

Consequences on the economy

- Negative impact on tourism industry
- Fisheries habitat loss
- Navigation problem
- Increased operational costs for beach maintenance and coastal management
- Human health

Consequences on wildlife

- Block light from reaching light-dependent organisms (seagrasses and corals)
- Enrich coastal waters with nutrients as it decomposes and the ensuing bacterial activity consume oxygen needed to support sea life
- Could provide needed nutrient for red-tide on the east coast of Florida
- Attracts insects, crabs, sea lice
- Traps turtles

What is Sargassum?

- Brown algae (class Phaeophyceae)
- 350+ different species
- Only 2 species are pelagic (natans and fluitans)

Knowledge gaps

- 1. Is the abundance decreasing or increasing?
- 2. What is their origin?
- 3. What is the impact to beaches and coast?
- 4. Beach restoration after major events?
- 5. Bacteria levels associated with sargassum beaching?
- 6. Risk of invasive species introduction?
- 7. How to evaluate the economic costs for Florida?
- 8. What are the economic opportunities?

SOCIOECONOMICS (UM, FIU & FAU)

- Evaluation on local and regional economies
- Transfer results and knowledge to managers, government, private sector and citizens

BIOLOGICAL ASSESSMENT (FIU & FAU)

- Identifies sargassum species
- Evaluate the decomposition rates
- Nutrients and heavy metal content
- Primary productivity (growth)
- Community species composition
- Introduced alien species

DISPERSION PREDICTION (UM & FAU)

- Empirical model for sargassum motion (buoys)
- Forecast model

MONITORING & MANAGEMENT (UM, FIU & FAU)

Ground measurements

Remote sensing tracking algorithm

Monitoring and analysis

CITIZEN INVOLVEMENT (UM & FIU)

- Engage the community in marine conservation research
- Provide additional data to the scientific team

Modeling the dispersion of sargassum

Photo credit: CARTHE

Photo credit: Wang and Hu, 2016

Beach monitoring

1. Dania Beach Sept. 28, 2018 Category 2

2. Oleta River State Park Aug 2, 2018 Category 3

3. Hallandale Beach Aug 18, 2018 Category 2

4. Hallandale Beach Oct 1, 2018 Category 3

6. Key Largo Sept. 6, 2018 Category 4

7. Bill Baggs State Park Sept. 15, 2018 Category 1

8. Deering Estate Aug. 15, 2018 Category 3

9. Miami Beach Pier Sept. 14, 2018 Category 1

10. Crandon Park July 10, 2018 Category 3

Engaging the community

- Attend community events to present the project and encourage participation
- Train local groups to follow sargassum reporting protocol
- Report sargassum sightings on social network (CitSciMobile, iNaturalist, SEAFAN, or a dedicated website)
- Build on Bay Drift study results
- Provide real time map updates

Citizen reporting sargassum

Community outreach events

Beach management : sampling system

- Consequences of sargassum integration on bacteria levels, and beach closures
- Implement a sampling program with transects across the seaweed integration zone before, during, and after seaweed events

Species identification and nutrient analysis

HOME / FACILITIES & SERVICES / CACHE NUTRIENT ANALYSIS CORE FACILITY

CACHE Nutrient Analysis Core Facility

The CAChE Nutrient Analysis Core Facility represents three distinct services and opportunities through its related but distinct spaces at Florida International University; first, it serves as a NELAC-accredited nutrient analysis laboratory to directly support research; second, it contains a dedicated student area for education and training related to traditional water quality analyses; and finally, it provides a space where students and faculty can work to improve or innovate technologies, and develop alternative or novel techniques, including the use of liquid, gas and ion Chromatography.

Infrastructures

Summary

With the expertise of the assembled multidisciplinary universities and leveraging university infrastructures:

- Gain an understanding of something that we know little about
- Publicly available results will guide development of policy and procedures to mitigate future impacts (for local authorities and stakeholders)
- Provide early sargassum warning to help preparation
- Open the doors to new business opportunities

For a 3 year-long project, we estimated a total cost of \$1.5 million.

