Desafío STEM: "¿Cómo se puede modelar y predecir el período de oscilación de un péndulo simple dependiendo de su longitud?"

Departamento de Ciencias Naturales Escuela Colombiana de Ingeniería Julio Garavito

10 de julio de 2025

Objetivo general

Construir un modelo físico que relacione el período de oscilación con la longitud del péndulo. Validar dicho modelo mediante una serie de mediciones experimentales y un análisis gráfico.

Planteamiento del desafío

Un péndulo simple es uno de los sistemas físicos más antiguos utilizados para medir el tiempo. Consiste en una masa suspendida de una cuerda que oscila bajo la acción de la gravedad. Sin embargo, ¿cómo depende el período de oscilación de la longitud de la cuerda? ¿Y cómo se puede diseñar un modelo que prediga el comportamiento oscilatorio y lo contraste con resultados experimentales?

En este desafío, el equipo deberá construir diferentes péndulos, registrar los tiempos de oscilación y compararlos con el modelo teórico obtenido a partir de las leyes del movimiento armónico simple y de la energía.

Exploración con simulaciones (en línea)

Antes de realizar la experiencia con materiales físicos, los estudiantes deben explorar las siguientes simulaciones interactivas disponibles en la plataforma PHET:

■ Péndulo simple: PHET Pendulum Lab

• Sistema masa-resorte: PHET Mass-Spring Lab

Objetivos de la simulación:

- Identificar variables que afectan el período: longitud, masa, gravedad, constante del resorte.
- Formular predicciones sobre el comportamiento del sistema antes del experimento real.

- Comparar el comportamiento ideal de la simulación con el comportamiento observado en el laboratorio.
- Relacionar los resultados con los modelos teóricos de oscilación armónica simple.

Materiales disponibles

- Soporte o estructura para colgar el péndulo
- Hilo o cuerda delgada
- Masas esféricas (tuercas, bolitas, canicas, etc.)
- Cronómetro o aplicación
- Regla o cinta métrica
- Computadora con software (Excel, GeoGebra, Python)

Marco conceptual (a investigar y discutir)

- Movimiento armónico simple
- Conservación de la energía
- Segunda ley de Newton para sistemas oscilatorios
- Aproximación de "Ángulos pequeños"
- \blacksquare Gráfica T^2 vs L

Modelo teórico base:

$$T = 2\pi \sqrt{\frac{L}{g}} \tag{1}$$

Tareas del equipo

- 1. Formular el modelo teórico del péndulo usando las leyes del movimiento oscilatorio.
- 2. Construir péndulos de diferentes longitudes.
- 3. Medir el período promedio de oscilación para cada longitud (mínimo 10 oscilaciones).
- 4. Representar gráficamente T^2 vs. L y ajustar una recta.
- 5. Calcular el valor experimental de g a partir de la pendiente.
- 6. Comparar resultados con el valor teórico de $g \approx 9.8 \,\mathrm{m/s}^2$.
- 7. Discutir errores, limitaciones y mejoras al modelo o experimento.

Preguntas guía para el análisis

- ¿Se verifica la proporcionalidad entre T^2 y L?
- ¿Qué tan sensible es el modelo a errores en la medición del tiempo?
- ¿Cómo afecta el "Ángulo de oscilación" a la precisión del modelo?
- ¿Qué fuentes de error podrían explicar discrepancias con el valor teórico de g?
- ¿En qué contextos reales se aplican los modelos de péndulo (ej. relojes, sensores, arquitectura)?

Reflexión final

Este desafío busca conectar el análisis teórico del movimiento armónico con la práctica experimental y la construcción de modelos. ¿Qué aprendieron sobre la validación de modelos físicos? ¿Qué tan útil fue el uso de herramientas tecnológicas para reducir incertidumbre?

Evaluación final del desafío STEM

La evaluación se divide en dos componentes principales, con un puntaje total de **5.0** puntos:

- Informe escrito (2.5 puntos)
- Sustentación oral (2.5 puntos)

Criterio	Puntaje	Descripción del desempeño
Diseño experimental	(0-0.5)	Desde un diseño optimizado y repro-
		ducible hasta uno poco confiable o
		ausente.
Modelo teórico	(0-0.5)	Desde un modelo claro, bien funda-
		mentado hasta uno incompleto o in-
		correcto.
Medición y análisis	(0-0.5)	Desde análisis detallado y gráficos
		ajustados hasta ausencia de datos o
		análisis.
Tratamiento de errores e incertidum-	(0-0.5)	Desde análisis riguroso con estima-
bres		ción de errores hasta omisión com-
		pleta del tratamiento.
Claridad y estructura del informe	(0-0.5)	Desde redacción clara, ordenada y
		con respaldo gráfico hasta presenta-
		ción desorganizada.
Uso de la simulación PHET	(0-0.25)	Evidencia clara de exploración, pre-
		dicción y comparación con resulta-
		dos experimentales; uso mínimo o sin
		análisis.

Sustentación oral (2.5 puntos)

Se califican cinco criterios sobre 0.5 puntos cada uno:

Criterio	Puntaje (0-0.5)	Descripción del desempeño
Comprensión del fenómeno físi-		Desde dominio completo del
co		concepto hasta fallos fundamen-
		tales.
Explicación del modelo teórico		Desde presentación clara y cohe-
		rente hasta confusión concep-
		tual.
Justificación de decisiones expe-		Desde argumentación sólida
rimentales		hasta ausencia de justificación.
Análisis de resultados		Desde interpretación crítica, in-
		cluyendo errores, hasta análisis
		superficial o erróneo.
Participación equitativa y clari-		Desde participación activa de
dad oral		todos con buena expresión hasta
		participación mínima o confusa.

Nota final	(sobre 5.0):
------------	------------	----