Departamento de Matemática y Estadística

Guía N°3: Aplicaciones de la Integral Definida Cálculo de una Variable (IME050)

Carreras: Ingenierías Civiles
Profesores: H. Burgos, M. Choquehuanca, E. Henríquez,
A. Parra, A. Sepúlveda, H. Soto, P. Valenzuela.

- 1. En cada uno de los siguientes ejercicios obtenga el área de la región acotada por las gráficas de las ecuaciones dadas. Bosqueje la gráfica de la región.
 - a) \mathcal{R} acotada por la curva $y = x x^2$ y el eje x
 - b) \mathcal{R} acotada por la curva $y = (3-x)\sqrt{x}$ y el eje x
 - c) \mathcal{R} acotada por las curvas $y = x^3 + x$, x = 2 y el eje x
 - d) $y = 9x x^2$, y = 0
 - e) $y = x^2$, y = x, x = 1, x = 3
 - f) $x = y^2 2y 3$, x = 0
 - g) $x^2=y^3$, x=0, y=4 en el primer cuadrante
 - h) $x = 4y^2 y^3$, x = -1 y, y = 0, y = 3
 - i) $y^2 = 4x + 1$, x + y = 1
 - j) y = |x+1| + |x|, y = 0, x = -2, x = 3
 - k) $x = 5y, x = y^3 2y^2 3y$
 - 1) $y^2 = 6 + 3x$, y = 3x
 - m) y = 2x, 4y = x, $y = \frac{2}{x^2}$, x > 0
 - n) $y = x^2$, $x = y^3$, x + y = 2
 - \tilde{n}) $y = x^3 x^2$, $y = 2x^2 4$
- 2. Determine $m \in \mathbb{R}$ de tal manera que la región sobre la recta y = mx y bajo la parábola $y = 2x x^2$ tenga un área de $36 [u^2]$. R: m = -4.
- 3. Determine el área encerrada por las parábolas $y^2=4px$ y $x^2=4py$, con p>0.
- 4. Dibuje el recinto $\Omega=\{(x,y)\in\mathbb{R}^2:\,x^2-1\leq y\leq 1-|x|\}$ y calcule su área.
- 5. Sea $f\left(x\right)=x-x^2$ y $g\left(x\right)=ax$. Determine los valores de $a\in\mathbb{R}$ para el que el área de la región acotada acotada por ambas funciones sea $\frac{9}{2}$.

- 6. Halle el área de la región acotada por la parábola $y=x^2$, la recta tangente a esta parábola en el punto (1,1) y el eje x.
- 7. Encuentre $b \in \mathbb{R}$ tal que la recta y = b divida la región acotada por las curvas $y = x^2$ y y = 4 en dos regiones con áreas iguales.
- 8. Halle los valores de $c\in\mathbb{R}$ tales que el área de la región encerrada por las parábolas $y=x^2-c^2$ e $y=c^2-x^2$ sea 576.
- 9. ¿Para qué valores de m, la recta y=mx y la curva $y=\frac{x}{x^2+1}$ encierra una región?. Encuentre el área de la región?
- 10. a) Hallar el número a tal que la recta x=a divida el área de la región acotada por $y=\frac{1}{x^2}$, $1 \le x \le 4$, en dos partes iguales.
 - b) Encontrar el número b tal que la recta y=b divida el área de la región acotada por $y=\frac{1}{x^2}$, $1\leq x\leq 4$, en dos partes iguales.
- 11. Suponga que $0 < c < \frac{\pi}{2}$ ¿Para qué valores de c, el área de la región encerrada por las curvas $y = \cos x$, $y = \cos(x c)$ y x = 0 es igual al área de la región encerrada por las curvas $y = \cos x$, $x = \pi$ e y = 0?
- 12. Existe una recta que pase por el origen y divida la región acotada por la parábola $y=x-x^2$ y el eje de las abscisas en dos regiones de igual área ¿Cuál es la pendiente de esa recta?
- 13. En cada uno de los siguientes casos hallar el volumen del sólido generado por la rotación de la región acotada por las curvas que se indican en torno a la recta \mathcal{L} dada:

a)
$$x + y = 2$$
 $x = 0$, $y = 0$, \mathcal{L} : eje x

b)
$$y = 2\sqrt{5x}$$
, $x = 4$, \mathcal{L} : eje x , eje y

c)
$$y = \operatorname{sen} x$$
, $y = 0$, $0 \le x \le \pi$, \mathcal{L} : eje x , eje y

d)
$$y = \sqrt{x}$$
, $y = \sqrt[3]{x}$, \mathcal{L} : eje x

e)
$$y = 4x^2$$
, $x = -1$, $x = 2$, $y = 0$, $\mathcal{L} : x = -1$

f)
$$y = \ln x$$
, $y = 0$, $x = e$, $\mathcal{L} : y = -1$

g)
$$y=9-x^2$$
, $y=2x^2$, \mathcal{L} : eje y

h)
$$y = \sqrt{x^2 - 9}$$
, $x = 5$, $x = 9$, $y = 0$, \mathcal{L} : eje y

i)
$$y=1+\sin x \; y=0$$
, $0\leq x\leq 2\pi$, \mathcal{L} : eje y

$$j) y = x^2, x = y^2, \mathcal{L} : x = -2$$

R: (a)
$$\frac{8\pi}{3}$$
; (b) 160π , $\frac{256\pi}{\sqrt{5}}$; (c) $\frac{\pi^2}{2}$, $2\pi^2$; (d) $\frac{\pi}{10}$; (e) 54π ; (f) πe ; (g) $\frac{27\pi}{2}$; (h) $\frac{32\pi}{3}$ ($27\sqrt{2}-4$); (i) $4\pi^2$ ($\pi-1$); (j) $\frac{49\pi}{30}$.

14. Exprese las integrales necesarias para determinar, por el método del disco y la corteza, el volumen del sólido de revolución que se obtiene al girar las región $\mathcal R$ acotada por las gráficas de las funciones $y=x^2+4$, y=8, en el primer cuadrante, en torno a:

a) El eje x.

d) La recta y = 8.

b) El eje y.

e) La recta x = -1.

c) La recta y = 2.

f) La recta x=4

15. Determine la longitud de arco de la curva en el intervalo dado:

a) $y = \frac{1}{2x^2} + \frac{x^4}{16} x \in [2, 3]$

d) $y = \int_0^x \sqrt{\cos 2t} \, dt, \ x \in \left[0, \frac{\pi}{4}\right]$

b) $8y = x^4 + 2x^{-2}$, $x \in [1, 2]$

e) $f(x) = \frac{x^3}{6} - \frac{1}{2x}, x \in \left[\frac{1}{2}, 2\right]$

c) $y = \frac{e^x + e^{-x}}{2}$, $x \in [0, b]$

f) $f(x) = \ln(\cos x), x \in [0, \frac{\pi}{4}]$

R: (a) $\frac{59}{24}$; (b) $\frac{33}{16}$; (c) $\frac{1}{2}(e^b - e^{-b})$; (d) 1; (e) $\frac{33}{16}$; (f) $\frac{1}{2}\ln 2$.

- 16. Determine la longitud del segmento de recta y=3x+5, $x\in[1,4]$. Compare el resultado con la fórmula de distancia entre dos puntos.
- 17. Determine el área de la superficie generada al hacer girar el arco de curva para el intervalo dado, en torno a la recta \mathcal{L} que se indica:

a) $y = x^3$, $x \in [0, 1]$, $\mathcal{L} : \text{eje } x$

b) $y = \frac{1}{3}\sqrt{(x^2+2)^3}$, $x \in [0,3]$; \mathcal{L} : eje y

- 18. Calcule el área de la parte de la esfera que se genera al girar la curva $y=\sqrt{9-x^2}$, $x\in[0,2]$ alrededor del eje y. R: $6\pi(3-\sqrt{5})$.
- 19. Muestre que el área de la superficie lateral de un cono recto de altura h y radio basal r es $\pi r \sqrt{r^2 + h^2}$.
- 20. Represente la región acotada por las gráficas de las ecuaciones dadas y encuentre el centroide de la región:

a) $y = x^3$, y = 0, x = 1

b) $y = 4 - x^2$, y = 0

c) $y^2 = x$, 2y = x

d) $y = 1 - x^2$, y = x - 1

e) $y = \sin 2x$, eje $x, x \in [0, \frac{\pi}{2}]$

R: (a) $(\frac{4}{5}, \frac{2}{7})$; (b) $(0, \frac{8}{5})$; (c) $(\frac{8}{5}, 1)$; (d) $(-\frac{1}{2}, -\frac{3}{5})$; (e) $(\frac{\pi}{4}, \frac{\pi}{8})$

Problemas de Prueba

21. Considere las gráficas de las curvas $y=\frac{x^2}{2}$, $(x-2)^2+y^2=4$ y el eje x que acotan los recintos \mathcal{R}_1 y \mathcal{R}_2 mostrados en la figura siguiente:

3

a) Utilizando el *Método del Disco* **exprese** las integrales para el volumen del sólido de revolución generado al rotar \mathcal{R}_1 en torno a los ejes que se indican.

i) Eje x.

iii) Recta x = -1.

ii) Eje y.

iv) Recta y = 3.

b) Utilizando el *Método de la Corteza* **exprese** las integrales para el volumen del sólido de revolución generado al rotar \mathcal{R}_2 en torno a los ejes que se indican.

i) Eje x.

iii) Recta y = -3.

ii) Eje y.

iv) Recta x = 6.

- c) **Exprese** el área de la superficie de revolución generada al rotar el arco de parábola $y = \frac{x^2}{2}$ para $0 \le x \le 2$ en torno: a) eje x, b) eje y.
- 22. Considere la región $\mathcal R$ del plano, acotada por las gráficas de $y=x^2+2$, x-2=0 y x+y=2.
 - a) **Exprese** las integrales para determinar el área de \mathcal{R} , tanto en términos de x como de y. **Calcule una de ellas**.
 - b) Calcule el perímetro de \mathcal{R} .
 - c) Calcule el volumen del sólido de revolución generado al rotar la región \mathcal{R} en torno a los ejes que se indican:

i) x = 5, utilizando el método de la corteza.

ii) y=-1, utilizando el método del disco.

- 23. Considere la región $\mathcal R$ acotada por las gráficas de $y=-x^2+6x-4$ y x+y-6=0.
 - a) **Exprese** por los métodos del disco y la corteza la(s) integral(es) que representa el volumen generado al rotar \mathcal{R} alrededor de:

i) x = 6

iii) y = 7

ii) x = -1

iv) y = -2

- b) Exprese la(s) integral(es) que represente el perímetro de \mathcal{R} .
- c) Considere sólo el arco de la parábola anterior que une los puntos (2,4) y (5,1). Exprese la(s) integral(es) que representan el área de la superficie de revolución generada al rotar alrededor de:

- i) y = -1 ii) y = 6
- 24. Sean \mathcal{R}_1 la región acotada por $y=(x-2)^2$, y=x y el eje x para $x\in[0,2]$ y \mathcal{R}_2 la región acotada por $y=(x-2)^2$, para $x\in[2,a]$ y el eje x. Determine el valor de la constante a para que el área de \mathcal{R}_1 sea igual al área de \mathcal{R}_2 .
- 25. Considere la región $\mathcal R$ del plano, acotada por las curvas $y=\sqrt{x+2},\ y=\frac{1}{x+1},\ x=0$ y x=2.
 - a) Calcule el área de \mathcal{R} .
 - b) **Escriba** la(s) integral(es) que permiten determinar el perímetro de \mathcal{R} .
 - c) Escriba mediante el método del disco y la corteza la(s) integral(es) que permiten determinar el volumen sólido de revolución generado al rotar \mathcal{R} en torno los ejes que se indican y en cada caso calcule una de ellas:
 - i) Eje x.
- 26. Sea $\mathcal R$ la región del plano acotada por las gráficas de $y=5x-x^2$ e y=x.
 - a) Determine el área de \mathcal{R} , integrando respecto a la variable x y luego respecto a la variable y.
 - b) Calcule el perímetro de la región.
 - c) Encuentre las coordenadas del centroide.
 - d) Exprese utilizando el método del disco y la corteza, el volumen generado al rotar \mathcal{R} en torno a los ejes que se indican y en cada caso calcule una de ellas.

iv) y = 4

- i) Eje x
- ii) Eje y v) x = -1
- iii) y = -1 vi) x = 3
- 27. Considere la región $\mathcal R$ acotada por las gráficas de y=6+x, $y=x^3$ y x+2y=0.
 - a) Encuentre el área de \mathcal{R} .
 - b) Exprese las integrales para el perímetro de \mathcal{R} .
 - c) Calcule el centro de masa de $\mathcal R$ si la densidad es ho=|x|
 - d) Encuentre el volumen del sólido de revolución que se obtiene al rotar $\mathcal R$ en torno al eje de las abscisas.
- 28. Encuentre el valor de la constante $a\in\mathbb{R}$ para que el volumen del sólido de revolución generado rotar la región acotada por las gráficas de $y=x^2$, y=ax en torno al eje x sea $V=\frac{64\pi}{15}[u^3]$.