Proteosynthesis

- Proteo bielkovina
 Synthesis tvorba
 Tvorba bielkovín
- Pozostáva z 2 procesov:

1. Transkripcia

- o prepis genetickej informácie z DNA do mRNA (mediátorova RNA)
- o prebieha v jadre/cytoplazme (+ v organelách obsahujúcich DNA mitochondrie a chloroplasty)
- o rozvinutie DNA zabezpečí RNA polymeráza
- k rozvinutému úseku sa za účinku RNA polymerázy vytvorí mRNA slúžiaca ako matrica alebo vzor pre budúcu bielkovinu
- o na mediátorovu RNA sa prepíše úsek genetickej informácie z DNA
- o mediátorova RNA prechádza do cytoplazmy na ribozómy kde dochádza ku translácii

2. Translácia

- o preklad z poradia nukleotidov do poradia aminokyselín
- mRNA sa nachádza na ribozómoch, tRNA (transferová RNA) prichádza na mRNA na základe Komplementarity
- zloženie tRNA na jednej strane sa nachádza triplet a na druhej strane sa nachádza konkrétna aminokyselina
- o aminokyseliny sa následne spájajú peptidovou väzbou, čím vzniká konkrétna bielkovina v RNA
- o v prípade transkripcie, kde sa nemôže vyskytnúť Tymín, Adenín je komplementárny s Uracilom

Molekulové základy genetiky - Replikácia DNA

- Nastáva v tzv. S fáze bunkového cyklu
- Proces, ktorý predchádza deleniu bunky
- Proces pri ktorom dochádza ku zdvojeniu genetického materiálu
- Enzým helikáza začne rozvíjať dvojzávitnicu DNA (keďže DNA je špirálovito zatočená) a tie rozvinuté časti DNA slúžia ako vzor (=Matrica) pre tvorbu nových vlákien na základe Komplementarity
- V procese replikácie je prítomný aj ďalší enzým DNA polymeráza ktorou úlohou je katalyzovať (koordinovať vznik) väzieb medzi nukleotidmi v novom reťazci

Komplementarita

- V rámci DNA platí že:
 - Adenín je komplementárny s Tymínom
 - Tymín je komplementárny s Adenínom
 - Cytozín je komplementárny s Guanínom
 - Guanín je komplementárny s Cytozínom

	_		~
_	U	latí	70

- V prokaryotických bunkách nastáva rozvinutie dvojvláknovej DNA od jedného konca ku druhému, ide o tzv. zipsový spôsob replikácie
- V eukaryotických bunkách nastáva replikácia DNA na viacerých miestach naraz, ide o tzv. bublinový spôsob replikácie, je oveľa rýchlejší ako predchádzajúci

GENETICKÝ KÓD

Kodón - trojica nukleotidov (triplet) v DNA alebo v mRNA. Určuje zaradenie jednej aminokyseliny do polypeptidového reťazca.

Genetický kód je kľúč – šifra, pomocou ktorého sa dá čítať (dešifrovať) genetická informácia.

Vlastnosti genetického kódu:

- a) univerzálny všetky organizmy majú rovnaký spôsob kódovania genetickej informácie
- b) neprekrývajúci každý nukleotid je súčasťou len jedného kodónu
- c) degenerovaný jednu aminokyselinu kóduje viac kodónov. Napr. valín je kódovaný: GUC, GUU, GUA, GUG.

POZOR: jeden kodón nekóduje dve aminokyseliny.

Prete poradia aminokyschin v bielkovinovom ret'azci sa nevie určiť poradie nukleotidov v mRNA, Príslušnu aminokyselinu vieme určiť iba podľa kodénu.

Nie všetky kodóny, však určujú konkrétnu aminokyselinu. Časť kodónov má inú funkciu:

- 1. Iniciačné kodóny začínajú s čítaním genetickej informácie. Tým kodónom je: AUG (súčasne, ak sa nachádza aj na iných miestach kódu kóduje aminokyselinu metionín)
- 2. Terminačné kodóny ("stop" kodóny) zastavujú čítanie genetickej informácie. Týmito kodónmi sú: UAA, UAG, UGA

Nasledujúca tabuľka slúži na rýchle dekódovanie tripletov nukleotidov. Prvý nukleotid kodónu je v stĺpci v ľavo, druhý nukleotid v riadku hore a posledný nukleotid v stĺpci v pravo. Pri jednotlivých kodónoch je uvedený názov aminokyseliny.

	druhý nukleotid					L	
Г		U	С	Α	G		
Б	u	UU U UU C fenylalanin UU A Ieucin	UCU UCC serin UCA UCG	UAU UAC UAA koniec UAG koniec	UGU cystein UGC UGA koniec UGG tryptofán	u	Ť
ý nukleotid	С	CUU leucín	CCU CCC prolin CCA CCG	CAU CAC CAA glutamín CAG	CGU CGC arginín CGG CGG	С	tretí nukleotid
prvý	A	AUU isoleucín AUA AUA AUG začintok	AC4	AAU asparagín AAC AAA _{lyzín} AAG	AGU serín AGC AGA _{arginín} AGG	A	tid
	G	G U U G U C G U A valín G U G	G C U G CC alanín G CA G CG	G A U kys. G A C asparágová G A A kys G A G glutamová	GGA	G	

Pohlavné typy

- **HOMOGAMETICKÉ POHLAVIE** je charakteristické prítomnosťou dvoch rovnakých pohlavných chromozómov (XX)
- **HETEROGAMETICKÉ POHLAVIE** nesie dva odlišné pohlavné chromozómy (XY)
- 1. TYP DROSOPHILA (cicavčí)
 - o samičie pohlavie je homogametické (XX)
 - o samčie pohlavie je heterogametické (XY)
 - o väčšina dvojdomých rastlín, hmyz, niektoré ryby, plazy a cicavce (aj človek)
- 2. TYP ABRAXAS (vtáčí typ)
 - o samičie pohlavie je heterogametické (ZW, resp. XY)
 - o samčie pohlavie je homogametické (ZZ, resp. XX)
 - o vtáky, motýle, niektoré ryby, obojživelníky a plazy, ojedinele aj rastliny (napr. jahoda)

Dedičnosť

- 1. AUTOZÓMOVÁ DEDIČNOSŤ

- je viazaná na autozómy (telové chromozómy), čo sú všetky chromozómy okrem pohlavných chromozómov
- o u človeka nájdeme 22 párov autozómov
- o na označenie alel sa používajú písmená (AA, Aa, aa)
- a) autozómovo dominantná dedičnosť
 - choroba/znak sa nachádza na dominantnej alele autozómu (telového chromozómu)
 - dominantný homozygot (AA) je chorý
 - heterozygot (Aa) je chorý
 - recesívny homozygot (aa) je zdravý
 - ochorenie: Huntingtonova choroba
- b) autozómovo recesívna dedičnosť
 - choroba/znak sa nachádza na recesívnej alele autozómu (telového chromozómu)
 - dominantný homozygot (AA) je zdravý
 - heterozygot (Aa) je prenášač
 - recesívny homozygot (aa) je chorý
 - ochorenia: cystická fibróza, fenylketonúria

- 2. GONOZÓMOVÁ DEDIČNOSŤ

- o je viazaná na gonozómy (pohlavné chromozómy)
- u človeka nájdeme 1 pár gonozómov
- o na označenie sa používajú písmená XX u žien a XY u mužov, pričom alely sa označujú horným indexom (napr. X^AX^A)
- o ide o odchýlku od Mendelových zákonov
- o a) gonozómovo X-viazaná dominantná dedičnosť
 - choroba/znak sa nachádza na dominantnej alele X chromozómu
 - žena: X^AX^A = chorá
 X^AX^a = chorá
 X^aX^a = zdravá
 muž: X^AY = chorý
 X^aY = zdravý
 ochorenie: rachitída
- b) gonozómovo X-viazaná recesívna dedičnosť
- choroba/znak sa nachádza na recesívnej alele X chromozómu
 - žena: X^AX^A = zdravá
 - X^AX^a = zdravá, ale prenášačka
 - XaXa = chorá
 muž: XAY = zdravý
 XaY = chorý
 - ochorenia: hemofília, daltonizmus (farbosleposť)

Dedičnosť krvných skupín

- Gén kódujúci krvnú skupinu má 3 alely:

- I^A , $I^B \rightarrow$ dominantné alely

- i → recesívna alela

Skupina A - I^AI^A alebo I^Ai
 Skupina B - I^BI^B alebo I^Bi

Skupina AB - I^AI^B
 Skupina 0 - i i

Dominantný homozygot / heterozygot Dominantný homozygot / heterozygot Heterozygot (Platí Kodominancia)

Recesívny homozygot

-

- Krvná skupina AB je prípad kodominancie, pretože v prípade heterozygota nastane úplný fenotypový prejav obidvoch dominantných alel.

- Príklady:

Prikiady:		01	
	runa - Al helerozygol) mwz - AB prordepodobnow 0°	P: A; × A B G: A; A B F1: A A, A B A; B;	Beardynadobnost jx 0°10
	remarda Homozygoti mww B) prardapodobnow AB?	P. A A × B B G. A A B B F. A A A B A B A B AB AB AD AB	Brandepodolnovi je 100°10
	malka:0 duta:A otec ?=1A	P: 11 × A1 G: 11 A1 F: A1 11 A1 11	
	malika : 1ª i prordupodobnovi 0°	P: ^i x ^i G: ^i ^i F: ^ ^i, ^i, ^i, ^i	Prandy odobno Ni j. 25%
	- Aloo Isii	P:11 x 1/18 G:11 1/18 F1 1/1 1/81 1/1 1/81 A B A B	Dearapodobnosti j. 0°10

Monohybrid – jedinec, ktorého rodičia sa líšia len v 1 znaku

Dihybrid – jedinec, ktorého rodičia sa líšia v 2 znakoch

Znak – vlastnosť organizmu, ktorá vzniká ako vonkajší prejav génu

- a) **Kvalitatívny** znak podmienený génom veľkého účinku bez prechodných alternatív (napr. červená alebo biela farba)
- b) **Kvantitatívny** znak podmienený génom malého účinku, vzniká viacero fenotypových tried (napr. hmotnosť tela)

Karyotyp – súbor všetkých chromozómov organizmu, ktoré sú zoradené podľa veľkosti a tvaru

Idiogram – schematické zobrazenie karyotypu určeného organizmu

Haploid – organizmus s polovičným počtom chromozómov (haploidná sada n)

Diploid – organizmus s dvoma súbormi chromozómov v telových bunkách (diploidná sada 2n) – plný počet chromozómov

Homologické chromozómy – pár chromozómov ktoré majú rovnaký tvar, veľkosť, štruktúru aj funkciu (1. od otca, 2. od matky)

Nehomologické chromozómy – chromozómy s rozličným párom

Sesterské chromatídy – identické chromatídy jedného chromozómu spojené v centromére Nesesterské chromatídy – chromatídy rôznych chromozómov

Jesterske' Nesesterske'

Genóm – celkový genetický materiál bunky alebo jedinca

Spätné kríženie – kríženie hybrida prvej filiálnej generácie s jedným z rodičov

Podľa vzťahu alel a od nich závislých fenotypov rozoznávame

- 1. Úplná dominancia a recesivita

heterozygot je vo fenotype zhodný s homozygotom, ktorý má dominantné alely, napr. AA, Aa – hnedé vlasy; aa
 blond vlasy

- 2. Neúplná dominancia = intermediarita

 heterozygot má prechodný prejav znaku (vlastný fenotyp) v porovnaní s homozygotom, napr. AA – červené kvety; aa – biele kvety; Aa – ružové kvety (napr. nocovka jalapová)

3. Kodominancia

- úplný fenotypový prejav obidvoch alel u heterozygota, napr. RR – čierna kura; rr – biela kura; Rr – strakatá kura

III. Mendelov zákon - Zákon o voľnej kombinovateľnosti alel

- Pri krížení sledujeme dedičnosť 2 alebo viacerých párov alel, ktoré podmieňujú vznik 2 alebo viacerých znakov
- Každý pár sa správa samostatne a riadi sa rovnakými princípmi ako pri predchádzajúcich zákonoch
- Monohybridizmus rodičia sa líšia len v 1 znaku
- **Dihybridizmus** rodičia sa líšia v 2 znakoch
- Existuje aj Trihybridizmus a pod....
- P: AABB x aabb
- G: AB AB AB AB ab ab ab ab
- F1: tzv. Punnetov štvorec:

	AB	AB	AB	AB
ab	AaBb	AaBb	AaBb	AaBb
ab	AaBb	AaBb	AaBb	AaBb
ab	AaBb	AaBb	AaBb	AaBb
ab	AaBb	AaBb	AaBb	AaBb

- P: AaBb x AaBb
- G: AB Ab aB ab AB Ab aB ab
- F1:

	AB	Ab	аB	ab
AB	AABB	AABb	AaBB	AaBb
Ab	AABb	AAbb	AaBb	Aabb
аВ	AaBB	AaBb	aaBB	aaBb
ab	AaBb	Aabb	aaBb	aabb

Genetika

- Je veda, ktorá sa zaoberá štúdiom dedičnosti a premenlivosti.
- Genetiku založil johann gregor mendel, ktorý v roku 1865 vyslovil prvé pravidlá o dedení znakov a vlastností
- História genetiky sa začala písať v 19. Stor. K jej veľkému rozvoju došlo v druhej polovici 20.stor.
- Pojmy:
 - Dedičnosť prenos znakov a vlastnosti z rodiča na potomka
 - Premenlivosť- tvarová a funkčná rozmanitosť, môže byť:
 - Genetická je vyvolaná mutáciami
 - Negenetická je vyvolaná faktormi vonkajšieho prostredia (teplota, slnečné žiarenie)
 - Dna typ nukleovej kyseliny (deoxyribonukleová kyselina)
 - Nositeľka genetickej informácie
 - Výskyt dna v bunke:
 - Prokaryotická voľne v cytoplazme
 - Eukaryotická v jadre, chloroplastoch a mitochondriách
 - Gén je to úsek dna, ktorý kóduje nejakú vlastnosť alebo znak
 - Je základná jednotka dedičnosti
 - o Lokus konkrétne miesto na dna na ktorom sa vyskytuje gén
 - Chromozóm je zošpiralizovaná dna
 - Stavba chromozómu:

- Chromozómy sa v telových bunkách vyskytujú v pároch (jeden z každého páru je od matky a druhý od otca)
 - (v prípade pohlavných buniek chromozómy sa nevyskytujú v pohlavných pároch)
- Chromozómy poznáme:
 - Telové chromozómy
 - Pohlavné chromozómy
- Platí: že telové aj pohlavné bunky obsahujú telové aj pohlavné chromozómy!!!
- **Telová** (=Somatická) bunka človeka má 46 chromozómov, z toho 44 chromozómov je telových a 2 chromozómy sú pohlavné
- Pohlavná (=Gaméty) bunka človeka má 23 chromozómov, z toho 22 chromozómov je telových a 1 chromozóm je pohlavný
- Alela konkrétna forma génu
 - Alely sa zapisujú v pároch
 - Poznáme:
 - Dominantnú alelu zapisuje sa veľkým písmenom, napr. A
 - Recesívnu alelu zapisuje sa malým písmenom, napr. A

- o **Homozygot** jedinec, ktorý ma dva rovnaké alely pre sledovaný znak.
 - AA dominantný homozygot, aa recesívny homozygot
- o Heterozygot jedinec, ktorý má dva rozdielne alely pre sledovaný znak. Aa
- Genotyp skupina génov ktoré práve pozorujeme
- Fenotyp vonkajší prejav genotypu
- o Kríženie (odborne hybridizácia) základ dedičnosti znakov
- o **Kríženec** potomok kríženia
- X symbol kríženia
- P parentálna (rodičovská) generácia
- F1 filiálna generácia (generácia potomkov)

- Johann Gregor Mendel:

- Otec genetiky
- o Krížil hrach, skúmal rôzne znaky (napr. Farbu kvetu, farba semien, tvar semien, polohu kvetov...)
- 1866 publikoval výsledky svojho skúmania, do vtedy neboli známe chromozómy, ich existenciu iba predpokladal
- Mendelové zákony:
 - Zákon uniformity a reciprocity
 - Ak navzájom krížime homozygotné jedince, tak generácia bude genotypovo aj fenotypovo zhodná (uniformná)
 - P: AA x aa
 - G: AA aa
 - F1: Aa Aa Aa Aa

Zákon o štiepnych pomeroch

- Ak navzájom krížime heterozygotné jedince, generácia potomkov nebude genotypovo a fenotypovo zhodná
- P: Aa x Aa
- G: Aa Aa
- F1: AA, Aa, Aa, aa
- Genotypový štiepny pomer (GŠP): 1:2:1
- Fenotypový štiepny pomer (FŠP): 3:1