Comovement of the Sovereign Yields of Emerging Markets

Pavel Solís

Johns Hopkins University

March 31, 2020

World GDP

Developments in Emerging Markets Local Currency Debt

Local currency debt outstanding 2011-2018

Source: IMF-World Bank Note for the G20.

Credit Risk in Local Currency Yields

Distribution Of Emerging Market Sovereign Ratings

Source: S&P Global Fixed Income Research.

Research Questions

- Do the sovereign yields of emerging markets (EMs) comove?
- To what extent are yields interconnected?
 - Policy rate expectations vs compensation for risks
- International spillovers of monetary policy in advanced economies (AEs)

Related Literature

- International comparison of bond yields
 - Diebold-Li-Yue 2008, Wright 2011, Dahlquist-Hasseltoft 2016
- Sovereign default in EM local currency
 - Reinhart-Rogoff 2011, Du-Schreger 2016, Erce-Mallucci 2018, Otonello-Pérez 2019
- International spillovers of monetary policy
 - Hofmann-Shim-Shin 2017, Curcuru-Kamin-Li-Rodríguez 2018, Gilchrist-Yue-Zakrajšek
 2019, Adrian-Crump-Durham-Moench 2019

Contributions

- EM perspective in analysis of international bond yields
- Decomposition of EM sovereign yields acknowledging **credit risk**
- Macroeconomic determinants of EM bond yields

Roadmap

- Construction of yield curves
 - Credit risk in EM yields
- Affine term structure model
- Results
 - Comovement, determinants

Nominal Yield Curves

- Nominal yield curves $(y_{t,n}^{LC})$ estimated from:
 - \bullet Bloomberg Fair Value (BFV) par yield curves \to Nelson and Siegel (1987)
- Problem: Credit risk embedded in EM nominal yields $(y_{t,n}^{LC})$
- Approach: Synthetic LC yields can be treated as free of credit risk
 - Swap U.S. Treasury yields into LC using currency derivatives

Why Not CDS (Credit Default Swaps)?

- Credit risk shifts from bond issuer to CDS seller
 - Counterparty credit risk
- Fuzzy triggers for CDS payout
 - Greece 2012
- Insurance without an 'insurable interest'
 - 'Naked' CDS

Construction of **Synthetic** Yield Curves

$$\widetilde{y}_{t,n}^{LC} = y_{t,n}^{US} + \rho_{t,n}$$

- $\widetilde{y}_{t,n}^{LC}$: n-period zero-coupon synthetic yield of a country in LC at time t
- $y_{t,n}^{US}$: n-period zero-coupon yield of the U.S. in USD at time t
- $\rho_{t,n}$: n-period forward premium from USD to LC at time t

Forward Premium $(\rho_{t,n})$

• < 1 year: Currency forwards

$$(forward_{t,n} - spot_t)/n$$

- $\bullet \ge 1$ year: Fixed-for-fixed cross-currency swaps (XCS)
 - Cross-currency basis swaps
 - Interest rate swaps

Deviations from CIP (Covered Interest Parity)

$$\phi_{t,n} = y_{t,n}^{LC} - \widetilde{y}_{t,n}^{LC}$$

- Measure of:
 - Sovereign credit risk for EMs (Du and Schreger, 2016)
 - Convenience yield for AEs (Du, Im, and Schreger, 2018a)
 - Financial market frictions for banks (Du, Tepper, and Verdelhan, 2018b)

Affine Term Structure Model

• A set of pricing factors drives the dynamics of the term structure

$$X_{t+1} = \mu^* + \Phi^* X_t + \Sigma \nu_{t+1}. \tag{1}$$

• No-arbitrage restrictions: Consistency in (cross section/time series) bond yields

$$A_n = A(\delta_0, \delta_1, \mu^*, \Phi^*, \Sigma) \qquad B_n = B(\delta_1, \Phi^*)$$

• Yields are affine functions of the pricing factors

$$y_{t,n} = -\frac{A_n}{n} - \frac{B_n}{n} X_t. \tag{2}$$

ATSM for EMs

- For EMs, $\phi_{t,n} \neq 0$ (Du and Schreger, 2016)
 - ATSM for synthetic $(\widetilde{y}_{t,n}^{LC})$ instead of nominal $(y_{t,n}^{LC})$ yields
- Decomposition of EM nominal yields $(y_{t,n}^{LC})$:
 - Expected short-term interest rate
 - Term premium
 - Credit risk premium $(\phi_{t,n})$

Identification Problem

- \bullet Bond yields are persistent \to Small sample bias (Kim and Orphanides, 2012)
 - Overestimates stability of expected path of the short rate
 - Most variability attributed to fluctuations in term premium
- Solutions: parameter restrictions, bias-corrected estimators, survey forecasts
- Surveys provide robust decompositions of yields (Guimarães, 2014)

Data

- Countries:
 - 15 EMs: BRL, COP, HUF, IDR, ILS, KRW, MYR, MXN, PEN, PHP, PLN, RUB, ZAR, THB, TRY
 - 10 AEs: G-3 (EUR, JPY, GBP), SOE (AUD, CAD, DKK, NOK, NZD, SEK, CHF)
- Monthly data from Jan-2000/Dec-2006 to Jan-2019
- Maturities (in years): 0.25, 0.5, 0.75 1, 2, ..., 10; max. 30
- Sources:
 - $y_{t,n}^{US}$: Gürkaynak, Sack, and Wright (2007)
 - $\rho_{t,n}$: Bloomberg + Datastream
 - Expected short-term rate: Consensus Economics + BIS policy rate statistics

Results

- Decomposition of EM nominal 10-year yields
 - Comparison against AEs
- Assessing EM term premia estimates
 - Comparison against surveys, risk and uncertainty measures
- Comovement of EM sovereign yields
 - Drivers of EM term premia

Nominal Yield Curve Decomposition

	Nominal	Synthetic	Expected	Term Premium	CIP Dev
EM	7.10	6.11	4.29	1.74	0.85
A-SOE	3.48	3.52	1.54	1.97	-0.23
G-3	2.41	2.13	0.52	1.60	0.15

Table: 10-Year Yield Decomposition (%).

- Term premium is on average larger than CIP deviations
- Main component of nominal yields
 - EMs: Expected future short rate
 - AEs: Term premium

Benchmark: U.S. Term Premium

- Stylized facts (Kim and Wright, 2005; Adrian, Crump, and Moench, 2013):
 - U.S. term premium (USTP) is time-varying
 - ② USTP increases in periods of uncertainty
 - **3** USTP has declined over time
 - **1** USTP turned negative in recent years
- Estimates for EMs consistent with 1 and 2, some countries with 3 and 4

Dynamics of EM Term Premia

Figure: Estimated 10-Year Term Premia

Survey-Based Term Premium Estimates

Figure: Survey-Based 10-Year Term Premium Estimates

Term Structure of Term Premia

Figure: Estimated 1-, 5- and 10-Year Term Premia.

Term Premia and Uncertainty Measures

	TP-USTP	TP-CIP Dev
$_{ m EM}$	0.60	-0.28
A-SOE	0.80	-0.01
G-3	0.71	-0.29

Table: Correlations of 10-Year Term Premia: U.S TP and CIP deviations

	BRL	COP	KRW	MXN	RUB
TP-EPU	0.14	0.46	-0.32	0.40	-0.22

Table: Correlations of 10-Year Term Premia: Economic Policy Uncertainty Index

Do EM Sovereign Yields Comove?

	COP	ILS	KRW	PEN	PHP	PLN	TRY	ZAR
COP	0.60	-	-	-	-	-	-	-
ILS	0.69	0.82	-	-	-	-	-	-
KRW	0.65	0.59	0.82	-	-	-	-	-
PEN	0.56	0.57	1.00	0.57	-	-	-	-
PHP	0.60	0.65	0.85	0.75	0.79	-	-	-
PLN	-0.71	0.49	0.50	0.14	-0.06	0.66	-	-
TRY	2.71	0.93	0.28	1.94	0.28	-2.82	0.77	-
ZAR	0.45	2.27	0.40	0.93	0.30	-1.16	0.75	0.69

Table: Variance-Covariance of 10-Year Yields Explained by Term Premia

Is There A Global Factor in EM Term Premia?

	Jun-2005
EM	65.32
AE	89.17

Table: Variation of 10-Year Term Premium Explained by First PC (%)

- Global financial cycle (Rey, 2013)
- For AEs, a global factor seems more relevant for TP
- For EMs, both domestic and global factors appear relevant for TP

Drivers of EM Term Premia

• Panel regression:

$$tp_{it} = \alpha_i + \beta' z_{it} + u_{it}$$

- tp_{it} : model-based n-year term premium of country i in month t
- z_{it} : vector of regressors
- α_i : country fixed effects

Drivers of EM Term Premia: Regressors

- Global financial variables
 - Vix, fed funds rate (FFR), S&P, oil price
- Domestic variables
 - Macro: Inflation (INF), unemployment rate (UNE), industrial production (IP)
 - Financial: Exchange rate (LC per USD), stock market

10Y EM TP

	(1)	(2)
FFR	0.11	
	(0.10)	
USTP10	1.22***	
	(0.16)	
INF	0.21***	0.222***
	(0.05)	(0.040)
UNE	0.13**	0.137**
	(0.05)	(0.058)
IP	-0.02*	-0.019**
	(0.01)	(0.008)
RFX	0.01	0.0199*
	(0.01)	(0.0103)
Observations	1,969	1,969
R-squared	0.49	0.547
Country FE	Yes	Yes
Time FE	No	Yes

Robust standard errors in parentheses.

^{***} p<0.01, ** p<0.05, * p<0.1

Conclusions

- EM sovereign yields comove
- Decomposition of EM local currency yields
 - Accounts for credit risk
 - Term premium is larger than credit risk premium
 - Term premium drives of EM yield comovement
- EM term premia highly linked to U.S. term premium and countercyclical

Work Ahead

- Supplement ATSM with survey forecasts
- Potential drivers of term premia:
 - Measures of inflation uncertainty (Stock and Watson, 2007)
 - Measures of political uncertainty (Baker et al., 2016)
- Spillovers: How U.S. monetary policy moves EM yields?
 - Curcuru et al. (2018); Adrian et al. (2019)

Appendix

EM Term Premium Estimates: 10Y (cont.)

Survey-Based Term Premium Estimates: 10Y (cont.)

