Amendments to the Claims

1.-14. (Canceled)

15. A process for preparing a compound of the formula:

wherein:

A is selected from CH₂ and NR;

B, D and E are independently selected from CH and N;

Y is

- (a) phenyl, optionally substituted with 1-3 substituents independently selected from R⁴;
- (b) naphthyl, optionally substituted with 1-3 substituents independently selected from R⁴;
- (c) C₃-C₈ cycloalkyl, optionally substituted with 1-2 substituents independently selected from R⁴;
- (d) C_3 - C_8 cycloalkynyl, optionally substituted with 1-2 substituents independently selected from R^4 ;
- (e) a five membered heterocycle containing up to two heteroatoms selected from the group consisting of -O-, -NR²- and -S(O)_n-, optionally substituted with 1-3 substituents independently selected from \mathbb{R}^4 :
- (f) a six membered heterocycle containing up to two heteroatoms selected from the group consisting of -O-, -NR 2 and -S(O)_n- optionally substituted with 1-3 substituents independently selected from R 4 ; or

(g) a bicyclic ring system consisting of a five or six membered heterocyclic ring fused to a phenyl ring, said heterocyclic ring containing up to two heteroatoms selected from the group consisting of -O-, -NR 2 -, NR 2 - and -S(O)_n-, optionally substituted with 1-3 substituents independently selected from R 4 ;

 Z^1 is

- (a) $-(CH_2)_p W(CH_2)_q$ -;
- (b) $-O(CH_2)_D CR^5R^6$ -;
- (c) $-O(CH_2)_pW(CH_2)_q$;
- (d) -OCHR²CHR³-; or
- (e) $-SCHR^2CHR^3$ -;

G is

- (a) $-NR^{7}R^{8}$;
- (b)

$$-N$$
 $(CH_2)_m$ Z^2

wherein n is 0, 1 or 2; m is 1, 2 or 3; Z^2 is -NH-, -O-, -S-, or -CH₂-; optionally fused on adjacent carbon atoms with one or two phenyl rings and, optionally independently substituted on carbon with one to three substituents and, optionally, independently on nitrogen with a chemically suitable substituent selected from R^4 ; or

(c) a bicyclic amine containing five to twelve carbon atoms, either bridged or fused and optionally substituted with 1-3 substituents independently selected from R⁴;

 Z^1 and G in combination may be

$$-0CH_2 \longrightarrow \stackrel{R^2}{\searrow}$$

W is

- (a) -CH₂-;
- (b) -CH=CH-;

- (c) -O-;
- (d) $-NR^2$ -;
- (e) -S(O)_n-;
- (f)

- (g) -CR²(OH)-;
- (h) -CONR²-;
- (i) -NR²CO-;
- (j)

(k) -C≡C-;

R is hydrogen or C₁-C₆ alkyl;

R² and R³ are independently

- (a) hydrogen; or
- (b) C_1 - C_4 alkyl;

 R^4 is

- (a) hydrogen;
- (b) halogen;
- (c) C_1 - C_6 alkyl;
- (d) C_1 - C_4 alkoxy;
- (e) C_1 - C_4 acyloxy;
- (f) C_1 - C_4 alkylthio;
- (g) C_1 - C_4 alkylsulfinyl;
- (h) C_1 - C_4 alkylsulfonyl;
- (i) hydroxy (C_1-C_4) alkyl;
- (j) $aryl(C_1-C_4)alkyl;$
- (k) -CO₂H;
- (l) -CN;
- (m) -CONHOR;
- (n) -SO₂NHR;

- (o) -NH₂;
- (p) C_1 - C_4 alkylamino;
- (q) C_1 - C_4 dialkylamino;
- (r) $-NHSO_2R$;
- (s) $-NO_2$;
- (t) -aryl; or
- (u) -OH.

 R^5 and R^6 are independently C_1 - C_8 alkyl or together form a C_3 - C_{10} carbocyclic ring; R^7 and R^8 are independently

- (a) phenyl;
- (b) a C_3 - C_{10} carbocyclic ring, saturated or unsaturated;
- (c) a C_3 - C_{10} heterocyclic ring containing up to two heteroatoms, selected from -O-, -N- and -S-;
- (d) H;
- (e) C_1 - C_6 alkyl; or
- (f) form a 3 to 8 membered nitrogen containing ring with R⁵ or R⁶;

 R^7 and R^8 in either linear or ring form may optionally be substituted with up to three substituents independently selected from C_1 - C_6 alkyl, halogen, alkoxy, hydroxy and carboxy;

a ring formed by R⁷ and R⁸ may be optionally fused to a phenyl ring;

e is 0, 1 or 2;

m is 1, 2 or 3;

n is 0, 1 or 2;

p is 0, 1, 2 or 3;

q is 0, 1, 2 or 3;

and optical and geometric isomers thereof;

comprising enzymatically resolving of a compound of the formula

wherein R^1 is (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl wherein the alkyl, alkenyl or alkynyl groups are optionally substituted by one to three halo in the presence of a lipase and an aqueous buffer solution; and (b) reacting the compound of formula IV so formed

wherein R¹ is as defined above, with a base in the presence of a polar protic solvent.

- 16. A process according to claim 15, wherein the aqueous buffer solution is a phosphate, citric acid or boronic acid solution.
 - 17. A process according to claim 15, wherein the lipase from *Mucor miehei*.
- 18. A process according to claim 15, wherein the base is sodium methoxy, sodium hydroxide, lithium hydroxide or potassium hydroxide.
- 19. A process according to claim 15, wherein the polar protic solvent is methanol, ethanol or water.
- 20. A process according to claim 15, wherein the lipase is immobilized on a solid support.
- 21. A process according to claim 15, wherein the lipase is a cross-linked enzyme.
- 22. A process according to claim 15, wherein the lipase is in pure crystalline form.
 - 23. A process according to claim 15, for preparing a compound of the formula

comprising enzymatically resolving of a compound of the formula

wherein R^1 is (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl wherein the alkyl, alkenyl or alkynyl groups are optionally substituted by one to three halo in the presence of a lipase and an aqueous buffer solution; and (b) reacting the compound of Formula X so formed

wherein R¹ is as defined above, with a base in the presence of a polar protic solvent.

24.-40. (canceled)