Artificial Neural Networks

Dr. Muhammad Aqib

University Institute of Information Technology

PMAS-Arid Agriculture University Rawalpindi

- Neural networks
- Brief history of neural networks
- Classification vs Regression
- Supervised vs Unsupervised learning
- Simple neural networks (diagrams / structure)
- Brief overview of layers
- Weights, biases and their impact
- Activation function
- Overfitting
- Generalization
- Loss
- Common tasks of neural networks

Neural Networks?

- Neural Networks (a.k.a Artificial Neural Networks) are type of machine learning with focus on imitating human brain.
- Also called as Deep Learning.
 - Deep Neural Networks comprise of two or more hidden layers
 - Hidden Layers are ones that Neural Network controls
- Most Neural Networks in use are form of Deep Learning.

Where Deep Learning Fits into?

It can be seen that Neural Networks
(NN) are Deeper Area of Al (subfield)
focusing on brain imitation.

Brief History

- Since advent of computers, scientists have been trying to come up with machines that take input and output desired results for Classification and Regression problems.
- Classification problems are those in which inputs must be categorized into some predefined categories.
 - Like Cats/Dogs Classification Where your input image must be classified into either Dog or Cat.
- Regression problems are those in which inputs are transformed into continuous outputs (used to answer questions like how much? how many?)
 - Stock Price Prediction Where your inputs features are used to come up with stock price(s).

Brief History (cont.)

- In addition, there are ways of training / learning such as Supervised and Unsupervised.
- Supervised ML: When you have labeled data for training your algorithms.
 - X set of inputs with their Y outputs (labels)
 - X can also be called as feature
 - Labels are also referred as Targets / Ground-Truths
- Unsupervised ML: In this kind of approach, machine learning algorithms tends to find structure in data without knowing labels.

Neural Networks Revisited ...

Neural Networks Revisited ... (cont.)

- (Artificial) Neural Networks are inspired by human brain, translated to computer.
- There are neurons, activations, and lots of interconnectivity between both NN and human brain, even if underlying processes are quite different.
- Although single neuron itself is relatively useless.
 - But ... when combined with hundreds of thousands of other neurons, tremendous results can be achieved that outperform traditional Machine Learning methods.

Sample Neural Network

Neural Network – Dense Layer

- Dense Layers, consist of interconnected neurons.
- In Dense Layer, each neuron of given layer is connected to every neuron of next layer.
- In simple terms, output values of a layer becomes input to the next adjacent layer.
- Each connection between neurons has some weight associated.
- Weights are trainable factor; how much of this input to use?
- Weights get multiplied with Inputs and then summed up.
- **Bias** is another **trainable** factor, that is added afterwards.
- This whole process results in output of a single neuron.
 - output = sum(inputs * weights) + bias

Impact of Weights / Bias

- Weights and Biases are kind of "knobs" that are tuned while training our models.
- Both of these impact neurons' output, but in different ways ...
- Both of these are tuned using optimizers during training.
- Adjusting weights will impact slope of output (function)
- Bias offsets the overall function
 - Confused? Let's check example on next slides :)

Impact of Weights

Impact of Weights (cont.)

Impact of Weights (cont.)

Impact of Bias

Activation Function

- Activation functions mimic the neurons in brain, either "firing" or not.
- Simply put, getting excited on something or not.
- Neuron is activated/triggered if it meets criteria specified by activation function.
- Simple activation function can be stated like
 - Y = 1 if x > 0 ; Y = 0 if x <= 0
- One common activation function that neural networks use is Rectified Linear Unit (ReLU)

Another Simple Neural Network

- Alongside hidden Layers, there are two layers named
 - Input & Output Layers
- Input layer represents actual data:
 - Pixel values from image etc.
- This "raw" pixel data can be passed into NN but typically preprocessing is done.
- Preprocessing is done through functions like normalization and scaling.
- It is common to preprocess data while retaining features and having values in similar ranges between 0 and 1 or 1 and -1.
- For achieving this task, either or both scaling and normalization are used.
- Output layer is whatever NN returns.

Classification Example

- In classification, the aim is to predict class of the given input.
- Output layer can have as many neurons as training dataset has classes.
- In case of binary classification, only a single neuron is enough.
 - Single neuron with output "Dog" or "Not Dog" etc.
- Let's stick with example of Cats and Dogs classification with two neurons in output layer (as there are two classes).
- One neuron associated with "Dog" and the other with "Cat".

Classification Example (cont.)

- For each passed image into the network, final output will have a calculated value in the "cat" and "dog" output neurons.
- Output neuron with highest score becomes class prediction for the image given as input.
- The end goal for neural networks is to adjust their weights and biases (parameters), so when applied to unseen example, they produce desired output(s).
- Weights and biases adjustment is what neural networks learn during training phase.

Overfitting

- In supervised approach, algorithms are trained with their associated desired outputs against every input.
- This is where **overfitting** issue arises!
- Overfitting is defined as: Model giving high accuracies on training but delivering poor results on unseen data.
- It happens when algorithm only learns to fit (get trained on) training data without actually "understanding" anything about input-output dependencies.
- It is because network basically "memorizes" training data: (

Generalization

- Instead of just "memorizing" all the training data ...
 - Goal for model is to not only accurately predict on training data, but also on unseen data.
- Model fulfilling this goal is said to be doing Generalization.
 - Learning to fit the data instead of just memorizing it.
- But the next question is how do we achieve this goal? Any Guess?

Loss

- To train neural networks, we calculate how "wrong" they are in their predictions against actual labels / ground truths.
- This difference between predicted and ground truth on scale of how "much wrong" is basically an error called Loss.
- While training neural networks, the goal is to tune weights and biases in such a way that neural networks become less wrong (Lesser and lesser difference between prediction and target the lesser the loss, the better the network)

Common Tasks of Neural Networks

- There are plenty of things being achieved with neural networks.
- Majority of things fall in given categories:
- Classification
- Regression

• •

Thank You