Moment cinétique

Pour un point matériel

$$\overrightarrow{L}_O(M) = \overrightarrow{OM} \wedge m \overrightarrow{v}$$

Pour un solide

$$\vec{L}_O = \sum_{\substack{\text{points } i\\ \text{du solide}}} \vec{L}_O(M_i)$$

Moment cinétique scalaire

$$L_{\Delta} = \overrightarrow{L}_{O \in \Delta} \cdot \overrightarrow{e}_{\Delta}$$

Vecteur directeur de l'axe Δ

Le moment d'inertie d'un objet est d'autant plus grand que sa masse est importante et qu'elle est répartie loin de l'axe de rotation

Théorème du moment cinétique

Théorème du moment cinétique

Dans un référentiel galiléen

$$\frac{\operatorname{d}\vec{L}_{O}}{\operatorname{d}t} = \sum_{i} \vec{\mathcal{M}}_{O}(\vec{F}_{i})$$

Moment cinétique par rapport à C

Théorème du moment cinétique par rapport à un axe

Pour un solide en rotation
$$\frac{\operatorname{d} L_{\Delta}}{\operatorname{d} t} = \sum_{i} \mathcal{M}_{\Delta}(\vec{F_i})$$

Application au pendule pesant

Forces appliquées:

- Poids \vec{P} en G.
- \vec{F} force exercée par l'axe.

 J_{Δ} : moment d'inertie du solide par rapport à Δ

Application du TMC :

$$\frac{\mathrm{d} L_{\Delta}}{\mathrm{d} t} = \mathcal{M}_{\Delta}(\vec{P}) + \underbrace{\mathcal{M}_{\Delta}(\vec{F})}_{=0}$$

 $\mathcal{M}_{\Delta}(ec{P}) = \overrightarrow{OG} \wedge m ec{g} \cdot ec{e}_{\Delta}$ O est le projeté de G sur Δ

$$\frac{\mathrm{d}\,L_\Delta}{\mathrm{d}\,t} = J_\Delta \frac{\mathrm{d}\,\Omega}{\mathrm{d}\,t} = J_\Delta \ddot{\theta}$$

Avec $\theta \ll 1, \sin(\theta) \approx \theta$

Équation différentielle d'un oscillateur harmonique 🔍

$$\ddot{\theta} + \frac{mlg}{J_{\Delta}}\theta = 0$$

Moment d'une force

Par rapport à un point

Point d'application de la force \vec{F}

Par rapport à un axe

$$\mathcal{M}_{\Delta}(\vec{F}) = (\overrightarrow{OP} \wedge \overrightarrow{F}) \cdot \overrightarrow{e_{\Delta}}$$
 Indique la capacité de la force \vec{F} à faire tourner un solide autour de Δ

Vecteur directeur de l'axe Δ

Couple de forces

Ensemble de forces dont la résultante est nulle et dont le moment total ne l'est pas

-Le moment par rapport à O des forces ne dépend pas de O

Énergie

Énergie cinétique d'un solide en rotation

$$E_c = \frac{1}{2} J_\Delta \Omega^2$$

en joules

Puissance d'un moment de force

La puissance fournie par une force de moment \mathcal{M}_{Δ} par rapport à un axe Δ est :

$$P = \mathcal{M}_{\Delta}\Omega$$

Loi de l'énergie cinétique

$$\frac{\mathrm{d}\,E_c}{\mathrm{d}\,t} = \sum_i \underbrace{\mathcal{M}_\Delta(\vec{F_i})\Omega}_{P_i}$$

Règle de la main droite

Direction du moment (cinétique, de force)

