Atividade de Laboratório 6b

Objetivos

O objetivo desta atividade é exercitar o uso de instruções para manipulação de vetores e matrizes utilizando o conjunto de instruções da arquitetura RISC-V.

Descrição

Neste laboratório, você deve fazer um programa em linguagem de montagem do RISC-V que leia uma imagem em formato <u>pgm</u>, aplique um filtro de detecção de bordas e exiba o resultado na tela.

Aplicando um filtro a uma imagem

O primeiro passo desse laboratório é ler a imagem em formato pgm e armazenar seu conteúdo em uma matriz (assim como você fez no laboratório 6a). A seguir, você deve aplicar o seguinte filtro na imagem:

$$w = \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Seja w a matriz de filtro acima, M_{in} a matriz representando a imagem de entrada e M_{out} a matriz representando a imagem de saída. A ideia básica para a aplicação desse filtro é que cada *pixel* [i,j] de M_{out} seja definido como:

$$M_{out}[i][j] = \sum_{k=0}^{2} \sum_{q=0}^{2} w[k][q] * W_{in}[i+k-1][j+q-1]$$

Note que isso pode levar a matriz M_{in} a ser indexada com índices inválidos (negativos ou fora de sua dimensão). Para evitar esses casos, os *pixels* da borda da imagem M_{out} devem ser inicializados com a cor preta e não é necessário calcular o valor do filtro para eles. Você pode visualizar melhor como este filtro funciona em (selecione o filtro "Outline"): Image Kernels explained visually. Este filtro também é conhecido como operador Laplaciano para detecção de bordas.

Note também que os *pixels* da imagem devem ter valores entre 0 (preto) e 255 (branco). Caso o resultado da fórmula não esteja neste intervalo, você deve utilizar o valor mais próximo no

intervalo (isto é, valores menores que 0 se tornam 0, enquanto valores maiores que 255 se tornam 255).

Você pode obter exemplos de imagens pgm neste endereço: PGMB Files - Binary Portable Gray Map Graphics Files

Entrada

Seu programa deve ler um arquivo chamado "imagem.pgm", que estará no mesmo diretório do executável, conforme explicado no Lab 06a.

Saída

Seu programa deve exibir a imagem na tela, utilizando o periférico canvas, conforme explicado no Lab 06a.