515-43 171366 P, 28 N94-23611

SWIR TRANSFER RADIOMETERS DEVELOPED AT NRLM PREFLIGHT LABORATORY CROSS-CALIBRATION FOR VNIR AND

6TH CAL/VAL PANEL MEETING
APRIL 7 TO 10, 1882
BOULDER, COLORADO

A.ONO National Research Laboratory of Metrology

MITI

PREFLIGHT LABORATORY CROSS-CALIBRATION] OF **[PURPOSE**

Avoiding Mistake

at individual instrument manufacturers. avoid incorrect setting of instrument dynamic range calibration mistake To -

Relative Consistency

t of instrument responsivities scales among instruments. corrections consistent radiance make To çi

Absolute Accuracy

EOS era. clarify the state of the art in the absolute responsivity of VIS/NIR and SWIR instruments in the determination Ťo တဲ့

Decessary accuracy if To improve the prefilght calibration EOS requirement. meet the بد 0

[INTERCOMPARISON AT TWO LEVELS]

manufacturers at individual instrument spectral radiances platform integrator. o f Intercompariaon Bources radiant

Intercomparison of spectral standards laboratories. ٠ د

CROUND-ROBIN MEASUREMENT]

- calibrated against sources of individual instrument manufacturers. Circulating transfer radiometers through instrument manufacturers where the responsivity is Brd Ξ
- national Circulating transfer radiometers through the standards laboratories. 8
- enhance the intercomparison more transfer radiometers); Decessory. Source If **t** radiant considered reliability (contingency in đ radiometers with Redundancy to be 89

[COMPARISON ACCURACY]

comparison accuracy is more than twice higher than teams; by individual instrument comparison accuracy. stated accuracy a level of 1% calibration Desirable

[REQUIREMENT TO TRANSFER RADIOMETERS]

Hish stability in responsivity during t Ime) a n d (environment

2. Sufficient linearity

temperature known Small

Known spectral profile

· Small size-of-source effect

3. Light weight and small volume

[VIS/NIR AND SWIR TRANSFER RADIOMETER]

- radiometers 0. 81 mm. 0. 85 mm, and silicon photodiode filter 0. 58 mm, o f wave lengths Ambient temperature operating with
- Sermanium photodiode filter radiomet 1. 8 mm. o f wavelength Electronically cooled operating . E with ci
- cooled indium arsanide photodiode 2. 2 µm. 0 an operating wavelength nitrogen with radiometer Liquid တ •

Specifications of Si photodiode radiometer

Operating wavelength	
Center wavelength	560 nm 660 nm 810 nm
Full width at half maximum	80 nm 60 nm 100 nm
Target distance	variable (40 cm ~ ∞)
Nominal target size	3 mm in diameter at a target distance of 40 cm
Field of view	0.54° (flexible)
Detector	silicon photodiode (Hamamatsu Photonics)
Size-of-source effect	less than 0.5% between 6 mm and 50 mm at a target distance of 40 mm
Detector temperature monitor	Transistor thermometer
Nass	4 kg
Power voltage	100 V AC, 50 Hz
Mounting	tripod

Schematic optics of silicon-based standard radiation thermometer. Figure

Figure 14.9

OPTICAL SCHEME FOR MEASURING THE SPECTRAL RESPONSIVITY DISTRIBUTION OF RADIOMETER

1, radiation source; 2, collimator; 3, source monitor; 4, double grating monochromator; 5, switching mirror; 6, reference detector; 7; standard detector; 8, radiometer

temperature of a silicon-based standard radiation thermo-Relation between the signal level and the instrument meter (the broader band interference filter).8) Figure 14.7

SOURCE (mm) BLACKBODY RADIATION DIAMETER

RADIOMETER MOITAIAAV TUGTUO (%)

DIAMETER OF BLACKBODY RADIATION SOURCE

Table 1. Specifications of the Ge and InAs photodiode radiation thermometers

	27.	
Model	IR-RST-160	IR-RST-220
Detector type Cooling of detector Wavelength (half width) Temperature range Gain of amplifier Resolution Object distance Target size Response Output Voltage	Ge photodiode Thermo-Electric cooling(-25°C) 1.610 μ m (0.15 μ m) 300 - 2000°C ×10, ×1, ×0.1, ×0.01 0.1°C(330°C), 0.01°C(1085°C) 400 m = ~ 3 m m φ (at 400 m) 100 μ s(DC) / 0.1s(DC) 0 - 10 γ	In As photodiode LNz cooling (-195°C) 2.183 \(\mu \) (0.17 \(\mu \) \) 200 - 2000°C ×10, ×1, ×0.1, ×0.01 0.03°C (230°C), 0.2°C (1085°C) 400 \(\mu \) (at 400 \(\mu \)) 100 \(\mu \) s(DC) / 0.1s(AC) 0 - 10 \(\mu \)

SCHEME FOR ROUND ROBIN TEST OF RADIATION TEMPERATURE SCALES

Figure 14.12 Intercomparison of the temperature standards.8)

ROUND ROBIN TEST IN 1989

ROUND ROBIN TEST IN 19