Class 6: R functions

Xueran Zou

Develop our own R function to calculate average grades in a fictional class.

We will start with a simplified version of the problem, just calculating the average grade of one student.

Simplified version

```
# Example input vectors to start with

student1 <- c(100, 100, 100, 100, 100, 100, 100, 90)

student2 <- c(100, NA, 90, 90, 90, 90, 97, 80)

student3 <- c(90, NA, NA, NA, NA, NA, NA, NA)
```

We are going to start by calculating the average score of the homeworks.

```
mean(student1)
```

[1] 98.75

To get the minimum score we can use which min.

```
student1
[1] 100 100 100 100 100 100 100 90
which.min(student1)
[1] 8
```

I can do the average of the first 7 homework scores:

```
mean(student1[1:7])
[1] 100
Another way to select the first 7 homeworks:
  student1[1:7]
[1] 100 100 100 100 100 100 100
  # remove the eighth homework from the student1
  student1[-8]
[1] 100 100 100 100 100 100 100
Another way to drop the lowest score:
  student1_drop_lowest = student1[-which.min(student1)]
  student1_drop_lowest
[1] 100 100 100 100 100 100 100
I can get the mean of the homework scores after dropping the lowest score by doing:
  mean(student1_drop_lowest)
[1] 100
We have our first working snippet of code!
Let's try to generalize it to student2:
  student2 <- c(100, NA, 90, 90, 90, 90, 97, 80)
  student2
[1] 100 NA 90 90 90 97 80
```

```
student2_drop_lowest = student2[-which.min(student2)]
student2_drop_lowest
```

[1] 100 NA 90 90 90 97

There is a way to calculate the mean dropping missing values (or NA).

```
student2 <- c(100, NA, 90, 90, 90, 90, 97, 80)
mean(student2, na.rm = TRUE)
```

[1] 91

This looks good for student2. However, for student3:

```
student3 <- c(90, NA, NA, NA, NA, NA, NA, NA)
mean(student3, na.rm = TRUE)
```

[1] 90

We want to know the position of the NAs. So, for student2, we can use the following:

```
student2 <- c(100, NA, 90, 90, 90, 90, 97, 80)
which(is.na(student2))
```

[1] 2

For student3:

```
student3 <- c(90, NA, NA, NA, NA, NA, NA, NA, NA) which(is.na(student3))
```

[1] 2 3 4 5 6 7 8

For considering the missing values, we can mask the NA with zeros.

```
student2 <- c(100, NA, 90, 90, 90, 90, 97, 80) student2
```

[1] 100 NA 90 90 90 97 80

```
which(is.na(student2))
[1] 2
   student2[is.na(student2)] <- 0</pre>
  student2
[1] 100
           0 90 90 90 90 97 80
   student3[is.na(student3)] <- 0</pre>
   student3
[1] 90 0 0 0 0 0 0
This is going to be our working snippet of code for all students (with and without NA values)
   student3 <- c(90, NA, NA, NA, NA, NA, NA, NA)
   student3[is.na(student3)] <- 0</pre>
  student3_drop_lowest <- student3[-which.min(student3)]</pre>
  mean(student3_drop_lowest)
[1] 12.85714
Let's build a function now.
  x \leftarrow c(100, 100, 90, NA)
  x[is.na(x)] \leftarrow 0
  x_drop_lowest <- x[-which.min(student3)]</pre>
  mean(x_drop_lowest)
[1] 63.33333
We can write it as a function:
```

'

#' Calculate the average score for a vector of homework scores, dropping the lowest score,

```
#' @param x A numeric vector of homework scores
  #'
  #' @return The average values of homework scores
  #' @export
  #' @examples
  grade <- function(x){</pre>
       # Mask NA values with zeros
       x[is.na(x)] \leftarrow 0
       # Drop the lowest score
       x_drop_lowest <- x[-which.min(x)]</pre>
       # Calculate the average scores
       mean(x_drop_lowest)
  }
Let's apply the function:
  student1 <- c(100, 100, 100, 100, 100, 100, 90)
  student2 <- c(100, NA, 90, 90, 90, 90, 97, 80)
  student3 <- c(90, NA, NA, NA, NA, NA, NA, NA)
  grade(student1)
[1] 100
  grade(student2)
[1] 91
  grade(student3)
[1] 12.85714
Let's apply our function to a gradebook from this URL: https://tinyurl.com/gradeinput
  url <- 'https://tinyurl.com/gradeinput'</pre>
  gradebook <- read.csv(url, row.names = 1)</pre>
```

Let's apply my function grade to the gradebook using apply () and running it by rows using MARGIN=1.

```
apply(gradebook, 1, grade)
```

```
student-3 student-4 student-5 student-6
 student-1
           student-2
                                                                    student-7
     91.75
                82.50
                           84.25
                                      84.25
                                                  88.25
                                                             89.00
                                                                        94.00
student-8
           student-9 student-10 student-11 student-12 student-13 student-14
     93.75
                87.75
                           79.00
                                      86.00
                                                  91.75
                                                             92.25
                                                                        87.75
student-15 student-16 student-17 student-18 student-19 student-20
    78.75
                89.50
                           88.00
                                      94.50
                                                  82.75
                                                             82.75
```

Q2. Using your grade() function and the supplied gradebook, Who is the top scoring student

overall in the gradebook?

The student getting the maximum overall score was student 18.

Q3. From your analysis of the gradebook, which homework was toughest on students (i.e. obtained the lowest scores overall)?

First, we are going to mask NA values with zeros

```
gradebook[is.na(gradebook)] <- 0</pre>
```

Now, we apply the mean function to the gradebook.

```
apply(gradebook, 2, mean)
```

```
hw1 hw2 hw3 hw4 hw5
89.00 72.80 80.80 85.15 79.25
```

The toughest homework will be hw2 considering the mean, and considering missing homework as 0.

Maybe having zeros for missing homework is too strict and is not a good representation of the homework difficulty.

One thing we can do is remove the missing values.

```
apply(gradebook, 2, mean, na.rm = TRUE)

hw1 hw2 hw3 hw4 hw5
89.00 72.80 80.80 85.15 79.25
```

If we directly don't consider the missing values, the toughest homework will be hw3(according to the mean).

If we use the median instead of the mean as a measure of overall score.

```
apply(gradebook, 2, median, na.rm = TRUE)
hw1 hw2 hw3 hw4 hw5
89.0 71.0 76.5 88.0 78.0
```

Therefore, hw2 will be the toughest according to the median.

If we use some plots:

```
boxplot(gradebook)
```


Q4. From your analysis of the gradebook, which homework was most predictive of overall score (i.e. highest correlation with average grade score)?

```
overall_grade = apply(gradebook, 1, grade)
  overall_grade
            student-2
                       student-3
                                   student-4
                                              student-5
                                                          student-6
     91.75
                82.50
                            84.25
                                       84.25
                                                  88.25
                                                              89.00
                                                                          94.00
student-8
            student-9 student-10 student-11 student-12 student-13 student-14
     93.75
                87.75
                            79.00
                                       86.00
                                                  91.75
                                                              92.25
                                                                         87.75
student-15 student-16 student-17 student-18 student-19 student-20
     78.75
                89.50
                            88.00
                                       94.50
                                                  82.75
                                                              82.75
  cor(gradebook$hw1, overall_grade)
[1] 0.4250204
  gradebook[is.na(gradebook)] <- 0</pre>
  apply(gradebook, 2, cor, y = overall_grade)
```

hw1 hw2 hw3 hw4 hw5 0.4250204 0.1767780 0.3042561 0.3810884 0.6325982

Therefore, hw5 was the most predictive of overall score.