Some computational results for generalized pressure Schur complement eigenvalues of the surface Stokes problem

Alexander Zhiliakov*

March 30, 2019

1 Bilinear forms and matrices

We set $n_{\mathbf{A}}$ to be the number of velocity d.o.f. and $n_{\mathbf{S}}$ to be the number of pressure d.o.f. Vector stiffness, divergence, pressure mass, normal stabilization, and full stabilization matrices resulting from Trace FEM discretization of the surface Stokes problem [1] are defined via

$$\langle \mathbf{A}\,\bar{\mathbf{u}},\bar{\mathbf{v}}\rangle \approx \int_{\Gamma} \left(E_{s}(\mathbf{u}) : E_{s}(\mathbf{v}) + \mathbf{u} \cdot \mathbf{v} + \tau \left(\mathbf{u} \cdot \mathbf{n} \right) \left(\mathbf{v} \cdot \mathbf{n} \right) \right) \mathrm{d}s + \rho_{u} \int_{\Omega_{h}^{\Gamma}} \frac{\partial \mathbf{u}}{\partial \mathbf{n}} \cdot \frac{\partial \mathbf{v}}{\partial \mathbf{n}} \, \mathrm{d}\mathbf{x}, \quad \mathbf{A} \in \mathbb{R}^{n_{\mathbf{A}} \times n_{\mathbf{A}}},$$

$$\langle \mathbf{B}\,\bar{\mathbf{u}},\bar{\mathbf{q}}\rangle \approx -\int_{\Gamma} q \, \mathrm{div}_{\Gamma}\,\mathbf{u} \, \mathrm{d}s, \quad \mathbf{B} \in \mathbb{R}^{n_{\mathbf{S}} \times n_{\mathbf{A}}},$$

$$\langle \mathbf{M}_{0}\,\bar{\mathbf{p}},\bar{\mathbf{q}}\rangle \approx \int_{\Gamma} p \, q \, \mathrm{d}s, \quad \mathbf{M}_{0} \in \mathbb{R}^{n_{\mathbf{S}} \times n_{\mathbf{S}}},$$

$$\langle \mathbf{C}_{n}\,\bar{\mathbf{p}},\bar{\mathbf{q}}\rangle \approx \rho_{p} \int_{\Omega_{h}^{\Gamma}} \frac{\partial p}{\partial \mathbf{n}} \frac{\partial q}{\partial \mathbf{n}} \, \mathrm{d}\mathbf{x}, \quad \mathbf{C}_{n} \in \mathbb{R}^{n_{\mathbf{S}} \times n_{\mathbf{S}}},$$

$$\langle \mathbf{C}_{\text{full}}\,\bar{\mathbf{p}},\bar{\mathbf{q}}\rangle \approx \rho_{p} \int_{\Omega_{h}^{\Gamma}} \nabla p \cdot \nabla q \, \mathrm{d}\mathbf{x}, \quad \mathbf{C}_{\text{full}} \in \mathbb{R}^{n_{\mathbf{S}} \times n_{\mathbf{S}}},$$

$$\langle \mathbf{C}_{\text{full}}\,\bar{\mathbf{p}},\bar{\mathbf{q}}\rangle \approx \rho_{p} \int_{\Omega_{h}^{\Gamma}} \nabla p \cdot \nabla q \, \mathrm{d}\mathbf{x}, \quad \mathbf{C}_{\text{full}} \in \mathbb{R}^{n_{\mathbf{S}} \times n_{\mathbf{S}}},$$

respectively. We use notations as in [1], in particular, Ω_{Γ}^{h} is the domain consisting of tetrahedra cut by Γ . Here $\bar{\mathbf{u}}$ denotes a vector of d.o.f. corresponding to a FE interpolant \mathbf{u} (analogously for $\bar{\mathbf{p}}$ and p). See (11) for the computational details. Mesh-dependent parameters are set as

$$\tau = h^{-2}, \quad \rho_u = \rho_p = h, \tag{2}$$

and h is the typical mesh size for tetrahedra from Ω_h^{Γ} . Γ is chosen either as the unit sphere or torus, $\Gamma = \Gamma_{\rm sph}$ or $\Gamma = \Gamma_{\rm tor}$ (see Figure 1).

We also define matrices

$$\mathbf{C}_0 \coloneqq \mathbf{0},$$

$$\mathbf{M}_n \coloneqq \mathbf{M}_0 + \mathbf{C}_n,$$

$$\mathbf{M}_{\text{full}} \coloneqq \mathbf{M}_0 + \mathbf{C}_{\text{full}}.$$
(3)

^{*}Department of Mathematics, University of Houston, Houston, Texas 77204 (alex@math.uh.edu).

We are interested in (generalized) extreme eigenvalues of the pressure Schur complement matrices

$$\mathbf{S}_{0} \coloneqq \mathbf{B} \mathbf{A}^{-1} \mathbf{B}^{T},$$

$$\mathbf{S}_{n} \coloneqq \mathbf{S}_{0} + \mathbf{C}_{n},$$

$$\mathbf{S}_{\text{full}} \coloneqq \mathbf{S}_{0} + \mathbf{C}_{\text{full}},$$

$$(4)$$

i.e. in solving

$$\mathbf{S}_{\star} \mathbf{x} = \lambda \, \mathbf{M}_{\star} \mathbf{x},\tag{5}$$

where " \star " stands for "0," "n," or "full." We denote by $0 = \lambda_1 < \lambda_2 \le \cdots \le \lambda_{n_S} = O(1)$ the spectrum of (5).

2 Solution description

Computing \mathbf{A}^{-1} in (4) becomes troublesome already for $h = 5.21 \times 10^{-2}$ ($n_{\mathbf{A}} = 32736$ for $\mathbf{u} \in \mathbf{P}_1$ FE space): although \mathbf{A} is sparse, \mathbf{A}^{-1} is dense and consumes 8.5+ GB in double-precision arithmetic. A quick research showed that Mathematica has no built-in matrix-free eigenvalue routines. Intel MKL's FEAST algorithm for computing (generalized) eigenvalues in an interval is suitable for matrix-free implementations; however, it requires some expensive operations to be implemented (e.g. matrix-matrix multiplications $\mathbf{Y} \leftarrow \mathbf{S}_{\star} \mathbf{X}$, $\mathbf{Y} \leftarrow \mathbf{M}_{\star} \mathbf{X}$ and approximating the action of inverses in the form $\mathbf{y} \leftarrow (\sigma \mathbf{M}_{\star} - \mathbf{S}_{\star})^{-1} \mathbf{x}$).

Taking this into account, instead of (5) we consider a perturbed problem

$$\underbrace{\begin{bmatrix} \mathbf{A} & \mathbf{B}^T \\ \mathbf{B} & -\mathbf{C}_{\star} \end{bmatrix}}_{A_{\star} :=} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \mu \underbrace{\begin{bmatrix} \epsilon \mathbf{A} \\ \mathbf{M}_{\star} \end{bmatrix}}_{\mathcal{M}^{\epsilon} :=} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} \tag{6}$$

with $0 < \epsilon \ll 1$. For \mathcal{A}_0 and \mathcal{M}_0^{ϵ} we have

$$\mu = -\lambda + o(1) \quad \text{or} \quad \epsilon^{-1} + \lambda + o(1), \qquad \epsilon \to 0.$$
 (7)

This makes it easy to pick only "correct" eigenvalues. To ease the computation further we replace the (1,1)-block of $\mathcal{M}^{\epsilon}_{+}$ with $\epsilon \mathbf{I}$.

To make sure that results are consistent we solve (6) for $\epsilon = 10^{-5}$ and $\epsilon = 10^{-6}$; for the coarse mesh levels we also check that the dense solver for (5) and the iterative one for (6) give solutions that coincide.

3 Numerical results: dependency of the spectrum on the mesh size

¹The majority of generalized eigenvalue solvers require left-hand-side matrix to be Hermitian and right-hand-side matrix to be Hermitian **positive definite**; that's why we need to introduce $\epsilon > 0$.

Figure 1: First three mesh levels for $\Gamma_{\rm sph}$ (top) and $\Gamma_{\rm tor}$ (bottom)

Table 1: Spectrum of (5) for $\mathbf{P}_1 - P_1$

(a)
$$\Gamma = \Gamma_{\rm sph}$$

h	<i>n</i> .	$n_{\mathbf{S}}$	\mathbf{S}_0		\mathbf{S}_n		$\mathbf{S}_{\mathrm{full}}$	
	$n_{\mathbf{A}}$		λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$
8.33×10^{-1}	153	51	1.32×10^{-2}	1.42	7.48×10^{-1}	1.13	9.58×10^{-1}	1.06
4.17×10^{-1}	570	190	5.12×10^{-3}	1.04	5.77×10^{-1}	1.	8.54×10^{-1}	1.
2.08×10^{-1}	1992	664	4.4×10^{-3}	7.93×10^{-1}	3.87×10^{-1}	1.	6.71×10^{-1}	1.
1.04×10^{-1}	8292	2764	2.01×10^{-3}	7.79×10^{-1}	2.19×10^{-1}	1.	5.82×10^{-1}	1.
5.21×10^{-2}	32736	10912	6.04×10^{-5}	9.81×10^{-1}	1.17×10^{-1}	1.	5.37×10^{-1}	1.
2.6×10^{-2}	131592	43864	3.53×10^{-5}	8.67×10^{-1}	5.72×10^{-2}	1.	5.16×10^{-1}	1.
1.3×10^{-2}	525864	175288	2.16×10^{-6}	7.34×10^{-1}	2.84×10^{-2}	1.	5.04×10^{-1}	1.

(b)
$$\Gamma = \Gamma_{tor}$$

h	$n_{\mathbf{A}}$	$n_{\mathbf{S}}$	\mathbf{S}_0		\mathbf{S}_n		$\mathbf{S}_{\mathrm{full}}$	
			λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$
2.08×10^{-1}	972	324	5.04×10^{-2}	4.93	2.84×10^{-1}	1.35	3.64×10^{-1}	1.19
1.04×10^{-1}	4740	1580	2.99×10^{-3}	3.83	1.58×10^{-1}	1.02	3.35×10^{-1}	1.01
5.21×10^{-2}	19704	6568	1.11×10^{-3}	5.45	7.73×10^{-2}	1.01	3.25×10^{-1}	1.
2.6×10^{-2}	80808	26936	1.2×10^{-4}	5.42	3.07×10^{-2}	1.01	3.21×10^{-1}	1.
1.3×10^{-2}	327036	109012	1.77×10^{-5}	5.23	1.18×10^{-2}	1.01	3.16×10^{-1}	1.

Figure 2: Log-log plot of λ_2 for Tables 1a (left) and 1b (right)

Table 2: Spectrum of (5) for $\mathbf{P}_2 - P_1$

(a)
$$\Gamma = \Gamma_{\rm sph}$$

h	$n_{\mathbf{A}}$	$n_{\mathbf{S}}$	\mathbf{S}_0		\mathbf{S}_n		$\mathbf{S}_{\mathrm{full}}$	
		115	λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$
8.33×10^{-1}	789	51	3.22×10^{-1}	1.73	8.27×10^{-1}	1.17	9.68×10^{-1}	1.07
4.17×10^{-1}	3240	190	9.17×10^{-2}	1.08	6.45×10^{-1}	1.	8.56×10^{-1}	1.
2.08×10^{-1}	11718	664	1.78×10^{-1}	8.31×10^{-1}	5.49×10^{-1}	1.	6.75×10^{-1}	1.
1.04×10^{-1}	48762	2764	1.04×10^{-1}	8.35×10^{-1}	5.14×10^{-1}	1.	5.82×10^{-1}	1.
5.21×10^{-2}	193014	10912	2.99×10^{-3}	9.89×10^{-1}	5.02×10^{-1}	1.	5.34×10^{-1}	1.
2.6×10^{-2}	775998	43864	1.17×10^{-3}	7.9×10^{-1}	4.96×10^{-1}	1.	5.17×10^{-1}	1.

(b)
$$\Gamma = \Gamma_{tor}$$

h	$n_{\mathbf{A}}$	$n_{\mathbf{S}}$	\mathbf{S}_0		\mathbf{S}_n		$\mathbf{S}_{\mathrm{full}}$	
			λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$
2.08×10^{-1}	5184	324	9.92×10^{-2}	3.89	1.33×10^{-1}	1.37	1.75×10^{-1}	1.19
1.04×10^{-1}	27906	1580	1.46×10^{-2}	4.35	2.84×10^{-1}	1.04	2.99×10^{-1}	1.02
5.21×10^{-2}	116568	6568	6.08×10^{-3}	4.85	3.19×10^{-1}	1.01	3.24×10^{-1}	1.01
2.6×10^{-2}	477660	26936	1.36×10^{-3}	4.92	3.14×10^{-1}	1.01	3.16×10^{-1}	1.

Figure 3: Log-log plot of λ_2 for Tables $\frac{2a}{a}$ (left) and $\frac{2b}{a}$ (right)

4 Numerical results: sensitivity of the spectrum to levelset shifts

In this section we investigate the sensitivity of the spectrum to levelset shifts

$$\Gamma \mapsto \Gamma + \alpha \mathbf{s},$$
 (8)

for some $\alpha \in \mathbb{R}$ and $\mathbf{s} \in \mathbb{R}^3$, $\|\mathbf{s}\| = 1$.

We construct the bulk mesh Ω_h^{Γ} and then perform the assembly of matrices (1) using the shifted levelset (8). That is, the refinement of Ω_h^{Γ} is performed using Γ , not $\Gamma + \alpha \mathbf{s}$, and $\Omega_h^{\Gamma + \alpha \mathbf{s}}$ is never constructed. We choose $\alpha \in [0, h]$ to guarantee the appearance of "small cuts" in Ω_h^{Γ} .

(a) $\Gamma_{\rm sph}$

(b) $\Gamma_{\rm sph} + \alpha \, \mathbf{s}$

Figure 4: The unit sphere (left) and the shifted unit sphere (right). Here $\mathbf{s} = (0, 1, 1)^T / \sqrt{2}$, $\alpha = 0.2$, and $h = 2.08 \times 10^{-1}$. The bulk mesh Ω_{Γ}^h is computed for $\Gamma_{\rm sph}$ and then used for $\Gamma_{\rm sph} + \alpha \, \mathbf{s}$

Table 3: Spectrum of (5) for perturbed level set $\Gamma_{\rm sph} + \alpha \, {\bf s}$. Here ${\bf s} = (1,1,1)^T/\sqrt{3}, \, h = 1.04 \times 10^{-1}$ (a) ${\bf P}_1 - P_1$

Surface	\mathbf{S}_0)	\mathbf{S}_n	\mathbf{S}_n $\mathbf{S}_{\mathrm{full}}$		
Surface	λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$
Γ_{sph}	2.006×10^{-3}	7.79×10^{-1}	2.19×10^{-1}	1.	5.818×10^{-1}	1.
$\Gamma_{\rm sph} + 0.1 h { m s}$	4.832×10^{-4}	8.01×10^{-1}	2.195×10^{-1}	1.	5.818×10^{-1}	1.
$\Gamma_{\rm sph} + 0.3 h { m s}$	7.278×10^{-4}	8.17×10^{-1}	2.203×10^{-1}	1.	5.818×10^{-1}	1.
$\Gamma_{\rm sph} + 0.5 h { m s}$	3.121×10^{-4}	8.67×10^{-1}	2.221×10^{-1}	1.	5.82×10^{-1}	1.
$\Gamma_{\rm sph} + 0.7 h { m s}$	1.438×10^{-3}	1.51	2.254×10^{-1}	1.	5.82×10^{-1}	1.
$\Gamma_{\mathrm{sph}} + h \mathbf{s}$	1.79×10^{-3}	2.07	2.332×10^{-1}	1.	5.827×10^{-1}	1.

(b)
$$\mathbf{P}_2 - P_1$$

Surface	S	\mathbf{S}_n		$\mathbf{S}_{\mathrm{full}}$		
	λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$	λ_2	$\lambda_{n_{\mathbf{S}}}$
Γ_{sph}	1.041×10^{-1}	8.35×10^{-1}	5.138×10^{-1}	1.	5.841×10^{-1}	1.
$\Gamma_{\rm sph} + 0.1 h { m s}$	1.705×10^{-3}	8.58×10^{-1}	5.138×10^{-1}	1.	5.841×10^{-1}	1.
$\Gamma_{\rm sph} + 0.3 h { m s}$	2.293×10^{-3}	8.81×10^{-1}	5.137×10^{-1}	1.	5.841×10^{-1}	1.
$\Gamma_{\rm sph} + 0.5 h { m s}$	5.63×10^{-3}	9.35×10^{-1}	5.138×10^{-1}	1.	5.844×10^{-1}	1.
$\Gamma_{\rm sph} + 0.7 h { m s}$	8.188×10^{-3}	1.77	5.138×10^{-1}	1.	5.843×10^{-1}	1.
$\Gamma_{\mathrm{sph}} + h \mathbf{s}$	1.93×10^{-2}	2.21	5.142×10^{-1}	1.	5.852×10^{-1}	1.

5 Notes on DROPS implementation

5.1 Notations

We denote by $P_h^n \subset \bar{P}_h^n$ spaces of continuous and discontinuous nodal P_n interpolants defined on Ω_{Γ}^h , respectively. For a function f, $I_h^n(f) \in P_h^n$ is the corresponding interpolant; we will use the notation f_h^n to emphasize that $f_h^n \in P_h^n$ and f_h^n approximates f in some sense, but $I_h^n(f) \neq f_h^n$.

We set

$$\Gamma_h^n := \{ \mathbf{x} \in \mathbb{R}^3 : (I_h^n(\phi))(\mathbf{x}) = 0 \}, \tag{9}$$

$$\mathbf{n}_{\Gamma_h^n} = \frac{\nabla I_h^n(\phi)}{\|\nabla I_h^n(\phi)\|} \not\in \bar{P}_h^m \text{ for any } m.$$
(10)

Note that Γ_h^n is a continuous piecewise P_n surface in Ω_{Γ}^h , and $\Gamma_h^n \neq I_h^n(\Gamma)$. The unit normal $\mathbf{n}_{\Gamma_h^n}$ is not a rational function; it is continuous in $T \in \Omega_{\Gamma}^h$ and discontinuous on faces.

5.2 Approximation of integrands involving n_{Γ}

We start with description of the continuous levelset ϕ of $\Gamma = \{ \mathbf{x} \in \mathbb{R}^3 : \phi(\mathbf{x}) = 0 \}$. It is stored in levelset_fun variable. For example, for the unit sphere we have:

Continuous piecewise P_2 interpolant $I_h^2(\phi)$ of ϕ is built on Ω_{Γ}^h via iterating over vertices and edges of Ω_{Γ}^h . It is stored in lset object:

```
// levelset.cpp
void LevelsetP2ContCL::Init( instat_scalar_fun_ptr phi0, double t) {
  const Uint lvl= Phi.GetLevel(),
  idx= Phi.RowIdx->GetIdx();
  for (auto it = MG_.GetTriangVertexBegin(lvl), end = MG_.GetTriangVertexEnd(lvl); it
    != end; ++it) {
    if (it->Unknowns.Exist(idx))
        Phi.Data[it->Unknowns(idx)]= phi0( it->GetCoord(), t);
    }
  for (auto it = MG_.GetTriangEdgeBegin(lvl), end = MG_.GetTriangEdgeEnd(lvl); it !=
        end; ++it) {
        if (it->Unknowns.Exist(idx))
            Phi.Data[it->Unknowns(idx)]= phi0( GetBaryCenter( *it), t);
    }
}
// surfnavierstokes.cpp
```

```
DROPS::LevelsetP2CL& lset(*DROPS::LevelsetP2CL::Create(mg, lsbnd, sf));
// ...
lset.Init(levelset_fun);
```

In order to assemble matrices in (1) for e.g. $P_1 - P_1$ elements, one calls

```
|SetupNavierStokesIF_P1P1(mg, &A, /* ... */ lset.Phi, /* ... */);
```

(Interestingly enough, this function does not get lset object that represents the interpolant; it gets only lset.Phi, which is the object of type VecDescCL lset.Phi is essentially just a vector of values of ϕ at interpolation points (i.e. vertices and edges' centroids of Ω_{Γ}^h). That is, the assembling function above has no idea what lset.Phi actually represents: one may interpret it as an element of P_h^2 or e.g. $P_{h/2}^1$. Who knows?..)

No interpolation is built explicitly for $\mathbf{n}_{\Gamma_{t}^{2}}$ in (10); it is implicitly represented via qnormal data field:

```
// ifacetransp.cpp
class LocalStokesCL {
   // ...
   GridFunctionCL < Point 3DCL > q normal;
   // ...
}
```

qnormal object is essentially a set of values of type Point3DCL which are obtained by mapping a (vector valued) function to suitable quadrature nodes. This is how it is constructed:

```
// ifacetransp.cpp
void LocalStokesCL::Get_Normals(const LocalP2CL<>& ls, LocalP1CL<Point3DCL>& Normals) {
  for(int i=0; i<10; ++i)
    Normals+=ls[i]*P2Grad[i];
}
// ...
void LocalStokesCL::calcIntegrands(const SMatrixCL<3,3>& T, const LocalP2CL<>& ls,
   const TetraCL& tet) {
  // ...
  LocalP1CL < Point3DCL > Normals;
  Get_Normals(ls, Normals);
  resize_and_evaluate_on_vertexes (Normals, q2Ddomain, qnormal);
  for(Uint i=0; i<qnormal.size(); ++i)</pre>
    qnormal[i] = qnormal[i]/qnormal[i].norm();
  // ...
}
```

First $\nabla I_h^2(\phi|_T)$ is built (locally for a tetrahedron $T \in \Omega_\Gamma^h$ represented by tet) and saved to Normals object. 1s[i] gives the value of $\phi|_T$ at *i*th node (vertices and edges' centroids—there are 10 of them for tetrahedra), and P2Grad[i] represents the gradient of quadratic basis function which itself is linear. (Actually, it is sufficient to have 4 < 10 linear functions to represent $\nabla I_h^2(\phi|_T)$, but this is how it is implemented here.) Finally, qnormal object is built via evaluating Normals at quadrature nodes and normalization.

Objects qnormal for surface integrals and q3Dnormal for volume integrals are used in approximation of $P = I - n n^T$, normal derivatives, and taking-normal-components in (1). q3Dnormal is constructed as qnormal but for quadrature points of tetrahedrons, not triangles.

For one, $\mathbf{P} \nabla f_h^2$, $f_h^2 \coloneqq P_2$ basis function on Ω_{Γ}^h , is approximated via qsurfP2grad object:

```
// ifacetransp.cpp
void LocalStokesCL::calcIntegrands(/* ... */) {
    // ...
    for(int j=0; j<10 ;++j) {
       resize_and_evaluate_on_vertexes(P2Grad[j], q2Ddomain, qsurfP2grad[j]);
       qsurfP2grad[j]-= dot(qsurfP2grad[j], qnormal)*qnormal;</pre>
```

5.3 Quadrature rules for \int_{Γ} and $\int_{\Omega_{\Gamma}^h}$

All the 3D integrals in (1) are computed via iteration over $T \in \Omega^h_{\Gamma}$ without any virtual refinements. q3Ddomain object represents the set of quadrature nodes and weights:

```
// ifacetransp.cpp
void LocalStokesCL::calc3DIntegrands(/* ... */) {
  make_SimpleQuadDomain < Quad5DataCL > (q3Ddomain, AllTetraC);
  // ...
}
```

It is used e.g. in setupA_P1_stab above. 15 nodes and weights are used, and the quadrature is exact for functions in \bar{P}_h^5 .

All the surface integrals are computed using $\Gamma_{h/2}^1$. One extra "virtual" refinement is achieved via setting

```
// ifacetransp.cpp
LocalStokesCL(bool fullGradient)
  : lat(PrincipalLatticeCL::instance(2))
  , /* ... */ { /* ... */ }
```

(Changing 2 to 4 will give us $\Gamma_{h/4}^1$ and so forth.) q2Ddomain object represents the set of quadrature nodes and weights:

```
// ifacetransp.cpp
void LocalStokesCL::calcIntegrands(/* ... */) {
    // ...
    evaluate_on_vertexes( ls, lat, Addr( ls_loc));
    spatch.make_patch<MergeCutPolicyCL>( lat, ls_loc);
    make_CompositeQuad5Domain2D ( q2Ddomain, spatch, tet);
    // ...
}
```

Each linear subsurface in $T \in \Omega^h_{\Gamma}$ has 7 quadrature nodes and weights, and the quadrature rule is again exact for functions in \bar{P}_h^5 .

5.4 Summary

The matrices in (1) are assembled as

$$\langle \mathbf{A}\,\bar{\mathbf{u}},\bar{\mathbf{v}}\rangle = \int_{\Gamma_{h/2}^{1}}^{5} \left(E_{s,\Gamma_{h}^{2}}(\mathbf{u}) : E_{s,\Gamma_{h}^{2}}(\mathbf{v}) + \mathbf{u} \cdot \mathbf{v} + \tau \left(\mathbf{u} \cdot \mathbf{n}_{\Gamma_{h}^{2}} \right) \left(\mathbf{v} \cdot \mathbf{n}_{\Gamma_{h}^{2}} \right) \right) ds$$

$$+ \rho_{u} \int_{\Omega_{h}^{\Gamma}}^{5} \frac{\partial \mathbf{u}}{\partial \mathbf{n}_{\Gamma_{h}^{2}}} \cdot \frac{\partial \mathbf{v}}{\partial \mathbf{n}_{\Gamma_{h}^{2}}} d\mathbf{x}, \quad \mathbf{A} \in \mathbb{R}^{n_{\mathbf{A}} \times n_{\mathbf{A}}},$$

$$\langle \mathbf{B}\,\bar{\mathbf{u}},\bar{\mathbf{q}}\rangle = -\int_{\Gamma_{h/2}^{1}}^{5} q \operatorname{div}_{\Gamma_{h}^{2}} \mathbf{u} \, ds, \quad \mathbf{B} \in \mathbb{R}^{n_{\mathbf{S}} \times n_{\mathbf{A}}},$$

$$\langle \mathbf{M}_{0}\,\bar{\mathbf{p}},\bar{\mathbf{q}}\rangle = \int_{\Gamma_{h/2}^{1}}^{5} p \, q \, ds, \quad \mathbf{M}_{0} \in \mathbb{R}^{n_{\mathbf{S}} \times n_{\mathbf{S}}},$$

$$\langle \mathbf{C}_{n}\,\bar{\mathbf{p}},\bar{\mathbf{q}}\rangle = \rho_{p} \int_{\Omega_{h}^{\Gamma}}^{5} \frac{\partial p}{\partial \mathbf{n}_{\Gamma_{h}^{2}}} \frac{\partial q}{\partial \mathbf{n}_{\Gamma_{h}^{2}}} \, d\mathbf{x}, \quad \mathbf{C}_{n} \in \mathbb{R}^{n_{\mathbf{S}} \times n_{\mathbf{S}}},$$

$$\langle \mathbf{C}_{\text{full}}\,\bar{\mathbf{p}},\bar{\mathbf{q}}\rangle = \rho_{p} \int_{\Omega_{h}^{\Gamma}}^{5} \nabla p \cdot \nabla q \, d\mathbf{x}, \quad \mathbf{C}_{\text{full}} \in \mathbb{R}^{n_{\mathbf{S}} \times n_{\mathbf{S}}},$$

Comments:

- $\int_{-\infty}^{5}$ denotes a composite quadrature rule that is exact for \bar{P}_{h}^{5} ,
- E_{s,Γ_h^2} and $\operatorname{div}_{\Gamma_h^2}$ are defined as their continuous analogues with \mathbf{n}_{Γ} in \mathbf{P} replaced with $\mathbf{n}_{\Gamma_h^2}$,
- It is always the case that integrands use $\mathbf{n}_{\Gamma_h^2} \neq \mathbf{n}_{\Gamma_{h/2}^1}$, and the actual domain of integration is $\Gamma_{h/2}^1 \neq \Gamma_h^2$,
- $\mathbf{n}_{\Gamma_h^2}$ is defined in (10) and it is not a polynomial even locally, thus quadrature rules are never exact (although for $\mathbf{P}_2 P_1$ shape functions alone these quadratures are exact),
- In our examples we know ϕ and $\nabla \phi$ exactly, and thus it is super easy to feed the **exact** normal $\mathbf{n}_{\Gamma} \neq \mathbf{n}_{\Gamma_h^2}$ to quadratures. Shall we do this?

References

[1] M. Olshanskii, A. Quaini, A. Reusken, and V. Yushutin. A finite element method for the surface stokes problem. SIAM Journal on Scientific Computing, 40(4):A2492–A2518, 2018.