Mock Exam
Social Choice Theory
Fall 2012
Solution

Problem 1: Preferences

(a) The Cartesian product $X \times X$ is the set of all ordered pairs of elements from X.

A binary relation R on X is a subset $R \subseteq X \times X$.

A preference on X is a binary relation R on X which satisfies the following properties:

Reflexivity: $(x, x) \in R$ for every $x \in X$.

Completeness: $(x, y) \in R$ or $(y, x) \in R$ (or both) for all $x, y \in X$, $x \neq y$.

Transitivity: If $(x,y) \in R$ and $(y,z) \in R$, then also $(x,z) \in R$, for all $x,y,z \in X$.

[Using the alternative notation xRy for $(x,y) \in R$ is of course also correct.]

(b) R^1 : Reflexivity is satisfied, as there is a checkmark in every field on the main diagonal.

Completeness is satisfied. Whenever there is no checkmark in a field, then there is one in the field that corresponds to the opposite order of the two alternatives.

Transitivity is satisfied. For example, we have $(y, w) \in R^1$ and $(w, z) \in R^1$, and also $(y, z) \in R^1$. The same can also be verified for all other possibilities.

Hence R^1 is a preference.

It is also antisymmetric, because we never have both $(x, y) \in R^1$ and $(y, x) \in R^1$ for any $x \neq y$. Hence R^1 is a strict preference.

 R^2 : Reflexivity is satisfied.

Completeness is satisfied.

Transitivity is violated. We have $(z, x) \in \mathbb{R}^2$ and $(x, w) \in \mathbb{R}^2$, but not $(z, w) \in \mathbb{R}^2$. Hence \mathbb{R}^2 is not a preference.

 R^3 : Reflexivity is satisfied.

Completeness is satisfied.

Transitivity is satisfied, which can be checked as described before.

Hence R^3 is a preference.

It is not antisymmetric, however, because we have both $(x, y) \in \mathbb{R}^3$ and $(y, x) \in \mathbb{R}^3$. Hence \mathbb{R}^3 is not a strict preference.

(c) R^1 : We have $C(S, R^1) = \{y\}$.

Alternative y is a best element of S because $(y, w) \in R^1$ and $(y, z) \in R^1$.

Alternative w is not a best element of S because $(w, y) \notin R^1$.

Alternative z is not a best element of S because $(z, x) \notin R^1$, and also $(z, y) \notin R^1$.

 R^2 : We have $C(S, R^2) = \{w\}$. The arguments are analogous.

 R^3 : We have $C(S, R^3) = \{w\}$. The arguments are analogous.

Problem 2: Arrow's Theorem for SCFs

(a) Arrow's Impossibility Theorem for SCFs says that, when there are at least three alternatives, then there is no social choice function $c: \mathscr{A} \to X$ (which assigns a winning alternative $c(\mathbf{R})$ to each admissible preference profile $\mathbf{R} \in \mathscr{A} \subseteq \mathscr{R}^n$) that satisfies the following four axioms:

Universality: All preference profiles are admissible, $\mathscr{A} = \mathscr{R}^n$.

Monotonicity: If, for any $x \in X$, $c(\mathbf{R}) = x$ and x maintains its position from \mathbf{R} to $\mathbf{R}' \in \mathcal{A}$, then $c(\mathbf{R}') = x$ must hold. Alternative x maintains its position from \mathbf{R} to \mathbf{R}' if it does not drop in anyone's preference, i.e. if xR_iy implies xR'_iy and xP_iy implies xP'_iy , for all voters i and alternatives $y \in X$.

Weak Pareto Principle: If an alternative is strictly Pareto dominated, it should not be the winner. Formally, if xP_iy for some $x, y \in X$ and all voters i, then $y \neq c(\mathbf{R})$.

Non-Dictatorship: No voter should be able to always impose one of his most preferred alternatives on society. Formally, there is no voter h for which it always (i.e. for all preference profiles) holds that $c(\mathbf{R})R_hx$, for all $x \in X$.

(b) The votes are assigned as follows:

#	preferences	w	\boldsymbol{x}	y	z
4	w P x P y P z	1	1	0	0
3	x P y P z P w	0	1	1	0
5	y P z P w P x	0	0	1	1
1	z P w P x P y	1	0	0	1
1	x P w P z P y	1	1	0	0
		6	8	8	6

Since both x and y get the maximal number of votes, alternative x is the winner.

(c) $[\bar{\mathbf{U}}]$ Universality $\mathscr{A} = \mathscr{P}^n$ is satisfied, because the method can always be applied and will (due to the tie-breaking rule) always deliver a unique winner.

[M] Monotonicity is violated, as the following example illustrates:

#	profile ${f R}$	w	\boldsymbol{x}	y	z
2	w P x P y P z	1	1	0	0
2	$\begin{array}{c} w \ P \ x \ P \ y \ P \ z \\ x \ P \ w \ P \ y \ P \ z \end{array}$	1	1	0	0
1	y P z P x P w	0	0	1	1
		4	4	1	1

#	profile \mathbf{R}'	w	\boldsymbol{x}	y	z
2	w P x P y P z	1	1	0	0
2	x P w P y P z	1	1	0	0
1	y P x P z P w	0	1	1	0
		4	5	1	0

With preference profile \mathbf{R} , alternative w wins (using the tie-breaking rule).

Alternative w maintains its position from \mathbf{R} to \mathbf{R}' .

But w does not win in \mathbf{R}' (where x is the winner).

[P] The Weak Pareto Principle is also violated:

#	preferences	w	\boldsymbol{x}	y	z
2	y P x P w P z	0	1	1	0
		0	2	2	0

Here, alternative x wins (by the tie-breaking rule), even though it is strictly Pareto dominated by y.

[D] The rule is clearly not dictatorial. Nobody can make sure that an own preferred alternative is always selected. If sufficiently many other voters have a diverging preference, then the alternative will not be selected.

- (d) Fix an arbitrary alternative, say w, and consider the SCF that always selects w, i.e. $c(\mathbf{R}) = w$ for all $\mathbf{R} \in \mathcal{R}^n$.
 - $[\bar{\mathbf{U}}]$ Universality is satisfied, by definition of the rule.
 - $[\bar{\mathbf{M}}]$ Monotonicity is satisfied, because the winner is always the same alternative.
 - $[\bar{\mathbf{P}}]$ The Weak Pareto Principle is violated, since w is selected even if xP_iw for some x and all voters i.
 - $[\bar{D}]$ Non-Dictatorship is satisfied, because the winner is always the same alternative.

Problem 3: Manipulability

$R_1 \backslash R_2$	xyz	xzy	yxz	yzx	zxy	zyx
xyz	x	x	y	y	z	z
\overline{xzy}	x	x	y^*	z^*	z	z
yxz	y	y^*	y	y	z	z
yzx	y	z^*	y	y	z	z
\overline{zxy}	z	z	z	z	z	z
\overline{zyx}	z	z	z	z	z	z

- (a) $[\bar{\mathbf{U}}]$ Universality $\mathscr{A} = \mathscr{P}^2$ is satisfied, by definition of the rule.
 - $[\bar{\mathrm{M}}]$ Monotonicity is violated. Consider, for instance, the following case: If voter 1 has preference xzy and voter 2 has preference yxz, then y is selected. If voter 1's preference changes to zxy and voter 2's preference remains unchanged, then y maintains its position. Still, alternative z is now selected, not y.
 - [P] The Weak Pareto Principle is satisfied, because this method always selects among the Pareto efficient alternatives.
 - $[\bar{\mathbf{D}}]$ Non-Dictatorship is satisfied. It is easily verified that there are situations for each voter where the winner is not top-ranked for this voter.
- (b) The method is clearly surjective, because each of the three alternatives wins for some preference profile.

We have already verified $[\bar{U}]$ and $[\bar{D}]$.

Axiom [S] is violated. The four profiles at which the rule can be manipulated by some voter are marked by an * in the above table.

(c) The following four strict preferences are single peaked with respect to x > y > z: xyz, yzz, yzx, and zyx. The restricted SCF is given in the following table:

$R_1 \backslash R_2$	xyz	yxz	yzx	zyx
xyz	x	y	y	z
yxz	y	y	y	z
yzx	y	y	y	z
\overline{zyx}	z	z	z	z

It is surjective, because each alternative wins for some (single-peaked) preference profile. It is still not dictatorial, so $[\bar{\mathbf{D}}]$ is satisfied. The argument is the same as for part (a) above. It also satisfies $[\bar{\mathbf{S}}]$, because the profiles where manipulation was possible have been exluded. By definition, $[\bar{\mathbf{U}}]$ is no longer satisfied.