

Fig. 4 – Bos & Wallinga (2012)

u

Fig. 4 – Bos & Wallinga (2012)

Fig. 4 – Bos & Wallinga (2012)

Histogram

Histogram

No L_x curves detected

No T_x curves detected

Density: g-values (%/decade)

Growth curve

 $D_e = 977.38 \pm 105.65$ | fit: EXP

Χ

LxTxData\$Dose

RLum.Data.Image

Depth (mm)

help("ExampleData.SurfaceExposure")

Depth (mm)

help("ExampleData.SurfaceExposure")

OSL (UVVIS)

RLum.Data.Spectrum

No L_{x} curves detected

No $T_{\boldsymbol{x}}$ curves detected

Density: g-values (%/decade)

IR-RF $D_e = 623.25 [600.63; 635.8]$ RF_nat + RF_reg 2.0e+03 IR-RF [cts/1.3 s] 1.8e + 031.6e + 031.4e+03Ш 100 200 300 400 500 600 700 0

Time [s]

IR-RF $D_e = 610.17 [567.19; 653.15]$ RF_nat + RF_reg 2.0e+03 IR-RF [cts/1.3 s] 1.6e + 031.4e+03Ш 610.17 600 0 100 200 300 400 500 700 Time [s]

Growth curve

 $D_e = 1668.25 \pm 49.22$ | fit: EXP

TL pseudoIRSL1 pseudoIRSL2

T [°C]

help("analyse_pIRIRSequence")

T [°C]

D_e from MC simulation

Test dose response

Pseudo pIRIR data set based on quartz OSL

 $D_e = 1668.25 \pm 47.59$ | fit: EXP

$\ensuremath{D_{e}}$ from MC simulation

Summarised Dose Response Curves

Sensitivity change

Rejection criteria

USER combined

IRSL combined

OSL combined

OSL

OSL

OSL

Monte Carlo Simulation

$$n = |\hat{\mu} = 43|\hat{\sigma} = 20|\frac{\hat{\sigma}}{\sqrt{n}} = 2|v = 0.73$$

D_e distribution

Standardised estimate

Profile log likelihood for σ_{OD}

Fast Ratio

Fuchs & Lang (2001)

No L_x curves detected

No $T_{\boldsymbol{x}}$ curves detected

Density: g-values (%/decade)

N = 10 Bandwidth = 0.3053

Measured dose response curve

 $D_e = 130.97 \pm 17.12$ | fit: EXP

Simulated dose response curve

 $D_e = 301.32 \pm 46.49$ | fit: EXP

Dose response curves

 $\dot{D} = 7 \pm 0 \frac{Gy}{ka}$

 $\dot{D}_{Reader} = 0.134 \pm 0.007$

 $log_{10} (\rho') = -5.42 \pm 0.09$

 $\left(\frac{n}{N}\right) = 0.14 \pm 0.02$

 $D_{E,sim} = 301.32 \pm 46.49 \text{ Gy}$

 $= 0.35 \pm 0.06$

 $D_{0.sim} = 548.27 \pm 74.3 \text{ Gy}$

Age_{sim} = 43.05 ± 6.98 ka

Measured dose response curve

 $D_e = 130.97 \pm 16.98$ | fit: EXP

Simulated dose response curve

 $D_e = 307.28 \pm 60.56$ | fit: EXP

Dose response curves

 $\dot{D} = 7 \pm 0 \frac{Gy}{ka}$ $\dot{D}_{Reader} = 0.134 \pm 0.007 \frac{Gy}{s}$

. (1) . 5 40 : 2 25

 $log_{10} (\rho') = -5.42 \pm 0.09$

 $\left(\frac{n}{N}\right) = 0.15 \pm 0.02$ $\left(\frac{n}{N}\right) = 0.36 \pm 0.07$

 $D_{E,sim} = 307.28 \pm 60.56 \text{ Gy}$

 $D_{0,sim} = 546.15 \pm 90.11 \text{ Gy}$

 $Age_{sim} = 43.9 \pm 8.93 \text{ ka}$

Likelihood profile: gamma

Likelihood profile: p0

Likelihood profile: sigma

Likelihood profile: gamma

Likelihood profile: p0

Likelihood profile: sigma

Source Dose Rate Prediction

help("calc_SourceDoseRate")

D_e distribution

Thermal Lifetime Contour Plot

Thermal Lifetime Density Plot

gSGC and resulting De

Background

Profile log likelihood for σ_{OD}

TL (UVVIS)

help("merge_RLum.Data.Curve")

TL (UVVIS)

TL (UVVIS)

Profile log likelihood for σ_{OD}

Profile log likelihood for σ_{OD}

n = 62 | in 2 sigma = 41.9 %

n = 62 | in 2 sigma = 41.9 %

n = 62 | in 2 sigma = 41.9 %

n = 62 | in 2 sigma = 41.9 %

De distribution

n = 62 | in 2 sigma = 41.9 %

n = 62 | in 2 sigma = 41.9 %

Example data

Example data

Filter Combination

Filter Combination

 $D_e = 1737.88 \pm 57.45$ | fit: EXP

 $D_e = 1737.88 \pm 54.9$ | fit: EXP

 $D_e = 1737.88 \pm 64.53$ | fit: EXP

D_e from MC simulation

n = 100, valid fits = 100

Histogram

Histogram of De-values

Example data set

Dose distribution

NR(t) Plot

NR(t) Plot

help("plot_NRt")

TnTx(t) Plot

TL combined

TL combined

unkown curve type

RLum.Data.Image

RLum.Data.Spectrum

help("plot_RLum.Data.Spectrum")

RLum.Data.Spectrum

RLum.Data.Spectrum

unkown curve type

0.0

0.1

0.2

p0

0.3

0.4

Monte Carlo Simulation

$$n = |\hat{\mu} = 45|\hat{\sigma} = 21|\frac{\hat{\sigma}}{\sqrt{n}} = 2|v = 0.84|$$

Precision

Data precision

D_e distribution

 $n = 25 \mid median = 126.34$

USER combined 30 Curve 1 Curve 2 Curve 3 USER [a.u.] 10 0 -20 2 14 6 10 NA **OSL** combined 80000 Curve 1 OSL [a.u.] 50000 20000 0 80 40

Time [s]

help("read_PSL2R")

OSL

OSL

OSL

D_{e} distribution

Standardised estimate

D_{e} distribution

Standardised estimate

