Lect 05

Boolean Algebra & Functions Canonical Form

CS221: Digital Design

Dr. A. Sahu

Dept of Comp. Sc. & Engg.
Indian Institute of Technology Guwahati

Outline

- Gates in Digital System
 - Basic Gates (AND, OR & NOT)
 - Universal Gates (NAND & NOR)
 - Others: XOR, XNOR
- Boolean Algebra
 - -Axioms
- Boolean Functions
- Canonical form of Function
 - -SOP and POS

Boolean Algebra

Boolean Algebra Axioms and Rules Axioms/Rules Equations Idempotent a * a = a a + a = a **Boundness** a * 0 = 0 a + 1 = 1Absorption a + (a*b) = aa * (a+b) = aAdorption XY' + Y = X + Y(X + Y')Y = XY,uniting XY + XY' = X(X + Y)(X + Y') = Xduality Dual (S) by interchanging * & +, 0 &1 shannon $F(A,B...Z) = A' \cdot F(0,B...Z) + A \cdot F(1,B...Z)$ Consensus XY + X'Z + YZ = XY + X'Z(a+b)' = a' * b'(a*b)'=a'+b'**DeMorgans**

N-bit Boolean Algebra Single bit to n-bit Boolean Algebra Let a = 1101010, b = 1011011 a + b = 1101010 + 1011011 1111011

N-bit Boolean Algebra

- Single bit to *n-bit* Boolean Algebra
- Let a = 1101010, b = 1011011
 - -a * b = 1101010
 - * 1011011

- = 1001010

N-bit Boolean Algebra

- Single bit to *n-bit* Boolean Algebra
- Let a = 1101010, b = 1011011
 - a' = 1101010'
 - = 0010101

1 1 1

Proof by Truth Table

- Consider the distributive theorem:
 - a + (b * c) = (a + b)*(a + c)

Is it true for a two bit Boolean Algebra?

- Can prove using a truth table
 - -How many possible combinations of a, b, and c are there?
- Three variables, each with two values
 - $-2*2*2 = 2^3 = 8$

Proof by Truth Table							
а	b	С	b*c	a+(b*c)	a+b	a+c	(a+b)*(a+c)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1

1

1

Proof using Theorems

• Use the properties of Boolean Algebra to proof

$$(x+y)(x+x) = x$$

• Warning, make sure you use the laws precisely

(x+y)(x+x)	Given
(x+y)x	Idempotent
x(x+y)	Commutative
x	Absorption
	x(x+y)=xx+xy=x(1+y)=x

How to prove 2+2=5?

We know 2+2=4
$$2 + 2 = 4 - \frac{9}{2} + \frac{9}{2} = \sqrt{(4 - \frac{9}{2})^2} + \frac{9}{2}$$

$$= \sqrt{16 - 2 \cdot 4 \cdot \frac{9}{2} + (\frac{9}{2})^2} + \frac{9}{2}$$

$$= \sqrt{-20 + (\frac{9}{2})^2} + \frac{9}{2} = \sqrt{25 - 45 + (\frac{9}{2})^2} + \frac{9}{2}$$

$$= \sqrt{5^2 - 2 \cdot 4 \cdot \frac{9}{2} + (\frac{9}{2})^2} + \frac{9}{2} = \sqrt{(5 - \frac{9}{2})^2} + \frac{9}{2}$$

$$= 5 - \frac{9}{2} + \frac{9}{2} = 5$$
 Where is the mistake?
$$\sqrt{x^2 = x} \text{ is true only when } x \ge 0$$

Converting to Boolean Equations

- Convert the following English statements to a Boolean equation
 - -Q1. a is 1 and b is 1.
 - Answer: F = a AND b = ab
 - -Q2. either of a or b is 1.
 - Answer: F = a OR b = a+b

Converting to Boolean Equations

- Convert the following English statements to a Boolean equation
 - −Q3. both a and b are not 0.
 - Answer:
 - -(a) Option 1: F = NOT(a) AND NOT(b) = a'b'
 - -(b) Option 2: F = a OR b = a+b
 - -Q4. a is 1 and b is 0.
 - Answer: F = a AND NOT(b) = ab'

Boolean Functions

Boolean Functions: Terminology

$$F(a,b,c) = a'bc + abc' + ab + c$$

- Variable
 - Represents a value (0 or 1), Three variables: a,b, and c
- Literal
 - Appearance of a variable, in true or complemented form
 - Nine literals: a', b, c, a, b, c', a, b, and c

Boolean Functions: Terminology

$$F(a,b,c) = a'bc + abc' + ab + c$$

- Product term
 - Product of literals, Four product terms: a'bc, abc', ab, c
- Sum-of-products (SOP)
 - Above equation is in sum-of-products form.
 - "F = (a+b)c + d" is not.

Truth Table Representation of Functions • Q: Use truth table to define function F(a,b,c) that is 1 when abc is 5 or greater in binary

Converting among Representations

- Can convert from any representation to any other
- Common conversions
 - Equation to circuit
 - -Truth table to equation
 - Equation to truth table
 - Easy -- just evaluate equation for each input combination (row)
 - Creating intermediate columns helps

Converting among Representations

Q: Convert to equation

а	b	F	Term
0	0	1	a'b'
0	1	1	a'b
1	0	0	
1	1	0	

$$F = a'b' + a'b$$

		_	
Converting	among	Represen	tations
201112111111111111111111111111111111111	WIII O 115	. ICP. COCII	

Q: Convert to equation

Term	F	С	b	а	
	0	0	0	0	
	0	1	0	0	
	0	0	1	0	
	0	1	1	0	
	0	0	0	1	
ab'c	1	1	0	1	
abc'	1	0	1	1	
abc	1	1	1	1	

F = ab'c + abc' + abc

Converting among Representations

Q: Convert to truth table: F = a'b' + a'b

Inp	uts			Output
а	b	a'b'	a'b	F
0	0	1	0	1
0	1	0	1	1
1	0	0	0	0
1	1	0	0	0

Standard Representation

- How to determine two functions are the same?
 - Use algebraic methods
 - But if we failed, does that prove *not* equal? No.
- Solution: Convert to truth tables
 - Only ONE truth table representation of given same functions: Standard representation

