GLUE LECTURE 6 – Vectors for Navigation

(This will be helpful for Quiz 6!)

$$||x-x_o|| = \Delta \text{ and } ||x-x_g|| \leq \frac{1}{2}$$

$$||x-x_o|| = \Delta \text{ and } ||x-x_o|| \leq \frac{1}{2}$$

$$||x-x_g|| < d_{\tau} \text{ and } ||x-x_g|| \leq \frac{1}{2}$$

$$||x-x_g|| < d_{\tau} \text{ and } ||x-x_g||$$

$$||x-x_g|| \leq \frac{1}{2}$$

$$||x-x_g|| \leq \frac{1}{2}$$

$$||x-x_o|| \leq \Delta$$

$$||x-x_o|| = \Delta \text{ and } ||x-x_o|| = \Delta \text{ and } ||x-x_o|| \leq \Delta$$

$$||x-x_o|| \leq \Delta$$

$$||$$

 u_{AO}

$$||x-x_o|| = \Delta \text{ and } ||x-x_g|| \leq \frac{1}{2}$$

$$||x-x_o|| = \Delta \text{ and } ||x-x_o|| = \Delta \text{ and }$$

$$||x-x_o|| = \Delta \text{ and }$$

$$||x-x_o|| = \Delta \text{ and }$$

$$||x-x_o|| < d_\tau \text{ and }$$

$$||x-x_g|| < d_\tau \text{ and }$$

$$||x-x_g|| < d_\tau \text{ and }$$

$$||x-x_g|| < d_\tau \text{ and }$$

$$||x-x_g||$$

$$||x-x_g||$$

$$||x-x_g||$$

$$||x-x_g||$$

$$||x-x_g||$$

$$||x-x_g||$$

$$||x-x_g||$$

$$||x-x_o|| = \Delta \text{ and }$$

$$||x-x_o|| = \Delta \text{ and }$$

$$||x-x_o|| = \Delta \text{ and }$$

$$||x-x_o||$$

$$||x-x_o||$$

$$||x-x_o||$$

 u_{AO}

Transitioning between different states in the hybrid automaton represents a switch between controllers. The desired direction of travel is obtained by tracking desired positions and rotating vectors.

$$u_{GTG} = K_{GTG}(x_{goal} - x)$$

$$u_{AO} = K_{AO}(x - x_{obstacle})$$

$$u_{FW} = \alpha R(\pm \pi/2) u_{AO}$$

$$R(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$
where $\dot{x} = u$

But remember, the robot implements these behaviors via (v,w) and actuator (wheel) commands for, for example, a differential drive robot. (See Module / Glue 2.)

$$|x-x_o|| = \Delta \text{ and } \qquad |x-x_g|| \leq \frac{1}{2}$$

$$|x-x_o|| = \Delta \text{ and } \qquad |x-x_g|| \leq \frac{1}{2}$$

$$|x-x_g|| < d_{\tau} \text{ and } \qquad |x-x_g|| < d_{\tau} \text{ and } \qquad |x-x_g|| < d_{\tau} = |x-x_g||$$

$$|x-x_g|| < d_{\tau} := |x-x_g||$$

$$|x-x_o|| < \Delta$$

$$|x-x_g|| = \Delta \text{ and } \qquad |x-x_g|| = |x-x_g||$$

$$|x-x_o|| = \Delta \text{ and } \qquad |x-x_o|| = \Delta \text{ and } \qquad |x-x_o|| < \Delta$$

$$|x-x_o|| = \Delta \text{ and } \qquad |x-x_o|| = \Delta \text{ and } \qquad |x-x_o|| < \Delta$$

$$|x-x_o|| = \Delta \text{ and } \qquad |x-x_o|| = \Delta \text{ and } \qquad |x-x_o|| < \Delta$$

$$|x-x_o|| = \Delta \text{ and } \qquad |x-x_o|| < \Delta$$

$$|x-x_o|| = \Delta \text{ and } \qquad |x-x_o|| < \Delta$$

 u_{AO}

 $\|x-x_o\|=\Delta$ and $\langle u_{GTG},u_{FW}^{cc}
angle>0$

 u^{cc}_{FW}

 $d_{ au}:=\|x-x_g\|$

 $||x-x_o||<\Delta$

 u_{GTG}

