Lógica proposicional

- 1) Sean las proposiciones: p:"Hace frío" y q:"Se suspende la salida al club". Traducir las siguientes proposiciones al lenguaje simbólico:
- a) Hace frío y se suspende la salida al club.
- b) No hace frío y no se suspende la salida al club.
- c) Hace frío o no se suspende la salida al club.
- d) No es cierto que hace frío y se suspende la salida al club.
- e) Si hace frío se suspende la salida al club.
- f) Si no hace frío, no se suspende la salida al club.
- g) No es cierto que, se suspende la salida al club si no hace frío.
- h) Ni hace frío ni se suspende la salida al club.
- i) Si no se suspende la salida al club entonces no hace frío.
- 2) Ídem 1) siendo, p: "Juan es trabajador", q: "Pedro es trabajador".
- a) Juan es trabajador y Pedro es holgazán.
- b) Juan y Pedro son holgazanes.
- c) Ni juan ni Pedro son trabajadores.
- d) Juan es holgazán pero Pedro es trabajador.
- e) No es cierto que Juan y Pedro sean holgazanes.
- 3) Sean las proposiciones: s: "Es jueves" t: "El lunes hubo un choque". Traducir al lenguaje corriente las siguientes proposiciones:
- a) ~s \(\times -t
- b) $\sim t \Rightarrow s$
- c) \sim (s \vee t)
- d) $\sim t \wedge s$
- e) \sim (s \Rightarrow t)
- f) \sim (t $\wedge \sim$ s)
- g) $s \wedge (\sim t \Rightarrow \sim s)$
- h) $(t \lor s) \Rightarrow \sim s$

4) Sean "a" y "b" proposiciones verdaderas y "c" y "d" proposiciones falsas, Indicar el valor de verdad de:

a)
$$(a \lor b) \land (c \lor d)$$

b)
$$(a \lor c) \land (b \lor d)$$

c)
$$(a \wedge c) \vee (b \wedge d)$$

d) (a
$$\lor$$
 c) \Rightarrow b

e)
$$(a \land \sim c) \Rightarrow c$$

5) Justificar si la información dada es suficiente para determinar el valor de verdad de la proposición indicada:

a)
$$(p \Rightarrow q) \land r$$
 sabiendo que $v(r \Rightarrow q) = V$

b)
$$(p \land q) \Rightarrow (p \lor r)$$
 sabiendo que $v(p) = V$, $v(r) = F$

c)
$$(\sim p \land \sim q) \Leftrightarrow (p \lor q)$$
 sabiendo que $v(p) = V$

d)
$$(p \Rightarrow q) \Rightarrow r$$
 sabiendo que $v(p) = v(r) = F$

e)
$$(p \Rightarrow r) \lor q$$
 sabiendo que $v(p \Rightarrow r) = V$

6) Dados p, q y r proposiciones y v(p)= V y v (q) = F determinar si es posible el valor de verdad de :

$$\sim (p \lor \sim q) \Rightarrow [(\sim p \Rightarrow q) \land r]$$

Justificar.

7) Si p, q y r son proposiciones y v (p) = V y v (q) = F, y r es una proposición cualquiera, hallar el valor de verdad de:

$$[(p \Rightarrow r) \Rightarrow q] \Rightarrow (r \Leftrightarrow q)$$

Justificar.

8) Deducir el valor de verdad de p, q, r, s, t suponiendo que son simultáneamente verdaderas las proposiciones siguientes:

a)
$$\sim p$$
 $\sim (p \Rightarrow q)$ $\sim (p \Rightarrow q)$ $\sim (p \Rightarrow q)$ $\sim (p \land t)$ $\sim (p \land t)$ $\sim t \Rightarrow s$ $(p \lor q) \Rightarrow r$ $\sim r \lor s$

c) $r \lor t$ $s \Rightarrow \sim t$ $\sim (p \lor r)$ $q \lor t$ $\sim (q \Rightarrow r)$ $\sim [\sim (p \Leftrightarrow q)]$

9) Deducir el valor de verdad de "p", considerando verdaderas todas las proposiciones dadas:

a) b)
$$\sim p \Rightarrow \sim m$$
 $\sim s$ $t \Rightarrow s$ $t \Leftrightarrow \sim q$ $q \lor \sim s$ $q \Rightarrow r$ $\sim r \lor \sim p$

- 10) Deducir el valor de verdad de la proposición "Pedro es buen actor" de la conjunción de las siguientes premisas verdaderas:
 - Si Pedro es buen actor, entonces soy buen profesor.
 - María practica natación si y sólo si Juan la dirige.
 - No es cierto que Juan sea un nadador experto y dirija a María.
 - Si la lección resulta difícil, no soy buen profesor.
 - La lección resulta difícil o María no estudia.
 - Juan no es un nadador inexperto.
 - María estudia si no practica natación.

11) Establecer si es válida la conclusión en cada uno de los siguientes conjuntos de premisas:

a)
$$p \Rightarrow q$$

$$\sim q$$

$$\sim p \Rightarrow r$$

$$\therefore r$$

b) c) d)
$$r \Leftrightarrow (p \land q)$$
 $p \Rightarrow q$ $p \lor \sim q$ $\sim q \Leftrightarrow r$ $\sim t \lor s$ $\sim s \land p$ $\therefore r$

c)
$$p \Rightarrow q$$

$$r \Rightarrow \sim q$$

$$\therefore r \Rightarrow \sim p$$

$$\begin{array}{l}
 d) \\
 p \lor \sim q \\
 \sim q \iff r \\
 \underline{p \lor \sim r} \\
 \vdots p
 \end{array}$$

12) Analizar la validez de la conclusión en cada caso:

a)
$$\begin{array}{c}
\sim S \\
p \Rightarrow r \\
q \Rightarrow p \\
q \lor t \\
\underline{t \Rightarrow S} \\
\therefore r
\end{array}$$

b)
$$p \land \sim q$$

$$\sim q \Leftrightarrow t$$

$$\frac{\sim t \lor \sim r}{\therefore r}$$

c)
$$p \lor q$$

$$\frac{\sim p}{\because q}$$

d)
$$(r \Rightarrow q) \land r$$

$$s \Rightarrow t$$

$$r \Rightarrow s$$

$$\therefore q \lor t$$

13) Demostrar los siguientes teoremas por vía exclusivamente lógica, sin recurrir a propiedades de los números reales:

a)
Hipótesis)

$$x \neq 0 \Rightarrow y = 1$$

 $x = y \Rightarrow y = z$
 $y = z \Rightarrow y \neq 1$
 $x = y$

b)
Hipótesis)

$$x = y \Rightarrow y = z$$

 $y = z \Rightarrow y = w$
 $y = w \Rightarrow y = 1$
 $y \neq 1$

Tesis)
$$x = 0$$

Tesis)
$$x \neq y$$

14) Justificar los siguientes razonamientos:

a)

Si 2 es mayor que 1, entonces 3 es mayor que 1 Si 3 es mayor que 1, entonces 3 es mayor que 0

2 es mayor que 1

b)
$$r \Rightarrow s$$

$$r$$

15) A partir de las siguientes premisas

"Juan necesita un abogado o Juan necesita un médico" "Si Juan necesita un abogado entonces necesita un médico",

se deduce que:

- a) necesita un médico
- b) necesita un abogado
- c) no necesita un médico
- d) no necesita un abogado

Indicar cuál es la respuesta correcta y justificar.

16) Simplificar las siguientes proposiciones, justificando cada paso:

a)
$$\sim p \land (\sim q \Rightarrow p)$$

b)
$$(p \Rightarrow q) \lor (q \Rightarrow r)$$

c)
$$(p \land \sim q) \land (p \Rightarrow \sim r) \land (q \lor r)$$

d)
$$(p \Rightarrow \sim q) \Rightarrow p$$

e)
$$(\sim p \Rightarrow q) \land \sim p$$

f)
$$(p \land \sim q) \Rightarrow q$$

g)
$$(p \land \sim q) \Rightarrow \sim p$$

h)
$$(p \Rightarrow q) \land [\sim (\sim p \land \sim q)]$$

i)
$$\sim$$
(p \Rightarrow q) \wedge (p \vee q)

j)
$$(\sim p \Rightarrow q) \lor (\sim p \land q)$$

k)
$$(p \Rightarrow q) \Rightarrow (\sim p \Rightarrow q)$$

I)
$$[(\sim p \Rightarrow q) \land \sim p] \Rightarrow p$$

m)
$$[(\sim q \land p) \lor (p \lor q)] \land \sim p$$

n)
$$p \Rightarrow [(p \land q) \land (p \lor \sim q)]$$

- 17) Negar las siguientes proposiciones:
 - a) $\exists x / P(x) \lor \sim Q(x)$
 - b) \forall x: P(x) \Rightarrow Q(x)
 - c) $\forall x, y : x * y = 0$
 - d) $\forall x \in \mathbb{N}$: x es primo \Rightarrow x es impar.
 - e) $\forall x \in Z$: $4/x \vee 7/x$.
 - f) $\exists x \in R/x<2 \land x>3$.
 - q) $\exists x \in R/x \neq 2 \land x > -1$
- 18) Dadas las siguientes proposiciones, analizar el valor de verdad de cada una, negarlas y analizar su valor de verdad.
 - a) $\forall x,y \in R : y+x = y$.
 - b) $\exists x,y \in R/2y + x = y$.
 - c) $\forall x \in R, \exists y \in R: y+x = 1.$
 - d) $\exists y \in R/ \forall x \in R: y+x = 1$.
 - e) $\forall x \in \mathbb{Z}$: $2x \ge 0 \implies x^2 \ es \ par \ \lor x \ es \ par$
- 19) Dadas las siguientes proposiciones, se pide:
 - Expresarlas simbólicamente,
 - negarlas y retraducirlas al lenguaje corriente.
 - Analizar el valor de verdad.
 - a) Todos los números reales son mayores o iguales que dos.
 - b) Hay enteros no nulos.
 - c) El cuadrado de todo número real es mayor que cero.
 - d) Algunos enteros son múltiplos de cuatro y son divisibles por cinco
 - e) El cubo de un número real es negativo.
 - f) Existen enteros cuyo cubo aumentado en uno es igual al cubo del siguiente.
 - g) La raíz cuadrada de algunos números reales positivos es mayor o igual que cuatro.

20) Dadas las siguientes proposiciones se pide:

Traducir al lenguaje corriente, negarlas y luego expresar la negación en el lenguaje usual.

a)
$$\forall x \in \mathbb{Z}: 2x^3 >= 0$$

b)
$$\forall x \in R, \exists y \in R / x+y = 0.$$

c)
$$\exists y \in R, \forall x \in R: x+y = 0.$$

d)
$$\forall x \in R, \exists y \in R / x * y = 1.$$

e)
$$\exists y \in R, \forall x \in R : x*y = 1$$
.

21) Dados los siguientes enunciados, a) escribirlos en lenguaje coloquial, b) obtener el valor de verdad, c) negarlo y d) hallar el valor de verdad de lo negado. Justificar.

a)
$$\forall x \in \mathbb{N}$$
: $(12 = x + 4 \lor x = 5 * 3) \Rightarrow x \text{ es impar}$

b)
$$\forall x \in \mathbb{R} \ \exists y \in \mathbb{Z} : x^2 \ge 0 \ \Rightarrow x - 2y = 0$$

- c) $\forall x \in \mathbb{Z}$: $(x \ es \ par \ \land x \ es \ múltiplo \ de \ 4) <math>\Rightarrow x \ es \ múltiplo \ de \ 8$
- d) $\exists x, y \in \mathbb{R}: x * y < -1$

e)
$$\forall x \in \mathbb{Z}$$
: $x^2 \ge 0 \Rightarrow x \ge 0$

f)
$$\forall x \in \mathbb{Z} \ \forall y \in \mathbb{Z} : x * y \ge 0 \Rightarrow (x \ge 0 \ \lor y \ge 0)$$

22) Hallar el circuito lógico correspondiente a las siguientes expresiones dadas:

a)
$$(A \wedge B) \vee (C \wedge \sim A)$$

b)
$$A \vee (C \wedge \sim B)$$

c)
$$(A \wedge B) \vee [(C \vee A) \wedge \sim B]$$

d)
$$[(A \lor \sim B) \land C] \lor (\sim C \land B)$$

23) Hallar la expresión que representa cada uno de los circuitos y cuando sea posible, simplificarlo.

