Formelsammlung EN

J/T/A

I. GRUNDLAGEN

A. Drehstrom (DS), 3-Phasen-System

1) Spannungen in DS (symmetrisch)

Leiter-Erde-Spannung $U_{LE}=230V$

$$\underline{U}_{L1} = U_{LE} \angle 0^{\circ}$$

$$\underline{U}_{L2} = U_{LE} \angle - 120^{\circ} = U_{LE} \angle 240^{\circ}$$

$$U_{L3} = U_{LE} \angle - 240^{\circ} = U_{LE} \angle 120^{\circ}$$

Leiter-Leiter-Spannung $U_{LL} = 400V$

$$\begin{split} U_{LL} &= U_{LE} \cdot \sqrt{3} \\ \underline{U}_{12} &= \underline{U}_{L1} - \underline{U}_{L2} = U_{LL} \angle 30^{\circ} \\ \underline{U}_{23} &= \underline{U}_{L2} - \underline{U}_{L3} = U_{LL} \angle 270^{\circ} \\ \underline{U}_{31} &= \underline{U}_{L3} - \underline{U}_{L1} = U_{LL} \angle 150^{\circ} \end{split}$$

2) Ströme in DS (symmetrisch)

$$\underline{I}_{Lx} = \frac{\underline{U}_{Lx}}{Z}$$

Lx: Stranggrößen L1, L2, L3

3) Effektivgrößen, Symmetrische Last

Stranggröße	Stern	Dreieck
Spannung U_{LE}	$U_{LE} = \frac{U_{LL}}{\sqrt{3}}$	$U_{LE} = U_{LL}$
Strom I_{str}	$I_{str} = I_r$	$I_{str} = \frac{I_r}{\sqrt{3}}$

 I_r : Zuleitungs-, Betriebs-, Bemessungssstrom

4) Leistungen in DS

Scheinleistung S [VA]:

$$\begin{split} S &= 3 \cdot U_{LE} \cdot I_L = \sqrt{3} \cdot U_{LL} \cdot I_L \\ &= \sqrt{P^2 + Q^2} \\ \underline{S} &= 3 \cdot \underline{U}_{LE} \cdot \underline{I}_L^* = P + jQ \end{split}$$

in Sternschaltung:

$$\underline{S}_{ds} = \frac{U_{LL}^2}{\underline{Z}_{LN}^*}$$

$$\underline{S}_{ws} = \frac{U_{LL}^2}{3 \cdot \underline{Z}_{LN}^*}$$

Wirkleistung P [W]:

$$P = S \cdot \cos \varphi$$

$$= 3 \cdot U_{LE} \cdot I_L \cdot \cos \varphi$$

$$= \sqrt{3} \cdot U_{LL} \cdot I_L \cdot \cos \varphi$$

Blindleistung Q [var]:

$$\begin{split} |Q| &= S \cdot \sin \varphi = P \cdot \tan \varphi \\ &= 3 \cdot U_{LE} \cdot I_L \cdot \sin \varphi \\ &= \sqrt{3} \cdot U_{LL} \cdot I_L \cdot \sin \varphi \\ Q \begin{cases} \text{induktiv} > 0 \\ \text{kapazitiv} < 0 \end{cases} \end{split}$$

B. Energiebedarf, Deckung

1) Tagesbelastungskurve

$$W = \int_0^{T_n} P(t) dt$$
$$= P_n \cdot T_a = P_{max} \cdot T_m = P_{mittel} \cdot T_n$$

P_n	Nennleistung
T_a	Ausnutzungsdauer
P_{max}	Höchstlast
T_m	Benutzungsdauer
P_{mittel}	mittlere Leistung
T_n	Nennbetriebsdauer (meist. 24h)

2) Frequenz-Wirkleistungs-Regelung

a) stationärer Zustand (Gleichgewicht)

$$W_{rot} = \frac{1}{2} \cdot J \cdot \omega_{mech}^2$$
 $\omega_{el} = p \cdot \omega_{mech}$ $W_{mech-zu} = W_{el-ab}$ $P_{mech-zu} = P_{el-ab}$

p: Polpaarzahl J: Massenträgheitsmoment

b) Störung

$$W_{m-zu} \neq W_{el-ab} \qquad P_{m-zu} \neq P_{el-ab}$$
$$\Delta W_{rot} = \frac{1}{2} \cdot J \cdot (\omega_{stat} - \omega_{akt})$$

II. TRAFO

OS: Oberspannungsseite (Primär)

US: Unterspannungsseite (Sekundär)

Index 1: U_1 : auf OS

Index 2: $U_2' = U_2 \cdot \ddot{u}$: auf US

A. Grundgleichungen, idealer Trafo

Windungsspannung

$$\frac{U_1}{N_1} = \frac{U_2}{N_2} = U_W = 4,44 \cdot f \cdot \hat{B} \cdot A_{Fe}$$

Induktionsspannung, Effektivwert

$$U_{ieff} = \frac{1}{\sqrt{2}} \cdot 2\pi f \cdot N \cdot A_{Fe} \cdot \hat{B}$$
$$= 4, 44 \cdot N \cdot f \cdot \hat{B} \cdot A_{Fe}$$

Transformation

Strom	Spannung	Impedanz
$\frac{U_1}{U_2} = \frac{N_1}{N_2} = \ddot{u}$	$\frac{I_1}{I_2} = \frac{N_1}{N_2} = \frac{1}{\ddot{u}}$	$R_2' = \ddot{u}^2 \cdot R_2'$
$\underline{U}_2' = \ddot{u} \cdot \underline{U}_2$	$\underline{I}_2' = \underline{I}_2 \cdot \frac{1}{\ddot{u}}$	$Z_1 = \ddot{u} \cdot Z_2$

Durchgangsleistung

$$S_1 = S_2 = S_D$$

B. Ersatzschaltbild (ESB)

$$R_T + jX_T = (R_1 + R'_2) + j(X_{1\sigma} + X'_{2\sigma})$$

$$Z_T = R_T + jX_T$$

$$U_1 = (R_T + jX_T) \cdot I_1 + U'_2$$

1) Kurzschlussmessung (KS):

KS auf US. $\rightarrow \underline{U}_{K1}$ auf OS

KS auf OS. $\rightarrow \underline{U}_{K2}$ auf US

Bemessungsspannung (r = rated)

$$U_{rT} = U_{LL} = U_{LE} \cdot \sqrt{3}$$

relative KS-Spannung [%]

$$\begin{split} \underline{u}_K &= u_{K,Re} + j u_{K,Im} \\ u_K &= \sqrt{u_{K,Re}^2 + u_{K,Im}^2} \\ &= \frac{U_K \cdot \sqrt{3}}{U_{rT}} \cdot 100\% \\ &= \frac{Z_T \cdot I_r}{U_{rT}/\sqrt{3}} \\ \underline{u}_{K1} &= \frac{\underline{U}_{K1}}{U_{rT1}/\sqrt{3}} = \frac{\underline{U}_{K1}}{U_{LE,T1}} \\ \underline{u}_{K2} &= \frac{\underline{U}_{K2}}{U_{rT2}/\sqrt{3}} = \frac{\underline{U}_{K1} \cdot \ddot{\mathbf{u}}}{U_{rT1} \cdot \ddot{\mathbf{u}}/\sqrt{3}} \\ u_{K,Re} &= \frac{P_K}{S_r} \cdot 100\% = \frac{R_T \cdot I_r}{U_{rT}/\sqrt{3}} \end{split}$$

KS-Größen

$$I_K = \frac{I_r}{u_K} = \frac{U_{rT}/\sqrt{3}}{Z_T}$$

$$U_K = \frac{u_K}{100\%} \cdot \frac{U_{rT}}{\sqrt{3}}$$

Betriebskonstanten

$$\begin{split} Z_T &= u_K \cdot \frac{U_{rT}^2}{S_{rT}} \\ R_T &= \frac{u_{K,Re}}{100\%} \cdot \frac{U_{rT}^2}{S_{rT}} = \frac{u_{K,Re}}{100\%} \cdot \frac{U_{rT}}{\sqrt{3} \cdot I_r} \\ &= P_K \cdot \frac{U_{rT}^2}{S_{rT}^2} \\ X_T &= u_{K,Im} \cdot \frac{U_{rT}^2}{S_{rT}} \end{split}$$

Verlustleistung, Wirkungsgrad

$$\begin{aligned} P_{ab} &= S_{rT} \cdot \cos \varphi \\ P_K &= 3 \cdot R_T \cdot I_r^2 \\ \eta &= \frac{P_{ab}}{P_{zu}} = \frac{P_{ab}}{P_{ab} + P_K + P_L} \end{aligned}$$

 P_{ab} : abgegebene Wirkleistung

 P_K : KS-/Kupferverluste

 P_L : Leerlaufverluste

C. Parallelbetrieb von 2 Trafos

Scheinleistungsteiler

$$|S_{T1}| = \frac{Z_{T2}}{Z_{T1} + Z_{T2}} \cdot |S_{Tges}|$$
$$|S_{T2}| = \frac{Z_{T1}}{Z_{T1} + Z_{T2}} \cdot |S_{Tges}|$$
$$|S_{Tges}| = |S_{T1}| + |S_{T2}|$$

$$\left(\frac{S_{rT1/2}}{S_{T1/2}}\right)_{min} \Rightarrow S_{T,max} = \left(\frac{S_{rT}}{S_T}\right)_{min} \cdot S_{T,ges}$$

$$S_{T1} = \frac{u_{K,min}}{U_{K,T1}} \cdot S_{rT1}$$

- 1) Schaltgruppe mit gleicher Kennzahl
- 2) Gleiches Übersetzungsverhältnis
- 3) annähernd gleiche Kurzschlussspannung (max. diff. 10%)
- 4) Bemessungsscheinleistung kleiner als 3:1

III. FREILEITUNG

A. Durchhang von Freileitungsseilen

hängen hyperbolisch durch. (ab 110 kV:)

$$h_{min} = 6 \,\mathrm{m} + \left(\frac{U_{nLL} - 110 \,\mathrm{kV}}{150 \,\mathrm{kV}}\right) m$$

B. Resistanzbelag

DC-Widerstand

 A_{eff} : Wirksamer Querschnitt $[mm^2]$

 F_{ϑ} : Widerstandserhöhung durch Erwärmung

 ϑ_{max} : max. zul. Betriebstemp. des Leiterseils

$$R'_{=} = \frac{R_{=}}{l} = \frac{\rho_{20^{\circ}}}{A_{eff}} \cdot \frac{1}{km}$$

$$F_{\vartheta} = 1 + \alpha(\vartheta_{max} - 20^{\circ}C)$$

Material	$\rho_{20^{\circ}\mathrm{C}}$ in $\frac{m\Omega \cdot mm^2}{m}$	α in K^{-1}
Alu	28,6	0,0038
Kupfer	17,8	0,0039
Silber	16	0,0038
Eisendraht	120	0,0052

weitere Kenngrößen siehe F39

AC-Widerstand

$$J = J \cdot e^{-x/\delta}$$

$$\delta = \sqrt{\frac{\rho}{\pi \cdot \mu_0 \cdot f}} = \sqrt{\frac{1}{\pi \cdot \kappa \cdot \mu_0 \cdot f}}$$

J: Stromdichte (Leiterrand)

x: Abstand vom Leiterrand (Oberfläche)

 δ : Eindringtiefe (Skineffekt)

Betriebs-Resistanzbelag

$$R_b' = R_{=}' \cdot F_{\vartheta} \cdot F_S = \frac{R_{b\text{Seil}}'}{n_{\text{Seil}}}$$

 F_S : Widerstandserhöhung durch Skineffekt

C. Induktivität

Aüßere Ind. Einzelleiter mag. Fluss

-||- Doppelleiter

Innere Ind. Einzelleiter verketteter mag. Fluss

-||- Doppelleiter

$$\Phi_{a1} = \frac{\mu Il}{2\pi} \cdot \ln\left(\frac{D-r}{r}\right)$$

$$L_a = \frac{2\Phi_{a1}}{I} = \frac{\mu l}{2\pi} \cdot \ln\left(\frac{D}{r}\right)$$

$$\Psi_{i1} = \Psi_{i2} = \frac{\mu Il}{8\pi}$$

$$L_i = \frac{2\Psi_{i1}}{I} = \frac{\mu l}{8\pi}$$

gesamt Induktivität

$$\mu = \mu_0, D \gg r$$

$$L_{ges} = L_a + L_i = \frac{\mu l}{2\pi} \left(\ln \left(\frac{D}{r} \right) + \frac{1}{4} \right)$$
$$L' = \frac{L_{ges}}{l} = \frac{\mu}{2\pi} \left(\ln \left(\frac{D}{r} \right) + \frac{1}{4} \right)$$

D. Reaktanzbelag

Gleichungen für f = 50Hz

Metallmantel keine Schirmung! Für D nicht $\gg r!$ Radius r-Werte siehe F39

2-Phasig/Wechelstrom

$$L_b' = 4 \cdot 10^{-7} \left[\ln \left(\frac{D_m}{r} \right) + 0, 25 \right] \left[\frac{H}{m} \right]$$
$$X_b' = \omega L_b' = \pi \left[4 \ln \left(\frac{D_m}{r} \right) + 1 \right] \cdot 10^{-2} \left[\frac{\Omega}{km} \right]$$

Drehstrom

- Einfach-/Bündelleiter

$$X_b' = \frac{\pi}{2} \left(4 \ln \left(\frac{D_m}{r_B} \right) + \frac{1}{n} \right) \cdot 10^{-2} \left[\frac{\Omega}{km} \right]$$

$$D_m = \sqrt[3]{D_{12} \cdot D_{23} \cdot D_{31}}$$

$$r_B = \sqrt[n]{n \cdot r \cdot r_T^{n-1}} \qquad r_T = \frac{a}{2 \sin \frac{180^\circ}{n}}$$

$$r_B = \sqrt{r \cdot a} \qquad \text{für n = 2}$$

n: Anzahl Teilleiter (wenn $n>1\Rightarrow$ Bündelleiter)

 D_m : Abstände bei Symmetrie der Phasen zur Mastmitte

 D_{12} : Abstand L1 - L2 usw.

 r_B : Ersatzradius (wenn n = 1, dann $r_B = r$)

 r_T : Radius Teilleiter (bei n > 1)

a: Abstand Teilleiter (bei n > 1)

- Doppelleitung

$$X_b' = \frac{\pi}{2} \left(4 \ln \left(\frac{D_m \cdot D_{L1/LII}}{r \cdot D_{L1/LI}} \right) + \frac{1}{n} \right) \cdot 10^{-2} \left[\frac{\Omega}{km} \right]$$
$$D_{L1/LII} = \sqrt[3]{D_{1,II} \cdot D_{2,III} \cdot D_{3,II}}$$
$$D_{L1/LI} = \sqrt[3]{D_{1,I} \cdot D_{2,II} \cdot D_{3,III}}$$

Bei Asymmetrie (Phase zur Mastmitte)

$$D_{L1/LII} = \sqrt[6]{D_{1,II} \cdot D_{2,III} \cdot D_{3,I} \cdot D_{1,III} \cdot D_{2,I} \cdot D_{3,II}}$$

E. Kapazität

$$C'_{12} = \frac{\pi \cdot \varepsilon_0}{\ln\left(\frac{D}{r}\right)}$$
 $C'_{1E} = \frac{2 \cdot \pi \cdot \varepsilon_0}{\ln\left(\frac{2h}{r}\right)}$

 C'_{12} : Kapazität zw. L1 - L2

 C'_{1E} : Kapazität zw. L1 - Erde

h: Höhe zw. L1 - Erde

F. Suszeptanzbelag (Blindleitwert)

2-Phasig/Wechselstrom

$$C_b' = C_{1E}'$$

$$B_b' = \omega \cdot C_b' = \frac{17,47}{\ln\left(\frac{D}{r}\right)} \left[\frac{\mu S}{km}\right]$$

 B'_b : gilt für f = 50 Hz

Drehstrom

- Einfach-/Bündelleitung

$$\begin{split} C_b' &= \frac{2 \cdot \pi \cdot \varepsilon_0}{ln \left(\frac{D_m}{r}\right)} \\ B_b' &= \omega \cdot C_b' = \frac{17,47}{ln \left(\frac{D_m}{r_B}\right)} \left[\frac{\mu S}{km}\right] \\ D_m &= \sqrt[3]{D_{12} \cdot D_{23} \cdot D_{31}} \\ r_B &= \sqrt[n]{n \cdot r \cdot r_T^{n-1}} \qquad r_T = \frac{a}{2 \sin \frac{180^\circ}{n}} \\ r_B &= \sqrt{r \cdot a} \qquad \text{für n = 2} \end{split}$$

Bei Einfachleitung $n = 1 \Rightarrow r_B = r$

- Doppelleitung

$$B'_{b} = \omega \cdot C'_{b} = \frac{17,47}{\ln\left(\frac{D_{m} \cdot D_{L1/LII}}{r_{B} \cdot D_{L1/LI}}\right)} \left[\frac{\mu S}{km}\right]$$
$$D_{L1/LII} = \sqrt[3]{D_{1,II} \cdot D_{2,III} \cdot D_{3,II}}$$
$$D_{L1/LI} = \sqrt[3]{D_{1,I} \cdot D_{2,II} \cdot D_{3,III}}$$

G. Konduktanzbelag (Wirkleitwert)

$$G_b' = \frac{P_{VI}}{U_{LL}^2} \left[\frac{S}{km} \right]$$

 P_{VI} : Korona-/Isolationsverluste $\left\lceil \frac{W}{km} \right\rceil$

 U_{LL} : Nennspannung, Leiter-Leiter (Bsp. 110kV, 220kV...)

IV. KABEL

A. Resistanzbelag

$$F_{\vartheta} = 1 + \alpha \cdot (\vartheta_{max} - 20^{\circ} C)$$
$$R'_{b} = R'_{=} \cdot F_{\vartheta} \cdot F_{S} \cdot F_{P}$$

F_S: Skineffekt (F35)

 F_P : Proximity-Effekt (F37)

B. Reaktanzbelag

Metallmantel keine Schirmung! Für D nicht $\gg r!$

r: Radius des (Innen-)Leiters, nicht vom Mantel!

Wechselstromkabel

$$X_b' = \pi \left(4 \ln \left(\frac{D}{r} - 1 \right) + 1 \right) \cdot 10^{-2} \left[\frac{\Omega}{km} \right]$$

Einfach-Drehstromkabel

$$X_b' = \pi \left(2 \ln \left(\frac{D_m}{r} - 1 \right) + \frac{1}{2} \right) \cdot 10^{-2} \left[\frac{\Omega}{km} \right]$$

Doppel-Drehstromkabel

$$X_b' = \pi \left(2 \ln \left(\frac{D_m \cdot D_{L1LII}}{r \cdot D_{L1LI}} - 1 \right) + \frac{1}{2} \right) \cdot 10^{-2} \left[\frac{\Omega}{km} \right]$$

C. Suzeptanzbelag

Metallmantel/-folie schirmt E-Feld ab!

 B_b' gilt für f = 50Hz

d: Schirmdurchmesser eines Leiters

D: Abstand zw. 2 Innenleiter

Bilder unbedingt einfügen!!

Einleiter-/Dreimantel-/Radialfeldkabel

$$C'_b = C'_{LE} = \frac{2\pi \cdot \varepsilon_0 \cdot \varepsilon_r}{\ln\left(\frac{R}{r}\right)}$$
$$B'_b = \omega C'_b = \frac{17, 47 \cdot \varepsilon_r}{\ln\left(\frac{R}{r}\right)} \frac{\mu S}{km}$$

Wechselstromkabel - 2 Innenleiter

$$C_b' = 2 \cdot C_{LE} + C_{LL} = \frac{\pi \cdot \varepsilon_0 \cdot \varepsilon_r}{\ln\left(\left(\frac{D}{r}\right) \cdot \frac{(d^2 - D^2)}{(d^2 + D^2)}\right)}$$
$$B_b' = \frac{8,735 \cdot \varepsilon_r}{\ln\left(\left(\frac{D}{r}\right) \cdot \frac{(d^2 - D^2)}{(d^2 + D^2)}\right)} \frac{\mu S}{km}$$

Einfach-Drehstromkabel - 3 Innenleiter

$$C'_{b} = C_{LE} + 3 \cdot C_{LL} = \frac{4\pi \cdot \varepsilon_{0} \cdot \varepsilon_{r}}{\ln\left(\left(\frac{D}{r}\right)^{2} \cdot \frac{(0.75d^{2} - D^{2})^{3}}{(0.75d^{2})^{3} - (D^{2})^{3}}\right)}$$
$$B'_{b} = \frac{34.94 \cdot \varepsilon_{r}}{\ln\left(\left(\frac{D}{r}\right)^{2} \cdot \frac{(0.75d^{2} - D^{2})^{3}}{(0.75d^{2})^{3} - (D^{2})^{3}}\right)} \frac{\mu S}{km}$$

keine Kopplung zum Nachbarsystem $B'_{EDL} = B'_{DDL}$

D. Konduktanzbelag

Ursache: Restleitfähigkeit der Isolierwerkstoffe bzw. Polarisationsverluste

Verlustfaktor

$$\tan \delta = \frac{I_R}{I_C} = \frac{1}{\omega CR} = \frac{G}{B}$$
$$G_b' = B_b' \cdot \tan \delta = \omega C_b' \cdot \tan \delta$$

Dielektrische Verluste

$$P_{Diel} = (\tan \delta \cdot \varepsilon_r) \cdot \omega \cdot C_{Vakuum} \cdot U^2 = G_b' \cdot U_{LE}^2$$

 $\tan \delta \cdot \varepsilon_r$: Verlustfaktor, siehe Tabelle **F43**

E. Leistung

geg:
$$I_{max}, l, X_b', G_b'$$
 ges: P_{max}
$$X_b = X_b' \cdot l \qquad G_b = G_b' \cdot l$$

$$Q = 3 \cdot I_{max}^2 \cdot X_b - 3 \cdot U_{LE}^2 \cdot B_b$$

$$P_{max} = \sqrt{S^2 - Q^2}$$

V. Betrieb von Leitungen

A. Kenngrößen

Leitung mit Verlusten

$$\underline{\gamma} = \sqrt{(R_b' + jX_b') \cdot (G_b' + jB_b')} = \alpha \cdot j\beta \left[\frac{\circ}{km}\right]$$
$$\underline{Z}_w = \sqrt{\frac{R_b' + jX_b'}{G_b' + jB_b'}} = |Z_w| \cdot e^{j\delta}$$

Falls Formel von \underline{Z}_w nicht über TR berechenbar \rightarrow

Betrag: erst \underline{Z}_w^2 , dann $\sqrt{|Z_w^2|}$ ermitteln

Phase: $0.5 \cdot \arg(\underline{Z}_w^2)$

 γ : Ausbreitungskonstante

 α : Dämpfungskonstante

 β : Phasenkonstante $[\frac{rad}{km} = \frac{180^{\circ}}{\pi} \cdot \frac{1}{km} = \frac{\circ}{km}]$

 Z_w : Wellenwiderstand

 δ : Phase des Wellenwiderstandes

Leitung ohne Verluste

$$\begin{split} R_b' &= G_b' = 0 \rightarrow \alpha, \delta = 0 \\ \underline{\gamma} &= j\beta = j\sqrt{X_b' \cdot B_b'} = j\omega \cdot \sqrt{L_b' \cdot C_b'} \left[\frac{\circ}{km}\right] \\ |\beta| &= \sqrt{X_b' \cdot B_b'} \cdot \frac{180^\circ}{\pi} = \omega \cdot \sqrt{L_b' \cdot C_b'} \\ |Z_w| &= \sqrt{\frac{X_b'}{B_b'}} = \sqrt{\frac{L_b'}{B_b'}} \end{split}$$

Richtwerte: $Z_w \approx 400 \,\Omega$ $\beta = \frac{0.06^{\circ}}{km}$

natürliche Leistung, Blindleistungsverluste

- gilt bei Leitung ohne Verlusten, DS-System
- natürlicher Betrieb bei $Q_L = Q_C$

$$\begin{split} I_{nat} &= \frac{U_{LE}}{\sqrt{X_L/B_L}} = \frac{U_{LE}}{Z_w} \neq f(l) \\ P_{nat} &= 3 \cdot U_{LE} \cdot I_{nat} = \frac{U_{LL}^2}{Z_w} = \frac{3 \cdot U_{LE}}{Z_w} \\ Q_L &= 3 \cdot X_L \cdot I_L^2 \qquad Q_C = 3 \cdot B_L \cdot U_{LE}^2 \\ \frac{Q_V}{Q_C} &= \left(\frac{S_u}{P_{nat}}\right)^2 - 1 \\ Q_v &= Q_1 - Q_2 = Q_L - Q_C = Q_C \cdot (\frac{Q_L}{Q_C} - 1) \\ S_v &= S_1 - S_2 = P_v + jQ_v \\ S_u &= 3 \cdot U_{LE} \cdot I_L = \sqrt{3} \cdot U_{LL} \cdot I_L \end{split}$$

 Q_v : Blindleistungsverluste

 S_u : Übertragungsscheinleistung

B. Ersatzschaltbilder (ESB)

Kenngrößen

 R_L : Resistanz X_L : Reaktanz

 B_L : Suszeptanz G_L : Konduktanz

Index $1/\underline{2}$: Größe am Anfang/ \underline{Ende} der Leitung

Index L: Größen bezogen auf Leitung

dU: Spannung am Längszweig

MS-/NS-Leitungen mit Verlusten

$$\begin{split} I_G, I_C << I_L \Rightarrow G_b' = B_b' = 0 \\ \underline{I_1} &= \underline{I}_L = \underline{I}_2 \qquad \underline{U}_1 = d\underline{U} + \underline{U}_2 \\ d\underline{U} &= (R_L + jX_L) \cdot \underline{I}_L = (R_b' + jX_b') \cdot l \cdot \underline{I}_L \\ \underline{Z}_L &= R_L + jX_L \qquad \varphi_Z = \arctan \frac{X_L}{R_L} = \arctan \frac{X_b'}{R_L'} \end{split}$$

Kurze HS-/HöS-DS-Freileitungen

 U_{LL} > 100 kV für $l \le 220$ km

ohne Verluste: $(R'_b = G'_b = 0)$

$$B'_1 = B'_2 = \frac{B'_b}{2}$$
 $\underline{I}_{C1/2} = j B_{1/2} \cdot \underline{U}_{1/2}$
 $\underline{I}_1 = \underline{I}_{C1} + \underline{I}_L$ $\underline{I}_L = \underline{I}_{C2} + \underline{I}_2$

bei Leerlauf: $\underline{I}_2=0 \rightarrow \underline{I}_{C2}=\underline{I}_L$

$$\begin{split} \underline{U}_1 &= (1 - \frac{X_L \cdot B_L}{2}) \cdot \underline{U}_2 \\ \underline{I}_1 &= \underline{I}_2 + j \ 0.5 \cdot B_L \cdot (\underline{U}_1 + \underline{U}_2) \\ Q_1 &= 3 \cdot U_1 \cdot I_1 \end{split}$$

 \underline{I}_1 : Ladestrom Q_1 : Ladeleistung

bei Betrieb mit natürlicher Leistung: $R_2 = Z_w = \underline{Z}_2$

$$\begin{split} S_1 &= S_2 = P_1 = P_2 = P_{nat} \quad |\underline{U}_1| = |\underline{U}_2| \quad |I_1| = |I_2| \\ &\underline{U}_1 = \underline{U}_2 \cdot (1 - \frac{1}{2} \cdot B_L \cdot X_L + j \frac{X_L}{Z_w}) \\ &\underline{I}_1 = \frac{\underline{U}_2}{Z_w} + j \frac{B_L}{2} \cdot (\underline{U}_1 + \underline{U}_2) \\ &\underline{I}_L = \frac{\underline{U}_2}{Z} + j \frac{B_L}{2} \cdot \underline{U}_2 \end{split}$$

Lange HS-/HöS-DS-Freileitungen

 U_{LL} > 100 kV für l > 220 km

ohne Verluste $(R'_b = G'_b = 0)$

$$\underline{U}_1 = \underline{U}_2 \cdot \cos(\beta l) + j \cdot \underline{I}_2 \cdot Z_w \cdot \sin(\beta l)$$
$$\underline{I}_1 = \underline{I}_2 \cdot \cos(\beta l) + j \cdot \frac{\underline{U}_2}{Z} \cdot \sin(\beta l)$$

bei Leerlauf: $\underline{I}_2=0,\ \underline{Z}_2\to\infty$

bei Betrieb mit natürlicher Leistung: $\varphi = \beta l$

$$\underline{U}_1 = |\underline{U}_2| \cdot e^{j\varphi} \qquad \underline{I}_1 = |\underline{I}_2| \cdot e^{j\varphi}$$

$$\underline{S}_1 = \underline{S}_2 = \frac{3 \cdot U_{2,LE}^2}{Z_w} = P_{nat}$$

mit Verlusten

$$\begin{split} \underline{U}_1 &= \underline{U}_2 \cdot \cosh(\underline{\gamma}l) + \underline{I}_2 \cdot \underline{Z}_w \cdot \sinh(\underline{\gamma}l) \\ \underline{I}_1 &= \underline{I}_2 \cdot \cosh(\underline{\gamma}l) + \frac{\underline{U}_2}{Z_w} \cdot \sinh(\underline{\gamma}l) \end{split}$$

nicht direkt mit komplexen Modus des TR einsetzbar! Lösung: $\alpha \cdot l$ und $\beta \cdot l$ [°] einzeln berechnen, dann:

$$\begin{split} \cosh(\underline{\gamma}l) &= \frac{1}{2} \left[e^{\alpha l} \cdot e^{j\beta l} + e^{-\alpha l} \cdot e^{-j\beta l} \right] \\ \sinh(\underline{\gamma}l) &= \frac{1}{2} \left[e^{\alpha l} \cdot e^{j\beta l} - e^{-\alpha l} \cdot e^{-j\beta l} \right] \end{split}$$

HS-/HöS-DS-Kabel

l > 95km: langes Kabel

 $Q_V = Q_L - Q_C$ wie Freileitungen (FL), aber $Q_K > Q_{FL}$

$$S_{th} = 3 \cdot U_{LE} \cdot I_{Dauer}$$

$$P_{max} = \sqrt{S_{th}^2 - Q_V^2} = \sqrt{S_{th}^2 - Q_V'^2 \cdot l^2}$$

$$Q_V = Q_V' \cdot l \qquad l_{max} = \frac{S_{th}}{Q_V'}$$

 S_{th} : thermisch, max. Scheinleistung P_{max} : max. übertragbare Wirkleistung l_{max} : max. Kabellänge, wenn $P_{max}=0$

VI. GENERATOR

Induktionsgesetz

$$U_{ieff} = 4,44 \cdot N \cdot f \cdot B_{=} \cdot \hat{A}_{Fe}$$

Polpaarzahl

$$n = \frac{3000}{p} \left[\frac{1}{min} \right] \qquad \text{für f = 50Hz}$$

A. Ersatzschaltbild (ESB)

Vernachlässigung von $R_S = 0$

$$\underline{I} = I_W + jI_B \qquad I_W = I \cdot \cos(\varphi) \quad I_B = \underline{I} \cdot (\pm \sin(\varphi))$$

$$\underline{U}_p = \underline{U} + jX_S \cdot \underline{I} \qquad U_p = \sqrt{(U + X \cdot I_B)^2 \cdot (X \cdot I_W)^2}$$

$$1 = \left(\frac{U}{U_p}\right)^2 - 2 \cdot \left(\frac{U \cdot I}{U_p \cdot I_k}\right) \cdot (\pm \sin(\varphi)) + \left(\frac{I}{I_k}\right)^2$$

 $\underline{U},\underline{I}$: Klemmen U_p : Polrad (Quelle) X: Statorreaktanz $\varphi\colon \sphericalangle(U,I)$ $\vartheta\colon \sphericalangle(U,U_p)$ I_k : Kurzschluss

B. Alleinbetrieb (Inselbetrieb)

1) Reine Wirkleistung: $cos(\varphi) = 1$

$$1 = \left(\frac{U}{U_p}\right)^2 + \left(\frac{I}{I_k}\right)^2$$

2) Reine Blindleistung: $sin(\varphi) = \pm 1$

$$\left(\frac{U}{U_p}\right) = 1 \mp \left(\frac{I}{I_k}\right)$$

C. Leistung

$$P_{mech,zu} = P_{el,ab} \neq f(\vartheta) \rightarrow \text{für } \vartheta < 90^{\circ} \text{ stabil}$$

$$\begin{split} sin(\vartheta) &= \frac{XI_W}{U_p} \qquad P = 3 \cdot \frac{U \cdot U_p}{X} \cdot sin(\vartheta) \\ S_{Bez} &= 3 \cdot \frac{U^2}{X} \qquad P_{Kipp} = P_{max} = 3 \cdot U \cdot \frac{U_p}{X} \\ \frac{P}{S_{Bez}} &= \left(\frac{U_p}{U}\right) \cdot sin(\vartheta) \\ \frac{Q}{S_{Bez}} &= \left[\left(\frac{U_p}{U}\right) \cdot cos(\vartheta)\right] - 1 \end{split}$$

D. Regelung

Konstate Scheinleistung

$$S = S_{max} = \text{const}$$

$$\underline{U} = \text{const}, |\underline{I}| = \text{const}$$

$$I_w = \text{var.} \rightarrow P_{zu} = \text{var.}$$

$$I_b = \text{var.} \rightarrow I_{Err}, U_p = \text{var.}$$

Blindleistung

$$P = \text{const} \to I_w = \text{const}$$

$$Q = \text{var.} \rightarrow I_b = \text{var.} \rightarrow I_{Err} = \text{var.}$$

bei
$$1 \le \frac{U_p}{U} \le 2$$
 ergibt sich

$$-0.5(kap.) \le \frac{Q}{S_{Bez}} \le +0.75(ind.)$$

Turbinenventildrosselung

$$P = \text{var.} \rightarrow I_w = \text{var.} \rightarrow Q = \text{var.}$$

$$U_p = \operatorname{const} \to I_b = f(I_w)$$

bei
$$0.9 \le \frac{P}{S_{Bez}} \le 1.75$$
 ergibt sich

$$0 \le \frac{Q}{S_{Bez}} \le +0,75(ind.)$$

Reiner Blindleistung (Phasenschieberbetrieb)

$$P = 0 \to I_w = 0$$

$$Q = \text{var.} \rightarrow I_b = \text{var.}$$

F39 - Gleichstromwiderstand, Seildurchmesser, Sollquerschnitt (Freileitung)

Nennquerschnitt = Bezeichnung	Sollquerschnitt Aluminium	Sollquerschnitt Stahl	Sollquerschnitt gesamt	Seildurchmesser	Al/St-Seile
A _{AI} /A _{st} [mm ²]	[mm²]	[mm²]	[mm²]	D = 2 r [mm]	$R'_{20^{\circ}C}$ [Ω/km]
16/2,5	15,27	2,54	17,8	5,4	1,874
25/4	23,86	3,98	27,8	6,8	1,203
35/6	34,35	5,73	40,1	8,1	0,835
50/8	48,25	8,04	56,3	9,6	0,595
70/12	69,89	11,40	81,3	11,7	0,413
95/15	94,39	15,33	109,7	13,6	0,306
120/20	121,57	19,85	141,4	15,5	0,237
150/25	148,86	24,25	173,1	17,1	0,194
185/30	183,78	29,85	213,6	19,0	0,157
210/35	209,10	34,09	243,2	20,3	0,138
230/30	230,91	29,85	260,8	21,0	0,125
240/40	243,05	39,49	282,5	21,8	0,119
265/35	263,66	34,09	297,8	22,4	0,109
300/50	304,26	49,48	353,7	24,5	0.095
380/50	381,70	49,48	431,2	27,0	0,076
435/55	434,29	56,30	490,6	28,8	0,067
490/65	490,28	63,55	553,8	30,6	0,059
560/50	561,70	49,48	611,2	32,2	0,051
680/85	678,58	85,95	764,5	36,0	0,043
1045/45	1045,58	45,28	1090,5	43,0	0,028

VII. TABELLEN, ANHÄNGE

F42 - Widerstandserhöhung durch Skineffekt (Freileitung, Kabel)

F43 - Resistanzbelag, Richtwerte Seilbelegungen (Freileitung)

Leitung [kV]	Seiltyp	$R_b'\left[\frac{\Omega}{km}\right]$
10/20	Einfach	0,3 - 0,6
110	Einfach	0,2 - 0,15
220	Zweierbündel	0,09
380	Viererbündel	0,03

F46 - Reaktanzbelag, Richtwerte Hochspannungsleitungen (Freileitung)

Seiltyp	$X_b'\left[\frac{\Omega}{km}\right]$ je Leiter
Einerseil	0,40
Zweierbündel	0,30
Viererbündel	0,23

F48 - Suszeptanzbelag, Richtwerte Einfachseil bei f=50Hz (Freileitung)

Richtwerte $U_{Betrieb}$	$B_b'\left[\frac{\mu S}{km}\right]$ je Leiter	
< 30 kV	3,5	
> 30 kV	3	

F49 - Konduktanzbelag, Richtwerte (Freileitung)

_	
Richtwerte $U_{Betrieb}$	$G_b'\left[\frac{nS}{km}\right]$ je Leiter
< 30 kV	vernachlässigbar
110 kV	4 - 5
220 kV	2,5 - 3,5
380 kV	1 - 2

- Strom über Isolation (hier Luft) gegen Erde
- Ursachen: Korona- und Isolationsverluste

F34 - Resistanzbelag R_{-}' in $\frac{\Omega}{km}$ (Kabel)

Nennquer- schnitt [mm²]	Kupferleiter	Aluminium- leiter	
10	1,830	3,080	
16	1,150	1,910	
25	0,727	1,200	
35	0,524	0,886	
50	0,387	0,641	
70	0,268	0,443	
95	0,193	0,320	
120	0,153	0,253	
150	0,124	0,206	
185	0,0991	0,164	
240	0,0754	0,125	
300	0,0601	0,100	
400	0,0470	0,0778	
500	0,0366	0,0605	
630	0,0283	0,0469	
800	0,0221	0,0367	
1000	0,0176	0,0291	

${\bf F37}$ - Widerstandserhöhung durch Proximityeffekt ${\bf F_P}$ (Kabel)

F42 - Verlustfaktor/ ε -Konstante von Isolierstoffen (Kabel)

Isolierstoff	tanδ x 10 ³	ε _r	(ε _r tanδ) × 10 ³
Masse-Papier	10	4	40
Öl-Papier	1,5 3	3,3 3,7	5 11
PP(LP)	0,5 0,6	2,6	1,3 1,6
PVC	20 100	3 4	60 400
PE	0,2 0,4	2,2 2,3	0,4 0,9
VPE	0,3 0,4	2,3 2,4	0,7 1,2
EPR	4 6	2,7 3	11 18

F40 - Reaktanzbelag X_b' , Richtwerte (Kabel)

F43 - Suszeptanzbelag $\mathbf{B}_{\mathbf{b}}'$ - Richtwerte Radialfeldkabel mit Masseisolierung $\varepsilon_r=4$

F44 - Suszeptanzbelag B'_b - Richtwerte (Kabel)

