МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Параллельные алгоритмы»

Tema: Оптимизация доступа к памяти в модели OpenCL

Студент гр. 0303	Парамонов В.В
Преподаватель	Сергеева Е. И.

Санкт-Петербург

2023

Цель работы.

Реализовать умножение матриц в OpenCL с оптимизированным доступом к памяти (использованием локальной памяти). Сравнить полученную реализацию с умножением на CPU с использованием алгоритма Штрассена.

Постановка задачи.

- 1) Реализовать умножение матриц на OpenCL (с использованием локальной памяти).
- 2) Произвести оценку производительности с реализацией на CPU с использованием алгоритма Штрассена.

Выполнение задач.

1. Реализация программы:

- 1) В отличие от кода лабораторной 5 в opencv_handler.cpp и opencv_handler.hpp был выделен отдельный класс OpenCVHandler, занимающейся всей работой с библиотекой OpenCL. Так же был изменен код ядра kernel на умножение матриц.
- 2) В отличие от кода лабораторной 4 в реализацию умножения матриц на СРU с использованием алгоритма Штрассена был добавлен пул потоков, управляемый библиотекой ТВВ, чтобы увеличить шансы данной реализации.

2. Оценка производительности:

• Зависимость времени выполнения от размера перемножаемых квадратных матриц см. в таблице 1:

Таблица 1 – Время выполнения от числа итераций вычисления фрактала

Размер матрицы (N, N)	OpenCL, GPU (сек)	Штрассен, СРИ (сек)
128	0.181732	0.042008
256	0.057057	0.075035

512	0.057902	0.246533
1024	0.065808	1.23141
2048	0.127959	7.66022
4096	0.520505	57.2085
8192	3.17413	444.024

Исходя из данных таблицы 1 реализация перемножения матриц на GPU, OpenCL с использованием локальной памяти устройства показывает гигантское увеличение скорости вычислений по сравнению с реализацией Штрассен, CPU.

Заключение.

В ходе работы было реализовано умножение матриц с использованием локальной памяти на OpenCL. Так же был слегка оптимизирован реализация умножения матриц Штрассена с использованием пула потоков. Как показала оценка производительности GPU, OpenCL гораздо производительнее, чем Штрассен, CPU.