Conducting Notes

Cambridge etc:

In minor, 3rd place bell, you get the actual coursing order (on way to back, from 3rd to 6ths place; same on way down). In major etc, you also get actual coursing order, with 2 already seen bells repeating at the dodges on way out.

Fibonacci factorial ('fibofac') definition

Method type	Denoted	Definition
Plain Double	$\mathbb{C}_{pd}(n)$	ff(n)
Plain	$\mathbb{C}_p(n)$	$ff(n)^2$
Treble Bob Double	$\mathbb{C}_{td}(n)$	$ff(n)^4$
Treble Bob	$\mathbb{C}_t(n)$	$ff(n)^8$

$$f\!\!f(n) = \prod_{i=0}^n fib(i)$$

$$\dot{a} = fib(a)$$

Split parity paradox

$$_{n}\mathbf{C}_{r-1}\cdot b$$

$$_{n}C_{r}-1$$

 $\ddot{8} \cdot \dot{7}!$

ff(7)

ff(7)

 $\binom{n}{x}$

Table 2: Plain Hunt Major combinations schematic

Schematic	Combos
12345678	
><	$\mathbb{P}(6)$
><	$\mathbb{P}(5)$
><	$\mathbb{S}(2,4)$
><	$\mathbb{S}(3,3)$
><	$\mathbb{S}(4,2)$ or $\mathbb{S}(2,4)$
><	$\mathbb{P}(5)$
><	$\mathbb{P}(6)$
	$\mathbb{P}(7)-1$
><	
><	
><	
><	
><	
><	
<u> </u>	$\mathbb{P}(7) - 1$

Table 3: Plain Hunt Caters combinations schematic

Schematic	Combos
123456789	
><	$\mathbb{P}(7)$
><	$\mathbb{P}(6)$
><	$\mathbb{S}(2,5)$
><	$\mathbb{S}(3,4)$
><	$\mathbb{S}(4,3)$ or $\mathbb{S}(3,4)$
><	$\mathbb{S}(5,2)$ or $\mathbb{S}(2,5)$
><	$\mathbb{P}(6)$
><	$\mathbb{P}(7)$
	$\mathbb{P}(8) - 1$
	(-)
:	
1	$\mathbb{P}(8)-1$

Table 4: Plain Hunt Royal combinations schematic

Schematic	Combos
123456789E	
><	$\mathbb{P}(8)$
><	$\mathbb{P}(7)$
><	$\mathbb{S}(2,6)$
><	$\mathbb{S}(3,5)$
><	$\mathbb{S}(4,4)$
><	$\mathbb{S}(5,3)$ or $\mathbb{S}(3,5)$
><	$\mathbb{S}(6,2)$ or $\mathbb{S}(2,6)$
><	$\mathbb{P}(7)$
><	$\mathbb{P}(8)$
	$\mathbb{P}(9) - 1$
:	
<u> </u>	$\mathbb{P}(9)-1$

$$\mathbb{C}_p(n) = \prod_{i=2}^{n-4} fib(i)$$