

Chapter Five

Environmental systems: modeling and reactor design

Outline

- I. Overview
- II. Material balances
- III. Reaction kinetics
- IV. Flow regimes and reactor
- V. Energy balances

C5-Environmental systems

Section 1

Overview

Think about:

- 1. If the flow rate of A and B is very high
- 2. If no mixture in reactor

Chemical reactions in a beaker

Chemical reactions in a reactor

The mass of materials entering

The mass of materials entering a control volume must be equal to the mass of materials leaving the control volume, plus any mass that isaccumulated within the control volume.

Law of Conservation of Matter

Matter cannot be created nor destroyed.

Law of Conservation of Energy

Energy cannot be created or destroyed

The kinetics (how fast a reaction occurs) of biological and chemical reactions that occur within a system will influence the efficiency and sizing of engineered systems.

Designing an aeration basin to treat municipal wastewater

Size the aeration system

Dimensions of the reactor

C5-Environmental systems

Section 2

Material balances

Control volume (*CV***):** the specific region of space on which the mass balance is performed.

Fates of an entering substance

Route 1: may accumulate within the control volume

Route 2: may be transformed into a different compound

Route 3: may **leave** the control volume without any change

In a non-reactive process

[accumulation] = [inputs] - [outputs]

States

Steady-state conditions: the flow and concentration in each stream entering and exiting the control volume remain constant.

In a non-reactive steady-state process

$$[inputs] - [outputs] = [accumulation] = 0$$

Nonsteady-state conditions: the accumulation term will increase or decrease.

Mass balance in a control volume

In a non-reactive process

$$[accumulation] = [inputs] - [outputs]$$

$$\begin{bmatrix} net\ change \\ in\ mass\ within\ CV \end{bmatrix} = \begin{bmatrix} total\ mass \\ entering\ CV \end{bmatrix} - \begin{bmatrix} total\ mass \\ exiting\ CV \end{bmatrix}$$

$$\frac{dm_{CV}}{dt} = \dot{m_i} - \dot{m_e}$$

 (dm_{cv}/dt) = net change of mass contained within the control volume, mass/time \dot{m}_i = mass flow rate across inlet, mass/time \dot{m}_e = mass flow rate across outlet, mass/time

= 0, in steady-state

≠ 0, in unsteady-state

Mass balance in a control volume

How many hours it will take to fill the pool up?

Important parameters:

The volume of the pool, V; The volumetric flow rate, Q; The mass flow rate, \dot{m} ; The water density, ρ .

$$V = L \times W \times H$$

$$Q = V'/t$$

$$\dot{m} = \rho \times Q$$

[accumulation] = [inputs] - [outputs]

- $m_{accum} = (\dot{m_1} \times t) + (\dot{m_2} \times t) + (\dot{m_3} \times t) (\dot{m_{leak}} \times t)$
- $\rho \times V = (\dot{m_1} + \dot{m_2} + \dot{m_3} \dot{m_{leak}}) \times t$
- $100 \text{ m}^3 \times 1000 \text{ kg/m}^3 = (1.5 \text{ kg/min} + 2 \text{ kg/min} + 1 \text{ kg/min} -$

- $1 \times 10^5 \text{ kg} = 3.75 \text{ kg/min} \times t$
- $t = 2.67 \times 10^4 \text{ min} = 18.5 \text{ d}$

Reactions occuring in a control volumn

A destructive type of reaction results in the removal or reduction of a certain chemical or contaminant, so the concentration of the compound leaving the reactor will be less than the concentration entering it. $S_{AO} > S_{Ae}$ A production or synthesis reaction will result in the production or synthesis of a compound, so the concentration of the compound leaving the reactor will be greater than the concentration entering it. $S_{BO} < S_{Be}$

Reactions occuring in a control volumn

In a reactive process

[accumulation] = [inputs] - [outputs] + [reaction]

If the reaction involves the removal or destruction of a constituent

$$[accumulation] = [inputs] - [outputs] - [reaction]$$
 BOD removal

If the reaction results in the formation of a product

$$[accumulation] = [inputs] - [outputs] + [reaction]$$
 Microorganisms growth

Steady-state modeling

In **steady-state**, all flow rates, concentrations, pressures, temperatures, etc. entering and exiting the control volume must **remain constant**.

In a non-reactive process

$$[accumulation] = [inputs] - [outputs] = 0$$

[inputs] = [outputs]

$$C_{1}, Q_{1}$$

$$C_{2}, Q_{2}$$

$$C_{2}$$

$$C_e = \frac{C_1 Q_1 + C_2 Q_2}{Q_1 + Q_2} = \frac{C_1 Q_1 + C_2 Q_2}{Q_e}$$

Steady-state modeling

In the non-reactive process

$$C_e = \frac{C_1 Q_1 + C_2 Q_2}{Q_1 + Q_2} = \frac{C_1 Q_1 + C_2 Q_2}{Q_e}$$

$$C_{discharge} = \frac{C_{stream}Q_{stream} + C_{w}Q_{w}}{Q_{stream} + Q_{w}} = \frac{8 \times 38000 + 20 \times 20000}{58000} = 12.1 \text{ mg/L}$$

Steady-state modeling

In the reactive process

[accum] = [inputs] - [outputs] + [reaction] = 0

Rate of particulate generation 4.7 kg/s

Assumption

- The volume of air above the area is completely and uniformly mixed.
- Steady-state conditions prevail.

•
$$[inputs]=m_{in}=U_{in}\times A\times C_{in}$$

= $0.5\times 1414\times 700\times 0=0$

• [outputs]=
$$m_{out}$$
 = $U_{out} \times A \times C_{out}$
= $0.5 \times 1414 \times 700 \times C_{out} = 4.95 \times 10^5 C_{out}$

•
$$0 - 4.95 \times 10^5 C_{out} + 4.7 \times 10^9 = 0$$

•
$$C_{out} = 9494 \, \mu g/L$$

Dynamic (transient) modeling

In **dynamic-state**, any one of flow rates, concentrations, pressures, temperatures, etc. entering and exiting the control volume changes with time.

Brief summary

Material balances

- Control volume
- Mass balance in a control volume
- Mass balance in steady-state (in nonreactive, reactive process)
- Mass balance in dynamic-state

C5-Environmental systems

Section 3

Reaction kinetics

Thermodynamic principles: to determine which direction a process or reaction will proceed of its own accord.

Chemical kinetics: how fast a reaction occurs.

Exergonic reaction

$$2H_2(g) + O_2(g) = 2H_2O(g)$$
 $\Delta G^0 = -237 \text{ kJ/mol}$

Rates of reaction

The rate of a reaction (r) is the rate of formation or disappearance of a chemical compound or species.

Homogeneous reactions are those that occur within a single phase. Heterogeneous reactions occur between two phases.

Neutralization reaction

Adsorption reaction

Rates of reaction

$$2A + B \rightarrow C$$

The chemical reaction rate (r) can be expressed as the time rate of change of any of the reactants (-) or products (+).

Stoichiometric relation

$$r = -\frac{1}{2}\frac{d[A]}{dt} = -\frac{d[B]}{dt} = \frac{d[C]}{dt}$$

The units for the rate of reaction(r)

moles per unit of volume per unit time, mol/(L·min)
mass per unit of volume per unit time, g/(L·min)

Rate law and order of reaction

The **rate law** expresses the mathematical relationship between the rate of the reaction and the concentration of species involved in the reaction.

$$aA + bB \rightarrow cC$$

$$r = -k[A]^{\alpha}[B]^{\beta} = k[C]^{\gamma}$$

 α -order respect to A β -order respect to B γ -order respect to C

The overall order of the reaction based on the reactants A and B $\alpha+\beta$ order The overall order of the reaction based on the reactants C γ order

Determination order of reaction

Elementary reactions

First-order with respect to A The overall order of the reaction is first
$$r = -k[A]^1 \qquad \text{First-order with respect to A}$$
 First-order with respect to A First-order with respect to B The overall order of the reaction is second
$$r = -k[A]^1[B]^2 \qquad \text{First-order with respect to A}$$
 Second-order with respect to B The overall order of the reaction is third

Complex reactions

The rate law for any reaction must be determined by experiment.

Zero-order reactions

A zero-order removal reaction for A

$$r = -\frac{dC_A}{dt} = k \cdot C_A^0 = k$$
$$\int_{C_{A0}}^{C_{At}} dC = -k \int_0^t dt$$

$$C_{At} = C_{A0} - kt$$

A zero-order production reaction for P

$$r = \frac{dC_P}{dt} = k \cdot C_P^0 = k$$
$$\int_{C_{P0}}^{C_{Pt}} dC = k \int_0^t dt$$

$$C_{Pt} = C_{P0} - kt$$

Zero-order reactions

$A \rightarrow P$

The characteristics of a zero-order reaction:

- The rate is contant. $r = k \cdot C_A^0 = k$
- The t-C plot is a straight line.

First-order reactions

A first-order removal reaction for A

$$r = -\frac{dC_A}{dt} = k \cdot C_A^{\ 1} = kC_A$$
$$\int_{C_{A0}}^{C_{At}} \frac{dC}{C} = -k \int_0^t dt$$

$$\ln(C_A) - \ln(C_{A0}) = -kt$$

$$\ln(C_A) = \ln(C_{A0}) - kt$$

$$C_{At} = C_{A0}e^{-kt}$$

First-order reactions

$A \rightarrow P$

The characteristics of a first-order reaction:

- The rate is not a contant. $r = k \cdot C_A^{1} = kC_A$
- A plot of the natural log of C-t for a first-order production reaction is a straight line.
- The half-life, $t_{1/2}$, is only related to k. $t_{1/2} = \frac{0.693}{k}$

Second-order reactions

$2A \rightarrow P$

A second-order removal reaction for A

$$r = -\frac{dC_A}{dt} = k \cdot C_A^2 = kC_A^2$$
$$\int_{C_{A0}}^{C_{At}} \frac{dC}{C^2} = -k \int_0^t dt$$

$$\frac{1}{C_{A0}} - \frac{1}{C_{At}} = -kt$$

$$\frac{1}{C_{At}} = \frac{1}{C_{A0}} + kt$$

Comparison of zero-, first-, second-order reactions

Order	Removal	Production	Reaction rate
Zero	$C_{At} = C_{A0} - kt$	$C_{Pt} = C_{P0} + kt$	r = k
First	$C_{At} = C_{A0}e^{-kt}$	$C_{Pt} = C_{P0}e^{kt}$	$r = kC_A$
Second	$\frac{1}{C_{At}} = \frac{1}{C_{A0}} + kt$	$\frac{1}{C_{Pt}} = \frac{1}{C_{P0}} - kt$	$r = kC_A^2$

Determination of reaction order and *k*

Ethyl acetate hydrolysis reaction in alkaline solution as following:

$$CH_3COOC_2H_5+OH^-\rightarrow CH_3COO^-+C_2H_5OH$$

The reaction is carried out at 25 °C. The initial concentrations of both reactants are 0.064 mol/L. The concentrations of OH⁻ measured by sampling at different times are shown in the following table.

t/min	0	5	15	25	35	55	∞
[OH ⁻]/mol· ^{L-1}	0.064	0.041	0.025	0.017	0.013	0.009	0

- (1) Determine the reaction order of this reaction.
- (2) Calculate the reaction rate constant k.

t/min	0	5	15	25	35	55	∞
[OH ⁻]/mol· ^{L-1}	0.064	0.041	0.025	0.017	0.013	0.009	0
In[OH-]	-2.749	-3.195	-3.708	-4.058	-4.325	-4.684	-
1/[OH ⁻]	15.6	24.4	40.8	57.9	75.5	108.2	-

#min

Plotting method: plotting C_A -t, InC_A -t and $1/C_A$ -t, respectively, to find **straight line**.

Temperature effects on rate constants

A temperature correction coefficient (θ) of 1.047 is typically used for making temperature corrections when performing biochemical oxygen demand (BOD) analyses. If the BOD rate constant, k, at 20 °C is 0.15 d⁻¹.

Determine the value of k for a temperature of 25 °C.

$$k_2 = k_1 \theta^{(T_2 - T_1)}$$

$$k_{25^{\circ}\text{C}} = k_{20^{\circ}\text{C}} \theta^{(T_2 - T_1)}$$

 $k_{25^{\circ}\text{C}} = 0.15 \times 1.047^{(25^{\circ}\text{C} - 20^{\circ}\text{C})}$
 $k_{25^{\circ}\text{C}} = 0.19 \text{ d}^{-1}$

Reaction kinetics

Brief summary

Reaction kinetics

- Rates of reactions
- Order of reaction
- Zero-order reaction
- First-order reaction
- Second-order reaction
- Temperature corrections

C5-Environmental systems

Section 4

Flow regimes and reactors

Reactors are tanks or vessels in which physical, chemical, and biological reactions occur.

A flow regime or flow model is used to evaluate the effects of detention time and flow rate on a given system

The ideal or theoretical detention time (τ)

$$\tau = \frac{V}{Q}$$

The volume of the reactor (*V*)

Volumetric flow rate (*Q*)

Sequencing batch reactor (SBR)

Plug-flow reactor

Mixed-flow reactor

Batch systems

flow regimes-

Continuous flow systems

Ideal plug flow

Dispersed-plug flow

Ideal complete-mix flow

Sequencing batch reactor (SBR)

Plug-flow reactor

Mixed-flow reactor

Ideal Complete-Mix Batch Reactor

Characteristics

- No continuous flow into and out of a batch reactor;
- The system operates under nonsteady-state conditions;
- The concentration of a substrate will decrease as reaction time increases.

Operation steps

- I. The reactor is filled with the process stream containing the constituents to be processed;
- II. The flow to the reactor is stopped and air or chemicals are added to the reactor (treatment may begin);
- III. The reactor is operated until the desired degree of treatment or conversion has been accomplished;
- IV. Once processing or treatment of the flow has been accomplished, the contents of the reactor are drained and a new cycle will begin.

Ideal Complete-Mix Batch Reactor

A zero-order removal reaction for a complete-mix batch reactor

Mass balance in this reactor

[accumulation] = [inputs] - [outputs] + [reaction]

$$V\left(\frac{dC}{dt}\right)_{accum} = QC_0 - QC_t + \left(\frac{dC}{dt}\right)V$$

$$V\left(\frac{dC}{dt}\right)_{accum} = 0 - 0 + (-k)V$$

$$\left(\frac{dC}{dt}\right)_{accum} = -k \longrightarrow C_t - C_0 = -kt \longrightarrow t = \frac{C_t - C_0}{k}$$

Ideal Complete-Mix Batch Reactor

Example 5.9 Complete-mix batch reactor design

A CMBR is to be designed to pre-treat a food-processing wastewater that contains 500 mg/L of five-day biochemical oxygen demand (BOD₅). A treatability study performed on the food-processing wastewater determined the kinetics for BOD₅ removal to be zero-order with a rate constant of 40 mg/(L·h).

Determine:

- a) Reaction or treatment time necessary to reduce the BOD₅ of the wastewater to 100 mg/L.
- b) The volume of the reactor to treat 6,000 m³ of wastewater daily.

Ideal Complete-Mix flow Reactor

Characteristics

- Complete and instantaneous mixing of the fluid particles occurs on entering the reactor;
- The composition of the effluent is the same as the composition within the reactor;
- The steady-state assumption is made in the reactor.

Ideal Complete-Mix flow Reactor

A first-order removal reaction for a complete-mix flow reactor

$$\tau = \frac{V}{Q} = \frac{(\frac{C_0}{C_t} - 1)}{k}$$

Ideal Complete-Mix flow Reactor

Example 5.10 Complete-mix flow reactor design

A complete-mix flow reactor is to be designed to treat an influent stream containing 200 mg/L of chemical oxygen demand (COD) at a flow rate of 200 gallons per minute (gpm). COD represents the total quantity of oxygen required to oxidize organic matter to carbon dioxide and water. COD removal follows a first-order removal reaction, with a rate constant k of 0.45 h⁻¹.

Determine:

- a) The detention time in hours if the effluent is to contain 15 mg/L of COD.
- b) The volume of the reactor in ft³ if the effluent is to contain 15 mg/L of COD.

Ideal Plug Flow Reactor

In ideal plug flow regime, all the elements of the fluid that enter the system (or control volume) at a given time pass through the system at the same velocity, remain in the system the same amount of time, and exit the system at the same time.

Assumption

- no longitudinal mixing occurs between adjacent fluid elements.
- Each element of fluid varies as a function of time along the length of the reactor.

Ideal Plug Flow Reactor

Steady-state

Mass balance in this reactor

[accumulation] = [inputs] - [outputs] + [reaction]

In this differential unit:

$$\left(\frac{\partial C}{\partial t}\right) \Delta V = QC|_{X} - QC|_{X + \Delta X} + r\Delta V$$

$$\left(\frac{\partial C}{\partial t}\right) \Delta V = QC - Q(C + \Delta C) + r\Delta V$$

$$\left(\frac{\partial C}{\partial t}\right) A \Delta X = QC - QC - Q\Delta C + rA\Delta X$$

$$\left(\frac{\partial C}{\partial t}\right) = -\frac{Q\Delta C}{A\Delta X} + r \longrightarrow \frac{Q\Delta C}{A\Delta X} = r$$

Ideal Plug Flow Reactor

A first-order removal reaction for an ideal Plug Flow Reactor

- **Complete-mixed**
- **Steady-state**

First-order

$$\frac{\Delta C}{\Delta X} = r \qquad -\frac{dC}{dt} = kC$$

$$\frac{QdC}{AdX} = -kC \longrightarrow \frac{dC}{C} = -k\frac{A}{Q}dX$$

$$\int_{C_0}^{C_t} \frac{dC}{C} = -k \frac{A}{Q} \int_0^L dX$$

$$\int_{C_0}^{C_t} \frac{dC}{C} = -k \frac{A}{Q} \int_0^L dX$$

$$\ln(C_t) - \ln(C_0) = -k \frac{A}{Q} L = -k \frac{V}{Q} = -k\tau$$

$$\tau = \frac{1}{k} \ln \left(\frac{C_0}{C_t} \right)$$

Summary

- 1. Material or mass balances are used in modeling engineered and natural systems.
- 2. When systems operate at **steady-state**, wherein the influent and effluent concentrations of all parameters and flows remain constant, the accumulation term can be set equal to zero.
- **3.** Dynamic systems are those that operate in a state of flux and where the mass balances yield differential equations that are more complex to solve.
- **4.** The rate of a reaction *r* is the rate of formation or disappearance of a chemical compound or species.
- **5.** The order of the reaction is related to the exponent of the chemical species given in the rate law.
- 6. Most biological and chemical reactions involved in environmental engineering are either zero-, first-, or second-order reactions.
- 7. Complete-mix refers to systems in which their contents are uniform throughout.
- **8.** Plug flow systems are those that are not well-mixed; the fluid particles pass through with little to no longitudinal mixing.

Homework

Problem 14, Page 235

4 Consider the irreversible conversion of a single reactant (A) to a single product (P) for the following reaction: A → P. Evaluate the following data to determine whether the reaction is zero-, first-, or second-order. Also, determine the magnitude of the rate constant *k* and list the appropriate units.

Time (minutes)	Concentration of A (g/L)
0	1.00
11	0.50
20	0.25
48	0.10
105	0.05

Problem 29, Page 236

- 29 Several reactor configurations are to be considered for reducing the influent substrate concentration from 100 mg/L to 15 mg/L at a design flow rate of 5 million gallons per day (MGD). Assume that substrate removal follows first-order kinetics and the first-order rate constant k is 8.0 d^{-1} . Determine the reactor volume required for the following configurations operating at steady-state:
 - a. One ideal plug flow reactor.
 - b. One ideal complete-mix reactor.
 - c. Three ideal complete-mix reactors in series.
 - d. Ten ideal complete-mix reactors in series.

Problem 30, Page 236

30 A complete-mix flow reactor is designed to treat an influent waste stream containing 130 mg/L of casein at a flow rate of 380 liters per minute (Lpm). Assume that casein removal follows first-order removal kinetics with a rate constant k of $0.5 \, h^{-1}$ and that the effluent should contain 13 mg/L of casein at steady state. Determine:

- a. The detention time in hours.
- b. The volume of the reactor in cubic meters.

The end

