Affine Algebraic Decision Diagrams (AADDs)

and their Application to Structured Probabilistic Inference

Scott Sanner (Toronto)

David McAllester (TTI-C)

Talk Outline

- Data structures for representing $B^n \to R$
 - Why is efficiency for these functions important?
 - Compact forms for logical, additive, & mult. structure
 - Efficient operations: +, ·, max(F), \oplus , \otimes , $max(F_1,F_2)$
 - Practical considerations (numerical precision issues)
- Applications to probabilistic inference
 - Variable elimination in Bayes nets
 - Value iteration in MDPs
- Conclusions and future work

Motivations I

- Why do we need functions from $B^n \to R$?
- They are ubiquitous in uncertain reasoning, e.g.
 - Inference in Bayesian networks:

- Conditional prob. tables: P(Alarm | Earthquake, Burglar)
- Variable elimination:

$$\sum_{x_{1...x_{i}}} \prod_{F_{1...F_{j}}} F_{1}(x_{1...}x_{i}) ... F_{j}(x_{1...}x_{i})$$

■ Solving Markov decision processes (MDPs):

■ Value and reward functions: V(Box-1-delivered, ...,

Box-n-delivered)

■ Value iteration:

$$V^{n+1}(x_1...x_i) = R(x_1...x_i) + \gamma \cdot max_a \sum_{x_1'...x_i'} \prod_{F_1...F_i} P_1(x_1'|_{...}a) ... Pi(x_i'|_{...}a) V^n(x_1'...x_i')$$

Motivations II

- For $B^n \to R$, why do we need:
 - Compact representations?
 - Efficient operations: +, ·, max(F), \oplus , \otimes , $max(F_1,F_2)$?
- Reason 1: Space considerations
 - V(Box-1-delivered, ..., Box-40-delivered) would require ~1 terabyte if all states were enumerated
- Reason 2: Time considerations
 - With 1 gigaflop/s. computing power, one binary operation on the above function would require ~1000 seconds
 - Even simple MDP/BN inference problems can require 100+ binary operator applications!

Function Representation (Tables)

- How do we represent a function from $B^n \rightarrow R$?
- How about a fully enumerated table...
- ...OK, but can we be more compact?

a	Ь	С	F(a,b,c)	
0	0	0	0.00	
0	0	1	0.00	
0	1	0	0.00	
0	1	1	1.00	
1	0	0	0.00	
1	0	1	1.00	
1	1	0	0.00	
1	1	1	1.00	

Function Representation (Trees)

■ How about a tree? Sure, now can simplify.

а	Ь	С	F(a,b,c)	
0	0	0	0.00	
0	0	1	0.00	
0	1	0	0.00	
0	1	1	1.00	
1	0	0	0.00	
1	0	1	1.00	
1	1	0	0.00	
1	1	1	1.00	

Function Representation (ADDs)

■ Why not a directed acyclic graph (DAG)?

а	Ь	С	F(a,b,c)	
0	0	0	0.00	
0	0	1	0.00	
0	1	0	0.00	
0	1	1	1.00	
1	0	0	0.00	
1	0	1	1.00	
1	1	0	0.00	
1	1	1	1.00	

Function Representation (ADDs)

■ Why not a directed acyclic graph (DAG)?

а	Ь	С	F(a,b,c)
0	0	0	0.00
0	0	1	0.00
0	1	0	0.00
0	1	1	1.00
1	0	0	0.00
1	0	1	1.00
1	1	0	0.00
1	1	1	1.00

Binary Operations (ADDs)

- Why do we order the variables?
- This enables us to do efficient binary operations...

ADD Inefficiency

- Is context-specific independence enough?
- Or do we need more compactness?
- Example 1: Additive reward/utility functions

■
$$R(a,b,c) = R(a) + R(b) + R(c)$$

= $4a + 2b + c$

■ Example 2: Multiplicative value functions

■
$$V(a,b,c) = V(a) \cdot V(b) \cdot V(c)$$

= $\gamma^{(4a+2b+c)}$

Affine ADD (AADD)

- Let's define a new decision diagram affine ADD
- Edges labeled by an offset (c) and multiplier (b):

- General semantics: if (a) then $(c_1+b_1F_1)$ else $(c_2+b_2F_2)$
- To maximize sharing, normalize all nodes [0,1]
- Example: if (a) then (4) else (2)

AADD Examples

- Back to our previous examples...
- Example 1: Additive reward/utility functions

■ R(a,b) = R(a) + R(b)
$$(2/3,1/3)$$
 $(2/3,1/3)$ $(3/3$

■ Example 2: Multiplicative value functions

■ V(a,b) = V(a) · V(b)
=
$$\gamma^{(2a+b)}$$
; γ <1

 $\gamma^{(2a+b)}$ γ
 $\gamma^{(2a+b)}$ γ

AADD Operations

- How do we perform operations on AADDs?
- Let's look at a simple addition example:

$$(0,1)$$
 $(3,2)$ $(0,2)$ $(7,4)$

- Two recursive cases:
 - If a is true: $(0+1F_1) \oplus (0+2F_2) = (c_{1R} + b_{1R}F_{1R})$
 - If a is false: $(3+2F_1) \oplus (7+4F_2) = (c_{2R} + b_{2R}F_{2R})$
- But, can we avoid the second recursion?
 - By simple algebraic manipulation, we know:

$$(3+2F_1) \oplus (7+4F_2) = 10+2(F_1+2F_2) = 10+2(c_{1R}+b_{1R}F_{1R})$$

■ Suggests canonical caching scheme...

AADD Algorithms and Caching

■ To maximize cache hits for binary operators, must use following canonical caching scheme:

Operator	Compute & Store	Return
$c_1+b_1F_1 \oplus c_2+b_2F_2$	$F_1 \oplus (b_2/b_1)F_2$	c ₁ +c ₂ +b ₁ · Result
$c_1+b_1F \oplus c_2+b_2F$	nothing	$c_1+c_2+(b_1+b_2)F$
$c_1+b_1F_1 \otimes c_2+b_2F_2$	$(c_1/b_1)+F_1 \otimes (c_2/b_2)+F_2$	b ₁ b ₂ · Result
$max(c_1+b_1F_1, c_2+b_2F_2)$	$max(F_1, ((c_2-c_1)/b_1) + (b_2/b_2)F_2)$	c ₁ +b ₁ · Result
$max(c_1+b_1F, c_2+b_2F)$ (see return conditions)	nothing	$c_1 \ge c_2 \land b_1 \ge b_2$: $c_1 + b_1 F$ $c_2 \ge c_1 \land b_2 \ge b_1$: $c_2 + b_2 F$

- Otherwise, operations similar to those for ADDs:
 - Just propagate affine transform on recursion
 - And normalize and cache results on return

AADD Theorems

- How important is canonical caching?
 - Without it, AADD operations provably same as ADD!
 - With it, AADD can yield an exponential time/space improvement over ADD – and never performs worse!
- Stated more formally:
 - Theorem 1:
 - The time and space performance of the Reduce and Apply operations for AADDs is within a multiplicative constant of that of ADDs in the worst case.
 - Theorem 2:
 - There exist functions F_1 and F_2 and an operator 'op' such that the running time and space performance of $\langle F_1 \text{ op } F_2 \rangle$ can be linear in the number of variables (in F_1 and F_2) for the AADD when the corresponding ADD operation must be exponential in the number of variables.

 E.g. $\langle \sum_{i=1}^n 2^i \cdot x_i \oplus \sum_{i=1}^n 2^i \cdot x_i \rangle$, $\langle \prod_{i=1}^n \gamma^{\hat{}}(2^i \cdot x_i) \otimes \prod_{i=1}^n \gamma^{\hat{}}(2^i \cdot x_i) \rangle$

Numerical Precision Issues

- AADDs introduce numerical precision issues:
 - AADDs perform many subtractions and divisions
 - Operations cache has to store keys $\langle b_1, c_1, F_1, b_2, c_2, F_2, op \rangle$ where b_1 , c_1 , b_2 , and c_2 are floating point values
 - If cache keys stored exactly ⇒ explosion of distinct nodes equivalent within numerical precision!
- Solution: Implement "nearest neighbor" cache lookup
 - Hash on node distance from origin
 - Truncate distance at desired precision
 - ⇒ Nodes equivalent within precision will hash to same bucket (with high probability), test equality within precision
- Works efficiently and effectively in practice

Empirical Comparison: Table/ADD/AADD

 $Sum: \sum_{i=1}^{n} 2^{i} \cdot x_{i} \oplus \sum_{i=1}^{n} 2^{i} \cdot x_{i}$

■ Prod: $\prod_{i=1}^{n} \gamma^{\hat{}}(2^i \cdot x_i) \otimes \prod_{i=1}^{n} \gamma^{\hat{}}(2^i \cdot x_i)$

Application: MDP Solving

- Extend SPUDD (Hoey, St-Aubin, Hu, Boutilier; 1999)
 - Replace ADD with AADD, same value iteration algorithm
 - $V^{n+1}(x_1...x_i) = R(x_1...x_i) +$ $\gamma \cdot max_a \sum_{x_1'...x_i'} \prod_{F_1...F_i} P_1(x_1'|_{...}x_i) ... Pi(x_i'|_{...}x_i) V^n(x_1'...x_i')$
- SysAdmin MDP (Guestrin, Koller, Parr; 2001)
 - Have a network of computers
 - Various network configurations
 - Every computer is running or crashed
 - At each time step, status is affected by
 - Previous status
 - Status of incoming connections
 - Reward: +1 for every computer running (additive)

MDP Results: SysAdmin

Bidirectional Ring

Computers

Application: Bayes Net Inference

- Use variable elimination (Zhang & Poole; 1994)
 - Just replace CPTs with AADDs, same algorithm
 - Could do same for clique/junction-tree algorithms
 - P(query|evidence) = $\sum_{x_1...x_i} \prod_{F_1...F_j} F_1(x_{1...}x_i) ... F_j(x_{1...}x_i)$
- Handles CPT structure without specialized inference/transformation
 - Context-specific independence
 - Probability has logical structure:

P(a|b,c) = if b ? 1 : if c ? .7 : .3

- Additive CPTs
 - Probability is discretized linear function:

 $P(a|b_1...b_n) = c + b \cdot \sum_i (1/2^i) b_i$

- Multiplicative CPTs
 - Noisy-or represented by multiplicative AADD: $P(e|c_1...c_n) = 1 \prod_i (1 p_i)$
- When CPT or intermediate factor has such a compact form, AADD will find it...

Bayes Net Results: Various Networks

Bayes Net	Table		ADD		AADD	
	# Entries	Time	# Nodes	Time	# Nodes	Time
Alarm	1,192	2.97s	689	2.42s	405	1.26s
Barley	470,294	EML*	139,856	EML*	60,809	207m
Carpo	636	0.58s	955	0.57s	360	0.49s
Hailfinder	9,045	26.4s	4,511	9.6s	2,538	2.7s
Insurance	2,104	278s	1,596	116s	775	37s
Noisy-Or-15	65,566	27.5s	125,356	50.2s	1,066	0.7s
Noisy-Max-15	131,102	33.4s	202,148	42.5s	40,994	5.8s

*EML: Exceeded Memory Limit (1GB)

Related Work

- A lot of related work in formal verification literature:
 - Work in MTBDDs that looks at additive & multiplicative structure (algorithms/caching similar to AADD):
 - *BMDs, K*BMDs, EVBDDs, FEVBDDs, HDDs
 - MTBDDs use finite integer terminals (not floating point)
 - Can still approximate reals via rationals or fixed point values
 - **Problem:** Uncontrollable error when rationals/fixed point representations used for probabilitistic inference
 - Probabilities often below representable min, errors accumulate
- *PHDD is an MTBDD that should work in *theory*:
 - Terminal value represents IEEE floating point representation
 - **Problem:** Would amount to doing floating point arithmetic in software (AADD uses doubles and native arithmetic)

Conclusions and Future Work

■ Conclusions:

- AADDs are a general replacement for Tables/ADDs
- Compactly represent logical (CSI), additive, and multiplicative structure
- In theory: never more than a constant times worse than ADDs, potentially exponentially less space/time
- Empirically on MDP/BN examples: never worse than ADD/Table, sometimes exponentially better

■ Future Work:

- Approximate inference similar to APRICODD (St. Aubin, Hoey, Boutilier, 2000)
- Other approximation techniques