Mistat bootstrap analysis

Peter Gedeck

August 2023

1 Bootstrap approaches

- Bootstrap Analysis (BA): For each resample, create a new dataset by randomly sampling rows from the original dataset with replacement
- Befitting Bootstrap Analysis (BBA): For each resample, create a new dataset by randomly sampling rows from each group with replacement
- Parametric Bootstrap Analysis (pBA): Create a model using the original dataset. For each resample, replace the outcome with adding randomly sampled residuals (with replacement) to the predicted values from the original model.
- Parametric Befitting Bootstrap Analysis (pBBA): For each resample, replace the outcome values for each group with a random values sampled from a normal distribution with mean and standard deviation as the original group.
- Wild Bootstrap Analysis (wBA): Create a model using the original dataset. For each resample, multiply the residuals with a random value sampled from a normal distribution N(0,1) and add to the fitted values from the original model.

2 Wave soldering dataset

2.1 Main effects

- Formula: $Data \sim A + B + C + D + E + F + G$
- Number of bootstrap samples: 100
- Distribution of bootstrap sampled coefficients: Figure 2

Figure 1: Std.dev. of coefficients for wave soldering dataset

Figure 2: Distribution of main effect coefficient estimates for the wave soldering dataset. Blue: ols estimate \pm std.dev. For each bootstrap approach, boxplot: distribution, red: interquartile range, green: mean \pm std.dev.

Figure 3: Distribution of main effects and interaction coefficient estimates for the wave soldering dataset. Blue: ols estimate \pm std.dev. For each bootstrap approach, boxplot: distribution, red: interquartile range, green: mean \pm std.dev.

Table 1: BBA std. deviation of the regression coefficients for the wave soldering data.

	Regr.	Main Bootstrap	Delta	Regr.	Interaction Bootstrap	Delta
	negr.	Боосытар	Dena	rtegr.	Dootstrap	Delta
Intercept	0.299	0.200	-33.2	0.239	0.192	-19.7
A	0.299	0.200	-33.0	0.239	0.198	-17.0
В	0.299	0.193	-35.3	0.239	0.197	-17.5
\mathbf{C}	0.299	0.197	-34.0	0.239	0.183	-23.5
D	0.299	0.196	-34.5			
${f E}$	0.299	0.192	-35.8			
\mathbf{F}	0.299	0.198	-33.8			
G	0.299	0.189	-36.6	0.239	0.195	-18.4
A:B				0.239	0.188	-21.3
A:C				0.239	0.192	-19.4
A:G				0.239	0.195	-18.3
B:C				0.239	0.195	-18.5
B:G				0.239	0.197	-17.6
C:G				0.239	0.195	-18.3
A:B:C				0.239	0.194	-18.9
A:B:G				0.239	0.198	-16.8
A:C:G				0.239	0.189	-20.9
B:C:G				0.239	0.190	-20.5
A:B:C:G				0.239	0.192	-19.7

2.2 Interactions

- Formula: $Data \sim A + B + C + G + A : B + A : C + A : G + B : C + B : G + C : G + A : B : C + A : B : G + A : C : G + B : C : G + A : B : C : G$
- Number of bootstrap samples: 100
- \bullet Distribution of bootstrap sampled coefficients: Figure 3

2.3 Comparisons

Table 2: BA std. deviation of the regression coefficients for the wave soldering data.

		Main			Interaction	
	Regr.	Bootstrap	Delta	Regr.	Bootstrap	Delta
Intercept	0.299	0.319	6.7	0.239	0.335	40.3
\mathbf{A}	0.299	0.302	1.1	0.239	0.348	45.8
В	0.299	0.308	3.2	0.239	0.349	46.2
\mathbf{C}	0.299	0.297	-0.7	0.239	0.353	48.0
D	0.299	0.316	5.7			
\mathbf{E}	0.299	0.307	2.8			
F	0.299	0.314	5.0			
G	0.299	0.308	3.0	0.239	0.343	43.6
A:B				0.239	0.360	50.9
A:C				0.239	0.358	50.1
A:G				0.239	0.345	44.6
B:C				0.239	0.354	48.2
B:G				0.239	0.351	47.2
C:G				0.239	0.344	44.2
A:B:C				0.239	0.358	50.1
A:B:G				0.239	0.345	44.8
A:C:G				0.239	0.360	50.7
B:C:G				0.239	0.349	46.3
A:B:C:G				0.239	0.347	45.3

Table 3: pBBA std. deviation of the regression coefficients for the wave soldering data.

	T.	Main	D. I.	T.	Interaction	D 1:
	Regr.	Bootstrap	Delta	Regr.	Bootstrap	Delta
Intercept	0.299	0.192	-35.6	0.239	0.192	-19.4
A	0.299	0.191	-35.9	0.239	0.191	-19.8
В	0.299	0.194	-35.2	0.239	0.194	-18.9
\mathbf{C}	0.299	0.194	-35.0	0.239	0.194	-18.6
D	0.299	0.201	-32.8			
\mathbf{E}	0.299	0.191	-36.0			
F	0.299	0.201	-32.6			
G	0.299	0.196	-34.4	0.239	0.196	-17.8
A:B				0.239	0.191	-19.8
A:C				0.239	0.203	-14.9
A:G				0.239	0.201	-15.7
B:C				0.239	0.198	-17.0
B:G				0.239	0.198	-17.0
C:G				0.239	0.195	-18.2
A:B:C				0.239	0.196	-17.7
A:B:G				0.239	0.201	-15.7
A:C:G				0.239	0.191	-19.9
B:C:G				0.239	0.201	-15.9
A:B:C:G				0.239	0.194	-18.7

Table 4: pBA std. deviation of the regression coefficients for the wave soldering data.

	_	Main		-	Interaction	-
	Regr.	Bootstrap	Delta	Regr.	Bootstrap	Delta
Intercept	0.299	0.271	-9.2	0.239	0.200	-16.2
A	0.299	0.276	-7.7	0.239	0.205	-14.1
В	0.299	0.277	-7.3	0.239	0.199	-16.7
\mathbf{C}	0.299	0.284	-5.0	0.239	0.194	-18.6
D	0.299	0.275	-7.8			
\mathbf{E}	0.299	0.268	-10.3			
F	0.299	0.275	-7.8			
G	0.299	0.277	-7.4	0.239	0.190	-20.4
A:B				0.239	0.196	-17.7
A:C				0.239	0.198	-17.0
A:G				0.239	0.195	-18.5
B:C				0.239	0.189	-20.8
B:G				0.239	0.200	-16.2
C:G				0.239	0.198	-16.9
A:B:C				0.239	0.202	-15.2
A:B:G				0.239	0.192	-19.5
A:C:G				0.239	0.190	-20.4
B:C:G				0.239	0.193	-19.0
A:B:C:G				0.239	0.197	-17.5

Table 5: wBA std. deviation of the regression coefficients for the wave soldering data.

-		Main			Interaction	
	Regr.	Bootstrap	Delta	Regr.	Bootstrap	Delta
Intercept	0.299	0.269	-9.8	0.239	0.193	-19.2
A	0.299	0.277	-7.1	0.239	0.193	-19.1
В	0.299	0.273	-8.6	0.239	0.191	-20.1
\mathbf{C}	0.299	0.273	-8.5	0.239	0.195	-18.5
D	0.299	0.275	-7.9			
\mathbf{E}	0.299	0.271	-9.1			
\mathbf{F}	0.299	0.272	-9.1			
G	0.299	0.269	-10.0	0.239	0.191	-20.0
A:B				0.239	0.190	-20.3
A:C				0.239	0.193	-19.0
A:G				0.239	0.191	-20.1
B:C				0.239	0.203	-15.1
B:G				0.239	0.191	-20.1
C:G				0.239	0.197	-17.6
A:B:C				0.239	0.198	-17.1
A:B:G				0.239	0.193	-19.0
A:C:G				0.239	0.194	-18.7
B:C:G				0.239	0.194	-18.7
A:B:C:G				0.239	0.195	-18.5

3 Piston simulator

3.1 Main effects

- Formula: $seconds \sim x1 + x2 + x3 + x4$
- Number of bootstrap samples: 100
- Distribution of bootstrap sampled coefficients: Figure 5

3.2 Interactions

- Formula: $seconds \sim x1 + x2 + x3 + x1 : x2 + x1 : x3 + x2 : x3$
- Number of bootstrap samples: 100
- Distribution of bootstrap sampled coefficients: Figure 6

3.3 Quadratic model

- Formula: $seconds \sim x1 + x2 + x3 + x1^2 + x2^2 + x3^2$
- Number of bootstrap samples: 100
- Distribution of bootstrap sampled coefficients: Figure 7

3.4 Full model

- Formula: $seconds \sim x1 + x2 + x3 + x1 : x2 + x1 : x3 + x2 : x3 + x1^2 + x2^2 + x3^2$
- Number of bootstrap samples: 100
- Distribution of bootstrap sampled coefficients: Figure 8

3.5 Comparisons

Figure 4: Std.dev. of coefficients for piston simulator

Figure 5: Distribution of main effect coefficient estimates for the piston simulation. Blue: ols estimate \pm std.dev. For each bootstrap approach, boxplot: distribution, red: interquartile range, green: mean \pm std.dev.

Figure 6: Distribution of main effects and interaction coefficient estimates for the piston simulation. Blue: ols estimate \pm std.dev. For each bootstrap approach, boxplot: distribution, red: interquartile range, green: mean \pm std.dev.

Figure 7: Distribution of main effects and quadratic coefficient estimates for the piston simulation. Blue: ols estimate \pm std.dev. For each bootstrap approach, boxplot: distribution, red: interquartile range, green: mean \pm std.dev.

Figure 8: Distribution of main effects, interactions, and quadratic coefficient estimates for the piston simulation. Blue: ols estimate \pm std.dev. For each bootstrap approach, boxplot: distribution, red: interquartile range, green: mean \pm std.dev.

Table 6: BBA std. deviation of the regression coefficients for the Piston simulation.

		Main			Interaction			Quadratic			Full	
	$\operatorname{Regr.}$	${\bf Bootstrap}$	Delta	Regr.	${\bf Bootstrap}$	Delta	Regr.	Bootstrap	Delta	Regr.	Bootstrap	Delta
Intercept	0.00082	0.00064	-22.5	0.00076	0.00063	-18.0	0.00131	0.00103	-21.5	0.00120	0.00101	-15.3
x1	0.00095	0.00079	-17.1	0.00088	0.00079	-9.9	0.00087	0.00077	-11.4	0.00079	0.00076	-3.8
x2	0.00095	0.00067	-29.6	0.00088	0.00066	-24.9	0.00087	0.00068	-21.2	0.00079	0.00067	-14.8
x3	0.00095	0.00066	-31.0	0.00088	0.00065	-25.7	0.00087	0.00066	-23.8	0.00079	0.00066	-16.4
x4	26000.02	0.00065	-31.7									
x1:x2				0.00108	0.00090	-16.7				0.00096	0.00091	-6.2
x1:x3				0.00108	0.00092	-14.4				0.00096	0.00088	-8.8
x2:x3				0.00108	0.00090	-16.3				0.00096	0.00090	-6.3
I(x1 ** 2)							0.00078	0.00072	9.7-	0.00071	0.00072	2.0
I(x2 ** 2)							0.00078	0.00053	-31.3	0.00071	0.00053	-24.9
I(x3 ** 2)							0.00078	0.00051	-34.9	0.00071	0.00051	-28.3

Table 7: BA std. deviation of the regression coefficients for the Piston simulation.

		Main		, 4	Interaction			Quadratic			Full	
	Regr.	${\bf Bootstrap}$	Delta	Regr.	Bootstrap	Delta	Regr.	${\bf Bootstrap}$	Delta	Regr.	Bootstrap	Delta
Intercept	0.00082		1.8	0.00076	0.00077	1.2	0.00131	0.00101	-22.9	0.00120	0.00110	-8.4
x1	0.00095	0.00120	26.5	0.00088	0.00115	31.0	0.00087	0.00098	13.4	0.00079	0.00090	14.6
x 2	0.00095		3.0	0.00088	0.00084	-4.7	0.00087	0.00095	10.0	0.00079	0.00091	15.3
x3	0.00095		-4.6	0.00088	0.00081	-8.2	0.00087	0.00086	-0.2	0.00079	0.00075	-4.8
	≤0.00095		-8.6									
x1:x2				0.00108	0.00107	-0.8				0.00096	0.00101	5.0
x1:x3				0.00108	0.00107	-0.9				0.00096	0.00103	6.5
x2:x3				0.00108	0.00105	-2.6				0.00096	0.00098	1.8
I(x1 ** 2)							0.00078	0.00081	4.2	0.00071	0.00081	14.2
I(x2 ** 2)							0.00078	0.00076	-2.0	0.00071	0.00078	9.5
I(x3 ** 2)							0.00078	0.00058	-26.0	0.00071	0.00059	-16.9

Table 8: pBBA std. deviation of the regression coefficients for the Piston simulation.

		Main			Interaction			Quadratic			Full	
	Regr.	Bootstrap	Delta	Regr.	${\bf Bootstrap}$	Delta	Regr.	${\bf Bootstrap}$	Delta	Regr.	Bootstrap	Delta
Intercept	0.00082		-26.1	0.00076	0.00061	-20.3	0.00131	0.00104	-20.6	0.00120	0.00104	-12.8
x1	0.00095	0.00078	-18.2	0.00088	0.00078	-11.7	0.00087	0.00078	-10.1	0.00079	0.00078	-1.3
x2	0.00095		-30.4	0.00088	0.00066	-24.9	0.00087	0.00066	-23.5	0.00079	0.00066	-16.0
x3	0.00095		-29.6	0.00088	0.00067	-24.0	0.00087	0.00067	-22.6	0.00079	0.00067	-15.0
x4	$\frac{260000014}{1}$	0.00065	-31.8									
x1:x2				0.00108	0.00089	-17.4				0.00096	0.00089	-7.6
x1:x3				0.00108	0.00092	-14.5				0.00096	0.00092	-4.3
x2:x3				0.00108	0.00093	-14.3				0.00096	0.00093	-4.1
I(x1 ** 2)							0.00078	0.00069	-11.0	0.00071	0.00069	-2.2
I(x2 ** 2)							0.00078	0.00054	-30.4	0.00071	0.00054	-23.5
I(x3 ** 2)							0.00078	0.00050	-35.7	0.00071	0.000050	-29.4

Table 9: pBA std. deviation of the regression coefficients for the Piston simulation.

		Main			Interaction			Quadratic			Full	
	Regr.	Bootstrap	Delta	Regr.	Bootstrap	Delta	Regr.	${\bf Bootstrap}$	Delta	Regr.	Bootstrap	Delta
Intercept	0.00082		-0.4	0.00076	0.00074	-2.9	0.00131	0.00123	-6.1	0.00120	0.00116	-3.4
x1	0.00095	0.00097	2.0	0.00088	0.00085	-3.3	0.00087	0.00083	-4.4	0.00079	0.00076	-3.5
x2	0.00095		-1.6	0.00088	0.00089	1.6	0.00087	0.00082	-5.6	0.00079	0.00074	-6.5
x3	0.00095		-3.9	0.00088	0.00086	-2.5	0.00087	0.00086	-1.0	0.00079	0.00073	6.9-
x4	$\frac{2600000}{15}$	0.00093	-1.8									
x1:x2				0.00108	0.00105	-2.6				0.00096	0.00089	-7.4
x1:x3				0.00108	0.00104	-3.2				0.00096	0.00093	-3.8
x2:x3				0.00108	0.00107	-1.2				0.00096	0.00098	1.8
I(x1 ** 2)							0.00078	0.00075	-4.1	0.00071	0.00069	-2.4
I(x2 ** 2)							0.00078	0.00077	-1.5	0.00071	0.00068	-4.2
I(x3 ** 2)							0.00078	0.00076	-2.7	0.00071	0.00067	-5.2

Table 10: wBA std. deviation of the regression coefficients for the Piston simulation.

Regr. Bootstrap Intercept 0.00082 0.00082 x1 0.00095 0.00119 x2 0.00095 0.00091 x3 0.00095 0.00091 x4 90.00095 0.00084 x1:x2 1.000095 0.00084			Interaction			Quadratic			Full	
0.00082 0.00095 0.00095 0.00095 19	trap Delta	Regr.	${\bf Bootstrap}$	Delta	Regr.	${\bf Bootstrap}$	Delta	Regr.	${\bf Bootstrap}$	Delta
0.00095 0.00095 0.00095 16		0.00076		9.0-	0.00131	0.00103	-22.0	0.00120	0.00106	-11.5
0.00095 0.00095 0.00095 16	0119 25.1	0.00088	0.00110	24.9	0.00087	0.00096	10.4	0.00079	0.00081	2.6
0.00095 0.00095 16		0.00088	0.00087	-1.6	0.00087	0.00089	2.7	0.00079	0.00080	1.4
260000 16		0.00088	0.00079	-9.8	0.00087	0.00084	-2.4	0.00079	0.00073	6.9-
x1:x2	'									
· ·		0.00108	0.00101	-6.0				0.00096	0.00097	0.1
X1:X3		0.00108	0.00100	-6.9				0.00096	0.00101	5.0
x2:x3		0.00108	0.00100	-6.9				0.00096	0.00101	2.0
I(x1 ** 2)					0.00078	0.00075	-3.4	0.00071	0.00075	5.7
I(x2 ** 2)					0.00078	0.00068	-12.0	0.00071	0.00069	-2.7
I(x3 ** 2)					0.00078	0.00054	-30.0	0.00071	0.00054	-23.4