Operations Research

Solution to Assignment #2 - Graphical Method

1)

	X	Y	Available
			hours
A	12	4	60
В	4	8	40
	\$10	\$6	

Maximize:

$$P = 10 X + 6 Y$$

Subject to:

$$12 X + 4 Y \le 60$$

$$4 X + 8 Y \le 40$$

All variables ≥ 0

$$: P = (10)(0) + (6)(5) = 30$$

At
$$F(5, 0)$$

$$: P = (10)(5) + (6)(0) = 50$$

$$: P = (10) (4) + (6) (3) = 58$$

 \Rightarrow The optimal solution is:

$$P = $58$$
 at point D.

$$T = 4$$

$$C = 3$$

2)

	X	Y	Available
E1	0.2	0.1	48
E2	0.3	0.1	30
E3M	0.5	0.8	60
	\$9	\$6	

Maximize:

$$P = 9 X + 6 Y$$

Subject to:

$$0.2\;X + 0.1\;Y \leq 48$$

$$0.3 X + 0.1 Y \le 30$$

$$0.5 X + 0.8 Y \le 60$$

All variables ≥ 0

At E
$$(0, 75)$$
 : $P = (9)(0) + (6)(75) = 450$

At F (100, 0) :
$$P = (9)(100) + (6)(0) = 900$$

At K
$$(95, 15)$$
 : P = $(9)(95) + (6)(15) = 945$

 \Rightarrow The optimal solution is:

$$P = $945$$
 at point K

$$X = 95$$

$$Y = 15$$

3)

	D	C	Available
			amount
K	8	6	24
P	10	4	20
M	6	12	24
	\$0.80	\$1	

Minimize: T = 0.8 D + 1 C

Subject to: $8 D + 6 C \ge 24$

 $10 D + 4 C \ge 20$

 $6 D + 12 C \ge 24$

All variables ≥ 0

At A (0, 5) : T = (0.8)(0) + (1)(5) = 5

At B (4, 0) : T = (0.8)(4) + (1)(0) = 3.2

At E (2.4, 0.8) T = (0.8)(2.4) + (1)(0.8) = 2.72

At K (6/7, 20/7) : T = (0.8) (6/7) + (1) (20/7) = 3.54

 \Rightarrow The optimal solution is: T = \$2.72 at point E.

D = 2.4

C = 0.8

	X	Y	Available
			resource
A	-1	2	4
В	3	2	14
С	1	-1	3
	\$3	\$2	

Maximize: P = 3 X + 2 YSubject to: $-X + 2 Y \le 4$

 $-X + 2Y \le 4$ $3X + 2Y \le 14$

 $X - Y \leq 3$

All variables ≥ 0

At A (0, 2) : P = (3)(0) + (2)(2) = 4

At B (2.5, 3.25) : P = (3)(2.5) + (2)(3.25) = 14

At C (4, 1) : P = (3)(4) + (2)(1) = 14

At D (3, 0) : P = (3)(3) + (2)(0) = 9

 \Rightarrow The optimal solution is: P = \$14 at points B & C (Multiple solution).

Hence, the optimal solution is at any point on the line segment BC.

5. **Maximize**:
$$z = x + y$$

Subject to:
$$\begin{aligned} x+y &\geq 10 \\ x &\leq 8 \\ y &\leq 9 \end{aligned}$$

$$x, y \ge 0$$

At A
$$(1, 9)$$
 : $z = 1 + 9 = 10$
At B $(8, 9)$: $Z = 8 + 9 = 17$
At C $(8, 2)$: $Z = 8 + 2 = 10$

12

$$z = 17$$
 at point B (8, 9).

6. **Maximize**:
$$z = 3x_1 + 4x_2$$

Subject to:
$$x_1 - x_2 \le 0$$

- $x_2 \ge -6$
 $2 x_1 + x_2 \ge 10$

Subject to:
$$x_1 - x_2 \le 0$$

 $-x_2 \ge -6$
 $2x_1 + x_2 \ge 10$
 $x_1, x_2 \ge 0$

At A (2, 6) :
$$z = (3) (2) + (4) (6) = 30$$

At B (6, 6) : $z = (3) (6) + (4) (6) = 42$
At C (10/3, 10/3): $z = (3) (10/3) + (2) (10/3) = 50/3$

\Rightarrow The optimal solution is:

$$z = 42$$
 at point B $(6, 6)$.

7. **Maximize**:
$$z = 3x_1 + 2x_2$$

Subject to:
$$x_1 + 2x_2 \le 6$$

$$2x_1 + x_2 \ge 6$$

$$x_1, x_2 \ge 0$$

At A
$$(2, 2)$$
 : $z = (3)(2) + (2)(2) = 10$

At B
$$(3, 0)$$
 : $z = (3)(3) + (2)(0) = 9$

At C
$$(6, 0)$$
 : $z = (3)(6) + (2)(0) = 18$

$$z = 18$$
 at point C (6, 0).

8. **Minimize**:
$$z = 2x_1 + 3x_2$$

subject to:
$$-x_1 + 2x_2 \le 4$$

$$x_1 + x_2 \leq 6$$

$$x_1 + 3x_2 \ge 9$$

$$+3x_2 \ge 9$$

 $x_1, x_2 \ge 0$

At A
$$(6/5, 13/5)$$
: P = $(2)(6/5) + (3)(13/5) = 51/5$

At B (8/5, 10/5):
$$P = (2)(8/3) + (3)(10/3) = 46/3$$

At C
$$(9/2, 3/2)$$
 : P = $(2)(9/2) + (3)(3/2) = 27/2$

7 6 5 4 3 2 $A(\frac{6}{5}, \frac{13}{5})$ 1 0 0 2 4 6 8

\Rightarrow The optimal solution is:

$$z = 51/5$$
 at point A (6/5, 13/5).

increases (decreases) the profit by \$1.47.