Algorithmique génétique

Module Algo-Prog Parcours Recherche

Joan Hérisson

ÉCOLE CENTRALE PARIS

Optimisation

- Optimiser (minimiser/maximiser) une fonction
 - Parcours, emplois du temps, traitement d'image...
- Explorer un espace de recherche

Optimisation

- « Essai et erreur »
 - Solutions admissibles
 - Solutions coût optimal local

non-déterministe stochastique répétition Monte-Carlo

simple

Monte-Carlo

Estimation de la surface d'un lac

1. Tracer un terrain dont on connaît la superficie autour du lac

2. X tirs au hasard

3. 7 boulets sur le terrain

4. X-91 boulets dans le lac

$$\frac{SUPERFICIE_{terrain}}{SUPERFICIE_{lac}} = \frac{X}{X - N}$$

$$\Rightarrow SUPERFICIE_{lac} = \frac{X-N}{X} \times SUPERFICIE_{terrain}$$

Volume des données

Qualité du tirage aléatoire

Biologie

- Étude du vivant
- Spectre très large
 - Formes très variées, nombreuses échelles

En quoi l'étude du vivant peut-elle nous aider à résoudre un problème d'optimisation ?

• Le vivant s'adapte constamment à son environnement

Optimisation de la fonction « survie »

Algorithme génétique

CONSTAT 1

espace de recherche grand = temps de calcul grand

CONSTAT 2

vivant optimise la fonction « survie »

PROPOSITION

s'inspirer du vivant pour résoudre des problèmes d'optimisation

Algorithme génétique

- Individu = point dans l'espace de recherche
- Valeur du critère à optimiser (adaptation)
- Populations
 - Sélection—— meilleurs éléments
 - Croisement
 - Mutation

exploration de l'espace de recherche

- Arrêt STOP
 - nombre d'itérations
 - convergence

Aucune connaissance

Solution proche de l'optimale

Solutions meilleures que par approche classique

Le voyageur de commerce

Wikipédia

Le problème du voyageur de commerce consiste, étant donné un ensemble de villes séparées par des distances données, à trouver le plus court chemin qui relie toutes les villes. Il s'agit d'un problème d'optimisation pour lequel on ne connait pas d'algorithme permettant de trouver une solution exacte en un temps polynomial.

Encodage des gènes

Réels, entiers, binaire, Gra

Application au voyageur de commerce

Un **gène** représente une ville et est codé par un entier.

Binaire

Application au voyageur de commerce

Un **chromosome** représente un chemin parmi les villes du problème.

$$g_i = \sum_{j=0}^{31} b_j \cdot 2^j$$
 $0 \le g_i \le g_{max}, \forall i \in [1, n]$

encodage / décodage

$$g_i = \frac{x_i - x_{imin}}{x_{imax} - x_{imin}} \cdot g_{imax}$$

$$x_i = x_{imin} + (x_{imax} - x_{imin}) \cdot \frac{g_i}{g_{max}}$$

GÉNÉRATION INITIALE

ÉTAPE 3SÉLECTION

Sélectionnés

Rejetés

SÉLECTION PAR ROULETTE

SÉLECTION PAR RANG

SÉLECTION PAR TOURNOI

ÉTAPE 3SÉLECTION

Application au voyageur de commerce

La méthode de **sélection** est au choix du concepteur. L'élitisme est simple à mettre en œuvre.

ÉTAPE 4CROISEMENT

CROISEMENT EN 1 POINT

CROISEMENT EN 2 POINTS

ÉTAPE 5MUTATION

Stagnation de l'évolution

Dérive génétique

$$\Rightarrow 0.001 < P_m < 0.01$$

- $\Rightarrow P_m = 1/\mathcal{L} \ o \dot{u} \mathcal{L} = \text{nb de bits du chromosome}$
- $\Rightarrow \mathcal{P}_m$ variable d'un gène à l'autre
- $\Rightarrow P_m$ variable au cours du temps

MUTATION AUTO-ADAPTATIVE

Algorithmique génétique

Évolution

Pratique et tâtonnement

Valeurs-clés

Non-déterministe

Proche de l'optimal