RAPPRESENTAZIONE DEI DATI IN MEMORIA

Fondamenti di Programmazione 2021/2022

Francesco Tortorella

(si ringrazia la prof. Sabrina Senatore per l'impiego di alcune sue slides)

Il problema della memorizzazione

- Nei nostri algoritmi/programmi abbiamo la necessità di memorizzare diversi tipi di informazioni all'interno dell'esecutore.
- Quali informazioni?
 - Dati
 - Istruzioni

Misurare la quantità di informazione

- Per affrontare correttamente il problema della memorizzazione, dobbiamo avere la possibilità di misurare la quantità di informazione che va memorizzata.
- Qual è la quantità minima di informazione che possiamo considerare?
- "Possiamo assumere che informazione è tutto ciò che può consentire di ridurre il nostro grado di incertezza in merito ad una particolare situazione"

Misurare la quantità di informazione

- La più piccola unità di informazione memorizzabile (e quindi utilizzabile) è il bit, che può assumere uno tra due valori possibili (es. 0 o 1).
- Il dispositivo utilizzato per memorizzare un bit è un elemento bistabile, cioè un dispositivo elettronico che può assumere uno tra due stati stabili (es. due livelli differenti di tensione), ognuno dei quali viene fatto corrispondere a 0 o a 1 (cella di memoria).

Cella di memoria: operazioni

- Sono possibili due operazioni su una cella di memoria
- Operazione di scrittura: la cella di memoria viene caricata con un determinato valore (0 o 1) che permane memorizzato finché:
 - la cella viene alimentata elettricamente
 - non si esegue un'altra operazione di scrittura che modifica il valore precedentemente memorizzato
- Operazione di lettura: si accede alla cella di memoria per consultarne il valore e copiarlo su un'altra cella di memoria.

Quanti bit?

- Con un solo bit è possibile gestire un'informazione binaria, cioè un'informazione che può specificare uno tra due valori possibili (es. un punto di un'immagine bianco o nero).
- Quanti stati possibili può assumere un insieme di bit ?

00						
01						
10						
11						

00	0000
01	0001
10	0010
11	0011
00	0100
01	0101
10	0110
11	0111
	1000
	1001
	1010

1011

1100

1101

1110

1111

2 bit \rightarrow 4 stati 3 bit \rightarrow 8 stati 4 bit \rightarrow 16 stati

- Un insieme di N celle elementari può assumere uno tra 2^N stati possibili.
- Un tale insieme è organizzato in un registro di memoria.
- Il registro costituisce un supporto per la memorizzazione di un'informazione che può assumere uno tra 2^N valori possibili. In particolare un insieme di 8 bit forma un byte.
- Sul registro sono possibili operazioni di lettura e scrittura che interessano contemporaneamente tutte le celle di memoria contenute nel registro.

- Possibile usare il registro come supporto per la memorizzazione delle nostre informazioni?
- Quali sono le condizioni?
- Un registro consente di memorizzare una tipologia di informazione il cui generico valore appartiene ad un insieme finito e discreto
- Le informazioni con cui abbiamo a che fare rispettano queste condizioni?

- Per il momento consideriamo informazioni "adeguate"
 - Un insieme di 7 colori
 - Un insieme di 10 numeri naturali
 - Un insieme di 12 suoni
- Quanti bit sono necessari per memorizzare
 - Un colore?
 - Un numero naturale?
 - Un suono?

- Un secondo problema è che abbiamo un'unica tipologia di supporto, ma diverse tipologie di informazioni.
- È quindi necessario adottare una codifica del tipo di dato considerato: occorre, cioè, trovare una rappresentazione del dato gestibile con le possibilità offerte dal sistema di elaborazione.

Che cosa possiamo fare con un registro da 8 bit?

• registro da 8 bit \implies 28 = 256 stati possibil

```
Numeri naturali [0,255]

0 \leftrightarrow 00000000

1 \leftrightarrow 00000001

....

255 \leftrightarrow 11111111
```

```
Numeri reali [0,1[

0.0000 ↔ 00000000

0.0039 ↔ 00000001

0.0078 ↔ 00000010

....

0.9961 ↔ 11111111
```

```
Numeri interi [-128,127]

-128 \leftrightarrow 00000000

-127 \leftrightarrow 00000001

0 \leftrightarrow 10000000

+127 \leftrightarrow 11111111
```


La codifica

- Che cos'è una codifica?
- Una stessa informazione può essere rappresentata in diversi modi
 - "il numero 5": V, 5.00, 101, IIIII, cinque, five, ...
- Tale informazione deve essere *comprensibile* affinché chi riceve tale rappresentazione sia capace di recuperare l'informazione che il mittente intendeva inviare.
- E' importante quindi conoscere e condividere il sistema di codifica (o codifica o codice).

La codifica

- Tipicamente un sistema di codifica usa un insieme di simboli (alfabeto), combinazioni di questi simboli (configurazioni, stati).
- Ogni informazione può essere rappresentata da una combinazione di simboli appartenenti all'alfabeto stabilito che costituisce la codifica associata.
- La codifica è il processo che mette in corrispondenza biunivoca un valore particolare dell'informazione ed una particolare combinazione di simboli.

Un esempio di codifica numerica

- Alfabeto dei simboli
 - cifre "0", "1", ..., "9", separatore decimale (","), separatore delle migliaia (".") e segni positivo ("+") o negativo ("-").
- Regole di composizione (sintassi), che definiscono le combinazioni "corrette"
 - "1.234,5" è la rappresentazione di un numero;
 - **"1,23,45"** non lo è.
- Codice (semantica)
 - **"1.234,5"** = $1 \times 10^3 + 2 \times 10^2 + 3 \times 10^1 + 4 \times 10^0 + 5 \times 10^{-1}$
 - **"1,23,45"** = ??
- Lo stesso alfabeto può essere utilizzato con codici diversi:
 - "123,456" = $1 \times 10^2 + 2 \times 10^1 + 3 \times 10^0 + 4 \times 10^{-1} + 5 \times 10^{-2} + 6 \times 10^{-3}$, [IT]
 - "123,456" = $1 \times 10^5 + 2 \times 10^4 + 3 \times 10^3 + 4 \times 10^2 + 5 \times 10^1 + 6 \times 10^0$, [UK]

Un altro esempio di codifica numerica

- Alfabeto dei simboli
 - cifre "I", "V", "X", "L", "C", "D", "M"
- Regole di composizione (sintassi), che definiscono le combinazioni "corrette"
 - "MCMLXVIII", "MMXX", sono rappresentazioni di numeri;
 - "LDLIM" non lo è.
- Codice (semantica)
 - "MCMLXVIII" = 1000+(1000-100)+ 50+ 10+ 5+ 1 +1 + 1
 - **"LDLIM"** = ??

Rappresentazione dati: numeri

- La modalità di rappresentazione dei numeri (interi) che noi usiamo di consueto corrisponde ad un sistema posizionale e pesato.
- L'alfabeto è composto da 10 cifre (0, 1, 2, ..., 9) ed ogni sequenza corrisponde ad un numero che è la somma pesata delle cifre che la costituiscono.
- $3707 = 3 \times 10^3 + 7 \times 10^2 + 0 \times 10^1 + 7 \times 10^0$
- Fondamentale la presenza dello 0

Rappresentazione dati: numeri

La nostra modalità consueta assume 10 come base di numerazione b:

Cifre: 0 1 2 3 4 5 6 7 8 9

Pesi: potenze di 10

• Unica base 10? Che succede se b=8?

Cifre: 0 1 2 3 4 5 6 7

Pesi: potenze di 8

■ Esempio: $757_8 = 7 \times 8^2 + 5 \times 8^1 + 7 \times 8^0 = \text{quattrocentonovantacinque} = 495_{10}$

Rappresentazione dati: numeri

- In generale, per una base b:
 - Cifre: 0 1 2 3 ... b-1
 - Pesi: potenze di b (b⁰, b¹, b², b³, ...)
 - La sequenza di cifre $\mathbf{c_k c_{k-1} ... c_0}$ rappresenta il numero $\mathbf{c_k \times b^k + c_{k-1} \times b^{k-1} + ... + c_1 \times b^1 + c_0 \times b^0}$
- Per cui, una sequenza di cifre può indicare numeri diversi, a seconda della base impiegata:
 - $357_{10} = 3 \times 10^2 + 5 \times 10^1 + 7 \times 10^0$
 - $357_8 = 3 \times 8^2 + 5 \times 8^1 + 7 \times 8^0$

Base di numerazione 2

- Che succede per b = 2?
 - Cifre: 0 1
 - Pesi: potenze di 2 (2⁰, 2¹, 2², 2³, ...)
- Cifre direttamente rappresentabili all'interno di un registro di memoria

Conversione di base

 Convertire in base 10 un numero rappresentato in base 2 è semplice:

■
$$10011_2 = 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 16 + 2 + 1 = 19_{10}$$

- Come convertire in base b un numero rappresentato in base 10?
- Dato un numero T, vogliamo ottenere la sequenza di cifre in base b $\mathbf{c_k c_{k-1}...c_0}$ tale che

$$c_k \times b^k + c_{k-1} \times b^{k-1} + ... + c_1 \times b + c_0 = T$$

Conversione di base

- Se dividiamo T per b: $T = Q_0 \times b + r$ (con r < b)
- $T = c_k \times b^k + c_{k-1} \times b^{k-1} + ... + c_1 \times b + c_0 =$ $= (c_k \times b^{k-1} + c_{k-1} \times b^{k-2} + ... + c_1) \times b + c_0 =$
- **E** quindi: $Q_0 = c_k \times b^{k-1} + c_{k-1} \times b^{k-2} + ... + c_1$ e $r = c_0$
- Se dividiamo T per b otteniamo un quoziente Q_0 ed un resto che costituisce la prima cifra della sequenza (c_0)
- Possiamo applicare la stessa operazione a Q₀, ottenendo un quoziente Q₁ ed un resto che coincide con c₁
- Ripetiamo il procedimento finché si ottiene un quoziente nullo.

Esempio

$573_{10}:2_{10} \Rightarrow$	quoziente	286 ₁₀	resto 1
$286_{10}:2_{10} \Rightarrow$	quoziente	143 ₁₀	resto o
$143_{10}:2_{10} \Rightarrow$	quoziente	71 ₁₀	resto 1
$71_{10}:2_{10} \Rightarrow$	quoziente	3510	resto 1
$35_{10}:2_{10} \Rightarrow$	quoziente	17 ₁₀	resto 1
$17_{10}:2_{10}\implies$	quoziente	8_{10}	resto 1
$8_{10}:2_{10} \Rightarrow$	quoziente	410	resto o
$4_{10}:2_{10} \Rightarrow$	quoziente	2 ₁₀	resto o
$2_{10}:2_{10}\implies$	quoziente	1,10	resto o
1_{10} : 2_{10} \Rightarrow	quoziente	O ₁₀	resto 1

Esercizio

- Convertire 27 in base 3
- Convertire 31 in base 2

Base 8 e base 16

- Le considerazione fatte per le basi decimale e binaria si possono estendere ad altre basi.
- Due basi comunemente usate sono ottale e esadecimale
 - Ottale: 0, 1, 2, 3, 4, 5, 6, 7
 - Esadecimale: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- Utili per rappresentare sinteticamente i valori binari

- Siccome 8 = 2³, esiste un modo rapido per la conversione di base da 2 a 8
 - 1. Si considera il numero in base 2 e, partendo da destra, si divide in gruppi di 3 cifre binarie. Se dopo l'operazione avanzano una o due cifre si aggiungono tanti zeri quanti bastano a coprire un gruppo di tre
 - 2. Ogni gruppo va poi convertito nella corrispondente cifra ottale.
- Esempi:
 - 11101101₂ = [11] [101] [101] = [011] [101] [101] = 355₈
 - 1100110011₂ = [1] [100] [110] [011] = [001] [100] [110] [011] = 1463₈

- In maniera analoga si realizza la conversione da base 8 a base 2
 - Dato un numero rappresentato in base 8, si sostituisce ogni cifra ottale con la terna di cifre binarie che rappresenta quella cifra in base 2, eliminando alla fine eventuali 0 a sinistra

Esempi:

- 756₈ = [111] [101] [110] = 1111011110₂
- 134₈ = [001] [011] [100] = 001011100₂ = 1011100₂

- Siccome 16 = 2⁴, esiste un modo rapido anche per la conversione di base da 2 a 16
 - 1. Si considera il numero in base 2 e, partendo da destra, si divide in gruppi di 4 cifre binarie. Se dopo l'operazione avanzano una, due o tre cifre si aggiungono tanti zeri quanti bastano a coprire un gruppo di quattro
 - 2. Ogni gruppo va poi convertito nella corrispondente cifra esadecimale.
- Esempi:
 - \blacksquare 11101101₂ = [1110] [1101] = ED₁₆
 - $1100110011_2 = [11][0011][0011] = [0011][0011][0011] = 333_{16}$

- In maniera analoga si realizza la conversione da base 16 a base 2
 - Dato un numero rappresentato in base 16, si sostituisce ogni cifra esadecimale con la quaterna di cifre binarie che rappresenta quella cifra in base 2, eliminando alla fine eventuali 0 a sinistra

Esempi:

- \blacksquare 7A4₁₆ = [0111] [1010] [0100] = 011110100100₂ = 11110100100₂
- $13C_{16} = [0001] [0011] [1100] = 000100111100_2 = 100111100_2$

Rappresentazione dati: caratteri

- Si consideri l'insieme dei caratteri più comuni:
 - 26 lettere maiuscole + 26 minuscole ⇒ 52
 - **1**0 cifre
 - Circa 30 segni d'interpunzione
 - Circa 30 caratteri di controllo (EOF, CR, LF, ...)
 - circa 120 oggetti complessivi \Rightarrow k = $log_2 120$ = 7
- Codice ASCII: utilizza 7 bit e quindi può rappresentare al massimo
 2⁷=128 caratteri
 - Con 8 bit (= byte) si raddoppia rappresentando 256 caratteri (ASCII esteso)

Codifica ASCII a 7 bit

	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
010	sp	!	"	#	\$	%	&	•	()	*	+	,	-	•	/
011	0	1	2	3	4	5	6	7	8	9	:	•	<	=	>	?
100	@	Α	В	С	D	Ε	F	G	Н	I	J	K	L	M	N	0
101	Р	Q	R	S	Т	U	V	W	Χ	Υ	Z	[١]	۸	
110	`	a	b	С	d	е	f	g	h	I	j	k	l	m	n	0
111	р	q	r	S	t	u	V	W	X	Υ	Z	{		}	~	canc

- Come si legge?
- Il carattere "A" in codifica binaria corrisponde a 1000001

