班号_2103206_ 学号_	<u>210320621</u>	姓名	吴俊达	教师签字
实验日期 2023.3.3	组号5	预习成绩		总成绩

实验名称 磁光效应及其在光通信中的应用

一、预习

- 1. 简述采用磁光效应的非互易性制作光隔离器的原理。
- 2. 在光通信应用中,可以采用不同的光功率大小表示二进制"0"和"1",例如光功率高于某一数值时代表"1",低于这一数值时代表"0"。简述采用磁光效应实现这一功能的原理。
- 1、答、非互易性是指,污脏等效应产生的旋免及与磁场方向有关,而同志传播方向无关。 也即、光线钻运一周,旋免角不是相互打队角,而是信止管。 可以,免从装置一侧证例射入时,忽偏据面旋转力,怎设置第二个偏据片与第一个偏据片如偏据化 方向表面为力,则可以实射;但之从装置另一侧射入时,往过第二个偏据片又经过磁光影响后,其免偏据面角度 不是爱为与第一个偏据片心偏振从方向到,而是双增加了的心偏转,从而形成通过第一个偏据片。这就出到3克隔离效果。

2、 答、用起偏器。在取线偏据名,再设置一个投编器。 通过改变励磁线圈的电流,可改变磁感左强度, 进而可改变偏据名通过 强名晶体后名编据面相对于原建改变的类角,从而改变从磁名晶体中射光与控编器编据化方向 的类角 P。 由引起或通信,与射效强与 cus? p成正比,则。通过改变励磁线圈的电流,可改变生射光的光强, 进而改变多的功量,功率低时作为"0",高时作为"1"。

二、原始数据记录

1.

磁致旋光角与励磁电流大小的关系数据记录

电流大小(A)	消光时偏振片 P ₂ 的角度读数 θ	旋光角 Δθ(包含正负号)
0.00	212.8°	0.0°
0.15	214-9°	2.10
0.50	217.5°	4.7°
0-75	2/8. 5 °	5.7°
1-00	220.2°	7.4°
1.25	221.8°	9.0°
1.50	223.0°	10.20
1-75	224.6°	11.8°
2.00	227.0°	1420
2.25	228.5°	15. 7°
2.50	229.7°	16.90
2-75	231.2°	18.40

2.

磁致旋光角方向与光束传播方向的关系数据记录

电流大小 (A)	消光时偏振片 P_2 的角度读数 θ	旋光角 Δθ (包含正负号)
0.00	2130°	0.0°
0.15	211.20	1.8°
0,50	209.5°	3.5°
0.75	208./ 0	4.9°
1-00	2065	6.5°
1.25	205.0°	8.00
1.50	203./ °	9-9°
1-75	202.00	11.00
2.00	₯ ₯, ₯ °	(3, o°
2.25	198.6 °	14,4°
2.50	197.2°	(5.8°
2-75	195.2°	17.80

3.

磁致旋光角方向与励磁电流方向的关系数据记录

反向电流大小 (A)	消光时偏振片 P ₂ 的角度读数 θ	旋光角 Δθ(包含正负号)
---------------	-------------------------------	---------------

0.00	213.00	0.0°
0. VS	215.1°	-2.1°
0.50	216.6°	-3.6°
0.75	217·5°	-4.5°
/-07	219.6°	- 6. 6°
1.25	221.1°	-81°
1.50	222.9°	- 9.9°
1-75	224.5°	ر ۱۱۰۶°
2.00	225.7°	-12.7°
2.25	227.5°	- 14.5°
2.50	228.7°	-15.7°
2.75	230.7°	-17.7°

4.

磁光材料对不同波长的光的响应情况数据记录(选做)

波长 (nm)	电流大小	消光时偏振片 P2 的角度	旋光角 Δθ(包含正
	(A)	读数 $ heta$	负号)
	0.00		0.0°

三、数据处理及实验现象、结论

绘制各实验任务中偏振片2的角度变化值(即磁致旋光角)与励磁电流的关系曲线,注 意正负号,根据结果总结磁致旋光角与磁感应强度大小、光束传播方向、磁场方向的关系; 描述利用磁光效应调制音频信号的实验现象。

解:任务1(磁致旋光角与励磁电流的关系,光路从左至右)

利用 Excel 作出拟合直线,得直线方程 y = 1.6416 x - 0.9955,相关系数 $R^2 = 0.9956$ 。相关系 数接近于 1,说明磁致旋光角和励磁电流的线性关系很强;且图线近似通过原点,说明磁 致旋光角和励磁电流成正比关系。又由于磁感应强度和励磁电流大小成正比,所以得出结 论:磁致旋光角和磁感应强度成正比关系。【此时计算某电流大小对应的旋光角,是用此 电流下偏振片 P_2 的角度值减去电流为 0 时偏振片 P_2 的角度值】

可以看出,改变光束传播方向,旋光角并未改变符号,趋势也与之前相同,说明磁致旋光角和光束传播方向**无关。**【任务 2 和任务 3 中,计算某电流大小对应的旋光角,是用电流为 0 时偏振片 P_2 的角度值减去此电流下偏振片 P_2 的角度值,和任务 1 中相反,因为只有这样,才能确保从同侧看进去,各任务中旋光角正值对应的旋光方向相同,否则会出现"任务 1 中旋光角正值代表右旋、任务 2 中旋光角正值代表左旋"这样的情况。】

任务3(改变励磁电流方向,即改变磁感应强度方向)

可以看出,改变励磁电流方向(磁感应强度方向),旋光角改变符号,说明磁致旋光角和励磁电流方向(磁感应强度方向)**有关。**

利用磁光效应调制音频信号的实验现象:

- ① 对于一定的励磁电流(中等大小,1A 左右),调节偏振片角度,当两偏振片的偏振化方向垂直时,听不到声音;而当两偏振片的偏振化方向夹角逐渐减小时,噪声逐渐增大随后减小,乐声逐渐增大;接近平行时,声音最为清晰和响亮;恰好平行时,声音响度最大,但反而不如之前清晰。
- ② 对于一定偏振片夹角(两偏振片的偏振化方向夹角接近平行),调节励磁电流大小,发现 随着励磁电流增大,声音响度先增大后减小,但减小不明显;声音清晰度增加,但增加 越来越不明显。

四、讨论题

如图 1 所示,一束偏振光穿过置于线圈之中、长度为 d 的磁光晶体,线圈中通有大小为 I 的电流,电流方向如箭头所示。在磁场作用下,偏振光的偏振方向发生旋转。请根据该结果,画出图 2 和图 3 中出射光的偏振方向,标出角度值。

