

移动互联网

殷亚凤

智能软件与工程学院

苏州校区南雍楼东区225

yafeng@nju.edu.cn , https://yafengnju.github.io/

移动互联网

- · 移动通信技术
- 短距离无线接入技术
- 物联网云平台
- 总结

概论:移动互联网时代

截至2020年6月,中国手机网民规模已突破9.3亿,中国网民规模达到约9.4亿

设备接入

- 移动通信技术接入运营商网络
- 短距离接入技术(无线)接入互联网

网民规模

手机网民规模

第一代移动通信 (First Generation, 1G)

- 20世纪80年代
- 提供模拟语音服务

- 数字化传输,仍在使用
- 支持传统语音通信、文字、多媒体短信、电子邮件、 传真等应用
- 代表性网络:全球移动通信系统GSM,码分多址 访问系统CDMA

第三代移动通信(3G)

- 数字信息多元化
- 支持带宽多媒体服务

第四代移动通信(4G)

- 支持图片、视频在智能移动终端 快速传输
- 网络吞吐量提升
- 时延降低

第五代移动通信(5G)

海量物体无线联网

结合云计算和大数据技术,充分物联化和智能化

技术指标

• 峰值速率: 20Gb/s

用户体验数据率:100Mb/s

移动性:500km/h

• 时延:1ms

• 连接密度:每平方千米百万个

• 流量密度:10Mb/s/m2

主要通信应用场景

- 增强型移动带宽
- 大规模机器通信
- 超高可靠超低时延通信

第五代移动通信(5G)

关键技术

第五代移动通信(5G)

技术标准(3GPP发布)

• Release15:2019年4月完成

• Release16:2020年7月完成

• Release17:2022年完成

截至2020年11月,全球范围内 共部署了122个商用5G网络; 129个国家的407家运营商对5G 系统提供投资,包括测试、获取 运营许可、网络部署等领域

第六代移动通信(6G):

预计提供

- 更高频率效率和能量效率的全球网络覆盖
- 更低成本
- 更好智能控制水平
- 更强大安全性

《2020高技术发展报告》

• 在未来的6G中,网络与用户将被作为一个整体,进一步挖掘和实现用户的智能需求

移动互联网

- 移动通信技术
- 短距离无线接入技术
- 物联网云平台
- 总结

Wi-Fi:无线局域网

Wi-Fi

一般指IEEE 802.11系列协议

IEEE802.11协议

目的:规范和统一无线局域网 典型使用频段

- 2.4-2.485GHz公共频段
- 5.1-5.8GHz高频频段

物理层技术

- 直接序列扩频DSSS
- 正交频分多路复用OFDM

IEEE 802.11 协议	发布时间	频宽 (GHz)	最大带宽 (Mbps)	调制模式
IEEE 802.11- 1997	1997.6	2.4~2.485	2	DSSS
IEEE 802.11a	1999.9	5.1~5.8	54	OFDM
IEEE 802.11b	1999.9	2.4~2.485	11	DSSS
IEEE 802.11g	2003.6	2.4~2.485	54	DSSS或 OFDM
IEEE 802.11n	2009.10	2.4~2.485或 5.1~5.8	100	OFDM
IEEE 802.11ac	2014.1	5.1~5.8	866.7	OFDM

不同802.11协议的不同特征

802.11架构

基站模式

基本服务组(Basic Service Set, BSS)

- 多个无线用户(笔记本电脑、台式机等):通过与接入点相关联获取上层网络数据
- 一个接入点(基站):通过有线网络设备(交换机/路由器)连入上层公共网络。"无线路由器"是接入点和路由器功能的结合体

802.11架构

基站模式

用户与接入点关联方式

• 被动扫描:接入点广播"识别帧",用户接收"识别帧"

• 主动扫描:用户广播"探测帧",接入点返回"回应帧"

接入点参数

• MAC地址:唯一确定了网络接入点的身份

· 服务集标识符SSID:接入点管理者为每个SSID指定一个频段作为通信信道

IEEE 802.11b/g信道分布

自组织模式

- 无需基站
- 每个无线网络用户既是数据交互的终端,也可作为数据传输过程中的中继和转发者

起源

1994年,瑞典爱立信公司研发短距无线通信技术,并用Harald Blatand(英译为Harold Bluetooth)国王的名字命名

标志

保留了蓝牙名字的传统特色,包含了古北欧字母 "H"和一个 "B"

蓝牙技术联盟

成立于1998年,成员包括爱立信、IBM、Intel、东芝和诺基亚等国际通信巨头

蓝牙技术IEEE 802.15.1标准

• 物理层:跳频扩频结合的调制技术

• 频段范围: 2.402GHz-2.480GHz

通信速率:1Mbps左右

• 设备角色:中心设备,外围设备

• 同一个蓝牙设备可以在两种角色之间转换

• 一个中心设备可以最多同时和7个外围设备通信

• 在任意时刻,中心设备单元可以向任何一个外围设备单元发送信息,也可以用广播方式 同时向多个外围设备发送信息

发展

- 截止到2020年1月, 共七个版本V1.1/1.2/2.0/2.1/3.0/4.0/5
- 美国《网络计算》杂志曾将其评为"十年来十大热门新技术"之一

蓝牙4.0

- 2010年7月7日推出
- 模式:高速蓝牙、经典蓝牙和低功耗蓝牙(Bluetooth Low Energy, BLE)
- 目的:应对以数据交换与传输、信息沟通与设备连接、低带宽设备连接为主的不同应用需求

技术规范	传统蓝牙	低功耗蓝牙
无线电频率	2.4GHz	2.4GHz
理论通信距离	100m	>100m
空中数据率	1~3Mb/s	1Mb/s
支持活跃外围设备数	7	未定义 (理论最大值为232)
延迟	100ms	6ms
安全性	64/128bit AES	128bit AES
语音能力	有	无
耗电量	1W (参考 值)	0.01~0.5W (依赖使用情况)
峰值电流消耗	<30mA	<15mA

蓝牙5

2016年12月推出

支持基于天线阵列测量到达角 (AoA)

AoA Method Receiver AoA Transmitter

模式

- 短距离快速传输模式:将数据率提升为BLE的2倍,即2Mb/s
- 长距离低功耗传输模式:将通信距离提升为BLE的4倍,理论上的有效距离可达400m

蓝牙耳机

蓝牙鼠标

蓝牙键盘

蓝牙游戏手柄

起源

基于IEEE 802.15.4标准的低功耗局域网协议

功能

实现类似于蜂群通信的低功耗、低复杂度、 低速率、自组织的短距无线通信网络,为个 人或者家庭范围内不同设备之间的低速互连 提供统一标准

Zigbee名称来源于蜜蜂的8字舞: "ZigZag"形舞蹈

工作频段

最高传输速率

传输距离:10-180m(室内一般不超过60米,室外一般不超过180米)

协议栈

开放系统互联(OSI)五层模型,包括物理层、介质访问控制层、网络层、传输层,以及应用层

IEEE 802.15.4标准规定了物理层和 链路层的规范

ZigBee则提供网络层、传输层和应 用层规范

IEEE 802.15.4/ZigBee体系结构

标准规范

- 物理层:最早采用直序扩频DSSS,具有很好的抗干扰效果。在发射功率为0dBm时,室内能达到30~50m通信距离,室外能达到100m以上通信距离
- MAC 层:通过采样侦听(sampling listening)方式实现低功率侦听(low power listening, LPL)协议
- 网络层:基本路由协议是按需距离矢量路 由协议(ad hoc on-demand distance vector routing, AODV)

移动互联网

- 移动通信技术
- 短距离无线接入技术
- 物联网云平台
- 总结

物联网云平台

简介

- 物联网设备深入人类生活各个角落,实现感知功能的大范围覆盖
- 云计算技术利用高性能与大规模的服务器集群,实现对海量数据的快速处理
- 物联网云平台作为物联网设备与云服务的桥梁,结合二者的优势,向下管理各种边缘设备、 向上为云服务提供各种帮助

物联网云平台

工作流程

- 数据由设备上报到物联网云平台
- 云平台对数据进行存储、计算
- 云平台将数据提供给上层云服务
- 云服务可以通过物联网云平台给处于网络边缘的设备发送指令

基于物联网云平台搭建物联网

优势

- 使用云服务商提供的各种云服务
- 利用云服务商提供的大数据、人工智能等平台,使物联网的应用信息化、数字化和智能化
- 基于云平台搭建的物联网,能享受云计算、云存储、云网络等基础服务所带来的便利
- 物联网云平台使用虚拟化技术,可以满足物联网的多接入、多并发、弹性伸缩、自动运维、 快速部署的需求

移动互联网

- 移动通信技术
- 短距离无线接入技术
- 物联网云平台
- 总结

移动互联网是物联网的基础,其原因在于随着网络技术的发展,移动互联网形成了一个覆盖全球的、高速的、稳定的信息高速公路。在此基础上,海量的感知数据才能被有效地收集和利用,智能的决策才能及时地反馈到广袤的物理世界中

移动互联网不仅是物联网中物物互联的基础,也是整个社会信息交流的基础设施。移动互联网本身包含了宏大的技术体系和大量不断发展的技术

课程实验——截止日期:11月11日晚23:59

提交方式: https://selearning.nju.edu.cn/ (教学支持系统)

实验一: 定位算法

请根据10月14日的实验课程内容提交:

- 实验报告(实验内容、代码实现过程、实验结果与误差计算)
- 代码

请将上述内容打包提交,其中实验报告4-6页。

- 命名: 学号+姓名+实验*。
- · 提交:文件打包,提交ZIP压缩文件。

刘晓	博士	智能软件与工程学院	602024720002@smail.nju.edu.cn
郭博文	博士	智能软件与工程学院	bowen@smail.nju.edu.cn
王学浩	硕士	计算机学院	522023330098@smail.nju.edu.cn

Q & A

殷亚凤 智能软件与工程学院 苏州校区南雍楼东区225

yafeng@nju.edu.cn , https://yafengnju.github.io/

