LABEL RANKING FOR ELECTION OUTCOME PREDICTION

Miguel Jorge Gonçalves Pereira February 16, 2018

> Supervisor: Cláudio Rebelo de Sá Second Supervisor: Carlos Soares Mestrado Integrado em Engenharia Informática Faculdade de Engenharia da Universidade do Porto

Presentation Structure

- 1. Introduction
- 2. Election Prediction
- 3. Association Rules Mining
- 4. Label Ranking
- 5. Pairwise Association Rules
- 6. Experimental setup
- 7. Results and Analysis
- 8. Conclusions

Context Problem Motivation / Goals

Context

Election prediction and approaches

Problem

Motivation / Goals

Problem

Context

Current methods face complex challenges

Motivation / Goals

Context

Problem

Motivation / Goals

LR for Election Outcome

Prediction

Adapt PAR for prediction

Study the accuracy trade-off between the prediction of complete rankings vs incomplete rankings

2 Election Prediction

3 Association Rules Mining

$$A \rightarrow C$$

 $\begin{array}{lll} i & \text{instance} & A & \text{antecedent} \\ \mathbb{X} & \text{instance space} & C & \text{consequent} \\ \text{desc}(\mathbb{X}) & \text{descriptors of } \mathbb{X} \text{ i.e. (attribute, value) pairs} & A \cap C = \emptyset \\ \mathcal{A} & \text{independent variable} & A,C \subseteq \text{desc}(\mathbb{X}) \\ x_i & \text{vector of values of } \mathcal{A} \text{ that describe } i \\ D \left\{\langle x_i \rangle\right\} & \text{data} \end{array}$

Example

```
instance region of Porto

instance space all the regions in Portugal

desc(X) descriptors of X {\langle unemployment, high \rangle,...}

independent variable unemployment

x_i vector of values of \mathcal{A} that describe i Porto: {\langle unemployment, high \rangle,...}

D {\langle x_i \rangle} data {Porto: {...}, Lisbon: {...},...}
```

Example

(For instance i_1 = Porto) (For independent variable \mathcal{A}_1 = unemployment)

 $A_1 = \text{high} \rightarrow \text{left-wing party wins elections}$

Interest Measures

support percentage of instances in D that contain A and C

confidence percentage of instances that contain C from the set of instances that contain A

lift measures the independence of the consequent, C, relative to the antecedent, A

Interest Measures

Improvement measure of the *improvement (difference in confidence)* that a certain rule yields in comparison to it's predecessor

e.g. improvement = 2

Rules Generation

4 Label Ranking

goal : find the $\widehat{\pi}$ of \mathcal{L} associated with x

```
\pi ranking
```

 $\hat{\pi}$ predicted ranking

x instance in X

 \mathcal{L} predefined set of classes $\{\lambda_1, ..., \lambda_k\}$

 Ω permutation space

ranking — complete

ranking — partial

incomplete

ranking

can be represented as an

order

ranking

complete

partial

incomplete

strict total order

$$\lambda_2 > \lambda_3 > \lambda_1 > \lambda_4$$

non-strict total order

$$\lambda_1 = \lambda_2 > \lambda_3 > \lambda_4$$

non-strict partial order

$$\lambda_1 > \lambda_3 > \lambda_4$$

$$\pi = (3,1,2,4)$$

$$\pi = (1,1,2,3)$$

$$\pi = (1,0,2,3)$$

Label Ranking methods

Label Ranking Association Rules

$$A \longrightarrow \pi$$

$$A \subseteq X$$

 $\pi \in \Omega$

Label Ranking Association Rules

Example

$$\mathcal{A}_1 = \text{high } \land \mathcal{A}_2 = \text{low} \longrightarrow C > A > B > D$$

5 Pairwise Association Rules

$$A \longrightarrow \{\lambda_a \ge \lambda_b \oplus \lambda_b \ge \lambda_a \oplus \lambda_a = \lambda_b \oplus \lambda_a \perp \lambda_b \mid \lambda_a, \lambda_b \in \mathcal{L}\}$$

Pairwise Association Rules

Example

$$\mathcal{A}_1 = \text{high } \wedge \mathcal{A}_2 = \text{low} \longrightarrow \lambda_3 > \lambda_1 \wedge \lambda_2 > \lambda_4$$

Example Comparison

LRAR

$$\mathcal{A}_1 = \text{high } \wedge \mathcal{A}_2 = \text{low} \longrightarrow \lambda_3 > \lambda_1 > \lambda_2 > \lambda_4$$

PAR

$$\mathcal{A}_1 = \text{high } \wedge \mathcal{A}_2 = \text{low} \longrightarrow \lambda_3 > \lambda_1 \wedge \lambda_2 > \lambda_4$$

Evaluation

LRAR

Kendall Tau normalized difference between the number of concordant and discordant pairs

PAR

Gamma measure of correlation between two incomplete rankings or between 2 incomplete and complete or partial rankings

PAR for prediction

Completeness Rule selection Maximum Pairwise

PAR for prediction

=1

PAR for prediction

Maximum Pairwise

Rule Selection

 $max_{pairwise}(k) = \frac{k!}{2!(k-2)!}$

 $A \longrightarrow \lambda_1 > \lambda_2$ $A \longrightarrow \lambda_1 > \lambda_2 \land \lambda_3 > \lambda_4$ **=2**

Completeness

PAR for prediction

Completeness

Rule Selection

Maximum Pairwise

 $completeness = \frac{pairs}{max_{pairwise}(k)}$

6 Experimental setup

Data

Table 4.1: LR datasets								
dataset	type	# instances	# features	# labels				
bodyfat	В	252	7	7				
cpu-small	В	8192	6	5				
glass	Α	214	9	6				
housing	В	506	6	6				
iris	Α	150	4	3				
stock	В	950	5	5				
vehicle	A	846	18	4				
wine	A	178	13	3				

Table 4.	2: Ele	ction D	atasets

dataset	# instances	# features	# labels
germany 2005	412	29	5
germany 2009	412	29	5
portugal 2009	308	20	5
portugal 2013	308	20	5
portugal 2017	308	20	5

Table 4.7: Subset of Socio-economic variables of the election datasets

	1 1 1
id	description
\mathcal{A}_1	Unemployment below 25 years
\mathcal{A}_2	Residents between 15 and 64 years
\mathcal{A}_3	Elderly Population
\mathcal{A}_4	Average Monthly Income
\mathcal{A}_5	Employees in Construction
\mathcal{A}_6	Employees in Administration and Services
\mathcal{A}_7	Employees in Agriculture
\mathcal{A}_8	Employees in Transformation Industries
\mathcal{A}_9	Employees in Gross and Retails Markets
\mathcal{A}_{10}	Employees in Banks
\mathcal{A}_{11}	Employees in other Economic Sectors
\mathcal{A}_{12}	Population without Education
\mathcal{A}_{13}	Registered Web Domains
\mathcal{A}_{14}	Population with no school degree

Experimental setup

min support = 1%

A minimum support

- 1. generates better predictions
- 2. minimizes the use of the *default ranking*

min confidence = 70%

We do not want to limit the rules generation

However

Predicting with a high confidence is desired

min improvement = 0

We do not want to limit the generation of sub-rules

Generation of PAR and Prediction

 \mathcal{R} rules

Consequent e.g.:
$$\lambda_2 > \lambda_1 \wedge \lambda_2 > \lambda_4$$

 $\begin{vmatrix} \lambda_{\text{line}} > \lambda_{\text{column}} & \Rightarrow & 1 \\ \lambda_{\text{line}} < \lambda_{\text{column}} & \Rightarrow & -1 \\ \lambda_{\text{line}} = \lambda_{\text{column}} & \Rightarrow & 0 \\ \lambda_{\text{line}} \perp \lambda_{\text{column}} & \Rightarrow & \mathcal{N}A \end{vmatrix}$

	λ ₁	λ_2	λ 3	λ_4	λ ₅
λ_1	0	-1	NA	NA	NA
λ_2	1	0	NA	1	NA
λ_3	NA	NA	0	NA	NA
λ_4	NA	-1	NA	0	NA
λ ₅	NA	NA	NA	NA	0

Prediction ⇒ best rule

Evaluation

Table 4.4: Accuracy measures comparison

π	$\hat{\pi}$	Kendall Tau	gamma	accuracy
$\lambda_1 \succ \lambda_2 \succ \lambda_3 \succ \lambda_4 \succ \lambda_5$	$\lambda_1 \succ \lambda_2 \succ \lambda_3 \succ \lambda_4 \succ \lambda_5$	1	1	1
$\lambda_1 \succ \lambda_2 \succ \lambda_3 \succ \lambda_4 \succ \lambda_5$	$\lambda_1 \succ \lambda_2 \succ \lambda_3 \succ \lambda_5 \succ \lambda_4$	0.8	0.8	0
$\lambda_1 \succ \lambda_2 \succ \lambda_3 \succ \lambda_4 \succ \lambda_5$	$\lambda_5 \succ \lambda_4 \succ \lambda_3 \succ \lambda_2 \succ \lambda_1$	-1	-1	0
$\lambda_1 \succ \lambda_2 \succ \lambda_3 \succ \lambda_4 \succ \lambda_5$	$\lambda_1 \succ \lambda_2 \land \lambda_2 \succ \lambda_3 \land \lambda_3 \succ \lambda_4$	NA	1	1
$\lambda_1 \succ \lambda_2 \succ \lambda_3 \succ \lambda_4 \succ \lambda_5$	$\lambda_2 \succ \lambda_1 \wedge \lambda_2 \succ \lambda_3 \wedge \lambda_3 \succ \lambda_4$	NA	0.33(3)	0
$\lambda_1 \succ \lambda_2 \succ \lambda_3 \succ \lambda_4 \succ \lambda_5$	$\lambda_2 \succ \lambda_1 \land \lambda_2 \succ \lambda_3 \land \lambda_4 \succ \lambda_3$	NA	-0.33(3)	0

7 Results and Analysis

Experimental results with typical LR datasets

Table 4.5: Experimental results using the common LR datasets

	baseline	IB-PL	IB-Mal	Lin-PL	Lin-LL	LRAR	1 Pair	2 Pairs	3 Pairs	4 Pairs
bodyfat	04	.23	.23	.27	.27	.02	.33	.19	37	58
cpu-small	.23	.50	.50	.43	.42	.45	.81	.74	.61	.33
glass	.68	.84	.84	.83	.82	.71	.97	.98	.95	.94
housing	.05	.71	.74	.66	.63	.69	1	.99	.97	.91
iris	.09	.96	.93	.83	.82	.86	.95	.95	.89	-
stock	.06	.92	.93	.71	.70	.82	.99	.99	.99	.95
vehicle	.18	.86	.86	.84	.78	.82	.95	.95	.94	.83
wine	.33	.95	.94	.95	.94	.92	.88	.87	.5	-

Figure 4.3: Completeness vs Accuracy in the LR datasets grouped by number of labels 1.00 -0.75 labels completeness 0.50 -0.25 -0.00 -0.25 0.50 0.75 1.00 0.00 accuracy

Experimental results with LR elections datasets

Table 4.6: Experimental results using the elections datasets

	baseline	LRAR	1 Pair	2 Pairs	3 Pairs	4 Pairs	5 Pairs
germany 2005-2009	.72	.64	.82	.75	.84	.86	.89
portugal 2009-2013	.65	.6	.92	.82	.79	.66	.67
portugal 2013-2017	.44	.47	.75	.75	.63	.63	.62

Figure 4.5: Completeness vs Accuracy in the Elections datasets - Merged

Rule analysis

Table 4.8: Top 5 Rules analysis

	antecedent	consequent	%sup	%conf
germany 2005	$A_{13} > 74 \wedge A_{14} < 10\%$	$SPD \succ FDP \land SPD \succ LEFT$	81.31	100
	$A_{13} > 74 \wedge A_{14} < 10\%$	$CDU \succ FDP \land SPD \succ LEFT$	81.31	100
	$A_{13} > 74 \wedge A_{14} < 10\%$	$SPD \succ GREEN \land SPD \succ LEFT$	81.31	100
	$A_{13} > 74 \wedge A_{14} < 10\%$	$CDU \succ GREEN \land SPD \succ LEFT$	81.31	100
	$A_3 < 30\%$	$SPD \succ FDP \land SPD \succ LEFT$	80.58	100
portugal 2009	$A_5 \in [14\%, 27\%] \land A_{11} < 1\%$	$PS \succ BE \land PS \succ CDS.PP$	42.53	100
	$A_{12} < 9\% \land A_6 < 7\% \land A_{11} < 1\%$	$PS \succ BE \land PS \succ PCP.PEV$	16.88	100
	$A_{12} \in [15\%, 20\%] \land A_7 < 13\%$	$PS \succ BE \land PS \succ PCP.PEV$	15.58	100
	$A_2 > 66\% \land A_6 < 7\% \land A_{11} < 1\%$	$PS \succ BE \land PS \succ PCP.PEV$	15.58	100
	$\mathcal{A}_{10} \in [1\%, 3\%] \land \mathcal{A}_5 \in [14\%, 27\%]$	$PS \succ CDS.PP \land PS \succ PCP.PEV$	10.06	100
portugal 2013	$A_5 < 14\% \land A_6 < 7\% \land A_{10} < 1\%$	$PCP.PEV \succ BE \land PS \succ BE$	24.03	100
	$A_1 \in [12\%, 17\%] \land A_8 < 16\%$	$PCP.PEV \succ BE \land PS \succ BE$	18.18	100
	$\land \ \mathcal{A}_9 \in [17\%, 27\%]$			
	$A_4 \in [780, 1000] \land A_8 < 16\%$	$PCP.PEV \succ BE \land PS \succ BE$	17.53	100
	$\land \ \mathcal{A}_9 \in [17\%, 27\%]$			
	$A_{12} < 9\% \land A_6 < 7\%$	$PSD \succ BE \land PS \succ BE$	17.21	100
	$A_8 \in [16\%, 31\%] \land A_4 \in [1000, 1730]$	$PSD \succ BE \land PS \succ BE$	16.88	100

8 Conclusions

1. PAR are a solid alternative to solve complex LR problems

- 2. The completeness versus accuracy trade-off is clear
- 3. The less information it is required, the better PAR is at predicting without mistakes
- 4. In situations where it is more important to have an accurate rather than more complete prediction, PAR can provide a meaningful contribution
- 5. It appears that in smaller rankings the accuracy is less affected
- 6. We contributed to the Label Ranking community with 3 real-world label ranking datasets
- 7. PAR finding obvious information validates our approach but does not gives much valuable information for election prediction
- 8. Some parties clearly dominating the political scenario lead to unbalanced ranking data
- 9. Computationally heavy processes of discretization and mining of LRAR and PAR limit some experimental approaches
- 10. As future work in PAR, we suggest improving the generation of rules with multiple items in the consequent
- 11. Also in PAR, we suggest studying the aggregation of rules by their consequent
- 12. Lastly, we suggest the application of PAR for prediction in a more balanced real-world use-case

1. PAR are a solid alternative to solve complex LR problems

2. The completeness versus accuracy trade-off is clear

- 3. The less information it is required, the better PAR is at predicting without mistakes
- 4. In situations where it is more important to have an accurate rather than more complete prediction, PAR can provide a meaningful contribution
- 5. It appears that in smaller rankings the accuracy is less affected
- 6. We contributed to the Label Ranking community with 3 real-world label ranking datasets
- 7. PAR finding obvious information validates our approach but does not gives much valuable information for election prediction
- 8. Some parties clearly dominating the political scenario lead to unbalanced ranking data
- 9. Computationally heavy processes of discretization and mining of LRAR and PAR limit some experimental approaches
- 10. As future work in PAR, we suggest improving the generation of rules with multiple items in the consequent
- 11. Also in PAR, we suggest studying the aggregation of rules by their consequent
- 12. Lastly, we suggest the application of PAR for prediction in a more balanced real-world use-case

- 1. PAR are a solid alternative to solve complex LR problems
- 2. The completeness versus accuracy trade-off is clear
- 3. The less information it is required, the better PAR is at predicting without mistakes
- 4. In situations where it is more important to have an accurate rather than more complete prediction, PAR can provide a meaningful contribution
- 5. It appears that in smaller rankings the accuracy is less affected
- 6. We contributed to the Label Ranking community with 3 real-world label ranking datasets
- 7. PAR finding obvious information validates our approach but does not gives much valuable information for election prediction
- 8. Some parties clearly dominating the political scenario lead to unbalanced ranking data
- 9. Computationally heavy processes of discretization and mining of LRAR and PAR limit some experimental approaches
- 10. As future work in PAR, we suggest improving the generation of rules with multiple items in the consequent
- 11. Also in PAR, we suggest studying the aggregation of rules by their consequent
- 12. Lastly, we suggest the application of PAR for prediction in a more balanced real-world use-case

- 1. PAR are a solid alternative to solve complex LR problems
- 2. The completeness versus accuracy trade-off is clear
- 3. The less information it is required, the better PAR is at predicting without mistakes
- 4. In situations where it is more important to have an accurate rather than more complete prediction, PAR can provide a meaningful contribution
- 5. It appears that in smaller rankings the accuracy is less affected
- 6. We contributed to the Label Ranking community with 3 real-world label ranking datasets
- 7. PAR finding obvious information validates our approach but does not gives much valuable information for election prediction
- 8. Some parties clearly dominating the political scenario lead to unbalanced ranking data
- 9. Computationally heavy processes of discretization and mining of LRAR and PAR limit some experimental approaches
- 10. As future work in PAR, we suggest improving the generation of rules with multiple items in the consequent
- 11. Also in PAR, we suggest studying the aggregation of rules by their consequent
- 12. Lastly, we suggest the application of PAR for prediction in a more balanced real-world use-case

- 1. PAR are a solid alternative to solve complex LR problems
- 2. The completeness versus accuracy trade-off is clear
- 3. The less information it is required, the better PAR is at predicting without mistakes
- 4. In situations where it is more important to have an accurate rather than more complete prediction, PAR can provide a meaningful contribution
- 5. It appears that in smaller rankings the accuracy is less affected
- 6. We contributed to the Label Ranking community with 3 real-world label ranking datasets
- 7. PAR finding obvious information validates our approach but does not gives much valuable information for election prediction
- 8. Some parties clearly dominating the political scenario lead to unbalanced ranking data
- 9. Computationally heavy processes of discretization and mining of LRAR and PAR limit some experimental approaches
- 10. As future work in PAR, we suggest improving the generation of rules with multiple items in the consequent
- 11. Also in PAR, we suggest studying the aggregation of rules by their consequent
- 12. Lastly, we suggest the application of PAR for prediction in a more balanced real-world use-case

- 1. PAR are a solid alternative to solve complex LR problems
- 2. The completeness versus accuracy trade-off is clear
- 3. The less information it is required, the better PAR is at predicting without mistakes
- 4. In situations where it is more important to have an accurate rather than more complete prediction, PAR can provide a meaningful contribution
- 5. It appears that in smaller rankings the accuracy is less affected
- 6. We contributed to the Label Ranking community with 3 real-world label ranking datasets
- 7. PAR finding obvious information validates our approach but does not gives much valuable information for election prediction
- 8. Some parties clearly dominating the political scenario lead to unbalanced ranking data
- 9. Computationally heavy processes of discretization and mining of LRAR and PAR limit some experimental approaches
- 10. As future work in PAR, we suggest improving the generation of rules with multiple items in the consequent
- 11. Also in PAR, we suggest studying the aggregation of rules by their consequent
- 12. Lastly, we suggest the application of PAR for prediction in a more balanced real-world use-case

- 1. PAR are a solid alternative to solve complex LR problems
- 2. The completeness versus accuracy trade-off is clear
- 3. The less information it is required, the better PAR is at predicting without mistakes
- 4. In situations where it is more important to have an accurate rather than more complete prediction, PAR can provide a meaningful contribution
- 5. It appears that in smaller rankings the accuracy is less affected
- 6. We contributed to the Label Ranking community with 3 real-world label ranking datasets
- 7. PAR finding obvious information validates our approach but does not gives much valuable information for election prediction
- 8. Some parties clearly dominating the political scenario lead to unbalanced ranking data
- 9. Computationally heavy processes of discretization and mining of LRAR and PAR limit some experimental approaches
- 10. As future work in PAR, we suggest improving the generation of rules with multiple items in the consequent
- 11. Also in PAR, we suggest studying the aggregation of rules by their consequent
- 12. Lastly, we suggest the application of PAR for prediction in a more balanced real-world use-case

- 1. PAR are a solid alternative to solve complex LR problems
- 2. The completeness versus accuracy trade-off is clear
- 3. The less information it is required, the better PAR is at predicting without mistakes
- 4. In situations where it is more important to have an accurate rather than more complete prediction, PAR can provide a meaningful contribution
- 5. It appears that in smaller rankings the accuracy is less affected
- 6. We contributed to the Label Ranking community with 3 real-world label ranking datasets
- 7. PAR finding obvious information validates our approach but does not gives much valuable information for election prediction
- 8. Some parties clearly dominating the political scenario lead to unbalanced ranking data
- 9. Computationally heavy processes of discretization and mining of LRAR and PAR limit some experimental approaches
- 10. As future work in PAR, we suggest improving the generation of rules with multiple items in the consequent
- 11. Also in PAR, we suggest studying the aggregation of rules by their consequent
- 12. Lastly, we suggest the application of PAR for prediction in a more balanced real-world use-case

- 1. PAR are a solid alternative to solve complex LR problems
- 2. The completeness versus accuracy trade-off is clear
- 3. The less information it is required, the better PAR is at predicting without mistakes
- 4. In situations where it is more important to have an accurate rather than more complete prediction, PAR can provide a meaningful contribution
- 5. It appears that in smaller rankings the accuracy is less affected
- 6. We contributed to the Label Ranking community with 3 real-world label ranking datasets
- 7. PAR finding obvious information validates our approach but does not gives much valuable information for election prediction
- 8. Some parties clearly dominating the political scenario lead to unbalanced ranking data
- 9. Computationally heavy processes of discretization and mining of LRAR and PAR limit some experimental approaches
- 10. As future work in PAR, we suggest improving the generation of rules with multiple items in the consequent
- 11. Also in PAR, we suggest studying the aggregation of rules by their consequent
- 12. Lastly, we suggest the application of PAR for prediction in a more balanced real-world use-case

- 1. PAR are a solid alternative to solve complex LR problems
- 2. The completeness versus accuracy trade-off is clear
- 3. The less information it is required, the better PAR is at predicting without mistakes
- 4. In situations where it is more important to have an accurate rather than more complete prediction, PAR can provide a meaningful contribution
- 5. It appears that in smaller rankings the accuracy is less affected
- 6. We contributed to the Label Ranking community with 3 real-world label ranking datasets
- 7. PAR finding obvious information validates our approach but does not gives much valuable information for election prediction
- 8. Some parties clearly dominating the political scenario lead to unbalanced ranking data
- 9. Computationally heavy processes of discretization and mining of LRAR and PAR limit some experimental approaches
- 10. As future work in PAR, we suggest improving the generation of rules with multiple items in the consequent
- 11. Also in PAR, we suggest studying the aggregation of rules by their consequent
- 12. Lastly, we suggest the application of PAR for prediction in a more balanced real-world use-case

- 1. PAR are a solid alternative to solve complex LR problems
- 2. The completeness versus accuracy trade-off is clear
- 3. The less information it is required, the better PAR is at predicting without mistakes
- 4. In situations where it is more important to have an accurate rather than more complete prediction, PAR can provide a meaningful contribution
- 5. It appears that in smaller rankings the accuracy is less affected
- 6. We contributed to the Label Ranking community with 3 real-world label ranking datasets
- 7. PAR finding obvious information validates our approach but does not gives much valuable information for election prediction
- 8. Some parties clearly dominating the political scenario lead to unbalanced ranking data
- 9. Computationally heavy processes of discretization and mining of LRAR and PAR limit some experimental approaches
- 10. As future work in PAR, we suggest improving the generation of rules with multiple items in the consequent
- 11. Also in PAR, we suggest studying the aggregation of rules by their consequent
- 12. Lastly, we suggest the application of PAR for prediction in a more balanced real-world use-case

- 1. PAR are a solid alternative to solve complex LR problems
- 2. The completeness versus accuracy trade-off is clear
- 3. The less information it is required, the better PAR is at predicting without mistakes
- 4. In situations where it is more important to have an accurate rather than more complete prediction, PAR can provide a meaningful contribution
- 5. It appears that in smaller rankings the accuracy is less affected
- 6. We contributed to the Label Ranking community with 3 real-world label ranking datasets
- 7. PAR finding obvious information validates our approach but does not gives much valuable information for election prediction
- 8. Some parties clearly dominating the political scenario lead to unbalanced ranking data
- 9. Computationally heavy processes of discretization and mining of LRAR and PAR limit some experimental approaches
- 10. As future work in PAR, we suggest improving the generation of rules with multiple items in the consequent
- 11. Also in PAR, we suggest studying the aggregation of rules by their consequent
- 12. Lastly, we suggest the application of PAR for prediction in a more balanced real-world use-case

Thank you *Obrigado*