ECE408/CS483/CSE408 Fall 2022

Applied Parallel Programming

Lecture 6:

Part 1: Generalized Tiling

Part 2: DRAM Bandwidth

ECE408/CS483/CSE408 Fall 2022

Applied Parallel Programming

Lecture 6: Generalized Tiling // DRAM Bandwidth

```
global void MatrixMulKernel(float* M, float* N, float* P, int Width)
   shared float subTileM[TILE WIDTH] [TILE WIDTH];
   shared float subTileN[TILE WIDTH] [TILE WIDTH];
  int bx = blockIdx.x; int by = blockIdx.y;
                                                                 Tiled Matrix
4. int tx = threadIdx.x; int ty = threadIdx.y;
                                                                Multiplication
   // Identify the row and column of the P element to work on
5. int Row = by * TILE WIDTH + ty;
   int Col = bx * TILE WIDTH + tx;
                                                                       Kernel
7. float Pvalue = 0;
   // Loop over the M and N tiles required to compute the P element
   // The code assumes that the Width is a multiple of TILE WIDTH!
8. for (int q = 0; q < Width/TILE WIDTH; ++q) {
      // Collaborative loading of M and N tiles into shared memory
      subTileM[ty][tx] = M[Row*Width + (q*TILE WIDTH+tx)];
      subTileN[ty][tx] = N[(q*TILE WIDTH+ty)*Width+Col];
10.
      syncthreads();
11.
12.
      for (int k = 0; k < TILE WIDTH; ++k)
13.
          Pvalue += subTileM[ty][k] * subTileN[k][tx];
14.
      syncthreads();
15. }
16. P[Row*Width+Col] = Pvalue;
```

Memory Bandwidth Consumption

- Using 16x16 tiling, we reduce the global memory by a factor of 16
 - Each global memory load is used by 16 floating-point operations
 - The 150GB/s bandwidth can now support (150/4)*16 = 600 GFLOPS!
- Using 32x32 tiling, we reduce the global memory accesses by a factor of 32
 - Each global memory load is used by 32 floating-point operations
 - The 150 GB/s bandwidth can now support (150/4)*32 = 1,200 GFLOPS!
 - The memory bandwidth is no longer a limiting factor for performance!

Shared Memory and Threading

- Each SM in Maxwell has 64KB shared memory (48KB max per block)
 - Shared memory size is implementation dependent!
 - For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared memory.
 - Shared memory can potentially support up to 32 active blocks
 - The threads per SM constraint (2048) will limit the number of blocks to 8
 - For TILE_WIDTH = 32, each thread block uses 2*32*32*4B= 8KB of shared memory
 - Shared memory can potentially support up to 8 active blocks
 - The threads per SM constraint (2048) will limit the number of blocks to 2

Device Query

Number of devices in the system

```
int dev_count;
cudaGetDeviceCount( &dev_count);
```

Capability of devices

```
cudaDeviceProp dev_prop;
for (i = 0; i < dev_count; i++) {
   cudaGetDeviceProperties( &dev_prop, i);</pre>
```

- cudaDeviceProp is a built-in C structure type
 - dev_prop.maxThreadsPerBlock
 - dev prop.sharedMemoryPerBlock

Handling Matrix of Arbitrary Size

The tiled matrix multiplication kernel in Lecture 5 can handle only the matrices whose dimensions are multiples of the tile dimensions

However, a real application needs to handle arbitrary sized matrices.

- We could pad (add elements to) the rows and columns into multiples of block size, but will have significant space and data transfer time overhead.
- We could add explicit checks in the code to handle boundaries

2x2 Tile on a 3x3 Multiply TILE_WIDTH = 2, width = 3 Load of 2nd tile of Block (0,0)

2x2 Tile on a 3x3 Multiply Block (0,0), 2nd tile

$N_{0,0}$	$N_{0,1}$	$N_{0,2}$	
$N_{1,0}$	$N_{1,1}$	$N_{1,2}$	
$N_{2,0}$	$N_{2,1}$	$N_{2,2}$	

$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	
$M_{1,0}$	$M_{1,1}$	$M_{1,2}$	
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	

2x2 Tile on a 3x3 Multiply Block (0,0), 2nd tile

$N_{0.0}$	* 'U. I	$N_{0.2}$	
$N_{1.0}$	$ m N_{1.1}^{'}$	$\stackrel{\cdot}{ m N_{1.2}}$	
$\overline{\mathrm{N}_{2.0}}$	$N_{2,1}$	$N_{2,2}$	

$M_{0.6}$	$M_{0,1}$	$M_{0,2}$	
$M_{1.6}$	M_{11}	$M_{1,2}$	
,	$M_{2,1}$	$M_{2,2}$	
	,	,	

2x2 Tile on a 3x3 Multiply Load 1st Tile of Block (1,1)

1st Tile for Block (1,1)

$N_{0,0}$	$N_{0,1}$	$N_{0,2}$	
$N_{1,0}$	$N_{1,1}$	$N_{1,2}$	
$N_{2,0}$	$N_{2,1}$	$N_{2,2}$	

$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	
$M_{1,0}$	$M_{1,1}$	$M_{1,2}$	
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	

1st Tile for Block (1,1)

$N_{0,0}$	$N_{0,1}$	$N_{0,2}$	
$N_{1,0}$	$N_{1,1}$	$N_{1,2}$	
$N_{2,0}$	$N_{2,1}$	$N_{2,2}$	

$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	
$M_{1,0}$	$M_{1,1}$	$M_{1,2}$	
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	

Major Cases in 2x2 Example

- Threads that calculate valid P elements, but use invalid input
 - 1st Tile of Block(0,0), 2nd step, all threads
- Threads that calculate invalid P elements
 - Block(1,1), Thread(1,0), non-existent row
 - Block(1,1), Thread(0,1), non-existing column
 - Block(1,1), Thread(1,1), non-existing row/column

A "Simple" Solution

Invalid input element, "load" a 0

- Rationale: a 0 value will ensure that that the multiply-add step does not affect the final value of the output element
- Invalid output element, don't update global memory
 - Can still perform pvalue calculation (partial dot product), but doesn't write to the global memory at the end of the kernel

2nd Tile for Block (0,0)

$N_{0,0}$	$N_{0,1}$	$N_{0,2}$	
$N_{1,0}$	$N_{1,1}$	$N_{1,2}$	
$N_{2,0}$	$N_{2,1}$	$N_{2,2}$	

$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	
$M_{1,0}$	$M_{1,1}$	$M_{1,2}$	
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	

1st Tile for Block (1,1)

$N_{0,0}$	$N_{0,1}$	$N_{0,2}$	
$N_{1,0}$	$N_{1,1}$	$N_{1,2}$	
$N_{2,0}$	$N_{2,1}$	$N_{2,2}$	

$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	
$M_{1,0}$	$M_{1,1}$	$M_{1,2}$	
$M_{2,0}$	$M_{2,1}$	$M_{2,2}$	


```
// Loop over the M and N tiles required to compute the P element
    // The code assumes that the Width is a multiple of TILE WIDTH!
8. for (int q = 0; q < (ceil((float)Width/TILE WIDTH)); ++q) {</pre>
       // Collaborative loading of M and N tiles into shared memory
       if (Row < Width && (q*TILE WIDTH+tx) < Width)</pre>
9.
          subTileM[ty][tx] = M[Row*Width + q*TILE WIDTH+tx];
10.
      else
11
          subTileM[ty][tx] = 0;
12.
       if (Col < Width && (q*TILE WIDTH+ty) < Width)</pre>
13.
          subTileN[ty][tx] = N[(q*TILE WIDTH+ty)*Width+Col];
      else
14.
15.
          subTileN[ty][tx] = 0;
16.
       syncthreads();
       for (int k = 0; k < TILE WIDTH; ++k)
17.
18.
          Pvalue += subTileM[ty][k] * subTileN[k][tx];
19.
       syncthreads();
20. }
21. if (Row < Width && Col < Width)
22.
       P[Row*Width+Col] = Pvalue;
```

Tiled Matrix Multiplication Kernel

Some Important Points

- For each thread the conditions are different for
 - Loading M element
 - Loading N element
 - Calculation/storing output elements
- The effect of control divergence should be small for large matrices
- How about rectangular matrices?

Global Memory Bandwidth

Ideal

Reality

DRAM is Slow But Dense

- Capacitance...
 - tiny for the BIT, but
 - huge for theBIT LINE
- Use an amplifier for higher speed!
- Still slow...
- But only need
 1 transistor per bit.

DRAM Bank Organization

A very small (8x2 bit) DRAM Bank

DRAM core arrays are slow.

- Reading from a cell in the core array is a very slow process
 - Current GDDR: Core speed = ½ interface speed
 - likely to be worse in the future

DRAM Bursting (burst size = 4 bits)

DRAM Bursting (cont.) second part of the burst

DRAM Bursting for the 8x2 Bank

DRAM Bursting for the 8x2 Bank

Placing a 2D C array into linear memory space (review)

A Simple Matrix Multiplication Kernel

```
global void MatrixMulKernel(float* M, float* N, float* P, int Width)
// Calculate the row index of the P element and M
int Row = blockIdx.y * blockDim.y + threadIdx.y;
// Calculate the column index of P and N
int Col = blockIdx.x * blockDim.x + threadIdx.x;
if ((Row < Width) && (Col < Width)) {
  float Pvalue = 0;
   // each thread computes one element of the block sub-matrix
  for (int k = 0; k < Width; ++k)
     Pvalue += M[Row*Width+k] * N[k*Width+Col];
   P[Row*Width+Col] = Pvalue;
```

Two Access Patterns

M[Row*Width+k] N[k*Width+Col]

k is loop counter in the inner product loop of the kernel code

N accesses are coalesced.

M accesses are not coalesced.

Use shared memory to enable coalescing in tiled matrix multiplication

ANY MORE QUESTIONS? READ CHAPTER 5