8 Quarta lezione

8.1 Importance file Python

Abbiamo visto come utilizzare le librerie, tutto a partire dal comando import. Oltre alle librerie possiamo importare anche altri file Python scritti da noi, magari perchè in quel file è implementata una funzione che ci serve. Facciamo un esempio:

```
def f(x, n):
       restituisce la potenza n-esima di un numero x
4
       Parametri
       x, n : float
       Return
       v : float
11
12
13
14
16
       return v
17
       _name__ == '__main__':
18
19
       #test
       print(f(5, 2))
20
21
  [Output]
```

Abbiamo questo codice che chiamiamo "elevamento.py" che ha implementato la funzione di elevamento a potenza e supponiamo di voler utilizzare questa funzione in un altro codice, possiamo farlo grazie ad import:

```
import elevamento

print(elevamento.f(3, 3))

[Output]
27
```

Notiamo nel codice iniziale la presenza dell' if, esso serve per far si che tutto ciò che sia scritto sotto venga eseguito solo se il codice viene lanciato come 'main' appunto e non importato come modulo su un altro codice. In genere l'utilizzo di questa istruzione è buona norma quando si vuol scrivere un codice da importare altrove.

8.2 Fit

Nell'ambito della statistica un fit, cioè una regressione lineare o non che sia (dove la linearità è riferita ai parametri della funzione), è un metodo per trovare la funzione che meglio descrive l'andamento di alcuni dati. Nel caso di regressione lineare la procedura da eseguire non è troppo complicata, mentre per la regressione non lineare le cose si fanno parecchio complicate e si utilizzano algoritmi di ottimizzazione. Se noi abbiamo quindi un modello teorico che ci dice che un corpo cade con una legge oraria della forma $y(t) = h_0 - \frac{1}{2}gt^2$, grazie al fit possiamo trovare i valori dei parametri della leggere oraria, h_0 e g, che meglio adattano la curva ai dati (nella speranza che escano valori fisicamente sensati, dato che in genere i dati sono di origine sperimentale o simulativa). In ogni caso comunque l'idea di ciò che va fatto è trovare il minimo della seguente funzione:

$$S^{2}(\{\theta\}_{j}) = \sum_{i} \frac{(y_{i} - f(x_{i}; \{\theta\}_{j}))^{2}}{\sigma_{y_{i}}^{2}}$$
(1)

che nel caso in cui il termine dentro la somma sia distribuito in modo gaussiano allora la quantità S^2 è distribuita come un chiquadro, e da qui si potrebbe fare tutta una discussione sulla significatività statistica di quello che andiamo a fare, che ovviamente noi non facciamo. Analizziamo un attimo questa formula: S^2 è in linea di principio una funzione a molte variabili e che resituisce un numero reale. Il termine dentro la somma rappresenta la distanza tra valore del dato e valore della funzione in unità della barra d'errore del dato. Facciamo un esempio visivo per rendere più chiaro il concetto. Consideriamo giusto a titolo di esempio tre punti e due possibili rette che noi possiamo pensare che più o meno approssimino i dati.

Nel grafico d è proprio la distanza del modello dal dato in unità di barre di errore, e quindi la somma di tutte queste quantità elevate al quadrato è il valore di S^2 che è riportato nella legenda. Notiamo quindi che effettivamente la retta che presenta un valore di S^2 minore è quella che ad occhio meglio approssima i dati. Ora uno potrebbe pensare che quindi basta calcolare S^2 su una griglia e vedere dove assume il valore più piccolo. Questo è un metodo abbastanza brute force e il linea di principio funziona, ma quello che in genere si fa è un po' diverso. In linea di principio per capire come funziona un'algoritmo di minimo basta pensare ad una palline che cade in una ciotola. Precisiamo che si vuole fare tutta questa trattazione per far capire che la parte più delicata di questa procedura è scegliere quello che noi chiameremo nel codice "init" e che esso violentemente aggiusta o complica la nosta situazione. Consideriamo per semplicità, didattica e grafica, una funzione di una singola variabile.

Quel che noi facciamo è scegliere un x_0 , (il nostro init) ed aggiornare questa posizione considerando la pendenza della funzione, che altro non sarebbe che la derivata della funzione che vogliamo considerare. Concedetemi, per maggiore generalità, si sostituire il termine derivata con il termine gradiente, indicato dal simbolo ∇ . Quindi quello che il codice fa è diciamo analogo ad una pallina che si muove sotto l'azione di un potenziale, che sarebbe S^2 e la sua derivata, il suo gradiente, non è altro che la forza che la pallina sente. Facendo così troviamo una serie di x_i ierativamente, fino ad arrivare al minimo dove il gradiente, la forza esterna, è zero. Questo metodo è chiamato gradiente discendente. Finche abbiamo un solo minimo quindi va tutto bene. Lo troviamo senza problemi a prescindere da dove partiamo. Supponiamo ora una situazione più brutta:

In questo caso vediamo subito che abbiamo due punti in cui la derivata è nulla, quindi due minimi (questo sarebbe il caso di una regressione non lineare, a differenza di quella lineare di sopra, un solo minimo), ma quello a cui siamo interessati noi è il minimo assoluto. Se utilizzassimo il metodo precedente è facile vedere che se partiamo per esempio con x > 1 ci incastraimo nel minimo locale. Le uniche zone buone sono soltanto quelle con x < 0. Vedete quindi che una piccola complicazione riduce di molto le nostre possibilità e dobbiamo quindi selezionare il nostro punto di partenza con delicatezza. Questo perchè una volta arrivato al minimo locale la nosta "pallina" non ci arriva con una velocità con accadrebbe nella realtà e quindi non riesce a scavallare la collinetta. Fondamentalmente per migliorare la cosa dobbiamo spiegare al computer il concetto di inerzia e anche di attrito (se l'energia si conservasse la pallina oscillerebbe all'infinito e il codice non terminerebbe). Un esempio di ciò, chiamato gradiente discendente con momento, e anche di quanto visto sopra è disponibile in una delle appendici. Inoltre in questa stessa lezione andremo a vedere cosa fa effettivamente "curve_fit" che è un pochino diverso. Un caso ancora peggiore lo vediamo adesso con un problema fisico, dove ora non abbiamo un semiasse da poter scegliere, ma solo una piccola e precisa zona, dovuto al fatto che ora non abbiamo due minimi ma molti di più. Prima di vedere il codice vediamo brevemente due grafici della quantità S^2 , che con un po' di abuso di notazione chiamiamo chiquadro, nel caso di regressione lineare e non:

Chiquadro regressione lineare

Figura 1: modello lineare $y(t) = h_0 - \frac{1}{2}gt^2$. Unico minimo, qualunque punto iniziale va bene.

Chiquadro regressione non-lineare

Figura 2: modello non lineare $y(t) = A\cos(\omega t)$. Tanti minimi locali bisogna stare attante a dove partire altrimenti l'algoritmo si blocca su soluzioni non fisiche. Solo una piccola regione va bene come valori inziali.

I codici per generare i grafici che abbiamo visto non sono riportati per brevità ma sono presenti nella cartella. Vediamo ora un semplice esempio di codice:

```
1 import numpy as np
  import matplotlib.pyplot as plt
  from scipy.optimize import curve_fit
3
  def Legge_oraria(t, h0, g):
5
      Restituisce la legge oraria di caduta
      di un corpo che parte da altezza h0 e
      con una velocita, inziale nulla
9
      return h0 - 0.5*g*t**2
12
  0.00
13
14 dati misurati:
xdata : fisicamemnte i tempi a cui osservo
          la caduta del corpo non affetti da
16
          errore
18 ydata : fisicamente la posizione del corpo
          misurata a dati tempi xdata afetta
19
          da errore
20
21
23 #misuro 50 tempi tra 0 e 2 secondi
24 xdata = np.linspace(0, 2, 50)
26 #legge di caduta del corpo
y = Legge_oraria(xdata, 20, 9.81)
rng = np.random.default_rng()
y_noise = 0.3 * rng.normal(size=xdata.size)
30 #dati misurati afferri da errore
31 ydata = y + y_noise
32 dydata = np.array(ydata.size*[0.3])
34 #funzione che mi permette di vedere anche le barre d'errore
go plt.errorbar(xdata, ydata, dydata, fmt='.', label='dati')
37 #array dei valori che mi aspetto, circa, di ottenere
38 init = np.array([15, 10])
39 #eseguo il fit
```

```
40 popt, pcov = curve_fit(Legge_oraria, xdata, ydata, init, sigma=dydata, absolute_sigma=False)
41
42 h0, g = popt
dh0, dg = np.sqrt(pcov.diagonal())
  print(f'Altezza inziale h0 = {h0:.3f} +- {dh0:.3f}')
print(f"Accelerazione di gravita' g = {g:.3f} +- {dg:.3f}")
46
47 #garfico del fit
  t = np.linspace(np.min(xdata), np.max(xdata), 1000)
49 plt.plot(t, Legge_oraria(t, *popt), label='fit')
51 plt.grid()
  plt.title('Fit caduta grave', fontsize=15)
plt.xlabel('y(t) [m]', fontsize=15)
54 plt.ylabel('t [s]', fontsize=15)
  plt.legend(loc='best')
  plt.show()
57
58
  [Output]
  Altezza inziale h0 = 19.988 +- 0.065
^{60} Accelerazione di gravita' g = 9.790 +- 0.071
```


L'utilizzo dell'array init ci aiuta a trovare il minimo assoluto in modo che il codice vada a cercare intorno a quei valori, evitando che il codice si incastri altrove; anche se in questo caso non era necessario in quanto regressione lineare, è comunque buona norma utilizzarlo. Provate a fittare il modello non lineare visto sopra e vi accorgerete come solo una piccola regione dei parametri conduca alla soluzione coretta e che basti spostarvi di poco per ottenere risultati poco sensati.

8.3 Dietro curve fit: Levenberg-Marquardt

Vogliamo ora provare ad andare dietro la libreria e vedere cosa fa effettivamente curve fit. Chiaramente i metodi di fit implementati sono molti e diversi, a seconda delle esigenze; per semplicità perciò andiamo a vedere quello che viene usato di default: Levenberg-Marquardt. Questo è un metodo iterativo, il che spiega la sensibilità ai valori iniziali, caratteristica di ogni metodo iterativo. Consideriamo la nostra funzione di fit f la quale dipende da una variabile indipendente e da un insieme di parametri θ , il quale fondamentalmente è un vettore di \mathbb{R}^m . Possiamo espandere f in serie di taylor intorno ad un valore dei nostri parametri:

$$f(x_i, \theta_j + \delta_j) \simeq f(x_i, \theta_j) + J_{ij}\delta_j \tag{2}$$

dove δ_j è lo spostamento che vine fatto ad ogni passo dell'iterazione e J_{ij} è il gradiente di f, o jacobinao se volete:

$$J_{ij} = \frac{\partial f(x_i, \theta_j)}{\partial \theta_j} = \begin{bmatrix} \frac{\partial f(x_1, \theta_1)}{\partial \theta_1} & \cdots & \frac{\partial f(x_1, \theta_m)}{\partial \theta_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial f(x_n, \theta_1)}{\partial \theta_1} & \cdots & \frac{\partial f(x_n, \theta_m)}{\partial \theta_m} \end{bmatrix}$$
(3)

Che è una matrice $m \times n$ con m < n altrimenti il metodo non funziona e dobbiamo adottare altre strategie. Per trovare il valore di δ espandiamo la (1):

$$S^{2}(\theta + \delta) \simeq \sum_{i=1}^{n} \frac{(y_{i} - f(x_{i}, \beta) - J_{ij}\delta_{j})^{2}}{\sigma_{y_{i}}^{2}}$$

$$= (y - f(x, \theta) - J\delta)^{T}W(y - f(x, \theta) - J\delta)$$

$$= (y - f(x, \theta))^{T}W(y - f(x, \theta)) - (y - f(x, \theta))^{T}WJ\delta - (J\delta)^{T}W(y - f(x, \theta)) + (J\delta)^{T}W(J\delta)$$

$$= (y - f(x, \theta))^{T}W(y - f(x, \theta)) - 2(y - f(x, \theta))^{T}WJ\delta + \delta^{T}J^{T}W(J\delta)$$
(4)

Dove W è tale che $W_{ii}=1/\sigma_{y_i}^2$ e derivando rispetto a delta otteniamo il metodo di Gauss-Newton:

$$\frac{\partial S^2(\theta+\delta)}{\partial \delta} = -2(y - f(x,\theta))^T W J + 2\delta^T J^T W J = 0$$
 (5)

per cui facendo il trasposto a tutto otteniamo:

$$(J^T W J)\delta = J^T W (y - f(x, \theta)) \tag{6}$$

La quale si risolve per δ . Per migliorare la convergenza del metodo si introduce un parametro di damping λ e l'equazione diventa:

$$(J^T W J - \lambda \operatorname{diag}(J^T W J))\delta = J^T W (y - f(x, \theta))$$
(7)

Il valore di λ viene cambiato a seconda se ci avviciniamo o meno alla soluzione giusta. Se ci stiamo avvicinando ne riduciamo il valore, andando verso il metodo di Gauss-Newton; mentre se ci allontaniamo ne aumentiamo il valore in modo che l'algoritmo si comporti più come un gradiente discendente (di cui in appendice ci sarà un esempio). La domanda è: come capiamo se ci stiamo avvicinando alla soluzione? Calcoliamo:

$$\rho(\delta) = \frac{S^2(x,\theta) - S^2(x,\theta+\delta)}{|(y - f(x,\theta) - J\delta)^T W(y - f(x,\theta) - J\delta)|}$$

$$= \frac{S^2(x,\theta) - S^2(x,\theta+\delta)}{|\delta^T(\lambda \operatorname{diag}(J.TWJ)\delta + J.TW(y - f(x,\theta)))|}$$
(8)

se $\rho(\delta) > \varepsilon_1$ la mossa è accetta e riduciamo λ senno rimaniamo nella vecchia posizione. Altra domanda a cui rispondere è: quando siamo arrivati a convergenza? definiamo:

$$R1 = \max(|J.TW(y - f(x, \theta))|) \tag{9}$$

$$R2 = \max(|\delta/\theta|) \tag{10}$$

$$R3 = |S^{2}(x,\theta)/(n-m) - 1| \tag{11}$$

Se una di queste quantità è minore di una certa tolleranza allora l'algoritmo termina. Rimane ora un ultima domanda a cui rispondere e possiamo passare al codice. Dato che ci servono gli errori sui parametri di fit: come calcoliamo la matrice di covarianza? Basta calcolare:

$$Cov = (J^T W J)^{-1}$$
(12)

quindi gli errori saranno semplicemente la radice degli elementi sulla diagonale, e le altre entrate le correlazioni fra parametri.

Passiamo ora al codice:

```
1 """
2 the code performs a linear and non linear regression
3 Levenberg-Marquardt algorithm. You have to choose
4 some parameters delicately to make the result make sense
7 import numpy as np
8 import matplotlib.pyplot as plt
10
11 def lm_fit(func, x, y, x0, sigma=None, tol=1e-6, dense_output=False, absolute_sigma=False):
12
      Implementation of Levenberg-Marquardt algorithm
      for non-linear least squares. This algorithm interpolates
14
      between the Gauss-Newton algorithm and the method of
      gradient descent. It is iterative optimization algorithms
16
      so finds only a local minimum. So you have to be careful
17
      about the values you pass in x0
18
19
      Parameters
20
21
      f : callable
22
          fit function
23
24
      x : 1darray
25
           the independent variable where the data is measured.
      y : 1darray
26
          the dependent data, y <= f(x, {\theta})
27
28
      x0 : 1darray
          initial guess
29
      sigma : None or 1darray
30
          the uncertainty on y, if None sigma=np.ones(len(y)))
31
32
      tol : float
          required tollerance, the algorithm stop if one of this quantities
33
          R1 = np.max(abs(J.T @ W @ (y - func(x, *x0))))
34
35
          R2 = np.max(abs(d/x0))
          R3 = sum(((y - func(x, *x0))/dy)**2)/(N - M) - 1
36
          is smaller than tol
37
38
      dense_output : bool, optional dafult False
39
40
          if true all iteration are returned
      absolute_sigma : bool, optional dafult False
41
          If True, sigma is used in an absolute sense and
42
43
           the estimated parameter covariance pcov reflects
           these absolute values.
44
          pcov(absolute_sigma=False) = pcov(absolute_sigma=True) * chisq(popt)/(M-N)
45
46
47
      Returns
48
      x0 : 1d array or ndarray
          array solution
50
      pcov : 2darray
51
         The estimated covariance of popt
52
      iter : int
53
      number of iteration
54
55
56
      iter = 0
                              #initialize iteration counter
57
      h = 1e-7
                              #increment for derivatives
58
                              #damping factor
59
      1 = 1e-3
      f = 10
                              #factor for update damping factor
60
                              #number of variable
      M = len(x0)
61
      N = len(x)
62
                              #number of data
      s = np.zeros(M)
63
                              #auxiliary array for derivatives
      J = np.zeros((N, M))
                             #gradient
64
65
      #some trashold
      eps_1 = 1e-1
66
      eps_2 = tol
67
      eps_3 = tol
68
      eps_4 = tol
69
70
71
      if sigma is None :
                              #error on data
          W = np.diag(1/np.ones(N))
72
          dy = np.ones(N)
73
      else :
    W = np.diag(1/sigma**2)
74
75
          dy = sigma
76
```

```
78
79
       if dense_output:
                                #to store solution
           X = []
80
81
           X.append(x0)
82
       while True:
83
84
            #jacobian computation
            for i in range(M):
                                                                   #loop over variables
85
                s[i] = 1
                                                                   #we select one variable at a time
86
                dz1 = x0 + s*h
87
                                                                   #step forward
                dz2 = x0 - s*h
                                                                   #step backward
88
                J[:,i] = (func(x, *dz1) - func(x, *dz2))/(2*h)
                                                                  #derivative along z's direction
89
                s[:] = 0
                                                                   #reset to select the other
       variables
91
            JtJ = J.T @ W @ J
                                                        #matrix multiplication, JtJ is an MxM matrix
92
            dia = np.eye(M)*np.diag(JtJ)
                                                        \#dia_ii = JtJ_ii; dia_ij = 0
93
94
            res = (y - func(x, *x0))
                                                        #residuals
            b = J.T @ W @ res
                                                        #ordinate or dependent variable values of
95
       system
           d = np.linalg.solve(JtJ + 1*dia, b)
                                                        #system solution
97
           x_n = x0 + d
                                                        #solution at new time
98
99
            # compute the metric
            chisq_v = sum((res/dy)**2)
100
101
            chisq_n = sum(((y - func(x, *x_n))/dy)**2)
102
            rho = chisq_v - chisq_n
            den = abs( d.T @ (1*np.diag(JtJ)@d + J.T @ W @ res))
104
            rho = rho/den
106
            # acceptance
            if rho > eps_1 :
                                      #if i'm closer to the solution
107
                x0 = x_n
                                      #update solution
108
109
                1 /= f
                                      #reduce damping factor
            else:
               1 *= f
                                      #else magnify
            # Convergence criteria
            R1 = np.max(abs(J.T @ W @ (y - func(x, *x0))))
114
            R2 = np.max(abs(d/x0))
            R3 = abs(sum(((y - func(x, *x0))/dy)**2)/(N - M) - 1)
116
117
            if R1 < eps_2 or R2 < eps_3 or R3 < eps_4:</pre>
                                                                   #break condition
118
119
                break
120
            iter += 1
121
            if dense_output:
                X.append(x0)
124
125
       #compute covariance matrix
126
       pcov = np.linalg.inv(JtJ)
127
128
       if not absolute_sigma:
129
            s_sq = sum(((y - func(x, *x0))/dy)**2)/(N - M)
130
            pcov = pcov * s_sq
133
       if not dense_output:
134
           return x0, pcov, iter
       else :
135
           X = np.array(X)
136
137
           return X, pcov, iter
```

Il parametro dense_output è stato inserito per fare un plot interessante per far vedere la dipendenza dalle condizioni iniziali. Non riportiamo l'intero codice per non appesantire, la restante parte trattava solo di fare il plot delle curve di livello. In ogni caso è disponibile nell'apposita cartella il codice intero. Questo è il primo vero codice che fa qualcosa di molto complicato esso usa tutto quanto spiegato fin'ora e adesso è evidente l'importanza di mettere commenti, dare nomi sensati e rendere leggibile il codice. Bisogna ricordarsi che i codici in genere vengono scritti una volta ma letti tante volte quindi la chiarezza non va dosata con parsimonia.

Questo grafico rappresenta le curve di livello del modello non lineare $y(t) = A\cos(\omega t)$ ed è facile vedere come partendo da condizioni diverse il fit si incastri in minimo locali. L'asse y corrisponde a ω mentre l'asse x corrisponde ad A. Vediamo ora di testare i risultati del codice fittando qualcosa di un po' più bruttino.

```
2 Test
3 """
4 import numpy as np
5 import matplotlib.pyplot as plt
6 from scipy.optimize import curve_fit
7 from Lev_Maq import lm_fit
10
  def f(t, A, o1, o2, f1, f2, v, tau):
      """fit function
11
12
      return A*np.cos(t*o1 + f1)*np.cos(t*o2 + f2)*np.exp(-t/tau) + v
14
15 ##data
x = np.linspace(0, 20, 1000)
y = f(x, 200, 10.5, 0.5, np.pi/2, np.pi/4, 42, 25)
rng = np.random.default_rng(seed=69420)
19 y_noise = 1 * rng.normal(size=x.size)
20
  y = y + y_noise
  dy = np.array(y.size*[1])
21
22
23
  ##confronto
24
25 init = np.array([101, 10.5, 0.475, 1.5, 0.6, 35, 20])
26
27 pars1, covm1, iter = lm_fit(f, x, y, init, sigma=dy, tol=1e-8)
dpar1 = np.sqrt(covm1.diagonal())
pars2, covm2 = curve_fit(f, x, y, init, sigma=dy)
dpar2 = np.sqrt(covm2.diagonal())
31 print("
                 -----codice-----")
for i, p1, dp1, p2, dp2 in zip(range(len(init)), pars1, dpar1, pars2, dpar2):
      print(f"pars{i} = {p1:.5f} +- {dp1:.5f} ; {p2:.5f} +- {dp2:.5f}")
33
  print(f"numero di iterazioni = {iter}")
35
37 chisq1 = sum(((y - f(x, *pars1))/dy)**2.)
```

```
section chisq2 = sum(((y - f(x, *pars2))/dy)**2.)
39 ndof = len(y) - len(pars1)
40 print(f'chi quadro codice = {chisq1:.3f} ({ndof:d} dof)')
print(f'chi quadro numpy = {chisq2:.3f} ({ndof:d} dof)')
42
44 c1 = np.zeros((len(pars1),len(pars1)))
45 c2 = np.zeros((len(pars1),len(pars1)))
46 #Calcoliamo le correlazioni e le inseriamo nella matrice:
47 for i in range(0, len(pars1)):
       for j in range(0, len(pars1)):
          c1[i][j] = (covm1[i][j])/(np.sqrt(covm1.diagonal()[i])*np.sqrt(covm1.diagonal()[j]))
49
          \texttt{c2[i][j] = (covm2[i][j])/(np.sqrt(covm2.diagonal()[i])*np.sqrt(covm2.diagonal()[j]))}
50
51 #print(c1) #matrice di correlazione
52 #print(c2)
54 ##Plot
55 #Grafichiamo il risultato
56 fig1 = plt.figure(1)
57 #Parte superiore contenetnte il fit:
58 frame1=fig1.add_axes((.1,.35,.8,.6))
59 #frame1=fig1.add_axes((trasla lateralmente, trasla verticamente, larghezza, altezza))
frame1.set_title('Fit dati simulati',fontsize=15)
61 plt.ylabel('y [u.a.]',fontsize=15)
62 plt.grid()
63
65 plt.errorbar(x, y, dy, fmt='.', color='black', label='dati') #grafico i punti
t = np.linspace(np.min(x), np.max(x), 10000)
67 plt.plot(t, f(t, *pars1), color='blue', alpha=0.5, label='best fit codice') #grafico del best
      fit
  plt.plot(t, f(t, *pars2), color='red', alpha=0.5, label='best fit scipy') #grafico del best
      fit scipy
69 plt.legend(loc='best')#inserisce la legenda nel posto migliorte
71 #Parte inferiore contenente i residui
72 frame2=fig1.add_axes((.1,.1,.8,.2))
74 #Calcolo i residui normalizzari
75 ff1 = (y - f(x, *pars1))/dy
76 ff2 = (y - f(x, *pars2))/dy
77 frame2.set_ylabel('Residui Normalizzati')
78 plt.xlabel('x [u.a.]',fontsize=15)
80 plt.plot(t, 0*t, color='red', linestyle='--', alpha=0.5) #grafico la retta costantemente zero
81 plt.plot(x, ff1, '.', color='blue') #grafico i residui normalizzati
82 plt.plot(x, ff2, '.', color='red') #grafico i residui normalizzati scipy
83 plt.grid()
84 plt.show()
85
86 [Output]
           -----scipy-----
88 pars0 = 199.85504 +- 0.17712 ; 199.85504 +- 0.17712
89 pars1 = 10.50005 +- 0.00009 ; 10.50005 +- 0.00009
90 pars2 = 0.49990 +- 0.00008 ; 0.49990 +- 0.00008
91 pars3 = 1.57040 +- 0.00087; 1.57040 +- 0.00087
92 pars4 = 0.78579 +- 0.00067; 0.78579 +- 0.00067
93 pars5 = 41.92350 +- 0.03125 ; 41.92350 +- 0.03125
94 pars6 = 24.99194 +- 0.05652; 24.99194 +- 0.05652
95 numero di iterazioni = 6
96 chi quadro codice = 969.017 (993 dof)
97 chi quadro numpy = 969.017 (993 dof)
```

Non abbiamo stampato la matrice di covarianza per avere un po' più di ordine. Vediamo che tra i due non ci sono differenze, siamo felici. Vediamo anche il grafico:

