ЛАБОРАТОРНАЯ РАБОТА 44

ИЗУЧЕНИЕ ПОЛУПРОВОДНИКОВОГО ТРИОДА

Выполнил студент гр	Ф.И.О					
Подпись преподавателя	дата					
(обязательна после окончания эксперимента)						

<u>Цель работы</u>: ознакомление с устройством и работой полупроводникового триода, снятие входной и выходной характеристик, определение коэффициента усиления.

Описание установки

На лицевой панели установки размещены 4 измерительных прибора. Напряжение U_9 на входе между эмиттером и базой регулируется потенциометром R_1 . Напряжение $U_{\rm K}$ на выходе между базой и коллектором регулируется потенциометром R_2 . Токи, текущие через эмиттер и коллектор измеряются миллиамперметрами mA_1 и mA_2 . Полупроводниковый триод (транзистор) включен по схеме с общей базой.

Порядок выполнения работы

- 1. Разберитесь в назначении и расположении элементов схемы на лабораторной установке. Определите цену деления шкалы каждого из измерительных приборов.
- 2. Включите установку в сеть и, установив потенциометром R_2 на коллекторе напряжение $U_{\kappa}{=}0$, снимите входную характеристику $I_{\scriptscriptstyle 9}=f\left(U_{\scriptscriptstyle 9}\right)$ полупроводникового триода, из-

меняя напряжение $U_{\scriptscriptstyle 9}$ от нуля до максимально возможного через 0,4 В. Данные занести в таблицу 1.

													Таблица 1.		
$U_{\mathfrak{I}}$, B															
I_9 , A															
$R_{\scriptscriptstyle 9}$, Om															

3. Снимите выходные характеристики полупроводникового триода $I_{\rm K}=f\left(U_{\rm K}\right)\,\,$ для четырёх значений напряжения между эмиттером и базой $U_{\rm 9}{=}0,\,1,\,2,\,3$ В, устанавливая их потенциометром $R_{\rm 1}$. При измерениях менять напряжение $U_{\rm K}$ от нуля до максимально возможного через 1 В . Данные занести в таблицу 2.

-	neering 2.													•	
	$U_{\mathfrak{I}}$, B	$I_{\scriptscriptstyle 9}$, А (при $U_{\scriptscriptstyle m Kmax}$)	U_{κ} , B												α
			I_{κ} , A												
			$I_{\rm K}$, A												
-			$I_{\rm K}$, A												
			I_{K} , A												

- 4. Используя данные таблицы 1, определить входное сопротивление триода $R_9 = \frac{U_9}{I_9}$. Результаты занести в таблицу.
 - 5. Построить график зависимости $I_{9} = f(U_{9})$ при $U_{K} = 0$.
- 6. Построить графики зависимости $I_{\rm K} = f\left(U_{\rm K}\right)$ для всех значений $U_{\rm 3}$ (семейство кривых, примерный вид графиков показан на рисунке A).

Рис.А

7. Измерить и занести в таблицу 2 значения тока эмиттера $I_{_9}$, а также величины коэффициентов усиления по току $\alpha = \frac{I_{_{\rm K}}}{I_{_2}}$ при максимальном значении $U_{_{\rm K}} = \max$ и различных значениях $U_{_9}$.

Контрольные вопросы к лабораторной работе № 44

- 1. Какие энергетические зоны называются зоной проводимости и валентной зоной? Почему электроны не могут находиться в запрещенной зоне?
- 2. Что такое квазичастица-дырка? Как она образуется и перемещается?
- 3. Чем отличаются полупроводники *p*-типа и *n*-типа? Что является основными и неосновными носителями заряда в этих полупроводниках? От чего зависит их число?
- 4. Как возникает запирающий слой в *p-n*-переходе?
- 5. Имеется *p-n*-переход. Как надо подключить внешний источник напряжения, чтобы запирающий слой уменьшился? Увеличился? Какое подключение называется прямым и обратным?
- 6. Объясните график вольт-амперной характеристики p-n-перехода. Почему ток при прямом включении возрастает экспоненциально, а при обратном включении не изменяется?
- 7. Как устроен биполярный транзистор и какова схема его подключения с общей базой?
- 8. По каким причинам ток I_{6} , текущий через базу очень мал?
- 9. Как определить коэффициент усиления по току и почему в данной работе он меньше 1?
- 10. Что называется входной и выходной вольт-амперной характеристикой полупроводникового триода? Объясните вид графиков на рисунке А.
- 11. Почему при подключении по схеме с общей базой получается большой коэффициент усиления по напряжению?
- 12. Почему при подключении по схеме с общим эмиттером получается большой коэффициент усиления по току?

Теоретические сведения к данной работе можно найти в учебных пособиях:

- 1. Савельев И.В. Курс общей физики в 3-х тт. СПб., М., Краснодар: Лань, 2008. : Т. 3 §§43,45.
- 2. Колмаков Ю. Н., Левин Д.М., Семин В.А. Основы физики конденсированных сред и физики микромира: Ч.1, изд. ТулГУ. 2014, гл.6 §6.5.