Sprawozdanie nr 1 Zagadnienie Lagrange'a i Hermita

Seweryn Tasior, WI, grupa 5

17.04.2025

1 Wprowadzenie

1.1 Treść ćwiczenia

Dla poniższej funkcji wyznacz dla zagadnienia Lagrange'a i Hermita wielomian interpolujący funkcji:

$$f(x) = -2x\sin(3x - 3)$$

dla $x \in [-\pi + 1, 2\pi + 1]$.

1.2 Dane techniczne

Programy zostały napisane w języku Python w wersji 3.11.5. Dodatkowo, do narysowania wykresów i tabel zostały użyte biblioteki Pandas i matplotlib. Pomocniczo do wykonywania obliczeń zastosowano funkcjonalności biblioteki Numpy. Zadania programistyczne wykonano na laptopie Lenovo IdeaPad Gaming 3 15ACH6. Urządzenie posiada 6-rdzeniowy procesor o taktowaniu 4,4 GHz. Korzystano przy tym z systemu operacyjnego Windows 11.

2 Realizacja ćwiczenia

W ćwiczeniu wykorzystano i zaimplementowano wzory dla zagadnienia Lagrange'a i Hermita. Dla pierwszego zagadnienia użyto wzory na wartości interpolacji Lagrange'a i Newtona, natomiast dla drugiego skorzystano ze wzoru Newtona. Do obliczeń użyto N=1000 punktów na przedziale $[-\pi+1,2\pi+1]$, zarówno dla funkcji interpolowanej oraz wielomianu interpolujacego. Pochodna funkcji wyliczono i wynosi ona:

$$f'(x) = -6x\cos(3-3x) + 2\sin(3-3x)$$

Wyznaczono węzły interpolacyjne, rozmieszczone równomiernie lub według pierwiastków wielomianu Czebyszewa. Dla zagadnienia Hermita wszystkie węzły są krotności 2. W eksperymentach przyjęto liczbę węzłów n z zakresu:

$$n \in \{2, 3, 4, \dots, 200\}$$

Oszacowanie błędów wykonano na podstawie następujących wzorów:

Błąd średni =
$$\sqrt{\frac{\sum_{x \in P} (f(x) - w(x))^2}{|P|}}$$

Błąd maksymalny =
$$\max_{x \in P} |f(x) - w(x)|$$

Gdzie:

- f(x) oznacza wartość funkcji interpolowanej w punkcie x.
- \bullet w(x) oznacza wartość wielomianu interpolującego w punkcie x.
- P jest zbiorem punktów, w których obliczane są błędy.
- |P| oznacza moc zbioru P.

Na podstawie uzyskanych wyników, sporządzono wykresy, porównujące wyniki interpolacji. Wartości błędów średnich i maksymalnych zostały przedstawione w tabelach.

3 Wyniki i analiza

3.1 Błędy

3.1.1 Tabele błędów i ich analiza dla węzłów rozmieszczonych równomiernie

Tabela 1: Zestawienie błędów dla wielomianu interpolacyjnego Lagrange'a i Newtona przy niewielkiej liczbie węzłów.

Liczba węzłów	Błąd maksymalny	Błąd średni
2	$2.03025\ \times 10^{1}$	2.49503
3	2.14233×10^{1}	3.05794
4	2.03025×10^{1}	2.49503
5	$2.59219\ \times 10^{1}$	3.22003
6	$2.47427\ imes 10^{1}$	3.24710
7	$3.32532\ \times 10^{1}$	3.74418
8	$6.46598\ imes 10^{1}$	5.87589
9	1.01240×10^{2}	9.27847
15	2.39097×10^2	1.31744
20	1.51471×10^{2}	3.19358
25	5.14963	1.04481
30	9.14233×10^{-2}	1.53379

Tabela 2: Zestawienie błędów dla wielomianu interpolacyjnego Lagrange'a i Newtona przy większej liczbie węzłów

Liczba węzłów	Błąd maks. (Newton)	Błąd maks. (Lagrange)	Błąd średni (Newton)	Błąd średni (Lagrange)
31	3.83204×10^{-2}	3.83205×10^{-2}	6.54227×10^{-5}	6.54226×10^{-5}
32	1.24609×10^{-2}	1.24608×10^{-2}	2.05028×10^{-5}	2.05027×10^{-5}
33	$5.35150\ \times 10^{-3}$	5.35203×10^{-3}	8.88920×10^{-6}	8.89012×10^{-6}
34	1.48162×10^{-3}	1.48148×10^{-3}	2.39717×10^{-6}	2.39695×10^{-6}
35	6.48645×10^{-4}	6.47971×10^{-4}	1.05455×10^{-6}	1.05322×10^{-6}
40	2.33552×10^{-6}	3.69590×10^{-5}	4.12961×10^{-9}	5.92029×10^{-8}
45	$3.68650\ \times 10^{-4}$	1.19237×10^{-3}	5.58059×10^{-7}	1.73637×10^{-6}
50	5.15337×10^{-3}	1.23735×10^{-1}	7.61329×10^{-6}	1.96874×10^{-4}
55	1.17090	1.79410	1.68660×10^{-3}	2.39049×10^{-3}
60	5.70395×10^{1}	3.84546×10^{1}	8.03646×10^{-2}	5.13696×10^{-2}
70	1.55574×10^4	9.77502×10^4	2.10564×10^{1}	$1.10210\ \times 10^2$
80	1.03955×10^8	2.40438×10^8	$1.36116\ \times 10^{51}$	$3.70717\ \times 10^5$
400	1 000 74 1 1053		4.050	2.8
180	1.02254×10^{53}	2.30426×10^{41}	1.37206×10^{50}	2.53646×10^{38}
190	4.64838×10^{57}	3.20022×10^{44}	7.81982×10^{54}	3.34544×10^{41}
200	9.83186×10^{61}	9.73446×10^{47}	$1.38652\ \times 10^{59}$	$1.05693\ \times 10^{45}$

Z tabeli 1 wynika, że dla początkowych liczb węzłów obserwujemy zmniejszanie się błędu wraz z ich wzrostem . Od 7 węzła pojawia się zjawisko zwane efektem Rungego, polegające na pogorszeniu jakości interpolacji. Utrzymuje się ono do około 15 węzła, poczym stopniowo zanika. W tabeli 2 zauważono, że od około 40. węzła, błąd ponownie wzrasta, co jest spowodowane kumulacją błędów arytmetycznych. Dodatkowo dostrzeżono, że metoda Lagrange'a jest dokładniejsza niż metoda Newtona, szczególnie dla dużej liczby węzłów.

Tabela 3: Zestawienie błędów dla metody Hermita

Liczba węzłów	Błąd maksymalny	Błąd średni
2	5.70241×10^{1}	1.02646
3	$3.50010\ \times 10^{1}$	$3.91534\ \times 10^{-1}$
4	$4.96840\ \times 10^{1}$	5.50871×10^{-1}
5	$2.35198\ \times 10^{1}$	2.78399×10^{-1}
6	$6.45517\ imes 10^{1}$	5.80441×10^{-1}
7	$9.51759\ \times 10^{1}$	7.44506×10^{-1}
8	$6.61124\ imes 10^{1}$	$4.72044~\times10^{-1}$
9	2.99489×10^{1}	1.99435×10^{-1}
10	1.07843×10^{1}	6.29924×10^{-2}
11	3.97910	1.59066×10^{-2}
12	1.15037	$3.36982\ \times 10^{-3}$
13	2.69334×10^{-1}	$6.20529\ \times 10^{-4}$
14	5.23246×10^{-2}	1.01458×10^{-4}
15	$8.59465\ imes 10^{-3}$	$1.48414\ imes 10^{-5}$
20	5.90773×10^{-7}	$1.47204\ \times 10^{-9}$
25	$4.82788\ imes 10^{-4}$	$6.59222\ \times 10^{-7}$
30	6.73863×10^{-1}	$8.90129\ imes 10^{-4}$
35	$2.44619\ \times 10^{1}$	$3.14671\ \times 10^{-2}$
40	$8.05189\ \times 10^{5}$	$1.00910\ \times 10^3$
45	9.52765×10^{8}	2.61742×10^{6}
50	1.01086×10^{13}	2.49928×10^{10}
55	1.66461×10^{19}	3.26222×10^{16}
60	3.36255×10^{23}	4.99676×10^{20}
70	2.93400×10^{32}	$5.24275\ imes 10^{29}$
170	7.38346×10^{127}	7.92847×10^{124}
180	1.89294×10^{138}	2.30404×10^{135}
190	6.40996×10^{147}	$8.92310\ \times 10^{144}$
200	2.85814×10^{157}	inf

Podobnie, w tabeli 3 dla początkowych liczb węzłów obserwujemy zmniejszanie się błędu wraz z ich wzrostem. Jednak w węźle 6. i 7. następuje pogorszenie jakości interpolacji. Następnie, aż do około n=20, dokładność ulega poprawie. W wyniku kumulacji błędów arytmetycznych, przy większej liczbie węzłów, dokładność interpolacji spada.

3.1.2 Tabele błędów i ich analiza dla węzłów rozmieszczonych w zerach Czebyszewa

Tabela 4: Zestawienie błędów dla wielomianu interpolacyjnego Lagrange'a i Newtona przy niewielkiej liczbie węzłów.

Liczba węzłów	Błąd maksymalny	Błąd średni
2	3.74155×10^{1}	4.27847×10^{-1}
3	$3.36530\ \times 10^{1}$	3.87207×10^{-1}
4	3.00147×10^{1}	3.27886×10^{-1}
5	3.16053×10^{1}	2.81927×10^{-1}
6	2.86345×10^{1}	3.48706×10^{-1}
7	2.42352×10^{1}	3.34234×10^{-1}
8	2.41536×10^{1}	2.94079×10^{-1}
9	2.41271×10^{1}	2.75271×10^{-1}
10	3.87042×10^{1}	2.45440×10^{-1}
15	1.35624×10^{1}	6.91149×10^{-2}
20	3.16772	$5.53152\ \times 10^{-3}$
25	3.26907×10^{-2}	5.27933×10^{-5}
30	2.03876×10^{-4}	2.96564×10^{-7}

Tabela 5: Zestawienie błędów dla wielomianu interpolacyjnego Lagrange'a i Newtona przy większej liczbie węzłów

Liczba węzłów	Błąd maks. (Newton)	Błąd maks. (Lagrange)	Błąd średni (Newton)	Błąd średni (Lagrange)
31	3.83204×10^{-2}	3.83205×10^{-2}	$6.54227\ \times 10^{-5}$	$6.54226\ \times 10^{-5}$
32	1.24609×10^{-2}	1.24608×10^{-2}	2.05028×10^{-5}	2.05027×10^{-5}
33	$5.35150\ \times 10^{-3}$	5.35203×10^{-3}	8.88920×10^{-6}	8.89012×10^{-6}
34	1.48162×10^{-3}	1.48148×10^{-3}	2.39717×10^{-6}	2.39695×10^{-6}
35	6.48645×10^{-4}	6.47971×10^{-4}	1.05455×10^{-6}	1.05322×10^{-6}
40	2.33552×10^{-6}	3.69590×10^{-5}	4.12961×10^{-9}	5.92029×10^{-8}
45	3.68650×10^{-4}	1.19237×10^{-3}	5.58059×10^{-7}	1.73637×10^{-6}
50	5.15337×10^{-3}	1.23735×10^{-1}	7.61329×10^{-6}	1.96874×10^{-4}
55	1.17090	1.79410	1.68660×10^{-3}	2.39049×10^{-3}
60	5.70395×10^{1}	3.84546×10^{1}	8.03646×10^{-2}	5.13696×10^{-2}
70	1.46162×10^2	2.74875×10^{-9}	3.24268×10^{-1}	2.88485×10^{-12}
80	8.24734×10^{8}	5.64844×10^{-8}	$1.49511\ \times 10^6$	6.29232×10^{-11}
		• • •		
180	5.05008×10^{58}	4.40379×10^{1}	1.05601×10^{56}	4.42207×10^{-2}
190	1.49337×10^{63}	2.10426×10^2	2.34589×10^{60}	2.11831×10^{-1}
200	1.91932×10^{68}	$2.68020\ \times 10^2$	3.44546×10^{65}	2.68466×10^{-1}

W **Tabeli 4** dla początkowych liczb węzłów obserwujemy zmniejszanie się błędu wraz z ich wzrostem. Nie pojawia się efekt Rungego - dokładność obliczeń ciągle się poprawia. W **Tabeli 5** zauważono, że od około 40. węzła, błąd zaczyna wzrastać. Również dla takiego rozmieszczenia węzłów jest widoczne, że metoda Lagrange'a jest dokładniejsza, szczególnie przy dużej ich liczbie w porównaniu do metody Newtona.

Tabela 6: Zestawienie błędów dla metody Hermita

Liczba węzłów	Błąd maksymalny	Błąd średni
2	$3.53054\ \times 10^{1}$	4.69993×10^{-1}
3	$3.40732\ \times 10^{1}$	2.44482×10^{-1}
4	3.90468×10^{1}	4.18067×10^{-1}
5	3.16099×10^{1}	$2.60044\ \times 10^{-1}$
6	1.80486×10^{1}	$2.20421\ \times 10^{-1}$
7	$2.24680\ \times 10^{1}$	1.32765×10^{-1}
8	$1.74098\ \times 10^{1}$	$5.47008\ \times 10^{-2}$
9	7.43810	1.69359×10^{-2}
10	2.18089	$4.15567\ imes 10^{-3}$
11	4.79325×10^{-1}	8.24963×10^{-4}
12	8.29747×10^{-2}	$1.34138\ \times 10^{-4}$
13	1.16874×10^{-2}	$1.81026\ \times 10^{-5}$
14	$1.37138\ \times 10^{-3}$	2.05639×10^{-6}
15	1.36486×10^{-4}	1.99299×10^{-7}
20	2.00640×10^{-6}	$6.06521\ \times 10^{-9}$
25	1.01539×10^{-5}	$2.31917\ \times 10^{-8}$
30	$7.18514\ imes 10^{-3}$	$1.63554~ imes10^{-5}$
35	7.44379×10^{1}	1.61865×10^{-1}
40	2.53273×10^{7}	$5.24485\ \times 10^4$
45	$4.07611\ \times 10^{10}$	$1.03685\ \times 10^{8}$
50	$3.85452\ \times 10^{17}$	6.21665×10^{14}
55	2.88225×10^{22}	5.16146×10^{19}
60	1.43496×10^{27}	2.39458×10^{24}
70	$7.93523\ \times 10^{36}$	$1.72514\ \times 10^{34}$
150	$1.02409\ imes 10^{118}$	1.16479×10^{115}
160	$7.72130\ imes 10^{127}$	$1.37629\ \times 10^{125}$
170	2.15488×10^{137}	3.21109×10^{134}

W **Tabeli 6** względu na inne rozmieszczenie węzłów, błędy dla początkowych wartości n są mniejsze w porównaniu do **Tabeli 3**. Błędy wynikające z kumulacji arytmetycznej pojawią się w około 20. węźle.

3.2 Wizualizacje

3.2.1 Wykresy dla metod interpolacji Lagrange'a i Newtona przy węzłach rozłożonych równomiernie

a) Przyjmowanie wartości zero przez wielomiany interpolujące dla n=4.

b) Pojawienie się pierwszego większego odchylenia na krańcach dla wielomianu interpolującego przy n=8.

c) Efekt Rungego dla obu metod interpolacji przy n=11

d) Zanikanie efektu Rungego dla interpolacji przy n=15

e) Dokładne dopasowanie interpolacji do funkcji interpolowanej dla n=30.

f) Kumulacja błędów arytmetycznych powoduje pogorszenie jakości interpolacji dla n=65.

Rysunek 1: Porównanie wykresów dla metod interpolacji Lagrange'a i Newtona z węzłami rozmieszczonymi równomiernie przy $n \in \{4,8,11,15,30,65\}$

3.2.2 Wykresy dla metod interpolacji Lagrange'a i Newtona przy węzłach rozłożonych w zerach Czebyszewa

a) Początkowe przybliżenie wartości funkcji przez wielomiany interpolacyjne dla n=4.

b) Poprawa dokładności przy użyciu węzłów Czebyszewa dla
 $n=8.\,$

c) Brak efektu Rungego przy n=11dzięki węz
łom Czebyszewa.

d) Utrzymanie stabilności interpolacji dla $n=15.\,$

e) Dokładne dopasowanie interpolacji dla n = 30.

f) Pojawienie się błędów arytmetyki komputerowej dla n=65

Rysunek 2: Porównanie wykresów dla metod interpolacji Lagrange'a i Newtona z węzłami Czebyszewa przy $n \in \{4, 8, 11, 15, 30, 65\}$.

3.2.3 Wykresy dla metody interpolacji Hermita przy węzłach Czebyszewa oraz rozłożonych równomiernie

a) Początkowe dobre dopasowanie interpolacji do wykresu funkcji dla n=4.

c) Zanik efektu Rungego dla węzłów równomiernych; bardzo dobre dopasowanie dla węzłów Czebyszewa, n=9.

e) Dokładne dopasowanie do funkcji przez oba wielomiany interpolujące dla n=15.

b) Pogorszenie jakości interpolacji wykresu funkcji przy węzłach rozmieszczonych równomiernie; brak efektu Rungego dla węzłów Czebyszewa, n=7.

d) Dla węzłów rozłożonych równomiernie błąd staję się pomijalny, n=11.

f) Znaczne pogorszenie interpolacji przy n=34 z powodu kumulacji błędów arytmetycznych.

Rysunek 3: Porównanie wykresów dla metody interpolacji Hermita przy $n \in \{4, 7, 9, 11, 15, 34\}$

4 Wnioski

• Dokładność przybliżeń:

- Jak pokazują **Tabela 3** i **Tabela 6**, zarówno dla węzłów Czebyszewa, jak i węzłów rozłożonych równomiernie, dokładność przybliżenia wzrasta wraz ze zwiększaniem liczby węzłów n.
- Jednakże, przy bardzo dużych wartościach n, w obu przypadkach pojawiają się błędy arytmetyczne, co ogranicza dalszą poprawę dokładności (widoczne w **Tabeli 2**, **Tabeli 3**, **Tabeli 5** i **Tabeli 6**).
- Dla węzłów równomiernie rozłożonych, w pewnych przypadkach występuje efekt Rungego, który negatywnie wpływa na dokładność interpolacji, co jest widoczne na **Rysunku 2** c) dla n = 11 oraz **Rysunku 3** b) dla n = 7.

• Zagadnienie Lagrange'a a Hermita:

- Zastosowanie interpolacji Hermita pozwala na osiągnięcie większej dokładności obliczeń, co jest widoczne na przykładzie porównania Tabela 3 i Tabeli 6 dla niewielkich wartości n.
- Znając pochodną funkcji interpolowanej, zaleca się stosowanie węzłów drugiego stopnia w celu uzyskania lepszej dokładności interpolacji.
- W metodach Lagrange'a i Newtona, błędy arytmetyki komputerowej, pojawiąją się przy znacząco większym n ($\mathbf{Rysunek}\ \mathbf{1f}$) i $\mathbf{Rysunek}\ \mathbf{2f}$)), w porównaniu do metody Hermita. Tak więc przy dużych wartościach n w metodzie Hermita należy rozważyć zmniejszenie liczby węzłów, aby ograniczyć błędy, takie jak ilustruje $\mathbf{Rysunek}\ \mathbf{3f}$) dla n=34.

• Najlepsze przybliżenie:

- Węzły Czebyszewa generalnie polepszają jakość przybliżenia, minimalizując efekt Rungego, co jest widoczne na porównaniu **Rysunku 2** c) dla n = 11 i **Rysunku 3** b) dla n = 7.
- Optymalna liczba węzłów n zależy od interpolowanej funkcji, ale jak sugerują wyniki zawarte w Tabeli 4 i Tabeli 5, dla węzłów Czebyszewa, wartości n w zakresie 15-40 dają zazwyczaj najlepsze przybliżenia.