Soluciones del 2er parcial de Matemática Discreta II Lunes 13 de mayo de 2002

Problema 1

$$\sigma = \left(\begin{array}{ccccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 3 & 1 & 8 & 4 & 6 & 9 & 7 & 5 \end{array}\right)$$

Problema 2

- i) τ tiene orden 6.
- ii) τ es par.

iii)
$$\tau^3 = (17)(29)(612)(810)$$
.

Problema 3

Los divisores de cero en \mathbb{Z}_{35} son :

Problema 4

a) Suma:
$$0+0=0\in J; 0+5=5+0=5\in J; 5+5=0\in J.$$

Opuesto
$$-0 = 0 \text{ y } -5 = 5.$$

Producto por un elemento cualquiera de \mathbb{Z}_{10} : 0.x = 0. Si x = 2k, entonces 5.x = 0. Si x = 2k + 1, entonces 5.x = 5.

×	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]
[2]	[0]	[2]	[4]	[1]	[3]
[3]	[0]	[3]	[1]	[4]	[2]
[4]	[0]	[4]	[3]	[2]	[1]

c) \mathbb{Z}_{10}/J es un cuerpo y por lo tanto dominio de integridad.

Problema 5

a)
$$x^4 = (x^2 + 2x + 2)(x^2 + x + 2)$$
 en $\mathbb{Z}_3[x]$

b) i) g(x) es irreducible en \mathbb{Z}_5 por no tener raíces en dicho cuerpo y ser de grado 3.

ii)
$$[2x^2 + 3x + 4]^{-1} = 4x^2 + 3x + 4$$
.

5)
$$f = \bar{x}\bar{y}z + \bar{x}y\bar{z} + z\bar{y}\bar{z} + xy\bar{z}$$
.