A - Lucky Direction

Time Limit: 2 sec / Memory Limit: 1024 MiB

 $\mathsf{Score} : 100 \, \mathsf{points}$

Problem Statement

You are given a string D representing one of the eight directions (north, east, west, south, northeast, northwest, southeast, southwest). The correspondence between the directions and their representing strings is as follows.

- North: N
- East: E
- West: W
- South: S
- Northeast: NE
- Northwest: NW
- Southeast: SE
- Southwest: SW

Print the string representing the direction opposite to the direction denoted by D.

Constraints

• D is one of N, E, W, S, NE, NW, SE, SW.

Input

The input is given from Standard Input in the following format:

D

Output

Print the answer.

N

Sample Output 1

S

Print S, which represents south, the direction opposite to north.

Sample Input 2

SE

Sample Output 2

NW

Print NW, which represents northwest, the direction opposite to southeast.

B - Seek Grid

Time Limit: 2 sec / Memory Limit: 1024 MiB

Score: 200 points

Problem Statement

You are given an $N \times N$ grid S and an $M \times M$ grid T. The cell at the i-th row from the top and the j-th column from the left is denoted by (i,j).

The colors of the cells in S and T are represented by N^2 characters $S_{i,j}$ ($1 \le i, j \le N$) and M^2 characters $T_{i,j}$ ($1 \le i, j \le M$), respectively. In grid S, cell (i,j) is white if $S_{i,j}$ is ., and black if $S_{i,j}$ is #. The same applies for grid T.

Find T within S. More precisely, output integers a and b ($1 \le a, b \le N-M+1$) that satisfy the following condition:

• $S_{a+i-1,b+j-1} = T_{i,j}$ for every i,j ($1 \le i,j \le M$).

Constraints

- 1 < M < N < 50
- ullet N and M are integers.
- Each of $S_{i,j}$ and $T_{i,j}$ is . or #.
- There is exactly one pair (a,b) satisfying the condition.

Input

The input is given from Standard Input in the following format:

```
egin{array}{c} N & M \ S_{1,1}S_{1,2}\dots S_{1,N} \ S_{2,1}S_{2,2}\dots S_{2,N} \ dots \ S_{N,1}S_{N,2}\dots S_{N,N} \ T_{1,1}T_{1,2}\dots T_{1,M} \ T_{2,1}T_{2,2}\dots T_{2,M} \ dots \ \vdots \ T_{M,1}T_{M,2}\dots T_{M,M} \ \end{array}
```

Output

Print a and b in this order, separated by a space on one line.

Sample Input 1

```
3 2
#.#
..#
##.
.#
##.
```

Sample Output 1

2 2

The 2 imes 2 subgrid of S from the 2nd to the 3rd row and from the 2nd to the 3rd column matches T.

Sample Input 2

```
2 1
#.
##
.
```

Sample Output 2

C - Pigeonhole Query

Time Limit: 2 sec / Memory Limit: 1024 MiB

Score: 300 points

Problem Statement

There are N pigeons numbered from 1 to N, and there are N nests numbered from 1 to N. Initially, pigeon i is in nest i for $1 \leq i \leq N$.

You are given Q queries, which you must process in order. There are two types of queries, each given in one of the following formats:

- 1 P H: Move pigeon P to nest H.
- 2: Output the number of nests that contain more than one pigeon.

Constraints

- $2 \le N \le 10^6$
- $1 \le Q \le 3 \times 10^5$
- $1 \le P, H \le N$
- $\bullet\;$ For a query of the first type, pigeon P is not in nest H before the move.
- All input values are integers.

Input

2

The input is given from Standard Input in the following format:

```
\begin{array}{c} N \quad Q \\ \mathrm{query}_1 \\ \mathrm{query}_2 \\ \vdots \\ \mathrm{query}_Q \end{array}
```

Each query is given in one of the following two formats:

```
1 P H
```

Output

Print the answer to each query on a new line according to the instructions in the problem statement.

Sample Input 1

```
4 7
2
1 1 2
2
1 3 2
2
1 3 4
2
```

Sample Output 1

```
0
1
1
2
```

Initially, pigeons 1, 2, 3, 4 are in nests 1, 2, 3, 4, respectively.

- For the 1st query, the counts of pigeons in nests 1, 2, 3, 4 are 1, 1, 1, 1. No nests contain multiple pigeons, output 0.
- For the 2nd query, move pigeon 1 to nest 2.
- For the 3rd query, the counts become 0,2,1,1, respectively. One nest (nest 2) contains multiple pigeons, so output 1.
- For the 4th query, move pigeon 3 to nest 2.
- For the 5th query, the counts become 0, 3, 0, 1, respectively. One nest (nest 2) contains multiple pigeons, so output 1.
- For the 6th query, move pigeon 3 to nest 4.
- For the 7th query, the counts become 0, 2, 0, 2, respectively. Two nests (nests 2 and 4) contain multiple pigeons, so output 2.

```
5 10
2
1 4 3
1 4 5
2
1 3 1
2
1 2 3
1 2 5
1 1 3
2
```

Sample Output 2

```
0
1
2
1
```

D - Gravity

Time Limit: 2 sec / Memory Limit: 1024 MiB

Score: 400 points

Problem Statement

There is a grid with 10^9 rows and W columns. The cell at the x-th column from the left and the y-th row from the **bottom** is denoted by (x,y).

There are N blocks. Each block is a 1×1 square, and block i-th ($1 \le i \le N$) is located at cell (X_i, Y_i) at time 0.

At times $t=1,2,\ldots,10^{100}$, the blocks are moved according to the following rules:

- If the entire bottom row is filled with blocks, then all blocks in the bottom row are removed.
- For each remaining block, in order from bottom to top, perform the following:
 - If the block is in the bottom row, or if there is a block in the cell immediately below it, do nothing.
 - Otherwise, move the block one cell downward.

You are given Q queries. For the j-th query ($1 \leq j \leq Q$), answer whether block A_j exists at time $T_j + 0.5$.

Constraints

- $1 \le N \le 2 \times 10^5$
- $1 \le W \le N$
- $1 \le X_i \le W$
- $1 \le Y_i \le 10^9$
- $(X_i,Y_i) \neq (X_j,Y_j)$ if $i \neq j$.
- $1 \leq Q \leq 2 imes 10^5$
- $1 \le T_i \le 10^9$
- $1 \leq A_i \leq N$
- All input values are integers.

Input

The input is given from Standard Input in the following format:

Output

Print Q lines. The i-th line should contain Yes if block A_i exists at time $T_i+0.5$, and No otherwise.

Sample Input 1

```
      5 3

      1 1

      1 2

      2 2

      3 2

      2 3

      6

      1 1

      1 2

      2 3

      2 5

      3 4

      3 5
```

Sample Output 1

Yes
Yes
No
Yes
No
Yes

The positions of the blocks change as follows: ("時刻" means "time.")

- Query 1: At time 1.5, block 1 exists, so the answer is Yes.
- Query 2: At time 1.5, block 2 exists, so the answer is Yes.
- Query 3: Block 3 disappears at time 2, so it does not exist at time 2.5, and the answer is No.

Sample Input 2

3 2 1 1 2 1 1 2 4 1 1 1 2 1 3 2 3

Sample Output 2

No No Yes Yes

E - Hierarchical Majority Vote

Time Limit: 2 sec / Memory Limit: 1024 MiB

Score: 450 points

Problem Statement

For a binary string $B=B_1B_2\dots B_{3^n}$ of length 3^n ($n\ge 1$), we define an operation to obtain a binary string $C=C_1C_2\dots C_{3^{n-1}}$ of length 3^{n-1} as follows:

• Partition the elements of B into groups of 3 and take the majority value from each group. That is, for $i=1,2,\ldots,3^{n-1}$, let C_i be the value that appears most frequently among B_{3i-2},B_{3i-1} , and B_{3i} .

You are given a binary string $A=A_1A_2\dots A_{3^N}$ of length 3^N . Let $A'=A_1'$ be the length-1 string obtained by applying the above operation N times to A.

Determine the minimum number of elements of A that must be changed (from 0 to 1 or from 1 to 0) in order to change the value of A'_1 .

Constraints

- N is an integer with $1 \leq N \leq 13$.
- A is a string of length $\mathbf{3}^N$ consisting of 0 and 1.

Input

The input is given from Standard Input in the following format:

$$N \ A_1 A_2 \dots A_{3^N}$$

Output

Print the answer.

Sample Input 1

Sample Output 1

1

For example, with A=010011101, after applying the operation twice, we obtain:

- First operation: The majority of 010 is 0, of 011 is 1, and of 101 is 1, resulting in 011.
- Second operation: The majority of 011 is 1, yielding 1.

To change the final value from 1 to 0, one way is to change the 5th character of A from 1 to 0, yielding A=010001101. After the change, the operations yield:

- First operation: The majority of 010 is 0, of 001 is 0, and of 101 is 1, resulting in 001.
- Second operation: The majority of 001 is 0, yielding 0.

Thus, the minimum number of changes required is 1.

Sample Input 2

1 000

Sample Output 2

F - K-th Largest Triplet

Time Limit: 3 sec / Memory Limit: 1024 MiB

 ${\it Score}: 500 \, {\it points}$

Problem Statement

You are given three integer sequences of length N, namely $A=(A_1,A_2,\ldots,A_N)$, $B=(B_1,B_2,\ldots,B_N)$, and $C=(C_1,C_2,\ldots,C_N)$, and an integer K.

For each of the N^3 choices of integers i,j,k ($1\leq i,j,k\leq N$), compute the value $A_iB_j+B_jC_k+C_kA_i$. Among all these values, find the K-th largest value.

Constraints

- $1 \le N \le 2 \times 10^5$
- $1 \leq K \leq \min(N^3, 5 \times 10^5)$
- $1 \le A_i, B_i, C_i \le 10^9$
- All input values are integers.

Input

The input is given from Standard Input in the following format:

Output

Print the answer.

```
2 5
1 2
3 4
5 6
```

Sample Output 1

31

The $N^3=8$ values are computed as follows:

```
• For (i,j,k)=(1,1,1): A_1B_1+B_1C_1+C_1A_1=1\times 3+3\times 5+5\times 1=23
```

$$ullet$$
 For $(i,j,k)=(1,1,2)$: $A_1B_1+B_1C_2+C_2A_1=1 imes 3+3 imes 6+6 imes 1=27$

$$ullet$$
 For $(i,j,k)=(1,2,1)$: $A_1B_2+B_2C_1+C_1A_1=1 imes4+4 imes5+5 imes1=29$

$$ullet$$
 For $(i,j,k)=(1,2,2)$: $A_1B_2+B_2C_2+C_2A_1=1 imes 4+4 imes 6+6 imes 1=34$

$$ullet$$
 For $(i,j,k)=(2,1,1)$: $A_2B_1+B_1C_1+C_1A_2=2 imes 3+3 imes 5+5 imes 2=31$

$$ullet$$
 For $(i,j,k)=(2,1,2)$: $A_2B_1+B_1C_2+C_2A_2=2 imes 3+3 imes 6+6 imes 2=36$

• For
$$(i, j, k) = (2, 2, 1)$$
: $A_2B_2 + B_2C_1 + C_1A_2 = 2 \times 4 + 4 \times 5 + 5 \times 2 = 38$

$$ullet$$
 For $(i,j,k)=(2,2,2)$: $A_2B_2+B_2C_2+C_2A_2=2 imes 4+4 imes 6+6 imes 2=44$

Sorting these values in descending order, we have (44, 38, 36, 34, 31, 29, 27, 23), so the 5th largest value is 31.

Sample Input 2

```
3 10
100 100 100
100 100 100
100 100 100
```

Sample Output 2

5 54

800516877 573289179 26509423 168629803 696409999 656737335 915059758 201458890 931198638 185928366 140174496 254538849 830992027 305186313 322164559

Sample Output 3

G - Many LCS

Time Limit: 2 sec / Memory Limit: 1024 MiB

Score: 600 points

Problem Statement

You are given a lowercase English string S of length N and an integer M. For each $k=0,1,\ldots,N$, solve the following problem:

• There are 26^M lowercase English strings of length M. Among these, find the number, modulo 998244353, of strings whose longest common subsequence with S has length exactly k.

Constraints

- 1 < N < 10
- $1 \le M \le 100$
- ullet N and M are integers.
- S is a lowercase English string of length N.

Input

The input is given from Standard Input in the following format:

 $N \quad M \\ S$

Output

Let ans_i be the answer for k=i. Print the answers in the following format:

 $\operatorname{ans}_0 \operatorname{ans}_1 \ldots \operatorname{ans}_N$

Sample Input 1

2 2 ab

Sample Output 1

576 99 1

The answers for k=0,1,2 are as follows:

- For k=0: Among length 2 lowercase English strings, those with a longest common subsequence of length 0 with ab include strings such as cd, re, zz, totaling 576.
- For k=1: Among length 2 lowercase English strings, those with a longest common subsequence of length 1 with ab include strings such as ac, wa, ba, totaling 99.
- For k=2: Among length 2 lowercase English strings, there is 1 string (ab) whose longest common subsequence with ab has length 2.

Sample Input 2

3 4 aaa

Sample Output 2

390625 62500 3750 101

Sample Input 3

7 50 atcoder

Sample Output 3

309810541 226923474 392073062 146769908 221445233 435648037 862664208 238437587