DSI Project 2

Linear Regression on Ames Housing Dataset to Predict Sale Price

Krisgun & Scent

Team Member

Krisgun Chirasanta (Kris) Senior Data Scientist

Kanitin Sukdit (Scent) Junior Data Scientist

Agenda

Ideal Workflow of Data Science Project

Emotional Rollercoaster of Kaggle Competition

Agenda

Ideal Workflow of Data Science Project

Project Overview - Ames, Iowa

Ames, City

- Country: United States

- State: Iowa

- County: Story

- Area: $\sim 143.75 \text{ km}^2$

Housing style

- House (1-3 Floors)
- Townhouse
- Condo

Project Overview - Dataset

Datasets

Shape: 2197 rows, 82 columns

Numerical: 39

Categorical: 43

Column Groups

- Lot
- Quality
- Masonry
- Garage
- Basement
- Square feet

- Year
- Bathroom
- Rooms
- Porch
- Fireplace
- Wood Deck

Agenda

Ideal Workflow of Data Science Project

Data Cleaning - Missing Values - "Drop"

- **Drop** (over 80% missing)
 - Pool Quality
 - Miscellaneous Features
 - Alley
 - > Fence

Data Cleaning - Missing Values - "None"

Garage group

	garage_type	garage_year_built	garage_fin	garage_cars	garage_area	garage_quality	garage_condition
39	NaN	NaN	NaN	0.0	0.0	NaN	NaN
43	NaN	NaN	NaN	0.0	0.0	NaN	NaN
53	NaN	NaN	NaN	0.0	0.0	NaN	NaN
61	NaN	NaN	NaN	0.0	0.0	NaN	NaN
63	NaN	NaN	NaN	0.0	0.0	NaN	NaN

Basement group

	basement_quality	basement_condition	basement_exposure	basement_fin_type_1	basement_fin_sf_1	basement_fin_type_2	basement_fin_sf_2
99	NaN	NaN	NaN	NaN	0.0	NaN	0.0
141	NaN	NaN	NaN	NaN	0.0	NaN	0.0
162	NaN	NaN	NaN	NaN	0.0	NaN	0.0
165	NaN	NaN	NaN	NaN	0.0	NaN	0.0
168	NaN	NaN	NaN	NaN	0.0	NaN	0.0

Data Cleaning - Missing Values - "Stats/0"

- **Impute**: Mode
- Reasoning: Mode of similar groupby property (Lot Area & Lot Shape)

- **Impute**: 0
- Reasoning: small percentage

Agenda

Ideal Workflow of Data Science Project

Data Cleaning - Pre-processing

Data Cleaning - Redundant Columns

Data Cleaning - Redundant Columns

Square Footage Group

- Total square footage is more correlated to sale price compared to original two
- Keep redundant column as boolean feature column

Data Cleaning - Grouping of category

Data Cleaning - Cleaning of category

Data Cleaning - Log Transform

Data Cleaning - Outliers

Data Cleaning - Cleaned Dataset

Datasets

Shape: 2092 rows, 60 columns

Numerical: 26

Categorical: 34

Columns Group Up

- Overall
- Total
- Lot
- Rooms

- Date
- Other
- Feature

Agenda

Ideal Workflow of Data Science Project

Terminology

R-squared (R²)

- goodness-of-fit measure for linear regression model

```
(Higher = Better)
```

Root Means Squared Error (RMSE)

- Standard deviation of the residuals (prediction errors)

```
(Lower = Better)
```

Model 1 (Benchmark) - Top 5 Numerical Features

Model	1	
Train R^2	0.83	
Test R^2	0.83	
Train RMSE	31,982	
Test RMSE	31,419	

Iteration Approach

Model 2 - All 25 Numerical Features

Model	1	2	
Train R^2	0.83	0.91	
Test R^2	0.83	0.91	
Train RMSE	31,982	20,912	
Test RMSE	31,419	22,084	

All 25 Numerical Features + 15 Categories

Model	1	2	3
Train R^2	0.83	0.91	0.93
Test R^2	0.83 0.91		0.91
Train RMSE	31,982	20,912	18,690
Test RMSE	31,419	22,084	21,251

Agenda

Ideal Workflow of Data Science Project

Production - All 25 Numerical + 6 Quality Categories

Numerical Features

Overall Group

- Overall Quality
- Overall Condition

Total Group

- Total Square Footage
- Total Rooms Above Ground
- Total Bath

Lot Group

- Lot Frontage
- Lot Area (Natural Log)
- Lot Slope (bool)
- Lot Contour (bool)
- Lot Shape (bool)

Rooms

- Bedroom
- Kitchen

Date Group

- Year Built
- Months Sold
- Year Sold

Other

- Garage Cars
- Masonry Area
- Street (bool)
- Central Air (bool)
- Functional (bool)

Feature Group

- Fireplace (bool)
- Open Porch (bool)
- Wood Deck (bool)
- Basement (bool)
- o 2nd Floor (bool)

Categorical Features

Quality Group

- External Quality
- Basement Quality
- Heating Quality
- Kitchen Quality
- Fireplace Quality
- Garage Quality

Production - All 25 Numerical + 6 Quality Categories

Model	1	2	3	Final
Train R^2	0.83	0.91	0.93	0.92
Test R^2	0.83	0.91	0.91	0.92
Train RMSE	31,982	20,912	18,690	19,704
Test RMSE	31,419	22,084	21,251	21,084

Agenda

Ideal Workflow of Data Science Project

Further Investigation

- Categorise neighbourhood column to high, medium, and low sale price for use as a categorical feature in our model
- Using Cook's Distance to identify multivariate outlier in order to optimize our model's performance (library: yellowbrick)

Emotional Rollercoaster of Kaggle Competition

Key Takeaways

1. Kaggle Competition will drive you crazy

- 2. README.md should be renamed to 'README_or_else_you'll_regret_it.MD'
- 3. Simplicity is key

THANK YOU FOR LISTENING

BACKUP

Appendix 1 : Combined Discrete Columns > Category

- Columns converted
 - Total Baths
 - Total Rooms Above Ground
 - Overall Quality
- Results is not as good as leaving it as a discrete value
- Possibly because we've combined them into a highly price-correlated column

All Features + Quality + Discrete

train r2: 0.9111 test r2: 0.9001

mean cross val: [0.8963 0.9105 0.9083 0.9077 0.8915]

train rmse: 21800.42 test rmse: 22912.57

