Лабораторная работа №3

Структурные преобразования

Цель работы: изучить структурные методы линейных САУ.

Общие положения

В результате разбиения САУ на типовые звенья направленного действия и получения их передаточных функций, составляется структурная схема системы.

Структурная схема является математической моделью системы и отображает порядок прохождения сигналов управления и их преобразования в САУ. Пример структурной схемы представлен на рисунке 1.

Рисунок 1. Структурная схема

Структурные схемы реальных САУ, как правило, имеют сложный и запутанный вид. С целью упрощения структурной схемы и приведения ее к более удобному виду, производят структурные преобразования по определенным правилам.

1. Преобразование последовательного соединения звеньев

Передаточная функция n последовательно соединённых звеньев с передаточными функциями $W_i\left(p\right)$ $(i=\overline{1,n})$ равна произведению передаточных функций отдельных звеньев: $W\left(p\right) = \prod_{i=1}^n W_i\left(p\right)$.

Например, для двух последовательно соединенных звеньев с передаточными функциями $W_1(p)$ и $W_2(p)$, имеем эквивалентную ПФ $W(p) = W_1(p) \cdot W_2(p)$ (рисунок 2).

Рисунок 2. Преобразование последовательного соединения звеньев

2. Преобразование параллельного соединения звеньев

Передаточная функция n параллельно соединённых звеньев с передаточными функциями $W_i\left(p\right)$ $(i=\overline{1,n})$ равна сумме передаточных функций отдельных звеньев: $W\left(p\right) = \sum_{i=1}^n W_i\left(p\right)$.

Так, для двух последовательно соединенных звеньев с передаточными функциями $W_1(p)$ и $W_2(p)$, имеем эквивалентную ПФ $W(p) = W_1(p) + W_2(p)$ (рисунок 3).

Рисунок 3. Преобразование параллельного соединения звеньев

3. Преобразование обратной связи

Передаточная функция системы с отрицательной обратной связью (рисунок 4) равна дроби, в числителе которой стоит передаточная функция прямого канала $W_1(p)$, а знаменатель представляет собой сумму единицы и произведения $W_1(p)$ и передаточной функции канала обратной связи $W_2(p)$:

$$W(p) = \frac{W_1(p)}{1 + W_1(p) \cdot W_2(p)}.$$

$$\frac{g}{W_1} \qquad \frac{y}{W_2}$$

Рисунок 4. Преобразование отрицательной обратной связи

В случае положительной обратной связи формула принимает вид:

$$W(p) = \frac{W_1(p)}{1 - W_1(p) \cdot W_2(p)}.$$

По передаточным функциям отдельных блоков можно построить общую $\Pi\Phi$ системы, связывающую изображения входного и выходного сигналов.

Пример 2. Выполнить преобразования структурной схемы, приведенной на рисунке 1.

1. Преобразование параллельного соединения блоков с передаточными функциями W_1 и W_2 : $W_5 = W_1 + W_2$ (рисунок 5).

Рисунок 5

2. Преобразование последовательного соединения блоков с передаточными функциями W_5 и W_3 : $W_6 = W_5 W_3$ (рисунок 6).

3. Преобразование отрицательной обратной связи: $W_7 = \frac{W_6}{1 + W_6 \, W_4}$ (рисунок 7).

$$\frac{g}{W_7}$$
 > Pucyнoк 7

. TT #

После подстановок получаем ПФ системы

$$W = W_7 = \frac{W_1 W_3 + W_2 W_3}{1 + W_1 W_3 W_4 + W_2 W_3 W_4}.$$

Эквивалентность структурных преобразований можно проверить путем сравнения реакции на одинаковое входное воздействие исходной и

преобразованной структурной схемы. Если выполненные преобразования эквивалентны, то реакции должны быть одинаковыми. Соответственно, на выходе структуры (рисунок 8), соответствующей рассматриваемому примеру, должен получиться нулевой сигнал у при любом входном воздействии g.

Рисунок 8. Проверка эквивалентности структурных преобразований

Переход от дифференциальных уравнений к структурным схемам

Динамическая система (ДС) описывается системой n обыкновенных дифференциальных уравнений (ОДУ) или одним ОДУ n-го порядка.

Пусть ДС задана ОДУ n-го порядка:

$$a_n \frac{d^n y(t)}{dt^n} + a_{n-1} \frac{d^{n-1} y(t)}{dt^{n-1}} + \dots + a_1 \frac{d y(t)}{dt} + a_0 y(t) = b_0 g(t). \tag{1}$$

Состояние ДС однозначно определяется значениями n величин: y, $y^{(1)}$, $y^{(2)}$, ..., $y^{(n-1)}$ — значениями выходной координаты и её производных до (n-1)-го порядка включительно. Эти переменные называются переменными состояния.

Самый распространенный способ нахождения значений переменных состояния — понижение порядка производной. Уравнение (1) необходимо разрешить относительно старшей производной выходной координаты у:

$$\frac{d^{n}y(t)}{dt^{n}} = \frac{1}{a_{n}} \left[b_{0} g(t) - a_{n-1} \frac{d^{n-1}y(t)}{dt^{n-1}} - \dots - a_{1} \frac{dy(t)}{dt} - a_{0} y(t) \right]. \tag{2}$$

По полученному выражению для старшей производной разрабатывается структурная схема (рисунок 9). Принцип разработки весьма прост. На входы сумматора с (n+1) входом подаются все слагаемые,

определяющие
$$\frac{d^n y(t)}{dt^n}$$
 с учетом знака. Для получения $\frac{d^n y(t)}{dt^n}$ результат

суммирования умножается на $\frac{1}{a_n}$. Затем выстраивается последовательная

цепочка из n интеграторов для получения младших производных y, включая нулевую. Необходимые входы сумматора формируются с помощью обратных связей, в которых осуществляется умножение переменных состояния на соответствующие коэффициенты исходного уравнения.

Рисунок 9. Структурная схема, соответствующая уравнению (1)

Порядок выполнения работы

- 1. Изучить теоретический материал.
- 2. Выполнить элементарные структурные преобразования (последовательное и параллельное соединения, положительная и отрицательная обратная связь) в соответствии с вариантом (таблицы 2 и 3). Проверить эквивалентность преобразований. Получить дифференциальные уравнения для построенных систем.

- 3. Собрать структурную схему в соответствии с вариантом (рисунок 10, таблицы 2 и 4).
- 4. Выполнить структурные преобразования. Получить результирующую ПФ.
 - 5. Получить ДУ САУ.
- 6. Численным моделированием проверить эквивалентность структурных преобразований.

Дополнительные задания

- 1. Собрать структурную схему из элементарных звеньев, соответствующую передаточной функции. ПФ задается преподавателем.
- 2. Представить $\Pi\Phi$ в виде суммы $\Pi\Phi$ типовых звеньев. Исходная $\Pi\Phi$ задается преподавателем.

Содержание отчета

- 1. Титульный лист.
- 2. Цель работы.
- 3. Вариант задания.
- 4. Результаты выполнения элементарных структурных преобразований.
 - 5. Схемы и результаты проверки эквивалентности преобразований.
 - 6. Исходная структурная схема в соответствии с вариантом.
 - 7. Структурные преобразования по шагам.
 - 8. Результирующая структурная схема и ПФ.
 - 9. Вывод ДУ САУ.
- 10. Структурная схема для проверки эквивалентности структурных преобразований. Результаты проверки.
 - 11. Выводы.

Контрольные вопросы

- 1. Основная цель работы.
- 2. Структурные преобразования (смысл, правила).
- 3. Как проверить эквивалентность преобразований?
- 4. Получение ДУ по передаточной функции САУ.
- 5. Переход от ДУ к структурной схеме.

Таблица 1

Названия типовых звеньев

№ n/n	Наименование звена
1	Пропорциональное
2	Идеальное интегрирующее
3	Инерционное интегрирующее
4	Инерционное звено первого порядка (апериодическое)
5	Инерционное звено второго порядка
6	Идеальное дифференцирующее
7	Инерционное дифференцирующее

Таблица 2

Параметры типовых звеньев

λ	<u>′o</u>	Вариант										
звена		1	2	3	4	5	6	7	8	9	10	
1	k	2.5	3	1.5	5	12	7.5	4	9	0.1	2	
2	k	4.5	0.2	3	5.2	4	1.7	6	5.5	12	5	
3	T	0.1	7.5	15	1	5	0.01	10	4.5	0.3	3	
3	k	3	5	0.2	4	12	11	7	12	8	1	
4	T	10	0.01	9	0.05	8	0,1	7	0,5	2,5	1	
4	k	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	
	T_{2}^{2}	20	9	2	0.2	16	19	4	0.1	4	8	
5	T_1	1	0	9	3	2	2	0	4	4	5	
	k	5	12	7	4	19	15	45	12	4	3	
6	k											
7	T	1.1	8.5	16	2	6	1.01	11	5.5	1.3	4	
	k	4	6	1.2	5	13	12	8	12	9	2	

Таблица 3 Соответствие типовых звеньев звеньям шаблонов элементарных структурных преобразований

ПФ	Вариант										
	1	2	3	4	5	6	7	8	9	10	
W_1	3	7	5	4	3	5	4	2	5	4	
W_2	2	2	7	5	4	3	7	3	2	3	

Рисунок 10. Шаблон структурной схемы

 Таблица 4.

 Соответствие типовых звеньев звеньям шаблона структурной схемы

ПФ	Вариант											
	1	2	3	4	5	6	7	8	9	10		
W_1	1	7	5	4	3	2	1	2	3	4		
W_2	2	1	7	5	4	3	7	1	2	3		
W_3	3	2	1	7	5	4	5	7	1	2		
W_4	4	3	2	1	7	5	4	5	7	1		
W_5	5	4	3	2	1	7	3	4	5	7		
W_6	7	5	4	3	2	1	2	3	4	5		