

Cambridge International AS & A Level

COMPUTER SCIENCE 9618/23

Paper 2 Fundamental Problem-solving and Programming Skills

May/June 2021

INSERT 2 hours

INFORMATION

- This insert contains all the resources referred to in the questions.
- You may annotate this insert and use the blank spaces for planning. **Do not write your answers** on the insert.

Note: An error occurs if a function call is not properly formed, or if the parameters are incorrect.

STRING Functions

LEFT (ThisString : STRING, x : INTEGER) RETURNS STRING returns leftmost x characters from ThisString

Example: LEFT ("ABCDEFGH", 3) returns "ABC"

RIGHT (ThisString : STRING, x : INTEGER) RETURNS STRING returns rightmost x characters from ThisString

Example: RIGHT ("ABCDEFGH", 3) returns "FGH"

MID (This String: STRING, x: INTEGER, y: INTEGER) RETURNS STRING returns a string of length y starting at position x from This String

Example: MID ("ABCDEFGH", 2, 3) returns "BCD"

LENGTH (ThisString: STRING) RETURNS INTEGER returns the integer value representing the length of ThisString

Example: LENGTH ("Happy Days") returns 10

LCASE (ThisChar: CHAR) RETURNS CHAR

returns the character value representing the lower case equivalent of ThisChar Characters that are not upper case alphabetic are returned unchanged

Example: LCASE('W') returns 'w'

UCASE (ThisChar: CHAR) RETURNS CHAR

returns the character value representing the upper case equivalent of ThisChar Characters that are not lower case alphabetic are returned unchanged

Example: UCASE('a') returns 'A'

TO_UPPER(ThisString: STRING) RETURNS STRING returns a string formed by converting all characters of ThisString to upper case

Example: TO UPPER ("Error 803") returns "ERROR 803"

TO_LOWER(ThisString : STRING) RETURNS STRING returns a string formed by converting all characters of ThisString to lower case

Example: TO LOWER ("JIM 803") returns "jim 803"

NUM_TO_STR(x : <data type>) RETURNS STRING

returns a string representation of a numeric value

Note: <data type> may be REAL or INTEGER

Example: NUM TO STR (87.5) returns "87.5"

STR_TO_NUM(x : <data type1>) RETURNS <data type2>

returns a numeric representation of a string

Note: <data type1> may be CHAR or STRING Note: <data type2> may be REAL or INTEGER

Example: STR TO NUM ("23.45") returns 23.45

IS NUM(ThisString : STRING) RETURNS BOOLEAN

returns the value TRUE if ThisString represents a valid numeric value

Note: <data type> may be CHAR or STRING

Example: IS_NUM("12.36") returns TRUE Example: IS_NUM("-12.36") returns TRUE Example: IS_NUM("12.3a") returns FALSE

ASC (ThisChar : CHAR) RETURNS INTEGER

returns an integer value (the ASCII value) of ThisChar

Example: ASC ('A') returns 65

CHR(x: INTEGER) RETURNS CHAR

returns the character whose integer value (the ASCII value) is x

Example: CHR (87) returns 'W'

NUMERIC Functions

INT(x : REAL) RETURNS INTEGER

returns the integer part of \boldsymbol{x}

Example: INT (27.5415) returns 27

RAND(x: INTEGER) RETURNS REAL

returns a real number in the range 0 to x (**not** inclusive of x)

Example: RAND (87) could return 35.43

DATE Functions

Note: Date format is assumed to be DDMMYYYY unless otherwise stated.

DAY (ThisDate: DATE) RETURNS INTEGER returns the current day number from ThisDate

Example: DAY (4/10/2003) returns 4

MONTH (ThisDate : DATE) RETURNS INTEGER returns the current month number from ThisDate

Example: MONTH (4/10/2003) returns 10

YEAR (ThisDate: DATE) RETURNS INTEGER returns the current year number from ThisDate

Example: YEAR (4/10/2003) returns 2003

DAYINDEX (ThisDate : DATE) RETURNS INTEGER

returns the current day index number from ThisDate where Sunday = 1, Monday = 2,

Tuesday = 3 etc.

Example: DAYINDEX (12/05/2020) returns 3

SETDATE (Day, Month, Year : INTEGER) RETURNS DATE

returns a variable of type DATE

NOW() RETURNS DATE returns the current date

OTHER Functions

EOF (FileName : STRING) RETURNS BOOLEAN

returns TRUE if there are no more lines to be read from file FileName

Note: This function will generate an ERROR if the file is not already open in READ mode

OPERATORS

&	Concatenates (joins) two strings Example: "Summer" & " " & "Pudding" evaluates to "Summer Pudding" Note: This operator may also be used to concatenate a character with a string
AND	Performs a logical AND on two Boolean values Example: TRUE AND FALSE evaluates to FALSE
OR	Performs a logical OR on two Boolean values Example: TRUE OR FALSE evaluates to TRUE
NOT	Performs a logical NOT on a Boolean value Example: NOT TRUE evaluates to FALSE
MOD	Finds the remainder when one number is divided by another Example: 10 MOD 3 evaluates to 1
DIV	Finds the quotient when one number is divided by another Example 10 DIV 3 evaluates to 3

Note: An error is generated if an operator is used with a value or values of an incorrect type.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		

3 0 1 4 9 9 4 8 4 1

COMPUTER SCIENCE

9618/12

Paper 1 Theory Fundamentals

May/June 2021

1 hour 30 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use an HB pencil for any diagrams, graphs or rough working.
- Calculators must not be used in this paper.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- No marks will be awarded for using brand names of software packages or hardware.

1	Raj owns houses that other people rent from him. He has a database that stores details about
	the people who rent houses, and the houses they rent. The database, HOUSE RENTALS, has the
	following structure:

```
CUSTOMER(CustomerID, FirstName, LastName, DateOfBirth, Email)
HOUSE(HouseID, HouseNumber, Road, Town, Bedrooms, Bathrooms)
RENTAL(RentalID, CustomerID, HouseID, MonthlyCost, DepositPaid)
```

(a) Give the definition of the following database terms, using an example from the database HOUSE RENTALS for each definition.

Term	Definition and example
Field	
Entity	
Foreign key	

[6]

(b) Tick (✓) one box to identify whether the database <code>HOUSE_RENTALS</code> is in Third Normal Form (3NF) or not in 3NF.

Justify your choice using one or more examples from the database HOUSE RENTALS.

In 3NF
Not in 3NF

Justification	
	[2]

(c) Example data from the table ${\tt RENTAL}$ are given:

RentalID	CustomerID	HouseID	MonthlyCost	DepositPaid
1	22	15B5L	1000.00	Yes
2	13	3F	687.00	No
3	1	12AB	550.00	Yes
4	3	37	444.50	Yes

(I) Complete the following Data Definition Language (DDL) statement to def RENTAL.					
	CREATE (
	RentalID INTEGER NOT NULL,				
	CustomerID INTEGER NOT NULL,				
	HouseID(5) NOT NULL,				
	MonthlyCostNOT NULL,				
	DepositPaid BOOLEAN NOT NULL,				
	(RentalID)				
); [4				
(ii)	Write a Data Manipulation Language (DML) script to return the first name and last name of all customers who have not paid their deposit.				

		Free	Open		Commerc	rial
	Tick (✓) one or more boxes in each	h row to identify	y the licence	(s) each state	ment descri	bes.
(c)	The final game will be released und	ler a licence.				
						[3]
	Describe how the computer would u	use Artificial Int	elligence (Al) to play the b	oard game.	
(b)	The team are developing a computers) against the computer.	nei game whe	ie lile usei	piays a DOald	game (Suc	JII 85
(b)						
						[2]
(a)	Explain the reasons why it is important members.	oortant that Ais	sha acts eth	ically in relat	ion to her	team
Aish	na manages a team of software deve	elopers.				

Statement	Free Software Foundation	Open Source Initiative	Shareware	Commercial Software
The user can edit the source code				
The user must always pay before being able to use the software				
The user can redistribute the software				
The user always gets a trial period				

3 A logic expression is given:

(a) Draw the logic circuit for the given expression.

(b) Complete the truth table for the logic expression:

Α	В	С	Working space	S
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

4 The table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC), and an Index Register (IX).

Ins	truction	Evalenation
Opcode	Operand	Explanation
LDM	#n	Immediate addressing. Load the number n to ACC
LDD	<address></address>	Direct addressing. Load the contents of the location at the given address to ACC
STO	<address></address>	Store contents of ACC at the given address
ADD	<address></address>	Add the contents of the given address to the ACC
INC	<register></register>	Add 1 to the contents of the register (ACC or IX)
DEC	<register></register>	Subtract 1 from the contents of the register (ACC or IX)
CMP	<address></address>	Compare the contents of ACC with the contents of <address></address>
JPE	<address></address>	Following a compare instruction, jump to <address> if the compare was True</address>
JPN	<address></address>	Following a compare instruction, jump to <address> if the compare was False</address>
JMP	<address></address>	Jump to the given address
IN		Key in a character and store its ASCII value in ACC
OUT		Output to the screen the character whose ASCII value is stored in ACC
END		Return control to the operating system
# denotes	a denary numbe	er, e.g. #123

The current contents of the main memory and selected values from the ASCII character set are:

70	IN
71	CMP 100
72	JPE 80
73	CMP 101
74	JPE 76
75	JMP 80
76	LDD 102
77	INC ACC
78	STO 102
79	JMP 70
80	LDD 102
81	DEC ACC
82	STO 102
83	JMP 70
	J
100	
100	68
101	65
102	100

ASCII code table (selected codes only)

ASCII code	Character
65	A
66	В
67	С
68	D

(a) Complete the trace table for the program currently in main memory when the following characters are input:

A D

Do not trace the program any further when the third input is required.

Instruction	ACC	Memory address		
address	ACC	100	101	102
		68	65	100

(b) Some bit manipulation instructions are shown in the table:

Instruction Opcode Operand		Evalenction
		- Explanation
AND	#n	Bitwise AND operation of the contents of ACC with the operand
AND	<address></address>	Bitwise AND operation of the contents of ACC with the contents of <address></address>
XOR	#n	Bitwise XOR operation of the contents of ACC with the operand
XOR	<address></address>	Bitwise XOR operation of the contents of ACC with the contents of <address></address>
OR	#n	Bitwise OR operation of the contents of ACC with the operand
OR	<address></address>	Bitwise OR operation of the contents of ACC with the contents of <address></address>

<address> can be an absolute address or a symbolic address # denotes a denary number, e.g. #123

The contents of the memory address 300 are shown:

Bit Number	7	6	5	4	3	2	1	0
300	0	1	1	0	0	1	1	0

(i)	The contents of memory address 300 represent an unsigned binary integer.
	Write the denary value of the unsigned binary integer in memory address 300.
	[1]
(ii)	An assembly language program needs to test if bit number 2 in memory address 300 is a $1.$
	Complete the assembly language instruction to perform this test.
	#4
(iii)	An assembly language program needs to set bit numbers 4 , 5 , 6 and 7 to 0 , but keep bits 0 to 3 with their existing values.
	Write the assembly language instruction to perform this action.
	[2]

Set	n uses a computer for work.
(a)	Complete the following descriptions of internal components of a computer by writing the missing terms.
	The transmits the signals to coordinate events based
	on the electronic pulses of the
	The carries data to the components, while the
	carries the address where data needs to be written to
	or read from.
	The performs mathematical operations and
	logical comparisons. [5]
(b)	Describe the ways in which the following factors can affect the performance of his laptop computer.
	Number of cores
	Clock speed
	[4]

;)	Set	h accesses both software and data using cloud computing.	
	(i)	Give two benefits of storing data using cloud computing.	
		1	
		2	
			[2]
	(ii)	Give two drawbacks of Seth using cloud computing.	
		1	
		2	
			 [2]

(d) Draw one line from each term to its most appropriate description.

Term Description It is only visible to devices within the Local Area Network (LAN) Public IP address It increments by 1 each time the device connects to the internet A new one is reallocated each time a device Private IP address connects to the internet It can only be allocated to a router Dynamic IP address It is visible to any device on the internet Static IP address It does not change each time a device connects to the internet

[4]

A c	ompu	iter uses the ASCII character set.	
(a)		te the number of characters that can be represented by the ASCII character set and ended ASCII character set.	the
	ASC	CII	
	Exte	ended ASCII	[2]
(b)	Exp	plain how a word such as 'HOUSE' is represented by the ASCII character set.	
(c)		code is a different character set.	
	The	Unicode value for the character '1' is denary value 49.	
	(i)	Write the hexadecimal value for the Unicode character '1'.	
			[1]
	(ii)	Write the denary value for the Unicode character '5'.	
			[1]

Jen	nifer	is writing a computer program for her A Level homework.
(a)	Jen	nifer uses a program library to help her write her computer program.
	Des	scribe how a program library can be used while writing a computer program.
		[2]
(b)	Jen	nifer uses an Integrated Development Environment (IDE) to write her computer program.
	(i)	The IDE allows Jennifer to use both an interpreter and a compiler while creating her computer program.
		Describe the ways in which Jennifer can use both a compiler and an interpreter while developing the program.
		[4]
	(ii)	Identify two debugging tools that a typical IDE can provide.
	` ,	1
		2
		[2]

	ompany has several security measures in place to prevent unauthorised access to the data on computers.
(a)	Describe the difference between the security and privacy of data.
	[2]
(b)	Each employee has a username and password to allow them to log onto a computer. An employee's access rights to the data on the computers is set to either read-only, or read and write.
	Identify one other software-based measure that could be used to restrict the access to the data on the computers.
(c)	The company is also concerned about threats posed by networks and the internet.
	Identify two threats to the data that are posed by networks and the internet.
	Threat 1
	Threat 2
	[2]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME						
CENTRE NUMBER				CANDIDATE NUMBER		

192714111

COMPUTER SCIENCE

9608/11

Paper 1 Theory Fundamentals

October/November 2021

1 hour 30 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use an HB pencil for any diagrams, graphs or rough working.
- Calculators must not be used in this paper.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- No marks will be awarded for using brand names of software packages or hardware.

An	imag	e can be either a bitmap image or a vector graphic.
(a)	Vec	tor graphics are made up of drawing objects and their properties.
	(i)	State what is meant by a drawing object .
		[1]
	(ii)	Identify four properties of a drawing object.
		1
		2
		3
		4
		[4]
(b)	Ide	ntify three items that are stored in a bitmap file header.
. ,		
	2	
	3	
		[3]

(c)	A bitmap image needs to be compressed before it can be sent by email.
	Describe one lossy and one lossless method of compressing the image.
	Lossy
	Lossless

- 2 Joanne wants to record sound files and videos for uploading to a social media website.
 - (a) The following table contains terms about sound representation and encoding.

Complete the table by writing the definitions for each term.

Term	Definition
Sampling	
Sampling resolution	
Sampling rate	
	rt video using interlaced encoding. nt by interlaced encoding.

© UCLES 2021 9608/11/O/N/21

(b)

3 Server-side scripting is used to access a company database over the Internet.

Steps 1 to 6 describe the sequence of events.

Four of the statements A, B, C, D, E and F are used to complete the sequence.

Letter	Statement
Α	The web server processes the PHP code.
В	The server renders the HTML code and displays the web page.
С	The browser renders the HTML code and displays the web page.
D	The web server returns the (HTML) web page to the client web browser.
E	The web server accesses the page from its hard disk.
F	The web browser processes the PHP code.

Write **one** of the letters **A** to **F** in each appropriate row to complete the sequence.

1.	The browser requests the web page from the web server.	
2.		
3.		
4.	The web server produces the HTML code for the web page.	
5.		
6.		[4]

Oliver needs to increase the secondary storage on his computer. He already has disks.		er needs to increase the secondary storage on his computer. He already has several hard is.
	(a)	Identify two other secondary storage devices that Oliver could use. Each device must be different.
		1
		2[2]
	(b)	Oliver needs a scanner to make digital copies of some paper documents.
		Describe the basic internal operation of a scanner.
		[4]

(c) Oliver wants to upgrade the RAM in his computer. He is not sure whether his computer has Static RAM (SRAM) or Dynamic RAM (DRAM).

Draw **one or more** lines from each type of RAM to its appropriate description(s).

Type of RAM	Description
	Is less expensive to manufacture
SRAM	Needs to be refreshed
	Has more complex circuitry
DRAM	Is often used as cache
	Has faster access time
	[2]

5 Complete the truth table for the following logic expression:

$\mathbf{X} = \mathsf{NOT}(\mathbf{A} \ \mathsf{OR} \ \mathbf{B}) \ \mathsf{AND} \ \mathsf{NOT}(\mathsf{NOT}(\mathbf{B} \ \mathsf{OR} \ \mathbf{C}) \ \mathsf{AND} \ (\mathsf{NOT} \ \mathbf{A}))$

Α	В	С	Working space	x
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[4]

6	(a)	Complete the following sentences that describe parts of a processor in a Von Neumann model for a computer system.
		There are buses that transfer data between components in a computer system.
		The width of the determines the number of directly accessible memory locations.
		The sends signals on the to direct the operation of system components.
		pulses are used to synchronise the components on the motherboard. [5]
	(b)	Describe the stages of the fetch-execute (F-E) cycle.
		[5]

aj	ACC	omputer has an operating system (OS).	
	(i)	State three memory management tasks performed by the OS.	
		1	
		2	
		3	
			[3]
	(ii)	State two input/output device management tasks performed by the OS.	
		1	
		2	
			[2]
(h)	l Itili	ty programs are also provided with the OS.	[4]
ω,		ntify and describe two different utility programs.	
	iuei	inly and describe two different duffly programs.	
	Utili	ty program	
	Des	cription	
	Utili	ty program	
	Des	cription	
			[4]
			17

(c)	Some operating systems include library programs.
	State three benefits to a programmer of using library programs.
	1
	2
	3
	ro1
	[3]

8 The following table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC), and an Index Register (IX).

Instruction		Fundanation		
Op code	Operand	- Explanation		
LDD	<address></address>	Direct addressing. Load the contents of the location at the given address to the ACC		
LDI	<address></address>	Indirect addressing. The address to be used is at the given address. Load the contents of this second address to the ACC		
STO	<address></address>	Store the contents of the ACC at the given address		
ADD	<address></address>	Add the contents of the given address to the ACC		
INC	<register></register>	Add 1 to the contents of the register (ACC or IX)		
JMP	<address></address>	Jump to the given address		

The current contents of the main memory are:

Address	Instruction	
130	LDI 160	
131	ADD 153	
132	STO 153	
133	LDD 160	
134	INC ACC	
135	STO 160	
136	JMP 130	
150	13	
151	23	
152	11	
153	0	
160	150	

Complete the trace table for $two\ iterations$ of the loop.

Instruction	ACC	Memory address					
address		150	151	152	153	160	
		13	23	11	0	150	

		14			
An airline company uses a relational database to store data about passengers and flights.					
Part of	the database is shown.				
PASSEI	NGER(<u>PassengerID</u> , Firs	tName, LastName)			
FLIGHT	Γ(<u>FlightID</u> , FlightDate	, FlightTime)			
PASSEI	NGER_LIST(FlightID, Pa	ssengerID, SeatNo)			
	omplete the entity-relationship ples.	(E-R) diagram to show the rela	ationships between the giver		
	PASSENGER		FLIGHT		
		PASSENGER_LIST			
	e following is example data fo	or the table FLIGHT:	[2		
(b) Th					
(b) Th	FlightID	FlightDate	FlightTime		
(b) Th	FlightID MO126	FlightDate 05/05/21	FlightTime 09:00		
(b) Th	_	_			

10 Janaka is developing a new computer program. She decides to use an interpreter instead of a

	com	piler.					
	(a)	State three benefits of using an interpreter.					
		1					
		2					
		3					
			[3]				
	(b)	State one drawback of using an interpreter.					
			[1]				
11		Internet uses a client-server model.					
		Describe the role of clients and servers on the Internet.					
			[2]				
	(b)	Computers on the Internet have IP addresses.	[-]				
	(2)	Describe the format of an IP address.					
		bosonibo the format of all if address.					
			••••				
			[3]				

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

3 3 5 7 4 6 9 4

COMPUTER SCIENCE

9618/12

Paper 1 Theory Fundamentals

May/June 2023

1 hour 30 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use an HB pencil for any diagrams, graphs or rough working.
- Calculators must not be used in this paper.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- No marks will be awarded for using brand names of software packages or hardware.

This document has 16 pages. Any blank pages are indicated.

1

A co	A company has a LAN (local area network).				
(a)	Give two benefits of connecting computers to a LAN.				
	1				
	2				
	[2]				
(b)	Give two characteristics of a LAN.				
	1				
	2				
	[2]				
(c)	One of the company's offices has one server and four computers connected in a star topology				
	Draw a diagram to show the layout of the office's star topology.				

(d)	Computers can be connected using Ethernet.
	Describe what is meant by Ethernet .
	[3
(e)	The network runs as a thick-client model.
	Describe what is meant by a thick-client model.
	[2

BLANK PAGE

2 A horse riding school uses a database, Lessons, to store data about lesson bookings.

This database is created and managed using a Database Management System (DBMS).

(a) The table contains names and descriptions of DBMS features and tools.

(b)

Complete the table by writing down the missing names and descriptions.

Name	Description				
Data dictionary					
Query processor					
	A model of a database that is not specific to one DBMS.				
	A software tool that allows the user to create items such as tables, forms and reports.				
[4] Explain the reasons why referential integrity is important in a database.					

(c) The database ${\tt Lessons}$ has the following tables:

HORSI	E(<u>HorseID</u> , Name, Height, Age, HorseLevel)
STUDI	ENT (<u>StudentID</u> , FirstName, LastName, RiderLevel, PreferredHorseID)
LESS	ON(<u>LessonID</u> , Date, Time, StudentID, HorseID, LessonContent)
Dates	in this database are stored in the format #DD/MM/YYYY#.
	fields RiderLevel and HorseLevel can only have the values: Beginner, rmediate or Advanced.
(i) D	Describe two methods of validating the field RiderLevel.
1	
2	
	[2]
	Vrite a Structured Query Language (SQL) script to return the names of all the horses nat have the horse level intermediate or beginner.

(iii) The following SQL script should return the number of riders that have the rider level beginner and have a lesson booked on 09/09/2023.

[4]

3 A program is written in assembly language.

(b)

(a) The program is converted into machine code by a two-pass assembler.

Draw **one or more** lines to identify the pass or passes in which each action takes place.

Action		Pass		
generates object code				
reads the source code one line at a time		first		
removes white space		second		
adds labels to the symbol table		[3]		
Assembly language statements can use different	ent modes of addressing.			
Complete the following description of address	ing modes.			
addressing is who	en the operand holds the	memory address of		
the data.				
addressing is who	en the operand holds a m	emory address that		
stores the memory address of the data.				

4

Dat	a in a computer is stored in binary form.	
(a)	State the number of unique binary values that can be represented in 16 bits.	
		[1]
(b)	Give the 8-bit one's complement representation of the denary number −120.	
	Show your working.	
	Working	
	Answer	
()		[2]
(c)		
	Show your working.	
	Working	
	Answer	 [2]
(d)		
(/		
	01001111	
		[1]

A st	A student has purchased a new laptop.					
(a)	The laptop is designed using the Von Neumann model for a computer system.					
	Identify two types of signal that a control bus can transfer.					
	1					
	2					
	[2]					
(b)	Describe two ways the hardware of a laptop can be upgraded to improve the performance and explain how each upgrade improves the performance.					
	1					
	2					
	[4]					

(c)	Per	pherals are connected to the laptop using ports.	
	(i)	A printer is connected to a Universal Serial Bus (USB) port.	
		Describe how data is transmitted through a USB port.	
			[1]
	(ii)	A monitor is connected to the laptop using a different type of port.	
		Identify one other type of port that can be used to connect the monitor.	
			[1]
(d)	The	laptop has systems software.	
	(i)	Describe how the Operating System (OS) manages processes in the computer.	
			[5]
	(ii)	Describe the purpose of utility software in a computer.	
			[2]

6 (a) Draw the logic circuit for this logic expression:

$$Z = (R XOR S) AND (NOT T NOR P)$$

(b) Complete the truth table for this logic expression:

Z = (NOT P OR Q) XOR (R NOR Q)

Р	Q	R	Working space	Z
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[2]

A software developer is working in a team writing a program for a client.

7

(a)	The	developer is writing a new program library to be used by the other team members.
	(i)	Define the term program library .
		[2]
	(ii)	Explain two benefits to the developer of choosing to create a Dynamic Link Library (DLL).
		1
		2
<i>a</i> .		[4]
(b)	The	development team needs to use a translator whilst writing the program for the client.
		ntify whether an interpreter or a compiler would be more appropriate at this stage of the gram development.
	Jus	tify your choice.
	Trai	nslator
	Jus	tification
		[3]

(c) The development team uses an Integrated Development Environment (IDE).Complete the table by describing the typical features found in an IDE.

Feature	Description			
Breakpoints				
Dynamic syntax checks				
Context-sensitive prompts				
Single stepping				
One section of the program being developed will convert user's speech into commands.				

	[+]
One section of the program being developed will convert user's speech into commands.	
Explain how Artificial Intelligence (AI) can be used in this program.	
	[3]

© UCLES 2023 9618/12/M/J/23

(d)

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

7000445196

COMPUTER SCIENCE

9608/11

Paper 1 Theory Fundamentals

May/June 2021

1 hour 30 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use an HB pencil for any diagrams, graphs or rough working.
- Calculators must not be used in this paper.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- No marks will be awarded for using brand names of software packages or hardware.

1 Draw **one** line from each software licence to its correct description.

Software licence

Description

A limited version of the software could be released and downloaded by anyone, but users would need to pay to unlock additional features.

Shareware

Open Source

A licence **must** be purchased to use the software.

Users **cannot** download the software over the Internet.

Commercial

The original source code is made available for other developers who can then modify and improve the software.

[3]

2 Zak designs a logo for his company. He uses vector graphics software to create the logo.

(a)	One of the drawing objects in the logo is a circle.	
	Identify four properties of the circle.	
	1	
	2	
	3	
	4	
		[4
(b)	Describe what is meant by a drawing list using the logo as an example.	

(c)	Zak could have used a bitmapped image for the logo.
	Describe two drawbacks of using a bitmapped image for the logo instead of a vector graphic.
	Drawback 1
	Drawback 2
	[4]
(d)	Zak's company holds details about clients in a database.
	Give three security measures that Zak can implement to make sure that only authorised employees can access the data.
	1
	2
	3
	[3]

BLANK PAGE

3 The table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC), and an Index Register (IX).

Instruction		Explanation					
Op code	Operand	Explanation					
LDD	<address></address>	Direct addressing. Load the content of the location at the given address to ACC.					
LDI	<address></address>	Indirect addressing. The address to be used is at the given address. Load the contents of this second address to ACC.					
DEC	<register></register>	Subtract 1 from the contents of the register (ACC or IX).					
CMP	<address></address>	Compare the contents of ACC with the contents of <address>.</address>					
JMP	<address></address>	Jump to the given address.					
JPE	<address></address>	Following a compare instruction, jump to <address> if the compare was True.</address>					
STO	<address></address>	Store the contents of ACC at the given address.					
END		Return control to the operating system.					

The current contents of the main memory are:

Address	Instruction
100	LDD 200
101	CMP 201
102	JPE 106
103	DEC ACC
104	STO 200
105	JMP 101
106	END
	ک
200	2
201	0
202	200

(a) Trace the program currently in memory using the following trace table.

Instruction	400	Memory address						
address	ACC	200	201	202				
		2	0	200				

г		٦
	٠,	

(b) The instruction in memory address 100 needs to be changed. It needs to use indirect addressing to load the contents of memory address 200.

Give the new instruction to replace LDD 200.

.....[1]

(C)		ch instruction in the assembly language program is encoded in 16 bits (8-bit op cowed by an 8-bit operand).	ode
	(i)	The instruction CMP 201 has the operand 201.	
		Convert the operand 201 into 8-bit binary.	
	(ii)	State the maximum number of op codes that can be represented using eight bits.	[1]
(d)	The	e status register contains condition flags.	
	lder	ntify three condition flags that can be set in the status register.	
	1		
	3		 [3]

4 Consider the following logic circuit:

(a) Complete the truth table for the logic circuit.

A	В	С	Working space	x
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

(h)	Identify th	aroo la	oio	aataa	not	hasu	in	tha	logic	circ	rit.

Gate 1	 	
Gate 2	 	
Gate 3	 	
		[1]

[4]

5 A company runs activity courses. It is creating a relational database to store details of the courses it runs.

The database has five tables:

(b)

```
EMPLOYEE(EmployeeID, FirstName, LastName, Role, Language)
BOOKING(BookingID, CustomerID, CourseID)
CUSTOMER(CustomerID, FirstName, LastName)
COURSE(CourseID, Title, Level, Date)
COURSE_EMPLOYEE(CourseID, EmployeeID)
```

(a) Complete the entity relationship (E-R) diagram for the database.

COURSE	BOOKING		CUSTOMER
COURSE_EMPLOYEE	EMPLOYEE		
			[4
Describe what is mean Give an example from		s in your ans	swer.

				11			
(c)		Definition Languer be created is the		used to create	the struct	ure of the da	tabase. One item
	Identify	three other ite	ms that can be	created in the	database	using the DD	L.
	1						
	2						
	3						[3]
(d)	Part of	the EMPLOYEE t	able is shown.				
		EmployeeID	FirstName	LastName	Role	Language	
		001	Jasmine	Chen	Leader	French	
		002	Kenton	Archer	Leader	English	
		003	Michael	Roux	Cook	French	
		004	Conrad	Slavorski	Leader	Russian	
	of all er	Data Manipulat	are leaders, an	d speak either	French or	English.	me and last name
							[4]

6 A web page includes HTML, JavaScript and PHP code.

```
01
   <html>
02
   <body>
03
04
   >
   <?PHP
0.5
06
      $message = "Enter the current time"
07
      echo $message
80
   ?>
   09
10
   24 hour clock hour<input id = "Time" value = "">
11
   <button onclick = "timeOfDay()">Enter</button>
12
13
   <script>
14
15
       function timeOfDay() {
16
           var hour, greeting;
17
           hour = document.getElementById("Time").value;
           if (hour < 18) {
18
19
                greeting = "Good day";
20
           } else {
21
                greeting = "Good evening";
22
23
           alert(greeting);
24
       }
25
   </script>
26
27
   </body>
28
   </html>
(a) The page is loaded and the value 16 is entered.
   State the output when the enter button is clicked.
   ......[1]
(b) Give the line number where the JavaScript function is called.
   ......[1]
(c) Give the identifier names of two variables used in the JavaScript code.
   1 ......
   2 ......
                                                           [1]
```

(d) Tick (✓) one box in each row to indicate whether each of the following statements is true or false.

Statement	True	False
The program contains client-side and server-side code		
The PHP code in the program will run on the client-side		
Line 19 of the code outputs the message "Good day"		
Line 18 of the code contains a conditional statement		

[2]

interpreter

(e) Examine the following list of terms:

browser

bandwidth

JavaScript transmission	PHP validation	router	server	server-side
Complete the follow Some terms may be	•	•	•	e list.
	can be perf	formed both client	:-side and server-s	side.
It is performed more	e rapidly by the		because th	ere is no delay in
transmitting and red	ceiving data to and	d from the		
It is also performed	on the server-side	e, because the cli	ent's	may
not support		, so the data will	still need checkin	g to avoid errors.

compiler

HTML

[5]

7 This question presents three scenari	7	ents three sce	narios
--	---	----------------	--------

Tick (\checkmark) one box for each scenario to indicate whether you think the behaviour shown is ethical or unethical. Justify your choice.

(a) Marina has a very short deadline to create a piece of software for a client. Algorithm A is quick to code and simpler to test but has an inefficient run time. Algorithm B is more complex to code and test but has a more efficient run time. She decides to implement algorithm A.

Ethical								
Unethical								
Justification								
								[2
Doug is manag			that hac	fallan hahi	nd schad	ula Haa	eke all m	amhar
of the project to on schedule.					nd sched oliday pla			
of the project to								
of the project to on schedule.								
of the project to on schedule.	eam to work e	xtra hours	and to ca	incel any h	oliday pla	ins to get	the proje	ect back
of the project to on schedule. Ethical Unethical Justification	eam to work e	xtra hours	and to ca	incel any h	oliday pla	ins to get	the proje	ect back
of the project to on schedule. Ethical Unethical Justification	eam to work e	xtra hours	and to ca	incel any h	oliday pla	ins to get	the proje	ect back
of the project to on schedule. Ethical Unethical Justification	eam to work e	xtra hours	and to ca	incel any h	oliday pla	ins to get	the proje	ect back

(c)	Debbie is progra has been given forum.				
	Ethical				
	Unethical				
	Justification	 	 	 	

.....[2]

- 8 Jay is developing a computer game that allows users to create stories.
 - (a) Jay uses a language translator to develop the computer game.
 - (i) Tick (\checkmark) one or more boxes in each row to identify the language translator(s) each statement describes.

Statement	Assembler	Interpreter	Compiler
Translates and executes each line of source code one line at a time			
Translates low-level source code into machine code			
Must be present in memory to execute the code			
Translates high-level source code into low-level code			

	4
- 1	/
- 1	-

(ii)	Jay decides to use a compiler to develop the game.	
	Identify two benefits of using a compiler.	
	Benefit 1	
	Benefit 2	
		[2]

(b)		game generates a story which is stored as a text file. compresses the text file using lossless compression before sending it by email to his ad.
	(i)	Identify two reasons for compressing the text file.
		1
		2
		[2]
	(ii)	Explain the reasons why Jay compresses the text file with lossless compression instead of lossy compression.
		[2]

9 (a)	Identify two differences between a public IP address and a private IP address.					
		1				
		2				
			 [2			
	(b)	Complete the table by identifying the most appropriate term for each description.				

(b) Complete the table by identifying the most appropriate term for each description Each term must be different.

Description	Term
Receives data packets from a network and forwards them onto a similar network	
Manages access to a centralised resource	
Joins networks that use different sets of rules to transmit data	
Monitors and controls incoming and outgoing network traffic based on set criteria	

[4]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

9371434837

COMPUTER SCIENCE

9618/11

Paper 1 Theory Fundamentals

October/November 2022

1 hour 30 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use an HB pencil for any diagrams, graphs or rough working.
- Calculators must not be used in this paper.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- No marks will be awarded for using brand names of software packages or hardware.

1	(a)	(i)	Convert the	unsigned binar	v integer into	denary.
---	-----	-----	-------------	----------------	----------------	---------

00100111

		Answer											[1]
	(ii)	Convert the Bin	ary C	ode	d De	cima	l (BC	D) in	to de	enary	' .		
						00	100	111					
		Answer											[1]
	(iii)	Convert the 8-b	it two	's co	mple	emen	t bin	ary ir	ntege	er into	der	nary.	
						111	100	111					
		Answer											[1]
(b)	Per	form the following	g bina	ary s	ubtra	action	n. Sh	ow y	our v	vorkii	ng.		
				1	0	1	1	0	0	1	1		
			_	0	1	1	1	0	1	0	1		

[2]

(c)	Giv	e one similarity and two differences between the ASCII and Unicode character sets.	
	Sim	ilarity	
	Diffe	erence 1	
	Diffe	erence 2	
			[3]
(d)	Sou	and samples are recorded and saved in a file.	
	(i)	State what is meant by sampling rate .	
			. [1]
	(ii)	Explain the effect of increasing the sampling resolution on the sound file.	
			. [2]

2 Draw **one** line from each security feature to its most appropriate description.

Security feature Description converts data to an alternative form firewall redirects a user to a fake website pharming verifies the authenticity of data anti-virus software scans files on the hard drive for malicious software encryption accepts or rejects incoming and outgoing packets based

[4]

on criteria

3 (a) Draw a logic circuit for the logic expression:

X = NOT ((NOT A AND NOT B) OR (NOT B AND NOT C))

(b) Complete the truth table for the logic expression:

X = NOT ((NOT A AND NOT B) OR (NOT B AND NOT C))

A	В	С	Working space	X
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[2]

[2]

4 A photographer creates a relational database to store data about photographs taken at birthday parties.

The database, PHOTOGRAPHS, stores details of the customer, the party, the photographs taken and the cameras used.

The photographer has several cameras that are used for taking the photographs at the parties.

Each camera has a specific lens type (for example, XY32Z) and lighting type (for example, F1672).

Data about each photograph is stored in the database including the party at which it was taken, the time it was taken and the camera used.

The database has these four tables:

```
CUSTOMER(CustomerID, FirstName, LastName, Telephone)

PARTY(PartyID, CustomerID, PartyDate, StartTime)

PHOTO_DATA(PhotoID, PartyID, TimeTaken, CameraID)

CAMERA DATA(CameraID, LensType, LightingType)
```

(a) Complete the entity-relationship (E-R) diagram for the database PHOTOGRAPHS.

PARTY CUSTOMER

PHOTO_DATA

CAMERA_DATA

[3]

Γhe table shows so	ome sample data	for the table PHOTO	_DATA.	
PhotoID	PartyID	TimeTaken	CameraID	
ST23-56	BD987	08:34	NIK-02	
ST23-57	BD987	08:55	NIK-02	
ST23-60	BC08	09:01	CAN-01	
ST23-61	BC08	10:23	CAN-12	
ST23-62	BC08	10:56	NIK-01	
Tuple			a tuple from PHOTO_	
-	Structured Query	y Language (SQL) :	script to display the with a camera ID star	total numb
SELECT		(

(d)	Write an SQL script to include two new fields in CAMERA_DATA to store the number of photographs currently on the camera and the date the camera was last used.
	131

Question 5 begins on page 10.

	com	mputer system.							
(b)		Central Processing Unit (CPU) cont aponents.	ains several s	pecial purpo	ose registers	and oth			
	(i)	State the role of the following register	ers.						
		Program Counter (PC)							
		Index Register (IX)							
		Status Register (SR)							
	(ii)	Tick (✓) one box in each row to iden	itify the system	bus used by	each CPU o	omponer			
		CPU component	Data bus	Address	bus Co	ntrol bus			
		System clock							
		Memory Address Register (MAR)							
		Memory Address Register (MAR)							
((iii)	Memory Address Register (MAR) Describe the purpose of the Control	Unit (CU) in a	CPU.					
((iii)		Unit (CU) in a	CPU.					
((iii)		Unit (CU) in a	CPU.					

` ,	Describe the purpose of an interrupt in a computer system.	
		[2]
(d)	Identify two causes of a software interrupt.	
	1	
	2	

6 The following table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC), and an Index Register (IX).

Instruction		Explanation		
Opcode	Operand	Explanation		
LDM	#n	Immediate addressing. Load the number n to ACC		
LDD	<address></address>	Direct addressing. Load the contents of the location at the given address to ACC		
LDX	<address></address>	Indexed addressing. Form the address from <address> + the contents of the index register. Copy the contents of this calculated address to ACC</address>		
LDR	#n	Immediate addressing. Load the number n to IX		
STO	<address></address>	Store contents of ACC at the given address		
ADD	<address></address>	Add the contents of the given address to the ACC		
ADD	#n	Add the denary number n to the ACC		
INC	<register></register>	Add 1 to the contents of the register (ACC or IX)		
CMP	#n	Compare the contents of ACC with number n		
JPE	<address></address>	Following a compare instruction, jump to <address> if the compare was True</address>		
JPN	<address></address>	Following a compare instruction, jump to <address> if the compare was False</address>		
OUT		Output to the screen the character whose ASCII value is stored in ACC		
END		Return control to the operating system		

<address> can be an absolute or a symbolic address

[#] denotes a denary number, e.g. #123

B denotes a binary number, e.g. B01001101

- (a) The current contents of main memory and selected values from the ASCII character set are
 - (i) Trace the program currently in memory using the trace table.

Address	Instruction
77	LDR #0
78	LDX 110
79	CMP #35
80	JPE 92
81	ADD 100
82	STO 101
83	LDM #1
84	ADD 100
85	STO 100
86	INC IX
87	LDX 110
88	CMP #35
89	JPN 81
90	LDD 100
91	ADD #48
92	OUT
93	END
	کے
100	0
101	0
	لم
110	66
111	65
112	35

ASCII value	Character
49	1
50	2
51	3
52	4
لم	لم
65	А
66	В
67	С
68	D
	_

Instruction	ACC	ACC IX		Output				
address	AGG		100	101	110	111	112	Outpu
			0	0	66	65	35	

Memory address

(ii) The following instructions are repeated for your reference.

Instruction		Evalenation
Opcode	Operand	Explanation
LDD	<address></address>	Direct addressing. Load the contents of the location at the given address to ACC
STO	<address></address>	Store contents of ACC at the given address

State the purpose of this part of an assembly language program.

LDD	100			
STO	165			
LDD	101			
STO	100			
LDD	165			
STO	101			

[1]

Question 6(b) begins on page 16.

(b) The following table shows another part of the instruction set for the processor.

	truction	l					Evolor	otion			
Opcode	Ope	rand	Explanation								
AND	#n		Bitwis	Bitwise AND operation of the contents of ACC with the operand							
AND	Bn		Bitwis	Bitwise AND operation of the contents of ACC with the binary number n							
XOR	#n		Bitwis	e XOR	operatio	n of the	content	s of AC	C with th	ne operand	
XOR	Bn		Bitwis	e XOR	operatio	n of the	content	s of AC	C with th	ne binary number n	
OR	#n		Bitwis	e OR op	peration	of the c	ontents	of ACC	with the	e operand	
OR	Bn		Bitwis	e OR op	peration	of the c	ontents	of ACC	with the	e binary number n	
LSR	#n				e shifte			ces to th	ne right.	Zeros are	
# denotes B denotes (i)	a binary	numbe		010011							
										1	
		1	0	0	1	0	0	1	1		
Show the result after the execution of the following instruction. XOR B00011111											
(ii)	The c	urrent c	ontents	XO	R B0(00111					
(ii)	 The c	urrent c	ontents	XO	R B0(00111		1	1		
(ii)		1	0	of the A	CC are:	0		1	1		
(ii)		1	0	of the A	CC are:	0 0 1 1 1 0 of the foll	0 lowing ir	1	1		
(ii)		1	0	of the A	CC are:	0 0 1 1 1 0 of the foll	0 lowing ir	1	1		

(iii)	The c	urrent c	ontents	of the A	CC are:						
		1	0	0	1	0	0	1	1		
	Show	the res	ult after	the exe	cution o	f the foll	owing	instructio	on.		
				OI	R B11	0011	0.0				
											[4]
(iv)	The c	urrent c	ontents	of the A	CC are:						[1]
		1	0	0	1	0	0	1	1		
	Show	the res	ult after	the exe	cution o	f the foll	owing	instructio	on.		
					LSR	#2					
											[1]
			ore boxed pass o					ether the	task is	performed in the	firs
			Task	ζ				First p	ass	Second pass	1
Remove	comm	nents.									
Read th	e asse	mbly lar	nguage p	orogram	one lin	e at a tir	ne.				
Genera	te the o	bject co	ode.								
Check t	he opc	ode is ir	the inst	truction	set.						
											[2]

(a)	State two benefits to a programmer of using Dynamic Link Library (DLL) files.
	1
	2
	[2]
(b)	Memory management is one of the tasks performed by an Operating System (OS).
	Describe the ways in which memory management organises and allocates Random Access Memory (RAM).
	[2]
(c)	An Operating System may include a utility program to compress text files.
	Describe one appropriate method of compressing a text file.
(al\	Explain the reasons why increasing the amount of eachs memory on improve the
(u)	Explain the reasons why increasing the amount of cache memory can improve the performance of a CPU.
	[2]
(e)	State the name of a peripheral device port that provides a physical connection in the computer for each of these peripherals.
	3D printer
	Monitor

[2]

A L	ocal Area Network (LAN) uses a bus topology.	
	scribe how Carrier Sense Multiple Access/Collision Detection (CSMA/CD) is used in a work.	a bus
		[4]
Mai	ny modern televisions are examples of embedded systems.	
(a)	Explain why these televisions are embedded systems.	
		[2]
(b)	Embedded systems use Electrically Erasable Programmable ROM (EEPROM).	
	Describe one benefit of using EEPROMs in an embedded system.	
	Describe one benefit of using LEF Norms in all ellibedued system.	
	Describe one benefit of using LEFT Colvis in all ellipeducu system.	
	Describe one benefit of using LLI INOINS III all ellibedued system.	
	Describe one benefit of using EEFROWS III all embedded system.	

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

3054613492

COMPUTER SCIENCE

9608/12

Paper 1 Theory Fundamentals

May/June 2021

1 hour 30 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use an HB pencil for any diagrams, graphs or rough working.
- Calculators must not be used in this paper.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- No marks will be awarded for using brand names of software packages or hardware.

1 Consider the following logic circuit:

(a) Complete the truth table for the logic circuit.

A	В	С	Working space	Q
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[4]

(b) Identify the three logic gates used in the given logic circuit.

Gate 1	
Gate 2	
Gate 3	
	[1]

2 The following diagram shows four register notations and seven descriptions.

Draw **one** line from each register notation to its **most appropriate** description.

Register notation

Description

MDR

CIR

Holds the op code and operand of an instruction ready for it to be decoded

Holds the address of the next instruction to be read

Holds flags that are set when the Arithmetic and Logic Unit (ALU) executes instructions

[4]

3 The table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC), and an Index Register (IX).

Instr	ruction	Evaluation
Op code	Operand	Explanation
LDD	<address></address>	Direct addressing. Load the contents of the location at the given address to ACC.
LDI	<address></address>	Indirect addressing. The address to be used is at the given address. Load the contents of this second address to ACC.
STO	<address></address>	Store the contents of ACC at the given address.
ADD	<address></address>	Add the contents of the given address to ACC.
INC	<register></register>	Add 1 to the contents of the register (ACC or IX).
JMP	<address></address>	Jump to the given address.
CMP	<address></address>	Compare the contents of ACC with the contents of <address>.</address>
JPE	<address></address>	Following a compare instruction, jump to <address> if the compare was True.</address>
END		Return control to the operating system.

The current contents of the main memory are:

Address	Instruction
50	LDI 103
51	CMP 101
52	JPE 59
53	ADD 102
54	STO 102
55	LDD 100
56	INC ACC
57	STO 100
58	JMP 51
59	ADD 102
60	STO 102
61	END
	ر
100	1
101	3
102	0
103	100

(a) Trace the program currently in memory using the following trace table.

Instruction	400		Memory	address	;
address	ACC	100	101	102	103
		1	3	0	100

(b)	The instruction in memory address 50 needs to be changed to use direct addressing to load the contents of the memory location at address 100 .				
	Give the new instruction to replace LDI 103.				
	[
(c)	Each instruction in the assembly language program is encoded in 16 bits (8-bit op code followed by an 8-bit operand).				
	(i) The instruction JPE 59 has the operand 59.				
	Convert the operand 59 into 8-bit binary.				
		[1]			
	(ii) Convert the denary value 59 into hexadecimal.				
		[1]			
(d)	The assembly language program uses direct and indirect addressing.				
	Identify two other modes of addressing used in an assembly language program.				
	1				
	2	 [2]			

K2 Mountain Guiding is a company that runs courses teaching people how to climb mountains.

The	The company uses a file-based approach to store and retrieve data.		
(a)	Describe three drawbacks of a file-based approach compared to a relational database.		
	Drawback 1		
	Drawback 2		
	Drawback 3		
	[6]		

(b) Each course has a destination and a trip date, and is run by a guide. Customers can book a place on one or more courses.

The following table shows part of the stored file:

Customer name	Customer date of birth	Guide	Destination	Trip date
Jay Patel	10/10/1976	Artem	Elbrus	06/03/2023
Paul Schloss	10/04/1999	Kenton	K2	01/03/2022
Mina Wang	03/03/2000	Kenton	K2	01/03/2022
Paul Schloss	10/04/1999	Safia	Mont Blanc	07/07/2024
Jay Patel	10/10/1976	Safia	К2	04/04/2023

The company has decided to create a relational database to replace the current file-based approach.

Identify three reasons why the data in this table is not in First Normal Form (1NF).
1
2
3
[3]

(c) The table, GUIDE_TABLE, is created.

Each guide has a unique guide ID.

Part of the table GUIDE_TABLE is shown:

GuideID	Guide	DateOfBirth	Gender
1	Artem	07/03/1992	М
2	Kenton	08/04/1984	М
3	Safia	10/10/1999	F

Write a Data Definition Language (DDL) statement to define the table GUIDE_TABLE.
عا

5 A web page includes HTML and JavaScript code.

```
01 <html>
02 <body>
03
04 Calculate area of a triangle:
05 <form name = "Triangle">
  Sase <input type = "number" name = "B" value = "">
    Height <input type = "number" name = "H" value = "">
    <button onclick = "area()">Calculate
09 </form>
10
11 <script>
12 function area() {
  var base = document.forms["Triangle"]["B"].value;
  var height = document.forms["Triangle"]["H"].value;
14
15 if (base == "" || height == "") {
      alert("Both values must be entered");
16
17
      return false;
18 }
19 else {
      area = 0.5 * height * base;
21
      alert("The area is: " + area);
2.2
   }
23 }
24 </script>
25 </body>
26 </html>
(a) Give the three identifiers used in the JavaScript code.
   1 .....
   2 ......
                                                            [2]
(b) State the purpose of the code on line 08.
```

(c)	The	page is loaded and the values 2 and 8 are entered.	
	Stat	te the output when the calculate button is clicked.	
			[1]
(d)	Stat	te the meaning of the operator in line 15 of the code.	
			[1]
(e)	Data	a validation has been used in line 15 of the JavaScript code.	
	(i)	Identify the type of data validation used in line 15.	
			[1]
	(ii)	Identify two other data validation checks that could be used.	
		1	
		2	
			[2]

Question 5 continues on the next page.

Cambridge International Holidays allows customers to make holiday bookings on its website.

(f) Bochen visits the Cambridge International Holidays website to book a holiday.

The sequence (1 to 8) below describes the steps that take place when he submits a booking.

Four of the statements **A**, **B**, **C**, **D**, **E** and **F** are used to complete the sequence.

Α	Any errors found at the server side are flagged, and step 1 is repeated.
В	HTML code is used on the client's web browser to validate the form data.
С	PHP code is executed to generate a confirmation (HTML) web page that is returned to the client's web browser.
D	The form data is transmitted to Cambridge International Holidays' web server.
E	JavaScript code is executed to generate a confirmation (HTML) web page that is returned to the client's web browser.
F	JavaScript code is executed on the client's web browser to validate the form data.

Write one of the letters (A, B, C, D, E or F) in the appropriate row to complete the sequence.

1	Bochen completes the online booking and clicks 'Submit'.
2	
3	Any errors found are flagged, and step 1 is repeated.
4	
5	PHP code is executed to perform extra data validation checks on the form data.
6	
7	The booking details are added to the database.
8	

[4]

6 This question presents three scenar	rios	S.
---------------------------------------	------	----

Tick (\checkmark) one box for each scenario to indicate whether you think the named person's behaviour is ethical or unethical. Justify your choice.

(a) Latifah has changed jobs and has started to work for a new company. The company uses an Integrated Development Environment (IDE) to develop code. Latifah decides not to use the IDE that the company has because she is familiar with a different IDE.

	Ethical		
	Unethical		
	Justification		
			[2]
(b)		on. His da	roject to write a banking application. He is employing staff to work ughter is a computer security expert. She is looking for a new job. his daughter.
	Unethical		
	Unetilicai		
	Justification		
			[0]

(c) Jason works for a social media company. He is concerned that users of the company's social media website have not been told how their personal data is being used.

Jason tells his manager his concerns. His manager tells him not to worry because there have been no complaints from the users. Jason takes no further action.

Ethical			
Unethical			
Justification			
	 	 	 [2]

7	Sam is a photographer. She has an image library of over 10 000 images. She stores the images on a high capacity magnetic hard disk.				
	(a)	Explain why Sam would use the following utility software.			
		(i)	Backup		
			[2]		
		(ii)	Defragmenter		
			[2]		
		(iii)	Disk repair		
		(,			
			[2]		
	(b)	The	images are stored as bitmap files.		
		Ider	ntify four items that will be stored in the header of a bitmap file.		
		1			
		2			
		3			
		4	[4]		

(c) The bitmap images are compressed for use on a website.

Tick (\checkmark) one box to select the **most appropriate** type of compression for the images used on the website and justify your answer.

Lossy			
Lossy			
Justification			
	 	 	 [3]

8 (a) Complete the following table by identifying the **most appropriate** term for each description. Each term must be different.

Description	Term
Ensures data is accurate and up to date	
Prevents accidental or malicious data loss	
Prevents unauthorised access to data	

	Prevents unauthorised access to data	
(k	Describe what is meant by a digital signature .	[3]
		[2]

© UCLES 2021 9608/12/M/J/21

© UCLES 2021 9608/12/M/J/21

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2021 9608/12/M/J/21

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

9809761197

COMPUTER SCIENCE

9618/12

Paper 1 Theory Fundamentals

October/November 2022

1 hour 30 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use an HB pencil for any diagrams, graphs or rough working.
- Calculators must not be used in this paper.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- No marks will be awarded for using brand names of software packages or hardware.

Purpose

1 (a) Draw one line from each utility software to its most appropriate purpose.

Utility software

				to reorganise files so they are contiguous
		virus checker		
				to scan for malicious program code
		disk formatter		
				to decrease the file size
		backup		
				to initialise a disk
		disk repair		to create copies of files
		defragmentation		in case the original is lost
		defragmentation		to check for and fix
				inconsistencies on a disk
				[5]
(b)	Con	npilers and interpreters	translate programs written in a high-leve	el language into a low-level
		juage.		
	(i)	State two drawbacks development.	s of using a compiler compared to an i	nterpreter during program
		1		
		2		
		2		
				[2]
	(ii)	Explain why high-level	language programs might be partially comp	

2 (a) (i) Convert the two's complement binary integer into denary.

10010110

	Answer											[1]
(ii)	Convert the unsi	igne	d bin	ary i	ntege	er int	o hex	kade	cima	l.		
					10	010	110					
	Answer											[1]
(iii)	Convert the unsworking.	signe	ed b	inary	' inte	eger	into	Bina	ry C	odec	l Decimal (BCD). Sho	ow your
					100	010	101					
	Working											
	Answer											
												[2]
(b) Per	form the following	g bina	ary a	dditi	on.							
			1	0	0	0	1	1	0	0		
		+	0	1	0	0	0	1	1	0	-	
												[1]

3 (a) A greenhouse has an automatic window.

The window (X) operates according to the following criteria:

Parameter	Description of parameter	Binary value	Condition
т	Tomporaturo	1	Too high
'	Temperature	0	Acceptable
14/	Wind aroud	1	Too high
W	Wind speed	0	Acceptable
В	Dain	1	Detected
R	Rain	0	Not detected
NA	Manual override	1	On
М	ivianuai overnide	0	Off

The window opens (X = 1) if:

- the temperature is too high **and** the wind speed is acceptable
- and
- rain is not detected, or the manual override is off.

Draw a logic circuit to represent the operation of the window.

(b) Complete the truth table for the logic expression:

X = NOT (A OR B OR C) AND (B NOR C)

Α	В	С	Working space	X
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

(c) Embedded systems contain Read Only Memory (ROM) and Random Access Memory (RAM).

Explain the reasons why ROM is used in an embedded system.

[2]

4

(a)	State the difference between data verification and data validation.
	[1]
(b)	A checksum can be used to detect errors during data transmission.
	Describe how a checksum is used.
	[3]
(c)	One validation method is a presence check.
	Describe two other validation methods that can be used to validate non-numeric data.
	1
	2
	[2]

elational datab	pase, GARDEN, has the following	g tables:	
JER (<u>OwnerII</u>	O, FirstName, Telephone	No, TreeID, TreePo	sition)
EE(<u>TreeID</u> ,	ScientificName, MaxHei	ght, FastGrowing)	
The databas	se is not in Third Normal Form	(3NF).	
Explain how	the database can be normalise	ed to 3NF.	
	ructured Query Language (SQ		
Write the St store the foll	ructured Query Language (SQ lowing data:	L) script to add a new re	
	ructured Query Language (SQ		
	ructured Query Language (SQ lowing data:	L) script to add a new re	
	ructured Query Language (SQ lowing data:	L) script to add a new re	
	ructured Query Language (SQ lowing data: Attribute TreeID	Value LOW_1276	
	ructured Query Language (SQ lowing data: Attribute TreeID ScientificName	Value LOW_1276 Salix_Alba	
	ructured Query Language (SQ lowing data: Attribute TreeID ScientificName MaxHeight	Value LOW_1276 Salix_Alba 30.00	
	ructured Query Language (SQ lowing data: Attribute TreeID ScientificName MaxHeight	Value LOW_1276 Salix_Alba 30.00	
	ructured Query Language (SQ lowing data: Attribute TreeID ScientificName MaxHeight	Value LOW_1276 Salix_Alba 30.00	
	ructured Query Language (SQ lowing data: Attribute TreeID ScientificName MaxHeight	Value LOW_1276 Salix_Alba 30.00	

5

(d)	(i)	Describe, using an example, what is meant by a data dictionary .	
			[2]
	(ii)	Describe what is meant by a logical schema .	
			[2]

(a)	A St	udent uses a networked laptop computer to send an email to a colleague.
	(i)	Explain how a digital signature ensures the email is authentic.
		[2]
	(ii)	Describe how a firewall protects the data on the computer.
		[3]
(b)	The	student records a sound file.
	(i)	Explain the effect of increasing the sampling rate on the accuracy of the sound recording
		[2]
	(ii)	Explain the effect of decreasing the sampling resolution on the file size of the sound recording.
		[2]

7 The following table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC), and an Index Register (IX).

Instruction		Evalenation
Opcode	Operand	Explanation
LDM	#n	Immediate addressing. Load the number n to ACC
LDD	<address></address>	Direct addressing. Load the contents of the location at the given address to ACC
LDX	<address></address>	Indexed addressing. Form the address from <address> + the contents of the index register. Copy the contents of this calculated address to ACC</address>
LDR	#n	Immediate addressing. Load the number n to IX
STO	<address></address>	Store the contents of ACC at the given address
ADD	<address></address>	Add the contents of the given address to the ACC
ADD	#n	Add the denary number n to the ACC
INC	<register></register>	Add 1 to the contents of the register (ACC or IX)
JMP	<address></address>	Jump to the given address
CMP	<address></address>	Compare the contents of ACC with the contents of <address></address>
CMI	<address></address>	Indirect addressing. The address to be used is at the given address. Compare the contents of ACC with the contents of this second address
JPE	<address></address>	Following a compare instruction, jump to <address> if the compare was True</address>
JPN	<address></address>	Following a compare instruction, jump to <address> if the compare was False</address>
END		Return control to the operating system

<address> can be an absolute or symbolic address

[#] denotes a denary number, e.g. #123

B denotes a binary number, e.g. B01001101

(a) Trace the program currently in memory using the trace table, stopping when line 90 is executed for a second time.

Address	Instruction
75	LDR #0
76	LDX 110
77	CMI 102
78	JPE 91
79	CMP 103
80	JPN 84
81	ADD 101
82	STO 101
83	JMP 86
84	INC ACC
85	STO 101
86	LDD 100
87	INC ACC
88	STO 100
89	INC IX
90	JMP 76
91	END
	لم
100	0
101	0
102	112
103	4
	لم
110	1
111	4
112	0

Instruction	ACC	IX	Memory address								
address	ACC	IX.	100	101	102	103	110	111	112		
			0	0	112	4	1	4	0		

(b) The following table shows another part of the instruction set for the processor.

Instruction		Evalenation
Opcode	Operand	Explanation
AND	#n	Bitwise AND operation of the contents of ACC with the operand
AND	<address></address>	Bitwise AND operation of the contents of ACC with the contents of <address></address>
XOR	#n	Bitwise XOR operation of the contents of ACC with the operand
XOR	Bn	Bitwise XOR operation of the contents of ACC with the binary number n
XOR	<address></address>	Bitwise XOR operation of the contents of ACC with the contents of <address></address>
OR	#n	Bitwise OR operation of the contents of ACC with the operand
OR	<address></address>	Bitwise OR operation of the contents of ACC with the contents of <address></address>
LSL	#n	Bits in ACC are shifted logically n places to the left. Zeros are introduced on the right-hand end
LSR	#n	Bits in ACC are shifted logically n places to the right. Zeros are introduced on the left-hand end

<address> can be an absolute or symbolic address

denotes a denary number, e.g. #123

B denotes a binary number, e.g. B01001101

The contents of memory addresses 50 and 51 are shown:

Memory address	Data value		
50	01001101		
51	10001111		

(i) The current contents of the ACC are:

0	1	0	1	0	0	1	1
---	---	---	---	---	---	---	---

Show the contents of the ACC after the execution of the following instruction.

	XOI	K B00) () T T]	L⊥⊥			

(ii) The current contents of the ACC are:

	0	1	0	1	0	0	1	1	
Show th	ne content	s of the	e ACC	after t	he exe	cution	of the	followi	ng instru
				AND	50				
The curi	rent conte	ents of	the AC	C are:					
	0	1	0	1	0	0	1	1	
				_					
Show th	ne content	s of the	e ACC			cution	of the	followi	ng instru
				TOT					
				ГОТ	#3				
					#3				
				LSL	#3				
The curr	rent conte	ents of	the AC						
The curi	rent conte	ents of	the AC			0	1	1	
	0	1	0	CC are:	0				na instru
		1	0	C are:	0 he exe				ng instru
	0	1	0	CC are:	0 he exe				ng instru
	0	1	0	C are:	0 he exe				ng instru
	0	1	0	C are:	0 he exe				ng instru
	0	1	0	C are:	0 he exe				ng instru

(c) Write the register transfer notation for each of the stages in the fetch-execute cycle described in the table.

Description Register transfer notation

Copy the address of the next instruction into the Memory Address Register.	
Increment the Program Counter.	
Copy the contents of the Memory Data Register into the Current Instruction Register.	

[3]

8 The following bitmap image has a resolution of 4096 × 4096 pixels and a colour depth of 24 bits per pixel.

The image is displayed on a monitor that has a screen resolution of 1920 × 1080 pixels.

(a) Tick (\checkmark) one box in each row to identify the effect of each action on the image file size.

Action	Increases the file size	Decreases the file size	No change to the file size
Change the colour depth of the image file to 16 bits per pixel.			
Change the screen resolution to 1366 × 768 pixels.			
Change the colour of the rectangle from black to red.			

		,	-	[2]
(b)	State two benefits of creating	a vector graphic ins	stead of a bitmap im	age.
	1			
	2			
				[2]

(c) A second bitmap image is stored using a colour depth of 8 bits per pixel.

The file is compressed using run-length encoding (RLE).

(i) The table shows the compressed and uncompressed values for parts of the image file.

Each colour of the pixel in the image is represented by a hexadecimal value.

Complete the table. The first row has been completed for you.

	Uncompressed image	RLE compressed image					
	EA F1 F1 F2 F2 F2 EA	1EA 2F1 3F2 1EA					
		2AB 2FF 11D 167					
	32 32 80 81 81						
			[2]				
(ii) RLE	is an example of lossless compr	ression.					
Expl text		is more appropriate than lossy	compression for a				
			[2]				
One use of Artificial Intelligence (AI) is for facial recognition software.							
Describe the social impact of using facial recognition software to identify individuals in an airport.							

© UCLES 2022 9618/12/O/N/22

9

10 A Local Area Network (LAN) consists of four computers, one server and a switch.

The LAN uses a star topology.

Computer

(a) Complete the following diagram to show how the hardware is connected.

Switch

		[1]
(b)		uter is attached to one of the devices on the LAN shown in part (a) to connect the LAN to internet.
	(i)	Identify the device. Give a reason for your choice.
		Device
		Reason
		[2]
	(ii)	Describe the role and function of the router in the network.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

0 9 4 2 4 1 6 2 8

COMPUTER SCIENCE

9618/11

Paper 1 Theory Fundamentals

May/June 2023

1 hour 30 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use an HB pencil for any diagrams, graphs or rough working.
- Calculators must not be used in this paper.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- No marks will be awarded for using brand names of software packages or hardware.

1 Images are being created to advertise holidays.

Some of the images are bitmap images and some are vector graphics.

(a) Complete the table by defining the image terms.

Term	Definition
Drawing list	
Pixel	
Colour depth	

г	2	٦.
1	J	Т

(b) The bitmap images are photographs of the holiday locations.

(i)	Colour depth and image resolution are both included in the file header of a bitmap image.
	Identify two other items that could be included in the file header of each photograph.

1	
2	

[2]

	(ii)	One of the photographs has a bit depth of 8 bytes and an image resolution of 1500 pixels wide and 3000 pixels high.							
		Calculate the file size of the photograph in megabytes. Show your working.							
		Working							
		File sizeMB							
(c)		photographs are compressed before they are uploaded to a web server. tomers download the photographs from this web server.							
	(i)	Explain the reasons why compressing the photographs will benefit the customers.							
		[3]							
	(ii)	An image can be compressed using run-length encoding (RLE).							
		Explain the reasons why RLE may not reduce the file size of a bitmap image. Give one example in your answer.							
		[3]							

An organisation uses a database to store data about the types of bird that people have seen.

2

[2]

(b) The database, Birds, stores information about the types of bird and the people who have seen them.

Data about each bird seen is stored with its location and data about the person who saw the bird.

Database Birds has the following tables:

```
BIRD_TYPE(BirdID, Name, Size)

BIRD_SEEN(SeenID, BirdID, Date, Location, PersonID)

PERSON(PersonID, FirstName, LastName, EmailAddress)
```

(i) Complete the table by identifying **two** foreign keys and the database table where each is found.

Foreign key	Database table

[2]

(ii) The database Birds has been normalised.

Draw **one** line from each Normal Form to the most appropriate definition.

Normal Form Definition

First Normal Form (1NF)

All fields are fully dependent on the primary key.

Second Normal Form (2NF)

There are no repeating groups of attributes.

Third Normal Form (3NF)

There are no partial dependencies.

[1]

(iii) Part of the database table BIRD_TYPE is shown:

BirdID	Name	Size
0123	Blackbird	Medium
0035	Jay	Large
0004	Raven	Large
0085	Robin	Small

The database only supports these data types:

•	character
---	-----------

- varchar
- Boolean
- integer
- real
- date
- time

Write a Structured Query Language (SQL) script to define the table Bird_Type.
[4

(iv) The database tables are repeated here for reference:

...... BIRD_TYPE.Size;

BIRD_TYPE(BirdID, Name, Size)

BIRD_SEEN(SeenID, BirdID, Date, Location, PersonID)

PERSON(PersonID, FirstName, LastName, EmailAddress)

Complete the SQL script to return the number of birds of each size seen by the person with the ID of J_123.

[5]

A c	omputer has an Operating System (OS).	
(a)	Describe how the Operating System manages the peripheral hardware devices of computer.	the
		. [4]
(b)	Hardware management is one key management task carried out by the Operating System	m.
	Identify two other key management tasks carried out by the Operating System.	
	1	
	2	
		[2]
(c)	The Operating System has utility software including defragmentation software.	
	Explain how defragmentation can improve the performance of the computer.	
		. [3]
(d)	The computer stores data in binary form.	
	(i) State the difference between a kibibyte and a kilobyte.	
		. [1]

(ii)	Convert the denary number 964 into Binary Coded Decimal (BCD).	
(iii)	Convert the positive binary integer 11110010 into hexadecimal.	
(iv)	Give the smallest and largest two's complement binary number that can be representusing 8 bits.	ted
	Smallest	
	Largest	 [2]
(v)	Add the following two binary integers using binary addition. Show your working.	
	10110000	
	+ 00011011	
		[2]
(vi)	Show the result of a 3-place right logical shift on the binary number:	
	11001100	
		[1]

4		rked closed-circuit television (CCTV) system in a house uses sensors and cameras to be presence of a person. It then tracks the person and records a video of their movements.				
	Dat	a fro	m the CCTV cameras is transmitted to a central computer.			
	(a)	This	s computer has both Read Only Memory (ROM) and Random Access Memory (RAM).			
		(i)	Describe the contents of the ROM in the central computer.			
			[2]			
		(ii)	The central computer has Dynamic RAM (DRAM).			
			Identify two advantages of using DRAM instead of Static RAM (SRAM).			
			1			
			2			
			[2]			
	(b)	The	central computer stores the video files on secondary storage.			
			scribe two reasons why magnetic storage is more appropriate than solid state storage for computer.			
		1				
		2				

[4]

(c)		e CCTV system uses Artificial Intelligence (AI) to identify the presence of a person in the see and to track their movements.						
Describe how AI is used in this system.								
		[3]						
(d) The CCTV cameras are connected to a network and transfer their data wirelessly central computer.								
	(i)	Each device on the network has an IP address.						
		Complete the description of IP addresses.						
		An IPv4 address contains groups of digits. Each group is						
		represented in bits and the groups are separated by full stops.						
		An IPv6 address contains groups of digits. Each group is						
		represented in bits. Multiple groups that only contain zeros						
		can be replaced with a						
	(ii)	The network makes use of subnetting.						
		Describe two benefits of subnetting a network.						
		1						
		2						
		[4]						

5 (a) Draw the logic circuit for this logic expression:

T = (NOT A OR B) XOR (C NAND D)

(b) Describe the function of the NAND and NOR logic gates.

NAND	O					
				• • • • • • • • • • • • • • • • • • • •		
NOR						
						[2]
						ا کا

An interrupt is generated when a key is pressed on a computer keyboard.
Explain how the computer handles this interrupt.
re-

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

COMPUTER SCIENCE

9618/12

Paper 1 Theory Fundamentals

October/November 2023

1 hour 30 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use an HB pencil for any diagrams, graphs or rough working.
- Calculators must not be used in this paper.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- No marks will be awarded for using brand names of software packages or hardware.

1	A factory	makes	chocolate	bars.
---	-----------	-------	-----------	-------

The factory uses a conveyor belt that moves the products from one stage of production to the next stage.

(a)	An a	automated system counts the number of chocolate bars made at the end of production.
	The	system includes a sensor positioned above the conveyor belt.
	lder	ntify one appropriate type of sensor that can be used.
		[1]
(b)		econd automated system removes chocolate bars with an incorrect weight from the duction line.
	Des	cribe the role of an actuator in this second system.
		[2]
(c)	The	factory has many different machines with embedded systems.
	(i)	Identify two features of embedded systems.
		1
		2
		[2]
	(ii)	Identify one drawback of embedded systems.
		[1]

2	(a)	State what is meant by the following terms in a relational database model.
		Entity
		Primary key
		Referential integrity
		[3]
	(b)	Authentication is one method a Database Management System (DBMS) can use to improve the security of a database.
		Describe other methods that a DBMS can use to improve the security of a database.
		[4]

(c) The following database table is not normalised.

StudentName	DateOfBirth	TutorGroup	Subject	SubjectCode
Yuwei Chen	01/09/2004	SMH	English, Maths, Computer Science	EN, MA, CS
Claudia Raj	23/02/2005	JMB	Maths, Physics, Art	MA, PY, AR
Aamil Akram	24/01/2005	KMB	Art, Design, English language	AR, DE, EN
Areeba Faraz	21/12/2004	SMH	English language, Chemistry, Design	EN, CH, DE

Explain how to modify the table to put it into First Normal Form (1NF).
[4

3	(a)	Sta	te one difference between a kibibyte and a megabyte.	
				[1]
	(b)	(i)	Convert the denary value into a 12-bit two's complement binary integer.	
			-196	
			Answer	[1]
		/ii\	Convert the Binary Coded Decimal (BCD) into denary.	נין
		(ii)	100001100101	
			Answer	[1]
		(iii)	Convert the unsigned binary integer into denary.	
			000111010110	
			Answer	[1]
	(c)		ntify one practical application of BCD and justify why BCD is used in this application.	
		App	plication	
		lue	tification	
		Jus	unication	

[2]

4 (a) Write the Boolean expression that corresponds to the following logic circuit.

LO:
1.7

(b) Complete the truth table for the logic expression:

X = A XOR (B AND (A NAND B) AND NOT C)

Α	В	С	Working space	Х
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[2]

5

(a)	State the meaning of privacy of data .	
(b)	State the meaning of integrity of data .	
(c)	Describe the following threats to a computer system.	
	Phishing email	
	Spyware	
		 [4]

6 (a) A real-time video of a music concert needs to be streamed to subscribers.

Tick (✓) **one** box to identify the most appropriate type of compression **and** justify your answer.

	Lossy	Lossless						
	Justification							
								[3
(b)	Explain the in	mpact of chang	ing the sai	mpling res	solution o	n the accui	acy of a so	und recording
								[3
(c)	A bitmap ima	ige has a resol	ution of 20	48 pixels	wide and	1024 pixe	ls high.	
	The image h	as a bit depth	of 10 bits p	er pixel.				
	Estimate the	file size of the	bitmap ima	age in me	bibytes. S	Show your	working.	
	Working							
	Estimated file	e size in mebib	ytes					[2

A Local Area Network (LAN) contains four devices:

7

•	two	outer laptop computers erver.	
(a)	The	server has the IP address 192.168.3.2	
	Exp	olain why this is not an IPv6 address.	
			[2]
(b)	(i)	The LAN is set up as a star topology.	
		Draw a diagram of the topology of the LAN.	
			[2]
	(ii)	Explain how data is transmitted between the two laptops in the LAN.	
			[2]

((iii)	Subnetting can be used to separate a network into logical segments.									
		Describe two other reasons why subnetting is used in a network.									
		1									
		2									
			 [4]								
(c)		te three tasks performed by devices to deal with collisions when using the Carrier Sei tiple Access/Collision Detection (CSMA/CD) protocol in a network.									
	1										
	2										
	3										
			 [3]								
			LO.								

(d) The following incomplete table contains types of IP addresses and their descriptions.

Complete the table by writing the missing types of IP addresses and the missing descriptions.

Type of IP address	Description
	an IP address that is assigned to a device to allow direct access on the internet
static IP address	
	an IP address used for internal LAN communication only
dynamic IP address	

[4]

8

A co	ompu	ter has an Operating System (OS).							
(a)	State one purpose of the Operating System.								
		[1]							
(b)	The	Operating System has utility software.							
(-)		purpose of some utility software is to improve security.							
	lder	ntify one example of utility software that is not intended to improve security.							
	Ехр	lain why this software is needed.							
	Utili	ty software							
	Ехр	lanation							
		[3]							
(c)	An	optical disc reader/writer is connected to the computer.							
	(i)	Give the name of one port that can provide a connection for the optical disc reader/writer.							
		[1]							
	(ii)	Describe the roles of the address bus, the data bus and buffers in the process of writing data to the optical disc reader/writer.							
		[3]							

9 The following table shows part of the instruction set for a processor. The processor has two registers, the Accumulator (ACC) and the Index Register (IX).

Ins	struction	Explanation			
Opcode Operand		Explanation			
LDD	<address></address>	Direct addressing. Load the contents of the location at the given address to ACC			
LDX	<address></address>	Indexed addressing. Form the address from <address> + the contents of the index register. Copy the contents of this calculated address to ACC</address>			
LDR	#n	Immediate addressing. Load the number n to IX			
STO	<address></address>	Store the contents of ACC at the given address			
ADD	#n	Add the denary number n to the ACC			
JMP <address></address>		Jump to the given address			
INC	<register></register>	Add 1 to the contents of the register (ACC or IX)			
CMP	<address></address>	Compare the contents of ACC with the contents of <address></address>			
CMI	<address></address>	Indirect addressing. The address to be used is at the given address. Compare the contents of ACC with the contents of this second address			
JPE	<address></address>	Following a compare instruction, jump to <address> if the compare was True</address>			
IN		Key in a character and store its ASCII value in ACC			
OUT		Output to the screen the character whose ASCII value is stored in ACC			
END		Return control to the operating system			
	can be an absolu a denary number	ute or a symbolic address , e.g. #123			

(a) The instructions in the processor's instruction set can be grouped according to their function.

Identify the instruction group for each of the following opcodes.								
IN								
ADD								
JPE								
CMI								

(b) The current contents of main memory and selected values from the ASCII character set are given on page 15.

Trace the program currently in memory using the trace table when the input is '1'.

Address Instruction

ress	Instr	uction
10	LDR	#0
11	IN	
12	STO	101
13	LDX	110
14	CMP	100
15	JPE	21
16	LDD	101
17	ADD	#16
18	INC	IX
19	STO	100
20	JMP	13
21	OUT	
22	END	
		7
100	0	
101	0	
		7
110	51	
111	65	

ASCII	Character
value	Character

49	1
50	2
51	3
52	4
	لم
65	А
66	В
67	С

Instruction	ACC	IV	N	lemory	addres	SS	Output
address		ACC	IX	100	101	110	111
			0	0	51	65	

[4]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

2080127199

COMPUTER SCIENCE

9608/12

Paper 1 Theory Fundamentals

October/November 2021

1 hour 30 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use an HB pencil for any diagrams, graphs or rough working.
- Calculators must not be used in this paper.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- No marks will be awarded for using brand names of software packages or hardware.

1 A computer has Random Access Memory (RAM) and Read Only Memory (ROM).

Tick (✓) **one or more** boxes in each row to identify whether each statement refers to RAM, ROM or both.

Statement	RAM	ROM
Stores data permanently		
It is volatile		
Stores the start-up instructions for the computer		
Directly accessed by the CPU		
Type of main memory		
Stores currently running applications		
Can be static or dynamic		

[3]

- 2 A travel company is designing a website.
 - (a) The bitmap logo for the travel company is shown.

Each colour is represented by a letter, for example, R = red, B = black, W = white.

Bitmap Logo

R	R	R	R	R	R	R	R
R	В	В	В	В	В	W	R
R	В	W	W	W	В	W	R
R	В	W	W	W	W	W	R
R	В	W	W	В	В	W	R
R	В	W	W	W	В	W	R
R	В	В	В	В	В	W	R
R	R	R	R	R	R	R	R

(1)	State the minimum number of bits needed to represent each pixel in the bitmap logo.
	[1

	(ii)	Calculate the minimum file size, in bytes, of the bitmap logo. Show your working.	
		Working	
		File size	
		[(3
(b)		travel company uploads a video to its website. The video is stored as an MP4 file. MP4 example of a multimedia container format.	is
	Des	cribe what is meant by a multimedia container format.	
			_
		[i	
/ - \			-]
(c)	Con	rplete the following sentences that describe two terms related to videos.	
		is when a sequence of consecutive pixe	ls
	in th	e same frame have the same value.	
		is when a pixel in the same location in tw	, C
			C
	cons	secutive frames has the same value. [2	2]

	ali travels for his work and uses his mobile phone to access the World Wide Web (WWW) communicate with his office by email. His office has a fixed connection to the Internet.	and
(a)	Identify two types of communication systems that support the transmission of his data. 1	
	2	
(b)		[4]
	The network uses both copper cables and fibre optic cables.	
	Identify two other examples of network hardware that can be used in a LAN.	
	1	
	2	
		[2]
(c)	Checksum is one method used for verification of transmitted data within a network.	
	Name and describe one other method of verifying transmitted data.	
	Method	
	Description	
		[3]

(d) Upali works for a company that stores data on a web server.

Describe two security measures that can be used to protect a web server from unauthorised access.
1
2
[4]

4 The following table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC), and an Index Register (IX).

Instruction				
Op Code Operand		Explanation		
LDD	<address></address>	Direct addressing. Load the contents of the location at the given address to ACC		
CMP	<address></address>	Compare the contents of ACC with the contents of <address></address>		
SUB	<address></address>	Subtract the contents of the given address from the ACC		
INC	<register></register>	add 1 to the contents of the register (ACC or IX)		
DEC	<register></register>	Subtract 1 from the contents of the register (ACC or IX)		
STO	<address></address>	Store contents of ACC at the given address		
END		Return control to the operating system		

(a)	The	e instructions in the processor's instruction set can be grouped according to their function	ion.
	(i)	Identify three different instruction groups from the instructions given in the table.	
		1	
		2	
		3	
			[3]
	(ii)	Identify one instruction group not given in the table.	

(b)	The following are four	special purpose	registers used in	the processor:
-----	------------------------	-----------------	-------------------	----------------

- Program Counter (PC)
- Memory Data Register (MDR)
- Memory Address Register (MAR)
- Current Instruction Register (CIR)

Describe the purpose of any	y three registers from	the four given.

Register 1
Description
Register 2
Description
Register 3
Description

[6]

- 5 Jackie is writing a program in a high-level language (HLL). The program makes use of Dynamic Link Library (DLL) files.
 - (a) Complete the following sentences about DLL files by writing the missing words from the list given below.

	closed	corrupted	directory	edited	
	errors	executable	opened	recompile	
	running	tested	validated	verified	
	The	file does not	t contain the library ro	utines.	
	A DLL file can be		without having to		the
	calling program.				
	One drawback of a D	DLL file is that the r	nain program could s	stop working if the D	LL file is
					[4]
/b\	lookio will uoo longuo	as translation softw	ara ta rup bar Ul I pro	ogram	ניין
(b)	_		•	gram.	
	Identify and describe	one type of languag	je translator.		
	Translator				
	Description				
					[4]
(c)	Explain the reasons w	hy Jackie should co	pyright her program.		
					[2]

5	A computer has file compression and defragmenter software.
	Describe these utility programs.
	File compression
	Defragmenter

7 Complete the truth table for the logic expression:

 $\mathbf{X} = \mathsf{NOT}(\mathbf{A} \ \mathsf{AND} \ \mathbf{B}) \ \mathsf{OR} \ \mathsf{NOT}((\mathbf{C} \ \mathsf{OR} \ \mathbf{A}) \ \mathsf{AND} \ (\mathbf{B} \ \mathsf{OR} \ \mathbf{C}))$

A	В	С	Working space	x
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[4]

An employment agency keeps records of its contracts with employers and workers in a relational 8 database.

These	are	some	of the	tables	in	the	databa	92
111696	alc	201116	OI LIIC	lavics	- 111 1	เมเต	uatava	20

EMPLOYER(Empld, EmpName, EmpAddress, EmpPhoneNumber)
WORKER(<u>WkId</u> , WkFirstName, WkLastName, WkAddress, WkPhoneNumber)
CONTRACT_TYPE(ConTypeId, ConName)
CONTRACT(Conid, ConTypeId, EmpId, WkId, RefConNumber)
(a) Complete the entity-relationship (E-R) diagram for this part of the database.

EMPLOYER	WORKER
CONTRACT_TYPE	CONTRACT

(b) Write a Data Definition Language (DDL) statement to change the CONTRACT table to remove the attribute RefConNumber.

[3]

(c) The following table has examples of DDL and Data Manipulation Language (DML) statements.

Tick (\checkmark) one box in each row to identify whether each statement is an example of DML or DDL.

Statement	DML	DDL
ADD PRIMARY KEY		
ALTER TABLE		
SELECT FROM		
INNER JOIN		
CREATE DATABASE		

[2]

(d)	The field WkPhoneNumber cannot be empty and must have a maximum of 14 characters	; .
	Describe two ways the field WkPhoneNumber can be validated.	
	1	
	2	
	2	
		[4]
(e)	State what is meant by a candidate key.	
(f)	Describe what is meant by a secondary key .	[.]
		[0]

	(g)	The database is stored on a magnetic hard disk.
		Describe the basic internal layout and operation of a magnetic hard disk drive.
		[5]
9		sequence of operations shows, in register transfer notation, the fetch stage of the h-execute cycle.

1 MAR
$$\leftarrow$$
 [PC]
2 PC \leftarrow [PC] + 1
3 MDR \leftarrow [[MAR]]

4 CIR ← [MDR]

Write a description of each of the three register transfer notations given in the following table.

Register transfer notation	Description
MAR ← [PC]	
PC ← [PC] + 1	
MDR ← [[MAR]]	

[3]

10	An 8	8-bit binary number can be interpreted in many ways.	
	(a)	State the number of different values that an 8-bit unsigned binary integer can represent.	
			[1]
	(b)	Give the smallest and largest denary values that an 8-bit two's complement integer or represent.	can
		Smallest	
		Largest	
			[-]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

COMPUTER SCIENCE

9618/12

Paper 1 Theory Fundamentals

May/June 2022

1 hour 30 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use an HB pencil for any diagrams, graphs or rough working.
- Calculators must not be used in this paper.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- No marks will be awarded for using brand names of software packages or hardware.

1 (a) Draw **one** line from each image representation term to its correct definition.

Term									De	efinitio	on
Pixel							ne nur xels h		of pixe	els wid	e by the number of
Bit depth						- 1	ne sm nage	allest	identi	fiable	component of an
Image resolution	l										age file, e.g. file or pixel, file size
File header							ne nui	mber	of bits	used	I to represent each
(b) The following each colour								wide a	and 5	pixels	[3] high. In this example
	В	В	В	В	В	В	В	В	В	В	
	Υ	Υ	Р	Υ	Υ	Υ	Р	Υ	Υ	Υ	

R R M R Ρ Κ Τ Т R R Ρ 0 Υ Υ Υ Ρ G В R Ο Р Р R R R R R

The complete image can have up to 256 colours.

(i)	Identify the smallest number of bits that can be used to represent each colour in the complete bitmap image.
	[1]

	(ii)	Calculat your ans										oitmap	image	e shov	vn, givin	g
		Show yo	our wo	orking												
		Working	j													
		Answer					bytes								[2	2]
(c)	Des	cribe hov	w cha	nging	the co	olour c	depth (of an i	mage	affect	s its fi	le size	e.			
															[2	2]
(d)	The	first row	of pix	els in	the in	nage f	from p	art (b) is sh	own:						
			В	В	В	В	В	В	В	В	В	В				
	Ехр	lain how	this ro	ow of	pixels	can b	e com	press	ed usi	ng los	sless	comp	ressio	า.		
															[2	2]

_				
2	A car	has	several	features

(a)	One feature is a lane detection system. This system monitors the lines on either side of the lane. If the car gets too close to one line, the system automatically moves the car away from the line.
	Explain why the lane detection system is an example of an embedded system.
	[2]
(b)	Two other features:
	 record the number of miles travelled in the current journey, from when the engine is turned on to when it is turned off record the total number of miles the car has travelled since it was built.
	Identify the data that will be stored in the primary and secondary storage of the car for these two features.
	Primary
	Secondary
	[2]
(c)	The car has a resistive touchscreen for the user to select options.
	Tick (\checkmark) one box in each row to show whether each statement about a resistive touchscreen is true or false.

Statement	True	False
The screen always has five different layers		
A processor determines the horizontal and vertical coordinates of the point of contact		
The touchscreen will work if any object touches the screen		

[1]

3 The table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC).

Insti	ruction	Evalenation
Opcode	Operand	Explanation
AND	#n	Bitwise AND operation of the contents of ACC with the operand
AND	<address></address>	Bitwise AND operation of the contents of ACC with the contents of <address></address>
XOR	#n	Bitwise XOR operation of the contents of ACC with the operand
XOR	<address></address>	Bitwise XOR operation of the contents of ACC with the contents of <address></address>
OR	#n	Bitwise OR operation of the contents of ACC with the operand
OR	<address></address>	Bitwise OR operation of the contents of ACC with the contents of <address></address>
<address></address>	can be an abso	olute or a symbolic address

denotes a denary number, e.g. #123

0 1 1 0 0 1 0	1
---------------	---

Write the bit manipulation instruction that would change the binary integer in ACC to:

	1	1	1	1	1	1	1	1
--	---	---	---	---	---	---	---	---

(b) The ACC currently contains the following positive binary integer:

0		1	1	0	0	1	0	1
---	--	---	---	---	---	---	---	---

Write the bit manipulation instruction that would change the binary integer in ACC to:

	1	0	0	1	1	0	1	0
--	---	---	---	---	---	---	---	---

Opcode Operand

[2]

© UCLES 2022 9618/12/M/J/22 **[Turn over**

(c)	Convert the following positive binary integer into hexadecimal.
	0111110
	[1]
(d)	A three-place logical shift to the left is performed on the following positive binary integer.
	Show the result of this logical shift.
	0111110
	[1]
(e)	Convert the denary numbers 127 and 12 to 8-bit binary and then perform the subtraction 12 – 127 in binary.
	Show your working.
	127 in binary
	12 in binary
	12 – 127 in binary
	[3]

A SC	A school stores personal data about its staff and students on its computer system.		
(a)	Explain why the so unauthorised access	chool needs to keep both its data and its computer ses.	ystem secure from
	Data		
	Computer system		
			[2]
(b)	Complete the table	by identifying two security threats to the data on a cor	
	Describe each thre	at.	
	Give a different pre	vention method for each threat.	
	Threat	Description	Prevention method
			[6]
(c)	the internet.	vhen it is transmitted within the school network, or exte	ernally such as over
	Describe what is m	eant by encryption and explain why it is used.	

5 A database, FILMS, stores information about films and actors.

Part of the database is shown:

ACTOR(<u>ActorID</u>, FirstName, LastName, DateOfBirth)

FILM_FACT(<u>FilmID</u>, FilmTitle, ReleaseDate, Category)

FILM_ACTOR(<u>ActorID</u>, <u>FilmID</u>)

(a) Complete the entity-relationship (E-R) diagram.

ACTOR

FILM_FACT

FILM_ACTOR

[2]

(b)	A composite primary key consists of two or more attributes that together form the primary key
	Explain why the table FILM_ACTOR has a composite primary key.
	[2]

(c)	Complete the SQL script to return the IDs of all the actors in the film with the title Cinderella.
	SELECT
	FROM FILM_ACTOR
	INNER JOIN
	ON FILM_FACT.FilmID =
	WHERE FILM_FACT.FilmTitle =; [4]
(d)	Write an SQL script to count the number of films that were released in January 2022.
	[3]

(e) A Database Management System (DBMS) is used to create and manipulate the database.

Complete the descriptions of the features and tools found in a DBMS using the given terms.

Complete the descriptions of the features and tools found in a DBMS using the given terms. Not all terms will be used.

Boolean	data dictionary	data redundancy	field names
input	interface	logical schema	normalisation
operating system	output	primary keys	query
structure			

[6]

6

A pr	rogrammer uses language translators when writing and testing a program.	
(a)	Describe the operation of a compiler.	
		. [2]
(b)	Describe the operation of an interpreter.	
(c)	Explain how a programmer can make use of a typical Integrated Development Environr (IDE) when writing and testing a program.	nent
	Writing	
	Testing	
		[4]

7 Complete the truth table for the following logic expression:

X = (A XOR B) AND NOT C

A	В	С	Working space	х
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

[2]

8	Describe one application of Artificial Intelligence (AI).	
		ro

9 (a) The following incomplete table contains four network devices and their descriptions.

Complete the table by writing the missing devices and missing descriptions.

Device	Description	
	Receives and sends data between two networks operating on the same protocol	
Wireless Network Interface Card (WNIC)		
	Restores the digital signal so it can be transmitted over greater distances	
Wireless Access Point (WAP)		
	[4]	
Describe three differences between fibre-optic cables and copper cables.		

(b)	Describe three differences between fibre-optic cables and copper cables.
	1
	2
	3
	[3]

		Γ <i>Α</i>
	Describe CSMA/CD.	
C)	Ethernet uses Carrier Sense Multiple Access/Collision Detection (CSMA/CD).	

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge International AS & A Level

COMPUTER SCIENCE 9618/22

Paper 2 Fundamental Problem-solving and Programming Skills

May/June 2021

INSERT 2 hours

INFORMATION

- This insert contains all the resources referred to in the questions.
- You may annotate this insert and use the blank spaces for planning. Do not write your answers on the insert.

Note: An error occurs if a function call is not properly formed, or if the parameters are incorrect.

STRING Functions

LEFT (ThisString : STRING, x : INTEGER) RETURNS STRING returns leftmost x characters from ThisString

Example: LEFT ("ABCDEFGH", 3) returns "ABC"

RIGHT (ThisString: STRING, x: INTEGER) RETURNS STRING returns rightmost x characters from ThisString

Example: RIGHT ("ABCDEFGH", 3) returns "FGH"

MID (This String: STRING, x: INTEGER, y: INTEGER) RETURNS STRING returns a string of length y starting at position x from This String

Example: MID ("ABCDEFGH", 2, 3) returns "BCD"

LENGTH (ThisString: STRING) RETURNS INTEGER returns the integer value representing the length of ThisString

Example: LENGTH ("Happy Days") returns 10

LCASE (ThisChar: CHAR) RETURNS CHAR

returns the character value representing the lower case equivalent of ThisChar Characters that are not upper case alphabetic are returned unchanged

Example: LCASE('W') returns 'w'

UCASE (ThisChar: CHAR) RETURNS CHAR

returns the character value representing the upper case equivalent of ThisChar Characters that are not lower case alphabetic are returned unchanged

Example: UCASE('a') returns 'A'

TO_UPPER(ThisString: STRING) RETURNS STRING returns a string formed by converting all characters of ThisString to upper case

Example: TO UPPER ("Error 803") returns "ERROR 803"

TO_LOWER(ThisString : STRING) RETURNS STRING returns a string formed by converting all characters of ThisString to lower case

Example: TO LOWER ("JIM 803") returns "jim 803"

NUM TO STR(x : <data type>) RETURNS STRING

returns a string representation of a numeric value

Note: <data type> may be REAL or INTEGER

Example: NUM TO STR (87.5) returns "87.5"

STR_TO_NUM(x : <data type1>) RETURNS <data type2>

returns a numeric representation of a string

Note: <data type1> may be CHAR or STRING Note: <data type2> may be REAL or INTEGER

Example: STR TO NUM ("23.45") returns 23.45

IS NUM(ThisString : STRING) RETURNS BOOLEAN

returns the value TRUE if ThisString represents a valid numeric value

Note: <data type> may be CHAR or STRING

Example: IS_NUM("12.36") returns TRUE Example: IS_NUM("-12.36") returns TRUE Example: IS_NUM("12.3a") returns FALSE

ASC (ThisChar : CHAR) RETURNS INTEGER

returns an integer value (the ASCII value) of ThisChar

Example: ASC ('A') returns 65

CHR (x : INTEGER) RETURNS CHAR

returns the character whose integer value (the ASCII value) is x

Example: CHR (87) returns 'W'

NUMERIC Functions

INT(x : REAL) RETURNS INTEGER

returns the integer part of \boldsymbol{x}

Example: INT (27.5415) returns 27

RAND(x: INTEGER) RETURNS REAL

returns a real number in the range 0 to x (**not** inclusive of x)

Example: RAND (87) could return 35.43

DATE Functions

Note: Date format is assumed to be DDMMYYYY unless otherwise stated.

DAY (ThisDate: DATE) RETURNS INTEGER returns the current day number from ThisDate

Example: DAY (4/10/2003) returns 4

MONTH (ThisDate : DATE) RETURNS INTEGER returns the current month number from ThisDate

Example: MONTH (4/10/2003) returns 10

YEAR (ThisDate : DATE) RETURNS INTEGER returns the current year number from ThisDate

Example: YEAR (4/10/2003) returns 2003

DAYINDEX (ThisDate : DATE) RETURNS INTEGER

returns the current day index number from ThisDate where Sunday = 1, Monday = 2,

Tuesday = 3 etc.

Example: DAYINDEX (12/05/2020) returns 3

SETDATE (Day, Month, Year : INTEGER) RETURNS DATE

returns a variable of type DATE

NOW() RETURNS DATE returns the current date

OTHER Functions

EOF (FileName : STRING) RETURNS BOOLEAN

returns TRUE if there are no more lines to be read from file FileName

Note: This function will generate an ERROR if the file is not already open in READ mode

OPERATORS

&	Concatenates (joins) two strings Example: "Summer" & " " & "Pudding" evaluates to "Summer Pudding" Note: This operator may also be used to concatenate a character with a string
AND	Performs a logical AND on two Boolean values Example: TRUE AND FALSE evaluates to FALSE
OR	Performs a logical OR on two Boolean values Example: TRUE OR FALSE evaluates to TRUE
NOT	Performs a logical NOT on a Boolean value Example: NOT TRUE evaluates to FALSE
MOD	Finds the remainder when one number is divided by another Example: 10 MOD 3 evaluates to 1
DIV	Finds the quotient when one number is divided by another Example 10 DIV 3 evaluates to 3

Note: An error is generated if an operator is used with a value or values of an incorrect type.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

2 2 1 1 3 9 3 4 1

COMPUTER SCIENCE

9618/11

Paper 1 Theory Fundamentals

May/June 2021

1 hour 30 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use an HB pencil for any diagrams, graphs or rough working.
- Calculators must not be used in this paper.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- No marks will be awarded for using brand names of software packages or hardware.

This document has 16 pages.

- 1 Anya scans an image into her computer for a school project.
 - (a) The scanned image is a bitmapped image.
 - (i) Complete the following table to describe the two terms about graphics.

Term	l	Description	
Pixel			
File hea	der		
	'		[2]
(ii)		image is scanned with an image resolution of 1024 \times 512 pixels, and a colour debits per pixel.	pth
	Calc work	culate an estimate for the file size, giving your answer in mebibytes. Show you	our
	Worl	king	
	Λ no.	wor mobilitytoo	••••
	Alisi	wer mebibytes	[3]
(b) The	imag	ge is compressed using lossless compression.	
lden desc	ntify o cribe	one method of lossless compression that can be used to compress the image a how the method will reduce the file size.	nd
Loss	sless	compression method	
		on	
200	•		
			••••

[3]

(c) One of the colours used in the image has the hexadecimal colour code:

#FC238A

FC	is the amount of red, 23 is the amount of green and 8A is the amount of blue in the colour
(i)	Convert the hexadecimal code FC into denary.
	[1
(ii)	The amount of green in binary is 00100011. This has the denary number 15 added to to create a second colour.
	Add the denary number 15 to the binary number 00100011 and give your answer in binary.
	Perform the addition in binary. Show your working.
	Working
	Answer (in binary)
	[3
(iii)	Hexadecimal 23 in two's complement representation is 00100011. The denary numbe 10 needs to be subtracted from this value.
	Subtract the denary number 10 from the two's complement representation 00100011.
	Give your answer in binary. Show your working.
	Working
	Answer (in binary)

[3]

(d)	Anya made sure that the image was not subject to any copyright before scanning it.
	Describe what is meant by copyright .
	ro

- 2 Bingwen's computer comes with an Operating System and utility software.
 - (a) Draw one line from each utility software to its correct description.

(b)

Utility software	Description					
	Scans software for errors and repairs the problems					
Disk formatter	Moves parts of files so that each file is contiguous in memory					
Defragmentation	Creates a copy of data that is no longer required					
Back-up	Sets up a disk so it is ready to store files					
Disk repair	Scans for errors in a disk and corrects them					
	Creates a copy of data in case the original is lost					
	[4]					
Identify four key management	tasks that the Operating System will perform.					
	[4]					

3	A processor has	one	general	purpose	register,	the	Accumulator	(ACC),	and	several	special
	purpose registers.										

(a)	Complete the following	description	of the	role of	the	registers	in the	fetch-execute	cycle	by
	writing the missing regis	sters.								

The	holds the address of the next instruction
to be loaded. This address is sent to the	
The	holds the data fetched from this address.
This data is sent to the	and the Control Unit
decodes the instruction's opcode.	
The	is incremented. [5]

(b) The following table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC), and an Index Register (IX).

Instruction Opcode Operand		Explanation				
LDD	<address></address>	Direct addressing. Load the contents of the location at the given address to ACC				
LDI	<address></address>	Indirect addressing: The address to be used is at the given address. Load the contents of this second address to ACC				
LDX	<address></address>	Indexed addressing. Form the address from <address> + the contents of the Index Register. Copy the contents of this calculated address to ACC</address>				
LDR	#n	Immediate addressing. Load the number n to IX				
MOV	<register></register>	Move the contents of the accumulator to the given register (IX)				
STO	<address></address>	Store contents of ACC at the given address				
ADD	<address></address>	Add the contents of the given address to the ACC				
INC	<register></register>	Add 1 to the contents of the register (ACC or IX)				
CMP	<address></address>	Compare the contents of ACC with the contents of <address></address>				
JPE	<address></address>	Following a compare instruction, jump to <address> if the compare was True</address>				
JPN	<address></address>	Following a compare instruction, jump to <address> if the compare was False</address>				
JMP	<address></address>	Jump to the given address				
OUT		Output to the screen the character whose ASCII value is stored in ACC				
END		Return control to the operating system				
LSL	#n	Bits in ACC are shifted logically n places to the left. Zeros are introduced on the right hand end				
LSR	#n	Bits in ACC are shifted logically n places to the right. Zeros are introduced on the left hand end				

denotes a denary number, e.g. #123

The current contents of the main memory and selected values from the ASCII character set are shown.

Address	Instruction
200	LDD 365
201	CMP 366
202	JPE 209
203	INC ACC
204	STO 365
205	MOV IX
206	LDX 365
207	OUT
208	JMP 200
209	END
365	1
366	3
367	65
368	66
IX	0

ASCII code table (selected codes only)

ASCII code	Character
65	A
66	В
67	С
68	D

Complete the trace table for the program currently in main memory.

Instruction	4.00		Memory	TV	0		
address	ACC	365	366	367	368	IX	Output
		1	3	65	66	0	

(c) (i) The Accumulator currently contains the binary num

0	0	1	1	0	1	0	1
---	---	---	---	---	---	---	---

Write the contents of the Accumulator after the processor has executed the following instruction:

[1]

(ii) The Accumulator currently contains the binary number:

0	0	1	1	0	1	0	1

Identify the mathematical operation that the following instruction will perform on the contents of the accumulator.

LSR	#3
	[1]

iviei	inda and her friends set up a peer-to-peer network between their computers to share data.
(a)	Describe the key features of a peer-to-peer network.
	[2]
(b)	Describe two drawbacks to Melinda and her friends of using a peer-to-peer network.
	1
	2
	[4]
(c)	Melinda connects her laptop to the internet through her router.
	(i) Tick (✓) one box in each row to identify whether the task is performed by the router or not.

Task	Performed by router	Not performed by router
Receives packets from devices		
Finds the IP address of a Uniform Resource Locator (URL)		
Directs each packet to all devices attached to it		
Stores the IP and/or MAC address of all devices attached to it		

(ii)	Melinda mainly uses	s the internet to	watch films and	l plav com	puter gam
\ : : /	Wiching a mainly asc.		water min a and	i piay con	iputoi ga

Tick (✓) **one** box to identify whether Melinda should connect to the router using a wired or wireless network **and** justify your choice.

Wired				
Wireless				
Justification				
				[3]
Melinda sends emails from h	er webmail accour	nt (email account ac	cessed through a w	/ebsite).
Explain whether Melinda is u	using the internet,	or the World Wide V	Veb (WWW), or bot	ih.
				[0]
				[3]

© UCLES 2021 9618/11/M/J/21

(d)

5

K	ara has a washing machine and a refrigerator.
(a) She has an embedded system in her washing machine.
	Describe what is meant by an embedded system, using the washing machine as an example
	[2
(k	The washing machine's embedded system makes use of both Random Access Memory (RAM) and Read Only Memory (ROM).
	State the purpose of RAM and ROM within the washing machine's embedded system.
	RAM
	ROM
10	2). The temperature in her refrigerator must be kept between 4 and 6 degrees Coloius
(0	The temperature in her refrigerator must be kept between 4 and 6 degrees Celsius.
	The microprocessor in the refrigerator turns on the cooling if the temperature is too high, and turns off the cooling if the temperature is too low.
	Explain why the system in the refrigerator is a control and not a monitoring system.
	[2

6 Each of the following algorithms performs data validation.

State the type of validation check that each of the algorithms performs.

(a)

```
INPUT x
IF x < 0 OR x > 10 THEN
 OUTPUT "Invalid"
ENDIF
(b)
INPUT x
IF x = "" THEN
 OUTPUT "Invalid"
ENDIF
(c)
INPUT x
IF NOT(x = "Red" OR x = "Yellow" OR x = "Blue") THEN
 OUTPUT "Invalid"
ENDIF
......[1]
```

7

Bob	by a	and Kim are discussing d	latabases.		
(a)	Bob	oby tells Kim that a file-b	ased approach is	usually be	tter than a relational database.
	Exp	plain why Bobby is incorr	ect.		
				•••••	
					[3]
(b)	Dok	aby bas a shap that sall			
(b)	cus deta	tomers, their payment d	etails, orders and ounts. The datab	the produc	is database will store data about his its he sells. Customers will have login odate customers' payment and login
	(i)				ships from Bobby's database.
	(1)	one-to-one	don or the lonewi	rig rolatione	mips from Bobby 5 database.
		one-to-many			
		many-to-many			
	/ ***\	T 1 (0)			[3]
	(ii)	normalised relational d		inship that	cannot be directly implemented in a
			Relationship	Tick (✓)	
			one-to-one		
			one-to-many		
			many-to-many		

(iii)	Bobby wants to name his database SHOPORDERS.	
	Write a Data Definition Language (DDL) statement to define a new database with name <code>SHOPORDERS</code> .	the
		[1
A da	atabase has a data dictionary.	
Giv	e three items that are stored in a data dictionary.	
1		
2		
3		
		[3
	A da Give 1 2	Write a Data Definition Language (DDL) statement to define a new database with

8 Tick (✓) one box in each row to identify the logic gate that each statement describes.

Statement	AND	NAND	NOR	XOR	OR
The output is 1 only when both inputs are 1					
The output is 1 only when both inputs are different					
The output is 1 only when both inputs are 0					

[3]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

1949442064

COMPUTER SCIENCE

9618/11

Paper 1 Theory Fundamentals

October/November 2021

1 hour 30 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use an HB pencil for any diagrams, graphs or rough working.
- Calculators must not be used in this paper.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- No marks will be awarded for using brand names of software packages or hardware.

	Binary value		1 kibibyte
	8 bits		
			1 gigabyte
	8000 bits		1 byte
	1000 kilobytes		
	1024 mahihutaa		1 kilobyte
	1024 mebibytes		1 gibibyte
	8192 bits		1 megabyte
			4 11 4
			1 mebibyte
o)	(i) Perform the fol	owing binary addition. Show your working	
o)	(i) Perform the fol	owing binary addition. Show your working 10101010	
0)	(i) Perform the fol		
b)	(i) Perform the fol	10101010	
		10101010	
		10101010 + 00110111	integers.

2

(a)		wants to maintain the integrity and security of data stored on her computer.
		[2]
(b)	Xar	nthe uses both data validation and data verification when entering data on her computer.
	(i)	Describe how data validation helps to protect the integrity of the data. Give an example in your answer.
		Description
		Example
		[2]
	(ii)	Describe how data verification helps to protect the integrity of the data. Give an example in your answer.
		Description
		Example[2]
(c)	Two	o malware threats are spyware and viruses.
	Giv	e two similarities and one difference between spyware and a virus.
	Sim	nilarity 1
	Sim	nilarity 2
	 Diff	erence
		[3]

3 A logic circuit is shown:

(a) Write the logic expression for the logic circuit.

 [3]

(b) Complete the truth table for the given logic circuit.

Α	В	С	Working space	х
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

(c)	Identify one logic gate not used in the given logic circuit. Draw the symbol for the logic gate and complete its truth table.
	Logic gate:

Truth table:

Symbol:

Α	В	Output
0	0	
0	1	
1	0	
1	1	

[3]

Fra	ncis	is starting his first job as a software developer for a multinational company.
(a)	Fra	ncis has been advised to join a professional ethical body.
	Des	scribe the benefits to Francis of joining a professional ethical body.
		[3]
(b)		ncis is shown the software he will be working on. He is unfamiliar with the Integrated relopment Environment (IDE) he is required to use.
	(i)	Describe the ways in which Francis can act ethically in this situation.
		[2]
	(ii)	A typical IDE provides debugging tools to support the testing of a program.
		Identify three other tools or features found in a typical IDE to support the writing of the program.
		1
		2
		3[3]
(c)	has	ncis is part of a team writing a program. He finds an error in part of the program that already been tested. He decides not to tell anyone because he is worried about the sequences.
	Exp	plain the reasons why Francis acted unethically in this situation.
		[2]

(d) Francis's team use language translators.

Complete the descriptions of language translators by writing the missing words.
are usually used when a high-level language program is
complete. They translate all the code at the same time and then run the program.
They produce files that can be run without the source code.
translate one line of a high-level language program at a time,
and then run that line of code. They are most useful while developing the programs because
errors can be corrected and then the program continues from that line.
Assemblers are used to translate assembly code into
ַנדן

5 Javier owns many shops that sell cars. He employs several managers who are each in charge of one or more shops. He uses the relational database CARS to store the data about his business.

Part of the database is shown:

SHOP(ShopID, ManagerID, Address, Town, TelephoneNumber)

MANAGER(ManagerID, FirstName, LastName, DateOfBirth, Wage)

CAR(RegistrationNumber, Make, Model, NumberOfMiles, ShopID)

(a) Tick (\checkmark) one box in each row to identify whether each field is a primary key or a foreign key.

Table	Field name	Primary key	Foreign key
MANAGER	ManagerID		
SHOP	ManagerID		
CAR	RegistrationNumber		
CAR	ShopID		

(b) Describe the ways in which access rights can be used to protect the data in Javier's database from unauthorised access.

[2]

(c)	Javier	uses	Data	Definition	Language	(DDL)	and	Data	Manipulation	Language	(DML)
	statem	ents ir	n his d	atabase.							

(i)	Complete	the	following	DML	statements	to	return	the	number	of	cars	for	sale	in	each
	shop.														

 ShopID	[3]

(ii) Complete the DML statement to include the following car in the table ${\tt CAR.}$

Field	Data
RegistrationNumber	123AA
Make	Tiger
Model	Lioness
NumberOfMiles	10500
ShopID	12BSTREET

CAR	
("123AA","Tiger","Lioness",10500,"12BSTREET")	[0]
	[4]

BLANK PAGE

6	(2)	There are two errors	in the following	register transfer no	tation for the	fetch-execute cycle
U	(a)	There are two errors	in the following	register transfer no	lalion for the	ieidii-exedule dydie.

1 MAR
$$\leftarrow$$
 [PC]

2
$$PC \leftarrow [PC] - 1$$

3 MDR
$$\leftarrow$$
 [MAR]

4 CIR
$$\leftarrow$$
 [MDR]

Complete the following table by:

- identifying the line number of each error
- describing the error
- writing the correct statement.

Line number	Description of the error	Correct statement

[4]

(b) The following table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC), and an Index Register (IX).

Ins	struction	Explanation			
Opcode	Operand				
LDM	#n	Immediate addressing. Load the number n to ACC			
LDD	<address></address>	Direct addressing. Load the contents of the location at the given address to ACC			
STO	<address></address>	Store the contents of ACC at the given address			
INC	<register></register>	Add 1 to the contents of the register (ACC or IX)			
CMP	<address></address>	Compare the contents of ACC with the contents of <address></address>			
JPN	<address></address>	Following a compare instruction, jump to <address> if the compare was False</address>			
JMP	<address></address>	Jump to the given address			
IN		Key in a character and store its ASCII value in ACC			
OUT		Output to the screen the character whose ASCII value is stored in ACC			
END		Return control to the operating system			
XOR	#n	Bitwise XOR operation of the contents of ACC with the operand			
XOR	<address></address>	Bitwise XOR operation of the contents of ACC with the contents of <address></address>			
AND	#n	Bitwise AND operation of the contents of ACC with the operand			
AND	<address></address>	Bitwise AND operation of the contents of ACC with the contents of <address></address>			
OR	#n	Bitwise OR operation of the contents of ACC with the operand			
OR	<address></address>	Bitwise OR operation of the contents of ACC with the contents of <address></address>			
LSL	#n	Bits in ACC are shifted logically n places to the left. Zeros are introduced on the right hand end			
LSR #n		Bits in ACC are shifted logically n places to the right. Zeros are introduced on the left hand end			
<address> can be an absolute or symbolic address # denotes a denary number, e.g. #123 B denotes a binary number, e.g. B01001101</address>					

The current contents of main memory are shown:

Address	Data
100	00001111
101	11110000
102	01010101
103	11111111
104	00000000

Each row of the following table shows the current contents of ACC in binary and the instruction that will be performed on those contents.

Complete the table by writing the new contents of the ACC after the execution of each instruction.

Current contents of the ACC	Instruction	New contents of the ACC
11111111	OR 101	
0000000	XOR #15	
10101010	LSR #2	
01010101	AND 104	

Bobby is recording a sound file for his school project.

7

(a)	He	repeats the recording of the sound several times, with a different sample rate each time.
	(i)	Describe the reasons why the sound is closer to the original when a higher sample rate is used.
	(ii)	Describe the reasons why the sound file size increases when a higher sample rate is used.
		[2]
(b)		by wants to email the sound file to his school email address. He compresses the file ore sending the email.
	(i)	Explain the reasons why Bobby compresses the sound file.
	<i>(</i> 11)	[2]
	(ii)	Bobby uses lossless compression.
		Describe how lossless compression can compress the sound file.
		[2]

A s	chool is setting up a network within one of its buildings.
(a)	State whether the network will be a LAN (local area network) or a WAN (wide area network). Justify your choice.
	[3]
(b)	One classroom in the building has 30 computers. The computers need to be connected to the network. Each computer has a network interface card (NIC).
	Identify two possible devices that can be used to physically connect the 30 computers to the rest of the network.
	1
	2
	[2]
(c)	The school has several laptops. Each laptop has a Wireless Network Interface Card (WNIC).
	Describe the functions of a Wireless Network Interface Card.
	[4]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

487719545

COMPUTER SCIENCE

9618/11

Paper 1 Theory Fundamentals

October/November 2023

1 hour 30 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use an HB pencil for any diagrams, graphs or rough working.
- Calculators must not be used in this paper.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- No marks will be awarded for using brand names of software packages or hardware.

BLANK PAGE

1 (a) Draw one line from each vector graphic term to its most appropriate description.

	Term	Description
	drawing list	a component created using a formula
	drawing object	defines one characteristic of a component
	property	data required to create all components in the graphic
		[2]
(b)	State what is meant by the bit depth affects the image.	depth of a bitmap image and explain how changing the bit
	Delinition	
	Explanation	
		[3]
(c)	Explain why a bitmap image is o	ften compressed before it is attached to an email.
		[0]
		[2]

2	Asc	chool has a Local Area Net	work (LAN).
	(a)	The LAN connects to the i	nternet using a router.
		Describe the function of a	router in a network.
			[3]
	(h)	Complete the following take	ole by writing the purpose of each of these other hardware devices
	(b)	used to support the LAN.	one by mining the purpose of each of these earth managed across
	(6)		Purpose
	(D)	used to support the LAN.	
	(5)	used to support the LAN.	
	(5)	Hardware device	
	(5)	Hardware device	
	(5)	Hardware device switch Wireless Access Point	
		Hardware device switch	
		Hardware device switch Wireless Access Point	
		Hardware device switch Wireless Access Point	

[3]

(c)	The students can save their school files on a public cloud.
	Identify two drawbacks of the students storing their files on the public cloud.
	1
	2
	[2]
(d)	A new classroom is being set up with 20 computers and a switch.
	Explain one advantage of implementing a star topology instead of a bus topology in the new classroom.
	[2]

3 A shop manager has designed a relational database to store customer orders.

The database will have the following tables:

```
CUSTOMER(CustomerID, FirstName, LastName, Town)

SHOP_ORDER(OrderNo, CustomerID, OrderDate)

SUPPLIER(SupplierID, EmailAddress, TelephoneNumber)

ITEM(ItemNumber, SupplierID, Description, Price)

ORDER_ITEM(ItemNumber, OrderNo, Quantity)
```

(a) Complete the entity-relationship (E-R) diagram for the relational database.

(b) Identify three advantages of a relational database compared to a file-based approach.

2	 	
3		
		[3]

[3]

(c) (i)	Write a Structured Query Language (SQL) script to define the database called SHOP.
	[1]
	[,]
(ii)	Write the SQL script to return the total quantity of items that the customer with the ID of HJ231 has ordered.
	[4]

4 (a) Complete the truth table for the logic expression:

X = NOT (A NAND B) XOR (NOT B AND (B NOR C))

A	В	С	Working space	х
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

(b) Draw a logic circuit for the logic expression:

$$X = (A \text{ AND NOT } (B \text{ OR } C)) \text{ AND } (B \text{ NOR } C)$$

© UCLES 2023 9618/11/O/N/23

[2]

[2]

5

The Central Processing Unit (CPU) of the basic Von Neumann model for a computer system contains several special purpose registers.	
(a) The Memory Data Register (MDR), Index Register (IX) and the Accumulator (ACC) are examples of special purpose registers.	(a)
Identify two other special purpose registers and state their role in the CPU.	
Special purpose register 1	
Role	
Special purpose register 2	
Role	
[4]	
(b) Describe what is meant by the Immediate Access Store (IAS) in a computer system.	(b)
[2]	

(c)	A co	omputer has a single 2.1 GHz CPU.
	(i)	Describe how increasing the clock speed to 4 GHz can increase the performance of the computer.
		[1]
	(ii)	A second computer has a CPU with two 2.1 GHz cores.
		Explain why the second computer does not always run twice as fast as the computer with one 2.1 GHz CPU.
		[5]

6

e the advantages of using the interpreter compared to the compiler to translate the n.
[4]
ne reason why some high-level languages are partially compiled and partially interpreted.
[1]
ntify two features that support the visual presentation of the code in a typical egrated Development Environment (IDE).
[2]
ntify two features that support the debugging of the code in a typical IDE.
ntify two features that support the debugging of the code in a typical IDE.

7 (a)	Describe the principal operations of a 3D printer.
		[3]
(1	b)	Describe the purpose of a temperature sensor within the 3D printer.
		[2]
(c)	A 3D printer contains 1 GB of Dynamic RAM (DRAM) to store print data.
		State two advantages of the printer having Dynamic RAM instead of Static RAM (SRAM).
		1
		2
		[2]

(a) Identify the purpose of the first pass of a two-pass assembler.

8

	••••		F41
(b)		following to	able shows part of the instruction set for a processor. The processor has two
(b)		-	ccumulator (ACC) and the Index Register (IX).
Ins	truct	ion	Explanation
Opcode	C	perand	Explanation
LDR	#n		Immediate addressing. Load the number n to IX
STO	<ad< td=""><td>dress></td><td>Store contents of ACC at the given address</td></ad<>	dress>	Store contents of ACC at the given address
ADD	<ad< td=""><td>dress></td><td>Add the contents of the given address to the ACC</td></ad<>	dress>	Add the contents of the given address to the ACC
INC	<re< td=""><td>gister></td><td>Add 1 to the contents of the register (ACC or IX)</td></re<>	gister>	Add 1 to the contents of the register (ACC or IX)
CMP	#n		Compare the contents of ACC with number n
JPE	<ad< td=""><td>dress></td><td>Following a compare instruction, jump to <address> if the compare was True</address></td></ad<>	dress>	Following a compare instruction, jump to <address> if the compare was True</address>
OUT			Output to the screen the character whose ASCII value is stored in ACC
		be an absolu ary number	ute or symbolic address , e.g. #123
	(ii)	groups. Only use operand. Data move Arithmetic Conditiona The instruct Give one s Similarity. Difference	example of an instruction that belongs to each of the following instruction the instructions given in the table. Each instruction must have a suitable ement
			[2]

(iii) Identify one other mode of addressing.

												[1]
(c)	The	e following ta	able	shows	anothe	r part of	the ins	truction	set for	the san	ne proc	essor.
Ins	truct	ion						Evnla	nation			
Opcode	0	perand						БАРІА				
AND	Bn		Bit	wise Al	ND ope	ration of	f the co	ntents o	of ACC	with the	operar	ıd
XOR	Bn		Bit	wise X0	OR ope	ration o	f the co	ntents	of ACC	with the	operar	nd
LSR	#n			s in AC e left ha		hifted Ic	gically	n place	s to the	right. Z	eros ar	e introduced on
		ary number ary number,	_		1101							
	(i)	The curren	nt co	ntents (of the A	CC are:						
			ı						_]
				0	1	0	0	1	1	1	1	
		Show the	conte	ents of	the AC	C after t	he exec	cution o	f the fol	lowing i	instructi	on.
						А	ND B10)10010	1			
			ı] [1]
	(ii)	The curren	ıt co	ntents o	of the A	CC are:						
				0	0	0	1	0	1	1	1	
		Chau tha	ا	onto of	th a A C (2 offer t	ha ava		f the fol	lawing:		
		Show the o	JOHN	ents or	lile ACC	Janer i			i tile loi	lowing	ii iSti uCti	OII.
							LSR	#3				
												1

[1]

(iii) The current contents of the ACC are:

1 1 1 1 0 1	1	1
-------------	---	---

Show the contents of the ACC after the execution of the following instruction.

	Χ	OR B0(010010	1		

[1]

9

(a)	Explain the importance of feedback in a control system.
	[2]
(b)	Give one example of an embedded system and explain why it is an example of an embedded system.
	Example
	Explanation
	[3]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge International AS & A Level

COMPUTER SCIENCE 9618/21

Paper 2 Fundamental Problem-solving and Programming Skills

May/June 2021

INSERT 2 hours

INFORMATION

- This insert contains all the resources referred to in the questions.
- You may annotate this insert and use the blank spaces for planning. Do not write your answers on the insert.

Note: An error occurs if a function call is not properly formed, or if the parameters are incorrect.

STRING Functions

LEFT (ThisString : STRING, x : INTEGER) RETURNS STRING returns leftmost x characters from ThisString

Example: LEFT ("ABCDEFGH", 3) returns "ABC"

RIGHT (ThisString: STRING, x: INTEGER) RETURNS STRING returns rightmost x characters from ThisString

Example: RIGHT ("ABCDEFGH", 3) returns "FGH"

MID (This String: STRING, x: INTEGER, y: INTEGER) RETURNS STRING returns a string of length y starting at position x from This String

Example: MID ("ABCDEFGH", 2, 3) returns "BCD"

LENGTH (ThisString: STRING) RETURNS INTEGER returns the integer value representing the length of ThisString

Example: LENGTH ("Happy Days") returns 10

LCASE (ThisChar: CHAR) RETURNS CHAR

returns the character value representing the lower case equivalent of ThisChar Characters that are not upper case alphabetic are returned unchanged

Example: LCASE('W') returns 'w'

UCASE (ThisChar: CHAR) RETURNS CHAR

returns the character value representing the upper case equivalent of ThisChar Characters that are not lower case alphabetic are returned unchanged

Example: UCASE('a') returns 'A'

TO_UPPER(ThisString: STRING) RETURNS STRING returns a string formed by converting all characters of ThisString to upper case

Example: TO UPPER ("Error 803") returns "ERROR 803"

TO_LOWER(ThisString : STRING) RETURNS STRING returns a string formed by converting all characters of ThisString to lower case

Example: TO LOWER ("JIM 803") returns "jim 803"

NUM TO STR(x : <data type>) RETURNS STRING

returns a string representation of a numeric value

Note: <data type> may be REAL or INTEGER

Example: NUM TO STR (87.5) returns "87.5"

STR_TO_NUM(x : <data type1>) RETURNS <data type2>

returns a numeric representation of a string

Note: <data type1> may be CHAR or STRING Note: <data type2> may be REAL or INTEGER

Example: STR TO NUM ("23.45") returns 23.45

IS NUM(ThisString : STRING) RETURNS BOOLEAN

returns the value TRUE if ThisString represents a valid numeric value

Note: <data type> may be CHAR or STRING

Example: IS_NUM("12.36") returns TRUE Example: IS_NUM("-12.36") returns TRUE Example: IS_NUM("12.3a") returns FALSE

ASC (ThisChar : CHAR) RETURNS INTEGER

returns an integer value (the ASCII value) of ThisChar

Example: ASC ('A') returns 65

CHR(x: INTEGER) RETURNS CHAR

returns the character whose integer value (the ASCII value) is ${\bf x}$

Example: CHR (87) returns 'W'

NUMERIC Functions

INT(x : REAL) RETURNS INTEGER

returns the integer part of \boldsymbol{x}

Example: INT (27.5415) returns 27

RAND(x: INTEGER) RETURNS REAL

returns a real number in the range 0 to x (**not** inclusive of x)

Example: RAND (87) could return 35.43

DATE Functions

Note: Date format is assumed to be DDMMYYYY unless otherwise stated.

DAY (ThisDate: DATE) RETURNS INTEGER returns the current day number from ThisDate

Example: DAY (4/10/2003) returns 4

MONTH (ThisDate : DATE) RETURNS INTEGER returns the current month number from ThisDate

Example: MONTH (4/10/2003) returns 10

YEAR (ThisDate : DATE) RETURNS INTEGER returns the current year number from ThisDate

Example: YEAR (4/10/2003) returns 2003

DAYINDEX (ThisDate : DATE) RETURNS INTEGER

returns the current day index number from ${\tt ThisDate}$ where ${\tt Sunday}$ = 1, ${\tt Monday}$ = 2,

Tuesday = 3 etc.

Example: DAYINDEX (12/05/2020) returns 3

SETDATE (Day, Month, Year : INTEGER) RETURNS DATE

returns a variable of type DATE

NOW() RETURNS DATE returns the current date

OTHER Functions

EOF (FileName : STRING) RETURNS BOOLEAN

returns TRUE if there are no more lines to be read from file FileName

Note: This function will generate an ERROR if the file is not already open in READ mode

OPERATORS

&	Concatenates (joins) two strings Example: "Summer" & " " & "Pudding" evaluates to "Summer Pudding" Note: This operator may also be used to concatenate a character with a string
AND	Performs a logical AND on two Boolean values Example: TRUE AND FALSE evaluates to FALSE
OR	Performs a logical OR on two Boolean values Example: TRUE OR FALSE evaluates to TRUE
NOT	Performs a logical NOT on a Boolean value Example: NOT TRUE evaluates to FALSE
MOD	Finds the remainder when one number is divided by another Example: 10 MOD 3 evaluates to 1
DIV	Finds the quotient when one number is divided by another Example 10 DIV 3 evaluates to 3

Note: An error is generated if an operator is used with a value or values of an incorrect type.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

7938385792

COMPUTER SCIENCE

9618/11

Paper 1 Theory Fundamentals

May/June 2022

1 hour 30 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use an HB pencil for any diagrams, graphs or rough working.
- Calculators must not be used in this paper.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- No marks will be awarded for using brand names of software packages or hardware.

Cor	Computers store data in binary form.		
(a)	State the difference between a tebibyte and a terabyte.		
		[1]	
(b)	Convert the signed denary value –100 into an 8-bit two's complement binary integer.		
	Working		
	Anguar		
(c)	Answer Convert the denary number 251 into hexadecimal. Show your working.	[1]	
(0)	Working		
	Answer	[0]	
(d)	Add the following unsigned binary integers.	[2]	
(-)			
	0101000		
	+00111110		

[1]

A co	ompu	puter has hardware and software.			
(a)	The	hardware includes different types of memory.			
	(i)	Complete the description of computer memory.			
		Random Access Memory (RAM) and Read Only Memory (ROM) are both examples of			
		memory.			
		One item that is stored in RAM is			
		One item that is stored in ROM is			
		RAM can be either Static RAM (SRAM) or Dynamic RAM (DRAM).			
		SRAM uses transistors arranged as			
		DRAM uses transistors and[5]			
	(ii)	Explain the difference between Programmable ROM (PROM), Erasable Programmable ROM (EPROM) and Electrically Erasable Programmable ROM (EEPROM).			
		(a) The			

(b)	A magnetic hard disk is used to store data on the computer.
	Describe the principal operations of a magnetic hard disk.
	[5]

- (c) Computers consist of logic gates.
 - (i) Complete the table by writing **one** set of values (input 1 and input 2) for each gate that will give the output 1.

Gate	Input 1	Input 2	Output
AND			1
NAND			1
XOR			1
NOR			1

[4]

(ii) Write the logic expression for the given logic circuit.

 [3]

	eacher is writing examination papers on a laptop computer. The computer is connected to the ernet. The teacher is concerned about the security and privacy of the papers.
(a)	State the difference between the security of data and the privacy of data.
	[1]
(b)	Identify and describe two threats to the data. Identify one security measure to protect against each threat. Each security measure must be different.
	Threat 1
	Description
	Security measure
	Threat 2
	Description
	Security measure[6]

A teacher uses a relational database, MARKS, to store data about students and their test marks. The database has the following structure: STUDENT(StudentID, FirstName, LastName) TEST (TestID, Description, TotalMarks) STUDENT TEST (StudentID, TestID, Mark) (a) Describe the advantages of using a relational database compared to a file-based approach.[4] (b) Give the highest level of Normal Form (NF) the database MARKS is in and justify your choice. [3]

(c) (i) Sample data to be stored in the table ${\tt STUDENT_TEST}$ is shown.

StudentID	TestID	Mark
12	A1	50
12	P10	100
13	A1	75
14	P10	60

	Write a Structured Query Language (SQL) script to create the table STUDENT_TEST.
	[5]
(ii)	Write a Structured Query Language (SQL) script to find the average mark of students in test A7.
	[3]

(d)	The mark a student is awarded in a test will be entered into the database. This mark needs to be a whole number between 0 and the maximum number of marks for that test (inclusive).
	Explain how data validation and data verification can be used when a mark is entered.
	[4

- **5** A programmer uses an Integrated Development Environment (IDE) to develop a program.
 - (a) Draw one line from each IDE feature to its correct description.

IDE feature	Description
Context-sensitive prompt	Executes one line of the program and then stops
Dynamic syntax check	Underlines or highlights statements that do not meet the rules of the language
Breakpoint	Outputs the contents of variables and data structures
Single stepping	Stops the code executing at a set line
Report window	Displays predictions of the code being entered
	[4]
The programmer wants to allow users to edit,	improve and redistribute the program.
Identify two different types of software licence	that the programmer could use.
1	
2	
	[2]

© UCLES 2022 9618/11/M/J/22

(b)

C)	Explain the benefits to the programmer of using program libraries.
	[3]

(a)	A co	omputer system is designed using the basic Von Neumann model.
	(i)	Describe the role of the registers in the Fetch-Execute (F-E) cycle.
		[5]
	(ii)	Describe when interrupts are detected in the F-E cycle and how the interrupts are
		handled.
		Detected
		Handlad
		Handled
		[5]

(b)	Identify one factor that can affect the performance of the computer system and state has impacts the performance.	iow i
	Factor	
	Impact	
	•	
		[2]

Question 6 continues on the next page.

(c) The table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC).

Instru	ıction	Evalenation						
Opcode	Operand	Explanation						
AND	#n	Bitwise AND operation of the contents of ACC with the operand						
XOR	#n	Bitwise XOR operation of the contents of ACC with the operand						
OR	#n	Bitwise OR operation of the contents of ACC with the operand						
LSL	#n	Bits in ACC are shifted logically n places to the left. Zeros are introduced on the right hand end						
LSR	#n	Bits in ACC are shifted logically n places to the right. Zeros are introduced on the left hand end						
# denotes a d	# denotes a denary number, e.g. #123							

OR	#n	Bitw	vise C	R ope	eration	of the	e cont	ents c	of ACC	with	the operand	
LSL	#n				shifte he rig	_	-	•	es to t	he lef	t. Zeros are	
LSR	#n				shifte he lef			n place	es to t	he rig	ht. Zeros are	
# denotes a c	lenary number,	e.g.	#123									
(i)	Complete the re	egist	er to	show	the re	sult af	iter the	e instr	ruction	AND	#2 is executed.	
	Register before	e:	0	1	1	0	1	1	0	1		
	Register after:											[1]
(ii)	Complete the r	egist	er to	show	the re	sult at	ter the	e instr	uction	OR #	\$8 is executed.	
	Register before	e:	0	1	1	0	1	1	0	1		
		-										
	Register after:											

(iii) Complete the register to show the result after the operation ${ t LSL}$ #4 is executed.

Register before:	0	1	1	0	1	1	0	1
							1	

Register after:

[1]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

5 4 4 0 4 4 0 9 9

COMPUTER SCIENCE

9618/12

Paper 1 Theory Fundamentals

October/November 2021

1 hour 30 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use an HB pencil for any diagrams, graphs or rough working.
- Calculators must not be used in this paper.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- No marks will be awarded for using brand names of software packages or hardware.

1 When designing computer systems, it is important to consider the security, integrity and privacy of the data.

Draw **one** line from each measure to indicate whether it keeps data secure or protects the integrity of data.

Measure

Double entry

Data Security

Presence check

Data Integrity

Password

[2]

2 (a) Complete the truth table for each of the following two logic gates.

	A
A —	0
В	0
	1

Α	В	Output
0	0	
0	1	
1	0	
1	1	

(b) Draw a logic circuit for the following logic expression.

X = NOT(NOT(A AND B)AND C)

[2]

[2]

And	dy like	es to play computer games.
(a)		ly uses several input devices to play the games. These include a keyboard and rophone.
	Des	scribe the principal operation of a microphone.
		[3
(b)		ly plays some of the computer games over the internet. He has several devices the nect wirelessly to the router in his house.
	(i)	Identify the topology of Andy's home network. Justify your choice.
		Topology
		Justification
		[2
	(ii)	The router has a wireless access point (WAP) to allow the devices to connect wirelessly
		Identify three functions of the router in Andy's network.
		1
		2
		3

BLANK PAGE

4 A register stores the following binary number	ımber	er:
---	-------	-----

1 1 0	0 1	1	0	1
-------	-----	---	---	---

(a)	The binary value in th	e regis	ter rep	resent	s an u	nsigne	d bina	ry inte	ger.		
	Convert the unsigned	binary	intege	er into o	denary						
											[1]
(b)	The binary value in th							ent bin	ary inte	eger.	
	Convert the two's con	npleme	ent bina	ary inte	ger int	o dena	ary.				
											[1]
(c)	The binary value in th	e regis	ter rep	resent	s a he	xadeci	mal nu	mber.			
	Convert the binary nu	mber iı	nto hex	kadecii	mal.						
											F41
(al)	Ctata why the value in										[1]
(d)	State why the value ir	i ine re	gister	canno	i be ini	erpreu	eu as a	ı billar	y Code	ad Decim	iai (BCD).
											[1]
(e)	The binary contents o	f two r									
(-)	•	_]	
	Register 1	0	0	1	1	1	1	0	1	-	
	Register 2	0	0	1	0	1	1	0	1		
	(i) Add the contents	of Re	gister	1 and I	Regist	er 2. S	Show y	our wo	orking.		
	Answer										[21

(ii)	Subtract the contents of Register 2 from the contents of Register 1. Show your work	ting.
	Answer	
		[2]

5 Riya has created the following logo as a vector graphic.

(a) Complete the table by writing a description of each vector graphic term **and** give an example for this logo.

Term	Description	Example from logo
Property		
Drawing list		

[4]

(b)	Riya takes a	a photograph usi	ng a digital camera	a. The photograph is	s stored as a bitmap image
-----	--------------	------------------	---------------------	----------------------	----------------------------

Describe two differences between a vector graphic and a bitmap image.

1	 																			

2	 	 	

(ii)	Riya needs to email the photograph. She compresses the photograph before sending it using an email.
	Describe two lossy methods that Riya can use to compress the image.
	Method 1
	Method 2
	[4]

6 A shop sells plants to customers. The shop manager has a relational database to keep track of the sales.

The database, PLANTSALES, has the following structure:

```
PLANT(PlantName, QuantityInStock, Cost)

CUSTOMER(CustomerID, FirstName, LastName, Address, Email)

PURCHASE(PurchaseID, CustomerID)

PURCHASE ITEM(PurchaseID, PlantName, Quantity)
```

- (a) The database is normalised.
 - (i) The table lists the following three stages of normalisation:
 - The first stage is from a database that is not normalised (0NF) to First Normal Form (1NF).
 - The second stage is from 1NF to Second Normal Form (2NF).
 - The third stage is from 2NF to Third Normal Form (3NF).

Tick (\checkmark) one box in each row to identify the appropriate stage for each task.

Task	No	rmalisation st	age
lask	0NF to 1NF	1NF to 2NF	2NF to 3NF
Remove any partial key dependencies			
Remove any repeating groups of attributes			
Remove any non-key dependencies			

[2]

(ii) Draw an entity-relationship (E-R) diagram for the database PLANTSALES.

PLANT CUSTOMER

PURCHASE_ITEM

PURCHASE

[3]

(b)	The	shop manager uses a Database Management System (DBMS).
	Des	cribe the purpose and contents of the data dictionary in the DBMS.
		[3]
(c)		shop manager uses both Data Definition Language (DDL) and Data Manipulation guage (DML) statements to create and search the database.
	(i)	Complete the DML statements to return the total number of items purchased with the purchase ID of 3011A.
		SELECT SUM()
		FROM
		WHERE;
	(ii)	Write DDL statements to include a field in the table PURCHASE to store the date of the order.
		[3]

- 7 A computer has system software.
 - (a) The Operating System handles interrupts.

Tick (\checkmark) one box in each row to identify whether each event is an example of a hardware interrupt or a software interrupt.

Event	Hardware interrupt	Software interrupt
Buffer full		
Printer is out of paper		
User has pressed a key on the keyboard		
Division by zero		
Power failure		
Stack overflow		

(b)	Describe the file management tasks that an Operating System performs.
	[4]
(c)	Identify two utility programs that can be used to improve the performance of a computer and state how they improve the performance.
(c)	
(c)	state how they improve the performance.
(c)	state how they improve the performance. 1
(c)	state how they improve the performance. 1
(c)	state how they improve the performance. 1
(c)	state how they improve the performance. 1
(c)	state how they improve the performance. 1

[4]

[3]

The Von Neumann model for a computer system uses registers.
(a) Describe the role of the following special purpose registers in the fetch-execute (F-E) cycle.
(i) Memory Address Register (MAR)
Memory Data Register (MDR)
(ii) Another special purpose register is the Index Register.
Identify one other special purpose register used in the Von Neumann model for computer system.
[

(b) The following table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC), and an Index Register (IX).

Instruction				
Opcode	Operand	Explanation		
LDM	#n	Immediate addressing. Load the number n to ACC		
LDD	<address></address>	Direct addressing. Load the contents of the location at the given address to ACC		
STO	<address></address>	Store the contents of ACC at the given address		
INC	<register></register>	Add 1 to the contents of the register (ACC or IX)		
CMP	<address></address>	Compare the contents of ACC with the contents of <address></address>		
JPN	<address></address>	Following a compare instruction, jump to <address> if the compare was False</address>		
JMP	<address></address>	Jump to the given address		
IN		Key in a character and store its ASCII value in ACC		
OUT		Output to the screen the character whose ASCII value is stored in ACC		
END		Return control to the operating system		
XOR	#n	Bitwise XOR operation of the contents of ACC with the operand		
XOR	<address></address>	Bitwise XOR operation of the contents of ACC with the contents of <address></address>		
OR	#n	Bitwise OR operation of the contents of ACC with the operand		
OR	<address></address>	Bitwise OR operation of the contents of ACC with the contents of <address></address>		
AND	#n	Bitwise AND operation of the contents of ACC with the operand		
AND	<address></address>	Bitwise AND operation of the contents of ACC with the contents of <address></address>		
LSL	#n	Bits in ACC are shifted logically n places to the left. Zeros are introduced on the right hand end		
LSR	#n	Bits in ACC are shifted logically n places to the right. Zeros are introduced on the left hand end		

The current contents of main memory are shown:

Address	Data
100	01010101
101	11110000
102	00001111
103	0000000
104	11111111

(i) In the following table, each row shows the current contents of the ACC in binary and the instruction that will be performed on those contents.

Complete the table by writing the new contents of the ACC after the execution of each instruction.

Current contents of the ACC	Instruction	New contents of the ACC
01010101	XOR 101	
11110000	AND 104	
00001111	LSL #4	
11111111	OR 102	

[4]

(ii) The following table contains five assembly language instruction groups.

Write an appropriate assembly language instruction for each instruction group, using the given instruction set. The first one has been completed for you.

Instruction Group	Instruction
Data movement	LDM #2
Input and output of data	
Arithmetic operations	
Unconditional and conditional instructions	
Compare instructions	

[4]

(iii)	The opcode LDM uses immediate addressing. The opcode LDD uses direct addressing.	າg.
	Identify and describe one additional mode of addressing.	
	Mode of addressing	
	Description	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.