A Comparitive Analysis of Source Identification Algorithms

Pablo A. Curiel, Richard C. Tillquist

CSCSU

March 2023

 Networks capture important features necessary for spread

- Networks capture important features necessary for spread
- Applications of modeling spread using networks
 - Diseases in a physical-contact network
 - Electricity in a power grid network
 - Malware attacks in a computer-system network

- Networks capture important features necessary for spread
- Applications of modeling spread using networks
 - Diseases in a physical-contact network
 - Electricity in a power grid network
 - Malware attacks in a computer-system network
- Often important to identify source of a spread
 - Contact tracing
 - Optimizing the allocation of immunization resources
 - Mitigating spread of rumors or misinformation
 - Defending against malware attacks

- Networks capture important features necessary for spread
- Applications of modeling spread using networks
 - Diseases in a physical-contact network
 - Electricity in a power grid network
 - Malware attacks in a computer-system network
- Often important to identify source of a spread
 - Contact tracing
 - Optimizing the allocation of immunization resources
 - Mitigating spread of rumors or misinformation
 - Defending against malware attacks
- Focus: comparing four state-of-the-art methods of identifying the source
 - Rumor centrality (2011)
 - Jordan centrality (2017)
 - NETSLEUTH (2014)
 - LISN (2019)

Classical Spread Models

- Susceptible-Infected (SI) model
 - Relies on two assumptions
 - CompartmentalizationHomogeneous mixing
 - Homogeneous mixing disregards the true contact network

$$\frac{dS}{dt} = -\beta SI$$
Susceptible Susceptible become infected \Longrightarrow

$$\frac{dI}{dt} = \beta SI$$
Infected Susceptible become infected

Networks take into account each individual's direct contacts

- Networks take into account each individual's direct contacts
- SI-model on a network:
 - Use discrete time-steps and compartmentalization
 - Single-source node chosen at time t = 0
 - \bullet Infected nodes can infect susceptible neighbors with probability β

- Networks take into account each individual's direct. contacts
- SI-model on a network:
 - Use discrete time-steps and compartmentalization
 - Single-source node chosen at time t = 0
 - Infected nodes can infect susceptible neighbors with probability β
- Given a connected network G and $\beta > 0$, $|V_t| \to |V|$ as $t \to \infty$
 - β is the infection rate
 - V_I is the set of infected nodes

 - V is the set of all nodes

- Networks take into account each individual's direct. contacts
- SI-model on a network:
 - Use discrete time-steps and compartmentalization
 - Single-source node chosen at time t = 0
 - Infected nodes can infect susceptible neighbors with probability β
- Given a connected network G and $\beta > 0$, $|V_t| \to |V|$ as $t \to \infty$
 - β is the infection rate
 - V_I is the set of infected nodes

 - V is the set of all nodes
- Transmission rate (or speed of the spread) $\beta \langle k \rangle$
 - \(\k \) is the average degree of the network

- Networks take into account each individual's direct contacts
- SI-model on a network:
 - Use discrete time-steps and compartmentalization
 - Single-source node chosen at time t = 0
 - Infected nodes can infect susceptible neighbors with probability β
- Given a connected network G and $\beta > 0$, $|V_t| \to |V|$ as $t \to \infty$
 - β is the infection rate
 - V_I is the set of infected nodes

 - V is the set of all nodes
- Transmission rate (or speed of the spread) $\beta \langle k \rangle$
 - \(\k \) is the average degree of the network
- Transmission rate is analogous to basic reproductive rate R_0
 - $R_0 = \frac{\beta \langle k \rangle}{\mu}$, where μ is a recovery/removal rate
 - $R_0 > 1 \implies$ spread, $R_0 < 1 \implies$ spread dies out

- First paper to analytically study source identification
- Rumor centrality R(v, G_I) is the number of permitted permutations of a graph G_I centered at some node v
 - Permitted permutation describes a possible ordering of nodes that led to G_I

- First paper to analytically study source identification
- Rumor centrality $R(v, G_l)$ is the number of permitted permutations of a graph G_l centered at some node v
 - Permitted permutation describes a possible ordering of nodes that led to G_I
- Assuming source node 1:
 - Permitted permutation: {1,2,3,4}
 - Unpermitted permutation: {1,3,2,4}

- First paper to analytically study source identification
- Rumor centrality $R(v, G_l)$ is the number of permitted permutations of a graph G_l centered at some node v
 - Permitted permutation describes a possible ordering of nodes that led to G_I
- Assuming source node 1:
 - Permitted permutation: {1,2,3,4}
 - Unpermitted permutation: {1,3,2,4}
- Source is estimated to be v^* such that $R(v^*, G_l) \ge R(v, G_l) \ \forall v \in G_l$

- First paper to analytically study source identification
- Rumor centrality $R(v, G_l)$ is the number of permitted permutations of a graph G_l centered at some node v
 - Permitted permutation describes a possible ordering of nodes that led to G_I
- Assuming source node 1:
 - Permitted permutation: {1, 2, 3, 4}
 - Unpermitted permutation: {1,3,2,4}
- Source is estimated to be v^* such that $R(v^*, G_l) > R(v, G_l) \ \forall v \in G_l$
- Method is designed for tree-structured data
- For general graphs, method uses a BFS-tree rooted at each node
- Complexity: $O(|V_l|)$ for tree graphs, $O(|V_l|^2)$ for general graphs
 - V_I is the set of infected nodes

Jordan Centrality (2017)

- Measures a node's eccentricity in the graph
 - Eccentricity: max hop-distance to all other nodes
 - $J(v, l) = \max_{u \in l} d(v, u)$, where d(v, u) is the hop-distance between nodes v, u

Jordan Centrality (2017)

- Measures a node's eccentricity in the graph
 - Eccentricity: max hop-distance to all other nodes
 - $J(v, l) = \max_{u \in l} d(v, u)$, where d(v, u) is the hop-distance between nodes v, u
- Jordan infection center: infected node with minimum Jordan centrality
 - Estimated to be source node
 - For a Jordan infection center v^* , $v^* = \arg\min_{v \in I} J(v, I)$

Jordan Centrality (2017)

- Measures a node's eccentricity in the graph
 - Eccentricity: max hop-distance to all other nodes
 - $J(v, l) = \max_{u \in l} d(v, u)$, where d(v, u) is the hop-distance between nodes v, u
- Jordan infection center: infected node with minimum Jordan centrality
 - Estimated to be source node
 - For a Jordan infection center v*,
 v* = arg min_{v∈I} J(v, I)
- Calculating Jordan centralities:
 - J(1, I) = J(3, I) = J(4, I) = 2, J(2, I) = 1
 - Node 2 would be estimated to be source
- Complexity: $O(|V_i||E_i|)$, where E_i is the set of edges in the infected subgraph

- Makes use of minimum description length principle
 - Referred to as minimal infection description

- Makes use of minimum description length principle
 - Referred to as minimal infection description
- Goal is to minimize total description length $\mathcal{L}(G_l, S, R)$
 - G_I is the infected subgraph
 - S is the set of seed nodes (possible sources)
 - R is a valid spread propagation ripple

- Makes use of minimum description length principle
 - Referred to as minimal infection description
- Goal is to minimize total description length $\mathcal{L}(G_l, S, R)$
 - G_l is the infected subgraph
 - S is the set of seed nodes (possible sources)
 - R is a valid spread propagation ripple
- $\mathcal{L}(G_l, S, R) = \mathcal{L}(S) + \mathcal{L}(R|S)$
 - $\mathcal{L}(S)$ is the encoded length of the seed set S
 - $\mathcal{L}(R|S)$ is the encoded length of a ripple R starting at a seed set S

- Makes use of minimum description length principle
 - Referred to as minimal infection description
- Goal is to minimize total description length $\mathcal{L}(G_l, S, R)$
 - G_I is the infected subgraph
 - S is the set of seed nodes (possible sources)
 - R is a valid spread propagation ripple
- $\mathcal{L}(G_l, S, R) = \mathcal{L}(S) + \mathcal{L}(R|S)$
 - $\mathcal{L}(S)$ is the encoded length of the seed set S
 - $\mathcal{L}(R|S)$ is the encoded length of a ripple R starting at a seed set S
- Able to estimate multiple sources
- Complexity: $O(|E_I| + |E_F| + |V_I|)$
 - \bullet E_F is the set of edges connecting susceptible nodes to infected nodes

LISN (2019)

 Assumes time for spread to propagate is exponentially distributed

LISN (2019)

- Assumes time for spread to propagate is exponentially distributed
- Method sums exponential random variables
 - Results in a gamma distrubtion

LISN (2019)

- Assumes time for spread to propagate is exponentially distributed
- Method sums exponential random variables
 - · Results in a gamma distrubtion
- Cumulative distribution function (CDF) used to update probabilities
- Node with max probability is estimated to be source
- Complexity: $O(|V_l|(|V|+|E|))$

- Used cosasi Python package to test the four methods
 - Simulates spreads on NetworkX graph
 - Implements various source identification algorithms

- Used cosasi Python package to test the four methods
 - Simulates spreads on NetworkX graph
 - Implements various source identification algorithms
- Simulated spread for 100 time-steps
 - Applied source algorithms for $t \in \{10, 20, 30\}$

- Used cosasi Python package to test the four methods
 - Simulates spreads on NetworkX graph
 - Implements various source identification algorithms
- Simulated spread for 100 time-steps
 - Applied source algorithms for $t \in \{10, 20, 30\}$
- Graph types:
 - Barabási-Albert random graphs (m = 1 and m = 3)
 - Erdős-Rényi random graphs ($p = \frac{\ln(N)+1}{N}$)
 - Watts-Strogatz random graphs (p = 0.01, k = 4)
 - Real-world U.S. airport network (N = 1,572, |E| = 17,214)

- Used cosasi Python package to test the four methods
 - Simulates spreads on NetworkX graph
 - Implements various source identification algorithms
- Simulated spread for 100 time-steps
 - Applied source algorithms for $t \in \{10, 20, 30\}$
- Graph types:
 - Barabási-Albert random graphs (m = 1 and m = 3)
 - Erdős-Rényi random graphs ($p = \frac{\ln(N)+1}{N}$)
 - Watts-Strogatz random graphs (p = 0.01, k = 4)
 - Real-world U.S. airport network (N = 1,572, |E| = 17,214)
- Graph sizes: N ∈ {100, 250, 500}
- Infection rates: $\beta \in \{0.1, 0.2, 0.3, 0.4, 0.5\}$

- Used cosasi Python package to test the four methods
 - Simulates spreads on NetworkX graph
 - Implements various source identification algorithms
- Simulated spread for 100 time-steps
 - Applied source algorithms for $t \in \{10, 20, 30\}$
- Graph types:
 - Barabási-Albert random graphs (m = 1 and m = 3)
 - Erdős-Rényi random graphs ($p = \frac{\ln(N)+1}{N}$)
 - Watts-Strogatz random graphs (p = 0.01, k = 4)
 - Real-world U.S. airport network (N = 1,572, |E| = 17,214)
- Graph sizes: $N \in \{100, 250, 500\}$
- Infection rates: $\beta \in \{0.1, 0.2, 0.3, 0.4, 0.5\}$
- 6,000 experiments for random graphs
 - 1,500 for each graph type
 - 100 for each set of: graph type, graph size, β -value
- 100 experiments for airport network (20 per β)

- Metrics:
 - Estimated source's distance from true source (number of hops)
 - Average distance from estimated source to true source
 - Rank of the true source
 - Average of the true source's rank

- Metrics:
 - Estimated source's distance from true source (number of hops)
 - Average distance from estimated source to true source
 - Rank of the true source Average of the true source's rank
- Most important factors:
 - Observation time t

 - Infection rate β Graph structure G(V, E)

- Metrics:
 - Estimated source's distance from true source (number of hops)
 - Average distance from estimated source to true source
 - Rank of the true source
 Average of the true source's rank
- Average of the true source's rank
- Most important factors:
 - Observation time t
 - Infection rate β
 - Graph structure G(V, E)
- Substantial improvements on Barabási-Albert trees (m = 1)
- Watts-Strogatz random graphs performed exceptionally well

- Metrics:
 - Estimated source's distance from true source (number of hops)
 - Average distance from estimated source to true source
 - Rank of the true sourceAverage of the true source's rank
- Average of the true source's rai
- Most important factors:
 - Observation time t
 - Infection rate β
 - Graph structure G(V, E)
- Substantial improvements on Barabási-Albert trees (m = 1)
- Watts-Strogatz random graphs performed exceptionally well
- Minor changes when lowering only infection rate on:
 - Barabási-Albert random graphs (m = 3)
 - Erdős-Rényi random graphs
 - U.S. airport network
- Results obtained reflect those in literature

Results and Discussion (cont.)

- Top figures: LISN, Barabási-Albert (m = 3), $N = 500, \beta = 0.1, t \in \{10, 20, 30\}$
- Bottom figures: Rumor centrality, Barabási-Albert (m=1), $N=500, t=10, \beta \in \{0.1, 0.3, 0.5\}$

Results and Discussion (cont.)

		a.) $\beta = 0.5, t = 30$		b.) $\beta = 0.1, t = 10$	
Graph Type	Method	$\frac{\langle R \rangle}{N}$	$\frac{\langle d \rangle}{\langle diam(G) \rangle}$	$\frac{\langle R \rangle}{N}$	$\frac{\langle d \rangle}{\langle diam(G) \rangle}$
Barabási-Albert (m = 1)	Rumor	0.50	0.25	0.02	0.06
	Jordan	0.51	0.25	0.02	0.10
	NETSLEUTH	0.48	0.29	0.02	0.13
	LISN	0.49	0.25	0.02	0.10
Barabási-Albert (m = 3)	Rumor	0.50	0.36	0.16	0.36
	Jordan	0.51	0.36	0.19	0.36
	NETSLEUTH	0.51	0.36	0.15	0.36
	LISN	0.48	0.36	0.17	0.36
Erdős-Rényi ($p = \frac{\ln(N)+1}{N}$)	Rumor	0.55	0.48	0.06	0.32
	Jordan	0.50	0.40	0.08	0.32
	NETSLEUTH	0.45	0.48	0.14	0.40
	LISN	0.53	0.40	0.09	0.32
Watts-Strogatz ($p = 0.01, k = 4$)	Rumor	0.12	0.15	0.01	0.02
	Jordan	0.04	0.12	0.01	0.02
	NETSLEUTH	0.26	0.19	0.02	0.02
	LISN	0.11	0.15	0.01	0.02
US Airport Network	Rumor	0.43	0.25	0.32	0.25
	Jordan	0.44	0.25	0.36	0.25
	NETSLEUTH	0.47	0.25	0.47	0.25
	LISN	0.46	0.25	0.28	0.13

Future Work and Conclusion

- Future work
 - Experimenting on more source identification algorithms
 - Applying algorithms to more network structures
 - Extracting metrics in a statistical manner
 - More variation in parameters
 - Applying deep learning methods

Future Work and Conclusion

- Future work
 - Experimenting on more source identification algorithms
 - Applying algorithms to more network structures
 - Extracting metrics in a statistical manner
 - More variation in parameters
 - Applying deep learning methods
- Over 6,000 experiments across several:
 - Graph types
 - Graph sizes
 - Infection rates
 - Observation times

Future Work and Conclusion

- Future work
 - Experimenting on more source identification algorithms
 - Applying algorithms to more network structures
 - Extracting metrics in a statistical manner
 - More variation in parameters
 - Applying deep learning methods
- Over 6,000 experiments across several:
 - Graph types
 - Graph sizes
 - Infection rates
 - Observation times
- Algorithm performance shown to depend on:
 - Observation time
 - Infection rate
 - Graph structure
 - Graph size
 - Graph size

Acknowledgements

• Thank you to the organizers of CSCSU

References

- Barabási A, Pósfai M. Network Science. Cambridge University Press, 2016. ISBN 9781107076266. URL https://books.google.com/books?id=iLtGDOAAOBAJ
- Kuneais J. Konect: The Koblenz Network Collection. In Proceedings of the 22nd International Conference on World Wide Web. 2013; 1343-1350. URL http://konect.cc/networks/opsahl-usairport/
- Murray JD, Mathematical Biology: I. An Introduction. Springer, 2002.
- Shah D. Zaman T. Rumors in a network: Who's the culprit? IEEE Transactions on Information Theory 2011;57(8):5163-5181.
- Ying L, Zhu K. Diffusion source localization in large networks. Synthesis Lectures on Communication Networks 2018:11(1):1-95.
- Luo W. Tay WP. Leng M. On the universality of jordan centers for estimating infection sources in tree networks. IEEE Transactions on Information Theory 2017:63(7):4634-4657.
- Prakash BA, Vreeken J, Faloutsos C. Efficiently spotting the starting points of an epidemic in a large graph. Knowledge and Information Systems 2014;38(1):35-59.
- Nie G. Quinn C. Localizing the information source in a network. In TrueFact 2019: KDD 2019 Workshop on Truth Discovery and Fact Checking: Theory and Practice, 2019.
- McCabe LH, cosasi; Graph diffusion source inference in python, Journal of Open Source Software 2022;7(80):4894.
- Hagberg A, Swart P, S Chult D. Exploring network structure, dynamics, and function using networkx. Technical report, Los Alamos National Lab (LANL), Los Alamos, NM (United States), 2008.
- Barabási A, Albert R. Emergence of scaling in random networks. science 1999;286(5439):509–512.
- Erdős P. Rényi A. On random graphs i. Publicationes mathematicae 1959;6(1):290–297.
- Choi J. Epidemic source detection over dynamic networks. Electronics 2020;9(6). ISSN 2079-9292. URL https://www.mdpi.com/2079-9292/9/6/1018
- Shah C, Dehmamy N, Perra N, Chinazzi M, Barabási A, Vespignani A, Yu R. Finding patient zero: Learning contagion source with graph neural networks. CoRR 2020;abs/2006.11913. URL https://arxiv.org/abs/2006.11913 4 D F 4 D F 4 D F 4 D F

Appendix: LISN

- $F(t; n, \beta) = \frac{\gamma(n, \beta t)}{\Gamma(n)}$ is CDF of the gamma distribution
 - $\Gamma(n)$ is the standard gamma function
 - $\gamma(n, \beta t)$ is the lower-incomplete gamma function
 - n is the shortest distance between the two nodes
 - t is the observation time
 - \bullet β is the infection rate

Algorithm 1: A source detection algorithm

```
Input: G (network graph), I (infected nodes), T (total
        propagation time)
Output: rumor source estimate
initialization:
p ← {};
source \leftarrow v \in I:
for all v \in I do
    p(v) \leftarrow 1
    forall u \in G.nodes do
         n \leftarrow ShortestPath(v, u):
         if u \in I then
             p(v) \leftarrow p(v) * F(T; n, \lambda);
              /* F is the cdf of gamma distribution */
         else
             p(v) \leftarrow p(v) * (1 - F(T; n, \lambda));
         end
    end
return source \leftarrow \arg \max_{v \in I} \mathbb{P}(v)
```

Appendix: Full table

		a.) $\beta = 0.5, t = 30$		b.) $\beta = 0.1, t = 30$		c.) $\beta = 0.1, t = 10$	
Graph Type	Method	<u>⟨R⟩</u> N	$\frac{\langle d \rangle}{\langle diam(G) \rangle}$	<u>⟨R⟩</u> N	$\frac{\langle d \rangle}{\langle diam(G) \rangle}$	<u>⟨R⟩</u> N	$\frac{\langle d \rangle}{\langle diam(G) \rangle}$
Barabási-Albert (m = 1)	Rumor	0.50	0.25	0.09	0.13	0.02	0.06
	Jordan	0.51	0.25	0.08	0.14	0.02	0.10
	NETSLEUTH	0.48	0.29	0.10	0.16	0.02	0.13
	LISN	0.49	0.25	0.07	0.16	0.02	0.10
Barabási-Albert (m = 3)	Rumor	0.50	0.36	0.52	0.36	0.16	0.36
	Jordan	0.51	0.36	0.54	0.36	0.19	0.36
	NETSLEUTH	0.51	0.36	0.44	0.36	0.15	0.36
	LISN	0.48	0.36	0.54	0.36	0.17	0.36
Erdős-Rényi ($p = \frac{\ln(N)+1}{N}$)	Rumor	0.55	0.48	0.50	0.37	0.06	0.32
	Jordan	0.50	0.40	0.50	0.32	0.08	0.322
	NETSLEUTH	0.45	0.48	0.48	0.40	0.14	0.40
	LISN	0.53	0.40	0.48	0.40	0.09	0.32
Watts-Strogatz ($p = 0.01, k = 4$)	Rumor	0.12	0.15	0.02	0.05	0.01	0.02
	Jordan	0.04	0.12	0.02	0.05	0.01	0.02
	NETSLEUTH	0.26	0.19	0.04	0.07	0.02	0.02
	LISN	0.11	0.15	0.02	0.03	0.01	0.02
US Airport Network	Rumor	0.43	0.25	0.40	0.25	0.32	0.25
	Jordan	0.44	0.25	0.39	0.25	0.36	0.25
	NETSLEUTH	0.47	0.25	0.47	0.25	0.47	0.25
	LISN	0.46	0.25	0.39	0.25	0.28	0.13