А.1.3. Описание случайных величин

Выполнил Лапин Ярослав. 18/05/2011.

Лирическое отступление

Так как в matlab 7.12 отсутствует функция d_{gauss} , то в скрипте нужно было заменить d_{gauss} на normpdf

Биномиальное распределение

График представляет какая вероятность получить m успешных испытаний при n попытках и вероятности успеха p.

Зависимость от п.

Зависимость от р.

Вывод

Распределение при n=1 является распределением Бернулли. При больших n распределение совпадает с нормальным распределением c мат ожиданием np и дисперсией np(1-p). Кроме того для фиксированного числа $\lambda <= n$ и большого n распределение n вероятностью n0 совпадает n0 распределением Пуассона n1 параметром n2.

χ^2 распределение

 χ^2 распределение с k степенями свободы это сумма квадратов (независимых) нормальных распределений.

Вывод

При k=2, распределение совпадает с экспоненциальным распределением. При $n\to\infty$ распределение совпадает с нормальным распределением с мат. ожиданием k и дисперсией 2k.

Нормальное распределение

Figure 1: N(0,1)

Figure 2: N(0,3)

Нормальное распределение для различных значений мат. ожидания и дисперсии.

Figure 3: N(3,1)