SIR vs SEIRD: Disease Transmission

Team 3-Ferns: Sparsh Gupta & Ari Bobesh

What are the key differences between the SIR and SEIRD models for disease transmission, particularly in how they differ in predicting the time and intensity of a secondary wave, when fit to the same first wave, across a range of infectivity values?

SEIRD Model

 $S_{n+1} = S_n - \beta IS + \sigma R$ $E_{n+1} = E_n - \alpha E + \beta IS$ $I_{n+1} = I_n - \gamma I - \delta I + \alpha E$ $R_{n+1} = R_n - \sigma R + \gamma I$

 $D_{n+1} = D_n + \delta I$

<u>Update state Equations</u>

 α : Incubation time S: Susceptible β : Infectivity E: Exposed I: Infectious γ : Recovery R: Recovered δ : Death D: Dead

 σ : Re-susceptibility

Results

ation

	Interpretation
Results:	<u>Limitations:</u>
• Divergence in intensity & time of the second wave due to the Exposed stock	Inaccuracies in the starting value of Exposed individuals
 No change in trends without dead stock 	The inability to line up the first waves perfectly horizontally

Making alpha larger makes the inclusion of the Exposed stock

increasingly negligible

Next steps:

- Standardizing infectivity
- Running the model on a daily-basis