

Converter-Fed Electrolyser Systems: State of the Art Unite!Energy Conference, Grenoble, France

Prof. Marko Hinkkanen 15 October 2024

Thanks to Ushnish Chowdhury, Dr. Rayane Mourouvin, and Dr. Mikko Routimo for their help and comments.

Clean Hydrogen

- ► Produced through water electrolysis
 - ► Powered by clean electricity
- ► Energy carrier and raw material
 - Can be converted to synthetic fuels and chemicals (power-to-X)
 - ► Biogenic CO₂ needed for sustainable synthetic hydrocarbons
- Potential to decarbonize hard-to-electrify transport and industries
 - Aviation, maritime, steel, fertilizers

10...20 litres of ultrapure water needed to produce 1 kg of hydrogen

- An ideal electrolyser would consume
 40 kWh to produce 1 kg of hydrogen
- Typical efficiencies are about 70...80%
- Excess heat is preferably used (e.g. district heating)

Hydrogen Production in Europe

- Current production capacity¹
 - ▶ 12 Mt/year, mostly based on natural gas
 - ▶ 0.2% based on water electrolysis (capacity 200...500 MW)
- ► 2030 clean hydrogen target
 - ► 10 Mt/year own production (plus 10 Mt/year imports)
 - Deploy 40 GW of electrolyser capacity in 2030 (in practice about 140 GW needed to produce 10 Mt/year)
- ► 2050 scenarios
 - ► Electrolyser capacity 500...1 000 GW
- ► These targets might be too optimistic²

¹Bolard, Dolci, Gryc et al., Clean energy technology observatory: Water electrolysis and hydrogen in the European Union. Publications Office of the European Union. 2023. DOI: 10.2760/133010.

²Special report 11/2024, *The EU's industrial policy on renewable hydrogen: Legal framework has been mostly adopted — time for a reality check.* Official Journal C 4650, 2024. [Online]. Available: http://data.europa.eu/eli/C/2024/4650/oj.

Outline

Electrolysers

Overview of Converter Topologies

Dual-Stage Converter: Step-Down DC-DC Converter

Dual-Stage Converter: Rectifier

Single-Stage Converter Topologies

Types of Electrolysers

- ► Alkaline
 - Mature technology
 - Lower investment costs
- ► Proton-exchange membrane (PEM)
 - ► Better dynamics than alkaline
 - Higher power density (less space needed)
 - Currently less efficient but expected to improve
 - ► Expensive due to noble electrode materials
- Solid-oxide
 - Operate at much higher temperatures
 - ► Higher efficiencies than alkaline and PEM
 - Can be reversed to act as fuel cells

Dynamic Model for PEM and Alkaline Electrolysers

- ightharpoonup Reversible voltage e is the minimum (ideal) voltage for the electrolysis process
 - Depends on the temperature and the pressure
- ► Ohmic and activation losses cause irreversible overvoltages
- ightharpoonup Capacitances $C_{\rm an}$ and $C_{\rm ca}$ model the double-layer effect

 Activation overvoltages are nonlinear in the currents

$$u_{\rm an} = u_{\rm an}(i_{\rm an})$$
$$u_{\rm ca} = u_{\rm ca}(i_{\rm ca})$$

► They also decrease with the temperature

Example i-u characteristics of an alkaline electrolyser³

³Ursúa and Sanchis, 'Static-dynamic modelling of the electrical behaviour of a commercial advanced alkaline water electrolyser,' *Int. J. Hydrogen Energy*, 2012. DOI: 10.1016/j.ijhydene.2012.09.125

► Equivalently, the reciprocal form of the nonlinear characteristics can be used⁴

$$i_{\rm an} = i_{\rm an}(u_{\rm an})$$
 $i_{\rm ca} = i_{\rm ca}(u_{\rm ca})$

► State-space representation

$$C_{\text{an}} \frac{du_{\text{an}}}{dt} = i - i_{\text{an}}(u_{\text{an}})$$

$$C_{\text{ca}} \frac{du_{\text{ca}}}{dt} = i - i_{\text{ca}}(u_{\text{ca}})$$

$$u = R_{\text{ohm}}i + u_{\text{an}} + u_{\text{ca}} + e$$

where the current i is the input and the voltage u is the output

⁴Iribarren, Elizondo, Barrios *et al.*, 'Dynamic modeling of a pressurized alkaline water electrolyzer: A multiphysics approach,' *IEEE Trans. Ind. Appl.*, 2023. DOI: 10.1109/TIA.2023.3247405.

Linearized Model in the Frequency Domain

► Linearization results in the impedance

$$Z(s) = \frac{u(s)}{i(s)} = R_{\text{ohm}} + \frac{R_{\text{an}}}{sR_{\text{an}}C_{\text{an}} + 1} + \frac{R_{\text{ca}}}{sR_{\text{ca}}C_{\text{ca}} + 1}$$

► Same impedance presented using the Nyquist plot (below) and the frequency response (right)

Parameters $R_{\rm ohm}=0.032~\Omega$, $R_{\rm an}=0.023~\Omega$, $C_{\rm an}=0.638~{\rm F}$, $R_{\rm ca}=0.023~\Omega$, and $C_{\rm ca}=0.031~{\rm F}$ are used

► Incremental resistances depend on the operating-point current

$$R_{\rm an} = \frac{\partial u_{\rm an}}{\partial i_{\rm an}}$$
 $R_{\rm ca} = \frac{\partial u_{\rm ca}}{\partial i_{\rm ca}}$

► Figure below shows an example of the impedances at three different currents³

Outline

Electrolysers

Overview of Converter Topologies

Dual-Stage Converter: Step-Down DC-DC Converter

Dual-Stage Converter: Rectifier

Single-Stage Converter Topologies

Industrial-Scale Converter-Fed Electrolyser Systems

- ▶ Industrial-scale electrolysers are multi-MW low-voltage devices^{5,6}
- ► Stack voltage is typically from a few hundred volts up to 1 kV
- ► Connected typically to a medium-voltage grid using a 50-Hz transformer
- ► Power quality should meet the grid and electrolyser requirements
- From the converter perspective, an electrolyser can be modeled as a resistive voltage source (where $R = R_{\text{ohm}} + R_{\text{an}} + R_{\text{ca}}$ at low frequencies)

⁵Abdelhakim, Viitanen and Canales, 'State-of-the-art power supplies for electrolyzers: Hydrogen production,' ABB Review, 2022.

⁶Schumann, Runser, Herzig et al., 'Water electrolysis power supply: Status & future trends,' in ETG Symposium, 2023, pp. 122–128.

Typical Converter Topologies

Dual-stage converter topology

Single-stage converter topology

This could be:

- Thyristor rectifier (semi-active, step-down)
- Voltage-source rectifier (active, step-up)
- Current-source rectifier (active, step-down)

Outline

Electrolysers

Overview of Converter Topologies

Dual-Stage Converter: Step-Down DC-DC Converter

Dual-Stage Converter: Rectifier

Single-Stage Converter Topologies

Step-Down DC-DC Converter

- ► To avoid high losses, the transistor is switched periodically on and off by means of pulse-width modulation (PWM)
- Insulated-gate bipolar transistors (IGBTs) are typically used
- ► Typical switching frequencies $f_{sw} = 1...10 \text{ kHz}$
- At high frequencies, the filter inductance L dominates over the electrolyser impedance

DC-bus voltage $u_{\rm dc}$ is almost constant due to signicant capacitance $C_{\rm dc}$

Switching Waveforms

- ► Low power loss $u_T i_T$ in the transistor
 - ► On-state: $u_T \approx 0$ ► Off-state: $i_T = 0$
 - Switching losses are proportional to the switching frequency
- ► Freewheeling diode is needed due to the inductive filter
 - Current i must flow also when the transistor is switched off
- As short time periods are considered in the following, we can assume
 - $ightharpoonup u_{
 m dc} = {
 m constant}$
 - ightharpoonup e = constant
 - ightharpoonup R = 0

Duty ratio

$$d = \frac{t_{\rm on}}{T_{\rm sw}} \qquad 0 \le d \le 1$$

- $ightharpoonup t_{on}$ is the on-time
- $ightharpoonup T_{\rm sw}$ is the switching period
- Average of the voltage u_D over the period T_{sw}

$$\bar{u}_{\rm D} = \frac{1}{T_{\rm sw}} \int_0^{T_{\rm sw}} u \, \mathrm{d}s$$

$$= du_{\rm dc}$$

▶ Voltage equation

$$L\frac{\mathrm{d}i}{\mathrm{d}t} = u - e$$

► On-state: $u_D = u_{dc}$

$$\Delta i = \frac{1}{L} \int_0^{t_{\text{on}}} (u_{\text{dc}} - e) dt$$
$$= \frac{(u_{\text{dc}} - e)t_{\text{on}}}{L}$$

► Off-state: $u_D = 0$

$$-\Delta i = \frac{1}{L} \int_0^{t_{\text{off}}} (-e) dt = -\frac{et_{\text{off}}}{L}$$

Duty ratio in steady state

$$d = \frac{t_{\text{on}}}{T_{\text{sw}}} = \frac{\overline{u}_{\text{D}}}{u_{\text{dc}}} \quad (\overline{u}_{\text{D}} = \overline{e} \text{ if } R = 0)$$

Current ripple in steady state

$$\Delta i = \frac{d(1-d)u_{\rm dc}}{f_{\rm sw}L}$$

Interleaved Converter for High-Power Applications

Multiphase interleaved DC-DC converter

Transistors and diodes drawn in gray are not used in the case of electrolysers, because the current $i \ge 0$. The waveforms of interleaved converters are essentially the same as those of the regular converter, but the load current ripple is reduced (effective switching frequency is increased).

Outline

Electrolysers

Overview of Converter Topologies

Dual-Stage Converter: Step-Down DC-DC Converter

Dual-Stage Converter: Rectifier

Single-Stage Converter Topologies

Diode Rectifier

- ► Simple, reliable, efficient
- ▶ Not controllable
- ► High current harmonics on the grid side

6-pulse diode rectifier

12-pulse diode rectifier (reduces grid-current harmonics but needs a special transformer)

The inductor can be placed either on the AC- or DC-side (or both), i.e., either $L_{\rm ac}$ or $L_{\rm dc}$ can be zero. The following analysis assumes $L_{\rm ac}=0$.

Preliminary Example: Constant DC-Bus Current

Constant DC-Bus Voltage, $L_{\rm dc} = 0.1$ p.u.

Constant DC-Bus Voltage, $L_{\rm dc} = 0.01$ p.u.

Voltage-Source Rectifier

- Controllable alternative to diode rectifiers
- ► Typical switching frequencies 1...10 kHz
- Grid currents are almost sinusoidal
- ▶ DC-bus voltage is regulated but cannot be lowered from that of the diode rectifier
- Step-down DC-DC converter is typically needed (to avoid high current stress)
- Higher losses and more expensive compared to diode rectifiers

Instead of an L filter, a more compact LCL filter is typically used. Notice that the bridge is the same as the one used in the three-phase interleaved DC-DC converter (and in many other applications, such as electric machine drives).

Outline

Electrolysers

Overview of Converter Topologies

Dual-Stage Converter: Step-Down DC-DC Converter

Dual-Stage Converter: Rectifier

Single-Stage Converter Topologies

Thyristor Rectifier

- ► Thyristors are like diodes whose turn-on instant can be delayed
- ► This feature allows to adjust (decrease) the DC voltage
- ► Simple, reliable, and efficient
- Very high harmonic contents on both the grid and electrolyser sides
- Can also be used in 12-pulse configuration to reduce harmonics

Current-Source Rectifier⁷

- ► Controllable step-down rectifier
- Output voltage is less than (or equal to) that of the diode rectifier
- Step-down DC-DC converter not needed
- ► Grid currents are almost sinusoidal
- ► This technology is not as mature as the voltage-source rectifiers

⁷Solanki, Fröhleke, Böcker *et al.*, 'High-current variable-voltage rectifiers: State of the art topologies,' *IET Power Electron.*, 2014. DOI: 10.1049/iet-pel.2014.0533.

Future Outlook

- ► Higher power density and efficiency
- ► Lower weight and costs, reduced complexity, and modularity
- ► New topologies, control methods, and semiconductor materials (like SiC)
- ► Hydrogen production from renewable energy (managing inherent fluctuations)
- Better compatibility with both the grid and electrolysers
- ► Fault-ride-through: Mitigating the effects of
 - Multi-MW electrolyser system faults on the grid
 - Grid faults on the electrolyser system