

Estrutura de Dados Avançado

Profa. Angela Abreu Rosa de Sá, Dra.

Contato: angelaabreu@gmail.com

- Grafo: Conjunto de Vértices e Arestas
- Vértice: Objeto simples que pode possuir um nome e outros atributos
- Aresta: Conexão entre dois vértices
- Notação: G = (V,A)
 - V : Conjunto de Vértices
 - A: Conjunto de Arestas

Autômato Finito determinístico para (a|b)*abb

Todo grafo é uma arvore, mas

•Grafo não orientado

•Grafo orientado, dirigido ou dígrafo

Lista de adjacências

Adjacente[A] = [A, B, C, D]

Adjacente[B] = [F, F]

Adjacente[C] = [F]

Adjacente[D] = [E]

Adjacente[E] = [F]

Adjacente[F] = [F]

Lista de adjacências

Adjacente[A] = [A, B, C, D] Adjacente[B] = [A, F, F] Adjacente[C] = [A, F] Adjacente[D] = [A, E] Adjacente[E] = [D, F] Adjacente[F] = [B, B, C, E, F]

Matriz de Adjacências

	Α	В	С	D	E	F
Α	τ-	Υ_	1	Υ-	0	0
В	0	0	0	0	0	2
O	0	0	0	0	0	۲
О	0	0	0	0	1	0
E	0	0	0	0	0	1
F	0	0	0	0	0	1

	Α	В	C	D	Ш	F
Α	1	Υ-	7	Υ-	0	0
в	7	0	0	0	0	2
U	1	0	0	0	0	Υ-
O	1	0	0	0	1	0
Е	0	0	0	7	0	Υ-
F	0	2	1	0	1	1

Matriz de Adjacência

Imagem: Paulo Martins

V1

V2

V3

V4

V5

*zero é um valor escolhido em código para considerar não ter nenhuma ligação entre os dois grafos, porém se seu grafos tiver zero como um valor valido deve se escolher outro valor.

82	V1	V2	V3	V4	V5
	0*	20	4	0*	23
	20	0*	17	58	0*
	4	17	3	3	15
	0*	58	3	0*	0*
	23	0*	15	0*	0*

Imagem: Paulo Martins

Determinação do Menor Caminho

- o caminho de um vértice a outro vértice é mínimo se não existe outro caminho entre eles que tenha menos arcos.
- O problema de encontrar o caminho mais curto entre dois nós de um grafo é um dos problemas clássicos da Ciência da Computação.

Este problema consiste, genericamente, em encontrar o caminho de menor custo entre dois nós da rede, considerando a soma dos custos associados aos arcos percorridos.

Dijkstra

O mais famoso algoritmo para resolver o problema de **caminho mínimo** em grafos é o algoritmo de **Dijkstra**

Avaliação 2 – Apresentar 21/Novembro

Escreva um programa que cria um **grafo** representando a ligação entre seis cidades com suas respectivas distâncias (São Paulo, Rio de Janeiro, Vitória, Recife, Salvador e Natal).

O programa deve perguntar ao usuário a cidade origem e a cidade destino e exibir o caminho mínimo entre estas duas cidades e o custo do caminho através da utilização do algoritmo de Dijkstra.

Muito Obrigada!

Profa. Angela Abreu Rosa de Sá, Dra.

Contato: angelaabreu@gmail.com