

TECNOLOGIA EM SISTEMAS PARA INTERNET

Kálita Rodrigues de Souza Lucas Nascimento Verdam de Araújo Nikolle de Lacerda Nascimento Pedro Henrique Fernandes de Santana

RELATÓRIO DE PRÁTICA INTEGRADA DE CIÊNCIA DE DADOS E APRENDIZADO DE MÁQUINA

Brasília - DF

26/01/2022

Sumário

- 1. Objetivos 3 2. Descrição do problema 4
- 3. Desenvolvimento 5
- 3.1 Código implementado 5
- 4. Considerações finais 6 Referências 7

1. Objetivos

Os objetivos dessa sprint são armazenar os dados que foram coletados, explorados e preparados na *sprint* 1 e após isso será feita uma análise dos dados para retirar algum valor dos dados.

2. Descrição do problema

A problemática possui as seguintes principais etapas:

- Criar uma conta no MongoDB Atlas;
- Entender como o *pymongo* e o *mongoDB* funcionam;
- Conectar-se com o banco de dados pelo pymongo;
- Criar o banco de dados;
- Criar coleção;
- Pegar os dados da preparação da sprint 1 e inserir na coleção criada;

3. Desenvolvimento

As principais tecnologias utilizadas no desenvolvimento desta tarefa foram:

Python

Python é uma linguagem de programação de alto nível, do termo em inglês, high level language. Estruturas desse tipo são, geralmente, classificadas como orientadas a objetos. (COUTINHO, 2019). De acordo com Roveda (2021), ao trabalhar com ciência de dados, desenvolver em Python pode ser uma alternativa, pois o crescente número de bibliotecas disponíveis em Python voltadas à análise de dados oferece funções e métodos de otimização para praticamente quaisquer objetivos.

Google Colaboratory

O Google Colaboratory, ou Colab, é um serviço de nuvem gratuito hospedado pelo Google para incentivar a pesquisa de Aprendizado de Máquina e Inteligência Artificial (SANTOS, 2020). A ferramenta funciona com uma estruturação em células. Os códigos rodados dentro dessas células podem ser rodados separadamente ou em conjunto, permitindo uma programação mais dinâmica (NOLETO, 2020). A plataforma roda linguagens como *Python* e *Jupyter*.

Github

É uma plataforma online de trabalho colaborativo. A primeira parte do nome, "Git", é por causa da utilização do sistema de controle de versão e a segunda parte, "Hub", tem a ver com a conexão entre profissionais de programação de qualquer lugar do mundo. (SOUZA, 2020).

Criamos um *notebook* para o projeto na plataforma *Google Colab*, pois ela possibilita o *upload* dos arquivos de dados bem como o desenvolvimento compartilhado dos códigos necessários para se realizar as tarefas solicitadas. Neste notebook, para a codificação dos *scripts* necessários para coleta, preparação e exploração dos dados utilizou-se a linguagem *Python* por ser uma das mais apropriadas e usadas para tarefas relacionadas à ciência de dados. Além é claro, dos módulos e bibliotecas necessários para tal, sendo eles: a biblioteca *Pandas* e o módulo 'os' do *python* para a coleta e preparação; a biblioteca *Matplotlib* e *PandasSQL* para a exploração.

MongoDB

Esse banco de dados não relacional e orientado a documentos é um dos mais utilizados no mercado. Foi lançado em 2009 e é escrito de C++ o que o faz estar disponível em várias plataformas (MONGO, 2022).

3.1 Código implementado

A seguir será apresentado o código que foi implementado nessas *sprint*:

1.7 - Armazenamento:

Primeiro, instalar o *mongoDB* e importá-lo, assim como importar o *Pandas*

```
pip install pymongo[srv]
!pip install dnspython
import pymongo
import pandas as pd
```

Conexão com o MongoDB e criando um banco de dados:

```
myclient
    pymongo.MongoClient("mongodb://lucanis12t:lucanis12t@cluster-shard-00-
00
    .as99a.mongodb.net:27017,cluster-shard-00-01.as99a.mongodb.net:27017,c
lu
    ster-shard-00-02.as99a.mongodb.net:27017/myFirstDatabase?ssl=true&repl
ic
    aSet=atlas-fbdlnt-shard-0&authSource=admin&retryWrites=true&w=majority
    ")
mydb = myclient["Cluster"]
```

Verificar se existe um banco de dados no sistema:

```
print(myclient.list_database_names())
```

Criando coleção:

```
mycol = mydb["Moves"]
print(mydb.list_collection_names())
```

Ler o arquivo dados_preparados e insere seus dados na coleção do banco de dados:

```
df = pd.read_csv('dados_preparados.csv')

for i in range(len(df)):
    mydict =
{"X":int(df['X'][i]),"Y":int(df['Y'][i]),"Z":int(df['Z'][i]),"Ano":int(df
['Ano'][i]),"Mes":int(df['Mes'][i]),"Dia":int(df['Dia'][i]),"Horas":int(d
f['Horas'][i]),"Minutos":int(df['Minutos'][i]),"Segundos":int(df['Segundos'][i]),"Tipo_movimento":df['Tipo_movimento'][i],"Genero":df['Genero'][i],"Num_voluntario":int(df['Num_voluntario'][i]),"Media":int(df['Media'][i]))
    x = mycol.insert_one(mydict)
```

1.8 - Análise:

Importar MongoClient, Pandas e arquivos do google.colab

```
from pymongo import MongoClient
import pandas as pd
from google.colab import files
```

Conexão com o mongoDB:

```
myclient =
MongoClient("mongodb://lucanis12t:lucanis12t@cluster-shard-00-00.as99a
.m
ongodb.net:27017,cluster-shard-00-01.as99a.mongodb.net:27017,cluster-s
ha
rd-00-02.as99a.mongodb.net:27017/myFirstDatabase?ssl=true&replicaSet=a
tl as-fbdlnt-shard-0&authSource=admin&retryWrites=true&w=majority")
```

Salva a *database* e a coleção em uma variável:

```
banco = myclient["Cluster"]
coll = banco["Moves"]
```

Lista todos os documentos da coleção e passa-os para o dataframe:

```
mydoc = coll.find()

df = pd.DataFrame(list(mydoc))
```

Excluindo a coluna _id dos dados:

```
df = df.drop(columns=['_id'])
```

Transforma o dataframe em um arquivo .csv:

```
df.to_csv('Medidas.csv', encoding='utf-8', index=False)
```

4. Considerações finais

A Sprint foi realizada com desempenho satisfatório. O grupo conseguiu realizar as tarefas sem grandes problemas.

Referências

Pandas- https://pandas.pydata.org/docs/

PandaSql- https://pypi.org/project/pandasql/

Python- https://docs.python.org/3/

Matplotlib- https://matplotlib.org/

Sobre correlação

https://escoladedados.org/tutoriais/correlacao-nao-e-causalidade-mas-o-que-e-entao/

COUTINHO, Thiago. O que é Python e pra que serve?. **Voitto**, 2019. Disponível em: https://www.voitto.com.br/blog/artigo/python. Acesso em: 01 de aug. de 2021.

NOLETO, Cairo. Google Colab: saiba o que é essa ferramenta e como usar. **Trybe**, 2020. Disponível em: https://blog.betrybe.com/carreira/google-colab/. Acesso em: 29 de jul. de 2021.

ROVEDA, Ugo. O que é Python, para que serve e por que aprender?. **Kenzie**, 2021. Disponível em: https://kenzie.com.br/blog/o-que-e-python/>. Acesso em: 01 de aug. de 2021.

SANTOS, Thiago G. Google Colab: O que é, Tutorial de Como Usar e Criar Códigos. **Alura**, 2020. Disponível em:

- Acesso em: 29
de jul. de 2021.

SOUZA, Ivan de. Entenda de uma vez o que é Github e a importância dele num negócio. **Rock Content**, 2020. Disponível em: https://rockcontent.com/br/blog/o-que-e-github/. Acesso em: 01 de aug. de 2021. MONGO, db. O que é o MongoDB?. **MongoDB**, 2022. Disponível em: <<u>O que é o MongoDB</u>. Acesso em 26 de Jan. de 2022.