Solutions to Bain and Engelhardt's Introduction to Probability and Mathematical Statistics

06.01 This is where the first solution will go.

06.02This is where the second solution will go.

06.15This is a simplified version of example 6.4.5.

 $X_1, X_2 \sim POI(\lambda)$ so the MGF of both is $e^{\lambda(e^t-1)}$. Thus by theorem 6.4.4

$$M_Y(t) = e^{\lambda(e^t - 1)} e^{\lambda(e^t - 1)} = e^{2\lambda(e^t - 1)} \sim POI(2\lambda)$$

The pdf then of Y is $\frac{e^{-2\lambda}2\lambda^x}{x!}$ **06.16** Note: the pdf of $f_{x_1,x_2} = \frac{1}{x_1^2} \frac{1}{x_2^2}$

a) We need to find $f_{u,v} = f_{x_1,x_2}(x_1(u,v),x_2(u,v))|J|$ where J is our jacobian. First we let $u = x_1x_2$ and $v = x_1$ thus $x_1 = v$ and $x_2 = \frac{u}{v}$, now we can find J.

$$J = \left| \begin{array}{cc} 0 & 1 \\ \frac{1}{v} & 0 \end{array} \right| = \frac{1}{v}$$

Finally, our pdf is:

$$f_{U,V}(u,v) = f_{x_1,x_2}(v,\frac{u}{v}) \left| \frac{1}{v} \right|$$

$$= \frac{1}{v^2} \frac{1}{\left(\frac{u}{v}\right)^2} \left| \frac{1}{v} \right|$$

$$= \frac{1}{u^2 v}, 1 < v < u < \infty$$