## MaunaLoa

April 1, 2025

## 1 Mauna Loa Daily Temps Time Series

**References:** - ARIMA Model in Python Time Series Forecasting #6. Nachiketa Hebbar - ARIMA for Time Series Forecasting; A Complete Guide. Zaina Saadeddin - Time Series Forecasting with ARIMA: Everything You Need to Know!. Nayeem Islam

```
[]: # Install pmdarima library
# pmdarima does not support Numpy 2.0
# faced challenges trying to get pmdarima to install
# repeated uninstalls and installs of numpy and pandas
# decided not to build a user interface due to the challenges with pmdarima
```

#### []: | !python --version

Python 3.11.11

- python 3.11.11
- numpy 1.23.2
- pandas 2.2.2

# []: !pip uninstall numpy

```
Found existing installation: numpy 2.2.4

Uninstalling numpy-2.2.4:

Would remove:
    /usr/local/bin/f2py
    /usr/local/lib/python3.11/dist-packages/numpy-2.2.4.dist-info/*
    /usr/local/lib/python3.11/dist-
packages/numpy.libs/libgfortran-040039e1-0352e75f.so.5.0.0
    /usr/local/lib/python3.11/dist-
packages/numpy.libs/libquadmath-96973f99-934c22de.so.0.0.0
    /usr/local/lib/python3.11/dist-
packages/numpy.libs/libscipy_openblas64_-6bb31eeb.so
    /usr/local/lib/python3.11/dist-packages/numpy/*

Proceed (Y/n)? y
Successfully uninstalled numpy-2.2.4
```

## []: !pip uninstall pandas

```
Uninstalling pandas-2.2.2:
      Would remove:
        /usr/local/lib/python3.11/dist-packages/pandas-2.2.2.dist-info/*
        /usr/local/lib/python3.11/dist-packages/pandas/*
    Proceed (Y/n)? y
      Successfully uninstalled pandas-2.2.2
[]: !pip uninstall pmdarima
    Found existing installation: pmdarima 2.0.4
    Uninstalling pmdarima-2.0.4:
      Would remove:
        /usr/local/lib/python3.11/dist-packages/pmdarima-2.0.4.dist-info/*
        /usr/local/lib/python3.11/dist-packages/pmdarima/*
    Proceed (Y/n)? y
      Successfully uninstalled pmdarima-2.0.4
[]: | !pip install numpy==1.26.4
    Collecting numpy==1.26.4
      Downloading
    numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata
    (61 kB)
                                0.0/61.0
    kB ? eta -:--:--
                           61.0/61.0 kB 3.4
    MB/s eta 0:00:00
    Downloading
    numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.3)
                              18.3/18.3 MB
    36.4 MB/s eta 0:00:00
    Installing collected packages: numpy
      Attempting uninstall: numpy
        Found existing installation: numpy 2.2.4
        Uninstalling numpy-2.2.4:
          Successfully uninstalled numpy-2.2.4
    Successfully installed numpy-1.26.4
[]: !pip install pandas==2.2.2
    Requirement already satisfied: pandas==2.2.2 in /usr/local/lib/python3.11/dist-
    packages (2.2.2)
    Requirement already satisfied: numpy>=1.23.2 in /usr/local/lib/python3.11/dist-
    packages (from pandas==2.2.2) (1.26.4)
    Requirement already satisfied: python-dateutil>=2.8.2 in
```

Found existing installation: pandas 2.2.2

```
/usr/local/lib/python3.11/dist-packages (from pandas==2.2.2) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas==2.2.2) (2025.2)
Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas==2.2.2) (2025.2)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.8.2->pandas==2.2.2) (1.17.0)
```

### []: !pip install pmdarima

```
Collecting pmdarima
 Using cached pmdarima-2.0.4-cp311-cp311-
manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl.metadata
(7.8 kB)
Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.11/dist-
packages (from pmdarima) (1.4.2)
Requirement already satisfied: Cython!=0.29.18,!=0.29.31,>=0.29 in
/usr/local/lib/python3.11/dist-packages (from pmdarima) (3.0.12)
Requirement already satisfied: numpy>=1.21.2 in /usr/local/lib/python3.11/dist-
packages (from pmdarima) (1.26.4)
Requirement already satisfied: pandas>=0.19 in /usr/local/lib/python3.11/dist-
packages (from pmdarima) (2.2.2)
Requirement already satisfied: scikit-learn>=0.22 in
/usr/local/lib/python3.11/dist-packages (from pmdarima) (1.6.1)
Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.11/dist-
packages (from pmdarima) (1.14.1)
Requirement already satisfied: statsmodels>=0.13.2 in
/usr/local/lib/python3.11/dist-packages (from pmdarima) (0.14.4)
Requirement already satisfied: urllib3 in /usr/local/lib/python3.11/dist-
packages (from pmdarima) (2.3.0)
Requirement already satisfied: setuptools!=50.0.0,>=38.6.0 in
/usr/local/lib/python3.11/dist-packages (from pmdarima) (75.2.0)
Requirement already satisfied: packaging>=17.1 in
/usr/local/lib/python3.11/dist-packages (from pmdarima) (24.2)
Requirement already satisfied: python-dateutil>=2.8.2 in
/usr/local/lib/python3.11/dist-packages (from pandas>=0.19->pmdarima) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-
packages (from pandas>=0.19->pmdarima) (2025.2)
Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-
packages (from pandas>=0.19->pmdarima) (2025.2)
Requirement already satisfied: threadpoolctl>=3.1.0 in
/usr/local/lib/python3.11/dist-packages (from scikit-learn>=0.22->pmdarima)
Requirement already satisfied: patsy>=0.5.6 in /usr/local/lib/python3.11/dist-
packages (from statsmodels>=0.13.2->pmdarima) (1.0.1)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-
packages (from python-dateutil>=2.8.2->pandas>=0.19->pmdarima) (1.17.0)
Using cached pmdarima-2.0.4-cp311-cp311-
```

```
manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_28_x86_64.whl (2.2 MB) Installing collected packages: pmdarima Successfully installed pmdarima-2.0.4
```

```
[]: # Load libraries
import pandas as pd
import numpy as np
import pmdarima as pm
```

### 1.1 Read Data: MaunaLoa Daily Temperatures

```
[]: # read csv file
df = pd.read_csv('/content/MaunaLoaDailyTemps-1.csv', index_col='DATE',
parse_dates=True)

# drop missing values
df = df.dropna()

# Show dataset
print('Shape of data', df.shape)
df.head()
```

Shape of data (1821, 5)

```
[]:
                 MinTemp MaxTemp AvgTemp Sunrise
                                                      Sunset
    DATE
    2014-01-01
                    33.0
                             46.0
                                       40.0
                                                 657
                                                        1756
                    35.0
                             50.0
    2014-01-02
                                       43.0
                                                 657
                                                        1756
    2014-01-03
                    36.0
                             45.0
                                       41.0
                                                 657
                                                        1757
    2014-01-04
                    32.0
                             41.0
                                       37.0
                                                 658
                                                        1757
    2014-01-05
                    24.0
                             38.0
                                       31.0
                                                 658
                                                        1758
```

The dataset has 1,821 rows and 5 columns.

```
[]: # plot data
df['AvgTemp'].plot(figsize=(12,5))
```

[]: <Axes: xlabel='DATE'>



#### 1.2 Is Data Stationary?

If P-vlaue < 0.05, data is stationary

If P-value > 0.05, data is not stationary. Data has an increasing for decreasing trend/p>

```
[]: # Function to check whether data is stationary or not
     # Modeled time series data needs to be stationary
     # The time series mean, variance, etc are constant over time
     from statsmodels.tsa.stattools import adfuller
     def ad_test(dataset):
       dftest = adfuller(dataset, autolag = 'AIC')
      print("1. ADF: ", dftest[0])
      print("2. P-Value: ", dftest[1])
      print("3. Num of Lags: ", dftest[2])
      print("4. Num of Observations Used for ADF Regression and Critical Values⊔

Galculation: ", dftest[3])

      print("5. Critical Values : ")
      for key, val in dftest[4].items():
         print("\t", key, ": ", val)
        # Interpret the results
      if dftest[1] > 0.05:
          print("The data is not stationary.")
          print("The data is stationary.")
```

```
[]: # P-value should be as low as possible. < 0.05
```

```
ad_test(df['AvgTemp'])
    1. ADF: -6.554680125068777
    2. P-Value: 8.675937480199653e-09
    3. Num of Lags:
                    12
    4. Num of Observations Used for ADF Regression and Critical Values Calculation:
    1808
    5. Critical Values:
             1%: -3.433972018026501
             5%: -2.8631399192826676
             10%: -2.5676217442756872
    The data is stationary.
        Find the Best ARIMA Model
[]: # Load auto_arima
     from pmdarima import auto_arima
     # ignore warnings
     import warnings
     warnings.filterwarnings("ignore")
[]: # Find the best ARIMA model
     stepwise_fit = auto_arima(df['AvgTemp'], trace=True, suppress_warnings=True)
     stepwise_fit.summary()
    Performing stepwise search to minimize aic
     ARIMA(2,0,2)(0,0,0)[0] intercept
                                        : AIC=8344.735, Time=3.55 sec
                                        : AIC=10347.755, Time=0.07 sec
     ARIMA(0,0,0)(0,0,0)[0] intercept
     ARIMA(1,0,0)(0,0,0)[0] intercept
                                        : AIC=8365.701, Time=0.21 sec
                                        : AIC=9136.225, Time=0.43 sec
     ARIMA(0,0,1)(0,0,0)[0] intercept
     ARIMA(0,0,0)(0,0,0)[0]
                                        : AIC=19192.139, Time=0.05 sec
     ARIMA(1,0,2)(0,0,0)[0] intercept
                                        : AIC=8355.947, Time=2.80 sec
     ARIMA(2,0,1)(0,0,0)[0] intercept
                                        : AIC=8356.308, Time=4.99 sec
                                        : AIC=8347.311, Time=4.13 sec
     ARIMA(3,0,2)(0,0,0)[0] intercept
     ARIMA(2,0,3)(0,0,0)[0] intercept
                                        : AIC=8318.337, Time=4.95 sec
     ARIMA(1,0,3)(0,0,0)[0] intercept
                                        : AIC=8330.192, Time=5.30 sec
     ARIMA(3,0,3)(0,0,0)[0] intercept
                                        : AIC=8310.577, Time=4.87 sec
                                        : AIC=8332.293, Time=7.24 sec
     ARIMA(4,0,3)(0,0,0)[0] intercept
     ARIMA(3,0,4)(0,0,0)[0] intercept
                                        : AIC=8317.620, Time=5.89 sec
                                        : AIC=8306.228, Time=7.34 sec
     ARIMA(2,0,4)(0,0,0)[0] intercept
                                        : AIC=8297.028, Time=4.73 sec
     ARIMA(1,0,4)(0,0,0)[0] intercept
                                        : AIC=8455.435, Time=1.50 sec
     ARIMA(0,0,4)(0,0,0)[0] intercept
```

: AIC=8295.034, Time=9.00 sec

: AIC=8419.091, Time=1.62 sec

: AIC=8302.544, Time=8.08 sec

: AIC=8304.533, Time=0.58 sec

ARIMA(1,0,5)(0,0,0)[0] intercept

ARIMA(0,0,5)(0,0,0)[0] intercept

ARIMA(2,0,5)(0,0,0)[0] intercept

ARIMA(1,0,5)(0,0,0)[0]

Best model: ARIMA(1,0,5)(0,0,0)[0] intercept

Total fit time: 77.383 seconds

| <br>١. |
|--------|
|        |
|        |

| Dep. Variable:   | y                | No. Observations: | 1821      |
|------------------|------------------|-------------------|-----------|
| Model:           | SARIMAX(1, 0, 5) | Log Likelihood    | -4139.517 |
| Date:            | Mon, 31 Mar 2025 | AIC               | 8295.034  |
| Time:            | 21:09:48         | BIC               | 8339.092  |
| Sample:          | 0                | HQIC              | 8311.288  |
|                  | - 1821           |                   |           |
| Covariance Type: | opg              |                   |           |
| -                | of atdom         | D>  =  [0.02f     | 0.0751    |

|                                   | coef       | std err         | · Z             | $\mathbf{P} >  \mathbf{z} $ | [0.025] | 0.975] |  |
|-----------------------------------|------------|-----------------|-----------------|-----------------------------|---------|--------|--|
| intercept                         | 1.2070     | 0.362           | 3.335           | 0.001                       | 0.498   | 1.916  |  |
| ar.L1                             | 0.9739     | 0.008           | 124.621         | 0.000                       | 0.959   | 0.989  |  |
| ma.L1                             | -0.1246    | 0.024           | -5.256          | 0.000                       | -0.171  | -0.078 |  |
| ma.L2                             | -0.2196    | 0.024           | -9.115          | 0.000                       | -0.267  | -0.172 |  |
| ma.L3                             | -0.2056    | 0.024           | -8.615          | 0.000                       | -0.252  | -0.159 |  |
| ma.L4                             | -0.1373    | 0.023           | -6.034          | 0.000                       | -0.182  | -0.093 |  |
| ${ m ma.L5}$                      | -0.0476    | 0.024           | -1.952          | 0.051                       | -0.095  | 0.000  |  |
| sigma2                            | 5.4981     | 0.172           | 31.952          | 0.000                       | 5.161   | 5.835  |  |
| Ljung-Bo                          | x (L1) (0  | Q):             | 0.00 <b>Jar</b> | que-Ber                     | a (JB): | 20.20  |  |
| Prob(Q):                          |            |                 | 0.95 <b>Pro</b> | ob(JB):                     |         | 0.00   |  |
| Heterosk                          | edasticity | y ( <b>H</b> ): | 0.81 <b>Ske</b> | ew:                         |         | -0.17  |  |
| $\operatorname{Prob}(\mathbf{H})$ | (two-side  | ed):            | 0.01 <b>Ku</b>  | ${f rtosis:}$               |         | 3.39   |  |

#### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

The best arima model is ARIMA(1,0,5). - p: The number of past values (lags) considered in the AR term. 1 - d: The degree of differencing applied to the data. 0 - q: The number of past forecast errors included in the MA term. 5

# []: # Load ARIMA from statsmodels.tsa.arima.model import ARIMA

#### 1.4 Split Data into Train and Test

```
[]: print(df.shape)
    train = df.iloc[:-30] # all values except the last 30 values
    test = df.iloc[-30:] #last 30 values

print(train.shape, test.shape)
```

```
(1821, 5)
(1791, 5) (30, 5)
```

#### 1.5 Train the Model

```
[]: model = ARIMA(train['AvgTemp'], order=(1,0,5))
model = model.fit()
model.summary()
```

[]:

| Dep. Variable:   | AvgTemp          | No. Observations: | 1791      |
|------------------|------------------|-------------------|-----------|
| Model:           | ARIMA(1, 0, 5)   | Log Likelihood    | -4070.198 |
| Date:            | Mon, 31 Mar 2025 | AIC               | 8156.395  |
| Time:            | 21:10:04         | BIC               | 8200.320  |
| Sample:          | 0                | HQIC              | 8172.614  |
|                  | - 1791           |                   |           |
| Covariance Type: | opg              |                   |           |

|                     | coef       | std err                     | ${f z}$         | P> z     | [0.025]  | 0.975] |
|---------------------|------------|-----------------------------|-----------------|----------|----------|--------|
| const               | 46.5856    | 0.758                       | 61.454          | 0.000    | 45.100   | 48.071 |
| ar.L1               | 0.9856     | 0.005                       | 188.230         | 0.000    | 0.975    | 0.996  |
| ma.L1               | -0.1412    | 0.023                       | -6.124          | 0.000    | -0.186   | -0.096 |
| ma.L2               | -0.2268    | 0.024                       | -9.635          | 0.000    | -0.273   | -0.181 |
| ma.L3               | -0.2168    | 0.023                       | -9.251          | 0.000    | -0.263   | -0.171 |
| ma.L4               | -0.1479    | 0.023                       | -6.491          | 0.000    | -0.193   | -0.103 |
| ma.L5               | -0.0595    | 0.024                       | -2.438          | 0.015    | -0.107   | -0.012 |
| sigma2              | 5.5093     | 0.174                       | 31.624          | 0.000    | 5.168    | 5.851  |
| Ljung-Box (L1) (Q): |            | (Q):                        | 0.00 <b>Ja</b>  | rque-Be  | ra (JB): | 14.88  |
| Prob(Q):            |            | $0.97  \mathbf{Prob(JB)}$ : |                 | 0.00     |          |        |
| Heterosl            | kedasticit | ty (H):                     | 0.82 Sk         | ew:      |          | -0.15  |
| Prob(H)             | (two-sid   | led):                       | 0.01 <b>K</b> u | ırtosis: |          | 3.33   |

#### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
2018-12-07
              45.884370
2018-12-08
              45.894466
2018-12-09
              45.904417
2018-12-10
              45.914225
2018-12-11
              45.923891
2018-12-12
              45.933418
2018-12-13
              45.942808
2018-12-14
              45.952063
              45.961185
2018-12-15
2018-12-16
              45.970175
2018-12-17
              45.979036
2018-12-18
              45.987769
2018-12-19
              45.996377
2018-12-20
              46.004861
2018-12-21
              46.013222
2018-12-22
              46.021463
2018-12-23
              46.029586
2018-12-24
              46.037591
2018-12-25
              46.045481
2018-12-26
              46.053258
2018-12-27
              46.060923
2018-12-28
              46.068477
2018-12-29
              46.075922
2018-12-30
              46.083261
Name: ARIMA Predictions, dtype: float64
```

#### []: print(test['AvgTemp'])

DATE 2018-12-01 44.0 2018-12-02 42.0 2018-12-03 45.0 2018-12-04 48.0 2018-12-05 45.0 2018-12-06 44.0 45.0 2018-12-07 44.0 2018-12-08 2018-12-09 45.0 2018-12-10 46.0 2018-12-11 47.0 2018-12-12 47.0 2018-12-13 45.0 2018-12-14 46.0 2018-12-15 47.0 2018-12-16 49.0 2018-12-17 51.0 2018-12-18 43.0 2018-12-19 42.0

```
48.0
2018-12-20
2018-12-21
              50.0
2018-12-22
              47.0
2018-12-23
              47.0
2018-12-24
              44.0
2018-12-25
              42.0
2018-12-26
              40.0
2018-12-27
              39.0
2018-12-28
              40.0
2018-12-29
              42.0
2018-12-30
              46.0
```

Name: AvgTemp, dtype: float64

```
[]: pred.plot(legend=True)
    test['AvgTemp'].plot(legend=True)
```

#### []: <Axes: xlabel='DATE'>



# 1.6 Plot Train, Test, & Predicted Data

```
[]: # Load matplotlib
     import matplotlib.pyplot as plt
     # Define plot
     plt.figure(figsize=(14,7))
     plt.plot(train.index, train["AvgTemp"], label='Train', color='#203147') #
     plt.plot(test.index, test["AvgTemp"], label='Test', color='#01ef63')
                                                                                # test⊔
      \rightarrow data
     plt.plot(test.index, pred, label='Prediction', color='red')
                                                                              #__
      ⇔forecasted data
     plt.title('Temperature: Train, Test, Predicted')
     plt.xlabel('Date')
     plt.ylabel('Temperature')
     plt.legend()
     plt.show()
```



```
[32]: test['AvgTemp'].mean()
```

[32]: 45.0

The average for the test data is 45.

```
[]: pred = pred[:len(test)]
test_temp = test['AvgTemp'][:len(pred)]
```

```
# Calculate RMSE

from sklearn.metrics import mean_squared_error
rmse = np.sqrt(mean_squared_error(test_temp,pred))
print(f"RMSE: {rmse: .4f}")
```

RMSE: 3.0005

On average predictions are off by +/-3 degrees.

## 1.7 Forecast Past the End of the Original Data

Forecast: 2018-12-31 to 2109-04-09

```
[]: # Train the model on the entire dataset
model2 = ARIMA(df['AvgTemp'], order=(1,0,5))

# Fit the model
model2 = model2.fit()

# Model Summary
model2.summary()
```

[]:

| Dep. Variable:   | AvgTemp          | No. Observations: | 1821      |
|------------------|------------------|-------------------|-----------|
| Model:           | ARIMA(1, 0, 5)   | Log Likelihood    | -4138.130 |
| Date:            | Mon, 31 Mar 2025 | AIC               | 8292.261  |
| Time:            | 21:18:20         | BIC               | 8336.318  |
| Sample:          | 0                | HQIC              | 8308.514  |
|                  | - 1821           |                   |           |
| Covariance Type: | opg              |                   |           |

|                     | coef       | std err        | ${f z}$                 | $P> \mathbf{z} $ | [0.025]  | 0.975] |
|---------------------|------------|----------------|-------------------------|------------------|----------|--------|
| const               | 46.5285    | 0.758          | 61.403                  | 0.000            | 45.043   | 48.014 |
| ar.L1               | 0.9860     | 0.005          | 192.909                 | 0.000            | 0.976    | 0.996  |
| ma.L1               | -0.1403    | 0.023          | -6.125                  | 0.000            | -0.185   | -0.095 |
| ma.L2               | -0.2328    | 0.023          | -10.038                 | 0.000            | -0.278   | -0.187 |
| ma.L3               | -0.2163    | 0.023          | -9.280                  | 0.000            | -0.262   | -0.171 |
| ma.L4               | -0.1478    | 0.023          | -6.542                  | 0.000            | -0.192   | -0.104 |
| ma.L5               | -0.0587    | 0.024          | -2.424                  | 0.015            | -0.106   | -0.011 |
| sigma2              | 5.5080     | 0.173          | 31.925                  | 0.000            | 5.170    | 5.846  |
| Ljung-Box (L1) (Q): |            | (Q):           | 0.00 <b>Ja</b>          | rque-Be          | ra (JB): | 15.69  |
| Prob(Q):            |            | 0.98 <b>Pr</b> | ob(JB):                 |                  | 0.00     |        |
| Heterosl            | kedasticit | ty (H):        | 0.81 Sk                 | ew:              |          | -0.15  |
| Prob(H)             | (two-sid   | led):          | $0.01$ <b>K</b> $\iota$ | ırtosis:         |          | 3.34   |

#### Warnings:

<sup>[1]</sup> Covariance matrix calculated using the outer product of gradients (complex-step).

```
[]: # Forecast future values: 100 days
     forecast = model2.forecast(steps = 100)
     # assign dates as index
     forecast.index = pd.date_range(start=df.index[-1], periods=101,__
      ⇔inclusive="right")
     # print forecast
     print(forecast)
    2018-12-31
                  46.418166
    2019-01-01
                  46.113912
    2019-01-02
                  45.617874
    2019-01-03
                  45.249566
    2019-01-04
                  45.116916
    2019-04-05
                  46.136883
    2019-04-06
                  46.142362
    2019-04-07
                  46.147764
    2019-04-08
                  46.153091
    2019-04-09
                  46.158343
    Freq: D, Name: predicted_mean, Length: 100, dtype: float64
[]: # Define plot for forecast
     plt.figure(figsize=(14,7))
     plt.plot(forecast.index,forecast, label='Forecast', color='red')
                                                                          #
      \hookrightarrow forecasted data
     plt.title('Temperature: Forecast 100 days')
     plt.xlabel('Date')
     plt.ylabel('Temperature')
     plt.legend()
     plt.show()
```



#### 1.8 Save Model to a File

```
[36]: import joblib
      joblib.dump(model2, "manualoa_arima_model_jl.sav")
[36]: ['manualoa_arima_model_jl.sav']
     load_model = joblib.load("manualoa_arima_model_jl.sav")
[37]:
[40]: temp_forecast=load_model.forecast(steps=10)
      last_date = pd.Timestamp("2018-12-30")
      days = 10
      temp_forecast.index =pd.date_range(last_date,periods = days + 1, freq="D")[1:]
      print(temp_forecast)
     2018-12-31
                   46.418166
     2019-01-01
                   46.113912
     2019-01-02
                   45.617874
     2019-01-03
                   45.249566
     2019-01-04
                   45.116916
     2019-01-05
                   45.136666
     2019-01-06
                   45.156140
     2019-01-07
                   45.175341
     2019-01-08
                   45.194274
     2019-01-09
                   45.212942
     Freq: D, Name: predicted_mean, dtype: float64
```