Производящие функции

(дополнительная лекция по ДМ) Непейвода А. Н.

21 мая 2022

Мастер-теорема («разделяй и властвуй»)

Пусть функция f(n) описывается следующим рекуррентным соотношением:

$$f(n) = a \cdot f(\frac{n}{b}) + g(n)$$

Тогда сложность f(n) можно оценить следующим образом:

- ullet если $g(n) = O(n^c)$, где $c < \log_{\mathfrak{b}} \mathfrak{a}$, тогда $f(n) = \Theta(\mathfrak{n}^{\log_{\mathfrak{b}} \mathfrak{a}});$
- ullet если $g(\mathfrak{n}) = \Theta(\mathfrak{n}^{\log_{\mathfrak{b}} \mathfrak{a}})$, тогда $\mathfrak{f}(\mathfrak{n}) = \Theta(\mathfrak{n}^{\log_{\mathfrak{b}} \mathfrak{a}} \cdot \log \mathfrak{n});$
- если $g(n) = O(n^c)$, где $c > \log_b a$, причём асимптотически верно, что для некоторой величины t < 1 а $\cdot g(\frac{n}{b}) \leqslant t \cdot g(n)$, тогда $f(n) = \Theta(g(n))$.

Сочетание условий $c>\log_b a$ и $a\cdot g(\frac{n}{b})\leqslant t\cdot g(n)$ выполняется почти всегда.

Экспоненциальные рекуррентности

Классика жанра анализа программ: алгоритм полиномиален по размеру графа, а граф экспоненциален от входных данных. Переход к оценке по размеру входа порождает рекуррентные соотношения уже другой формы, асимптотику которых, однако, также можно оценить с помощью мастер-теоремы.

• Пример оценки:

$$f(n) = 3 \cdot f(n-1) + 2^n$$

Как поступить с двумя рекурсивными вызовами: $f(n) = a_1 \cdot f(n - k_1) + a_2 \cdot f(n - k_2) + g(n)$?

Экспоненциальные рекуррентности

• Частный случай:

$$f(n) = 3 \cdot f(n-1) + 2^n$$

• Общий случай:

$$f(n) = a \cdot f(n-1) + b^n$$

Хак для первой задачи: вводим функцию g такую, что $g(2^n) = f(n)$. Попробуйте взять основание, отличное от 2, и посмотреть, поменяется ли что-то.

Как поступить с двумя рекурсивными вызовами: $f(n) = a_1 \cdot f(n - k_1) + a_2 \cdot f(n - k_2) + q(n)$?

Рабочий пример

Дан недетерминированный конечный автомат \mathscr{A} без ε -переходов над $\{a, b\}$. Известно, что максимальное количество дуг, выходящих из состояния \mathscr{A} , равно k (k может быть больше 2, т.к. \mathscr{A} — HKA).

- Найти множество слов длины (меньшей или равной) n;
- Найти количество слов длины (меньшей или равной) n.
- Тупой рекурсивный алгоритм по длине слова O(???);
- Разбиение на две подзадачи О(???);
- «Разделяй и властвуй» O(???).

Рабочий пример

Дан недетерминированный конечный автомат \mathscr{A} без ε -переходов над $\{\alpha, b\}$. Известно, что максимальное количество дуг, выходящих из состояния \mathscr{A} , равно k (k может быть больше 2, т.к. \mathscr{A} — HKA).

- Найти множество слов длины (меньшей или равной) n;
- Найти количество слов длины (меньшей или равной) п.
- Тупой рекурсивный алгоритм по длине слова O(kⁿ);
- Разбиение на две подзадачи $O(\max(2, \sqrt{k})^n);$
- «Разделяй и властвуй» $O(2^n)$. Не зависит от k.

Оценка $O(2^n)$ грубая (предполагает, что $\mathscr A$ порождает почти все возможные слова). Более точная оценка связана с решением задачи номер 2.

Комбинаторные задачи

- Сколько существует слов длины 5 в алфавите {a, b}, не содержащих подстроку ab?
- Сколько существует слов длины n в алфавите {a, b}, не содержащих подстроку abb? Построить соответствующее рекуррентное соотношение.

Подсказка: рекурсия по количеству слов с соответствующими суффиксами.

Упражнение: слова в алфавите $\{a, b\}$, не содержащие подстроки aabb.

Комбинаторные задачи

- Сколько существует слов длины 5 в алфавите {a, b}, не содержащих подстроку ab?
- Сколько существует слов длины п в алфавите {a, b}, не содержащих подстроку abb? Построить соответствующее рекуррентное соотношение.

Подсказка: рекурсия по количеству слов с соответствующими суффиксами.

Построенная рекуррентность для задачи 2:

$$g(n) = g(n) + g(n-1) + 1.$$

Упражнение: слова в алфавите $\{a, b\}$, не содержащие подстроки aabb.

Формальные степенные ряды

 \mathbb{K} — какое-нибудь (числовое) поле. Существует взаимно-однозначное соответствие между списками элементов из \mathbb{K} и многочленами с коэффициентами из \mathbb{K} . Т.е. представим списки чисел как «многочлены» (с бесконечным числом коэффициентов):

$$\sum_{n=0}^{\infty} a_n x^n$$

Приятная неожиданность

- Покоэффициентное сложение, коммутативное и ассоциативное.
- Умножение, коммутативное и ассоциативное.

Формальные степенные ряды

Производящая функция последовательности $\{a_n\}$ — это формальный степенной ряд:

$$\sum_{n=0}^{\infty} \alpha_n x^n$$

Приятная неожиданность

- Покоэффициентное сложение, коммутативное и ассоциативное.
- Умножение, коммутативное и ассоциативное.
- Расширение алгебры многочленов! Частное и производная.

Значения, принимаемые х — не численные, а комбинаторные.

Краткое представление ряда

Пусть P(x) — полином степени $\mathfrak n$. Рассмотрим «обращённый» полином $P^R(x) = P(\frac{1}{x}) \cdot x^\mathfrak n$ (тот же самый, но упорядоченный в перевёрнутом порядке).

Что получится, если формально разделить в столбик 1 на $(-k\cdot x+1)^R$?

Получаем способ свёртки формального ряда (списка) в частное обратных полиномов.

Алгоритмы свёртки

- ПФ для свёртки $\frac{1}{1-k\cdot x}$ это $\sum_{i=0}^{\infty}k^ix^i$.
- Умножение на n-ую степень х это сдвиг на n.
- ПФ для свёртки $\frac{P(x)}{Q(x)}$, где Q(x) многочлен без кратных и мнимых корней, получается с помощью разложения в сумму простых дробей со знаменателями вида $1-k\cdot x$.

Упражнение: превратить рекуррентность для чисел Фибоначчи в свёртку вида $\frac{1}{P(x)}$ (или подсмотреть в интернете), а потом разделить 1^R на $P(x)^R$ в столбик.

Теорема о рациональных ПФ

Квазиполином — это сумма вида $\sum \beta_i \cdot x^{q_i} \cdot k_i^{\alpha_i \cdot x}$.

Теорема

Следующие утверждения относительно последовательности $\{\alpha_n\}$ эквивалентны:

- ПФ $\{a_n\}$ является рациональной (может быть представлена в виде частного полиномов P(x)/Q(x)), где $Q(x)=1-c_1\cdot x-\cdots-c_k\cdot x^k;$
- $f(i) = a_i$ описывается квазиполиномом, основания экспонент которого определяются корнями Q(x);
- $\{a_n\}$ описывается линейной рекуррентностью $a_n = c_1 \cdot a_{n-1} + c_2 \cdot a_{n-2} + \cdots + c_k \cdot a_{n-k}$.

Случаи кратных и мнимых корней Q(x) не рассматриваем!

Ищем краткое представление для
$$G = \sum_{j\geqslant 0} \alpha_j x^j.$$

Строим уравнения на коэффициенты производящей функции и умножаем на подходящие степени х:

$$\begin{array}{ll} a_k = c_1 \cdot a_{k-1} + c_2 \cdot a_{k-2} + \dots + c_k \cdot a_0 & (\cdot x^0) \\ a_{k+1} = c_1 \cdot a_k + c_2 \cdot a_{k-1} + \dots + c_k \cdot a_1 & (\cdot x^1) \\ \dots & \\ a_n = c_1 \cdot a_{n-1} + c_2 \cdot a_{n-2} + \dots + c_k \cdot a_{n-k} & (\cdot x^{n-k}) \\ \dots & \end{array}$$

Ищем краткое представление для $G = \sum_{j\geqslant 0} a_j x^j.$

$$\begin{array}{lll} a_k = c_1 \cdot a_{k-1} + c_2 \cdot a_{k-2} + \dots + c_k \cdot a_0 & (\cdot x^0) \\ a_{k+1} = c_1 \cdot a_k + c_2 \cdot a_{k-1} + \dots + c_k \cdot a_1 & (\cdot x^1) \\ \dots & \\ a_n = c_1 \cdot a_{n-1} + c_2 \cdot a_{n-2} + \dots + c_k \cdot a_{n-k} & (\cdot x^{n-k}) \\ \dots & \\ \end{array}$$

Теперь складываем все эти уравнения:

$$\sum_{j\geqslant k}\alpha_j x^{j-k} = c_1 \cdot \sum_{j\geqslant k-1}\alpha_j x^{j-k+1} + \dots + c_k \cdot \sum_{j\geqslant 0}\alpha_j x^j$$

Ищем краткое представление для $G = \sum_{j\geqslant 0} \alpha_j x^j.$

$$\sum_{j\geqslant k}\alpha_jx^{j-k}=c_1\cdot\sum_{j\geqslant k-1}\alpha_jx^{j-k+1}+\cdots+c_k\cdot\sum_{j\geqslant 0}\alpha_jx^j$$

Чтобы стало возможным подставить G, умножаем сумму на x^k :

$$\sum_{j\geqslant k}\alpha_jx^j=c_1x\cdot\sum_{j\geqslant k-1}\alpha_jx^j+\cdots+c_kx^k\cdot\sum_{j\geqslant 0}\alpha_jx^j$$

Ищем краткое представление для $G = \sum_{j \geq 0} a_j x^j$.

$$\sum_{j\geqslant k}\alpha_jx^j=c_1x\cdot\sum_{j\geqslant k-1}\alpha_jx^j+\cdots+c_kx^k\cdot\sum_{j\geqslant 0}\alpha_jx^j$$

Выражаем результат в терминах G и нескольких первых значений a_i :

$$\mathsf{G} - (\sum_{j < k} \alpha_j x^j) = c_1 x \cdot (\mathsf{G} - \sum_{j < k-1} \alpha_j x^j) + \dots + c_k x^k \cdot \mathsf{G}$$

Итог:

$$G = \frac{\sum_{j < k} \alpha_j x^j - c_1 x \cdot \sum_{j < k-1} \alpha_j x^j - \dots + c_{k-1} x^{k-1} \alpha_0}{1 - c_1 x - \dots - c_k x^k}$$

Оценить скорость роста количества слов длины n, не содержащих abb.

Берём уже известное соотношение и начальные значения g: g(0)=1; g(1)=2; g(n)=g(n-1)+g(n-2)+1. Соотношение имеет дополнительное слагаемое (1), поэтому придётся повторять конструкцию суммы по шагам.

$$\sum_{j\geqslant 2}\alpha_jx^j=x\cdot\sum_{j\geqslant 1}\alpha_jx^j+x^2\cdot\sum_{j\geqslant 0}\alpha_jx^j+x^2\cdot\sum_{j\geqslant 0}x^j.$$

Оценить скорость роста количества слов длины n, не содержащих abb.

Берём уже известное соотношение и начальные значения g: g(0) = 1; g(1) = 2; g(n) = g(n-1) + g(n-2) + 1.

$$\sum_{j\geqslant 2}\alpha_j x^j = x\cdot \sum_{j\geqslant 1}\alpha_j x^j + x^2\cdot \sum_{j\geqslant 0}\alpha_j x^j + x^2\cdot \sum_{j\geqslant 0}x^j.$$

Как свернуть последнюю сумму, мы уже знаем, поэтому остальные построения не представляют труда:

$$G - 1 - 2x = x \cdot (G - 1) + x^{2} \cdot G + \frac{x^{2}}{1 - x}$$

Оценить скорость роста количества слов длины n, не содержащих abb.

Берём уже известное соотношение и начальные значения g: g(0) = 1; g(1) = 2; g(n) = g(n-1) + g(n-2) + 1.

$$G - 1 - 2x = x \cdot (G - 1) + x^{2} \cdot G + \frac{x^{2}}{1 - x}$$

$$G = \frac{1+x}{1-x-x^2} + \frac{x^2}{(1-x)(1-x-x^2)} = \frac{1}{1-2x+x^3}$$

Оценить скорость роста количества слов длины n, не содержащих abb.

Берём уже известное соотношение и начальные значения g: g(0)=1; g(1)=2; g(n)=g(n-1)+g(n-2)+1.

$$G = \frac{1+x}{1-x-x^2} + \frac{x^2}{(1-x)(1-x-x^2)} = \frac{1}{1-2x+x^3}$$

Разделив 1 на $1-2x+x^3$ в столбик, мы действительно можем убедиться, что получаются нужные оценки. Заодно из неоднородной рекуррентности $a_n=a_{n-1}+a_{n-2}+1$ мы построили однородную: $a_n=2\cdot a_{n-1}-a_{n-3}$. Чтобы оценить рост функции g, нужно найти разложение полинома $1-2x+x^3=(1-q_1\cdot x)(1-q_2\cdot x)(1-q_3\cdot x)$. Получаем $q_1=1,\ q_2=\frac{\sqrt{5}+1}{2},\ q_3=\frac{1-\sqrt{5}}{2}$. Наибольшее значение — второе, оно и определяет асимптотику.

Оценить скорость роста количества слов длины n, не содержащих abb.

Чтобы оценить рост функции g, нужно найти разложение полинома $1-2x+x^3=(1-q_1\cdot x)(1-q_2\cdot x)(1-q_3\cdot x).$ Получаем $q_1=1,\ q_2=\frac{\sqrt{5}+1}{2},\ q_3=\frac{1-\sqrt{5}}{2}.$ Наибольшее значение — второе, оно и определяет асимптотику.

Если стоит задача определить *точное* количество слов длины n, тогда придётся разложить G в сумму простых дробей (см. ниже) и найти коэффициенты A_1 , A_2 , A_3 . Понятно, что для оценки асимптотики g это делать не обязательно.

$$\frac{1}{1-2x+x^3} = \frac{A_1}{1-q_1 \cdot x} + \frac{A_2}{1-q_2 \cdot x} + \frac{A_3}{1-q_3 \cdot x}.$$

Связь ПФ и М.- Т.

Оценить асимптотику роста n-ого коэффициента производящей функции, заданной следующей рекуррентностью:

$$f(n) = a \cdot f(n-1) + b^{c \cdot n}$$

Вывести из этой оценки хотя бы один частный случай Мастер–Теоремы.

Теорема о регулярных языках

Определение

 $\Pi\Phi$ языка L — это формальный ряд вида $\sum_{i=1}^{\infty} n_i x^i$, где n_i — это количество слов языка длины ровно i.

Теорема

Если язык L регулярен, тогда его $\Pi\Phi$ является рациональной.

Показать, что язык $\{\alpha^{2^n} \mid n \in \mathbb{N}\}$ не является регулярным.

Рабочий приём: стабилизация рекуррентного отрезка ряда.

Показать, что язык $\{a^{[\log_2 n] + 3n} \mid n \in \mathbb{N}\}$ нерегулярен.

ПФ для регулярки

Только для однозначных регулярных выражений!

Алгоритм построения ПФ

Строим свёртку ПФ по следующему алгоритму:

- Любой букве соответствует х;
- Альтернативе соответствует сложение, конкатенации
 — умножение;
- **3** Если s является $\Pi\Phi$ для выражения Φ , тогда $\frac{1}{1-s}$ является $\Pi\Phi$ для выражения Φ^* .

Далее разворачиваем свёртку в ряд по вышеописанному алгоритму.

Физический смысл: комбинаторные объекты (см. лекции Станкевича в ИТМО по ДМ для 2 курса) + однозначные сочетания этих объектов.

Пример применения

Оценить асимптотику роста количества слов в $\{a, b\}$, не содержащих подслова abb.

Строим однозначное регулярное выражение для искомых слов:

$$b^*(aa^*b)^*a^*$$

Здесь ещё нужно обосновать, почему это выражение однозначное (это почти очевидно) и почему оно описывает требуемый язык (например, по индукции). Дальше останется тупо применить алгоритм порождения $\Pi\Phi$:

$$G(b^*(\alpha\alpha^*b)^*\alpha^*) = \frac{1}{1-x} \cdot \frac{1}{1-x \cdot \frac{1}{1-x} \cdot x} \cdot \frac{1}{1-x} = \frac{1}{1-x} \cdot \frac{1}{1-x-x^2}.$$

Этот путь намного короче первого, если хорошо владеть техникой построения регулярок.