

- Data collection
- Ungrouped Complete Data
- Grouped Complete Data

Data Collection

Basic problem: Obtain a sample of failure or repair times:

determine the most appropriate reliability or maintainability model (i.e. find R(t) or f(t)).

 t_i represents the failure time of the ith unit or the ith observed repair time. The t_i are assumed to be an independent sample from the same population.

Chapter 12

Taxonomy of Failure Data

- Operational vs. test-generated failures
- grouped vs. ungrouped data
- large vs. small samples
- complete vs. censored data
 - singly censored operating times the same
 - Type I censored time terminated test
 - Type II censored terminated at r failures
 - multiply censored operating times differ

Censoring

(a) Complete Data

(b) Singly Censored

(c) Multiply Censored

Ungrouped Complete Data

Given t_1 , t_2 , t_3 , ... t_n are ordered failure times

i.e. $t_i \le t_{i+1}$. Then n- i is the fraction surviving at time t_i

That symbol means it is an estimate"
$$\hat{R}(t_i) = \frac{n-i}{n} = 1 - \frac{i}{n}$$

Chapter 12

Ungrouped Complete Data

$$\hat{F}(t_i) = 1 - \hat{R}(t_i) = \frac{i}{n}$$

note: $\hat{F}(t_n) = \frac{n}{n} = 100\%$

This effect is undesirable, therefore let:

$$\hat{F}(t_i) = \frac{i}{n+1}$$

$$\hat{R}(t_i) = 1 - \frac{i}{n+1} = \frac{n+1-i}{n+1}$$

Chapter 12

Ungrouped Complete Data

Sample Size	Cı	Cumulative Probabilities				
1	0		.5	50		1
2	0		33	.6	7	1
3	0	.25	.5	50	.75	1
4	0	.20	.40	.60	.80	1
4 Failure Time	$\overline{t_0}$	t,	t,	t ₃	t,	t _m

Plotting Positions

$$\left(t_i, F(t_i)\right)$$

 $F(t_i)$ is the fraction of observations below the ith sample observation where

$$E\begin{bmatrix} \hat{F}(t_i) \end{bmatrix} = \frac{i}{n+1}$$

Rank Order Distribution

n = 10

$$g(y_j) = \frac{n!}{(j-1)!(n-j)!} y_j^{j-1} (1-y_j)^{n-j} \qquad y_j = F(t_j)$$

Median Plotting Position

Must be computed numerically approximated by: $\hat{F}(t_i) = \frac{i-.3}{n+.4}$

_i	<u>i/n</u>	<u>i/(n+1</u>)	<u>median</u>	<u>(i3)/(n+.4)</u>
1	.125	.111	.083	.083
2	.250	.222	.201	.202
3	.375	.333	.321	.321
4	.500	.444	.440	.440
5	.625	.555	.560	.560
6	.750	.666	.680	.679
7	.875	.777	.799	.798
8	1.000	.888	.917	.917
				Table A.5, p.

Empirical PDF & Hazard Rate

$$\hat{f}(t) = -\frac{\hat{R}(t_{i+1}) - \hat{R}(t_i)}{t_{i+1} - t_i} = \frac{1}{(t_{i+1} - t_i)(n+1)} \quad \text{for} \quad t_i < t < t_{i+1}$$

$$\hat{\lambda}(t) = \frac{f(t)}{\hat{R}(t)} = \frac{1}{(t_{i+1}-t_i)(n+1-i)}$$
 for $t_i < t < t_{i+1}$

$$\hat{R}(t_i) = \frac{n+1-i}{n+1}$$

Sample Mean & Variance

$$\hat{M}TTF = \sum_{i=1}^{n} \frac{t_i}{n}$$

$$s^2 = \sum_{i=1}^n \frac{(t_i - \hat{M}TTF)^2}{n-1}$$

$$s^{2} = \frac{\sum_{i=1}^{n} t_{i}^{2} - n \hat{M}TTF^{2}}{n-1}$$

Confidence Interval for the Mean

$$\hat{M}TTF \pm t_{\frac{\alpha}{2}, n-1} \frac{S}{\sqrt{n}}$$

where
$$\operatorname{Prob}\{T > t_{\frac{\alpha}{2}, n-1}\} = \frac{\alpha}{2}$$

Table A.2, p. 462

Given the following 10 failure times in hours, estimate R(t), F(t), f(t), $\lambda(t)$ and compute a 90 percent confidence interval for the MTTF: 24.5, 18.9, 54.7, 48.2, 20.1, 29.3, 15.4, 33.9, 72.0, 86.1

TIME	RELIABILITY	DENSITY	HAZARD RATE
0.0	1.00	.0059	.0059
15.4	.9090	.0260	.0286
18.9	.8182	.0757	.0926
20.1	.7273	.0207	.0284
24.5	.6364	.0189	.0298
29.3	.5455	.0198	.0362
33.9	.4546	.0064	.0140
48.2	.3636	.0140	.0385
54.7	.2727	.0053	.0193
72.0	.1818	.0064	.0355
86.1	.0909		

$$\hat{R}(15.4) = \frac{10+1-1}{11} = 0.9090$$

$$\hat{f}(t) = \frac{1}{(18.9 - 15.4) \cdot 11} = 0.0260$$
 for 15.4 < t < 18.9

$$\hat{\lambda}(t) = \frac{1}{(18.9 - 15.4) \bullet 10} = 0.0286$$
 for $15.4 < t < 18.9$

$$\hat{M}TTF = \frac{15.4 + 18.9 + 20.1 + \dots + 86.1}{10} = 40.31$$

$$s^{2} = \frac{15.4^{2} + 18.9^{2} + \dots + 86.1^{2} - 10 \cdot 40.31^{2}}{9} = 585.5454$$

$$or \ s = 24.198$$

 $40.31 \pm 1.833 \times 24.198 / \sqrt{10} = [26.284, 54.34]$ is a 90 percent confidence interval where $t_{.05.9} = 1.833$ from Appendix 12-B.

Chapter 12

Failure Density

Hazard Rate

The following repair times in hours were observed as part of a maintainability demonstration on a new packaging machine: 5, 6.2, 2.3, 3.5, 2.7, 8.9, 5.4, 4.6.

Nesa no nota o noto nico o	i	Repair Time	i / (8+1) ←
After rank ordering he data:	1	2.3	.111
	2	2.7	$.222 \hat{H}(t) =$
	3	3.5	.333
	4	4.6	.444
fewer than 90%	5	5.0	.556
repaired in 8 hrs	6	5.4	.667
	7	6.2	.777

$$8 8.9 .889$$

$$MTTR \pm t_{.05,7} \frac{s}{\sqrt{n}} = 4.825 \pm 1.894 \frac{2.123}{\sqrt{8}} = (3.4,6.2)$$

- Ungrouped Complete Data
- Grouped Complete Data

Grouped Complete Data

Let $n_1, n_2, ..., n_k$ be the number of units having survived at ordered times $t_1, t_2, ..., t_k$ respectively.

$$\hat{R}(t_i) = \frac{n_i}{n}, \quad i = 1, 2, \dots, k$$

$$\hat{f}(t) = -\frac{\hat{R}(t_{i+1}) - \hat{R}(t_i)}{(t_{i+1} - t_i)} \quad \text{for} \quad t_i < t < t_{i+1}$$

$$= \frac{n_i - n_{i+1}}{(t_{i+1} - t_i)n}$$

Chapter 12

Grouped Complete Data

$$\hat{\lambda}(t) = \frac{\hat{f}(t)}{\hat{R}(t)} = \frac{n_i - n_{i+1}}{(t_{i+1} - t_i)n_i} \text{ for } t_i < t < t_{i+1}$$

$$\hat{M}TTF = \sum_{i=0}^{k-1} \frac{-1}{t_i} \frac{(n_i - n_{i+1})}{n}$$
 where $\bar{t}_i = \frac{(t_i + t_{i+1})}{2}$

$$s^{2} = \sum_{i=0}^{k-1} \frac{1}{t_{i}} \frac{\left(n_{i} - n_{i+1}\right)}{n} - \hat{M}TTF^{2}$$

Seventy compressors are observed at 5 month intervals with the following number of failures: 3, 7, 8, 9, 13, 18, and 12.

UPPER <u>BND</u>		NUMBER <u>SURVIVE</u>	RELI- <u>ABILITY</u>	FAILURE DENSITY	HAZARD RATE
0	0	70	1.000	.0086	.0086
5	3	67	.957	.0200	.0209
10	7	60	.857	.0229	.0267
15	8	52	.743	.0257	.0346
20	9	43	.614	.0371	.0605
25	13	30	.429	.0514	.1200
30	18	12	.171	.0343	.2000
35	12	0	0.000		

$$\hat{R}(5) = \frac{67}{70} = 0.957$$

$$\hat{f}(t) = \frac{67 - 60}{(10 - 5)70} = 0.0200 \quad \text{for } 5 < t < 10$$

$$\hat{\lambda}(t) = \frac{67 - 60}{(10 - 5)67} = 0.0209 \quad \text{for } 5 < t < 10$$

$$\hat{M}TTF = \frac{[2.5(3) + 7.5(7) + ... + 32.5(12)]}{70} = 21.357$$

$$[2.5^{2}(3) + 7.5^{2}(7) + ... + 32.5^{2}(12)] = 21.357$$

$$s^{2} = \frac{[2.5^{2}(3) + 7.5^{2}(7) + ... + 32.5^{2}(12)]}{70} - 21.357^{2} = 76.551$$

$$or \ s = 8.75$$

Failure Density

Hazard Rate

The following aircraft repair data reported by the maintenance organization shows the number of days an aircraft was out of service because of unscheduled maintenance.

<u>Days</u>	Number of Aircraft
1-2	4
3-4	7
5-6	9
7-8	6
9-10	4
total	30 repairs

$$\hat{H}(t) = 1 - \frac{n_i}{n}$$
 where n_i is the number of repairs exceeding time t_i

i Upper Bnd
$$(t_i)$$
 n_i 1 - n_i / 30

```
1 2 days 26 .133
2 4 days 19 .367
3 6 days 10 .667
4 8 days 4 .867
5 10 days 0 1.00
```

estimated MTTR = 4.9 days with s = 2.44