Prof : Aaron Courville

IFT6135-H2020

Due Date: February 4th (11pm), 2020

Instructions

- For all questions, show your work!
- Use LaTeX and the template we provide when writing your answers. You may reuse most of the notation shorthands, equations and/or tables. See the assignment policy on the course website for more details.
- Submit your answers electronically via Gradescope.

Question 1 (4-4-4). Using the following definition of the derivative and the definition of the Heaviside step function:

$$\frac{d}{dx}f(x) = \lim_{\epsilon \to 0} \frac{f(x+\epsilon) - f(x)}{\epsilon} \qquad H(x) = \begin{cases} 1 & \text{if } x > 0\\ \frac{1}{2} & \text{if } x = 0\\ 0 & \text{if } x < 0 \end{cases}$$

- 1. Show that the derivative of the rectified linear unit $g(x) = \max\{0, x\}$, wherever it exists, is equal to the Heaviside step function.
- 2. Give two alternative definitions of g(x) using H(x).
- 3. Show that H(x) can be well approximated by the sigmoid function $\sigma(x) = \frac{1}{1 + e^{-kx}}$ asymptotically (i.e for large k), where k is a parameter.

Answer 1.

1.

$$\frac{d}{dx}g(x) = \lim_{\epsilon \to 0} \ \frac{g(x+\epsilon) - g(x)}{\epsilon} = \lim_{\epsilon \to 0} \ \frac{\max\{0, x+\epsilon\} - \max\{0, x\}}{\epsilon}$$

Further,

$$\lim_{\epsilon \to 0} \ \frac{\max\{0, x + \epsilon\} - \max\{0, x\}}{\epsilon} = \begin{cases} x > 0, \lim_{\epsilon \to 0} \ \frac{x + \epsilon - x}{\epsilon} = 1 \\ x = 0, \lim_{\epsilon \to 0} \ \frac{\max\{0, \epsilon\} - \max\{0, 0\}}{\epsilon}, \text{undefined} \\ x < 0, \lim_{\epsilon \to 0} \ \frac{0 - 0}{\epsilon} = 0 \end{cases}$$

This is the same as the definition of Heaviside step function

2. From Part 1),

$$g(x) = xH(x), x \neq 0$$

Alternatively,

$$g(x) = \max(x-1, H(x-1)), x \neq 1$$

3.

$$\lim_{k \to \infty} \frac{1}{1 + e^{-kx}} = \frac{1}{1 + 0} = 1$$

$$\lim_{k \to -\infty} \frac{1}{1 + e^{kx}} = \frac{1}{1 + \infty} = 0$$

Asymptotically this is good enough for approximation

Question 2 (3-3-3). Recall the definition of the softmax function : $S(\mathbf{x})_i = e^{\mathbf{x}_i} / \sum_i e^{\mathbf{x}_j}$.

- 1. Show that softmax is translation-invariant, that is: S(x+c) = S(x), where c is a scalar constant.
- 2. Show that softmax is not invariant under scalar multiplication. Let $S_c(\mathbf{x}) = S(c\mathbf{x})$ where $c \geq 0$. What are the effects of taking c to be 0 and arbitrarily large?
- 3. Let \boldsymbol{x} be a 2-dimensional vector. One can represent a 2-class categorical probability using softmax $S(\boldsymbol{x})$. Show that $S(\boldsymbol{x})$ can be reparameterized using sigmoid function, i.e. $S(\boldsymbol{x}) = [\sigma(z), 1 \sigma(z)]^{\top}$ where z is a scalar function of \boldsymbol{x} .
- 4. Let \boldsymbol{x} be a K-dimensional vector $(K \geq 2)$. Show that $S(\boldsymbol{x})$ can be represented using K-1 parameters, i.e. $S(\boldsymbol{x}) = S([0, y_1, y_2, ..., y_{K-1}]^{\top})$ where y_i is a scalar function of \boldsymbol{x} for $i \in \{1, ..., K-1\}$.

Answer 2.

1.

$$S(\boldsymbol{x}+c) = \frac{e^{\boldsymbol{x}_i + c}}{\sum_j e^{\boldsymbol{x}_j + c}} = \frac{e^{\boldsymbol{x}_i} e^c}{\sum_j e^{\boldsymbol{x}_j} e^c} = \frac{e^{\boldsymbol{c}(e^{\boldsymbol{x}_i})}}{e^c(\sum_j e^{\boldsymbol{x}_j})} = \frac{e^{\boldsymbol{x}_i}}{\sum_j e^{\boldsymbol{x}_j}} = S(\boldsymbol{x})$$

2.

$$S_{c}(\boldsymbol{x}) = S(c\boldsymbol{x}) = \frac{e^{c\boldsymbol{x}_{i}}}{\sum_{j} e^{c\boldsymbol{x}_{j}}} = \frac{(e^{\boldsymbol{x}_{i}})^{c}}{\sum_{j} (e^{\boldsymbol{x}_{j}})^{c}} = \frac{(e^{\boldsymbol{x}_{i}})^{c}}{(e^{\boldsymbol{x}_{1}})^{c} + (e^{\boldsymbol{x}_{2}})^{c} + \dots + (e^{\boldsymbol{x}_{j}})^{c}} = \frac{e^{\boldsymbol{x}_{i}}}{((e^{\boldsymbol{x}_{1}})^{c} + (e^{\boldsymbol{x}_{2}})^{c} + \dots + (e^{\boldsymbol{x}_{j}})^{c})^{\frac{1}{c}}} \neq \frac{e^{\boldsymbol{x}_{i}}}{((e^{\boldsymbol{x}_{1}})^{c} + (e^{\boldsymbol{x}_{2}})^{c} + \dots + (e^{\boldsymbol{x}_{j}})^{c})^{\frac{1}{c}}} = \frac{e^{\boldsymbol{x}_{i}}}{\sum_{j} e^{\boldsymbol{x}_{j}}} = S(\boldsymbol{x})$$

Since $((e^{x_1})^c + (e^{x_2})^c + ... + (e^{x_j})^c)^{\frac{1}{c}} \neq ((e^{x_1} + e^{x_2} + ... + e^{x_j})^c)^{\frac{1}{c}}$, from above, $S_c(x) \neq S(x)$

$$S_0(\boldsymbol{x}) = \frac{e^0}{\sum_j e^0} = \frac{1}{\sum_j 1} = \frac{1}{j}$$

$$S_{\infty}(\boldsymbol{x}) = \lim_{c \to \infty} \frac{e^{c\boldsymbol{x}_i}}{\sum_j e^{c\boldsymbol{x}_j}} = \lim_{c \to \infty} \frac{1}{\sum_j e^{c\boldsymbol{x}_j - c\boldsymbol{x}_i}} = \lim_{c \to \infty} \frac{1}{\sum_j e^{c(\boldsymbol{x}_j - \boldsymbol{x}_i)}} = \lim_{c \to \infty} \frac{1}{1 + \sum_j e^{\infty}(j \neq i)} = \lim_{c \to \infty}$$

3. For a class categorical probability whose distribution is softmax

$$P(\mathbf{x}_1) = S(\mathbf{x}_1) = \frac{e^{\mathbf{x}_1}}{e^{\mathbf{x}_1} + e^{\mathbf{x}_2}} = \frac{1}{1 + e^{\mathbf{x}_2 - \mathbf{x}_1}}$$
$$P(\mathbf{x}_2) = S(\mathbf{x}_2) = \frac{e^{\mathbf{x}_2}}{e^{\mathbf{x}_1} + e^{\mathbf{x}_2}} = \frac{e^{\mathbf{x}_2 - \mathbf{x}_1}}{1 + e^{\mathbf{x}_2 - \mathbf{x}_1}}$$

If we denote z as a scalar function of x, i.e. $z = x_2 - x_1$, then

$$S(\boldsymbol{x}_1) = \frac{1}{1 + e^z} = \sigma(z)$$

IFT6135-H2020 Prof : Aaron Courville

$$S(\mathbf{x}_2) = \frac{e^z}{1 + e^z} = 1 - \sigma(z)$$

Hence $S(\boldsymbol{x}) = [\sigma(z), 1 - \sigma(z)]^{\mathsf{T}}$, where $z = \boldsymbol{x}_2 - \boldsymbol{x}_1$

4.

$$S(\mathbf{x}_1) = \frac{e^{\mathbf{x}_1}}{e^{\mathbf{x}_1} + e^{\mathbf{x}_2} + \dots + e^{\mathbf{x}_j}} = \frac{e^0}{e^0 + e^{\mathbf{x}_2 - \mathbf{x}_1} \dots + e^{\mathbf{x}_j - \mathbf{x}_1}}$$

$$S(\mathbf{x}_2) = \frac{e^{\mathbf{x}_2}}{e^{\mathbf{x}_1} + e^{\mathbf{x}_2} + \dots + e^{\mathbf{x}_j}} = \frac{e^{\mathbf{x}_2 - \mathbf{x}_1}}{e^0 + e^{\mathbf{x}_2 - \mathbf{x}_1} \dots + e^{\mathbf{x}_j - \mathbf{x}_1}}$$

$$\dots$$

$$S(\mathbf{x}_j) = \frac{e^{\mathbf{x}_j}}{e^{\mathbf{x}_1} + e^{\mathbf{x}_2} + \dots + e^{\mathbf{x}_j}} = \frac{e^{\mathbf{x}_j - \mathbf{x}_1}}{e^0 + e^{\mathbf{x}_2 - \mathbf{x}_1} \dots + e^{\mathbf{x}_j - \mathbf{x}_1}}$$

If we define $y_i = \boldsymbol{x}_j - \boldsymbol{x}_1$, since j is in the range of 2 to K, we have K - 2 + 1 = K - 1 parameters, therefore $i \in \{1, ..., K - 1\}$. Similar to last question, we have $S(\boldsymbol{x}) = S([0, y_1, y_2, ..., y_{K-1}]^\top)$

Question 3 (16). Consider a 2-layer neural network $y: \mathbb{R}^D \to \mathbb{R}^K$ of the form :

$$y(x,\Theta,\sigma)_k = \sum_{j=1}^{M} \omega_{kj}^{(2)} \sigma \left(\sum_{i=1}^{D} \omega_{ji}^{(1)} x_i + \omega_{j0}^{(1)} \right) + \omega_{k0}^{(2)}$$

for $1 \leq k \leq K$, with parameters $\Theta = (\omega^{(1)}, \omega^{(2)})$ and logistic sigmoid activation function σ . Show that there exists an equivalent network of the same form, with parameters $\Theta' = (\tilde{\omega}^{(1)}, \tilde{\omega}^{(2)})$ and tanh activation function, such that $y(x, \Theta', \tanh) = y(x, \Theta, \sigma)$ for all $x \in \mathbb{R}^D$, and express Θ' as a function of Θ .

Answer 3. We can show that,

$$tanh(x) = \frac{e^{2x} - 1}{e^{2x} + 1} = \frac{e^{2x} + 1 - 2}{e^{2x} + 1} = 1 - 2 \times \frac{1}{1 + e^{2x}} = 1 - 2\sigma(-2x)$$

We also have,

$$\sigma(x) = \frac{1}{1 + e^{-x}} = 1 - \frac{e^{-x}}{1 + e^{-x}} = 1 - \frac{1}{e^x + 1} = 1 - \sigma(-x)$$

Therefore,

$$tanh(x) = 1 - 2\sigma(-2x) = 1 - 2(1 - \sigma(2x)) = 2\sigma(2x) - 1$$

$$\sigma(x) = \frac{1}{2} \times (tanh(\frac{x}{2}) + 1)$$

Using this, we can re-write y as:

$$y(x, \Theta, \tanh) = \sum_{j=1}^{M} \frac{1}{2} \omega_{kj}^{(2)} \tanh\left(\frac{1}{2} \sum_{i=1}^{D} \omega_{ji}^{(1)} x_i + \frac{1}{2} \omega_{j0}^{(1)} + 1\right) + \omega_{k0}^{(2)}$$

$$y(x, \Theta', \tanh) = \sum_{i=1}^{M} \tilde{\omega}_{kj}^{(2)} \tanh\left(\sum_{i=1}^{D} \tilde{\omega}_{ji}^{(1)} x_i + \tilde{\omega}_{j0}^{(1)}\right) + \tilde{\omega}_{k0}^{(2)}$$

Whereby,

$$\tilde{\omega}_{kj}^{(2)} = \frac{1}{2}\omega_{kj}^{(2)}$$

IFT6135-H2020 Prof : Aaron Courville

TABLE 1 – Forward AD example, with $y = f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin(x_2)$ at $(x_1, x_2) = (2, 5)$ and setting $\dot{x}_1 = 1$ to compute $\partial y / \partial x_1$.

-	Forward evaluation trace			Forward derivative trace					
	v_{-1}	$=x_1$	=2		$=\dot{v}_{-1}$	\dot{x}_1	= 1		
	v_0	$=x_2$	=5		$-\dot{v}_{-1} = \dot{v}_0$	$\dot{x}_1 \\ \dot{x}_2$	$ \begin{array}{c} $		
	v_1	$=\ln(v_1)$	$= \ln(2) \\ = 2 \times 5 \\ \sin(5) \\ = 0.6931 + 10$	→	$\frac{-v_0}{\dot{v}_1}$	$\frac{x_2}{\dot{v}_{-1}/v_{-1}}$			
\	v_2	$= v_{-1} \times v_0$			\dot{v}_2	$= \dot{v}_{-1} \times \dot{v}_{0} + \dot{v}_{-1} \times \dot{v}_{0}$ $= \dot{v}_{-1} \times \dot{v}_{0} + \dot{v}_{-1} \times \dot{v}_{0}$	$= 1 \times 5 + 2 \times 0$		
	v_3	$=\sin(v_0)$				$= c_{-1} \times c_0 + c_{-1} \times c_0$ $= \cos v_0 \times \dot{v}_0$	$= \cos(5) \times 0$		
	v_4	$= v_1 + v_2$			\dot{v}_3		$= \cos(3) \times 0$ = 0.5 + 5		
					\dot{v}_4	$=\dot{v}_1+\dot{v}_2$			
	v_5	$= v_4 - v_3 = 10.6931 + 0.9589$		v_5	$= \dot{v}_4 - \dot{v}_3$	=5.5-0			
-	y	$=v_5$	= 11.6521		=y	v_5	= 5.5		

TABLE 2 – Reverse AD example, with $y = f(x_1, x_2) = \ln(x_1) + x_1x_2 - \sin(x_2)$ at $(x_1, x_2) = (2, 5)$. Setting $\bar{y} = 1$, $\partial y/\partial x_1$ and $\partial y/\partial x_2$ are computed in one reverse sweep.

	Forward evaluation trace						
	$v_{-1} = x_1$		=2				
	$v_0 = x_2$		=5				
	v_1	$=\ln(v_1)$	$= \ln(2)$				
	v_2	$= v_{-1} \times v_0$	$=2\times5$				
\Downarrow	v_3	$=\sin(v_0)$	$=\sin(5)$				
	v_4	$= v_1 + v_2$	=0.6931+10				
	v_5	$= v_4 - v_3$	= 10.6931 + 0.9589				
	y	$=v_5$	= 11.6521				

. BC BW	bweep.				
	Reverse adjoint trace				
\bar{x}_1	$\bar{x}_1 = \bar{v}_{-1}$	= 5.5			
\bar{x}_2	$\bar{x}_2 = \bar{v}_0$	= 1.7163			
\bar{v}_{-}	$\bar{v}_{-1} = \bar{v}_{-1} + \bar{v}_1 \frac{\partial v_1}{\partial v_{-1}}$	= 5.5			
\bar{v}_0	$\bar{v}_0 = \bar{v}_0 + \bar{v}_2 \frac{\partial v_2}{\partial v_2}$	= 1.7163 = 5			
$ar{v}$	$\bar{v}_{-1} = \bar{v}_2 \frac{\partial v_2}{\partial v_{-1}}$				
\bar{v}_0	$ \bar{v}_0 = \bar{v}_3 \frac{\partial v_3}{\partial v_0} \\ \bar{v}_2 = \bar{v}_4 \frac{\partial v_4}{\partial v_2} $	=-0.2837			
\bar{v}_2	$\bar{v}_2 = \bar{v}_4 \frac{\partial v_4}{\partial v_2}$	=1			
\bar{v}_1	$\bar{v}_1 = \bar{v}_4 \frac{\partial v_4}{\partial v_2}$	=1			
\bar{v}_3	$\bar{v}_3 = \bar{v}_5 \frac{\partial v_5}{\partial v_2}$	= -1			
\bar{v}_4	$\bar{v}_4 = \bar{v}_5 \frac{\partial v_5}{\partial v_4}$	=1			
\bar{v}_5	$\bar{v}_5 = \bar{y}$	= 1			
\bar{v}_4	$\bar{v}_4 = \bar{v}_5 \frac{\partial v_5}{\partial v_4}$	= 1			

$$\tilde{\omega}_{ji}^{(1)} = \frac{1}{2}\omega_{ji}^{(1)}$$

$$\tilde{\omega}_{j0}^{(1)} = \frac{1}{2}\omega_{j0}^{(1)} + 1$$

$$\tilde{\omega}_{k0}^{(2)} = \omega_{k0}^{(2)}$$

Subsequently, we can express $\theta'(\tilde{\omega}^{(1)}, \tilde{\omega}^{(2)})$ in terms of $\theta(\omega^{(1)}, \omega^{(2)})$,

$$\theta' = (\tilde{\omega}^{(1)}, \tilde{\omega}^{(2)}) = (\left[\tilde{\omega}_{j0}^{(1)}, \tilde{\omega}_{ji}^{(1)}\right], \left[\tilde{\omega}_{k0}^{(2)}, \tilde{\omega}_{kj}^{(2)}\right]) = (\left[\frac{1}{2}\omega_{j0}^{(1)} + 1, \frac{1}{2}\omega_{ji}^{(1)}\right], \left[\frac{1}{2}\omega_{k0}^{(2)}, \omega_{kj}^{(2)}\right])$$

Question 4 (5-5). Fundamentally, back-propagation is just a special case of reverse-mode Automatic Differentiation (AD), applied to a neural network. Based on the "three-part" notation shown in Table 1 and 2, represent the evaluation trace and derivative (adjoint) trace of the following examples. In the last columns of your solution, numerically evaluate the value up to 4 decimal places.

1. Forward AD, with $y = f(x_1, x_2) = 1/(x_1 + x_2) + x_2^2 + \cos(x_1)$ at $(x_1, x_2) = (3, 6)$ and setting $\dot{x}_1 = 1$ to compute $\partial y/\partial x_1$.

2. Reverse AD, with $y = f(x_1, x_2) = 1/(x_1 + x_2) + x_2^2 + \cos(x_1)$ at $(x_1, x_2) = (3, 6)$. Setting $\bar{y} = 1$, $\partial y/\partial x_1$ and $\partial y/\partial x_2$ can be computed together.

Answer 4. Reuse the tables to prepare your answer.

	Forward evaluation trace						
	v_{-1}	$=x_1$	= 3 $= 6$				
	v_0	$=x_2$					
	v_1	$=\cos(v_1)$	$=\cos(3) = 0.9900$				
	v_2	$=\frac{1}{v_{-1}+v_0}$	$=\frac{1}{9}=0.1111$				
\Downarrow	v_3 v_4 :	$=(v_0)^2$	$6^2 = 36$				
		$= v_1 + v_2$	=-0.8789				
	v_5	$= v_4 + v_3$	= 35.1211				
	y	$= v_5$	= 35.1211				

		Forward derivative trace	
	$=\dot{v}_{-1}$	\dot{x}_1	= 1
	$=\dot{v}_0$	\dot{x}_2	= 0
	$-\dot{v}_1$	$= \dot{v}_{-1} \times -\sin(v_{-1})$	=-0.1411
	\dot{v}_2	$= \frac{-1}{(v_{-1}+v_0)^2} \times (v_0 \times \dot{v_{-1}} + \dot{v_0} \times v_{-1})$	=-0.6667
\Downarrow	\dot{v}_3	$=2\dot{v}_2v_2$	=0
	\dot{v}_4	$=\dot{v}_1+\dot{v}_2$	=-0.8078
	\dot{v}_5	$=\dot{v}_4-\dot{v}_3$	=-0.8078
	$=\dot{y}$	\dot{v}_{5}	=-0.8078

	Forward evaluation trace						
	v_{-1}	$=x_1$	= 3 $= 6$				
	v_0	$=x_2$					
	v_1	$=\cos(v_1)$	$=\cos(3) = 0.9900$				
	v_2	$=\frac{1}{v_{-1}+v_0}$	$=\frac{1}{9}=0.1111$				
\Downarrow	v_3	$=(v_0)^2$	$6^2 = 36$				
	v_4	$= v_1 + v_2$	=-0.8789				
	v_5	$= v_4 + v_3$	= 35.1211				
	\overline{y}	$= v_5$	= 35.1211				

	Reverse adjoint trace							
	\bar{x}_1	$=\bar{v}_{-1}$	=-0.1534					
	\bar{x}_2	$=\bar{v}_0$	= 11.9877					
	\bar{v}_{-1}	$= \bar{v}_{-1} + \bar{v}_1 \frac{\partial v_1}{\partial v_{-1}}$	$= \bar{v}_{-1} - \sin(v_{-1}) = -0.0123 - \sin(3) = -0.1534$					
	\bar{v}_0	$= \bar{v}_0 + \bar{v}_2 \frac{\partial v_2}{\partial v_0}$	$= \bar{v}_0 + \frac{1}{(v_{-1} + v_0)^2} = 11.9877$					
1	\bar{v}_{-1}	$= \bar{v}_2 \frac{\partial v_2}{\partial v_{-1}}$	$= \frac{-\bar{v}_2}{(v_{-1} + v_0)^2} = -0.0123$					
	\bar{v}_0	$=\bar{v}_3 \frac{\partial v_3}{\partial v_0}$	$=2\bar{v}_3v_0=12$					
	\bar{v}_2	$= \bar{v}_4 \frac{\partial v_4}{\partial v_2}$	=1					
	\bar{v}_1	$= \bar{v}_4 \frac{\partial v_4}{\partial v_1}$	=1					
	\bar{v}_3	$= \bar{v}_5 \frac{\partial v_5}{\partial v_3}$	=1					
	\bar{v}_4	$= \bar{v}_5 \frac{\partial v_5}{\partial v_4}$	= 1					
	\bar{v}_5	$=\bar{y}$	= 1					

Question 5 (6). Compute the *full*, *valid*, and *same* convolution (with kernel flipping) for the following 1D matrices: [1, 2, 3, 4] * [1, 0, 2]

Answer 5. Full: [1, 2, 5, 8, 6, 8]; Valid: [5, 8]; Same: [2, 5, 8, 6].

Question 6 (5-5). Consider a convolutional neural network. Assume the input is a colorful image of size 256×256 in the RGB representation. The first layer convolves 64.8×8 kernels with the input, using a stride of 2 and no padding. The second layer downsamples the output of the first layer with a 5×5 non-overlapping max pooling. The third layer convolves 128.4×4 kernels with a stride of 1 and a zero-padding of size 1 on each border.

- 1. What is the dimensionality (scalar) of the output of the last layer?
- 2. Not including the biases, how many parameters are needed for the last layer?

Answer 6.

1. Input: (256, 256, 3)

First layer: $\frac{256-8+2\times0}{2} + 1 = 125$, (125, 125, 64)

Second layer: $\frac{125-5}{5} + 1 = 25$, (25, 25, 64)

Third layer: $\frac{25-4+2\times1}{1} + 1 = 24$, (24, 24, 128)

Output shape: (128, 24, 24)

 $2. \ 4 \times 4 \times 128 \times 64 = 131072$

Question 7 (4-4-6). Assume we are given data of size $3 \times 64 \times 64$. In what follows, provide a correct configuration of a convolutional neural network layer that satisfies the specified assumption. Answer with the window size of kernel (k), stride (s), padding (p), and dilation (d), with convention d = 1 for no dilation). Use square windows only (e.g. same k for both width and height).

- 1. The output shape (o) of the first layer is (64, 32, 32).
 - (a) Assume k = 8 without dilation.
 - (b) Assume d = 7, and s = 2.
- 2. The output shape of the second layer is (64, 8, 8). Assume p = 0 and d = 1.
 - (a) Specify k and s for pooling with non-overlapping window.
 - (b) What is output shape if k = 8 and s = 4 instead?
- 3. The output shape of the last layer is (128, 4, 4).

- (a) Assume we are not using padding or dilation.
- (b) Assume d = 2, p = 2.
- (c) Assume p = 1, d = 1.

Answer 7. Fill up the following table,

		i	p	d	k	s	0
1.	(a)	(3,64,64)	3	1	8	2	(64,32,32)
	(b)	(3,64,64)	7	7	3	2	(64, 32, 32)
2.	(a)	(64, 32, 32)	0	1	4	4	(64,8,8)
	(b)	(64, 32, 32)	0	1	8	4	(64,7,7)
3.	(a)	(64,8,8)	0	1	5	1	(128,4,4)
	(b)	(64,8,8)	2	2	3	2	(128,4,4)
	(c)	(64,8,8)	1	1	3	2	(128,4,4)