novis-i-hwk3-1

February 24, 2025

0.1 ECON 470 Hwk2-3

Author: Ilse Novis

Date: 3/17/2025

GitHub Repository

1 Summarize the Data

1.0.1 Question 1: Present a bar graph showing the proportion of states with a change in their cigarette tax in each year from 1970 to 1985.

1.0.2 Question 2: Plot on a single graph the average tax (in 2012 dollars) on cigarettes and the average price of a pack of cigarettes from 1970 to 2018.

Average Cigarette Tax & Price per Pack (1970-2018, Adjusted to 2012 Dolalrs)

1.0.3 Question 3: Identify the 5 states with the highest increases in cigarette prices (in dollars) over the time period. Plot the average number of packs sold per capita for those states from 1970 to 2018.

Top 5 states with highest pring increase: ['District of Columbia', 'New York', 'Rhode Island', 'Hawaii', 'Massachusetts']

1.0.4 Question 4: Identify the 5 states with the lowest increases in cigarette prices over the time period. Plot the average number of packs sold per capita for those states from 1970 to 2018.

Bottom 5 states with lowest price increase: ['Missouri', 'Tennessee', 'North Dakota', 'Alabama', 'Georgia']

1.0.5 Question 5: Compare the trends in sales from the 5 states with the highest price increases to those with the lowest price increases.

Top 5 states with highest price increase: ['District of Columbia', 'New York', 'Rhode Island', 'Hawaii', 'Massachusetts']
Bottom 5 states with lowest price increase: ['Missouri', 'Tennessee', 'North Dakota', 'Alabama', 'Georgia']

2 Estimate ATEs

2.0.1 Question 6: Focusing only on the time period from 1970 to 1990, regress log sales on log prices to estimate the price elasticity of demand over that period. Interpret your results.

OLS Regression Results

=========	======		======	=====	=========	======	========
Dep. Variabl	e:	log_	sales	R-sq	uared:		0.294
Model:			OLS	Adj.	R-squared:		0.293
Method:		Least Sq	uares	F-st	atistic:		445.1
Date:		Mon, 24 Feb	2025	Prob	(F-statistic):		6.98e-83
Time:		17:	00:39	Log-	Likelihood:		263.40
No. Observat	ions:		1071	AIC:			-522.8
Df Residuals	:		1069	BIC:			-512.8
Df Model:			1				
Covariance T	ype:	nonr	obust				
=========			======	=====		======	========
	coei	std err		t	P> t	[0.025	0.975]
const	5.4288	3 0.030	 182	.065	0.000	5.370	5.487
log_price	-0.8094	0.038	-21	.098	0.000	-0.885	-0.734
Omnibus:	=======	 8	===== 9.160	===== Durb	========= in-Watson:	:======	0.183
Prob(Omnibus):		0.000		ue-Bera (JB):		466.536
Skew:	-		0.128	-	(JB):		4.93e-102
Kurtosis:			6.223		. No.		10.5
========	=======			=====			========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Estimated Price Elasticity of Demand: -0.809

The estimated price elasticity of demand is -0.809, meaning that a 1% increase in price is associated with a 0.8% decrease in cigarette consumption.

2.0.2 Question 7: Regress log sales on log prices using the total (federal and state) cigarette tax (in dollars) as an instrument for log prices. Interpret your results and compare your estimates to those without an instrument. Are they different? If so, why?

Question 7.1:

First-Stage Regression Results:

OT.S	Regression	Results
CHC	INCELCODION	ICCDUTOD

============		=======	======			========
Dep. Variable:	1	og_price	R-squa	red:		0.617
Model:		OLS	-	-squared:		0.617
Method:	Least	Squares	F-stat	_		1725.
Date:		Feb 2025	Prob (F-statistic):		2.80e-225
Time:	•	17:00:39		kelihood:		1020.7
No. Observations:		1071	AIC:			-2037.
Df Residuals:		1069	BIC:			-2027.
Df Model:		1				
Covariance Type:	n	onrobust				
=======================================				=========		=======
C	oef std	err	t	P> t	[0.025	0.975]
const 1.2	355 0.	012 105	.227	0.000	1.212	1.259
log_tax 0.3		008 41	.537	0.000	0.317	0.349
Omnibus:	-======	======= 6.850	===== Durbin	======================================	======	0.303
Prob(Omnibus):		0.033	Jarque	-Bera (JB):		5.505
Skew:		0.081	Prob(J			0.0638
Kurtosis:		2.689	Cond.			8.72
=======================================			======	=========		=======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Question 7.2:

Second-Stage (IV) Regression Results:

OLS Regression Results

=======================================	=======================================		==========
Dep. Variable:	log_sales	R-squared:	0.236
Model:	OLS	Adj. R-squared:	0.235
Method:	Least Squares	F-statistic:	330.3
Date:	Mon, 24 Feb 2025	Prob (F-statistic):	1.56e-64
Time:	17:00:39	Log-Likelihood:	221.17
No. Observations:	1071	AIC:	-438.3
Df Residuals:	1069	BIC:	-428.4
Df Model:	1		

Covariance Type	: 	nonrobust				
=	coef	std err	t	P> t	[0.025	
0.975]						
_						
const 5.592	5.5155	0.039	140.744	0.000	5.439	
<pre>log_price_hat -0.823</pre>	-0.9231	0.051	-18.175	0.000	-1.023	
=======================================			========			=====
Omnibus:		83.338	Durbin-Wa	tson:		0.157
<pre>Prob(Omnibus):</pre>		0.000	Jarque-Be	era (JB):	4	30.014
Skew:		0.023	Prob(JB):		4.	20e-94
Kurtosis:		6.104	Cond. No.			13.4
==========						=====

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

IV-Estimated Price Elasticity of Demand: -0.923

OLS-Estimated Price Elasticity: -0.809

Difference between OLS and IV Estimates: 0.114

Question 7: Interpretation

The IV estimate is more negative (elastic), suggesting OLS underestimated price elasticity due to endogeneity.

2.0.3 Question 8: Show the first stage and reduced-form results from the instrument.

Question 8.1: First Stage Form

=== First-Stage Regression: Log(Price) ~ Log(Tax) === OLS Regression Results

Dep. Variable:	log_price	R-squared:	0.617
Model:	OLS	Adj. R-squared:	0.617
Method:	Least Squares	F-statistic:	1725.
Date:	Mon, 24 Feb 2025	Prob (F-statistic):	2.80e-225
Time:	17:00:39	Log-Likelihood:	1020.7
No. Observations:	1071	AIC:	-2037.
Df Residuals:	1069	BIC:	-2027.

Df Model: 1
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const log_tax	1.2355 0.3328	0.012 0.008	105.227 41.537	0.000 0.000	1.212 0.317	1.259 0.349
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	0.				0.303 5.505 0.0638 8.72

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Question 8.2: Reduced Form Regression

=== Reduced-Form Regression: Log(Sales) ~ Log(Tax) === OLS Regression Results

=======================================			
Dep. Variable:	log_sales	R-squared:	0.236
Model:	OLS	Adj. R-squared:	0.235
Method:	Least Squares	F-statistic:	330.3
Date:	Mon, 24 Feb 2025	Prob (F-statistic):	1.56e-64
Time:	17:00:39	Log-Likelihood:	221.17
No. Observations:	1071	AIC:	-438.3
Df Residuals:	1069	BIC:	-428.4
Df Model:	1		
Covariance Type:	nonrobust		
	==============		=======================================
coe	f std err	t P> t	[0.025 0.975]

	coef	std err	t	P> t	[0.025	0.975]
const log_tax	4.3750 -0.3072	0.025 0.017	176.627 -18.175	0.000 0.000	4.326 -0.340	4.424 -0.274
Omnibus: Prob(Omnibus Skew: Kurtosis:	3):	0.	.000 Jarq .023 Prob	in-Watson: ue-Bera (JB) (JB): . No.	:	0.157 430.014 4.20e-94 8.72

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

2.0.4 Question 9: Repeat questions 1-3 focusing on the period from 1991 to 2015.

Question 9.1: Bar graph showing the proportion of states with a change in their cigarette tax

Question 9.2: Average tax (in 2012 dollars) on cigarettes and the average price of a pack of cigarettes from 1991 to 2015

Question 9.3: Identify the 5 states with the highest increases in cigarette prices (in dollars) over the time period. Plot the average number of packs sold per capita for those states from 1991 to 2015

Top 5 states with highest price increase (1991-2015): ['New York', 'Massachusetts', 'Alaska', 'Hawaii', 'Rhode Island']

2.0.5 Question 10: Compare your elasticity estimates from 1970-1990 versus those from 1991-2015. Are they different? If so, why?

===	${\tt Price}$	Elasticity	${\tt Estimate}$	for	1970-1990) ===
			OI	LS Re	egression	Results

=========		.=======		====	=========		========
Dep. Variable:	:	log_	sales	R-sq	uared:		0.294
Model:			OLS	Adj.	R-squared:		0.293
Method:		Least Sq	ıares	F-st	atistic:		445.1
Date:		Mon, 24 Feb	2025	Prob	(F-statistic):		6.98e-83
Time:		17:0	00:40	Log-	Likelihood:		263.40
No. Observation	ons:		1071	AIC:			-522.8
Df Residuals:			1069	BIC:			-512.8
Df Model:			1				
Covariance Typ	pe:	nonre	bust				
=========			======	====	=========	======	========
	coef	std err		t	P> t	[0.025	0.975]
const	5.4288	0.030	182	.065	0.000	5.370	5.487
log_price	-0.8094	0.038	-21	.098	0.000	-0.885	-0.734
Omnibus:	======	:======== :8	====== 9.160	==== Durb	======== in-Watson:	======	0.183
Prob(Omnibus):	:	(0.000	Jarq	ue-Bera (JB):		466.536
Skew:		(0.128	-	(JB):		4.93e-102
Kurtosis:			5.223	Cond	. No.		10.5
==========						======	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Estimated Price Elasticity: -0.809

=== Price Elasticity Estimate for 1991-2015 === OLS Regression Results

=======================================	=======================================		=======================================
Dep. Variable:	log_sales	R-squared:	0.561
Model:	OLS	Adj. R-squared:	0.561
Method:	Least Squares	F-statistic:	1630.
Date:	Mon, 24 Feb 2025	Prob (F-statistic):	4.20e-230
Time:	17:00:40	Log-Likelihood:	-256.00
No. Observations:	1275	AIC:	516.0
Df Residuals:	1273	BIC:	526.3
Df Model:	1		
Covariance Type:	nonrobust		
	=======================================		=======================================
со	ef std err	t P> t	[0.025 0.975]

const	5.6617	0.036	155	.427 0.000	5.590	5.733
log_price	-0.9968	0.025	-40	.370 0.000	-1.045	-0.948
=========		=======	=====	===========	========	========
Omnibus:		23	.003	Durbin-Watson:		0.208
Prob(Omnibus):		0	.000	Jarque-Bera (JB)	:	43.688
Skew:		0	.011	Prob(JB):		3.26e-10
Kurtosis:		3	.907	Cond. No.		9.35

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Estimated Price Elasticity: -0.997

=== Elasticity Comparison === Elasticity (1970-1990): -0.809 Elasticity (1991-2015): -0.997

Difference: 0.187

Demand became more elastic (greater sensitivity to price changes) in 1991-2015.