

Inżynieria danych

Karta opisu przedmiotu

Informacje podstawowe

Kierunek studiów: Informatyka analityczna

Ścieżka: -

Jednostka organizacyjna: Wydział Matematyki i Informatyki

Poziom kształcenia: pierwszego stopnia

Forma studiów: studia stacjonarne

Profil studiów: ogólnoakademicki

Obligatoryjność: obowiązkowy

Cykl kształcenia: 2022/23

Kod przedmiotu: UJ.WMIIANS.120.03338.22

Języki wykładowe : polski

Dyscypliny: Informatyka

Klasyfikacja ISCED: 0612 Projektowanie i administrowanie baz danych i sieci

Kod USOS: WMI.TCS.ID.OL

Koordynator przedmiotu

Katarzyna Grygiel

Prowadzący zajęcia

Katarzyna Grygiel

Forma weryfikacji uzyskanych efektów uczenia się

Okres egzamin Liczba punktów ECTS

Semestr 2 Forma prowadzenia i godziny zajęć wykład: 30 ćwiczenia 6.0

laboratoryjne: 30

Efekty uczenia się dla przedmiotu

Kierunkowe

Kod Efekty w zakresie

Kierunkowe

Metody

efekty uczenia

weryfikacji

Kod	Efekty w zakresie	Kierunkowe efekty uczenia się	Metody weryfikacji
Wiedzy – Student zna i rozumie:			
W1	- relacyjny model danych - strukturalny język zapytań SQL - architekturę współczesnych systemów relacyjnych baz danych - cechy, przeznaczenie oraz mechanizmy współbieżnego wykonywania transakcji - mechanizmy zapobiegania oraz odtwarzania baz danych w przypadku awarii - techniki modelowania schematów pojęciowych (model encji) - metody normalizacji w relacyjnym modelu danych - przeznaczenie i cel stosowania hurtowni danych	IAN_K1_W03, IAN_K1_W07, IAN_K1_W08, IAN_K1_W14	egzamin pisemny / ustny
Umiejętności – Student potrafi:			
U1	- posługiwać się językiem SQL oraz powiązanymi językami proceduralnymi - skutecznie projektować oraz implementować systemy informatyczne używające baz danych - zabezpieczać i utrzymywać systemy baz danych	IAN_K1_U03, IAN_K1_U04, IAN_K1_U11, IAN_K1_U12, IAN_K1_U13, IAN_K1_U14, IAN_K1_U16, IAN_K1_U17, IAN_K1_U17, IAN_K1_U18, IAN_K1_U19, IAN_K1_U21	projekt, zaliczenie, egzamin pisemny / ustny
Kompetencji społecznych – Student jest gotów do:			
K1	- zespołowego modelowania. implementowania oraz utrzymywania systemów informatycznych - krytycznego analizowania projektu oraz zastosowanych zabezpieczeń systemów informatycznych	IAN_K1_K01, IAN_K1_K02	projekt, zaliczenie, egzamin pisemny / ustny

Bilans punktów ECTS

Forma aktywności studenta	Średnia liczba godzin* przeznaczonych na zrealizowane rodzaje zajęć	
wykład	30	
ćwiczenia laboratoryjne	30	
samodzielne rozwiązywanie zadań komputerowych	60	
przygotowanie projektu	60	
Łączny nakład pracy studenta	Liczba godzin 180	ECTS 6.0

^{*} godzina (lekcyjna) oznacza 45 minut

Treści programowe

Lp.	Treści programowe	Efekty uczenia się dla przedmiotu
1.	1. Charakterystyka relacyjnych baz danych. 2. Modelowanie schematów pojęciowych i schematów implementacyjnych w modelu relacyjnym. 3. Model związków encji oraz jego transformacja do modelu relacyjnego. 4. Organizacja danych we współczesnych systemach baz danych. 5. Cechy, przeznaczenie oraz techniki współbieżnego wykonywania transakcji. 6. Metody odtwarzania bazy danych po awarii. 7. Normalizacja relacyjnych baz danych. 8. Strukturalny język zapytań SQL. 9. Optymalizacja zapytań. 10. Hurtownie danych, Big Data oraz noSQL.	W1, U1, K1

Informacje rozszerzone

Metody nauczania:

metoda projektów, wykład z prezentacją multimedialną, dyskusja, analiza przypadków, rozwiązywanie zadań, ćwiczenia laboratoryjne, konsultacje

Rodzaj zajęć	Formy zaliczenia	Warunki zaliczenia przedmiotu
wykład	egzamin pisemny / ustny	Pozytywna ocena z egzaminu poprzedzona dopuszczeniem na podstawie pozytywnej oceny z ćwiczeń/laboratorium
ćwiczenia laboratoryjne	projekt, zaliczenie	Rozwiązywanie samodzielnych zadań programistycznych jak również realizacja projektu zespołowego.

Wymagania wstępne i dodatkowe

Metody formalne informatyki: - teoria mnogości z szczególnym uwzględnieniem pojęcia relacji Podstawy programowania: - proste algorytmy wykorzystując podstawowe struktury danych - podstawowa umiejętność programowania w języku C++ - podstawowe pojęcia złożoności obliczeniowej

Literatura

Obowiązkowa

1. J.D. Ullman, J. Widom, Podstawowy wykład z systemów baz danych, WNT, W-wa, 2000 (seria: Klasyka Informatyki)

Dodatkowa

- 1. J. Celko, SQL zaawansowane techniki programowania, Mikom, 1999
- 2. M. Kleppmann, Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems, O'Reilly Media, 2017