Math 321 Lecture 33

Yuchong Pan

March 29, 2019

1 Proof of the Implicit Function Theorem

Proof (cont'd). Last time: Given: $\mathbf{f}: E \to \mathbb{R}^n, \ E \overset{\text{open}}{\subseteq} \mathbb{R}^{n+m}, \ \mathbf{f} \in C^1(E), \ \underbrace{(\mathbf{a}, \mathbf{b})}_{\mathbb{R}^{n+m}} \in E,$ $\mathbf{f}(\mathbf{a}, \mathbf{b}) = \mathbf{0}, \ \mathbf{A} = \mathbf{f}'(\mathbf{a}, \mathbf{b}) = \left[\begin{array}{c} \mathbf{A}_x \\ n \times n \end{array} \middle| \begin{array}{c} \mathbf{A}_y \\ n \times m \end{array} \right], \ \mathbf{A}_x \text{ invertible.}$

(a) Goal: Given \mathbf{y} near \mathbf{b} , want to find a unique $\underbrace{\mathbf{x}}_{\text{near }\mathbf{a}}$ such that $\mathbf{f}(\mathbf{x},\mathbf{y}) = \mathbf{0}$; i.e., $\mathbf{x} = \mathbf{g}(\mathbf{y})$.

We defined $\mathbf{F}(\mathbf{x}, \mathbf{y}) \stackrel{\text{def}}{=} (\mathbf{f}(\mathbf{x}, \mathbf{y}), \mathbf{y}), \ \mathbf{F} : \underbrace{E}_{\substack{| \cap \\ \mathbb{R}^{n+m}}} \to \mathbb{R}^{n+m}$ and checked the hypotheses of the

inverse function theorem for \mathbf{F} . $\mathbf{F}'(\mathbf{a}, \mathbf{b})$ is invertible.

By the inverse function theorem, we know that there exist open sets $U, V \subseteq \mathbb{R}^{n+m}$ such that $\mathbf{F}: \underbrace{U}_{(\mathbf{a}, \mathbf{b})} \to \underbrace{V}_{\mathbb{R}^{n+m}} = \mathbf{F}(U)$ is a bijection, and admits a C^1 -inverse $\mathbf{G} = \mathbf{F}^{-1}$.

Let $W = \{ \mathbf{y} \in \mathbb{R}^m : (\mathbf{0}, \mathbf{y}) \in \underbrace{V}_{=F(U)} \}$. W is nonempty because $\mathbf{b} \in W$.

Claim: W is open in \mathbb{R}^m . (Assume for now.)

Fact: For any open set $O \subseteq \mathbb{R}^{k+k'}$, show $\{\mathbf{y} : (\underbrace{\mathbf{0}}_{\in \mathbb{R}^k}, \underbrace{\mathbf{y}}_{\in \mathbb{R}^{k'}}) \in O\} \subseteq \mathbb{R}^{k'}$ is open.

Hint: Study the set $\{\mathbf{y}: (\mathbf{0}, \mathbf{y}) \in \underbrace{B}_{\text{open ball in } \mathbb{R}^{k'}}\}$.

Math 321 Lecture 33 Yuchong Pan

Choose $\mathbf{y} \in W$.

$$\Leftrightarrow \quad (\mathbf{0}, \mathbf{y}) \in V = F(U)$$

$$\Leftrightarrow \quad \exists (\mathbf{x}, \mathbf{y}) \in U \text{ s.t. } \underbrace{\mathbf{F}(\mathbf{x}, \mathbf{y})}_{=(\mathbf{f}(\mathbf{x}, \mathbf{y}), \mathbf{y})} = (\mathbf{0}, \mathbf{y})$$

$$\Leftrightarrow \quad \exists \mathbf{x} \in \mathbb{R}^n \text{ s.t. } \mathbf{f}(\mathbf{x}, \mathbf{y}) = \mathbf{0}.$$

Observe that \mathbf{x} is unique: if there exist $\mathbf{x} \neq \mathbf{x}'$ such that $\mathbf{f}(\mathbf{x}, \mathbf{y}) = \mathbf{f}(\mathbf{x}', \mathbf{y}) = \mathbf{0}$ and that $(\mathbf{x}, \mathbf{y}), (\mathbf{x}', \mathbf{y}) \in U$, then $\mathbf{F}(\mathbf{x}, \mathbf{y}) = \mathbf{F}(\mathbf{x}', \mathbf{y}) = (\mathbf{0}, \mathbf{y})$, contradicting the bijectivity of \mathbf{F} on U.

(b) Note that so far for every $\mathbf{y} \in W$, we have a unique $\mathbf{x} = \mathbf{g}(\mathbf{y})$ such that $(\mathbf{x}, \mathbf{y}) \in U$ and $\mathbf{f}(\mathbf{g}(\mathbf{y}), \mathbf{y}) = \mathbf{0}$. In other words, \mathbf{x} is *implicitly* a function of \mathbf{y} , hence the name of the theorem.

e.g.,
$$y^2 + x^3 = 0 \Rightarrow x = (-y^2)^{\frac{1}{3}}$$
.

However, $y^2 + xy + x^3 \sin x = 0$ cannot be solved explicitly as a function of y but the implicit function theorem ensures that near certain (a, b) such solutions exist.

Goal: $\mathbf{g} \in C^1(W)$ and $\mathbf{g}'(\mathbf{b}) = -\mathbf{A}_x^{-1}\mathbf{A}_y$, where $\mathbf{g} : \mathbb{R}^m \to \mathbb{R}^n$.

Note that

$$F:(\underbrace{\mathbf{x}}_{=\mathbf{g}(\mathbf{y})},\mathbf{y})\mapsto(\underbrace{\mathbf{f}(\mathbf{x},\mathbf{y})}_{=\mathbf{0}},\mathbf{y}).$$

Define

$$\underbrace{\Phi(\mathbf{y})}_{\in C^1(W)} = (\underbrace{\mathbf{g}(\mathbf{y})}_{\in C^1(W)}, \mathbf{y}) = \mathbf{F}^{-1}(\mathbf{0}, \mathbf{y}).$$

Then,

$$\Phi'(\mathbf{y}) = \begin{pmatrix} \mathbf{g}'(\mathbf{y})_{n \times m} \\ \mathbf{I}_{m \times m} \end{pmatrix}.$$

By the inverse function theorem, we know \mathbf{F}^{-1} is C^1 on V. Thus,

$$\begin{aligned} \mathbf{f}(\underline{\mathbf{g}}(\mathbf{y}), \mathbf{y}) &= \mathbf{0} \\ &\stackrel{\underline{chain}}{=} \underbrace{\mathbf{f}'(\Phi(\mathbf{y}))}_{n \times (n+m)} \Phi'(\mathbf{y}) = \mathbf{0} & \text{Why is } \mathbf{g} \text{ or } \Phi \text{ differentiable?} \\ &\Rightarrow \underbrace{\mathbf{f}'(\mathbf{g}(\mathbf{y}), \mathbf{y})}_{n \times (n+m)} \begin{pmatrix} \mathbf{g}'(\mathbf{y}) \\ \mathbf{I} \end{pmatrix}_{(n+m) \times m} = \mathbf{0}. \end{aligned}$$

Math 321 Lecture 33 Yuchong Pan

Set y = b; get

$$\underbrace{\begin{bmatrix} \mathbf{A}_x & \mathbf{A}_y \end{bmatrix}}_{=\mathbf{f}'(\underbrace{\mathbf{g}(\mathbf{b}),\mathbf{b})}} \begin{pmatrix} \mathbf{g}'(\mathbf{b}) \\ \mathbf{I} \end{pmatrix} = \mathbf{0};$$

i.e.,

 $\mathbf{A}_x \mathbf{g}'(\mathbf{b}) + \mathbf{A}_y = \mathbf{0} \quad \Rightarrow \quad \mathbf{g}'(\mathbf{b}) = -\mathbf{A}_x^{-1} \mathbf{A}_y \quad \text{since } \mathbf{A}_x \text{ is known to be invertible.}$