CPT_S 260 Intro to Computer Architecture Lecture 5

Integer Arithmetic January 24, 2022

Ganapati Bhat
School of Electrical Engineering and Computer Science
Washington State University

Recap: Numbering Systems

- A number system of a specific base (radix) uses numbers from 0 to that base-1
- Numbers can be computed to decimal through the sum of the weighted digits-

$$Number = \sum_{i=0}^{n} base^{i} * digit$$

	Binary Octal		Decimal	Hexadecimal	
Base	2	8	10	16	
Symbols	{0,1}	{0,1,2,3,4,5,6,7}	{0,1,2,3,4,5,6,7,8,9}	{0,1,2,3,4,5,6,7,8,9, A,B,C,D,E,F}	

Recap: Decimal → **Binary**

Choose one of two equivalent methods

- Subtract largest power of 2 until difference = 0. For each subtraction, place '1' in a binary string at a position corresponding to the power. Fill empty positions with 0's.
- Divide by 2 until quotient = 0. For each division, place the remainder, either '0' or '1', in a binary string growing from right to left. The rightmost end of the string is the low-order bit.

Example: Convert 131₁₀ to binary

Example

Recap: Hexadecimal

Decimal	Hex
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	А
11	В
12	С
13	D
14	Е
15	F

Hexadecimal represents numbers as a series of base-16 expressions multiplied by integers from zero to 15.

Example: 47₁₀ represented in hex

Binary ↔ **Hexadecimal**

Partition binary digits right-to-left in groups of four. Convert each group to one hexadecimal symbol.

Example: Convert 10001010102 to hexadecimal

Hexadecimal number	Binary-coded hexadecimal		
0	0000		
1	0001		
2	0010		
3	0011		
4	0100		
5	0101		
6	0110		
7	0111		
8	1000		
9	1001		
Α	1010		
В	1011		
С	1100		
D	1101		
E	1110		
F	1111		

Hexadecimal → Binary

Convert each hexadecimal symbol to a four-digit binary number and combine.

Example: Convert F01₁₆ to binary

Hexadecimal number	Binary-coded hexadecimal		
0	0000		
1	0001		
2	0010		
3	0011		
4	0100		
5	0101		
6	0110		
7	0111		
8	1000		
9	1001		
Α	1010		
В	1011		
С	1100		
D	1101		
E	1110		
F	1111		

Decimal to Hexadecimal

Divide by 16 until quotient = 0. For each division, place the remainder, in the hexadecimal string growing from right to left. The rightmost end of the string is the low-order bit.

Decimal	Hex
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	Α
11	В
12	С
13	D
14	Е
15	F

Sign in Binary

Represent the domain of negative and positive integers in one of two distinct ways

Signed Magnitude

 In signed-magnitude format, one bit designates sign and the remaining bits magnitude. The sign bit is the high-order bit at the leftmost position and takes '1' for negative or '0' for positive. The magnitude is an absolute value.

2's complement

In signed-2's-complement format, positive integers take the same form as in signed-magnitude but negative integers do not. The 2's-complement is one plus the 1'scomplement, which, for a given number and range, is the difference between the range's maximum value and the number.

2's-Complement Signed Integers

Given an n-bit number:

$$x = -x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + \dots + x_12^1 + x_02^0$$

- Range: -2ⁿ⁻¹ to +2ⁿ⁻¹ − 1
- Example
- Using 32 bits, 2's complement range is:
 - -2,147,483,648 to +2,147,483,647

10

2's Complement Range for 32 bits

```
0000 0000 0000 0000 0000 0000 0010
0111 1111 1111 1111 1111 1111 1111 1101_{two} = 2,147,483,645_{ten}
1000 0000 0000 0000 0000 0000 0000 0001_{two}^{tm} = -2,147,483,647_{ten}^{tm}
1000 0000 0000 0000 0000 0000 0000 0010_{two} = -2,147,483,646_{ten}
1111 1111 1111 1111 1111 1111 1111 1101_{two} = -3
```

Signed Negation in 2's Complement

- Complement and add 1
 - Complement means $1 \rightarrow 0$, $0 \rightarrow 1$

- Example: negate +2
 - **+2** = 0000 0000 ... 0010₂
 - -2 = 1111 1111 ... 1101₂ + 1 = 1111 1111 ... 1110₂

- How does this work?
- A number and it's complement add up to all 1's

- That is,

$$x + \overline{x} = -1$$

$$\overline{x} = x + 1$$

Signed-2's-complement

Example: (260)₁₀ represented in 16-bit signed-2's-complement format

 $(0000\ 0001\ 0000\ 0100)_2$

Example: (-260)₁₀ represented in 16-bit signed-2's-complement format

(0000 0001 0000 0100)2

Sign Extension

- Convert a binary number represented in N bits to a number represented with more than N bits
- For example, the computer has 32-bit memory, and the number is only 16 bits
- Sign extension allows us to convert
- Fill the lower order bits with the original number
- Copy the sign bit of the number to the left and fill the bits

Computer Arithmetic

 Computers store and perform operations on information encoded in bits, which are binary digits of value 0 or 1.

 For addition on integers, computers add bits of operands starting at the low-order bit.

 When the sum of operand bits is greater than 1, the sum carries to the higher bit.

 Likewise, subtraction occurs by negating the appropriate operands and performing addition.

Addition

Example: $(360)_{10} + (260)_{10}$ in 16-bit unsigned format

Example: $(-360)_{10}$ + $(-260)_{10}$ in 16-bit signed-2's-complement format

Addition

Example: $(-360)_{10}$ + $(-260)_{10}$ in 16-bit signed-2's-complement format

(0000 0010 0110 1100)₂

Subtraction

Example: (360)₁₀ - (260)₁₀ in 16-bit unsigned format

Example: (-360)₁₀ - (-260)₁₀ in 16-bit signed-2's-complement format

Subtraction

Example: $(360)_{10}$ - $(260)_{10}$ in 16-bit unsigned format

(0000 0001 0110 4000)₂ (0000 0001 0000 0100)₂ (0000 0000 0110 0100)₂

Example: $(-360)_{10}$ - $(-260)_{10}$ in 16-bit signed-2's-complement format

Overflow

- The addition of two numbers with the same sign or subtraction of two numbers with different sign may cause overflow
- The condition wherein a result cannot be represented in allocated memory
- An overflow condition can be detected by observing the carry into the sign bit

carries: 0	1		carries: 1	. 0	
+70	0 10	00110	-70	1	0111010
+80	0 10	10000	-80	1	0110000
$+1\overline{50}$	1 00	10110	$-1\overline{50}$	0	1101010

Conditions for Overflow

Operation	A	В	С
A + B = C	> 0	> 0	if (C <= 0)
	> 0	< 0	no overflow
	< 0	> 0	no overflow
	< 0	< 0	if (C >= 0)
A - B = C	> 0	> 0	no overflow
	> 0	< 0	if (C <= 0)
	< 0	> 0	if (C >= 0)
	< 0	< 0	no overflow

Overflow Detection in Binary

- We need to compare three bits to check for overflow
- Needs a three-bit comparator
- Efficient method to check overflow
- Compare the carry in and carry out for the MSB
 - If they are different then there is an overflow
 - If not, there is no overflow
- Example

carries: 0	1		carries:	1	0	
+70	0	1000110	-70		1	0111010
+80	0	1010000	-80		1	0110000
$+1\overline{50}$	$\overline{1}$	0010110	$-1\overline{50}$		$\overline{0}$	1101010