12/13/2020 Analysis

```
In [1]: import pandas as pd
import seaborn as sns
import matplotlib.pylab as plt
results = pd.read_csv("results.csv")

In [2]: results = pd.DataFrame(results)
nflx = results.loc[results['name'] == "NFLX"]
nflx = nflx[['high', 'hour']]
nflx
```

Out[2]:

	high	hour
22	505.193115	9
23	507.420013	10
24	504.539886	11
25	506.480011	12
26	509.470001	13
27	507.494995	14
28	505.339996	15

12/13/2020 Analysis

```
In [3]: fig1 = plt.figure(figsize=(12,5))
    ax = sns.lineplot(data=nflx, x="hour", y="high").set_title("Netflix Highest Hourly Price")
    plt.show()
```



```
In [4]: ddog = results.loc[results['name'] == "DDOG"]
     ddog = ddog[['high', 'hour']]
     ddog
```

Out[4]:

	high	hour
8	98.800003	9
9	96.879997	10
10	95.889999	11
11	95.540001	12
12	95.489998	13
13	95.739998	14
14	96.029999	15

12/13/2020 Analysis

In [5]: fig2 = plt.figure(figsize=(12,5))
 ax = sns.lineplot(data=ddog, x="hour", y="high").set_title("Datadog Highest Hourly Price")
 plt.show()

