

General Description

Maxim's DG300-DG303 and DG300A-DG303A CMOS dual and quad analog switches combine low power operation with fast switching times and superior DC and AC switch characteristics. On-resistance is less than 50Ω and is essentially constant over the analog signal range. Device specifications are ideal for batterypowered circuitry.

These switches are available in a variety of formats as outlined in the Pin Configurations section. The switch control logic inputs are fully TTL and CMOS compatible. Also featured are "break-before-make" switching and low charge injection.

Maxim's DG300-DG303 and DG300A-DG303A families are electrically compatible and pin compatible with the original manufacturer's devices. All devices operate with power supplies ranging from ±5V to ±18V. Single-supply operation is implemented by connecting V- to GND.

Applications

Portable Instruments Low-Power Sample/Holds Power-Supply Switching Programmable Gain Ampliffiers SPDT and DPDT Functions Process Control and Telemetry

Features

- ♦ Monolithic Low-Power CMOS
- **♦ Latchup Proof Construction**
- ♦ Fully Compatible 2nd Source
- ♦ Low On-Resistance, <50Ω
- ♦ Fast Switching Time
- ♦ V+ to V- Analog Signal Range
- ♦ Single-Supply Capability

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
DG300C/D	0°C to +70°C	Dice
DG300CJ	0°C to +70°C	14 Lead Plastic DIP
DG300CWE	0°C to +70°C	16 Lead Wide SO
DG300CK	0°C to +70°C	14 Lead CERDIP
DG300BWE	-25°C to +85°C	16 Lead Wide SO
DG300BK	-25°C to +85°C	14 Lead CERDIP
DG300BA	-25°C to +85°C	10 Lead Metal Can
DG300AK	-55°C to +125°C	14 Lead CERDIP
DG300AA	-55°C to +125°C	10 Lead Metal Can

Ordering Information continued at end of data sheet.

Pin Configurations

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to V-	
V+ (DG300–DG303)	36V
V+ (DG300A–DG303A)	
GND	
Digital Inputs, V _S , V _D , (Note 1)	4V to (V + + 4V) or
30mA, whic	chever occurs first
Current, Any Terminal Except S or D	30mA
Continuous Current, S or D	30mA
(pulsed at 1ms, 10% duty cycle max)	100mA
Storage Temperature (A & B suffix)	65°C to +150°C
(C suffix)	65°C to +125°C

Operating Temperature (A suffix)	55°C to +125°C
(B suffix)	25°C to +85°C
(C suffix)	0°C to +70°C
Lead Temperature (soldering 10s)	+300°C
Power Dissipation*	
Cerdip (K) (derate 11mW/°C above +75°C)	825mW
Plastic DIP (J) (derate 6.5mW/°C above +25°	°C)470mW
Metal Can (A) (derate 6mW/°C above +75°C))450mW

^{*}Device mounted with all leads soldered or welded to PC board.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V+ = +15V, V- = -15V, GND = 0V, T_A = +25^{\circ}C, unless otherwise noted.)$

	PARAMETER	SYMBOL	TEST CONDITIONS			800–DG3 0A–DG3			0-DG30 A-DG30		UNITS
	PARAMETER	STIMBUL	IES	1 CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
	A	1/	10 40	/ 0.01/: 4.01/		(Note 3)	- 45	(Note 2)	(Note 3)	. 4.5	V
	Analog Signal Range	Vanalog	IS = TOMA,	$V_{IN} = 0.8V \text{ or } 4.0V$	-15	30	+15 50	-15	30	+15 50	
	Drain-Source ON-Resistance	R _{DS(ON)}		$I_S = -10 \text{mA}, V_D = 10 \text{V}$ $I_S = -10 \text{mA}, V_D = -10 \text{V}$		30	50		30	50	Ω
ᆽ	Source OFF-			$V_S = 14V, V_D = -14V$		0.1	1		0.1	5	
SWITCH	Leakage Current	IS(OFF)	$V_{IN} = 0.8V$	$V_S = -14V, V_D = 14V$	-1	-0.1		-5	-0.1		nA
SW	Drain OFF-		or	$V_S = -14V, V_D = 14V$		0.1	1		0.1	5	
	Leakage Current	I _D (OFF)	$V_{IN} = 0.8V$	V _S = 14V, V _D = -14V	-1	-0.1		-5	-0.1		nA
	Drain ON-	Involu		$V_D = V_S = 14V$		0.1	2		0.1	5	nA
	Leakage Current	ID(ON)		$V_D = V_S = -14V$	-2	-0.1		-5	-0.1		TIA
	Input Current/	linh	$V_{IN} = 5.0V$		-1	-0.001		-1	-0.001		μA
INPUT	Voltage High	רוויוי	$V_{IN} = 15V$			0.001	1		0.001	1	μ/ (
Z	Input Current/ Voltage Low	I _{INL}	$V_{IN} = 0V$		-1	-0.001		-1	-0.001		μΑ
	Turn-ON Time	ton	Coo Cwitobii	See Switching Time Test Circuit		150	300		150	300	ns
	Turn-OFF Time	toff	See Switchin	ig fille rest Circuit		130	250		130	250	ns
	Break-Before-Make Interval	ton - toff		Before-Make Time Test 801(A)/DG303(A) only		50			50		ns
	Charge Injection	Q	$C_L = 10nF$,	$R_{GEN} = 0\Omega$, $V_{GEN} = 0V$	12		12			рС	
ပ	Source OFF- Capacitance	Cs(OFF)	f = 1MHz,	V _S = 0V		14			14		рF
DYNAMIC	Drain OFF- Capacitance	C _{D(OFF)}	$V_{IN} = 0.8V$ or	$V_D = 0V$		14			14		рF
D	Channel ON- Capacitance	C _{D(ON)} + C _{S(ON)}	$V_{IN} = 4.0V$	$V_S = VD = 0V$		40			40		рF
	Input Capacitance	CIN	$f = 1MHz$ $V_{IN} = 0V$			6			6		рF
	· · · · · · · · · · · · · · · · · · ·	OIN	ı — TIVII IZ	$V_{IN} = 15V$		7			7		
	Off-Isolation (Note 4)		V _{IN} = 0V, R _L	- 1kO		62			62		dB
	Crosstalk (Channel-to-Channel)			, f = 500kHz		74			74		dB

ELECTRICAL CHARACTERISTICS (continued)

(V+ = +15V, V- = -15V, GND = 0V, T_A = +25°C, unless otherwise noted.)

	DADAMETED	CVMDOL	TECT COMPLETIONS		300–DG3 0A–DG3			00-DG30 A-DG30		LINUTO
	PARAMETER	SYMBOL	TEST CONDITIONS	MIN (Note 2)	TYP (Note 3)	MAX	MIN (Note 2)	TYP (Note 3)	MAX	UNITS
	Positive Supply Current	l+	V _{IN} = 4V (one input)	(Note 2)	0.23	0.5	(Note 2)	0.23	0.5	mA
ΡLΥ	Negative Supply Current	I-	(all others = 0)	-10	-0.001		-10	-0.001		μА
SUPPL	Positive Supply Current	l+	Maria O OM (all inquita)		0.001	10		0.001	10	μА
	Negative Supply Current	-	V _{IN} = 0.8V (all inputs)	-10	-0.001		-10	-0.001		μА

ELECTRICAL CHARACTERISTICS (Over Temperature)

 $(V+=+15V, V-=-15V, GND=0V, T_A=Over Temperature Range, unless otherwise noted.)$

	PARAMETER	SYMBOL	TEC	TEST CONDITIONS		00–DG3 0A–DG3			0-DG30 A-DG30		UNITS
	FARAMETER	STIMBOL	ILS			TYP (Note 3)	MAX	MIN (Note 2)	TYP	MAX	ONITS
	Analog Signal Range	Vanalog	$I_S = -10 \text{mA},$	V _{IN} = 0.8V or 4.0V	(Note 2) -15	(14010-0)	+15	-15	(14010-0)	+15	V
	Drain-Source ON-Resistance	R _{DS(ON)}		Is = -10mA, V _D = 10V Is = -10mA, V _D = -10V			75 75			75 75	Ω
SWITCH	Source OFF- Leakage Current	Is(OFF)	V _{IN} = 0.8V	$V_S = 14V, V_D = -14V$ $V_S = -14V, V_D = 14V$	-100		100	-100		100	nA
SWI	Drain OFF- Leakage Current	I _{D(OFF)}	$V_{IN} = 0.8V$	$V_S = -14V$, $V_D = 14V$ $V_S = -14V$, $V_D = 14V$ $V_S = 14V$, $V_D = -14V$	-100		100	-100		100	nA
	Drain ON- Leakage Current	I _{D(ON)}		$V_D = V_S = 14V$ $V_D = V_S = -14V$	-200		200	-200		200	nA
5	Input Current/ Voltage High	linh	$V_{IN} = 5.0V$ $V_{IN} = 15V$	10-13-140	-1		1	-10		10	μΑ
INPUT	Input Current/ Voltage Low	I _{INL}	V _{IN} = 0V		-1			-10			μΑ
	Positive Supply Current	l+	V _{IN} = 4V (or	V _{IN} = 4V (one input)			1			1	mA
SUPPLY	Negative Supply Current	-	(all others =	0)	-100			-200			mA
SUP	Positive Supply Current	l+	V 0 0V/	V 0.0V (II : 1)			100			200	μА
	Negative Supply Current	-	V _{IN} = 0.8V (all inputs)		-100			-200			μА
DYNAMIC	Turn-ON Time	ton	Coo Cwitchi	One Onitable Time Test Oil 1			500				ns
DYN	Turn-OFF Time	toff	See Switchii	ng Time Test Circuit			450				ns

ELECTRICAL CHARACTERISTICS (Over Temperature) (continued)

(V+ = +15V, V- = -15V, GND = 0V, T_A = Over Temperature Range, unless otherwise noted.)

- Note 1: Signals on S_X, D_X, or IN_X exceeding V+ or V- are clamped by internal diodes. Limit diode forward current to maximum current ratings.
- **Note 2:** The algebraic convention whereby the most negative value is a minimum, and the most positive value is a maximum is used in this data sheet.
- Note 3: Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- Note 4: OFF-isolation = 20 log $\frac{V_S}{V_D}$, V_S = input to OFF switch, V_D = output.

Typical Operating Characteristics

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

TEMPERATURE (°C)

POSITIVE SUPPLY VOLTAGE (V)

NEGATIVE SUPPLY VOLTAGE (V)

Test Circuits

Figure 1. Charge Injection Test Circuit

Figure 2. Break-Before-Make Time Test Circuit SPDT (DG301(A), DG303(A)

Figure 3. Switching Time Test Circuit

Table 1. Typical Single Supply Parameters

PARA	V+ SUPPLY VOLTAGE (V- = 0V)					
FANA	WILTER	+10V	+15V	+20V	+30V	
Cuitobing Time (D. 11(0)	ton	190ns	150ns	110ns	70ns	
Switching Time ($R_L = 1k\Omega$)	toff	40ns	40ns	40ns	40ns	
	VSIGNAL = +1V	71Ω	51Ω	42Ω	31Ω	
On-Resistance	VSIGNAL = V+ / 2	77Ω	54Ω	43Ω	30Ω	
	VSIGNAL = V+	84Ω	63Ω	54Ω	43Ω	
Input Logic Levels		0.8V, 4.0V	0.8V, 4.0V	0.8V, 4.0V	0.8V, 4.5V	

Applications Information

All DG300 family switches will operate with ±5V to ±15V power supplies. They can also be used with single-ended power supplies ranging from +10V to +30V where the V-terminal is connected to ground. In either case, analog signals ranging from V+ to V- can be switched.

The on-resistance variation with analog signal and supply voltage is shown in the *Typical Operating Characteristics*. The temperature coefficient of R_{ON} is typically 0.5%/°C. Typical on-resistance matching from channel to channel is 10%. In addition, Table 1 outlines some typical parameters for single-supply operation.

Table 2. Charge Injection (±15V Supplies)

ANALOG INPUT (V)	INJECTED Q (pC)
+10	4
+5	8
0	12
-5	8
-10	5

The charge injection test circuit is shown in Figure 1. Table 2 lists the typical injected charge for DG300 series switches with various input voltages.

Chip Topography

DIE PAD	DG300 DG300A	DG301 DG301A	DG302/DG303 DG302A/DG303A
а	N.C.	N.C.	S3
b	D1	D1	D3
С	D1	S1	D1
d	S1	IN1	S1
е	IN1	IN1	IN1
f	V+	V+	V+
g	GND	GND	GND
h	V-	V-	V-
i	IN2	GND	IN2
j	S2	V-	S2
k	D2	S2	D2
I	D2	D2	D4
m	N.C.	N.C.	S4
n	V+	V+	V+

DG300(A)/DG301(A)/DG302(A)/DG303(A)

TTL Compatible CMOS Analog Switches

_Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE
DG300AC/D	0°C to +70°C	Dice
DG300ACJ	0°C to +70°C	14 Lead Plastic DIP
DG300ACWE	0°C to +70°C	16 Lead Wide SO
DG300ACK	0°C to +70°C	14 Lead CERDIP
DG300ABWE	-25°C to +85°C	16 Lead Wide SO
DG300ABK	-25°C to +85°C	14 Lead CERDIP
DG300ABA	-25°C to +85°C	10 Lead Metal Can
DG301 C/D	0°C to +70°C	Dice
DG301CJ	0°C to +70°C	14 Lead Plastic DIP
DG301CWE	0°C to +70°C	16 Lead Wide SO
DG301CK	0°C to +70°C	14 Lead CERDIP
DG301BWE	-25°C to +85°C	16 Lead Wide SO
DG301BK	-25°C to +85°C	14 Lead CERDIP
DG301BA	-25°C to +85°C	10 Lead Metal Can
DG301AK	-55°C to +125°C	14 Lead CERDIP
DG301AA	-55°C to +125°C	10 Lead Metal Can
DG301AC/D	0°C to +70°C	Dice
DG301ACJ	0°C to +70°C	14 Lead Plastic DIP
DG301ACWE	0°C to +70°C	16 Lead Wide SO
DG301ACK	0°C to +70°C	14 Lead CERDIP
DG301ABWE	-25°C to +85°C	16 Lead Wide SO
DG301ABK	-25°C to +85°C	14 Lead CERDIP
DG301ABA	-25°C to +85°C	10 Lead Metal Can
DG302 C/D	0°C to +70°C	Dice
DG302CJ	0°C to +70°C	14 Lead Plastic DIP

PART	TEMP RANGE	PIN-PACKAGE
DG302CWE	0°C to +70°C	16 Lead Wide SO
DG302CK	0°C to +70°C	14 Lead CERDIP
DG302BWE	-25°C to +85°C	16 Lead Wide SO
DG302BK	-25°C to +85°C	14 Lead CERDIP
DG302AK	-55°C to +125°C	14 Lead CERDIP
DG302AC/D	0°C to +70°C	Dice
DG302ACJ	0°C to +70°C	14 Lead Plastic DIP
DG302ACWE	0°C to +70°C	16 Lead Wide SO
DG302ACK	0°C to +70°C	14 Lead CERDIP
DG302ABWE	-25°C to +85°C	16 Lead Wide SO
DG302ABK	-25°C to +85°C	14 Lead CERDIP
DG303 C/D	0°C to +70°C	Dice
DG303CJ	0°C to +70°C	14 Lead Plastic DIP
DG303CWE	0°C to +70°C	16 Lead Wide SO
DG303CK	0°C to +70°C	14 Lead CERDIP
DG303BWE	-25°C to +85°C	16 Lead Wide SO
DG303BK	-25°C to +85°C	14 Lead CERDIP
DG303AK	-55°C to +125°C	14 Lead CERDIP
DG303AC/D	0°C to +70°C	Dice
DG303ACJ	0°C to +70°C	14 Lead Plastic DIP
DG303ACWE	0°C to +70°C	16 Lead Wide SO
DG303ACK	0°C to +70°C	14 Lead CERDIP
DG303ABWE	-25°C to +85°C	16 Lead Wide SO
DG303ABK	-25°C to +85°C	14 Lead CERDIP

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

10 _____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.