

Stevens Institute of Technology Syllabus

PEP 555: Statistical Physics and Kinetic Theory

Semester taught:	Start and end date of the semester:
	See Stevens web site
<u>Fall</u>	
Name: Professor Knut Stamnes	Office Hours: By Appointment
Office address: 627 Burchard	
	Course Web Address:
Office phone number: 201-216-8194	To be assigned.
E-mail address: kstamnes@stevens.edu	3

Overview

Course Description:

Kinetic theory: ideal gases, distribution functions, Maxwell-Boltzmann distribution, Boltzmann equation, H-theorem and entropy, simple transport theory. Thermodynamics: review of first and second laws, thermodynamic potentials, phase transitions, Elementary statistical mechanics: introduction to microcanonical, canonical and grand canonical distributions, partition functions, simple applications including ideal Maxwell-Boltzmann, Einstein-Bose and Fermi-Dirac gases, paramagnetic systems, blackbody radiation. Text: Reif, *Statistical and Thermal Physics*.

The course is suitable for beginning graduate and upper-level undergraduate students.

Learning Goals

After taking this course, the student will be able to:

- Appreciate the fundamentals of statistical physics and kinetic theory
- Make estimates of transport phenomena
- Understand how macroscopic thermodynamics can be derived from a molecular point of view

Pedagogy

The course will employ lectures, in-class discussion, e-mail exchange, homework assignments, and tests. Students will do weekly assignments, a mid-term exam plus a final exam.

Required Text(s)

F. Reif: "Fundamentals of Statistical and Thermal Physics", 1965, Waveland Press, Inc. ISBN 978-1-57766-612-7.

Required Readings

Readings will be assigned for each week. These will be found on the course website.

Assignments

The course will emphasize homework, a midterm exam, and a final exam with equal weight.

- 1. Homework Homework must be completed by the required date and submitted in class.
- 2. A mid-term exam must be completed when due.
- 3. A final exam must be completed when due.

The assignments and their weights are as shown below:

1. Homework	33%
2. Mid-term	33%
3. Final exam	34%
TOTAL	100%

Final letter grades will be calculated based on the following distribution:

<u>Letter Grade</u> :	<u>% Grade</u> :
A	90-100%
A-	85-89.9%
B+/B/B-	70-84.9%
C+/C/C-	50-69.9%
D+/D/D-	30-49.9%
F	<30%

Course Schedule (Sample)

Week	Subject	Assignment Due
1	Introduction to statistical methods: random walk and binomial distribution	Beginning of next class
2	Statistical description of systems of particles: statistical formulation of the mechanical problem	Beginning of next class
3	Statistical thermodynamics: Irreversibility and the attainment of equilibrium	Beginning of next class
4	Macroscopic parameters and their measurement	Beginning of next class
5	Simple applications of macroscopic thermodynamics	Beginning of next class
6	Basic methods and results of statistical	Beginning of next class

Week	Subject	Assignment Due
	mechanics	
7	Simple applications of statistical mechanics	Beginning of next class
8	Equilibrium between phase or chemical species	Beginning of next class
9	Quantum statistics of ideal gases (i)	Beginning of next class
10	Quantum statistics of ideal gases (ii)	Beginning of next class
11	Magnetism and low temperature	Beginning of next class
12	Elementary kinetic theory of transport processes	Beginning of next class
13	Review	Beginning of next class
14	Final Exam Preparation	Final exam.