Aprendizaje Automático

Grado en Ingeniería Informática Computación y Sistemas Inteligentes

Profesores de la asignatura

Teoría :

Nicolás Pérez de la Blanca Capilla

- D.5, Dpto. CCIA, 4^a planta, ETSIIT
- Correo: (<u>nicolas@decsai.ugr.es</u>),
- Tutorías: Miércoles (9.30h-13.30h, 16.00h-18.00h).

Francisco J. Baldán Lozano (Grupo 1)

- Despacho 31 (4º planta)
- Correo: fjbaldan@decsai.ugr.es
- Tutorías: Lunes (12:00-13:00)

Ofelia Retamero Pascual (Grupo-2)

- D31 (4ª planta). (concertar cita por correo)
- Correo: : <u>oretamero@decsai.ugr.es</u>
- Tutorías: Jueves (11.00-12.00)

Pablo Mesejo Santiago (Grupo-3)

- D01 (4ª planta). (concertar cita por correo)
- Correo: : pmesejo@decsai.ugr.es
- Tutorías: Viernes (10:00-11:00)

Bases y Funcionamiento

Información de la asignatura

- Web en la Plataforma Docente de DECSAI
 - Acceder a través de http://decsai.ugr.es.
 - Toda la información y documentos relativos a la asignatura estarán disponible en dicha web.
 - Todos los alumnos deben verificar que el correo electrónico y la foto están disponibles en la web de la asignatura

Objetivos y Competencias

Competencias: Capacidad para conocer y desarrollar técnicas de aprendizaje computacional y diseñar e implementar aplicaciones y sistemas que las utilicen, incluyendo las dedicadas a extracción automática de información y conocimiento a partir de grandes volúmenes de datos.

Objetivos generales:

- Comprender el aprendizaje como mecanismo para obtener conocimiento, y mostrar las distintas formas en las que se puede realizar el aprendizaje.
- Distinguir entre aprendizaje supervisado, no supervisado y por refuerzo, así como determinar cuál de ellos es apropiado para resolver un determinado problema.
- Descripción y análisis de los distintos modelos de aprendizaje de conjuntos de hipótesis.
 Estudio de distintos métodos de aprendizaje
- Conocer diferentes modelos de aprendizaje supervisado y su aplicación en diferentes problemas. Conocer técnicas de validación y verificación de modelos, experimentar con dichas técnicas en diferentes problemas reales.
- Utilizar herramientas de aprendizaje en aplicaciones reales

Metas a alcanzar

- Al final del curso se debería conocer:
 - El conjunto de problemas, en el que las técnicas de A.A.
 son una aproximación adecuada.
 - Como identificar los modelos aplicables a un problema dado
 - Como aplicar los modelos estudiados
 - Las garantías que permiten aprender desde datos.

 Haber suscitado interés por aplicaciones en casos reales (Realizar TFG en aplicaciones)

Sistema de Evaluación Continua

- 3-Trabajos de Teoría y Prácticas (TTP): 75 puntos (individual)
 - Preguntas y ejercicios sobre los conceptos y técnicas explicadas.
 - Teoría: relación de cuestiones, habrá de 3-5 días para su contestación y envío.
 - PRÁCTICAS: implementación y experimentación con algoritmos
 - Plazo de entrega pre-fijado.
- Examen FINAL (EF): 25 puntos (individual), para alumnos con TTP <40 puntos o proporción (27 2-TTP)
- PROYECTO FINAL (PF): 25 puntos (2 estudiantes), para alumnos con TTP ≥ 40 puntos o proporción (27 2-TTP)
- Otros: Interés y Participación (Bonus de clase y trabajos): hasta 8 puntos
- Calificación final = (TTP + PF o TF+ Otros)/10
- Matrícula de Honor:
 - Haber obtenido 95 puntos o más en la calificación final
 - Haber desarrollado un proyecto final de calidad
- EVALUACIÓN EXTRAORDINARIA: examen escrito sobre los contenidos de la teoría y algoritmos y prácticas de la asignatura
- EVALUACIÓN ÚNICA: se podrá elegir hacer un único examen final escrito de teoría y prácticas. Solicitar en la Sede Electrónica de la página web de la UGR.

¿Qué necesitamos recordar?

- Notación y manipulación de matrices
- Conceptos básicos de probabilidad
- Cálculo básicos de cálculo de derivadas
- Cálculo de máximos y mínimos de una función
- Para repasar todos estos conceptos hay disponibles en la web documentos de ayuda y repaso.
- Si necesita ayuda con alguno de ellos acuda a tutorías

Documentos de consulta y apoyo

- El curso se intenta que sea lo más auto contenido posible.
- Transparencias de clase y otros documentos de apoyo están en la web de la asignatura (Inglés)
- Monografías de apoyo:
 - Y.S. Abu-Mustafa, M. Magdom-Ismail, H. Lin, Learning from Data, AMLbook.com, 2012 (biblioteca)
 - V.Cherkassky, F.Mulier, Learning from Data: concepts, theory and methods, Wiley-Interscience, 2007 (en pdf)
- Otros libros complementarios:
 - G. James, D. Witten, T. Hastie and R. Tibshirani: An Introduction to Statistical Learning with Applications in R. Springer (http://www-bcf.usc.edu/~gareth/ISL/index.html)
 - Hastie, Tibshirani, Friedman, The Elements of Statistical Learning, (en pdf)

Prácticas de laboratorio

Prácticas: lenguajes Python

- Lenguaje relevante para análisis de datos: Scikit-learn
- Descargar e instalar en el ordenador portátil (Windows, Linux, MacOS)
- Para su uso en las aulas, instalar en un disco/pendrive externo
- En clase de prácticas se darán los detalles

Tres grupos de prácticas:

- Se intentará que cada alumno pueda asistir al grupo que más le convenga por horario.
- En caso de sobrecarga de un grupo, se asignarán los alumnos de la forma más razonable posible por parte de los profesores.
- Apuntarse antes de la próxima semana en la web de DECSAI

Código de Honor

Trabajos de Teoría y Prácticas :

- Se fomenta la colaboración entre alumnos a nivel de comprensión de conceptos e ideas
- El desarrollo y escritura de los trabajos ES estrictamente individual
- Si se usa información de alguna fuente debe explicitarse claramente en el TRABAJO de donde/ de quien se ha obtenido. En caso contrario se entenderá como COPIA.

Detección positiva de copia

Se aplicará el Reglamento de exámenes de la UGR

A.A.: Programa de la Asignatura

Sesión	Semana	CLASES DE TEORÍA	PRÁCTICAS-SEMINARIOS	ENTREGA DE TRABAJOS	Proyectos Finales
1	15 febrero	Presentación de la Asignatura (1h) Definición de Aprendizaje Automático (1h)	Software de prácticas.		
2	22 febrero	Modelo lineal: Regresión y Clasificación	Software de prácticas.		
3	1 marzo	Modelo lineal: Estimación de la probabilidad Transformaciones no lineales	PRÁCTICA-1 Conceptos y algoritmos básicos	Ejercicios Python	
4	8 marzo	Compromiso Sesgo-varianza Justificación del Aprendizaje Estadístico	PRÁCTICA-1 Conceptos y algoritmos básicos		
5	15 marzo	Teoría de la generalización La dimensión VC	PRÁCTICA-1 Conceptos y algoritmos básicos		
6	22 marzo	Sobreajuste Regularización	PRÁCTICA-2: Modelo lineales		
7	29 marzo	Validación Principios Generales	PRÁCTICA-2 Modelo lineales	25 marzo: Entrega T1	
8	5 abril	SVM	PRÁCTICA-2 Modelo lineales		
9	12 abril	SVM+Núcleos	PRÁCTICA-2 Modelo lineales		
	19 abril	VACACIONES			
10	26 abril	Árboles "Random Forest"	PRÁCTICA-3 Boosting, RN, FBR	22 Abril: Entrega T2	
11	3 mayo	"Boosting" Redes Neuronales	PRÁCTICA-3 Boosting, RN, FBR		Oferta de proyectos
12	10 mayo	Redes Neuronales	PRÁCTICA-3 Boosting, RN, FBR		Selección de proyectos
13	17 mayo	Extracción automática de características	PRÁCTICA-3 Boosting, RN, FBR		
14	24 mayo	KNN - Funciones de base radial K-Medias & Mixturas Gaussianas	Desarrollo Proyecto F.C.	20 mayo: Entrega T3	Presentación objetivos del Proyecto
15	31 mayo	Reducción de dimensionalidad	Desarrollo Proyecto F.C.		
7	Junio				Entrega de proyectos y examen final