

AUTHOR INDEX VOLUME 30 (1988)

(The issue number is given in front of the page numbers)

Abadie, J. and Dekhli, F., A variant of the CESTAC method and its application to constrained optimization (6) 519-529
Adomian, G., An adaptation of the decomposition method for asymptotic solutions (4) 325-329
Adomian, G., Rach, R. and Elrod, M., The decomposition method applied to stiff systems (3) 271-276
Alaylioglu, A., A finite element code for thin plate dynamics (5) 429-440
Alliot, N., Data error analysis in unconstrained optimization problems with the CESTAC method (6) 531-539
Alt, R., Floating-point error propagation in iterative methods (6) 505-517
Ames, W.F. and Brezinski, C., Book Reviews (1,2) 195-201
Ames, W.F. and Brezinski, C., Book Reviews (3) 277-284
Ames, W.F. and Brezinski, C., Book Reviews (4) 371-377
Ames, W.F. and Brezinski, C., Book Reviews (5) 465-467
Ames, W.F. and Brezinski, C., Book Reviews (6) 563-568
Azadivar, F. and Lee, Y.-H., Optimization of discrete variable stochastic systems by computer simulation (4) 331-345

Bainbridge, S.J., *see* Green, D.G. (1,2) 39-44
Bainbridge, S.J., *see* Reichelt, R.E. (1,2) 145-150
Baldwin, R.L., *see* Bywater, A.C. (1,2) 165-174
Barrett, J.E. and Phillips F.G., A model of the circadian rhythm of deep body temperature (1,2) 151-158
Beer, T., Applied environmentics: Simulation applied to the physical environment (1,2) 133-138
Benyon, P.R., Presenting models in plain English (1,2) 17-25
Blair, G.J., *see* McCaskill, M.R. (1,2) 159-164
Bradbury, R.H., *see* Green, D.G. (1,2) 39-44
Brezinski, C., *see* Ames, W.F. (1,2) 195-201
Brezinski, C., *see* Ames, W.F. (3) 277-284
Brezinski, C., *see* Ames, W.F. (4) 371-377
Brezinski, C., *see* Ames, W.F. (5) 465-467
Brezinski, C., *see* Ames, W.F. (6) 563-568
Brooker, P.I., Changes in dispersion variance consequent upon inaccurately modelled semi-variograms (1,2) 11-16
Buck, R.G., *see* Green, D.G. (1,2) 33-38
Bywater, A.C., Oltjen, J.W., Baldwin, R.L. and St.-Pierre, N.R., Modelling animal growth (1,2) 165-174

Carotenuto, L., Muraca, P. and Raiconi, G., Observation strategy for a parallel connection of discrete-time linear systems (5) 389-403
Clement, T. and Gentil, S., Reformulation of parameter identification with unknown-but-bounded errors (3) 257-270

Dekhli, F., *see Abadie, J.* (6) 519–529

Diggle, A.J., Rootmap: A root growth model (1,2) 175–180

Dolman, G.S., Simulating sediment deposition to establish a chronology for an urban lake (1,2) 139–144

Doukas, L., Integrated environmental control model for coal-to-electricity power plants (1,2) 45–53

Elrod, M., *see Adomian, G.* (3) 271–276

Feteris, S.M. and **Sitnai, O.**, Simulation of pyrolysis in oil shale particles (1,2) 93–98

Fisher, I.H. and **Ring, P.J.**, Structuring rainfall-landuse-runoff models for a large catchment in N.S.W. (1,2) 111–117

Frederiksen, C.S. and **Frederiksen, J.S.**, Simulation and models of the role of topographic instability in the formation of atmospheric teleconnection patterns (1,2) 105–110

Frederiksen, J.S., *see Frederiksen, C.S.* (1,2) 105–110

Galanis, S., **Hadjidimos, A.** and **Noutsos, D.**, On the equivalence of the k -step iterative Euler methods and successive overrelaxation (SOR) methods for k -cyclic matrices (3) 213–230

Gentil, S., *see Clement, T.* (3) 257–270

Gilmore, D.B., *see Vint, M.K.* (1,2) 55–61

Green, D.G., *see Reichelt, R.E.* (1,2) 145–150

Green, D.G., **Bradbury, R.H.** and **Brainbridge, S.J.**, Embodiment of formal languages (1,2) 39–44

Green, D.G., **Reichelt, R.E.** and **Buck, R.G.**, Self-adaptive modelling algorithms (1,2) 33–38

Hadjidimos, A., *see Galanis, S.* (3) 213–230

Haritos, N., The excitation of cable-stayed masts by turbulent wind (1,2) 81–86

Haritos, N., Monte Carlo simulation of ocean beacon response to environmental loading (1,2) 87–92

Ho, Y.-C., **Li, S.** and **Vakili, P.**, On the efficient generation of discrete event sample paths under different system parameter values (4) 347–370

Hulskamp, J., Introduction to Special Issue on “Simulation Society of Australia 1987 Conference” (1,2) 1–2

Jakeman, A.J. *see Jun, B.* (1,2) 3–9

Jun, B., **Jakeman, A.J.** and **Taylor, J.A.**, Statistical distribution modelling: Function, methods and application to air quality management (1,2) 3–9

Kobayashi, Y., *see Ohkita, M.* (5) 419–428

Korzeniowski, K., Simulation methods in current transformer investigation and design (1,2) 75–80

Lau, H.T., On solving systems of nonlinear equations by simulation (3) 253–256

Lee, Y.-H., *see Azadivar, F.* (4) 331–345

Li, S., *see Ho, Y.-C.* (4) 347–370

Marcos, B. and **Payre, G.**, Parameters estimation of an aquatic biological system by the adjoint method (5) 405–418

McCall, D.G. and **Townsley, R.J.**, A use of calibration in the development of simulation models (1,2) 27–32

McCaskill, M.R. and **Blair, G.J.**, Medium-term climatic variation on the Northern Tablelands of N.S.W. (1,2) 159–164

McKeon, G.M., *see Rickert, K.G.* (1,2) 189–194

Miller, M., see **Vucetic, B.** (1,2) 69– 73
Muraca, P., see **Carotenuto, L.** (5) 389–403

Nicolas, J., see **Vucetic, B.** (1,2) 63– 68
Noutsos, D., see **Galanis, S.** (3) 213–230

Ohkita, M. and **Kobayashi, Y.**, An application of rationalized Haar functions to solution of linear partial differential equations (5) 419–428
Oltjen, J.W., see **Bywater, A.C.** (1,2) 165–174

Ong, K.L. and **Taaffe, R.**, Approximating nonstationary $\text{Ph}(t)/\text{Ph}(t)/1/c$ queueing systems (5) 441–452

Papatheodorou, T.S., Tridiagonal C^1 -collocation (4) 299–309
Papatheodorou, T.S., C^1 -collocation semidiscretization of $u_t + cu_x = 0$: Its Fourier analysis and equivalence to the Galerkin method with linear splines (4) 311–323
Payre G. see **Marcos, B.** (5) 405–418

Phillips, F.G., see **Barrett, J.E.** (1,2) 151–158

Pichat, M., All possible computed results in correct floating-point summation (6) 541–552

Rach, R., see **Adomian, G.** (3) 271–276
Raiconi, G., see **Carotenuto, L.** (5) 389–403
Rajaraman, V., see **Siva Ram Murthy, C.** (5) 453–464
Reichelt, R.E., see **Green, D.G.** (1,2) 33– 38
Reichelt, R.E., **Bainbridge, S.J.** and **Green, D.G.**, A simulation study of Crown of Thorns starfish outbreaks on the Great Barrier Reef (1,2) 145–150
Retnam, M.T.P. and **Williams B.J.**, Input errors in rainfall-runoff modelling (1,2) 119–131
Rickert, K.G. and **McKeon, G.M.**, Computer models of forage management on beef cattle farms (1,2) 189–194

Riganti, R., Evolution of the n th probability density and entropy function in stochastic systems (3) 231–242
Ring, P.J., see **Fisher, I.H.** (1,2) 111–117

Simmonds, I. and **Trigg, G.**, Global circulation and precipitation changes induced by sea surface temperature anomalies to the north of Australia in a general circulation model (1,2) 99–104
Sitnai, O., see **Feteris, S.M.** (1,2) 93– 98

Siva Ram Murthy, C. and **Rajaraman, V.**, A multiprocessor architecture for solving nonlinear partial differential equations (5) 453–464
Skellern, D., see **Vucetic, B.** (1,2) 63– 68
Skellern, D., see **Vucetic, B.** (1,2) 69– 73
St.-Pierre, N.R., see **Bywater, A.C.** (1,2) 165–174
Sun, W., see **Zamani, N.G.** (3) 243–251

Taaffe, M.R., see **Ong, K.L.** (5) 441–452
Taylor, J.A., see **Jun, B.** (1,2) 3– 9
Ton-That, L., Numerical accuracy control in fixed-point arithmetic (6) 553–561
Toutounian, F., Practical methods for evaluating the accuracy of the eigenelements of a symmetric matrix (6) 493–504
Townsley, R.J., see **McCall, D.G.** (1,2) 27– 32
Trigg, G., see **Simmonds, I.** (1,2) 99–104

Vakili, P., *see Ho, Y.-C.* (4) 347–370

Vignes, J., Editorial to Special Issue on “Stochastic Methods in Round-off Error Analysis” (6) 479

Vignes, J., Review on stochastic approach to round-off error analysis and its applications (6) 481–491

Vint, M.K. and Gilmore, D.B., Simulation of transit bus regenerative braking systems (1,2) 55– 61

Vucetic, B., Nicolas, J. and Skellern, D., Performance study of coding on satellite channels by simulation (1,2) 63– 68

Vucetic, B., Skellern, D., Miller, M. and Zhang, L., Modelling and simulation of M-QAM digital radio systems (1,2) 69– 73

Williams, B.J., *see Retnam, M.T.P.* (1,2) 119–131

Wilson, S.G., Simulation of thermal and moisture boundary-layers during aeration of cereal grain (1,2) 181–188

Zamani, N.G. and Sun, W., Collocation finite element solution of a compressible flow (3) 243–251

