Zadanie 1

Jednofazowe prostowniki niesterowane

Wyznaczyć, na drodze symulacji komputerowej, funkcję zmian współczynnika tętnień k_t =f(C) dla układu prostownika dwupulsowego, z dzielonym uzwojeniem wtórnym transformatora (bez modelu transformatora – zasilanie w postaci dwóch źródeł napięcia przemiennego) z filtrem pojemnościowym C dla dwóch wartości rezystancji obciążenia: $R_{01} = 10\Omega$ i $R_{02} = 20\Omega$. Amplituda napięcia źródeł zasilających prostownik $U_M = 20V$.

Pojemność kondensatora filtru C zmienia się w zakresie 50μF – 5mF.

W raporcie umieścić wykresy $k_t = f(C)$ dla dwóch wartości R_0 .

Zadanie 2

Stabilizatory napięcia stałego o działaniu ciągłym

Dla zadanych wartości napięcia stabilizowanego U_{WY0} i prądu wyjściowego I_{WYMAX} dobrać parametry elementów kompensacyjnego szeregowego stabilizatora napięcia stałego. W pętli sprzężenia zwrotnego zastosować wzmacniacz operacyjny $\mu A741$. Obliczyć maksymalną moc strat tranzystora regulacyjnego i dobrać odpowiedni typ tranzystora.

Na drodze symulacji wyznaczyć charakterystyki $U_{WY} = f(U_{WE})$ przy $R_0 = const$ oraz $U_{WY} = f(I_{WY})$ przy $U_{WE} = const$.

W raporcie umieścić obliczenia projektowe elementów stabilizatora i tranzystora regulacyjnego oraz charakterystyki $U_{WY} = f(U_{WE})$ przy $R_0 = const$ oraz $U_{WY} = f(I_{WY})$ przy $U_{WE} = const$

Zadanie 3

Generator drgań sinusoidalnych

Dobrać elementy przesuwnika fazowego CR (trójstopniowego) tak, aby częstotliwość pracy generatora ze wzmacniaczem operacyjnym i tym czwórnikiem w pętli sprzężenia zwrotnego była równa ok. 5kHz.

Korzystając z programu symulacyjnego MULTISIM wyznaczyć logarytmiczne charakterystyki częstotliwościowe (amplitudową i fazową) zaprojektowanego czwórnika CR i zaznaczyć na nich punkt odpowiadający częstotliwości pracy generatora.

Zasymulować układ generatora ze wzmacniaczem operacyjnym i zaprojektowanym czwórnikiem. W raporcie należy umieścić obliczenia czwórnika CR i jego logarytmiczne charakterystyki częstotliwościowe oraz przebieg napięcia wyjściowego generatora. Porównać częstotliwość napięcia wyjściowego generatora zmierzoną w modelu symulacyjnym z wartością teoretyczną. Jakie rzeczywiste wzmocnienie ma wzmacniacz w analizowanym modelu?