Modelling lexical interactions in diachronic corpora

Andres Karjus, Richard A. Blythe, Simon Kirby, Kenny Smith

Centre for Language Evolution, University of Edinburgh

Introduction

- · Hypothesis: frequency change in a word will lead to direct competition with (and possibly replacement of) nearsynonym(s), unless the lexical subspace experiences high communicative need.
- Is it possible to describe some variance in terms of which successful words compete with their neighbors and which do not?

Data

522 unique words (COHA, 1890-1999) with frequency increase $\ln > 2$ between any 2 successive spans of 10 years (& occur in > 2 years & > 100 times in the latter span).

Quantifying competition

fron

- Embed targets into vector space (LSA) of the preceding decade, compute semantic neighbors
- Important: word occurrence probabilities sum up to 1; increase in $x \Rightarrow$ decrease in y.
- The measure: where probability mass gets equalized, i.e., target increase $\geq \sum$ (neighbors' decreases). Either cosine distance, or n increasing neighbors.
- Indicates if the increasing target replaced semantically close word(s) (direct competition, obvious likely source of probability mass).
- Example: relativism, increasing +13.2pmw between 1965-1974, 1975-1984:

cumulative sum of

cosine

normd

word	change	decre	eases		dist	
relativism	+13.2					
marxism	-5.68	5.68			0.68	0
thesis	+9.00	5.68			0.67	0.01
jacksonian	-11.64	17.32	17.32> 13.2		0.66	0.03
150			150			
100			100			
50 —			50			
0			0			
0.0	0.2	0.4 0.6	0	10	20	30
	normd. distan		n increasing neighbors			

Communicative need

Topical advection as a proxy: weighted mean log frequency change in the top n (PPMI-weighted) context words of the target.

log frequency change, 1965-1974 -> 1975-1984

Results

advection (mean topic change; proxy to comm.need) [yellowness of dots: absolute residual value in full model]

Linear regression model predicting the cosine distance (normalized by value of top neighbor) where probability mass gets equalized

	Estimate	р	clearer competition signal if				
advection	0.1157	<0.001	lower comm. need				
closest sem neighbor	0.2519	< 0.001	dense subspace				
occurs in n years	0.0087	< 0.001	bursty series				
abs. freq. change	0.0005	0.003	lower freq (change)				
max %decrease	0.0009	< 0.001	a clear loser				
R ² =0.24, F=13.32(13,508), p<0.001							

Also controlled for in the model, but all p>0.05: • standard deviation of yearly frequencies (burstiness) • semantic subspace instability • uniqueness of the form • smallest edit distance among closest semantic neighbors • polsemy • leftover probability mass • age of the word in the corpus • target decade.

Conclusions

Controlling for a range of factors, communicative need (operationalized by advection), describes a moderate amount of variance in competitive interactions between words: low advection words are more likely to replace a word with a similar meaning. Presumably high comm.need facilitates the co-existence of similar words.

