RECURRENT ALGORITHMS

EXERCICE 1

Ecrire un programme qui permet de remplir et afficher une matrice carré **M** par chacun des motifs (patterns) suivants :

NB : Pour chaque **pattern** le programme demandera à l'utilisateur de saisir l'ordre **n** de la matrice.

EXERCICE 2

Ecrire un programme qui permet de :

- Saisir un entier n avec ($4 < n \le 20$).
- Remplir aléatoirement une matrice carré **M** d'ordre **n** par des lettres majuscules.
- Afficher la matrice M.
- Remplir un tableau **A** par le nombre de voyelles de chaque ligne de la matrice **M**.
- Afficher le tableau **A** ainsi que le(s) numéro(s) de la(des) ligne(s) qui contien(nen)t le plus de voyelles.

Exemple

Si n = 6 et

		0	1	2	3	4	5
	0	М	S	F	Α	0	٧
М	1	Υ	K	N	Υ	Т	Ι
	2	В	S	J	F	D	Z
	3	Н	М	0	N	Р	Υ
	4	U	F	Χ	N	K	D
	5	Ε	Z	S	Ι	Α	K

On obtient:

A	2	3	0	2	1	3
	0	1	2	3	4	5

Le programme affichera :

The number of vowels per line :

Line 1 : 2 Line 2 : 3 Line 3 : 0 Line 4 : 2 Line 5 : 1 Line 6 : 3

The lines 2 and 6 contain the most vowels.

EXERCICE 3

Soit la suite **U** définie par :

$$\int_{0}^{\infty} U_{0} = 1$$

$$U_{n+1} = U_{n}^{2} + U_{n}$$

Ecrire un programme qui permet de calculer et afficher les $\bf n$ premiers termes de la suite $\bf U$.

Exemple : Si n = 5, le programme affichera : 1 2 6 42 1806

EXERCICE 4

Soit la suite **U** définie par :

$$\begin{cases} U_0 = 2 \\ U_1 = 3 \\ U_{n+2} = U_{n+1} + (n+1) * U_n \end{cases}$$

Ecrire un programme qui permet de :

- Saisir un entier $n \ge 1$.
- Calculer et afficher le terme U_n.

Exemple : Si n = 4, le programme affichera : U4 = 26

EXERCICE 5

Soit la suite **U** définie par :

$$\int_{0}^{\infty} U_1 = 2$$

$$\int_{0}^{\infty} U_n = U_{n-1} + n$$

Ecrire un programme qui permet de :

- Saisir un entier \mathbf{x} ($\mathbf{x} > \mathbf{2}$).
- Vérifier et afficher si **x** est un terme de la suite **U** ou non, dans l'affirmative afficher son rang.

Exemples:

Si x = 10, le programme affichera : 10 isn't a term of the sequence

Si x = 29, le programme affichera : 29 is a term of the sequence and its rank is 7.

EXERCICE 6

 $U_1 = 1$

 U_{n+1} = apparition de chaque chiffre distinct dans U_n

 $U_1 = 1$

 $U_2 = 11$ (1 apparaît 1 fois dans U1)

 $U_3 = 21$ (1 apparaît 2 fois dans U2)

 $U_4 = 1211$

 $U_5 = 3112$

 $U_6 = 132112$

...

Ecrire un programme qui permet de :

- Saisir un entier $n \ge 1$.
- Calculer et afficher le terme U_n.

Exemple : Si n = 6, le programme affichera : U6 = 132112

EXERCICE 7

Soient deux suites **U** et **V** :

$$\begin{cases} U_0 = 2 \\ U_n = \frac{U_{n-1}}{V_n} \end{cases}$$

$$\begin{cases} V_0 = 0 \\ V_n = \sqrt{\frac{1 + V_{n-1}}{2}} \end{cases}$$

Ecrire un programme qui permet de :

- Saisir un entier $n \ge 0$.
- Calculer et afficher le terme Un.

Exemple : Si n = 4, le programme affichera : U4 = 3.1365

EXERCICE 8

Soit la suite **U** définie par :

$$\begin{bmatrix} U_0 = 1 \\ U_1 = 2 \\ U_{2n} = U_n + 2 * U_{n-1} \\ U_{2n+1} = U_{2n} + n * U_n \end{bmatrix}$$

- 1- Calculer U_2 , U_3 , U_4 et U_5 .
- 2- Donner l'ordre de récurrence de cette suite.
- 3- Ecrire un programme qui permet de :
 - Saisir un entier $n \ge 0$.
 - Calculer et afficher le terme U_n.

Exemple : Si n = 8, le programme affichera : U8 = 20

EXERCICE 9

Soit la fonction McCarthy définit par :

$$McCarthy(n) = \begin{cases} n - 10 & \text{Si } n > 100 \\ \\ McCarthy(McCarthy(n + 11)) & \text{Si } n \leq 100 \end{cases}$$

- 1- Calculer McCarthy(100)
- 2- Ecrire un algorithme de la fonction McCarthy