6. Übungsblatt

- 1. Erweitern Sie die Potenzmengenkonstruktion auf endliche Automaten mit ϵ -Übergängen, d.h. die mit ϵ beschrifteten Kanten können ohne Lesen eines Zeichens der Eingabe (spontan) durchlaufen werden.
 - Verwenden Sie dazu die Funktion ϵ -closure: $Z \to \mathcal{P}(Z)$ mit ϵ -closure(z) = $\{z' \mid \text{es gibt einen Pfad von } z \text{ nach } z' \text{ dessen Kanten nur mit } \epsilon \text{ beschriftet sind.}\}$
- 2. Sei $L \subseteq \Sigma^*$ eine beliebige Sprache, dann ist das Komplement von L definiert als $\overline{L} =_{\text{def}} \{ w \in \Sigma^* \mid w \notin L \}.$

Eine Klasse von Sprachen \mathcal{C} heißt unter Komplement abgeschlossen, wenn gilt: Ist die Sprache $L \in \mathcal{C}$, dann ist auch das Komplement $\overline{L} \in \mathcal{C}$. Völlig analog definieren wir: Gilt für die Sprachen $L_1, L_2 \in \mathcal{C}$ wieder $L_1 \cap L_2 \in \mathcal{C}$, dann heißt diese Klasse von Sprachen \mathcal{C} unter Schnitt abgeschlossen.

Zeigen Sie: Die regulären Sprachen sind unter Komplement und Schnitt abgeschlossen.

Hinweis: Die Gesetze für Mengenoperationen aus dem ersten Semester sind hilfreich.

- 3. Beweisen Sie, dass die Sprachen $L_3 =_{\text{def}} \{w \in \{a,b\}^* \mid \text{es gilt } |w|_a = 2 \text{ und } |w|_b \ge 2\}$ und $L_4 =_{\text{def}} \{w \in \{a,b\}^* \mid \text{es gilt } |w|_a \text{ ist gerade und jedem } a \text{ folgt mindestens ein } b\}$ regulär sind.
- 4. Sei $\Sigma = \{a, b\}$, $\gamma_1 = ((a(abb)^*)|b)$ und $\gamma_2 = (a^+|(ab)^*)$. Konstruieren Sie nichtdeterministische endliche Automaten M_{γ_1} und M_{γ_2} mit $L(\gamma_1) = L(M_{\gamma_1})$ bzw. $L(\gamma_2) = L(M_{\gamma_2})$.

(Hinweis: Verwenden Sie die Methode aus der Vorlesung. Sie dürfen ϵ -Übergänge verwenden wenn Sie wollen.)

Besprechung in den Übungen ab dem 31.5.2021.