TOÁN RỜI RẠC

Chương 2

TẬP HỢP VÀ ÁNH XẠ

Nội dung

Chương 2. TẬP HỢP VÀ ÁNH XẠ

- Tập hợp
- Ánh xạ

2.1. Tập hợp

- Mhái niệm
- ② Các phép toán trên tập hợp
- Tập các tập con của một tập hợp
- Tích Descartes

 $T\hat{a}p\ h\phi p$ là một khái niệm cơ bản của Toán học, dùng để chỉ một nhóm các đối tượng nào đó mà chúng ta quan tâm.

Khi phần tử x thuộc tập hợp A ta ký hiệu $x \in A$, ngược lại ta ký hiệu $x \notin A$.

 $T\hat{a}p \ h\phi p$ là một khái niệm cơ bản của Toán học, dùng để chỉ một nhóm các đối tượng nào đó mà chúng ta quan tâm.

Khi phần tử x thuộc tập hợp A ta ký hiệu $x \in A$, ngược lại ta ký hiệu $x \notin A$.

Ví dụ.

- Tập hợp sinh viên của một trường đại học.

 $T\hat{a}p \ h\phi p$ là một khái niệm cơ bản của Toán học, dùng để chỉ một nhóm các đối tượng nào đó mà chúng ta quan tâm.

Khi phần tử x thuộc tập hợp A ta ký hiệu $x \in A$, ngược lại ta ký hiệu $x \notin A$.

Ví dụ.

- Tập hợp sinh viên của một trường đại học.
- Tập hợp các số nguyên.

 $T\hat{a}p \ h\phi p$ là một khái niệm cơ bản của Toán học, dùng để chỉ một nhóm các đối tượng nào đó mà chúng ta quan tâm.

Khi phần tử x thuộc tập hợp A ta ký hiệu $x \in A$, ngược lại ta ký hiệu $x \notin A$.

Ví dụ.

- Tập hợp sinh viên của một trường đại học.
- Tập hợp các số nguyên.
- Tập hợp các trái táo trên một cây.

Tập hợp là một khái niệm cơ bản của Toán học, dùng để chỉ một nhóm các đối tượng nào đó mà chúng ta quan tâm.

Khi phần tử x thuộc tập hợp A ta ký hiệu $x \in A$, ngược lại ta ký hiệu $x \notin A$.

Ví dụ.

- Tập hợp sinh viên của một trường đại học.
- Tập hợp các số nguyên.
- Tập hợp các trái táo trên một cây.

Để minh họa tập hợp thì chúng ta dùng sơ đồ

A

Ven

Tâp hợp là một khái niệm cơ bản của Toán học, dùng để chỉ một nhóm các đối tương nào đó mà chúng ta quan tâm.

Khi phần tử x thuộc tập hợp A ta ký hiệu $x \in A$, ngược lại ta ký hiệu $x \notin A$.

Ví du.

- Tập hợp sinh viên của một trường đại học.
- Tập hợp các số nguyên.
- Tập hợp các trái táo trên một cây.

Để minh họa tập hợp thì chúng ta dùng sơ đồ

Số phần tử của tập hợp A được gọi là
 $\emph{lực}$ lượng của tập hợp, kí hiệu |A|.

Số phần tử của tập hợp A được gọi là *lực lượng của tập hợp*, kí hiệu |A|. Nếu A có hữu hạn phần tử, ta nói A hữu hạn.

Số phần tử của tập hợp A được gọi là *lực lượng của tập hợp*, kí hiệu |A|. Nếu A có hữu hạn phần tử, ta nói A hữu hạn. Ngược lại, ta nói A vô hạn.

Số phần tử của tập hợp A được gọi là *lực lượng của tập hợp*, kí hiệu |A|. Nếu A có hữu hạn phần tử, ta nói A hữu hạn. Ngược lại, ta nói A vô hạn.

Ví dụ.

 $\bullet |\emptyset| = 0$

Số phần tử của tập hợp A được gọi là *lực lượng của tập hợp*, kí hiệu |A|. Nếu A có hữu hạn phần tử, ta nói A hữu hạn. Ngược lại, ta nói A vô hạn.

Ví dụ.

- $\bullet |\emptyset| = 0$
- \bullet $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R},$ là các tập vô hạn

Số phần tử của tập hợp A được gọi là *lực lượng của tập hợp*, kí hiệu |A|. Nếu A có hữu hạn phần tử, ta nói A hữu hạn. Ngược lại, ta nói A vô hạn.

Ví dụ.

- $\bullet |\emptyset| = 0$
- \bullet N, Z, Q, R, là các tập vô hạn
- $\bullet~X=\{1,3,4,5\}$ là tập hữu hạn với |X|=4

Số phần tử của tập hợp A được gọi là *lực lượng của tập hợp*, kí hiệu |A|. Nếu A có hữu hạn phần tử, ta nói A hữu hạn. Ngược lại, ta nói A vô hạn.

Ví dụ.

- $\bullet |\emptyset| = 0$
- \bullet $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R},$ là các tập vô hạn
- $X = \{1, 3, 4, 5\}$ là tập hữu hạn với |X| = 4

Cách xác định tập hợp

Số phần tử của tập hợp A được gọi là *lực lượng của tập hợp*, kí hiệu |A|. Nếu A có hữu hạn phần tử, ta nói A hữu hạn. Ngược lại, ta nói A vô hạn.

Ví dụ.

- $\bullet |\emptyset| = 0$
- \bullet $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R},$ là các tập vô hạn
- $X = \{1, 3, 4, 5\}$ là tập hữu hạn với |X| = 4

Cách xác định tập hợp

Có 2 cách phổ biến:

Số phần tử của tập hợp A được gọi là *lực lượng của tập hợp*, kí hiệu |A|. Nếu A có hữu hạn phần tử, ta nói A hữu hạn. Ngược lại, ta nói A vô hạn.

Ví dụ.

- $\bullet |\emptyset| = 0$
- \bullet $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$, là các tập vô hạn
- $\bullet X = \{1, 3, 4, 5\}$ là tập hữu hạn với |X| = 4

Cách xác định tập hợp

Có 2 cách phổ biến:

Liệt kê tất cả các phần tử của tập hợp

$$A = \{1,2,3,4,a,b\}$$

Số phần tử của tập hợp A được gọi là *lực lượng của tập hợp*, kí hiệu |A|. Nếu A có hữu hạn phần tử, ta nói A hữu hạn. Ngược lại, ta nói A vô hạn.

Ví dụ.

- $\bullet |\emptyset| = 0$
- \bullet $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$, là các tập vô hạn
- $\bullet X = \{1, 3, 4, 5\}$ là tập hữu hạn với |X| = 4

Cách xác định tập hợp

Có 2 cách phổ biến:

Liệt kê tất cả các phần tử của tập hợp

$$A = \{1,2,3,4,a,b\}$$

Số phần tử của tập hợp A được gọi là *lực lượng của tập hợp*, kí hiệu |A|. Nếu A có hữu hạn phần tử, ta nói A hữu hạn. Ngược lại, ta nói A vô hạn.

Ví dụ.

- $\bullet |\emptyset| = 0$
- \bullet $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R},$ là các tập vô hạn
- $\bullet~X=\{1,3,4,5\}$ là tập hữu hạn với |X|=4

Cách xác định tập hợp

Có 2 cách phổ biến:

Liệt kê tất cả các phần tử của tập hợp

$$A = \{1, 2, 3, 4, a, b\}$$

② Đưa ra tính chất đặc trưng

$$B = \{ n \in \mathbb{N} \mid n \text{ chia h\'et cho 3} \}$$

a. Bao hàm. Nếu mọi phần tử của tập hợp A đều là phần tử của tập hợp B thì tập hợp A được gọi là tập hợp con của tập hợp B, ký hiệu là $A \subset B$,

a. Bao hàm. Nếu mọi phần tử của tập hợp A đều là phần tử của tập hợp B thì tập hợp A được gọi là tập hợp con của tập hợp B, ký hiệu là $A \subset B$, nghĩa là

a. Bao hàm. Nếu mọi phần tử của tập hợp A đều là phần tử của tập hợp B thì tập hợp A được gọi là tập hợp con của tập hợp B, ký hiệu là $A \subset B$, nghĩa là

b. Bằng nhau. Hai tập hợp A và B được gọi là bằng nhau nếu $A \subset B$ và $B \subset A$, ký hiệu A = B.

a. Bao hàm. Nếu mọi phần tử của tập hợp A đều là phần tử của tập hợp B thì tập hợp A được gọi là tập hợp con của tập hợp B, ký hiệu là $A \subset B$, nghĩa là

b. Bằng nhau. Hai tập hợp A và B được gọi là bằng nhau nếu $A \subset B$ và $B \subset A$, ký hiệu A = B.

Ví dụ. Cho $A = \{1, 3, 4, 5\}, B = \{1, 2, 3, 4, 5, 6, 7, 8\}$ và $C = \{x \in \mathbb{Z} \mid 0 < x < 9\}.$

a. Bao hàm. Nếu mọi phần tử của tập hợp A đều là phần tử của tập hợp B thì tập hợp A được gọi là tập hợp con của tập hợp B, ký hiệu là $A \subset B$, nghĩa là

b. Bằng nhau. Hai tập hợp A và B được gọi là bằng nhau nếu $A \subset B$ và $B \subset A$, ký hiệu A = B.

Ví dụ. Cho
$$A = \{1, 3, 4, 5\}, B = \{1, 2, 3, 4, 5, 6, 7, 8\}$$
 và $C = \{x \in \mathbb{Z} \mid 0 < x < 9\}.$ Khi đó

$$A \subset B$$
 và $B = C$.

a) Hợp

а) Нợр

Hợp của A và B là tập hợp gồm tất cả các phần tử thuộc ít nhất một trong hai tập hợp A và B, ký hiệu $A \cup B$,

а) Нợр

Hợp của A và B là tập hợp gồm tất cả các phần tử thuộc ít nhất một trong hai tập hợp A và B, ký hiệu $A \cup B$, nghĩa là

a) Hợp

Hợp của A và B là tập hợp gồm tất cả các phần tử thuộc ít nhất một trong hai tập hợp A và B, ký hiệu $A \cup B$, nghĩa là

$$A \cup B = \{x \,|\, x \in A \lor x \in B\}$$

Ví dụ. Cho
$$A = \{a, b, c, d\}$$
 và $B = \{c, d, e, f\}$. Khi đó

$$A \cup B =$$

a) Hợp

Hợp của A và B là tập hợp gồm tất cả các phần tử thuộc ít nhất một trong hai tập hợp A và B, ký hiệu $A \cup B$, nghĩa là

$$A \cup B = \{x \,|\, x \in A \lor x \in B\}$$

Ví dụ. Cho
$$A = \{a, b, c, d\}$$
 và $B = \{c, d, e, f\}$. Khi đó

$$A \cup B = \{a, b, c, d, e, f\}$$

Nhận xét. $x \in A \cup B$

Nhận xét. $x \in A \cup B \Leftrightarrow \begin{bmatrix} x \in A \\ x \in B \end{bmatrix}$

Nhận xét. $x \in A \cup B \Leftrightarrow \begin{bmatrix} x \in A \\ x \in B \end{bmatrix}$ $x \notin A \cup B$

Nhận xét.
$$x \in A \cup B \Leftrightarrow \left[\begin{array}{c} x \in A \\ x \in B \end{array} \right.$$
 $x \notin A \cup B \Leftrightarrow \left\{ \begin{array}{c} x \notin A \\ x \notin B \end{array} \right.$

- $\textbf{2} \quad \textit{Tính giao hoán } A \cup B = B \cup A$

Nhận xét.
$$x \in A \cup B \Leftrightarrow \begin{bmatrix} x \in A \\ x \in B \end{bmatrix}$$
 $x \notin A \cup B \Leftrightarrow \begin{cases} x \notin A \\ x \notin B \end{bmatrix}$

- $2 Tinh giao hoán <math>A \cup B = B \cup A$

Nhận xét.
$$x \in A \cup B \Leftrightarrow \begin{bmatrix} x \in A \\ x \in B \end{bmatrix}$$
 $x \notin A \cup B \Leftrightarrow \begin{cases} x \notin A \\ x \notin B \end{bmatrix}$

- $2 Tinh giao hoán <math>A \cup B = B \cup A$

Nhận xét.
$$x \in A \cup B \Leftrightarrow \begin{bmatrix} x \in A \\ x \in B \end{bmatrix}$$
 $x \notin A \cup B \Leftrightarrow \begin{cases} x \notin A \\ x \notin B \end{bmatrix}$

- $② Tính giao hoán <math>A \cup B = B \cup A$

b) Giao

Nhận xét.
$$x \in A \cup B \Leftrightarrow \begin{bmatrix} x \in A \\ x \in B \end{bmatrix}$$
 $x \notin A \cup B \Leftrightarrow \begin{cases} x \notin A \\ x \notin B \end{cases}$

- $\textbf{2} \quad \textit{T\'{i}nh giao ho\'{a}n } A \cup B = B \cup A$

b) Giao

Giao của A và B là tập hợp gồm tất cả các phần tử vừa thuộc A và thuộc B, ký hiệu $A \cap B$,

Nhận xét.
$$x \in A \cup B \Leftrightarrow \begin{bmatrix} x \in A \\ x \in B \end{bmatrix}$$
 $x \notin A \cup B \Leftrightarrow \begin{cases} x \notin A \\ x \notin B \end{cases}$

- $2 Tinh giao hoán <math>A \cup B = B \cup A$

b) Giao

Giao của A và B là tập hợp gồm tất cả các phần tử vừa thuộc A và thuộc B, ký hiệu $A\cap B,$ nghĩa là

Ví dụ. Cho
$$A=\{a,b,c,d\}$$
 và $B=\{c,d,e,f\}$. Khi đó
$$A\cap B=$$

Ví dụ. Cho
$$A=\{a,b,c,d\}$$
 và $B=\{c,d,e,f\}$. Khi đó
$$A\cap B=\{c,d\}.$$

Ví dụ. Cho
$$A=\{a,b,c,d\}$$
 và $B=\{c,d,e,f\}.$ Khi đó
$$A\cap B=\{c,d\}.$$

Nhận xét. $x \in A \cap B$

Ví dụ. Cho
$$A=\{a,b,c,d\}$$
 và $B=\{c,d,e,f\}$. Khi đó
$$A\cap B=\{c,d\}.$$

Nhận xét.
$$x \in A \cap B \Leftrightarrow \begin{cases} x \in A \\ x \in B \end{cases}$$

Ví dụ. Cho
$$A=\{a,b,c,d\}$$
 và $B=\{c,d,e,f\}$. Khi đó
$$A\cap B=\{c,d\}.$$

Nhận xét.
$$x \in A \cap B \Leftrightarrow \begin{cases} x \in A \\ x \in B \end{cases}$$
 $x \notin A \cap B$

Ví dụ. Cho
$$A=\{a,b,c,d\}$$
 và $B=\{c,d,e,f\}$. Khi đó
$$A\cap B=\{c,d\}.$$

Nhận xét.
$$x \in A \cap B \Leftrightarrow \left\{ \begin{array}{l} x \in A \\ x \in B \end{array} \right. \qquad x \notin A \cap B \Leftrightarrow \left[\begin{array}{l} x \notin A \\ x \notin B \end{array} \right.$$

Ví dụ. Cho
$$A=\{a,b,c,d\}$$
 và $B=\{c,d,e,f\}$. Khi đó
$$A\cap B=\{c,d\}.$$

Nhận xét.
$$x \in A \cap B \Leftrightarrow \left\{ \begin{array}{l} x \in A \\ x \in B \end{array} \right.$$
 $x \notin A \cap B \Leftrightarrow \left[\begin{array}{l} x \notin A \\ x \notin B \end{array} \right.$

Ví dụ. Cho
$$A=\{a,b,c,d\}$$
 và $B=\{c,d,e,f\}.$ Khi đó
$$A\cap B=\{c,d\}.$$

Nhận xét.
$$x \in A \cap B \Leftrightarrow \left\{ \begin{array}{l} x \in A \\ x \in B \end{array} \right.$$
 $x \notin A \cap B \Leftrightarrow \left[\begin{array}{l} x \notin A \\ x \notin B \end{array} \right.$

Ví dụ. Cho
$$A=\{a,b,c,d\}$$
 và $B=\{c,d,e,f\}$. Khi đó
$$A\cap B=\{c,d\}.$$

Nhận xét.
$$x \in A \cap B \Leftrightarrow \left\{ \begin{array}{l} x \in A \\ x \in B \end{array} \right. \qquad x \notin A \cap B \Leftrightarrow \left[\begin{array}{l} x \notin A \\ x \notin B \end{array} \right.$$

- $\bullet \quad Tinh \ l\tilde{u}y \ d\mathring{a}ng \ A \cap A = A$
- $2 Tinh giao hoán <math>A \cap B = B \cap A$

Ví dụ. Cho
$$A=\{a,b,c,d\}$$
 và $B=\{c,d,e,f\}$. Khi đó
$$A\cap B=\{c,d\}.$$

Nhận xét.
$$x \in A \cap B \Leftrightarrow \left\{ \begin{array}{l} x \in A \\ x \in B \end{array} \right. \qquad x \notin A \cap B \Leftrightarrow \left[\begin{array}{l} x \notin A \\ x \notin B \end{array} \right.$$

- 2 Tính giao hoán $A \cap B = B \cap A$

Ví dụ. Cho
$$A=\{a,b,c,d\}$$
 và $B=\{c,d,e,f\}$. Khi đó
$$A\cap B=\{c,d\}.$$

Nhận xét.
$$x \in A \cap B \Leftrightarrow \left\{ \begin{array}{l} x \in A \\ x \in B \end{array} \right. \qquad x \notin A \cap B \Leftrightarrow \left[\begin{array}{l} x \notin A \\ x \notin B \end{array} \right.$$

- **1** Giao với tập rỗng $A \cap \emptyset = \emptyset$

Ví dụ. Cho
$$A=\{a,b,c,d\}$$
 và $B=\{c,d,e,f\}$. Khi đó
$$A\cap B=\{c,d\}.$$

- $\textbf{ 0} \ \ \textit{Giao} \ \textit{với} \ \textit{tập} \ \textit{rỗng} \ A \cap \emptyset = \emptyset$

Tính chất. Tính phân phối của phép hợp và giao

Ví dụ. Cho
$$A=\{a,b,c,d\}$$
 và $B=\{c,d,e,f\}$. Khi đó
$$A\cap B=\{c,d\}.$$

- $2 Tinh giao hoán <math>A \cap B = B \cap A$
- $\textbf{9} \ \ \textit{Giao} \ \textit{với} \ \textit{tập} \ \textit{r\~ong} \ A \cap \emptyset = \emptyset$

Tính chất. Tính phân phối của phép hợp và giao

- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Hiệu của hai tập hợp A và B là tập hợp tạo bởi tất cả các phần tử thuộc tập A mà không thuộc tập B ký hiệu $A \setminus B$, nghĩa là

Nhận xét. $x \in A \backslash B$

Nhận xét.
$$x \in A \backslash B \Leftrightarrow \begin{cases} x \in A \\ x \notin B \end{cases}$$

Nhận xét.
$$x \in A \backslash B \Leftrightarrow \left\{ \begin{array}{l} x \in A \\ x \notin B \end{array} \right. \qquad x \notin A \backslash B$$

Nhận xét.
$$x \in A \backslash B \Leftrightarrow \left\{ \begin{array}{l} x \in A \\ x \notin B \end{array} \right. \qquad x \notin A \backslash B \Leftrightarrow \left[\begin{array}{l} x \notin A \\ x \in B \end{array} \right.$$

Hiệu của hai tập hợp A và B là tập hợp tạo bởi tất cả các phần tử thuộc tập A mà không thuộc tập B ký hiệu $A \setminus B$, nghĩa là

Nhận xét.
$$x \in A \backslash B \Leftrightarrow \left\{ \begin{array}{l} x \in A \\ x \notin B \end{array} \right. \qquad x \notin A \backslash B \Leftrightarrow \left[\begin{array}{l} x \notin A \\ x \in B \end{array} \right.$$

Tính chất. Cho A, B, C là các tập hợp. Khi đó

Hiệu của hai tập hợp A và B là tập hợp tạo bởi tất cả các phần tử thuộc tập A mà không thuộc tập B ký hiệu $A \setminus B$, nghĩa là

Nhận xét.
$$x \in A \backslash B \Leftrightarrow \left\{ \begin{array}{l} x \in A \\ x \notin B \end{array} \right. \qquad x \notin A \backslash B \Leftrightarrow \left[\begin{array}{l} x \notin A \\ x \in B \end{array} \right.$$

Tính chất. Cho A, B, C là các tập hợp. Khi đó

Hiệu của hai tập hợp A và B là tập hợp tạo bởi tất cả các phần tử thuộc tập A mà không thuộc tập B ký hiệu $A \setminus B$, nghĩa là

Nhận xét.
$$x \in A \backslash B \Leftrightarrow \left\{ \begin{array}{l} x \in A \\ x \notin B \end{array} \right. \qquad x \notin A \backslash B \Leftrightarrow \left[\begin{array}{l} x \notin A \\ x \in B \end{array} \right.$$

Tính chất. Cho A, B, C là các tập hợp. Khi đó

Khi $A \subset U$ thì $U \backslash A$ gọi là $t\hat{a}p$ bù của A trong U.

Khi $A \subset U$ thì $U \setminus A$ gọi là $t\hat{a}p$ bù của A trong U. Ký hiệu C_UA hay đơn giản là \overline{A}

Khi $A \subset U$ thì $U \setminus A$ gọi là $t\hat{a}p$ bù của A trong U. Ký hiệu C_UA hay đơn giản là \overline{A}

Ví dụ. Cho
$$A=\{1,3,4,6\}$$
 và $U=\{1,2,3,4,5,6,7,8\}$. Khi đó
$$\overline{A}=$$

Khi $A \subset U$ thì $U \setminus A$ gọi là $t\hat{a}p$ bù của A trong U. Ký hiệu C_UA hay đơn giản là \overline{A}

Ví dụ. Cho
$$A=\{1,3,4,6\}$$
 và $U=\{1,2,3,4,5,6,7,8\}$. Khi đó
$$\overline{A}=\{2,5,7,8\}$$

Khi $A \subset U$ thì $U \setminus A$ gọi là $t\hat{a}p$ bù của A trong U. Ký hiệu C_UA hay đơn giản là \overline{A}

Ví dụ. Cho
$$A=\{1,3,4,6\}$$
 và $U=\{1,2,3,4,5,6,7,8\}$. Khi đó
$$\overline{A}=\{2,5,7,8\}$$

Khi $A \subset U$ thì $U \setminus A$ gọi là $t\hat{a}p$ bù của A trong U. Ký hiệu C_UA hay đơn giản là \overline{A}

Ví dụ. Cho
$$A=\{1,3,4,6\}$$
 và $U=\{1,2,3,4,5,6,7,8\}$. Khi đó
$$\overline{A}=\{2,5,7,8\}$$

Tính chất. Luật De Morgan

Khi $A \subset U$ thì $U \setminus A$ gọi là $t\hat{q}p$ bù của A trong U. Ký hiệu C_UA hay đơn giản là \overline{A}

Ví dụ. Cho
$$A=\{1,3,4,6\}$$
 và $U=\{1,2,3,4,5,6,7,8\}$. Khi đó
$$\overline{A}=\{2,5,7,8\}$$

Tính chất. Luật De Morgan

$$\bullet \ \overline{A \cap B} = \overline{A} \cup \overline{B}$$

Khi $A \subset U$ thì $U \setminus A$ gọi là $t\hat{a}p$ bù của A trong U. Ký hiệu C_UA hay đơn giản là \overline{A}

Ví dụ. Cho
$$A=\{1,3,4,6\}$$
 và $U=\{1,2,3,4,5,6,7,8\}$. Khi đó
$$\overline{A}=\{2,5,7,8\}$$

Tính chất. Luật De Morgan

$$\bullet \ \overline{A \cap B} = \overline{A} \cup \overline{B}$$

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

• $A \backslash B = A \cap \overline{B}$ (triệt hiệu)

- \bullet $A \backslash B = A \cap \overline{B}$ (triệt hiệu)
- $\bullet \ \overline{\overline{A}} = A$

 $\bullet \ A \backslash B = A \cap \overline{B} \ (triệt \ hiệu)$

 $\bullet \ A \cap \overline{A} = \emptyset.$

 $\bullet \ \overline{\overline{A}} = A$

$$\bullet$$
 $A \backslash B = A \cap \overline{B}$ (triệt hiệu)

$$\bullet \ A \cap \overline{A} = \emptyset.$$

$$\bullet \ \overline{\overline{A}} = A$$

$$\bullet \ A \cup \overline{A} = U.$$

$$\bullet$$
 $A \backslash B = A \cap \overline{B}$ (triệt hiệu)

$$\bullet \ A \cap \overline{A} = \emptyset.$$

$$\bullet$$
 $\overline{\overline{A}} = A$

$$\bullet \ A \cup \overline{A} = U.$$

\mathbf{V} í dụ. Cho A, B, C là các tập hợp. Chứng minh rằng:

$$\bullet$$
 $A \backslash B = A \cap \overline{B}$ (triệt hiệu)

$$\bullet \ A \cap \overline{A} = \emptyset.$$

$$\bullet \ \overline{\overline{A}} = A$$

$$\bullet \ A \cup \overline{A} = U.$$

 \mathbf{V} í dụ. Cho A, B, C là các tập hợp. Chứng minh rằng:

- $(A \backslash B) \cup (A \backslash C) = A \backslash (B \cap C)$

 \mathbf{V} í dụ. Cho các tập hợp A, B và C chứa trong E. Chứng minh

$$(B\backslash C)\backslash (B\backslash A) = (A\cap B)\backslash C.$$

Giải. $VT = (B \setminus C) \setminus (B \setminus A)$

Giải. VT =
$$(B \backslash C) \backslash (B \backslash A)$$

= $(B \cap \overline{C}) \backslash (B \cap \overline{A})$ (triệt hiệu)

Giải.
$$\operatorname{VT} = (B \backslash C) \backslash (B \backslash A)$$

 $= (B \cap \overline{C}) \backslash (B \cap \overline{A})$ (triệt hiệu)
 $= (B \cap \overline{C}) \cap \overline{(B \cap \overline{A})}$ (triệt hiệu)

Giải.
$$\operatorname{VT} = (B \backslash C) \backslash (B \backslash A)$$

 $= (B \cap \overline{C}) \backslash (B \cap \overline{A})$ (triệt hiệu)
 $= (B \cap \overline{C}) \cap \overline{(B \cap \overline{A})}$ (triệt hiệu)
 $= (B \cap \overline{C}) \cap (\overline{B} \cup A)$ (De Morgan)

Giải.
$$VT = (B \setminus C) \setminus (B \setminus A)$$

 $= (B \cap \overline{C}) \setminus (B \cap \overline{A})$ (triệt hiệu)
 $= (B \cap \overline{C}) \cap (\overline{B} \cap \overline{A})$ (triệt hiệu)
 $= (B \cap \overline{C}) \cap (\overline{B} \cup A)$ (De Morgan)
 $= \overline{C} \cap (B \cap (\overline{B} \cup A))$ (giao hoán, kết hợp)

Giải.
$$VT = (B \setminus C) \setminus (B \setminus A)$$

 $= (B \cap \overline{C}) \setminus (B \cap \overline{A})$ (triệt hiệu)
 $= (B \cap \overline{C}) \cap (\overline{B} \cap \overline{A})$ (triệt hiệu)
 $= (B \cap \overline{C}) \cap (\overline{B} \cup A)$ (De Morgan)
 $= \overline{C} \cap (B \cap (\overline{B} \cup A))$ (giao hoán, kết hợp)
 $= \overline{C} \cap ((B \cap \overline{B}) \cup (B \cap A))$ (phân phối)

Giải.
$$VT = (B \setminus C) \setminus (B \setminus A)$$

$$= (B \cap \overline{C}) \setminus (B \cap \overline{A}) \qquad \text{(triệt hiệu)}$$

$$= (B \cap \overline{C}) \cap (\overline{B} \cup A) \qquad \text{(De Morgan)}$$

$$= \overline{C} \cap (B \cap (\overline{B} \cup A)) \qquad \text{(giao hoán, kết hợp)}$$

$$= \overline{C} \cap ((B \cap \overline{B}) \cup (B \cap A)) \qquad \text{(phân phối)}$$

$$= \overline{C} \cap (\emptyset \cup (B \cap A)) \qquad \text{(bù)}$$

Giải.
$$VT = (B \setminus C) \setminus (B \setminus A)$$

 $= (B \cap \overline{C}) \setminus (B \cap \overline{A})$ (triệt hiệu)
 $= (B \cap \overline{C}) \cap (\overline{B} \cap \overline{A})$ (De Morgan)
 $= (B \cap \overline{C}) \cap (\overline{B} \cup A)$ (giao hoán, kết hợp)
 $= \overline{C} \cap (B \cap (\overline{B}) \cup (B \cap A))$ (phân phối)
 $= \overline{C} \cap (\emptyset \cup (B \cap A))$ (bù)
 $= \overline{C} \cap (B \cap A)$ (trung hòa)

Giải.
$$\operatorname{VT} = (B \backslash C) \backslash (B \backslash A)$$

 $= (B \cap \overline{C}) \backslash (B \cap \overline{A})$ (triệt hiệu)
 $= (B \cap \overline{C}) \cap (\overline{B} \cap \overline{A})$ (triệt hiệu)
 $= (B \cap \overline{C}) \cap (\overline{B} \cup A)$ (De Morgan)
 $= \overline{C} \cap (B \cap (\overline{B} \cup A))$ (giao hoán, kết hợp)
 $= \overline{C} \cap ((B \cap \overline{B}) \cup (B \cap A))$ (phân phối)
 $= \overline{C} \cap (\emptyset \cup (B \cap A))$ (bù)
 $= \overline{C} \cap (B \cap A)$ (trung hòa)
 $= (A \cap B) \cap \overline{C}$ (giao hoán)

Giải.
$$VT = (B \setminus C) \setminus (B \setminus A)$$

 $= (B \cap \overline{C}) \setminus (B \cap \overline{A})$ (triệt hiệu)
 $= (B \cap \overline{C}) \cap (\overline{B} \cap \overline{A})$ (De Morgan)
 $= (B \cap \overline{C}) \cap (\overline{B} \cup A)$ (giao hoán, kết hợp)
 $= \overline{C} \cap (B \cap (\overline{B} \cup A))$ (phân phối)
 $= \overline{C} \cap (B \cap \overline{B}) \cup (B \cap A))$ (bù)
 $= \overline{C} \cap (B \cap A)$ (trung hòa)
 $= (A \cap B) \cap \overline{C}$ (giao hoán)
 $= (A \cap B) \setminus C = VP$ (triệt hiệu)

Giải.
$$VT = (B \setminus C) \setminus (B \setminus A)$$

 $= (B \cap \overline{C}) \setminus (B \cap \overline{A})$ (triệt hiệu)
 $= (B \cap \overline{C}) \cap (\overline{B} \cap \overline{A})$ (triệt hiệu)
 $= (B \cap \overline{C}) \cap (\overline{B} \cup A)$ (De Morgan)
 $= \overline{C} \cap (B \cap (\overline{B} \cup A))$ (giao hoán, kết hợp)
 $= \overline{C} \cap ((B \cap \overline{B}) \cup (B \cap A))$ (phân phối)
 $= \overline{C} \cap (\emptyset \cup (B \cap A))$ (bù)
 $= \overline{C} \cap (B \cap A)$ (trung hòa)
 $= (A \cap B) \cap \overline{C}$ (giao hoán)
 $= (A \cap B) \setminus C = VP$ (triệt hiệu)

Ví du. (tự làm) Cho các tập hợp A, B và $C \subset E$. Chứng minh $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C).$

(triệt hiệu)

 \mathbf{D} ịnh nghĩa. Cho X là một tập hợp.

Định nghĩa. Cho X là một tập hợp. Khi đó tập tất cả các tập con của X được ký hiệu là P(X).

Định nghĩa. Cho X là một tập hợp. Khi đó tập tất cả các tập con của X được ký hiệu là P(X).

Ví dụ. Cho $X = \{a, b\}.$

Định nghĩa. Cho X là một tập hợp. Khi đó tập tất cả các tập con của X được ký hiệu là P(X).

Ví dụ. Cho $X = \{a, b\}$. Khi đó

$$P(X) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$$

Định nghĩa. Cho X là một tập hợp. Khi đó tập tất cả các tập con của X được ký hiệu là P(X).

Ví dụ. Cho $X = \{a, b\}$. Khi đó

$$P(X) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$$

Ví dụ. (tự làm) Cho $X = \{1, 2, 3\}$. Tìm tập P(X)?

Định nghĩa. Cho X là một tập hợp. Khi đó tập tất cả các tập con của X được ký hiệu là P(X).

Ví dụ. Cho $X = \{a, b\}$. Khi đó

$$P(X) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$$

Ví dụ. (tự làm) Cho $X = \{1, 2, 3\}$. Tìm tập P(X)?

Câu hỏi. Nếu tập X có n phần tử thì tập P(X) có bao nhiêu phần tử?

Định nghĩa. Cho X là một tập hợp. Khi đó tập tất cả các tập con của X được ký hiệu là P(X).

Ví dụ. Cho $X = \{a, b\}$. Khi đó

$$P(X) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$$

Ví dụ. (tự làm) Cho $X = \{1, 2, 3\}$. Tìm tập P(X)?

Câu hỏi. Nếu tập X có n phần tử thì tập P(X) có bao nhiêu phần tử?

Đáp án.
$$|X| = n \Rightarrow |P(X)| = 2^n$$
.

Định nghĩa. *Tích Descartes* của tập hợp A với tập hợp B là một tập hợp chứa tất cả các bộ có dạng (x,y) với x là một phần tử của A và y là một phần tử của B, ký hiệu $A \times B$,

Định nghĩa. *Tích Descartes* của tập hợp A với tập hợp B là một tập hợp chứa tất cả các bộ có dạng (x,y) với x là một phần tử của A và y là một phần tử của B, ký hiệu $A \times B$, nghĩa là

$$A \times B = \{(x,y) \,|\, x \in A \land y \in B\}$$

Định nghĩa. *Tích Descartes* của tập hợp A với tập hợp B là một tập hợp chứa tất cả các bộ có dạng (x,y) với x là một phần tử của A và y là một phần tử của B, ký hiệu $A \times B$, nghĩa là

$$A \times B = \{(x,y) \,|\, x \in A \land y \in B\}$$

Ví dụ. Cho
$$A = \{1, 2, 3\}$$
 và $B = \{x, y\}$. Khi đó

$$A \times B =$$

Định nghĩa. *Tích Descartes* của tập hợp A với tập hợp B là một tập hợp chứa tất cả các bộ có dạng (x,y) với x là một phần tử của A và y là một phần tử của B, ký hiệu $A \times B$, nghĩa là

$$A \times B = \{(x,y) \,|\, x \in A \land y \in B\}$$

Ví dụ. Cho
$$A = \{1, 2, 3\}$$
 và $B = \{x, y\}$. Khi đó

$$A\times B=\{(1,x),(1,y),(2,x),(2,y),(3,x),(3,y)\}$$

Định nghĩa. *Tích Descartes* của tập hợp A với tập hợp B là một tập hợp chứa tất cả các bộ có dạng (x,y) với x là một phần tử của A và y là một phần tử của B, ký hiệu $A \times B$, nghĩa là

$$A \times B = \{(x,y) \,|\, x \in A \land y \in B\}$$

Ví dụ. Cho
$$A = \{1, 2, 3\}$$
 và $B = \{x, y\}$. Khi đó

$$A \times B = \{(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)\}$$

Định nghĩa. *Tích Descartes* của tập hợp A với tập hợp B là một tập hợp chứa tất cả các bộ có dạng (x,y) với x là một phần tử của A và y là một phần tử của B, ký hiệu $A \times B$, nghĩa là

$$A \times B = \{(x,y) \,|\, x \in A \land y \in B\}$$

Ví dụ. Cho
$$A = \{1, 2, 3\}$$
 và $B = \{x, y\}$. Khi đó

$$A \times B = \{(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)\}$$

Câu hỏi. Nếu |A| = n và |B| = m thì $|A \times B| = ?$

Định nghĩa. *Tích Descartes* của tập hợp A với tập hợp B là một tập hợp chứa tất cả các bộ có dạng (x,y) với x là một phần tử của A và y là một phần tử của B, ký hiệu $A \times B$, nghĩa là

$$A \times B = \{(x, y) \mid x \in A \land y \in B\}$$

Ví dụ. Cho
$$A = \{1, 2, 3\}$$
 và $B = \{x, y\}$. Khi đó

$$A \times B = \{(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)\}$$

Câu hỏi. Nếu |A| = n và |B| = m thì $|A \times B| = ?$ Đáp án. $n \times m$.

Định nghĩa. *Tích Descartes* của tập hợp A với tập hợp B là một tập hợp chứa tất cả các bộ có dạng (x,y) với x là một phần tử của A và y là một phần tử của B, ký hiệu $A \times B$, nghĩa là

$$A \times B = \{(x,y) \,|\, x \in A \land y \in B\}$$

Ví dụ. Cho
$$A = \{1, 2, 3\}$$
 và $B = \{x, y\}$. Khi đó

$$A \times B = \{(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)\}$$

Câu hỏi. Nếu |A| = n và |B| = m thì $|A \times B| = ?$ Đáp án. $n \times m$.

Khái niệm tích Descartes cũng được mở rộng cho hữu hạn tập hợp,

Định nghĩa. *Tích Descartes* của tập hợp A với tập hợp B là một tập hợp chứa tất cả các bộ có dạng (x,y) với x là một phần tử của A và y là một phần tử của B, ký hiệu $A \times B$, nghĩa là

$$A \times B = \{(x, y) \mid x \in A \land y \in B\}$$

Ví dụ. Cho
$$A = \{1, 2, 3\}$$
 và $B = \{x, y\}$. Khi đó

$$A \times B = \{(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)\}$$

Câu hỏi. Nếu |A| = n và |B| = m thì $|A \times B| = ?$ Đáp án. $n \times m$.

Khái niệm tích Descartes cũng được mở rộng cho hữu hạn tập hợp, nghĩa là

$$A_1 \times A_2 \times \cdots \times A_k = \{(x_1, x_2, \dots, x_k) \mid x_i \in A_i, \forall i = \overline{1, k}\}$$

2.2. Ánh xạ

- Định nghĩa ánh xạ
- Ánh xạ hợp
- 4 Ånh và ảnh ngược
- Các loại ánh xạ
- Ánh xạ ngược

Định nghĩa. Một *ánh xạ* f từ tập X vào tập Y là một phép liên kết từ X vào Y sao cho **mỗi phần tử** x của X được liên kết **duy nhất** với **một phần tử** y của Y,

Định nghĩa. Một ánh xa f từ tập X vào tập Y là một phép liên kết từ X vào Y sao cho **mỗi phần tử** x của X được liên kết **duy nhất** với **một phần tử** y của Y, ký hiệu: y = f(x)

$$f: X \longrightarrow Y$$
$$x \longmapsto y = f(x).$$

Định nghĩa. Một ánh xa f từ tập X vào tập Y là một phép liên kết từ X vào Y sao cho **mỗi phần tử** x của X được liên kết **duy nhất** với **một phần tử** y của Y, ký hiệu: y = f(x)

$$\begin{array}{cccc} f: & X & \longrightarrow & Y \\ & x & \longmapsto & y = f(x). \end{array}$$

Khi đó X được gọi là $t\hat{a}p$ $ngu\hat{o}n$, Y được gọi là $t\hat{a}p$ dích.

Không là ánh xạ

Không là ánh xạ

Ví dụ.

Ánh xạ đồng nhất trên X

$$\begin{array}{cccc} Id_X: & X & \longrightarrow & X \\ & x & \longmapsto & x. \end{array}$$

Không là ánh xạ

Ví dụ.

Ánh xạ đồng nhất trên X

$$\begin{array}{cccc} Id_X: & X & \longrightarrow & X \\ & x & \longmapsto & x. \end{array}$$

Xét ánh xạ

$$pr_A: A \times B \longrightarrow A$$

 $(a,b) \longmapsto a.$

Không là ánh xạ

Ví dụ.

Ánh xạ đồng nhất trên X

$$Id_X: X \longrightarrow X$$
$$x \longmapsto x.$$

Xét ánh xa

$$pr_A: A \times B \longrightarrow A$$

 $(a,b) \longmapsto a.$

Khi đó pr_A được gọi là $ph\acute{e}p$ $chi\acute{e}u$ $th\acute{u}$ $nh\acute{a}t$

Nhận xét. Nếu X,Y là tập hợp các số (chẳng hạn, $\emptyset \neq X,Y \subset \mathbb{R}$) thì $f:X \to Y$ còn được gọi là $hàm\ số$.

Định nghĩa. Hai ánh xạ f,g được gọi là $b \tilde{a} n g n h a u$ khi và chỉ khi chúng có cùng tập nguồn, có cùng tập đích và

$$\forall x \in X, f(x) = g(x).$$

Định nghĩa. Hai ánh xạ f,g được gọi là $bằng\ nhau$ khi và chỉ khi chúng có cùng tập nguồn, có cùng tập đích và

$$\forall x \in X, f(x) = g(x).$$

Nhận xét. Vậy $f \neq g \Leftrightarrow \exists x \in X, f(x) \neq g(x)$.

Định nghĩa. Hai ánh xạ f,g được gọi là $bằng\ nhau$ khi và chỉ khi chúng có cùng tập nguồn, có cùng tập đích và

$$\forall x \in X, f(x) = g(x).$$

Nhận xét. Vậy $f \neq g \Leftrightarrow \exists x \in X, f(x) \neq g(x)$.

Ví dụ. Xét ánh xạ f(x) = (x-1)(x+1) và $g(x) = x^2 - 1$ từ $\mathbb R$ vào $\mathbb R$.

Định nghĩa. Hai ánh xạ f,g được gọi là $bằng\ nhau$ khi và chỉ khi chúng có cùng tập nguồn, có cùng tập đích và

$$\forall x \in X, f(x) = g(x).$$

Nhận xét. Vậy $f \neq g \Leftrightarrow \exists x \in X, f(x) \neq g(x)$.

Ví dụ. Xét ánh xạ f(x)=(x-1)(x+1) và $g(x)=x^2-1$ từ $\mathbb R$ vào $\mathbb R$. Ta có f=g.

Định nghĩa. Hai ánh xạ f,g được gọi là $bằng\ nhau$ khi và chỉ khi chúng có cùng tập nguồn, có cùng tập đích và

$$\forall x \in X, f(x) = g(x).$$

Nhận xét. Vậy $f \neq g \Leftrightarrow \exists x \in X, f(x) \neq g(x)$.

Ví dụ. Xét ánh xạ f(x) = (x-1)(x+1) và $g(x) = x^2 - 1$ từ $\mathbb R$ vào $\mathbb R$. Ta có f = g.

Ví dụ. Cho $f,g:\mathbb{R}\to\mathbb{R}$ xác định bởi f(x)=3x+4 và g(x)=4x+3. Hỏi f=g không?

Định nghĩa. Hai ánh xạ f,g được gọi là $bằng\ nhau$ khi và chỉ khi chúng có cùng tập nguồn, có cùng tập đích và

$$\forall x \in X, f(x) = g(x).$$

Nhận xét. Vậy $f \neq g \Leftrightarrow \exists x \in X, f(x) \neq g(x)$.

Ví dụ. Xét ánh xạ f(x) = (x-1)(x+1) và $g(x) = x^2 - 1$ từ \mathbb{R} vào \mathbb{R} . Ta có f = g.

Ví dụ. Cho $f,g:\mathbb{R}\to\mathbb{R}$ xác định bởi f(x)=3x+4 và g(x)=4x+3. Hỏi f=g không?

Giải. Vì $f(0) \neq g(0)$ nên $f \neq g$.

Định nghĩa. Cho $f: X \longrightarrow Y$ và $g: Y \longrightarrow Z$,

Định nghĩa. Cho $f:X\longrightarrow Y$ và $g:Y\longrightarrow Z$, lúc đó ${\pmb g}_\circ{\pmb f}:X\longrightarrow Z$ là
 ánh xạ hợp của g và f, được xác định bởi

Định nghĩa. Cho $f:X\longrightarrow Y$ và $g:Y\longrightarrow Z$, lúc đó $g_\circ f:X\longrightarrow Z$ là
 ánh xạ hợp của g và f, được xác định bởi

$$g_{\circ}f(x)=g(f(x)).$$

Định nghĩa. Cho $f: X \longrightarrow Y$ và $g: Y \longrightarrow Z$, lúc đó $g \circ f: X \longrightarrow Z$ là *ánh xạ hợp* của g và f, được xác định bởi

$$g_{\circ}f(x)=g(f(x)).$$

Định nghĩa. Cho $f: X \longrightarrow Y$ và $g: Y \longrightarrow Z$, lúc đó $g \circ f: X \longrightarrow Z$ là ánh xạ hợp của g và f, được xác định bởi

$$g_{\circ}f(x)=g(f(x)).$$

Tính chất. Cho ánh xạ $f: X \to Y$. Khi đó

Định nghĩa. Cho $f: X \longrightarrow Y$ và $g: Y \longrightarrow Z$, lúc đó $g \circ f: X \longrightarrow Z$ là *ánh xạ hợp* của g và f, được xác định bởi

$$g_{\circ}f(x)=g(f(x)).$$

Tính chất. Cho ánh xạ $f: X \to Y$. Khi đó

Định nghĩa. Cho $f: X \longrightarrow Y$ và $g: Y \longrightarrow Z$, lúc đó $g \circ f: X \longrightarrow Z$ là *ánh xạ hợp* của g và f, được xác định bởi

$$g_{\circ}f(x)=g(f(x)).$$

Tính chất. Cho ánh $xa f: X \to Y$. Khi đó

Ví dụ. Cho $f, g : \mathbb{R} \to \mathbb{R}$ xác định bởi f(x) = x + 2 và g(x) = 3x - 1. Xác định $g \circ f$ và $f \circ g$.

$$f(x) = x + 2, \ g(x) = 3x - 1$$

$$f(x) = x + 2, \quad g(x) = 3x - 1$$

$$g \circ f(x) = g(f(x)) =$$

$$f(x) = x + 2, \quad g(x) = 3x - 1$$

$$g_{\circ}f(x) = g(f(x)) = g(x+2) =$$

$$f(x) = x + 2, \quad g(x) = 3x - 1$$

$$g_{\circ}f(x) = g(f(x)) = g(x+2) = 3(x+2) - 1 =$$

$$f(x) = x + 2, \quad g(x) = 3x - 1$$

$$g \circ f(x) = g(f(x)) = g(x+2) = 3(x+2) - 1 = 3x + 5.$$

$$f(x) = x + 2, \quad g(x) = 3x - 1$$

$$g \circ f(x) = g(f(x)) = g(x+2) = 3(x+2) - 1 = 3x + 5.$$

Vậy ánh xạ $g \circ f : \mathbb{R} \to \mathbb{R}$ được xác định bởi $g \circ f(x) = 3x + 5$.

$$f(x) = x + 2, \quad g(x) = 3x - 1$$

$$g \circ f(x) = g(f(x)) = g(x+2) = 3(x+2) - 1 = 3x + 5.$$

Vậy ánh xạ $g \circ f : \mathbb{R} \to \mathbb{R}$ được xác định bởi $g \circ f(x) = 3x + 5$.

ii) Với mọi $x \in \mathbb{R}$ ta có

$$f_{\circ}g(x) = f(g(x)) =$$

$$f(x) = x + 2$$
, $g(x) = 3x - 1$

$$g \circ f(x) = g(f(x)) = g(x+2) = 3(x+2) - 1 = 3x + 5.$$

Vậy ánh xạ $g \circ f : \mathbb{R} \to \mathbb{R}$ được xác định bởi $g \circ f(x) = 3x + 5$.

ii) Với mọi $x \in \mathbb{R}$ ta có

$$f_{\circ}g(x) = f(g(x)) = f(3x - 1) =$$

$$f(x) = x + 2, \quad g(x) = 3x - 1$$

$$g_{\circ}f(x) = g(f(x)) = g(x+2) = 3(x+2) - 1 = 3x + 5.$$

Vậy ánh xạ $g \circ f : \mathbb{R} \to \mathbb{R}$ được xác định bởi $g \circ f(x) = 3x + 5$.

ii) Với moi $x \in \mathbb{R}$ ta có

$$f \circ g(x) = f(g(x)) = f(3x - 1) = (3x - 1) + 2 =$$

$$f(x) = x + 2$$
, $g(x) = 3x - 1$

$$g \circ f(x) = g(f(x)) = g(x+2) = 3(x+2) - 1 = 3x + 5.$$

Vậy ánh xạ $g \circ f : \mathbb{R} \to \mathbb{R}$ được xác định bởi $g \circ f(x) = 3x + 5$.

ii) Với moi $x \in \mathbb{R}$ ta có

$$f_{\circ}g(x) = f(g(x)) = f(3x - 1) = (3x - 1) + 2 = 3x + 1.$$

$$f(x) = x + 2$$
, $g(x) = 3x - 1$

$$g_{\circ}f(x) = g(f(x)) = g(x+2) = 3(x+2) - 1 = 3x + 5.$$

Vậy ánh xạ $g_{\circ}f: \mathbb{R} \to \mathbb{R}$ được xác định bởi $g_{\circ}f(x) = 3x + 5$.

ii) Với moi $x \in \mathbb{R}$ ta có

$$f_{\circ}g(x) = f(g(x)) = f(3x - 1) = (3x - 1) + 2 = 3x + 1.$$

Vậy ánh xạ $f_{\circ}g:\mathbb{R}\to\mathbb{R}$ được xác định bởi $f_{\circ}g(x)=3x+1$.

$$f(x) = x + 2, \ g(x) = 3x - 1$$

$$g \circ f(x) = g(f(x)) = g(x+2) = 3(x+2) - 1 = 3x + 5.$$

Vậy ánh xạ $g \circ f : \mathbb{R} \to \mathbb{R}$ được xác định bởi $g \circ f(x) = 3x + 5$.

ii) Với moi $x \in \mathbb{R}$ ta có

$$f_{\circ}g(x) = f(g(x)) = f(3x - 1) = (3x - 1) + 2 = 3x + 1.$$

Vậy ánh xạ $f_{\circ}g:\mathbb{R}\to\mathbb{R}$ được xác định bởi $f_{\circ}g(x)=3x+1$.

Ví dụ. (tự làm) Cho $f, g : \mathbb{R} \to \mathbb{R}$ xác định bởi $f(x) = x^2 - 1$ và g(x) = 2 - 3x. Xác định $g \circ f$ và $f \circ g$.

$$f(x) = x + 2$$
, $g(x) = 3x - 1$

$$g \circ f(x) = g(f(x)) = g(x+2) = 3(x+2) - 1 = 3x + 5.$$

Vậy ánh xạ $g_{\circ}f: \mathbb{R} \to \mathbb{R}$ được xác định bởi $g_{\circ}f(x) = 3x + 5$.

ii) Với mọi $x \in \mathbb{R}$ ta có

$$f_{\circ}g(x) = f(g(x)) = f(3x - 1) = (3x - 1) + 2 = 3x + 1.$$

Vậy ánh xạ $f_{\circ}g:\mathbb{R}\to\mathbb{R}$ được xác định bởi $f_{\circ}g(x)=3x+1$.

Ví dụ. (tự làm) Cho $f, g : \mathbb{R} \to \mathbb{R}$ xác định bởi $f(x) = x^2 - 1$ và g(x) = 2 - 3x. Xác định $g \circ f$ và $f \circ g$.

Ví dụ. (tự làm) Cho hai hàm số $f, g : \mathbb{R} \to \mathbb{R}$ với f(x) = 2x + 3 và $f_{\circ}q(x) = 4x + 1$. Tìm g(x)?

Định nghĩa. Cho $f: X \longrightarrow Y$,

① Cho $A \subset X$, ảnh của A bởi f là tập $f(A) = \{f(x) \mid x \in A\} \subset Y$;

Định nghĩa. Cho $f: X \longrightarrow Y$,

lacktriangle Cho $B\subset Y,$ ảnh ngược của B bởi f là tập $f^{-1}(B)=\{x\in X\,|\,f(x)\in B\}\subset X.$

Định nghĩa. Cho $f: X \longrightarrow Y$,

① Cho $A \subset X$, ảnh của A bởi f là tập $f(A) = \{f(x) \mid x \in A\} \subset Y$;

lacktriangle Cho $B\subset Y,$ ảnh ngược của B bởi f là tập $f^{-1}(B)=\{x\in X\,|\,f(x)\in B\}\subset X.$

3 Ta ký hiệu Im(f) = f(X), gọi là ảnh của f.

- **Ví dụ.** Cho $f: \mathbb{R} \to \mathbb{R}$ được xác định $f(x) = x^2 + 1$. Hãy tìm
- $f^{-1}(1); f^{-1}(2); f^{-1}(-5); f^{-1}([2,5])?$

$$a) f([1,3]) =$$

$$a) \ f([1,3]) = [2,10];$$

$$a)\ f([1,3]) =\ [2,10]; \qquad f([-2,-1]) =$$

$$a)\ f([1,3]) =\ [2,10]; \qquad f([-2,-1]) =\ [2,5];$$

a)
$$f([1,3]) = [2,10];$$
 $f([-2,-1]) = [2,5];$
 $f([-1,3]) =$

a)
$$f([1,3]) = [2,10];$$
 $f([-2,-1]) = [2,5];$ $f([-1,3]) = [1,10];$

a)
$$f([1,3]) = [2,10];$$
 $f([-2,-1]) = [2,5];$ $f([-1,3]) = [1,10];$ $f((1,5)) =$

a)
$$f([1,3]) = [2,10];$$
 $f([-2,-1]) = [2,5];$
 $f([-1,3]) = [1,10];$ $f((1,5)) = (2,26).$

a)
$$f([1,3]) = [2,10];$$
 $f([-2,-1]) = [2,5];$
 $f([-1,3]) = [1,10];$ $f((1,5)) = (2,26).$

b)
$$f^{-1}(1) =$$

b) $f^{-1}(1) = \{0\}$:

a)
$$f([1,3]) = [2,10];$$
 $f([-2,-1]) = [2,5];$
 $f([-1,3]) = [1,10];$ $f((1,5)) = (2,26).$

a)
$$f([1,3]) = [2,10];$$
 $f([-2,-1]) = [2,5];$
 $f([-1,3]) = [1,10];$ $f((1,5)) = (2,26).$

b)
$$f^{-1}(1) = \{0\};$$
 $f^{-1}(2) =$

a)
$$f([1,3]) = [2,10];$$
 $f([-2,-1]) = [2,5];$
 $f([-1,3]) = [1,10];$ $f((1,5)) = (2,26).$

b)
$$f^{-1}(1) = \{0\};$$
 $f^{-1}(2) = \{-1, 1\};$

a)
$$f([1,3]) = [2,10];$$
 $f([-2,-1]) = [2,5];$
 $f([-1,3]) = [1,10];$ $f((1,5)) = (2,26).$

b)
$$f^{-1}(1) = \{0\};$$
 $f^{-1}(2) = \{-1, 1\};$
 $f^{-1}(-5) =$

a)
$$f([1,3]) = [2,10];$$
 $f([-2,-1]) = [2,5];$
 $f([-1,3]) = [1,10];$ $f((1,5)) = (2,26).$

b)
$$f^{-1}(1) = \{0\};$$
 $f^{-1}(2) = \{-1, 1\};$
 $f^{-1}(-5) = \emptyset;$

a)
$$f([1,3]) = [2,10];$$
 $f([-2,-1]) = [2,5];$
 $f([-1,3]) = [1,10];$ $f((1,5)) = (2,26).$

b)
$$f^{-1}(1) = \{0\};$$
 $f^{-1}(2) = \{-1, 1\};$
 $f^{-1}(-5) = \emptyset;$ $f^{-1}([2, 5]) =$

a)
$$f([1,3]) = [2,10];$$
 $f([-2,-1]) = [2,5];$
 $f([-1,3]) = [1,10];$ $f((1,5)) = (2,26).$

b)
$$f^{-1}(1) = \{0\};$$
 $f^{-1}(2) = \{-1, 1\};$ $f^{-1}(-5) = \emptyset;$ $f^{-1}([2, 5]) = [-2, -1] \cup [1, 2].$

Đáp án.

a)
$$f([1,3]) = [2,10];$$
 $f([-2,-1]) = [2,5];$
 $f([-1,3]) = [1,10];$ $f((1,5)) = (2,26).$

b)
$$f^{-1}(1) = \{0\};$$
 $f^{-1}(2) = \{-1, 1\};$ $f^{-1}(-5) = \emptyset;$ $f^{-1}([2, 5]) = [-2, -1] \cup [1, 2].$

Ví dụ.
(tự làm) Cho $f:\mathbb{R}\to\mathbb{R}$ được xác định $f(x)=x^2-2x+3.$ Hãy tìm

- \bullet $f^{-1}(1); f^{-1}(3); f^{-1}(-5); f^{-1}([3,11])?$

Định nghĩa. Cho ánh xạ $f: X \to Y$.

Định nghĩa. Cho ánh xạ $f: X \to Y$. Ta nói f **đơn ánh** nếu

Định nghĩa. Cho ánh xạ $f:X\to Y$. Ta nói f đơn ánh nếu

"
$$\forall x_1, x_2 \in X, x_1 \neq x_2 \to f(x_1) \neq f(x_2)$$
",

Định nghĩa. Cho ánh xạ $f: X \to Y$. Ta nói f **đơn ánh** nếu

"
$$\forall x_1, x_2 \in X, x_1 \neq x_2 \to f(x_1) \neq f(x_2)$$
",

nghĩa là hai phần tử khác nhau bất kỳ trong X thì có ảnh khác nhau trong Y.

Định nghĩa. Cho ánh xạ $f:X\to Y$. Ta nói f đơn ánh nếu

"
$$\forall x_1, x_2 \in X, x_1 \neq x_2 \to f(x_1) \neq f(x_2)$$
",

nghĩa là hai phần tử khác nhau bất kỳ trong X thì có ảnh khác nhau trong Y.

Mệnh đề. Cho ánh xạ $f: X \to Y$. Khi đó:

Định nghĩa. Cho ánh xạ $f:X\to Y$. Ta nói f đơn ánh nếu

"
$$\forall x_1, x_2 \in X, x_1 \neq x_2 \to f(x_1) \neq f(x_2)$$
",

nghĩa là hai phần tử khác nhau bất kỳ trong X thì có ảnh khác nhau trong Y.

Mệnh đề. Cho ánh xạ $f: X \to Y$. Khi đó:

 \bullet f $don anh \Leftrightarrow$

Định nghĩa. Cho ánh xạ $f: X \to Y$. Ta nói f **đơn ánh** nếu

"
$$\forall x_1, x_2 \in X, x_1 \neq x_2 \to f(x_1) \neq f(x_2)$$
",

nghĩa là hai phần tử khác nhau bất kỳ trong X thì có ảnh khác nhau trong Y.

Mệnh đề. Cho ánh xạ $f: X \to Y$. Khi đó:

Định nghĩa. Cho ánh xạ $f: X \to Y$. Ta nói f **đơn ánh** nếu

"
$$\forall x_1, x_2 \in X, x_1 \neq x_2 \to f(x_1) \neq f(x_2)$$
",

nghĩa là hai phần tử khác nhau bất kỳ trong X thì có ảnh khác nhau trong Y.

Mệnh đề. Cho ánh xạ $f: X \to Y$. Khi đó:

Định nghĩa. Cho ánh xạ $f: X \to Y$. Ta nói f **đơn ánh** nếu

"
$$\forall x_1, x_2 \in X, x_1 \neq x_2 \to f(x_1) \neq f(x_2)$$
",

nghĩa là hai phần tử khác nhau bất kỳ trong X thì có ảnh khác nhau trong Y.

Mệnh đề. Cho ánh xạ $f: X \to Y$. Khi đó:

- \bullet f không đơn ánh \Leftrightarrow " $\exists x_1, x_2 \in X, x_1 \neq x_2 \land f(x_1) = f(x_2)$ ".

Định nghĩa. Cho ánh xạ $f: X \to Y$. Ta nói f **đơn ánh** nếu

"
$$\forall x_1, x_2 \in X, x_1 \neq x_2 \to f(x_1) \neq f(x_2)$$
",

nghĩa là hai phần tử khác nhau bất kỳ trong X thì có ảnh khác nhau trong Y.

Mệnh đề. Cho ánh xạ $f: X \to Y$. Khi đó:

Chứng minh. i) Sử dụng luật logic $p \to q \Leftrightarrow \neg q \to \neg p$.

Định nghĩa. Cho ánh xạ $f: X \to Y$. Ta nói f **đơn ánh** nếu

"
$$\forall x_1, x_2 \in X, x_1 \neq x_2 \to f(x_1) \neq f(x_2)$$
",

nghĩa là hai phần tử khác nhau bất kỳ trong X thì có ảnh khác nhau trong Y.

Mệnh đề. Cho ánh xạ $f: X \to Y$. Khi đó:

Chứng minh. i) Sử dụng luật logic $p \to q \Leftrightarrow \neg q \to \neg p$.

ii) Sử dụng luật logic $\neg(p \to q) \Leftrightarrow p \land \neg q$.

Giải. Với mọi $x_1, x_2 \in \mathbb{R}$, nếu $x_1 \neq x_2$

Giải. Với mọi $x_1, x_2 \in \mathbb{R}$, nếu $x_1 \neq x_2$ thì $x_1 + 3 \neq x_2 + 3$ nên

Giải. Với mọi $x_1, x_2 \in \mathbb{R}$, nếu $x_1 \neq x_2$ thì $x_1 + 3 \neq x_2 + 3$ nên $f(x_1) \neq f(x_2)$.

Giải. Với mọi $x_1, x_2 \in \mathbb{R}$, nếu $x_1 \neq x_2$ thì $x_1 + 3 \neq x_2 + 3$ nên $f(x_1) \neq f(x_2)$. Do đó f là đơn ánh.

Giải. Với mọi $x_1, x_2 \in \mathbb{R}$, nếu $x_1 \neq x_2$ thì $x_1 + 3 \neq x_2 + 3$ nên $f(x_1) \neq f(x_2)$. Do đó f là đơn ánh.

Ví dụ. Cho ánh xạ $f: \mathbb{R} \to \mathbb{R}$ xác định bởi $f(x) = x^3 + x$. Xét tính đơn ánh của f.

Giải. Với mọi $x_1, x_2 \in \mathbb{R}$, nếu $x_1 \neq x_2$ thì $x_1 + 3 \neq x_2 + 3$ nên $f(x_1) \neq f(x_2)$. Do đó f là đơn ánh.

Ví dụ. Cho ánh xạ $f: \mathbb{R} \to \mathbb{R}$ xác định bởi $f(x) = x^3 + x$. Xét tính đơn ánh của f.

$$f(x_1) = f(x_2)$$

Giải. Với mọi $x_1, x_2 \in \mathbb{R}$, nếu $x_1 \neq x_2$ thì $x_1 + 3 \neq x_2 + 3$ nên $f(x_1) \neq f(x_2)$. Do đó f là đơn ánh.

Ví dụ. Cho ánh xạ $f: \mathbb{R} \to \mathbb{R}$ xác định bởi $f(x) = x^3 + x$. Xét tính đơn ánh của f.

$$f(x_1) = f(x_2) \Leftrightarrow x_1^3 + x_1 = x_2^3 + x_2$$

Giải. Với mọi $x_1, x_2 \in \mathbb{R}$, nếu $x_1 \neq x_2$ thì $x_1 + 3 \neq x_2 + 3$ nên $f(x_1) \neq f(x_2)$. Do đó f là đơn ánh.

Ví dụ. Cho ánh xạ $f: \mathbb{R} \to \mathbb{R}$ xác định bởi $f(x) = x^3 + x$. Xét tính đơn ánh của f.

$$f(x_1) = f(x_2) \Leftrightarrow x_1^3 + x_1 = x_2^3 + x_2$$
$$\Leftrightarrow x_1^3 - x_2^3 + x_1 - x_2 = 0$$

Giải. Với mọi $x_1, x_2 \in \mathbb{R}$, nếu $x_1 \neq x_2$ thì $x_1 + 3 \neq x_2 + 3$ nên $f(x_1) \neq f(x_2)$. Do đó f là đơn ánh.

Ví dụ. Cho ánh xạ $f: \mathbb{R} \to \mathbb{R}$ xác định bởi $f(x) = x^3 + x$. Xét tính đơn ánh của f.

$$f(x_1) = f(x_2) \Leftrightarrow x_1^3 + x_1 = x_2^3 + x_2$$

$$\Leftrightarrow x_1^3 - x_2^3 + x_1 - x_2 = 0$$

$$\Leftrightarrow (x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2 + 1) = 0$$

Giải. Với mọi $x_1, x_2 \in \mathbb{R}$, nếu $x_1 \neq x_2$ thì $x_1 + 3 \neq x_2 + 3$ nên $f(x_1) \neq f(x_2)$. Do đó f là đơn ánh.

Ví dụ. Cho ánh xạ $f: \mathbb{R} \to \mathbb{R}$ xác định bởi $f(x) = x^3 + x$. Xét tính đơn ánh của f.

$$f(x_1) = f(x_2) \Leftrightarrow x_1^3 + x_1 = x_2^3 + x_2$$

$$\Leftrightarrow x_1^3 - x_2^3 + x_1 - x_2 = 0$$

$$\Leftrightarrow (x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2 + 1) = 0$$

$$\Leftrightarrow x_1 - x_2 = 0 \quad (\text{vi } x_1^2 + x_1x_2 + x_2^2 + 1 \ge 1)$$

Giải. Với mọi $x_1, x_2 \in \mathbb{R}$, nếu $x_1 \neq x_2$ thì $x_1 + 3 \neq x_2 + 3$ nên $f(x_1) \neq f(x_2)$. Do đó f là đơn ánh.

Ví dụ. Cho ánh xạ $f: \mathbb{R} \to \mathbb{R}$ xác định bởi $f(x) = x^3 + x$. Xét tính đơn ánh của f.

$$f(x_1) = f(x_2) \Leftrightarrow x_1^3 + x_1 = x_2^3 + x_2$$

$$\Leftrightarrow x_1^3 - x_2^3 + x_1 - x_2 = 0$$

$$\Leftrightarrow (x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2 + 1) = 0$$

$$\Leftrightarrow x_1 - x_2 = 0 \quad (\text{vì } x_1^2 + x_1x_2 + x_2^2 + 1 \ge 1)$$

$$\Leftrightarrow x_1 = x_2$$

Giải. Với mọi $x_1, x_2 \in \mathbb{R}$, nếu $x_1 \neq x_2$ thì $x_1 + 3 \neq x_2 + 3$ nên $f(x_1) \neq f(x_2)$. Do đó f là đơn ánh.

Ví dụ. Cho ánh xạ $f: \mathbb{R} \to \mathbb{R}$ xác định bởi $f(x) = x^3 + x$. Xét tính đơn ánh của f.

Giải. Với mọi $x_1, x_2 \in \mathbb{R}$,

$$f(x_1) = f(x_2) \Leftrightarrow x_1^3 + x_1 = x_2^3 + x_2$$

$$\Leftrightarrow x_1^3 - x_2^3 + x_1 - x_2 = 0$$

$$\Leftrightarrow (x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2 + 1) = 0$$

$$\Leftrightarrow x_1 - x_2 = 0 \quad (\text{vì } x_1^2 + x_1x_2 + x_2^2 + 1 \ge 1)$$

$$\Leftrightarrow x_1 = x_2$$

Do đó f là đơn ánh.

Giải. Ta có f(-1) = f(0) = 0 mà $-1 \neq 0$.

Giải. Ta có f(-1) = f(0) = 0 mà $-1 \neq 0$. Do đó f không là đơn ánh.

Giải. Ta có f(-1) = f(0) = 0 mà $-1 \neq 0$. Do đó f không là đơn ánh.

Định nghĩa. Cho ánh xạ $f: X \to Y$. Ta nói f toàn ánh nếu

Giải. Ta có f(-1) = f(0) = 0 mà $-1 \neq 0$. Do đó f không là đơn ánh.

Định nghĩa. Cho ánh xạ $f: X \to Y$. Ta nói f toàn ánh nếu

"
$$\forall y \in Y, \exists x \in X \text{ sao cho } y = f(x)$$
",

Giải. Ta có f(-1) = f(0) = 0 mà $-1 \neq 0$. Do đó f không là đơn ánh.

Định nghĩa. Cho ánh xạ $f: X \to Y$. Ta nói f toàn ánh nếu

"
$$\forall y \in Y, \exists x \in X \text{ sao cho } y = f(x)$$
",

nghĩa là mọi phần tử thuộc Y đều là ảnh của ít nhất một phần tử thuộc X.

a) Cho $f: \mathbb{R} \to \mathbb{R}$ được xác định $f(x) = x^3 + 1$

a) Cho $f: \mathbb{R} \to \mathbb{R}$ được xác định $f(x) = x^3 + 1$ là toàn ánh.

Ví du.

- a) Cho $f: \mathbb{R} \to \mathbb{R}$ được xác định $f(x) = x^3 + 1$ là toàn ánh.
- b) Cho $g: \mathbb{R} \to \mathbb{R}$ được xác định $g(x) = x^2 + 1$

Ví du.

- a) Cho $f: \mathbb{R} \to \mathbb{R}$ được xác định $f(x) = x^3 + 1$ là toàn ánh.
- b) Cho $g: \mathbb{R} \to \mathbb{R}$ được xác định $g(x) = x^2 + 1$ không là toàn ánh.

- a) Cho $f: \mathbb{R} \to \mathbb{R}$ được xác định $f(x) = x^3 + 1$ là toàn ánh.
- b) Cho $g: \mathbb{R} \to \mathbb{R}$ được xác định $g(x) = x^2 + 1$ không là toàn ánh.

Mệnh đề. Cho ánh xạ $f: X \to Y$. Khi đó,

- a) Cho $f: \mathbb{R} \to \mathbb{R}$ được xác định $f(x) = x^3 + 1$ là toàn ánh.
- b) Cho $g: \mathbb{R} \to \mathbb{R}$ được xác định $g(x) = x^2 + 1$ không là toàn ánh.

Mệnh đề. Cho ánh xạ $f: X \to Y$. Khi đó,

lack 0 f là toàn ánh \Leftrightarrow với mọi $y \in Y$, phương trình y = f(x) có nghiệm

- a) Cho $f: \mathbb{R} \to \mathbb{R}$ được xác định $f(x) = x^3 + 1$ là toàn ánh.
- b) Cho $g: \mathbb{R} \to \mathbb{R}$ được xác định $g(x) = x^2 + 1$ không là toàn ánh.

Mệnh đề. Cho ánh xạ $f: X \to Y$. Khi đó,

- lack f là toàn ánh \Leftrightarrow với mọi $y \in Y$, phương trình y = f(x) có nghiệm

- a) Cho $f: \mathbb{R} \to \mathbb{R}$ được xác định $f(x) = x^3 + 1$ là toàn ánh.
- b) Cho $g: \mathbb{R} \to \mathbb{R}$ được xác định $g(x) = x^2 + 1$ không là toàn ánh.

Mệnh đề. Cho ánh xạ $f: X \to Y$. Khi đó,

- lacktriangledown f là toàn ánh \Leftrightarrow với mọi $y \in Y$, phương trình y = f(x) có nghiệm

Ví dụ. Cho $f: \mathbb{R} \to \mathbb{R}$ xác định bởi $f(x) = x^2 - 3x + 5$. Hỏi f có toàn ánh không?

- a) Cho $f: \mathbb{R} \to \mathbb{R}$ được xác định $f(x) = x^3 + 1$ là toàn ánh.
- b) Cho $g: \mathbb{R} \to \mathbb{R}$ được xác định $g(x) = x^2 + 1$ không là toàn ánh.

Mệnh đề. Cho ánh xạ $f: X \to Y$. Khi đó,

- lack f là toàn ánh \Leftrightarrow với mọi $y \in Y$, phương trình y = f(x) có nghiệm

Ví dụ. Cho $f: \mathbb{R} \to \mathbb{R}$ xác định bởi $f(x) = x^2 - 3x + 5$. Hỏi f có toàn ánh không?

Giải. Với y = 0 ta có phương trình y = f(x) vô nghiệm.

- a) Cho $f: \mathbb{R} \to \mathbb{R}$ được xác định $f(x) = x^3 + 1$ là toàn ánh.
- b) Cho $g: \mathbb{R} \to \mathbb{R}$ được xác định $g(x) = x^2 + 1$ không là toàn ánh.

Mệnh đề. Cho ánh xạ $f: X \to Y$. Khi đó,

- lack f là toàn ánh \Leftrightarrow với mọi $y \in Y$, phương trình y = f(x) có nghiệm

Ví dụ. Cho $f: \mathbb{R} \to \mathbb{R}$ xác định bởi $f(x) = x^2 - 3x + 5$. Hỏi f có toàn ánh không?

Giải. Với y=0 ta có phương trình y=f(x) vô nghiệm. Suy ra f không toàn ánh.

Định nghĩa. Ta nói $f: X \to Y$ là một $song \ \emph{anh}$

Định nghĩa. Ta nói $f:X\to Y$ là một $song~\acute{a}nh$ nếu f vừa là đơn ánh vừa là toàn ánh

Định nghĩa. Ta nói $f:X\to Y$ là một $song~\acute{a}nh$ nếu f vừa là đơn ánh vừa là toàn ánh

nghĩa là

$$\forall y \in Y, \exists ! \ x \in X : f(x) = y$$

Định nghĩa. Ta nói $f:X\to Y$ là một $song~\acute{a}nh$ nếu f vừa là đơn ánh vừa là toàn ánh

nghĩa là

$$\forall y \in Y, \exists ! \ x \in X : f(x) = y$$

Ví dụ.

 $\ \, \bullet \ \, f:\mathbb{R} \to \mathbb{R}$ được xác định $f(x)=x^3+1$

Định nghĩa. Ta nói $f:X\to Y$ là một song ánh nếu f vừa là đơn ánh vừa là toàn ánh

nghĩa là

$$\forall y \in Y, \exists ! \ x \in X : f(x) = y$$

Ví dụ.

 $\quad \bullet \quad f: \mathbb{R} \to \mathbb{R}$ được xác định $f(x) = x^3 + 1$ là song ánh

Định nghĩa. Ta nói $f:X\to Y$ là một $song~\acute{a}nh$ nếu f vừa là đơn ánh vừa là toàn ánh

nghĩa là

$$\forall y \in Y, \exists ! \ x \in X : f(x) = y$$

Ví dụ.

- $g: \mathbb{R} \to \mathbb{R}$ được xác định $g(x) = x^2 + 1$

Định nghĩa. Ta nói $f: X \to Y$ là một song ánh nếu f vừa là đơn ánh vừa là toàn ánh

nghĩa là

$$\forall y \in Y, \exists ! \ x \in X : f(x) = y$$

Ví dụ.

- Φ $g: \mathbb{R} \to \mathbb{R}$ được xác định $g(x) = x^2 + 1$ không là song ánh

Định nghĩa. Ta nói $f: X \to Y$ là một song ánh nếu f vừa là đơn ánh vừa là toàn ánh

nghĩa là

$$\forall y \in Y, \exists ! \ x \in X : f(x) = y$$

Ví dụ.

- $\bullet \quad g: \mathbb{R} \to \mathbb{R}$ được xác định $g(x) = x^2 + 1$ không là song ánh

Ví dụ. Cho $f: \mathbb{R} \to \mathbb{R}$ xác định bởi f(x) = x + 3. Hỏi f có song ánh không?

Giải. Với mọi
$$y \in \mathbb{R}$$
, ta có

$$y = f(x)$$

$$y = f(x) \Leftrightarrow y = x + 3$$

$$y = f(x) \Leftrightarrow y = x + 3 \Leftrightarrow x = y - 3.$$

$$y = f(x) \Leftrightarrow y = x + 3 \Leftrightarrow x = y - 3.$$

Như vậy, với mọi $y \in \mathbb{R}$, tồn tại $x = y - 3 \in \mathbb{R}$ để y = f(x).

$$y = f(x) \Leftrightarrow y = x + 3 \Leftrightarrow x = y - 3.$$

Như vậy, với mọi $y \in \mathbb{R}$, tồn tại $x = y - 3 \in \mathbb{R}$ để y = f(x). Do đó f là toàn ánh.

$$y = f(x) \Leftrightarrow y = x + 3 \Leftrightarrow x = y - 3.$$

Như vậy, với mọi $y \in \mathbb{R}$, tồn tại $x = y - 3 \in \mathbb{R}$ để y = f(x). Do đó f là toàn ánh. Hơn nữa f là đơn ánh.

$$y = f(x) \Leftrightarrow y = x + 3 \Leftrightarrow x = y - 3.$$

Như vậy, với mọi $y \in \mathbb{R}$, tồn tại $x = y - 3 \in \mathbb{R}$ để y = f(x). Do đó f là toàn ánh. Hơn nữa f là đơn ánh. Vậy, f là song ánh.

$$y = f(x) \Leftrightarrow y = x + 3 \Leftrightarrow x = y - 3.$$

Như vậy, với mọi $y \in \mathbb{R}$, tồn tại $x = y - 3 \in \mathbb{R}$ để y = f(x). Do đó f là toàn ánh. Hơn nữa f là đơn ánh. Vậy, f là song ánh.

Ví dụ.(tự làm) Cho $f: \mathbb{N} \to \mathbb{N}$ xác định bởi f(x) = 2x + 1. Hỏi f có song ánh không?

$$y = f(x) \Leftrightarrow y = x + 3 \Leftrightarrow x = y - 3.$$

Như vậy, với mọi $y \in \mathbb{R}$, tồn tại $x = y - 3 \in \mathbb{R}$ để y = f(x). Do đó f là toàn ánh. Hơn nữa f là đơn ánh. Vậy, f là song ánh.

Ví dụ.(tự làm) Cho $f: \mathbb{N} \to \mathbb{N}$ xác định bởi f(x) = 2x + 1. Hỏi f có song ánh không?

Ví dụ.(tự làm) Cho $f: \mathbb{Z} \to \mathbb{Z}$ xác định bởi f(x) = x + 5. Hỏi f có song ánh không?

$$y = f(x) \Leftrightarrow y = x + 3 \Leftrightarrow x = y - 3.$$

Như vậy, với mọi $y \in \mathbb{R}$, tồn tại $x = y - 3 \in \mathbb{R}$ để y = f(x). Do đó f là toàn ánh. Hơn nữa f là đơn ánh. Vậy, f là song ánh.

Ví dụ.(tự làm) Cho $f: \mathbb{N} \to \mathbb{N}$ xác định bởi f(x) = 2x + 1. Hỏi f có song ánh không?

Ví dụ.(tự làm) Cho $f: \mathbb{Z} \to \mathbb{Z}$ xác định bởi f(x) = x + 5. Hỏi f có song ánh không?

$$y = f(x) \Leftrightarrow y = x + 3 \Leftrightarrow x = y - 3.$$

Như vậy, với mọi $y \in \mathbb{R}$, tồn tại $x = y - 3 \in \mathbb{R}$ để y = f(x). Do đó f là toàn ánh. Hơn nữa f là đơn ánh. Vậy, f là song ánh.

Ví dụ.(tự làm) Cho $f: \mathbb{N} \to \mathbb{N}$ xác định bởi f(x) = 2x + 1. Hỏi f có song ánh không?

Ví dụ.(tự làm) Cho $f: \mathbb{Z} \to \mathbb{Z}$ xác định bởi f(x) = x + 5. Hỏi f có song ánh không?

Tính chất. Cho ánh xạ $f: X \to Y$ và $g: Y \to Z$. Khi đó

$$y = f(x) \Leftrightarrow y = x + 3 \Leftrightarrow x = y - 3.$$

Như vậy, với mọi $y \in \mathbb{R}$, tồn tại $x = y - 3 \in \mathbb{R}$ để y = f(x). Do đó f là toàn ánh. Hơn nữa f là đơn ánh. Vậy, f là song ánh.

Ví dụ.(tự làm) Cho $f: \mathbb{N} \to \mathbb{N}$ xác định bởi f(x) = 2x + 1. Hỏi f có song ánh không?

Ví dụ.(tự làm) Cho $f: \mathbb{Z} \to \mathbb{Z}$ xác định bởi f(x) = x + 5. Hỏi f có song ánh không?

Tính chất. Cho ánh xạ $f: X \to Y$ và $g: Y \to Z$. Khi đó

 $f,g \ don \ ánh \Rightarrow g_{\circ}f \ don \ ánh$

$$y = f(x) \Leftrightarrow y = x + 3 \Leftrightarrow x = y - 3.$$

Như vậy, với mọi $y \in \mathbb{R}$, tồn tại $x = y - 3 \in \mathbb{R}$ để y = f(x). Do đó f là toàn ánh. Hơn nữa f là đơn ánh. Vậy, f là song ánh.

Ví dụ.(tự làm) Cho $f: \mathbb{N} \to \mathbb{N}$ xác định bởi f(x) = 2x + 1. Hỏi f có song ánh không?

Ví dụ.(tự làm) Cho $f: \mathbb{Z} \to \mathbb{Z}$ xác định bởi f(x) = x + 5. Hỏi f có song ánh không?

Tính chất. Cho ánh xạ $f: X \to Y$ và $g: Y \to Z$. Khi đó

$$y = f(x) \Leftrightarrow y = x + 3 \Leftrightarrow x = y - 3.$$

Như vậy, với mọi $y \in \mathbb{R}$, tồn tại $x = y - 3 \in \mathbb{R}$ để y = f(x). Do đó f là toàn ánh. Hơn nữa f là đơn ánh. Vậy, f là song ánh.

Ví dụ.(tự làm) Cho $f: \mathbb{N} \to \mathbb{N}$ xác định bởi f(x) = 2x + 1. Hỏi f có song ánh không?

Ví dụ.(tự làm) Cho $f: \mathbb{Z} \to \mathbb{Z}$ xác định bởi f(x) = x + 5. Hỏi f có song ánh không?

- $\mathbf{0}$ f, g toàn ánh

$$y = f(x) \Leftrightarrow y = x + 3 \Leftrightarrow x = y - 3.$$

Như vậy, với mọi $y \in \mathbb{R}$, tồn tại $x = y - 3 \in \mathbb{R}$ để y = f(x). Do đó f là toàn ánh. Hơn nữa f là đơn ánh. Vậy, f là song ánh.

 Ví dụ. (tự làm) Cho $f:\mathbb{N}\to\mathbb{N}$ xác định bởi f(x)=2x+1. Hỏi f có song ánh không?

Ví dụ.(tự làm) Cho $f: \mathbb{Z} \to \mathbb{Z}$ xác định bởi f(x) = x + 5. Hỏi f có song ánh không?

- f,g toàn ánh $\Rightarrow g_{\circ}f$ toàn ánh

$$y = f(x) \Leftrightarrow y = x + 3 \Leftrightarrow x = y - 3.$$

Như vậy, với mọi $y \in \mathbb{R}$, tồn tại $x = y - 3 \in \mathbb{R}$ để y = f(x). Do đó f là toàn ánh. Hơn nữa f là đơn ánh. Vậy, f là song ánh.

 Ví dụ. (tự làm) Cho $f:\mathbb{N}\to\mathbb{N}$ xác định bởi f(x)=2x+1. Hỏi f có song ánh không?

Ví dụ.(tự làm) Cho $f: \mathbb{Z} \to \mathbb{Z}$ xác định bởi f(x) = x + 5. Hỏi f có song ánh không?

$$y = f(x) \Leftrightarrow y = x + 3 \Leftrightarrow x = y - 3.$$

Như vậy, với mọi $y \in \mathbb{R}$, tồn tại $x = y - 3 \in \mathbb{R}$ để y = f(x). Do đó f là toàn ánh. Hơn nữa f là đơn ánh. Vậy, f là song ánh.

 Ví dụ. (tự làm) Cho $f:\mathbb{N}\to\mathbb{N}$ xác định bởi f(x)=2x+1. Hỏi f có song ánh không?

Ví dụ.(tự làm) Cho $f: \mathbb{Z} \to \mathbb{Z}$ xác định bởi f(x) = x + 5. Hỏi f có song ánh không?

- $f, g \text{ toàn ánh } \Rightarrow g \circ f \text{ toàn ánh } \Rightarrow g \text{ toàn ánh};$
- f, q song ánh

$$y = f(x) \Leftrightarrow y = x + 3 \Leftrightarrow x = y - 3.$$

Như vậy, với mọi $y \in \mathbb{R}$, tồn tại $x = y - 3 \in \mathbb{R}$ để y = f(x). Do đó f là toàn ánh. Hơn nữa f là đơn ánh. Vậy, f là song ánh.

 Ví dụ. (tự làm) Cho $f:\mathbb{N}\to\mathbb{N}$ xác định bởi f(x)=2x+1. Hỏi f có song ánh không?

Ví dụ.(tự làm) Cho $f: \mathbb{Z} \to \mathbb{Z}$ xác định bởi f(x) = x + 5. Hỏi f có song ánh không?

- \bullet f,g song $\acute{a}nh \Rightarrow g_{\circ}f$ song $\acute{a}nh$

$$y = f(x) \Leftrightarrow y = x + 3 \Leftrightarrow x = y - 3.$$

Như vậy, với mọi $y \in \mathbb{R}$, tồn tại $x = y - 3 \in \mathbb{R}$ để y = f(x). Do đó f là toàn ánh. Hơn nữa f là đơn ánh. Vậy, f là song ánh.

Ví dụ.(tự làm) Cho $f: \mathbb{N} \to \mathbb{N}$ xác định bởi f(x) = 2x + 1. Hỏi f có song ánh không?

Ví dụ.(tự làm) Cho $f: \mathbb{Z} \to \mathbb{Z}$ xác định bởi f(x) = x + 5. Hỏi f có song ánh không?

- \bullet f,g song $\acute{a}nh \Rightarrow g_{\circ}f$ song $\acute{a}nh \Rightarrow f$ \acute{d} on $\acute{a}nh, g$ to $\grave{a}n$ $\acute{a}nh$.

Định nghĩa. Cho $f: X \to Y$ là một song ánh.

Định nghĩa. Cho $f: X \to Y$ là một song ánh.

Khi đó, với mọi $y \in Y$, tồn tại duy nhất một phần tử $x \in X$ thỏa f(x) = y.

Định nghĩa. Cho $f: X \to Y$ là một song ánh.

Khi đó, với mọi $y \in Y$, tồn tại duy nhất một phần tử $x \in X$ thỏa f(x) = y. Do đó tương ứng $y \mapsto x$ là một ánh xạ từ Y vào X.

Định nghĩa. Cho $f: X \to Y$ là một song ánh.

Khi đó, với mọi $y \in Y$, tồn tại duy nhất một phần tử $x \in X$ thỏa f(x) = y. Do đó tương ứng $y \mapsto x$ là một ánh xạ từ Y vào X. Ta gọi đây là **ánh xạ ngược** của f và ký hiệu f^{-1} .

Định nghĩa. Cho $f: X \to Y$ là một song ánh.

Khi đó, với mọi $y \in Y$, tồn tại duy nhất một phần tử $x \in X$ thỏa f(x) = y. Do đó tương ứng $y \mapsto x$ là một ánh xạ từ Y vào X. Ta gọi đây là **ánh xạ ngược** của f và ký hiệu f^{-1} . Như vậy:

$$f^{-1}: Y \longrightarrow X$$

 $y \longmapsto x \text{ v\'oi } f(x) = y.$

Định nghĩa. Cho $f: X \to Y$ là một song ánh.

Khi đó, với mọi $y \in Y$, tồn tại duy nhất một phần tử $x \in X$ thỏa f(x) = y. Do đó tương ứng $y \mapsto x$ là một ánh xạ từ Y vào X. Ta gọi đây là **ánh xạ ngược** của f và ký hiệu f^{-1} . Như vậy:

$$f^{-1}: Y \longrightarrow X$$

 $y \longmapsto x \text{ v\'oi } f(x) = y.$

Ví dụ. Cho f là ánh xạ từ \mathbb{R} vào \mathbb{R} xác định bởi f(x) = x + 4. Chứng tỏ f song ánh và tìm f^{-1} ?

Định nghĩa. Cho $f: X \to Y$ là một song ánh.

Khi đó, với mọi $y \in Y$, tồn tại duy nhất một phần tử $x \in X$ thỏa f(x) = y. Do đó tương ứng $y \mapsto x$ là một ánh xạ từ Y vào X. Ta gọi đây là **ánh xạ ngược** của f và ký hiệu f^{-1} . Như vậy:

$$f^{-1}: Y \longrightarrow X$$

 $y \longmapsto x \text{ v\'oi } f(x) = y.$

Ví dụ. Cho f là ánh xạ từ \mathbb{R} vào \mathbb{R} xác định bởi f(x) = x + 4. Chứng tỏ f song ánh và tìm f^{-1} ?

Đáp án. $f^{-1}(y) = y - 4$.

Ví dụ. Cho

$$\begin{array}{cccc} f: & [0;2] & \longrightarrow & [0;4] \\ & x & \longmapsto & x^2 \end{array}$$

Ví dụ. Cho
$$f: [0;2] \longrightarrow [0;4]$$

$$x \longmapsto x^2$$
 thì
$$f^{-1}: [0;4] \longrightarrow [0;2]$$

$$y \longmapsto \sqrt{y}$$

$$\begin{array}{cccc} f: & [0;2] & \longrightarrow & [0;4] \\ & x & \longmapsto & x^2 \end{array}$$

$$\begin{array}{cccc} f^{-1}: & [0;4] & \longrightarrow & [0;2] \\ & y & \longmapsto & \sqrt{y} \end{array}$$

Định lý. Cho ánh xạ $f: X \to Y$.

$$\begin{array}{ccc} f: & [0;2] & \longrightarrow & [0;4] \\ & x & \longmapsto & x^2 \end{array}$$

$$\begin{array}{cccc} f^{-1}: & [0;4] & \longrightarrow & [0;2] \\ & y & \longmapsto & \sqrt{y} \end{array}$$

Định lý. Cho ánh xạ $f: X \to Y$. Khi đó, nếu $\forall y \in Y$, phương trình f(x) = y (theo ẩn x) có duy nhất một nghiệm

$$\begin{array}{ccc} f: & [0;2] & \longrightarrow & [0;4] \\ & x & \longmapsto & x^2 \end{array}$$

$$\begin{array}{ccc} f^{-1}: & [0;4] & \longrightarrow & [0;2] \\ & y & \longmapsto & \sqrt{y} \end{array}$$

Định lý. Cho ánh xạ $f: X \to Y$. Khi đó, nếu $\forall y \in Y$, phương trình f(x) = y (theo ẩn x) có duy nhất một nghiệm thì f là song ánh.

$$\begin{array}{ccc} f: & [0;2] & \longrightarrow & [0;4] \\ & x & \longmapsto & x^2 \end{array}$$

$$f^{-1}: [0;4] \longrightarrow [0;2]$$
$$y \longmapsto \sqrt{y}$$

Định lý. Cho ánh xạ $f: X \to Y$. Khi đó, nếu $\forall y \in Y$, phương trình f(x) = y (theo ẩn x) có duy nhất một nghiệm thì f là song ánh. Hơn nữa, nếu nghiệm đó là x_0 thì $f^{-1}(y) = x_0$.

$$\begin{array}{ccc} f: & [0;2] & \longrightarrow & [0;4] \\ & x & \longmapsto & x^2 \end{array}$$

$$\begin{array}{ccc} f^{-1}: & [0;4] & \longrightarrow & [0;2] \\ & y & \longmapsto & \sqrt{y} \end{array}$$

Định lý. Cho ánh xạ $f: X \to Y$. Khi đó, nếu $\forall y \in Y$, phương trình f(x) = y (theo ẩn x) có duy nhất một nghiệm thì f là song ánh. Hơn nữa, nếu nghiệm đó là x_0 thì $f^{-1}(y) = x_0$.

Ví dụ. Cho $f: \mathbb{R} \to \mathbb{R}$ xác định bởi f(x) = 5x - 3. Hỏi f có song ánh không?

$$\begin{array}{ccc} f: & [0;2] & \longrightarrow & [0;4] \\ & x & \longmapsto & x^2 \end{array}$$

$$\begin{array}{cccc} f^{-1}: & [0;4] & \longrightarrow & [0;2] \\ & y & \longmapsto & \sqrt{y} \end{array}$$

Định lý. Cho ánh xạ $f: X \to Y$. Khi đó, nếu $\forall y \in Y$, phương trình f(x) = y (theo ẩn x) có duy nhất một nghiệm thì f là song ánh. Hơn nữa, nếu nghiệm đó là x_0 thì $f^{-1}(y) = x_0$.

Ví dụ. Cho $f: \mathbb{R} \to \mathbb{R}$ xác định bởi f(x) = 5x - 3. Hỏi f có song ánh không?

Giải. Với moi $y \in \mathbb{R}$,

$$\begin{array}{ccc} f: & [0;2] & \longrightarrow & [0;4] \\ & x & \longmapsto & x^2 \end{array}$$

$$\begin{array}{cccc} f^{-1}: & [0;4] & \longrightarrow & [0;2] \\ & y & \longmapsto & \sqrt{y} \end{array}$$

Định lý. Cho ánh xạ $f: X \to Y$. Khi đó, nếu $\forall y \in Y$, phương trình f(x) = y (theo ẩn x) có duy nhất một nghiệm thì f là song ánh. Hơn nữa, nếu nghiệm đó là x_0 thì $f^{-1}(y) = x_0$.

Ví dụ. Cho $f: \mathbb{R} \to \mathbb{R}$ xác định bởi f(x) = 5x - 3. Hỏi f có song ánh không?

Giải. Với mọi $y \in \mathbb{R}$, ta xét phương trình ẩn x sau

$$y = f(x)$$

$$\begin{array}{ccc} f: & [0;2] & \longrightarrow & [0;4] \\ & x & \longmapsto & x^2 \end{array}$$

$$\begin{array}{cccc} f^{-1}: & [0;4] & \longrightarrow & [0;2] \\ & y & \longmapsto & \sqrt{y} \end{array}$$

Định lý. Cho ánh xạ $f: X \to Y$. Khi đó, nếu $\forall y \in Y$, phương trình f(x) = y (theo ẩn x) có duy nhất một nghiệm thì f là song ánh. Hơn nữa, nếu nghiệm đó là x_0 thì $f^{-1}(y) = x_0$.

Ví dụ. Cho $f: \mathbb{R} \to \mathbb{R}$ xác định bởi f(x) = 5x - 3. Hỏi f có song ánh không?

Giải. Với mọi $y \in \mathbb{R}$, ta xét phương trình ẩn x sau

$$y = f(x) \Leftrightarrow y = 5x - 3$$

$$\begin{array}{ccc} f: & [0;2] & \longrightarrow & [0;4] \\ & x & \longmapsto & x^2 \end{array}$$

$$\begin{array}{ccc} f^{-1}: & [0;4] & \longrightarrow & [0;2] \\ & y & \longmapsto & \sqrt{y} \end{array}$$

Định lý. Cho ánh xạ $f: X \to Y$. Khi đó, nếu $\forall y \in Y$, phương trình f(x) = y (theo ẩn x) có duy nhất một nghiệm thì f là song ánh. Hơn nữa, nếu nghiệm đó là x_0 thì $f^{-1}(y) = x_0$.

Ví dụ. Cho $f: \mathbb{R} \to \mathbb{R}$ xác định bởi f(x) = 5x - 3. Hỏi f có song ánh không?

Giải. Với mọi $y \in \mathbb{R}$, ta xét phương trình ẩn x sau

$$y = f(x) \Leftrightarrow y = 5x - 3 \Leftrightarrow x = \frac{y+3}{5}.$$

$$\begin{array}{ccc} f: & [0;2] & \longrightarrow & [0;4] \\ & x & \longmapsto & x^2 \end{array}$$

$$\begin{array}{cccc} f^{-1}: & [0;4] & \longrightarrow & [0;2] \\ & y & \longmapsto & \sqrt{y} \end{array}$$

Định lý. Cho ánh xạ $f: X \to Y$. Khi đó, nếu $\forall y \in Y$, phương trình f(x) = y (theo ẩn x) có duy nhất một nghiệm thì f là song ánh. Hơn nữa, nếu nghiệm đó là x_0 thì $f^{-1}(y) = x_0$.

Ví dụ. Cho $f: \mathbb{R} \to \mathbb{R}$ xác định bởi f(x) = 5x - 3. Hỏi f có song ánh không?

Giải. Với mọi $y \in \mathbb{R}$, ta xét phương trình ẩn x sau

$$y = f(x) \Leftrightarrow y = 5x - 3 \Leftrightarrow x = \frac{y+3}{5}.$$

Như vậy, phương trình có nghiệm duy nhất, suy ra f là song ánh.

$$f^{-1}(y) = \frac{y+3}{5}$$

$$f^{-1}(y) = \frac{y+3}{5}$$
 hay $f^{-1}(x) = \frac{x+3}{5}$

$$f^{-1}(y) = \frac{y+3}{5}$$
 hay $f^{-1}(x) = \frac{x+3}{5}$

Ví dụ. (tự làm) Cho $f: \mathbb{R} \to \mathbb{R}$ xác định bởi $f(x) = x^3 + 1$. Hỏi f có song ánh không? Nếu có, tìm ảnh ngược của f

$$f^{-1}(y) = \frac{y+3}{5}$$
 hay $f^{-1}(x) = \frac{x+3}{5}$

Ví dụ.(tự làm) Cho $f: \mathbb{R} \to \mathbb{R}$ xác định bởi $f(x) = x^3 + 1$. Hỏi f có song ánh không? Nếu có, tìm ảnh ngược của f

Ví dụ. (tự làm) Cho ánh xạ $f: X = (2, +\infty) \to Y = \mathbb{R}$ định bởi

$$f(x) = 4\ln(5x - 10) + 3, \forall x \in X.$$

Chứng minh f là một song ánh và viết ánh xạ ngược f^{-1} .

$$f^{-1}(y) = \frac{y+3}{5}$$
 hay $f^{-1}(x) = \frac{x+3}{5}$

 Ví dụ. (tự làm) Cho $f:\mathbb{R}\to\mathbb{R}$ xác định bởi $f(x)=x^3+1$. Hỏi f có song ánh không? Nếu có, tìm ảnh ngược của f

Ví dụ.
(tự làm) Cho ánh xạ $f:X=(2,+\infty) \to Y=\mathbb{R}$ định bởi

$$f(x) = 4\ln(5x - 10) + 3, \forall x \in X.$$

Chứng minh f là một song ánh và viết ánh xạ ngược f^{-1} .

Ví du. (tự làm) Cho $f: X = (3,6] \rightarrow Y = [-27,-6)$ được xác định

$$f(x) = -x^2 + 2x - 3, \forall x \in X.$$

Chứng minh f là một song ánh và viết ánh xạ ngược $f^{-1}(x)$.

$$f^{-1}(y) = \frac{y+3}{5}$$
 hay $f^{-1}(x) = \frac{x+3}{5}$

 Ví dụ. (tự làm) Cho $f:\mathbb{R}\to\mathbb{R}$ xác định bởi $f(x)=x^3+1$. Hỏi f có song ánh không? Nếu có, tìm ảnh ngược của f

Ví dụ.
(tự làm) Cho ánh xạ $f:X=(2,+\infty) \to Y=\mathbb{R}$ định bởi

$$f(x) = 4\ln(5x - 10) + 3, \forall x \in X.$$

Chứng minh f là một song ánh và viết ánh xạ ngược f^{-1} .

Ví du. (tự làm) Cho $f: X = (3,6] \rightarrow Y = [-27,-6)$ được xác định

$$f(x) = -x^2 + 2x - 3, \forall x \in X.$$

Chứng minh f là một song ánh và viết ánh xạ ngược $f^{-1}(x)$.

- **Mệnh đề.** Cho $f: X \to Y$ và $g: Y \to Z$ là hai song ánh. Khi đó:

- **1** f^{-1} cũng là một song ánh và $(f^{-1})^{-1} = f$;

- **1** f^{-1} cũng là một song ánh và $(f^{-1})^{-1} = f$;

Mệnh đề. Cho hai ánh xạ $f: X \to Y$ và $g: Y \to X$. Nếu

$$g \circ f = Id_X, f \circ g = Id_Y$$

thì f là song ánh và g là ánh xạ ngược của f.

- **1** f^{-1} cũng là một song ánh và $(f^{-1})^{-1} = f$;

Mệnh đề. Cho hai ánh xạ $f: X \to Y$ và $g: Y \to X$. Nếu

$$g \circ f = Id_X, f \circ g = Id_Y$$

thì f là song ánh và g là ánh xạ ngược của <math>f.

Ví dụ. Cho $f:X=\mathbb{R}\setminus\{1\}\to Y=\mathbb{R}\setminus\{2\}$ và $g:Y\to X$ xác định bởi

$$f(x) = \frac{2x+1}{x-1}$$
 và $g(x) = \frac{x+1}{x-2}$.

- **1** f^{-1} cũng là một song ánh và $(f^{-1})^{-1} = f$;

Mệnh đề. Cho hai ánh xạ $f: X \to Y$ và $g: Y \to X$. Nếu

$$g \circ f = Id_X, f \circ g = Id_Y$$

 $thì \ f \ là \ song \ ánh \ và \ g \ là \ ánh \ xạ \ ngược \ của \ f.$

Ví dụ. Cho $f:X=\mathbb{R}\setminus\{1\}\to Y=\mathbb{R}\setminus\{2\}$ và $g:Y\to X$ xác định bởi

$$f(x) = \frac{2x+1}{x-1}$$
 và $g(x) = \frac{x+1}{x-2}$.

Ta dễ dàng kiểm tra $g_{\circ}f(x) = x$ và $f_{\circ}g(x) = x$.

- ① f^{-1} cũng là một song ánh và $(f^{-1})^{-1} = f$;
- $f_{\circ}^{-1} f = Id_{X} \ va \ f_{\circ} f^{-1} = Id_{Y}$
- $(q_{\circ}f)^{-1} = f^{-1} \circ g^{-1}.$

Mệnh đề. Cho hai ánh xạ $f: X \to Y$ và $g: Y \to X$. Nếu

$$g \circ f = Id_X, f \circ g = Id_Y$$

thì f là song ánh và g là ánh xa ngược của f.

Ví du. Cho $f: X = \mathbb{R} \setminus \{1\} \to Y = \mathbb{R} \setminus \{2\}$ và $g: Y \to X$ xác định bởi

$$f(x) = \frac{2x+1}{x-1}$$
 và $g(x) = \frac{x+1}{x-2}$.

Ta dễ dàng kiểm tra $g \circ f(x) = x$ và $f \circ g(x) = x$. Do đó f là song ánh

Mệnh đề. Cho hai ánh $xa f: X \to Y \ va g: Y \to X. Nếu$

$$g \circ f = Id_X, f \circ g = Id_Y$$

thì f là song ánh và g là ánh xạ ngược của f.

Ví dụ. Cho $f:X=\mathbb{R}\setminus\{1\}\to Y=\mathbb{R}\setminus\{2\}$ và $g:Y\to X$ xác định bởi

$$f(x) = \frac{2x+1}{x-1}$$
 và $g(x) = \frac{x+1}{x-2}$.

Ta dễ dàng kiểm tra $g \circ f(x) = x$ và $f \circ g(x) = x$. Do đó f là song ánh và g là ánh xạ ngược của f.

- $\bullet \quad \theta_{\circ}f = h$

- $\bullet \quad \theta_{\circ}f = h \Leftrightarrow \theta = h_{\circ}f^{-1}$

- $\bullet \quad \theta_{\circ}f = h \Leftrightarrow \theta = h_{\circ}f^{-1}$

- $\bullet \quad \theta_{\circ}f = h \Leftrightarrow \theta = h_{\circ}f^{-1}$

- $\bullet \quad \theta_{\circ}f = h \Leftrightarrow \theta = h_{\circ}f^{-1}$

Ví dụ. Cho $f:X=\mathbb{R}\setminus\{1\}\to Y=\mathbb{R}\setminus\{2\}$ và $h:X\to X$ xác định bởi

$$f(x) = \frac{2x+1}{x-1}$$
 và $h(x) = 5x+3$.

- $\bullet \quad \theta_{\circ}f = h \Leftrightarrow \theta = h_{\circ}f^{-1}$

Ví dụ. Cho $f:X=\mathbb{R}\setminus\{1\}\to Y=\mathbb{R}\setminus\{2\}$ và $h:X\to X$ xác định bởi

$$f(x) = \frac{2x+1}{x-1}$$
 và $h(x) = 5x+3$.

Hãy tìm ánh xạ g sao cho $g \circ f = h$?

- $\bullet \quad \theta_{\circ}f = h \Leftrightarrow \theta = h_{\circ}f^{-1}$

Ví dụ. Cho $f:X=\mathbb{R}\setminus\{1\}\to Y=\mathbb{R}\setminus\{2\}$ và $h:X\to X$ xác định bởi

$$f(x) = \frac{2x+1}{x-1}$$
 và $h(x) = 5x + 3$.

Hãy tìm ánh xạ g sao cho $g \circ f = h$?

Giải. Ta có $g \circ f = h \Leftrightarrow g \circ f \circ f^{-1} = h \circ f^{-1}$.

- $\bullet \quad \theta_{\circ}f = h \Leftrightarrow \theta = h_{\circ}f^{-1}$

Ví dụ. Cho $f:X=\mathbb{R}\setminus\{1\}\to Y=\mathbb{R}\setminus\{2\}$ và $h:X\to X$ xác định bởi

$$f(x) = \frac{2x+1}{x-1}$$
 và $h(x) = 5x + 3$.

Hãy tìm ánh xạ g sao cho $g \circ f = h$?

Giải. Ta có $g \circ f = h \Leftrightarrow g \circ f \circ f^{-1} = h \circ f^{-1}$. Mà $f \circ f^{-1} = Id_X$,

- $\bullet \quad \theta_{\circ}f = h \Leftrightarrow \theta = h_{\circ}f^{-1}$

Ví dụ. Cho $f: X = \mathbb{R} \setminus \{1\} \to Y = \mathbb{R} \setminus \{2\}$ và $h: X \to X$ xác định bởi

$$f(x) = \frac{2x+1}{x-1}$$
 và $h(x) = 5x + 3$.

Hãy tìm ánh xạ g sao cho $g \circ f = h$?

Giải. Ta có $g_{\circ}f = h \Leftrightarrow g_{\circ}f_{\circ}f^{-1} = h_{\circ}f^{-1}$. Mà $f_{\circ}f^{-1} = Id_X$, suy ra $g = h_{\circ}f^{-1}$.

$$\bullet \quad \theta_{\circ}f = h \Leftrightarrow \theta = h_{\circ}f^{-1}$$

Ví dụ. Cho $f: X = \mathbb{R} \setminus \{1\} \to Y = \mathbb{R} \setminus \{2\}$ và $h: X \to X$ xác định bởi

$$f(x) = \frac{2x+1}{x-1}$$
 và $h(x) = 5x + 3$.

Hãy tìm ánh xạ g sao cho $g \circ f = h$?

Giải. Ta có $g_{\circ}f = h \Leftrightarrow g_{\circ}f_{\circ}f^{-1} = h_{\circ}f^{-1}$. Mà $f_{\circ}f^{-1} = Id_X$, suy ra $g = h_{\circ}f^{-1}$. Theo như ví dụ trước ta có $f^{-1}(x) = \frac{x+1}{x-2}$.

$$\bullet \quad \theta_{\circ}f = h \Leftrightarrow \theta = h_{\circ}f^{-1}$$

Ví dụ. Cho $f:X=\mathbb{R}\setminus\{1\}\to Y=\mathbb{R}\setminus\{2\}$ và $h:X\to X$ xác định bởi

$$f(x) = \frac{2x+1}{x-1}$$
 và $h(x) = 5x+3$.

Hãy tìm ánh xạ g sao cho $g \circ f = h$?

Giải. Ta có $g_{\circ}f = h \Leftrightarrow g_{\circ}f_{\circ}f^{-1} = h_{\circ}f^{-1}$. Mà $f_{\circ}f^{-1} = Id_X$, suy ra $g = h_{\circ}f^{-1}$. Theo như ví dụ trước ta có $f^{-1}(x) = \frac{x+1}{x-2}$. Vậy

$$g(x) = h\left(\frac{x+1}{x-2}\right)$$

$$\bullet \quad \theta_{\circ}f = h \Leftrightarrow \theta = h_{\circ}f^{-1}$$

Ví dụ. Cho $f:X=\mathbb{R}\setminus\{1\}\to Y=\mathbb{R}\setminus\{2\}$ và $h:X\to X$ xác định bởi

$$f(x) = \frac{2x+1}{x-1}$$
 và $h(x) = 5x+3$.

Hãy tìm ánh xạ g sao cho $g \circ f = h$?

Giải. Ta có $g \circ f = h \Leftrightarrow g \circ f \circ f^{-1} = h \circ f^{-1}$. Mà $f \circ f^{-1} = Id_X$, suy ra $g = h \circ f^{-1}$. Theo như ví dụ trước ta có $f^{-1}(x) = \frac{x+1}{x-2}$. Vậy

$$g(x) = h\left(\frac{x+1}{x-2}\right) = 5\frac{x+1}{x-2} + 3$$

$$\bullet \quad \theta_{\circ}f = h \Leftrightarrow \theta = h_{\circ}f^{-1}$$

Ví dụ. Cho $f:X=\mathbb{R}\setminus\{1\}\to Y=\mathbb{R}\setminus\{2\}$ và $h:X\to X$ xác định bởi

$$f(x) = \frac{2x+1}{x-1}$$
 và $h(x) = 5x + 3$.

Hãy tìm ánh xạ g sao cho $g \circ f = h$?

Giải. Ta có $g_{\circ}f = h \Leftrightarrow g_{\circ}f_{\circ}f^{-1} = h_{\circ}f^{-1}$. Mà $f_{\circ}f^{-1} = Id_X$, suy ra $g = h_{\circ}f^{-1}$. Theo như ví dụ trước ta có $f^{-1}(x) = \frac{x+1}{x-2}$. Vậy

$$g(x) = h\left(\frac{x+1}{x-2}\right) = 5\frac{x+1}{x-2} + 3 = \frac{8x-1}{x-2}.$$

Nhận xét. Cho X và Y là các tập hữu hạn và ánh xạ $f:X\to Y.$ Khi đó

Nhận xét. Cho X và Y là các tập hữu hạn và ánh xạ $f:X\to Y.$ Khi đó

Nhận xét. Cho X và Y là các tập hữu hạn và ánh xạ $f:X\to Y$. Khi đó

Nhận xét. Cho X và Y là các tập hữu hạn và ánh xạ $f:X\to Y$. Khi đó