CMSC 510 – L17 Regularization Methods for Machine Learning

Instructor:

Dr. Tom Arodz

Detour: C

Detour: Compressed Sensing

- We have so far talked about making predictions that match the class
 - $\mathbf{y}_{i} \sim \mathbf{W}^{\mathsf{T}} \mathbf{X}_{i}$
 - For the whole training set, we're looking to find a vector of weights w, based on a matrix X of training samples, and class vector y

$$y \sim Xw$$

Nothing changes is we use different letters:

$$y \sim Ax$$

vector y and matrix A are known, x is unknown

Our problem:

$$y \sim Ax$$

- vector y and matrix A are known, x is unknown
- Let's have a different view of what these mean:
 - x some unknown signal (e.g. image, linearized from 2D to 1D)
 - A some known matrix that transforms the signal
 - y what we measure and have available for inspection
- Assume x has more dimensions than y
 - E.g. we have a point (x) in 3D, we project it on 2D (y)
 - 2 x 3 matrix A describes the angles of the projection
- If we know A and y, can we reconstruct x?

Let's first ask for exact equality:

$$y = Ax$$

- we first have some unknown physical signal x*,
- then some physical process creates y=Ax*
- we don't know what is x*, but we can measure y
- From there, can we get x such that y=Ax, and x=x*
- Assume x has more dimensions (n) than y (m)
 - A is n by m: y=Ax is underdetermined system of linear eqs.
 - In underdetermined case, there are many x that have y=Ax
 - Can we guess which one was the x* that created y?
 - Impossible!

Let's first ask for exact equality:

$$Ax^* = y = Ax$$

- Find x such that y=Ax and x=x*
- It would be possible is matrix A was square, and invertible (e.g. orthogonal columns)
 - x*=A-1y
- But it's impossible if A has more columns (n) than rows (m)
- Compressed sensing / sparse recovery:
 - We can do it, if x is sparse (has very few non-zeros)
 - And if matrix A is of some special type

Compressed Sensing

Let's first ask for exact equality:

$$Ax^* = y = Ax$$

- Find x such that y=Ax and x=x*
- Compressed sensing / sparse recovery:
 - A is m x n, ideally with m<<n</p>
 - "Compressed": measure n-dim vector using m<<n measured values, resulting in an m-dim vector y
 - x* is guaranteed to be k-sparse
 - x^* has at most k nonzeros, e.g. $x^* = [0.1 \ 0 \ 0 \ -2 \ 0 \ 0]$
 - Then, there are compressed sensing matrices for which recovering x=x* becomes possible

$$Ax^* = y = Ax$$

- Knowing y but not x^* , find x such that y=Ax and $x=x^*$
- Compressed sensing / sparse recovery:
 - There are matrices A that allow for recovering any k-sparse x* from measurement y=Ax*
- Two interrelated problems:
 - How to construct such matrices
 - construct A given m, n, k (if possible)
 - or given k, m, construct A with largest n
 - or given k, n, construct A with smallest m
 - How to use A (and y) to find x*

$$Ax^* = y = Ax$$

- Knowing y but not x^* , find x such that y=Ax and $x=x^*$
- Compressed sensing / sparse recovery:
 - How to use A (and y) to find x*

- Return x with smallest L₁ norm
 - $x^* = \operatorname{argmin} ||x||_1$ subject to y=Ax
 - Or if measurement y is a bit noisy (up to ε error)
 - $x^* = \operatorname{argmin} ||x||_1$ subject to $||y - Ax|| <= \varepsilon$

$$Ax^* = y = Ax$$

- Knowing y but not x^* , find x such that y=Ax and $x=x^*$
- Compressed sensing / sparse recovery:
 - How to use A (and y) to find x*

- Return x with smallest L₁ norm
 - $x^* = \operatorname{argmin} ||x||_1$ subject to y=Ax
- Why? We can construct matrices A where: if x* is k-sparse and y=Ax* then all other x' with y=Ax' have higher L₁ norm

- We can construct matrices A where if x* is k-sparse and y=Ax* then all other x' with y=Ax' have higher L₁ norm
- Matrix A has Nullspace Property if
 - For each v such that Av=0 (except v=0):
 - Let v_k be a vector resulting from v by keeping k coefficients, and setting every other coefficient to zero
 - Let $v_{\sim k} = v v_k$ (i.e., the rest)
 - E.g. $v=[1\ 2\ 3]$ for k=2: $v_k=[1\ 2\ 0]$, or $[1\ 0\ 3]$, or $[0\ 2\ 3]$ $v_{\sim k}=[0\ 0\ 3]$, or $[0\ 2\ 0]$, or $[1\ 0\ 0]$
 - We require that always $||v_k||_1 < ||v_{\sim k}||_1$

- Nullspace Property of matrix A
 - For each v such that Av=0 (except v=0)
 - Let v_k be a vector resulting from v by keeping up to k coefficients, and setting every other coefficient to zero
 - We require that $||\mathbf{v}_{\sim k}||_1 > ||\mathbf{v}_k||_1$ where $\mathbf{v}_{\sim k} = \mathbf{v} \mathbf{v}_k$

Why is this sufficient?

- y=Ax* where x* is k-sparse
- There are other x' with y=Ax'
- Define $v=x^*-x'$, then $Av = Ax^* Ax' = y-y = 0$
- Pick v_k that has zeros where x^* has zeros, we have $||v_{\sim k}||_1 > ||v_k||_1$

 $x^*=[1 \ 1 \ 0 \ 0]$

x' = [0 -1 3 -5]

 $v=[1\ 2\ -3\ 5],$

 $v_k = [1 \ 2 \ 0 \ 0]$

 $v_{\sim k} = [0 \ 0 \ -3 \ 5]$

- Then $v_{\sim k} = x^*_{\sim k} x'_{\sim k} = -x'_{\sim k}$ and $v_k = x^*_k x'_k$
- $||x'||_1 = ||x'_k||_1 + ||x'_{\sim k}||_1 = ||x'_k||_1 + ||v_{\sim k}||_1 > ||x'_k||_1 + ||v_k||_1$
- But $||x'_k||_1 + ||x^*_k x'_k||_1 >= ||x^*_k||_1$
 - from triangle inequality: $||x_k^*|| + ||-x_k'|| <= ||x_k^*-x_k'||$
- So, alternative solutions x' will have higher L₁ norm than x* 11

- Nullspace Property of matrix A
 - For each v such that Av=0 (except v=0)
 - Let v_k be a vector resulting from v by keeping up to k coefficients, and setting every other coefficient to zero
 - We require that $||v_{\sim k}||_1 > ||v_k||_1$ where $v_{\sim k} = v v_k$
- NSP is one of several properties that guarantee sparse recovery for a given k
- Another one is Restricted Isometry Property (RIP)
 - For every 2k-sparse vector v, we have:

$$(1-\delta)||v||_2^2 \le ||Av||_2^2 \le (1+\delta)||v||_2^2$$
 with some small δ

■ There is also RIP-1

$$(1-\delta)||v||_1 \le ||Av||_1 \le ||v||_1.$$

$$Ax^* = y = Ax$$

- Knowing y but not x^* , find x such that y=Ax and $x=x^*$
- Compressed sensing / sparse recovery:
 - There are matrices A that allow for recovering any k-sparse x* from measurement y=Ax*
- Two interrelated problems:
 - How to construct such matrices
 - construct A given m, n, k (if possible)
 - or given k, m, construct A with largest n
 - or given k, n, construct A with smallest m
 - How to use A (and y) to find x*

$$Ax^* = y = Ax$$

- Knowing y but not x^* , find x such that y=Ax and $x=x^*$
- Compressed sensing / sparse recovery:
 - There are matrices A that allow for recovering any k-sparse x* from measurement y=Ax*
- Two interrelated problems:
 - How to construct such matrices
 - construct A given m, n, k (if possible)
 - or given k, m, construct A with largest n
 - or given k, n, construct A with smallest m
 - Just find a matrix that has NSP (or RIP, or RIP-1) property

Sparse recovery in viral testing

- Recently, compressed sensing has been proposed as a way to increase throughput in viral testing
 - x_i = viral load in a sample collected from person i
 - y_j = measurement from test j

```
A = \text{RecoveryMatrix}(m = 6, k = 2, d = 3)
```

[0	0	0	0	0	1	1	1	1 0 1 1 0 0	17
0	0	1	1	1	0	0	0	0	1
0	1	0	1	1	0	0	1	1	0
1	1	1	0	0	0	1	0	1	0
0	1	0	0	1	1	0	0	0	1
1	0	1	1	0	1	0	1	0	0

Nonnegative sparse recovery

Compressed sensing has been explored in depth for arbitrary unknown vectors x, with both positive and negative elements x_i

Compressed sensing in which unknown vectors are nonnegative, $x \ge 0$, has not received as much attention

In viral testing, we deal with nonnegative values in all elements of the y=Ax equation unknown viral loads x_i are nonnegative known measurement matrix A is nonnegative known quantitative test results y_i are nonnegative

$$\begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 1 & 0 \\ \frac{1}{2} & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 1 & 0 \\ \frac{1}{2} & 0 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 0 \\ -1 \end{bmatrix}$$

Measurement space y

Columns of matrix A are vectors in the measurement space,
 the space of all possible measurement outcomes y

k-sparse signals in y space

- all k-sparse signals x with the same support (0s/non-0s) form k-dimensional hyperplane in measurement space y

$$qPCR #2: a_{21}x_1 - y = Ax = [a_{11}x_1 \ a_{21}x_1]^T \text{ for } x = [x_1 \ 0 \ 0 \ 0]^T$$

$$y' = Ax' = [a_{11}x'_1 \ a_{21}x'_1]^T \text{ for } x' = [x'_1 \ 0 \ 0 \ 0]^T$$

y₁

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \end{bmatrix}$$

$$y'' = Ax' = [a_{13}x''_3 a_{23}x''_3]^T$$
 for $x'' = [0 \ 0 \ x''_3 \ 0 \]^T$

Ambiguity of measurements

 all k-sparse signals x with the same support form k-dimensional hyperplane in measurement space y

Nonnegative signals

- k-sparse signals x ≥ 0 with the same support form k-dimensional cones in the measurement space y
 - □ For k=2, we have 2D cones

- □ Cones intersect same problem:
- two different vectors x, x' same measurements y=y'

Why nonnegativity matters?

 Cones are easier to arrange than hyperplanes, it's easier to prevent intersections

Is this a good set of columns?

 We have to consider all possible combinations of pairs (for k=2) of columns

Finding good matrices A

Can we construct a 3 x 4 matrix (4 samples, 3 tests) with

no intersection of any 2D-cones?

How good is this matrix A?

- For k=2, any k-sparse nonnegative vector cannot be mistaken for any other k-sparse vector $A = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{3} \\ \frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{3} \\ 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{3} \end{bmatrix}$
 - $y=[2 \ 1 \ 1] \implies x=[2 \ 2 \ 0 \ 0]$
 - $y=[2 5 5] \implies x=[0 0 2 3]$
- But, a k-sparse vector can still be mistaken for a non-k-sparse decoy vector
 - $y=[2\ 2\ 2] \implies x=[0\ 0\ 0\ 6]$ (2-sparse: at most 2 non-zeros)
 - $y=[2\ 2\ 2] \implies x=[2\ 2\ 2\ 0]$ (not 2-sparse: more than 2 non-zeros)
- We can do better:
 - RIP-1 (Berinde et al. 2008): No decoys with *sparsity*(original vector + decoy) > 2k
 - Matrix A is not RIP-1 for k=2
 - NNSP (Saeedi et al., under review): No decoys at all

Uniqueness: no decoys possible

- We show a way to construct small matrices where
 - If the unknown vector x is k-sparse
 there are no other nonnegative solutions to y=Ax (no decoys)
- We constructed a series of "no-decoys" matrices

Caveats

- The quality of sparse recovery deteriorates if we make an error in setting sparsity parameter k
 - □ E.g. matrix assumes k=2, signal has >2 non-zeros: decoys reappear
 - this will happen if k is set assuming <5% positivity rate but the tested group has 6%
- The quality of sparse recovery deteriorates with experimental measurement noise
 - Measurement has noise: decoys reappear
 - We are working towards better theoretical understanding of noise robustness for nonnegative sparse recovery (Saeedi, Yang & Arodz, in preparation)