TARGET-SQL

- 1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset.
- 1. Data type of columns in a table
- Query

select column name, data type

from 'scaler-dsml-381115.Target.INFORMATION SCHEMA.COLUMNS'

where table_name = 'customers';

Row /	column_name	data_type
1	customer_id	STRING
2	customer_unique_id	STRING
3	customer_zip_code_prefix	INT64
4	customer_city	STRING
5	customer_state	STRING

2. Time period for which the data is given

The time period for given data is between year 2016 to 2018. (2016-09-04 to 2018-10-17)

Query:

select min(order_purchase_timestamp) as start_date,
max(order_purchase_timestamp) as end_date

FROM `Target.orders`;

Row //	start_date	end_date
1	2016-09-04 21:15:19 UTC	2018-10-17 17:30:18 UTC

3. Cities and States of customers ordered during the given period

There are 4119 cities and 27 states from which customers placed orders.

Query:

select distinct customer_city FROM `Target.customers` order by customer_city; select distinct customer_state FROM `Target.customers` order by customer_state;

Row	customer_city	customer_state
1	abadia dos dourados	MG
2	abadiania	GO
3	abaete	MG
4	abaetetuba	PA
5	abaiara	CE
6	abaira	BA
7	abare	BA
8	abatia	PR
9	abdon batista	SC
10	abelardo luz	SC

2. In-depth Exploration:

1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

- There is growing trend on e-commerce in Brazil which can analyzed using increase in number of orders per year.
- Number of orders have increased from year 2016 to 2018. (Query 1)
- Maximum number of orders are placed between month of January to April.
- This is also the period of festivals in Brazil which includes main festival of 'Carnival of Brazil'
- Orders are higher in month of July and August which indicates people place more orders in these months. (Query 2)

Query 1:

select count(order_id) as number_of_orders, extract(year from order_purchase_timestamp) as year FROM `Target.orders` group by year order by year;

Row	number_of_orders	year //
1	329	2016
2	45101	2017
3	54011	2018

Query 2:

select count(order_id) as number_of_orders,

extract(month from order purchase timestamp) as month,

FROM 'Target.orders' group by month order by month;

Row	number_of_orders //	month //
1	8069	1
2	8508	2
3	9893	3
4	9343	4
5	10573	5
6	9412	6
7	10318	7
8	10843	8

2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

User tend to buy in afternoon time. Followed by night, morning and dawn respectively.

Query : select hourly_orders,count(*) from

(select order id,extract(hour from order purchase timestamp),

case

when extract(hour from order_purchase_timestamp) between 0 and 6 then 'Dawn' when extract(hour from order_purchase_timestamp) between 7 and 12 then 'Morning' when extract(hour from order_purchase_timestamp) between 13 and 18 then 'Afternoon' when extract(hour from order_purchase_timestamp) between 19 and 23 then 'Night' end as hourly_orders

FROM `Target.orders`) table1

group by hourly_orders order by count(*) desc;

Row //	hourly_orders	h	f0_	11
1	Afternoon			38135
2	Night			28331
3	Morning			27733
4	Dawn			5242

3. Evolution of E-commerce orders in the Brazil region:

1. Get month on month orders by states

This detail can be found after joining customer and orders table using customer_id field.

select state AS STATE, month AS MONTH,count(order_id) as NUMBER_OF_ORDERS from (select C.customer_id,O.order_id as order_id,C.customer_state as state, extract(month from o.order_purchase_timestamp) as month

from `Target.customers` C

inner join `Target.orders` O

on C.customer_id = O.customer_id) table1

group by state, month order by state, month;

Row	STATE	MONTH //	NUMBER_OF_ORDERS
1	AC	1	8
2	AC	2	6
3	AC	3	4
4	AC	4	9
5	AC	5	10
6	AC	6	7
7	AC	7	9
8	AC	8	7
9	AC	9	5
10	AC	10	6

2. Distribution of customers across the states in Brazil

State SP has maximum number of customers- 41746

Query: select state AS STATE,count(customer_id) as NUMBER_OF_CUSTOMERS from

(select C.customer_id,O.order_id as order_id,C.customer_state as state,

extract(month from o.order_purchase_timestamp) as month

from `Target.customers` C

inner join `Target.orders` O

on C.customer_id = O.customer_id) table1

group by state order by state;

Row	STATE	//	NUMBER_OF_CUSTOMERS
1	AC		81
2	AL		413
3	AM		148
4	AP		68
5	BA		3380
6	CE		1336
7	DF		2140
8	ES		2033

4. Impact on Economy:

Analyze the money movement by e-commerce by looking at order prices, freight and others.

1. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) - You can use "payment_value" column in payments table

Query:

```
select
```

round(((percent inc 2018-percent inc 2017)/percent inc 2017)*100,2) as percentage increase

from

(select

sum(case

when month >= 1 and month <= 8 and year =2017 then payment_value

end) as percent_inc_2017,

sum(case

when month >= 1 and month <= 8 and year =2018 then payment value

end) as percent_inc_2018

from

(select P.payment_value as payment_value, extract(month FROM O.order_purchase_timestamp) as m onth,

extract(year FROM O.order purchase timestamp) as year

from 'Target.orders' O left join 'Target.payments' P

on O.order_id = P.order_id

where extract(year FROM O.order purchase timestamp) in (2017,2018)) as table1);

Row	percentage_increase
1	136.98

2. Mean & Sum of price and freight value by customer state

Query:

select distinct state, sum_price, sum_freight,a vg_price, avg_freight from

(select c.customer_state as state,

round(sum(oi.price) over(partition by c.customer_state),2) as sum_price, round(avg(oi.price) over(partition by c.customer_state),2) as avg_price, round(sum(oi.freight_value) over(partition by c.customer_state),2) as sum_freight, round(avg(oi.freight_value) over(partition by c.customer_state),2) as avg_freight, from `Target.customers` c inner join `Target.orders` o

on c.customer_id = o.customer_id

inner join `Target.order_items` oi on

o.order_id = oi.order_id) as table1

order by state;

Row	state	sum_price	sum_freight	avg_price	avg_freight //
1	AC	15982.95	3686.75	173.73	40.07
2	AL	80314.81	15914.59	180.89	35.84
3	AM	22356.84	5478.89	135.5	33.21
4	AP	13474.3	2788.5	164.32	34.01
5	BA	511349.99	100156.68	134.6	26.36
6	CE	227254.71	48351.59	153.76	32.71
7	DF	302603.94	50625.5	125.77	21.04
8	ES	275037.31	49764.6	121.91	22.06

5. Analysis on sales, freight and delivery time

1. Calculate days between purchasing, delivering and estimated delivery.

Condition order_delivered_customer_date is not null can be added to check only those orders which are delivered.

Query:

select order_purchase_timestamp, order_estimated_delivery_date,order_delivered_customer_date, date_diff(order_estimated_delivery_date, order_purchase_timestamp,day) as days_between_purchase_and_estimated,

date_diff(order_delivered_customer_date,order_purchase_timestamp,day) as days_between_purchase_and_delivery,

from `Target.orders`;

where order_delivered_customer_date is not null;

2. Find time_to_delivery & diff_estimated_delivery. Formula for the same given below:

- time to delivery = order purchase timestamp-order delivered customer date
- diff_estimated_delivery = order_estimated_delivery_date-order_delivered_customer_date

select order_purchase_timestamp,order_estimated_delivery_date,order_delivered_customer_date, date_diff(order_delivered_customer_date,order_purchase_timestamp,day) as time_to_delivery, date_diff(order_delivered_customer_date,order_estimated_delivery_date,day) as diff_estimated_delivery

from `Target.orders`

where order_delivered_customer_date is not null;

3. Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

Query:

select c.customer state,

round(avg(date_diff(order_delivered_customer_date,order_purchase_timestamp,day)),2)as time_to_delivery,

round(avg(date_diff(order_estimated_delivery_date,order_delivered_customer_date,day)),2) as diff_estimated_delivery,

round(avg(oi.freight_value),2) avg_fright_value

from 'Target.orders' o inner join 'Target.customers' c

on c.customer_id = o.customer_id

inner join 'Target.order items' oi on

oi.order id = o.order id

group by c.customer_state;

Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5;

a) lowest average freight value

select c.customer_state as state,

round(avg(oi.freight value),2) avg fright value

from 'Target.orders' o inner join 'Target.customers' c

on c.customer id = o.customer id

inner join 'Target.order items' oi on

oi.order id = o.order id

group by c.customer_state

order by avg_fright_value desc limit 5;

Row /	customer_state	avg_fright_value
1	SP	15.15
2	PR	20.53
3	MG	20.63
4	RJ	20.96
5	DF	21.04

b) highest average freight value

select c.customer_state as state, round(avg(oi.freight_value),2) avg_fright_value from `Target.orders` o inner join `Target.customers` c on c.customer_id = o.customer_id inner join `Target.order_items` oi on oi.order id = o.order id group by c.customer state order by avg_fright_value limit 5;

Row	customer_state	11	avg_fright_value
1	RR		42.98
2	PB		42.72
3	RO		41.07
4	AC		40.07
5	PI		39.15

Top 5 states with highest/lowest average time to delivery

a) Highest average time to delivery

select c.customer_state as state,
round(avg(date_diff(order_delivered_customer_date,order_purchase_timestamp,day)),2)as time_to_
delivery from `Target.orders` o inner join `Target.customers` c on c.customer_id = o.customer_id
inner join `Target.order_items` oi on oi.order_id = o.order_id
group by c.customer_state order by time_to_delivery limit 5;

Row	customer_state	time_to_delivery
1	SP	8.26
2	PR	11.48
3	MG	11.52
4	DF	12.5
5	SC	14.52

b) Lowest average time to delivery

select c.customer_state as state,

round(avg(date_diff(order_delivered_customer_date,order_purchase_timestamp,day)),2)as time_to_delivery

from 'Target.orders' o inner join 'Target.customers' c

on c.customer_id = o.customer_id

inner join `Target.order_items` oi on

oi.order_id = o.order_id

group by c.customer_state

order by time_to_delivery desc limit 5;

Row	customer_state	time_to_delivery
1	RR	27.83
2	AP	27.75
3	AM	25.96
4	AL	23.99
5	PA	23.3

Top 5 states where delivery is really fast/ not so fast compared to estimated date

So fast delivery compared to estimated date

select c.customer_state as state,

round(avg(date_diff(order_estimated_delivery_date,order_delivered_customer_date,day)),2) as diff_estimated_delivery,

round(avg(date_diff(order_delivered_customer_date,order_purchase_timestamp,day)),2)as time_to_delivery

from 'Target.orders' o inner join 'Target.customers' c

on c.customer_id = o.customer_id inner join `Target.order_items` oi on

oi.order id = o.order id

group by c.customer state order by time to delivery limit 5;

Row	state	11	diff_estimated_c	time_to_delivery
1	SP		10.27	8.26
2	PR		12.53	11.48
3	MG		12.4	11.52
4	DF		11.27	12.5
5	SC		10.67	14.52

c) Not so fast delivery compared to estimated date

select c.customer state as state,

round(avg(date_diff(order_estimated_delivery_date,order_delivered_customer_date,day)),2) as diff_estimated_delivery

from `Target.orders` o inner join `Target.customers` c on c.customer id = o.customer id

inner join 'Target.order items' oi on oi.order id = o.order id

group by c.customer_state order by diff_estimated_delivery desc limit 5;

state	diff_estimated_delivery	time_to_delivery
AL	7.98	23.99
MA	9.11	21.2
SE	9.17	20.98
ES	9.77	15.19
BA	10.12	18.77

6. Payment type analysis:

1. Month over Month count of orders for different payment types

Query:

select month,payment_type,count(order_id) as count_of_orders from

(select o.order_id as order_id,extract(month FROM o.order_purchase_timestamp) as month,p.payme nt_type as payment_type

from `Target.orders` o

inner join `Target.payments` p

on o.order_id = p.order_id)

group by month,payment_type

order by month;

Row	month	payment_type	count_of_orders
11	11	/n	7,
1	1	credit_card	6103
2	1	UPI	1715
3	1	voucher	477
4	1	debit_card	118
5	2	UPI	1723
6	2	credit_card	6609
7	2	voucher	424
8	2	debit_card	82
9	3	credit_card	7707
10	3	UPI	1942

2. Count of orders based on the no. of payment installments

Query: select payment_installments, count(order_id) as count_of_orders from `Target.payments` group by payment_installments;

Row	payment_installments	c <mark>ount_of_orders</mark>
1	0	2
2	1	52546
3	2	12413
4	3	10461
5	4	7098
6	5	5239
7	6	3920
8	7	1626
9	8	4268
10	9	644

7. Actionable Insights

- Data shared contains total 99441 customers who placed order between 2016-2018.
- Customers are from 4119 different cities and 27 different states.
- Insurance and services, Fashion Children's Clothing, PC Gamer are low selling categories. Product belonging to this category can been given more discount to increase sell.
- People are buying products in 0-3 installments. Bank offers should be provided on credit card purchases.
- After festival season people are shopping less. During that period more discount should be given on products to attract customers. Clearance sales should be organized during this period.
- During June to August period new product should be launched. In month
- São Paulo state has the highest numbers of customers -41746.
 Roraima, Amapa has lowest sells. So, need to focus on these states to increase sales.
- Customer tend to buy more in afternoon as compared night, morning. Low selling products can be shown in to recommendation to customers with discounts in afternoon time period.
- Product category PC's have highest average freight value followed by ELECTRICES 2.
- Product categories bed table bath, HEALTH BEAUTY, sport leisure, Furniture Decoration, computer accessories are top selling categories.
- People make payment mostly from credit card followed by UPI and vouchers.
- There are 32951 different products available in Target with 73 product categories.

8. Recommendations

- The average delivery days are 16 days which can be reduced as people will prefer faster ecommerce platform.
- States like Roraima, Amapa, Acre are from north Brazil region which have low customers. Increasing business in north Brazil region would improve product sell.
- It can be seen that sales are decreasing after August to December. So, giving additional discounts on products will attract customers to buy products and increase sell.
- The average approval time is 0.26 after order is placed. This can be reduced so that final delivery time is minimized.