Uso de Redes Neurais Profundas e Recorrentes Para Reconhecimento de Fala em Português Brasileiro

João Victor da Silva Dias Canavarro

Instituto de Ciências Exatas e Naturais Faculdade de Computação Laboratório de Visualização, Interação e Sistemas Inteligentes Orientador: Prof. Dr. Nelson Cruz Sampaio Neto

10 de Outubro de 2020

Reconhecimento de Voz

Figura: Esquema tradicional de um sistema automático de reconhecimento de voz

- Aplicações:
 - Tecnologias assistivas, eye-trackers, linguística (alinhamento) fonético), síntese de voz

- Automatização da transcrição e alinhamento de fala gravada
- Estudo e pesquisa de linguistas
- Desenvolvimento de ferramentas mais robustas de reconhecimento e sintese de fala

- Kaldi: um pacote open-source de reconhecimento de voz
 - Possui suporte para ambas HMM-GMMs (mistura de gaussianas) e HMM-DNNS (redes neurais profundas)
 - Suporte para PT-BR

Praat: software utilizado por linguistas na análise da fala

Objetivo

- Desenvolver um alinhador fonético para PT_BR utilizando o pacote de ferramentas Kaldi
 - Plug-in para o Praat
 - Modelos acústicos (AMs) treinados utilizando DNNs e HMM-GMMs
- Coletar dados para realizar LM rescoring: 4-5 milhões de frases
- Disponibilizar recursos à comunidade científica: grupo Fala Brasil

Metodologia Base de Áudio Transcrita

Dataset	Ref.	Horas	Palavras	Oradores
LapsStory	[7]	5h:18m	8,257	5
LapsBenchmark	[7]	0h:54m	2,731	35
Constitução	[8]	8h:58m	5,330	1
Defesa do Consumidor	[8]	1h:25m	2,003	1
Spoltech LDC	[9]	4h:19m	1,145	475
West Point LDC	[10]	5h:22m	484	70
CETUC	[11]	144h:39m	3,528	101
Total		170h:51m	14,518	687

Metodologia Treinamento dos AMs

000

Metodologia e Testes

Testes

- Dataset de Avaliação
 - 200 enunciados falados por um orador masculino
 - Total de 7min58s de áudio alinhado manualmente.
- Característica comparada: limite fonético
 - Diferença entre o tempo final da ocorrência do fonema em ambos alinhamentos, pelo alinhador e alinhado manualmente

	Tolerância (ms)				
Ferramenta / Modelo	< 10 (%)	< 25 (%)	< 50 (%)	< 100 (%)	
HTK [20]	33.95	65.73	86.40	96.54	
Kaldi monophones	45.57	83.89	96.71	99.39	
Kaldi triphones	48.36	85.35	96.71	99.71	
Kaldi triphones LDA-MLLT	47.66	83.82	96.53	99.71	
Kaldi triphones SAT	46.62	83.03	96.08	99.55	
Kaldi DNN	46.49	82.65	96.15	99.66	

Figura: Distribuição cumulativa dos limites fonéticos

Resultados

Ferramenta / Modelo	μ (ms)	mediana (ms)	σ
HTK [20]	26.043	15.961	32.378
Kaldi monophones	15.233	11.196	16.327
Kaldi triphones	14.438	10.357	15.178
Kaldi triphones LDA-MLLT	14.726	10.577	15.095
Kaldi triphones SAT	15.359	10.834	16.314
Kaldi DNN	15.306	10.904	15.864

Figura: Média, mediana e desvio padrão dos alinhadores avaliados, em comparação ao alinhamento manual

- Os modelos acústicos treinados utilizando o Kaldi obtiveram resultados superiores à outros com suporte à língua portuguesa, e tão satisfatórios quanto modelos para outras línguas
- Foi desenvolvido uma interface para utilização do alinhador
- Fatores positivos:
 - Avanços na área de reconhecimento de voz para PT-BR
 - Disponibilização dos recursos desenvolvidos: https://ufpafalabrasil.gitlab.io/

Agradecimentos

Obrigado!

João Canavarro (jvcanavarro@ufpa.br)
Universidade Federal do Pará (UFPA)
Belém - Pará - Brasil