1 Topology

1.1 Compact Topological Spaces

1.1.1 Definition Basics

Definition 1.1.) (Compactness)

A Hausdorff topological space X is said to be **compact** if each open covering of X has a finite subcovering.

Definition 1.2. (Finite Intersection Property)

We say a topological space (X, τ) has the finite intersection property if for each collection $\{K_{\alpha}\}_{\alpha \in A}$ such that $\bigcap_{\alpha \in A} K_{\alpha} = \phi$, then there is a finite subcollection F_{α_i} such that $i \in N_n$ where $\bigcap_{i=1}^n F_{\alpha_i} = \phi$

Theorem 1. X is compact iff the finite intersection property holds on X

Proof. Apply De Morgan's law and recognize $\bigcap_{\alpha \in A} K_{\alpha} = \phi \iff \bigcup_{\alpha \in A} CK_{\alpha} = X$

Lemma 1.1. (Compact Basis)

Let X be a topological space. Then X is compact iff every open cover of X consisting only of elements of a basis \mathcal{B} for τ_X has a finite subcover

Proof. Compactness implying covers of basis elements having finite subcovers is trivial since basis elements are open.

Now let each open cover of basis elements have a finite sub cover.

Let $\{U_{\alpha}\}_{{\alpha}\in A}$ be an open cover of X. Then for each ${\alpha}\in A$, $U_{\alpha}=\bigcup_{{\beta}\in b}B_{\beta}^{\alpha}$ where $B_{\beta}\in \mathcal{B}$. Hence $\{B_{\beta}^{\alpha}\}_{{\alpha}\in A;{\beta}\in b}$ is a cover for X of basis elements. Hence it has a finite subcover.

 $\{B_{\beta_i}^{\alpha_i}\}_{i=1}^n$. This implies $\{U_{\alpha_i}\}_{i=1}^n$ is a finite sub cover of $\{U_{\alpha}\}_{\alpha\in A}$, so X is compact.

Theorem 2. (Compact facts)

Let X and Y be topological spaces. Let $f: X \to Y$ be continuous.

- 1. If X is compact then f(X) is compact.
- 2. If X is Hausdorff and $A \subset X$ is compact, the A is closed.
- 3. If X is Compact and $A \subset X$, then, A is closed \implies A is compact.
- 4. Let $\{X_k\}_{k=1}^n$ be a collection of topological spaces. Then $\prod_{i=1}^n X_k$ is a compact space iff each X_k is compact.

Proof. (1)

Let $\{V_{\alpha}\}_{{\alpha}\in A}$ be an open cover for f(X). Then $\{f^{-1}(V_{\alpha})\}_{{\alpha}\in A}$ openly covers X. Hence there is a finite subcovering $\{f^{-1}(V_{\alpha_i})\}_{i=1}^n$. Thus

$$f(X)=f(\bigcup_{i=1}^n f^{-1}(V_{\alpha_i}))=(\bigcup_{i=1}^n f(f^{-1}V_{\alpha_i}))\subset \bigcup_{i=1}^n V_{\alpha_i}$$

Hence $\{V_{\alpha_i}\}_{i=1}^n$ is a finite subcovering of f(X).

Proof. (2) How would you begin this proof?

Proof. (3) trivial. See if you can do it.

Proof. $(4) (\Longrightarrow)$

The projection mapping is continuous and surjective. Badda bing, Badda boom.

Proof. (4) (\iff) Let X_i be compact for each $i \in N_n$ Define $M = \{n \in \mathbb{N} : \prod_{i=1}^n X_i \text{ is compact}\}.$

1 is the trivial case, so we should show $2 \in M$.

Let $\{B_{\alpha}\}_{{\alpha}\in A}$ be an open cover for $X_1\times X_2$.

Theorem 3. Let X be a compact topological space. Let Y be a Hausdorff space. If $f: X \to Y$ is a continuous bijection, then f is a homeomorphism.

Proof. Let $A \subset X$ be closed. Then A is compact $\implies f(A)$ is compact. Hence since Y is Hausdorff, f(A) is closed

Definition 1.3. (Locally compact)

Let X be a topological space. We say that X is a Locally compact topological space if

$$(\forall x \in X)(\exists U_x \in \tau_X) \pitchfork (\overline{U}_x \text{ is compact})$$

1.1.2 Metric spaces convergence

Definition 1.4. (Convergence in metric spaces)

Let (X,d) be a metric space. Let $\{x_n\}_{n\in\mathbb{N}}\subset X$. We say that $\{x_n\}$ converges to a point $x\in X$, and we write $x_n\to x$, if

$$(\forall \epsilon > 0)(\exists N \in \mathbb{N})(\forall n \geq N)(d(x_n, x) < \epsilon)$$

Definition 1.5. (Topological Convergence)

Let (X, τ) be topological space. Let $\{x_n\}_{n\in\mathbb{N}}\subset X$. We say that x_n τ -converges to a point $x\in X$, and we write $x_n\to x$ if

$$(\forall U_x)K(\exists N \in \mathbb{N})(\forall n \geq N)(x_n \in U_x)$$

Theorem 4. (Metric Topological Convergence)

Let (X, d) be a metric space. Let $\{x_n\} \subset X$. $\{x_n\}$ τ -converges to a point $x \in X$ if and only if x_n converges to $x \in X$ wrt metric d.

Proof.
$$(\Leftarrow)$$
 Let $U_x \in \tau$. $\Longrightarrow (\exists \epsilon > 0) \pitchfork (B(x; \epsilon) \subset U_x)$
 $\Longrightarrow (\exists N \in \mathbb{N})(\forall n \geq N)(x_n \in B(x; \epsilon) \subset U_x)$
 $\Longrightarrow (\forall n \geq N)(x_n \in U_x)$

 $\therefore x_n \to x$ in the topological sense.

Proof. (\Longrightarrow)

Proposition 1.1. (Metric Closed Characterization)

Let (X,d) be a metric space and let $A \subset X$. Then A is closed iff each convergent sequence in A has a limit in A

Proof. Notice that \overline{A} is the collection of points for which there exists a sequence in A that converges to it. (This isn't the proof but its the idea of it. I'm tired of typing rn and I know you won't get stuck on this theorem.)

1.2 Continuity in Metric Spaces

1.2.1 Definition/Equivalence

Theorem 5. (Metric Continuity Facts)

Let (X,d) and (Y,p) be metric spaces. Let $f:X\to Y$. Pick $x_0\in X$. Then the following are equivalent.

1.)
$$(\forall \epsilon > 0)(\exists \delta > 0) \pitchfork (d(x, x_0) < \delta \implies p(f(x), f(x_0)) < \epsilon)$$
.

2.)
$$(\forall \epsilon > 0)(\exists \delta > 0) \pitchfork (f(B(x_0; \delta) \subset B(f(x_0); \epsilon))$$

3.)
$$(\forall \{x_n\}_{n\in\mathbb{N}})(x_n \to x_0 \implies f(x_n) \to f(x_0))$$

4.) f is continuous at x_0

Proof.
$$(1 \implies 2)$$

Pick
$$\epsilon > 0$$
. Then $\exists \delta > 0$ such that $d(x, x_0) < \delta \implies p(f(x), f(x_0)) < \epsilon$
 $\iff x \in B(x_0, \delta) \implies f(x) \in B(f(x_0), \epsilon)$
 $\iff f(B(x_0; \delta)) \subset B(f(x_0); \epsilon)$

Proof. $(2 \implies 3)$ Ask yourself, what do we need to show? and the next question would be, how do I proceed to prove this claim?

Proof. $(3 \implies 4)$ (contra-positive)

Suppose

$$(\exists V(f(x_0)) \pitchfork (\forall U(x_0))(f(U(x_0)) \not\subset V(f(x_0))).$$

$$\Leftrightarrow (\exists V(f(x_0)) \pitchfork (\forall U(x_0))(f(U(x_0)) \cap \complement V(f(x_0)) \neq \phi)$$

$$\Rightarrow (\forall n \in \mathbb{N})(\exists x_n \in B(x_0; \frac{1}{n})) \pitchfork (f(x_n) \in \complement V(f(x_0)))$$

Clearly $x_n \to x_0$ while the sequence $\{f(x_n)\}$ stays away from $V(f(x_0))$.

Proof. $(4 \implies 1)$

Let $\epsilon > 0$. For each $B(f(x_0); \epsilon) \in \tau_Y$, $\exists U(x_0) \in \tau_X \pitchfork f(U) \subset B(f(x_0); \epsilon)$. Since $U(x_0)$ is open, $\exists \delta > 0 \pitchfork B(x_0; \delta) \subset U$. Thus $f(B(x_0; \delta)) \subset f(U) \subset B(f(x_0); \epsilon)$, and this is equivalent to

$$d(x, x_0) < \delta \implies p(f(x), f(x_0)) < \epsilon.$$

1.2.2 Uniform Continuity

Definition 1.6. (Uniform Continuity)

Let $f:(X,d)\to (X,\rho)$. We say f is uniformly continuous if

$$(\forall \epsilon > 0)(\exists \delta > 0)(\forall x, y \in X)(d(x, y) < \delta \implies \rho(f(x), f(y)) < \epsilon)$$

Examples 1. Let $a < b \in \mathbb{R}$. Then $T : [a, b] \to \mathbb{R}$ defined by T(x) = x + a is uniformly continuous

Definition 1.7. (Distance from a set)

Let
$$(X,d)$$
 be a metric space. Let $A, B \subset X$. Then $d(x,A) = \inf\{d(x,y) : y \in A\}$

Theorem 6. Let (X,d) be a metric space. Let $\phi \neq A \subset X$. Define $f: X \to \mathbb{R}$ by f(x) = d(x,A). Then f is uniformly continuous on X.