

Bank Simulation

UNIVERSE 7

Motivation:

Understanding Interactions between Tellers and Customers can help:

- Improve Work Efficiency and Customer Experience.
- Identify Points of Congestion in a Process.
- Create Optimal Schedules.

Problem Statement:

- **Customers** arrive at a bank at random times throughout the day.
- The bank has a given number of **Tellers** that help customers.
- Customers wait in a Queue until they are helped.

Relevant Questions:

- How does increasing/decreasing the number of tellers affect customer wait time?
- How will the creation of a separate queue for light requests affect customer wait?
- How does a separate queue affect the total number of customers that are served in a day?
- How does additional tellers affect work efficiency?

Approach:

Exogenous
(prior to simulation)
Customer Arrival Time

Endogenous (during simulation)
Teller Availability

Assumptions

- Customers waiting in line at closing will not be helped.
- **Tellers** work at the <u>same speed</u>.
- Light Request **Customers** require less than 19 minutes of help.
- Light Request **Customers** must use the Light Request Line.

Approach:

Queues:

Create two separate priority queues.

- Customer Queue
- Teller Queue

Logic:

- While the Teller Queue has Tellers and the Customer Queue has Customers:
 - pop Teller
 - pop Customer
 - Calculate Teller's next available time then add Teller back into Teller Queue.

Metrics:

- Average Customer Wait Time
- ☐ Teller idle time
- Unserved Customers

Teller

Available Time:

The Time that a Teller becomes available to help the next Customer.

Work Rate:

Tellers assist Customers at 10 Work Units/Hour.

Customer

Arrival Time:

Uniform distribution over 8 hours. 160 Customers arrive every day.

Work:

Amount of assistance needed. Follows a normal distribution of N(5, 2.5)

• 15-45 minutes or work per Customer

Results	10 Tellers	1 Light Request Teller, 9 Standard Tellers	11 Tellers	9 Tellers
Total Wait Time (hours)	0.404	0.457	0.217	0.597
Light Request Customer Wait Time (hours)	х	0.181	х	х
Standard Customer Wait Time (hours)	Х	0.496	Х	Х
Unserved Customer	17.4	20.9	7.2	30.3
Teller Idle Time (hours)	6.85	20.00	13.60	2.80

Results:

Increased Customer Service means reduced Efficiency.

Results

Note: Light Request Line Limit is 18.6

Minutes

Conclusions

- ★ More Tellers decreases Customer wait time and serves more Customers.
- ★ More Tellers reduces work efficiency.
- ★ The Light Request Line increases total Customer wait time. (Faster for Light Request Customers, slower for Standard Customers)
- ★ The Light Request Line causes fewer Customers to be assisted. (More Light Request Customers assisted, less Standard Customers)