Package 'bambu'

July 2, 2020

```
Type Package
Title Reference-guided isoform reconstruction and quantification for long read RNA-Seq data
Version 0.2.0
Description Multi-sample transcript discovery and quantification using long read RNA-Seq data.
License GPL-3
Encoding UTF-8
LazyData true
Depends R(>=4.0.0),
     data.table(>= 1.1.8),
     dplyr,
     SummarizedExperiment(>= 1.1.6),
     GenomicRanges,
     BiocManager,
     GenomicFeatures,
     ggplot2
Suggests knitr,
     rmarkdown,
     fs,
     testthat,
     ComplexHeatmap,
     circlize,
     ggbio,
     RColorBrewer,
     gridExtra,
     BSgenome. Hsapiens. NCBI. GRCh38,
     TxDb.Hsapiens.UCSC.hg38.knownGene,
     AnnotationDbi,
     BSgenome,
     BiocGenerics,
     BiocParallel,
     Biostrings
Enhances parallel
```

SystemRequirements

biocView	s FeatureExtraction,
Ger	eExpression,
	omeAnnotation,
Imi	nunoOncology,
No	malization,
RN	ASeq,
	ression,
	uencing,
	ware,
	scription,
	nscriptomics
	rts https://github.com/GoekeLab/bambu/issues
URL ht	ps://github.com/GoekeLab/bambu
Roxygen	Note 7.1.0
LinkingT	o Rcpp,
_	pArmadillo,
-	pProgress
· ·	
-	S4Vectors(>= 0.22.1),
	nges,
	nomicAlignments,
	net,
	mtools,
Rej	
	pArmadillo,
Rcı	pProgress,
pro	gress
Vignettel	Builder knitr,
_	rkdown
1111	
D toni	os dogumentod.
i i topi	cs documented:
	2
	pambu
	olot.bambu
	prepareAnnotations
	prepareAnnotationsFromGTF
	readFromGTF
	ranscriptToGeneExpression
	1
	writeToGTF
Index	10

bambu 3

bambu

long read isoform reconstruction and quantification

Description

This function takes bam file of genomic alignments and performs isoform recontruction and gene and transcript expression quantification. It also allows saving of read class files of alignments, extending provided annotations, and quantification based on extended annotations. When multiple samples are provided, extended annotations will be combined across samples to allow comparison.

Usage

```
bambu(
  reads = NULL,
  readClass.file = NULL,
  readClass.outputDir = NULL,
  annotations = NULL,
  genomeSequence = NULL,
  stranded = FALSE,
  ncore = 1,
  yieldSize = NULL,
  isoreParameters = NULL,
  emParameters = NULL,
  extendAnnotations = TRUE,
  verbose = FALSE
)
```

Arguments

reads A string or a vector of strings specifying the paths of bam files for genomic

alignments, or a BamFile object or a BamFileList object (see Rsamtools).

readClass.file A string or a vector of strings specifying the read class files that are saved during

previous run of bambu.

readClass.outputDir

A string variable specifying the path to where read class files will be saved.

annotations A TxDb object or A GRangesList object obtained by prepareAnnotations or

prepareAnnotationsFromGTF.

genomeSequence A fasta file or a BSGenome object.

stranded A boolean for strandedness, defaults to FALSE.

ncore specifying number of cores used when parallel processing is used, defaults to 1.

yieldSize see Rsamtools.

isoreParameters

A list of controlling parameters for isoform reconstruction process:

 prefix specifying prefix for new gene Ids (genePrefix.number), defaults to empty 4 bambu

- remove.subsetTx indicating whether filter to remove read classes which are a subset of known transcripts(), defaults to TRUE
- min.readCount specifying minimun read count to consider a read class valid in a sample, defaults to 2
- min.readFractionByGene specifying minimum relative read count per gene, highly expressed genes will have many high read count low relative abundance transcripts that can be filtered, defaults to 0.05
- min.sampleNumber specifying minimum sample number with minimum read count, defaults to 1
- min.exonDistance specifying minum distance to known transcript to be considered valid as new, defaults to 35
- min.exonOverlap specifying minimum number of bases shared with annotation to be assigned to the same gene id, defaults 10 base pairs

emParameters

A list of controlling parameters for quantification algorithm estimation process:

- maxiter specifying maximum number of run interations, defaults to 10000.
- bias specifying whether to correct for bias, defaults to FALSE.
- conv specifying the covergence trheshold control, defaults to 0.0001.

extendAnnotations

A logical variable indicating whether annotations are to be extended for quantification.

verbose

A logical variable indicating whether processing messages will be printed.

Details

Main function

Value

A list of two SummarizedExperiment object for transcript expression and gene expression.

plot.bambu 5

plot.bambu

plot.bambu

Description

```
plotSEOuptut
```

Usage

```
## S3 method for class 'bambu'
plot(
    se,
    group.variable = NULL,
    type = c("annotation", "pca", "heatmap"),
    gene_id = NULL,
    transcript_id = NULL
)
```

Arguments

 $Se \hspace{1cm} \textbf{An summarized experiment object obtained from bambu or transcript To Gene Expression.} \\$

group.variable Variable for grouping in plot, has be to provided if choosing to plot PCA.

type plot type variable, a values of annotation for a single gene with heatmap for

isoform expressions, pca, or heatmap, see details.

gene_id specifying the gene_id for plotting gene annotation, either gene_id or tran-

script_id has to be provided when type = "annotation".

transcript_id specifying the transcript_id for plotting transcript annotation, either gene_id or

transcript_id has to be provided when type = "annotation"

Details

type indicates the type of plots to be plotted. There are two types of plots can be chosen, PCA or heatmap.

Value

A heatmap plot for all samples

```
se <- readRDS(system.file("extdata",
    "seOutputCombined_SGNex_A549_directRNA_replicate5_run1_chr9_1_1000000.rds",
    package = "bambu"))
colnames(se) <- colData(se)$name <- c("sample1", "sample2")
assays(se)$CPM[,2] <- pmax(0, rnorm(length(assays(se)$CPM[,2]),
assays(se)$CPM[,2],10))
plot.bambu(se, type = "heatmap")</pre>
```

prepareAnnotations

prepare annotations from txdb object

Description

Function to prepare tables and genomic ranges for transript reconstruction using a txdb object

Usage

```
prepareAnnotations(txdb)
```

Arguments

txdb

a TxDb object

Value

A GRangesList object

Examples

```
library(TxDb.Hsapiens.UCSC.hg38.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg38.knownGene
prepareAnnotations(txdb)</pre>
```

 $\verb|prepareAnnotationsFromGTF|$

Prepare annotation granges object from GTF file into a GRangesList object

Description

Prepare annotation granges object from GTF file

Usage

```
prepareAnnotationsFromGTF(file)
```

Arguments

file

a GTF file

readFromGTF 7

Details

Unlike readFromGTF, this function finds out the equivalence classes between the transcripts, with mcols data having three columns:

- TXNAME specifying prefix for new gene Ids (genePrefix.number), defaults to empty
- GENEID indicating whether filter to remove read classes which are a subset of known transcripts(), defaults to TRUE
- eqClass specifying minimun read count to consider a read class valid in a sample, defaults to

Value

A GRangesList object

Examples

```
gtf.file <- system.file("extdata",
"Homo_sapiens.GRCh38.91_chr9_1_1000000.gtf",
package = "bambu")
gr <- prepareAnnotationsFromGTF(gtf.file)</pre>
```

readFromGTF

convert a GTF file into a GRangesList

Description

Outputs GRangesList object from reading a GTF file

Usage

```
readFromGTF(file)
```

Arguments

file

Value

grlist a GRangesList object, with two columns

a .gtf file

- TXNAME specifying prefix for new gene Ids (genePrefix.number), defaults to empty
- GENEID indicating whether filter to remove read classes which are a subset of known transcripts(), defaults to TRUE

```
gtf.file <- system.file("extdata",
"Homo_sapiens.GRCh38.91_chr9_1_1000000.gtf",
package = "bambu")
readFromGTF(gtf.file)</pre>
```

8 writeBambuOutput

transcriptToGeneExpression

transcript to gene expression

Description

Reduce transcript expression to gene expression

Usage

```
transcriptToGeneExpression(se)
```

Arguments

se

a summarizedExperiment object from bambu

Value

A SummarizedExperiment object

Examples

```
se <- readRDS(system.file("extdata",
"seOutput_SGNex_A549_directRNA_replicate5_run1_chr9_1_1000000.rds",
package = "bambu"))
transcriptToGeneExpression(se)</pre>
```

writeBambuOutput

Write bambu results to GTF and transcript/gene-count files

Description

Outputs a GTF file, transcript-count file, and gene-count file from bambu

Usage

```
writeBambuOutput(se, path)
```

Arguments

se a SummarizedExperiment object from bambu

path the destination of the output files (gtf, transcript counts, and gene counts)

Value

The function will generate three files, a .gtf file for the annotations, two .txt files for transcript and gene counts respectively.

writeToGTF 9

Examples

```
se <- readRDS(system.file("extdata",
   "seOutput_SGNex_A549_directRNA_replicate5_run1_chr9_1_1000000.rds",
package = "bambu"))
path <- tempdir()
writeBambuOutput(se,path)</pre>
```

writeToGTF

write GRangeslist into GTF file

Description

Write annotation GRangesList into a GTF file

Usage

```
writeToGTF(annotation, file, geneIDs = NULL)
```

Arguments

annotation a GRangesList object file the output gtf file name

geneIDs an optional dataframe of geneIDs (column 2) with the corresponding transcrip-

tIDs (column 1)

Value

```
gtf a GTF dataframe
```

```
outputGtfFile <- tempfile()
gr <- readRDS(system.file("extdata",
   "annotationGranges_txdbGrch38_91_chr9_1_1000000.rds",
package = "bambu"))
writeToGTF(gr, outputGtfFile)</pre>
```

Index

```
bambu, 3, 3, 5, 8
BamFile, 3
{\tt BamFileList}, \color{red} \color{red} \color{black} \color{blac
GRangesList, 6, 7, 9
mcols, 7
\verb"plot.bambu", 5"
prepareAnnotations, 3, 6
prepareAnnotationsFromGTF, 3, 6
readFromGTF, 7, 7
Rsamtools, 3
SummarizedExperiment, 8
{\tt transcriptToGeneExpression}, {\tt 5}, {\tt 8}
TxDb, 3, 6
type, 5
\verb|writeBambuOutput|, 8|
writeToGTF, 9
```