2020

PHYSICS — HONOURS

Paper: DSE-A-1

(Advanced Mathematical Methods Theory)

Full Marks: 65

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer question nos. 1 & 2, and any four questions from the rest (Q.3 to Q.8).

1. Answer any five questions:

 2×5

- (a) If P_1 and P_2 are two projection operators, then under what condition is $P_1 + P_2$ also behaves like a projection operator?
- (b) Show that any two vectors $|V_1\rangle$ and $|V_2\rangle$ ($\neq 0$) that are orthogonal to each other are linearly independent.
- (c) Use transformation property of cartesian tensors to establish that every contraction reduces the rank of a tensor by 2.
- (d) Show that δ_i^i is an isotropic tensor.
- (e) If $|q\rangle$ is any eigenstate of operator \hat{Q} such that $\hat{Q}|q\rangle = q|q\rangle$ and suppose that \hat{C} is another operator with $\hat{C}|q\rangle = |-q\rangle$, show that $\hat{C}\hat{Q} = -\hat{Q}\hat{C}$.
- (f) The line element in metric form is given by $ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$. Use Quotient law to argue that $g_{\mu\nu}$ is a covariant tensor of rank two.
- (g) Let e_1 , e_2 , e_3 be the generators of a three dimensional Lie algebra with the commutation relation $[e_1, e_2] = 0$, $[e_2, e_3] = e_1 + e_2$; $[e_3, e_1] = -e_1$. Find $[e_1, [e_2, e_3]] + [e_3, [e_1, e_2]]$.

2. Answer any three questions:

- (a) Given the set of vectors $u_1 = (2, -1, 0)$, $u_2 = (1, 0, -1)$, $u_3 = (3, 7, -1)$. Use Gram-Schmidt orthogonalization procedure, with the standard Euclidean inner product, to find an orthonormal set. 5
- (b) Prove the vector identity $(\vec{A} \times \vec{B}) \cdot (\vec{C} \times \vec{D}) = (\vec{A} \cdot \vec{C}) (\vec{B} \cdot \vec{D}) (\vec{A} \cdot \vec{D}) (\vec{B} \cdot \vec{C})$ using $\epsilon_{ijk} \epsilon_{pqk} = \delta_{ip} \delta_{jq} - \delta_{iq} \delta_{jp}$.

Please Turn Over

- (c) An antisymmetric tensor $F_{\mu\nu}$ satisfies $\,\partial_{\mu}F^{\mu\nu}=j^{\nu}\,.$
 - (i) Show that $\partial_{\nu} j^{\nu} = 0$.
 - (ii) Find out the number of independent components of $F_{\mu\nu}$ in 4 dimensions.
 - (iii) Show that for any mixed tensor T^{μ}_{ν} , T^{μ}_{μ} is a scalar.

2+1+2

- (d) (i) Show that all $(n \times n)$ unitary matrices form a group under multiplication.
 - (ii) Show that all such matrices with determinant 1 forms a subgroup.

3+2

- (e) Show that all integers including zero form a group under addition. Write down the identity element. Do they form a group under subtraction? Justify. 2+1+2
- 3. Show that the matrix $A = \begin{pmatrix} 1 i \\ i & 1 \end{pmatrix}$
 - (a) is Hermitian.
 - (b) Find out its eigenvalues.
 - (c) Find out eigenvectors and show that they are orthogonal.
 - (d) Denoting the eigenvectors $|1\rangle$ and $|2\rangle$, show that $|1\rangle\langle 1| + |2\rangle\langle 2| = \mathbb{I}$.

1+2+(3+1)+3

4. Starting with a vector space consisting of functions

 $f_0(x) = 1$, $f_1(x) = x$, $f_2(x) = x^2$,..., $f_n(x) = x^n$ and defining the scalar product as

$$\langle f_m \mid f_n \rangle \equiv \int_{-1}^{1} f_m(x) f_n(x) dx$$

- (a) Show that these functions are not orthogonal to each other.
- (b) Starting from $f_0(x)$ and $f_1(x)$, use Gram-Schmidt method to construct first three polynomials $P_0(x)$, $P_1(x)$ and $P_2(x)$.
- (c) Normalize these polynomials such that $P_n(x=1) = 1$.
- (d) Show that $P_2(x)$ is an eigenfunction of the operator $(1-x^2)\frac{d^2}{dx^2}-2x\frac{d}{dx}$. Find the eigenvalue.

2+4+2+2

- 5. Consider two vectors (cartesian) \vec{A} and \vec{B} in 3D. For an anticlockwise rotation about the z-axis by an angle θ .
 - (a) How do the components of the vectors change?

- (b) Show that for a norm-preserving rotation $\sum_{i} A_i B_i$ is a scalar, using transformation properties.
- (c) Define:

$$C_{1} \equiv A_{2}B_{3} - A_{3}B_{2}$$

$$C_{2} \equiv A_{3}B_{1} - A_{1}B_{3}$$

$$C_{3} \equiv A_{1}B_{2} - A_{2}B_{1}$$

Show that under this rotation C_1 , C_2 , C_3 transform like the components of a vector.

(d) Identify \vec{C} in terms of \vec{A} and \vec{B} .

2+2+5+1

- **6.** (a) Write down the Moment of Inertia tensor I_{ij} explaining each term.
 - (b) Show that I_{ij} is symmetric.
 - (c) Show that I_{ij} transforms as a 2nd rank tensor.
 - (d) Construct the inertia matrix for a system of three point masses of 1 unit, 2 units and 1 unit placed at (1, 1, -2), (-1, -1, 0) and (1, 1, 2) respectively. 2+1+3+4
- 7. (a) Construct the group multiplication table for the set of elements $\{1, i, -1, -i\}$. Find out the identity element. Find the inverse of the element i and -1.
 - (b) Consider $\{1, -1\}$. Show that they form a subgroup of the above group.
 - (c) Consider two matrices $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$; $B = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$. Show that the map $1 \to A$ and $-1 \to B$ is a homomorphism. (3+1+2)+2+2
- **8.** (a) Write down the generators for SU(2) group in fundamental representation.
 - (b) Find out the non-zero structure constants.
 - (c) Find out the adjoint representation of SU(2) group.

2+3+5