Jérémie Cabessa Laboratoire DAVID, UVSQ

Modèles linéaires

- Les modèles linéaires sont les plus simples, mais également les plus rapides et parmi les plus utiles.

Modèles linéaires

- Les modèles linéaires sont les plus simples, mais également les plus rapides et parmi les plus utiles.
- Une approche linéaire devrait toujours être envisagée avant de passer à des modèles plus complexes.

- Soient X_1, \ldots, X_p des variables explicatives et Y une variable réponse.

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$
$$= \beta_0 + \sum_{i=1}^p \beta_i X_i + \epsilon$$
(1)

- Soient X_1, \ldots, X_p des variables explicatives et Y une variable réponse.
- ▶ **Hypothèse forte**: on suppose que la "vraie" relation entre X_1, \ldots, X_p et Y est de la forme linéaire suivante:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$
$$= \beta_0 + \sum_{i=1}^p \beta_i X_i + \epsilon$$
(1)

où ϵ est un bruit tel que $E(\epsilon)=0$.

▶ Interprétation: chaque β_i $(i=1,\ldots,p)$ représente l'effet moyen sur Y de l'accroissement d'une unité de X_i , si tous les autres X_i restent fixes.

Introduction

▶ Soient X_1, \ldots, X_p des variables explicatives et Y une variable réponse.

RIDGE

▶ **Hypothèse forte**: on suppose que la "vraie" relation entre X_1, \ldots, X_p et Y est de la forme linéaire suivante:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$
$$= \beta_0 + \sum_{i=1}^p \beta_i X_i + \epsilon$$
(1)

où ϵ est un bruit tel que $E(\epsilon) = 0$.

▶ Interprétation: chaque β_i (i = 1, ..., p) représente l'effet moyen sur Y de l'accroissement d'une unité de X_i , si tous les autres X_j restent fixes.

- lacksquare Les "vrais" paramètres eta_0,\ldots,eta_p sont inconnus. On aimerait donc obtenir des estimateurs $\hat{\beta}_0, \dots, \hat{\beta}_p$ des ces paramètres.

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p = \boldsymbol{x}^T \hat{\boldsymbol{\beta}}$$
 (2)

Introduction

- Les "vrais" paramètres β_0, \ldots, β_p sont inconnus. On aimerait donc obtenir des estimateurs $\hat{\beta}_0, \ldots, \hat{\beta}_p$ des ces paramètres.
- Une fois les estimateurs obtenus, la **prédiction** associée à toute observation $\boldsymbol{x}=(x_1,\dots,x_p)$ est donnée par

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p = \boldsymbol{x}^T \hat{\boldsymbol{\beta}}$$
 (2)

où $\hat{\beta}=(\hat{\beta}_0,\dots,\hat{\beta}_p)$ et $x=(1,x_1,\dots,x_p)$ (on a rajouté la composante 1).

Pour obtenir les estimateurs $\hat{\beta} = (\hat{\beta}_0, \dots, \hat{\beta}_p)$ des paramètres, on dispose d'observations (ou de data).

Introduction

- lacksquare Les "vrais" paramètres eta_0,\ldots,eta_p sont inconnus. On aimerait donc obtenir des estimateurs $\hat{\beta}_0, \dots, \hat{\beta}_n$ des ces paramètres.
- Une fois les estimateurs obtenus, la prédiction associée à toute observation $x = (x_1, \dots, x_n)$ est donnée par

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p = \boldsymbol{x}^T \hat{\boldsymbol{\beta}}$$
 (2)

où $\hat{\beta} = (\hat{\beta}_0, \dots, \hat{\beta}_p)$ et $x = (1, x_1, \dots, x_p)$ (on a rajouté la composante 1).

Pour obtenir les estimateurs $\hat{\beta} = (\hat{\beta}_0, \dots, \hat{\beta}_p)$ des paramètres, on dispose d'observations (ou de data).

RIDGE

RÉGRESSION LINÉAIRE

INTRODUCTION

ightharpoonup Soit un training set formé de N observations:

$$S_{\text{train}} = \{(\boldsymbol{x_1}, y_1), \dots, (\boldsymbol{x_N}, y_N)\}.$$

On définit les matrice et vecteur:

$$\boldsymbol{X} = \begin{pmatrix} 1 & \boldsymbol{x_1}^T \\ \vdots & & \\ 1 & \boldsymbol{x_N}^T \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N1} & \cdots & x_{Np} \end{pmatrix} \quad \text{et} \quad \boldsymbol{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix}$$

Introduction

 \triangleright Soit un **training set** formé de N observations:

$$S_{\text{train}} = \{(x_1, y_1), \dots, (x_N, y_N)\}.$$

On définit les matrice et vecteur:

$$oldsymbol{X} = egin{pmatrix} 1 & oldsymbol{x_1}^T \ dots & \ 1 & oldsymbol{x_N}^T \end{pmatrix} = egin{pmatrix} 1 & x_{11} & \cdots & x_{1p} \ dots & dots & \ddots & dots \ 1 & x_{N1} & \cdots & x_{Np} \end{pmatrix} \quad ext{et} \quad oldsymbol{y} = egin{pmatrix} y_1 \ dots \ y_N \end{pmatrix}$$

- On choisit les estimateurs $\hat{\beta} = (\hat{\beta}_0, \dots, \hat{\beta}_p)$ qui minimisent une fonction de coût (loss function) $\mathcal{L}(X, y; \beta)$.
- On minimise la somme des erreur quadratiques (residual sum of squares (RSS), i.e., distances entre prédictions et réponses:

$$RSS(\boldsymbol{\beta}) = \sum_{i=1}^{N} (\boldsymbol{x_i}^T \boldsymbol{\beta} - y_i)^{\frac{1}{2}}$$
$$= \|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|^2$$

- On choisit les estimateurs $\hat{\beta} = (\hat{\beta}_0, \dots, \hat{\beta}_p)$ qui minimisent une fonction de coût (loss function) $\mathcal{L}(X, y; \beta)$.
- On minimise la somme des erreur quadratiques (residual sum of squares (RSS), i.e., distances entre prédictions et réponses:

$$RSS(\boldsymbol{\beta}) = \sum_{i=1}^{N} (\boldsymbol{x_i}^T \boldsymbol{\beta} - y_i)^2$$
$$= \|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|^2$$

Figures taken from [James et al., 2013]

Figures taken from [James et al., 2013]

Introduction

APARTÉ: QUELQUES RAPPELS

- La norme au carrée d'un vecteur v vaut $\|v\|^2 = v^T v$.
- ▶ Si r est un scalaire et $\beta = (\beta_0, \dots, \beta_p)$ un vecteur (r dépend potentiellement de β), on a le vecteur **gradient**:

$$\frac{\partial r}{\partial \boldsymbol{\beta}} = \begin{pmatrix} \frac{\partial r}{\partial \beta_0} \\ \vdots \\ \frac{\partial r}{\partial \beta_p} \end{pmatrix}$$

On a les résultats de dérivations suivants (à vérifier!):

$$\frac{\partial \left(\mathbf{y}^T \mathbf{y} \right)}{\partial oldsymbol{eta}} = \mathbf{0} \text{ (vecteur null)}$$

 $\frac{\partial (U \times \partial)}{\partial \theta} = (v' \times)' - x^* v \cdot \theta \cdot \frac{\partial (U \times \partial)}{\partial \theta} - x^* v$

 $\frac{\sigma(\beta, \lambda, \lambda, \beta)}{\partial \beta} = 2x^T x \beta$

- La norme au carrée d'un vecteur $oldsymbol{v}$ vaut $\|oldsymbol{v}\|^2 = oldsymbol{v}^Toldsymbol{v}$.
- ▶ Si r est un scalaire et $\beta = (\beta_0, \dots, \beta_p)$ un vecteur (r dépend potentiellement de β), on a le vecteur **gradient**:

$$\frac{\partial r}{\partial \boldsymbol{\beta}} = \begin{pmatrix} \frac{\partial r}{\partial \beta_0} \\ \vdots \\ \frac{\partial r}{\partial \beta_p} \end{pmatrix}$$

On a les résultats de dérivations suivants (à vérifier!):

$$\frac{\partial \left(y^T y\right)}{\partial \beta} = 0$$
 (vecteur nul)

- lacktriangle La norme au carrée d'un vecteur $oldsymbol{v}$ vaut $\|oldsymbol{v}\|^2 = oldsymbol{v}^Toldsymbol{v}.$
- ightharpoonup Si r est un scalaire et $\beta = (\beta_0, \dots, \beta_p)$ un vecteur (r dépend potentiellement de β), on a le vecteur gradient:

$$\frac{\partial r}{\partial \boldsymbol{\beta}} = \begin{pmatrix} \frac{\partial r}{\partial \beta_0} \\ \vdots \\ \frac{\partial r}{\partial \beta_p} \end{pmatrix}$$

On a les résultats de dérivations suivants (à vérifier!):

$$\begin{array}{lcl} \frac{\partial \left(\boldsymbol{y}^T \boldsymbol{y} \right)}{\partial \boldsymbol{\beta}} & = & \boldsymbol{0} \text{ (vecteur nul)} \\ \\ \frac{\partial \left(\boldsymbol{y}^T \boldsymbol{X} \boldsymbol{\beta} \right)}{\partial \boldsymbol{\beta}} & = & \left(\boldsymbol{y}^T \boldsymbol{X} \right)^T = \boldsymbol{X}^T \boldsymbol{y} \quad \text{et} \quad \frac{\partial \left(\boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{y} \right)}{\partial \boldsymbol{\beta}} = \boldsymbol{X}^T \boldsymbol{y} \\ \\ \frac{\partial^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta}}{\partial \boldsymbol{\beta}} & = & 2 \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} \end{array}$$

lacktriangle La norme au carrée d'un vecteur $oldsymbol{v}$ vaut $\|oldsymbol{v}\|^2 = oldsymbol{v}^Toldsymbol{v}.$

RIDGE

ightharpoonup Si r est un scalaire et $\beta = (\beta_0, \dots, \beta_p)$ un vecteur (r dépend potentiellement de β), on a le vecteur gradient:

$$\frac{\partial r}{\partial \boldsymbol{\beta}} = \begin{pmatrix} \frac{\partial r}{\partial \beta_0} \\ \vdots \\ \frac{\partial r}{\partial \beta_p} \end{pmatrix}$$

On a les résultats de dérivations suivants (à vérifier!):

$$\begin{array}{lcl} \frac{\partial \left(\boldsymbol{y}^T \boldsymbol{y} \right)}{\partial \boldsymbol{\beta}} & = & \mathbf{0} \ \, \text{(vecteur nul)} \\ \\ \frac{\partial \left(\boldsymbol{y}^T \boldsymbol{X} \boldsymbol{\beta} \right)}{\partial \boldsymbol{\beta}} & = & \left(\boldsymbol{y}^T \boldsymbol{X} \right)^T = \boldsymbol{X}^T \boldsymbol{y} \quad \text{et} \quad \frac{\partial \left(\boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{y} \right)}{\partial \boldsymbol{\beta}} = \boldsymbol{X}^T \boldsymbol{y} \\ \\ \frac{\partial^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta}}{\partial \boldsymbol{\beta}} & = & 2 \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} \end{array}$$

lacktriangle La norme au carrée d'un vecteur $oldsymbol{v}$ vaut $\|oldsymbol{v}\|^2 = oldsymbol{v}^Toldsymbol{v}.$

RIDGE

▶ Si r est un scalaire et $\beta = (\beta_0, ..., \beta_p)$ un vecteur (r dépend potentiellement de β), on a le vecteur **gradient**:

$$\frac{\partial r}{\partial \boldsymbol{\beta}} = \begin{pmatrix} \frac{\partial r}{\partial \beta_0} \\ \vdots \\ \frac{\partial r}{\partial \beta_p} \end{pmatrix}$$

On a les résultats de dérivations suivants (à vérifier!):

$$egin{array}{lcl} rac{\partial \left(oldsymbol{y}^T oldsymbol{y}
ight)}{\partial oldsymbol{eta}} &= & \mathbf{0} \ \ \left(\mathrm{vecteur\ nul}
ight) \ & & \\ rac{\partial \left(oldsymbol{y}^T oldsymbol{X} oldsymbol{eta}
ight)}{\partial oldsymbol{eta}} &= & \left(oldsymbol{y}^T oldsymbol{X}
ight)^T = oldsymbol{X}^T oldsymbol{y} \ & & \\ rac{\partial \left(oldsymbol{y}^T oldsymbol{X}^T oldsymbol{Y}
ight)}{\partial oldsymbol{eta}} &= & oldsymbol{X}^T oldsymbol{X} oldsymbol{eta} \ & & \\ rac{\partial \left(oldsymbol{y}^T oldsymbol{X}^T oldsymbol{Y}
ight)}{\partial oldsymbol{eta}} &= & oldsymbol{X}^T oldsymbol{X} oldsymbol{eta} \ & & \\ \hline \end{array}$$

lacktriangle La norme au carrée d'un vecteur $oldsymbol{v}$ vaut $\|oldsymbol{v}\|^2 = oldsymbol{v}^Toldsymbol{v}.$

RIDGE

ightharpoonup Si r est un scalaire et $\beta = (\beta_0, \dots, \beta_p)$ un vecteur (r dépend potentiellement de β), on a le vecteur gradient:

$$\frac{\partial r}{\partial \boldsymbol{\beta}} = \begin{pmatrix} \frac{\partial r}{\partial \beta_0} \\ \vdots \\ \frac{\partial r}{\partial \beta_p} \end{pmatrix}$$

On a les résultats de dérivations suivants (à vérifier!):

$$\begin{array}{cccc} \frac{\partial \left(\boldsymbol{y}^T \boldsymbol{y} \right)}{\partial \boldsymbol{\beta}} & = & \mathbf{0} \ \, \text{(vecteur nul)} \\ \\ \frac{\partial \left(\boldsymbol{y}^T \boldsymbol{X} \boldsymbol{\beta} \right)}{\partial \boldsymbol{\beta}} & = & \left(\boldsymbol{y}^T \boldsymbol{X} \right)^T = \boldsymbol{X}^T \boldsymbol{y} \ \, \text{et} \ \, \frac{\partial \left(\boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{y} \right)}{\partial \boldsymbol{\beta}} = \boldsymbol{X}^T \boldsymbol{y} \\ \\ \frac{\partial \left(\boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} \right)}{\partial \boldsymbol{\beta}} & = & 2 \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} \end{array}$$

► On a alors:

Introduction

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \ \operatorname{RSS}(\boldsymbol{\beta}) = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \| \boldsymbol{X} \boldsymbol{\beta} - \boldsymbol{y} \|^2$$

On a alors.

Introduction

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \ \mathrm{RSS}(\boldsymbol{\beta}) = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \| \boldsymbol{X} \boldsymbol{\beta} - \boldsymbol{y} \|^2$$

RIDGE

$$\frac{\partial \text{RSS}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \frac{\partial \left(\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|^2 \right)}{\partial \boldsymbol{\beta}} = \frac{\partial \left((\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y})^T (\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}) \right)}{\partial \boldsymbol{\beta}}$$

$$= \frac{\partial \left(\boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} - \boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{y} - \boldsymbol{y}^T \boldsymbol{X} \boldsymbol{\beta} + \boldsymbol{y}^T \boldsymbol{y} \right)}{\partial \boldsymbol{\beta}}$$

$$= 2\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} - 2\boldsymbol{X}^T \boldsymbol{y}$$

$$\frac{\partial \text{RSS}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = 0 \quad \text{ssi} \quad \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} = \boldsymbol{X}^T \boldsymbol{y}$$

ssi
$$\hat{oldsymbol{eta}} = (oldsymbol{X}^Toldsymbol{X})^{-1}oldsymbol{X}^Toldsymbol{y}$$

ELASTIC-NET

On a alors.

Introduction

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \ \mathrm{RSS}(\boldsymbol{\beta}) = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \| \boldsymbol{X} \boldsymbol{\beta} - \boldsymbol{y} \|^2$$

$$\frac{\partial \text{RSS}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \frac{\partial \left(\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|^2 \right)}{\partial \boldsymbol{\beta}} = \frac{\partial \left((\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y})^T (\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}) \right)}{\partial \boldsymbol{\beta}}$$

$$= \frac{\partial \left(\boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} - \boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{y} - \boldsymbol{y}^T \boldsymbol{X} \boldsymbol{\beta} + \boldsymbol{y}^T \boldsymbol{y} \right)}{\partial \boldsymbol{\beta}}$$

$$= 2\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} - 2\boldsymbol{X}^T \boldsymbol{y}$$

$$\frac{\partial \text{RSS}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = 0 \quad \text{ssi} \quad \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} = \boldsymbol{X}^T \boldsymbol{y}$$

RIDGE

RÉGRESSION LINÉAIRE

On a alors.

Introduction

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \ \operatorname{RSS}(\boldsymbol{\beta}) = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \| \boldsymbol{X} \boldsymbol{\beta} - \boldsymbol{y} \|^2$$

$$\frac{\partial \text{RSS}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \frac{\partial \left(\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|^2 \right)}{\partial \boldsymbol{\beta}} = \frac{\partial \left((\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y})^T (\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}) \right)}{\partial \boldsymbol{\beta}}$$

$$= \frac{\partial \left(\boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} - \boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{y} - \boldsymbol{y}^T \boldsymbol{X} \boldsymbol{\beta} + \boldsymbol{y}^T \boldsymbol{y} \right)}{\partial \boldsymbol{\beta}}$$

$$= 2\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} - 2\boldsymbol{X}^T \boldsymbol{y}$$

$$\frac{\partial \text{RSS}(\beta)}{\partial \beta} = 0 \quad \text{ssi} \quad X^T X \beta = X^T y$$

On a alors.

Introduction

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \ \operatorname{RSS}(\boldsymbol{\beta}) = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \| \boldsymbol{X} \boldsymbol{\beta} - \boldsymbol{y} \|^2$$

$$\frac{\partial \text{RSS}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \frac{\partial \left(\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|^2 \right)}{\partial \boldsymbol{\beta}} = \frac{\partial \left((\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y})^T (\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}) \right)}{\partial \boldsymbol{\beta}}$$

$$= \frac{\partial \left(\boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} - \boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{y} - \boldsymbol{y}^T \boldsymbol{X} \boldsymbol{\beta} + \boldsymbol{y}^T \boldsymbol{y} \right)}{\partial \boldsymbol{\beta}}$$

$$= 2\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} - 2\boldsymbol{X}^T \boldsymbol{y}$$

$$rac{\partial ext{RSS}(oldsymbol{eta})}{\partial oldsymbol{eta}} = 0$$
 ssi $oldsymbol{X}^T oldsymbol{X} oldsymbol{eta} = oldsymbol{X}^T oldsymbol{y}$

► On a alors:

Introduction

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \ \operatorname{RSS}(\boldsymbol{\beta}) = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \| \boldsymbol{X} \boldsymbol{\beta} - \boldsymbol{y} \|^2$$

$$\frac{\partial \text{RSS}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \frac{\partial \left(\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|^2 \right)}{\partial \boldsymbol{\beta}} = \frac{\partial \left((\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y})^T (\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}) \right)}{\partial \boldsymbol{\beta}}$$
$$= \frac{\partial \left(\boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} - \boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{y} - \boldsymbol{y}^T \boldsymbol{X} \boldsymbol{\beta} + \boldsymbol{y}^T \boldsymbol{y} \right)}{\partial \boldsymbol{\beta}}$$
$$= 2\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} - 2\boldsymbol{X}^T \boldsymbol{y}$$

$$\frac{\partial \text{RSS}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = 0 \quad \text{ssi} \quad \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} = \boldsymbol{X}^T \boldsymbol{y}$$
ssi $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}$

On a alors:

Introduction

$$\hat{\boldsymbol{\beta}} = \mathop{\arg\min}_{\boldsymbol{\beta}} \; \mathrm{RSS}(\boldsymbol{\beta}) = \mathop{\arg\min}_{\boldsymbol{\beta}} \left\| \boldsymbol{X} \boldsymbol{\beta} - \boldsymbol{y} \right\|^2$$

$$\frac{\partial \text{RSS}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \frac{\partial \left(\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|^2 \right)}{\partial \boldsymbol{\beta}} = \frac{\partial \left((\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y})^T (\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}) \right)}{\partial \boldsymbol{\beta}}$$
$$= \frac{\partial \left(\boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} - \boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{y} - \boldsymbol{y}^T \boldsymbol{X} \boldsymbol{\beta} + \boldsymbol{y}^T \boldsymbol{y} \right)}{\partial \boldsymbol{\beta}}$$
$$= 2\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} - 2\boldsymbol{X}^T \boldsymbol{y}$$

$$\frac{\partial RSS(\beta)}{\partial \beta} = 0 \quad \text{ssi} \quad \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} = \boldsymbol{X}^T \boldsymbol{y}$$

ssi
$$\hat{oldsymbol{eta}} = (oldsymbol{X}^Toldsymbol{X})^{-1}oldsymbol{X}^Toldsymbol{y}$$

On a alors.

Introduction

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \ \operatorname{RSS}(\boldsymbol{\beta}) = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \| \boldsymbol{X} \boldsymbol{\beta} - \boldsymbol{y} \|^2$$

Pour trouver le minimum de $RSS(\beta)$, on annule la dérivée de cette fonction par rapport à β :

$$\frac{\partial \text{RSS}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \frac{\partial \left(\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|^2 \right)}{\partial \boldsymbol{\beta}} = \frac{\partial \left((\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y})^T (\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}) \right)}{\partial \boldsymbol{\beta}}$$
$$= \frac{\partial \left(\boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} - \boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{y} - \boldsymbol{y}^T \boldsymbol{X} \boldsymbol{\beta} + \boldsymbol{y}^T \boldsymbol{y} \right)}{\partial \boldsymbol{\beta}}$$
$$= 2\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} - 2\boldsymbol{X}^T \boldsymbol{y}$$

$$\frac{\partial \text{RSS}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = 0 \quad \text{ssi} \quad \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} = \boldsymbol{X}^T \boldsymbol{y}$$

◆□▶ ◆周▶ ◆三▶ ◆三▶ ● めの○

On a alors.

Introduction

$$\hat{\boldsymbol{\beta}} = \mathop{\arg\min}_{\boldsymbol{\beta}} \ \mathrm{RSS}(\boldsymbol{\beta}) = \mathop{\arg\min}_{\boldsymbol{\beta}} \left\| \boldsymbol{X} \boldsymbol{\beta} - \boldsymbol{y} \right\|^2$$

$$\frac{\partial \text{RSS}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \frac{\partial \left(\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|^2 \right)}{\partial \boldsymbol{\beta}} = \frac{\partial \left((\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y})^T (\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}) \right)}{\partial \boldsymbol{\beta}}$$

$$= \frac{\partial \left(\boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} - \boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{y} - \boldsymbol{y}^T \boldsymbol{X} \boldsymbol{\beta} + \boldsymbol{y}^T \boldsymbol{y} \right)}{\partial \boldsymbol{\beta}}$$

$$= 2\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} - 2\boldsymbol{X}^T \boldsymbol{y}$$

$$\frac{\partial \text{RSS}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = 0 \quad \text{ssi} \quad \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} = \boldsymbol{X}^T \boldsymbol{y}$$

$$\text{ssi} \quad \hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

On a alors:

Introduction

$$\hat{\boldsymbol{\beta}} = \mathop{\arg\min}_{\boldsymbol{\beta}} \ \mathrm{RSS}(\boldsymbol{\beta}) = \mathop{\arg\min}_{\boldsymbol{\beta}} \left\| \boldsymbol{X} \boldsymbol{\beta} - \boldsymbol{y} \right\|^2$$

$$\frac{\partial \text{RSS}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \frac{\partial \left(\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|^2 \right)}{\partial \boldsymbol{\beta}} = \frac{\partial \left((\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y})^T (\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}) \right)}{\partial \boldsymbol{\beta}}$$

$$= \frac{\partial \left(\boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} - \boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{y} - \boldsymbol{y}^T \boldsymbol{X} \boldsymbol{\beta} + \boldsymbol{y}^T \boldsymbol{y} \right)}{\partial \boldsymbol{\beta}}$$

$$= 2\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} - 2\boldsymbol{X}^T \boldsymbol{y}$$

$$\frac{\partial \text{RSS}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = 0 \quad \text{ssi} \quad \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} = \boldsymbol{X}^T \boldsymbol{y}$$

$$\text{ssi} \quad \hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

Introduction

 \triangleright Soit un **test set** formé de N' observations:

$$S_{\text{test}} = \{(x_1, y_1), \dots, (x_{N'}, y_{N'})\}.$$

lacktriangle Une fois les estimateurs \hat{eta} obtenus, les prédictions \hat{y} associés aux data X sont données par:

$$\hat{y}_i = \boldsymbol{x_i}^T \hat{\boldsymbol{\beta}}$$
 pour $i = 1, \dots, N'$, i.e.,

Introduction

Soit un test set formé de N' observations:

$$S_{\text{test}} = \{(x_1, y_1), \dots, (x_{N'}, y_{N'})\}.$$

 \blacktriangleright Une fois les estimateurs $\hat{\beta}$ obtenus, les prédictions \hat{y} associés aux data X sont données par:

$$\hat{y}_i = {m{x_i}}^T \hat{m{eta}} \quad \text{pour } i = 1, \dots, N', \text{ i.e.,} \\ \hat{y} = X \hat{m{eta}}$$

Introduction

Soit un test set formé de N' observations:

$$S_{\text{test}} = \{(x_1, y_1), \dots, (x_{N'}, y_{N'})\}.$$

 \blacktriangleright Une fois les estimateurs $\hat{\beta}$ obtenus, les prédictions \hat{y} associés aux data X sont données par:

$$\hat{y}_i = {m{x_i}}^T \hat{m{eta}} \quad \text{pour } i = 1, \dots, N', \text{ i.e.,} \\ \hat{y} = X \hat{m{eta}}$$

Introduction

Soit un test set formé de N' observations:

$$S_{\text{test}} = \{(\boldsymbol{x_1}, y_1), \dots, (\boldsymbol{x_{N'}}, y_{N'})\}.$$

 \blacktriangleright Une fois les estimateurs $\hat{\beta}$ obtenus, les prédictions \hat{y} associés aux data X sont données par:

$$\hat{y}_i = oldsymbol{x_i}^T \hat{oldsymbol{eta}}$$
 pour $i=1,\ldots,N'$, i.e., $\hat{oldsymbol{y}} = oldsymbol{X} \hat{oldsymbol{eta}}$

- ► Il existe bien d'autres méthodes non-linéaires qui généralisent la régression linéaire simple.
- ▶ Par exemple, pour modéliser la relation entre un seul prédicteur X et la réponse Y, on a:
 - Polynomial regression
 - Step functions
 - Basis functions
 - Regression splines
 - > Secondary solines
 - ▶ Local revression
- On ne présentera pas ces méthodes en détail ici...

- ► Il existe bien d'autres méthodes non-linéaires qui généralisent la régression linéaire simple.
- Par exemple, pour modéliser la relation entre un seul prédicteur X et la réponse Y, on a:
 - Polynomial regression
 - Step functions
 - Basis functions
 - Regression splines
 - Smoothing splines
 - Local regression
- On ne présentera pas ces méthodes en détail ici...

- ► Il existe bien d'autres méthodes non-linéaires qui généralisent la régression linéaire simple.
- Par exemple, pour modéliser la relation entre un seul prédicteur X et la réponse Y, on a:
 - Polynomial regression
 - Step functions
 - Basis functions
 - Regression splines
 - Smoothing splines
 - Local regression
- On ne présentera pas ces méthodes en détail ici...

- ► Il existe bien d'autres méthodes non-linéaires qui généralisent la régression linéaire simple.
- Par exemple, pour modéliser la relation entre un seul prédicteur X et la réponse Y, on a:
 - Polynomial regression
 - Step functions
 - Basis functions
 - Regression splines
 - Smoothing splines
 - Local regression
- On ne présentera pas ces méthodes en détail ici...

- ► Il existe bien d'autres méthodes non-linéaires qui généralisent la régression linéaire simple.
- Par exemple, pour modéliser la relation entre un seul prédicteur X et la réponse Y, on a:
 - Polynomial regression
 - Step functions
 - Basis functions
 - Regression splines
 - Smoothing splines
 - Local regression
- On ne présentera pas ces méthodes en détail ici...

- ► Il existe bien d'autres méthodes non-linéaires qui généralisent la régression linéaire simple.
- Par exemple, pour modéliser la relation entre un seul prédicteur X et la réponse Y, on a:
 - Polynomial regression
 - Step functions
 - Basis functions
 - Regression splines
 - Smoothing splines
 - Local regression
- ▶ On ne présentera pas ces méthodes en détail ici..

- ► Il existe bien d'autres méthodes non-linéaires qui généralisent la régression linéaire simple.
- Par exemple, pour modéliser la relation entre un seul prédicteur X et la réponse Y, on a:
 - Polynomial regression
 - Step functions
 - Basis functions
 - Regression splines
 - Smoothing splines
 - Local regression
- On ne présentera pas ces méthodes en détail ici...

- ► Il existe bien d'autres méthodes non-linéaires qui généralisent la régression linéaire simple.
- Par exemple, pour modéliser la relation entre un seul prédicteur X et la réponse Y, on a:
 - Polynomial regression
 - Step functions
 - Basis functions
 - Regression splines
 - Smoothing splines
 - Local regression
- On ne présentera pas ces méthodes en détail ici..

- ► Il existe bien d'autres méthodes non-linéaires qui généralisent la régression linéaire simple.
- Par exemple, pour modéliser la relation entre un seul prédicteur X et la réponse Y, on a:
 - Polynomial regression
 - Step functions
 - **Basis functions**
 - Regression splines
 - Smoothing splines
 - Local regression
- On ne présentera pas ces méthodes en détail ici...

Rappel: on suppose que la vraie relation entre les variables explicatives et la réponse est de la forme suivante:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

ELASTIC-NET

Introduction

Rappel: on suppose que la vraie relation entre les variables explicatives et la réponse est de la forme suivante:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

- \triangleright Il se peut que certaines des variables X_i soient peu ou pas du tout associées avec la réponse Y_i .

Introduction

► Rappel: on suppose que la vraie relation entre les variables explicatives et la réponse est de la forme suivante:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

- ▶ Il se peut que certaines des variables X_i soient peu ou pas du tout associées avec la réponse Y_i .
- Inclure ces variables accroît la complexité du modèle, affecte sa performance, et réduit son interprétabilité.
- ► Il existe alors des méthodes de réduction et/ou sélection des variables les plus significatives: shrinkage et feature selection.

Introduction

▶ Rappel: on suppose que la vraie relation entre les variables explicatives et la réponse est de la forme suivante:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

- ▶ Il se peut que certaines des variables X_i soient peu ou pas du tout associées avec la réponse Y_i .
- Inclure ces variables accroît la complexité du modèle, affecte sa performance, et réduit son interprétabilité.
- ► Il existe alors des méthodes de réduction et/ou sélection des variables les plus significatives: shrinkage et feature selection.

Introduction

- Subset selection methods:
 - best subset selection
 - forward stepwise selection
 - backward stepwise selection
- Regularization methods
 - Ridge regression (shrinkage)
 - LASSO (feature selection)
- On s'intéresse ici aux Ridge regression et LASSO.

Introduction

- Subset selection methods:
 - best subset selection

Introduction

- Subset selection methods:
 - best subset selection
 - forward stepwise selection
 - backward stepwise selection
- Regularization methods
- ≥ 1ASSO (feature selection)
- On s'intéresse ici aux Ridge regression et LASSO.

Introduction

- Subset selection methods:
 - best subset selection
 - forward stepwise selection
 - backward stepwise selection
- ► Regularization methods
 - Ridge regression (shrinkage)
- On s'intéresse ici aux Ridge regression et LASSO.

Introduction

- Subset selection methods:
 - best subset selection
 - forward stepwise selection
 - backward stepwise selection
- Regularization methods:

Introduction

- Subset selection methods:
 - best subset selection
 - forward stepwise selection
 - backward stepwise selection
- Regularization methods:
 - Ridge regression (shrinkage)
 - ► LASSO (feature selection)
- On s'intéresse ici aux Ridge regression et LASSO.

Introduction

- Subset selection methods:
 - best subset selection
 - forward stepwise selection
 - backward stepwise selection
- Regularization methods:
 - Ridge regression (shrinkage)
 - ► LASSO (feature selection)
- On s'intéresse ici aux Ridge regression et LASSO.

Introduction

- Subset selection methods:
 - best subset selection
 - forward stepwise selection
 - backward stepwise selection
- Regularization methods:
 - Ridge regression (shrinkage)
 - ► LASSO (feature selection)
- On s'intéresse ici aux Ridge regression et LASSO.

Introduction

➤ On suppose que la vraie relation entre les variables explicatives et la réponse est de la forme suivante:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

- Le but est d'obtenir des estimateurs $\hat{\beta} = (\hat{\beta}_0, \dots, \hat{\beta}_p)$ des paramètres $\beta = (\beta_0, \dots, \beta_p)$.
- ▶ La régression Ridge permet de forcer les estimateurs à ne pas exploser, ce qui a comme effet bénéfique de réduire la variance du modèle.
- ▶ En gros, les variables X_i les moins significatives voient leur estimateurs associés $\hat{\beta}_i$ converger vers 0 (shrinkage method).

Introduction

On suppose que la vraie relation entre les variables explicatives et la réponse est de la forme suivante:

RIDGE

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

- Le but est d'obtenir des estimateurs $\hat{\beta} = (\hat{\beta}_0, \dots, \hat{\beta}_p)$ des paramètres $\beta = (\beta_0, \dots, \beta_p)$.
- La régression Ridge permet de forcer les estimateurs à ne pas exploser, ce qui a comme effet bénéfique de réduire la variance du modèle.
- ▶ En gros, les variables X_i les moins significatives voient leur estimateurs associés $\hat{\beta}_i$ converger vers 0 (shrinkage method).

Introduction

 On suppose que la vraie relation entre les variables explicatives et la réponse est de la forme suivante:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

- Le but est d'obtenir des estimateurs $\hat{\beta} = (\hat{\beta}_0, \dots, \hat{\beta}_p)$ des paramètres $\beta = (\beta_0, \dots, \beta_n)$.
- La régression Ridge permet de forcer les estimateurs à ne pas exploser, ce qui a comme effet bénéfique de réduire la variance du modèle.

Introduction

 On suppose que la vraie relation entre les variables explicatives et la réponse est de la forme suivante:

RIDGE

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

- ▶ Le but est d'obtenir des estimateurs $\hat{\beta} = (\hat{\beta}_0, \dots, \hat{\beta}_p)$ des paramètres $\beta = (\beta_0, \dots, \beta_n)$.
- La régression Ridge permet de forcer les estimateurs à ne pas exploser, ce qui a comme effet bénéfique de réduire la variance du modèle.
- \triangleright En gros, les variables X_i les moins significatives voient leur estimateurs associés $\hat{\beta}_i$ converger vers 0 (shrinkage method).

Introduction

Régression Ridge: on choisit les estimateurs $\hat{\beta}$ qui minimisent une version *régularisée* la **residual sum of squares** (RSS)

$$RSS(\boldsymbol{\beta}) = \sum_{i=1}^{N} (\boldsymbol{x_i}^T \boldsymbol{\beta} - y_i)^2 + \lambda \sum_{i=1}^{p} \beta_j^2$$
$$= \|\boldsymbol{X}\boldsymbol{\beta} - y\|_2^2 + \lambda \|\boldsymbol{\beta}\|_2^2$$

οù λ est le paramètre de régularisation

 \gg Le terme $\lambda \|\beta\|^2$ est une nénalité la (la nenalty).

Introduction

Régression Ridge: on choisit les estimateurs $\hat{\beta}$ qui minimisent une version *régularisée* la **residual sum of squares** (RSS)

$$RSS(\boldsymbol{\beta}) = \sum_{i=1}^{N} (\boldsymbol{x_i}^T \boldsymbol{\beta} - y_i)^2 + \lambda \sum_{i=1}^{p} \beta_j^2$$
$$= \|\boldsymbol{X}\boldsymbol{\beta} - y\|_2^2 + \lambda \|\boldsymbol{\beta}\|_2^2$$

- ightharpoonup où λ est le paramètre de régularisation
- ▶ Le terme $\lambda \|\beta\|_2^2$ est une *pénalité* l_2 (l_2 penalty)

Introduction

Régression Ridge: on choisit les estimateurs $\hat{\beta}$ qui minimisent une version régularisée la residual sum of squares (RSS)

$$RSS(\boldsymbol{\beta}) = \sum_{i=1}^{N} (\boldsymbol{x_i}^T \boldsymbol{\beta} - y_i)^2 + \lambda \sum_{i=1}^{p} \beta_j^2$$
$$= \|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_2^2$$

- \triangleright où λ est le paramètre de régularisation.

Introduction

▶ Régression Ridge: on choisit les estimateurs $\hat{\beta}$ qui minimisent une version *régularisée* la **residual sum of squares** (RSS)

$$RSS(\boldsymbol{\beta}) = \sum_{i=1}^{N} (\boldsymbol{x_i}^T \boldsymbol{\beta} - y_i)^2 + \lambda \sum_{i=1}^{p} \beta_j^2$$
$$= \|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_2^2$$

- ightharpoonup où λ est le paramètre de régularisation.
- ▶ Le terme $\lambda \|\beta\|_2^2$ est une *pénalité* l_2 (l_2 penalty).

On a:

Introduction

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \; \mathrm{RSS}(\boldsymbol{\beta}) = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \left(\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_{2}^{2} + \lambda \, \|\boldsymbol{\beta}\|_{2}^{2} \right)$$

Pour trouver le minimum de RSS(β), on annule la dérivée de cette fonction par rapport à β:

On a:

Introduction

$$\hat{\boldsymbol{\beta}} = \mathop{\arg\min}_{\boldsymbol{\beta}} \; \mathrm{RSS}(\boldsymbol{\beta}) = \mathop{\arg\min}_{\boldsymbol{\beta}} \left(\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_2^2 + \lambda \, \|\boldsymbol{\beta}\|_2^2 \right)$$

Pour trouver le minimum de $RSS(\beta)$, on annule la dérivée de cette fonction par rapport à β :

$$\frac{\partial \text{RSS}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \frac{\partial \left(\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|^2 + \lambda \|\boldsymbol{\beta}\|^2 \right)}{\partial \boldsymbol{\beta}}$$
$$= 2\boldsymbol{X}^T \boldsymbol{X}\boldsymbol{\beta} - 2\boldsymbol{X}^T \boldsymbol{y} + 2\lambda \boldsymbol{\beta}$$

$$rac{\partial \mathrm{RSS}(oldsymbol{eta})}{\partial oldsymbol{eta}} = 0 \quad ext{ssi} \quad ig(oldsymbol{X}^T oldsymbol{X} + \lambda oldsymbol{I} ig) oldsymbol{eta} = oldsymbol{X}^T oldsymbol{X} + \lambda oldsymbol{I} ig)^{-1} oldsymbol{X}^T oldsymbol{u}$$

On a:

Introduction

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \; \mathrm{RSS}(\boldsymbol{\beta}) = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \left(\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_2^2 + \lambda \, \|\boldsymbol{\beta}\|_2^2 \right)$$

Pour trouver le minimum de $RSS(\beta)$, on annule la dérivée de cette fonction par rapport à β :

$$\frac{\partial \text{RSS}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \frac{\partial \left(\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|^2 + \lambda \|\boldsymbol{\beta}\|^2 \right)}{\partial \boldsymbol{\beta}}$$
$$= 2\boldsymbol{X}^T \boldsymbol{X}\boldsymbol{\beta} - 2\boldsymbol{X}^T \boldsymbol{y} + 2\lambda \boldsymbol{\beta}$$

$$rac{\partial ext{RSS}(oldsymbol{eta})}{\partial oldsymbol{eta}} = 0 \quad ext{ssi} \quad ig(oldsymbol{X}^T oldsymbol{X} + \lambda oldsymbol{I} ig) oldsymbol{eta} = oldsymbol{X}^T oldsymbol{X} + \lambda oldsymbol{I} ig)^{-1} oldsymbol{X}^T oldsymbol{v}$$

On a:

Introduction

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \; \mathrm{RSS}(\boldsymbol{\beta}) = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \left(\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_2^2 + \lambda \, \|\boldsymbol{\beta}\|_2^2 \right)$$

Pour trouver le minimum de $RSS(\beta)$, on annule la dérivée de cette fonction par rapport à β :

$$\frac{\partial \text{RSS}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \frac{\partial \left(\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|^2 + \lambda \|\boldsymbol{\beta}\|^2 \right)}{\partial \boldsymbol{\beta}}$$
$$= 2\boldsymbol{X}^T \boldsymbol{X}\boldsymbol{\beta} - 2\boldsymbol{X}^T \boldsymbol{y} + 2\lambda \boldsymbol{\beta}$$

$$rac{\partial ext{RSS}(oldsymbol{eta})}{\partial oldsymbol{eta}} = 0 \quad ext{ ssi } \quad ig(oldsymbol{X}^T oldsymbol{X} + \lambda oldsymbol{I}ig)oldsymbol{eta} = oldsymbol{X}^T oldsymbol{X} + \lambda oldsymbol{I}ig)^{-1} oldsymbol{X}^T oldsymbol{y}$$

On a:

Introduction

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \; \mathrm{RSS}(\boldsymbol{\beta}) = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \left(\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_2^2 + \lambda \, \|\boldsymbol{\beta}\|_2^2 \right)$$

Pour trouver le minimum de $RSS(\beta)$, on annule la dérivée de cette fonction par rapport à β :

$$\frac{\partial \text{RSS}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \frac{\partial \left(\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|^2 + \lambda \|\boldsymbol{\beta}\|^2 \right)}{\partial \boldsymbol{\beta}}$$
$$= 2\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} - 2\boldsymbol{X}^T \boldsymbol{y} + 2\lambda \boldsymbol{\beta}$$

$$rac{\partial ext{RDS}(oldsymbol{eta})}{\partial oldsymbol{eta}} = 0 \quad ext{ ssi } \quad ig(oldsymbol{X}^T oldsymbol{X} + \lambda oldsymbol{I}ig)oldsymbol{eta} = oldsymbol{X}^T oldsymbol{X} + \lambda oldsymbol{I}ig)^{-1} oldsymbol{X}^T oldsymbol{y}$$

On a:

Introduction

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \; \mathrm{RSS}(\boldsymbol{\beta}) = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \left(\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_2^2 + \lambda \, \|\boldsymbol{\beta}\|_2^2 \right)$$

Pour trouver le minimum de $RSS(\beta)$, on annule la dérivée de cette fonction par rapport à β :

$$\frac{\partial \text{RSS}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \frac{\partial \left(\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|^2 + \lambda \|\boldsymbol{\beta}\|^2 \right)}{\partial \boldsymbol{\beta}}$$
$$= 2\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\beta} - 2\boldsymbol{X}^T \boldsymbol{y} + 2\lambda \boldsymbol{\beta}$$
$$\frac{\partial \text{RSS}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = 0 \quad \text{ssi} \quad \left(\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I} \right) \boldsymbol{\beta} = \boldsymbol{X}^T \boldsymbol{y}$$

◆□▶ ◆周▶ ◆三▶ ◆三▶ ● めの○

On a:

Introduction

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \; \mathrm{RSS}(\boldsymbol{\beta}) = \operatorname*{arg\,min}_{\boldsymbol{\beta}} \left(\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_2^2 + \lambda \, \|\boldsymbol{\beta}\|_2^2 \right)$$

RIDGE

Pour trouver le minimum de $RSS(\beta)$, on annule la dérivée de cette fonction par rapport à β :

$$\frac{\partial \text{RSS}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \frac{\partial \left(\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|^2 + \lambda \|\boldsymbol{\beta}\|^2 \right)}{\partial \boldsymbol{\beta}}$$
$$= 2\boldsymbol{X}^T \boldsymbol{X}\boldsymbol{\beta} - 2\boldsymbol{X}^T \boldsymbol{y} + 2\lambda \boldsymbol{\beta}$$

$$\frac{\partial \text{RSS}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = 0 \quad \text{ssi} \quad (\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I}) \boldsymbol{\beta} = \boldsymbol{X}^T \boldsymbol{y}$$
$$\text{ssi} \quad \hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

- \triangleright λ est un hyperparamètre à optimiser: tester différentes valeurs de λ jusqu'à obtenir les meilleurs résultats sur le test set.

- λ est un *hyperparamètre* à optimiser: tester différentes valeurs de λ jusqu'à obtenir les meilleurs résultats sur le test set.
- $\lambda = 0$ correspond au cas de la régression linéaire classique.
- ▶ Lorsque $\lambda \to \infty$, la régularisation force les coefficients β_i à converger vers 0.

- λ est un *hyperparamètre* à optimiser: tester différentes valeurs de λ jusqu'à obtenir les meilleurs résultats sur le test set.
- $\lambda = 0$ correspond au cas de la régression linéaire classique.
- ▶ Lorsque $\lambda \to \infty$, la régularisation force les coefficients β_i à converger vers 0.

Introduction

 \triangleright Lorsque λ augmente, les coefficients diminuent.

FIGURE 6.4. The standardized ridge regression coefficients are displayed for the Credit data set, as a function of λ and $\|\hat{\beta}_{\lambda}^{R}\|_{2}/\|\hat{\beta}\|_{2}$.

Figures taken from [James et al., 2013]

- La régression Ridge joue sur le bias-variance trade-off: lorsque λ augmente, la variance du modèle diminue, mais son bias augmente.

Biais
$$[\hat{f}(x)] = \mathbb{E}[\hat{f}(x) - f(x)]$$

$$\operatorname{Var}[\hat{f}(x)] = \mathbb{E}[(\hat{f}(x) - \mathbb{E}[\hat{f}(x)])^{2}]$$

- La régression Ridge joue sur le bias-variance trade-off: lorsque λ augmente, la variance du modèle diminue, mais son bias augmente.
- Rappel: pour un modèle $\hat{f}({m x})$, on a:

$$Biais[\hat{f}(\boldsymbol{x})] = E[\hat{f}(\boldsymbol{x}) - f(\boldsymbol{x})]$$
$$Var[\hat{f}(\boldsymbol{x})] = E[(\hat{f}(\boldsymbol{x}) - E[\hat{f}(\boldsymbol{x})])^{2}]$$

Introduction

FIGURE 6.5. Squared bias (black), variance (green), and test mean squared error (purple) for the ridge regression predictions on a simulated data set, as a function of λ and $\|\hat{\beta}_{\lambda}^{R}\|_{2}/\|\hat{\beta}\|_{2}$. The horizontal dashed lines indicate the minimum possible MSE. The purple crosses indicate the ridge regression models for which the MSE is smallest.

Figures taken from [James et al., 2013]

- La régression Ridge réduit l'impact des prédicteurs X_i les moins significatifs, en leur assignant des paramètres β_i qui sont petits (shrinkage method).

- La régression Ridge réduit l'impact des prédicteurs X_i les moins significatifs, en leur assignant des paramètres β_i qui sont petits (shrinkage method).
- Mais elle n'élimine pas ces prédicteurs.

- La régression Ridge réduit l'impact des prédicteurs X_i les moins significatifs, en leur assignant des paramètres β_i qui sont petits (shrinkage method).
- Mais elle n'élimine pas ces prédicteurs.
- La régression LASSO permet d'éliminer complètement les prédicteurs les moins significatifs.

- La régression Ridge réduit l'impact des prédicteurs X_i les moins significatifs, en leur assignant des paramètres β_i qui sont petits (shrinkage method).
- Mais elle n'élimine pas ces prédicteurs.
- La régression LASSO permet d'éliminer complètement les prédicteurs les moins significatifs.
- Ainsi, LASSO réalise une sélection des variables les plus pertinentes (feature selection).

Introduction

➤ On suppose que la vraie relation entre les variables explicatives et la réponse est de la forme suivante:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

où ϵ est un bruit tel que $E(\epsilon) = 0$.

- Le but est d'obtenir des estimateurs $\hat{\beta} = (\hat{\beta}_0, \dots, \hat{\beta}_p)$ des paramètres $\beta = (\beta_0, \dots, \beta_p)$.
- La régression LASSO permet d'éliminer les estimateurs X_i qui sont le moins significativement associés avec la réponse Y (feature selection).

Introduction

➤ On suppose que la vraie relation entre les variables explicatives et la réponse est de la forme suivante:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_n X_n + \epsilon$$

où ϵ est un bruit tel que $E(\epsilon) = 0$.

- Le but est d'obtenir des estimateurs $\hat{\beta}=(\hat{\beta}_0,\ldots,\hat{\beta}_p)$ des paramètres $\boldsymbol{\beta}=(\beta_0,\ldots,\beta_p)$.
- La régression LASSO permet d'éliminer les estimateurs X_i qui sont le moins significativement associés avec la réponse Y (feature selection).

Introduction

On suppose que la vraie relation entre les variables explicatives et la réponse est de la forme suivante:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \epsilon$$

où ϵ est un bruit tel que $E(\epsilon) = 0$.

- Le but est d'obtenir des estimateurs $\hat{\beta}=(\hat{\beta}_0,\ldots,\hat{\beta}_p)$ des paramètres $\boldsymbol{\beta}=(\beta_0,\ldots,\beta_p)$.
- La régression LASSO permet d'éliminer les estimateurs X_i qui sont le moins significativement associés avec la réponse Y (feature selection).

Introduction

$$RSS(\boldsymbol{\beta}) = \sum_{i=1}^{N} (\boldsymbol{x_i}^T \boldsymbol{\beta} - y_i)^2 + \lambda \sum_{i=1}^{p} |\beta_i|$$
$$= \|\boldsymbol{X}\boldsymbol{\beta} - y\|_2^2 + \lambda \|\boldsymbol{\beta}\|_1$$

- οù λ est le paramètre de régularisation
- Le terme $\lambda \|\beta\|_1$ est une pénalité i_1 (i_1 penalty).

Introduction

$$RSS(\boldsymbol{\beta}) = \sum_{i=1}^{N} (\boldsymbol{x_i}^T \boldsymbol{\beta} - y_i)^2 + \lambda \sum_{i=1}^{p} |\beta_i|$$
$$= \|\boldsymbol{X}\boldsymbol{\beta} - y\|_2^2 + \lambda \|\boldsymbol{\beta}\|_1$$

- où λ est le paramètre de régularisation
- Le terme $\lambda \|\beta\|_1$ est une pénalité l_1 (l_1 penalty)

Introduction

$$RSS(\boldsymbol{\beta}) = \sum_{i=1}^{N} (\boldsymbol{x_i}^T \boldsymbol{\beta} - y_i)^2 + \lambda \sum_{i=1}^{p} |\beta_i|$$
$$= \|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_1$$

- **•** où λ est le paramètre de régularisation.
- Le terme $\lambda \|\beta\|_1$ est une *pénalité* l_1 (l_1 penalty)

Introduction

$$RSS(\boldsymbol{\beta}) = \sum_{i=1}^{N} (\boldsymbol{x_i}^T \boldsymbol{\beta} - y_i)^2 + \lambda \sum_{i=1}^{p} |\beta_i|$$
$$= \|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_1$$

- ightharpoonup où λ est le paramètre de régularisation.
- Le terme $\lambda \|\beta\|_1$ est une *pénalité* l_1 (l_1 penalty).

Introduction

 \blacktriangleright Lorsque λ augmente, certains coefficients deviennent nuls.

FIGURE 6.6. The standardized lasso coefficients on the Credit data set are shown as a function of λ and $\|\hat{\beta}_1^L\|_1/\|\hat{\beta}\|_1$.

Figures taken from [James et al., 2013]

- ► Le fait que la Ridge régression diminue les coefficient alors que la LASSO les annulent est parfaitement explicable
- ▶ Il existe une reformulation de ces méthodes en terme de problème d'optimisation sous contrainte et une interprétation parlante qui en découle...

- ► Le fait que la Ridge régression diminue les coefficient alors que la LASSO les annulent est parfaitement explicable
- ▶ Il existe une reformulation de ces méthodes en terme de problème d'optimisation sous contrainte et une interprétation parlante qui en découle...

- En combinant les méthodes Ridge et LASSO, on obtient une régression appelée Elastic-Net.

$$RSS(\boldsymbol{\beta}) = \|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_{2}^{2} + \lambda_{1} \|\boldsymbol{\beta}\|_{1} + \lambda_{2} \|\boldsymbol{\beta}\|_{2}^{2}$$

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} (\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_2^2 + \lambda_1 \|\boldsymbol{\beta}\|_1 + \lambda_2 \|\boldsymbol{\beta}\|_2^2)$$

Introduction

ELASTIC-NET

- En combinant les méthodes Ridge et LASSO, on obtient une régression appelée Elastic-Net.
- \triangleright Dans ce cas, on choisit les estimateurs $\ddot{\beta}$ qui minimisent la version régularisée suivante de la residual sum of squares (RSS)

$$RSS(\boldsymbol{\beta}) = \|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_{2}^{2} + \lambda_{1} \|\boldsymbol{\beta}\|_{1} + \lambda_{2} \|\boldsymbol{\beta}\|_{2}^{2}$$

$$\hat{oldsymbol{eta}} = \arg\min_{oldsymbol{eta}} \left(\|oldsymbol{X}oldsymbol{eta} - oldsymbol{y}\|_2^2 + \lambda_1 \|oldsymbol{eta}\|_1 + \lambda_2 \|oldsymbol{eta}\|_2^2
ight)$$

ELASTIC-NET

Introduction

- En combinant les méthodes Ridge et LASSO, on obtient une régression appelée Elastic-Net.
- ightharpoonup Dans ce cas, on choisit les estimateurs $\hat{\beta}$ qui minimisent la version régularisée suivante de la residual sum of squares (RSS)

$$RSS(\boldsymbol{\beta}) = \|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_{2}^{2} + \lambda_{1} \|\boldsymbol{\beta}\|_{1} + \lambda_{2} \|\boldsymbol{\beta}\|_{2}^{2}$$

On a donc:

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} (\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_{2}^{2} + \lambda_{1}\|\boldsymbol{\beta}\|_{1} + \lambda_{2}\|\boldsymbol{\beta}\|_{2}^{2})$$

ELASTIC-NET

En combinant les méthodes Ridge et LASSO, on obtient une régression appelée Elastic-Net.

RIDGE

ightharpoonup Dans ce cas, on choisit les estimateurs $\hat{\beta}$ qui minimisent la version régularisée suivante de la residual sum of squares (RSS)

$$RSS(\boldsymbol{\beta}) = \|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_{2}^{2} + \lambda_{1} \|\boldsymbol{\beta}\|_{1} + \lambda_{2} \|\boldsymbol{\beta}\|_{2}^{2}$$

On a donc:

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} (\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_{2}^{2} + \lambda_{1}\|\boldsymbol{\beta}\|_{1} + \lambda_{2}\|\boldsymbol{\beta}\|_{2}^{2})$$

- ightharpoonup où λ_1 et λ_2 sont des paramètres de régularisation.

ELASTIC-NET

Introduction

- En combinant les méthodes Ridge et LASSO, on obtient une régression appelée Elastic-Net.
- ightharpoonup Dans ce cas, on choisit les estimateurs $\hat{\beta}$ qui minimisent la version régularisée suivante de la residual sum of squares (RSS)

$$RSS(\boldsymbol{\beta}) = \|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_{2}^{2} + \lambda_{1} \|\boldsymbol{\beta}\|_{1} + \lambda_{2} \|\boldsymbol{\beta}\|_{2}^{2}$$

On a donc:

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} (\|\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{y}\|_{2}^{2} + \lambda_{1}\|\boldsymbol{\beta}\|_{1} + \lambda_{2}\|\boldsymbol{\beta}\|_{2}^{2})$$

- ightharpoonup où λ_1 et λ_2 sont des paramètres de régularisation.
- On a donc introduit une pénalité l₁ et une pénalité l₂.

BIBLIOGRAPHIE

Introduction

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction to Statistical Learning: with Applications in R, volume 103 of Springer Texts in Statistics. Springer, New York.