

Funções escalares de várias variáveis

Superfícies de nível

Objetivos:

- Compreender a noção de superfícies de nível e sua relação com o domínio e imagem da função.
- Calcular e identificar a superfície de nível que passa por um dado ponto.
- Esboçar as superfícies de nível.

Seja $f:D\subset\mathbb{R}^n\longrightarrow\mathbb{R}$, $(x_1,x_2,...,x_n)\in D$ $\longmapsto w=f(x_1,x_2,...,x_n)\in\mathbb{R}$. Seja $k\in\Im_f$. O conjunto $\mathcal{C}_k=\{(x_1,x_2,...,x_n)\in D; f(x_1,x_2,...,x_n)=k\}\subset D\subset\mathbb{R}^n$ é dito conjunto de nível de f no nível k. As curvas de nível são o caso particular n=2.

Quando n=3, os conjuntos de nível se denotam por S_k e se chamam superfície de nível de f no nível k.

Figure 1: Relação da superfície de nível com o domínio e a imagem da função

Observação

- (I) Se $f:D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$, então $G_f\subset\mathbb{R}^3$, $C_k\subset D\subset\mathbb{R}^2$, $Im f\subset\mathbb{R}$.
- (II) Se $f: D \subset \mathbb{R}^3 \longrightarrow \mathbb{R}$, então $G_f \subset \mathbb{R}^4$, $S_k \subset D \subset \mathbb{R}^3$, $Imf \subset \mathbb{R}$.
- (II) Se $f:D\subset\mathbb{R}^n\longrightarrow\mathbb{R}$, então $G_f\subset\mathbb{R}^{n+1}$, $\mathcal{C}_k\subset D\subset\mathbb{R}^n$, $Im f\subset\mathbb{R}$.

Exemplos

- 1. Seja $f(x, y, z) = x^2 + y^2$. Determine:
 - (a) D_f
 - (b) *Imf*
 - (c) a superfície de nível que passa pelo ponto (1,0,0)

Solução

- (a) $D_f = \mathbb{R}^3$
- (b) $Im f = [0, +\infty[$
- (c) f(1,0,0)=1, então o nível da curva é k=1. Daí, $S_1:x^2+y^2=1$ é a curva desejada. Como essa equação não envolve a variável z, isso significa que qualquer plano horizontal z=k (paralelo ao plano xy) intercepta o G_f segundo a circunferência $x^2+y^2=1$. Assim, o G_f é obtido tomando-se a circunferência $x^2+y^2=1$, no plano xy e deslocando-a paralelamente ao eixo z. A superfície é dita <u>cilindro circular reto</u>.

Figure 2: Superfície de nível k=1 da função $f(x,y,z)=x^2+y^2$

- 2. Seja $f(x, y, z) = x^2 + y^2 z^2$. Determine:
 - (a) D_f
 - (b) *Imf*
 - (c) S_k , superfícies de nível

Solução

- (a) $D_f = \mathbb{R}^3$
- (b) $Imf = \mathbb{R}$
- (c) Seja $k \in I_m f = \mathbb{R}$. Então, a superfície de nível correspondente é

$$S_k : x^2 + y^2 - z^2 = k$$

Se k=0, temos $S_0: x^2+y^2-z^2=0$ ou $z^2=x^2+y^2$. Fazendo x=0, temos $z=\pm |y|$ e fazendo z=c, temos $x^2+y^2=c^2$. Logo, temos a forma de S_0 que é um cone.

Se k>0, temos $S_k: x^2+y^2-z^2=k$. Fazendo x=0, temos a hipérbole $y^2-z^2=k$ no plano yz de vértices $(0,\sqrt{k},0)$ e $(0,-\sqrt{k},0)$. Fazendo z=c, temos a circunferência $x^2+y^2=k+c^2$. Assim, temos a superfície S_k , k>0, dita hiperboloide de uma folhas.

Se k<0 ou -k>0, temos $S_k:z^2\to x^2-y^2=-k$. Fazendo x=0, temos a hipérbole $z^2-y^2=-k$ no plano yz de vértices $(0,0,\sqrt{-k}), \ (0,0,-\sqrt{-k})$. Fazendo z=c, com $c>\sqrt{-k}$ ou $c<\sqrt{-k}$, temos circunferências $x^2+y^2=k+c^2$. Assim, temos a superfície $S_k,k<0$, dita hiperboloide de duas folhas.

Figure 3: Superfície de nível k < 0 (azul), k = 0 (amarelo) e k > 0 (vermelho) da função $f(x,y,z) = x^2 + y^2 - z^2$

A versão do mapa de contorno para as superfícies de nível seria um gráfico 3D com as superfícies de nível uma dentro da outra:

Figure 4: Gráfico 3D com as superfícies de nível da função $f(x,y,z)=x^2+y^2-z^2$

Exercícios

1. Seja $f(x,y,z)=\ln{(x^2+y^2+z^2-1)}$. Determine: (a) D_f

- (b) *Imf*
- (c) superfícies de nível
- 2. A temperatura em uma região D do \mathbb{R}^3 é dada por $T(x,y,z)=\sqrt{36-4x^2-9y^2-z^2}$ Determine:
 - (a) a região D
 - (b) *ImT*
 - (c) o conjunto de pontos que possuem a mesma temperatura do que o ponto $(0,1,\sqrt{2})$
 - (d) as isotermas
- 3. Se a voltagem V no ponto P(x, y, z) é dada por

$$V = \frac{6}{\left(x^2 + 4y^2 + 9z^2\right)^{\frac{1}{2}}}$$

Determine:

- (a) domínio de V
- (b) *ImV*
- (c) as equipotenciais

Respostas

- 1. (a) $D_f: x^2 + y^2 + z^2 > 1$
 - (b) $Imf = \mathbb{R}$
 - (c) $S_k: x^2+y^2+z^2=1+e^k, \quad k\in\mathbb{R}$, esferas concêntricas de raio $\sqrt{1+e^k}$ e centro na origem.
- 2. (a) $D = \left\{ (x, y, z); \quad \frac{x^2}{9} + \frac{y^2}{4} + \frac{z^2}{36} \leqslant 1 \right\}$
 - (b) ImT = [0, 6]
 - (c) $S_5: 4x^2 + 9y^2 + z^2 = 11$
 - (d) $S_0: \frac{x^2}{9} + \frac{y^2}{4} + \frac{z^2}{36} = 1$, $S_6 = \{(0,0,0)\}$, $S_k: 4x^2 + 9y^2 + z^2 = 36 k^2$, 0 < k < 6, elipsoides concêntricos de centro na origem.
- 3. (a) $D_V = \mathbb{R}^3 \{(0,0,0)\}$
 - (b) $ImV =]0, +\infty[$
 - (c) $S_k: x^2+4y^2+9z^2=\frac{36}{k^2}$, k>0, elipsoides concêntricos de centro na origem.

