

Prosumer Video Cable Equalizer

Features

- Multi rate adaptive equalization
- Operates from 143 to 1485 Mbps serial data rate
- SMPTE 292M, SMPTE 344M, and SMPTE 259M compliant
- Supports DVB-ASI at 270 Mbps
- Cable length indicator for HD-SDI and SD-SDI data rates
- Maximum cable length adjustment for HD-SDI and SD-SDI data rates
- Carrier detect and mute functionality for HD-SDI and SD-SDI data rates
- Equalizer bypass mode
- Seamless connection with HOTLink IITM family
- Equalizes up to 175m of Canare L-5CFB and Belden 1694A coaxial cable at 270 Mbps
- Equalizes up to 70m of Canare L-5CFB and Belden 1694A coaxial cable at 1.485 Gbps
- Low power: 160 mW at 3.3V
- Single 3.3V supply
- 16-pin SOIC
- 0.18 µm CMOS technology

- Pb-free and RoHS compliant
- Uses Cypress CLEANLink[™] technology
- Pin compatible to existing equalizer devices

Functional Description

The CYV15G0100EQ is a multi rate adaptive equalizer designed to equalize and restore signals received over 75Ω coaxial cable. The equalizer meets SMPTE 292M, SMPTE 344M, and SMPTE 259M data rates. The CYV15G0100EQ is optimized to equalize up to 175m of Belden 1694A coaxial cable at 270 Mbps and up to 70m of Belden 1694A coaxial cable at 1.485 Gbps. This device is mainly targeted for Prosumer Video applications where the cable length requirements are not as stringent as professional broadcast video applications. The CYV15G0100EQ connects seamlessly to the HOTLink II family of transceivers.

The CYV15G0100EQ has DC restoration to compensate for the DC content of the SMPTE pathological patterns. A cable length indicator (CLI) provides an indication of the cable length equalized at HD-SDI and SD-SDI data rates. The maximum cable length adjust (MCLADJ) sets the approximate maximum cable length to equalize at SD and HD data rates. The CYV15G0100EQ's differential serial outputs (SDO, SDO) mute when the approximate cable length set by MCLADJ is reached. CD/MUTE is a bidirectional pin that provides an indication of the signal present at the equalizer inputs. It also controls muting the outputs of the equalizer at HD and SD data rates.

Power consumption is typically 160 mW at 3.3V.

Cypress Semiconductor Corporation
Document Number: 001-12520 Rev. **

198 Champion Court

San Jose, CA 95134-1709 • 408-943-2600 Revised October 25, 2007

Equalizer Block Diagram

Pinouts

Figure 1. Pin Diagram - 16 Pin SOIC (Top View)

Table 1. Pin Descriptions - CYV15G0100EQ Single Channel Cable Equalizer

Name	IO Characteristics	Signal Description		
Control Signa	als			
CLI	Analog Output	Cable Length Indicator. CLI provides an analog voltage proportional to the equalized cable length. CLI works at both SD-SDI and HD-SDI data rates.		
CD/MUTE	LVTTL IO	Carrier Detect or Mute Indicator.		
		Output:		
		When the incoming data stream is present and the cable length does not exceed the length that is set by MCLADJ, the CD/MUTE outputs a voltage less than 0.8V.		
		When the incoming data stream is not present or the cable length exceeds the length that is set by MCLADJ, the CD/MUTE outputs a voltage greater than 2.8V.		
		Input:		
		When the $\overline{\text{CD/MUTE}}$ pin is set LOW, the equalizer's differential serial outputs are not muted.		
		When the CD/MUTE pin is set HIGH, the equalizer's differential serial outputs are muted.		
MCLADJ	Analog Input	Maximum Cable Length Adjust. The maximum equalized cable length is set by the voltage app <u>lied</u> to the MCLADJ input. When the maximum cable length set by MCLADJ is reached, CD is driven high and the differential output is muted.		
		If MCLADJ functionality is not needed, then this pin should be left floating or tied to ground to allow maximum equalized cable length.		
		MCLADJ works at both SD and HD data rates.		
BYPASS	LVTTL Input	Equalizer Bypass. When BYPASS is set HIGH, the signal presented at the equalizer's differential serial inputs (SDI, SDI) is routed to the equalizer's differential serial outputs (SDO, SDO) without equalizing.		
		When BYPASS is set LOW, the incoming video data stream is equalized and presented at the equalizer's serial differential outputs (SDO, SDO).		
		In equalizer bypass mode, CD/MUTE is not functional.		
AGC±	Analog	Automatic Gain Control. Place a capacitor of 1 μF between the AGC± pins.		
SDO, SDO	Differential Output	Differential Serial Outputs. The equalized serial video data stream is presented a SDO/SDO differential serial CML output.		
SDI, SDI	Differential Input	Differential Serial Inputs. SDI/ $\overline{\text{SDI}}$ accepts either a single-ended or differential serial video data stream over 75 Ω coaxial cable.		
Power	•			
VCC	Power	+3.3V Power.		
GND	Gnd	Connect to Ground.		
	1	1		

Equalizer Operation

The CYV15G0100EQ is a high speed adaptive cable equalizer designed to equalize standard definition (SD) and high definition (HD) serial digital interface (SDI) video data streams. The CYV15G0100EQ equalizer is optimized to equalize up to 175m of Canare L-5CFB and Belden 1694A cable at 270 Mbps and up to 70m of Canare L-5CFB and Belden 1694A cable at 1.485 Gbps. The CYV15G0100EQ equalizer contains one power supply and typically consumes 160 mW power at 3.3V. The multi rate equalizer meets the SMPTE 259M, SMPTE 292M, SMPTE 344M, and DVB-ASI video standards. It meets all pathological requirements for SMPTE 292M as defined by RP198 and for SMPTE 259M as defined by RP198. The CYV15G0100EQ Prosumer video cable equalizer is auto adaptive from 143 Mbps to 1.485 Gbps.

The CYV15G0100EQ equalizer has variable gain and multiple equalization stages that reverse the effects of the cable. This equalization is achieved by separate regulation of the lower and higher frequency components in the signal to give a clean output eye diagram. The CYV15G0100EQ has DC restoration for compensating the DC content of the SMPTE pathological patterns.

SDI, SDI

The CYV15G0100EQ accepts single-ended or differential serial video data streams over 75Ω coaxial cable. It is recommended to AC couple the SDI and SDI inputs as they are internally biased to 1.2V.

SDO, SDO

The CYV15G0100EQ has differential serial output interface drivers that use current mode logic (CML) drivers to provide source matching for the transmission line. These outputs are either AC coupled or DC coupled to the HOTLink II SerDes device.

CLI

Cable Length Indicator (CLI) is an analog output that gives an output voltage proportional to the equalized cable length. CLI gives an approximation of the length of cable at the differential serial inputs (SDI, SDI). CLI works at high definition (HD) data rates and standard definition (SD) data rates. The graph in Figure 3 on page 7 illustrates the CLI output voltage at various Belden 1694A cable lengths. With an increase in cable length, CLI output voltage decreases.

MCLADJ

Maximum Cable Length Adjust (MCLADJ) sets the approximate maximum amount of cable to be equalized. MCLADJ works at SD and HD data rates.

If the MCLADJ voltage is greater than the CLI output voltage, the CD pin is driven HIGH and the outputs are muted. If the MCLADJ voltage is less than CLI voltage, then the equalizer's CD pin is driven LOW and the incoming data stream is equalized. The graph in Figure 2 on page 7 illustrates the voltage required at MCLADJ input to equalize various Belden 1694A cable lengths for SD and HD data rates.

If MCLADJ functionality is not needed, then this pin should be left floating or tied to ground to allow maximum equalized cable length.

CD/MUTE

Carrier Detect/MUTE (CD/MUTE) is a bidirectional pin that provides an indication of the signal present at the equalizer's input or it controls the muting of the equalizer's output. The (CD/MUTE) operates for both HD and SD data rates.

If $\overline{\text{CD}}/\text{MUTE}$ is used as an output and the incoming data stream is not present or the cable length exceeds the length that is set by MCLADJ, the voltage at the $\overline{\text{CD}}/\text{MUTE}$ output is greater than 2.8V. If $\overline{\text{CD}}/\text{MUTE}$ is used as an output, the incoming data stream is present and the cable length does not exceed the length that is set by MCLADJ, then the voltage at the $\overline{\text{CD}}/\text{MUTE}$ output is less than 0.8V.

If $\overline{\text{CD}}/\text{MUTE}$ is used as an input $\underline{\text{and}}$ is set LOW, the equalizer serial outputs are not muted. If the $\overline{\text{CD}}/\text{MUTE}$ is used as an input and is set HIGH, then the equalizer serial outputs are muted.

When an invalid signal or a signal transmitted with a launch amplitude of less than 500 mV at HD data rates is received, the equalizer's serial outputs are muted.

BYPASS

The CYV15G0100EQ has a bypass mode that enables the user to bypass the equalizer's equalization and DC restoration functions. When the bypass mode is set HIGH, the signal presented at the equalizer's differential serial inputs (SDI, SDI) is routed to the equalizer's differential serial outputs (SDO, SDO) without equalizing.

When BYPASS is set LOW, the incoming video data stream is equalized and <u>presented</u> at the equalizer's differential serial outputs (SDO, SDO).

In equalizer bypass mode, CD/MUTE is not functional.

AGC

Place a capacitor of 1 μF between the AGC± pins of the CYV15G0100EQ equalizer.

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. These user guidelines are not tested.

Latch Up Current > 200 mA

Power Up Requirements

The CYV15G0100EQ contains one power supply. The voltage on any input or IO pin must not exceed the power pin during power up.

Operating Range

Range	Ambient Temperature	V _{CC}		
Commercial	0°C to +70°C	+3.3V ±5%		

DC Electrical Characteristics

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
V _{CC} Supply Voltage ^[1]		-	3.135	3.3	3.465	V
P_{D}	Power Consumption ^[2]	-	125	160	190	mW
I _S	Supply Current ^[1]	-	38	48	60	mA
V _{CMOUT}	Output Common Mode Voltage ^[1]	Load = 50Ω	-	$V_{\text{CC}} = \Delta V_{\text{SDO}}/2$ = 2.9	_	V
V _{CMIN}	Input Common Mode Voltage ^[1] (Bypass = High)	_	1		1.4	V
	Input Common Mode Voltage ^[1] (Bypass = Low)	_	0		2.9	V
- CLI DC Voltage (0m) ^[1]		_	2.2	2.65	2.95	V
_	CLI DC Voltage (No Signal) ^[1]	-	1.5	1.9	2.3	V
_	Floating MCLADJ DC Voltage ^[1]	-		1.3		V
– MCLADJ Range ^[3]		-	0.4	0.72	1.02	V
V _{CD/MUTE(OH)} CD/MUTE Output Voltage ^[1]		Carrier Not Present	2.8	_	_	V
V _{CD/MUTE(OL)}		Carrier Present	_	_	0.8	V
V _{CD/MUTE}	CD/MUTE Input Voltage Required to Force Outputs to Mute ^[1]	Min to Mute	2.5	-	_	V
V _{CD/MUTE}	CD/MUTE Input Voltage Required to Force Active ^[1]	Max to Activate	_	-	1	V

Notes

- 1. Production test.
- Calculated results from production test.
- 3. Not tested. Based on characterization.

AC Electrical Characteristics

Parameter	Description	Test Conditions	Min	Тур	Max	Unit	
 Serial Input Data Rate^[1] 		-	143	-	1485	Mbps	
V_{SDI}	Input Voltage Swing	Single-ended, at the transmitter, HD data rate	500 ^[5]		1200	mV	
V _{SDI}	Input Voltage Swing	Single-ended, at the transmitter, SD data rate	500 ^[6]		1200	mV	
ΔV_{SDO}	Output Voltage Swing ^[1]	Differential _{p-p} , 50Ω load	450	700	950	mV	
Output Jitter for Various Cable Lengths and Data Rates		270 Mbps Belden 1694A: 0-175m Canare L-5CFB: 0-175m 800 mV transmit amplitude Equalizer pathological pattern	-	0.2 ^[1]	_	UI	
		1.485 Gbps Belden 1694A: 0-70m Canare L-5CFB: 0-70m 800 mV transmit amplitude Equalizer pathological pattern	-	0.25 ^[1]	-	UI	
Output Rise/Fall Time ^[3, 4]		20% - 80%, HD data rate	80	120	220	ps	
_	Output Rise/Fall Time ^[3, 4]	20% - 80%, SD data rate	80	120	350	ps	
_	Mismatch in Rise/Fall Time ^[3, 4]	-	_	_	30	ps	
Duty Cycle Distortion ^[3, 4]		HD color bar pattern	_	20	_	ps	
- Overshoot ^[3, 4]		-	-	_	10	%	
_	Input Return Loss ^[3]	-	-15	_	_	dB	
_	Input Resistance ^[3, 4]	Single-ended	_	2.5	_	kΩ	
_	Input Capacitance ^[3, 4]	Single-ended	_	1	_	pF	
_	Output Resistance ^[3, 4]	Single-ended	-	50	_	Ω	

Not tested. Guaranteed by design simulations.
 Based on characterization across temperature and voltage with 70m of Belden 1694A cable, transmitting SMPTE Equalizer Pathological Test Pattern.
 Based on characterization across temperature and voltage with 175m of Belden 1694A cable, transmitting SMPTE Equalizer Pathological Test Pattern.

Typical Performance Graphs

(Unless otherwise stated, $V_{CC} = 3.3V$, $T_A = 25^{\circ}C$)

Figure 2. MCLADJ Input Voltage vs Belden 1694A Cable Length at SD-SDI and HD-SDI Data Rates

Figure 3. CLI Output Voltage Vs Belden 1694A Cable Length at SD-SDI and HD-SDI Data Rates

Typical Application Circuit

Figure 4. Interfacing CYV15G0100EQ to the HOTLink II SerDes

Ordering Information

Ordering Code	Package Name	Package Type	Operating Range
CYV15G0100EQ-SXC	SZ16.15	Pb-free 16-Pin 150 Mil SOIC	0 to 70°C

Package Dimension

Figure 5. 16-Pin (150 Mil) SOIC S16.15

DIMENSIONS IN INCHES[MM] MIN.

MAX.

REFERENCE JEDEC MS-012

PACKAGE WEIGHT 0.15gms

PART #				
S16.15	STANDARD PKG.			
SZ16.15	LEAD FREE PKG.			

Document History Page

	Document Title: CYV15G0100EQ Prosumer Video Cable Equalizer Document Number: 001-12520						
REV.	ECN NO.	ISSUE DATE	ORIG. OF CHANGE	DESCRIPTION OF CHANGE			
**	1396423	SEE ECN	UKK/AESA	New datasheet			

© Cypress Semiconductor Corporation, 2007. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-12520 Rev. **

Revised October 25, 2007

Page 10 of 10