CLAIMS

What is claimed is:

1	1.	A me	thod for determining a parameter of interest of a fluid in a subsurface region
2		of ear	th formations comprising:
3		(a)	obtaining seismic survey information about the subsurface region;
4		(b)	identifying at least one seismic horizon of interest from the obtained
5			survey information;
6		(c)	measuring at least one seismic attribute for the at least one horizon of
7			interest at a plurality of locations, and obtaining a first probability density
8			function (PDF) thereof;
9		(d)	defining a plurality of realizations of a model including at least one rock
10			property in the region of interest;
11		(e)	defining at least one trial value of at least one property of said fluid and
12			obtaining from said at least one trail value and said plurality of
13			realizations of said model a second PDF associated with said at least one
14			seismic attribute and said fluid property; and
15		(f)	determining from the first and second probability density functions said
16			parameter of interest.

- The method of claim 1 wherein said seismic survey is at least one of the group consisting: (i) a P-P survey, (ii) a P-S survey, (iii) a S-S survey, and, (iv) a S-P survey.
- The method of claim 1 wherein said at least one seismic horizon corresponds to one of (i) a top of a reservoir, (ii) a bottom of a reservoir, and, (iii) a reservoir
 between an upper and a lower seal.
- The method of claim 1 wherein said at least one seismic attribute is selected from
 the group consisting of (i) an impedance, (ii) an amplitude of a stack trace, (iii) at
 least one coefficient of a Taylor series expansion of an amplitude in powers of
 sinθ, (iv) a reflectivity, (iv) a fractional change in density, and., (v) an average
 value of (Vp / V_s)².
- The method of claim 1 wherein the plurality of locations includes a reference location where the parameter of interest is known.
- 1 6. The method of claim 1 wherein the plurality of locations includes a test location
 2 where the parameter of interest is to be determined.
- The method of claim 1 wherein obtaining said first PDF further comprises:
- 2 (i) measuring said at least one seismic attribute at a plurality of locations;

29

GTI-1539

3		(11)	determining a variability of said seismic attribute at said plurality of
4			locations in (i); and
5		(iii)	determining an indication of variability of said at least one seismic
6			attribute.
1	8.	The m	nethod of claim 1 wherein said at least one seismic attribute comprises a
2		plurali	ity of seismic attributes.
1	9.	The m	nethod of claim 4 wherein said at least one seismic attribute comprises a
2		plurali	ity of seismic attributes.
1	10.	The m	nethod of claim 8 wherein said first PDF comprises a multivariate PDF.
1	11.	The m	nethod of claim 9 wherein said first PDF comprises a multivariate PDF.
1	12.	The m	nethod of claim 1 wherein the at least one rock property is a property of a
2		seal ro	ock.
1	13.	The m	nethod of claim 1 wherein the at least one rock property is a property of a
2		seal ro	ock.
1	14.	The m	nethod of claim 1 wherein said at least one property is a compressional wave
2		veloci	ty.

GTI-1539

1	15.	The method of claim 1 wherein said at least one seismic horizon corresponds to
2		one of a reservoir between an upper and a lower seal, the method further
3		comprising determining a tuning curve.
1	16.	The method of claim 15 wherein determining said tuning curve further comprises
2		defining an overburden model.

- 1 17. The method of claim 1 wherein determining said second PDF further comprises 2 using a convolutional model.
- 1 18. The method of claim 17 further comprising defining a wavelet for said convolutional model.
- 1 19. The method of claim 18 wherein said wavelet is selected from the group
 2 consisting of (i) a wavelet derived from a bandpass filter, (ii) Berlage, (iii) a
 3 wavelet derived from a Butterworth filter, (iv) a Gabor wavelet, (v) a Gaussian
 4 wavelet, (vi) an Ormsby wavelet, (vii) a Rayleigh wavelet, and, (viii) a Ricker
 5 wavelet.
- The method of claim 14 wherein said at least one property further comprises an additional rock property selected from (i) a shear wave velocity, and, (ii) a density..

- The method of claim 14 wherein said plurality of realizations further comprises
 perturbations of said compressional velocity.
- The method of claim 21 wherein said plurality of realizations further comprises

 perturbations of at least one additional property selected from (i) a shear velocity,

 and, (ii) a density, wherein said perturbations are relative to an expected trend

 value of said additional property.
- The method of claim 1 wherein said parameter of interest is a probability that the measured plurality of seismic attributes is associated with said trial value of said at least one fluid property.
- 1 24. The method of claim 1 wherein said parameter of interest comprises a PDF of 2 said trial value of said at least one fluid property.
- The method of claim 1 wherein said at least one fluid property is selected from the group consisting of (i) a fluid modulus, (ii) a density, and, (iii) a fluid saturation.
- 1 26. The method of claim 1 wherein determining said second PDF further comprises 2 using a critical porosity model.

- 1 27. The method of claim 1 wherein determining said second PDF further comprises
- 2 using a form of the Gassman equation.