Euclidean Algorithm $a=bq+r, a,b,q,r\in \mathbb{Z}, =) gcd(a,b)=gcd(b,r)$ proof. If dia and dib, then d|a-bq=r I dib and d|r=a-bq, then d|a=r+bq

9,	OL >		b		ged (a, h)				
	bq								
e r	M		6	92	9cd (r, , b)				
			r, 92		Gid (r ₁ , r ₃)				
93	V ₁ V ₃ 9 ₅		ν ₃						
	ry	1			1				
,	rn		0		$ged(r_n, 0) = r_n$.				
,	. N								

divisions required is () (log b) The number of gcd (662, 414) 414 9 cd (248,414) 414 9cd(248,166) 248 166 248 9 cd (82, 166) 166 166 82 9cd (82,2) 41 82 82 9(d(0/2) = 2.

Extended Euclidean Algorithm: finds gcd(b,n) and x_0, y_0 such that $bx_0 + ny_0 = gcd(b,n)$

def xgcd(b,n)! $x_0, x_1, y_0, y_1 = 1, 0, 0, 1$ while n! q, b, n = b//n, n, b%n $x_0, x_1 = x_1, x_0 - q * x_1$ $y_0, y_1 = y_1, y_0 - q * y_1$ return b, x_0, y_0

EX. B= 662 N= 414

q	b	Υ	No) r	y.,	y ₁	
	662	414	(O	0		,
1	414	248	Ò			-(
		166					
ĺ		82					
2	82	2					
41	2	O	-5	207	8	-33	
		() (- 2)	i			

returns (2, -5, 8)

Remark) if $b = x_0 B + y_0 N$ in a loop, then $b = x_0 B + y_0 N$ $n = x_1 B + y_1 N$

also holds in the next iteration. This is true initially, so is true all the way.

```
Application: Modular inverse.
   Assumption: gcd(b,n)=1.
                                   b.b = 1 (mod n)
   Objective: Find 6-1 so that
                                   to is the modular
   Method: Run xgcd (b, n) then
        inverse of b mod n.
                                    xgcd (bin) returns
    proof. If gcd (b,n) =1, then
                                    bx0 + ny0 = 1
         1, 20, 40 sud that
         Thus b \times 10 = 1 \pmod{n}
EX. From 9cd(662,414)=2, we find that
     gcd(\frac{662}{2}, \frac{414}{2}) = 1, that is, gcd(331, 207) = 1.
     x9cd (331, 201) neturns (1, -5,8)
      (Notice that -5, 8 are also obtained from x9cd(662,414)
      x_0 = -5. Thus, the modular inverse of 331 mod 207
       15 -5 mod 201. (= 202 mod 201)
 the number of operations in the xgcd is also
    ( log m'in (b,n))
```

Mathematical Induction To prove that Pin) is true for all positive integers n, Basis step (Pli) is true Inductive step PLKI -> PLKI) is true For all positive integers k. (P(1) A KK(P(K) >P(KH))) > YnP(n) Exb. 2nc n! For every integer 174 P(4): 24<4! is true. If P(k) is true for some positive integer, 1234 2k < k! Then 2k.2 < k! (kH) = (kH)! so 2k+1 < (k+1) 1 and P(k+1) is true. Hence, by mathematical induction, 22×11 is true for all posttle integers n 74. Strong Induction Bas's step P11) 15 true

Basis step P(1) is true Enductive step $P(1) \wedge \cdots \wedge P(k) \rightarrow P(k+1)$ for all k = 7/1 $(P(1) \wedge \forall k (\wedge P(1) \rightarrow P(k+1))) \rightarrow \forall n P(n)$