O/Cto
Contra 1629

SEP 2 5 2008

Reply under 37 CFR 1.116
Expedited Procedure
Technology Center 1624
Attorney Docket No. CV06039US01

AMENDMENTS TO THE CLAIMS

1. (Currently Amended) A compound represented by the structural formula (I):

$$Q^{1} \qquad Q^{2}$$

$$X_{m} = (\stackrel{\stackrel{\longleftarrow}{C}}{C})_{q} - Y_{n} = (\stackrel{\stackrel{\longleftarrow}{C}}{C})_{r} Z_{p}$$

$$Q^{5} \qquad \qquad Q^{4}$$

$$Q^{5} \qquad \qquad Q^{5}$$

or pharmaceutically acceptable isomers, salts, solvates or esters of the compound of Formula (I), wherein in Formula (I) above:

X, Y and Z can be the same or different and each is independently selected from the group consisting of -CH₂-, -CH(alkyl)- and -C(alkyl)₂-;

 Q^1 and Q^2 can be the same or different and each is independently selected from the group consisting of H, -G, -(C₁-C₃₀ alkylene)-G, -OR⁶, -OC(O)OR⁶, -OC(O)OR⁶, and -L-M:

 Q^3 is 1 to 5 substituents independently selected from the group consisting of alkyl, alkenyl, alkynyl, -G, -(C₁-C₃₀ alkylene)-G, -OR⁶, -(C₁-C₁₀ alkylene)-OR⁶, -C(O)R⁶,

-(C₁-C₁₀ alkylene)-C(O) R^6 , -C(O)O R^6 , -(C₁-C₁₀ alkylene)-C(O)O R^6 , -OC(O) R^6 ,

-(C₁-C₁₀ alkylene)-OC(O)R⁶, -OC(O)OR⁹, -(C₁-C₁₀ alkylene)-OC(O)OR⁹, -CH=CH-C(O)R⁶,

 $-CH=CH-C(O)OR^6$, -C $C=C(O)OR^6$, -C $C=C(O)R^6$, -C C_{ij} $C_{$

-O-(C_1 - C_{10} alkylene)-C(O) R^6 , -O-(C_1 - C_{10} alkylene)-C(O)O R^6 , -CN,

-O-(C₁-C₁₀ alkylene)-C(O)NR 6 R 7 -O-C(O)NR 6 NR 7 C(O)OR 6

-O-(C_1 - C_{10} alkylene)-C(O)NR⁶NR⁷C(O)OR⁶, -O-(C_1 - C_{10} alkylene)-C(O)(aryl)-N₃,

 $-OC(O)-(C_1-C_{10} \text{ alkylene})-C(O)OR^6, -C(O)NR^6R^7, -(C_1-C_{10} \text{ alkylene})-C(O)NR^6R^7,$

 $-OC(O)NR^6R^7$, $-(C_1-C_{10} \text{ alkylene})-OC(O)NR^6R^7$, $-NO_2$, $-NR^6R^7$, $-(C_1-C_{10} \text{ alkylene})-NR^6R^7$,

(W0301957.1)

2