Reasoning about types and code: an overview

Sergei Winitzki

Academy by the Bay

2019-08-17

A new book: The Science of Functional Programming With examples in Scala

Practitioners of functional programming need to know how to:

- reason about types:
 - design the required custom data types for the given application
 - derive an equivalent simpler type when possible
 - use type constructions to create data types with required properties
- reason about code:
 - verify that given implementations satisfy the required laws (e.g. monad)
 - derive lawful custom implementations of important typeclasses
 - verify that certain functions are computationally equivalent
 - derive an equivalent simpler code when possible

This requires a *very limited* amount of mathematics (polynomials, monoids) The book will explain (with examples and exercises):

- known techniques of reasoning about types and type constructors
- known techniques for symbolic calculations with code
- deriving and verifying laws symbolically (as equations for functions)
- real-life motivations for (and applications of) these techniques

Examples of reasoning tasks

- Can we compute a value of type Either[Z, R => A] given a value of type R => Either[Z, A]? And conversely? (A, R, Z are type parameters.)
- When to use for/yield with Option[A] and Future[A] together?

```
val result = for {
  a <- Future(...) // A computation that takes time and may fail.
  b <- Option(...) // A computation whose result may be unavailable.
  c <- Future(...) // A computation that takes time and may fail.
} yield ??? // Continue computations when results are available.</pre>
```

Should result have type Option[Future[A]] or Future[Option[A]]?

- Oan we implement flatMap for the type constructor Option[(A, A, A)]?
- What type describes a chain of Future[A] operations that, on any failure, will automatically execute specified cleanups in reverse order?
- Different people define a "free monad" via different sets of case classes. Are these definitions equivalent? What is the difference?
- How to define a free monad generated by a Pointed functor (i.e. when the functor already has the pure method)? Will that type have better performance than the standard free monad generated by a functor?

Notation for types

A concise mathematical notation for types and type constructors:

Scala syntax	Type notation
type parameter A	А
tuple type (A, B), or case class C(a: A, b: B)	$A \times B$
disjunctive type Either[A, B] or trait/case classes	A + B
function type A => B	$A \Rightarrow B$
Unit or a "named" unit type	1
primitive type (Int, String, etc.)	Int, String,
Nothing (the void type)	0
<pre>type constructor type P[A] = Option[(A, A, A)]</pre>	$P^A \triangleq \mathbb{1} + A \times A \times A$
parameterized method def f[A]: A => (A, A)	$f^A:A\Rightarrow A\times A$
parameterized value (Scala 3) [A] => P[A]	$\forall A. P^A$

This notation proved convenient for reasoning about equivalence of types:

$$(A + B) \times C \cong A \times C + B \times C$$
 , $A \Rightarrow B \Rightarrow C \cong A \times B \Rightarrow C$, $0 + A \cong A$, $A + B \Rightarrow C \cong (A \Rightarrow C) \times (B \Rightarrow C)$

Notation for code

A concise mathematical notation for code:

Scala syntax	Type notation
variable, or function argument x: A	x ^{:A}
tuple value (a, b)	$a \times b$ or $a^{:A} \times b^{:B}$
value of disjunctive type Left[A, B](x)	$x^{:A} + 0^{:B}$
nameless function {x: A => expr }	$x^{:A} \Rightarrow expr$
Unit value, ()	1
def f[A, B]: A => B => A = x => _ => x	$f^{:A\Rightarrow B\Rightarrow A} \triangleq x^{:A} \Rightarrow _^{:B} \Rightarrow x$
<pre>identity[A] (the identity function)</pre>	id^A or $id^{:A\Rightarrow A}$
forward composition, f andThen g	$f g \text{ or } f^{:A \Rightarrow B} g^{:B \Rightarrow C}$
argument piping, x.pipe(f) (Scala 2.13)	$x \triangleright f$ where $x^{:A}$ and $f^{:A\Rightarrow B}$
lifted function, p.map(f) where p: P[A]	$p \triangleright f^{\uparrow P}$ where $p^{:P^A}$

This notation proved convenient for reasoning about equational laws:

$$f^{\uparrow P} \circ g^{\uparrow P} \circ h^{\uparrow P} = (f \circ g \circ h)^{\uparrow P}$$

Discussion

Show