

Project Initialization and Planning Phase

Date	15 March 2024	
Team ID	LTVIP2024TMID24997	
Project Title	Cereal Analysis Based on Ratings by using Machine Learning Techniques	
Maximum Marks	3 Marks	

Project Proposal (Proposed Solution) template

This project proposal outlines a solution to address a specific problem. With a clear objective, defined scope, and a concise problem statement, the proposed solution details the approach, key features, and resource requirements, including hardware, software, and personnel.

Project Overview		
Objective	Predict cereal ratings based on nutritional and categorical features using machine learning techniques	
Scope	Analyze and model cereal data to provide accurate predictions and insights for manufacturers and consumers	
Problem Statement		
Description	Develop a machine learning pipeline that preprocesses data, selects features, trains models, and evaluates performance	
Impact	Enhance decision-making in product development and marketing strategies by understanding factors influencing cereal ratings	
Proposed Solution		
Approach	Utilize data preprocessing, feature selection, model training, and evaluation techniques to build an accurate predictive model	
Key Features	Data cleaning, feature encoding, model selection, hyperparameter tuning, performance metrics, and visualization tools	

Resource Requirement

Resource Type	Description	Specification/Allocation	
Hardware			
Computing Resources	CPU/GPU specifications, number of cores	e.g., 2 x NVIDIA V100 GPUs	
Memory	RAM specifications	e.g., 8 GB	
Storage	Disk space for data, models, and logs	e.g., 1 TB SSD	
Software			
Frameworks	Python frameworks	e.g., Flask	
Libraries	Additional libraries	e.g., scikit-learn, pandas, numpy	
Development Environment	IDE, version control	e.g., Jupyter Notebook, Git	
Data			
Data	Source, size, format	e.g., Kaggle dataset, 10,000 images	