The Visual Object Tracking Challenge Workshop 2016

Modeling and Propagating CNNs in a Tree Structure for Visual Tracking

Hyeonseob Nam* Mooyeol Baek* Bohyung Han

Computer**Vision** Lab.

Dept. of Computer Science and Engineering

Key concept

Multiple CNNs trained on tracking results from different time slices

Modeling and propagating CNNs in **a tree structure**

Deep Learning for Visual Tracking

- Response map from CNN features
 - HCF[Ma2016]

FCNT[Wang2015]

DeepSRDCF[Danelljan2015]

- Pre-train CNN with tracking datasets
 - MDNet^[Nam2015]

Challenges

Less training data

Overfitting

Difficult to train

Catastrophic forgetting

Unstable model Easily drifts

Our method

- CNNs trained on frames from different time slices
- State estimation

Model update

• Initialize model with ground-truth

Estimate target location for T consecutive frames

Update model

- tracking results
- positive patches
- negative patches

- Choose CNN with the best target score as a parent
- Maintain **N** latest CNNs

• Iterate until the end of sequence

Iterate until the end of sequence

- tracking results
- positive patches
- negative patches

- Choose CNN with the best target score as a parent
- Maintain **N** latest CNNs

Structure of CNN

- Convolution layers are from VGG-M^[Chatfield2014] network.
- Output: normalized vector $[\boldsymbol{\varphi}(x), 1-\boldsymbol{\varphi}(x)]^T$
- Fully-connected layers are randomly initialized.
- Update fully-connected layers only (fc4, fc5, output)

State Estimation

- Weighted-average scores from multiple CNNs
- \mathbf{W}_{N} : min(max($\mathbf{\Phi}_{N}(x)$), $\mathbf{\beta}_{N}$)
 affinity of CNN_N with tth frame reliability of CNN_N

Model Update - 1

- Sample training data for model update
- Store target scores of each CNN for parent selection

Model Update – 2

Score log Target scores Model Avg. t+1 t+2 ··· t+T $0.56 \ 0.61 \ 0.54 \rightarrow 0.53$ CNN₁ 0.68 0.71 ··· 0.82 → 0.79 CNN₂ max 0.87 0.83 0.93 → **0.91** CNN₃ $0.66 \ 0.56 \ \cdots \ 0.62 \ \rightarrow \ 0.68$ CNN_N

Disable old model (maintain N latest models) β_1 CNN₁ CNN₂ β_2 β_3 CNN_N β_N 0.91 min. edge score along the path CNN_{N+1} $\beta_{N+1} = min(\beta_{3}, 0.91)$

Finetune

positive patches

negative patches

10 Oct. 2016

Model Update – an Example

• Soccer sequence

- Multiple CNN captures multi-modal appearances
- Tree structure isolates erroneous models in a branch

Experiment

- Dataset
 - VOT2016, VOT2015[Kristan2015], OTB50[Wu2013]
- Experiment settings
 - Parameters fixed throughout the whole experiment
- Speed: **1.5 fps**
 - Intel Core i7 3.3Ghz with NVIDIA TITAN X
 - MATLAB / MatConvNet

Results - VOT2016

Overlap: 0.56, Failures: 0.83, Unsupervised overlap: 0.49

Red box: tracking result, Black box: ground-truth

Results - VOT2015[Kristan2015]

Trackers	Accuracy		Robustness		Expected	
Hackers	Rank	Score	Rank	Score	overlap ratio	
DSST ^[Danelljan2014]	3.48	0.54	7.93	2.56	0.1719	
MUSTer ^[Hong2015CVPR]	3.42	0.52	6.13	2.00	0.1948	
MEEM ^[Zhang2014]	4.08	0.50	6.02	1.85	0.2212	
Struck ^[Hare2011]	5.27	0.47	4.05	1.64	0.2389	
RAJSSC ^[Zhang2015]	2.08	0.57	4.87	1.63	0.2420	
NSAMF ^[Li2014]	3.22	0.53	3.85	1.29	0.2536	
SC-EBT ^[Wang2014]	2.27	0.55	5.07	1.90	0.2540	
sPST ^[Hua2015]	2.78	0.55	4.67	1.48	0.2767	
LDP ^[Lukežič2016]	4.58	0.49	4.65	1.33	0.2785	
SRDCF ^[Danelljan2015ICCV]	2.32	0.56	3.48	1.24	0.2877	
EBT ^[Zhu2016]	6.30	0.48	2.75	1.02	0.3160	
DeepSRDCF[Danelljan2015ICCVW]	2.23	0.56	2.90	1.05	0.3181	
TCNN (ours)	1.58	0.59	2.83	0.74	0.3404	

^{*}MDNet excluded

Red: best, **Yellow**: second best

Results - OTB50[Wu2013]

- TCNN (ours) compared to state-of-the-art trackers
 - HCF[Ma2016], CNN-SVM[Hong2015ICML], MEEM[Zhang2014], SRDCF[Danelljan2015ICCV], DeepSRDCF[Danelljan2015ICCVW], MUSTer[Hong2015CVPR], FCNT[Wang2015], DSST[Danelljan2014], Struck[Hare2011]

Ablation study

- Single Single CNN
- Linear

Models propagating in a linear chain

• Tree-mean

Models propagating in a tree structure Equal weights for every model

Tree-weighted

Models and weights propagating in a tree structure

Results on OTB50

Variations	Precision	Success	AUC
Single	0.896	0.858	0.658
Linear	0.920	0.869	0.672
Tree-mean	0.928	0.868	0.674
Tree-weighted	0.937	0.879	0.682

Comparison with MDNet

Results on VOT2016

Results on OTB50

Trackers	Accuracy	Robustness	Trackers	Precision	Success	AUC
MDNet-N	0.54	0.91	MDNet-N	0.896	0.858	0.658
TCNN (ours)	0.56	0.83	TCNN (ours)	0.920	0.869	0.672
MDNet	0.57	0.76	MDNet	0.928	0.868	0.674

• MDNet-N: MDNet without pretraining using tracking videos

Conclusion

- Multiple CNNs are helpful to achieve multi-modality and reliability of target appearances.
- The CNNs and their weights propagating in a tree structure efficiently isolates error in a temporal manner.

Please refer to our arXiv paper for further details. https://arxiv.org/abs/1608.07242

Thank you.

