Learning From Data Lecture 20 Multilayer Perceptron

Multiple layers Universal Approximation The Neural Network

M. Magdon-Ismail CSCI 4100/6100

The Neural Network - Biologically Inspired

Planes Don't Flap Wings to Fly

Engineering success may start with biological inspiration, but then take a totally different path.

XOR: A Limitation of the Linear Model

Decomposing XOR

$$f = h_1 \overline{h_2} + \overline{h_1} h_2$$

 x_2

 x_1

$$h_1(\mathbf{x}) = \operatorname{sign}(\mathbf{w}_1^{\mathrm{T}}\mathbf{x})$$

$$h_2(\mathbf{x}) = \operatorname{sign}(\mathbf{w}_2^{\mathrm{T}}\mathbf{x})$$

Perceptrons for OR and AND

$$OR(x_1, x_2) = sign(x_1 + x_2 + 1.5)$$

$$AND(x_1, x_2) = sign(x_1 + x_2 - 1.5)$$

Representing f Using or and and

$$f = h_1 \overline{h_2} + \overline{h_1} h_2$$

Representing f Using or and and

$$f = h_1 \overline{h_2} + \overline{h_1} h_2$$

Representing f Using or and and

$$f = h_1 \overline{h_2} + \overline{h_1} h_2$$

The Multilayer Perceptron (MLP)

More layers allow us to implement f

These additional layers are called *hidden layers*

Universal Approximation

Any target function f that can be decomposed into linear separators can be implemented by a 3-layer MLP.

Universal Approximation

A sufficiently smooth separator can "essentially" be decomposed into linear separators.

Minimizing $E_{\rm in}$

A combinatorial problem even harder with the MLP than the Perceptron.

 $E_{\rm in}$ is not smooth (due to sign function), so cannot use gradient descent.

 $sign(x) \approx tan(x) \longrightarrow gradient descent to minimize E_{in}$.

The Neural Network

input layer $\ell=0$

hidden layers $0 < \ell < L$

output layer $\ell = L$

Zooming into a Hidden Node

layer ℓ parameters

signals in	$\mathbf{s}^{(\ell)}$	$d^{(\ell)}$ dimensional input vector
outputs	$\mathbf{x}^{(\ell)}$	$d^{(\ell)} + 1$ dimensional output vector
weights in	$\mathrm{W}^{(\ell)}$	$(d^{(\ell-1)}+1)\times d^{(\ell)}$ dimensional matrix
weights out	$W^{(\ell+1)}$	$(d^{(\ell)} + 1) \times d^{(\ell+1)}$ dimensional matrix

layers $\ell=0,1,2,\ldots,L$ layer ℓ has "dimension" $d^{(\ell)}\implies d^{(\ell)}+1$ nodes

$$\mathbf{W}^{(\ell)} = \begin{bmatrix} \mathbf{w}_1^{(\ell)} & \mathbf{w}_2^{(\ell)} & \cdots & \mathbf{w}_{d^{(\ell)}}^{(\ell)} \\ & & & \vdots & & \end{bmatrix}$$

The Neural Network

