References

- [1] AARONSON, S. Is quantum mechanics an island in theoryspace. *arXiv* preprint (2004). arxiv:quant-ph/0401062.
- [2] AARONSON, S. *Quantum computing since Democritus*. Cambridge University Press, 2013.
- [3] ABRAMSKY, S., AND COECKE, B. A categorical semantics of quantum protocols. In *Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science*, 2004. (2004), IEEE, pp. 415–425. arxiv:quant-ph/0402130.
- [4] ABRAMSKY, S., AND TZEVELEKOS, N. Introduction to Categories and Categorical Logic. *New structures for physics* (2011), 3–94. arxiv:1102.1313.
- [5] Ackerhalt, J. R., Knight, P. L., and Eberly, J. H. Radiation reaction and radiative frequency shifts. *Physical Review Letters* **30**, 10 (1973), 456.
- [6] ADÁMEK, J., HERRLICH, H., AND STRECKER, G. E. Abstract and concrete categories; the joy of cats 2004. *Reprints in Theory and Applications of Categories* (2009). PDF.
- [7] Adams, C., Sigel, M., and Mlynek, J. Atom optics. *Physics Reports* **240**, 3 (1994), 143–210.
- [8] Adder, S. L. Quantum theory as an emergent phenomenon: The statistical mechanics of matrix models as the precursor of quantum field theory. Cambridge University Press, 2004.
- [9] Aharonov, Y., and Bohm, D. Significance of electromagnetic potentials in the quantum theory. *Physical Review* **115**, 3 (1959), 485.
- [10] Aharonov, Y., and Bohm, D. Further considerations on electromagnetic potentials in the quantum theory. *Physical Review* **123**, 4 (1961), 1511.
- [11] Aharonov, Y., and Bohm, D. Further discussion of the role of electromagnetic potentials in the quantum theory. *Physical Review* **130**, 4 (1963), 1625.

- [12] Aharony, O., Gubser, S. S., Maldacena, J. M., Ooguri, H., and Oz, Y. Large N field theories, string theory and gravity. *Phys. Rept.* **323** (2000), 183–386.
- [13] Albert, D., and Loewer, B. Interpreting the many worlds interpretation. *Synthese* 77, 2 (1988), 195–213.
- [14] Albert, D. Z. Quantum mechanics and experience. Harvard University Press, 1994.
- [15] Allahverdyan, A. E., Balian, R., and Nieuwenhuizen, T. M. Understanding quantum measurement from the solution of dynamical models. *Phys. Rept.* **525** (2013), 1–166.
- [16] ALLAHVERDYAN, A. E., BALIAN, R., AND NIEUWENHUIZEN, T. M. A sub-ensemble theory of ideal quantum measurement processes. *Annals of Physics* **376** (2017), 324–352.
- [17] Almheiri, A., Dong, X., and Harlow, D. Bulk Locality and Quantum Error Correction in AdS/CFT. *JHEP* **04** (2015), 163. arxiv:1411.7041.
- [18] Almheiri, A., Engelhardt, N., Marolf, D., and Maxfield, H. The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole. *J. High Energ. Phys.* **2019**, 12 (2019). arxiv:1905.08762.
- [19] Almheiri, A., Marolf, D., Polchinski, J., and Sully, J. Black Holes: Complementarity or Firewalls? *JHEP* **02** (2013), 062. arxiv:1207.3123.
- [20] Altarelli, G. Collider Physics within the Standard Model. Springer International Publishing, 2017.
- [21] Anastopoulos, C. Decays of unstable quantum systems. *Int J Theor Phys* **58**, 3 (2018), 890–930. arxiv:1808.03798.
- [22] ANGELIS, A. D., AND PIMENTA, M. *Introduction to Particle and Astroparticle Physics*. Springer International Publishing, 2018.
- [23] APPENZELLER, I. *Introduction to astronomical spectroscopy*. Cambridge University Press, 2012.
- [24] Arnold, V. I. *Mathematical Methods of Classical Mechanics*. Springer New York, 1978.

- [25] Arnold, V. I. *Mathematical Methods of Classical Mechanics*. Springer New York, 1989.
- [26] ASHTEKAR, A., AND SCHILLING, T. A. Geometrical formulation of quantum mechanics. In *On Einstein's Path: Essays in Honor of Engelbert Schucking*. Springer, 1999, pp. 23–65. arxiv:gr-qc/9706069.
- [27] ASTON, P. J. Is radioactive decay really exponential? *EPL* (*Europhysics Letters*) **97**, 5 (2012), 52001. arxiv:1204.5953.
- [28] ATKINS, P. W., AND FRIEDMAN, R. S. *Molecular quantum mechanics*. Oxford university press, 2011.
- [29] Awodey, S. Topological representation of the lambda-calculus. *Mathematical Structures in Computer Science* **10**, 1 (2000), 81–96.
- [30] Awodey, S. Type theory and homotopy. *arXiv e-prints* (2010). arxiv:1010.1810.
- [31] Awodey, S. Natural models of homotopy type theory: Mscs mscs. *Mathematical Structures in Computer Science* **28**, 2 (2018), 241–286. arxiv:1406.3219.
- [32] Awodey, S., and Warren, M. A. Homotopy theoretic models of identity types. *Mathematical Proceedings of the Cambridge Philosophical Society* **146**, 1 (2009), 45–55. arxiv:0709.0248.
- [33] BACH, R., POPE, D., LIOU, S.-H., AND BATELAAN, H. Controlled double-slit electron diffraction. *New Journal of Physics* **15**, 3 (2013), 033018. arxiv:1210.6243.
- [34] Bader, R. F., and Matta, C. F. Atoms in molecules as non-overlapping, bounded, space-filling open quantum systems. *Foundations of Chemistry* **15** (2013), 253–276.
- [35] BAEZ, J. An introduction to *n*-categories. In *Category Theory and Computer Science VII* (1997), E. Moggi and G. Rosolini, Eds., no. 1290 in Lecture Notes in Computer Science, Springer-Verlag, pp. 1–33. arxiv:q-alg/9705009.
- [36] BAEZ, J., AND STAY, M. Physics, topology, logic and computation: A rosetta stone. In *New Structures for Physics*, B. Coecke, Ed. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 95–172. arxiv:0903.0340.

- [37] BAEZ, J. C. Quantum Quandaries: A Category-Theoretic Perspective. In *The Structural Foundations of Quantum Gravity*. Oxford University Press, 2004. arxiv:quant-ph/0404040.
- [38] BAEZ, J. C., AND DOLAN, J. Higher-dimensional Algebra and Topological Quantum Field Theory. *Journal of mathematical physics* **36**, 11 (1995), 6073–6105. arxiv:q-alg/9503002.
- [39] BAEZ, J. C., AND DOLAN, J. Categorification. arXiv Preprint (1998). arxiv:math/9802029.
- [40] BAEZ, J. C., AND DOLAN, J. Categorification. In *Higher Category Theory:* Workshop on Higher Category Theory and Physics (1998), Getzler, Ezra and Kapranov, Mikhail M, Ed., vol. 230, arXiv, pp. 1–36. arxiv:math/9802029.
- [41] BAEZ, J. C., AND HUERTA, J. The Algebra of Grand Unified Theories. *Bull. Am. Math. Soc.* 47 (2010), 483–552. arxiv:0904.1556.
- [42] BAEZ, J. C., AND MAY, J. P., Eds. *Towards Higher Categories*. Springer New York, 2010.
- [43] BAEZ, J. C., AND SHULMAN, M. Lectures on n-categories and cohomology. arxiv:math/0608420.
- [44] BAEZ, J. C., AND WILLIAMS, C. Enriched lawvere theories for operational semantics. *Electronic Proceedings in Theoretical Computer Science* **323** (2020), 106–135. arxiv:1905.05636.
- [45] BAGGOT, J. Quantum Reality. Oxford University Press, USA, 2020.
- [46] BAGGOTT, J. The meaning of quantum theory: a guide for students of chemistry and physics. Oxford University Press, 1992.
- [47] BAGGOTT, J. The Quantum cookbook: mathematical recipes for the foundations of quantum mechanics. Oxford University Press, 2020.
- [48] Ballentine, L. E. *Quantum mechanics: a modern development*. World Scientific Publishing Company, 2014.
- [49] BARBADO, L. C., BARCELO, C., GARAY, L. J., AND JANNES, G. The Trans-Planckian problem as a guiding principle. *JHEP* **11** (2011), 112. arxiv:abs/1109.3593.

- [50] BARR, M., AND WELLS, C. Category theory for computing science, Third ed. Prentice-Hall International Series in Computer Science. Prentice Hall New York, 1998. 2012 Online Reprint.
- [51] BARR, M., AND WELLS, C. *Toposes, triples, and theories*. Springer-Verlag, 2000.
- [52] Barrett, J. A. *The Conceptual Foundations of Quantum Mechanics*. Oxford University Press, 2019.
- [53] BARRETT, J. A., AND BYRNE, P. The Everett Interpretation of Quantum Mechanics: Collected Works 1955-1980 with Commentary. Princeton University Press, 2012.
- [54] BARRETT, J. A., AND HUTTEGGER, S. M. Quantum Randomness and Underdetermination. *Philosophy of Science* **87**, 3 (2020), 391—408.
- [55] BARUT, A. O., Ed. Foundations of Radiation Theory and Quantum Electrodynamics. Springer US, 1980.
- [56] BARUT, A. O., AND BASRI, S. Path integrals and quantum interference. *American journal of physics* **60**, 10 (1992), 896–899.
- [57] BARUT, A. O., AND DURU, I. H. Path integral formulation of quantum electrodynamics from classical particle trajectories. *Physics Reports* **172**, 1 (1989), 1–32.
- [58] Basdevant, J.-L. *Lectures on Quantum Mechanics*. Springer International Publishing, 2016.
- [59] BASDEVANT, J.-L., AND DALIBARD, J. *Quantum mechanics*. Springer Science & Business Media, 2005.
- [60] BAUER, A. Five stages of accepting constructive mathematics. *Bulletin of the American Mathematical Society* **54** (2017), 481–498. doi:10.1090/bull/1556.
- [61] BAUER, A. What is algebraic about algebraic effects and handlers? *CoRR* (2018). arxiv:1807.05923.
- [62] BAUER, A., AND LEŠNIK, D. Metric spaces in synthetic topology. *Annals of Pure and Applied Logic* **163**, 2 (2012), 87 100. Third Workshop on Formal Topology.

- [63] BAULIEU, L., ILIOPOULOS, J., AND SÉNÉOR, R. From Classical to Quantum Fields. Oxford University Press, 2017.
- [64] BEAU, M. Feynman path integral approach to electron diffraction for one and two slits: analytical results. *Eur. J. Phys.* **33**, 5 (2012), 1023–1039. arxiv:1110.2346.
- [65] Beck, M. Quantum mechanics: theory and experiment. Oxford University Press, USA, 2012.
- [66] Bedford, J. An Introduction to String Theory. *arXiv e-prints* (2011). arxiv:1107.3967.
- [67] Bell, J. Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy, 2 ed. Cambridge University Press, 2004.
- [68] Bemer, R. W. Towards standards for handwritten zero and oh: Much ado about nothing (and a letter), or a partial dossier on distinguishing between handwritten zero and oh. *Communications of the ACM* **10**, 8 (1967), 513–518.
- [69] Bergner, J. E. *The Homotopy Theory of* (∞, 1)-Categories. Cambridge University Press, 2018.
- [70] Bergquist, J. C., Hulet, R. G., Itano, W. M., and Wineland, D. J. Observation of Quantum Jumps in a Single Atom. *Physical Review Letters* **57**, 14 (1986), 1699–1702.
- [71] Bergström, L., and Goobar, A. Cosmology and particle astrophysics. Springer Science & Business Media, 2006.
- [72] Berlot, Y. Lambda-calculus and types. Online Lecture Notes, 2015. PDF.
- [73] Berman, P. R., and Ford, G. W. Spectrum in spontaneous emission: Beyond the weisskopf-wigner approximation. *Phys. Rev. A* **82**, 2 (2010).
- [74] Bes, D. Quantum Mechanics. Springer Berlin Heidelberg, 2012.
- [75] BIALYNICKI-BIRULA, I. Photon Wave Function. *Progress in optics* **36** (1996), 245–294. arxiv:quant-ph/0508202.

- [76] BINNEY, J. Astrophysics: a very short introduction. Oxford University Press, 2016.
- [77] BINNEY, J., AND SKINNER, D. *The physics of quantum mechanics*. Oxford University Press, 2013.
- [78] BJORKEN, J., AND DRELL, S. Relativistic Quantum Mechanics. McGraw-Hill, 1964.
- [79] BJORKEN, J., AND DRELL, S. Relativistic Quantum Fields. McGraw-Hill, 1965.
- [80] Blanchard, P., and Jadczyk, A. From Quantum Probabilities to Classical Facts. In *Capri Quantum Physics* 1993:0022-37 (1993), pp. 0022–37. arxiv:hep-th/9311090.
- [81] Blau, M. The path integral approach to quantum mechanics. Online Notes, 2020. PDF.
- [82] BOCCHIERI, P., AND LOINGER, A. Nonexistence of the aharonov-bohm effect. *Nuov Cim A* **47**, 4 (1978), 475–482.
- [83] Bogolubov, N. N., Logunov, A. A., Oksak, A. I., and Todorov, I. T., Eds. *General Principles of Quantum Field Theory*. Springer Netherlands, 1990.
- [84] Вонм, D. Quantum Theory. Pretice Hall, 1951. Dover Reprint, 1989.
- [85] BOHM, D., AND HILEY, B. J. The undivided universe: An ontological interpretation of quantum theory. Routledge, 2006.
- [86] BOHM, D., HILEY, B. J., AND KALOYEROU, P. N. An ontological basis for the quantum theory. *Physics Reports* **144** (1987), 321–375.
- [87] Bohr, N. On the constitution of atoms and molecules. *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science* **26**, 151 (1913), 1–25.
- [88] Bohr, N. The quantum postulate and the recent development of atomic theory1. *Nature* **121**, 3050 (1928), 580–590. Como Lecture.
- [89] Borceux, F. Handbook of categorical algebra: volume 1, Basic category theory, vol. 1. Cambridge University Press, 1994.
- [90] BORCEUX, F. Handbook of Categorical Algebra: Volume 2, Categories and Structures, vol. 2. Cambridge University Press, 1994.

- [91] BORCEUX, F. Handbook of Categorical Algebra: Volume 3, Sheaf Theory, vol. 3. Cambridge university press, 1994.
- [92] BORCHERS, H. J. On the vacuum state in quantum field theory. II. *Communications in Mathematical Physics* **1**, 1 (1965), 57–79.
- [93] BORCHERS, H. J., HAAG, R., AND SCHROER, B. The Vacuum State in Quantum Field Theory. *Il Nuovo Cimento* (1955-1965) **29**, 1 (1963), 148–162.
- [94] Born, M. Quantum mechanics of collision processes. *Uspekhi Fizich* (1926).
- [95] BORN, M. On the quantum mechanics of collisions (preliminary communication). Trans. Wheeler, JA & Zurek, WH. 1981. *Quantum Theory and Measurement* (1927).
- [96] Born, M. Physical aspects of quantum mechanics. *Nature* **119**, 2992 (1927), 354–357.
- [97] BORN, M., HEISENBERG, W., AND JORDAN, P. Zur Quantenmechanik II. *Zeitschrift für Physik* **35**, 8-9 (1926), 557–615. Translated in [401].
- [98] BORN, M., AND JORDAN, P. Zur quantenmechanik. *Zeitschrift für Physik* **34**, 1 (1925), 858–888. Translated in [401].
- [99] Boughn, S. A Quantum Story. arxiv:1801.06196.
- [100] Boughn, S., and Reginatto, M. A pedestrian approach to the measurement problem in quantum mechanics. *The European Physical Journal H* **38**, 4 (2013), 443–470. 1309.0724v1.
- [101] BOUMAN, K. L., JOHNSON, M. D., DALCA, A. V., CHAEL, A. A., ROELOFS, F., DOELEMAN, S. S., AND FREEMAN, W. T. Reconstructing video of time-varying sources from radio interferometric measurements. *IEEE Transactions on Computational Imaging* 4, 4 (2018), 512–527. arxiv:1711.01357.
- [102] BOUMAN, K. L., JOHNSON, M. D., DALCA, A. V., CHAEL, A. A., ROELOFS, F., DOELEMAN, S. S., AND FREEMAN, W. T. Reconstructing video of time-varying sources from radio interferometric measurements. *IEEE Transactions on Computational Imaging* 4, 4 (2018), 512–527. arxiv:1711.01357.

- [103] Bradley, T.-D. What is Applied Category Theory? *arXiv preprint* (2018). arxiv:1809.05923.
- [104] Bratteli, O., and Robinson, D. W. Operator Algebras and Quantum Statistical Mechanics 1. Springer Berlin Heidelberg, Berlin, Heidelberg, 1987.
- [105] Braunstein, S. L. Black hole entropy as entropy of entanglement, or it's curtains for the equivalence principle. *arXiv* preprint (2009). arxiv:0907.1190v1.
- [106] Braunstein, S. L., Pirandola, S., and Życzkowski, K. Better Late than Never: Information Retrieval from Black Holes. *Phys. Rev. Lett.* **110**, 10 (2013), 101301. arxiv:0907.1190v3.
- [107] Braunstein, S. L., Sommers, H.-J., and Zyczkowski, K. Entangled black holes as ciphers of hidden information. *arXiv* preprint (2009). https://arxiv.org/abs/0907.0739.
- [108] Braunstein, S. L., and Zyczkowski, K. Entangled black holes as ciphers of hidden information. *arXiv preprint* (2009). https://arxiv.org/abs/0907.1190v2.
- [109] Bredon, G. E. Sheaf theory, vol. 170. Springer, 2012.
- [110] Bringhurst, R. *The Elements of Typographic Style*. Hartley & Marks, Publishers, 2004.
- [111] Brout, R., Massar, S., Parentani, R., and Spindel, P. A Primer for black hole quantum physics. *Phys. Rept.* **260** (1995), 329–454. https://arxiv.org/abs/0710.4345.
- [112] Brukner, Č. On the quantum measurement problem. In *Quantum* [*Un*] *Speakables II*. Springer International Publishing, 2016, pp. 95–117.
- [113] Brun, T. A. A simple model of quantum trajectories. *American Journal of Physics* **70**, 7 (2002), 719–737. arxiv:quant-ph/0108132.
- [114] Bub, J. Von Neumann's 'No Hidden Variables' Proof: A Re-Appraisal. *Foundations of Physics* **40**, 9-10 (2010), 1333–1340. arxiv:1006.0499.
- [115] BUCKLEY, A., ET AL. General-purpose event generators for LHC physics. *Phys. Rept.* **504** (2011), 145–233. arxiv:1101.2599.
- [116] BUCKLEY, M. Lawvere theories, 2008. PDF.

- [117] Burda, P., Gregory, R., and Moss, I. The fate of the Higgs vacuum. *JHEP* **06** (2016), 025.
- [118] Burda, P., Gregory, R., and Moss, I. G. Vacuum metastability with black holes. *Journal of High Energy Physics* **2015**, 8 (2015), 114. 1503.07331.
- [119] CAMARENA, O. A. A whirlwind tour of the world of $(\infty, 1)$ -categories. *arXiv* (2013). arxiv:1303.4669.
- [120] CARDONE, F., AND HINDLEY, J. R. Lambda-calculus and combinators in the 20th century. In *Logic from Russell to Church*, D. M. Gabbay and J. Woods, Eds., vol. 5 of *Handbook of the History of Logic*.

 North-Holland, 2009, pp. 723 817. http://www.users.waitrose.com/~hindley/SomePapers_PDFs/2006CarHin, HistlamRp.pdf.
- [121] CARMICHAEL, H. J. An Open Systems Approach to Quantum Optics. Springer, Berlin, Heidelberg, 1993.
- [122] CARMICHAEL, H. J. Coherence and decoherence in the interaction of light with atoms. *Phys. Rev. A* **56** (1997), 5065–5099.
- [123] Carroll, S. A No-Nonsense Introduction to General Relativity, 2001. PDF.
- [124] CARROLL, S. Something deeply hidden: Quantum worlds and the emergence of spacetime. Penguin, 2020.
- [125] CARROLL, S. M. Why Boltzmann Brains Are Bad. arxiv:1702.00850.
- [126] CHEN, B. G.-G., DERBES, D., GRIFFITHS, D., HILL, B., SOHN, R., AND TING, Y.-S. Lectures of Sidney Coleman on Quantum Field Theory. WORLD SCIENTIFIC, 2018.
- [127] Chen, E. K. Realism about the wave function. *Philosophy Compass* **14**, 7 (2019), e12611. arxiv:1810.07010.
- [128] CHENG, E. The Joy of Abstraction: an Exploration of Math, Category Theory, and Life. Cambridge University Press, 2022.
- [129] Church, A. An unsolvable problem of elementary number theory. *American Journal of Mathematics* **58**, 2 (1936), 345–363.
- [130] CHURCH, A. *The Calculi of Lambda Conversion. (AM-6)*. Princeton University Press, 1941.

- [131] CISINSKI, D.-C. *Higher categories and homotopical algebra*, vol. 180. Cambridge University Press, 2019. Preprint.
- [132] COECKE, B., AND KISSINGER, A. Categorical Quantum Mechanics I: Causal Quantum Processes. In *Categories for the Working Philosopher*, E. Landry, Ed. Oxford University Press, 2015, pp. 286–328. arxiv:1510.05468.
- [133] COLEMAN, S. Fate of the false vacuum: Semiclassical theory. *Phys. Rev. D* **15** (1977), 2929–2936. doi/10.1103/PhysRevD.15.2929.
- [134] Cotrufo, M., and Alù, A. Excitation of single-photon embedded eigenstates in coupled cavity—atom systems. *Optica* **6**, 6 (2019), 799–804. 10.1364/OPTICA.6.000799.
- [135] Cuspinera, L., Gregory, R., Marshall, K., and Moss, I. G. Higgs Vacuum Decay from Particle Collisions? *Phys. Rev.* **D99**, 2 (2019), 024046. arxiv:1803.02871.
- [136] CZECH, B., KARCZMAREK, J. L., NOGUEIRA, F., AND VAN RAAMSDONK, M. The Gravity Dual of a Density Matrix. *Class. Quant. Grav.* **29** (2012), 155009. arxiv:1204.1330.
- [137] Dass, N. Dirac and the path integral. *arXiv preprint* (2020). arxiv:2003.12683.
- [138] DAVID, F. The Formalisms of Quantum Mechanics. *Lect. Notes Phys.* **893** (2015), pp.1–157. arxiv:1211.5627v1.
- [139] DE Broglie, L. *Recherches sur la théorie des quanta*. PhD thesis, Migration-université en cours d'affectation, 1924.
- [140] DE BROGLIE, L. Heisenberg's Uncertainties and the Probabilistic Interpretation of Wave Mechanics. Springer International Publishing, 1990. 1950-51 manuscript.
- [141] DE HARO, S., MAYERSON, D. R., AND BUTTERFIELD, J. N. Conceptual Aspects of Gauge/Gravity Duality. *Found. Phys.* **46**, 11 (2016), 1381–1425. arxiv:1509.09231.
- [142] Degrassi, G., Di Vita, S., Elias-Miro, J., Espinosa, J. R., Giudice, G. F., Isidori, G., and Strumia, A. Higgs mass and vacuum stability in the Standard Model at NNLO. *JHEP* **08** (2012), 098. arxiv:1205.6497.

- [143] DICK, R. Quantum jumps, superpositions, and the continuous evolution of quantum states. *Studies in History and Philosophy of Science Part B Studies in History and Philosophy of Modern Physics* **57** (2017), 115–125. arxiv: 1703.06230.
- [144] DICK, R. *Advanced Quantum Mechanics*. Springer International Publishing, 2020.
- [145] DICKSON, M. Non-relativistic Quantum Mechanics. In *Philosophy of Physics*, J. Butterfield and J. Earman, Eds. North Holland, 2007, pp. 275–415. PDF.
- [146] DIEKS, D. Von neumann's impossibility proof: Mathematics in the service of rhetorics. *Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics* **60** (2017), 136 148. arxiv:1801.09305.
- [147] DIMITROVA, T. L., AND WEIS, A. The wave-particle duality of light: A demonstration experiment. *American Journal of Physics* **76**, 2 (feb 2008), 137–142.
- [148] DIRAC, P. A. M. On the theory of quantum mechanics. *Proc. R. Soc. Lond. A* **112**, 762 (1926), 661–677.
- [149] DIRAC, P. A. M. The physical interpretation of the quantum dynamics. *Proc. R. Soc. Lond. A* **113**, 765 (1927), 621–641.
- [150] DIRAC, P. A. M. The quantum theory of the electron. *Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character* **117**, 778 (1928), 610–624.
- [151] DIRAC, P. A. M. The quantum theory of the electron. part ii. *Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character* **118**, 779 (1928), 351–361.
- [152] DIRAC, P. A. M. A new notation for quantum mechanics. *Mathematical Proceedings of the Cambridge Philosophical Society* **35**, 3 (1939), 416–418.
- [153] DIRAC, P. A. M. On the analogy between classical and quantum mechanics. *Reviews of Modern Physics* **17**, 2-3 (1945), 195–199.
- [154] DIRAC, P. A. M. *The principles of quantum mechanics*. Oxford university press, 1967. 1982 Reprint of 4th Edition.

- [155] Dong, X., Harlow, D., and Wall, A. C. Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality. *Phys. Rev. Lett.* **117**, 2 (2016), 021601. arxiv:1601.05416.
- [156] DUERR, D., GOLDSTEIN, S., TUMULKA, R., AND ZANGHI, N. Bell-type quantum field theories. *J. Phys.* A38 (2005), R1. arxiv:0407116.
- [157] Duncan, A., and Janssen, M. Pascual Jordan's resolution of the conundrum of the wave-particle duality of light. *Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics* **39**, 3 (2008), 634–666. https://arxiv.org/abs/0709.3812.
- [158] Duncan, A., and Janssen, M. Constructing Quantum Mechanics: Volume 1: The Scaffold: 1900-1923. Oxford University Press, 2019.
- [159] Dürr, D., Goldstein, S., Norsen, T., Struyve, W., and Zanghì, N. Can Bohmian Mechanics be made Relativistic? *Proc. Roy. Soc. Lond.* **A470** (2013), 20130699. https://arxiv.org/abs/1307.1714v2.
- [160] DÜRR, D., GOLDSTEIN, S., TUMULKA, R., AND ZANGH, N. Quantum Hamiltonians and Stochastic Jumps. *Communications in Mathematical Physics* **254**, 1 (2004), 129–166. arxiv:0303056v3.
- [161] Durr, D., Goldstein, S., Tumulka, R., and Zanghi, N. Trajectories and particle creation and annihilation in quantum field theory. *J. Phys.* **A36** (2003), 4143–4150. arxiv:0208072.
- [162] DÜRR, D., GOLDSTEIN, S., AND ZANGHÍ, N. Quantum equilibrium and the origin of absolute uncertainty. *Journal of Statistical Physics* **67**, 5 (1992), 843–907. arxiv:0308039v1.
- [163] DÜRR, D., GOLDSTEIN, S., AND ZANGHÌ, N. Quantum Equilibrium and the Role of Operators as Observables in Quantum Theory. *Journal of Statistical Physics* **116**, 1-4 (2004), 959–1055. arxiv:0308039v1.
- [164] EARMAN, J., AND FRASER, D. Haag's Theorem and its Implications for the Foundations of Quantum Field Theory. *Erkenntnis* **64**, 3 (2006), 305.
- [165] ECHEVERRIA-ENRIQUEZ, A., MUNOZ-LECANDA, M. C., ROMÁN-ROY, N., AND VICTORIA-MONGE, C. Mathematical foundations of geometric quantization. *arXiv* preprint (1999). arxiv:math-ph/9904008.

- [166] EILENBERG, S., HARRISON, D. K., MACLANE, S., AND RÖHRL, H., Eds. *Proceedings of the Conference on Categorical Algebra*. Springer Berlin Heidelberg, 1966.
- [167] EILENBERG, S., AND KELLY, G. M. Closed categories. In *Proceedings of the Conference on Categorical Algebra*. Springer Berlin Heidelberg, 1966, pp. 421–562.
- [168] EILENBERG, S., AND MACLANE, S. General theory of natural equivalences. *Transactions of the American Mathematical Society* **58** (1945), 231–294.
- [169] EISERT, J., CRAMER, M., AND PLENIO, M. B. Area laws for the entanglement entropy a review. *Rev. Mod. Phys.* **82** (2010), 277–306. https://arxiv.org/abs/0808.3773.
- [170] Ellis, J. The Discovery of the Gluon. *Int. J. Mod. Phys.* **A29**, 31 (2014), 1430072. arxiv.org/abs/1409.4232.
- [171] Ellis, J., Gaillard, M. K., and Nanopoulos, D. V. An Updated Historical Profile of the Higgs Boson. In *The standard theory of particle physics: Essays to celebrate CERN's 60th anniversary*, L. Maiani and L. Rolandi, Eds. 2016, pp. 255–274. arxiv:1504.07217.
- [172] Ellis, R., Stirling, W., and Webber, B. *QCD and Collider Physics*. Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology. Cambridge University Press, 2003.
- [173] ESCARDÓ, M. Synthetic topology of data types and classical spaces. In *Electron. Notes Theor. Comput. Sci* (2004), Elsevier. Download here.
- [174] Escardó, M. Topology via higher-order intuitionistic logic. Download here.
- [175] ESFELD, M., HUBERT, M., LAZAROVICI, D., AND DÜRR, D. The Ontology of Bohmian Mechanics. *The British Journal for the Philosophy of Science* **65**, 4 (2013), 773–796.
- [176] FADDEEV, L., AND YAKUBOVSKIĬ, O. Lectures on Quantum Mechanics for Mathematics Students. American Mathematical Society, 2009.
- [177] FALKENBURG, B. Particle Metaphysics: A Critical Account of Subatomic Reality. Springer Berlin Heidelberg, 2007.

- [178] FAYE, J., AND FOLSE, H. J., Eds. Niels Bohr and the Philosophy of Physics Twenty-First-Century Perspectives. Bloomsbury, 2017.
- [179] FEWSTER, C. J., AND REJZNER, K. Algebraic Quantum Field Theory An Introduction. https://arxiv:1904.04051.
- [180] FOLLAND, G. Quantum Field Theory A Tourist Guide for Mathematicians. American Mathematical Society, 2008.
- [181] Fonda, L., Ghirardi, G. C., and Rimini, A. Decay theory of unstable quantum systems. *Rep. Prog. Phys.* **41**, 4 (1978), 587–631.
- [182] Fong, B., and Spivak, D. I. Seven sketches in compositionality: An invitation to applied category theory. *arXiv preprint* (2018). arxiv:1803.05316.
- [183] FOURMAN, M. P. The Logic of Topoi. In *Studies in Logic and the Foundations of Mathematics*, vol. 90. Elsevier, 1977, pp. 1053–1090.
- [184] Fredenhagen, K., Rehren, K.-H., and Seiler, E. Quantum field theory: Where we are. *Lect. Notes Phys.* **721** (2007), 61–87. arxiv:0603155v1.
- [185] Freyd, P. J. Abelian categories, vol. 1964. Harper & Row New York, 1964. Reprint.
- [186] Friedman, G. Survey article: An elementary illustrated introduction to simplicial sets. *Rocky Mountain J. Math.* **42**, 2 (2012), 353–423. arxiv:0809.4221.
- [187] GABBAY, D. M., AND WOODS, J., Eds. Logic from Russell to Church, vol. 5 of Handbook of the History of Logic. Elsevier, 2009.
- [188] Gepner, D. An Introduction to Higher Categorical Algebra. In *Handbook of Homotopy Theory*. Chapman and Hall/CRC, 2020, pp. 487–548. arxiv:1907.02904.
- [189] GIDDINGS, S. B. Black hole information, unitarity, and nonlocality. *Phys. Rev.* **D74** (2006), 106005. arxiv:hep-th/0605196.
- [190] Giddings, S. B. (Non)perturbative gravity, nonlocality, and nice slices. *Phys. Rev.* **D74** (2006), 106009. arxiv:hep-th/0606146.
- [191] GIDDINGS, S. B. Models for unitary black hole disintegration. *Phys. Rev.* **D85** (2012), 044038.

- [192] Giddings, S. B. Hawking radiation, the Stefan–Boltzmann law, and unitarization. *Phys. Lett.* **B754** (2016), 39–42. arxiv:1511.08221.
- [193] GLIMM, J., AND JAFFE, A. A $\lambda \phi^4$ Quantum Field Theory without Cutoffs. I. *Phys. Rev.* **176** (1968), 1945–1951.
- [194] GLIMM, J., AND JAFFE, A. Rigorous quantum field theory models. *Bulletin of the American Mathematical Society* **76**, 2 (1970), 407–411.
- [195] GLIMM, J., AND JAFFE, A. The $\lambda(\phi 4)2$ quantum field theory without cutoffs. III. The physical vacuum. *Acta Mathematica* **125**, 1 (1970), 203–267.
- [196] GLIMM, J., AND JAFFE, A. The $\lambda(\varphi^4)_2$ Quantum Field Theory Without Cutoffs: II. The Field Operators and the Approximate Vacuum. *The Annals of Mathematics* **91**, 2 (1970), 362.
- [197] GLIMM, J., AND JAFFE, A. The $\lambda(\varphi^4)_2$ Quantum Field Theory without Cutoffs. IV. Perturbations of the Hamiltonian. *Journal of Mathematical Physics* **13**, 10 (1972), 1568–1584.
- [198] GLIMM, J., AND JAFFE, A. Quantum Field Theory and Statistical Mechanics. Birkhäuser Boston, 1985.
- [199] GOEDECKE, J. Category Theory, 2013. http://www.julia-goedecke.de/pdf/CategoryTheoryNotes.pdf.
- [200] GOERSS, P. G., AND JARDINE, J. F. Simplicial Homotopy Theory. Birkhäuser Basel, 1999. 10.1007/978-3-0348-8707-6.
- [201] GOLDBLATT, R. Topoi: The Categorial Analysis of Logic. Elsevier, 2014.
- [202] Goldstein, S. Review essay: Bohmian mechanics and the quantum revolution. *Synthese* **107**, 1 (1996), 145–165. arxiv:9512027v1.
- [203] Gottfried, K. P. a. m. dirac and the discovery of quantum mechanics. *American Journal of Physics* **79**, 3 (2011), 261–266. arxiv:1006.4610.
- [204] GOTTFRIED, K., AND YAN, T.-M. Quantum Mechanics: Fundamentals. Springer New York, 2003.
- [205] GOWERS, T., BARROW-GREEN, J., AND LEADER, I. *The Princeton Companion to Mathematics*. Princeton University Press, 2010.

- [206] Grayson, D. R. An introduction to univalent foundations for mathematicians. *Bulletin of the American Mathematical Society* **55**, 4 (2018), 427–450. arxiv:1711.01477v3.
- [207] Gregory, R., Moss, I. G., and Withers, B. Black holes as bubble nucleation sites. *JHEP* **03** (2014), 081. arxiv:1401.0017.
- [208] Groth, M. A short course on ∞-categories. In *Handbook of Homotopy Theory*. Chapman and Hall/CRC, 2020, pp. 549–617. arxiv:1007.2925.
- [209] Gunn, C. G. Doing euclidean plane geometry using projective geometric algebra. *Advances in Applied Clifford Algebras* **27**, 2 (2017), 1203–1232.
- [210] HALL, B. C. Quantum Theory for Mathematicians. Springer New York, 2013.
- [211] Hamilton, A., Kabat, D. N., Lifschytz, G., and Lowe, D. A. Holographic representation of local bulk operators. *Phys. Rev.* **D74** (2006), 066009. arxiv:hep-th/0606141.
- [212] Han, T. Collider phenomenology: Basic knowledge and techniques. In *Physics in D* $_{\dot{c}}$ = 4. *Proceedings, Theoretical Advanced Study Institute in elementary particle physics, TASI* 2004, Boulder, USA, June 6-July 2, 2004 (2005), pp. 407–454. arxiv:0508097.
- [213] Harlow, D. Jerusalem Lectures on Black Holes and Quantum Information. *Rev. Mod. Phys.* **88** (2016), 015002. arxiv:1409.1231.
- [214] HARLOW, D. The Ryu–Takayanagi Formula from Quantum Error Correction. *Commun. Math. Phys.* **354**, 3 (2017), 865–912. arxiv:1607.03901.
- [215] HARRIGAN, N., AND SPEKKENS, R. W. Einstein, incompleteness, and the epistemic view of quantum states. *Foundations of Physics* **40**, 2 (2010), 125–157. arxiv:abs/0706.2661.
- [216] HARRIS, J., BOUCHARD, F., SANTAMATO, E., ZUREK, W. H., BOYD, R. W., AND KARIMI, E. Quantum probabilities from quantum entanglement: experimentally unpacking the born rule. *New Journal of Physics* **18**, 5 (2016), 053013. arxiv:1604.01471.
- [217] HARTLE, J. B., AND SREDNICKI, M. Are we typical? *Phys. Rev.* **D75** (2007), 123523. arxiv:0704.2630.

- [218] HARVEY, A., Ed. On Einstein's Path. Springer New York, 1999.
- [219] HAWKING, S., MALDACENA, J., AND STROMINGER, A. DeSitter entropy, quantum entanglement and ADS/CFT. *Journal of High Energy Physics* **2001**, 05 (2001), 001–001. https://arxiv.org/abs/hep-th/0002145.
- [220] Healey, R. A. Causality and chance in relativistic quantum field theories. *Stud. Hist. Phil. Sci.* **B48** (2014), 156–167. https://arxiv.org/abs/1405.3254.
- [221] Hoddeson, L., Brown, L., Dresden, M., and Riordan, M. *The Rise of the Standard Model: Particle Physics in the 1960s and 1970s.* The Rise of the Standard Model: Particle Physics in the 1960s and 1970s. Cambridge University Press, 1997.
- [222] HOLLANDS, S., AND WALD, R. M. Quantum fields in curved spacetime. *Physics Reports* **574** (2015), 1–35.
- [223] Home, D., and Whitaker, M. A conceptual analysis of quantum zeno; paradox, measurement, and experiment. *Annals of Physics* **258**, 2 (1997), 237 285.
- [224] HOOFT, G. A planar diagram theory for strong interactions. *Nuclear Physics B* **72**, 3 (1974), 461–473.
- [225] HOOFT, G. T. The quantum black hole as a theoretical lab, a pedagogical treatment of a new approach. In 56th International School of Subnuclear Physics: From gravitational waves to QED, QFD and QCD (ISSP 2018) Erice, Italy, June 14-23, 2018 (2019).
- [226] Hossenfelder, S., and Smolin, L. Conservative solutions to the black hole information problem. *Phys. Rev.* **D81** (2010), 064009. https://arxiv.org/abs/0901.3156.
- [227] HOWARD, W. A. The Formulae-as-Types Notion of Construction. In *To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism*, H. Curry, H. B., S. J. Roger, and P. Jonathan, Eds. Academic Press, 1980. Nice PDF at github.
- [228] HSU, B. C., BERRONDO, M., AND VAN HUELE, J.-F. M. C. S. Stern-Gerlach dynamics with quantum propagators. *Phys. Rev. A* **83** (2011), 012109.
- [229] Hubeny, V. E. The AdS/CFT Correspondence. *Class. Quant. Grav.* **32**, 12 (2015), 124010. arxiv:1501.00007.

- [230] ISHAM, C. Lectures on Quantum Theory: Mathematical and Structural Foundations. Imperial College Press, 1995.
- [231] ISIDORI, G., RIDOLFI, G., AND STRUMIA, A. On the metastability of the standard model vacuum. *Nucl. Phys.* **B609** (2001), 387–409. hep-ph/0104016.
- [232] Jackson, J. D., and Okun, L. B. Historical roots of gauge invariance. *Rev. Mod. Phys.* **73** (2001), 663–680. arxiv:hep-ph/0012061.
- [233] JACOBS, B. *Categorical Logic and Type Theory*. Elsevier, 1998. 10.1016/s0049-237x(98)x8028-6.
- [234] JACOBSON, T. Introduction to quantum fields in curved space-time and the Hawking effect. In *Lectures on quantum gravity. Proceedings, School of Quantum Gravity, Valdivia, Chile, January 4-14, 2002* (2003), pp. 39–89. arxiv:gr-qc/0308048v3.
- [235] Jadczyk, A. On quantum jumps, events, and spontaneous localization models. *Foundations of Physics* **25**, 5 (1995), 743–762. arxiv:hep-th/9408020.
- [236] JADCZYK, A. Particle tracks, events and quantum theory. *Prog. Theor. Phys.* **93** (1995), 631–646. arxiv:hep-th/9407157.
- [237] JOHNSTONE, P. Category Theory, 2015. Notes written by David Mehrle. PDF.
- [238] JOHNSTONE, P. T. Topos theory. Academic Press, London, UK, 1977.
- [239] JOHNSTONE, P. T. Sketches of an Elephant: A Topos Theory Compendium: 2 Volumes. Oxford University Press, 2002.
- [240] Joos, E., Zeh, H. D., Kiefer, C., Giulini, D., Kupsch, J., and Stamatescu, I.-O. *Decoherence and the Appearance of a Classical World in Quantum Theory*. Springer Berlin Heidelberg, 2003.
- [241] JOYAL, A. Notes on quasi-categories. preprint (2008). PDF.
- [242] KAN, D. M. Adjoint functors. *Transactions of the American Mathematical Society* 87, 2 (1958), 294–329.
- [243] Kasen, D., Metzger, B., Barnes, J., Quataert, E., and Ramirez-Ruiz, E. Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. *Nature* **551**, 7678 (2017), 80–84. arxiv:1710.05463.

- [244] Kashiwara, M., and Schapira, P. Sheaves on Manifolds, vol. 292. Springer, 1990.
- [245] Kashiwara, M., and Schapira, P. *Categories and Sheaves*. Springer Berlin Heidelberg, 2006.
- [246] KAZHDAN, D., AND VARSHAVSKY, Y. Yoneda lemma for complete Segal spaces. *arXiv e-prints* (2014). arxiv:1401.5656.
- [247] KEETON, C. Principles of Astrophysics. Springer New York, 2014.
- [248] Kelly, M. Basic concepts of enriched category theory, vol. 64. CUP Archive, 1982. PDF Reprint.
- [249] Kent, A. Does it Make Sense to Speak of Self-Locating Uncertainty in the Universal Wave Function? Remarks on Sebens and Carroll. *Found. Phys.* **45**, 2 (2015), 211–217. arxiv:1408.1944.
- [250] Knuth, D. E. *The Art of Computer Programming, Volume 1 (3rd Ed.):* Fundamental Algorithms. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1997.
- [251] Knuth, D. E. *The Art of Computer Programming, Volume 2 (3rd Ed.):*Seminumerical Algorithms. Addison-Wesley Longman Publishing Co.,
 Inc., Boston, MA, USA, 1997.
- [252] Knuth, D. E. *The Art of Computer Programming, Volume 3: (2nd Ed.) Sorting and Searching.* Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1998.
- [253] Knuth, D. E. *Digital Typography*. Center for the Study of Language and Information, Stanford, CA, USA, 1999.
- [254] Knuth, D. E. *The Art of Computer Programming: Volume 4A Combinatorial Algorithms, Part 1, 1st ed. Addison-Wesley Professional, 2011.*
- [255] KNUTH, D. E., AND PARDO, L. T. The early development of programming languages. In *A History of Computing in the Twentieth Century*, N. METROPOLIS, J. HOWLETT, and G.-C. ROTA, Eds. Academic Press, San Diego, 1980, pp. 197 273.
- [256] Kochen, S., and Specker, E. P. The problem of hidden variables in quantum mechanics. *Journal of Mathematics and Mechanics* **17** (1967), 59–87.

- [257] KOCHEN, S., AND SPECKER, E. P. The Problem of Hidden Variables in Quantum Mechanics. Birkhäuser Basel, Basel, 1990, pp. 235–263.
- [258] Kumericki, K. Feynman Diagrams for Beginners. *arXiv e-prints* (2016). arxiv:1602.04182.
- [259] LAMBEK, J., AND SCOTT, P. J. Introduction to Higher Order Categorical Logic. Cambridge University Press, USA, 1986.
- [260] LANCASTER, T., AND BLUNDELL, S. Quantum Field Theory for the Gifted Amateur. OUP Oxford, 2014.
- [261] LAND, M. *Introduction to Infinity-Categories*. Springer International Publishing, 2021.
- [262] LANDRY, E. Categories in context: Historical, foundational, and philosophical. *Philosophia Mathematica* **13**, 1 (2005), 1–43.
- [263] LANDSMAN, K. Bohrification: From Classical Concepts to Commutative Algebras. In *Niels Bohr and the Philosophy of Physics Twenty-First-Century Perspectives*, J. Faye and H. J. Folse, Eds. Bloomsbury, 2017, pp. 335–366. arxiv:1601.02794.
- [264] LANDSMAN, K. Singularities, Black Holes, and Cosmic Censorship: A Tribute to Roger Penrose. *Foundations of Physics* **51**, 2 (2021), 42. arxiv:2101.02687.
- [265] Landsman, N. Algebraic Theory of Superselection Sectors and the Measurement Problem in Quantum Mechanics. *International Journal of Modern Physics A* **06**, 30 (1991), 5349–5371.
- [266] Landsman, N. Observation and superselection in quantum mechanics. *Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics* **26**, 1 (1995), 45 73. arxiv:hep-th/9411173.
- [267] Landsman, N. P. Between Classical and Quantum. In *Philosophy of Physics*, J. Butterfield and J. Earman, Eds. North Holland, 2007, pp. 417–553. arxiv:quant-ph/0506082.
- [268] LANE, S. M., AND MOERDIJK, I. Sheaves in Geometry and Logic. Springer New York, 1994.
- [269] LANG, K. R. Essential Astrophysics. Springer Berlin Heidelberg, 2013.

- [270] LAWVERE, F. W. An elementary theory of the category of sets. *Proceedings of the national academy of sciences* **52**, 6 (1964), 1506–1511.
- [271] LAWVERE, F. W. The category of categories as a foundation for mathematics. In *Proceedings of the Conference on Categorical Algebra: La Jolla 1965* (1966), Springer, pp. 1–20.
- [272] LAWVERE, F. W., AND MCLARTY, C. Functorial Semantics of Algebraic Theories and Some Algebraic Problems in the context of Functorial Semantics of Algebraic Theories. *Reprints in Theory and Applications of Categories* **5** (2004). PDF.
- [273] LAWVERE, F. W., AND MCLARTY, C. An elementary theory of the category of sets (long version) with commentary. *Reprints in Theory and Applications of Categories* **11** (2005), 1–35. PDF.
- [274] LAWVERE, F. W., AND ROSEBRUGH, R. Sets for mathematics. Cambridge University Press, 2003.
- [275] LAWVERE, F. W., AND SCHANUEL, S. H. Conceptual mathematics: a first introduction to categories. Cambridge University Press, 2009.
- [276] Leifer, M. S. Is the Quantum State Real? An Extended Review of ψ -ontology Theorems. *Quanta* **3**, 1 (2014), 67. https://arxiv.org/abs/1409.1570.
- [277] Leinster, T. A survey of definitions of n-category. *arXiv preprint* (2001). arxiv:math/0107188 also at Theory and Applications of Categories, vol 10.
- [278] Leinster, T. *Higher operads, higher categories*. No. 298 in London Mathematical Society Lecture Note Series. Cambridge University Press, 2004.
- [279] Leinster, T. An informal introduction to topos theory. *arXiv preprint* (2010). arxiv:1012.5647.
- [280] Leinster, T. Basic Category Theory. arXiv Preprint, 2016. arxiv:1612.09375.
- [281] LIBERATI, S., SINDONI, L., AND SONEGO, S. Linking the trans-Planckian and the information loss problems in black hole physics. *Gen. Rel. Grav.* **42** (2010), 1139–1152. arxiv:0904.0815v2.

- [282] LINDBLAD, G. On the generators of quantum dynamical semigroups. *Communications in Mathematical Physics* **48**, 2 (1976), 119–130.
- [283] LIPPERT, E., AND MACOMBER, J. D., Eds. *Dynamics During Spectroscopic Transitions*. Springer Berlin Heidelberg, 1995.
- [284] LobosJR. Dark Souls Speedrun Personal Best, 2013.
- [285] Lurie, J. Higher topos theory. Princeton University Press, 2009.
- [286] MAC LANE, S. Categories for the Working Mathematician, 2nd ed. Springer, 1978.
- [287] MAC LANE, S. Nobuo Yoneda (1930 1996). *Math. Japonica* **47**, 1 (1998), 155–156.
- [288] MAC LANE, S. Homology. Springer, 2012.
- [289] MAC LANE, S., AND MOERDIJK, I. Sheaves in Geometry and Logic. Springer New York, 1994.
- [290] Mack, K. J., and McNees, R. Bounds on extra dimensions from micro black holes in the context of the metastable Higgs vacuum. arxiv:1809.05089.
- [291] MacKenzie, R. Path integral methods and applications. In 6th Vietnam International School on Physics Vung-Tau, Vietnam, 27 December 1999 9 January 2000 (2000). arxiv:quant-ph/0004090.
- [292] MACKEY, G. W. The Relationship Between Classical Mechanics and Quantum Mechanics. In *Perspectives on Quantization*, L. A. Coburn and M. A. Rieffel, Eds. American Mathematical Society, 1998, pp. 91–109.
- [293] MAIANI, L., AND ROLANDI, L. The Standard Theory of Particle Physics Essays to Celebrate CERN's 60th Anniversary. World Scientific, 2016.
- [294] MALDACENA, J. M. The Large N limit of superconformal field theories and supergravity. *Int. J. Theor. Phys.* **38** (1999), 1113–1133. [Adv. Theor. Math. Phys.2,231(1998)].
- [295] MARCHILDON, L. Does quantum mechanics need interpretation? In 2009 Third International Conference on Quantum, Nano and Micro Technologies (2009), IEEE. arxiv:0902.3005v1.

- [296] Marolf, D. Unitarity and Holography in Gravitational Physics. *Phys. Rev.* **D79** (2009), 044010. arxiv:0808.2842.
- [297] MAROLF, D. The Black Hole information problem: past, present, and future. *Rept. Prog. Phys.* **80**, 9 (2017), 092001. arxiv:1703.02143.
- [298] Marquis, J.-P. From a Geometrical Point of View. Springer Netherlands, 2009.
- [299] MCILROY, R., SEVCIK, J., TEBBI, T., TITZER, B. L., AND VERWAEST, T. Spectre is here to stay: An analysis of side-channels and speculative execution. *arXiv e-prints* (2019). arxiv:1902.05178.
- [300] McLarty, C. The uses and abuses of the history of topos theory. *The British Journal for the Philosophy of Science* **41**, 3 (1990), 351–375.
- [301] Mermin, N. D. Hidden variables and the two theorems of John Bell. *Rev. Mod. Phys.* **65** (1993), 803–815.
- [302] MILONNI, P. Semiclassical and quantum-electrodynamical approaches in nonrelativistic radiation theory. *Physics Reports* **25**, 1 (1976), 1 81.
- [303] MILONNI, P. W. Classical and Quantum Theories of Radiation. Springer US, Boston, MA, 1980, pp. 1–21.
- [304] MILONNI, P. W. Why spontaneous emission? *American Journal of Physics* **52**, 4 (1984), 340–343.
- [305] MINEV, Z. K., MUNDHADA, S. O., SHANKAR, S., REINHOLD, P., GUTIÉRREZ-JÁUREGUI, R., SCHOELKOPF, R. J., MIRRAHIMI, M., CARMICHAEL, H. J., AND DEVORET, M. H. To catch and reverse a quantum jump mid-flight. *Nature* (2019). 1803.00545v2.
- [306] Mohrhoff, U. Probabilities from envariance? *International Journal of Quantum Information* **02**, 02 (2004), 221–229.
- [307] Mohrhoff, U. Quantum Mechanics Explained. *International Journal of Quantum Information* **07**, 01 (2009), 435–458.
- [308] Mohrhoff, U. J. Quantum mechanics in a new light. *Foundations of Science* **22**, 3 (2017), 517–537.
- [309] Morrison, I. A. Boundary-to-bulk maps for AdS causal wedges and the Reeh-Schlieder property in holography. *JHEP* **05** (2014), 053. arxiv:1403.3426.

- [310] Moshe, M., and Zinn-Justin, J. Quantum field theory in the large N limit: A Review. *Phys. Rept.* **385** (2003), 69–228. arxiv:hep-th/0306133.
- [311] MYRVOLD, W. C. On some early objections to Bohm's theory. *International Studies in the Philosophy of Science* **17**, 1 (2003), 7–24.
- [312] Naaman-Marom, G., Erez, N., and Vaidman, L. Position measurements in the de broglie–bohm interpretation of quantum mechanics. *Annals of Physics* **327**, 10 (2012), 2522 2542. arxiv:1207.0793.
- [313] Nederpelt, R., and Geuvers, H. *Type Theory and Formal Proof: An Introduction*. Cambridge University Press, 2014. 10.1017/CBO9781139567725.
- [314] Nomura, Y. Quantum Mechanics, Spacetime Locality, and Gravity. *Found. Phys.* **43** (2013), 978–1007. arxiv:1110.4630.
- [315] Nomura, Y. Reanalyzing an Evaporating Black Hole. *Phys. Rev.* **D99**, 8 (2019), 086004. arxiv:1810.09453.
- [316] Nomura, Y., Varela, J., and Weinberg, S. J. Black Holes, Information, and Hilbert Space for Quantum Gravity. *Phys. Rev.* **D87** (2013), 084050. arxiv:1210.6348.
- [317] Norsen, T. Against 'realism'. Foundations of Physics 37, 3 (2007), 311–340. https://arxiv:quant-ph/0607057.
- [318] Norsen, T. Foundations of Quantum Mechanics. Springer, 2017. 10.1007/978-3-319-65867-4.
- [319] Olson, S. J., and Ralph, T. C. Entanglement between the future and past in the quantum vacuum. *Phys. Rev. Lett.* **106** (2011), 110404.
- [320] PAGE, D. N. Time Dependence of Hawking Radiation Entropy. *JCAP* **1309** (2013), 028. arxiv:1301.4995.
- [321] Pareigis, B. *Categories and functors*, vol. 39 of *Pure and applied Mathematics*. Academic Press, 1970.
- [322] PAUGAM, F. Towards the Mathematics of Quantum Field Theory. Springer International Publishing, 2014.
- [323] Pearle, P. Combining stochastic dynamical state-vector reduction with spontaneous localization. *Phys. Rev. A* **39** (1989), 2277–2289.

- [324] PEARLE, P. Simple derivation of the lindblad equation. *European Journal of Physics* **33**, 4 (2012), 805–822. arxiv:1204.2016.
- [325] Penington, G. Entanglement Wedge Reconstruction and the Information Paradox. arxiv:1905.08255.
- [326] Perrone, P. Notes on Category Theory with Examples from Basic Mathematics. *arXiv* (2019). arxiv:1912.10642.
- [327] Pierce, B. C. Basic Category Theory for Computer Scientists. MIT press, 1991.
- [328] Pladevall, X. O., and Mompart, J., Eds. *Applied Bohmian Mechanics:* From Nanoscale Systems to Cosmology. Jenny Stanford Publishing, 2012.
- [329] PLENIO, M. B., AND KNIGHT, P. L. The quantum-jump approach to dissipative dynamics in quantum optics. *Rev. Mod. Phys.* **70** (1998), 101–144.
- [330] POLCHINSKI, J. Introduction to Gauge/Gravity Duality. In Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2010). String Theory and Its Applications: From meV to the Planck Scale: Boulder, Colorado, USA, June 1-25, 2010 (2010), pp. 3–46. arxiv:1010.6134.
- [331] POLCHINSKI, J. The Black Hole Information Problem. In *Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015): Boulder, CO, USA, June 1-26, 2015 (2017)*, pp. 353–397. arxiv:1609.04036.
- [332] PORTER, T. Spaces as Infinity-Groupoids. In *New Spaces in Mathematics: Formal and Conceptual Reflections*, M. Anel and G. Catren, Eds., vol. 1. Cambridge University Press, 2021, pp. 258–321.
- [333] Powers, B., Tench, D., Berger, E. D., and McGregor, A. Mesh: Compacting Memory Management for C/C++ Applications. *arXiv e-prints* (2019). arxiv:1902.04738.
- [334] Quillen, D. Rational homotopy theory. *The Annals of Mathematics* **90**, 2 (1969), 205.
- [335] Rabinvovich, E. The Categorical Language of Quantum Physics. Online Notes. PDF.

- [336] RÉDEI, M. Why John von Neumann Did Not Like the Hilbert Space Formalism of Quantum Mechanics (and what he liked instead). Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 27, 4 (1996), 493 510.
- [337] RICHTER, B. High Energy Colliding Beams; What Is Their Future? *Rev. Accel. Sci. Tech.* **7** (2014), 1–8.
- [338] RICHTER, B. From Categories to Homotopy Theory. Cambridge University Press, 2020.
- [339] RIEHL, E. A leisurely introduction to simplicial sets. Online Notes, 2011. PDF.
- [340] RIEHL, E. *Categorical Homotopy Theory*. New Mathematical Monographs. Cambridge University Press, 2014. PDF.
- [341] RIEHL, E. Category Theory In Context. Dover, 2016. https://math.jhu.edu/eriehl/context/.
- [342] RIEHL, E. Sketches of an elephant: An introduction to topos theory. Online Notes, 2019. PDF.
- [343] RIEHL, E. ACT 2020 Tutorial: The Yoneda lemma in the category of matrices, 2020. https://www.youtube.com/watch?v=SsgEvrDFJsM.
- [344] Riehl, E., and Shulman, M. A type theory for synthetic ∞-categories. *arXiv* (2017). arxiv:1705.07442.
- [345] RIEHL, E., AND SHULMAN, M. A type theory for synthetic ∞-categories. *Higher Structures* 1, 1 (2017), 147–224. doi:10.21136%2Fhs.2017.06.
- [346] RIEHL, E., AND VERITY, D. The 2-category theory of quasi-categories. *Advances in Mathematics* **280** (2015), 549–642. arxiv:1306.5144.
- [347] RIEHL, E., AND VERITY, D. Infinity category theory from scratch. *Higher Structures* **4**, 1 (2020), 115–167. arxiv:1608.05314.
- [348] RIEHL, E., AND VERITY, D. *Elements of* ∞-*Category Theory*. Cambridge University Press, 2022. Preview.
- [349] Robinson, M. Symmetry and the Standard Model. Springer New York, 2011.

- [350] Robinson, M. B., Bland, K. R., Cleaver, G. B., and Dittmann, J. R. A Simple Introduction to Particle Physics. Part I Foundations and the Standard Model. arxiv:0810.3328.
- [351] Rosiak, D. Sheaf Theory through Examples. The MIT Press, 2022. arxiv:2012.08669.
- [352] RYDEHEARD, D. E., AND BURSTALL, R. M. Computational category theory, vol. 152. Prentice Hall Englewood Cliffs, 1988. PDF.
- [353] RYU, S., AND TAKAYANAGI, T. Holographic derivation of entanglement entropy from AdS/CFT. *Phys. Rev. Lett.* **96** (2006), 181602. arxiv:hep-th/0603001.
- [354] SCHAFFER, K., AND BARRETO LEMOS, G. Obliterating Thingness: An Introduction to the "What" and the "So What" of Quantum Physics. *Foundations of Science* (2019). arxiv:1908.07936.
- [355] Schlosshauer, M. Decoherence, the measurement problem, and interpretations of quantum mechanics. *Rev. Mod. Phys.* **76** (2004), 1267–1305. arxiv:quant-ph/0312059.
- [356] SCHLOSSHAUER, M. Decoherence and the Quantum-To-Classical Transition. Springer Berlin Heidelberg, 2007.
- [357] SCHLOSSHAUER, M., AND FINE, A. On Zurek's Derivation of the Born Rule. *Foundations of Physics* **35**, 2 (2005), 197–213. arxiv:quant-ph/0312058.
- [358] Schreiber, U., and Shulman, M. Quantum Gauge Field Theory in Cohesive Homotopy Type Theory. *arXiv e-prints* (2014). arxiv:1408.0054v1.
- [359] Schroeck Jr, F. E. Quantum mechanics on phase space, vol. 74 of Fundamental Theories of Physics. Springer Science & Business Media, 2013.
- [360] Schweber, S. S. *QED and the Men Who Made It: Dyson, Feynman, Schwinger, and Tomonaga*, vol. 104. Princeton University Press, 1994. 10.2307/j.ctv10crg18.
- [361] Scott, P. J. Some aspects of categories in computer science. In *Handbook of algebra*, vol. 2. Elsevier, 2000, pp. 3–77.

- [362] Sebens, C. T., and Carroll, S. M. Self-locating Uncertainty and the Origin of Probability in Everettian Quantum Mechanics. *Brit. J. Phil. Sci.* **69**, 1 (2018), 25–74. arxiv:1405.7577.
- [363] SEEBACH JR, J. A., SEEBACH, L. A., AND STEEN, L. A. What is a sheaf? *The American Mathematical Monthly* 77, 7 (1970), 681–703.
- [364] SEGAL, I. E. Foundations of the Theory of Dynamical Systems of Infinitely Many Degrees of Freedom, I. *Mat.-Fys. Medd. Danske Vid. Selsk* **31**, 12 (1959), 1–39.
- [365] Segal, I. E. Foundations of the Theory of Dynamical Systems of Infinitely Many Degrees of Freedom, II. *Canadian Journal of Mathematics* **13** (1961), 1–18.
- [366] Segal, I. E. Mathematical characterization of the physical vacuum for a linear Bose-Einstein field. *Illinois J. Math.* **6**, 3 (1962), 500–523.
- [367] Seldin, J. P. The logic of church and curry. In *Logic from Russell to Church*, D. M. Gabbay and J. Woods, Eds., vol. 5 of *Handbook of the History of Logic*. North-Holland, 2009, pp. 819 873.
- [368] SERGEI WINITZKI. Elementary Introduction to Quantum Fields in Curved Spacetime. Lecture Notes, 2006. Winitzki.pdf.
- [369] Shankar, R. *Principles of quantum mechanics*. Springer Science & Business Media, 2012.
- [370] Shoshany, B. "Thinking Quantum": Lectures on Quantum Theory for High-School Students. *arXiv preprint* (2018). ariv:1803.07098.
- [371] SHULMAN, M. Homotopy type theory: the logic of space. *arXiv* preprint (2017). arxiv:1703.03007.
- [372] SIMPSON, C. Homotopy Theory of Higher Categories: From Segal Categories to n-Categories and Beyond, vol. 19 of New Mathematical Monographs. Cambridge University Press, 2011.
- [373] SMITH, P. Category Theory: A Gentle Introduction, 2019. Category Theory: A Gentle Introduction.
- [374] SMITH, P. Category Theory I: Notes towards a gentle introduction. Online Notes, 2023. PDF.

- [375] SMITH, P. Category Theory II: More Notes towards a gentle introduction. Online Notes, 2023. PDF.
- [376] SØRENSEN, M. H., AND URZYCZYN, P. Lectures on the Curry-Howard Isomorphism. Elsevier, 2006.
- [377] SOURIAU, J.-M. *Structure of Dynamical Systems*. Birkhäuser Boston, 1997.
- [378] SPEKKENS, R. W. Evidence for the epistemic view of quantum states: A toy theory. *Phys. Rev. A* **75**, 3 (2007), 032110. arxiv:quant-ph/0401052.
- [379] Spivak, D. I. Category theory for the sciences. MIT press, 2014.
- [380] Stephens, C. R., 't Hooft, G., and Whiting, B. F. Black hole evaporation without information loss. *Class. Quant. Grav.* **11** (1994), 621–648.
- [381] Strocchi, F. An Introduction to the Mathematical Structure of Quantum Mechanics, 2nd ed. WORLD SCIENTIFIC, 2008.
- [382] Strocchi, F. The physical principles of quantum mechanics. a critical review. *The European Physical Journal Plus* **127**, 1 (2012), 12. arxiv:1112.1507.
- [383] Strominger, A. Black Hole Information Revisited. arxiv:1706.07143.
- [384] Strominger, A., and Zhiboedov, A. Gravitational Memory, BMS Supertranslations and Soft Theorems. *JHEP* **01** (2016), 086.
- [385] STRUYVE, W. Pilot-wave theory and quantum fields. *Rept. Prog. Phys.* **73** (2010), 106001. arxiv:0707.3685.
- [386] Summers, S. J. Yet More Ado About Nothing: The Remarkable Relativistic Vacuum State. *arXiv e-prints* (2008). arxiv:0802.1854.
- [387] T HOOFT, G. The cellular automaton interpretation of quantum mechanics. Springer Nature, 2016.
- [388] TAYLOR, P. Practical foundations of mathematics, vol. 59. Cambridge University Press, 1999. https://www.paultaylor.eu/~pt/prafm/.
- [389] TENNISON, B. R. Sheaf theory, vol. 21 of London Mathematical Society Lecture Note Series. Cambridge University Press, 1975.

- [390] THRONSON, H. A., STIAVELLI, M., AND TIELENS, A., Eds. *Astrophysics in the Next Decade*. Springer Netherlands, 2009.
- [391] Tommasini, D. Reality, measurement and locality in quantum field theory. *JHEP* **07** (2002), 039. arxiv:0205105.
- [392] TORRE, C. What is a photon? Foundations of Quantum Field Theory. Lecture Notes, 2018. http://www.physics.usu.edu/torre/QFT/Lectures/QFT_text.pdf.
- [393] Traschen, J. H. An Introduction to black hole evaporation. In *Mathematical methods in physics. Proceedings, Winter School, Londrina, Brazil, August 17-26, 1999* (1999). arxiv:gr-qc/0010055v1.
- [394] Univalent Foundations Program, T. Homotopy Type Theory:
 Univalent Foundations of Mathematics.
 https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.
- [395] UNRUH, W. G., AND WALD, R. M. Acceleration radiation and the generalized second law of thermodynamics. *Phys. Rev. D* **25** (1982), 942–958.
- [396] Vaidman, L. On schizophrenic experiences of the neutron or why we should believe in the many worlds interpretation of quantum theory. arxiv:9609006.
- [397] VAIDMAN, L. On schizophrenic experiences of the neutron or why we should believe in the many-worlds interpretation of quantum theory. *International Studies in the Philosophy of Science* **12**, 3 (1998), 245–261. arxiv:9609006.
- [398] VALENTINI, A. De Broglie-Bohm Pilot-Wave Theory: Many Worlds in Denial? *arXiv e-prints* (2008). arxiv:0811.0810.
- [399] VALENTINI, A. De Broglie–Bohm Pilot-Wave Theory: Many Worlds in Denial? In *Many Worlds? Everett, Quantum Theory, and Reality*. Oxford University Press, 2010, pp. 476–509. arxiv:0811.0810.
- [400] VAN DALEN, D. Logic and structure. Springer, 1994.
- [401] VAN DER WAERDEN, B. L. Sources of quantum mechanics. Dover, 1968.
- [402] VAN RAAMSDONK, M. Comments on quantum gravity and entanglement. arxiv:0907.2939.

- [403] VAN RAAMSDONK, M. Lectures on Gravity and Entanglement. In *Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015): Boulder, CO, USA, June 1-26, 2015 (2017), pp. 297–351.* arxiv:1609.00026.
- [404] Varshalovich, D. A., Moskalev, A. N., and Khersonskii, V. K. Quantum theory of angular momentum. World Scientific, 1988.
- [405] Wald, R. M. The History and Present Status of Quantum Field Theory in Curved Spacetime. *Einstein Stud.* **12** (2012), 317–331.
- [406] Weinberg, S. Lectures on Quantum Mechanics. Cambridge University Press, 2013.
- [407] Weinberg, S. Quantum Mechanics Without State Vectors. *Phys. Rev.* **A90**, 4 (2014), 042102. arxiv:1405.3483.
- [408] Weinberg, S. What Happens in a Measurement? *Phys. Rev.* **A93** (2016), 032124. arxiv:1603.06008.
- [409] Wells, J. D. The theoretical physics ecosystem behind the discovery of the Higgs boson. arxiv:1609.04268v1.
- [410] Welz, B., and Sperling, M. *Atomic absorption spectrometry*. John Wiley & Sons, 2008.
- [411] Weng, D. A categorical introduction to sheaves. Online Notes. PDF.
- [412] WENNERSTRÖM, H., AND WESTLUND, P.-O. A quantum description of the stern–gerlach experiment. *Entropy* **19** (2017), 186.
- [413] Wightman, A. S., and Schweber, S. S. Configuration Space Methods in Relativistic Quantum Field Theory. I. *Physical Review* **98** (1955), 812–837.
- [414] WILSON, T. L., ROHLFS, K., AND HÜTTEMEISTER, S. Tools of radio astronomy. Springer, 2009.
- [415] WILSON, T. L., ROHLFS, K., AND HÜTTEMEISTER, S. Tools of Radio Astronomy. Springer Berlin Heidelberg, 2013.
- [416] WISEMAN, H. M., AND MILBURN, G. J. Quantum Measurement and Control. Cambridge University Press, 2010.

- [417] WITTEN, E. APS Medal for Exceptional Achievement in Research: Invited article on entanglement properties of quantum field theory. *Rev. Mod. Phys.* **90**, 4 (2018), 045003.
- [418] Woit, P. Quantum Theory, Groups and Representations. Springer International Publishing, 2017.
- [419] YONEKURA, K. Black hole information and Reeh-Schlieder theorem. arxiv:1807.05399.
- [420] ZUREK, W. H. Probabilities from entanglement, Born's rule $p_k = |\psi_k|^2$ from envariance. *Physical Review A* **71**, 5 (2005). arxiv:quant-ph/0405161v2.
- [421] ZUREK, W. H. Quantum origin of quantum jumps: Breaking of unitary symmetry induced by information transfer and the transition from quantum to classical. *Phys. Rev.* **A76** (2007), 052110. arxiv.org/abs/quant-ph/0703160.
- [422] ZUREK, W. H. Quantum Theory of the Classical: Quantum Jumps, Born's Rule and Objective Classical Reality via Quantum Darwinism. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences* **376**, 2123 (2018), 20180107. arxiv:1807.02092.