Reg. No.	
0	

B.Tech. DEGREE EXAMINATION, MAY 2024

Fourth, Fifth and Sixth Semester

18MAB302T – DISCRETE MATHEMATICS FOR ENGINEERS

(For the candidates admitted from the academic year 2018-2019 to 2021-2022)

Note: (i) (ii)		over	to hall invigilator at the end of 40 th a - B & Part - C should be answered	minute		eet sho	uld	be	han	ded
Time	: 3]	hours				Max	. M	[ark	s: 1	00
			$\mathbf{PART} - \mathbf{A} \ (20 \times 1)$			Mar	ks	BL	со	PO
			Answer ALL (Questic	ons	1		1	1	2
	1.	A-	$(B \cap C)$ is			1		1	1	2
		(A)	ф	(B)	A					
		(C)	(A–B)∩(A–C)	(D)	$(A-B)\cup(A-C)$					
	2.		$R=\{(1,1), (2,2), (3,3)\}$ be a relat	ion on	$A = \{1,2,3\}$. Then R is	1		2	1	1
		(A)	Reflexive only		Symmetric only					
		(C)	Transitive only	(D)	An equivalence relation					
	3.	Let	$f=\{(1,2),(2,1),(3,4),(4,5),(5,3)\}$	be a fu	nction on {1,2,3,4,5}. Then f is	1		2	1	2
		` /	Injective only		Surjective only					
		(C)	Bijective	(D)	Neither injective nor surjective	;				
	4.		$f=\{(1,2),(2,1),(3,4),(4,5),(5,3)\}$ rse of f is	be a f	function on $\{1,2,3,4,5\}$. Then the	ne 1		1	1	2
			Not exist	(B)	$\{(1,2),(2,1),(3,4),(4,5),(5,3)\}$					
			$\{(1,2),(2,1),(3,5),(4,3),(5,4)\}$							
	5.	If a	club consisting of 6 men and 7 mittee of 3 men and 4 women is	wome	n, the number of ways to select	a ¹		2	2	1
			C(6,3)+C(7,4)		$C(6,3) \times C(7,4)$					
		` '	C(5,2)+C(6,3)	` '	$C(5,2) \times C(6,3)$					
	6	The	number of different circular arr	angem	nents of n objects is	1		1	2	2
	0.		(n-1)!		(n+1)!					
		` /	1/2(n-1)!	(D)	1/2(n+1)!					
	7.	If 3	6 pigeons are accommodated	in 4 p	pigeonholes, the least number	of 1	Ĺ	2	2	1
		pige	ons accommodated in one pige	onhole	eis					
		(A)	8	(B)						
		(C)	10	(D)	11					
	8.	If x	and y are two positive integers,	then g	gcd(x,y).lcm(x,y) is	1	I	1	2	2
		(A)	-	(B)						
		(C)	xy	(D)	x+y					

9.	The dual o	f p→q is			1	1	3	2
	(A) 7p∨q		(B)	7р∧q				
	(C) 7p		(D)	· ·				
	•		` '					
10.	A premise	may be introduced at any	step i	n the derivation is known as	1	2	3	2
	(A) Rule	T	(B)	Rule P				
	(C) Rule	C	(D)	Rule CP				
11.			not	cheap". P: food is good and q:	1	1	3	1
	food is che	ap.						
	$(A) p \rightarrow q$			p→7q				
	(C) p√7q		(D)	p∧7q				
12		.:14.4.		0	1	2	3	1
12.	$p \leftrightarrow q$ is equ		(D)		•	2	:	1
	(A) $(p \rightarrow q)$)√(q → p)		$(p \rightarrow q) \land (q \rightarrow p)$				
	(C) $p \rightarrow q$		(D)	$q{ ightarrow}p$				
13	Which of the	he following is a group?			1	1	4	1
10.	(A) $(\mathbb{N},+)$		(B)	$(\mathbb{Z},-)$				
	, ,	,						
	(C) $(\mathbb{Z},.)$		(D)	$\big(\mathbb{Z},+\big)$				
1.4	The cordina	ality of the normy totion and	01110	f doggo a in	1	1	4	1
14%	(A) n	ality of the permutation gro	-	•	1	1	7	1
	(C) n!		(B)	(n-1)!				
	(C) 11:		(D)	(n-1):				
15.	Let G={1,-	-1,i,-i} be a group under m	ultip	lication. The order of –i is	1	2	4	2
	(A) 1	,,, 0 1	(B)					
	(C) 3		(D)					
16.		ing distance between 1101			1	2	4	2
	(A) 4		(B)					
	(C) 2		(D)	1				
17	The maxim	num number of edges in	o sir	nnla diagonnostad aronh with 0	1	2	5	2
1/.		d 2 components is	a sii	mple disconnected graph with 8	•	_	,	_
	(A) 19	a 2 components is	(B)	20				
	(C) 21		(D)					
	(-)		(2)					
18.	Every conn	ected graph has atleast			1	1	5	1
	(A) One s	panning tree	(B)	Two spanning tree				
	(C) Three	spanning tree	(D)	Four spanning tree				
10								
19.		10 vertices has	(D)	2	1	1	5	1
	(A) 8 edge			9 edges				
	(C) 10 eda	ges	(D)	11 edges				
20	The chrome	atic number of a complete	grant	K with a vertices is	1	2	5	2
_0.	(A) $n-1$	and number of a complete	grapi (B)			_	-	_
	(C) $n+1$		(D)					
	_		(- <i>)</i>					

	$PARI - B (5 \times 4 = 20 \text{ Marks})$	Manha	BL	CO	PΩ
21.	Answer ANY FIVE Questions Draw the Hasse diagram for the divisibility relation on	Marks 4	3		1
	{2,4,5,10,12,20,25}.				
22.	In how many ways can 2 letters be selected from the set {a,b,c,d} when repetition of the letters is allowed, if (i) The order of the letters matters (ii) The order does not matter?	4	4	2	2
23.	Construct a truth table for the compound proposition $(p \to q) \land (q \to r) \to (p \to r)$.	4	3	3	2
24.	Prove that the intersection of two subgroups of a group G is also a subgroup of G. Give an example to show that the union of two subgroups of G need not be a subgroup of G.	4	4	4	1
25.	Prove that the number of edges in a bipartite graph with n vertices is at most $n^2/4$.	4	3	5	1
26.	If R and S be relations on a set A represented by the matrices	4	3	1	2
	$M_R = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ and $M_s = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ find the matrix that represent R \oplus S.				
27.	Without constructing the truth table, prove that $7p \rightarrow (q \rightarrow r) \equiv q \rightarrow (p \lor r)$.	4	3	3	2
	PART - C (5 × 12 = 60 Marks) Answer ALL Questions	Marks	BL	со	PO
28. a.i.	ICD: 1	6		1	1
	If R is the relation on the set of positive integers such that $(a,b) \in R$ if and only if a^2+b is even, prove that R is an equivalence relation.	Ü	4	1	
ii.	only if a^2+b is even, prove that R is an equivalence relation. Verify that $fo(goh)=(fog)oh$, when $f,g,h:R \rightarrow R$ are defined by $f(x)=x^2,g(x)=x+5$ and $h(x)=\sqrt{x^2+2}$.				1
	only if a^2+b is even, prove that R is an equivalence relation. Verify that $fo(goh)=(fog)oh$, when $f,g,h:R \rightarrow R$ are defined by		4		1
b.	only if a^2+b is even, prove that R is an equivalence relation. Verify that $fo(goh)=(fog)oh$, when $f,g,h:R \rightarrow R$ are defined by $f(x)=x^2, g(x)=x+5$ and $h(x)=\sqrt{x^2+2}$. (OR) By using Warshall's algorithm, find the transitive closure of the relation	6 12	4	1	1
b. 29. a.	only if a^2+b is even, prove that R is an equivalence relation. Verify that $fo(goh)=(fog)oh$, when $f,g,h:R\to R$ are defined by $f(x)=x^2,g(x)=x+5$ and $h(x)=\sqrt{x^2+2}$. (OR) By using Warshall's algorithm, find the transitive closure of the relation $R=\{(1,1),(1,3),(2,1),(2,4),(3,3),(4,2),(5,4)\}$ on the set $A=\{1,2,3,4,5\}$. Find the number of integers between 1 and 250 both inclusive that are not	12	4	1 2	2
b. 29. a. b.	only if a^2+b is even, prove that R is an equivalence relation. Verify that $fo(goh)=(fog)oh$, when $f,g,h:R\to R$ are defined by $f(x)=x^2,g(x)=x+5$ and $h(x)=\sqrt{x^2+2}$. (OR) By using Warshall's algorithm, find the transitive closure of the relation $R=\{(1,1),(1,3),(2,1),(2,4),(3,3),(4,2),(5,4)\}$ on the set $A=\{1,2,3,4,5\}$. Find the number of integers between 1 and 250 both inclusive that are not divisible by any of the integers 2,3,5 and 7. (OR) Use the Euclidean algorithm to find $gcd(28844,15712)$ and express the gcd	6 12 12	3	1 2	1

ii. Use mathematical induction to prove that $(3^n + 7^n - 2)$ is divisible by 8, for n≥1.

(OR)

- b. Construct an argument to show that the following premises imply the 3 conclusion. If A works hard, then B or C will enjoy themselves. If B enjoys himself, then A will not work hard. If D enjoys himself, then C will not. Therefore, if A works hard, D will not enjoy himself.
- 31. a. State and prove the necessary and sufficient condition for a non empty subset to be a sub group.

(OR)

Ъ.

Find the code words generated by the parity check matrix
$$H = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

when the encoding function is $e:B^3 \rightarrow B^6$.

32. a.i. Determine whether the following graphs are isomorphic

ii. Show that the number of vertices of odd degree in a undirected graph is even.

(OR)

b. Find the minimum spanning tree for the following weighted graph using Kruskal's algorithm.

