An Algebraic Introduction to Mathematical Logic Chapter 4 Predicate Calculus Section 2 Interpretations

David L. Meretzky

December 20, 2018

Let $P(V, \mathcal{R})$ be the reduced first order algebra on (V, \mathcal{R}) . We would like to create semantics for $P(V, \mathcal{R})$ in such a way that the statement that a certain collection of variables in V which we interpret in the context of some set U, satisfy some relation in \mathcal{R} is true if and only if the relation is satisfied in that context.

In particular, if we are interested in some collection of mathematical objects U we can think of an element $x \in V$ as being the name of the object $u \in U$ by defining a function $\varphi : V \to U$ such that $\varphi(x) = u$. Similarly, if there exists a relation on the set U and we want to disucss whether or not variables like x satisfy the relation in \mathcal{R}_U , we define a function $\psi : \mathcal{R} \to \mathcal{R}_U$. By letting $\psi(r) = r_U$ we represent a relation r_U on U by a relation r on V.

Let $P_k(V, \mathcal{R})$ be the set of all elements p of $P(V, \mathcal{R})$ with $d(p) \leq k$.

Define the valuation $v: P \to \mathbb{Z}_2$ by the following properties:

- (a) $v(r(x_1,...,x_n)) = 1$ if $\varphi(x_1),...,\varphi(x_n) \in \psi(r)$ and 0 otherwise.
- (b) v is still a $\{\Rightarrow, \mathbf{F}\}$ -algebra homomorphism.
- (c_k) Suppose $p = (\forall x)q(x)$ has depth k. Put $V' = V \cup \{t\}$ where $t \notin V$. If for every extension $\varphi' : V' \to U$ of φ and for every $v_{k-1} : P_{k-1}(V, \mathcal{R}) \to \mathbb{Z}_2$, such that $(\varphi', \psi, v'_{k-1})$ satisfy (a), (b) and (c_i), for all i < k, we have $v'_{k-1}(q(t)) = 1$, then v(p) = 1, otherwise v(p) = 0.

The idea is that $\forall xq(x)$ should be true if and only if for every possible interpretation t q(t) is still true at depth k-1, where t is a new variable and thus interpreting t differently in U changes only t.

Problem 1. Given (U, φ, ψ) there is exactly one function $v : P \to \mathbb{Z}_2$ satisfying (a), (b) and (c_k) for all k.

Proof. Let w and v both be functions which satisffy (a), (b) and (c_k) for all k. Let $p \in P$ at depth 0. By (a), w(p) = v(p). Suppose v = w up to depth k - 1. Let $p = (\forall x)q(x) \in P$ at depth k.

We have that v(p) = 1 only if for all possible interpretations of a new variable t, $v'_{k-1}(q(t)) = 1$ suppose there is an interpretation of t, $\varphi'(t)$ such that

 $v'_{k-1}(q(t))=0$, then $w'_{k-1}(q(t))=0$ by the induction hypothesis $v'_{k-1}=w'_{k-1}$ since they have the same triple (U,φ',ψ) , therefore, v=w.

Definition 1. An interpretation of $P = P(V, \mathcal{R})$ in the domain U is a quadruple (U, φ, ψ, v) satisfy the conditions (a), (b) and (c_k) for all k.

Problem 2. Let $w(u_1,...,u_n)$ be any tautology of $Prop(\{u_1,...,u_n\})$. Let $p_1,...,p_n \in P(V,\mathcal{R})$. Prove that $\vDash w(p_1,...,p_n)$

Proof. Note that v is required to be a $\{\Rightarrow, \mathbf{F}\}$ -algebra homomorphism. Thus $v(w(p_1, ..., p_n)) = w(v(p_1), ..., v(p_n))$ in \mathbb{Z}_2 . However, regardless of the truth value of $v(p_1), ..., v(p_n)$ in \mathbb{Z}_2 , $w(v(p_1), ..., v(p_n)) = 1$.

Problem 3. Let $A \subseteq P(V, \mathcal{R})$ and $p(x) \in A$ for all $x \in V$. Does it follow that $A \models (\forall x)p(x)$? No, it does not follow.

Proof. Let $u \in U$ such that $u \notin range(\varphi) \subseteq U$. Let (U, φ, ψ, v) be an interpretation such that v(q) = 1 for all $q \in A$. Let φ' be the extension of φ such that $\varphi'(t) = u$. Then we have no knowledge about the value of v(p(t)). For contrast, if we take v(p(x)), we know that $p(x) \in A$ thus v(p(x)) = 1.

In particular, the statement "For any x in A, v(p(x))=1" describes quantification over the range of ϕ , a subset of U, while the expression " $v((\forall x)p(x))=1$ " describes quantification over the entirety of U. The trick of requiring $t \notin V$ is exactly adding a basepoint of V to encode that ϕ is potentially a partial function. ⁱⁱ

ⁱThe text explicitly states "Of course, not every element $u \in U$ need have a name, while some elements u may well have more than one name."

ⁱⁱThe category of sets and partial functions is equivalent to the category of sets with specified base point and total functions.