第六章 代数系统

大连理工大学软件学院

陈志奎 教授

办公室: 综合楼405, Tel:

62274392

实验室:综合楼

Mobile: 13478461921

Email: zkchen@dlut.edu.cn zkchen00@hotmail.com

回顾

- 代数系统
 - 定义
 - 性质
- 同态定义
 - 定义
 - 性质
- 同构定义
 - 定义
 - 性质

• 6.4 同余关系

- 定义6.4.1 给定 $\langle S, \Theta \rangle$ 且E为S中的等价关系。
- E关于①有代换性质: $(\forall x_1)(\forall x_2)(\forall y_1)(\forall y_2)((x_1, x_2, y_1, y_2 \in S \land x_1 E x_2 \land y_1 E y_2) \rightarrow (x_1 \odot y_1) E(x_2 \odot y_2))$ 。
- E为 $\langle S, \Theta \rangle$ 中的同余关系: E有代换性质。
- 与此同时, 称同余关系E的等价类为同余类。

• 由定义可知,同余关系是代数结构的集合中的 等价关系,并且在运算的作用下,能够保持关 系的等价类。即在 $x_1 \odot y_1$ 中,如果用集合S中的 与 x_1 等价的任何其它元素 x_2 代换 x_1 ,并且用与 y_1 等价的任何其它元素y2代换y1,则所求的结果 $x_2 \odot y_2 与 x_1 \odot y_1 位于同一等价类之中。亦即若$ $[x_1]_E = [x_2]_E # \mathbb{E}[y_1]_E = [y_2]_E, \quad \text{if } [x_1 \odot y_1]_E = [y_2]_E$ $[x_2 \odot y_2]_F$ 。此外,同余关系与运算密切相关。 如果一个代数结构中有多个运算,则需要考察 等价关系对于所有这些运算是否都有代换性质。 如果有,则说该代数结构存在同余关系;否则, 同余关系不存在。

- 例6.4.1 给定 $\langle Z, +, \times \rangle$,其中Z是整数集合,+和 ×是一般加、乘法。假设Z中的关系R定义如下:
- i_1Ri_2 : $|i_1| = |i_2|$ 其中 i_1 、 $i_2 \in Z$
- 试问, R为该结构的同余关系吗?
- 其中 $|i_1|$ 表示 i_1 的绝对值.
- 相等关系是等价关系是明显的,只要证它满足代换性即可. 即证对任意的 $i_1,i_2,i_3,i_4 \in \mathbb{Z}$ 和 $i_1Ri_2 \wedge i_3Ri_4 \Leftrightarrow |i_1| = |i_2| \wedge |i_3| = |i_4|$
- \Rightarrow $|i_1+i_3|=|i_2+i_4|$
- $\forall i_1=1, i_2=1, i_3=3, i_4=-3$

- $|i_1+i_3|=4$
- $|i_2+i_4|=2$
- 即对+不满足代换性,即R不是 $\langle Z, +, \times \rangle$ 的同余关系.

• 可见,考察一个等价关系E对于有多个运算的 代数结构是否为同余关系,这里有个次序先后 问题,选择得好,即你一下子就考察到了E对 某个运算是不具有代换性质,那么立刻便可断 定E不是该结构的同余关系,否则验证应继续 下去, 直至遇到不具有代换性质的运算为止。 如果对于所有运算都有代换性质,则E为该结 构的同余关系。在例6.4.1中,首先发现R对于+ 不具有代换性质,那么可断定R不是该结构的 同余关系。如果你首先验证是R对于 \times 的代换 性质,结果R对于×有代换性质,至此你只是 有希望E是同余关系,但还得继续工作,考察R对于+的代换性质,由此结果才能判定R是否为 该结构的同余关系。 7/42

- 有了同余关系的概念后,现在可以给出它与同态映射的关系了,请看下面定理:
- 定理6.4.1 设 $\langle S, \odot \rangle$ 与 $\langle T, * \rangle$ 是同类型的且f为其同态映射。对应于f,定义关系 E_f 如下:
- $xE_f y$: f(x) = f(y), $\sharp + x, y \in S$
- 则 E_f 是 $\langle S, \Theta \rangle$ 中的同余关系,并且称 E_f 为由同态映射f所诱导的同余关系。
- 由于同态映射不惟一,根据定理6.4.1,可以推知同余关系也不惟一。

- 例6.4.2 设 $\langle Z,' \rangle$ 与 $\langle B,^- \rangle$ 是同类型的,其中Z是整数集合, $B = \{0, 1\}$,'和 定义如下:
- $i'=i+1, i\in Z$
- $\overline{b} = (b+1) \pmod{2}$, $b \in B$
- 又设 $f: Z \rightarrow B$:
- $f(i) = (i) \pmod{2}$ 其中 $i \in Z$
- 试指出 所诱导的同余关系。

- 解: f诱导的同余关系为 E_f
- $iE_f j: f(i) = f(j) \otimes i \pmod{2} = j \pmod{2}$
- 显然 E_f 是个(自反、对称、可传递),现在我们只要等价关系说明 E_f 满足代换性.
- 对任何 $i,j \in Z$ 和 $iE_f j$ 来推证 $i'E_f j'$,即 $i(\text{mod 2}) = j(\text{mod 2}) \Rightarrow (i+1)(\text{mod 2}) = (j+1)(\text{mod 2})$
- ・ 因为 $(i+1) \pmod{2} = (i) \pmod{2} + 1 \pmod{2} \pmod{2}$ $(j+1) \pmod{2} = (j) \pmod{2} + 1 \pmod{2} \pmod{2}$
- 于是(i+1)(mod 2) = (j+1)(mod 2)
- 即 E_f 是满足代换性的,从而证明了 E_f 是同余关系而且是由f所诱导的.

• 6.5 商代数

• 定义6.5.1 给定(S, O)及其上的同余关系E,且由 E对S所产生同余类构成一个商集S/E。若在S/E 中定义运算*如下:

$$[x]_E * [y]_E = [x \odot y]_E$$

- 其中 $[x]_E$, $[y]_E \in S/E$
- 于是 $\langle S/E, * \rangle$ 构成了一个代数结构,则称 $\langle S/E, * \rangle$ 为代数结构 $\langle S, \odot \rangle$ 的商代数。
- 可以看出,给定一个代数结构,利用结构中的 同余关系可以构造一个新的代数结构即商代数, 两者有何联系,下面定理指明这一点。

- 定理**6.5.1** 给定 $\langle S, \odot \rangle$ 及其上的商代数 $\langle S/E, * \rangle$,则 $\langle S, \odot \rangle \simeq \langle S/E, * \rangle$ 。
- 通常,称 g_E 为从S到S/E上的正则映射,并且称 g_E 为从S,O)到S/E,*)的与E相关的自然同态映射,简称自然同态。
- 此外,容易看出自然同态 g_E 是满同态映射,根据定理6.3.2可知,代数结构 $\langle S, \odot \rangle$ 的各种性质在其商代数 $\langle S/E, * \rangle$ 中都被保持了下来。

- 例**6.5.1** 给定 $\langle N, + \rangle$,其中N是自然数集合,+是普通加法运算。
- 又知例6.3.1中 $\langle Z_m, +_m \rangle$, 并且在N中定义关系E:
- $n_1 E n_2$: $m|(n_1 n_2) \vee m|(n_2 n_1)$, 其中m, n_1 , $n_2 \in N$, $m|(n_1 n_2)$ 表示 n_1 - n_2 可被m整除.
- 试证E为 $\langle N, + \rangle$ 中的同余关系且给出与E相关的自然同态映射 g_E 。

- E为N中的等价关系是明显的.
- 只要证明E对+满足代换性即可.
- 设 $n_1, n_2, n_3, n_4 \in N \land n_1 E n_2 \land n_3 E n_4 来证明(n_1+n_3)E(n_2+n_4)$,即由
 - $-m|(n_1-n_2)$ 和 $m|(n_3-n_4)$ 来证明有 $m|(n_1+n_3)-(n_2+n_4)$
- $\overrightarrow{m}(n_1+n_3) (n_2+n_4) = (n_1-n_2) + (n_3-n_4)$
- 显然有 $m|(n_1-n_2)+(n_3-n_4)$ 即
- $m|(n_1+n_3)-(n_2+n_4)$
- 问题得证.

• 定理**6.5.2** 设 $\langle S, \odot \rangle \simeq \langle T, * \rangle$ 且**f**为其满同态映射, E_f 为**f**所诱导的同余关系, g_{Ef} 是从 $\langle S, \odot \rangle$ 到 $\langle S/E_f, \diamondsuit \rangle$ 的与 E_f 相关的自然同态,则 $\langle S/E_f, \diamondsuit \rangle \cong \langle T, * \rangle$ 。

• 6.6 积代数

- 定义6.6.1 设 $\langle S, \odot \rangle$ 与 $\langle T, * \rangle$ 是同类型的,而 $\langle S \times T, \otimes \rangle$ 成为新的代数结构,其中 $S \times T$ 是集合S 和集合T的笛卡儿积,且 \otimes 定义如下:
- $\langle s_1, t_1 \rangle \otimes \langle s_2, t_2 \rangle = \langle s_1 \odot s_2, t_1 * t_2 \rangle$, 其中 s_1 , $s_2 \in S$, t_1 , $t_2 \in T$.
- 则称 $\langle S \times T, \otimes \rangle$ 为代数结构 $\langle S, \odot \rangle$ 和 $\langle T, * \rangle$ 的积代数,而代数结构 $\langle S, \odot \rangle$ 和 $\langle T, * \rangle$ 称为 $\langle S \times T, \otimes \rangle$ 的因子代数。

- 类似地可把积代数的定义推广到任何两个同类型的代数结构。另外,重复地使用定义中的方法,也可以定义任何有限数目的同类型代数结构的积代数。
- 可以看出,两个代数结构的积代数,与两个因 子代数是同一类型的。而且还要注意到,在积 代数的定义中,是用因子代数中的相应运算定 义了积代数中的运算。

• 例 6.6.1 给定 $\langle Z_2, +_2 \rangle$ 和 $\langle Z_3, +_3 \rangle$,其中 $Z_2 = \{[0], [1]\}$, $Z_3 = \{[0], [1], [2]\}$,表 6.6.1和表 6.6.2分别给出 $+_2$ 和 $+_3$ 的运算表,为简便记[i]为i。试求 $\langle Z_2 \times Z_3, \otimes \rangle$ 。

表6.6.1		表	£6. 6	.2			
+2	0	1		+3	0	1	2
	0				0		
1	1	0			1		
				2	2	0	1

总结

• 一般二元运算的一些性质。

1. 封闭性

定义设*是定义在集合A上的二元运算,如果对于任意的 $x,y \in A$,都有 $x*y \in A$,则称二元运算*在A上是封闭的。

- 例题1 设A={x|x=2n, n ∈ N},问乘法运算是否封闭?加法运算呢?
- -解:乘法运算是封闭的 加法运算是封闭的

• 2 交换性

- -定义设*是定义在集合<math>A上的二元运算,如果对于任意的 $x,y \in A$,都有x*y=y*x,则称该二元运算*是可交换的。
- 例题**2** 设**Q**是有理数集合,△是**Q**上的二元运算,对任意的 $a,b \in Q$, $a \triangle b = a + b a \cdot b$,问运算△是否可交换。
- 解: 因为a△b = a + b a · b = b + a b · a , 所以运算△是可交换的。

· 3 结合性

- 定义 设*是定义在集合A上的二元运算,如果对于任意的x, y, z ∈ A,都有(x * y) * z = x * (y * z)则称该二元运算*是可结合的。
- 例题**3** 设A是一个非空集合,★是A上的二元运算,对于任意 $a,b \in A$,有a★b = b,证明 ★ 是可结合运算
- 证明: 因为对于任意的 $a,b,c \in A$ $(a \star b) \star c = b \star c = c$ 而 $a \star (b \star c) = a \star c = c$ 所以 $(a \star b) \star c = a \star (b \star c)$

总结

• 4 分配性

-定义 设*, \triangle 是定义在集合A上的两个二元运算,如果对于任意的 $x,y,z\in A$,都有

$$x*(y\triangle z)=(x*y)\triangle (x*z)$$

 $(y\triangle z)*x=(y*x)\triangle(z*x)$ 则称运算*对于运算 \triangle 是可分配的。

解: 容易验证运算△对于运算*是可分配的。但是运算*对于运算△是不可分配的,因为

$$\overrightarrow{\mathbb{m}} \quad (\boldsymbol{\beta} * \boldsymbol{\alpha} \triangle \boldsymbol{\beta}) = \boldsymbol{\beta} * \boldsymbol{\alpha} = \boldsymbol{\beta}$$

$$\overrightarrow{\mathbb{m}} \quad (\boldsymbol{\beta} * \boldsymbol{\alpha}) \triangle (\boldsymbol{\beta} * \boldsymbol{\beta}) = \boldsymbol{\beta} \triangle \boldsymbol{\alpha} = \boldsymbol{\alpha}$$

*	a	β	
a	a	β	38
β	β	a.	

Δ	α β
a	a a
β	α β

• 5 吸收性

-定义设*, \triangle 是定义在集合A上的两个可交换二元运算,如果对于任意的 $x,y \in A$,都有

$$x*(x \triangle y) = x$$

 $x \triangle (x*y) = x$
则称运算*和运算△满足吸收律。

例题5 设集合N为自然数全体,在N上定义两个二元运算*和★,对于任意x,y∈N,有

$$x * y = \max(x, y)$$

 $x \bigstar y = \min(x, y)$

验证运算*和★的吸收律。

• 解: 对于任意a, $b \in N$ $a*(a \star b) = \max(a, \min(a, b)) = a$ $a \star (a*b) = \min(a, \max(a, b)) = a$ 因此, *和 \star 满足吸收律。

总结

• 6 等幂性

- -定义设*是定义在集合<math>A上的一个二元运算,如果对于任意的 $x \in A$,都有x*x=x,则称运算*是等幂的。
- -例题6 设 $\rho(S)$ 是集合 S 的幂集,在 $\rho(S)$ 上定义的两个二元运算,集合的"并"运算U和集合的"交"运算 Ω ,验证U,几是等幂的。
- -解: 对于任意的 $A \in \rho(S)$,有 $A \cup A = A$ 和 $A \cap A = A$,因此运算 \cup 和 \nabla 都满足等幂律。

• 7 幺元

定义 设*是定义在集合A上的一个二元运 算,如果有一个元素 $e_i \in A$,对于任意的元 运算*的左幺元;如果有一个元素 $e_r \in A$, 对于任意的元素 $x \in A$ 都有 $x * e_r = x$,则称 e_r 为A中关于运算*的右幺元;如果A中的 一个元素e,它既是左幺元又是右幺元,则 称e为A中关于运算*的幺元。显然,对于任 意 $x \in A$,有e * x = x * e = x。

• 例题7 设集合S={α, β, γ, δ}, 在S上定义的两个二元运算*和★如表6补.2所示。试指出左幺元或右幺元。

表6补.2

*	a	β	γ	δ	
a	δ	a	β	γ	
β	a	β	γ	δ	
γ	a	β	γ	γ	
δ	a	β	γ	δ	
28 <u> </u>					

В		
P	γ	δ
β	δ	γ
a	γ	δ
δ	a	β
δ	β	γ
	β α δ	β δ α γ δ α

•解:由表6补.2可知β、δ都是S中关于运算 *的左幺元,而α是S中关于运算★的右幺元。 • 定理 设*是定义在集合A上的一个二元运算,且在A中有关于运算*的左幺元 e_l ,和右幺元 e_r ,则 $e_l = e_r = e$,且A中的幺元是唯一的。

证明 因为 e_l 和 e_r 分别是A中关于运算*的 左幺元和右幺元,所以

$$e_l = e_l * e_r = e_r = e$$

设另有一幺元 $e_l \in A$,则
 $e_l = e_l * e = e$ 。

总结

8 零元

定义 设*是定义在集合A上的一个二元运算,如果有一个元素 $\theta_l \in A$,对于任意的元素 $x \in A$ 都有 $\theta_l * x = \theta_l$,则称 θ_l 为A中关于运算*的左零元;

如果有一个元素 $\theta_r \in A$,对于任意的元素 $x \in A$ 都有 $x * \theta_r = \theta_r$,则称 θ_r 为A中关于运算*的右零元:

如果A中的一个元素 θ ,它既是左零元又是右零元,则称 θ 为A中关于运算*的零元。显然,对于任意 $x \in A$,有

$$\theta * x = x * \theta = \theta$$

例题8设集合S={浅色,深色},定义在S上的一个二元运算*如表6补.3所示。

试指出零元和幺元。

•解深色是**S**中关于运算*的零元,浅色是**S**中关于运算*的么元。

• 定理6补.2 设*是定义在集合A上的一个二元运算,且在A中有关于运算*的左零元 θ_l 和右零元 θ_r ,那么, $\theta_l = \theta_r = \theta$,且A中的零元是唯一的。这个定理的证明与定理6补.1相仿。

- - 定理 设 $\langle A,* \rangle$ 是一个代数系统,且集合A中元素的个数大于1。如果该代数系统中存在幺元e和零元 θ ,则 $\theta \neq e$ 。
- 证明: 用反证法。设 $\theta = e$,那么对于任意的 $x \in A$,必有

 $x=e*x=\theta*x=\theta=e$ 于是,**A**中的所有元素都是相同的,这与**A** 中含有多个元素相矛盾。

• 9 逆元

- 定义6补.9 设代数系统〈A,*〉,这里*是定义 在A上的一个二元运算,且e是A中关于运算 *的幺元。
 - 如果对于A中的一个元素a存在着A中的某个元素b,使得b*a=e,那么称b为a的左逆元;
 - 如果 $\mathbf{a} * \mathbf{b} = \mathbf{e}$ 成立,那么称 \mathbf{b} 为 \mathbf{a} 的右逆元;
 - 如果一个元素b,它既是a的左逆元又是a的右逆元,那么就称b是a的一个逆元。

- 很明显,如果b是a的逆元,那么a也是b的逆元,简称为a与b互为逆元。今后,一个元素x的逆元记为 x^{-1} 。
 - 一般地说,一个元素的左逆元不一定等于该元素的右逆元。而且,一个元素可以有左逆元而没有右逆元,甚至一个元素的左(右)逆元还可以不是唯一的。

总结

• 例题9 设集合 $S = \{\alpha, \beta, \gamma, \delta, \zeta\}$,定义在S上的一个二元运算*如表6补.4所示。 试指出代数系统 $\langle S, * \rangle$ 中各个元素的左、右逆元情况。

• 表6补.4

*	a	β	γ	δ	ζ
α	а	β	γ	δ	ζ
β	β	δ	a.	γ	δ
γ	γ	a	β	a.	β
δ	δ	a	γ	δ	γ
ζ	ζ	δ	a	γ	ζ

- · 解: α是幺元;
 - -β的左逆元和右逆元都是 γ ; 即 β 和 γ 互为逆元;
 - -δ的左逆元是 γ 而右逆元是β; β有两个左逆元 γ 和δ;
 - ζ的右逆元是γ,但ζ没有左逆元。

• 定理:设代数系统(A,*),这里*是定义在A上的一个二元运算,A中存在幺元e,且每一个元素都有左逆元。如果*是可结合的运算,那么,这个代数系统中任何一个元素的左逆元必定也是该元素的右逆元,且每个元素的逆元是唯一的。

• 证明设a, b, $c \in A$, 且b是a的左逆元,c是b的左逆元。因为

$$(b*a)*b=e*b=b$$

所以

$$e = c * b = c * ((b * a) * b) = (c * (b * a)) * b = ((c * b) * a) * b = (e * a) * b = a * b$$

因此, b 也是 a 的右逆元。

设元素a有两个逆元b和c,那么

$$b=b*e=b*(a*c)=(b*a)*c=e*c=c$$

因此, a 的逆元是唯一的。

- 例题10 试构造一个代数系统,使得其中只有一个元素具有逆元。
- 解:设 $m, n \in I$, $T = \{x | x \in I, m \le x \le n\}$,那么,代数系统 $\langle T, \max \rangle$
 - 有一个幺元是**m**
 - 只有m有逆元因为 $m = \max(m, m)$ 。
- 例题11 对于代数系统(R,·)。这里R是实数的全体, ·是普通的乘去运算, 是否每个元素都有逆元。
- •解:该代数系统中的幺元是1,
 - -除了零元素0外,所有的元素都有逆元。

• 例题12 对于代数系统 $\langle N_k, +_k \rangle$,这里 $N_k = \{0, 1, 2, ..., k-1\}$, $+_k$ 是定义在 N_k 上的模k加法运算,定义如下:对于任意x, $y \in N_k$ $x +_k y = (x + y) \mod k$ 试问是否每个元素都有逆元。

解:

- $-N_k$ 中关于运算 $+_k$ 的幺元是0
- -可以验证, $+_k$ 是一个可结合的二元运算
- $-N_{k}$ 中的每一个元素都有唯一的逆元,即0的逆元是0,每个非零元素x的逆元是k-x。

总结

- 可以指出: 〈A,*〉是一个代数系统, *是A上的一个二元运算, 那么该运算的有些性质可以从运算表中直接看出。那就是:
 - 1. 运算*具有封闭性,当且仅当运算表中的每个元素都属于A。
 - 2. 运算*具有可交换性,当且仅当运算表关于主对角线是对称的。
 - 3. 运算*具有等幂性,当且仅当运算表的主对角线上的每一元素与它所在行(列)的表头元素相同。
 - 4. A关于*有零元,当且仅当该元素所对应的行和列中的元素都与该元素相同。
 - 5. A中关于*有幺元,当且仅当该元素所对应的行和列依次与运算表的行和列相一致。
 - 6. 设A中有幺元, a和b互逆, 当且仅当位于a所在行, b 所在列的元素以及b所在行, a所在列的元素都是幺元。

作业

• 151: 14,15,16 (246)