## Kholle 9 filière MP\* Planche 1

\*\*\*

- 1. Soit  $p \in \mathbb{N}^*$  et E un espace vectoriel. On se donne  $F_1, \ldots, F_p$  des sous-espaces vectoriels de dimension finie de E. Majorer  $\dim \left(\sum_{i=1}^p F_i\right)$  et caractériser le cas d'égalité.
- 2. Soit E un espace vectoriel. On considère  $f \in \mathcal{L}(E)$ . Démontrer l'équivalence suivante : f est une homothétie si et seulement si  $\forall x \in E$ , la famille (x, f(x)) est liée.
- 3. Soit n un entier naturel non nul. Quelles sont les matrices A dans  $\mathcal{M}_n(\mathbb{K})$  telles que  $A^2=0$ ?

\*\*\*

# Kholle 9 filière MP\* Planche 2

\*\*\*

- 1. Soit E un espace vectoriel sur  $\mathbb{K}$ . Que dire de l'application  $\varphi : \mathbb{K}[X] \to \mathcal{L}(E)$ ,  $P \mapsto P(u)$ ?
- 2. On considère  $E=C(\mathbb{R},\mathbb{R})$ . Montrer que la famille  $(f_{\lambda})_{\lambda\in\mathbb{R}}$  définie par

$$\forall \lambda \in \mathbb{R}, \forall x \in \mathbb{R}, f_{\lambda}(x) = e^{\lambda x}$$

est libre dans E.

3. Soit E un espace vectoriel de dimension finie, f et g deux endomorphismes de E. Montrer que

$$|\operatorname{rg}(f) - \operatorname{rg}(g)| \le \operatorname{rg}(f+g) \le \operatorname{rg}(f) + \operatorname{rg}(g)$$



## Kholle 9 filière MP\* Planche 3

\*\*\*

- 1. Définir l'indice de nilpotence d'un endomorphisme u de E de dimension finie. Le majorer et démontrer cette majoration.
- 2. Soit *E* un espace vectoriel, *F* et *G* deux sous-espaces vectoriels de *E*. On suppose que  $F \cup G = E$ . Montrer que  $F \subset G$  ou  $G \subset F$ .
- 3. Soit E un espace vectoriel de dimension finie et  $f \in \mathcal{L}(E)$ . Démontrer l'équivalence

$$E = \operatorname{Im}(f) \oplus \ker(f) \iff \operatorname{Im}(f) = \operatorname{Im}(f^2)$$

\*\*\*

## Kholle 9 filière MP\* Planche 4

#### \*\*\*

- 1. Énoncer et démontrer l'expression du déterminant d'une matrice triangulaire par blocs. Détailler le cas d'une matrice triangulaire.
- 2. Soit *M* une matrice carrée de trace nulle. Montrer par récurrence que *M* est semblable à une matrice de diagonale nulle.
- 3. Soit  $M \in \mathcal{M}_n(\mathbb{Z})$ . Montrer que M est inversible et  $M^{-1}$  est à coefficients dans  $\mathbb{Z}$  si et seulement si  $|\det(M)| = 1$ .

