Let us suppose that the system of stochastic equations

$$\begin{cases} S = + \int_{0}^{t} r S du + \int_{0}^{t} z dB_{u} \\ + \int_{0}^{t} r S du + \int_{0}^{t} z dB_{u} \end{cases}$$

$$\sum_{t=1}^{2} \frac{1}{t} \int_{0}^{t} \left(\frac{dS_{u}}{S_{u}} \right)^{2}$$

has a polation.

Then the product rule applied to $t \Sigma_{t}^{2} = \int_{0}^{t} (dS_{u})^{2} = \int_{0}^{t} (rdu + \Sigma_{u} dS_{u})^{2}$ $= \int_{0}^{t} \Sigma_{u}^{2} du$ gives $d(t\Sigma_{t}^{2}) = t d\Sigma_{t}^{2} + \Sigma_{t}^{2} dt.$

But from (*) we have: $d(t\Sigma_t^2) = \Sigma_t^2 dt$,
thus $d(\Sigma_t^2) = 0, i.e., t\mapsto \Sigma_t^2 \text{ is Constant.}$

Let's call this constant or 3 then (4) becomes

(***) $S = 1 + r \int_{S}^{t} du + \sigma B_{t}^{t}$

which gives $(dR)^2 = \sigma^2 dt$ as well as

 $\sigma^2 t = t \sum_{t=0}^{2} \int_{S_{t}}^{t} \frac{du}{S_{t}^2}$

i.e, $t = \int \frac{du}{dx}$, $t \geq 0$,

But this forces S = 1, in blatant Contradiction of (X,X).

CONCLUSION: The system (p) has no solution.