

FACULTÉ CHIMIE L1 UEF Maths2

Fiche de TD 3(2019/2020)

"Structures Algébriques et Espaces vectoriels."

Exercice 01

1) On définit sur $\mathbb{R} - \{1\}$ la loi (*) comme suit :

$$x * y = xy - x - y + 2$$

- (a) Montrer que * est une loi interne.
- (b) Montrer que ($\mathbb{R} \{1\}, *$) est un groupe commutatif.

Exercice 02 On considère dans \mathbb{R}^3 , le sous ensemble F défini par :

$$F = \{(x, y, z) \in \mathbb{R}^3 / x - y + 2z = 0\}$$

- 1. Montrer que F est un sous espace vectoriel de \mathbb{R}^3 .
- 2. Donner une base de F, quelle est sa dimension?
- 3. F est-il égale à \mathbb{R}^3 ?

Exercice 03

On considère dans \mathbb{R}^3 , le sous ensemble F défini par :

$$F = \{(x, x + y, y + z) / x, y, z \in \mathbb{R}\}\$$

- 1. Montrer que F est un sous espace vectoriel de \mathbb{R}^3 .
- 2. Donner une base de F, quelle est sa dimension?
- 3. F est-il égale à \mathbb{R}^3 ?

Exercice 04

- 1. Montrer que la famille $\{(2,0),(1,1)\}$ est génératrice de \mathbb{R}^2 .
- 2. quelle sont les famille libre parmis les familles suivantes : $F_1 = \{(1, 1, 0), (1, 0, 0), (0, 1, 1)\},\$ $F_2 = \{(0, 1, 1, 0), (1, 1, 1, 0), (2, 1, 1, 0)\}.$
- 3. Montrer que la famille $\{(2,0),(1,1)\}$ est une base de \mathbb{R}^2 , et que la famille $F_1 = \{(1,1,0),(1,0,0),(0,1,1)\}$ est une base de \mathbb{R}^3 .

courage!

Dr. I.Medjadj

Ministère de l'enseignement supérieur et de la recherche scientifique Université des Sciences et de la Technologie d'Oran Mohammed Boudiaf

Faculté de chimie L1 Maths2 Solution de la Fiche de TD 3(2019/2020)L1 Chimie

Exercice 01

(a) Montrons que * est une loi interne : pour $x,y\in\mathbb{R}-\{1\}$, alors $x*y\in\mathbb{R}-\{1\}$, $x*y=xy-x-y+2\in\mathbb{R}$ il ne reste qu'à montrer que $x*y\neq 1$: par l'absurde on suppose que x*y=xy-x-y+2=1 alors :

$$x * y = xy - x - y + 2 = 1 \Rightarrow xy - x - y + 1 = 0 \Rightarrow x(y - 1) - (y - 1) = 0 \Rightarrow (x - 1)(y - 1) = 0$$

ainsi $x = 1 \lor y = 1$ d'où la contradiction alors $x * y \neq 1 \Rightarrow x * y \in \mathbb{R} - \{1\}$.

(b) (${\rm I\!R} - \{1\}, *)$ est un groupe si et seulement si

$$\left\{ \begin{array}{l} *{\rm est~associative} \\ *{\rm admet~un~\'el\'ement~neutre} \\ {\rm Tout~\'el\'ement~de} \quad {\rm I\!R} - \{1\} \, {\rm admet~un~inverse~dans} \quad {\rm I\!R} - \{1\} \end{array} \right.$$

Il est dit groupe commutatif si et seulement si * est commutative.

1. * est commutative si et seulement si :

$$\forall x, y \in \mathbb{R} - \{1\}/x * y = y * x.$$

$$x * y = xy - x - y + 2 = yx - y - x + 2 = y * x.$$

Car le produit et la somme sont commutatives.

2. * est associative si et seulement si :

$$\forall x, y, z \in \mathbb{R} - \{1\}, (x * y) * z = x * (y * z).$$

$$\begin{array}{lll} (x*y)*z & = & [xy-x-y+2]*z \\ & = & (xy-x-y+2)z-z-(xy-x-y+2)+2 \\ & = & xyz-xz-yz+2z-xy+x+y-2+2 \\ & = & xyz-xy-xz-yz+x+y+z...(1) \end{array}$$

$$x*(y*z) = x*[yz - y - z + 2]$$

$$= x([yz - y - z + 2) - x - (yz - y - z + 2) + 2$$

$$= xyz - xy - xz - yz + x + y + z...(2)$$

- (1) = (2) d'où * est associative.
- 3. * admet un élément neutre si et seulement si

$$\exists e \in \mathbb{R} - \{1\}, \forall x \in \mathbb{R} - \{1\}/x * e = e * x = x.$$

On prend juste une seule équation car la loi est commutative.

$$\forall x \in \mathbb{R} - \{1\}, \ x * e = x$$

$$\forall x \in \mathbb{R} - \{1\}, \ xe - x - e + 2 = x$$

$$\forall x \in \mathbb{R} - \{1\}, \ e(x - 1) - 2(x - 1) = 0$$

$$\forall x \in \mathbb{R} - \{1\}, \ (e - 2)(x - 1) = 0.$$

Alors on a

$$\begin{cases} e - 2 = 0 \\ \forall \\ x = 1 \end{cases}$$

Alors $e = 2 \in \mathbb{R} - \{1\} \text{ car } x \in \mathbb{R} - \{1\}.$

4. $\forall x \in \mathbb{R} - \{1\}, \exists x' \in \mathbb{R} - \{1\}/x * x' = x' * x = e = 2$. Comme * est commutative on prend juste une équation :

$$x * x' = 2 \implies xx' - x - x' + 2 = 2$$

$$xx' - x - x' = 0 \implies x'(x - 1) - x = 0$$

$$x' = \frac{x}{x - 1}, x \in \mathbb{R}_1.$$

ainsi x' est bien défini sur \mathbb{R} montrons que $x' \neq 1$ par l'absude, on suppose que x' = 1 alors :

$$x' = \frac{x}{x-1} = 1 \Rightarrow x = x - 1 \Rightarrow 0 = -1$$

ce qui est absurde. Ainsi $x' = \frac{x}{x-1} \in \mathbb{R} - \{1\}$. * est un groupe commutatif.

Exercice 02 $F = \{(x, y, z) \in \mathbb{R}^3 / x - y + 2z = 0\}$:

$$\label{eq:Fest s.e.v} \text{F est s.e.v} \Leftrightarrow \left\{ \begin{array}{l} F \neq \emptyset, \\ \forall X,Y \in F, \forall \lambda, \mu \in {\rm I\!R}, \quad \lambda.X + \mu.Y \in F \end{array} \right.$$

- 1. $0_{\mathbb{R}^3} = (0,0,0) \in F \Rightarrow F \neq \emptyset$, car 0 0 + 2.0 = 0.
- 2. $\forall X = (x, y, z), Y = (x', y', z') \in F, \lambda, \mu \in \mathbb{R}$ montrons que :

$$\lambda(x, y, z) + \mu(x', y', z') \in {}^{?}F$$

c'est à dire $(\lambda x + \mu x', \lambda y + \mu y', \lambda z + \mu z') \in {}^{?}F$

$$(\lambda x + \mu x') - (\lambda y + \mu y') + 2(\lambda z + \mu z') = \lambda (x - y + 2z) + \mu (x' - y' + 2z') = \lambda .0 + \mu .0 = 0,$$

car:

$$(x, y, z) \in F \Rightarrow x - y + 2z = 0,$$

et $(x', y'; z') \in F \Rightarrow x' - y' + 2z' = 0.$

Ainsi $\lambda(x,y,z) + \mu(x',y',z') \in F$, F est sous espace vectoriel de \mathbb{R}^3 .

3. Base de F: soit $X \in F \Leftrightarrow x - y + 2z = 0 \Rightarrow y = 2z + x$, X = (x, y, z) = (x, 2z + x, z) = x(1, 1, 0) + z(0, 2, 1), ainsi

$$F = \{(x,y,z) \in {\rm I\!R}^3/x - y + 2z\} = \{x(1,1,0) + z(0,2,1)/x, z \in {\rm I\!R}\}.$$

D'où F est engendré par $\{v_1=(1,1,0),v_2=(0,2,1)\}$, montrons que cette famille est libre si et seulement si

$$\forall \lambda_1, \lambda_2 \in \mathbb{R}, \lambda_1 v_1 + \lambda_2 v_2 = (0, 0, 0) \Rightarrow \lambda_1 = \lambda_2 = 0.$$

$$\lambda_1(1,1,0) + \lambda_2(0,2,1) = (0,0,0) \Rightarrow (\lambda_1,\lambda_1+2\lambda_2,\lambda_2) = (0,0,0)$$

d'où le résultat. Alors la dimension de F est égale à 2, car $\{v_1, v_2\}$ est une base (libre et génératrice) de \mathbb{R}^3 .

4. $F \neq \mathbb{R}^3$ car dim $F = 2 \neq 3 = \dim \mathbb{R}^3$.

Exercice 03

- 1. $(0,0,0) \in F$ car $(0,0,0) = (0,0+0,0+0) \Rightarrow F \neq \emptyset$.
- 2. $\forall X, Y \in F, \lambda, \mu \in \mathbb{R}$ montrons que $\lambda X + \mu Y \in {}^{?}F$; on a :

$$X \in F \Leftrightarrow \exists (x, y, z) \in \mathbb{R}^3 / X = (x, x + y, y + z),$$

$$Y \in F \Leftrightarrow \exists (x', y', z') \in \mathbb{R}^3 / Y = (x', x' + y', y' + z'),$$

$$\lambda X + \mu Y = (\lambda x, \lambda x + \lambda y, \lambda y + \lambda z) + (\mu x', \mu x' + \mu y', \mu y' + \mu z')$$

$$\lambda X + \mu Y = ((\lambda x + \mu x'), (\lambda x + \mu x') + (\lambda y + \mu y'), (\lambda y + \mu y') + (\lambda z + \mu z)$$

d'où $\exists x'' = \lambda x + \mu x', \exists y'' = \lambda y + \mu y', \exists z'' = \lambda z + \mu z',$ ainsi

$$\lambda X + \mu Y = (x'', x'' + y'', y'' + z'') \in F.$$

3. Base de F: soit $X \in F \Leftrightarrow \exists (x, y, z) \in \mathbb{R}^3 / X = (x, x + y, y + z), X = (x, x + y, y + z) = x(1, 1, 0) + y(0, 1, 1) + y(0, 0, 1), ainsi$

$$F = \{x(1,1,0) + y(0,1,1) + z(0,0,1)/x, y, z \in \mathbb{R}\}.$$

D'où F est engendré par $\{v_1 = (1, 1, 0), v_2 = (0, 1, 1), v_3 = (0, 0, 1)\}$, montrons que cette famille est libre si et seulement si

$$\forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}, \lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 = (0, 0, 0) \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0.$$

$$\lambda_1(1,1,0) + \lambda_2(0,1,1) + \lambda_3(0,0,1) = (0,0,0) \Rightarrow (\lambda_1,\lambda_1+\lambda_2,\lambda_2+\lambda_3) = (0,0,0)$$

$$\Rightarrow \begin{cases} \lambda_1 = 0, \\ \lambda_1 + \lambda_2 = 0, \\ \lambda_2 + \lambda_3 = 0, \end{cases} \Rightarrow \lambda_1 = 0 \Rightarrow \lambda_2 = \lambda_3 = 0.$$

d'où le résultat. Alors la dimension de F est égale à 3, car $\{v_1, v_2, v_3\}$ est une base (libre et génératrice) de \mathbb{R}^3 .

4. $F = \mathbb{R}^3$ car dim $F = 3 = \dim \mathbb{R}^3$.

Exercice 04

1. La famille $\{(1,2),(-1,1)\}$ est génératrice de \mathbb{R}^2 si et seulement si

$$\forall X = (x, y) \in \mathbb{R}^2, \exists \lambda, \mu \in \mathbb{R}/X = \lambda(1, 2) + \mu(-1, 1).$$

Soit $(x, y) \in \mathbb{R}^2$, cherchons $\lambda, \mu \in \mathbb{R}$ tel que :

$$(x,y) = \lambda(1,2) + \mu(-1,1) = (\lambda - \mu, 2\lambda + \mu)$$

ainsi

$$\begin{cases} x = \lambda - \mu, & \dots(1) \\ y = 2\lambda + \mu, & \dots(2) \end{cases} (1) + (2) \Rightarrow \lambda = \frac{x+y}{3} \text{ et } \mu = \frac{-2x+y}{3}$$

d'où cette famille est génératrice.

- 2. quelle sont les famille libre parmis les familles suivantes : $F_1 = \{(1, 1, 0), (1, 0, 0), (0, 1, 1)\},$ $F_2 = \{(0, 1, 1, 0), (1, 1, 1, 0), (2, 1, 1, 0)\}.$
 - i) $F_1 = \{(1, 1, 0), (1, 0, 0), (0, 1, 1)\}$ est libre si et seulement si

$$\forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}, \lambda_1(1, 1, 0) + \lambda_2(1, 0, 0) + \lambda_3(0, 1, 1) = (0, 0, 0) \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = 0.$$

$$\lambda_1(1,1,0) + \lambda_2(1,0,0) + \lambda_3(0,1,1) = (0,0,0)$$

$$\Leftrightarrow \begin{cases} \lambda_1 + \lambda_2 = 0 \\ \lambda_1 + \lambda_3 = 0 \\ \lambda_3 = 0 \end{cases} \Leftrightarrow \begin{cases} \lambda_1 = 0 \\ \lambda_2 = 0 \\ \lambda_3 = 0 \end{cases}$$

 F_1 est libre.

ii) $F_2 = \{(0, 1, 1, 0), (1, 1, 1, 0), (2, 1, 1, 0)\}$ est n'est pas libre car

$$\exists \lambda_1 = 1, \lambda_2 = -2, \lambda_3 = 1 \in \mathbb{R}, \lambda_1(0, 1, 1, 0) + \lambda_2(1, 1, 1, 0) + \lambda_3(2, 1, 1, 0) = (0, 0, 0, 0).$$

3. La famille $\{(1,2),(-1,1)\}$ est une base de \mathbb{R}^2 , car quand le nombre de vecteurs=2=dim \mathbb{R}^2 il suffit de montrer qu'elle est soit génératrice ou bien libre pour qu'elle puisse être une base or d'après la question (1) elle est génératrice d'où le résultat.

La famille $F_1 = \{(1,1,0), (1,0,0), (0,1,1)\}$ est une base de \mathbb{R}^3 , car le cardinale de F_1 est égale à $3 = \dim \mathbb{R}^3$ est F_1 étant libre, alors c'est une base de \mathbb{R}^3 .

Dr. I.Medjadj