0.6 Functional Dependency Replacement

you-said

Replace all functional dependencies of type \rightarrow 1 and \rightarrow 2 by \rightarrow 1 Union 2 in F = {{A, B, C} \rightarrow {D}, {A, B, C} \rightarrow {D, E}, {D} \rightarrow {A, B}, {E} \rightarrow {A, C}}. ChatGPT said:

To replace the functional dependencies of the form $\alpha \to \beta_1 \to 1$ and $\alpha \to \beta_2 \to 2$ with $\alpha \to \beta_1 \cup \beta_2 \to 12$, we combine the right-hand sides of dependencies that have the same left-hand side.

Given the set of functional dependencies:

$$F = \{ \{A, B, C\} \to \{D\}, \{A, B, C\} \to \{D, E\}, \{D\} \to \{A, B\}, \{E\} \to \{A, C\} \}$$

 $F = \{\{A,B,C\} \rightarrow \{D\}, \{A,B,C\} \rightarrow \{D,E\}, \{D\} \rightarrow \{A,B\}, \{E\} \rightarrow \{A,C\}\}\}$ step-1-identify-dependencies-with-the-same-left-hand-side

Step 1: Identify dependencies with the same left-hand side

• $\{A, B, C\} \rightarrow \{D\} \{A, B, C\} \rightarrow \{D\}$ and $\{A, B, C\} \rightarrow \{D, E\} \{A, B, C\} \rightarrow \{D, E\}$ share the same left-hand side.

step-2-union-the-right-hand-sides

Step 2: Union the right-hand sides

- Combine the right-hand sides: $\{D\} \cup \{D, E\} = \{D, E\} \{D\} \{D, E\} = \{D, E\}$.
- So, we replace these two dependencies with $\{A,B,C\} \to \{D,E\} \{A,B,C\} \to \{D,E\}$. step-3-final-set-of-functional-dependencies

Step 3: Final Set of Functional Dependencies

The final set after the replacement is:

$$F' = \{ \{A, B, C\} \to \{D, E\}, \{D\} \to \{A, B\}, \{E\} \to \{A, C\} \}$$

$$F = \{ \{A, B, C\} \to \{D, E\}, \{D\} \to \{A, B\}, \{E\} \to \{A, C\} \}$$

This is the updated set of functional dependencies. you-said-1

This is the algorithm to find extraneous attributes in a set of functional dependencies F: Given ->: • a is extraneous if (-a)+ under F • a is extraneous if a + under F'= $(F-\{\to\})$ Union $\{\to(-a)\}$ The algorithm of Closure of under F (+) is: result := Do result_previous = result For each \to in F: If (result): result := result Union While (result_previous <> result) Return result Show if A is an extraneous attribute in $\{A,B,C\}\to\{D,E\}$ in F'

ChatGPT said:

To determine whether AA is an extraneous attribute in the functional dependency $\{A,B,C\} \to \{D,E\} \{A,B,C\} \to \{D,E\} \text{ within the set } F' = \{\{A,B,C\} \to \{D,E\},\{D\} \to \{A,B\},\{E\} \to \{A,C\} \} \}$ we follow the algorithm steps for checking if an attribute is extraneous. step-1-check-if-aa-is-extraneous-in-left.-abcrightarrow-de-right.abcde

Step 1: Check if AA is extraneous in $\{A, B, C\} \rightarrow \{D, E\} \{A, B, C\} \rightarrow \{D, E\} \{D, E\} \{D, E\} \{D, E\} \}$ Check if AA is extraneous in \left. \\ \{A, B, C\}\right\righ

To check if AA is extraneous in the left-hand side $\{A, B, C\} \rightarrow \{D, E\} \{A, B, C\} \rightarrow \{D, E\}$, we need to compute the closure of $\{B, C\} \{B, C\}$ (which is $\{A, B, C\} - A\{A, B, C\}A$) under the set of functional dependencies F'F.

step-2-compute-bcbc-under-fprimef Use the closure algorithm to find $\{B,C\}^+$ $\{B,C\}+$.

- Initialization: $result = \{B, C\}$ result= $\{B, C\}$
- First Iteration:
 - Check $\{A, B, C\} \rightarrow \{D, E\} \{A, B, C\} \rightarrow \{D, E\}$: This doesn't apply since $\{A, B, C\} \{A, B, C\}$ is not a subset of $\{B, C\} \{B, C\}$.
 - Check $\{D\}$ → $\{A,B\}$ $\{D\}$ → $\{A,B\}$: This doesn't apply because $D \notin \{B,C\}$ D/ $\{B,C\}$.
 - Check $\{E\} \to \{A, C\} \{E\} \to \{A, C\}$: This doesn't apply because $E \notin \{B, C\} \to \{B, C\}$.

After the first iteration, $result = \{B, C\}$ result= $\{B, C\}$.

• Second Iteration: No changes, so the closure stabilizes at $\{B,C\}\{B,C\}$.

Thus, $\{B,C\}^+ = \{B,C\}\{B,C\} + = \{B,C\}$. step-3-compare-closure-result-with-dede

Step 3: Compare Closure Result with $\{D,E\}\{D,E\}$ Step 3: Compare Closure Result with $\{D,E\}\{D,E\}$

Since $\{B,C\}^+ = \{B,C\}\{B,C\} + = \{B,C\}$ does not contain $\{D,E\}\{D,E\}$, AA is **not extraneous** in the left-hand side $\{A,B,C\} \rightarrow \{D,E\}\{A,B,C\} \rightarrow \{D,E\}$.

you-said-2

Show if B is an extraneous attribute in {A,B,C} \rightarrow {D,E} in F'

ChatGPT said:

step-1-check-if-bb-is-extraneous-in-left.-abcrightarrow-de-right.abcde

Step 1: Check if BB is extraneous in $\{A, B, C\} \rightarrow \{D, E\} \{A, B, C\} \rightarrow \{D, E\} \{D, E\} \{D, E\} \{D, E\} \}$ Check if BB is extraneous in \left. \\ \{A, B, C\}\right\righ

To check if BB is extraneous in $\{A, B, C\} \rightarrow \{D, E\} \{A, B, C\} \rightarrow \{D, E\}$, we compute the closure of $\{A, C\} \{A, C\}$ (i.e., $\{A, B, C\} - B\{A, B, C\}B$) under the set of functional dependencies F'F.

step-2-compute-acac-under-fprimef

Step 2: Compute $\{A,C\}^+$ $\{A,C\}^+$ under F'FStep 2: Compute $\{A,C\}^+$ $\{A,C\}^+$ under $\{A,C\}^+$ under $\{A,C\}^+$ $\{A,C\}^+$ under $\{A,C\}^+$ $\{A,C\}^+$ $\{A,C\}^+$ under $\{A,C\}^+$ $\{A,C\}^+$ $\{A,C\}^+$ under $\{A,C\}^+$ $\{$

Use the closure algorithm to find $\{A, C\}^+$ $\{A, C\}+$.

- Initialization: $result = \{A, C\}$ result= $\{A, C\}$
- First Iteration:
 - Check $\{A, B, C\}$ → $\{D, E\}$ $\{A, B, C\}$ · This doesn't apply because $\{A, B, C\}$ $\{A, B, C\}$ is not a subset of $\{A, C\}$ $\{A, C\}$.
 - Check $\{D\}$ → $\{A,B\}$ $\{D\}$ → $\{A,B\}$: This doesn't apply because $D \notin \{A,C\}$ $D/\{A,C\}$.
 - Check $\{E\}$ → $\{A,C\}$ $\{E\}$ → $\{A,C\}$: This doesn't apply because $E \notin \{A,C\}$ $\{A,C\}$.

After the first iteration, $result = \{A, C\}$ result= $\{A, C\}$.

• **Second Iteration**: No new changes, so the closure stabilizes at $\{A, C\}\{A, C\}$.

Thus,
$$\{A, C\}^+ = \{A, C\}\{A, C\} + = \{A, C\}$$
.
step-3-compare-closure-result-with-dede-1

Step 3: Compare Closure Result with $\{D,E\}\{D,E\}$ Step 3: Compare Closure Result with $\{D,E\}\{D,E\}$

Since $\{A,C\}^+ = \{A,C\}\{A,C\} + = \{A,C\}$ does not contain $\{D,E\}\{D,E\}$, BB is **not extraneous** in the left-hand side $\{A,B,C\} \rightarrow \{D,E\}\{A,B,C\} \rightarrow \{D,E\}$. you-said-3

Show if C is an extraneous attribute in $\{A,B,C\}\rightarrow\{D,E\}$ in F'

ChatGPT said:

To determine if CC is an extraneous attribute in the functional dependency $\{A,B,C\} \rightarrow \{D,E\} \{A,B,C\} \rightarrow \{D,E\},\{D\} \rightarrow \{A,B\},\{E\} \rightarrow \{A,C\}\} F=\{\{A,B,C\} \rightarrow \{D,E\},\{D\} \rightarrow \{A,B\},\{E\} \rightarrow \{A,C\}\} F=\{\{A,B,C\} \rightarrow \{D,E\},\{D\} \rightarrow \{A,B\},\{E\} \rightarrow \{B,E\} \rightarrow \{B,E\}$

step-1-check-if-cc-is-extraneous-in-left.-abcrightarrow-de-right.abcde

Step 1: Check if CC is extraneous in $\{A, B, C\} \rightarrow \{D, E\} \{A, B, C\} \rightarrow \{D, E\} \}$ Check if CC is extraneous in \left. $\{A, B, C\} \rightarrow \{D, E\} \}$ \right. $\{A, B, C\} \rightarrow \{D, E\}$

To check if CC is extraneous in the left-hand side, we compute the closure of $\{A, B\}\{A, B\}$ (i.e., $\{A, B, C\} - C\{A, B, C\}C$) under the set of functional dependencies F'F. step-2-compute-abab-under-fprimef

Step 2: Compute $\{A, B\}^+$ $\{A, B\}^+$ under F'FStep 2: Compute $\{A, B\}^+$ $\{A, B\}^+$ under $\{A, B\}^+$ under $\{A, B\}^+$ $\{A, B\}^+$ under $\{A,$

Use the closure algorithm to find $\{A, B\}^+\{A, B\}+$.

- Initialization: $result = \{A, B\}$ result= $\{A, B\}$
- First Iteration:
 - Check $\{A, B, C\} \rightarrow \{D, E\} \{A, B, C\} \rightarrow \{D, E\}$: This doesn't apply because $\{A, B, C\} \{A, B, C\}$ is not a subset of $\{A, B\} \{A, B\}$.
 - Check $\{D\}$ → $\{A,B\}$ $\{D\}$ → $\{A,B\}$: This doesn't apply because $D \notin \{A,B\}$ D/ $\{A,B\}$.
 - Check $\{E\} \to \{A,C\}$ $\{E\} \to \{A,C\}$: This doesn't apply because $E \notin \{A,B\} \to \{A,B\}$.

After the first iteration, $result = \{A, B\}$ result= $\{A, B\}$.

• Second Iteration: No changes, so the closure stabilizes at $\{A, B\}\{A, B\}$.

Thus, $\{A, B\}^+ = \{A, B\}\{A, B\} + = \{A, B\}$. step-3-compare-closure-result-with-dede-2

Step 3: Compare Closure Result with $\{D,E\}\{D,E\}$ Step 3: Compare Closure Result with $\{D,E\}\{D,E\}$

Since $\{A,B\}^+ = \{A,B\}\{A,B\} + = \{A,B\}$ does not contain $\{D,E\}\{D,E\}$, CC is **not extraneous** in the left-hand side $\{A,B,C\} \rightarrow \{D,E\}\{A,B,C\} \rightarrow \{D,E\}$.

you-said-4

Show if D is an extraneous attribute in $\{A,B,C\}\rightarrow\{D,E\}$ in F'

ChatGPT said:

To determine if DD is an extraneous attribute in the functional dependency $\{A, B, C\} \rightarrow \{D, E\} \{A, B, C\} \rightarrow \{D, E\} \{A, B, C\} \rightarrow \{D, E\}, \{D\} \rightarrow \{A, B\}, \{E\} \rightarrow \{A, C\}\} F = \{\{A, B, C\} \rightarrow \{D, E\}, \{D\} \rightarrow \{A, B\}, \{E\} \rightarrow \{A, C\}\} F = \{\{A, B, C\} \rightarrow \{D, E\}, \{D\} \rightarrow \{A, B\}, \{E\} \rightarrow \{B, C\} \rightarrow \{B,$

step-1-check-if-dd-is-extraneous-in-left.-abcrightarrow-de-right.abcde

Step 1: Check if DD is extraneous in $\{A, B, C\} \rightarrow \{D, E\} \{A, B, C\} \rightarrow \{D, E\} \}$ Check if DD is extraneous in \left. $\{A, B, C\} \rightarrow \{D, E\} \}$ \right. $\{A, B, C\} \rightarrow \{D, E\}$

To check if DD is extraneous in the right-hand side, we need to compute the closure of $\{A, B, C\}\{A, B, C\}$ under the set of functional dependencies F''F, which is:

$$F'' = F' - \{ \{A, B, C\} \to \{D, E\} \} \cup \{ \{A, B, C\} \to \{E\} \}$$

$$F{=}F\{\{A,B,C\}{\rightarrow}\{D,E\}\}\{\{A,B,C\}{\rightarrow}\{E\}\}$$

So, the new set F''F becomes:

$$F'' = \{ \{A, B, C\} \to \{E\}, \{D\} \to \{A, B\}, \{E\} \to \{A, C\} \}$$

$$\mathbf{F}{=}\{\{\mathbf{A}{,}\mathbf{B}{,}\mathbf{C}\}{\rightarrow}\{\mathbf{E}\},\{\mathbf{D}\}{\rightarrow}\{\mathbf{A}{,}\mathbf{B}\},\{\mathbf{E}\}{\rightarrow}\{\mathbf{A}{,}\mathbf{C}\}\}$$

step-2-compute-abcabc-under-fprime prime f

Step 2: Compute $\{A, B, C\}^+$ $\{A, B, C\}^+$ under F''FStep 2: Compute $\{A, B, C\}^+$ under $\{A, B, C\}^+$

We now compute the closure of $\{A, B, C\}\{A, B, C\}$ under F''F:

- Initialization: $result = \{A, B, C\}$ result= $\{A, B, C\}$
- First Iteration:
 - Check $\{A, B, C\} \rightarrow \{E\} \{A,B,C\} \rightarrow \{E\}$: Since $\{A, B, C\} \subseteq \{A, B, C\} \{A,B,C\} \{A,B,C\}$, we add EE to the result. Now $result = \{A, B, C, E\}$ result= $\{A,B,C,E\}$.
 - Check $\{D\}$ → $\{A,B\}$ $\{D\}$ → $\{A,B\}$: This doesn't apply because $D \notin \{A,B,C,E\}$ D/ $\{A,B,C,E\}$.
 - Check $\{E\} \to \{A, C\} \{E\} \to \{A, C\}$: Since $E \subseteq \{A, B, C, E\} \to \{A, B, C, E\}$, we add AA and CC to the result, but they are already in the set.

After the first iteration, $result = \{A, B, C, E\}$ result= $\{A, B, C, E\}$.

• **Second Iteration**: No further changes, so the closure stabilizes at $\{A, B, C, E\}\{A, B, C, E\}$.

Thus, $\{A, B, C\}^+ = \{A, B, C, E\}\{A, B, C\} + = \{A, B, C, E\}$. step-3-compare-closure-result-with-dd

Step 3: Compare Closure Result with DDStep 3: Compare Closure Result with DD

Since $\{A, B, C\}^+ = \{A, B, C, E\}\{A, B, C\} + = \{A, B, C, E\}$ does **not** contain DD, it means that DD is **extraneous** in the right-hand side $\{A, B, C\} \rightarrow \{D, E\}\{A, B, C\} \rightarrow \{D, E\}$. conclusion

Conclusion:

DD is an **extraneous** attribute in the functional dependency $\{A, B, C\} \rightarrow \{D, E\} \{A, B, C\} \rightarrow \{D, E\}$, you-said-5

This is the definition of extraneous attributes: Given -> : • a is extraneous if (-a)+ under F • a is extraneous if a + under F'= (F - $\{ \rightarrow \}$) Union $\{ \rightarrow (-a) \}$ ChatGPT said:

Let's use the definition you've provided to determine whether DD is an extraneous attribute in the right-hand side of the functional dependency $\{A,B,C\} \rightarrow \{D,E\} \{A,B,C\} \rightarrow \{D,E\}$ under the set $F' = \{\{A,B,C\} \rightarrow \{D,E\},\{D\} \rightarrow \{A,B\},\{E\} \rightarrow \{A,C\}\}\}$ $F=\{\{A,B,C\} \rightarrow \{D,E\},\{D\} \rightarrow \{A,B\},\{E\} \rightarrow \{A,C\}\}\}$ step-1-check-if-dd-is-extraneous-in-left.-abcrightarrow-de-right.abcde-1

Step 1: Check if $D\mathbf{D}$ is extraneous in $\{A, B, C\} \rightarrow \{D, E\} \{A, B, C\} \rightarrow \{D, E\} \{D, E\} \{D, E\} \}$ Check if $D\mathbf{D}$ is extraneous in \left. \\ \{A,B,C\}\right\rig

Using the rule from the definition:

• $a \in \beta$ a (in this case, a = Da=D) is extraneous if $D \in \alpha^+$ D+ (i.e., $D \in \{A, B, C\}^+$ D $\{A, B, C\}^+$) under $F'' = (F' - \{\{A, B, C\} \to \{D, E\}\}) \cup \{\{A, B, C\} \to \{E\}\}\}$ F=(F $\{\{A, B, C\} \to \{D, E\}\}\}$) $\{\{A, B, C\} \to \{D, E\}\}$)

We will now compute $\{A, B, C\}^+$ $\{A, B, C\}^+$ under the modified set F''F. step-2-compute-abcabc-under-fprimeprimef-1

Step 2: Compute $\{A, B, C\}^+$ $\{A, B, C\}^+$ under F''FStep 2: Compute $\{A, B, C\}^+$ under $\{A, B, C\}^+$

The modified set F''F becomes:

$$F'' = \{\{A,B,C\} \to \{E\}, \{D\} \to \{A,B\}, \{E\} \to \{A,C\}\}\}$$

 F={\{A,B,C}\\to \{E}\, \{D}\\to \{A,B}\, \{E}\\to \{A,C}\}

Now, let's compute the closure of $\{A, B, C\}\{A, B, C\}$ under F''F:

- Initialization: $result = \{A, B, C\}$ result= $\{A, B, C\}$
- First Iteration:
 - Check $\{A, B, C\} \rightarrow \{E\}\{A, B, C\} \rightarrow \{E\}$: Since $\{A, B, C\} \subseteq result\{A, B, C\}$ result, we add EE to result result. Now, $result = \{A, B, C, E\}$ result= $\{A, B, C, E\}$.
 - Check $\{D\} \to \{A, B\} \{D\} \to \{A, B\}$: This doesn't apply because $D \notin \{A, B, C, E\} \cup \{A, B, C, E\}$.
 - Check $\{E\} \to \{A, C\} \{E\} \to \{A, C\}$: Since $E \subseteq result$ Eresult, we add AA and CC to the result, but they are already in resultresult.

After the first iteration, $result = \{A, B, C, E\}$ result= $\{A, B, C, E\}$.

• **Second Iteration**: No further changes, so the closure stabilizes at $\{A, B, C, E\}\{A, B, C, E\}$.

Thus, $\{A, B, C\}^+ = \{A, B, C, E\}\{A, B, C\} + = \{A, B, C, E\}$. step-3-compare-closure-result-with-dd-1

Step 3: Compare Closure Result with DDStep 3: Compare Closure Result with DD

Since $\{A, B, C\}^+ = \{A, B, C, E\}\{A, B, C\} + = \{A, B, C, E\}$ does **not** contain DD, it means that DD is **not** in $\{A, B, C\}^+ \{A, B, C\} + .$ conclusion-1

Conclusion:

According to the definition, DD is **not extraneous** in the right-hand side $\{A, B, C\} \rightarrow \{D, E\} \{A, B, C\} \rightarrow$

Show if E is an extraneous attribute in $\{A,B,C\}\rightarrow \{D,E\}$ in F' This is the definition of extraneous attributes: Given -> : • a is extraneous if (-a)+ under F • a is extraneous if a + under F'= $(F - \{ \rightarrow \})$ Union $\{ \rightarrow (-a) \}$

ChatGPT said:

Step 1: Use the Definition of Extraneous Attributes

According to the definition:

• $a \in \beta$ a (in this case, a = Ea=E) is extraneous if $E \in \alpha^+$ E+ (i.e., $E \in \{A, B, C\}^+$ E $\{A, B, C\}$ +) under $F'' = (F' - \{\{A, B, C\} \to \{D, E\}\}) \cup \{\{A, B, C\} \to \{D\}\}\}$ F=(F $\{\{A, B, C\} \to \{D, E\}\}\})\{\{A, B, C\} \to \{D, E\}\}$)

We now modify the set of functional dependencies F'F to F''F by removing $\{A, B, C\} \to \{D, E\} \{A, B, C\} \to \{D\} \{A, B, C\} \to$

$$F'' = \{ \{A, B, C\} \to \{D\}, \{D\} \to \{A, B\}, \{E\} \to \{A, C\} \}$$

 $F = \{\{A,B,C\} \rightarrow \{D\}, \{D\} \rightarrow \{A,B\}, \{E\} \rightarrow \{A,C\}\}\$

step-2-compute-abcabc-under-fprimeprimef-2

Step 2: Compute $\{A, B, C\}^+$ $\{A, B, C\}^+$ under F''FStep 2: Compute $\{A, B, C\}^+$ $\{A, B, C\}^+$ under $\{A, B, C\}^+$ under $\{A, B, C\}^+$ $\{A, B, C\}^+$ $\{A, B, C\}^+$ $\{A, B, C\}^+$ under $\{A, B, C\}^+$ $\{A, B, C\}^$

Let's compute the closure of $\{A, B, C\}\{A, B, C\}$ under the new set F''F:

- Initialization: $result = \{A, B, C\}$ result= $\{A, B, C\}$
- First Iteration:
 - Check $\{A, B, C\} \rightarrow \{D\} \{A, B, C\} \rightarrow \{D\}$: Since $\{A, B, C\} \subseteq result\{A, B, C\}$ result, we add DD to result result. Now, $result = \{A, B, C, D\}$ result = $\{A, B, C, D\}$.
 - Check $\{D\} \to \{A, B\}\{D\} \to \{A, B\}$: Since $D \subseteq result$ Dresult, we add AA and BB, but they are already in resultresult.
 - Check $\{E\}$ → $\{A,C\}$ $\{E\}$ → $\{A,C\}$: This doesn't apply because $E \notin resultE$ /result.

After the first iteration, $result = \{A, B, C, D\}$ result= $\{A, B, C, D\}$.

• **Second Iteration**: No further changes occur, so the closure stabilizes at $\{A, B, C, D\}\{A, B, C, D\}$.

Thus, $\{A, B, C\}^+ = \{A, B, C, D\}\{A, B, C\} + = \{A, B, C, D\}$. step-3-compare-closure-result-with-ee

Step 3: Compare Closure Result with EEStep 3: Compare Closure Result with EE

Since $\{A,B,C\}^+ = \{A,B,C,D\}\{A,B,C\} + = \{A,B,C,D\}$ does **not** contain EE, it means that EE is **not** in $\{A,B,C\}^+ \{A,B,C\} + .$

conclusion-2

Conclusion:

According to the definition, EE is **not extraneous** in the right-hand side $\{A, B, C\} \rightarrow \{D, E\} \{A, B, C\}$

Responses will use another model until your limit resets after $11:08\,\mathrm{PM}.$

Get Plus prompt-textarea composer-background