Class 13: Pathway Analysis from RNA-Seq Results

AUTHOR Loreen A17059289

Pathway Analysis from RNA-Seq Results

Section 1. Differential Expression Analysis

Here we play with just one, the GAGE package (which stands for Generally Applicable Gene set Enrichment), to do KEGG pathway enrichment analysis on RNA-seq based differential expression results.

Data Imported:

```
library(DESeq2)
```

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind.

colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,

http://localhost:5506/ Page 1 of 29

```
get, grep, grepl, intersect, is.unsorted, lapply, Map,
mapply,
    match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    Position, rank, rbind, Reduce, rownames, sapply, setdiff,
sort,
    table, tapply, union, unique, unsplit, which.max,
which.min
Attaching package: 'S4Vectors'
The following objects are masked from 'package:base':
    expand.grid, I, unname
Loading required package: IRanges
Loading required package: GenomicRanges
Loading required package: GenomeInfoDb
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats
Attaching package: 'MatrixGenerics'
The following objects are masked from 'package:matrixStats':
    colalls, colanyNAs, colanys, colavgsPerRowSet,
colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods,
colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps,
colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins,
colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs,
    colSums2, colTabulates, colVarDiffs, colVars,
colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
```

http://localhost:5506/ Page 2 of 29

```
colWeightedVars, rowAlls, rowAnyNAs, rowAnys,
rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins,
rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians,
rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges,
rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs,
rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars
Loading required package: Biobase
Welcome to Bioconductor
    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages
'citation("pkgname")'.
Attaching package: 'Biobase'
The following object is masked from 'package:MatrixGenerics':
    rowMedians
The following objects are masked from 'package:matrixStats':
    anyMissing, rowMedians
 # Count Data and Metadata:
 metaFile <- "GSE37704 metadata.csv"</pre>
 countFile <- "GSE37704_featurecounts.csv"</pre>
Look at each one:
 # Import metadata and take a peak
 colData = read.csv(metaFile, row.names=1)
 head(colData)
```

```
condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369 hoxa1_kd
SRR493370 hoxa1_kd
SRR493371 hoxa1_kd
```

```
# Import countdata
countData = read.csv(countFile, row.names=1)
head(countData)
```

	length	SRR493366	SRR493367	SRR493368	SRR493369
SRR493370					
ENSG00000186092	918	0	0	0	0
ENSG00000279928	718	0	0	0	0
ENSG00000279457 28	1982	23	28	29	29
ENSG00000278566 0	939	0	0	0	0
ENSG00000273547	939	0	0	0	0
ENSG00000187634 212	3214	124	123	205	207
	SRR4933	371			
ENSG00000186092		0			
ENSG00000279928		0			
ENSG00000279457		46			
ENSG00000278566		0			
ENSG00000273547		0			
ENSG00000187634	2	258			

Q. Complete the code below to remove the troublesome first column from countData

```
# Note we need to remove the odd first $length col
countData <- as.matrix(countData[,-1])
head(countData)</pre>
```

SRR493366 SRR493367 SRR493368 SRR493369

L			
0	0	0	0
0	0	0	0
23	28	29	29
0	0	0	0
0	0	0	0
124	123	205	207
	0 23 0	 0 0 0 23 0 0 0 	 0 0 0 0 0 23 28 29 0 0 0 0 0

Q. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

Tip: What will rowSums() of countData return and how could you use it in this context?

Filter count data where you have 0 read count across all samp
countData = countData[rowSums(countData) > 0,]
head(countData)

		SRR493366	SRR493367	SRR493368	SRR493369
SRR493370	SRR493	3371			
ENSG000002	279457	23	28	29	29
28	46				
ENSG000001	187634	124	123	205	207
212	258				
ENSG000001	188976	1637	1831	2383	1226
1326	1504				
ENSG000001	187961	120	153	180	236
255	357				
ENSG000001	187583	24	48	65	44
48	64				
ENSG000001	187642	4	9	16	14
16	16				

nrow(countData)

[1] 15975

Running DESeq2

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds = DESeq(dds)
```

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

Result:

dds

class: DESeqDataSet

dim: 15975 6

metadata(1): version

assays(4): counts mu H cooks

rownames(15975): ENSG00000279457 ENSG00000187634 ...

ENSG00000276345 ENSG00000271254

rowData names(22): baseMean baseVar ... deviance maxCooks colnames(6): SRR493366 SRR493367 ... SRR493370 SRR493371

colData names(2): condition sizeFactor

Create results variable to hold results:

```
res = results(dds, contrast=c("condition", "hoxa1_kd", "control
```

Q. Call the summary() function on your results to get a sense of how many genes are up or down-regulated at the default 0.1 p-value cutoff.

```
summary(res)
```

```
out of 15975 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 4349, 27%
LFC < 0 (down) : 4396, 28%
outliers [1] : 0, 0%
low counts [2] : 1237, 7.7%
(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results</pre>
```

Volcono plot

Here is the volcano plot:

```
plot(res$log2FoldChange, -log(res$padj))
```


Q. Improve this plot by completing the below code, which adds color and axis labels

```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )

# Color red the genes with absolute fold change above 2
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

# Color blue those with adjusted p-value less than 0.01
# and absolute fold change more than 2
inds <- (res$pvalue < 0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log")</pre>
```

http://localhost:5506/ Page 8 of 29

Adding gene annotation

columns(org.Hs.eg.db)

Q. Use the mapIDs() function multiple times to add SYMBOL, ENTREZID and GENENAME annotation to our results by completing the code below.

```
library("AnnotationDbi")
library("org.Hs.eg.db")
```

```
[1] "ACCNUM"
                    "ALIAS"
                                    "ENSEMBL"
"ENSEMBLPROT" "ENSEMBLTRANS"
 [6] "ENTREZID"
                    "ENZYME"
                                    "EVIDENCE"
"EVIDENCEALL" "GENENAME"
[11] "GENETYPE"
                    "G0"
                                    "GOALL"
                                                    "IPI"
"MAP"
                    "ONTOLOGY"
                                    "ONTOLOGYALL"
[16] "OMIM"
                                                    "PATH"
"PFAM"
```

```
[21] "PMID" "PROSITE" "REFSEQ" "SYMBOL"
"UCSCKG"
[26] "UNIPROT"
```

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

```
head(res, 10)
```

log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 10 rows and 9 columns

baseMean log2FoldChange lfcSE

http://localhost:5506/ Page 10 of 29

-12.630158 1.43990e-36			
ENSG00000187961 209.63793	2 0 7207556	0.1318599)
5.534326 3.12428e-08	0.7297550	0.1310393	,
ENSG0000187583 47.25512	R 0 0/05765	0.2718928	2
0.149237 8.81366e-01	0.0403703	0.2/10320	,
ENSG0000187642 11.97975	n 0.5428105	0.5215598	3
1.040744 2.97994e-01	013420103	013213330	,
ENSG00000188290 108.92212	3 2.0570638	0.1969053	3
10.446970 1.51282e-25	210370030	0.1505055	
ENSG00000187608 350.71686	3 0. 2573837	0.1027266	5
2.505522 1.22271e-02	0.1_0,000,	01-0-7-0	
ENSG00000188157 9128.43942	2 0.3899088	0.0467163	3
8.346304 7.04321e-17			
ENSG00000237330 0.15819	2 0.7859552	4.0804729)
0.192614 8.47261e-01			
pad	j symbol	entrez	
name	,		
<numeric< td=""><td><pre>> <character> <c< pre=""></c<></character></pre></td><td>haracter></td><td></td></numeric<>	<pre>> <character> <c< pre=""></c<></character></pre>	haracter>	
<character></character>			
ENSG00000279457 6.86555e-0	1 NA	NA	
NA			
ENSG00000187634 5.15718e-0	SAMD11	148398	sterile
alpha motif			
ENSG00000188976 1.76549e-3	5 NOC2L	26155	NOC2 like
nucleolar			
ENSG00000187961 1.13413e-0	7 KLHL17	339451	kelch like
family me			
ENSG00000187583 9.19031e-0	1 PLEKHN1	84069	pleckstrin
homology			
ENSG00000187642 4.03379e-0	1 PERM1	84808	PPARGC1
and ESRR ind			
ENSG00000188290 1.30538e-2	4 HES4	57801	hes family
bHLH tran			
ENSG00000187608 2.37452e-0	2 ISG15	9636	ISG15
ubiquitin like		275700	
ENSG00000188157 4.21963e-1	5 AGRN	375790	
agrin	DN 5000	404004	
ENSG00000237330 NA	A RNF223	401934	ring
finger protein			

Q. Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

http://localhost:5506/ Page 11 of 29

```
# Least to greatest:
res = res[order(res$pvalue),]
write.csv(res, file="deseq_results.csv")
```

Section 2. Pathway Analysis

We will use the gage package for pathway analysis and the pathview package to draw pathway diagrams.

Package we will use:

```
library(pathview)
```

Pathview is an open source software package distributed under GNU General

Public License version 3 (GPLv3). Details of GPLv3 is available at

http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to

formally cite the original Pathview paper (not just mention it) in publications

or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG

license agreement (details at

http://www.kegg.jp/kegg/legal.html).

library(gage)

```
library(gageData)

data(kegg.sets.hs)
data(sigmet.idx.hs)

# Focus on signaling and metabolic pathways only:
```

http://localhost:5506/ Page 12 of 29

```
kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]

# Look at the first 3 pathways:
head(kegg.sets.hs, 3)
```

```
$`hsa00232 Caffeine metabolism`
           "1544" "1548" "1549" "1553" "7498" "9"
[1] "10"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
              "1066"
                       "10720"
                                "10941" "151531" "1548"
"1549" "1551"
 [9] "1553"
             "1576"
                       "1577"
                                "1806"
                                          "1807"
                                                   "1890"
"221223" "2990"
[17] "3251"
                       "3615"
                                "3704"
                                          "51733"
                                                   "54490"
              "3614"
"54575" "54576"
[25] "54577" "54578"
                       "54579"
                                          "54657"
                                                   "54658"
                                "54600"
"54659" "54963"
[33] "574537" "64816"
                       "7083"
                                "7084"
                                          "7172"
                                                   "7363"
"7364"
        "7365"
             "7367"
[41] "7366"
                       "7371"
                                 "7372"
                                          "7378"
                                                   "7498"
"79799" "83549"
              "8833"
[49] "8824"
                       "9"
                                "978"
$`hsa00230 Purine metabolism`
                                           "10622" "10623"
  [1] "100"
               "10201"
                       "10606" "10621"
"107"
         "10714"
  [9] "108"
               "10846"
                        "109"
                                 "111"
                                           "11128"
                                                    "11164"
"112"
         "113"
 [17] "114"
              "115"
                        "122481" "122622" "124583" "132"
"158"
         "159"
              "171568" "1716"
 [25] "1633"
                                 "196883" "203"
                                                    "204"
"205"
         "221823"
 [33] "2272"
               "22978"
                        "23649"
                                 "246721" "25885"
                                                    "2618"
"26289" "270"
 [41] "271"
               "27115"
                        "272"
                                 "2766"
                                           "2977"
                                                    "2982"
"2983"
         "2984"
 [49] "2986"
                        "29922"
              "2987"
                                 "3000"
                                           "30833"
                                                    "30834"
"318"
         "3251"
 [57] "353"
               "3614"
                        "3615"
                                 "3704"
                                           "377841" "471"
"4830"
         "4831"
 [65] "4832"
                        "4860"
                                 "4881"
                                           "4882"
                                                    "4907"
              "4833"
"50484" "50940"
 [73] "51082" "51251"
                        "51292"
                                 "5136"
                                           "5137"
                                                    "5138"
"5139"
         "5140"
```

http://localhost:5506/ Page 13 of 29

[81] "5141"	"5142"	"5143"	"5144"	"5145"	"5146"
"5147" "5148'	ı				
[89] "5149"	"5150"	"5151"	"5152"	"5153"	"5158"
"5167" "5169'	ı				
[97] "51728"	"5198"	"5236"	"5313"	"5315"	"53343"
"54107" "5422'	1				
[105] "5424"	"5425"	"5426"	"5427"	"5430"	"5431"
"5432" "5433'	ı				
[113] "5434"	"5435"	"5436"	"5437"	"5438"	"5439"
"5440" "5441'	ı				
[121] "5471"	"548644"	"55276"	"5557"	"5558"	"55703"
"55811" "55821	L''				
[129] "5631"	"5634"	"56655"	"56953"	"56985"	"57804"
"58497" "6240'	1				
[137] "6241"	"64425"	"646625"	"654364"	"661"	"7498"
"8382" "84172	2"				
[145] "84265"	"84284"	"84618"	"8622"	"8654"	"87178"
"8833" "9060'	1				
[153] "9061"	"93034"	"953"	"9533"	"954"	"955"
"956" "957"					
[161] "9583"	"9615"				

We used the mapIDs() function above to obtain Entrez gene IDs (stored in res

entrez) and we have the fold change results from DES eq 2 analysis (stored in reslog 2 Fold Change).

```
foldchanges = res$log2FoldChange
names(foldchanges) = res$entrez
head(foldchanges)
```

```
1266 54855 1465 51232 2034 2317 -2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792
```

Results:

```
keggres = gage(foldchanges, gsets=kegg.sets.hs)
```

What object did gage() return?

```
attributes(keggres)
```

\$names

http://localhost:5506/ Page 14 of 29

[1] "greater" "less" "stats"

Look at first few down(less) pathway results:

head(keggres\$less)

	p.geomean stat.mea	an
p.val		
hsa04110 Cell cycle	8.995727e-06 -4.3786	44
8.995727e-06		
hsa03030 DNA replication	9.424076e-05 -3.95180	0 3
9.424076e-05		
hsa03013 RNA transport	1.375901e-03 -3.02850	00
1.375901e-03		
hsa03440 Homologous recombination	3.066756e-03 -2.85289	99
3.066756e-03		
hsa04114 Oocyte meiosis	3.784520e-03 -2.69812	28
3.784520e-03		
hsa00010 Glycolysis / Gluconeogenesis	8.961413e-03 -2.40539	98
8.961413e-03		
	q.val set.size	
exp1	q.val set.size	
exp1 hsa04110 Cell cycle	<pre>q.val set.size 0.001448312 121</pre>	
•	·	
hsa04110 Cell cycle	·	
hsa04110 Cell cycle 8.995727e-06	0.001448312 121	
hsa04110 Cell cycle 8.995727e-06 hsa03030 DNA replication	0.001448312 121	
hsa04110 Cell cycle 8.995727e-06 hsa03030 DNA replication 9.424076e-05	0.001448312 1210.007586381 36	
hsa04110 Cell cycle 8.995727e-06 hsa03030 DNA replication 9.424076e-05 hsa03013 RNA transport	0.001448312 1210.007586381 36	
hsa04110 Cell cycle 8.995727e-06 hsa03030 DNA replication 9.424076e-05 hsa03013 RNA transport 1.375901e-03	0.001448312 121 0.007586381 36 0.073840037 144	
hsa04110 Cell cycle 8.995727e-06 hsa03030 DNA replication 9.424076e-05 hsa03013 RNA transport 1.375901e-03 hsa03440 Homologous recombination	0.001448312 121 0.007586381 36 0.073840037 144	
hsa04110 Cell cycle 8.995727e-06 hsa03030 DNA replication 9.424076e-05 hsa03013 RNA transport 1.375901e-03 hsa03440 Homologous recombination 3.066756e-03	0.001448312 121 0.007586381 36 0.073840037 144 0.121861535 28	
hsa04110 Cell cycle 8.995727e-06 hsa03030 DNA replication 9.424076e-05 hsa03013 RNA transport 1.375901e-03 hsa03440 Homologous recombination 3.066756e-03 hsa04114 Oocyte meiosis	0.001448312 121 0.007586381 36 0.073840037 144 0.121861535 28 0.121861535 102	

Use the pathview() function to make a pathway plot with our RNA-Seq expression results.

```
library(pathview)
pathview(gene.data=foldchanges, pathway.id="hsa04110")
```

http://localhost:5506/ Page 15 of 29

^{&#}x27;select()' returned 1:1 mapping between keys and columns

Info: Working in directory

/Users/ltsamaan/Desktop/BIMM143/class13

Info: Writing image file hsa04110.pathview.png

Here is the pathway:

A different PDF based output of the same data:

```
pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.nat
```

'select()' returned 1:1 mapping between keys and columns

Warning: reconcile groups sharing member nodes!

[,1] [,2] [1,] "9" "300" [2,] "9" "306"

Info: Working in directory
/Users/ltsamaan/Desktop/BIMM143/class13

Info: Writing image file hsa04110.pathview.pdf

http://localhost:5506/ Page 16 of 29

Focus on top 5 upregulated pathways here for demo purposes of
keggrespathways <- rownames(keggres\$greater)[1:5]</pre>

Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids

[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"

Draw plots for all the top 5 pathways, pass these IDs in keggresids to the pathview() function.

pathview(gene.data=foldchanges, pathway.id=keggresids, species=

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory
/Users/ltsamaan/Desktop/BIMM143/class13

Info: Writing image file hsa04640.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory
/Users/ltsamaan/Desktop/BIMM143/class13

Info: Writing image file hsa04630.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory
/Users/ltsamaan/Desktop/BIMM143/class13

Info: Writing image file hsa00140.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory
/Users/ltsamaan/Desktop/BIMM143/class13

Info: Writing image file hsa04142.pathview.png

http://localhost:5506/ Page 17 of 29

Info: some node width is different from others, and hence adjusted!

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory
/Users/ltsamaan/Desktop/BIMM143/class13

Info: Writing image file hsa04330.pathview.png

Here are the pathways:

http://localhost:5506/ Page 18 of 29

http://localhost:5506/ Page 19 of 29

http://localhost:5506/ Page 20 of 29

http://localhost:5506/ Page 21 of 29

> Q. Can you do the same procedure as above to plot the pathview figures for the top 5 down-reguled pathways?

```
## Focus on top 5 downregulated pathways here
keggrespathways <- rownames(keggres$less)[1:5]

# Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids</pre>
```

[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"

http://localhost:5506/ Page 22 of 29

pathview(gene.data=foldchanges, pathway.id=keggresids, species=

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory
/Users/ltsamaan/Desktop/BIMM143/class13

Info: Writing image file hsa04110.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory
/Users/ltsamaan/Desktop/BIMM143/class13

Info: Writing image file hsa03030.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory
/Users/ltsamaan/Desktop/BIMM143/class13

Info: Writing image file hsa03013.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory
/Users/ltsamaan/Desktop/BIMM143/class13

Info: Writing image file hsa03440.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory
/Users/ltsamaan/Desktop/BIMM143/class13

Info: Writing image file hsa04114.pathview.png

http://localhost:5506/ Page 23 of 29

http://localhost:5506/ Page 24 of 29

http://localhost:5506/ Page 25 of 29

http://localhost:5506/ Page 26 of 29

Section 3. Gene Ontology (GO)

Similar procedure with gene ontology.

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)

lapply(gobpres, head)
```

\$greater

```
p.geomean

stat.mean p.val

G0:0007156 homophilic cell adhesion 8.519724e-05

3.824205 8.519724e-05

G0:0002009 morphogenesis of an epithelium 1.396681e-04

3.653886 1.396681e-04

G0:0048729 tissue morphogenesis 1.432451e-04
```

http://localhost:5506/ Page 27 of 29

3.643242 1.432451e-04 G0:0007610 behavior 3.530241 2.195494e-04 G0:0060562 epithelial tube morphogenesis 3.261376 5.932837e-04	2.195494e-04 5.932837e-04	
G0:0035295 tube development 3.253665 5.953254e-04	5.953254e-04	1
4	q.val se	et.size
exp1 G0:0007156 homophilic cell adhesion 8.519724e-05	0.1951953	113
G0:0002009 morphogenesis of an epithelium 1.396681e-04	n 0.1951953	339
G0:0048729 tissue morphogenesis 1.432451e-04	0.1951953	424
G0:0007610 behavior 2.195494e-04	0.2243795	427
G0:0060562 epithelial tube morphogenesis 5.932837e-04	0.3711390	257
G0:0035295 tube development 5.953254e-04	0.3711390	391
\$less		
	p.geomean	
stat.mean p.val G0:0048285 organelle fission -8.063910 1.536227e-15	1.536227e-15	
G0:0000280 nuclear division -7.939217 4.286961e-15	4.286961e-15	
G0:0007067 mitosis -7.939217 4.286961e-15	4.286961e-15	
G0:0000087 M phase of mitotic cell cycle -7.797496 1.169934e-14	1.169934e-14	
G0:0007059 chromosome segregation -6.878340 2.028624e-11	2.028624e-11	
G0:0000236 mitotic prometaphase -6.695966 1.729553e-10	1.729553e-10	
	q.val	set.size
exp1 G0:0048285 organelle fission	5.841698e-12	376
1.536227e-15 G0:0000280 nuclear division	5.841698e-12	352
4.286961e-15 G0:0007067 mitosis 4.286961e-15	5.841698e-12	352

http://localhost:5506/ Page 28 of 29

GO:0000087 M phase of mitotic cell cycle	1.195672e-11	362
1.169934e-14		
GO:0007059 chromosome segregation	1.658603e-08	142
2.028624e-11		
GO:0000236 mitotic prometaphase	1.178402e-07	84
1.729553e-10		

\$stats

		stat.mean	exp1
G0:0007156	homophilic cell adhesion	3.824205	3.824205
G0:0002009	morphogenesis of an epithelium	3.653886	3.653886
G0:0048729	tissue morphogenesis	3.643242	3.643242
G0:0007610	behavior	3.530241	3.530241
G0:0060562	epithelial tube morphogenesis	3.261376	3.261376
G0:0035295	tube development	3.253665	3.253665

http://localhost:5506/ Page 29 of 29