Nama: Anisya Sa'adatul Aliyah

NIM : A11.2021.13883

Kelp : A11.4619

TUGAS OPTIONAL

Dataset

OUTLOOK	TEMPERATURE	HUMIDITY	WINDY	PLAY
Sunny	Hot	High	No	Don't Play
Sunny	Hot	High	Yes	Don't Play
Cloudy	Hot	High	No	Play
Rainy	Mild	High	No	Play
Rainy	Cool	Normal	No	Play
Rainy	Cool	Normal	Yes	Play
Cloudy	Cool	Normal	Yes	Play
Sunny	Mild	High	No	Don't Play
Sunny	Cool	Normal	No	Play
Rainy	Mild	Normal	No	Play
Sunny	Mild	Normal	Yes	Play
Cloudy	Mild	High	Yes	Play
Cloudy	Hot	Normal	No	Play
Rainy	Mild	High	Yes	Don't Play

Code


```
In [4]: datasets.info()
              oatasets.info()

cclass 'pandas.core.frame.DataFrame')
RangeIndex: 14 entries, 0 to 13
Data columns (total 5 columns):

column Non-Null Count Dtype

0 UDITLOOK 14 non-null object
1 TEMPERATURE 14 non-null object
2 HHUTDITY 14 non-null object
3 MTNDV 14 non-null object
4 PLAV 14 non-null object
dtypes: object(5)
memory usage: 688.0+ bytes
  In [5]: # Merubah kelas/kolom dari String ke Unique-Integer datasets = datasets.apply(lambda x: pd.factorize(x)[0])
  In [6]: datasets
  Out[6]:
                     OUTLOOK TEMPERATURE HUMIDITY WINDY PLAY
                 0 0 0 0 0 0
               2 1 0 0 1
                5 2 2 1 1 1 1
6 1 2 1 1 1
                7 0 1 0 0 0
8 0 2 1 0 1
                10 0 1 1 1 1
                12 1 0 1 0 1
                13
 In [7]: #membagi data menjadi features dan target
feature_cols = ['OUTLOOK', 'TEMPERATURE', 'HUMIDITY', 'WINDY']
X = datasets[Feature_cols] #features
y = datasets.PLAY #Target Variable
 Tn [9]: model = decisiontree.fit(X,y)
In [10]: # #Mengambil sampel observasi dan membuat prediksi
# #fungsi predict() -> memeriksa kelas yg dimilikinya
# #fungsi predict(proba() -> memeriksa probabilitas kelas dari prediksi tersebut
observation = [[4, 3, 2, 1]]
model.predict(observation)
model.predict(observation)
Out[10]: array([[0., 1.]])
In [11]: #membuat grafik visualisasi decision tree
from sklearn.tree import export_graphviz
from six import StringIO
from IPython.display import Image
import pydotplus
              HUMIDITY ≤ 0.5
gini = 0.408
samples = 14
value = [4, 10]
class = 1
Out[11]:
                                              True/
                                                                         False
                               OUTLOOK ≤ 0.5
gini = 0.49
samples = 7
value = [4, 3]
class = 0
                                                                      gini = 0.0
samples = 7
value = [0, 7]
class = 1
                                                OUTLOOK ≤ 1.5
gini = 0.375
samples = 4
value = [1, 3]
class = 1
                   gini = 0.0
samples = 3
value = [3, 0]
class = 0
                                     gini = 0.0
samples = 2
value = [0, 2]
class = 1
                                                                  VVINDT ≥ 0.5
gini = 0.5
samples = 2
value = [1, 1]
class = 0
                                                                                    gini = 0.0
samples = 1
value = [1, 0]
class = 0
  In [ ]:
```

Output

