Operon Promoter Landscape

Operon	Strand	Operon start	Operon end	
iclR	-	4221651	4220827	

Figure 1: **Promoter activity in rich media (LB) surrounding query operon**. 17,767 previously reported TSSs were evaluated by measuring the promoter activity (right Y-axis) of the 150 bp surrounding the TSS (-120 to +30) to determine which were active or inactive. The genome-wide promoter activity (left Y-axis) was determined by measuring expression of over 300,000 genomic fragments spanning the *E. coli* genome and averaging promoter activity at all nucleotide positions in a strand-specific fashion. Genome coordinates corresponds to *E. coli* genome version U00096.2.

TSS Summary

TSS name		TSS position	Strand	TSS activity	Category
TSS_	16544_regulondb	4221806	+	0.8698869	inactive
TSS_	16542_storz_wanner_regulondb	4221675	-	12.9508137	active
TSS	16543 storz	4221763	_	0.5368769	inactive

TSS Scanning Mutagenesis

Figure 2: **(Left)** Mutagenesis profile(s) of active TSS(s). Sequences surrounding active TSSs were systematically mutated to identify regions controlling expression. Bar height indicates the relative change in promoter activity as a result of scrambling nucleotides within 10 bp regions at 5 bp intervals spanning the promoter. Bar color identifies the region as a putative activator (yellow) or repressor (purple). **(Right)** Dashed line indicates the expression of the indicated TSS relative to all tested TSS sequences. The distributions of expression is shown for all tested TSSs (black), 500 negative controls (red), and a set of constitutive promoters from the BioBrick registry (blue).