Interpretable Machine Learning (MSBA 7027)

Zhengli Wang

Faculty of Business and Economics
The University of Hong Kong
2023

Accurate vs Interpretable: a Tradeoff

Simple linear model: easily interpreted, but prediction not accurate for complex problems **Complex nonlinear model**: better performance, but too complex for humans to understand

Achieve Interpretability: Two Options

Build interpretable ML models

Derive explanations for complex ML models

Model-based

Post-hoc (Opposite of Ad-hoc)

Categorization of Interpretable ML Methods: Overview

Agnosticity

Model-agnostic: Applicable to all model types

Model-specific: Only applicable to a specific model type

Scope

Global scope: Explaining the whole model

Local scope: Explaining individual predictions

Explanation type

Visual

Feature importance

Surrogate

Categorization of Interpretable ML Methods: Agnosticity

Agnosticity

Model-agnostic: Applicable to all model types

Model-specific: Only applicable to a specific model type e.g. Permutation-based feature importance, PDP, LIME, SHAP

e.g. Impurity-based feature importance (only applicable to tree-based method, e.g. RF, GBM)

Categorization of Interpretable ML Methods: Agnosticity

Scope

Global scope: Explaining the whole model

Local scope: Explaining individual predictions

e.g. Linear regression coeff

Categorization of Interpretable ML Methods: Agnosticity

Explanation type

Visual

Feature importance

Surrogate

e.g. PDP

e.g. Impurity-based feature importance, **Permutation-based feature importance**

Achieve Interpretability: Two Options

Build interpretable ML models

Derive explanations for complex ML models

Model-based

Post-hoc (Opposite of Ad-hoc)

Build Interpretable ML Models

In many instances, simple models suffice, we do NOT always need complex models

- Linear regression
 - learns the coefficients (β) for a weighted sum of feature inputs

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$$

- can directly interpret the impact of the inputs
- Decision Tree

Source: https://www.vebuso.com/2020/01/decision-tree-intuition-from-concept-to-application/

Achieve Interpretability: Two Options

Build interpretable ML models

Derive explanations for complex ML models

Model-Agnostic

Post-hoc (Opposite of Ad-hoc)

Model-based

Outline

- Permutation-based Feature Importance
- PDP
- LIME (Local Interpretable Model-Agnostic Explanations)
- SHAP (SHapley Additive exPlanations)

Idea

If a feature is important, randomly permuting its value would make the resulting model worse

If a feature is NOT important, randomly permuting its values will likely keep the model error relatively unchanged

Intuition: suppose have two features x_1 , x_2 , true relationship: $y = 2x_1$

Example

- Get a sample from the training data, fix a feature
- 1st row: benchmark error
 - Permute the feature value (to each values of the feature in the sample)
 - Compute the permuted error
 - Calculate: permuted error benchmark error
- Repeat for every row in the sample

Implementation: vip package

- vip (model_object, train = trainMatrix, method = "permute", target = y, metric = "RMSE", nsim = #simulations, sample_frac = frac, pred_wrapper = pred_wrapper)
- For general model_object
- trainMatrix needs to be a dataframe
- pred_wrapper: takes in [model_object & data] and outputs predictions

```
Takes in model object & newdata, and returns
the predictions
results <- as.vector(h2o.predict(object, as.h2o(newdata)))
return(results)</pre>
```

```
rip(
    Func from vip package
ensemble_tree,

train = as.data.frame(train_h2o),

method = "permute",

target = "Sale_Price",

metric = "RMSE",

nsim = 5,

sample_frac = 0.5,

pred_wrapper = pred
)
```


Sample 50% of training data Repeat simulations 5 times

Note

- Can become slow as #predictors 1
- Can speed up computation by
 - | sample size
 - \$\frac{1}{2}\$ #simulations
- However, these may make the feature importance estimates less accurate

Summary

Expln. Type: Feature Importance

Scope: Global

Agnosticity: Model-Agnostic

Idea

Understand marginal effect of a feature on the predicted outcome

By marginal effect, we take into account the average effect of all the other features

Example Feature of interest: Gr_Liv_Area

	Gr_Liv_Area	X1	X 2	X 3	•••
1	687	0	a	2	•••
2	334	0	c	6	• • •
3	2107	1	c	4	• • •
4	3329	0	b	2	• • •
5	5095	1	a	2	

Construct a grid of j evenly spaced values across the range of Gr_Liv_Area Say j = 20, the grid will consist of 20 values: 334, 585, 835, 1086, ..., 5095

Example

5095

	-				
	Gr_Liv_Area	X1	X2	X3	•••
1	334	0	a	2	
2	334	0	c	6	
3	334	1	С	4	
4	334	0	b	2	
5	334	1	a	2	
	Gr_Liv_Area	X1	X2	X3	
1	585	0	a	2	•••
2	585	0	С	6	•••
3	585	1	С	4	•••
4	585	0	b	2	•••
5	585	1		2	•••
3	363	1	a	2	•••
	• • •				
	Car I ta Assa	V1	W2	N2	
	Gr_Liv_Area	X1	X2	X3	•••
1	5095	0	a	2	•••
2	5095	0	С	6	
3	5095	1	С	4	
4	5095	0	b	2	

Implementation: pdp package

- Partial(model_object, train = trainMatrix, pred.var = "varName", pred.fun = avg_pred_wrapper)
- For general model_object
- trainMatrix needs to be a dataframe
- avg_pred_wrapper: takes in [model_object & data] and outputs [the average value of the predictions]

```
Takes in model object & newdata, and returns
# Custom prediction function wrapper
                                       the mean of predictions
pdp pred <- function(object, newdata)</pre>
 results <- mean(as.vector(h2o.predict(object, as.h2o(newdata))))
  return(results)
                                                     pdp_pred <- function(object, newdata) {</pre>
                                                       predObj = predict(object, newdata)
                                                       #results <- mean(as.vector(predObj$predictions))</pre>
                                                       results <- mean(as.vector(predObj))</pre>
                                                       return(results)
# Compute partial dependence values
pd_values <- partial(</pre>
                         Func from pdp package
  ensemble_tree,
  train = as.data.frame(train h2o),
  pred.var = "Gr Liv Area",
  pred.fun = pdp pred,
  grid.resolution = 20 j = 20
```

Summary

Expln. Type: Visual

Scope: Global

Agnosticity: Model-Agnostic

Expln. Type Surrogate Models

Idea Locally, every complex model can be approximated by a simple model

Expln. Type Surrogate Models

Idea

Locally, every complex model can be approximated by a simple model

$$\xi(x) = \underset{g \in G}{\operatorname{argmin}} \mathcal{L}(f, g, \pi_{\chi}) + \Omega(g)$$

$$\xi(x) = \underset{g \in G}{\operatorname{argmin}} \mathcal{L}(f, g, \pi_{x}) + \Omega(g)$$

How?

- 1. Generate new datapoints (get distribution from training data)
- 2. Get predictions from the complex model f

This results in a new dataset Z with

- Labels: Prediction of complex model
- Features: Newly generated datapoints

(This slide is intended to be empty)

Summary

Expln. Type: Surrogate Models

Scope: Local

Agnosticity: Model-Agnostic

Motivation

- Limitation of observing single feature effect at a time (e.g. Perm-based FIM, PDP)
 - Miss **interaction** between features
 - May produce misleading explanations for the ML model
- Solution: Borrows idea from **cooperative game theory**

Expln. Type Feature Importance

Idea Cooperative Game Theory

- Imagine several cooperative players in a game
- After the game is over, receive certain payoff
- **Problem:** Divide the payoff among players, in a **fair** way
- **Answer:** Shapley values, which describes the average contribution of each player

Fairness is tricky

• E.g. each individual tends to think he/she contributes the most

Let v be the payoff function, v: a set of player \rightarrow 1-dim number (reward)

Fairness is tricky

• E.g. each individual tends to think he/she contributes the most

Let v be the payoff function, v: a set of player \rightarrow 1-dim number (reward)

First idea: pay everyone by his/her marginal contribution

• This idea does NOT work in the following scenario

$$p = 4$$
 players, $v(\{1,2,3,4\}) = 10000$, $v(S) = 0$ for all $S \neq \{1,2,3,4\}$

Intuitively, how much should we pay each individual?

Suppose there are p players: player 1,2,3,...,p

Shapley value of individual j

$$\phi_j = \sum_{S \subseteq \{1, \dots, p\} \setminus \{j\}} \frac{|S|! (p - |S| - 1)!}{p!} [v(S \cup \{j\}) - v(S)]$$

Example cont'd

$$p = 4$$
 players, $v(\{1,2,3,4\}) = 10000$, $v(S) = 0$ for all $S \neq \{1,2,3,4\}$

Another Example

A	В	C	
\$60 Coupon	\$40 Coupon	\$30 Coupon	
Small	Medium	Large	
500	750	1000	
\$70 Coupon	\$90 Coupon	\$110 Coupon	

Intuition of Weighting: A player's contribution should be weighed more if

1. The game already has lots of players; 2. The game has only a few players

plot $m! \times \frac{(10-m-1)!}{10!}$

From Game Theory to Machine Learning

• Think of features as players, prediction outcome from model as payoff

Shapley value of feature j

p : total #features

Summary

Expln. Type: Feature Importance

Scope: Local

Agnosticity: Model-Agnostic

End