МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Операционные системы»

Тема: Сопряжение стандартного и пользовательского обработчиков прерываний

Студент гр. 6383	 Дорох С.В.
Преподаватель	 Ефремов М.А.

Санкт-Петербург

2019

Цель работы.

Исследование возможности встраивания пользовательского обработчика прерываний в стандартный обработчик от клавиатуры. Пользовательский обработчик прерывания получает управление по прерыванию (int 09h) при нажатии клавиши на клавиатуре. Он обрабатывает скан-код и осуществляет определенные действия, если скан-код совпадает с определенными кодами, которые он должен обрабатывать. Если скан-код не совпадает с этими кодами, то управление передается стандартному прерыванию.

Описание функций и структур данных.

Таблица 1 – структура данных управляющей программы.

Название функции	Назначение	
ROUT	Пользовательский обработчик	
	прерываний, печатающий при	
	нажатии на кнопку 'w'.	
PRINT	Вызывает функцию печати строки.	
CHECK_ROUT	Проверяет, установлен ли	
	пользовательский обработчик	
	прерывания, и если нет –	
	устанавливает его. В ином случае,	
	если хвост равен '/un',	
	восстанавливает стандартное.	
SET_ROUT	Устанавливает пользовательское	
	прерывание.	
DEL_ROUT	Удаляет пользовательское	
	прерывание.	
SAVE_STAND	сохраняет адрес стандартного	
	прерывания в KEEP_IP, KEEP_CS	

Ход работы.

1. Был написан программный модуль, который выполняет следующие действия:

- 1) Проверяет, установлено ли пользовательское прерывание с вектором 09h.
- 2) Устанавливает резидентную функцию для обработки прерывания и настраивает вектор прерываний, если прерывание не установлено, и осуществляется выход по функции 31h прерывания int 21h.
- 3) Если прерывание установлено, то выводится соответствующее сообщение и осуществляется выход по функции 4Ch прерывания int 21h.
- 4) Выгрузка прерывания по соответствующему значению параметра в командной строке «/un», восстановления стандартного вектора прерывания.
- **2.** Состояние памяти до запуска lab5.exe представлено на Puc.1:

Extended	memory: 6489 memory: 153 MCB Type 4D	860 KB	l Size 16	;	SD/SC
0171	4D	0000	64		DPMILOAD
0176	4D	0040	256		
0187	4D	0192	144		
0191	5A	0192	6 4 8912		LAB3

Рисунок 1 – Результат работы программы lab3_1.com

3. Запуск программы lab5.exe представлен на Рис.2:

Рисунок 2 – Результат работы программы lab5.exe

4. Проверим загрузку пользовательского обработчика и его работу – при нажатии клавиши 'w' выводится сердечко:

Рисунок 3 – Результат ввода различных символов

5. Проверим размещение прерывания в памяти с помощью программы lab3.com, которая отображает карту памяти в виде списка блоков МСВ:

Extended	memory: 6474 memory: 153 MCB Type 1 4D	60 KB	l Size	:	SD/SC
0171	4D	0000	64		DPMILOAD
0176	4D	0040	256		
0187	4D	0192	144		
0191	4D	0192	1296		LAB5
01E3	4D	01EE	1144		
01ED	5A	01EE	647440		LAB3

Рисунок 4 — Результат работы программы lab3_1.com после запуска lab5.exe

6. Запустим программу lab5.exe повторно:

```
C:\>lab5
Interrupt is was installed!
```

Рисунок 5 – Результат повтороного запуска программы lab5.exe

7. Запустим программу lab5.exe с ключом выгрузки:

```
C:\>lab5 /un
Deletting the interrupt!
```

Рисунок 6 – Результат запуска программы lab5.exe с ключом /un

8. Убедимся, что память освобождена, используя программу lab3.com:

```
:\>lab3
vailible memory: 648912 B
xtended memory : 15360 KB
Address | MCB Type | PSP Address
016F 4D 0008
                                          Size
                                                       SD/SC
 016F
                           0008
                           0000
 0171
              4D
                                                         DPMILOAD
                                             64
 0176
              4D
                           0040
                                            256
 0187
              4D
                           0192
                                            144
 0191
                           0192
                                         648912
                                                         LAB3
              5A
```

Рисунок 7 – Результат выполнения программы lab3_1.com

Вывод.

В процессе выполнения данной лабораторной работы была исследована возможность встраивания пользовательского обработчика прерываний в стандартный обработчик от клавиатуры.

Ответы на контрольные вопросы.

1) Какого типа прерывания использовались в работе?

В работе использовались программные – int 21h, int 16h, и аппаратные прерывания – int 09h.

2) Чем отличается скан код от кода ASCII?

Скан код — это код, присвоенный каждой клавише, с помощью которого драйвер клавиатуры распознает, какая клавиша была нажата, а код ASCII — код символа в соответствии со стандартной кодировочной таблицей.