

Fig. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 10a

FIG. 10b

FIG. 11

FIG. 12

FIG. 13

FIG. 14

FIG. 15a

FIG. 15c

FIG. 15b

resist calculation CD(BF+0.2)-CD(BF)

FIG. 16a

Aerial image calculation thresh(BF)-thresh(BF+0.2)

FIG. 16b

FIG. 17

$\sigma=0.25$ combines areas of + and - isofocal curvature

At $\sigma=0.25$, process is approximately isofocal.
DOF is good but dose latitude is low.

FIG. 18

FIG. 19a

Desirable area for high EL is wide quasar

Low σ area provides poor EL and also requires high dose to print (weak aerial image)

FIG. 19b

Low σ area provides poor EL and also requires high dose to print (weak aerial image)

Wide quasar also provides low E1:1 (strong aerial image)

$$\text{Illuminator} = \sigma(0.1 \text{ conv}) + (0.92/0.88Q5^\circ)$$

FIG. 20

FIG. 21

FIG. 22

optimization method	illumination	max EL	max DOF	DOF @ 10% EL	DOF @ 5% EL
standard	0.95/0.70Q30°	18%	0.3	0.18	0.24
simple isofocal compensation	0.25 conv	8%	>0.55	0	0.29
high EL isofocal compensation	0.92/0.88Q5°+0.1conv	16%	>0.65	0.57	0.63

FIG. 23

Large improvement in process window may be possible by appropriate use of illuminator to compensate isofocal curvature

FIG. 24a

FIG. 24b

FIG. 24d

FIG. 24c

FIG. 25a

FIG. 25b

$0.90/0.40+0.4\sigma$

$0.97/0.40+0.4\sigma$

FIG. 25c

