

Course introduction

Lecture 1

Course of: Signal and imaging acquisition and modelling in environment

06/03/2024

Federico De Guio - Matteo Fossati

General info about the course

- The course is organized in frontal lectures and laboratory sessions
 - Even during the lectures, you are often required to write some code
 - o The lecture part will be recorded and made available the week after
- All the exercises will be in **Python**
 - No need to be an expert, we will start with a Python introduction
 - \circ We will use Colab to code \rightarrow shared jupyter notebooks, access to GPUs
- Please answer the survey on the eLearning page if you didn't do it yet.
- Requisites: bring your laptop
 - o Groups of **2 persons** can be formed, but it is better if everybody has its own laptop

Exam

- During the course we will propose some extended exercises
 - Most likely the time in the class won't be enough to complete them. In case you can work on them at home and ask questions if you need help.
 - You are required to complete all the exercises
- For the exam we ask you to:
 - o pick one extended exercise
 - o **complete it** and prepare a **written report** explaining all the details about implementation and results
 - o send us the report in advance
- The exam will be **oral** and will start from the discussion of the report
- People belonging to the same group must pick different exercises for the written report

Course organization

The course is divided into few main chapters

- 1. Introduction / refresher (today)
- 2. 1D signals
- 3. From 1D to 2D: images
- 4. Analysis of telescope data
- 5. Remote sensing
- All topics are interconnected!

Introduction / refresher [today]

- Intro to python
 - Numpy, matplotlib, scipy
- Reminder of simple notions of statistics
- How to fit a function to a dataset

1D signals

- Signals from Silicon Photomultipliers (**SiPMs**)
- Generation of a pulse library
 - o The "hit or miss" monte carlo method
 - o Simulate the impact of noise
- Write a denoising DNN
 - o Discussion of the approach
 - Build a DNN to remove the noise from the generated samples

From 1D to 2D: images

- Intro to OpenCV
 - Code and test basic filters for the manipulation of the images
- Basic operations with images
 - o Dynamic range
 - Picture equalization
 - Convolution of images
 - o etc...

Telescope

- Experiments with images and spectra collected via the **Bicocca Optical Telescope** (on top of U9 building)
- Telescope images:
 - Characterization of the detector properties, calibrations and application to scientific images
 - Segmentation and noise properties of the images
 - CNN exercise for galaxy classification
- Telescope spectra:
 - Understanding optical spectra, calibrations and application to stellar spectra (Black-Body emission)
 - CNN exercise for the extraction of stellar temperatures from spectra

Remote sensing and segmentation

Experiments with images collected via remote sensing

Drone images:

- Segmentation on terrain images acquired using a drone (close distance)
- UNet architecture

Satellite images:

Measure physical quantities on images from satellites

Intro to Python - 1

See notebooks on Colab

Intro to Python Intro to numpy

Exercise:

- Generate 1k events gaussian distributed
- Write functions to estimate the mean and the σ of the dataset

The variance

• To measure the dispersion of the dataset, we could compute the total difference from the arithmetic mean (sum of the deviations). However this is zero by definition:

• Instead we use the **variance** defined as the **average squared sum of the deviations:**

$$s^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \bar{x})^{2}$$

How to compute the variance

$$N s^{2} = \sum_{i=1}^{N} (x_{i} - \bar{x})^{2}$$

$$= \sum_{i=1}^{N} (x_{i}^{2} + \bar{x}^{2} - 2\bar{x}x_{i})$$

$$= \sum_{i=1}^{N} x_{i}^{2} + N\bar{x}^{2} - 2\bar{x}\sum_{i=1}^{N} x_{i}$$

$$= \sum_{i=1}^{N} x_{i}^{2} + N\bar{x}^{2} - 2N\bar{x}^{2}$$

$$= \sum_{i=1}^{N} x_{i}^{2} - N\bar{x}^{2}$$

$$s^2 = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Intro to Python - 2

See notebooks on Colab

Intro to Matplotlib
Intro to SciPy

Exercise:

• Estimation of parameters

What question do I want to answer?

- Let's consider two physical quantities (x, y)
- Let's assume to know the law of physics that relates the two quantities $y = f(x; \omega a)$, but we don't know the numerical value of the parameters (a)

• We want to fit the function to our set of measures

Example 1

- We want to study the elastic properties of a spring
 - We fix one side of the spring and apply some tension on the other side
 - We measure how much the spring stretches as a function of the applied force
 - The Hool law predicts that the stretch is proportional to the force: $\mathbf{F} = \mathbf{kx}$ (with $x = |-|_0$)

• Question: what is the elastic constant of the spring?

Example 2

- We want to characterize a radioactive source
 - We measure the source activity with a Geiger counter
 - The phenomenon is well described by an exponential law:

$$P(t) = \frac{1}{\tau}e^{-t/\tau}$$

• Question: what is the value of the **7** constant?

Approach: minimize the weighted distance between data and function

• When considering the data collected in an histogram we can define the distance as:

$$\chi^2 \equiv \sum_{
m all\ bins} rac{\left(n_{
m meas}(x_i) - f(x_i)
ight)^2}{\sigma_{\!\scriptscriptstyle i}^2}$$

• The error at the denominator acts as the weight

Minimization of the Chi2

Exercise: Radioactive decay source

- Generate 1k events distributed according to a falling exponential with
 - o Tau decay constant = 1.5 ns
 - o X range = [0, 4] ns
 - o N bins = 30
- **Draw the histogram** of the generated events
- **Draw the PDF** used to generate the events
- Define the fitting function
- Define the distance between the histo and the function (Chi2)
 - What is the error in each bin?
- Find the best parameter(s) that describe the data
 - o Perform a parameter scan and minimize the Chi2
- Compare with the result from optimize.curve_fit

Reminder: the poissonian distribution

- It describes events in a continuum
 - Random rare events that happen at a well defined rate
- Look for the probability to observe **r** events in a given time interval. λ is the event rate.
- Example: thunderstorm
 - How many lightnings do we see in a given time interval?

$$P(r;\lambda) = e^{-\lambda} \frac{\lambda^r}{r!}$$

Reminder: properties of the poissonian distribution

• It is described by a **single parameter \(\lambda \)**

Mean Standard deviation

\lambda