Stepwise Regression for IQ Data

About the Data

Some researchers (Willerman, et al, 1991) collected the IQ data on a sample of n = 38 college students to research if a person's brain size and body size predictive of his or her intelligence. The data comprised of the following:

- 1. Response (y): Performance IQ scores (PIQ) from the revised Wechsler Adult Intelligence Scale. This variable served as the investigator's measure of the individual's intelligence.
- 2. Potential predictor (x1): Brain size based on the count obtained from MRI scans (given as count/10,000).
- 3. Potential predictor (x2): Height in inches.
- 4. Potential predictor (x3): Weight in pounds.

Descriptive Statistics

	Y	X1	X2	Х3
count	38	38	38	38
mean	111.34	90.67	68.42	151.05
count	22.59	7.25	3.99	23.47
min	72	79	62	106
25%	89.25	85.48	66	135.25
50%	115	90.54	68	146.5
75%	128	94.95	70.37	172
max	150	107.95	77	192

Correlation Analysis

1. Pairs Plot

Runa Veigas runaveigas@gmail.com

2. Correlation Plot

Interpretation: There is a positive correlation between y and x_1 there is no strong relationship between the other variables and considering $\alpha_E = 0.15$ and $\alpha_R = 0.15$.

Stepwise Linear Regression

Regressing y on x_1 , regressing y on x_2 , regressing y on x_3 , we obtain:

	coef	std err	t	P> t	[0.025	0.975]
Intercept x1	4.6519 1.1766	43.712 0.481	0.106 2.448	0.916 0.019	-84.000 0.202	93.304 2.151
=========	========		========	========	========	========
	coef	std err	t	P> t	[0.025	0.975]
T	447.4067				46.000	277.044
Intercept	147.4067	64.350	2.291	0.028	16.899	277.914
x2	-0.5271	0.939	-0.561	0.578	-2.431	1.377
========	========	========	========	========	========	========
=======					·	
	coef	std err	t	P> t	[0.025	0.975]
Intercept	110.9769	24.514	4.527	0.000	61.259	160.694
x3	0.0024	0.160	0.015	0.988	-0.323	0.328
========	========					========

 x_1 predictors is a candidate to be entered into the stepwise model because each t-test P-value is less than α_E = 0.15.

As a result of the first step, we enter x_1 into our stepwise model. Now we fit each of the two-predictor models that include x_1 as a predictor that is, we regress y on x_1 and x_2 , regress y on x_1 and x_3 obtaining:

========						========
	coef	std err	t	P> t	[0.025	0.975]
Intercept x1 x2	111.2757 2.0606 -2.7299	55.867 0.547 0.993	1.992 3.770 -2.749	0.054 0.001 0.009	-2.141 0.951 -4.746	224.692 3.170 -0.714
========	========		.=======			.========
	coef	std err	t	P> t	[0.025	0.975]
Intercept x1	4.7520 1.5925	43.025 0.551	0.110 2.889	0.913 0.007	-82.593 0.473	92.097 2.712
x3	-0.2503	0.170	-1.469	0.151	-0.596	0.096

The predictor x_3 is not eligible for entry into the stepwise model because its t-test P-value (0.151) is greater than $\alpha_E = 0.15$. The predictors x_1 and x_2 are candidates because each t-test P-value is less than $\alpha_E = 0.15$. As a result of the second step, we enter x_2 into our stepwise model.

Runa Veigas runaveigas@gmail.com

Now, since x_1 was the first predictor in the model, we must step back and see if entering x_2 into the stepwise model affected the significance of the x_4 predictor. It did not the t-test P-value for testing β_1 = 0 is less than 0.001, and thus smaller than α_R = 0.15. Therefore, we proceed to the third step with both x_1 and x_2 as predictors in our stepwise model.

Now, we fit each of the three-predictor models that include x_1 and x_2 as predictors that is, we regress y on x_1 , x_2 , and x_3 ,

========	========		========			========
	coef	std err	t	P> t	[0.025	0.975]
Intercept	111.3536	62.971	1.768	0.086	-16.619	239.326
x1	2.0604	0.563	3,657	0.001	0.915	3,205
x2	-2.7319	1.229	-2.222	0.033	-5.230	-0.233
x 3	0.0006	0.197	0.003	0.998	-0.400	0.401
========		.=======				

The predictor x_3 is not eligible for entry into the stepwise model because its t-test P-value (0.998) is greater than $\alpha_E = 0.15$. Our final regression model, based on the stepwise procedure contains only the predictors x_1 and x_2 :

OLS Regression Results

	205
	205
Dep. Variable: y R-squared: 0.	293
Model: OLS Adj. R-squared: 0.	255
Method: Least Squares F-statistic: 7.	321
Date: Tue, 15 Jun 2021 Prob (F-statistic): 0.00	221
Time: 17:40:11 Log-Likelihood: -165	. 25
	36.5
	11.4
Df Model: 2	
Covariance Type: nonrobust	
=======================================	-===
coef std err t P> t [0.025 0.9	75]
Intercept 111.2757 55.867 1.992 0.054 -2.141 224.	692
x1 2.0606 0.547 3.770 0.001 0.951 3.	170
x2 -2.7299 0.993 -2.749 0.009 -4.746 -0.	714
Omnibus: 1.377 Durbin-Watson: 1.	827
Prob(Omnibus): 0.502 Jarque-Bera (JB): 1.	087
	581
Kurtosis: 2.860 Cond. No. 2.01e	+03

Conclusion

In order to investigate if a person's brain size and body size predictive of his or her intelligence a Stepwise Regression was carried. The scatter plot showed that there was a positive correlation between size of the brain and IQ score. This is was verified with Pearson's correlation coefficient as 0.38. Further Stepwise Regression was carried to investigate the factors that help best predict the IQ score. The final model obtained was,

 $\hat{y_i} = \beta_o + Brain_i\beta_1 + Height_i\beta_2$ where i = 1,...,38 β_o is 111.28, coefficient of Brain is 2.06 and coefficient of Height is -2.73.

This means that when height of the brain is held constant for each 2.06 increase in the brain size the IQ score increases by 111.28 and for every 2.73 inch decrease in height of the brain the IQ score increases by 111.28 on average. The adjusted R² value of 0.255 means there 25.5% variability in IQ score can be predicted by this model having Brain Size and Height.

**********Thank You********