$\iiint \int \left(\frac{1}{3} \left(3\,t_{1}\,\mathcal{A}^{\alpha\,\prime}_{\alpha}\,\mathcal{A}^{\alpha\,\prime}_{\alpha}\,\mathcal{A}^{\alpha\,\beta}_{\alpha}\,\sigma_{\alpha\beta\chi} + 3\,f^{\alpha\beta}_{\alpha}\,\tau_{(\Delta+\mathcal{K})_{\alpha\beta}} - 6\,t_{1}\,\mathcal{A}^{\alpha\,\theta}_{\theta}\,\partial_{i}f^{\alpha\,\prime}_{} - 6\,r_{1}\,\partial_{\beta}\mathcal{A}^{\alpha\,\theta}_{\alpha} + 6\,r_{1}\,\partial_{i}\mathcal{A}^{\alpha\,\theta}_{\alpha} + 6\,t_{1}\,\mathcal{A}^{\alpha\,\theta}_{\alpha}\,\partial_{i}f^{\alpha\,\alpha}_{\alpha} - 3\,t_{1}\,\partial_{i}f^{\theta}_{\alpha}_{\alpha} + 6\,t_{2}\,\mathcal{A}^{\alpha\,\beta}_{\alpha} + 6\,t_{3}\,\mathcal{A}^{\alpha\,\beta}_{\alpha} + 6\,t_{3}\,\mathcal{A}^{\alpha\,\beta}_{\alpha\,\beta}_{\alpha\,\beta}_{\alpha\,\beta} + 6\,t_{3}\,\mathcal{A}^{\alpha\,\beta}_{\alpha\,\beta}_{\phantom$ $\partial^{i}f^{\alpha}_{\alpha} + 6 \stackrel{\cdot}{r_{1}} \partial_{\alpha}\mathcal{R}^{\alpha\beta}_{\beta} \partial_{\theta}\mathcal{R}_{\beta}^{\beta}_{} - 12 \stackrel{\cdot}{r_{1}} \partial^{i}\mathcal{R}^{\alpha\beta}_{\alpha} \partial_{\theta}\mathcal{R}_{\beta}^{\beta}_{} - 6 \stackrel{\cdot}{r_{1}} \partial_{\alpha}\mathcal{R}^{\alpha\beta}_{\beta} \partial_{\theta}\mathcal{R}_{\beta}^{\beta} + 12 \stackrel{\cdot}{r_{1}} \partial^{i}\mathcal{R}^{\alpha\beta}_{\alpha} \partial_{\theta}\mathcal{R}_{\beta}^{\beta} - 3 \stackrel{\cdot}{t_{1}} \partial_{i}f^{\alpha}_{\beta} \partial_{\theta}f^{\beta}_{\alpha}^{\beta} + 12 \stackrel{\cdot}{r_{1}} \partial_{\alpha}\mathcal{R}^{\alpha\beta}_{\beta} \partial_{\theta}\mathcal{R}_{\beta}^{\beta} - 3 \stackrel{\cdot}{t_{1}} \partial_{i}f^{\alpha}_{\beta} \partial_{\theta}f^{\beta}_{\alpha}^{\beta} + 12 \stackrel{\cdot}{r_{1}} \partial_{\alpha}\mathcal{R}^{\alpha\beta}_{\beta} \partial_{\theta}\mathcal{R}_{\beta}^{\beta} - 3 \stackrel{\cdot}{t_{1}} \partial_{i}f^{\alpha}_{\beta} \partial_{\theta}f^{\beta}_{\alpha}^{\beta} + 12 \stackrel{\cdot}{r_{1}} \partial_{\alpha}\mathcal{R}^{\alpha\beta}_{\beta} \partial_{\theta}\mathcal{R}_{\beta}^{\beta} - 3 \stackrel{\cdot}{t_{1}} \partial_{i}f^{\alpha}_{\beta} \partial_{\theta}f^{\beta}_{\alpha}^{\beta} + 12 \stackrel{\cdot}{r_{1}} \partial_{\alpha}\mathcal{R}^{\alpha\beta}_{\beta} \partial_{\theta}\mathcal{R}_{\beta}^{\beta} - 3 \stackrel{\cdot}{t_{1}} \partial_{i}f^{\alpha}_{\beta}^{\beta} \partial_{\theta}f^{\beta}_{\alpha}^{\beta} + 12 \stackrel{\cdot}{r_{1}} \partial_{\alpha}\mathcal{R}^{\alpha\beta}_{\beta} \partial_{\theta}f^{\alpha}_{\beta}^{\beta} - 3 \stackrel{\cdot}{t_{1}} \partial_{i}f^{\alpha}_{\beta}^{\beta} \partial_{\theta}f^{\alpha}_{\beta}^{\beta} + 12 \stackrel{\cdot}{r_{1}} \partial_{\alpha}f^{\alpha\beta}_{\beta}^{\beta} \partial_{\theta}f^{\alpha}_{\beta}^{\beta} - 3 \stackrel{\cdot}{t_{1}} \partial_{\alpha}f^{\alpha}_{\beta}^{\beta} \partial_{\theta}f^{\alpha}_{\beta}^{\beta} \partial_{\alpha}f^{\alpha}_{\beta}^{\beta} \partial_{\alpha}f^{\alpha}_{\beta}^{$ $6\,t.\,\partial^{\prime}f^{\alpha}_{\alpha}\,\partial_{\theta}f^{\beta}_{\alpha}-4\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\,\prime\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\,\theta\,\prime}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}-8\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}-2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}_{\alpha\beta\,\theta}\,\partial^{\theta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.\,\partial_{\beta}\mathcal{A}^{\alpha\beta\,\prime}+2\,r.$ $2r_{1}\partial_{\theta}\mathcal{R}_{\alpha\beta_{1}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{1}} + 2r_{1}\partial_{\theta}\mathcal{R}_{\alpha_{1}\beta_{1}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{1}} + 2t_{1}\mathcal{R}_{\alpha\alpha_{1}\beta_{1}}\partial^{\theta}f^{\alpha_{1}} - 2t_{1}\partial_{\alpha}f_{\alpha\beta_{1}}\partial^{\theta}f^{\alpha_{1}} - 2t_{1}\partial_{\alpha}f_{\beta_{1}}\partial^{\theta}f^{\alpha_{1}} + t_{1}\partial_{\alpha}f_{\alpha\beta_{1}}\partial^{\theta}f^{\alpha_{1}} + t_{2}\partial_{\alpha}f^{\alpha\beta_{1}}\partial^{\theta}f^{\alpha_{1}} + t_{3}\partial_{\alpha}f^{\alpha\beta_{1}}\partial^{\theta}f^{\alpha_{1}} + t_{3}\partial_{\alpha}f^{\alpha\beta_{1}}\partial^{\theta}f^{\alpha_{1}} + t_{3}\partial_{\alpha}f^{\alpha\beta_{1}}\partial^{\theta}f^{\alpha_{1}} + t_{3}\partial_{\alpha}f^{\alpha\beta_{1}}\partial^{\theta}f^{\alpha_{1}} + t_{4}\partial_{\alpha}f^{\alpha\beta_{1}}\partial^{\theta}f^{\alpha_{1}} + t_{5}\partial_{\alpha}f^{\alpha\beta_{1}}\partial^{\theta}f^{\alpha_{1}} + t_{5}\partial_{\alpha}f^{\alpha\beta_{1}}\partial^{\theta}f^{\alpha_{1}} + t_{5}\partial_{\alpha}f^{\alpha\beta_{1}}\partial^{\theta}f^{\alpha_{1}}\partial^{\theta}f^{\alpha_{1}} + t_{5}\partial_{\alpha}f^{\alpha\beta_{1}}\partial^{\theta}f^{\alpha_{1}}\partial^{\theta}f^{\alpha_{1}} + t_{5}\partial_{\alpha}f^{\alpha\beta_{1}}\partial^{\theta}f^{\alpha_{1}}\partial^{\theta}f^{\alpha_{1}} + t_{5}\partial_{\alpha}f^{\alpha\beta_{1}}\partial^{\theta}f^{\alpha_{1$ $2t. \partial_{\theta}f_{\alpha_{i}} \partial^{\theta}f^{\alpha_{i}} + t. \partial_{\theta}f_{i\alpha} \partial^{\theta}f^{\alpha_{i}} + t. \mathcal{A}_{\alpha_{i}\theta} \left(\mathcal{A}^{\alpha_{i}\theta} + 2\partial^{\theta}f^{\alpha_{i}}\right) + t. \mathcal{A}_{\alpha\theta_{i}} \left(\mathcal{A}^{\alpha_{i}\theta} + 4\partial^{\theta}f^{\alpha_{i}}\right)\right) [t, x, y, z] dz dy dx dt$ **Wave operator**

$0^{+}f^{\parallel} + \begin{vmatrix} -i & \sqrt{2} & kt & -2k^{2}t & 0 \\ 1 & 1 & 0 \end{vmatrix}$

PSALTer results panel

f^{\perp} †	Θ	0	0	0											
^o -̂ A [∥] †	Θ	0	0	0	${}^{1^{\scriptscriptstyle +}}_{}\mathcal{A}^{\parallel}_{\alpha\beta}$	$^{1^{+}}_{\bullet}\mathcal{A}^{\perp}{}_{\alpha\beta}$	${\stackrel{1^{+}}{\cdot}}f^{\parallel}_{\alpha\beta}$	${\stackrel{1^{-}}{\cdot}}\mathcal{H}^{\parallel}{}_{\alpha}$	${}^{1}_{\bullet}\mathcal{A}^{\perp}{}_{\alpha}$	$ f _{\alpha}$	$\int_{\bullet}^{1} f^{\perp}_{\alpha}$				
				$^{1^{+}}\mathcal{A}^{\parallel}$ † $^{\alpha\beta}$	t: 1 6	$-\frac{t_{\frac{1}{1}}}{3\sqrt{2}}$	$-\frac{i k t_{1}}{3 \sqrt{2}}$	0	0	0	0				
				$^{1^{+}}_{\bullet}\mathcal{F}^{\perp}$ $^{\alpha\beta}$	$-\frac{t_{\frac{1}{1}}}{3\sqrt{2}}$	$\frac{t}{\frac{1}{3}}$	$\frac{i kt_{\cdot}}{3}$	0	0	0	0				
				$f^{\dagger}f^{\dagger} \uparrow^{\alpha\beta}$	$\frac{i kt_{1}}{3 \sqrt{2}}$	$-\frac{1}{3} ikt_{1}$	$\frac{k^2 t_{\frac{1}{1}}}{3}$	0	0	0	0				
				$^{1}_{\bullet}\mathcal{A}^{\parallel}\uparrow^{lpha}$	0	0		$-k^2 r_1 - \frac{t_1}{2}$		0	i k t . 1				
				$^{1}_{\cdot}\mathcal{A}^{\perp}\dagger^{\alpha}$			0	$\frac{t_1}{\sqrt{2}}$	0	0	0				
				$^{1}_{\bullet}f^{\parallel}\uparrow^{\alpha}$	0	0	0	0	0	0	0				
				$^{1}_{\bullet}f^{\perp}\dagger^{\alpha}$	Θ	Θ	Θ	-i k t .	0	0	0	$ \mathcal{A}^{+}_{\alpha\beta} _{\alpha\beta}^{2}$	$f^{2^{+}} f^{\parallel}_{\alpha\beta}$	${}^{2^{-}}_{\bullet}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$	
											\mathcal{A}^{\parallel} †	$\frac{t}{\frac{1}{2}}$	$-\frac{i k t_{\frac{1}{2}}}{\sqrt{2}}$	0	
											2 ⁺ _• f † αβ	$\frac{i kt}{\sqrt{2}}$	$k^2 t$	0	
											$^{2}\mathcal{A}^{\parallel}$ † $^{\alpha\beta\chi}$	0	0	$k^2 r_{\bullet} + \frac{t_{\bullet}}{\frac{1}{2}}$	
Sat	urated	prop	aga	ator											
	°• σ	^{Θ+} _τ	Θ* τ	0 ⁻ σ	T										
^{0⁺} σ †	$-\frac{1}{\left(1+2k^2\right)^2t}.$	$\frac{i \sqrt{2} k}{(1+2 k^2)^2 t}$	Θ	0											

⁰⁻ σ †	0	0	0	0	$^{1^{+}}\sigma^{\parallel}_{\alpha\beta}$	$^{1^{+}}\sigma^{\perp}_{\alpha\beta}$	$^{1^{+}}_{\bullet}\tau^{\parallel}_{\alpha\beta}$	$^{1} \sigma^{\parallel}_{\alpha}$	$^{1}_{\bullet}\sigma^{\perp}_{\alpha}$	$ \tau^{-}_{\bullet} _{\alpha}$	$^{1}_{\bullet}\tau^{\perp}{}_{\alpha}$			
				$^{1^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	$\frac{6}{\left(3+2k^2\right)^2t}$	$-\frac{6 \sqrt{2}}{(3+2 k^2)^2 t_1}$	$-\frac{6 i \sqrt{2} k}{(3+2 k^2)^2 t}$	0	Θ	0	0			
				$^{1^{+}}\sigma^{\perp}$ $^{+}$	$-\frac{6 \sqrt{2}}{(3+2 k^2)^2 t_1}$	$\frac{12}{\left(3+2k^2\right)^2t_1}$	$\frac{12 i k}{\left(3+2 k^2\right)^2 t}$	0	0	0	Θ			
				$1^{+}_{\bullet} \tau^{\parallel} \uparrow^{\alpha\beta}$	$\frac{6 i \sqrt{2} k}{\left(3+2 k^2\right)^2 t}$	$-\frac{12 i k}{(3+2 k^2)^2 t}$	$\frac{12 k^2}{\left(3+2 k^2\right)^2 t}$	0	Θ	0	0			
				$^{1^{-}}\sigma^{\parallel}$ † $^{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1+2 k^2 t_1}$	0	$\frac{2 i k}{t + 2 k^2 t}$			
				1 $^{\circ}$ σ^{\perp} \dagger^{α}	0	0	0	$\frac{\sqrt{2}}{t_1+2k^2t_1}$	$\frac{2 k^2 r_1 + t_1}{\left(t_1 + 2 k^2 t_1\right)^2}$	0	$\frac{i \sqrt{2} k \left(2 k^2 r_1 + t_1\right)}{\left(t_1 + 2 k^2 t_1\right)^2}$			
				1^{-} τ^{\parallel} \uparrow^{α}	Θ	Θ	0	Θ	0	0	0			
				1- r [⊥] † α	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$-\frac{i \sqrt{2} k \left(2 k^2 r_{i} + t_{i}\right)}{\left(t_{i} + 2 k^2 t_{i}\right)^2}$	0	$\frac{2 k^2 \left(2 k^2 r_{i} + t_{i}\right)}{\left(t_{i} + 2 k^2 t_{i}\right)^2}$	2 ⁺ σ αβ	$2^+_{\bullet} \tau^{\parallel}_{\alpha\beta}$	$^{2^{-}}\sigma^{\parallel}_{\alpha\beta\chi}$
											$^{2^{+}}_{\bullet}\sigma^{\parallel}\uparrow^{\alpha\beta}$	$\frac{2}{\left(1+2k^2\right)^2t_{\mathbf{i}}}$	$-\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t}$	0
											$2^+_{\bullet} \tau^{\parallel} \uparrow^{\alpha\beta}$	$\frac{2 i \sqrt{2} k}{\left(1+2 k^2\right)^2 t}$	$\frac{4 k^2}{\left(1+2 k^2\right)^2 t_{1}}$	0
											$^{2^{-}}\sigma^{\parallel}\uparrow^{\alpha\beta\chi}$	0	0	$\frac{2}{2 k^2 r_{1} + t_{1}}$
Sou	rce co	nstra	ints	;										
Spin	-parity fo	rm (Covar	riant for	m								Multi	plicities

Spin-parity form	Covariant form	Multiplicities
⁰⁻ σ == 0	$\epsilon \eta_{\alpha\beta\chi\delta} \ \partial^{\delta} \sigma^{\alpha\beta\chi} = 0$	1
⁰⁺ τ [⊥] == 0	$\partial_{\beta}\partial_{\alpha\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$	1
$-2 i k \cdot 0^+ \sigma^{\parallel} + 0^+ \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha}_{\ \alpha} + 2\ \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\ \alpha}^{\ \beta}$	1
$2 i k \frac{1}{\cdot} \sigma^{\perp}^{\alpha} + \frac{1}{\cdot} \tau^{\perp}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
1 _• _τ ^α == Θ	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta\tau}\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$\frac{1}{-2 i k \cdot 1^{+} \sigma^{\parallel}^{\alpha\beta} + 1^{+} \tau^{\parallel}^{\alpha\beta}} = 0$	$\partial_{\chi}\partial^{\alpha}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi}+\partial_{\chi}\partial^{\beta}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\alpha}+\partial_{\chi}\partial^{\chi}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta}+2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi}==$	3
	$\partial_{\chi}\partial^{\alpha}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\beta}+\partial_{\chi}\partial^{\beta}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+\partial_{\chi}\partial^{\chi}{}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}+2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi}$	
$2 1_{\boldsymbol{\cdot} \boldsymbol{\sigma}}^{\boldsymbol{\cdot} \boldsymbol{\sigma}} \ ^{\alpha \beta} + 1_{\boldsymbol{\cdot} \boldsymbol{\sigma}}^{\boldsymbol{\cdot} \boldsymbol{\sigma}} \ ^{\alpha \beta} = 0$	$\partial_{\chi}\sigma^{\alpha\beta\chi} + \partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\sigma^{\beta\alpha\chi}$	3
$-2 i k \frac{2^+}{\cdot} \sigma^{\parallel}^{\alpha\beta} + \frac{2^+}{\cdot} \tau^{\parallel}^{\alpha\beta} = 0$	$-i\left(4\ \partial_{\delta}\partial_{\chi}\partial^{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\delta}+2\ \partial_{\delta}\partial^{\delta}\partial^{\beta}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi}_{\chi}-3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi}-3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\beta}-3\ \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\partial_{\chi}\partial$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta}{}_{\tau} (\Delta + \mathcal{K})^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta}{}_{\tau} (\Delta + \mathcal{K})^{\chi \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi}{}_{\tau} (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi}{}_{\tau} (\Delta + \mathcal{K})^{\beta \alpha} + \\$	
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta}_{\delta}^{\epsilon} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} - 6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \beta \delta} +$	
	$6 \ \emph{i} \ \emph{k}^{\chi} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} + 2 \ \eta^{\alpha \beta} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi \tau} \left(\Delta + \mathcal{K} \right)^{\chi \delta} - 2 \ \eta^{\alpha \beta} \ \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta}_{\tau} \left(\Delta + \mathcal{K} \right)^{\chi} - 4 \ \emph{i} \ \eta^{\alpha \beta} \ \emph{k}^{\chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\ \delta} \stackrel{\epsilon}{\circ} \right) == 0$	
Total expected gauge	generators:	20

Massive spectrum

Pole residue: $\left| -\frac{1}{2} \right| > 0$

	r. i						
Square mass:	$-\frac{\frac{t}{1}}{2r} >$						
Spin:	2						
Parity:	Odd						
Massless spec							

ctrum

(No particles)

Unitarity conditions

r. < 0 && t. > 0