Teaching Session | Time Series Forecasting

Tamojit Maiti
Masters in Applied Statistics and Operations Research, ISI Kolkata
Data Scientist at Sixt R&D, previously at Rapido & AB InBev

Agenda

- Time Series
 - What and Why?
 - Difference with Regression
- Terminology
 - Stationarity
 - Time Series Decomposition Components
- Forecasting Techniques
 - Naïve Family
 - Moving Average Family
 - ARIMA family
 - Formulating it as a regression problem
- Evaluation metrics for forecasts
 - MAE/MAPE/SMAPE

Time Series

Time Series

- A sequence of values, indexed by time
- Occur universally everywhere, from business financials to supply and demand of practically everything
- Almost always have a pattern, which if deciphered can help us predict the future
- Prediction of future in some capacity allows businesses to plan accordingly and mitigate risks
- For example, demand prediction of retail goods helps keep the good in stock and avoid them running out

t	у
1	2
2	5
3	10
4	17
5	26
6	?

Time Series | Difference with Regression

• A (univariate) time series can be generally characterized by

$$y_t = \alpha y_{t-1} + \beta y_{t-2} + \gamma y_{t-3} + \dots + \epsilon_t$$

which looks a lot like a regression formulation

- But in a time-series, all the values of y at time t depend on its previous values
- Whereas in regression, no value of y depends on any other value of y
- In other words, order is important in time series, and this time dependence is referred to as autocorrelation
- Whereas for regression, the values of y are said to be independent and identically distributed

Definitions

Time Series | Stationarity

- A (univariate) time series $\{y_t\}$ is said to be stationary if it has
 - Finite and independent of time Mean $E(Y) = \mu \neq f(t)$
 - Finite and independent of time Variance $E(Y^2) < \infty \neq f(t)$
 - Absence of seasonality $\gamma(s,t) = \gamma(s-h,t-h) \ \forall \ h,s,t$
- Why?
 - Certain family of forecasting methods (ARIMA) have stationarity as a requirement before they can be applied
- Checking for Stationarity
 - Visually
 - Global vs Local Tests
 - Augmented Dickey Fuller Test

Time Series | Non – Stationary Time Series Examples

Variance is a function of time

Mean is a function of time

Seasonality is present

Time Series | Make a time series stationary

• If the mean is changing with time, try differencing it once, or in rare cases, twice

$$\Delta_t^1 = y_t - y_{t-1}$$

Differencing is akin to modelling the rate of change of y instead of modelling y natively

Physical processes rarely follow higher than second order differential equations, which is why differencing it once usually gets rid of the change in mean

Before differencing – mean changes with time

After differencing – constant mean

Time Series | Make a time series stationary

 If the variance is changing with time, try using the Box-Cox transform or the Yeo-Johnson transform. It has the effect of making the variance constant for the time series

Variance is a function of time

Magnitude of variance reduced, although not eliminated

Time Series | Make a time series stationary

• If the time series has seasonality, it can be depersonalized by seasonal differencing $s_t = y_t - y_{t-h}$

Before seasonal differencing

After seasonal differencing

Time Series | Components

- A time series is usually comprised of
 - Level Base value of the time series
 - Trend Long-term rate of change of the time series
 - Seasonality How frequently and strongly do the values repeat
 - Exogenous Influences Are there other time-series that affect my time series?
 - Residuals Whatever could not be modelled

$$y_t = \mu + T(t) + S(t) + WX_t + \epsilon_t$$

Time Series | Estimating Trend

- Trend is estimated by
 - Simple Moving Average
 - Exponentially Weighted Moving Average
 - Locally Weighted Scatterplot Smoothing (LOESS)

Time Series | Estimating Seasonality

- Seasonality is estimated by
 - Fourier Decomposition
 - Autocorrelation Function

Time Series | Residual Analysis

- We want to make sure that no information is left in the time series after we have extracted the various components of the time series
- We want our residuals to be as close to noise as possible
- We can test whether the residuals contain any useful information or not via a statistical test, called the Augmented Dickey Fuller Test
- Ideally, you should keep on stacking time-series models until the residuals resemble white noise

Forecasting Models

Time Series | Forecasting Models | Naive

Naïve Forecast

$$y_t = y_{t-1}$$

What happens tomorrow is the same as what happens today

Used as a first benchmark forecast, every model should beat the naïve forecast model

Seasonal Naïve Forecast

$$y_t = y_{t-s}$$

What happens tomorrow is the same as what happened last season (week, month, year)

Used as a second benchmark forecast, every model should beat the seasonal naïve forecast model

Time Series | Forecasting Models | Moving Average

Simple Moving Average

$$y_t = \frac{1}{k} \sum_{i=1}^k y_{t-i}$$

What happens tomorrow is an average of what happened in the last k days

This is usually a good model if your time series contains only level and trend

• Exponentially Weighted Moving Average

$$y_t = \frac{1}{k} \sum_{i=1}^k \alpha^i y_{t-i}$$

What happens tomorrow is a weighted average of what happened in the last k days, the weights form a geometric series

Recent points are given more weightage in computing final forecast

Tamojit Maiti

Time Series | Forecasting Models | AR

• AR(p) Process

$$y_t = \sum_{i=1}^p \alpha_i y_{t-i} + \epsilon_t$$

An AR(1) process is simply

$$y_t = \alpha_1 y_{t-1} + \epsilon_t$$

with

$$|\alpha_1| < 1 \tag{Why?}$$

$$E(\epsilon_t) = 0 (Why?)$$

$$E(\epsilon_t \epsilon_{t-i}) = 0 \ \forall i \in \mathbb{N} \quad \text{(Why?)}$$

Time Series | Forecasting Models | MA

• MA(q) Process

$$y_t = \sum_{j=1}^q \beta_j \epsilon_{t-j} + \epsilon_t$$

An MA(1) process is simply

$$y_t = \beta_1 \epsilon_{t-1} + \epsilon_t$$

with

$$|\beta_1| < 1 \tag{Why?}$$

$$E(\epsilon_t) = 0 (Why?)$$

$$E(\epsilon_t \epsilon_{t-i}) = 0 \,\forall \, i \in \mathbb{N} \quad \text{(Why?)}$$

oth #4--- 2022

Time Series | Forecasting Models | ARMA

• ARMA(p,q) Process

$$y_t = \sum_{i=1}^p \alpha_i y_{t-i} + \sum_{j=1}^q \beta_j \epsilon_{t-j} + \epsilon_t$$

An ARMA(1,1) process is simply

$$y_t = \alpha_1 y_{t-1} + \beta_1 \epsilon_{t-1} + \epsilon_t$$

with

$$|\alpha_1|$$
, $|\beta_1| < 1$

$$E(\epsilon_t) = 0$$

$$E(\epsilon_t \epsilon_{t-i}) = 0 \ \forall \ i \in \mathbb{N}$$

Time Series | Forecasting Models | ARIMA

• ARIMA(p,d,q) Process

$$\Delta_t^D = \sum_{i=1}^p \alpha_i y_{t-i} + \sum_{j=1}^q \beta_j \epsilon_{t-j} + \epsilon_t$$

An ARMA(1,1,1) process is simply

$$\Delta_t^1 = y_t - y_{t-1} = \alpha_1 y_{t-1} + \beta_1 \epsilon_{t-1} + \epsilon_t$$

with

$$|\alpha_1|$$
, $|\beta_1| < 1$

$$E(\epsilon_t) = 0$$

$$E(\epsilon_t \epsilon_{t-i}) = 0 \ \forall \ i \in \mathbb{N}$$

Time Series | Forecasting Models | ARIMA | Finding p

- The value of p represents the number of lagged instances of the time series that affect the present value
- A value of p = 2 means that the value of time series today is influenced not only by the value of the time series yesterday, but also by the value two days back.
- We can estimate the value of p from plotting the Partial Autocorrelation Function
- The value of p corresponds to that lag in the PACF plot when it goes to zero

Time Series | Forecasting Models | ARIMA | Finding q

- The value of q represents the number of lagged instances of errors that affect the present value
- A value of q = 2 means that the value of time series today is influenced not only by the error value yesterday, but also by the error value two days back.
- We can estimate the value of q from plotting the Autocorrelation Function
- The value of q corresponds to that lag in the ACF plot when it goes to zero

Time Series | Forecasting Models | ARIMA | Finding d

- The value of d represents the number of differences you need to de-trend the timeseries
- A value of d = 1 means that you differenced the time series once, and are now modelling the rate of change of the target variable instead of the target variable itself
- Very rarely does the value of d exceed 2, it is usually either 1 or 0
- Physical processes are typically governed by differential equations no higher than second order, hence a process with d>2 is very rare

Time Series | Forecasting Models | Regression Formulation

- We can use regression models in forecasting, if we preserve time-dependence structure of the variables
- An AR(1) process

$$y_t = \alpha_1 y_{t-1} + \epsilon_t$$

can be thought of as a regression problem as follows

- The parameter to be estimated is α_1
- The feature matrix *X* is the series of lagged values
- The number of lagged values to take depends on the autoregressive order of the process, determined from the PACF plot

Time Series | Forecasting Models | Regression Formulation

t	У
1	7
2	13
3	14
4	17
5	23
6	34
7	37
8	42

Time Series Problem

Regression Formulation

Suppose the time series is such that only the pervious term affects the next term

So, we shift the y-variable by 1 row, and call it X

$$y = mX + c$$

The regression formulation boils down to finding optimal values of m and c that minimize the MSE

Forecast Evaluation

Time Series | Forecast Evaluation | Cross Validation

- KFold cross-validation used in regression does not work for time series (Why?)
- We need time-aware cross validation strategies
- One such strategy is the Walk-Forward Cross Validation
- It preserves time awareness and eliminates the phenomenon of target leakage

Time Series | Forecast Evaluation | Evaluation Metrics

Mean Absolute Error

Predicted	12	24	31	19
Actuals	10	25	26	18

$$MAE = \frac{1}{4}\{|12 - 10| + |24 - 25| + |31 - 26| + |19 - 18|\}$$

Mean Absolute Percentage Error

$$MAPE = \frac{1}{4} \left\{ \frac{|12 - 10|}{10} + \frac{|24 - 25|}{25} + \frac{|31 - 26|}{26} + \frac{|19 - 18|}{18} \right\} \times 100$$

Symmetric Mean Absolute Percentage Error

$$MAPE = 2 \times \frac{1}{4} \left\{ \frac{|12 - 10|}{(10 + 12)} + \frac{|24 - 25|}{(25 + 24)} + \frac{|31 - 26|}{(26 + 31)} + \frac{|19 - 18|}{(18 + 19)} \right\} \times 100$$

Time Series | Forecast Evaluation | Choosing a proper metric

- Mean Absolute Error
 - Simple to calculate and easy to explain
 - Depends on scale of the time series
- Mean Absolute Percentage Error
 - Simple to calculate and easy to explain
 - Asymmetric metric, penalizes errors more when actual values are less for the same absolute deviation
 - Unbounded above, can $\rightarrow \infty$ as denominator $\rightarrow 0$
 - Scale invariant, does not depend on the scale of the time series
- Symmetric Mean Absolute Percentage Error
 - Relatively simple to calculate, tricky to explain
 - Symmetric metric, penalizes errors fairly in both directions for same absolute deviation
 - Bounded at both ends, can vary from [0, 200]
 - Scale invariant since it's a percentage scale

Q&A