

OBJECT DETECTION AND TRACKING

Qualcomm VisionX Techfest 24-25, IIT Bombay Team Id: Qual-230302

1

UNDERSTANDING THE PROBLEM

What is Object Detection?

- A computer vision technology that identifies objects in images or videos.

Why is it Important?

- Powers applications in security, autonomous vehicles, and retail.

Challenges:

- High false positives/negatives.
- Poor performance in diverse environments.
- Difficulty tracking objects across video frames.
- Need for real-time results.

OUR SOLUTION

What Are We Offering?

A smart Al-based object detection system with:

- High precision and recall
- Real-time tracking capabilities
- Robust performance in diverse environments

Applications:

- Surveillance: Detect intruders or suspicious activities
- Autonomous Driving: Identify pedestrians, vehicles, and road signs
- Retail: Track inventory and analyze customer behavior

GitHub Repository: Link (Currently Working)

REAL-TIME OBJECT DETECTION & TRACKING (Inspired By Tesla & Architecture)

1. Learning from Tesla:

- Multi-camera systems for broader coverage.
- Sensor fusion (integrating visual and radar data).
- High-speed, real-time processing for autonomous vehicles.

2. Our Implementation:

- Object tracking with bounding boxes using SORT/DeepSORT.
- Optimizations for real-time applications with hardware acceleration.

PIPELINE:

Image Input

Detection Model

Post – Processing

Display results

TECHNOLOGIES USED

- Pre-trained Model: SSD MobileNet V2 trained on Open Images Dataset V4.
- Processing Framework: TensorFlow Hub for model loading and TensorFlow for inference, with OpenCV handling image and video processing.
- **Post-Processing:** Non-Max Suppression (NMS) for bounding box refinement and confidence thresholding for accurate detections.

WORKFLOW:

Load Pre-trained Model: Use
TensorFlow Hub to load the SSD
MobileNet V2 model trained on
Open Images Dataset V4 for object
detection.

Detect and Visualize: Perform inference using TensorFlow, apply Non-Max Suppression to refine bounding boxes, and use OpenCV to draw bounding boxes, labels, and confidence scores on the input.

COMPLETE ROADMAP

THE VALUE OF OUR SOLUTION

Key Benefits:

- Accurate Detection: High precision and recall
- Real-Time Performance: Practical for real-world use
- Versatile Applications: Security, transportation, retail
- Robustness: Works in difficult conditions

Use Cases:

- Surveillance: Enhanced monitoring
- Autonomous Vehicles: Safer navigation
- Retail: Efficient inventory tracking

