

Department of Electronic & Telecommunication Engineering University of Moratuwa

EN 2040 – Random Signals and Processes

Simulation Assignment

Name Index number

Premathilaka H. D. M. 180497C

This report is submitted in partial fulfillment of the requirements for the module EN 2040 – Random Signals and Processes.

Date of submission: 16/09/2021

• Taking Pr(D = 0) = Pr(D = 1) = 0.5

Figure 1 - Binary Sequence (L = 1000)

Figure 2 - Binary Sequence (from 100th to 200th divisions)

• The transmitted signal S is defined as;

$$S = \begin{cases} +A & if D = 1 \\ -A & if D = 0 \end{cases}$$

• Taking A = 1

Figure 3 - Transmitted Signal (L =1000)

Figure 4 - Transmitted Signal (from 100th to 200th division)

• Generating AWGN of length L = 1000 and $\sigma^2=1$

Figure 5 - AWGN (L = 1000 and variance =1)

Question 03

• The received signal R is given by;

Figure 6 - Received Signal - (Variance of noise = 1)

Figure 7 - Received Signal (Variance of noise = 4)

- As the variance of noise increases, the range $(\approx \pm 3\sigma)$ of values that the noise can take, increases.
- As a result, the amplitudes of the received signal R increase when the variance of noise is increased.

• The received signal R is decoded to produce the output signal Y. (Thresholding R)

Figure 9 - Comparing the transmitted and output signal

Figure 10 - Comparison (100th to 200th divisions)

120

110

100

$$Error\ percentage = \frac{\textit{No.of error bits}}{\textit{Total length of the sequence}} \times 100\%$$

$$Error\ percentage = 16.30\%$$

- Now, the length of the sequence is increased to 100000.
- Steps in Q1-Q4 were repeated and the received signal is as follows.

To notice the differences between the transmitted signal and the output signal, we will consider the segment from the 10000th division to the 10100th division.

Figure 12 - Comparison between the transmitter signal and the output signal

$$Error\ percentage = \frac{\textit{No.of\ error\ bits}}{\textit{Total\ length\ of\ the\ sequence}} \times 100\%$$

 $Error\ percentage = 16.21\%$

• The histogram generated (without using the built-in function **hist** in MATLAB) for the received signal is shown below. The no. of bins = 10.

Figure 13 - Histogram for the received signal R

Figure 14 - Histogram of the received signal (Using the built-in 'hist' function)

• We can clearly observe that the two representations are nearly identical. In other words, the bars and the corresponding columns have nearly equal heights.

Question 05 (a)

• Let's plot the histograms for the received signal after increasing the no. of bins to 100.

Figure 15 - Histogram for the received signal (bins = 100)

Figure 16 - Histogram for the received signal (bins = 100) using 'hist' function in MATLAB

• Similar to the previous case, both representations look identical. Moreover, as we increase the no. of bins, the outline of the columns/bars trace a curve similar to the normal distribution curve. The outline curve is given as a supplementary plot.

Question 05 (b)

- We will use 100 bins in our histogram so that the histogram emphasizes the Gaussian nature of the signals.
- Case $I f_{R|S}(r|S = A)$ and A = 1

Figure 18 - $f_{R}(R|S)$ (r|S=A) and A=1

• Case $II - f_{R|S}(r|S = -A)$ and A = 1

Figure 19 - $f_{R}(R|S)$ (r|S=-A) and A=1

• Case $III - f_{R|S}(r|S = A)$ and A = 2

Figure 20 - $f_{R}(R|S)$ (r|S=A) and A=2

• Case $IV - f_{R|S}(r|S = -A)$ and A = 2

Figure 21 - $f_{R/S}$ (r|S=-A) and A=2

• Case $V - f_{R|S}(r|S = A)$ and A = 3

Figure 22 - $f_{(R|S)}$ (r|S=A) and A=3

• $Case\ VI - f_{R|S}(r|S = -A)\ and\ A = 3$

Figure 23 - $f_{R}(R|S)$ (r|S=-A) and A=3

• The span of the bell-shaped distribution increases when we increase the value of A from 1 to 3.

Question 05 (c)

• The expected value of a continuous random variable is given by;

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

• The expected value of a discrete random variable is given by;

$$E[X] = \sum_{-\infty}^{\infty} x P(X = x)$$

А	E[R S=A]	E[R S=-A]	E[R]
1	0.9945 (≈ 1)	-0.9947 (≈ -1)	0.0000052 (≈ 0)
2	1.9944 (≈ 2)	-1.9946 (≈ -2)	0.0001875 (≈ 0)
3	2.9945 (≈ 3)	-2.9947 (≈ -3)	-0.00003225 (≈ 0)

Question 05 (d)

• Case $I - f_R(r)$ and A = 1

Figure 24 - f_R (r) and A=1

• Case $II - f_R(r)$ and A = 2

Figure 25 - $f_R(r)$ and A=2

• Case $III - f_R(r)$ and A = 3

Figure 26 - f_R (r) and A=3

Question 06

• Taking the interference from other transmitters into consideration, we can write an expression for the received signal R.

$$R = S + N + I$$

• It is given that 'I' obeys a Gaussian distribution with zero mean and unit variance.

Discussion:

- Let's compare the error percentages for the two cases; with/ without I. When A = 1, we found out earlier that the error percentage is 16.21% (without interference).
- Now, when we calculate the error percentage of the received signal (with interference), we get 24.05%. (Calculation performed in the code).
- Thus, it is clear that the interference, just like noise, corrupts the transmitted signal.
- Thus, necessary measures must be taken to mitigate the adverse effects caused by interference.

• Case $I - f_{R|S}(r|S = A)$ and A = 1

Figure 27 - $f_{R}(R|S)$ (r|S=A) and A=1

• Case $II - f_{R|S}(r|S = -A)$ and A = 1

Figure 28 - $f_{R}(R|S)$ (r|S=-A) and A=1

• Case III $-f_{R|S}(r|S=A)$ and A=2

Figure 29 - $f_{R}(S)$ (r|S=A) and A=2

• Case $IV - f_{R|S}(r|S = -A)$ and A = 2

Figure 30 - $f_{R}(R|S)$ (r|S=-A) and A=2

Case $V - f_{R|S}(r|S = A)$ and A = 3

Figure 31 - $f_{(R|S)}(r|S=A)$ and A=3

Case $VI - f_{R|S}(r|S = -A)$ and A = 3

Figure 32 - $f_{R}(R|S)$ (r|S=-A) and A=3

А	E[R S=A]	E[R S=-A]	E[R]
1	1.0003 (≈ 1)	-0.9972 (≈ -1)	0.0013 (≈ 0)
2	2.0003 (≈ 2)	-1.9972 (≈ -2)	0.0015 (≈ 0)
3	3.0003 (≈ 3)	-2.9972 (≈ -3)	0.0015 (≈ 0)

• Case $I - f_R(r)$ and A = 1

Figure 33 - f_R (r) and A=1

• Case $II - f_R(r)$ and A = 2

Figure 34 - f_R (r) and A=2

• Case $III - f_R(r)$ and A = 3

Figure $35 - f_R(r)$ and A=3

Question 07

• Let's take the scaling factor to be α . Then,

$$R = \alpha S + N$$

Discussion:

- Let's compare the error percentages for two cases; α =1 and α = 2. When α = 1, we found out earlier that the error percentage is 16.21%.
- Now, when we calculate the error percentage of the received signal (when α =2), we get 2.39%. (Calculation performed in the code).
- Thus, it is clear that by scaling the transmitter signal S, the error percentage could be reduced significantly.

• Case $I - f_{R|S}(r|S = A)$ and $\alpha = 2$

Figure 36 - $f_{R}(R|S)$ (r|S=A) and alpha=2

• Case II $-f_{R|S}(r|S=-A)$ and $\alpha=2$

Figure 37 - $f_{R}(R|S)$ (r|S=-A) and alpha=2

• Case III $-f_{R|S}(r|S=A)$ and $\alpha=3$

Figure 38 - $f_{R/S}$ (r|S=A) and alpha=3

• Case $IV - f_{R|S}(r|S = -A)$ and $\alpha = 3$

Figure 39 - $f_{R}(S)$ (r|S=-A) and alpha=3

α	E[R S=A]	E[R S=-A]	E[R]
1	0.9945 (≈ 1)	-0.9947 (≈ -1)	0.0000052 (≈ 0)
2	1.9944 (≈ 2)	-1.9946 (≈ -2)	0.0001875 (≈ 0)
3	2.9945 (≈ 3)	-2.9947 (≈ -3)	-0.00003225 (≈ 0)

• Case $I - f_R(r)$ and $\alpha = 2$

Figure 40 - f_R (r) and alpha=2

• Case $II - f_R(r)$ and $\alpha = 3$

Figure 41 - f_R (r) and alpha=3

Appendix I (Q1 – Q4)

```
Q1 - Generating a binary sequence D. (D ==> \{0,1\}, Pr(D=0) = Pr(D=1) = 0.5)
```

```
L = 1000; %Length of the sequence
D = zeros(1,L);

rng('default') %random generator is fixed
i = randperm(L,L/2); %random indices
D(i) = 1; % D--> equiprobable data array
stairs(D)
title('Binary Sequence D (L=1000)')
ylim([0,1.2])
```

Q1 - Using the binary sequence to generate a stream of rectangular pulses. (A = 1)

```
A = 1; %Amplitude of the rectangular pulses
S = zeros(1,L); %Stream of rectangular pulses
S(D==1) = A;
S(D==0) = -A;
stairs(S)
title('Transmitted Signal')
ylabel('Amplitude')
ylim([-1.2,1.2])
```

Q2 - Generating an AWGN sequence ($\mu=0,\sigma^2=1$)

```
mu = 0; %Mean
sigma = 1; %Standard deviation
N = normrnd(mu, sigma, [1,L]); %AWGN

plot(N)
title('AWGN')
ylabel('Amplitude')
```

Q3 - Received Signal (R = S + N)

```
plot(R)
title('Received Signal (\mu = 0, \sigma^{2} = 1)')
ylabel('Amplitude')

%Now let's plot the received signal when sigma = 2 and sigma = 3
R_sigma_2 = S + normrnd(mu, 2, [1,L]); %sigma = 2
plot(R_sigma_2)
title('Received Signal (\mu = 0, \sigma^{2} = 4)')
ylabel('Amplitude')

R_sigma_3 = S + normrnd(mu, 3, [1,L]); %sigma = 3
plot(R_sigma_3)
title('Received Signal (\mu = 0, \sigma^{2} = 9)')
ylabel('Amplitude')
```

Q4 - Decoding the received signal (Threshold $\tau = 0$)

```
tau = 0; %threshold
Y = zeros(1,L); %Final output
Y(R>tau) = A;
Y(R \le tau) = -A;
stairs(Y)
title('Signal after decoding')
ylabel('Amplitude')
ylim([-1.2,1.2])
\mbox{\ensuremath{\mbox{\sc MComparing}}} the transmitted signal S and the output Y
subplot(2,1,1);
stairs(S)
title('Transmitted signal')
ylim([-1.2,1.2])
ylabel('Amplitude')
subplot(2,1,2);
stairs(Y)
title('Output')
ylim([-1.2,1.2])
ylabel('Amplitude')
%Calculating the error percentage
error = (sum(Y \sim= S))*100/L'
sprintf('The error percentage is %.2f%%', error)
```

Appendix II (Q5)

Q5 - L = 100000 (Repeating the steps 1-4)

```
L = 100000; %Length of the sequence
D = zeros(1,L);
rng('default')
j = randperm(L,L/2); %random indices
D(j) = 1; \% D--> equiprobable data array
A = 3; %Amplitude of the rectangular pulses
S = zeros(1,L); %Stream of rectangular pulses
S(D==1) = A;
S(D==0) = -A;
mu = 0; %Mean
sigma = 1; %Standard deviation
N = normrnd(mu, sigma, [1,L]); %AWGN
R = S + N; %Received signal
figure;
plot(R)
title('Received Signal (\mu = 0, \sigma^{2} = 1)')
```

```
ylabel('Amplitude')
tau = 0; %threshold
Y = zeros(1,L); %Final output
Y(R>tau) = A;
Y(R \le tau) = -A;
%Comparing the transmitted signal S and the output Y
figure:
subplot(2,1,1);
stairs(S)
title('Transmitted signal')
ylim([-1.2,1.2])
x\lim([10000,10100]) % Timiting the x-range to view the differences
ylabel('Amplitude')
subplot(2,1,2);
stairs(Y)
title('Output')
ylim([-1.2,1.2])
xlim([10000,10100])
ylabel('Amplitude')
%Calculating the error percentage
error = (sum(Y \sim= S))*100/L'
sprintf('The error percentage is %.2f%%', error)
```

Q5 – Generating Histograms

```
bins = 10; %no.of bins
range_R = range(R);
\max_{R} = \max_{R}(R);
min_R = min(R);
class_width = range_R/bins;
bin_lims = min_R:class_width:max_R;
%initiating an array for the heights of the bars
heights = zeros(1,bins);
for i = 1:bins
    if i == bins
        heights(i) = sum(R>=bin_lims(i) & R<=bin_lims(i+1));</pre>
        heights(i) = sum(R>=bin_lims(i) & R<bin_lims(i+1));</pre>
    end
end
%Creating the histogram
stairs(bin_lims(1:bins),heights,'LineWidth',1.2)
title('Histogram for the received signal')
figure;
bar(bin_lims(1:bins),heights)
title('Histogram for the received signal')
```

```
%Using the built-in function; hist
figure;
hist(R, bins);
title('Histogram for the received signal')
```

Q5a - Changing the no. of bins to 100

```
bins = 100; %no.of bins
range_R = range(R);
\max_{R} = \max(R);
min_R = min(R);
class_width = range_R/bins;
bin_lims = min_R:class_width:max_R;
%initiating an array for the heights of the bars
heights = zeros(1,bins);
for i = 1:bins
    if i == bins
        heights(i) = sum(R>=bin_lims(i) & R<=bin_lims(i+1));</pre>
        heights(i) = sum(R>=bin_lims(i) & R<bin_lims(i+1));</pre>
    end
end
%Creating the histogram
figure;
stairs(bin_lims(1:bins),heights,'LineWidth',1.2)
title('Histogram for the received signal')
figure;
bar(bin_lims(1:bins),heights)
title('Histogram for the received signal')
%Using the built-in function; hist
figure;
hist(R, bins);
title('Histogram for the received signal')
```

Q5b - Plotting the pdf of $f_{R|S}(r|S=A)$

```
R_S_pos_A = R(S==A); %Extracting R vals when S=A

%we will use 100 bins
bins = 100;
h1 = histogram(R_S_pos_A, 'NumBins', bins, 'Normalization', 'probability') %Normalizing
title('f_{R|S}(r|S=A)')

x1 = h1.Values;
y1 = h1.BinEdges;
```

Q5b - Plotting the pdf of $f_{R|S}(r|S=-A)$

```
R_S_neg_A = R(S==-A); %Extracting R vals when S=-A
```

```
%we will use 100 bins
bins = 100;
h2 = histogram(R_S_neg_A, 'NumBins', bins, 'Normalization', 'probability') %Normalizing
title('f_{R|S}(r|S=-A)')

x2 = h2.values;
y2 = h2.BinEdges;
```

Q5c - Finding E[R|S=A], E[R|S=-A] and E[R]

```
%Finding E[R|S=A]
E_R_S_pos_A = 0;
for i = 1:bins
    E_R_S_{pos_A} = E_R_S_{pos_A} + (x1(i)*(0.5*(y1(i)+y1(i+1))));
%Finding E[R|S=-A]
E_R_S_neg_A = 0;
for i = 1:bins
    E_R_S_{neg_A} = E_R_S_{neg_A} + (x2(i)*(0.5*(y2(i)+y2(i+1))));
end
h3 = histogram(R,'NumBins',bins,'Normalization','probability') %Normalizing
title('f_{R}(r)')
x3 = h3.Values;
y3 = h3.BinEdges;
E_R = 0;
for i = 1:bins
    E_R = E_R + (x3(i)*(0.5*(y3(i)+y3(i+1))));
```

Q5d - Sketching the PDF $\,f_{\it R}(r)\,$

```
h = histogram(R,'NumBins',bins,'Normalization','probability') %Normalizing
title('f_{R}(r)')
```

Appendix III (Q6)

Q6 - Including interference (R = S + N + I)

```
L = 100000; %Length of the sequence
D = zeros(1,L);

rng('default')
j = randperm(L,L/2); %random indices
D(j) = 1; % D--> equiprobable data array

A = 1; %Amplitude of the rectangular pulses
S = zeros(1,L); %Stream of rectangular pulses
S(D==1) = A;
```

```
S(D==0) = -A;
mu = 0; %Mean of the noise
sigma = 1; %Standard deviation
N = normrnd(mu, sigma, [1,L]); %AWGN
mu_i = 0; %Mean of the interference
sigma_i = 1;%Standard deviation of the interference
I = normrnd(mu_i, sigma_i, [1,L]);
R = S + N + I; %Received signal
figure;
plot(R)
title('Received Signal (\mu = 0, \sigma^{2} = 1)')
ylabel('Amplitude')
tau = 0; %threshold
Y = zeros(1,L); %Final output
Y(R>tau) = A;
Y(R \le tau) = -A;
%Comparing the transmitted signal S and the output Y
figure;
subplot(2,1,1);
stairs(S)
title('Transmitted signal')
ylim([-1.2,1.2])
xlim([10000,10100]) %limiting the x-range to view the differences
ylabel('Amplitude')
subplot(2,1,2);
stairs(Y)
title('Output')
ylim([-1.2,1.2])
xlim([10000, 10100])
ylabel('Amplitude')
%Calculating the error percentage
error = (sum(Y \sim= S))*100/L'
sprintf('The error percentage is %.2f%%', error)
```

Q6 - Plotting the pdf of $f_{R\mid S}(r\mid S=A)$

```
R_S_pos_A = R(S==A); %Extracting R vals when S=A

%we will use 100 bins
bins = 100;
figure;
h1 = histogram(R_S_pos_A, 'NumBins', bins, 'Normalization', 'probability') %Normalizing
title('f_{R|S}(r|S=A)')

x1 = h1.Values;
y1 = h1.BinEdges;
```

Q6 - Plotting the pdf of $f_{R|S}(r|S=-A)$

```
R_S_neg_A = R(S==-A); %Extracting R vals when S=-A

%we will use 100 bins
bins = 100;
h2 = histogram(R_S_neg_A,'NumBins',bins,'Normalization','probability') %Normalizing
title('f_{R|S}(r|S=-A)')

x2 = h2.Values;
y2 = h2.BinEdges;
```

$Q6-Finding\ E[R|S=A],\ E[R|S=-A]\ and\ E[R]$

```
%Finding E[R|S=A]
E_R_S_pos_A = 0;
for i = 1:bins
    E_R_S_pos_A = E_R_S_pos_A + (x1(i)*(0.5*(y1(i)+y1(i+1))));
end

%Finding E[R|S=-A]
E_R_S_neg_A = 0;
for i = 1:bins
    E_R_S_neg_A = E_R_S_neg_A + (x2(i)*(0.5*(y2(i)+y2(i+1))));
end

h3 = histogram(R, 'NumBins', bins, 'Normalization', 'probability') %Normalizing
title('f_{R}(r)')

x3 = h3.Values;
y3 = h3.BinEdges;

E_R = 0;
for i = 1:bins
    E_R = E_R + (x3(i)*(0.5*(y3(i)+y3(i+1))));
end
```

Q6 - Sketching the PDF $f_{\it R}(\it r)$

```
h = histogram(R, 'NumBins', bins, 'Normalization', 'probability') \begin{subarray}{l} \% Normalizing \\ title('f_{R}(r)') \end{subarray}
```

Appendix IV (Q7)

Q7 - Impact of Scaling - $R = \alpha S + N$

```
L = 100000; %Length of the sequence
D = zeros(1,L);
alpha = 2;
rng('default')
```

```
j = randperm(L,L/2); %random indices
D(j) = 1; \% D--> equiprobable data array
A = 1; %Amplitude of the rectangular pulses
S = zeros(1,L); %Stream of rectangular pulses
S(D==1) = A;
S(D==0) = -A;
mu = 0; %Mean
sigma = 1; %Standard deviation
N = normrnd(mu, sigma, [1,L]); %AWGN
R = alpha*S + N; %Received signal
figure;
plot(R)
title('Received Signal (\mu = 0, \sigma^{2} = 1)')
ylabel('Amplitude')
tau = 0; %threshold
Y = zeros(1,L); %Final output
Y(R>tau) = A;
Y(R \le tau) = -A;
%Comparing the transmitted signal S and the output Y
figure;
subplot(2,1,1);
stairs(S)
title('Transmitted signal')
ylim([-1.2,1.2])
xlim([10000,10100]) %limiting the x-range to view the differences
ylabel('Amplitude')
subplot(2,1,2);
stairs(Y)
title('Output')
ylim([-1.2,1.2])
xlim([10000,10100])
ylabel('Amplitude')
%Calculating the error percentage
error = (sum(Y \sim= S))*100/L'
sprintf('The error percentage is %.2f%%', error)
```

Q7 - Plotting the pdf of $f_{R|S}(r|S=A)$

```
R_S_pos_A = R(S==A); %Extracting R vals when S=A

%we will use 100 bins
bins = 100;
figure;
h1 = histogram(R_S_pos_A, 'NumBins', bins, 'Normalization', 'probability') %Normalizing
title('f_{R|S}(r|S=A)')

x1 = h1.Values;
y1 = h1.BinEdges;
```

Q7 - Plotting the pdf of $f_{R|S}(r|S=-A)$

```
R_S_neg_A = R(S==-A); %Extracting R vals when S=-A

%we will use 100 bins
bins = 100;
h2 = histogram(R_S_neg_A,'NumBins',bins,'Normalization','probability') %Normalizing
title('f_{R|S}(r|S=-A)')

x2 = h2.Values;
y2 = h2.BinEdges;
```

Q7 - Finding E[R|S = A], E[R|S = -A] and E[R]

```
%Finding E[R|S=A]
E_R_S_pos_A = 0;
for i = 1:bins
    E_R_S_pos_A = E_R_S_pos_A + (x1(i)*(0.5*(y1(i)+y1(i+1))));
end

%Finding E[R|S=-A]
E_R_S_neg_A = 0;
for i = 1:bins
    E_R_S_neg_A = E_R_S_neg_A + (x2(i)*(0.5*(y2(i)+y2(i+1))));
end

h3 = histogram(R, 'NumBins', bins, 'Normalization', 'probability') %Normalizing
title('f_{R}(r)')

x3 = h3.Values;
y3 = h3.Walues;
y3 = h3.BinEdges;

E_R = 0;
for i = 1:bins
    E_R = E_R + (x3(i)*(0.5*(y3(i)+y3(i+1))));
end
```

Q7 - Sketching the PDF $f_{\it R}(r)$

```
h = histogram(R, 'NumBins', bins, 'Normalization', 'probability') \begin{subarray}{l} \% Normalizing \\ title('f_{R}(r)') \end{subarray}
```

Published with MATLAB® R2018a