Name: Shregas Srinivasa ID Number: 012551187

Homework 3: 20 Motion

Substitute S.O km for 121 and 0° for 0 in above equations,

And,

Substitute above values of a and b in equation of displacement vector.

Substitute 10 km for ld and 110° for 0 in above equations of combonents

Substitute above values of a and b in above equation of displacement vector.

Substitute 8.0 km for 1 d 1 and 180° for 0 in the above equations of comparents.

Substitute above values of a and b in above equation of displacement vector.

$$\vec{d}_3 = (-8 \text{ km})^{\frac{1}{2}} + (0 \text{ km})^{\frac{1}{2}}$$

Now the not displacement is

Substitute values of di, d, and d3

d = (5 km)î + (-3.42 km)î + (a.40 km)î + [-8 km)î = (-6.42 km)î + (a.40km)î

Hence the final displacement of cyclist from where he started is [-6.42 km] + [a.40 km].

23. (a) Using
$$\vec{V}(t) = \frac{d\vec{r}(t)}{dt}$$

Subshitute 4.0t21-3.0j + 2.0t3 km for r(t) in the above eq.

v (0) > 80tî +6t2k m/s

Thus, velocity at lime * et = 0 is 0 m/s

$$V_{av} = \frac{\vec{r}_{+}(t) - \vec{r}_{i}(t)}{t_{+} - t_{i}}$$

Substitute 0 for t in the above equation of $\vec{r}(t)$ $\vec{r}(0) = 4.0 \cdot 10^{2} \cdot i - 3.0 \cdot i + 2.0 \cdot (0)^{3} \cdot k^{2} \cdot m$ $= -3.0 \cdot i^{3} \cdot m$

Substitute 1s for t in above equation of $\vec{r}(t)$ $\vec{r}(t) = 4.0(1)^{4} \hat{k} \hat{i} - 3.0 \hat{j} + 2.0 (1)^{2} \hat{k} \hat{m}$ $= 4.0 \hat{i} - 3.0 \hat{j} + 2.0 \hat{k} \hat{m}$

Substitute $4.0\hat{i} - 3.0\hat{j} + 1.0\hat{k}$ m for \vec{r}_{i} (+), $-3.0\hat{j}$ m for \vec{r}_{i} (+), 1s for the above equation of V_{ov} ,

$$V_{ov} = \frac{(4.0\hat{i} - 3.0\hat{j} + 2.0\hat{k})m - (-3.0\hat{j})m}{(1-0)}$$

Thus, average velocity between us and Is is $V_{av} = 4.0\hat{i} + 2.0\hat{k}$ m/s.

Differentiale with respect to time t

$$= \frac{dt}{d(3.0t^2)} + \frac{dt}{d(5.0)} + \frac{dt}{d(6.0+k)}$$

$$= 3.0(2t)^{1} + 5.0(0) - 6.0k^{2}$$

Using
$$\frac{d\vec{r}(t)}{dt} = \vec{v}(t)$$

$$\vec{V}(t) = 6.0t\hat{i} - 6.0k\hat{k}$$

Hence, the velocity of the particle as a bunchion of time is $\vec{\nabla}(t) = 6.0t\hat{i} - 6.0t\hat{k}$

Differentiate velocity vector w.r.t. time.

$$\frac{d\vec{v}(t)}{dt} = \frac{d(6.0+\hat{i}-6\hat{k})}{dt} = \frac{d(6\hat{k})}{dt}$$

Again from definition of acceleration vector, $\frac{d\vec{v}(t)}{dt} = \vec{a}(t)$

Therefore a(+)=61

(b) Use the equation for velocity vector as function of time from part(a)

V(+) = 6.0ti - 6.0k

Substitute O for time and solve for velocity.

 $\vec{\nabla}(t) = 6.0 \cdot \hat{l} - 6.0 \hat{k}$

= 6.0(0)î - 6.0k

= -6.0k

Using alt) = 6î

The velocity of the particle of to is 6.0 kg, this at time to the velocity has a magnitude 6.0 and is in the negative z-ascis direction.

The acceleration of the particle at to is 6i.
This means it has a constant value of 6 and is
in the positive x-asis direction.

$$\frac{d(\vec{r}(t))}{dt} = \frac{d(\cos(1.0t))}{dt} + \sin(1.0t) \hat{j} + t\hat{k}$$

$$= \frac{d(\cos(1.0t))}{dt} \hat{i} + \frac{d(\sin(1.0t))}{dt} \hat{j} + \frac{d(t)}{dt} \hat{k}$$

$$= -\sin(1.0t) \hat{i} + \cos(1.0t) \hat{j} + \hat{k}$$

Substitute
$$\vec{v}(t) \cdot for \frac{d(\vec{r}(t))}{dt}$$

$$\vec{v}(t) = -\sin(1.0t) \hat{i} + (\cos(1.0t) \hat{j} + \hat{k})$$
Hence the particle's velocity is $\vec{v}(t) = -\sin(1.0t) \hat{i} + \cos(1.0t) \hat{j} + \hat{k}$.

(b) Now, differentiate velocity vector w.r.t time t.

$$\frac{d(\nabla(t))}{dt} = \frac{d(-\sin(1.0t))}{dt} + (\cos(1.0t))^{2} + \frac{d(\cos(1.0t))}{dt}^{2} + \frac{d(\cos(1.0t))}{dt}^{2} + \frac{d(\cos(1.0t))}{dt}^{2}$$

Substitute à(+) for d(v(+))

2 (+) = - cos(1.0+)i - sin(1.0+)i

Hence, the particle's acceleration as function of time
is a(f) > - cos(1.0+)î- sin(1.0+)ĵ

33. (a) Using y= yo + vyot + 1/2 ayt

Substitute 1.5 m for yo, 0 for Vo, 0 for Vyo and -9.81 m1s2 for acceleration due to gravity
This gives,

0 = 1.5 m + (0)+ + 1/2 (-9.81 m/s²)+2 -1.5 m = (-4.905 m/s²)+

Solve for hime t,

t > J1.5m = 0.553

Therefore, He time clapsed before the bullet hits the ground is 0.5535

(b) 2(x + Vyot

Substitute o for x., 200 mls for vxo and 0.5535 for t,

>(=> 0+ (200 ms-2) (0.5533) = 110.6 m

Therefore, the distance covered by the bullet in horizontal direction before it hit the ground is 110.6 m

36. Using y = y o + Vy o + + 1/2 og +2

Substitute 800 m for yo, 0 for y, 0 for ryo and -9.81 m.s' for ay

0 m = 800 m + (0) + + 1/2 (-9.81 m.s2) (+2)

-800 m = -4.905 m.5-2+2

Solve for lime t

 $f = \sqrt{\frac{800m}{4.905 \text{ m.s}^{-2}}} = 12.77s$

Converting initial velocity from km/h to m/s

Using sc= sco + vxo +

Substitute O for x, 138.89 mls for vocand 12.77s for t. Solve for se

on > 0+138.89 mls (12.77s) = 1773.625 m

Therefore, the crate when released from a flying airplane falls on the ground 1773, 625 m away from the release point of the crate.

39. Using y > yo tryot + 1/2 agt2

Re-write the expression in terms of g. Vy.

Substitute om for yo, o for y, 20s for t and -9.81 mls+ for ay,

$$V_{y_0} = \frac{0 - 0 - 1/2 \left(-9.81 \, \text{m/s}^2\right) \left(20 \, \text{s}\right)^2}{20 \, \text{s}}$$

= 98.1 m/s

Onizov cogv grizU

Re-write in terms of Vo

Vo 2 Vyo Sino

Substitute 98.1 mls for V_{90} and 30° for 0 $V_{0} = \frac{98.1 \text{ mls}}{\text{Sin 300}} = 196.1 \text{ mls}$

Hence, the projectile will have an initial velocity of 196.2 mls whon it is thrown at an angle of 30° from the ground.

(b) Using H= Volsinto

Substitute 196.2 mls for vo, 30° for o and a.81 mls2 for ay.

$$H = \left(\frac{196.2 \text{ m/s}}{5 \text{ in}^2 30^\circ}\right) = 490 \text{ s} \text{ m}$$

Therefore, the maximum altitude reached by the projectile is 490.5 m

Substitute 196. 2 mls for vo, 30° for angle of projectile and 9.81 mlst for ay,

Therefore, the range of the projectib is 3398.284m when the projectibe reaches the same height from where it was released.

(d) Using or = or + (voluso)+

Substitute O for xo, 196.2 m/s for vo, 30° for co and 15s for t,

oc 2 0 + (196.2 mls (103 30°))(155)

2 2548.713 m

Using y = y o tryot +1/2 ag +2

Substitute o for yo, 98.1 m/s for vyo, 155 for t and -9.81 m/s² for ay,

 $4 > 0 + (98.1 \text{ m/s}) (15 \text{ s}) * 1 \text{ m} + 1/2 (-9.81 \text{ mm/s}^2)$ $((155)^2) = 367.875 \text{ m}$

The displacement at 15 s is given by, displacement = sui tysi

Substitute 2548.713 m for se and 367.875 m for 9,

displacement = (2548.713î + 367.875j?)m

Thorotore, total displacement is (2548.7131) + 367.875 j) m

45. Using R= u2sin20 and T= 2sino

Vsing Vz = 41050

Solve for use by substituting 30 m/s for a and 530 for 0 in the equation us = 41000

Vsing uy = usino

Solve for my by substituting 30 mls for a and 53° for 0 in the equation was ucoso

(a) The escpression for the third equation of motion is as follows:

Rearrange He equation for h

Solve for h by substituting O mils for by, 23.96 mils for my, and -9.8 mils for my in the equation

$$h = \frac{10 \, \text{m/s}^2 - (23.96 \, \text{m/s})^2}{2(-9.8 \, \text{m/s}^2)} = 29.28 \, \text{m}$$

Hence, the height above the edge of the clift is 29.28m

(b) Using vy sugtant

Rearrange the equation for t

f: Vy - uig

ay

Solve for t by substituting o imis for vg ,23.96 m/s
for ug, and -9.8 m/st for ag in the equation

t = vy-ug = [0m/s]- [23.96 m/s] = 2.944s

Vsing or om= Uset

Solve for xom by substituting 18.05 mm/s for use and 2.44s for It in the equation 210m = uset som = (18.05 mm/s)(2.44s) = 44.042 m
= 44.04 m

Hence, He horizontal distance covered when the rock is at maximum height is 44.04m

(C) Using H= h clift & h

Now, substitute 100 m for helift and 29.28 m for h in the equation H: helift th.

H= 100 m + 29.18 m = 129.28 m

Using It's uy to 1/2 agti2

Now substitute 129.28 m for H, 0 mls for uy, and -9-8 m/s- for ay in the equation

129.28 m= (24 m/s)t + 1/2 (-9.8 m/s²)t² 129.28 m= (24 m/s)Q.44s) + 1/2 (-9.8 m/s²)t² 129.28 m= (58.56 m) + (-4.9 m/s²)t²

70.72 m = (-4, 4 m/s')+,2

Solve for ti

thing Tobbt

22.445 + 3.795 = 6.235

Hence, the total time taken by the rock from release to hit the ground is 6.23s

(d) Using Rouset

Substitute 18-05 m/s for use and 6.23s for t in the equation R- wit

R = (18.05 mls)(6.231) = 112.61 m × 113 m

Hence, the range of the projectile motion is 113 m

(R) Using set & see Wort

Substitute Om/s for so and 18.05 m/s for use in the equation Set softest

or f = 0 m + (18.05 m/s) t =(18.05) t - (1)

Substitute 2s for + in (1)

or f > 2s > (18.05 m/s)(2s) = 36.1 m

Substitute 4s fort in (1)

D(+>45 = (18.05 m/s) (45)

= 72.2 m

Substitute 6s tort in the equation (1) 21 + = 6 = (18.05 m/s) (6s) = 108.3 m Hence, the horizontal position of the rock to the edge of the cliff at 2s, 4s and 6s are 36.1m, 72.2m and 108.3m respectively.

Using yt = yo tagt = 1/2 gt2

Substitute Om for yo, 23,96 mls for guy, and 9.8 m/s2 for g in the equation

yt > yo tugt - 1/2 gt

oft = 0 m + (23.96 m/s) + - 1/2 (4.8 m/s2) +2

= (13.96 m/s) + = 1/2 (9.8 m/s4) +2

= (13,96 m/s)+ - (4,9 m/s2)+2

yt = (13.98 m/s)+- (4.9 m/s2)+2 - (2)

Substitute 2s for t in equation (2)

yt=2 = [23.96 m/s)(1s) - (4.9 m/sL)(2s)2. = 28.32 m

Substitute 4s for tin the equation (2)

9+>4 2 (23.96 m/s) (4s) - (4.9 m/s-)(4s)-

2 17.44 m

Substitute 60 for t in the equation (2)

Hence, the vertical positions of the rock relative to the edge of the clift at 2s, 4s and 6s are 28.32m, 17.44m and -32.64 mm respectively.

61. Using ac > V2/r

Substitute (20 m/s) for v and (10 m) for n in the expression for ac.

Thus, the particle's contripetal acceleration has a magnitude 40 m/s2

$$=\frac{\left(\frac{2\pi}{T}\right)^{2}}{r}=\frac{\left(2\pi\right)^{2}r^{2}}{2}$$

Substitute 9.8 mls2 for ac and 8 m for n

= 10.6 rev/min

Therefore, the angular speed of riders is 10.6 vev/