Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Тульский государственный университет»

Интернет-институт ТулГУ

КОНТРОЛЬНАЯ РАБОТА ЗА 2 СЕМЕСТР

по дисциплине

«Физика»

2 вариант

Выполнил: студент группы ИБ262521-ф Артемов Александр Евгеньевич Проверил:

Ростовцев Роман Николаевич

1. N одинаковых источников ЭДС с одинаковым внутренним сопротивлением r=1 Ом соединяют в батарею и подключают к клеммам этой батареи нагрузку с сопротивлением R=5 Ом. Если все источники ЭДС соединены в батарею последовательно, то на нагрузке выделяется в 9 раз большая мощность, чем в том случае, когда батарея собрана из параллельно соединенных источников. Найти число N источников ЭДС.

Решение.

1). Рассмотрим последовательное соединение источников.

Общая ЭДС батареи: $E_{nocn} = N \cdot E$, где $E \longrightarrow ЭДС$ одного источника.

Общее внутреннее сопротивление батареи: $r_{noca} = N \cdot r = N \cdot 1 = N$ Ом.

Ток в цепи:
$$I_{noca} = \frac{E_{noca}}{R + r_{noca}} = \frac{N \cdot E}{5 + N}$$
.

Мощность, выделяемая на нагрузке: $P_{nocn} = I_{nocn}^2 \cdot R = \left(\frac{N \cdot E}{5 + N}\right)^2 \cdot 5$.

2). Рассмотрим параллельное соединение источников.

Общая ЭДС батареи: $E_{nap} = E$.

Общее внутреннее сопротивление батареи: $r_{nap} = \frac{r}{N} = \frac{1}{N}$ Ом.

Ток в цепи:
$$I_{nap} = \frac{E_{nap}}{R + r_{nap}} = \frac{E}{5 + \frac{1}{N}} = \frac{N \cdot E}{5 N + 1}.$$

Мощность, выделяемая на нагрузке: $P_{nap} = I_{nap}^2 \cdot R = \left(\frac{N \cdot E}{5 \, N + 1}\right)^2 \cdot 5$.

По условию задачи $P_{nocn} = P_{nap} \cdot 9$, значит $\left(\frac{N \cdot E}{5 + N}\right)^2 \cdot 5 = 9 \cdot \left(\frac{N \cdot E}{5 \, N + 1}\right)^2 \cdot 5$.

Сокращаем числители и пятерки в обеих частях: $\left(\frac{1}{5+N}\right)^2 = 9 \cdot \left(\frac{1}{5N+1}\right)^2$.

Избавляемся от квадратов: $\frac{1}{5+N} = \frac{\pm 3}{5N+1} \Rightarrow 5N+1 = \pm 3 \cdot (5+N)$.

Получаем 2 варианта: 5N+1=15+3N и 5N+1=-15-3N. В первом случае N=7, а во втором N=-2, что не имеет физического смысла.

Ответ: Число источников ЭДС N = 7.

2. Материальная точка движется вдоль оси x так, что ее скорость зависит от координаты x по закону $v = (A - Bx^2)^{1/2}$, где $A = 136 \, \text{м}^2/\text{c}^2$, $B = 100 \, \text{c}^2$. Показать, что уравнение движения точки является динамическим уравнением гармонических колебаний и найти период T этих колебаний.

Решение:

Ускорение
$$a = \frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{dx}{dt} = \frac{dv}{dx} \cdot v$$
.

Найдем
$$\frac{dv}{dx}$$
: $\frac{dv}{dx} = \frac{1}{2}(A - Bx^2)^{-1/2} \cdot (-2Bx) = -\frac{Bx}{\sqrt{A - Bx^2}}$. Подставим $\frac{dv}{dx}$ в уравнение ускорения: $a = \frac{dv}{dx} \cdot v = -\frac{Bx}{\sqrt{A - Bx^2}} \cdot \sqrt{A - Bx^2} = -Bx$. Так как ускорение пропорционально координате x , а также выполняется соотношение $a = -\omega^2 x$, где $\omega = \sqrt{B}$ - некоторая постоянная, то, следовательно, движение точки является динамическим уравнением гармонических колебаний.

Согласно второму закону Ньютона F = ma = -Bmx, а так же согласно закону Гука F = -kx, откуда k = Bm.

Период T гармонических колебаний определяется как $T=2\pi\sqrt{\frac{m}{k}}.$ Подставим k=Bm: $T=2\pi\sqrt{\frac{m}{k}}=2\pi\sqrt{\frac{m}{Bm}}=2\pi\sqrt{\frac{1}{B}}.$ Подставим численное значение и вычислим период колебаний: $T=2\pi\sqrt{\frac{1}{B}}=2\pi\sqrt{\frac{1}{100}}=2\pi\frac{1}{10}=\frac{\pi}{5}$ с.

Ответ: Движение точки является динамическим уравнением гармонических колебаний с периодом $T = \frac{\pi}{5}$ с.

3. Энтропия некоторой термодинамической системы изменяется с температурой T по закону $S = bT^5 + const$, где $b = 2 \cdot 10^{-10} \, \mathcal{J} \mathcal{M} / K^6$. Определить теплоемкость C этой системы при температуре $T = 200 \, K$.

Решение:

Теплоемкость определяется через энтропию S как $C = T \cdot \left(\frac{\partial S}{\partial T} \right)$.

Дифференцируем
$$S$$
 по T : $\frac{\partial S}{\partial T} = \frac{\partial}{\partial T}(bT^5 + const) = 5bT^4$.

Подставим производную в формулу для теплоемкости:

$$C = T \cdot \left(\frac{\partial S}{\partial T} \right) = T \cdot 5 b T^4 = 5 b T^5.$$

Подставим численные значения *b* и *T*:

$$C = 5 \cdot (2 \cdot 10^{-10} \, \text{Дж/K}^6) \cdot (200 \, \text{K})^5 = 5 \cdot (2 \cdot 10^{-10} \, \text{Дж/K}^6) \cdot 32 \cdot 10^{10} \, \text{K}^5 = 320 \, \text{Дж/K}.$$

Ответ: теплоемкость этой системы $C = 320 \, \mu K$.

4. Бесконечный тонкий прямой проводник равномерно заряжен с линейной плотностью заряда $\rho = 5\cdot 10^{-10}\, Kn/M$. Считая, что на расстоянии $r_1 = 1\,M$ от проводника потенциал созданного им электрического поля равен $\varphi_1 = 20\,B$, определить величину потенциала на расстоянии $r_2 = e = 2,72\,M$. $\frac{1}{4\,\pi\,\epsilon_0} = 9\cdot 10^9\,\Phi/M$.

Решение:

Потенциал φ на расстоянии r от бесконечного тонкого проводника с линейной плотностью заряда ρ выражается как: $\varphi(r) = -\frac{\rho}{2\pi\epsilon_0}\ln(r) + C$. При условии, что $\frac{1}{4\pi\epsilon_0} = 9 \cdot 10^9 \Phi/M$, имеем $\frac{1}{2\pi\epsilon_0} = 2\frac{1}{4\pi\epsilon_0} = 18 \cdot 10^9 \Phi/M$.

Учитывая, что на расстоянии $r_1=1\,\mathrm{M}$ от проводника потенциал созданного им электрического поля равен $\varphi_1=20\,\mathrm{B},$ имеем $\varphi_1=-\frac{\rho}{2\,\pi\,\epsilon_0}\ln(r_1)+C\Rightarrow 20=-\frac{\rho}{2\,\pi\,\epsilon_0}\ln(1)+C,$ где $\ln(1)=0,$ откуда постоянная $C=20\,\mathrm{B}.$ Теперь формула для потенциала принимает вид $\varphi(r)=-\frac{\rho}{2\,\pi\,\epsilon}\ln(r)+20.$

Найдем потенциал $\varphi(r_2)$ на расстоянии $r_2 = e = 2,72 \,\mathrm{m}$:

$$\varphi(r_2) = -\frac{\rho}{2\pi\epsilon_0} \ln(r_2) + 20 = -\frac{\rho}{2\pi\epsilon_0} \ln(e) + 20 = -\frac{\rho}{2\pi\epsilon_0} + 20 = -(5\cdot10^{-10}\cdot18\cdot10^9) + 20 = -9 + 20 = 11 \text{ B}.$$

Ответ: потенциал $\varphi(r_2)$ на расстоянии $r_2=e=2$,72 м равен $\varphi(r_2)=11\,$ В.

5. Сколько главных максимумов будет видно за дифракционной решеткой, изготовленной нанесением N=3000 равноудаленных штрихов на прозрачную полоску длины L=1 см? Свет с длиной волны $\lambda=600$ нм падает на решетку нормально.

Решение:

Вычислим период дифракционной решетки: $d = \frac{L}{N} = \frac{0.01}{3000} \approx 3,33 \cdot 10^{-6}$ м. Так как свет падает на решетку нормально, угол θ прямой.

Главные максимумы наблюдаются под углами θ , удовлетворяющими условию $d \sin \theta = m \lambda$, откуда получаем $d \cdot 1 = m_{max} \lambda$.

Выразим количество главных максимумов и подставим значения d и λ :

$$m_{max} = \frac{d}{\lambda} = \frac{3,33 \cdot 10^{-6}}{600 \cdot 10^{-9}} \approx 5,55.$$

Поскольку порядок m должен быть целым числом, максимальный порядок примем как $m_{max} = 5$.

Главные максимумы наблюдаются для порядков $m=0,\pm 1,\pm 2,...,\pm m_{max}$. Таким образом, общее количество главных максимумов равно $2m_{max}+1$. Подставляем $m_{max}=5$ и получаем $2m_{max}+1=2\cdot 5+1=11$.

Ответ: За дифракционной решеткой будет видно 11 главных максимумов.