Importing Libraries

```
In [1]: import numpy as np
  import pandas as pd
  import seaborn as sns
  import matplotlib.pyplot as plt
```

Importing Datasets

```
In [2]: df=pd.read_csv("innovation_and_development_database.csv")
    df
```

Out[2]:

	country	code	year	eap	eca	lac	mena	sha	sa	hi	 у	stockpatEPO	poptotal	labor	rdexpgdp	pat
0	Aruba	ABW	1960	0	0	1	0	0	0	0.0	 NaN	NaN	NaN	NaN	NaN	
1	Aruba	ABW	1961	0	0	1	0	0	0	0.0	 NaN	NaN	NaN	NaN	NaN	
2	Aruba	ABW	1962	0	0	1	0	0	0	0.0	 NaN	NaN	NaN	NaN	NaN	
3	Aruba	ABW	1963	0	0	1	0	0	0	0.0	 NaN	NaN	NaN	NaN	NaN	
4	Aruba	ABW	1964	0	0	1	0	0	0	0.0	 NaN	NaN	NaN	NaN	NaN	
8290	Zimbabwe	ZWE	1998	0	0	0	0	1	0	0.0	 8.290000e+09	8.0	12153850.0	6236700.0	NaN	
8291	Zimbabwe	ZWE	1999	0	0	0	0	1	0	0.0	 8.230000e+09	8.0	12388320.0	6374300.0	NaN	
8292	Zimbabwe	ZWE	2000	0	0	0	0	1	0	0.0	 7.830000e+09	8.0	12627000.0	6514800.0	NaN	
8293	Zimbabwe	ZWE	2001	0	0	0	0	1	0	0.0	 NaN	8.0	12820650.0	NaN	NaN	
8294	Zimbabwe	ZWE	2002	0	0	0	0	1	0	0.0	 NaN	NaN	NaN	NaN	NaN	

8295 rows × 33 columns

Data Cleaning and Data Preprocessing

```
df=df.fillna(1)
In [3]:
         df
Out[3]:
                  country code year eap eca lac mena sha sa
                                                                    hi ...
                                                                                     y stockpatEPO
                                                                                                        poptotal
                                                                                                                     labor rdexpgdp
             0
                   Aruba
                          ABW
                                1960
                                        0
                                             0
                                                                0 0.0 ... 1.000000e+00
                                                                                                 1.0
                                                                                                            1.0
                                                                                                                       1.0
                                                                                                                                 1.0
                          ABW
                                                                0 0.0 ... 1.000000e+00
                                1961
                                                                                                            1.0
                                                                                                                                 1.0
                   Aruba
                                        0
                                                                                                 1.0
                                                                                                                       1.0
             2
                   Aruba ABW
                                1962
                                        0
                                                                0 0.0 ... 1.000000e+00
                                                                                                            1.0
                                                                                                                                 1.0
                                                                                                 1.0
                                                                                                                       1.0
                   Aruba
                          ABW
                                1963
                                                                0 0.0 ... 1.000000e+00
                                                                                                 1.0
                                                                                                            1.0
                                                                                                                       1.0
                                                                                                                                 1.0
                    Aruba ABW
                                1964
                                                                0 0.0 ... 1.000000e+00
                                                                                                 1.0
                                                                                                            1.0
                                                                                                                       1.0
                                                                                                                                 1.0
                                                                                                                                  ...
          8290
               Zimbabwe
                          ZWE 1998
                                                 0
                                                                0 0.0 ... 8.290000e+09
                                                                                                     12153850.0 6236700.0
                                                                                                                                 1.0
                                        0
                                                                                                 8.0
               Zimbabwe ZWE 1999
                                                                0 0.0 ... 8.230000e+09
                                                                                                     12388320.0 6374300.0
          8291
                                                                                                                                 1.0
                                                                0 0.0 ... 7.830000e+09
          8292 Zimbabwe ZWE 2000
                                                 0
                                                                                                     12627000.0 6514800.0
                                                                                                                                 1.0
          8293 Zimbabwe
                          ZWE 2001
                                                                0 0.0 ... 1.000000e+00
                                                                                                 8.0
                                                                                                     12820650.0
                                                                                                                       1.0
                                                                                                                                 1.0
          8294 7imhahwe 7WF 2002
                                        Λ
                                             Λ
                                                 Λ
                                                                \cap
                                                                           1 0000000+00
                                                                                                 1 0
                                                                                                            1 0
                                                                                                                       1 Ո
                                                                                                                                 1 0
```

```
In [5]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8295 entries, 0 to 8294
Data columns (total 33 columns):

#	Column	Non-Null Count	Dtype				
0	country	8295 non-null	object				
1	code	8295 non-null	object				
2	year	8295 non-null	int64				
3	eap	8295 non-null	int64				
4	eca	8295 non-null	int64				
5	lac	8295 non-null	int64				
6	mena	8295 non-null	int64				
7	sha	8295 non-null	int64				
8	sa	8295 non-null	int64				
9	hi	8295 non-null	float64				
10	pat	8295 non-null	float64				
11	patepo	8295 non-null	float64				
12	royal	8295 non-null	float64				
13	rdexp	8295 non-null	float64				
14	rdper	8295 non-null	float64				
15	rdfinabro	8295 non-null	float64				
16	rdfinprod	8295 non-null	float64				
17	rdperfprod	8295 non-null	float64				
18	rdperfhe	8295 non-null	float64				
19	rdperfpub	8295 non-null	float64				
20	lowrdexp	8295 non-null	float64				
21	lowrdfinprod	8295 non-null	float64				
22	lowrdperfprod	8295 non-null	float64				
23	у	8295 non-null	float64				
24	stockpatEPO	8295 non-null	float64				
25	poptotal	8295 non-null	float64				
26	labor	8295 non-null	float64				
27	rdexpgdp	8295 non-null	float64				
28	patgrantedstock	8295 non-null	float64				
29	plantpatstock	8295 non-null	float64				
30	designpatstock	8295 non-null	float64				
31	plantpat	8295 non-null	float64				
32	designpat	8295 non-null	float64				
dtypes: float64(24), int64(7), object(2)							
memory usage: 2.1+ MB							

localhost:8888/notebooks/development.ipynb

Line chart

Line chart

```
In [7]: df.plot.line()
```

Out[7]: <AxesSubplot:>

Bar chart

In [8]: b=df[0:50]

In [9]: b.plot.bar()

```
Out[9]: <AxesSubplot:>
                                                                                                                   year
                                                                                                                                         eap
                                                                                                                                         eca
                                                                                                                                         mena
                                                                                                                                         sha
                                                                                                                                         sa
                                                                                                                    ____ hi
                                                                                                                                         pat
                                                                                                                                          patepo
                                                                                                                                         royal
                                                                                                                                          rdexp
                                                                                                                                         rdper
                                                                                                                                         rdfinabro
                                                                                                                                         rdfinprod
                                                                                                                 rdperfprod
                                                                                                                                        rdperfhe
                                                                                                             rdperfpub
                                                                       2000 -
                                                                                                                lowrdexp
                                                                     1750
                                                                                                             lowrdfinprod
                                                                                                              lowrdperfprod
                                                                      1500
                                                                                                             <u></u> у
                                                                                                             stockpatEPO
                                                                      1250
                                                                                                               poptotal poptotal
                                                                                                             labor
                                                                      1000
                                                                                                              rdexpgdp
                                                                             750
                                                                                                             patgrantedstock
                                                                                                              plantpatstock
                                                                             500
                                                                                                              designpatstock
                                                                                                                                         plantpat
                                                                             250
                                                                                                                                        designpat
                                                                                                   CHARLE CONTRACTOR CHARLES CONTRACTOR CONTRAC
```

Histogram

```
In [10]: df.plot.hist()
```

Out[10]: <AxesSubplot:ylabel='Frequency'>

Area chart

```
In [11]: df.plot.area()
```

Out[11]: <AxesSubplot:>

Box chart

```
In [12]: df.plot.box()
```

Out[12]: <AxesSubplot:>

Pie chart

```
In [13]: b.plot.pie(y='designpat' )
Out[13]: <AxesSubplot:ylabel='designpat'>
```


Scatter chart

```
In [14]: df.plot.scatter( x='rdexpgdp',y= 'patgrantedstock')
```

Out[14]: <AxesSubplot:xlabel='rdexpgdp', ylabel='patgrantedstock'>


```
In [15]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8295 entries, 0 to 8294
Data columns (total 33 columns):

#	Column	Non-Null Count	Dtype
0	country	8295 non-null	object
1	code	8295 non-null	object
2	year	8295 non-null	int64
3	eap	8295 non-null	int64
4	eca	8295 non-null	int64
5	lac	8295 non-null	int64
6	mena	8295 non-null	int64
7	sha	8295 non-null	int64
8	sa	8295 non-null	int64
9	hi	8295 non-null	float64
10	pat	8295 non-null	float64
11	patepo	8295 non-null	float64
12	royal	8295 non-null	float64
13	rdexp	8295 non-null	float64
4 4	٠ .	2225	C3 LC4

In [16]: df.describe()

Out[16]:

	year	eap	eca	lac	mena	sha	sa	hi	pat	рı
count	8295.000000	8295.000000	8295.000000	8295.000000	8295.000000	8295.000000	8295.000000	8295.000000	8295.000000	8295.00
mean	1981.203014	0.094515	0.195901	0.176974	0.098614	0.150090	0.026522	0.134901	411.663773	65.7€
std	12.421590	0.292561	0.396917	0.381670	0.298161	0.357182	0.160691	0.341638	3893.360772	580.3₄
min	1960.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.00
25%	1970.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.00
50%	1981.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1.00
75%	1992.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	2.000000	1.00
max	2002.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	87607.000000	10300.00

8 rows × 31 columns

EDA AND VISUALIZATION

```
In [18]: sns.pairplot(df1[0:50])
```

Out[18]: <seaborn.axisgrid.PairGrid at 0x24b293635e0>

In [19]: sns.distplot(df1['designpat'])

C:\Users\USER\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning: `distplot` is a de precated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning)

Out[19]: <AxesSubplot:xlabel='designpat', ylabel='Density'>


```
In [20]: sns.heatmap(df1.corr())
```

Out[20]: <AxesSubplot:>

TO TRAIN THE MODEL AND MODEL BULDING

Linear Regression

```
In [23]: from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)

Out[23]: LinearRegression()

In [24]: lr.intercept_
Out[24]: -895.707237255563
```

```
In [25]: coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[25]:

	Co-efficient
year	4.478269e-01
eap	1.044973e+01
eca	-4.112414e-01
lac	1.711691e+00
mena	1.505925e+00
sha	2.727725e+00
sa	2.171481e+00
hi	-1.068480e+01
pat	1.077552e-02
patepo	-2.062311e-02
royal	-1.515536e-08
rdexp	-2.591489e-09
rdper	-5.410640e-05
rdfinabro	-1.926877e-01
rdfinprod	3.072198e-01
rdperfprod	2.148397e-01
rdperfhe	-1.150555e-01
rdperfpub	5.812949e-03
lowrdexp	5.284662e-14
lowrdfinprod	2.735943e+00
lowrdperfprod	7.338671e-01
у	3.814805e-11
stockpatEPO	9.898542e-04
poptotal	-3.071126e-08
labor	3.423496e-08
rdexpgdp	6.661779e-01

Co-efficient

patgrantedstock -6.384360e-05

plantpatstock -1.126773e+00

designpatstock 9.806644e-02

plantpat 1.316892e+01

In [26]: prediction =lr.predict(x_test)
plt.scatter(y_test,prediction)

Out[26]: <matplotlib.collections.PathCollection at 0x24b5f465730>

ACCURACY

In [27]: |lr.score(x_test,y_test)

Out[27]: 0.9359440854000607

In [28]: lr.score(x_train,y_train)

Out[28]: 0.9556190976958261

Ridge and Lasso

Accuracy(Ridge)

Accuracy(Lasso)

```
In [35]: la.score(x_test,y_test)
Out[35]: 0.9365057709302195
```

ElasticNet

```
In [36]: from sklearn.linear model import ElasticNet
         en=ElasticNet()
         en.fit(x train,y train)
Out[36]: ElasticNet()
In [37]: en.coef
Out[37]: array([ 4.80389038e-01, 5.81402950e-01, -0.00000000e+00, 0.00000000e+00,
                -0.00000000e+00, 0.00000000e+00, -0.00000000e+00, -6.77890367e-01,
                 1.09871047e-02, -1.95517371e-02, -1.58117666e-08, -2.30292806e-09,
                -5.39439272e-05, -1.70086963e-01, 2.00042804e-01, 2.29682240e-01,
                -1.76965155e-01, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
                 0.00000000e+00, 2.79875266e-11, 8.57046944e-04, -2.65239954e-08,
                 4.22220894e-08, -0.00000000e+00, -5.45100706e-05, -1.11854094e+00,
                 9.80471935e-02, 1.30136367e+01])
In [38]: en.intercept
Out[38]: -957.1590613062978
In [39]: prediction=en.predict(x test)
In [40]: en.score(x test,y test)
Out[40]: 0.9361560503753533
```

Evaluation Metrics

```
In [41]: from sklearn import metrics
    print(metrics.mean_absolute_error(y_test,prediction))
    print(metrics.mean_squared_error(y_test,prediction))
    print(np.sqrt(metrics.mean_squared_error(y_test,prediction)))

13.24769486414481
    10640.218004441078
    103.15143239161091
```

Logistic Regression

In [51]: logr.classes_

```
Out[51]: array([0.0000e+00, 1.0000e+00, 2.0000e+00, 3.0000e+00, 4.0000e+00,
                5.0000e+00, 6.0000e+00, 7.0000e+00, 8.0000e+00, 9.0000e+00,
                1.0000e+01, 1.1000e+01, 1.2000e+01, 1.3000e+01, 1.4000e+01,
                1.5000e+01, 1.6000e+01, 1.7000e+01, 1.8000e+01, 1.9000e+01,
                2.0000e+01, 2.1000e+01, 2.2000e+01, 2.3000e+01, 2.4000e+01,
                2.5000e+01, 2.6000e+01, 2.7000e+01, 2.8000e+01, 2.9000e+01,
                 3.0000e+01, 3.2000e+01, 3.3000e+01, 3.4000e+01, 3.7000e+01,
                 3.8000e+01, 3.9000e+01, 4.0000e+01, 4.1000e+01, 4.2000e+01,
                4.3000e+01, 4.4000e+01, 4.5000e+01, 4.6000e+01, 4.7000e+01,
                4.8000e+01, 4.9000e+01, 5.0000e+01, 5.4000e+01, 5.5000e+01,
                5.6000e+01, 5.7000e+01, 5.8000e+01, 5.9000e+01, 6.0000e+01,
                 6.1000e+01, 6.2000e+01, 6.3000e+01, 6.4000e+01, 6.5000e+01,
                6.6000e+01, 6.7000e+01, 6.9000e+01, 7.0000e+01, 7.1000e+01,
                7.2000e+01, 7.3000e+01, 7.4000e+01, 7.6000e+01, 7.7000e+01,
                7.8000e+01, 8.0000e+01, 8.1000e+01, 8.2000e+01, 8.3000e+01,
                8.4000e+01, 8.5000e+01, 8.6000e+01, 8.7000e+01, 8.8000e+01,
                8.9000e+01, 9.0000e+01, 9.1000e+01, 9.3000e+01, 9.4000e+01,
                9.5000e+01, 9.6000e+01, 9.7000e+01, 9.8000e+01, 9.9000e+01,
                1.0000e+02, 1.0100e+02, 1.0200e+02, 1.0300e+02, 1.0500e+02,
                1.0600e+02, 1.0700e+02, 1.0900e+02, 1.1000e+02, 1.1200e+02,
                1.1300e+02, 1.1400e+02, 1.1500e+02, 1.1700e+02, 1.1800e+02,
                1.1900e+02, 1.2000e+02, 1.2100e+02, 1.2300e+02, 1.2400e+02,
                1.2500e+02, 1.2600e+02, 1.2700e+02, 1.2900e+02, 1.3200e+02,
                1.3300e+02, 1.3400e+02, 1.3600e+02, 1.3800e+02, 1.3900e+02,
                1.4200e+02, 1.4300e+02, 1.4400e+02, 1.4700e+02, 1.5000e+02,
                1.5200e+02, 1.5300e+02, 1.5600e+02, 1.5900e+02, 1.6000e+02,
                1.6200e+02, 1.6300e+02, 1.6500e+02, 1.6900e+02, 1.7200e+02,
                1.7300e+02, 1.7600e+02, 1.7900e+02, 1.8000e+02, 1.8100e+02,
                1.8200e+02, 1.8400e+02, 1.8500e+02, 1.8600e+02, 1.9000e+02,
                1.9300e+02, 1.9500e+02, 1.9600e+02, 1.9700e+02, 2.0100e+02,
                2.0200e+02, 2.0500e+02, 2.0800e+02, 2.1100e+02, 2.1200e+02,
                2.1300e+02, 2.1500e+02, 2.1600e+02, 2.2100e+02, 2.2200e+02,
                2.2700e+02, 2.2800e+02, 2.3000e+02, 2.3100e+02, 2.3400e+02,
                2.3700e+02, 2.3900e+02, 2.4000e+02, 2.4300e+02, 2.4700e+02,
                2.5000e+02, 2.5300e+02, 2.5400e+02, 2.5700e+02, 2.5800e+02,
                2.6000e+02, 2.6500e+02, 2.7500e+02, 2.8200e+02, 3.0000e+02,
                 3.0600e+02, 3.2000e+02, 3.3000e+02, 3.3800e+02, 3.4100e+02,
                 3.5000e+02, 3.5600e+02, 3.6000e+02, 3.6800e+02, 3.7000e+02,
                 3.7200e+02, 3.8200e+02, 3.9000e+02, 3.9600e+02, 4.0100e+02,
                4.1000e+02, 4.1800e+02, 4.3800e+02, 4.3900e+02, 4.6600e+02,
                4.8200e+02, 4.8400e+02, 4.8500e+02, 5.0300e+02, 5.0500e+02,
                5.0900e+02, 5.2200e+02, 5.3900e+02, 5.4700e+02, 5.7600e+02,
                5.8800e+02, 6.2000e+02, 6.9800e+02, 7.0500e+02, 7.9500e+02,
```

```
8.3300e+02, 8.6100e+02, 9.3600e+02, 9.4800e+02, 1.0260e+03,
1.0370e+03, 1.0560e+03, 1.1350e+03, 1.1370e+03, 1.1490e+03,
1.1680e+03, 1.2070e+03, 1.2940e+03, 1.3070e+03, 1.3100e+03,
1.3640e+03, 1.4970e+03, 1.5460e+03, 2.4690e+03, 3.0520e+03,
3.0550e+03, 3.0650e+03, 3.2780e+03, 3.4280e+03, 3.4460e+03,
3.4750e+03, 3.5460e+03, 3.5700e+03, 3.6450e+03, 3.8830e+03,
3.9020e+03, 5.0690e+03, 6.0130e+03, 6.0750e+03, 7.4160e+03,
7.6970e+03, 7.7470e+03, 7.8630e+03, 8.2510e+03, 9.3250e+03,
9.6540e+03, 9.9130e+03, 1.0346e+04, 1.1285e+04])

In [52]: logr.score(fs,target_vector)

Out[52]: 0.8764315852923448

In [53]: logr.predict_proba(observation)[0][0]

Out[53]: 0.0
```

In [54]: logr.predict_proba(observation)

```
Out[54]: array([[0.00000000e+00, 6.46875839e-85, 4.18064698e-86, 4.97640492e-80,
                 8.59945817e-83, 2.37734566e-56, 3.98520696e-68, 2.90827307e-74,
                  3.93470301e-68, 7.84564082e-60, 4.43221229e-85, 6.56263221e-55,
                  1.03039805e-73, 1.08013371e-59, 1.08112169e-50, 7.94176532e-68,
                  1.81569452e-50, 2.60212594e-61, 4.31128405e-50, 7.36175743e-49,
                  3.51381920e-52, 8.03683141e-50, 4.61455481e-44, 9.29966791e-71,
                  2.15616849e-32, 1.47123590e-51, 3.22397464e-25, 1.13656197e-42,
                  3.84756439e-36, 3.92528441e-58, 2.57777087e-38, 4.08345965e-33,
                  4.43714065e-49, 1.95954619e-43, 1.45852110e-54, 1.32840786e-50,
                  1.61612437e-22, 2.16834024e-29, 1.26908838e-34, 8.98132380e-30,
                  2.17424290e-44, 4.15451744e-15, 6.05958093e-36, 3.76411606e-12,
                  1.64039866e-26, 5.78586665e-31, 1.98698848e-18, 1.60937793e-35,
                  3.86587379e-25, 7.65725299e-09, 1.68641093e-36, 7.44871984e-19,
                  9.91118520e-31, 3.27302787e-26, 4.54761528e-32, 3.46546939e-26,
                  3.43068716e-38, 2.09551086e-46, 1.47074020e-24, 5.60652672e-29,
                  4.46188339e-14, 5.23448116e-35, 4.90515430e-13, 4.19574969e-43,
                  1.88139168e-38, 5.87960896e-41, 1.68589460e-22, 1.06641334e-28,
                 4.31086801e-32, 2.11026858e-21, 1.36350787e-13, 2.68466590e-17,
                  2.06256309e-27, 4.64149327e-37, 6.11020490e-11, 1.77915082e-04,
                  1.04327068e-33, 9.27239443e-25, 1.64059124e-19, 1.41867503e-26,
                  3.45576309e-25, 3.78644588e-25, 5.53565304e-21, 1.10810312e-32,
                  4.17326226e-30, 2.85198531e-14, 1.70870740e-16, 2.37696717e-31,
                  4.57363954e-20, 1.10518235e-31, 7.04942289e-18, 7.09899878e-15,
                  6.18243195e-20, 5.14010433e-12, 1.30131822e-26, 2.75215467e-28,
                  3.56175114e-23, 1.43488680e-20, 1.49026166e-35, 2.31955497e-19,
                  2.80943383e-28, 3.26844661e-25, 1.98767004e-25, 2.90381563e-47,
                 4.16144030e-38, 2.15517707e-26, 5.16987221e-29, 3.01843396e-43,
                  2.43209628e-24, 1.67542453e-22, 1.49536949e-44, 4.37752030e-24,
                  1.19030241e-27, 1.26335802e-12, 3.25590978e-18, 1.46940286e-36,
                  6.21194731e-25, 1.02987622e-16, 2.55264374e-31, 3.08002770e-28,
                  2.73592092e-19, 1.09563396e-20, 7.28661834e-15, 8.63266119e-24,
                  6.55186889e-19, 3.67493263e-23, 5.37165816e-11, 1.42090765e-29,
                  1.96504387e-26, 3.15806890e-35, 4.67423646e-41, 1.03249746e-42,
                  2.06352084e-18, 4.80872013e-11, 2.38144854e-22, 1.44623746e-19,
                  1.12561121e-23, 1.27398771e-17, 5.88348615e-41, 9.14398660e-13,
                  2.69631717e-12, 3.53809810e-06, 1.35670563e-37, 4.00635816e-07,
                  3.66333929e-26, 3.21990721e-11, 4.34472713e-18, 3.82940747e-11,
                  4.48980290e-12, 3.70126759e-10, 3.42435599e-16, 2.23506481e-29,
                  2.06547055e-22, 1.65143853e-23, 9.99292856e-01, 1.89931562e-40,
                  9.95178307e-09, 4.04014787e-33, 6.45046777e-19, 6.39481242e-17,
                  1.65711204e-21, 1.66902668e-13, 5.85102749e-09, 3.58553149e-20,
                 7.63863608e-14, 2.16528932e-16, 2.31182283e-19, 5.19372698e-10,
                  2.85136582e-18, 2.20030544e-23, 8.40363376e-15, 1.52062520e-10,
```

```
2.11702071e-34, 9.43588493e-11, 2.38638165e-34, 6.84723725e-16,
7.27402502e-24, 1.34617982e-10, 7.45356898e-05, 2.01297770e-13,
6.90786546e-16, 2.47182409e-26, 4.93804370e-15, 1.42551905e-13,
2.26831073e-18, 4.95819552e-17, 2.54256226e-26, 3.33888563e-11,
1.20758731e-31, 2.15710411e-24, 4.34686023e-07, 1.48682527e-40,
1.80994770e-16, 1.56738491e-25, 5.46790333e-18, 3.54425763e-04,
1.27586197e-10, 3.05700233e-12, 1.93730817e-21, 5.51384567e-23,
2.69380119e-17, 3.77031259e-10, 1.01278030e-07, 5.00823656e-20,
9.23034863e-05, 1.50877311e-19, 3.49094704e-21, 2.04317551e-20,
6.66023049e-12, 2.20980382e-22, 5.86801028e-22, 8.35022702e-20,
5.26476071e-19, 2.53780151e-18, 6.88038395e-17, 1.31007494e-15,
3.18385328e-17, 1.42025828e-18, 3.67892414e-17, 2.01043312e-14,
6.10377056e-18, 5.68120253e-21, 2.01399099e-13, 7.29833544e-15,
3.86518040e-15, 6.63952897e-26, 9.64773366e-12, 1.62949403e-24,
9.21556898e-19, 2.45420341e-12, 5.20103815e-26, 1.31984657e-10,
6.15952510e-20, 9.20354758e-19, 5.84975126e-21, 1.31131770e-18,
8.45741933e-13, 1.03629389e-08, 1.79179668e-13, 2.82884116e-08,
1.24337025e-11, 6.93118767e-12, 2.24629133e-13, 5.49609681e-07,
6.10191031e-09, 9.96528220e-11, 3.87985456e-13, 2.53836642e-09,
1.26770832e-06, 1.24209791e-08, 3.02700348e-08, 1.53830151e-06,
2.39069364e-11, 2.79232187e-11, 2.18150800e-21, 2.44157090e-13,
1.53833366e-08, 5.51628248e-12, 1.97159115e-09]])
```

Random Forest

```
In [61]: from sklearn.tree import plot tree
                   plt.figure(figsize=(80,40))
                   plot tree(rfc best.estimators [5], feature names=x.columns, class names=['variable1', 'variable2', 'variable3',
                    'variable11', 'variable12', 'variable13', 'variable14', 'variable15', 'variable16', 'variable17', 'variable18
                    'variable21', 'variable22', 'variable23', 'variable24', 'variable25', 'variable26', 'variable27', 'variable28
                    'variable31', 'variable32', 'variable33', 'variable34', 'variable35', 'variable36', 'variable37', 'variable38
                    'variable41', 'variable42', 'variable43', 'variable44', 'variable45', 'variable46', 'variable47', 'variable48
                    'variable51', 'variable52', 'variable53', 'variable54', 'variable55', 'variable56', 'variable57', 'variable58
                    'variable61', 'variable62', 'variable63', 'variable64', 'variable65', 'variable66', 'variable67', 'variable68
                    'variable71', 'variable72', 'variable73', 'variable74', 'variable75', 'variable76', 'variable77', 'variable78
                    'variable81', 'variable82', 'variable83', 'variable84', 'variable85', 'variable86', 'variable87', 'variable88
                    'variable91', 'variable92', 'variable93', 'variable94', 'variable95', 'variable96', 'variable97', 'variable98
9, 2631, 50, 40, 37, 20, 14, 12, 16, 8, 10\n11, 12, 5, 5, 11, 5, 8, 1, 2, 4, 3, 4, 10, 0\n5, 3, 2, 2, 3,
                   3, 0 \setminus n3, 1, 1, 1, 0, 3, 2, 1, 4, 1, 1, 4, 1, 3 \setminus n1, 3, 1, 3, 2, 1, 3, 1, 0, 5, 1, 0, 2, 0 \setminus n0, 3, 3, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1
                   0, 0 \setminus n3, 1, 0, 0, 1, 0, 2, 1, 1, 0, 2, 0, 2, 1 \setminus n0, 1, 3, 4, 0, 1, 1, 3, 5, 0, 2, 1, 1, 0 \setminus n0, 1, 6, 1, 0,
                   1, 1, 2, 1, 0, 0, 1, 0, 0 \setminus n1, 2, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1 \setminus n2, 3, 1, 1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 
                   0, 1 n1, 1, 0, 1, 0 nclass = variable2'),
                     Text(0.3273809523809524, 0.75, 'patepo \leq 1.5\ngini = 0.287\nsamples = 1947\nvalue = [2547, 145, 47, 35,
                   36, 10, 11, 10, 14, 8, 7, 7 \setminus n8, 3, 3, 5, 5, 8, 1, 2, 4, 3, 4, 6, 0, 3 \setminus n0, 1, 0, 3, 1, 1, 1, 5, 3, 0, 2, 0,
                   0, 1 \cdot n1, 2, 2, 0, 7, 0, 3, 2, 2, 0, 2, 0, 1, 2 \cdot n1, 0, 0, 5, 0, 1, 1, 0, 1, 1, 0, 2, 0, 0 \cdot n0, 0, 0, 0, 0
                   0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 4, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0\n0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0,
                   ss = variable1'),
                     Text(0.17857142857142858, 0.58333333333333334, 'royal <= 127000000.0\ngini = 0.157\nsamples = 1666\nvalue
                    = [2365, 82, 31, 30, 19, 4, 4, 3, 3, 0, 3, 4, 6\n0, 0, 2, 0, 3, 0, 1, 1, 2, 4, 0, 0, 0, 0\n0, 0, 2, 0, 0,
```

Conclusion

Accuracy

```
In [62]: print("Linear Regression:",lr.score(x_test,y_test))
    print("Ridge Regression:",rr.score(x_test,y_test))
    print("Lasso Regression",la.score(x_test,y_test))
    print("ElasticNet Regression:",en.score(x_test,y_test))
    print("Logistic Regression:",logr.score(fs,target_vector))
    print("Random Forest:",grid_search.best_score_)
```

Linear Regression: 0.9359440854000607 Ridge Regression: 0.9359433503141961 Lasso Regression 0.9365057709302195 ElasticNet Regression: 0.9361560503753533 Logistic Regression: 0.8764315852923448

Random Forest: 0.8815018945918016

Lasso Regression is suitable for this dataset