

Aula 7 – Amplificadores operacionais (Amp-ops)

Disciplina: Eletrônica Analógica e Digital

Professor: Daniel Gueter

Cronograma

- 18/02 Aula 1 Introdução da disciplina e Semicondutores
- 25/02 Aula 2 Revisão de circuitos
- 04/03 Feriado Carnaval
- 11/03 Aula 3 Diodo Zener e Introdução a Transistores
- 18/03 Aula 4 Continuação da aula 3
- 25/03 Aula 5 Outros dispositivos semicondutores, Optoeletrônica e Acopladores Ópticos
- 01/04 Aula 6 (Semana de Oficina) Topologias de circuitos incluindo semicondutores z
- 08/04 Aula 7 Amplificadores operacionais (Amp-ops)
- 15/04 Prova
- 22/04 Prova substitutiva

Amplificadores operacionais (Amp-ops)

Amplificadores operacionais (Amp-ops) – O que são?

- Os amplificadores operacionais, também conhecidos como amp-ops, são circuitos amplificadores, compostos por transistores, resistores e capacitores.
- Dentre as suas funções, podemos citar algumas abaixo:
 - Realizar operações matemáticas, como soma e subtração;
 - Amplificar sinais elétricos como:
 - Amplificar sinais de áudio;
 - Amplificar sinais de vídeo;
 - Amplificar sinais de radiofrequência;
 - Atuar como filtro de sinais;
 - Compor **circuitos osciladores**, que criam sinais de diferentes formas de onda.

Amplificadores operacionais (Amp-ops) – O que são?

- Os amp-ops são compostos por vários estágios internos, geralmente encontrados fisicamente na forma de CIs (Circuitos integrados).
- O primeiro estágio de um amp-op é sempre um amplificador diferencial.

Diagrama de blocos de um amp-op

Amp-op em forma de CI

Aula 7 – Amplificadores operacionais (Amp-ops)

O que é um amplificador diferencial?

• O amplificador diferencial compara as entradas V_1 e V_2 .

Amplificador diferencial

- ullet A tensão de saída $oldsymbol{V_{out}}$ é dada pela equação $oldsymbol{V_{out}} = oldsymbol{A_V(V_1 V_2)}$
- Note que caso as entradas V_1 e V_2 sejam idênticas, o valor V_{out} é nulo, pois não há diferença entre os potenciais V_{c1} e V_{c2} .

Voltando ao Amp-op

Símbolo esquemático de um amp-op

Circuito equivalente de um amp-op

Aula 7 – Amplificadores operacionais (Amp-ops)

Voltando ao Amp-op

- A características de um Amp-op são:
 - O ganho tensão em malha aberta A_{VOL} é muito elevado (± 100.000), sendo considerado infinito em um amp-op ideal.
 - A resistência R_{in} é muito elevada, sendo considerada infinita em um amp-op ideal.
 - A resistência de saída R_{out} é muito baixa, sendo considerada nula em um amp-op ideal.

Circuito equivalente de um amp-op

Exemplo de aplicação: Amplificador inversor

- O amplificador inversor é o circuito mais simples que utiliza um amp-op.
- A sua principal característica é utilizar uma **realimentação negativa** por meio do resistor de realimentação R_f .
- Note que em um amplificador inversor o sinal de saída é o sinal de entrada amplificado e invertido.

Amplificador inversor

Exemplo de aplicação: Amplificador inversor

- Neste tipo de configuração, aplica-se o conceito de terra virtual para facilitar a análise. Ele se baseia em:
 - Como a resistência R_{in} é infinita, i_2 é zero.
 - Como o ganho A_{VOL} é infinito, V_2 é **zero**.
 - Sendo assim, o terra virtual vira um curto-circuito para a tensão ($V_2 = 0$), e um circuito aberto para a corrente ($i_2 = 0$).

Amplificador inversor com conceito de terra virtual

Circuito equivalente de um amp-op

Aula 7 – Amplificadores operacionais (Amp-ops)

Exemplo de aplicação: Amplificador inversor

• Como $V_2=0$ e $i_2=0$, na pratica, o ganho real, chamado de **ganho** de tensão em malha fechada A_{VCL} , é calculado pela simples conta abaixo:

$$A_{VCL} = \frac{-R_f}{R_1}$$

Amplificador inversor com conceito de terra virtual

Exercício de Amplificador inversor

 No circuito amplificador inversor abaixo, qual é o ganho de tensão em malha fechada?

Solução:

$$A_{VCL} = \frac{-R_f}{R_1}$$

$$A_{VCL} = \frac{-75k}{1,5k}$$

$$A_{VCL}=-50$$