Nom: Classe:

OBSERVATIONS

NOTE

NOTE

NOTE

Il est toléré de travailler avec une personne de la classe, à condition de l'avoir indiqué sur la copie.

Il est interdit d'utiliser un logiciel d'intelligence artificiel pour répondre aux questions. Des explications seront demandées en cas de doute.

Tout manquement à l'une de ces règles entraînera l'attribution de la note minimale de zéro.

EXERCICE 1

1. a. Résoudre l'inéquation $7x - 4 \ge 0$.

b. Résoudre l'inéquation $-3x - 5 \ge 0$.

3. En déduire la solution de l'inéquation $(7x-4)(-3x-5) \ge 0$.

EXERCICE 2

L'objectif de cet exercice est de démontrer que $\sqrt{3}$ n'est pas un nombre rationnel. On rappelle pour cela que :

- n est un multiple de 3 si et seulement s'il est de la forme n=3k avec $k\in\mathbb{Z}$. Par exemple, $6=3\times 2$, $9=3\times 3$, ...
- n n'est pas un multiple de 3 si et seulement s'il est de la forme n=3k+1 ou n=3k+2 avec $k\in\mathbb{Z}$. Par exemple, $4=3\times\underbrace{1}_k+1$, $8=3\times\underbrace{2}_k+2$,
- **1. a.** Soit n un nombre. On suppose que n n'est pas un multiple de 3. Démontrer que n^2 n'est pas un multiple de 3.

- **b.** Quelle est la contraposée de cette implication?
- **2.** On suppose par l'absurde que $\sqrt{3} = \frac{p}{q}$ où $\frac{p}{q}$ est une fraction irréductible.
 - **a.** Démontrer que $3q^2 = p^2$.

 - **c.** Démontrer que q^2 est un multiple de 3.
 - **d.** Trouver un diviseur commun à p et q.
 - e. Conclure.

EXERCICE 3

1. Sur la droite ci-dessous, surligner les nombres réels x vérifiant $|x-2| \le 3, 5$.

- **2.** À quel intervalle cette inégalité correspond t-elle?
- **3.** Sur la droite, souligner les nombres entiers naturels qui vérifient cette inégalité (exemple : $\underline{10}$), et mettre un trait sur les nombres entiers relatifs qui vérifient cette inégalité (exemple : $\overline{10}$).

EXERCICE 4

1. Compléter les relations d'appartenance suivantes avec ∈ ou ∉.

2. Compléter les relations d'inclusion suivantes avec \subseteq ou $\not\subseteq$.

Rappel.

- Le symbole ∈ signifie « appartient à » et le symbole ∉ signifie « n'appartient pas à ».
- Le symbole ⊂ signifie « est inclus dans » : il est utilisé lorsque *tous* les éléments d'un ensemble appartiennent à un autre.
- Le symbole $\not\subset$ signifie « n'est pas inclus dans » : il est utilisé lorsqu'*au moins un* élément d'un ensemble n'appartient pas à un autre.