Analysis of a Complex Kind Week 5

Lecture 1: Complex Integration

Petra Bonfert-Taylor

Recall... Integration in \mathbb{R}

Let $f : [a, b] \to \mathbb{R}$ be continuous. Then

$$\int_{a}^{b} f(t) dt = \lim_{n \to \infty} \sum_{j=0}^{n-1} f(t_{j})(t_{j+1} - t_{j}),$$

where $a = t_0 < t_1 < \cdots < t_n = b$.

- If $f \ge 0$ on [a, b] then $\int_a^b f(t) dt$ is the "area under the curve."
- Otherwise: sum of the areas above the x-axis minus sum of the areas below the x-axis.

The Fundamental Theorem of Calculus

Theorem

Let $f: [a,b] \to \mathbb{R}$ be continuous, and define $F(x) = \int_a^x f(t)dt$. Then F is differentiable and F'(x) = f(x) for $x \in [a,b]$.

Antiderivatives

Let $f:[a,b]\to\mathbb{R}$ as above. A function $F:[a,b]\to\mathbb{R}$ that satisfies that F'(x)=f(x) for all $x\in[a,b]$ is called an *antiderivative* of f.

Note: If F and G are both antiderivatives of the same function f, then

$$(G-F)'(x) = G'(x) - F'(x) = f(x) - f(x) = 0$$
 for all $x \in [a,b]$,

and so G - F is constant.

Conclusion: Let G be any antiderivative of f. Then

$$\int_a^b f(t) dt = G(b) - G(a).$$

Generalization to C

Instead of integrating over an interval $[a,b]\subset\mathbb{R}$ we are in $\mathbb{C}!$ What will we integrate over? Curves!

Recall: A curve is a smooth or piecewise smooth function

$$\gamma: [a,b] \to \mathbb{C}, \gamma(t) = x(t) + iy(t).$$

If f is complex-valued on γ , we define

$$\int_{\gamma} f(z)dz = \lim_{n\to\infty} \sum_{j=0}^{n-1} f(z_j)(z_{j+1}-z_j),$$

where
$$z_j = \gamma(t_j)$$
 and $a = t_0 < t_1 < \cdots < t_n = b$.

The Path Integral

$$\int_{\gamma} f(z) dz = \lim_{n \to \infty} \sum_{j=0}^{n-1} f(z_j)(z_{j+1} - z_j),$$

where $z_j = \gamma(t_j)$ and $a = t_0 < t_1 < \cdots < t_n = b$. One can show: If $\gamma : [a, b] \to \mathbb{C}$ is a smooth curve and f is continuous on γ , then

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt.$$

Proof Idea:

$$\sum_{j=0}^{n-1} f(z_j)(z_{j+1} - z_j) = \sum_{j=0}^{n-1} f(\gamma(t_j)) \frac{\gamma(t_{j+1}) - \gamma(t_j)}{t_{j+1} - t_j} (t_{j+1} - t_j)$$

$$\to \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt \text{ as } n \to \infty.$$

Integrals over Complex-Valued Functions

Note: If $g: [a,b] \to \mathbb{C}$, g(t) = u(t) + iv(t), then

$$\int_a^b g(t)dt = \int_a^b u(t)dt + i \int_a^b v(t)dt.$$

Examples

• Alternatively:
$$\int_0^{\pi} e^{it} dt = -ie^{it}\Big|_0^{\pi} = -ie^{i\pi} + ie^0 = 2i.$$

•
$$\int_0^1 (t+i)dt = \left(\frac{1}{2}t^2 + it\right)\Big|_0^1 = \frac{1}{2} + i.$$

$$\int_{|z|=1}^{1} \frac{1}{z} dz = ?$$
Let $\gamma(t) = e^{it}$, $0 \le t \le 2\pi$. Then $\gamma'(t) = ie^{it}$, so:
$$\int_{|z|=1}^{1} \frac{1}{z} dz = \int_{0}^{2\pi} \frac{1}{\gamma(t)} \gamma'(t) dt$$

$$= \int_{0}^{2\pi} \frac{1}{e^{it}} ie^{it} dt$$

$$= i \int_{0}^{2\pi} dt$$

$$= it|_{0}^{2\pi} = 2\pi i.$$

$$\gamma(t)=e^{it},\quad 0\leq t\leq 2\pi,\quad \gamma'(t)=ie^{it}$$

$$\int_{|z|=1} z \, dz = ?$$

$$\int_{|z|=1} z \, dz = \int_0^{2\pi} \gamma(t) \gamma'(t) \, dt = \int_0^{2\pi} e^{it} i e^{it} \, dt$$

$$= i \int_0^{2\pi} e^{2it} \, dt = \frac{1}{2} e^{2it} \Big|_0^{2\pi}$$

$$= \frac{1}{2} (e^{4\pi i} - e^0) = 0.$$

$$\gamma(t) = e^{it}, \quad 0 \le t \le 2\pi, \quad \gamma'(t) = ie^{it}$$

$$\int_{|z|=1} \frac{1}{z^2} dz = \int_0^{2\pi} \frac{1}{\gamma^2(t)} \gamma'(t) dt = \int_0^{2\pi} \frac{ie^{it}}{e^{2it}} dt$$
$$= \int_0^{2\pi} ie^{-it} dt = -e^{-it} \Big|_0^{2\pi}$$
$$= -e^{-2\pi i} + e^0 = 0.$$

In general:

$$\int_{|z|=1} z^m dz = \begin{cases} 2\pi i & \text{, if } m = -1 \\ 0 & \text{, otherwise.} \end{cases}$$

Next: More examples and first facts.