

Varianta 061

Subjectul I

a)
$$|2\vec{i} + 5\vec{i}| = \sqrt{29}$$
 .b) AB= $\sqrt{2}$.c) $\cos \frac{\pi}{2} + \cos \frac{\pi}{3} = \frac{1}{2}(\sqrt{3} + 1)$.

d)
$$\begin{cases} a = 1 \\ b = -13 \end{cases}$$
 e) $S_{ABC} = \frac{1}{2} |\Delta| f$, $\begin{cases} a = \frac{11}{17} \\ b = \frac{7}{17} \end{cases}$

Subjectul II

1.a) In
$$\mathbb{Z}_7$$
 avem $\hat{3}^{2007} = \hat{6}$.b) $E = C_9^4 - C_9^5 = 0$.c) $x = 1, x = -1, x = \sqrt{2}, x = -\sqrt{2}$;

d)x=1 este unica solutie a ecuatiei date.e) Probabilitatea ceruta este egala cu $\frac{4}{5}$.

2.
$$f : \mathbf{R} \to \mathbf{R}, f(x) = x^5 + 2x - 1$$

a)
$$f'(x) = 5x^4 + 2, x \in \mathbf{R}$$
. b) $\int_0^1 f(x)dx = \frac{1}{6}$.c) $\lim_{x \to 0} \frac{f(x) - f(0)}{x} = 2$. d) $f'(x) > 0, x \in \mathbf{R}$

e)
$$\lim_{n\to\infty} \frac{3\sqrt{n}+5}{2n+7} = 0$$
.

Subjectul III

- a) In $(\mathbf{Z}_{24}, +, \cdot)$ avem $\hat{6}^3 = \hat{0}$, deci $\hat{6}$ este nilpotent, $\hat{2}$ nu este nilpotent, deoarece nici o putere a lui $\hat{2}$ nu este divizibila cu 3, deci nu este divizibil cu 24.
- b) In \mathbb{Z}_{24} avem $\hat{6}^3 = \hat{0}$, $1\hat{2}^3 = \hat{0}$, $\hat{6}^2 \cdot 1\hat{2} = \hat{6}^3 \cdot \hat{2} = \hat{0}$, $\hat{6} \cdot 1\hat{2}^2 = \hat{6}^3 \cdot \hat{2} = \hat{0}$, deci $f = \hat{6}x + 1\hat{2}$ este nilpotent in \mathbb{Z}_{24} , pt ca $f^3 = \hat{0}$; iar polinomul $g = x + \hat{1}$ nu este nilpotent pentru ca orice putere a lui g va contine cel putin un termen diferit de $\hat{0}$.
- c) Daca $6|a \Leftrightarrow a = 6k \Rightarrow \hat{a}^3 = (6\hat{k})^3 = \hat{0}$, deci \hat{a} este nilpotent in \mathbb{Z}_{24} . Daca \hat{a} este nipolent in \mathbb{Z}_{24} , atunci $\exists n \in \mathbb{N}^*$ astfel incat $\hat{a}^n = \hat{0} \Rightarrow \hat{0} \Rightarrow \exists n \in \mathbb{N}$ astfel incat a^n sa fie divizibil cu $24 \Rightarrow 6 \mid a^n \Rightarrow 6 \mid a$;
- d) Conform punctului c) avem $a \in \mathbb{Z}_{24}$ este nilpotent daca si numai daca 6|a, rezulta ca elementele nipotente din $(\mathbb{Z}_{24},+)$ sunt $(\hat{0},\hat{6},1\hat{2},1\hat{8})$.
- e) Daca $\hat{a}, \hat{b} \in \mathbb{Z}_{24}$ sunt nilpotente, atunci 6|a si 6|b. Pentru $f = \hat{a}x + \hat{b}$ avem $f^3 = ((\hat{a})x + \hat{b})^3$, in fiecare coeficient apar puterile lui \hat{a}, \hat{b} , dar 6|a,6|b, deci $f^3 = 0$; f) $f = \hat{a}x^3 + \hat{b}x^2 + \hat{c}x + \hat{d}$, daca $\hat{a}, \hat{b}, \hat{c}, \hat{d}$ sunt nilpotente, deci divizibile cu 6 $\Rightarrow f = 6 \cdot g, f^3 = 6^3 \cdot g^3 = 0$. Reciproc,
- $f^n(x) = \hat{a}^n \cdot x^{3n} + ..., \hat{a}^n = \hat{0} \Rightarrow \hat{a}$ este nilpotent $\Rightarrow g(x) = f(x) \hat{a} \cdot x^3$ este nilpotent si procedam la fel pentru g
- g) Numarul polinoamelor nilpotente in $\mathbb{Z}_{24}[x]$ care au gradul 3, este $3 \cdot 4 \cdot 4 \cdot 4 = 192$, pentru ca $f = \hat{a}x^3 + \hat{b}x^2 + \hat{c}x + d$, $\hat{a} \in \{\hat{6}, 1\hat{2}, 1\hat{8}\}, \hat{b}, \hat{c}, \hat{d} \in \{\hat{0}, \hat{6}, 1\hat{2}, 1\hat{8}\}$.

Subjectul IV

a)
$$f'(x) = 2xe^{x^2}$$
, $F'(x) = f(x)$, $\forall x \in \mathbf{R}$.

b)
$$F'(x) = e^{x^2}$$
, $\forall \in \mathbf{R} \Rightarrow F'(x) > 0$, $\forall \in \mathbf{R} \Rightarrow F$ este strict crescatoare pe $\mathbf{R} \Rightarrow F$ este injectiva.

c) Inegalitatea
$$e^x \ge x+1, \forall x \in \mathbf{R} \Leftrightarrow e^x - x - 1 \ge 0, \forall x \in \mathbf{R}$$
. Fie functia

g:
$$\mathbf{R} \to \mathbf{R}$$
, $g(x) = e^x - x - 1$. Avem $g(0) = 0$ este punct de minim global, deci $e^x \ge x + 1$, $\forall x \in \mathbf{R}$.

d) Daca in inegalitatea de la pct c) inlocuim x cu
$$t^2$$
, obtinem : $e^{t^2} > t^2 + 1$, $\forall t \in \mathbf{R}^*$

$$\Rightarrow \int_{0}^{x} e^{t^{2}} dt > \frac{1}{3}x^{3} + x \Leftrightarrow F(x) > \frac{1}{3}x^{3} + x, \forall x > 0$$

Avem
$$F(-x) = \int_{0}^{-x} f(t)dt$$
. Facem substitutia $t = -u$ si obtinem $\int_{0}^{-x} f(t)dt = \int_{0}^{x} f(-u)(-du) = -\int_{0}^{x} f(u)du = -F(x)$.

Din
$$F(x) > \frac{1}{3}x^3 + x, \forall x > 0$$
 rezulta $F(x) < \frac{x^3}{3} + x, \forall x < 0$

e) Functia F este injectiva (punctul b))

Avem
$$F(x) > \frac{1}{3}x^3 + x, \forall x > 0 \Rightarrow \lim_{x \to \infty} F(x) = \infty$$

$$F(x) < \frac{1}{3}x^3 + x, \forall x < 0 \Rightarrow \lim_{x \to -\infty} F(x) = -\infty$$
. Functia F este continua pe R, deci este surfectiva. Functia F este injectiva si surjectiva, deci F este bijectiva.

f)
$$\lim_{n\to\infty} n \cdot \frac{G(\frac{1}{n})}{\frac{1}{n}} = \lim_{x\to 0} \frac{G(x)}{x} = \lim_{x\to 0} \frac{G(x)}{F(G(x))} = \lim_{t\to 0} \frac{t}{F(t)} = \lim_{t\to 0} \frac{1}{F'(t)} = \lim_{t\to 0} \frac{1}{f(t)} = \lim_{t\to 0} \frac{1}{e^{t^2}} = 1.$$

g) Presupunem ca
$$\exists u, v \in \mathbf{R}[X]$$
, nenule astfel incat $F(x) = \frac{u(e^{x^2})}{v(e^{x^2})}$, $\forall x \in \mathbf{R}$. Fie

$$e^{x^2} = t \Rightarrow x^2 = \ln t \Rightarrow x = \sqrt{\ln t}$$
, pentru $t \ge 1$

$$\Rightarrow F(\sqrt{\ln t}) = \frac{u(t)}{v(t)}, t > 1. \text{ Derivand, obtinem } F'(\sqrt{\ln t}) \cdot \frac{1}{2\sqrt{\ln t}} \cdot \frac{1}{t} = \left(\frac{u(t)}{v(t)}\right)' \Leftrightarrow \frac{e^t}{2t\sqrt{\ln t}} = \frac{P(t)}{Q(t)} = \frac{P($$

$$1 = \frac{2t\sqrt{\ln t} \cdot P(t)}{e^t \cdot Q(t)}, \forall x \ge 1$$

Trecând la limita $t \to 0$, obținem contradictie 1=0