第四章 无穷集合及其基数

- 1. 设A为由序列 $a_1, a_2, \cdots, a_n, \cdots$ 的所有项组成的集合,则A是否是可数的?为什么?
- 2. 证明: 直线上互不相交的开区间的全体所构成的集合至多可数。
- 3. 证明: 单调函数的不连续点的集合至多可数。
- 4. 任一可数集 A 的所有有限子集构成的集族是可数集合。

- 5. 判断下列命题之真伪:
 - (1) 若 $f: X \to Y \perp L$ 是满射,则只要 X 是可数的,那么 Y 是至多可数的;
 - (2) 若 $f: X \to Y \perp L f$ 是单射,那么只要 Y 是可数的,则 X 也是可数的;
 - (3) 可数集在任一映射下的像也是可数的;
- 7. 设 Σ 为一个有限字母表, Σ 上所有字(包括空字)之集记为 Σ *。证明 Σ *是可数集

P_{142} 习题

4. 利用康托的对角线法证明 2^{A} 是不可数集,其中 A 为可数集。

5. 利用康托的对角线法证明所有的 0, 1 的无穷序列是不可数集。