常见的统计检验是线性模型

英文版最后更新于 2019 年 6 月 28 日,中文版最后更新于 2019 年 8 月 31 日。也可查阅 Python 版!

从配套的笔记查看可运行例子和更多细节:

英文版: https://lindeloev.github.io/tests-as-linear,

中文版: https://cosx.org

	常见名称	R 内置函数	R 中的等价线性模型	精确近似	线性模型的文字解释	图标
×	y 独立于 x P: 单样本 t 检验 N: Wilcoxon 符号秩检验	t.test(y) wilcox.test(y)	lm(y ~ 1) lm(signed_rank(y) ~ 1)	√ <u>N > 14</u>	从一个数字(截距,比如说平均值)来预测 y。 - (相同,但是它预测 y 的 <i>符号秩</i> 。)	;; 3
Lm(y	P: 配对样本 t 检验 N: Wilcoxon 配对组检验	t.test(y1, y2, paired=TRUE) wilcox.test(y1, y2, paired=TRUE)	lm(y2 - y1 ~ 1) lm(signed_rank(y2 - y1) ~ 1)	√ <u>N > 14</u>	从一个截距来预测配对 y2-y1。 -(相同,但是它预测 y2-y1 的 <i>符号秩。</i>)	Z → :
	y~连续变量 x P: Pearson 相关系数 N: Spearman 相关系数	<pre>cor.test(x, y, method='Pearson') cor.test(x, y, method=Spearman')</pre>	<pre>lm(y ~ 1 + x) lm(rank(y) ~ 1 + rank(x))</pre>	√ <u>N > 10</u>	从一个截距加上 x 乘以一个数值(斜率)来预测 y。 - (相同,但是使用了 x 和 y 的 <i>秩</i>)	- Andrews
	y~离散变量 x P: 双样本 t 检验 P: Welch t 检验 N: Mann-Whitney U 检验	t.test(y1, y2, var.equal=TRUE) t.test(y1, y2, var.equal=FALSE) wilcox.test(y1, y2)	lm(y ~ 1 + G2) ^A gls(y ~ 1 + G2, weights= ^B) ^A lm(signed_rank(y) ~ 1 + G2) ^A	√ √ <u>N > 11</u>	从第 1 组的截距(如果是第 2 组的话加多一个相差值)来预测 y。 -(相同,但是 <i>每一组</i> 用不同的方差,而不是用着共同的方差。) -(相同,不过这个预测了 y 的 <i>符号秩</i> 。)	*
	P: 单因素方差分析(one-way ANOVA) N: Kruskall-Wallis 检验	aov(y ~ group) kruskal.test(y ~ group)	$lm(y \sim 1 + G2 + G3 + + Gn)^A$ $lm(rank(y) \sim 1 + G2 + G3 + + Gn)^A$	√ <u>N > 11</u>	从第1组的截距(如果不是第1组的话加多一个相差值)来预测 y。 -(相同,不过这个预测了 y 的 <i>秩</i> 。)	+4++
JB: lm(y ~ 1 + x1 +	P: 单因素协变量分析(one-way ANCOVA)	aov(y ~ group + x)	$lm(y \sim 1 + G2 + G3 + + Gn + x)^A$	√	- (相同,不过加上了 x 的斜率。) 注意:这里是离散和连续的混合情况。单因素协变量分析是单因素方差分析加上一个连续的 x。	
	P:双因素方差分析(two-way ANOVA)	aov(y ~ group * sex)	lm(y ~ 1+G2+G3++Gn+ S2+S3++Sk+ G2*S2+G3*S3++Gn*Sk)		交互项: sex 的变化会导致 y ~ group 参数的变化。 注意: G2 Gn 是 group 变量的每一个非截距的可能取值的 <u>示性(0 或 1)变量</u> 。 同理地,S2 Sk 是 sex 变量的示性变量。 第一条线(Gi)是 group 变量的主要效应,第二条线(Si)是 sex 变量的主要效应,第三条线是 group * sex 的交互效应。 对于两种可能取值范围(如男性女性)情况,第 2 条线则是 S2,而第 3 条线是 S2 乘以每个 Gi。	(待绘制)
	计数 ~ 离散 x N: 卡方检验	chisq.test(groupXsex_table)	等价的对数线性模型 glm(y ~ 1+G2+G3++Gn+ S2+S3++Sk+ G2*S2+G3*S3++Gn*Sk, family=) ^A		交互项: (和双因素方差分析一致) 注意:使用以下参数运行 glm 函数:glm(model,family=poisson())。 对于线性模型,卡方检验是 $log(y_i) = log(N) + log(\alpha_i) + log(eta_i) + log(lpha_ieta_i)$, 其中 $lpha_i$ 和 eta_i 是比率。建议查阅配套笔记获得更多信息。	和双因素方差分析 一致
	N: 拟合优度检验	chisq.test(y)	$glm(y \sim 1 + G2 + G3 + + Gn,$ family=) ^A	<u> </u>	(和单因素方差分析一致,建议查阅卡方检验笔记。)	和单因素方差分析 一致

常见的参数(P,parametric)和非参(N,non-parametric)检验,以及等价的线性模型。记号 y ~ 1 + x 是 R 对于大部分我们在学校学习的 y = 1·b + a·x 的快捷表达方式。相似颜色的模型本身也非常相似,真的,你们可以看看它们的一些颜色其实是相同的! 就非参模型而言,对于样本量不小的情况,线性模型是足够好的近似了(见"精确近似"一列,点击链接查看对应模拟)。其余没那么精确的近似也是存在的,比如说 Wilcoxon 检验和符号检验,以及拟合优度检验和二项检验。符号秩函数的定义是 signed_rank = function(x) sign(x) * rank(abs(x))。变量 Gi 和 Si 是示性变量(取值只能是 0 或 1),揭示出当类别之间 Δx = 1 的时候,差值等于斜率。下标(如 G2 或 y1)表示数据中的不同列。lm 对于所有非连续变量模型都需要长格式数据。可以在 https://lindeloev.github.io/tests-as-linear(英文版)或https://cosx.org(中文版)里找到以上内容的进一步解释和可运行例子。

A查看双因素方差分析笔记获取记号的解释。

B相同模型,但是每个组有自己的方差: gls(value ~ 1 + G2, weights = varIdent(form = ~1|group), method="ML")。

原作者: Jonas Kristoffer Lindeløv https://lindeloev.net