Abstract Algebra

: Lecture 7

Leo

2024.10.10

Definition 1. Let R be a ring. If each non-zero element of R has inverse, then R is a division ring. Further, a commutative division ring is a field.

Example 2. Let $R = \{ \begin{bmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{bmatrix} | \alpha, \beta \in \mathbb{C} \}$, where $\bar{\alpha} = \overline{a + bi} = a - bi$. Then R is a division ring, which is not commutative.

Check: 1. R is a ring. 2. Each non-zero element of R has inverse $\frac{1}{\alpha^2 + \beta^2} \begin{bmatrix} \bar{\alpha} & -\beta \\ \bar{\beta} & \alpha \end{bmatrix}$. 3. R is not commutative.

This ring is called quaternion ring \mathbb{H} .

Definition 3. Let E be a field, and let $F \subset E$ be a subfield. Then E is an extension of F.

Example 4. $\mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$, and there is no proper subfield of \mathbb{Q} .

Example 5. Consider $\mathbb{Q} \subset S \subset \mathbb{R}$.

- 1. $S_1 = \mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} | a, b \in \mathbb{Q}\}$. It's easy to check that S_1 is a field.
- 2. $S_2 = \mathbb{Q}(\sqrt{3}) = \{a + b\sqrt{3} | a, b \in \mathbb{Q}\}$. It's easy to check that S_2 is also a field.

Are S_1 and S_2 the same field? No. Suppose $\phi: S_1 \to S_2$ then it must fix 1 so $\phi(2) = 2$, $2 = \phi(2) = (\phi(\sqrt{2}))^2 = (a + b\sqrt{3})^2 = (a^2 + 3b^2) + 2ab\sqrt{3}$, so $a^2 + 3b^2 = 2$ and 2ab = 0. Since $a, b \in \mathbb{Q}$, a = 0 or b = 0. If a = 0 then $3b^2 = 2$, which is impossible. If b = 0 then $a^2 = 2$, which is also impossible. So ϕ is not well-defined.

- 3. $S_3 = \mathbb{Q}(\sqrt{n}) = \{a + b\sqrt{n} | a, b \in \mathbb{Q}\}$ where n is not a square integer. Then S_3 is a field.
- 4. $S=\mathbb{Q}(2^{\frac{1}{3}})$, the samllest subfield of \mathbb{R} containing \mathbb{Q} and $2^{\frac{1}{3}}$. Then $S=\{a+b2^{\frac{1}{3}}+c2^{\frac{2}{3}}|a,b,c\in\mathbb{Q}\}$.

Theorem 6. Let $F = \mathbb{Q}$ or \mathbb{F}_p . Let R = F[x]. Take $p(x) \in R$ s.t. p(x) is irreducible i.e. p(x) is not a product of two non-constant polynomials in R. And let I = (p(x)). Then S = R/I is a field. (Recall: I is a maximal ideal in R, this is because R is a principal ideal domain and p(x) is irreducible if and only if (p(x)) is maximal.)

证明. Suppose f(x)+I has inverse, i.e. $(f(x)+I)(g(x)+I)=1+I\Rightarrow f(x)g(x)=1+I\Rightarrow f(x)g(x)$

Now we look back to S, let $p(x) = x^3 - 2$ which is irreducible in $\mathbb{Q}[x]$. Then $S' = \mathbb{Q}[x]/(x^3 - 2)$ is a field. And $\phi: S \to S'$ s.t. $2^{\frac{1}{3}} \mapsto x$ is a field isomorphism. Then S is a field.

Exercise 7. Let $F = \mathbb{F}_3 = \{0, 1, 2\}$ be a field. Let $p(x) = x^2 + 1$, check that p(x) is irreducible over F. This means that $F[x]/(x^2 + 1)$ is a field. Find a basis for $F[x]/(x^2 + 1)$ as a vector space over F.

Theorem 8. If F is a finite field. Then $|F| = p^d$, where p is a prime number and d is a positive integer.

Example 9. Question: Find an irreducible polynomial of degree 2 over \mathbb{F}_2 .

 $x^{2} + 1 = x^{2} - 1 = (x + 1)(x - 1) = (x + 1)^{2}$ is not irreducible.

 $p(x) = x^2 + x + 1$ is irreducible. Thus $\mathbb{F}_2[x]/(p(x))$ is a field of order 2^2 .

Question: Is there a field of order 6?

No, since 6 is not a p's power. So why we need a p's power?

Definition 10. Let F be a field. Let n be the smallest non-negtive integer s.t. $n \cdot 1 = 0$. Then n is called the characteristic of F. If n is not a positive integer, then F is said to have characteristic 0.

Lemma 11. The char of a field is either 0 or a prime number.

证明. If
$$n = pq$$
, then $(p \cdot 1)(q \cdot 1) = 0 \Rightarrow p$ or $q = 0$.

Example 12. $\operatorname{char}(\mathbb{Q}) = \operatorname{char}(\mathbb{R}) = \operatorname{char}(\mathbb{C}) = 0$, $\operatorname{char}(\mathbb{F}_{p^d}) = p$.

Theorem 13. Any field contains a subfield which is isomorphic to \mathbb{Q} or \mathbb{F}_p for some prime p.

证明. Let E be the smallest subfield of F. Then $0,1 \in E$, and hence $n \cdot 1 \in E$ and $\frac{m}{n} \in E$. If $\operatorname{char}(F) = 0$, then $E \simeq \mathbb{Q}$, if $\operatorname{char}(F) = p$, then $E \simeq \mathbb{F}_p$.

Definition 14. \mathbb{Q} and \mathbb{F}_p are called the prime fields.