

University | School of of of of Of Glasgow | Computing Science

Benchmark Deep Learning Models with EHR - Part 2

Dr. Fani Deligianni,

fani.deligianni@glasgow.ac.uk

Lecturer (Assistant Professor)

Lead of the Computing Technologies for Healthcare Theme

os://www.gla.ac.uk/schools/comp

WORLD CHANGING GLASGOW

Processing

Timeseries Features

Static Features

Unit Conversion

Unit Conversion

- Weight in oz, kg or lbs
 - Fraction/Percentage
 - Temperature in F/C
- Height in inches or meter

Remove outliers

Detect and remove outliers

- If the outlier falls outside of the threshold, it is treated as missing (set to NaN).
- If a non-outlier falls outside physiological range, it is replaced with the nearest valid value

Data Aggregation

Re-organise the data

- Group the variable values within each hour
- Estimate the mean, median, standard deviation and count across all events

Imputation with Average Value

Imputation

- If the variable was measured for the subject, we fill the missing value with the average value across the subject
- If the variable was not measured for the subject for any hour, we fill the missing value with the average value of this variable across all subjects

Example Data

Variable	Impute	Unusable outliers	Valid range	Modelled as
	value			
Capillary refill rate	0.0	0.0 - 1.0	0.0 – 1.0	categorical
Diastolic blood pressure	59.0	0.0 – 375.0	0.0 – 375.0	continuous
Fraction inspired oxygen	0.21	0.2 - 1.1	0.21 – 1.0	continuous
Glascow coma scale eye opening	4	1.0 – 4.0	1.0 – 4.0	categorical
Glascow coma scale motor response	9	1.0 – 6.0	1.0 – 6.0	categorical
Glascow coma scale total	11	3.0 – 15.0	3.0 – 15.0	categorical
Glascow coma scale verbal response	4	1.0 – 5.0	1.0 – 5.0	categorical
Glucose	128.0	0.0 - 2200.0	33.0 - 2000.0	continuous
Heart rate	98	0.0 – 390.0	0.0 – 350.0	continuous
Height	170.0	0.0 - 275.0	0.0 – 240.0	continuous
Mean blood pressure	77.0	0.0 – 375.0	14.0 – 330.0	continuous
Oxygen saturation	0.86	0.0 - 150.0	0.0 - 100.0	continuous
Respiratory rate	19	0.0 - 330.0	0.00 – 300.0	continuous
Systolic blood pressure	118.0	0.0 - 375.0	0.0 - 375.0	continuous
Temperature	37.0	14.2 – 47.0	26.0 – 45.0	continuous
Weight	81.8	0.0 – 250.0	0.0 - 250.0	continuous
hd	7.4	6.3 – 10.0	6.3 – 8.4	continuous

Example Data

Fraction inspired oxygen	in std		NaN NaN	N NaN	N NaN	NaN N	N NaN	
inspired	count mean median		1/3	NaN	NaN	NaN	NaN	
action i	mean		NaN	NaN	NaN	NaN	NaN	
F			0.0	0.0	0.0	0.0	0.0	
Diastolic blood pressure	std		NaN	47.0 11.357817	9.237604	60.5 13.435029	61.0 0.000000	
	mean median		49.0	47.0	47.0	60.5	61.0	
	mean		1.0 49.000000	3.0 52.000000	3.0 52.333333	2.0 60.500000	2.0 61.000000	
	count		1.0	3.0	3.0	2.0	2.0	
LEVEL2	Aggregation Function	hours_in	0	-	2	3	4	
		hadm_id	163557	27513 163557				
		icustay_id subject_id hadm_id	27513					
		icustay_id	200003					

Deep Learning Model

Model Selection

Imbalanced Classes

Model Selection

Model Validation

Summary

- Benchmark deep learning algorithm on EHR
- Preprocessing can affect the performance of the machine learning models
- Imbalanced class data can severely affect classification ability
- Overview of several performance metrics is required
- Baseline models are important to understand how our models perform with relation to state-of-the art

References

- Johnson et al. 'MIMIC-III, a freely accessible critical care database', Scientific Data, 2016.
- Representation Pipeline for MIMIC-III'. https://arxiv.org/abs/1907.08322, Wang et al. 'MIMIC-Extract: A Data Extraction, Preprocessing, and
- Harutyunyan et al. 'Multitask learning and benchmarking with clinical time series data', Scientific Data, 2019.