Homework 5

Sean Eva

April 2022

1. Proof.

```
\begin{aligned} 10! + 1 &= 10*9*8*7*6*5*4*3*2*1+1 \pmod{11} \\ 10! + 1 &= (4*3)(2*6)(8*7)(9*5)*10+1 \pmod{11} \\ 10! + 1 &= (12)(12)(56)(45)*10+1 \pmod{11} \\ 10! + 1 &= (1)(1)(1)(1)*10+1 \pmod{11} \\ 10! + 1 &= 11 \pmod{11} \\ 10! + 1 &= 0 \pmod{11}. \end{aligned}
```

17. Proof. It will be useful to employ Wilson's Theorem, which states that if p is a prime, then, $(p-1)! \equiv -1 \pmod{p}$. Also that (p-1)! = (p-1)(p-2)(p-3)! allows for $(p-1)! \equiv (-2)(-1)(p-3)! \pmod{p}$ which further implies that $2(p-3)! \equiv -1 \pmod{p}$.

41. Proof. Given p is a prime, then $1*2*...*(p-1) \equiv (p+1)(p+2)...(2p-1) \pmod{p}$ each factor is prime to p. So $1 \equiv \frac{(p+1)(p+2)...(2p-1)}{1*2*...*(p-1)} \pmod{p}$. Therefore, $2 \equiv \frac{(p+1)(p+2)...(2p-1)(2p)}{1*2*...*(p-1)} \pmod{p}$ which means that $\binom{2p}{p} \pmod{p}$

- 45. (a) If c < 26 then c cards are put into the deck above the card so it ends up in the 2c position and 2c < 52. So b = 2c, if $c \ge 26$ then the card is in the c 26th place in the bottom half of the deck. In teh shuffle c 26 1 cards are put into the deck above the card so it ends up in the b = (c 26 + c 26 1)th place then $b = 2c 53 \equiv 2c \pmod{53}$.
 - (b) Since the shuffling is occurring in such a way that card at each shuffle chooses a different position and does not repeat the position until it goes over all the possible 51 positions and hence the required shuffle of number is 51 + 1 = 52.
- 1. Proof. For 91 to be pseudoprime base 3 would mean that it can be defined as q and write $3^q \equiv 3 \pmod{q}$ which is true as $3^91 \equiv 3 \pmod{91}$. However, we know that 91 = 7*13 which means that it is composite. Therefore we know that 91 is pseudoprime base 3.
- 9. Proof. Since we know that n is a pseudoprime to the bases a and b then we know that $a^n \equiv a \pmod{n}$ and $b^n \equiv b \pmod{n}$. So then we get,

$$a^n * b^n = a * a * a * a * \dots * a * b * b * b * \dots * b$$

$$a^n b^n = (ab)^n$$

$$a^n b^n = a * b \pmod{n}$$

$$(ab)^n = ab \pmod{n}.$$

Therefore given that n is pseudoprime to bases a and b we know then that n is pseudoprime to base ab.

- 3. Proof. Let m>2 then $\phi(m)$ is even number. Also if gcd(a,m)=1 if and only if gcd(m-1,m)=1. So we arrange $c_1,c_2,...,c_{\phi(m)}$ such that $c_{\phi(m)}=m-c_1,c_{\phi(m)-1}=m-c_2$. So $c_1,c_2,...,c_{\phi(m)/2},(m-c_1),(m-c_2),...,m-c_{\phi(m)/2}$ is the complete list of reduced residue system. So $c_1+c_2+...+c_{\phi(m)}=\frac{\phi(m)}{2}*m\equiv 0 \pmod{m}$. Thus $c_1+c_2+...+c_{\phi(m)}\equiv 0 \pmod{m}$
- 6. Proof. It will be important to notice that $\phi(10) = 4$ and that implies that $7^4 \equiv 1 \pmod{10}$. Then we get,

$$7^{999999} \equiv 7^3 * 1 \pmod{10}$$

 $\equiv 343 \pmod{10}$
 $\equiv 3 \pmod{10}$.

- 14. Proof. Consider $M_k = M/m_k = m_1 m_2 ... m_{k-1} m_{k+1} ... m_r$ for the above congruency, if $j \neq k$ then $(M_j, m_k) = 1$. Therefore, $(M_k, m_k) = 1$. Now M_k has an inverse m_k we will denote y_k which means that $M_k y_k \equiv 1 \pmod{m_k}$. Therefore, the sum can be written as $x \equiv a_1 M_1 y_1 + a_2 M_2 y_2 + ... + a_r M_r y_r$. The integer x is a simultaneous solution of the r congruences. And because $m_k | M_j$ whenever $j \neq k$, therefore, $M_j \equiv 0 \pmod{m_k}$. Thus, in the sum of x, all terms except the kth term are congruent to $0 \pmod{m_k}$. And because $M_k y_k \equiv 1 \pmod{m_k}$. Put the values in the equation to get $x \equiv a_1 M_1^{\phi(m_1)} + ... + a_r M_r^{\phi(m_r)} \pmod{M}$ as desired.
- 5. Proof. Given that $\phi(n)$ is multiplicative. Let $n=2^ap_1^bp_2^c...p_k^\alpha$ where p_i are distinct odd primesm the $b,c,...,\alpha\geq 1$ and $a\geq 0$. Then, $\phi(n)=\phi(2^a)\phi(p_1^b)...\phi(p_k^\alpha)$. We find all n such that $\phi(n)=6$. If $k\geq 2$, then since $\phi(p_i^{e_i})$ is even, $\phi(n)$ is divisible by 4, so cannot be equal to 6. If k=0 we cannot have $\phi(n)=6$. We conclude that k=1. Thus n must have the shape 2^ap^e , where $a\geq 0$ and p is an odd prime. But $\phi(p^e)=p^{e-1}(p-1)$. It follows that $p\leq 7$. If p=7, then p-1=6, so we must have e=1 and $\phi(2^a)=1$. This gives the solutions n=7 and 14. We cannot have p=5 because $4|\phi(5^e)$. Let p=3. If $e\geq 3$, then $\phi(e^e)\geq (3^2)(2)$. So we are left with the possibilities that e=1,2. If e=1, then $\phi(n)=\phi(2^a)(2)$. This is cannot be 6. Finally if e=2, then $\phi(3^2)=6$. So to have that $\phi(2^a3^2)=6$, we need $\phi(2^a)=1$ which gives us that p=3. Therefore, all the solutions to $\phi(n)=6$ are p=7,9,18.
- 11. Proof. Consider that 3 does not divide n. Then $\phi(3n) = \phi(3)\phi(n) = 2\phi(n)$ which implies that $\phi(3n) \neq 3\phi(n)$. Alternatively, consider that 3|n then let $n=3^k*m$ where m is not divisible by 3, and $k \geq 1$. Then $\phi(n) = \phi(3^k m) = 2*3^{k-1}\phi(m)$; also, $3n=3^{k+1}m$, so $\phi(3n) = 2*3^k\phi(m) = 3\phi(n)$. Therefore, the only numbers that the statement $3\phi(n) = \phi(3n)$ is true is for n that are divisible by 3.
- 36. Proof. Consider positive integers m and n. Soncider the function f such that $f(n) = \frac{\phi(n)}{n}$ and $f(m) = \frac{\phi(m)}{m}$. Therefore, we get that $f(mn) = \frac{\phi(mn)}{mn}$ or, $f(mn) = \frac{mn\Pi(1-\frac{1}{p_i})\Pi(1-\frac{1}{q_i})}{mn} = \frac{m\Pi(1-\frac{1}{p_i})}{m} \frac{n\Pi(1-\frac{1}{q_i})}{n} = \frac{\phi(m)}{m} \frac{\phi(n)}{n} = f(m)f(n)$. Therefore, the considered function is completely multiplicative.
 - 4. Proof. We will show first that $\sigma(n)$ is odd if n is a power of 2. Suppose that $n=2^{\alpha}$, then $\sigma(2^{\alpha})=\sum_{d|2^{\alpha}}d=1+2+2^2+...+2^{\alpha}=\frac{2^{\alpha+1}-1}{2-1}=2^{\alpha+1}-1$, and $\sigma(2^{\alpha})=2^{\alpha+1}-1$ is odd for all integers $\alpha\geq 0$. Next suppose that p is an off prime and that α is a positive integer, then $\sigma(p^{\alpha})=1+p+p^2+...+p^{\alpha}=\frac{p^{\alpha+1}-1}{p-1}$, and $\sigma(p^{\alpha})$ is odd if and only if the sum contains an odd number of terms, that is, if and only if α is an even integer. From the fundamental theorem of arithmetic, we see that $\sigma(n)$ is odd if and only if in the prime power decomposition of n every odd prime occurs to an even power, that is, if and only if n is a perfect square or n is 2 times a perfect square.