Probability and Statistics

Midterm exam., 10/31/2024

This is an open-book test, which means: (1). lecture notes and your annotations on them can be in electronic form, (2). your own notes can be in electronic form, (3). all other materials must be in print-out form, (4). access to the internet is absolutely prohibited. Please show your computations. The total score is 110 points.

- Three women and seven men are to be seated around a round table randomly. Let A denote the event that all three women are sitting together. Let B denote the event that no women are sitting next to each other. Let Cdenote the event that exactly two of the three women are sitting together.
- (a). (5%) Prob(A) = ? \(\frac{1}{12}\)
 < Hint: > Use one of the three women as a reference position. This will simplify your reasoning.
- (b). (5%) $Prob(B) = ? \frac{5}{12}$
- (c). (5%) Prob(C) = ?
- (d). (5%) Is it true that A and B are independent events? N_D
- (e). (5%) Is it true that \mathcal{A} , \mathcal{B} , and \mathcal{C} constitute a partition of the sample space? Yes
- Suppose that three cards are drawn from a standard deck of poker cards (52 cards, no Joker). Let X denote the number of different suits, out of the four possible suits (i.e. spade, heart, diamond, and club), among those three cards. Let Y denote an odd-sum indicator - if the sum (of the three cards) is
- odd, then Y assumes the values of 1; otherwise, Y assumes the values of 0.

 (a). (5%) Find the probability mass function (pmf) of X. $X = \begin{cases} 0.0518 \\ 0.0518 \end{cases}$
 $X = \begin{cases} 0.0518 \\ 0.0518 \end{cases}$ So, just try to focus on those situations, respectively.
- (b). (5%) Find the cumulative distribution function (cdf) of $X.F_X(x) = \begin{cases} 0, & \chi < 1 \\ 0.0518, & \chi < 2 \\ 0.0518+0.55^{26}, & \chi < 2 \end{cases}$ (c). (5%) Find the pmf of $Y.P_Y(y) = \begin{cases} 0.5021, & y = 0 \\ 0.5021, & y = 0 \\ 0.401, & y = 0 \end{cases}$ (b). (5%) Find the pmf of $Y.P_Y(y) = \begin{cases} 0.5021, & y = 0 \\ 0.401, & y = 0 \\ 0.401, & y = 0 \end{cases}$ (c). (5%) Find the pmf of $Y.P_Y(y) = \begin{cases} 0.5021, & y = 0 \\ 0.401, & y = 0 \\ 0.401, & y = 0 \end{cases}$ (b). (5%) Find the pmf of $Y.P_Y(y) = \begin{cases} 0.5021, & y = 0 \\ 0.401, & y = 0 \\ 0.401, & y = 0 \end{cases}$ (c). (5%) Find the pmf of $Y.P_Y(y) = \begin{cases} 0.5021, & y = 0 \\ 0.401, & y = 0 \\ 0.401, & y = 0 \end{cases}$ (c). (5%) Find the pmf of $Y.P_Y(y) = \begin{cases} 0.5021, & y = 0 \\ 0.401, & y = 0 \\ 0.401, & y = 0 \end{cases}$ odd-numbered cards.
- ACAIB) = PCB) (d). (5%) Find the cdf of Y.
- (e). (5%) E(X) = ? Var(X) = ? E(X) = 2458 Var(X) = 0. 129 8
- (f). (5%) Find the value of λ that minimizes $J(\lambda)$, where $J(\lambda) = \mathbf{E}((X \lambda)^2)$. < Hint: > Take the derivative of $J(\lambda)$ with respect to λ , and then set the derivative to zero. By the way, this particular value of λ is called the minimum mean squared estimate (MMSE) of X. $\lambda = 1.3450$

- (g). (5%) Prob(Y = 1|X = 1) = ?
- (h). (5%) Prob(Y = 1 and X = 1) = ?
- (i). (5%) Are X and Y independent ? N_0
- 3. In a certain factory, three machines, referred to as M_1 , M_2 , and M_3 , respectively, make 18%, 35%, and 47%, respectively, of the products. It is known from the past experience that 0.023%, 0.036%, and 0.017% of the products made by each machine, respectively, are defective.
- (a). (5%) Assume that a product is chosen randomly from the factory. What is the probabilty that it is defective? 0.02495%
- (b). (5%) Assume that a product was chosen randomly and found to be defective. What is the probability that this defect product was made by machine M_1 ? 16.141%
- 4. (10%) Let X denote a geometric random variable, with a parameter of p. It is already known that the mean of X is $\frac{1}{p}$. Show that the variance of X is
- Let X be a continuous random variable, whose probability density function (pdf) is: $f_X(x) = A \cdot e^{-\lambda |x|}, -\infty < x < \infty$

where λ is a positive parameter, and A is some constant that makes $f_X(x)$ a pdf.

- (a). (5%) A = ? Please express your answer in terms of λ . $A = \frac{\lambda}{2}$
- (b). (5%) Let $F_X(x)$ denote the cumulative distribution function (cdf) of X. Find $F_X(x)$. $F_{-\chi}(\chi) = \begin{cases} \frac{1}{1}e^{\lambda\chi} & \chi > 0 \\ 1 - \frac{1}{1}e^{\lambda\chi} & \chi > 0 \end{cases}$ (c). (10%) A random variable Y is related to X via the function: $Y = \ln(|X|)$.
- Find the pdf of Y. 22 2

$$e^{x}$$
 e^{x}
 $e^{y} = x$
 $e^{y} = x$
 $e^{y} = x$
 $e^{y} = x$

noted as $P_{XY}(x, y) = \text{Prob}(A = x, y)$

2