Důležité substituce: převod na racionální funkce

Jsou-li $P,\ Q$ polynomy $\mathbb{R} \to \mathbb{C},$ pak $R:=\frac{P}{Q}$ nazveme racionální funkce jedné reálné proměnné, platí $R(x) = \frac{P(x)}{Q(x)}$.

Obecněji, jsou-li $P,\,Q$ polynomy dvou reálných proměnných, tj. $P,\,Q:\mathbb{R}\times\mathbb{R}\to$ $\mathbb{C},$ kde $P(x,y)=\sum\limits_{0\leq i+j\leq n}a_{ij}x^iy^j$ a $Q(x,y)=\sum\limits_{0\leq i+j\leq m}b_{ij}x^iy^j,$ pak $R:=\frac{P}{Q}$ nazveme racionální funkce dvou reálných proměnných, platí $R(x,y) = \frac{P(x,y)}{Q(x,y)}$.

$${f (I)} \qquad \int {f R}({f e}^{lpha{f x}}){f d}{f x}$$

Substituce: $y = e^{\alpha x}, \quad x \in \mathbb{R}$

Tvar derivace: $dx = \frac{1}{\alpha y}dy$ Výsledek: $\int R(y) \frac{1}{\alpha y} dy$

(II)
$$\int \frac{\mathbf{R}(\ln \mathbf{x})}{\mathbf{x}} \mathbf{dx}$$

Substituce: $y = \ln x$, x > 0

Tvar derivace: $\frac{dx}{x} = dy$

Výsledek: $\int R(y)dy$

$$\left| \text{(III)} \qquad \int \mathbf{R} \left(\mathbf{x}, \left(\frac{\mathbf{a}\mathbf{x} + \mathbf{b}}{\mathbf{c}\mathbf{x} + \mathbf{d}} \right)^{\frac{1}{\mathbf{s}}} \right) \mathbf{d}\mathbf{x} \right|$$

 $Substituce: t = \left(\frac{ax+b}{cx+d}\right)^{\frac{1}{s}}$ $Podm\'{i}nky: ad-bc \neq 0; \qquad s = 2k \implies \frac{ax+b}{cx+d} > 0, \qquad s = 2k-1 \implies x \neq -\frac{d}{c}$ $Inverze: x = \frac{-dt^s+b}{ct^s-a} \qquad Tvar \ derivace: \ dx = (ad-bc)s\frac{t^{s-1}}{(ct^s-a)^2}dt$ $V\'{y}sledek: (ad-bc)s \int \frac{\mathring{R}(t^s,t)t^{s-1}}{(ct^s-a)^2}dt$

$$(IV) \qquad \int \mathbf{R} \big(\mathbf{x}, \sqrt{\mathbf{a} \mathbf{x}^2 + \mathbf{b} \mathbf{x} + \mathbf{c}} \big) \mathbf{d} \mathbf{x}$$

Eulerovy substituce

Čtyři netriviální případy (někdy i dva najednou).

- (1) $ax^2 + bx + c = a(x x_1)(x x_2), x_1 < x_2, x_1, x_2 \in \mathbb{R}$ Substituce: $t = \left(\frac{x-x_1}{x-x_2}\right)^{\frac{1}{2}}$ vede k (III)
- (2) a > 0

Substituce: $\sqrt{ax^2 + bx + c} = \sqrt{ax + t} \implies x = (t^2 - c)/(b - 2\sqrt{at})$

(3) c > 0

Substituce: $\sqrt{ax^2 + bx + c} = \sqrt{c} + tx \implies x = (2\sqrt{c}t - b)/(a - t^2)$

(4) $a \leq 0$ a $ax^2 + bx + c$ nemá v $\mathbb R$ kořen ($\implies c \leq 0$): odmocnina není v $\mathbb R$ pro žádné x definována.

$$(\mathbf{V}) \qquad \int \mathbf{R}(\cos \mathbf{x}, \sin \mathbf{x}) \mathbf{d} \mathbf{x}$$

Goniometrické substituce

Substituce:
$$y = \operatorname{tg} \frac{x}{2}$$

$$x \neq \pi + 2k\pi, k \in \mathbb{Z}$$

Inverze:
$$x = 2 \operatorname{arctg} y$$

Tvar derivace:
$$dx = \frac{2}{1+y^2}dy$$

$$\cos x = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2}} = \frac{1 - \lg^2 \frac{x}{2}}{1 + \lg^2 \frac{x}{2}} = \frac{1 - y^2}{1 + y^2}$$

$$\sin x = \frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{\cos^2\frac{x}{2} + \sin^2\frac{x}{2}} = \frac{2\operatorname{tg}\frac{x}{2}}{1 + \operatorname{tg}^2\frac{x}{2}} = \frac{2y}{1 + y^2}$$

Zjednodušení:

(1)
$$R(-\cos x, \sin x) = -R(\cos x, \sin x) \implies Substituce: y = \sin x$$

(2)
$$R(\cos x, -\sin x) = -R(\cos x, \sin x) \implies Substituce: y = \cos x$$

(3)
$$R(-\cos x, -\sin x) = R(\cos x, \sin x) \implies Substituce: y = \operatorname{tg} x, x \neq \frac{\pi}{2} + k\pi$$

$$\cos^2 x = \frac{\cos^2 x}{\cos^2 x + \sin^2 x} = \frac{1}{1 + \lg^2 x} = \frac{1}{1 + y^2}$$
$$\sin^2 x = \frac{\sin^2 x}{\cos^2 x + \sin^2 x} = \frac{\lg^2 x}{1 + \lg^2 x} = \frac{y^2}{1 + y^2}$$

$$\sin x \cos x = \frac{\operatorname{tg} x}{1 + \operatorname{tg}^2 x} = \frac{y}{1 + y^2}$$

$${f (VI)} \qquad \int {f x^m} ({f a} + {f b} {f x^n})^{f p} d{f x} \, , \qquad {f m}, {f n}, {f p} \in {\mathbb Q}$$

Čebyševovy substituce

Umíme řešit pomocí elementárních funkcí pouze v následujících třech případech:

(1)
$$p\in\mathbb{Z}.$$
 Pak položme $m=m'/\ell,\, n=n'/\ell,\, \mathrm{kde}\ m',\, n'$ a $\ell\in\mathbb{Z},\, \ell>0.$

Substituce: $t = x^{\frac{1}{\ell}}$

(2)
$$(m+1)/n \in \mathbb{Z}, \ p=k/s, \ k,s \in \mathbb{Z}$$

Substituce:
$$t = (a + bx^n)^{\frac{1}{s}}$$

Inverze:
$$x = \frac{(t^s - a)^{1/n}}{b^{1/n}}$$
 Tvar derivace:

Tvar derivace: $dx = \frac{1}{nb^{1/n}} (t^s - a)^{\frac{1}{n} - 1} st^{s-1} dt$.

$$V \acute{y} s ledek: \int x^m (a+bx^n)^p dx = \int \frac{1}{b^{\frac{m}{n}}} (t^s-a)^{\frac{m}{n}} t^k \frac{1}{nb^{\frac{1}{n}}} (t^s-a)^{\frac{1}{n}-1} s t^{s-1} dt$$
$$= \frac{s}{nb^{\frac{m+1}{n}}} \int t^{s+k-1} (t^s-a)^{\frac{m+1}{n}-1} dt$$

(3)
$$\frac{m+1}{n} + p \in \mathbb{Z}, \ p = k/s, \ k, s \in \mathbb{Z}$$

Substituce:
$$t = (ax^{-n} + b)^{\frac{1}{s}}$$

Inverze:
$$x = \left(\frac{a}{t^s - b}\right)^{\frac{1}{n}}$$
 Tvar derivace: $dx = -\frac{a^{1/n}}{n}(t^s - b)^{-\frac{1}{n} - 1}st^{s-1}dt$

$$V \acute{y} sledek: \int x^m (a+bx^n)^p dx = \int x^m x^{np} (ax^{-n}+b)^{\frac{k}{s}} dx$$

$$= \int \left(\frac{a}{t^s-b}\right)^{\frac{m}{n}} t^k \left(\frac{a}{t^s-b}\right)^p \frac{a^{\frac{1}{n}}}{-n} (t^s-b)^{-\frac{1}{n}-1} st^{s-1} dt$$

$$= -\frac{a^{\frac{m+1}{n}+p}s}{n} \int t^{k+s-1} (t^s-b)^{-(\frac{m+1}{n}+p-1)} dt$$