ETSI TS 136 101 V8.21.0 (2013-04)

LTE;

Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (3GPP TS 36.101 version 8.21.0 Release 8)

Reference RTS/TSGR-0436101v8l0 Keywords LTE

ETSI

650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from: http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.

Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2013. All rights reserved.

DECTTM, **PLUGTESTS**TM, **UMTS**TM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members. **3GPP**TM and **LTE**TM are Trade Marks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI 3rd Generation Partnership Project (3GPP).

The present document may refer to technical specifications or reports using their 3GPP identities, UMTS identities or GSM identities. These should be interpreted as being references to the corresponding ETSI deliverables.

The cross reference between GSM, UMTS, 3GPP and ETSI identities can be found under http://webapp.etsi.org/key/queryform.asp.

Contents

Intelle	ectual Property Rights	2
Forev	vord	2
Forev	word	9
1	10	
2	References	10
3	Definitions, symbols and abbreviations	10
3.1	Definitions	
3.2	Symbols	11
3.3	Abbreviations	12
4	General	
4.1	Relationship between minimum requirements and test requirements	
4.2	Applicability of minimum requirements	
4.3	Uplink 64-QAM modulation format	
4.4	RF requirements in later releases	
5	Operating bands and channel arrangement	14
5.1	General	
5.2	Void	
5.3	Void	
5.4 5.5	Void Operating bands	
5.6	Channel bandwidth	
5.6.1	Channel bandwidths per operating band	
5.7	Channel arrangement	
5.7.1	Channel spacing	
5.7.2	Channel raster	
5.7.3	Carrier frequency and EARFCN	
5.7.4	TX-RX frequency separation	18
6	Transmitter characteristics	20
6.1	General	20
6.2	Transmit power	
6.2.1	Void	
6.2.2	UE Maximum Output Power	
6.2.3	UE Maximum Output power for modulation / channel bandwidth	
6.2.4	UE Maximum Output Power with additional requirements	
6.2.5	Configured transmitted Power	
6.3	Output power dynamics(Void)	
6.3.1 6.3.2	Minimum output power	
6.3.2.1		
6.3.3	Transmit OFF power	
6.3.3.1		
6.3.4	ON/OFF time mask	
6.3.4.1		
6.3.4.2		
6.3.4.2	2.1 PRACH time mask	24
6.3.4.2	2.2 SRS time mask	25
6.3.4.3		
6.3.4.4		
6.3.5	Power Control	
6.3.5.1		
6.3.5.1	1	
6.3.5.2	2 Relative Power tolerance	28

6.3.5.3	Aggregate power control tolerance	
6.3.5.3.1	Minimum requirement	
6.4	Void	
6.5	Transmit signal quality	
6.5.1	Frequency error	30
6.5.2	Transmit modulation quality	
6.5.2.1	Error Vector Magnitude	30
6.5.2.1.1	Minimum requirement	
6.5.2.2	Carrier leakage	
6.5.2.2.1	Minimum requirements	31
6.5.2.3	In-band emissions	31
6.5.2.3.1	Minimum requirements	31
6.5.2.4	EVM equalizer spectrum flatness	32
6.5.2.4.1	Minimum requirements	32
6.6	Output RF spectrum emissions.	33
6.6.1	Occupied bandwidth	
6.6.2	Out of band emission	
6.6.2.1	Spectrum emission mask	
6.6.2.1.1	Minimum requirement	
6.6.2.2	Additional Spectrum Emission Mask	
6.6.2.2.1	Minimum requirement (network signalled value "NS_03")	
6.6.2.2.2	Minimum requirement (network signalled value "NS_04")	
6.6.2.2.3	Minimum requirement (network signalled value "NS_06" or "NS_07")	
6.6.2.3	Adjacent Channel Leakage Ratio	37
6.6.2.3.1	Minimum requirement E-UTRA	
6.6.2.3.2	Minimum requirements UTRA	
6.6.2.4	Additional ACLR requirements	
6.6.2.4.1	Void	38
6.6.3	Spurious emissions	
6.6.3.1	Minimum requirements	
6.6.3.2	Spurious emission band UE co-existence	39
6.6.3.3	Additional spurious emissions	
6.6.3.3.1	Minimum requirement (network signalled value "NS_05")	
6.6.3.3.2	Minimum requirement (network signalled value "NS_07")	43
6.7	Transmit intermodulation	
6.7.1	Minimum requirement	44
7 Re	eceiver characteristics	1/
7.1	General	
7.1	Diversity characteristics	
7.2	Reference sensitivity power level	
7.3.1	Minimum requirements (QPSK)	
7.3.1	Requirement for large transmission configurations	
7.3.2 7.4	Maximum input level	
7.4 7.4.1	Minimum requirements	
7.4.1 7.5	Adjacent Channel Selectivity (ACS)	
7.5.1	Minimum requirements	
7.5.1 7.6	Blocking characteristics	
7.6.1	In-band blocking	
7.6.1.1	Minimum requirements	
7.6.2	Out-of-band blocking	
7.6.2.1	Minimum requirements	
7.6.2.1	Narrow band blocking	
7.6.3.1	Minimum requirements	
7.0.3.1 7.7	Spurious response	
7.7 7.7.1	Minimum requirements	
7.7.1 7.8	Intermodulation characteristics	
7.8 7.8.1	Wide band intermodulation.	
7.8.1 7.8.1.1	Minimum requirements	
7.8.1.1 7.8.2	Void	
7.8.2 7.9	Spurious emissions	
7.9 7.9.1	Minimum requirements.	
1.7.1	17111111111111 1 DYUII 011101110	

8	Performance requirement	54
8.1	General	54
8.1.1	Dual-antenna receiver capability	
8.1.1.1	Simultaneous unicast and MBMS operations	54
8.1.1.2	Dual-antenna receiver capability in idle mode	54
8.2	Demodulation of PDSCH (Cell-Specific Reference Symbols)	54
8.2.1	FDD (Fixed Reference Channel)	54
8.2.1.1	Single-antenna port performance	55
8.2.1.1	.1 Minimum Requirement	55
8.2.1.1	.2 Void	56
8.2.1.1	.3 Void	56
8.2.1.1	.4 Minimum Requirement 1 PRB allocation in presence of MBSFN	56
8.2.1.2	Transmit diversity performance	56
8.2.1.2	.1 Minimum Requirement 2 Tx Antenna Port	56
8.2.1.2	.2 Minimum Requirement 4 Tx Antenna Port	57
8.2.1.3	Open-loop spatial multiplexing performance	57
8.2.1.3	.1 Minimum Requirement 2 Tx Antenna Port	57
8.2.1.3	.2 Minimum Requirement 4 Tx Antenna Port	58
8.2.1.4	Closed-loop spatial multiplexing performance	58
8.2.1.4	.1 Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Port	58
8.2.1.4		
8.2.1.4	.2 Minimum Requirement Multi-Layer Spatial Multiplexing 2 Tx Antenna Port	60
8.2.1.4		
8.2.1.5	MU-MIMO	
8.2.1.6		
8.2.2	TDD (Fixed Reference Channel)	
8.2.2.1	Single-antenna port performance	
8.2.2.1		
8.2.2.1	•	
8.2.2.1.		
8.2.2.1		
8.2.2.2		
8.2.2.2	· ·	
8.2.2.2		
8.2.2.3	<u>.</u>	
8.2.2.3		
8.2.2.3		
8.2.2.4		
8.2.2.4	1 1 01	
8.2.2.4		
8.2.2.4		
8.2.2.4		
8.2.2.5		
8.2.2.6		
8.3	Demodulation of PDSCH (User-Specific Reference Symbols)	
8.3.1	FDD	
8.3.2	TDD	
8.4	Demodulation of PDCCH/PCFICH	71
8.4.1	FDD	71
8.4.1.1	Single-antenna port performance	
8.4.1.2		
8.4.1.2	V 1	
8.4.1.2	•	
8.4.2	TDD	
8.4.2.1		
8.4.2.2		
8.4.2.2.		
8.4.2.2	1	
8.5	Demodulation of PHICH.	
8.5.1	FDD	
8.5.1.1	Single-antenna port performance	
8.5.1.2		

8.5.1.2.1		
8.5.1.2.2	1	
8.5.2	TDD	
8.5.2.1	Single-antenna port performance	
8.5.2.2	Transmit diversity performance	
8.5.2.2.1	1	
8.5.2.2.2	1	
8.6	Demodulation of PBCH	
8.6.1	FDD	
8.6.1.1	Single-antenna port performance	
8.6.1.2	Transmit diversity performance	
8.6.1.2.1	1	
8.6.1.2.2	1	
8.6.2	TDD	
8.6.2.1	Single-antenna port performance	
8.6.2.2	Transmit diversity performance	
8.6.2.2.1	1	
8.6.2.2.2	2 Minimum Requirement 4 Tx Antenna Port	/8
9 F	Reporting of Channel State Information	78
9.1	General	
9.2	CQI reporting definition under AWGN conditions	
9.2.1	Minimum requirement PUCCH 1-0	
9.2.1.1	FDD	
9.2.1.2	TDD	79
9.2.2	Minimum requirement PUCCH 1-1	80
9.2.2.1	FDD	80
9.2.2.2	TDD	81
9.3	CQI reporting under fading conditions	82
9.3.1	Frequency-selective scheduling mode	82
9.3.1.1	Minimum requirement PUSCH 3-0	82
9.3.1.1.1		82
9.3.1.1.2	2 TDD	84
9.3.2	Frequency non-selective scheduling mode	
9.3.2.1	Minimum requirement PUCCH 1-0	
9.3.2.1.1		85
9.3.2.1.2	2 TDD	86
9.3.3	Frequency-selective interference	
9.3.3.1	Minimum requirement PUSCH 3-0	
9.3.3.1.1		88
9.3.3.1.2		
9.4	Reporting of Precoding Matrix Indicator (PMI)	
9.4.1	Single PMI	
9.4.1.1	Minimum requirement PUSCH 3-1	
9.4.1.1.1		
9.4.1.1.2		
9.4.2	Multiple PMI	
9.4.2.1	Minimum requirement PUSCH 1-2	
9.4.2.1.1		
9.4.2.1.2		
9.5	Reporting of Rank Indicator (RI)	
9.5.1	Minimum requirement	
9.5.1.1	FDD	
9.5.1.2	TDD	
	A (normative): Measurement channels	
	General	
	JL reference measurement channels	
A.2.1	General	
A.2.1.1	Applicability and common parameters	
Δ 2 1 2	Determination of payload size	08

A.2.1.3	Overview of UL reference measurement channels	
A.2.2	Reference measurement channels for FDD	105
A.2.2.1	Full RB allocation	105
A.2.2.1.1	QPSK	105
A.2.2.1.2	16-QAM	105
A.2.2.1.3	64-QAM	105
A.2.2.2	Partial RB allocation	106
A.2.2.2.1	QPSK	106
A.2.2.2.2		
A.2.2.2.3	64-QAM	
A.2.3	Reference measurement channels for TDD	
A.2.3.1	Full RB allocation	
A.2.3.1.1	QPSK	
A.2.3.1.2		
A.2.3.1.3		
A.2.3.2	Partial RB allocation	
A.2.3.2.1	QPSK	
A.2.3.2.2		
A.2.3.2.3 A.2.3.2.3	64-QAM	
A.3 D	L reference measurement channels	124
A.3.1	General	124
A.3.1.1	Overview of DL reference measurement channels	
A.3.2	Reference measurement channel for receiver characteristics	
A.3.3	Reference measurement channels for PDSCH performance requirements (FDD)	
A.3.3.1	Single-antenna transmission (Common Reference Symbols)	
A.3.3.2	Multi-antenna transmission (Common Reference Symbols)	
A.3.3.2.1	Two antenna ports	
A.3.3.2.2	•	
A.3.3.3	[RMC for UE-Specific Reference Symbols]	
A.3.4	Reference measurement channels for PDSCH performance requirements (TDD)	
A.3.4.1	Single-antenna transmission (Common Reference Symbols)	
A.3.4.2	Multi-antenna transmission (Common Reference Signals)	
A.3.4.2.1	Two antenna ports	
A.3.4.2.2	1	
A.3.4.3	[RMC for UE-Specific Reference Symbols]	
A.3.5	Reference measurement channels for PDCCH/PCFICH performance requirements	
A.3.5.1	FDD	
A.3.5.2	TDD	
A.3.6	Reference measurement channels for PHICH performance requirements	
A.3.7	Reference measurement channels for PBCH performance requirements	150
A.4 C	SI reference measurement channels	150
A.4 C.	SI reference measurement channels	130
A.5 O	FDMA Channel Noise Generator (OCNG)	154
A.5.1	OCNG Patterns for FDD	
A.5.1.1	OCNG FDD pattern 1: One sided dynamic OCNG FDD pattern	
A.5.1.2	OCNG FDD pattern 2: Two sided dynamic OCNG FDD pattern	
A.5.1.3	OCNG FDD pattern 3: 49 RB OCNG allocation with MBSFN in 10 MHz	
A.5.2	OCNG Patterns for TDD.	
A.5.2.1	OCNG TDD pattern 1: One sided dynamic OCNG TDD pattern	
A.5.2.1 A.5.2.2	OCNG TDD pattern 2: Two sided dynamic OCNG TDD pattern	
A.5.2.2 A.5.2.3	OCNG TDD pattern 2: 1 Wo sided dynamic OCNG TDD pattern OCNG TDD pattern 3: 49 RB OCNG allocation with MBSFN in 10 MHz	
A.J.2.3	OCNO 1DD pattern 3. 49 KB OCNO anocation with MB3FN in 10 MHZ	130
Anney E	3 (normative): Propagation conditions	150
B.1 St	atic propagation condition	159
	ulti-path fading propagation conditions	
B.2.1	Delay profiles	
B.2.2	Combinations of channel model parameters	
B.2.3	MIMO Channel Correlation Matrices	161
B.2.3.1	Definition of MIMO Correlation Matrices	161
B.2.3.2	MIMO Correlation Matrices at High, Medium and Low Level	162

B.2.4	Propagation condition	ons for CQI tests	164			
B.3	High speed train scen	ario	165			
B.4 B.4.1	Beamforming Model					
Anne	ex C (normative):	Downlink Physical Channels	167			
C.1	General		167			
C.2	Set-up		167			
C.3 C.3.1 C.3.2	Measurement of Re	ceiver Characteristicsformance requirements	167			
Anne	ex D (normative):	Characteristics of the interfering signal	169			
D.1	General		169			
D.2	Interference signals		169			
Anne	ex E (normative):	Environmental conditions	170			
E.1	General		170			
E.2 E.2.1 E.2.2 E.2.3	TemperatureVoltage		170 170			
Anne	ex F (normative):	Transmit modulation	172			
F.1	Measurement Point		172			
F.2	Basic Error Vector M	lagnitude measurement	172			
F.3	Basic in-band emission	ons measurement	173			
F.4	Modified signal unde	r test	173			
F.5 F.5.1 F.5.2 F.5.3 F.5.4 F.5. 5	Timing offset Window length Window length for the window length window lengt	normal CP	175 175 175 176			
F.6	Averaged EVM		177			
F.7	Spectrum Flatness		178			
Anne	ex G (informative):	Change history	179			
Histo	ry		185			

Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

Where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

1 Scope

. The present document establishes the minimum RF characteristics and minimum performance requirements for E-UTRA User Equipment (UE).

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.
- [1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
- [2] ITU-R Recommendation SM.329-10, "Unwanted emissions in the spurious domain"
- [3] ITU-R Recommendation M.1545: "Measurement uncertainty as it applies to test limits for the terrestrial component of International Mobile Telecommunications-2000".
- [4] 3GPP TS 36.211: "Physical Channels and Modulation".
- [5] 3GPP TS 36.212: "Multiplexing and channel coding".
- [6] 3GPP TS 36.213: "Physical layer procedures".
- [7] 3GPP TS 36.331: "Requirements for support of radio resource management".
- [8] 3GPP TS 36.307: "Requirements on User Equipments (UEs) supporting a release-independent frequency band ".

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Channel edge: The lowest and highest frequency of the carrier, separated by the channel bandwidth.

Channel bandwidth: The RF bandwidth supporting a single E-UTRA RF carrier with the transmission bandwidth configured in the uplink or downlink of a cell. The channel bandwidth is measured in MHz and is used as a reference for transmitter and receiver RF requirements.

Maximum Output Power: The mean power level per carrier of UE measured at the antenna connector in a specified reference condition.

Mean power: When applied to E-UTRA transmission this is the power measured in the operating system bandwidth of the carrier. The period of measurement shall be at least one subframe (1ms) unless otherwise stated.

Occupied bandwidth: The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage $\beta/2$ of the total mean power of a given emission.

Output power: The mean power of one carrier of the UE, delivered to a load with resistance equal to the nominal load impedance of the transmitter.

Reference bandwidth: The bandwidth in which an emission level is specified.

Transmission bandwidth: Bandwidth of an instantaneous transmission from a UE or BS, measured in Resource Block units.

Transmission bandwidth configuration: The highest transmission bandwidth allowed for uplink or downlink in a given channel bandwidth, measured in Resource Block units.

3.2 Symbols

For the purposes of the present document, the following symbols apply:

$\mathrm{BW}_{\mathrm{Channel}}$	Channel bandwidth
$E_{\scriptscriptstyle RS}$	Transmitted energy per RE for reference symbols during the useful part of the symbol, i.e.
	excluding the cyclic prefix, (average power normalized to the subcarrier spacing) at the eNode B transmit antenna connector
\hat{E}_{s}	The averaged received energy per RE of the wanted signal during the useful part of the symbol,
F	i.e. excluding the cyclic prefix, at the UE antenna connector; average power is computed within a set of REs used for the transmission of physical channels (including user specific RSs when present), divided by the number of REs within the set, and normalized to the subcarrier spacing Frequency
$F_{Interferer}$ (offset)	Frequency offset of the interferer
$F_{Interferer}$	Frequency of the interferer
F_{C}	Frequency of the carrier centre frequency
$F_{ m DL_low}$	The lowest frequency of the downlink operating band
$F_{ m DL_high}$	The highest frequency of the downlink operating band
$F_{ m UL_low}$	The lowest frequency of the uplink operating band The highest frequency of the uplink operating band
F_{UL_high}	The highest requency of the uplink operating band
I_o	The power spectral density of the total input signal (power averaged over the useful part of the
	symbols within the transmission bandwidth configuration, divided by the total number of RE for this configuration and normalised to the subcarrier spacing) at the UE antenna connector, including the own-cell downlink signal
I_{or}	The total transmitted power spectral density of the own-cell downlink signal (power averaged over
o,	the useful part of the symbols within the transmission bandwidth configuration, divided by the total number of RE for this configuration and normalised to the subcarrier spacing) at the eNode B transmit antenna connector
\hat{I}_{or}	The total received power spectral density of the own-cell downlink signal (power averaged over
or .	the useful part of the symbols within the transmission bandwidth configuration, divided by the total number of RE for this configuration and normalised to the subcarrier spacing) at the UE antenna connector
I_{ot}	The received power spectral density of the total noise and interference for a certain RE (average
N_{cp}	power obtained within the RE and normalized to the subcarrier spacing) as measured at the UE antenna connector Cyclic prefix length
$N_{ m DL}$	Downlink EARFCN
N_{oc}	The power spectral density of a white noise source (average power per RE normalised to the
	subcarrier spacing), simulating interference from cells that are not defined in a test procedure, as

measured at the UE antenna connector Noffs-DL Offset used for calculating downlink EARFCN

N_{Offs-UL} Offset used for calculating uplink EARFCN

 N_{otx} The power spectral density of a white noise source (average power per RE normalised to the

subcarrier spacing) simulating eNode B transmitter impairments as measured at the eNode B

transmit antenna connector

N_{RB} Transmission bandwidth configuration, expressed in units of resource blocks

N_{UL} Uplink EARFCN

 $\begin{array}{ll} Rav & Minimum \ average \ throughput \ per \ RB \\ P_{CMAX} & The \ configured \ maximum \ UE \ output \ power. \end{array}$

P_{EMAX} Maximum allowed UE output power signalled by higher layers. Same as IE *P-Max*, defined in [7].

 $P_{\text{Interferer}} \hspace{1cm} \text{Modulated mean power of the interfere} \\$

 $\begin{array}{ll} P_{PowerClass} & P_{PowerClass} \ is \ the \ nominal \ UE \ power \ (i.e., \ no \ tolerance) r \\ P_{UMAX} & The \ measured \ configured \ maximum \ UE \ output \ power. \end{array}$

 ΔF_{OOB} Δ Frequency of Out Of Band emission

Test specific auxiliary variable used for the purpose of downlink power allocation, defined in

Annex C.3.2.

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

ACLR Adjacent Channel Leakage Ratio
ACS Adjacent Channel Selectivity

A-MPR Additional Maximum Power Reduction

AWGN Additive White Gaussian Noise

BS Base Station
CW Continuous Wave

DL Downlink

EARFCN E-UTRA Absolute Radio Frequency Channel Number

EPRE Energy Per Resource Element

E-UTRA Evolved UMTS Terrestrial Radio Access

EUTRAN Evolved UMTS Terrestrial Radio Access Network

EVM Error Vector Magnitude
FDD Frequency Division Duplex
FRC Fixed Reference Channel
HD-FDD Half- Duplex FDD

MCSModulation and Coding SchemeMOPMaximum Output PowerMPRMaximum Power ReductionMSDMaximum Sensitivity DegradationOCNGOFDMA Channel Noise Generator

OFDMA Orthogonal Frequency Division Multiple Access

OOB Out-of-band PA Power Amplifier

PSS Primary Synchronization Signal

PSS_RA PSS-to-RS EPRE ratio for the channel PSS

RE Resource Element

REFSENS Reference Sensitivity power level

r.m.s Root Mean Square SNR Signal-to-Noise Ratio

SSS Secondary Synchronization Signal SSS_RA SSS-to-RS EPRE ratio for the channel SSS

TDD Time Division Duplex UE User Equipment

UL Uplink

UMTS Universal Mobile Telecommunications System

UTRA UMTS Terrestrial Radio Access

UTRAN UMTS Terrestrial Radio Access Network

xCH_RA xCH-to-RS EPRE ratio for the channel xCH in all transmitted OFDM symbols not containing RS xCH_RB xCH-to-RS EPRE ratio for the channel xCH in all transmitted OFDM symbols containing RS

4 General

4.1 Relationship between minimum requirements and test requirements

The Minimum Requirements given in this specification make no allowance for measurement uncertainty. The test specification TS 36.xxx section y defines Test Tolerances. These Test Tolerances are individually calculated for each test. The Test Tolerances are used to relax the Minimum Requirements in this specification to create Test Requirements.

The measurement results returned by the Test System are compared - without any modification - against the Test Requirements as defined by the shared risk principle.

The Shared Risk principle is defined in ITU-R M.1545 [3].

4.2 Applicability of minimum requirements

- a) In this specification the Minimum Requirements are specified as general requirements and additional requirements. Where the Requirement is specified as a general requirement, the requirement is mandated to be met in all scenarios
- b) For specific scenarios for which an additional requirement is specified, in addition to meeting the general requirement, the UE is mandated to meet the additional requirements.
- c) The reference sensitivity power levels defined in subclause 7.3 are valid for the specified reference measurement channels.
- d) Note: Receiver sensitivity degradation may occur when:
 - 1) the UE simultaneously transmits and receives with bandwidth allocations less than the transmission bandwidth configuration (see Figure 5.6-1), and
 - 2) any part of the downlink transmission bandwidth is within an uplink transmission bandwidth from the downlink center subcarrier.
- e) The spurious emissions power requirements are for the long term average of the power. For the purpose of reducing measurement uncertainty it is acceptable to average the measured power over a period of time sufficient to reduce the uncertainty due to the statistical nature of the signal.

4.3 Uplink 64-QAM modulation format

Transmit signal quality requirements and maximum transmit power requirements for uplink 64-QAM modulation are not defined in this release of the specification

4.4 RF requirements in later releases

The standardisation of new frequency bands may be independent of a release. However, in order to implement a UE that conforms to a particular release but supports a band of operation that is specified in a later release, it is necessary to specify some extra requirements. TS 36.307 [9] specifies requirements on UEs supporting a frequency band that is independent of release.

NOTE: For terminals conforming to the 3GPP release of the present document, some RF requirements in later releases may be mandatory independent of whether the UE supports the bands specified in later releases or not. The set of requirements from later releases that is also mandatory for UEs conforming to the 3GPP release of the present document is determined by regional regulation.

5 Operating bands and channel arrangement

5.1 General

The channel arrangements presented in this clause are based on the operating bands and channel bandwidths defined in the present release of specifications.

NOTE: Other operating bands and channel bandwidths may be considered in future releases.

- 5.2 Void
- 5.3 Void
- 5.4 Void

5.5 Operating bands

E-UTRA is designed to operate in the operating bands defined in Table 5.5-1.

Table 5.5-1 E-UTRA operating bands

E-UTRA Operating Band	Uplink (UL) operating band BS receive UE transmit	Downlink (DL) operating band BS transmit UE receive	Duplex Mode
	$F_{UL_low} - F_{UL_high}$	F _{DL_low} - F _{DL_high}	
1	1920 MHz – 1980 MHz	2110 MHz - 2170 MHz	FDD
2	1850 MHz - 1910 MHz	1930 MHz - 1990 MHz	FDD
3	1710 MHz – 1785 MHz	1805 MHz - 1880 MHz	FDD
4	1710 MHz – 1755 MHz	2110 MHz - 2155 MHz	FDD
5	824 MHz – 849 MHz	869 MHz – 894MHz	FDD
6	830 MHz - 840 MHz	875 MHz – 885 MHz	FDD
7	2500 MHz - 2570 MHz	2620 MHz - 2690 MHz	FDD
8	880 MHz - 915 MHz	925 MHz - 960 MHz	FDD
9	1749.9 MHz - 1784.9 MHz	1844.9 MHz - 1879.9 MHz	FDD
10	1710 MHz – 1770 MHz	2110 MHz - 2170 MHz	FDD
11	1427.9 MHz - 1447.9 MHz	1475.9 MHz - 1495.9 MHz	FDD
12	699 MHz - 716 MHz	729 MHz - 746 MHz	FDD
13	777 MHz – 787 MHz	746 MHz - 756 MHz	FDD
14	788 MHz – 798 MHz	758 MHz - 768 MHz	FDD
17	704 MHz - 716 MHz	734 MHz - 746 MHz	FDD
33	1900 MHz - 1920 MHz	1900 MHz - 1920 MHz	TDD
34	2010 MHz - 2025 MHz	2010 MHz - 2025 MHz	TDD
35	1850 MHz – 1910 MHz	1850 MHz - 1910 MHz	TDD
36	1930 MHz – 1990 MHz	1930 MHz - 1990 MHz	TDD
37	1910 MHz – 1930 MHz	1910 MHz - 1930 MHz	TDD
38	2570 MHz - 2620 MHz	2570 MHz - 2620 MHz	TDD
39	1880 MHz – 1920 MHz	1880 MHz - 1920 MHz	TDD
40	2300 MHz - 2400 MHz	2300 MHz - 2400 MHz	TDD

5.6 Channel bandwidth

Requirements in present document are specified for the channel bandwidths listed in Table 5.6-1.

Table 5.6-1 Transmission bandwidth configuration N_{RB} in E-UTRA channel bandwidths

Channel bandwidth BW _{Channel} [MHz]	1.4	3	5	10	15	20
Transmission bandwidth configuration $N_{ m RB}$	6	15	25	50	75	100

Figure 5.6-1 shows the relation between the Channel bandwidth ($BW_{Channel}$) and the Transmission bandwidth configuration (N_{RB}). The channel edges are defined as the lowest and highest frequencies of the carrier separated by the channel bandwidth, i.e. at F_C +/- $BW_{Channel}$ /2.

Channel Bandwidth [MHz]

16

Figure 5.6-1 Definition of Channel Bandwidth and Transmission Bandwidth Configuration for one E-UTRA carrier

5.6.1 Channel bandwidths per operating band

a) The requirements in this specification apply to the combination of channel bandwidths and operating bands shown in Table 5.6.1-1. The transmission bandwidth configuration in Table 5.6.1-1 shall be supported for each of the specified channel bandwidths. The same (symmetrical) channel bandwidth is specified for both the TX and RX path.

Table 5.6.1-1: E-UTRA channel bandwidth

E-UTRA band / channel bandwidth						
E-UTRA Band	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
1			Yes	Yes	Yes	Yes
2	Yes	Yes	Yes	Yes	Yes ^[1]	Yes ^[1]
3	Yes	Yes	Yes	Yes	Yes ^[1]	Yes ^[1]
4	Yes	Yes	Yes	Yes	Yes	Yes
5	Yes	Yes	Yes	Yes ^[1]		
6			Yes	Yes ^[1]		
7			Yes	Yes	Yes ^[2]	Yes ^[1,2]
8	Yes	Yes	Yes	Yes ^[1]		
9			Yes	Yes	Yes ^[1]	Yes ^[1]
10			Yes	Yes	Yes	Yes
11			Yes	Yes ^[1]		
12	Yes	Yes	Yes ^[1]	Yes ^[1]		
13			Yes ^[1]	Yes ^[1]		
14			Yes ^[1]	Yes ^[1]		
17			Yes ^[1]	Yes ^[1]		
33			Yes	Yes	Yes	Yes
34			Yes	Yes	Yes	
35	Yes	Yes	Yes	Yes	Yes	Yes
36	Yes	Yes	Yes	Yes	Yes	Yes
37		· · · · · · · · · · · · · · · · · · ·	Yes	Yes	Yes	Yes
38			Yes	Yes	Yes ^[2]	Yes ^[2]
39			Yes	Yes	Yes	Yes
40			Yes	Yes	Yes	Yes

NOTE 1: bandwidth for which a relaxation of the specified UE receiver sensitivity requirement (Clause 7.3) is allowed.

5.7 Channel arrangement

5.7.1 Channel spacing

The spacing between carriers will depend on the deployment scenario, the size of the frequency block available and the channel bandwidths. The nominal channel spacing between two adjacent E-UTRA carriers is defined as following:

Nominal Channel spacing =
$$(BW_{Channel(1)} + BW_{Channel(2)})/2$$

where $BW_{Channel(1)}$ and $BW_{Channel(2)}$ are the channel bandwidths of the two respective E-UTRA carriers. The channel spacing can be adjusted to optimize performance in a particular deployment scenario.

NOTE 2: bandwidth for which the uplink transmission bandwidth can be restricted by the network for some channel assignments in FDD/TDD co-existence scenarios in order to meet unwanted emissions requirements (Clause 6.6.3.2).

b) The use of different (asymmetrical)) channel bandwidth for the TX and RX is not precluded and is intended to form part of a later release.

5.7.2 Channel raster

The channel raster is 100 kHz for all bands, which means that the carrier centre frequency must be an integer multiple of 100 kHz.

5.7.3 Carrier frequency and EARFCN

The carrier frequency in the uplink and downlink is designated by the E-UTRA Absolute Radio Frequency Channel Number (EARFCN) in the range 0 - 65535. The relation between EARFCN and the carrier frequency in MHz for the downlink is given by the following equation, where F_{DL_low} and $N_{Offs-DL}$ are given in table 5.7.3-1 and N_{DL} is the downlink EARFCN.

$$F_{DL} = F_{DL \ low} + 0.1(N_{DL} - N_{Offs\text{-}DL})$$

The relation between EARFCN and the carrier frequency in MHz for the uplink is given by the following equation where F_{UL_low} and $N_{Offs-UL}$ are given in table 5.7.3-1 and N_{UL} is the uplink EARFCN.

$$F_{UL} = F_{UL_low} + 0.1(N_{UL} - N_{Offs\text{-}UL})$$

Table 5.7.3-1 E-UTRA channel numbers

E-UTRA	Downlink			Uplink		
Operating Band	F _{DL_low} (MHz)	$N_{Offs-DL}$	Range of N _{DL}	F _{UL_low} (MHz)	N _{Offs-UL}	Range of N _{UL}
1	2110	0	0 – 599	1920	18000	18000 – 18599
2	1930	600	600 – 1199	1850	18600	18600 - 19199
3	1805	1200	1200 – 1949	1710	19200	19200 – 19949
4	2110	1950	1950 – 2399	1710	19950	19950 - 20399
5	869	2400	2400 - 2649	824	20400	20400 - 20649
6	875	2650	2650 - 2749	830	20650	20650 - 20749
7	2620	2750	2750 - 3449	2500	20750	20750 - 21449
8	925	3450	3450 - 3799	880	21450	21450 - 21799
9	1844.9	3800	3800 - 4149	1749.9	21800	21800 – 22149
10	2110	4150	4150 – 4749	1710	22150	22150 - 22749
11	1475.9	4750	4750 – 4949	1427.9	22750	22750 - 22949
12	729	5010	5010 - 5179	699	23010	23010 - 23179
13	746	5180	5180 – 5279	777	23180	23180 – 23279
14	758	5280	5280 – 5379	788	23280	23280 – 23379
17	734	5730	5730 - 5849	704	23730	23730 - 23849
33	1900	36000	36000 - 36199	1900	36000	36000 - 36199
34	2010	36200	36200 - 36349	2010	36200	36200 - 36349
35	1850	36350	36350 - 36949	1850	36350	36350 - 36949
36	1930	36950	36950 - 37549	1930	36950	36950 - 37549
37	1910	37550	37550 – 37749	1910	37550	37550 – 37749
38	2570	37750	37750 – 38249	2570	37750	37750 – 38249
39	1880	38250	38250-38649	1880	38250	38250-38649
40	2300	38650	38650-39649	2300	38650	38650-39649

NOTE: The channel numbers that designate carrier frequencies so close to the operating band edges that the carrier extends beyond the operating band edge shall not be used. This implies that the first 7, 15, 25, 50, 75 and 100 channel numbers at the lower operating band edge and the last 6, 14, 24, 49, 74 and 99 channel numbers at the upper operating band edge shall not be used for channel bandwidths of 1.4, 3, 5, 10, 15 and 20 MHz respectively.

5.7.4 TX-RX frequency separation

a) The default E-UTRA TX channel (carrier centre frequency) to RX channel (carrier centre frequency) separation is specified in Table 5.7.4-1 for the TX and RX channel bandwidths defined in Table 5.6.1-1

Table 5.7.4-1: Default UE TX-RX frequency separation

Frequency Band	TX - RX carrier centre frequency separation
1	190 MHz
2	80 MHz.
3	95 MHz.
4	400 MHz
5	45 MHz
6	45 MHz
7	120 MHz
8	45 MHz
9	95 MHz
10	400 MHz
11	48 MHz
12	30 MHz
13	-31 MHz
14	-30 MHz
17	30 MHz

b) The use of other TX channel to RX channel carrier centre frequency separation is not precluded and is intended to form part of a later release.

6 Transmitter characteristics

6.1 General

Unless otherwise stated, the transmitter characteristics are specified at the antenna connector of the UE with a single transmit antenna. For UE with integral antenna only, a reference antenna with a gain of 0 dBi is assumed.

6.2 Transmit power

6.2.1 Void

6.2.2 UE Maximum Output Power

The following UE Power Classes define the maximum output power for any transmission bandwidth within the channel bandwidth. The period of measurement shall be at least one sub frame (1ms).

Table 6.2.2-1: UE Power Class

EUTRA	Class 1	Tolerance	Class 2	Tolerance	Class 3	Tolerance	Class 4	Tolerance
band	(dBm)	(dB)	(dBm)	(dB)	(dBm)	(dB)	(dBm)	(dB)
1					23	±2		
2					23	±2 ²		
3					23	±2 ²		
4					23	±2		
5					23	±2		
6					23	±2		
7					23	±2 ²		
8					23	±2 ²		
9					23	±2		
10					23	±2		
11					23	±2		
12					23	±2 ²		
13					23	±2		
14					23	±2		
17					23	±2		
33					23	±2		
34					23	±2		
35					23	±2		
36					23	±2		
37					23	±2		
38					23	±2		
39					23	±2		
40					23	±2		

Note 1: The above tolerances are applicable for UE(s) that support up to 4 E-UTRA operating bands. For UE(s) that support 5 or more E-UTRA bands the maximum output power is expected to decrease with each additional band and is FFS

Note 2: For transmission bandwidths (Figure 5.6-1) confined within F_{UL_low} and $F_{UL_low} + 4$ MHz or $F_{UL_high} - 4$ MHz and F_{UL_high} , the maximum output power requirement is relaxed by reducing the lower tolerance limit by 1.5 dB

Note 3: P_{PowerClass} is the maximum UE power specified without taking into account the tolerance

6.2.3 UE Maximum Output power for modulation / channel bandwidth

For UE Power Class 3, the allowed Maximum Power Reduction (MPR) for the maximum output power in Table 6.2.2-1due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

Modulation	Channel	MPR (dB)					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2

For the UE maximum output power modified by MPR, the power limits specified in subclause 6.2.5 apply.

6.2.4 UE Maximum Output Power with additional requirements

Additional ACLR and spectrum emission requirements can be signalled by the network to indicate that the UE shall also meet additional requirements in a specific deployment scenario. To meet these additional requirements, Additional Maximum Power Reduction A-MPR is allowed for the output power as specified in Table 6.2.2-1. Unless stated otherwise, an A-MPR of 0 dB shall be used.

For UE Power Class 3 the specific requirements and identified sub-clauses are specified in Table 6.2.4-1 along with the allowed A-MPR values that may be used to meet these requirements. The allowed A-MPR values specified below in Table 6.2.4-1 and 6.2.4-2 are in addition to the allowed MPR requirements specified in clause 6.2.3.

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR) / Spectrum Emission requirements

Network Signalling value	Requirements (sub-clause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks	A-MPR (dB)
NS_01	NA	NA	NA	NA	NA
	6.6.2.2.1	2, 4,10, 35, 36	3	>5	≤ 1
	6.6.2.2.1	2, 4,10, 35,36	5	>6	≤1
NS_03	6.6.2.2.1	2, 4,10, 35,36	10	>6	≤ 1
	6.6.2.2.1	2, 4,10,35,36	15	>8	≤ 1
	6.6.2.2.1	2, 4,10,35, 36	20	>10	≤ 1
NS_04	6.6.2.2.2	TBD	TBD	TBD	
NS_05	6.6.3.3.1	1	10,15,20	≥ 50	≤ 1
NS_06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	n/a	n/a
NS_07	6.6.2.2.3	13	10	Table 6.2.4-2	Table 6.2.4-2
145_07	6.6.3.3.2	13	10	Table 0.2.4-2	1able 0.2.4-2
NS_32	-	-	-	-	-
			•	•	

Table 6.2.4-2: A-MPR for "NS0_7"

	Region A		Regio	on B	Region C	
RB_start ¹	0 - 12		13 – 18	19 – 42	43 – 49	
L_CRB ² [RBs]	6-8	1 to 5 and 9-50	≥8	≥18	≤2	
A-MPR [dB]	≤ 8	≤ 12	≤ 12	≤ 6	≤ 3	
Note						
1 RB_start ind	1 RB_start indicates the lowest RB index of transmitted resource blocks					
2 L_CRB is the length of a contiguous resource block allocation						
For intra-subframe frequency hopping between two regions, notes 1 and 2 apply on a per slot basis.						
For intra-subframe frequency hopping between two regions, the larger A-MPR value of the two regions may be applied for both slots in the subframe.						

For the UE maximum output power modified by A-MPR, the power limits specified in subclause 6.2.5 apply.

6.2.5 Configured transmitted Power

The UE is allowed to set its configured maximum output power P_{CMAX} . The configured maximum output power P_{CMAX} is set within the following bounds:

$$P_{CMAX_L} \leq \, P_{CMAX} \, \leq \, P_{CMAX_H}$$

Where

- $\quad P_{CMAX_L} = MIN \; \{ \; P_{EMAX} \Delta T_C, \; \; P_{PowerClass} MPR A MPR \Delta T_C \}$
- $P_{CMAX_H} = MIN \{P_{EMAX}, P_{PowerClass}\}$
- P_{EMAX} is the value given to IE *P-Max*, defined in [7]
- $P_{PowerClass}$ is the maximum UE power specified in Table 6.2.2-1 without taking into account the tolerance specified in the Table 6.2.2-1
- MRP and A-MPR are specified in Section 6.2.3 and Section 6.2.4, respectively
- $-\Delta T_C = 1.5$ dB when Note 2 in Table 6.2.2-1 applies
- $\Delta T_C = 0$ dB when Note 2 in Table 6.2.2-1 does not apply

The measured maximum output power P_{UMAX} shall be within the following bounds:

$$P_{CMAX_L} - \ T(P_{CMAX_L}) \ \leq \ P_{UMAX} \leq \ P_{CMAX_H} + \ T(P_{CMAX_H})$$

Where $T(P_{CMAX})$ is defined by the tolerance table below and applies to $P_{CMAX L}$ and $P_{CMAX H}$ separately.

Table 6.2.5-1: P_{CMAX} tolerance

P _{CMAX} (dBm)	Tolerance T(P _{CMAX}) (dB)
21 ≤ P _{CMAX} ≤ 23	2.0
20 ≤ P _{CMAX} < 21	2.5
19 ≤ P _{CMAX} < 20	3.5
18 ≤ P _{CMAX} < 19	4.0
13 ≤ P _{CMAX} < 18	5.0
8 ≤ P _{CMAX} < 13	6.0
-40 ≤ P _{CMAX} < 8	7.0

6.3 Output power dynamics

6.3.1 (Void)

6.3.2 Minimum output power

The minimum controlled output power of the UE is defined as the broadband transmit power of the UE, i.e. the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks), when the power is set to a minimum value.

6.3.2.1 Minimum requirement

The minimum output power is defined as the mean power in one sub-frame (1ms). The minimum output power shall not exceed the values specified in Table 6.3.2.1-1.

Channel bandwidth / Minimum output power / measurement bandwidth 1.4 15 3.0 20 MHz MHz MHz MHz MHz MHz Minimum output -40 dBm power Measurement 1.08 MHz 2.7 MHz 4.5 MHz 9.0 MHz 13.5 MHz 18 MHz bandwidth

Table 6.3.2.1-1: Minimum output power

6.3.3 Transmit OFF power

Transmit OFF power is defined as the mean power when the transmitter is OFF. The transmitter is considered to be OFF when the UE is not allowed to transmit or during periods when the UE is not transmitting a sub-frame. During measurements gaps, the UE is not considered to be OFF.

6.3.3.1. Minimum requirement

bandwidth

The transmit OFF power is defined as the mean power in a duration of at least one sub-frame (1ms) excluding any transient periods. The transmit OFF power shall not exceed the values specified in Table 6.3.3.1-1.

Channel bandwidth / Minimum output power / measurement bandwidth 1.4 3.0 10 15 20 MHz MHz MHz MHz MHz MHz Transmit OFF -50 dBm power Measurement 13.5 MHz 1.08 MHz 2.7 MHz 4.5 MHz 9.0 MHz 18 MHz

Table 6.3.3.1-1: Transmit OFF power

6.3.4 ON/OFF time mask

6.3.4.1 General ON/OFF time mask

The General ON/OFF time mask defines the observation period between Transmit OFF and ON power and between Transmit ON and OFF power. ON/OFF scenarios include; the beginning or end of DTX, measurement gap, contiguous, and non contiguous transmission

The OFF power measurement period is defined in a duration of at least one sub-frame excluding any transient periods. The ON power measurement period is defined as the mean power over one sub-frame excluding any transient period.

There are no additional requirements on UE transmit power beyond that which is required in clause 6.2.2 and clause 6.6.2.3

Figure 6.3.4.1-1: General ON/OFF time mask

6.3.4.2 PRACH and SRS time mask

6.3.4.2.1 PRACH time mask

The PRACH ON power is specified as the mean power over the PRACH measurement period excluding any transient periods as shown in Figure 6.3.4.2-1. The measurement period for different PRACH preamble format is specified in Table 6.3.4.2-1.

There are no additional requirements on UE transmit power beyond that which is required in clause 6.2.2 and clause 6.6.2.3

Table 6.3.4.2-1: PRACH ON power measurement period

PRACH preamble format	Measurement period (ms)
0	0.9031
1	1.4844
2	1.8031
3	2.2844
4	0.1479

Figure 6.3.4.2-1: PRACH ON/OFF time mask

6.3.4.2.2 SRS time mask

In the case a single SRS transmission, the ON measurement period is defined as the mean power over the symbol duration excluding any transient period. Figure 6.3.4.2.2-1

In the case a dual SRS transmission, the ON measurement period is defined as the mean power for each symbol duration excluding any transient period. Figure 6.3.4.2.2-2

There are no additional requirements on UE transmit power beyond that which is required in clause 6.2.2 and clause 6.6.2.3

Figure 6.3.4.2.2-1: Single SRS time mask

Figure 6.3.4.3-1: Dual SRS time mask for the case of UpPTS transmissions

6.3.4.3 Slot / Sub frame boundary time mask

The sub frame boundary time mask defines the observation period between the previous/subsequent sub–frame and the (reference) sub-frame. A transient period at a slot boundary within a sub-frame is only allowed in the case of Intra-sub frame frequency hopping. For the cases when the subframe contains SRS the time masks in subclause 6.3.4.4 apply.

There are no additional requirements on UE transmit power beyond that which is required in clause 6.2.2 and clause 6.6.2.3

Figure 6.3.4.3-1: Transmission power template

6.3.4.4 PUCCH / PUSCH / SRS time mask

The PUCCH/PUSCH/SRS time mask defines the observation period between sounding reference symbol (SRS) and an adjacent PUSCH/PUCCH symbol and subsequent sub-frame.

There are no additional requirements on UE transmit power beyond that which is required in clause 6.2.2 and clause 6.6.2.3

Figure 6.3.4.4-1: PUCCH/PUSCH/SRS time mask when there is a transmission before SRS but not after

Figure 6.3.4.4-2: PUCCH/PUSCH/SRS time mask when there is transmission before and after SRS

Figure 6.3.4.4-3: PUSCH/PUCCH/SRS time mask when there is a transmission after SRS but not before

Figure 6.3.4.4-4: SRS time mask when there is FDD SRS blanking

6.3.5 Power Control

6.3.5.1 Absolute Power Tolerance

Absolute power tolerance is the ability of the UE transmitter to set its initial output power to a specific value for the first sub-frame at the start of a contiguous transmission or non-contiguous transmission with a transmission gap larger than

20ms. This tolerance includes the channel estimation error (the absolute RSRP accuracy requirement specified in clause 9.1 of TS 36.133)

In the case of a PRACH transmission, the absolute tolerance is specified for the first preamble. The absolute power tolerance includes the channel estimation error (the absolute RSRP accuracy requirement specified in clause 9.1 of TS 36.133).

6.3.5.1.1 Minimum requirements

The minimum requirement for absolute power tolerance is given in Table 6.3.5.1.1-1 over the power range bounded by the Maximum output power as defined in sub-clause 6.2.2 and the Minimum output power as defined in sub-clause 6.3.2.

For operating bands under Note 2 in Table 6.2.2-1, the absolute power tolerance as specified in Table 6.3.5.1.1-1 is relaxed by reducing the lower limit by 1.5 dB when the transmission bandwidth is confined within F_{UL_low} and F_{UL_low} + 4 MHz or F_{UL_high} – 4 MHz and F_{UL_high} .

Table 6.3.5.1.1-1: Absolute power tolerance

Conditions	Tolerance
Normal	± 9.0 dB
Extreme	± 12.0 dB

6.3.5.2 Relative Power tolerance

The relative power tolerance is the ability of the UE transmitter to set its output power in a target sub-frame relatively to the power of the most recently transmitted reference sub-frame if the transmission gap between these sub-frames is ≤ 20 ms.

For PRACH transmission, the relative tolerance is the ability of the UE transmitter to set its output power relatively to the power of the most recently transmitted preamble. The measurement period for the PRACH preamble is specified in Table 6.3.4.2-1.

6.3.5.2.1 Minimum requirements

The requirements specified in Table 6.3.5.2.1-1 apply when the power of the target and reference sub-frames are within the power range bounded by the Minimum output power as defined in subclause 6.3.2 and the measured P_{UMAX} as defined in subclause 6.2.5 (i.e, the actual power as would be measured assuming no measurement error). This power shall be within the power limits specified in subclause 6.2.5.

To account for RF Power amplifier mode changes 2 exceptions are allowed for each of two test patterns. The test patterns are a monotonically increasing power sweep and a monotonically decreasing power sweep over a range bounded by the requirements of minimum power and maximum power specified in clauses 6.3.2 and 6.2.2. For these exceptions the power tolerance limit is a maximum of ± 6.0 dB in Table 6.3.5.2.1-1

Table 6.3.5.2.1-1 Relative Power Tolerance for Transmission (normal conditions)

Power step ΔP (Up or down) [dB]	All combinations of PUSCH and PUCCH transitions [dB]	All combinations of PUSCH/PUCCH and SRS transitions between sub- frames [dB]	PRACH [dB]
ΔP < 2	±2.5 (Note 3)	±3.0	±2.5
2 ≤ ΔP < 3	±3.0	±4.0	±3.0
3 ≤ ΔP < 4	±3.5	±5.0	±3.5
4 ≤ ΔP ≤ 10	±4.0	±6.0	±4.0
10 ≤ ΔP < 15	±5.0	±8.0	±5.0
15 ≤ ΔP	±6.0	±9.0	±6.0

Note 1: For extreme conditions an additional ± 2.0 dB relaxation is allowed Note 2: For operating bands under Note 2 in Table 6.2.2-1, the relative power tolerance is relaxed by increasing the upper limit by 1.5 dB if the transmission bandwidth of the reference sub-frames is confined within FUL_low and FUL_low + 4 MHz or FUL_high - 4 MHz and FUL_high and the target sub-frame is not confined within any one of these frequency ranges; if the transmission bandwidth of the target sub-frame is confined within FUL_low and FUL_low + 4 MHz or FUL_high - 4 MHz and FUL_high and the reference sub-frame is not confined within any one of these frequency ranges, then the tolerance is relaxed by reducing the lower limit by 1.5 dB.

Note 3: For PUSCH to PUSCH transitions with the allocated resource blocks fixed in frequency and no transmission gaps other than those generated by downlink subframes, DwPTS fields or Guard Periods for TDD: for a power step $\Delta P \le 1$ dB, the relative power tolerance for transmission is ± 1.0 dB.

The power step (ΔP) is defined as the difference in the calculated setting of the UE Transmit power between the target and reference sub-frames with the power setting according to Clause 5.1 of [TS 36.213]. The error is the difference between ΔP and the power change measured at the UE antenna port with the power of the cell-specific reference signals kept constant. The error shall be less than the relative power tolerance specified in Table 6.3.5.2-1.

For sub-frames not containing an SRS symbol, the power change is defined as the relative power difference between the mean power of the original reference sub-frame and the mean power of the target subframe not including transient durations. The mean power of successive sub-frames shall be calculated according to Figure 6.3.4.3-1 and Figure 6.3.4.1-1 if there is a transmission gap between the reference and target sub-frames.

If at least one of the sub-frames contains an SRS symbol, the power change is defined as the relative power difference between the mean power of the last transmission within the reference sub-frame and the mean power of the first transmission within the target sub-frame not including transient durations. A transmission is defined as PUSCH, PUCCH or an SRS symbol. The mean power of the reference and target sub-frames shall be calculated according to Figures 6.3.4.1-1, 6.3.4.2-1, 6.3.4.4-1, 6.3.4.4-2 and 6.3.4.4-3 for these cases.

6.3.5.3 Aggregate power control tolerance

Aggregate power control tolerance is the ability of a UE to maintain its power in non-contiguous transmission within 21 ms in response to 0 dB TPC commands with respect to the first UE transmission, when the power control parameters specified in TS 36.213 are constant.

6.3.5.3.1 Minimum requirement

The UE shall meet the requirements specified in Table 6.3.5.3.1-1 foraggregate power control over the power range bounded by the minimum output power as defined in subclause 6.3.2 and the maximum output power as defined in subclause 6.2.2.

Table 6.3.5.3.1-1: Aggregate Power Control Tolerance

TPC command	UL channel	Aggregate power tolerance within 21 ms		
0 dB	PUCCH	±2.5 dB		
0 dB	PUSCH	±3.5 dB		
Note: 1. The UE transmission gap is 4 ms. TPC command is transmitted via PDCCH 4 subframes preceding each PUCCH/PUSCH transmission.				

6.4 Void

6.5 Transmit signal quality

6.5.1 Frequency error

The UE modulated carrier frequency shall be accurate to within ± 0.1 PPM observed over a period of one time slot (0.5 ms) compared to the carrier frequency received from the E-UTRA Node B

6.5.2 Transmit modulation quality

Transmit modulation quality defines the modulation quality for expected in-channel RF transmissions from the UE. The transmit modulation quality is specified in terms of:

- Error Vector Magnitude (EVM) for the allocated resource blocks (RBs)
- EVM equalizer spectrum flatness derived from the equalizer coefficients generated by the EVM measurement process
- Carrier leakage (caused by IQ offset)
- In-band emissions for the non-allocated RB

All the parameters defined in clause 6.5.2 are defined using the measurement methodology specified in Annex F.

6.5.2.1 Error Vector Magnitude

The Error Vector Magnitude is a measure of the difference between the reference waveform and the measured waveform. This difference is called the error vector. Before calculating the EVM the measured waveform is corrected by the sample timing offset and RF frequency offset. Then the IQ origin offset shall be removed from the measured waveform before calculating the EVM.

The measured waveform is further modified by selecting the absolute phase and absolute amplitude of the Tx chain. The EVM result is defined after the front-end IDFT as the square root of the ratio of the mean error vector power to the mean reference power expressed as a %.

The basic EVM measurement interval in the time domain is one preamble sequence for the PRACH and is one slot for the PUCCH and PUSCH in the time domain. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the EVM measurement interval is reduced by one symbol, accordingly. The PUSCH or PUCCH EVM measurement interval is also reduced when the mean power, modulation or allocation between slots is expected to change. In the case of PUSCH transmission, the measurement interval is reduced by a time interval equal to the sum of 5 μ s and the applicable exclusion period defined in subclause 6.3.4, adjacent to the boundary where the power change is expected to occur. The PUSCH exclusion period is applied to the signal obtained after the front-end IDFT. In the case of PUCCH transmission with power change, the PUCCH EVM measurement interval is reduced by one symbol adjacent to the boundary where the power change is expected to occur.

6.5.2.1.1 Minimum requirement

The RMS average of the basic EVM measurements for 10 sub-frames excluding any transient period for the average EVM case, and 60 sub-frames excluding any transient period for the reference signal EVM case, for the different modulations schemes shall not exceed the values specified in Table 6.5.2.1.1-1 for the parameters defined in Table 6.5.2.1.1-2. For EVM evaluation purposes, [all PRACH preamble formats 0-4 and] all PUCCH formats 1, 1a, 1b, 2, 2a and 2b are considered to have the same EVM requirement as QPSK modulated.

Table 6.5.2.1.1-1: Minimum requirements for Error Vector Magnitude

Parameter	Unit	Average EVM Level	Reference Signal EVM Level
QPSK or BPSK	%	17.5	[17.5]
16QAM	%	12.5	[12.5]

Table 6.5.2.1.1-2: Parameters for Error Vector Magnitude

Parameter	Unit	Level
UE Output Power	dBm	≥ -40
Operating conditions		Normal conditions

6.5.2.2 Carrier leakage

Carrier leakage (The IQ origin offset) is an additive sinusoid waveform that has the same frequency as the modulated waveform carrier frequency. The measurement interval is one slot in the time domain.

6.5.2.2.1 Minimum requirements

The relative carrier leakage power is a power ratio of the additive sinusoid waveform and the modulated waveform. The relative carrier leakage power shall not exceed the values specified in Table 6.5.2.2.1-1.

Table 6.5.2.2.1-1: Minimum requirements for Relative Carrier Leakage Power

Parameters	Relative Limit (dBc)
Output power >0 dBm	-25
-30 dBm ≤ Output power ≤0 dBm	-20
-40 dBm ≤ Output power < -30 dBm	-10

6.5.2.3 In-band emissions

The in-band emission is defined as the average across 12 sub-carrier and as a function of the RB offset from the edge of the allocated UL transmission bandwidth. The in-band emission is measured as the ratio of the UE output power in a non-allocated RB to the UE output power in an allocated RB.

The basic in-band emissions measurement interval is defined over one slot in the time domain. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the in-band emissions measurement interval is reduced by one SC-FDMA symbol, accordingly.

6.5.2.3.1 Minimum requirements

The relative in-band emission shall not exceed the values specified in Table 6.5.2.3.1-1.

leakage

Parameter Description	Unit		Limit (Note 1)	Applicable Frequencies		
General	dB	20 · log 10	$25 - 10 \cdot \log_{10}(N_{RB} / L_{CRBs}),$ $EVM - 3 - 5 \cdot (\Delta_{RB} - 1) / L_{CRBs},$ $e / 180 kHz - P_{RB}$	Any non-allocated (Note 2)		
IQ Image	dB		-25	Image frequencies (Notes 2, 3)		
Carrier	dBc	-25 -20	Output power > 0 dBm -30 dBm ≤ Output power ≤ 0 dBm	Carrier frequency (Notes 4, 5)		

 $-40 \text{ dBm} \le \text{Output power} < -30 \text{ dBm}$

Table 6.5.2.3.1-1: Minimum requirements for in-band emissions

- Note 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of P_{RB} 30 dB and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. P_{RB} is defined in Note 10.
- Note 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one nonallocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs.
- Note 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the centre carrier frequency, but excluding any allocated RRs
- Note 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one nonallocated RB to the measured total power in all allocated RBs.
- Note 5: The applicable frequencies for this limit are those that are enclosed in the RBs containing the DC frequency if N_{RB} is odd, or in the two RBs immediately adjacent to the DC frequency if N_{RB} is even, but excluding any allocated RB.
- Note 6: L_{CRBs} is the Transmission Bandwidth (see Figure 5.6-1).
- Note 7: N_{RR} is the Transmission Bandwidth Configuration (see Figure 5.6-1).
- Note 8: EVM is the limit specified in Table 6.5.2.1.1-1 for the modulation format used in the allocated RBs.
- Note 9: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g.
 - $\Delta_{\it RB}=1$ or $\Delta_{\it RB}=-1$ for the first adjacent RB outside of the allocated bandwidth.
- Note 10: P_{RB} is the transmitted power per 180 kHz in allocated RBs, measured in dBm.

6.5.2.4 EVM equalizer spectrum flatness

The zero-forcing equalizer correction applied in the EVM measurement process (as described in Annex F) must meet a spectral flatness requirement for the EVM measurement to be valid. The EVM equalizer spectrum flatness is defined in terms of the maximum peak-to-peak ripple of the equalizer coefficients (dB) across the allocated uplink block. The basic measurement interval is the same as for EVM.

6.5.2.4.1 Minimum requirements

The peak-to-peak variation of the EVM equalizer coefficients contained within the frequency range of the uplink allocation shall not exceed the maximum ripple specified in Table 6.5.2.4.1-1 for normal conditions. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 5 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 7 dB (see Figure 6.5.2.4.1-1).

The EVM equalizer spectral flatness shall not exceed the values specified in Table 6.5.2.4.1-2 for extreme conditions. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 6 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 10 dB (see Figure 6.5.2.4.1-1).

Table 6.5.2.4.1-1: Minimum requirements for EVM equalizer spectrum flatness (normal conditions)

	Frequency Range	Maximum Ripple [dB]		
F _{UL_Mea}	as – F _{UL_Low} ≥ 3 MHz and F _{UL_High} – F _{UL_Meas} ≥ 3 MHz (Range 1)	4 (p-p)		
F _{UL_Me}	_{ras} – F _{UL_Low} < 3 MHz or F _{UL_High} – F _{UL_Meas} < 3 MHz (Range 2)	8 (p-p)		
Note 1:	Note 1: FUL_Meas refers to the sub-carrier frequency for which the equalizer coefficient is evaluated			
Note 2:	F_{UL_Low} and F_{UL_High} refer to each E-UTRA frequency 5.5-1	band specified in Table		

Table 6.5.2.4.1-2: Minimum requirements for EVM equalizer spectrum flatness (extreme conditions)

	Frequency Range	Maximum Ripple [dB]	
F _{UL_Mea}	as – F _{UL_Low} ≥ 5 MHz and F _{UL_High} – F _{UL_Meas} ≥ 5 MHz	4 (p-p)	
	(Range 1)		
F _{UL_Me}	as - F _{UL_Low} < 5 MHz or F _{UL_High} - F _{UL_Meas} < 5 MHz	12 (p-p)	
	(Range 2)		
Note 1:	$F_{\text{UL_Meas}}$ refers to the sub-carrier frequency for which evaluated	the equalizer coefficient is	
Note 2:	F_{UL_Low} and F_{UL_High} refer to each E-UTRA frequency 5.5-1	band specified in Table	

Figure 6.5.2.4.1-1: The limits for EVM equalizer spectral flatness with the maximum allowed variation of the coefficients indicated (the ETC minimum requirement within brackets).

6.6 Output RF spectrum emissions

The output UE transmitter spectrum consists of the three components; the emission within the occupied bandwidth (channel bandwidth), the Out Of Band (OOB) emissions and the far out spurious emission domain.

Figure 6.6-1: Transmitter RF spectrum

6.6.1 Occupied bandwidth

Occupied bandwidth is defined as the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on the assigned channel. The occupied bandwidth for all transmission bandwidth configurations (Resources Blocks) shall be less than the channel bandwidth specified in Table 6.6.1-1

Table 6.6.1-1: Occupied channel bandwidth

	Occupied channel bandwidth / channel bandwidth					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Channel bandwidth (MHz)	1.4	3	5	10	15	20

6.6.2 Out of band emission

The Out of band emissions are unwanted emissions immediately outside the assigned channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. This out of band emission limit is specified in terms of a spectrum emission mask and an Adjacent Channel Leakage power Ratio.

6.6.2.1 Spectrum emission mask

The spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the \pm edge of the assigned E-UTRA channel bandwidth. For frequencies greater than (Δf_{OOB}) as specified in Table 6.6.2.1.1-1 the spurious requirements in clause 6.6.3 are applicable.

6.6.2.1.1 Minimum requirement

The power of any UE emission shall not exceed the levels specified in Table 6.6.2.1.1-1 for the specified channel bandwidth.

1 MHz

 \pm 20-25

Spectrum emission limit (dBm)/ Channel bandwidth 1.4 3.0 5 10 15 20 Measurement Δf_{OOB} MHz (MHz) MHz MHz MHz MHz MHz bandwidth -10 -13 -15 -18 -20 -21 30 kHz ± 0-1 -10 -10 -10 -10 -10 -10 1 MHz ± 1-2.5 -25 -10 -10 -10 -10 -10 1 MHz $\pm 2.5 - 2.8$ 1 MHz $\pm 2.8-5$ -10 -10 -10 -10 -10 1 MHz ± 5-6 -25 -13 -13 -13 -13 ± 6-10 -25 -13 -13 -13 1 MHz -25 -13 -13 1 MHz ± 10-15 -25 -13 1 MHz ± 15-20

Table 6.6.2.1.1-1: General E-UTRA spectrum emission mask

Note: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

-25

6.6.2.2 Additional Spectrum Emission Mask

This requirement is specified in terms of an "additional spectrum emission" requirement.

6.6.2.2.1 Minimum requirement (network signalled value "NS_03")

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_03" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2.1-1.

	Spectrum emission limit (dBm)/ Channel bandwidth						
Δf _{OOB} (MHz)	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Measurement bandwidth
± 0-1	-10	-13	-15	-18	-20	-21	30 kHz
± 1-2.5	-13	-13	-13	-13	-13	-13	1 MHz
± 2.5-2.8	-25	-13	-13	-13	-13	-13	1 MHz
± 2.8-5		-13	-13	-13	-13	-13	1 MHz
± 5-6		-25	-13	-13	-13	-13	1 MHz
± 6-10			-25	-13	-13	-13	1 MHz
± 10-15				-25	-13	-13	1 MHz
± 15-20					-25	-13	1 MHz
± 20-25						-25	1 MHz

Table 6.6.2.2.1-1: Additional requirements

Note: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.2.2 Minimum requirement (network signalled value "NS 04")

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_04" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2.2-1.

Spectrum emission limit (dBm)/ Channel bandwidth 1.4 3.0 10 15 20 Measurement Δf_{OOB} 5 (MHz) MHz MHz MHz MHz MHz MHz bandwidth ± 0-1 -10 -13 -15 -18 -20 -21 30 kHz ± 1-2.5 -13 -13 -13 -13 -13 -13 1 MHz ± 2.5-2.8 -25 -13 -13 -13 -13 -13 1 MHz -13 -13 -13 -13 -13 1 MHz \pm 2.8-5 -25 -25 -25 -25 -25 1 MHz \pm 5-6 -25 -25 -25 -25 1 MHz $\pm 6 - 10$ -25 -25 -25 1 MHz ± 10-15 -25 $\pm 15-20$ -25 1 MHz -25 1 MHz $\pm 20-25$

Table 6.6.2.2.2-1: Additional requirements

Note:

As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.2.3 Minimum requirement (network signalled value "NS_06" or "NS_07")

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_06" or "NS_07" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.2.2.3-1.

Spectrum emission limit (dBm)/ Channel bandwidth 3.0 Measurement Δf_{OOB} 1.4 10 MHz MHz MHz bandwidth (MHz) MHz 30 kHz -13 -13 -15 -18 $\pm 0 - 0.1$ -13 -13 100 kHz $\pm 0.1 - 1$ -13 -13 ± 1-2.5 -13 -13 -13 -13 1 MHz ± 2.5-2.8 -25 -13 -13 -13 1 MHz -13 -13 -13 1 MHz ± 2.8-5 -25 -13 -13 1 MHz \pm 5-6 -25 -13 1 MHz \pm 6-10 -25 1 MHz ± 10-15

Table 6.6.2.2.3-1: Additional requirements

Note:

As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.6.2.3 Adjacent Channel Leakage Ratio

Adjacent Channel Leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency. ACLR requirements are specified for two scenarios for an adjacent E -UTRA and /or UTRA channel as shown in Figure 6.6.2.3 -1.

Figure 6.6.2.3-1: Adjacent Channel Leakage requirements

6.6.2.3.1 Minimum requirement E-UTRA

E-UTRA Adjacent Channel Leakage power Ratio (E-UTRA_{ACLR}) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency at nominal channel spacing. The assigned E-UTRA channel power and adjacent E-UTRA channel power are measured with rectangular filters with measurement bandwidths specified in Table 6.6.2.3.1-1. If the measured adjacent channel power is greater than -50dBm then the E-UTRA_{ACLR} shall be higher than the value specified in Table 6.6.2.3.1-1.

	Channel bandwidth / E-UTRA _{ACLR1} / measurement bandwidth								
	1.4 MH-7	1.4 3.0 5 10 15 MHz MHz MHz MHz MHz							
E-UTRA _{ACLR1}	30 dB	30 dB	30 dB	30 dB	30 dB	MHz 30 dB			
Adjacent channel	+1.4	+3.0	+5	+10	+15	+20			
centre frequency	/	/	/	/	/	/			
offset (in MHz)	-1.4	-3.0	-5	-10	-15	-20			

Table 6.6.2.3.1-1: General requirements for E-UTRA_{ACLR}

6.6.2.3.2 Minimum requirements UTRA

UTRA Adjacent Channel Leakage power Ratio (UTRA_{ACLR}) is the ratio of the filtered mean power centred on the assigned E-UTRA channel frequency to the filtered mean power centred on an adjacent(s) UTRA channel frequency.

UTRA adjacent Channel Leakage power Ratio is specified for both the first UTRA adjacent channel (UTRA $_{ACLR1}$) and the 2^{nd} UTRA adjacent channel (UTRA $_{ACLR2}$). The UTRA channel power is measured with a RRC bandwidth filter with roll-off factor α =0.22. The assigned E-UTRA channel power is measured with a rectangular filter with measurement bandwidth specified in Table 6.6.2.3.2-1. If the measured UTRA channel power is greater than -50dBm then the UTRA $_{ACLR}$ shall be higher than the value specified in Table 6.6.2.3.2-1.

Table 6.6.2.3.2-1: Requirements for $UTRA_{ACLR1/2}$

		Channel ba	andwidth / UTRA _{AC}	LR1/2 / measurem	ent bandwidth	
	1.4	3.0	5	10	15	20
	MHz	MHz	MHz	MHz	MHz	MHz
UTRA _{ACLR1}	33 dB	33 dB	33 dB	33 dB	33 dB	33 dB
Adjacent						
channel centre	0.7+BW _{UTRA} /2	1.5+BW _{UTRA} /2	+2.5+BW _{UTRA} /2	+5+BW _{UTRA} /2	+7.5+BW _{UTRA} /2	+10+BW _{UTRA} /2
frequency offset (in	-0.7-BW _{UTRA} /2	-1.5-BW _{UTRA} /2	-2.5-BW _{UTRA} /2	-5-BW _{UTRA} /2	-7.5-BW _{UTRA} /2	-10-BW _{UTRA} /2
MHz)						
UTRA _{ACLR2}	-	-	36 dB	36 dB	36 dB	36 dB
Adjacent channel centre	_	_	+2.5+3*BW _{UTRA} /2	+5+3*BW _{UTRA} /2	+7.5+3*BW _{UTRA} /2	+10+3*BW _{UTRA} /2
frequency offset (in MHz)			-2.5-3*BW _{UTRA} /2	-5-3*BW _{UTRA} /2	-7.5-3*BW _{UTRA} /2	-10-3*BW _{UTRA} /2
E-UTRA channel Measurement bandwidth	1.08 MHz	2.7 MHz	4.5 MHz	9.0 MHz	13.5 MHz	18 MHz
UTRA 5MHz channel Measurement bandwidth*	3.84 MHz	3.84 MHz	3.84 MHz	3.84 MHz	3.84 MHz	3.84 MHz
UTRA 1.6MHz channel measurement bandwidth**	1.28 MHz	1.28 MHz	1.28 MHz	1.28MHz	1.28MHz	1.28MHz

^{*} Note: Applicable for E-UTRA FDD co-existence with UTRA FDD in paired spectrum.

6.6.2.4 Additional ACLR requirements

This requirement is specified in terms of an additional UTRA_{ACLR2} requirement.

6.6.2.4.1 Void

6.6.3 Spurious emissions

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products, but exclude out of band emissions. The spurious emission limits are specified in terms of general requirements inline with SM.329 [2] and E-UTRA operating band requirement to address UE co-existence.

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than Δf_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth. To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

^{**} Note: Applicable for E-UTRA TDD co-existence with UTRA TDD in unpaired spectrum.

6.6.3.1 Minimum requirements

Table 6.6.3.1-1: Boundary between E-UTRA Δf_{OOB} and spurious emission domain

Channel bandwidth	1.4	3.0	5	10	15	20
	MHz	MHz	MHz	MHz	MHz	MHz
Δf_{OOB} (MHz)	2.8	6	10	15	20	25

The spurious emission limits in Table 6.6.3.1-2 apply for all transmitter band configurations (RB) and channel bandwidths.

NOTE: In order that the measurement of spurious emissions falls within the frequency ranges that are more than Δf_{OOB} (MHz) from the edge of the channel bandwidth, the minimum offset of the measurement frequency from each edge of the channel should be Δf_{OOB} + MBW/2. MBW denotes the measurement bandwidth defined in Table 6.6.3.1-2.

Table 6.6.3.1-2: Spurious emissions limits

Frequency Range	Maximum Level	Measurement Bandwidth
9 kHz ≤ f < 150 kHz	-36 dBm	1 kHz
150 kHz ≤ f < 30 MHz	-36 dBm	10 kHz
30 MHz ≤ f < 1000 MHz	-36 dBm	100 kHz
1 GHz ≤ f < 12.75 GHz	-30 dBm	1 MHz

6.6.3.2 Spurious emission band UE co-existence

This clause specifies the requirements for the specified E-UTRA band, for coexistence with protected bands

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

Table 6.6.3.2-1: Requirements

	Spurious emission										
E- UTRA Band	Protected band	Frequenc	cy r	ange (MHz)	Maximum Level (dBm)	MBW (MHz)	Comment				
1	E-UTRA Band 1, 3, 7, 8, 9, 11, 34, 38, 40	FDL_low	-	FDL_high	-50	1					
	Frequency range	860	-	895	-50	1					
	Frequency range	1475.9	-	1510.9	-50	1					
	Frequency range	1884.5	-	1915.7	-41	0.3	Note ⁶ , Note ⁸ , Note ¹⁴				
	Frequency range	1895	-	1915	-15.5	5	Note ¹⁴ ,				
	Frequency range	1915	-	1920	+1.6	5	Note ¹⁴ , Note ¹⁷				
2	E-UTRA Band 4, 5, 10, 12, 13, 14, 17	FDL_low	-	FDL_high	-50	1					
	E-UTRA Band 2	FDL_low	-	FDL_high	-50		Note ¹⁴				
3	E-UTRA Band 1, 7, 8, 33, 34, 38	FDL_low	-	FDL_high	-50	1					
	E-UTRA Band 3	FDL_low	-	FDL_high	-50		Note ¹⁴				
	Frequency range	860	-	895	-50	1	Note ¹³				
	Frequency range	1475.9	-	1510.9	-50	1	Note ¹³				
	Frequency range	1884.5	-	1915.7	-41	0.3	Note ¹³				
4	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17	FDL_low	-	FDL_high	-50	1					
5	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17	FDL_low	-	FDL_high	-50	1					
6	E-UTRA Band 1, 9, 11, 34	FDL_low	-	FDL_high	-50	1					
	Frequency range	860	-	875	-37	1					
	Frequency range	875	-	895	-50	1					
	_	1884.5	-	1919.6	-41	0.3	Note ⁷				
	Frequency range	1884.5	-	1915.7			Note ⁸				
7	E-UTRA Band 1, 3, 7, 8, 33, 34	FDL_low	-	FDL_high	-50	1					
	Frequency range	2570	-	2575	+1.6	5	Note ¹⁴ , Note ¹⁵ , Note ¹⁸				
	Frequency range	2575	-	2595	-15.5	5	Note ¹⁴ , Note ¹⁵ , Note ¹⁸				
8	E-UTRA Band 1, 33, 34, 38, 39, 40	FDL_low	-	FDL_high	-50	1					
	E-UTRA band 3	FDL_low	-	FDL_high	-50	1	Note ²				
	E-UTRA band 7	FDL_low	-	FDL_high	-50	1	Note ²				
	E-UTRA Band 8	FDL_low	-	FDL_high	-50	1	Note ¹⁴				
9	E-UTRA Band 1, 9, 11, 34	FDL_low	-	FDL_high	-50	1					
	Frequency range	860	-	895	-50	1					
	Frequency range	1475.9	-	1510.9	-50	1					

	l	1			l	
Frequency range	1884.5	-	1915.7	-41	0.3	Note ⁸
E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17	FDL_low	-	FDL_high	-50	1	
E-UTRA Band 1, 9, 11, 34	FDL_low	-	FDL_high	-50	1	
Frequency range	1457.9	-	1510.9	-50	1	
Frequency range	860	-	895	-50	1	
Frequency range	1884.5	-	1915.7	-41	0.3	Note ⁸
E-UTRA Band 2, 5, 13, 14, 17	FDL_low	-	FDL_high	-50	1	
E-UTRA Band 4, 10	FDL_low	-	FDL_high	-50	1	Note ²
E-UTRA Band 12	FDL_low	-	FDL_high	-50	1	Note ¹⁴
E-UTRA Band 2, 4, 5, 10, 12, 13, 17	FDL_low	-	FDL_high	-50	1	
E-UTRA Band 14	FDL_low	-	FDL_high	-50	1	Note ¹⁴
Frequency range	769	-	775	-35	0.00625	Note ¹⁴
Frequency range	799	-	805	-35	0.00625	Note ¹¹ , Note ¹⁴
E-UTRA Band 2, 4, 5, 10, 12, 13, 14,	FDL_low	-	FDL_high	-50	1	Note
Frequency range	769	-	775	-35	0.00625	Note ¹² Note ¹⁴
Frequency range	799	-	805	-35	0.00625	Note ¹¹ , Note ¹² Note ¹⁴
E-UTRA Band 2, 5, 13, 14, 17	FDL_low	-	FDL_high	-50	1	
E-UTRA Band 4, 10	FDL_low	-	FDL_high	-50	1	Note ²
E-UTRA Band 12	FDL_low	-	FDL_high	-50	1	Note ¹⁴
E-UTRA Band 1, 7, 8, 34, 38, 39, 40	FDL_low	-	FDL_high	-50	1	Note ⁵
E-UTRA Band 3	FDL_low	-	FDL_high	-50	1	Note ¹⁴
E-UTRA Band 1, 3, 7, 8, 9, 11, 33, 38,39, 40	FDL_low	-	FDL_high	-50	1	Note ⁵
Frequency range	860	-	895	-50	1	
Frequency range	1475.9	-	1510.9	-50	1	
Frequency range	1884.5	-	1915.7	-41	0.3	Note ⁸
		-				
E-UTRA Band 1, 3, 8, 33, 34	FDL_low	-	FDL_high	-50	1	
Frequency range	2620	-	2645	-15.5	5	Note ¹⁴ , Note ¹⁶ , Note ¹⁸
E-UTRA Band 34, 40	FDL_low	-	FDL_high	-50	1	
	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17 E-UTRA Band 1, 9, 11, 34 Frequency range Frequency range Frequency range E-UTRA Band 2, 5, 13, 14, 17 E-UTRA Band 4, 10 E-UTRA Band 12 E-UTRA Band 2, 4, 5, 10, 12, 13, 17 E-UTRA Band 14 Frequency range Frequency range E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17 Frequency range E-UTRA Band 2, 5, 13, 14, 17 E-UTRA Band 1, 7, 8, 34, 38, 39, 40 E-UTRA Band 1, 7, 8, 34, 38, 39, 40 E-UTRA Band 3 E-UTRA Band 3 E-UTRA Band 3 E-UTRA Band 3 Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range Frequency range	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, FDL_low E-UTRA Band 1, 9, 11, 34 FDL_low Frequency range 1457.9 Frequency range 860 Frequency range 1884.5 E-UTRA Band 2, 5, 13, 14, 17 FDL_low E-UTRA Band 4, 10 FDL_low E-UTRA Band 12 FDL_low E-UTRA Band 14 FDL_low Frequency range 769 Frequency range 769 Frequency range 769 E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 7 FDL_low Frequency range 769 E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 7 FDL_low E-UTRA Band 2, 5, 13, 14, 17 FDL_low E-UTRA Band 2, 5, 13, 14, 17 FDL_low E-UTRA Band 4, 10 FDL_low E-UTRA Band 4, 10 FDL_low E-UTRA Band 12 FDL_low E-UTRA Band 3 FDL_low E-UTRA Band 3 FDL_low Frequency range 860 Frequency range 860 Frequency range 1475.9 Frequency range 1884.5 E-UTRA Band 1, 3, 7, 8, 9, 11, 33, 33,39, 40 FDL_low Frequency range 1884.5	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, FDL_low Frequency range 1457.9 Frequency range 1884.5 Frequency range Frequency FDL_low FDL_low FDL_low FDL_low FDL_low Frequency range 769 FDL_low FRequency range 860	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17 E-UTRA Band 1, 9, 11, 34 FDL_low FDL_high Frequency range 1457.9 1510.9 Frequency range 860 895 Frequency range 1884.5 1915.7 E-UTRA Band 2, 5, 13, 14, 17 E-UTRA Band 4, 10 FDL_low FDL_high E-UTRA Band 12 FDL_low FDL_high E-UTRA Band 2, 4, 5, 10, 12, 13, 17 FDL_low FDL_high Frequency range 769 775 Frequency range 779 805 E-UTRA Band 2, 5, 13, 14, 17 FDL_low FDL_high E-UTRA Band 4, 10 FDL_low FDL_high E-UTRA Band 1, 7, 8, 34, 38, 39, 40 FDL_low FDL_high E-UTRA Band 3 FDL_low FDL_high F-UTRA Band 1, 3, 7, 8, 9, 11, 33, 38, 39, 40 FDL_low FDL_high Frequency range 1475.9 1510.9 Frequency range 1884.5 1915.7 E-UTRA Band 1, 3, 8, 33, 34 FDL_low FDL_high Frequency range 1884.5 1915.7	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, FDL_low FDL_high Frequency range R84.5 FDL_high Frequency range R860 R895 R84.5 FDL_high FREQUENCY FR	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17 Frequency range Frequency FDL_bigh FDL_low FDL_bigh FOULTRA Band 1, 3, 14, 17 FDL_low FDL_bigh FDL_bigh FDL_bigh FOULTRA Band 1 FDL_low FDL_bigh FDL_bigh FDL_bigh FOULTRA Band 1 FDL_low FDL_bigh FDL_bigh FOULTRA Band 1 FOULTRA Band 3 FDL_low FDL_bigh FOULTRA Band 3 FDL_low FDL_bigh FOULTRA Band FREQUENCY range FREQUENCY rang

40	E-UTRA Band 1, 3, 33, 34, 39	FDL_low	-	FDL_high	-50	1			
Note									
1 2	FDL_low and FDL_high refer to each E-UTRA frequency band specified in Table 5.5-1 As exceptions, measurements with a level up to the applicable requirements defined in Table 6.6.3.1-2 are permitted for each assigned E-UTRA carrier used in the measurement due to 2nd or 3rd harmonic spurious emissions. An exception is allowed if there is at least one individual RE within the transmission bandwidth (see Figure 5.6-1) for which the 2nd or 3rd harmonic, i.e. the frequency equal to two or three times the frequency of								
3 4	that RE, is within the measurement band To meet these requirements some restr N/A			ded for either	the operating b	and or protec	ted band		
5	For non synchronised TDD operation to operating band or protected band		·			l be needed fo	or either the		
7 8 9	Applicable when NS_05 in section 6.6.3 Applicable when co-existence with PHS Applicable when co-existence with PHS N/A	system ope	ratir	g in 1884.5 <i>-</i> 1	919.6MHz.				
10 11	N/A Whether the applicable frequency range	should be 7	.03-	ROSMHz ineter	ad of 700-805M	IHz ic TRD			
12 13	The emissions measurement shall be so Applicable when UE transmits anywhere UL operating channel is ≥1 749.9MHz a	ufficiently pove within 1749	ver).9 -	averaged to e - 1784.9MHz. <i>l</i>	nsure a standa	rd deviation <			
14	These requirements also apply for the fi				than Δf _{OOB} (MH:	z) in Table 6.6	6.3.1-1 from		
15	the edge of the channel bandwidth. This requirement is applicable for an up 15 MHz bandwidth when carrier center to 20 MHz bandwidth when carrier center to applicable without any other uplink trans	requency is requency is	witl with	nin the range 2 in the range 2	2560.5 - 2562.5 552 - 2560 MH	MHz and for z. This require	carriers of ement is		
16	2500 - 2570 MHz. This requirement is applicable for an up 15 MHz bandwidth when carrier center to 20 MHz bandwidth when carrier center to applicable without any other uplink trans 2570 – 2615 MHz. For assigned carriers	link transmis requency is requency is smission ban	sion witl with dwid	bandwidth les nin the range 2 nin the range 2 dth restriction	ss than or equa 2605.5 - 2607.5 2597 – 2605 Mh for channel bar	I to 54 RB for MHz and for Hz. This requindwidths withi	carriers of carriers of rement is n the range		
17	requirements apply with the maximum of This requirement is applicable for an upl 15 MHz bandwidth when carrier center to 20 MHz bandwidth when carrier center to applicable without any other uplink trans 1920 - 1980 MHz.	output power ink transmis requency is requency is	con sion with with	figured to +20 bandwidth les nin the range 1 in the range 1	dBm in the IE ss than or equa 1927.5 - 1929.5 930 - 1938 MH	<i>P-Max.</i> I to 54 RB for MHz and for z. This require	carriers of carriers of ement is		
18	For these adjacent bands, the emission protected operating band.	limit could in	nply	risk of harmfu	ıl interference to	o UE(s) opera	ating in the		

NOTE: The restriction on the maximum uplink transmission to 54 RB in Notes 15, 16, and 17 of Table 6.6.3.2-1 is intended for conformance testing and may be applied to network operation to facilitate coexistence when the aggressor and victim bands are deployed in the same geographical area. The applicable spurious emission requirement of -15.5 dBm/5MHz is a least restrictive technical condition for FDD/TDD coexistence and may have to be revised in the future.

6.6.3.3 Additional spurious emissions

These requirements are specified in terms of an additional spectrum emission requirement. Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

6.6.3.3.1 Minimum requirement (network signalled value "NS_05")

When "NS_05" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.1-1. This requirement also applies for the frequency ranges that are less than Δf_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.1-1: Additional requirements (PHS)

Frequency band (MHz)		Ch	annel b emis	Measurement bandwidth		
Ì	5 10 15 20 MHz MHz MHz MHz					
1884.5 ≤	f ≤1915.7 ^{*1}	-41	-41	-41	-41	300 KHz
Note 1:	bandwidth fr band (1915.	requenc 7 MHz) fined in	y is larg + 4 MH: Subclau	er than o z + the 0 use 5.6.	the assigned E-U or equal to the uppo Channel BW assign Additional restriction	er edge of PHS led, where Channel

The requirements in Table 6.6.3.3.1-1 apply with the additional restrictions specified in Table 6.6.3.3.1-2 when the lower edge of the assigned E-UTRA UL channel bandwidth frequency is less than the upper edge of PHS band (1915.7 MHz) + 4 MHz + the channel BW assigned.

Table 6.6.3.3.1-2: RB restrictions for additional requirement (PHS).

15 MHz channel bandwidth with f _c = 1932.5 MHz										
RB _{start} 0-7 8-66 67-74										
L _{CRB}	N/A	≤ MIN(30, 67 – RB _{start})	N/A							
	20 MHz channel bandwidth with f _c = 1930 MHz									
RB _{start}	RB _{start} 0-23 24-75 76-99									
L _{CRB}	L NI/A ZMINI/Q4 7C DD \ NI/A									

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (300 kHz).

6.6.3.3.2 Minimum requirement (network signalled value "NS_07")

When "NS_07" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.6.3.3.2-1. This requirement also applies for the frequency ranges that are less than Δf_{OOB} (MHz) in Table 6.6.3.1-1 from the edge of the channel bandwidth.

Table 6.6.3.3.2-1: Additional requirements

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm)	Measurement bandwidth					
	10 MHz						
769 ≤ f ≤ 775	-57	6.25 kHz					
Note: The emissions m	Note: The emissions measurement shall be sufficiently power averaged to ensure						

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth (6.25 kHz).

6.7 Transmit intermodulation

The transmit intermodulation performance is a measure of the capability of the transmitter to inhibit the generation of signals in its non linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna.

6.7.1 Minimum requirement

User Equipment(s) transmitting in close vicinity of each other can produce intermodulation products, which can fall into the UE, or eNode B receive band as an unwanted interfering signal. The UE intermodulation attenuation is defined by the ratio of the mean power of the wanted signal to the mean power of the intermodulation product when an interfering CW signal is added at a level below the wanted signal at each of the transmitter antenna port with the other antenna port(s) if any is terminated. Both the wanted signal power and the intermodulation product power are measured through E-UTRA rectangular filter with measurement bandwidth shown in Table 6.7.1-1.

The requirement of transmitting intermodulation is prescribed in Table 6.7.1-1.

BW Channel (UL) 5MHz 10MHz 15MHz 20MHz Interference Signal 5MHz 10MHz 10MHz 20MHz 15MHz 30MHz 20MHz 40MHz Frequency Offset Interference CW Signal -40dBc Level Intermodulation Product -29dBc -35dBc -29dBc -35dBc -29dBc -35dBc -29dBc -35dBc 4.5MHz 9.0MHz 13.5MHz 13.5MHz 18MHz Measurement bandwidth 4.5MHz 9.0MHz 18MHz

Table 6.7.1-1: Transmit Intermodulation

7 Receiver characteristics

7.1 General

Unless otherwise stated the receiver characteristics are specified at the antenna connector(s) of the UE. For UE(s) with an integral antenna only, a reference antenna(s) with a gain of 0 dBi is assumed for each antenna port(s). UE with an integral antenna(s) may be taken into account by converting these power levels into field strength requirements, assuming a 0 dBi gain antenna. For UEs with more than one receiver antenna connector, identical interfering signals shall be applied to each receiver antenna port if more than one of these is used (diversity).

The levels of the test signal applied to each of the antenna connectors shall be as defined in the respective sections below.

With the exception of Clause 7.3, the requirements shall be verified with the network signalling value NS_01 configured (Table 6.2.4-1).

All the parameters in clause 7 are defined using the UL reference measurement channels specified in Annexes A.2.2 and A.2.3, the DL reference measurement channels specified in Annex A.3.2 and using the set-up specified in Annex C.3.1.

7.2 Diversity characteristics

The requirements in Section 7 assume that the receiver is equipped with two Rx port as a baseline. These requirements apply to all UE categories unless stated otherwise. Requirements for 4 ports are FFS. With the exception of clause 7.9 all requirements shall be verified by using both (all) antenna ports simultaneously.

7.3 Reference sensitivity power level

The reference sensitivity power level REFSENS is the minimum mean power applied to both the UE antenna ports at which the throughput shall meet or exceed the requirements for the specified reference measurement channel.

7.3.1 Minimum requirements (QPSK)

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.3.1-1 and table 7.3.1-2

Table 7.3.1-1: Reference sensitivity QPSK PREFSENS

	Channel bandwidth								
E-UTRA Band	1.4 MHz (dBm)	3 MHz (dBm)	5 MHz (dBm)	10 MHz (dBm)	15 MHz (dBm)	20 MHz (dBm)	Duplex Mode		
1			-100	-97	-95.2	-94	FDD		
2	-102.7	-99.7	-98	-95	-93.2	-92	FDD		
3	-101.7	-98.7	-97	-94	-92.2	-91	FDD		
4	-104.7	-101.7	-100	-97	-95.2	-94	FDD		
5	-103.2	-100.2	-98	-95			FDD		
6			-100	-97			FDD		
7			-98	-95	-93.2	-92	FDD		
8	-102.2	-99.2	-97	-94			FDD		
9			-99	-96	-94.2	-93	FDD		
10			-100	-97	-95.2	-94	FDD		
11			-100	-97			FDD		
12	-101.7	-98.7	-97	-94			FDD		
13			-97	-94			FDD		
14			-97	-94			FDD		
17			-97	-94			FDD		
33			-100	-97	-95.2	-94	TDD		
34			-100	-97	-95.2		TDD		
35	-106.2	-102.2	-100	-97	-95.2	-94	TDD		
36	-106.2	-102.2	-100	-97	-95.2	-94	TDD		
37			-100	-97	-95.2	-94	TDD		
38			-100	-97	-95.2	-94	TDD		
39			-100	-97	-95.2	-94	TDD		
40			-100	-97	-95.2	-94	TDD		

Note 1: The transmitter shall be set to P_{UMAX} as defined in clause 6.2.5

Note 2: Reference measurement channel is A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1

Note 3: The signal power is specified per port

Note 4: For the UE which supports both Band 3 and Band 9 the reference sensitivity level is FFS.

Table 7.3.1-2 specifies the minimum number of allocated uplink resource blocks for which the reference receive sensitivity requirement must be met.

Table 7.3.1-2: Minimum uplink configuration for reference sensitivity

	E-UTRA Band / Channel bandwidth / NRB / Duplex mode									
E-UTRA Band	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz	Duplex Mode			
1			25	50	75	100	FDD			
2	6	15	25	50	50 ¹	50 ¹	FDD			
3	6	15	25	50	50 ¹	50 ¹	FDD			
4	6	15	25	50	75	100	FDD			
5	6	15	25	25 ¹			FDD			
6			25	25 ¹			FDD			
7			25	50	75 ¹	75 ¹	FDD			
8	6	15	25	25 ¹			FDD			
9			25	50	50 ¹	50 ¹	FDD			
10			25	50	75	100	FDD			
11			25	25 ¹			FDD			
12	6	15	20 ¹	20 ¹			FDD			
13			20 ¹	20 ¹			FDD			
14			15 ¹	15 ¹			FDD			
17			20 ¹	20 ¹			FDD			
33			25	50	75	100	TDD			
34			25	50	75		TDD			
35	6	15	25	50	75	100	TDD			
36	6	15	25	50	75	100	TDD			
37			25	50	75	100	TDD			
38			25	50	75	100	TDD			
39			25	50	75	100	TDD			
40			25	50	75	100	TDD			

Note 1: The number of UL resource blocks allocated is less than the total resources blocks supported by the channel bandwidth. The UL resource blocks shall be located as close as possible to the downlink operating band but confined within the transmission bandwidth configuration for the channel bandwidth (Table 5.6-1).

Unless given by Table 7.3.1-3, the minimum requirements specified in Tables 7.3.1-1 and 7.3.1-2 shall be verified with the network signalling value NS_01 (Table 6.2.4-1) configured.

Table 7.3.1-3: Network Signalling Value for reference sensitivity

Network Signalling value
NS_03
NS_03
NS_03
NS_06
NS_06
NS_06
NS_06

7.3.2 Requirement for large transmission configurations

For some combinations of bandwidths and operating bands, a certain relaxation of the UE performance is allowed when the transmission configuration is larger than that in Table 7.3.1-2. Table 7.3.2-1 specifies the allowed maximum sensitivity degradation (MSD) when the UL resource block allocation is the maximum supported transmission bandwidth configuration $N_{\rm RB}$ (Table 5.6-1). Unless given by Table 7.3.1-3, the MSD shall be verified with the network signalling value NS_01 (Table 6.2.4-1) configured.

Channel bandwidth E-UTRA 1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz Duplex **Band** (dB) (dB) (dB) (dB) (dB) (dB) Mode n/a **FDD** n/a n/a n/a 1 2 n/a TBD TBD **FDD** n/a n/a n/a **TBD TBD FDD** 3 n/a n/a n/a n/a FDD 4 n/a n/a n/a n/a n/a n/a 5 n/a n/a n/a **TBD FDD** FDD 6 n/a TBD 7 **TBD TBD FDD** n/a n/a 8 TBD **FDD** n/a n/a n/a 9 n/a n/a **TBD TBD FDD** 10 n/a n/a n/a n/a **FDD** TBD FDD 11 n/a 12 TBD TBD **FDD** 13 **TBD TBD FDD** 14 FDD 17 TBD FDD **TBD**

Table 7.3.2-1: Maximum Sensitivity Degradation

7.4 Maximum input level

This is defined as the maximum mean power received at the UE antenna port, at which the specified relative throughput shall meet or exceed the minimum requirements for the specified reference measurement channel.

7.4.1 Minimum requirements

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.4.1.

Note:

^{1.} The transmitter shall be set to P_{UMAX} as defined in clause 6.2.5 with MPR applied and with the maximum transmission configuration (Table 5.5-1) allocated

Table 7.4.1-1: Maximum input level

Rx Parameter	Units	Channel bandwidth					
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Power in Transmission Bandwidth Configuration	dBm	-25					

Note:

- 1. The transmitter shall be set to 4dB below Pcmax_L at the minimum uplink configuration specified in Table 7.3.1-2 with Pcmax_L as defined in clause 6.2.5.
- 2. Reference measurement channel is Annex A.3.2: 64QAM, R=3/4 variant with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.

7.5 Adjacent Channel Selectivity (ACS)

7.5.1 Minimum requirements

Adjacent Channel Selectivity (ACS) is a measure of a receiver's ability to receive a E-UTRA signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel. ACS is the ratio of the receive filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).

The UE shall fulfil the minimum requirement specified in Table 7.5.1-1 for all values of an adjacent channel interferer up to -25 dBm. However it is not possible to directly measure the ACS, instead the lower and upper range of test parameters are chosen in Table 7.5.1-2 and Table 7.5.1-3 where the throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1).

Table 7.5.1-1: Adjacent channel selectivity

		Channel bandwidth					
Rx Parameter	Units	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
ACS	dB	33.0	33.0	33.0	33.0	30	27

Table 7.5.1-2: Test parameters for Adjacent channel selectivity, Case 1

Rx Parameter	Units	Channel bandwidth							
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz		
Power in Transmission Bandwidth Configuration	dBm		l	REFSEN	S + 14 dB	l			
P _{Interferer}	dBm	REFSENS +45.5dB	REFSENS +45.5dB	REFSENS +45.5dB*	REFSENS +45.5dB	REFSENS +42.5dB	REFSENS +39.5dB		
BW _{Interferer}	MHz	1.4	3	5	5	5	5		
F _{Interferer} (offset)	MHz	1.4+0.0025 / -1.4-0.0025	3+0.0075 / -3-0.0075	5+0.0025 / -5-0.0025	7.5+0.0075 / -7.5-0.0075	10+0.0125 / -10-0.0125	12.5+0.0025 / -12.5-0.0025		

Note:

- 1. The transmitter shall be set to 4dB below Pcmax_L at the minimum uplink configuration specified in Table 7.3.1-2 with Pcmax_L as defined in clause 6.2.5.
- 2. The interferer consists of the Reference measurement channel specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to Annex C.3.1

Units Channel bandwidth Rx Parameter 1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz Power in Transmission dBm -56.5 -56.5-56.5 -56.5 -53.5-50.5 Bandwidth Configuration P_{Interferer} dBm -25 BW_{Interferer} MHz 3 5 1.4 5 5 5 F_{Interferer} (offset) MHz 1.4+0.0025 3+0.0075 5+0.0025 7.5+0.0075 10+0.0125 12.5+0.0025 -1.4-0.0025 -3-0.0075 -5-0.0025 -7.5-0.0075 -10-0.0125 -12.5-0.0025

Table 7.5.1-3: Test parameters for Adjacent channel selectivity, Case 2

Note:

- 1. The transmitter shall be set to 24dB Pcmax_L at the minimum uplink configuration specified in Table 7.3.1-2 with Pcmax L as defined in clause 6.2.5.
- 2. The interferer consists of the Reference measurement channel specified in Annex 3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to Annex C.3.1

7.6 Blocking characteristics

The blocking characteristic is a measure of the receiver's ability to receive a wanted signal at its assigned channel frequency in the presence of an unwanted interferer on frequencies other than those of the spurious response or the adjacent channels, without this unwanted input signal causing a degradation of the performance of the receiver beyond a specified limit. The blocking performance shall apply at all frequencies except those at which a spurious response occur.

7.6.1 In-band blocking

In-band blocking is defined for an unwanted interfering signal falling into the UE receive band or into the first 15 MHz below or above the UE receive band at which the relative throughput shall meet or exceed the minimum requirement for the specified measurement channels..

7.6.1.1 Minimum requirements

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.1.1-1 and 7.6.1.1-2.

Table 7.6.1.1-1: In band blocking parameters

Rx Parameter	Units	Channel bandwidth							
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz		
Power in			REFSENS + channel bandwidth specific value below						
Transmission Bandwidth Configuration	dBm	6	6	6	6	7	9		
BW _{Interferer}	MHz	1.4	3	5	5	5	5		
F _{loffset, case 1}	MHz	2.1+0.0125	4.5+0.0075	7.5+0.0125	7.5+0.0025	7.5+0.0075	7.5+0.0125		
F _{loffset, case 2}	MHz	3.5+0.0075	7.5+0.0075	12.5+0.0075	12.5+0.012	12.5+0.002	12.5+0.007		
					5	5	5		

Note 1:	The transmitter shall be set to 4dB PcMAX_L at the minimum uplink configuration specified in Table
	7.3.1-2 with Power Las defined in clause 6.2.5

Note 2: The interferer consists of the Reference measurement channel specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 and set-up according to Annex C.3.1

Table 7.6.1.1-2: In-band blocking

E-UTRA band	Parameter	Units	Case 1	Case 2	Case 3
	P _{Interferer}	dBm	-56	-44	-30
	F _{Interferer} (Offset)	MHz	=-BW/2 - F _{loffset, case 1} & =+BW/2 + F _{loffset, case 1}	≤ -BW/2- F _{loffset, case 2} & ≥ +BW/2 + F _{loffset, case 2}	-BW/2 – 9 MHz & -BW/2 – 15 MHz
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12, 13, 14, 33, 34, 35, 36, 37, 38, 39, 40	F _{Interferer}	MHz	(Note 2)	F _{DL_low} -15 to F _{DL_high} +15	
17	F _{Interferer}	MHz		F _{DL_low} -9.0 to	F _{DL_low} -15 and
			(Note 2)	F _{DL_high} +15	F _{DL_low} -9.0 (Note 3)

Note

- 1 For certain bands, the unwanted modulated interfering signal may not fall inside the UE receive band, but within the first 15 MHz below or above the UE receive band.
- 2 For each carrier frequency the requirement is valid for two frequencies:
 - a. the carrier frequency -BW/2 -Floffset, case 1 and
 - b. the carrier frequency + BW/2 + Floffset, case 1.
- 3 Finterferer range values for unwanted modulated interfering signal are interferer center frequencies.
- 4 Case 3 only applies to assigned UE channel bandwidth of 5 MHz.

7.6.2 Out-of-band blocking

Out-of-band band blocking is defined for an unwanted CW interfering signal falling more than 15 MHz below or above the UE receive band. For the first 15 MHz below or above the UE receive band the appropriate in-band blocking or adjacent channel selectivity in sub-clause 7.5.1 and sub-clause 7.6.1 shall be applied.

7.6.2.1 Minimum requirements

. The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.6.2.1-1 and 7.6.2.1-2.

For Table 7.6.2.1-2 in frequency range 1, 2 and 3, up to $\max(24, 6 \cdot \lceil N_{RB} / 6 \rceil)$ exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a 1MHz step size, where N_{RB} is the number of resource blocks in the downlink transmission bandwidth configuration (see Figure 5.4.2-1). For these exceptions the requirements of clause 7.7 Spurious response are applicable.

For Table 7.6.2.1-2 in frequency range 4, up to $\max(8, \lceil (N_{RB}+2\cdot L_{CRBs})/8 \rceil)$ exceptions are allowed for spurious response frequencies in each assigned frequency channel when measured using a 1MHz step size, where N_{RB} is the number of resource blocks in the downlink transmission bandwidth configurations (see Figure 5.4.2-1) and L_{CRBs} is the number of resource blocks allocated in the uplink. For these exceptions the requirements of clause 7.7 spurious response are applicable.

Table 7.6.2.1-1: Out-of-band blocking parameters

Rx Parameter	Units	Channel bandwidth					
		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
Power in		REFS	ENS + ch	annel ban	dwidth sp	ecific valu	e below
Transmission Bandwidth Configuration	dBm	6	6	6	6	7	9

Note 1: The transmitter shall be set to 4dB below Pcmax_L at the minimum uplink configuration specified in Table 7.3.1-2 with Pcmax_L as defined in clause 6.2.5.

Note 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.

Table 7.6.2.1-2: Out of band blocking

E-UTRA band	Parameter	Units	Frequency					
			range 1	range 2	range 3	range 4		
-	P _{Interferer}	dBm	-44	-30	-15	-15		
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,	F _{Interferer}	NALI-	F _{DL_low} -15 to F _{DL low} -60	F_{DL_low} -60 to F_{DL_low} -85	F _{DL_low} -85 to 1 MHz	-		
12, 13, 14, 17, 33, 34, 35, 36, 37, 38, 39, 40	(CW)	MHz	F _{DL_high} +15 to F _{DL_high} + 60	F _{DL_high} +60 to F _{DL_high} +85	F _{DL_high} +85 to +12750 MHz	-		
2, 5, 12, 17	F _{Interferer}	MHz	-	-	-	FUL_low - FUL_high		

7.6.3 Narrow band blocking

This requirement is measure of a receiver's ability to receive a E-UTRA signal at its assigned channel frequency in the presence of an unwanted narrow band CW interferer at a frequency, which is less than the nominal channel spacing.

7.6.3.1 Minimum requirements

. The relative throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.6.3.1-1

Table 7.6.3.1-1: Narrow-band blocking

Parameter	Unit		Channel Bandwidth								
Parameter		1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz				
P _w	dBm	P _R	P _{REFSENS} + channel-bandwidth specific value below								
P _W	UDIII	22	18	16	13	14	16				
P _{uw} (CW)	dBm	-55	-55	-55	-55	-55	-55				
F_{uw} (offset for $\Delta f = 15 \text{ kHz}$)	MHz	0.9075	1.7025	2.7075	5.2125	7.7025	10.2075				
F_{uw} (offset for $\Delta f = 7.5 \text{ kHz}$)	MHz										

Note 1: The transmitter shall be set a 4 dB below Pcmax_L at the minimum uplink configuration specified in Table 7.3.1-2 with Pcmax_L as defined in clause 6.2.5.

Note 2: Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.

7.7 Spurious response

Spurious response is a measure of the receiver's ability to receive a wanted signal on its assigned channel frequency without exceeding a given degradation due to the presence of an unwanted CW interfering signal at any other frequency at which a response is obtained i.e. for which the out of band blocking limit as specified in sub-clause 7.6.2 is not met.

7.7.1 Minimum requirements

The throughput shall be $\geq 95\%$ of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Tables 7.7.1-1 and 7.7.1-2.

Rx Parameter Units Channel bandwidth 1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz Power in REFSENS + channel bandwidth specific value below Transmission dBm Bandwidth 6 9 Configuration

Table 7.7.1-1: Spurious response parameters

Note:

- 1. The transmitter shall be set to 4dB below Pcmax_L at the minimum uplink configuration specified in Table 7.3.1-2 with Pcmax_L as defined in clause 6.2.5.
- 2. Reference measurement channel is specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1.

Parameter	Unit	Level
P _{Interferer} (CW)	dBm	-44
F _{Interferer}	MHz	Spurious response frequencies

Table 7.7.1-2: Spurious Response

7.8 Intermodulation characteristics

Intermodulation response rejection is a measure of the capability of the receiver to receiver a wanted signal on its assigned channel frequency in the presence of two or more interfering signals which have a specific frequency relationship to the wanted signal.

7.8.1 Wide band intermodulation

The wide band intermodulation requirement is defined following the same principles using modulated E-UTRA carrier and CW signal as interferer.

7.8.1.1 Minimum requirements

The throughput shall be \geq 95% of the maximum throughput of the reference measurement channels as specified in Annexes A.2.2, A.2.3 and A.3.2 (with one sided dynamic OCNG Pattern OP.1 FDD/TDD for the DL-signal as described in Annex A.5.1.1/A.5.2.1) with parameters specified in Table 7.8.1.1 for the specified wanted signal mean power in the presence of two interfering signals

Table 7.8.1.1-1: Wide band intermodulation

Rx Parameter	Units	Channel bandwidth							
		1.4 MHz	3 MHz		5 MHz	10 MHz	15 MHz	20 MHz	
Power in		REFSENS + channel bandwidth specific value below							
Transmission Bandwidth Configuration	dBm	12 8 6 6 7					9		
P _{Interferer 1} (CW)	dBm	-46							
P _{Interferer 2} (Modulated)	dBm	-46							
BW _{Interferer 2}		1.4		3		5			
F _{Interferer 1} (Offset)	MHz	-BW/2 -2.1							
		+BW/2+ 2.1	+BW	<u> 2 + 4.5</u>		+BW	//2 + 7.5		
F _{Interferer 2} (Offset)	MHz				2*F _{Interfer}	er 1			
Note:									
 Note: The transmitter shall be set to 4dB below Pcmax_L at the minimum uplink configuration specified in Table 7.3.1-2 with Pcmax_L as defined in clause 6.2.5. Reference measurement channel is specified in Annex Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1. The modulated interferer consists of the Reference measurement channel specified in Annex A.3.2 with one sided dynamic OCNG Pattern OP.1 FDD/TDD as described in Annex A.5.1.1/A.5.2.1 with set-up according to Annex C.3.1The interfering modulated signal is 5MHz E- 									
		scribed in Anne	-			-	· ·		

7.8.2 Void

7.9 Spurious emissions

The spurious emissions power is the power of emissions generated or amplified in a receiver that appear at the UE antenna connector.

7.9.1 Minimum requirements

The power of any narrow band CW spurious emission shall not exceed the maximum level specified in Table 7.9.1-1

Table 7.9.1-1: General receiver spurious emission requirements

Frequency Band	Measurement Bandwidth	Maximum level	Note
30MHz ≤ f < 1GHz	100 kHz	-57 dBm	
1GHz ≤ f ≤ 12.75 GHz	1 MHz	-47 dBm	

8 Performance requirement

This clause contains performance requirements for the physical channels specified in TS 36.211 [4]. The performance requirements for the UE in this clause are specified for the measurement channels specified in Annex A.3, the propagation conditions in Annex B and the downlink channels in Annex C.3.2.

8.1 General

8.1.1 Dual-antenna receiver capability

The performance requirements are based on UE(s) that utilize a dual-antenna receiver.

For all test cases, the SNR is defined as

$$SNR = \frac{\hat{E}_s^{(1)} + \hat{E}_s^{(2)}}{N_{oc}^{(1)} + N_{oc}^{(2)}}$$

where the superscript indicates the receiver antenna connector. The above SNR definition assumes that the REs are not precoded. The SNR definition does not account for any gain which can be associated to the precoding operation. The relative power of physical channels transmitted is defined in Table C.3.2-1. The SNR requirement applies for the UE categories given for each test.

8.1.1.1 Simultaneous unicast and MBMS operations

8.1.1.2 Dual-antenna receiver capability in idle mode

8.2 Demodulation of PDSCH (Cell-Specific Reference Symbols)

8.2.1 FDD (Fixed Reference Channel)

The parameters specified in Table 8.2.1-1 are valid for all FDD tests unless otherwise stated.

Table 8.2.1-1: Common Test Parameters (FDD)

Parameter	Unit	Value
Inter-TTI Distance		1
Number of HARQ processes	Processes	8
Maximum number of HARQ transmission		4
Redundancy version coding sequence		{0,1,2,3} for QPSK and 16QAM {0,0,1,2} for 64QAM
Number of OFDM symbols for PDCCH	OFDM symbols	4 for 1.4 MHz bandwidth, 3 for 3 MHz and 5 MHz bandwidths, 2 for 10 MHz, 15 MHz and 20 MHz bandwidths
Cyclic Prefix		Normal
Cell_ID		0
Note: .		

8.2.1.1 Single-antenna port performance

The single-antenna performance in a given multi-path fading environments is determined by the SNR for which a certain relative information bit throughput of the reference measurement channels in Annex A.3.3 is achieved. The purpose of these tests is to verify the single-antenna performance with different channel models and MCS. The QPSK and 64QAM cases are also used to verify the performance for all bandwidths specified in Table 5.6.1-1.

8.2.1.1.1 Minimum Requirement

The requirements are specified in Table 8.2.1.1.1-2, with the addition of the parameters in Table 8.2.1.1.1-1 and the downlink physical channel setup according to Annex C.3.2.

Table 8.2.1.1.1-1: Test Parameters

Parameter		Unit	Test 1- 5	Test 6-8	Test 9- 15	Test 16- 18
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	0	0	0	0
	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0 (Note 1)	0 (Note 1)	0 (Note 1)
	σ	dB	0	0	0	0
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98	-98	-98	98
Symbols for unused PRBs			OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)
Modulation			QPSK	16QAM	64QAM	16QAM
PDSCH transmission	on mode		1	1	1	1

Note 1: $P_B = 0$.

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.2.1.1.1-2: Minimum performance (FRC)

Test number	Bandwidth	Reference Channel	OCNG Pattern	Propagation Condition	Correlation Matrix and	Reference value		UE Category
					Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	
1	10 MHz	R.2 FDD	OP.1 FDD	EVA5	1x2 Low	70	-1.0	1-5
2	10 MHz	R.2 FDD	OP.1 FDD	ETU70	1x2 Low	70	-0.4	1-5
3	10 MHz	R.2 FDD	OP.1 FDD	ETU300	1x2 Low	70	0.0	1-5
4	10 MHz	R.2 FDD	OP.1 FDD	HST	1x2 Low	70	-2.4	1-5
5	1.4 MHz	R.4 FDD	OP.1 FDD	EVA5	1x2 Low	70	0.0	1-5
6	10 MHz	R.3 FDD	OP.1 FDD	EVA5	1x2 Low	70	6.7	2-5
7	10 MHz	R.3 FDD	OP.1 FDD	ETU70	1x2 Low	30	1.4	2-5
8	10 MHz	R.3 FDD	OP.1 FDD	ETU300	1x2 High	70	9.4	2-5
9	3 MHz	R.5 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.6	1-5
10	5 MHz	R.6 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.4	2-5
11	10 MHz	R.7 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.7	2-5
12	10 MHz	R.7 FDD	OP.1 FDD	ETU70	1x2 Low	70	19.0	2-5
13	10 MHz	R.7 FDD	OP.1 FDD	EVA5	1x2 High	70	19.1	2-5
14	15 MHz	R.8 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.7	2-5
15	20 MHz	R.9 FDD	OP.1 FDD	EVA5	1x2 Low	70	17.6	3-5
16	3 MHz	R.0 FDD	OP.1 FDD	ETU70	1x2 Low	30	1.9	1-5
17	10 MHz	R.1 FDD	OP.1 FDD	ETU70	1x2 Low	30	1.9	1-5
18	20 MHz	R.1 FDD	OP.1 FDD	ETU70	1x2 Low	30	1.9	1-5

8.2.1.1.2 Void

8.2.1.1.3 Void

8.2.1.1.4 Minimum Requirement 1 PRB allocation in presence of MBSFN

The requirements are specified in Table 8.2.1.1.4-2, with the addition of the parameters in Table 8.2.1.1.4-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the single-antenna performance with a single PRB allocated at the lower band edge in presence of MBSFN.

Table 8.2.1.1.4-1: Test Parameters for Testing 1 PRB allocation

Parameter		Unit	Test 1
	$ ho_{\scriptscriptstyle A}$	dB	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
	σ	dB	0
N_{oc} at antenna	port	dBm/15kHz	-98
Symbols for MBSFN portion of MBSFN subframes (Note 2)			OCNG (Note 3)
PDSCH transmission	PDSCH transmission mode		1

Note 1: $P_B = 0$.

Note 2: The MBSFN portion of an MBSFN subframe comprises the whole MBSFN subframe except the first two symbols in the

first slot.

Note 3: The MBSFN portion of the MBSFN subframes shall contain

QPSK modulated data. Cell-specific reference signals are not inserted in the MBSFN portion of the MBSFN subframes,

QPSK modulated MBSFN data is used instead.

Table 8.2.1.1.4-2: Minimum performance 1PRB (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.29 FDD	OP.3 FDD	ETU70	1x2 Low	30	2.0	1-5

8.2.1.2 Transmit diversity performance

8.2.1.2.1 Minimum Requirement 2 Tx Antenna Port

The requirements are specified in Table 8.2.1.2.1-2, with the addition of the parameters in Table 8.2.1.2.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmitter antennas.

Table 8.2.1.2.1-1: Test Parameters for Transmit diversity Performance (FRC)

Parameter		Unit	Test 1-2
	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
PDSCH transmission	on mode		2
Note 1: $P_B = 1$.			

Table 8.2.1.2.1-2: Minimum performance Transmit Diversity (FRC)

Ī	Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
	number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
	1	10 MHz	R.11 FDD	OP.1 FDD	EVA5	2x2 Medium	70	6.8	2-5
	2	10 MHz	R.10 FDD	OP.1 FDD	HST	2x2 Low	70	-2.3	1-5

8.2.1.2.2 Minimum Requirement 4 Tx Antenna Port

The requirements are specified in Table 8.2.1.2.2-2, with the addition of the parameters in Table 8.2.1.2.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC-FSTD) with 4 transmitter antennas.

Table 8.2.1.2.2-1: Test Parameters for Transmit diversity Performance (FRC)

Parameter		Unit	Test 1
	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
PDSCH transmissi	on mode		2
Note 1: $P_B = 1$.			

Table 8.2.1.2.2-2: Minimum performance Transmit Diversity (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
number	width	Channel	Pattern	Condition	Matrix and Antenna	Fraction of Maximum	SNR (dB)	Category
					Configuration	Throughput (%)		
1	1.4 MHz	R.12 FDD	OP.1 FDD	EPA5	4x2 Medium	70	0.6	1-5

8.2.1.3 Open-loop spatial multiplexing performance

8.2.1.3.1 Minimum Requirement 2 Tx Antenna Port

The requirements are specified in Table 8.2.1.3.1-2, with the addition of the parameters in Table 8.2.1.3.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 2 transmitter antennas.

Table 8.2.1.3.1-1: Test Parameters for Large Delay CDD (FRC)

Parameter		Unit	Test 1
Devention of the second	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{\scriptscriptstyle oc}$ at antenna	port	dBm/15kHz	-98
PDSCH transmission	on mode		3
Note 1: $P_B = 1$.			

Table 8.2.1.3.1-2: Minimum performance Large Delay CDD (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.11 FDD	OP.1 FDD	EVA70	2x2 Low	70	13.0	2-5

8.2.1.3.2 Minimum Requirement 4 Tx Antenna Port

The requirements are specified in Table 8.2.1.3.2-2, with the addition of the parameters in Table 8.2.1.3.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 4 transmitter antennas.

Table 8.2.1.3.2-1: Test Parameters for Large Delay CDD (FRC)

Parameter		Unit	Test 1
Davinlink navian	$ ho_{\scriptscriptstyle A}$	dB	-6
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
N_{oc} at antenna	port	dBm/15kHz	-98
PDSCH transmission	on mode		3
Note 1: $P_B = 1$.			

Table 8.2.1.3.2-2: Minimum performance Large Delay CDD (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference value		UE
number	width	Channel	Pattern	Condition	Matrix and	Fraction of	SNR	Category
					Antenna	Maximum	(dB)	
					Configuration	Throughput		
						(%)		
1	10 MHz	R.14 FDD	OP.1 FDD	EVA70	4x2 Low	70	14.3	2-5

8.2.1.4 Closed-loop spatial multiplexing performance

8.2.1.4.1 Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.2.1.4.1-2, with the addition of the parameters in Table 8.2.1.4.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with wideband and frequency selective precoding.

Table 8.2.1.4.1-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1	Test 2
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)
	σ	dB	0	0
$N_{\it oc}$ at antenna port		dBm/15kHz	-98	-98
Precoding granular	ity	PRB	6	50
PMI delay (Note 2	2)	ms	8	8
Reporting interva	I	ms	1	1
Reporting mode			PUSCH 1-2	PUSCH 3-1
CodeBookSubsetRest	riction		001111	001111
bitmap				
PDSCH transmission	mode		4	4

Note 1: $P_B = 1$.

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on

PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be

applied at the eNB downlink before SF#(n+4).

Table 8.2.1.4.1-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference value		UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.10 FDD	OP.1 FDD	EVA5	2x2 Low	70	-2.5	1-5
2	10 MHz	R.10 FDD	OP.1 FDD	EPA5	2x2 High	70	-2.3	1-5

8.2.1.4.1A Minimum Requirement Single-Layer Spatial Multiplexing 4 Tx Antenna Port

The requirements are specified in Table 8.2.1.4.1A-2, with the addition of the parameters in Table 8.2.1.4.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with wideband and frequency selective precoding.

Table 8.2.1.4.1A-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1
D 11.1	$ ho_{\scriptscriptstyle A}$	dB	-6
Downlink power allocation	$\rho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
		dB	-6 (Note 1)
$N_{\it oc}$ at antenna po	ort	dBm/15kHz	-98
Precoding granula	Precoding granularity		6
PMI delay (Note 2	2)	ms	8
Reporting interva	al	ms	1
Reporting mode			PUSCH 1-2
CodeBookSubsetRe ion bitmap	strict		000000000000000000000000000000000000000
			000000000000000000 111111111111111111
PDSCH transmissi mode	on		4

Note 1: $P_B = 1$.

Note 2: If the UE reports in an available uplink reporting instance

at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be

applied at the eNB downlink before SF#(n+4).

Table 8.2.1.4.1A-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference value		UE
number	width	Channel	Pattern	Condition	Matrix and	Fraction of	SNR	Category
					Antenna	Maximum	(dB)	
					Configuration	Throughput		
						(%)		
1	10 MHz	R.13 FDD	OP.1 FDD	EVA5	4x2 Low	70	-3.2	1-5

8.2.1.4.2 Minimum Requirement Multi-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.2.1.4. 2-2, with the addition of the parameters in Table 8.2.1.4. 2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.

Table 8.2.1.4.2-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

Parameter	•	Unit	Test 1	Test 2
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)
	σ	dB	0	0
$N_{\it oc}$ at antenna	N_{oc} at antenna port		-98	-98
Precoding grant	ularity	PRB	50	50
PMI delay (Not	te 2)	ms	8	8
Reporting inte	rval	ms	1	1
Reporting mo	Reporting mode		PUSCH 3-1	PUSCH 3-1
CodeBookSubsetRestriction			110000	110000
bitmap				
PDSCH transmission mode			4	4

Note 1: $P_{R} = 1$.

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Table 8.2.1.4.2-2: Minimum performance Multi-Layer Spatial Multiplexing (FRC)

ĺ	Test	Band-	Reference	OCNG	Propagation	Correlation	Reference value		UE
	number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
ſ	1	10 MHz	R.11 FDD	OP.1 FDD	EVA5	2x2 Low	70	12.9	2-5
ſ	2	10 MHz	R.11 FDD	OP.1 FDD	ETU70	2x2 Low	70	14.3	2-5

8.2.1.4.3 Minimum Requirement Multi-Layer Spatial Multiplexing 4 Tx Antenna Port

The requirements are specified in Table 8.2.1.4.3-2, with the addition of the parameters in Table 8.2.1.4.3-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.

Table 8.2.1.4.3-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-6
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
Precoding granu	larity	PRB	6
PMI delay (Not	e 2)	ms	8
Reporting inte	rval	ms	1
Reporting mo	de		PUSCH 1-2
CodeBookSubsetRe	estriction		0000000000000
bitmap			0000000000000
-			0000001111111
			1111111110000
			00000000000
PDSCH transmission	on mode		4

Note 1: $P_B = 1$.

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Table 8.2.1.4.3-2: Minimum performance Multi-Layer Spatial Multiplexing (FRC)

Test	Band-	Reference	OCNG	Propagation	Correlation	Reference value		UE
number	width	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.14 FDD	OP.1 FDD	EVA5	4x2 Low	70	10.5	2-5

8.2.1.5 MU-MIMO

8.2.1.6 [Control channel performance: D-BCH and PCH]

8.2.2 TDD (Fixed Reference Channel)

The parameters specified in Table 8.2.2-1 are valid for all TDD tests unless otherwise stated.

Table 8.2.2-1: Common Test Parameters (TDD)

Parameter	Unit	Value					
Uplink downlink configuration (Note 1)		1					
Special subframe configuration (Note 2)		4					
Cyclic prefix		Normal					
Cell ID		0					
Inter-TTI Distance		1					
Number of HARQ processes	Processes	7					
Maximum number of HARQ transmission		4					
Redundancy version coding sequence		{0,1,2,3} for QPSK and 16QAM {0,0,1,2} for 64QAM					
Number of OFDM symbols for PDCCH	OFDM symbols	4 for 1.4 MHz bandwidth, 3 for 3 MHz and 5 MHz bandwidths, 2 for 10 MHz, 15 MHz and 20 MHz bandwidths					
Note 1: as specified in Table 4.2-2 in TS 36.211 [4]							

Note 1: as specified in Table 4.2-2 in TS 36.211 [4] Note 2: as specified in Table 4.2-1 in TS 36.211 [4]

8.2.2.1 Single-antenna port performance

The single-antenna performance in a given multi-path fading environments is determined by the SNR for which a certain relative information bit throughput of the reference measurement channels in Annex A.3.4 is achieved. The purpose of these tests is to verify the single-antenna performance with different channel models and MCS. The QPSK and 64QAM cases are also used to verify the performance for all bandwidths specified in Table 5.6.1-1.

8.2.2.1.1 Minimum Requirement

The requirements are specified in Table 8.2.2.1.1-2, with the addition of the parameters in Table 8.2.2.1.1-1 and the downlink physical channel setup according to Annex C.3.2.

Table 8.2.2.1.1-1: Test Parameters

Parameter		Unit	Test 1- 5	Test 6-8	Test 9- 15	Test 16- 18
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0	0	0	0
power	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0 (Note 1)	0 (Note 1)	0 (Note 1)
allocation		σ	dB	0	0	0
$N_{\it oc}$ at antenna	a port	dBm/15kHz	-98	-98	-98	-98
Symbols for ur PRBs	used		OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)
Modulation	า		QPSK	16QAM	64QAM	16QAM
ACK/NACK feedback mode			Multiplexing	Multiplexing	Multiplexing	Multiplexing
PDSCH transmission mode			1	1	1	1

Note 1: $P_B = 0$

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.2.2.1.1-2: Minimum performance (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.2 TDD	OP.1 TDD	EVA5	1x2 Low	70	-1.2	1-5
2	10 MHz	R.2 TDD	OP.1 TDD	ETU70	1x2 Low	70	-0.6	1-5
3	10 MHz	R.2 TDD	OP.1 TDD	ETU300	1x2 Low	70	-0.2	1-5
4	10 MHz	R.2 TDD	OP.1 TDD	HST	1x2 Low	70	-2.6	1-5
5	1.4 MHz	R.4 TDD	OP.1 TDD	EVA5	1x2 Low	70	0.0	1-5
6	10 MHz	R.3 TDD	OP.1 TDD	EVA5	1x2 Low	70	6.7	2-5
7	10 MHz	R.3 TDD	OP.1 TDD	ETU70	1x2 Low	30	1.4	2-5
8	10 MHz	R.3 TDD	OP.1 TDD	ETU300	1x2 High	70	9.3	2-5
9	3 MHz	R.5 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.6	1-5
10	5 MHz	R.6 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.6	2-5
11	10 MHz	R.7 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.6	2-5
12	10 MHz	R.7 TDD	OP.1 TDD	ETU70	1x2 Low	70	19.1	2-5
13	10 MHz	R.7 TDD	OP.1 TDD	EVA5	1x2 High	70	19.1	2-5
14	15 MHz	R.8 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.8	2-5
15	20 MHz	R.9 TDD	OP.1 TDD	EVA5	1x2 Low	70	17.7	3-5
16	3 MHz	R.0 TDD	OP.1 TDD	ETU70	1x2 Low	30	2.1	1-5
17	10 MHz	R.1 TDD	OP.1 TDD	ETU70	1x2 Low	30	2.0	1-5
18	20 MHz	R.1 TDD	OP.1 TDD	ETU70	1x2 Low	30	2.1	1-5

8.2.2.1.2 Void

8.2.2.1.3 Void

8.2.2.1.4 Minimum Requirement 1 PRB allocation in presence of MBSFN

The requirements are specified in Table 8.2.2.1.4-2, with the addition of the parameters in Table 8.2.2.1.1.4-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the single-antenna performance with a single PRB allocated at the lower band edge in presence of MBSFN.

Table 8.2.2.1.4-1: Test Parameters for Testing 1 PRB allocation

Parameter		Unit	Test 1
	$ ho_{\scriptscriptstyle A}$	dB	0
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)
	σ	dB	0
N_{oc} at antenna	port	dBm/15kHz	-98
Symbols for MBSFN MBSFN subframes			OCNG (Note 3)
ACK/NACK feedba	ck mode		Multiplexing
PDSCH transmission	n mode		1

Note 1: $P_B = 0$

Note 2: The MBSFN portion of an MBSFN subframe comprises the whole MBSFN subframe except the first two symbols in the

first slot.

Note 3: The MBSFN portion of the MBSFN subframes shall contain QPSK modulated data. Cell-specific reference signals are not inserted in the MBSFN portion of the MBSFN subframes, QPSK modulated MBSFN data is used instead.

Table 8.2.2.1.4-2: Minimum performance 1PRB (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference	value	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.29 TDD	OP.3 TDD	ETU70	1x2 Low	30	2.0	1-5

8.2.2.2 Transmit diversity performance

8.2.2.2.1 Minimum Requirement 2 Tx Antenna Port

The requirements are specified in Table 8.2.2.2.1-2, with the addition of the parameters in Table 8.2.2.2.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC) with 2 transmitter antennas.

Table 8.2.2.2.1-1: Test Parameters for Transmit diversity Performance (FRC)

Parameter	ı	Unit	Test 1-2
	$ ho_{\scriptscriptstyle A}$	dB	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
ACK/NACK feedba	ck mode		Multiplexing
PDSCH transmission	on mode		2
Note 1: $P_B = 1$		•	•

Table 8.2.2.2.1-2: Minimum performance Transmit Diversity (FRC)

	Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	/alue	UE
	number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
	1	10 MHz	R.11 TDD	OP.1 TDD	EVA5	2x2 Medium	70	6.8	2-5
Ī	2	10 MHz	R.10 TDD	OP.1 TDD	HST	2x2 Low	70	-2.3	1-5

8.2.2.2.2 Minimum Requirement 4 Tx Antenna Port

The requirements are specified in Table 8.2.2.2.2-2, with the addition of the parameters in Table 8.2.2.2.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of transmit diversity (SFBC-FSTD) with 4 transmitter antennas.

Table 8.2.2.2.1: Test Parameters for Transmit diversity Performance (FRC)

Parameter		Unit	Test 1				
	$ ho_{\scriptscriptstyle A}$	dB	-3				
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)				
	σ	dB	0				
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98				
ACK/NACK feedba	ck mode		Multiplexing				
PDSCH transmission	on mode		2				
Note 1: $P_B = 1$.	Note 1: $P_B = 1$.						

Table 8.2.2.2-2: Minimum performance Transmit Diversity (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference va	alue	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	1.4 MHz	R.12 TDD	OP.1 TDD	EPA5	4x2 Medium	70	0.2	1-5

8.2.2.3 Open-loop spatial multiplexing performance

8.2.2.3.1 Minimum Requirement 2 Tx Antenna Port

The requirements are specified in Table 8.2.2.3.1-2, with the addition of the parameters in Table 8.2.2.3.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 2 transmitter antennas.

Table 8.2.2.3.1-1: Test Parameters for Large Delay CDD (FRC)

Paramete	•	Unit	Test 1
Downlink power allocation	$ ho_{\scriptscriptstyle A}$	dB	-3
	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)
	σ	dB	0
$N_{\it oc}$ at antenna	port	dBm/15kHz	-98
ACK/NACK feedba	ick mode		Bundling
PDSCH transmissi	on mode		3
Note 1: $P_B = 1$.			

Table 8.2.2.3.1-2: Minimum performance Large Delay CDD (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	alue	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.11-1 TDD	OP.1 TDD	EVA70	2x2 Low	70	13.1	2-5

8.2.2.3.2 Minimum Requirement 4 Tx Antenna Port

The requirements are specified in Table 8.2.2.3.2-2, with the addition of the parameters in Table 8.2.2.3.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the performance of large delay CDD with 4 transmitter antennas.

Table 8.2.2.3.2-1: Test Parameters for Large Delay CDD (FRC)

Paramete	7	Unit	Test 1
Davinlink navon	$ ho_{\scriptscriptstyle A}$	dB	-6
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
N_{oc} at antenna	port	dBm/15kHz	-98
ACK/NACK feedba	ick mode		Bundling
PDSCH transmissi	on mode		3
Note 1: $P_B = 1$.			

Table 8.2.2.3.2-2: Minimum performance Large Delay CDD (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference v	/alue	UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.14 TDD	OP.1 TDD	EVA70	4x2 Low	70	14.2	2-5

8.2.2.4 Closed-loop spatial multiplexing performance

8.2.2.4.1 Minimum Requirement Single-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.2.2.4.1-2, with the addition of the parameters in Table 8.2.2.4.1-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rankone performance with wideband and frequency selective precoding.

Table 8.2.2.4.1-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1	Test 2
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)
	σ	dB	0	0
N_{oc} at antenna port		dBm/15kHz	-98	-98
Precoding granular	Precoding granularity		6	50
PMI delay (Note 2	2)	ms	10 or 11	10 or 11
Reporting interva	l	ms	1 or 4 (Note 3)	1 or 4 (Note 3)
Reporting mode			PUSCH 1-2	PUSCH 3-1
CodeBookSubsetRestriction bitmap			001111	001111
ACK/NACK feedback	ACK/NACK feedback mode		Multiplexing	Multiplexing
PDSCH transmission	PDSCH transmission mode		4	4

Note 1: $P_B = 1$.

If the UE reports in an available uplink reporting instance at subrame SF#n Note 2: based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

For Uplink - downlink configuration 1 the reporting interval will alternate Note 3: between 1ms and 4ms.

Table 8.2.2.4.1-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

	Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference value		UE
	number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum (dB) Throughput (%)		Category
ſ	1	10 MHz	R.10 TDD	OP.1 TDD	EVA5	2x2 Low	70	-3.1	1-5
ſ	2	10 MHz	R.10 TDD	OP.1 TDD	EPA5	2x2 High	70	-2.8	1-5

8.2.2.4.1A Minimum Requirement Single-Layer Spatial Multiplexing 4 Tx Antenna Port

Parameter

The requirements are specified in Table 8.2.2.4.1A-2, with the addition of the parameters in Table 8.2.2.4.1A-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-one performance with wideband and frequency selective precoding.

Table 8.2.2.4.1A-1: Test Parameters for Single-Layer Spatial Multiplexing (FRC)

Unit

Test 1

			• • • • • • • • • • • • • • • • • • • •		
Davimlink		$ ho_{\scriptscriptstyle A}$	dB	-6	
Downlink alloca		$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)	
		σ	dB	3	
N_{oc} at	antenna p	ort	dBm/15kHz	-98	
Precodir	ng granula	arity	PRB	6	
PMI de	lay (Note	2)	ms	10 or 11	
Repor	ting interv	al	ms	1 or 4 (Note 3)	
Repo	rting mode	Э		PUSCH 1-2	
	SubsetRe bitmap CK feedb			000000000000000 000000000000000 000000111111	
	node			_	
	transmiss mode	sion		4	
Note 1:	$P_B = 1$.				
Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).					
Note 3: For Uplink - downlink configuration 1 the reporting interval will alternate between 1ms and 4ms.					

Table 8.2.2.4.1A-2: Minimum performance Single-Layer Spatial Multiplexing (FRC)

Test	Bandwidth	Reference	OCNG	Propagation Correlation Reference va		/alue	UE	
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.13 TDD	OP.1 TDD	EVA5	4x2 Low	70	-3.5	1-5

8.2.2.4.2 Minimum Requirement Multi-Layer Spatial Multiplexing 2 Tx Antenna Port

The requirements are specified in Table 8.2.2.4.2-2, with the addition of the parameters in Table 8.2.2.4.2-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.

Table 8.2.2.4.2-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

Parameter		Unit	Test 1	Test 2
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-3	-3
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3 (Note 1)	-3 (Note 1)
	σ	dB	0	0
N_{oc} at antenna port		dBm/15kHz	-98	-98
Precoding granularity		PRB	50	50
PMI delay (Not	te 2)	ms	10 or 11	10 or 11
Reporting inte	rval	ms	1 or 4 (Note 3)	1or 4 (Note 3)
Reporting mo	de		PUSCH 3-1	PUSCH 3-1
ACK/NACK feedba	ck mode		Bundling	Bundling
CodeBookSubsetRe	estriction		110000	110000
bitmap				
PDSCH transmission	on mode		4	4

Note 1: $P_R = 1$.

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: For Uplink - downlink configuration 1 the reporting interval will alternate between 1ms and 4ms.

Table 8.2.2.4.2-2: Minimum performance Multi-Layer Spatial Multiplexing (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference value		UE
numbe	r	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.11-1 TDD	OP.1 TDD	EVA5	2x2 Low	70	12.8	2-5
2	10 MHz	R.11-1 TDD	OP.1 TDD	ETU70	2x2 Low	70	13.9	2-5

8.2.2.4.3 Minimum Requirement Multi-Layer Spatial Multiplexing 4 Tx Antenna Port

The requirements are specified in Table 8.2.2.4.3-2, with the addition of the parameters in Table 8.2.2.4.3-1 and the downlink physical channel setup according to Annex C.3.2. The purpose of these tests is to verify the closed loop rank-two performance with wideband and frequency selective precoding.

Table 8.2.2.4.3-1: Test Parameters for Multi-Layer Spatial Multiplexing (FRC)

Parameter	•	Unit	Test 1
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB	-6
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-6 (Note 1)
	σ	dB	3
N_{oc} at antenna	port	dBm/15kHz	-98
Precoding granu	ılarity	PRB	6
PMI delay (Not	e 2)	ms	10 or 11
Reporting inte	rval	ms	1 or 4 (Note 3)
Reporting mo	de		PUSCH 1-2
ACK/NACK feedba	ck mode		Bundling
CodeBookSubsetRo	estriction		0000000000000
bitmap			0000000000000
			0000001111111
			1111111110000
			00000000000
PDSCH transmission	on mode		4

Note 1: $P_B = 1$.

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Note 3: For Uplink - downlink configuration 1 the reporting interval will alternate between 1ms and 4ms.

Table 8.2.2.4.3-2: Minimum performance Multi-Layer Spatial Multiplexing (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference value		UE
number		Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz	R.14 TDD	OP.1 TDD	EVA5	4x2 Low	70	10.7	2-5

8.2.2.5 MU-MIMO

8.2.2.6 [Control channel performance: D-BCH and PCH]

8.3 Demodulation of PDSCH (User-Specific Reference Symbols)

8.3.1 FDD

[TBD]

8.3.2 TDD

The parameters specified in Table 8.3.2-1 are valid for TDD unless otherwise stated.

Table 8.3.2-1: Common Test Parameters for DRS

Parameter	Unit	Value					
Uplink downlink configuration (Note 1)		1					
Special subframe configuration (Note 2)		4					
Cyclic prefix		Normal					
Cell ID		0					
Inter-TTI Distance		1					
Number of HARQ processes	Processes	7					
Maximum number of HARQ transmission		4					
Redundancy version coding sequence		{0,1,2,3} for QPSK and 16QAM {0,0,1,2} for 64QAM					
Number of OFDM symbols for PDCCH	OFDM symbols	2					
Beamforming Model		As specified in Section B.4					
Precoder update granularity		Frequency domain: 1 PRB Time domain: 1 ms					
ACK/NACK feedback mode		Multiplexing					
Note 1: as specified in Table 4.2-2 in TS 36.211 [4] Note 2: as specified in Table 4.2-1 in TS 36.211 [4]							

The requirements are specified in Table 8.3.2-3, with the addition of the parameters in Table 8.3.2-2 and the downlink physical channel setup according to Annex C.3.2. The purpose is to verify the demodulation performance using userspecific reference signals with full RB or single RB allocation.

Table 8.3.2-2: Test Parameters for Testing DRS

parameter		Unit	Test 1	Test 2	Test 3	Test 4	
Danielinkanina	$ ho_{\scriptscriptstyle A}$	dB	0	0	0	0	
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	0 (Note 1)	0 (Note 1)	0 (Note 1)	0 (Note 1)	
	σ	dB	0	0	0	0	
Cell-specific reference	ence		Antenna port 0				
$N_{\it oc}$ at antenna $_{\it I}$	oort	dBm/15kHz	-98	-98	-98	-98	
Symbols for unused	Symbols for unused PRBs		OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)	OCNG (Note 2)	
Number of allocated resource blocks		PRB	50	50	50	1 (Note 2)	
PDSCH transmission mode			7	7	7	7	

Note 1: $P_{\scriptscriptstyle B}=0\,.$

Note 2: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated.

Table 8.3.2-3: Minimum performance DRS (FRC)

Test	Bandwidth	Reference	OCNG	Propagation	Correlation	Reference value		UE
number	and MCS	Channel	Pattern	Condition	Matrix and Antenna Configuration	Fraction of Maximum Throughput (%)	SNR (dB)	Category
1	10 MHz QPSK 1/3	R.25 TDD	OP.1 TDD	EPA5	2x2 Low	70	-0.8	1-5
2	10 MHz 16QAM 1/2	R.26 TDD	OP.1 TDD	EPA5	2x2 Low	70	7.0	2-5
3	10 MHz 64QAM 3/4	R.27 TDD	OP.1 TDD	EPA5	2x2 Low	70	17.0	2-5
4	10 MHz 16QAM 1/2	R.28 TDD	OP.1 TDD	EPA5	2x2 Low	30	1.7	1-5

8.4 Demodulation of PDCCH/PCFICH

The receiver characteristics of the PDCCH/PCFICH are determined by the probability of miss-detection of the Downlink Scheduling Grant (Pm-dsg). PDCCH and PCFICH are tested jointly, i.e. a miss detection of PCFICH implies a miss detection of PDCCH.

8.4.1 FDD

Table 8.4.1-1: Test Parameters for PDCCH/PCFICH

Parame	eter	Unit	Single antenna port	Transmit diversity
Number of PDC	CH symbols	symbols	2	2
Number of PHICH	H groups (N _g)		1	1
PHICH du	ration		Normal	Normal
Unused RE-s a	and PRB-s		OCNG	OCNG
Cell II	D		0	0
Downlink nower	PDCCH_RA PHICH_RA OCNG_RA	dB	0	-3
Downlink power allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	0	-3
$N_{\it oc}$ at anter	nna port	dBm/15kHz	-98	-98
Cyclic pi	refix		Normal	Normal

8.4.1.1 Single-antenna port performance

For the parameters specified in Table 8.4.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.4.1.1-1: Minimum performance PDCCH/PCFICH

Test number	Bandwidth	Aggregation level	Reference Channel	OCNG Pattern	Propagation Condition	Antenna configuration and correlation Matrix	Referen Pm-dsg (%)	ce value SNR (dB)
1	10 MHz	8 CCE	R.15 FDD	OP.1 FDD	ETU70	1x2 Low	1	-1.7

8.4.1.2 Transmit diversity performance

8.4.1.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.4.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.4.1.2.1-1: Minimum performance PDCCH/PCFICH

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		level	Channel	Pattern	Condition	configuration and	Pm-dsg (%)	SNR (dB)
						correlation		
						Matrix		
1	1.4 MHz	2 CCE	R.16 FDD	OP.1 FDD	EPA5	2 x 2 Low	1	4.3

8.4.1.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.4.1-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.1.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.4.1.2.2-1: Minimum performance PDCCH/PCFICH

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		level	Channel	Pattern	Condition	configuration and	Pm-dsg (%)	SNR (dB)
						correlation Matrix		
1	10 MHz	4 CCE	R.17 FDD	OP.1 FDD	EVA5	4 x 2 Medium	1	0.9

8.4.2 TDD

Table 8.4.2-1: Test Parameters for PDCCH/PCFICH

Parame	eter	Unit	Single antenna port	Transmit diversity
Uplink downlink (Note			0	0
Special subframe (Note	•		4	4
Number of PDC	CH symbols	symbols	2	2
Number of PHICI	H groups (N _g)		1	1
PHICH du	PHICH duration		Normal	Normal
Unused RE-s and PRB-s			OCNG	OCNG
Cell ID			0	0
Downlink	PDCCH_RA PHICH_RA OCNG_RA	dB	0	-3
allocation	Downlink power PCFICH RR		0	-3
N_{oc} at antenna port		dBm/15kHz	-98	-98
Cyclic p	refix		Normal	Normal
ACK/NACK fee	dback mode		Multiplexing	Multiplexing
Note 1: as spec	fied in Table 4.2	2-2 in TS 36.211 [4	11.	

Note 1: as specified in Table 4.2-2 in TS 36.211 [4]. Note 2: as specified in Table 4.2-1 in TS 36.211 [4].

8.4.2.1 Single-antenna port performance

For the parameters specified in Table 8.4.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.4.2.1-1: Minimum performance PDCCH/PCFICH

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		level	Channel	Pattern	Condition	configuration	Pm-dsg (%)	SNR (dB)
						and correlation		
						Matrix		
1	10 MHz	8 CCE	R.15 TDD	OP.1 TDD	ETU70	1x2 Low	1	-1.6

8.4.2.2 Transmit diversity performance

8.4.2.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.4.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.4.2.2.1-1: Minimum performance PDCCH/PCFICH

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		level	Channel	Pattern	Condition	configuration	Pm-dsg (%)	SNR (dB)
						and		
						correlation		
						Matrix		
1	1.4 MHz	2 CCE	R.16 TDD	OP.1 TDD	EPA5	2 x 2 Low	1	4.2

8.4.2.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.4.2-1 the average probability of a missed downlink scheduling grant (Pm-dsg) shall be below the specified value in Table 8.4.2.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.4.2.2.2-1: Minimum performance PDCCH/PCFICH

Test	Bandwidth	Aggregation	Reference	OCNG	Propagation	Antenna	Reference	value
number		level	Channel	Pattern	Condition	configuration and correlation Matrix	Pm-dsg (%)	SNR (dB)
1	10 MHz	4 CCE	R.17 TDD	OP.1 TDD	EVA5	4 x 2 Medium	1	1.2

8.5 Demodulation of PHICH

The receiver characteristics of the PHICH are determined by the probability of miss-detecting an ACK for a NACK (Pm-an). It is assumed that there is no bias applied to the detection of ACK and NACK (zero-threshold detection).

8.5.1 FDD

Table 8.5.1-1: Test Parameters for PHICH

Paramo	eter	Unit	Single antenna port	Transmit diversity	
Downlink power	PDCCH_RA PHICH_RA OCNG_RA	dB	0	-3	
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	0	-3	
PHICH du	ıration		Normal	Normal	
Number of PHICH	groups (Note 1)		Ng = 1	Ng = 1	
PDCCH C	onctent		UL Grant should be included with the proper information aligned with A.3.6		
Unused RE-s	and PRB-s		OCNG	OCNG	
Cell ID			0	0	
N_{oc} at antenna port		dBm/15kHz	-98	-98	
Cyclic p	refix		Normal	Normal	
Note 1: according	g to Clause 6.9 in	TS 36.211 [4].	_		

8.5.1.1 Single-antenna port performance

For the parameters specified in Table 8.5.1-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.1.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.5.1.1-1: Minimum performance PHICH

Test	Bandwidth	Reference	OCNG	Propagation	Antenna		
number		Channel	Pattern	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)
1	10 MHz	R.18	OP.1 FDD	ETU70	1 x 2 Low	0.1	5.5
2	10 MHz	R.24	OP.1 FDD	ETU70	1 x 2 Low	0.1	0.6

8.5.1.2 Transmit diversity performance

8.5.1.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.5.1-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.1.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.5.1.2.1-1: Minimum performance PHICH

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		Channel	Pattern	Condition	configuration	Pm-an (%)	SNR (dB)
					and		
					correlation		
					Matrix		
1	1.4 MHz	R.19	OP.1 FDD	EPA5	2 x 2 Low	0.1	5.6

8.5.1.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.5.1-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.1.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.5.1.2.2-1: Minimum performance PHICH

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		Channel	pattern	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)
1	10 MHz	R.20	OP.1 FDD	EVA5	4 x 2 Medium	0.1	6.0

8.5.2 TDD

Table 8.5.2-1: Test Parameters for PHICH

Param	eter	Unit	Single antenna port	Transmit diversity
Uplink downlink cor 1)	nfiguration (Note		1	1
Special subframe (Note			4	4
Downlink power	PDCCH_RA PHICH_RA OCNG_RA	dB	0	-3
allocation	PCFICH_RB PDCCH_RB PHICH_RB OCNG_RB	dB	0	-3
PHICH du	ıration		Normal	Normal
Number of PHICH	groups (Note 3)		Ng = 1	Ng = 1
PDCCH C	onctent			be included with the aligned with A.3.6.
Unused RE-s	and PRB-s		OCNG	OCNG
Cell ID			0	0
$N_{\scriptscriptstyle oc}$ at antenna port		dBm/15kHz	-98	-98
Cyclic p	refix		Normal	Normal
ACK/NACK fee	dback mode		Multiplexing	Multiplexing

Note 1: as specified in Table 4.2-2 in TS 36.211 [4]. Note 2: as specified in Table 4.2-1 in TS 36.211 [4].

Note 2: as specified in Table 4.2-1 in TS 36.211 [4]. Note 3: according to Clause 6.9 in TS 36.211 [4].

8.5.2.1 Single-antenna port performance

For the parameters specified in Table 8.5.2-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.5.2.1-1: Minimum performance PHICH

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value
number		Channel	Pattern	Condition	configuration and correlation Matrix	Pm-an (%)	SNR (dB)
1	10 MHz	R.18	OP.1 TDD	ETU70	1 x 2 Low	0.1	5.8
2	10 MHz	R.24	OP.1 TDD	ETU70	1 x 2 Low	0.1	1.3

8.5.2.2 Transmit diversity performance

8.5.2.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.5.2-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.5.2.2.1-1: Minimum performance PHICH

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value	
number		Channel	Pattern	Condition	configuration	Pm-an (%)	SNR (dB)	
					and			
					correlation			
					Matrix			
1	1.4 MHz	R.19	OP.1 TDD	EPA5	2 x 2 Low	0.1	5.3	

8.5.2.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.5.2-1 the average probability of a miss-detecting ACK for NACK (Pm-an) shall be below the specified value in Table 8.5.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.5.2.2.2-1: Minimum performance PHICH

Test	Bandwidth	Reference	OCNG	Propagation	Antenna	Referen	ce value	
number		Channel	Pattern	Condition	configuration	Pm-an (%)	SNR (dB)	
					and			
					correlation			
					Matrix			
1	10 MHz	R.20	OP.1 TDD	EVA5	4 x 2 Medium	0.1	6.1	

8.6 Demodulation of PBCH

The receiver characteristics of the PBCH are determined by the probability of miss-detection of the PBCH (Pm-bch).

8.6.1 FDD

Table 8.6.1-1: Test Parameters for PBCH

Parameter		Unit	Single antenna port	Transmit diversity	
Downlink power	PBCH_RA	dB	0	-3	
allocation	PBCH_RB	dB	0	-3	
$N_{\it oc}$ at anter	N_{oc} at antenna port		-98	-98	
Cyclic prefix			Normal	Normal	
Cell ID			0	0	
Note 1: as speci	fied in Table 4.2	2-2 in TS 36 211 [/	1	•	

Note 1: as specified in Table 4.2-2 in TS 36.211 [4]. Note 2: as specified in Table 4.2-1 in TS 36.211 [4].

8.6.1.1 Single-antenna port performance

For the parameters specified in Table 8.6.1-1 the average probability of a miss-detecting PBCH (Pm-bch) shall be below the specified value in Table 8.6.1.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.6.1.1-1: Minimum performance PBCH

Test	Bandwidth	Reference	Propagation	Antenna	Referen	ce value
number		Channel	Condition	configuration and correlation Matrix	Pm-bch (%)	SNR (dB)
1	1.4 MHz	R.21	ETU70	1 x 2 Low	1	-6.1

8.6.1.2 Transmit diversity performance

8.6.1.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.6.1-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.1.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.6.1.2.1-1: Minimum performance PBCH

Test	Bandwidth	Reference	Propagation	Antenna	Referen	ce value	
number		Channel	Condition	configuration	Pm-bch (%)	SNR (dB)	
				and			
				correlation			
				Matrix			
1	1.4 MHz	R.22	EPA5	2 x 2 Low	1	-4.8	

8.6.1.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.6.1-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.1.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.6.1.2.2-1: Minimum performance PBCH

Test	Bandwidth	Reference	Propagation	Antenna	Referen	ce value
number		Channel	Condition	configuration and correlation Matrix	Pm-bch (%)	SNR (dB)
1	1.4 MHz	R.23	EVA5	4 x 2 Medium	1	-3.5

8.6.2 TDD

Table 8.6.2-1: Test Parameters for PBCH

Parame	Parameter		Single antenna port	Transmit diversity	
Uplink downlink configuration (Note 1)			1	1	
Special subframe configuration (Note 2)			4	4	
Downlink power	PBCH_RA	dB	0	-3	
allocation	PBCH_RB	dB	0	-3	
$N_{\scriptscriptstyle oc}$ at anter	nna port	dBm/15kHz	-98	-98	
Cyclic pr	efix		Normal	Normal	
Cell ID			0	0	
		2-2 in TS 36.211 [4		_	
Note 2: as specif	fied in Table 4.2	² -1 in TS 36.211 [4	1.		

8.6.2.1 Single-antenna port performance

For the parameters specified in Table 8.6.2-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.6.2.1-1: Minimum performance PBCH

Test	Bandwidth	Reference	Propagation	Antenna	Reference value	
number		Channel	Condition	configuration and correlation Matrix	Pm-bch (%)	SNR (dB)
1	1.4 MHz	R.21	ETU70	1 x 2 Low	1	-6.4

8.6.2.2 Transmit diversity performance

8.6.2.2.1 Minimum Requirement 2 Tx Antenna Port

For the parameters specified in Table 8.6.2-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.2.2.1-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.6.2.2.1-1: Minimum performance PBCH

Test	Bandwidth	Reference	Propagation	Antenna	Reference value	
number		Channel	Condition	configuration and correlation Matrix	Pm-bch (%)	SNR (dB)
1	1.4 MHz	R.22	EPA5	2 x 2 Low	1	-4.8

8.6.2.2.2 Minimum Requirement 4 Tx Antenna Port

For the parameters specified in Table 8.6.2-1 the average probability of a miss-detected PBCH (Pm-bch) shall be below the specified value in Table 8.6.2.2.2-1. The downlink physical setup is in accordance with Annex C.3.2.

Table 8.6.2.2.2-1: Minimum performance PBCH

Test	Bandwidth	Reference	Propagation	Antenna	Reference value	
number		Channel	Condition	configuration and correlation Matrix	Pm-bch (%)	SNR (dB)
1	1.4 MHz	R.23	EVA5	4 x 2 Medium	1	-4.1

9 Reporting of Channel State Information

9.1 General

This section includes requirements for the reporting of channel state information (CSI). For all test cases in this section, the definition of SNR is in accordance with the one given in clause 8.1.1.

9.2 CQI reporting definition under AWGN conditions

The reporting accuracy of the channel quality indicator (CQI) under frequency non-selective conditions is determined by the reporting variance and the BLER performance using the transport format indicated by the reported CQI median. The purpose is to verify that the reported CQI values are in accordance with the CQI definition given in TS 36.211 [4].

To account for sensitivity of the input SNR the reporting definition is considered to be verified if the reporting accuracy is met for at least one of two SNR levels separated by an offset of 1 dB.

9.2.1 Minimum requirement PUCCH 1-0

9.2.1.1 FDD

The following requirements apply to UE Category 2-5. For the parameters specified in Table 9.2.1.1-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported CQI value according to Table A.4-1 shall be in the range of ± 1 of the reported median more than 90% of the time. If the PDSCH BLER using the transport format indicated by median CQI is less than or equal to 0.1, the BLER using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER using the transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1.

Parameter Unit Test 1 Test 2 Bandwidth MHz 10 PDSCH transmission mode 1 dB 0 $\rho_{\scriptscriptstyle A}$ Downlink power 0 dB $\rho_{\scriptscriptstyle B}$ allocation dΒ 0 σ Propagation condition and AWGN (1 x 2) antenna configuration dB SNR (Note 2) 0 6 dB[mW/15kHz] -98 -97 -92 -91 $N^{(\overline{j})}$ dB[mW/15kHz] -98 -98 Max number of HARQ 1 transmissions Physical channel for CQI **PUCCH Format 2** reporting **PUCCH Report Type** 4 Reporting periodicity ms $N_P = 5$ cqi-pmi-ConfigurationIndex

Table 9.2.1.1-1: PUCCH 1-0 static test (FDD)

9.2.1.2 TDD

The following requirements apply to UE Category 2-5. For the parameters specified in Table 9.2.1.2-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported CQI value according to Table A.4-2 shall be in the range of ± 1 of the reported median more than 90% of the time. If the PDSCH BLER using the transport format indicated by median CQI is less than or equal to 0.1, the BLER using the transport format indicated by the (median CQI + 1) shall be greater than 0.1. If the PDSCH BLER using the transport format indicated by the median CQI is greater than 0.1, the BLER using transport format indicated by (median CQI – 1) shall be less than or equal to 0.1

Note 1: Reference measurement channel according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.

Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Parameter Unit Test 1 Test 2 Bandwidth MHz 10 PDSCH transmission mode 1 2 Uplink downlink configuration Special subframe 4 configuration dB 0 $\rho_{\scriptscriptstyle A}$ Downlink power $\rho_{\scriptscriptstyle B}$ dB 0 allocation dB 0 σ Propagation condition and AWGN (1 x 2) antenna configuration SNR (Note 2) dB 0 $\hat{I}_{or}^{(j)}$ dB[mW/15kHz] -97 -98 -92 -91 $N^{(j)}$ dB[mW/15kHz] -98 -98 Max number of HARQ 1 transmissions Physical channel for CQI PUSCH (Note 3) reporting **PUCCH Report Type** Reporting periodicity $N_P = 5$ ms cqi-pmi-ConfigurationIndex 3

Table 9.2.1.2-1: PUCCH 1-0 static test (TDD)

Note 1: Reference measurement channel according to Table A.4-2 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.

Multiplexing

- Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 3: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#7 and #2.

9.2.2 Minimum requirement PUCCH 1-1

ACK/NACK feedback mode

The minimum requirements for dual codeword transmission are defined in terms of a reporting spread of the wideband CQI value for codeword #1, and their BLER performance using the transport format indicated by the reported CQI median of codeword #0 and codeword #1. The precoding used at the transmitter is a fixed precoding matrix specified by the bitmap parameter *codebookSubsetRestriction*. The propagation condition assumed for the minimum performance requirement is defined in subclause B.1.

9.2.2.1 FDD

The following requirements apply to UE Category 2-5. For the parameters specified in table 9.2.2.1-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

wideband CQI_1 = wideband CQI_0 – Codeword 1 offset level

The wideband CQI_1 shall be within the set {median CQI_1 -1, median CQI_1 +1} for more than 90% of the time, where the resulting wideband values CQI_1 shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI_0 -1 and median CQI_1 -1 shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI_0 +1 and median CQI_1 +1 shall be greater than or equal to 0.1.

Table 9.2.2.1-1: PUCCH 1-1 static test (FDD)

Parameter		Unit	Te	st 1	Te	st 2	
Bandwidth		MHz		1	10		
PDSCH transmission	on mode				4		
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB		-	-3		
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB	-3		-3		
	σ	dB			0		
Propagation condit antenna configur			Clause B.1 (2 x 2)				
CodeBookSubsetRe bitmap	estriction		010000				
SNR (Note 2)		dB	10	11	16	17	
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-88	-87	-82	-81	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98 -98		98		
Max number of F transmission					1		
Physical channel for reporting	CQI/PMI			PUCCH	Format 2		
PUCCH Report Ty CQI/PMI	ype for				2		
PUCCH Report Typ					3		
Reporting period		ms		N _P	= 5		
cqi-pmi-Configurati			6				
ri-ConfigInde		ant abancal accordin			ote 3)		

- Note 1: Reference measurement channel according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.
- Note 2: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.
- Note 3: It is intended to have UL collisions between RI reports and HARQ-ACK, since the RI reports shall not be used by the eNB in this test.

9.2.2.2 TDD

The following requirements apply to UE Category 2-5. For the parameters specified in table 9.2.2.2-1, and using the downlink physical channels specified in tables C.3.2-1 and C.3.2-2, the reported offset level of the wideband spatial differential CQI for codeword #1 (Table 7.2-2 in TS 36.213 [6]) shall be used to determine the wideband CQI index for codeword #1 as

wideband CQI₁ = wideband CQI₀ - Codeword 1 offset level

The wideband CQI_1 shall be within the set {median CQI_1 -1, median CQI_1 +1} for more than 90% of the time, where the resulting wideband values CQI_1 shall be used to determine the median CQI values for codeword #1. For both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI_0 -1 and median CQI_1 -1 shall be less than or equal to 0.1. Furthermore, for both codewords #0 and #1, the PDSCH BLER using the transport format indicated by the respective median CQI_0 +1 and median CQI_1 +1 shall be greater than or equal to 0.1.

PUSCH (Note 3)

2

 $N_P = 5$

3

805 (Note 4)

Multiplexing

reporting PUCCH Report Type

Reporting periodicity

cqi-pmi-ConfigurationIndex

ri-ConfigIndex

ACK/NACK feedback mode

Parameter Unit Test 1 Test 2 Bandwidth MHz 10 PDSCH transmission mode 4 Uplink downlink configuration Special subframe 4 configuration -3 dB $\rho_{\scriptscriptstyle A}$ Downlink power $\rho_{\scriptscriptstyle B}$ dB -3 allocation 0 dB σ Propagation condition and Clause B.1 (2 x 2) antenna configuration CodeBookSubsetRestriction 010000 bitmap SNR (Note 2) dB 10 11 16 17 dB[mW/15kHz] -88 -87 -82 -81 dB[mW/15kHz] -98 -98 Max number of HARQ transmissions Physical channel for CQI/PMI

Table 9.2.2.2-1: PUCCH 1-1 static test (TDD)

Reference measurement channel according to Table A.4-2 with one sided dynamic OCNG Note 1: Pattern OP.1 TDD as described in Annex A.5.2.1.

ms

- For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) Note 2: and the respective wanted signal input level.
- To avoid collisions between CQI/PMI reports and HARQ-ACK it is necessary to report both on Note 3: PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#3 and #8 to allow periodic CQI/PMI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#7 and #2.
- RI reporting interval is set to the maximum allowable length of 160ms to minimise collisions Note 4: between RI, CQI/PMI and HARQ-ACK reports. In the case when all three reports collide, it is expected that CQI/PMI reports will be dropped, while RI and HARQ-ACK will be multiplexed. At eNB, CQI report collection shall be skipped every 160ms during performance verification.

9.3 CQI reporting under fading conditions

9.3.1 Frequency-selective scheduling mode

The accuracy of sub-band channel quality indicator (CQI) reporting under frequency selective fading conditions is determined by a double-sided percentile of the reported differential CQI offset level 0 per sub-band, and the relative increase of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest reported differential CQI offset level the corresponding transport format compared to the case for which a fixed format is transmitted on any sub-band in set S of TS 36.213 [6]. The purpose is to verify that preferred sub-bands can be used for frequently-selective scheduling. To account for sensitivity of the input SNR the sub-band CQI reporting under frequency selective fading conditions is considered to be verified if the reporting accuracy is met for at least one of two SNR levels separated by an offset of 1 dB.

Minimum requirement PUSCH 3-0 9.3.1.1

9.3.1.1.1 **FDD**

For the parameters specified in Table 9.3.1.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.1.1-2 and by the following

- a) sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$;
- c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. The transport block sizes TBS for wideband CQI median and subband CQI are selected according to Table A.4-6.

Table 9.3.1.1.1-1 Sub-band test for single antenna transmission (FDD)

Para	meter	Unit	Tes	st 1	Tes	st 2	
Band	width	MHz		10 [MHz		
Transmiss	sion mode			1 (po	ort 0)		
Downlink	$ ho_{\scriptscriptstyle A}$	dB		(0		
power	$ ho_{\scriptscriptstyle B}$	dB		(0		
allocation	σ	dB		(0		
SNR (Note 3)	dB	9	10	14	15	
\hat{I}_{c}	(j) or	dB[mW/15kHz]	-89	-88	-84	-83	
N	(j) oc	dB[mW/15kHz]	-6	-98		-98	
5			Clause	B.2.4 wi	th $\tau_d = 0$).45 <i>μ</i> s,	
Propagation	on channel		$a = 1, f_D = 5 \text{ Hz}$				
Corre	lation		Full				
Reportin	g interval	ms		į	5		
	delay	ms			8		
	ng mode			PUSC	CH 3-0		
	er of HARQ issions				1		
Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4) Note 2: Reference measurement channel according to Table A.4-4 with							
		asurement channe I dynamic OCNG Pa					

Annex A.5.1.1/2.

For each test, the minimum requirements shall be fulfilled for at Note 3: least one of the two SNR(s) and the respective wanted signal input level

Table 9.3.1.1.1-2 Minimum requirement (FDD)

	Test 1	Test 2
α[%]	2	2
β [%]	55	55
γ	1.1	1.1
UE Category	1-5	1-5

9.3.1.1.2 TDD

For the parameters specified in Table 9.3.1.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.1.1.2-2 and by the following

- a) a sub-band differential CQI offset level of 0 shall be reported at least α % of the time but less than β % for each sub-band;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set S shall be $\geq \gamma$;
- c) when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS, the average BLER for the indicated transport formats shall be greater or equal to 0.05.

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. The transport block sizes TBS for wideband CQI median and subband CQI are selected according to Table A.4-6.

Table 9.3.1.1.2-1 Sub-band test for single antenna transmission (TDD)

neter	Unit	Test 1 Test 2			st 2
width	MHz	10 MHz			
ion mode		1 (port 0)			
$ ho_{\scriptscriptstyle A}$	dB		(0	
$ ho_{\scriptscriptstyle B}$	dB		(0	
σ	dB			0	
ownlink ıration			;	2	
ubframe iration			4	4	
Note 3)	dB	9	10	14	15
j) r	dB[mW/15kHz]	-89	-88	-84	-83
(j) oc	dB[mW/15kHz]	-98 -98		88	
		Clause B.2.4 with $\tau_d = 0.45 \mu$).45 <i>μ</i> s,	
n channel		$a = 1, f_D = 5 \text{ Hz}$			
lation		Full			
g interval	ms		;	5	
delay	ms			or 11	
g mode			PUSC	CH 3-0	
er of HARQ issions				1	
(feedback de			Multip	lexing	
Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4) Note 2: Reference measurement channel according to Table A.4-5 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2. Note 3: For each test, the minimum requirements shall be fulfilled for at					
efei ne/t nne or e	rence me wo sided x A.5.2.7 ach test one of the	rence measurement channel wo sided dynamic OCNG Pax A.5.2.1/2. ach test, the minimum requione of the two SNR(s) and the street of the two SNR(s) and the street of the str	rence measurement channel according wo sided dynamic OCNG Pattern OP x A.5.2.1/2. ach test, the minimum requirements one of the two SNR(s) and the respe	rence measurement channel according to Tab wo sided dynamic OCNG Pattern OP.1/2 TDD x A.5.2.1/2. ach test, the minimum requirements shall be f one of the two SNR(s) and the respective war	rence measurement channel according to Table A.4-5 wo sided dynamic OCNG Pattern OP.1/2 TDD as desc x A.5.2.1/2. ach test, the minimum requirements shall be fulfilled fo one of the two SNR(s) and the respective wanted signs

Table 9.3.1.1.2-2 Minimum requirement (TDD)

	Test 1	Test 2
α[%]	2	2
β[%]	55	55
γ	1.1	1.1
UE Category	1-5	1-5

9.3.2 Frequency non-selective scheduling mode

The reporting accuracy of the channel quality indicator (CQI) under frequency non-selective fading conditions is determined by the reporting variance, and the relative increase of the throughput obtained when the transport format transmitted is that indicated by the reported CQI compared to the case for which a fixed transport format configured according to the reported median CQI is transmitted. In addition, the reporting accuracy is determined by a minimum BLER using the transport formats indicated by the reported CQI. The purpose is to verify that the UE is tracking the channel variations and selecting the largest transport format possible according to the prevailing channel state for frequently non-selective scheduling. To account for sensitivity of the input SNR the CQI reporting under frequency non-selective fading conditions is considered to be verified if the reporting accuracy is met for at least one of two SNR levels separated by an offset of 1 dB.

9.3.2.1 Minimum requirement PUCCH 1-0

9.3.2.1.1 FDD

For the parameters specified in Table 9.3.2.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.2.1.1-2 and by the following

- a) a CQI index not in the set {median CQI -1, median CQI +1} shall be reported at least α % of the time;
- b) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband CQI index and that obtained when transmitting a fixed transport format configured according to the wideband CQI median shall be $\geq \gamma$;
- c) when transmitting the transport format indicated by each reported wideband CQI index, the average BLER for the indicated transport formats shall be greater or equal to 0.02

The transport block sizes TBS for wideband CQI median and reported wideband CQI are selected according to Table A.4-3 (for Category 2-5) or Table A.4-9 (for Category 1).

Table 9.3.2.1.1-1 Fading test for single antenna (FDD)

Parameter		Unit	Test 1 Test 2			st 2	
	width	MHz	10 MHz				
Transmiss	sion mode			1 (po	ort 0)		
Downlink	$ ho_{\scriptscriptstyle A}$	dB		(0		
power	$ ho_{\scriptscriptstyle B}$	dB		(0		
allocation	σ	dB			0		
SNR (I	Note 3)	dB	6	7	12	13	
	(j) or	dB[mW/15kHz]	-92	-91	-86	-85	
N	(j) oc	dB[mW/15kHz]] -98 -98] -98 -		98
Propagation	on channel			EF	PA5		
Corre	lation			Hi	gh		
Reportir	ng mode			PUCC	CH 1-0		
Reporting	periodicity	ms		N₽	= 2		
	delay	ms			8		
	hannel for porting		PUSCH (Note 4)				
PUCCH R	eport Type				4		
cqi-pmi- ConfigurationIndex			1				
Max number of HARQ transmissions			1				
Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink SF not later							

subframe SF#n based on CQI estimation at a downlink SF not later than SF#(n-4), this reported wideband CQI cannot be applied at the eNB downlink before SF#(n+4)

Note 2: Reference measurement channel according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.

Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input level.

Note 4: To avoid collisions between CQI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#1, #3, #7 and #9 to allow periodic CQI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#5, #7, #1 and #3.

Table 9.3.2.1.1-2 Minimum requirement (FDD)

	Test 1	Test 2
α[%]	20	20
γ	1.05	1.05
UE Category	2-5	2-5

9.3.2.1.2 TDD

For the parameters specified in Table 9.3.2.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.2.1.2-2 and by the following

- a) a CQI index not in the set {median CQI -1, median CQI +1} shall be reported at least α % of the time;
- b) the ratio of the throughput obtained when transmitting the transport format indicated by each reported wideband
 CQI index and that obtained when transmitting a fixed transport format configured according to the wideband
 CQI median shall be ≥ γ;
- c) when transmitting the transport format indicated by each reported wideband CQI index, the average BLER for the indicated transport formats shall be greater or equal to 0.02.

The transport block sizes TBS for wideband CQI median and reported wideband CQI are selected according to Table A.4-3 (for Category 2-5) or Table A.4-9 (for Category 1).

Table 9.3.2.1.2-1 Fading test for single antenna (TDD)

Para	meter	Unit	Tes	st 1	Tes	st 2
Band	lwidth	MHz		10 N	MHz	
Transmission mode				1 (po	ort 0)	
Downlink $ ho_{\scriptscriptstyle A}$		dB		()	
power	$ ho_{\scriptscriptstyle B}$	dB		()	
allocation	σ	dB		()	
	downlink uration			2	2	
Special	subframe				4	
	uration	in .				40
	Note 3)	dB	6	7	12	13
\hat{I}_{c}	(j) or	dB[mW/15kHz]	-92	-91	-86	-85
N	oc (j)	dB[mW/15kHz]	-6	98	-6	8
	on channel				A5	
	elation				gh	
	ng mode				CH 1-0	
	periodicity	ms	N _P = 5			
	delay	ms	10 or 11			
	channel for porting			PUSCH	(Note 4)	
PUCCH R	eport Type		4			
	pmi-			:	3	
Contigura	ationIndex					
	er of HARQ				1	
	issions K feedback					
	n reedback ode			Multip	lexing	
Note 1:	f the UE repo	rts in an available u	plink rep	orting ins	tance at	
		n based on CQI es				ot later
		, this reported wide	band CQ	I cannot l	be applie	d at the
		before SF#(n+4).				
		easurement channel				
	sided dynamic OCNG Pattern OP.1 TDD as described in Annex					nex
A.5.2.1.						
Note 3: For each test, the minimum requirements shall be fulfilled for at least one of the two SNR(s) and the respective wanted signal input						
level.						
Note 4: To avoid collisions between CQI reports and HARQ-ACK it is						
necessary to report both on PUSCH instead of PUCCH. PDCCH						
		shall be transmitted				
		o multiplex with the				
subframe SF#7 and #2.						

Table 9.3.2.1.2-2 Minimum requirement (TDD)

	Test 1	Test 2	
α[%]	20	20	
γ	1.05	1.05	
UE Category	2-5	2-5	

9.3.3 Frequency-selective interference

The accuracy of sub-band channel quality indicator (CQI) reporting under frequency selective interference conditions is determined by a percentile of the reported differential CQI offset level +2 for a preferred sub-band, and the relative increase of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the

highest reported differential CQI offset level the corresponding transport format compared to the case for which a fixed format is transmitted on any sub-band in set *S* of TS 36.213 [6]. The purpose is to verify that preferred sub-bands are used for frequently-selective scheduling under frequency-selective interference conditions.

9.3.3.1 Minimum requirement PUSCH 3-0

9.3.3.1.1 FDD

For the parameters specified in Table 9.3.3.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.3.1.1-2 and by the following

- a) a sub-band differential CQI offset level of +2 shall be reported at least α % for at least one of the sub-bands of full size at the channel edges;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set *S* shall be $\geq \gamma$;

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test. The transport block sizes TBS for wideband CQI median and subband CQI are selected according to Table A.4-6.

Table 9.3.3.1.1-1 Sub-band test for single antenna transmission (FDD)

Parar	neter	Unit	Test 1	Test 2
Bandwidth		MHz	10 MHz	10 MHz
Transmiss	sion mode		1 (port 0)	1 (port 0)
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0	0
power	$ ho_{\scriptscriptstyle B}$	dB	0	0
allocation	σ	dB	0	0
$I_{ot}^{(j)}$ for	RB 05	dB[mW/15kHz]	-102	-93
$I_{ot}^{(j)}$ for F	RB 641	dB[mW/15kHz]	-93 -93	
$I_{ot}^{(j)}$ for R	B 4249	dB[mW/15kHz]	-93 -102	
\hat{I}_{c}^{0}	(j) or	dB[mW/15kHz]	-94 -94	
	er of HARQ issions		,	1
			Clause B.2.4 wit	th $ au_d = 0.45 \mu \text{s}$,
Propagation	on channel		$a = 1, f_D = 5 \text{ Hz}$	
Correlation			Full	
Reporting interval		ms	Į	5
CQI delay		ms		3
Reporting mode			PUSCH 3-0	
Sub-ba	nd size	RB	6 (full size)	

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4).

Note 2: Reference measurement channel according to Table A.4-4 with one/two sided dynamic OCNG Pattern OP.1/2 FDD as described in Annex A.5.1.1/2.

Table 9.3.3.1.1-2 Minimum requirement (FDD)

	Test 1	Test 2
α[%]	60	60
γ	1.6	1.6
UE Category	1-5	1-5

9.3.3.1.2 TDD

For the parameters specified in Table 9.3.3.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.3.3.1.2-2 and by the following

- a) a sub-band differential CQI offset level of +2 shall be reported at least α % for at least one of the sub-bands of full size at the channel edges;
- b) the ratio of the throughput obtained when transmitting on a randomly selected sub-band among the sub-bands with the highest differential CQI offset level the corresponding TBS and that obtained when transmitting the TBS indicated by the reported wideband CQI median on a randomly selected sub-band in set *S* shall be $\geq \gamma$,

The requirements only apply for sub-bands of full size and the random scheduling across the sub-bands is done by selecting a new sub-band in each TTI for FDD, each available downlink transmission instance for TDD. Sub-bands of a size smaller than full size are excluded from the test. The transport block size TBS (wideband CQI median) is that resulting from the code rate which is closest to that indicated by the wideband CQI median and the $N_{\rm PRB}$ entry in Table 7.1.7.2.1-1 of TS 36.213 [6] that corresponds to the sub-band size.

Table 9.3.3.1.2-1 Sub-band test for single antenna transmission (TDD)

D		1124	T14	T10
	meter	Unit	Test 1	Test 2
Bandwidth		MHz	10 MHz	10 MHz
Transmiss	sion mode		1 (port 0)	1 (port 0)
Downlink	$ ho_{\scriptscriptstyle A}$	dB	0	0
power	$ ho_{\scriptscriptstyle B}$	dB	0	0
allocation	σ	dB	0	0
	downlink uration		2	2
	subframe uration		4	4
$I_{ot}^{(j)}$ for	RB 05	dB[mW/15kHz]	-102	-93
$I_{ot}^{(j)}$ for F	RB 641	dB[mW/15kHz]	-93	-93
$I_{ot}^{(j)}$ for RB 4249		dB[mW/15kHz]	-93	-102
\hat{I}_{c}^{i}	(j) or	dB[mW/15kHz]	-94	-94
	er of HARQ iissions			1
			Clause B.2.4 with $\tau_d = 0.45$	
Propagation	on channel		a = 1, f	$I_D = 5 \mathrm{Hz}$
Corre	lation		F	ull
Reportin	g interval	ms		5
CQI delay		ms	10 c	or 11
Reporting mode			PUSC	CH 3-0
Sub-band size		RB	6 (ful	l size)
ACK/NACK feedback mode				lexing
Note 1: If the LIF reports in an available uplink reporting instance at				

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on CQI estimation at a downlink subframe not later than SF#(n-4), this reported subband or wideband CQI cannot be applied at the eNB downlink before SF#(n+4)

Note 2: Reference measurement channel according to table A.4-5 with one/two sided dynamic OCNG Pattern OP.1/2 TDD as described in Annex A.5.2.1/2.

Table 9.3.3.1.2-2 Minimum requirement (TDD)

	Test 1	Test 2
α[%]	60	60
γ	1.6	1.6
UE Category	1-5	1-5

9.4 Reporting of Precoding Matrix Indicator (PMI)

The minimum performance requirements of PMI reporting are defined based on the precoding gain, expressed as the relative increase in throughput when the transmitter is configured according to the UE reports compared to the case when the transmitter is using random precoding, respectively. When the transmitter uses random precoding, for each PDSCH allocation a precoder is randomly generated and applied to the PDSCH. Transmission mode 6 is used with a fixed transport format (FRC) configured. The requirements are specified in terms of the ratio

$$\gamma = \frac{t_{ue}}{t_{rnd}}$$

where t_{md} is 60% of the maximum throughput obtained at SNR_{rnd} using random precoding, and t_{ue} the throughput measured at SNR_{rnd} with precoders configured according to the UE reports.

9.4.1 Single PMI

9.4.1.1 Minimum requirement PUSCH 3-1

9.4.1.1.1 FDD

For the parameters specified in Table 9.4.1.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.4.1.1.1-2.

Table 9.4.1.1.1-1 PMI test for single-layer (FDD)

Parai	neter	Unit	Test 1	
	width	MHz	10	
Transmission mode			6	
Propagation	on channel		EVA5	
Precoding	granularity	PRB	50	
	tion and onfiguration		Low 2 x 2	
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-3	
power	$ ho_{\scriptscriptstyle B}$	dB	-3	
allocation	σ	dB	0	
N	(j) oc	dB[mW/15kHz]	-98	
Reportir	ng mode		PUSCH 3-1	
Reportin	g interval	ms	1	
PMI dela	y (Note 2)	ms	8	
Measureme	ent channel		R.10 FDD	
OCNG	Pattern		OP.1 FDD	
Max number of HARQ transmissions			4	
Redundancy version coding sequence			{0,1,2,3}	
Note 1: For random precoder selection, the precoder shall be updated in each TTI (1 ms granularity).				

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the eNB downlink before SF#(n+4).

Table 9.4.1.1.1-2 Minimum requirement (FDD)

Parameter	Test 1
γ	1.1
UE Category	1-5

9.4.1.1.2 TDD

For the parameters specified in Table 9.4.1.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.1.1.2-2.

Table 9.4.1.1.2-1 PMI test for single-layer (TDD)

Parameter		Unit	Test 1	
Bandwidth		MHz	10	
Transmission mode			6	
	lownlink		1	
	uration			
	subframe		4	
	uration		EVA5	
	on channel granularity	PRB	50	
	granulanty tion and	FKD	50	
	onfiguration		Low 2 x 2	
antenna co		15		
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-3	
power	$ ho_{\scriptscriptstyle B}$	dB	-3	
allocation	σ	dB	0	
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98	
Reportir	ng mode		PUSCH 3-1	
Reportin	g interval	ms	1	
PMI delay	y (Note 2)	ms	10 or 11	
Measureme	ent channel		R.10 TDD	
OCNG	Pattern		OP.1 TDD	
Max number	er of HARQ		4	
	issions			
	cy version		{0,1,2,3}	
coding sequence ACK/NACK feedback				
mode			Multiplexing	
	ne precoder			
shall be updated in each available downlink				
	ransmission i			
Note 2:	f the UE repo	orts in an available u		

Note 2: If the UE reports in an available uplink reporting instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the

eNB downlink before SF#(n+4).

Table 9.4.1.1.2-2 Minimum requirement (TDD)

Parameter	Test 1
γ	1.1
UE Category	1-5

9.4.2 Multiple PMI

9.4.2.1 Minimum requirement PUSCH 1-2

9.4.2.1.1 FDD

For the parameters specified in Table 9.4.2.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.2.1.1-2.

Table 9.4.2.1.1-1 PMI test for single-layer (FDD)

Parameter		Unit	Test 1		
Bandwidth		MHz	20		
Transmiss	sion mode		6		
Propagation	on channel		EPA5		
Precoding granularity (only for reporting and following PMI)		PRB	8		
	tion and onfiguration		Low 2 x 2		
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-3		
power	$ ho_{\scriptscriptstyle B}$	dB	-3		
allocation	σ	dB	0		
N	(j) oc	dB[mW/15kHz]	-98		
Reportir	ng mode		PUSCH 1-2		
Reporting	g interval	ms	1		
PMI (delay	ms	8		
Measureme	ent channel		R.30 FDD		
OCNG	Pattern		OP.1 FDD		
Max number of HARQ transmissions			4		
	cy version equence		{0,1,2,3}		
Note 1: For random preceder collection, the preceders					

Note 1: For random precoder selection, the precoders shall be updated in each TTI (1 ms granularity).

Note 2: If the UE reports in an available uplink reporting

instance at subrame SF#n based on PMI estimation at a downlink SF not later than SF#(n-4), this reported PMI cannot be applied at the

eNB downlink before SF#(n+4).

Table 9.4.2.1.1-2 Minimum requirement (FDD)

Parameter	Test 1
γ	1.2
UE Category	2-5

9.4.2.1.2 TDD

For the parameters specified in Table 9.4.2.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in 9.4.2.1.2-2.

Table 9.4.2.1.2-1 PMI test for single-layer (TDD)

Parameter		Unit	Test 1		
Bandwidth		MHz	20		
Transmission mode			6		
	lownlink		1		
	uration		'		
	subframe		4		
	uration .				
	on channel		EPA5		
	granularity	555	•		
	porting and	PRB	8		
	ng PMI)				
	tion and onfiguration		Low 2 x 2		
antenna co					
Downlink	$ ho_{\scriptscriptstyle A}$	dB	-3		
power	$ ho_{\scriptscriptstyle B}$	dB	-3		
allocation	σ	dB	0		
N	(j) oc	dB[mW/15kHz]	-98		
Reportir	ng mode		PUSCH 1-2		
Reportin	g interval	ms	1		
	delay	ms	10 or 11		
Measureme	ent channel		R.30 TDD		
OCNG	Pattern		OP.1 TDD		
Max number transm	er of HARQ		4		
	cy version				
	equence		{0,1,2,3}		
	K feedback		Multiplessie		
	ode		Multiplexing		
		recoder selection, th	ne precoders		
		ted in each available	e downlink		
transmission instance.					
Note 2: If the UE reports in an available uplink reporting					
instance at subrame SF#n based on PMI					
	estimation at a downlink SF not later than SF#(n-				
		ed PMI cannot be ap	oplied at the		
eNB downlink before SF#(n+4).					

Table 9.4.2.1.2-2 Minimum requirement (TDD)

Parameter	Test 1
γ	1.2
UE Category	2-5

9.5 Reporting of Rank Indicator (RI)

The purpose of this test is to verify that the reported rank indicator accurately represents the channel rank. The accuracy of RI (CQI) reporting is determined by the relative increase of the throughput obtained when transmitting based on the reported rank compared to the case for which a fixed rank is used for transmission. Transmission mode 4 is used with the specified CodebookSubSetRestriction.

For fixed rank 1 transmission, the RI and PMI reporting is restricted to two single-layer precoders, For fixed rank 2 transmission, the RI and PMI reporting is restricted to one two-layer precoder, For follow RI transmission, the RI and PMI reporting is restricted to select the union of these precoders. Channels with low and high correlation are used to ensure that RI reporting reflects the channel condition.

9.5.1 Minimum requirement

9.5.1.1 FDD

The minimum performance requirement in Table 9.5.1.1-2 is defined as

- a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_1$;
- b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be $\geq \gamma_2$;

TBS selection is based on the UE wideband CQI feedback. The transport block size TBS for wideband CQI is selected according to Table A.4-3a.

For the parameters specified in Table 9.5.1.1-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.1.1-2.

Table 9.5.1.1-1 RI Test (FDD)

Parameter		Unit	Test 1 Test 2 Test 3					
Bandwidth	Bandwidth		10					
PDSCH transmission	on mode		4					
Downlink nower	$ ho_{\scriptscriptstyle A}$	dB						
Downlink power allocation	$ ho_{\scriptscriptstyle B}$	dB						
	σ	dB		0				
CodeBookSubsetRe bitmap	estriction		01000	11 for fixed RI = 1 00 for fixed RI = 2 for UE reported	2			
Propagation condit antenna configur				2 x 2 EPA5				
Antenna correla	ation		Low	Low	High			
RI configuration			Fixed RI=2 and follow RI	Fixed RI=2 and Fixed RI=1				
SNR		dB	0 20		20			
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98 -98		-98			
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-98	-78	-78			
Maximum number of transmission				1				
Reporting mo	de		PUC	CH 1-1 (Note 4)				
Physical channel for reporting	CQI/PMI		PU	ICCH Format 2				
PUCCH Report Ty CQI/PMI	ype for		2					
Physical channel for RI reporting			PUSCH (Note 3)					
PUCCH Report Typ	oe for RI		3					
	Reporting periodicity		$N_{P} = 5$					
PMI and CQI d		ms	8					
cqi-pmi-Configurati			6					
ri-Configuration			porting instance at sub	1 (Note 5)				

- Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI and CQI estimation at a downlink subframe not later than SF#(n-4), this reported PMI and wideband CQI cannot be applied at the eNB downlink before SF#(n+4).
- Note 2: Reference measurement channel according to Table A.4-1 with one sided dynamic OCNG Pattern OP.1 FDD as described in Annex A.5.1.1.
- Note 3: To avoid collisions between RI reports and HARQ-ACK it is necessary to report both on PUSCH instead of PUCCH. PDCCH DCI format 0 shall be transmitted in downlink SF#4 and #9 to allow periodic RI to multiplex with the HARQ-ACK on PUSCH in uplink subframe SF#8 and #3.
- Note 4: The bit field for precoding information in DCI format 2 shall be mapped as:
 - For reported RI = 1 and PMI = 0 >> precoding information bit field index = 1
 - For reported RI = 1 and PMI = 1 >> precoding information bit field index = 2
 - For reported RI = 2 and PMI = 0 >> precoding information bit field index = 0
- Note 5: To avoid the ambiguity of TE behaviour when applying CQI and PMI during rank switching, RI reports are to be applied at the TE with one subframe delay in addition to Note 1 to align with CQI and PMI reports.

Table 9.5.1.1-2 Minimum requirement (FDD)

	Test 1	Test 2	Test 3
21	N/A	1.05	N/A
72	1	N/A	1.1
UE Category	2-5	2-5	2-5

9.5.1.2 TDD

The minimum performance requirement in Table 9.5.1.2-2 is defined as

- a) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 1 shall be $\geq \gamma_1$;
- b) The ratio of the throughput obtained when transmitting based on UE reported RI and that obtained when transmitting with fixed rank 2 shall be $\geq \gamma_2$;

TBS selection is based on the UE wideband CQI feedback. The transport block size TBS for wideband CQI is selected according to Table A.4-3a.

For the parameters specified in Table 9.5.1.2-1, and using the downlink physical channels specified in Annex C.3.2, the minimum requirements are specified in Table 9.5.1.2-2.

Table 9.5.1.2-1 RI Test (TDD)

Parameter	Parameter		Test 1	Test 1 Test 2 Te			
Bandwidth		MHz					
PDSCH transmission	PDSCH transmission mode						
Downlink power ρ_{A}		dB	-3				
allocation	$ ho_{\scriptscriptstyle B}$	dB					
	σ	dB		0			
Uplink downlink con				2			
Special subfra configuration	า			4			
Propagation condit antenna configur				2 x 2 EPA5			
CodeBookSubsetRestriction bitmap			000011 for fixed RI = 1 010000 for fixed RI = 2 010011 for UE reported RI				
Antenna correla	ation		Low Low		High		
RI configuration	on				Fixed RI=2 and follow RI		
SNR		dB	0 20		20		
$N_{oc}^{(j)}$		dB[mW/15kHz]	-98 -98		-98		
$\hat{I}_{or}^{(j)}$		dB[mW/15kHz]	-98 -78		-78		
Maximum number of transmission			1				
Reporting mo	Reporting mode		PUSCH 3-1 (Note 3)				
	Reporting interval		5				
PMI and CQI d	elay	ms	10 or 11				
ACK/NACK feedback	ck mode		Bundling				

Note 1: If the UE reports in an available uplink reporting instance at subframe SF#n based on PMI and CQI estimation at a downlink subframe not later than SF#(n-4), this reported PMI and wideband CQI cannot be applied at the eNB downlink before SF#(n+4).

Note 2: Reference measurement channel according to Table A.4-2 with one sided dynamic OCNG Pattern OP.1 TDD as described in Annex A.5.2.1.

Note 3: Reported wideband CQI and PMI are used and sub-band CQI is discarded.

Table 9.5.1.2-2 Minimum requirement (TDD)

	Test 1	Test 2	Test 3
29	N/A	1.05	N/A
72	1	N/A	1.1
UE Category	2-5	2-5	2-5

Annex A (normative): Measurement channels

A.1 General

The throughput values defined in the measurement channels specified in Annex A, are calculated and are valid per datastream (codeword). For multi-stream (more than one codeword) transmissions, the throughput referenced in the minimum requirements is the sum of throughputs of all datastreams (codewords).

The UE category entry in the definition of the reference measurement channel in Annex A is only informative and reveals the UE categories, which can support the corresponding measurement channel. Whether the measurement channel is used for testing a certain UE category or not is specified in the individual minimum requirements.

A.2 UL reference measurement channels

A.2.1 General

A.2.1.1 Applicability and common parameters

The following sections define the UL signal applicable to the Transmitter Characteristics (clause 6) and for the Receiver Characteristics (clause 7) where the UL signal is relevant.

The Reference channels in this section assume transmission of PUSCH and Demodulation Reference signal only. The following conditions apply:

- 1 HARQ transmission
- Cyclic Prefix normal
- PUSCH hopping off
- Link adaptation off
- Demodulation Reference signal as per TS 36.211 [4] subclause 5.5.2.1.2.

Where ACK/NACK is transmitted, it is assumed to be multiplexed on PUSCH as per TS 36.212 [5] subclause 5.2.2.6.

- ACK/NACK 1 bit
- ACK/NACK mapping adjacent to Demodulation Reference symbol
- ACK/NACK resources punctured into data
- Max number of resources for ACK/NACK: 4 SC-FDMA symbols per subframe
- No CQI transmitted, no RI transmitted

A.2.1.2 Determination of payload size

The algorithm for determining the payload size A is as follows; given a desired coding rate R and radio block allocation N_{RB}

- 1. Calculate the number of channel bits N_{ch} that can be transmitted during the first transmission of a given subframe.
- 2. Find A such that the resulting coding rate is as close to R as possible, that is,

$$\min |R - (A + 24)/N_{ch}|,$$

subject to

- a) A is a valid TB size according to section 7.1.7 of TS 36.213 [6] assuming an allocation of N_{RB} resource blocks.
- b) Segmentation is not included in this formula, but should be considered in the TBS calculation.
- c) For RMC-s, which at the nominal target coding rate do not cover all the possible UE categories for the given modulation, reduce the target coding rate gradually (within the same modulation), until the maximal possible number of UE categories is covered.
- 3. If there is more than one A that minimises the equation above, then the larger value is chosen per default.

A.2.1.3 Overview of UL reference measurement channels

In Table A.2.1.3-1 are listed the UL reference measurement channels specified in annexes A.2.2 and A.2.3 of this release of TS 36.1011. This table is informative and serves only to a better overview. The reference for the concrete reference measurement channels and corresponding implementation's parameters as to be used for requirements are annexes A.2.2 and A.2.3 as appropriate.

Table A.2.1.3-1: Overview of UL reference measurement channels

Duple x	Table	Name	B W	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
FDD, Full RB allocation, QPSK									
FDD	Table A.2.2.1.1-1		1.4	QPSK	1/3	6		≥ 1	
FDD	Table A.2.2.1.1-1		3	QPSK	1/3	15		≥ 1	
FDD	Table A.2.2.1.1-1		5	QPSK	1/3	25		≥ 1	
FDD	Table A.2.2.1.1-1		10	QPSK	1/3	50		≥ 1	
FDD	Table A.2.2.1.1-1		15	QPSK	1/5	75		≥ 1	
FDD	Table A.2.2.1.1-1		20	QPSK	1/6	100		≥ 1	
	ull RB allocation, 10	6-QAM						T	
FDD	Table A.2.2.1.2-1		1.4	16QAM	3/4	6		≥ 1	
FDD	Table A.2.2.1.2-1		3	16QAM	1/2	15		≥ 1	
FDD	Table A.2.2.1.2-1		5	16QAM	1/3	25		≥ 1	
FDD FDD	Table A.2.2.1.2-1		10 15	16QAM	3/4	50 75		≥ 2 ≥ 2	
FDD	Table A.2.2.1.2-1 Table A.2.2.1.2-1		20	16QAM 16QAM	1/2 1/3	100		≥ 2	
	artial RB allocation	OPSK 14M		TOQAIVI	1/3	100		22	
FDD, F	Table A.2.2.2.1-1	, QF 5R, 1.4 W	1.4	QPSK	1/3	1		≥ 1	
FDD	Table A.2.2.2.1-1		1.4	QPSK	1/3	2		≥ 1	
FDD	Table A.2.2.2.1-1		1.4	QPSK	1/3	3		≥ 1	
FDD	Table A.2.2.2.1-1		1.4	QPSK	1/3	4		≥ 1	
FDD	Table A.2.2.2.1-1		1.4	QPSK	1/3	5		≥ 1	
FDD, Pa	artial RB allocation	, QPSK, 3 MHz							
FDD	Table A.2.2.2.1-2	,	3	QPSK	1/3	1		≥ 1	
FDD	Table A.2.2.2.1-2		3	QPSK	1/3	2		≥ 1	
FDD	Table A.2.2.2.1-2		3	QPSK	1/3	3		≥ 1	
FDD	Table A.2.2.2.1-2		3	QPSK	1/3	4		≥ 1	
FDD	Table A.2.2.2.1-2		3	QPSK	1/3	5		≥ 1	
FDD	Table A.2.2.2.1-2		3	QPSK	1/3	6		≥ 1	
FDD	Table A.2.2.2.1-2		3	QPSK	1/3	10		≥ 1	
FDD, Pa	artial RB allocation	, QPSK, 5 MH	Z						
FDD	Table A.2.2.2.1-3		5	QPSK	1/3	1		≥ 1	
FDD	Table A.2.2.2.1-3		5	QPSK	1/3	2		≥ 1	
FDD	Table A.2.2.2.1-3		5	QPSK	1/3	5		≥ 1	
FDD	Table A.2.2.2.1-3		5	QPSK	1/3	6		≥ 1	
FDD	Table A.2.2.2.1-3		5	QPSK	1/3	8		≥ 1	
FDD	Table A.2.2.2.1-3a		5	QPSK	1/3	10		≥ 1	
FDD	Table A.2.2.2.1-3a		5	QPSK	1/3	15		≥ 1	
FDD	Table A.2.2.2.1-3a		5	QPSK	1/3	18		≥ 1	
FDD	Table A.2.2.2.1-3a		5	QPSK	1/3	20		≥ 1	
FDD B	Table A.2.2.2.1-3a	ODGIC 40 MI	5	QPSK	1/3	24		≥ 1	
	Table A 2 2 2 1 4	, QPSK, 10 MF		ODCIA	4/0	4			T
FDD	Table A.2.2.2.1-4		10	QPSK	1/3	1		≥ 1	
FDD FDD	Table A.2.2.2.1-4 Table A.2.2.2.1-4		10	QPSK QPSK	1/3	2 5		≥ 1 ≥ 1	
FDD	Table A.2.2.2.1-4 Table A.2.2.2.1-4		10	QPSK	1/3	6		≥ 1	
FDD	Table A.2.2.2.1-4		10	QPSK	1/3	8		≥ 1	
ייטט	1 ault A.Z.Z.Z. 1-4		ΙU	WF3N	1/3	0		<u> </u>	

_							
FDD	Table A.2.2.2.1-4	10	QPSK	1/3	10	≥ 1	
FDD	Table A.2.2.2.1-4a	10	QPSK	1/3	12	≥ 1	
FDD	Table A.2.2.2.1-4a	10	QPSK	1/3	15	≥ 1	
FDD	Table A.2.2.2.1-4a	10	QPSK	1/3	16	≥ 1	
FDD	Table A.2.2.2.1-4a	10	QPSK	1/3	18	≥ 1	
FDD	Table A.2.2.2.1-4a	10	QPSK	1/3	20	≥ 1	
FDD	Table A.2.2.2.1-4a	10	QPSK	1/3	24	≥ 1	
FDD	Table A.2.2.2.1-4b	10	QPSK	1/3	25	≥ 1	
FDD	Table A.2.2.2.1-4b	10	QPSK	1/3	27	≥ 1	
FDD	Table A.2.2.2.1-4b	10	QPSK	1/3	30	≥ 1	
FDD	Table A.2.2.2.1-4b	10	QPSK	1/3	36	≥ 1	
FDD	Table A.2.2.2.1-4b	10	QPSK	1/3	40	≥ 1	
FDD	Table A.2.2.2.1-4b	10	QPSK	1/3	48	≥ 1	
FDD, P	artial RB allocation, QPSK, 1	5 MHz					
FDD	Table A.2.2.2.1-5	15	QPSK	1/3	1	≥ 1	
FDD	Table A.2.2.2.1-5	15	QPSK	1/3	2	≥ 1	
FDD	Table A.2.2.2.1-5	15	QPSK	1/3	5	≥ 1	
FDD	Table A.2.2.2.1-5	15	QPSK	1/3	6	≥ 1	
FDD	Table A.2.2.2.1-5	15	QPSK	1/3	8	≥ 1	
FDD	Table A.2.2.2.1-5	15	QPSK	1/3	9	≥ 1	
FDD	Table A.2.2.2.1-5a	15	QPSK	1/3	10	≥ 1	
FDD	Table A.2.2.2.1-5a	15	QPSK	1/3	16	≥ 1	
FDD	Table A.2.2.2.1-5a	15	QPSK	1/3	18	≥ 1	
FDD	Table A.2.2.2.1-5a	15	QPSK	1/3	20	≥ 1	
FDD	Table A.2.2.2.1-5a	15	QPSK	1/3	24	≥ 1	
FDD	Table A.2.2.2.1-5a	15	QPSK	1/3	25	≥ 1	
FDD	Table A.2.2.2.1-5b	15	QPSK	1/3	27	≥ 1	
FDD	Table A.2.2.2.1-5b	15	QPSK	1/3	36	≥ 1	
FDD	Table A.2.2.2.1-5b	15	QPSK	1/3	40	≥ 1	
FDD	Table A.2.2.2.1-5b	15	QPSK	1/3	48	≥ 1	
FDD	Table A.2.2.2.1-5b	15	QPSK	1/3	50	≥ 1	
FDD	Table A.2.2.2.1-5b	15	QPSK	1/3	54	≥ 1	
FDD, P	artial RB allocation, QPSK, 2	0 MHz					
FDD	Table A.2.2.2.1-6	20	QPSK	1/3	1	≥ 1	
FDD	Table A.2.2.2.1-6	20	QPSK	1/3	2	≥ 1	
FDD	Table A.2.2.2.1-6	20	QPSK	1/3	5	≥ 1	
FDD	Table A.2.2.2.1-6	20	QPSK	1/3	6	≥ 1	
FDD	Table A.2.2.2.1-6	20	QPSK	1/3	8	≥ 1	
FDD	Table A.2.2.2.1-6	20	QPSK	1/3	10	≥ 1	
FDD	Table A.2.2.2.1-6a	20	QPSK	1/3	16	≥ 1	
FDD	Table A.2.2.2.1-6a	20	QPSK	1/3	18	≥ 1	
FDD	Table A.2.2.2.1-6a	20	QPSK	1/3	20	≥ 1	
FDD	Table A.2.2.2.1-6a	20	QPSK	1/3	24	≥ 1	
FDD	Table A.2.2.2.1-6a	20	QPSK	1/3	25	≥ 1	
FDD	Table A.2.2.2.1-6a	20	QPSK	1/3	48	≥ 1	
FDD	Table A.2.2.2.1-6b	20	QPSK	1/3	50	≥ 1	
FDD	Table A.2.2.2.1-6b	20	QPSK	1/3	54	≥ 1	
FDD	Table A.2.2.2.1-6a	20	QPSK	1/5	75	≥ 1	
		1					

FDD, P	artial RB allocation	, 16-QAM, 1.4 N	ИHz					
FDD	Table A.2.2.2.2-1		1.4	16QAM	3/4	1	≥ 1	
FDD	Table A.2.2.2.2-1		1.4	16QAM	3/4	5	≥ 1	
FDD, P	artial RB allocation	, 16-QAM, 3 MH	Ηz					
FDD	Table A.2.2.2.2-2		3	16QAM	3/4	1	≥ 1	
FDD	Table A.2.2.2.2-2		3	16QAM	3/4	4	≥ 1	
FDD	Table A.2.2.2.2-2		3	16QAM	3/4	6	≥ 1	
FDD, P	artial RB allocation	, 16-QAM, 5 MH	Ιz					
FDD	Table A.2.2.2.2-3		5	16QAM	3/4	1	≥ 1	
FDD	Table A.2.2.2.3		5	16QAM	3/4	8	≥ 1	
FDD, P	artial RB allocation	, 16-QAM, 10 N	lHz					
FDD	Table A.2.2.2.4		10	16QAM	3/4	1	≥ 1	
FDD	Table A.2.2.2.4		10	16QAM	3/4	12	≥ 1	
FDD	Table A.2.2.2.4		10	16QAM	1/2	16	≥ 1	
FDD	Table A.2.2.2.4		10	16QAM	3/4	30	≥ 2	
FDD	Table A.2.2.2.4		10	16QAM	3/4	36	≥ 2	
FDD, P	artial RB allocation	, 16-QAM, 15 N	lHz					
FDD	Table A.2.2.2.2-5		15	16QAM	3/4	1	≥ 1	
FDD	Table A.2.2.2.2-5		15	16QAM	3/4	6	≥ 1	
FDD	Table A.2.2.2.5		15	16QAM	3/4	8	≥ 1	
FDD	Table A.2.2.2.5		15	16QAM	3/4	9	≥ 1	
FDD	Table A.2.2.2.5		15	16QAM	1/2	16	≥ 1	
FDD	Table A.2.2.2.5		15	16QAM	1/2	18	≥ 1	
FDD	Table A.2.2.2.2-5a		15	16QAM	1/3	20	≥ 1	
FDD	Table A.2.2.2.5a		15	16QAM	1/3	24	≥ 1	
FDD, P	artial RB allocation	, 16-QAM, 20 N	lHz					
FDD	Table A.2.2.2.2-6		20	16QAM	3/4	1	≥ 1	
FDD	Table A.2.2.2.2-6		20	16QAM	3/4	2	≥ 1	
FDD	Table A.2.2.2.2-6		20	16QAM	1/2	16	≥ 1	
FDD	Table A.2.2.2.2-6		20	16QAM	1/2	18	≥ 1	
FDD	Table A.2.2.2.2-6		20	16QAM	1/3	20	≥ 1	
FDD	Table A.2.2.2.2-6		20	16QAM	1/3	24	≥ 1	
FDD	Table A.2.2.2.6		20	16QAM	1/2	75	≥ 2	
TDD, F	ull RB allocation, Q	PSK						
TDD	Table A.2.3.1.1-1		1.4	QPSK	1/3	6	≥ 1	
TDD	Table A.2.3.1.1-1		3	QPSK	1/3	15	≥ 1	
TDD	Table A.2.3.1.1-1		5	QPSK	1/3	25	≥ 1	
TDD	Table A.2.3.1.1-1		10	QPSK	1/3	50	≥ 1	
TDD	Table A.2.3.1.1-1		15	QPSK	1/5	75	≥ 1	
TDD	Table A.2.3.1.1-1		20	QPSK	1/6	100	≥ 1	
	ull RB allocation, 10	6-QAM						
TDD	Table A.2.3.1.2-1		1.4	16QAM	3/4	6	≥ 1	
TDD	Table A.2.3.1.2-1		3	16QAM	1/2	15	≥ 1	
TDD	Table A.2.3.1.2-1		5	16QAM	1/3	25	≥ 1	
TDD	Table A.2.3.1.2-1		10	16QAM	3/4	50	≥ 2	
TDD	Table A.2.3.1.2-1		15	16QAM	1/2	75	≥ 2	
TDD	Table A.2.3.1.2-1		20	16QAM	1/3	100	≥ 2	
TDD, P	artial RB allocation	, QPSK, 1.4 MF	lz					

				1			
TDD	Table A.2.3.2.1-1	1.4	QPSK	1/3	1	≥ 1	
TDD	Table A.2.3.2.1-1	1.4	QPSK	1/3	2	≥ 1	
TDD	Table A.2.3.2.1-1	1.4	QPSK	1/3	3	≥ 1	
TDD	Table A.2.3.2.1-1	1.4	QPSK	1/3	4	≥ 1	
TDD	Table A.2.3.2.1-1	1.4	QPSK	1/3	5	≥ 1	
TDD, P	artial RB allocation, QPSK, 3 M	Hz					
TDD	Table A.2.3.2.1-2	3	QPSK	1/3	1	≥ 1	
TDD	Table A.2.3.2.1-2	3	QPSK	1/3	2	≥ 1	
TDD	Table A.2.3.2.1-2	3	QPSK	1/3	3	≥ 1	
TDD	Table A.2.3.2.1-2	3	QPSK	1/3	4	≥ 1	
TDD	Table A.2.3.2.1-2	3	QPSK	1/3	5	≥ 1	
TDD	Table A.2.3.2.1-2	3	QPSK	1/3	6	≥ 1	
TDD	Table A.2.3.2.1-2	3	QPSK	1/3	10	≥ 1	
TDD, P	artial RB allocation, QPSK, 5 M	Hz					
TDD	Table A.2.3.2.1-3	5	QPSK	1/3	1	≥ 1	
TDD	Table A.2.3.2.1-3	5	QPSK	1/3	2	≥ 1	
TDD	Table A.2.3.2.1-3	5	QPSK	1/3	5	≥ 1	
TDD	Table A.2.3.2.1-3	5	QPSK	1/3	6	≥ 1	
TDD	Table A.2.3.2.1-3	5	QPSK	1/3	8	≥ 1	
TDD	Table A.2.3.2.1-3a	5	QPSK	1/3	10	≥ 1	
TDD	Table A.2.3.2.1-3a	5	QPSK	1/3	15	≥ 1	
TDD	Table A.2.3.2.1-3a	5	QPSK	1/3	18	≥ 1	
TDD	Table A.2.3.2.1-3a	5	QPSK	1/3	20	≥ 1	
TDD	Table A.2.3.2.1-3a	5	QPSK	1/3	24	≥ 1	
TDD, P	artial RB allocation, QPSK, 10 M	ЛHz					
TDD	Table A.2.3.2.1-4	10	QPSK	1/3	1	≥ 1	
TDD	Table A.2.3.2.1-4	10	QPSK	1/3	2	≥ 1	
TDD	Table A.2.3.2.1-4	10	QPSK	1/3	5	≥ 1	
TDD	Table A.2.3.2.1-4	10	QPSK	1/3	6	≥ 1	
TDD	Table A.2.3.2.1-4	10	QPSK	1/3	8	≥ 1	
TDD	Table A.2.3.2.1-4	10	QPSK	1/3	10	≥ 1	
TDD	Table A.2.3.2.1-4a	10	QPSK	1/3	12	≥ 1	
TDD	Table A.2.3.2.1-4a	10	QPSK	1/3	16	≥ 1	
TDD	Table A.2.3.2.1-4a	4.0					
TDD	1 abie A.2.3.2.1-4a	10	QPSK	1/3	18	≥ 1	
טטו	Table A.2.3.2.1-4a	10	QPSK QPSK	1/3 1/3	18 20	≥ 1 ≥ 1	
TDD							
	Table A.2.3.2.1-4a	10	QPSK	1/3	20	≥ 1	
TDD	Table A.2.3.2.1-4a Table A.2.3.2.1-4a	10 10	QPSK QPSK	1/3 1/3	20 24	≥ 1 ≥ 1	
TDD TDD	Table A.2.3.2.1-4a Table A.2.3.2.1-4a Table A.2.3.2.1-4a	10 10 10	QPSK QPSK QPSK	1/3 1/3 1/3	20 24 25	≥ 1 ≥ 1 ≥ 1	
TDD TDD TDD	Table A.2.3.2.1-4a Table A.2.3.2.1-4a Table A.2.3.2.1-4a Table A.2.3.2.1-4b	10 10 10 10	QPSK QPSK QPSK QPSK	1/3 1/3 1/3 1/3	20 24 25 27	≥ 1 ≥ 1 ≥ 1	
TDD TDD TDD TDD	Table A.2.3.2.1-4a Table A.2.3.2.1-4a Table A.2.3.2.1-4a Table A.2.3.2.1-4b Table A.2.3.2.1-4b	10 10 10 10 10	QPSK QPSK QPSK QPSK QPSK	1/3 1/3 1/3 1/3 1/3	20 24 25 27 30	≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1	
TDD TDD TDD TDD TDD	Table A.2.3.2.1-4a Table A.2.3.2.1-4a Table A.2.3.2.1-4a Table A.2.3.2.1-4b Table A.2.3.2.1-4b Table A.2.3.2.1-4b	10 10 10 10 10 10	QPSK QPSK QPSK QPSK QPSK QPSK	1/3 1/3 1/3 1/3 1/3 1/3	20 24 25 27 30 36	≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1	
TDD TDD TDD TDD TDD TDD TDD TDD TDD	Table A.2.3.2.1-4a Table A.2.3.2.1-4a Table A.2.3.2.1-4a Table A.2.3.2.1-4b Table A.2.3.2.1-4b Table A.2.3.2.1-4b Table A.2.3.2.1-4b	10 10 10 10 10 10 10 10	QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	20 24 25 27 30 36 40	≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1	
TDD TDD TDD TDD TDD TDD TDD TDD TDD	Table A.2.3.2.1-4a Table A.2.3.2.1-4a Table A.2.3.2.1-4a Table A.2.3.2.1-4b Table A.2.3.2.1-4b Table A.2.3.2.1-4b Table A.2.3.2.1-4b Table A.2.3.2.1-4b	10 10 10 10 10 10 10 10	QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	20 24 25 27 30 36 40	≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1	
TDD	Table A.2.3.2.1-4a Table A.2.3.2.1-4a Table A.2.3.2.1-4a Table A.2.3.2.1-4b Table A.2.3.2.1-4b Table A.2.3.2.1-4b Table A.2.3.2.1-4b Table A.2.3.2.1-4b Table A.2.3.2.1-4b	10 10 10 10 10 10 10 10	QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	20 24 25 27 30 36 40 48	≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1	
TDD	Table A.2.3.2.1-4a Table A.2.3.2.1-4a Table A.2.3.2.1-4a Table A.2.3.2.1-4b	10 10 10 10 10 10 10 10 10 10	QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	20 24 25 27 30 36 40 48	≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1	
TDD	Table A.2.3.2.1-4a Table A.2.3.2.1-4a Table A.2.3.2.1-4a Table A.2.3.2.1-4b Table A.2.3.2.1-4b Table A.2.3.2.1-4b Table A.2.3.2.1-4b Table A.2.3.2.1-5 Table A.2.3.2.1-5 Table A.2.3.2.1-5	10 10 10 10 10 10 10 10 10 MHz	QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	20 24 25 27 30 36 40 48	≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1	
TDD	Table A.2.3.2.1-4a Table A.2.3.2.1-4a Table A.2.3.2.1-4a Table A.2.3.2.1-4b Table A.2.3.2.1-4b Table A.2.3.2.1-4b Table A.2.3.2.1-4b Table A.2.3.2.1-4b Table A.2.3.2.1-5 Table A.2.3.2.1-5 Table A.2.3.2.1-5 Table A.2.3.2.1-5	10 10 10 10 10 10 10 10 10 10 15 15 15	QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK	1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3	20 24 25 27 30 36 40 48	≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1	

TDD	Table A.2.3.2.1-5	15	QPSK	1/3	10	≥ 1	
TDD	Table A.2.3.2.1-5a	15	QPSK	1/3	16	≥ 1	
TDD	Table A.2.3.2.1-5a	15	QPSK	1/3	18	≥ 1	
TDD	Table A.2.3.2.1-5a	15	QPSK	1/3	20	≥ 1	
TDD	Table A.2.3.2.1-5a	15	QPSK	1/3	24	≥ 1	
TDD	Table A.2.3.2.1-5a	15	QPSK	1/3	25	≥ 1	
TDD	Table A.2.3.2.1-5a	15	QPSK	1/3	27	≥ 1	
TDD	Table A.2.3.2.1-5b	15	QPSK	1/3	36	≥ 1	
TDD	Table A.2.3.2.1-5b	15	QPSK	1/3	40	≥ 1	
TDD	Table A.2.3.2.1-5b	15	QPSK	1/3	48	≥ 1	
TDD	Table A.2.3.2.1-5b	15	QPSK	1/3	50	≥ 1	
TDD	Table A.2.3.2.1-5b	15	QPSK	1/3	54	≥ 1	
TDD, P	artial RB allocation, QPSK, 20	MHz					
TDD	Table A.2.3.2.1-6	20	QPSK	1/3	1	≥ 1	
TDD	Table A.2.3.2.1-6	20	QPSK	1/3	2	≥ 1	
TDD	Table A.2.3.2.1-6	20	QPSK	1/3	5	≥ 1	
TDD	Table A.2.3.2.1-6	20	QPSK	1/3	6	≥ 1	
TDD	Table A.2.3.2.1-6	20	QPSK	1/3	8	≥ 1	
TDD	Table A.2.3.2.1-6	20	QPSK	1/5	10	≥ 1	
TDD	Table A.2.3.2.1-6a	20	QPSK	1/5	18	≥ 1	
TDD	Table A.2.3.2.1-6a	20	QPSK	1/3	20	≥ 1	
TDD	Table A.2.3.2.1-6a	20	QPSK	1/3	24	≥ 1	
TDD	Table A.2.3.2.1-6a	20	QPSK	1/3	25	≥ 1	
TDD	Table A.2.3.2.1-6a	20	QPSK	1/3	48	≥ 1	
TDD	Table A.2.3.2.1-6a	20	QPSK	1/3	50	≥ 1	
TDD	Table A.2.3.2.1-6b	20	QPSK	1/3	54	≥ 1	
TDD	Table A.2.3.2.1-6b	20	QPSK	1/5	75	≥ 1	
TDD, P	artial RB allocation, 16-QAM,	1.4 MHz					
TDD	Table A.2.3.2.2-1	1.4	16QAM	3/4	1	≥ 1	
TDD	Table A.2.3.2.2-1	1.4	16QAM	3/4	5	≥ 1	
TDD. P	artial RB allocation, 16-QAM,	3 MHz					
TDD	Table A.2.3.2.2-2	3	16QAM	3/4	1	≥ 1	
TDD	Table A.2.3.2.2-2	3	16QAM	3/4	4	≥ 1	
	artial RB allocation, 16-QAM,	5 MHz					
TDD	Table A.2.3.2.2-3	5	16QAM	3/4	1	≥ 1	
TDD	Table A.2.3.2.2-3	5	16QAM	3/4	8	≥ 1	
TDD. P.	artial RB allocation, 16-QAM,						
TDD	Table A.2.3.2.2-4	10	16QAM	3/4	1	≥ 1	
TDD	Table A.2.3.2.2-4	10	16QAM	3/4	12	<u>- ·</u> ≥ 1	
TDD	Table A.2.3.2.2-4	10	16QAM	1/2	16	<u>- ·</u> ≥ 1	
TDD	Table A.2.3.2.2-4	10	16QAM	1/3	24	<u>- ·</u> ≥ 1	
TDD	Table A.2.3.2.2-4	10	16QAM	3/4	30	≥ 2	
TDD	Table A.2.3.2.2-4	10	16QAM	3/4	36	≥ 2	
	artial RB allocation, 16-QAM,		100/11/1	J)-T			
TDD, I	Table A.2.3.2.2-5	15 1112	16QAM	3/4	1	≥ 1	
TDD	Table A.2.3.2.2-5	15	16QAM	1/2	16	≥ 1	
TDD	Table A.2.3.2.2-5	15	16QAM	3/4	36	≥ 1	
			IUQAW	3/4	30	- 4	
, אטוו	artial RB allocation, 16-QAM,	ZU WIFIZ					

TDD	Table A.2.3.2.2-6	20	16QAM	3/4	1	≥ 1	
TDD	Table A.2.3.2.2-6	20	16QAM	1/2	18	≥ 1	
TDD	Table A.2.3.2.2-6	20	16QAM	3/4	50	≥ 2	
TDD	Table A.2.3.2.2-6	20	16QAM	1/2	75	≥ 2	

A.2.2 Reference measurement channels for FDD

A.2.2.1 Full RB allocation

A.2.2.1.1 QPSK

Table A.2.2.1.1-1 Reference Channels for QPSK with full RB allocation

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12
Frame							
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/5	1/6
Payload size	Bits	600	1544	2216	5160	4392	4584
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1	1
Frame (Note 1)							
Total number of bits per Sub-Frame	Bits	1728	4320	7200	14400	21600	28800
Total symbols per Sub-Frame		864	2160	3600	7200	10800	14400
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.1.2 16-QAM

Table A.2.2.1.2-1 Reference Channels for 16-QAM with full RB allocation

Unit	Value								
MHz	1.4	3	5	10	15	20			
	6	15	25	50	75	100			
	12	12	12	12	12	12			
	16QAM	16QAM	16QAM	16QAM	16QAM	16QAM			
	3/4	1/2	1/3	3/4	1/2	1/3			
Bits	2600	4264	4968	21384	21384	19848			
Bits	24	24	24	24	24	24			
	1	1	1	4	4	4			
Bits	3456	8640	14400	28800	43200	57600			
	864	2160	3600	7200	10800	14400			
	≥1	≥ 1	≥1	≥ 2	≥2	≥ 2			
	MHz Bits Bits Bits	MHz 1.4 6 12 16QAM 3/4 Bits 2600 Bits 24 1 Bits 3456 864 ≥ 1	MHz 1.4 3 6 15 12 12 16QAM 16QAM 3/4 1/2 Bits 2600 4264 Bits 24 24 1 1 Bits 3456 8640 864 2160 ≥ 1 ≥ 1	MHz 1.4 3 5 6 15 25 12 12 12 16QAM 16QAM 16QAM 3/4 1/2 1/3 Bits 2600 4264 4968 Bits 24 24 24 1 1 1 Bits 3456 8640 14400 864 2160 3600 ≥ 1 ≥ 1 ≥ 1	MHz 1.4 3 5 10 6 15 25 50 12 12 12 12 16QAM 16QAM 16QAM 16QAM 3/4 1/2 1/3 3/4 Bits 2600 4264 4968 21384 Bits 24 24 24 24 1 1 1 4 Bits 3456 8640 14400 28800 864 2160 3600 7200 ≥1 ≥1 ≥1 ≥2	MHz 1.4 3 5 10 15 6 15 25 50 75 12 12 12 12 12 16QAM 16QAM 16QAM 16QAM 16QAM 3/4 1/2 1/3 3/4 1/2 Bits 2600 4264 4968 21384 21384 Bits 24 24 24 24 24 1 1 1 4 4 Bits 3456 8640 14400 28800 43200 864 2160 3600 7200 10800 ≥ 1 ≥ 1 ≥ 1 ≥ 2 ≥ 2			

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.1.3 64-QAM

[FFS]

A.2.2.2 Partial RB allocation

For each channel bandwidth, various partial RB allocations are specified. The number of allocated RBs is chosen according to values specified in the Tx and Rx requirements. The single allocated RB case is included.

The allocated RBs are contiguous and start from one end of the channel bandwidth. A single allocated RB is at one end of the channel bandwidth.

A.2.2.2.1 QPSK

Table A.2.2.2.1-1 Reference Channels for 1.4MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value
Channel bandwidth	MHz	1.4	1.4	1.4	1.4	1.4
Allocated resource blocks		1	2	3	4	5
DFT-OFDM Symbols per Sub-		12	12	12	12	12
Frame						
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3
Payload size	Bits	72	176	256	392	424
Transport block CRC	Bits	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1
Frame (Note 1)						
Total number of bits per Sub-Frame	Bits	288	576	864	1152	1440
Total symbols per Sub-Frame		144	288	432	576	720
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1
Note 1. If more than one Code Dice	المحمد ما ال		and CDC and		24 Dita ia	ام مام ملام

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.2.1-2 Reference Channels for 3MHz QPSK with partial RB allocation

Parameter	Unit	Value						
Channel bandwidth	MHz	3	3	3	3	3	3	3
Allocated resource blocks		1	2	3	4	5	6	10
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12	12
Frame								
Modulation		QPSK						
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3	1/3
Payload size	Bits	72	176	256	392	424	600	872
Transport block CRC	Bits	24	24	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1	1	1
Frame (Note 1)								
Total number of bits per Sub-Frame	Bits	288	576	864	1152	1440	1728	2880
Total symbols per Sub-Frame		144	288	432	576	720	864	1440
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.2.1-3 Reference Channels for 5MHz QPSK with partial RB allocation

Unit	Value	Value	Value	Value	Value
MHz	5	5	5	5	5
	1	2	5	6	8
	12	12	12	12	12
	QPSK	QPSK	QPSK	QPSK	QPSK
	1/3	1/3	1/3	1/3	1/3
Bits	72	176	424	600	808
Bits	24	24	24	24	24
	1	1	1	1	1
Bits	288	576	1440	1728	2304
	144	288	720	864	1152
	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1
	MHz Bits Bits	MHz 5 1 12 QPSK 1/3 Bits 72 Bits 24 1 Bits 288 144	MHz 5 5 1 2 12 12 12 12 12 12 13 1/3 1/3 1/3 1/6 Bits 24 24 1 1 1 Bits 288 576 144 288	MHz 5 5 5 1 2 5 12 12 12 QPSK QPSK QPSK 1/3 1/3 1/3 Bits 72 176 424 Bits 24 24 24 1 1 1 1 Bits 288 576 1440 144 288 720	MHz 5 5 5 5 1 2 5 6 12 12 12 12 QPSK QPSK QPSK QPSK 1/3 1/3 1/3 1/3 Bits 72 176 424 600 Bits 24 24 24 24 1 1 1 1 1 Bits 288 576 1440 1728 144 288 720 864

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.2.1-3a: Reference Channels for 5MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value
Channel bandwidth	MHz	5	5	5	5	5
Allocated resource blocks		10	15	18	20	24
DFT-OFDM Symbols per Sub-		12	12	12	12	12
Frame						
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3
Payload size	Bits	872	1320	1864	1736	2472
Transport block CRC	Bits	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1
Frame (Note 1)						
Total number of bits per Sub-Frame	Bits	2880	4320	5184	5760	6912
Total symbols per Sub-Frame		1440	2160	2592	2880	3456
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.2.1-4 Reference Channels for 10MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value	Value
Channel bandwidth	MHz	10	10	10	10	10	10
Allocated resource blocks		1	2	5	6	8	10
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12
Frame							
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Payload size	Bits	72	176	424	600	808	872
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1	1
Frame (Note 1)							
Total number of bits per Sub-Frame	Bits	288	576	1440	1728	2304	2880
Total symbols per Sub-Frame		144	288	720	864	1152	1440
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.2.1-4a: Reference Channels for 10MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value	Value
Channel bandwidth	MHz	10	10	10	10	10	10
Allocated resource blocks		12	15	16	18	20	24
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12
Frame							
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Payload size	Bits	1224	1320	1384	1864	1736	2472
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub- Frame (Note 1)		1	1	1	1	1	1
Total number of bits per Sub-Frame	Bits	3456	4320	4608	5184	5760	6912
Total symbols per Sub-Frame		1728	2160	2304	2592	2880	3456
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1

Table A.2.2.2.1-4b: Reference Channels for 10MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value	Value
Channel bandwidth	MHz	10	10	10	10	10	10
Allocated resource blocks		25	27	30	36	40	48
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12
Frame							
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Payload size	Bits	2216	2792	2664	3752	4136	4264
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1	1
Frame (Note 1)							
Total number of bits per Sub-Frame	Bits	7200	7776	8640	10368	11520	13824
Total symbols per Sub-Frame		3600	3888	4320	5184	5760	6912
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.2.1-5 Reference Channels for 15MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value	Value
Channel bandwidth	MHz	15	15	15	15	15	15
Allocated resource blocks		1	2	5	6	8	9
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12
Frame							
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Payload size	Bits	72	176	424	600	808	776
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1	1
Frame (Note 1)							
Total number of bits per Sub-Frame	Bits	288	576	1440	1728	2304	2592
Total symbols per Sub-Frame		144	288	720	864	1152	1296
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1

Table A.2.2.2.1-5a: Reference Channels for 15MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value	Value
Channel bandwidth	MHz	15	15	15	15	15	15
Allocated resource blocks		10	16	18	20	24	25
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12
Frame							
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Payload size	Bits	872	1384	1864	1736	2472	2216
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub- Frame (Note 1)		1	1	1	1	1	1
Total number of bits per Sub-Frame	Bits	2880	4608	5184	5760	6912	7200
Total symbols per Sub-Frame		1440	2304	2592	2880	3456	3600
UE Category		≥1	≥ 1	≥ 1	≥ 1	≥ 1	≥1

Table A.2.2.2.1-5b: Reference Channels for 15MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value	Value
Channel bandwidth	MHz	15	15	15	15	15	15
Allocated resource blocks		27	36	40	48	50	54
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12
Frame							
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Payload size	Bits	2792	3752	4136	4264	5160	4776
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1	1
Frame (Note 1)							
Total number of bits per Sub-Frame	Bits	7776	10368	11520	13824	14400	15552
Total symbols per Sub-Frame		3888	5184	5760	6912	7200	7776
UE Category		≥ 1					

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.2.1-6 Reference Channels for 20MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value	Value
Channel bandwidth	MHz	20	20	20	20	20	20
Allocated resource blocks		1	2	5	6	8	10
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12
Frame							
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Payload size	Bits	72	176	424	600	808	872
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1	1
Frame (Note 1)							
Total number of bits per Sub-Frame	Bits	288	576	1440	1728	2304	2880
Total symbols per Sub-Frame		144	288	720	864	1152	1440
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1

Table A.2.2.2.1-6a: Reference Channels for 20MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value	Value
Channel bandwidth	MHz	20	20	20	20	20	20
Allocated resource blocks		16	18	20	24	25	48
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12
Frame							
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Payload size	Bits	1384	1864	1736	2472	2216	4264
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub- Frame (Note 1)		1	1	1	1	1	1
Total number of bits per Sub-Frame	Bits	4608	5184	5760	6912	7200	13824
Total symbols per Sub-Frame		2304	2592	2880	3456	3600	6912
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥1

Table A.2.2.2.1-6b: Reference Channels for 20MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value
Channel bandwidth	MHz	20	20	20
Allocated resource blocks		50	54	75
DFT-OFDM Symbols per Sub-		12	12	12
Frame				
Modulation		QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/5
Payload size	Bits	5160	4776	4392
Transport block CRC	Bits	24	24	24
Number of code blocks per Sub-		1	1	1
Frame (Note 1)				
Total number of bits per Sub-Frame	Bits	14400	15552	21600
Total symbols per Sub-Frame		7200	7776	10800
UE Category		≥ 1	≥ 1	≥ 1
Note 1: If more than one Code Bloc	k is present	an addition	nal CRC sec	guence of

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.2.2 16-QAM

Table A.2.2.2.1 Reference Channels for 1.4MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	1.4	1.4
Allocated resource blocks		1	5
DFT-OFDM Symbols per Sub-Frame		12	12
Modulation		16QAM	16QAM
Target Coding rate		3/4	3/4
Payload size	Bits	408	2152
Transport block CRC	Bits	24	24
Number of code blocks per Sub-Frame		1	1
(Note 1)			
Total number of bits per Sub-Frame	Bits	576	2880
Total symbols per Sub-Frame		144	720
UE Category		≥ 1	≥ 1

Table A.2.2.2-2 Reference Channels for 3MHz 16-QAM with partial RB allocation

Unit	Value	Value	Value
MHz	3	3	3
	1	4	6
	12	12	12
	16QAM	16QAM	16QAM
	3/4	3/4	3/4
Bits	408	1736	2600
Bits	24	24	24
	1	1	1
Bits	576	2304	3456
	144	576	864
	≥ 1	≥ 1	≥ 1
	Bits Bits Bits	MHz 3 1 12 16QAM 3/4 Bits 408 Bits 24 1 Bits 576 144 ≥ 1	MHz 3 3 1 4 12 12 16QAM 16QAM 3/4 3/4 Bits 408 1736 Bits 24 24 1 1 1 Bits 576 2304 144 576

Table A.2.2.2.3 Reference Channels for 5MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	5	5
Allocated resource blocks		1	8
DFT-OFDM Symbols per Sub-Frame		12	12
Modulation		16QAM	16QAM
Target Coding rate		3/4	3/4
Payload size	Bits	408	3496
Transport block CRC	Bits	24	24
Number of code blocks per Sub-Frame		1	1
(Note 1)			
Total number of bits per Sub-Frame	Bits	576	4608
Total symbols per Sub-Frame		144	1152
UE Category		≥ 1	≥ 1

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.2.2-4 Reference Channels for 10MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value
Channel bandwidth	MHz	10	10	10	10	10
Allocated resource blocks		1	12	16	30	36
DFT-OFDM Symbols per Sub-		12	12	12	12	12
Frame						
Modulation		16QAM	16QAM	16QAM	16QAM	16QAM
Target Coding rate		3/4	3/4	1/2	3/4	3/4
Payload size	Bits	408	5160	4584	12960	15264
Transport block CRC	Bits	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	3	3
Frame (Note 1)						
Total number of bits per Sub-Frame	Bits	576	6912	9216	17280	20736
Total symbols per Sub-Frame		144	1728	2304	4320	5184
UE Category		≥ 1	≥ 1	≥ 1	≥ 2	≥ 2
			1000		0.4 D.:	

Table A.2.2.2-5 Reference Channels for 15MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value	Value
Channel bandwidth	MHz	15	15	15	15	15	15
Allocated resource blocks		1	6	8	9	16	18
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12
Frame							
Modulation		16QAM	16QAM	16QAM	16QAM	16QAM	16QAM
Target Coding rate		3/4	3/4	3/4	3/4	1/2	1/2
Payload size	Bits	408	2600	3496	3880	4584	5160
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub- Frame (Note 1)		1	1	1	1	1	1
Total number of bits per Sub-Frame	Bits	576	3456	4608	5184	9216	10368
Total symbols per Sub-Frame		144	864	1152	1296	2304	2592
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥1
N		1 100	1000		0.4 D.: .		

Table A.2.2.2-5a: Reference Channels for 15MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value				
Channel bandwidth	MHz	15	15				
Allocated resource blocks		20	24				
DFT-OFDM Symbols per Sub-		12	12				
Frame							
Modulation		16QAM	16QAM				
Target Coding rate		1/3	1/3				
Payload size	Bits	4008	4776				
Transport block CRC	Bits	24	24				
Number of code blocks per Sub-		1	1				
Frame (Note 1)							
Total number of bits per Sub-Frame	Bits	11520	13824				
Total symbols per Sub-Frame		2880	3456				
UE Category		≥ 1	≥ 1				
Note 1: If more than one Code Block is present, an additional CRC							
sequence of L = 24 Bits is attached to each Code Block							
(otherwise L = 0 Bit)							

Table A.2.2.2-6 Reference Channels for 20MHz 16-QAM with partial RB allocation

Parameter	Unit	Value						
Channel bandwidth	MHz	20	20	20	20	20	20	20
Allocated resource blocks		1	2	16	18	20	24	75
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12	12
Frame								
Modulation		16QAM						
Target Coding rate		3/4	3/4	1/2	1/2	1/3	1/3	1/2
Payload size	Bits	408	840	4584	5160	4008	4776	21384
Transport block CRC	Bits	24	24	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1	1	4
Frame (Note 1)								
Total number of bits per Sub-Frame	Bits	576	1152	9216	10368	11520	13824	43200
Total symbols per Sub-Frame		144	288	2304	2592	2880	3456	10800
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 2

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.2.2.3 64-QAM

[FFS]

A.2.3 Reference measurement channels for TDD

For TDD, the measurement channel is based on DL/UL configuration ratio of 2DL:2UL.

A.2.3.1 Full RB allocation

A.2.3.1.1 QPSK

Table A.2.3.1.1-1 Reference Channels for QPSK with full RB allocation

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
Uplink-Downlink Configuration (Note 2)		1	1	1	1	1	1
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12	12
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/5	1/6
Payload size							
For Sub-Frame 2,3,7,8	Bits	600	1544	2216	5160	4392	4584
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-Frame (Note 1)							
For Sub-Frame 2,3,7,8		1	1	1	1	1	1
Total number of bits per Sub-Frame							
For Sub-Frame 2,3,7,8	Bits	1728	4320	7200	14400	21600	28800
Total symbols per Sub-Frame							
For Sub-Frame 2,3,7,8		864	2160	3600	7200	10800	14400
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached

to each Code Block (otherwise L = 0 Bit)

Note 2: As per Table 4.2-2 in TS 36.211 [4]

A.2.3.1.2 16-QAM

Table A.2.3.1.2-1 Reference Channels for 16-QAM with full RB allocation

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
Uplink-Downlink Configuration (Note 2)		1	1	1	1	1	1
DFT-OFDM Symbols per Sub-Frame		12	12	12	12	12	12
Modulation		16QAM	16QAM	16QAM	16QAM	16QAM	16QAM
Target Coding rate		3/4	1/2	1/3	3/4	1/2	1/3
Payload size							
For Sub-Frame 2,3,7,8	Bits	2600	4264	4968	21384	21384	19848
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-Frame							
(Note 1)							
For Sub-Frame 2,3,7,8		1	1	1	4	4	4
Total number of bits per Sub-Frame							
For Sub-Frame 2,3,7,8	Bits	3456	8640	14400	28800	43200	57600
Total symbols per Sub-Frame	•						
For Sub-Frame 2,3,7,8		864	2160	3600	7200	10800	14400
UE Category		≥1	≥ 1	≥ 1	≥ 2	≥2	≥ 2

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.3.1.3 64-QAM

[FFS]

A.2.3.2 Partial RB allocation

For each channel bandwidth, various partial RB allocations are specified. The number of allocated RBs is chosen according to values specified in the Tx and Rx requirements. The single allocated RB case is included.

The allocated RBs are contiguous and start from one end of the channel bandwidth. A single allocated RB is at one end of the channel bandwidth.

A.2.3.2.1 QPSK

Table A.2.3.2.1-1 Reference Channels for 1.4MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value
Channel bandwidth	MHz	1.4	1.4	1.4	1.4	1.4
Allocated resource blocks		1	2	3	4	5
Uplink-Downlink Configuration (Note		1	1	1	1	1
2)						
DFT-OFDM Symbols per Sub-		12	12	12	12	12
Frame						
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3
Payload size						
For Sub-Frame 2,3,7,8	Bits	72	176	256	392	424
Transport block CRC	Bits	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1
Frame (Note 1)						
Total number of bits per Sub-Frame						
For Sub-Frame 2,3,7,8	Bits	288	576	864	1152	1440
Total symbols per Sub-Frame					_	
For Sub-Frame 2,3,7,8		144	288	432	576	720
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.2.1-2 Reference Channels for 3MHz QPSK with partial RB allocation

Parameter	Unit	Value						
Channel bandwidth	MHz	3	3	3	3	3	3	3
Allocated resource blocks		1	2	3	4	5	6	10
Uplink-Downlink Configuration (Note		1	1	1	1	1	1	1
DFT-OFDM Symbols per Sub- Frame		12	12	12	12	12	12	12
Modulation		QPSK						
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3	1/3
Payload size								
For Sub-Frame 2,3,7,8	Bits	72	176	256	392	424	600	872
Transport block CRC	Bits	24	24	24	24	24	24	24
Number of code blocks per Sub- Frame (Note 1)		1	1	1	1	1	1	1
Total number of bits per Sub-Frame								
For Sub-Frame 2,3,7,8	Bits	288	576	864	1152	1440	1728	2880
Total symbols per Sub-Frame								
For Sub-Frame 2,3,7,8		144	288	432	576	720	864	1440
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1

Note 2: As per Table 4.2-2 in TS 36.211 [4]

Table A.2.3.2.1-3 Reference Channels for 5MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value
Channel bandwidth	MHz	5	5	5	5	5
Allocated resource blocks		1	2	5	6	8
Uplink-Downlink Configuration (Note 2)		1	1	1	1	1
DFT-OFDM Symbols per Sub- Frame		12	12	12	12	12
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3
Payload size						
For Sub-Frame 2,3,7,8	Bits	72	176	424	600	808
Transport block CRC	Bits	24	24	24	24	24
Number of code blocks per Sub- Frame (Note 1)		1	1	1	1	1
Total number of bits per Sub-Frame	Bits					
For Sub-Frame 2,3,7,8		288	576	1440	1728	2304
Total symbols per Sub-Frame						
For Sub-Frame 2,3,7,8		144	288	720	864	1152
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.2.1-3a: Reference Channels for 5MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value
Channel bandwidth	MHz	5	5	5	5	5
Allocated resource blocks		10	15	18	20	24
Uplink-Downlink Configuration (Note		1	1	1	1	1
2)						
DFT-OFDM Symbols per Sub-		12	12	12	12	12
Frame						
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3
Payload size						
For Sub-Frame 2,3,7,8	Bits	872	1320	1864	1736	2472
Transport block CRC	Bits	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1
Frame (Note 1)						
Total number of bits per Sub-Frame	Bits					
For Sub-Frame 2,3,7,8		2880	4320	5184	5760	6912
Total symbols per Sub-Frame						
For Sub-Frame 2,3,7,8		1440	2160	2592	2880	3456
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1

Note 2: As per Table 4.2-2 in TS 36.211 [4]

Table A.2.3.2.1-4 Reference Channels for 10MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value	Value
Channel bandwidth	MHz	10	10	10	10	10	10
Allocated resource blocks		1	2	5	6	8	10
Uplink-Downlink Configuration		1	1	1	1	1	1
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12
Frame							
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Payload size							
For Sub-Frame 2,3,7,8	Bits	72	176	424	600	808	872
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1	1
Frame (Note 1)							
Total number of bits per Sub-Frame							
For Sub-Frame 2,3,7,8	Bits	288	576	1440	1728	2304	2880
Total symbols per Sub-Frame							
For Sub-Frame 2,3,7,8		144	288	720	864	1152	1440
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.2.1-4a: Reference Channels for 10MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value	Value
Channel bandwidth	MHz	10	10	10	10	10	10
Allocated resource blocks		12	16	18	20	24	25
Uplink-Downlink Configuration		1	1	1	1	1	1
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12
Frame							
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Payload size							
For Sub-Frame 2,3,7,8	Bits	1224	1384	1864	1736	2472	2216
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub- Frame (Note 1)		1	1	1	1	1	1
Total number of bits per Sub-Frame							
For Sub-Frame 2,3,7,8	Bits	3456	4608	5184	5760	6912	7200
Total symbols per Sub-Frame							
For Sub-Frame 2,3,7,8		1728	2304	2592	2880	3456	3600
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥1

Note 2: As per Table 4.2-2 in TS 36.211 [4]

Table A.2.3.2.1-4b: Reference Channels for 10MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value
Channel bandwidth	MHz	10	10	10	10	10
Allocated resource blocks		27	30	36	40	48
Uplink-Downlink Configuration		1	1	1	1	1
DFT-OFDM Symbols per Sub-		12	12	12	12	12
Frame						
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3
Payload size						
For Sub-Frame 2,3,7,8	Bits	2792	2664	3752	4136	4264
Transport block CRC	Bits	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1
Frame (Note 1)						
Total number of bits per Sub-Frame						
For Sub-Frame 2,3,7,8	Bits	7776	8640	10368	11520	13824
Total symbols per Sub-Frame						
For Sub-Frame 2,3,7,8		3888	4320	5184	5760	6912
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.2.1-5 Reference Channels for 15MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value	Value
Channel bandwidth	MHz	15	15	15	15	15	15
Allocated resource blocks		1	2	5	6	8	10
Uplink-Downlink Configuration		1	1	1	1	1	1
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12
Frame							
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Payload size							
For Sub-Frame 2,3,7,8	Bits	72	176	424	600	808	872
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub- Frame (Note 1)		1	1	1	1	1	1
Total number of bits per Sub-Frame							
For Sub-Frame 2,3,7,8	Bits	288	576	1440	1728	2304	2880
Total symbols per Sub-Frame							
For Sub-Frame 2,3,7,8		144	288	720	864	1152	1440
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1

Note 2: As per Table 4.2-2 in TS 36.211 [4]

Table A.2.3.2.1-5a: Reference Channels for 15MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value	Value
Channel bandwidth	MHz	15	15	15	15	15	15
Allocated resource blocks		16	18	20	24	25	27
Uplink-Downlink Configuration		1	1	1	1	1	1
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12
Frame							
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Payload size							
For Sub-Frame 2,3,7,8	Bits	1384	1864	1736	2472	2216	2792
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1	1
Frame (Note 1)							
Total number of bits per Sub-Frame							
For Sub-Frame 2,3,7,8	Bits	4608	5184	5760	6912	7200	7776
Total symbols per Sub-Frame							
For Sub-Frame 2,3,7,8		2304	2592	2880	3456	3600	3888
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.2.1-5b: Reference Channels for 15MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value
Channel bandwidth	MHz	15	15	15	15	15
Allocated resource blocks		36	40	48	50	54
Uplink-Downlink Configuration		1	1	1	1	1
DFT-OFDM Symbols per Sub-		12	12	12	12	12
Frame						
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3
Payload size						
For Sub-Frame 2,3,7,8	Bits	3752	4136	4264	5160	4776
Transport block CRC	Bits	24	24	24	24	24
Number of code blocks per Sub- Frame (Note 1)		1	1	1	1	1
Total number of bits per Sub-Frame						
For Sub-Frame 2,3,7,8	Bits	10368	11520	13824	14400	15552
Total symbols per Sub-Frame						
For Sub-Frame 2,3,7,8		5184	5760	6912	7200	7776
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1

Note 2: As per Table 4.2-2 in TS 36.211 [4]

Table A.2.3.2.1-6 Reference Channels for 20MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value	Value
Channel bandwidth	MHz	20	20	20	20	20	20
Allocated resource blocks		1	2	5	6	8	10
Uplink-Downlink Configuration (Note		1	1	1	1	1	1
2)							
DFT-OFDM Symbols per Sub-		12	12	12	12	12	12
Frame							
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Payload size							
For Sub-Frame 2,3,7,8	Bits	72	176	424	600	808	872
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub-		1	1	1	1	1	1
Frame (Note 1)							
Total number of bits per Sub-Frame							
For Sub-Frame 2,3,7,8	Bits	288	576	1440	1728	2304	2880
Total symbols per Sub-Frame							
For Sub-Frame 2,3,7,8		144	288	720	864	1152	1440
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.2.1-6a: Reference Channels for 20MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value	Value
Channel bandwidth	MHz	20	20	20	20	20	20
Allocated resource blocks		18	20	24	25	48	50
Uplink-Downlink Configuration (Note 2)		1	1	1	1	1	1
DFT-OFDM Symbols per Sub- Frame		12	12	12	12	12	12
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Payload size							
For Sub-Frame 2,3,7,8	Bits	1864	1736	2472	2216	4264	5160
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub- Frame (Note 1)		1	1	1	1	1	1
Total number of bits per Sub-Frame							
For Sub-Frame 2,3,7,8	Bits	5184	5760	6912	7200	13824	14400
Total symbols per Sub-Frame							
For Sub-Frame 2,3,7,8		2592	2880	3456	3600	6912	7200
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1

Note 2: As per Table 4.2-2 in TS 36.211 [4]

Table A.2.3.2.1-6b: Reference Channels for 20MHz QPSK with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	20	20
Allocated resource blocks		54	75
Uplink-Downlink Configuration (Note		1	1
2)			
DFT-OFDM Symbols per Sub-		12	12
Frame			
Modulation		QPSK	QPSK
Target Coding rate		1/3	1/5
Payload size			
For Sub-Frame 2,3,7,8	Bits	4776	4392
Transport block CRC	Bits	24	24
Number of code blocks per Sub-		1	1
Frame (Note 1)			
Total number of bits per Sub-Frame			
For Sub-Frame 2,3,7,8	Bits	15552	21600
Total symbols per Sub-Frame			
For Sub-Frame 2,3,7,8		7776	10800
UE Category		≥ 1	≥ 1

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.2.3.2.2 16-QAM

Table A.2.3.2.2-1 Reference Channels for 1.4MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	1.4	1.4
Allocated resource blocks		1	5
Uplink-Downlink Configuration (Note 2)		1	1
DFT-OFDM Symbols per Sub-Frame		12	12
Modulation		16QAM	16QAM
Target Coding rate		3/4	3/4
Payload size			
For Sub-Frame 2,3,7,8	Bits	408	2152
Transport block CRC	Bits	24	24
Number of code blocks per Sub-Frame			
(Note 1)			
For Sub-Frame 2,3,7,8		1	1
Total number of bits per Sub-Frame			
For Sub-Frame 2,3,7,8	Bits	576	2880
Total symbols per Sub-Frame			
For Sub-Frame 2,3,7,8		144	720
UE Category		≥ 1	≥ 1

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 2: As per Table 4.2-2 in TS 36.211 [4]

Table A.2.3.2.2-2 Reference Channels for 3MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	3	3
Allocated resource blocks		1	4
Uplink-Downlink Configuration (Note 2)		1	1
DFT-OFDM Symbols per Sub-Frame		12	12
Modulation		16QAM	16QAM
Target Coding rate		3/4	3/4
Payload size			
For Sub-Frame 2,3,7,8	Bits	408	1736
Transport block CRC	Bits	24	24
Number of code blocks per Sub-Frame			
(Note 1)			
For Sub-Frame 2,3,7,8		1	1
Total number of bits per Sub-Frame			
For Sub-Frame 2,3,7,8	Bits	576	2304
Total symbols per Sub-Frame			
For Sub-Frame 2,3,7,8		144	576
UE Category		≥ 1	≥ 1

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.2.2-3 Reference Channels for 5MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value
Channel bandwidth	MHz	5	5
Allocated resource blocks		1	8
Uplink-Downlink Configuration (Note 2)		1	1
DFT-OFDM Symbols per Sub-Frame		12	12
Modulation		16QAM	16QAM
Target Coding rate		3/4	3/4
Payload size			
For Sub-Frame 2,3,7,8	Bits	408	3496
Transport block CRC	Bits	24	24
Number of code blocks per Sub-Frame			
(Note 1)			
For Sub-Frame 2,3,7,8		1	1
Total number of bits per Sub-Frame			
For Sub-Frame 2,3,7,8	Bits	576	4608
Total symbols per Sub-Frame			
For Sub-Frame 2,3,7,8		144	1152
UE Category		≥ 1	≥ 1
		1.000	,

Note 2: As per Table 4.2-2 in TS 36.211 [4]

Table A.2.3.2.2-4 Reference Channels for 10MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value	Value	Value	Value	Value
Channel bandwidth	MHz	10	10	10	10	10	10
Allocated resource blocks		1	12	16	24	30	36
Uplink-Downlink Configuration (Note 2)		1	1	1	1	1	1
DFT-OFDM Symbols per Sub- Frame		12	12	12	12	12	12
Modulation		16QAM	16QAM	16QAM	16QAM	16QAM	16QAM
Target Coding rate		3/4	3/4	1/2	1/3	3/4	3/4
Payload size							
For Sub-Frame 2,3,7,8	Bits	408	5160	4584	4776	12960	15264
Transport block CRC	Bits	24	24	24	24	24	24
Number of code blocks per Sub- Frame (Note 1)		1	1	1	1	3	3
Total number of bits per Sub-Frame							
For Sub-Frame 2,3,7,8	Bits	576	6912	9216	13824	17280	20736
Total symbols per Sub-Frame							
For Sub-Frame 2,3,7,8		144	1728	2304	3456	4320	5184
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 2	≥ 2

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.2.3.2.2-5 Reference Channels for 15MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value	Value
Channel bandwidth	MHz	15	15	15
Allocated resource blocks		1	16	36
Uplink-Downlink Configuration(Note 2)		1	1	1
DFT-OFDM Symbols per Sub-		12	12	12
Frame				
Modulation		16QAM	16QAM	16QAM
Target Coding rate		3/4	1/2	3/4
Payload size				
For Sub-Frame 2,3,7,8	Bits	408	4584	15264
Transport block CRC	Bits	24	24	24
Number of code blocks per Sub- Frame (Note 1)		1	1	3
Total number of bits per Sub-Frame				
For Sub-Frame 2,3,7,8	Bits	576	9216	20736
Total symbols per Sub-Frame				
For Sub-Frame 2,3,7,8		144	2304	5184
UE Category		≥ 1	≥1	≥ 2
Note 4: If we are these are Orde Dis-			-1000	

Note 2: As per Table 4.2-2 in TS 36.211 [8]

Table A.2.3.2.2-6 Reference Channels for 20MHz 16-QAM with partial RB allocation

Parameter	Unit	Value	Value	Value	Value
Channel bandwidth	MHz	20	20	20	20
Allocated resource blocks		1	18	50	75
Uplink-Downlink Configuration (Note 2)		1	1	1	1
DFT-OFDM Symbols per Sub- Frame		12	12	12	12
Modulation		16QAM	16QAM	16QAM	16QAM
Target Coding rate		3/4	1/2	3/4	1/2
Payload size					
For Sub-Frame 2,3,7,8	Bits	408	5160	21384	21384
Transport block CRC	Bits	24	24	24	24
Number of code blocks per Sub- Frame (Note 1)		1	1	4	4
Total number of bits per Sub-Frame					
For Sub-Frame 2,3,7,8	Bits	576	10368	28800	43200
Total symbols per Sub-Frame					
For Sub-Frame 2,3,7,8		144	2592	7200	10800
UE Category		≥ 1	≥1	≥2	≥ 2

Note 1: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Note 2: As per Table 4.2-2 in TS 36.211 [8]

A.2.3.2.3 64-QAM

[FFS]

A.3 DL reference measurement channels

A.3.1 General

The number of available channel bits varies across the sub-frames due to PBCH and PSS/SSS overhead. The payload size per sub-frame is varied in order to keep the code rate constant throughout a frame.

No user data is scheduled on subframes #5 in order to facilitate the transmission of system information blocks (SIB).

The algorithm for determining the payload size A is as follows; given a desired coding rate R and radio block allocation N_{RB}

- 1. Calculate the number of channel bits N_{ch} that can be transmitted during the first transmission of a given subframe.
- 2. Find A such that the resulting coding rate is as close to R as possible, that is,

$$\min \left| R - (A + 24) / N_{ch} \right|,$$

subject to

- a) A is a valid TB size according to section 7.1.7 of TS 36.213 [6] assuming an allocation of $N_{\rm RB}$ resource blocks.
- b) Segmentation is not included in this formula, but should be considered in the TBS calculation.
- 3. If there is more than one A that minimizes the equation above, then the larger value is chosen per default.
- 4. For TDD, the measurement channel is based on DL/UL configuration ratio of 2DL+DwPTS (12 OFDM symbol): 2UL

A.3.1.1 Overview of DL reference measurement channels

In Table A.3.1.1-1 are listed the DL reference measurement channels specified in annexes A.3.2 to A.3.9 of this release of TS 36.101. This table is informative and serves only to a better overview. The reference for the concrete reference measurement channels and corresponding implementation's parameters as to be used for requirements are annexes A.3.2 to A.3.7 as appropriate.

Table A.3.1.1-1: Overview of DL reference measurement channels

Duplex	Table	Name	BW	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
FDD, Rece	eiver requirements								
FDD	Table A.3.2-1		1.4	QPSK	1/3	6		≥ 1	
FDD	Table A.3.2-1		3	QPSK	1/3	15		≥ 1	
FDD	Table A.3.2-1		5	QPSK	1/3	25		≥ 1	
FDD	Table A.3.2-1		10	QPSK	1/3	50		≥ 1	
FDD	Table A.3.2-1		15	QPSK	1/3	75		≥ 1	
FDD	Table A.3.2-1		20	QPSK	1/3	100		≥ 1	
	eiver requirements	T	T	T	ı	T	T	ı	
TDD	Table A.3.2-2		1.4	QPSK	1/3	6		≥ 1	
TDD	Table A.3.2-2		3	QPSK	1/3	15		≥ 1	
TDD	Table A.3.2-2		5	QPSK	1/3	25		≥ 1	
TDD	Table A.3.2-2		10	QPSK	1/3	50		≥ 1	
TDD	Table A.3.2-2		15	QPSK	1/3	75		≥ 1	
TDD	Table A.3.2-2	Nai	20	QPSK	1/3	100		≥ 1	
	eiver requirements	waximum inp	T T	1		1	Ī	1	Γ
FDD FDD	Table A.3.2-3 Table A.3.2-3		1.4	64QAM 64QAM	3/4	6 15		-	
FDD	Table A.3.2-3 Table A.3.2-3		5	64QAM	3/4	25		-	
FDD	Table A.3.2-3		10	64QAM	3/4	50		_	
FDD	Table A.3.2-3		15	64QAM	3/4	75		-	
FDD	Table A.3.2-3		20	64QAM	3/4	100		_	
	eiver requirements	Maximum inn						_	
FDD	Table A.3.2-3a		1.4	64QAM	3/4	6		_	
FDD	Table A.3.2-3a		3	64QAM	3/4	15		-	
FDD	Table A.3.2-3a		5	64QAM	3/4	18		-	
FDD	Table A.3.2-3a		10	64QAM	3/4	17		-	
FDD	Table A.3.2-3a		15	64QAM	3/4	17		-	
FDD	Table A.3.2-3a		20	64QAM	3/4	17		-	
FDD, Rece	eiver requirements,	Maximum inp	out level	for UE Ca	tegorie	s 2			
FDD	Table A.3.2-3b		1.4	64QAM	3/4	6		-	
FDD	Table A.3.2-3b		3	64QAM	3/4	15		-	
FDD	Table A.3.2-3b		5	64QAM	3/4	25		-	
FDD	Table A.3.2-3b		10	64QAM	3/4	50		-	
FDD	Table A.3.2-3b		15	64QAM	3/4	75		-	
FDD	Table A.3.2-3b		20	64QAM	3/4	83		-	
	eiver requirements	Maximum inp	out level	for UE Ca	tegorie	s 3-5		ı	
TDD	Table A.3.2-4		1.4	64QAM	3/4	6		-	
TDD	Table A.3.2-4		3	64QAM	3/4	15		-	
TDD	Table A.3.2-4		5	64QAM	3/4	25		-	
TDD	Table A.3.2-4		10	64QAM	3/4	50		-	
TDD	Table A.3.2-4		15	64QAM	3/4	75		-	
TDD	Table A.3.2-4		20	64QAM	3/4	100		-	
	eiver requirements	Maximum inp				1			
TDD	Table A.3.2-4a		1.4	64QAM	3/4	6		-	
TDD	Table A.3.2-4a		3	64QAM	3/4	15		-	

TDD	Table A.3.2-4a		5	64QAM	3/4	18			
TDD	Table A.3.2-4a					17			
			10	64QAM	3/4			-	
TDD	Table A.3.2-4a		15	64QAM	3/4	17		-	
TDD D	Table A.3.2-4a	Nai	20	64QAM	3/4	17		-	
	eiver requirements,	Maximum inp	1	ı		ı	Ī		
TDD	Table A.3.2-4b		1.4	64QAM	3/4	6		-	
TDD	Table A.3.2-4b		3	64QAM	3/4	15		-	
TDD	Table A.3.2-4b		5	64QAM	3/4	25		-	
TDD	Table A.3.2-4b		10	64QAM	3/4	50		-	
TDD	Table A.3.2-4b		15	64QAM	3/4	75		-	
TDD	Table A.3.2-4b		20	64QAM	3/4	83		-	
FDD, PDS	CH Performance, S	ingle-antenna	transm	ission (CR	S)				
FDD	Table A.3.3.1-1	R.4 FDD	1.4	QPSK	1/3	6		≥ 1	
FDD	Table A.3.3.1-1	R.2 FDD	10	QPSK	1/3	50		≥ 1	
FDD	Table A.3.3.1-2	R.3 FDD	10	16QAM	1/2	50		≥ 2	
FDD	Table A.3.3.1-3	R.5 FDD	3	64QAM	3/4	15		≥ 1	
FDD	Table A.3.3.1-3	R.6 FDD	5	64QAM	3/4	25		≥ 2	
FDD	Table A.3.3.1-3	R.7 FDD	10	64QAM	3/4	50		≥ 2	
FDD	Table A.3.3.1-3	R.8 FDD	15	64QAM	3/4	75		≥ 2	
FDD	Table A.3.3.1-3	R.9 FDD	20	64QAM	3/4	100		≥ 3	
FDD, PDS	CH Performance, S	ingle-antenna	transm	ission (CR	S), Sin	gle PR	B (Cha	nnel e	edge)
FDD	Table A.3.3.1-4	R.0 FDD	3	16QAM	1/2	1		≥ 1	
FDD	Table A.3.3.1-4	R.1 FDD	10 / 20	16QAM	1/2	1		≥ 1	
FDD PDS	CH Darfarmanaa C	• •							
1 00.1 00	Ch Performance, 5	ingie-antenna	transm	ission (CR	S). Sin	ale PR	B (MB	SFN C	onfiguration)
FDD	CH Performance, S Table A.3.3.1-5		transm 10		· ·	gle PR	B (MB	SFN C ≥ 1	onfiguration)
FDD	Table A.3.3.1-5	R.29 FDD	10	16QAM	1/2	1		≥ 1	ontiguration)
FDD		R.29 FDD	10	16QAM	1/2	1		≥ 1	onfiguration)
FDD, PDS FDD	Table A.3.3.1-5 CH Performance, N Table A.3.3.2.1-1	R.29 FDD lulti-antenna t R.10 FDD	10 ransmis	16QAM sion (CRS QPSK	1/2 5), Two 1/3	1 antenr		≥ 1 S ≥ 1	onfiguration)
FDD, PDS FDD FDD	Table A.3.3.1-5 CH Performance, N Table A.3.3.2.1-1 Table A.3.3.2.1-1	R.29 FDD lulti-antenna t R.10 FDD R.11 FDD	10 ransmis 10 10	16QAM sion (CRS QPSK 16QAM	1/2 5), Two 1/3 1/2	1 antenr 50 50		≥ 1 S ≥ 1 ≥ 2	onfiguration)
FDD FDD, PDS FDD FDD FDD	Table A.3.3.1-5 CH Performance, N Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1	R.29 FDD lulti-antenna t R.10 FDD R.11 FDD R.30 FDD	10 ransmis 10 10 20	16QAM sion (CRS QPSK 16QAM 16QAM	1/2 1/3 1/2 1/2	1 antenr 50 50 100	na port	≥ 1 S ≥ 1 ≥ 2 ≥ 2	onfiguration)
FDD FDD FDD FDD FDD FDD, PDS	Table A.3.3.1-5 CH Performance, N Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 CH Performance, N	R.29 FDD Iulti-antenna t R.10 FDD R.11 FDD R.30 FDD	10 ransmis 10 10 20 ransmis	16QAM Sion (CRS QPSK 16QAM 16QAM	1/2 1/3 1/2 1/2 1/2 5), Four	1 antenr 50 50 100 anten	na port	≥ 1 s ≥ 1 ≥ 2 ≥ 2 ts	onfiguration)
FDD	Table A.3.3.1-5 CH Performance, N Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 CH Performance, N Table A.3.3.2.2-1	R.29 FDD lulti-antenna t R.10 FDD R.11 FDD R.30 FDD lulti-antenna t R.12 FDD	10 ransmis 10 10 20 ransmis 1.4	16QAM Sion (CRS QPSK 16QAM 16QAM Sion (CRS	1/2 1/3 1/2 1/2 1/2 5), Four	1 antenr 50 50 100 anten	na port	≥ 1 s ≥ 1 ≥ 2 ≥ 2 ≥ 2 ts ≥ 1	onfiguration)
FDD FDD, PDS FDD FDD FDD, PDS FDD FDD	Table A.3.3.1-5 CH Performance, N Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 CH Performance, N Table A.3.3.2.2-1 Table A.3.3.2.2-1	R.29 FDD Iulti-antenna t R.10 FDD R.11 FDD R.30 FDD Iulti-antenna t R.12 FDD R.13 FDD	10 ransmis 10 10 20 ransmis 1.4 10	16QAM Sion (CRS QPSK 16QAM 16QAM Sion (CRS QPSK QPSK	1/2 1/3 1/2 1/2 1/2 1/2 1/3 1/3	1 antenr 50 50 100 antenr 6 50	na port	≥ 1 s ≥ 1 ≥ 2 ≥ 2 ts ≥ 1 ≥ 1	onfiguration)
FDD	Table A.3.3.1-5 CH Performance, N Table A.3.3.2.1-1 Table A.3.3.2.1-1 CH Performance, N Table A.3.3.2.2-1 Table A.3.3.2.2-1 Table A.3.3.2.2-1	R.29 FDD lulti-antenna t R.10 FDD R.11 FDD R.30 FDD lulti-antenna t R.12 FDD R.13 FDD R.14 FDD	10 ransmis 10 10 20 ransmis 1.4 10 10	16QAM Sion (CRS QPSK 16QAM 16QAM Sion (CRS QPSK QPSK QPSK 16QAM	1/2 1/3 1/3 1/2 1/2 1/2 1/3 1/3 1/3	1 antenr 50 50 100 anten	na port	≥ 1 s ≥ 1 ≥ 2 ≥ 2 ≥ 2 ts ≥ 1	onfiguration)
FDD FDD FDD, PDS FDD FDD FDD FDD FDD FDD FDD FDD FDD	Table A.3.3.1-5 CH Performance, N Table A.3.3.2.1-1 Table A.3.3.2.1-1 CH Performance, N Table A.3.3.2.2-1 Table A.3.3.2.2-1 Table A.3.3.2.2-1 CH Performance, S	R.29 FDD Iulti-antenna t R.10 FDD R.11 FDD R.30 FDD Iulti-antenna t R.12 FDD R.13 FDD R.14 FDD ingle-antenna	10 ransmis 10 20 ransmis 1.4 10 10 transm	16QAM Sion (CRS QPSK 16QAM 16QAM Sion (CRS QPSK QPSK QPSK 16QAM 16QAM	1/2 1/3 1/3 1/2 1/2 1/2 1/3 1/3 1/3 1/2 S)	1 antenr 50 50 100 antenr 6 50 50	na port	≥ 1 s ≥ 1 ≥ 2 ≥ 2 ≥ 1 ≥ 1 ≥ 2 ≥ 2	onfiguration)
FDD FDD, PDS FDD FDD FDD FDD FDD FDD TDD FDD TDD, PDS	Table A.3.3.1-5 CH Performance, N Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 CH Performance, N Table A.3.3.2.2-1 Table A.3.3.2.2-1 Table A.3.3.2.2-1 Table A.3.3.2.2-1 Table A.3.3.2.2-1	R.29 FDD Iulti-antenna t R.10 FDD R.11 FDD R.30 FDD Iulti-antenna t R.12 FDD R.13 FDD R.14 FDD ingle-antenna	10 ransmis 10 20 ransmis 1.4 10 10 transm 1.4	16QAM Sion (CRS QPSK 16QAM 16QAM Sion (CRS QPSK QPSK 16QAM 16QAM GRAM GRAM GRAM GRAM GRAM GRAM GRAM GR	1/2 1/3 1/2 1/2 1/2 1/2 1/3 1/3 1/3 1/2 S) 1/3	1 antenr 50 50 100 antenr 6 50 50	na port	≥ 1 s ≥ 1 ≥ 2 ≥ 2 ts ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 1	onfiguration)
FDD FDD FDD, PDS FDD FDD FDD TDD, PDS TDD TDD, PDS	Table A.3.3.1-5 CH Performance, N Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 CH Performance, N Table A.3.3.2.2-1 Table A.3.3.2.2-1 Table A.3.3.2.2-1 Table A.3.3.2.1-1 CH Performance, S Table A.3.4.1-1 Table A.3.4.1-1	R.29 FDD Iulti-antenna t R.10 FDD R.30 FDD Iulti-antenna t R.12 FDD R.13 FDD R.14 FDD Ingle-antenna R.4 TDD R.2 TDD	10 ransmis 10 20 ransmis 1.4 10 transm 1.4 10	16QAM Sion (CRS QPSK 16QAM 16QAM Sion (CRS QPSK QPSK 16QAM 16QAM QPSK QPSK QPSK QPSK QPSK	1/2 1/3 1/3 1/2 1/2 1/2 1/3 1/3 1/3 1/3 1/3	1 antenr 50 50 100 antenr 6 50 50 50	na port	≥ 1 s ≥ 1 ≥ 2 ≥ 2 ts ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 2	onfiguration)
FDD FDD, PDS FDD FDD FDD FDD TDD TDD TDD TDD TDD	Table A.3.3.1-5 CH Performance, N Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 CH Performance, N Table A.3.3.2.2-1 Table A.3.3.2.2-1 Table A.3.3.2.2-1 CH Performance, S Table A.3.4.1-1 Table A.3.4.1-1 Table A.3.4.1-2	R.29 FDD Iulti-antenna t R.10 FDD R.11 FDD R.30 FDD Iulti-antenna t R.12 FDD R.13 FDD R.14 FDD ingle-antenna R.4 TDD R.2 TDD R.3 TDD	10 ransmis 10 20 ransmis 1.4 10 10 transm 1.4 10 10	16QAM Sion (CRS QPSK 16QAM 16QAM Sion (CRS QPSK QPSK 16QAM ISSION (CRS QPSK 16QAM ISSION (CRS QPSK 16QAM ISSION (CRS	1/2 1/3 1/3 1/2 1/2 1/2 1/3 1/3 1/3 1/2 1/3 1/3 1/3	1 antenr 50 50 100 antenr 6 50 50 50 50	na port	≥ 1 s ≥ 1 ≥ 2 ≥ 2 ts ≥ 1 ≥ 1 ≥ 1 ≥ 1 ≥ 2	onfiguration)
FDD FDD, PDS FDD FDD FDD FDD TDD TDD TDD TDD TDD	Table A.3.3.1-5 CH Performance, N Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 CH Performance, N Table A.3.3.2.2-1 Table A.3.3.2.2-1 Table A.3.3.2.2-1 Table A.3.4.1-1 Table A.3.4.1-1 Table A.3.4.1-2 Table A.3.4.1-3	R.29 FDD Iulti-antenna t R.10 FDD R.11 FDD R.30 FDD Iulti-antenna t R.12 FDD R.13 FDD R.14 FDD ingle-antenna R.4 TDD R.2 TDD R.3 TDD R.5 TDD	10 ransmis 10 20 ransmis 1.4 10 10 transm 1.4 10 10 3	16QAM Sion (CRS QPSK 16QAM 16QAM 16QAM QPSK QPSK 16QAM ission (CRS QPSK 16QAM ission (CRS QPSK 16QAM 64QAM	1/2 1/3 1/2 1/2 1/2 1/2 1/3 1/3 1/3 1/2 S) 1/3 1/3 1/2 3/4	1 antenr 50 50 100 anten 6 50 50 50 50 15	na port	≥ 1 s ≥ 1 ≥ 2 ≥ 2 ts ≥ 1 ≥ 1 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 1	onfiguration)
FDD FDD, PDS FDD, PDS FDD FDD TDD, PDS TDD TDD TDD TDD TDD TDD	Table A.3.3.1-5 CH Performance, N Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 CH Performance, N Table A.3.3.2.2-1 Table A.3.3.2.2-1 Table A.3.3.2.2-1 CH Performance, S Table A.3.4.1-1 Table A.3.4.1-1 Table A.3.4.1-2 Table A.3.4.1-3 Table A.3.4.1-3	R.29 FDD Iulti-antenna t R.10 FDD R.11 FDD R.30 FDD Iulti-antenna t R.12 FDD R.13 FDD R.14 FDD ingle-antenna R.4 TDD R.2 TDD R.3 TDD R.5 TDD R.6 TDD	10 ransmis 10 20 ransmis 1.4 10 10 transm 1.4 10 10 5	16QAM Sion (CRS QPSK 16QAM 16QAM 16QAM QPSK QPSK QPSK QPSK 16QAM ission (CRS QPSK QPSK 46QAM 64QAM 64QAM	1/2 1/3 1/3 1/2 1/2 1/2 1/3 1/3 1/3 1/2 S) 1/3 1/3 1/2 3/4 3/4	1 antenr 50 50 100 antenr 6 50 50 50 15 25	na port	≥ 1 s ≥ 1 ≥ 2 ≥ 2 ts ≥ 1 ≥ 1 ≥ 2 ≥ 1 ≥ 1 ≥ 2 ≥ 1 ≥ 2	onfiguration)
FDD FDD, PDS FDD, PDS FDD FDD FDD FDD TDD, PDS TDD TDD TDD TDD TDD TDD TDD	Table A.3.3.1-5 CH Performance, N Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 CH Performance, N Table A.3.3.2.2-1 Table A.3.3.2.2-1 Table A.3.3.2.2-1 Table A.3.4.1-1 Table A.3.4.1-1 Table A.3.4.1-2 Table A.3.4.1-3 Table A.3.4.1-3 Table A.3.4.1-3 Table A.3.4.1-3	R.29 FDD Iulti-antenna t R.10 FDD R.11 FDD R.30 FDD Iulti-antenna t R.12 FDD R.13 FDD R.14 FDD ingle-antenna R.4 TDD R.2 TDD R.3 TDD R.5 TDD R.6 TDD R.7 TDD	10 ransmis 10 20 ransmis 1.4 10 10 transm 1.4 10 3 5 10	16QAM Sion (CRS QPSK 16QAM 16QAM Sion (CRS QPSK QPSK 16QAM GSSION (CRS QPSK 16QAM GSSION (CRS QPSK 16QAM GSSION (CRS QPSK 16QAM GAM GAM GAM GAM GAM GAM GAM GAM GAM G	1/2 1/3 1/2 1/2 1/2 1/2 1/2 1/3 1/3 1/3 1/2 S) 1/3 1/2 3/4 3/4 3/4	1 antenr 50 50 100 antenr 6 50 50 50 15 25 50	na port	≥ 1 s ≥ 1 ≥ 2 ≥ 2 ts ≥ 1 ≥ 1 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 2	onfiguration)
FDD FDD, PDS FDD, PDS FDD FDD TDD, PDS TDD TDD TDD TDD TDD TDD TDD TDD TDD T	Table A.3.3.1-5 CH Performance, N Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 CH Performance, N Table A.3.3.2.2-1 Table A.3.3.2.2-1 Table A.3.3.2.2-1 Table A.3.4.1-1 Table A.3.4.1-1 Table A.3.4.1-2 Table A.3.4.1-3 Table A.3.4.1-3 Table A.3.4.1-3 Table A.3.4.1-3 Table A.3.4.1-3 Table A.3.4.1-3	R.29 FDD Iulti-antenna t R.10 FDD R.11 FDD R.30 FDD Iulti-antenna t R.12 FDD R.13 FDD R.14 FDD ingle-antenna R.4 TDD R.2 TDD R.3 TDD R.5 TDD R.6 TDD R.7 TDD R.8 TDD	10 ransmis 10 20 ransmis 1.4 10 10 transm 1.4 10 10 10 11 10 11 10 15	16QAM Sion (CRS QPSK 16QAM 16QAM 16QAM Sion (CRS QPSK QPSK 16QAM 16QAM 64QAM 64QAM 64QAM 64QAM	1/2 1/3 1/3 1/2 1/2 1/2 1/2 1/3 1/3 1/3 1/2 S) 1/3 1/3 1/2 3/4 3/4 3/4 3/4	1 antenr 50 100 anten 6 50 50 15 25 50 75	na port	≥ 1 s ≥ 1 ≥ 2 ≥ 2 ts ≥ 1 ≥ 1 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 2	onfiguration)
FDD FDD, PDS FDD, PDS FDD FDD FDD TDD, PDS TDD TDD TDD TDD TDD TDD TDD TDD TDD T	Table A.3.3.1-5 CH Performance, N Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 CH Performance, N Table A.3.3.2.2-1 Table A.3.3.2.2-1 Table A.3.3.2.2-1 Table A.3.4.1-1 Table A.3.4.1-1 Table A.3.4.1-2 Table A.3.4.1-3	R.29 FDD Iulti-antenna t R.10 FDD R.30 FDD Iulti-antenna t R.12 FDD R.13 FDD R.14 FDD ingle-antenna R.4 TDD R.2 TDD R.3 TDD R.5 TDD R.6 TDD R.7 TDD R.8 TDD R.9 TDD	10 ransmis 10 20 ransmis 1.4 10 10 transm 1.4 10 10 3 5 10 15 20	16QAM Sion (CRS QPSK 16QAM 16QAM 16QAM Sion (CRS QPSK QPSK 16QAM GSION (CRS QPSK 16QAM 64QAM 64QAM 64QAM 64QAM 64QAM	1/2 1/3 1/3 1/2 1/2 1/2 1/2 1/3 1/3 1/3 1/2 S) 1/3 1/3 1/2 3/4 3/4 3/4 3/4 3/4	1 antenr 50 50 100 antenr 6 50 50 50 15 25 50 75 100	na port	≥ 1 s ≥ 1 ≥ 2 ≥ 2 ts ≥ 1 ≥ 1 ≥ 2 ≥ 1 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 3	
FDD FDD, PDS FDD, PDS FDD FDD FDD TDD, PDS TDD TDD TDD TDD TDD TDD TDD TDD TDD T	Table A.3.3.1-5 CH Performance, N Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 CH Performance, N Table A.3.3.2.2-1 Table A.3.3.2.2-1 Table A.3.3.2.2-1 CH Performance, S Table A.3.4.1-1 Table A.3.4.1-2 Table A.3.4.1-3	R.29 FDD Iulti-antenna t R.10 FDD R.11 FDD R.30 FDD Iulti-antenna t R.12 FDD R.13 FDD R.14 FDD ingle-antenna R.4 TDD R.5 TDD R.5 TDD R.7 TDD R.8 TDD R.9 TDD ingle-antenna	10 ransmis 10 20 ransmis 1.4 10 10 transm 1.4 10 10 3 5 10 15 20 transm	16QAM Sion (CRS QPSK 16QAM 16QAM 16QAM Sion (CRS QPSK QPSK 16QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM	1/2 1/2 1/3 1/2 1/2 1/2 1/2 1/2 1/3 1/3 1/3 1/2 S) 1/3 1/2 3/4 3/4 3/4 3/4 3/4 S), Sin	1 antenr 50 50 100 antenr 6 50 50 50 15 25 50 75 100 gle PR	na port	≥ 1 s ≥ 1 ≥ 2 ≥ 2 ts ≥ 1 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 2	
FDD FDD, PDS FDD FDD FDD FDD FDD TDD TDD TDD TDD TDD	Table A.3.3.1-5 CH Performance, N Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 CH Performance, N Table A.3.3.2.2-1 Table A.3.3.2.2-1 Table A.3.3.2.2-1 Table A.3.4.1-1 Table A.3.4.1-1 Table A.3.4.1-2 Table A.3.4.1-3 Table A.3.4.1-3	R.29 FDD Iulti-antenna t R.10 FDD R.31 FDD R.30 FDD Iulti-antenna t R.12 FDD R.13 FDD R.14 FDD ingle-antenna R.4 TDD R.5 TDD R.6 TDD R.7 TDD R.8 TDD R.9 TDD ingle-antenna R.0 TDD	10 ransmis 10 20 ransmis 1.4 10 10 transm 1.4 10 10 3 5 10 15 20 transm 3	16QAM Sion (CRS QPSK 16QAM 16QAM 16QAM Sion (CRS QPSK QPSK 16QAM Sision (CRS QPSK 16QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM	1/2 1/3 1/2 1/3 1/2 1/2 1/2 1/3 1/3	1 antenr 50 50 100 antenr 6 50 50 15 25 50 75 100 gle PR 1	na port	≥ 1 s ≥ 1 ≥ 2 ≥ 2 ts ≥ 1 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 3 annel e	
FDD FDD, PDS FDD, PDS FDD FDD FDD TDD, PDS TDD TDD TDD TDD TDD TDD TDD TDD TDD T	Table A.3.3.1-5 CH Performance, N Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.2-1 Table A.3.3.2.2-1 Table A.3.3.2.2-1 Table A.3.3.2.2-1 Table A.3.4.1-1 Table A.3.4.1-1 Table A.3.4.1-2 Table A.3.4.1-3	R.29 FDD Iulti-antenna t R.10 FDD R.11 FDD R.30 FDD Iulti-antenna t R.12 FDD R.13 FDD R.14 FDD ingle-antenna R.4 TDD R.5 TDD R.6 TDD R.7 TDD R.8 TDD R.9 TDD ingle-antenna R.0 TDD R.1 TDD R.1 TDD	10 ransmis 10 20 ransmis 1.4 10 10 transm 1.4 10 10 3 5 10 15 20 transm 3 10/20	16QAM Sion (CRS QPSK 16QAM 16QAM 16QAM 16QAM Sion (CRS QPSK QPSK 16QAM 16QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM 16QAM 16QAM	1/2 1/2 1/3 1/2 1/2 1/2 1/2 1/3 1/3 1/3 1/2 S) 1/3 1/3 1/2 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 1/2 1/2	1 antenr 50 50 100 antenr 6 50 50 50 15 50 75 100 gle PR 1 1	na port	≥ 1 s ≥ 1 ≥ 2 ≥ 2 ts ≥ 1 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 3 annel e	edge)
FDD FDD, PDS FDD, PDS FDD FDD FDD TDD, PDS TDD TDD TDD TDD TDD TDD TDD TDD TDD T	Table A.3.3.1-5 CH Performance, N Table A.3.3.2.1-1 Table A.3.3.2.1-1 Table A.3.3.2.1-1 CH Performance, N Table A.3.3.2.2-1 Table A.3.3.2.2-1 Table A.3.3.2.2-1 Table A.3.4.1-1 Table A.3.4.1-1 Table A.3.4.1-2 Table A.3.4.1-3 Table A.3.4.1-3	R.29 FDD Iulti-antenna t R.10 FDD R.11 FDD R.30 FDD Iulti-antenna t R.12 FDD R.13 FDD R.14 FDD ingle-antenna R.4 TDD R.5 TDD R.6 TDD R.7 TDD R.8 TDD R.9 TDD ingle-antenna R.0 TDD R.1 TDD R.1 TDD	10 ransmis 10 20 ransmis 1.4 10 10 transm 1.4 10 10 3 5 10 15 20 transm 3 10/20	16QAM Sion (CRS QPSK 16QAM 16QAM 16QAM 16QAM Sion (CRS QPSK QPSK 16QAM 16QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM 64QAM 16QAM 16QAM	1/2 1/2 1/3 1/2 1/2 1/2 1/2 1/3 1/3 1/3 1/2 S) 1/3 1/3 1/2 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 1/2 1/2	1 antenr 50 50 100 antenr 6 50 50 50 15 50 75 100 gle PR 1 1	na port	≥ 1 s ≥ 1 ≥ 2 ≥ 2 ts ≥ 1 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 3 annel e	edge)

TDD, PDS	CH Performance, M	lulti-antenna t	ransmis	sion (CRS), Two	antenr	na port	s	
TDD	Table A.3.4.2.1-1	R.10 TDD	10	QPSK	1/3	50		≥ 1	
TDD	Table A.3.4.2.1-1	R.11 TDD	10	16QAM	1/2	50		≥ 2	
TDD	Table A.3.4.2.1-1	R.11-1 TDD	10	16QAM	1/2	50		≥ 2	
TDD	Table A.3.4.2.1-1	R.30 TDD	20	16QAM	1/2	100		≥ 2	
TDD, PDS	CH Performance, M	lulti-antenna t	ransmis	sion (CRS), Four	anten	na por	ts	
TDD	Table A.3.4.2.2-1	R.12 TDD	1.4	QPSK	1/3	6		≥ 1	
TDD	Table A.3.4.2.2-1	R.13 TDD	10	QPSK	1/3	50		≥ 1	
TDD	Table A.3.4.2.2-1	R.14 TDD	10	16QAM	1/2	50		≥ 2	
TDD, PDS	CH Performance, S	ingle antenna	port (DI	RS)					
TDD	Table A.3.4.3.1-1	R.25 TDD	10	QPSK	1/3	50		≥ 1	
TDD	Table A.3.4.3.1-1	R.26 TDD	10	16QAM	1/2	50		≥ 2	
TDD	Table A.3.4.3.1-1	R.27 TDD	10	64QAM	3/4	50		≥ 2	
TDD	Table A.3.4.3.1-1	R.28 TDD	10	16QAM	1/2	1		≥ 1	
FDD, PDC	CH / PCFICH Perfo	rmance							
FDD	Table A.3.5.1-1	R.15 FDD	10	PDCCH					
FDD	Table A.3.5.1-1	R.16 FDD	1.4	PDCCH					
FDD	Table A.3.5.1-1	R.17 FDD	10	PDCCH					
TDD, PDC	CH / PCFICH Perfo	rmance							
TDD	Table A.3.5.2-1	R.15 TDD	10	PDCCH					
TDD	Table A.3.5.2-1	R.16 TDD	1.4	PDCCH					
TDD	Table A.3.5.2-1	R.17 TDD	10	PDCCH					
	o, PHICH Performan	ice							
FDD / TDD	Table A.3.6-1	R.18	10	PHICH					
FDD / TDD	Table A.3.6-1	R.19	1.4	PHICH					
FDD / TDD	Table A.3.6-1	R.20	10	PHICH					
FDD / TDD	Table A.3.6-1	R.24	10	PHICH					
	o, PBCH Performan	ce							
FDD / TDD	Table A.3.7-1	R.21	1.4	QPSK	40/ 1920				
FDD / TDD	Table A.3.7-1	R.22	1.4	QPSK	40/ 1920				
FDD / TDD	Table A.3.7-1	R.23	1.4	QPSK	40/ 1920				

A.3.2 Reference measurement channel for receiver characteristics

Tables A.3.2-1 and A.3.2-2 are applicable for measurements on the Receiver Characteristics (clause 7) with the exception of sub-clause 7.4 (Maximum input level).

Tables A.3.2-3 and A.3.2-4 are applicable for sub-clause 7.4 (Maximum input level).

Tables A.3.2-1 and A.3.2-2 also apply for the modulated interferer used in Clauses 7.5, 7.6 and 7.8 with test specific bandwidths.

Table A.3.2-1 Fixed Reference Channel for Receiver Requirements (FDD)

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
Subcarriers per resource block		12	12	12	12	12	12
Allocated subframes per Radio Frame		10	10	10	10	10	10
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target Coding Rate		1/3	1/3	1/3	1/3	1/3	1/3
Number of HARQ Processes	Processes	8	8	8	8	8	8
Maximum number of HARQ transmissions		1	1	1	1	1	1
Information Bit Payload per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	408	1320	2216	4392	6712	8760
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	152	872	1800	4392	6712	8760
Transport block CRC	Bits	24	24	24	24	24	24
Number of Code Blocks per Sub-Frame							
(Note 4)							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1	1	1	1	2	2
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	1	1	1	1	2	2
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1368	3780	6300	13800	20700	27600
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	528	2940	5460	12960	19860	26760
Max. Throughput averaged over 1 frame	kbps	341.6	1143.	1952.	3952.	6040.	7884
			2	8	8	8	
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1

2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10MHz channel BW. 3 symbols allocated to Note 1: PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz
Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4]
If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to

Note 2:

Note 3:

each Code Block (otherwise L = 0 Bit)

Table A.3.2-2 Fixed Reference Channel for Receiver Requirements (TDD)

Parameter	Unit			Va	lue		
Channel Bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
Uplink-Downlink Configuration (Note 6)		1	1	1	1	1	1
Allocated subframes per Radio Frame (D+S)		4	4+2	4+2	4+2	4+2	4+2
Number of HARQ Processes	Processes	7	7	7	7	7	7
Maximum number of HARQ transmission		1	1	1	1	1	1
Modulation		QPSK	QPSK	QPSK	QPSK	QPSK	QPSK
Target coding rate		1/3	1/3	1/3	1/3	1/3	1/3
Information Bit Payload per Sub-Frame	Bits						
For Sub-Frame 4, 9		408	1320	2216	4392	6712	8760
For Sub-Frame 1, 6		n/a	968	1544	3240	4968	6712
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0		208	1064	1800	4392	6712	8760
Transport block CRC	Bits	24	24	24	24	24	24
Number of Code Blocks per Sub-Frame (Note 5)							
For Sub-Frame 4, 9		1	1	1	1	2	2
For Sub-Frame 1, 6		n/a	1	1	1	1	2
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0		1	1	1	1	2	2
Binary Channel Bits Per Sub-Frame	Bits						
For Sub-Frame 4, 9		1368	3780	6300	13800	20700	27600
For Sub-Frame 1, 6		n/a	3276	5556	11256	16956	22656
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0		672	3084	5604	13104	20004	26904
Max. Throughput averaged over 1 frame	kbps	102.4	564	932	1965.	3007.	3970.
					6	2	4
UE Category		≥ 1	≥ 1	≥ 1	≥ 1	≥ 1	≥ 1

- For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz Note 1: channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs. For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with
- Note 2: insufficient PDCCH performance
- Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4] Note 3:
- If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to Note 4: each Code Block (otherwise L = 0 Bit).
- Note 5: As per Table 4.2-2 in TS 36.211 [4]

Table A.3.2-3 Fixed Reference Channel for Maximum input level for UE Categories 3-5 (FDD)

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
Subcarriers per resource block		12	12	12	12	12	12
Allocated subframes per Radio Frame		10	10	10	10	10	10
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4
Number of HARQ Processes	Processes	8	8	8	8	8	8
Maximum number of HARQ transmissions		1	1	1	1	1	1
Information Bit Payload per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	2984	8504	14112	30576	46888	61664
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	n/a	6456	12576	28336	45352	61664
Transport block CRC	Bits	24	24	24	24	24	24
Number of Code Blocks per Sub-Frame (Note 4)							
For Sub-Frames 1,2,3,4,6,7,8,9		1	2	3	5	8	11
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0		n/a	2	3	5	8	11
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4104	11340	18900	41400	62100	82800
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	n/a	8820	16380	38880	59580	80280
Max. Throughput averaged over 1 frame	kbps	2387.2	7448.8	12547	27294	42046	55498
Note 1: 2 symbols allocated to PDCCH fo	r 20 MHz, 15 N	MHz and 10) MHz chai	nnel BW. 3	symbols a	llocated to	PDCCH

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz

Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.3.2-3a Fixed Reference Channel for Maximum input level for UE Category 1 (FDD)

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	18	17	17	17
Subcarriers per resource block		12	12	12	12	12	12
Allocated subframes per Radio Frame		10	10	10	10	10	10
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4
Number of HARQ Processes	Processes	8	8	8	8	8	8
Maximum number of HARQ transmissions		1	1	1	1	1	1
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	2984	8504	10296	10296	10296	10296
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	n/a	6456	8248	10296	10296	10296
Transport block CRC	Bits	24	24	24	24	24	24
Number of Code Blocks per Sub-Frame (Note 3)							
For Sub-Frames 1,2,3,4,6,7,8,9		1	2	2	2	2	2
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0		n/a	2	2	2	2	2
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4104	11340	13608	14076	14076	14076
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	n/a	8820	11088	14076	14076	14076
Max. Throughput averaged over 1 frame	kbps	2387.2	7448.8	9079.6	9266.4	9266.4	9266.4

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz

Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4]

Table A.3.2-3b Fixed Reference Channel for Maximum input level for UE Category 2 (FDD)

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	83
Subcarriers per resource block		12	12	12	12	12	12
Allocated subframes per Radio Frame		10	10	10	10	10	10
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4
Number of HARQ Processes	Processes	8	8	8	8	8	8
Maximum number of HARQ transmissions		1	1	1	1	1	1
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	2984	8504	14112	30576	46888	51024
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	n/a	6456	12576	28336	45352	51024
Transport block CRC	Bits	24	24	24	24	24	24
Number of Code Blocks per Sub-Frame (Note 3)							
For Sub-Frames 1,2,3,4,6,7,8,9		1	2	3	5	8	9
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0		n/a	2	3	5	8	9
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4104	11340	18900	41400	62100	68724
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	n/a	8820	16380	38880	59580	66204
Max. Throughput averaged over 1 frame	kbps	2387.2	7448.8	12547	27294	42046	45922

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW. 3 symbols allocated to PDCCH for 5 MHz and 3 MHz. 4 symbols allocated to PDCCH for 1.4 MHz

Note 2: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.3.2-4 Fixed Reference Channel for Maximum input level for UE Categories 3-5 (TDD)

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
Subcarriers per resource block		12	12	12	12	12	12
Uplink-Downlink Configuration (Note 6)		1	1	1	1	1	1
Allocated subframes per Radio Frame		4	4+2	4+2	4+2	4+2	4+2
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4
Number of HARQ Processes	Processes	7	7	7	7	7	7
Maximum number of HARQ transmissions		1	1	1	1	1	1
Information Bit Payload per Sub-Frame							
For Sub-Frames 4,9	Bits	2984	8504	14112	30576	46888	61664
For Sub-Frames 1,6	Bits	n/a	6968	11448	23688	35160	46888
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	n/a	6968	12576	30576	45352	61664
Transport block CRC	Bits	24	24	24	24	24	24
Number of Code Blocks per Sub-Frame							
(Note 5)							
For Sub-Frames 4,9		1	2	3	5	8	11
For Sub-Frames 1,6		n/a	2	2	4	6	8
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0		n/a	2	3	5	8	11
Binary Channel Bits per Sub-Frame							
For Sub-Frames 4,9	Bits	4104	11340	18900	41400	62100	82800
For Sub-Frames 1,6		n/a	9828	16668	33768	50868	67968
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	n/a	9252	16812	39312	60012	80712
Max. Throughput averaged over 1 frame	kbps	596.8	3791.2	6369.6	13910	20945	27877

- Note 1: For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.
- Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance
- Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4]
- Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit).
- Note 5: As per Table 4.2-2 in TS 36.211 [4]

Table A.3.2-4a Fixed Reference Channel for Maximum input level for UE Category 1 (TDD)

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	18	17	17	17
Subcarriers per resource block		12	12	12	12	12	12
Uplink-Downlink Configuration (Note 5)		1	1	1	1	1	1
Allocated subframes per Radio Frame		4	4+2	4+2	4+2	4+2	4+2
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4
Number of HARQ Processes	Processes	7	7	7	7	7	7
Maximum number of HARQ transmissions		1	1	1	1	1	1
Information Bit Payload per Sub-Frame							
For Sub-Frames 4,9	Bits	2984	8504	10296	10296	10296	10296
For Sub-Frames 1,6	Bits	n/a	6968	8248	7480	7480	7480
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	n/a	6968	8248	10296	10296	10296
Transport block CRC	Bits	24	24	24	24	24	24
Number of Code Blocks per Sub-Frame							
(Note 5)							
For Sub-Frames 4,9		1	2	2	2	2	2
For Sub-Frames 1,6		n/a	2	2	2	2	2
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0		n/a	2	2	2	2	2
Binary Channel Bits per Sub-Frame							
For Sub-Frames 4,9	Bits	4104	11340	13608	14076	14076	14076
For Sub-Frames 1,6		n/a	9828	11880	11628	11628	11628
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	n/a	9252	11520	14076	14076	14076
Max. Throughput averaged over 1 frame	kbps	596.8	3791.2	4533.6	4584.8	4584.8	4584.8

- Note 1: For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.
- Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance
- Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4]
- Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)
- Note 5: As per Table 4.2-2 in TS 36.211 [4]

Table A.3.2-4b Fixed Reference Channel for Maximum input level for UE Category 2 (TDD)

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	83
Subcarriers per resource block		12	12	12	12	12	12
Uplink-Downlink Configuration (Note 5)		1	1	1	1	1	1
Allocated subframes per Radio Frame		4	4+2	4+2	4+2	4+2	4+2
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4
Number of HARQ Processes	Processes	7	7	7	7	7	7
Maximum number of HARQ transmissions		1	1	1	1	1	1
Information Bit Payload per Sub-Frame							
For Sub-Frames 4,9	Bits	2984	8504	14112	30576	46888	51024
For Sub-Frames 1,6	Bits	n/a	6968	11448	23688	35160	39232
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	n/a	6968	12576	30576	45352	51024
Transport block CRC	Bits	24	24	24	24	24	24
Number of Code Blocks per Sub-Frame							
(Note 5)							
For Sub-Frames 4,9		1	2	3	5	8	9
For Sub-Frames 1,6		n/a	2	3	5	7	7
For Sub-Frame 5		n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0		n/a	2	3	5	8	9
Binary Channel Bits per Sub-Frame							
For Sub-Frames 4,9	Bits	4104	11340	18900	41400	62100	68724
For Sub-Frames 1,6		n/a	9828	16668	33768	50868	56340
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	n/a	9252	16380	39312	60012	66636
Max. Throughput averaged over 1 frame	kbps	596.8	3791.2	6369.6	13910	20945	23154

- Note 1: For normal subframes(0,4,5,9), 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For special subframe (1&6), only 2 OFDM symbols are allocated to PDCCH for all BWs.
- Note 2: For 1.4MHz, no data shall be scheduled on special subframes(1&6) to avoid problems with insufficient PDCCH performance
- Note 3: Reference signal, Synchronization signals and PBCH allocated as per TS 36.211 [4]
- Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)
- Note 5: As per Table 4.2-2 in TS 36.211 [4]

A.3.3 Reference measurement channels for PDSCH performance requirements (FDD)

A.3.3.1 Single-antenna transmission (Common Reference Symbols)

Table A.3.3.1-1: Fixed Reference Channel QPSK R=1/3

Parameter	Unit			Va	lue		
Reference channel		R.4 FDD			R.2 FDD		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6			50		
Allocated subframes per Radio Frame		10			10		
Modulation		QPSK			QPSK		
Target Coding Rate		1/3			1/3		
Information Bit Payload							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	408			4392		
For Sub-Frame 5	Bits	n/a			n/a		
For Sub-Frame 0	Bits	152			4392		
Number of Code Blocks per Sub-Frame (Note 3)							
For Sub-Frames 1,2,3,4,6,7,8,9		1			1		
For Sub-Frame 5		n/a			n/a		
For Sub-Frame 0		1			1		
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1368			13800		
For Sub-Frame 5	Bits	n/a			n/a		
For Sub-Frame 0	Bits	528			12960	•	
Max. Throughput averaged over 1 frame	Mbps	0.342			3.953		
UE Category		≥ 1			≥ 1		

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Table A.3.3.1-2: Fixed Reference Channel 16QAM R=1/2

Parameter	Unit	Value						
Reference channel					R.3 FDD			
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks					50			
Allocated subframes per Radio Frame					10			
Modulation					16QAM			
Target Coding Rate					1/2			
Information Bit Payload								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits				14112			
For Sub-Frame 5	Bits				n/a			
For Sub-Frame 0	Bits				12960			
Number of Code Blocks per Sub-Frame (Note 3)								
For Sub-Frames 1,2,3,4,6,7,8,9					3			
For Sub-Frame 5					n/a			
For Sub-Frame 0					3			
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits				27600			
For Sub-Frame 5	Bits				n/a			
For Sub-Frame 0	Bits				25920			
Max. Throughput averaged over 1 frame	Mbps				12.586			
UE Category					≥ 2	•		

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.3.3.1-3: Fixed Reference Channel 64QAM R=3/4

Parameter	Unit	Value							
Reference channel			R.5	R.6	R.7	R.8	R.9 FDD		
			FDD	FDD	FDD	FDD			
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks			15	25	50	75	100		
Allocated subframes per Radio Frame			10	10	10	10	10		
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM		
Target Coding Rate		3/4	3/4	3/4	3/4	3/4	3/4		
Information Bit Payload									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		8504	14112	30576	46888	61664		
For Sub-Frame 5	Bits		n/a	n/a	n/a	n/a	n/a		
For Sub-Frame 0	Bits		6456	12576	28336	45352	61664		
Number of Code Blocks per Sub-Frame									
(Note 3)									
For Sub-Frames 1,2,3,4,6,7,8,9			2	3	5	8	11		
For Sub-Frame 5			n/a	n/a	n/a	n/a	n/a		
For Sub-Frame 0			2	3	5	8	11		
Binary Channel Bits Per Sub-Frame									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		11340	18900	41400	62100	82800		
For Sub-Frame 5	Bits		n/a	n/a	n/a	n/a	n/a		
For Sub-Frame 0	Bits		8820	16380	38880	59580	80280		
Max. Throughput averaged over 1 frame	Mbps		7.449	12.547	27.294	42.046	55.498		
UE Category			≥ 1	≥2	≥ 2	≥ 2	≥ 3		

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Table A.3.3.1-4: Fixed Reference Channel Single PRB (Channel Edge)

Parameter	Unit	Value						
Reference channel			R.0 FDD		R.1 FDD			
Channel bandwidth	MHz	1.4	3	5	10/20	15	20	
Allocated resource blocks			1		1			
Allocated subframes per Radio Frame			10		10			
Modulation			16QAM		16QAM			
Target Coding Rate			1/2		1/2			
Information Bit Payload								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		224		256			
For Sub-Frame 5	Bits		n/a		n/a			
For Sub-Frame 0	Bits		224		256			
Number of Code Blocks per Sub-Frame								
(Note 3)								
For Sub-Frames 1,2,3,4,6,7,8,9			1		1			
For Sub-Frame 5			n/a		n/a			
For Sub-Frame 0			1		1			
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 1,2,3,4,6,7,8,9	Bits		504		552			
For Sub-Frame 5	Bits		n/a	•	n/a			
For Sub-Frame 0	Bits		504	•	552			
Max. Throughput averaged over 1 frame	Mbps		0.202	·	0.230			
UE Category			≥ 1		≥ 1			

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.3.3.1-5: Fixed Reference Channel Single PRB (MBSFN Configuration)

Parameter	Unit	Value
Reference channel		R.29 FDD
		(MBSFN)
Channel bandwidth	MHz	10
Allocated resource blocks		1
MBSFN Configuration		TBD
Allocated subframes per Radio Frame		4
Modulation		16QAM
Target Coding Rate		1/2
Information Bit Payload		
For Sub-Frames 4,9	Bits	256
For Sub-Frame 5	Bits	n/a
For Sub-Frame 0	Bits	256
For Sub-Frame 1,2,3,6,7,8	Bits	0 (MBSFN)
Number of Code Blocks per Sub-Frame		
(Note 3)		
For Sub-Frames 4,9		1
For Sub-Frame 5		n/a
For Sub-Frame 0		1
For Sub-Frame 1,2,3,6,7,8		0 (MBSFN)
Binary Channel Bits Per Sub-Frame		
For Sub-Frames 4,9	Bits	552
For Sub-Frame 5	Bits	n/a
For Sub-Frame 0	Bits	552
For Sub-Frame 1,2,3,6,7,8	Bits	0 (MBSFN)
Max. Throughput averaged over 1 frame	kbps	76.8
UE Category		≥ 1
Note 1. 2 symbols allocated to DDCCH		

Note 1: 2 symbols allocated to PDCCH

Note 2: Reference signal, synchronization signals and PBCH

allocated as per TS 36.211 [4]
If more than one Code Block is present, an additional Note 3:

CRC sequence of L = 24 Bits is attached to each Code

Block (otherwise L = 0 Bit)

A.3.3.2 Multi-antenna transmission (Common Reference Symbols)

A.3.3.2.1 Two antenna ports

Table A.3.3.2.1-1: Fixed Reference Channel two antenna ports

Parameter	Unit		Val	ue	
Reference channel		R.10	R.11	R.30	0
		FDD	FDD	FDI	D
Channel bandwidth	MHz	10	10	20	1
Allocated resource blocks		50	50	100)
Allocated subframes per Radio Frame		10	10	10)
Modulation		QPSK	16QAM	16Q <i>A</i>	١M
Target Coding Rate		1/3	1/2	1/2	2
Information Bit Payload					
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	4392	12960	2545	56
For Sub-Frame 5	Bits	n/a	n/a	n/a	ì
For Sub-Frame 0	Bits	4392	12960	2545	56
Number of Code Blocks per Sub-Frame					
(Note 3)					
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1	3	5	
For Sub-Frame 5	Bits	n/a	n/a	n/a	ì
For Sub-Frame 0	Bits	1	3	5	
Binary Channel Bits Per Sub-Frame					
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	13200	26400	5280	00
For Sub-Frame 5	Bits	n/a	n/a	n/a	ì
For Sub-Frame 0	Bits	12384	24768	5116	38
Max. Throughput averaged over 1 frame	Mbps	3.953	11.664	22.9	10
UE Category		≥ 1	≥ 2	≥ 2)

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

A.3.3.2.2 Four antenna ports

Table A.3.3.2.2-1: Fixed Reference Channel four antenna ports

Parameter	Unit	Value							
Reference channel		R.12	R.13	R.14					
		FDD	FDD	FDD					
Channel bandwidth	MHz	1.4	10	10					
Allocated resource blocks		6	50	50					
Allocated subframes per Radio Frame		10	10	10					
Modulation		QPSK	QPSK	16QAM					
Target Coding Rate		1/3	1/3	1/2					
Information Bit Payload									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	408	4392	12960					
For Sub-Frame 5	Bits	n/a	n/a	n/a					
For Sub-Frame 0	Bits	152	3624	11448					
Number of Code Blocks per Sub-Frame									
(Note 3)									
For Sub-Frames 1,2,3,4,6,7,8,9		1	1	3					
For Sub-Frame 5		n/a	n/a	n/a					
For Sub-Frame 0		1	1	2					
Binary Channel Bits Per Sub-Frame									
For Sub-Frames 1,2,3,4,6,7,8,9	Bits	1248	12800	25600					
For Sub-Frame 5	Bits	n/a	n/a	n/a					
For Sub-Frame 0	Bits	480	12032	24064					
Max. Throughput averaged over 1	Mbps	0.342	3.876	11.513					
frame	· .								
UE Category		≥ 1	≥ 1	≥ 2					

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

A.3.3.3 [RMC for UE-Specific Reference Symbols]

A.3.4 Reference measurement channels for PDSCH performance requirements (TDD)

A.3.4.1 Single-antenna transmission (Common Reference Symbols)

Table A.3.4.1-1: Fixed Reference Channel QPSK R=1/3

Parameter	Unit	Value						
Reference channel		R.4			R.2			
		TDD			TDD			
Channel bandwidth	MHz	1.4	3	5	10	15	20	
Allocated resource blocks		6			50			
Uplink-Downlink Configuration (Note 4)		1			1			
Allocated subframes per Radio Frame (D+S)		4+2			4+2			
Modulation		QPSK			QPSK			
Target Coding Rate		1/3			1/3			
Information Bit Payload								
For Sub-Frames 4,9	Bits	408			4392			
For Sub-Frames 1,6	Bits	n/a			3240			
For Sub-Frame 5	Bits	n/a			n/a			
For Sub-Frame 0	Bits	208			4392			
Number of Code Blocks per Sub-Frame								
(Note 5)								
For Sub-Frames 4,9		1			1			
For Sub-Frames 1,6		n/a			1			
For Sub-Frame 5		n/a			n/a			
For Sub-Frame 0		1			1			
Binary Channel Bits Per Sub-Frame								
For Sub-Frames 4,9	Bits	1368			13800			
For Sub-Frames 1,6	Bits	n/a			11256			
For Sub-Frame 5	Bits	n/a			n/a			
For Sub-Frame 0	Bits	672			13104			
Max. Throughput averaged over 1 frame	Mbps	0.102			1.966			
UE Category		≥ 1	_	_	≥1	-	_	

- Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.
- Note 2: For BW=1.4 MHz, the information bit payloads of special subframes are set to zero (no scheduling) to avoid problems with insufficient PDCCH performance at the test point.
- Note 3: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]
- Note 4: As per Table 4.2-2 in TS 36.211 [4]
- Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.3.4.1-2: Fixed Reference Channel 16QAM R=1/2

Parameter	Unit	Value							
Reference channel					R.3				
					TDD				
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks					50				
Uplink-Downlink Configuration (Note 3)					1				
Allocated subframes per Radio Frame (D+S)					4+2				
Modulation					16QAM				
Target Coding Rate					1/2				
Information Bit Payload									
For Sub-Frames 4,9	Bits				14112				
For Sub-Frames 1,6	Bits				11448				
For Sub-Frame 5	Bits				n/a				
For Sub-Frame 0	Bits				12960				
Number of Code Blocks per Sub-Frame									
(Note 4)									
For Sub-Frames 4,9					3				
For Sub-Frames 1,6					2				
For Sub-Frame 5					n/a				
For Sub-Frame 0					3				
Binary Channel Bits Per Sub-Frame									
For Sub-Frames 4,9	Bits				27600				
For Sub-Frames 1,6	Bits				22512				
For Sub-Frame 5	Bits				n/a				
For Sub-Frame 0	Bits				26208				
Max. Throughput averaged over 1 frame	Mbps				6.408				
UE Category					≥ 2				

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: As per Table 4.2-2 in TS 36.211 [4]

Table A.3.4.1-3: Fixed Reference Channel 64QAM R=3/4

Parameter	Unit	Value							
Reference channel			R.5	R.6 TDD	R.7	R.8	R.9		
			TDD		TDD	TDD	TDD		
Channel bandwidth	MHz	1.4	3	5	10	15	20		
Allocated resource blocks			15	25	50	75	100		
Uplink-Downlink Configuration (Note 3)			1	1	1	1	1		
Allocated subframes per Radio Frame (D+S)			4+2	4+2	4+2	4+2	4+2		
Modulation		64QAM	64QAM	64QAM	64QAM	64QAM	64QAM		
Target Coding Rate			3/4	3/4	3/4	3/4	3/4		
Information Bit Payload									
For Sub-Frames 4,9	Bits		8504	14112	30576	46888	61664		
For Sub-Frames 1,6	Bits		6968	11448	23688	35160	46888		
For Sub-Frame 5	Bits		n/a	n/a	n/a	n/a	n/a		
For Sub-Frame 0	Bits		6968	12576	30576	45352	61664		
Number of Code Blocks per Sub-Frame									
(Note 4)									
For Sub-Frames 4,9			2	3	5	8	11		
For Sub-Frames 1,6			2	2	4	6	8		
For Sub-Frame 5			n/a	n/a	n/a	n/a	n/a		
For Sub-Frame 0			2	3	5	8	11		
Binary Channel Bits Per Sub-Frame									
For Sub-Frames 4,9	Bits		11340	18900	41400	62100	82800		
For Sub-Frames 1,6	Bits		9828	16668	33768	50868	67968		
For Sub-Frame 5	Bits		n/a	n/a	n/a	n/a	n/a		
For Sub-Frame 0	Bits		9252	16812	39312	60012	80712		
Max. Throughput averaged over 1 frame	Mbps		3.791	6.370	13.910	20.945	27.877		
UE Category			≥ 1	≥ 2	≥ 2	≥ 2	≥ 3		

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: As per Table 4.2-2 TS 36.211 [4]

Table A.3.4.1-4: Fixed Reference Channel Single PRB

Parameter	Unit			Val	ue		
Reference channel			R.0 TDD		R.1 TDD		
Channel bandwidth	MHz	1.4	3	5	10/20	15	20
Allocated resource blocks			1		1		
Uplink-Downlink Configuration (Note 3)			1		1		
Allocated subframes per Radio Frame (D+S)			4+2		4+2		
Modulation			16QAM		16QAM		
Target Coding Rate			1/2		1/2		
Information Bit Payload							
For Sub-Frames 4,9	Bits		224		256		
For Sub-Frames 1,6	Bits		208		208		
For Sub-Frame 5	Bits		n/a		n/a		
For Sub-Frame 0	Bits		224		256		
Number of Code Blocks per Sub-Frame (Note 4)							
For Sub-Frames 4,9			1		1		
For Sub-Frames 1,6			1		1		
For Sub-Frame 5			n/a		n/a		
For Sub-Frame 0			1		1		
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 4,9	Bits		504		552		
For Sub-Frames 1,6	Bits		456		456		
For Sub-Frame 5	Bits		n/a		n/a		
For Sub-Frame 0	Bits		504		552		
Max. Throughput averaged over 1 frame	Mbps		0.109		0.118		
UE Category		_	≥ 1	-	≥ 1		

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: As per Table 4.2-2 in TS 36.211 [4]

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

Table A.3.4.1-5: Fixed Reference Channel Single PRB (MBSFN Configuration)

Parameter	Unit	Value
Reference channel		R.29 TDD
		(MBSFN)
Channel bandwidth	MHz	10
Allocated resource blocks		1
MBSFN Configuration		[TBD]
Uplink-Downlink Configuration (Note 3)		1
Allocated subframes per Radio Frame (D+S)		2+2
Modulation		16QAM
Target Coding Rate		1/2
Information Bit Payload		
For Sub-Frames 4,9	Bits	0 (MBSFN)
For Sub-Frames 1,6	Bits	208
For Sub-Frame 5	Bits	n/a
For Sub-Frame 0	Bits	256
Number of Code Blocks per Sub-Frame		
(Note 4)		
For Sub-Frames 4,9	Bits	0 (MBSFN)
For Sub-Frames 1,6	Bits	1
For Sub-Frame 5	Bits	n/a
For Sub-Frame 0	Bits	1
Binary Channel Bits Per Sub-Frame		
For Sub-Frames 4,9	Bits	0 (MBSFN)
For Sub-Frames 1,6	Bits	456
For Sub-Frame 5	Bits	n/a
For Sub-Frame 0	Bits	552
Max. Throughput averaged over 1 frame	kbps	67.2
UE Category		1-5

2 symbols allocated to PDCCH Note 1:

Reference signal, synchronization signals and PBCH allocated as Note 2: per TS 36.211 [4]

as per Table 4.2-2 in TS 36.211 [4] Note 3:

Note 4:

If more than one Code Block is present, an additional CRC sequence of L=24 Bits is attached to each Code Block (otherwise

L = 0 Bit

A.3.4.2 Multi-antenna transmission (Common Reference Signals)

A.3.4.2.1 Two antenna ports

Table A.3.4.2.1-1: Fixed Reference Channel two antenna ports

Parameter	Unit		Va	lue	
Reference channel		R.10	R.11	[R.11-1	R.30
		TDD	TDD	TDD]	TDD
Channel bandwidth	MHz	10	10	10	20
Allocated resource blocks		50	50	50	100
Uplink-Downlink Configuration (Note 3)		1	1	1	1
Allocated subframes per Radio Frame		4+2	4+2	4+2	4+2
(D+S)					
Modulation		QPSK	16QAM	16QAM	16QAM
Target Coding Rate		1/3	1/2	1/2	1/2
Information Bit Payload					
For Sub-Frames 4,9	Bits	4392	12960	12960	25456
For Sub-Frames 1,6		3240	9528	9528	22920
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	4392	12960	n/a	25456
Number of Code Blocks per Sub-Frame					
(Note 4)					
For Sub-Frames 4,9		1	3	3	5
For Sub-Frames 1,6		1	2	2	4
For Sub-Frame 5		n/a	n/a	n/a	n/a
For Sub-Frame 0		1	3	n/a	5
Binary Channel Bits Per Sub-Frame					
For Sub-Frames 4,9	Bits	13200	26400	26400	52800
For Sub-Frames 1,6		10656	21312	21312	42912
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a
For Sub-Frame 0	Bits	12528	25056	n/a	51456
Max. Throughput averaged over 1 frame	Mbps	1.966	5.794	4.498	12.221
UE Category		≥ 1	≥ 2	≥ 2	≥ 2

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: As per Table 4.2-2 in TS 36.211 [4]

Note 4: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.3.4.2.2 Four antenna ports

Table A.3.4.2.2-1: Fixed Reference Channel four antenna ports

Parameter	Unit			Valu	ie	
Reference channel		R.12	R.13	R.14		
		TDD	TDD	TDD		
Channel bandwidth	MHz	1.4	10	10		
Allocated resource blocks		6	50	50		
Uplink-Downlink Configuration (Note 4)		1	1	1		
Allocated subframes per Radio Frame (D+S)		4+2	4+2	4+2		
Modulation		QPSK	QPSK	16QAM		
Target Coding Rate		1/3	1/3	1/2		
Information Bit Payload						
For Sub-Frames 4,9	Bits	408	4392	12960		
For Sub-Frames 1,6	Bits	n/a	3240	9528		
For Sub-Frame 5	Bits	n/a	n/a	n/a		
For Sub-Frame 0	Bits	208	4392	n/a		
Number of Code Blocks per Sub-Frame (Note 5)						
For Sub-Frames 4,9		1	1	3		
For Sub-Frames 1,6		n/a	1	2		
For Sub-Frame 5		n/a	n/a	n/a		
For Sub-Frame 0		1	1	n/a		
Binary Channel Bits Per Sub-Frame						
For Sub-Frames 4,9	Bits	1248	12800	25600		
For Sub-Frames 1,6		n/a	10256	20512		
For Sub-Frame 5	Bits	n/a	n/a	n/a		
For Sub-Frame 0	Bits	624	12176	n/a		
Max. Throughput averaged over 1 frame	Mbps	0.102	1.966	4.498		
UE Category		≥ 1	≥ 1	≥ 2		

- Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.
- Note 2: For BW=1.4 MHz, the information bit payloads of special subframes are set to zero (no scheduling) to avoid problems with insufficient PDCCH performance at the test point.
- Note 3: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]
- Note 4: As per Table 4.2-2 in TS 36.211 [4]
- Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.3.4.3 [RMC for UE-Specific Reference Symbols]

Table A.3.4.3-1: Fixed Reference Channel for UE-specific reference symbols

Parameter	Unit		Value				
Reference channel		R.25 TDD	R.26 TDD	R.27 TDD	R.28 TDD		
Channel bandwidth	MHz	10	10	10	10		
Allocated resource blocks		50 ⁴	50 ⁴	50 ⁴	1		
Uplink-Downlink Configuration (Note 3)		1	1	1	1		
Allocated subframes per Radio Frame (D+S)		4+2	4+2	4+2	4+2		
Modulation		QPSK	16QAM	64QAM	16QAM		
Target Coding Rate		1/3	1/2	3/4	1/2		
Information Bit Payload							
For Sub-Frames 4,9	Bits	4392	12960	28336	224		
For Sub-Frames 1,6	Bits	3240	9528	22920	176		
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a		
For Sub-Frame 0	Bits	2984	9528	22152	224		
Number of Code Blocks per Sub-Frame (Note 5)							
For Sub-Frames 4,9		1	3	5	1		
For Sub-Frames 1,6		1	2	4	1		
For Sub-Frame 5		n/a	n/a	n/a	n/a		
For Sub-Frame 0		1	2	4	1		
Binary Channel Bits Per Sub-Frame							
For Sub-Frames 4,9	Bits	12600	25200	37800	504		
For Sub-Frames 1,6	Bits	10356	20712	31068	420		
For Sub-Frame 5	Bits	n/a	n/a	n/a	n/a		
For Sub-Frame 0	Bits	10332	20664	30996	504		
Max. Throughput averaged over 1 frame	Mbps	1.825	5.450	12.466	0.102		
UE Category		≥ 1	≥ 2	≥ 2	≥ 1		

Note 1: 2 symbols allocated to PDCCH for 20 MHz, 15 MHz and 10 MHz channel BW; 3 symbols allocated to PDCCH for 5 MHz and 3 MHz; 4 symbols allocated to PDCCH for 1.4 MHz. For subframe 1&6, only 2 OFDM symbols are allocated to PDCCH.

Note 2: Reference signal, synchronization signals and PBCH allocated as per TS 36.211 [4]

Note 3: as per Table 4.2-2 in TS 36.211 [4]

Note 4: For R.25, R.26 and R.27, 50 resource blocks are allocated in sub-frames 1–9 and 41 resource blocks (RB0–RB20 and RB30–RB49) are allocated in sub-frame 0.

Note 5: If more than one Code Block is present, an additional CRC sequence of L = 24 Bits is attached to each Code Block (otherwise L = 0 Bit)

A.3.5 Reference measurement channels for PDCCH/PCFICH performance requirements

A.3.5.1 FDD

Table A.3.5.1-1: Reference Channel FDD

Parameter	Unit		Value	
Reference channel		R.15 FDD	R.16 FDD	R.17 FDD
Number of transmitter antennas		1	2	4
Channel bandwidth	MHz	10	1.4	10
Number of OFDM symbols for PDCCH	symbols	2	2	2
Aggregation level	CCE	8	2	4
DCI Format		Format 1	Format 2	Format 2
Cell ID		0	0	0
Payload (without CRC)	Bits	31	31	46
_				

A.3.5.2 TDD

Table A.3.5.2-1: Reference Channel TDD

Parameter	Unit	Value					
Reference channel		R.15 TDD	R.16 TDD	R.17 TDD			
Number of transmitter antennas		1	2	4			
Channel bandwidth	MHz	10	1.4	10			
Number of OFDM symbols for PDCCH	symbols	2	2	2			
Aggregation level	CCE	8	2	4			
DCI Format		Format 1	Format 2	Format 2			
Cell ID		0	0	0			
Payload (without CRC)	Bits	34	34	49			

A.3.6 Reference measurement channels for PHICH performance requirements

Table A.3.6-1: Reference Channel FDD/TDD

Parameter	Unit	Value							
Reference channel		R.18	R.19	R.20	R.24				
Number of transmitter antennas		1	2	4	1				
Channel bandwidth	MHz	10	1.4	10	10				
User roles (Note 1)		[W I1 I2]	[W I1 I2]	[W I1 I2]	[W I1]				
Resource allocation (Note 2)		[(0,0) (0,1) (0,4)]	[(0,0) (0,1) (0,4)]	[(0,0) (0,1) (0,4)]	[(0,0) (0,1)]				
Power offsets (Note 3)	dB	[-4 0 -3]	[-4 0 -3]	[-4 0 -3]	[+3 0]				
Payload (Note 4)		[A R R]	[A R R]	[A R R]	[A R]				

Note 1: W=wanted user, I1=interfering user 1, I2=interfering user 2.

Note 2: The resource allocation per user is given as (N_group_PHICH, N_seq_PHICH).

Note 3: The power offsets (per user) represent the difference of the power of BPSK modulated symbol per PHICH relative to the first interfering user.

Note 4: A=fixed ACK, R=random ACK/NACK.

A.3.7 Reference measurement channels for PBCH performance requirements

Table A.3.7-1: Reference Channel FDD/TDD

Parameter	Unit	Value					
Reference channel		R.21	R.22	R.23			
Number of transmitter antennas		1	2	4			
Channel bandwidth	MHz	1.4	1.4	1.4			
Modulation		QPSK	QPSK	QPSK			
Target coding rate		40/1920	40/1920	40/1920			
Payload (without CRC)	Bits	24	24	24			

A.4 CSI reference measurement channels

This section defines the DL signal applicable to the reporting of channel quality information (Clause 9.2, 9.3 and 9.5).

In Table A.4-0 are listed the UL/DL reference measurement channels specified in annex A.4 of this release of TS 36.101. This table is informative and serves only to a better overview. The reference for the concrete reference measurement channels and corresponding implementation's parameters as to be used for requirements are the other tables of this annex as appropriate.

Table A.4-0: Overview of CSI reference measurement channels

Duple x	Table	Name	B W	Mod	TCR	RB	RB Off set	UE Cat eg	Notes
CSI Per	formance, PDSCH,	Full allocatio	n						
FDD	Table A.4-1		10	CQI	CQI	50			
TDD	Table A.4-2		10	CQI	CQI	50			
CSI Per	formance, PDSCH,	Partial alloca	tion (6 RB-s)					
FDD	Table A.4-4		10	CQI	CQI	6			
TDD	Table A.4-5		10	CQI	CQI	6			

The reference channel in Table A.4-1 complies with the CQI definition specified in Sec. 7.2.3 of [6]. Table A.4-3 specifies the transport format corresponding to each CQI for single antenna transmission. Table A.4-3a specifies the transport format corresponding to each CQI for dual antenna transmission.

Table A.4-1: Reference channel for CQI requirements (FDD) full PRB allocation

Parameter	Unit	Value						
Channel bandwidth	MHz	1.4	3	5	10)	15	20
Allocated resource blocks		6	15	25	50)	75	100
Subcarriers per resource block		12	12	12	12		12	12
Allocated subframes per Radio Frame		8	8	8	8		8	8
Modulation					Table A.4-3	Table A.4- 3a		
Target coding rate					Table A.4-3	Table A.4- 3a		
Number of HARQ Processes	Processes	8	8	8	8		8	8
Maximum number of HARQ transmissions		1	1	1	1		1	1

Note 1: 3 symbols allocated to PDCCH

Note 2: Only subframes 1,2,3,4,6,7,8, and 9 are allocated to avoid PBCH and synchronization signal overhead

Table A.4-2: Reference channel for CQI requirements (TDD) full PRB allocation

Parameter	Unit	Value					
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	15	25	50	75	100
Subcarriers per resource block		12	12	12	12	12	12
Allocated subframes per Radio Frame		4	4	4	4	4	4
Modulation					Table Table A.4-3 A.4- 3a		
Target coding rate					Table Table A.4-3 A.4- 3a		
Number of HARQ Processes	Processes	10	10	10	10	10	10
Maximum number of HARQ transmissions		1	1	1	1	1	1

Note 1: 3 symbols allocated to PDCCH

Note 2: UL-DL configuration 2 is used and only subframes 3, 4, 8, and 9 are allocated to avoid PBCH and

synchronization signal overhead

Table A.4-3: Transport format corresponding to each CQI index for 50 PRB allocation single antenna transmission

0 out of range 1 QPSK 2 QPSK 3 QPSK 4 QPSK 5 QPSK 6 QPSK 7 16QAM			1,2,3,4,6,7,8,9)	Per Sub- Frame (Subframes 1,2,3,4,6,7,8,9)	
2 QPSK 3 QPSK 4 QPSK 5 QPSK 6 QPSK	out of range	DTX	-	-	-
3 QPSK 4 QPSK 5 QPSK 6 QPSK	0.0762	0	1384	12600	0.1117
4 QPSK 5 QPSK 6 QPSK	0.1172	0	1384	12600	0.1117
5 QPSK 6 QPSK	0.1885	2	2216	12600	0.1778
6 QPSK	0.3008	4	3624	12600	0.2895
	0.4385	6	5160	12600	0.4114
7 16OAM	0.5879	8	6968	12600	0.5549
7 10Q/11VI	0.3691	11	8760	25200	0.3486
8 16QAM	0.4785	13	11448	25200	0.4552
9 16QAM	0.6016	16	15264	25200	0.6067
10 64QAM	0.4551	18	16416	37800	0.4349
11 64QAM	0.5537	21	21384	37800	0.5663
12 64QAM	0.6504	23	25456	37800	0.6741
13 64QAM	0.7539	25	28336	37800	0.7503
14 64QAM	0.8525	27	31704	37800	0.8394
15 64QAM Note1: Sub-frame#0 and #5 are	0.9258	27	31704	37800	0.8394

Table A.4-3a: Transport format corresponding to each CQI index for 50 PRB allocation dual antenna transmission

CQI index	Modulation	Target code rate	Imcs	Information Bit Payload (Subframes 1,2,3,4,6,7,8,9)	Binary Channel Bits Per Sub- Frame (Subframes 1,2,3,4,6,7,8,9)	Actual Code rate
0	out of range	out of range	DTX	-	-	-
1	QPSK	0.0762	0	1384	12000	0.1173
2	QPSK	0.1172	0	1384	12000	0.1173
3	QPSK	0.1885	2	2216	12000	0.1867
4	QPSK	0.3008	4	3624	12000	0.3040
5	QPSK	0.4385	6	5160	12000	0.4320
6	QPSK	0.5879	8	6968	12000	0.5827
7	16QAM	0.3691	11	8760	24000	0.3660
8	16QAM	0.4785	13	11448	24000	0.4780
9	16QAM	0.6016	15	14112	24000	0.5890
10	64QAM	0.4551	18	16416	36000	0.4567
11	64QAM	0.5537	20	19848	36000	0.5520
12	64QAM	0.6504	22	22920	36000	0.6373
13	64QAM	0.7539	24	27376	36000	0.7611
14	64QAM	0.8525	26	30576	36000	0.8500
15	64QAM	0.9258	27	31704	36000	0.8813

Note1: Sub-frame#0 and #5 are not used for the corresponding requirement. The next subframe (i.e. subframe#1 or #6) shall be used for the retransmission.

Table A.4-4: Reference channel for CQI requirements (FDD) 6 PRB allocation

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	6	6	6	6	6
Subcarriers per resource block		12	12	12	12	12	12
Allocated subframes per Radio Frame		8	8	8	8	8	8
Modulation					Table		
					A.4-6		
Target coding rate					Table		
					A.4-6		
Number of HARQ Processes	Processes	8	8	8	8	8	8
Maximum number of HARQ transmissions		1	1	1	1	1	1

Note 1: 3 symbols allocated to PDCCH

Note 2: Only subframes 1,2,3,4,6,7,8, and 9 are allocated to avoid PBCH and synchronization signal overhead

Table A.4-5: Reference channel for CQI requirements (TDD) 6 PRB allocation

Parameter	Unit			Va	lue		
Channel bandwidth	MHz	1.4	3	5	10	15	20
Allocated resource blocks		6	6	6	6	6	6
Subcarriers per resource block		12	12	12	12	12	12
Allocated subframes per Radio Frame		4	4	4	4	4	4
Modulation					Table		
					A.4-6		
Target coding rate					Table		
					A.4-6		
Number of HARQ Processes	Processes	10	10	10	10	10	10
Maximum number of HARQ transmissions		1	1	1	1	1	1

Note 1: 3 symbols allocated to PDCCH

Note 2: UL-DL configuration 2 is used and only subframes 3, 4, 8, and 9 are allocated to avoid PBCH and

synchronization signal overhead

Table A.4-6: Transport format corresponding to each CQI index for 6 PRB allocation

CQI index	Modulation	Target code rate	Imcs	Information Bit Payload (Subframes 1,2,3,4,6,7,8,9)	Binary Channel Bits Per Sub- Frame (Subframes 1,2,3,4,6,7,8,9)	Actual Code rate
0	out of range	out of range	DTX	-	-	-
1	QPSK	0.0762	0	152	1512	0.1005
2	QPSK	0.1172	0	152	1512	0.1005
3	QPSK	0.1885	2	256	1512	0.1693
4	QPSK	0.3008	4	408	1512	0.2698
5	QPSK	0.4385	6	600	1512	0.3968
6	QPSK	0.5879	8	808	1512	0.5344
7	16QAM	0.3691	11	1032	3024	0.3413
8	16QAM	0.4785	13	1352	3024	0.4471
9	16QAM	0.6016	16	1800	3024	0.5952
10	64QAM	0.4551	19	2152	4536	0.4744
11	64QAM	0.5537	21	2600	4536	0.5732
12	64QAM	0.6504	23	2984	4536	0.6578
13	64QAM	0.7539	25	3496	4536	0.7707
14	64QAM	0.8525	27	3752	4536	0.8272
15	64QAM	0.9258	27	3752	4536	0.8272
Note1: Sub-fi	rame#0 and #5 a	are not used for the co	orresponding i	equirement.		

A.5 OFDMA Channel Noise Generator (OCNG)

A.5.1 OCNG Patterns for FDD

The following OCNG patterns are used for modelling allocations to virtual UEs (which are not under test). The OCNG pattern for each sub frame specifies the allocations that shall be filled with OCNG, and furthermore, the relative power level of each such allocation.

In each test case the OCNG is expressed by parameters OCNG_RA and OCNG_RB which together with a relative power level (γ) specifies the PDSCH EPRE-to-RS EPRE ratios in OFDM symbols with and without reference symbols, respectively. The relative power, which is used for modelling boosting per virtual UE allocation, is expressed by:

$$\gamma_i = PDSCH_i _RA/OCNG_RA = PDSCH_i _RB/OCNG_RB$$
,

where γ_i denotes the relative power level of the *i:th* virtual UE. The parameter settings of OCNG_RA, OCNG_RB, and the set of relative power levels γ are chosen such that when also taking allocations to the UE under test into account, as given by a PDSCH reference channel, a transmitted power spectral density that is constant on an OFDM symbol basis is targeted.

Moreover the OCNG pattern is accompanied by a PCFICH/PDCCH/PHICH reference channel which specifies the control region. For any aggregation and PHICH allocation, the PDCCH and any unused PHICH groups are padded with resource element groups with a power level given respectively by PDCCH_RA/RB and PHICH_RA/RB as specified in the test case such that a total power spectral density in the control region that is constant on an OFDM symbol basis is targeted.

A.5.1.1 OCNG FDD pattern 1: One sided dynamic OCNG FDD pattern

Relative nower level 1/

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is continuous in frequency domain (one sided).

Table A.5.1.1-1: OP.1 FDD: One sided dynamic OCNG FDD Pattern

[4B]

	r	Relative power level $\gamma_{\it PRB}$ [or	9]		
		Subframe			
	0	5	1 – 4, 6 – 9	PDSCH	
		Allocation		Data	
First (unallocated PRB	First unallocated PRB	First unallocated PRB		
Last u	unallocated PRB	Last unallocated PRB	Last unallocated PRB		
	0	0	0	Note 1	
Note 1:			n arbitrary number of virtual UE the OCNG PDSCHs shall be ur		
	pseudo random da	ta, which is QPSK modulated.	The parameter $\gamma_{\it PRB}$ is used to	scale the	
Note 2:	power of PDSCH.				
	transmission mode	2. The parameter $\gamma_{\it PRB}$ applie	s to each antenna port separat	ely, so the	
		equal between all the transmit a ion modes are specified in sect	intennas with CRS used in the tion 7.1 in 3GPP TS 36.213.	est. The	

A.5.1.2 OCNG FDD pattern 2: Two sided dynamic OCNG FDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the DL sub-frames, when the unallocated area is discontinuous in frequency domain (divided in two parts by the allocated area – two sided), starts with PRB 0 and ends with PRB $N_{\rm RB}$ –1.

Table A.5.1.2-1: OP.2 FDD: Two sided dynamic OCNG FDD Pattern

	R	elative power level $\gamma_{\scriptscriptstyle PRB}$ [dE	3]		
		Subframe			
	0 5		1 – 4, 6 – 9	PDSCH	
		Allocation		Data	
,	t allocated PRB-1) and	0 – (First allocated PRB-1) and	0 – (First allocated PRB-1) and		
`	located PRB+1) –	(Last allocated PRB+1) –	(Last allocated PRB+1) –		
	$(N_{RB}-1)$	$(N_{RB}-1)$	$(N_{RB}-1)$		
	0	0	0	Note 1	
Note 1:			n arbitrary number of virtual UE the OCNG PDSCHs shall be un		
	pseudo random da	ta, which is QPSK modulated.	The parameter $\gamma_{\it PRB}$ is used to	scale the	
Note 2:	power of PDSCH.				
	transmission mode	2. The parameter $\gamma_{\it PRB}$ applie	s to each antenna port separate	ely, so the	
		qual between all the transmit a on modes are specified in sect	ntennas with CRS used in the tion 7.1 in 3GPP TS 36.213.	est. The	

A.5.1.3 OCNG FDD pattern 3: 49 RB OCNG allocation with MBSFN in 10 MHz

Table A.5.1.3-1: OP.3 FDD: OCNG FDD Pattern 3

Allocation $n_{\it PRB}$	Re	lative power l Subfr	evel $\gamma_{{\scriptscriptstyle PRB}}$ [d	В]	PDSCH Data	PMCH Data
	0	5	4, 9	1 – 3, 6 – 8		

1 – 49	0	0 (Allocation: all empty PRB-s)	0	N/A	Note 1	N/A
0 – 49	N/A	N/A	N/A	0	N/A	Note 2

- Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.
- Note 2: Each physical resource block (PRB) is assigned to MBSFN transmission. The data in each PRB shall be uncorrelated with data in other PRBs over the period of any measurement. The MBSFN data shall be QPSK modulated. PMCH subframes shall contain cell-specific Reference Signals only in the first symbol of the first time slot. The parameter γ_{PRB} is used to scale the power of PMCH.
- Note 3: If two or more transmit antennas are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode 2. The transmit power shall be equally split between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

N/A: Not Applicable

A.5.2 OCNG Patterns for TDD

The following OCNG patterns are used for modelling allocations to virtual UEs (which are not under test). The OCNG pattern for each sub frame specifies the allocations that shall be filled with OCNG, and furthermore, the relative power level of each such allocation.

In each test case the OCNG is expressed by parameters OCNG_RA and OCNG_RB which together with a relative power level (γ) specifies the PDSCH EPRE-to-RS EPRE ratios in OFDM symbols with and without reference symbols, respectively. The relative power, which is used for modelling boosting per virtual UE allocation, is expressed by:

$$\gamma_i = PDSCH_i RA/OCNG RA = PDSCH_i RB/OCNG RB,$$

where γ_i denotes the relative power level of the *i:th* virtual UE. The parameter settings of OCNG_RA, OCNG_RB, and the set of relative power levels γ are chosen such that when also taking allocations to the UE under test into account, as given by a PDSCH reference channel, a transmitted power spectral density that is constant on an OFDM symbol basis is targeted.

Moreover the OCNG pattern is accompanied by a PCFICH/PDCCH/PHICH reference channel which specifies the control region. For any aggregation and PHICH allocation, the PDCCH and any unused PHICH groups are padded with resource element groups with a power level given respectively by PDCCH_RA/RB and PHICH_RA/RB as specified in the test case such that a total power spectral density in the control region that is constant on an OFDM symbol basis is targeted.

A.5.2.1 OCNG TDD pattern 1: One sided dynamic OCNG TDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the subframes available for DL transmission (depending on TDD UL/DL configuration), when the unallocated area is continuous in frequency domain (one sided).

Table A.5.2.1-1: OP.1 TDD: One sided dynamic OCNG TDD Pattern

157

	Relative power	level $\gamma_{\it PRB}$ [dB]			
	Subframe (only if	f available for DL)			
0	5	3, 4, 7, 8, 9 and 6 (as normal subframe) Note 2	1 and 6 (as special subframe) ^{Note 2}	PDSCH Data	
	Alloc	ation		Data	
First unallocated PRB	First unallocated PRB	First unallocated PRB	First unallocated PRB		
Last unallocated PRB	Last unallocated PRB	Last unallocated PRB	Last unallocated PRB		
0	0	0	0	Note 1	
Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random					
data, which	is QPSK modulated. The	parameter γ_{npp} is used to	o scale the power of PDS	SCH.	

- QP3K modulated. The parameter γ_{PRB} is used to scale the power of PD3Ch.
- Note 2: Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in 3GPP TS 36.211
- If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the Note 3: virtual users by all the transmit antennas with CRS according to transmission mode 2. The parameter $\gamma_{\it PRB}$ applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

A.5.2.2 OCNG TDD pattern 2: Two sided dynamic OCNG TDD pattern

This OCNG Pattern fills with OCNG all empty PRB-s (PRB-s with no allocation of data or system information) of the subframes available for DL transmission (depending on TDD UL/DL configuration), when the unallocated area is discontinuous in frequency domain (divided in two parts by the allocated area - two sided), starts with PRB 0 and ends with PRB $N_{RB} - 1$.

Table A.5.2.2-1: OP.2 TDD: Two sided dynamic OCNG TDD Pattern

	Relative power level γ_{PRB} [dB]						
Subframe (only if available for DL)							
0	5	3, 4, 6, 7, 8, 9 (6 as normal subframe) Note 2	1,6 (6 as special subframe) ^{Note 2}				
	Alloc	ation		PDSCH Data			
0 –	0 –	0 –	0 –	1 Doon Data			
(First allocated PRB-	(First allocated PRB-	(First allocated PRB-	(First allocated PRB-				
1)	1)	1)	1)				
and	and	and	and				
(Last allocated	(Last allocated	(Last allocated	(Last allocated				
PRB+1) – $(N_{RB} - 1)$	PRB+1) – $(N_{RB} - 1)$	PRB+1) – $(N_{RB} - 1)$	PRB+1) – $(N_{RB} - 1)$				
[0]	[0]	[0]	[0]	Note 1			

- Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter $\gamma_{\it PRB}$ is used to scale the power of PDSCH.
- Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 Note 2: in 3GPP TS 36.211
- If two or more transmit antennas with CRS are used in the test, the OCNG shall be transmitted to the Note 3: virtual users by all the transmit antennas with CRS according to transmission mode 2. The parameter $\gamma_{\it PRB}$ applies to each antenna port separately, so the transmit power is equal between all the transmit antennas with CRS used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

A.5.2.3 OCNG TDD pattern 3: 49 RB OCNG allocation with MBSFN in 10 MHz

Table A.5.2. 3-1: OP.3 TDD: OCNG TDD Pattern 3 for 5ms downlink-to-uplink switch-point periodicity

All		Relative power level $\gamma_{\it PRB}$ [dB]				
Allocation n_{PRB}	Subframe					PMCH Data
	0	5	4, 9 ^{Note 2}	1, 6		
1 – 49	0	0 (Allocation: all empty PRB-s)	N/A	0	Note 1	N/A
0 – 49	N/A	N/A	0	N/A	N/A	Note 3

- Note 1: These physical resource blocks are assigned to an arbitrary number of virtual UEs with one PDSCH per virtual UE; the data transmitted over the OCNG PDSCHs shall be uncorrelated pseudo random data, which is QPSK modulated. The parameter γ_{PRB} is used to scale the power of PDSCH.
- Note 2: Subframes available for DL transmission depends on the Uplink-Downlink configuration in Table 4.2-2 in 3GPP TS 36.211.
- Note 3: Each physical resource block (PRB) is assigned to MBSFN transmission. The data in each PRB shall be uncorrelated with data in other PRBs over the period of any measurement. The MBSFN data shall be QPSK modulated. PMCH symbols shall not contain cell-specific Reference Signals
- Note 4: If two or more transmit antennas are used in the test, the OCNG shall be transmitted to the virtual users by all the transmit antennas according to transmission mode 2. The transmit power shall be equally split between all the transmit antennas used in the test. The antenna transmission modes are specified in section 7.1 in 3GPP TS 36.213.

N/A: Not Applicable

Annex B (normative): Propagation conditions

B.1 Static propagation condition

For 2 port transmission the channel matrix is defined in the frequency domain by

$$\mathbf{H} = \begin{pmatrix} 1 & j \\ 1 & -j \end{pmatrix}.$$

B.2 Multi-path fading propagation conditions

The multipath propagation conditions consist of several parts:

- A delay profile in the form of a "tapped delay-line", characterized by a number of taps at fixed positions on a sampling grid. The profile can be further characterized by the r.m.s. delay spread and the maximum delay spanned by the taps.
- A combination of channel model parameters that include the Delay profile and the Doppler spectrum, that is characterized by a classical spectrum shape and a maximum Doppler frequency
- A set of correlation matrices defining the correlation between the UE and eNodeB antennas in case of multi-antenna systems.
- Additional multi-path models used for CQI (Channel Quality Indication) tests

B.2.1 Delay profiles

The delay profiles are selected to be representative of low, medium and high delay spread environments. The resulting model parameters are defined in Table B.2.1-1 and the tapped delay line models are defined in Tables B.2.1-2, B.2.1-3 and B.2.1-4.

Table B.2.1-1 Delay profiles for E-UTRA channel models

Model	Number of channel taps	Delay spread (r.m.s.)	Maximum excess tap delay (span)
Extended Pedestrian A (EPA)	7	45 ns	410 ns
Extended Vehicular A model (EVA)	9	357 ns	2510 ns
Extended Typical Urban model (ETU)	9	991 ns	5000 ns

Table B.2.1-2 Extended Pedestrian A model (EPA)

Excess tap delay [ns]	Relative power [dB]
0	0.0
30	-1.0
70	-2.0
90	-3.0
110	-8.0
190	-17.2
410	-20.8

Table B.2.1-3 Extended Vehicular A model (EVA)

Excess tap delay [ns]	Relative power [dB]
0	0.0
30	-1.5
150	-1.4
310	-3.6
370	-0.6
710	-9.1
1090	-7.0
1730	-12.0
2510	-16.9

Table B.2.1-4 Extended Typical Urban model (ETU)

Excess tap delay [ns]	Relative power [dB]
0	-1.0
50	-1.0
120	-1.0
200	0.0
230	0.0
500	0.0
1600	-3.0
2300	-5.0
5000	-7.0

B.2.2 Combinations of channel model parameters

Table B.2.2-1 shows propagation conditions that are used for the performance measurements in multi-path fading environment for low, medium and high Doppler frequencies

Table B.2.2-1 Channel model parameters

Model	Maximum Doppler frequency
EPA 5Hz	5 Hz
EVA 5Hz	5 Hz
EVA 70Hz	70 Hz
ETU 70Hz	70 Hz
ETU 300Hz	300 Hz

B.2.3 MIMO Channel Correlation Matrices

B.2.3.1 Definition of MIMO Correlation Matrices

Table B.2.3.1-1 defines the correlation matrix for the eNodeB

Table B.2.3.1-1 eNodeB correlation matrix

	One antenna	Two antennas	Four antennas
eNode B Correlation	$R_{eNB} = 1$	$R_{eNB} = \begin{pmatrix} 1 & \alpha \\ \alpha^* & 1 \end{pmatrix}$	$R_{eNB} = \begin{pmatrix} 1 & \alpha^{1/9} & \alpha^{4/9} & \alpha \\ \alpha^{1/9} & 1 & \alpha^{1/9} & \alpha^{4/9} \\ \alpha^{4/9} & 1 & \alpha^{1/9} & \alpha^{1/9} \\ \alpha^{4/9} & \alpha^{1/9} & 1 & \alpha^{1/9} \\ \alpha^* & \alpha^{4/9} & \alpha^{1/9} & 1 \end{pmatrix}$

Table B.2.3.1-2 defines the correlation matrix for the UE:

Table B.2.3.1-2 UE correlation matrix

	One antenna	Two antennas	Four antennas
UE Correlation	$R_{UE} = 1$	$R_{UE} = \begin{pmatrix} 1 & \beta \\ \beta^* & 1 \end{pmatrix}$	$R_{UE} = \begin{pmatrix} 1 & \beta^{1/9} & \beta^{4/9} & \beta \\ \beta^{1/9} & 1 & \beta^{1/9} & \beta^{4/9} \\ \beta^{4/9} & \beta^{1/9} & 1 & \beta^{1/9} \\ \beta^* & \beta^{4/9} & \beta^{1/9} & 1 \end{pmatrix}$

Table B.2.3.1-3 defines the channel spatial correlation matrix R_{spat} . The parameters, α and β in Table B.2.3.1-3 defines the spatial correlation between the antennas at the eNodeB and UE.

Table B.2.3.1-3: R_{spat} correlation matrices

1x2 case	$R_{spat} = R_{UE} = \begin{bmatrix} 1 & \beta \\ \beta^* & 1 \end{bmatrix}$
2x2 case	$R_{spat} = R_{eNB} \otimes R_{UE} = \begin{bmatrix} 1 & \alpha \\ \alpha^* & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \beta \end{bmatrix} = \begin{bmatrix} 1 & \beta & \alpha & \alpha\beta \\ \beta^* & 1 & \alpha\beta^* & \alpha \\ \alpha^* & \alpha^*\beta & 1 & \beta \\ \alpha^*\beta^* & \alpha^* & \beta^* & 1 \end{bmatrix}$
4x2 case	$R_{spat} = R_{eNB} \otimes R_{UE} = \begin{bmatrix} 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} & \alpha \\ \alpha^{\frac{1}{9}^*} & 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} \\ \alpha^{\frac{4}{9}^*} & \alpha^{\frac{1}{9}^*} & 1 & \alpha^{\frac{1}{9}} \\ \alpha^* & \alpha^{\frac{4}{9}^*} & \alpha^{\frac{1}{9}^*} & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \beta \\ \beta^* & 1 \end{bmatrix}$
4x4 case	$R_{spat} = R_{eNB} \otimes R_{UE} = \begin{bmatrix} 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} & \alpha \\ \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} & \alpha^{\frac{4}{9}} \\ \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 & \alpha^{\frac{1}{9}} \\ \alpha^{*} & \alpha^{\frac{4}{9}} & \alpha^{\frac{1}{9}} & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} & \beta \\ \beta^{\frac{1}{9}} & 1 & \beta^{\frac{1}{9}} & \beta^{\frac{4}{9}} \\ \beta^{\frac{4}{9}} & \beta^{\frac{1}{9}} & 1 & \beta^{\frac{1}{9}} \\ \beta^{*} & \beta^{\frac{4}{9}} & \beta^{\frac{1}{9}} & 1 \end{bmatrix}$

For cases with more antennas at either eNodeB or UE or both, the channel spatial correlation matrix can still be expressed as the Kronecker product of R_{eNB} and R_{UE} according to $R_{spat} = R_{eNB} \otimes R_{UE}$.

B.2.3.2 MIMO Correlation Matrices at High, Medium and Low Level

The α and β for different correlation types are given in Table B.2.3.2-1.

Table B.2.3.2-1

Low cor	rrelation	Medium C	orrelation	High Co	rrelation
α	β α β		α	β	
0	0	0.3	0.9	0.9	0.9

The correlation matrices for high, medium and low correlation are defined in Table B.2.3.1-2, B.2.3.2-3 and B.2.3.2-4, as below.

The values in Table B.2.3.2-2 have been adjusted for the 4x2 and 4x4 high correlation cases to insure the correlation matrix is positive semi-definite after round-off to 4 digit precision. This is done using the equation:

$$\mathbf{R}_{high} = [\mathbf{R}_{spatial} + aI_n]/(1+a)$$

Where the value "a" is a scaling factor such that the smallest value is used to obtain a positive semi-definite result. For the 4x2 high correlation case, a=0.00010. For the 4x4 high correlation case, a=0.00012.

The same method is used to adjust the 4x4 medium correlation matrix in Table B.2.3.2-3 to insure the correlation matrix is positive semi-definite after round-off to 4 digit precision with a = 0.00012.

Table B.2.3.2-2: MIMO correlation matrices for high correlation

1x2 case	$R_{high} = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix}$										
2x2 case	$R_{high} = \begin{pmatrix} 1 & 0.9 & 0.9 & 0.81 \\ 0.9 & 1 & 0.81 & 0.9 \\ 0.9 & 0.81 & 1 & 0.9 \\ 0.81 & 0.9 & 0.9 & 1 \end{pmatrix}$										
4x2 case	$R_{high} = \begin{bmatrix} 1.0000 & 0.8999 & 0.9883 & 0.8894 & 0.9542 & 0.8587 & 0.8999 & 0.8099 \\ 0.8999 & 1.0000 & 0.8894 & 0.9883 & 0.8587 & 0.9542 & 0.8099 & 0.8999 \\ 0.9883 & 0.8894 & 1.0000 & 0.8999 & 0.9883 & 0.8894 & 0.9542 & 0.8587 \\ 0.8894 & 0.9883 & 0.8999 & 1.0000 & 0.8894 & 0.9883 & 0.8587 & 0.9542 \\ 0.9542 & 0.8587 & 0.9883 & 0.8894 & 1.0000 & 0.8999 & 0.9883 & 0.8894 \\ 0.8587 & 0.9542 & 0.8894 & 0.9883 & 0.8999 & 1.0000 & 0.8894 & 0.9883 \\ 0.8999 & 0.8099 & 0.9542 & 0.8587 & 0.9883 & 0.8894 & 1.0000 & 0.8999 \\ 0.8099 & 0.8999 & 0.8587 & 0.9542 & 0.8894 & 0.9883 & 0.8999 & 1.0000 \end{bmatrix}$										
4x4 case	$R_{high} = \begin{cases} 1.0000 & 0.9882 & 0.9541 & 0.8999 & 0.9882 & 0.9767 & 0.9430 & 0.8894 & 0.9541 & 0.9430 & 0.9105 & 0.8587 & 0.8999 & 0.8894 & 0.8587 & 0.8099 \\ 0.9882 & 1.0000 & 0.9882 & 0.9541 & 0.9767 & 0.9882 & 0.9767 & 0.9430 & 0.9541 & 0.9430 & 0.9105 & 0.8894 & 0.8999 & 0.8894 & 0.8587 \\ 0.9541 & 0.9882 & 1.0000 & 0.9882 & 0.9430 & 0.9767 & 0.9882 & 0.8587 & 0.9105 & 0.9430 & 0.9541 & 0.8999 & 0.8587 & 0.8894 & 0.8999 \\ 0.9882 & 0.9767 & 0.9430 & 0.8894 & 1.0000 & 0.9882 & 0.9541 & 0.8999 & 0.9882 & 0.9767 & 0.9430 & 0.9541 & 0.9430 & 0.9541 & 0.9430 & 0.9105 & 0.8587 \\ 0.9767 & 0.9882 & 0.9767 & 0.9430 & 0.9882 & 1.0000 & 0.9882 & 0.9541 & 0.9767 & 0.9430 & 0.9430 & 0.9541 & 0.9430 & 0.9105 \\ 0.9430 & 0.9767 & 0.9882 & 0.9767 & 0.9541 & 0.9882 & 1.0000 & 0.9882 & 0.9767 & 0.9882 & 0.9767 & 0.9105 & 0.9430 & 0.9541 \\ 0.9541 & 0.9430 & 0.9767 & 0.9882 & 0.8999 & 0.9541 & 0.9882 & 1.0000 & 0.8894 & 0.9430 & 0.9767 & 0.9882 & 0.9767 & 0.9430 & 0.8894 \\ 0.9430 & 0.9541 & 0.9430 & 0.9105 & 0.8587 & 0.9882 & 0.9767 & 0.9430 & 0.8894 & 1.0000 & 0.9882 & 0.9541 & 0.9767 & 0.9882 & 0.9767 & 0.9430 \\ 0.9105 & 0.9430 & 0.9541 & 0.9430 & 0.9541 & 0.9430 & 0.9767 & 0.9882 & 0.9767 & 0.9430 & 0.9882 & 0.9767 & 0.9882 & 0.9767 \\ 0.8587 & 0.9105 & 0.9430 & 0.9541 & 0.9430 & 0.9430 & 0.9767 & 0.9882 & 0.9767 & 0.9430 & 0.8894 & 0.9430 & 0.9767 & 0.9882 & 0.9767 \\ 0.8587 & 0.9105 & 0.9430 & 0.9541 & 0.9430 & 0.9105 & 0.9430 & 0.9767 & 0.9882 & 1.0000 & 0.9882 & 0.9430 & 0.9767 & 0.9882 & 0.9767 \\ 0.8587 & 0.9899 & 0.8894 & 0.8587 & 0.8099 & 0.9541 & 0.9430 & 0.9105 & 0.9430 & 0.9541 & 0.9430 & 0.9541 & 0.9430 & 0.9767 & 0.9882 & 0.9767 & 0.9430 & 0.9882 & 1.0000 & 0.9882 & 0.9767 & 0.9430 & 0.9882 & 0.9767 & 0.9430 & 0.9882 & 0.9767 & 0.9430 & 0.9882 & 0.9767 & 0.9430 & 0.9882 & 0.9767 & 0.9430 & 0.9882 & 0.9767 & 0.9430 & 0.9882 & 0.9767 & 0.9882 & 0.9767 & 0.9430 & 0.9882 & 0.9767 & 0.9430 & 0.9882 & 0.9767 & 0.9882 & 0.9767 & 0.9882 & 0.9767 & 0.9882 & 0.9767 & 0.9882 & 0.9767 & 0.9882 & 0.9767 & 0.9882 & 0.9767 & 0.9882$										

Table B.2.3.2-3: MIMO correlation matrices for medium correlation

2 se	N/A
:2 se	$R_{medium} = \begin{pmatrix} 1 & 0.9 & 0.3 & 0.27 \\ 0.9 & 1 & 0.27 & 0.3 \\ 0.3 & 0.27 & 1 & 0.9 \\ 0.27 & 0.3 & 0.9 & 1 \end{pmatrix}$

			-											
				1.0000	0.9000	0.8748	0.7873	0.5856	0.5271	0.3000	0.2700			
				0.9000	1.0000	0.7873	0.8748	0.5271	0.5856	0.2700	0.3000			
				0.8748	0.7873	1.0000	0.9000	0.8748	0.7873	0.5856	0.5271			
				0.7873	0.8748	0.9000	1.0000	0.7873	0.8748	0.5271	0.5856			
se		$R_{medium} =$	=	0.5856	0.5271	0.8748		1.0000		0.8748	0.7873			
30				0.3630	0.3271	0.6746	0.7873	1.0000	0.9000	0.6746	0.7873			
				0.5271	0.5856	0.7873	0.8748	0.9000	1.0000	0.7873	0.8748			
				0.3000	0.2700	0.5856	0.5271	0.8748	0.7873	1.0000	0.9000			
				0.2700	0.3000	0.5271	0.5856	0.7873	0.8748	0.9000	1.0000			
			(***								
4		1.0000 0.9	9882	0.9541 0.3	8999 0.8747	0.8645 0	.8347 0.7872	0.5855 (0.5787 0.5588	0.5270	0.3000 0.2965	0.2862	0.2700	
se		0.9882 1.0	0000	0.9882 0.9	9541 0.8645	0.8747 0	.8645 0.8347	0.5787	0.5855 0.5787	0.5588	0.2965 0.3000	0.2965	0.2862	
		0.9541 0.9	9882	1.0000 0.9	9882 0.8347	0.8645 0	.8747 0.8645	0.5588	0.5787 0.5855	0.5787	0.2862 0.2965	0.3000	0.2965	
			0.8999 0.9	9541	0.9882 1.0	0000 0.7872	0.8347 0	.8645 0.8747	0.5270	0.5588 0.5787	0.5855 0	0.2700 0.2862	0.2965	0.3000
			0.8747 0.8	3645	0.8347 0.	7872 1.0000	0.9882 0	.9541 0.8999	0.8747	0.8645 0.8347	0.7872	0.5855 0.5787	0.5588	0.5270
		0.8645 0.8	3747	0.8645 0.8	3347 0.9882	1.0000 0	.9882 0.9541	0.8645 (0.8747 0.8645	0.8347	0.5787 0.5855	0.5787	0.5588	
		0.8347 0.8	3645	0.8747 0.3	3645 0.9541	0.9882 1	.0000 0.9882	0.8347	0.8645 0.8747	0.8645	0.5588 0.5787	0.5855	0.5787	
	D _	0.7872 0.8	3347	0.8645 0.8	3747 0.8999	0.9541 0	.9882 1.0000	0.7872	0.8347 0.8645	0.8747	0.5270 0.5588	0.5787	0.5855	
	R_{medium} =	0.5855 0.5	5787	0.5588 0	5270 0.8747	0.8645 0	.8347 0.7872	1.0000 (0.9882 0.9541	0.8999	0.8747 0.8645	0.8347	0.7872	
		0.5787 0.5	5855	0.5787 0.:	5588 0.8645	0.8747 0	.8645 0.8347	0.9882 1	1.0000 0.9882	0.9541	0.8645 0.8747	0.8645	0.8347	
		0.5588 0.5	5787	0.5855 0	5787 0.8347	0.8645 0	.8747 0.8645	0.9541	0.9882 1.0000	0.9882	0.8347 0.8645	0.8747	0.8645	
		0.5270 0.5	5588	0.5787 0.3	5855 0.7872	0.8347 0	.8645 0.8747	0.8999 (0.9541 0.9882	1.0000 0	0.7872 0.8347	0.8645	0.8747	
		0.3000 0.2	2965	0.2862 0.3	2700 0.5855	0.5787 0	.5588 0.5270	0.8747	0.8645 0.8347	0.7872 1	.0000 0.9882	0.9541	0.8999	
		0.2965 0.3	3000	0.2965 0.3	2862 0.5787	0.5855 0	.5787 0.5588	0.8645	0.8747 0.8645	0.8347	0.9882 1.0000	0.9882	0.9541	
		0.2862 0.2	2965	0.3000 0.3	2965 0.5588	0.5787 0	.5855 0.5787	0.8347	0.8645 0.8747	0.8645	0.9541 0.9882	1.0000	0.9882	
		0.2700 0.2	2862	0.2965 0.3	3000 0.5270	0.5588 0	.5787 0.5855	0.7872	0.8347 0.8645	0.8747	0.8999 0.9541	0.9882	1.0000	

Table B.2.3.2-4: MIMO correlation matrices for low correlation

1x2 case	$R_{low} = \mathbf{I}_2$
2x2 case	$R_{low} = \mathbf{I}_4$
4x2 case	$R_{low} = \mathbf{I}_8$
4x4 case	$R_{low} = \mathbf{I}_{16}$

In Table B.2.3.2-4, \mathbf{I}_d is the $d \times d$ identity matrix.

B.2.4 Propagation conditions for CQI tests

 $[For \ Channel \ Quality \ Indication \ (CQI) \ tests, the \ following \ additional \ multi-path \ profile \ is \ used:$

$$h(t,\tau) = \delta(\tau) + a \exp(-i2\pi f_D t) \delta(\tau - \tau_d),$$

in continuous time (t,τ) representation, with τ_d the delay, a a constant and f_D the Doppler frequency.]

B.3 High speed train scenario

The high speed train condition for the test of the baseband performance is a non fading propagation channel with one tap. Doppler shift is given by

$$f_s(t) = f_d \cos \theta(t) \tag{B.3.1}$$

where $f_s(t)$ is the Doppler shift and f_d is the maximum Doppler frequency. The cosine of angle $\theta(t)$ is given by

$$\cos\theta(t) = \frac{D_s/2 - vt}{\sqrt{D_{\min}^2 + (D_s/2 - vt)^2}}, \ 0 \le t \le D_s/v$$
(B.3.2)

$$\cos \theta(t) = \frac{-1.5D_s + vt}{\sqrt{D_{\min}^2 + (-1.5D_s + vt)^2}}, \ D_s/v < t \le 2D_s/v$$
(B.3.3)

$$\cos\theta(t) = \cos\theta(t \mod (2D_s/v)), \ t > 2D_s/v \tag{B.3.4}$$

where $D_s/2$ is the initial distance of the train from eNodeB, and D_{\min} is eNodeB Railway track distance, both in meters; v is the velocity of the train in m/s, t is time in seconds.

Doppler shift and cosine angle are given by equation B.3.1 and B.3.2-B.3.4 respectively, where the required input parameters listed in table B.3-1 and the resulting Doppler shift shown in Figure B.3-1 are applied for all frequency bands.

Table B.3-1: High speed train scenario

Parameter	Value
D_s	300 m
$D_{ m min}$	2 m
ν	300 km/h
f_d	750 Hz

NOTE 1: Parameters for HST conditions in table B.3-1 including f_d and Doppler shift trajectories presented on figure B.3-1 were derived for Band 7.

Figure B.3-1: Doppler shift trajectory

B.4 Beamforming Model

B.4.1 Single-layer beamforming (Antenna port 5)

Transmission on antenna port 5 is defined by using a precoder vector W(i) of size 2×1 randomly selected from Table 6.3.4.2.3-1 in [4] as the beamforming weight. This precoder takes as an input the signal $y^{(p)}(i)$, $i=0,1,...,M_{\text{symb}}^{\text{ap}}-1$, for antenna port p=5, with $M_{\text{symb}}^{\text{ap}}$ the number of modulation symbols including the user-specific reference symbols (DRS), and generates a block of signals $y_{bf}(i) = \begin{bmatrix} y_{bf}(i) & \tilde{y}_{bf}(i) \end{bmatrix}^T$ the elements of which is to be mapped onto the same physical RE but transmitted on different antenna elements:

$$\begin{bmatrix} y_{bf}(i) \\ \widetilde{y}_{bf}(i) \end{bmatrix} = W(i)y^{(5)}(i)$$

Precoder update granularity is according to Table 8.3.2-1.

Annex C (normative): Downlink Physical Channels

C.1 General

This annex specifies the downlink physical channels that are needed for setting a connection and channels that are needed during a connection.

C.2 Set-up

Table C.2-1 describes the downlink Physical Channels that are required for connection set up.

Table C.2-1: Downlink Physical Channels required for connection set-up

Physical Channel
PBCH
SSS
PSS
PCFICH
PDCCH
PHICH
PDSCH

C.3 Connection

The following clauses, describes the downlink Physical Channels that are transmitted during a connection i.e., when measurements are done.

C.3.1 Measurement of Receiver Characteristics

Table C.3.1-1 is applicable for measurements on the Receiver Characteristics (clause 7).

Table C.3.1-1: Downlink Physical Channels transmitted during a connection (FDD and TDD)

Physical Channel	EPRE Ratio	
PBCH	PBCH_RA = 0 dB	
	PBCH_RB = 0 dB	
PSS	PSS_RA = 0 dB	
SSS	$SSS_RA = 0 dB$	
PCFICH	PCFICH_RB = 0 dB	
PDCCH	PDCCH_RA = 0 dB	
	PDCCH_RB = 0 dB	
PDSCH	PDSCH_RA = 0 dB	
	PDSCH_RB = 0 dB	
OCNG	$OCNG_RA = 0 dB$	
	OCNG_RB = 0 dB	

NOTE 1: No boosting is applied.

Table C.3.1-2: Power allocation for OFDM symbols and reference signals

Parameter	Unit	Value	Note
Transmitted power spectral density $I_{\it or}$	dBm/15 kHz	Test specific	1. I_{or} shall be kept constant throughout all OFDM symbols
Cell-specific reference		0 dB	
signal power ratio $E_{\it RS}$ / $I_{\it or}$			

C.3.2 Measurement of Performance requirements

Table C.3.2-1 is applicable for measurements in which uniform RS-to-EPRE boosting for all downlink physical channels.

Table C.3.2-1: Downlink Physical Channels transmitted during a connection (FDD and TDD)

Physical Channel	EPRE Ratio
PBCH	PBCH_RA = ρ_A + σ
	PBCH_RB = ρ_B + σ
PSS	$PSS_RA = 0 dB (Note 2)$
SSS	$SSS_RA = 0 dB (Note 2)$
PCFICH	PCFICH_RB = ρ_B + σ
PDCCH	PDCCH_RA = ρ_A + σ
	PDCCH_RB = ρ_B + σ
PDSCH	PDSCH_RA = ρ_A
	PDSCH_RB = ρ_B
OCNG	OCNG_RA = ρ_A + σ
	OCNG_RB = ρ_B + σ

NOTE 1: $\rho_A = \rho_B = 0$ dB means no RS boosting.

NOTE 2: Assuming PSS and SSS transmitted on a single antenna port.

NOTE 3: $\rho_{\text{A}},\,\rho_{\text{B}}$ and σ are test specific.

Table C.3.2-2: Power allocation for OFDM symbols and reference signals

Parameter	Unit	Value	Note
Total transmitted power spectral density $I_{\it or}$	dBm/15 kHz	Test specific	1. I_{or} shall be kept constant throughout all OFDM symbols
Cell-specific reference signal power ratio $E_{\it RS}$ / $I_{\it or}$		Test specific	1. Applies for antenna port <i>p</i>

Annex D (normative): Characteristics of the interfering signal

D.1 General

When the channel band width is wider or equal to 5MHz, a modulated 5MHz full band width E-UTRA down link signal and CW signal are used as interfering signals when RF performance requirements for E-UTRA UE receiver are defined. For channel band widths below 5MHz, the band width of modulated interferer should be equal to band width of the received signal.

D.2 Interference signals

Table D.2-1 describes the modulated interferer for different channel band width options.

Table D.2-1: Description of modulated E-UTRA interferer

	Channel bandwidth								
	1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz								
BW _{Interferer}	1.4 MHz 3 MHz 5 MHz 5 MHz 5 MHz 5 MHz								
RB	6								

Annex E (normative): Environmental conditions

E.1 General

This normative annex specifies the environmental requirements of the UE. Within these limits the requirements of the present documents shall be fulfilled.

E.2 Environmental

The requirements in this clause apply to all types of UE(s).

E.2.1 Temperature

The UE shall fulfil all the requirements in the full temperature range of:

Table E.2.1-1

+15°C to +35°C	for normal conditions (with relative humidity of 25 % to 75 %)
-10°C to +55°C	for extreme conditions (see IEC publications 68-2-1 and 68-2-2)

Outside this temperature range the UE, if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in clause 6.2 for extreme operation.

E.2.2 Voltage

The UE shall fulfil all the requirements in the full voltage range, i.e. the voltage range between the extreme voltages.

The manufacturer shall declare the lower and higher extreme voltages and the approximate shutdown voltage. For the equipment that can be operated from one or more of the power sources listed below, the lower extreme voltage shall not be higher, and the higher extreme voltage shall not be lower than that specified below.

Table E.2.2-1

Power source	Lower extreme voltage	9	
AC mains	0,9 * nominal	1,1 * nominal	nominal
Regulated lead acid battery	0,9 * nominal	1,3 * nominal	1,1 * nominal
Non regulated batteries:			
Leclanché	0,85 * nominal	Nominal	Nominal
Lithium	0,95 * nominal	1,1 * Nominal	1,1 * Nominal
Mercury/nickel & cadmium	0,90 * nominal		Nominal

Outside this voltage range the UE if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in clause 6.2 for extreme operation. In particular, the UE shall inhibit all RF transmissions when the power supply voltage is below the manufacturer declared shutdown voltage.

E.2.3 Vibration

The UE shall fulfil all the requirements when vibrated at the following frequency/amplitudes.

Table E.2.3-1

Frequency	ASD (Acceleration Spectral Density) random vibration		
5 Hz to 20 Hz	$0.96 \text{ m}^2/\text{s}^3$		
20 Hz to 500 Hz	0,96 m ² /s ³ at 20 Hz, thereafter –3 dB/Octave		

Outside the specified frequency range the UE, if powered on, shall not make ineffective use of the radio frequency spectrum. In no case shall the UE exceed the transmitted levels as defined in TS 36.101 for extreme operation.

Annex F (normative): Transmit modulation

F.1 Measurement Point

Figure F.1-1 shows the measurement point for the unwanted emission falling into non-allocated RB(s) and the EVM for the allocated RB(s).

Figure F.1-1: EVM measurement points

F.2 Basic Error Vector Magnitude measurement

The EVM is the difference between the ideal waveform and the measured waveform for the allocated RB(s)

$$EVM = \sqrt{\frac{\sum_{v \in T_m} |z'(v) - i(v)|^2}{|T_m| \cdot P_0}},$$

where

 T_m is a set of $|T_m|$ modulation symbols with the considered modulation scheme being active within the measurement period,

z'(v) are the samples of the signal evaluated for the EVM,

i(v) is the ideal signal reconstructed by the measurement equipment, and

 P_0 is the average power of the ideal signal. For normalized modulation symbols P_0 is equal to 1.

The basic EVM measurement interval is defined over one slot in the time domain for PUCCH and PUSCH and over one preamble sequence for the PRACH.

F.3 Basic in-band emissions measurement

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks. The in-band emission requirement is evaluated for PUCCH and PUSCH transmissions. The in-band emission requirement is not evaluated for PRACH transmissions.

The in-band emissions are measured as follows

$$Emissions_{absolute}(\Delta_{RB}) = \begin{cases} \frac{1}{|T_{s}|} \sum_{t \in T_{s}} \sum_{\max(f_{\min}, f_{l} + 12 \cdot \Delta_{RB} * \Delta f)}^{f_{l} + (12 \cdot \Delta_{RB} * \Delta f)} |Y(t, f)|^{2}, \Delta_{RB} < 0 \\ \frac{1}{|T_{s}|} \sum_{t \in T_{s}} \sum_{f_{h} + (12 \cdot \Delta_{RB} - 11) * \Delta f}^{\min(f_{\max}, f_{h} + 12 \cdot \Delta_{RB} * \Delta f)} |Y(t, f)|^{2}, \Delta_{RB} > 0 \end{cases}$$

where

 T_s is a set of $|T_s|$ SC-FDMA symbols with the considered modulation scheme being active within the measurement period,

 Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB}=1$ or $\Delta_{RB}=-1$ for the first adjacent RB),

 f_{\min} (resp. f_{\max}) is the lower (resp. upper) edge of the UL system BW,

 f_l and f_h are the lower and upper edge of the allocated BW, and

Y(t, f) is the frequency domain signal evaluated for in-band emissions as defined in the subsection (ii)

The relative in-band emissions are, given by

$$Emissions_{relative}(\Delta_{RB}) = \frac{Emissions_{absolute}(\Delta_{RB})}{\frac{1}{\left|T_{s}\right| \cdot N_{RB}} \sum_{t \in T_{s}}^{f_{l} + (12 \cdot N_{RB} - 1) \Delta f} \left|Y(t, f)\right|^{2}}$$

where

 N_{RR} is the number of allocated RBs

The basic in-band emissions measurement interval is defined over one slot in the time domain. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the in-band emissions measurement interval is reduced by one SC-FDMA symbol, accordingly.

In the evaluation of in-band emissions, the timing is set according to $\Delta \tilde{t} = \Delta \tilde{c}$, where sample time offsets $\Delta \tilde{t}$ and $\Delta \tilde{c}$ are defined in subclause F.4.

F.4 Modified signal under test

Implicit in the definition of EVM is an assumption that the receiver is able to compensate a number of transmitter impairments.

The PUSCH data or PRACH signal under test is modified and, in the case of PUSCH data signal, decoded according to::

$$Z'(t,f) = IDFT \left\{ \frac{FFT \left\{ z(v - \Delta \widetilde{t}) \cdot e^{-j2\pi\Delta \widetilde{f}v} \right\} e^{j2\pi j\Delta \widetilde{t}}}{\widetilde{a}(t,f) \cdot e^{j\widetilde{\varphi}(t,f)}} \right\}$$

where

z(v) is the time domain samples of the signal under test.

The PUCCH or PUSCH demodulation reference signal or PUCCH data signal under test is equalised and, in the case of PUCCH data signal decoded according to:

$$Z'(t,f) = \frac{FFT\left\{z(v - \Delta \tilde{t}) \cdot e^{-j2\pi \Delta \tilde{f}v}\right\} e^{j2\pi f\Delta \tilde{t}}}{\tilde{a}(t,f) \cdot e^{j\tilde{\varphi}(t,f)}}$$

where

z(v) is the time domain samples of the signal under test.

To minimize the error, the signal under test should be modified with respect to a set of parameters following the procedure explained below.

Notation:

 $\Delta \tilde{t}$ is the sample timing difference between the FFT processing window in relation to nominal timing of the ideal signal.

 $\Delta \tilde{f}$ is the RF frequency offset.

 $\widetilde{\varphi}(t,f)$ is the phase response of the TX chain.

 $\tilde{a}(t, f)$ is the amplitude response of the TX chain.

In the following $\Delta \tilde{c}$ represents the middle sample of the EVM window of length W (defined in the next subsections) or the last sample of the first window half if W is even.

The EVM analyser shall

- ightharpoonup detect the start of each slot and estimate $\Delta \widetilde{t}$ and $\Delta \widetilde{f}$,
- \triangleright determine $\Delta \tilde{c}$ so that the EVM window of length W is centred
 - on the time interval determined by the measured cyclic prefix minus 16 samples of the considered OFDM symbol for symbol 0 for normal CP, i.e. the first 16 samples of the CP should not be taken into account for this step. In the determination of the number of excluded samples, a sampling rate of 30.72MHz was assumed. If a different sampling rate is used, the number of excluded samples is scaled linearly.
 - on the measured cyclic prefix of the considered OFDM symbol symbol for symbol 1 to 6 for normal CP and for symbol 0 to 5 for extended CP.
 - on the measured preamble cyclic prefix for the PRACH

To determine the other parameters a sample timing offset equal to $\Delta \widetilde{c}$ is corrected from the signal under test. The EVM analyser shall then

- ightharpoonup correct the RF frequency offset $\Delta \widetilde{f}$ for each time slot, and
- > apply an FFT of appropriate size. The chosen FFT size shall ensure that in the case of an ideal signal under test, there is no measured inter-subcarrier interference.

The IQ origin offset shall be removed from the evaluated signal before calculating the EVM and the in-band emissions; however, the removed relative IQ origin offset power (relative carrier leakage power) also has to satisfy the applicable requirement.

At this stage the allocated RBs shall be separated from the non-allocated RBs. In the case of PUCCH and PUSCH EVM, the signal on the non-allocated RB(s), Y(t, f), is used to evaluate the in-band emissions.

Moreover, the following procedure applies only to the signal on the allocated RB(s).

- In the case of PUCCH and PUSCH, the UL EVM analyzer shall estimate the TX chain equalizer coefficients $\widetilde{a}(t,f)$ and $\widetilde{\varphi}(t,f)$ used by the ZF equalizer for all subcarriers by time averaging at each signal subcarrier of the amplitude and phase of the reference and data symbols. The time-averaging length is 1 slot. This process creates an average amplitude and phase for each signal subcarrier used by the ZF equalizer. The knowledge of data modulation symbols may be required in this step because the determination of symbols by demodulation is not reliable before signal equalization.
- In the case of PRACH, the UL EVM analyzer shall estimate the TX chain coefficients $\widetilde{a}(t)$ and $\widetilde{\varphi}(t)$ used for phase and amplitude correction and are seleted so as to minimize the resulting EVM. The TX chain coefficients are not dependent on frequency, i.e. $\widetilde{a}(t,f)=\widetilde{a}(t)$ and $\widetilde{\varphi}(t,f)=\widetilde{\varphi}(t)$. The TX chain coefficient are chosen independently for each preamble transmission and for each $\Delta \widetilde{t}$.

At this stage estimates of $\Delta \widetilde{f}$, $\widetilde{\alpha}(t,f)$, $\widetilde{\varphi}(t,f)$ and $\Delta \widetilde{c}$ are available. $\Delta \widetilde{t}$ is one of the extremities of the window W, i.e. $\Delta \widetilde{t}$ can be $\Delta \widetilde{c} + \alpha - \left\lfloor \frac{W}{2} \right\rfloor$ or $\Delta \widetilde{c} + \left\lfloor \frac{W}{2} \right\rfloor$, where $\alpha = 0$ if W is odd and $\alpha = 1$ if W is even. The EVM analyser shall then

- ightharpoonup calculate EVM₁ with $\Delta \tilde{t}$ set to $\Delta \tilde{c} + \alpha \left\lfloor \frac{W}{2} \right\rfloor$,
- ightharpoonup calculate EVM_h with $\Delta \tilde{t}$ set to $\Delta \tilde{c} + \left| \frac{W}{2} \right|$.

F.5 Window length

F.5.1 Timing offset

As a result of using a cyclic prefix, there is a range of $\Delta \tilde{t}$, which, at least in the case of perfect Tx signal quality, would give close to minimum error vector magnitude. As a first order approximation, that range should be equal to the length of the cyclic prefix. Any time domain windowing or FIR pulse shaping applied by the transmitter reduces the $\Delta \tilde{t}$ range within which the error vector is close to its minimum.

F.5.2 Window length

The window length W affects the measured EVM, and is expressed as a function of the configured cyclic prefix length. In the case where equalization is present, as with frequency domain EVM computation, the effect of FIR is reduced. This is because the equalization can correct most of the linear distortion introduced by the FIR. However, the time domain windowing effect can't be removed.

F.5.3 Window length for normal CP

The table below specifies the EVM window length at channel bandwidths 1.4, 3, 5, 10, 15, 20 MHz, for normal CP. The nominal window length for 3 MHz is rounded down one sample to allow the window to be centered on the symbol.

Table F.5.3-1 EVM window length for normal CP

Channel Bandwidth MHz	$\begin{array}{c} \textbf{Cyclic prefix} \\ \textbf{length}^1 \\ N_{cp} \textbf{ for} \\ \textbf{symbol 0} \end{array}$	$\begin{array}{c} \textbf{Cyclic prefix}\\ \textbf{length}^1\\ N_{cp} \textbf{ for}\\ \textbf{symbols 1 to 6} \end{array}$	Nominal FFT size	Cyclic prefix for symbols 1 to 6 in FFT samples	EVM window length W in FFT samples	Ratio of W to CP for symbols 1 to 6 ²
1.4			128	9	5	55.6
3			256	18	12	66.7
5	160	144	512	36	32	88.9
10	100	144	1024	72	66	91.7
15			1536	108	102	94.4
20			2048	144	136	94.4

Note 1: The unit is number of samples, sampling rate of 30.72MHz is assumed.

Note 2: These percentages are informative and apply to symbols 1 through 6. Symbol 0 has a longer CP and therefore a lower percentage.

F.5.4 Window length for Extended CP

The table below specifies the EVM window length at channel bandwidths 1.4, 3, 5, 10, 15, 20 MHz, for extended CP. The nominal window lengths for 3 MHz and 15 MHz are rounded down one sample to allow the window to be centered on the symbol.

Table F.5.4-1 EVM window length for extended CP

Channel Bandwidth MHz	$\begin{array}{c} \text{Cyclic} \\ \text{prefix} \\ \text{length}^1 N_{cp} \end{array}$	Nominal FFT size	Cyclic prefix in FFT samples	EVM window length W in FFT samples	Ratio of W to CP ²
1.4		128	32	28	87.5
3		256	64	58	90.6
5	512	512	128	124	96.9
10		1024	256	250	97.4
15		1536	384	374	97.4
20		2048	512	504	98.4

Note 1: The unit is number of samples, sampling rate of 30.72MHz is assumed.

Note 2: These percentages are informative

F.5. 5 Window length for PRACH

The table below specifies the EVM window length for PRACH preamble formats 0-4.

Table F.5.5-1 EVM window length for PRACH

Preamble format	$\begin{array}{c} \textbf{Cyclic} \\ \textbf{prefix} \\ \textbf{length}^1 \ N_{cp} \end{array}$	Nominal FFT size ²	EVM window length W in FFT samples	Ratio of <i>W</i> to CP*
0	3168	24576	3072	96.7%
1	21024	24576	20928	99.5%
2	6240	49152	6144	98.5%
3	21024	49152	20928	99.5%
4	448	4096	432	96.4%

Note 1: The unit is number of samples, sampling rate of 30.72MHz is assumed

Note 2: The use of other FFT sizes is possible as long as appropriate

scaling of the window length is applied Note 3: These percentages are informative

F.6 Averaged EVM

The general EVM is averaged over basic EVM measurements for 20 slots in the time domain.

$$\overline{EVM} = \sqrt{\frac{1}{20} \sum_{i=1}^{20} EVM_i^2}$$

The EVM requirements shall be tested against the maximum of the RMS average at the window W extremities of the EVM measurements:

Thus $\overline{\mathrm{EVM}}_1$ is calculated using $\Delta \widetilde{t} = \Delta \widetilde{t}_l$ in the expressions above and $\overline{\mathrm{EVM}}_h$ is calculated using $\Delta \widetilde{t} = \Delta \widetilde{t}_h$.

Thus we get:

$$EVM = \max(\overline{EVM}_1, \overline{EVM}_h)$$

The calculation of the EVM for the demodulation reference signal, EVM_{DMRS} , follows the same procedure as calculating the general EVM, with the exception that the modulation symbol set T_m defined in clause F.2 is restricted to symbols containing uplink demodulation reference signals.

The basic EVM_{DMRS} measurements are first averaged over 20 slots in the time domain to obtain an intermediate average EVM_{DMRS} .

$$\overline{EVM}_{DMRS} = \sqrt{\frac{1}{20} \sum_{i=1}^{20} EVM_{DMRS,i}^2}$$

In the determination of each $EVM_{DMRS,i}$, the timing is set to $\Delta \tilde{t} = \Delta \tilde{t}_l$ if $\overline{EVM}_l > \overline{EVM}_h$, and it is set to $\Delta \tilde{t} = \Delta \tilde{t}_l$ otherwise, where \overline{EVM}_l and \overline{EVM}_h are the general average EVM values calculated in the same 20 slots over which the intermediate average \overline{EVM}_{DMRS} is calculated. Note that in some cases, the general average EVM may be calculated only for the purpose of timing selection for the demodulation reference signal EVM.

Then the results are further averaged to get the EVM for the demodulation reference signal, EVM_{DMRS} ,

$$EVM_{DMRS} = \sqrt{\frac{1}{6} \sum_{j=1}^{6} \overline{EVM}_{DMRS,j}^{2}}$$

The PRACH EVM, EVM_{PRACH} , is averaged over two preamble sequence measurements for preamble formats 0, 1, 2, 3, and it is averaged over 10 preamble sequence measurements for preamble format 4.

The EVM requirements shall be tested against the maximum of the RMS average at the window *W* extremities of the EVM measurements:

Thus $\overline{\text{EVM}}_{\text{PRACH,1}}$ is calculated using $\Delta \widetilde{t} = \Delta \widetilde{t_l}$ and $\overline{\text{EVM}}_{\text{PRACH,h}}$ is calculated using $\Delta \widetilde{t} = \Delta \widetilde{t_h}$.

Thus we get:

$$EVM_{PRACH} = \max(\overline{EVM}_{PRACH,1}, \overline{EVM}_{PRACH,h})$$

F.7 Spectrum Flatness

The data shall be taken from FFT coded data symbols and the demodulation reference symbols of the allocated resource block.

Annex G (informative): Change history

Table G.1: Change History

Date	TSG#	TSG Doc.	CR	Subject	Old	New
11-2007	R4#45	R4-72206	-	TS36.101V0.1.0 approved by RAN4	-	
12-2007	RP#38	RP-070979		Approved version at TSG RAN #38	1.0.0	8.0.0
03-2008	RP#39	RP-080123	3	TS36.101 - Combined updates of E-UTRA UE requirements	8.0.0	8.1.0
05-2008	RP#40	RP-080325	4	TS36.101 - Combined updates of E-UTRA UE requirements	8.1.0	8.2.0
09-2008	RP#41	RP-080638	5r1	Addition of Ref Sens figures for 1.4MHz and 3MHz Channel bandwiidths	8.2.0	8.3.0
09-2008	RP#41	RP-080638	7r1	Transmitter intermodulation requirements	8.2.0	8.3.0
09-2008	RP#41	RP-080638	10	CR for clarification of additional spurious emission requirement	8.2.0	8.3.0
09-2008	RP#41	RP-080638	15	Correction of In-band Blocking Requirement	8.2.0	8.3.0
09-2008	RP#41	RP-080638	18r1	TS36.101: CR for section 6: NS_06	8.2.0	8.3.0
09-2008	RP#41	RP-080638	19r1	TS36.101: CR for section 6: Tx modulation	8.2.0	8.3.0
09-2008	RP#41	RP-080638	20r1	TS36.101: CR for UE minimum power	8.2.0	8.3.0
09-2008	RP#41	RP-080638	21r1	TS36.101: CR for UE OFF power	8.2.0	8.3.0
09-2008	RP#41	RP-080638	24r1	TS36.101: CR for section 7: Band 13 Rx sensitivity	8.2.0	8.3.0
09-2008	RP#41	RP-080638	26	UE EVM Windowing	8.2.0	8.3.0
09-2008	RP#41	RP-080638	29	Absolute ACLR limit	8.2.0	8.3.0
09-2008	RP#41	RP-080731	23r2	TS36.101: CR for section 6: UE to UE co-existence	8.2.0	8.3.0
09-2008	RP#41	RP-080731	30	Removal of [] for UE Ref Sens figures	8.2.0	8.3.0
09-2008	RP#41	RP-080731	31	Correction of PA, PB definition to align with RAN1 specification	8.2.0	8.3.0
09-2008	RP#41	RP-080731	37r2	UE Spurious emission band UE co-existence	8.2.0	8.3.0
09-2008	RP#41	RP-080731	44	Definition of specified bandwidths	8.2.0	8.3.0
09-2008	RP#41	RP-080731	48r3	Addition of Band 17	8.2.0	8.3.0
09-2008	RP#41	RP-080731	50	Alignment of the UE ACS requirement	8.2.0	8.3.0
09-2008	RP#41	RP-080731	52r1	Frequency range for Band 12	8.2.0	8.3.0
09-2008	RP#41	RP-080731	54r1	Absolute power tolerance for LTE UE power control	8.2.0	8.3.0
09-2008	RP#41	RP-080731	55	TS36.101 section 6: Tx modulation	8.2.0	8.3.0
09-2008	RP#41	RP-080732	6r2	DL FRC definition for UE Receiver tests	8.2.0	8.3.0
09-2008	RP#41	RP-080732	46	Additional UE demodulation test cases	8.2.0	8.3.0
09-2008	RP#41	RP-080732	47	Updated descriptions of FRC	8.2.0	8.3.0
09-2008	RP#41	RP-080732	49	Definition of UE transmission gap	8.2.0	8.3.0
09-2008	RP#41	RP-080732	51	Clarification on High Speed train model in 36.101	8.2.0	8.3.0
09-2008	RP#41	RP-080732	53	Update of symbol and definitions	8.2.0	8.3.0
09-2008	RP#41	RP-080743	56	Addition of MIMO (4x2) and (4x4) Correlation Matrices	8.2.0	8.3.0
12-2008	RP#42	RP-080908	94r2	CR TX RX channel frequency separation	8.3.0	8.4.0
12-2008	RP#42	RP-080909	105r1	UE Maximum output power for Band 13	8.3.0	8.4.0
12-2008	RP#42	RP-080909	60	UL EVM equalizer definition	8.3.0	8.4.0
12-2008	RP#42	RP-080909	63	Correction of UE spurious emissions	8.3.0	8.4.0
12-2008	RP#42	RP-080909	66	Clarification for UE additional spurious emissions	8.3.0	8.4.0
12-2008	RP#42	RP-080909	72	Introducing ACLR requirement for coexistance with UTRA 1.6MHZ channel from 36.803	8.3.0	8.4.0
12-2008	RP#42	RP-080909	75	Removal of [] from Section 6 transmitter characteristcs	8.3.0	8.4.0
12-2008	RP#42	RP-080909	81	Clarification for PHS band protection	8.3.0	8.4.0
12-2008	RP#42	RP-080909	101	Alignement for the measurement interval for transmit signal quality	8.3.0	8.4.0
12-2008	RP#42	RP-080909	98r1	Maximum power	8.3.0	8.4.0
12-2008	RP#42	RP-080909	57r1	CR UE spectrum flatness	8.3.0	8.4.0
12-2008	RP#42	RP-080909	71r1	UE in-band emission	8.3.0	8.4.0
12-2008	RP#42	RP-080909	58r1	CR Number of TX exceptions	8.3.0	8.4.0
12-2008	RP#42	RP-080951	99r2	CR UE output power dynamic	8.3.0	8.4.0
12-2008	RP#42	RP-080951	79r1	LTE UE transmitter intermodulation	8.3.0	8.4.0
12-2008	RP#42	RP-080910	91	Update of Clause 8	8.3.0	8.4.0
12-2008	RP#42	RP-080950	106r1	Structure of Clause 9 including CSI requirements for PUCCH mode 1-0	8.3.0	8.4.0
12-2008	RP#42	RP-080911	59	CR UE ACS test frequency offset	8.3.0	8.4.0
12-2008	RP#42	RP-080911	65	Correction of spurious response parameters	8.3.0	8.4.0
12-2008	RP#42	RP-080911	80	Removal of LTE UE narrowband intermodulation	8.3.0	8.4.0
12-2008	RP#42	RP-080911	90r1	Introduction of Maximum Sensitivity Degradation	8.3.0	8.4.0

12-2008RP#42RP-080911103Removal of [] from Section 7 Receiver characteristic12-2008RP#42RP-08091262Alignement of TB size n Ref Meas channel for RX characteris12-2008RP#42RP-08091278TDD Reference Measurement channel for RX characterisctics	8.3.0 8.4.0 stics 8.3.0 8.4.0
9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	รแบร ซ.ฮ.บ ซ.4.0
12-2000 KP#42 KP-080912 78 IDD Keterence Measurement channel for KX characterisctics	
12-2008 RP#42 RP-080912 73r1 Addition of 64QAM DL reference measurement channel 12-2008 RP#42 RP-080912 74r1 Addition of UL Reference Measurement Channels	8.3.0 8.4.0 8.3.0 8.4.0
Peteronee measurement channels for PDSCH performance	
12-2008 RP#42 RP-080912 104 Reference measurements (TDD)	8.3.0 8.4.0
12-2008 RP#42 RP-080913 68 MIMO Correlation Matrix Corrections	8.3.0 8.4.0
12-2008 RP#42 RP-080915 67 Correction to the figure with the Transmission Bandwidth	8.3.0 8.4.0
configuration	8.3.0 8.4.0
12-2008 RP#42 RP-080916 77 Modification to EARFCN 12-2008 RP#42 RP-080917 85r1 New Clause 5 outline	8.3.0 8.4.0
12-2008 RP#42 RP-080919 102 Introduction of Bands 12 and 17 in 36.101	8.3.0 8.4.0
12-2008 RP#42 RP-080927 84r1 Clarification of HST propagation conditions	8.3.0 8.4.0
03-2009 RP#43 RP-090170 156r2 A-MPR table for NS_07	8.4.0 8.5.0
03-2009 RP#43 RP-090170 170 Corrections of references (References to tables and figures)	8.4.0 8.5.0
03-2009 RP#43 RP-090170 108 Removal of [] from Transmitter Intermodulation	8.4.0 8.5.0
03-2009 RP#43 RP-090170 155 E-UTRA ACLR for below 5 MHz bandwidths	8.4.0 8.5.0
03-2009 RP#43 RP-090170 116 Clarification of PHS band including the future plan	8.4.0 8.5.0
03-2009 RP#43 RP-090170 119 Spectrum emission mask for 1.4 MHz and 3 MHz bandwidhts	8.4.0 8.5.0
03-2009 RP#43 RP-090170 120 Removal of "Out-of-synchronization handling of output power"	
heading	
03-2009 RP#43 RP-090170 126 UE uplink power control	8.4.0 8.5.0
03-2009 RP#43 RP-090170 128 Transmission BW Configuration	8.4.0 8.5.0
03-2009 RP#43 RP-090170 130 Spectrum flatness	8.4.0 8.5.0
03-2009 RP#43 RP-090170 132r2 PUCCH EVM	8.4.0 8.5.0
03-2009 RP#43 RP-090170 134 UL DM-RS EVM	8.4.0 8.5.0
03-2009 RP#43 RP-090170 140 Removal of ACLR2bis requirements	8.4.0 8.5.0
03-2009 RP#43 RP-090171 113 In-band blocking	8.4.0 8.5.0
03-2009 RP#43 RP-090171 127 In-band blocking and sensitivity requirement for band 17 03-2009 RP#43 RP-090171 137r1 Wide band intermodulation	8.4.0 8.5.0
	8.4.0 8.5.0 8.4.0 8.5.0
03-2009 RP#43 RP-090171 141 Correction of reference sensitivity power level of Band 9 03-2009 RP#43 RP-090172 109 AWGN level for UE DL demodulation performance tests	8.4.0 8.5.0
03-2009 RP#43 RP-090172 109 AVVGN level for DE DE demodulation performance tests Update of Clause 8: additional test cases	8.4.0 8.5.0
03-2009 RP#43 RP-090172 139r1 Performance requirement structure for TDD PDSCH	8.4.0 8.5.0
Deformance requirements and reference magazirement chan	anala for
03-2009 RP#43 RP-090172 142r1 Performance requirements and reference measurement characteristic reference symbol	
03-2009 RP#43 RP-090172 145 Number of information bits in DwPTS	8.4.0 8.5.0
160r1	
03-2009 RP#43 RP-090172 160r1 MBSFN-Unicast demodulation test case	8.4.0 8.5.0
03-2009 RP#43 RP-090172 163r1 MBSFN-Unicast demodulation test case for TDD	8.4.0 8.5.0
05-2009 KF#45 KF-090172 IMB5FN-Unicast demodulation test case for TDD	6.4.0 6.5.0
03-2009 RP#43 RP-090173 162 Clarification of EARFCN for 36.101	8.4.0 8.5.0
03 2000 PR#43 PR 000200 110 Correction to III Petersone Measurement Channel	
03-2009 RP#43 RP-090369 Correction to UL Reference Measurement Channel	8.4.0 8.5.0
03-2009 RP#43 RP-090369 114 Addition of MIMO (4x4, medium) Correlation Matrix	8.4.0 8.5.0
124	
03-2009 RP#43 RP-090369 Correction of 36.101 DL RMC table notes	8.4.0 8.5.0
03-2009 RP#43 RP-090369 125 Update of Clause 9	8.4.0 8.5.0
	0.4.0 0.5.0
03-2009 RP#43 RP-090369 138r1 Clarification on OCNG	8.4.0 8.5.0
02 2000 RP#42 RP 200000 161 001 - (0.40
U3-2009 RP#43 RP-090369 CQI reference measurement channels	8.4.0 8.5.0
03-2009 RP#43 RP-090369 164 PUCCH 1-1 Static Test Case	8.4.0 8.5.0
111	
03-2009 RP#43 RP-090369 Reference Measurement Channel for TDD	8.4.0 8.5.0
03-2009 RP#44 Editorial correction in Table 6.2.4-1	8.5.0 8.5.1
Boundary between E-UTRA fOOB and spurious emission don	main for
05-2009 RP#44 RP-090540 167 1.4 MHz and 3 MHz bandwiths. (Technically Endorsed CR in	
50bis - R4-091205)	od CP in
05-2009 RP#44 RP-090540 168 EARFCN correction for TDD DL bands. (Technically Endorsed	ed CR in 8.5.1 8.6.0
30 = 300 100 R4-50his = R4-001206\	
R4-50bis - R4-091206) Editorial correction to in-band blocking table. (Technically End	dorsed 0.54 0.00
05-2009 RP#44 RP-090540 169 R4-50bis - R4-091206)	8.5.1

05-2009 RP#44 RP-090540 172 OR EVIM correction. (Technically Endorsed CR in R4-50bis - R4-50bis			ı	1	004200)		
05-2009 RP#4 RP-086540 179 Corciotion of SRS requirements. (Technically Endorsed CR in R4 6.5.1 8.6.0 05-2009 RP#44 RP-090540 186 Clarification for EVM. (Technically Endorsed CR in R4-50bis - R4 8.5.1 8.6.0 05-2009 RP#44 RP-090540 191 Completion of band17 requirements 8.5.1 8.6.0 05-2009 RP#44 RP-090540 191 Completion of band17 requirements 8.5.1 8.6.0 05-2009 RP#44 RP-090540 192 Removal of 1 flow band 3 flx bandwidths from bands 13, 14 and 8.5.1 8.6.0 05-2009 RP#44 RP-090540 223 CR: 64 CAM EVM 8.5.1 8.6.0 05-2009 RP#44 RP-090540 223 CR VM exclusion period 8.5.1 8.6.0 05-2009 RP#44 RP-090540 223 CR VM exclusion period 8.5.1 8.6.0 05-2009 RP#44 RP-090540 220 CR Minimum Pix exceptions 8.5.1 8.6.0 05-2009 RP#44 RP-090540 20	05-2009	RP#44	RP-090540	172		8.5.1	8.6.0
08-2009 RP#44 RP-090540 179 Correction of SRS requirements. Trachnically Endorsed CR in R4- 8.5.1 8.6.0 08-2009 RP#44 RP-090540 186 Oscilication for EVM. (Technically Endorsed CR in R4-50bis - R4- 8.5.1 8.6.0 08-2009 RP#44 RP-090540 191 Correction of SVIII (Technically Endorsed CR in R4-50bis - R4- 8.5.1 8.6.0 08-2009 RP#44 RP-090540 192 7.7 8.6.0 8.5.1 8.6.0 08-2009 RP#44 RP-090540 192 7.7 8.6.0 8.5.1 8.6.0 08-2009 RP#44 RP-090540 293 CR EVM exclusion period 8.5.1 8.6.0 08-2009 RP#44 RP-090540 293 CR EVM exclusion period 8.5.1 8.6.0 08-2009 RP#44 RP-090540 293 CR EVM exclusion period 8.5.1 8.6.0 08-2009 RP#44 RP-090540 290 CR EVM exclusions period 8.5.1 8.6.0 08-2009 RP#44 RP-090540 290	05-2009	RP#44	RP-090540	177		8.5.1	8.6.0
05-2009 RP#44 RP-090540 186 Ostitication for EVM. (Fechnically Endorsed CR in R4-50bis - R4-) 8.5.1 8.6.0 05-2009 RP#44 RP-090540 187 Removal of [1] from band 17 Refisens values and ACS offset 8.5.1 8.6.0 05-2009 RP#44 RP-090540 192 Removal of 1.1 from band 17 Refisens values and ACS offset 8.5.1 8.6.0 05-2009 RP#44 RP-090540 192 Removal of 1.4 MHz and 3 MHz bandwidths from bands 13, 14 and 8.5.1 8.6.0 05-2009 RP#44 RP-090540 223 CR 6.6 QAM EVM 8.5.1 8.6.0 05-2009 RP#44 RP-090540 203 CK EVM Accidation pended 8.5.1 8.6.0 05-2009 RP#44 RP-090540 203 CK EVM Accidation pended 8.5.1 8.6.0 05-2009 RP#44 RP-090540 203 CK EVM Accidation pended 8.5.1 8.6.0 05-2009 RP#44 RP-090540 2071 CR LL DM-RS EVM 8.5.1 8.6.0 05-2009 RP#44 RP-090540	05-2009	RP#44	RP-090540	179	Correction of SRS requirements. (Technically Endorsed CR in R4-	8.5.1	8.6.0
05-2009 RP#444 RP-090540 187 Removal of [] from band 17 Refisens values and ACS offset 8.5.1 8.6.0 05-2009 RP#444 RP-090540 191 Completion of band17 requirements 8.5.1 8.6.0 05-2009 RP#444 RP-090540 192 RPmoval of 1.4 MHz and 3MHz bandwidths from bands 13, 14 and 8.5.1 8.6.0 05-2009 RP#444 RP-090540 201 CR incoval of 1.4 MHz and 3MHz bandwidths from bands 13, 14 and 8.5.1 8.6.0 05-2009 RP#44 RP-090540 201 CR in-band emissions 8.5.1 8.6.0 05-2009 RP#44 RP-090540 204 CR In-band emissions immig 8.5.1 8.6.0 05-2009 RP#44 RP-090540 207 CR U.DM-RS EVM 8.5.1 8.6.0 05-2009 RP#44 RP-090540 201 CR Minimum Rx exceptions 8.5.1 8.6.0 05-2009 RP#44 RP-090540 2011 CR In-band emissions in shortened subframes 8.5.1 8.6.0 05-2009 RP#44 RP-090540	05-2009	RP#44	RP-090540	186	Clarification for EVM. (Technically Endorsed CR in R4-50bis - R4-	8.5.1	8.6.0
05-2009 RP#444 RP-090540 191 Completion of band17 requirements 8.5.1 8.6.0 05-2009 RP#444 RP-090540 192 17. Removal of 1.4 MHz bandwidths from bands 13, 14 and 8.5.1 8.6.0 05-2009 RP#444 RP-090540 223 CR: 64 OAM EVM 8.5.1 8.6.0 05-2009 RP#444 RP-090540 201 CR: In-band emissions 8.5.1 8.6.0 05-2009 RP#444 RP-090540 203 CR: EVM exclusion period 8.5.1 8.6.0 05-2009 RP#444 RP-090540 204 CR: EVM exclusion period 8.5.1 8.6.0 05-2009 RP#444 RP-090540 207 CR: ULDM-RS EVM 8.5.1 8.6.0 05-2009 RP#444 RP-090540 2071 CR: ULDM-RS EVM 8.5.1 8.6.0 05-2009 RP#444 RP-090540 2071 CR: ULDM-RS EVM 8.5.1 8.6.0 05-2009 RP#444 RP-090540 1721 CR: Dead Miller EVM 8.5.1 8.6.0 <t< td=""><td>05-2009</td><td>RP#44</td><td>RP-090540</td><td>187</td><td>Removal of [] from band 17 Refsens values and ACS offset</td><td>8.5.1</td><td>8.6.0</td></t<>	05-2009	RP#44	RP-090540	187	Removal of [] from band 17 Refsens values and ACS offset	8.5.1	8.6.0
05-2009 RPP444 RP-090540 192 17. 8.5.1 8.5.1 8.6.0 05-2009 RP444 RP-090540 223 CR. 64 OAM EVM 8.5.1 8.6.0 05-2009 RP444 RP-090540 203 CR EVM exclusion period 8.5.1 8.6.0 05-2009 RP444 RP-090540 203 CR EVM exclusion period 8.5.1 8.6.0 05-2009 RP444 RP-090540 206 CR In-band emissions imming 8.5.1 8.6.0 05-2009 RP444 RP-090540 207 CR ILD MR SEVM 8.5.1 8.6.0 05-2009 RP444 RP-090540 2071 CR ILD MR SEVM 8.5.1 8.6.0 05-2009 RP444 RP-090540 2071 CR ILD MR SEVM 8.5.1 8.6.0 05-2009 RP444 RP-090540 17812 CR ILD MR SEVM 8.5.1 8.6.0 05-2009 RP444 RP-090540 17912 CR No naggragate power tolerance 8.5.1 8.6.0 05-2009	05-2009	RP#44	RP-090540	191	Completion of band17 requirements	8.5.1	8.6.0
65-2009 RP#44 RP-090540 201 CR In-band emissions 8.5.1 8.5.0 05-2009 RP#44 RP-090540 203 CR EVM exclusion period 8.5.1 8.6.0 05-2009 RP#44 RP-090540 204 CR In-band emissions timing 8.5.1 8.6.0 05-2009 RP#44 RP-090540 205 CR Minimum Rx exceptions 8.5.1 8.6.0 05-2009 RP#44 RP-090540 2181 AMPR table for NS_07 8.5.1 8.6.0 05-2009 RP#44 RP-090540 22011 CR In-band emissions in shortened subframes 8.5.1 8.6.0 05-2009 RP#44 RP-090540 2071 CR In-band emissions in shortened subframes 8.5.1 8.6.0 05-2009 RP#44 RP-090540 1787 Re-14-200 188.51 8.6.0 8.6.0 05-2009 <td>05-2009</td> <td>RP#44</td> <td>RP-090540</td> <td>192</td> <td></td> <td>8.5.1</td> <td>8.6.0</td>	05-2009	RP#44	RP-090540	192		8.5.1	8.6.0
65-2009 RP#44 RP-900540 203 CR EVM exclusion period 8.5.1 8.6.0 05-2009 RP#44 RP-900540 204 CR In-band emissions itming 8.5.1 8.6.0 05-2009 RP#44 RP-900540 207 CR UL DM-RS EVM 8.5.1 8.6.0 05-2009 RP#44 RP-900540 2051 CR Minimum Rx exceptions 8.5.1 8.6.0 05-2009 RP#44 RP-900540 2051 CR In-band emissions in shortened subframes 8.5.1 8.6.0 05-2009 RP#44 RP-900540 2051 CR In-band emissions in shortened subframes 8.5.1 8.6.0 05-2009 RP#44 RP-900540 2071 CR PVICCH EVM 8.5.1 8.6.0 05-2009 RP#44 RP-900540 1962 CR: RX IP2 performance 8.5.1 8.6.0 05-2009 RP#44 RP-900541 19871 Absain or equirement for TDD PDSCH with MBSFN confidence 8.5.1 8.6.0 05-2009 RP#44 RP-900542 166 CR Ading AWGN Illevate for Some TDD L perfo	05-2009	RP#44	RP-090540	223	CR: 64 QAM EVM	8.5.1	8.6.0
05-2009 RP#44 RP-090540 204 RR In-band emissions timing 8.5.1 8.6.0 05-2009 RP#44 RP-090540 206 CR Minimum Rx exceptions 8.5.1 8.6.0 05-2009 RP#44 RP-090540 218r1 A-MPR table for NS_07 8.5.1 8.6.0 05-2009 RP#44 RP-090540 229r1 CR_UL_DM-RS_EWM 8.5.1 8.6.0 05-2009 RP#44 RP-090540 209r1 CR_UL_DM-RS_EWM 8.5.1 8.6.0 05-2009 RP#44 RP-090540 200r1 CR_PUCCH_EVM 8.5.1 8.6.0 05-2009 RP#44 RP-090540 220r1 No additional emission mask indication. (Technically Endorsed CR in Rs.6.0 8.5.1 8.6.0 05-2009 RP#44 RP-090540 120r1 Reference control of Rs.6.0 8.5.1 8.6.0 05-2009 RP#44 RP-090541 19672 CR rs. Rr.1 Pg performance 8.5.1 8.6.0 05-2009 RP#44 RP-090542 166 CRr. Rr.1 Pg performance 8.5.1	05-2009	RP#44	RP-090540	201	CR In-band emissions	8.5.1	8.6.0
195-2009 RP#44 RP-090540 206 CR Minimum Rx exceptions 8.5.1 8.6.0			RP-090540	203	CR EVM exclusion period		8.6.0
195-2009 RP#44 RP-090540 207 CR UL DM-RS EVM 8.5.1 8.6.0			RP-090540	204	CR In-band emissions timing		
195-2009 RP#44 RP-090540 218ft A-MIPR table for NS_07 8.5.1 8.6.0	05-2009	RP#44	RP-090540	206	CR Minimum Rx exceptions	8.5.1	8.6.0
05-2009 RP#44 RP-090540 205f1 CR In-band emissions in shortened subframes 8.5.1 8.6.0 05-2009 RP#44 RP-090540 2001 CR PUCCH EVM 8.5.1 8.6.0 05-2009 RP#44 RP-090540 1787 No additional emission mask indication. (Technically Endorsed CR in 8.5.1 8.6.0 05-2009 RP#44 RP-090540 19772 CR on aggregate power tolerance 8.5.1 8.6.0 05-2009 RP#44 RP-090540 19972 CR on aggregate power tolerance 8.5.1 8.6.0 05-2009 RP#44 RP-090540 19972 CR on aggregate power tolerance 8.5.1 8.6.0 05-2009 RP#44 RP-090540 1967 CR rs. IP2 Performance 8.5.1 8.6.0 05-2009 RP#44 RP-090542 166 Mortination (Technically Endorsed CR in R4-50bis - R4-09180) 8.5.1 8.6.0 05-2009 RP#44 RP-090542 152 CORNO Performance requirements 8.5.1 8.6.0 05-2009 RP#44 RP-090542 1701	05-2009	RP#44	RP-090540	207	CR UL DM-RS EVM	8.5.1	8.6.0
05-2009 RP#44 RP-090540 20011 CR PURCH EVM 8.5.1 8.6.0	05-2009	RP#44	RP-090540	218r1	A-MPR table for NS_07	8.5.1	8.6.0
05-2009 RP#44 RP-090540 178r2 No additional emission mask indication. (Technically Endorsed CR in R4-50bs - R4-091421) 8.5.1 8.6.0 05-2009 RP#44 RP-090540 220r1 Spectrum emission requirements for band 13 8.5.1 8.6.0 05-2009 RP#44 RP-090540 1972 CR on aggregate power tolerance 8.5.1 8.6.0 05-2009 RP#44 RP-090541 198r1 Maximum output power relevation 8.5.1 8.6.0 05-2009 RP#44 RP-090542 166 Update of performance requirement for TDD PDSCH with MBSFN configuration. (Technically Endorsed CR in R4-50bis - R4-091180) 8.5.1 8.6.0 05-2009 RP#44 RP-090542 175 Adding AWGN levels for some TDD L performance requirements. (Technically Endorsed CR in R4-50bis - R4-091504) 8.5.1 8.6.0 05-2009 RP#44 RP-090542 170r1 CONG Patterns for Single Resource Block FRC Requirements. (Technically Endorsed CR in R4-50bis - R4-091504) 8.5.1 8.6.0 05-2009 RP#44 RP-090543 183 Requirements in R4-80bis A-84-091506) 8.5.1 8.6.0 05-2009	05-2009	RP#44	RP-090540	205r1	CR In-band emissions in shortened subframes	8.5.1	8.6.0
Content	05-2009	RP#44	RP-090540	200r1	CR PUCCH EVM	8.5.1	8.6.0
65-2009 RP#444 RP-090540 197/2 CR no aggregate power tolerance 8.5.1 8.6.0 05-2009 RP#444 RP-090541 198/1 CR: Rx IP2 performance 8.5.1 8.6.0 05-2009 RP#444 RP-090542 166 Update of performance requirement for TDD PDSCH with MBSFN configuration. (Technically Endorsed CR in R4-50bis - R4-091180) 8.5.1 8.6.0 05-2009 RP#444 RP-090542 176 Adding AWGN levels for some TDD DL performance requirements. (Technically Endorsed CR in R4-50bis - R4-091180) 8.5.1 8.6.0 05-2009 RP#444 RP-090542 182 CONG Patterns for Single Resource Block FRC Requirements. (Technically Endorsed CR in R4-50bis - R4-091504) 8.5.1 8.6.0 05-2009 RP#444 RP-090543 183 Requirements of requirements of requirements of requirements for Frequency selective fading test. (Technically Endorsed CR in R4-50bis - R4-091505) 8.5.1 8.6.0 05-2009 RP#444 RP-090543 1881 Adaptation of UL-RMC-s for supporting more UE categories 8.5.1 8.6.0 05-2009 RP#444 RP-090543 18871 Correction of the LTE UE downlink reference measurement channel	05-2009	RP#44	RP-090540	178r2		8.5.1	8.6.0
05-2009 RP#444 RP-090540 196/2 CR: Rx IP2 performance 8.5.1 8.6.0 05-2009 RP#444 RP-090541 198/1 Maximum output power relaxation 8.5.1 8.6.0 05-2009 RP#444 RP-090542 166 Opdate of performance requirement for TDD PDSCH with MBSFN configuration. (Technically Endorsed CR in R4-50bis - R4-091164) 8.5.1 8.6.0 05-2009 RP#444 RP-090542 175 Adding AWGN levels for some TDD DL performance requirements. Technically Endorsed CR in R4-50bis - R4-091640) 8.5.1 8.6.0 05-2009 RP#444 RP-090542 170r1 Update of Clause S PHICH and PMI delay. (Technically Endorsed CR in R4-50bis - R4-091504) 8.5.1 8.6.0 05-2009 RP#444 RP-090543 183 Requirements or frequency-selective fading test. (Technically Endorsed CR in R4-50bis - R4-091504) 8.5.1 8.6.0 05-2009 RP#444 RP-090543 1891 Correction of the LTE UE downlink reference measurement channels 8.5.1 8.6.0 05-2009 RP#444 RP-090543 186r1 Adaptation of UL-RMC-s for supporting more UE categories 8.5.1 8.6.0	05-2009	RP#44	RP-090540	220r1		8.5.1	8.6.0
05-2009 RP#444 RP-0905401 196/2 CR: Rx. IP2 performance 8.5.1 8.6.0 05-2009 RP#444 RP-0905421 19871 Maximum output power relaxation 8.5.1 8.6.0 05-2009 RP#444 RP-0905422 166 Update of performance requirement for TDD PDSCH with MBSFN configuration. (Technically Endorsed CR in R4-50bis - R4-091160) 8.5.1 8.6.0 05-2009 RP#444 RP-090542 175 Adding AWGN levels for some TDD D L performance requirements. (Technically Endorsed CR in R4-50bis - R4-091604) 8.5.1 8.6.0 05-2009 RP#44 RP-090542 182 CNIN Fatterns for Single Resource Block FRC Requirements. (Technically Endorsed CR in R4-50bis - R4-091604) 8.5.1 8.6.0 05-2009 RP#444 RP-090543 183 Endorsed CR in R4-50bis - R4-091605 8.5.1 8.6.0 05-2009 RP#444 RP-090543 1891 Cal requirements for frequency-selective fading test. (Technically Endorsed CR in R4-50bis - R4-091606) 8.5.1 8.6.0 05-2009 RP#444 RP-090543 1891 Cal requirements for Single Requirements for Fingle Requirements for Fingle Requirements for Fingle Requirements for Fingle R	05-2009	RP#44	RP-090540	197r2		8.5.1	8.6.0
05-2009 RP#44 RP-090541 198r1 Maximum output power relaxation 8.5.1 8.6.0 05-2009 RP#44 RP-090542 166 Update of performance requirement for TDD PDSCH with MBSFN configuration. (Technically Endorsed CR in R4-50bis - R4-091180) 8.5.1 8.6.0 05-2009 RP#44 RP-090542 175 Adding AWGN levels for some TDD DL performance requirements. (Technically Endorsed CR in R4-50bis - R4-091504) 8.5.1 8.6.0 05-2009 RP#44 RP-090542 1701 CNC Patterns for Single Resource Block FRC Requirements. (Technically Endorsed CR in R4-50bis - R4-091504) 8.5.1 8.6.0 05-2009 RP#44 RP-090543 183 Requirements for Single Resource Block FRC Requirements. (Technically Endorsed CR in R4-50bis - R4-091505) 8.5.1 8.6.0 05-2009 RP#44 RP-090543 183 Requirements for frequency-selective fading test. (Technically Endorsed CR in R4-50bis - R4-091506) 8.5.1 8.6.0 05-2009 RP#44 RP-090543 1881 Adaptation of UL-RMC-s for supporting more UE categories 8.5.1 8.6.0 05-2009 RP#44 RP-090543 1861 Correction of the LTz UE downlink refe	05-2009	RP#44	RP-090540	196r2		8.5.1	8.6.0
05-2009 RP#44 RP-090542 166 Update of performance requirement for TDD PDSCH with MBSFN configuration. (Technically Endorsed CR in R4-50bis - R4-091180) 8.5.1 8.6.0 05-2009 RP#44 RP-090542 175 Adding AWGN levels for some TDD DL performance requirements. (Technically Endorsed CR in R4-50bis - R4-091406) 8.5.1 8.6.0 05-2009 RP#44 RP-090542 182 CPNO Patterns for Single Resource Block FRC Requirements. (Technically Endorsed CR in R4-50bis - R4-091504) 8.5.1 8.6.0 05-2009 RP#44 RP-090542 170r1 Cyperate of Clause 8: PHICH and PMI delay. (Technically Endorsed CR in R4-50bis - R4-091505) 8.5.1 8.6.0 05-2009 RP#44 RP-090543 183 Requirements for frequency-selective fading test. (Technically Endorsed CR in R4-50bis - R4-091505) 8.5.1 8.6.0 05-2009 RP#44 RP-090543 1931 Correction of the LTE UE downlink reference measurement channels 8.5.1 8.6.0 05-2009 RP#44 RP-090543 185r1 Requirements for frequency enon-selective fading tests. (Technically Endorsed CR in R4-50bis - R4-091506) 8.5.1 8.6.0 05-2009 RP#44 RP-090543	05-2009	RP#44				8.5.1	8.6.0
05-2009 RP#44 RP-090542 175 Adding AWGN levels for some TDD DL performance requirements. (Technically Endorsed CR in R4-50bis - R4-091406) 8.5.1 8.6.0 05-2009 RP#44 RP-090542 182 CNG Patterns for Single Resource Block FRC Requirements. (Technically Endorsed CR in R4-50bis - R4-091504) 8.5.1 8.6.0 05-2009 RP#44 RP-090543 183 Requirements for Fequency-selective fading test. (Technically Endorsed CR in R4-50bis - R4-091275) 8.5.1 8.6.0 05-2009 RP#44 RP-090543 183 Requirements for requency-selective fading test. (Technically Endorsed CR in R4-50bis - R4-091505) 8.5.1 8.6.0 05-2009 RP#44 RP-090543 199 CQI requirements under AWGN conditions 8.5.1 8.6.0 05-2009 RP#44 RP-090543 1931 Correction of the LTE UE downlink reference measurement channels 8.5.1 8.6.0 05-2009 RP#44 RP-090543 1841 Requirements for requency non-selective fading tests. (Technically Endorsed CR in R4-50bis - R4-091506) 8.5.1 8.6.0 05-2009 RP#44 RP-090543 2211 Requirements for PMI reporting. (Technically Endorsed					Update of performance requirement for TDD PDSCH with MBSFN		
05-2009 RP#444 RP-090542 182 CCNG Patterns for Single Resource Block FRC Requirements. (Technically Endorsed CR in RA-50bis - RA-091504) 8.5.1 8.6.0 05-2009 RP#444 RP-090542 170r1 Update of Clause 8: PHICH and PMI delay. (Technically Endorsed CR in RA-50bis - RA-091505) 8.5.1 8.6.0 05-2009 RP#444 RP-090543 183 Requirements for frequency-selective fading test. (Technically Endorsed CR in RA-50bis - RA-091505) 8.5.1 8.6.0 05-2009 RP#444 RP-090543 188r1 Adaptation of UL-RMC-s for supporting more UE categories 8.5.1 8.6.0 05-2009 RP#444 RP-090543 193r1 Correction of the LTE UE downlink reference measurement channels 8.5.1 8.6.0 05-2009 RP#444 RP-090543 184r1 Requirements for frequency non-selective fading tests. (Technically Endorsed CR in RA-50bis - RA-091506) 8.5.1 8.6.0 05-2009 RP#44 RP-090543 185r1 Spice - RA-091506) 8.5.1 8.5.1 8.6.0 05-2009 RP#444 RP-090543 221r1 Correction to DL RMC-s for Maximum input level for supporting more UE categories	05-2009	RP#44	RP-090542	175	Adding AWGN levels for some TDD DL performance requirements.	8.5.1	8.6.0
05-2009 RP#444 RP-090542 170rf Update of Clause 8: PHICH and PMI delay. (Technically Endorsed CR in R4-50bis - R4-091275) 8.5.1 8.6.0 05-2009 RP#44 RP-090543 183 Requirements for frequency-selective fading test. (Technically Endorsed CR in R4-50bis - R4-091505) 8.5.1 8.6.0 05-2009 RP#44 RP-090543 1891 Col requirements to require with sunder AWGM conditions 8.5.1 8.6.0 05-2009 RP#44 RP-090543 18971 Correction of the LTE UE downlink reference measurement channels 8.5.1 8.6.0 05-2009 RP#44 RP-090543 184r1 Correction of the LTE UE downlink reference measurement channels 8.5.1 8.6.0 05-2009 RP#44 RP-090543 185r1 Correction of the LTE UE downlink reference measurement channels 8.5.1 8.6.0 05-2009 RP#44 RP-090543 185r1 Requirements for PMI reporting. (Technically Endorsed CR in R4-50bis - R4-091506) 8.5.1 8.6.0 05-2009 RP#44 RP-090543 221r1 UCorrection to DL RMC-s for Maximum input level for supporting more 8.5.1 8.6.0	05-2009	RP#44	RP-090542	182	OCNG Patterns for Single Resource Block FRC Requirements.	8.5.1	8.6.0
05-2009 RP#44 RP-090543 193 Endorsed CR in R4-50bis - R4-091505) 05-009 RP#44 RP-090543 1891 CQI requirements under AWGN conditions 8.5.1 8.6.0 05-2009 RP#44 RP-090543 188r1 Adaptation of UL-RMC-s for supporting more UE categories 8.5.1 8.6.0 05-2009 RP#44 RP-090543 184r1 Requirements for frequency non-selective fading tests. (Technically Endorsed CR in R4-50bis - R4-091506) 8.5.1 8.6.0 05-2009 RP#44 RP-090543 185r1 Requirements for PMI reporting. (Technically Endorsed CR in R4-50bis - R4-091506) 8.5.1 8.6.0 05-2009 RP#44 RP-090543 221r1 Requirements for PMI reporting. (Technically Endorsed CR in R4-50bis - R4-09150) 8.5.1 8.6.0 05-2009 RP#44 RP-090543 221r1 Addition of 15 MHz and 20 MHz bandwidths into band 38 8.5.1 8.6.0 05-2009 RP#44 RP-090823 224 LTE UTRA ACLR1 centre frequency definition for 1.4 and 3 MHz BW 8.6.0 8.7.0 09-2009 RP#45 RP-090822 228 Bensitivity requirements for Band 38 15	05-2009	RP#44	RP-090542	170r1	Update of Clause 8: PHICH and PMI delay. (Technically Endorsed	8.5.1	8.6.0
05-2009 RP#44 RP-090543 188r1 Adaptation of UL-RMC-s for supporting more UE categories 8.5.1 8.6.0 05-2009 RP#44 RP-090543 193r1 Correction of the LTE UE downlink reference measurement channels 8.5.1 8.6.0 05-2009 RP#44 RP-090543 184r1 Requirements for frequency non-selective fading tests. (Technically Endorsed CR in R4-50bis - R4-091506) 8.5.1 8.6.0 05-2009 RP#44 RP-090543 185r1 Requirements for PMI reporting. (Technically Endorsed CR in R4-50bis - R4-091510) 8.5.1 8.6.0 05-2009 RP#44 RP-090543 21r1 Correction to DL RMC-s for Maximum input level for supporting more UE-Categories 8.5.1 8.6.0 05-2009 RP#44 RP-090543 21c1 Addition of 15 MHz and 20 MHz bandwidths into band 38 8.5.1 8.6.0 05-2009 RP#445 RP-090822 224 LTE UTRA ACLR1 centre frequency definition for 1.4 and 3 MHz BW 8.6.0 8.7.0 09-2009 RP#45 RP-090822 228 Sensitivity requirements for Band 38 15 MHz and 20 MHz Bandwidths 8.6.0 8.7.0 09-2009	05-2009	RP#44	RP-090543	183		8.5.1	8.6.0
05-2009 RP#44 RP-090543 19311 Correction of the LTE UE downlink reference measurement channels 8.5.1 8.6.0 05-2009 RP#44 RP-090543 184r1 Requirements for frequency non-selective fading tests. (Technically Endorsed CR in R4-50bis - R4-091506) 8.5.1 8.6.0 05-2009 RP#44 RP-090543 185r1 Requirements for PMI reporting. (Technically Endorsed CR in R4-50bis - R4-091510) 8.5.1 8.5.1 8.6.0 05-2009 RP#44 RP-090543 221r1 Correction to DL RMC-s for Maximum input level for supporting more UE-Categories 8.5.1 8.6.0 05-2009 RP#44 RP-090543 216 Addition of 15 MHz and 20 MHz bandwidths into band 38 8.5.1 8.6.0 09-2009 RP#45 RP-090822 224 LTE UTRA ACLR1 centre frequency definition for 1.4 and 3 MHz BW 8.6.0 8.7.0 09-2009 RP#45 RP-090822 228 Sensitivity requirements for Band 38 15 MHz and 20 MHz BR-090877 8.6.0 8.7.0 09-2009 RP#45 RP-090822 237 Addition of 5MHz channel bandwidth for Band 40 8.6.0 8.7.0 09-20	05-2009	RP#44	RP-090543	199	CQI requirements under AWGN conditions	8.5.1	8.6.0
05-2009 RP#444 RP-090543 184r1 Requirements for frequency non-selective fading tests. (Technically Endorsed CR in R4-50bis - R4-091506) 8.5.1 8.6.0 05-2009 RP#44 RP-090543 185r1 Requirements for PMI reporting. (Technically Endorsed CR in R4-50bis - R4-091510) 8.5.1 8.6.0 05-2009 RP#44 RP-090543 221r1 Correction to DL RMC-s for Maximum input level for supporting more UE-Categories 8.5.1 8.6.0 05-2009 RP#44 RP-090543 216 Addition of 15 MHz and 20 MHz bandwidths into band 38 8.5.1 8.6.0 09-2009 RP#45 RP-090822 224 LTE UTRA ACLR1 centre frequency definition for 1.4 and 3 MHz BW 8.6.0 8.7.0 09-2009 RP#45 RP-090822 226 Harmonization of text for LTE Carrier leakage 8.6.0 8.7.0 09-2009 RP#45 RP-090822 228 Sensitivity requirements for Band 38 15 MHz and 20 MHz bandwidths 8.6.0 8.7.0 09-2009 RP#45 RP-090822 237 Addition of 5MHz channel bandwidth for Band 40 8.6.0 8.7.0 09-2009 RP#45 <td< td=""><td>05-2009</td><td>RP#44</td><td>RP-090543</td><td>188r1</td><td>Adaptation of UL-RMC-s for supporting more UE categories</td><td>8.5.1</td><td>8.6.0</td></td<>	05-2009	RP#44	RP-090543	188r1	Adaptation of UL-RMC-s for supporting more UE categories	8.5.1	8.6.0
05-2009 RP#44 RP-090543 185r1 Endorsed CR in R4-50bis - R4-091506) 8-3.1 8-8.0 05-2009 RP#44 RP-090543 185r1 Requirements for PMI reporting. (Technically Endorsed CR in R4-50bis - R4-091510) 8-5.1 8-6.0 05-2009 RP#44 RP-090543 221r1 Correction to DL RMC-s for Maximum input level for supporting more UE-Categories 8-5.1 8-6.0 09-2009 RP#45 RP-090822 224 LTE UTRA ACLR1 centre frequency definition for 1.4 and 3 MHz BW 8-6.0 8.7.0 09-2009 RP#45 RP-090822 226 Harmonization of text for LTE Carrier leakage 8-6.0 8.7.0 09-2009 RP#45 RP-090822 228 Sensitivity requirements for Band 38 15 MHz and 20 MHz bandwidths 8-6.0 8.7.0 09-2009 RP#45 RP-090822 237 Addition of 5MHz channel bandwidth for Band 40 8-6.0 8.7.0 09-2009 RP#45 RP-090822 244 Removal of unnecessary requirements for 1.4 and 3 MHz bandwidths on bands 13 and 17 8-6.0 8-7.0 09-2009 RP#45 RP-090877 260	05-2009	RP#44	RP-090543	193r1	Correction of the LTE UE downlink reference measurement channels	8.5.1	8.6.0
05-2009 RP#44 RP-090543 165T1 50bis - R4-091510) 6.5.1 8.6.0 05-2009 RP#44 RP-090543 221r1 Correction to DL RMC-s for Maximum input level for supporting more UE-Categories 8.5.1 8.6.0 05-2009 RP#44 RP-090543 216 Addition of 15 MHz and 20 MHz bandwidths into band 38 8.5.1 8.6.0 09-2009 RP#45 RP-090822 224 LTE UTRA ACLR1 centre frequency definition for 1.4 and 3 MHz BW 8.6.0 8.7.0 09-2009 RP#45 RP-090822 226 Harmonization of text for LTE Carrier leakage 8.6.0 8.7.0 09-2009 RP#45 RP-090822 228 Sensitivity requirements for Band 38 15 MHz and 20 MHz bandwidths 8.6.0 8.7.0 09-2009 RP#45 RP-090822 237 Addition of 5MHz channel bandwidth for Band 40 8.6.0 8.7.0 09-2009 RP#45 RP-090822 244 Removal of unnecessary requirements for 1.4 and 3 MHz bandwidths 8.6.0 8.7.0 09-2009 RP#45 RP-090877 260 Correction of LTE UE ACS test parameter	05-2009	RP#44	RP-090543	184r1		8.5.1	8.6.0
05-2009 RP#44 RP-090543 22111 UE-Categories 8.5.1 8.6.0 05-2009 RP#45 RP-090543 216 Addition of 15 MHz and 20 MHz bandwidths into band 38 8.5.1 8.6.0 09-2009 RP#45 RP-090822 224 LTE UTRA ACLR1 centre frequency definition for 1.4 and 3 MHz BW 8.6.0 8.7.0 09-2009 RP#45 RP-090822 226 Harmonization of text for LTE Carrier leakage 8.6.0 8.7.0 09-2009 RP#45 RP-090822 228 Sensitivity requirements for Band 38 15 MHz and 20 MHz bandwidths 8.6.0 8.7.0 09-2009 RP#45 RP-090822 237 Addition of 5MHz channel bandwidth for Band 40 8.6.0 8.7.0 09-2009 RP#45 RP-090822 244 Removal of unnecessary requirements for 1.4 and 3 MHz bandwidths 8.6.0 8.7.0 09-2009 RP#45 RP-090877 260 Correction of LTE UE ACS test parameter 8.6.0 8.6.0 8.7.0 09-2009 RP#45 RP-090877 285 Uplink power and RB allocation for receiver tests 8.6.0	05-2009	RP#44	RP-090543	185r1	50bis - R4-091510)	8.5.1	8.6.0
09-2009 RP#45 RP-090822 224 LTE UTRA ACLR1 centre frequency definition for 1.4 and 3 MHz BW 8.6.0 8.7.0 09-2009 RP#45 RP-090822 226 Harmonization of text for LTE Carrier leakage 8.6.0 8.7.0 09-2009 RP#45 RP-090822 228 Sensitivity requirements for Band 38 15 MHz and 20 MHz bandwidths 8.6.0 8.7.0 09-2009 RP#45 RP-090822 237 Addition of 5MHz channel bandwidth for Band 40 8.6.0 8.7.0 09-2009 RP#45 RP-090822 244 Removal of unnecessary requirements for 1.4 and 3 MHz bandwidths on bands 13 and 17 8.6.0 8.7.0 09-2009 RP#45 RP-090877 260 Correction of LTE UE ACS test parameter 8.6.0 8.7.0 09-2009 RP#45 RP-090877 262 Correction of LTE UE ACLR test parameter 8.6.0 8.7.0 09-2009 RP#45 RP-090877 285 Uplink power and RB allocation for receiver tests 8.6.0 8.7.0 09-2009 RP#45 RP-090877 301 CR 64QAM MPR 8.6.0 8.7.0	05-2009	RP#44	RP-090543	221r1		8.5.1	8.6.0
09-2009 RP#45 RP-090822 226 Harmonization of text for LTE Carrier leakage 8.6.0 8.7.0 09-2009 RP#45 RP-090822 228 Sensitivity requirements for Band 38 15 MHz and 20 MHz bandwidths 8.6.0 8.7.0 09-2009 RP#45 RP-090822 237 Addition of 5MHz channel bandwidth for Band 40 8.6.0 8.7.0 09-2009 RP#45 RP-090822 244 Removal of unnecessary requirements for 1.4 and 3 MHz bandwidths on bands 13 and 17 8.6.0 8.7.0 09-2009 RP#45 RP-090877 260 Correction of LTE UE ACS test parameter 8.6.0 8.7.0 09-2009 RP#45 RP-090877 262 Correction of LTE UE ACLR test parameter 8.6.0 8.7.0 09-2009 RP#45 RP-090877 285 Uplink power and RB allocation for receiver tests 8.6.0 8.7.0 09-2009 RP#45 RP-090877 301 CR 64QAM MPR 8.6.0 8.7.0 09-2009 RP#45 RP-090877 323 Correction of Band 3 spurious emission band UE co-existence 8.6.0 8.7.0 <	05-2009	RP#44	RP-090543	216	Addition of 15 MHz and 20 MHz bandwidths into band 38	8.5.1	8.6.0
09-2009 RP#45 RP-090822 228 Sensitivity requirements for Band 38 15 MHz and 20 MHz bandwidths 8.6.0 8.7.0 09-2009 RP#45 RP-090822 237 Addition of 5MHz channel bandwidth for Band 40 8.6.0 8.7.0 09-2009 RP#45 RP-090822 244 Removal of unnecessary requirements for 1.4 and 3 MHz bandwidths on bands 13 and 17 8.6.0 8.7.0 09-2009 RP#45 RP-090877 260 Correction of LTE UE ACS test parameter 8.6.0 8.7.0 09-2009 RP#45 RP-090877 262 Correction of LTE UE ACLR test parameter 8.6.0 8.7.0 09-2009 RP#45 RP-090877 285 Uplink power and RB allocation for receiver tests 8.6.0 8.7.0 09-2009 RP#45 RP-090877 301 CR 64QAM MPR 8.6.0 8.7.0 09-2009 RP#45 RP-090877 319 CR Sensitivity relaxation for small BW 8.6.0 8.7.0 09-2009 RP#45 RP-090877 323 Correction of Band 3 spurious emission band UE co-existence 8.6.0 8.7.0	09-2009		RP-090822	224	LTE UTRA ACLR1 centre frequency definition for 1.4 and 3 MHz BW	8.6.0	8.7.0
09-2009 RP#45 RP-090822 237 Addition of 5MHz channel bandwidth for Band 40 8.6.0 8.7.0 09-2009 RP#45 RP-090822 244 Removal of unnecessary requirements for 1.4 and 3 MHz bandwidths on bands 13 and 17 8.6.0 8.7.0 09-2009 RP#45 RP-090877 260 Correction of LTE UE ACS test parameter 8.6.0 8.7.0 09-2009 RP#45 RP-090877 262 Correction of LTE UE ACLR test parameter 8.6.0 8.7.0 09-2009 RP#45 RP-090877 285 Uplink power and RB allocation for receiver tests 8.6.0 8.7.0 09-2009 RP#45 RP-090877 301 CR 64QAM MPR 8.6.0 8.7.0 09-2009 RP#45 RP-090877 323 Correction of Band 3 spurious emission band UE co-existence 8.6.0 8.7.0 09-2009 RP#45 RP-090877 248R1 CR Pcmax definition (working assumption) 8.6.0 8.7.0 09-2009 RP#45 RP-090877 329 Spectrum flatness clarification 8.6.0 8.7.0 09-2009 <td>09-2009</td> <td>RP#45</td> <td>RP-090822</td> <td>226</td> <td>Harmonization of text for LTE Carrier leakage</td> <td>8.6.0</td> <td>8.7.0</td>	09-2009	RP#45	RP-090822	226	Harmonization of text for LTE Carrier leakage	8.6.0	8.7.0
09-2009 RP#45 RP-090822 244 Removal of unnecessary requirements for 1.4 and 3 MHz bandwidths on bands 13 and 17 8.6.0 8.7.0 09-2009 RP#45 RP-090877 260 Correction of LTE UE ACS test parameter 8.6.0 8.7.0 09-2009 RP#45 RP-090877 262 Correction of LTE UE ACLR test parameter 8.6.0 8.7.0 09-2009 RP#45 RP-090877 285 Uplink power and RB allocation for receiver tests 8.6.0 8.7.0 09-2009 RP#45 RP-090877 301 CR 64QAM MPR 8.6.0 8.7.0 09-2009 RP#45 RP-090877 319 CR Sensitivity relaxation for small BW 8.6.0 8.7.0 09-2009 RP#45 RP-090877 323 Correction of Band 3 spurious emission band UE co-existence 8.6.0 8.7.0 09-2009 RP#45 RP-090877 248R1 CR Pcmax definition (working assumption) 8.6.0 8.7.0 09-2009 RP#45 RP-090877 329 Spectrum flatness clarification 8.6.0 8.6.0 8.7.0	09-2009	RP#45	RP-090822	228	bandwidths	8.6.0	8.7.0
09-2009 RP#45 RP-090822 244 bandwidths on bands 13 and 17 8.6.0 8.7.0 09-2009 RP#45 RP-090877 260 Correction of LTE UE ACS test parameter 8.6.0 8.7.0 09-2009 RP#45 RP-090877 262 Correction of LTE UE ACLR test parameter 8.6.0 8.7.0 09-2009 RP#45 RP-090877 285 Uplink power and RB allocation for receiver tests 8.6.0 8.7.0 09-2009 RP#45 RP-090877 301 CR 64QAM MPR 8.6.0 8.7.0 09-2009 RP#45 RP-090877 319 CR Sensitivity relaxation for small BW 8.6.0 8.7.0 09-2009 RP#45 RP-090877 323 Correction of Band 3 spurious emission band UE co-existence 8.6.0 8.7.0 09-2009 RP#45 RP-090877 248R1 CR Pcmax definition (working assumption) 8.6.0 8.7.0 09-2009 RP#45 RP-090877 329 Spectrum flatness clarification 8.6.0 8.7.0 09-2009 RP#45 RP-090877 <t< td=""><td>09-2009</td><td>RP#45</td><td>RP-090822</td><td>237</td><td></td><td>8.6.0</td><td>8.7.0</td></t<>	09-2009	RP#45	RP-090822	237		8.6.0	8.7.0
09-2009 RP#45 RP-090877 262 Correction of LTE UE ACLR test parameter 8.6.0 8.7.0 09-2009 RP#45 RP-090877 285 Uplink power and RB allocation for receiver tests 8.6.0 8.7.0 09-2009 RP#45 RP-090877 301 CR 64QAM MPR 8.6.0 8.7.0 09-2009 RP#45 RP-090877 319 CR Sensitivity relaxation for small BW 8.6.0 8.7.0 09-2009 RP#45 RP-090877 323 Correction of Band 3 spurious emission band UE co-existence 8.6.0 8.7.0 09-2009 RP#45 RP-090877 248R1 CR Pcmax definition (working assumption) 8.6.0 8.7.0 09-2009 RP#45 RP-090877 329 Spectrum flatness clarification 8.6.0 8.7.0 09-2009 RP#45 RP-090877 331 Additional SRS relative power requirement and update of measurement definition 8.6.0 8.7.0 09-2009 RP#45 RP-090877 281R1 Additional SRS relative power requirement and update of measurement definition 8.6.0 8.7.0 <td></td> <td></td> <td>RP-090822</td> <td>244</td> <td></td> <td>8.6.0</td> <td></td>			RP-090822	244		8.6.0	
09-2009 RP#45 RP-090877 285 Uplink power and RB allocation for receiver tests 8.6.0 8.7.0 09-2009 RP#45 RP-090877 301 CR 64QAM MPR 8.6.0 8.7.0 09-2009 RP#45 RP-090877 319 CR Sensitivity relaxation for small BW 8.6.0 8.7.0 09-2009 RP#45 RP-090877 323 Correction of Band 3 spurious emission band UE co-existence 8.6.0 8.7.0 09-2009 RP#45 RP-090877 248R1 CR Pcmax definition (working assumption) 8.6.0 8.7.0 09-2009 RP#45 RP-090877 329 Spectrum flatness clarification 8.6.0 8.7.0 09-2009 RP#45 RP-090877 331 Additional SRS relative power requirement and update of measurement definition 8.6.0 8.7.0 09-2009 RP#45 RP-090877 281R1 Additional SRS relative power requirement and update of measurement definition 8.6.0 8.7.0		RP#45	RP-090877	260		8.6.0	8.7.0
09-2009 RP#45 RP-090877 285 Uplink power and RB allocation for receiver tests 8.6.0 8.7.0 09-2009 RP#45 RP-090877 301 CR 64QAM MPR 8.6.0 8.7.0 09-2009 RP#45 RP-090877 319 CR Sensitivity relaxation for small BW 8.6.0 8.7.0 09-2009 RP#45 RP-090877 323 Correction of Band 3 spurious emission band UE co-existence 8.6.0 8.7.0 09-2009 RP#45 RP-090877 248R1 CR Pcmax definition (working assumption) 8.6.0 8.7.0 09-2009 RP#45 RP-090877 329 Spectrum flatness clarification 8.6.0 8.7.0 09-2009 RP#45 RP-090877 331 Additional SRS relative power requirement and update of measurement definition 8.6.0 8.7.0 09-2009 RP#45 RP-090877 281R1 Additional SRS relative power requirement and update of measurement definition 8.6.0 8.7.0	09-2009	RP#45	RP-090877	262	Correction of LTE UE ACLR test parameter	8.6.0	8.7.0
09-2009 RP#45 RP-090877 301 CR 64QAM MPR 8.6.0 8.7.0 09-2009 RP#45 RP-090877 319 CR Sensitivity relaxation for small BW 8.6.0 8.7.0 09-2009 RP#45 RP-090877 323 Correction of Band 3 spurious emission band UE co-existence 8.6.0 8.7.0 09-2009 RP#45 RP-090877 248R1 CR Pcmax definition (working assumption) 8.6.0 8.7.0 09-2009 RP#45 RP-090877 329 Spectrum flatness clarification 8.6.0 8.7.0 09-2009 RP#45 RP-090877 331 Additional SRS relative power requirement and update of measurement definition 8.6.0 8.7.0 09-2009 RP#45 RP-090877 281R1 Additional SRS relative power requirement and update of measurement definition 8.6.0 8.7.0	09-2009	RP#45	RP-090877	285		8.6.0	8.7.0
09-2009 RP#45 RP-090877 323 Correction of Band 3 spurious emission band UE co-existence 8.6.0 8.7.0 09-2009 RP#45 RP-090877 248R1 CR Pcmax definition (working assumption) 8.6.0 8.7.0 09-2009 RP#45 RP-090877 329 Spectrum flatness clarification 8.6.0 8.7.0 09-2009 RP#45 RP-090877 331 Additional SRS relative power requirement and update of measurement definition 8.6.0 8.7.0 09-2009 RP#45 RP-090877 281R1 Additional SRS relative power requirement and update of measurement definition 8.6.0 8.7.0	09-2009	RP#45			, ,	8.6.0	8.7.0
09-2009 RP#45 RP-090877 248R1 CR Pcmax definition (working assumption) 8.6.0 8.7.0 09-2009 RP#45 RP-090877 329 Spectrum flatness clarification 8.6.0 8.7.0 09-2009 RP#45 RP-090877 331 Additional SRS relative power requirement and update of measurement definition 8.6.0 8.7.0 09-2009 RP#45 RP-090877 281R1 Additional SRS relative power requirement and update of measurement definition 8.6.0 8.7.0	09-2009	RP#45		319	CR Sensitivity relaxation for small BW	8.6.0	8.7.0
09-2009 RP#45 RP-090877 248R1 CR Pcmax definition (working assumption) 8.6.0 8.7.0 09-2009 RP#45 RP-090877 329 Spectrum flatness clarification 8.6.0 8.7.0 09-2009 RP#45 RP-090877 331 Additional SRS relative power requirement and update of measurement definition 8.6.0 8.7.0 09-2009 RP#45 RP-090877 281R1 Additional SRS relative power requirement and update of measurement definition 8.6.0 8.7.0	09-2009	RP#45	RP-090877	323	Correction of Band 3 spurious emission band UE co-existence	8.6.0	8.7.0
09-2009 RP#45 RP-090877 329 Spectrum flatness clarification 8.6.0 8.7.0 09-2009 RP#45 RP-090877 331 Additional SRS relative power requirement and update of measurement definition 8.6.0 8.7.0 09-2009 RP#45 RP-090877 281R1 Additional SRS relative power requirement and update of measurement definition 8.6.0 8.7.0					·	8.6.0	
09-2009 RP#45 RP-090877 331 Additional SRS relative power requirement and update of measurement definition 8.6.0 8.7.0 09-2009 RP#45 RP-090877 281R1 Additional SRS relative power requirement and update of measurement definition 8.6.0 8.7.0							
09-2009 RP#45 RP-090877 281R1 Additional SRS relative power requirement and update of measurement definition 8.6.0 8.7.0	09-2009				Additional SRS relative power requirement and update of measurement definition	8.6.0	8.7.0
09-2009 RP#45 RP-090877 283R1 Power range applicable for relative tolerance 8.6.0 8.7.0	09-2009	RP#45	RP-090877	281R1	Additional SRS relative power requirement and update of	8.6.0	8.7.0
	09-2009	RP#45	RP-090877	283R1	Power range applicable for relative tolerance	8.6.0	8.7.0

00.0000	DD::/45	DD 000000	000	TDD 111 /D1 / / / / OO	0.00	0.7.0
09-2009	RP#45	RP-090878	232	TDD UL/DL configurations for CQI reporting	8.6.0	8.7.0
09-2009 09-2009	RP#45	RP-090878	234	Further clarification on CQI test configurations	8.6.0	8.7.0
	RP#45	RP-090878	242	Corrections to UL- and DL-RMC-s	8.6.0	8.7.0
09-2009	RP#45	RP-090878	246	Reference measurement channel for multiple PMI requirements CQI reporting test for a scenario with frequency-selective	8.6.0	8.7.0
09-2009	RP#45	RP-090878	289	interference	8.6.0	8.7.0
09-2009	RP#45	RP-090878	264R2	CQI reference measurement channels	8.6.0	8.7.0
09-2009	RP#45	RP-090878	304R2	CR RI Test	8.6.0	8.7.0
09-2009	RP#45	RP-090875	230	Correction of parameters for demodulation performance requirement	8.6.0	8.7.0
09-2009	RP#45	RP-090875	240R1	UE categories for performance tests and correction to RMC references	8.6.0	8.7.0
09-2009	RP#45	RP-090875	277	Clarification of Ês definition in the demodulation requirement	8.6.0	8.7.0
09-2009	RP#45	RP-090875	325	Editorial corrections and updates to PHICH PBCH test cases	8.6.0	8.7.0
09-2009	RP#45	RP-090875	258R2	Test case numbering in section 8 Performance tests	8.6.0	8.7.0
12-2009	RP#46	RP-091264	334	Test case numbering in TDD PDSCH performance test (Technically endorsed at RAN 4 52bis in R4-093522)	8.7.0	8.8.0
12-2009	RP#46	RP-091261	336	Adding beamforming model for user-specific reference signal (Technically endorsed at RAN 4 52bis in R4-093524)	8.7.0	8.8.0
12-2009	RP#46	RP-091263	338R1	Adding redundancy sequences to PMI test (Technically endorsed at RAN 4 52bis in R4-093580)	8.7.0	8.8.0
12-2009	RP#46	RP-091264	340	Throughput value correction at FRC for Maximum input level (Technically endorsed at RAN 4 52bis in R4-093659)	8.7.0	8.8.0
12-2009	RP#46	RP-091261	342	Correction to the modulated E-UTRA interferer (Technically endorsed at RAN 4 52bis in R4-093661)	8.7.0	8.8.0
12-2009	RP#46	RP-091264	344R1	OCNG: Patterns and present use in tests (Technically endorsed at RAN 4 52bis in R4-093663)	8.7.0	8.8.0
12-2009	RP#46	RP-091264	346	OCNG: Use in receiver and performance tests (Technically endorsed	8.7.0	8.8.0
12-2009	RP#46	RP-091263	348	at RAN 4 52bis in R4-093665) Miscellaneous corrections on CSI requirements (Technically	8.7.0	8.8.0
12-2009	RP#46	RP-091261	350	endorsed at RAN 4 52bis in R4-093676) Removal of RLC modes (Technically endorsed at RAN 4 52bis in	8.7.0	8.8.0
12-2009	RP#46	RP-091261	352	R4-093677) CR Rx diversity requirement (Technically endorsed at RAN 4 52bis	8.7.0	8.8.0
12-2009	RP#46	RP-091261	354	in R4-093703) A-MPR notation in NS_07 (Technically endorsed at RAN 4 52bis in	8.7.0	8.8.0
				R4-093706) Single- and multi-PMI requirements (Technically endorsed at RAN 4		
12-2009	RP#46	RP-091263	358	52bis in R4-093846) CQI reference measurement channel (Technically endorsed at RAN	8.7.0	8.8.0
12-2009	RP#46	RP-091263	362	4 52bis in R4-093970) Numbering of PDSCH (User-Specific Reference Symbols)	8.7.0	8.8.0
12-2009	RP#46	RP-091264	366	Demodulation Tests	8.7.0	8.8.0
12-2009	RP#46	RP-091264	368	Numbering of PDCCH/PCFICH, PHICH, PBCH Demod Tests	8.7.0	8.8.0
12-2009	RP#46	RP-091261	370	Remove [] from Reference Measurement Channels in Annex A	8.7.0	8.8.0
12-2009	RP#46	RP-091264	372R1	Corrections to RMC-s for Maximum input level test for low UE categories	8.7.0	8.8.0
12-2009	RP#46	RP-091261	376	Correction of UE-category for R.30	8.7.0	8.8.0
12-2009	RP#46	RP-091262	383	CR: Removal of 1.4 MHz and 3 MHz channel bandwidths from additional spurious emissions requirements for Band 1 PHS	8.7.0	8.8.0
12-2009	RP#46	RP-091262	385R3	protection Clarification of measurement conditions of spurious emission	8.7.0	8.8.0
				requirements at the edge of spurious domain		
12-2009 12-2009	RP#46 RP#46	RP-091262 RP-091262	389 391R2	Spurious emission table correction for TDD bands 33 and 38. 36.101 Symbols and abreviations for Pcmax	8.7.0 8.7.0	8.8.0 8.8.0
12-2009	RP#46	RP-091262	393	UTRAACLR1 requirement definition for 1.4 and 3 MHz BW completed	8.7.0	8.8.0
12-2009	RP#46	RP-091263	395	Introduction of the ACK/NACK feedback modes for TDD requirements	8.7.0	8.8.0
12-2009	RP#46	RP-091262	403R2	CR Power control exception R8	8.7.0	8.8.0
12-2009	RP#46	RP-091262	415R1	Relative power tolerance: special case for receiver tests	8.7.0	8.8.0
12-2009	RP#46	RP-091263	419R1	CSI reporting: test configuration for CQI fading requirements	8.7.0	8.8.0
		RP-091264	424	Editorial corrections and updates to Clause 8.2.1 FDD demodulation test cases	8.7.0	8.8.0
12-2009	RP#46					
12-2009 12-2009	RP#46 RP#46	RP-091262	426	CR: time mask	8.7.0	8.8.0
12-2009 12-2009	RP#46 RP#46	RP-091262 RP-091264	429	CR: time mask Correction of the payload size for PDCCH/PCFICH performance requirements	8.7.0	8.8.0
12-2009	RP#46	RP-091262		CR: time mask Correction of the payload size for PDCCH/PCFICH performance requirements Transport format and test point updates to RI reporting test cases		
12-2009 12-2009 12-2009 12-2009	RP#46 RP#46 RP#46 RP#46	RP-091262 RP-091264 RP-091263 RP-091263	429 431 433	CR: time mask Correction of the payload size for PDCCH/PCFICH performance requirements Transport format and test point updates to RI reporting test cases Transport format and test setup updates to frequency-selective interference CQI tests	8.7.0 8.7.0 8.7.0	8.8.0 8.8.0 8.8.0
12-2009 12-2009 12-2009 12-2009 12-2009	RP#46 RP#46 RP#46 RP#46 RP#46	RP-091262 RP-091264 RP-091263 RP-091263 RP-091263	429 431 433 435	CR: time mask Correction of the payload size for PDCCH/PCFICH performance requirements Transport format and test point updates to RI reporting test cases Transport format and test setup updates to frequency-selective interference CQI tests CR RI reporting configuration in PUCCH 1-1 test	8.7.0 8.7.0 8.7.0 8.7.0	8.8.0 8.8.0 8.8.0 8.8.0
12-2009 12-2009 12-2009 12-2009	RP#46 RP#46 RP#46 RP#46	RP-091262 RP-091264 RP-091263 RP-091263	429 431 433	CR: time mask Correction of the payload size for PDCCH/PCFICH performance requirements Transport format and test point updates to RI reporting test cases Transport format and test setup updates to frequency-selective interference CQI tests	8.7.0 8.7.0 8.7.0	8.8.0 8.8.0 8.8.0

12-2009	RP#46	RP-091262	443R1	PCMAX definition	8.7.0	8.8.0
00.0040	DD#47	DD 400040	404::4	LITERA A CIL Di se a se supre se est le conducidate a ferra di A condi O Miller	0.00	0.0.0
03-2010 03-2010	RP#47 RP#47	RP-100246 RP-100246	461r1 492	UTRA ACLR measurement bandwidths for 1.4 and 3 MHz	8.8.0	8.9.0 8.9.0
03-2010	RP#47	RP-100246	492 488r1	Band 8 Coexistence Requirement Table Correction Rel 8 CR for Band 14	8.8.0	8.9.0
03-2010	RP#47	RP-100246	484r1	CR Band 1- PHS coexistence	8.8.0 8.8.0	8.9.0
03-2010	RP#47	RP-100246	500	Fading CQI requirements for FDD mode	8.8.0	8.9.0
03-2010	RP#47	RP-100247	498	CR correction to RI test	8.8.0	8.9.0
		KF-100247	490	Reporting mode, Reporting Interval and Editorial corrections for	0.0.0	6.9.0
03-2010	RP#47	RP-100249	450	demodulation	8.8.0	8.9.0
03-2010	RP#47	RP-100249	463r1	Corrections to 1PRB PDSCH performance test in presence of MBSFN.	8.8.0	8.9.0
03-2010	RP#47	RP-100249	457r1	OCNG corrections	8.8.0	8.9.0
03-2010	RP#47	RP-100249	466	Addition of OCNG configuration in DRS performance test	8.8.0	8.9.0
03-2010	RP#47	RP-100250	459r1	Use of OCNG in CSI tests	8.8.0	8.9.0
03-2010	RP#47	RP-100250	490r1	Corrections to CQI test configurations	8.8.0	8.9.0
03-2010	RP#47	RP-100250	468r1	Corrections of some CSI test parameters	8.8.0	8.9.0
03-2010	RP#47	RP-100251	455r1	TBS correction for RMC UL TDD 16QAM full allocation BW 1.4 MHz	8.8.0	8.9.0
03-2010	RP#47	RP-100264	447	RF requirements for UE in later releases	8.8.0	8.9.0
03-2010	RP#47	RP-100238	477r4	Modification of the spectral flatness requirement and some editorial corrections	8.8.0	8.9.0
06-2010	RP-48	RP-100619	527r1	Corrections on the definition of PCMAX	8.9.0	8.10.0
06-2010	RP-48	RP-100619	556r2	CR on UE coexistence requirement	8.9.0	8.10.0
06-2010	RP-48	RP-100619	537	Correction of transient time definition for EVM requirements	8.9.0	8.10.0
06-2010	RP-48	RP-100619	535	CR: Corrections on MIMO demodulation performance requirements	8.9.0	8.10.0
06-2010				Correction of antenna configuration and beam-forming model for	9.0.0	0.40.0
	RP-48	RP-100619	546r1	DRS	8.9.0	8.10.0
06-2010	RP-48	RP-100619	558r1	Corrections of tables for Additional Spectrum Emission Mask	8.9.0	8.10.0
06-2010				Relaxation of the PDSCH demodulation requirements due to control	8.9.0	8.10.0
	RP-48	RP-100619	567	channel errors	0.9.0	
06-2010	RP-48	RP-100619	565	Correction of the UE output power definition for RX tests	8.9.0	8.10.0
06-2010	RP-48	RP-100620	520	Correction to FRC for CQI index 0	8.9.0	8.10.0
06-2010	RP-48	RP-100620	504r1	Fading CQI requirements for TDD mode	8.9.0	8.10.0
06-2010	RP-48	RP-100620	515r1	Correction to CQI test configuration	8.9.0	8.10.0
06-2010	RP-48	RP-100620	525r1	UE Categories for CSI reporting test	8.9.0	8.10.0
06-2010	RP-48	RP-100620	531	Correction of CQI and PMI delay configuration description for TDD	8.9.0	8.10.0
06-2010	RP-48	RP-100620	570	Minimum requirements for Rank indicator reporting	8.9.0	8.10.0
06-2010	RP-48	RP-100620	573	Correction to FDD and TDD CSI test configurations	8.9.0	8.10.0
09-2010	RP-49	RP-100914	604	Reference sensitivity requirements for the 1.4 and 3 MHz bandwidths	8.10.0	8.11.0
09-2010	RP-49	RP-100914	612	Band 13 and Band 14 spurious emission corrections	8.10.0	8.11.0
09-2010	RP-49	RP-100914	587	Missing note in Additional spurious emission test with NS_07	8.10.0	8.11.0
09-2010	RP-49	RP-100914	589r1	Downlink power for receiver tests	8.10.0	8.11.0
09-2010	RP-49	RP-100916	598	Correction of PDCCH content for PHICH test	8.10.0	8.11.0
09-2010	RP-49	RP-100916	580r1	Test configuration corrections to CQI reporting in AWGN	8.10.0	8.11.0
09-2010	RP-49	RP-100916	592	Throughput for multi-datastreams transmissions	8.10.0	8.11.0
09-2010	RP-49	RP-100916	594	Corrections to RF OCNG Pattern OP.1 and 2	8.10.0	8.11.0
12-2010	RP-50	RP-101324	671	Correction on the statement of TB size and subband selection in CSI tests	8.11.0	8.12.0
12-2010	RP-50	RP-101327	650	Correction to Band 12 frequency range	8.11.0	8.12.0
12-2010	RP-50	RP-101329	628	Removal of [] from TDD Rank Indicator requirements	8.11.0	8.12.0
12-2010	RP-50	RP-101329	633r1	Test configuration corrections to CQI TDD reporting in AWGN (Rel-8)	8.11.0	8.12.0
12-2010	RP-50	RP-101329	661r2	Correction of the PMI reporting in Multi-Layer Spatial Multiplexing performance test	8.11.0	8.12.0
12-2010	RP-50	RP-101330	643	EVM window length for PRACH	8.11.0	8.12.0
12-2010	RP-50	RP-101330	647	Removal of NS signalling from TDD REFSENS tests	8.11.0	8.12.0
12-2010	RP-50	RP-101330	640r1	Correction of Note 4 In Table 7.3.1-1: Reference sensitivity QPSK PREFSENS	8.11.0	8.12.0
03-2011	RP-51	RP-110337	697	PDCCH and PHICH performance: OCNG and power settings	8.12.0	8.13.0
03-2011	RP-51	RP-110337	704r1	Spurious emissions measurement uncertainty	8.12.0	8.13.0
03-2011	RP-51	RP-110338	70411	PMI performance: Power settings and precoding granularity	8.12.0	8.13.0
03-2011	RP-51	RP-110337	760r1	Clarification to LTE relative power tolerance table	8.12.0	8.13.0
04-2011	111 01		7 0011	Editorial: Spec Title correction, removal of "Draft"	8.13.0	8.13.1
06-2011	RP-52	RP-110788	770	CR: Corrections for UE to UE co-existence requirements of Band 3	8.13.1	8.14.0
06-2011	RP-52	RP-110787	812	Correction on CQI mapping index of RI test	8.13.1	8.14.0

06-2011	RP-52	RP-110787	776r1	Minor corrections to DL-RMC-s for Maximum input level	8.13.1	8.14.0
09-2011	RP-53	RP-111248	860r1	Removal of unnecessary channel bandwidths from REFSENS tables	8.14.0	8.15.0
09-2011	RP-53	RP-111248	867r1	Clarification on BS precoding information field for the RI FDD test	8.14.0	8.15.0
09-2011	RP-53	RP-111248	870 r1	CR for B14Rx requirement Rel 8	8.14.0	8.15.0
09-2011	RP-53	RP-111248	888 r1	CR to TS36.101: Correction on the accuracy test of CQI.	8.14.0	8.15.0
09-2011	RP-53	RP-111248	891	CR to TS36.101: Correction on CQI mapping index of TDD RI test	8.14.0	8.15.0
09-2011	RP-53	RP-111248	902	Correction of code block numbers for some RMCs	8.14.0	8.15.0
09-2011	RP-53	RP-111248	905	Correction to UL RMC for FDD and TDD	8.14.0	8.15.0
09-2011	RP-53	RP-111248	912 r1	Adding codebook subset restriction for single layer closed-loop spatial multiplexing test:	8.14.0	8.15.0
12-2011	RP-53	RP-111680	951	Clarification on applying CSI reports during rank switching in RI FDD test - Rel-8	8.15.0	8.16.0
12-2011	RP-53	RP-111680	954	UE spurious emissions	8.15.0	8.16.0
12-2011	RP-53	RP-111681	957r1	FDD-TDD co-existence REL-8	8.15.0	8.16.0
12-2011	RP-53	RP-111680	964	General review of the reference measurement channels	8.15.0	8.16.0
03-2012	RP-55	RP-120291	1012	RF: Updates and corrections to the RMC-s related annexes (Rel-8)	8.16.0	8.17.0
03-2012	RP-55	RP-120292	1043r 1	UE spurious emissions for Band 7 and Band 38 coexistence CR is only partially implemented as it is based on on the wrong version of the spec.	8.16.0	8.17.0
06-2012	RP-56	RP-120767	1197	FDD TDD co-existence requirement correction	8.17.0	8.18.0
06-2012	RP-56	RP-120764	1209	Correction of PHS protection requirements for TS 36.101	8.17.0	8.18.0
09-2012	RP-57	RP-121294	1227	Correct Transport Block size in 9RB 16QAM Uplink Reference Measurement Channel	8.18.0	8.19.0
09-2012	RP-57	RP-121295	1345	Random precoding granularity in PMI tests	8.18.0	8.19.0
12-2012	RP-58	RP-121849	1379	Correction of PCFICH power parameter setting	8.19.0	8.20.0
12-2012	RP-58	RP-121852	1432r 1	Band 1 to Band 33 and Band 39 UE coexistence requirements	8.19.0	8.20.0
12-2012	RP-58	RP-121849	1491r 2	Low-channel Band 1 coexistence with PHS	8.19.0	8.20.0
12-2012	RP-58	RP-121862	1501r 1	Clean up CR for Rel-8	8.19.0	8.20.0
12-2012	RP-58	RP-121852	1506r 1	UE-UE coexistence between bands with small frequency separation	8.19.0	8.20.0
03-2013	RP-59	RP-130258	1525	Corrections to CQI reporting	8.20.0	8.21.0
03-2013	RP-59	RP-130265	1540	Correction related to SNR definition for Rel-8	8.20.0	8.21.0
03-2013	RP-59	RP-130258	1576	UE-UE co-existence between Band 1 and Band 33/39	8.20.0	8.21.0

History

	Document history				
V8.2.0	November 2008	Publication			
V8.3.0	November 2008	Publication			
V8.4.0	January 2009	Publication			
V8.5.1	April 2009	Publication			
V8.6.0	July 2009	Publication			
V8.7.0	October 2009	Publication			
V8.8.0	February 2010	Publication			
V8.9.0	April 2010	Publication			
V8.10.0	July 2010	Publication			
V8.11.0	October 2010	Publication			
V8.12.0	January 2011	Publication			
V8.13.1	May 2011	Publication			
V8.14.0	June 2011	Publication			
V8.15.0	November 2011	Publication			
V8.16.0	January 2012	Publication			
V8.17.0	March 2012	Publication			
V8.18.0	July 2012	Publication			
V8.19.0	October 2012	Publication			
V8.20.0	February 2013	Publication			
V8.21.0	April 2013	Publication			