B case

Lee SungHo

2021-01-06

Table of Contents

Vev	wsvendor case	2
_		
	Problem_1	2
	Problem 2	2

Newsvendor case

Problem_1

The A/F ratio is the ratio of actual demand divided by the predicted value. As a result of O'Neill's forecast of 3.2 million swimwear sales in 20, the sales data were normally distributed, with the expected A/F ratio of 0.9976 and the standard deviation of the A/F ratio of 0.369. Given that 21 years of swimwear sales are 2.2 million and the A/F ratios are the same, and sales volume is normally distributed, obtain the expected actual demand distribution.

#sol 1

 $\mu = Estimated$ A/F Ratio \times Demand forecasting = 0.9976 \times 2,200,000 = 2,194,720 $\sigma = Standard$ deviation of A/F ratio \times Demand forecasting = 0.369 \times 2,200,000 = 811,800

 \therefore expected actual demand = N(2194720,811800)

Problem_2

The factory costs \$110 to produce swimsuits, \$180 to sell at the store and \$90. Get the best order quantity using the actual demand you've got earlier. $(\phi(0.76)=0.7764, \phi(0.77)=0.7794)$

 $\#sol_2$

 C_o =(Material Cost - Salvage Price)=(110-90)=\$20

 C_u =(Retail Price - Material Cost)=(180-110)=\$70

optimal stock = smallest Y that matches $F(Y) = \frac{c_u}{c_o + c_u}$

$$F(z) = \frac{70}{70 + 20}$$

$$F(z) = \frac{7}{9} = 0.7778$$

Z = (Q-
$$\mu$$
)/ σ
 → : Best order quantity = Q = μ + Z * σ = 2,194,720+0.77*811,800 = 2,819,806