A Bit About Hilbert Spaces

David Rosenberg

New York University

October 29, 2016

Inner Product Space (or "Pre-Hilbert" Spaces)

An inner product space (over reals) is a vector space $\mathcal V$ and an inner product, which is a mapping

$$\langle \cdot, \cdot \rangle : \mathcal{V} \times \mathcal{V} \to \mathbf{R}$$

that has the following properties $\forall x, y, z \in \mathcal{V}$ and $a, b \in \mathbb{R}$:

- Symmetry: $\langle x, y \rangle = \langle y, x \rangle$
- Linearity: $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$
- Postive-definiteness: $\langle x, x \rangle \ge 0$ and $\langle x, x \rangle = 0 \iff x = 0$.

Norm from Inner Product

For an inner product space, we define a norm as

$$||x|| = \sqrt{\langle x, x \rangle}.$$

Example

 R^d with standard Euclidean inner product is an inner product space:

$$\langle x, y \rangle := x^T y \qquad \forall x, y \in \mathbf{R}^d.$$

Norm is

$$||x|| = \sqrt{x^T y}.$$

What norms can we get from an inner product?

Theorem (Parallelogram Law)

A norm $\|v\|$ can be generated by an inner product on V iff $\forall x, y \in V$

$$2||x||^2 + 2||y||^2 = ||x + y||^2 + ||x - y||^2$$
,

and if it can, the inner product is given by the polarization identity

$$\langle x, y \rangle = \frac{\|x\|^2 + \|y\|^2 - \|x - y\|^2}{2}.$$

Example

 ℓ_1 norm on R^d is NOT generated by an inner product. [Exercise]

Is ℓ_2 norm on \mathbf{R}^d generated by an inner product?

Pythagorean Theroem

Definition

Two vectors are **orthogonal** if $\langle x, y \rangle = 0$. We denote this by $x \perp y$.

Definition

x is orthogonal to a set S, i.e. $x \perp S$, if $x \perp s$ for all $x \in S$.

Theorem (Pythagorean Theorem)

If
$$x \perp y$$
, then $||x + y||^2 = ||x||^2 + ||y||^2$.

Proof.

We have

$$||x+y||^2 = \langle x+y, x+y \rangle$$

= $\langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$
= $||x||^2 + ||y||^2$.

DS-GA 1003

Projection onto a Plane (Rough Definition)

- Choose some $x \in \mathcal{V}$.
- Let M be a subspace of inner product space \mathcal{V} .
- Then m_0 is the projection of x onto M,
 - if $m_0 \in M$ and is the closest point to x in M.
- In math: For all $m \in M$,

$$||x-m_0||\leqslant ||x-m||.$$

Hilbert Space

- Projections exist for all finite-dimensional inner product spaces.
- We want to allow infinite-dimensional spaces.
- Need an extra condition called completeness.
- A space is **complete** if all **Cauchy sequences** in the space converge.

Definition

A Hilbert space is a complete inner product space.

Example

Any finite dimensional inner product space is a Hilbert space.

The Projection Theorem

Theorem (Classical Projection Theorem)

- H a Hilbert space
- M a closed subspace of ℍ
- For any $x \in \mathcal{H}$, there exists a unique $m_0 \in M$ for which

$$||x-m_0|| \leq ||x-m|| \ \forall m \in M.$$

- This m_0 is called the **[orthogonal] projection of** \times **onto** M.
- Furthermore, $m_0 \in M$ is the projection of x onto M iff

$$x-m_0\perp M$$
.

Projection Reduces Norm

Theorem

Let M be a closed subspace of \mathcal{H} . For any $x \in \mathcal{H}$, let $m_0 = \operatorname{Proj}_{M} x$ be the projection of x onto M. Then

$$||m_0|| \leqslant ||x||,$$

with equality only when $m_0 = x$.

Proof.

$$\|x\|^2 = \|m_0 + (x - m_0)\|^2$$
 (note: $x - m_0 \perp m_0$)
 $= \|m_0\|^2 + \|x - m_0\|^2$ by Pythagorean theorem
 $\|m_0\|^2 = \|x\|^2 - \|x - m_0\|^2$

If $||x-m_0||^2=0$, then $x=m_0$, by definition of norm.