Escuela Rafael Díaz Serdán 3° de Secundaria (2022-2023) Ciencias y Tecnología: Química Examen de la Unidad 2

Prof.: Julio César Melchor Pinto

Nombre del alumno:		Fecha:								
Evaluador:										
liza lo que se te pide. Desarrolla tus respuestas en el espacio determinado para cada solución. De ser necesario, utiliza una hoja en blanco por separado, anotando en ella tu nombre completo, el número del problema y la so-	Reglos: Al comenzar este examen, aceptas las siguientes reglas: X No se permite salir del salón de clases. X No se permite intercambiar o prestar ningún tipo de material. X No se permite el uso de celular o cualquier otro dispositivo. X No se permite el uso de apuntes, libros, notas o formularios. X No se permite mirar el examen de otros alumnos. X No se permite la comunicación oral o escrita con otros alumnos. Si no consideraste alguna de estas reglas, comunícalo a tu profesor.									sitivo. larios. llumnos.
_ Aprendizajes a evaluar:		Ca	lificaci	ión:						
Deduce información acerca de la estructura	a atómica a par-	1 1 1	Pregunta	1	2	3	4	5	6	Total
tir de datos experimentales sobre propie periódicas.	•	 	Puntos Obtenidos	15 1	15	15	15	20	20	100
Representa y diferencia mediante esquer simbología química, elementos y computatomos y moléculas.		 								
Explica y predice propiedades físicas de los base en modelos submicroscópicos sobre látomos, moléculas o iones, y sus interacciticas.	a estructura de									
1 [_de 15 pts] Contesta a las siguientes pregun	tas, argumentand	o amplia	mente tu	resp	uest	ta.				
Explica bajo qué condiciones el núme permite deducir el número de electrone en un átomo.		aproxim cleo. Si que el ra	adament un átomo dio de su ano de sa	e 10,0 pud núcl	000 iera eo r	vec a an nidi	es apli iera	may fica ı 2 n	or o	átomo es que su nú- de manera (lo que mi- del átomo

,										
(2	de 15 nts	Relaciona la 6	especie aními	ca con la	cantidad	de protones	y electrones	de	valencia
١		/ _ dc 10 pts]	i (ciaciona ia (Specie quiiii	ca con ra	cannaaa	ac protones	y creedi ones	ac	vaicheta.

A. Ión oxígeno (O ⁻)	2a 20 protones y 2 electrones de valencia
B. Nitrógeno (N)	2b 9 protones y 8 electrones de valencia.
C. Silicio (Si)	2c 15 protones y 5 electrones de valencia
D. Calcio (Ca)	2d 8 protones y 7 electrones de valencia.
E. Ión Fluor (F ⁻)	2e 34 protones y 6 electrones de valencia
F. Oxígeno (O)	2f 14 protones y 4 electrones de valencia
G. Neón (Ne)	2g 7 protones y 5 electrones de valencia.
H. Ión Litio (Li ⁺)	2h 3 protones y 2 electrones de valencia.
I. Fósforo (P)	2i 8 protones y 6 electrones de valencia.
J. Selenio (Se)	2j 10 protones y 8 electrones de valencia

(3) | de 15 pts| Relaciona cada elemento con las características que le corresponden.

TitanioA. Elemento metaloide del grupo III, subgrupo A de la tabla periódica. Oro**B**. Elemento metálico con Z = 31. C. Elemento metaloide, ubicado en el tercer período de la tabla periódica. Helio D. Elemento conocido como gas noble y se encuentra en el período 1 de la tabla 3dBoroperiódica. 3eRadón E. Elemento con 22 protones y 22 electrones. 3f F. Elemento de la familia de los Halógenos con 74 neutrones. Yodo G. Elemento de la familia de metales alcalino-terreos con 138 neutrones. Bismuto H. Elemento no metálico con Z = 83. 3hRadio I. Gas inerte (gas noble) que se encuentra en el período 6 de la tabla periódica. GalioJ. Metal brillante utilizado en joyería. $\operatorname{Silicio}$

- (4) [_de 15 pts] Relaciona la especie química con la cantidad de **protones** y **electrones de valencia**.
 - A. Ión de Hierro (Fe³⁺)

E. Litio (Li)

I. Ión de Potasio (K⁺)

H. Ión de Azúfre (S^{2+})

 \mathbf{F} . Ión de Aluminio (Al^{3+})

J. Ión de Cloro (Cl⁻)

 (K^+)

 \mathbb{C} . Ión de Flúor (F^-)

B. Fósforo (P)

 $\mathbf{G}.$ Ión de Berilio (Be $^-)$

- (4a) _____ 13 protones y 8 electrones de valencia.
- (4b) _____ 17 protones y 8 electrones de valencia.
- 4c ______ 9 protones y 8 electrones de valencia.
- (4d) _____ 4 protones y 3 electrones de valencia.
- 4e _____ 16 protones y 4 electrones de valencia.

- 4f) _____ 15 protones y 5 electrones de valencia.
- 4g) _____ 26 protones y 2 electrones de valencia.
- 4h ______ 7 protones y 8 electrones de valencia.
- 4i) _____ 3 protones y 1 electrón de valencia.
- 4j) _____ 19 protones y 8 electrones de valencia.

5a Los metales son maleables, dúctiles y buenos conductores del calor y la electricidad. Verdadero Falso 5b Los electrones de valencia se encuentran siempre en el último nivel de energía. Verdadero Falso 5c La fórmula H ₂ O expresa que la molécula de agua está constituida por dos átomos de oxígeno y uno de hidrógeno. Verdadero Falso 5d Los subíndices expresan el número de átomos de los elementos presentes en una molécula o unidad fórmula.	5f La masa de un neutrón es similar a la del protón. □ Verdadero □ Falso 5g El número de masa representa la suma de protones y neutrones. □ Verdadero □ Falso 5h El número total de electrones en un átomo lo determina el grupo al que pertenece. □ Verdadero □ Falso 5i En una fórmula química, los coeficientes indican el número de moléculas o unidades fórmula; así
□ Verdadero □ Falso 5e El neutrón es una partícula subatómica que se encuentra girando alrededor del núcleo atómico. □ Verdadero □ Falso	mero 4 indica que hay 4 átomos de carbono. □ Verdadero □ Falso
(6) [_de 20 pts] Completa la siguiente tabla determinando p (n) y electrones (-).	oara cada especie, la cantidad de protones (+), neutrones

Especie	Símbolo	\oplus	n	<u>-</u>
Xenón				
Ión negativo de Antimonio				
Fósforo				
Ión negativo de Azúfre				
Ión positivo de Silicio				

Tabla 1: Tabla Periódica de los Elementos.

18 VIIIA	$\overset{\text{2}}{H}\overset{\text{4.0025}}{\text{Helio}}$	$\overset{\text{10}}{\overset{\text{20.180}}{\overset{\text{20.180}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}}{\overset{\text{Neón}}}{\overset{\text{Neón}}}{\overset{\text{Neón}}}{\overset{\text{Neón}}}{\overset{\text{Neón}}}{\overset{\text{Neón}}}}}{\overset{\text{Neón}}{\overset{N}}}{\overset{N}}{\overset{N}}}}}}}}}}}}}}}}}}}}$	$\overset{18}{A}\overset{39.948}{\Gamma}$	$\overset{36}{K}\overset{83.8}{\Gamma}$	$\sum_{Xen\'on}^{54}$	$\mathop{Rad\acute{\circ}n}\limits^{86}$		$\overset{71}{\mathbf{L}}$	$\frac{103}{L} \frac{262}{L}$ Lawrencio
	17 VIIA	9 18.998 Fluor	$\bigcup_{Cloro}^{17} \bigcup_{Cloro}^{35.453}$	$\overset{35}{B}\overset{79.904}{\Gamma}$ Bromo	53 126.9 T Yodo	$\mathop{At}\limits_{\mathop{Astato}}^{210}$	\prod_{Teneso}^{292}	$\sum_{\text{Yterbio}}^{70 \text{ 173.04}}$	102 259 Nobelio
	16 VIA	8 15.999 Oxígeno	$\overset{16}{S}\overset{32.065}{S}$	$\overset{34}{\mathrm{Se}}^{78.96}$	$\prod_{\text{Tellurio}}^{52}$	$\overset{84}{P0}$	$\frac{116}{L} \frac{293}{V}$ Libermonio	\sum_{Tulio}^{69}	$\underset{\text{Mendelevio}}{\text{101}} \underset{\text{258}}{\text{258}}$
	15 VA	$\sum_{\text{Nitrógeno}}^{7} \frac{14.007}{\text{Nitrógeno}}$	$\overset{\text{15}}{P} \overset{30.974}{\text{Postoro}}$	${\overset{33}{\mathrm{AS}}}_{74.922}$	$\overset{51}{S}\overset{121.76}{b}$ Antimonio	$\overset{83}{\overset{208.98}{\mathbf{bis}}}$	${\displaystyle \frac{115}{Moscovio}}$	$\underbrace{\mathbf{Erbio}}^{68}$	Fermio 257
	14 IVA	6 12.011 Carbono	$\overset{\text{14.}}{\text{Silicio}}$	\mathop{Gen}^{32}_{C}	$\mathop{Sn}\limits_{\text{Estaño}}$	$\overset{82}{Pb}^{207.2}_{\text{Pbmo}}$	114 289 Flerovio	$\overset{67}{\text{Holmio}}_{\text{Holmio}}$	99 252 Einsteinio
	13 IIIA	$\overset{5}{\mathbf{B}}$	$\underset{\text{Aluminio}}{\text{13}} \text{ 26.982}$	$\overset{31}{\mathrm{Gal}}_{\mathrm{a}}^{69.723}$	$\overset{49}{\text{Indo}}^{114.82}$	81 204.38 Talio	$\overset{113}{N}\overset{284}{n}$ Nihonio	$\bigcup_{\text{Disprosio}}^{66} 162.50$	98 251 Californio
			12 IIB	$\overset{30}{Z}\overset{65.39}{n}$	$\overset{48}{\text{Cadmio}}$	$\overset{80}{\text{Hg}}_{\text{Sourio}}^{200.59}$	$\overset{112}{C}\overset{285}{n}$	65 158.93 Terbio	$\frac{97}{BK}$ Berkelio
			11 IB	$\overset{29}{\text{Cobre}}$	$^{47}_{ m Ag}$	$\overset{79}{\mathrm{Au}}^{196.97}$	$\underset{\text{Roentgenio}}{Rg}$	$\mathop{Gd}_{\text{Cadolinio}}^{\text{64}}$	96 247 Curio
			10 VIIIB	28 58.693 Niquel	$\overset{\textbf{46}}{P}\overset{106.42}{d}$	$\Pr^{78}_{\text{Pfatino}}$	$\mathop{DS}\limits_{\text{Darmstadtio}}^{281}$	$\overset{\textbf{63}}{\text{Europio}}_{\textbf{Lin}}$	$\underset{\text{Americio}}{Am}$
			9 VIIIB	$ \bigcup_{\text{Cobalto}}^{27 \text{ 58.933}} $	$\mathop{Rh}\limits^{45~102.91}_{\text{Rodio}}$	$\frac{77}{L}$	$\overset{\text{109}}{\text{IM}}\overset{268}{\text{L}}$	$\overset{62}{S}\overset{150.36}{m}$	$\Pr^{94}_{\text{Plutonio}}$
		10	8 VIIIB	$\overset{26}{F}\overset{55.845}{e}$	${ m Ruthenio}$	$\overset{76}{\text{OSmio}}$	$\overset{\text{108}}{\text{Hassio}}^{\text{277}}$	$\Pr_{\text{Prometio}}^{61}$	93 237 Neptunio
	gia:	Negro: Naturales Gris: Sintéticos	7 VIIB	$\overset{25}{M}\overset{54.938}{n}$	$\prod_{ m Tecnecio}^{43}$	$\mathop{Renio}_{\text{Renio}}$	$\underset{\text{Bohrio}}{\overset{107}{B}}$	60 144.24 Neodimio	92 238.03 Uranio
	Simbología:	Negro: N Gris: Sir	6 VIB	$\overset{ extbf{24}}{\overset{ ext{51.996}}{\text{Cromo}}}$	42 95.94 Molybdeno	$ \begin{array}{c} 74 & 183.84 \\ \hline \end{array} $ Tungstenio	$\overset{106}{S}\overset{266}{S}$	$\sum_{ ext{Praseodymio}}^{ ext{59}}$	${\overset{91}{\mathrm{Pa}}}^{231.04}$
	Sin	\mathbf{S} Símbolo	5 VB	$\sum_{\text{Vanadio}}^{23} 50.942$	$\overset{41}{N}\overset{92.906}{\text{Niobio}}$	$\overset{73}{ ext{Tantalo}}$	$\bigcup_{\text{Dubnio}}^{105} \bigcup_{\text{Dubnio}}^{262}$	$\overset{58}{\text{Cerio}}$	$\prod_{Torio}^{90-232.04}$
			4 IVB	22 47.867 11 Titanio	$\overset{40}{Z}\overset{91.224}{r}$ Circonio	$\mathop{\rm Hafthic}^{72}$	$\Pr^{104}_{\text{Rutherfordio}}$	$\overset{57}{L}\overset{138.91}{a}$	$\overset{89}{Ac}_{\text{Actinio}}$
			3 IIIA	$\overset{21}{S}\overset{44.956}{c}$ Escandio	$\sum_{\text{ltrio}}^{39 88.906}$	57-71 *	. 89-103 ** Actinido	s -terreos	sopin
	2 IIA	$\mathop{Berilis}^{4}$	$\overline{\mathrm{Magnesio}}^{24.305}$	$\overset{20}{C}\overset{40.078}{\mathbf{a}}$	$\overset{38}{S}\overset{87.62}{\Gamma}$ Stroncio	$\overset{56}{Bario}_{\text{Bario}}$	\mathop{Radio}^{88}	Metales Alcalinos Metales Alcalino-terreos Metal	Metaloide No metal Halógeno Gases Nobles Lantánidos/Actínidos
1 IA	$\prod_{\text{Hidrógeno}}^{1}$	$\sum_{\text{Litio}}^{6.941}$	$\overset{_{11}}{\overset{22.990}{\text{N}}}$	$\sum_{\text{Potasio}}^{19 \ \ 39.098}$	$\mathop{Rb}\limits^{37}\mathop{^{85.468}}\limits_{\text{Rubidio}}$	\sum_{Cesio}^{55}	$\overset{87}{Fr}^{223}$	Metales . Metales . Metal	Metaloide No metal Halógeno Gases Nobles Lantánidos/A
	1	2	m	4	Ŋ	9	_		