

About Archives Recent News Register Sign In

RSA encryption

Problem 182

The RSA encryption is based on the following procedure:

Generate two distinct primes p and q.

Compute n=pq and $\varphi=(p-1)(q-1)$.

Find an integer e, $1 < e < \varphi$, such that $gcd(e, \varphi) = 1$.

A message in this system is a number in the interval [0,n-1].

A text to be encrypted is then somehow converted to messages (numbers in the interval [0,n-1]).

To encrypt the text, for each message, m, $c=m^e$ mod n is calculated.

To decrypt the text, the following procedure is needed: calculate d such that $ed=1 \mod \varphi$, then for each encrypted message, c, calculate $m=c^d \mod n$.

There exist values of e and m such that m^e mod n=m.

We call messages m for which m^e mod n=m unconcealed messages.

An issue when choosing *e* is that there should not be too many unconcealed messages.

For instance, let p=19 and q=37.

Then n=19*37=703 and $\phi=18*36=648$.

If we choose e=181, then, although gcd(181,648)=1 it turns out that all possible messages

 $m (0 \le m \le n-1)$ are unconcealed when calculating $m^e \mod n$.

For any valid choice of *e* there exist some unconcealed messages.

It's important that the number of unconcealed messages is at a minimum.

Choose p=1009 and q=3643.

Find the sum of all values of e, $1 < e < \phi(1009,3643)$ and $gcd(e,\phi)=1$, so that the number of unconcealed messages for this value of *e* is at a minimum.

Project Euler: Copyright Information | Privacy Policy