Due: September 29th, 2023, 10am

1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a Probability space and X be a random variable. Then assuming the formula

$$\mathbb{E}[\mid X\mid] = \int_{0}^{\infty} \mathbb{P}(\mid X\mid \geq t)dt$$

evaluate the expectation of the following random variables

- (a) $X \sim \text{Poisson}(\lambda)$
- (b) $X \sim \text{Exponential } (\lambda)$
- 2. Let X, X_1, X_2, \ldots be i.i.d. random variables that are uniformly distributed over the interval (0,1). Consider the first order statistic $X_{(1)}^n = \min\{X_1, \cdots, X_n\}$. Show that $\mathbb{P}(X_{(1)}^n \geq \epsilon) \to 0$ as $n \to \infty$.
- 3. Consider

$$\Omega = \left\{ \omega = (\omega_1, \omega_2, \dots,) : \omega_i \in \{0, 1\} \right\}$$

equipped with probability \mathbb{P} such that

$$\mathbb{P}(X_k = 0) = \mathbb{P}(X_k = 1) = \frac{1}{2}$$

where for $1 \le k$, $X_k : \Omega \to \{0,1\}$ be given by $X_k(\omega) = \omega_k$. Suppose for $1 \le n$, let $S_n : \Omega \to \mathbb{Z}$ be given by $S_n(\omega) = \sum_{k=1}^n X_k(\omega)$ and $S_0 = 0$. Show that for $a < \frac{1}{2}$

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}(S_n \le an) = \begin{cases} -\log(2) - a \log(a) - (1-a) \log(1-a) & \text{if } 0 < a < \frac{1}{2} \\ -\infty & \text{if } a < 0 \end{cases}$$

- 4. Let $(\Omega = [0, 1], \mathcal{F}$ be the Borel σ -algebra and \mathbb{P}) be the uniform Probability. Suppose $A_i = [0, \frac{1}{i})$ then
 - (a) Describe the event $\limsup A_i$.
 - (b) Find $\sum_{i\geq 1} \mathbb{P}(A_i)$ and decide if it contradicts the Borel Cantelli Lemma.

Due: Friday September 29th, 2023, 10am

1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a Probability space and X be a random variable. Then assuming the formula

$$\mathbb{E}[\mid X\mid] = \int_{0}^{\infty} \mathbb{P}(\mid X\mid \geq t)dt$$

evaluate the expectation of the following random variables

- (a) $X \sim \text{Poisson}(\lambda)$
- (b) $X \sim \text{Exponential } (\lambda)$
- 2. Let X, X_1, X_2, \ldots be i.i.d. random variables that are uniformly distributed over the interval (0,1). Consider the first order statistic $X_{(1)} = \min\{X_1, \cdots, X_n\}$. Show that $\mathbb{P}(X_{(1)}^n \ge \epsilon) \to 0$ as $n \to \infty$.
- 3. Consider

$$\Omega = \left\{ \omega = (\omega_1, \omega_2, \dots,) : \omega_i \in \{0, 1\} \right\}$$

equipped with probability \mathbb{P} such that

$$\mathbb{P}(X_k = 0) = \mathbb{P}(X_k = 1) = \frac{1}{2}$$

where for $1 \le k$, $X_k : \Omega \to \{0,1\}$ be given by $X_k(\omega) = \omega_k$. Suppose for $1 \le n$, let $S_n : \Omega \to \mathbb{Z}$ be given by $S_n(\omega) = \sum_{k=1}^n X_k(\omega)$ and $S_0 = 0$. Show that for $a < \frac{1}{2}$

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}(S_n \le an) = \begin{cases} -\log(2) - a \log(a) - (1-a) \log(1-a) & \text{if } 0 < a < \frac{1}{2} \\ -\infty & \text{if } a < 0 \end{cases}$$

- 4. Let $(\Omega = [0, 1], \mathcal{F}$ be the Borel σ -algebra and \mathbb{P}) be the uniform Probability. Suppose $A_i = [0, \frac{1}{i})$ then
 - (a) Describe the event $\limsup_{i \to \infty} A_i$.
 - (b) Find $\sum_{i\geq 1} \mathbb{P}(A_i)$ and decide if it contradicts the Borel Cantelli Lemma.