CS582: Introduction to Speech Processing Midterm

(Spring 2015))

Notes:

- 1. Form as well as content will be graded, so express your answers correctly, clearly and concisely utilizing complete sentences, thoughts and ideas.
- 2. Submit your answers as an MS-Word document by email to me at: CKonopka@mail.sdsu.edu
- 3. Please document all references.
- 4. This test is worth 15% of your total grade for the semester.
- 5. This test is due on 03/20/2015.

Questions:

- **1.** (20 points) Define and provide examples for the following:
 - a. Conditional Probability;
 - b. Marginal Probability;
 - c. Bayes Decision Theory;
 - d. The Law of Large Numbers;
 - e. The Central Limit Theorem;
 - f. Gaussian distributions;
 - g. The Scientific Method;
 - h. Entropy;
 - i. Information Theory;
 - j. The Curse of Dimensionality;
- **2.** (20 points) Write a two page paper explaining how the physical model of speech perception relates to the computational model of speech recognition. Be sure to:
 - a. Describe human speech perception and production;
 - b. Review the computational model of speech recognition (please recall the block diagram presented in class, relevant class notes, as well as relevant passages from the text;
 - c. Relate a. and b. above.
- **3.** (20 points) Write a two page paper which compares and contrasts supervised and unsupervised learning. Be sure to include:
 - a. Maximum Likelihood Estimation;
 - b. The Neural Network approach;
 - c. Clustering;
 - d. Hidden Markov Models;
 - e. A comparison of techniques a. d. above.

For the following question, assume the following:

$$O = (H, T, H, H) \pi_1 = \pi_2 = 0.5 \text{ and } \lambda =$$

Output	1	2
Probabilities		
P(H)	0.5	0.5
P(T)	0.5	0.5

State	1	2
Transition Probabilites		
1	0.3	0.7
2	0.7	0.3

- **4.** (20 points) Use the Forward probability algorithm to find the likelihood of **O** given λ , show your work;
- 5. (20 points) Use the Viterbi algorithm to find the Viterbi score and the most likely path 'Q' for the given observation sequence 'O' and model λ . Show your work.