

北京科技大学 2014年硕士学位研究生入学考试试题

试题编号:_	869	试题名称:_	计算机组	1成原理(共9页)
适用专业:_	计算机科	学与技术、软	件工程、计算	【机技术(专业学位) 、
	<u>软件工程</u>	(专业学位)		
说明: 所有		在答题纸上,		
Litt Pite (>#: /\ .40 /\			
一、填空(
1. 存储程序	原理是指_			,
它是	型	计算机体系结	构的核心思想	
2. 设浮点数	长 16 位,高	8位是阶码,	含1位阶符,	低8位是尾数,含1位数符,
阶码和尾数均	タ用补码表示	示,基值(底)	为 2,尾数为	n规格化、无隐藏位,机器数
为 FC60H 的	十进制真值	是	,十进制真	真值 II/128 的规格化浮点编码
		制助记形式)。		
3. 己知[x] _* =	$= X_0.X_1X_2X_n,$	则[-x] _补 =	,	0
				23 的原码是
$-\frac{35}{64}$ 的补码:	是	o		
5. 若浮点数	格式中阶码	的底一定,且	尾数采用规格	8化表示法,则浮点数的表示
范围取决于_		的位数,同		的位数。
6. 半导体随	机读写存储	器包括	和	,前者的速度比后者快,
但集成度不如	口后者高。			
7. 存储系统	中,CPU能	直接访问	和	,但不能直接访问
磁盘和光盘。				
	器容量为64	4K×32 位,则	CPU 中用做言	主存接口的寄存器 MAR 的位
		的位数是		

9. 中断周期前的 CPU 工作周期是, 中断周期后的 CPU 工作周期是
。 10. 移码表示法主要用于表示,以利于在加减运算的操
作中比较大小。
11. 某机指令字长 24 位,定长操作码,共能完成 129 种操作,采用单地址格式
可直接寻址的范围是, 采用二地址格式指令, 可直接寻址范围是
和片 74182。
13. 寄存器间接寻址方式中,操作数存放在,寄存器中存放的
是。
14. CPU 从取出一条指令并执行这条指令的时间称为。
15. 微程序中的微指令是指。
16. 当前正在执行的指令保存在 CPU 的
如溢出、为负、为零等状态标志保存在 CPU 的
17. 设相对寻址的转移指令占两个字节,第一字节是操作码,第二字节是用补码
表示的相对位移量,若转移指令地址为 200aH ,要求转移到 2002H ,则该转移
指令第二字节内容为。
18. 为运算器构造的简单性,运算方法中常采用加减法、乘除法或
补码乘除法。
19. 组合逻辑控制器的基本思想是:某一微操作控制信号是译码输出,
信号和各种状态信号的逻辑函数。
20. 组合逻辑控制器所采用的三级时序是指、和脉冲等三
级。
二、选择(满分30分,每题1分)
1. 一个8位的二进制整数,若采用补码表示,且由3个"1"和5个"0"组成,则
最小值为。
A127 B32 C125 D3
2. 下列数中最大的数是 。

	A.	$(10011001)_2$	B. (227) ₈	C. (9	98) ₁₆ D.	$(152)_{10}$	
3.	若浮	区点数用补码表	長示,则判断	运算结果	是否为规格	化数的方法是_	o
	A.	阶符与数符机	目同为规格化	数			
	В.	阶符与数符相	目异为规格化	数			
	C.	数符与尾数小	>数点后第一	位数字相	异为规格化	数	
	D.	数符与尾数小	、数点后第一	位数字相	同为规格化	数	
4.	假定	至下列字符码中	中有奇偶校验	位,但没	有数据错误	景,采用偶校验的	的字符码是
		o					
	A.	11001011	B. 1101011	0 C.	11001001	D. 1100000	1
5.	计算	互机的存储器系	区用分级方式	是为了_	o		
	A.	减少主机箱的	的体积				
	В.	解决容量、速	度、价格三	者之间的	矛盾		
	C.	存储大量数据	居方便				
	D.	操作方便					
6.	下面	「所述不正确的	 力是	0			
	A.	RAM 可随机	存取信息,抱	卓电后信息	息丢失		
	В.	访问 RAM 时	,访问时间与	与单元的特	勿理位置无	关	
	C.	内存中存储的	的信息均是不	可改变的			
	D.	随机存储器和	口只读存储器	可统一编	址		
7. =	某计算	算机字长32位	五,存储容量为	J4MB,若	按半字编址	上,它的寻址范围	是。
	A.	4M B. 3	M C. 2N	M D.	1M		
8.	在定	医点二进制运算	算器中,减法	运算一般	通过	来实现。	
	A.	原码运算的二	二进制减法器	В.	补码运算	的二进制减法器	i i
	C.	补码运算的十	一进制加法器	D.	补码运算	的二进制加法器	i.
9.	在向	了下生成的堆材		栈指令 P	USH X 的撐	操作定义为:SP	← (SP)+1,
M(SP) «	─ M(X),则出	出栈指令 POP	X 应定义	.为	o	
	A.	SP←(SP)-1,	$M(X) \leftarrow M(SI)$	P) B.	SP←(SP)	$+1$, $M(X) \leftarrow M(S)$	SP)
	C.	$M(X) \leftarrow M(SP)$), SP←(SP)-	1 D.	$M(X)\leftarrow M$	$(SP), SP \leftarrow (SP)$)+1
10.	以	下四种类型指	令中,执行时	付间最长的	勺是	o	

	A.	RR 型	B. RS 型
	C.	SS 型	D. SR 型
11.	微	程序控制器中,机器	指令与微指令的关系是。
	A.	每一条机器指令由一	一条微指令来执行
	В.	每一条机器指令由一	一段微指令编写的微程序来解释执行
	C.	每一条机器指令组成	成的程序可由一条微指令来执行
	D.	一条微指令由若干条	长机器指令组成
12.	从	控制存储器中读取一	条微指令并执行相应操作的时间叫
	A.	CPU 周期	B. 微周期
	C.	时钟周期	D. 机器周期
13.	挂	接在总线上的多个部	件。
	A.	只能分时向总线发送	送数据,并只能分时从总线接收数据
	В.	只能分时向总线发送	送数据,但可同时从总线接收数据
	C.	可同时向总线发送数	女据,并同时从总线接收数据
	D.	可同时向总线发送数	女据, 但只能分时从总线接收数据
14.	单:	地址指令中为了完成	两个数的算术运算,除地址码指明的一个操作数外,
另-	一个'	常需采用。	
	A.	堆栈寻址方式	B. 立即寻址方式
	C.	隐含寻址方式	D. 间接寻址方式
15.	同	步控制是。	
	A.	只适用于 CPU 控制	的方式
	B.	只适用于外围设备控	总制的方式
	C.	由统一时序信号控制	川的方式
	D.	所有指令执行时间都	邓相同的方式
16.	为	了便于实现多级中断	,保存现场信息最有效的办法是采用。
	A.	通用寄存器 B.	堆栈 C. 存储器 D. 外存
17.	下	面浮点运算器的描述	中正确的句子是:。
	A.	尾数部件只进行乘流	长和除法运算
	В.	阶码部件可实现加、	减、乘、除四种运算

		MI 154 100 155
	C.	阶码部件只进行阶码相加、相减和比较操作
	D.	尾数部件只进行乘法和减法运算
18.	在	定点数运算中产生溢出的原因是。
	A.	运算过程中最高位产生了进位或借位
	В.	参加运算的操作数超出了机器表示的范围
	C.	寄存器的位数太少,不得不舍弃最低有效位
	D.	运算的结果超出了机器的表示范围
19.	在	浮点数加减法的对阶过程中,。
	A.	将被加(减)数的阶码向加(减)数的阶码看齐
	В.	将加(减)数的阶码向被加(减)数的阶码看齐
	C.	将较大的阶码向较小的阶码看齐
	D.	将较小的阶码向较大的阶码看齐
20.	四	片 74181 和 1 片 74812 器件相配合,具有如下进位传递功能。
	A.	串行进位 B. 组内先行进位,组间先行进位
	C.	组内先行进位,组间串行进位 D. 组内串行进位,组间先行进位
21.	指	令系统采用不同寻址方式的目的是。
	A.	实现存贮程序和程序控制。
	В.	缩短指令长度,扩大寻址空间,提高编程灵活性。
	C.	可直接访问外存。
	D.	提供扩展操作码的可能并降低指令译码的难度。
22.	系	统总线地址的功能是。
	A.	选择主存单元地址
	В.	选择进行信息传输的设备
	C.	选择外存地址
	D.	指定主存和 I/O 设备接口电路的地址
23.	算	术右移指令执行的操作是。
	A.	符号位填 0, 并顺次右移 1 位, 最低位移至进位标志位
	В.	符号位不变,并顺次右移 1 位,最低位移至进位标志位

C. 进位标志位移至符号位,顺次右移1位,最低位移至进位标志位

D. 符号位填 1, 并顺次右移 1 位, 最低位移至进位标志位
24. 某寄存器中的值有时是地址,因此只有计算机的才能识别它。
A. 译码器 B. 判断程序 C. 指令 D. 时序信号
25. 在虚拟存贮器中, 当程序正在执行时, 由完成地址映射。
A. 程序员 B. 编译器 C. 装入程序 D. 操作系统
26. 周期挪用方式常用于方式的输入/输出中。
A. DMA B. 中断 C. 程序传送 D. 通道
27. 至今为止,计算机中的所有信息仍以二进制方式表示的理由是。
A. 节约元件 B. 运算速度快
C. 物理器件的性能决定 D. 信息处理方便
28. 下列叙述中正确的是。
A. 只有 I/O 指令可以访问 I/O 设备。
B. 在统一编址下,不能直接访问 I/O 设备。
C. 访问存储器的指令一定不能访问 I/O 设备。
D. 在具有专门 I/O 指令的计算机中, I/O 设备才可以单独编址。
29. 在各种 I/O 方式中,中断方式的特点是。
A. CPU 与外设串行工作,传送与主程序串行工作。
B. CPU 与外设并行工作,传送与主程序串行工作。
C. CPU 与外设串行工作,传送与主程序并行工作。
D. CPU 与外设并行工作,传送与主程序并行工作。
30. 某计算机的控制器采用微程序控制方式,微指令中的操作控制字段采用分段
直接编码法,共有26个微命令,构成4个互斥类,分别包含3、5、12和6个微
命令,则操作控制字段至少有位。
A. 4 B. 12 C. 15 D. 26
三、简答题(满分30分,每题5分)
1. 什么是软件与硬件的逻辑等效性,并举出两个实例。
2. 画出微程序控制器的构成框图,并说明各部分的功能。
3. 某四位加法器的四位进位信号分别为 C_4 、 C_3 、 C_2 、 C_1 ,低位来的信号为 C_0 ,

请分别按下述两种方式写出 C4、C3、C2、C1 的逻辑表达式。

- (1) 串行进位方式
- (2) 并行进位方式
- 4. 当指令系统和数据通路结构确定后,给出组合逻辑控制器的设计步骤。比较组合逻辑控制器和微程序控制器的特点。
- 5. 以打印机输出为例说明中断的全过程, 并比较中断方式和 DMA 方式的特点。
- 6. 比较 Cache 和虚拟存储器,说明它们的相似点与不同。

四、综合题(共50分)

- 1. (6分)(1) 定点补码加减运算溢出判断的三种方法是什么?分别列出逻辑表达式并加以说明。
- (2) 已知机器字长 8 位,x = -0.0111100,y = +0.1100100,求 $[x]_{*}$, $[-x]_{*}$, $[y]_{*}$, $[-y]_{*}$,x + y = ? ,x y = ? 要求给出运算器的计算过程,并用溢出判别方法判断结果是否溢出。
- 2. (4分)已知 X=0.1010,Y=-0.1101,用原码一位乘法计算 X*Y=? 其中寄存器、加法器的宽度均为 4位,要求写出详细计算过程与说明。

解:	$[X]_{\mathbb{R}} = $	[Y] _@ =
	[X*Y] _@ =	X*Y =

实现的具体过程:

C(进位 触发器)	P(部分积 寄存器)	Y(除数 寄存器)	说明

- 3. (6 分) 已知 $X = -0.0110101 \times 2^{11}$, $Y = 0.1100100 \times 2^{-11}$ (此处数均为二进制)。 浮点数阶码用 4 位移码,尾数用 8 位补码表示(含符号位),
 - (1) 写出 X, Y 的浮点数表示 (要求格式: 数符 阶码 尾数)。
 - (2) 计算 X+Y, 要求给出运算过程(舍入采用 0 舍 1 入法)。
- (3)如何判断浮点补码加减运算是否溢出?并说明发生溢出时如何处理?并判断上述运算结果是否溢出。

- 4. (7分) 有一个全相联 Cache 系统, Cache 由 8 个块构成, CPU 送出的主存地址流序列分别为: 14、18、14、18、8、4、8、10, 求
- (1) 每次访问后, Cache 的地址分配情况。
- (2) 当 Cache 的容量换成 4 个块, 地址流为 6、15、6、13、11、10、8、7 时, 求采用先进先出替换算法的相应地址分配和操作。
- 5. (3分)设指令字长为16位,每个操作数的地址码为6位,指令有零地址、一地址、二地址3种格式。
- (1)设指令系统的操作码长度和位置固定,若零地址指令有 M 种,一地址指令 有 N 种,则二地址指令最多有几种?
- (2) 采用扩展操作码技术,二地址指令最多有几种?
- (3) 采用扩展操作码技术,若二地址指令有P条,零地址指令有Q条,则一地址指令最多有几种?
- 6. (6分)设某机存储字长、指令字长和机器字长均相等,该机的指令格式如下:

5	3	8
OP	M	A

其中, A 为形式地址, 补码表示(包括一位符号位); M 为寻址方式,

M=0 立即寻址;

M=1 直接寻址(此时 A 视为无符号数):

M=2 间接寻址(此时 A 视为无符号数):

M=3 变址寻址(A 为位移量,变址寄存器为 R_x);

M=4相对寻址。

- 求:(1)该指令格式能定义多少种不同的操作?立即寻址操作数的范围是多少?
 - (2) 写出各种寻址方式(M=1、2、3、4) 计算有效地址的表达式。
- (3) 当 M=1、2、4 时,能访问的最大主存空间为多少机器字?
- 7. $(8 \, \mathcal{G})$ 某半导体存储器容量 $4K \times 8$ 位。其中固化区 $2K \times 8$ 位(低地址),用 $1K \times 8$ 位的 EPROM 芯片组成;随机读写区 $2K \times 8$ 位(高地址),由 $2K \times 4$ 位的 SRAM 芯片组成。地址总线 A_{11} — A_0 ,双向数据总线 D_7 — D_0 , R/\overline{W} 控制读写。试问:
 - (1) 数据缓冲寄存器多少位? 地址寄存器多少位?
 - (2) 二种芯片各需多少片? 求每片芯片的片选逻辑式与地址分配完成下表。

(3)设计并完成该存储器逻辑图,注明芯片与地址总线、数据总线和 R/\bar{W} 信号线的联结,并实现片选逻辑。

芯片 编号	芯片 类型	芯片 容量	芯片 地址	片选逻辑 表达式	地址范围
1	EPROM	1K	A ₉ ~A ₀	$CS_1=$	
2				CS ₂ =	
3				CS ₃ =	
4				CS ₄ =	

逻辑图:

地址 A₁₁~A₀

- 8.(10 分)某计算机的数据通路如下图所示,其中 M—主存,MBR—主存数据 寄存器,MAR—主存地址寄存器, R_0 ~ R_3 —通用寄存器,IR—指令寄存器,PC—程序计数器(具有自增能力),C、D—暂存器,ALU—算术逻辑单元,移位器—左移、右移、直通传送。所有双向箭头表示信息可以双向传送。 请按数据通路图画出下列指令的指令周期流程图:
 - (1) MOV R₁, -(R₂), 指令功能是(R₂)-1→R₂, ((R₂))→R₁。
 - (2) ADD (R_1) , (R_2) +, 指令功能是 $((R_1))$ + $((R_2))$ → (R_1) , (R_2) +1→ R_2 。

