

Ayudantía 13 - Grafos

22 de noviembre de 2024 Martín Atria, José Thomas Caraball, Caetano Borges

Resumen

- Grafo Un grafo G = (V, E) es un par donde V es un conjunto, cuyos elementos llamaremos vértices o nodos, y E es una relación binaria sobre V (es decir, $E \subseteq V \times V$), cuyos elementos llamaremos aristas.
- Tipos de vértices(V):
 - Vertices adyacentes Dado un grafo G = (V, E), dos vértices $x, y \in V$ son adyacentes o vecinos si $(x, y) \in E$.
 - Vertice de corte: es un vértice tal que al eliminarlo (junto con todas sus aristas incidentes) aumenta la cantidad de componentes conexas de G.
- Tipos de aristas (E)
 - Rulo: es una arista que conecta un vértice con sí mismo.
 - Arista paralela: Dos aristas son paralelas si conectan a los mismos vértices.
 - Arista de corte: es una arista tal que al eliminarla aumenta la cantidad de componentes conexas de G.
- Tipos de subgrafos: (También pueden ser grafos, pero es más común verlos como subgrafos).
 - Ciclo: es una caminata cerrada en la que no se repiten aristas.
 - Clique: es un subgrafo en el que cada vértice está conectado a todos los demás vértices del subgrafo.
- Tipos de grafos
 - Grafo no dirigido: Un grafo es no dirigido si toda arista tiene una arista paralela.

- Grafos isomorfos: Dos grafos $G_1 = (V_1, E_1)$ y $G_2 = (V_2, E_2)$ son isomorfos si existe una función biyectiva $f: V_1 \to V_2$ tal que $(x, y) \in E_1$ si y sólo si $(f(x), f(y)) \in E_2$.
- Grafo completo: es un grafo en el que todos los pares de vértices son adyacentes.
- Grafo conexo: Un grafo G se dice conexo si todo par de vértices está conectado por un camino.
- Grafo bipartito: es un grafo tal que su conjunto de vértices puede particionarse en dos conjuntos independientes
- Multigrafo G = (V, E, f): es un trío ordenado donde $f : E \to S$ es una función que asigna un par de vértices a cada arista en E.
- Grado de un vértice: El grado de v (denotado como $\delta_G(v)$) es la cantidad de aristas que inciden en v.
- Vecindad de un vértice: La vecindad de v es el conjunto de vecinos de v: $N_G(v) = \{u|(v,u) \in E\}$.
- Teoremas importantes
 - Handshaking lemma: $\sum_{v \in V} \delta_G(v) = 2|E|$.
- Tipos de ciclos:
 - Ciclo euleriano: es un ciclo que contiene a todas las aristas y vértices del grafo.
 - Ciclo hamiltoniano: es un ciclo en el grafo que contiene a todos sus vértices una única vez cada uno (excepto por el inicial y final).

1. Homomorfismos

Un homomorfismo desde $G_1 = (V_1, E_1)$ a $G_2 = (V_2, E_2)$ es una función $h: V_1 \to V_2$ tal que $\{u, v\} \in E_1 \to \{h(u), h(v)\} \in E_2$. Decimos que G_1 es homomorfo a G_2 si existe un homomorfismo desde G_1 a G_2 .

1. Se define el grafo línea de largo n como

$$L_n = (\{0, \dots, n\}, \{\{i, i+1\} \mid 0 \le i \le n-1\})$$

Demuestre que, para todo grafo G = (V, E), la línea L_n con $n \ge 2$ es homomorfo a G si y solo si $E \ne \emptyset$.

2. Se define el grafo de clique de tama \tilde{n} o n como

$$K_n = (\{0, \dots, n-1\}, \{\{i, j\} \mid 0 \le i, j \le n-1 \land i \ne j\})$$

Demuestre que, para todo grafo G = (V, E), el clique K_n es homomorfo a G si y solo si $\exists H \subseteq G$ tal que $H \cong K_n$, es decir, G contiene a K_n como subgrafo isomorfo.

2. Ciclos

Sea G un grafo con un ciclo C, tal que existen dos nodos distintos que forman parte del ciclo C entre los cuales existe un camino P de largo k (no necesariamente contenido en C).

Demuestre que G tiene un ciclo de largo al menos \sqrt{k} .

3. Ciclos eulerianos

Sea M_n un tablero de ajedrez de $n \times n$ celdas. Considere una pieza especial que puede moverse tanto como un rey o como un caballo. Determine y demuestre para todo valor de n si existe un ciclo euleriano para esta pieza en M_n .