

AD-A102 594

SCIENCE APPLICATIONS INC MONTEREY CA
ATLANTIC HURRICANE STRIKE PROBABILITY PROGRAM (STRIKPA).(U)

F/6 4/2

JUL 81 J D JARRELL

N00226-78-C-3337

UNCLASSIFIED

SAI-1-425-02-228-01

NEPRF-CR-81-04

NL

1 OF 1
ADA
102594

END
DATE
19-81
DTIC

NAVENVPREDRSCHFAC
CONTRACTOR REPORT
CR-81-04

(18) NERF

ADA102594
NAVENVPREDRSCHFAC CR 81-04

ADA102594

ATLANTIC HURRICANE STRIKE PROBABILITY PROGRAM (STRIKPA)

Prepared By:

10 Jerry D. Jarrell
Science Applications, Inc.
Monterey, CA 93940

14 JULY 1981
Contract No/N00228-78-C-3337

11 JULY 1981

7 1981

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

81807041

Prepared For:

NAVAL ENVIRONMENTAL PREDICTION RESEARCH FACILITY
MONTEREY, CALIFORNIA 93940

411225

QUALIFIED REQUESTORS MAY OBTAIN ADDITIONAL COPIES
FROM THE DEFENSE TECHNICAL INFORMATION CENTER.
ALL OTHERS SHOULD APPLY TO THE NATIONAL TECHNICAL
INFORMATION SERVICE.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER NAVENVPREDRSCHFAC Contractor Report CR 81-04	2. GOVT ACCESSION NO. <i>AD-A102 594</i>	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and subtitle) Atlantic Hurricane Strike Probability Program (STRIKPA)	5. TYPE OF REPORT & PERIOD COVERED Final	
7. AUTHOR(s) Jerry D. Jarrell	6. PERFORMING ORG. REPORT NUMBER 1-425-02-228-01	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Science Applications, Inc. 2999 Monterey-Salinas Highway Monterey, CA 93940	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS PE 63207N PN 7W0513 TA CC00 NEPRF WU 6.3-14	
11. CONTROLLING OFFICE NAME AND ADDRESS Naval Air Systems Command Department of the Navy Washington, DC 20361	12. REPORT DATE July 1981	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) Naval Environmental Prediction Research Facility Monterey, CA 93940	13. NUMBER OF PAGES 30	
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.	15. SECURITY CLASS. (of this report) UNCLASSIFIED	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Tropical cyclone Hurricane	<i>A</i>	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) A program to accept Atlantic hurricane forecasts and create estimates of hurricane strike probabilities is described. The probabilities are based on a tri-modal bivariate normal distribution of forecast errors. The relationship of the occurrence of each mode to such predictors as motion components, geographical position and maximum wind is documented. Results of independent testing are reported. It is expected that strike probabilities will be available during the 1981 hurricane season. The format of input and a description of routine and special products are provided.		

TABLE OF CONTENTS

	Page
1.0 INTRODUCTION	1
2.0 MODEL DESCRIPTION.	1
2.1 Basis for Forecast Difficulty Estimation . .	1
2.1.1 Predicting the Population Probabilities. . .	7
2.1.2 Using the Predicted Population Probabilities in the Model	10
3.0 OPERATIONAL PRODUCTS	12
4.0 TESTING.	18
5.0 SUMMARY.	23

1.0 INTRODUCTION

The Atlantic Hurricane Strike Probability (STRIKPA) model is an interim step in the development of the Atlantic Wind Probability (WINDP-ATL) model. The concepts are for the most part identical to the western Pacific and eastern Pacific models. The exceptions are the way forecast difficulty is treated and the number and listing of stations for which strike probabilities are routinely computed.

2.0 MODEL DESCRIPTION

2.1 Basis for Forecast Difficulty Estimation

The basis for forecast difficulty estimation follows Crutcher (1980)¹. Using a clustering model (NORMIX) Crutcher identified three discrete bivariate normal populations of 24-hour forecast errors in the Atlantic Basin for the years 1970-1979. These are illustrated by 50% probability ellipses in figure 1.

Some modifications to Crutcher's work was necessary. The errors he used were adjusted for warning position error (WPE), but since this cannot be specified operationally it was necessary to replace this adjustment. An implicit assumption here is that the reintroduction of the WPE does not change the clustering. For any position on figure 1 (any 24-hour forecast error) there is a unique set of three probabilities whose sum is unity which is associated with the

¹Crutcher, H.L., 1980: Tropical Storm Forecast Error and the Bivariate Normal Distribution. 13th Tec. Conference on Hurricanes and Tropical Meteorology. AMS, Miami, FL, 1-5 Dec 1980.

Figure 1. Fifty percent probability ellipses of 24-hour forecast errors for difficulty class ONE, TWO and THREE forecasts. The size of the ellipses increase with increasing class number. Units are n mi.

three populations. Three population probabilities were determined for each case with the WPE removed. The WPEs were then reintroduced and the population statistics were recomputed. Table 1 compares statistics for the three populations with the WPE removed (provided by Crutcher for years 1970-1979) to those with the WPE (1970-1978; 1979 was withheld for testing).

	POPULATION ONE		TWO		THREE	
	WPE	No WPE	WPE	No WPE	WPE	No WPE
W-E Mean	-16.9	-16.0	14.9	13.1	11.0	8.6
S-N Mean	9.7	5.1	6.9	1.8	-8.2	-14.3
W-E St Dev	72.3	69.6	86.0	90.0	154.7	167.4
S-N St Dev	65.4	62.6	88.8	85.3	127.1	132.2
CORR COEF	-.206	-.212	.391	.452	.237	.259
(W-E error to S-N error)						

Table 1. Comparison of bivariate normal parameters with and without warning position error (WPE). The 'WPE' column was based on 24-hour forecasts for years 1970-1978, while those in the 'No WPE' column, not only have been adjusted for WPE, but also include one additional year, 1979. Units are nmi.

Some of the differences in Table 1 are attributable to the withholding of 1979 from the data set, but most are clearly related to the reintroduction of the WPE. In any case the differences do not appear to be of the magnitude that would influence the clustering measurably.

CLASS	ONE			TWO			THREE		
	NA	WP	EP	NA	WP	EP	NA	WP	EP
24 h	81	99	94	99	130	97	160	148	132
48 h	200	204	176	236	251	188	325	286	254
72 h	362	324	275	394	378	297	477	407	393

Table 2. Average forecast errors (n mi) for difficulty classes ONE, TWO and THREE as defined for the northwestern Pacific (WP), northeastern Pacific (EP) and the North Atlantic (NA) ocean basins.

For comparison purposes the estimated average forecast errors for the three Atlantic hurricane forecast populations have been compared with difficulty classes ONE, TWO and THREE in the northwest and northeast Pacific ocean basins (Table 2). In the Pacific, the method of separation was quite different not only from the Atlantic, but for the two Pacific basins. Nonetheless, Class ONE in each case represents the easier forecasts and class THREE the more difficult. Class TWO appears to be less related in the different basins, resembling more class THREE in the western Pacific and Class ONE in the eastern Pacific. In the Atlantic, class TWO appears to retain a separate character.

One can see evidence of a variety of distinctions between conditions in the three ocean basins. For example, positioning, with combinations of satellite, land radar and aircraft is far superior in the Atlantic. This shows up best in the short range (Class ONE) easiest forecast. Forecast errors are in general less in the eastern Pacific for several reasons, but major among these are the rapid demise (hence non verification) of recurring cyclones and the dominance of highly persistent westward tracks. Long range (72-hour) forecasts are much better in the western Pacific

than in the Atlantic while short range forecasts are generally better in the Atlantic. These differences are no doubt related to (a) more abundant reconnaissance in the Atlantic (improves short range forecasts); (b) emphasis on long range forecasts in the military oriented western Pacific forecasts, versus the short range public warning forecast, and (c) a greater frequency of low latitude (and hence easier long range forecast) cyclones in the western Pacific.

Figure 2 shows the three populations for the Atlantic as sets of nested 50% ellipses at 0, 12, 24, 48 and 72 hours. It is apparent that although clustering was performed on 24-hour forecasts, contrast between populations is present at all time intervals.

Several methods were tried in the current work to identify conditions attendant with forecasts in each of the three groups. To set the stage for this investigation one can think of a particular forecast error as a point on figure 1. Points near the origin could likely have come from any of the three populations while points far removed are much more likely to have come from the large error population (population THREE). Thus we can never specify with certainty from which population a particular forecast came even after we can verify its error. It is even more difficult to establish before hand, into which population an error will fall.

After the fact, we can establish the relative probability that an error came from each of the populations. This is based on the probability density (height of the probability surface) at the error point (i.e., on figure 1) under each of the three bivariate normal distributions. The

Figure 2. Nested fifty percent probability ellipses for 0,12, 24,48 and 72 hours. Difficulty classes ONE, TWO and THREE are top to bottom, figures 2a, 2b and 2c, respectively. Units are in n mi.

Figure 2a.

Figure 2b.

Figure 2c.

problem is first to forecast these population probabilities, or the position on figure 1. Once they are forecast, one must either select one population or use a combination. For probability purposes it is more reasonable to use a combination for two important reasons.

1. The relative probability of an error coming from any one population is rarely large (i.e., >60%). Thus, there is usually a sizable risk that the wrong population will be used.
2. Any predictive scheme which selects one population will be sensitive to changes in its predictors. There will be times when a small, perhaps meaningless, change in one predictor will alter the population selection and cause a large swing in the resulting strike or wind probabilities. This is undesirable since it undermines user confidence particularly if the probabilities oscillate at critical times.

2.1.1 Predicting the Population Probabilities. The most obvious method of discriminating between populations is on the basis of geography. Population ONE tends to be associated with low latitude tropical cyclones in the easterlies. Population THREE is associated with high latitude and recurving or post-recurvature cyclones. Speed of motion and direction of motion seems also to be important. Slow moving storms and westward moving storms are more often population ONE where fast moving and north or northeast tracks are predominately population THREE. Population TWO doesn't appear to be readily identified with usually recognized difficulty factors and may rather be a hybrid group which are otherwise population ONE or THREE recognized incorrectly.

by the forecaster, or they may be unusual forecasts (cooperatives, etc.).

Figure 3 shows the behavior of probabilities of populations ONE, TWO and THREE averaged over small increments of latitude. Notice that the probabilities are high (>0.5) for population ONE at low latitudes and drop off with increasing latitude. The opposite is true for population THREE. Linear correlations are high, average probability of population ONE, TWO and THREE correlated to latitude gives coefficients of -0.83, 0.03 and 0.77. Certainly the first and last are high enough so that latitude should be an excellent predictor for the average case. In individual forecasts, however, those correlation coefficients drop sharply to -0.29 and 0.27, respectively. Since the present interest is in individual cases the high composite correlation is useless.

Simply using average values on a geographic grid (i.e., 5° lat-lon Marsden squares) provides little variability in the population probabilities. Prior screening on direction speed increases the variability, but the further stratification reduces the case numbers falling within 5° squares to the extent that considerable smoothing is necessary. Such smoothing has the effect of destroying the contrast created by prior screening.

A set of typical difficulty predictors was created and matched with the population probabilities. The means, standard deviations and the correlation matrix are given in Table 3. As can be seen from Table 3, the probabilities (P_1 , P_2 and P_3) are not well correlated with any of the parameters usually related to forecasting difficulty.

Figure 3. Scatter diagram of probabilities of a forecast being class ONE (●), TWO (○) or THREE (Δ) averaged over 1° latitude bands. Lines are least squares fit to the average probabilities.

However, the larger correlations (.0,.14) are significant (assuming about one-fourth of the 822 cases (200) are independent). Stepwise linear regression equations were fit to the data. The equations are also given in Table 3. These equations were tested on 1979 forecasts as independent data, and the correlation between the observed and predicted probabilities was .36 for P_1 and .32 for P_3 . P_2 was negatively correlated with its predicted value so it will be treated as a slack variable ($P_2 = 1 - P_1 - P_3$).

Once the probabilities are predicted, they are adjusted in two ways.

- (1) Each of the probabilities is constrained to be $0 \leq P_i \leq 1$.
- (2) As mentioned above probability P_2 is set equal to $1 - P_1 - P_3$.

2.1.2 Using the Predicted Population Probabilities in the Model. The strike probability code generates three runs; each run using the bivariate parameters from a different population. The final probabilities are a sum weighted by the predicted population probabilities. Symbolically this is

$$P(\varepsilon) = \sum_{i=1}^3 P(\varepsilon | k=i) P(k=i) ,$$

where $P(\varepsilon)$ is the probability of some event ε , $P(\varepsilon | k=i)$ is the probability of event ε given that we have a population i forecast, and $P(k=i)$ is the probability that the current forecast is indeed from population i .

	P_1	P_2	P_3	LAT	LON	V_m	U	V
Mean	0.375	0.351	0.274	26.6	66.0	-0.006	-0.001	-0.001
Std. Dev.	0.105	0.129	0.211	8.1	16.2	0.006	0.001	0.001
Units	None	None	None	deg	deg	ft	ft	ft
Cov. with								
P_1	1.0							
P_2	-0.432	1.0						
P_3	-0.800	-0.205	1.0					
LAT	-0.289	-0.011	.274	1.0				
LON	.189	.059	-.211	-.331	1.0			
V_m	-.006	-.009	.014	.246	-.064	1.0		
U	.334	-.010	.316	.715	-.261	.149	1.0	
V	.148	-.089	.192	.266	-.049	.060	.313	1.0

REGRESSION EQUATIONS

$$P_1 = 0.3176 - .0020LAT + .0012LON + .0006Vm - .0049U - .0018V$$

$$P_2 = 0.3283 + .0005LON \quad .0023U + .0005V$$

$$P_3 = 0.3628 + .0004LAT - .0017LON + .0003Vm + .0200U - .0064V$$

This equation was
not used. See
section 2.1.1

Table 3. Statistics relating class probabilities P_1 , P_2 and P_3 to several predictors. Regression equations relating the probabilities to the predictors are shown across the bottom. This is based on forecasts from years 1970-78.

3.0 OPERATIONAL PRODUCTS

The strike probability product will be available under operational evaluation during the 1981 hurricane season for the North Atlantic.

Product Tropical cyclone strike probabilities for preselected points. This can be disseminated automatically to a distribution list by Fleet Numerical Oceanography Center (FNOC) via AUTODIN initially and possibly later via the Automated Weather Network (AWN). Included in this product will be a table of forecast confidence estimates for the Naval Eastern Oceanography Center (NEOC) Norfolk, VA.

This product could be generated routinely by FNOC upon receipt of the NEOC Norfolk retransmission of NHC Miami's tropical warning every six hours. The message would give the probabilities of a particular tropical cyclone being within 75 n mi (left) or 50 n mi (right), relative to forecast track, of twelve preselected points of Navy interest and seventeen points of Air Force interest. Although subject to change the points currently listed within the program are:

Navy Points

Roosevelt Roads, PR
Guantanamo, Cuba
Key West, FL
Pensacola, FL
New Orleans, LA
Corpus Christi, TX
Mayport, FL
Charleston, SC
Morehead City, NC
Norfolk, VA
New London, CT
Bermuda, BWI

Air Force Points

Howard AFB, Panama
MacDill AFB, FL
Tyndall AFB, FL
Eglin AFB, FL
Keesler AFB, MS
Ellington AFB, TX
Bergstrom AFB, TX
San Antonio Basin, TX
Homestead AFB, FL
Patrick AFB, FL
Hunter AAF, GA
Myrtle Beach, SC
Andrews AFB, MD
Dover AFB, DE
Atlantic City, NJ
McGuire AFB, NJ
Pease AFB, NH

The strike probabilities, computed upon receipt of each 6-hourly warning and given at 12-hour intervals after warning time, are presented in two forms. The first is the instantaneous probability, valid at a single instant of time only. The second is a time integrated probability -- the probability that a strike will occur at some time between the effective time of the warning and multiples of 12 hours thereafter. Similarly probabilities of 30 and 50 kt winds are expected to be added to this message at a later date.

Additionally the program could be run upon special request although the implementing software is not now in place. The user would make his request to FNOC via AUTODIN. He would include information sufficient to identify the tropical cyclone, the point of concern (latitude/longitude), and the radii about that point describing the area considered to constitute a strike. The output would be in the same form as the above product (i.e., instantaneous and time integrated strike probabilities at 12-hour intervals after warning time).

An example for hurricane David at 0400 GMT 3 and 4 Sep 1979 follows to illustrate the input and output. At 0400 GMT 3 Sep David was about 80 n mi ESE of Miami with 90 kt maximum winds. He was expected to skirt the length of the Florida east coast and thereafter go inland in the Carolinas on a recurving track up the Atlantic seaboard. Since David was still on a northwest track, either a continuation of that track into the Gulf of Mexico or the forecast recurvature track was possible; thus stations along the east coast as well as those in the Gulf of Mexico were under some threat.

Two Atlantic Strike Probability Programs (STRIKPA) runs for David are discussed below.

Run 1 is a standard FNOC originated run at 04/0400 GMT.

Run 2 is in response to a hypothetical user at 03/0400 GMT specifying an area within 50 n mi of Cape Kennedy (28.4N, 80.6W). His request would have gone to FNOC via AUTODIN message in APR format (Table 4 gives a probable APR format when and if individual user runs are provided). Required input would be at least one Area of Concern (lat/long) and radii to the left and right of that point (relative to forecast motion).

Tables 5 and 6 illustrate the output from Runs 1 and 2, respectively. These tables also contain some descriptive information. It should be noted that a users manual will be distributed to operational users of STRIKPA prior to the dissemination of this product.

BT
UNCLAS//N03160
TROPICAL CYCLONE STRIKE PROBABILITY REQUEST, ATLANTIC
Q92X0001
/APR,AP(STRIKPA), (other entries on this line as required)
/STM,NM(DAVID),NR(NA04),DH(7909030400)/
/AOC,LA(284N),L)(806W),RL(50),RR(50)/

. (as many AOC lines as needed)

. .

. .

. .

/AAD,
etc. (as needed)
/PARA,
/ERK/ (required end)
BT
/STM: Storm line
NM: Name of cyclone
NR: Cyclone number, Ocean Basin NA=North Atlantic
DH: Effective Dat/time of warning. DH(7909030400) =
030400Z Sep 1979
(Day 03 hour 0400 GMT)
/AOC: Are of concern line
LA: Latitude of point of concern. LA(284N)=28.4° north
LO: Longitude of point of concern. LO9806W=80.6° west.
RL: Radius of area of concern to left of storm's track
RR: Radius of area of concern to right of storm's track.
Usually RL is greater than RR. Default values of 75/50
n mi will be used if both RL and RR are zero or blank.

Note: One input record will be rewritten for each /AOC (including
storm information). Request message in accordance with
FLENUMWEACEN, 1977: ASWOCAS Request Procedures Manual,
Vol. 2.

Table 4. Sample Automated Product Request (APR) System Message.
This information is tentative since software to accept
this request is not currently in place.

Run 1 Output (Product 1)

STRIKE PROBABILITY FORECASTS

DAVID 040400Z

ROOSEROADS THREAT NIL*

GUANTANAMO THREAT NIL

KEY WEST THREAT NIL

PENSACOLA 00ININ*12ININ 24ININ 36ININ 48IN01 60IN01 72IN02

NEWORLEANS 00ININ 12ININ 24ININ 36ININ 48ININ 60ININ 72IN01

CORPUR CHR THREAT NIL

MAYPORT 00ININ 124250 240451 360251 480151 600151 72IN51

CHARLESTON 00ININ 121ININ 242333 360833 480333 600233 720133

MOREHD CTY 00ININ 12ININ 240304 360714 480417 600218 720118

NORFOLK 00ININ 12ININ 24ININ 360306 480411 600313 720214

NEW LONDON 00ININ 12ININ 24ININ 36ININ 48IN01 600104 720207

BERMUDA 00ININ 12ININ 24ININ 36ININ 48ININ 60ININ 72IN01

FOR NEOC NORVA: FORECAST CONFIDENCE TABLE

TIME	PROB	DIST	PROB	DIST	PROB
12HR	50	50	26	75	24
24HR	48	100	25	150	27
48HR	33	200	25	300	42
72HR	28	300	24	450	48

DIST are radii of circles about forecast positions. PROB are probabilities that verifying position will be within inner circle, between circles or outside outer circle respectively. For example, probability that 24-hr forecast error is less than 100 nm is 48%; between 100-150 nm is 25%; and greater than 150 nm is 27%.

PROBABILITIES BASED ON FOLLOWING FORECAST

LAT/LONG of preselected points are stored within program.

Strike is predefined to occur if tropical cyclone passes within 75 nm radius (left) or 50 nm radius (right) of track of tropical cyclone.

*THREAT NIL means all probabilities for this station were <0.5%. IN means insignificant (<0.5%).

Table 5. Output from Run (1).

Run 2 Output (Product 2)

STRIKE PROBABILITIES FOR TROPICAL CYCLONE DAVID
FROM 030400Z BASED ON FOLLOWING FORECAST
002430776090 122610803100 242800810065 483200815035 723600790025
STRIKE IS BEING WITHIN 50NM RIGHT AND 50NM LEFT OF 28.4N 80.6W
STRIKE PROBS**COININ 120101 241727 360428 480128 600128 72IN28

24 Time 24 hours after synoptic time 030000GMT

17 The probability of a "strike" at 040000Z
(030000 + 24 hr) is 17%

27 The probability of a "strike" between 030000Z and
040000Z (24 hour period) is 27%

ABBREVIATIONS:

Number 01-99; strike probability in %

IN = insignificant; p<0.5% Prevents representation
of 0% and 100% which
occur only as an
approximation.

The input forecast data is error checked only in that
the tropical cyclone forecast motion is computed between forecast
points. If vector motion deviates substantially from the climato-
logical mean, the following warning message will appear in all
products:

UNUSUAL MOTION -- PLEASE RECHECK WARNING DATA

**Note that although the forecast warning time is 040400Z, the 00ININ reflects
an extrapolation of minus four hours to 040000Z, whereby the program is
initialized. All subsequent time intervals are from 040000Z initialization.
This minus four hour extrapolation is an internal program adjustment. The
00 position in the "PROBABILITIES BASED ON FOLLOWING FORECAST" section of
the output message is also an extrapolated position.

Table 6. Output from Run (2).

4.0 TESTING

The 1979 Atlantic tropical cyclone forecasts were withheld from the developmental data as a test set. This set consisted of 245 nowcasts and 214 12-hour forecasts, 195 24-hour forecasts, 112 48-hour forecasts and 99 72-hour forecasts which could be verified.

The testing consisted of running strike probability forecasts off Atlantic hurricane (and lesser tropical cyclone) forecasts for 12 Navy points of current interest and an additional 24 points scattered throughout the open water areas of the North Atlantic and Gulf of Mexico. The Navy points are listed in section 3.0.

Tables 7 and 8 compare the expected to observed number of "strikes". Predictions were grouped into cells of increasing width, $<\frac{1}{2}\%$, $\frac{1}{2}$ to $1\frac{1}{2}\%$, $1\frac{1}{2}$ to $3\frac{1}{2}\%$, etc. and strikes observed based on best track. Time integrated probabilities over t hours were verified only if a continuous record of verifying positions was available for t hours. This prevents an obvious bias by excluding of necessity those that die before they reach a station but including those which strike within the first few hours. This is progressively less important in shorter range forecasts.

It is difficult to assess the significance of such information, but verification is obviously necessary. To illustrate the problem in establishing the significance of differences in expected vs observed, let's assume we want to use a test on whether the two are different. One such test assumes the number of successes (expected) in N Bernoulli trials is given by PxN where P is the probability of a single success. Our P is the forecast strike probability.

A < P < B	24 Hour			48 Hour			72 Hour		
	EXP	OBS	CASES	EXP	OBS	CASES	EXP	OBS	CASES
0 - $\frac{1}{2}\%$	0	0	6731	0	0	3627	0	0	2974
$\frac{1}{2}\% - 1\frac{1}{2}\%$	0	0	75	2	2	186	4	3	429
$1\frac{1}{2}\% - 3\frac{1}{2}\%$	2	2	56	5	6	147	3	7*	161
$3\frac{1}{2}\% - 7\frac{1}{2}\%$	4	1	59	3	5	72	0	0	0
$7\frac{1}{2}\% - 15\frac{1}{2}\%$	7	5	60	0	0	0	0	0	0
$15\frac{1}{2}\% - 31\frac{1}{2}\%$	13	10	39	0	0	0	0	0	0
$31\frac{1}{2}\% - 63\frac{1}{2}\%$	0	0	0	0	0	0	0	0	0
$63\frac{1}{2}\% - 100\%$	0	0	0	0	0	0	0	0	0
	21	18	7020	10	15	4032	7	10	3564

Table 7. Comparison of expected to observed number of strikes based on an independent sample of 1979 Atlantic tropical cyclone forecasts. Strike probabilities were computed on 245 warnings and for 12 stations plus 24 other points in the open Atlantic. These are for instantaneous probabilities and a strike was considered to have occurred if the nowcast probability exceeded 50%.

*Differences are significant ($\alpha=0.05$)

A < P < B	24 Hour			48 Hour			72 Hour		
	EXP	OBS	CASES	EXP	OBS	CASES	EXP	OBS	CASES
0 - $\frac{1}{2}\%$	0	0	6554	0	0	3385	0	0	2542
$\frac{1}{2}\% - 1\frac{1}{2}\%$	0	1	53	2	0	170	3	1	226
$1\frac{1}{2}\% - 3\frac{1}{2}\%$	0	0	45	3	0	122	5	0*	213
$3\frac{1}{2}\% - 7\frac{1}{2}\%$	3	2	59	5	0*	93	12	1*	240
$7\frac{1}{2}\% - 15\frac{1}{2}\%$	5	5	50	14	15	124	23	29	210
$15\frac{1}{2}\% - 31\frac{1}{2}\%$	14	10	63	18	25	88	19	32*	91
$31\frac{1}{2}\% - 63\frac{1}{2}\%$	26	23	60	17	12	37	13	10	31
$63\frac{1}{2}\% - 100\%$	23	21	28	10	10	13	9	8	11
	71	62	6912	69	62	4032	84	81	3564

Table 8. Same as Table 7 but time integrated probabilities are given.

*Indicates differences are significant ($\alpha=0.05$)

We can use a binomial distribution to see if our observed "strikes" is close enough to the expected. In Table 7, the worst comparison was 3 expected vs 7 observed with 161 cases (72-hour instantaneous). The number three was arrived at by noting the average strike probability in that cell ($1\frac{1}{2}$ to $3\frac{1}{2}\%$) was 2%, and 2% of 161 is rounded to 3. The standard deviation on the 2% is 1.1% using 161 independent cases. Five percent of the time we expect the "observed" to fall more than 1.96 standard deviations away from the mean or outside the interval 0 to 4.2%. Since we observed 4.35% (7/161), we might be alarmed, this represents 2.14 standard deviations away from 2.00 which is significant. The problem of interdependence can be seen by noting there are only 195 24-hour forecasts, yet there are (from Table 7) 7020 24-hour strike probability forecasts. These are obviously interrelated. To correct for this we usually assume one-fourth of the cases are independent. When we do that none of the differences in Tables 7 and 8 are significantly different. With or without this assumption, the agreement between observed and expected is excellent.

To provide more insight into the behavior of the STRIKP's as a hurricane threatens, a summary of the STRIKP's for the 72 hours prior to the six 1979 strikes on the Navy test points is provided as Tables 9 and 10. Those probabilities which were counted as having verified as a strike are underlined. Some which verified were not counted because they were not observable during the entire verification period. Notice that some of the small (under 2%) probabilities actually verified. With Frederick, even a 12-hour 1% forecast resulted in a strike on Guantanamo. That was a case of an ill-defined depression whose track was, and still is, in doubt.

HURRICANE BOB .. NEW ORLEANS 11 JULY 1979 1600EMT

BOB	101600Z	NEWORLEAMS	00ININ	12ININ	<u>241825</u>	360727	480228
BOB	102200Z	NEWORLEAMS	00INIM	120202	<u>242039</u>	360439	480139
BOB	110400Z	NEWORLEAMS	00INIM	121821	<u>241647</u>	360847	480147
BOB	111000Z	NEWORLEAMS	00INIM	124378	240178		
BOB	111600Z	NEWORLEAMS	<u>008484</u>	120192	<u>241N92</u>		

TROPICAL STORM CLAUDETTE .. ROOSEVELTROADS, P.R. 18 JULY 1979 1000EMT

CLAUDETTE	161600Z	ROOSEVELTROADS	THREAT	MIL			
CLAUDETTE	162200Z	ROOSEVELTROADS	THREAT	MIL			
CLAUDETTE	170400Z	ROOSEVELTROADS	00INIM	12ININ	<u>240406</u>		
CLAUDETTE	171000Z	ROOSEVELTROADS	00INIM	12ININ	<u>241827</u>		
CLAUDETTE	171600Z	ROOSEVELTROADS	00INIM	122931	<u>240457</u>	361N57	481N57 601N57 701N57
CLAUDETTE	172200Z	ROOSEVELTROADS	00INIM	<u>122859</u>	<u>241N61</u>	361N61	481N61 601N61 701N61
CLAUDETTE	180400Z	ROOSEVELTROADS	<u>000707</u>	120283	<u>241N83</u>	361N83	481N83 601N83 701N83
CLAUDETTE	181000Z	ROOSEVELTROADS	<u>006767</u>	121N68	<u>241N68</u>	361N68	481N68 601N68 701N68

HURRICANE DAVID .. MAYPORT, FLORIDA 4 SEPT 1979 1600EMT

DAVID	011600Z	MAYPORT	00INIM	12ININ	<u>241N11</u>	361N11	481N11
DAVID	012200Z	MAYPORT	00INIM	12ININ	<u>241N11</u>	360101	480307 600110 700110
DAVID	020400Z	MAYPORT	00INIM	12ININ	<u>241N11</u>	360101	480308 600111 700111
DAVID	021000Z	MAYPORT	00INIM	12ININ	<u>241N11</u>	360204	480410 600112 700112
DAVID	021600Z	MAYPORT	00INIM	12ININ	<u>241N11</u>	360408	480413 600113 700113
DAVID	022200Z	MAYPORT	00INIM	12ININ	<u>240304</u>	360847	480518 600114 700114
DAVID	030400Z	MAYPORT	00INIM	12ININ	<u>240609</u>	<u>361020</u>	<u>480421</u> 600115 700115
DAVID	031000Z	MAYPORT	00INIM	12ININ	<u>240714</u>	<u>360818</u>	<u>480520</u>
DAVID	031600Z	MAYPORT	00INIM	120303	<u>242235</u>	<u>360536</u>	<u>480626</u> 600116 700116
DAVID	032200Z	MAYPORT	00INIM	122934	<u>242247</u>	<u>360548</u>	<u>480648</u> 600117 700117
DAVID	040400Z	MAYPORT	00INIM	<u>124250</u>	<u>240451</u>	<u>360251</u>	<u>480151</u> 600151 700151
DAVID	041000Z	MAYPORT	000404	123270	<u>240370</u>	<u>360170</u>	<u>480170</u> 600170 700170
DAVID	041600Z	MAYPORT	<u>002787</u>	120287	<u>241N87</u>	<u>361N87</u>	<u>481N87</u> 601N87 701N87

Table 9. Summary of strike probabilities prior to the closest point of approach (CPA) of Hurricane Bob to New Orleans, Tropical Storm Claudette to Roosevelt Roads, P.R. and Hurricane David to Mayport, Florida. Where forecasts were available strike probability estimates were computed 72 hours prior to CPA. Underlined probabilities verified in a "strike".

1. 1. HME FREDERICK 11 ROOSEVELT Roads P.R. 4 SEPT 1979 1800HMT

FREDERICK	011600Z	ROOSEVELT	00INIM	12INIM	24ININ	06ININ	480101	600101	721115
FREDERICK	011600Z	ROOSEVELT	00INIM	12INIM	24ININ	06IN01	480101	600101	721115
FREDERICK	012200Z	ROOSEVELT	00INIM	12INIM	24ININ	060102	480408	600102	721115
FREDERICK	020400Z	ROOSEVELT	00INIM	12INIM	24ININ	060407	480415	600104	721115
FREDERICK	021600Z	ROOSEVELT	00INIM	12INIM	24IN01	060612	480415	600105	721115
FREDERICK	021600Z	ROOSEVELT	00INIM	12INIM	240203	060616	480415	600105	721115
FREDERICK	022200Z	ROOSEVELT	00INIM	12INIM	240108	060601	480101	600101	721115
FREDERICK	030400Z	ROOSEVELT	00INIM	12INIM	240108	060420	480101	600101	721115
FREDERICK	031600Z	ROOSEVELT	00INIM	120101	241758	060507	480105	600105	721115
FREDERICK	031600Z	ROOSEVELT	00INIM	121012	241854	060405	480105	600105	721115
FREDERICK	032200Z	ROOSEVELT	00INIM	123947	241148	060548	480145	601N45	721145
FREDERICK	040400Z	ROOSEVELT	00INIM	122083	241N83	061N83	481N83	601N83	721145
FREDERICK	041600Z	ROOSEVELT	005555	122080	240200	061N80	481N80	601N80	721145
FREDERICK	041600Z	ROOSEVELT	009898	120398	241N98	061N98	481N98	601N98	721145

1. 2. HME FREDERICK 11 GUANTANAMO CUBA 7 SEPTEMBER 1979 1800HMT

FREDERICK	041400Z	GUANTANAMO	00INIM	12INIM	24ININ	060206	480107	600101	721115
FREDERICK	041600Z	GUANTANAMO	00INIM	12INIM	24ININ	060407	480412	600114	721115
FREDERICK	042200Z	GUANTANAMO	00INIM	12INIM	240203	060713	480415	600115	721115
FREDERICK	050400Z	GUANTANAMO	00INIM	12INIM	24IN01	060408	480415	600115	721115
FREDERICK	051000Z	GUANTANAMO	00INIM	12INIM	240206	060511	480614	600115	721115
FREDERICK	051600Z	GUANTANAMO	00INIM	12INIM	240101	060408	480611	600115	721115
FREDERICK	052200Z	GUANTANAMO	00INIM	12INIM	240507	060817	480418	600220	721145
FREDERICK	060400Z	GUANTANAMO	00INIM	12INIM	240811	060919	480620	600221	721145
FREDERICK	061000Z	GUANTANAMO	00INIM	12INIM	240304	060513	480614	600215	721115
FREDERICK	061600Z	GUANTANAMO	00INIM	12IN01	240611	060515	480616	600117	720115
FREDERICK	062200Z	GUANTANAMO	00INIM	120101	240610	060414	480615	600115	721115
FREDERICK	070400Z	GUANTANAMO	005454	120369	240169				

1. 3. HME FREDERICK 11 PENSACOLA FLORIDA 13 SEPT 1979 0400HMT

FREDERICK	100400Z	PENSACOLA	00INIM	12INIM	24ININ	06ININ	480101	600104	721115
FREDERICK	101000Z	PENSACOLA	00INIM	12INIM	24ININ	06ININ	480106	600207	721115
FREDERICK	101600Z	PENSACOLA	00INIM	12INIM	24ININ	06IN01	480205	600208	721115
FREDERICK	102200Z	PENSACOLA	00INIM	12INIM	24ININ	060101	480206	600208	721115
FREDERICK	110400Z	PENSACOLA	00INIM	12INIM	24ININ	060102	480308	600214	721115
FREDERICK	111000Z	PENSACOLA	00INIM	12INIM	24ININ	060407	480412	600214	721115
FREDERICK	111600Z	PENSACOLA	00INIM	12INIM	24IN01	060508	480413	600215	721115
FREDERICK	112200Z	PENSACOLA	00INIM	12INIM	240102	060612	480415	600216	721115
FREDERICK	120400Z	PENSACOLA	00INIM	12INIM	241622	060925	480626	600126	721115
FREDERICK	121000Z	PENSACOLA	00INIM	121416	241545	060845	480145	600145	721145
FREDERICK	121600Z	PENSACOLA	00INIM	122855	241446	060846	480146	601N46	721146
FREDERICK	122200Z	PENSACOLA	00INIM	124958	240758	060158	481N58	601N58	721146
FREDERICK	130400Z	PENSACOLA	006262	121083	24IN83	06IN83	48IN83	60IN83	721146

2. Same as Table 1, but for Hurricane Frederick during his approach to
the Bahamas, P.R., Guantnamo, Cuba and Pensacola, Florida.

5.0 SUMMARY

The strike probability concepts have been thoroughly tested in operational use and with independent testing in the western Pacific. The extensions of those concepts to the Atlantic are based on sound statistical principles. The Atlantic model independent test results show excellent agreement between the observed and the expected. Barring a dramatic shift in forecast accuracy, these tests and Pacific operational experience with most of the important model aspects, suggest the model will perform reliably.

DISTRIBUTION: CR 81-04

COMMANDER IN CHIEF U.S. ATLANTIC FLEET NORFOLK, VA 23511	COMMANDING OFFICER USS FORRESTAL (CV-59) ATTN: MET. OFFICER FPO MIAMI 34080	COMMANDER IN CHIEF ATLANTIC NAVAL BASE NORFOLK, VA 23511
U.S. ATLANTIC (NO09/04E) ATTN: NSAP SCIENCE ADVISOR NORFOLK, VA 23511	COMMANDING OFFICER USS INDEPENDENCE (CV-62) ATTN: MET. OFFICER FPO NEW YORK 09537	SPECIAL ASSISTANT TO THE ASSISTANT SECNAV (R&D) RM 4E741, THE PENTAGON WASHINGTON, DC 20350
COMMANDER IN CHIEF U.S. PACIFIC FLEET PEARL HARBOR, HI 96860	COMMANDING OFFICER USS JOHN F. KENNEDY (CV-67) ATTN: MET. OFFICER FPO NEW YORK 09538	CHIEF OF NAVAL RESEARCH LIBRARY SERVICES, CODE 734 RM 633, BALLSTON TOWER #1 800 QUINCY STREET ARLINGTON, VA 22217
COMMANDER SECOND FLEET FPO NEW YORK 09501	COMMANDING OFFICER USS NIMITZ (CVN-68) ATTN: MET. OFFICER FPO NEW YORK 09542	CHIEF OF NAVAL OPERATIONS U.S. NAVAL OBSERVATORY OP-952 WASHINGTON, DC 20390
COMSECONDFLT ACOS TACTICAL DEV. & EVAL. ATTN: NSAP SCIENCE ADVISOR BOX 100 CINCLANTFLY COMPOUND NORFOLK, VA 23511	COMMANDING OFFICER USS EISENHOWER (CVN-69) ATTN: MET. OFFICER FPO NEW YORK 09532	CHIEF OF NAVAL OPERATIONS OP-622C NAVY DEPARTMENT WASHINGTON, DC 20350
COMMANDER U.S. NAVAL FORCES, AZORES APO NEW YORK 09406	COMMANDING OFFICER USS SARATOGA (CV-60) ATTN: MET. OFFICER FPO NEW YORK 09587	CHIEF OF NAVAL OPERATIONS ATTN: DR. R. W. JAMES, OP-95201 U.S. NAVAL OBSERVATORY 34TH & MASS. AVE. NW WASHINGTON, DC 20390
COMMANDER U.S. NAVAL FORCES, CARIBBEAN FPO MIAMI 34051	COMMANDING OFFICER USS MOUNT WHITNEY (LCC-20) ATTN: MET. OFFICER FPO NEW YORK 09517	CHIEF OF NAVAL MATERIAL (MAT-034) NAVY DEPT. WASHINGTON, DC 22332
COMMANDER NAVAL AIR FORCE U.S. ATLANTIC FLEET NORFOLK, VA 23511	COMMANDING OFFICER USS GUADALCANAL (LPH-7) ATTN: MET. OFFICER FPO NEW YORK 09562	WEATHER ELEMENT NATIONAL MILITARY COMMAND CENTER THE PENTAGON - RM 20921H WASHINGTON, DC 20301
COMMANDER NAVAL SURFACE FORCE U.S. ATLANTIC FLEET NORFOLK, VA 23511	COMMANDING OFFICER USS GUAM (LPH-9) ATTN: MET. OFFICER FPO NEW YORK 09563	DEPUTY DIRECTOR FOR OPERATIONS (ENVIRONMENTAL SERVICES) OJCS, RM 1B679, THE PENTAGON WASHINGTON, DC 20301
COMMANDER MINE WARFARE COMMAND ATTN: NSAP SCIENCE ADVISOR CODE 006 CHARLESTON, SC 29408	COMMANDING OFFICER USS INCHON (LPH-12) ATTN: MET. OFFICER FPO NEW YORK 09529	DET. 2, HQ, AWS THE PENTAGON WASHINGTON, DC 20330
COMSUBFORCE U.S. ATLANTIC FLEET ATTN: NSAP SCIENCE ADVISOR NORFOLK, VA 23511	COMMANDING OFFICER USS IWO JIMA (LPH-2) ATTN: MET. OFFICER FPO NEW YORK 09161	NAVAL DEPUTY TO THE ADMINISTRATOR NOAA, RM 200, PAGE BLDG. #1 3300 WHITEHAVEN ST. NW WASHINGTON, DC 20235
COMMANDER AMPHIBIOUS GROUP 2 ATTN: METEOROLOGICAL OFFICER FPO NEW YORK 09501	COMMANDING OFFICER USS NASSAU (LHA-4) ATTN: MET OFFICER FPO NEW YORK 09557	OFFICER IN CHARGE NAVOCEANCOMDET FEDERAL BLDG. ASHEVILLE, NC 28801
COMMANDER OPERATIONAL TEST AND EVALUATION FORCE NAVAL BASE NORFOLK, VA 23511	COMMANDING OFFICER USS SAIPAN (LHA-2) ATTN: MET. OFFICER FPO NEW YORK 09549	CPOIC NAVOCEANCOMDET, CHASE FIELD BEEVILLE, TX 78103
COMMANDER OPTEVFOR ATTN: NSAP SCIENCE ADVISOR NORFOLK, VA 23511	COMMANDING OFFICER USS PUGET SOUND (AD-38) ATTN: MET. OFFICER FPO NEW YORK 09544	OFFICER IN CHARGE NAVOCEANCOMDET U.S. NAVAL AIR STATION FPO NEW YORK 09560
OFFICER IN CHARGE NEW LONDON TEST & EVALUATION FORCE DET. NEW LONDON LABORATORY NEW LONDON, CT 06320	COMMANDING OFFICER USS LASALLE (AGF-3) ATTN: MET. OFFICER FPO NEW YORK 09577	OFFICER IN CHARGE NAVOCEANCOMDET NAVAL AIR STATION BRUNSWICK, ME 04011
COMMANDER SURFACE WARFARE DEV. GRP. NAVAL AMPHIBIOUS BASE, LITTLE CREEK NORFOLK, VA 23521	COMMANDING OFFICER USS LEXINGTON (AVT-16) FPO MIAMI 34088	OFFICER IN CHARGE NAVOCEANCOMDET CARSWELL AFB, TX 76127
COMMANDING OFFICER USS AMERICA (CV-66) ATTN: MET. OFFICER FPO NEW YORK 09531	COMMANDING GENERAL FLEET MARINE FORCE, ATLANTIC ATTN: NSAP SCIENCE ADVISOR NORFOLK, VA 23511	OFFICER IN CHARGE NAVOCEANCOMDET NAVAL AIR STATION CECIL FIELD, FL 32215
	COMMANDING GENERAL 2ND MARINE AIRCRAFT WING MARINE CORPS AIR STATION CHERRY POINT, NC 28533	OFFICER IN CHARGE NAVOCEANCOMDET NAVAL STATION CHARLESTON, SC 29408

OFFICER IN CHARGE NAVOCEANCOMDET NAVAL AIR STATION CORPUS CHRISTI, TX 78419	OFFICER IN CHARGE NAVOCEANCOMDET MONTEREY, CA 93940	COMMANDER NAVAL SAFETY CENTER NAVAL AIR STATION NORFOLK, VA 23511
CPOIC NAVOCEANCOMDET NAVAL AIR STATION DALLAS, TX 75211	COMMANDING OFFICER OFFICE OF NAVAL RESEARCH EASTERN/CENTRAL REGIONAL OFFICE BLDG. 114, SECT. D 666 SUMMER ST. BOSTON, MA 02210	COMMANDER NAVAIRSYSCOM ATTN: LIBRARY, AIR-0004 WASHINGTON, DC 20361
OFFICER IN CHARGE U.S. NAVOCEANCOMDET BOX 16 FPO NEW YORK 09593	COMMANDING OFFICER NORDA, CODE 101 NSTL STATION BAY ST. LOUIS, MS 39529	COMMANDER NAVAIRSYSCOM, AIR-370 WASHINGTON, DC 20361
OFFICER IN CHARGE NAVOCEANCOMDET NAS, BOX 9048 KEY WEST, FL 33040	COMMANDING OFFICER FLEET INTELLIGENCE CENTER EUROPE & ATLANTIC NORFOLK, VA 23511	COMMANDER NAVAIRSYSCOM MET. SYS. DIV., AIR-553 WASHINGTON, DC 20360
CPOIC NAVOCEANCOMDET NAVAL AIR STATION KINGSVILLE, TX 78363	COMMANDER NAVOCEANCOM NSTL STATION BAY ST. LOUIS, MS 39529	COMMANDER EARTH & PLANETARY SCIENCES, CODE 3918 NAVAL WEAPONS CENTER CHINA LAKE, CA 93555
PETTY OFFICER IN CHARGE NAVOCEANCOMDET NAVAL AIR ENGINEERING CENTER LAKEHURST, NJ 08733	COMMANDER NAVOCEANCOM ATTN: J.W. OWNBEY, NS42 NSTL STATION BAY ST. LOUIS, MS 39529	COMMANDER PACMISTESTCEN, CODE 3250 ATTN: GEOPHYSICS OFFICER PT. MUGU, CA 93042
CPOIC NAVOCEANCOMDET NAVAL AIR STATION MAYPORT, FL 32228	COMMANDING OFFICER NAVOCEANO, LIBRARY NSTL STATION BAY ST. LOUIS, MS 39522	CHIEF OF NAVAL EDUCATION & TRAINING NAVAL AIR STATION PENSACOLA, FL 32508
OFFICER IN CHARGE NAVOCEANCOMDET NAS, MEMPHIS MILLINGTON, TN 38054	COMMANDING OFFICER FLENUMOCEANCEN MONTEREY, CA 93940	CHIEF OF NAVAL AIR TRAINING NAVAL AIR STATION CORPUS CHRISTI, TX 78419
OFFICER IN CHARGE NAVOCEANCOMDET NAS, WHITING FIELD MILTON, FL 32570	COMMANDING OFFICER NAVEASTOCEANCEN BOX 113 PEARL HARBOR, HI 96860	NAVAL POSTGRADUATE SCHOOL DEPT. OF METEOROLOGY MONTEREY, CA 93940
OFFICER IN CHARGE NAVOCEANCOMDET NAVAL AIR STATION MERIDIAN, MS 39301	COMMANDING OFFICER NAVEASTOCEANCEN MCADIE BLDG. (U-117) NAVAL AIR STATION NORFOLK, VA 23511	NAVAL POSTGRADUATE SCHOOL LIBRARY MONTEREY, CA 93940
CPOIC NAVOCEANCOMDET NAVAL AIR STATION NEW ORLEANS, LA 70146	COMMANDING OFFICER U.S. NAVOCEANCOMCEN BOX 12 COMNAVMARIANAS FPO SAN FRANCISCO 96630	WEATHER SERVICE OFFICER OPERATIONS CODE 16 MARINE CORPS AIR STATION BEAUFORT, SC 29902
OFFICER IN CHARGE NAVOCEANCOMDET NAVAL AIR STATION PATUXENT RIVER, MD 20670	COMMANDING OFFICER U.S. NAVOCEANCOMCEN BOX 31 FPO NEW YORK 09540	COMMANDING GENERAL MARINE CORPS AIR STATION ATTN: WEATHER OFFICE CHERRY POINT, NC 28533
OFFICER IN CHARGE NAVOCEANCOMDET U.S. NAVAL STATION FPO MIAMI 34051	COMMANDING OFFICER OCEANCOMFAC P.O. BOX 85 NAVAL AIR STATION JACKSONVILLE, FL 32212	WEATHER SERVICE OFFICER MARINE CORPS AIR FACILITY QUANTICO, VA 22134
OFFICER IN CHARGE NAVOCEANCOMDET NAVAL AIR STATION SOUTH WEYMOUTH, MA 02190	SUPERINTENDENT LIBRARY REPORTS U.S. NAVAL ACADEMY ANNAPOLIS, MD 21402	COMMANDING OFFICER MARINE CORPS AIR STATION ATTN: WEATHER SERVICE DIV. HQHQRON OPERATIONS DEPT. JACKSONVILLE, NC 28545
OFFICER IN CHARGE NAVOCEANCOMDET NAS, OCEANA VIRGINIA BEACH, VA 23460	PRESIDENT NAVAL WAR COLLEGE ATTN: LCDR M. E. GIBBS NEWPORT, RI 02840	COMMANDER AWS/DN SCOTT AFB, IL 62225
OFFICER IN CHARGE NAVOCEANCOMDET NAVAL AIR STATION WILLOW GROVE, PA 19090	CHAIRMAN OCEANOGRAPHY DEPT. U.S. NAVAL ACADEMY ANNAPOLIS, MD 21402	USAFETAC/TS SCOTT AFB, IL 62225
OFFICER IN CHARGE NAVOCEANCOMDET NAVAL AIR STATION PENSACOLA, FL 32508	3350TH TECH. TRAINING GROUP TTGU-W/STOP 623 CHANUTE AFB, IL 61868	AFGWC/DAPL OFFUTT AFB, NE 68113

3 MM/DN
 OFFUTT AFB, NE 68113
 ACQUISITIONS SECT. IRDB-D823
 LIBRARY & INFO. SERV. DIV. NOAA
 6009 EXECUTIVE BLVD.
 ROCKVILLE, MD 20852
 NASA GODDARD SPACE FLIGHT CENTER
 ATMOSPHERIC SCIENCES LAB
 GREENBELT, MD 20771

AFGL/LY
 Hanscom AFB, MA 01731
 CHIEF, MARINE & EARTH SCIENCES
 LIBRARY
 NOAA, DEPT. OF COMMERCE
 ROCKVILLE, MD 20852
 NASA GODDARD SPACE FLIGHT CENTER
 PRELIMINARY SYSTEMS DESIGN GROUP
 GREENBELT, MD 20771

5MM/DN
 Langley AFB, VA 23665
 OFFICER IN CHARGE
 SERVICE SCHOOL COMMAND,
 GREAT LAKES
 DET. CHANUTE/STOP 62
 CHANUTE AFB, IL 61868
 NATIONAL OCEANIC & ATMOS. ADMIN.
 OCEANOGRAPHIC SERVICES DIV.
 6010 EXECUTIVE BLVD.
 ROCKVILLE, MD 20852
 EXECUTIVE SECRETARY
 CAO SUBCOMMITTEE ON ATMOS. SCI.
 NATIONAL SCIENCE FOUNDATION,
 ROOM 510
 1800 G STREET, NW
 WASHINGTON, DC 20550

1ST WEATHER WING (DON)
 Hickam AFB, HI 96853
 AFOSR/NC
 BOLLING AFB
 WASHINGTON, DC 20312
 COMMANDING OFFICER
 U.S. ARMY RESEARCH OFFICE
 ATTN: GEOPHYSICS DIV.
 P.O. BOX 12211
 RESEARCH TRIANGLE PARK, NC 27709
 DIRECTOR
 ATTN: LIBRARY BRANCH
 TECH. INFORMATION CENTER
 U.S. ARMY ENGINEERS WATERWAYS
 EXPERIMENT STATION
 VICKSBURG, MS 39180
 NATIONAL CLIMATIC CENTER
 ATTN: L. PRESTON D542X2
 FEDERAL BLDG. - LIBRARY
 ASHEVILLE, NC 28801
 NATIONAL WEATHER SERVICE
 WORLD WEATHER BLDG., RM 307
 5200 AUTH ROAD
 CAMP SPRINGS, MD 20023
 NATIONAL WEATHER SERVICE
 EASTERN REGION: WFE3
 585 STEWART AVE.
 GARDEN CITY, NY 11530
 NATIONAL WEATHER SERVICE,
 SOUTHERN REGION
 RM 10E09
 819 TAYLOR STREET
 FT. WORTH, TX 76102
 NOAA RESEARCH FACILITIES CENTER
 P.O. BOX 520197
 MIAMI, FL 33152
 CHIEF, SCIENTIFIC SERVICES
 NWS/NOAA, SOUTHERN REGION
 RM 10E09
 819 TAYLOR STREET
 FT. WORTH, TX 76102
 DIRECTOR
 NATIONAL OCEANO. DATA, NOAA
 DEPT. OF COMMERCE
 ROCKVILLE, MD 20852
 FLORIDA STATE UNIVERSITY
 ENVIRONMENTAL SCIENCES DEPT.
 TALLAHASSEE, FL 32306

DIRECTOR
 OFFICE OF ENV. & LIFE SCI.
 OFFICE OF THE UNDERSEC. OF
 DEFENSE FOR RSCH & ENG.
 (E&LS) RM 3D129
 THE PENTAGON
 WASHINGTON, DC 20301
 NATIONAL WEATHER SERVICE,
 EASTERN REGION: WFE3
 585 STEWART AVE.
 GARDEN CITY, NY 11530
 CHAIRMAN
 MASSACHUSETTS INSTITUTE OF TECH.
 DEPT. OF METEOROLOGY
 CAMBRIDGE, MA 02139

DIRECTOR
 DEFENSE TECH. INFORMATION
 CENTER, CAMERON STATION
 ALEXANDRIA, VA 22314
 NATIONAL CLIMATIC CENTER
 ATTN: L. PRESTON D542X2
 FEDERAL BLDG. - LIBRARY
 ASHEVILLE, NC 28801
 NATIONAL WEATHER SERVICE
 WORLD WEATHER BLDG., RM 307
 5200 AUTH ROAD
 CAMP SPRINGS, MD 20023
 NATIONAL WEATHER SERVICE
 EASTERN REGION: WFE3
 585 STEWART AVE.
 GARDEN CITY, NY 11530
 CHIEF, SCIENTIFIC SERVICES
 NWS/NOAA, SOUTHERN REGION
 RM 10E09
 819 TAYLOR STREET
 FT. WORTH, TX 76102
 NOAA RESEARCH FACILITIES CENTER
 P.O. BOX 520197
 MIAMI, FL 33152
 METEOROLOGIST IN CAHRGE
 NWS FORECAST OFFICE
 TECHNOLOGY II, NOAA
 NEW YORK UNIVERSITY
 BRONX, NY 10453
 DIRECTOR
 ATLANTIC OCEANO & METEOR. LABS.
 15 RICKENBACKER CAUSEWAY
 VIRGINIA KEY
 MIAMI, FL 33149
 DIRECTOR
 ATLANTIC MARINE CENTER
 COAST & GEODETIC SURVEY, NOAA
 439 WEST YORK STREET
 NORFOLK, VA 23510
 DIRECTOR
 AOML NAT. HURRICANE RSCH. LAB.
 1320 S. DIXIE HIGHWAY
 CORAL GABLES, FL 33146
 DIRECTOR
 INTERNATIONAL AFFAIRS
 OFFICE, NOAA
 ATTN: MR. N. JOHNSON
 6010 EXECUTIVE BLVD.
 ROCKVILLE, MD 20852
 DIRECTOR, DIV. OF ATMOS. SCI.
 NATIONAL SCIENCE FOUNDATION
 RM 644
 1800 G STREET, NW
 WASHINGTON, DC 20550
 COLORADO STATE UNIVERSITY
 DEPT. OF ATMOS. SCIENCES
 ATTN: LIBRARIAN
 FORT COLLINS, CO 80521
 UNIVERSITY OF WASHINGTON
 ATMOSPHERIC SCIENCES DEPT.
 SEATTLE, WA 98195
 TEXAS A&M UNIVERSITY
 DEPT. OF METEOROLOGY
 COLLEGE STATION, TX 77843
 DIRECTOR OF RESEARCH
 UNIVERSITY OF ST. THOMAS
 INSTITUTE FOR STORM RESEARCH
 3812 MONTROSE BLVD.
 HOUSTON, TX 77006
 CHAIRMAN
 UNIVERSITY OF FLORIDA
 DEPT. OF METEOROLOGY & PHYSICS
 215 PHYSICS BLDG.
 GAINESVILLE, FL 32601
 DOCUMENTS/REPORTS SECTION
 LIBRARY
 SCRIPPS INSTITUTION OF OCEANO.
 LA JOLLA, CA 92037
 DIRECTOR
 OCEANOGRAPHIC INSTITUTE
 OLD DOMINION UNIVERSITY
 NORFOLK, VA 23508
 UNIVERSITY OF MIAMI
 R.S.M.A.S. LIBRARY
 4600 RICKENBACKER CAUSEWAY
 VIRGINIA KEY
 MIAMI, FL 33149
 CHAIRMAN
 DEPT. OF ATMOSPHERIC SCIENCES
 UNIV. OF VIRGINIA, CLARK HALL
 CHARLOTTESVILLE, VA 22903
 ATMOSPHERIC SCIENCES DEPT.
 UCLA
 405 HILGARD AVE.
 LOS ANGELES, CA 90024

RDJFF-WLD
 ATTN: LCDR THOMAS
 RM. 1B-737, THE PENTAGON
 WASHINGTON, DC 20301
 COMMANDANT
 U.S. COAST GUARD
 WASHINGTON, DC 20226
 CHIEF, MARINE SCIENCE SECTION
 U.S. COAST GUARD ACADEMY
 NEW LONDON, CT 06320
 COMMANDING OFFICER
 USCG RESTRACEN
 YORKTOWN, VA 23690
 COMMANDING OFFICER
 U.S. COAST GUARD OCEANO UNIT
 WASHINGTON NAVY YARD
 BLDG. 159-E
 WASHINGTON, DC 20390
 COMMANDING OFFICER
 USCG RESEARCH & DEV. CENTER
 GROTON, CT 06340
 DIRECTOR, SYSTEMS DEVELOPMENT
 NWS/NOAA
 RM 1216 - THE GRAMAX BLDG.
 8060 13TH STREET
 SILVER SPRING, MD 20910
 DEVELOPMENT DIVISION
 NATIONAL METEOROLOGICAL CENTER
 NWS/NOAA, RM 204
 WORLD WEATHER BLDG. W32
 WASHINGTON, DC 20233

COLORADO STATE UNIVERSITY
DEPT. OF ATMOSPHERIC SCIENCES
LIBRARY, FOOTHILLS CAMPUS
FT. COLLINS, CO 80523

UNIVERSITY OF MARYLAND
DEPT. OF METEOROLOGY
COLLEGE PARK, MD 20742

THE EXECUTIVE DIRECTOR
AMERICAN METEOR. SOCIETY
45 BEACON STREET
BOSTON, MA 02108

AMERICAN METEOR. SOCIETY
MET. & GEOASTRO. ABSTRACTS
PO BOX 1736
WASHINGTON, DC 20013

DIRECTOR, JTWC
BOX 17
FPO SAN FRANCISCO 96630

WORLD METEOROLOGICAL ORG.
ATS DIVISION
ATTN: N. SUZUKI
CH-1211, GENEVA 20,
SWITZERLAND

BUREAU OF METEOROLOGY
ATTN: LIBRARY
BOX 1289K, GPO
MELBOURNE, VIC. 3001
AUSTRALIA

DIRECTOR OF NAVAL OCEANOGRAPHY
& METEOROLOGY
MINISTRY OF DEFENCE
OLD WAR OFFICE BLDG.
LONDON, S.W.1. ENGLAND

METEOROLOGICAL OFFICE LIBRARY
LONDON ROAD
BRACKNELL, BERKSHIRE
RG 12 2SZ
ENGLAND

MINISTRY OF DEFENCE
NAVY DEPARTMENT
ADMIRALTY RESEARCH LAB
TEDDINGTON, MIDDLESEX
ENGLAND

TYPHOON RESEARCH LABORATORY
ATTN: LIBRARIAN
METEOROLOGICAL RESEARCH
INSTITUTE
1-1 NAGAMINE, YATABE-MACHI,
TSUKUBA-GUN
IBARAKI-KEN, 305, JAPAN

DIRECCION GENERAL DE OCEANO-
GRAFIA SENALAMIENTO MARITIMO
MEDELLIN NO. 10
MEXICO, 7, D.F.

NATIONAL TAIWAN UNIVERSITY
DEPT. OF ATMOSPHERIC SCIENCE
TAIPEI, TAIWAN 107

