Multicore Enablement Challenges for Semiconductor Manufacturers

January 29, 2008

Steve Furr

Freescale Multicore Platform

- •Supporting more than 32 Power Architecture™ cores with L2 back-side cache per core
- Introducing a scalable
 CoreNet™Fabric for concurrent,
 non-blocking, hardware-based
 100% cache-coherent platform
 connectivity
- •Expected to enable 2-3 times improved system performance

Problem: Multicore Affects How Users Design, Write and Debug Software

Partitioning the problem across multiple cores

- Requires new programming models
- Not well supported by today's tools state of practice is low
- Hard, manual challenge

Critical impact on system level performance and time to market

- Complexity of programming model makes diagnosis difficult (longer)
- Partitioning approach is difficult to validate and tune (longer)
- Adding cores increases synchronization and latency sources driving down scalability (longer and slower)

Reduced visibility into activity on-chip

- Tracing/monitoring at the system and application level
- Finding bottlenecks in performance correlating to application behavior
- Correlating application behavior to silicon behavior (cache, memory hierarchy, internal buses)

Networking Core Usage Model

Flexible choice of OS model on cores

Assumed common use case (number of cores in categories may vary):

Use cases - networking

- Software debugging
- High-level application profile performance analysis with correlated counts
- **High-level transactional analysis** 3. with counts
- IP block utilization
- Correlation of events from trace, high-level counts, and IP block utilization
- Setting up advanced triggering scenarios
- Instruction trace from core
- Packet-flow trace
- Trace traffic on CoreNet
- 10. Buffer recovery (garbage collection)
- 11. Cache analysis
- 12. DDR analysis

13. Access to entire contents of all memories

- 14. Multiprocessor programming
- malbehavior detection

- 15. Debugging when system busy or hung
 - Power-On-Debug (POD) Profilingmer to control debugging outside of SoC scope
- Security through conditional debug using challenge/response
- 19. Understanding virtualization, ultravisor, and access control partitioning
- 20. Migrate silicon state to simulation models
- 21. Allow customers to leverage their own analysis tools
- Log Analysis elper core that can reset dataane hardware and cores
 - 23. Helper core gathers run-time statistics
 - 24. Core pipeline visualization

Profiling

Solution: Provide greater visibility

Core behavior

- Trace program (branch trace) or data (read/write)
- Count core event occurrences (I-cache, D-cache, L2, ...)

Platform behavior

- Trace CoreNet[™] transactions
- Trace external bus transactions (Serial RapidIO, DDR, etc.)
- Count platform event occurrences

SO NOW WHAT?

Common Analysis Architecture

Challenges

Establish a global ordering of events

- Synchronization of different time bases
- Correlation of different events based on global time stamp
- Provide high resolution time base for runtime events

Manage events from many different sources

- Platform and language neutral data collection methodology
- Scalability to different target environments (probe, embedded target)

Consolidate data feeds for different forms of tooling

- •Standardized data schema for specific application domains
- •Extensible formats that allow tools to ignore data they cannot process

Scalability

- Handle large volumes of data
 - Some trace data sets (e.g. program/data trace) can produce two orders of magnitude more data than kernel event trace
- Continuous or stored data sets (e.g. traces)

Configuration

- •Enable static and dynamic configuration of data feeds
- Target-specific information about data feeds

the property of their respective owners. © Freescale Semiconductor, Inc. 2006.

Questions?

