UNIVERSITY OF MIAMI

A novel recurrence quantification analysis for cardiac arrhythmia detection in multi-channel ECG signals

-Ayush Lodha Under guidance of Prof. Cheng Bang Chen

Introduction

Cardiac Arrhythmias

- An abnormality of cardiac rhythm is called cardiac arrhythmia.
- Arrhythmias may cause sudden death, stroke, heart failure, shortness of breath etc, each year around 500,000 deaths in united states occur due to arrhythmia.
- However, there can 15-20% decrease in number of deaths if there is a correct and early diagnosis.
- These Multichannel ECG signals are complex in nature and difficult to interpret and detect the anomalies.
- We propose an methodology to detect such kind of anomalies in ECG signals and revert the accidents before they actually occur.

Research Framework

1. Multichannel ECG Signals

Cardiac Arrhythmia

2. Signal Preprocessing

FFT & Embedding

$$R(\pi) = H(||\pi(s_i) - \pi(s_i)||) * \pi(s_i)$$

5. Transitional Recurrence Quantification

3.State Space Representation & Segmentation

4. Recurrence Representation

6. Multivariate Anomaly Detection

Proposed Recurrence Quantification Analysis

Simulation:

Real Case Study:

MIT-BIH Arrhythmia Database

Discussion and Conclusion

• Accomplishments & contributions:

- New framework considering the recurrence patterns of states and transitions, for anomaly detection in complex systems
- Reduces ambiguities and increases information resolution
- New quantifiers for transition recurrence analysis
- Tested over small datasets are arrhythmias with high detection power of 96.2 %

• Broader impact:

- Health Care
- Finance
- Weather Oscillations
- Business Cycles and Economic Development

• Future Work:

- Testing over Big Datasets and determining detection power
- Characterizing different types of arrhythmia