Homework3 Justify all your answers

due on Fr 10/04/24 at 11:30AM in A236WH

Exercise 1. Consider the probability distributions (0.6, 0.3, 0.1) and (0.5, 0.3, 0.2) on the alphabet S = (a, b, c). Which one has larger entropy? What probability distribution on S produces the largest entropy?

Exercise 2. Construct a binary Shannon-Fano code with respect to the probability distribution (0.5, 0.3, 0.2). Is this code an optimal binary PF-code?

Exercise 3. Let $p = (\alpha, \beta, \gamma)$ be a probability distribution on the ordered alphabet S = (a, b, c) with $\alpha > \beta > \gamma$. Show that the average codeword length of an optimal binary UD-code for S with respect to p is $2 - \alpha$.

Exercise 4. Find a Huffman code for the probability distribution (0.4, 0.3, 0.1, 0.1, 0.06, 0.04).

Exercise 5. While computing a Huffman code, in each application of the Huffman rule **H1** a new probability $\tilde{p}(e)$ is introduced. Show that the average length L of the Huffman code is the sum of these $\tilde{p}(e)$.

Exercise 6. For a code c let TL(c) be the sum of the lengths of the codewords and M(c) the maximal length of a codeword.

(a) Let \tilde{c} and c be codes as in Huffman rule **H2**. Show that

$$M(c) \le M(\tilde{c}) + 1$$
 and $TL(c) \le TL(\tilde{c}) + M(\tilde{c}) + 2$.

(b) If c is a Huffman code on an alphabet of size N, show that

$$M(c) \le N - 1$$
 and $TL(c) \le \frac{N^2 + N - 2}{2}$.

Exercise 7. Let (\mathbb{B}, P) be a source. Suppose that

- (i) $P(000) = \frac{1}{12}$;
- (ii) $p^{(l)}(0) = p^{(l)}(1)$ for all integers l with $1 \le l \le 3$.
- (iii) whenever (l_1, l_2) is a pair of integers with $1 \le l_1 < l_2 \le 3$, then $p^{(l_1)}$ and $p^{(l_2)}$ are independent with respect to $p^{(l_1, l_2)}$.
- (a) Compute $p^{(l)}$ for $1 \le l \le 3$.
- (b) Compute $p^{(l_1,l_2)}$ for $1 \le l_1 < l_2 \le 3$.
- (c) Show that, for $x_1, x_2, x_3 \in \mathbb{B}$,

$$P(x_1x_2x_3) = \begin{cases} \frac{1}{12} & \text{if } x_1 + x_2 + x_3 \text{ is even} \\ \frac{1}{6} & \text{if } x_1 + x_2 + x_3 \text{ is odd} \end{cases}$$

- (d) Show that $p^{(1)}$ and $p^{(2,3)}$ are not independent with respect to p^3 .
- (e) Show that (\mathbb{B}, P) is not memoryless.