1)Sum of Two Numbers

Write a program that takes two integers as input and calculates their sum using a function.

Pass the integers to the function using call by value.

```
#include <stdio.h>
    int Addition(void);
      int a,b;
      int main(){
          int result;
          printf("Enter two numbers: ");
          scanf("%d %d", &a, &b);
11
          result = Addition();
12
          printf("The sum of the two numbers is: %d\n", result);
13
          return 0;
     int Addition(void){
17
          int result;
          result = a + b;
          return result;
21
PROBLEMS
          OUTPUT
                  DEBUG CONSOLE
                                           PORTS
                                 TERMINAL
                                                  COMMENTS
PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
Enter two numbers: 5 6
The sum of the two numbers is: 11
```

2)Swap Two Numbers

Write a program to swap two numbers using a function. Observe and explain why the original numbers remain unchanged due to call by value.

```
#include <stdio.h>
      int x,y;
      void Swap(void);
      int main(){
          printf("Enter two numbers: ");
          scanf("%d %d", &x, &y);
          printf("Before swapping: x = %d, y = %d n", x, y);
          Swap();
          return 0;
      void Swap(void){
          int temp;
          temp=x;
          x=y;
39
          y=temp;
          printf("After swapping: x = %d, y = %d n", x, y);
42
PROBLEMS
          OUTPUT
                   DEBUG CONSOLE
                                  TERMINAL
                                            PORTS
                                                    COMMENTS
PS C:\Users\Hp\Desktop\C\Class7> gcc function.c
PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
Enter two numbers: 5 2
Before swapping: x = 5, y = 2
After swapping: x = 2, y = 5
```

3) Find Maximum of Two Numbers

Implement a function that takes two integers as arguments and returns the larger of the two. Demonstrate how the original values are not altered.

```
#include <stdio.h>
      int x,y;
      void Max(void);
      int main(){
 52
          printf("Enter two numbers: ");
          scanf("%d %d", &x, &y);
54
          Max();
55
          return 0;
57
      void Max(void){
          if(x>y){
              printf("The maximum number is: %d\n", x);
          else{
62
              printf("The maximum number is: %d\n", y);
63
64
65
PROBLEMS
          OUTPUT
                   DEBUG CONSOLE
                                  TERMINAL
                                            PORTS
                                                    COMMENTS
Enter two numbers: 8 13
The maximum number is: 13
```

4) Factorial Calculation

Create a function to compute the factorial of a given number passed to it. Ensure the original number remains unaltered.

```
#include <stdio.h>
       int x;
       void factorial(void);
  76
       int main(){
           printf("Enter a number: ");
  78
  79
            scanf("%d", &x);
            factorial();
            return 0;
  82
       void factorial(void){
            int fact =1;
  84
            for(int i=1;i<=x;i++){
                fact*=i;
            printf("The factorial of the number is: %d\n", fact);
 PROBLEMS
           OUTPUT
                    DEBUG CONSOLE
                                   TERMINAL
                                             PORTS
                                                     COMMENTS
PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
 Enter a number: 5
 The factorial of the number is: 120
```

5)Check Even or Odd

Write a program where a function determines whether a given integer is even or odd. The function should use call by value.

```
#include <stdio.h>
  97
       int x;
       void even odd(void);
  98
       int main(){
            printf("Enter a number: ");
 100
            scanf("%d", &x);
            even odd();
 102
 103
            return 0;
 104
       void even odd(void){
 105
            if(x\%2==0){
                printf("The number is even\n");
 108
            else{
                printf("The number is odd\n");
 110
 111
 112
 113
 PROBLEMS
           OUTPUT
                    DEBUG CONSOLE
                                   TERMINAL
                                              PORTS
                                                      COM
 PS C:\Users\Hp\Desktop\C\Class7> gcc function.c
PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
 Enter a number: 97
 The number is odd
```

6) Calculate Simple Interest

Write a program that calculates simple interest using a function. Pass principal, rate, and time as arguments and return the computed interest.

```
TTO
      #include <stdio.h>
117
      int SI, P, R, T;
118
      void Simple interest(void);
119
120
      int main(){
          printf("Enter a Principal amount: ");
121
          scanf("%d", &P);
122
          printf("Enter a Interest: ");
123
          scanf("%d", &R);
124
          printf("Enter a Time period: ");
125
          scanf("%d", &T);
126
          Simple interest();
127
128
          return 0;
129
      void Simple interest(void){
130
          SI = (P*R*T)/100;
131
          printf("The Simple Interest is: %d\n", SI);
132
133
134
135
PROBLEMS
          OUTPUT
                   DEBUG CONSOLE
                                  TERMINAL
                                            PORTS
                                                    COMMENTS
PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
Enter a Principal amount: 5000
Enter a Interest: 15
Enter a Time period: 2
The Simple Interest is: 1500
```

7) Reverse a Number

Create a function that takes an integer and returns its reverse. Demonstrate how call by value affects the original number.

```
140
      #include <stdio.h>
141
142
      int x;
      void Reverse(void);
143
      int main(){
144
          printf("Enter a number: ");
145
          scanf("%d", &x);
146
147
          Reverse();
148
          return 0;
149
      void Reverse(void){
150
          while(x!=0){
151
              printf("%d", x%10);
152
153
              x=x/10;
154
155
156
PROBLEMS
                                            PORTS
                                                    COMMEN
          OUTPUT
                   DEBUG CONSOLE
                                  TERMINAL
PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
Enter a number: 589
985
```

8)GCD of Two Numbers

Write a function to calculate the greatest common divisor (GCD) of two numbers passed by value.

```
#include <stdio.h>
        int x,y;
        void GCD(void);
        int main(){
 164
            printf("Enter a Numbers : ");
            scanf("%d %d", &x, &y);
            GCD();
            return 0;
 170
 171
       void GCD(void){
            int gcd;
            for(int i=1; i<=x && i<=y; i++){
 173
                if(x%i==0 && y%i==0){
 174
                   gcd=i;
 175
 176
 177
 178
            printf("The GCD of the two numbers is: %d\n", gcd);
 179
 PROBLEMS
            OUTPUT
                    DEBUG CONSOLE
                                   TERMINAL
                                             PORTS
                                                     COMMENTS
PS C:\Users\Hp\Desktop\C\Class7> gcc function.c
PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
 Enter a Numbers: 8 9
 The GCD of the two numbers is: 1
PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
 Enter a Numbers : 50
 The GCD of the two numbers is: 4214903
PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
 Enter a Numbers: 8 16
• The GCD of the two numbers is: 8
```

9)Sum of Digits

Implement a function that computes the sum of the digits of a number passed as an argument.

```
#include <stdio.h>
        int x;
        void Sum_of_digit(void);
        int main(){
 187
            printf("Enter a number: ");
            scanf("%d", &x);
            Sum of digit();
 190
 191
            return 0;
 192
        void Sum of digit(void){
            int sum =0;
 194
            while(x!=0){
                sum+=x%10;
 196
                x=x/10;
 198
            printf("The sum of the digits is: %d\n", sum);
 199
 200
 PROBLEMS
            OUTPUT
                     DEBUG CONSOLE
                                   TERMINAL
                                              PORTS
                                                     COMMENTS
 PS C:\Users\Hp\Desktop\C\Class7> gcc function.c
PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
 Enter a number: 856
 The sum of the digits is: 19
```

10)Prime Number Check

Write a program where a function checks if a given number is prime. Pass the number as an argument by value.

```
#include <stdio.h>
 204
        int x;
        void Prime num(void);
 206
        int main(){
            printf("Enter a number: ");
 208
            scanf("%d", &x);
            Prime num();
 210
            return 0;
 211
 212
 213
        void Prime num(void){
 214
            int flag=0;
            if(x==0 | x==1)
 215
 216
               flag=1;
 217
            for(int i=2; i <= x/2; i++){
 218
                if(x\%i == 0){
 219
 220
                    flag=1;
 221
                    break;
 222
 223
            if(flag==0){
 224
                printf("The number is prime\n");
 225
 226
 227
            else{
                printf("The number is not prime\n");
 228
 229
 PROBLEMS
            OUTPUT
                     DEBUG CONSOLE
                                    TERMINAL
                                              PORTS
                                                      COMMENTS
PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
 Enter a number: 11
 The number is prime
PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
 Enter a number: 1
 The number is not prime
```

11)Fibonacci Sequence Check

Create a function that checks whether a given number belongs to the Fibonacci sequence. Pass the number by value.

```
#include <stdio.h>
 235
       int x;
       void Fibnocci(void);
       int main(){
           printf("Enter a number: ");
           scanf("%d", &x);
           Fibnocci();
           return 0;
       void Fibnocci(void){
           int a=0, b=1, c=0;
           while(c<x){
               c=a+b;
               a=b;
               b=c;
           if(c==x){
               printf("The number is in the fibonacci sequence\n");
               printf("The number is not in the fibonacci sequence\n");
 256
           OUTPUT DEBUG CONSOLE
                                 TERMINAL
                                            PORTS COMMENTS
PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
Enter a number: 8
The number is in the fibonacci sequence
 PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
Enter a number: 9
The number is not in the fibonacci sequence
```

12) Quadratic Equation Solver

Write a function to calculate the roots of a quadratic equation $ax2+bx+c=0ax^2+bx+c=0ax^2+bx+c=0$.

Pass the coefficients a,b,a, b,a,b, and ccc as arguments.

```
#include <stdio.h>
       #include <math.h> // For sqrt function
        // Function prototype
        void solveQuadratic(int a, int b, int c);
       int main() {
           int a, b, c;
            printf("Enter coefficients a, b, and c: ");
            scanf("%d %d %d", &a, &b, &c);
           solveQuadratic(a, b, c);
           return 0;
       // Function to calculate and print the roots of a quadratic equation
       void solveQuadratic(int a, int b, int c) {
           int discriminant;
           double root1, root2;
           // Calculate the discriminant
           discriminant = b * b - 4 * a * c;
 284
            if (discriminant > 0) {
                // Two distinct real roots
               root1 = (-b + sqrt(discriminant)) / (2.0 * a);
               root2 = (-b - sqrt(discriminant)) / (2.0 * a);
                printf("The roots are real and distinct.\n");
                printf("Root 1: %.2f\n", root1);
                printf("Root 2: %.2f\n", root2);
            } else if (discriminant == 0) {
               root1 = -b / (2.0 * a);
                printf("The roots are real and equal.\n");
                printf("Root: %.2f\n", root1);
                double realPart = -b / (2.0 * a);
                double imaginaryPart = sqrt(-discriminant) / (2.0 * a);
                printf("The roots are complex and imaginary.\n");
                printf("Root 1: %.2f + %.2fi\n", realPart, imaginaryPart);
                printf("Root 2: %.2f - %.2fi\n", realPart, imaginaryPart);
 PROBLEMS
           OUTPUT
                    DEBUG CONSOLE
                                  TERMINAL
                                             PORTS
                                                    COMMENTS
 PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
Enter coefficients a, b, and c: 1 -3 2
 The roots are real and distinct.
 Root 1: 2.00
 Root 2: 1.00
```

13) Binary to Decimal Conversion

Implement a function to convert a binary number (passed as an integer) into its decimal equivalent.

```
#include <stdio.h>
      int binaryToDecimal(int binary);
      int main() {
          int binary;
          // Taking input for binary number
          printf("Enter a binary number: ");
          scanf("%d", &binary);
          // Calling the function to convert binary to decimal
          int decimal = binaryToDecimal(binary);
          // Printing the result
          printf("The decimal equivalent of binary %d is: %d\n", binary, decimal);
          return 0;
329
      int binaryToDecimal(int binary) {
          int decimal = 0, base = 1, remainder;
          while (binary > 0) {
              remainder = binary % 10;
              // Add it to the decimal result
              decimal += remainder * base;
              base *= 2;
              binary /= 10;
          return decimal;
PROBLEMS OUTPUT DEBUG CONSOLE
                                 TERMINAL
                                           PORTS COMMENTS
Root 2: 1.00
PS C:\Users\Hp\Desktop\C\Class7> gcc function.c
PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
Enter a binary number: 1011
The decimal equivalent of binary 1011 is: 11
```

14) Matrix Trace Calculation

Write a program where a function computes the trace of a 2x2 matrix (sum of its diagonal elements). Pass the matrix elements individually as arguments.

```
// Function prototype
      int calculateTrace(int a, int b, int c, int d);
      int main() {
          int a, b, c, d;
           printf("Enter the elements of the 2x2 matrix (a, b, c, d):\n");
          scanf("%d %d %d %d", &a, &b, &c, &d);
           int trace = calculateTrace(a, b, c, d);
          // Printing the result
           printf("The trace of the matrix is: %d\n", trace);
          return 0;
      // Function to calculate the trace of a 2x2 matrix
      int calculateTrace(int a, int b, int c, int d) {
           return a + d; // Trace is the sum of the diagonal elements (a and d)
 380
 PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS COMMENTS
PS C:\Users\Hp\Desktop\C\Class7> gcc function.c
PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
 Enter the elements of the 2x2 matrix (a, b, c, d):
 1234
 The trace of the matrix is: 5
```

15) Palindrome Number Check

Create a function that checks whether a given number is a palindrome. Pass the number by value and return the result.

```
385
      #include <stdio.h>
      void checkPalindrome(void); // Function prototype
      int x;
389
      int main() {
          printf("Enter a number: ");
          scanf("%d", &x);
          checkPalindrome();
          return 0;
      void checkPalindrome(void) {
          int reversed = 0, original = x;
          // Reverse the number
          while (x != 0) {
              reversed = reversed * 10 + x % 10;
              x /= 10;
          // Check if the number is a palindrome
          if (original == reversed) {
              printf("The number is a palindrome.\n");
          } else {
              printf("The number is not a palindrome.\n");
410
411
PROBLEMS
          OUTPUT
                  DEBUG CONSOLE
                                 TERMINAL
                                                  COMMENTS
PS C:\Users\Hp\Desktop\C\Class7> gcc function.c
PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
Enter a number: 898
The number is a palindrome.
PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
Enter a number: 562
The number is not a palindrome.
```

1. Unit Conversion for Manufacturing Processes

- **Input:** A floating-point value representing the measurement and a character indicating the conversion type (e.g., 'C' for cm-to-inches or 'I' for inches-to-cm).
- Output: The converted value.
- Function:

float convert_units(float value, char type);

```
#include <stdio.h>

void convert_units(void); // Function prototype

float value;

char type;

int main(){

printf("Enter the value and type (C for cm to inches, I for inches to cm): ");

scanf("%f %c", &value, &type);

convert_units();

return 0;

}

void convert_units(void){

if(type=='C'){

printf("The converted value is: %.2f inches\n", value/2.54);

}

else if(type=='I'){

printf("The converted value is: %.2f cm\n", value*2.54);

}

else{

printf("Invalid type\n");

}

PS C:\Users\Hp\Desktop\C\Class7> ./a.exe

Enter the value and type (C for cm to inches, I for inches to cm): 84 C

The converted value is: 33.07 inches

PS C:\Users\Hp\Desktop\C\Class7> ./a.exe

Enter the value and type (C for cm to inches, I for inches to cm): 1902 I

The converted value is: 2545.08 cm
```

2. Cutting Material Optimization

- **Input:** Two integers: the total length of the raw material and the desired length of each piece.
- **Output:** The maximum number of pieces that can be cut and the leftover material.
- Function:

int calculate_cuts(int material_length, int piece_length);

3. Machine Speed Calculation

- Input: Two floating-point numbers: belt speed (m/s) and pulley diameter (m).
- Output: The RPM of the machine.
- Function:

float calculate_rpm(float belt_speed, float pulley_diameter);

```
#include <stdio.h>
       void calculate_rpm(void); // Function prototype
       float belt_speed, pulley_diameter;
       int main(){
           printf("Enter the belt speed (m/s) and pulley diameter (m): ");
           scanf("%f %f", &belt_speed, &pulley_diameter);
           calculate_rpm();
          return 0;
       void calculate_rpm(void){
           float pulley_circumference = 3.14 * pulley_diameter;
           float rpm = belt_speed * 60 / pulley_circumference;
           printf("The RPM of the machine is: %.2f\n", rpm);
  73
 PROBLEMS
           OUTPUT DEBUG CONSOLE TERMINAL
                                           PORTS COMMENTS
PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
 Enter the belt speed (m/s) and pulley diameter (m): 50 6
 The RPM of the machine is: 159.24
PS C:\Users\Hp\Desktop\C\Class7>
```

4. Production Rate Estimation

- Input: Two integers: machine speed (units per hour) and efficiency (percentage).
- Output: The effective production rate.
- Function:int calculate_production_rate(int speed, int efficiency);

```
#include <stdio.h>

#int calculate_production_rate(int speed, int efficiency);

#int main(){

#int speed, efficiency;

#int production_rate = calculate_production_rate(speed, efficiency);

#int calculate_production_rate(int speed, int efficiency){

#int calculate_pr
```

5. Material Wastage Calculation

- Input: Two integers: total material length and leftover material length.
- Output: The amount of material wasted.
- Function:

int calculate_wastage(int total_length, int leftover_length);

```
#include <stdio.h>
       int calculate wastage(int total length, int leftover length);
       int main(){
          int total_length, leftover_length;
           printf("Enter the total material length and leftover material length: ");
           scanf("%d %d", &total_length, &leftover_length);
           int wastage = calculate_wastage(total_length, leftover_length);
           printf("The amount of material wasted is: %d\n", wastage);
           return 0;
 116
       int calculate_wastage(int total_length, int leftover_length){
           return total length - leftover length; // Material wasted
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS COMMENTS
PS C:\Users\Hp\Desktop\C\Class7> gcc function2.c
PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
 Enter the total material length and leftover material length: 1005
 The amount of material wasted is: 885
```

6. Energy Cost Estimation

- **Input:** Three floating-point numbers: power rating (kW), operating hours, and cost per kWh.
- Output: The total energy cost.
- Function:

float calculate energy cost(float power rating, float hours, float cost per kwh);

```
#include <stdio.h>
float calculate_energy_cost(float power_rating, float hours, float cost_per_kwh);
int main(){

float power_rating, hours, cost_per_kwh;

printf("Enter the power rating (kW), operating hours, and cost per kWh: ");

scanf("%f %f %f", &power_rating, &hours, &cost_per_kwh);

float energy_cost = calculate_energy_cost(power_rating, hours, cost_per_kwh);

printf("The total energy cost is: %.2f\n", energy_cost);

return 0;

return 0;

float calculate_energy_cost(float power_rating, float hours, float cost_per_kwh){

return power_rating * hours * cost_per_kwh; // Total energy cost

PS C:\Users\Hp\Desktop\C\Class7> gcc function2.c

PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
Enter the power rating (kW), operating hours, and cost per kWh: 8 5 120

The total energy cost is: 4800.00
```

7. Heat Generation in Machines

- Input: Two floating-point numbers: power usage (Watts) and efficiency (%).
- Output: Heat generated (Joules).
- Function:

float calculate_heat(float power_usage, float efficiency);

8. Tool Wear Rate Calculation

- **Input:** A floating-point number for operating time (hours) and an integer for material type (e.g., 1 for metal, 2 for plastic).
- Output: Wear rate (percentage).
- Function: float calculate_wear_rate(float time, int material_type);

```
#include <stdio.h>

#include <stdio.h

#include
```

9. Inventory Management

- Input: Two integers: consumption rate (units/day) and lead time (days).
- Output: Reorder quantity (units).
- Function: int calculate reorder quantity(int consumption rate, int lead time);

```
#include <stdio.h>
       int calculate_reorder_quantity(int consumption_rate, int lead_time);
 202 v int main(){
           int consumption_rate, lead_time;
          printf("Enter the consumption rate (units/day) and lead time (days): ");
           scanf("%d %d", &consumption_rate, &lead_time);
          int reorder_quantity = calculate_reorder_quantity(consumption_rate, lead_time);
         printf("The reorder quantity is: %d units\n", reorder_quantity);
          return 0;
 210 v int calculate_reorder_quantity(int consumption_rate, int lead_time){
         return consumption_rate * lead_time; // Reorder quantity
 PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS COMMENTS
PS C:\Users\Hp\Desktop\C\Class7> gcc function2.c
PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
 Enter the consumption rate (units/day) and lead time (days): 50 80
 The reorder quantity is: 4000 units
PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
 Enter the consumption rate (units/day) and lead time (days): 5 90
The reorder quantity is: 450 units
PS C:\Users\Hp\Desktop\C\Class7>
```

10. Quality Control: Defective Rate Analysis

- Input: Two integers: number of defective items and total batch size.
- Output: Defective rate (percentage).
- Function: float calculate_defective_rate(int defective_items, int batch_size);

```
float calculate_defective_rate(int defective_items, int batch_size);
222 v int main(){
          int defective_items, batch_size;
          printf("Enter the number of defective items and total batch size: ");
           scanf("%d %d", &defective_items, &batch_size);
           float defective_rate = calculate_defective_rate(defective_items, batch_size);
           printf("The defective rate is: %.2f percent\n", defective_rate);
          return 0;
229 }
230 v float calculate_defective_rate(int defective_items, int batch_size){
           return (float)defective_items / batch_size * 100; // Defective rate
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS COMMENTS
PS C:\Users\Hp\Desktop\C\Class7> gcc function2.c
PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
Enter the number of defective items and total batch size: 5 12
The defective rate is: 41.67 percent

PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
Enter the number of defective items and total batch size: 0 10
 The defective rate is: 0.00 percent
```

11. Assembly Line Efficiency

- Input: Two integers: output rate (units/hour) and downtime (minutes).
- Output: Efficiency (percentage).
- Function: float calculate_efficiency(int output_rate, int downtime);

```
#include <stdio.h>
 243 float calculate efficiency(int output rate, int downtime);
 244 int main(){
         int output_rate, downtime;
          printf("Enter the output rate (units/hour) and downtime (minutes): ");
          scanf("%d %d", &output_rate, &downtime);
          float efficiency = calculate_efficiency(output_rate, downtime);
          printf("The efficiency is: %.2f percent\n", efficiency);
          return 0:
      float calculate_efficiency(int output_rate, int downtime){
           return (float)output_rate * 60 / ((output_rate * 60) + downtime) * 100; // Efficiency
 PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS COMMENTS
PS C:\Users\Hp\Desktop\C\Class7> gcc function2.c
PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
 Enter the output rate (units/hour) and downtime (minutes): 60 10
 The efficiency is: 99.72 percent
PS C:\Users\Hp\Desktop\C\Class7>
```

12. Paint Coverage Estimation

- Input: Two floating-point numbers: surface area (m²) and paint coverage per liter (m²/liter).
- Output: Required paint (liters).
- Function: float calculate_paint(float area, float coverage);

13. Machine Maintenance Schedule

- Input: Two integers: current usage (hours) and maintenance interval (hours).
- Output: Hours remaining for maintenance.
- Function: int calculate maintenance schedule(int current usage, int interval);

```
#include <stdio.h>
int calculate_maintenance_schedule(int current_usage, int interval);

int calculate_maintenance_schedule(int current_usage, int interval);

int current_usage, interval;

printf("Enter the current usage (hours) and maintenance interval (hours): ");

scanf("%d %d", &current_usage, &interval);

int remaining_hours = calculate_maintenance_schedule(current_usage, interval);

printf("Hours remaining for maintenance: %d\n", remaining_hours);

return 0;

293
}

294 vint calculate_maintenance_schedule(int current_usage, int interval){

return interval - current_usage; // Hours remaining for maintenance

296
}

PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
Enter the current usage (hours) and maintenance interval (hours): 15 6
Hours remaining for maintenance: _9
```

14. Cycle Time Optimization

- **Input:** Two integers: machine speed (units/hour) and number of operations per cycle.
- Output: Optimal cycle time (seconds).
- Function: float calculate_cycle_time(int speed, int operations);

1. Write a function that takes the original price of an item and a discount percentage as parameters. The function should return the discounted price without modifying the original price.

Function Prototype:

void calculateDiscount(float originalPrice, float discountPercentage);

```
#include<stdio.h>
     void calculateDiscount(float originalPrice, float discountPercentage);
        float originalPrice, discountPercentage;
         printf("Enter the original price and discount percentage: ");
         scanf("%f %f", &originalPrice, &discountPercentage);
         calculateDiscount(originalPrice, discountPercentage);
    void calculateDiscount(float originalPrice, float discountPercentage){
          float discountedPrice = originalPrice - (originalPrice * discountPercentage / 100);
         printf("The discounted price is: %.2f\n", discountedPrice);
18
                 DEBUG CONSOLE
                                TERMINAL
                                          PORTS COMMENTS
PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
Enter the original price and discount percentage: 9000 45
The discounted price is: 4950.00
```

2. Create a function that takes the current inventory count of a product and a quantity to add or remove. The function should return the new inventory count without changing the original count.

Function Prototype:

int updateInventory(int currentCount, int changeQuantity);

```
#include<stdio.h>
int updateInventory(int currentCount, int changeQuantity); // Function prototype
int main(){
    int currentCount, changeQuantity;
    printf("Enter the current inventory count and change quantity: ");
    scanf("%d %d", &currentCount, &changeQuantity);
    int newInventory = updateInventory(currentCount, changeQuantity);
    printf("The new inventory count is: %d\n", newInventory);
    return 0;
}

int updateInventory(int currentCount, int changeQuantity){
    return currentCount + changeQuantity; // New inventory count
}

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS COMMENTS

PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
Enter the current inventory count and change quantity: 560 900
The new inventory count is: 1460
```

3. Implement a function that accepts the price of an item and a sales tax rate. The function should return the total price after tax without altering the original price.

Function Prototype:

float calculateTotalPrice(float itemPrice, float taxRate);

```
#include <stdio.h>
       float calculateTotalPrice(float itemPrice, float taxRate); // Function prototype
     int main(){
         float itemPrice, taxRate;
         printf("Enter the item price and sales tax rate: ");
          scanf("%f %f", &itemPrice, &taxRate);
          float totalPrice = calculateTotalPrice(itemPrice, taxRate);
          printf("The total price after tax is: %.2f\n", totalPrice);
          return 0;
     float calculateTotalPrice(float itemPrice, float taxRate){
          return itemPrice + (itemPrice * taxRate / 100); // Total price after tax
 PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS COMMENTS
PS C:\Users\Hp\Desktop\C\Class7> gcc function3.c
PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
 Enter the item price and sales tax rate: 1500 5
 The total price after tax is: 1575.00
```

4. Design a function that takes the amount spent by a customer and returns the loyalty points earned based on a specific conversion rate (e.g., 1 point for every \$10 spent). The original amount spent should remain unchanged.

Function Prototype: int calculateLoyaltyPoints(**float** amountSpent);

```
64
       #include <stdio.h>
       int calculateLoyaltyPoints(float amountSpent); // Function prototype
       int main(){
           float amountSpent;
           printf("Enter the amount spent by the customer: ");
           scanf("%f", &amountSpent);
           int loyaltyPoints = calculateLoyaltyPoints(amountSpent);
           printf("The loyalty points earned are: %d\n", loyaltyPoints);
           return 0;
       int calculateLoyaltyPoints(float amountSpent){
           return amountSpent / 10; // Loyalty points earned
 PROBLEMS
           OUTPUT DEBUG CONSOLE TERMINAL
                                           PORTS COMMENTS
PS C:\Users\Hp\Desktop\C\Class7> gcc function3.c
PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
 Enter the amount spent by the customer: 5000
 The loyalty points earned are: 500
```

5. Write a function that receives an array of item prices and the number of items. The function should return the total cost of the order without modifying the individual item prices.

Function Prototype:

float calculateOrderTotal(float prices[], int numberOfItems);

```
#include <stdio.h>
#include <stdio.h>
#include <stdio.h>
#inain(){

#int main(){

#int mumberOfItems;

#int mumber
```

6. Create a function that takes an item's price and a refund percentage as input. The function should return the refund amount without changing the original item's price.

Function Prototype: float calculateRefund(float itemPrice, float refundPercentage);

```
#include <stdio.h>
float calculateRefund(float itemPrice, float refundPercentage);

int main(){
    float itemPrice, refundPercentage;
    printf("Enter the item's price and refund percentage: ");
    scanf("%f %f",&itemPrice,&refundPercentage);
    float refund_Amount = calculateRefund(itemPrice,refundPercentage);
    printf("\nThe refund Amount is %.2f \n ",refund_Amount);

}

float calculateRefund(float itemPrice, float refundPercentage){
    return (itemPrice * refundPercentage)/100;

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS COMMENTS

PS C:\Users\Hp\Desktop\C\Class7> gcc function3.c

PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
Enter the item's price and refund percentage: 1500 25

The refund Amount is 375.00
```

7. Implement a function that takes the weight of a package and calculates shipping costs based on weight brackets (e.g., \$5 for up to 5kg, \$10 for 5-10kg). The original weight should remain unchanged.

Function Prototype: float calculateShippingCost(float weight);

```
#include <stdio.h>
           float calculateShippingCost(float weight); // Function prototype
          int main() {
           float weight;
printf("Enter the weight of the package (in kg): ");
              scanf("%f", &weight);
float shippingCost = calculateShippingCost(weight);
printf("The shipping cost is: $%.2f\n", shippingCost);
                return 0;
          float calculateShippingCost(float weight) {
           if (weight <= 5.0) {
    return 5.0; // $5 for up to 5kg
} else if (weight > 5.0 && weight <= 10.0) {</pre>
             | return 10.0; // $10 for weight <= 10.0) {
| return 10.0; // $10 for weight between 5kg and 10kg
} else if (weight > 10.0 && weight <= 20.0) {
| return 20.0; // $20 for weight between 10kg and 20kg
} else {
  147
                     return 20.0; // $20 for weight between 10kg and 20kg
                     return 30.0; // $30 for weight above 20kg
              OUTPUT DEBUG CONSOLE TERMINAL PORTS COMMENTS
PS C:\Users\Hp\Desktop\C\Class7> gcc function3.c
PS C:\Users\Hp\Desktop\C\Class7>
 Enter the weight of the package (in kg): 150
The shipping cost is: $30.00
```

8. Design a function that converts an amount from one currency to another based on an exchange rate provided as input. The original amount should not be altered.

Function Prototype: float convertCurrency(float amount, float exchangeRate);

```
#include <stdio.h>

float convertCurrency(float amount, float exchangeRate); // Function prototype

float convertCurrency(float amount, float exchangeRate); // Function prototype

float convertCurrency(float amount in the original currency: ");

scanf("%f", &amount);

printf("Enter the exchange rate (1 unit of original currency = X units of target currency): ");

scanf("%f", &exchangeRate);

float convertedAmount = convertCurrency(amount, exchangeRate);

printf("The converted amount is: %.2f\n", convertedAmount);

return 0;

}

return amount * exchangeRate; // Convert the amount based on the exchange rate

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS COMMENTS

PS C:\Users\Hp\Desktop\C\Class7> gcc function3.c

PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
Enter the amount in the original currency: 1500
Enter the exchange rate (1 unit of original currency = X units of target currency): 12
The converted amount is: 18000.00
```

9. Write a function that takes two prices from different vendors and returns the lower price without modifying either input price.

Function Prototype:

float findLowerPrice(float priceA, float priceB);

```
#include <stdio.h>
#include <stdio.h>
#include <stdio.h>
#include <stdio.h>
#include <stdio.h>
#include <include float findLowerPrice(float priceA, float priceB); // Function prototype

#inst main() {
#include <include float findLowerPriceB;
#include include float priceA, priceB;
#include include float priceA, priceB;
#inst main() {
#include <include float float priceA, priceB;
#include float priceA, priceB;
#include float priceA, priceB;
#include float priceB, printf("Enter the price from vendor A: ");
#include float float float float priceB;
#include float priceB, priceB;
#include float priceA, priceB, priceB, priceB, priceB, priceA;
#include float priceA, priceB, pric
```

10. Create a function that checks if a customer is eligible for a senior citizen discount based on their age. The function should take age as input and return whether they qualify without changing the age value.

Function Prototype: bool is Eligible For Senior Discount (int age);

```
#include <stdio.h>
       #include <stdbool.h> // To use the bool type
       bool isEligibleForSeniorDiscount(int age); // Function prototype
      int main() {
           int age;
          printf("Enter the customer's age: ");
           scanf("%d", &age);
 221
           if (isEligibleForSeniorDiscount(age)) {
               printf("The customer is eligible for the senior citizen discount.\n");
           } else {
               printf("The customer is not eligible for the senior citizen discount.\n");
           return 0;
       bool isEligibleForSeniorDiscount(int age) {
           return age >= 60;
 PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL
                                                COMMENTS
PS C:\Users\Hp\Desktop\C\Class7> gcc function3.c
PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
Enter the customer's age: 25
 The customer is not eligible for the senior citizen discount.
PS C:\Users\Hp\Desktop\C\Class7> gcc function3.c
PS C:\Users\Hp\Desktop\C\Class7> ./a.exe
 Enter the customer's age: 65
 The customer is eligible for the senior citizen discount.
PS C:\Users\Hp\Desktop\C\Class7>
```