第12讲 数据库与大数据I

黄宏

华中科技大学计算机学院

honghuang@hust.edu.cn

数据为什么要管理--数据自有黄金屋

(1)信息社会的工作方式?

- · 网络/Internet
- ・数据库

Everything Over DB Everything With Internet

传统社会: 业务工作

信息社会: 业务工作 + 计算机支持

什么是数据库

基本形式的数据: "表"和"关系"

数据库起源于规范化 "表(Table)" 的处理 Table: 以按行按列形式组织及展现的数据。

什么是数据库

结构化数据库:关系数据库

数据库: 相互有关联关系的数据的集合

- ■一个表聚集了具有相同结构类型的若干个对象,表与表间也存在着相互关联
- ■一行数据反映了某一对象的相关内容, 一列数据具有相同的数据类型
- ■这种"表"形式的数据,被认为是结构化数据
- ■用数学定义的无重复元组的【表】又被称为【关系】,其数据库又被称为关系数据库

学生登记表

学号	姓名	性别	出生年月	入学日期	家庭住址
98110101	张三	男	1980. 10	1998. 09	黑龙江省哈尔滨市
98110102	张四	女	1980.04	1998. 09	吉林省长春市
98110103	张五	男	1981. 02	1998. 09	黑龙江省齐齐哈尔市
98110201	王三	男	1980.06	1998. 09	辽宁省沈阳市
98110202	王四	男	1979. 01	1998. 09	山东省青岛市
98110203	王武	女	1981.06	1998. 09	河南省郑州市
:				1	

关系数据库

相互有关联关系的表形式数据的集合

字生成绩毕								
	班级	课程	教师	学	期	学号	姓名	成绩
	981101	数据库	李四	98	秋	98110101	张三	100
Т	981101	数据库	李四	98	秋	98110102	张四	90
Γ	981101	数据库	李四	98	秋	98110103	张五	80
Γ	981101	计算机	李五	98	秋	98110101	张三	89
•	981101	计算机	李五	98	秋	98110102	张四	98
Γ	981101	计算机	李五	98	秋	98110103	张五	72
Γ	981102	数据库	李四	99	秋	98110201	王三	30
Γ	981102	数据库	李四	99	秋	98110202	王四	90
ſ	981102	数据库	李四	99	秋	98110203	王武	78

什么是数据库系统

数据库系统的构成

数据库系统(工作环境)

■数据库(DB): Database

■数据库管理系统(DBMS): Database Management System

■数据库应用(DBAP): DataBase Application

■数据库管理员(DBA): DataBase Administrator

■计算机基本系统

表之间有哪些运算

学生登记表						
学号	姓名	性别	出生年月	入学日期	家庭住	址
98110101	张三	男	1980. 10	1998.09	黑龙江省哈	合尔滨市
98110102	张四	女	1980.04	1998.09	吉林省长	长春市
98110103	张五	男	1981.02	1998. 09	黑龙江省名	齐哈尔市
98110201	王三	男	1980.06	1998. 09	学生成绩	单
98110202	王四	男	1979. 01	1998.09	班级	课程
98110203	王武	女	1981.06	1998.09	001101	机口片

有哪些运算?

并: R∪S

差: R-S

积: R×S

选择: σ(R)

投影: π(R)

•	•					
班级	课程	教师	学期	学号	姓名	成绩
981101	数据库	李四	98秋	98110101	张三	100
981101	数据库	李四	98秋	98110102	张四	90
981101	数据库	李四	98秋	98110103	张五	80
981101	计算机	李五	98秋	98110101	张三	89
981101	计算机	李五	98秋	98110102	张四	98
981101	计算机	李五	98秋	98110103	张五	72
981102	数据库	李四	99秋	98110201	王三	30
981102	数据库	李四	99秋	98110202	王四	90
981102	数据库	李四	99秋	98110203	王武	78

第1种运算: 【并】运算

并(Union)

口定义:设关系R和关系S是并相容的(即:属性数目相同,其对应的域也相同),则关系R与

关系S的并运算结果也是一个关系,记作: R∪S, 它由或者出现在关系R中, 或

者出现在S中的元组构成

□ 数学描述: R∪S ={ t | t∈R ∨ t∈S } , 其中t是元组

□ 特性: R ∪S 与 S ∪R 运算的结果是同一个关系

R				
A1	A2	A 3		
а	b	С		
а	d	g		
f	b	е		

	S	
В1	B2	В3
а	b	С
а	b	е
а	d	g
h	d	g

RUS			
C1	C2	C 3	
а	b	C	
а	d	g	
f	b	е	
а	b	е	
h	d	g	

第2种运算: 【差】运算

差(Difference)

口 定义:假设关系R 和关系S是并相容的,则关系R 与关系S 的差运算结果也是

一个关系,记作:R-S,它由出现在关系R中但不出现在关系S中的元组构成

□ 数学描述: R - S = { t | t∈R ∧ t ∈ S } , 其中t是元组

口注意: R-S与S-R是不同的

R				
3	А3	A2	A1	
	С	b	а	
	g	d	а	
	е	b	f	
		b	f	

S	
B 2	В3
b	С
b	е
d	g
d	g
	b b d

R – S				
D2	D3			
b	е			
	D2			

	S – R					
l	E1	E2	E 3			
	а	b	е			
_	h	d	g			

第3种运算: 【积】运算

广义笛卡尔积 (Cartesian Product)

口 定义: 关系R (<a₁, a₂, ..., a_n >) 与关系S(<b₁, b₂, ..., b_m >) 的广义笛卡尔积 (简称广义积)

运算结果也是一个关系,记作: R x S, 它由关系R中的元组与关系S的元组进行所有可能的拼接

(或串接)构成。 笛卡尔积可将两个表串接起来作为一个表进行操作

口 数学描述: $R \times S = \{ \langle a_1, a_2, ..., a_n, b_1, b_2, ..., b_m \rangle \mid \langle a_1, a_2, ..., a_n \rangle \in \mathbb{R} \land \langle b_1, b_2, ..., b_m \rangle \in \mathbb{S} \}$

R				
A1	A2	A 3		
а	b	С		
а	d	g		
f	b	е		

S				
В1	B2	В3		
а	b	С		
а	b	е		
а	d	g		
h	d	g		

R×S								
A1	A1 A2 A3 B1 B2 B3							
а	b	С	а	b	С			
а	b	С	а	b	е			
а	b	С	а	d	g			
а	b	С	h	d	g			
а	d	g	а	b	С			
а	d	g	а	b	е			
а	d	g	а	d	g			
а	d	g	h	d	g			
f	b	е	а	b	С			
f	b	е	а	b	е			
f	b	е	а	d	g			
f	b	е	h	d	g			

第4种运算: 【选择】运算

选择(Selection)

口 定义: 给定一个关系R, 同时给定一个选择的条件condition(简记con), 选择运算结果也是一

个关系,记作♥con(R),它从关系R中选择出满足给定条件condition的元组构成

□ 数学描述: $\sigma_{con}(R) = \{t \mid t \in R \land con(t) = '真' \}$

R			
A1	A2	А3	
а	а	10	
а	d	-4	
f	b	5	

O _{A3>0} (R)						
A1	A1 A2 A3					
а	a 10					
f	f b 5					

$\sigma_{A2="a" \lor A2="b"}(R)$			
A1	A2	А3	
а	а	10	
f	b	5	

$\sigma_{A3>0}$ \wedge $A1=A2$ (R)				
A1 A2 A3				
а	а	10		

R				
A1	A2	А3		

第5种运算: 【投影】运算

投影(Projection)

 \square 定义: 给定一个关系R, 投影运算结果也是一个关系, 记作 $\Pi_A(R)$, 它从关系R中选出属性包

含在A中的列构成

□ 数学描述: $\Pi_{A_{i1}, A_{i2}, ..., A_{ik}}(R) = \{ \langle t[A_{i1}], t[A_{i2}], ..., t[A_{ik}] \rangle \mid t \in R \}$

R			
A1	A2	А3	
а	b	С	
а	d	g	
f	b	е	

П _{АЗ} (R)		
A 3		
С		
g		
е		

11A3, A1 (K)				
A3 A1				
С	а			
g	а			
е	f			

/p\

R				
A1	A2	А3		

综合运用关系运算表达复杂的查询

查询表达式组合各种运算

▶查询学习课程号为002的学生学号和成绩

$$\pi_{S\#, Score}(\sigma_{C\#="002"}(SC))$$

▶ 查询学习课程号为001的学生学号、姓名

Student					
S#	Sname	Ssex	Sage	D#	Sclass
98030101	张三	男	20	03	980301
98030102	张四	女	21	03	980301
98030103	张五	男	19	03	980301
98040201	££	男	18	04	980402
98040202	主四	男	21	04	980402
98050104	孙六	女	19	05	980501

SC		
S#	C#	Score
98030101	001	92.0
98030101	002	85.0
98030101	003	88.0
98040202	002	90.5
98040202	003	80.0
98040202	001	55.0
98050104	003	56.0
98030102	001	54.0
98030102	002	85.0
98030102	003	48.0

$\pi_{S\#,Sname}(\sigma_{C\#="001"}$	and Student.S#=SC.S# (Studen	$t \times SC)$
--------------------------------------	-------------------------------	----------------

> 查询学习课程名称为数据结构的学生学号、姓名和这门课程的成绩

Student × **SC** × **Course**

C#	Cname	Chours	Credit	T#
001	数据库	40	6	001
003	数据结构	40	6	003
004	编译原理	40	6	001
005	C 语言	30	4.5	003
002	高等數学	80	12	004

output of the contraction of t

 $π_{S\#,Sname, Score}$ ($σ_{Cname= "数据结构" and Student.S\#=SC.S\# and SC.C\#=Course.C\#}$ (Student × SC × Course))

Course

结构化数据库操纵语言

由关系模型到结构化数据库语言SQL

关系运算式

 $\Pi_{\text{列名,..., 列名}}$ ($\sigma_{\text{检索条件}}$ (表名1 × 表名2 × ...))

TS#,Sname, Score Cname= "数据结构" ∧ Student.S#=SC.S# ∧

Course.C#=SC.C#(Student×SC×Course))

数据库语言SQL (结构化的查询语言)

Select 列名 [[, 列名] ...]

From 表名1 [[, 表名2], ...]

[Where 检索条件];

语义:将From后面的所有表串接起来,检索出满足"检索条件"的元组,并按给定的列名及

顺序进行投影显示。

Select S#, Sname, Score From Student, SC, Course
Where Cname= '数据结构' and Student.S#=SC.S# and Course.C#=SC.C#;

SQL语言有丰富的表达能力 -如嵌套查询、模糊查询、 统计、分组统计、分组过滤 等 同学可继续自学之

结构化数据库管理系统的实现思路

关系运算→数据库语言→关系数据库管理系统

由结构化数据库管理到非结构化数据管理

关系数据库→键值对数据库→文档数据库

【NoSQL】"不仅是SQL,而不是NO-to-SQL",不仅能管理结构化数据,而且能管理 半结构化甚至非结构化数据的数据库。为处理大数据,多数都采用分布式存储技术

关系数据库 (按行存储数据,按列按类型区分)

. —			
学号	姓名	年龄	家庭住址
"00001"	"张一"	18	"吉林省长春市南关区"
"00002"	"张二"	19	"黑龙江省哈尔滨市南岗区"
"00003"	"张三"	20	"辽宁省沈阳市铁西区"
"00004"	"张四"	19	"四川省成都市武侯区"
"0000E"	"张五"	18	"贵州省贵阳市花溪区"

第二种NoSQL数据库(按文档存储数据,一行是一个文档)

'子'	生
	对

对象标识	{ "属性名":"属性值","属性名":"属性值",…}
(自动产生)	{ 两注句 · 两注值 , 两注句 · 两注值 , ```}
"0000001"	{ "学号":"00001","姓名":"张一","年龄":"18","地址":"吉林省长春市南关区"}
"00000002"	{ "学号":"00002","姓名":"张二","年龄":"19","地址":"黑龙江省哈尔滨市南岗区"}
"00000003"	{ "学号":"00003","姓名":"张三","年龄": <mark>"20","地址":"辽宁省沈阳市铁西区"}</mark>
"00000004"	{ "学号":"00004","姓名":"张四","年龄" " 小儿 > 又个 小儿 >
"00000005"	{ "学号":"00005","姓名":"张五","年龄" <mark>"18"("快速")</mark> " <u>赤州省</u> "。" " " " " " " " " " " " " " " " " " "

第二种NoSQL数据库(按文档存储数据,一行是一个文档,文档中还可能嵌入文档)

字生	
对象标识	("屋肿女"·"屋肿店""屋肿友"·"屋肿店"…)
(自动产生)	{ "属性名":"属性值", "属性名":"属性值", ···}
"0000001"	{ "学号":"00001","姓名":"张一","年龄":"18","地址":{"省":"吉林省","市":"长春市","区":"南关区"}}
"00000002"	{ "学号":"00002","姓名":"张二","年龄":"19","地址":{ "省":"黑龙江省", "市":"哈尔滨市","区":"南岗区"}}
"00000003"	{ "学号":"00003","姓名":"张三","年龄":"20","地址":{"省":"辽宁省","市":"沈阳市","区":"铁西区"} }
"00000004"	{ "学号":"00004","姓名":"张四","年龄":"19","地址":{"省":"四川省","市":"成都市","区":"武侯区"}}
"00000005"	{ "学号":"00005","姓名":"张五","年龄":"18","地址":{ "省":"贵州省", "市":"贵阳市","区":"花溪区"}}

第一种NoSQL数据库(按"属性名:属性值"对存储数据,均为字符串数据)

学生			
对象标识	属性名	属性值	
(自动产生)	禹性石		
"0000001"	"学号"	"00001"	
"00000002"	"学号"	"00002"	
"00000003"	"学号"	"00003"	
"00000004"	"学号"	"00004"	
"00000005"	"学号"	"00005"	
"00000001"	"姓名"	"张一"	
"00000002"	"姓名"	"张二"	
"00000003"	"姓名"	"张三"	
"00000005"	"姓名"	"张五"	
"0000001"	"年龄"	"18"	
"00000002"	"年龄"	"19"	
"00000005"	"年龄"	"18"	
"00000001"	"家庭住址"	"吉林省长春市南关区"	
"0000004"	"家庭住址"	"四川省成都市武侯区"	
"0000005"	"家庭住址"	"贵州省贵阳市花溪区"	
"00000005" "家庭住址"		"黑龙江省哈尔滨市道里区"	

与关系数据库相比,最大的优点:

- (1) 可扩展性—可随时增加新属性列和减少属性列。而无
- (2) 无需事先定义模式,可直接操纵数据
- (3) 并行/分布处理—可适应大规模并行/分布计算。

由结构化数据库管理到非结构化数据管理

其他非结构化数据库: 图像数据库与图数据库

图像/视频/多媒体数据库

图数据库——种由结点和边表达数据的数据库

从【表】的管理看数据库

小结

SC		
S#	C#	Score
98030101	001	92.0
98030101	002	85.0

S#	Sname		Ssex	Sage	D#	Sclass
9803010	98030101 张三		男	20	03	980301
98030102 2km						
980301	C#	C	name	Chours	Credit	T#
980402	001	姜	据库	40	6	001
980402	003	數:	据结构	40	6	003
980501	004	쑠	译原理	40	6	001
	005	С	语言	30	4.5	003
	002	嘉	等數學	80	12	004

抽象: 区分并命名表 的每一个形式要素

抽象

论指导下的抽象。

理论

E.F.Codd, 基于对 "表(Table)" 的理解:

Student

- 提出了"关系"及关系模型,提出了关系数据库理论
- 开创了数据库的时代, 当前普遍应用的数据库 管理系统的奠基者
- 获得了计算机领域最 高奖 "图灵奖"

理论:数学化逻辑 严密化各种概念;

理论支持设计:设计正确性、完备性判定方法

设计:语言/实现/系统

设计

先抽象再设计:从管理一个具体的表,到 可管理所有的表

CREATE TABLE 表名(列名1 类型 [NOT NULL]
[, 列名2 类型 [NOT NULL]].....);

SELECT [DISTINCT] 列名1[, 列名2···]
FROM 表名1[, 表名2···]
[WHERE 条件1]
[GROUP BY 列名il [, 列名i2 ···][HAVING 条件2]]
[ORDER BY 表达式1 [ASC / DESC]...]

