Pierwszym etapem jest wczytanie zdjęcia w formacie HSV w celu łatwiejszego wyodrębnienia elementów o wybranej barwie.

Następnie tworzę maskę takich obszarów zdjęcia w których występuje barwa czerwona. Wybrano zakresy barwy od 0 do 10 i od 165 do 180. Nasycenie koloru i jasność od 20 do 255.

Następnie wykrywane są kontury wcześniej utworzonej maski.

Wybierane są kontury, których powierzchnia nie jest za mała i mają odpowiedni współczynnik okrągłości.

Następnym krokiem jest wybranie największego konturu, wewnątrz którego nie ma innego konturu.

Następnie tworzona jest maska dzięki której zostanie usunięta nie interesująca nas część zdjęcia.

Na zdjęcie zostaje nałożona wcześniej utworzona maska.

Zostaje wykonane progowanie.

Kolejnymi etapami jest wykonanie najpierw dylatacji, a następnie erozji obrazu w celu usunięcia zanieczyszczeń.

Wycinana jest pierwsza cyfra z wewnątrz znaku, następnie jest ona odpowiednio skalowana.

Wcześniej została przygotowana baza obrazów kolejnych cyfr.

Kolejne obrazy cyfr są porównywane z otrzymanym obrazem korzystając z funkcji matchTemplate()

Poszukiwana jest największa zwracana wartość. W tym wypadku największą wartość otrzymano dla piątego obrazu cyfry czyli dla cyfry 4.

Następnie zostaje wycięta druga cyfra, zostaje przeskalowana i porównana z obrazami cyfr 0 i 5 tak samo jak poprzednio.

Na podstawie otrzymanych wartości wyznaczana jest wartość odczytanej prędkości i wyświetlana jest w konsoli programu.

Ograniczenie prędkości do 40 km/h