VCFHunter A Step-by-Step Guide [DRAFT]

Michael Hall

Plant Breeding and Genetics Laboratory FAO/IAEA Joint Division Seibersdorf, Austria

> Created: July, 2022 Last updated: 14 July 2022

Please note: This is not an official IAEA publication but is made available as working material. The material has not undergone an official review by the IAEA. The views expressed do not necessarily reflect those of the International Atomic Energy Agency or its Member States and remain the responsibility of the contributors. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA.

Contents

VCF	FHunter on Sorghum Semi-Dwarfism					
1.1	Software Prerequisites					
1.2	Extract Sample names from VCF					
1.3	Filter VCF with python script					
1.4	Separate VCF by chromomsome using vcftools					
	VCF Configuration file					
1.6	Create a Origin tab delimited file					
	Create a Color configuration file					
1.8	Run vcf2allPropandCov python script					
1.9	Plots					

1 VCFHunter on Sorghum Semi-Dwarfism

1.1 Software Prerequisites

#Download git repository:

```
git clone https://github.com/SouthGreenPlatform/VcfHunter.git
cd VcfHunter
cd bin
ls

#See all available python scripts

VCFtools (0.1.15)
0 Adam Auton and Anthony Marcketta 2009

Process Variant Call Format files

For a list of options, please go to:
https://vcftools.github.io/man_latest.html

Alternatively, a man page is available, type:
man vcftools

Questions, comments, and suggestions should be emailed to:
vcftools-help@lists.sourceforge.net
```

1.2 Extract Sample names from VCF

1.3 Filter VCF with python script

1.4 Separate VCF by chromomsome using vcftools

```
#Separate VCF by Chromosome
vcftools --gzvcf DNAseq_Filtered_filt.vcf.gz --chr Chr01 --recode --out ../data/
→Sorghumvcf/Chr01_DNAseq_Filtered_filt.vcf.gz
vcftools --gzvcf DNAseq_Filtered_filt.vcf.gz --chr Chr02 --recode --out ../data/
→Sorghumvcf/Chr02_DNAseq_Filtered_filt.vcf.gz
vcftools --gzvcf DNAseq_Filtered_filt.vcf.gz --chr Chr03 --recode --out ../data/
→Sorghumvcf/Chr03_DNAseq_Filtered_filt.vcf.gz
vcftools --gzvcf DNAseq_Filtered_filt.vcf.gz --chr Chr04 --recode --out ../data/
→Sorghumvcf/Chr04_DNAseq_Filtered_filt.vcf.gz
vcftools --gzvcf DNAseq_Filtered_filt.vcf.gz --chr Chr05 --recode --out ../data/
→Sorghumvcf/Chr05_DNAseq_Filtered_filt.vcf.gz
vcftools --gzvcf DNAseq_Filtered_filt.vcf.gz --chr Chr06 --recode --out ../data/
→Sorghumvcf/Chr06_DNAseq_Filtered_filt.vcf.gz
vcftools --gzvcf DNAseq_Filtered_filt.vcf.gz --chr Chr07 --recode --out ../data/
→Sorghumvcf/Chr07_DNAseq_Filtered_filt.vcf.gz
vcftools --gzvcf DNAseq_Filtered_filt.vcf.gz --chr Chr08 --recode --out ../data/
→Sorghumvcf/Chr08_DNAseq_Filtered_filt.vcf.gz
vcftools --gzvcf DNAseq_Filtered_filt.vcf.gz --chr Chr09 --recode --out ../data/
→Sorghumvcf/Chr09_DNAseq_Filtered_filt.vcf.gz
vcftools --gzvcf DNAseq_Filtered_filt.vcf.gz --chr Chr10 --recode --out ../data/
→Sorghumvcf/Chr10_DNAseq_Filtered_filt.vcf.gz
```

1.5 VCF Configuration file

```
#Create a new vcf configuration file and fill it with this information(SorghumVcf.conf)

../data/Sorghumvcf/Chr01_DNAseq_Filtered_filt.vcf.gz.recode.vcf
../data/Sorghumvcf/Chr02_DNAseq_Filtered_filt.vcf.gz.recode.vcf
../data/Sorghumvcf/Chr03_DNAseq_Filtered_filt.vcf.gz.recode.vcf
../data/Sorghumvcf/Chr04_DNAseq_Filtered_filt.vcf.gz.recode.vcf
../data/Sorghumvcf/Chr05_DNAseq_Filtered_filt.vcf.gz.recode.vcf
../data/Sorghumvcf/Chr06_DNAseq_Filtered_filt.vcf.gz.recode.vcf
../data/Sorghumvcf/Chr07_DNAseq_Filtered_filt.vcf.gz.recode.vcf
../data/Sorghumvcf/Chr08_DNAseq_Filtered_filt.vcf.gz.recode.vcf
../data/Sorghumvcf/Chr09_DNAseq_Filtered_filt.vcf.gz.recode.vcf
../data/Sorghumvcf/Chr09_DNAseq_Filtered_filt.vcf.gz.recode.vcf
../data/Sorghumvcf/Chr10_DNAseq_Filtered_filt.vcf.gz.recode.vcf
../data/Sorghumvcf/Chr10_DNAseq_Filtered_filt.vcf.gz.recode.vcf
```

1.6 Create a Origin tab delimited file

```
#Create a new Origin tab delimited file and fill it with this information (SorghumOrigin. --tab)

con-all AA
D2 BB
```

1.7 Create a Color configuration file

```
#Create a new color configuration file and fill it with this information (SorghumColor.

→conf)

AA 0 255 0
BB 255 0 0
```

1.8 Run vcf2allPropandCov python script

```
#Run python script
python vcf2allPropAndCov.py --conf ../data/config/SorghumVcf.conf --origin ../data/
→config/SorghumOrigin.tab --acc D2_F2_tt --ploidy 2 --dcurve y --col /data/config/
→SorghumColor.conf
```

1.9 Plots

\$	V1 ^	V2 ‡	V3	V4 ‡	V5 [‡]
1193	Chr01	2943267	Α	ВВ	0.4358974
1194	Chr01	2943267	Т	AA	0.5641026
1195	Chr01	4720049	Α	ВВ	0.3162393
1196	Chr01	4720049	G	AA	0.6837607
1197	Chr01	5567202	Α	AA	0.5760870
1198	Chr01	5567202	G	ВВ	0.4239130
1199	Chr01	6582529	CG	ВВ	0.4135802
1200	Chr01	6582529	CCACTG	AA	0.5864198
1201	Chr01	9151187	GTTTTTTTC	ВВ	0.3801653
1202	Chr01	9151187	GTTTTTTTC	AA	0.6198347
1203	Chr01	10361552	G	ВВ	0.4285714
1204	Chr01	10361552	A	AA	0.5714286
1205	Chr01	10972432	A	AA	0.5949367
1206	Chr01	10972432	G	ВВ	0.4050633
1207	Chr01	12616225	Α	ВВ	0.4537037
1208	Chr01	12616225	G	AA	0.5462963
1209	Chr01	12616497	G	ВВ	0.4869565
1210	Chr01	12616497	Т	AA	0.5130435
1211	Chr01	12616805	Т	ВВ	0.4520548
1212	Chr01	12616805	Α	AA	0.5479452
1213	Chr01	12616990	GAAAAAAAC	ВВ	0.4900662
1214	Chr01	12616990	GAAAAAAAAC	AA	0.5099338
1215	Chr01	12617272	CGT	ВВ	0.4250000
1216	Chr01	12617272	СТ	AA	0.5750000
1217	Chr01	12617582	G	ВВ	0.5874126
1218	Chr01	12617582	A	AA	0.4125874
1219	Chr01	12617785	Т	ВВ	0.4973262
1220	Chr01	12617785	С	AA	0.5026738