Plotting with pandas ¶

```
In [1]:
```

```
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings('ignore')
```

In [2]:

```
data = pd.read_csv('./Car_sales.csv', parse_dates = ['Latest_Launch'])
data.head(10)
```

Out[2]:

	Manufacturer	Model	Sales_in_thousands	year_resale_value	Vehicle_type	Price_in_thousands	Engine_size	Horsepower	Wheelba
0	Acura	Integra	16.919	16.360	Passenger	21.50	1.8	140.0	10
1	Acura	TL	39.384	19.875	Passenger	28.40	3.2	225.0	101
2	Acura	CL	14.114	18.225	Passenger	NaN	3.2	225.0	100
3	Acura	RL	8.588	29.725	Passenger	42.00	3.5	210.0	114
4	Audi	A4	20.397	22.255	Passenger	23.99	1.8	150.0	10:
5	Audi	A6	18.780	23.555	Passenger	33.95	2.8	200.0	10
6	Audi	A8	1.380	39.000	Passenger	62.00	4.2	310.0	11:
7	BMW	323i	19.747	NaN	Passenger	26.99	2.5	170.0	10 ⁻
8	BMW	328i	9.231	28.675	Passenger	33.40	2.8	193.0	10 ⁻
9	BMW	528i	17.527	36.125	Passenger	38.90	2.8	193.0	11
4									+

In [3]:

```
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 157 entries, 0 to 156
Data columns (total 16 columns):
Column Non-Null Count Dtype

#	COTUIIII	Non-Null Count	Dtype
0	Manufacturer	157 non-null	object
1	Model	157 non-null	object
2	Sales_in_thousands	157 non-null	float64
3	year_resale_value	121 non-null	float64
4	Vehicle_type	157 non-null	object
5	Price_in_thousands	155 non-null	float64
6	Engine_size	156 non-null	float64
7	Horsepower	156 non-null	float64
8	Wheelbase	156 non-null	float64
9	Width	156 non-null	float64
10	Length	156 non-null	float64
11	Curb_weight	155 non-null	float64
12	Fuel_capacity	156 non-null	float64
13	Fuel_efficiency	154 non-null	float64
14	Latest_Launch	157 non-null	datetime64[ns]
15	Power_perf_factor	155 non-null	float64
dtyp	es: datetime64[ns](1)	, float64(12), d	object(3)

memory usage: 19.8+ KB

In [4]:

data.describe()

Out[4]:

	Sales_in_thousands	year_resale_value	Price_in_thousands	Engine_size	Horsepower	Wheelbase	Width	Length	Cui
count	157.000000	121.000000	155.000000	156.000000	156.000000	156.000000	156.000000	156.000000	1!
mean	52.998076	18.072975	27.390755	3.060897	185.948718	107.487179	71.150000	187.343590	
min	0.110000	5.160000	9.235000	1.000000	55.000000	92.600000	62.600000	149.400000	
25%	14.114000	11.260000	18.017500	2.300000	149.500000	103.000000	68.400000	177.575000	
50%	29.450000	14.180000	22.799000	3.000000	177.500000	107.000000	70.550000	187.900000	
75%	67.956000	19.875000	31.947500	3.575000	215.000000	112.200000	73.425000	196.125000	
max	540.561000	67.550000	85.500000	8.000000	450.000000	138.700000	79.900000	224.500000	
std	68.029422	11.453384	14.351653	1.044653	56.700321	7.641303	3.451872	13.431754	
4									•

In [5]:

data.isnull().mean()*100

Out[5]:

Manufacturer 0.000000 0.000000 Model Sales_in_thousands 0.000000 __year_resale_value 22.929936 Vehicle_type 0.000000 Price_in_thousands 1.273885 Engine_size 0.636943 Horsepower 0.636943 Wheelbase 0.636943 Width 0.636943 Length 0.636943 Curb_weight 1.273885 Fuel_capacity 0.636943 Fuel_efficiency 1.910828 Latest_Launch 0.000000 Power_perf_factor 1.273885 dtype: float64

In [6]:

data.dropna(inplace=True)
data.drop_duplicates(inplace=True)

In [7]:

data.shape

Out[7]:

(117, 16)

In [8]:

data.sort_values(by='Latest_Launch', inplace=True)

In [9]:

data.reset_index(inplace=True, drop=True)

In [10]:

data.head(3)

Out[10]:

	Manufacturer	Model	Sales_in_thousands	year_resale_value	Vehicle_type	Price_in_thousands	Engine_size	Horsepower	Wh
0	Mercury	Mountaineer	27.609	20.430	Car	27.56	4.0	210.0	
1	Mercury	Villager	20.380	14.795	Car	22.51	3.3	170.0	
2	Saturn	SW	5.223	10.790	Passenger	14.29	1.9	124.0	
+									-

Univariate Analysis

Histogram

In [11]:

data.Sales_in_thousands.plot.hist(cmap='rainbow');

Box plot

In [12]:

Kernel Density Estimation Plot (KDE PLOT)

In [13]:

Sub plots

In [14]:

In [15]:

data.plot.hist(figsize=(6,12), subplots = True);

No artists with labels found to put in legend. Note that artists whose label start with an underscore are i gnored when legend() is called with no argument.

In [16]:

Line charts

In [17]:

```
data.plot.line(x='__year_resale_value', y='Price_in_thousands', cmap = 'Spectral');
```


Bar chart

In [18]:

```
data.plot.bar(x='Manufacturer', y='Sales_in_thousands', figsize = (20, 5),cmap = 'gist_earth');

Sales_in_thousands
```


Count plot

In [19]:

data.Manufacturer.value_counts().plot.bar(figsize=(12,5), cmap = 'Paired');

Area chart

In [20]:

data.plot.area(x='Manufacturer', y='Sales_in_thousands', figsize = (10,6), cmap = 'rainbow');

Horizontal bar chart

```
In [21]:
```

data.sort_values(by='Price_in_thousands')[:5].plot.barh(x='Model', y= 'Power_perf_factor', figsize = (6,4), cmap = 'PuBu')

Scatter plot

In [22]:

Pie chart

In [23]:

data.Vehicle_type.value_counts().plot.pie();

In [24]:

data.Vehicle_type.value_counts().plot.pie(autopct = '%1.4f%%', legend = True);

Hexbin plot

In [25]:

data.plot.hexbin('Sales_in_thousands', 'Engine_size');

In [26]:

In [27]:

Manufacturer_Sales=data.groupby(['Manufacturer'])['Sales_in_thousands'].sum()

In [28]:

Manufacturer_Sales.plot.bar();

In [29]:

Vehicle_type_Sales=data.groupby(['Vehicle_type'])['Sales_in_thousands'].sum()
Vehicle_type_Sales

Out[29]:

Vehicle_type

Car 2766.779 Passenger 4149.362

Name: Sales_in_thousands, dtype: float64

In [30]:

Vehicle_type_Sales.plot.pie();

