pokrycia, własna implementacja algorytmu Apriori działa średnio 10 razy wolniej niż biblioteka apyori. W przyszłości istnieje możliwość optymalizacji kodu w celu poprawy wydajności - jest to jednak akceptowalna różnica, ponieważ biblioteka apyori była tworzona znacznie dokładniej i ze znacznie większym naciskiem na doprecyzowanie niż niniejszy projekt.

Apriori vs Eclat

W ramach tej części testów stworzona implementacja algorytmu **Apriori** była porównywana z stworzoną implementacją algorytmu **Eclat**.

Porównane zostały takie własności jak:

- procent odnalezionych reguł asocjacyjnych,
- procent poprawnie wyznaczonych wartości współczynnika confidence (w odniesieniu do wyników zwracanych przez implementację apyori)
- czasy wykonywania obydwu rozwiązań.

Porównanie odbyło się przy uwzględnieniu **różnych zbiorów danych** i wartości współczynników **min_support** oraz **min_confidence**. Czasy egzekucji były mierzone dla **1 000 000 wywołań funkcji** wyznaczającej reguły asocjacyjne dla każdego zestawu parametrów wejściowych.

Dataset	Min	Support	+ Min	Confidence	+ Ru	Jles Match	Confidence Match	Aprio	ri Exec Time	+ Ecla	t Exec Time
car_evaluation		0.15	l	0.15	 	100.00%	100.00%	:	1.742 s	I	1.182 s
car_evaluation		0.15	l l	0.5	l	100.00%	100.00%	:	1.755 s	l	1.194 s
car_evaluation		0.15	l	0.8	l	100.00%	100.00%	:	1.795 s	l	1.252 s
car_evaluation		0.5	l	0.15	l	100.00%	100.00%	:	1.766 s	l	1.208 s
car_evaluation		0.5	l	0.5	l	100.00%	100.00%	:	1.743 s	l	1.237 s
car_evaluation		0.5	l	0.8	l	100.00%	100.00%	:	1.724 s	l	1.215 s
car_evaluation		0.8	l	0.15	l	100.00%	100.00%	:	1.767 s	l	1.211 s
car_evaluation		0.8	l	0.5	l	100.00%	100.00%	:	1.766 s	l	1.225 s
car_evaluation		0.8	l	0.8	l	100.00%	100.00%	:	1.788 s	l	1.217 s
tic_tac_toe_endgame		0.15	l	0.15	l	100.00%	100.00%	:	1.752 s	l	1.214 s
tic_tac_toe_endgame		0.15	l	0.5	l	100.00%	100.00%	:	1.833 s	l	1.312 s
tic_tac_toe_endgame		0.15	l	0.8	l	100.00%	100.00%	:	1.905 s	l	1.212 s
tic_tac_toe_endgame		0.5	l	0.15	l	100.00%	100.00%	:	1.728 s	l	1.194 s
tic_tac_toe_endgame		0.5	l	0.5	l	100.00%	100.00%	:	1.727 s	l	1.197 s
tic_tac_toe_endgame		0.5	l	0.8	l	100.00%	100.00%	:	1.749 s	l	1.201 s
tic_tac_toe_endgame		0.8	l	0.15	l	100.00%	100.00%	:	1.723 s	l	1.198 s
tic_tac_toe_endgame		0.8	l	0.5	l	100.00%	100.00%	:	1.733 s	l	1.197 s
tic_tac_toe_endgame		0.8	l	0.8	l	100.00%	100.00%	:	1.735 s	l	1.203 s
nursery		0.15	l I	0.15	l	100.00%	100.00%	:	2.738 s	l	1.410 s
nursery		0.15	l l	0.5	l	100.00%	100.00%	:	2.762 s	l	1.388 s
nursery		0.15	l	0.8	l	100.00%	100.00%	:	2.726 s	l	1.376 s
nursery		0.5	l	0.15	l	100.00%	100.00%	:	1.889 s	l	1.253 s
nursery		0.5	l	0.5	l	100.00%	100.00%	:	1.888 s	l	1.257 s
nursery		0.5	I	0.8	I	100.00%	100.00%	Ι :	1.892 s	I	1.241 s
nursery		0.8	I	0.15	I	100.00%	100.00%	Ι :	1.860 s	I	1.257 s
nursery		0.8	I	0.5	I	100.00%	100.00%	Ι :	1.908 s	I	1.342 s
nursery		0.8	I	0.8	I	100.00%	100.00%	l :	1.885 s	I	1.257 s

Wnioski (dotyczące Apriori vs Eclat)

W kontekście porównania algorytmów Apriori i Eclat wykazano, że oba algorytmy generują identyczne reguły asocjacyjne, co potwierdza ich spójność i poprawność działania natomiast algorytm Eclat jest znacznie szybszy niż algorytm Apriori

Przewaga czasowa algorytmu Eclat wynika z wykorzystania pionowej reprezentacji danych (TID-sets) oraz bardziej efektywnego przeszukiwania przestrzeni kombinacji poprzez operacje na zbiorach identyfikatorów transakcji.

W praktyce, dla dużych zbiorów danych, rekomenduje się użycie algorytmu Eclat, natomiast dla mniejszych zbiorów danych, oba algorytmy działają efektywnie i ich wybór może zależeć od innych czynników, takich jak dostępne zasoby obliczeniowe czy potrzeba interpretowalności wyników.

Porównanie zachowania się wybranych miar w odniesieniu do wartości współczynnika podniesienia

W ramach niniejszej analizy, własna implementacja algorytmu Apriori została użyta do wyznaczenia reguł asocjacyjnych i powiązanych z nimi metryk na trzech dyskretnych zbiorach danych pochodzących z UCIML repo.

Uzyskane wyniki zostały posortowane na podstawie wsp. podniesienia - lift a następnie zaprezentowane w postaci tabeli ogólnej i tabeli uśrednionych wartości metryk w zależności od wartości wsp. lift.

Wszystkie poniższe wyniki zostały uzyskane przy wartości min_support = 0.15 oraz min_confidence = 0.3.

+ Lift Range	+ Rule	-+ Re	elative Support	+ Lift	Certainty	+ Jaccard	+ Odds Rat	+ io
0.6-0.7	+ ('safety_high',) ==> ('target_unacc',)	-+ 	0.16	+ 0.69	1.44	+ 0.87	+ 2.06	
0.7-0.8	('persons_4',) ==> ('target_unacc',)	1	0.18	0.77	1.63	1.10	2.32	- 1
0.7-0.8	('persons_more',) ==> ('target_unacc',)	1	0.19	0.80	1.68	1.18	2.40	- 1
0.8-0.9	('safety_med',) ==> ('target_unacc',)	1	0.21	0.89	1.86	1.50	2.66	- 1
0.8-0.9	('maint_med',) ==> ('target_unacc',)	1	0.16	0.89	2.48	1.88	3.54	- 1
0.8-0.9	('maint_low',) ==> ('target_unacc',)	1	0.16	0.89	2.48	1.88	3.54	- 1
0.8-0.9	('buying_med',) ==> ('target_unacc',)	1	0.16	0.89	2.48	1.88	3.54	- 1
0.9-1.0	('doors_4',) ==> ('target_unacc',)	1	0.17	0.97	2.70	2.46	3.86	- 1
0.9-1.0	('doors_3',) ==> ('target_unacc',)	1	0.17	0.99	2.78	2.71	3.97	- 1
0.9-1.0	('target_unacc',) ==> ('lug_boot_big',)	1	0.21	0.91	0.43	0.42	1.30	- 1
0.9-1.0	('lug_boot_big',) ==> ('target_unacc',)	1	0.21	0.91	1.92	1.62	2.74	- 1
0.9-1.0	('lug_boot_med',) ==> ('target_unacc',)	1	0.23	0.97	2.04	1.93	2.92	- 1
0.9-1.0	('target_unacc',) ==> ('lug_boot_med',)	1	0.23	0.97	0.46	0.46	1.39	- 1
0.9-1.0	('doors_5more',) ==> ('target_unacc',)	1	0.17	0.97	2.70	2.46	3.86	- 1
1.0-1.1	('buying_high',) ==> ('target_unacc',)	1	0.19	1.07	3.00	3.75	4.28	- 1
1.0-1.1	('maint_high',) ==> ('target_unacc',)	1	0.18	1.04	2.91	3.25	4.15	- 1
1.0-1.1	('doors_2',) ==> ('target_unacc',)	1	0.19	1.08	3.02	3.86	4.31	- 1
1.1-1.2	('buying_vhigh',) ==> ('target_unacc',)	1	0.21	1.19	3.33	7.13	4.76	- 1
1.1-1.2	('target_unacc',) ==> ('lug_boot_small',)	1	0.26	1.12	0.53	0.56	1.59	- 1
1.1-1.2	('lug_boot_small',) ==> ('target_unacc',)	1	0.26	1.12	2.34	3.10	3.35	- 1
1.1-1.2	('maint_vhigh',) ==> ('target_unacc',)	1	0.21	1.19	3.33	7.13	4.76	- 1
1.4-1.5	('target_unacc',) ==> ('persons_2',)	1	0.33	1.43	0.68	0.85	2.04	I
1.4-1.5	('persons_2',) ==> ('target_unacc',)	1	0.33	1.43	3.00	29.79	4.28	I
1.4-1.5	('safety_low',) ==> ('target_unacc',)	1	0.33	1.43	3.00	29.79	4.28	I
1.4-1.5	('target_unacc',) ==> ('safety_low',)	1	0.33	1.43	0.68	0.85	2.04	- 1
+	+	-+		+	+	+	+	+

Pełna tabela wyników dla zbioru danych Car Evaluation

			Relative Support									ds Ratio [Avg. / Std.	dev.]
0.6-0.7		1		/ 0.000]	 -	[1.443 /		 		/ 0.000]		[2.060 / 0.000]	
0.7-0.8		2	[0.183	/ 0.000]		[1.651 /	0.001]		[1.140	0.001]		[2.358 / 0.001]	I
0.8-0.9			[0.168	/ 0.000]		[2.326 /	0.073]		[1.785	0.027]		[3.322 / 0.148]	
0.9-1.0			[0.199	/ 0.001]		[1.863 /	0.898]		[1.723	0.778]		[2.862 / 1.120]	
1.0-1.1		3	[0.186	/ 0.000]		[2.975 /	0.002]		[3.619]	0.069]		[4.249 / 0.005]	
1.1-1.2			[0.234	/ 0.001]		[2.385 /	1.309]		[4.479]	7.824]		[3.615 / 1.696]	
1.4-1.5			[0.333	/ 0.000]		[1.840 /	1.346]		[15.323	/ 209.370	o]	[3.162 / 1.260]	

Tabela wyników uśrednionych dla zbioru danych Car Evaluation

Wnioski (dotyczące wsp. lift vs pozostałe miary)

Na podstawie powyższej tabeli można stwierdzić, że współczynnik wsparcia relatywnego (**relative support**) jest tym większy, im wyższy współczynnik podniesienia lift. Widać też, że wartości w poszczególnych kubełkach nie odbiegają znacząco od siebie (minimalne wartości odchylenia standardowego).

W przypadku współczynnika **Certainty**, nie widać dokładnej zależności pomiędzy wartościami wsp. lift, jednak można dostrzec znacznie wyższą wartość odchylenia standardowego

Współczynnik **Jaccarda** rośnie wykładniczo w stosunku do wartości współczynnika podniesienia. To samo dotyczy odchylenia standardowego jego wartości w zadanym przedziale.

W przypadku współczynnika **Odds Ratio** również widać tendencje wzrostową w stosunku do wartości wsp. lift, jednak nie jest to silnie widoczne zarówno w stosunku do wartości średniej jak i odchylenia standardowego.

Analiza zachowania się wybranych miar w odniesieniu do wartości współczynnika podniesienia (lift) wykazała, że większość miar (współczynnik Jaccarda, Certainty Factor, Odds Ratio) wykazuje tendencję do wzrostu wraz ze wzrostem wartości współczynnika podniesienia.

Dokładność i wiarygodność wyników uzyskanych przez algorytm Apriori zależy od odpowiedniego dobrania parametrów, takich jak minimalne wsparcie (min_support) i minimalne zaufanie (min_confidence). Warto przeprowadzić analizę wrażliwości, aby określić optymalne wartości tych parametrów dla konkretnego zestawu danych.

Dziękujemy za uwagę