

SEQUENCE LISTING

<110> CROCE, Carlo M.
ISHII, Hideshi

<120> COMPOSITIONS, KITS, AND METHODS RELATING TO THE HUMAN FEZ1 GENE, A NOVEL TUMOR SUPPRESSOR GENE

*Sue
SC*
<130> 9855-30U1 (209855.0081)

<140> NOT YET ASSIGNED
<141> 2000-02-25

<150> US 60/121,537
<151> 1999-02-25

<160> 60

<170> PatentIn Ver. 2.1

<210> 1
<211> 9048
<212> DNA
<213> Homo sapiens

<400> 1
gccttccaa gaccctgccc ggccctgccc catcctcagc cccgagtcac catgggcagc 60
gtcagttagcc tcatacgtccgg ccacagcttc cacagcaagc actgccgggc ttgcgtac 120
aagctgcgca agtcctccca ctcaagaag ctcaaccgggt attccgacgg gctgtcgagg 180
tttggcttct cccaggactc cggtcacggc aagtccagct caaaaatggg caagagcgaa 240
gacttcttct acatcaaggt caGCCAGAAA gcccggggct cccatcaccc agattacacg 300
gcactgtcca gcggggattt aggGGGCGAG gctgggggtgg actttgaccc gtccacacccc 360
cccaagctca tgcccttctc caatcagcta gaaatggtaa gcgggggtcg ctggcaaggg 420
taagtgggtt ggaaacgcag gagaaagcaa aatgggggtg gagagcctgg ggttcaggg 480
ggagtggtaa cctgagcatt cagactcctc aaaaccagag cggcagggggt gcccgggaa 540
gcctgtggcc acaccgcaga gatcaaacgt ttcacaaaagg aatttagagca tcgctcagtc 600
cccctgaagc agaagtcttg ggtcaggcca taagcaaaga gcacagggga tatgtgagct 660
tttggagtcc cactgaaatg tagctggatt gtcaacgtag gatccaggcg tttgccaagc 720
ctcgggaagg agagggagcc ctgttctcat ctggaagcac agatgaagag gatgcaggcc 780
gggagttaac cgcttctctc cccgggagac tcgtgggggt ggggtcggtc ttctcatttg 840
ctgcctgtgt gtgcatttagc tccttgttca agctgcgcct gggggcatct ttgaatacag 900
gctggagttt tgtcatccat ttaccagaga ctaggccaaa ggaggcccag gcactgagaa 960
atccagccct cacaccagct caagccctcg tgcgtcccac gagtggacac tgaaatcaat 1020
tttccttattc agtcctctgc cccttgcctt gggaaatga atccccggct ttgattttact 1080
agaaaagagc ctcttatgtt tgcatagagc attcagctt tcaaattaag gggcttgaa 1140
actgtgaagc actctaccag gaaaaattac agttttaaaa aaggatcgt atttggagt 1200
agcttcccaa ccctgttaagg aggccaggtc cgtgtcctt ctcaggctt aatggaagag 1260
gcagtgaaca ggaagaaggg atggacctaa agagggacag caagctcgcc cagcctgatg 1320
ccctaacttg cccccacacag agacctagag caggagcctc aagatggtat ttatcacctc 1380
gggagggtcg gggcaagctg gtggcagggt gctatttcat agaacaaagt gccaagtcg 1440
ccatttaggt tttccctcc taagagagat gacattcagc tgcttcaaag caacaggcaa 1500
ggtctgtga gacaattgac caagaggggt gctgcgtcg ctcagagagc ccagactggc 1560
tcaaggtcgg caegcgtgcc tggggagggta ggtgtcaatg cgcgcgcagg ggaggcatga 1620
gtcaccgcgg tcctttcct ctacagggtt ccgagaaggg tgcaagtgagg cccacagcct 1680
tcaagcctgt gctgccacgg tcaggagcca tcctgcactc ctccccggag agtgcgcagcc 1740
accagctgca cccggccct ccagacaagc ccaaggagca ggagctgaag cctggcctgt 1800
gctctggggc gctgtcagac tccggccggta actccatgtc cagcctgccc acacacagca 1860

ccagcagcag ctaccagctg gacccgctgg tcacacccgt gggaccacaca agccgaaaa 1920
ggggctccgc ccacaacatc acccaggcgca tcgtcccca ggacagcaac atgatgagcc 1980
tgaaggctct gtcccttcgc gacggaggta gcaagctggg ccactcgaac aaggcagaca 2040
agggcccctc gtgtgtccgc tccccatct ccacggacga gtgcagcatc caggagctgg 2100
aacagaagct gttggagagg gagggcgccc tccagaagct gcagcgcagc tttgaggaga 2160
aggagcttcg cttccagctg gcctacgagg agcggccgcg gcgctgcagg gacgagctgg 2220
aggcccccga gcccaaaggc ggcacaacaagc tcaagcaggc ctcgcagaag agccagcgcg 2280
cgcagcaggc cctgcacactg caggtactgc agttcagca ggagaagcgg cagctccgc 2340
aggagctcgaa gagecctcatg aaggagcagg acctgtggaa gaccaagctc aggtcttacg 2400
agagggagaa gaccagcttc ggccccgcgc tggaggagac ccagtgggag gtgaggccac 2460
acagggctca tgggtttggg tggtcagcgg tttggcgcca gtacccccc ctccttcgtt 2520
tgctggccaa tagcgtgcaa acacagaccg cgccaggcaag cggggctaatt gtgctggctt 2580
tatcacccaa agaaggggct ccctgcaaaac catgttgggg gatcgactt catctgagct 2640
tcctcctgtc cccaccatca ccctcatggc tccttagattt cagttccca agtgagccat 2700
taaatcatga agccggaagc cagatgacca aggcccagcc aggctgtggg ctgacccccc 2760
ttccatcagc tcccaggagg ctccagaagaa gaacaagccg tgccctgagtt caggcggggc 2820
cagggggccca agagagcaca gaatgcattt gttgtttgg agggagggac tgccacccact 2880
agtaagaggg accctattgg tggcagggtt cagtgtatgg agtggccact cttgtctgaa 2940
gtgttaagtgg aacttctatt tggtgagctg agatggaaac ctaggagagg aagtaaagag 3000
tcccccaactc acacacttac acactcacac acactcactc accccggtcac acgtggaaat 3060
gaggcatctg tacctgaccg tgctggagaa cccataacc tctgcatcta ttagtggaa 3120
agcagctttt ctcaccagcc tgggtgtctg gatgactcat ggagttcaag cccatcggt 3180
aggctttta catgctcgca cccagcttgg tctgtccacg tgccctgcctc acccccagtt 3240
cagagtccaa atctcagttt acacgcaaaac ccctggctat gtgcaagtca acaaccagt 3300
gtttaacttg cccactgctg gcagctgtat caccccccatt taacaccaat ggtattgggt 3360
ttggtgtcag cctgattttt gtcatcgatg tttatgccc catcctctga cctcaccctt 3420
gcatgcaccc agccctccctc tctcctgtct actggagttt agactaccc acaaattcac 3480
tgctgtaccc agtgactagt atcatgctgg ctggatgca gagcccaatc cacatctgtc 3540
aaacgaggaa tcattttctt ctcccttgc tcttctttctt ctattttcca cccctatccc 3600
ccatcaaaat ttggccaaga gcaatgtga aaaccgaagc cacaggtagt acccatgtgt 3660
ctctggatct tggccatctg ggtcatggg agaccaaggc cagtctggct gaatcttaag 3720
agtgaatgaa gtccagagca tggctctt cagaatggat tcttggaaact agcctggaaag 3780
ccacccctcac atttcctttt acagtagaaa tttcccttg ccctcagtga aacactgcac 3840
agtcctggag aaaatccgac cctaccagg atgcgtgtt gggaccaaga atttcattcc 3900
aaggccaacc ctgtattcat gccacgaagg gagtgcacaca gtcatggctt aggcatgggc 3960
ctggctttga acctcagctt gaccacttat gatccagggtt attgtaaata cattagccat 4020
ggtgttcaatg gggtagatgt attaaactgt tggatcaaa tctctactct tatactttat 4080
attttatata tatatatata taatatataat atatattacg cctcaggctg gtcacttcac 4140
cagctgtttt ctatcataac ctctctgtgc ctcaatgttca ttgatgtaaa ttgaggacta 4200
ctaatagtac ctacttcattc ggggtgttaag gaatagatga gcaaatgtat ggcttggcac 4260
ttaataacac tacaattat tagtggaaatg atgtttataa taatataactt ctgtgtggct 4320
aggcgtggtg gctcacgcct gcaatcccgactttggg ggcagaggca ggcagagcac 4380
ttgaggtcag gaattcgaga tcagccctggc caacatgagg aaaccccgctc tctactaaaa 4440
ataaaaaat cagccaggca tggtggcagg tgtctgtat cccagctact tgggaggctg 4500
aggcaggaga atcagagggg aggccggaggt tgcagtgcgc caagatcagc ccactacacc 4560
ccagcctagg tgacaaagcg agacttctca aatattaaca ataataataat actatgtgtc 4620
attatacatg atgatttata ttttatttactt ttactatata gcctagctcg ataacctggg 4680
araaaaggta cagcaatgtt cagttactt tcagattggcaaaaggctgg aatgccttaac 4740
accggccac cgcatccgga tggcttggt tattttaggc agctgagctg tcactccct 4800
gggttaaggac actcacctt tggcactctg tctccacccc accctcgca ggtgtgcccag 4860
aagtcaaggcg agatctccct cctgaagcagc cagctgaagg agtcccagac ggagggtgaac 4920
gcccaaggcta gcgagatcctt gggctcaag gcacagctga aggacacgcg gggcaagctg 4980
gagggcctgg agctgaggac ccaggacactg gagggcgccc tgccaccaa gggctggag 5040
ctggaggtct gtgagaatga gctgcagcgc aagaagaacg aggccggagct gctgcgggag 5100
aagggtgaacc tgctggagca ggagctgcagc gagctgcggg cccaggccgc cctggccgc 5160
gacatggggc cgccccaccc tccccaggac gtcctgcctt tgccagcggga gctggagcgg 5220
ctgcggggcgg agctgcgggaa ggacggcaca ggcacatgcacc agatgttccctc gggctccag 5280

catgagcggc tcgtgtggaa ggaggagaag gagaaggtga ttcagtacca gaaacagctg 5340
cagcagagct acgtggccat gtaccagcg aaccagcgcc tggagaaggc cctgcagcag 5400
ctggcacgtg gggacagcgc cggggagccc ttggaggtt accttggagg ggctgacatc 5460
ccctacgagg acatcatagc cactgagatc tgaggggctg cttgggaagg cgagtctggg 5520
gacctggcac tgggaggcag ggctctcccg tgcattcccc ctgctcagca attcagaccc 5580
ctctgagaga cgccactccc tggacacag acccaggacc cccgagggga gggcaggatg 5640
gccttcctt ccctctctga tgtcccagtg ctcaccagcc ctgcagccca ccagacgtca 5700
ggccctgact cctctggctt tcccaggaga tgggtccagg ggtctgtctg ctttggtaa 5760
gggctcccta aactttggcc tttgttcgaa atagatatcc tctccccc tcccaaccc 5820
ggtgccaca gcaagaacag cggtccccc cgcgttctca tcccaaccc ttttccctc 5880
tggacacatt ggaatgcctt gaaaatagaa agaaggcata tatgaccaga agccttgaa 5940
ccagccccat cagaacctga gctatccc tctggccgca gaggtgttagg ggtggaatga 6000
gccgcgggaa agctggctt gaaacctcag ggctgtccca gccccggcaa gccacaggaa 6060
ggaggggaga gacaggcagc ccagcagtgt ggagaccctg ccacagccag aggagggcag 6120
aggagaatc caagggttga gagccagtgg cggtgtatgg ccagccctg gggcccagcc 6180
cctgttact ggttcttgca aatggagct gagcagccctc tggacagcca gtgacctttg 6240
acctcggtaa ccactcttct ttaagccata gaccctgagg ccctggctg ggtgtggaa 6300
aggaggggtt gaaaccaccc tgaaccagag ggtgtggctt tccagkcacc ctcagggagc 6360
ctccccatct gtccagctgg ggccagaggc tggagatccc tacctgttcc acgttggccg 6420
gcccgtactc tggaaatgttt ttccctcccc agaatcaagc ttttgcttga tccagaagag 6480
cccatatcac taagatggca tatatgtat ctggcattt tccctctctg cctacagcca 6540
ggtttagcgg caaaccttcc ccccttagca cttcaggcc tgagttctgg gtttcttagag 6600
gtcaggacgg ctccctcagag cgccaggaag ccagagcccc aagcaggacg aaaaagagggc 6660
atacacacag cagtgtgaat agcctggcca ccagccatcc tccctccacc tcaagacccc 6720
catttgtccs agactaaagg atccagagag cagctccctt tctcaggagc ttgggcagtg 6780
ccccagggag tccagggttt ctctgcagat gtgcggagcg ggaggcggtg gtagagagag 6840
ataaaaaggtg gagtttctct gttgtttggc tcagggattt tatttttaat tttatgagac 6900
agggtcttgc tctgtccccc aggctggagt gcagtggcat gatcatagct cactgcagcc 6960
tcatactcct gggctcaagc aatcctctg cctcagccct ccaacttagct gggactacag 7020
gtgcgcgcca ccgtgcctgg ctaacttttcc atttttttt tagggacggg gtctcgcccc 7080
gttgccaaag ctggtctcaa acttggcc tcaagcaatc cacctgcctt ggcctcccaa 7140
agtgctgaga ttgcagatgt gagccaccgt gcctggccag atttttctt tattttctt 7200
tcttttctt tttgtcttcc ttgtctttc agaagcaagc cagacctagc aggctgttcc 7260
atgttctatt ttgactgtt gccacagctg ctgttctcag gacagcatcc tttccacat 7320
gcctgcgcct gctgcctgct gagatgagga ggggagcgct tgggaacttt cgagtccaaag 7380
gccagttcccccc atttctgcct cgctcaccgc tggcccttag agaccccgag gttaggggtgg 7440
ggagatgctt ctctccttgc ccccccgcct catgggtcct agccctccccc tgagtgcggg 7500
ctgaggccag agtcacccctt tctgtggctg gctctaccc tctgtccctg aggttaaacg 7560
gtgcccattcc tgccatcctc aaacgacaga ggagctttc tggaaattca aaccattgtct 7620
cttagtccca agcttaggctt aaacctggaa tctacaagcc aaaagtccct ccctgcctga 7680
ggcagtacc ctccattttggc cacagtccag acccaagtca aagatgcccc attccttgccg 7740
cctcagccct cagttcccttcc atttccacca ggccgtgcct tttttttttt tttccctccca 7800
gtgagactgc cccacggaga cagagggaaag ggctggctcc ccctccccag gctggagacc 7860
ccccccaact ccaggaaaga gcagtccag tccagtgctc tgcctcagac gttgcctgag 7920
aagaagtggc tgccacaccc aggggaaggc cctgaggccg aggctgtgtt cccatgttgg 7980
gtcccggtac ttccatatac cagaggatgt cagcctctc cttatctcca tggccctgtc 8040
ccaggccggc ccagatgtgt ccccccagg cttgtccta cgtccaaagg ggcagatgtc 8100
ttccctgggc tgccaccagg ccccgccccca gagtggccca ccgtggact agaatgcaag 8160
tatcctgcga ctttgcaacc tccatcttctt gttgggttcc ttccctgcctc tttccctccca 8220
cgccctcaact attttggac catgcccagat tctgcctctc tggaaagagg ctctggacag 8280
cagaaggcctc caagcacaga gcctggcccc aggccccaga cagggtgggc ttccctccct 8340
tccctctggg cacgcctgtt gggcaccctt ctgaccactt cggatggacc aacctgttct 8400
gtccccaaag gacgcctgca ggagagagca gcactccgca tcacccatcc aaggatcgga 8460
ctctgcccct ggacctggga acgactggac tgtcacgggg ttccctccta gctctccct 8520
tgaactccctg ccaggcacac acagcccttta tagcactgag ctcacatggg actggatata 8580
gggggcattctt ctcccccaga gaggcactca gtgagcctcc tttttttttt tttccctccca 8640
ccatcttccctt aggtgagaca gttggccgaa actaagccag gcctggctgg aggagcagca 8700

gcttggggag agggattcc ctgcagacct caagccatca tgcggtgggt gctgccatga 8760
cagaggctgc acccctgggc cagcgggct gctcacccac ctcttgcga aggtggcctt 8820
tgtgctgcgc ctgcaggcag agctggagcc cccagcagag gcaggctggg acggaccagc 8880
atctggaaga tgtacatagt tattttctc tttgtggttt ctgtttgggt ttggtttgct 8940
tttgacagct tcattttatt tttgacgtca cttttggcc atgtaaaacta tttgtggcaa 9000
tttatgtttt ttatattatga ataaagaatg ccatttctca cgccctct 9048

<210> 2
<211> 5492
<212> DNA
<213> Homo sapiens

<400> 2
tgagggcttt gctatgacct cagtccctc acggagccac gactgcccct tgctgccaca 60
gccttccaa gaccctgccc gcccctgccc catcctcagc cccgagtcac catggcagc 120
gtcagtagcc tcatactccgg ccacagcttc cacagcaagc actgcccggc ttcgcagttac 180
aagctgcga agtcctccca cctcaagaag ctcaaccggc attccgcacgg gctgtgagg 240
tttggcttc cccaggactc cggtcacggc aagtccagct caaaaatggg caagagcga 300
gacttcttc acatcaaggt cagccagaaa gcccgggct cccatcaccc agattacacg 360
gcactgtcca gcggggattt agggggccag gctgggggtgg actttgcaccc gtccacaccc 420
cccaagctca tgcccttctc caatcagcta gaaatgggct ccgagaaggg tgcagtgagg 480
ccccacagct tcaagcctgt gctgccacgg tcaggagcca tcctgcactc ctccccggag 540
agtgcacggc accagctgca ccccgccct ccagacaagc ccaaggagca ggagctgaag 600
cctggctgt gctctggggc gctgtcagac tccggccggc actccatgtc cagcctgccc 660
acacacagca ccagcagcag ctaccagctg gaccggctgg tcacacccgt gggaccacaca 720
agccgtttt ggggctccgc ccacaacatc acccaggggca tcgtcctcca ggacagcaac 780
atgatgagcc tgaaggctct gtccttctcc gacggaggt gcaagctggg ccactcgaac 840
aaggcagaca agggccccc tgtgtccgc tccccatct ccacggacga gtgcagcatc 900
caggagctgg agcagaagct gttggagagg gagggcgccc tccagaagct gcagcgcagc 960
tttggggaga aggagcttgc ctccagctg gcctacgagg agcggccgag ggcgtcagg 1020
gacgagctgg agggcccgga gcccaaaggc ggcaacaagc tcaagcaggc ctcgcagaag 1080
agccagcgcg cgcagcagg tctgcacctg caggtactgc agcttcagca ggagaagcgg 1140
cagctccggc aggagctcga gagcctcatg aaggagcagg acctgctgg gaccaagctc 1200
aggctctacg agagggagaa gaccagctt cggccggc tggaggagac ccagtggag 1260
gtgtgccaga agtcaggcga gatctccctc ctgaagcagc agctgaagga gtcccagacg 1320
gagggtgaacg ccaaggcttag cgagatctg ggtctcaagg cacagctgaa ggacacgcgg 1380
ggcaagctgg agggccttgg gctgaggacc caggacctgg agggcgccct ggcacccaag 1440
ggcttggagc tggaggcttg tgagaatgag ctgcagcga agaagaacga ggcggagctg 1500
ctgccccgaga aggtgaacct gctggagcag gagctgcagg agctgcgggc ccaggccgccc 1560
ctggcccgcc acatggggcc gcccacctt cccgaggacg tccctgcctt gcagcgggag 1620
ctggagcggc tgccggccga gctgcgggag gagcggcaag gccatgacca gatgtcctcg 1680
ggcttccagc atgagcggct cgtgtggaaagg gaggagaagg agaagggtat tcagtaccag 1740
aaacagctgc agcagagcta cgtggccatg taccagcggg accagcgcct ggagaaggcc 1800
ctgcagcagc tggcacgtgg ggacagcggc ggggagccct tggaggttga cctggaaagg 1860
gctgacatcc cctacgagga catcatagcc actgagatct gaggggctgc ctggaaaggc 1920
gagtctgggg acctggact gggaggcagg gctctccctt gcatcccccc tgctcagcaa 1980
ttcagacccc tctgagagac gccactccctt gggacacaga cccaggaccc cggaggggag 2040
ggcaggatgg ctttccctt cctctctgtat gtcctcgtgc tcaccagccc tgcagccac 2100
cagacgtcg gccctgactc ctctggcttt cccaggagat gggccagggt gtctgtctgc 2160
tttggtaag ggctccctaa actttggctt ttgttgcaaa tagatatccct tccccctcc 2220
tccagggaaag gtggccacag caagaacagc ggctccctc cgcttctcat cccaaacctct 2280
tttccctctt ggacacattt gaatgccttg gaaatagaaa gaagccatat atgaccagaa 2340
gccttggaaac cagccccatc agaacctgag ctatccctt ctggccgcag aggtgttaggg 2400
gtggaatgag ccgcggggaa gctggctttt aaacctcagg gctgtccctg ccccgccaaag 2460
ccacagggaaag gaggggagag acaggcagcc cagcagtgtg gagaccctgc cacagccaga 2520
ggagggcaga gggagaatcc aagggtttag agccagtggc ggggtatggc cagccccctgg 2580

ggcccagccc ctgtttactg gttcttgcaa atgggagctg agcagcctct ggacagccag 2640
tgaccttga cctcggtgac cactcttctt taagccatag accctgaggc cctgggctgg 2700
gtgctggaa gggagggttg aaaccaccgt gaaccagagg gtgtggctt ccaggcaccc 2760
tcagggagcc tccccatctg tccagctggg gccagaggct gggagtccct acctgcttca 2820
cggtggccgg cggtactctt ggaatgttt tccctccccca gaatcaagct tttgcttgat 2880
ccagaagagc ccatatcact aagatggcat atatgtgatc tgggcatttt cctcctctgc 2940
ctacagccag gtttagcgcc aaaccttcc cccttagcac cttcagggtct gagttctggg 3000
tttctagagg tcaggacggc tcctcagagc gccaggaagc cagagccccca agcaggacga 3060
aaaagaggca tacacacagc agtgtgaata gcctggccac cagccatctt ccctccaccc 3120
caagacccccc atttgtccca gactaaagga tccagagagc agtccccc ttctcaggagct 3180
tggcagtgc cccagggagt ccagggtttc tctgcagatg tgccggagcgg gaggccgtgg 3240
tagagagaga taaaagggtgg agtttctctg ttgtttgggtt cagggatttt atttttaatt 3300
ttatgagaca gggctttgct ctgtccccca ggctggagtg cagtgccatg atcatagctc 3360
actgcagect catactcctg ggctcaagca atcctcctgc ctcagccttc caactagctg 3420
ggactacagg tgcgcgccac cgtgcctggc taactttca tttttttgtt agggacgggg 3480
tctcgaaaa tgcctaaaggc tggtctcaaa ctgtggcct caagcaatcc acctgcctt 3540
gcctcccaaa gtgctgagat tgcaagatgtg agccaccgtg cctggccaga tttttttttt 3600
atttttctt tttttttttt tttgctttct ttttcttca gaagcaagcc agaccttagca 3660
ggctgttcca ttttcttattt ttgactgttag ccacagctgc ttttctcagg acagcatccc 3720
ttcccacatg cctgcgcctg ctgcctgtg agatgaggag gggagcgtct gggaaacttgc 3780
gagtccaagg ccagtccca ttttgcctc gtcaccgcg gggccctttaga gaccccgagg 3840
taggggtggg gagatgttcc ttcattggcc ccccgccctc atgggtccta gcccctccct 3900
gagtgcgggc tgaggccaga gtcacccccc ttttgccttgc ctctacccctc ctgtccctt 3960
ggtaaacgg tgcccatttca gccatcctca aacgacagag gagcttttctt ggaatttcaa 4020
accattgctc ttagtccca gctaggctt aaccttggaaat ctacaagccaa aaagtccctc 4080
cctgccttag ggcagtaccc tccattggcc acagtccaga cccaaagtccaa agatgcccc 4140
ttcattgcgc ctcagccctc agtttcttca ttttccaccag gccgtgcctt gttttagttt 4200
ttcattccctg tgagactgtcc ccaacggagac agaggaaagg gtcggctccc cttcccccagg 4260
ctggagaccc ccccaactc cagggaaagag cagtcagatg ccagtgcgtct gcctcagacg 4320
ttgcctgaga agaagtggct gccacacccca gggaaaggcc ctgaggccggg ggctgtgctc 4380
cgccatggtg tcccggttacc tttccatacac agaggagtgc agccttctcc atatctccat 4440
ggccctgtcc caggccggcc cagatgtgtc ccccccaggc ttttgccttac gtccaaagggt 4500
gcagatgtct tccctgggct gccaccagcc cccggccctt agtggccctc cgtggcacta 4560
gaatgcaagt atcctgcgtc ctttgcaccc ttttgccttgc ttttgccttgc ttttgccttgc 4620
gtccaaaagg gccctcaacta ttttggacc atgcccattt ctgtttttttt gggaaaggaggc 4680
tctggacagg agaaggctcc aagcacagag cttttttttt gggcccttcc acgggtggct 4740
tcctgcctt ccctctggcc acgcctgttgc gccgaccctc tgacccactc ggatggacca 4800
acctgctctg tcccaaaagg acgcctgttgc gagagagcag cactccgttccat cccctccat 4860
aggatcgac tctggccctt gacccatggaa cttttttttt gtcacgggggt tcccttcttgc 4920
ctctccctgtt gaaacttccgc caggcacaca cagcccttat agcactgagc tcacatggga 4980
ctggatatg gggccatctc tttttttttt aggcacttgc tgacccatggcc ttttgccttgc 5040
ccagtctggg ccatcttta ggttggacccat ttttgccttgc ttttgccttgc ttttgccttgc 5100
ggagcaggcag ctgggggaga gggattttttcc ttttgccttgc ttttgccttgc ttttgccttgc 5160
ctggccatgtc agaggcttgc cccctggggcc acgggggtttt ctttgccttgc ttttgccttgc 5220
ggtggctttt gtttgccttgc ttttgccttgc ttttgccttgc ttttgccttgc ttttgccttgc 5280
cgagccaggca tctggaaatgtt gtttgccttgc ttttgccttgc ttttgccttgc ttttgccttgc 5340
tggtttgcctt ttttgccttgc ttttgccttgc ttttgccttgc ttttgccttgc ttttgccttgc 5400
tttgccttgc ttttgccttgc ttttgccttgc ttttgccttgc ttttgccttgc ttttgccttgc 5460
aaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aa 5492

<210> 3
<211> 1791
<212> DNA
<213> Homo sapiens

<400> 3

atgggcagcg tcagtagcct catctccggc cacagcttcc acagcaagca ctgccggct 60
tcgcagtaca agctgcgcaa gtcccccac ctcagaagc tcaaccggta ttccgacggg 120
ctgctgagggt ttggcttctc ccaggactcc ggtcacggca agtccagctc caaaatgggc 180
aagagcgaag acttcttcta catcaaggtc agccagaaag cccggggctc ccatcaccca 240
gattacacgg cactgtccag cggggattta gggggccagg ctggggtgga ctttgaccgg 300
tccacacccc ccaagctcat gcccttctcc aatcagctag aaatgggctc cgagaagggt 360
gcagtgaggc ccacagcctt caagcctgtg ctgccacggc caggagccat cctgcactcc 420
tccccggaga gtgccagcca ccagctgcac cccgcccctc cagacaagcc caaggagcag 480
gagctgaaggc ctggcctgtg ctctggggcg ctgtcagact cccggccggaa ctccatgtcc 540
agctgcggca cacacagcac cagcagcagc taccagctgg acccgctgg cacacccgtg 600
ggacccacaa gccgtttgg ggctccgccc cacaacatca cccagggcat cgtcctccag 660
gacagcaaca tgatgaggcct gaaggctctg tccttctccg acggaggtag caagctggc 720
cactcgaaca aggccagacaa gggcccctcg tgtgtccgct ccccatctc cacggacgag 780
tgcagcatcc agggagctgga gcagaagctg ttggagaggg agggcgcctt ccagaagctg 840
cagcgcagct ttgaggagaa ggagcttgcc tccagcctgg cctacgagga gcggccgcgg 900
cgctgcaggc acggagctggc gggcccggag cccaaaggcg gcaacaagct caagcaggcc 960
tcgcagaaga gccagcgcgc gcagcaggc tcgcacctgc aggtactgca gcttcagcag 1020
gagaagcggc agctccggca ggagctcgag agcctcatga aggagcagga cctgctggag 1080
accaagctca ggtcctacga gaggggagaag accagcttcg gcccgcgcgt ggaggagacc 1140
cagtgggagg tgtccagaa gtcaggcgcag atctccctcc tgaaggcagca gctgaaggag 1200
tcccagacgg aggtgaacgc caaggctagc gagatcctgg gtctcaaggc acagctgaag 1260
gacacgcggc gcaagctggc gggcctggag ctgaggaccc aggacctggc gggcgcctg 1320
cgcaccaagg gcctggagact ggaggctctgt gagaatgagc tgcagcgc当地 gaagaacgag 1380
gcggagctgc tgccggagaa ggtgaacctg ctggagcagg agctgcagga gctgcgggccc 1440
caggccgc当地 tggcccgca catggggcccg cccaccttcc ccgaggacgt ccctgc当地 1500
cagcgggagc tggagcggct gcggggccgag ctgcgggagg agcggcaagg ccatgaccag 1560
atgtcctcgg gcttccagca tgacggctc gtgtggagg aggagaagga gaaggtgatt 1620
cagtaccaga aacagctgca gcagagctac gtggccatgt accagcggaa ccagcgcctg 1680
gagaaggccc tgacggcagct ggacacgtggc gacacgc当地 gggagccctt ggaggttgac 1740
ctgaaagggg ctgacatccc ctacaggac atcatagcca ctgagatctg a 1791

<210> 4
<211> 596
<212> PRT
<213> Homo sapiens

<400> 4
Met Gly Ser Val Ser Ser Leu Ile Ser Gly His Ser Phe His Ser Lys
1 5 10 15
His Cys Arg Ala Ser Gln Tyr Lys Leu Arg Lys Ser Ser His Leu Lys
20 25 30
Lys Leu Asn Arg Tyr Ser Asp Gly Leu Leu Arg Phe Gly Phe Ser Gln
35 40 45
Asp Ser Gly His Gly Lys Ser Ser Ser Lys Met Gly Lys Ser Glu Asp
50 55 60
Phe Phe Tyr Ile Lys Val Ser Gln Lys Ala Arg Gly Ser His His Pro
65 70 75 80
Asp Tyr Thr Ala Leu Ser Ser Gly Asp Leu Gly Gly Gln Ala Gly Val
85 90 95
Asp Phe Asp Pro Ser Thr Pro Pro Lys Leu Met Pro Phe Ser Asn Gln

100

105

110

Leu Glu Met Gly Ser Glu Lys Gly Ala Val Arg Pro Thr Ala Phe Lys
115 120 125

Pro Val Leu Pro Arg Ser Gly Ala Ile Leu His Ser Ser Pro Glu Ser
130 135 140

Ala Ser His Gln Leu His Pro Ala Pro Pro Asp Lys Pro Lys Glu Gln
145 150 155 160

Glu Leu Lys Pro Gly Leu Cys Ser Gly Ala Leu Ser Asp Ser Gly Arg
165 170 175

Asn Ser Met Ser Ser Leu Pro Thr His Ser Thr Ser Ser Tyr Gln
180 185 190

Leu Asp Pro Leu Val Thr Pro Val Gly Pro Thr Ser Arg Phe Gly Gly
195 200 205

Ser Ala His Asn Ile Thr Gln Gly Ile Val Leu Gln Asp Ser Asn Met
210 215 220

Met Ser Leu Lys Ala Leu Ser Phe Ser Asp Gly Gly Ser Lys Leu Gly
225 230 235 240

His Ser Asn Lys Ala Asp Lys Gly Pro Ser Cys Val Arg Ser Pro Ile
245 250 255

Ser Thr Asp Glu Cys Ser Ile Gln Glu Leu Glu Gln Lys Leu Leu Glu
260 265 270

Arg Glu Gly Ala Leu Gln Lys Leu Gln Arg Ser Phe Glu Glu Lys Glu
275 280 285

Leu Ala Ser Ser Leu Ala Tyr Glu Glu Arg Pro Arg Arg Cys Arg Asp
290 295 300

Glu Leu Glu Gly Pro Glu Pro Lys Gly Gly Asn Lys Leu Lys Gln Ala
305 310 315 320

Ser Gln Lys Ser Gln Arg Ala Gln Gln Val Leu His Leu Gln Val Leu
325 330 335

Gln Leu Gln Gln Glu Lys Arg Gln Leu Arg Gln Glu Leu Glu Ser Leu
340 345 350

Met Lys Glu Gln Asp Leu Leu Glu Thr Lys Leu Arg Ser Tyr Glu Arg
355 360 365

Glu Lys Thr Ser Phe Gly Pro Ala Leu Glu Glu Thr Gln Trp Glu Val
370 375 380

Cys Gln Lys Ser Gly Glu Ile Ser Leu Leu Lys Gln Gln Leu Lys Glu
385 390 395 400

Ser Gln Thr Glu Val Asn Ala Lys Ala Ser Glu Ile Leu Gly Leu Lys

405 410 415

Ala Gln Leu Lys Asp Thr Arg Gly Lys Leu Glu Gly Leu Glu Leu Arg
420 425 430

Thr Gln Asp Leu Glu Gly Ala Leu Arg Thr Lys Gly Leu Glu Leu Glu
435 440 445

Val Cys Glu Asn Glu Leu Gln Arg Lys Lys Asn Glu Ala Glu Leu Leu
450 455 460

Arg Glu Lys Val Asn Leu Leu Glu Gln Glu Leu Gln Glu Leu Arg Ala
465 470 480

Gln Ala Ala Leu Ala Arg Asp Met Gly Pro Pro Thr Phe Pro Glu Asp
485 490 495

Val Pro Ala Leu Gln Arg Glu Leu Glu Arg Leu Arg Ala Glu Leu Arg
500 505 510

Glu Glu Arg Gln Gly His Asp Gln Met Ser Ser Gly Phe Gln His Glu
515 520 525

Arg Leu Val Trp Lys Glu Glu Lys Glu Lys Val Ile Gln Tyr Gln Lys
530 535 540

Gln Leu Gln Gln Ser Tyr Val Ala Met Tyr Gln Arg Asn Gln Arg Leu
545 550 560

Glu Lys Ala Leu Gln Gln Leu Ala Arg Gly Asp Ser Ala Gly Glu Pro
565 570 575

Leu Glu Val Asp Leu Glu Gly Ala Asp Ile Pro Tyr Glu Asp Ile Ile
580 585 590

Ala Thr Glu Ile
595

<210> 5
<211> 76
<212> PRT
<213> Homo sapiens

<400> 5
Met Gly Ser Val Ser Ser Leu Ile Ser Gly His Ser Phe His Ser Lys
1 5 10 15

His Cys Arg Ala Ser Gln Tyr Lys Leu Arg Lys Ser Ser His Leu Lys
20 25 30

Lys Leu Asn Arg Tyr Ser Asp Gly Leu Leu Arg Phe Gly Phe Ser Gln
35 40 45

Asp Ser Gly His Gly Lys Ala Met Thr Arg Cys Pro Arg Ala Ser Ser
50 55 60

Met Ser Gly Ser Cys Gly Arg Arg Arg Arg Arg Arg
65 70 75

<210> 6
<211> 69
<212> PRT
<213> Homo sapiens

<400> 6
Arg Cys Arg Asp Glu Leu Glu Gly Pro Glu Pro Lys Gly Gly Asn Lys
1 5 10 15

Leu Lys Gln Ala Ser Gln Lys Ser Gln Arg Ala Gln Gln Val Leu His
20 25 30

Leu Gln Val Leu Gln Leu Gln Gln Glu Lys Arg Gln Leu Arg Gln Glu
35 40 45

Leu Glu Ser Leu Met Lys Glu Gln Asp Leu Leu Glu Thr Lys Leu Arg
50 55 60

Ser Tyr Glu Arg Glu
65

<210> 7
<211> 68
<212> PRT
<213> Homo sapiens

<400> 7
Ile Ser Arg Arg Arg Glu Lys Glu Asn Pro Lys Glu Arg Asn Lys
1 5 10 15

Met Ala Ala Ala Lys Cys Arg Asn Arg Arg Glu Leu Thr Asp Thr
20 25 30

Leu Gln Ala Glu Thr Asp Gln Leu Glu Asp Glu Lys Ser Ala Leu Gln
35 40 45

Thr Glu Ile Ala Asn Leu Leu Lys Glu Lys Glu Lys Leu Glu Phe Ile
50 55 60

Leu Ala Ala His
65

<210> 8
<211> 69
<212> PRT
<213> Homo sapiens

<400> 8
Ala Trp Glu Arg Glu Leu Ala Glu Leu Arg Gln Gly Cys Ser Gly Lys
1 5 10 15

Leu Gln Gln Val Ala Arg Arg Ala Gln Arg Ala Gln Gln Gly Leu Gln
20 25 30

Leu Gln Val Leu Arg Leu Gln Gln Asp Lys Lys Gln Leu Gln Glu Glu
35 40 45

Ala Ala Arg Leu Met Arg Gln Arg Glu Glu Leu Glu Asp Lys Val Ala
50 55 60

Ala Cys Gln Lys Glu
65

<210> 9
<211> 404
<212> DNA
<213> Homo sapiens

<400> 9
atgggcagcg tcagtagcct catctccggc cacagcttcc acagcaaggca ctgccccggct 60
tcgcagtaca agctgcgcaa gtcctcccac ctcaagaagc tcaaccggta ttccgacggg 120
ctgctgaggt ttggcttctc ccaggactcc ggtcacggca aggccatgac cagatgtcct 180
cgggcttcca gcatgagcgg ctcgtgtgga aggaggagaa ggagaagggtg attcagtacc 240
agaaacagct gcagcagagc tacgtggcca tgtaccagcg gaaccagcgc ctggagaagg 300
ccctgcagca gctggcacgt ggggacagcg ccggggagcc cttggaggtt gacctggaag 360
gggctgacat cccctacgag gacatcatag ccactgagat ctga 404

<210> 10
<211> 633
<212> DNA
<213> Homo sapiens

<400> 10
atgggcagcg tcagtagcct catctccggc cacagcttcc acagcaaggca ctgccccggct 60
tcgcagtaca agctgcgcaa gtcctcccac ctcaagaagc tcaaccggta ttccgacggg 120
ctgctgaggt ttggcttctc ccaggactcc ggtcacggca agtccagctc caaatgggc 180
aagagcgaag acttcttcta catcaaggc agccagaaaag cccggggctc ccatcaccca 240
gattacacgg cactgtccag cggggattta gggggccagg ctggggtgga ctttgaccgg 300
tccacacccc ccaagctcat gcccttctcc aatcagctag aaatgggctc cgagaagggt 360
gcagtgaggg ccacagcctt caagcctgtg ctgccacggt caggagccat cctgcactcc 420
tccccggaga gtgccagcca ccagctgcac cccgcccctc cagacaagcc caaggagcag 480
gagctgaagc ctggcctgtg ctctggggcg ctgtcagact cccggccggaa ctccatgtcc 540
agcctgcccc cacacagcgc cggggagccc ttggaggtt acctggaagg ggctgacatc 600
ccctacgagg acatcatagc cactgagatc tga 633

<210> 11
<211> 1614
<212> DNA
<213> Homo sapiens

<400> 11
atgggcagcg tcagtagcct catctccggc cacagcttcc acagcaaggca ctgccccggct 60
tcgcagtaca agctgcgcaa gtcctcccac ctcaagaagc tcaaccggta ttccgacggg 120
ctgctgaggt ttggcttctc ccaggactcc ggtcacggca agtccagctc caaatgggc 180
aagagcgaag acttcttcta catcaaggc agccagaaaag cccggggctc ccatcaccca 240

gattacacgg cactgtccag cggggattta gggggccagg ctggggtgga ctttgcacccg 300
tccacacccc ccaagctcat gcccttctcc aatcagctag aaatgggctc cgagaagggt 360
gcagtgaggc ccacagcctt caagcctgtg ctgccacggc caggagccat cctgcactcc 420
tccccggaga gtgccagcca ccagctgcac cccgcccctc cagacaagcc caaggagcag 480
gagctgaagc ctggcctgtg ctctggggcg ctgtcagact cccgcccggaa ctccatgtcc 540
agcctgccc cacacagcac cagcagcagc taccagctgg acccgctggt cacaccctgt 600
ggacccacaa gccgttttgg ggctccgccc cacaacatca cccagggcat cgtcctccag 660
gacagcaaca tgatgagcct gaaggctctg tccttctcc acggaggtag caagctggc 720
cactcgaaca aggccagacaa gggccctcg tgtgtccgct ccccatctc cacggacgag 780
tgcagcatcc aggagcttgg gcagaagctg ttggagaggg agggcgccct ccagaagctg 840
cagcgcagct ttgaggagaa ggagcttgcc tccagcctgg cctacgagga gcccggcgg 900
cgctgcaggg acgagcttgg gggcccgag cccaaaggcg gcaacaagct caagcaggcc 960
tcgcagaaga gccagcgcgc gcagcaggc tcgtcacctgc aggtactgca gcttcagcag 1020
gagaagcggc agctccggca ggagctcgag agcctcatga aggagcagga cctgctggag 1080
accaagctca ggtcctacga gaggagaag accagcttcg gcccggcgt ggaggagacc 1140
cagtggagg tgtgccagaa gtcagggcgat atctccctcc tgaaggcagca gctgaaggag 1200
tcccagacgg aggtgaacgc caaggcttagc gagatcctgg gtctcaaggc acagctgaag 1260
gacacgcggc gcaagcttgg gggcctggag ctgaggaccc aggacctgg gggcgccctg 1320
cgcaccaagg gcctggagct ggaggtctgt gagaatgagc tgcaagcgc gaaaacgcag 1380
gcccggctgc tgccggagaa gcatgagcgg ctcgtgtgg aaggaggagaa ggagaagggt 1440
attcgttacc agaaaacagct gcagcagac tacgtggcca tgtaccagcg gaaccagcgc 1500
ctggagaagg ccctgcagca gctggcacgt ggggacagcg cccgggagcc cttggaggtt 1560
gacctggaag gggctgacat cccctacgag gacatcatag ccactgagat ctga 1614

<210> 12
<211> 1512
<212> DNA
<213> Homo sapiens

<400> 12
atgggcagcg tcagtagcct catctccggc cacagcttcc acagcaagca ctggccggct 60
tcgcagtaca agctgcgcaa gtcctccac ctcaagaagc tcaaccggta ttccgacggg 120
ctgctgaggc ttggccttcc ccaggactcc ggtcacggc agtccagctc caaaatggc 180
aagagcgaag acttcttcta catcaaggc agccagaaag cccggggctc ccatcaccc 240
gattacacgg cactgtccag cggggattta gggggccagg ctggggtgga ctttgcaccc 300
tccacacccc ccaagctcat gcccttctcc aatcagctag aaatgggctc cgagaagggt 360
gcagtgaggc ccacagcctt caagcctgtg ctgccacggc caggagccat cctgcactcc 420
tccccggaga gtgccagcca ccagctgcac cccgcccctc cagacaagcc caaggagcag 480
gagctgaagc ctggcctgtg ctctggggcg ctgtcagact cccgcccggaa ctccatgtcc 540
agcctgccc cacacagcac cagcagcagc taccagctgg acccgctggt cacaccctgt 600
ggacccacaa gccgttttgg ggctccgccc cacaacatca cccagggcat cgtcctccag 660
gacagcaaca tgatgagcct gaaggctctg tccttctcc acggaggtag caagctggc 720
cactcgaaca aggccagacaa gggccctcg tgtgtccgct ccccatctc cacggacgag 780
tgcagcatcc aggagcttgg gcagaagctg ttggagaggg agggcgccct ccagaagctg 840
cagcgcagct ttgaggagaa ggagcttgcc tccagcctgg cctacgagga gcccggcgg 900
cgctgcaggg acgagcttgg gggcccgag cccaaaggcg gcaacaagct caagcaggcc 960
tcgcagaaga gccagcgcgc gcagcaggc tcgtcacctgc aggtactgca gcttcagcag 1020
gagaagcggc agctccggca ggagctcgag agcctcatga aggagcagga cctgctggag 1080
accaagctca ggtcctacga gaggagaag accagcttcg gcccggcgt ggaggagacc 1140
cagtggagg tgtgccagaa gtcagggcgat atctccctcc tgaaggcagca gctgaaggag 1200
tcccagacgg aggtgaacgc caaggcttagc gagatcctgg gtctcaaggc acagctgaag 1260
gacacgcggc gcaagcttgg gggcctggag ctgaggaccc aggacctgg gggcgccctg 1320
cgcaccaagg gcctggagct ggaggtctgt gagaatgagc tgcaagcagag ctacgtggcc 1380
atgtaccagc ggaaccagcg cctggagaag gccctgcagc agtggcaccg tggggacagc 1440
gcccgggagc cttggaggt tgacctggaa gggctgaca tccctacga ggacatcata 1500
gccactgaga tc 1512

<210> 13
<211> 1692
<212> DNA
<213> Homo sapiens

<400> 13
atgggcagcg tcagtagcct catctccggc cacagcttcc acagcaagca ctgccccggct 60
tcgcagtaca agctgcgcaa gtcccccac ctcaagaagc tcaaccggta ttccgacggg 120
ctgctgagggt ttggcttctc ccaggactcc ggtcacggca agtccagctc caaaatgggc 180
aagagcgaag acttcttcta catcaaggtc agccagaaag cccggggctc ccatcaccca 240
gattacacgg cactgtccag cggggattta gggggccagg ctggggtgga ctttgacccg 300
tccacacccc ccaagctcat gccttctcc aatcagctag aaatgggctc cgagaagggt 360
gcagtgaggg ccacagcctt caagcctgtg ctgccacggt caggagccat cctgcactcc 420
tccccggaga gtgccagcca ccagctgcac cccggccctc cagacaagcc caaggagcag 480
gagctgaagc ctggcctgtg ctctggggcg ctgtcagact ccggccggaa ctccatgtcc 540
agcctgccc cacacagcac cagcagcagc taccagctgg acccgcttgt cacacccgtg 600
ggacccacaa gccgtttgg ggctccgccc cacaacatca cccagggcat cgtccctccag 660
gacagcaaca tgatgagcct gaaggctctg tccttctcc acggaggtag caagctggc 720
cactcgaaca aggcagacaa gggccctcg tgttccgct ccccatctc cacggacgag 780
tgcagcatcc aggagctgga gcagaagctg ttggagaggg agggcgcctt ccagaagctg 840
cagcgcagct ttgaggagaa ggagcttgcc tccagctgg cctacgagga gcggccgcgg 900
cgctgcaggg acgagctgga gggcccgag cccaaaggcg gcaacaagct caagcaggcc 960
tcgcagaaga gccagcgcgc gcagcaggc tcgcacctgc aggtactgca gcttcagcag 1020
gagaagcggc agctccggca ggagctcgag agcctcatga aggagcagga cctgctggag 1080
accaagctca ggtcctacga gagggagaag accagctcg gcccccgcgt ggaggagacc 1140
cagtggagg tgtgccagaa gtcaggcgag atctccctcc tgaaggcagca gctgaaggag 1200
tcccagacgg aggtgaacgc caaggcttagc gagatcctgg gtctcaaggc acagctgaag 1260
gacacgcggg gcaagctgga gggcctggag ctgaggaccc aggacctgga gggcccccctg 1320
cgcaccaagg gcctggagct ggaggctctgt gagaatgagc tgcaagcgc当地 gaagaacgag 1380
gcggagctgc tgcgggagaa ggtgaacctg ctggagcggc tgcggcccgaa gctgcgggag 1440
gagcggcaag gccatgacca gatgttcccg ggcttccagc atgagcggct cgtgttggaa 1500
gaggagaagg agaagggttat tcagtagccaa aaacagctgc agcagagcta cgtggccatg 1560
taccagcggg accagcgcct ggagaaggcc ctgcagcagc tggcacgtgg ggacagcgc当地 1620
gggagccct tggaggttga ccttggaaaggg gctgacatcc cctacgagga catcatagcc 1680
actgagatct ga 1692

<210> 14
<211> 1722
<212> DNA
<213> Homo sapiens

<400> 14
atgggcagcg tcagtagcct catctccggc cacagcttcc acagcaagca ctgccccggct 60
tcgcagtaca agctgcgcaa gtcccccac ctcaagaagc tcaaccggta ttccgacggg 120
ctgctgagggt ttggcttctc ccaggactcc ggtcacggca agtccagctc caaaatgggc 180
aagagcgaag acttcttcta catcaaggtc agccagaaag cccggggctc ccatcaccca 240
gattacacgg cactgtccag cggggattta gggggccagg ctggggtgga ctttgacccg 300
tccacacccc ccaagctcat gccttctcc aatcagctag aaatgggctc cgagaagggt 360
gcagtgaggg ccacagcctt caagcctgtg ctgccacggt caggagccat cctgcactcc 420
tccccggaga gtgccagcca ccagctgcac cccggccctc cagacaagcc caaggagcag 480
gagctgaagc ctggcctgtg ctctggggcg ctgtcagact ccggccggaa ctccatgtcc 540
agcctgccc cacacagcac cagcagcagc taccagctgg acccgcttgt cacacccgtg 600
ggacccacaa gccgtttgg ggctccgccc cacaacatca cccagggcat cgtccctccag 660
gacagcaaca tgatgagcct gaaggctctg tccttctcc acggaggtag caagctggc 720

cactcgaaca aggcagacaa gggcccctcg tgtgtccgct ccccatctc cacggacgag 780
tgcagcatcc aggagctgga gcagaagctg ttggagaggg agggcgcct ccagaagctg 840
cagcgcagct ttgaggagaa ggagcttgcc tccagcctgg cctacgagga gcggccgcgg 900
cgctgcaggg acgagctgga gggcccgag cccaaaggcg gcaacaagct caagcaggcc 960
tcgcagaaga gccagcgcgc gcagcaggc ctgcacctgc aggtactgca gcttcagcag 1020
gagaagcggc agctccggca ggagctcgag agcctcatga aggagcagga cctgctggag 1080
accaagctca ggtcctacga gagggagaag accagctcg gccccgcgc ggaggagacc 1140
cagtgggagg tgtgccagaa gtcagggcag atctccctcc tgaaggcagca gctgaaggag 1200
tcccagacgg aggtgaacgc caaggcttagc gagatcctgg gtctcaaggc acagctgaag 1260
gacacgcggc gcaagctgga gggcctggag ctgaggaccc aggacctgga gggcgcctg 1320
cgcaccaagg gcctggagct ggaggtctgt gagaatgagc tgcaagcgc aaagaacgag 1380
gcggagctgc tgccggagaa ggtgaacctg ctggagcagg agctgcagga gctgcggcc 1440
caggccgccc tggcccgcga catggggccg cccaccttcc ccgaggacgt ccctgcctg 1500
cagcgggagc tggagcggct cgtgtggaaag gaggagaagg agaaggtgat tcagtaccag 1560
aaacagctgc agcagagcta cgtggccatg taccagcggc accagcgcct ggagaaggcc 1620
ctgcagcagc tggcacgtgg ggacagcgc gggagccct tggaggttga cctggaagggg 1680
gctgacatcc cctacgagga catcatagcc actgagatct ga 1722

<210> 15
<211> 76
<212> PRT
<213> Homo sapiens

<400> 15
Met Gly Ser Val Ser Ser Leu Ile Ser Gly His Ser Phe His Ser Lys
1 5 10 15

His Cys Arg Ala Ser Gln Tyr Lys Leu Arg Lys Ser Ser His Leu Lys
20 25 30

Lys Leu Asn Arg Tyr Ser Asp Gly Leu Leu Arg Phe Gly Phe Ser Gln
35 40 45

Asp Ser Gly His Gly Lys Ala Met Thr Arg Cys Pro Arg Ala Ser Ser
50 55 60

Met Ser Gly Ser Cys Gly Arg Arg Arg Arg Arg
65 70 75

<210> 16
<211> 210
<212> PRT
<213> Homo sapiens

<400> 16
Met Gly Ser Val Ser Ser Leu Ile Ser Gly His Ser Phe His Ser Lys
1 5 10 15

His Cys Arg Ala Ser Gln Tyr Lys Leu Arg Lys Ser Ser His Leu Lys
20 25 30

Lys Leu Asn Arg Tyr Ser Asp Gly Leu Leu Arg Phe Gly Phe Ser Gln
35 40 45

Asp Ser Gly His Gly Lys Ser Ser Ser Lys Met Gly Lys Ser Glu Asp

50

55

60

Phe Phe Tyr Ile Lys Val Ser Gln Lys Ala Arg Gly Ser His His Pro
65 70 75 80

Asp Tyr Thr Ala Leu Ser Ser Gly Asp Leu Gly Gly Gln Ala Gly Val
85 90 95

Asp Phe Asp Pro Ser Thr Pro Pro Lys Leu Met Pro Phe Ser Asn Gln
100 105 110

Leu Glu Met Gly Ser Glu Lys Gly Ala Val Arg Pro Thr Ala Phe Lys
115 120 125

Pro Val Leu Pro Arg Ser Gly Ala Ile Leu His Ser Ser Pro Glu Ser
130 135 140

Ala Ser His Gln Leu His Pro Ala Pro Pro Asp Lys Pro Lys Glu Gln
145 150 155 160

Glu Leu Lys Pro Gly Leu Cys Ser Gly Ala Leu Ser Asp Ser Gly Arg
165 170 175

Asn Ser Met Ser Ser Leu Pro Thr His Ser Ala Gly Glu Pro Leu Glu
180 185 190

Val Asp Leu Glu Gly Ala Asp Ile Pro Tyr Glu Asp Ile Ile Ala Thr
195 200 205

Glu Ile
210

<210> 17
<211> 537
<212> PRT
<213> Homo sapiens

<400> 17
Met Gly Ser Val Ser Ser Leu Ile Ser Gly His Ser Phe His Ser Lys
1 5 10 15

His Cys Arg Ala Ser Gln Tyr Lys Leu Arg Lys Ser Ser His Leu Lys
20 25 30

Lys Leu Asn Arg Tyr Ser Asp Gly Leu Leu Arg Phe Gly Phe Ser Gln
35 40 45

Asp Ser Gly His Gly Lys Ser Ser Ser Lys Met Gly Lys Ser Glu Asp
50 55 60

Phe Phe Tyr Ile Lys Val Ser Gln Lys Ala Arg Gly Ser His His Pro
65 70 75 80

Asp Tyr Thr Ala Leu Ser Ser Gly Asp Leu Gly Gly Gln Ala Gly Val
85 90 95

Asp Phe Asp Pro Ser Thr Pro Pro Lys Leu Met Pro Phe Ser Asn Gln
100 105 110

Leu Glu Met Gly Ser Glu Lys Gly Ala Val Arg Pro Thr Ala Phe Lys
115 120 125

Pro Val Leu Pro Arg Ser Gly Ala Ile Leu His Ser Ser Pro Glu Ser
130 135 140

Ala Ser His Gln Leu His Pro Ala Pro Pro Asp Lys Pro Lys Glu Gln
145 150 155 160

Glu Leu Lys Pro Gly Leu Cys Ser Gly Ala Leu Ser Asp Ser Gly Arg
165 170 175

Asn Ser Met Ser Ser Leu Pro Thr His Ser Thr Ser Ser Tyr Gln
180 185 190

Leu Asp Pro Leu Val Thr Pro Val Gly Pro Thr Ser Arg Phe Gly Gly
195 200 205

Ser Ala His Asn Ile Thr Gln Gly Ile Val Leu Gln Asp Ser Asn Met
210 215 220

Met Ser Leu Lys Ala Leu Ser Phe Ser Asp Gly Gly Ser Lys Leu Gly
225 230 235 240

His Ser Asn Lys Ala Asp Lys Gly Pro Ser Cys Val Arg Ser Pro Ile
245 250 255

Ser Thr Asp Glu Cys Ser Ile Gln Glu Leu Glu Gln Lys Leu Leu Glu
260 265 270

Arg Glu Gly Ala Leu Gln Lys Leu Gln Arg Ser Phe Glu Glu Lys Glu
275 280 285

Leu Ala Ser Ser Leu Ala Tyr Glu Glu Arg Pro Arg Arg Cys Arg Asp
290 295 300

Glu Leu Glu Gly Pro Glu Pro Lys Gly Asn Lys Leu Lys Gln Ala
305 310 315 320

Ser Gln Lys Ser Gln Arg Ala Gln Gln Val Leu His Leu Gln Val Leu
325 330 335

Gln Leu Gln Gln Glu Lys Arg Gln Leu Arg Gln Glu Leu Glu Ser Leu
340 345 350

Met Lys Glu Gln Asp Leu Leu Glu Thr Lys Leu Arg Ser Tyr Glu Arg
355 360 365

Glu Lys Thr Ser Phe Gly Pro Ala Leu Glu Glu Thr Gln Trp Glu Val
370 375 380

Cys Gln Lys Ser Gly Glu Ile Ser Leu Leu Lys Gln Gln Leu Lys Glu
385 390 395 400

Ser Gln Thr Glu Val Asn Ala Lys Ala Ser Glu Ile Leu Gly Leu Lys
405 410 415

Ala Gln Leu Lys Asp Thr Arg Gly Lys Leu Glu Gly Leu Glu Leu Arg
420 425 430

Thr Gln Asp Leu Glu Gly Ala Leu Arg Thr Lys Gly Leu Glu Leu Glu
435 440 445

Val Cys Glu Asn Glu Leu Gln Arg Lys Lys Asn Glu Ala Glu Leu Leu
450 455 460

Arg Glu Lys His Glu Arg Leu Val Trp Lys Glu Glu Lys Glu Lys Val
465 470 475 480

Ile Gln Tyr Gln Lys Gln Leu Gln Gln Ser Tyr Val Ala Met Tyr Gln
485 490 495

Arg Asn Gln Arg Leu Glu Lys Ala Leu Gln Gln Leu Ala Arg Gly Asp
500 505 510

Ser Ala Gly Glu Pro Leu Glu Val Asp Leu Glu Gly Ala Asp Ile Pro
515 520 525

Tyr Glu Asp Ile Ile Ala Thr Glu Ile
530 535

<210> 18
<211> 504
<212> PRT
<213> Homo sapiens

<400> 18
Met Gly Ser Val Ser Ser Leu Ile Ser Gly His Ser Phe His Ser Lys
1 5 10 15

His Cys Arg Ala Ser Gln Tyr Lys Leu Arg Lys Ser Ser His Leu Lys
20 25 30

Lys Leu Asn Arg Tyr Ser Asp Gly Leu Leu Arg Phe Gly Phe Ser Gln
35 40 45

Asp Ser Gly His Gly Lys Ser Ser Ser Lys Met Gly Lys Ser Glu Asp
50 55 60

Phe Phe Tyr Ile Lys Val Ser Gln Lys Ala Arg Gly Ser His His Pro
65 70 75 80

Asp Tyr Thr Ala Leu Ser Ser Gly Asp Leu Gly Gly Gln Ala Gly Val
85 90 95

Asp Phe Asp Pro Ser Thr Pro Pro Lys Leu Met Pro Phe Ser Asn Gln
100 105 110

Leu Glu Met Gly Ser Glu Lys Gly Ala Val Arg Pro Thr Ala Phe Lys
115 120 125

Pro Val Leu Pro Arg Ser Gly Ala Ile Leu His Ser Ser Pro Glu Ser
130 135 140

Ala Ser His Gln Leu His Pro Ala Pro Pro Asp Lys Pro Lys Glu Gln
145 150 155 160

Glu Leu Lys Pro Gly Leu Cys Ser Gly Ala Leu Ser Asp Ser Gly Arg
165 170 175

Asn Ser Met Ser Ser Leu Pro Thr His Ser Thr Ser Ser Tyr Gln
180 185 190

Leu Asp Pro Leu Val Thr Pro Val Gly Pro Thr Ser Arg Phe Gly Gly
195 200 205

Ser Ala His Asn Ile Thr Gln Gly Ile Val Leu Gln Asp Ser Asn Met
210 215 220

Met Ser Leu Lys Ala Leu Ser Phe Ser Asp Gly Gly Ser Lys Leu Gly
225 230 235 240

His Ser Asn Lys Ala Asp Lys Gly Pro Ser Cys Val Arg Ser Pro Ile
245 250 255

Ser Thr Asp Glu Cys Ser Ile Gln Glu Leu Glu Gln Lys Leu Leu Glu
260 265 270

Arg Glu Gly Ala Leu Gln Lys Leu Gln Arg Ser Phe Glu Glu Lys Glu
275 280 285

Leu Ala Ser Ser Leu Ala Tyr Glu Glu Arg Pro Arg Arg Cys Arg Asp
290 295 300

Glu Leu Glu Gly Pro Glu Pro Lys Gly Asn Lys Leu Lys Gln Ala
305 310 315 320

Ser Gln Lys Ser Gln Arg Ala Gln Gln Val Leu His Leu Gln Val Leu
325 330 335

Gln Leu Gln Gln Glu Lys Arg Gln Leu Arg Gln Glu Leu Glu Ser Leu
340 345 350

Met Lys Glu Gln Asp Leu Leu Glu Thr Lys Leu Arg Ser Tyr Glu Arg
355 360 365

Glu Lys Thr Ser Phe Gly Pro Ala Leu Glu Glu Thr Gln Trp Glu Val
370 375 380

Cys Gln Lys Ser Gly Glu Ile Ser Leu Leu Lys Gln Gln Leu Lys Glu
385 390 395 400

Ser Gln Thr Glu Val Asn Ala Lys Ala Ser Glu Ile Leu Gly Leu Lys
405 410 415

Ala Gln Leu Lys Asp Thr Arg Gly Lys Leu Glu Gly Leu Glu Leu Arg
420 425 430

Thr Gln Asp Leu Glu Gly Ala Leu Arg Thr Lys Gly Leu Glu Leu Glu
435 440 445

Val Cys Glu Asn Glu Leu Gln Gln Ser Tyr Val Ala Met Tyr Gln Arg
450 455 460

Asn Gln Arg Leu Glu Lys Ala Leu Gln Gln Leu Ala Arg Gly Asp Ser
465 470 475 480

Ala Gly Glu Pro Leu Glu Val Asp Leu Glu Gly Ala Asp Ile Pro Tyr
485 490 495

Glu Asp Ile Ile Ala Thr Glu Ile
500

<210> 19
<211> 563
<212> PRT
<213> Homo sapiens

<400> 19
Met Gly Ser Val Ser Ser Leu Ile Ser Gly His Ser Phe His Ser Lys
1 5 10 15

His Cys Arg Ala Ser Gln Tyr Lys Leu Arg Lys Ser Ser His Leu Lys
20 25 30

Lys Leu Asn Arg Tyr Ser Asp Gly Leu Leu Arg Phe Gly Phe Ser Gln
35 40 45

Asp Ser Gly His Gly Lys Ser Ser Ser Lys Met Gly Lys Ser Glu Asp
50 55 60

Phe Phe Tyr Ile Lys Val Ser Gln Lys Ala Arg Gly Ser His His Pro
65 70 75 80

Asp Tyr Thr Ala Leu Ser Ser Gly Asp Leu Gly Gly Gln Ala Gly Val
85 90 95

Asp Phe Asp Pro Ser Thr Pro Pro Lys Leu Met Pro Phe Ser Asn Gln
100 105 110

Leu Glu Met Gly Ser Glu Lys Gly Ala Val Arg Pro Thr Ala Phe Lys
115 120 125

Pro Val Leu Pro Arg Ser Gly Ala Ile Leu His Ser Ser Pro Glu Ser
130 135 140

Ala Ser His Gln Leu His Pro Ala Pro Pro Asp Lys Pro Lys Glu Gln
145 150 155 160

Glu Leu Lys Pro Gly Leu Cys Ser Gly Ala Leu Ser Asp Ser Gly Arg
165 170 175

Asn Ser Met Ser Ser Leu Pro Thr His Ser Thr Ser Ser Tyr Gln

180

185

190

Leu Asp Pro Leu Val Thr Pro Val Gly Pro Thr Ser Arg Phe Gly Gly
195 200 205

Ser Ala His Asn Ile Thr Gln Gly Ile Val Leu Gln Asp Ser Asn Met
210 215 220

Met Ser Leu Lys Ala Leu Ser Phe Ser Asp Gly Gly Ser Lys Leu Gly
225 230 235 240

His Ser Asn Lys Ala Asp Lys Gly Pro Ser Cys Val Arg Ser Pro Ile
245 250 255

Ser Thr Asp Glu Cys Ser Ile Gln Glu Leu Glu Gln Lys Leu Leu Glu
260 265 270

Arg Glu Gly Ala Leu Gln Lys Leu Gln Arg Ser Phe Glu Glu Lys Glu
275 280 285

Leu Ala Ser Ser Leu Ala Tyr Glu Glu Arg Pro Arg Arg Cys Arg Asp
290 295 300

Glu Leu Glu Gly Pro Glu Pro Lys Gly Gly Asn Lys Leu Lys Gln Ala
305 310 315 320

Ser Gln Lys Ser Gln Arg Ala Gln Gln Val Leu His Leu Gln Val Leu
325 330 335

Gln Leu Gln Gln Glu Lys Arg Gln Leu Arg Gln Glu Leu Glu Ser Leu
340 345 350

Met Lys Glu Gln Asp Leu Leu Glu Thr Lys Leu Arg Ser Tyr Glu Arg
355 360 365

Glu Lys Thr Ser Phe Gly Pro Ala Leu Glu Glu Thr Gln Trp Glu Val
370 375 380

Cys Gln Lys Ser Gly Glu Ile Ser Leu Leu Lys Gln Gln Leu Lys Glu
385 390 395 400

Ser Gln Thr Glu Val Asn Ala Lys Ala Ser Glu Ile Leu Gly Leu Lys
405 410 415

Ala Gln Leu Lys Asp Thr Arg Gly Lys Leu Glu Gly Leu Glu Leu Arg
420 425 430

Thr Gln Asp Leu Glu Gly Ala Leu Arg Thr Lys Gly Leu Glu Leu Glu
435 440 445

Val Cys Glu Asn Glu Leu Gln Arg Lys Lys Asn Glu Ala Glu Leu Leu
450 455 460

Arg Glu Lys Val Asn Leu Leu Glu Arg Leu Arg Ala Glu Leu Arg Glu
465 470 475 480

Glu Arg Gln Gly His Asp Gln Met Ser Ser Gly Phe Gln His Glu Arg

485

490

495

Leu Val Trp Lys Glu Glu Lys Glu Lys Val Ile Gln Tyr Gln Lys Gln
500 505 510

Leu Gln Gln Ser Tyr Val Ala Met Tyr Gln Arg Asn Gln Arg Leu Glu
515 520 525

Lys Ala Leu Gln Gln Leu Ala Arg Gly Asp Ser Ala Gly Glu Pro Leu
530 535 540

Glu Val Asp Leu Glu Gly Ala Asp Ile Pro Tyr Glu Asp Ile Ile Ala
545 550 555 560

Thr Glu Ile

<210> 20
<211> 573
<212> PRT
<213> Homo sapiens

<400> 20
Met Gly Ser Val Ser Ser Leu Ile Ser Gly His Ser Phe His Ser Lys
1 5 10 15

His Cys Arg Ala Ser Gln Tyr Lys Leu Arg Lys Ser Ser His Leu Lys
20 25 30

Lys Leu Asn Arg Tyr Ser Asp Gly Leu Leu Arg Phe Gly Phe Ser Gln
35 40 45

Asp Ser Gly His Gly Lys Ser Ser Ser Lys Met Gly Lys Ser Glu Asp
50 55 60

Phe Phe Tyr Ile Lys Val Ser Gln Lys Ala Arg Gly Ser His His Pro
65 70 75 80

Asp Tyr Thr Ala Leu Ser Ser Gly Asp Leu Gly Gly Gln Ala Gly Val
85 90 95

Asp Phe Asp Pro Ser Thr Pro Pro Lys Leu Met Pro Phe Ser Asn Gln
100 105 110

Leu Glu Met Gly Ser Glu Lys Gly Ala Val Arg Pro Thr Ala Phe Lys
115 120 125

Pro Val Leu Pro Arg Ser Gly Ala Ile Leu His Ser Ser Pro Glu Ser
130 135 140

Ala Ser His Gln Leu His Pro Ala Pro Pro Asp Lys Pro Lys Glu Gln
145 150 155 160

Glu Leu Lys Pro Gly Leu Cys Ser Gly Ala Leu Ser Asp Ser Gly Arg
165 170 175

Asn Ser Met Ser Ser Leu Pro Thr His Ser Thr Ser Ser Tyr Gln
180 185 190

Leu Asp Pro Leu Val Thr Pro Val Gly Pro Thr Ser Arg Phe Gly Gly
195 200 205

Ser Ala His Asn Ile Thr Gln Gly Ile Val Leu Gln Asp Ser Asn Met
210 215 220

Met Ser Leu Lys Ala Leu Ser Phe Ser Asp Gly Gly Ser Lys Leu Gly
225 230 235 240

His Ser Asn Lys Ala Asp Lys Gly Pro Ser Cys Val Arg Ser Pro Ile
245 250 255

Ser Thr Asp Glu Cys Ser Ile Gln Glu Leu Glu Gln Lys Leu Leu Glu
260 265 270

Arg Glu Gly Ala Leu Gln Lys Leu Gln Arg Ser Phe Glu Glu Lys Glu
275 280 285

Leu Ala Ser Ser Leu Ala Tyr Glu Glu Arg Pro Arg Arg Cys Arg Asp
290 295 300

Glu Leu Glu Gly Pro Glu Pro Lys Gly Asn Lys Leu Lys Gln Ala
305 310 315 320

Ser Gln Lys Ser Gln Arg Ala Gln Gln Val Leu His Leu Gln Val Leu
325 330 335

Gln Leu Gln Gln Glu Lys Arg Gln Leu Arg Gln Glu Leu Glu Ser Leu
340 345 350

Met Lys Glu Gln Asp Leu Leu Glu Thr Lys Leu Arg Ser Tyr Glu Arg
355 360 365

Glu Lys Thr Ser Phe Gly Pro Ala Leu Glu Glu Thr Gln Trp Glu Val
370 375 380

Cys Gln Lys Ser Gly Glu Ile Ser Leu Leu Lys Gln Gln Leu Lys Glu
385 390 395 400

Ser Gln Thr Glu Val Asn Ala Lys Ala Ser Glu Ile Leu Gly Leu Lys
405 410 415

Ala Gln Leu Lys Asp Thr Arg Gly Lys Leu Glu Gly Leu Glu Leu Arg
420 425 430

Thr Gln Asp Leu Glu Gly Ala Leu Arg Thr Lys Gly Leu Glu Leu Glu
435 440 445

Val Cys Glu Asn Glu Leu Gln Arg Lys Lys Asn Glu Ala Glu Leu Leu
450 455 460

Arg Glu Lys Val Asn Leu Leu Glu Gln Glu Leu Gln Glu Leu Arg Ala
465 470 475 480

Gln Ala Ala Leu Ala Arg Asp Met Gly Pro Pro Thr Phe Pro Glu Asp
485 490 495

Val Pro Ala Leu Gln Arg Glu Leu Glu Arg Leu Val Trp Lys Glu Glu
500 505 510

Lys Glu Lys Val Ile Gln Tyr Gln Lys Gln Leu Gln Gln Ser Tyr Val
515 520 525

Ala Met Tyr Gln Arg Asn Gln Arg Leu Glu Lys Ala Leu Gln Gln Leu
530 535 540

Ala Arg Gly Asp Ser Ala Gly Glu Pro Leu Glu Val Asp Leu Glu Gly
545 550 555 560

Ala Asp Ile Pro Tyr Glu Asp Ile Ile Ala Thr Glu Ile
565 570

<210> 21
<211> 591
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: F37 Probe

<400> 21
ggactctgcc cctggacactg ggaacgactg gactgtcacg gggttccctc ctagctctcc 60
cagtgaaactc ctgccaggca cacacagccc ctatagcact gagctcacat gggactggga 120
tatggggca tcttcccc agagaggcac tcagttagcc tcctgtgcct ggccccagtc 180
tggccatct cttaggtgag acagttgccc gaaactaagc caggcctggc tggaggagca 240
gcagcttggg gagagggatt tccctgcaga cctcaagcca tcatgcgttg ggtgctgcca 300
tgacagaggc tgcaccctg ggccagcggg gctgctcacc cacctttgt gcaagggtggc 360
ctttgtctg cgccctgcagg cagagctgga gccccagca gaggcaggct gggacggacc 420
agcatctgga agatgtacat agttatttt ctctttgtgg tttcttgttt ggtttgggtt 480
gctttgaca gcttcatttt attttgacg tcactttttg gccatgtaaa ctatttgtgg 540
caattttatg ttttattta tgaataaaga atgccatttc tcacgccctc t 591

<210> 22
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: FEZ1 alterable
region amplificatin primer G12

<400> 22
gctgccacag cctttccaag acc

23

<210> 23
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: FEZ1 alterable
region amplificatin primer G13

<400> 23
taccgggtga gcttcttgag gtg

23

<210> 24
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: FEZ1 alterable
region amplification primer G14.2

<400> 24
acagcttcca cagcaaggcac tgc

23

<210> 25
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: FEZ1 alterable
region amplification primer G15

<400> 25
attggagaag ggcatgagct t

21

<210> 26
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: FEZ1 alterable
region amplification primer G16

<400> 26
tggactttga cccgtccaca cc

22

<210> 27
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: FEZ1 alterable
region amplification primer IntABR

<400> 27
gttccaacc cacttacct tgc 23

<210> 28
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: FEZ1 alterable
region amplification primer IntABF

<400> 28
gcaggggagg catgagtcac c 21

<210> 29
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: FEZ1 alterable
region amplification primer G17

<400> 29
ggttcagct cctgctccctt gg 22

<210> 30
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: FEZ1 alterable
region amplification primer G20

<400> 30
acaacatcac ccagggcatc gtc 23

<210> 31
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: FEZ1 alterable
region amplification primer G21

<400> 31
cctccagtc gtccctgcag c 21

<210> 32

<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: FEZ1 alterable
region amplification primer G32

<400> 32
actgcagctt cagcaggaga agc 23

<210> 33
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: FEZ1 alterable
region amplification primer IntBCR

<400> 33
ctgaccaccc aaacccatga gc 22

<210> 34
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: FEZ1 alterable
region amplification primer IntBCF

<400> 34
tcacctcttg gcactctgtc tcc 23

<210> 35
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: FEZ1 alterable
region amplification primer Mut6

<400> 35
caggtcctgg gtcctcagct c 21

<210> 36
<211> 23
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: FEZ1 alterable
region amplification primer G1

<400> 36
tgaacgccaa ggcttagcgag atc

23

<210> 37
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: FEZ1 alterable
region amplification primer G2

<400> 37
gctcctgcag ctcctgctcc ag

22

<210> 38
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: FEZ1 alterable
region amplification primer G75

<400> 38
cccaccttcc ccgaggacgt c

21

<210> 39
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: FEZ1 alterable
region amplification primer G82

<400> 39
agccccgagga catctggtca tgg

23

<210> 40
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: FEZ1 alterable
region amplification primer G5

<400> 40
cctgccctgc agcgggagct ggag

24

<210> 41
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: FEZ1 alterable
region amplification primer G6

<400> 41
agctgctgca gggccttctc cag 23

<210> 42
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: FEZ1 alterable
region amplification primer G7

<400> 42
cagtaccaga aacagctgca gcagagc 27

<210> 43
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: FEZ1 alterable
region amplification primer G8

<400> 43
ccctgcctcc cagtgccagg tc 22

<210> 44
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: First strand
of partially-double stranded adapter-linker

<400> 44
gatctcgacg aattcgtag acct 24

<210> 45
<211> 20
<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Second strand
of partially-double stranded adapter-linker

<400> 45
tggtctcacg aattcgtcga 20

<210> 46
<211> 23
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Donor site
sequence of truncated FEZ1 truncation region

<400> 46
tcccaggact ccggcacgg caa 23

<210> 47
<211> 21
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Acceptor site
sequence of truncated FEZ1 truncation region

<400> 47
gagcgcaag gccatgacca g 21

<210> 48
<211> 23
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Donor site
sequence of truncated FEZ1 truncation region

<400> 48
agcctgcccc cacacagcac cag 23

<210> 49
<211> 21
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Acceptor site
sequence of truncated FEZ1 truncation region

<400> 49
cagcgccggg gagcccttgg a 21

<210> 50
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Donor site sequence of truncated FEZ1 truncation region

<400> 50
gtgagaatga gctgcagcgc aag 23

<210> 51
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Acceptor site sequence of truncated FEZ1 truncation region

<400> 51
cagcagagct acgtggccat gt 22

<210> 52
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Donor site sequence of truncated FEZ1 truncation region

<400> 52
agctgctgcg ggagaaggta aac 23

<210> 53
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Acceptor site sequence of truncated FEZ1 truncation region

<400> 53
cagcatgagc ggctcggttg ga 22

<210> 54
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Donor site
sequence of truncated FEZ1 truncation region

<400> 54
aggtaacct gctggagcag gag 23

<210> 55
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Acceptor site
sequence of truncated FEZ1 truncation region

<400> 55
gagcggtgc gggccgagct gc 22

<210> 56
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Donor site
sequence of truncated FEZ1 truncation region

<400> 56
ctgcagcggg agctggagcg gctg 24

<210> 57
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Acceptor site
sequence of truncated FEZ1 truncation region

<400> 57
gagcggtcg tgtggaagga g 21

<210> 58
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer for
amplifying FEZ1 cDNA

<400> 58
cagatggca gcgtcagtag cctcatc

27

<210> 59
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer for
amplifying FEZ1 cDNA

<400> 59
tcagatctca gtggctatga tgtc

24

<210> 60
<211> 8073
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Nucleotide
sequence of vector pQBI-AdCMV5-IRES-GFP

<400> 60
gaattcggcc ggccatcatc aataatatac cttattttgg attgaagcca atatgataat 60
gagggggtgg agtttgtgac gtggcgccgg gcggtggaaac ggggcgggtg acgttagtagt 120
gtggcgaag tggatgttg caagtgtggc ggaacacatg taagcgcacgg atgtggcaaa 180
agtgcgttt ttgggtgtcgcc cggtgtaca caggaagtga caatttcgc gcggttttag 240
gcggatgttg tagtaaattt gggcgtaacc gagtaagatt tggccatttt cgccggaaaa 300
ctgaataaga ggaagtgaaa tctgaataat tttgtgttac tcatacgccg taatatttgt 360
ctaggggccgc cagatcgatc tccgagggat ctgcacccaa tgatttgccc tcccatatgt 420
ccttccgagt gagagacaca aaaaatttcca acacactatt gcaatgaaaa taaatttccct 480
ttattagcca gaggtcgagg tcgggggatc ctcagttgtc cagttcatcc atgccatgtg 540
taatcccagc agctgttaca aactcaagaa ggaccatgtg gtctctctt tcgttggat 600
ctttcgaaag ggcagattgt gtggacaggt aatggttgtc tggtaaaagg acagggccat 660
cgccaattgg agtattttgt tgataatggc ctgcgtttgc aacgcgttcca tcttcaatgt 720
tggcggtt cttgaagttc actttgattc cattctttt tttgtctgcc atgatgtata 780
cattgtgtga gttatagttt tattccaaatt tggatcccag aatgttgcca tcttccttga 840
agtcaataacc ttttaactcg attctattaa caagggtatc accttcaaac ttgacttcag 900
cacgtgttgcgtt gtagttgccc tcatactttga agaagatggt cctttcctgt acataaacctt 960
cgggcattggc actcttgaaa aagtcatgcc gtttcatatg atccgggtat cttggaaaagc 1020
atggaaacacc atagcacaga gtagtgacta gtgttggcca tggaaacaggc agtttgcac 1080
tagtgcagat gaaccttcagg gtaagtttc cgtatgtgc atcaccttca ccctctccac 1140
tgacagagaa cttgtggcccg ttaacatcac catctaattc aacaagaatt gggacaactc 1200
cagtgaagag ttcttcctt ttgtctgcc tggcgatcc ggctgaacgg tctgggtata 1260
ggtagatgtca gcaactgact gaaatgcctc aaaatgttct ttacgtgcc attggat 1320
atcaacgggtg gtatccatcg tgatccccccat cttccatgggtt gtggcaagct tatcatcggt 1380
tttttcaag gaaaaccacg tccccgtggc tggggggcc tagacgtttt ttaacctcga 1440
ctaaacacat gtaaaagcatg tgcaccggagg ccccagatca gatcccatac aatgggttac 1500
cttctggca tccttcagcc cttgttgaa tacgcttgcg gagagccatt tgactttc 1560

cacaactatc caactcacaa cgtggcactg gggttgtgcc gcctttgcag gtgtatctta 1620
tacacgtggc tttggccgc agaggcacct gtcgccaggt ggggggttcc gctgcctgca 1680
aagggtcgct acagacgttg tttgtcttca agaagcttcc agaggaactg cttccctcac 1740
gacattcaac agaccttgca ttcccttggc gagaggggaa agacccttag gaatgctcgt 1800
caagaagaca gggccaggtt tccggccct cacattgcca aaagacggca atatggtgaa 1860
aaataacata tagacaaacg cacaccggcc ttattccaag cggcttcggc cagtaacgtt 1920
aggggggggg gagggagagg gcggaaattcg gagagggcgg aattcggggc cgccggagatc 1980
ttccaaactt ggacctgggta gtggacacct gtggagagaa aggcaaagtg gatgtcattg 2040
tcactcaagt gtatggccag atcggccag gtgaatatca aatectcctc gttttggaa 2100
actgacaatc ttagcgcaga agtcatgccc gctttgaga gggagtactc accccaaacag 2160
ctggatctca agcctgccc acctcacctc gaccatccgc cgctcaaga ccgcctactt 2220
taattacatc atcagcagca cctccgcccag aaacaacccc gaccgccacc cgctgccgccc 2280
cgccacgggt ctcagectac cttgcgactg tgactggta gacgccttc tcgagagggtt 2340
ttccgatccg gtcgatgcgg actggctcag gtcctcggt ggcggagtac cgttcggagg 2400
ccgacgggtt tccgatccaa gagtautggaa aagaccgcga agagttgtc ctcaaccgcg 2460
agcccaacag ctggccctcg cagacagcga tgccgaaagag agtggaggatc tgacgggtca 2520
ctaaacgagc tctgcttata tagacctccc accgtacacg cctaccgccc atttgcgtca 2580
acggggcggg gttattacga cattttggaa agtcccgtt gaaatcccc tgagtcaaac cgctatccac 2640
tcccattgac gtcaatgggg tggagacttg gaaatcccc tgagtcaaac cgctatccac 2700
gcccatgggt gtactgccaa aaccgcatac ccatggtaat agcgatgact aatacgtaga 2760
tgtactgcca agtaggaaag tcccgttaagg tcatgtactg ggcataatgc caggcggggcc 2820
atttaccgtc attgacgtca atagggggcg gacttggcat atgatacact tgatgtactg 2880
ccaagtgggc agtttaccgt aaatactcca cccattgacg tcaatggaaa gtcctattg 2940
gcgttactat gggAACATAC gtcattattg acgtcaatgg gggggggtc ttggcgggtc 3000
agccaggcgg gccatttacc gtaagttatg taacgcggaa ctccatataat gggctatgaa 3060
ctaattgaccc cgtaaatttat tactattaat aactagtcaa taatcaatgt caacatggcg 3120
gtcatattgg acatgagcca atataaatgt acatattatg atatagatac aacgtatgca 3180
atggccaata gccaatattt atttatgcta tataaccaat gactaatatg gctaattgcc 3240
aatattgatt caatgtatag atcgatctgg aaggtgctga ggtacgtga gaccgcacc 3300
aggtgcagac cctgcgagtg tggcggtaaa catattagga accagcctgt gatgttggat 3360
gtgaccgagg agctgaggcc cgatcacattg gtgctggct gCACCCGCGC tgagttggc 3420
tctagcgatg aagatacaga ttgaggtact gaaatgtgt ggcgtggctt aagggtggga 3480
aagaatatat aagggtgggg tcttatgttag tttgtatct gttttgcagc agccggccg 3540
gccatgagca ccaactcggt tgatggaaatc attgtgagct catatttgcac aacgcgcac 3600
cccccatggg cgggggtgc tcagaatgtg atgggttca gatttgcgtt tcgccccgtc 3660
ctgcccgc当地 actctactac cttgacctac gagaccgtgt ctggAACGCC gttggagact 3720
gcagccctcg cccgcgttcc agccgctgca gccacccccc gggggattgt gactgacttt 3780
gcttcctga gcccgttgc aagcagtgc gcttccgtt catcccccgc cgatgacaag 3840
ttgacggctc tttggcaca attggattct ttgacccggg aacttaatgt cgtttctcag 3900
cagctgttgg atctgcgcca gcagggttct gcccgttcaagg cttccccc tcccaatgcg 3960
gtttaaaaca taaataaaaa accagactct gtttggattt ggtcaagca agtgccttgc 4020
tgtctttatt taggggtttt ggcgcgcgg tagggccggg accagcggcgc tcggcgttgc 4080
agggcctgt gtatttttc caggacgtgg taaaggtgac tctggatgtt cagatacatg 4140
ggcataagcc cgtctctggg gtggaggtag caccactgca gagcttcatg ctgcgggggtg 4200
gtgtttaga tgatccatgc gtacaggag cgctggcgtt ggtgcctaaa aatgtcttgc 4260
agtagcaagc tgattgcccag gggcaggccc ttgggtgtaaatg tgtttacaaa gcggttaagc 4320
tggatgggt gcatacgtgg ggtatgaga tgcatttttgg actgtatgtt taggttggct 4380
atgttcccg ccatatccct cccgggattt atgttgcata gaaaccaccat cacagtgtat 4440
ccgggtcact tggaaatatt gtcattgtac tttagaaggaa atgcgtggaa gaaatgggag 4500
acggccctgt gaccccaag atttccatg cattgcata taatgtatggc aatggccca 4560
cggggccggc cctggggcgaat gatattctg ggtactaaat cgtcatagtt gtgttccagg 4620
atagagatgtt cataggccat ttttacaatgg cgcggccggaa ggtgtccaga ctgcgggtata 4680
atggttccat ccggcccccagg ggcgttagtta ccctcacaga ttgcatttc ccacgccttg 4740
agttcagatg gggggatcat gtctacctgc ggggcgtatga agaaaacggt ttccggggta 4800
ggggagatca gctggaaaga aagcagggtt ctagcgtatgc ggcacttacc gcagccgggtg 4860
ggccctgtaaa tcacacccat taccgggtgc aactggtagt taagagagatc gcagctgccc 4920
tcattccctga gcaggggggc cacttcgtta agcatgtccc tgactcgtatc gttttccctg 4980

accaaatccg ccagaaggcg ctgcggcccc agcgatagca gttcttgcaa ggaagcaaag 5040
ttttcaacg gtttgagacc gtccggcgtt ggcattgttt tgagcgttt accaagcagt 5100
tccaggcggt cccacagctc ggtcacctgc tctacggcat ctgcatccag catatctcct 5160
cgtttcgcgg gttggggcggt ctttcgtgt acggcagtag tcgggtctcg tccagacggg 5220
ccagggtcat gtcttccac gggcgcaggg tcctcgtag cgtagtctgg gtcacggta 5280
agggtgcgc tccgggtgc ggcgtggcca gggtgcgtt gaggctggc ctgctggc 5340
tgaagcgctg ccggcttcg ccctgcgcgt cggccaggtt gcatttgacc atgggtcat 5400
agtccagccc ctccgeggcg tggcccttgg cgcgcagctt gccctggag gaggcgccgc 5460
acgaggggca gtgcagactt ttgagggcg agagttggg cgcgagaaat accgattccg 5520
gggagtaggc atccgcgcgg caggccccgc agacggctc gcattccacg agccaggtga 5580
gctctggccg ttccgggtca aaaaccagg tttccccatg cttttttagt cgtttcttac 5640
ctctggtttccat gagggccgg tgccacgct cggtgacgaa aaggctgtcc gtgtccccgt 5700
atacagactt gagaggcctg tcctcgaccg atgccttga gaggcattcaa cccagtcagc 5760
tccttcgggtt gggcgccggg catgactatc gtgcggcac ttatgactgt cttctttatc 5820
atgcaactcg taggacaggt gccggcagcg ctctgggtca ttttcggcga ggaccgctt 5880
cgctggagcg cgacgatgtat cgccctgtcg cttgcggtat tcggaatctt gcacgccctc 5940
gctcaaggct tcgtcactgg tccggccacc aaacgtttcg gcgagaagca ggccattatc 6000
gcccgcattgg cggccgacgc gctgggctac gtcttgcgtt cggtcgac gcgaggctgg 6060
atggccttccatccattatgtat tttctcgct tccggcggca tcgggatgcc cgcttgcag 6120
gcatgctgtt ccaggcaggt agatgacgac catcaggagc agcttcaagg atcgctcg 6180
gcttttacca gctgagcaaa aggccagcaa aaggccagga accgtaaaaaa ggccgcgtt 6240
ctggcggtttt tccataggctt ccggcccccgc gacgagcatc acaaaaatcg acgctcaagt 6300
cagaggtggc gaaaccgcac aggactataa agataaccagg cgtttcccccc tggaaagctcc 6360
ctcggtcgctt ctcctgttcc gaccctgccc cttaccggat acctgtccgc ctttctccct 6420
tcgggaagcg tggcggtttc tcaatgctca cgctgttaggt atctcagttc ggttaggtc 6480
gttcgctcca agctgggttgc tttgcacgaa ccccccgttc agcccgaccg ctgcgcctta 6540
tccggtaact atcgcttgc tccaaaccccg gtaagacacg acttacgcact actggcagca 6600
gccactggta acaggattag cagagcgagg tatgtaggcg gtgctacaga gttcttgaag 6660
tggggccta actacggcta cactagaagg acagtatttgc tttctgcgc tctgcttgaag 6720
ccagttaccc tccggaaaaag agttggtagt ttttgcacgaa ccccccgttc agcccgaccg 6780
agcggtggtt ttttggggttt caagcagcag attacgcgc gaaaaaaaagg atctcaagaa 6840
gatccttgc tctttctac ggggtctgac gctcagtgaa acgaaaactc acgttaagg 6900
attttgtca tgaggattatc aaaaaggatc ttcacctaga tcctttttaaa tttttatgc 6960
agttttaaat caatctaaag tatatatgat taaaacttgc ttttgcacgatc ccaatgcctt 7020
atcagtggagg cacctatctc agcgatctgtt ctatctgtt catccatagt tgcctgactc 7080
cccgctgtgt agataactac gatacggggag ggcttaccat ctggcccccag tgctgcaatg 7140
ataccgcgag acccacgcctc accggctcca gatttatcgc caataaaaccg gccagccgg 7200
agggccgagc gcagaagtgg tcctgcactt ttatccgcctt ccattccatgc tattatgtt 7260
tgccggaaag cttagataag tagttcgcca gttaatagtt tgctgcacgt tggttgcatt 7320
gctgcaggca tcgtgggttc acgctcgatc tttggatgg cttcatttcgat ctccgggttcc 7380
caacgatcaa ggcgagttac atgatcccccc atggttgcata aaaaagcggt tagctccttc 7440
ggtcctccga tcgttgcag aagtaagttt ggcgcgtgt tatcactcat gtttatggca 7500
gcactgcata attcttttac ttttgcacgatc tttttctgt gactgggtgag 7560
tactcaacca agtcattctg agaataatgtt atgcggcgcac cgagttgcgc ttggccggcg 7620
tcaacacggg ataataccgc gcccacatgc agaactttaa aagtgcctcat cattggaaaa 7680
cgttttcggtt ggcgaaaaact ctcaaggatc ttaccgtgt tgagatccat ttgcgtatgtt 7740
cccactcgatc caccacactg atcttcacgc tcttttactt tcaccacgtt ttctgggtga 7800
gcaaaaacag gaaggcaaaa tgccgcaaaa aagggaataa gggcgacacg gaaatgttgc 7860
atactcatac tttttttttt tcaatattat tttttttttt tttttttttt tttttttttt 7920
agcggtataca tatttgcata tatttgcata aataaaacaaa taggggttcc ggcacatcc 7980
ccccggaaaaag tgccacactga cgtctaaagaa accattatta tcatgcacattt aacctataaa 8040
aataggcgta tcacgaggcc ctggcgatcc caa 8073

<210> 61

<211> 11

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Example

<400> 61

aaccaaaaaa a

11

<210> 62

<211> 11

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Example

<400> 62

aaccaaaaaa t

11

<210> 63

<211> 11

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Example

<400> 63

aaccaaaaaa c

11

<210> 64

<211> 11

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Example

<400> 64

aaccaaaaaa g

11