1. Problem:

As an ornithologist, you wish to determine the average body mass of *Vireo griseus*. You randomly sample 27 adults of *Vireo griseus*, resulting in a sample mean of 10.11 grams and a sample standard deviation of 0.838 grams. Determine a 95% confidence interval of the true population mean.

Solution: We are given the sample size, sample mean, sample standard deviation, and confidence level.

$$n = 27$$

 $\bar{x} = 10.11$
 $s = 0.838$
 $\gamma = 0.95$

Find the degrees of freedom.

$$df = n - 1$$

= 27 - 1
= 26

Determine the critical t value, t^* , such that $P(|T| < t^*) = 0.95$ and df = 26.

$$t^{\star} = 2.06$$

Use the formula for bounds (mean, σ unknown).

$$LB = \bar{x} - t^* \frac{s}{\sqrt{n}}$$

$$= 10.11 - 2.06 \times \frac{0.838}{\sqrt{27}}$$

$$= 9.78$$

$$UB = \bar{x} + t^* \frac{s}{\sqrt{n}}$$

$$= 10.11 + 2.06 \times \frac{0.838}{\sqrt{27}}$$

$$= 10.4$$

We are 95% confident that the population mean is between 9.78 and 10.4.

$$CI = (9.78, 10.4)$$

2. Problem:

You are tasked with estimating the proportion of widgets that are defective. In a sample of 340 widgets, you determine that 45% were defective. Determine a 80% confidence interval of the population proportion.

Solution: Identify the givens.

$$n = 340$$

 $\hat{p} = 0.45$
 $\gamma = 0.8$

Determine z^* such that $P(|Z| < z^*) = 0.8$. It is helpful to know that $\ell = \frac{\gamma+1}{2} = \frac{0.8+1}{2} = 0.9$. (Use the z-table to find z^* .)

$$z^* = 1.28$$

Use the formula (proportion) for the bounds.

$$LB = \hat{p} - z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$= 0.45 - 1.28 \sqrt{\frac{(0.45)(0.55)}{340}}$$

$$= 0.415$$

$$UB = \hat{p} + z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$= 0.45 + 1.28 \sqrt{\frac{(0.45)(0.55)}{340}}$$

$$= 0.485$$

Determine the interval.

$$CI = (0.415, 0.485)$$

We are 80% confident that the true population proportion is between 41.5% and 48.5%.

3. Problem:

Some snails have clockwise shells, and others have counter-clockwise shells. You plan to estimate the proportion with clockwise shells by sampling. You want to be 98% confident that the sample proportion is within 0.007 of the population proportion. How many snails do you need?

Solution: We are given the confidence level and the margin of error.

$$\gamma = 0.98$$

$$\textit{ME} = 0.007$$

Determine z^* such that $P(|Z| < z^*) = 0.98$. It is helpful to get the percentile of z^* by using $\ell = \frac{1+\gamma}{2} = \frac{1+0.98}{2} = 0.99$. This lets you find z^* such that $P(Z < z^*) = 0.99$.

$$z^* = 2.33$$

Use the appropriate formula.

$$n = \frac{1}{4} \left(\frac{z^*}{ME} \right)^2$$

$$=\frac{1}{4}\left(\frac{2.33}{0.007}\right)^2$$

When determining a necessary sample size, always round up (ceiling).

$$n = 27699$$

4. Problem:

A fair 10-sided die has a discrete uniform distribution with an expected value of $\mu = 5.5$ and a standard deviation $\sigma = 2.87$.

You are told to check if a 10-sided die has an expected value different than 5.5. You are told to roll the die 95 times and do a significance test with a significance level of 0.05.

You then roll the die 95 times and get a mean of 6.009. Should we conclude the die is unfair?

- (a) What kind of hypothesis test is appropriate?
- (b) State the hypotheses
- (c) Determine the *p*-value.
- (d) Decide whether we reject or retain the null hypothesis.
- (e) Do we conclude the die is unfair?

Solution: We should use a two-tail test of population mean.

State the hypotheses:

$$H_0$$
 claims $\mu = 5.5$

$$H_A$$
 claims $\mu \neq 5.5$

Find the standard error.

$$\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}=\frac{2.87}{\sqrt{95}}=0.294$$

Make a sketch of the null's sampling distribution.

Find the z score.

$$z = \frac{\bar{x} - \mu_0}{\sigma_{\bar{x}}} = \frac{6.009 - 5.5}{0.294} = 1.73$$

Find the *p*-value (using formula for left-tail test of mean).

p-value =
$$P(|Z| > 1.73)$$

= $2 \cdot P(Z < -1.73)$
= 0.0836

Compare the *p*-value and the significance level ($\alpha = 0.05$).

$$p$$
-value $> \alpha$

No, we do not reject the null hypothesis.

We conclude the die might be fair.

- (a) Two-tail single mean test
- (b) Hypotheses: H_0 claims $\mu = 5.5$ and H_A claims $\mu \neq 5.5$.
- (c) p-value = 0.0836
- (d) No, we do not reject the null hypothesis.
- (e) We conclude the die might be fair.

5. Problem:

A student is taking a multiple choice test with 700 questions. Each question has 5 choices. You want to detect whether the student does better than random guessing, so you decide to run a hypothesis test with a significance level of 0.025.

Then, the student takes the test and gets 162 questions correct.

- (a) What kind of hypothesis test is appropriate?
- (b) State the hypotheses
- (c) Determine the *p*-value.
- (d) Decide whether we reject or retain the null hypothesis.
- (e) Do we think the student did significantly better than random guessing?

Solution: This is a right-tail (one-tail) proportion test because we only care whether the student does better than random.

Determine the null population proportion.

$$p_0 = \frac{1}{5} = 0.2$$

State the hypotheses.

$$H_0$$
 claims $p = 0.2$
 H_A claims $p > 0.2$

Determine the standard error.

$$\sigma_{\hat{p}} = \sqrt{\frac{p_0(1-p_0)}{n}} = \sqrt{\frac{0.2(1-0.2)}{700}} = 0.0151$$

Determine the sample proportion.

$$\hat{p} = \frac{162}{700} = 0.231$$

Determine a z score. For simplicity, we ignore the continuity correction.

$$Z = \frac{\hat{p} - p_0}{\sigma_{\hat{p}}} = \frac{0.231 - 0.2}{0.0151} = 2.05$$

Make a sketch of the null's sampling distribution. The *p*-value is a right area.

To determine that right area, we use the z table.

$$p$$
-value = $P(\hat{p} > 0.231)$
= $P(Z > 2.05)$
= $1 - P(Z < 2.05)$
= 0.0202

Compare *p*-value to α (which is 0.025).

$$p$$
-value $< \alpha$

Make the conclusion: we reject the null hypothesis.

We think the student did better than random guessing typically allows.

- (a) Right tail (one-tail) proportion test
- (b) Hypotheses: H_0 claims p = 0.2 and H_A claims p > 0.2.
- (c) The *p*-value is 0.0202
- (d) We reject the null hypothesis.
- (e) We think the student did better than random guessing typically allows.

6. Problem:

A null hypothesis claims a population has a mean μ = 53.0. You decide to run right-tail test on a sample of size n = 9 using a significance level α = 0.05.

You then collect the sample:

55.6	51.2	53.8	53.9	54.5
64.1	51.5	54.1	60.9	

- (a) State the hypotheses.
- (b) Determine the *p*-value.
- (c) Do you reject the null hypothesis?

Solution: State the hypotheses.

$$H_0$$
 claims $\mu = 53$

$$H_A$$
 claims $\mu > 53$

Find the mean and standard deviation of the sample (use calculator function).

$$\bar{x} = 55.511$$

$$s = 4.272$$

Determine the degrees of freedom.

$$df = 9 - 1 = 8$$

Find the standard error.

$$\sigma_{\bar{x}} = \frac{s}{\sqrt{n}} = \frac{4.272}{\sqrt{9}} = 1.424$$

Make a sketch of the null's sampling distribution.

Find the *t* score.

$$t = \frac{\bar{x} - \mu_0}{\sigma_{\bar{x}}} = \frac{55.511 - 53}{1.424} = 1.76$$

Find the p-value.

p-value =
$$P(T > 1.76)$$

We can't get an exact value with our table, but we can determine an interval that contains the p-value. (Look at row with df = 8.)

$$P(T > 1.86) = 0.05$$

$$P(T > 1.4) = 0.1$$

Basically, because t is between 1.86 and 1.4, we know the p-value is between 0.05 and 0.1.

Compare the *p*-value and the significance level ($\alpha = 0.05$).

$$p$$
-value $> \alpha$

No, we do not reject the null hypothesis.

- (a) The hypotheses: H_0 claims μ = 53 and H_A claims μ > 53.
- (b) 0.05 < p-value < 0.1
- (c) No, we do not reject the null hypothesis.

7. **Problem:**

A null hypothesis claims a population has a mean μ = 54.0. You decide to run left-tail test on a sample of size n = 11 using a significance level α = 0.01.

You then collect the sample:

- (a) State the hypotheses.
- (b) Determine the *p*-value.
- (c) Do you reject the null hypothesis?

Solution: State the hypotheses.

$$H_0$$
 claims $\mu = 54$

$$H_A$$
 claims $\mu < 54$

Find the mean and standard deviation of the sample (use calculator function).

$$\bar{x} = 45.436$$

$$s = 10.494$$

Determine the degrees of freedom.

$$df = 11 - 1 = 10$$

Find the standard error.

$$\sigma_{\bar{x}} = \frac{s}{\sqrt{n}} = \frac{10.494}{\sqrt{11}} = 3.164$$

Make a sketch of the null's sampling distribution.

Find the *t* score.

$$t = \frac{\bar{x} - \mu_0}{\sigma_{\bar{x}}} = \frac{45.436 - 54}{3.164} = -2.71$$

Find the p-value.

p-value =
$$P(T < -2.71)$$

The *T* distribution is symmetric.

p-value =
$$P(T > 2.71)$$

We can't get an exact value with our table, but we can determine an interval that contains the p-value. (Look at row with df = 10.)

$$P(T > 2.76) = 0.01$$

$$P(T > 2.36) = 0.02$$

Basically, because |t| is between 2.76 and 2.36, we know the *p*-value is between 0.01 and 0.02.

$$0.01 < p$$
-value < 0.02

Compare the *p*-value and the significance level ($\alpha = 0.01$).

$$p$$
-value $> \alpha$

No, we do not reject the null hypothesis.

- (a) The hypotheses: H_0 claims μ = 54 and H_A claims μ < 54.
- (b) 0.01 < p-value < 0.02
- (c) No, we do not reject the null hypothesis.

8. Problem:

A null hypothesis claims a population has a mean μ = 140. You decide to run two-tail test on a sample of size n = 9 using a significance level α = 0.1.

You then collect the sample:

136.3	156.1	156.6	142.4	137.1
138	146	152.1	139	

- (a) Determine the *p*-value.
- (b) Do you reject the null hypothesis?

Solution: State the hypotheses.

$$H_0$$
 claims $\mu = 140$

$$H_A$$
 claims $\mu \neq 140$

Find the mean and standard deviation of the sample.

$$\bar{x} = 144.844$$

$$s = 8.207$$

Determine the degrees of freedom.

$$df = 9 - 1 = 8$$

Find the standard error.

$$\sigma_{\bar{x}} = \frac{s}{\sqrt{n}} = \frac{8.207}{\sqrt{9}} = 2.736$$

Make a sketch of the null's sampling distribution.

Find the *t* score.

$$t = \frac{\bar{x} - \mu_0}{\sigma_{\bar{x}}} = \frac{144.844 - 140}{2.736} = 1.77$$

Find the *p*-value.

$$p$$
-value = $P(|T| > 1.77)$

We can't get an exact value with our table, but we can determine an interval that contains the p-value. (Look at row with df = 8.)

$$P(|T| > 1.86) = 0.1$$

$$P(|T| > 1.4) = 0.2$$

Basically, because t is between 1.86 and 1.4, we know the p-value is between 0.1 and 0.2.

$$0.1 < p$$
-value < 0.2

Compare the *p*-value and the significance level ($\alpha = 0.1$).

$$p$$
-value $> \alpha$

No, we do not reject the null hypothesis.

- (a) 0.1 < p-value < 0.2
- (b) No, we do not reject the null hypothesis.