RUHR-UNIVERSITÄT BOCHUM

MICROCONTROLLER-BASICS

Workshop zu den Grundlagen des Umgangs mit Microcontrollern im Digitallabor des RUB-Makerspace

ABLAUF

- 1. Sicherheitsunterweisung
- 2. Input & (virtuelles) Hands-on zu Grundlagen der Elektronik für Maker
- 3. Input & (virtuelles) Hands-on zu Microcontrollern
- 4. (Echtes) Hands-on zu Microcontrollern
- 5. Input & Hands-on Löten

Für die virtuellen Parts brauchen alle einen Computer mit Internet

GRUNDLAGEN ELEKTRONIK

Lorna Ngole, Stromfluss (CC BY-SA 4.0)

GRUNDBEGRIFFE

- Strom (I) Einheit: Ampere
 - Bewegung von Ladungsträgern (z.B. Elektronen) durch einen Leiter
- Spannung (U) Einheit: Volt
 - Differenz des elektrischen Potentials
 - Hohe Differenz = Hohe Spannung
- Widerstand (R) Einheit: Ohm
 - "Schwierigkeit" für den Stromfluss
 - Abhängig z.B. vom Material des Leiters

niedriger Widerstand

Lorna Ngole, Differenz (CC BY-SA 4.0)

Mike Run: Ohm's-law-triangle

URL

https://commons.wikimedia.org/wiki/File:Ohm%27s-law-triangle.svg

(CC BY-SA 4.0)

Spannungen in Natur und Technik	
Elektronisches Gerät	Spannung in Volt (V)
Zink-Kohle-Akku (je Zelle)	1,5
Fahrrad-Dynamo	6
Autoakku	12 bis 24
Netzspannung	230
Drehstrom	400
Generator in Kraftwerk	Ca. 10 000
Hochspannung	Bis 380 000
Blitz	Bis 100 000 000

Stromstärken in Natur und Technik	
Elektronisches Gerät	Spannung in Ampere (A)
Elektrische Armbanduhr	0,000 1
Glimmlampe, Kopfhörer	0,001
Industrielle Sensoren	0,005 bis 0,02
Glühlampe	Bis zu 0,5
Bügeleisen	2 bis 5
Elektrischer Ofen	5 bis 10
Elektrisches Schweißen	100
Motor (Straßenbahn)	150
Überlandleitung	100 bis 1000
Elektrische Zugmaschin	1000
Aluminium-Schmelzofen	15 000
Blitz	Bis zu 100 000

BAUTEILE (Beispiele 1/2)

- Widerstände (verändern den "Durchfluss")
 - Fester Wert / veränderbar / umweltabhängig (z.B. Licht)
- Kondensatoren (speichern Energie)
- Dioden (z.B. LED, die leuchten können)
- Transistoren (können Schalten oder auch Verstärken)
- ... beliebig viele komplexere Bauteile

Inductiveload: Through-Hole mounted Component URL:

https://commons.wikimedia.org/wiki/File:Through-Hole Mounted Component.svg

(Public Domain)

Inductiveload: LED, 5mm, green (en)

https://commons.wikimedia.org/wiki/File:LED, 5mm, green (en).svg

(Public Domain)

John Fader: Smt closeup

URL: https://en.wikipedia.org/wiki/File:Smt_closeup.jpg (CC BY-SA 3.0)

Benedikt Seidl: Transistors in different housings URL:

https://commons.wikimedia.org/wiki/File:Transistors-white.jpg

(Public Domain)

BAUTEILE (Beispiele 2/2)

Afrank99: Light-emitting diodes(Through Hole)
https://commons.wikimedia.org/wiki/File:Verschiedene_LEDs.jpg (CC BY-SA 2.0)

Ulfbastel, Fotowiderstand, <u>URL:</u>
https://de.wikipedia.org/wiki/Fotowiderstand#/media/Datei:LDResistor.jpg
(Public Domain)

URL: https://commons.wikimedia.org/wiki/File:S.l.-capacitor-20150807-003.jpg

(Public Domain)

Raimond Spekking: Universum Altarus 3000 - pedals gates - resistors and capacitors URL:https://commons.wikimedia.org/wiki/File:Universum Altarus 3000 - pedals gates - resistors a nd capacitors-6463.jpg (CC BY-SA 4.0)

RUB Makerspace-Team: Widerstand (CC BY-SA 4.0)

Oomlout: L293D Motor Driver
URL:https://commons.wikimedia.org/wiki/File:L293D Motor
Driver.jpg
(CC BY-SA 4.0)

SCHALTUNGEN AUFBAUEN

- Freihändig verdrahten
- "Wire Wrapping"
- "Breadboarding" (Aufbau auf Steckbrett)
- Löten (manuell / (teil-)automatisiert

• ..

Gareth Halfacree: Adafruit PiTFT add-on board for the Raspberry Pi single board computer, URL:

https://commons.wikimedia.org/wiki/File:Adafruit PiTFT - Soldering (14675479295).jpg

(CC BY-SA 2.0)

Hans Grobe: Wire Wrapping URL: https://commons.wikimedia.org/wiki/File:Drah twickelpistole-wires hg.jpg (CC BY-SA-4.0)

Rnewkirk7954: Solderwire
URL:https://commons.wikimedia.org/wiki/File:Solderwire.JPG

<u>Drahkrub</u>: Ultraschall-Mikrofonverstärker [...] Steckbrett, URL: <u>https://commons.wikimedia.org/wiki/File:Ultrasound-PreAmp-Breadboard.jpg</u>

(CC BY-SA 4.0)

Hands-On mit Grundlagen der Elektronik (virtuell in <u>TinkerCAD</u>)

Demo

HANDS-ON (virtuell) in TinkerCAD

https://www.tinkercad.com/joinclass/I6W4Z6JFD4X3

- Option "Mit Spitzname beitreten" wählen
- Spitznamen: rubmakerspace1, rubmakerspace2,
 ... rubmakerspace10
- Links im Menü "Schaltkreise" wählen
- Dann "Neuen Schaltkreis erstellen"
- Beispiele aus dem Menü Starter "Einfach"

Lorna Ngole, Screenshots TinkerCad, (CC BY-SA 4.0)

GRUNDLAGEN MICROCONTROLLER

MICROCONTROLLER

- Komplexe Bauteile (u.a. viele Transistoren) als "integrated circuit" (IC)
- Kleine Computer, programmierbar (ein-/mehrfach)
- Haben Prozessor, Speicher, und Eingabe/Ausgabe
- Für eingebettete Anwendungen und oft für konkrete Aufgaben genutzt (dh auch: Sehr viele Modelle)
- (Extrem) günstige Modelle sind Massenware und werden überall verbaut (gibt's aber natürlich auch in sehr hochwertig und teuer – als CPUs in PCs zum Beispiel)

MikeMurphy: Photo of PIC 16F877A (top), PIC 16F737 (left), PIC 16F747 (middle), and US Dime for scale, URL: https://commons.wikimedia.org/wiki/File:PIC microcontrollers.jpg (Public Domain)

Sergey M: MC705 microcontroller URL: https://commons.wikimedia.org/wiki/File:MC705_microcontroller_(18805409279).jpg (CC 2.0)

Erfurth: Modellrechenautomat TH Dresden 1958 TSD, URL: https://de.wikipedia.org/wiki/Datei:Modellrechenautomat TH Dresden 1958 TSD.jpg (CC BY-SA 3.0)

RUB-MAKERSPACE

SsmIntrigue:2019 Tesla Model 3, Front Left, 05-30-2021 URL:

File:2019 Tesla Model 3, Front Left, 05-30-2021.jpg - Wikimedia Commons

Pittigrilli:Tektronix Oscilloscope 475A https://commons.wikimedia.org/wiki/File:Tektronix Osc illoscope 475A.jpg (CC BY-SA 4.0)

Jacek Halicki: 2017 Nikon D7100 URL:

https://commons.wikimedia.org/wiki/ File:2017 Nikon D7100.jpg (CC BY-SA 4.0)

Osamu Iwasaki:Lilypad Arduino with fading LEDs,
URL:https://commons.wikimedia.org/wiki/File:Lilypad Arduino with fading LEDs.jpg

(CC BY-SA 2.0)

Haophuong21: Robot-cong-nghiep-the-he-moi

URL: https://commons.wikimedia.org/wiki/File:Robot-cong-nghiep-the-he-moi.jpg (CC BY-SA 4.0)

Tomáš Vendiš: Petmr URL:https://commons.wikimedia.org/wiki/Fil e:Petmr.jpg (CC BY-SA 4.0)

LGEPR: LGWashingmachine URL: https://upload.wikimedia.org/wikipedia/commons/0/08/LGwashingmachine.jpg

(CC BY-SA 2.0)

LGEPR:LG Smart DIOS V9100
URL:https://commons.wikimedi
a.org/wiki/File:LG Smart DIOS
V9100.jpg
(CC BY-SA 2.0)

INPUT / OUTPUT (I/O)

- Anschlüsse ("Pins") meist als Eingänge (I) oder Ausgänge (O) verwendbar
- zwei Hauptklassen : Digitale oder Analoge I/Os
- weitere Funktionen:
 - Stromversorgung / Erde
 - UART, z.B.: Serial Kommunikation, Bluetooth
 - SPI, z.B.: Master-Slave
 - PWM (Pulsweitenmodulation)

oomlout: ATmega328P-PU, URL File:ATMEGA328P-PU.ipg - Wikimedia Commons (CC BY-

URL: File:Arduino-uno.jpg - Wikimedia Commons (CC BY-SA 4.0)

ARDUINO: Microcontroller-Ökosystem für machende Menschen

VIELFALT!

- Es gibt für alle erdenklichen Zwecke passende Microcontroller und Boards
- Ganz verschiedene Leistungsklassen / Bluetooth, WiFi, integrierte Sensoren / LEDs / Displays / vernähbar / ...
- Ökosystem "Arduino" ist mit das bekannteste (Für Bildung und "Making")

RUB Makerspace-Team: Auswahl von Microcontrollern und Boards, die im RUB-Makerspace vorhanden sind (CC BY-SA 4.0)

INPUT / OUTPUT (IO)

- Sensoren (Messen / repräsentieren Umgebung)
- Aktoren (Steuern Umgebung, "tun etwas")
- Läuft über Pins (USB erstmal nur für Programmierung des Microcontrollers an sich)

SparkFun: DHT22, URL: File:Maxdetect Humidity and Temperature Sensor - RHT03 10167.jpg - Wikimedia Com mons (CC BY-SA 2.0)

oomlout, Photoresistor, URL: <u>File:Photoresistor 2.jpg - Wikimedia</u> <u>Commons</u> (CC BY-SA 2.0)

SparkFun: 9DoF Gyroscope, URL: File:SparkFun 9DoF-Razor-IMU-M0 SAMD21+MP U-9250 14001-04.jpg - Wikimedia Commons (CC BY-SA 2.0)

RUB Makerspace-Team: Sensorik zur Überwachung vor Luftdaten mit geschlossenem Case (CC BY-SA 4.0)

oomlout: Adafruit Motor Shield for Arduino, File:ARSH-02-MS (14315447676).jpg - Wikimedia Commons (CC BY-SA 2.0)

RUB Makerspace-Team; Sensorik zur Überwachung von Luftdaten (CC BY-S.

Turbospok: Listing files on OLED display located on MicroSD card connected to Arduino Nano using FatFs , URL:

File:MicroSD card connected to Arduino nano with OLED display,jpg - Wikim edia Commons

(CC BY-SA 4.0)

MICROCONTROLLER PROGRAMMIEREN

- Code wird am Computer entwickelt, dann (z.B.) per USB auf den Microcontroller übertragen
- Werkzeug dafür: z.B. Arduino IDE ("Integrated Development Environment")
 - Kann nicht nur Arduino-Boards sondern auch viele andere Microcontroller
 - Open Source
- Verschiedenste andere Werkzeuge (z.B. auch webbasiert, s. Hands-on)

RUB Makerspace-Team: Per USB an einem Laptop angeschlossener Arduino (CC BY-SA 4.0)

RUB Makerspace-Team: Arduino die und beispielhaft geladenes Blink-Skript (CC BY-SA

RUB-MAKERSPACE

- void pinMode(pin, mode);
 - pin: the pin number
 mode: TNPHT OHTPHT
 - mode: INPUT, OUTPUT, or INPUT PULLUP
- void digitalWrite(pin, va lue);
 - pin: the pin number
 - value: HIGH or LOW
- int
 digitalRead(pin);
 - pin: the pin number
 - Returns: LOW or HIGH
 - void delay(time);

Hands-On mit Microcontrollern (virtuell in <u>TinkerCAD</u>)

Demo

HANDS-ON (virtuell) in TinkerCAD

https://www.tinkercad.com/joinclass/I6W4Z6JFD4X3

- Option "Mit Spitzname beiträten" wählen
- Spitznamen: rubmakerspace1, rubmakerspace2,
 ... rubmakerspace10
- Links im Menü "Schaltkreise" wählen
- Dann "Neuen Schaltkreis erstellen"
- Beispiele aus dem Menü Starter "Arduino"

RUB Makerspace-Team: Einen Tinkercad-Raum des RUB Makerspace beitreten und Simulation eines Arduinos (CC BY-SA 4.0)

NOCH FRAGEN?

KONTAKT

- makerspace@rub.de
- https://makerspace.rub.de/
- RUB Makerspace
- @rubmakerspace
- @rubmakerspace

