THE Zysman-Colman GROUP

Calculation Report

Naphthalene

Optimisation, Excited States (Singlet, Triplet)

Silico 1.0.0-pre.30 Page 1 of 16

Summary of Results

Metadata

Username: osl

Date: 07/06/2022 18:50:12

Duration: 13 m, 5 s

Success: True
Converged: True

Computational

package: Turbomole (7.5.0)

Methods: HF, MP2
Basis set: cc-pVDZ

Calculations: Optimisation, Excited States

Orbital spin: restricted

Multiplicity: 1 (singlet)

No. merged calculations:

Calculation 1

Username: os

Date: 07/06/2022 18:31:50

Duration: 4 m, 57 s

Success: True
Converged: True

Computational

package: Turbomole (7.5.0)

Methods:HF, MP2Basis set:cc-pVDZCalculations:Optimisation

Orbital spin: restricted

Multiplicity: 1 (singlet)

Calculation 2

Username: osl

Date: 07/06/2022 18:40:35 Duration: 4 m, 2 s

Success: True

Computational

package:

Methods:

Basis set: cc-pVDZ

Calculations: Excited States

Turbomole (7.5.0)

HF, MP2

Orbital spin: restricted

Multiplicity: 1 (singlet)

Calculation 3

Username: osl

Date: 07/06/2022 18:50:12

Duration: 4 m, 5 s

Success: True

Computational package:

Turbomole (7.5.0)

Methods: HF, MP2

Basis set: cc-pVDZ

Calculations: Excited States

Orbital spin: restricted

Multiplicity: 1 (singlet)

SCF Energies

No. of steps: 7

Final energy: -10432.3114 eV

Final energy: -1,006,565 kJmol⁻¹

MP Energies

No. of steps: 14

Final energy: -10467.1582 eV

Final energy: -1,009,927 kJmol⁻¹

Silico 1.0.0-pre.30 Page 2 of 16

E_{HOMO,LUMO}: 10.15 eV

Geometry

Y extension:

Planarity ratio:

Formula:

y HOMO & LUMO

Molar mass: 128.1705 gmol⁻¹ **E**_{HOMO}: -7.78 eV

Alignment Minimal E_{LUMO}: 2.37 eV method:

X extension: 6.80 Å

 $C_{10}H_{8}$

5.02 Å

1.00

Z extension: 0.00 Å **Linearity ratio:** 0.26

Excited States

 ΔE_{ST} : 1.10 eV

S₁ energy: 4.37 eV

S₁ wavelength: 284 nm

S₁ colour: Ultraviolet

S₁ CIE (x,y): (0.00, 0.00)

 S_1 oscillator strength: 0.00

T₁ energy: 3.27 eV

T₁ wavelength: 379 nm

T₁ colour: Ultraviolet

T₁ CIE (x,y): (0.17, 0.00)

 T_1 oscillator strength: 0.00

No. of singlets: 2 No. of triplets: 2

Permanent Dipole Moment

 Total:
 0.00 D

 X axis angle:
 90.00 °

XY plane angle: $84.81\,^\circ$

Silico 1.0.0-pre.30 Page 3 of 16

SCF Energies

SCF Energies

No. of steps: 7

Final energy: -10432.3114 eV **Final energy:** -1,006,565 kJmol⁻¹

MP Energies

MP Energies

No. of steps: 14

Final energy: -10467.1582 eV Final energy: -1,009,927 kJmol⁻¹

Silico 1.0.0-pre.30 Page 4 of 16

Geometry

Aligned structure

SCF Density

Silico 1.0.0-pre.30 Page 5 of 16

Permanent Dipole Moment

Aligned structure (dipole moment in red)

Dipole Moment

Origin X: 0.00 D Origin Y: 0.00 D Origin Z: 0.00 D **Vector X:** 0.00 D **Vector Y:** 0.00 D **Vector Z:** 0.00 D Total: 0.00 D X axis angle: 90.00° XY plane angle: 84.81°

Silico 1.0.0-pre.30 Page 6 of 16

HOMO-1

HOMO-1 density (isovalue: 0.02)

Silico 1.0.0-pre.30 Page 7 of 16

HOMO & LUMO

Silico 1.0.0-pre.30 Page 8 of 16

_9 J

HOMO (blue) & LUMO (red) density

(isovalue: 0.02)

LUMO+1

LUMO+1 density (isovalue: 0.02)

Silico 1.0.0-pre.30 Page 9 of 16

Excited States

Excited States

 ΔE_{ST} : 1.10 eV S_1 energy: 4.37 eV S_1 wavelength: 284 nm

S₁ colour: Ultraviolet

S₁ CIE (x,y): (0.00, 0.00)

 $\mathbf{S_1}$ oscillator strength: 0.00

T₁ energy: 3.27 eV

T₁ wavelength: 379 nm

T₁ colour: Ultraviolet

T₁ CIE (x,y): (0.17, 0.00)

 T_1 oscillator strength: 0.00

No. of singlets: 2

No. of triplets: 2

Absorptions

Absorption spectrum (simulated Gaussian functions with FWHM: 0.4 eV). Peaks /nm: 246.

Note: high energy absorption peaks are not simulated. For a complete absorption spectrum, use more excited states.

Silico 1.0.0-pre.30 Page 10 of 16

Table of Excited States

Level	Symbol	Symmetry	Energy /eV	Wavelength /nm	Colour, CIE (x,y)	Oscillator Strength	Transitions (probability)
1	T ₁	Triplet-A	3.2689	379.29	Ultraviolet (0.17, 0.00)	0.0000	HOMO → LUMO (0.85) HOMO-2 → LUMO+2 (0.06) HOMO-1 → LUMO+1 (0.05)
2	T ₂	Triplet-A	4.2983	288.45	Ultraviolet (0.00, 0.00)	0.0000	HOMO-1 → LUMO (0.49) HOMO → LUMO+1 (0.46) HOMO-3 → LUMO+2 (0.02)
3	S ₁	Singlet-A	4.3707	283.67	Ultraviolet (0.00, 0.00)	0.0002	HOMO-1 → LUMO (0.49) HOMO → LUMO+1 (0.48)
4	S ₂	Singlet-A	5.0100	247.47	Ultraviolet (0.00, 0.00)	0.0880	HOMO → LUMO (0.90) HOMO-1 → LUMO+1 (0.08)

Silico 1.0.0-pre.30 Page 11 of 16

T(1), T(2), S(1), S(2) Difference Densities

T(1) positive (hole) (blue) & negative (electron) (red) difference density (isovalue: 0.001)

T(2) positive (hole) (blue) & negative (electron) (red) difference density (isovalue: 0.001)

S(1) positive (hole) (blue) & negative (electron) (red) difference density (isovalue: 0.001)

S(2) positive (hole) (blue) & negative (electron) (red) difference density (isovalue: 0.001)

Silico 1.0.0-pre.30 Page 12 of 16

Table of Selected Molecular Orbitals

Level	Label	Symmetry	Energy /eV
50	LUMO+15	А	11.9600
49	LUMO+14	Α	11.7352
48	LUMO+13	Α	10.6261
47	LUMO+12	Α	10.4351
46	LUMO+11	Α	7.9455
45	LUMO+10	Α	7.4055
44	LUMO+9	Α	7.3699
43	LUMO+8	Α	6.8297
42	LUMO+7	Α	6.4869
41	LUMO+6	Α	6.3480
40	LUMO+5	А	5.4144
39	LUMO+4	А	5.4053
38	LUMO+3	Α	4.9896
37	LUMO+2	Α	4.7431
36	LUMO+1	Α	3.2023
35	LUMO	Α	2.3705
34	НОМО	Α	-7.7835
33	HOMO-1	Α	-8.6036
32	HOMO-2	Α	-10.3698
31	HOMO-3	Α	-12.0540
30	HOMO-4	Α	-12.9253
29	HOMO-5	Α	-13.1917
28	HOMO-6	A	-14.1706
27	HOMO-7	Α	-14.3301
26	HOMO-8	Α	-15.2492
25	HOMO-9	А	-15.7421
24	HOMO-10	А	-15.7464
23	HOMO-11	А	-16.4964
22	HOMO-12	А	-16.8786
21	HOMO-13	А	-18.2419
20	HOMO-14	А	-18.8267
19	HOMO-15	Α	-19.1551

Silico 1.0.0-pre.30 Page 13 of 16

Table of Atoms

Element	X Coord	Y Coord	Z Coord
С	-1.2509141	-1.4118092	-0.0000069
С	-2.4487537	-0.7132682	0.000087
С	-2.4487547	0.7132694	0.000104
С	-1.2509134	1.4118084	-0.000068
С	-0.000000	0.7179339	-0.0000210
С	-0.0000000	-0.7179354	-0.0000202
С	1.2509141	-1.4118092	-0.000071
С	1.2509134	1.4118084	-0.000084
С	2.4487547	0.7132694	0.000099
С	2.4487537	-0.7132682	0.000093
Н	-1.2480933	-2.5080746	-0.0000131
Н	-3.4000079	-1.2561870	0.0000192
Н	-3.4000083	1.2561881	0.0000264
Н	-1.2480915	2.5080739	-0.0000147
Н	1.2480933	-2.5080746	-0.0000148
Н	1.2480915	2.5080739	-0.0000190
H	3.4000083	1.2561881	0.0000266
Н	3.4000079	-1.2561870	0.0000218

Silico 1.0.0-pre.30 Page 14 of 16

About

Silico Calculation Report

Part of the silico software package

Version 1.0.0-pre.30 7 June 2022

Silico makes use of a number of 3rd party libraries and programs; please cite these appropriately in your works:

Extraction and processing of results: **cclib**^[1] Rendering of 3D images: **VMD**^[2], **Tachyon**^[3]

Rendering of graphs: Matplotlib^[4]

Calculation of CIE colour coordinates: Colour Science^[5]

Generation of reports: Mako^[6], Weasyprint^[7]

Scientific constants: SciPy^[8]

Conversion of file formats: Pybel^[9], Openbabel^[10]

Calculation of spin-orbit coupling: PySOC^[11]

Rendering of 2D structures: **RDKit**^[12]

Saving of state during submission: $Dill^{[13,14]}$

Silico 1.0.0-pre.30 Page 15 of 16

Bibliography

- [1] N. M. O'boyle, A. L. Tenderholt and K. M. Langner, Journal of Computational Chemistry, 2008, 29, 839-845
- [2] W. Humphrey, A. Dalke and K. Schulten, Journal of Molecular Graphics, 1996, 14, 33--38
- [3] J. Stone, Masters Thesis, Computer Science Department, University of Missouri-Rolla, 1998
- [4] J. D. Hunter, Computing in Science & Engineering, 2007, 9, 90--95
- [5] T. Mansencal, M. Mauderer, M. Parsons, N. Shaw, K. Wheatley, S. Cooper, J. D. Vandenberg, L. Canavan, K. Crowson, O. Lev, K. Leinweber, S. Sharma, T. J. Sobotka, D. Moritz, M. Pppp, C. Rane, P. Eswaramoorthy, J. Mertic, B. Pearlstine, M. Leonhardt, O. Niemitalo, M. Szymanski and M. Schambach, Colour 0.3.15, Zenodo, 2020
- [6] M. Bayer, https://www.makotemplates.org, (accessed May 2020)
- [7] K. Community, https://weasyprint.org, (accessed May 2020)
- [8] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng, E. W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt and S. 1. 0. Contributors, *Nature Methods*, 2020, **17**, 261--272
- [9] N. M. O'Boyle, C. Morley and G. R. Hutchison, Chemistry Central Journal, 2008, 2, 5
- [10] N. M. O'Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch and G. R. Hutchison, *Journal of Cheminformatics*, 2011, **3**, 33
- [11] X. Gao, S. Bai, D. Fazzi, T. Niehaus, M. Barbatti and W. Thiel, *Journal of Chemical Theory and Computation*, 2017, 13, 515--524
- [12] G. Landrum, https://www.rdkit.org/, (accessed February 2022)
- [13] M. McKerns, L. Strand, T. Sullivan, A. Fang and M. Aivazis, *Proceedings of the 10th Python in Science Conference*, 2011,
- [14] M. McKerns and M. Aivazis, https://uqfoundation.github.io/project/pathos, (accessed February 2022)
- [15] K. Shizu and H. Kaji, The Journal of Physical Chemistry A, 2021, 125, 9000--9010

Silico 1.0.0-pre.30 Page 16 of 16