Permutation Groups and Burnside's Lemma

Scribe: Justin Gou

Date: Monday, April, 29 2019

1 Permutation Groups

Let S be a set. Let G be a group of permutations, π , acting on elements of S. Then, G is a "permutation group".

Example 1.

$$\pi_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}$$

$$\pi_1(1) = 3, \ \pi_1(4) = 5, \text{etc.}$$

We can write π_1 as a product of cycles, as we have done in the past.

$$\pi_1 = (1\ 3)(2)(4\ 5)$$

This is the "cycle decomposition" of π_1 .

Theorem 1.1. Every permutation can be written as a product of cycles.

These cycles are unique up to rotations and re-ordering cycles.

I.E.
$$\pi_1 = (2)(5\ 4)(1\ 3)$$

Permutations can also be composed

$$\pi_1 \pi_1 = \pi_1^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} = e$$

1

So $\pi_1 = \pi_1^{-1}$

Thus, $G = \{e, \pi_1\}$ is a permutation group.

- A) Closed
- **B)** Identity
- C) Inverses
- **D)** Associativity

Example 2. The group of rotations of a square.

Let S_4 be the "symmetric group", which is all 24 permutations of ABCD. Using only rotations, we can only find 4 of the permutations, as shown here:

$$\left[\begin{array}{c|cccc} r_0 & A & B & C & D \\ r_{90} & D & A & B & C \\ r_{180} & C & D & A & B \\ r_{270} & B & C & D & A \end{array}\right]$$

This group can be written as $G=\{e,\pi_1=90^\circ,\pi_2=180^\circ,\pi_3=270^\circ\}$ This group can also be generated by π_1 and π_3 . $<\pi_1>=\{\pi_1,\pi_2,\pi_3,e\}$

Example 3. The group of all symmetries of a square (rotations and flips)

Let's construct a Cayley table!

$2nd \setminus 1st$	e	r_{90}	r_{180}	r_{270}	V	Н	L	R
e	e	r_{90}	r_{180}	r_{270}	V	Н	L	R
r_{90}	r_{90}	r_{180}	r_{270}	e	R	L	V	Η
r_{180}	r_{180}	r_{270}	e	r_{90}	Н	V	R	L
r_{270}	r_{270}	e	r_{90}	r_{180}	L	R	Η	V
V	V	L	Н	R	e	r_{180}	r_{90}	r_{270}
Н	Н	R	V	L	r_{180}	e	r_{270}	r_{90}
L	L	Н	R	V	r_{270}	r_{90}	e	r_{180}
R	R	V	L	Н	r_{90}	r_{270}	r_{180}	e

 D_4 is the dihedral group on 4 elements. We found that $|D_4|=8$

Theorem 1.2. $|D_n| = 2n$

Question 1. What is one $\pi \in S_4$; $\pi \notin D_4$?

$$\pi = \begin{pmatrix} A & B & C & D \\ B & C & A & D \end{pmatrix}$$

Let's write out the cycle decomposition for each of the transformations of the square.

$$e = e$$
 $r_{90} = (A D C B)$
 $r_{180} = (A C)(D B)$
 $r_{270} = (A B C D)$
 $H = (A D)(B C)$
 $V = (A B)(C D)$
 $L = (B D)(A C)$
 $R = (A C)(B D)$