Binomial theorem and Applications

Bionomial Expression:

A binomial is an algebraic expression of two terms which are connected by the operations '+' or '-'.

e.g. (x + 2), (4x - 5y), (x + a) are the binomial expressions.

Binomial theorem

The binomial theorem for natural number states that x and a are real numbers and n is any positive integer then

$$(x+a)^n = x^n +^n c_1 x^{n-1} a +^n c_2 x^{n-2} a^2 + \ldots +^n c_r x^{n-r} a^r + \ldots + a^n \ = \sum_{r=0}^n {}^n c_r x^{n-r} a^r$$

$$(1+x)^n=\sum_{r=0}^n c_r x^r$$

and
$$(1-x)^n=\sum_{r=0}^n (-1)^{rn}c_rx^r$$

- The expression $(x + a)^n$ contains (n+1) terms after binomial expansion.
- Sum of the exponents in each term after binomial expansion is n.
- Powers of x are in descending order and powers of a are in ascending order.

Pascal's Triangle

The coefficients of various terms in $(a + b)^n$ for different values of n follows the pattern given below.

(a +b) ⁿ	Cofficinets
(a + b) ¹	1 1
$(a + b)^2$	1 2 1
$(a + b)^3$	1 3 3 1
(a + b) ⁴	1 4 6 4 1
(a + b) ⁵	1 5 10 10 5 1
(a + b) ⁶	1 6 15 20 15 6 1
(a + b) ⁷	1 7 21 35 35 21 7 1
(a + b) ⁸	1 8 28 56 70 56 28 8 1

General term

General term i.e. $(r + 1)^{th}$ term in the expansion of $(a + x)^n$ is

$$t_{r+1} = ^n C_r a^{n-r} x^r$$

General term in the expansion of $(a - x)^n$ is

$$t_{r+1}=(-1)^rC(n,r)a^{n-r}x^r$$

Note:

1. For
$$1 \leq r \leq n,^n C_r = \dfrac{n(n-1)\dots(n-r+1)}{1.2\dots r}$$

2. In particular, ${}^nC_0={}^n\ C_n=1$

3. If
$$1 \leq r \leq n$$
, then ${}^nC_r \stackrel{n}{=} {}^n C_{n-r}$

4. If $1 \leq r \leq n$, then ${}^nC_r + {}^nC_{r-1} = {}^{n+1}C_r$

5.
$$^{n}C_{r}=n/r.^{n-1}$$
 $C_{r-1}=rac{n(n-1)}{r(r-1)}\cdot ^{n-2}$ C_{r-2} etc.

Middle term

If n is even :- There are (n+1) terms after binomial expansion which is odd. So, there is only one middle term and is obtained by $t_{n/2+1}=C(n,n/2)a^{n/2}x^{n/2}$ middle term = $\left(\frac{n}{2}+1\right)^{th}$ term.

If n is odd: There are (n+1) terms after binomial expansion which is even, there are two middle terms.

middle terms are
$$\left(\frac{n+1}{2}\right)^{th}$$
 term and $\left(\frac{n+1}{2}+1\right)^{th}$ term.

Some special cases of binomial theorem

$$\begin{array}{l} \mathrm{i.}\ (1-x)^{-1}=1+x+x^2+x^3+x^4+\cdots\infty\\ \mathrm{ii.}\ (1+x)^{-1}=1-x+x^2-x^3+x^4+\cdots\infty\\ \mathrm{iii.}\ (1-x)^{-2}=1+2x+3x^2+4x^3+\cdots\infty\\ \mathrm{iv.}\ (1+x)^{-2}=1-2x+3x^2-4x^3+\cdots\infty\\ \mathrm{v.}\ (1-x)^{-1/2}=1+\frac{1}{2}x+\frac{1.3}{2.4}x^2+\cdots+\infty\\ \mathrm{vi.}\ (1+x)^{-1/2}=1-\frac{1}{2}x+\frac{1.3}{2.4}x^2+\cdots+\infty \end{array}$$

Note:

When n is other than positive integers, expansion of $(1+x)^n$ terminates and is valid only if |x|<1

$$(1+x)^n=1+rac{n}{1}x+rac{n(n-1)}{1}x^2+----+\infty$$

Binomial coefficients

The coefficients C(n, 0), C(n, 1) ----C(n, n) in the expansion of $(a + x)^n$ are known as Binomial coefficients

 $C_n = {}^n C_n = 1$

 \smile_n

Note:

i. Sum of the binomial coefficients = 2ⁿ i.e.

$$egin{aligned} C_0 + C_1 + C_2 + \dots + C_n &= 2^n \ 1 + C_1 + C_2 + \dots + C_n &= 2^n \ C_1 + C_2 + \dots + C_n &= 2^n - 1 \end{aligned}$$

ii. Sum of odd Binomial coefficients = sum of even binomial coefficients = 2^{n-1} i.e. $C_0+C_2+C_4+\ldots=C_1+C_3+C_5+\ldots=2^{n-1}$

Note

Number of dissimilar terms in the expansion of $(x+y+z)^n, n\in N$ is given by

$$=rac{(n+1)(n+2)}{2} ext{ or } \mathrm{C(n+m-1,n)}$$

No. of dissimilar terms in the expansion of $(x_1+x_2+\ldots\ldots+x_r)^n$ is ${}^{n+r-1}C_{r-1}$

Greatest term in the expansion of $(a+x)^n$

For positive a and x, the term t_{r+1} is the greatest term if r is the greatest possible value satisfying the equation $t_{r+1} \geq t_r$ i.e. $rac{t_{r+1}}{t_r} \geq 1$

Greatest coefficient in the expansion of $(a+x)^n$

In the expansion of $(a + x)^n$, the coefficient of general term t_{r+1} is nC_r . If n is even, the nC_r is greatest when r = n/2 and if n is odd, then nC_r is greatest when r = (n-1)/2 or (n+1)/2