Activité 5.2 – Le cortège électronique

Objectifs:

- Comprendre la structure du cortège électronique.
- Comprendre la règle de remplissage des couches électroniques.

Contexte: Un atome est constitué d'un noyau positif entouré d'électrons négatifs, avec autant d'électrons que de protons, l'atome étant neutre.

→ Comment les électron s'organisent autour du noyau?

Document 1 - Rangement des électrons

Quand on s'appelle hydrogène et qu'on a qu'un électron, pas besoin de ranger ses affaires. Mais quand on s'appelle uranium et qu'on en a 92 autour de soi, mieux vaut mettre un peu d'ordre dans ses électrons!

C'est en 1913 que Bohr a l'idée de répartir les électrons d'un atome en différentes couches et sous-couches, en se basant sur les travaux de Planck.

Les couches électroniques sont numérotées 1, 2, 3. Les sous couches sont repérées par des lettres : s ou p. Les sous-couches ne peuvent contenir qu'un nombre limité d'électrons.

La sous-couche s ne peut contenir que 2 électrons au maximum, alors que la sous-couche p ne peut contenir que 6 électrons au maximum.

La couche qui accueille les derniers électrons s'appelle la couche externe, les autres couches sont appelées les couches internes.

Schéma des couches et sous-couches électroniques de l'oxygène 8O

Document 2 – Remplissage des couches électroniques

Le remplissage des couches et des sous-couches se fait par ordre croissant de couches (1 puis 2 puis 3) et par ordre croissant de sous-couches (s puis p) dans une couche.

La première couche est la seule à ne pas posséder de couche p. Cette règle de remplissage s'appelle la règle de Klechkowski.

Pour les premières couches, l'ordre de remplissage est

$$1s \rightarrow 2s \rightarrow 2p \rightarrow 3s \rightarrow 3p$$

On appelle configuration électronique le remplissage des électrons dans chaque couches et sous-couches.

Pour noter la configuration électronique, on note chaque sous-couche qui contient des électrons par son nom (1s, 2s, 2p, etc.), puis on note le nombre d'électrons contenu dans la sous-couche en exposant.

Exemple: la configuration électronique de l'atome d'oxygène 80 est $1s^2$ $2s^2$ $2p^4$.

\Lambda La somme des exposants doit être égale au nombre d'électrons de l'atome!

1 — Compléter le tableau ci-dessous pour résumer l'occupation des différentes couches électroniques

Couche	1	2		3	
Sous-couche					
Nombre max. d'électron					

Donner la configuration électronique de l'atome de silicium.
Indiquer, en justifiant, le nom de la couche externe de cet atome de silicium, ainsi que la ouhes internes.
Reprendre les questions 2 et 3 pour l'atome de Carbone C $(Z=6)$. Quelles différences e lances avec le silicium peut-on remarquer?