Ministerul Educației, Cercetării, Tineretului și Sportului Societatea de Științe Matematice din România

Olimpiada Națională de Matematică

Etapa Județeană și a Municipiului București, 13 Martie 2010 CLASA a X-a

Problema 1. Demonstrați următoarele egalități de mulțimi

(i)
$$\{x \in \mathbb{R} \mid \log_2[x] = [\log_2 x]\} = \bigcup_{m \in \mathbb{N}} [2^m, 2^m + 1).$$

(ii)
$$\{x \in \mathbb{R} \mid 2^{[x]} = [2^x]\} = \bigcup_{m \in \mathbb{N}} [m, \log_2 (2^m + 1)).$$

Prin [a] s-a notat partea întreagă a numărului real a.

Problema 2. Fie $a\in[-2,\infty),\ r\in[0,\infty)$ și numărul natural $n\geq1.$ Arătați că $r^{2n}+ar^n+1\geq(1-r)^{2n}\,.$

Gazeta Matematică

Problema 3. Determinați funcțiile $f : \mathbb{N} \to \mathbb{N}$ cu proprietatea 3f(f(f(n))) + 2f(f(n)) + f(n) = 6n, pentru orice $n \in \mathbb{N}$.

Problema 4. Fie şirul $a_n = \left| z^n + \frac{1}{z^n} \right|, n \ge 1$, unde $z \in \mathbb{C}^*$ este dat.

(i) Demonstrați că dacă $a_1 > 2$, atunci

$$a_{n+1} < \frac{a_n + a_{n+2}}{2}$$
, pentru orice $n \in \mathbb{N}^*$.

(ii) Demonstrați că dacă există $k \in \mathbb{N}^*$ astfel încât $a_k \leq 2$, atunci $a_1 \leq 2$.

Timp de lucru 3 ore. Se acordă în plus 30 de minute pentru întrebări. Fiecare problemă este notată cu 7 puncte.