

Budapest University of Technology and Economics Department of Electron Devices

Summary of the essential semiconductor physics

- Charge carriers in semiconductors
- Currents in semiconductors
- Generation, recombination; continuity equation

Energy bands in the lattice

- Basic consequences of quantum mechanics:
 - Positive nucleus (p+, n0) Negative electrons
 - Pauli theorem: two e⁻ cannot be on the same state; in one electron orbital max two e with opposite spin
 - Energy minimum: lowest shells, orbitals are filled
 - Switching between shells: energy gained (equals the energy between the actual state and the unfilled shells)
 - It is most likely that the e- with upper most state will gain more energy

Discrete energy levels

Energy bands

Resulting from principles of quantum physics

The discrete (allowed) energy levels of an atom become energy bands in a crystal lattice

Valance band, conductance band

- Valance band these electrons form the chemical bonds
 - almost full
- Conductance band electrons here can move freely
 - almost empty

Electrons and holes

- Generation: using the average thermal energy
- Electrons: in the bottom of the conduction band
- Holes: in the top of the valance band
- Both the electrons and the holes form the electrical current

Electron: negative charge, positive eff. mass

Hole: positive charge, positive eff. mass

Electrons and holes

How does the electrons gain energy?

- ▶ Thermal excitation
 - Energy of lattice resonance transfered to the e⁻
- Photon excitation
 - Incident light with energy greater than W_g
 - $\mathbf{E} = h \cdot v$

The electron density of the conductance band is determined by the dynamic balance of the generation and the recombination

Conductors and insulators

semiconductor

Electron cannot be located in the forbidden gap!

Conductors and insulators

For Si: $W_g = 1.12 \text{ eV}$

for SiO_2 : $W_g = 4.3 \text{ eV}$

 $1 \text{ eV} = 0.16 \text{ aJ} = 0.16 \cdot 10^{-18} \text{ J}$

Band structure of semiconductors

10

In case of indirect band semiconductor the laws of energy and impluse conservations must be fulfilled.

$$F = \frac{dP}{dt}$$

$$P = \frac{h}{2\pi} k$$

GaAs: direct band ⇒ opto-electronic devices (LEDs)

Si: indirect band

Band structure of semiconductors

$$W = \frac{1}{2m} p^2 \longrightarrow W = \frac{1}{2m_{eff}} P^2$$

$$F = \frac{dP}{dt}$$

$$P = \frac{h}{2\pi} k$$

GaAs: direct band ⇒ opto-electronic devices (LEDs)

Si: indirect band

Generation / recombination

Spontaneous process: thermal excitation – jump into the conduction band / recombination → equilibrium

Direct recombination may result in light emission (LEDs)

$$\nu = \frac{W_g}{h}$$

$$\lambda = \frac{c}{v}$$

In case of red laser $W_q \approx 1.5 eV$

Indirect **recombination** is not radioative, but always accompanied by heat dissipation (Phonon – lattice vibration)

Generation / recombination

Spontaneous process: thermal excitation – jump into the conduction band / recombination → equilibrium

---- vh > W_g

Direct recombination may result in light emission (LEDs) Light absorption results in generation (solar cells)

Experiment

Crystalline structure of Si

N = 144 bonds, *IV*-th column of the periodic table Si

- ▶ Diamond lattice, lattice constant a=0.543 nm
- Each atom has 4 nearest neighbor

5 valance dopant: donor (As, P, Sb)

Electron:

Hole:

majority carrier
minority carrier

n-type semiconductor

3 valance dopant: acceptor (B, Ga, In)

• Electron:

Hole:

minority carrier

majority carrier

p-type semiconductor

Calculation of carrier concentration

Microelectronics

19.02.2018

Calculation of carrier concentration

The results is:

$$n = const T^{3/2} \exp\left(-\frac{W_c - W_F}{kT}\right)$$

$$p = const T^{3/2} \exp\left(-\frac{W_F - W_v}{kT}\right)$$

- If there is no doping: n = p = n;
 - it is called *intrinsic* material

$$W_c - W_F = W_F - W_v$$

$$\left|W_F = \frac{W_c + W_v}{2}\right| = W_i$$

The Fermi-level

■ Formal definition of the Fermi-level: the energy level where the probability of occupancy is 0.5:

 $f(W) = \frac{1}{1 + \exp\left(\frac{W - W_F}{kT}\right)} = 0.5$

In case of intrinsic semiconductor this is in the middle of the band gap:

This is the intrinsic Fermi-level W_i

Carrier concentrations

$$n = const T^{3/2} \exp\left(-\frac{W_c - W_F}{kT}\right)$$

$$p = const T^{3/2} \exp\left(-\frac{W_F - W_V}{kT}\right)$$

$$p = const T^{3/2} \exp\left(-\frac{W_F - W_v}{kT}\right)$$

$$n \cdot p = const \cdot T^3 \exp(-W_g / kT)$$

Depends on temperature only, does not depend on doping concentration

$$n \cdot p = n_i^2$$

Mass action law

For silicon at 300 K absolute temperature

$$n_i = 10^{10} / cm^3$$

(10¹⁰ electrons in a cube of size 0.01 mm x 0.01 mm x 0.01 mm)

Carrier concentrations

■ Si, T = 300 K, donor concentration $N_D = 10^{17} / cm^3$

What are the hole and the electron concentrations?

- Donor doping \Rightarrow $n \approx N_D = \frac{10^{17} / cm^3}{}$
- Hole concentration: $p = n_i^2/n = 10^{20}/10^{17} = 10^3/cm^3$

What is the relative density of the dopants?

- 1 cm³ Si contains 5·10²² atoms
- thus, $10^{17}/5.10^{22} = 2.10^{-6}$
- The purity of doped Si is 0.999998

Carrier concentrations

$$n = const T^{3/2} \exp\left(-\frac{W_c - W_F}{kT}\right)$$

$$n_i = const \, T^{3/2} \exp \left(-\frac{W_c - W_i}{kT}\right)$$

$$\frac{n}{n_i} = \exp\left(\frac{W_F - W_i}{kT}\right)$$

$$n = n_i \exp\left(\frac{W_F - W_i}{kT}\right)$$

$$p = n_i \exp\left(-\frac{W_F - W_i}{kT}\right)$$

Just re-order the equations

 $kT = 1.38 \cdot 10^{-23} \text{ VAs/K} \cdot 300$ $K = 4,14 \cdot 10^{-21} J = 0.026 eV$ = 26 meV

Thermal energy

In doped semiconductors the Fermi-level is shifted wrt the intrinsic Fermilevel

Temperature dependence

$$n_i^2 = n \cdot p = const \cdot T^3 \exp(-W_g / kT)$$

$$\frac{d}{dT}n_i^2 = n_i^2 \left(\frac{3}{T} + \frac{W_g}{kT^2}\right)$$

$$\frac{d n_i^2}{n_i^2} = \left(3 + \frac{W_g}{kT}\right) \frac{d T}{T}$$

► How strong is it for Si?

Problem

$$\frac{d n_i^2}{n_i^2} = \left(3 + \frac{1,12}{0,026}\right) \frac{dT}{300} \approx 0.15 dT \approx 15\% \text{ / °C}$$

Temperature dependence of carrier concentrations

Si, T = 300 K, donor dopant concentration
$$N_D = 10^{17} / \text{cm}^3$$

 $n \cong N_D = 10^{17} / \text{cm}^3$
 $p = n_i^2 / n = 10^{20} / 10^{17} = 10^3 / \text{cm}^3 \iff n \cdot p = n_i^2$

How do n and p change, if T is increased by 25 degrees?

$$n \cong N_D = 10^{17} / cm^3 - unchanged$$

 $n_i^2 = 10^{20} \cdot 1.15^{25} = 33 \cdot 10^{20}$
 $\Rightarrow p = n_i^2 / n = 33 \cdot 10^{20} / 10^{17} = 3.3 \cdot 10^4 / cm^3$

Only the minority carrier concentration increased!

 $\Delta T = 16.5 \, ^{\circ}C \rightarrow 10 \times$

Currents in semiconductors

- Drift current
- Diffusion current

Not discussed:

- currents due to temperature gradients
- currents induced by magnetic fields
- energy transport besides carrier transport
- combined transport phenomena

Drift current

Thermal movement of electrons

No electrical field

There is E electrical field

$$\overline{v}_s = \mu \overline{E}$$

$$\mu = mobility$$
 m^2/Vs

Drift current

$$\overline{J} = \rho \, \overline{v}$$

- ρ charge density
- v velocity (average)

$$v_s = \mu \overline{E}$$

$$\overline{J_n} = q \, n \, \mu_n \, \overline{E}$$

$$J_p = q p \mu_p E$$

$$\overline{J} = q \left(n \,\mu_n + p \,\mu_p \right) \overline{E}$$

$$\overline{J} = \sigma_e \, \overline{E}$$

Differential Ohm's law

$$\rho_e = \frac{1}{\sigma_e}$$

Specific resistance

$$\sigma_e = q \left(n \, \mu_n + p \, \mu_p \right)$$

Specific electrical conductivity of the semiconductor

Carrier mobilities

Si

Carrier mobilities

 Mobility decreases with increasing doping concentration

 At around room temperature mobilities decrease as temperature increases

$$\mu \sim \mathbf{T}^{-3/2}$$

Diffusion current

- Reasons:
 - concentration difference (gradient)
 - thermal movement

■ D: diffusion constant [m²/s]

$$\overline{J_n} = q D_n \overline{\text{grad}} n$$

$$\overline{J_p} = -q D_p \overline{\text{grad}} p$$

Total currents

$$\overline{J_n} = qn\mu_n \overline{E} + qD_n \operatorname{grad} n$$

$$\overline{J_p} = qp\mu_p \overline{E} - qD_p \overline{\text{grad}} p$$

$$D = \frac{kT}{q}\mu$$

Einstein's relationship

$$U_T = \frac{kT}{q} \bigg|_{T=300K} = \frac{1.38 \cdot 10^{-23} \, [\text{VAs/K}] \cdot 300 [\text{K}]}{1.6 \cdot 10^{-19} \, [\text{As}]} \cong 0.026 \, \text{V} = 26 \, \text{mV}$$

Thermal voltage

Generation, recombination

- Life-time: average time an electron spends in the conduction band
 - This value is influenced by the impurities (recombination centrals, allowed states in the band gap)

$$τ_n$$
, $τ_p$ 1 ns ... 1 μs

- If: τ_n the life-time of an $e^- \rightarrow$ probability of recombination within dt time is dt/τ_n
- *Recombination rate:* r [1/m³s]

Number of recombinated carriers in a unit volume within a unit timeframe.

$$r_n = \frac{n \cdot dt}{\tau_n}$$
 unit time, unit V
$$r_n = \frac{n}{\tau_n}$$

Generation, recombination

$$r_n = \frac{n}{\tau_n}$$

$$r_p = \frac{p}{\tau_p}$$

Life-time: average time an electron spends in the conduction band

- *Generation rate:* g [1/m³s]
- Recombination rate: r [1/m³s]

$$g_n = r_n \big|_{equilibrium} = \frac{n_0}{\tau_n}$$

Continuity equation

$$\left| \frac{d}{dt} \Delta N = -\frac{1}{-q} \oint_{A} \overline{J_n} \, d\overline{A} + g_n \cdot \Delta V - \frac{n}{\tau_n} \Delta V \right|$$

$$\frac{d}{dt}\frac{\Delta N}{\Delta V} = \frac{1}{q}\frac{1}{\Delta V} \oint_{A} \overline{J_{n}} d\overline{A} + g_{n} - \frac{n}{\tau_{n}}$$

$$\frac{dn}{dt} = \frac{1}{q}\operatorname{div}(\overline{J_n}) + g_n - \frac{n}{\tau_n}$$

Diffusion equation

$$\frac{dn}{dt} = \frac{1}{q}\operatorname{div}(\overline{J_n}) + g_n - \frac{n}{\tau_n}$$

$$\frac{dn}{dt} = \frac{1}{q} \operatorname{div}(\overline{J_n}) + g_n - \frac{n}{\tau_n} \left[\overline{J_n} = qn\mu_n \overline{E} + qD_n \overline{\operatorname{grad}} n \right]$$

$$\frac{dn}{dt} = \mu_n \operatorname{div}(n\overline{E}) + D_n \operatorname{divgrad} n + g_n - \frac{n}{\tau_n}$$

$$\frac{dp}{dt} = -\mu_p \operatorname{div}(p\overline{E}) + D_p \operatorname{divgrad} p + g_p - \frac{p}{\tau_p}$$

Example for the solution of the diff. eq.:

$$\frac{dn}{dt} = \mu_n \operatorname{div}(n\overline{E}) + D_n \operatorname{divgrad} n + g_n - \frac{n}{\tau_n}$$

- Si block doped homogenously by p
- ► e⁻ injected with constant current density
- ▶ e⁻ are moving according to the diffusion (E=0) while recombinating
- Steady-state (dn/dt=0)

- What is the n(x) distribution of the injected minority carriers?
- What is the average penetration depth, prior to recombination?

Example for the solition of the diff. eq.:

$$\frac{dn}{dt} = \mu_n \operatorname{div}(n\overline{E}) + D_n \operatorname{divgrad} n + g_n - \frac{n}{\tau_n}$$

$$0 = D_n \frac{d^2n}{dx^2} + g_n - \frac{n}{\tau_n}$$

$$0 = D_n \frac{d^2n}{dx^2} + \frac{n_0}{\tau_n} - \frac{n}{\tau_n}$$

$$n(x) = n_0 + (n_e - n_0) \exp(-x/\sqrt{D_n \tau_n})$$

$$L_n = \sqrt{D_n \tau_n}$$
diffusion length

Omne ignotum pro magnifico.

Everything unknown seems magnificent. Tacitus, 55-120 AD, Roman historian