## ECE 57000 Assignment 07 Exercise

Your Name: Mohmmad Alwakeel

For this assignment, you will do an ablation study on the DCGAN model discussed in class and implemented WGAN with weight clipping and (optional) WGAN with gradient penalty.

## **Exercise 1: Ablation Study on DCGAN**

An <u>ablation study (https://en.wikipedia.org/wiki/Ablation\_(artificial\_intelligence)</u> measures performance changes after changing certain components in the AI system. The goal is to understand the contribution on each component for the overall system.

#### Task 1.0 Original DCGAN on MNIST from class note

Here is the copy of the code implementation from <u>course website</u> (<a href="https://www.davidinouye.com/course/ece57000-fall-2021/lectures/dcgan-mnist-edit.pdf">https://www.davidinouye.com/course/ece57000-fall-2021/lectures/dcgan-mnist-edit.pdf</a>). Please run the code to obtain the result and **use it as a baseline to compare the results** with the following the ablation tasks.

Hyper-parameter and Dataloader setup

```
In [2]: from future import print function
        #%matplotlib inline
        import argparse
        import os
        import random
        import torch
        import torch.nn as nn
        import torch.nn.parallel
        import torch.backends.cudnn as cudnn
        import torch.optim as optim
        import torch.utils.data
        import torchvision.datasets as dset
        import torchvision.transforms as transforms
        import torchvision.utils as vutils
        import numpy as np
        import matplotlib.pyplot as plt
        import matplotlib.animation as animation
        from IPython.display import HTML
        # Set random seed for reproducibility
        manualSeed = 999
        #manualSeed = random.randint(1, 10000) # use if you want new results
        print("Random Seed: ", manualSeed)
        random.seed(manualSeed)
        torch.manual seed(manualSeed)
        torch.cuda.manual seed(manualSeed)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmarks = False
        os.environ['PYTHONHASHSEED'] = str(manualSeed)
        # Root directory for dataset
        # dataroot = "data/celeba"
        # Number of workers for dataloader
        workers = 1
        # Batch size during training
        batch size = 128
        # Spatial size of training images. All images will be resized to this
            size using a transformer.
        \#image\ size = 64
        image size = 32
        # Number of channels in the training images. For color images this is 3
        \#nc = 3
        nc = 1
        # Size of z Latent vector (i.e. size of generator input)
        nz = 100
        # Size of feature maps in generator
        #nqf = 64
        ngf = 8
        # Size of feature maps in discriminator
```

```
#ndf = 64
ndf = 8
# Number of training epochs
num epochs = 5
num_epochs_wgan = 15
num iters = 250
# Learning rate for optimizers
1r = 0.0002
lr rms = 5e-4
# Beta1 hyperparam for Adam optimizers
beta1 = 0.5
# Number of GPUs available. Use 0 for CPU mode.
ngpu = 1
# Decide which device we want to run on
device = torch.device("cuda:0" if (torch.cuda.is available() and ngpu > 0) els
e "cpu")
# Initialize BCELoss function
criterion = nn.BCELoss()
# Create batch of latent vectors that we will use to visualize
# the progression of the generator
fixed_noise = torch.randn(64, nz, 1, 1, device=device)
# Establish convention for real and fake labels during training
real_label = 1.0
fake label = 0.0
# Several useful functions
def initialize net(net class, init method, device, ngpu):
   # Create the generator
   net_inst = net_class(ngpu).to(device)
   # Handle multi-qpu if desired
   if (device.type == 'cuda') and (ngpu > 1):
        net_inst = nn.DataParallel(net_inst, list(range(ngpu)))
   # Apply the weights init function to randomly initialize all weights
   # to mean=0, stdev=0.2.
   if init method is not None:
        net_inst.apply(init_method)
   # Print the model
   print(net_inst)
   return net inst
def plot GAN loss(losses, labels):
   plt.figure(figsize=(10,5))
   plt.title("Losses During Training")
```

```
for loss, label in zip(losses, labels):
        plt.plot(loss,label=f"{label}")
   plt.xlabel("iterations")
   plt.ylabel("Loss")
   plt.legend()
   plt.show()
def plot real fake images(real batch, fake batch):
   # Plot the real images
   plt.figure(figsize=(15,15))
   plt.subplot(1,2,1)
   plt.axis("off")
   plt.title("Real Images")
   plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:64], pa
dding=5, normalize=True).cpu(),(1,2,0)))
   # Plot the fake images from the last epoch
   plt.subplot(1,2,2)
   plt.axis("off")
   plt.title("Fake Images")
   plt.imshow(np.transpose(fake_batch[-1],(1,2,0)))
   plt.show()
# custom weights initialization called on netG and netD
def weights_init(m):
   classname = m.__class__._name__
   if classname.find('Conv') != -1:
        nn.init.normal_(m.weight.data, 0.0, 0.02)
   elif classname.find('BatchNorm') != -1:
        nn.init.normal (m.weight.data, 1.0, 0.02)
        nn.init.constant_(m.bias.data, 0)
# Download the MNIST dataset
dataset = dset.MNIST(
    'data', train=True, download=True,
  transform=transforms.Compose([
       transforms.Resize(image_size), # Resize from 28 x 28 to 32 x 32 (so pow
er of 2)
       transforms.CenterCrop(image size),
       transforms.ToTensor(),
       transforms.Normalize((0.5,), (0.5,))
   1))
# Create the dataloader
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,
                                         shuffle=True, num workers=workers)
# Plot some training images
real batch = next(iter(dataloader))
plt.figure(figsize=(8,8))
plt.axis("off")
plt.title("Training Images")
```

plt.imshow(np.transpose(vutils.make\_grid(real\_batch[0].to(device)[:64], paddin g=2, normalize=True).cpu(),(1,2,0)))

Random Seed: 999

Out[2]: <matplotlib.image.AxesImage at 0x18d47080588>



Architectural design for generator and discriminator

```
In [4]: | # Generator Code
         class Generator(nn.Module):
             def init (self, ngpu):
                 super(Generator, self). init ()
                 self.ngpu = ngpu
                 self.main = nn.Sequential(
                      # input is Z, going into a convolution, state size. nz \times 1 \times 1
                      nn.ConvTranspose2d( nz, ngf * 4, kernel size=4, stride=1, padding=
         0, bias=False),
                      nn.BatchNorm2d(ngf * 4),
                      nn.ReLU(True), # inplace ReLU
                      # current state size. (ngf*4) \times 4 \times 4
                      nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
                      nn.BatchNorm2d(ngf * 2),
                      nn.ReLU(True),
                      # current state size. (ngf*2) \times 8 \times 8
                      nn.ConvTranspose2d( ngf * 2, ngf, 4, 2, 1, bias=False),
                      nn.BatchNorm2d(ngf),
                      nn.ReLU(True),
                      # current state size. naf \times 16 \times 16
                      nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False),
                      # current state size. nc x 32 x 32
                      # Produce number between -1 and 1, as pixel values have been norma
         lized to be between -1 and 1
                      nn.Tanh()
             def forward(self, input):
                 return self.main(input)
         class Discriminator(nn.Module):
             def init (self, ngpu):
                 super(Discriminator, self).__init__()
                 self.ngpu = ngpu
                 self.main = nn.Sequential(
                      # input is (nc) x 32 x 32
                      nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
                      nn.LeakyReLU(0.2, inplace=True),
                      # state size. (ndf) \times 16 \times 16
                      nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
                      nn.BatchNorm2d(ndf * 2),
                      nn.LeakyReLU(0.2, inplace=True),
                      # state size. (ndf*2) \times 8 \times 8
                      nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
                      nn.BatchNorm2d(ndf * 4),
                      nn.LeakyReLU(0.2, inplace=True),
                      # state size. (ndf*4) \times 4 \times 4
                      nn.Conv2d(ndf * 4, 1, 4, 1, 0, bias=False),
                      # state size. (ndf*4) \times 1 \times 1
                     nn.Sigmoid() # Produce probability
                 )
             def forward(self, input):
                 return self.main(input)
```

## Loss function and Training function

```
In [8]: # Initialize networks
        netG = initialize net(Generator, weights init, device, ngpu)
        netD = initialize net(Discriminator, weights init, device, ngpu)
        # Setup Adam optimizers for both G and D
        optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))
        optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))
        # Training Loop
        # Lists to keep track of progress
        img list = []
        G losses = []
        D losses = []
        iters = 0
        print("Starting Training Loop...")
        # For each epoch
        for epoch in range(num epochs):
            # For each batch in the dataloader
            for i, data in enumerate(dataloader, 0):
                # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
                ##################################
                ## Train with all-real batch
                netD.zero grad()
                # Format batch
                real cpu = data[0].to(device)
                b_size = real_cpu.size(0)
                label = torch.full((b_size,), real_label, device=device)
                # Forward pass real batch through D
                output = netD(real cpu).view(-1)
                # Calculate loss on all-real batch
                errD real = criterion(output, label)
                # Calculate gradients for D in backward pass
                errD real.backward()
                D x = output.mean().item()
                ## Train with all-fake batch
                # Generate batch of latent vectors
                noise = torch.randn(b_size, nz, 1, 1, device=device)
                # Generate fake image batch with G
                fake = netG(noise)
                label.fill_(fake_label)
                # Classify all fake batch with D
                output = netD(fake.detach()).view(-1)
                # Calculate D's loss on the all-fake batch
                errD fake = criterion(output, label)
                # Calculate the gradients for this batch
                errD fake.backward()
                D G z1 = output.mean().item()
                # Add the gradients from the all-real and all-fake batches
                errD = errD_real + errD_fake
                # Update D
```

```
optimizerD.step()
        ######################################
        # (2) Update G network: maximize log(D(G(z)))
        ###################################
        netG.zero grad()
        label.fill (real label) # fake labels are real for generator cost
        # Since we just updated D, perform another forward pass of all-fake ba
tch through D
        output = netD(fake).view(-1)
        # Calculate G's loss based on this output
        errG = criterion(output, label)
        # Calculate gradients for G
        errG.backward()
        D G z2 = output.mean().item()
        # Update G
        optimizerG.step()
        # Output training stats
        if i % 50 == 0:
            print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G
(z)): %.4f / %.4f'
                  % (epoch, num epochs, i, len(dataloader),
                     errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))
        # Save Losses for plotting later
        G losses.append(errG.item())
        D losses.append(errD.item())
        # Check how the generator is doing by saving G's output on fixed noise
        if (iters % 500 == 0) or ((epoch == num_epochs-1) and (i == len(datalo
ader)-1)):
            with torch.no grad():
                fake = netG(fixed noise).detach().cpu()
            img list.append(vutils.make grid(fake, padding=2, normalize=True))
        iters += 1
```

```
Generator(
  (main): Sequential(
    (0): ConvTranspose2d(100, 32, kernel_size=(4, 4), stride=(1, 1), bias=Fal
    (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
    (2): ReLU(inplace=True)
    (3): ConvTranspose2d(32, 16, kernel_size=(4, 4), stride=(2, 2), padding=
(1, 1), bias=False)
    (4): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
    (5): ReLU(inplace=True)
    (6): ConvTranspose2d(16, 8, kernel size=(4, 4), stride=(2, 2), padding=
(1, 1), bias=False)
    (7): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track running s
tats=True)
    (8): ReLU(inplace=True)
    (9): ConvTranspose2d(8, 1, kernel_size=(4, 4), stride=(2, 2), padding=(1,
1), bias=False)
    (10): Tanh()
 )
)
Discriminator(
  (main): Sequential(
    (0): Conv2d(1, 8, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias
=False)
    (1): LeakyReLU(negative slope=0.2, inplace=True)
    (2): Conv2d(8, 16, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bia
s=False)
    (3): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
    (4): LeakyReLU(negative slope=0.2, inplace=True)
    (5): Conv2d(16, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bi
as=False)
    (6): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
    (7): LeakyReLU(negative_slope=0.2, inplace=True)
    (8): Conv2d(32, 1, kernel_size=(4, 4), stride=(1, 1), bias=False)
    (9): Sigmoid()
 )
Starting Training Loop...
                Loss_D: 1.4493 Loss_G: 0.7415 D(x): 0.4824
[0/5][0/469]
                                                                D(G(z)): 0.50
60 / 0.4805
                Loss D: 0.5649 Loss G: 1.4601 D(x): 0.8009
[0/5][50/469]
                                                                D(G(z)): 0.28
27 / 0.2385
[0/5][100/469] Loss_D: 0.3072 Loss_G: 2.2178 D(x): 0.8648
                                                                D(G(z)): 0.14
38 / 0.1146
                                                                D(G(z)): 0.09
[0/5][150/469] Loss_D: 0.1532 Loss_G: 2.6514 D(x): 0.9455
04 / 0.0784
[0/5][200/469] Loss D: 0.0809 Loss G: 3.3859 D(x): 0.9648
                                                                D(G(z)): 0.04
32 / 0.0394
[0/5][250/469] Loss_D: 0.0421 Loss_G: 3.9898 D(x): 0.9821
                                                                D(G(z)): 0.02
34 / 0.0215
               Loss D: 0.0268 Loss G: 4.3464 D(x): 0.9912
                                                                D(G(z)): 0.01
[0/5][300/469]
77 / 0.0156
                                                                D(G(z)): 0.01
[0/5][350/469]
              Loss D: 0.0232 Loss G: 4.4663 D(x): 0.9930
```

| 60 / 0.0138                   |                |                |              |               |
|-------------------------------|----------------|----------------|--------------|---------------|
| [0/5][400/469]                | Loss_D: 0.0161 | Loss_G: 4.7768 | D(x): 0.9955 | D(G(z)): 0.01 |
| 15 / 0.0091<br>[0/5][450/469] | Loss_D: 0.0099 | Loss_G: 5.1826 | D(x): 0.9978 | D(G(z)): 0.00 |
| 76 / 0.0066                   | Loss D. 0 0127 | Loss C. E 0160 | D(v). 0 007E | D/C/-)), 0 01 |
| [1/5][0/469]<br>01 / 0.0073   | Loss_D: 0.0127 | Loss_G: 5.0169 | D(x): 0.9975 | D(G(z)): 0.01 |
| [1/5][50/469]<br>60 / 0.0050  | Loss_D: 0.0095 | Loss_G: 5.4539 | D(x): 0.9966 | D(G(z)): 0.00 |
| [1/5][100/469]                | Loss_D: 0.0106 | Loss_G: 5.5828 | D(x): 0.9947 | D(G(z)): 0.00 |
| 52 / 0.0039<br>[1/5][150/469] | Loss_D: 0.0707 | Loss_G: 4.1313 | D(x): 0.9751 | D(G(z)): 0.04 |
| 38 / 0.0174                   | _              | _              |              |               |
| [1/5][200/469]<br>73 / 0.0111 | Loss_D: 0.0339 | Loss_G: 4.6644 | D(x): 0.9839 | D(G(z)): 0.01 |
| [1/5][250/469]                | Loss_D: 0.0243 | Loss_G: 4.7487 | D(x): 0.9870 | D(G(z)): 0.01 |
| 10 / 0.0097<br>[1/5][300/469] | Loss_D: 0.0263 | Loss_G: 4.6570 | D(x): 0.9838 | D(G(z)): 0.00 |
| 99 / 0.0109                   |                | _              |              |               |
| [1/5][350/469]<br>06 / 0.0513 | Loss_D: 0.2402 | Loss_G: 3.1571 | D(x): 0.8952 | D(G(z)): 0.11 |
| [1/5][400/469]<br>72 / 0.0379 | Loss_D: 0.1165 | Loss_G: 3.5505 | D(x): 0.9490 | D(G(z)): 0.05 |
| [1/5][450/469]                | Loss_D: 0.0839 | Loss_G: 3.6389 | D(x): 0.9443 | D(G(z)): 0.01 |
| 47 / 0.0361<br>[2/5][0/469]   | Loss_D: 0.2277 | Loss_G: 2.5304 | D(x): 0.9503 | D(G(z)): 0.15 |
| 79 / 0.0913                   | _              | _              |              |               |
| [2/5][50/469]<br>55 / 0.0236  | Loss_D: 0.0605 | Loss_G: 3.8779 | D(x): 0.9763 | D(G(z)): 0.03 |
| [2/5][100/469]<br>70 / 0.0496 | Loss_D: 0.1419 | Loss_G: 3.1828 | D(x): 0.9319 | D(G(z)): 0.06 |
| [2/5][150/469]                | Loss_D: 0.1373 | Loss_G: 3.2217 | D(x): 0.9511 | D(G(z)): 0.08 |
| 17 / 0.0465<br>[2/5][200/469] | Loss_D: 0.1551 | Loss_G: 2.8188 | D(x): 0.9248 | D(G(z)): 0.07 |
| 05 / 0.0715                   | _              |                |              |               |
| [2/5][250/469]<br>67 / 0.0410 | LOSS_D: 0.3293 | Loss_G: 3.3079 | D(x): 0.7501 | D(G(z)): 0.02 |
| [2/5][300/469]<br>01 / 0.0727 | Loss_D: 0.1709 | Loss_G: 2.7689 | D(x): 0.9298 | D(G(z)): 0.09 |
| [2/5][350/469]                | Loss_D: 0.2094 | Loss_G: 2.5953 | D(x): 0.8997 | D(G(z)): 0.09 |
| 47 / 0.0850<br>[2/5][400/469] | Loss_D: 0.2756 | Loss_G: 2.4953 | D(x): 0.8781 | D(G(z)): 0.12 |
| 89 / 0.0956                   | _              | _              |              |               |
| [2/5][450/469]<br>64 / 0.1074 | Loss_D: 0.2437 | Loss_G: 2.3766 | D(x): 0.8823 | D(G(z)): 0.10 |
| [3/5][0/469]<br>86 / 0.4503   | Loss_D: 0.5736 | Loss_G: 0.8547 | D(x): 0.6049 | D(G(z)): 0.02 |
| [3/5][50/469]                 | Loss_D: 0.2849 | Loss_G: 2.3658 | D(x): 0.9202 | D(G(z)): 0.17 |
| 65 / 0.1052<br>[3/5][100/469] | Loss_D: 0.7536 | Loss_G: 2.7158 | D(x): 0.9708 | D(G(z)): 0.49 |
| 35 / 0.0768<br>[3/5][150/469] | Loss_D: 0.5502 | Loss_G: 2.6759 | D(x): 0.9472 | D(G(z)): 0.36 |
| 96 / 0.0825                   | _              | _              |              |               |
| [3/5][200/469]<br>02 / 0.1291 | Loss_D: 0.3190 | Loss_G: 2.1664 | ט(x): 0.8549 | D(G(z)): 0.14 |
| [3/5][250/469]                | Loss_D: 0.9409 | Loss_G: 1.0806 | D(x): 0.4383 | D(G(z)): 0.03 |
| 58 / 0.3602                   |                |                |              |               |

|                                              |                | • – –          |              |               |
|----------------------------------------------|----------------|----------------|--------------|---------------|
| [3/5][300/469]<br>24 / 0.0953                | Loss_D: 0.3255 | Loss_G: 2.4825 | D(x): 0.8707 | D(G(z)): 0.16 |
| [3/5][350/469]<br>72 / 0.1557                | Loss_D: 0.4015 | Loss_G: 2.0034 | D(x): 0.8289 | D(G(z)): 0.17 |
| [3/5][400/469]<br>09 / 0.2106                | Loss_D: 0.4051 | Loss_G: 1.6725 | D(x): 0.7982 | D(G(z)): 0.15 |
| [3/5][450/469]<br>85 / 0.1133                | Loss_D: 0.5482 | Loss_G: 2.3155 | D(x): 0.8970 | D(G(z)): 0.33 |
| [4/5][0/469]<br>33 / 0.0993                  | Loss_D: 0.3806 | Loss_G: 2.4335 | D(x): 0.8588 | D(G(z)): 0.19 |
| [4/5][50/469]<br>05 / 0.0336                 | Loss_D: 0.5730 | Loss_G: 3.5892 | D(x): 0.9247 | D(G(z)): 0.37 |
| [4/5][100/469]<br>45 / 0.2139                | Loss_D: 0.4288 | Loss_G: 1.6665 | D(x): 0.7756 | D(G(z)): 0.14 |
| [4/5][150/469]<br>64 / 0.3342                | Loss_D: 0.4800 | Loss_G: 1.1722 | D(x): 0.7310 | D(G(z)): 0.13 |
| [4/5][200/469]<br>49 / 0.0510                | Loss_D: 0.4490 | Loss_G: 3.1399 | D(x): 0.9111 | D(G(z)): 0.28 |
| [4/5][250/469]<br>90 / 0.3419                | Loss_D: 0.5594 | Loss_G: 1.1648 | D(x): 0.6734 | D(G(z)): 0.10 |
| [4/5][300/469]<br>99 / 0.2102                | Loss_D: 0.4193 | Loss_G: 1.6752 | D(x): 0.7690 | D(G(z)): 0.12 |
| [4/5][350/469]<br>95 / 0.0928                | Loss_D: 0.4460 | Loss_G: 2.5648 | D(x): 0.8833 | D(G(z)): 0.25 |
| [4/5][400/469]                               | Loss_D: 0.9967 | Loss_G: 3.4140 | D(x): 0.9776 | D(G(z)): 0.60 |
| 06 / 0.0376<br>[4/5][450/469]<br>39 / 0.1564 | Loss_D: 0.5906 | Loss_G: 1.9718 | D(x): 0.7761 | D(G(z)): 0.26 |
|                                              |                |                |              |               |

#### Visualization of the results

```
In [9]: # plot the loss for generator and discriminator
    plot_GAN_loss([G_losses, D_losses], ["G", "D"])

# Grab a batch of real images from the dataloader
    plot_real_fake_images(next(iter(dataloader)), img_list)
```







## Task 1.1 Ablation study on batch normalization

- 1. Please modify the code provided in the Task 1.0 so that the neural network architure does not contain any batch normalization layer.
  - Hint: modify the Architectural design for generator and discriminator section in Task 1.0
- 2. Train the model with modified networks and visualize the results.

```
In [5]: # Generator Code
        class Generator woBN(nn.Module):
           def init (self, ngpu):
               super(Generator woBN, self). init ()
               self.ngpu = ngpu
               self.main = nn.Sequential(
                   #########
                   nn.ConvTranspose2d( nz, ngf * 4, kernel size=4, stride=1, padding=
        0, bias=False),
                   ## nn.BatchNorm2d(ngf * 4),
                   nn.ReLU(True), # inplace ReLU
                   # current state size. (nqf*4) \times 4 \times 4
                   nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
                   nn.ReLU(True),
                   # current state size. (ngf*2) x 8 x 8
                   nn.ConvTranspose2d( ngf * 2, ngf, 4, 2, 1, bias=False),
                   nn.ReLU(True),
                   # current state size. ngf x 16 x 16
                   nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False),
                   # current state size. nc x 32 x 32
                   # Produce number between -1 and 1, as pixel values have been norma
        lized to be between -1 and 1
                  nn.Tanh()
                   ########
               )
           def forward(self, input):
               return self.main(input)
        class Discriminator woBN(nn.Module):
           def init (self, ngpu):
               super(Discriminator woBN, self). init ()
               self.ngpu = ngpu
               self.main = nn.Sequential(
                   #########
                   nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
                   nn.LeakyReLU(0.2, inplace=True),
                   # state size. (ndf) \times 16 \times 16
                   nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
                   nn.LeakyReLU(0.2, inplace=True),
                   # state size. (ndf*2) \times 8 \times 8
                   nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
                   nn.LeakyReLU(0.2, inplace=True),
                   # state size. (ndf*4) \times 4 \times 4
                   nn.Conv2d(ndf * 4, 1, 4, 1, 0, bias=False),
                   # state size. (ndf*4) \times 1 \times 1
                   nn.Sigmoid() # Produce probability
```

```
########
    def forward(self, input):
        return self.main(input)
netG noBN = initialize net(Generator woBN, weights init, device, ngpu)
netD noBN = initialize net(Discriminator woBN, weights init, device, ngpu)
Generator_woBN(
  (main): Sequential(
    (0): ConvTranspose2d(100, 32, kernel size=(4, 4), stride=(1, 1), bias=Fal
se)
    (1): ReLU(inplace=True)
    (2): ConvTranspose2d(32, 16, kernel size=(4, 4), stride=(2, 2), padding=
(1, 1), bias=False)
    (3): ReLU(inplace=True)
    (4): ConvTranspose2d(16, 8, kernel_size=(4, 4), stride=(2, 2), padding=
(1, 1), bias=False)
    (5): ReLU(inplace=True)
    (6): ConvTranspose2d(8, 1, kernel_size=(4, 4), stride=(2, 2), padding=(1,
1), bias=False)
    (7): Tanh()
 )
Discriminator woBN(
  (main): Sequential(
    (0): Conv2d(1, 8, kernel size=(4, 4), stride=(2, 2), padding=(1, 1), bias
=False)
    (1): LeakyReLU(negative_slope=0.2, inplace=True)
    (2): Conv2d(8, 16, kernel size=(4, 4), stride=(2, 2), padding=(1, 1), bia
s=False)
    (3): LeakyReLU(negative slope=0.2, inplace=True)
    (4): Conv2d(16, 32, kernel size=(4, 4), stride=(2, 2), padding=(1, 1), bi
as=False)
    (5): LeakyReLU(negative slope=0.2, inplace=True)
    (6): Conv2d(32, 1, kernel size=(4, 4), stride=(1, 1), bias=False)
    (7): Sigmoid()
 )
)
```

```
In [22]:
        # Setup Adam optimizers for both G and D
         optimizerD noBN = optim.Adam(netD noBN.parameters(), lr=lr, betas=(beta1, 0.99
         9))
         optimizerG noBN = optim.Adam(netG noBN.parameters(), lr=lr, betas=(beta1, 0.99
         9))
         # Training Loop
         # Lists to keep track of progress
         img_list = []
         G losses = []
         D losses = []
         iters = 0
         print("Starting Training Loop...")
         # For each epoch
         for epoch in range(num epochs):
             # For each batch in the dataloader
             for i, data in enumerate(dataloader, 0):
                 # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
                 ###################################
                 ## Train with all-real batch
                 netD noBN.zero grad()
                 # Format batch
                 real cpu = data[0].to(device)
                 b size = real cpu.size(0)
                 label = torch.full((b size,), real label, device=device)
                 # Forward pass real batch through D
                 output = netD noBN(real cpu).view(-1)
                 # Calculate loss on all-real batch
                 errD real = criterion(output, label)
                 # Calculate gradients for D in backward pass
                 errD_real.backward()
                 D x = output.mean().item()
                 ## Train with all-fake batch
                 # Generate batch of Latent vectors
                 noise = torch.randn(b size, nz, 1, 1, device=device)
                 # Generate fake image batch with G
                 fake = netG noBN(noise)
                 label.fill (fake label)
                 # Classify all fake batch with D
                 output = netD noBN(fake.detach()).view(-1)
                 # Calculate D's loss on the all-fake batch
                 errD_fake = criterion(output, label)
                 # Calculate the gradients for this batch
                 errD fake.backward()
                 D G z1 = output.mean().item()
                 # Add the gradients from the all-real and all-fake batches
                 errD = errD real + errD fake
                 # Update D
                 optimizerD_noBN.step()
```

```
# (2) Update G network: maximize log(D(G(z)))
       netG noBN.zero grad()
       label.fill_(real_label) # fake labels are real for generator cost
       # Since we just updated D, perform another forward pass of all-fake ba
tch through D
       output = netD noBN(fake).view(-1)
       # Calculate G's loss based on this output
       errG = criterion(output, label)
       # Calculate gradients for G
       errG.backward()
       D_G_z2 = output.mean().item()
       # Update G
       optimizerG noBN.step()
       # Output training stats
       if i % 50 == 0:
           print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G
(z)): %.4f / %.4f'
                 % (epoch, num epochs, i, len(dataloader),
                    errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))
       # Save Losses for plotting later
       G_losses.append(errG.item())
       D_losses.append(errD.item())
       # Check how the generator is doing by saving G's output on fixed noise
       if (iters \% 500 == 0) or ((epoch == num epochs-1) and (i == len(datalo
ader)-1)):
           with torch.no grad():
               fake = netG_noBN(fixed_noise).detach().cpu()
           img list.append(vutils.make grid(fake, padding=2, normalize=True))
       iters += 1
```

| Ctanting Thaini                              | ng Loon        |                     |               |               |
|----------------------------------------------|----------------|---------------------|---------------|---------------|
| Starting Training [0/5][0/469]               | Loss_D: 1.3862 | Loss_G: 0.6931      | D(x): 0.5001  | D(G(z)): 0.50 |
| 00 / 0.5000<br>[0/5][50/469]                 | Loss_D: 1.1021 | Loss_G: 0.4735      | D(x): 0.8969  | D(G(z)): 0.62 |
| 92 / 0.6230                                  | _              | _                   |               |               |
| [0/5][100/469]<br>29 / 0.4814                | Loss_D: 1.0617 | Loss_G: 0.7312      | D(x): 0.6825  | D(G(z)): 0.49 |
| [0/5][150/469]<br>09 / 0.4903                | Loss_D: 0.7274 | Loss_G: 0.7138      | D(x): 0.9526  | D(G(z)): 0.49 |
| [0/5][200/469]                               | Loss_D: 1.0531 | Loss_G: 0.4995      | D(x): 0.9002  | D(G(z)): 0.60 |
| 77 / 0.6074<br>[0/5][250/469]<br>47 / 0.6307 | Loss_D: 1.2455 | Loss_G: 0.4615      | D(x): 0.7923  | D(G(z)): 0.63 |
| [0/5][300/469]<br>15 / 0.5261                | Loss_D: 1.0370 | Loss_G: 0.6426      | D(x): 0.7651  | D(G(z)): 0.53 |
| [0/5][350/469]                               | Loss_D: 0.6507 | Loss_G: 0.8827      | D(x): 0.8804  | D(G(z)): 0.39 |
| 78 / 0.4154<br>[0/5][400/469]<br>46 / 0.4615 | Loss_D: 0.6759 | Loss_G: 0.7737      | D(x): 0.9547  | D(G(z)): 0.46 |
| [0/5][450/469]                               | Loss_D: 0.7132 | Loss_G: 0.7028      | D(x): 0.9813  | D(G(z)): 0.49 |
| 96 / 0.4953<br>[1/5][0/469]                  | Loss_D: 0.7360 | Loss_G: 0.6875      | D(x): 0.9709  | D(G(z)): 0.50 |
| 41 / 0.5029<br>[1/5][50/469]                 | Loss_D: 0.7618 | Loss_G: 0.6754      | D(x): 0.9633  | D(G(z)): 0.50 |
| 85 / 0.5092                                  | _              | _                   |               |               |
| [1/5][100/469]<br>19 / 0.4884                | Loss_D: 0.6918 | Loss_G: 0.7167      | D(x): 0.9872  | D(G(z)): 0.49 |
| [1/5][150/469]                               | Loss_D: 0.6848 | Loss_G: 0.7120      | D(x): 0.9922  | D(G(z)): 0.49 |
| 11 / 0.4907<br>[1/5][200/469]                | Loss_D: 0.6991 | Loss_G: 0.6916      | D(x): 0.9965  | D(G(z)): 0.50 |
| 12 / 0.5008<br>[1/5][250/469]                | Loss_D: 0.7248 | Loss_G: 0.6830      | D(x): 0.9852  | D(G(z)): 0.50 |
| 61 / 0.5051<br>[1/5][300/469]                | Loss_D: 1.2294 | Loss_G: 0.3710      | D(x): 0.9858  | D(G(z)): 0.70 |
| 20 / 0.6904                                  |                | -<br>Loss C: 0 662E | D(v) . 0 0702 |               |
| [1/5][350/469]<br>81 / 0.5151                | LOSS_D: 0.7619 | Loss_G: 0.6635      | D(x): 0.9703  | D(G(z)): 0.51 |
| [1/5][400/469]<br>57 / 0.5042                | Loss_D: 0.7359 | Loss_G: 0.6849      | D(x): 0.9716  | D(G(z)): 0.50 |
| [1/5][450/469]                               | Loss_D: 0.8494 | Loss_G: 0.5832      | D(x): 0.9751  | D(G(z)): 0.56 |
| 08 / 0.5582<br>[2/5][0/469]                  | Loss_D: 0.8059 | Loss_G: 0.6273      | D(x): 0.9642  | D(G(z)): 0.53 |
| 62 / 0.5341                                  | _              | _                   |               |               |
| [2/5][50/469]<br>78 / 0.5045                 | Loss_D: 0.7459 | Loss_G: 0.6861      | D(x): 0.9661  | D(G(z)): 0.50 |
| [2/5][100/469]<br>32 / 0.5604                | Loss_D: 0.8877 | Loss_G: 0.5797      | D(x): 0.9443  | D(G(z)): 0.56 |
| [2/5][150/469]<br>30 / 0.5324                | Loss_D: 0.8267 | Loss_G: 0.6318      | D(x): 0.9409  | D(G(z)): 0.53 |
| [2/5][200/469]                               | Loss_D: 0.9887 | Loss_G: 0.5047      | D(x): 0.9676  | D(G(z)): 0.61 |
| 46 / 0.6039<br>[2/5][250/469]                | Loss_D: 0.7888 | Loss_G: 0.6859      | D(x): 0.9247  | D(G(z)): 0.50 |
| 71 / 0.5038<br>[2/5][300/469]                | Loss_D: 0.8040 | Loss_G: 0.6379      | D(x): 0.9626  | D(G(z)): 0.53 |
| 45 / 0.5286<br>[2/5][350/469]                | Loss_D: 0.7322 | Loss_G: 0.8264      | D(x): 0.8649  | D(G(z)): 0.43 |
| 33 / 0.4390                                  |                |                     |               |               |
|                                              |                |                     |               |               |

| [2/5][400/469]<br>96 / 0.5006 | Loss_D: 0.7539 | Loss_G: 0.6926 | D(x): 0.9609 | D(G(z)): 0.50  |
|-------------------------------|----------------|----------------|--------------|----------------|
| [2/5][450/469]                | Loss_D: 0.8252 | Loss_G: 0.6348 | D(x): 0.9456 | D(G(z)): 0.53  |
| 47 / 0.5309<br>[3/5][0/469]   | Loss_D: 0.7772 | Loss_G: 0.7198 | D(x): 0.9234 | D(G(z)): 0.49  |
| 89 / 0.4886                   |                |                | D(v). 0 01F1 | D/C/-)). 0 F7  |
| [3/5][50/469]<br>31 / 0.5647  | Loss_D: 0.9471 | Loss_G: 0.5730 | D(x): 0.9151 | D(G(z)): 0.57  |
| [3/5][100/469]<br>96 / 0.5689 | Loss_D: 0.9725 | Loss_G: 0.5667 | D(x): 0.9097 | D(G(z)): 0.57  |
| [3/5][150/469]                | Loss_D: 0.9877 | Loss_G: 0.5592 | D(x): 0.8919 | D(G(z)): 0.57  |
| 87 / 0.5733<br>[3/5][200/469] | Loss_D: 0.8591 | Loss_G: 0.6601 | D(x): 0.8772 | D(G(z)): 0.51  |
| 40 / 0.5179                   | Loss D: 0 7040 | Loss C: 0 7761 | D(v). 0 0297 | D(C(7)) · 0 E1 |
| [3/5][250/469]<br>05 / 0.4616 | Loss_D: 0.7949 | Loss_G: 0.7761 | D(x): 0.9287 | D(G(z)): 0.51  |
| [3/5][300/469]<br>64 / 0.5066 | Loss_D: 0.8385 | Loss_G: 0.6871 | D(x): 0.9104 | D(G(z)): 0.51  |
| [3/5][350/469]                | Loss_D: 0.8649 | Loss_G: 0.6124 | D(x): 0.8698 | D(G(z)): 0.50  |
| 74 / 0.5442<br>[3/5][400/469] | Loss D: 0.9474 | Loss G: 0.6092 | D(x): 0.9700 | D(C(-)), 0 FO  |
| 83 / 0.5449                   | LUSS_D. 0.94/4 | LUSS_G. 0.6092 | D(X). 0.9700 | D(G(z)): 0.59  |
| [3/5][450/469]                | Loss_D: 0.9090 | Loss_G: 0.6099 | D(x): 0.8803 | D(G(z)): 0.53  |
| 93 / 0.5443<br>[4/5][0/469]   | Loss_D: 0.8197 | Loss_G: 0.6970 | D(x): 0.9251 | D(G(z)): 0.52  |
| 19 / 0.4990                   | _              |                |              |                |
| [4/5][50/469]<br>19 / 0.4910  | Loss_D: 0.8413 | Loss_G: 0.7134 | D(x): 0.9088 | D(G(z)): 0.52  |
| [4/5][100/469]                | Loss_D: 0.7529 | Loss_G: 0.7709 | D(x): 0.9396 | D(G(z)): 0.49  |
| 70 / 0.4633<br>[4/5][150/469] | Loss D: 0.7445 | Loss_G: 0.7366 | D(x): 0.9086 | D(G(z)): 0.47  |
| 31 / 0.4791                   |                |                |              |                |
| [4/5][200/469]<br>90 / 0.5008 | Loss_D: 0.7977 | Loss_G: 0.6930 | D(x): 0.9411 | D(G(z)): 0.51  |
| [4/5][250/469]                | Loss_D: 0.7729 | Loss_G: 0.6904 | D(x): 0.9492 | D(G(z)): 0.51  |
| 17 / 0.5021<br>[4/5][300/469] | Loss D: 0.7794 | Loss_G: 0.6933 | D(x): 0.9647 | D(G(z)): 0.52  |
| 37 / 0.5002                   | 2033_5. 0.7751 | 2033_4. 0.0333 | D(X): 0.3047 | 5(4(2)). 0.32  |
| [4/5][350/469]<br>94 / 0.6126 | Loss_D: 0.9193 | Loss_G: 0.4914 | D(x): 0.8252 | D(G(z)): 0.50  |
| [4/5][400/469]                | Loss_D: 0.7829 | Loss_G: 0.6836 | D(x): 0.9483 | D(G(z)): 0.51  |
| 36 / 0.5053<br>[4/5][450/469] | loss D. 0 7414 | Loss_G: 0.7421 | D(x). 0 0380 | D(G(z)): 0.48  |
| 94 / 0.4766                   | 2000_0. 0./414 | 2005_0. 0.7421 | 2(x). 0.2303 | 5(3(2)). 0.40  |
|                               |                |                |              |                |

In [23]: # plot the loss for generator and discriminator
 plot\_GAN\_loss([G\_losses, D\_losses], ["G", "D"])

# Grab a batch of real images from the dataloader
 plot\_real\_fake\_images(next(iter(dataloader)), img\_list)







# Task 1.2 Ablation study on the trick: "Construct different mini-batches for real and fake"

- 1. Please modify the code provided in the Task 1.0 so that the discriminator algorithm part computes the forward and backward pass for fake and real images concatenated together (with their corresponding fake and real labels concatenated as well) instead of computing the forward and backward passes for fake and real images separately.
  - Hint: modify the *Loss function and Training function* section in Task 1.0.
- 2. Train the model with modified networks and visualize the results.

```
In [55]: # re-initilizate networks for the generator and discrimintor.
        netG = initialize net(Generator, weights init, device, ngpu)
        netD = initialize net(Discriminator, weights init, device, ngpu)
        # Setup Adam optimizers for both G and D
        optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))
        optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))
        # Training Loop
        # Lists to keep track of progress
        img list = []
        G losses = []
        D losses = []
        iters = 0
        print("Starting Training Loop...")
        # For each epoch
        for epoch in range(num epochs):
           # For each batch in the dataloader
           for i, data in enumerate(dataloader, 0):
               # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
               #####
               netD.zero grad()
               # Format batch
               real cpu = data[0].to(device)
               b size = real cpu.size(0)
               noise = torch.randn(b_size, nz, 1, 1, device=device)
               fake = netG(noise)
               data concat = torch.cat((real cpu, fake))
               label concat = torch.cat((torch.full((b size,), real label, device=dev
        ice),
                                     torch.full((b_size,), fake_label, device=devi
        ce)))
               output concat = netD(data concat).view(-1)
               errD = criterion(output concat, label concat)
               errD.backward()
               # Update D
               optimizerD.step()
               ###
```

```
# (2) Update G network: maximize log(D(G(z)))
       ###################################
       netG.zero grad()
       noise = torch.randn(b_size, nz, 1, 1, device=device)
       fake = netG(noise)
       label = torch.full((b_size,), real_label, device=device) # fake Label
s are real for generator cost
       # Since we just updated D, perform another forward pass of all-fake ba
tch through D
       output = netD(fake).view(-1)
       # Calculate G's loss based on this output
       errG = criterion(output, label)
       # Calculate gradients for G
       errG.backward()
       D_G_z2 = output.mean().item()
       # Update G
       optimizerG.step()
       # Output training stats
       if i % 50 == 0:
           print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(G(z)): %.4f'
                 % (epoch, num_epochs, i, len(dataloader),
                    errD.item(), errG.item(), D G z2))
       # Save Losses for plotting later
       G losses.append(errG.item())
       D losses.append(errD.item())
       # Check how the generator is doing by saving G's output on fixed_noise
       if (iters \% 500 == 0) or ((epoch == num epochs-1) and (i == len(datalo
ader)-1)):
           with torch.no grad():
               fake = netG(fixed noise).detach().cpu()
           img_list.append(vutils.make_grid(fake, padding=2, normalize=True))
       iters += 1
```

```
Generator(
  (main): Sequential(
    (0): ConvTranspose2d(100, 32, kernel_size=(4, 4), stride=(1, 1), bias=Fal
    (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
    (2): ReLU(inplace=True)
    (3): ConvTranspose2d(32, 16, kernel_size=(4, 4), stride=(2, 2), padding=
(1, 1), bias=False)
    (4): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
    (5): ReLU(inplace=True)
    (6): ConvTranspose2d(16, 8, kernel size=(4, 4), stride=(2, 2), padding=
(1, 1), bias=False)
    (7): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track running s
tats=True)
    (8): ReLU(inplace=True)
    (9): ConvTranspose2d(8, 1, kernel_size=(4, 4), stride=(2, 2), padding=(1,
1), bias=False)
    (10): Tanh()
 )
)
Discriminator(
  (main): Sequential(
    (0): Conv2d(1, 8, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias
=False)
    (1): LeakyReLU(negative slope=0.2, inplace=True)
    (2): Conv2d(8, 16, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bia
s=False)
    (3): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
    (4): LeakyReLU(negative slope=0.2, inplace=True)
    (5): Conv2d(16, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bi
as=False)
    (6): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
    (7): LeakyReLU(negative_slope=0.2, inplace=True)
    (8): Conv2d(32, 1, kernel_size=(4, 4), stride=(1, 1), bias=False)
    (9): Sigmoid()
 )
Starting Training Loop...
[0/5][0/469]
                Loss_D: 0.7281 Loss_G: 0.7642 D(G(z)): 0.4703
[0/5][50/469]
                Loss_D: 0.0334 Loss_G: 0.1177
                                                D(G(z)): 0.8895
[0/5][100/469]
               Loss D: 0.0121 Loss G: 0.0459
                                                D(G(z)): 0.9552
[0/5][150/469]
               Loss D: 0.0066 Loss G: 0.0263
                                                D(G(z)): 0.9740
                Loss_D: 0.0043
                                Loss_G: 0.0182
                                                D(G(z)): 0.9820
[0/5][200/469]
                Loss D: 0.0030 Loss G: 0.0128
                                                D(G(z)): 0.9873
[0/5][250/469]
[0/5][300/469]
                Loss_D: 0.0022 Loss_G: 0.0095
                                                D(G(z)): 0.9905
[0/5][350/469]
                Loss_D: 0.0018
                               Loss_G: 0.0075
                                                D(G(z)): 0.9925
[0/5][400/469]
                Loss D: 0.0014
                               Loss G: 0.0062
                                                D(G(z)): 0.9938
                Loss D: 0.0012
                                                D(G(z)): 0.9950
[0/5][450/469]
                                Loss G: 0.0051
[1/5][0/469]
                Loss_D: 0.0010
                                Loss_G: 0.0048
                                                D(G(z)): 0.9952
[1/5][50/469]
                Loss D: 0.0009
                                Loss G: 0.0041
                                                D(G(z)): 0.9959
[1/5][100/469]
                Loss D: 0.0008
                                Loss_G: 0.0035
                                                D(G(z)): 0.9965
[1/5][150/469]
                Loss D: 0.0006
                                Loss G: 0.0031
                                                D(G(z)): 0.9969
                Loss D: 0.0006
[1/5][200/469]
                                Loss G: 0.0028
                                                D(G(z)): 0.9972
```

```
D(G(z)): 0.9975
[1/5][250/469]
                Loss D: 0.0005
                                 Loss G: 0.0025
[1/5][300/469]
                Loss_D: 0.0004
                                 Loss_G: 0.0022
                                                 D(G(z)): 0.9978
                Loss_D: 0.0004
                                                 D(G(z)): 0.9980
[1/5][350/469]
                                 Loss_G: 0.0020
[1/5][400/469]
                Loss_D: 0.0004
                                 Loss G: 0.0018
                                                 D(G(z)): 0.9982
[1/5][450/469]
                Loss D: 0.0003
                                 Loss G: 0.0017
                                                  D(G(z)): 0.9983
                Loss_D: 0.0003
                                 Loss_G: 0.0017
                                                 D(G(z)): 0.9983
[2/5][0/469]
[2/5][50/469]
                Loss D: 0.0003
                                 Loss G: 0.0015
                                                 D(G(z)): 0.9985
[2/5][100/469]
                Loss_D: 0.0003
                                 Loss_G: 0.0014
                                                 D(G(z)): 0.9986
[2/5][150/469]
                Loss_D: 0.0002
                                 Loss_G: 0.0013
                                                 D(G(z)): 0.9987
[2/5][200/469]
                Loss D: 0.0002
                                 Loss G: 0.0012
                                                 D(G(z)): 0.9988
[2/5][250/469]
                Loss D: 0.0002
                                 Loss G: 0.0011
                                                 D(G(z)): 0.9989
[2/5][300/469]
                Loss_D: 0.0002
                                 Loss_G: 0.0011
                                                 D(G(z)): 0.9989
                Loss D: 0.0002
                                                 D(G(z)): 0.9990
[2/5][350/469]
                                 Loss G: 0.0010
[2/5][400/469]
                Loss_D: 0.0002
                                 Loss_G: 0.0009
                                                 D(G(z)): 0.9991
                Loss_D: 0.0002
                                 Loss_G: 0.0009
                                                 D(G(z)): 0.9991
[2/5][450/469]
[3/5][0/469]
                Loss D: 0.0001
                                 Loss G: 0.0008
                                                 D(G(z)): 0.9992
[3/5][50/469]
                Loss D: 0.0001
                                 Loss G: 0.0008
                                                  D(G(z)): 0.9992
[3/5][100/469]
                Loss_D: 0.0001
                                 Loss_G: 0.0007
                                                 D(G(z)): 0.9993
                Loss D: 0.0001
                                 Loss G: 0.0007
                                                 D(G(z)): 0.9993
[3/5][150/469]
[3/5][200/469]
                Loss_D: 0.0001
                                 Loss_G: 0.0007
                                                 D(G(z)): 0.9993
[3/5][250/469]
                Loss_D: 0.0001
                                 Loss_G: 0.0006
                                                 D(G(z)): 0.9994
[3/5][300/469]
                Loss D: 0.0001
                                 Loss G: 0.0006
                                                  D(G(z)): 0.9994
[3/5][350/469]
                Loss D: 0.0001
                                 Loss G: 0.0006
                                                 D(G(z)): 0.9994
                Loss_D: 0.0001
                                 Loss_G: 0.0005
                                                 D(G(z)): 0.9995
[3/5][400/469]
                Loss_D: 0.0001
                                 Loss_G: 0.0005
                                                 D(G(z)): 0.9995
[3/5][450/469]
[4/5][0/469]
                Loss D: 0.0001
                                 Loss_G: 0.0005
                                                 D(G(z)): 0.9995
[4/5][50/469]
                Loss_D: 0.0001
                                 Loss_G: 0.0005
                                                 D(G(z)): 0.9995
[4/5][100/469]
                Loss_D: 0.0001
                                 Loss_G: 0.0005
                                                 D(G(z)): 0.9995
[4/5][150/469]
                Loss D: 0.0001
                                 Loss G: 0.0004
                                                 D(G(z)): 0.9996
[4/5][200/469]
                Loss_D: 0.0001
                                 Loss_G: 0.0004
                                                 D(G(z)): 0.9996
[4/5][250/469]
                Loss_D: 0.0001
                                 Loss_G: 0.0004
                                                 D(G(z)): 0.9996
[4/5][300/469]
                Loss_D: 0.0001
                                 Loss_G: 0.0004
                                                 D(G(z)): 0.9996
[4/5][350/469]
                Loss_D: 0.0001
                                 Loss_G: 0.0004
                                                 D(G(z)): 0.9996
[4/5][400/469]
                Loss D: 0.0001
                                 Loss G: 0.0004
                                                 D(G(z)): 0.9996
                                                 D(G(z)): 0.9997
[4/5][450/469]
                Loss D: 0.0001
                                 Loss G: 0.0003
```

In [56]: # plot the loss for generator and discriminator
 plot\_GAN\_loss([G\_losses, D\_losses], ["G", "D"])

# Grab a batch of real images from the dataloader
 plot\_real\_fake\_images(next(iter(dataloader)), img\_list)







#### Task 1.3 Ablation study on the generator's loss function

- 1. Please modify the code provided in the Task 1.0 so that the *Generator* algorithm part minimizes  $\log(1-D(G(z)))$  instead of the modified loss function suggested in the original GAN paper of  $-\log(D(G(z)))$ .
  - A. Modify the Loss function and Training function section in Task 1.0
  - B. (Hint) Try to understand the definition of <u>BCE loss</u> (<a href="https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html">https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html</a>) first and how the modified loss function was implemented.
- 2. Train the model with modified networks and visualize the results.

```
In [12]: # re-initilizate networks for the generator and discrimintor.
         netG = initialize net(Generator, weights init, device, ngpu)
         netD = initialize net(Discriminator, weights init, device, ngpu)
         # Setup Adam optimizers for both G and D
         optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))
         optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))
         # Training Loop
         # Lists to keep track of progress
         img list = []
         G losses = []
         D losses = []
         iters = 0
         print("Starting Training Loop...")
         # For each epoch
         for epoch in range(num epochs):
             # For each batch in the dataloader
             for i, data in enumerate(dataloader, 0):
                 # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
                 ###################################
                 ## Train with all-real batch
                 netD.zero grad()
                 # Format batch
                 real cpu = data[0].to(device)
                 b size = real cpu.size(0)
                 label = torch.full((b_size,), real_label, device=device)
                 # Forward pass real batch through D
                 output = netD(real cpu).view(-1)
                 # Calculate loss on all-real batch
                 errD_real = criterion(output, label)
                 # Calculate gradients for D in backward pass
                 errD real.backward()
                 D_x = output.mean().item()
                 ## Train with all-fake batch
                 # Generate batch of latent vectors
                 noise = torch.randn(b_size, nz, 1, 1, device=device)
                 # Generate fake image batch with G
                 fake = netG(noise)
                 label.fill (fake label)
                 # Classify all fake batch with D
                 output = netD(fake.detach()).view(-1)
                 # Calculate D's loss on the all-fake batch
                 errD fake = criterion(output, label)
                 # Calculate the gradients for this batch
                 errD fake.backward()
                 D G z1 = output.mean().item()
                 # Add the gradients from the all-real and all-fake batches
                 errD = errD real + errD fake
                 # Update D
                 optimizerD.step()
```

```
# (2) Update G network
       ######################################
       #####
       #label.fill_(fake_label)
       # Classify all fake batch with D
       output = netD(fake).view(-1)
       # Calculate D's loss on the all-fake batch
       #errG = torch.log(1- output)
       #output = torch.log(1-output)
       errG = -criterion(output, label)
       # Calculate the gradients for this batch
       errG.backward()
       D_G_z2 = output.mean().item()
       # Update G
       optimizerG.step()
       netG.zero grad()
       label.fill_(fake_label) # fake Labels to minimize
       # Since we just updated D, perform another forward pass of all-fake ba
tch through D
       output = netD(fake).view(-1)
       # Calculate G's loss based on this output
       errG = -criterion(output, label)
       # Calculate gradients for G
       errG.backward()
       D_G_z2 = output.mean().item()
       # Update G
       optimizerG.step()
       ###
       # Output training stats
       if i % 50 == 0:
          print('[%d/%d][%d/%d]\tLoss D: %.4f\tLoss G: %.4f\tD(x): %.4f\tD(G
(z)): %.4f / %.4f'
                % (epoch, num_epochs, i, len(dataloader),
                   errD.item(), errG.item(), D x, D G z1, D G z2))
       # Save Losses for plotting later
       G_losses.append(errG.item())
       D losses.append(errD.item())
       # Check how the generator is doing by saving G's output on fixed_noise
       if (iters \% 500 == 0) or ((epoch == num epochs-1) and (i == len(datalo
ader)-1)):
          with torch.no_grad():
              fake = netG(fixed noise).detach().cpu()
          img_list.append(vutils.make_grid(fake, padding=2, normalize=True))
       iters += 1
```

```
Generator(
  (main): Sequential(
    (0): ConvTranspose2d(100, 32, kernel_size=(4, 4), stride=(1, 1), bias=Fal
    (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
    (2): ReLU(inplace=True)
    (3): ConvTranspose2d(32, 16, kernel_size=(4, 4), stride=(2, 2), padding=
(1, 1), bias=False)
    (4): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
    (5): ReLU(inplace=True)
    (6): ConvTranspose2d(16, 8, kernel size=(4, 4), stride=(2, 2), padding=
(1, 1), bias=False)
    (7): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track running s
tats=True)
    (8): ReLU(inplace=True)
    (9): ConvTranspose2d(8, 1, kernel_size=(4, 4), stride=(2, 2), padding=(1,
1), bias=False)
    (10): Tanh()
 )
)
Discriminator(
  (main): Sequential(
    (0): Conv2d(1, 8, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias
=False)
    (1): LeakyReLU(negative slope=0.2, inplace=True)
    (2): Conv2d(8, 16, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bia
s=False)
    (3): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
    (4): LeakyReLU(negative slope=0.2, inplace=True)
    (5): Conv2d(16, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bi
as=False)
    (6): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
    (7): LeakyReLU(negative_slope=0.2, inplace=True)
    (8): Conv2d(32, 1, kernel size=(4, 4), stride=(1, 1), bias=False)
    (9): Sigmoid()
 )
Starting Training Loop...
                Loss_D: 1.4669 Loss_G: -0.6471 D(x): 0.4565
[0/5][0/469]
                                                                D(G(z)): 0.48
69 / 0.4727
                Loss D: 0.3643 Loss G: -0.2051 D(x): 0.8811
[0/5][50/469]
                                                                D(G(z)): 0.20
80 / 0.1839
[0/5][100/469] Loss_D: 0.3241 Loss_G: -0.1450 D(x): 0.8609
                                                                D(G(z)): 0.14
97 / 0.1331
[0/5][150/469] Loss_D: 0.0572 Loss_G: -0.0282 D(x): 0.9748
                                                                D(G(z)): 0.03
07 / 0.0277
[0/5][200/469] Loss D: 0.0267 Loss G: -0.0140 D(x): 0.9882
                                                                D(G(z)): 0.01
47 / 0.0138
[0/5][250/469] Loss_D: 0.0162 Loss_G: -0.0088 D(x): 0.9929
                                                                D(G(z)): 0.00
90 / 0.0087
                Loss D: 0.0106 Loss G: -0.0055 D(x): 0.9950
                                                                D(G(z)): 0.00
[0/5][300/469]
55 / 0.0055
              Loss D: 0.0086 Loss G: -0.0047 D(x): 0.9963
                                                                D(G(z)): 0.00
[0/5][350/469]
```

| 48 / 0.0047                   |                |         |         |       |        |          |      |
|-------------------------------|----------------|---------|---------|-------|--------|----------|------|
| [0/5][400/469]<br>36 / 0.0036 | Loss_D: 0.0067 | Loss_G: | -0.0036 | D(x): | 0.9969 | D(G(z)): | 0.00 |
| [0/5][450/469]<br>29 / 0.0028 | Loss_D: 0.0046 | Loss_G: | -0.0028 | D(x): | 0.9982 | D(G(z)): | 0.00 |
| [1/5][0/469]<br>27 / 0.0026   | Loss_D: 0.0045 | Loss_G: | -0.0027 | D(x): | 0.9982 | D(G(z)): | 0.00 |
| [1/5][50/469]<br>22 / 0.0022  | Loss_D: 0.0041 | Loss_G: | -0.0022 | D(x): | 0.9981 | D(G(z)): | 0.00 |
| [1/5][100/469]<br>18 / 0.0018 | Loss_D: 0.0029 | Loss_G: | -0.0018 | D(x): | 0.9989 | D(G(z)): | 0.00 |
| [1/5][150/469]<br>16 / 0.0016 | Loss_D: 0.0026 | Loss_G: | -0.0016 | D(x): | 0.9989 | D(G(z)): | 0.00 |
| [1/5][200/469]<br>14 / 0.0014 | Loss_D: 0.0025 | Loss_G: | -0.0014 | D(x): | 0.9990 | D(G(z)): | 0.00 |
| [1/5][250/469]<br>12 / 0.0012 | Loss_D: 0.0019 | Loss_G: | -0.0012 | D(x): | 0.9992 | D(G(z)): | 0.00 |
| [1/5][300/469]<br>11 / 0.0011 | Loss_D: 0.0017 | Loss_G: | -0.0011 | D(x): | 0.9994 | D(G(z)): | 0.00 |
| [1/5][350/469]<br>08 / 0.0008 | Loss_D: 0.0015 | Loss_G: | -0.0008 | D(x): | 0.9994 | D(G(z)): | 0.00 |
| [1/5][400/469]<br>07 / 0.0007 | Loss_D: 0.0013 | Loss_G: | -0.0007 | D(x): | 0.9994 | D(G(z)): | 0.00 |
| [1/5][450/469]<br>08 / 0.0008 | Loss_D: 0.0013 | Loss_G: | -0.0008 | D(x): | 0.9995 | D(G(z)): | 0.00 |
| [2/5][0/469]<br>07 / 0.0007   | Loss_D: 0.0012 | Loss_G: | -0.0007 | D(x): | 0.9996 | D(G(z)): | 0.00 |
| [2/5][50/469]<br>06 / 0.0006  | Loss_D: 0.0010 | Loss_G: | -0.0006 | D(x): | 0.9996 | D(G(z)): | 0.00 |
| [2/5][100/469]<br>06 / 0.0006 | Loss_D: 0.0010 | Loss_G: | -0.0006 | D(x): | 0.9996 | D(G(z)): | 0.00 |
| [2/5][150/469]<br>05 / 0.0005 | Loss_D: 0.0009 | Loss_G: | -0.0005 | D(x): | 0.9996 | D(G(z)): | 0.00 |
| [2/5][200/469]<br>05 / 0.0005 | Loss_D: 0.0009 | Loss_G: | -0.0005 | D(x): | 0.9996 | D(G(z)): | 0.00 |
| [2/5][250/469]<br>04 / 0.0004 | Loss_D: 0.0008 | Loss_G: | -0.0004 | D(x): | 0.9997 | D(G(z)): | 0.00 |
| [2/5][300/469]<br>04 / 0.0004 | Loss_D: 0.0007 | Loss_G: | -0.0004 | D(x): | 0.9997 | D(G(z)): | 0.00 |
| [2/5][350/469]<br>04 / 0.0004 | Loss_D: 0.0007 | Loss_G: | -0.0004 | D(x): | 0.9997 | D(G(z)): | 0.00 |
| [2/5][400/469]<br>04 / 0.0004 | Loss_D: 0.0007 | Loss_G: | -0.0004 | D(x): | 0.9997 | D(G(z)): | 0.00 |
| [2/5][450/469]<br>04 / 0.0004 | Loss_D: 0.0006 | Loss_G: | -0.0004 | D(x): | 0.9998 | D(G(z)): | 0.00 |
| [3/5][0/469]<br>04 / 0.0004   | Loss_D: 0.0007 | Loss_G: | -0.0004 | D(x): | 0.9997 | D(G(z)): | 0.00 |
| [3/5][50/469]<br>03 / 0.0003  | Loss_D: 0.0005 | Loss_G: | -0.0003 | D(x): | 0.9998 | D(G(z)): | 0.00 |
| [3/5][100/469]<br>03 / 0.0003 | Loss_D: 0.0005 | Loss_G: | -0.0003 | D(x): | 0.9997 | D(G(z)): | 0.00 |
| [3/5][150/469]<br>03 / 0.0003 | Loss_D: 0.0006 | Loss_G: | -0.0003 | D(x): | 0.9998 | D(G(z)): | 0.00 |
| [3/5][200/469]<br>03 / 0.0003 | Loss_D: 0.0005 | Loss_G: | -0.0003 | D(x): | 0.9998 | D(G(z)): | 0.00 |
| [3/5][250/469]<br>03 / 0.0003 | Loss_D: 0.0005 | Loss_G: | -0.0003 | D(x): | 0.9998 | D(G(z)): | 0.00 |
|                               |                |         |         |       |        |          |      |

| [3/5][300/469]<br>02 / 0.0002 | Loss_D: 0.0004 | Loss_G: | -0.0002 D | (x): 0.  | 9998  | D(G(z)): | 0.00 |
|-------------------------------|----------------|---------|-----------|----------|-------|----------|------|
| [3/5][350/469]<br>02 / 0.0002 | Loss_D: 0.0004 | Loss_G: | -0.0002 D | (x): 0.  | 9999  | D(G(z)): | 0.00 |
| [3/5][400/469]                | Loss_D: 0.0004 | Loss_G: | -0.0002 D | (x): 0.  | .9998 | D(G(z)): | 0.00 |
| 02 / 0.0002<br>[3/5][450/469] | Loss_D: 0.0004 | Loss_G: | -0.0002 D | (x): 0.  | .9998 | D(G(z)): | 0.00 |
| 02 / 0.0002<br>[4/5][0/469]   | Loss_D: 0.0004 | Loss_G: | -0.0002 D | (x): 0.  | .9998 | D(G(z)): | 0.00 |
| 02 / 0.0002<br>[4/5][50/469]  | Loss_D: 0.0003 | Loss_G: | -0.0002 D | (x): 0.  | .9999 | D(G(z)): | 0.00 |
| 02 / 0.0002<br>[4/5][100/469] | Loss_D: 0.0003 | Loss_G: | -0.0002 D | (x): 0.  | 9999  | D(G(z)): | 0.00 |
| 02 / 0.0002<br>[4/5][150/469] | Loss_D: 0.0003 | Loss_G: | -0.0002 D | (x): 0.  | 9999  | D(G(z)): | 0.00 |
| 02 / 0.0002<br>[4/5][200/469] | Loss_D: 0.0003 | Loss_G: | -0.0002 D | (x): 0.  | .9999 | D(G(z)): | 0.00 |
| 02 / 0.0002<br>[4/5][250/469] | Loss_D: 0.0003 | Loss_G: | -0.0002 D | (x): 0.  | .9999 | D(G(z)): | 0.00 |
| 02 / 0.0002<br>[4/5][300/469] | Loss_D: 0.0003 | Loss_G: | -0.0001 D | (x): 0.  | 9999  | D(G(z)): | 0.00 |
| 01 / 0.0001<br>[4/5][350/469] | Loss_D: 0.0002 | Loss_G: | -0.0001 D | )(x): 0. | .9999 | D(G(z)): | 0.00 |
| 01 / 0.0001<br>[4/5][400/469] | Loss_D: 0.0002 | Loss G: | -0.0001 D | v(x): 0. | .9999 | D(G(z)): | 0.00 |
| 01 / 0.0001<br>[4/5][450/469] | Loss D: 0.0002 | _       | -0.0001 D |          |       | D(G(z)): |      |
| 01 / 0.0001                   | _              | _ `     |           | • ,      |       |          |      |

```
In [13]: # plot the loss for generator and discriminator
          plot_GAN_loss([G_losses, D_losses], ["G", "D"])
          # Grab a batch of real images from the dataloader
          plot_real_fake_images(next(iter(dataloader)), img_list)
                                                Losses During Training
               1.5
                                                                                                G
                                                                                                D
               1.0
               0.5
           Loss
               0.0
             -0.5
                                    500
                                                   1000
                                                                                  2000
                                                                  1500
                                                       iterations
                           Real Images
                                                                           Fake Images
```

### Task 1.4 Ablation study on the weight initialization

- 1. Please use the function initialize\_net provided in Task 1.0 to initialize the generator and discriminator function without weight initialization (HINT: There is no need to modify the code for initialize\_net function).
- 2. Train the model with modified networks and visualize the results.

In [ ]:

```
In [18]:
        netD woinit = initialize net(Discriminator, None, device, ngpu)
        netG woinit = initialize net(Generator, None, device, ngpu)
        Discriminator(
          (main): Sequential(
            (0): Conv2d(1, 8, kernel size=(4, 4), stride=(2, 2), padding=(1, 1), bias
        =False)
            (1): LeakyReLU(negative slope=0.2, inplace=True)
            (2): Conv2d(8, 16, kernel size=(4, 4), stride=(2, 2), padding=(1, 1), bia
        s=False)
            (3): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running
        stats=True)
            (4): LeakyReLU(negative slope=0.2, inplace=True)
            (5): Conv2d(16, 32, kernel size=(4, 4), stride=(2, 2), padding=(1, 1), bi
        as=False)
            (6): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running
        stats=True)
            (7): LeakyReLU(negative slope=0.2, inplace=True)
            (8): Conv2d(32, 1, kernel_size=(4, 4), stride=(1, 1), bias=False)
            (9): Sigmoid()
          )
        Generator(
          (main): Sequential(
            (0): ConvTranspose2d(100, 32, kernel size=(4, 4), stride=(1, 1), bias=Fal
        se)
            (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running
        stats=True)
            (2): ReLU(inplace=True)
            (3): ConvTranspose2d(32, 16, kernel size=(4, 4), stride=(2, 2), padding=
        (1, 1), bias=False)
            (4): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running
        stats=True)
            (5): ReLU(inplace=True)
            (6): ConvTranspose2d(16, 8, kernel_size=(4, 4), stride=(2, 2), padding=
        (1, 1), bias=False)
            (7): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track running s
        tats=True)
            (8): ReLU(inplace=True)
            (9): ConvTranspose2d(8, 1, kernel size=(4, 4), stride=(2, 2), padding=(1,
        1), bias=False)
            (10): Tanh()
          )
        )
```

```
In [19]:
        # Setup Adam optimizers for both G and D
         optimizerD woinit = optim.Adam(netD woinit.parameters(), lr=lr, betas=(beta1,
         0.999))
         optimizerG woinit = optim.Adam(netG woinit.parameters(), lr=lr, betas=(beta1,
         0.999))
         # Training Loop
         # Lists to keep track of progress
         img_list = []
         G losses = []
         D losses = []
         iters = 0
         print("Starting Training Loop...")
         # For each epoch
         for epoch in range(num epochs):
             # For each batch in the dataloader
             for i, data in enumerate(dataloader, 0):
                 # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
                 ###################################
                 ## Train with all-real batch
                 netD woinit.zero grad()
                 # Format batch
                 real cpu = data[0].to(device)
                 b size = real cpu.size(0)
                 label = torch.full((b size,), real label, device=device)
                 # Forward pass real batch through D
                 output = netD woinit(real cpu).view(-1)
                 # Calculate loss on all-real batch
                 errD real = criterion(output, label)
                 # Calculate gradients for D in backward pass
                 errD_real.backward()
                 D x = output.mean().item()
                 ## Train with all-fake batch
                 # Generate batch of Latent vectors
                 noise = torch.randn(b_size, nz, 1, 1, device=device)
                 # Generate fake image batch with G
                 fake = netG woinit(noise)
                 label.fill (fake label)
                 # Classify all fake batch with D
                 output = netD woinit(fake.detach()).view(-1)
                 # Calculate D's loss on the all-fake batch
                 errD_fake = criterion(output, label)
                 # Calculate the gradients for this batch
                 errD fake.backward()
                 D G z1 = output.mean().item()
                 # Add the gradients from the all-real and all-fake batches
                 errD = errD real + errD fake
                 # Update D
                 optimizerD_woinit.step()
```

```
# (2) Update G network: maximize log(D(G(z)))
       netG_woinit.zero_grad()
       label.fill_(real_label) # fake labels are real for generator cost
       # Since we just updated D, perform another forward pass of all-fake ba
tch through D
       output = netD woinit(fake).view(-1)
       # Calculate G's loss based on this output
       errG = criterion(output, label)
       # Calculate gradients for G
       errG.backward()
       D_G_z2 = output.mean().item()
       # Update G
       optimizerG woinit.step()
       # Output training stats
       if i % 50 == 0:
           print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G
(z)): %.4f / %.4f'
                 % (epoch, num epochs, i, len(dataloader),
                    errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))
       # Save Losses for plotting later
       G_losses.append(errG.item())
       D_losses.append(errD.item())
       # Check how the generator is doing by saving G's output on fixed noise
       if (iters \% 500 == 0) or ((epoch == num epochs-1) and (i == len(datalo
ader)-1)):
           with torch.no_grad():
               fake = netG_woinit(fixed_noise).detach().cpu()
           img list.append(vutils.make grid(fake, padding=2, normalize=True))
       iters += 1
```

| Starting Traini               | ng Loon |        |         |         |       |        |          |      |
|-------------------------------|---------|--------|---------|---------|-------|--------|----------|------|
| [0/5][0/469]                  | Loss_D: |        | Loss_G: | 0.9581  | D(x): | 0.4424 | D(G(z)): | 0.40 |
| 16 / 0.3917                   | _       |        | _       |         | ` ,   |        | , ,      |      |
| [0/5][50/469]<br>40 / 0.2161  | Loss_D: | 0.3826 | Loss_G: | 1.5581  | D(x): | 0.8935 | D(G(z)): | 0.23 |
| [0/5][100/469]                | Loss_D: | 0.2050 | Loss_G: | 2.2244  | D(x): | 0.9373 | D(G(z)): | 0.12 |
| 92 / 0.1130<br>[0/5][150/469] | Loss_D: | 0.1600 | Loss_G: | 2.5938  | D(x): | 0.9438 | D(G(z)): | 0.09 |
| 49 / 0.0789                   | _       |        | _       |         |       |        |          |      |
| [0/5][200/469]<br>43 / 0.0589 | Loss_D: | 0.1197 | Loss_G: | 2.9223  | D(x): | 0.9609 | D(G(z)): | 0.07 |
| [0/5][250/469]<br>77 / 0.0605 | Loss_D: | 0.1929 | Loss_G: | 2.9358  | D(x): | 0.9060 | D(G(z)): | 0.07 |
| [0/5][300/469]<br>48 / 0.0386 | Loss_D: | 0.1536 | Loss_G: | 3.3917  | D(x): | 0.9219 | D(G(z)): | 0.06 |
| [0/5][350/469]                | Loss_D: | 0.0882 | Loss_G: | 3.8163  | D(x): | 0.9542 | D(G(z)): | 0.03 |
| 71 / 0.0247<br>[0/5][400/469] | Loss_D: | 0.0380 | Loss_G: | 4.3452  | D(x): | 0.9835 | D(G(z)): | 0.02 |
| 06 / 0.0145                   |         |        |         |         |       |        |          |      |
| [0/5][450/469]<br>90 / 0.0118 | Loss_D: | 0.0389 | Loss_G: | 4.6153  | D(x): | 0.9810 | D(G(z)): | 0.01 |
| [1/5][0/469]                  | Loss_D: | 0.0354 | Loss_G: | 4.5837  | D(x): | 0.9810 | D(G(z)): | 0.01 |
| 55 / 0.0120<br>[1/5][50/469]  | Loss_D: | 0.0400 | Loss_G: | 4.3595  | D(x): | 0.9883 | D(G(z)): | 0.02 |
| 72 / 0.0151                   | _       |        | _       |         |       |        |          |      |
| [1/5][100/469]<br>51 / 0.0111 | Loss_D: | 0.0266 | Loss_G: | 4.5798  | D(x): | 0.9892 | D(G(z)): | 0.01 |
| [1/5][150/469]                | Loss_D: | 0.0378 | Loss_G: | 4.7847  | D(x): | 0.9829 | D(G(z)): | 0.01 |
| 41 / 0.0094<br>[1/5][200/469] | Loss_D: | 0.0119 | Loss_G: | 5.2471  | D(x): | 0.9954 | D(G(z)): | 0.00 |
| 73 / 0.0057<br>[1/5][250/469] | Loss D: | a a1aa | Loss_G: | 5 33/13 | D(v). | 0.9966 | D(G(z)): | a aa |
| 65 / 0.0052                   | _       |        | _       |         | • •   |        |          |      |
| [1/5][300/469]<br>78 / 0.0052 | Loss_D: | 0.0128 | Loss_G: | 5.3213  | D(x): | 0.9951 | D(G(z)): | 0.00 |
| [1/5][350/469]                | Loss_D: | 0.0130 | Loss_G: | 5.4676  | D(x): | 0.9946 | D(G(z)): | 0.00 |
| 75 / 0.0047<br>[1/5][400/469] | Loss_D: | 0.0077 | Loss_G: | 5.5294  | D(x): | 0.9973 | D(G(z)): | 0.00 |
| 50 / 0.0042                   | Loss_D: | a aane | Loss G: | F 6019  | D(v). | 0.9951 | D(C(-)). | 0 00 |
| [1/5][450/469]<br>48 / 0.0036 | LUSS_D. | 0.0096 | LOSS_G. | 3.6916  | D(X). | 0.9951 | D(G(z)): | 0.00 |
| [2/5][0/469]<br>82 / 0.0055   | Loss_D: | 0.0114 | Loss_G: | 5.2923  | D(x): | 0.9968 | D(G(z)): | 0.00 |
| [2/5][50/469]<br>61 / 0.0043  | Loss_D: | 0.0093 | Loss_G: | 5.4973  | D(x): | 0.9968 | D(G(z)): | 0.00 |
| [2/5][100/469]                | Loss_D: | 0.0143 | Loss_G: | 5.3100  | D(x): | 0.9947 | D(G(z)): | 0.00 |
| 89 / 0.0054<br>[2/5][150/469] | Loss_D: | 0.0342 | Loss_G: | 4.9135  | D(x): | 0.9807 | D(G(z)): | 0.01 |
| 42 / 0.0082<br>[2/5][200/469] | Loss_D: | 0.0759 | Loss_G: | 3.8271  | D(x): | 0.9733 | D(G(z)): | 0.04 |
| 61 / 0.0253<br>[2/5][250/469] | Loss_D: | 0.0886 | Loss_G: | 3.9323  | D(x): | 0.9503 | D(G(z)): | 0.03 |
| 05 / 0.0257                   | _       |        | _       |         |       |        |          |      |
| [2/5][300/469]<br>44 / 0.0209 | Loss_D: | u.u6/5 | LOSS_G: | 4.1724  | ט(x): | 0.9698 | D(G(z)): | b.63 |
| [2/5][350/469]<br>26 / 0.0344 | Loss_D: | 0.1036 | Loss_G: | 3.6430  | D(x): | 0.9491 | D(G(z)): | 0.04 |
| - ,                           |         |        |         |         |       |        |          |      |

| [2/5][400/469]<br>59 / 0.0276                 | Loss_D: 0.0748                   | Loss_G: 3.8228                   | D(x): 0.9742                 | D(G(z)): 0.04                  |
|-----------------------------------------------|----------------------------------|----------------------------------|------------------------------|--------------------------------|
| [2/5][450/469]<br>32 / 0.0553                 | Loss_D: 0.1798                   | Loss_G: 3.0636                   | D(x): 0.9369                 | D(G(z)): 0.10                  |
| [3/5][0/469]<br>64 / 0.0508                   | Loss_D: 0.1467                   | Loss_G: 3.2363                   | D(x): 0.9337                 | D(G(z)): 0.06                  |
| [3/5][50/469]<br>95 / 0.0311                  | Loss_D: 0.1483                   | Loss_G: 3.8654                   | D(x): 0.9357                 | D(G(z)): 0.06                  |
| [3/5][100/469]<br>80 / 0.0585                 | Loss_D: 0.1401                   | Loss_G: 3.0381                   | D(x): 0.9309                 | D(G(z)): 0.05                  |
| [3/5][150/469]<br>72 / 0.0198                 | Loss_D: 0.0910                   | Loss_G: 4.2358                   | D(x): 0.9710                 | D(G(z)): 0.05                  |
| [3/5][200/469]<br>70 / 0.0831                 | Loss_D: 0.1488                   | Loss_G: 2.8348                   | D(x): 0.9139                 | D(G(z)): 0.04                  |
| [3/5][250/469]<br>77 / 0.0701                 | Loss_D: 0.1099                   | Loss_G: 2.9160                   | D(x): 0.9212                 | D(G(z)): 0.01                  |
| [3/5][300/469]<br>80 / 0.0259                 | Loss_D: 0.0954                   | Loss_G: 3.9063                   | D(x): 0.9425                 | D(G(z)): 0.02                  |
| [3/5][350/469]<br>06 / 0.0200                 | Loss_D: 0.0597                   | Loss_G: 4.2697                   | D(x): 0.9834                 | D(G(z)): 0.04                  |
| [3/5][400/469]<br>72 / 0.0235                 | Loss_D: 0.0492                   | Loss_G: 4.0862                   | D(x): 0.9697                 | D(G(z)): 0.01                  |
| [3/5][450/469]<br>98 / 0.0286<br>[4/5][0/469] | Loss_D: 0.0775                   | Loss_G: 3.9485                   | D(x): 0.9674<br>D(x): 0.9330 | D(G(z)): 0.03<br>D(G(z)): 0.01 |
| 75 / 0.0355<br>[4/5][50/469]                  | Loss_D: 0.0941<br>Loss_D: 0.0999 | Loss_G: 3.6881<br>Loss_G: 3.4199 | D(x): 0.9330<br>D(x): 0.9411 | D(G(z)): 0.01 $D(G(z)): 0.03$  |
| 19 / 0.0506<br>[4/5][100/469]                 | Loss_D: 0.0333                   | Loss_G: 3.4347                   | D(x): 0.9255                 | D(G(z)): 0.03                  |
| 05 / 0.0482<br>[4/5][150/469]                 | Loss_D: 0.0930                   | Loss_G: 3.8003                   | D(x): 0.9764                 | D(G(z)): 0.06                  |
| 35 / 0.0337<br>[4/5][200/469]                 | Loss D: 0.0839                   | Loss_G: 3.9679                   | D(x): 0.9536                 | D(G(z)): 0.03                  |
| 29 / 0.0293<br>[4/5][250/469]                 | Loss_D: 0.1436                   | Loss_G: 4.0866                   | D(x): 0.9600                 | D(G(z)): 0.09                  |
| 09 / 0.0257                                   |                                  | Loss_G: 3.1791                   |                              | D(G(z)): 0.03                  |
| 19 / 0.0584<br>[4/5][350/469]                 | Loss_D: 0.1126                   | Loss_G: 3.9329                   |                              | D(G(z)): 0.04                  |
| 46 / 0.0290<br>[4/5][400/469]                 | _<br>Loss_D: 0.2129              | _<br>Loss_G: 2.6459              |                              | D(G(z)): 0.11                  |
| 23 / 0.0933<br>[4/5][450/469]                 | _                                | Loss_G: 2.3631                   |                              | D(G(z)): 0.04                  |
| 10 / 0.1248                                   | _                                | _                                | •                            |                                |

```
In [20]: # plot the loss for generator and discriminator
    plot_GAN_loss([G_losses, D_losses], ["G", "D"])

# Grab a batch of real images from the dataloader
    plot_real_fake_images(next(iter(dataloader)), img_list)
```







## **Exercise 2: Implement the WGAN with weight clipping**

Wasserstein GAN (<u>WGAN (https://arxiv.org/abs/1701.07875)</u>) is an alternative training strategy to traditional GAN. WGAN may provide more stable learning and may avoid problems faced in traditional GAN training like mode collapse.

- Rewrite the loss functions and training function according to the algorithm introduced in slide 18 in <u>Lecture note for WGAN (https://www.davidinouye.com/course/ece57000-fall-2021/lectures/wasserstein-gan.pdf)</u>. A few notes/hints:
  - A. Keep the same generator as in Exercise 1, Task 1.0, but modify the discriminator so that there is no restriction on the range of the output. (Simply comment out the last Sigmoid layer)
  - B. Modify the optimizer to be the RMSProp optimizer with a learning rate equal to the value in 1r\_rms (which we set to 5e-4, which is larger than the rate in the paper but works better for our purposes).
  - C. Use <a href="torch.Tensor.clamp\_() (https://pytorch.org/docs/stable/generated/torch.Tensor.clamp\_.html">torch.Tensor.clamp\_.html</a>) function to clip the parameter values. You will need to do this for all parameters of the discriminator. See algorithm for when to do this.
- 2. Train the model with modified networks and visualize the results.

```
In [6]: # Generator Code
        class Generator(nn.Module):
            def init (self, ngpu):
                super(Generator, self). init ()
                self.ngpu = ngpu
                self.main = nn.Sequential(
                    # input is Z, going into a convolution, state size. nz \times 1 \times 1
                    nn.ConvTranspose2d( nz, ngf * 4, kernel_size=4, stride=1, padding=
        0, bias=False),
                    nn.BatchNorm2d(ngf * 4),
                    nn.ReLU(True), # inplace ReLU
                    # current state size. (ngf*4) \times 4 \times 4
                    nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
                    nn.BatchNorm2d(ngf * 2),
                    nn.ReLU(True),
                    # current state size. (ngf*2) \times 8 \times 8
                    nn.ConvTranspose2d( ngf * 2, ngf, 4, 2, 1, bias=False),
                    nn.BatchNorm2d(ngf),
                    nn.ReLU(True),
                    # current state size. naf \times 16 \times 16
                    nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False),
                    # current state size. nc x 32 x 32
                    # Produce number between -1 and 1, as pixel values have been norma
        lized to be between -1 and 1
                    nn.Tanh()
            def forward(self, input):
                return self.main(input)
        class Discriminator WGAN(nn.Module):
            def init (self, ngpu):
                super(Discriminator WGAN, self). init ()
                self.ngpu = ngpu
                #####
                self.main = nn.Sequential(
                    # input is (nc) x 32 x 32
                    nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
                    nn.LeakyReLU(0.2, inplace=True),
                    # state size. (ndf) \times 16 \times 16
                    nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
                    nn.BatchNorm2d(ndf * 2),
                    nn.LeakyReLU(0.2, inplace=True),
                    # state size. (ndf*2) \times 8 \times 8
                    nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
                    nn.BatchNorm2d(ndf * 4),
                    nn.LeakyReLU(0.2, inplace=True),
                    # state size. (ndf*4) \times 4 \times 4
                    nn.Conv2d(ndf * 4, 1, 4, 1, 0, bias=False),
                    # state size. (ndf*4) \times 1 \times 1
                    #nn.Sigmoid() # Produce probability
                ####
```

```
def forward(self, input):
        return self.main(input)
netG = initialize net(Generator, weights init, device, ngpu)
netD = initialize net(Discriminator WGAN, weights init, device, ngpu)
Generator(
  (main): Sequential(
    (0): ConvTranspose2d(100, 32, kernel size=(4, 4), stride=(1, 1), bias=Fal
se)
    (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
    (2): ReLU(inplace=True)
    (3): ConvTranspose2d(32, 16, kernel size=(4, 4), stride=(2, 2), padding=
(1, 1), bias=False)
    (4): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
    (5): ReLU(inplace=True)
    (6): ConvTranspose2d(16, 8, kernel size=(4, 4), stride=(2, 2), padding=
(1, 1), bias=False)
    (7): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True, track_running_s
tats=True)
    (8): ReLU(inplace=True)
    (9): ConvTranspose2d(8, 1, kernel size=(4, 4), stride=(2, 2), padding=(1,
1), bias=False)
    (10): Tanh()
  )
Discriminator_WGAN(
  (main): Sequential(
    (0): Conv2d(1, 8, kernel size=(4, 4), stride=(2, 2), padding=(1, 1), bias
=False)
    (1): LeakyReLU(negative_slope=0.2, inplace=True)
    (2): Conv2d(8, 16, kernel size=(4, 4), stride=(2, 2), padding=(1, 1), bia
s=False)
    (3): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
    (4): LeakyReLU(negative slope=0.2, inplace=True)
    (5): Conv2d(16, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bi
as=False)
    (6): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track running
stats=True)
    (7): LeakyReLU(negative slope=0.2, inplace=True)
    (8): Conv2d(32, 1, kernel size=(4, 4), stride=(1, 1), bias=False)
 )
)
```

```
In [10]:
       # Setup RMSprop optimizers for both netG and netD with given learning rate as
        `lr rms`
       optimizerD = optim.RMSprop(netD.parameters(), lr=lr rms)
       optimizerG = optim.RMSprop(netG.parameters(), lr=lr rms)
       real label = 1.
       fake label = 0.
       # Training Loop
       # Lists to keep track of progress
       img list = []
       G losses = []
       D losses = []
       n critic = 5
       c = 0.01
       dataloader iter = iter(dataloader)
       print("Starting Training Loop...")
       num_iters = 1000
       for iters in range(num_iters):
          #
          # (1) Train Discriminator more: minimize -(mean(D(real))-mean(D(fake)))
          for p in netD.parameters():
             p.requires grad = True
          for idx critic in range(n critic):
             netD.zero_grad()
             try:
                data = next(dataloader_iter)
             except StopIteration:
                dataloader iter = iter(dataloader)
                data = next(dataloader_iter)
             real cpu = data[0].to(device)
             b size = real cpu.size(0)
             D real = netD(real cpu).view(-1)
             noise = torch.randn(b_size, nz, 1, 1, device=device)
             fake = netG(noise)
             D fake = netD(fake).view(-1)
             # Define your loss function for variable `D loss`
             #label = torch.full((b_size,), real_label, dtype=torch.float, device=d
       evice)
             #D real = criterion(D real, label)
             #D real.backward()
```

```
#D fake = netD(fake.detach()).view(-1)
      #label.fill (fake label)
      #D fake = criterion(D fake, Label)
     #D fake.backward()
     D loss = -(D real.mean() - D fake.mean())
     # Backpropagate the loss function and upate the optimizer
     D loss.backward()
     optimizerD.step()
      # Clip the gradient with limit `c` by using `clamp ()` function
     for p in netD.parameters():
         p.data.clamp_(-c, c)
      # (2) Update G network: minimize -mean(D(fake)) (Update only once in 5 epo
chs)
  #
  for p in netD.parameters():
      p.requires_grad = False
  netG.zero_grad()
  noise = torch.randn(b_size, nz, 1, 1, device=device)
  fake = netG(noise)
  D fake = netD(fake).view(-1)
  # Define your loss function for variable `G loss`
  G_loss = -(D_fake.mean())
  # Backpropagate the loss function and upate the optimizer
  G loss.backward()
  optimizerG.step()
  # Output training stats
  if iters % 10 == 0:
      print('[%4d/%4d] Loss_D: %6.4f
                                Loss G: %6.4f'
         % (iters, num iters, D loss.item(), G loss.item()))
  # Save Losses for plotting later
  G losses.append(G loss.item())
  D losses.append(D loss.item())
  # Check how the generator is doing by saving G's output on fixed noise
  if (iters % 100 == 0):
     with torch.no_grad():
```

fake = netG(fixed\_noise).detach().cpu()
img\_list.append(vutils.make\_grid(fake, padding=2, normalize=True))

| Starting Trai | ning Loor | n       |         |         |
|---------------|-----------|---------|---------|---------|
| [ 0/1000]     | Loss D:   | -0.0143 | Loss_G: | 0.0015  |
| [ 10/1000]    | Loss D:   | -0.0143 | Loss G: |         |
|               | Loss_D:   | -0.0248 | Loss_G: | 0.0061  |
|               | <b>—</b>  |         | Loss_G: |         |
| -             | Loss_D:   | -0.0181 | _       |         |
| [ 40/1000]    | Loss_D:   | -0.0151 | Loss_G: |         |
| [ 50/1000]    | Loss_D:   | -0.0139 | Loss_G: |         |
| [ 60/1000]    | Loss_D:   | -0.0123 | Loss_G: |         |
| [ 70/1000]    | Loss_D:   | -0.0134 | Loss_G: |         |
| [ 80/1000]    | Loss_D:   | -0.0100 | Loss_G: |         |
| [ 90/1000]    | Loss_D:   | -0.0114 | Loss_G: | -0.0056 |
| [ 100/1000]   | Loss_D:   | -0.0105 | Loss_G: |         |
| [ 110/1000]   | Loss_D:   | -0.0093 | Loss_G: |         |
| [ 120/1000]   | Loss_D:   | -0.0085 | Loss_G: |         |
| [ 130/1000]   | Loss_D:   | -0.0093 | Loss_G: |         |
| [ 140/1000]   | Loss_D:   | -0.0081 | Loss_G: |         |
| [ 150/1000]   | Loss_D:   | -0.0070 | Loss_G: |         |
| [ 160/1000]   | Loss_D:   | -0.0073 | Loss_G: | 0.0082  |
| [ 170/1000]   | Loss_D:   | -0.0078 | Loss_G: | 0.0044  |
| [ 180/1000]   | Loss_D:   | -0.0064 | Loss_G: | 0.0070  |
| [ 190/1000]   | Loss_D:   | -0.0067 | Loss_G: | -0.0007 |
| [ 200/1000]   | Loss_D:   | -0.0054 | Loss_G: | -0.0037 |
| [ 210/1000]   | Loss_D:   | -0.0050 | Loss_G: |         |
| [ 220/1000]   | Loss_D:   | -0.0054 | Loss_G: | -0.0008 |
| [ 230/1000]   | Loss_D:   | -0.0059 | Loss_G: | -0.0035 |
| [ 240/1000]   | Loss_D:   | -0.0052 | Loss_G: | -0.0028 |
| [ 250/1000]   | Loss_D:   | -0.0051 | Loss_G: | -0.0030 |
| [ 260/1000]   | Loss_D:   | -0.0048 | Loss_G: | 0.0017  |
| [ 270/1000]   | Loss_D:   | -0.0049 | Loss_G: | -0.0016 |
| [ 280/1000]   | Loss_D:   | -0.0045 | Loss_G: | -0.0050 |
| [ 290/1000]   | Loss_D:   | -0.0036 | Loss_G: |         |
| [ 300/1000]   | Loss_D:   | -0.0041 | Loss_G: |         |
| [ 310/1000]   | Loss_D:   | -0.0048 | Loss_G: |         |
| [ 320/1000]   | Loss_D:   | -0.0042 | Loss_G: |         |
| [ 330/1000]   | Loss_D:   | -0.0056 | Loss_G: |         |
| [ 340/1000]   | _         | -0.0044 | Loss_G: |         |
| [ 350/1000]   | Loss_D:   | -0.0041 | Loss_G: |         |
| [ 360/1000]   | Loss_D:   | -0.0050 | Loss_G: |         |
| [ 370/1000]   | Loss_D:   | -0.0040 | Loss_G: |         |
| [ 380/1000]   | Loss_D:   | -0.0044 | Loss_G: |         |
| [ 390/1000]   | Loss_D:   | -0.0043 | Loss_G: |         |
| [ 400/1000]   | Loss_D:   | -0.0043 | Loss_G: |         |
| [ 410/1000]   | Loss_D:   | -0.0045 | Loss_G: | -0.0030 |
| [ 420/1000]   | Loss_D:   | -0.0032 | Loss_G: | 0.0012  |
| [ 430/1000]   | Loss_D:   | -0.0037 | Loss_G: |         |
| [ 440/1000]   | Loss_D:   | -0.0039 | Loss_G: |         |
| [ 450/1000]   | Loss_D:   | -0.0056 | Loss_G: |         |
| [ 460/1000]   | Loss_D:   | -0.0037 | Loss_G: |         |
| [ 470/1000]   | Loss_D:   | -0.0041 | Loss_G: |         |
| [ 480/1000]   | Loss_D:   | -0.0042 | Loss_G: |         |
| [ 490/1000]   | Loss_D:   | -0.0040 | Loss_G: | -0.0030 |
| [ 500/1000]   | Loss_D:   | -0.0040 | Loss_G: |         |
| [ 510/1000]   | Loss_D:   | -0.0029 | Loss_G: |         |
| [ 520/1000]   | Loss_D:   | -0.0037 | Loss_G: |         |
| [ 530/1000]   | Loss_D:   | -0.0031 | Loss_G: |         |
| [ 540/1000]   | Loss_D:   | -0.0040 | Loss_G: |         |
| [ 550/1000]   | Loss_D:   | -0.0040 | Loss_G: | -0.0065 |
|               |           |         |         |         |

|             |         |         | Assignment | _U/_Exercise |
|-------------|---------|---------|------------|--------------|
| [ 560/1000] | Loss_D: | -0.0037 | Loss_G:    | -0.0031      |
| [ 570/1000] | Loss_D: | -0.0037 | Loss_G:    | 0.0037       |
| [ 580/1000] | Loss_D: | -0.0038 | Loss_G:    | -0.0070      |
| [ 590/1000] | Loss_D: | -0.0033 | Loss_G:    | -0.0042      |
| [ 600/1000] | Loss_D: | -0.0034 | Loss_G:    | -0.0010      |
| [ 610/1000] | Loss_D: | -0.0034 | Loss_G:    | 0.0004       |
| [ 620/1000] | Loss_D: | -0.0029 | Loss_G:    | -0.0046      |
| [ 630/1000] | Loss_D: | -0.0034 | Loss_G:    | 0.0027       |
| [ 640/1000] | Loss_D: | -0.0033 | Loss_G:    | -0.0074      |
| [ 650/1000] | Loss_D: | -0.0033 | Loss_G:    | -0.0061      |
| [ 660/1000] | Loss_D: | -0.0032 | Loss_G:    | -0.0090      |
| [ 670/1000] | Loss_D: | -0.0025 | Loss_G:    | -0.0066      |
| [ 680/1000] | Loss_D: | -0.0029 | Loss_G:    | -0.0023      |
| [ 690/1000] | Loss_D: | -0.0030 | Loss_G:    | -0.0096      |
| [ 700/1000] | Loss_D: | -0.0031 | Loss_G:    | -0.0079      |
| [ 710/1000] | Loss_D: | -0.0027 | Loss_G:    | -0.0059      |
| [ 720/1000] | Loss_D: | -0.0028 | Loss_G:    | -0.0125      |
| [ 730/1000] | Loss_D: | -0.0027 | Loss_G:    | -0.0034      |
| [ 740/1000] | Loss_D: | -0.0026 | Loss_G:    | -0.0027      |
| [ 750/1000] | Loss_D: | -0.0030 | Loss_G:    | -0.0022      |
| [ 760/1000] | Loss_D: | -0.0026 | Loss_G:    | -0.0004      |
| [ 770/1000] | Loss_D: | -0.0027 | Loss_G:    | -0.0013      |
| [ 780/1000] | Loss_D: | -0.0025 | Loss_G:    | -0.0057      |
| [ 790/1000] | Loss_D: | -0.0025 | Loss_G:    | -0.0010      |
| [ 800/1000] | Loss_D: | -0.0033 | Loss_G:    | -0.0005      |
| [ 810/1000] | Loss_D: | -0.0029 | Loss_G:    | -0.0045      |
| [ 820/1000] | Loss_D: | -0.0025 | Loss_G:    | -0.0014      |
| [ 830/1000] | Loss_D: | -0.0024 | Loss_G:    | -0.0007      |
| [ 840/1000] | Loss_D: | -0.0027 | Loss_G:    | -0.0045      |
| [ 850/1000] | Loss_D: | -0.0035 | Loss_G:    | -0.0030      |
| [ 860/1000] | Loss_D: | -0.0022 | Loss_G:    | 0.0008       |
| [ 870/1000] | Loss_D: | -0.0022 | Loss_G:    | 0.0040       |
| [ 880/1000] | Loss_D: | -0.0029 | Loss_G:    | -0.0048      |
| [ 890/1000] | Loss_D: | -0.0019 | Loss_G:    | -0.0132      |
| [ 900/1000] | Loss_D: | -0.0037 | Loss_G:    | -0.0055      |
| [ 910/1000] | Loss_D: | -0.0027 | Loss_G:    | -0.0050      |
| [ 920/1000] | Loss_D: | -0.0022 | Loss_G:    | 0.0006       |
| [ 930/1000] | Loss_D: | -0.0032 | Loss_G:    | -0.0056      |
| [ 940/1000] | Loss_D: | -0.0023 | Loss_G:    | -0.0085      |
| [ 950/1000] | Loss_D: | -0.0024 | Loss_G:    | -0.0107      |
| [ 960/1000] | Loss_D: | -0.0026 | Loss_G:    | -0.0080      |
| [ 970/1000] | Loss_D: | -0.0023 | Loss_G:    | -0.0011      |
| [ 980/1000] | Loss_D: | -0.0023 | Loss_G:    | -0.0013      |
| [ 990/1000] | Loss_D: | -0.0020 | Loss_G:    | -0.0119      |

In [11]: # plot the loss for generator and discriminator
 plot\_GAN\_loss([G\_losses, D\_losses], ["G", "D"])

# Grab a batch of real images from the dataloader
 plot\_real\_fake\_images(next(iter(dataloader)), img\_list)







## (Optional and ungraded) Exercise 3: Implement the WGAN with Gradient Penalty

- 1. Use slide 20 in <u>Lecture note for WGAN (https://www.davidinouye.com/course/ece57000-fall-2021/lectures/wasserstein-gan.pdf)</u> to implement WGAN-GP algorithm.
  - A. Use the same discriminator and generator as in Exercise 2.
  - B. Use Adam optimizer for WGAN-GP.
  - C. If implemented correctly, we have setup some hyperparameters (different than the original algorithm) that seem to work in this situation.
  - D. For calculating the gradient penalty term, you will need to:
    - a. Create a batch of interpolated samples.
    - b. Pass this interpolated batch through the discriminator.
    - c. Compute the gradient of the discriminator with respect to the samples using torch.autograd.grad (https://pytorch.org/docs/stable/generated/torch.autograd.grad.html). You will need to set:
      - i. outputs
      - ii. inputs
      - iii. grad\_outputs
      - iv. create\_graph=True and retain\_graph=True (because we want to backprop through this gradient calculation for the final objective.)
      - v. Hint: Also make sure to understand the return result of this function to extract the gradients as necessary.
    - d. Compute the gradient penalty (Hint: For numerical stability, we found that grad\_norm = torch.sqrt((grad\*\*2).sum(1) + 1e-14) is a simple way to compute the norm.)
    - e. Use  $\lambda=10$  for the gradient penalty as in the original paper.
- 2. Train the model with modified networks and visualize the results.

```
In [20]: device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
t = torch.tensor([1,2], device=device)
```

```
In [ ]: | # Setup networks for WGAN-GP
       netG = initialize_net(Generator, weights_init, device, ngpu)
       netD = initialize net(Discriminator WGAN, weights init, device, ngpu)
       # Setup Adam optimizers for both G and D
       optimizerD = optim.Adam(netD.parameters(), lr=5e-4, betas=(0.5, 0.9))
       optimizerG = optim.Adam(netG.parameters(), lr=5e-4, betas=(0.5, 0.9))
       # Training Loop
       # Lists to keep track of progress
       img list = []
       G_{losses} = []
       D losses = []
       n critic = 5
       dataloader_iter = iter(dataloader)
       print("Starting Training Loop...")
       num_iters = 1000
       for iters in range(num iters):
          # (1) Train Discriminator more: minimize -(mean(D(real))-mean(D(fake)))+GP
          for p in netD.parameters():
              p.requires_grad = True
          for idx critic in range(n critic):
              netD.zero grad()
              try:
                 data = next(dataloader iter)
              except StopIteration:
                 dataloader iter = iter(dataloader)
              real_cpu = data[0].to(device)
              b size = real cpu.size(0)
              D real = netD(real cpu).view(-1)
              noise = torch.randn(b size, nz, 1, 1, device=device)
              fake = netG(noise)
              D_fake = netD(fake).view(-1)
              # Compute the gradient penalty term
              # Define your loss function for variable `D loss`
              # Backpropagate the loss function and upate the optimizer
```

```
# (2) Update G network: minimize -mean(D(fake)) (Update only once in 5 epo
      chs)
         for p in netD.parameters():
            p.requires grad = False
         netG.zero_grad()
         noise = torch.randn(b_size, nz, 1, 1, device=device)
         fake = netG(noise)
         D fake = netD(fake).view(-1)
         # Define your loss function for variable `G loss`
         # Backpropagate the loss function and upate the optimizer
         # Output training stats
         if iters % 10 == 0:
            print('[%4d/%4d] Loss D: %6.4f Loss G: %6.4f'
               % (iters, num iters, D loss.item(), G loss.item()))
         # Save Losses for plotting later
         G losses.append(G loss.item())
         D_losses.append(D_loss.item())
         # Check how the generator is doing by saving G's output on fixed noise
         if (iters % 100 == 0):
            with torch.no_grad():
               fake = netG(fixed noise).detach().cpu()
            img list.append(vutils.make grid(fake, padding=2, normalize=True))
In [ ]: # plot the loss for generator and discriminator
```

```
In [ ]: # plot the loss for generator and discriminator
    plot_GAN_loss([G_losses, D_losses], ["G", "D"])

# Grab a batch of real images from the dataloader
    plot_real_fake_images(next(iter(dataloader)), img_list)
```