Въведение във вероятностите

Фундаментални понятия, закони и примери

Мартин Минчев съвместно с проф. Младен Савов

Семково, 17.07.2023

Материали

- Лекции и упражнения по вероятности (и малко статистика), ФМИ-СУ:https://www.youtube.com/@ProbabilitySU
- За материали към горния курс: https://shorturl.at/izFU2
- За въпроси: mjminchev@fmi.uni-sofia.bg
- Начален учебник: Probability: An Introduction by Grimmett and Welsh
- Визуализиации: https://www.youtube.com/@3blue1brown https://seeing-theory.brown.edu/index.html

Понятия

- вероятностно пространство/елементарно събитие/събитие
- вероятност/условна вероятност
- формула на Бейс
- случайна величина
- независимост на събития/случайни величини
- очакване и дисперсия
- дискретно/непрекъснато разпределение
- плътност и функция на разпределение
- закон за големите числа
- централна гранична теорема

• Каква е вероятността при 2 хвърляния на честна монета да не се падне ези?

• Каква е вероятността при 2 хвърляния на честна монета да не се падне ези? Отг: 1/4

- Каква е вероятността при 2 хвърляния на честна монета да не се падне ези? Отг: 1/4
- Каква е вероятността да спечелим в 6/49?

- Каква е вероятността при 2 хвърляния на честна монета да не се падне ези? Отг: 1/4
- Каква е вероятността да спечелим в 6/49? Отг: $1/\binom{49}{6}$

- Каква е вероятността при 2 хвърляния на честна монета да не се падне ези? Отг: 1/4
- Каква е вероятността да спечелим в 6/49? Отг: $1/\binom{49}{6}$
- Каква е вероятността при избор на точка в кръг с радиус 1, тя да е на разстояние най-много на разстояние 1/2 от центъра?

- Каква е вероятността при 2 хвърляния на честна монета да не се падне ези? Отг: 1/4
- Каква е вероятността да спечелим в 6/49? Отг: $1/\binom{49}{6}$
- Каква е вероятността при избор на точка в кръг с радиус 1, тя да е на разстояние най-много на разстояние 1/2 от центъра? Отг: 1/4

 Каква е вероятността случайна хорда в кръг с радиус 1, да бъде по-малка от 1?

¹https://en.wikipedia.org/wiki/Bertrand_paradox_(probability)

- Каква е вероятността случайна хорда в кръг с радиус 1, да бъде по-малка от 1?
- Otr^1 :

 $^{^{1}} https://en.wikipedia.org/wiki/Bertrand_paradox_(probability)$

Възможните изходи от случаен експеримент означаваме с Ω .

Възможните изходи от случаен експеримент означаваме с Ω .

На практика, рядко се интересуваме от точния вид на Ω

Възможните изходи от случаен експеримент означаваме с Ω .

- - монета: N = 2, $\omega_1 = 'ези'$, $\omega_2 = 'тура'$, $\Omega = \{\omega_1, \omega_2\}$;
 - 100 различими монети: N = 2^{100} , $\Omega = \{\omega_1, \omega_2, \dots, \omega_{2^{100}}\}$, ω_i са възможните конфигурации 'ези-тура' на 100 различими монети;
 - 6/49: N = 13983816, $\Omega = \{\omega_1, \omega_2, \dots, \omega_{13983816}\}$. Всяко ω отговаря на различна комбинация от 6 цифри.

🧕 На практика, рядко се интересуваме от точния вид на Ω.

Възможните изходи от случаен експеримент означаваме с Ω .

- - монета: N = 2, $\omega_1 = 'ези'$, $\omega_2 = 'тура'$, $\Omega = \{\omega_1, \omega_2\}$;
 - 100 различими монети: $N=2^{100},\,\Omega=\{\omega_1,\omega_2,\ldots,\omega_{2^{100}}\},\,\omega_i$ са възможните конфигурации 'ези-тура' на 100 различими монети;
 - 6/49: N = 13983816, $\Omega = \{\omega_1, \omega_2, \dots, \omega_{13983816}\}$. Всяко ω отговаря на различна комбинация от 6 цифри.

 $ilde{ to}$ На практика, рядко се интересуваме от точния вид на Ω .

Възможните изходи от случаен експеримент означаваме с Ω .

- - монета: $N=2,\,\omega_1=$ 'ези', $\omega_2=$ 'тура', $\Omega=\{\omega_1,\omega_2\};$
 - 100 различими монети: $N=2^{100},\,\Omega=\{\omega_1,\omega_2,\ldots,\omega_{2^{100}}\},\,\omega_i$ са възможните конфигурации 'ези-тура' на 100 различими монети;
 - 6/49: N = 13983816, $\Omega = \{\omega_1, \omega_2, \dots, \omega_{13983816}\}$. Всяко ω отговаря на различна комбинация от 6 цифри.
- - $\omega_{\rm j}$ ='пада се ези за първи път на j-то хвърляне.
 - избор на точка в окръжност. Тогава можем да опишем ω може да се опише чрез координати: (x_{ω}, y_{ω}) , като $x_{\omega}^2 + y_{\omega}^2 = 1$.
- 💿 На практика, рядко се интересуваме от точния вид на Ω

Възможните изходи от случаен експеримент означаваме с Ω .

- - монета: N = 2, $\omega_1 = '$ ези', $\omega_2 = '$ тура', $\Omega = \{\omega_1, \omega_2\};$
 - 100 различими монети: N = 2^{100} , $\Omega = \{\omega_1, \omega_2, \dots, \omega_{2^{100}}\}$, ω_i са възможните конфигурации 'ези-тура' на 100 различими монети;
 - 6/49: N = 13983816, $\Omega = \{\omega_1, \omega_2, \dots, \omega_{13983816}\}$. Всяко ω отговаря на различна комбинация от 6 цифри.
- - $\omega_{\rm j}=$ 'пада се ези за първи път на j-то хвърляне.
 - избор на точка в окръжност. Тогава можем да опишем ω може да се опише чрез координати: (x_{ω}, y_{ω}) , като $x_{\omega}^2 + y_{\omega}^2 = 1$.
- 🔞 На практика, рядко се интересуваме от точния вид на Ω.

Събития

Подмножество $A\subseteq \Omega,$ т.е. колекция от $\omega_i,$ се нарича събитие.

Можем да съставим A по някакъв общ признак на елементарни събития $\omega \in \Omega.$

Подмножество $A\subseteq \Omega$, т.е. колекция от ω_i , се нарича събитие.

Можем да съставим A по някакъв общ признак на елементарни събития $\omega \in \Omega$.

- $\Omega = \{$ гласоподаватели $\}$ и събитието A ="гласували за партия X";

Подмножество $A\subseteq \Omega$, т.е. колекция от ω_i , се нарича събитие.

Можем да съставим A по някакъв общ признак на елементарни събития $\omega \in \Omega$.

- $oldsymbol{0}$ $\Omega = \{$ гласоподаватели $\}$ и събитието A ="гласували за партия X";

Операции със събития

Ако $A \subseteq \Omega, B \subseteq \Omega$, то

- $A \cap B = \{ \omega \in \Omega : \omega \in A \ и \ \omega \in B \};$
- $A \cup B = \{\omega \in \Omega : \omega \in A$ или $\omega \in B\};$
- $\bullet \ A^c = \Omega \setminus A = \{\omega \in \Omega : \omega \not \in A\}.$

Операции със събития - пример

 $\Omega = \{$ гласоподаватели $\}$, A="гласували за партия X" и B="гласоподаватели с образование от чужбина"

- $A \cap B =$,,гласоподаватели на X с образование от чужбина";
- $A \cup B =$ "гласували за X или гласоподаватели с образование от чужбина";
- ullet $A^c=$,,гласували за партия, различна от X".

Сигма алгебра

Колекция от събития $\mathcal{F}=\{A:A\subseteq\Omega\}$ наричаме сигма алгебра, ако:

- $0,\emptyset \in \mathcal{F};$
- $\begin{array}{c} \bullet \quad A,B \in \mathcal{F} \Longrightarrow A \cup B \in \mathcal{F} \\ A_1,A_2,\cdots \in \mathcal{F} \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}; \end{array}$
- $\begin{array}{c} \bullet \quad A,B \in \mathcal{F} \Longrightarrow A \cap B \in \mathcal{F} \\ A_1,A_2,\cdots \in \mathcal{F} \implies \bigcap_{i=1}^{\infty} A_i \in \mathcal{F}; \end{array}$

Сигма алгебра

$$\Omega = \left\{\omega_{1}, \omega_{2}\right\}, \mathcal{F} = \left\{\emptyset, \Omega, \left\{\omega_{1}\right\}, \left\{\omega_{2}\right\}\right\}.$$

Сигма алгебра

$$\Omega = \left\{\omega_{1}, \omega_{2}\right\}, \mathcal{F} = \left\{\emptyset, \Omega, \left\{\omega_{1}\right\}, \left\{\omega_{2}\right\}\right\}.$$

 $\Omega = \left\{1,2,3,4,5,6\right\}, \mathcal{F} = 2^{\Omega}$ множеството на всички подмножества на $\Omega.$

Вероятността като мярка

При зададени Ω и \mathcal{F} , вероятността е функция $\mathbb{P}:\mathcal{F}\to[0,1]$ със свойствата:

- $\mathbb{P}(\Omega) = 1$;
- $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$, за всяко $A \in \mathcal{F}$;
- $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$, ако $A \cap B = \emptyset$ A_1, A_2, \cdots непресичащи се $\implies \mathbb{P}(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$.
- $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$

Вероятностно пространство

Тройката

$$(\Omega, \mathcal{F}, \mathbb{P})$$

задава вероятностно пространство.

 $\Omega=\{\omega_1,\omega_2,\cdots,\omega_N\}$, то $(\Omega,2^\Omega,\mathbb{P})$ е снабдено с равномерна вероятност, ако:

$$\mathbb{P}(\omega) = \frac{1}{N}$$
, за всяко $\omega \in \Omega$.

$$N=13983816,\, {\rm тo}\ \Omega$$
 са всички шесторки в играта 6 от 49 и

$$\mathbb{P}\left(\omega\right) = \frac{1}{13983816}.$$

N=13983816, то Ω са всички шесторки в играта 6 от 49 и

$$\mathbb{P}\left(\omega\right) = \frac{1}{13983816}.$$

Играчите често избягват избирането на съседни числа, но предпочитат календарни дати. Рационално ли е това?

N=13983816, то Ω са всички шесторки в играта 6 от 49 и

$$\mathbb{P}\left(\omega\right) = \frac{1}{13983816}.$$

Играчите често избягват избирането на съседни числа, но предпочитат календарни дати. Рационално ли е това?

Ако в средно участниците имат такова поведение, може ли да оптимизираме някой компонент?

Задача на Монти Хол

Две кози и една кола са скрити зад три затворени врати по случаен начин.

Избирате една врата, без да я отваряте.

След избора се отваря една от останалите врати и виждаме една от козите.

Бихте ли сменили избора си, ако можете? 2

²https://www.bbc.com/news/magazine-24045598

Услог	вна вероятност :	и независимо	CT
	•		

Условна вероятност

Ако се е сбъднало $A\subseteq \Omega,$ то това променя вероятностното пространство 3 :

- $\Omega \to A$;
- $\mathcal{F} \to \mathcal{F} \cap A = \{B \in \mathcal{F}, A \cap B\};$
- $\mathbb{P} \to \mathbb{P}_A$, така че:

$$\mathbb{P}_{A}(B) = \mathbb{P}(B|A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}.$$

• $\mathbb{P}(B|A) = \mathbb{P}(A \cap B)/\mathbb{P}(A) = \mathbb{P}(A \cap B)/\mathbb{P}(B) \times \mathbb{P}(B)/\mathbb{P}(A) = \mathbb{P}(A|B) \times \mathbb{P}(B)/\mathbb{P}(A)$ (формула на Бейс)

_

Независимост

Две събития А и В се наричат независими, ако

$$\mathbb{P}\left(A\cap B\right)=\mathbb{P}\left(A\right)\mathbb{P}\left(B\right)\implies\mathbb{P}_{B}(A)=\mathbb{P}\left(A|B\right)=\mathbb{P}\left(A\right).$$

Независими не означава непресичащи се (несъвместими)!

Тото 6/49 в примерите по приложна математика в Англия

В 6/49 са изтеглени 10001 тиража.

Каква е вероятността поне веднъж в два последователни тиража да са изтеглени едни и същи числа?

Тото 6/49 в примерите по приложна математика в Англия

В 6/49 са изтеглени 10001 тиража.

Каква е вероятността поне веднъж в два последователни тиража да са изтеглени едни и същи числа?

$$A = \bigcup_{i=1}^{10000} \left\{$$
числа от i-то теглене съвпадат с тези от i + 1 $\right\}$

В 6/49 са изтеглени 10001 тиража.

10000

Каква е вероятността поне веднъж в два последователни тиража да са изтеглени едни и същи числа?

$$A = \bigcup_{i=1}^{N} \left\{ \text{числа от i-то теглене съвпадат c тези от i} + 1 \right\}$$

$$\mathbb{P}(A) = 1 - \mathbb{P}\left(\bigcap_{i=1}^{10000} \left\{ \text{числа на i-то теглене не съвпадат c тези от i} + 1 \right\} \right)$$

$$= 1 - \mathbb{P}\left(\text{числа на 1-то теглене не съвпадат c тези от 2}\right)^{10000}$$

$$= 1 - \left(\frac{13983815}{13983816}\right)^{10000} \sim \frac{7}{1000}.$$

Случайни величини

Нека $(\Omega, \mathcal{F}, \mathbb{P})$ е вероятностно пространство.

Тогава всяка "хубава" функция

$$\mathrm{X}:\Omega\to (-\infty,\infty)$$

се нарича случайна величина.

Пример: Хвърляме 2 монети. $\Omega = \{\text{EE}, \text{ET}, \text{TE}, \text{TT}\}.$ Ако X = "брой езита", X(EE) = 2, X(ET) = X(TE) = 1 и X(TT) = 0.

Предимства

- числово описват характеристики на елементарни събития;
- позволяват математически операции;
- по-лесна компютърна обработка;
- позволяват моделиране на различни случайни събития с еднаква вероятностна структура;
- позволяват числови характеристики като средно и дисперсия.

$X:\Omega \to (-\infty,\infty)$ приема краен или изброим брой стойности $^4.$

- Монета ези/тура (1/0), $X \sim Bernoulli(p)$. $\mathbb{P}(X = 1) = p, \mathbb{P}(X = 0) = 1 p;$
- ullet брой езита от n хвърляния X \sim Bin(n,p): за k \in {0,1,2,...,n},

$$\mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}.$$

ullet брой хвърляния до първо ези X \sim Ge(p): за k \in $\{1,2,\ldots\}$

$$P(X = k) = (1 - p)^{k-1}p.$$

⁴https:

 $X:\Omega \to (-\infty,\infty)$ приема краен или изброим брой стойности 4 .

- Монета ези/тура (1/0), $X \sim Bernoulli(p)$. $\mathbb{P}(X = 1) = p, \mathbb{P}(X = 0) = 1 p;$
- ullet брой езита от n хвърляния X \sim Bin(n, p): за k \in {0, 1, 2, . . . , n},

$$\mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}.$$

ullet брой хвърляния до първо ези X \sim Ge(p): за ${
m k} \in \{1,2,\ldots\}$

$$P(X = k) = (1 - p)^{k-1}p.$$

⁴https:

 $X:\Omega \to (-\infty,\infty)$ приема краен или изброим брой стойности 4 .

- Монета ези/тура (1/0), $X \sim Bernoulli(p)$. $\mathbb{P}(X = 1) = p$, $\mathbb{P}(X = 0) = 1 p$;
- ullet брой езита от n хвърляния X \sim Bin(n, p): за k \in {0, 1, 2, . . . , n},

$$\mathbb{P}\left(X=k\right) = \binom{n}{k} p^k (1-p)^{n-k}.$$

ullet брой хвърляния до първо ези X \sim Ge(p): за k \in $\{1,2,\ldots\}$

$$P(X = k) = (1 - p)^{k-1}p.$$

⁴https:

$$X:\Omega \to (-\infty,\infty)$$
 приема краен или изброим брой стойности 4 .

- Монета ези/тура (1/0), $X \sim Bernoulli(p)$. $\mathbb{P}(X = 1) = p$, $\mathbb{P}(X = 0) = 1 p$;
- ullet брой езита от n хвърляния X \sim Bin(n, p): за k \in {0, 1, 2, . . . , n},

$$\mathbb{P}\left(X=k\right)=\binom{n}{k}p^k(1-p)^{n-k}.$$

ullet брой хвърляния до първо ези $X \sim Ge(p)$: за $k \in \{1,2,\ldots\}$

$$\mathbb{P}(X = k) = (1 - p)^{k-1}p.$$

⁴https:

Абсолютно непрекъснати случайни величини

 $X: \Omega \mapsto (-\infty, \infty)$ приема неизброимо много стойности.

Вероятностите се изчисляват с помощта на вероятностната плътност f_X (probability density function) или разпределението се задава

$$\mathbb{P}\left(a < X < b\right) = \int_{a}^{b} f_{X}(y) dy.$$

Абсолютно непрекъснати случайни величини: Примери⁵

⁵https:

• Две случайни величини X, Y са независими (X $\perp \!\!\! \perp$ Y), ако за всеки а < b, c < d

$$\mathbb{P}\left(\left\{a < X < b\right\} \cap \left\{c < Y < d\right\}\right) = \mathbb{P}\left(a < X < b\right)\mathbb{P}\left(c < Y < d\right).$$

• Две случайни величини X,Y са еднакви по разпределение $(X\stackrel{\mathrm{d}}{=} Y),$ ако за всеки a < b

$$\mathbb{P}\left(a < X < b\right) = \mathbb{P}\left(a < Y < b\right).$$

Пример: Ако $\mathbb{P}(X = 1) = \mathbb{P}(X = 0) = 1/2, X \stackrel{d}{=} 1 - X$, но двете никога не са равни..

Математическо очакване и дисперсия

Математическо очакване и дисперсия

• Игра на рулетка. Как да преценим дали е математически правилно да играем на черно/червено (или пък на число)?

Математическо очакване като център на тежестта

Ако X е случайна величина, то математическото очакване се задава чрез:

- $\mathbb{E}[X] = \sum k\mathbb{P}(X = k)$, ако X е дискретна;
- $\mathbb{E}\left[X^2\right] = \sum k^2 \mathbb{P}\left(X = k\right);$
- $\mathbb{E}\left[e^{X}\right] = \sum e^{k} \mathbb{P}\left(X = k\right);$
- $\mathbb{E}\left[X\right] = \int_{-\infty}^{\infty} y f_X(y) dy$, ако X е непрекъсната.

Игри на шанса

Ако X е печалба/загуба в следствие на вероятностна игра, то:

- $\mathbb{E}\left[X\right] > 0$, то играта е дългосрочно в наша полза;
- $\mathbb{E}[X] = 0$, то играта е честна;
- $\mathbb{E}[X] < 0$, то играта е дългосрочно в наша вреда⁶.

 $^{^{6}\}Pi$ ри игра на рулетка $\mathbb{E}\left[\mathrm{X}\right] =-rac{1}{37}$ независимо как залагате 1 лев.

Дисперсията като грешка на типичната стойност

Математическото очакване $\mathbb{E}\left[X\right]$ е оценка за "типичната" стойност, но колко е добра? Възможна мярка е дисперсията:

$$\operatorname{Var}(X) = \mathbb{E}(X - \mathbb{E}[X])^2 = (\mathbb{E}X)^2 - \mathbb{E}(X^2) = \inf_{a \in \mathbb{R}} \mathbb{E}(X - a)^2$$

Математическото очакване $\mathbb{E}\left[X\right]$ е оценка за "типичната" стойност, но колко е добра? Възможна мярка е дисперсията:

$$\operatorname{Var}(X) = \mathbb{E}\left(X - \mathbb{E}\left[X\right]\right)^2 = \left(\mathbb{E}X\right)^2 - \mathbb{E}\left(X^2\right) = \inf_{a \in \mathbb{R}} \mathbb{E}\left(X - a\right)^2$$

Математическото очакване е оценка за типичната стойност на случайната величина погледната през призмата на най-малките квадрати.

• Залог на червено:

$$\operatorname{Var}(X) = \mathbb{E}\left(X - \left(-\frac{1}{37}\right)\right)^2 = \left(1 + \frac{1}{37}\right)^2 \frac{18}{37} + \left(-1 + \frac{1}{37}\right)^2 \frac{19}{37} \approx 1;$$

• Залог на число:

$$\operatorname{Var}(X) = \mathbb{E}\left(X + \frac{1}{37}\right)^2 = \left(36 + \frac{1}{37}\right)^2 \frac{1}{37} + \left(-1 + \frac{1}{37}\right)^2 \frac{36}{37} \approx 36.$$

Казино (отново)

В казино се предлага да хвърляте честна монета, докато хвърлите ези. Ако това се случи на n-ти ход, печелите 2^n лв. Колко бихте платили, за да участвате?

St Petersburg paradox

В казино се предлага да хвърляте честна монета, докато хвърлите ези. Ако това се случи на n-ти ход, печелите 2^n лв. Колко бихте платили, за да участвате? 7

⁷https://en.wikipedia.org/wiki/St._Petersburg paradox

Ковид-19

- 5% от популация са заразени с Ковид-19;
- Популацията се тества чрез ПСР, като е възможно обединяването на n проби в един пул; при положителен резултат се тестват всички поотделно;
- Нека X_n е броят тестове необходим за изследването на n човека. Намерете n, така че $\frac{\mathbb{E}[X_n]}{n} \to \mathsf{min};$
- $\bullet \ \mathbb{E}\left[X_n\right] = 1 \times (1 0.05)^n + (n + 1) \times (1 (1 0.05)^n) = n + 1 n \times 0.95^n;$
- $\mathbb{E}\left[X_n\right]/n = 1 + 1/n 0.95^n$ се минимизара за n=5 с $\mathbb{E}\left[X_5\right]/5 \sim 0.43.$

Ковид-19

- 5% от популация са заразени с Ковид-19;
- Популацията се тества чрез ПСР, като е възможно обединяването на n проби в един пул; при положителен резултат се тестват всички поотделно;
- Нека X_n е броят тестове необходим за изследването на n човека. Намерете n, така че $\frac{\mathbb{E}[X_n]}{n} \to \mathsf{min};$
- $\bullet \ \mathbb{E}\left[X_n\right] = 1 \times (1 0.05)^n + (n + 1) \times (1 (1 0.05)^n) = n + 1 n \times 0.95^n;$
- $\mathbb{E}\left[X_n\right]/n = 1 + 1/n 0.95^n$ се минимизара за n=5 с $\mathbb{E}\left[X_5\right]/5 \sim 0.43.$

Ковид-19

- 5% от популация са заразени с Ковид-19;
- Популацията се тества чрез ПСР, като е възможно обединяването на п проби в един пул; при положителен резултат се тестват всички поотделно;
- Нека X_n е броят тестове необходим за изследването на n човека. Намерете n, така че $\frac{\mathbb{E}[X_n]}{n} \to \min;$
- $\bullet \ \mathbb{E}\left[X_n\right] = 1 \times (1 0.05)^n + (n + 1) \times (1 (1 0.05)^n) = n + 1 n \times 0.95^n;$
- $\mathbb{E}\left[X_n\right]/n = 1 + 1/n 0.95^n$ се минимизара за n=5 с $\mathbb{E}\left[X_5\right]/5 \sim 0.43.$

Закон за големите числа и Централна гранична теорема

Нека $(X_i)_{i\geq 1}$ са независими, еднакво разпределени случайни величини. Означаваме

$$S_n = \sum_{i=1}^n X_i.$$

Тогава⁸

$$\widehat{X_n} = \frac{X_1 + X_2 + \dots X_n}{n} = \frac{S_n}{n} \xrightarrow[n \to \infty]{} \mathbb{E}\left[X_1\right].$$

 $^{^{8} \}rm https://seeing-theory.brown.edu/basic-probability/index.html$

Пропорции

Сред огромна популация мерим наличността на свойство например "гласоподаветел за X". Как ще оценим пропорцията р от популацията с това свойство?

Пропорции

Сред огромна популация мерим наличността на свойство например "гласоподаветел за Х". Как ще оценим пропорцията р от популацията с това свойство?

Номерираме членовете на популацията и тогава нека:

- $X_i = 1$, ако i-тият член притежава свойството. Следователно $\mathbb{P}\left(X_i = 1\right) = p;$
- $X_i = 0$, ако i-тият член не притежава свойството и $\mathbb{P}\left(X_i = 0\right) = 1 p.$

Пропорции

Сред огромна популация мерим наличността на свойство например "гласоподаветел за X". Как ще оценим пропорцията р от популацията с това свойство?

Номерираме членовете на популацията и тогава нека:

- $X_i = 1$, ако i-тият член притежава свойството. Следователно $\mathbb{P}\left(X_i = 1\right) = p;$
- $X_i = 0$, ако i-тият член не притежава свойството и $\mathbb{P}\left(X_i = 0\right) = 1 p$.

Ако разгледаме първите и члена, то

$$\frac{\sum_{i=1}^{n} X_i}{n} = \frac{S_n}{n} \stackrel{?}{\approx} p = \mathbb{E}[X_1].$$

Кутия с монети и термодинамика

Разтърсваме и отваряме кутия с N монети. Преброяваме монетите показващи ези. Какво можем да кажем за техния брой? 9

⁹https://www.youtube.com/watch?v=pK1NPKm2Dfc

Разтърсваме и отваряме кутия с N монети. Преброяваме монетите показващи ези. Какво можем да кажем за техния брой? 9

Нека $X_i=1$ ако i-тата монета е ези и $\mathbb{P}\left(X_i=1\right)=1/2,$ иначе $X_i=0.$ Тогава

$$\frac{\sum_{i=1}^{N}X_{i}}{N}=\frac{S_{N}}{N}\approx\frac{1}{2}.$$

⁹https://www.youtube.com/watch?v=pK1NPKm2Dfc

Покривка от сняг

Ако се загледаме към покривка от сняг, забелязваме, че върху равна повърхност тя е с приблизително еднаква дебелина! Защо?

ЦГТ е грешката в закона за големите числа и е основен резултат и инструмент в модерната наука.

¹⁰https:

ЦГТ е грешката в закона за големите числа и е основен резултат и инструмент в модерната наука.

Отново $S_n = \sum_{i=1}^n X_i,$ където $(X_i)_{i \geq 1}$ независими и еднакво разпределени. Тогава

$$\frac{\frac{S_n}{n} - \mathbb{E}\left[X_1\right]}{\sqrt{\frac{\operatorname{Var}(X_1)}{n}}} \Rightarrow \xi \sim \mathrm{N}(0, 1).$$

¹⁰https:

ЦГТ е грешката в закона за големите числа и е основен резултат и инструмент в модерната наука.

Отново $S_n = \sum_{i=1}^n X_i,$ където $(X_i)_{i \geq 1}$ независими и еднакво разпределени. Тогава

$$\frac{\frac{S_n}{n} - \mathbb{E}\left[X_1\right]}{\sqrt{\frac{\operatorname{Var}(X_1)}{n}}} \Rightarrow \xi \sim \mathrm{N}(0, 1).$$

 Γ рубо казано 10 ,

$$S_n \approx N(n\mathbb{E}(X_1), nVar(X_1)).$$

¹⁰https:

 $\mbox{Ц}\mbox{\Gamma}\mbox{T}$ е грешката в закона за големите числа и е основен резултат и инструмент в модерната наука.

Отново $S_n = \sum_{i=1}^n X_i,$ където $(X_i)_{i \geq 1}$ независими и еднакво разпределени. Тогава

$$\frac{\frac{S_n}{n} - \mathbb{E}\left[X_1\right]}{\sqrt{\frac{\operatorname{Var}(X_1)}{n}}} \Rightarrow \xi \sim \mathrm{N}(0, 1).$$

 Γ рубо казано 10 ,

$$S_n \approx N(n\mathbb{E}(X_1), nVar(X_1)).$$

Следва, че за големи п

$$\mathbb{P}\left(\left|\frac{S_n}{n} - \mathbb{E}\left[X_1\right]\right| > a\sqrt{\frac{\mathrm{Var}(X_1)}{n}}\right) \approx \frac{1}{\sqrt{2\pi}} \int_{|x| > a} e^{-\frac{x^2}{2}} dx.$$

¹⁰https:

^{//}seeing-theory.brown.edu/probability-distributions/index.html#section3

Кутия с монети и термодинамика

Имаме, че

$$\mathbb{E}[X_1] = \frac{1}{2}; \quad \text{Var}(X_1) = \mathbb{E}\left(X_1 - \frac{1}{2}\right)^2 = \frac{1}{4}$$

и тогава

$$\mathbb{P}\left(\left|\frac{S_n}{n} - \frac{1}{2}\right| > b\right) \sim \frac{1}{\sqrt{2\pi}} \int_{|x| > b \times 2\sqrt{n}} e^{-\frac{x^2}{2}} dx.$$

Имаме, че

$$\mathbb{E}[X_1] = \frac{1}{2}; \quad Var(X_1) = \mathbb{E}\left(X_1 - \frac{1}{2}\right)^2 = \frac{1}{4}$$

и тогава

$$\mathbb{P}\left(\left|\frac{S_n}{n} - \frac{1}{2}\right| > b\right) \sim \frac{1}{\sqrt{2\pi}} \int_{|x| > b \times 2\sqrt{n}} e^{-\frac{x^2}{2}} dx.$$

В кутия имаме около n = 10^{24} молекули и следователно, ако b = 10^{-12} , то $2\mathrm{b}\sqrt{10^{24}}=2$

$$\mathbb{P}\left(\left|\frac{S_n}{n} - \frac{1}{2}\right| > 10^{-12}\right) \le 0.05.$$

Случайни процеси

ЦГТ има фундаментална роля и при моделирането на случайни процеси - движение на частици, финансови активи, популации.

Най-общо да допуснем, че на всяка стъпка частицата се премества нагоре/надолу/налява/надясно със случайна стъпка X_i , като стъпките $\left(X_i\right)_{i>1}$ са независими и еднакво разпределени.

Тогава движението във времето се описва с $S_n = \sum_{i=1}^n X_i$.

Движение на полен

Нека
$$\mathbb{P}\left(X_i=\pm\frac{1}{\sqrt{N}}\right)=\frac{1}{2},$$
 където типично N е огромно.

Тогава
$$X_i = \frac{1}{\sqrt{N}} Y_i, \, \mathbb{P} \left(Y_i = \pm 1 \right) = \frac{1}{2} \,$$
 и

$$S_k = \frac{1}{\sqrt{N}} \sum_{i=1}^k Y_i = \frac{1}{\sqrt{N}} \tilde{S}_k.$$

Нека $\mathbb{P}\left(X_i = \pm \frac{1}{\sqrt{N}}\right) = \frac{1}{2}$, където типично N е огромно.

Тогава $X_i = \frac{1}{\sqrt{N}} Y_i$, $\mathbb{P}(Y_i = \pm 1) = \frac{1}{2}$ и

$$S_k = \frac{1}{\sqrt{N}} \sum_{i=1}^k Y_i = \frac{1}{\sqrt{N}} \tilde{S}_k.$$

Тогава

$$\left(S_k\right)_{k\leq N} = \left(\frac{1}{\sqrt{N}}\tilde{S}_k\right)_{k\leq N} = \left(\frac{1}{\sqrt{N}}\tilde{S}_{\frac{k}{N}N}\right)_{k\leq N} \Rightarrow \left(B_t\right)_{t\leq 1},$$

където B е Брауновото движение и $B_{\rm t} \sim N(0,t)$.

Последното е резултат от ЦГТ, понеже за $k/N \sim t$, то

$$\frac{1}{\sqrt{N}}\tilde{S}_{tN} = \frac{\sqrt{t}}{\sqrt{tN}}\tilde{S}_{tN} \sim \sqrt{t}\xi \sim N(0,t).$$

