P8160 Group Project Presentation Optimization and Bootstrap

Xinlei Chen, Guojing Wu, Yujing Yao

Department of Biostatistics, Columbia University

April 19, 2019

Introduction

2 Project: Optimization

Project: Bootstrap

Introduction

Introduction of Today's Presentation

- Group project 2: Optimization algorithms on a breast cancer diagnosis dataset
- Build a predictive model based on logistic regression to faciliate cancer diagnosis
- Compare methods including Newton Raphson, Gradient Decent with general logistic regression and Pathwise Coordinate Descent with regularized logistic regression
- Group project 3: Bootstrapping on developing classification model
- Build a predictive model based on regularized logistic regression to faciliate down syndrome diagnosis
- Compare methods including Pathwise Coordinate Descent and smoothed bootstrap estimation

Background Method Result Conclusion

Project: Optimization

Background Method Result Conclusion

Background

Breast Cancer Data

- The data breast-cancer.csv 33 columns.
- Covariate "ID" lables individual breast tissue images
- Covariate "Diagnonsis" indentifies if the image is coming from cancer tissue or benign cases.
- Mean, standard deviation and the largest values of the distributions of 10 features are computed for the cellnuclei for each case.
- Have 569 row
- There are 357 benign and 212 malignant cases.

Multicollinearity of the Dataset

- Variable Selection: Reduce multicollinearity based on:
- o correlation coefficient ≤ 0.7
- eigenvalue of correlation matrix ≥ 0.01

Background Method Result Conclusion

Method

Logistic Regression Model

- Notations
- *y*: the vector of *n* response random variable
- X: the $n \times (p+1)$ design matrix (X_i denote the ith row)
- β : the $(p+1) \times 1$ coefficient vector
- Objective function: maximize log-likelihood function

$$\max_{\beta \in \mathbb{R}^{p+1}} \sum_{i=1}^{n} \{ y_i(X_i\beta) - \log(1 + \exp(X_i\beta)) \}$$

• Gradient: $\nabla I(\beta) = X^T(y-p)$, Hessian: $\nabla^2 I(\beta) = -X^T W X$ where $p = \frac{\exp(X\beta)}{1+\exp(X\beta)}$, $W = diag(p_i(1-p_i))$, $i = 1, \cdots, n$. The Hessian is negative definite.

Newton Raphson Algorithm

Newton Raphson with step-halving

$$\beta_{i+1}(\gamma) = \beta_i - \gamma [\nabla^2 I(\beta_i)]^{-1} \nabla I(\beta_i)$$

- Algorithm
- initilize the estimates denoted as β_0
- use the principle of newton raphson to update the estimate, the algorithm of optimizing the step size is
 - Set $\gamma = 1$
 - If $f(\theta_{i+1}(1)) \geq f(\theta_i)$, then set $\theta_{i+1} = \theta_{i+1}(1)$
 - If $f(\theta_{i+1}(1)) \le f(\theta_i)$, search for a value $\gamma \in (0,1)$ for which $f(\theta_{i+1}(\gamma)) \ge f(\theta_i)$, set $\theta_{i+1} = \theta_{i+1}(\gamma)$
- stop searching until the convergences of the estimates
- Gradient Descent

$$\beta_{i+1} = \beta_i + H_i \nabla f(\beta_i)$$

LASSO with Pathwise Coordinate Descent

• **Objective function**: minimize the penalized cost function with some $\lambda > 0$:

$$\min_{\beta \in \mathbb{R}^{p+1}} \left\{ \frac{1}{2n} \sum_{i=1}^{n} (z_i - \sum_{j=0}^{p} x_{i,j} \beta_j)^2 + \lambda P(\beta) \right) \right\}$$

Coordinate-wise descent with weighted update:

$$\tilde{\beta}_{j}^{\textit{lasso}}(\lambda) \leftarrow \frac{S(\sum_{i=1}^{n} \omega_{i} x_{i,j} (y_{i} - \tilde{y_{i}}^{(-j)}), \lambda)}{\sum_{i=1}^{n} \omega_{i} x_{i,j}^{2}}$$

where
$$\tilde{y_i}^{(-j)} = \sum_{k \neq j} x_{i,k} \tilde{\beta}_k$$
 and $S(\hat{\beta}, \lambda) = sign(\hat{\beta})(|\hat{\beta}| - \lambda)_+$

Logistic-LASSO Model

Object function:

$$\max_{\beta \in \mathbb{R}^{p+1}} \frac{1}{n} \sum_{i=1}^{n} \{ y_i(X_i\beta) - \log(1 + \exp(X_i\beta)) \} - \lambda \sum_{j=0}^{p} |\beta_j|$$

 Quardratic approximation to the negative log likelihood by taylor expansion

$$f(\beta) = -\frac{1}{2n} \sum_{i=1}^{n} w_i (z_i - \sum_{j=0}^{p} x_{i,j} \beta_j)^2 + C(\tilde{\beta})$$

where

$$z_i = \tilde{\beta}_0 + x_i^T \tilde{\beta} + \frac{y_i - \tilde{p}(x_i)}{\tilde{p}(x_i)(1 - \tilde{p}(x_i))}$$
, working response $w_i = \tilde{p}(x_i)(1 - \tilde{p}(x_i))$, working weights

Logistic-LASSO Model with Pathwise Coordinate Descent Algorithm

- Algorithm
- outer loop: start with λ that all the coefficients are forced to be zerp, then decrement λ ;
- middle loop: update the quardratic $f(\beta)$ using the current estimates of parameters;
- inner loop: run the coordinate descent algorithm on the penalized weighted least square problem.

Background Method Result Conclusion

Result

Estimation Path and Cross Validation for LASSO

Model Comparison: Prediction Performance

Table 1: The comparison of performance for estimation algorithms and models

	GLM package	Newton Raphson	Gradient Decent	Logistic Lasso	Lasso package
iteration times	NA	12	1001	100	NA
MSE	0.02	0.02	0.02	0.02	0.02

^a Dataset: Breast Cancer Diagnosis

Model Comparison: Estimation

	GLM package	Newton Raphson	Gradient Decent	Logistic Lasso	Lasso package
radius_mean	4.43	4.43	3.18	2.63	2.71
texture_mean	1.89	1.89	1.34	1.29	1.37
smoothness_mean	0.78	0.78	0.47	0.00	0.00
compactness_mean	-1.14	-1.14	-0.59	0.00	0.00
symmetry_mean	-0.63	-0.63	-0.44	-0.10	-0.14
fractal_dimension_mean	-0.66	-0.66	-0.72	-0.14	-0.21
radius_se	5.13	5.13	3.28	2.50	2.58
texture_se	0.59	0.59	0.46	0.00	0.00
smoothness_se	1.10	1.10	0.77	0.00	0.00
compactness_se	-0.80	-0.80	-0.68	-0.33	-0.38
concavity_se	1.24	1.24	0.88	0.08	0.19
concave.points_se	-1.11	-1.11	-0.80	0.00	0.00
symmetry_se	-0.53	-0.53	-0.39	-0.36	-0.42
fractal_dimension_se	-2.73	-2.73	-1.55	-0.25	-0.31
smoothness_worst	0.31	0.31	0.31	0.86	0.92
concave.points_worst	5.13	5.13	3.65	2.48	2.62
symmetry_worst	1.60	1.60	1.28	0.97	1.06
fractal_dimension_worst	2.19	2.19	1.41	0.00	0.00
intercept	-0.62	-0.62	-0.71	-0.63	-0.77

^a Dataset: Breast Cancer Diagnosis

Background Method Result Conclusion

Conclusion

Conclusion and Discussion

- The results of our methods are consistent to the estimation from R's built-in packages
- Newton-Raphson has the convincing estimation and it converged quickly
- Gradient decent method showed similar estimation as Newton-Raphson method but it was less efficient
- For logistic lasso, according to the result of 5-fold cross validation and estimation result, the λ with the lowest MSE and it shrunk six parameters to zero, which is comparable to the result by R's built-in packages.
- Prediction capability of logistic regression and penalized logistic regression are similar

Background Method Result Conclusion

Project: Bootstrap

Background Method Result Conclusion

Background

Down Syndrome Data

- The data Down.csv has 1080 rows and 79 columns
- MouseID identifies individual mice
- 2-78 are the expression levels of 77 proteins/protein modifications that produced detectable signals in the nuclear fraction of cortex.
- Column 79 indicates whether the mouse is a control or has Down syndrome.
- The goal is to develop classification model based on the proteins expression levels.

Missingness of the Dataset

- Variable Selection:
- ullet Delete variables with high missing rate ($\geq 15\%$)
- ullet For those covariates with missing rate < 15%, we assumed them to be missing completely at random(MCAR)
- Regularized method is applied due to the intrinsic correlation between individual proteins

Missingness Plot

Background Method Result Conclusion

Method

Eestimation Methods with Regularized Logistic Regression

- Pathwise Coordinate Descent Algorithm based on the dataset
- Smoothed Bootstrap
- ullet We define lasso logistic regression models with different λ s are considered different models. All models are wrong
- idea of Bagging: average the model estimators
 - bootstrap data from the original dataset
 - cross validation and select the best λ_i^* for each repetition
 - calculate average $\lambda^* = \frac{1}{B} \sum_{i=1}^{B} \lambda_i^*$

Smoothed Bootstrap Estimation and Inference

- Point estimation
- for each bootstrap, get the best model and estimate $t(y^*)$
- ullet smooth $\hat{\mu}=t(y)$ by averaging over replications, defining

$$\tilde{\mu} = s(y) = \frac{1}{B} \sum_{i=1}^{B} t(y^*)$$

Inference: the nonparametric delta-method estimate of sd:

$$\tilde{sd}_B = \left[\sum_{j=1}^n c\hat{o}v_j^2\right]^{1/2}$$

where

$$c\hat{o}v_j = \sum_{i=1}^{B} (Y_{ij}^* - Y_{.j}^*)(t_i^* - t_.^*)/B$$

with
$$Y_{ij}^* = \sum_{i=1}^B Y_{ij}^* / B$$
 and $t_{i}^* = \sum_{i=1}^B t_{i}^* / B = s(y)$.

Background Method Result Conclusion

Result

Pathwise Coordinate Descent with Logistic-LASSO

Logistic-LASSO with Smooth Bootstrap

Discrepancy between results of LASSO with PCD and smoothed bootstrap estimation in both prediction and finding the best λ , the PCD is deviated from the center of empirical distribution.

Cross Validation for Model Prediction Comparison

We used 10 fold **cross-validation** to compare two models

- ullet one is with λ selected from data
- the other is selected by smoothed bootstrap

Table 2: The comparison of performance for two models

	Misclassification rate	Mean squred error
Penalty chosen by data	0.0353	0.0229
Penalty selected from smoothed bootstrap	0.0335	0.0216

^a Dataset: Proteins expression levels of Down syndrome

Background Method Result Conclusion

Significant Proteins Selection by Smoothed Bootstrap Estimation

Our identification criterions are:

- selected probability: the probability of certain protein selected during the bootstrap
- the chosen probability greater than 96%
- confidence interval:
- percentile confidence interval by using quantile function of the bootstrap empirical distribution
- smoothed confidence interval calculated as proposed $\tilde{\mu} \pm 1.96 \cdot \tilde{sd}_B$
- both CI exclude zero

Based on that, we got 27 proteins that meets these two criterions.

Significant Proteins with Bootstap n=5000

	origin	prob	coef	sd	lower	upper	lower.new	upper.ne
ITSN1_N	7.9040	1.00	9.6725	2.1862	4.4201	16.9149	5.3875	13.957
pELK_N	-2.1788	0.99	-2.7419	1.1203	-6.1524	-0.4194	-4.9377	-0.546
pNR1_N	-2.4536	0.96	-2.6193	1.2315	-5.9502	0.0000	-5.0330	-0.205
pRSK_N	-2.4102	1.00	-2.8974	0.7656	-5.2917	-1.1120	-4.3980	-1.396
AKT_N	2.7674	1.00	3.3722	0.8799	1.2074	6.0927	1.6476	5.096
BRAF_N	-4.8560	1.00	-5.6899	1.7241	-10.9610	-1.8681	-9.0691	-2.310
CAMKII_N	-1.5901	0.99	-2.3111	0.8889	-4.9441	-0.3901	-4.0533	-0.568
CREB_N	-1.2469	0.98	-1.3510	0.5539	-2.9474	-0.0163	-2.4366	-0.265
ELK_N	-3.6872	1.00	-4.6751	1.0545	-8.0746	-2.1847	-6.7419	-2.608
ERK_N	-7.4243	1.00	-8.7471	1.6856	-14.5871	-4.7828	-12.0509	-5.443
MEK_N	1.3308	0.98	1.6328	0.7152	0.0194	3.6599	0.2310	3.034
TRKA_N	3.7756	1.00	5.5845	2.1337	2.0454	11.9326	1.4024	9.766
APP_N	5.3514	1.00	7.8719	1.4402	5.0187	13.0828	5.0491	10.694
MTOR_N	-2.3190	0.99	-2.8751	0.9748	-5.7528	-0.7263	-4.7857	-0.964
DSCR1_N	1.2781	0.98	1.5514	0.6235	0.0022	3.3412	0.3293	2.773
RAPTOR_N	-1.7634	0.96	-2.1489	1.0112	-4.9061	0.0000	-4.1309	-0.166
TIAM1_N	2.7743	1.00	3.4095	1.0557	1.1476	6.4593	1.3403	5.478
NUMB_N	1.4306	0.98	1.8409	0.8104	0.0385	4.1741	0.2525	3.429
ERBB4_N	1.4902	1.00	2.0181	0.5463	0.7995	3.6211	0.9474	3.088
Tau_N	1.5522	1.00	2.2831	0.5607	1.0326	4.3017	1.1841	3.382
GluR3_N	-1.3348	1.00	-1.7384	0.4746	-3.2161	-0.7186	-2.6686	-0.808
IL1B_N	-1.4177	0.99	-1.9549	0.6874	-4.1387	-0.4795	-3.3022	-0.607
P3525_N	1.0465	0.97	1.2122	0.5624	0.0000	2.7394	0.1099	2.314
Ubiquitin_N	0.9464	0.97	1.3435	0.6419	0.0000	3.1608	0.0854	2.601
SHH_N	-1.5405	1.00	-1.9631	0.5122	-3.6381	-0.8420	-2.9670	-0.959
SYP_N	-0.9364	0.99	-1.2874	0.4838	-2.6677	-0.1815	-2.2356	-0.339
CaNA N	1.7695	0.99	2.3003	0.7909	0.4918	4.8228	0.7501	3.850

a origin: estimation from PCD-LASSO

^b prob: chosen probability from bootstrap, coef: estimation from SBE

sd: nonparamatric delta-method estimate of standard deviation

Background Method Result Conclusion

Conclusion

Conclusion and Discussion

- We applied two methods to get estimates for Penalized Logistic Lasso Regression: Pathwise Coordinate Descent Estimation and Smoothed Bootstrap to select the best λ .
- cross validation result showed similar accuracy in prediction.
- classical statistical theory does ignore the model selection process in assessing estimation accuracy, which is consistant with the Efron paper results.
- We conducted inference based on Smoothed Bootstrap Estimation, and identified 27 proteins that are significantly associated with the Down syndrome.

Reference

- 1 Friedman, Jerome, Trevor Hastie, and Rob Tibshirani. "Regularization paths for generalized linear models via coordinate descent." Journal of statistical software 33.1 (2010): 1.
- 2 Friedman, Jerome, et al. "Pathwise coordinate optimization." The annals of applied statistics 1.2 (2007): 302-332.
- **3** Efron, Bradley. "Estimation and accuracy after model selection." Journal of the American Statistical Association 109.507 (2014): 991-1007.

Background Method Result Conclusion

Thank you!

Questions?