NB/BD Stability via a Weighted Hilbert Lemma (v3.1, Consolidated Edition)

Serabi Independent Researcher 24ping@naver.com

2025

Abstract

We consolidate the orthodox Hilbert-kernel analysis with the rebuilt visuals for the Nyman–Beurling/Báez-Duarte (NB/BD) framework. A weighted Hilbert-type lemma with Möbius-weighted coefficients yields off-diagonal decay by $(\log N)^{-\theta}$ for some $\theta > 0$, stabilizing the normal equations. We illustrate numerically for $N \in \{8,000,12,000,16,000,20,000\}$ under a Gaussian window ($\sigma = 0.05$) with minus-boundary reweighting $w_- = 1.20$. This note is an orthodox consolidation, not a proof of RH.

1 Hilbert-Type Lemma (Orthodox Core)

Let $a_n = \mu(n) v(n/N) q(n)$ with $v \in C_0^{\infty}(0,1)$ and q slowly varying, and

$$K_{mn} = e^{-\frac{1}{2}|\log(m/n)|} = \min\left\{\sqrt{\frac{m}{n}}, \sqrt{\frac{n}{m}}\right\}.$$

Lemma 1 (Weighted Hilbert Decay). There exist $\theta > 0$ and C (depending on v, q) such that

$$\sum_{\substack{m \neq n \\ m, n \leq N}} a_m a_n K_{mn} \leq C(\log N)^{-\theta} \sum_{n \leq N} a_n^2. \tag{1}$$

Sketch. Partition into logarithmic bands $\mathcal{B}_j = \{(m,n): 2^{-(j+1)} < |\log(m/n)| \le 2^{-j}\}$. On each band, $K_{mn} \le e^{-c \cdot 2^{-j}}$ and the smooth cutoff yields an extra factor $2^{-j\delta}$. The Möbius oscillation cancels the near-diagonal main term; summing the bands gives (1).

2 Numerical Illustration (Rebuilt)

We use ridge-regularized least squares with Gaussian window $\sigma = 0.05$ and minus-boundary reweighting $w_- = 1.20$. Let MSE₊, MSE₋ be boundary errors and MSE_{*} = (MSE₊+MSE₋)/2 the combined error.

Data (rebuilt from recorded runs):

\overline{N}	MSE_{+}	MSE_{-}	MSE_*
8000	0.118995	0.207245	0.163120
12000	0.121417	0.214303	0.167860
16000	0.123280	0.222539	0.172909
20000	0.121589	0.217620	0.169604

Figure 1: Combined MSE** vs N under $w_{-}=1.20,\,\sigma=0.05.$

Figure 2: Boundary comparison: MSE₊, MSE₋ and MSE_{*}.

3 Scope and Remarks

The decay (1) ensures stability of the NB/BD normal equations, but does not prove RH. Our figures are rebuilt from recorded values and serve as a visual cross-check of the consolidated framework. Further progress requires larger N and sharper explicit constants.