Roll No.

H

TEC-201

B. Tech. (Second Semester) End Semester EXAMINATION, 2017

(All Branches)

BASIC ELECTRONICS ENGINEERING

Time: Three Hours]

[Maximum Marks: 100

Note: (i) This question paper contains five questions.

- (ii) All questions are compulsory.
- (iii) Instructions on how to attempt a question are mention against it.
- (iv) Total marks assigned to each question are twenty.
- 1. Attempt any two questions of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) What is Duality principle of Boolean algebra? State and prove the DeMorgan's laws.
 - (b) Perform the following number system conversion:
 - (i) $(65.2)_8 = (?)_{10}$

- (ii) $(A 9.8)_{16} = (?)_{10}$
- (iii) $(85.25)_{10} = (?)_2$
- (iv) $(111011.100)_2 = (?)_8$
- (v) $(10100111)_2 = (?)_{16}$
- (c) Perform the following:
 - (i) $(35)_{10} + (25)_{10}$ in Binary
 - (ii) $(389)_{10} + (245)_{10}$ in BCD
 - (iii) $(13)_{10} (10)_{10}$ in Binary using 1's complement
- 2. Attempt any two questions of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) Write short notes on the following:
 - (i) Extrinsic semiconductors
 - (ii) Mass action law

A-76

- (b) Derive the continuity equation for semiconductors
- (c) A semiconductor has $10^{16}/\text{cm}^3$ donor atom concentration and $1.1 \times 10^{17}/\text{cm}^3$ acceptor atom concentration. If intrinsic carrier concentration is $10^{12}/\text{cm}^3$, then find the free electron and hole concentration and conductivity it mobility of electron is 800 cm²/V-s and that of hole is 200 cm²/V-s.

- 3. Attempt any two questions of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) What do you mean by the breakdown of a PN junction diode? Discuss the effect of temperature on the characteristics of PN junction diode.
 - (b) Derive the expression for ripple factor, rectification efficiency and PIV for a centre tapped full wave rectifier.
 - (c) Write short notes on the following:
 - (i) Varactor diode
 - (ii) LED
- 4. Attempt any *two* questions of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) Draw CB, CE and CC configuration of a BJT. Discuss the currents I_{CBO} and I_{CEO}.
 - (b) Explain construction, operation and characteristics of an E/MOSFET.
 - (c) In the following circuit find I_C and V_{CE} . Given $V_{CC}=12$ V, $R_1=12$ k Ω , $R_2=2.4$ k Ω , $R_C=3.8$ k Ω , $R_E=1$ k Ω , $V_{BE}=0.7$ V and $\beta=50$.

P. T. O.

A-76

- 5. Attempt any two questions of choice from (a), (b) and (c). (2×10=20 Marks)
 - (a) Write short notes on the following:
 - (i) Concept of virtual ground
 - (ii) Properties of an ideal Op-amp
 - (b) Derive expression for voltage gain of:
 - (i) Inverting
 - (ii) Non-inverting operational amplifier configurations
 - (c) Determine output voltage V_o in the following circuits:

TEC-201

580