

39780-1216R1C1D5 SAVED JULY 7 2005.TXT

SEQUENCE LISTING

<110> Ashkenazi, Avi J.
Fong, Sherman
Goddard, Audrey
Gurney, Austin L.
Napier, Mary A.
Tumas, Daniel
Wood, William I.

<120> COMPOUNDS, COMPOSITIONS AND METHODS FOR
THE TREATMENT OF DISEASES CHARACTERIZED BY A-33 RELATED
ANTIGENS

<130> 39780-1216R1C1D5

<140> US 10/785,607
<141> 2004-02-24

<150> US 09/953,499
<151> 2001-09-14

<150> US 09/254,465
<151> 1999-03-05

<150> PCT/US98/24855
<151> 1998-11-20

<150> PCT/US98/19437
<151> 1998-09-17

<160> 30

<170> FastSEQ for windows version 4.0

<210> 1
<211> 299
<212> PRT
<213> Homo sapiens

<400> 1
Met Gly Thr Lys Ala Gln Val Glu Arg Lys Leu Leu Cys Leu Phe Ile
1 5 10 15
Leu Ala Ile Leu Leu Cys Ser Leu Ala Leu Gly Ser Val Thr Val His
20 25 30
Ser Ser Glu Pro Glu Val Arg Ile Pro Glu Asn Asn Pro Val Lys Leu
35 40 45
Ser Cys Ala Tyr Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys Phe
50 55 60
Asp Gln Gly Asp Thr Thr Arg Leu Val Cys Tyr Asn Asn Lys Ile Thr
65 70 75 80
Ala Ser Tyr Glu Asp Arg Val Thr Phe Leu Pro Thr Gly Ile Thr Phe
85 90 95
Lys Ser Val Thr Arg Glu Asp Thr Gly Thr Tyr Thr Cys Met Val Ser
100 105 110
Glu Glu Gly Gly Asn Ser Tyr Gly Glu Val Lys Val Lys Leu Ile Val
115 120 125
Leu Val Pro Pro Ser Lys Pro Thr Val Asn Ile Pro Ser Ser Ala Thr
130 135 140
Ile Gly Asn Arg Ala Val Leu Thr Cys Ser Glu Gln Asp Gly Ser Pro
145 150 155 160
Pro Ser Glu Tyr Thr Trp Phe Lys Asp Gly Ile Val Met Pro Thr Asn

165	170	175
Pro Lys Ser Thr Arg Ala Phe Ser Asn Ser Ser Tyr Val Leu Asn Pro		
180	185	190
Thr Thr Gly Glu Leu Val Phe Asp Pro Leu Ser Ala Ser Asp Thr Gly		
195	200	205
Glu Tyr Ser Cys Glu Ala Arg Asn Gly Tyr Gly Thr Pro Met Thr Ser		
210	215	220
Asn Ala Val Arg Met Glu Ala Val Glu Arg Asn Val Gly Val Ile Val		
225	230	235
Ala Ala Val Leu Val Thr Leu Ile Leu Leu Gly Ile Leu Val Phe Gly		240
245	250	255
Ile Trp Phe Ala Tyr Ser Arg Gly His Phe Asp Arg Thr Lys Lys Gly		
260	265	270
Thr Ser Ser Lys Lys Val Ile Tyr Ser Gln Pro Ser Ala Arg Ser Glu		
275	280	285
Gly Glu Phe Lys Gln Thr Ser Ser Phe Leu Val		
290	295	

<210> 2
<211> 321
<212> PRT
<213> Homo sapiens

1	5	10	15
Met Gly Ile Leu Leu Gly Leu Leu Leu Leu Gly His Leu Thr Val Asp			
20	25	30	
Thr Tyr Gly Arg Pro Ile Leu Glu Val Pro Glu Ser Val Thr Gly Pro			
35	40	45	
Trp Lys Gly Asp Val Asn Leu Pro Cys Thr Tyr Asp Pro Leu Gln Gly			
50	55	60	
Tyr Thr Gln Val Leu Val Lys Trp Leu Val Gln Arg Gly Ser Asp Pro			
65	70	75	80
Val Thr Ile Phe Leu Arg Asp Ser Ser Gly Asp His Ile Gln Gln Ala			
85	90	95	
Lys Tyr Gln Gly Arg Leu His Val Ser His Lys Val Pro Gly Asp Val			
100	105	110	
Ser Leu Gln Leu Ser Thr Leu Glu Met Asp Asp Arg Ser His Tyr Thr			
115	120	125	
Cys Glu Val Thr Trp Gln Thr Pro Asp Gly Asn Gln Val Val Arg Asp			
130	135	140	
Lys Ile Thr Glu Leu Arg Val Gln Lys Leu Ser Val Ser Lys Pro Thr			
145	150	155	160
Val Thr Thr Gly Ser Gly Tyr Gly Phe Thr Val Pro Gln Gly Met Arg			
165	170	175	
Ile Ser Leu Gln Cys Gln Ala Arg Gly Ser Pro Pro Ile Ser Tyr Ile			
180	185	190	
Trp Tyr Lys Gln Gln Thr Asn Asn Gln Glu Pro Ile Lys Val Ala Thr			
195	200	205	
Leu Ser Thr Leu Leu Phe Lys Pro Ala Val Ile Ala Asp Ser Gly Ser			
210	215	220	
Tyr Phe Cys Thr Ala Lys Gly Gln Val Gly Ser Glu Gln His Ser Asp			
225	230	235	240
Ile Val Lys Phe Val Val Lys Asp Ser Ser Lys Leu Leu Lys Thr Lys			
245	250	255	
Thr Glu Ala Pro Thr Thr Met Thr Tyr Pro Leu Lys Ala Thr Ser Thr			
260	265	270	
Val Lys Gln Ser Trp Asp Trp Thr Thr Asp Met Asp Gly Tyr Leu Gly			
275	280	285	
Glu Thr Ser Ala Gly Pro Gly Lys Ser Leu Pro Val Phe Ala Ile Ile			
290	295	300	

39780-1216R1C1D5 SAVED JULY 7 2005.TXT

Met Leu Cys Arg Lys Thr Ser Gln Gln Glu His Val Tyr Glu Ala Ala
305 310 315 320
Arg

<210> 3
<211> 390
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial sequence

<400> 3
cttcttgcca actggtatca cttcaagtc cgtgacacgg gaagacactg ggacatacac 60
ttgtatggtc tctgaggaag gcggcaacag ctatggggag gtcaaggta agtcatcgt 120
gcttgcct ccatccaagc ctacagttaa catcccccc tctgccacca ttgggaaccg 180
ggcagtgcgt acatgctcg aacaagatgg ttccccaccc tctgaataca cctggttcaa 240
agatggata gtgatgccta cgaatcccaa aagcaccggc gccttcagca actcttccta 300
tgtcctgaat cccacaacag gagagctggc ctttgatccc ctgtcagcct ctgatactgg 360
agaatacagc tgtgaggcac ggaatggta 390

<210> 4
<211> 726
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial sequence

<400> 4
tctcagtccc ctcgctgttag tcgcggagct gtgttctgtt tccaggagt ctttcggcgg 60
ctgttgcgt cagggtgcggc tgatcgcat ggggacaaag gcgcagctc gagagggaaac 120
tggcgtgcct cttcatattg gcgatccgt tggctccct ggcattggc agtggtaacag 180
ttgcactctt ctgaacctga agtcagaatt cctgagaata atccgtgaa gttgtcctgt 240
gcctactcggt gctttcttc tccccgtgtg gagtggaaat ttgaccaagg agacaccacc 300
agactcggtt gctataataaa caagatcaca gcttcctatg aggaccgggt gaccttcttg 360
ccaactggta tcaccttcaa gtccgtgaca cgggaagaca ctgggacata cacttgtatg 420
gtctctgagg aaggccgcaaa cagctatggg gaggtcaagg tcaagctcat cgtgcttgc 480
cctccatcca agcctacagt taacatcccc tcctctgcca ccattggaa ccgggcagtg 540
ctgacatgct cagaacaaga tggttccca cttctgaat acacctgggt caaagatggg 600
atagtgtgc ctacgaatcc caaaagcacc cgtgccttca gcaactcttc ctatgtcctg 660
aatccaccaa caggagagct ggtcttgat cccctgtcag cctctgatac tggagaatac 720
agctgt 726

<210> 5
<211> 1503
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial sequence

<400> 5
gcaggccaaag taccaggggcc gcctgcattgt gagccacaag gttccaggag atgtatccct 60
ccaaatggagc accctggaga tggatgaccg gagccactac acgtgtgaag tcacctggca 120
gactcctgat ggcaaccaag tcgtgagaga taagattact gagctccgtg tccagaaact 180
ctctgtctcc aagcccacag tgacaactgg cagcggttat ggcttcacgg tgccccagg 240
aatgaggatt agccttcaat gccagggttc ggggttctcc tcccatcagt tatatttgg 300
ataagcaaca gactaataac cagggAACCC atcaaagtatg caaccctaag taccttactc 360
ttcaagcctg cggtgatagc cgactcaggc tcctatttct gcactgccaa gggccagg 420
ggctctgagc agcacagcga cattgtgaag tttgtggta aagactcctc aaagctactc 480

39780-1216R1C1D5 SAVED JULY 7 2005.TXT

aagaccaaga ctgaggcacc tacaaaccatg acataccct tgaaagcaac atctacagt 540
aagcagtccct gggactggac cactgacatg gatggctacc ttggagagac cagtgcgtgg 600
ccagggaaaga gcctgcctgt ctttgcctac atcctcatca tctccttgcg ctgtatgggt 660
gtttttacca tggccttatat catgctctgt cggaagacat cccacaaga gcatgtctac 720
gaagcagcca gggcacatgc cagagaggcc aacgactctg gagaaaccat gagggtggcc 780
atcttcgcaa gtggctgctc cagtatgag ccaacttccc agaatctggg gcaacaacta 840
ctctgatgag ccctgcata gacaggagta ccagatcatc gcccagatca atggcaacta 900
cgccccctg ctggacacag ttcccttgcg ttatgagtt ctggccactg agggcaaaag 960
tgtctgttaa aaatgccccca ttaggccagg atctgctgac ataattgcct agtcagtcct 1020
tgcctctgc atggccttct tccctgctac ctcttgcct ggatagccca aagtgtccgc 1080
ctaccaacac tggagccgt gggagtact ggcttgcct tggaatttgc cagatgcata 1140
tcaagtaagc cagctgctgg atttgctct gggcccttct agtatctctg ccgggggctt 1200
ctggtaactcc tctctaaata ccagaggaa gatgcccata gcactaggac ttggtcatca 1260
tgcctacaga cactattcaa ctttggcatc ttgcccacag aagaccggag gggaggtca 1320
gctctgccag ctcagaggac cagctatac caggatcatc tctcttctt cagggccaga 1380
cagctttaa ttgaaattgt tatttcacag gccagggttc agttctgctc ctccactata 1440
agtctaattgt tctgactctc tcctggtgct caataaataat ctaatcataa cagcaaaaaa 1500
aaa 1503

<210> 6

<211> 319

<212> PRT

<213> Homo sapiens

<400> 6

Met Val Gly Lys Met Trp Pro Val Leu Trp Thr Leu Cys Ala Val Arg
1 5 10 15
Val Thr Val Asp Ala Ile Ser Val Glu Thr Pro Gln Asp Val Leu Arg
20 25 30
Ala Ser Gln Gly Lys Ser Val Thr Leu Pro Cys Thr Tyr His Thr Ser
35 40 45
Thr Ser Ser Arg Glu Gly Leu Ile Gln Trp Asp Lys Leu Leu Leu Thr
50 55 60
His Thr Glu Arg Val Val Ile Trp Pro Phe Ser Asn Lys Asn Tyr Ile
65 70 75 80
His Gly Glu Leu Tyr Lys Asn Arg Val Ser Ile Ser Asn Asn Ala Glu
85 90 95
Gln Ser Asp Ala Ser Ile Thr Ile Asp Gln Leu Thr Met Ala Asp Asn
100 105 110
Gly Thr Tyr Glu Cys Ser Val Ser Leu Met Ser Asp Leu Glu Gly Asn
115 120 125
Thr Lys Ser Arg Val Arg Leu Leu Val Leu Val Pro Pro Ser Lys Pro
130 135 140
Glu Cys Gly Ile Glu Gly Glu Thr Ile Ile Gly Asn Asn Ile Gln Leu
145 150 155 160
Thr Cys Gln Ser Lys Glu Gly Ser Pro Thr Pro Gln Tyr Ser Trp Lys
165 170 175
Arg Tyr Asn Ile Leu Asn Gln Glu Gln Pro Leu Ala Gln Pro Ala Ser
180 185 190
Gly Gln Pro Val Ser Leu Lys Asn Ile Ser Thr Asp Thr Ser Gly Tyr
195 200 205
Tyr Ile Cys Thr Ser Ser Asn Glu Glu Gly Thr Gln Phe Cys Asn Ile
210 215 220
Thr Val Ala Val Arg Ser Pro Ser Met Asn Val Ala Leu Tyr Val Gly
225 230 235 240
Ile Ala Val Gly Val Val Ala Ala Leu Ile Ile Ile Gly Ile Ile Ile
245 250 255
Tyr Cys Cys Cys Arg Gly Lys Asp Asp Asn Thr Glu Asp Lys Glu
260 265 270
Asp Ala Arg Pro Asn Arg Glu Ala Tyr Glu Glu Pro Pro Glu Gln Leu
275 280 285
Arg Glu Leu Ser Arg Glu Arg Glu Glu Glu Asp Asp Tyr Arg Gln Glu
290 295 300

39780-1216R1C1D5 SAVED JULY 7 2005.TXT

Glu Gln Arg Ser Thr Gly Arg Glu Ser Pro Asp His Leu Asp Gln
305 310 315

<210> 7
<211> 2181
<212> DNA
<213> *Homo sapiens*

<400> 7	cccacgcgtc	cgccccacgcg	tccgcccacg	ggtccgcccc	cgcgtccggg	ccaccagaag	60
	ttttaggcctc	tttggtagca	ggaggctgga	agaaaaggaca	gaagtagctc	tggtctgtat	120
	ggggatctta	ctggggcctgc	tactcctggg	gcacctaaca	gtggacactt	atggccgtcc	180
	catcctggaa	gtgccagaga	gtgtaacagg	accttggaaa	ggggatgtga	atcttccctg	240
	cacctatgac	cccctgcaag	gctacaccca	agtcttggtg	aagtggctgg	tacaacgttg	300
	ctcagaccct	gtcaccatct	ttctacgtga	ctcttctggg	gaccatatcc	agcaggcaaa	360
	gtaccagggc	cgcctgcatg	tgagccacaa	ggttccaggag	gatgtatccc	tccaatttgag	420
	cacccctggag	atggatgacc	ggagccacta	cacgtgtgaa	gtcacccctggc	agactcctga	480
	tggcaaccaa	gtctgtgagag	ataaggattac	tgagttccctgt	gtccagaaac	tctctgtctc	540
	caagccccaca	gtgacaactg	gcagcgttta	tggttcacag	gtgccccagg	aatgaggat	600
	tagcccttcaa	tgccaggctc	ggggtttcc	tcccatcagt	tatatttggt	ataagcaaca	660
	gactaataac	caggaaacccca	tcaaagttagc	aacccttaagt	accttactct	tcaagcctgc	720
	ggtgatagcc	gactcaggct	cctatttctg	cactgccaag	ggccaggttg	gctctgagca	780
	gcacagcgcac	atttgtaaatg	tttgtgtcaa	agactcctca	aagctactca	agaccaagac	840
	tgaggcacct	acaaccatga	cataccctt	gaaagcaaca	tctacagtga	agcagtccctg	900
	ggactggacc	actgacatgg	atggctacct	tgtagagagacc	agtgtctggc	caggaaagag	960
	cctgcctgtc	tttgcctatca	tcctcatcat	cttcttgtgc	tgtatgggtg	tttttaccat	1020
	ggcctataatc	atgctctgtc	ggaagacatc	ccaacaagag	catgtctacg	aagcagccag	1080
	gtaagaaagt	cttcctctt	ccatTTTGA	ccccgtccct	gccctcaatt	ttgattactg	1140
	gcagggaaatg	tggaggaagg	gggggtgtggc	acagacccaa	tcctaaggcc	ggaggccctc	1200
	agggtcagga	catagctgcc	ttccctctct	cagggcacctt	ctgaggttgt	tttggccctc	1260
	tgaacacaaa	ggataattta	gatccatctg	ccttctgtctt	ccagaatccc	ttgggtgttag	1320
	gatcctgtata	attaattggc	aagaattttag	gcagaagggt	ggaaaccag	gaccacagcc	1380
	ccaagtccct	tcttatgggt	gggggtctct	tggccatag	ggcacatgcc	agagaggcca	1440
	acgactctgg	agaaaccatg	agggtggcca	tcttcgcaag	tggctgtcc	agtgtatgagc	1500
	caactccca	gaatctgggc	aacaactact	ctgtatgagcc	ctgcatagga	caggagtacc	1560
	agatcatcgc	ccagatcaat	ggcaactacg	cccgctgtct	ggacacagtt	cctctgtgatt	1620
	ataggtttct	ggccacttag	ggccaaagtg	tctgttaaaa	atgccccatt	aggccaggat	1680
	ctgtgcacat	aattggcttag	tcagtccctg	ccttctgtcat	ggcccttcttc	cctgtctact	1740
	ctcttccctgg	atagcccaa	gtgtccgcct	accaacactg	gagccgctgg	gagtcaactgg	1800
	ctttgcccctg	gaatttgccca	gatgcatctc	aagtaagccca	gctgctggat	ttggctctgg	1860
	gcccttctag	tatctctgccc	gggggcttct	ggtaactccctc	tctaaatacc	agagggaaaga	1920
	tgcccatacg	actaggactt	ggtcatcatg	cctacagacaca	ctattcaact	ttggcatctt	1980
	gccaccagaa	gaccggaggg	aggctcagct	ctgcccagctc	agaggaccag	ctatatccag	2040
	gatcatttct	cttcttcttag	ggccagacag	cttttaattt	aaattgttat	ttcacagggc	2100
	agggttcagt	tctgtctctc	cactataagt	ctaatgttct	gactctctcc	tggtgctcaa	2160
	taaatatcta	atcataaacag	c				2181

<210> 8
<211> 1295
<212> DNA
<213> *Homo sapiens*

```

<400> 8
cccagaagtt caaggggcccc cggcctccgt cgctccgtgc gccgggaccc tcgaccctcct 60
cagagcagcc ggctgccgccc cgggaaagat ggcgaggagg agccgccacc gcctccctcct 120
gctgtctgtcg cgctacccgtt tggtcgccct gggctatcat aaggcctatg gggtttctgc 180
cccaaaagac caacaagttag tcacagcagt agagtaccaa gaggctattt tagcctgcaa 240
aaccggaaag aagactgttt cctccagatt agagtggaaag aaactgggtc ggagtgtctc 300
cttggctcac tatcaacaga ctcttcagg tgatTTaaa aatcgagctg agatgataga 360
tttcaatatc cggatcaaaa atgtgacaag aagtgtatgc gggaaatatc gttgtgaagt 420
tagtgcccca tctgagcaag gccaaaacct ggaagaggat acagtcaactc tggaaagtatt 480
aqtggctcca qcagtccat catgtgaagt acccttctt gctctgatg gaactgttgt 540

```

39780-1216R1C1D5 SAVED JULY 7 2005.TXT

agagctacga tgtcaagaca aagaaggaa tccagctcct gaatacacat ggttaagga 600
tggcatccgt ttgcttagaaa atcccagact tggctccaa agcaccaaca gctcatacac 660
aatgaataca aaaactggaa ctctgcatt taatactgtt tccaaactgg acactggaga 720
atattctgt gaagccccca attctgttgg atatcgagg tgcctggaa aacgaatgca 780
agtagatgtat ctcacacataa gtggcatcat agcagccgtt gtagttgtgg ccttagtgat 840
ttccgttgtt ggccttggg tatgctatgc tcagagggaa ggctacttt caaaaagaaac 900
ctcctccag aagagaattt cttcatctaa agccacgaca atgagtgaaa atgtgcagt 960
gctcacgcct gtaatcccag cacttggaa ggccgcgcg ggccgatcac gaggtcagga 1020
gttctagacc agtctggcca atatgggtgaa accccatctc tactaaaata caaaaattag 1080
ctggccatgg tggcatgtgc ctgcagttcc agctgctgg gagacaggag aatcacttga 1140
acccgggagg cgaggttgc agtgagctga gatcacgcctt ctgcagttcc gcctggtaa 1200
cagagaaga ttccatctca aaaaataaaaaa taaaataata aataaataact ggttttacc 1260
tgttagattt ttacaataaaa tatacgatc tattc 1295

<210> 9

<211> 312

<212> PRT

<213> Homo sapiens

<400> 9

Met Ala Arg Arg Ser Arg His Arg Leu Leu Leu Leu Leu Arg Tyr
1 5 10 15
Leu Val Val Ala Leu Gly Tyr His Lys Ala Tyr Gly Phe Ser Ala Pro
20 25 30
Lys Asp Gln Gln Val Val Thr Ala Val Glu Tyr Gln Glu Ala Ile Leu
35 40 45
Ala Cys Lys Thr Pro Lys Lys Thr Val Ser Ser Arg Leu Glu Trp Lys
50 55 60
Lys Leu Gly Arg Ser Val Ser Phe Val Tyr Tyr Gln Gln Thr Leu Gln
65 70 75 80
Gly Asp Phe Lys Asn Arg Ala Glu Met Ile Asp Phe Asn Ile Arg Ile
85 90 95
Lys Asn Val Thr Arg Ser Asp Ala Gly Lys Tyr Arg Cys Glu Val Ser
100 105 110
Ala Pro Ser Glu Gln Gly Gln Asn Leu Glu Glu Asp Thr Val Thr Leu
115 120 125
Glu Val Leu Val Ala Pro Ala Val Pro Ser Cys Glu Val Pro Ser Ser
130 135 140
Ala Leu Ser Gly Thr Val Val Glu Leu Arg Cys Gln Asp Lys Glu Gly
145 150 155 160
Asn Pro Ala Pro Glu Tyr Thr Trp Phe Lys Asp Gly Ile Arg Leu Leu
165 170 175
Glu Asn Pro Arg Leu Gly Ser Gln Ser Thr Asn Ser Ser Tyr Thr Met
180 185 190
Asn Thr Lys Thr Gly Thr Leu Gln Phe Asn Thr Val Ser Lys Leu Asp
195 200 205
Thr Gly Glu Tyr Ser Cys Glu Ala Arg Asn Ser Val Gly Tyr Arg Arg
210 215 220
Cys Pro Gly Lys Arg Met Gln Val Asp Asp Leu Asn Ile Ser Gly Ile
225 230 235 240
Ile Ala Ala Val Val Val Val Ala Leu Val Ile Ser Val Cys Gly Leu
245 250 255
Gly Val Cys Tyr Ala Gln Arg Lys Gly Tyr Phe Ser Lys Glu Thr Ser
260 265 270
Phe Gln Lys Ser Asn Ser Ser Lys Ala Thr Thr Met Ser Glu Asn
275 280 285
Val Gln Trp Leu Thr Pro Val Ile Pro Ala Leu Trp Lys Ala Ala Ala
290 295 300
Gly Gly Ser Arg Gly Gln Glu Phe
305 310

<210> 10

<211> 300

<212> PRT

<213> Mus musculus

<400> 10

Met Gly Thr Glu Gly Lys Ala Gly Arg Lys Leu Leu Phe Leu Phe Thr
 1 5 10 15
 Ser Met Ile Leu Gly Ser Leu Val Gln Gly Lys Gly Ser Val Tyr Thr
 20 25 30
 Ala Gln Ser Asp Val Gln Val Pro Glu Asn Glu Ser Ile Lys Leu Thr
 35 40 45
 Cys Thr Tyr Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys Phe Val
 50 55 60
 Gln Gly Ser Thr Thr Ala Leu Val Cys Tyr Asn Ser Gln Ile Thr Ala
 65 70 75 80
 Pro Tyr Ala Asp Arg Val Thr Phe Ser Ser Ser Gly Ile Thr Phe Ser
 85 90 95
 Ser Val Thr Arg Lys Asp Asn Gly Glu Tyr Thr Cys Met Val Ser Glu
 100 105 110
 Glu Gly Gln Asn Tyr Gly Glu Val Ser Ile His Leu Thr Val Leu
 115 120 125
 Val Pro Pro Ser Lys Pro Thr Ile Ser Val Pro Ser Ser Val Thr Ile
 130 135 140
 Gly Asn Arg Ala Val Leu Thr Cys Ser Glu His Asp Gly Ser Pro Pro
 145 150 155 160
 Ser Glu Tyr Ser Trp Phe Lys Asp Gly Ile Ser Met Leu Thr Ala Asp
 165 170 175
 Ala Lys Lys Thr Arg Ala Phe Met Asn Ser Ser Phe Thr Ile Asp Pro
 180 185 190
 Lys Ser Gly Asp Leu Ile Phe Asp Pro Val Thr Ala Phe Asp Ser Gly
 195 200 205
 Glu Tyr Tyr Cys Gln Ala Gln Asn Gly Tyr Gly Thr Ala Met Arg Ser
 210 215 220
 Glu Ala Ala His Met Asp Ala Val Glu Leu Asn Val Gly Gly Ile Val
 225 230 235 240
 Ala Ala Val Leu Val Thr Leu Ile Leu Leu Gly Leu Leu Ile Phe Gly
 245 250 255
 Val Trp Phe Ala Tyr Ser Arg Gly Tyr Phe Glu Thr Thr Lys Lys Gly
 260 265 270
 Thr Ala Pro Gly Lys Lys Val Ile Tyr Ser Gln Pro Ser Thr Arg Ser
 275 280 285
 Glu Gly Glu Phe Lys Gln Thr Ser Ser Phe Leu Val
 290 295 300

<210> 11

<211> 1842

<212> DNA

<213> Homo sapiens

<400> 11

gtctgttccc aggagtccctt cggccggctgt tgggtcagtg gcctgatcg gatggggaca 60
 aaggcgcaag tcgagaggaa actgttgtgc ctttcatat tggcgatcct gttgtgtcc 120
 ctggcattgg gcagtgttac agtgactct tctgaacctg aagtcagaat tcctgagaat 180
 aatcctgtga agttgtccctg tgcctactcg ggctttctt ctccccgtgt ggagtggaaag 240
 tttgaccaag gagacaccac cagactcggt tgctataata acaagatcac agcttcctat 300
 gaggaccggg tgaccttctt gccaaactggg atcaccttca agtccgtgac acgggaagac 360
 actggacat acacttgtat ggtctctgag gaaggcgcca acagctatgg ggaggtcaag 420
 gtcaagctca tcgtgttgtt gcctccatcc aagcctacag ttaacatccc ctccctgtcc 480
 accatggga accggggcagt gctgacatgc tcagaacaag atggttcccc accttctgaa 540
 tacaccttgtt tcaaagatgg gatagtgtat cctacgaatc ccaaaggcac ccgtgccttc 600
 agcaactctt cctatgtcctt gaatccccaca acaggagagc tggctttga tccccctgtca 660
 gcctctgata ctggagaata cagctgtgag gcacggaaat ggtatgggac acccatgact 720

39780-1216R1C1D5 SAVED JULY 7 2005.TXT

tcaaatgctg tgcgcatgga agctgtggag cgaaatgtgg gggtcatcg ggcagccgtc 780
 ctttaaccc tgattctcct gggaatcttg gtttttgcca tctggttgc ctatagccga 840
 ggccactttg acagaacaaa gaaaggact tcgagtaaga aggtgattta cagccagcct 900
 agtgcggaa gtgaaggaga attcaaacag acctcgcat tcctgggtg agcctggtcg 960
 gctcaccgccc tatcatctgc atttgccctt ctcaggtgt accggactct ggccccgtat 1020
 gtctgttagtt tcacaggatg ccttatttgt cttctacacc ccacagggcc ccctacttct 1080
 tcggatgtgt ttttataat gtcagctatg tgcccatcc tccttcatgc cctccctccc 1140
 tttccttacca ctgctgagtg gccttgaact tttttaaagt gtttatttccc catttcttg 1200
 agggatcagg aaggaatcct gggtatgcca ttgacttccc ttctaagttag acagcaaaaa 1260
 tggcggggtt cgcaggaaatc tgcaactcaac tgcccacccg gcttggaaagg atctttgaat 1320
 aggtatctt agcttggttc tgggtcttt ccttgtgtac tgacgaccag ggccagctgt 1380
 tcttagagcggaatttagagg cttagagccgc taaaatggtt gtttgggtat gacactgggg 1440
 tccttccatc tctggggccc actctttct gtcttccat gggaaatgtgcc actgggatcc 1500
 ctctgcccctg ttctccctgaa tacaagctga ctgacatgt ctgtgtctgt ggaaaatggg 1560
 agctcttgtt gtggagagca tagtaaattt tcagagaact tgaagccaaa aggatttaaa 1620
 accgcgtgctc taaagaaaag aaaactggag gctgggcgcgtggctcacg cctgtaatcc 1680
 cagaggctga ggcaggccgaa tcacctgagg tcggggatgtt gggatcagcc tgaccaacat 1740
 ggagaaaaccc tactggaaat acaaagttt ccaggcatgg tggtgcatgc ctgttagtccc 1800
 agctgctcag gaggctggca acaagagcaa aactccagct ca 1842

<210> 12

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificial sequence

<400> 12

tcgcggagct gtgttctgtt tccc

24

<210> 13

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificial sequence

<400> 13

tgatcgcat ggggacaaaag gcgcagctc gagagggaaac ttttgcct

50

<210> 14

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificial sequence

<400> 14

acacctgggtt caaagatggg

20

<210> 15

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificial sequence

<400> 15

taggaagagt tgctgaaggc acgg

24

39780-1216R1C1D5 SAVED JULY 7 2005.TXT

<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial sequence

<400> 16
ttgccttact caggtgctac 20

<210> 17
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial sequence

<400> 17
actcagcagt gtaggaaaag 20

<210> 18
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial sequence

<400> 18
tatccctcca attgagcacc ctgg 24

<210> 19
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial sequence

<400> 19
gtcgaaagac atccaaacaa g 21

<210> 20
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial sequence

<400> 20
cttcacaatg tcgctgtgct gctc 24

<210> 21
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial sequence

<400> 21
agccaaatcc agcagctggc ttac

24

<210> 22
<211> 50
<212> DNA
<213> Artificial sequence

<220>
<223> Artificial sequence

<400> 22
tggatgaccg gagccactac acgtgtgaag tcacacctggca gactcctgat 50

<210> 23
<211> 260
<212> PRT
<213> Homo sapiens

<400> 23
Leu Ala Leu Gly Ser Val Thr Val His Ser Ser Glu Pro Glu Val Arg
1 5 10 15
Ile Pro Glu Asn Asn Pro Val Lys Leu Ser Cys Ala Tyr Ser Gly Phe
20 25 30
Ser Ser Pro Arg Val Glu Trp Lys Phe Asp Gln Gly Asp Thr Thr Arg
35 40 45
Leu Val Cys Tyr Asn Asn Lys Ile Thr Ala Ser Tyr Glu Asp Arg Val
50 55 60
Thr Phe Leu Pro Thr Gly Ile Thr Phe Lys Ser Val Thr Arg Glu Asp
65 70 75 80
Thr Gly Thr Tyr Thr Cys Met Val Ser Glu Glu Gly Gly Asn Ser Tyr
85 90 95
Gly Glu Val Lys Val Lys Leu Ile Val Leu Val Pro Pro Ser Lys Pro
100 105 110
Thr Val Asn Ile Pro Ser Ser Ala Thr Ile Gly Asn Arg Ala Val Leu
115 120 125
Thr Cys Ser Glu Gln Asp Gly Ser Pro Pro Ser Glu Tyr Thr Trp Phe
130 135 140
Lys Asp Gly Ile Val Met Pro Thr Asn Pro Lys Ser Thr Arg Ala Phe
145 150 155 160
Ser Asn Ser Ser Tyr Val Leu Asn Pro Thr Thr Gly Glu Leu Val Phe
165 170 175
Asp Pro Leu Ser Ala Ser Asp Thr Gly Glu Tyr Ser Cys Glu Ala Arg
180 185 190
Asn Gly Tyr Gly Thr Pro Met Thr Ser Asn Ala Val Arg Met Glu Ala
195 200 205
Val Glu Arg Asn Val Gly Val Ile Val Ala Ala Val Leu Val Thr Leu
210 215 220
Ile Leu Leu Gly Ile Leu Val Phe Gly Ile Trp Phe Ala Tyr Ser Arg
225 230 235 240
Gly His Phe Asp Arg Thr Lys Lys Gly Thr Ser Ser Lys Lys Val Ile
245 250 255
Tyr Ser Gln Pro
260

<210> 24
<211> 270
<212> PRT
<213> Homo sapiens

<400> 24

39780-1216R1C1D5 SAVED JULY 7 2005.TXT

Val Arg Val Thr Val Asp Ala Ile Ser Val Glu Thr Pro Gln Asp Val
1 5 10 15
Leu Arg Ala Ser Gln Gly Lys Ser Val Thr Leu Pro Cys Thr Tyr His
20 25 30
Thr Ser Thr Ser Ser Arg Glu Gly Leu Ile Gln Trp Asp Lys Leu Leu
35 40 45
Leu Thr His Thr Glu Arg Val Val Trp Pro Phe Ser Asn Lys Asn
50 55 60
Tyr Ile His Gly Glu Leu Tyr Lys Asn Arg Val Ser Ile Ser Asn Asn
65 70 75 80
Ala Glu Gln Ser Asp Ala Ser Ile Thr Ile Asp Gln Leu Thr Met Ala
85 90 95
Asp Asn Gly Thr Tyr Glu Cys Ser Val Ser Leu Met Ser Asp Leu Glu
100 105 110
Gly Asn Thr Lys Ser Arg Val Arg Leu Leu Val Leu Val Pro Pro Ser
115 120 125
Lys Pro Glu Cys Gly Ile Glu Gly Glu Thr Ile Ile Gly Asn Asn Ile
130 135 140
Gln Leu Thr Cys Gln Ser Lys Glu Gly Ser Pro Thr Pro Gln Tyr Ser
145 150 155 160
Trp Lys Arg Tyr Asn Ile Leu Asn Gln Glu Gln Pro Leu Ala Gln Pro
165 170 175
Ala Ser Gly Gln Pro Val Ser Leu Lys Asn Ile Ser Thr Asp Thr Ser
180 185 190
Gly Tyr Tyr Ile Cys Thr Ser Ser Asn Glu Glu Gly Thr Gln Phe Cys
195 200 205
Asn Ile Thr Val Ala Val Arg Ser Pro Ser Met Asn Val Ala Leu Tyr
210 215 220
Val Gly Ile Ala Val Gly Val Val Ala Ala Leu Ile Ile Ile Gly Ile
225 230 235 240
Ile Ile Tyr Cys Cys Cys Arg Gly Lys Asp Asp Asn Thr Glu Asp
245 250 255
Lys Glu Asp Ala Arg Pro Asn Arg Glu Ala Tyr Glu Glu Pro
260 265 270

<210> 25

<211> 263

<212> PRT

<213> Homo sapiens

<400> 25

Leu Cys Ser Leu Ala Leu Gly Ser Val Thr Val His Ser Ser Glu Pro
1 5 10 15
Glu Val Arg Ile Pro Glu Asn Asn Pro Val Lys Leu Ser Cys Ala Tyr
20 25 30
Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys Phe Asp Gln Gly Asp
35 40 45
Thr Thr Arg Leu Val Cys Tyr Asn Asn Lys Ile Thr Ala Ser Tyr Glu
50 55 60
Asp Arg Val Thr Phe Leu Pro Thr Gly Ile Thr Phe Lys Ser Val Thr
65 70 75 80
Arg Glu Asp Thr Gly Thr Tyr Thr Cys Met Val Ser Glu Glu Gly
85 90 95
Asn Ser Tyr Gly Glu Val Lys Val Lys Leu Ile Val Leu Val Pro Pro
100 105 110
Ser Lys Pro Thr Val Asn Ile Pro Ser Ser Ala Thr Ile Gly Asn Arg
115 120 125
Ala Val Leu Thr Cys Ser Glu Gln Asp Gly Ser Pro Pro Ser Glu Tyr
130 135 140
Thr Trp Phe Lys Asp Gly Ile Val Met Pro Thr Asn Pro Lys Ser Thr
145 150 155 160
Arg Ala Phe Ser Asn Ser Ser Tyr Val Leu Asn Pro Thr Thr Gly Glu

39780-1216R1C1D5 SAVED JULY 7 2005.TXT

165 170 175
Leu Val Phe Asp Pro Leu Ser Ala Ser Asp Thr Gly Glu Tyr Ser Cys
180 185 190
Glu Ala Arg Asn Gly Tyr Gly Thr Pro Met Thr Ser Asn Ala Val Arg
195 200 205
Met Glu Ala Val Glu Arg Asn Val Gly Val Ile Val Ala Ala Val Leu
210 215 220
Val Thr Leu Ile Leu Leu Gly Ile Leu Val Phe Gly Ile Trp Phe Ala
225 230 235 240
Tyr Ser Arg Gly His Phe Asp Arg Thr Lys Lys Gly Thr Ser Ser Lys
245 250 255
Lys Val Ile Tyr Ser Gln Pro
260

<210> 26

<211> 273

<212> PRT

<213> Homo sapiens

<400> 26

Leu Cys Ala Val Arg Val Thr Val Asp Ala Ile Ser Val Glu Thr Pro
1 5 10 15
Gln Asp Val Leu Arg Ala Ser Gln Gly Lys Ser Val Thr Leu Pro Cys
20 25 30
Thr Tyr His Thr Ser Thr Ser Arg Glu Gly Leu Ile Gln Trp Asp
35 40 45
Lys Leu Leu Leu Thr His Thr Glu Arg Val Val Ile Trp Pro Phe Ser
50 55 60
Asn Lys Asn Tyr Ile His Gly Glu Leu Tyr Lys Asn Arg Val Ser Ile
65 70 75 80
Ser Asn Asn Ala Glu Gln Ser Asp Ala Ser Ile Thr Ile Asp Gln Leu
85 90 95
Thr Met Ala Asp Asn Gly Thr Tyr Glu Cys Ser Val Ser Leu Met Ser
100 105 110
Asp Leu Glu Gly Asn Thr Lys Ser Arg Val Arg Leu Leu Val Leu Val
115 120 125
Pro Pro Ser Lys Pro Glu Cys Gly Ile Glu Gly Glu Thr Ile Ile Gly
130 135 140
Asn Asn Ile Gln Leu Thr Cys Gln Ser Lys Glu Gly Ser Pro Thr Pro
145 150 155 160
Gln Tyr Ser Trp Lys Arg Tyr Asn Ile Leu Asn Gln Glu Gln Pro Leu
165 170 175
Ala Gln Pro Ala Ser Gly Gln Pro Val Ser Leu Lys Asn Ile Ser Thr
180 185 190
Asp Thr Ser Gly Tyr Tyr Ile Cys Thr Ser Ser Asn Glu Glu Gly Thr
195 200 205
Gln Phe Cys Asn Ile Thr Val Ala Val Arg Ser Pro Ser Met Asn Val
210 215 220
Ala Leu Tyr Val Gly Ile Ala Val Gly Val Val Ala Ala Leu Ile Ile
225 230 235 240
Ile Gly Ile Ile Ile Tyr Cys Cys Cys Cys Arg Gly Lys Asp Asp Asn
245 250 255
Thr Glu Asp Lys Glu Asp Ala Arg Pro Asn Arg Glu Ala Tyr Glu Glu
260 265 270
Pro

<210> 27

<211> 413

<212> DNA

<213> Artificial Sequence

<220>
<223> Artificial sequence

<400> 27
ctcgagccgc tcgagccgtg cggggaaata tcgttgtgaa gtttagtgccc catctgagca 60
aggccaaaac ctggaaaggagg atacagtac tctggaaagta ttagtggctc cagcagttcc 120
atcatgtgaa gtaccctctt ctgcctcgag tggaaactgtg gtagagctac gatgtcaaga 180
caaagaaggaa aatccagctc ctgaatacacat atggtttaag gatggcatcc gtttgctaga 240
aaatcccaga cttggctccc aaagcaccaa cagctcatac acaatgaata caaaaactgg 300
aactctgcaa ttaataactg tttccaaact ggacactgga gaatattcct gtgaagcccg 360
caattctgtt ggatatcgca ggtgtcctgg ggaaacgaat gcaagtagat gat 413

<210> 28
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial sequence

<400> 28
atcggttgtga agtttagtgcc cc 22

<210> 29
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial sequence

<400> 29
acctgcgata tccaacagaa ttg 23

<210> 30
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial sequence

<400> 30
ggaagaggat acagtcactc tggaagtatt agtggctcca gcagttcc 48