Taller IV

Bourbaki

30 de noviembre de 2024

1. Siendo a, b, c, z_0 constantes complejas, demostrar:

$$\lim_{z \to z_0} c = c; \quad \lim_{z \to z_0} (az + b) = az_0 + b; \quad \lim_{z \to z_0} (z^2 + c) = z_0^2 + c$$

$$\lim_{z \to z_0} \operatorname{Re}(z) = \operatorname{Re}(z_0); \quad \lim_{z \to z_0} \overline{z} = \overline{z_0}; \quad \lim_{z \to 0} \frac{\overline{z}^2}{z} = 0$$

Solucao: $\lim_{z\to z_0}c=c$, note que dado $\varepsilon>0$, tomando $\delta=$ lo que le de la gana

$$|f(z) - f(z_0)| = |c - c| = 0 < \epsilon$$

 $\lim_{z\to z_0}(az+b)=az_0+b$, eso es trivial allí. Dado $\epsilon>0$, sea $\delta=\frac{\epsilon}{|a|}$, note que si $|z-z_0|<\delta$ entonces

$$|f(z) - f(z_0)| = |az + b - az_0 - b| = |a||z - z_0| < |a|\delta = \epsilon.$$

Luego viene uno que usted tiene que hacer cositas pero pues no deja de ser una maricada, $\lim_{z\to z_0}(z^2+c)=z_0^2+c$. Usted primero agarre $\delta_1\leq 1$, note que si

$$|z| - |z_0| < |z - z_0| < \delta < 1$$

entonces

$$|z + z_0| < |z| + |z_0| < 1 + 2|z_0|$$

entonces ponga $\delta_2 = \frac{\varepsilon}{1+2|z_0|}$ y su delta es $\delta = \min\{\delta_1, \delta_2\}$, y eso le sirve para todo epsilon porque pille:

$$|f(z) - f(z_0)| = |z^2 - z_0^2| = |z - z_0||z + z_0| < \epsilon$$

y por eso es que uno debe parar bolas en diferencial.

lím $_{z\to z_0}\Re(z)=\Re(z_0)$, sea $\delta=\sqrt{\varepsilon}$, note que para todo $\varepsilon>0$

$$|\Re(z) - \Re(z_0)| = |\Re(z - z_0)| \le |z - z_0|^2 < \delta^2 = \epsilon$$

1

 $\lim_{z\to z_0} \overline{z} = \overline{z_0}$, sea $\delta = \varepsilon$, para todo $\varepsilon > 0$, tenemos que:

$$|\overline{z}-\overline{z_0}|=|\overline{z-z_0}|=|z-z_0|<\epsilon$$
.

Para el último tome $\delta = \epsilon$, note que para todo $\epsilon > 0$ tenemos que

$$\left|\frac{\overline{z}^2}{z}\right| = \frac{|\overline{z}||\overline{z}|}{|z|} = |\overline{z}| = |z| \le \epsilon.$$

2. Calcular:

$$\lim_{z \to \infty} \frac{4z^2}{(z-1)^2}; \quad \lim_{z \to 1} \frac{1}{(z-1)^3}; \quad \lim_{z \to \infty} \frac{z^2+1}{z-1}$$

Ahí dice calcular, entonces eso da 4, infinito y el otro también, si no me cree pues hagalo ud

3. Demostrar que si f es continua y no nula en un punto z_0 , entonces $f(z) \neq 0$ para todo z en alguna vecindad de z_0 (V_{z_0}).

Demostración. Suponga que no, ahí van a pasar cosas, lo que pasa allí es que existe $z \in B(z_0, \delta)$ tal que f(z) = 0 tome $\varepsilon = |f(z_0)|$, como en esa bola la función es continua entonces

$$|f(z) - f(z_0)| = |f(z_0)| < \epsilon = |f(z_0)|$$

si pilla que le contradice cosas?

4. Sea $A \subset \mathbb{C}$ un conjunto compacto. Mostrar que si f es una función continua definida sobre A, entonces f(A) es compacto.

Demostración. Sea $\{z_n\}$ una sucesión en A, como A es compacto entonces tiene una subsucesión convergente, digamos $\{z_k\}$ que converge a z, esto que dado $\delta > 0$, existe un K tal que si k > K entonces $|z_k - z| < \delta$, por la continuidad $|f(z_k) - f(z)| < \varepsilon$ para todo $\varepsilon > 0$. Acabó porque eso le dice que allá la sucesión $f(z_k)$ converge.

5. Sea $A\subset\mathbb{C}$ un conjunto compacto, y $f:A\to\mathbb{R}$ una función continua. Demostrar que f tiene un máximo sobre A.

luego sigo, el deber me llama

6. Sea $A \subset \mathbb{C}$ un conjunto compacto, y f : $A \to \mathbb{C}$ una función continua. Demostrar que f es uniformemente continua.