1

Assignment #3 Solution

1. See hand-drawing page.

2.

a. Original heap, then results of downheap for positions 3, 2, 1, 0:

0	1	2	3	4	5	6	7	8
5	3	17	<u>10</u>	84	19	6	22	9
5	3	<u>17</u>	22	84	19	6	10	9
5	<u>3</u>	19	22	84	17	6	10	9
<u>5</u>	84	19	22	3	17	6	10	9
84	22	19	10	3	17	6	5	9

b. Steps of heapsort:

0	1	2	3	4	5	6	7	8
84	22	19	10	3	17	6	5	9
22	10	19	9	3	17	6	5	84
19	10	17	9	3	5	6	22	84
17	10	6	9	3	5	19	22	84
10	9	6	5	3	17	19	22	84
9	5	6	3	10	17	19	22	84
6	5	3	9	10	17	19	22	84
5	3	6	9	10	17	19	22	84
3	5	6	9	10	17	19	22	84

c.

0	1	2	3	4	5	6	7	8
5								
5	3							
17	3	5						
17	10	5	3					
84	17	5	3	10				
84	17	19	3	10	5			
84	17	19	3	10	5	6		
84	22	19	17	10	5	6	3	
84	22	19	17	10	5	6	3	9

- 3. See hand-drawing page.
- 4. See hand-drawing page.
- 5. See hand-drawing page.

```
int calculateHeight(Node p) {
              if (p== null) return -1;
              hmax= calculateHeight(p.leftChild());
              h2 = calculateHeight(p.rightChild());
              if (h2>hmax) hmax=h2;
              return hmax+1;
       }
   6.
(a) 3<sup>^</sup>i
```

- (b) 13
- (c) $1+3+...+3^{i}+...+3^{h}=(3^{h}+1)-1)/2$
- (d) For minimum number of node there are several possible solutions, we have: at level 0 there will be 1 node; at level 1 there will be 3 nodes, at level 2 there will be 3 nodes (all these 3 nodes will be kids of one same node in level 1). For the maximum number of nodes there will be 1 node at level 0, there will be 3 nodes and at level 1, there will be 9 nodes at level 2 (each 3 connected to one parent on level 1).
- (e) Minimum: n=1+3*h; Maximum: same answer as c, that is $n=(3^{h+1}-1)/2$.

