

Advanced Machine Learning Overview

Yu Wang
Assistant Professor
Department of Computer Science
University of Oregon

Welcome

Welcome to the CS 610 – Advanced Machine Learning!

Yu (Jack) Wang You

Knowledge Intelligence for Discovery and Decision making (KIND) Lab

- Data Mining and Machine Learning
- Graph and Geometric Machine Learning
- Neural-Symbolic Learning
- Agent and LLM
- Application: Information Retrieval/Social Network Analysis

What to expect from this class?

Neural Network User

- Off-the-shelf
- Fine-tuning
- Don't know much about the underlying principles
- ...

Neural Network Researcher

- Understand mathematical underpinnings
- Provide a holistic view that enables you to design and train custom architectures for a wide variety of problems
- ..

What can I help with?

Sam Altman says "we are now confident we know how to build AGI"

Large Language Models Won't Achieve AGI

EVENT	DATE	DESCRIPTION	COURSE MATERIAL
Paper Presentation	03/31/2025 04:30 Monday	Topic of Paper Release.	
Assignment	03/31/2025 Monday	Project released!	[Project]
Lecture	04/04/2025 Friday	Overview Syllabus	Course Materials: • Slides
Lecture	04/11/2025 Friday	Kernel Density Estimation	Course Materials: Slides Codebook
Lecture	04/18/2025 Friday	Autoencoder	Course Materials: Slides Codebook
Lecture	04/25/2025 Friday	Variational Autoencoder	Course Materials: o Slides
Lecture	05/02/2025 Friday	Generative Adversarial Network - Video	Course Materials: o Slides
Lecture	05/09/2025 Friday	Diffusion - Video	Course Materials: • Slides
Lecture	05/16/2025 Friday	Reinforcement Learning1	Course Materials: • Slides
Lecture	05/23/2025 Friday	Reinforcement Learning 2	Course Materials: Slides
Lecture	05/30/2025 Friday	Neural Symbolic Learning 1	Course Materials: • Slides
Lecture	06/06/2025 Friday	Neural Symbolic Learning 2	Course Materials: • Slides

Conference Travel Video/Virtual Onlne

Grade Scale

Course Assessment and Grading Scale

Category	Percentage
Project	60%
Paper Presentation	30%
Attendance	10%

Grade	Range
А	A+: 98-100, A: 93-97, A-: 90-92
В	B+: 87-89, B: 83-86, B-: 80-82
С	C+: 77-79, C: 73-76, C-: 60-72
F	F: <60

Project

Project

1. Introduction and Background - 10%

https://ml-graph.github.io/spring-2025/project/

- General Background:
 - What is the general background of the problem you are working on?
- Specific Problem:
 - Under the general topic, what specific problem is your project addressing?
- 2. Motivation and Objective 10%
- Problem Statement:
 - What are the limitations of existing methods in addressing this problem?
- Contribution and Novelty:
 - Given the previous limitations, what is your unique contribution, and how does it provide novelty in solving the problem?
- 3. Data Collection and Analysis 30%
- Dataset:
 - What dataset are you working on to solve the problem?
- Dataset Introduction and Analysis:
 - Provide a basic introduction to and analysis of the dataset.
- 4. Method 30%
- Algorithm Design/Implementation:
 - What data mining/machine learning algorithms are you designing or applying to tackle the problem?
- 5. Experiment and Discussion 20%
 - Experimentation:
 - Conduct experiments to verify that the proposed method works.
- Discussion:
 - Analyze and discuss the results of the experiments.

Here is an example of the one-course project.

- Project Report Template

Paper

Paper

Paper Presentation Details

You can either collaborate with a team or present individually. The choice of topic is entirely up to you.

- Introduction and Background What is the general impact and background of the topic?
- Motivation and Problem What is the core research problem, and why do we study it?
- Related Work and Challenges How did previous works address this problem, and what are some of the challenges?
- Proposed Solutions/Methods and Rationale What are the proposed methods/techniques, and why are they proposed? What specific reasons that solving this problem would require these proposed(1) methods/techniques?
- Experimental Setting, Results, and Analysis What experiments are designed to verify the proposed method? How are results being discussed and analyzed? Are there any interesting findings?
- Conclusion and Future Work

Generative Models

RAG Systems

From Isolated Conversations to Hierarchical Schemas: Dynamic Tree Memory Representation for LLMs [Paper]

LLM Alignment as Retriever Optimization: An Information Retrieval Perspective [Paper]

RAS: Retrieval-And-Structuring for Knowledge-Intensive LLM Generation [Paper]

Wikipedia Contributions in the Wake of ChatGPT [Paper]

Towards Knowledge Checking in Retrieval-augmented Generation: A Representation Perspective [Paper]

Agentic Al

HETEROGENEOUS SWARMS: Jointly Optimizing Model Roles and Weights for Multi-LLM System [Paper]

OASIS: Open Agents Social Interaction Simulations on One Million Agents [Paper]

Why Do Multi-Agent LLM Systems Fail? [Paper]

A Multi-LLM Debiasing Framework [Paper]

TrendSim: Simulating Trending Topics in Social Media Under Poisoning Attacks with LLM-based Multi-agent System

Preference Leakage: A Contamination Problem in LLM-as-a-judge [Paper]

G-Designer: Architecting Multi-agent Communication Topologies via Graph Neural Networks [Paper]

GPTSwarm: Language Agents as Optimizable Graphs [Paper]

Neural-Symbolic Learning

Self-Discover: Large Language Models Self-Compose Reasoning Structures [Paper]

ThinkPatterns-21k: A Systematic Study on the Impact of Thinking Patterns in LLMs [Paper]

Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [Paper]

Do LLMs Think Fast and Slow? A Causal Study on Sentiment Analysis [Paper]

Complex Topology and Graph Structure

PolyhedronNet: Representation Learning for Polyhedra with Surface-attributed Graph [Paper]

Slow Perception: Let's Perceive Geometric Figures Step-by-step [Paper]

Representation Learning of Geometric Trees [Paper]

Deep Identification of Propagation Trees [Paper]

Network Tomography with Path-Centric Graph Neural Network [Paper]

https://ml-graph.github.io/spring-2025/paper/

