Lecture 4: Model Free Control

Emma Brunskill

CS234 Reinforcement Learning.

Winter 2021

 Structure closely follows much of David Silver's Lecture 5. For additional reading please see SB Sections 5.2-5.4, 6.4, 6.5, 6.7

Refresh Your Knowledge 3. Piazza Poll

- Which of the following equations express a TD update?
 - **1** $V(s_t) = r(s_t, a_t) + \gamma \sum_{s'} p(s'|s_t, a_t) V(s')$
 - $V(s_t) = (1-\alpha)V(s_t) + \alpha(r(s_t, a_t) + \gamma V(s_{t+1}))$
 - **3** $V(s_t) = (1 \alpha)V(s_t) + \alpha \sum_{i=t}^{H} r(s_i, a_i)$
 - $V(s_t) = (1 \alpha)V(s_t) + \alpha \max_{a} (r(s_t, a) + \gamma V(s_{t+1}))$
 - Not sure
- Bootstrapping is
 - When samples of (s,a,s') transitions are used to approximate the true expectation over next states
 - When an estimate of the next state value is used instead of the true next state value
 - Used in Monte-Carlo policy evaluation
 - Mot sure

Refresh Your Knowledge 3. Piazza Poll

- Which of the following equations express a TD update? True. $V(s_t) = (1 \alpha)V(s_t) + \alpha(r(s_t, a_t) + \gamma V(s_{t+1}))$
- Bootstrapping is when:
 An estimate of the next state value is used instead of the true next state value

Break

Class Structure

- Last time: Policy evaluation with no knowledge of how the world works (MDP model not given)
- This time: Control (making decisions) without a model of how the world works
- Next time: Generalization Value function approximation

Today: Model-free Control

- Generalized policy improvement
- Importance of exploration
- Monte Carlo control
- Model-free control with temporal difference (SARSA, Q-learning)
- Maximization bias

Today: Model-free Control

- Generalized policy improvement
- Importance of exploration
- Monte Carlo control
- Model-free control with temporal difference (SARSA, Q-learning)
- Maximization bias

Reinforcement Learning

• Goal: Learn to select actions to maximize total expected future reward

Model-free Control Examples

- Many applications can be modeled as a MDP: Backgammon, Go, Robot locomation, Helicopter flight, Robocup soccer, Autonomous driving, Customer ad selection, Invasive species management, Patient treatment
- For many of these and other problems either:
 - MDP model is unknown but can be sampled
 - MDP model is known but it is computationally infeasible to use directly, except through sampling

Recall Policy Iteration

- Initialize policy π
- Repeat:
 - Policy evaluation: compute V^{π}
 - Policy improvement: update π

$$\pi'(s) = \arg\max_{a} R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) V^{\pi}(s') = \arg\max_{a} Q^{\pi}(s,a)$$

- Now want to do the above two steps without access to the true dynamics and reward models
- Last lecture introduced methods for model-free policy evaluation

Model Free Policy Iteration

- ullet Initialize policy π
- Repeat:
 - Policy evaluation: compute Q^{π}
 - \bullet Policy improvement: update π

Model-free Generalized Policy Improvement

- Given an estimate $Q^{\pi_i}(s, a) \ \forall s, a$
- Update new policy

$$\pi_{i+1}(s) = \arg\max_{a} Q^{\pi_i}(s,a)$$

Check Your Understanding: Model-free Generalized Policy Improvement

- Given an estimate $Q^{\pi_i}(s, a) \ \forall s, a$
- Update new policy

$$\pi_{i+1}(s) = \arg\max_{a} Q^{\pi_i}(s, a)$$

- Question: is this π_{i+1} deterministic or stochastic?
- Answer: Deterministic, Stochastic, Not Sure
- Recall in model-free policy evaluation, we estimated V^π by using π to generate new trajectories
- Question: Can we compute $Q^{\pi_{i+1}}(s,a) \ \forall s,a$ by using this π_{i+1} to generate new trajectories?
- Answer: True, False, Not Sure

Check Your Understanding: Model-free Generalized Policy Improvement

- Given an estimate $Q^{\pi_i}(s, a) \ \forall s, a$
- Update new policy

$$\pi_{i+1}(s) = \arg\max_{a} Q^{\pi_i}(s, a)$$

- Question: is this π_{i+1} deterministic or stochastic?
- :Answer: Deterministic
- Recall in model-free policy evaluation, we estimated V^π by using π to generate new trajectories
- Question: Can we compute $Q^{\pi_{i+1}}(s,a) \ \forall s,a$ by using this π_{i+1} to generate new trajectories?
- Answer: No.

Model-free Policy Iteration

- Initialize policy π
- Repeat:
 - Policy evaluation: compute Q^{π}
 - Policy improvement: update π given Q^{π}

- May need to modify policy evaluation:
 - If π is deterministic, can't compute Q(s, a) for any $a \neq \pi(s)$
- How to interleave policy evaluation and improvement?
 - Policy improvement is now using an estimated Q

The Problem of Exploration

- Goal: Learn to select actions to maximize total expected future reward
- Problem: Can't learn about actions without trying them
- Problem: But if we try new actions, spending less time taking actions that our past experience suggests will yield high reward

Explore vs Exploit

- Explore: take actions haven't tried much in a state
- Exploit: take actions estimate will yield high discounted expected reward
- We will discuss this much more later in the course

Policy Evaluation with Exploration

- Want to compute a model-free estimate of Q^{π}
- In general seems subtle
 - Need to try all (s, a) pairs but then follow π
 - Want to ensure resulting estimate Q^{π} is good enough so that policy improvement is a monotonic operator
- For certain classes of policies can ensure all (s,a) pairs are tried such that asymptotically Q^{π} converges to the true value

ϵ -greedy Policies

- Simple idea to balance exploration and exploitation
- Let |A| be the number of actions
- Then an ϵ -greedy policy w.r.t. a state-action value Q(s,a) is $\pi(a|s)=$

ϵ -greedy Policies

- Simple idea to balance exploration and exploitation
- Let |A| be the number of actions
- Then an ϵ -greedy policy w.r.t. a state-action value Q(s,a) is $\pi(a|s) =$
 - ullet arg max $_a$ Q(s,a), w. prob $1-\epsilon+rac{\epsilon}{|A|}$
 - ullet $a'
 eq rg \max Q(s,a)$ w. prob $rac{\epsilon}{|A|}$

Monotonic ϵ -greedy Policy Improvement

Theorem

For any ϵ -greedy policy π_i , the ϵ -greedy policy w.r.t. Q^{π_i} , π_{i+1} is a monotonic improvement $V^{\pi_{i+1}} \geq V^{\pi_i}$

$$Q^{\pi_i}(s, \frac{\pi_{i+1}(s)}{s}) = \sum_{a \in A} \frac{\pi_{i+1}(a|s)}{Q^{\pi_i}(s, a)}$$

$$= (\epsilon/|A|) \left[\sum_{a \in A} Q^{\pi_i}(s, a) \right] + (1 - \epsilon) \max_{a} Q^{\pi_i}(s, a)$$

Monotonic ϵ -greedy Policy Improvement

Theorem,

For any ϵ -greedy policy π_i , the ϵ -greedy policy w.r.t. Q^{π_i} , π_{i+1} is a monotonic improvement $V^{\pi_{i+1}} > V^{\pi_i}$

$$\begin{split} Q^{\pi_i}(s,\pi_{i+1}(s)) &= \sum_{a\in A} \pi_{i+1}(a|s)Q^{\pi_i}(s,a) \\ &= (\epsilon/|A|) \left[\sum_{a\in A} Q^{\pi_i}(s,a) \right] + (1-\epsilon) \max_{a} Q^{\pi_i}(s,a) \\ &= (\epsilon/|A|) \left[\sum_{a\in A} Q^{\pi_i}(s,a) \right] + (1-\epsilon) \max_{a} Q^{\pi_i}(s,a) \frac{1-\epsilon}{1-\epsilon} \\ &= (\epsilon/|A|) \left[\sum_{a\in A} Q^{\pi_i}(s,a) \right] + (1-\epsilon) \max_{a} Q^{\pi_i}(s,a) \sum_{a\in A} \frac{\pi_i(a|s) - \frac{\epsilon}{|A|}}{1-\epsilon} \\ &\geq \frac{\epsilon}{|A|} \left[\sum_{a\in A} Q^{\pi_i}(s,a) \right] + (1-\epsilon) \sum_{a\in A} \frac{\pi_i(a|s) - \frac{\epsilon}{|A|}}{1-\epsilon} Q^{\pi_i}(s,a) \\ &= \sum_{\pi_i(a|s)} q^{\pi_i}(s,a) = V^{\pi_i}(s) \end{split}$$

• Therefore $V^{\pi_{i+1}} \geq V^{\pi}$ (from the policy improvement theorem)

ϵ -greedy

- Monotonic ϵ -greedy policy improvement theorem is a sanity check about using ϵ -greedy policies for policy iteration
- But note the assumption when we learned about policy iteration was that policy evaluation was done exactly
- In the last lecture we learned about doing policy evaluation without access to the true dynamics and reward models
- MC and TD yielded estimates of V^{π}
- Should not yet be clear that we can ensure monotonic improvement or convergence given such estimates...

Break

Today: Model-free Control

- Generalized policy improvement
- Importance of exploration
- Monte Carlo control
- Model-free control with temporal difference (SARSA, Q-learning)
- Maximization bias

Recall Monte Carlo Policy Evaluation, Now for Q

```
1: Initialize Q(s,a)=0, N(s,a)=0 \forall (s,a),\ k=1, Input \epsilon=1,\ \pi
 2: loop
        Sample k-th episode (s_{k,1}, a_{k,1}, r_{k,1}, s_{k,2}, \dots, s_{k,T}) given \pi
 3:
        Compute G_{k,t} = r_{k,t} + \gamma r_{k,t+1} + \gamma^2 r_{k,t+2} + \cdots \gamma^{T_i-1} r_{k,T_i} \ \forall t
 3:
        for t = 1, \ldots, T do
 4.
           if First visit to (s,a) in episode k then
 5:
              N(s, a) = N(s, a) + 1
 6:
              Q(s_t, a_t) = Q(s_t, a_t) + \frac{1}{N(s, a)} (G_{k,t} - Q(s_t, a_t))
 7:
           end if
 8:
        end for
 9:
       k = k + 1
10:
11: end loop
```

Monte Carlo Online Control / On Policy Improvement

```
1: Initialize Q(s,a)=0, N(s,a)=0 \forall (s,a), Set \epsilon=1, k=1
 2: \pi_k = \epsilon-greedy(Q) // Create initial \epsilon-greedy policy
 3: loop
       Sample k-th episode (s_{k,1}, a_{k,1}, r_{k,1}, s_{k,2}, \dots, s_{k,T}) given \pi_k
       G_{k,t} = r_{k,t} + \gamma r_{k,t+1} + \gamma^2 r_{k,t+2} + \cdots \gamma^{T_i-1} r_k \tau
 4:
       for t = 1, \ldots, T do
 5:
          if First visit to (s, a) in episode k then
 6:
              N(s, a) = N(s, a) + 1
 7:
              Q(s_t, a_t) = Q(s_t, a_t) + \frac{1}{N(s, a)} (G_{k,t} - Q(s_t, a_t))
 8.
 9.
          end if
       end for
10:
    k = k + 1, \epsilon = 1/k
11:
12:
       \pi_k = \epsilon-greedy(Q) // Policy improvement
13: end loop
```

Poll. Check Your Understanding: MC for On Policy Control

- Mars rover with new actions:
 - $r(-, a_1) = [100000+10], r(-, a_2) = [00000+5], \gamma = 1.$
- Assume current greedy $\pi(s) = a_1 \ \forall s, \ \epsilon = .5. \ Q(s,a) = 0$ for all (s,a)
- Sample trajectory from ϵ -greedy policy
- Trajectory = $(s_3, a_1, 0, s_2, a_2, 0, s_3, a_1, 0, s_2, a_2, 0, s_1, a_1, 1, terminal)$
- First visit MC estimate of Q of each (s, a) pair?
- $Q^{\epsilon-\pi}(-,a_1)=[1\ 0\ 1\ 0\ 0\ 0]$

After this trajectory (Select all)

- $Q^{\epsilon-\pi}(-,a_2) = [0\ 0\ 0\ 0\ 0\ 0]$
- The new **greedy** policy would be: $\pi = [1 \text{ tie } 1 \text{ tie tie tie tie}]$
- The new **greedy** policy would be: $\pi = [1 \ 2 \ 1 \ \text{tie tie tie tie}]$
- If $\epsilon=1/3$, prob of selecting a_1 in s_1 in the new ϵ -greedy policy is 1/9.
- If $\epsilon=1/3$, prob of selecting a_1 in s_1 in the new ϵ -greedy policy is 2/3.
- If $\epsilon = 1/3$, prob of selecting a_1 in s_1 in the new ϵ -greedy policy is 5/6.
- Not sure

Check Your Understanding: MC for On Policy Control

- Mars rover with new actions:
 - $r(-, a_1) = [100000+10], r(-, a_2) = [000000+5], \gamma = 1.$
- Assume current greedy $\pi(s) = a_1 \ \forall s, \ \epsilon = .5$
- Sample trajectory from ϵ -greedy policy
- Trajectory = $(s_3, a_1, 0, s_2, a_2, 0, s_3, a_1, 0, s_2, a_2, 0, s_1, a_1, 1, terminal)$
- First visit MC estimate of Q of each (s, a) pair?
- $Q^{\epsilon-\pi}(-,a_1)=[1\ 0\ 1\ 0\ 0\ 0\ 0],\ Q^{\epsilon-\pi}(-,a_2)=[0\ 1\ 0\ 0\ 0\ 0\ 0]$
- What is $\pi(s) = \arg \max_a Q^{\epsilon \pi}(s, a) \ \forall s$? $\pi = [1 \ 2 \ 1 \ \text{tie tie tie tie}]$
- Under the new ϵ -greedy policy, if k=3, $\epsilon=1/k$ With probability 2/3 choose $\pi(s)$ else choose randomly. As an example, $\pi(s_1)=a_1$ with prob (2/3) else randomly choose an action. So the prob of picking a_1 will be 2/3+(1/3)*(1/2)=5/6

MC control with ϵ -greedy policies

- Is the prior algorithm a reasonable one?
- Will it eventually converge to the optimal Q^* function?
- Now see a set of conditions that is sufficient to ensure this desirable outcome

Greedy in the Limit of Infinite Exploration (GLIE)

Definition of GLIE

All state-action pairs are visited an infinite number of times

$$\lim_{i\to\infty} N_i(s,a)\to\infty$$

 Behavior policy (policy used to act in the world) converges to greedy policy

 $\lim_{i o \infty} \pi(a|s) o \operatorname{arg\,max}_a Q(s,a)$ with probability 1

Greedy in the Limit of Infinite Exploration (GLIE)

Definition of GLIE

All state-action pairs are visited an infinite number of times

$$\lim_{i\to\infty}N_i(s,a)\to\infty$$

• Behavior policy (policy used to act in the world) converges to greedy policy $\lim_{i\to\infty}\pi(a|s)\to\arg\max_a Q(s,a)$ with probability 1

• A simple GLIE strategy is ϵ -greedy where ϵ is reduced to 0 with the following rate: $\epsilon_i = 1/i$

GLIE Monte-Carlo Control

Theorem

GLIE Monte-Carlo control converges to the optimal state-action value function $Q(s,a) \rightarrow Q^*(s,a)$

Break

Today: Model-free Control

- Generalized policy improvement
- Importance of exploration
- Monte Carlo control
- Model-free control with temporal difference (SARSA, Q-learning)
- Maximization bias

Model-free Policy Iteration with TD Methods

- Use temporal difference methods for policy evaluation step
- ullet Initialize policy π
- Repeat:
 - Policy evaluation: compute Q^{π} using temporal difference updating with ϵ -greedy policy
 - Policy improvement: Same as Monte carlo policy improvement, set π to ϵ -greedy (Q^{π})
- Important issue: is it necessary for policy evaluation to converge to the true value of Q^{π} before updating the policy?
- Answer: Perhaps surprizingly, no. A single update of TD (policy evaluation updating of Q) can be sufficient!

Model-free Policy Iteration with TD Methods

- Use temporal difference methods for policy evaluation step
- Initialize policy π
- Repeat:
 - Policy evaluation: compute Q^{π} using temporal difference updating with ϵ -greedy policy
 - Policy improvement: Same as Monte carlo policy improvement, set π to ϵ -greedy (Q^{π})
- First consider SARSA, which is an on-policy algorithm.
- On policy: SARSA is trying to compute an estimate *Q* of the policy being followed.

General Form of SARSA Algorithm

- 1: Set initial ϵ -greedy policy π randomly, t=0, initial state $s_t=s_0$
- 2: Take $a_t \sim \pi(s_t)$
- 3: Observe (r_t, s_{t+1})
- **4: loop**
- 5: Take action $a_{t+1} \sim \pi(s_{t+1})$ // Sample action from policy
- 6: Observe (r_{t+1}, s_{t+2})
- 7: Update Q given $(s_t, a_t, r_t, s_{t+1}, a_{t+1})$:
- 8: Perform policy improvement:
- 9: t = t + 1
- 10: end loop

General Form of SARSA Algorithm

```
1: Set initial \epsilon-greedy policy \pi, t=0, initial state s_t=s_0

2: Take a_t \sim \pi(s_t) // Sample action from policy

3: Observe (r_t, s_{t+1})

4: loop

5: Take action a_{t+1} \sim \pi(s_{t+1})

6: Observe (r_{t+1}, s_{t+2})

7: Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t))

8: \pi(s_t) = \arg\max_a Q(s_t, a) w.prob 1 - \epsilon, else random

9: t = t + 1

10: end loop
```

Worked Example: SARSA for Mars Rover

- 1: Set initial ϵ -greedy policy π , t=0, initial state $s_t=s_0$
- 2: Take $a_t \sim \pi(s_t)$ // Sample action from policy
- 3: Observe (r_t, s_{t+1})
- 4: **loop**
- 5: Take action $a_{t+1} \sim \pi(s_{t+1})$
- 6: Observe (r_{t+1}, s_{t+2})
- 7: $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma Q(s_{t+1}, a_{t+1}) Q(s_t, a_t))$
- 8: $\pi(s_t) = \arg\max_a Q(s_t, a)$ w.prob 1ϵ , else random
- 9: t = t + 1
- 10: end loop
 - Initialize $\epsilon = 1/k$, k = 1, and $\alpha = 0.5$, $Q(-, a_1) = [1 \ 0 \ 0 \ 0 \ 0 \ +10]$, $Q(-, a_2) = [1 \ 0 \ 0 \ 0 \ 0 \ +5]$, $\gamma = 1$
 - Assume starting state is s_6 and sample a_1

Worked Example: SARSA for Mars Rover

- 1: Set initial ϵ -greedy policy π , t=0, initial state $s_t=s_0$
- 2: Take $a_t \sim \pi(s_t)$ // Sample action from policy
- 3: Observe (r_t, s_{t+1})
- 4: **loop**
- 5: Take action $a_{t+1} \sim \pi(s_{t+1})$
- 6: Observe (r_{t+1}, s_{t+2})
- 7: $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma Q(s_{t+1}, a_{t+1}) Q(s_t, a_t))$
- 8: $\pi(s_t) = \arg \max_a Q(s_t, a)$ w.prob 1ϵ , else random
- 9: t = t + 1
- 10: end loop
 - Initialize $\epsilon=1/k$, k=1, and $\alpha=0.5$, $Q(-,a_1)=[\ 1\ 0\ 0\ 0\ 0\ +10]$, $Q(-,a_2)=[\ 1\ 0\ 0\ 0\ 0\ +5]$, $\gamma=1$
 - Tuple: $(s_6, a_1, 0, s_7, a_2, 5, s_7)$.
 - $Q(s_6, a_1) = .5 * 0 + .5 * (0 + \gamma Q(s_7, a_2)) = 2.5$

SARSA Initialization

- Mars rover with new actions:
 - $r(-, a_1) = [1 \ 0 \ 0 \ 0 \ 0 \ +10], \ r(-, a_2) = [0 \ 0 \ 0 \ 0 \ 0 \ +5], \ \gamma = 1.$
- Initialize $\epsilon = 1/k$, k = 1, and $\alpha = 0.5$, $Q(-, a_1) = r(-, a_1)$, $Q(-, a_2) = r(-, a_2)$
- SARSA: $(s_6, a_1, 0, s_7, a_2, 5, s_7)$.
- Does how Q is initialized matter (initially? asymptotically?)?
 Asymptotically no, under mild condiditions, but at the beginning, yes

Convergence Properties of SARSA

Theorem

SARSA for finite-state and finite-action MDPs converges to the optimal action-value, $Q(s, a) \rightarrow Q^*(s, a)$, under the following conditions:

- **1** The policy sequence $\pi_t(a|s)$ satisfies the condition of GLIE
- ② The step-sizes α_t satisfy the Robbins-Munro sequence such that

$$\sum_{t=1}^{\infty} \alpha_t = \infty$$

$$\sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

 \bullet For ex. $\alpha_t=\frac{1}{T}$ satisfies the above condition.

Q-Learning: Learning the Optimal State-Action Value

- SARSA is an on-policy learning algorithm
- SARSA estimates the value of the current **behavior** policy (policy using to take actions in the world)
- And then updates the policy trying to estimate
- Alternatively, can we directly estimate the value of π^* while acting with another behavior policy π_b ?
- Yes! Q-learning, an **off-policy** RL algorithm

On and Off-Policy Learning

- On-policy learning
 - Direct experience
 - Learn to estimate and evaluate a policy from experience obtained from following that policy
- Off-policy learning
 - Learn to estimate and evaluate a policy using experience gathered from following a different policy

Q-Learning: Learning the Optimal State-Action Value

- SARSA is an on-policy learning algorithm
- SARSA estimates the value of the current behavior policy (policy using to take actions in the world)
- And then updates the policy trying to estimate
- Alternatively, can we directly estimate the value of π^* while acting with another behavior policy π_b ?
- Yes! Q-learning, an off-policy RL algorithm
- Key idea: Maintain state-action Q estimates and use to bootstrap—use the value of the best future action
- Recall SARSA

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha((r_t + \gamma Q(s_{t+1}, a_{t+1})) - Q(s_t, a_t))$$

Q-learning:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \underbrace{\alpha((r_t + \gamma \max_{a'} Q(s_{t+1}, a')) - Q(s_t, a_t))}_{a'}$$

Q-Learning with ϵ -greedy Exploration

- 1: Initialize $Q(s, a), \forall s \in S, a \in A \ t = 0$, initial state $s_t = s_0$
- 2: Set π_b to be ϵ -greedy w.r.t. Q
- **3: loop**
- 4: Take $a_t \sim \pi_b(s_t)$ // Sample action from policy
- 5: Observe (r_t, s_{t+1})
- 6: $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma \max_a Q(s_{t+1}, a) Q(s_t, a_t))$
- 7: $\pi(s_t) = \arg\max_a Q(s_t, a)$ w.prob 1ϵ , else random
- 8: t = t + 1
- 9: end loop

Worked Example: ϵ -greedy Q-Learning Mars

- 1: Initialize $Q(s, a), \forall s \in S, a \in A \ t = 0$, initial state $s_t = s_0$
- 2: Set π_b to be ϵ -greedy w.r.t. Q
- 3: **loop**
- 4: Take $a_t \sim \pi_b(s_t)$ // Sample action from policy
- 5: Observe (r_t, s_{t+1})
- 6: $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma \max_a Q(s_{t+1}, a) Q(s_t, a_t))$
- 7: $\pi(s_t) = \arg\max_a Q(s_t, a)$ w.prob 1ϵ , else random
- 8: t = t + 1
- 9: end loop
 - Initialize $\epsilon = 1/k$, k = 1, and $\alpha = 0.5$, $Q(-, a_1) = [1 \ 0 \ 0 \ 0 \ 0 \ +10]$, $Q(-, a_2) = [1 \ 0 \ 0 \ 0 \ 0 \ +5]$, $\gamma = 1$
 - Like in SARSA example, start in s_6 and take a_1 .

Worked Example: ϵ -greedy Q-Learning Mars

- 1: Initialize $Q(s, a), \forall s \in S, a \in A \ t = 0$, initial state $s_t = s_0$
- 2: Set π_b to be ϵ -greedy w.r.t. Q
- 3: **loop**
- 4: Take $a_t \sim \pi_b(s_t)$ // Sample action from policy
- 5: Observe (r_t, s_{t+1})
- 6: $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma \max_a Q(s_{t+1}, a) Q(s_t, a_t))$
- 7: $\pi(s_t) = \arg \max_a Q(s_t, a)$ w.prob 1ϵ , else random
- 8: t = t + 1
- 9: end loop
 - Initialize $\epsilon = 1/k$, k = 1, and $\alpha = 0.5$, $Q(-, a_1) = [1 \ 0 \ 0 \ 0 \ 0 \ +10]$, $Q(-, a_2) = [1 \ 0 \ 0 \ 0 \ 0 \ +5]$, $\gamma = 1$
 - Tuple: $(s_6, a_1, 0, s_7)$.
 - $Q(s_6, a_1) = 0 + .5 * (0 + \gamma \max_{a'} Q(s_7, a') 0) = .5*10 = 5$
 - Recall that in the SARSA update we saw $Q(s_6, a_1) = 2.5$ because we used the actual action taken at s_7 instead of the max
 - Does how Q is initialized matter (initially? asymptotically?)? Asymptotically no, under mild condiditions, but at the beginning, yes

Check Your Understanding: SARSA and Q-Learning

- SARSA: $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma Q(s_{t+1}, a_{t+1}) Q(s_t, a_t))$
- Q-Learning: $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma \max_{a'} Q(s_{t+1}, a') Q(s_t, a_t))$

Select all that are true

- Both SARSA and Q-learning may update their policy after every step
- ② If $\epsilon=0$ for all time steps, and Q is initialized randomly, a SARSA Q state update will be the same as a Q-learning Q state update
- Not sure

Check Your Understanding: SARSA and Q-Learning

- SARSA: $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma Q(s_{t+1}, a_{t+1}) Q(s_t, a_t))$
- Q-Learning: $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma \max_{a'} Q(s_{t+1}, a') Q(s_t, a_t))$

Select all that are true

- O Both SARSA and Q-learning may update their policy after every step
- ② If $\epsilon=0$ for all time steps, and Q is initialized randomly, a SARSA Q state update will be the same as a Q-learning Q state update
- Not sure

Both are true.

Q-Learning with ϵ -greedy Exploration

- What conditions are sufficient to ensure that Q-learning with ϵ -greedy exploration converges to optimal Q^* ?

 Visit all (s, a) pairs infinitely often, and the step-sizes α_t satisfy the Robbins-Munro sequence. Note: the algorithm does not have to be greedy in the limit of infinite exploration (GLIE) to satisfy this (could keep ϵ large).
- What conditions are sufficient to ensure that Q-learning with ϵ -greedy exploration converges to optimal π^* ?

 The algorithm is GLIE, along with the above requirement to ensure the Q value estimates converge to the optimal Q.

Break

Maximization Bias¹

- Consider single-state MDP (|S|=1) with 2 actions, and both actions have 0-mean random rewards, ($\mathbb{E}(r|a=a_1)=\mathbb{E}(r|a=a_2)=0$).
- Then $Q(s, a_1) = Q(s, a_2) = 0 = V(s)$
- Assume there are prior samples of taking action a_1 and a_2
- Let $\hat{Q}(s, a_1), \hat{Q}(s, a_2)$ be the finite sample estimate of Q
- Use an unbiased estimator for Q: e.g. $\hat{Q}(s, a_1) = \frac{1}{n(s, a_1)} \sum_{i=1}^{n(s, a_1)} r_i(s, a_1)$
- Let $\hat{\pi} = \arg \max_a \hat{Q}(s, a)$ be the greedy policy w.r.t. the estimated \hat{Q}

¹Example from Mannor, Simester, Sun and Tsitsiklis. Bias and Variance

Approximation in Value Function Estimates. Management Science 2007

Maximization Bias² Proof

- Consider single-state MDP (|S|=1) with 2 actions, and both actions have 0-mean random rewards, ($\mathbb{E}(r|a=a_1)=\mathbb{E}(r|a=a_2)=0$).
- Then $Q(s, a_1) = Q(s, a_2) = 0 = V(s)$
- Assume there are prior samples of taking action a_1 and a_2
- Let $\hat{Q}(s, a_1), \hat{Q}(s, a_2)$ be the finite sample estimate of Q
- Use an unbiased estimator for Q: e.g. $\hat{Q}(s, a_1) = \frac{1}{n(s, a_1)} \sum_{i=1}^{n(s, a_1)} r_i(s, a_1)$
- Let $\hat{\pi} = \arg \max_{a} \hat{Q}(s, a)$ be the greedy policy w.r.t. the estimated \hat{Q}
- Even though each estimate of the state-action values is unbiased, the estimate of $\hat{\pi}$'s value $\hat{V}^{\hat{\pi}}$ can be biased:

$$\hat{V}^{\hat{\pi}}(s) = \mathbb{E}[\max \hat{Q}(s, a_1), \hat{Q}(s, a_2)] \\ \geq \max[\mathbb{E}[\hat{Q}(s, a_1)], [\hat{Q}(s, a_2)]] \\ = \max[0, 0] = V^{\pi},$$

where the inequality comes from Jensen's inequality.

²Example from Mannor, Simester, Sun and Tsitsiklis. Bias and Variance Approximation in Value Function Estimates. Management Science 2007

- ullet The greedy policy w.r.t. estimated Q values can yield a maximization bias during finite-sample learning
- Avoid using max of estimates as estimate of max of true values
- Instead split samples and use to create two independent unbiased estimates of $Q_1(s_1, a_i)$ and $Q_2(s_1, a_i) \, \forall a$.
 - Use one estimate to select max action: $a^* = \arg \max_a Q_1(s_1, a)$
 - Use other estimate to estimate value of a^* : $Q_2(s, a^*)$
 - Yields unbiased estimate: $\mathbb{E}(Q_2(s, a^*)) = Q(s, a^*)$

- ullet The greedy policy w.r.t. estimated Q values can yield a maximization bias during finite-sample learning
- Avoid using max of estimates as estimate of max of true values
- Instead split samples and use to create two independent unbiased estimates of $Q_1(s_1, a_i)$ and $Q_2(s_1, a_i) \forall a$.
 - Use one estimate to select max action: $a^* = \arg\max_a Q_1(s_1, a)$
 - Use other estimate to estimate value of a^* : $Q_2(s, a^*)$
 - Yields unbiased estimate: $\mathbb{E}(Q_2(s, a^*)) = Q(s, a^*)$
- Why does this yield an unbiased estimate of the max state-action value?
 - Using independent samples to estimate the value
- If acting online, can alternate samples used to update Q_1 and Q_2 , using the other to select the action chosen
- Next slides extend to full MDP case (with more than 1 state)

```
1: Initialize Q_1(s, a) and Q_2(s, a), \forall s \in S, a \in A \ t = 0, initial state s_t = s_0
2: loop
                                           Select a_t using \epsilon-greedy \pi(s) = \arg\max_a Q_1(s_t, a) + Q_2(s_t, a)
3:
                                            Observe (r_t, s_{t+1})
4:
5:
                                            if (with 0.5 probability) then
                                                                  Q_1(s_t, a_t) \leftarrow Q_1(s_t, a_t) + \alpha(r_t + \gamma Q_2(s_{t+1}, \arg\max_a Q_1(s_{t+1}, a)) - q_1(s_t, a_t) + \alpha(r_t + \gamma Q_2(s_{t+1}, a)) - q_1(s_t, a_t) + \alpha(r_t + \gamma Q_2(s_{t+1}, a)) - q_1(s_t, a_t) + \alpha(r_t + \gamma Q_2(s_{t+1}, a)) - q_1(s_t, a_t) + \alpha(r_t + \gamma Q_2(s_{t+1}, a)) - q_1(s_t, a_t) + \alpha(r_t + \gamma Q_2(s_{t+1}, a)) - q_1(s_t, a_t) + \alpha(r_t + \gamma Q_2(s_{t+1}, a)) - q_1(s_t, a_t) + \alpha(r_t + \gamma Q_2(s_{t+1}, a)) - q_1(s_t, a_t) + \alpha(r_t + \gamma Q_2(s_t, a)) - q_1(s_t, a) -
6:
                                                                   Q_1(s_t, a_t)
```

- else 7:
- $Q_2(s_t, a_t) \leftarrow Q_2(s_t, a_t) + \alpha(r_t + \gamma Q_1(s_{t+1}, \arg\max_a Q_2(s_{t+1}, a)) q_1(s_{t+1}, a_t)$ 8. $Q_2(s_t, a_t)$
- end if 9:
- t = t + 110:
- 11: end loop

Compared to Q-learning, how does this change the: memory requirements,

computation requirements per step, amount of data required?

```
1: Initialize Q_1(s,a) and Q_2(s,a), \forall s \in S, a \in A \ t=0, initial state s_t=s_0
```

- 2: **loop**
- 3: Select a_t using ϵ -greedy $\pi(s) = \arg\max_a Q_1(s_t, a) + Q_2(s_t, a)$
- 4: Observe (r_t, s_{t+1})
- 5: **if** (with 0.5 probability) **then**
- 6: $Q_1(s_t, a_t) \leftarrow Q_1(s_t, a_t) + \alpha(r_t + \gamma Q_2(s_{t+1}, \arg \max_a Q_1(s_{t+1}, a)) Q_1(s_t, a_t))$
- 7: **else**
- 8: $Q_2(s_t, a_t) \leftarrow Q_2(s_t, a_t) + \alpha(r_t + \gamma Q_1(s_{t+1}, \arg\max_a Q_2(s_{t+1}, a)) Q_2(s_t, a_t))$
- 9: **end if**
- 10: t = t + 1
- 11: end loop

Compared to Q-learning, how does this change the: memory requirements, computation requirements per step, amount of data required?

Double Q-Learning (Figure 6.7 in Sutton and Barto 2018)

Due to the maximization bias, Q-learning spends much more time selecting suboptimal actions than double Q-learning.

What You Should Know

- Be able to implement MC on policy control and SARSA and Q-learning
- Compare them according to properties of how quickly they update, (informally) bias and variance, computational cost
- Define conditions for these algorithms to converge to the optimal Q and optimal π and give at least one way to guarantee such conditions are met.

Class Structure

- Last time: Policy evaluation with no knowledge of how the world works (MDP model not given)
- This time: Control (making decisions) without a model of how the world works
- Next time: Generalization Value function approximation

Today: Learning to Control Involves

- Optimization: Goal is to identify a policy with high expected rewards (similar to Lecture 2 on computing an optimal policy given decision process models)
- Delayed consequences: May take many time steps to evaluate whether an earlier decision was good or not
- Exploration: Necessary to try different actions to learn what actions can lead to high rewards

Recall: Reinforcement Learning Involves

- Optimization
- Delayed consequences
- Exploration
- Generalization

Evaluation to Control

- Last time: how good is a specific policy?
 - Given no access to the decision process model parameters
 - Instead have to estimate from data / experience
- Today: how can we learn a good policy?

Evaluation to Control

- Last time: how good is a specific policy?
 - Given no access to the decision process model parameters
 - Instead have to estimate from data / experience
- Today: how can we learn a good policy?