Implicit Theorems

by Sven Nilsen, 2020

In this paper I present three implicit transport theorems found in Path Semantical Logic.

Similar to Normal^[1], Abstract^[2] and Constrained^[3] Implication Theorems, there are three Implicit Theorems, which are proofs in Path Semantical Logic^[4]:

(a, b, c) (A, B): Normal Implicit Theorem
$$a(A), b(B), c=>(a=>b) => A=>B$$

(a, b, c) (A, B): Abstract Implicit Theorem $a(A)=b(B), c=>(a=>b) => A=>B$

(a, b, c) (A, B): Constrained Implicit Theorem $a(A)=>b(B), c=>(a=>b) => A=>B$

Here, the tuple (a, b, c) has level 1 and the tuple (A, B) has level 0. The notation (A) means =>A where A is at a lower level.

There are many more general version of these theorems, that uses even more implicit conditions. Instead of `c`, one can use e.g. `contr(c, d, e, f)` that is true only when `c, d, e, f` are all `true` or all `false` $^{[5]}$. Or, one can use e.g. `c=(d=>(e=f))`. Or, one can use e.g. `c v d`.

References:

[1]	"Implication Theorem"
	Sven Nilsen, 2020
	https://github.com/advancedresearch/path_semantics/blob/master/papers-wip/implication-theorem.pdf

- [2] "Abstract Implication Theorem"
 Sven Nilsen, 2020
 https://github.com/advancedresearch/path-semantics/blob/master/papers-wip/abstract-implication-theorem.pdf
- [3] "Constrained Implication Theorem"
 Sven Nilsen, 2020
 https://github.com/advancedresearch/path_semantics/blob/master/papers-wip/constrained-implication-theorem.pdf
- [4] "Path Semantical Logic"
 AdvancedResearch, reading sequence on Path Semantics
 https://github.com/advancedresearch/path_semantics/blob/master/sequences.md#path-semantical-logic
- [5] "Contractible Types"
 Sven Nilsen, 2020
 https://github.com/advancedresearch/path_semantics/blob/master/papers-wip/contractible-types.pdf