

Logistic Regression

Welcome to binary world

Instructors

Sourish Das, PhD Associate Professor Chennai Mathematical Institute

Mousum Dutta Chief Data Scientist, Spotle.ai Computer Science, IIT KGP.

Admissions

Admission

- What is the probability an applicant will accept the admission offer?
- Why this problem is a possible logistic regression problem?
- What is the target variable?
- Is it a continuous variable?

Admission Dataset

gre	gpa	rank1
380	3.61	3
660	3.67	3
800	4.00	1
640	3.19	4
520	2.93	4
760	3.00	2
600	3.5	1
	380 660 800 640 520 760	gre gpa 380 3.61 660 3.67 800 4.00 640 3.19 520 2.93 760 3.00 600 3.5

```
admit: 1 = Got the admission and <math>0 = not
```

```
gre : GRE score
```

Sample size = 400 Split the data into train and test

70% of the data for train and 30% data keep for test data

Train data size = 280 and Test data size = 120

Box Plot for gpa vs admit

Box Plot for gre vs admit

Logistic Regression

```
Y = 1 admit with probability p, 0
```

Y = 0 not-admit with probability 1- p

$$Log (p/(1-p)) = b_0 + b_1 gre + b_2 gpa + b_3 rank$$

Model Fitting with R and Python

- One can fit logistic regression to data very easily using R and/or Python
 - R has a built-in function called "glm" you can use it
 - Python has "LogisticRegression" in the linear_model of SKLearn module

Fitting Logistic Regression

Scatter Plot

Box Plot

Chance of getting admission

Suppose a student whose gre score is 600 and gpa is 3.5 and applied to four universities her chance of getting admission in a college with rank =1 has probability 0.4916420

```
p(admit=1) gre gpa rank
0.4916420 600 3.5 1
0.3365697 600 3.5 2
0.2197087 600 3.5 3
0.1767365 600 3.5 4
```


Confusion Matrix

Accuracy: (7+72)/(7+72+39+2) = 0.65833

Logistic Regression with Log Transformation

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -11.9568
                       4.5566 -2.624 0.00869 **
                       0.7783 1.964 0.04950 *
            1.5289
log(gre)
log(gpa) 1.7460
                       1.4206 1.229 0.21906
                       0.3739 - 1.759 0.07850.
factor(rank)2 -0.6578
                       0.4073 - 3.032 0.00243
factor (rank) 3 -1.2348
factor (rank) 4 -1.5204
                       0.5175 - 2.938
                                     0.00330
                                             * *
```

Confusion matrix

```
admit_true
admit_pred 0 1
0 72 38
1 2 8
```

Accuracy = 0.667

Thank You