1. Sol. The minimal polynomial of $\sqrt[3]{2}$ over \mathbb{Q} is x^3-2 . Therefore $\mathbb{Q}(\sqrt[3]{2})$ is a finite extension of \mathbb{Q} of degree 3 and has a basis $\{1, \sqrt[3]{2}, (\sqrt[3]{2})^2\}$. In other word, any $\alpha \in \mathbb{Q}(\sqrt[3]{2})$ can be expressed uniquely as a linear combination of $\{1, \sqrt[3]{2}, (\sqrt[3]{2})^2\}$.

$$1 = (a + b\sqrt[3]{2} + c\sqrt[3]{4})(a_1 + b_1\sqrt[3]{2} + c_1\sqrt[3]{4})$$

= $(aa_1 + 2bc_1 + 2cb_1) + (ab_1 + ba_1 + 2cc_1)\sqrt[3]{2} + (ac_1 + bb_1 + ca_1)\sqrt[3]{4}.$

So we have

$$\begin{cases} aa_1 + 2cb_1 + 2bc_1 = 1, \\ ba_1 + ab_1 + 2cc_1 = 0, \\ ca_1 + bb_1 + ac_1 = 0. \end{cases}$$

Therefore

$$\begin{cases} a_1 &= \frac{1}{a^3 + 2b^3 + 4c^3}(a^2 - 2bc), \\ b_1 &= \frac{1}{a^3 + 2b^3 + 4c^3}(2c^2 - ab), \\ c_1 &= \frac{1}{a^3 + 2b^3 + 4c^3}(b^2 - ac). \end{cases}$$

2. (1) Sol. $\alpha^2 = 2 + \sqrt{2}$, $\alpha^4 - 4\alpha^2 + 4 = 2$. So $f(\alpha) = 0$ where $f(x) = x^4 - 4x^2 + 2$. To show that it is minimal, we need to show that it has no factors. Since $f(\pm 1) \neq 0$ and $f(\pm 2) \neq 0$, f has no linear factors. Assume that $f(x) = (x^2 + bx + c)(x^2 + ex + f)$, then

$$b+e=0, f+be+c=-4, bf+ce=0, cf=2.$$

Since c cannot equal to f, the first and third equation gives b = e = 0. So f + c = -4, which is impossible.

(2) Sol. Note that $\alpha\beta = \sqrt{2}$, so

$$\alpha = \sqrt{2 + \alpha \beta}, \ \alpha^2 = 2 + \alpha \beta.$$

Thus we have $\beta = \frac{\alpha^2 - 1}{\alpha}$, which shows that $\beta \in \mathbb{Q}(\alpha)$. Note that $2 = -\alpha^4 + 4\alpha^2$, so $1/\alpha = -\alpha^3/2 + 2\alpha$, and

$$\beta = \frac{\alpha^3}{2} - \alpha.$$

3. (1) Sol. Let L be a K-vector space of dimension n. Consider the set $\{1, \alpha, ..., \alpha^{n-1}, \alpha^n\}$. Since it has n+1 > n elements, it is linearly dependent, which means there exists $a_0, a_1, ..., a_n \in K$, which are not all zero, such that

$$a_0 + a_1\alpha + a_2\alpha^2 + \dots + a_{n-1}\alpha^{n-1} + a_n\alpha^n = 0.$$

Let s be the biggest subscript such that $a_s \neq 0$, then

$$f(x) = a_s x^s + a_{s-1} x^s + \dots + a_1 x + a_0$$

is a polynomial in K[x] such that $f(\alpha) = 0$, which shows that a minimal polynomial exists.

(2) Proof. Let $p(x) = a_t x^t + a_{t-1} x^{t-1} + \cdots + a_0$. Then $p(\alpha) = p(\beta) = 0$. Subtract them, we have

$$0 = a_t(\alpha^t - \beta^t) + a_{t-1}(\alpha^{t-1} - \beta^{t-1}) + \dots + a_1(\alpha - \beta)$$

= $(\alpha - \beta) \left(a_t \sum_{i=0}^{t-1} \alpha^i \beta^{t-1-i} + a_{t-1} \sum_{i=0}^{t-2} \alpha^i \beta^{t-2-i} + \dots + a_1 \right).$

Since $\alpha \neq \beta$, we have the formula in the latter bracket equals zero. Thus $\beta \notin K$, for otherwise by substituting α by x, the latter polynomial has degree t-1 and also has α as its root, which contradicts the hypothesis that p(x) is the minimal polynomial.

Now assume to the contrary that p(x) is not the minimal polynomial for β . Let q(x), where $\deg(q) < t$, be the minimal polynomial. Then q(x)|p(x). Write p(x) = q(x)r(x). Since $p(\alpha) = 0$, at least one of $q(\alpha)$ and $r(\alpha)$ is zero. However, it contradicts that p(x) is the minimal polynomial for α since both q(x) and r(x) has degree less then t.

- 4. Sol. To find the degree of the extension $\mathbb{Q}(\alpha)$ is just to find the degree of the minimal polynomial of α over \mathbb{Q} .
 - (1) $\alpha^2 = 1 + \sqrt{3}$, $\alpha^4 2\alpha^2 + 1 = 3$. So α is a root of $f(x) = x^4 2x^2 2$. We claim that f(x) is the minimal polynomial. Since $f(\pm 1)$ and $f(\pm 2)$ are nonzero, f(x) has no linear factors. Assume that $f(x) = (x^2 + bx + c)(x^2 + ex + f)$, then

$$b+e=0,\ f+be+c=-2,\ bf+ce=0,\ cf=-2.$$

Since c cannot equal to f, the first and third equation gives b = e = 0. So

f + c = -2, which is impossible. Therefore the degree is 4.

(2) $\alpha^2 = 3 - \sqrt{6}$, $\alpha^4 - 6\alpha^2 + 9 = 6$. So α is a root of $f(x) = x^4 - 6x^2 + 3$. We claim that f(x) is the minimal polynomial. Since $f(\pm 1)$, $f(\pm 2)$, $f(\pm 6)$ and $f(\pm 2)$ are nonzero, f(x) has no linear factors. Assume that $f(x) = (x^2 + bx + c)(x^2 + ex + f)$, then

$$b+e=0, f+be+c=-6, bf+ce=0, cf=3.$$

Since c cannot equal to f, the first and third equation gives b = e = 0. So f + c = -6, which is impossible. Therefore the degree is 4.

- (c) $\alpha = \sqrt{(1+\sqrt{2})^2} = 1+\sqrt{2}$, $\alpha^2 2\alpha + 1 = 2$. So α is a root of $f(x) = x^2 2x 1$. We claim that f(x) is the minimal polynomial. Since $f(\pm 1)$ are nonzero, f(x) has no linear factors, which means our claim holds. Therefore the degree is 2.
- 5. Sol. $\mathbb{Q}(\sqrt{p})$ is a \mathbb{Q} -vector space generated by the basis $\{1, \sqrt{p}\}$. $\mathbb{Q}(\sqrt[3]{q})$ is a \mathbb{Q} -vector space generated by the basis $\{1, \sqrt[3]{q}, \sqrt[3]{q^2}\}$. So in order that $\mathbb{Q}(\sqrt{p})$ is a subspace of $\mathbb{Q}(\sqrt[3]{q})$, it suffices to show that \sqrt{p} is a linear combination of $\{1, \sqrt[3]{q}, \sqrt[3]{q^2}\}$. Assume that there are $a, b, c \in \mathbb{Q}$ such that

$$\sqrt{p} = a + b\sqrt[3]{q} + c\sqrt[3]{q^2}.$$

Then

$$p = (a^{2} + 2bcq) + (c^{2}q + 2ab)\sqrt[3]{q} + (b^{2} + 2ac)\sqrt[3]{q^{2}}.$$

So

$$\begin{cases} p = a^2 + 2bcq, \\ 0 = c^2q + 2ab, \\ 0 = b^2 + 2ac. \end{cases}$$

If $a \neq 0$, then $c = -b^2/2a$. Plug it into the second equation, we have $0 = b^4q/4a^2 + 2ab$, $b^3q + 8a^3 = 0$. Thus b = 0, for otherwise $\sqrt[3]{q} = -2a/b$ is rational, which is impossible. So a = 0, contrary to $a \leq 0$. So a = 0, b = 0, and p = 0. Above all, no such p, q exist.

6. (a) Sol. Since all the prime numbers in $R = \mathbb{Z}[i]$ are those p such that N(p) is a prime number or is the square of a 4k + 3 prime number, 1 + i is prime. Since 1 + i can divide 6, 4 and 1 + 3i (1 + 3i = (1 + i)(1 + 2i)) but $1 + i \not| 1$

and $(1+i)^2 / 1 + 3i$, by Eisenstein's criterion, f is irreducible over R.

(b) Sol. Write $\mathbb{Q}(i, \alpha_1, \alpha_2, \alpha_3)$ as $\mathbb{Q}(i)(\alpha_1, \alpha_2, \alpha_3)$. We have the relation

$$\mathbb{Q} \subset \mathbb{Q}(i) \subset \mathbb{Q}(i)(\alpha_1, \alpha_2, \alpha_3) = \mathbb{Q}(i, \alpha_1, \alpha_2, \alpha_3).$$

We know that $\mathbb{Q}(i)$ is of degree 2 (i is the root of $x^2 + 1$). To show that $\mathbb{Q}(i, \alpha_1, \alpha_2, \alpha_3)$ has degree 6, it suffices to show that $\mathbb{Q}(i)(\alpha_1, \alpha_2, \alpha_3)$ has degree 3 as a $\mathbb{Q}(i)$ -vector space, which is equivalent to find a degree 3 minimal polynomial of $\alpha_1, \alpha_2, \alpha_3$ over $\mathbb{Q}[i]$. We claim that f(x) is exactly the desired minimal polynomial. To see that, note that $\mathbb{Z}[i]$ is a unique factorization domain, so Gauss' Lemma tells us that f is irreducible in $\mathbb{Q}[i]$ if and only if the principal part of f, which is exactly f itself, is irreducible in $\mathbb{Z}[i]$, which is proved in 1. Since $\deg(f) = 3$, we conclude that $\mathbb{Q}(i, \alpha_1, \alpha_2, \alpha_3)$ has degree 6.