CC4102 - Diseño y Análisis de Algoritmos Auxiliar 7

Prof. Gonzalo Navarro; Aux. Mauricio Quezada

26 de Diciembre, 2011

1 El problema de los k servidores

Considere el escenario donde tiene k puntos (servidores) en un espacio métrico (donde está definida una función de distancia d: simétrica, no-negativa y que cumple la desigualdad triangular) y una secuencia de puntos (peticiones) que debe atender. Cada vez que llega una petición, un servidor debe moverse hacia esa posición.

El problema *online* consiste en minimizar la distancia recorrida por todos los servidores luego de n peticiones, sin saber la secuencia de puntos a atender.

Recuerde que un algoritmo online ALG es r-competitivo si existe una constante a tal que para cualquier instancia I y el algoritmo óptimo OPT,

$$cost_{ALG}(I) \le r \cdot cost_{OPT}(I) + a$$

Donde r es el radio competitivo.

- 1. Sea ALG un algoritmo online para el problema de los k servidores bajo un espacio métrico arbitrario con al menos k+1 puntos. Pruebe que el radio competitivo de ALG es al menos k.
- 2. Para el siguiente análisis competitivo, necesitamos usar una conocida herramienta, la función potencial. Una función Φ es una función de potencial que demuestra un radio competitivo r de un algoritmo ALG si satisface las siguientes condiciones:
 - \bullet Φ es nonegativa
 - Cada respuesta a una petición a OPT incrementa Φ no más de r veces el costo cargado a OPT por esa respuesta.
 - Cada respuesta a una petición a ALG disminuye el potencial por al menos el costo cargado a ALG por esa respuesta.

Por lo que, un algoritmo es r-competitivo, si existe una función de potencial Φ para r>0 que cumple las propiedades anteriores.

Considere el problema de k servidores en una linea (un espacio de dimensión 1) y el siguiente algoritmo:

 Si todos los servidores están a un lado de la petición, entonces envía el servidor más cercano a ella. • Si una petición se encuentra entre dos servidores, envía los dos servidores a velocidad constante, y se detienen cuando uno de ellos llega a su objetivo.

Finalmente, de una función de potencial Φ que demuestre un radio competitivo de k para este algoritmo.

1.1 Solución

1.1.1 Parte I

Suponga, sin pérdida de generalidad, que ALG mueve sólo un servidor tras cada petición y que cada uno de los k servidores comienzan en lugares distintos. Escoja un subespacio del espacio métrico con las k posiciones más una arbitraria. Sea d_{ij} la distancia entre los puntos i y j.

Mostraremos cómo un adversario puede escoger una secuencia de peticiones σ_n tal que el costo de ALG sea al menos k veces el costo de un algoritmo óptimo. La elección es simple, el adversario escogerá el siguiente punto como uno no cubierto por ALG. El costo total de ALG es entonces:

$$cost_{ALG}(\sigma_n) = \sum_{i=1}^{n} d(\sigma(i+1), \sigma(i))$$

Donde $\sigma(i)$ es la petición *i*-ésima. Como sabemos que en la petición (i+1)-ésima el adversario escogerá la ubicación vaciada por ALG en la petición *i*-ésima, por lo que el movimiento será de $\sigma(i+1)$ a $\sigma(i)$.

Para mostrar que ALG es k-competitivo, mostraremos que existe un algoritmo que puede servir la secuencia por 1/k del costo.

Para esto, considere k algoritmos que se comportan de la misma forma y que sólo difieren en dónde comienzan los servidores de cada uno. Existen $\binom{k+1}{k} = k+1$ formas de escoger las k posiciones iniciales. De ellas, k tendrán un servidor en $\sigma(1)$. Esas k posibilidades serán las posiciones iniciales de los k algoritmos.

Si el adversario ya tiene un servidor en la ubicación pedida, entonces no hará nada. Si el request $\sigma(n)$ no está ocupado por alguno de los servidores del adversario, lo moverá desde la ubicación $\sigma(n-1)$. Note que tras cada petición, cada uno de los k algoritmos tendrá distintas configuraciones de servidores (el conjunto de las ubicaciones de éstos).

Al comienzo está claro que las configuraciones son distintas. Asuma que es cierto hasta la petición $\sigma(n-1)$ y comparemos dos algoritmos. Antes de la petición $\sigma(n)$ tendrán configuraciones distintas.

- Si ambos tienen un servidor en esa posición, no harán nada y tendrán configuraciones distintas.
- Si ninguno tiene un servidor ahí, ambos moverán el servidor en $\sigma(n-1)$ hacia $\sigma(n)$ y seguirán teniendo configuraciones distintas.
- Si uno de los dos tiene un servidor ahí, pero el otro no, entonces éste moverá su servidor de $\sigma(n-1)$ a $\sigma(n)$. El otro dejará su servidor donde está, por lo que tendrán configuraciones distintas.

Con esto, la idea es ver el costo total de los k algoritmos si los ejecutáramos simultáneamente. No hay costo en la primera petición pues todos ellos tendrán ya un servidor en $\sigma(1)$. Luego de n-1 peticiones, cada uno de los k algoritmos tendrá un servidor en $\sigma(n-1)$. Como cada algoritmo

tiene sus servidores en distintas configuraciones, y como ningún algoritmo tiene dos servidores en la misma posición al mismo tiempo, tenemso que todos menos un algoritmo tendrá un servidor en $\sigma(n)$. El costo en ese caso será de $d(\sigma(n-1), \sigma(n))$. Por lo tanto, el costo total de correr los k algoritmos sobre la secuencia σ_n es

$$\sum_{i=2}^{n} d(\sigma(i-1), \sigma(i))$$

Como el costo de los k algoritmos no es mayor que el de ALG, entonces al menos uno de ellos no tendrá costo mayor que $cost_{ALG}(\sigma_n)/k$, por lo que el radio competitivo es k.

1.1.2 Parte II

Sean a_1, \ldots, a_k los servidores del adversario y s_1, \ldots, s_k los de nuestro algoritmo. Usaremos tanto a_j como s_j para denotar la posición de cada servidor en la recta real (por lo que habrá que renombrarlos cada vez que se sobrepasen).

Definamos Φ como

$$\Phi = \Psi + \Theta$$

donde

$$\Psi = k \sum_{i} |a_i - s_i|$$

у

$$\Theta = \sum_{i < j} |s_i - s_j|$$

Asumiremos, sin pérdida de generalidad, que el adversario no mueve más de un servidor por petición. Consideremos los distintos casos que pueden ocurrir:

- El adversario puede mover un servidor a_i una distancia d incurriendo un costo d. Si se acerca al servidor s_i , entonces Ψ disminuirá en kd. Si se aleja de s_i , Ψ aumentará kd. En cualquier caso, $\Delta \Psi \leq kd$ y por lo tanto $\Delta \Phi \leq kd$.
- Cuando nuestro algoritmo mueve un servidor, tenemos dos casos:
 - Cuando mueve uno solo, puede ser s_1 o s_k . Asumamos que mueve s_1 a la izquierda una distancia d. Como el adversario ya respondió a esa solicitud, tendrá a a_1 a la izquierda de s_1 , por lo que Φ disminuye exactamente d, el costo nuestro algoritmo, ya que Ψ disminuirá en kd y Θ aumentará en (k-1)d.
 - En el caso en el que mueve dos servidores hacia una petición, supongamos que mueve a s_i y a s_{i+1} y que a_j es un servidor del adversario que ya está en la posición pedida. Si $j \leq i$, entonces s_i que se mueve hacia a_j también se mueve hacia a_i , en este caso, Ψ no aumenta debido a que cada incremento causado por el movimiento de s_{i+1} es cancelado por el movimiento de s_i . Si $j \geq i+1$, entonces los roles de s_i y s_{i+1} se intercambian y tenemos que Ψ no aumenta.

Falta mostrar que Θ disminuirá lo suficiente para pagar el movimiento de los dos servidores. Dado que cada servidor s_j , $j \neq i, i+1$ está o a la izquierda de ambos o a la derecha de ambos, tenemos que uno de los servidores se mueve hacia s_j y el otro se aleja. Luego la suma $|s_j - s_i| + |s_j - s_{i+1}|$ se mantiene constante durante la fase. El único término en Θ que no hemos contado es $|s_i - s_{i+1}|$. Este término disminuirá exactamente el costo del movimiento durante esta fase.

2 Buscando la casa

De repente, usted despierta en medio de una carretera desierta y no sabe dónde está. Además tiene sed y dolor de cabeza, y no recuerda cómo llegó ahí. Lo único que sabe es que su casa está en algún lugar de la carretera, pero no sabe en cuál dirección ir. Además, debido al sol y al dolor de cabeza no puede ver bien y sólo se daría cuenta de que está en el lugar correcto una vez estando ahí.

Para facilitarle las cosas, suponga que la carretera es una recta infinita y que usted está en x = 0 y que su casa está en x^* , con $|x^*| > 1$.

- 1. De un algoritmo determinista para encontrar el punto x^* que sea 9-competitivo.
- 2. De un algoritmo aleatorizado basado en su estrategia anterior, y calcule el radio competitivo.

2.1 Solucion

2.1.1 Parte I

Considere la estrategia A_m de de buscar la casa en fases. Las fases comienzan con i = 0, comenzando en el origen, y caminar una distancia $(-m)^i$ y luego volver al origen, deteniéndose antes si se llega al objetivo. En cada fase en la cual no se encuentre el objetivo, se habrá recorrido una distancia $2m^i$.

Dividamos las posibles ubicaciones en regiones 1, 2, ..., k donde la región k satisface $m^{k-1} < |x^*| \le m^k$. Suponga que $|x^*|$ cae en la región k. Entonces no habrá encontrado el punto sino hasta la fase k. Si tenemos suerte, entonces $-(-m)^{k-1} < x^* \le (-m)^k$ y encuentra la casa en la fase k, por lo que la distancia recorrida es

$$A_m(x^*) = \sum_{i=0}^{k-1} 2m^i + |x^*| = 2\frac{m^k - 1}{m-1} + |x^*|$$

Si no tenemos suerte, entonces no encontraremos la casa sino hasta la fase k+1, por lo que

$$A_m(x^*) = \sum_{i=0}^{k} 2m^i + |x^*| = 2\frac{m^{k+1} - 1}{m - 1} + |x^*|$$

Como el adversario tratará de maximizar el costo, pondrá la casa en el lado desafortunado, por lo que el radio será

$$r = \frac{2}{|x^*|} \left(\frac{m^{k+1} - 1}{m - 1} \right) + 1$$

Como asumimos que $|x^*|$ cae en la región k, el peor radio para la región k ocurre si el adversario pone la casa a distancia $m^k + \epsilon$ del origen, por lo tanto,

$$r < 2\left(\frac{m^2 - \frac{1}{m^{k-1}}}{m-1}\right) + 1$$

Cuando k tiende a infinito, el radio entonces está dado por

$$r = 2\left(\frac{m^2}{m-1}\right) + 1$$

Derivando e igualando a 0,

$$\frac{dr}{dm} = 0 = 2\frac{x(x-2)}{(x-1)^2}$$

Tenemos que cuando m=2, r=9, por lo que la estrategia de duplicar la distancia recorrida es 9-competitiva.

2.1.2 Parte II

Como el adversario puede escoger a priori la dirección en la cual estará la casa para aumentar nuestro costo, podemos evitarlo escogiendo al azar al comienzo hacia qué dirección ir¹.

Al comienzo, lanzamos una moneda equilibrada: si sale cara, en cada fase i caminamos desde 0 hasta $(-m)^i$ y volvemos. Si sale sello, entonces en cada fase i caminamos desde 0 hasta $-(-m)^i$ y volvemos. Usando el análisis anterior y tomando la esperanza², tenemos:

$$r = \frac{1}{2} \left(\frac{2}{|x^*|} \left(\frac{m^k - 1}{m - 1} \right) + 1 \right) + \frac{1}{2} \left(\frac{2}{|x^*|} \left(\frac{m^{k+1} - 1}{m - 1} \right) + 1 \right)$$
$$= 1 + \frac{1}{|x^*|} \left(\frac{m^k + 1 + m^{k-1} - 2}{m - 1} \right)$$

Escogiendo $|x^*| = m^k + \epsilon$ y haciendo tender k a infinito, tenemos

$$r < 1 + \frac{m^2 + m}{m - 1}$$

Si escogemos m=2, el radio competitivo es entonces r=7. Si derivamos e igualamos a 0, tenemos que cuando $m=1+\sqrt{2}\approx 2.414$, el radio competitivo es $r=4+2\sqrt{2}\approx 6.8284$.

3 Footnotes

¹En ciertos modelos, el adversario **sí** puede saber las elecciones aleatorias del algoritmo. Para este caso, consideraremos un *oblivious adversary* que no conoce las elecciones aleatorias y sólo puede fijar el input.

 $^{^{2}}$ En este caso, un algoritmo aleatorizado es r-competitivo si el valor esperado del costo del algoritmo es menor o igual que r veces el costo del óptimo más una constante.