Question 1	2 / 2 pts			
Each of the following is a true/false statement about a tweaka (TBC). Place a checkmark next to each true statement.	able block cipher			
Because of its extra features, a TBC is always much slower than a cipher.	regular block			
F \(\text{A good TBC allows change of the key with little computational} \)	l cost.			
T ✓ A good TBC allows change of the tweak with little computational cost.				
A tweakable block cipher is a prominent part of the design of C	GCM.			
Each time a new tweak is given to a TBC, the TBC behaves like a function.	new random			
T Each time a new tweak is given to a TBC, the next output of the T distributed.	BC is uniformly			
Ougstion 2	2 / 2 pts			
Question 2				
Each of the following is a true/false statement about authenticated encryption. Place a checkmark next to each true statement.				
F The only benefit to authenticated encryption is the ability to use both authentication and encryption.	enefit to authenticated encryption is the ability to use the same key for entication and encryption.			
F OCB is the most used authenticated encryption algorithm.				
T ✓ OCB is faster than GCM.				
GCM is essentially a univeral-hash-based authentication paired we encryption.	vith CBC-mode			
Patents slowed the adoption of GCM.				
GCM completes encryption before it begins authentication.				

Question 3

How many bits of entropy are there in the result of throwing a pair of four-sided dice (each side numbered 1, 2, 3, 4) and summing the two resulting values?

2 / 2 pts

Answer to the nearest thousandth.

2.65

8 = (4,4)

	Outcome	Pr	Entropy if all equal Product -log (16) = 4 16 4 = 17
	2	16	$-\log_2(\frac{1}{16}) = 4 \qquad \frac{1}{16} \cdot 4 = \frac{1}{4}$
	3	<u>2</u> 16	$-log_{2}(\frac{2}{16}) = 3$ $\frac{2}{16} \cdot 3 = \frac{3}{8}$
	4	3 16	$-log_2(\frac{3}{16}) = 2.42 \qquad \frac{3}{16} \cdot 2.42 = 0.45$
	5	4	$-\log_2(\frac{4}{16}) = 2 \qquad \frac{4}{16} \cdot 2 = \frac{1}{2}$
	6	3 16	$-\log_2(\frac{3}{16}) = 2.42 \qquad \frac{3}{16} \cdot 2.42 = 0.45$
	7	<u>2</u> 16	$-\log_2(\frac{2}{16}) = 3 \qquad \frac{2}{16} \cdot 3 = \frac{3}{8}$
	8	16	-log_2(16) = 4 = 1/4 = 1/4
2 -	(1,1)		Sum = 2.65
3 =	(1,2),	(2,1)	
н =	(1,3),(3,	1), (2,2)	
5 :	- (1,4), (4	,1>,(2,3),	, (3,2) Total # of outcomes possible = 16
6 =	(2,4),(4	1,2), (3,3)	>
7=	(3.4).	(4.3)	

