

ABV- Indian Institute of Information Technology & Management, Gwalior

Theory of Computation (IT206)

Minor Examination (Session 2024–25)

Maximum Time: 1.5 Hours Max Marks: 25

Note: Answer precisely. Diagrams and formal definitions will carry additional credit.

- 1. (a) Define Deterministic Finite Automata (DFA) formally. (b) Construct a DFA over $\{0,1\}$ that accepts all strings ending with 01. (5 Marks)
- 2. (a) State and prove the closure properties of regular languages (any three). (b) Give an example of a non-regular language and explain using Pumping Lemma. (5 Marks)
- 3. Convert the following NFA into an equivalent DFA using the subset construction method:

$$Q=\{q_0,q_1,q_2\}, \quad \Sigma=\{a,b\}, \quad q_0 start, \quad F=\{q_2\}$$

Transitions: - $\delta(q_0, a) = \{q_0, q_1\}$ - $\delta(q_1, b) = \{q_2\}$ - $\delta(q_2, a) = \{q_2\}$ (5 Marks)

- 4. (a) Define Context-Free Grammar (CFG). Construct a CFG for $L = \{a^nb^n \mid n \geq 1\}$. (b) Show that the language $L = \{a^ib^jc^k \mid i = jorj = k\}$ is context-free but not regular. (5 Marks)
- 5. Write short notes on any **two**: (i) Equivalence of DFA and NFA (ii) Chomsky Normal Form (iii) Applications of Automata Theory in real life (5 Marks)