COD HW6

1.

1.	WORD ADDR	BIN ADDR	INDEX	TAG	H/M
	0x03	0000 0011	0011	0000	М
	0xb4	1011 0100	0100	1011	М
	0x2b	0010 1011	1011	0010	М
	0x02	0000 0010	0010	0000	М
	0xbf	1011 1111	1111	1011	М
	0x58	0101 1000	1000	0101	М
	0xbe	1011 1110	1110	1011	М
	0x0e	0000 1110	1110	0000	М
	0xb5	1011 0101	0101	1011	М
	0x2c	0010 1100	1100	0010	М
	0xba	1011 1010	1010	1011	M
	Oxfd	1111 1101	1101	1111	М

2. WORD	ADDR	BIN ADDR	INDEX	TAG	H/M
0x03		0000 0011	001	0000	М
0xb4		1011 0100	010	1011	М
0x2b		0010 1011	101	0010	M
0x02		0000 0010	001	0000	Н
0xbf		1011 1111	111	1011	M
0x58		0101 1000	100	0101	М
0xbe		1011 1110	111	1011	Н
0x0e		0000 1110	111	0000	М
0xb5		1011 0101	010	1011	Н
0x2c		0010 1100	110	0010	M
0xba		1011 1010	101	1011	М
0xfd		1111 1101	110	1111	М

2.

- 1. o 首先每条指令都有可能造成指令cache失效,每次失效生成一个块请求,而每个块64bytes, 故该部分需要读带宽: 0.5 * 0.003 * 64 = 0.096
 - 其次25%的读指令有可能造成数据cache失效,每次同样生成一个块请求,故该部分需要读带 宽: 0.5 * 0.02 * 0.25 * 64 = 0.16
 - 其次10%的写指令首先由于写直达策略需要产生向内存的写操作,需要写带宽: 0.5 * 0.1 * 4
 = 0.2;而这些写指令如果发生miss,由于写分配策略,同样需要向RAM发出读请求,即需要读带宽: 0.5 * 0.1 * 0.02 * 64 = 0.064
 - 最终, 需要读带宽期望: 0.096 + 0.16 + 0.064 = 0.32bytes/cycle
 - 需要写带宽期望: 0.2bytes/cycle
- 2. 写返回策略只更新cache中对应数据块的数值,只有当该快被替换(可认为是发生cachemiss)时,才会将更新后的写入下一级存储。这也就意味着,不论是写还是读产生的miss都会进行此操作,即此时的写需求带宽为: 0.5 * (0.25 + 0.1) * 0.02 * 0.3 * 64 = 0.0672bytes/cycle。写带宽不变。

3.

```
h = 2000 / (2000 + 50) = 97.56\%

t = h * 50 + (1 - h) * 200 = 53.66ns
```

4.

- 1.2GHz情况下,每个周期0.5ns,即一次主存访问需要200个周期。
 - 。 仅有L1

$$1.5 + 0.07 * 200 = 15.5$$

。 使用L2直接映射

o 使用L2八路组相连

2.
$$1.5 + 0.07 * (12 + 0.035 * (50 + 0.013 * 100)) = 2.47$$

3. 假定L2不发生失效,此时CPI为

```
1.5 + 0.07 * 50 = 5.0 > 2.83
```

即使失效率为0也无法满足CPI达到与第一问中直接映射匹配的性能,即容量多大都不再可能。