Прикладные модели оптимизации

Доцент, к.ф.-м.н., доцент кафедры № 43 *Фаттахова Мария Владимировна mvfa@yandex.ru*

Тема 1. Задача линейного программирования

Лекция 2

Пример 1

Студент Джек решил распределить свое дневное время (10 часов) между учебой и игрой в баскетбол. Привлекательность игрового времени он оценивает в два раза выше, чем привлекательность времени, затраченного на учебу. Но имея совесть и чувство долга, Джек решил, что время игры не должно превышать время учебы. Кроме того, он заметил, что если выполнять все задания, на игру останется не более 4 часов в день.

Помогите Джеку распределить его дневное время так, чтобы он получил максимальное удовольствие и от учебы, и от игры.

Допустимое и оптимальное решения ЗЛП

Допустимое решение – любой набор переменных решения (т.е. вектор $X = (x_1, x_2, ..., x_n)$), удовлетворяющих *ограничениям*.

Оптимальное решение ЗЛП – допустимое решение доставляющее максимум (минимум) целевой функции при заданных ограничениях:

$$X^* = (x_1^*, x_2^*, ..., x_n^*),$$

Значение ЗЛП

Наибольшее (наименьшее) значение целевой функции – *значение ЗЛП*:

$$L(X^*) = L(x_1^*, x_2^*, ..., x_n^*) = L^*$$

Решить задачу ЛП – означает найти оптимальное решение этой задачи и ее значение.

Особенности графического (геометрического) метода

- Основан на построении множества допустимых решений.
- Применим только для задач малой размерности (2-3 переменные).
- Теорема об оптимальных точках: если в ЗЛП существует оптимальное решение, то существует и оптимальная экстремальная* (угловая) точка.

*угловая точка множества допустимых решений ЗЛП.

Решение задачи Джека

 $\max z = \max(x_1 + 2x_2)$

$$\int x_1 + x_2 = 10 (1)$$

$$\begin{cases} x_1 + x_2 = 10 & (1) \\ x_1 - x_2 \ge 0 & (2) \\ x_2 \le 4 & (3) \end{cases}$$

$$x_2 \le 4 \tag{3}$$

$$x_1 \ge 0, x_2 \ge 0$$

 x_1

$$A: \begin{cases} x_1 + x_2 = 10 \\ x_2 = 4 \end{cases}$$

$$x^* = (x_1^*, x_2^*) = (6, 4)$$

$$z^* = 14$$

Число решений ЗЛП

Неограниченное множество ДР

Неограниченное множество ДР

Неограниченное множество ДР

- 1. Неограниченность множества допустимых решений может привести к неограниченному решению.
- 2. Практически: не хватает ограничения в постановке задачи!

Пустое множество ДР

Пустое множество ДР

- Нет допустимого решения нет оптимального решения.
- 2. Практически: ошибки в логике вербальной постановки!

Случай альтернативных решений

Случай альтернативных решений

- 1. Чтобы выписать множество *AB* необходимо найти координаты *A* и *B* и написать уравнение отрезка.
- 2. Практически: ПЭВМ находит только одно из оптимальных решений!

При решении задачи ЛП возможны случаи:

- 1. Задача ЛП имеет единственное решение.
- 2. Задача ЛП имеет *бесконечное множество* решений.
- 3. Задача ЛП не имеет решений:
- неограниченность множества ДР;
- отсутствие допустимых решений (пустота множества ДР).

Анализ решения на чувствительность (постоптимальный анализ)

Пример 2

$$\begin{cases} x_1 + x_2 \le 4 & (1) \\ 5x_1 + 2x_2 \le 10 & (2) \\ x_1 \le 1, 5 & (3) \\ x_1 \ge 0, x_2 \ge 0 \end{cases}$$

$$A : \begin{cases} x_1 + x_2 = 4 \\ 5x_1 + 2x_2 = 10 \end{cases}$$
5,3)

 $\max L = \max(5x_1 + 3x_2)$

$$x^* = (x_1^*, x_2^*) = \left(\frac{2}{3}, \frac{10}{3}\right)$$

$$L^* = \frac{40}{3}$$

Анализ решения на чувствительность (постоптимальный анализ)

Пусть найдено оптимальное решение:

$$X^* = (x_1^*, x_2^*)$$

$$L^* = L(X^*) = c_1 x_1^* + c_2 x_2^*$$

Постоптимальный анализ включает три задачи

Первая задача анализа на чувствительность

Как запасы ресурса влияют на оптимальное решение?

Первый вопрос 1-ой задачи анализа:

Каков статус ресурса? (Дефицитный, недефицитный).

Понятие активного ограничения

Ограничение под номером i называется активным ограничением для допустимого решения $X=(x_1, x_2)$, если оно выполняется на этом решении как равенство.

Пример 2

$$\max L = \max(5x_1 + 3x_2)$$

$$\begin{cases} x_1 + x_2 \le 4 & (1) \\ 5x_1 + 2x_2 \le 10 & (2) \\ x_1 \le 1, 5 & (3) \end{cases}$$

$$x_1 \ge 0, x_2 \ge 0$$

$$x^* = (x_1^*, x_2^*) = (\frac{2}{3}, \frac{10}{3})$$

$$L^* = \frac{40}{3}$$

Понятие дефицитного ресурса

Ресурс под номером i называется $\partial e \phi u u u m h b m$, если ограничение под номером i является активным ∂ ля оптимального решения $X^* = (x_1^*, x_2^*)$.

Пример 2

5

$$\begin{cases} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_4 \\ x_5 \\ x_6 \\ x_6 \\ x_6 \\ x_6 \\ x_8 \\ x_$$

$$\max L = \max(5x_1 + 3x_2)$$

$$\begin{cases} x_1 + x_2 \le 4 & (1) \\ 5x_1 + 2x_2 \le 10 & (2) \\ x_1 \le 1, 5 & (3) \end{cases}$$

$$x_1 \ge 0, x_2 \ge 0$$

$$x^* = (x_1^*, x_2^*) = \left(\frac{2}{3}, \frac{10}{3}\right)$$

$$L^* = \frac{40}{3}$$

Статус ресурса

В оптимальной

точке

Активное ограничение 🕽 Дефицитный ресурс

В оптимальной

точке

Неактивное ограничение 🕽 Недефицитный ресурс

Цели первой задачи анализа:

- найти максимальное *увеличение* запаса *дефицитного ресурса* для увеличения значения ЦФ;
- найти максимальное уменьшение запаса недефицитного ресурса при сохранении оптимального решения.

Первая задача анализа на чувствительность

Как запасы ресурса влияют на оптимальное решение?

Первый вопрос 1-ой задачи анализа: Каков **статус** ресурса? (Дефицитный, недефицитный).

Второй вопрос 1-ой задачи анализа:

- Для дефицитного ресурса: *На сколько можно увеличить* запас **дефицитного** ресурса <u>для увеличения</u> полученного <u>оптимального значения ЦФ</u>?
- Для недефицитного ресурса: На сколько можно уменьшить запас **недефицитного** ресурса при <u>сохранении оптимального решения</u>?

Пример 2

- 1. Ресурс 1 дефицитный (ограничение 1 активное в оптимальной точке).
- 2. Ресурс 2 дефицитный (ограничение 2 активное в оптимальной точке).

3. Ресурс 3 — недефицитный (ограничение 3 — неактивное в оптимальной точке).

Пример 2. Ресурс 1

$$x_0 = B - (0.5)$$
 $x_1 + x_2 = 4 \implies b_1 = 4$

(3)

$$\max L = \max(5x_1 + 3x_2)$$

$$\begin{cases} x_1 + x_2 \le 4 & (1) \\ 5x_1 + 2x_2 \le 10 & (2) \end{cases}$$

$$\begin{cases} x_1 + x_2 \le 4 & (1) \\ 5x_1 + 2x_2 \le 10 & (2) \\ x_1 \le 1, 5 & (3) \\ x_1 \ge 0, x_2 \ge 0 & \end{cases}$$

$$x_2$$
 $B=(0,5)$ $x_1 + x_2 = 4 \implies b_1 = 4$

$$x_1 + x_2 = b_1'$$
 B

Пример 2. Ресурс 2

$$K_2 \uparrow K = (1,5; x_2) = (1,5; 2,5)$$

$$5x_1 + 2x_2 = b_2$$

$$b_2 = b_2$$

$$b_2 = 10, b'_2 = 5 \cdot 1, 5 + 2 \cdot 2, 5 = 12, 5$$

 $\Delta b_2 = 12, 5 - 10 = 2, 5$

Пример 2. Ресурс 3

$$A \cdot x^* - \left(x^* \cdot x^*\right) -$$

$$\max L = \max(5x_1 + 3x_2)$$

$$\begin{cases} x_1 + x_2 \le 4 & (1) \\ 5 + 2 \le 4 & (2) \end{cases}$$

$$b_3$$

$$b_3 = 1,5; \quad b_3' = \frac{2}{3}$$

$$\Delta b_3 = \frac{2}{3} - \frac{3}{2} = -\frac{2}{6} = -\frac{1}{3}$$

$$\Delta L = 0$$

$$\Delta L = \frac{\chi_1}{1.5}$$

Вывод по примеру 2

$$\max L = \max(5x_1 + 3x_2)$$

$$\begin{cases} x_1 + x_2 \le 4 & (1) \\ 5x_1 + 2x_2 \le 10 & (2) \\ x_1 \le 1, 5 & (3) \end{cases}$$

$$x_1 \ge 0, x_2 \ge 0$$

Ресурс номер (ограничение)	Статус	На сколько можно <i>тах</i> увеличить/ уменьшить	Прирост оптимального значения ЦФ
1	Дефицит.	1	5/3
2	Дефицит.	2,5	5/3
3	Недефиц.	-1/3	0

Вторая задача анализа на чувствительность

Увеличение объема какого ресурса наиболее выгодно?

 $y_{i} = \frac{\text{Максимальное приращение оптимального значения } L^{*}}{\text{Максимальное допустимое значение прироста ресурса } i}$

 y_i — **теневая цена** (двойственная оценка) ресурса i — показывает на сколько изменится максимальная прибыль при увеличении запаса этого ресурса на единицу.

Если ресурс недефицитный, оптимальное решение не изменяется, прибыль не растет:

$$y_i = 0$$

Пример 2

Первый ресурс:

Третий ресурс:

$$y_1 = \frac{\frac{5}{3}}{1} = \frac{5}{3}$$

$$y_2 = \frac{\frac{5}{3}}{2.5} = \frac{2}{3}$$

$$y_3 = \frac{0}{-\frac{1}{3}} = 0$$

Вывод по второй задаче анализа:

Наиболее выгодно увеличивать запас **ресурса 1** (если имеется возможность увеличения его на единицу).

Запасы ресурса 3 можно сократить на 1/3 при сохранении оптимального решения.

Третья задача анализа на чувствительность

В каких пределах допустимо изменение коэффициентов ЦФ без изменения оптимального решения?

Пример.

Пример.

Пример.

Третья задача анализа на чувствительность

Пусть
$$L = c_1 x_1 + c_2 x_2 - \text{Ц}\Phi$$
, а
$$\begin{cases} a_{11} x_1 + a_{12} x_2 = b_1 \\ a_{21} x_1 + a_{22} x_2 = b_2 \end{cases}$$

- два <u>активных</u> ограничения в <u>оптимальной</u> точке $X^* = (x_1^*, x_2^*)$.

Если выполняются неравенства: $\frac{a_{11}}{a_{12}} \le \frac{c_1}{c_2} \le \frac{a_{21}}{a_{22}}$,

то $X^* = (x_1^*, x_2^*)$ **остается оптимальным** решением задачи.

Пример 2. Диапазон оптимальности (интервал устойчивости)

$$L = 5x_1 + 3x_2$$

$$1 \le \frac{c_1}{c_2} \le \frac{5}{2},$$

то план
$$X^* = \left(\frac{2}{3}, \frac{10}{3}\right)$$
 остается оптимальным.

В частности, если c_2 =3, то для c_1 : $3 \le c_1 \le \frac{15}{2}$

Если $c_1 = 5$, то для c_2 : $2 \le c_2 \le 5$

Решение задачи Джека

 $\max z = \max(x_1 + 2x_2)$

$$x_1 + x_2 = 10 (1)$$

$$\begin{cases} x_1 + x_2 = 10 & (1) \\ x_1 - x_2 \ge 0 & (2) \\ x_2 \le 4 & (3) \end{cases}$$

$$x_2 \le 4 \tag{3}$$

$$x_1 \ge 0, x_2 \ge 0$$

$$A: \begin{cases} x_1 + x_2 = 10 \\ x_2 = 4 \end{cases}$$

$$x^* = (x_1^*, x_2^*) = (6, 4)$$

$$z^* = 14$$