Greedy Algorithms

CSC 349 Christopher Siu

The Traveling Salesperson Problem

NearestNeighbor (G = (V, E))

Input: A complete, weighted graph G

Output: The weight of a Hamiltonian cycle in G

- 1: for all $v \in V$ do
- 2: let v be "unexplored"
- 3: **let** s=v be "explored", any vertex in V, and W be 0
- 4: **while** there exist "unexplored" vertices in V **do**
- 5: **let** e = (v, u) be the lightest edge such that u is "unexplored"
- 6: **let** v be u and W be $W + w_e$
- 7: **return** $W + w_e$, where e = (v, s)

The Traveling Salesperson Problem

Example

Given:

...the Hamiltonian cycle of minimum weight is $(v_0, v_1, v_2, v_4, v_3, v_0)$, weight 14. NEARESTNEIGHBOR returns $(v_0, v_1, v_3, v_4, v_2, v_0)$, weight 17, and does *not* solve the Traveling Salesperson Problem.

Greedy Algorithms

Definition

A **greedy** algorithm is one that assumes a locally optimal choice will always lead to the globally optimal solution.

- □ A divide and conquer approach may not improve complexity.
- □ A greedy approach may be *incorrect*.

Example

SHORTESTPATH (correctly) assumes that at least one of the lightest paths from a vertex will always traverse the lightest available path.

Example

NEARESTNEIGHBOR (incorrectly) assumes that the lightest Hamiltonian cycle will always traverse the lightest incident edge.

Consider the following problem:

☐ Given a connected, weighted graph, find an "MST", a spanning tree of minimum weight.

Example

Given:

...the minimum spanning tree has weight 15.

Definition

A **cut** is a partitioning of every vertex into two disjoint sets.

☐ Given a cut, its **cut set** is the set of all edges connecting vertices in different sets.

Example

Given:

...the cut set is $\{(v_1, v_3), (v_1, v_4), (v_2, v_4)\}.$

The Cut Property

If e is the edge of strictly minimum weight in a cut set, then e must be in every MST.

□ If lighter edges are considered first, then an edge that would connect previously unreachable vertices is always optimal.

The Cycle Property

If e is the edge of strictly maximum weight in a cycle, then e cannot be in any MST.

If heavier edges are considered last, then an edge that would connect already reachable vertices is never optimal.

Kruskal's Algorithm

```
MINIMUMSPANNINGTREE (G = (V, E))
```

Input: A connected, weighted graph G

Output: A minimum spanning tree of G

- 1: **let** T be an empty tree and S be an empty disjoint set
- 2: for all $v \in V$ do
- 3: Make a new subset containing v in S
- 4: **let** A be E, sorted in increasing order by weight
- 5: **for** all $e = (u, v) \in A$ **do**
- 6: **if** u and v are in different subsets in S **then**
- 7: Union the subsets containing u and v in S
- 8: Add e to T
- 9: return T

Kruskal's Algorithm

Example

- 1 Add $e = (v_0, v_1), w_e = 1.$
- 2 Add $e = (v_0, v_2), w_e = 2.$
- 3 Add $e = (v_3, v_4), w_e = 2.$
- 4 Add $e = (v_2, v_4), w_e = 3.$
- 5 Skip $e = (v_1, v_2)$, $w_e = 4$.

- 6 Skip $e = (v_1, v_3)$, $w_e = 4$.
- 7 Skip $e = (v_1, v_4), w_e = 5.$
- 8 Add $e = (v_4, v_5)$, $w_e = 7$.
- 9 Skip $e = (v_3, v_5)$, $w_e = 8$.

Kruskal's Algorithm

Example

- \square Sorting E has complexity $O(|E|\log|E|)$.
- □ Each vertex appears in the disjoint set exactly once.
- ☐ Each edge causes a disjoint set operation at most thrice.

Assuming a tree-based implementation of the disjoint set, MINIMUMSPANNINGTREE has complexity $O(|E|\log|E|)$.

- □ Disjoint sets can be implemented as trees: two nodes have the same root if and only if their elements are in the same subset.
- □ With a hash table implementation of the disjoint set, Kruskal's algorithm has complexity O(|V||E|).

Exchange Arguments

Theorem

Suppose MINIMUMSPANNINGTREE returns T and there exists an optimal MST OPT .

Lemma

If T differs from OPT by i edges, then OPT can be transformed into T without increasing its weight.

Then T and OPT have the same weight.

- \square Note that T need not include the same edges as OPT; it need only have the same sum total weight.
- $\hfill \square$ Since the edges of \mbox{Opt} can be "exchanged" to equal those of T without changing their weight, T has the same weight.

Consider the following problem:

- \square An **activity** is a pair $a_i = (s_i, f_i)$ of a start time s_i and a finish time f_i , taking place during the time $[s_i, f_i)$.
- □ Given a set of activities, find a maximum subset of non-conflicting activities.

Example

Given $\{(2,4),(0,3),(0,1),(4,7),(6,8),(8,9)\}$:

...one of the maximum subsets is $\{(0,1), (2,4), (4,7), (8,9)\}.$

```
ACTIVITYSELECTION (S = \{a_0, a_1, \dots, a_{n-1}\})
Input: A finite, non-empty set S of n activities, where a_i = (s_i, f_i)
Output: A maximum subset of non-conflicting activities
 1: let A be S, sorted in increasing order by finish time
 2: let a_i = (s_i, f_i) be the first activity in A and X be \{a_i\}
 3: for all a_i = (s_i, f_i) \in A do
 4: if s_i \geq f_i then
 5:
           let X be X \cup \{a_i\}
           let a_i be a_i
 6:
 7: return X
```

Example

- **Select** (0,1). **Select** (2,4). **Skip** (6,8).

- **2** Skip (0,3).
- 4 Select (4,7). 6 Select (8,9).

Example

- \square Sorting S has complexity $O(n \log n)$.
- \square Collectively considering activities has complexity O(n).

ACTIVITYSELECTION has complexity $O(n \log n)$.

Greedy Stays Ahead

Theorem

Suppose ActivitySelection returns $X=(x_0,x_1,\ldots,x_{n-1})$ and there exists an optimal selection $\text{Opt}=(y_0,y_1,\ldots y_{m-1})$, both sorted in increasing order of finish time.

Lemma

For all i < n, $f_{xi} \le f_{yi}$.

Then n=m.

- \square Note that X need not include the same activities as OPT; it need only have as many activities as OPT.
- \square By "staying ahead" of OPT, X always has the option of including the same activities.

Weighted Activity Selection

Example

Given:

...ACTIVITYSELECTION returns $\{(0,1),(2,4),(4,7),(8,9)\}$, which is a subset of maximum cardinality but not maximum weight.