

Linear Algebra for Machine Learning in Python

Dr. Moritz Wolter

August 8, 2022

High Performance Computing and Analytics Lab

Overview

Introcution

Essential operations

Linear curve fitting

System dynamics, and dimensions

Introcution

Motvating linear algebra

Matrices

m, n is a matrix \mathbf{A}

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, a_{ij} \in \mathbb{R}.$$
 (1)

3

Essential operations

Addition

Multiplication

Motivation of the determinant

Computing determinants in two or three dimensions

The two dimensional case:

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21} \tag{2}$$

(3)

Computing the determinant of a three dimensional matrix.

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \cdot \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \cdot \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$$

$$(4)$$

7

Linear Algebra for Machine Learning in Python

—Essential operations

Computing determinants in two or three dimensions

Computing determinants in two or three dimensions. The two dimensional case: $\begin{vmatrix} a_{11} & a_{21} \\ a_{21} & a_{21} \\ a_{21} & a_{21} & a_{21} \\ a_{22} & a_{21} & a_{21} \\ a_{21} & a_{22} & a_{21} \\ a_{22} & a_{22} \\ a_{21} & a_{22} & a_{22} \\ a_{22} & a_{22} \\ a_{22} & a_{22} \\ a_{23} & a_{22} \\ a_{22} & a_{23} \\ a_{23} & a_{23} \\ a_{24} & a_{22} \\ a_{22} & a_{23} \\ a_{23} & a_{24} \\ a_{24} & a_{22} \\ a_{24} & a_{24} \\ a_{25} & a_{25} \\ a_{25} & a_{$

(5)

Draw the sign pattern on the board:

The determinant can be expanded along any column as long as the sign pattern is respected.

Determinants in n-dimensions

$$\begin{vmatrix} a_{11} & a_{21} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & \dots & a_{2n} \\ \vdots & & \vdots \\ a_{m2} & \dots & a_{mn} \end{vmatrix} + a_{21} \begin{vmatrix} a_{21} & \dots & a_{2n} \\ \vdots & & \vdots \\ a_{m2} & \dots & a_{mn} \end{vmatrix}$$

$$-a_{m1}\begin{vmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & & \vdots \end{vmatrix}$$

The Transpose

The Inverse

Linear curve fitting

What is the best line connecting measurements?

The Pseudoinverse

$$\mathbf{A}^{\dagger} = (\mathbf{A}^{T} \mathbf{A})^{-1} \mathbf{A}^{T} \tag{6}$$

$$0 = \bigvee_{\mathbf{x}} \frac{1}{2} |\mathbf{A}\mathbf{x} - \mathbf{b}|^{2}$$

$$= \nabla_{\mathbf{x}} \frac{1}{2} (\mathbf{A}\mathbf{x} - \mathbf{b})^{T} (\mathbf{A}\mathbf{x} - \mathbf{b})$$

$$= (\mathbf{A}\mathbf{x} - \mathbf{b}) \mathbf{A}^{T}$$

$$= \mathbf{A}^{T} \mathbf{A}\mathbf{x} - \mathbf{A}^{T} \mathbf{b}$$

$$\mathbf{A}^{T} \mathbf{b} = \mathbf{A}^{T} \mathbf{A}\mathbf{x}$$

$$(13)$$

(14)

 $(\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T\mathbf{b} = \mathbf{x}$

System dynamics, and dimensions

Eigenvalues