206 Quiz - July 2021

shehab@teacher.cse.buet.ac.bd Switch account

Your email will be recorded when you submit this form

206 Quiz - July 2021

The characteristic table of **AB flip-flop** is given below. If you are given a JK flip-flop to implement AB flip-flop, minimum how many additional basic gates will you have to use?

+			
	A	В	Q(t+1)
	0	0	1
	0	1	Q'(t)
	1	0	Q(t)
	1	1	0

- \bigcirc 2
- \bigcirc 3
- 91

If you want to implement a function $f(A,B,C,D)=\sum (0,1,4,6,7,8,10,12,14,15)$ using basic gates and a single 4-to-1 MUX with C & D as selector bits, then what would be equation for the input I_1 (i.e., the input line that would be selected when CD=01)?
O 1
Correct answer not given
○ AB
○ ~A
What is the minimum number of flipflops necessary to create a 4-bit Register that only holds the following states: 1, 3, 4, 8, 12 ?
O 4
O 2
○ 3
O 5
If y'=(a (bcd) 'e)', for y=1 the value of a, b, c, d, e will be-
a=b=c=d=e=0
a=b=c=d=e=1
a=e=1, b=c=d=0
b=c=d=1, a=e=0

You are given an edge triggered flip-flop without any direct reset input. All the gates used to design this flip-flop are 2-input. You are asked to add a direct reset input for this flip-flop. Minimum how many additional basic gates can you use?
O 2
○ 3
O 1
O 4
The number of enables in 74138 is
O 4
O 3
O 1
O 2
Which of the following is called equivalence gate
Xnor
Nand
O Xor
O Nor

Gray code is used in K-Map because
None of the other options
in a code, there is odd number of 1s.
in two adjacent codes, there is change in three bits.
in two adjacent codes, there is change in one bit.
State whether each of the below statements are True or False. Putting a tick mark to the True statements will suffice.
There is a minimum time called the setup time during which the D input of a D Flip-flop must not change after the application of the positive/negative transition of the clock
T flip-flop can be constructed from JK flip-flop without using any additional gates
The output of a latch cannot be applied through a combinational logic to the input of another latch.
The most economical flip-flop is the edge triggered D flip-flop.

The simplified equation for the given K-map is -

4

 A_1A_0

00 01 11 10

00 0 0 1 1

A₃A₂ 01 1 1 0 0

11 1 1 0 0

10 0 0 1 1

 $Y = A_2A_3' + A_3A_2'$

- $Y = A_1' A_2 + A_2' A_1$
- $Y = A_1'A_3 + A_3'A_1$
- $Y = A_1'A_0 + A_0'A_1$

What is the minimum number of basic gates required to build a 4-to-1 MUX? Assume, **2-input** gates.

- 13
- \bigcirc 7
- 0 9
- \bigcirc 5
- Correct answer not given

For 6 bit input, the maximum possible BCD value will be
Your answer
$f(x,y,z) = (x \rightarrow y) \rightarrow \sim z$, select the maxterms for POS of $f(x,y,z)$ from 0, 1, 2, 3, 4, 5, 6, 7 (Select the checkboxes that apply) 1 2 3 4 5 6 7 0
Which of the following statements is False? You can simulate a mod 16 counter through a mod 8 counter and some combinatorial circuits. It is possible to pause a Counter without pausing the clock. All Counters are dependent on initial state. It is possible to transform one counter to another if both has same number of states.

Which one of the following is correct?	
None of the options	
For proper operation of 7483, its C_in must not be left open	
7483 is a low speed 4 bit adder	
For proper operation of 7483, its C_in can be left open	
The number of enables and type of enables for each 4x1 multiplexer module in 74153 is	
1, Active low	
2, Active high	
2, Active low	
1, Active high	
Which of the following statements is True?	
You can design a Universal Shift Register with asynchronous flipflops.	
You cannot simulate Left/Right Shift in a register that only supports Parallel Load.	
It is impossible to simulate a SIPO Register through a PIPO Register.	
It is possible to design a Shift Register that takes 2 clock cycles to shift left by 1 bit.	

What is the minimum number of flipflops required to output the following sequence: 0,1,0,2,0,1,0,2,...?

- \bigcirc 4
- Impossible
- () 3
- \bigcirc 2

For the following Demultiplexer, if the Input I=1, then what will be the functional form of F(A,B,C)? Note that gates used in the figure are 2-input OR gates.

- O AB
- A'B
- O BC
- B
- Correct answer not given

Which one of the following is correct for Logisim?	
The circuits implemented in Logisim require Vcc and Gnd connection for proper operation.	
The circuits implemented in Logisim do not require Vcc and Gnd connection for proper operation	
The circuits implemented in Logisim require only Gnd connection for proper operation	
The circuits implemented in Logisim require only Vcc connection for proper operation.	
What are the minimum number of two input NOR gates to perform XOR operation?	
O 7	
O 5	
O 6	
O 4	
The SOP form for the function $f(A,B,C,D) = \sum m(0,2,4,8,10,14)$ is	
B'D +ACD' +A'C'D'	
B'D' +AC'D +A'C'D'	
B'D' +ACD' +A'C'D'	
BD' +ACD' +A'C'D'	

Excess 3 code for 12 will be
O 0011
O 1111
O Dont Care
O 1100
You are provided with a D flip-flop and are asked to design a new flip-flop which incorporates no change operation along with the operations offered by the D flip-flop. Minimum how many additional basic gates do you need for accomplishing the task?
O 5
O 3
O 6
O 2
It should be kept in mind that Don't Care terms should be used along with the
terms that are present in-
Expressions
Minterms
Latches
C K-Map

Select the logical function f (P, Q, R, S, T) for the following circuit -

- R(PS+QT)
- P(S(QT+R))
- PR+ST
- P(RS+QT)

What is the minimum number of flipflops required to output the following sequence: 0,0,1,1,0,0,1,1,...?

- Impossible
- \bigcap 1
- 2
- \bigcirc 3

A three (3) variable K-map contains cells.	
O 4	
O 32	
O 8	
O 16	

Four routers are connected in a network that can be represented by the logical function f(w, x, y, z) = wx' + y(z+x) + wz' + x', For AND gate there is a delay of 5ns, and for OR gate the delay is 6ns. What is the value of minimum possible delay of that function f in ns? (write only the value. For example: 100)

Your answer

The POS form for the function $f(A,B,C,D) = \sum m(0,2,4,8,10,14)$ is--

- D'(A+B'+C') (A'+B'+C)
- D'(A+B'+C) (A'+B'+C)
- D'(A+B'+C') (A+B'+C)
- D'(A+B'+C') (A'+B+C)

A boolean function with five (5) variables has an octet of one (1). How many variable(s) will the final literal contain?
O 3
O 1
O 4
O 2
What is the minimum number of flipflops required to produce the output
sequence of the 4-bit Johnson counter?
○ 3
O 4
O 2
5
Which of the following is NOT considered for forming groups in K-map?
○ Vertical
Rolling
O Horizontal
O Diagonal

The minimized form of f(A,B,C)=AB +A'C+BC is
O B(A+C)
○ AB +A'C
○ C(A'+B)
None of the above
The outputs in 74138 are
active low and active high
active low and active high active high
active high

Consider the following 4-to-1 MUX. Suppose, the S_0 selector bit of the MUX is malfunctioning and so, you want to use it as a 2-to-1 MUX. How many additional gates are required, at minimum, to make it usable as a 2-to-1 Mux?

- 2
- () It is not possible to use this as a 2-to-1 MUX
- \bigcirc
- 0 4
- \bigcirc

You have a 4-bit SIPO Shift Register (i.e. NO PARALLEL LOAD) that currently holds 1001. What is the minimum number of clock cycles required for the shift register to hold 1000?

- O 4
- O 2
- O 3
- O^{-}

Which one of the following is correct?
7483 has no internal carry look ahead
7483 is cascadable in 3 bit increments
7483 is cascadable in 4 bit increments
7483 is cascadable in 2 bit increments
$P \oplus Q = R$, then
\bigcap P \bigoplus R = R'
\bigcirc Q \oplus R = PQ
Option 5
\bigcap P \bigoplus R = Q
\bigcap P \bigoplus R = Q'
Can you use T-flipflops to create a Universal Shift Register?
○ No
Yes
Back Submit Clear form

 $Never\ submit\ passwords\ through\ Google\ Forms.$

This form was created inside of Department of Computer Science and Engineering, BUET. Report Abuse

Google Forms

