

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar Elektronikus Eszközök Tanszéke

MIKROELEKTRONIKA LABORATÓRIUMI SEGÉDANYAG

2. rész

Tervezőrendszerek használata

Dr. Horváth Péter, Dr. Takács Gábor, Dr. Szabó Péter Gábor, Dr. Timár András

Tartalomjegyzék

Tar	talomjegyzéktalomjegyzék	. 2
	, 6,	
1.	Bevezetés	. 3
2.	Szintézis FPGA technológiára	. 4

1. Bevezetés

Az alábbi elektronikus jegyzet a Mikroelektronika című tárgy laborfoglalkozásaihoz tartozó pontos mérési utasításokat tartalmazza. A laborok helyszíne az Elektronikus Eszközök Tanszéke, azon belül a VLSI IC tervező labor (QB310-QB311). A konkrét feladatok ismertetésén túlmenően néhány irányelvet és tanácsot is összegyűjtöttünk a számítógépes laborban való munkavégzéssel kapcsolatban:

- A félév során CAD-szoftverek egész sorát fogjuk használni, amelyek eltérő futtatási környezeteket igényelnek. A laborban található számítógépeken Windows 10 operációs rendszer fut. A bejelentkezés a **Student** felhasználóval, jelszó nélkül lehetséges.
- Bejelentkezés után a munkával kapcsolatos fájlokat (pl. az EDU-rendszerből letöltött segédanyagokat, az adott laborhoz kapcsolódó projektfájlokat) érdemes az asztalon/home könyvtárban (Desktop vagy Home) tárolni. Ehhez minden felhasználónak garantáltan van írási/olvasási joga, továbbá a fájlokat itt könnyű megtalálni.
- A számítógép kikapcsolásakor/újraindításakor az felhasználók által végzett minden művelet eredménye - beleértve az újonnan létrehozott fájlokat - elvész! A kritikus fájlokról (saját forrásfájlok, jegyzőkönyvek) érdemes valamilyen formában biztonsági másolatot készíteni (e-mail, dropbox, drive, stb.). Pendrive használata nem javasolt!
- A laborban a számítógépes munkaállomások hardver elemeit elmozdítani (monitor, UTP patch-kábel kihúzása, egér, billentyűzet kihúzása) szigorúan tilos!
- A belső hálózatra saját számítógépet csatlakoztatni szigorúan tilos!
- A labor végeztével a munkaállomáson rendet kell tenni, biztosítva a következő csoportok számára a kulturált körülményeket.
- A laborvezető engedélye nélküli hardveres változtatás (lásd szigorúan tilos rendelkezések), illetve operációs rendszeren történő módosítás (esetleges biztonsági rések kihasználása, rendszer törlése, stb.) rongálásnak minősül és fegyelmi eljárást von maga után!

2. Szintézis FPGA technológiára

A laboratóriumi gyakorlat során az *Altera Quartus II* fejlesztői környezetét és a *DE0* fejlesztőkártyát használjuk. A gyakorlat során megvalósítandó feladatokat az *Altera DE0* fejlesztőkártyán rendelkezésre álló hardverkörnyezethez illesztettük.

Az *Altera Quartus II* egy integrált fejlesztőkörnyezet, amely hatékony felületet nyújt a szintézis lepéseinek végrehajtásához és a fejlesztés során minden lépés elvégezhető a grafikus felhasználói felületen keresztül.

A szintézist egy új projekt létrehozásával kezdjük. Új projektet a *File* menü *New Project Wizard...* parancsával hozhatunk létre. Ekkor egy párbeszédablak-sorozat segítségével beállíthatjuk a projekt legfontosabb részleteit. Az első ablak egy bevezetés (*Introduction*), amely bemutatja, hogy a varázsló milyen beállításokat tesz lehetővé. A *Next* gomb segítségével lépjünk át a következő ablakra, ahol a projekt helyét és nevét adhatjuk meg, valamint azt, hogy a HDL forrás hierarchiájában melyik a legfelső szintű (*toplevel*) modul, amelyiket szintetizálni szeretnénk (2-1. ábra).

2-1. ábra Az új projekt helye, neve és a toplevel modul neve

Az új projektet a C:\work könyvtárban kell létrehozni a jogosultsági problémák elkerülése céljából.

A következő ablakban lehetőségünk van forrásfájlok hozzáadására. Forrásfájlokat természetesen a projekt létrehozása után is tudunk hozzáadni.

2-2. ábra Forrásfájlok hozzáadása

Forrásfájlok hozzáadása nélkül a **Next** gombra kattintva az FPGA eszközcsalád és azon belül a konkrét eszköz kiválasztására van lehetőség. A **DE0** fejlesztőkártyán egy **Cyclone III FPGA** kapott helyet, amelynek típusazonosítója a tokról leolvasható: **EP3C16F484C6**. A grafikus felület az eszköz gyorsabb kikeresése céljából szűrők beállítását teszi lehetővé. Az eszközcsalád (*Family*) mezőben válasszuk a **Cyclone III-**at, a tokozásnál (**Package**) **FBGA-**t (*Flip-chip Ball Grid Array*), a kivezetések számánál (**Pin count**) **484-**et és a sebességnél (**Speed grade**) - amely a gyártástechnológiára utal - **6**-ot. Ezeknek a szűrőbeállításoknak négy különböző eszköz felel meg, ezek közül válasszuk az elsőt (2-3. ábra)!

2-3. ábra Eszközcsalád és eszköz kiválasztása

Az eszköz kiválasztása után már csak egy beállítás van hátra. Bár az áramkörünk működését a fejlesztőkártyán fogjuk ellenőrizni, a teljesség kedvéért bemutatjuk, hogy miként lehet előállítani azokat a fájlokat, amelyek a standard cellás szintézis esetén az időzítési szimulációhoz szükségesek, nevezetesen a post-layout HDL modellt (amelyet FPGA technológia esetén post-place&route modellnek hívnak) és az időzítési viszonyokat leíró SDF fájlt. Ahhoz, hogy ezek a fájlok a nekünk megfelelő formátumban generálódjanak, ki kell választanunk a verifikációs környezetet és a generált kapuszintű modell nyelvét. Ehhez az *EDA Tool Settings* ablak *Simulation* sorának *Tool Name* mezőjében állítsuk be a *ModelSim*-et, a *Format(s)* mezőben pedig válasszuk a *Verilog*-ot (2-4. ábra).

2-4. ábra A kimenetimodell-generáláshoz szükséges beállítások

Ezek után a **Next** gombra kattintva egy összegzést kapunk, amelyet a **Finish** gombbal hagyhatunk jóvá.

Az így elkészített projekt jelenleg nem tartalmaz hardver leíró nyelven (HDL) készült forrásfájlt. Adjunk hozzá a projekthez egy új Verilog HDL nyelvű fájlt (2-5. ábra). Ebbe a fájlba kell leírni a digitális áramkör HDL leírását a labor sillabusz alapján. Az egyszerűség kedvéért másoljuk be a sillabuszban kiadott Verilog HDL nyelvű leírást az új fájlba és kattintsunk a **Mentés** gombra.

2-5. ábra Verilog forrásfájl hozzáadása a projekthez

A sillabuszban szereplő Verilog HDL modulok neve minden feladat esetén más: pl. **LogikaiErtek**, **Vezetek**, **SN74HC151**, stb. a megvalósított funkciónak megfelelően.

A Quartus II fejlesztő környezet számára meg kell határozni az ún. **top-level** modul nevét. Egy bonyolultabb áramköri terv esetén a különböző logikai/sorrendi funkciókat külön modulokba érdemes kiszervezni. Ezek a modulok egy hierarchiába tartoznak, ahol egyes modulok más modulokba épülhetnek be. A top-level modul az a modul, ami a modul-hierarchia legfelsőbb szintjén van. A szimuláció és szintézis lépéseknek tudniuk kell, hogy az áramkör melyik modulja a legfelsőbb elem. Ennek nevét a **Settings** menüben kell beállítanunk a Verilog HDL leírás **modul nevével megegyező** értékre (2-6. ábra).

2-6. ábra Top-level modul kiválasztása

A grafikus felület bal oldalán található *Project Navigator* ablak tetején a HDL modell szerkezetét, alján pedig a szintézis elvégzendő részfeladatainak felsorolását láthatjuk. A *Flow* nevű legördülő menüben válasszuk a *Full Design* lehetőséget (2-7. ábra)!

2-7. ábra A Project Navigator ablak

A következő lépés a HDL modell szintaktikai ellenőrzése és szerkezetének feltérképezése. A **Project Navigator** ablakban a **Compile Design** menüpont alatt található **Analysis & Synthesis** almenüben kattintsunk duplán az **Analysis & Elaboration** parancsra!

A HDL modell beolvasása és elemzése után már ismertek a modell logikai kivezetései, amelyeket az FPGA eszköz általános célú kivezetéseihez kell hozzárendelnünk. Ez a lépés az ún. *kivezetés-hozzárendelés (pin assignment)*. Ha egy már elkészült PCB-n (*Printed Circuit Board*) helyet foglaló FPGA-ról van szó (ahogy esetünkben is), akkor a logikai kivezetések fizikai megfelelőinek kiválasztása nem teljesen önkényes. Egy logikai kimenetet értelemszerűen egy meghajtást igénylő, míg egy logikai bemenetet egy meghajtó jellegű erőforrásra kell kapcsolnunk. A felhasznált fejlesztőkártya felhasználói dokumentációja tartalmazza azt az információt, hogy a PCB egyes erőforrásai (LED-ek, kapcsolók stb.) az FPGA melyik kivezetéséhez vannak hozzákapcsolva.

A kivezetés-hozzárendelés a Quartus II környezetben az **Assignments** menü **Pin Planner** nevű alprogramjával végezhető el (2-8. ábra).

2-8. ábra Pin Planner

A kivezetésekre vonatkozó táblázatban elegendő a *Location* oszlopot kitölteni a "**DE0_User_manual.pdf" 4.2-es fejezetében** meghatározott PIN elnevezéseknek megfelelően.

A sillabusz **SN74HC151 8:1 multiplexer** áramköre esetén a lábkiosztást tartalmazó leíró fájlt (SN74HC151.qsf) az EDU rendszerbe is feltöltöttük. Az Import Assignments... menüpont

segítségével ez a lábkiosztás betölthető a Quartus II tervező rendszerbe. A gyakorlati ismeretek elmélyítése céljából azonban javasoljuk a lábak hozzárendelését kézzel, a DE0 User Manual segítségével elvégezni.

A **Pin Planner** a **File** menü **Close** parancsával zárható be.

Ezután a *Project Navigator* ablak *Compile Design* parancsára duplán kattintva a program a következő lépéseket automatikusan elvégzi:

- Analysis and Synthesis: Generikus szintézis és mapping.
- Fitter (Place & Route): Csoportképzés, elhelyezés és huzalozás.
- Assembler (Generate programming files): Bitfolyam előállítása.
- TimeQuest Timing Analysis: Statikus időzítés-analízis.
- EDA Netlist Writer: Post-Place&Route modell és SDF fájl generálása.

Nyissuk le a *Project Navigator* ablak *Analysis and Synthesis* pontját, azon belül pedig keressük a *Netlist Viewers* mappát, amelyben három különböző alkalmazás áll rendelkezésre a szintézis ellenőrzésére. Az *RTL viewer* - ahogy neve is utal rá - az RTL modell alapján elkészített, RTL és kapuszintű erőforrásokat tartalmazó netlista (2-9. ábra).

2-9. ábra A multiplexer áramkör kapcsolási sémája

Bár összetett rendszerek esetén egy ilyen kapcsolási rajz nehezen átláthatónak tűnhet, arra kiválóan alkalmas, hogy az RTL tervező eldöntse, hogy a szintézis szoftver valóban azt az áramkört valósította meg, amelyet ő elképzelt. A *Technology Map Viewer* segítségével pedig ellenőrizhető a post-mapping modell kapcsolási rajza.

Az automatizált elhelyezés és huzalozás eredményét is megtekinthetjük a *Chip Planner* alkalmazás segítségével, amely a *Tools* menü *Chip Planner* parancsával indítható el (2-10. ábra).

2-10. ábra Chip Planner

A *Chip Planner* az eszköz felülnézeti képét mutatja, kiemelve az egyes logikai blokkokat és heterogén architekturális elemeket. Az ábrán világoskék színnel jelölt LAB-ek (Logic Array Block) árnyalata kihasználtságuktól függően változik; minél több BLE (Basic Logic Element) foglalt az adott LAB-en belül, annál sötétebb a hozzá tartozó téglalap. Látható, hogy az áramkör nem igényel sok erőforrást, egészen kis részét foglalja csak el a rendelkezésre álló LAB-eknek. Ha ráközelítünk a foglalt területekre, az áramkör szerkezete a legapróbb részletekig megfigyelhető (2-11. ábra).

2-11. ábra Az áramkör által felhasznált LAB-ek

A 2-11. ábrán megfigyelhető a LAB-ekben helyet foglaló 16 BLE. A BLE-k egy-egy kék és piros téglalappal vannak jelölve. A piros téglalapok az adott BLE regiszterének, a kék pedig LUT-jának a kihasználtságát jelzik. Egy BLE-re duplán kattintva azt is megfigyelhetjük, hogy az adott BLE konfigurációja milyen áramköri részletet valósít meg (2-12. ábra).

2-12. ábra BLE konfigurációja

A szintézis minden lépését elvégeztük, így nincs más hátra, mint kipróbálni az áramkört élesben. A konfigurációs memória tartalmának feltöltése az eszközre a *Tools* menü *Programmer* parancsával indítható alkalmazással lehetséges (2-13. ábra).

2-13. ábra Programmer

Ha a bal felső sarokban lévő *Hardware Setup* mezőben *No Hardware* feliratot látunk, akkor a *Hardware Setup* gombra kattintva a lehetséges hardverelemek közül válasszuk az *USB Blaster*t (2-14. ábra).

2-14. ábra USB Blaster kiválasztása

Ezután a **Programmer** ablak felső mezőjében megjelenik az aktuális projektünkben már rendelkezésre álló programozófájl (output_files/counter.sof), alsó mezőjében pedig látni fogjuk azt a JTAG láncot, amelyet a program az adott programozófájllal kompatibilisnek ismert fel. Ha a programozófájl nem jelent meg automatikusan, akkor bal oldali gombsor **Add File...** gombjával kézzel is kijelölhetjük azt. A bal oldali gombsor start gombjára kattintva a letöltés elkezdődik. A sikeres letöltést a jobb felső sarokban elhelyezkedő **Progress** mező "100% (Successful)" felirata jelzi.