The adversary approach to problem complexity lower bounds

- Ex: Problem P: "Find MIN and MAX of set S of n elements"
 - (Assume *n* is even)
 - \circ The naïve scan S twice
 - n-1 comps to find MAX
 - n-2 comps to find MIN
 - Total of 2n-3 comps
 - o Better algorithm:
 - n/2 pairs:

otal:
$$\frac{3n}{2} = 2$$
 comps

- Total: $\frac{3n}{2}$ 2 comps
- <u>Theorem</u>: any <u>comparison-based algorithm</u> for solving P requires at least $\frac{3n}{2} 2$ comps in the worst-case

- o 9 arrows
- 4 types of nodes:

		Initially	At the end
N	Never compared	n	0
W	Always won so far	0	1
L	Always lost	0	1
M	Mixed (won some, lost some)	0	n-2

- Adversary: "delay the creation of 'M's"
- All pairs possible:

0	N, N	W, L
	N, W	L, W
	N, L	W, L
	N, M	Doesn't matter W, M
	W, W	Both can't win, one will become mixed W, M
	W, L	W, L
	W, M	W, M
	L, L	One will win, becomes mixed L, M
	L, M	L, M
	M, M	M, M

- o Note: M's only created from W or L
- Starting from n elements of type "N", algorithm must create:
 - 1. (n-2) "M"s
 - To create each "M", needs to do 1 comparison of type (*) [transforms a "W" or an "L" into an "M"]
 - \Rightarrow Algorithm must do at least n-2 comparisons of type (*)
 - 2. (n-2) "W" or "L"s that later become "M"s
 - 1 W that remains
 - 1 L that remains
 - Total: *n* "W" or "L"
 - Algorithm needs to do at least $\frac{n}{2}$ comparisons to create them!
 - \circ So algorithm must do at least $(n-2)+\frac{n}{2}=\frac{3n}{2}-2$ comparisons