From last time

FDEM

Circuit model of EM induction

Coupling coefficient:

Depends on loop geometry

$$M_{12} = \frac{\mu_0}{4\pi} \oint \oint \frac{dl_1 \cdot dl_2}{|\mathbf{r} - \mathbf{r}'|^2}.$$

Magnetic field at the receiver

$$\frac{H^s}{H^p} = -\frac{M_{12}M_{23}}{M_{13}L} \underbrace{\left[\frac{\alpha^2 + i\alpha}{1 + \alpha^2}\right]}_{Q}$$

Induction Number

• Depends on properties $\alpha = \frac{\omega L}{R}$ of target

FDEM

Circuit model of EM induction

- If coupling between transmitter and target is bad $(M_{12} \sim 0)$ $\rightarrow H_S \sim 0$
- If coupling between target and receiver is bad $(M_{23} \sim 0)$ $\rightarrow H_S \sim 0$
- If transmitter frequency is low $(\omega \sim 0)$ $\rightarrow \alpha \sim 0$ $\rightarrow H_s \sim 0$
- If L/R is smaller, higher frequencies required for large response

Magnetic field at the receiver

$$\frac{H^s}{H^p} = -\frac{M_{12}M_{23}}{M_{13}L} \underbrace{\left[\frac{\alpha^2 + i\alpha}{1 + \alpha^2}\right]}_{Q}$$

Induction Number

• Depends on properties $\alpha = \frac{\omega L}{R}$

Response from conductor in resistive Earth

Profile over the loop

x (m)

Induction number

$$\alpha = \frac{\omega L}{R}$$

$$\alpha > 1$$

When Real > Imag

App: Three Loop Model

- FDEM_ThreeLoopModel
- Parameters:
 - Location, separation of transmitter and receiver
 - Number of sounding locations
 - Orientation of target loop
 - Resistance, inductance of target loop
- View:
 - Response function
 - Real and imaginary components (plan view and a profile line)

Today's Topics

- Basic Physics:
 - Attenuation and skin depth
 - Conductor in a non-resistive background
 - Basic physics recap
- Survey
 - Sources
 - Receivers
 - Sensitivity

Basic Physics: Attenuation and Skin Depth

Earth has non-zero conductivity

This results in 2 things:

- 1) EM signal attenuates on the way down and on the way up from the conductor
- 2) Currents induced in Earth resulting in secondary fields (we will ignore this effect for now)

EM waves inside the earth

Attenuation of EM Signal

Depth of Investigation

Depth of investigation depends upon

- skin depth
- source receiver geometry

Skin Depth

EM waves decay when propagating in a conducting earth

Skin depth

$$\delta \approx 500 \sqrt{\frac{\rho}{f}} \quad \text{meter}$$

where ρ is resistivity in Ωm and f is frequency in Hz

Plane Wave apps

• 2 apps:

Transient

$$\mathbf{h}(t) = -\frac{(\mu\sigma)^{1/2}z}{2\pi^{1/2}t^{3/2}}e^{-\mu\sigma z^2/(4t)}$$

- Harmonic

$$\mathbf{H} = \mathbf{H_0} e^{-\alpha z} e^{-i(\beta z - \omega t)}$$
attenuation phase

http://em.geosci.xyz/apps.html

Geometric Decay: dipole sources

- Primary field has a geometric decay away from the transmitter
 - very different from a plane wave source
- Two principal sources (for small transmitters characteristic of airborne surveys):
 - VMD: vertical magnetic dipole
 - HMD: horizontal magnetic dipole

Magnetic field from a vertical magnetic dipole in a wholespace

Basic Physics: Conductor in a Non-Resistive Background

- Buried, conductive sphere Frequency: 10⁴ Hz
- Vary background conductivity

10⁻⁸ S/m background

- Buried, conductive sphere Frequency: 10⁴ Hz
- Vary background conductivity

10⁻² S/m background

- Buried, conductive sphere Frequency: 10⁴ Hz
- Vary background conductivity

10⁻¹ S/m background

- Buried, conductive sphere Frequency: 10⁴ Hz
- Vary background conductivity

1 S/m background

Basic Physics: Recap

Basic Experiment

Source (Tx):
 Current loop makes primary magnetic field

Induction: Time-varying magnetic fields induce electric fields everywhere

→ Large induced currents in conductors

Secondary Fields: Induced currents in conductors produce secondary magnetic fields

Receiver (Rx):
 Measures magnetic fields

Directions

Ampere's Law: $abla imes \mathbf{H} = \mathbf{J}$

- Currents produce magnetic fields
- Right-hand rule

Faraday's Law

- Time/frequency varying magnetic fields produce electric fields
- Time/frequency varying magnetic flux generates voltage in wire loops
- Left-hand rule

 Current resulting from electric fields depends on conductivity/resistivity

$$\vec{J} = \sigma \vec{E}$$

$$V = EMF = -\frac{d\phi_{\mathbf{b}}}{dt}$$

FDEM

Circuit model of EM induction

Coupling coefficient:

Depends on loop geometry

$$M_{12} = \frac{\mu_0}{4\pi} \oint \oint \frac{dl_1 \cdot dl_2}{|\mathbf{r} - \mathbf{r}'|^2}.$$

Magnetic field at the receiver

$$\frac{H^s}{H^p} = -\frac{M_{12}M_{23}}{M_{13}L} \underbrace{\left[\frac{\alpha^2 + i\alpha}{1 + \alpha^2}\right]}_{Q}$$

Induction Number

• Depends on properties $\alpha = \frac{\omega L}{R}$ of target

Coupling

- If coupling between transmitter and target is bad $(M_{12} \sim 0)$ $\rightarrow H_S \sim 0$
- If coupling between target and receiver is bad $(M_{23} \sim 0)$ $\rightarrow H_s \sim 0$
- If transmitter frequency is low $(\omega \sim 0)$ $\Rightarrow \alpha \sim 0$ $\Rightarrow H_s \sim 0$
- If L/R is smaller, higher frequencies required for large response
- Coupling and EMF

$$EMF = -\frac{\partial \phi_{\mathbf{B}}}{\partial t}$$

$$= -\frac{\partial}{\partial t} (\mathbf{B}_p \cdot \hat{\mathbf{n}}) A$$

Magnetic field at the receiver

$$\frac{H^s}{H^p} = -\frac{M_{12}M_{23}}{M_{13}L} \underbrace{\left[\frac{\alpha^2 + i\alpha}{1 + \alpha^2}\right]}_{Q}$$

Induction Number

• Depends on properties $\alpha = \frac{\omega L}{R}$ of target

Response over target

Attenuation of EM Signal

Survey

Reading on the GPG:

https://gpg.geosci.xyz/content/DC_resistivity/DC_surveys.html

Sources

- Type
 - Inductive
 - Grounded
- Waveform

Harmonic (FDEM)

Transient (TDEM)

- Location
 - Airborne
 - Ground
 - Borehole

Applications for different sources

31

Transmitter considerations

Time or frequency?

Key factor is moment

m = I (current) A (area) N (# of turns)

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \left(\frac{3\mathbf{r}(\mathbf{m} \cdot \mathbf{r})}{|\mathbf{r}|^5} - \frac{\mathbf{m}}{|\mathbf{r}|^3} \right)$$

Airborne Survey

Resolve

SkyTEM

Large Loop

Receivers: Time Domain

Magnetometer

- Measures:
 - Magnetic fields
 - 3 components
- eg. 3-component fluxgate

 $\mathbf{b}(t)$

Fluxgate

Coil

- Measures:
 - Voltage
 - Single component that depends on coil orientation
 - Coupling matters
- eg. airborne frequency domain
- ratio of Hs/Hp is the same as Vs/Vp

Coil

Receivers: Time Domain Data

- Primary field has off-time
- Measure secondary fields
- Receivers can be mounted on transmitter loop or above

Receivers: Frequency Domain

- Primary field
 - always "on"
 - large compared to secondary fields
- Primary removal
 - Compute and subtract
 - Bucking coil

- Main requirement:
 - Know positions of Tx and Rx
 - Keep them in one unit

Survey: Airborne EM Resolve System

Skin depth: High frequency for shallow; low frequency for deep

- Concentric Tx-Rx
- Frequency 60 Hz to 24 kHz
- Identify an object based on its spectral fingerprints

Penetration depends upon frequency and Tx-Rx separation

$$s = 10 \text{ m, } f = 6.4 \text{ kHz}$$

Penetration depends upon frequency and Tx-Rx separation

Penetration depends upon frequency and Tx-Rx separation

- Variable depth of exploration down to 60 m
- HCP or VCP coil configuration
- Groundwater exploration in fractured and faulted bedrock

- Frequency = 9.8 kHz
- Tx-Rx spacing = 3.66 m
- Horizontal or vertical coplanar
- "Ground conductivity meter"

Survey: Recap

- Many FEM and TEM systems for different applications
- Challenging terrain or large scale:
 - → Consider airborne survey
- Deep targets and/or conductive overburden:
 - → Low frequency and large transmitter dipole moment
- High resolution needed:
 - → Ground-based survey and possibly higher frequencies
- Penetration/domain of investigation of ground FEM systems depends on frequency and separation

Unit Activities

- Labs: (EM I)
 - Monday, November 4th
 - Tuesday, November 5th
- Labs: (EM II)
 - Monday, November 18th
 - Tuesday, November 19th
- TBL:
 - Wednesday, November 15th
- Quiz:
 - Wednesday, November 15th