

Description

Features

•

VDSS	RDS(ON) @10V (typ)	lo		
200V	0.136Ω	18A		

- Fast switching
- 100% avalanche tested
- Improved dv/dt capability

Application

- DC-DC & DC-AC Converters for telecom, industrial and consumer environment
- Uninterruptible Power Supply (UPS)
- Switch Mode Low Power Supplies
- Industrial Actuators

Absolute Maximum Ratings $T_c=25^{\circ}C$ unless otherwise specified

Symbol	Parameter		Max.			Units
			TO-220	TO-251	TO-252	Units
V _{DSS}	Drain-Source Voltage		200			V
V _{GSS}	Gate-Source Voltage		± 30			V
I _D	Continuous Drain Current	T _C = 25°C	18	18*	18*	Α
		T _C = 100°C	11.45	11.45*	11.45*	Α
I _{DM}	Pulsed Drain Current note1		72	72*	72*	Α
E _{AS}	Single Pulsed Avalanche Energy note2		320			mJ
dv/dt	Peak Diode Recovery Energy note3		8			V/ns
P _D	Power Dissipation	T _C = 25°C	110	65.8	65.8	W
	Linear Derating Factor	T _C > 25℃	0.89	0.53	0.53	W/℃
R _{0JC}	Thermal Resistance, Junction to Case		1.12	1.9	1.9	℃W
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150			$^{\circ}$

^{*}Drain current limited by maximum junction temperature

Electrical Characteristics T_c =25 $^{\circ}$ C unless otherwise specified

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
Off Charac	teristic					
V _{(BR)DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_D = 250Ma$	200	-	-	V
$\triangle V_{(BR)DSS}$	Breakdown Voltage Temperature	Reference to 25℃,	-	0.3	-	V/°C
$/\triangle T_J$	Coefficient	I _D = 250μA				
J. Zoro Coto Voltago	Zero Gate Voltage Drain Current	$V_{DS} = 200V, V_{GS} = 0V$	1	-	1	μΑ
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 160V, T_{C} = 125^{\circ}C$	1	-	10	μΑ
I _{GSS}	Gate to Body Leakage Current	$V_{DS} = 0V, V_{GS} = \pm 20V$	•	-	±100	nA
On Charac	teristics					
$V_{GS(th)}$	Gate Threshold Voltage note4	$V_{DS} = V_{GS}, I_D = 250 \mu A$	1	-	3	V
$R_{\text{DS(on)}}$	Static Drain-Source On-Resistance	$V_{GS} = 10V, I_D = 9A$	-	0.136	0.16	Ω
g FS	Forward Transconductance	V _{DS} =30V, I _D = 9A	-	8	-	S
Dynamic C	haracteristics					
C _{iss}	Input Capacitance	V 25V V 0V	-	836	-	pF
Coss	Output Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$ f = 1.0MHz	-	81.2	-	pF
C _{rss}	Reverse Transfer Capacitance		-	3.81	-	pF
Qg	Total Gate Charge	V _{DD} = 160V, I _D = 18A,	-	17.7	-	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = 100V, I_D = 16A,$ $V_{GS} = 10V$	-	3.9	-	nC
Q _{gd}	Gate-Drain("Miller") Charge	VGS = 10 V	-	5.2	-	nC
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time		-	12.3	-	ns
t _r	Turn-On Rise Time	$V_{DD} = 100V, I_D = 18A,$	-	21.1	-	ns
t _{d(off)}	Turn-Off Delay Time	$R_G = 5\Omega$, $V_{GS} = 10V$	-	22.5	-	ns
t _f	Turn-Off Fall Time		-	7.7	-	ns
Drain-Sour	ce Diode Characteristics and Maximum I	Ratings	1	1		
Is	Maximum Continuous Drain to Source Diode Forward Current		-	-	18	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	72	Α
V _{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0V, I _S = 9A	-	-	1.5	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0V, I_F = 18A,$	-	235	-	ns
Q _{rr}	Reverse Recovery Charge	di/dt =100A/µs	-	1045	-	nC

Notes:

^{1.} Repetitive Rating: Pulse width limited by maximum junction temperature

^{2.} L = 10mH, I_{AS} = 8A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25 $^{\circ}$ C

^{3.} $I_{SD} \le 18A$, di/dt $\le 200A/\mu s$, $V_{DD} \le B_{VDSS}$, Starting $T_J = 25$ °C

^{4.} Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.

Typical Performance Characteristics

Figure 1. Output Characteristics

Figure 3. Drain-to-Source On Resistance vs.

Drain Current and Gate Voltage

Figure 5. Capacitance Characteristics

Figure 2. Transfer Characteristics

Figure 4. Body Diode Forward Voltage vs.

Source Current and Temperature

Figure 6. Gate Charge Characteristics

Figure 7. Normalized Breakdown Voltage vs.

Junction Temperature

Figure 9. Maximum Safe Operating Area

Figure 8. Normalized On Resistance vs.

Junction Temperature

Figure 10. Maximum Continuous Drain Current vs.

Case Temperature

Figure 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Figure 12. Gate Charge Test Circuit & Waveform

Figure 13. Resistive Switching Test Circuit & Waveforms

Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms

Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms (For N-channel)