

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Bettina MOECKEL, et al.

GAU:

1645

SERIAL NO: 10/075,460

EXAMINER:

FILED:

February 15, 2002

FOR:

NUCLEOTIDE SEQUENCES WHICH CODE FOR THE rpsL GENE

REQUEST FOR PRIORITY

ASSISTANT COMMISSIONER FOR PATENTS WASHINGTON, D.C. 20231

SIR:

- Full benefit of the filing date of U.S. Application Serial Number [US App No], filed [US App Dt], is claimed pursuant to the provisions of 35 U.S.C. §120.
- ☐ Full benefit of the filing date of U.S. Provisional Application Serial Number, filed, is claimed pursuant to the provisions of 35 U.S.C. §119(e).
- Applicants claim any right to priority from any earlier filed applications to which they may be entitled pursuant to the provisions of 35 U.S.C. §119, as noted below.

In the matter of the above-identified application for patent, notice is hereby given that the applicants claim as priority:

COUNTRY

APPLICATION NUMBER

MONTH/DAY/YEAR

GERMANY

101 07 230.9

February 16, 2001

GERMANY

101 62 386.0

December 19, 2001

Certified copies of the corresponding Convention Application(s)

- GERMANY #101 62 386.0 is submitted herewith
- □ will be submitted prior to payment of the Final Fee
- GERMANY #101 07 230.9 was filed in above application Serial No. 10/075,460 filed February 15, 2002.
- $\hfill \square$ were submitted to the International Bureau in PCT Application Number . Receipt of the certified copies by the International Bureau in a timely manner under PCT Rule 17.1(a) has been acknowledged as evidenced by the attached PCT/IB/304.
- ☐ (A) Application Serial No.(s) were filed in prior application Serial No. filed ; and
 - (B) Application Serial No.(s)
 - are submitted herewith
 - will be submitted prior to payment of the Final Fee

Respectfully Submitted,

OBLON, SPIVAK, McCLELLAND,

MAIER & NEUSTADT, P.C.

Norman F. Oblon

Registration No.

24,618

Surinder Sachar Registration No. 34,423

Tel. (703) 413-3000

Fax. (703) 413-2220 (OSMMN 10/98)

10/075,460

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

101 62 386.0

RECEIVED

Anmeldetag:

19. Dezember 2001

APR 0 1 2002 TECH CENTER 1600/2900

Anmelder/Inhaber:

Degussa AG, Düsseldorf/DE

Bezeichnung:

Für das rpsL-Gen kodierende Nukleotid-

sequenzen

Priorität:

16.02.2001 DE 101 07 230.9

IPC:

C 12 N, C 12 P, C 07 H

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 07. März 2002

Deutsches Patent- und Markenamt

Der Präsident

Wallner

Für das rpsL-Gen kodierende Nukleotidsequenzen

Gegenstand der Erfindung sind für das rpsL-Gen kodierende Nukleotidsequenzen aus coryneformen Bakterien und ein Verfahren zur fermentativen Herstellung von Aminosäuren unter Verwendung von Bakterien, in denen das rpsL-Gen verstärkt wird.

Stand der Technik

10

L-Aminosäuren, insbesondere L-Lysin, finden in der Humanmedizin und in der pharmazeutischen Industrie, in der Lebensmittelindustrie und ganz besonders in der Tierernährung, Anwendung.

Es ist bekannt, dass Aminosäuren durch Fermentation von Stämmen coryneformer Bakterien, insbesondere Corynebacterium glutamicum, hergestellt werden. Wegen der großen Bedeutung wird ständig an der Verbesserung der Herstellverfahren gearbeitet. Verfahrensverbesserungen können fermentationstechnische Maßnahmen wie zum Beispiel Rührung und Versorgung mit Sauerstoff, oder die Zusammensetzung der Nährmedien wie zum Beispiel die Zuckerkonzentration während der Fermentation, oder die Aufarbeitung zur Produktform durch zum Beispiel Ionenaustauschchromatographie oder die intrinsischen Leistungseigenschaften des Mikroorganismus selbst betreffen.

Zur Verbesserung der Leistungseigenschaften dieser Mikroorganismen werden Methoden der Mutagenese, Selektion und Mutantenauswahl angewendet. Auf diese Weise erhält man Stämme, die resistent gegen Antimetabolite oder auxotroph für regulatorisch bedeutsame Metabolite sind und Aminosäuren produzieren.

Seit einigen Jahren werden ebenfalls Methoden der rekombinanten DNA-Technik zur Stammverbesserung von L-Aminosäure produzierenden Stämmen von Corynebacterium eingesetzt, indem man einzelne Aminosäure-Biosynthesegene amplifiziert und die Auswirkung auf die Aminosäure-Produktion untersucht.

Aufgabe der Erfindung

15

25

5 Die Erfinder haben sich zur Aufgabe gestellt, neue Maßnahmen zur verbesserten fermentativen Herstellung von Aminosäuren bereitzustellen.

Beschreibung der Erfindung

Werden im folgenden L-Aminosäuren oder Aminosäuren erwähnt, sind damit eine oder mehrere Aminosäuren einschließlich ihrer Salze, ausgewählt aus der Gruppe L-Asparagin, L-Threonin, L-Serin, L-Glutamat, L-Glycin, L-Alanin, L-Cystein, L-Valin, L-Methionin, L-Isoleucin, L-Leucin, L-Tyrosin, L-Phenylalanin, L-Histidin, L-Lysin, L-Tryptophan und L-Arginin gemeint. Besonders bevorzugt ist L-Lysin.

Wenn im folgenden L-Lysin oder Lysin erwähnt werden, sind damit nicht nur die Basen, sondern auch die Salze wie z.B. Lysin-Monohydrochlorid oder Lysin-Sulfat gemeint.

Gegenstand der Erfindung ist ein isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine für das rpsL-Gen kodierende Polynukleotidsequenz, ausgewählt aus der Gruppe

- a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
- b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
- 30 c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und

d) Polynukleotid, enthaltend mindestens 15
 aufeinanderfolgende Nukleotide der Polynukleotidsequenz
 von a), b) oder c),

wobei das Polypeptid bevorzugt die Aktivität des ribosomalen Proteins S12 aufweist.

Gegenstand der Erfindung ist ebenfalls das oben genannte Polynukleotid, wobei es sich bevorzugt um eine replizierbare DNA handelt, enthaltend:

- (i) die Nukleotidsequenz, gezeigt in SEQ ID No. 1,
 10 oder
 - (ii) mindestens eine Sequenz, die der Sequenz (i) innerhalb des Bereichs der Degeneration des genetischen Kodes entspricht, oder
- (iii) mindestens eine Sequenz, die mit der zur Sequenz
 (i) oder (ii) komplementären Sequenz
 hybridisiert, und gegebenenfalls
 - (iv) funktionsneutrale Sinnmutationen in (i), die die Aktivität des Proteins/Polypeptides nicht verändern
 - Ein weiterer Gegenstand der Erfindung sind schließlich Polynukleotide ausgewählt aus der Gruppe
 - a) Polynukleotide enthaltend mindestens 15 aufeinanderfolgende Nukleotide ausgewählt aus der Nukleotidsequenz von SEQ ID No. 1 zwischen den Positionen 1 und 499,
 - b) Polynukleotide enthaltend mindestens 15 aufeinanderfolgende Nukleotide ausgewählt aus der Nukleotidsequenz von SEQ ID No. 1 zwischen den Positionen 500 und 883,

c) Polynukleotide enthaltend mindestens 15 aufeinanderfolgende Nukleotide ausgewählt aus der Nukleotidsequenz von SEQ ID No. 1 zwischen den Positionen 884 und 1775.

5 Weitere Gegenstände sind

10

- ein replizierbares Polynukleotid, insbesondere DNA, enthaltend die Nukleotidsequenz wie in SEQ ID No. 1 dargestellt;
- ein Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz, wie in SEQ ID No. 2 dargestellt, enthält;
 - ein Vektor, enthaltend das erfindungsgemäße Polynukleotid, insbesondere Pendelvektor oder Plasmidvektor, und
- coryneforme Bakterien, die den Vektor enthalten oder in denen das rpsL-Gen verstärkt ist.
 - Gegenstand der Erfindung sind ebenso Polynukleotide, die im wesentlichen aus einer Polynukleotidsequenz bestehen, die erhältlich sind durch Screening mittels Hybridisierung einer entsprechenden Genbank eines coryneformen Bakteriums, die das vollständige Gen oder Teile davon enthält, mit einer Sonde, die die Sequenz des erfindungsgemäßen Polynukleotids gemäß SEQ ID No.1 oder ein Fragment davon enthält und Isolierung der genannten Polynukleotidsequenz.
- Polynukleotide, die die Sequenzen gemäß der Erfindung
 enthalten, sind als Hybridisierungs-Sonden für RNA, cDNA
 und DNA geeignet, um Nukleinsäuren beziehungsweise
 Polynukleotide oder Gene in voller Länge zu isolieren, die
 für das ribosomale Protein S12 kodieren, oder um solche
 Nukleinsäuren beziehungsweise Polynukleotide oder Gene zu
 isolieren, die eine hohe Ähnlichkeit mit der Sequenz des
 rpsL-Gens aufweisen. Sie können ebenso als Sonde auf
 sogenannte "arrays", "micro arrays" oder "DNA chips"

aufgebracht werden, um die entsprechenden Polynukleotide oder hiervon abgeleitete Sequenzen wie z.B. RNA oder cDNA zu detektieren und zu bestimmen.

Polynukleotide, die die Sequenzen gemäß der Erfindung 5 enthalten, sind weiterhin als Primer geeignet, mit deren Hilfe mit der Polymerase-Kettenreaktion (PCR) DNA von Genen hergestellt werden kann, die für das ribosomale Protein S12 kodieren.

Solche als Sonden oder Primer dienende Oligonukleotide,
enthalten mindestens 25, 26, 27, 28, 29 oder 30, bevorzugt
mindestens 20, 21, 22, 23 oder 24, ganz besonders bevorzugt
mindestens 15, 16, 17, 18 oder 19 aufeinanderfolgende
Nukleotide. Geeignet sind ebenfalls Oligonukleotide mit
einer Länge von mindestens 31, 32, 33, 34, 35, 36, 37, 38,
39 oder 40, oder mindestens 41, 42, 43, 44, 45, 46, 47, 48,
49 oder 50 Nukleotiden. Gegebenenfalls sind auch
Oligonukleotide mit einer Länge von mindestens 100, 150,
200, 250 oder 300 Nukleotiden geeignet.

"Isoliert" bedeutet aus seinem natürlichen Umfeld 20 herausgetrennt.

"Polynukleotid" bezieht sich im allgemeinen auf Polyribonukleotide und Polydeoxyribonukleotide, wobei es sich um nicht modifizierte RNA oder DNA oder modifizierte RNA oder DNA handeln kann.

Die Polynukleotide gemäß Erfindung schließen ein Polynukleotid gemäß SEQ ID No. 1 oder ein daraus hergestelltes Fragment und auch solche ein, die zu wenigstens besonders 70% bis 80%, bevorzugt zu wenigstens 81% bis 85%, besonders bevorzugt zu wenigstens 86% bis 90%, und ganz besonders bevorzugt zu wenigstens 91%, 93%, 95%, 97% oder 99% identisch sind mit dem Polynukleotid gemäß SEQ ID No. 1 oder eines daraus hergestellten Fragmentes.

Unter "Polypeptiden" versteht man Peptide oder Proteine, die zwei oder mehr über Peptidbindungen verbundene Aminosäuren enthalten.

Die Polypeptide gemäß Erfindung schließen ein Polypeptid gemäß SEQ ID No. 2, insbesondere solche mit der biologischen Aktivität des ribosomalen Proteins S12 und auch solche ein, die zu wenigstens 70% bis 80%, bevorzugt zu wenigstens 81% bis 85%, besonders bevorzugt zu wenigstens 86% bis 90%, und ganz besonders bevorzugt zu wenigstens 91%, 93%, 95%, 97% oder 99% identisch sind mit dem Polypeptid gemäß SEQ ID No. 2 und die genannte Aktivität aufweisen.

Die Erfindung betrifft weiterhin ein Verfahren zur fermentativen Herstellung von Aminosäuren, ausgewählt aus der Gruppe L-Asparagin, L-Threonin, L-Serin, L-Glutamat, L-Glycin, L-Alanin, L-Cystein, L-Valin, L-Methionin, L-Isoleucin, L-Leucin, L-Tyrosin, L-Phenylalanin, L-Histidin, L-Lysin, L-Tryptophan und L-Arginin, unter Verwendung von coryneformen Bakterien, die insbesondere bereits

Aminosäuren produzieren und in denen die für das rpsL-Gen kodierenden, bevorzugt endogenen, Nukleotidsequenzen verstärkt, insbesondere überexprimiert werden.

Der Begriff "Verstärkung" beschreibt in diesem Zusammenhang die Erhöhung der intrazellulären Aktivität eines oder mehrerer Enzyme bzw. Proteine in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise die Kopienzahl des Gens bzw. der Gene erhöht, einen starken Promotor verwendet oder ein Gen oder Allel verwendet, das für ein entsprechendes Enzym bzw. Protein mit einer hohen Aktivität kodiert und

Durch die Maßnahmen der Verstärkung, insbesondere Überexpression, wird die Aktivität oder Konzentration des entsprechenden Proteins im allgemeinen um mindestens 10%,

gegebenenfalls diese Maßnahmen kombiniert.

30

25%, 50%, 75%, 100%, 150%, 200%, 300%, 400% oder 500%, maximal bis 1000% oder 2000% bezogen auf die des Wildtyp-Proteins beziehungsweise der Aktivität oder Konzentration des Proteins im Ausgangs-Mikroorganismus erhöht.

Die Mikroorganismen, die Gegenstand der vorliegenden Erfindung sind, können L-Aminosäuren aus Glucose, Saccharose, Laktose, Fructose, Maltose, Melasse, Stärke, Cellulose oder aus Glycerin und Ethanol herstellen. Es kann sich um Vertreter coryneformer Bakterien insbesondere der Gattung Corynebacterium handeln. Bei der Gattung Corynebacterium ist insbesondere die Art Corynebacterium glutamicum zu nennen, die in der Fachwelt für ihre Fähigkeit bekannt ist, L-Aminosäuren zu produzieren.

Geeignete Stämme der Gattung Corynebacterium, insbesondere der Art Corynebacterium glutamicum (C. glutamicum), sind besonders die bekannten Wildtypstämme

Corynebacterium glutamicum ATCC13032
Corynebacterium acetoglutamicum ATCC15806
Corynebacterium acetoacidophilum ATCC13870
Corynebacterium thermoaminogenes FERM BP-1539
Corynebacterium melassecola ATCC17965
Brevibacterium flavum ATCC14067
Brevibacterium lactofermentum ATCC13869 und
Brevibacterium divaricatum ATCC14020

und daraus hergestellte L-Aminosäuren produzierende Mutanten bzw. Stämme, wie beispielsweise die L-Lysin produzierenden Stämme

Corynebacterium glutamicum FERM-P 1709
Brevibacterium flavum FERM-P 1708
Brevibacterium lactofermentum FERM-P 1712
Corynebacterium glutamicum FERM-P 6463
Corynebacterium glutamicum FERM-P 6464
Corynebacterium glutamicum DM58-1

Corynebacterium glutamicum DG52-5 Corynebacterium glutamicum DSM5715 und Corynebacterium glutamicum DSM12866.

Das neue, für das ribosomale Protein S12 kodierende rpsL-Gen von C. glutamicum wurde isoliert.

Zur Isolierung des rpsL-Gens oder auch anderer Gene von C. glutamicum wird zunächst eine Genbank dieses Mikroorganismus in Escherichia coli (E. coli) angelegt. Das Anlegen von Genbanken ist in allgemein bekannten

- 10 Lehrbüchern und Handbüchern niedergeschrieben. Als Beispiel seien das Lehrbuch von Winnacker: Gene und Klone, Eine Einführung in die Gentechnologie (Verlag Chemie, Weinheim, Deutschland, 1990), oder das Handbuch von Sambrook et al.: Molecular Cloning, A Laboratory Manual (Cold Spring Harbor
- Laboratory Press, 1989) genannt. Eine sehr bekannte Genbank ist die des E. coli K-12 Stammes W3110, die von Kohara et al. (Cell 50, 495-508 (1987)) in λ-Vektoren angelegt wurde. Bathe et al. (Molecular and General Genetics, 252:255-265, 1996) beschreiben eine Genbank von C. glutamicum ATCC13032,
- die mit Hilfe des Cosmidvektors SuperCos I (Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84:2160-2164) im E. coli K-12 Stamm NM554 (Raleigh et al., 1988, Nucleic Acid Research 16:1563-1575) angelegt wurde.
- Börmann et al. (Molecular Microbiology 6(3), 317-326)

 (1992)) wiederum beschreiben eine Genbank von C. glutamicum

 ATCC13032 unter Verwendung des Cosmids pHC79 (Hohn und

 Collins, Gene 11, 291-298 (1980)).

Zur Herstellung einer Genbank von C. glutamicum in E. coli können auch Plasmide wie pBR322 (Bolivar, Life Sciences, 25, 807-818 (1979)) oder pUC9 (Vieira et al., 1982, Gene, 19:259-268) verwendet werden. Als Wirte eignen sich besonders solche E. coli Stämme, die restriktions- und rekombinationsdefekt sind. Ein Beispiel hierfür ist der Stamm DH50mcr, der von Grant et al. (Proceedings of the

National Academy of Sciences USA, 87 (1990) 4645-4649) beschrieben wurde. Die mit Hilfe von Cosmiden klonierten langen DNA-Fragmente können anschließend wiederum in gängige, für die Sequenzierung geeignete Vektoren subkloniert und anschließend sequenziert werden, so wie es z.B. bei Sanger et al. (Proceedings of the National Academy of Sciences of the United States of America, 74:5463-5467, 1977) beschrieben ist.

- Die erhaltenen DNA-Sequenzen können dann mit bekannten
 Algorithmen bzw. Sequenzanalyse-Programmen wie z.B. dem von
 Staden (Nucleic Acids Research 14, 217-232(1986)), dem von
 Marck (Nucleic Acids Research 16, 1829-1836 (1988)) oder
 dem GCG-Programm von Butler (Methods of Biochemical
 Analysis 39, 74-97 (1998)) untersucht werden.
- Die neue für das Gen rpsL kodierende DNA-Sequenz von C. glutamicum wurde gefunden, die als SEQ ID No. 1 Bestandteil der vorliegenden Erfindung ist. Weiterhin wurde aus der vorliegenden DNA-Sequenz mit den oben beschriebenen Methoden die Aminosäuresequenz des entsprechenden Proteins abgeleitet. In SEQ ID No. 2 ist die sich ergebende Aminosäuresequenz des rpsL-Genproduktes dargestellt. Es ist bekannt, dass wirtseigene Enzyme die N-terminale Aminosäure Methionin bzw. Formylmethionin des gebildeten Proteins abspalten können.
- Kodierende DNA-Sequenzen, die sich aus SEQ ID No. 1 durch die Degeneriertheit des genetischen Kodes ergeben, sind ebenfalls Bestandteil der Erfindung. In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID No. 1 oder Teilen von SEQ ID No. 1 hybridisieren, Bestandteil der Erfindung. In der Fachwelt sind weiterhin konservative Aminosäureaustausche wie z.B. Austausch von Glycin gegen Alanin oder von Asparaginsäure gegen Glutaminsäure in Proteinen als "Sinnmutationen" ("sense mutations") bekannt, die zu keiner grundsätzlichen Veränderung der Aktivität des Proteins führen, d.h. funktionsneutral sind. Derartige Mutationen

35

werden unter anderem auch als neutrale Substitutionen bezeichnet. Weiterhin ist bekannt, dass Änderungen am Nund/oder C-Terminus eines Proteins dessen Funktion nicht wesentlich beeinträchtigen oder sogar stabilisieren können.

Angaben hierzu findet der Fachmann unter anderem bei Ben-Bassat et al. (Journal of Bacteriology 169:751-757 (1987)), bei O'Regan et al. (Gene 77:237-251 (1989)), bei Sahin-Toth et al. (Protein Sciences 3:240-247 (1994)), bei Hochuli et al. (Bio/Technology 6:1321-1325 (1988)) und in bekannten

Lehrbüchern der Genetik und Molekularbiologie.

Aminosäuresequenzen, die sich in entsprechender Weise aus SEQ ID No. 2 ergeben, sind ebenfalls Bestandteil der Erfindung.

In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID No. 1
oder Teilen von SEQ ID No. 1 hybridisieren Bestandteil der
Erfindung. Schließlich sind DNA-Sequenzen Bestandteil der
Erfindung, die durch die Polymerase-Kettenreaktion (PCR)
unter Verwendung von Primern hergestellt werden, die sich
aus SEQ ID No. 1 ergeben. Derartige Oligonukleotide haben
typischerweise eine Länge von mindestens 15 Nukleotiden.

Anleitungen zur Identifizierung von DNA-Sequenzen mittels Hybridisierung findet der Fachmann unter anderem im Handbuch "The DIG System Users Guide for Filter Hybridization" der Firma Boehringer Mannheim GmbH (Mannheim, Deutschland, 1993) und bei Liebl et al. (International Journal of Systematic Bacteriology (1991) 41: 255-260). Die Hybridisierung findet unter stringenten Bedingungen statt, das heißt, es werden nur Hybride gebildet, bei denen Sonde und Zielsequenz, d. h. die mit der Sonde behandelten Polynukleotide, mindestens 70% identisch sind. Es ist bekannt, dass die Stringenz der Hybridisierung einschließlich der Waschschritte durch Variieren der Pufferzusammensetzung, der Temperatur und der Salzkonzentration beeinflusst bzw. bestimmt wird. Die Hybridisierungsreaktion wird vorzugsweise bei relativ

10

15

20

25

30

35

niedriger Stringenz im Vergleich zu den Waschschritten durchgeführt (Hybaid Hybridisation Guide, Hybaid Limited, Teddington, UK, 1996).

Für die Hybridisierungsreaktion kann beispielsweise ein 5x SSC-Puffer bei einer Temperatur von ca. 50°C - 68°C eingesetzt werden. Dabei können Sonden auch mit Polynukleotiden hybridisieren, die weniger als 70% Identität zur Sequenz der Sonde aufweisen. Solche Hybride sind weniger stabil und werden durch Waschen unter stringenten Bedingungen entfernt. Dies kann beispielsweise durch Senken der Salzkonzentration auf 2x SSC und gegebenenfalls nachfolgend 0,5x SSC (The DIG System User's Guide for Filter Hybridisation, Boehringer Mannheim, Mannheim, Deutschland, 1995) erreicht werden, wobei eine Temperatur von ca. 50°C - 68°C eingestellt wird. Es ist gegebenenfalls möglich die Salzkonzentration bis auf 0,1x SSC zu senken. Durch schrittweise Erhöhung der Hybridisierungstemperatur in Schritten von ca. 1 - 2°C von 50°C auf 68°C können Polynukleotidfragmente isoliert werden, die beispielsweise mindestens 70% oder mindestens 80% oder mindestens 90% bis 95% Identität zur Sequenz der eingesetzten Sonde besitzen. Weitere Anleitungen zur Hybridisierung sind in Form sogenannter Kits am Markt erhältlich (z.B. DIG Easy Hyb von der Firma Roche Diagnostics GmbH, Mannheim, Deutschland, Catalog No. 1603558).

Anleitungen zur Amplifikation von DNA-Sequenzen mit Hilfe der Polymerase-Kettenreaktion (PCR) findet der Fachmann unter anderem im Handbuch von Gait: Oligonucleotide Synthesis: A Practical Approach (IRL Press, Oxford, UK, 1984) und bei Newton und Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Deutschland, 1994).

Es wurde gefunden, dass coryneforme Bakterien nach Verstärkung des rpsL-Gens in verbesserter Weise Aminosäuren produzieren. werden.

Zur Erzielung einer Überexpression kann die Kopienzahl der entsprechenden Gene erhöht werden, oder es kann die Promotor- und Regulationsregion oder die Ribosomenbindungsstelle, die sich stromaufwärts des Strukturgens befindet, mutiert werden. In gleicher Weise 5 wirken Expressionskassetten, die stromaufwärts des Strukturgens eingebaut werden. Durch induzierbare Promotoren ist es zusätzlich möglich, die Expression im Verlaufe der fermentativen Aminosäure-Produktion zu steigern. Durch Maßnahmen zur Verlängerung der Lebensdauer 10 der m-RNA wird ebenfalls die Expression verbessert. Weiterhin wird durch Verhinderung des Abbaus des Enzymproteins ebenfalls die Enzymaktivität verstärkt. Die Gene oder Genkonstrukte können entweder in Plasmiden mit unterschiedlicher Kopienzahl vorliegen oder im Chromosom integriert und amplifiziert sein. Alternativ kann weiterhin eine Überexpression der betreffenden Gene durch Veränderung

20 Anleitungen hierzu findet der Fachmann unter anderem bei Martin et al. (Bio/Technology 5, 137-146 (1987)), bei Guerrero et al. (Gene 138, 35-41 (1994)), Tsuchiya und Morinaga (Bio/Technology 6, 428-430 (1988)), bei Eikmanns et al. (Gene 102, 93-98 (1991)), in der Europäischen Patentschrift 0 472 869, im US Patent 4,601,893, bei 25 Schwarzer und Pühler (Bio/Technology 9, 84-87 (1991), bei Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)), bei LaBarre et al. (Journal of Bacteriology 175, 1001-1007 (1993)), in der Patentanmeldung 30 WO 96/15246, bei Malumbres et al. (Gene 134, 15 - 24 (1993)), in der japanischen Offenlegungsschrift JP-A-10-229891, bei Jensen und Hammer (Biotechnology and Bioengineering 58, 191-195 (1998)), bei Makrides (Microbiological Reviews 60:512-538 (1996)) und in 35 bekannten Lehrbüchern der Genetik und Molekularbiologie.

der Medienzusammensetzung und Kulturführung erreicht

Zur Verstärkung wurde das erfindungsgemäße rpsL-Gen beispielhaft mit Hilfe von episomalen Plasmiden überexprimiert. Als Plasmide eignen sich solche, die in coryneformen Bakterien repliziert werden. Zahlreiche bekannte Plasmidvektoren wie z.B. pZ1 (Menkel et al., Applied and Environmental Microbiology (1989) 64: 549-554), pEKEx1 (Eikmanns et al., Gene 102:93-98 (1991)) oder pHS2-1 (Sonnen et al., Gene 107:69-74 (1991)) beruhen auf den kryptischen Plasmiden pHM1519, pBL1 oder pGA1. Andere

- 10 Plasmidvektoren wie z.B. solche, die auf pCG4 (US-A 4,489,160), oder pNG2 (Serwold-Davis et al., FEMS Microbiology Letters 66, 119-124 (1990)), oder pAG1 (US-A 5,158,891) beruhen, können in gleicher Weise verwendet werden.
 - Weiterhin eignen sich auch solche Plasmidvektoren mit Hilfe derer man das Verfahren der Genamplifikation durch Integration in das Chromosom anwenden kann, so wie es beispielsweise von Reinscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)) zur
 - Duplikation bzw. Amplifikation des hom-thrB-Operons beschrieben wurde. Bei dieser Methode wird das vollständige Gen in einen Plasmidvektor kloniert, der in einem Wirt (typischerweise E. coli), nicht aber in C. glutamicum replizieren kann. Als Vektoren kommen beispielsweise
- pSUP301 (Simon et al., Bio/Technology 1, 784-791 (1983)), pK18mob oder pK19mob (Schäfer et al., Gene 145, 69-73 (1994)), pGEM-T (Promega Corporation, Madison, WI, USA), pCR2.1-TOPO (Shuman (1994). Journal of Biological Chemistry 269:32678-84; US-A 5,487,993), pCR®Blunt (Firma
- Invitrogen, Groningen, Niederlande; Bernard et al., Journal of Molecular Biology, 234: 534-541 (1993)), pEM1 (Schrumpf et al, 1991, Journal of Bacteriology 173:4510-4516) oder pBGS8 (Spratt et al.,1986, Gene 41: 337-342) in Frage. Der Plasmidvektor, der das zu amplifizierende Gen enthält, wird
- anschließend durch Konjugation oder Transformation in den gewünschten Stamm von C. glutamicum überführt. Die Methode

10

15

20

der Konjugation ist beispielsweise bei Schäfer et al.

(Applied and Environmental Microbiology 60, 756-759 (1994))
beschrieben. Methoden zur Transformation sind
beispielsweise bei Thierbach et al. (Applied Microbiology
and Biotechnology 29, 356-362 (1988)), Dunican und Shivnan
(Bio/Technology 7, 1067-1070 (1989)) und Tauch et al. (FEMS
Microbiological Letters 123, 343-347 (1994)) beschrieben.
Nach homologer Rekombination mittels eines "cross over"Ereignisses enthält der resultierende Stamm mindestens zwei
Kopien des betreffenden Gens.

Es wurde weiterhin gefunden, dass Aminosäureaustausche in dem Abschnitt zwischen Position 38 bis 48 der Aminosäuresequenz des ribosomalen Proteins S12 dargestellt in SEQ ID No. 2 die Lysinproduktion coryneformer Bakterien verbessern.

Vorzugsweise wird L-Lysin an der Position 43 gegen jede andere proteinogene Aminosäure ausgenommen L-Lysin ausgetauscht, wobei der Austausch gegen L-Histidin oder L-Arginin bevorzugt wird. Ganz besonders bevorzugt wird der Austausch gegen L-Arginin.

In SEQ ID No. 3 ist die Basensequenz des in Stamm DM1545 enthaltenen Allels rpsL-1545 dargestellt. Das rpsL-1545 Allel kodiert für ein Protein, dessen Aminosäuresequenz in SEQ ID No. 4 dargestellt ist. Das Protein enthält an Position 43 L-Arginin. Die DNA Sequenz des rpsL-1545 Allels (SEQ ID No. 3) enthält an Position 128 des Kodierbereichs (CDS), das entspricht Position 627 der in SEQ ID No. 3 dargestellten Sequenz, die Base Guanin. Die DNA-Sequenz des Wildtypgens (SEQ ID No. 1) enthält an dieser Position die Base Adenin.

Für die Mutagenese können klassische Mutageneseverfahren unter Verwendung mutagener Stoffe wie beispielsweise N-Methyl-N'-Nitro-N-Nitrosoguanidin oder ultraviolettes Licht verwendet werden. Weiterhin können für die Mutagenese in-

20

35

werden.

vitro Methoden wie beispielsweise eine Behandlung mit
Hydroxylamin (Miller, J. H.: A Short Course in Bacterial'
Genetics. A Laboratory Manual and Handbook for Escherichia
coli and Related Bacteria, Cold Spring Harbor Laboratory
Press, Cold Spring Harbor, 1992) oder mutagene
Oligonukleotide (T. A. Brown: Gentechnologie für
Einsteiger, Spektrum Akademischer Verlag, Heidelberg, 1993)
oder die Polymerase-Kettenreaktion (PCR), wie sie im
Handbuch von Newton und Graham (PCR, Spektrum Akademischer
Verlag, Heidelberg, 1994) beschrieben ist, verwendet

Die erfindungsgemäßen rpsL-Allele können unter anderem auch durch das Verfahren des Genaustausches ("gene replacement"), wie es bei Schwarzer und Pühler

15 (Bio/Technology 9, 84-87 (1991)) oder Peters-Wendisch et al. (Microbiology 144, 915 - 927 (1998)) beschrieben ist, in geeignete Stämme überführt werden. Das entsprechende rpsL-Allel wird hierbei in einen für C. glutamicum nicht replikativen Vektor wie beispielsweise pK18mobsacB oder

pK19mobsacB (Jäger et al., Journal of Bacteriology 174: 5462-65 (1992)) oder pCR®Blunt (Firma Invitrogen, Groningen, Niederlande; Bernard et al., Journal of Molecular Biology, 234: 534-541 (1993)) kloniert und dieser anschließend durch Transformation oder Konjugation in den gewünschten Wirt von C. glutamicum überführt. Nach homologer Rekombination mittels eines ersten, Integration bewirkenden "cross-over"-Ereignisses und eines geeigneten

zweiten, eine Exzision bewirkenden "cross-over"-Ereignisses im Zielgen bzw. in der Zielsequenz erreicht man den Einbau

30 der Mutation.

Zusätzlich kann es für die Produktion von L-Aminosäuren vorteilhaft sein, neben dem rpsL-Gen eines oder mehrere Enzyme des jeweiligen Biosyntheseweges, der Glykolyse, der Anaplerotik, des Zitronensäure-Zyklus, des Pentosephosphat-Zyklus, des Aminosäure-Exports und gegebenenfalls

25

regulatorische Proteine zu verstärken, insbesondere überzuexprimieren. Die Verwendung endogener Gene wird im allgemeinen bevorzugt.

Unter "endogenen Genen" oder "endogenen Nukleotidsequenzen" versteht man die in der Population einer Art vorhandenen Gene beziehungsweise Nukleotidsequenzen und deren Allele.

So kann für die Herstellung von L-Lysin zusätzlich zur Verstärkung des rpsL-Gens eines oder mehrere Gene, ausgewählt aus der Gruppe

- das für die Dihydrodipicolinat-Synthase kodierende Gen dapA (EP-B 0 197 335),
 - das für die Glyceraldehyd-3-Phosphat-Dehydrogenase kodierende Gen gap (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
- das für die Triosephosphat-Isomerase kodierende Gen tpi (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
 - das für die 3-Phosphoglycerat-Kinase kodierende Gen pgk
 (Eikmanns (1992), Journal of Bacteriology 174:6076-6086),
 - das für die Glucose-6-Phosphat-Dehydrogenase kodierende Gen zwf (JP-A-09224661),
 - das für die Pyruvat-Carboxylase kodierende Gen pyc (DE-A-198 31 609),
 - das für die Malat-Chinon-Oxidoreduktase kodierende Gen mgo (Molenaar et al., European Journal of Biochemistry 254, 395-403 (1998)),
 - das für eine feed-back resistente Aspartatkinase kodierende Gen lysC (Kalinowski et al., Molecular Microbiologie 5(5), 1197-204 (1991)),

h 10

15

- das für das Lysin-Export-Protein kodierende Gen lysE (DE-A-195 48 222),
- das für das Zwal-Protein kodierende Gen zwal (DE: 19959328.0, DSM 13115), und
- das für die β-Untereinheit der RNA-Polymerase B kodierende rpoB-Gen dargestellt in SEQ ID No. 5 und 6

verstärkt, insbesondere überexprimiert werden.

Der Begriff "Abschwächung" beschreibt in diesem Zusammenhang die Verringerung oder Ausschaltung der intrazellulären Aktivität eines oder mehrerer Enzyme (Proteine) in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise einen schwachen Promotor verwendet oder ein Gen bzw. Allel verwendet, das für ein entsprechendes Enzym mit einer niedrigen Aktivität kodiert bzw. das entsprechende Gen oder Enzym (Protein) inaktiviert und gegebenenfalls diese Maßnahmen kombiniert.

Durch die Maßnahmen der Abschwächung wird die Aktivität oder Konzentration des entsprechenden Proteins im allgemeinen auf 0 bis 75%, 0 bis 50%, 0 bis 25%, 0 bis 10% oder 0 bis 5% der Aktivität oder Konzentration des Wildtyp-Proteins, beziehungsweise der Aktivität oder Konzentration des Proteins im Ausgangs-Mikroorganismus, herabgesenkt.

Weiterhin kann es für die Produktion von L-Aminosäuren 25 vorteilhaft sein, zusätzlich zur Verstärkung des rpsL-Gens eines oder mehrere Gene, ausgewählt aus der Gruppe

- das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck (DE 199 50 409.1; DSM 13047),
- das für die Glucose-6-Phosphat-Isomerase kodierende Gen 30 pgi (US 09/396,478; DSM 12969),

- das für die Pyruvat-Oxidase kodierende Gen poxB (DE: 1995 1975.7; DSM 13114),
- das für das Zwa2-Protein kodierende Gen zwa2 (DE: 19959327.2, DSM 13113)
- 5 abzuschwächen, insbesondere die Expression zu verringern.

Weiterhin kann es für die Produktion von Aminosäuren vorteilhaft sein, neben der Verstärkung des rpsL-Gens unerwünschte Nebenreaktionen auszuschalten (Nakayama: "Breeding of Amino Acid Producing Microorganisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).

Die erfindungsgemäß hergestellten Mikroorganismen sind ebenfalls Gegenstand der Erfindung und können kontinuierlich oder diskontinuierlich im batch - Verfahren (Satzkultivierung) oder im fed batch (Zulaufverfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) zum Zwecke der Produktion von Aminosäuren kultiviert werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden ist im Lehrbuch von Chmiel (Bioprozeßtechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch

Das zu verwendende Kulturmedium muss in geeigneter Weise
25 den Ansprüchen der jeweiligen Stämme genügen.
Beschreibungen von Kulturmedien verschiedener
Mikroorganismen sind im Handbuch "Manual of Methods for
General Bacteriology" der American Society for Bacteriology
(Washington D.C., USA, 1981) enthalten.

von Storhas (Bioreaktoren und periphere Einrichtungen

(Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) beschrieben.

30 Als Kohlenstoffquelle können Zucker und Kohlehydrate wie z.B. Glucose, Saccharose, Laktose, Fructose, Maltose, Melasse, Stärke und Cellulose, Öle und Fette wie z.B. Sojaöl, Sonnenblumenöl, Erdnußöl und Kokosfett, Fettsäuren

wie z.B. Palmitinsäure, Stearinsäure und Linolsäure, Alkohole wie z.B. Glycerin und Ethanol und organische Säuren wie z.B. Essigsäure verwendet werden. Diese Stoffe können einzeln oder als Mischung verwendet werden.

Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt,
Malzextrakt, Maisquellwasser, Sojabohnenmehl und Harnstoff
oder anorganische Verbindungen wie Ammoniumsulfat,
Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und
Ammoniumnitrat verwendet werden. Die Stickstoffquellen
können einzeln oder als Mischung verwendet werden.

Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die
entsprechenden Natrium haltigen Salze verwendet werden. Das
Kulturmedium muß weiterhin Salze von Metallen enthalten wie
z.B. Magnesiumsulfat oder Eisensulfat, die für das Wachstum
notwendig sind. Schließlich können essentielle Wuchsstoffe
wie Aminosäuren und Vitamine zusätzlich zu den oben
genannten Stoffen eingesetzt werden. Dem Kulturmedium
können überdies geeignete Vorstufen zugesetzt werden. Die
genannten Einsatzstoffe können zur Kultur in Form eines
einmaligen Ansatzes hinzugegeben oder in geeigneter Weise
während der Kultivierung zugefüttert werden.

Zur pH-Kontrolle der Kultur werden basische Verbindungen
wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw.
Ammoniakwasser oder saure Verbindungen wie Phosphorsäure
oder Schwefelsäure in geeigneter Weise eingesetzt. Zur
Kontrolle der Schaumentwicklung können Antischaummittel wie
z.B. Fettsäurepolyglykolester eingesetzt werden. Zur
Aufrechterhaltung der Stabilität von Plasmiden können dem
Medium geeignete selektiv wirkende Stoffe wie z.B.
Antibiotika hinzugefügt werden. Um aerobe Bedingungen
aufrechtzuerhalten, werden Sauerstoff oder Sauerstoff
haltige Gasmischungen wie z.B. Luft in die Kultur
eingetragen. Die Temperatur der Kultur liegt normalerweise

10

bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum des gewünschten Produktes gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.

Methoden zur Bestimmung von L-Aminosäuren sind aus dem Stand der Technik bekannt. Die Analyse kann zum Beispiel so wie bei Spackman et al. (Analytical Chemistry, 30, (1958), 1190) beschrieben durch Ionenaustausch-Chromatographie mit anschließender Ninhydrin-Derivatisierung erfolgen, oder sie kann durch reversed phase HPLC erfolgen, so wie bei Lindroth et al. (Analytical Chemistry (1979) 51: 1167-1174) beschrieben.

Eine Reinkultur des Corynebacterium glutamicum Stammes

DM1545 wurde am 16. Januar 2001 bei der Deutschen Sammlung
für Mikroorganismen und Zellkulturen (DSMZ, Braunschweig,
Deutschland) als DSM 13992 gemäß Budapester Vertrag
hinterlegt.

Das erfindungsgemäße Verfahren dient zur fermentativen 20 Herstellung von Aminosäuren, insbesondere L-Lysin.

Die vorliegende Erfindung wird im folgenden anhand von Ausführungsbeispielen näher erläutert.

Die Isolierung von Plasmid-DNA aus Escherichia coli sowie alle Techniken zur Restriktion, Klenow- und alkalische Phosphatasebehandlung wurden nach Sambrook et al. (Molecular Cloning. A Laboratory Manual (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA) durchgeführt. Methoden zur Transformation von Escherichia coli sind ebenfalls in diesem Handbuch beschrieben.

Die Zusammensetzung gängiger Nährmedien wie LB- oder TY-Medium kann ebenfalls dem Handbuch von Sambrook et al. entnommen werden.

Beispiel 1

Herstellung einer genomischen Cosmid-Genbank aus Corynebacterium glutamicum ATCC 13032

Chromosomale DNA aus Corynebacterium glutamicum ATCC 13032

5 wird wie bei Tauch et al. (1995, Plasmid 33:168-179)
beschrieben isoliert und mit dem Restriktionsenzym Sau3AI
(Amersham Pharmacia, Freiburg, Deutschland,
Produktbeschreibung Sau3AI, Code no. 27-0913-02) partiell
gespalten. Die DNA-Fragmente werden mit shrimp alkalischer

10 Phosphatase (Roche Diagnostics GmbH, Mannheim, Deutschland,

Produktbeschreibung SAP, Code no. 1758250)
dephosphoryliert. Die DNA des Cosmid-Vektors SuperCos1
(Wahl et al. (1987) Proceedings of the National Academy of
Sciences USA 84:2160-2164), bezogen von der Firma

15 Stratagene (La Jolla, USA, Produktbeschreibung SuperCos1
Cosmid Vektor Kit, Code no. 251301) wird mit dem
Restriktionsenzym XbaI (Amersham Pharmacia, Freiburg,
Deutschland, Produktbeschreibung XbaI, Code no. 27-0948-02)
gespalten und ebenfalls mit shrimp alkalischer Phosphatase
20 dephosphoryliert.

Anschließend wird die Cosmid-DNA mit dem Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Code no. 27-0868-04) gespalten. Die auf diese Weise behandelte Cosmid-DNA wird mit der behandelten ATCC13032-DNA gemischt und der Ansatz mit T4-

behandelten ATCC13032-DNA gemischt und der Ansatz mit T4DNA-Ligase (Amersham Pharmacia, Freiburg, Deutschland,
Produktbeschreibung T4-DNA-Ligase, Code no.27-0870-04)
behandelt. Das Ligationsgemisch wird anschließend mit Hilfe
des Gigapack II XL Packing Extracts (Stratagene, La Jolla,

30 USA, Produktbeschreibung Gigapack II XL Packing Extract, Code no. 200217) in Phagen verpackt.

Zur Infektion des E. coli Stammes NM554 (Raleigh et al. 1988, Nucleic Acid Research 16:1563-1575) werden die Zellen in 10 mM MgSO₄ aufgenommen und mit einem Aliquot der

Phagensuspension vermischt. Infektion und Titerung der Cosmidbank werden wie bei Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor) beschrieben durchgeführt, wobei die Zellen auf LB-Agar (Lennox, 1955, Virology, 1:190) mit 100 mg/l Ampicillin ausplattiert werden. Nach Inkubation über Nacht bei 37°C werden rekombinante Einzelklone selektioniert.

Beispiel 2

Isolierung und Sequenzierung des rpsL-Gens

- Die Cosmid-DNA einer Einzelkolonie wird mit dem Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) nach Herstellerangaben isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Product No. 27-0913-02) partiell gespalten. Die DNA-Fragmente werden mit shrimp alkalischer Phosphatase (Roche Diagnostics GmbH, Mannheim, Deutschland, Produktbeschreibung SAP, Product No. 1758250) dephosphoryliert. Nach gelelektrophoretischer
- Auftrennung erfolgt die Isolierung der Cosmidfragmente im 20 Größenbereich von 1500 bis 2000 bp mit dem QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany).
 - Die DNA des Sequenziervektors pZero-1, bezogen von der Firma Invitrogen (Groningen, Niederlande,
- Produktbeschreibung Zero Background Cloning Kit, Product No. K2500-01), wird mit dem Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Product No. 27-0868-04) gespalten. Die Ligation der Cosmidfragmente in den
- 30 Sequenziervektor pZero-1 wird wie von Sambrook et al.
 (1989, Molecular Cloning: A Laboratory Manual, Cold Spring
 Harbor) beschrieben durchgeführt, wobei das DNA-Gemisch mit
 T4-Ligase (Pharmacia Biotech, Freiburg, Deutschland) über
 Nacht inkubiert wird. Dieses Ligationsgemisch wird

10

30

anschließend in den E. coli Stamm DH5αMCR (Grant, 1990, Proceedings of the National Academy of Sciences U.S.A., 87:4645-4649) elektroporiert (Tauch et al. 1994, FEMS Microbiol Letters, 123:343-7) und auf LB-Agar (Lennox, 1955, Virology, 1:190) mit 50 mg/l Zeocin ausplattiert.

Die Plasmidpräparation der rekombinanten Klone erfolgt mit dem Biorobot 9600 (Product No. 900200, Qiagen, Hilden, Deutschland). Die Sequenzierung erfolgt nach der Dideoxy-Kettenabbruch-Methode von Sanger et al. (1977, Proceedings of the National Academy of Sciences U.S.A., 74:5463-5467) mit Modifikationen nach Zimmermann et al. (1990, Nucleic Acids Research, 18:1067). Es wird der "RR dRhodamin Terminator Cycle Sequencing Kit" von PE Applied Biosystems (Product No. 403044, Weiterstadt, Deutschland) verwendet.

Die gelelektrophoretische Auftrennung und Analyse der Sequenzierreaktion erfolgt in einem "Rotiphorese NF Acrylamid/Bisacrylamid" Gel (29:1) (Product No. A124.1, Roth, Karlsruhe, Germany) mit dem "ABI Prism 377" Sequenziergerät von PE Applied Biosystems (Weiterstadt, Deutschland).

Die erhaltenen Roh-Sequenzdaten werden anschließend unter Anwendung des Staden-Programpakets (1986, Nucleic Acids Research, 14:217-231) Version 97-0 prozessiert. Die Einzelsequenzen der pZerol-Derivate werden zu einem zusammenhängenden Contig assembliert. Die computergestützte Kodierbereichsanalyse wird mit dem Programm XNIP (Staden, 1986, Nucleic Acids Research, 14:217-231) angefertigt.

Die erhaltene Nukleotidsequenz ist in SEQ ID No. 1 dargestellt. Die Analyse der Nukleotidsequenz ergibt ein offenes Leseraster von 383 Basenpaaren, welches als rpsL-Gen bezeichnet wird. Das rpsL-Gen kodiert für ein Protein von 127 Aminosäuren.

In gleicher Weise wurde der stromaufwärts von SEQ ID No. 1 gelegene DNA-Abschnitt identifiziert, der in SEQ ID No. 7

dargestellt ist. Die um SEQ ID No. 7 erweiterte rpsL-Genregion ist in SEQ ID No. 8 dargestellt.

Beispiel 3

Amplifikation und Sequenzierung der DNA des rpsL-Allels von 5 Stamm DM1545

Der Corynebacterium glutamicum Stamm DM1545 wurde durch mehrfache, ungerichtete Mutagenese, Selektion und Mutantenauswahl aus C. glutamicum ATCC13032 hergestellt. Der Stamm ist Methionin-sensitiv.

- 10 Aus dem Stamm DM1545 wird mit den üblichen Methoden (Eikmanns et al., Microbiology 140: 1817 1828 (1994)) chromosomale DNA isoliert. Mit Hilfe der Polymerase-Kettenreaktion wird ein DNA-Abschnitt amplifiziert, welcher das rpsL-Gen bzw. Allel trägt. Aufgrund der aus Beispiel 2
- 15 für C. glutamicum bekannten Sequenz des rpsL-Gens werden folgende Primer-Oligonukleotide für die PCR ausgewählt:

rpsL-1 (SEQ ID No. 10):
5` cag ctc tac aag agt gtc ta 3`

rpsL-2 (SEQ ID No. 11):

25

30

20 5' tgg tcg tgg tct tac cag ca 3'

Die dargestellten Primer werden von der Firma MWG Biotech (Ebersberg, Deutschland) synthetisiert und nach der Standard-PCR-Methode von Innis et al. (PCR Protocols. A Guide to Methods and Applications, 1990, Academic Press) die PCR-Reaktion durchgeführt. Die Primer ermöglichen die

Amplifizierung eines ca. 1,78 kb langen DNA-Abschnittes, welcher das rpsL-Allel trägt.

Das amplifizierte DNA-Fragment von ca. 1,78 kb Länge, welches das rpsL-Allel des Stammes DM1545 trägt, wird durch Elektrophorese in einem 0,8%igen Agarosegel identifiziert,

aus dem Gel isoliert und mit den üblichen Methoden aufgereinigt (QIAquick Gel Extraction Kit, Qiagen, Hilden).

Die Nukleotidsequenz des amplifizierten DNA-Fragmentes bzw. PCR-Produktes wird von der Firma MWG Biotech (Ebersberg, 5 Deutschland) durch Sequenzierung ermittelt. Die Sequenz des PCR-Produktes ist in der SEQ ID No. 3 dargestellt. Die sich mit Hilfe des Programmes Patentin ergebende Aminosäuresequenz des dazugehörigen ribosomalen Proteins S12 ist in der SEQ ID No. 4 dargestellt.

10 An der Position 128 der Nukleotidsequenz der Kodierregion des rpsL-Allels von Stamm DM1545, also an Position 627 der in SEQ ID No. 3 dargestellten Nukleotidsequenz, befindet sich die Base Guanin. An der entsprechenden Position des Wildtypgens befindet sich die Base Adenin (SEQ ID No. 1).

An der Position 43 der Aminosäuresequenz des ribosomalen Proteins S12 von Stamm DM1545 befindet sich die Aminosäure Arginin (SEQ ID No. 4). An der entsprechenden Position des Wildtyp-Proteins befindet sich die Aminosäure Lysin (SEQ ID No. 2).

Beispiel 4

20

25

30

Austausch des rpsL-Wildtypgens von Stamm DSM5715 gegen das rpsL-1545-Allel

4.1 Gewinnung eines DNA-Fragmentes, welches das rpsL-1545-Allel trägt

Aus dem Stamm DM1545 wird mit den üblichen Methoden (Eikmanns et al., Microbiology 140: 1817 - 1828 (1994)) chromosomale DNA isoliert. Mit Hilfe der Polymerase-Kettenreaktion wird ein DNA-Abschnitt amplifiziert, welcher das rpsL-1545-Allel trägt, bei dem an Position 128 des Kodierbereichs (CDS) die Base Guanin anstelle der an dieser Stelle im Wildtypgen enthaltenen Base Adenin enthalten ist.

Aufgrund der aus Beispiel 2 für C. glutamicum bekannten Sequenz des rpsL - Gens werden folgende Primer-Oligonukleotide für die Polymerase-Kettenreaktion ausgewählt:

- 5 rpsL_XL-A1 (SEQ ID No. 12):
 5 ga tct aga-ggt tgc cgg taa tcc tgt tg 3'
 rpsL_XL-E1 (SEQ ID No. 13):
 5 ga tct aga-cgc agg ctg cca gct tat tc 3'
- Die dargestellten Primer werden von der Firma MWG Biotech

 (Ebersberg, Deutschland) synthetisiert und nach der
 Standard-PCR-Methode von Innis et al. (PCR Protocols. A
 Guide to Methods and Applications, 1990, Academic Press)
 die PCR Reaktion durchgeführt. Die Primer ermöglichen die
 Amplifizierung eines ca. 1,59 kb langen DNA-Abschnittes,

 welcher das rpsL-1545-Allel trägt (SEQ ID No. 9). Außerdem
 enthalten die Primer die Sequenz für eine Schnittstelle der
 Restriktionsendonuklease XbaI, die in der oben
 dargestellten Nukleotidabfolge durch Unterstreichen
 markiert ist.
- Das amplifizierte DNA-Fragment von ca. 1,59 kb Länge, welches das rpsL-1545-Allel trägt, wird mit der Restriktionsendonuklease XbaI gespalten, durch Elektrophorese in einem 0,8%igen Agarosegel identifiziert und anschließend aus dem Gel isoliert und mit den üblichen Methoden aufgereinigt (QIAquick Gel Extraction Kit, Qiagen, Hilden).
 - 4.2 Konstruktion des Austauschvektors pK18mobsacB_rpsL1545
- Das in Beispiel 4.1 beschriebene ca. 1,58 kb lange, mit der Restriktionsendonuklease XbaI gespaltene DNA-Fragment, welches das rpsL-1545-Allel enthält, wird mittels Austauschmutagenese unter Zuhilfenahme des bei Schäfer et al. (Gene, 14, 69-73 (1994)) beschriebenen sacB-Systems in

das Chromosom des C. glutamicum Stammes DSM5715 eingebaut. Dieses System ermöglicht die Herstellung bzw. die Selektion von Allel-Austauschen, die sich durch homologe Rekombination vollziehen.

- Der mobilisierbare Klonierungsvektor pK18mobsacB wird mit dem Restriktionsenzym XbaI verdaut und die Enden mit alkalischer Phosphatase (Alkaline Phosphatase, Boehringer Mannheim, Deutschland) dephosphoryliert. Der so vorbereitete Vektor wird mit dem ca. 1,58 kb großen rpsL-10 1545-Fragment gemischt und der Ansatz mit T4-DNA-Ligase (Amersham-Pharmacia, Freiburg, Deutschland) behandelt.
 - Anschließend wird der E. coli Stamm S17-1 (Simon et al., Bio/Technologie 1: 784-791, 1993) mit dem Ligationsansatz transformiert (Hanahan, In: DNA Cloning. A Practical
- Approach. Vol. 1, ILR-Press, Cold Spring Habor, New York, 1989). Die Selektion der Plasmid-tragenden Zellen erfolgt durch Ausplattieren des Tansformationsansatztes auf LB-Agar (Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd Ed., Cold Spring Habor, New York, 1989), der mit 25
- 20 mg/l Kanamycin supplementiert wurde.

25

Plasmid-DNA wird aus einer Transformante mit Hilfe des QIAprep Spin Miniprep Kit der Firma Qiagen isoliert und durch Restriktionsspaltung mit dem Enzym PstI und anschließender Agarosegel-Elektrophorese überprüft. Das Plasmid wird pK18mobsacB_rpsL-1545 genannt und ist in Figur 1 dargestellt.

4.3 Integration des Vektors pK18mobsacB_rpsL-1545 in DSM5715 und Allelaustausch

Der in Beispiel 4.2 genannte Vektor pK18mobsacB_rpsL-1545
wird nach einem Protokoll von Schäfer et al. (Journal of
Microbiology 172: 1663-1666 (1990)) in den C. glutamicum
Stamm DSM5715 durch Konjugation transferiert. Der Vektor
kann in DSM5715 nicht selbständig replizieren und bleibt

10

15

20

Chromosom.

nur dann in der Zelle erhalten, wenn er als Folge eines Rekombinationsereignisses im Chromosom integriert vorliegt. Die Selektion von Transkonjuganten, d. h. von Klonen mit integriertem pK18mobsacB_rpsL-1545 erfolgt durch Ausplattieren des Konjugationsansatzes auf LB-Agar (Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd Ed., Cold Spring Habor, New York, 1989), der mit 15 mg/l Kanamycin und 50 mg/l Nalidixinsäure supplementiert wird. Kanamycin-resistente Transkonjuganten werden auf LB-Agarplatten mit 25 mg/l Kanamycin ausgestrichen und für 24 Stunden bei 33°C inkubiert. Eine Kanamycin-resistente Transkonjugante wird als DSM5715::pK18mobsacB_rpsL-1545 bezeichnet. Durch Integration des Vektors trägt sie

Zur Selektion von Mutanten, bei denen als Folge eines zweiten Rekombinationsereignisses die Exzision des Plasmides stattgefunden hat, werden Zellen des Stammes DSM5715::pK18mobsacB_rpsL-1545 30 Stunden unselektiv in LB-Flüssigmedium kultiviert, anschließend auf LB-Agar mit 10% Sucrose ausgestrichen und 16 Stunden bebrütet.

zusätzlich zum rpsL-Wildtypgen das rpsL-1545-Allel im

Das Plasmid pK18mobsacB_rpsL-1545 enthält ebenso wie das Ausgangsplasmid pK18mobsacB neben dem Kanamycin-Resistenzgen eine Kopie des für die Levan-Sucrase aus 25 Bacillus subtilis kodierenden sacB-Gens. Die durch Sucrose induzierbare Expression führt zur Bildung der Levan-Sucrase, die die Synthese des für C. glutamicum toxischen Produktes Levan katalysiert. Auf LB-Agar mit Sucrose wachsen daher nur solche Klone an, bei denen das integrierte pK18mobsacB_rpsL-1545 als Folge eines zweiten 30 Rekombinationsereignisses exzisiert hat. In Abhängigkeit von der Lage des zweiten Rekombinationsereignisses in bezug auf den Mutationsort findet bei der Exzision der Allelaustausch bzw. der Einbau der Mutation statt oder es 35 verbleibt die ursprüngliche Kopie im Chromosom des Wirtes.

Ungefähr 40 bis 50 Kolonien werden auf den Phänotyp "Wachstum in Gegenwart von Sucrose" und "Nicht-Wachstum in Gegenwart von Kanamycin" geprüft. Bei 4 Kolonien, die den Phänotyp "Wachstum in Gegenwart von Sucrose" und "Nicht-Wachstum in Gegenwart von Kanamycin" aufweisen, wird ein die rpsL-1545-Mutation überspannender Bereich des rpsL-Gens, ausgehend von dem Sequenzierprimer rL_1 (SEQ ID No. 14), von der Firma GATC Biotech AG (Konstanz, Deutschland) sequenziert, um nachzuweisen, dass die Mutation des rpsL-1545-Allels im Chromosom vorliegt. Der verwendete Primer rL 1 wird dazu von der Firma GATC synthetisiert:

rL_1 (SEQ ID No. 14):
5` atg agg ttg tcc gtg aca tg 3`

Auf diese Weise wurde ein Klon identifiziert, der an der 15 Position 128 der Kodierregion (CDS) des rpsL-Gens die Base Guanin enthält und somit das rpsL-1545-Allel besitzt. Dieser Klon wurde als Stamm DSM5715_rpsL-1545 bezeichnet.

Beispiel 5

10

Herstellung von Lysin

Die in Beispiel 4 erhaltenen C. glutamicum Stämme

DSM5715::pK18mobsacB_rpsL-1545 und DSM5715rpsL-1545 werden

in einem zur Produktion von Lysin geeigneten Nährmedium

kultiviert und der Lysingehalt im Kulturüberstand bestimmt.

Dazu werden die Stämme zunächst auf Agarplatte für 24

Stunden bei 33°C inkubiert. Ausgehend von dieser Agarplattenkultur wird je eine Vorkultur angeimpft (10 ml Medium im 100 ml Erlenmeyerkolben). Als Medium für die Vorkulturen wird das Medium MM verwendet. Die Vorkulturen werden 24 Stunden bei 33°C bei 240 rpm auf dem Schüttler inkubiert. Von diesen Vorkulturen wird je eine Hauptkultur angeimpft, so dass die Anfangs-OD (660 nm) der Hauptkulturen 0,1 OD beträgt. Für die Hauptkulturen wird ebenfalls das Medium MM verwendet.

Medium MM

CSL	5 g/l
MOPS	20 g/l
Glucose (getrennt autoklaviert)	50 g/l
Salze:	
$(NH_4)_2SO_4$	25 g/l
KH ₂ PO ₄	0,1 g/l
$MgSO_4$ * 7 H_2O	1,0 g/l
CaCl ₂ * 2 H ₂ O	10 mg/l
FeSO ₄ * 7 H ₂ O	10 mg/l
MnSO ₄ * H ₂ O	5,0mg/l
Biotin (sterilfiltriert)	0,3 mg/l
Thiamin * HCl (sterilfiltriert)	0,2 mg/l
L-Leucin (sterilfiltriert)	0,1 g/l
CaCO ₃	25 g/l

CSL (Corn Steep Liquor), MOPS (Morpholinopropansulfonsäure) und die Salzlösung werden mit Ammoniakwasser auf pH 7 eingestellt und autoklaviert. Anschließend werden die sterilen Substrat- und Vitaminlösungen sowie das trocken autoklavierte CaCO3 zugesetzt.

Die Kultivierung erfolgt in 10 ml Volumen in einem 100 ml Erlenmeyerkolben mit Schikanen. Die Kultivierung erfolgt bei 33°C und 80% Luftfeuchte.

Nach 72 Stunden wird die OD bei einer Meßwellenlänge von 660 nm mit dem Biomek 1000 (Beckmann Instruments GmbH,

München) ermittelt. Die gebildete Lysinmenge wird mit einem Aminosäureanalysator der Firma Eppendorf-BioTronik (Hamburg, Deutschland) durch Ionenaustauschchromatographie und Nachsäulenderivatisierung mit Ninhydrindetektion bestimmt.

In Tabelle 1 ist das Ergebnis des Versuches dargestellt.

Tabelle 1

Stamm	OD (660 nm)	Lysin-HCl g/l
DSM5715	8,2	13,57
DSM5715::pK18mobsacB _rpsL-1545	9,2	15,28
DSM5715rpsL-1545	7,9	14,74

Patentansprüche

10

- Isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine für das rpsL-Gen kodierende,
 Polynukleotidsequenz, ausgewählt aus der Gruppe
- polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
 - b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
 - c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
- d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c)

wobei das Polypeptid bevorzugt die Aktivität des ribosomalen Proteins S12 aufweist.

- 20 2. Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine in coryneformen Bakterien replizierbare, bevorzugt rekombinante DNA ist.
 - 3. Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine RNA ist.
 - 25 4. Polynukleotid gemäß Anspruch 2, enthaltend die Nukleinsäuresequenz wie in SEQ ID No. 1 dargestellt.
 - 5. Replizierbare DNA gemäß Anspruch 2, enthaltend
 - (i) die Nukleotidsequenz, gezeigt in SEQ ID No. 1, oder

10

20

- (ii) mindestens eine Sequenz, die der Sequenz (i) innerhalb des Bereichs der Degeneration des genetischen Kodes entspricht, oder
- (iii) mindestens eine Sequenz, die mit der zur Sequenz (i) oder (ii) komplementären Sequenz hybridisiert, und gegebenenfalls
 - (iv) funktionsneutrale Sinnmutationen in (i).
- 6. Replizierbare DNA gemäß Anspruch 5, d a d u r c h g e k e n n z e i c h n e t, dass die Hybridisierung unter einer Stringenz entsprechend höchstens 2x SSC durchgeführt wird.
- 7. Polynukleotidsequenz gemäß Anspruch 1, die für ein Polypeptid kodiert, das die in SEQ ID No. 2 dargestellte Aminosäuresequenz enthält.
- 15 8. Coryneforme Bakterien, in denen das rpsL-Gen verstärkt, insbesondere überexprimiert wird.
 - 9. Corynebacterium glutamicum Stamm DM1545 hinterlegt als DSM 13992 bei der Deutschen Sammlung für Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Deutschland).
 - 10. Verfahren zur fermentativen Herstellung von L-Aminosäuren, insbesondere L-Lysin, dadurch gekennzeich net, dass man folgende Schritte durchführt:
- a) Fermentation der die gewünschte L-Aminosäure produzierenden coryneformen Bakterien, in denen man zumindest das rpsL-Gen oder dafür kodierende Nukleotidsequenzen verstärkt, insbesondere überexprimiert;
- 30 b) Anreicherung der L-Aminosäure im Medium oder in den Zellen der Bakterien, und

10

15

20

30

- c) Isolierung der L-Aminosäure.
- 11. Verfahren gemäß Anspruch 10, d a d u r c h g e k e n n z e i c h n e t, dass man Bakterien einsetzt, in denen man zusätzlich weitere Gene des Biosyntheseweges der gewünschten L-Aminosäure verstärkt.
- 12. Verfahren gemäß Anspruch 10, d a d u r c h g e k e n n z e i c h n e t, dass man Bakterien einsetzt, in denen die Stoffwechselwege zumindest teilweise ausgeschaltet sind, die die Bildung der gewünschten L-Aminosäure verringern.
- 13. Verfahren gemäß Anspruch 10, d a d u r c h g e k e n n z e i c h n e t, dass man einen mit einem Plasmidvektor transformierten Stamm einsetzt, und der Plasmidvektor die für das rpsL-Gen kodierende Nukleotidsequenz trägt.
- 14. Verfahren gemäß Anspruch 10, d a d u r c h g e k e n n z e i c h n e t, dass man die Expression des (der) Polynukleotids (e), das (die) für das rpsL-Gen kodiert (kodieren) verstärkt, insbesondere überexprimiert.
- 15. Verfahren gemäß Anspruch 10, d a d u r c h g e k e n n z e i c h n e t, dass man die regulatorischen/katalytischen Eigenschaften des Polypeptids (Enzymprotein) erhöht, für das das Polynukleotid rpsL kodiert.
 - 16. Verfahren gemäß Anspruch 10, d a d u r c h g e k e n n z e i c h n e t, dass man zur Herstellung von L-Aminosäuren coryneforme Mikroorganismen fermentiert, in denen man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe

	16.1	das für die Dihydrodipicolinat-Synthase kodierende Gen dapA,
	16.2	das für die Glyceraldehyd-3-Phosphat- Dehydrogenase kodierende Gen gap,
5	16.3	das für die Triosephosphat-Isomerase kodierende Gen tpi,
	16.4	das für die 3-Phosphoglycerat-Kinase kodierende Gen pgk,
10	16.5	das für die Glucose-6-Phosphat-Dehydrogenase kodierende Gen zwf,
	16.6	das für die Pyruvat-Carboxylase kodierende Gen pyc,
	16.7	das für die Malat-Chinon-Oxidoreduktase kodierende Gen mgo,
15	16.8	das für eine feed-back resistente Aspartatkinase kodierende Gen lysC,
	16.9	das für das Lysin-Export-Protein kodierende Gen lysE,
a i;	16.10	das für das Zwal-Protein kodierende Gen zwal,
20	16.11	das für die RNA-Polymerase B kodierende rpoB- Gen

verstärkt bzw. überexprimiert.

17. Verfahren gemäß Anspruch 10, d a d u r c h
g e k e n n z e i c h n e t, dass man zur Herstellung
von L-Aminosäuren coryneforme Mikroorganismen
fermentiert, in denen man gleichzeitig eines oder
mehrere der Gene, ausgewählt aus der Gruppe

25

30

- 17.1 das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck,
- 17.2 das für die Glucose-6-Phosphat Isomerase kodierende Gen pgi,
- 5 17.3 das für die Pyruvat-Oxidase kodierende Gen poxB
 - 17.4 das für das Zwa2-Protein kodierende Gen zwa2 abschwächt.
 - 18. Coryneforme Bakterien, die einen Vektor enthalten, der ein Polynukleotid gemäß Anspruch 1 trägt.
- 10 19. Verfahren gemäß einem oder mehreren der Ansprüche 10-17, dadurch gekennzeichnet, dass man Mikroorganismen der Art Corynebacterium glutamicum einsetzt.
- 20. Verfahren zum Auffinden von RNA, cDNA und DNA, um

 Nukleinsäuren, beziehungsweise Polynukleotide oder Gene
 zu isolieren, die für das ribosomale Protein S12
 kodieren oder eine hohe Ähnlichkeit mit der Sequenz des
 rpsL-Gens aufweisen, d a d u r c h
 g e k e n n z e i c h n e t, dass man das

 Polynukleotid, enthaltend die Polynukleotidsequenzen
 gemäß den Ansprüchen 1, 2, 3 oder 4, als
 Hybridisierungssonden einsetzt.
 - 21. Verfahren gemäß Anspruch 18, d a d u r c h g e k e n n z e i c h n e t, dass man arrays, micro arrays oder DNA-chips einsetzt.
 - 22. Aus coryneformen Bakterien stammende DNA, kodierend für ribosomale S12 Proteine, wobei die zugehörigen Aminosäuresequenzen zwischen den Positionen 38 bis 48 in der SEQ ID No. 2 durch Aminosäureaustausch verändert sind.

5

- 23. Aus coryneformen Bakterien stammende DNA, kodierend für ribosomale S12 Proteine, wobei die zugehörigen Aminosäuresequenzen an Position 43 in der SEQ ID No. 2 jede andere proteinogene Aminosäure ausgenommen L-Lysin enthalten.
- 24. Aus coryneformen Bakterien stammende DNA, kodierend für ribosomale S12 Proteine, wobei die zugehörigen Aminosäuresequenzen an Position 43 in der SEQ ID No. 2 L-Histidin oder L-Arginin enthalten.
- 10 25. DNA gemäß Anspruch 24 d a d u r c h
 g e k e n n z e i c h n e t, dass diese für das
 ribosomale Protein S12 kodiert, dessen
 Aminosäuresequenz an Position 43 L-Arginin enthält,
 dargestellt in SEQ ID No. 4.
- 15 26. DNA gemäß Anspruch 25 d a d u r c h
 g e k e n n z e i c h n e t, dass diese an Position 128
 des Kodierbereichs, entsprechend der Position 627 der
 in SEQ ID No. 3 dargestellten Sequenz, die Nukleobase
 Guanin enthält.
- 20 27. Coryneforme Bakterien die eine DNA gemäß Anspruch 22, 23, 24, 25 oder 26 enthalten.

Zusammenfassung

10

20

Die Erfindung betrifft ein isoliertes Polynukleotid, enthaltend eine Polynukleotidsequenz, ausgewählt aus der Gruppe

- 5 a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
 - b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
 - c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
- d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c),

und ein Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung von coryneformen Bakterien, in denen zumindest das rpsL-Gen verstärkt vorliegt, und die Verwendung von Polynukleotiden, die die erfindungsgemäßen Sequenzen enthalten, als Hybridisierungssonden.

	5	ggt gtc cgt tac aag atc gtc cgt ggc gca ctg gat acc cag ggt gtt Gly Val Arg Tyr Lys Ile Val Arg Gly Ala Leu Asp Thr Gln Gly Val 95 100 105	820
		aag gac cgc aag cag gct cgt tcc ccg cta cgg cgc gaa gag ggg ata Lys Asp Arg Lys Gln Ala Arg Ser Pro Leu Arg Arg Glu Glu Gly Ile 110 115 120	868
	10	att aaa aat gcg taaatcagca gctcctaagc gtccagtagt tcaggaccct Ile Lys Asn Ala 125	920
	15	gtatacaagt ccgagctcgt tacccagctc gtaaacaaga tcctcatcgg tggcaagaag	980
	13	tccaccgcag agegcategt ctacggtgca ctcgagatet geegtgagaa gaccggcace	1040
		gatccagtag gaaccetega gaaggetete ggcaacgtge gtccagacet egaagttegt	1100
. و	20	tecegeegtg ttggtggege tacetaceag gtgccagtgg atgttegeee agagegegea	1160
		aacaccctcg cactgcgttg gttggtaacc ttcacccgtc agcgtcgtga gaacaccatg	1220
	25 .	atcgagcgtc ttgcaaacga acttctggat gcagccaacg gccttggcgc ttccgtgaag	1280
		cgtcgcgaag acacccacaa gatggcagag gccaaccgcg ccttcgctca ctaccgctgg	1340
		tagtactgcc aagacatgaa agcccaatca cctttaagat caacgcctgc cggcgccctt	1400
	30	cacatttgaa taagctggca gcctgcgttt cttcaaggcg actgggcttt tagtctcatt	1460
		aatgcagttc accgctgtaa gatagctaaa tagaaacact gtttcggcag tgtgttacta	1520
	35	aaaaatccat gtcacttgcc tcgagcgtgc tgcttgaatc gcaagttagt ggcaaaatgt	1580
		aacaagagaa ttatccgtag gtgacaaact ttttaatact tgggtatctg tcatggatac	1640
		cccggtaata aataagtgaa ttaccgtaac caacaagttg gggtaccact gtggcacaag	1700
	40	aagtgettaa ggatetaaae aaggteegea acateggeat catggegeae ategatgetg	1760
e		gtaagaccac gacca	1775
	45	<210> 2 <211> 127 <212> PRT <213> Corynebacterium glutamicum	
	50		
		<pre><400> 2 Met Pro Thr Ile Gln Gln Leu Val Arg Lys Gly Arg His Asp Lys Ser 1</pre>	
	55	Ala Lys Val Ala Thr Ala Ala Leu Lys Gly Ser Pro Gln Arg Arg Gly 20 25 30	
	60	Val Cys Thr Arg Val Tyr Thr Thr Thr Pro Lys Lys Pro Asn Ser Ala 35 40 .	
		Leu Arg Lys Val Ala Arg Val Arg Leu Thr Ser Gly Ile Glu Val Ser 50 55 60	

		Ala Tyr Ile Pro Gly Glu Gly His Asn Leu Gln Glu His Ser Met Val 65 70 75 80	
	5	Leu Val Arg Gly Gly Arg Val Lys Asp Leu Pro Gly Val Arg Tyr Lys 85 90 95	
	1.0	Ile Val Arg Gly Ala Leu Asp Thr Gln Gly Val Lys Asp Arg Lys Gln 100 105 110	
	10	Ala Arg Ser Pro Leu Arg Arg Glu Glu Gly Ile Ile Lys Asn Ala 115 120 125	
	15	<210> 3 <211> 1775 <212> DNA <213> Corynebacterium glutamicum	
(20	<220> <221> CDS <222> (500)(880) <223> rpsL-1545-Allel	
	25	<220> <221> mutation <222> (627)(627) <223> Austausch von Adenin gegen Guanin	
	30	<400> 3 cagctctaca agagtgtcta agtggcgggc attccatgct ttggaggagc gatcttcaaa 6	0
		ttcctccaaa gtgagttgac ctcgggaaac agctgcagaa agttcatcca cgacttggtt 12	0
	35	teggttaagg teagtggega gettetttge tggttegttt eettgaggaa eagteatggg 18	0
	33	aaccattcta acaagggatt tggtgttttc tgcggctagc tgataatgtg aacggctgag 24	0
		teccaetett gtagttggga attgaeggea cetegeaete aagegeggta tegeceetgg 30	0
	40	ttttccggga cgcggtggcg catgtttgca tttgatgagg ttgtccgtga catgtttggt 36	0
		cgggccccaa aaagagcccc cttttttgcg tgtctggaca ctttttcaaa tccttcgcca 42	0
W.		tegacaaget cageettegt gttegteece egggegteae gteageagtt aaagaacaac 48	0
	45	tccgaaataa ggatggttc atg cca act att cag cag ctg gtc cgt aag ggc 53 Met Pro Thr Ile Gln Gln Leu Val Arg Lys Gly 1 5 10	2
	50	cgc cac gat aag tcc gcc aag gtg gct acc gcg gca ctg aag ggt tcc Arg His Asp Lys Ser Ala Lys Val Ala Thr Ala Ala Leu Lys Gly Ser 15 20 25	0
	55	cct cag cgt cgt ggc gta tgc acc cgt gtg tac acc acc acc cct agg Pro Gln Arg Arg Gly Val Cys Thr Arg Val Tyr Thr Thr Thr Pro Arg 30 35 40	8
	60	aag cct aac tct gct ctt cgt aag gtc gct cgt gtg cgc ctt acc tcc Lys Pro Asn Ser Ala Leu Arg Lys Val Ala Arg Val Arg Leu Thr Ser 45 50 55	6
		ggc atc gag gtt tcc gct tac atc cct ggt gag ggc cac aac ctg cag 72	4

	Gly Ile Glu Val Ser Ala Tyr Ile Pro Gly Glu Gly His Asn Leu Gln 65 70 75	
	gag cac tcc atg gtg ctc gtt cgc ggt ggt cgt gtt aag gac ctc cca Glu His Ser Met Val Leu Val Arg Gly Gly Arg Val Lys Asp Leu Pro 80 85 90	772
1	100 105	820
15	aag gac cgc aag cag gct cgt tcc ccg cta cgg cgc gaa gag ggg ata Lys Asp Arg Lys Gln Ala Arg Ser Pro Leu Arg Arg Glu Glu Gly Ile 110 115 120	868
	att aaa aat gcg taaatcagca gctcctaagc gtccagtagt tcaggaccct Ile Lys Asn Ala 125	920
20	gtatacaagt ccgagctcgt tacccagctc gtaaacaaga teetcategg tggcaagaag	980
	tccaccgcag agcgcatcgt ctacggtgca ctcgagatct gccgtgagaa gaccggcacc	1040
25	. gatecagtag gaaccetogs gasewith	1100
	tecegeegtg ttggtggege tacetaceag gtgccagtgg atgttegeee agagegegea	1160
	aacaccctcg cactgcgttg gttggtaacc ttcacccgtc agcgtcgtga gaacaccatg	1220
30	atcgagcgtc ttgcaaacga acttctggat gcagccaacg gccttggcgc ttccgtgaag	1280
	cgtcgcgaag acacccacaa gatggcagag gccaaccgcg ccttcgctca ctaccgctgg	1340
35	tagtactgcc aagacatgaa agcccaatca cctttaagat caacgcctgc cggcgccctt	1400
	cacatttgaa taagctggca gcctgcgttt cttcaaggcg actgggcttt tagtctcatt	1460
	aatgcagttc accgctgtaa gatagctaaa tagaaacact gtttcggcag tgtgttacta	1520
40	aaaaatccat gtcacttgcc tcgagcgtgc tgcttgaatc gcaagttagt ggcaaaatgt	1580
Ď	aacaagagaa ttatccgtag gtgacaaact ttttaatact tgggtatctg tcatggatac	
45	cccggtaata aataagtgaa ttaccgtaac caacaagttg gggtaccact gtggcacaag	1640
	aagtgettaa ggatetaaae aaggteegea acateggeat catggegeae ategatgetg	1700
	gtaagaccac gacca	1760
50	.010	1775
55	<210> 4 <211> 127 <212> PRT <213> Corynebacterium glutamicum	
<i>JJ</i>	<pre><400> 4 Met Pro Thr Ile Gln Gln Leu Val Arg Lys Gly Arg His Asp Lys Ser 1</pre>	
60	Ala Lys Val Ala Thr Ala Ala Leu Lys Gly Ser Pro Gln Arg Arg Gly 20 25 30	

	Val Cys Thr Arg Val Tyr Thr Thr Thr Pro Arg Lys Pro Asn 35 40 45	Ser Ala	
5	Leu Arg Lys Val Ala Arg Val Arg Leu Thr Ser Gly Ile Glu 50 55 60	Val.Ser .	•
	Ala Tyr Ile Pro Gly Glu Gly His Asn Leu Gln Glu His Ser 65 70 75	Met Val 80	
10	Leu Val Arg Gly Gly Arg Val Lys Asp Leu Pro Gly Val Arg 85 90	Tyr Lys 95	
15	Ile Val Arg Gly Ala Leu Asp Thr Gln Gly Val Lys Asp Arg 100 105 110	Lys Gln	
15	Ala Arg Ser Pro Leu Arg Arg Glu Glu Gly Ile Ile Lys Asn 115 120 125	Ala	
20	<210> 5 <211> 5099 <212> DNA <213> Corynebacterium glutamicum		
25	<pre> <220> <221> CDS <222> (702)(4196) <223> rpoB-Gen</pre>		
30	<400> 5 acaatgtgac togtgatttt tgggtggatc agogtacogg tttggttgtc	gatctagctg 60	0
	aaaatattga tgatttttac ggcgaccgca gcggccagaa gtacgaacag	aaattgcttt 120	0
	tcgacgcctc cctcgacgat gcagctgtct ctaagctggt tgcacaggcc	gaaagcatcc 18	0
35	ctgatggaga tgtgagcaaa atcgcaaata ccgtaggtat tgtgatcggt		0
	ctctcgtggg cctggccggg tgttttgggg cgtttgggaa gaaacgtcga		0
40	ctgctgttca aatagatttt ccctgtttcg aattgcggaa accccgggtt		0
	ggtgcctcgt agaaggggtc aagaagattt ctgggaaacg cgcccgtgcg	gttggttgct 42	0
).	aatagcacgc ggagcaccag atgaaaaatc tcccctttac tttcgcgcgc		0
45	ctctgagtcg ttgcgttgga attcgtgact ctttttcgtt cctgtagcgc		0
•	atcaaggtgg tttaaaaaaa ccgatttgac aaggtcattc agtgctatct		0
50			0
	ottaatogoo ttgaccagoo aggtgcaatt accogogtga g gtg ctg		.6
55	atc ttg gca gtc tcc cgc cag acc aag tca gtc gtc gat at Ile Leu Ala Val Ser Arg Gln Thr Lys Ser Val Val Asp Il 10 15	t ccc ggt 76 e Pro Gly 20	í 4
60	gca ccg cag cgt tat tct ttc gcg aag gtg tcc gca ccc at Ala Pro Gln Arg Tyr Ser Phe Ala Lys Val Ser Ala Pro Il 25 30	e Giu vai	.2

	5	ccc Pro	Gly gga	cta Leu 40	cta Leu	gat Asp	ctt Leu	Gln	ctg Leu 45	gat Asp	tct Ser	tac Tyr	tcc Ser	tgg Trp 50	ctg Leu	att Ile	ggt Gly	860
		acg Thr	cct Pro 55	gag Glu	tgg Trp	cgt Arg	gct Ala	cgt Arg 60	cag Gln	aag Lys	gaa Glu	gaa Glu	ttc Phe 65	ggc Gly	gag Glu	gga Gly	gcc Ala	908
	10	cgc Arg 70	gta Val	acc Thr	agc Ser	ggc Gly	ctt Leu 75	gag Glu	aac Asn	att Ile	ctc Leu	gag Glu 80	gag Glu	ctc Leu	tcc Ser	cca Pro	atc Ile 85	[.] 956
	15	cag Gln	gat Asp	tac Tyr	tct Ser	gga Gly 90	aac Asn	atg Met	tcc Ser	ctg Leu	agc Ser 95	ctt Leu	tcg Ser	gag Glu	cca Pro	cgc Arg 100	ttc Phe	1004
.	20	gaa Glu	gac Asp	gtc Val	aag Lys 105	aac Asn	acc Thr	att Ile	gac Asp	gag Glu 110	gcg Ala	aaa Lys	gaa Glu	aag Lys	gac Asp 115	atc Ile	aac Asn	1052
6	25	Tyr	Ala	Ala 120	Pro	Leu	Tyr	Val	Thr 125	Ala	Glu	Pne	vaı	130	ASII	1111	1111	1100
	2.0	ggt Gly	gaa Glu 135	Ile	aag Lys	tct Ser	cag Gln	act Thr 140	gtc Val	ttc Phe	atc Ile	ggc	gat Asp 145	ttc Phe	cca Pro	atg Met	atg Met	1148
	30	acg Thr 150	Asp	aag Lys	gga Gly	acg Thr	ttc Phe 155	Ile	atc Ile	aac Asn	gga Gly	acc Thr 160	GIU	cgc Arg	gtt Val	gtg Val	gtc Val 165	1196
	35	agc Ser	cag Glr	g ctc Leu	gtc Val	cgc Arg 170	Ser	ccg Pro	ggc Gly	gtg Val	tac Tyr 175	Pile	gac Asp	cag Gln	acc Thr	ato Ile 180		1244
	40	aag Lys	g tca Sei	a act	gag Glu 185	Arg	cca Pro	ctg Leu	cac His	gcc Ala 190	ı vaı	, aag . Lys	gtt Val	att Ile	cct Pro 195		cgt Arg	1292
X	45	ggt Gly	gct Ala	t tgg Trg 200	Lev	gag Glu	ttt i Phe	gac Asp	gto Val 205	. As <u>r</u>	aag Lys	g cgo s Arg	gat g Asi	tcg Ser 210	VUL	ggt Gly	gtt Val	1340
		- cgt Arg	t att	e Ası	c ego Arg	aaq J Lys	g cgt s Arg	cgc g Arg 220) a GTI	g cca n Pro	o va.	c aco	gta Va: 22!	L	cto Lev	ı aaçı Lys	g gct s Ala	1388
	50 .	ct Le 23	u G1	c tgg y Trj	g aco	c act	t gag r Glu 23!	ı Glı	g ato n Ile	ace Thi	c gag r Glu	g cgt u Arg 24	g Pn	c ggt e Gly	tto Phe	tct Se:	t gaa r Glu 245	1436
	55	at Il	c at e Me	g at	g tco t Se:	c acc r Th: 25	r Le	c gaq u Gl	g tco u Se:	c ga r Asj	t gg p Gl 25	y va	a gc 1 Al	a aad a Ası	ace n Thi	ga As 26	t gag p Glu 0	1484
	60	gc Al	a tt a Le	g ct u Le	g ga u Gl ¹ 26	u Il	c ta e Ty	c cg r Ar	c aa g Ly	g ca s Gl 27	n Ar	t cc g Pr	a gg o Gl	c gag y Gli	g ca 1 Gl: 27		t acc o Thr	1532

Figur 1: Plasmid pK18mobsacB_rpsL-1545

SEQUENZPROTOKOLL

	<110> Degussa AG	
5	<120> Für das rpsL-Gen kodierende Nukleotidsequenzen	
	<130> 000779 BT	
1.0	<160> 12	
10	<170> PatentIn version 3.1	
15	<210> 1 <211> 1775 <212> DNA <213> Corynebacterium glutamicum	
20	<220> <221> CDS <222> (500)(880) <223> rpsL-Wildtypgen	
	<400> 1 cagetetaca agagtgteta agtggeggge attecatget ttggaggage gatetteaaa	60
25	ttcctccaaa gtgagttgac ctcgggaaac agctgcagaa agttcatcca cgacttggtt	120
	tcggttaagg tcagtggcga gcttctttgc tggttcgttt ccttgaggaa cagtcatggg	180
30	aaccattcta acaagggatt tggtgttttc tgcggctagc tgataatgtg aacggctgag	240
	toccactott gtagttggga attgacggca cotogoacto aagogoggta togocootgg	300
	ttttccggga cgcggtggcg catgtttgca tttgatgagg ttgtccgtga catgtttggt	360
35	cgggccccaa aaagagcccc cttttttgcg tgtctggaca ctttttcaaa tccttcgcca	420
	tcgacaaget cageettegt gttegteece egggegteae gteageagtt aaagaacaae	480
40	tccgaaataa ggatggttc atg cca act att cag cag ctg gtc cgt aag ggc Met Pro Thr Ile Gln Gln Leu Val Arg Lys Gly 1 5 10	532
45	cgc cac gat aag tcc gcc aag gtg gct acc gcg gca ctg aag ggt tcc Arg His Asp Lys Ser Ala Lys Val Ala Thr Ala Ala Leu Lys Gly Ser 15 20 25	580
50	cct cag cgt cgt ggc gta tgc acc cgt gtg tac acc acc acc cct aag Pro Gln Arg Arg Gly Val Cys Thr Arg Val Tyr Thr Thr Thr Pro Lys 30 35 40	628
	aag cct aac tct gct ctt cgt aag gtc gct cgt gtg cgc ctt acc tcc Lys Pro Asn Ser Ala Leu Arg Lys Val Ala Arg Val Arg Leu Thr Ser 45 50 55	676
55	ggc atc gag gtt tcc gct tac atc cct ggt gag ggc cac aac ctg cag Gly Ile Glu Val Ser Ala Tyr Ile Pro Gly Glu Gly His Asn Leu Gln 60 65 70 75	724
60	gag cac tcc atg gtg ctc gtt cgc ggt ggt cgt gtt aag gac ctc cca Glu His Ser Met Val Leu Val Arg Gly Gly Arg Val Lys Asp Leu Pro 80 85 90	772

		cgc Arg	gac Asp	ctt Leu 280	gcg Ala	cag Gln	tcc Ser	ctc Leu	ctg Leu 285	gac Asp	aac Asn	agc Ser	ttc Phe	ttc Phe 290	cgt Arg	gca Ala	aag Lys	1580
	5	cgc Arg	tac Tyr 295	gac Asp	ctg Leu	gct Ala	cgc Arg	gtt Val 300	ggt Gly	cgt Arg	tac Tyr	aag Lys	atc Ile 305	aac Asņ	cgc Arg	aag Lys	ctc Leu	1628
	10	ggc Gly 310	ctt Leu	ggt Gly	ggc Gly	gac Asp	cac His 315	gat Asp	ggt Gly	ttg Leu	atg Met	act Thr 320	ctt Leu	act Thr	gaa Glu	gag Glu	gac Asp 325	1676
	15	atc Ile	gca Ala	acc Thr	acc Thr	atc Ile 330	gag Glu	tac Tyr	ctg Leu	gtg Val	cgt Arg 335	ctg Leu	cac His	gca Ala	ggt Gly	gag Glu 340	cgc Arg	1724
	20	gtc Val	atg Met	act Thr	tct Ser 345	cca Pro	aat Asn	ggt Gly	gaa Glu	gag Glu 350	atc Ile	cca Pro	gtc Val	gag Glu	acc Thr 355	gat Asp	gac Asp	1772
		atc Ile	gac Asp	cac His 360	ttt Phe	ggt Gly	aac Asn	cgt Arg	cgt Arg 365	ctg Leu	cgt Arg	acc Thr	gtt Val	ggc Gly 370	gaa Glu	ctg Leu	atc Ile	1820
	25	Gln	Asn 375	Gln	Val	Arg	Val	Gly 380	Leu	Ser	Arg	Met	Glu 385	Arg	Val	gtt Val	Arg	1868
	30	Glu 390	Arg	Met	Thr	Thr	Gln 395	Asp	Ala	Glu	Ser	11e 400	Thr	Pro	Thr	tcc Ser	Leu 405	1916
	35	Ile	Asn	Val	Arg	Pro 410	Val	Ser	Aļa	Ala	Ile 415	Arg	Glu	Phe	Phe	gga Gly 420	Thr	1964
	40	Ser	Gln	Leu	Ser 425	Gln	Phe	Met	Val	Gln 430	Asn	Asn	Ser	Leu	Ser 435	ggt Gly	Leu	2012
, ()		Thr	His	Lys 440	Arg	Arg	Leu	Ser	Ala 445	Leu	Gly	Pro	Gly	Gly 450	Leu	tcc Ser	Arg	2060
	45	Glu	Arg 455	Ala	Gly	Ile	Glu	Val 460	Arg	Asp	Val	His	Pro 465	Ser	His	tac Tyr	GIÀ	2108
	50	Arg 470	Met	Cys	Pro	Ile	Glu 475	Thr	Pro	Glu	Gly	Pro 480	Asn	Ile	Gly	ctg Leu	11e 485	2156
	55	Gly	Ser	Leu	Ala	Ser 490	Tyr	Ala	Arg	Val	Asn 495	Pro	Phe	Gly	Phe	500	GIu	2204
	60	acc Thr	cca Pro	tac Tyr	cgt Arg 505	Arg	atc Ile	atc Ile	gac Asp	ggc Gly 510	aag Lys	ctg Leu	acc Thr	gac Asp	cag Gln 515	Ile	gac Asp	2252

		ta Ty	ic ct r Le	t ac eu Th 52	ir Al	t ga a Asj	t gag p Gli	g gaa u Gli	a ga u Asj 52	p Ar	c tto	c gt	t gt	t gcg 1 Ala 530	a G1:	g gc n Al	a aac a Asn	2300
	5	ac Th	g ca r Hi 53	s Ty	c ga r As	c gaa p Gli	a gaq ı Glı	g gg 1 Gly 540	y Ası	c ato n Ile	c aco	c gai	t gag 9 Glu 549	ı Thi	gt Va	c ac	t gtt r Val	2348
	10	cg Ar 55	gгe	g aa u Ly	g ga s As	o Gly	gad Asp 555) Ile	c gcd e Ala	c ato a Met	g gtt Val	gg(Gl ₂ 56(/ Arg	c aac g Asr	gce Ala	g gti a Va:	t gat l Asp 565	2396
	15	Ty.	r Me	t As	p va.	570	Pro	Arg	J Glr	n Met	Val 575	Ser	: Va]	. Gly	Thi	580		2444
	20	110	e Pr	o Pn	е Let 585	ı Glu	His	Asp	Asp	590	Asn	Arg	r Ala	Leu	Met 595	Gly	gcg Ala	2492
		ASI	ı Me	60t	п гуз	GIn	. Ala	. Val	605	Leu	Ile	Arg	Ala	Glu 610	Ala	'Pro	ttc Phe	2540
	25	val	615	y Thi	c Gly	Met	Glu	Gln 620	Arg	Ala	Ala	Tyr	Asp 625	Ala	Gly	Asp	ctg Leu	2588
	30	630	. 116	Th	c cca Pro	Val	Ala 635	Gly	Val	Val	Glu	Asn 640	Val	Ser	Ala	Asp	Phe 645	2636
	35	TIE	Thr	: Ile	atg Met	Ala 650	Asp	Asp	Gly	Lys	Arg 655	Glu	Thr	Tyr	Leu	Leu 660	Arg	2684
	40	ьуs	Phe	Gln	cgc Arg 665	Thr	Asn	Gln	Gly	Thr 670	Ser	Tyr	Asn	Gln	Lys 675	Pro	Leu	2732
•	4.5	vaı	Asn	680		Glu	Arg	Val	Glu 685	Ala	Gly	Gln	Val	Ile 690	Ala	Asp	Gly	2780
	45	Pro	695	Thr	ttc Phe	Asn	Gly	Glu 700	Met	Ser	Leu	Gly	Arg 705	Asn	Leu	Leu	Val	2828
	50	710	Pne	Met	cct Pro	Trp	Glu 715	Gly	His	Asn	Tyr	Glu 720	Asp	Ala	Ile	Ile	Leu 725	2876
	55	Asn	GIn	Asn	atc Ile	Val 730	Glu	Gln	Asp	Ile	Leu 735	Thr	Ser	Ile	His	Ile 740	Glu	2924
	60	gag Glu	cac His	gag Glu	atc Ile 745	gat Asp	gcc Ala	cgc Arg	Asp	act Thr: 750	aag Lys	ctt Leu	ggc Gly	Ala	gaa Glu 755	gaa Glu	atc Ile	2972

		acc Thr	cgc Arg	gac Asp 760	atc Ile	cct Pro	aat Asn	gtg Val	tct Ser 765	gaa Glu	gaa Glu	gtc Val	ctc Leu	aag Lys 770	gac Asp	ctc Leu	gac Asp	3020)
	5	gac Asp	ege Arg 775	ggt Gly	att Ile	gtc Val	cgc Arg	atc Ile 780	ggt Gly	gct Ala	gat Asp	gtt Val	cgt Arg 785	gac Asp	ggc Gly	gac Asp	atc Ile	3068	3
	10	ctg Leu 790	gtc Val	ggt Gly	aag Lys	gtc Val	acc Thr 795	cct Pro	aag Lys	ggc	gag Glu	acc Thr 800	gag Glu	ctc Leu	acc Thr	ccg Pro	gaa Glu 805	3116	5
	15	gag Glu	cgc Arg	ttg Leu	ctg Leu	cgc Arg 810	gca Ala	atc Ile	ttc Phe	ggt Gly	gag Glu 815	aag Lys	gcc Ala	cgc Arg	gaa Glu	gtt Val 820	cgc Arg	3164	4
	20	gat Asp	acc Thr	tcc Ser	atg Met 825	aag Lys	gtg Val	cct Pro	cac His	ggt Gly 830	gag Glu	acc Thr	ggc Gly	aag Lys	gtc Val 835	atc Ile	ggc Gly	3212	2
		gtg Val	cgt Arg	cac His 840	ttc Phe	tcc Ser	cgc Arg	gag Glu	gac Asp 845	gac Asp	gac Asp	gat Asp	ctg Leu	gct Ala 850	cct Pro	ggc Gly	gtc Val	3260	0 .
	25	aac Asn	gag Glu 855	atg Met	atc Ile	cgt Arg	atc Ile	tac Tyr 860	gtt Val	gct Ala	cag Gln	aag Lys	cgt Arg 865	aag Lys	atc Ile	cag Gln	gac Asp	330	8
	30	ggc Gly 870	gat Asp	aag Lys	ctc Leu	gct Ala	ggc Gly 875	cgc Arg	cac His	ggt Gly	aac Asn	aag Lys 880	ggt Gly	gtt Val	gtc Val	ggt Gly	aaa Lys 885	335	6
	35	att Ile	ttg Leu	cct Pro	cag Gln	gaa Glu 890	gat Asp	atg Met	cca Pro	ttc Phe	ctt Leu 895	cca Pro	gac Asp	ggc Gly	act Thr	cct Pro 900	gtt Val	340	4
	40	gac Asp	atc Ile	atc Ile	ttg Leu 905	aac Asn	acc Thr	cac His	ggt Gly	gtt Val 910	cca Pro	cgt Arg	cgt Arg	atg Met	aac Asn 915	Ile	ggt Gly	345	2
\$	40	cag Gln	gtt Val	ctt Leu 920	gag Glu	acc Thr	cac His	ctt Leu	ggc Gly 925	Trp	ctg Leu	gca Ala	tct Ser	gct Ala 930	ggt Gly	tgg Trp	tcc Ser	350	0
`	45 ·	gtg Val	gat Asp 935	cct Pro	gaa Glu	gat Asp	cct Pro	gag Glu 940	aac Asn	gct Ala	gag Glu	ctc Leu	gtc Val 945	aag Lys	act Thr	ctg Leu	cct Pro	354	8
	50	gca Ala 950	gac Asp	ctc Leu	ctc Leu	gag Glu	gtt Val 955	Pro	gct Ala	ggt Gly	tcc Ser	ttg Leu 960	Thr	gca Ala	act Thr	cct Pro	gtg Val 965	359	6
	55	ttc Phe	gac Asp	ggt Gly	gcg Ala	tca Ser 970	Asn	gaa Glu	gag Glu	ctc Leu	gca Ala 975	Gly	ctg Leu	ctc Leu	gct Ala	aat Asn 980	tca Ser	364	
	60	cgt Arg	cca Pro	aac Asn	cgc Arg 985	Asp	ggc Gly	gac Asp	gtc Val	atg Met 990	Val	aac Asn	gcg Ala	gat Asp	ggt Gly 995	Lys	gca Ala	369	2
	55																		

		ac _t	g ct r Le	t atc u Ile 1000	Asp	ggt Gly	cgc Arg	tcc Ser	ggt Gly 1005	Glu	cct Pro	tac Tyr	ccg Pro	tac Tyr 1010	Pro	gtt Val	3737
	5	tc: Se:	c ate	c ggc e Gly 1015	Tyr	atg Met	tac Tyr	atg Met	ctg Leu 1020	Lys	ctg Leu	cac His	cac His	ctc Leu 1025	Val	gac Asp	3782
	10	gaç Gli	g aag 1 Lys	g atc s Ile 1030	His	gca Ala	cgt Arg	tcc Ser	act Thr 1035	Gly	cct Pro	tac Tyr	tcc Ser	atg Met 1040	Ile	acc Thr	3827
	15	Caç Glr	g cag n Glr	g cca n Pro 1045	Leu	ggt Gly	ġgt Gly	aaa Lys	gca Ala 1050	${\tt Gln}$	ttc Phe	ggt Gly	gga Gly	cag Gln 1055	Arg	ttc Phe	3872
	20	ggc	gaa Glu	atg Met 1060	GIU	gtg Val	tgg Trp	gca Ala	atg Met 1065	cag Gln	gca Ala	tac Tyr	ggc Gly	gct Ala 1070	gcc Ala	tac Tyr	3917
9		aca Thr	ctt Leu	cag Gln 1075	gag Glu	ctg Leu	ctg Leu	acc Thr	atc Ile 1080	aag Lys	tct Ser	gat Asp	gac Asp	gtg Val 1085	gtt Val		3962
•	25	cgt Arg	gto Val	aag Lys 1090	gtc Val	tac Tyr	gaa Glu	gca Ala	att Ile 1095	gtg Val	aag Lys	ggc Gly	gag Glu	aac Asn 1100	atc Ile		4007
	3,0	gat Asp	cca Pro	ggt Gly 1105	att Ile	cct Pro	gag Glu	tcc Ser	ttc Phe 1110	aag Lys	gtt Val	ctc Leu	Leu	aag Lys 1115	gag Glu		4052
	35	cag Gln	tcc Ser	ttg Leu 1120	tgc Cys	ctg Leu	aac Asn	Val	gag Glu 1125	gtt Val	ctc Leu	tcc Ser	Ala	gac Asp 1130	ggc Gly	act Thr	4097
	4 0	cca Pro	atg Met	gag Glu 1135	ctc Leu	gcg Ala	ggt Gly	Asp	gac Asp 1140	gac Asp	gac Asp	ttc (Phe <i>l</i>	Asp	cag Gln 1145	gca Ala	ggc Gly	4142
		gcc Ala	tca Ser	ctt Leu 1150	ggc (atc Ile	aac Asn	Leu	tcc Ser 1155	cgt (Arg ,	gac (Asp (gag d Glu 1	Arg :	tcc Ser 1160	gac Asp		4187
	45	gac Asp	acc Thr	_	tagca	agat	ca g	aaaa	caacc	gcta	agaaa	atc a	aagco	catac	a		4236
	50	tccc	ccgg	rac at	tgaag	gaga	tgti	tctg	agg gg	gaaag	gggag	g ttt	tace	gtgc	tcga	cgtaaa	4296
																gtccaa	
	- -				•											ggacgg	
	55															aagta	
																aagtc	
(50															atttg	
		guac	ccca	wy yy	-g.LC	cat	cacg	CCTC	gg ct	acct	cttg	gac	cttg	ctc d	caaag	gacct	4656

	ggaco	ctca	tc a	tcta	cttc	g gt	gcga	acat	cat	cacc	agc	gtgg	acga	ag a	ggct	cgcca	4716
																gcaga	4776
5	cgcag	gagt	ct g	acat	tgct	g ag	cgtg	ctga	aaa	gctc	gaa	gagg	atct	tg c	tgaa	cttga	4836
	ggcag	gctg	gc g	ctaa	ggcc	g ac	gctc	gccg	caa	ggtt	cag	gctg	ctgc	cg a	taag	gaaat	4896
	gcago	caca	tc c	gtga	gcgt	g ca	cagc	gcga	aat	cgat	cgt	ctcg	atga	gg t	ctgg	cagac	4956
10	cttca	atca	ag c	ttgc	tcca	a ag	caga	tgat	ccg	cgat	gag	aagc	tcta	cg a	tgaa	ctgat	5016
	cgac	cgct	ac g	agga	ttac	t to	accg	gtgg	tat	gggt	gca	gagt	ccat	tg a	ggct	ttgát	5076
15	ccaga	aact	tc g	acct	tgat	g ct	g										5099
20	<210: <211: <212: <213:	> 1 > P	165 RT	iebac	teri	um g	luta	micu	ım								
25	<400 Met 1	> 6 Leu	Glu	Gly	Pro 5	Ile	Leu	Ala	Val	Ser 10	Arg	Gln	Thr	Lys	Ser 15	Val·	
	Val	Asp	Ile	Pro 20	Gly	Ala	Pro	Gln	Arg 25	Tyr	Ser	Phe	Ala	Lys 30	Val	Ser	
30	Ala	Pro	Ile 35	Glu	Val	Pro	Gly	Leu 40	Leu	Asp	Leu	Gln	Leu 45	Asp	Ser	Tyr	
35	Ser '	Trp 50	Leu	Ile	Gly	Thr	Pro 55	Glu	Trp	Arg	Ala	Arg 60	Gln	Lys	Glu	Glu	
33	Phe 65	Gly	Glu	Gly	Ala	Arg 70	Val	Thr	Ser	Gly	Leu 75	Glu	Asn	Ile	Leu	Glu 80	
40	Gĺū́	Leu	Ser	Pro	Ile 85	Gln	Asp	Tyr	Ser	Gly 90	Asn	Met	Ser	Leu	Ser 95	Leu	
	Ser	Glu	Pro	Arg 100	Phe	Glu	Asp	Val	Lys 105	Asn	Thr	Ile	qaA	Glu 110	Ala	Lys	
45	Glu	Lys	Asp 115	Ile	Asn	Tyr	Ala	Ala 120	Pro	Leu	Tyr	Val	Thr 125	Ala	Glu	Phe ·	
50		Asn 130	Asn	Thr	Thr	Gly	Glu 135	Ile	Lys	Ser	Gln	Thr 140	Val	Phe	Ile	Gly	
30	Asp 145	Phe	Pro	Met	Met	Thr 150	Asp	Lys	Gly	Thr	Phe 155	Ile	Ile	Asn	Gly	Thr 160	
55					165					170		Pro			1/5		
	Asp	Gln	Thr	Ile 180	Asp	Lys	Ser	Thr	Glu 185	Arg	Pro	Leu	His	Ala 190	Val	Lys	
60	Val	Ile	Pro 195	Ser	Arg	Gly	Ala	Trp 200	Leu	Glu	Phe	Asp	Val 205	Ąsp	Lys	Arg	

		Ası	21	r Vai	l Gly	y Val	Arg	11e 215		Arg	J Lys	Arg	220		Pro	Val	Thr
	5	Va: 22!	l Lei 5	u Let	ı Lys	s Ala	Leu 230		, Trp	Thr	Thr	Glu 235		Ile	Thr	Glu	Arg 240
		Phe	e Gly	y Phe	e Ser	Glu 245	Ile	Met	Met	Ser	Thr 250		Glu	Ser	Asp	Gly 255	Val
	10	Ala	a Ası	n Thi	260		Ala	Leu	Leu	Glu 265		Tyr	Arg	Lys	Gln 270	_	Pro
	15	G13	/ Glu	u Glr 275	ı.Pro	Thr	: Arg	Asp	Leu 280		Gln	Ser	Leu	Leu 285		Asn	Ser
		Ph€	290	e Arg	, Ala	Lys	Arg	Туг 295		Leu	Ala	Arg	Val 300	Gly	Arg	Tyr	Lys
	20	Il∈ 305	e Asr	n Arg	l Lys	Leu	Gly 310		Gly	Gly	Asp	His 315	Asp	Gly	Leu	Met	Thr 320
		Leu	ı Thr	Glu	Glu	Asp 325		Ala	Thr	Thr	11e 330		Tyr	Leu	Val	Arg 335	Leu
	25	His	Ala	a Gly	Glu 340		Val	Met	Thr	Ser 345		Asn	Gly	Glu	Glu 350	Ile	Pro
	30	Val	Glu	355		Asp	Ile	Asp	His 360	Phe	Gly	Asn	Arg	Arg 365	Leu	Arg	Thr
		Val	Gly 370	Glu	Leu	Ile	Gln	Asn 375	Gln	Val	Arg	Val	Gly 380	Leu	Ser	Arg	Met
	35	Glu 385	Arg	Val	Val	Arg	Glu 390	Arg	Met	Thr	Thr	Gln 395	Asp	Ala	Glu	Ser	Ile 400
		Thr	Pro	Thr	Ser	Leu 405	Ile	Asn	Val	Arg	Pro 410	Val	Ser	Ala	Ala	Ile 415	Arg
	40	Glu	Phe	Phe	Gly 420	Thr	Ser	Gln	Leu	Ser 425	Gln	Phe	Met	Val	Gln 430	Asn	Asn
1.	45	Ser	Leu	Ser 435		Leu	Thr	His	Lys 440	Arg	Arg	Leu	Ser	Ala 445	Leu	Gly	Pro
		Gly	Gly 450	Leu	Ser	Arg	Glu	Arg 455	Ala	Gly	Ile	Glu	Val 460	Arg	Asp	Val	His
	50	Pro 465	Ser	His	Tyr	Gly	Arg 470	Met	Cys	Pro	Ile	Glu 475	Thr	Pro	Glu	Gly	Pro 480
		Asn	Ile	Gly	Leu	Ile 485	Gly	Ser	Leu	Ala	Ser 490	Tyr	Ala	Arg	Val	Asn 495	Pro
	55	Phe	Gly	Phe	Ile 500	Glu	Thr	Pro	Tyr	Arg 505	Arg	Ile	Ile	Asp	Gly 510	Lys	Leu
f	60	Thr	Asp	Gln 515	Ile	Asp	Tyr	Leu	Thr 520	Ala	Asp	Glu	Glu	Asp 525	Arg	Phe	Val
		Val	Ala	Gln	Ala	Asn		His	Tyr	Asp	Glu	Glu	Gly	Asn	Ile	Thr	Asp

		Glu 545	Thr	Val	Thr	Val	Arg 550	Leu	Lys	Asp	Gly	Asp 555	Ile	Ala	Met	Val	Gly 560
	5	Arg	Asn	Ala	Val	Asp 565	Tyr	Met	Asp	Val	Ser 570	Pro	Arg	Gln	Met	Val 575	Ser
1	.0	Val	Gly	Thr	Ala 580	Met	Ile	Pro	Phe	Leu 585	Glu	His	Asp	Asp	Ala 590	Asn	Arg
_	. 0	Ala	Leu	Met 595	Gly	Ala	Asn	Met	Gln 600	Lys	Gln	Ala	Val	Pro 605	Leu	Ile	Arg
1	.5	Ala	Glu 610	Ala	Pro	Phe	Val	Gly 615	Thr	Gly	Met	Glu	Gln 620	Arg	Ala	Ala	Tyr
		Asp 625	Ala	Gly	Asp	Leu	Val 630	Ile	Thr	Pro	Val	Ala 635	Gly	Val	Val	Glu	Asn 640
2	0	Val	Ser	Ala	Asp	Phe 645	Ile	Thr	Ile	Met	Ala 650	Asp	Asp	Gly	Lys	Arg 655	Glu
· 2	25	Thr	Tyr	Leu	Leu 660	Arg	Lys	Phe	Gln	Arg 665	Thr	Asn	Gln	Gly	Thr 670	Ser	Tyr
		Asn	Gln	Lys 675	Pro	Leu	Val	Asn	Leu 680	Gly	Glu	Arg	Val	Glu 685	Ala	Gly	Gln
3	0	Val	Ile 690	Ala	Asp	Gly	Pro	Gly 695	Thr	Phe	Asn	Gly	Glu 700	Met	Ser	Leu	Gly
		Arg 705	Asn	Leu	Leu	Val	Ala 710	Phe	Met	Pro	Trp	Glu 715	Gly	His	Asn	Tyr	Glu 720
3	5	Asp	Ala	Ile	Ile	Leu 725	Asn	Gln	Asn	Ile	Val 730	Glu	Gln	Asp	Ile	Leu 735	Thr
Δ	10	Ser	Ile	His	Ile 740	Glu	Glu	His	Glu	Ile 745	Asp	Ala	Arg	Asp	Thr 750	Lys	Leu
		Gly	Ala	Glu 755	Glu	Ile	Thr	Arg	Asp 760	Ile	Pro	Asn	Val	Ser 765	Glu	Glu	Val
4	15	Leu	Lys 770		Leu	Asp	Asp	Arg 775		Ile	Val	Arg	Ile 780	Gly	Ala	Asp	Val
		Arg 785	Asp	Gly	Asp	Ile	Leu 790	Val	Gly	ГЛS	Val	Thr 795	Pro	Lys	Gly	Glu	Thr 800
5	0	Glu	Leu	Thr	Pro	Glu 805	Glu	Arg	Leu	Leu	Arg 810	Ala	Ile	Phe	Gly	Glu 815	Lys
_	55	Ala	Arg	Glu	Val 820	Arg	Asp	Thr	Ser	Met 825	Lys	Val	Pro	His	Gly 830	Glu	Thr
_		Gly	Lys	Val 835		Gly	Val	Arg	His 840	Phe	Ser	Arg	Glu	Asp 845	Asp	Asp	Asp
6	50	Leu	Ala 850		Gly	Val	Asn	Glu 855		Ile	Arg	Ile	Tyr 860	Val	Ala	Gln	Lys

	Arg 865	Lys	Ile	Gln	Asp	Gly 870	Asp	Lys	Leu	Ala	Gly 875	Arg	His	Gly	Asn	880	
5	Gly	Val	Val	Gly	Lys 885	Ile	Leu	Pro	Gln	Glu 890	Asp	Met	Pro	Phe	Leu 895	Pro	
	Asp	Gly	Thr	Pro 900	Val	Asp	Ile	Ile	Leu 905	Asn	Thr	His	Gly	Val 910		Arg	
10	Arg	Met	Asn 915	Ile	Gly	Gln	Val	Leu 920	Glu	Thr	His	Leu	G1y 925		Leu	Ala	
15	Ser	Ala 930	Gly	Trp	Ser	Val	Asp 935	Pro	Glu	Asp	Pro	Glu 940	Asn	Ala	Glu	Leu	
13	Val 945	Lys	Thr	Leu	Pro	Ala 950	Asp	Leu	Leu	Glu	Val 955	Pro	Ala	Gly	Ser	Leu 960	
20	Thr	Ala	Thr	Pro	Val 965	Phe	Asp	Gly	Ala	Ser 970	Asn	Glu	Glu	Leu	Ala 975	Gly	
	Leu	Leu	Ala	Asn 980	Ser	Arg	Pro	Asn	Arg 985		Gly		Val	Met 990		Asn	
25	Ala	Asp	Gly 995	Lys	Ala	Thr	Leu	Ile 1000		o Gly	y Arg	g Sei		y G 105	lu F	ro Ty	r
30	Pro	Tyr 1010		Val	Ser	: Ile	Gly 10:	-	yr Me	et Ty	yr Me		eu 020	Lys	Leu	His	
J 0	His	Leu 1025		. Asp	Glu	Lys	103		is Al	la Ai	cg Se		nr 035	Gly	Pro	Tyr	
35	Ser	Met 1040		Thr	Gln	Gln	104		eu G	ly G	ly L)		la 050	Gln	Phe	Gly	
	Gly	Gln 1055		Phe	Gly	g Glu	Met 10		lu Vá	al Ti	cp Al		et 065	Gln	Ala	Tyr	
40	Gly	Ala 1070		Tyr	Thr	Leu	Glr 107		lu Le	eu Le	eu Th		le 080	Lys	Ser	Asp	
45	Asp	Val 1085		Gly	Arg	y Val	Lys 109		al Ty	yr G	lu Al		le 095	Val	Lys	Gly	
	Glu	Asn 1100		Pro	Asp	Pro	Gl ₃		le Pi	co Gi	lu Se		ne 110	Lys	Val	Leu	
50	Leu	Lys 1115		Leu	Gln	Ser	Let 112		ys Le	eu As	sn Va		lu 125	Val	Leu	Ser	
	Ala	Asp 1130		Thr	Pro	Met	Gl: 113		eu Al	la G	Ly As		sp 140	Asp	Asp	Phe	
55	Asp	Gln 1145		Gly	Ala	Ser	Let 115		ly II	le As	sn Le		er 155	Arg	Asp	Glu	
60	Arg	Ser 1160		Ala	Asp	Thr	Ala 116										
- •	<210 <211)> 7 L> 1															

		<212> DNA <213> Corynebacterium glutamicum	
	5	<220> <221> misc_feature <223> upstream-Bereich	
	1.0	<400> 7 ggttgccggt aatcctgttg cggacaatat ttacaggatc tgacacattg ggcatcgctg 6	0
	10	ggggagtggt ctcgtaggcc gccggcgcat aggaggcgcc gggaaattgc tgaccaagca 12	0
		gagtgtaggg attgtcgttc acatcagaga t 15	1
	15	<210> 8 <211> 1926 <212> DNA <213> Corynebacterium glutamicum	
	20	<400> 8 ggttgccggt aatcctgttg cggacaatat ttacaggatc tgacacattg ggcatcgctg 6	0
		ggggagtggt ctcgtaggcc gccggcgcat aggaggcgcc gggaaattgc tgaccaagca 12	0
	25	gagtgtaggg attgtcgttc acatcagaga tcagctctac aagagtgtct aagtggcggg 18	0
		cattccatgc tttggaggag cgatcttcaa attcctccaa agtgagttga cctcgggaaa 24	0
	30	cagetgeaga aagtteatee aegaettggt tteggttaag gteagtggeg agettetttg 30	ö
		ctggttcgtt tccttgagga acagtcatgg gaaccattct aacaagggat ttggtgtttt 36	0
		ctgcggctag ctgataatgt gaacggctga gtcccactct tgtagttggg aattgacggc 42	0
	35	acctegeact caagegeggt ategeceetg gtttteeggg aegeggtgge geatgtttge 48	0
		atttgatgag gttgtccgtg acatgtttgg tcgggcccca aaaagagccc ccttttttgc 54	0
		gtgtctggac actttttcaa atccttcgcc atcgacaagc tcagccttcg tgttcgtccc 60	0
	40	ccgggcgtca cgtcagcagt taaagaacaa ctccgaaata aggatggttc atgccaacta 660	0
7	i	ttcagcagct ggtccgtaag ggccgccacg ataagtccgc caaggtggct accgcggcac 72	0
	45	tgaagggttc ccctcagcgt cgtggcgtat gcacccgtgt gtacaccacc acccctaaga 78	0
		agoctaacto tgotottogt aaggtogoto gtgtgogoot tacotooggo atogaggttt 84	0
		ccgcttacat ccctggtgag ggccacaacc tgcaggagca ctccatggtg ctcgttcgcg 90	0
	50	gtggtcgtgt taaggacctc ccaggtgtcc gttacaagat cgtccgtggc gcactggata 96	0
		cccagggtgt taaggaccgc aagcaggctc gttccccgct acggcgcgaa gaggggataa 1020	0
	55	ttaaaaatgc gtaaatcagc agctcctaag cgtccagtag ttcaggaccc tgtatacaag 108	0
		tccgagctcg ttacccagct cgtaaacaag atcctcatcg gtggcaagaa gtccaccgca 114	0
		gagcgcatcg tctacggtgc actcgagatc tgccgtgaga agaccggcac cgatccagta 120	0
	60	ggaacceteg agaaggetet eggeaacgtg egtecagace tegaagtteg tteeegeegt 126	0

gttggtggcg ctacctacca ggtgccagtg gatgttcgcc cagagcgcgc aaacaccctc 1320 gcactgcgtt ggttggtaac cttcacccgt cagcgtcgtg agaacaccat gatcgagcgt 1380 cttgcaaacg aacttctgga tgcagccaac ggccttggcg cttccgtgaa gcgtcgcgaa 1440 5 gacacccaca agatggcaga ggccaaccgc gccttcgctc actaccgctg gtagtactgc 1500 caagacatga aagcccaatc acctttaaga tcaacgcctg ccggcgccct tcacatttga 1560 10 ataagctggc agcctgcgtt tcttcaaggc gactgggctt ttagtctcat taatgcagtt 1620 caccgctgta agatagctaa atagaaacac tgtttcggca gtgtgttact aaaaaatcca 1680 tgtcacttgc ctcgagcgtg ctgcttgaat cgcaagttag tggcaaaatg taacaagaga 1740 15 attatccgta ggtgacaaac tttttaatac ttgggtatct gtcatggata ccccggtaat 1800 aaataagtga attaccgtaa ccaacaagtt ggggtaccac tgtggcacaa gaagtgctta 1860 20 aggatetaaa caaggteege aacateggea teatggegea categatget ggtaagaeea 1920 1926 cgacca 25 <210> 9 1594 <211> <212> DNA <213> Künstliche Sequenz 30 <220> <221> misc_feature <222> (1)..(1594) <223> Beschreibung der künstlichen Sequenz: PCR-Produkt enthaltend das 35 rpsL-1545-Allel <220> <221> allele (659)..(1039) <222> 40 <223> rpsL-1545-Allel <220> <221> mutation (786)..(786) <222> Austausch von Adenin gegen Guanin 45 <223> <400> 9 gatctagagg ttgccggtaa tcctgttgcg gacaatattt acaggatctg acacattggg 60 catcgctggg ggagtggtct cgtaggccgc cggcgcatag gaggcgccgg gaaattgctg 120 50 accaagcaga gtgtagggat tgtcgttcac atcagagatc agctctacaa gagtgtctaa 180 gtggcgggca ttccatgctt tggaggagcg atcttcaaat tcctccaaag tgagttgacc 240 55 tegggaaaca getgeagaaa gtteateeac gaettggttt eggttaaggt eagtggegag 300 cttctttgct ggttcgtttc cttgaggaac agtcatggga accattctaa caagggattt 360 ggtgttttct gcggctagct gataatgtga acggctgagt cccactcttg tagttgggaa 420 60 ttgacggcac ctcgcactca agcgcggtat cgcccctggt tttccgggac gcggtggcgc 480

		atgtttgcat ttgatgaggt tgtccgtgac atgtttggtc gggccccaaa aagagccccc	540									
	_	ttttttgcgt gtctggacac tttttcaaat ccttcgccat cgacaagctc agccttcgtg	600									
	5	ttcgtccccc gggcgtcacg tcagcagtta aagaacaact ccgaaataag gatggttcat	660									
		gccaactatt cagcagctgg tccgtaaggg ccgccacgat aagtccgcca aggtggctac	720									
	10	cgcggcactg aagggttccc ctcagcgtcg tggcgtatgc acccgtgtgt acaccaccac	780									
		ccctaggaag cctaactctg ctcttcgtaa ggtcgctcgt gtgcgcctta cctccggcat	840									
	1 -	cgaggtttcc gcttacatcc ctggtgaggg ccacaacctg caggagcact ccatggtgct	900									
	15	cgttcgcggt ggtcgtgtta aggacctccc aggtgtccgt tacaagatcg tccgtggcgc	960									
		actggatacc cagggtgtta aggaccgcaa gcaggctcgt tccccgctac ggcgcgaaga 1	020									
, <i>I</i> - ,	20	ggggataatt aaaaatgcgt aaatcagcag ctcctaagcg tccagtagtt caggaccctg 1	080									
		tatacaagtc cgagctcgtt acccagctcg taaacaagat cctcatcggt ggcaagaagt 1	140.									
	25	ccaccgcaga gcgcatcgtc tacggtgcac tcgagatctg ccgtgagaag accggcaccg 1	200									
	25	atccagtagg aaccctcgag aaggctctcg gcaacgtgcg tccagacctc gaagttcgtt 1	260									
	30	cccgccgtgt tggtggcgct acctaccagg tgccagtgga tgttcgccca gagcgcgcaa 1	.320									
		acaccetege actgegttgg ttggtaacet teaccegtea gegtegtgag aacaccatga 1	.380									
		tcgagcgtct tgcaaacgaa cttctggatg cagccaacgg ccttggcgct tccgtgaagc 1	.440									
	35	gtcgcgaaga cacccacaag atggcagagg ccaaccgcgc cttcgctcac taccgctggt 1	.500									
	55	agtactgcca agacatgaaa gcccaatcac ctttaagatc aacgcctgcc ggcgcccttc 1	.560									
	40	acatttgaat aagctggcag cctgcgtcta gatc	.594									
		<210> 10 <211> 20 <212> DNA										
1	Ŋ	<213> Corynebacterium glutamicum										
	45	<220> <221> Primer <222> (1)(20) <223> rpsL-1										
	50	<400> 10 cagctctaca agagtgtcta										
	55	<210> 11 <211> 20 <212> DNA <213> Corynebacterium glutamicum										
	60	<220> <221> Primer <222> (1)(20) <223> rpsL-2										

	tggtcg	tggt cttaccagca	20
5	<210> <211> <212> <213>	12 28 DNA Künstliche Sequenz	
10	<222>	Primer (1)(28) rpsL_XL-A1	
15	<400> gatcta	12 gagg ttgccggtaa tcctgttg	28
20	<210> <211> <212> <213>	13 28 DNA Künstliche Sequenz	
25	<220> <221> <222> <223>	Primer (1)(28) rpsL_XL-E1	
	<400> gatcta	13 gacg caggetgeca gettatte	28
30	<210> <211> <212> <213>	14 20 DNA Corynebacterium glutamicum	
35		Primer (1)(20) rL-1	
40	<400>	14	20