Раздел 3. Полнота метрического пространства

Лекция 4 Полные и неполные метрические пространства.

Фундаментальная последовательность (последовательность Коши): $\forall \varepsilon > 0 \,\exists N \in \mathbb{N} \,\forall k, m > N : \rho(x_k, x_m) < \varepsilon$

Любая сходящаяся последовательность фундаментальна.

Если какая-либо подпоследовательность фундаментальной последовательности ($\Phi\Pi$) сходится, то сходится и сама последовательность (к тому же пределу).

 $M\Pi$ называется полным, если произвольная $\Phi\Pi$ сходится (имеет предел).

МП называется неполным, если в нём найдётся $\Phi\Pi$, не имеющая предела.

Понятие полноты (неполноты) обобщается и на ПМП.

Лемма. Если множество \tilde{X} всюду плотно в X (т.е. $[\tilde{X}]=X$), и произвольная $\Phi\Pi$ элементов из \tilde{X} сходится, то пространство X полное. Доказательство: для произвольной $\Phi\Pi$ из X найдётся эквивалентная ей $\Phi\Pi$ из \tilde{X} , которая сходится, тогда исходная $\Phi\Pi$ также сходится.

Пусть $Y \subset X$ – подпространство метрического пространства.

Утверждение. Если Y не замкнуто в X, то Y – неполное ПМ (независимо от полноты X).

Утверждение. Если Y замкнуто в X, и X – полное МП, то Y – полное ПМ.

Теорема (принцип вложенных шаров). Пусть в полном МП задана бесконечная последовательность замкнутых шаров $\bar{S}_m = \bar{S}_{r_m}(a_m)$, причём $r_m \to 0$ и $\bar{S}_{m+1} \subset \bar{S}_m$. Тогда у этих шаров существует единственная общая точка

(Доказательство. Единственность: две различные точки не могут принадлежать всем шарам. Существование: рассматриваем последовательность $x_m \in \bar{S}_m$, доказываем её фундаментальность и сходимость, доказываем принадлежность всем шарам предела последовательности.)

Замечание: единственность гарантируется для любого МП, существование — для полного.

Аналог принципа вложенных отрезков для E^1 .

Примеры.

- 1. Пространства с дискретной метрикой и ε -дискретные пространства. Все $\Phi\Pi$ постоянные или стабилизирующиеся. Сходятся. Пространства полные.
- 2. E^1 полное МП (критерий Коши).

- 3. $X \subset \mathbb{R}$, метрика из E^1 . Полное МП, если множество X замкнуто в \mathbb{R} и неполно в противном случае. (Доказать).
- 4. Пространство \mathbb{R}_{Φ} : $\rho(x,y)=|\Phi(x)-\Phi(y)|, \Phi:\mathbb{R}\to\mathbb{R}$ инъективная функция. Полное МП, если образ функции Ф замкнутое множество, и неполное в противном случае.

В частности, если Φ – непрерывная (в обычном смысле) монотонная функция, то её образ – интервал, открытый луч или вся ось. Пространство полное лишь в последнем случае (Ф не ограничена ни сверху, ни снизу), в противном случае бесконечно большие в E^1 последовательности (все или некоторые) будут фундаментальными, но не сходящи-

5. Пространство \mathbb{R}^n_{\max} n-мерных векторов (конечных последовательностей из n чисел), $\rho_{\infty}(x,y) = \max_{i} |x_i - y_i|$.

Докажем полноту этого пространства. Рассмотрим ФП его элементов $x^{(1)}, x^{(2)}, \ldots$, номер элемента последовательности пишем наверху в скобках, а нижний индекс – номер компоненты вектора.

Первый шаг: рассмотрим числовые последовательности $x_j^{(1)}, x_j^{(2)}, \dots$ j-ых компонент. Они фундаментальны (доказать). Сходятся по критерию Коши.

Второй шаг: ссылаемся на доказанный факт, что из покомпонентной сходимости следует сходимость по метрике \mathbb{R}^n_{\max} .

В дальнейшем такая схема будет повторяться: сначала доказывается сходимость в слабом смысле, потом доказывается, что этот слабый предел на самом деле есть предел в смысле метрики пространства.

6. Пространство l_{∞} бесконечных ограниченных последовательностей, $\rho_{\infty}(x,y) = \sup_{i} |x_{i} - y_{i}|.$

Первый шаг такой же: доказываем покомпонентную сходимость. Дальше рассматриваем последовательность, состоящую из покомпонентных пределов: $x_i = \lim_{p \to \infty} x_i^{(p)}$

Здесь, по сравнению с предыдущим случаем, ещё одна дополнительная проблема: заранее неясно, будет ли эта последовательность ограниченной, то есть принадлежит ли нашему пространству l_{∞} . Эту принадлежность также нужно будет доказать.

Вернёмся к определению фундаментальной последовательности:

$$\forall \varepsilon > 0 \, \exists N \in \mathbb{N} \, \forall p,q > N : \rho_{\infty}(x^{(p)},x^{(q)}) < \varepsilon, \, \text{t.e.}$$

$$\sup_j |x_j^{(p)} - x_j^{(q)}| < arepsilon,$$
 откуда

$$\forall j \in \mathbb{N} : |x_i^{(p)} - x_i^{(q)}| < \varepsilon$$

 $\forall j\in\mathbb{N}:|x_j^{(p)}-x_j^{(q)}|<arepsilon$ Перейдём к пределу при $q\to\infty$, строгое неравенство превратится в нестрогое:

$$\forall j \in \mathbb{N} : |x_j^{(p)} - x_j| \le \varepsilon$$

Отсюда следует ограниченность последовательности из покомпонентных пределов, $x \in l_{\infty}$.

Взяв супремум по j, получаем: $\rho_{\infty}(x^{(p)},x) \leq \varepsilon$ (при p>N), откуда следует сходимость по метрике l_{∞} .

7. Пространство c сходящихся последовательностей – подпространство l_{∞} . Поскольку l_{∞} полное, для доказательства полноты пространства c достаточно доказать его замкнутость в l_{∞} .

Пусть $x^{(p)} \to x$ в $l_\infty, \, x^{(p)} \in c$. Докажем, что $x \in c$. Для этого достаточно доказать фундаментальность x в E^1 .

Применяем $\varepsilon/3$ -приём.

Нам нужно доказать: $\forall \varepsilon > 0 \,\exists N \in \mathbb{N} \,\forall k,m > N : |x_k - x_m| < \varepsilon$

Из сходимости $x^{(p)}$ к x в l_∞ следует: найдётся номер p, для которого $\rho_\infty(x^{(p)},x)<\varepsilon/3$, т.е. $\forall j\in\mathbb{N}:|x_j^{(p)}-x_j|<\varepsilon/3$.

Поскольку последовательность $x^{(p)} \in c$, она фундаментальна, и тогда $\exists N \in \mathbb{N} \, \forall k, m > N : |x_k^{(p)} - x_m^{(p)}| < \varepsilon/3.$

Тогда

Тогда
$$|x_k-x_m|=|(x_k-x_k^{(p)})+(x_k^{(p)}-x_m^{(p)})+(x_m^{(p)}-x_m)|\leq \leq |x_k-x_k^{(p)}|+|x_k^{(p)}-x_m^{(p)}|+|x_m^{(p)}-x_m|<\varepsilon/3+\varepsilon/3+\varepsilon/3=\varepsilon$$
 при $\forall k,m>N.$

8. Пространство c_0 бесконечно малых последовательностей – подпространство c. Для доказательства полноты докажем замкнутость c_0 в $c. \varepsilon/2$ -приём.

Пусть $x^{(p)} \to x$ в $c, x^{(p)} \in c_0$. Докажем, что $x \in c_0$.

По ε находим p: $\rho_{\infty}(x^{(p)},x) < \varepsilon/2$. Поскольку $x^{(p)}$ бесконечно малая, найдётся $N \in \mathbb{N} \, \forall k > N: |x_k^{(p)}| < \varepsilon/2$. Тогда $|x_k| = |(x_k - x_k^{(p)}) + x_k^{(p)}| \le |x_k - x_k^{(p)}| + |x_k^{(p)}| < \varepsilon/2 + \varepsilon/2 = \varepsilon$.

$$|x_k| = |(x_k - x_k^{(p)}) + x_k^{(p)}| \le |x_k - x_k^{(p)}| + |x_k^{(p)}| < \varepsilon/2 + \varepsilon/2 = \varepsilon$$

9. Пространство C[a,b] непрерывных на отрезке [a,b] функций с расстоянием $\rho_C(x, y) = \max_{t \in [a,b]} |x(t) - y(t)|.$

Для доказательства полноты рассмотрим фундаментальную последовательность непрерывных функций $x_1(t), x_2(t), \dots$ (теперь индексы ставим внизу). Первый шаг: доказываем поточечную сходимость (поскольку при каждом t имеем фундаментальную числовую последовательность). Осталось доказать, что предельная функция непрерывна (входит в наше пространство), и что сходимость к ней равномерная (по метрике пространства C[a,b]).

Равномерность доказывается так же, как в l_{∞} . Для доказательства непрерывности предварительно вспоминаем теорему Кантора: непрерывная функция на отрезке равномерно непрерывна. Дальше доказываем равномперную непрерывность предельной функции, применив arepsilon/3-приём: p выбираем из условия $ho_C(x,x_p)<arepsilon/3$, δ из условия $|t'-t''|<\delta\Rightarrow|x_p(t')-x_p(t'')|<arepsilon/3$, тогда $|x(t')-x(t'')|\leq|x(t')-x_p(t')|+|x_p(t')-x_p(t'')|+|x_p(t'')-x(t'')|<arepsilon$. То есть предельная функция непрерывна.

10. Пространство $C^1[a,b]$ непрерывно дифференцируемых на [a,b] функций, $\rho_{C^1}(x,y) = \max\{\rho_C(x,y),\rho_C(\dot{x},\dot{y})\}.$

Докажем полноту. Рассмотрим фундаментальную в $C^1[a,b]$ последовательность $x_1(t), x_2(t), \ldots$ Она фундаментальна в C[a,b], и последовательность производных $\dot{x}_1(t), \dot{x}_2(t), \ldots$ также фундаментальна в C[a,b]. Сходятся равномерно каждая к своему пределу: первая к x(t), вторая к y(t). Нужно доказать, что, во-первых, $y(t) = \dot{x}(t)$, и, вовторых, что это сходимость по метрике пространства $C^1[a,b]$.

Первый факт – ссылаемся на теорему из матанализа:

Пусть $\{u_k(t)\}$ и $\{v_k(t)\}$ – последовательности непрерывных на [a,b] функций, причём $v_k(t)=\dot{u}_k(t)$. Пусть последовательность $\{v_k(t)\}$ сходится равномерно на [a,b] к некоторой предельной функции $\{v(t)\}$, а $\{u_k(t)\}$ сходится хотя бы в одной точке на [a,b]. Тогда $\{u_k(t)\}$ также сходится равномерно на [a,b] к некоторой функции $\{u(t)\}$, и справедливо равенство $v(t)=\dot{u}(t)$.

(Вспомнить доказательство!).

Второй факт доказывается так: знаем, что $\rho_C(x_k,x)\to 0$ и $\rho_C(\dot{x_k},\dot{x})\to 0$. По ε находим $N_0(\varepsilon)$ и $N_1(\varepsilon)$, начиная с которых соответствующие расстояния меньше ε , тогда при

 $k > N(\varepsilon) = \max\{N_0(\varepsilon), N_1(\varepsilon)\}\$

оба расстояния меньше ε , а тогда и $\rho_{C^1}(x_k, x) < \varepsilon$.

11. Пространство $C^l[a,b]\ l$ раз непрерывно дифференцируемых на отрезке [a,b] функций,

$$\rho_{C^l}(x,y) = \max\{\rho_C(x,y), \rho_C(\dot{x},\dot{y}), \rho_C(\ddot{x},\ddot{y}), \dots, \rho_C(x^{(l)},y^{(l)})\} = \\
= \max_{0 \le s \le l} \rho_C(x^{(s)},y^{(s)})$$

(верхний индекс в скобках – порядок производной, и, как обычно, под нулевыми производными понимаются сами функции). $C^1[a,b]$ – частный случай.

Полнота доказывается аналогично: рассматриваем последовательность $\{x_k\}$, фундаментальная в $C^l[a,b]$; дальше рассматриваем последовательности $\{x_k^{(s)}\}$ (при всевозможных s), показываем, что они фундаментальны в C[a,b]; в силу полноты C[a,b] эти последовательности сходятся в C[a,b] каждая к своему пределу z_s ; дальше ссылаемся на ту же теорему, что и в предыдущем пункте, и получаем, что каждая последующая из этих функций есть производная предыдущей: $z_s=\dot{z}_{s-1},\ s=1,\ldots,l$; отсюда следует, что они суть последовательные производные функции z_0 , и если переобозначить $z_0=x$, то $z_s(t)=x^{(s)}(t)$. Таким образом, для любого s от нуля до l включительно $x_k^{(s)}\to x^{(s)}$ в метрике C[a,b], т.е. $\rho_C(x_k^{(s)},x^{(s)})\to 0$. Дальше доказываем, что это на самом деле есть сходимость и в $C^l[a,b]$: по ε находим

 $N_s(\varepsilon)$ для каждой из последовательностей, выбираем максимальное $N(arepsilon) = \max_s N_s(arepsilon)$ и показываем, что при k > N(arepsilon) будет выполнено неравенство $\rho_{C^l}(x_k, x) < \varepsilon$.

Замечание. Когда мы доказывали, что из покомпонентной сходимости в \mathbb{R}^n следует сходимость по метрике $\mathbb{R}^n_{ ext{max}}$, логика была совершенно

12. \mathbb{R}_1^n : $\rho_1(x,y) = \sum_{j=1}^n |x_j - y_j|$. Здесь можно сослаться на тот факт, что нормы в \mathbb{R}_1^n и в \mathbb{R}_{\max}^n эквивалентны, поэтому фундаментальные последовательности в этих пространствах одни и те же, и сходящиеся последовательности также одни и те же. Поэтому из полноты \mathbb{R}^n_{\max} следует полнота \mathbb{R}^n_1 .

Докажем всё-таки непосредственно. Рассмотрим фундаментальную в \mathbb{R}^n_1 последовательность $\{x^{(p)}\}$ (в отличие от предыдущего случая, верхний индекс в скобках – снова номер элемента последовательности, а нижний – номер компоненты). Рассматриваем числовые последовательности $\{x_m^{(p)}\}$ (при фиксированном m) для каждой из компонент. Последовательности фундаментальны в E^1 (поскольку

 $|x_m^{(p)}-x_m^{(q)}| \leq \rho_1(x^{(p)},x^{(q)})$), поэтому сходятся по критерию Коши. Значит, есть покомпонентная сходимость к вектору $x = (x_1, \dots, x_n)$. По ε находим $N_m(\varepsilon)$, начиная с которого $|x_m^{(p)}-x_m|<\varepsilon/n$, берём $N(arepsilon) = \max_m N_m(arepsilon)$ и показываем, что при p > N(arepsilon) выполнено неравенство $\rho_1(x^{(p)},x) < \varepsilon$.

Пространства разные, а приёмы доказательства однотипные.

13. l_1 — пространство бесконечных абсолютно суммируемых последовательностей $(\sum_{j=1}^\infty |x_j| < \infty\}), \ \rho_1(x,y) = \sum_{j=1}^\infty |x_j-y_j|.$ Докажем пол-

Рассмотрим фундаментальную в \mathbb{R}^n_1 последовательность $\{x^{(p)}\}$ и, как и раньше, числовые последовательности $\{x_m^{(p)}\}$ её компонент, доказываем покомпонентную сходимость (как в предыдущем пункте) к некоторой последовательности $x \in \mathbb{R}^{\mathbb{N}}$. Нужно доказать, что эта последовательность принадлежит l_1 , и что есть сходимость в смысле метрики этого пространства.

Мы уже видели на примере \mathbb{R}^n_{\max} , l_{∞} , c и c_0 , что в бесконечномерных пространствах приходится действовать более аккуратно, чем в случае конечномернго аналога (в данном случае им является \mathbb{R}^n_1), и иногда искать новые приёмы доказательства.

Выпишем условие фундаментальности:

$$\forall \varepsilon > 0 \,\exists N(\varepsilon) \,\forall p,q > N(\varepsilon) : \sum_{j=1}^{\infty} |x_j^{(p)} - x_j^{(q)}| < \varepsilon$$

 $\forall arepsilon > 0 \ \exists N(arepsilon) \ \forall p,q > N(arepsilon) : \sum_{j=1}^{\infty} |x_j^{(p)} - x_j^{(q)}| < arepsilon$ Обрежем ряд, заменив его конечной суммой. Неравенство не нарушится: $\sum_{j=1}^{M} |x_j^{(p)} - x_j^{(q)}| < arepsilon$ (при тех же условиях на p,q). Здесь M произвольное, но конечное.

Теперь перейдём в неравенстве к пределу при $q \to \infty$: поскольку сумма конечная, это заведомо можно сделать. При таком переходе $x_i^{(q)}$ превратятся в элементы предельной последовательности $x_i,\, {
m a}$ строгое неравенство превратится в нестрогое: $\sum_{j=1}^{M}|x_{j}^{(p)}-x_{j}|\leq \varepsilon$. Полученное неравенство означает, что частичные суммы ряда $\sum_{j=1}^{\infty}|x_{j}^{(p)}-x_{j}|$ с неотрицательными членами в совокупности ограничены. Отсюда следует, что этот ряд сходится, а из его сходимости следует и сходимость ряда $\sum_{j=1}^{\infty}|x_{j}|$, поскольку $|x_{j}|\leq|x_{j}-x_{j}^{(p)}|+|x_{j}^{(p)}|$, а $x_{j}^{(p)}\in I$

Далее, перейдя к пределу уже по M, получаем: $\sum_{j=1}^{\infty}|x_j^{(p)}-x_j|\leq \varepsilon$, т.е. $\rho_1(x^{(p)},x)\leq \varepsilon$ при $p>N(\varepsilon)$, что и означает сходимость $x^{(p)}\to x$ в

14. Пространство $C_{L_1}[a,b]=\tilde{L}_1[a,b]$ непрерывных на [a,b] функций, $\rho_1(x,y)=\int_a^b|x(t)-y(t)|\,dt.$ Это пример неполного МП.

Утверждение. Если $[\alpha,\beta]\subset [a,b]$ и $x_k\to x$ в $\tilde{L}_1[a,b]$, то $x_k\to x$ в $L_1[\alpha,\beta].$

(Уточнение: разумеется, речь идёт о сужениях функций, определённых на более широком множестве [a,b], на более узкое $[\alpha,\beta]$.)

Пример последовательности $x_k \in \tilde{L}_1[-1,1]$, сходящейся в $\tilde{L}_1[-1,0]$ и в $\tilde{L}_1[0,1]$ к разным постоянным. Фундаментальна в $\tilde{L}_1[-1,1]$ (поскольку фундаментальна в $\tilde{L}_1[-1,0]$ и в $\tilde{L}_1[0,1]$). Не сходится. (От противного: если бы был предел в $\tilde{L}_1[-1,1]$, то это была бы непрерывная функция, совпадающая на [-1,0] и на [0,1] с разными константами.) Поточечный предел – разрывная функция.

Второй пример рассмотрим для пространства $ilde{L}_1[0,1]$: $x_k(t) = \min\{k, 1/\sqrt{t}\}$ (срезки функции $1/\sqrt{t}$). Фундаментальная (показать!). В любом пространстве вида $ilde{L}_1[\delta,1]$ стабилизируется и сходится к $1/\sqrt{t}$. Если бы был предел, совпадал бы с $1/\sqrt{t}$ на (0,1] (поскольку на произвольном $[\delta, 1]$), но такая функция не может быть непрерывна в нуле. Более того, она неограничена и, тем самым, не интегрируема по Риману.

15. ПМП функций, интегрируемых на [a, b] по Риману, с той же метрикой. Также неполно. Это видно из последнего примера.

Замечание. Оказывается, ПМП функций, интегралы от которых абсолютно сходятся как несобственные, также неполно (без доказательства).

- 16. Пространство $\mathbb{R}^n_2 = E^n$ с расстоянием $\rho_2(x,y) = \sqrt{\sum_{j=1}^n |x_j y_j|^2}$. Полное, поскольку норма эквивалентна нормам в \mathbb{R}^n_1 и \mathbb{R}^n_{\max} . Непосредственное доказательство как для \mathbb{R}^n_1 , но в самом конце условие $|x_m^{(p)}-x_m|<arepsilon/n$ заменяется на $|x_m^{(p)}-x_m|<arepsilon/\sqrt{n}.$
- 17. Пространство l_2 квадратично суммируемых бесконечных числовых последовательностей $(\sum_{j=1}^\infty |x_j|^2 < \infty\})$ с расстонием

 $ho_2(x,y) = \sqrt{\sum_{j=1}^{\infty} |x_j - y_j|^2}$. Доказательство полноты очень похоже на

аналогичное доказательство для l_1 .

Рассматриваем $\Phi\Pi \{x^{(p)}\}$:

 $\forall \varepsilon>0\,\exists N(\varepsilon)\,\forall p,q>N(\varepsilon):\sqrt{\sum_{j=1}^{\infty}|x_j^{(p)}-x_j^{(q)}|^2}<\varepsilon$ (последнее нера-

венство удобно переписать в виде $\sum_{j=1}^{\infty}|x_{j}^{(p)}-x_{j}^{(q)}|^{2}<arepsilon^{2}$). Доказываем покомпонентную сходимость к некоторой последовательности $x \in \mathbb{R}^{\mathbb{N}}$.

Выписываем неравенство для частичных сумм:

$$\sum_{j=1}^{M} |x_j^{(p)} - x_j^{(q)}|^2 < \varepsilon^2,$$

переходим к пределу при $q \to \infty$: $\sum_{j=1}^{M} |x_j^{(p)} - x_j|^2 \le \varepsilon^2$, делаем вывод о сходимости ряда $\sum_{j=1}^{\infty} |x_j^{(p)} - x_j|^2$. Это означает, что последовательность $\delta x^{(p)}$ с элементами

ото означает, что последовательность оха с сътементами $\delta x_j^{(p)} = x_j^{(p)} - x_j$ принадлежит l_2 . Ссылаемся на доказанный ранее факт, что l_2 – это ЛП, поэтому $x = x^{(p)} - \delta x^{(p)} \in l_2$. Переходим к пределу при $M \to \infty$, получаем: $\sum_{j=1}^\infty |x_j^{(p)} - x_j|^2 \le \varepsilon^2$, то есть $\rho_2(x^{(p)}, x) \le \varepsilon$ при $p > N(\varepsilon)$, откуда следует сходимость $x^{(p)}$ к x по метрике l_2 .

18. Пространство непрерывных на [a,b] функций $C_{L_2}[a,b] = \tilde{L}_2[a,b]$ с расстоянием $ho_2(x,y) = \sqrt{\int_a^b |x(t)-y(t)|^2 \, dt}$ является неполным по тем же причинам, что и $\tilde{L}_1[a,b]$. Небольшое отличие: последовательность срезок для функции $1/\sqrt{t}$ в этом пространстве не будет фундаментальной, поскольку сама функция не является квадратично интегрируемой (интеграл от квадрата расходится), но можно взять, например, срезки для $1/\sqrt[4]{t}$