

Тема 6.

Понятие о коинтеграции временных рядов

Родионова Л.А. 2019

Проблема ложной корреляции и регрессии

Белый шум

	r1	r2
r1	1.0000	
r2	0.0378 0.7087	1.0000

	Source	SS	df	MS		Number of obs F(1, 98)	
	Model Residual	.141634419 98.8509504		634419 868317		Prob > F R-squared Adj R-squared	= 0.7087 = 0.0014
•	Total	98. 9925848	99 .999	925099		Root MSE	= 1.0043
	r1	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
•	r2 _cons	.0397239 0763759	.1060095 .1004767	0.37 -0.76	0.709 0.449	1706486 2757687	. 2500964 . 1230168

Проблема ложной корреляции и регрессии

Гренджер и Ньюболд (1974):

100 пар случайных блужданий, 76% - значимая взаимосвязь

Table 2

Regressions of a series on m independent 'explanatory' series.

Series either all random walks or all A.R.I.M.A. (0, 1, 1) series, or changes in these. $Y_0 = 100$, $Y_t = Y_{t-1} + a_t$, $Y_t' = Y_t + kb_t$; $X_{j,0} = 100$, $X_{j,t} = X_{j,t-1} + a_{j,t}$, $X_{j,t}' = X_{j,t} + kb_{j,t}$; $a_{j,t},a_t,b_t,b_{j,t}$ sets of independent N(0, 1) white noises. k = 0 gives random walks, k = 1 gives A.R.I.M.A. (0, 1, 1) series. $H_0 = \text{no relationship}$, is true. Series length = 50, number of simulations = 100, $\mathbb{R}^2 = \text{corrected } \mathbb{R}^2$.

		Per cent times H ₀ rejected ^a	Average Durbin-Watson d	Average R ²	Per cent $R^2 > 0.7$
			Random walks		
Levels	m = 1	76	0.32	0.26	5
	m=2	78	0.46	0.34	8
	m = 3	93	0.55	0.46	25
	m=4	95	0.74	0.55	34
	m=5	96	0.88	0.59	37

Granger, C.; Newbold, P. (1974). "Spurious Regressions in Econometrics". Journal of Econometrics. 2 (2): 111–120 http://wolfweb.unr.edu/~zal/STAT758/Granger_Newbold_1974.pdf

Проблема ложной корреляции и регрессии

Случайное блуждание

$$x_t = x_{t-1} + \mathcal{E}_t,$$

$$y_t = y_{t-1} + v_t.$$

$$y_t = y_{t-1} + v_t$$

req Y1 Y3

_	Source	SS	df	MS		Number of obs F(1, 98)		100 81.68
	Model Residual	1383.48774 1659.84186	1 138 98 16.	3.48774 9371618		Prob > F R-squared Adj R-squared	=	0.0000 0.4546 0.4490
	Total	3043.3296	99 30.	7407031		Root MSE		4.1155
	Y1	Coef.	Std. Err.	t	P> t	[95% Conf.	In	terval]
	Y3 _cons	8375525 -3.881929	.0926712 .63736	-9.04 -6.09	0.000 0.000	-1.021455 -5.146749		6536496 . 617109

2019

	Y1	Y3
Y1	1.0000	
Y3	-0.6742 0.0000	1.0000

Гренджер и Ньюболд (1974):

100 пар случайных блужданий, 76% значимая взаимосвязь

Коинтеграция

- Когда анализируют временные ряды, необходимо выявить долгосрочную устойчивую связь между переменными.
- Недостаток ADL-моделей
- •Коинтеграция первый подход к регрессии нестационарных ВР
- •Engle, Granger (1987): концепция коинтеграции
- •предложил Грейнджер (1981г.).

Engle, R. F. and C. W. J. Granger (1987) "Co-integration and error correction: Representation, estimation, and testing", Econometrica 55: 251-276.

Нобелевские лауреаты 2003

«за методы анализа экономических временных рядов с меняющейся во времени волатильностью (ARCH)»

Роберт Ф. Энгл Robert F. Engle (1942-)

«за методы анализа экономических временных рядов с общими трендами (коинтеграция)»

Клайв У. Дж. Грейнджер Clive W. J. Granger (1934-2009)

Robert F. Engle III (left) and Clive W. J. Granger at the Prize Award Ceremony at the Stockholm Concert Hall, 10 December 2003.

Коинтеграция: определение

- Пример 1

Опр. Процесс называется *интегрируемым* порядка d, если процесс и его первые (d-1) разности не является стационарными, а d-ая разность — стационарна. $x_t \sim I(d)$ -процесс $y_t \sim I(d)$

Опр. I(1)-процессы x_t и y_t являются **коинтегрированными**, если существует коэффициент λ такой, что линейная комбинация $\{y_t - \lambda \ x_t\} \sim I(0)$ (стационарна).

вектор β =(1, - λ) – коинтегрирующий вектор.

$$x_t, y_t \sim I(1), y_t - \lambda x_t \sim I(0) \to x_t, y_t \sim CI(1,1),$$

$$x_t, y_t \sim CI$$
 (параметры в скобках опускают)

-Пример 2

1994

1998

2000

2002

Коинтеграция: примеры

- цены на идентичные товары на разных рынках,
- •доходы и расходы домашних хозяйств,
- •кратко- и долгосрочные ставки процента,
- •ставка процента в различных частях страны и др.

Коинтеграция: примеры

Динамика производительности труда, средней заработной платы и уровня безработицы, сглаженные на сезонность

наличие структурных сдвигов!

Вакуленко 2014

Коинтеграция: примеры

Monthly youth unemployment rate (18-24 years old) in UK, by gender

 $\underline{https://www.statista.com/statistics/280326/monthly-youth-unemployment-rate-18-24-in-the-uk-by-gender/}$

Коинтегрирующее соотношение: интерпретация

• долгосрочное и краткосрочное поведение

$$egin{align*} oldsymbol{y}_t &= \lambda x_t + \mathcal{E}_t, \mathcal{E}_t \sim \mathrm{WN} \ x_t, y_t \sim \mathrm{I}(1), \quad \Delta x_t, \Delta y_t \sim \mathrm{I}(0), \ x_t &= x_{t-1} + \Delta x_t, y_t = y_{t-1} + \Delta y_t \ \Delta y_t &= lpha \Delta x_t + eta (y_{t-1} - \lambda x_{t-1}) + v_t \quad ECM \end{aligned}$$

Granger representation theorem

Краткосрочное поведение

Вопросы:

- 1. Существуют ли такие процессы?
- 2. Что делать дальше?
- суперсостоятельность МНК-оценок при наличии коинтеграции

 $V_{\text{сход-ти}}$ пропорц-но 1/T-1

Процедура Энгла-Гренджера

Пусть $x_t \sim I(1)$ и $y_t \sim I(1)$. Есть ли коинтеграция?

- **Основная идея:** Если λ известен, то выяснение того, коинтегрированы ли переменные x_t и y_t , было бы эквивалентно выяснению, стационарна ли комбинация $y_t \lambda x_t$
 - на практике: стационарная линейная комбинация неизвестна.
- 1) необходимо оценить коинтегрирующий вектор.
- 2) выяснить, действительно ли этот вектор дает стационарную линейную комбинацию.

Процедура Энгла-Гренджера

Этап 1. Строим регрессию

$$y_t = \alpha + \beta x_t + w_t \rightarrow \hat{\alpha}, \hat{\beta}, e_t$$

$$e_t = y_t - \hat{\alpha} - \hat{\beta}x_t \sim I(0)$$

Этап 2. DF-test для e_t

$$\Delta e_t = \rho e_{t-1} + \sum_{i=1}^{\kappa} \gamma_i \Delta e_{t-1} + V_t$$

Н₀: ρ=0 наличие ед.корня для СІ-соотношения (коинтеграции нет)

Если H_0 откл., то e_t является стационарным рядом и существует коинтеграция.

- критерий Девидсона-МакКинона (MacKinnon, Davidson (1993))
- уточненные асимптотические критические значения t-статистики.

Davidson, R., and J. G. MacKinnon (1993). Estimation and Inference in Econometrics, New York: Oxford University Press.

Процедура Энгла-Гренджера

- критерий Девидсона-МакКинона (MacKinnon, Davidson (1993))

Table 1. Response Surface Estimates of Critical Values

N	Variant	Level	Obs.	β_{∞}	(s.e.)	β_1	β_2
1	no constant	1%	600	-2.5658	(0.0023)	-1.960	-10.04
		5%	600	-1.9393	(0.0008)	-0.398	
		10%	560	-1.6156	(0.0007)	-0.181	
1	no trend	1%	600	-3.4336	(0.0024)	-5.999	-29.25
		5%	600	-2.8621	(0.0011)	-2.738	-8.36
		10%	600	-2.5671	(0.0009)	-1.438	-4.48
1	with trend	1%	600	-3.9638	(0.0019)	-8.353	-47.44
		5%	600	-3.4126	(0.0012)	-4.039	-17.83
		10%	600	-3.1279	(0.0009)	-2.418	-7.58
2	no trend	1%	600	-3.9001	(0.0022)	-10.534	-30.03
		5%	600	-3.3377	(0.0012)	-5.967	-8.98
		10%	600	-3.0462	(0.0009)	-4.069	-5.73
2	with trend	1%	600	-4.3266	(0.0022)	-15.531	-34.03
		5%	560	-3.7809	(0.0013)	-9.421	-15.06
		10%	600	-3.4959	(0.0009)	-7.203	-4.01

Explanation of Table 1

N: Number of I(1) series for which null of non-cointegration is being tested.

Level: Level of one-tail test of the unit root null against the alternative of stationarity.

Obs.: Number of observations used in response surface regression. Possible values are 600, 560, 520, and 480. If Obs. = 600, the regression used 40 observations from each of T=18, 20, 22, 25, 28, 30, 32, 40, 50, 75, 100, 150, 200, 250, and 500. If Obs. = 560, observations for T=18 were not used. If Obs. = 520, observations for T=18 and T=20 were not used. If Obs. = 480, the regression used 40 observations from each of T=20, 22, 25, 28, 30, 32, 36, 40, 50, 100, 250, and 275.

$$C(\alpha, T) = \beta_{\infty} + \beta_{1} \frac{1}{T} + \beta_{2} \frac{1}{T^{2}}$$

Critical Values for Cointegration Tests

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.456.4786&rep=rep1&type=pdf

Davidson, R., and J. G. MacKinnon (1993). Estimation and Inference in Econometrics, New York: Oxford University Press.

Процедура Энгла-Гренджера: пример

нулевая гипотеза единичного корня: а = 1

оценка для (а - 1): -1,11149

тестовая статистика: $tau_c(2) = -3,92522$

асимпт. р-значение 0,009128

Процедура Энгла-Гренджера: пример

оценка для (a - 1): -0,0562427 тестовая статистика: tau_c(2) = -2,32975 асимпт. p-значение 0,3583

Схема исследования рядов

- 1. Пусть $y_t \sim I(0), x_t \sim I(0) \rightarrow$ строим регрессию (возможно ADL).
- 2. Пусть $y_t \sim \mathbf{I}(1)$, $x_t \sim \mathbf{I}(0)$. Переходим к $\Delta y_t \sim \mathbf{I}(0)$ и строим регрессию.
- 3. Пусть $y_t \sim \mathbf{I}(1), x_t \sim \mathbf{I}(1) \rightarrow$ проверяем наличие коинтеграции.
 - нет CI → краткосрочные соотношения
 - существует $CI \rightarrow ECM$

Построение модели ЕСМ

1. Находим СІ-соотношение

$$y_{t} = \alpha + \beta x_{t} + w_{t}, \quad OLS \rightarrow e_{t}$$
2.
$$\Delta y_{t} = \alpha + \beta \Delta x_{t} + ce_{t} + \varepsilon_{t} \quad ECM$$

Замечание. Адекватность модели: остатки в ЕСМ-модели должны обладать свойствами *белого шума*. Если остатки автокоррелированы, необходимо включить больше лагов в ЕСМ (наращивание лаговой структуры):

$$\Delta y_{t} = \alpha + ce_{t} + \sum_{i=1}^{k} \beta_{1i} \Delta y_{t-i} + \sum_{i=1}^{k} \beta_{2i} \Delta x_{t-i} + \varepsilon_{t}$$

Коинтеграция: примеры моделирования (1)

ПЭ №3, 2013 Айвазян, Бродский и др. Макроэкономическое моделирование экономик России и Армении.

ВВП Армении

$$\ln(GDP_t) = 0.580 + 0.199 \ln(M2_t) - 0.328 \ln(rdram_t) + 0.078 \ln(woil_t)$$

Рис. 3. Квартальная динамика ВВП Армении в период 1-й квартал 2000 г. — 4-й квартал 2011 г.

Айвазян С. А., Б. Е. Бродский, Э. М. Сандоян, М. А. Восканян, Д. Э. Манукян. Макроэконометрическое моделирование экономик России и Армении // ПЭ. 2013. №3(31) http://pe.cemi.rssi.ru/pe_2013_3_03-31.pdf

Коинтеграция: примеры моделирования

ПЭ №3, 2013 Айвазян, Бродский и др. Макроэкономическое моделирование экономик России и Армении.

ВВП Армении

Анализ остатков

Коинтеграция: примеры моделирования (2)

Краснопеева Н. А., Назруллаева Е. Ю. Моделирование влияния инвестиций в основной капитал на материальные затраты в отраслях промышленности США в 1958–2005 гг.

Текстильная промышленность

Примечание: **, **, * - МНК-оценки значимы на одно-, пяти- и десятипроцентном уровнях соответственно.

«Заметим, что как выпуск, так и инвестиции в долгосрочной перспективе влияют на материальные затраты отрицательно. В краткосрочной перспективе было выявлено статистически значимое отрицательное влияние инвестиций на материальные затраты и положительное влияние со стороны материальных затрат предыдущего периода. Стоит отметить, что инвестиции в большей степени влияют на материальные затраты именно в случае долгосрочного равновесия, что вполне логично, так как инвестиции в основной капитал носят прежде всего долгосрочный характер».

Краснопеева Н. А., Назруллаева Е. Ю. Моделирование влияния инвестиций в основной капитал на материальные затраты в отраслях промышленности США в 1958–2005 гг. // Экономический журнал ВШЭ [2014] Т. 18 № 1. С. 102–132 ej.hse.ru/2014-18-1/119907605.html

Процедура Энгла-Гренджера: недостатки

- 1. Малая мощность DF-test
- 2. Установление причинно-следственной связи
- 3. В многомерном случае возможно определение более одного коинтеграционного соотношения

Коинтеграция: обобщение

Опр. (Обобщение) I(d)-процессы $\{x_t\}$ и $\{y_t\}$ являются **коинтегрированными,** если существует вектор (α, β) такой, что линейная комбинация $\{\alpha x_t + \beta y_t\} \sim I(d-b), b>0$.

Обозначение:

Пример

$$x_t, y_t \sim I(3), \quad (\alpha x_t + \beta y_t) \sim I(1) \to x_t, y_t \sim CI(3,2)$$

Родионова Л.А. 2019