### Lecture # 25 CHE331A

Energy Balance for reactors:

Batch, CSTR, PFR/PBR

Adiabatic Reactors (CSTR, PFR, PBR) Non-adiabatic Reactors PFR (including an example)

Reversible reactions, Multiple reactors & interstage cooling

CSTR and Heat Effects

GOUTAM DEO
CHEMICAL ENGINEERING DEPARTMENT
IIT KANPUR



# Equilibrium considerations (reversible reations)

- ► For reversible reactions knowing equilibrium conversion is important
- ▶ For a reversible reaction  $A \rightleftharpoons B$ ;  $X_e = \frac{K_C(T)}{1+K_C(T)}$
- ► Maximum conversion that can be achieved adiabatically is given by the intersection of the X<sub>e</sub> vs T curve and the Energy Balance equation, X<sub>EB</sub> vs T



► Increasing inlet temperature T<sub>0</sub> to T<sub>01</sub> decreases maximum conversion that can be achieved

### Multiple reactors with inter-stage cooling or heating

Higher conversions can be achieved by adiabatic operations by connecting reactors in series with inter-stage cooling/heating



Think about endothermic reactions!

300 K

**Reactor 1** 

450

~300 K

**Reactor 2** 



Reactor 3

~400 K



## Calculation of heat transfer area of heat exchanger

- ► Calculate exit temperature of reactor (exothermic reaction):
  - $_{\circ}$  For inlet temperature  $T_0$ ,  $X_e$  is calculated, e.g.,  $X_e = 0.42$  for  $T_0 = 300$  K
  - Design adiabatic reactor for 0.95\*X<sub>e</sub>, e.g., X = 0.40
  - Energy balance equation: T<sub>oulet</sub> = 300 + 400X, T<sub>oulet</sub> = 460 K
- ► Cool down temperature to T<sub>inlet</sub> (to 2<sup>nd</sup> reactor) = 350 K (for example)
- ▶ Heat load for cooling reaction outlet:  $\dot{Q} + \sum F_{i0}h_{i0} \sum F_ih_i = 0$
- For example,  $\dot{Q} = -220 \frac{kcal}{s}$  mass flow rate of coolant is calculated
- ► Heat transfer area from (counter-current HX):

$$\dot{Q} = UA \frac{[(T_{h2} - T_{c2}) - (T_{h1} - T_{c1})]}{ln(\frac{T_{h2} - T_{c2}}{T_{h1} - T_{c1}})}$$

Reactant mixture  $T_{h2}$ Coolant





# Optimum feed temperature for an adiabatic reactor

with fixed size or catalyst weight

- Low feed temperature: X<sub>e</sub> is high, rate is low
- ► High feed temperature: low X<sub>e</sub> and high rate
- ► For a fixed size or catalyst weight, X<sub>e</sub> is achieved at the beginning of the reactor for high feed temperature and the rest of the reactor is at equilibrium
  - ► For low feed temperatures equilibrium conversion may not be reached
- Optimum feed temperature exists for a given size or catalyst weight (Section 8-5, Fogler)



Effect of feed temperature

#### **CSTR** with Heat Effects

- ▶ The temperature is the same inside the CSTR, but not equal to  $T_0$
- ► EB:  $\dot{Q} \dot{W} F_{A0} \sum [\theta_i C_{P,i} (T T_o)] F_{A0} X \Delta h_{Rxn} (T) = 0$
- Substituting MB:  $F_{A0}X = -r_AV$  in EB
- $\dot{Q} \dot{W} F_{A0} \sum \left[\theta_i C_{P,i} (T T_o)\right] + r_A V \Delta h_{Rxn}(T) = 0$  Heat added to the



► Energy balance (heating media):  $\dot{Q} = \dot{m}_C C_{P,C} (T_{a1} - T_{a2}) = UA \frac{(T_{a1} - T_{a2})}{ln(\frac{T - T_{a2}}{T - T_{a2}})}$ 

reactor:  $T_{a1} > T_{a2}$ 

## Further analysis of the heating media

- $\blacktriangleright \dot{m}_C C_{P,C} (T_{a1} T_{a2}) = UA \frac{(T_{a1} T_{a2})}{ln(\frac{T T_{a1}}{T T_{a2}})}$  which is solved for  $T_{a2}$
- $ightharpoonup T_{a2} = T (T T_{a1}) exp\left(\frac{-UA}{\dot{m}_C C_{P,C}}\right)$ ; exponent is small and expanded as
- $ightharpoonup e^{-x} = 1 x + \frac{x^2}{2!}$  ... neglecting 2<sup>nd</sup> and higher order terms, then

$$(T_{a1} - T_{a2}) = (T_{a1} - T) \left[ 1 - \left( 1 - \frac{UA}{\dot{m}_C C_{P,C}} \right) \right] = (T_{a1} - T) \left( \frac{UA}{\dot{m}_C C_{P,C}} \right)$$

- ► Further:  $\dot{Q} = \dot{m}_C C_{P,C} (T_{a1} T_{a2}) = \dot{m}_C C_{P,C} (T_{a1} T) \left( \frac{UA}{\dot{m}_C C_{P,C}} \right)$
- ▶ And, for large flow rates of heating/cooling media,  $T_{a1} \cong T_{a2} = T_a$

$$\dot{Q} = UA(T_a - T)$$



## Further analysis of the CSTR with heat effects

- $\blacktriangleright$  Substituting for  $\dot{Q}$  and neglecting  $\dot{W}$  in the above equation
- $\blacktriangleright UA(T_a T) F_{A0} \sum [\theta_i C_{P,i} (T T_o)] F_{A0} X \Delta h_{Rxn}(T) = 0$ 
  - o Dividing by  $F_{A0}$  and in terms of conversion:  $X = \frac{VA(T-T_a)}{F_{A0}} + \sum [\theta_i C_{P,i}(T-T_o)]$
  - $\circ$  To size CSTR the MB,  $V = \frac{F_{A0}X}{-r_A(XT)}$ , is also used
- ▶ For  $\sum \theta_i C_{P,i} = C_{P,0}$ , then
- $| UA(T_a T) F_{A0} C_{P,0}(T T_o) F_{A0}X\Delta h_{Rxn}(T) | = 0$  $C_{P,0}\left(\frac{UA}{F_{A0}C_{P,0}}\right)T_a + C_{P,0}T_0 - C_{P,0}\left(\frac{UA}{F_{A0}C_{P,0}} + 1\right)T - X\Delta h_{Rxn}(T)$



## Analysis of CSTR with heat effects ... continued

- ▶ Define two parameters:  $\kappa = \left(\frac{UA}{F_{A0}C_{P.0}}\right)$  and  $T_c = \frac{\kappa T_a + T_0}{1 + \kappa}$
- ► Then,  $-X\Delta h_{Rxn}(T) = C_{P,0}(1+\kappa)(T-T_c)$
- ▶ Thus, we can find *X* or *T* from the above

$$X = \frac{C_{P,0}(1+\kappa)(T-T_C)}{-\Delta h_{Rxn}(T)}$$
 OR  $T = T_C + \frac{-X\Delta h_{Rxn}(T)}{C_{P,0}(1+\kappa)}$ 

- ► Three methods for design/analysis of a CSTR with heat effects
  - Given X, find V and T
  - Given T, find X and V
  - Given V, find X and T

See example 8-8 For production of propylene glycol

