Chapter 10 Error Detection and Correction

Data can be corrupted during transmission.

Some applications require that errors be detected and corrected.

10-1 INTRODUCTION

Let us first discuss some issues related, directly or indirectly, to error detection and correction.

Topics discussed in this section:

Types of Errors

Redundancy

Detection Versus Correction

Forward Error Correction Versus Retransmission

Coding

Modular Arithmetic

In a single-bit error, only 1 bit in the data unit has changed.

Figure 10.1 Single-bit error

A burst error means that 2 or more bits in the data unit have changed.

Figure 10.2 Burst error of length 8

To detect or correct errors, we need to send extra (redundant) bits with data. Redundancy is achieved through various coding schemes.

Figure 10.3 The structure of encoder and decoder

We can devide coding schemes into two broad categories: Block coding and Convolutional coding.

we concentrate on block codes; we leave convolution codes to advanced texts.

In modulo-N arithmetic, we use only the integers in the range 0 to N −1, inclusive.

Figure 10.4 XORing of two single bits or two words

$$0 + 0 = 0$$

$$1 + 1 = 0$$

a. Two bits are the same, the result is 0.

$$0 + 1 = 1$$

$$1 \oplus 0 = 1$$

b. Two bits are different, the result is 1.

c. Result of XORing two patterns

10-2 BLOCK CODING

In block coding, we divide our message into blocks, each of k bits, called datawords. We add r redundant bits to each block to make the length n = k + r. The resulting n-bit blocks are called codewords.

Topics discussed in this section:

Error Detection Error Correction

Figure 10.5 Datawords and codewords in block coding

Example 10.1

In 4B/5B block coding, k = 4 and n = 5.

We have $2^k = 16$ datawords and $2^n = 32$ codewords.

We saw that 16 out of 32 codewords are used for message transfer and the rest are either used for other purposes or unused.

Error Detection

- Enough redundancy is added to detect an error.
- The receiver knows an error occurred but does not know which bit(s) is(are) in error.
- Has less overhead than error correction.

Figure 10.6 Process of error detection in block coding

An error-detecting code can detect only the types of errors for which it is designed; other types of errors may remain undetected.

Figure 10.7 Structure of encoder and decoder in error correction

A simple parity-check code is a single-bit error-detecting code in which n = k + 1 with $d_{\min} = 2$. Even parity (ensures that a codeword has an even number of 1's) and odd parity (ensures that there are an odd number of 1's in the codeword)

Table 10.3 Simple parity-check code C(5, 4)

Datawords	Codewords	Datawords	Codewords
0000	00000	1000	10001
0001	00011	1001	10010
0010	00101	1010	10100
0011	00110	1011	10111
0100	01001	1100	11000
0101	01010	1101	11011
0110	01100	1110	11101
0111	01111	1111	11110

Figure 10.10 Encoder and decoder for simple parity-check code

Example 10.12

Let us look at some transmission scenarios. Assume the sender sends the dataword 1011. The codeword created from this dataword is 10111, which is sent to the receiver. We examine five cases:

- 1. No error occurs; the received codeword is 10111. The syndrome is 0. The dataword 1011 is created.
- 2. One single-bit error changes a₁. The received codeword is 10011. The syndrome is 1. No dataword is created.
- 3. One single-bit error changes r_0 . The received codeword is 10110. The syndrome is 1. No dataword is created.

Example 10.12 (continued)

- 4. An error changes r_0 and a second error changes a_3 . The received codeword is 00110. The syndrome is 0. The dataword 0011 is created at the receiver. Note that here the dataword is wrongly created due to the syndrome value.
- 5. Three bits—a₃, a₂, and a₁—are changed by errors. The received codeword is 01011. The syndrome is 1. The dataword is not created. This shows that the simple parity check, guaranteed to detect one single error, can also find any odd number of errors.

A simple parity-check code can detect an odd number of errors.

10-4 CYCLIC CODES

Cyclic codes are special linear block codes with one extra property. In a cyclic code, if a codeword is cyclically shifted (rotated), the result is another codeword.

Topics discussed in this section:

Cyclic Redundancy Check
Hardware Implementation
Polynomials
Cyclic Code Analysis
Advantages of Cyclic Codes
Other Cyclic Codes

10.

Table 10.6 A CRC code with C(7, 4)

Dataword	Codeword	Dataword	Codeword
0000	0000000	1000	1000101
0001	0001 <mark>011</mark>	1001	1001110
0010	0010110	1010	1010 <mark>011</mark>
0011	0011 <mark>101</mark>	1011	1011000
0100	0100111	1100	1100 <mark>010</mark>
0101	0101 <mark>100</mark>	1101	1101 <mark>001</mark>
0110	0110 <mark>001</mark>	1110	1110100
0111	0111 <mark>010</mark>	1111	1111111

Figure 10.14 CRC encoder and decoder

10.

Figure 10.15 Division in CRC encoder

Figure 10.16 Division in the CRC decoder for two cases

Using Polynomials

- We can use a polynomial to represent a binary word.
- Each bit from right to left is mapped onto a power term.
- The rightmost bit represents the "0" power term. The bit next to it the "1" power term, etc.
- If the bit is of value zero, the power term is deleted from the expression.

Figure 10.21 A polynomial to represent a binary word

a. Binary pattern and polynomial

b. Short form

Figure 10.22 CRC division using polynomials

10.

The divisor in a cyclic code is normally called the generator polynomial or simply the generator.

Different polynomials used in cyclic code

- Dataword: d(x)
- Codeword: c(x)
- Generator: g(x)
- Syndrome: s(x)
- Error: *e(x)*
- Received codeword = c(x) + e(x)
- The receiver divides the received codeword by g(x) to get the syndrome i.e $\frac{\text{Received codeword}}{g(x)} = \frac{c(x)}{g(x)} + \frac{e(x)}{g(x)}$
- The first term does not have a reminder.
- So the syndrom is actually the reminder of the second term.

In a cyclic code, If $s(x) \neq 0$, one or more bits is corrupted. If s(x) = 0, i.e remainder is zero. So either

- a. e(x) = 0; i.e No bit is corrupted. or
- b. e(x) is divisible by g(x); i.e Some bits are corrupted, but the decoder failed to detect them.

In a cyclic code, those e(x) errors that are divisible by g(x) are not caught.

Note: That could mean that an error went undetected.

10-5 CHECKSUM

The last error detection method we discuss here is called the checksum. The checksum is used in the Internet by several protocols although not at the data link layer. However, we briefly discuss it here to complete our discussion on error checking

Topics discussed in this section:

Idea
One's Complement
Internet Checksum

10.

Suppose our data is a list of five 4-bit numbers that we want to send to a destination. In addition to sending these numbers, we send the sum of the numbers. For example, if the set of numbers is (7, 11, 12, 0, 6), we send (7, 11, 12, 0, 6, 36), where 36 is the sum of the original numbers. The receiver adds the five numbers and compares the result with the sum. If the two are the same, the receiver assumes no error, accepts the five numbers, and discards the sum. Otherwise, there is an error somewhere and the data are not accepted.

We can make the job of the receiver easier if we send the negative (complement) of the sum, called the checksum. In this case, we send (7, 11, 12, 0, 6, -36). The receiver can add all the numbers received (including the checksum). If the result is 0, it assumes no error; otherwise, there is an error.

How can we represent the number 21 in one's complement arithmetic using only four bits?

Solution

The number 21 in binary is 10101 (it needs five bits). We can wrap the leftmost bit and add it to the four rightmost bits. We have (0101 + 1) = 0110 or 6.

How can we represent the number -6 in one's complement arithmetic using only four bits?

Solution

In one's complement arithmetic, the negative or complement of a number is found by inverting all bits. Positive 6 is 0110; negative 6 is 1001. If we consider only unsigned numbers, this is 9. In other words, the complement of 6 is 9. Another way to find the complement of a number in one's complement arithmetic is to subtract the number from $2^n - 1$ (16 – 1 in this case).

Let us redo Exercise 10.19 using one's complement arithmetic. Figure 10.24 shows the process at the sender and at the receiver. The sender initializes the checksum to 0 and adds all data items and the checksum (the checksum is considered as one data item and is shown in color). The result is 36. However, 36 cannot be expressed in 4 bits. The extra two bits are wrapped and added with the sum to create the wrapped sum value 6. In the figure, we have shown the details in binary. The sum is then complemented, resulting in the checksum value 9 (15 - 6 = 9). The sender now sends six data items to the receiver including the checksum 9.

Example 10.22 (continued)

The receiver follows the same procedure as the sender. It adds all data items (including the checksum); the result is 45. The sum is wrapped and becomes 15. The wrapped sum is complemented and becomes 0. Since the value of the checksum is 0, this means that the data is not corrupted. The receiver drops the checksum and keeps the other data items. If the checksum is not zero, the entire packet is dropped.

Figure 10.24 *Example 10.22*

Sender site:

- 1. The message is divided into 16-bit words.
- 2. The value of the checksum word is set to 0.
- 3. All words including the checksum are added using one's complement addition.
- 4. The sum is complemented and becomes the checksum.
- 5. The checksum is sent with the data.

Receiver site:

- 1. The message (including checksum) is divided into 16-bit words.
- 2. All words are added using one's complement addition.
- 3. The sum is complemented and becomes the new checksum.
- 4. If the value of checksum is 0, the message is accepted; otherwise, it is rejected.

Let us calculate the checksum for a text of 8 characters ("Forouzan"). The text needs to be divided into 2-byte (16bit) words. We use ASCII (see Appendix A) to change each byte to a 2-digit hexadecimal number. For example, F is represented as 0x46 and o is represented as 0x6F. Figure 10.25 shows how the checksum is calculated at the sender and receiver sites. In part a of the figure, the value of partial sum for the first column is 0x36. We keep the rightmost digit (6) and insert the leftmost digit (3) as the carry in the second column. The process is repeated for each column. Note that if there is any corruption, the checksum recalculated by the receiver is not all 0s. We leave this an exercise.

Figure 10.25 *Example 10.23*

a. Checksum at the sender site

a. Checksum at the receiver site