FISH 559: Example Application I (Fitting growth curves)

Two commonly applied curves relating length to age are the logistic function (Eqn 1a) and the von Bertalanffy curve (Eqn 1b)¹:

$$L_a = L_{\infty} \left(1 + \exp\left[-\ell n 19 \frac{(a - a_{50})}{\Delta} \right] \right)^{-1}$$
 (1a)

$$L_a = L_{\infty}(1 - \exp(-\kappa(a - a_0))) \tag{1b}$$

where L_{∞} is the asymptotic size, a_{50} is the age at which length is half of L_{∞} , Δ is the difference between age at which length is 95% of L_{∞} and a_{50} , κ is the growth rate parameter, and a_{0} is the age corresponding to zero length. You can assume that the errors measuring length-at-age are normally distributed with mean 0 and standard deviation σ .

Given the data file EX1.DAT:

- fit models 1a and 1b using TMB;
- print out the model predictions for ages 0-20;
- write an R function to plot the data and the two sets of model predictions;
- use AIC to (a) select a best model and (b) compute AIC-weights; and
- find a model-averaged estimate for L_{∞} .

Hints:

• Write down the negative log-likelihood function first

- To keep parameters positive, estimate them in log-space
- You should have one CPP file and use the map option to ensure that you only estimate the correct number of parameters.

¹ Both of these curves are special cases of Schnute's (1981) generalize growth model.