DMA Přednáška – Rekurentní rovnice

Definice.

Rekurentní rovnice či rekurzivní rovnice pro posloupnost $\{a_n\}$ je vztah

$$a_{n+1} = G(a_n, a_{n-1}, \dots, a_{n-m}), \ n \ge n_0 + m,$$

kde G je nějaká funkce m+1 proměnných.

Jejím **řešením** nazveme libovolnou posloupnost $\{a_n\}_{n=n_0}^{\infty}$ takovou, že po dosazení odpovídajících členů do dané rovnice dostáváme pro všechna $n \geq n_0 + m$ pravdivý výrok.

Definice.

Lineární rekurentní rovnice, popřípadě lineární rekursivní rovnice řádu $k \in \mathbb{N}_0$ je libovolná rovnice ve tvaru

$$a_{n+k} + c_{k-1}(n)a_{n+k-1} + \dots + c_2(n)a_{n+2} + c_1(n)a_{n+1} + c_0(n)a_n = b_n, \quad n \ge n_0,$$

kde $n_0 \in \mathbb{Z}$, $c_i(n)$ pro $i = \{0, \dots, k-1\}$ (tzv. **koeficienty** rovnice) jsou nějaké funkce $\mathbb{Z} \mapsto \mathbb{R}$, přičemž $c_0(n)$ není identicky nulová funkce, a $\{b_n\}_{n=n_0}^{\infty}$ (tzv. **pravá strana rovnice**) je pevně zvolená posloupnost reálných čísel.

Jestliže $b_n = 0$ pro všechna $n \ge n_0$, pak se příslušná rovnice nazývá **homogenní**.

Zápis rovnice pomocí sumačního znaménka:

$$a_{n+k} + \sum_{i=0}^{k-1} c_i(n) a_{n+i} = b_n.$$

Definice.

Nechť je dána lineární rekurentní rovnice řádu k

$$a_{n+k} + c_{k-1}(n)a_{n+k-1} + \ldots + c_1(n)a_{n+1} + c_0(n)a_n = b_n, \quad n \ge n_0.$$

Za **počáteční podmínky** (initial conditions) pro tuto rovnici považujeme libovolnou soustavu rovnic $a_{n_0} = A_0$, $a_{n_0+1}=A_1,\,\ldots\,,\,a_{n_0+k-1}=A_{k-1},$ kde $A_i\in\mathbb{R}$ jsou pevně zvolená čísla.

Definice.

Uvažujme lineární rekurentní rovnici

$$a_{n+k} + c_{k-1}(n)a_{n+k-1} + \ldots + c_1(n)a_{n+1} + c_0(n)a_n = b_n, \quad n \ge n_0.$$

Pak se lineární rekurentní rovnice

$$a_{n+k} + c_{k-1}(n)a_{n+k-1} + \ldots + c_1(n)a_{n+1} + c_0(n)a_n = 0, \quad n \ge n_0$$

nazývá k ní přidružená homogenní rovnice.

Věta. (o struktuře řešení lineární rekurentní rovnice) Nechť je dána lineární rekurentní rovnice

$$a_{n+k} + c_{k-1}(n)a_{n+k-1} + \ldots + c_1(n)a_{n+1} + c_0(n)a_n = b_n, \quad n \ge n_0$$

a nějaké její řešení $\{a_{p,n}\}_{n=n_0}^{\infty}$. Posloupnost $\{a_n\}_{n=n_0}^{\infty}$ je řešením této rovnice právě tehdy, pokud se dá napsat jako $\{a_n\} = \{a_{p,n}\} + \{a_{h,n}\}$, kde $\{a_{h,n}\}_{n=n_0}^{\infty}$ je nějaké řešení přidružené homogenní rovnice.

Množina všech řešení dané lineární rekurentní rovnice je tedy

 $\{\{a_{p,n}\}+\{a_{h,n}\}; \{a_{h,n}\} \text{ řeší přidruženou homogenní rovnici}\}.$

Věta. (o prostoru řešení homogenní lineární rekurentní rovnice)

Množina všech řešení dané homogenní lineární rekurentní rovnice řádu k je vektorový prostor dimenze k.

Definice.

Lineární rekurentní rovnice s konstantními koeficienty je libovolná rovnice ve tvaru

$$a_{n+k} + c_{k-1}a_{n+k-1} + \ldots + c_1a_{n+1} + c_0a_n = b_n, \quad n \ge n_0,$$

kde $n_0 \in \mathbb{Z}$, $c_i \in \mathbb{R}$ pro $i = 0, \dots, k-1$ jsou pevně zvolená čísla a $\{b_n\}_{n=n_0}^{\infty}$ je pevně zvolená posloupnost reálných čísel.

Definice.

Nechť je dána lineární rekurentní rovnice s konstantními koeficienty

$$a_{n+k} + c_{k-1}a_{n+k-1} + \ldots + c_1a_{n+1} + c_0a_n = b_n, \quad n \ge n_0.$$

Její charakteristický polynom je definován jako polynom

$$p(\lambda) = \lambda^k + c_{k-1}\lambda^{k-1} + \ldots + c_1\lambda + c_0.$$

Kořeny charakteristického polynomu se nazývají **charakteristická čísla**, popřípadě **vlastní čísla** dané rovnice. Řešené rovnici

$$\lambda^k + c_{k-1}\lambda^{k-1} + \ldots + c_1\lambda + c_0 = 0$$

se také říká charakteristická rovnice.

Fakt

Jestliže je λ_0 charakteristickým číslem dané homogenní lineární rekurentní rovnice s konstantními koeficienty, pak je posloupnost $\{\lambda_0^n\}_{n=n_0}^{\infty}$ jejím řešením.

Věta.

Uvažujme homogenní lineární rekurentní rovnici s konstantními koeficienty. Jestliže jsou λ_i různá její charakteristická čísla, pak $\{\lambda_i^n\}_{n=n_0}^{\infty}$ tvoří lineárně nezávislou množinu řešení této rovnice.

Fakt.

Nechť je dána homogenní lineární rekurentní rovnice s konstantními koeficienty. Jestliže je λ_0 její charakteristické číslo a má násobnost m jako kořen charakteristického polynomu, pak posloupnosti $\{\lambda_0^n\}, \{n\lambda_0^n\}, \dots, \{n^{m-1}\lambda_0^n\}$ jsou řešení dané rovnice a tvoří lineárně nezávislou množinu.

Věta.

Nechť je dána homogenní lineární rekurentní rovnice s konstantními koeficienty řádu k. Nechť jsou $\lambda_1, \ldots, \lambda_M$ její různá charakteristická čísla, přičemž každé λ_i má násobnost $m_i \in \mathbb{N}$. Pak je množina

$$\left\{\{\lambda_1^n\},\{n\lambda_1^n\},\dots,\{n^{m_1-1}\lambda_1^n\},\{\lambda_2^n\},\{n\lambda_2^n\},\dots,\{n^{m_2-1}\lambda_2^n\},\dots,\{\lambda_M^n\},\{n\lambda_M^n\},\dots,\{n^{m_M-1}\lambda_M^n\}\right\}$$

bází prostoru řešení dané rovnice.

Algoritmus pro řešení homogenní lineární rekurentní rovnice $a_{n+k} + \sum_{i=0}^{k-1} c_i a_{n+i} = 0$, $n \ge n_0$, řádu k.

1. Sestavte charakteristický polynom $p(\lambda) = \lambda^k + \sum_{i=0}^{k-1} c_i \lambda^i$.

Řešením rovnice $p(\lambda)=0$ najděte všechna charakteristická čísla dané rovnice.

- 2. Sestavte množinu posloupností B takto:
- pro každé reálné charakteristické číslo λ přidejte do B posloupnost $\{\lambda^n\}_{n=n_0}^{\infty}$;
- ullet pro každé reálné charakteristické číslo λ , jehož násobnost je m>1, přidejte do B rovněž posloupnosti $\{n\lambda^n\}_{n=n_0}^{\infty},\ldots,\{n^{m-1}\lambda^n\}_{n=n_0}^{\infty};$
- pro každé komplexní charakteristické číslo $\lambda = r[\cos(\varphi) + i\sin(\varphi)]$, které není reálné, přidejte do B posloupnosti
- $\{r^n\cos(n\varphi)\}_{n=n_0}^{\infty}$ a $\{r^n\sin(n\varphi)\}_{n=n_0}^{\infty}$; pro jeho komplexně sdružené číslo λ^* již do B nic nepřidáváme; pro každé komplexní charakteristické číslo $\lambda = r[\cos(\varphi) + i\sin(\varphi)]$, které není reálné a jehož násobnost je m > 1, přidejte do B posloupnosti $\{nr^n\cos(n\varphi)\}_{n=n_0}^{\infty}, \ldots, \{n^{m-1}r^n\cos(n\varphi)\}_{n=n_0}^{\infty}$ a $\{nr^n\sin(n\varphi)\}_{n=n_0}^{\infty}, \ldots, \{n^{m-1}r^n\sin(n\varphi)\}_{n=n_0}^{\infty}$; pro jeho komplexně sdružené číslo λ^* již do B nic nepřidáváme.
- Množina B je bází prostoru řešení.
- **3.** Označíme-li $B = \{\{a_{1,n}\}, \dots, \{a_{k,n}\}\}$, pak je obecné řešení dané rovnice určeno vzorcem $\{\sum_{i=1}^k u_i a_{i,n}\}_{n=n}^{\infty}$ pro $u_1,\ldots,u_k\in\mathbb{R}.$
- **4.** Jsou-li dány počáteční podmínky, pak do nich za příslušná a_j pro $j=n_0,\ldots,n_0+k-1$ dosadíme vzorce $a_j = \sum_{i=1}^{K} u_i a_{i,j}$ a vyřešíme vzniklých k rovnic pro k neznámých u_i . Ty po dosazení do obecného řešení určí příslušné partikulární řešení.

Definice.

Řekneme, že posloupnost $\{b_n\}_{n=n_0}^{\infty}$ je **kvazipolynom**, jestliže existuje $\lambda \in \mathbb{R}$ a polynom P(n) takový, že $b_n =$ $P(n)\lambda^n$ pro všechna $n \geq n_0$.

Věta.

Uvažujme rovnici

$$a_{n+k} + c_{k-1}a_{n+k-1} + \dots + c_1a_{n+1} + c_0a_n = b_n, \quad n \ge n_0.$$

Předpokládejme, že existují $\lambda \in \mathbb{R}$ a polynom P takový, že $b_n = P(n)\lambda^n$ pro všechna $n \geq n_0$. Nechť m je násobnost tohoto čísla λ jako charakteristického čísla přidružené homogenní rovnice, přičemž m=0 v případě, že toto λ vůbec charakteristickým číslem není.

Pak existuje polynom Q(n) stupně stejného jako P takový, že $\{n^mQ(n)\lambda^n\}$ je řešením dané rovnice.

$\begin{vmatrix} a_{n+2} - 9a_n = \\ [\lambda = -3, 3] \end{vmatrix}$	$\begin{vmatrix} a_{n+2} - 3a_{n+1} + 2a_n = \\ [\lambda = 1, 2] \end{vmatrix}$	$\begin{vmatrix} a_{n+2} - 4a_{n+1} + 4a_n = \\ [\lambda = 2 \ (2\times)] \end{vmatrix}$	$L = /= b_n$
			$= n 2^n$ $[\lambda = 2]$
			$= n^2(-1)^n$ $[\lambda = -1]$
			$= 2n - 5$ $[\lambda = 1]$
			$ = (-3)^n $ $ [\lambda = -3] $

Algoritmus pro nalezení řešení rovnice $a_{n+k} + c_{k-1}a_{n+k-1} + \ldots + c_1a_{n+1} + c_0a_n = b_n$, $n \ge n_0$, kde $b_n = P(n)\lambda^n$, $c_i \in \mathbb{R} \text{ a } c_0 \neq 0 \text{ (tedy řád } k).$

- 1. Nejprve řešte přidruženou homogenní rovnici $a_{n+k}+c_{k-1}a_{n+k-1}+\ldots+c_1a_{n+1}+c_0a_n=0$. a) Najděte všechna charakteristická čísla λ_j s násobnostmi m_j řešením rovnice $\lambda_k+c_{k-1}\lambda^{k-1}+\cdots+c_1\lambda+c_0=0$.
- b) Sestavte bázi prostoru řešení $B = \{\{a_{i,n}\}_{n=n_0}^{\infty}; i = 1, \dots, k\}.$
- c) Obecné řešení přidružené homogenní rovnice je $\{a_{h,n}\} = \left\{\sum_{i=1}^k u_i a_{i,n}\right\}$ pro $u_i \in \mathbb{R}$.

Pokud byla zadaná rovnice již homogenní, jděte na 3.

- 2. Pokud nebyla zadaná rovnice homogenní, zkontrolujte, že je pravá strana kvazipolynom, tedy $b_n = P(n)\lambda^n$ pro nějaké $\lambda \in \mathbb{R}$ a polynom P.
- a) Porovnejte λ s charakteristickými čísly λ_i z kroku 1. Pokud se žádnému nerovná, položte m=0. Pokud pro nějaké j platí $\lambda=\lambda_j,$ položte $m=m_j$ (násobnost dotyčného charakteristického čísla).
- b) Sestavte obecný polynom Q stupně stejného jako P, tradičně se používá $Q(n) = A + Bn + \cdots$
- c) Uhádněte řešení $a_n = n^m Q(n) \lambda^n$. Dosaďte jej do dané rovnice a po zkrácení λ zjednodušte levou stranu do tvaru polynomu. Porovnáním koeficientů polynomů na levé a pravé straně získáte tolik rovnic, kolik je neznámých koeficientů v Q.
- d) Vyřešte tyto rovnice a obdržené konstanty dosaď
te zpět do Q. Získáte jedno konkrétní řešení $a_{p,n}$.
- e) Obecné řešení dané úlohy je $\left\{a_{p,n} + \sum_{i=1}^k u_i a_{i,n}\right\}_{n=n_0}^{\infty}$ či $a_n = a_{p,n} + \sum_{i=1}^k u_i a_{i,n}$ pro $n \ge n_0$.

 3. Pokud byly s rovnicí zadány také počáteční podmínky, dosaďte za a_j v těchto podmínkách vzorce pro a_j z
- obecného řešení, které jste našli. Získáte k rovnic pro k neznámých u_1, \ldots, u_k . Vyřešte tuto soustavu, získaná u_i dosaďte do vzorce pro obecné řešení a dostanete tak partikulární řešení pro zadanou úlohu.

Věta.

Nechť $k \in \mathbb{N}$, uvažujme funkce $c_0(n), c_1(n), \ldots, c_{k-1}(n)$: $\mathbb{Z} \mapsto \mathbb{R}$.

Jestliže posloupnost
$$\{a_n\}_{n=n_0}^{\infty}$$
 řeší rovnici $a_{n+k} + \sum_{i=0}^{k-1} c_i(n) a_{n+i} = b_n, \ n \geq n_0$

a posloupnost
$$\{\tilde{a}_n\}_{n=n_0}^{\infty}$$
 řeší rovnici $a_{n+k} + \sum_{i=0}^{k-1} c_i(n) a_{n+i} = \tilde{b}_n, \ n \ge n_0,$

pak posloupnost
$$\{a_n + \tilde{a}_n\}_{n=n_0}^{\infty}$$
 řeší rovnici $a_{n+k} + \sum_{i=0}^{k-1} c_i(n) a_{n+i} = b_n + \tilde{b}_n$ pro všechna $n \ge n_0$.

Fakt.

Nechťje funkce f na \mathbb{N} dána vzorcem $f(n) = a \cdot f(\frac{n}{b})$ pro a > 0 a $b \in \mathbb{N}$, $b \geq 2$. Pak pro $n \in \{b^k; k \in \mathbb{N}\}$ platí $f(n) = n^{\log_b(a)} f(1)$.

Věta. (The Master theorem)

Uvažujme neklesající nezápornou funkci f na \mathbb{N} . Pro nějaké $b \in \mathbb{N}, b \geq 2$ označme $M = \{b^k; k \in \mathbb{N}\}$ a předpokládejme, že f splňuje na M rovnici $f(n) = a \cdot f(\frac{n}{h}) + cn^d$ pro konstanty $a, c \in \mathbb{R}, d \in \mathbb{N}_0$ splňující $a \ge 1$ a c > 0. Pak platí následující:

- (i) Jestliže $a > b^d$, tak $f(n) = \Theta(n^{\log_b(a)})$. (ii) Jestliže $a = b^d$, tak $f(n) = \Theta(n^d \log_2(n))$. (iii) Jestliže $a < b^d$, tak $f(n) = \Theta(n^d)$.

Důsledek.

Uvažujme neklesající nezápornou funkci f na $\mathbb N$. Pro nějaké $b\in\mathbb N,\ b\geq 2$ označme $M=\{b^k;\ k\in\mathbb N\}$ a předpokládejme, že f splňuje na M rovnici $f(n) = a \cdot f\left(\frac{n}{b}\right) + cn^d$ pro konstanty $a, c \in \mathbb{R}, d \in \mathbb{N}_0$ splňující $a \ge 1$ a $c \geq 0$. Pak platí následující:

- (i) Jestliže $d < \log_b(a)$ nebo c = 0, tak f(n) je $\Theta(n^{\log_b(a)})$.
- (ii) Jestliže $d = \log_b(a)$, tak f(n) je $\Theta(n^{\log_b(a)} \log_2(n)) = \Theta(n^d \log_2(n))$.
- (iii) Jestliže $d > \log_b(a)$, tak f(n) je $\Theta(n^d)$.