北京大学数学学院期中试题

2019-2020 学年第一学期

考试科目 线性代数 考试时间 2019年11月12日

姓名学

一. (36 分) 填空題.

- 1) 设 $\alpha_1, \alpha_2, \alpha_3$ 是矩阵 $A = \begin{bmatrix} 1 & t & 3 \\ 0 & 1 & t \\ 1 & 0 & 2 \end{bmatrix}$ 的 列 向 量, $\beta = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$. 当 t =__时, $\alpha_1, \alpha_2, \alpha_3$ 不能 线性 表出 β ; 当 t 取___值时, $\alpha_1, \alpha_2, \alpha_3$ 能以唯一的方式线性表出 β .
- 对矩阵做初等行变换,矩阵的____ 不变 (多选).
 A. 秩 B. 行空间 C. 列空间 D. 解空间
- 3) 若 $A = \begin{bmatrix} 1 & 2 \\ 0 & 2 \\ 3 & 1 \end{bmatrix}$, 則 $A^{T}A = _$, $|A^{T}A| = _$, $|A^{T}A| = _$, $|AA^{T}A| = _$, |A
- 4)设α=[112] 与β=[321] 是3维几何空间里的向量.则 α.β夹角的余弦值是___α,β张成的三角形的面积是__;若

二.(16 分)已知向量组 $\alpha_1, \cdots, \alpha_n$ 的秩等于 $r \geq 1$. 证明: $\alpha_1, \cdots, \alpha_r \quad 能线性表出 \quad \alpha_1, \cdots, \alpha_n \quad 当且仅当 \quad \alpha_1, \cdots, \alpha_r$ 线性无关.(每一步都要有依据)

三. (12 分) 计算 n 阶行列式
$$A_n = \begin{vmatrix} x & a & a & \cdots & a & a \\ -a & x & a & \cdots & a & a \\ -a & -a & x & \cdots & a & a \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -a & -a & -a & \cdots & -a & x \end{vmatrix}$$
.

四. (24分) 已知列向量组 $\alpha_1,\alpha_2,\cdots,\alpha_5\in R^4$ 的秩为 3 ,且 $\alpha_3=2\alpha_1-\alpha_2\ ,\ \alpha_5=\alpha_2+\alpha_4\ .$

- 1) 写出矩阵 $A = [\alpha_1 \cdots \alpha_5]$ 的行简化阶梯型;
- 2) 求 A 列向量组的秩 和 一个极大无关组;
- 3) 求 A 行空间的一组基;若已知向量 β=[14ααb] 属于 A 的行空间,求β在此基下的坐标及 α,b 的值;
- 4) 求线性方程组 $AX = \alpha_5$ 的通解;
- 5) 求所有矩阵 B, 使得 A = [α₁α₂α₅] B.

五. (12分) 设A是n级矩阵, k是任意正整数.证明:

- 1) Ak的列空间 ⊇ Ak+1 的列空间;
- 2) 若 Ak 秩 = Ak+1 秩,则有 Ak+1 秩 = Ak+2 秩;
- 3) 若 A^k 秩 $-A^{k+1}$ 秩 $=\Gamma$, 则有 A^{k+1} 秩 $-A^{k+2}$ 秩 $\leq \Gamma$.