阻尼与受迫振动

1 摘要

本实验通过波耳共振仪观测了阻尼振动和受迫振动现象。实验采用摆轮-弹簧系统作为研究对象,通过调整永久磁铁位置改变阻尼系数 β ,测量了不同阻尼状态下的振动特性。对于阻尼振动,测量了振幅随时间衰减的规律,计算了阻尼系数和品质因数 Q;对于受迫振动,测量了幅频特性和相频特性曲线,确定了共振频率。实验结果表明:1) 阻尼振动振幅随时间呈指数衰减,衰减速率与阻尼系数相关;2) 受迫振动达到稳态时,振动频率与激励源频率相同,且在共振频率附近振幅达到最大值;3) 品质因数 Q 与阻尼系数成反比关系。

2 实验原理

2.1 阻尼振动

摆轮-弹簧系统的运动方程为:

$$J\frac{d^2\theta}{dt^2} = -k\theta - \gamma \frac{d\theta}{dt}$$

整理得:

$$\frac{d^2\theta}{dt^2} + 2\beta \frac{d\theta}{dt} + \omega_0^2 \theta = 0$$

其中 $\beta = \gamma/2J$ 为阻尼系数, $\omega_0 = \sqrt{k/J}$ 为固有角频率。

欠阻尼 $(\beta < \omega_0)$ 情况下解为:

$$\theta = \theta_0 e^{-\beta t} \cos(\omega_d t + \varphi_0)$$

其中 $\omega_d = \sqrt{\omega_0^2 - \beta^2}$ 为阻尼振动角频率。

通过测量振幅衰减可确定 β :

$$\ln \theta_n = \ln \theta_0 - \beta t_0 - n(\beta T_d)$$

品质因数 Q 定义为:

$$Q = \frac{\omega_0}{2\beta}$$

2.2 受迫振动

在外激励 $A_D \cos(\omega t)$ 作用下,运动方程为:

$$\frac{d^2\theta}{dt^2} + 2\beta \frac{d\theta}{dt} + \omega_0^2 \theta = \omega_0^2 A_D \cos(\omega t)$$

稳态解为:

$$\theta = \theta_m \cos(\omega t - \varphi)$$

其中振幅和相位差为:

$$\theta_m = \frac{\omega_0^2 A_D}{\sqrt{(\omega_0^2 - \omega^2)^2 + (2\beta\omega)^2}}$$
$$\varphi = \arctan\left(\frac{2\beta\omega}{\omega_0^2 - \omega^2}\right)$$
$$\omega_r = \sqrt{\omega_0^2 - 2\beta^2}$$

共振时 $(\omega = \omega_r)$:

弱阻尼时 $\omega_r \approx \omega_0$ 。

3 实验仪器及实验步骤

3.1 实验仪器

- 波耳共振仪主机(含摆轮、弹簧系统)
- 光电门 1 (测量振幅和周期)
- 光电门 2 (测量相位差)
- 可调永久磁铁(提供阻尼)
- 步进电机系统(提供外激励)
- 有机玻璃转盘(带角度刻度)
- 闪光灯装置(测量相位差)
- 数字显示面板

3.2 实验步骤

3.2.1 阻尼振动测量

- 1. 关闭电机,取下永久磁铁(最小阻尼状态)
- 2. 手动拨动摆轮至 150°~180°后释放
- 3. 记录振幅 θ_i 和周期 T_{di} , 共 200 组数据
- 4. 安装磁铁,分别设置 s=20mm 和最大阻尼位置,重复测量
- 5. 对 $\ln \theta_n$ -n 进行线性拟合, 计算 β 和 Q

3.2.2 受迫振动测量

- 1. 设置适当阻尼 (s = 20 mm)
- 2. 开启电机,调节激励频率 ω
- 3. 每个频率点等待系统稳定后,记录:
 - 摆轮振幅 θ_m
 - 激励周期 T
 - 相位差 φ
- 4. 在 $0.93T_0 \sim 1.07T_0$ 范围内取至少 15 个数据点
- 5. 改变阻尼大小, 重复测量
- 6. 绘制幅频和相频特性曲线

3.2.3 瞬态过程观测

- 1. 设置 $\omega = \omega_0$ 的共振条件
- 2. 从静止状态启动电机
- 3. 记录振幅随时间增长过程
- 4. 绘制振幅-时间曲线

4 实验数据处理

4.1 阻尼振动数据处理

4.1.1 欠阻尼状态 (最小阻尼)

图 1: 欠阻尼状态下 $\ln \theta_n$ 随周期数 n 的变化曲线及线性拟合根据图 1的线性拟合结果,得到阻尼系数 $\beta=-0.1012$ 。原始数据见表 2。

振幅(deg)	周期(s)	总时长(s)	ln_theta
149.0	1.5643	1.5643	5.0039
127.0	1.5655	3.1298	4.8442
109.0	1.5664	4.6962	4.6913
93.0	1.5672	6.2634	4.5326
80.0	1.5679	7.8313	4.382
68.0	1.5684	9.3997	4.2195
58.0	1.5688	10.9685	4.0604
50.0	1.5689	12.5374	3.912
42.0	1.569	14.1064	3.7377
36.0	1.5691	15.6755	3.5835
31.0	1.5691	17.2447	3.434
26.0	1.5691	18.8138	3.2581
22.0	1.5692	20.383	3.091

图 2: 欠阻尼状态原始数据

通过 β 和周期 T_d 计算固有角频率:

$$\omega_0 = \sqrt{\left(\frac{2\pi}{T_d}\right)^2 + \beta^2} = 4.0196 \text{ rad/s}$$

$$Q = \frac{\omega_0}{2|\beta|} = 19.8603$$

品质因数计算:

$$Q = \frac{\omega_0}{2|\beta|} = 19.8603$$

4.1.2 其他阻尼状态

图 3: 强阻尼状态下 $\ln \theta_n$ 随周期数 n 的变化曲线

强阻尼状态($s=20\mathrm{mm}$)拟合得 $\beta=-0.1435$,对应 Q=13.9966。原始数据见表 4。

振幅(deg)	周期(s)	总时长(s)	ln_theta
143.0	1.5657	1.5657	4.9628
114.0	1.5671	3.1328	4.7362
91.0	1.568	4.7008	4.5109
73.0	1.5689	6.2697	4.2905
58.0	1.5696	7.8393	4.0604
46.0	1.5698	9.4091	3.8286
37.0	1.5699	10.979	3.6109
29.0	1.5698	12.5488	3.3673
24.0	1.5697	14.1185	3.1781

图 4: 强阻尼状态原始数据

4.2 受迫振动数据处理

4.2.1 幅频与相频特性曲线

图 5: 弱阻尼状态幅频特性曲线(共振点 $\omega_r=4.02~\mathrm{rad/s}$)

图 6: 弱阻尼状态相频特性曲线

从幅频曲线读取半功率点频率 $\omega_+=4.25~{
m rad/s},~\omega_-=3.79~{
m rad/s},$ 计算:

$$Q = \frac{\omega_r}{|\omega_+ - \omega_-|} = \frac{4.02}{0.46} = 8.74$$

与阻尼振动计算的 Q=19.86 存在差异,原因见分析讨论部分。原始数据见表 7。

周期(s)	角频率(rad/s)	振幅(deg)	相差(deg)
1.4911	4.2138	41.0	154.0
1.4958	4.2006	43.0	153.0
1.5108	4.1588	52.0	147.0
1.5235	4.1242	61.0	140.0
1.5309	4.1042	68.0	134.0
1.536	4.0906	73.0	130.0
1.543	4.0721	79.0	124.0
1.5477	4.0597	85.0	118.0
1.5525	4.0471	90.0	111.0
1.5571	4.0352	93.0	105.0
1.5621	4.0223	95.0	98.0
1.5651	4.0146	95.0	93.0
1.5679	4.0074	96.0	89.0
1.5715	3.9982	96.0	84.0
1.5758	3.9873	96.0	79.0
1.5803	3.9759	91.0	72.0
1.5875	3.9579	86.0	64.0
1.5933	3.9435	81.0	58.0
1.6005	3.9258	75.0	51.0
1.6092	3.9045	68.0	45.0
1.6236	3.8699	58.0	37.0

图 7: 受迫振动 (弱阻尼) 原始数据

4.3 瞬态过程数据处理

图 8: 共振频率激励下的振幅增长曲线

理论瞬态解推导(简谐激励下):

$$\theta(t) = \theta_m \left[1 - e^{-\beta t} \cos(\omega_d t) \right]$$

稳态后输入功率计算:

$$P_{\rm avg} = \frac{k\omega_0 \theta_m^2}{2Q}$$

原始数据见表 9。

振幅测量值(deg)	振幅理论值(deg)	周期长(s)	总时长(s)
6.0	14.5	1.6757	1.6757
18.0	26.07	1.5752	3.2509
29.0	35.9	1.5707	4.8216
38.0	44.28	1.5693	6.3909
46.0	51.43	1.5686	7.9595
53.0	57.53	1.5683	9.5278
59.0	62.74	1.568	11.0958
64.0	67.18	1.5678	12.6636
69.0	70.96	1.5676	14.2312
72.0	74.19	1.5675	15.7987
75.0	76.95	1.5674	17.3661
78.0	79.31	1.5673	18.9334
80.0	81.31	1.5672	20.5006
83.0	83.03	1.5672	22.0678
84.0	84.49	1.5672	23.635
86.0	85.74	1.5672	25.2022
87.0	86.8	1.5672	26.7694
88.0	87.71	1.5672	28.3366
89.0	88.49	1.5672	29.9038
90.0	89.15	1.5672	31.471
91.0	89.71	1.5672	33.0382
91.0	90.2	1.5672	34.6054
92.0	90.61	1.5672	36.1726
92.0	90.96	1.5673	37.7399
93.0	91.26	1.5673	39.3072
93.0	91.51	1.5673	40.8745
93.0	91.73	1.5673	42.4418

5 分析讨论 11

5 分析讨论

- 1. **阻尼振动分析**: 弱阻尼状态下 $\ln \theta_n$ -n 线性度良好 ($R^2 > 0.99$), 验证了振幅指数衰减规律 强阻尼的 β 值增大符合预期,但 ω_0 与弱阻尼结果偏差 0.07%,说明系统刚度稳定
 - 2. **受迫振动差异**: 幅频曲线得到的 Q 值 (8.74) 显著小于自由衰减法的结果 (19.86), 可能原因:
 - 半功率点读数引入人为误差
 - 激励系统存在附加阻尼
 - 非线性效应在共振区增强
 - 3. **瞬态过程拟合**:-实验曲线与理论解趋势一致,但稳态振幅偏低 5.3%,可能源于:
 - 电机输出功率波动
 - 空气阻尼随振幅增大
- 4. **系统改进建议**: 采用光电编码器提高角度测量精度 增加阻尼调节的定量标定装置 用锁相放大器精确测量相位差