Exercices de méthodes numériques ¹ L1 Informatique

Nicolas COUELLAN

Sophie JAN 2 Youchun QIU 3

Janvier 2017

^{1.} La plupart des exercices qui suivent sont tirés des dossiers d'exercices réalisés par Jean-Paul Calvi les années passées

^{2.} sophie.jan@math.univ-toulouse.fr

^{3.} youchun.qiu@math.univ-toulouse.fr

Chapitre 1

Recherche de zéros

1.1 Exercices à traiter impérativement en TD

- 1. (a) Montrer que l'équation $x^4 + x^3 1 = 0$ admet une et une seule solution dans [0, 1].
 - (b) Trouver une valeur approchée avec une décimale exacte en utilisant l'algorithme de dichotomie.
- 2. (a) Montrer que l'équation $\cos(x) + \frac{1}{10} = x$ admet une unique solution r dans $\left[0, \frac{3\pi}{8}\right]$.
 - (b) Déterminer les 3 premières décimales exactes de r en utilisant la méthode de Newton.
- 3. On considère l'équation

$$x^4 + 2x^2 - 1 = 0. (1.1)$$

- (a) Montrer que l'équation (1.1) admet une unique solution r dans [0,1].
- (b) Montrer en utilisant la méthode de dichotomie que $r \in]0.5, 0.75[$.
- (c) On cherche maintenant à affiner l'approximation de r en utilisant la méthode de Newton. On note (x_n) la suite de Newton. Calculer x_1 et x_2 .
- 4. Dans cet exercice, on étudie une modification de la méthode de Newton : ayant obtenu $x_0, x_1, ..., x_n$, on construit x_{n+1} en prenant l'intersection avec l'axe des abscisses de la droite passant par le point de coordonnées $(x_n, f(x_n))$ et parallèle à la tangente au graphe de f en x_0 .
 - (a) On suppose que la fonction f est strictement croissante et strictement convexe sur [a, b] et qu'elle admet une racine dans]a, b[. On prend $x_0 = b$. Faire un dessin qui permet de comparer la méthode de Newton et la méthode de Newton modifiée décrite ci-dessus.
 - (b) Donner l'expression de x_{n+1} en fonction de x_n .
 - (c) Quels sont les avantages pratiques de cette modification? et ses inconvénients?

1.2 Exercices pour s'entrainer

1. On considère la fonction f définie sur \mathbb{R} par $f(x) = x^3 - 4x + 1$.

- (a) Calculer f' et f''.
- (b) Montrer que l'équation f(x) = 0 admet une unique solution r dans]0,1[.
- (c) Utiliser la dichotomie pour localiser r dans un intervalle I de longueur $\leq \frac{1}{4}$.
- (d) Tracer l'allure du graphe de f sur I et donner la formule de récurrence pour la méthode de Newton appliquée dans l'intervalle I. Proposer un point de départ qui vous semble adapté.
- (e) En déduire les 3 premières décimales de r.
- 2. On considère l'intervalle I = [0, 1] et les fonctions f et g définies par

$$f(x) = -2x^3 + 3x^2 + 12x - 7$$

- (a) Déterminer f'(x) et f''(x).
- (b) Montrer que f admet exactement une racine r dans I.
- (c) Montrer très soigneusement que dans l'intervalle $J = [\frac{1}{2}, 1] \subset I$
 - f s'annule exactement une fois,
 - f' ne change pas de signe et f'' non plus.
- (d) Quel point de départ de la méthode de Newton choisiriez-vous dans J et pourquoi?
- (e) Calculer les premiers itérés nécessaires à l'obtention de 4 décimales exactes de r.
- 3. On souhaite trouver une valeur approchée de la solution de l'équation

$$\frac{e^{-x}}{x} = 1. ag{1.2}$$

On définit la fonction f sur \mathbb{R} par $f(x) = x - e^{-x}$.

- (a) Montrer que x est solution de (1.2) si et seulement si f(x) = 0.
- (b) Montrer que l'équation f(x) = 0 admet une unique solution r dans \mathbb{R} et qu'elle se trouve dans l'intervalle [0,1[.
- (c) En étudiant les propriétés de croissance et de convexité de f, déduire le schéma adéquat pour appliquer la méthode de Newton à l'approximation de r.
- (d) Calculer les 4 premiers itérés de la suite de Newton notée (x_n) .
- (e) Montrer que les 4 premières décimales de x_3 sont aussi celles de r.

1.3 Pour aller plus loin

1. Soit f une fonction continue de [a, b] dans [a, b]. Montrer que l'équation f(x) = x admet une solution dans [a, b].

Chapitre 2

Interpolation polynomiale

2.1 Exercices à traiter impérativement en TD

- 1. (Séance 3) On considère la fonction f définie sur \mathbb{R} par $f(x) = x^3$.
 - (a) Calculer le polynôme p d'interpolation de f aux points 1 et 2.
 - (b) Calculer le polynôme q d'interpolation de f aux points 0, 1 et 2.
 - (c) Calculer le polynôme r d'interpolation de f aux points -1, 0 et 1.
 - (d) Calculer le polynôme s d'interpolation de f aux points -1, 0, 1 et 2.
- 2. (Séance 3) Algorithme de Hörner

Soit $p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n$ et $c \in \mathbb{R}$. On définit la suite $(b_k)_{k=0,\dots,n}$ par

$$\begin{cases} b_n = a_n \\ b_k = b_{k+1}c + a_k \quad \forall k = 0, 1, ..., n-1. \end{cases}$$

- (a) Montrer que $p(x) = (x c)(b_n x^{n-1} + b_{n-1} x^{n-2} + \dots + b_2 x + b_1) + b_0$.
- (b) Décompter le nombre d'opérations nécessaires pour calculer p(c).
- 3. (Séance 3, si possible)
 - (a) Montrer qu'il existe une infinité de polynômes passant par les points $M_0 = (0,0)$ et $M_1 = (1,1)$.
 - (b) Trouver 4 réels f_0 , f_1 , f_2 , f_3 tels qu'aucun graphe de polynôme de \mathcal{P}_2 ne passe par les 4 points $M_0 = (-1, f_0)$, $M_1 = (0, f_1)$, $M_2 = (1, f_2)$ et $M_3 = (2, f_3)$.
- 4. (Séance 4) Reprendre l'exercice 1 en utilisant la formule donnée en cours, basée sur les polynômes fondamentaux de Lagrange.
- 5. (Séance 4) On considère trois réels deux à deux distincts a_0 , a_1 et a_2 .
 - (a) On note $A = \{a_0, a_1\}$. Montrer que pour tout réel x, $l_{0,1}(x) + l_{1,1}(x) = 1$
 - (b) Si $A = \{a_0, a_1, a_2\}$, montrer que pour tout réel x, $l_{0,2}(x) + l_{1,2}(x) + l_{2,2}(x) = 1$.
- 6. (Séance 4, si possible)

Pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}$, on définit $f_n(x) = x^n$ et p_n le polynôme d'interpolation de f_n aux points $\{-1, 0, 1\}$.

- (a) Déterminer p_n pour tout $n \in \mathbb{N}$. Indication : on pourra traiter à part le cas n = 0, puis distinguer les cas n pair et n impair.
- (b) On considère la fonction polynomiale f définie par $f(x) = a_{2K}x^{2K} + a_{2K-1}x^{2K-1} + ... + a_1x + a_0$ avec K entier, $K \ge 1$. **Déduire de la question précédente** une formule pour le polynôme d'interpolation p de f aux points $\{-1,0,1\}$, en fonction des coefficients a_i , i = 0, 1, ..., n.

7. (Séance 5)

On note $a_0 = -1$, $a_1 = 2$, et $a_2 = 3$. Soient p, q et r les 3 polynômes définis par

$$p(x) = x^2 + 3$$
, $q(x) = x^4$, $r(x) = 3x^4 + 7x^2 + 21$.

- (a) Quel est le polynôme d'interpolation de Lagrange m_p de p relativement aux 3 points a_0 , a_1 et a_2 ?
- (b) Quel est le polynôme d'interpolation de Lagrange m_q de q relativement aux 3 points a_0, a_1 et a_2 ?
- (c) Quel est le polynôme d'interpolation de Lagrange m_r de r relativement aux 3 points a_0 , a_1 et a_2 ?
- (d) Calculer $||r'''||_{\infty,[-1,3]}$.
- (e) En déduire une majoration de $|r(0) m_r(0)|$, sans calculer ni r(0), ni $m_r(0)$.
- 8. (Séance 5) On considère la fonction $f = \ln$. On note p_f le polynôme d'interpolation de Lagrange de f aux points de $A := \{1, 2, 3\}$.
 - (a) Déterminer p_f .
 - (b) Calculer la dérivée troisième de f et sa norme infinie sur [1,3].
 - (c) En déduire une majoration de $|f(5/2) p_f(5/2)|$, sans calculer ni f(5/2), ni $p_f(5/2)$.
 - (d) A l'aide de la calculatrice, contrôler la précision de la majoration obtenue ci-dessus.
- 9. (Séance 6)

On considère la fonction définie par $f(x) = \sqrt{x}$. Calculer la forme de Newton du polynôme d'interpolation p_f de Lagrange de f aux points $\{100, 121, 144\}$.

10. (séance 6) Exercice tiré de l'examen de 2016-2017

Considérons les abscisses $a_0 = -1, a_1 = 0, a_2 = 2$, et les réels f_0, f_1 et f_2 . Notons $A = \{a_0, a_1, a_2\}$.

- (a) i. Écrire tous les polynômes fondamentaux de Lagrange associés à l'ensemble A.
 - ii. Donner l'expression du polynôme p qui interpole les points M_0 , M_1 , M_2 de coordonnées respectives (a_0, f_0) , (a_1, f_1) et (a_2, f_2) .
 - iii. Donner p(2), en justifiant précisément.
- (b) Cette question est indépendante de la précédente. Désormais, on considère que $f_i = f(a_i)$ avec $f(x) = x^4 - x^3$.
 - i. Donner l'expression du polynôme p sous sa forme de Newton.

- ii. On ajoute maintenant le point M_3 de coordonnées $(a_3, f(a_3))$ avec $a_3 = 1$. Donner l'expression du polynôme q qui interpole les points M_0 , M_1 , M_2 et M_3 .
- iii. On ajoute maintenant le point M_4 de coordonnées $(a_4, f(a_4))$ avec $a_4 = 978$. Donner l'expression du polynôme r qui interpole les 5 points M_0 , M_1 , M_2 , M_3 et M_4 .

2.2 Exercices pour s'entrainer

- 1. On considère le polynôme p défini par $p(x) = x^4 4x^3 + 5x^2 2x$.
 - (a) Calculer p(1), p'(1) et p''(1).
 - (b) Trouver toutes les racines de p.
 - (c) Factoriser p.
- 2. Soient a et b 2 réels. On considère le polynôme p défini par $p(x) = x^4 + ax^3 2x^2 + bx 3$.
 - (a) Quel est le nombre maximum de racines de p?
 - (b) On suppose que -1 et 3 sont racines de p. Quelles sont les valeurs de a et b?
 - (c) Trouver toutes les racines de p. (Indication : on pourra effectuer une division euclidienne de polynômes)
- 3. Déterminer le polynôme d'interpolation de Lagrange de la fonction définie par $f(x) = (x+1)^4$ relativement aux points $A = \{-3, -1, 0\}$.
- 4. Déterminer le polynôme d'interpolation de Lagrange de la fonction $f: x \mapsto \frac{1}{1+x}$ relativement aux points 0, 3/4, 1.
- 5. Déterminer le polynôme d'interpolation de Lagrange de la fonction définie par $f(x) = \sqrt{x-2}$ relativement aux points $A = \{2, 6, 11\}$.
- 6. Trouver une condition sur le couple $(a, b) \in \mathbb{R}^2$ pour que la proposition suivante soit vraie : quel que soit le triplet $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ il existe un unique $p \in \mathcal{P}_2$ tel que

$$p(a) = \alpha, \quad p(b) = \beta, \quad p(a) + p'(b) = \gamma.$$
 (2.1)

Indication : on pourra considérer que p s'écrit $p(x) = A + Bx + Cx^2$ et résoudre le système linéaire correspondant aux équations (2.1). Au cours de la résolution apparaîtra la condition à imposer sur (a, b) pour que le système linéaire ait une solution unique.

Chapitre 3

Intégration numérique

3.1 Exercices à traiter impérativement en TD

1. Supposons que l'on dispose des valeurs suivantes d'une fonction f indéfiniment dérivable sur I = [0, 1]:

$$f(0) = 1$$
, $f\left(\frac{1}{4}\right) = \frac{4}{5}$, $f\left(\frac{1}{2}\right) = \frac{2}{3}$, $f(1) = \frac{1}{2}$.

Donner une approximation J de l'intégrale $\int_0^1 f(x)dx$ en utilisant les 4 valeurs connues de f.

- 2. On considère f une fonction continue sur [-1,2]. Notons p_f le polynôme d'interpolation de f relativement aux 2 abscisses $a_0 = 0$ et $a_1 = 1$ et $I(f) = \int_{-1}^2 f(x) dx$.
 - (a) Calculer $J(f) = \int_{-1}^{2} p_f(x) dx$.
 - (b) Illustrer graphiquement l'approximation de I(f) par J(f).
 - (c) On note $Q(f) = \frac{3}{2}(f(0) + f(1))$. Trouver le plus grand entier d pour lequel

$$Q(p) = I(p)$$
 pour tout $p \in \mathcal{P}_d$.

- 3. On considère l'intégrale $I = \int_0^3 f(x) dx$ avec $f(x) = (x-2)^3$.
 - (a) Calculer I.
 - (b) Quelle est la valeur de l'approximation J de I par la méthode élémentaire du trapèze.
 - (c) Représenter graphiquement le graphe de f et le trapèze qui intervient dans l'approximation J de I. Hachurer ce dernier.
 - (d) Que prévoyait la théorie comme majorant de |I J|?
- 4. Soit $I = \int_0^1 \sqrt{x} dx$.

- (a) Donner la valeur exacte de I.
- (b) Donner une approximation de I en utilisant la méthode de Simpson avec n=2 sous-intervalles.
- (c) La théorie permettait-elle de prédire l'erreur commise?
- 5. On considère la fonction f définie sur $[-1, +\infty[$ par $f(x) = \sqrt{1+x}]$. On souhaite calculer une valeur approchée de

$$I = \int_0^1 f(x)dx,$$

avec une erreur inférieure ou égale à $\varepsilon = 10^{-6}$.

- (a) Pour la méthode du point milieu composite, estimer le nombre de sous-intervalles n_m nécessaire pour obtenir une approximation de I à ε près.
- (b) Même question avec la méthode des trapèzes. On note n_t le nombre d'intervalles.
- (c) Même question avec la méthode de Simpson. On note n_s le nombre d'intervalles.

3.2 Exercices pour s'entrainer

1. Soit a < b. Déterminer tous les points $\omega \in [a, b]$ tels que l'approximation

$$\int_{a}^{b} p(x)dx \approx (b-a)p(\omega)$$

soit exacte pour tout $p \in \mathcal{P}_1$.

- 2. Soit f une fonction continue sur \mathbb{R} et p_f son polynôme d'interpolation relativement aux abscisses $a_0 = -1$ et $a_1 = 1$.
 - (a) Calculer $\int_{-2}^{2} p_f(x) dx$.
 - (b) Illustrer graphiquement l'approximation $\int_{-2}^{2} f(x)dx \approx 2\Big(f(-1) + f(1)\Big)$.
- 3. On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{4}{1+x^2}$.

Estimer le nombre de sous-intervalles n nécessaire pour obtenir une approximation de

$$I = \int_0^1 f(x)dx$$

avec une erreur moindre que $\varepsilon=10^{-6}$, en utilisant

- (a) la méthode du point milieu composite,
- (b) la méthode des trapèzes composite,
- 4. Soit f une fonction continue sur $\mathbb{R}.$ On note

$$I(f) = \int_{-2}^{2} f(x)dx$$
 et $J(f) = f(r_1) + wf(0) + f(r_2)$.

- (a) Trouver un triplet (r_1, r_2, w) de réels tel que J soit exacte sur \mathcal{P}_2 . (Rappel: J est dite exacte sur l'ensemble \mathcal{P}_k des polynômes de degré inférieur ou égal à k si pour tout $p \in \mathcal{P}_k$, I(p) = J(p).)
- (b) Montrer qu'avec ce choix J est en fait exacte sur \mathcal{P}_3 , mais pas sur \mathcal{P}_4 .