Distributions

Wei-Chang Lee, Chi-Ning Chou

October 25, 2015

Contents

1			4
	1.1	Characteristic function	4
	1.2	Convergence	2

Chapter 1

Statistical Inference I

Prof. Chin-Tsang Chiang

Lecture Notes 10

October 25, 2015

Scribe: Wei-Chang Lee, Chi-Ning Chou

Lemma 1 (inversion theorem) Let X be a random variable with characteristic function $\phi_X(t)$ and $a, b \in \mathbb{R}$ with a < b, then

1. For any random variable X,

$$P(a < X < b) + \frac{1}{2}P(X = a) + \frac{1}{2}P(X = b) = \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \phi_X(t) dt$$

2. If X is a continuous random variable, then

$$f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \phi_X(t) dt$$
 a.e.

1.1 Characteristic function

Intuition (inversion theorem)

Inversion theorem provides a *isomorphism* between **distribution** and **characteristic function**.

Proof: The proof is divided into four steps. The first step introduce a integration tool for latter usage. The second step provides a clean form of the original term. The third step uses dominant theorem to show the convergence. The last step gives the density function.

1. **claim**: $\int_0^\infty \frac{\sin \alpha x}{x} dx = \frac{\pi}{2} \text{sign}(\alpha)$

$$\int_0^\infty \frac{\sin \alpha x}{x} dx = \int_0^\infty \int_0^\infty \sin \alpha x \ e^{-ux} du dx$$
(by Fubini's thm) =
$$\int_0^\infty \int_0^\infty \sin \alpha x \ e^{-ux} dx du$$
= ... some change of integrals ...
=
$$\frac{\pi}{2} \mathrm{sign}(\alpha)$$

2. Consider

$$\frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \phi_X(t) dt = \frac{1}{2\pi} \int_{-T}^{T} \int_{-\infty}^{\infty} \frac{e^{-ita} - e^{-itb}}{it} e^{itx} dF_X(x) dt$$

$$= \frac{1}{2\pi} \int_{-T}^{T} \int_{-\infty}^{\infty} \frac{\cos t(x-a) + i \sin t(x-a)}{it} dF_X(x) dt$$

$$= \frac{1}{2\pi} \int_{-T}^{T} \int_{-\infty}^{\infty} \frac{\cos t(x-b) + i \sin t(x-b)}{it} dF_X(x) dt$$

$$(\because \text{symmetry}) = \frac{1}{\pi} \int_{0}^{T} \int_{-\infty}^{\infty} \frac{\sin t(x-a) - \sin t(x-b)}{t} dF_X(x) dt$$

$$(\text{by Fubini's thm}) = \frac{1}{\pi} \int_{-\infty}^{\infty} \int_{0}^{T} \frac{\sin t(x-a) - \sin t(x-b)}{t} dt dF_X(x)$$

3. By dominant convergence theorem,

$$\frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \phi_{X}(t) dt \xrightarrow{T \to \infty} \frac{1}{\pi} \int_{-\infty}^{\infty} \int_{0}^{\infty} \frac{\sin t(x-a) - \sin t(x-b)}{t} dt dF_{X}(x)$$

$$= \frac{1}{\pi} \int_{x \in (-\infty,a)} \int_{0}^{T} \frac{\sin t(x-a) - \sin t(x-b)}{t} dt dF_{X}(x)$$

$$+ \frac{1}{\pi} \int_{x=a} \int_{0}^{T} \frac{\sin t(x-a) - \sin t(x-b)}{t} dt dF_{X}(x)$$

$$+ \frac{1}{\pi} \int_{x \in (a,b)} \int_{0}^{T} \frac{\sin t(x-a) - \sin t(x-b)}{t} dt dF_{X}(x)$$

$$+ \frac{1}{\pi} \int_{x=b} \int_{0}^{T} \frac{\sin t(x-a) - \sin t(x-b)}{t} dt dF_{X}(x)$$

$$+ \frac{1}{\pi} \int_{x \in (b,\infty)} \int_{0}^{T} \frac{\sin t(x-a) - \sin t(x-b)}{t} dt dF_{X}(x)$$
(by the tool in 1.)
$$= 0 + \frac{1}{2} P(X = a) + P(a < X < b) + \frac{1}{2} P(X = b) + 0$$

4. Suppose X is continuous and $\int_{\mathcal{R}} |\phi_X(t)dt| < \infty$,

$$\begin{split} \int_a^b f(x) dx &= \frac{1}{2\pi} \int_a^b \int_{\mathcal{R}} e^{-itx} \phi_X(t) dt dx \\ &= \frac{1}{2\pi} \int_{\mathcal{R}} (\int_a^b e^{-itx} dx) \phi_X(t) dt \\ &= \frac{1}{2\pi} \int_{\mathcal{R}} \frac{e^{-ita} - e^{-itb}}{it} \phi_X(t) dt \\ &= \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^T \frac{e^{-ita} - e^{-itb}}{it} \phi_X(t) dt \\ &= \frac{1}{2} P(X = a) + P(a < X < b) + \frac{1}{2} P(X = b) \\ &= P(a < X < b) (\text{ further set b=x, a} \downarrow -\infty) \end{split}$$

Corollary 1 For probability measures μ_X and μ_Y on $\mathcal{B}(\mathcal{R})$, the equality $\phi_{\mu_X} = \phi_{\mu_Y}$ implies that $\mu_X = \mu_Y$.

Proof: From inversion theorem, we have $\mu_X((a,b)) = \mu_Y((a,b)) \ \forall a,b \in C$, where C is the set of all $z \in \mathcal{R}$ such that $\mu_X(\{z\}) = \mu_Y(\{z\}) = 0$. Since C^c is at most countable. The family of $\{(a,b): a.b \in C\}$ of intervals is a π -system generating $\mathcal{B}(\mathcal{R})$. μ_X and μ_Y agrees on a π -system also agrees on the σ -algebra generated by it.

Intuition (relation to moment)

Let X be a random variable. If $E[|X^n|] < \infty$, then $\frac{d^n}{(dt)^n} \phi_X(t)$ exists for all t and

$$\frac{d^n}{(dt)^n}\phi_X(t) = E[e^{itX}(iX)^n]$$

so the lower moments are

$$E[X^n] = (-i)^n \frac{d^n}{(dt)^n} \phi_X(0)$$

1.2 Convergence

Theorem 1 Let $\{X_n\}$ be a sequence of random variables with characteristic functions $\phi_{X_n}(t)$. Suppose that

- $\lim_{n\to\infty} \phi_{X_n}(t) = \phi_X(t)$ for t in a neighborhood of 0. (pairwise convergence)
- $\phi_X(t)$ is a characteristic function of some random variable X.

Then,

 $\lim_{n\to\infty} F_{X_n}(x) = F_X(x), \ \forall x \ such \ that \ F_X(x) \ is \ continuous \ (weakly \ convergence)$

Proof: Let a and b be continuous points of $F_X(x)$ and $F_{X_n}(x)$ for $n \geq N_0$ for some $n \in \mathcal{N}$

$$\begin{split} F_X(b) - F_X(a) &= \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^T \frac{e^{-ita} - e^{-itb}}{it} \phi_X(t) dt \\ &= \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^T \frac{e^{-ita} - e^{-itb}}{it} \lim_{n \to \infty} \phi_{X_n}(t) dt \\ &= \lim_{n \to \infty} \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^T \frac{e^{-ita} - e^{-itb}}{it} \phi_{X_n}(t) dt \text{ (since } |\phi_{X_n}(t)| \le 1, \text{ dominated)} \\ &= \lim_{n \to \infty} (F_{X_n}(b) - F_{X_n}(a)) \end{split}$$

By setting b=x, a $\downarrow -\infty$ one obtains $\lim_{n\to\infty} F_{X_n}(x) = F_X(x)$.

Remark: We don't have to worry about the discrete points since they must converge to the right value.

Intuition (convergence of characteristic function)

Theorem 1 tells us that if r.v.s converge in characteristic functions, then r.v.s also converge in distribution.

Remark: Tips for calculating MGF: consider the MGF of binomial distributed random variable X such that $f_X(x) = \binom{n}{x} p^x (1-p)^{n-x} \mathbf{1}_{0,1,\dots,n}$. We have

$$M_{X_n}(t) = \sum_{x=0}^n \binom{n}{x} p^x (1-p)^{n-x} e^{tx}$$

$$= \sum_{x=0}^n \binom{n}{x} (pe^t)^x (1-p)^{n-x}$$

$$= \sum_{x=0}^n \binom{n}{x} \frac{(pe^t)^x (1-p)^{n-x}}{[(pe^t)^x (1-p)]^n} [(pe^t)^x (1-p)]^n$$

$$(\text{set } p' = \frac{pe^t}{pe^t + (1-p)}) = \sum_{x=0}^n \binom{n}{x} p'^x (1-p')^{n-x} [(pe^t)^x (1-p)]^n$$

$$= [(pe^t)^x + (1-p)]^n \sum_{x=0}^n \binom{n}{x} p'^x (1-p')^{n-x}$$

$$= [(pe^t)^x + (1-p)]^n$$