Assignment 3 Juan Silva ECE 309 Feb. 13, 2018

Problem Set 4

Problem Set 4-1:

Enter the matrices and vectors:

$$A = \begin{bmatrix} 2 & 3 & 7 \\ 1 & 2 & 0 \\ 4 & 1 & 5 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 0 & 9 \\ 2 & 1 & 4 \\ 3 & 1 & 2 \end{bmatrix} \quad c = \begin{bmatrix} 1 & 2 & 4 \end{bmatrix} \quad d = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}$$

Find the products (where they exist): c*A, c*B, A*B, d*A

Results

Problem Set 4-2:

If x is the column vector [x1;x2;x3], solve the system of the equations Ax=d.

$$x = inv(A) * d$$

Results

Problem Set 4-3:

Solve the system of equations:

$$3x1 + 2x2 + x3 = 10$$

 $5x1 + x2 - x3 = -1$
 $4x1 - 2x2 + 2x3 = 2$

```
m = [3,2,1;5,1,-1;4,-2,2];

v = [10,-1,2]';

y = inv(m) * v
```

Results

y = 0.0000 3.0000 4.0000

Problem Set 4-4:

Compute: A - B

A - B

Results

ans =

1 3 -2
-1 1 -4
1 0 3

Problem Set 4-5:

Use scalar expansion to create a new matrix, A_new, such that each element of A (from problem 1) is decreased by 4.

$$A_new = A - 4$$

Results

A_new =

-2 -1 3

-3 -2 -4

0 -3 1

Problem Set 4-6:

For matrix A (in problem 1), find:

%a. the determinant
detA = det(A)
%b. the inverse
inverseA = inv(A)
%c. the eigenvalue and eigenvector
[v, lamda] = eig(A)

Results

detA =
 -44
inverseA =
 -0.2273 0.1818 0.3182
 0.1136 0.4091 -0.1591
 0.1591 -0.2273 -0.0227
v =
 -0.7124 -0.8704 -0.0589
 -0.0984 0.2021 -0.9177
 -0.6949 0.4489 0.3928

Problem Set 4-7:

For vector c (in problem 1) use MATLAB to compute

%a. the number of element or entries
size(c)
%b. the geometric (or Euclidean length)
length(c)

Results

Problem Set 4-8:

Create a row vector with 3 entries containing

```
% a. the sum of the entries for the 3 columns given
% in matrix A (from problem 1).
A
R = sum(A)
% b. the product of the entries for the 3 columns
% given in matrix A (from problem 1).
A
R = prod(A)
```

Results

Problem Set 4-9:

```
% 9a. Create a 4 x 5 matrix of all 0's. zeros(4,5)
```

% 9b. Create a row vector containing twenty 1's. ones(1,20)

```
% 9c. Create a 5 x 5 identity matrix. eye(5)
```

Results

```
ans =
     0 0 0
     0 0 0
0 0 0
0 0 0
  0
                Ω
  0
                Ω
  0
                 0
ans =
 Columns 1 through 10
  1 1 1 1
                 1
                    1 1 1 1 1
 Columns 11 through 20
  1 1 1 1
                 1
                    1 1 1 1 1
ans =
     0
         0
            0
                 0
  0
      1
         0
            0
                 0
  0
     0
         1
            0
                0
         0
   0
     0
             1
                0
   0
     0
         0
            0
                1
```

Problem Set 4-10:

Consider the vectors $cur = [4 \ 5 \ 6 \ 7]$ and $volt = [2 \ 8 \ 9 \ 3]$ containing the currents (in Amps) through and the voltages (in Volts) across 4 particular resistors at some point in time. Create a vector containing the power dissipated by the 4 resistors.

Results

pwr = 8 40 54 21

Problem Set 4-11:

Consider two functions: $s(t) = t^3 + 5$ and $w(t) = 2t^4$. Create a 3-column table, showing t, s(t) and w(t), for t values 0, .25, ..., 2.

Results

		t	s(t)	w(t)						
ans	=									
		0	5.0000	0						

```
      0.2500
      5.0156
      0.0078

      0.5000
      5.1250
      0.1250

      0.7500
      5.4219
      0.6328

      1.0000
      6.0000
      2.0000

      1.2500
      6.9531
      4.8828

      1.5000
      8.3750
      10.1250

      1.7500
      10.3594
      18.7578

      2.0000
      13.0000
      32.0000
```

Problem Set 4-12:

A company manufactures 5 disks with radii given (in inches) in the following vector: rad = $\begin{bmatrix} 2 & 2.5 & 3 & 5 & 7 \end{bmatrix}$. Create a 2-column table, showing the radii for the manufactured disks in column 1 and the corresponding areas (in sq. in.) in column 2.

```
rad = [2, 2.5, 3, 5, 7]';
disp('-----')
disp(' Radii Area')
disp('----')
area = 2*pi .* rad;
[rad area]
```

Results

	Radii	Area
ans	=	
	2.0000	12.5664
	2.5000	15.7080
	3.0000	18.8496
	5.0000	31.4159
	7.0000	43.9823

Problem Set 4-13:

Create a matrix, say H, whose first row lists 0., 1, ..., 9, whose second row lists 10, 11, ..., 19, ..., and whose 10^{th} row lists 90, 91, ..., 99.

```
row = [0:9];
col = [0: 10: 90];
H = row + col'

sum = sum(H)
prod = prod(sum)
```

Results

30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	96	97	98	99
sum =									
450	460	470	480	490	500	510	520	530	540
prod =									
8.684	10e+26								

Problem Set 5

Problem Set 5-1:

For the circuit below, label the bottom left node as "ground"; then

- % a. label the unknown nodal voltages
- % b. determine (by inspection) the conductance matrix, G;
- % c. determine (by inspection) the effective source current vector, is;
- % d. use MATLAB to solve the equation: Gv= is for the unknown nodal voltages in vector v. find the downward current through the right-most 2W resistor. Ans: 5.2131 A
- % Program Name: nodalAnalysis.m
- % Author: Juan Silva Last Modified: Feb. 14, 2018
- $\mbox{\$}$ Description: This program will find the voltages at specified nodes using inspection and Matlab.

clear, clc, close all
format short, format compact

% Define variables

Vs1 = 12 %volts

```
Vs2 = 18
          %volts
R1 = 2;
           %Ohms
R2 = 3;
            %Ohms
R3 = 2;
            %Ohms
R4 = 5;
             %Ohms
R5 = 4;
             %Ohms
R6 = 1;
            %Ohms
G1 = (R1)^{-1};
G2 = (R2)^{-1};
G3 = (R3)^{-1};
G4 = (R4)^{-1};
G5 = (R5)^{-1};
G6 = (R6)^{-1};
% Start Code
\ensuremath{\,^{\circ}\!\!\!\!/} Develop the conductance matrix using inspection
a11 = G1 + G2 + G3;
a12 = -G2;
a13 = -G3;
a21 = -G2;
a22 = G2 + G4 + G5;
a23 = -G5;
a31 = -G3;
a32 = -G5;
a33 = G3 + G5 + G6;
% Create the matrix and current source vector.
G = [a11, a12, a13; a21, a22, a23; a31, a32, a33]
Is = [(Vs1 + Vs2) * G1; Vs2 * G4; 0 * G6]
% Solve for voltage vector
v = inv(G) * Is
display('
                      Volts');
% Use Ohm's Law to solve the current at resistance
downCurrent = (v(1) - v(3)) / R3
Results
G =
            -0.3333
                       -0.5000
    1.3333
             0.7833
                       -0.2500
   -0.3333
                        1.7500
   -0.5000
             -0.2500
Is =
   15.0000
    3.6000
\nabla =
   17.4492
   14.2623
    7.0230
             Volts
downCurrent =
    5.2131
```

Problem Set 5-2:

Notation: In the sketch below, the boxes represent resistors; note that the ground is already labeled.

```
% a. label the unknownnodal voltages;
% b. determine (by inspection) the conductance matrix, G;
% c. determine (by inspection) the effective source current vector, is;
% d. use MATLAB to solve the equation: Gv= isfor the unknown nodal voltages
% in vector v;
% Ans: v = [6; 9]e. find the downward current through the 2 KW resistor.
% Ans: 3 mA
% Program Name: nodalAnalysis2.m
% Author: Juan Silva Last Modified: Feb. 14, 2018
% Description: This program will find the voltages at specified nodes using inspection and Matlab.
```



```
% Define variables
Vs1 = 8;
              %volts
Is = 1e-3;
              %amps
R1 = 1e3;
              %Ohms
R2 = 2e3;
              %Ohms
R3 = 3e3;
              %Ohms
G1 = (R1)^{-1};
G2 = (R2)^{-1};
G3 = (R3)^{-1};
% Start Code
% Develop the conductance matrix using inspection
a11 = G1+G2+G3;
a12 = -(G3);
a21 = -(G3);
a22 = G3;
G = [a11, a12; a21, a22]
% Effective current source by inspection
I = [G1 * Vs1; 1e-3];
```

```
% Solve for voltage vector
v = inv(G) * I

display(' Volts');
% Use Ohm's Law to solve the current at resistance
downCurrent2 = (v(1) - 0) / R2
```

Results