COMPLEX PROJECTIVE SPACE & MAPPINGS BETWEEN MANIFOLDS

COLTON GRAINGER (MATH 6230 DIFFERENTIAL GEOMETRY)

Assignment due 2019-02-06

[1] **Problem 1-9.** Given. We assume the statement of Lee's smooth manifold chart lemma [1, No. 1.35]. We will compare this lemma to Do Carmo's definition of a differentiable manifold [2, Ch. 0.2].

To prove. Complex projective space $\mathbb{C}P^n$ is a smooth 2n-dimensional manifold with structure generated by n+1 projective charts.

Proof.

 $Date : 2019 \hbox{-} 02 \hbox{-} 06.$

[1] **Problem 1-11.** Given. The closed unit ball $\bar{\mathbf{B}}^n$ as a set of points in \mathbf{R}^n .

To prove. $\bar{\mathbf{B}}^n$ is a smooth n-dimensional manifold with boundary, which we can endow with a smooth structure such that:

- ullet the interior ${f B}^n$ is parameterized by coordinates in the interior of the half space ${f H}^n$,
- the boundary $S^{n-1} = \partial \bar{\mathbf{B}}^n$ is parameterized by coordinates at the boundary of \mathbf{H}^n , and
- every interior chart is a chart for the standard structure on \mathbf{B}^n as an open submanifold of \mathbf{R}^n .

Proof.

[1] Exercise 2.3. Given. Let M be a smooth manifold (with or without boundary). Say $f: M \to \mathbf{R}^k$ is a smooth function.

To prove. The composition $f \circ \varphi^{-1} \colon \varphi(U) \to \mathbf{R}^k$ is smooth for every open chart (U, φ) for M. Proof.

[1] Exercise 2.9. Given. Say $F: M \to N$ is a smooth map between smooth manifolds (with or without boundary).

To prove. The coordinate representation of F with respect to every pair of smooth charts for M and N is smooth.

Proof.

[1] **Problem 2-1.** Given. Consider the function $f: \mathbf{R} \to \mathbf{R}$ defined by

$$f(x) = \begin{cases} 1, & x \ge 0, \\ 0, & x < 0 \end{cases}.$$

To prove. For each real number $x \in \mathbf{R}$, there are smooth coordinate charts (U, φ) and (V, ψ) containing x and f(x) respectively such that

$$\psi \circ f \circ \varphi^{-1}$$
 is smooth from $\varphi(U \cap f^{-1}(V))$ to $\psi(V)$.

However, there are charts for which $U \cap f^{-1}(V)$ is not open. (By definition then, f is not a smooth map between manifolds [1, No. 2.5].)

Proof.

References

- [1] J. M. Lee, $Introduction\ to\ Smooth\ Manifolds.$ New York: Springer-Verlag, 2003.
- [2] M. P. do Carmo, $\it Differential~geometry~of~curves~and~surfaces.$ Upper Saddle River, N.J.: Prentice-Hall, 1976.