# A computational method for estimating the PCR duplication rate in DNA and RNA-seq experiments

Vikas Bansal, Ph.D.

School of Medicine University of California, San Diego

Presented at APBC, China, 2017

#### Illumina library preparation



Figure adapted from Head et al., Biotechniques 2014

#### Read duplicates





#### Three sources of read duplicates



#### PCR duplicates = redundant information

- False positives in variant calling
- Bias estimates of allele frequencies in deep sequencing experiments

- Solution: computationally identify read duplicates and keep only one read per group for analysis
- Limitation: cannot differentiate between PCR duplicates and natural duplicates



## Removing natural duplicates in RNA-seq biases gene expression estimates

- Highly expressed genes have 1000's of reads mapped to small space
- Read duplication rate of 20-25% is normal



## Differentiating natural duplicates from PCR duplicates using UMIs

 Random barcodes added to each DNA fragment before amplification

• Read duplication rate = 1 - - = 0.95

- PCR duplication rate = 1 - = 0.71
- Costly and requires custom library preparation





A computational approach for estimating the fraction of read duplicates that are due to PCR amplification

## Differentiating natural duplicates from PCR duplicates at heterozygous sites



PCR duplicates: identical alleles at heterozygous site

Natural duplicates: equally likely to have identical or different alleles

## Estimating fraction of PCR duplicates (clusters of size 2)

 $C_{20}$  = # of clusters with identical alleles

 $C_{21}$  = # of clusters with different alleles



- 1. E [ # of natural duplicates] =  $2 \times C_{21}$
- 2. E [# PCR duplicates] =  $C_{20} C_{21}$ 4

$$U_2 = \frac{C_{20} - C_{21}}{C_2} \times C_{21}$$

rate using U<sub>i</sub> values

#### Overview of method



#### Accuracy on simulated data

- Used real exome data to create a dataset with no read duplicates
- Simulated natural read duplicates and PCR read duplicates using 'sampling with replacement' (50 replicates per combination)





## Analysis of exome datasets from 1000 Genomes project





## High concordance between estimated PCR duplication rates from SE and PE reads





## Analysis of exomes from Nextera library preparation method



#### PCR duplication rates for RNA-seq data

- 40 RNA-seq datasets from the Geuvadis project
- Heterozygous variants using exome data from 1000 Genomes Project



Significant variation (1-6%) in the PCR duplication rate

#### Robustness of estimates to 'variant calls'



Two sets of variant calls: exome sequencing and Illumina Omni genotyping

 $R^2 = 0.96$  and mean  $|\Delta| = 0.0027$ 

#### General utility of our method



**Read duplication rate** 

PCR duplication rate estimate can be used as covariate in gene expression analysis from RNA-seq data

#### Summary

- novel computational method for estimating the PCR duplication rate that accounts for natural duplicates
  - uses reads overlapping heterozygous variants
  - Rigorous mathematical model

#### Results

- Validation using simulations and exome data
- High proportion of 'natural read duplicates' in Nextera protocol
- 75-90% of read duplicates in RNA-seq are NOT due to PCR amplification

Software available: https://github.com/vibansal/PCRduplicates