Plan for this week

Today

- Discussion of exercise 5 (logistic regression)
- Lecture on Poisson and Negative Binomial regression for count data
- Guest lecture on effect sizes
- Exercise (Poisson/negative binomial regression) (Hand-in, deadline Saturday)

Wednesday

- Discussion session Poisson exercise
- Lectures on mixed models
- Exercise on mixed models
- Friday (Saturday)
 - Deadline for Poisson exercise report

Discussion of exercise 5

• Seed germination data

Seed germination analysis

- Probability of seed germination increases with time to sowing (after-ripening time): seeds mature gradually after dispersal
- Negative effect of seed size: larger seeds require longer periods of after-ripening

```
## Call:
## glm(formula = germ2 ~ timetosowing + MCseed, family = "binomial",
      data = subdat, weights = nseed)
  Deviance Residuals:
       Min
                    Median
                                          Max
## -2.7999 -0.7108 -0.4028
                              0.8715
                                       3.3335
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
  (Intercept) -4.175210
                          0.369903 -11.287 < 2e-16 ***
## timetosowing 0.039120
                          0.003308 11.825 < 2e-16 ***
               -0.217828
                           0.035230 -6.183 6.29e-10 ***
## MCseed
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 536.70 on 230 degrees of freedom
## Residual deviance: 293.46 on 228 degrees of freedom
## AIC: 345.2
## Number of Fisher Scoring iterations: 5
```


To calculate the duration of after-ripening needed for a 50% germination rate, we use the equation above to find that this would be 106.7 days in this population.

```
-coefs[1,1]/coefs[2,1]
```

```
## [1] 106.7274
```

To quantify the seed size effect, we can ask how this changes for a seed that is one standard deviation larger or smaller than the mean.

```
-(coefs[1,1] + coefs[3,1]*sd(subdat$MCseed))/coefs[2,1]

## [1] 129.424

-(coefs[1,1] - coefs[3,1]*sd(subdat$MCseed))/coefs[2,1]
```

[1] 84.03079

We could write the results like this: The probability of germination increased with longer duration of afterripening (Fig. 1, Table 1). A seed of average size would have 50% probability of germinating when sown after 106.7 days of after-ripening. For a seed one standard deviation larger or smaller than the mean, this period would change to 129.4 days and 84.0 days, respectively.

Processing and Analysis of Biological Data

BIOS14 2023

Lecture 6. GLM II: Poisson regression

Øystein H. Opedal

The linear model

- Most of the models we will work with in this course are linear models, that describe how a linear set of predictors relate to a response variable
- A key element of the model is the so-called linear predictor:
- $y_i = \beta_0 + \sum_j \beta_j x_{ij} + \varepsilon_i, \varepsilon \sim N(0, \sigma^2)$
- The term $\varepsilon \sim N(0, \sigma^2)$ means that the residuals (epsilon) are assumed to follow a normal distribution

Generalized linear models

- Generalized linear models extend the linear model by relaxing the assumption of normally distributed residuals
- The model connects a response variable to the familiar linear predictor (η) through a **link function** (g^{-1})
- The link functions are specific to different error distributions, the most common are Binomial and Poisson errors

$$y = g^{-1}(\eta)$$

Analysis of count data

- Count data (not only for fish) can be analysed with a Poisson error distribution
- The Poisson distribution has a single parameter λ giving both the mean and the variance.
- When λ is small, the distribution is skewed.
- When λ is large, the Poisson approaches the normal distribution

k = number of occurrences

Poisson regression

- A GLM with Poisson errors is called a Poisson regression
- The link function is the natural log, and the inverse link is the exponential
- The data must be integers, i.e. whole numbers

Example: number of pollen grains on stigma

- The parameter estimates from a GLM are on the link scale, i.e. they describe in this case the change in the log of y per unit change in x
- The deviance measures the deviation of the model from a "perfect" model
- The normal r² is not valid, though there are options

```
## Call:
## glm(formula = y ~ x, family = "poisson")
## Deviance Residuals:
                     Median
  -1.0059 -0.6632 -0.3636
                              0.4005
                                       5.5808
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.89507
                          0.18198 -4.918 8.72e-07 ***
               0.16570
                          0.01491 11.116 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
      Null deviance: 286.20 on 199 degrees of freedom
## Residual deviance: 157.49 on 198 degrees of freedom
## AIC: 689.1
```

- Because of the log link function, we can interpret the slope as the proportional change in y per unit change in x
- (Recall that log-transformation and mean-scaling has very similar effects)
- Here, a unit change in x increases log(y) by 0.17, and y thus increases by exp(0.17) = 1.185 = 18.5%

```
## Call:
## glm(formula = y ~ x, family = "poisson")
## Deviance Residuals:
                     Median
## -1.0059 -0.6632 -0.3636
                              0.4005
                                       5.5808
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.89507
                          0.18198 -4.918 8.72e-07 ***
               0.16570
                          0.01491 11.116 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
      Null deviance: 286.20 on 199 degrees of freedom
## Residual deviance: 157.49 on 198 degrees of freedom
## AIC: 689.1
```

The r² in Poisson regression

• We can quantify model fit through various "Pseudo r²" metrics (see lecture notes)

 $1 - \frac{Residual\ deviance}{Null\ deviance}$

- If the variance increase disproportionally with the mean, there is overdispersion in the data
- Overdispersion is a problem if the residual deviance is much higher than the residual degrees of freedom

```
## Call:
## glm(formula = y ~ x, family = "poisson")
  Deviance Residuals:
              10 Median
  -7.339 -3.851 -3.015 -2.147 59.211
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
  (Intercept) -0.054938
                          0.094237 -0.583
                                               0.56
               0.217419
                          0.007729 28.129
                                            <2e-16 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
  (Dispersion parameter for poisson family taken to be 1)
      Null deviance: 8793.6 on 199 degrees of freedom
## Residual deviance: 8005.2 on 198 degrees of freedom
## AIC: 8452.8
```

- If the variance increase disproportionally with the mean, there is overdispersion in the data
- Overdispersion is a problem if the residual deviance is much higher than the residual degrees of freedom
- In this case, we fit the model with negative binomial errors instead, which allows the variance to increase disproportionally

```
## Call:
  glm.nb(formula = y ~ x, init.theta = 0.2993347963, link = log)
  Deviance Residuals:
                     Median
   -1.3934 -1.0868 -0.8307 -0.5080
                                       4.6882
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
  (Intercept) -1.17822
               0.31932
                                    6.628 3.39e-11 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
  (Dispersion parameter for Negative Binomial(0.2993) family taken to be 1)
      Null deviance: 248.15 on 199 degrees of freedom
  Residual deviance: 215.64 on 198 degrees of freedom
## AIC: 1083.2
## Number of Fisher Scoring iterations: 1
                 Theta: 0.2993
            Std. Err.: 0.0304
   2 x log-likelihood: -1077.2360
```

Overview of (generalized) linear models

- Continuous covariates: (multiple) regression
- Categorical covariates: N-way ANOVA
- Continuous and categorical covariates: ANCOVA

Overview of (generalized) linear models

- Binary/proportional data: Logistic regression
- Count data: Poisson GLM
- Overdispersed count data: Negative binomial GLM

