Representaciones, grupos de Lie y partículas elementales

Javier Prieto Prieto

Universidad Autónoma de Madrid

2 de julio de 2019

Índice

- Introducción
 - Física y simetrías
 - Representaciones: resultados elementales
 - Un ejemplo de simetrías en física clásica
- Grupos y álgebras de Lie
 - Resultados elementales
 - Representaciones
- 3 El principio gauge

Índice

- Introducción
 - Física y simetrías
 - Representaciones: resultados elementales
 - Un ejemplo de simetrías en física clásica
- Que de la composição de la composição
 - Resultados elementales
 - Representaciones
- 3 El principio gauge

Formalismo lagrangiano

Habitualmente, dado un lagrangiano

$$\mathcal{L}\colon F\longrightarrow \mathbb{R}$$
$$(\phi, D\phi)\longmapsto T(D\phi)-V(\phi)$$

la dinámica del sistema se obtiene mediante las ecuaciones de Euler-Lagrange

$$\frac{\partial \mathcal{L}}{\partial \phi} = \frac{\partial}{\partial x} \frac{\partial \mathcal{L}}{\partial (D\phi)}$$

que equivalen a minimizar la acción

$$S = \int_{M} \mathcal{L}d\omega$$

Nuestro objetivo hoy es inferir aspectos cualitativos de la dinámica atendiendo solamente a los grupos bajo cuya acción el lagrangiano permanece invariante.

Motivación y definiciones

Definición 1.1

Sean G un grupo, V un espacio vectorial sobre un cuerpo K y GL(V) el conjunto de aplicaciones K-lineales invertibles de V en V. Decimos que $\pi\colon G\longrightarrow GL(V)$ es una representación de G sobre V si π es un homomorfismo de grupos, donde la operación de grupo en GL(V) viene dada por la composición; y que la dimensión de π es igual a dim $_K$ V.

Diremos que una representación es **real** cuando $K=\mathbb{R}$ y **compleja** cuando $K=\mathbb{C}$. Durante el resto de esta sección, G denotará siempre un grupo, π y ρ denotarán representaciones y V denotará un espacio vectorial.

Motivación y definiciones

Definición 1.2

Dos representaciones $\pi: G \longrightarrow GL(V)$ y $\pi: G \longrightarrow GL(V)$ son equivalentes si existe un isomorfismo ϕ tal que $\pi(g) = \phi^{-1}\rho(g)\phi$ para todo $g \in G$.

Definición 1.3

Dadas $\pi_1 \colon G \longrightarrow GL(V_1)$ y $\pi_2 \colon G \longrightarrow GL(V_2)$ representaciones definimos su suma directa como

$$(\pi_1 \oplus \pi_2)(g)((v_1, v_2)) = (\pi_1(g)(v_1), \pi_2(g)(v_2))$$

y su producto tensorial como

$$(\pi_1 \otimes \pi_2)(g)(v_1 \otimes v_2) = \pi_1(g)(v_1) \otimes \pi_2(g)(v_2),$$

para todos $v_1 \in V_1$, $v_2 \in V_2$ y $g \in G$.

Motivación y definiciones

Definición 1.4

Una **representación** se dice **unitaria** si deja invariante el producto escalar en V.

Teorema 1.1

Toda representación compleja de un grupo finito es suma directa de representaciones irreducibles.

Definición 1.5

Un subespacio $W \subseteq V$ se dice invariante bajo la acción de π si $\pi(g)(v) \in W$ para todo $v \in W$ y $g \in G$.

Definición 1.6

Una representación se dice irreducible si sus únicos subespacios invariantes son el trivial y el total.

Resultados elementales

Teorema 1.2 (Truco unitario de Weyl)

Toda representación de un grupo finito es equivalente a una representación unitaria.

Teorema 1.3 (Lema de Schur)

Sean π y ho representaciones complejas e irreducibles tales que el diagrama

$$\begin{array}{ccc}
V & \xrightarrow{\phi} & W \\
\pi(g) \downarrow & & \downarrow \rho(g) \\
V & \xrightarrow{\phi} & W
\end{array}$$

conmuta. Entonces, si dim $V \neq$ dim W se tiene $\phi = 0$; y si dim V = dim W se tiene $\phi = \lambda \mathbf{1}$ para algún $\lambda \in \mathbb{C}$.

Carácter de una representación

Definición 1.7

Se denomina carácter de una representación π a la aplicación

$$\chi_{\pi} \colon G \longrightarrow \mathbb{C}$$
 $g \longmapsto \operatorname{Tr} \pi(g)$

Lema 1.1

Dadas π y ρ representaciones finitas de un grupo finito, se tiene

$$\chi_{\pi \oplus \rho} = \chi_{\pi} + \chi_{\rho}$$
$$\chi_{\pi \otimes \rho} = \chi_{\pi} \chi_{\rho}$$

Dado un grupo finito G, los caracteres son elementos del espacio vectorial $\{f\colon G\longrightarrow \mathbb{C}\}$. Además, por la propiedad cíclica de la traza, son constantes en cada clase de conjugación de G.

Relaciones de ortogonalidad

Este espacio se puede dotar del producto escalar

$$\langle f, h \rangle = \frac{1}{|G|} \sum_{g \in G} f^*(g) h(g),$$

lo que permite enunciar el siguiente

Teorema 1.4

Sean $\pi^{(\alpha)}$ y $\pi^{(\beta)}$ representaciones irreducibles de un grupo finito G. Entonces, en cualquier base, los elementos de sus matrices satisfacen

$$\langle {\pi^{(\alpha)}}^i_j, {\pi^{(\beta)}}^k_l \rangle = \frac{|\mathcal{G}|}{\dim \pi^{(\alpha)}} \delta^{\alpha}_{\beta} \delta^i_l \delta^k_j$$

con $\delta^{\alpha}_{\beta}=1$ si y solo si $\pi^{(\alpha)}\cong\pi^{(\beta)}$ y cero en otro caso.

La representación regular

Definición 1.8

Dado un grupo finito G, la representación regular de G es la que surge de identificar cada elemento $g \in G$ con un vector de una base cualquiera de $L^2(G) \cong \mathbb{C}^{|G|}$, digamos e_g , y dejar actuar G sobre sí mismo por la izquierda, es decir

$$\lambda \colon G \longrightarrow GL(\mathbb{C}^{|G|})$$
 $g \longmapsto \lambda(g)$

$$con \lambda(g)(e_h) = e_{gh}$$
.

La representación regular

Teorema 1.5

La representación regular se descompone como

$$\lambda \cong \bigoplus_{\pi \in \hat{G}} \underbrace{\pi \oplus \cdots \oplus \pi}_{d_{\pi}}$$

donde \hat{G} es el conjunto de todas las representaciones irreducibles de G y d_{π} es la dimensión de π . Además, se tiene que

$$\sum_{\pi \in \hat{G}} d_{\pi}^2 = |G|.$$

Ejemplo: Sistema clásico

El lagrangiano para tres masas y muelles idénticos

$$\mathcal{L} \colon \mathrm{T} \, \mathbb{R}^6 \longrightarrow \mathbb{R}$$
$$(\mathbf{r}, \dot{\mathbf{r}}) \longmapsto \frac{1}{2} \sum_{ij} m_i \dot{r_{ij}}^2 - \mathbf{r}^{\mathsf{T}} K \mathbf{r}$$

es invariante bajo

$$D: S_3 \longrightarrow GL(\mathbb{R}^3 \otimes \mathbb{R}^2)$$
$$\sigma \longmapsto (\pi_3 \otimes D_3)(\sigma).$$

con π_3 permutando el primer índice y D_3 actuando como el grupo dihédrico del triángulo.

Modos normales

La tabla de caracteres nos dice que D es la representación regular y al diagonalizarla se pueden obtener los modos normales.

Índice

- Introducción
 - Física y simetrías
 - Representaciones: resultados elementales
 - Un ejemplo de simetrías en física clásica
- Grupos y álgebras de Lie
 - Resultados elementales
 - Representaciones
- 3 El principio gauge

Definiciones

Definición 2.1

Un grupo de Lie G es un grupo que además es una variedad diferenciable de dimensión finita equipada con una estructura diferencial tal que la inversión $g \longmapsto g^{-1}$ y la operación del grupo $(g,h) \longmapsto gh$ son funciones regulares.

Definición 2.2

Un álgebra de Lie $\mathfrak g$ es un espacio vectorial real o complejo equipado con una forma bilineal $[,]:\mathfrak g \times \mathfrak g \longrightarrow \mathfrak g$ antisimétrica que satisface la identidad de Jacobi

$$[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 \quad \forall x, y, z \in \mathfrak{g}.$$

Los elementos de una base cualquiera $\mathcal{B} = \{e_i\}_{i=1}^{\dim \mathfrak{g}}$ de \mathfrak{g} se denominan generadores y las coordenadas de sus corchetes $[e_i, e_j] = \sum_k f_{ij}^k e_k$ se denominan constantes de estructura.

Definición 2.3

Dado un grupo de Lie de matrices $N \times N$ con coeficientes en un cuerpo K, $G \in GL_N(K)$, definimos su álgebra de Lie $\mathfrak g$ como el espacio tangente en la identidad, T_1G , equipado con el corchete definido por el conmutador [X,Y]=XY-YX.

Definición 2.4

Dados un grupo de Lie G y su álgebra de Lie \mathfrak{g} , la aplicación exponencial se define como

$$\exp \colon \mathfrak{g} \longrightarrow G$$
$$X \longmapsto \gamma(1)$$

donde $\gamma \colon \mathbb{R} \longrightarrow G$ es la única curva tal que $\gamma(0) = \mathbf{1}$, $\gamma'(0) = X$ y $\gamma(t)\gamma(s) = \gamma(s+t) \, \forall s,t \in \mathbb{R}$. En particular, si G es un grupo de matrices, se cumple que

$$\exp(X) = \sum_{k=0}^{\infty} \frac{X^k}{k!}.$$

Grupos de Lie clásicos y sus álgebras

Nombre	Subgrupo de	Definición	Lectura
O(N)	$GL_N(\mathbb{R})$	$M^{-1}=M^{\intercal}$	Ortogonal
SO(N)	$\mathit{GL}_{N}(\mathbb{R})$	$M^{-1} = -M^{T}$, $\det M = 1$	Especial ortogonal
U(N)	$GL_N(\mathbb{C})$	$\mathcal{M}^{-1}=\mathcal{M}^{\dagger}$	Unitario
SU(N)	$GL_N(\mathbb{C})$	$M^{-1}=M^{\dagger}$, $\det M=1$	Especial unitario

Cuadro: Grupos de Lie clásicos

Nombre	Subgrupo de	Definición	Dimensión
o(N)	$\mathcal{M}_{N imes N}(\mathbb{R})$	$M^{\intercal} = -M$	N(N-1)/2
so(N)	$\mathcal{M}_{N imesN}(\mathbb{R})$	$M^{T} = -M$, $\operatorname{Tr} M = 0$	N(N-1)/2
$\mathfrak{u}(N)$	$\mathcal{M}_{N imes N}(\mathbb{C})$	$M^{\dagger} = -M$	N^2
su(N)	$\mathcal{M}_{N imesN}(\mathbb{C})$	$M^{\dagger}=-M$, Tr $M=0$	$N^2 - 1$

Cuadro: Álgebras de Lie clásicas

La representación adjunta

Definición 2.5

Si G es un grupo de Lie de matrices y $\mathfrak g$ su álgebra de Lie, llamamos representación adjunta de G a la aplicación

$$Ad: G \longrightarrow GL(\mathfrak{g})$$
$$g \longmapsto Ad_g$$

que actúa por conjugación, enviando cada $X \in \mathfrak{g}$ a $\mathrm{Ad}_{g}(X) = gXg^{-1}$.

La aplicación tangente de Ad en la identidad se denota ad y satisface $ad_X(Y) = [X,Y]$, por lo que es un homomorfismo (preserva el corchete) entre las álgebras de Lie $\mathfrak g$ y $\mathfrak g\mathfrak l(\mathfrak g)$.

Representaciones de grupos de Lie compactos

Vamos a caracterizar las representaciones irreducibles de un grupo de Lie compacto G. Sea $T\subseteq G$ el subgrupo abeliano maximal 1 y sea $\mathfrak t$ su álgebra de Lie. Se tiene que, para cualquier representación unitaria 2 π de G, la imagen de su restricción $\pi|_T$ son matrices de la forma

$$\begin{pmatrix} \chi_1(g) & 0 & \dots & 0 \\ 0 & \chi_2(g) & \dots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & \dots & \chi_d(g) \end{pmatrix},$$

con $\chi_k(g) \in U(1)$, módulo conjugación. Por tanto, $\pi|_T$ es suma directa de irreducibles de dimensión 1 y Im T es isomorfo a un toro, por lo que T recibe el nombre de *toro maximal*.

¹Único módulo conjugación.

²Si *G* es compacto, dada cualquier representación podemos generalizar el truco unitario de Weyl empleando la medida de Haar y encontrar una representación unitaria equivalente.

Representaciones de grupos de Lie compactos

Ahora observamos que el diagrama

$$\begin{array}{ccc}
T & \xrightarrow{\chi} & U(1) \\
\exp & & \exp & \\
t & \xrightarrow{d\chi} & u(1)
\end{array}$$

conmuta, luego cada representación irreducible de T está determinada por una aplicación lineal $\ell\colon\mathfrak{t}\longrightarrow\mathfrak{u}(1)\cong\mathbb{R}.$ Además, sabemos que si

$$X \in \ker(\exp) = \{H \in \mathfrak{t} : \exp(2\pi i H) = \mathbf{1}\} \subset \mathfrak{t}$$

debe ocurrir $\ell(X) \in 2\pi i \mathbb{Z}$, porque se debe tener $\chi(\mathbf{1}) = 1$. Esto significa que el núcleo de la exponencial forma un retículo $L \subset \mathfrak{t}$ y que las ℓ son su retículo dual $L^* \subset \mathfrak{t}^*$.

Representaciones de grupos de Lie compactos

Cada ℓ recibe el nombre de *peso analíticamente entero*. Si todas las representaciones finitas de T son reducibles 3 , basta dar la multiplicidad de cada peso para caracterizarla unívocamente. Por otro lado, al diagonalizar $\pi|_T$ se induce una descomposición del espacio vectorial sobre el que actúa como suma directa de los subespacios asociados a cada peso

$$V_{\ell} = \{ v \in V : d\pi(H)v = \ell(H)v, \forall H \in \mathfrak{t} \},$$

es decir, $V=igoplus_{\ell\in L^*}V_\ell$. Se puede demostrar 4 que para extender $\pi|_{\mathcal T}$ de

nuevo a todo ${\it G}$ de forma que π sea irreducible podemos tomar un peso y actuar con los operadores "escalera"

$$d\pi(H)d\pi(Z_{\alpha})v = d\pi(Z_{\alpha})d\pi(H)v + d\pi([H, Z_{\alpha}])v$$

= $\ell(H)d\pi(Z_{\alpha})v + d\pi(\operatorname{ad}_{H}(Z_{\alpha})v$
= $(\ell(H) + \alpha(H))d\pi(Z_{\alpha})v$

³Algo que ocurre cuando t es semisimple.

⁴Teorema del peso más alto

Ejemplo: SU(2)

En el álgebra $\mathfrak{su}(2)$ se suelen tomar como generadores

$$i\sigma_{\mathsf{x}} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \quad i\sigma_{\mathsf{y}} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad i\sigma_{\mathsf{z}} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}.$$

La subálgebra de Cartan está generada por $i\sigma_z$ y es isomorfa a $\mathbb R$ como espacio vectorial. El retículo de pesos es $L^*\cong i\,\mathbb Z$ y la representación adjunta de $i\sigma_z$ es

$$\mathrm{ad}_{i\sigma_z} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 2 & 0 \end{pmatrix}$$

por lo que las raíces son $\alpha_{\pm}=\pm 2$. Si una representación irreducible π tiene como peso más alto n, entonces, aplicando Z_- se tiene

$$V_n \xrightarrow{Z_-} V_{n-2} \xrightarrow{Z_-} \dots \xrightarrow{Z_-} V_{-n+2} \xrightarrow{Z_-} V_{-n} \xrightarrow{Z_-} \{0\},$$

por lo que π contiene todos los pesos $\{n, n-2, \ldots, -n+2, -n\}$

Índice

- Introducción
 - Física y simetrías
 - Representaciones: resultados elementales
 - Un ejemplo de simetrías en física clásica
- Grupos y álgebras de Lie
 - Resultados elementales
 - Representaciones
- 3 El principio gauge

Electrodinámica cuántica

Partimos del lagrangiano

$$\mathcal{L}_{\mathsf{free}} = \imath \overline{\Psi} \gamma^{\mu} \partial_{\mu} \Psi - \mathit{m} \overline{\Psi} \Psi$$
 ,

con

$$\{\gamma^{\mu}, \gamma^{\nu}\} = \gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2\eta^{\mu\nu} \mathbf{1}_{4}, \qquad (1)$$

las matrices γ y Ψ un espinor⁵. Vemos que $\mathcal L$ no cambia al hacer $\Psi\mapsto e^{i\theta}\Psi$ con θ constante. Sin embargo, al "promover" θ a una función que cambia con el punto, aparece un término extra en la derivada que estropea la invariancia.

⁵Sección de un fibrado que transforma bajo la representación $(1/2,0) \oplus (0,1/2)$ del grupo de Poincaré.

La derivada covariante

La solución es definir una derivada covariante como $D_{\mu}=\partial_{\mu}-iqA_{\mu}$ donde A_{μ} es el generador del álgebra de Lie $\mathfrak{u}(1)$. Así pues

$$egin{split} \left(\partial_{\mu}-\imath qA'_{\mu}
ight)\left(e^{\imath heta}\Psi
ight)&=e^{\imath heta}\left(\partial_{\mu}-\imath qA_{\mu}
ight)\Psi\ e^{\imath heta}\left(\partial_{\mu}-\imath qA'_{\mu}+\partial_{\mu} heta
ight)\Psi&=e^{\imath heta}\left(\partial_{\mu}-\imath qA_{\mu}
ight)\Psi\ A'_{\mu}&=A_{\mu}+q^{-1}\partial_{\mu} heta \end{split}$$

El modelo estándar

En el modelo estándar de la física de partículas, cada partícula elemental está asociada a una representación irreducible del grupo $Poincar\'e \times Gauge, \ \text{donde}$

- Poincaré es el grupo (afín) de isometrías del espacio de Minkowski.
- Gauge es el grupo $U(1) \times SU(2) \times SU(3)$, que da cuenta de las simetrías "internas".
- Falta incluir el Higgs para dar masa a las partículas.