Introduction
Background and Theory
Method
Results and Discussion
Conclusion
Acknowledgments and References

A Monte Carlo Study of the Classical, Isotropic, 3D Heisenberg Model

Numerical Studies of Stochastic Spin Systems

Michael Conroy PHY 471 Capstone Project Spring 2014

Professor: Dr. Matthew Enjalran

May 2, 2014

Table of Contents

- Introduction
 - Goal
 - Brief Overview
- 2 Background and Theory
 - Statistical Mechanics
 - The Heisenberg Model
 - Monte Carlo Method
- Method
 - Implementation
- Results and Discussion
 - Data Plots
- Conclusion
- 6 Acknowledgments and References

Goal and Purpose

- Simulate the classical, isotropic, 3D Heisenberg Model on the simple cubic lattice
- Utilize the Monte Carlo method with the Metropolis Algorithm
- Compare simulation data to literature data
- Explore numerical analysis approach to the simulation

Heisenberg Model

- Continuous spin model
- Hamiltonian:

Hamiltonian:
$$H = -J \sum_{\langle ij \rangle}^{N} \vec{S_i} \cdot \vec{S_j},$$
 where $|\vec{S_i}| = 1$.

Applications

Magnetism and Magnetism in Statistical Mechanics

Magnetic Domains

• Paramagnetism, ferromagnetism, and antiferromagnetism

Fig. 11.58 Schematic representations of magnetic dipole arrangements in (a) paramagnetic, (b) ferromagnetic, and (antiferromagnetic materials.

Phase Transitions

- Critical Temperature: $\beta_c \approx 0.69$ or $T_c \approx 1.45 K$
- Order Parameter

Numerical Analysis

- No analytic solutions
- Intractable problems
- Monte Carlo simulations
 - Importance sampling

Statistical Mechanics

- Canonical Ensemble
- Boltzmann Distribution: $p_{\mu} = \frac{1}{Z(\beta)} e^{-\beta E(\mu)}$
- Partition Function: $Z(\beta) = \sum_{\mu} e^{-\beta E(\mu)}$
- Most macroscopic thermodynamic variables of a system can be expressed by the partition function or its derivatives!
- For example, energy, specific heat, entropy, free energy...

Calculating the Physical Quantities

- How do we calculate the required physical quantitites of the Heisenberg Model?
- Energy and specific heat:

$$E = -\frac{J}{2} \sum_{\langle ij \rangle}^{N} \vec{S}_i \cdot \vec{S}_j$$
 (factor of $\frac{1}{2}$ for double counting)
 $C = k\beta^2 (\langle E^2 \rangle - \langle E \rangle^2)$

Magnetization:

$$m_{rms} = \sqrt{M_{x}^2 + M_{y}^2 + M_{z}^2},$$
 where $M_{lpha} = rac{1}{N} \sum_{i} ec{S_{ilpha}}$

Application of Metropolis Monte Carlo

- Numerical Analysis
 - No analytic solution or intractable
- Pseudo-random number generation
- Monte Carlo Simulation
 - Importance sampling: must satisfy Markov processes, ergodicity, and detailed balance
 - Metropolis importance sampling scheme/algorithm
 - Choose initial state
 - Choose a site
 - \odot Calculate ΔE if "flip" the spin
 - If $\Delta E \leq 0$, accept "flip" and go to (7), otherwise (5)
 - **1 Solution** $\mathbf{S} = \mathbf{S} + \mathbf{S} +$
 - **1** If $r < \exp(-\beta \Delta E)$, accept "flip"
 - **O** Go to next site and go to (3)...
 - Acceptance Ratio

Implementation Software

- KISS: "Keep It Simple Stupid"
- Functional Approach in C
- 3D and 4D Pseudo-arrays of Pointers
- GNU GCC Compiler, Code::Blocks IDE

```
printf("Declaring 4D arrays...\n\n");
double ****lattice:
lattice = (double****)malloc(LENGTH * sizeof(double ***));
    if (lattice == NULL)
        printf("7: Out of memory!\n"):
        exit(7):
for(i = 0; i < LENGTH; i++)
    lattice[i] = (double***)malloc(LENGTH * sizeof(double**)):
        if (lattice == NULL)
           printf("8: Out of memory!\n");
            exit(8):
    for(j = 0; j < LENGTH; j++)
        lattice[i][j] = (double**)malloc(LENGTH * sizeof(double*)):
            if (lattice == NULL)
                printf("9: Out of memory!\n");
                exit(9):
        for (k = 0; k < LENGTH; k++)
            lattice[i][i][k] = (double*)malloc(Y SIZE * sizeof(double));
                if (lattice == NULL)
                    printf("10: Out of memory!\n");
                    exit(10):
```

Implementation Hardware

Workstation
 Lenovo IdeaPad Y580
 Intel i7-3630QM, 8-thread, 3.4 GHz (max, single core)
 16 GB ram, 256 GB SSD
 GeForce GTX 660M (overclocked to 1 GHz)
 Fedora 20 Linux, Scientific Spin

Simulation Machines
 Custom Built PCs
 AMD Opteron 6212, 16-thread, 3.2 GHz (max, ≤ 4 core)
 32GB ram, Fedora and Ubuntu Linux

Data Plots Energy

3D Heisenberg Model

Data Plots Magnetization

Data Plots Specific Heat

Data Plots Magnetic Susceptibility

 Susceptibility calculation not straightforward due to rotational invariance in 3D Heisenberg Model!

Conclusion

- Data matches predicted behavior
- Phase transition at critical temperature of $T_c \approx 1.45 K$
- Susceptibility not as straightforward to calculate as in the Ising Model
- Acceptance ratio oddity
- Programmatic concerns
 - Code in Fortran for readability, debugging, and intrinsic functions (but be careful!)
 - Fix arrays and possibly implement structures
 - Improve simulation run time! Optimize code!

Next Steps and Future Work

- Code improvements
- Susceptibility
 - Correlation function calculation
- GPU CUDA implementation
- Spin dynamics
- Magnetic frustration and other lattices
- Possible project: LED Cube visualization of 3D Ising model phase change

Acknowledgments and References

Acknowledgments

Tom Sadowski for his invaluable help with programming in C.

References

- Landau, D. P., Binder, K. (2009). A guide to Monte Carlo simulations in statistical physics (3rd ed.). Cambridge: Cambridge University Press.
- Newman, M. E., Barkema, G. T. (1999). Monte Carlo methods in statistical physics. Oxford: Clarendon Press;.
- Gould, H., Tobochnik, J. (2010). Statistical and thermal physics: with computer applications. Princeton, N.J.: Princeton University Press.
- Tangirala, Sairam. Monte Carlo Simulation of 1D Heisenberg
 Model. http://www.scribd.com/doc/50664110/Monte-Carlo-Simulation-of-1D-Heisenberg-Model
- arXiv:hep-lat/9301002

