CLAIMS

What is claimed is:

1	1.	A solid part, comprising a metallic monolith having a dense core	
2	surrounded	by a porous periphery.	
1	2.	The part of Claim 1, wherein the porous periphery is characterized	
2	by a multitu	de of interconnected pores.	
1	3.	The part of Claim 2, wherein the porosity varies from more than	
2	25% porosi	ty near the surface to less than 5% porosity 100µm or more from the	
3	surface.		
1	4.	A solid part, comprising a shaped metallic structure having a dense	
2	core surrou	nded by a porous periphery characterized by a multitude of	
3	interconnec	ted pores.	
1	5.	The part of Claim 4, wherein the porosity varies from more than	
2	25% porosit	ty near the surface to less than 5% porosity 100µm or more from the	
3	surface.		
1	6.	The part of Claim 4, wherein the shaped metallic structure is	
2	monolithic.		
1	7.	A solid part, comprising a metallic monolith having a dense core	
2	surrounded by a porous periphery characterized by a multitude of interconnec		
3	pores.		
1	8.	A prosthesis, comprising:	
2	a mo	nolithic metallic substrate having a dense core surrounded by a	
3	porous periphery; and		
4	a coating of bioactive material on the substrate.		

1	9.	The prosthesis of Claim 8, wherein the porous periphery is	
2	characterize	ed by a multitude of interconnected pores.	
1	10.	The prosthesis of Claim 8, wherein the bioactive material is	
2	hydroxyapa		
1	11.	A prosthesis, comprising:	
2	a mo	nolithic metallic substrate having a dense core surrounded by a	
3	porous periphery characterized by a multitude of interconnected pores; and		
4	a coating of hydroxyapatite on the substrate.		
1	12.	A dental implant, comprising:	
2	a mo	nolithic metallic screw having a dense core surrounded by a porous	
3	periphery characterized by a multitude of interconnected pores; and		
4	a coa	ting of bioactive material on the screw.	
1	13.	The dental implant of Claim 12, wherein the metallic screw is a	
2	titanium scre		
1	14.	The dental implant of Claim 12, wherein the bioactive material is	
2	hydroxyapatite.		
1	15.	A dental implant, comprising:	
2	a monolithic titanium screw having a dense core surrounded by a porou		
3	periphery characterized by a multitude of interconnected pores, the porous		
4	periphery having a porosity that varies from more than 25% porosity near the		
5	surface to less than 5% porosity 100µm or more from the surface; and		
6	a coating of hydroxyapatite on the screw.		
1	16.	A method, comprising:	
2	compa	acting a metal powder; and	

3	exposing the compacted powder to microwaves under conditions sufficient				
4	to transform the compressed powder into a monolith having a dense core				
5	surrounded by a porous periphery.				
1	17. The method of Claim 16, wherein exposing the compacted powder				
2	to microwaves under conditions sufficient to transform the compressed powder				
3	into a monolith having a dense core surrounded by a porous periphery comprises				
4	exposing the compacted powder to microwaves at 1.0 kilowatt - 2.5 kilowatts for				
5	not more than 20 minutes.				
1	18. A method, comprising:				
2	transforming metal powder into a monolith having a dense core				
3	surrounded by a porous periphery; and				
4	coating the monolith with a bioactive material.				
1	19. A method, comprising:				
2	pressing titanium powder into a desired shape;				
3	exposing the compressed powder to microwaves under conditions				
4	sufficient to transform the compressed powder into a monolith having a dense				
5	metal core surrounded by a porous metal periphery; and				
6	coating the periphery with hydroxyapatite.				
1	20. A method, comprising:				
2	compacting titanium powder without external heating;				
3	microwave sintering the compacted powder to form a substrate; and				
4	depositing hydroxyapatite on the substrate.				
1	21. A method, comprising:				
2	compacting titanium powder without external heating;				
3	microwave sintering the compacted powder to form a substrate having a				
4	dense core surrounded by a porous periphery; and				
5	depositing hydroxyapatite on the periphery of the substrate				

1	22. A method, comprising:		
2	compacting titanium powder into a desire shape without external heating		
3	the shape having a core and a periphery surrounding the core; and		
4	sintering the compacted powder including heating the core to a		
5	temperature greater than the temperature in the periphery.		
6	•		
4			
1	23. The method of Claim 22, wherein sintering comprises exposing the		
2	compacted powder to microwaves.		
1	24. A method, comprising:		
2	compacting a metal powder into a desired shape;		
3	sintering the compacted powder with microwaves to form a sintered		
4	substrate; and		
5	electrodepositing a bioactive material on the substrate.		
1	25. A method, comprising:		
2	compacting titanium particles having a particle size less than 325 mesh		
3	into a desired shape;		
4	thermally insulating the compacted powder;		
5	exposing the insulated compacted powder to microwaves at 1.0 kilowatt		
6	2.5 kilowatts for not more than 20 minutes to form a sintered substrate;		
7	electrocrystallizing hydroxyapatite on the substrate; and		
8	calcining the coated substrate.		
1	26. A method, comprising:		
2	compacting titanium particles having a particle size less than 325 mesh		
3	into a desired shape;		
4	thermally insulating the compacted powder;		
5	exposing the insulated compacted powder to microwaves at 1.0 kilowatt		
6	2.5 kilowatts for not more than 20 minutes to form a sintered substrate;		
7	washing the substrate in an ultrasonic bath:		

8	drying the substrate;
9	etching the substrate in nitric acid;
10	immersing the substrate as an anode in an electrolyte that includes
11	$Ca(NO_3)_2$, and $NH_4H_2PO_4$;
12	immersing a cathode in the electrolyte;
13	generating 0.5 to 1.5 amperes of electrical current between the anode and
14	cathode for 5-20 minutes to form a coated substrate;
15	drying the coated substrate; and
16	calcining the coated substrate at 100°C to 400°C.