

Vishay Siliconix

P-Channel 20 V (D-S) MOSFET

DESCRIPTION

The attached SPICE model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 °C to 125 °C temperature ranges under the pulsed 0 V to 5 V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

CHARACTERISTICS

- P-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS
- Apply for both Linear and Switching Application
- Accurate over the -55 °C to +125 °C Temperature Range
- · Model the Gate Charge

SUBCIRCUIT MODEL SCHEMATIC

Note

• This document is intended as a SPICE modeling guideline and does not constitute a commercial product datasheet. Designers should refer to the appropriate datasheet of the same number for guaranteed specification limits.

SPICE Device Model SiSS23DN

Vishay Siliconix

SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)					
PARAMETER	SYMBOL	TEST CONDITIONS	SIMULATED DATA	MEASURED DATA	UNIT
Static					
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = -250 \mu A$	0.72	-	V
Drain-Source On-State Resistance ^a	В	$V_{GS} = -4.5 \text{ V}, I_D = -20 \text{ A}$	0.0033	0.0035	Ω
	R _{DS(on)}	V _{GS} = -2.5 V, I _D = -10 A	0.0054	0.0051	
Forward Transconductance ^a	9 _{fs}	V _{DS} = -10 V, I _D = -20 A	56	44	S
Diode Forward Voltage	V_{SD}	I _S = -10 A	-0.7	-0.8	V
Dynamic ^b					
Input Capacitance	C _{iss}	V _{DS} = -10 V, V _{GS} = 0 V, f = 1 MHz	8690	8840	pF
Output Capacitance	C _{oss}		979	835	
Reverse Transfer Capacitance	C _{rss}		974	900	
Total Gate Charge	0	$V_{DS} = -10 \text{ V}, V_{GS} = -10 \text{ V}, I_D = -20 \text{ A}$	162	195	nC
	Q_g		81	92	
Gate-Source Charge	Q _{gs}	$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -20 \text{ A}$	12	12	
Gate-Drain Charge	Q _{gd}	1	21	21	

Notes

- a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2~\%.$
- b. Guaranteed by design, not subject to production testing.

www.vishay.com

Vishay Siliconix

COMPARISON OF MODEL WITH MEASURED DATA ($T_J = 25$ °C, unless otherwise noted)

Note

• Dots and squares represent measured data.