(19)日本国特許庁(JP)

(12) 公開特許公報(A)

庁内整理番号

(11)特許出願公開發号

特開平7-126320

(43)公開日·平成7年(1995)5月16日

(51) Int-CL⁶

4,3

蘇別紀号

PI

技術表示箇所

COSF 8/22

MGV

審査請求 未請求 請求項の数1 OL (全 4 頁)

(71) 出顧人 000215888 (21)出願番号 **特顯平5-273483** 帝人化成株式会社 東京都港区西新桥1丁目6番21号 平成5年(1993)11月1日 (22)出顾日 (72) 発明者 広中 洋一 東京都港区西新橋1丁月6番21号 帝人化 成株式会社内 (72) 発明者 森本 直芳 東京都港区西新橋1丁目6番21号 帝人化 成株式会社内 (72) 発明者 藤井 孝可 東京都港区西新橋1丁目6番21号 帝人化 成株式会社内 (74)代理人 弗理士 前田 鼫博

(54)【発明の名称】 臭菜化ポリステレンの製造方法

(57)【要約】

【目的】 色相が良好で且つ耐熱性に優れており難然剤 として幅広く用いることができる臭素化ポリステレンの 製造法を提供する。

【構成】 ハロゲン化炭化水素溶媒中でポリスチレンと 具索とを反応させて臭素化ポリスチレンを製造する方法 において、触媒としてハロゲン化アルミニウムおよびア ルミニウム粉末を用いることを特徴とする臭素化ポリス チレンの製造方法。

(2)

【特許請求の範囲】

2,

【詰求項1】 ハロゲン化炭化水素溶媒中でポリスチレ ンと臭素とを反応させて臭素化ポリスチレンを製造する 方法において、触媒としてハロゲン化アルミニウムおよ びアルミニウム紛末を用いることを特徴とする臭素化ポ リスチレンの製造方法。

1

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はポリスチレンの臭素化方 法に関する。更に詳しくは、ハロゲン化炭化水素溶媒中 10 でポリスチレンと臭素とを反応させて臭素化ポリスチレ ンを製造する方法に関する。本発明によって得られる具 素化ポリスチレンは、プラスチック用の難燃剤として幅 広く使用されるものである。

[0002]

【従来の技術】従来、臭素化ポリステレンの製造法とし ては、真素化スチレン単量体を重合する方法が知られて いる。該方法によって得られる臭素化ポリスチレンは優 れた色調ねよび熱的特性を有しており、且つ単量体に三 ポリスチレンを製造できる点では優れた方法と言える。 しかしながら、該方法は原料である臭素化スチレン単置 体が高価であること、重合反応終了後、残存するモノマ ーを除去する工程が必要になることなど経済性、実用性 に欠ける。

【①①03】更に、臭素化ポリスチレンの工業的製造方 法として、ポリスチレンを臭素化する方法も知られてい る。該方法は、経済的であるだけでなく、具素含有率を 任意に調整できる点で優れた方法であるが、高い臭素含 有率を有しかつ優れた色調および熱的特性の臭素化ポリ スチレンが得にくい問題点が有る。

【①①04】該方法によれば、通常、芳香環一個あたり 二個の臭素までは容易に置換されるが、更により高い臭 素含有率の異素化ポリスチレンを得ようとすると、ポリ スチレンの芳香核の臭素化のみならず、炭化水素主鎖の 真素化、切断が副反応として起こり、得られた臭素化ポ リスチレンの耐熱性が低下する。このような臭素化ポリ スチレンを熱可塑性樹脂に配合した際、得られた成形品 の物性や外観が低下すること、またこのようにして得ら れた臭素化ポリスチレンは熱分解に際して臭化水素を発 40 生するため成形加工時に金型を腐食する等、実用に際し てその使用領域が極めて制限されるという欠点がある。

【①①05】これらの問題を解決する方法としては、三 ハロゲン化鉄の如きより低活性の触媒を用いる方法、触 **娘屋を低減する方法、反応温度を下げる方法等がある** が、このような方法では反応時間が長くなる、所望の臭 素含有率が達成できない等の問題が発生する。

【①①06】さらに、これらの問題を解決するための臭

臭素、触媒にハロゲン化アンチモンを用いる方法が提案 されている。しかし、該方法では塩化臭素の製造工程が 必要となること、得られる臭素化ポリスチレンが一部塩 素化されるという欠点がある。また.特公昭61-34 723号公報では、水の如き求核試剤の存在下、触媒活 性を調整しつつ臭素化する方法が提案されているが、微

置水分費の調整が必要となり実用性に問題がある。ま た、特公昭62-58604号公報では、触媒としてア ルカリ金属ハロゲン化物とハロゲン化鉄との復塩を用い る方法が提案されているが、該方法では高い具素含有率

の臭素化ポリスチレンは得ることができない。

[0007]

【発明が解決しようとする課題】本発明は、ポリスチレ ンを臭素化して臭素化ポリスチレンを製造するに際し、 上記欠点が無く、色相が良好で且つ耐熱性に優れた高臭 素含有ポリスチレンを経済的に効率よく製造する方法を 提供することを目的とする。

【①①08】本発明者らは、上記目的を達成せんとして 鋭意検討した結果、触媒にハロゲン化アルミニウムおよ 異素化スチレンを用いるととで高い臭素含有率の臭素化 20 びアルミニウム粉末を併用することにより実質的な触媒 置を低減できることに着目し、更に検討した結果、触媒 にハロゲン化アルミニウムとアルミニウム粉末を用いる ことにより、反応時間を延長する字なく、色相も良好で 且つ耐熱性も著しく改善された臭素化ポリスチレン得る 本発明の方法に到達したものである。

[0009]

【課題を解決するための手段】本発明は、ハロゲン化炭 化水素溶媒中でポリスチレンと臭素とを反応させて臭素 化ポリスチレンを製造する方法において、触媒としてハ 30 ロゲン化アルミニウム及びアルミニウム粉末を併用する ことを特徴とするポリスチレンの異素化方法に係わるも のである。

【①①10】本発明で使用する溶媒としては、臭素と反 応せず、触媒を失活させないものであれば特に限定はな いが、例えば塩化メチレン、ジクロロエタン、トリクロ ロエタン、ジクロロジプロモエタン、ジプロモエタン、 テトラプロモエタン、四塩化炭素等の飽和脂肪族ハロゲ ン化炭化水素が挙げられる。これらは無水の溶媒だけで なく、回収溶剤を脱水処理して実質的に無水状態にした | 絃媒であってもよい。これらのなかでも、塩化メチレン が実用上好ましい。

【0011】本発明で使用するポリスチレンとしては、 重量平均分子量で10,000~500,000程度の ものが使用され、中でも20,000~250、000 のものが好ましい。

【0012】本発明で奥素化剤として使用する臭素は、 ポリスチレンのベンゼン環1モルに対し1~3モル使用 するのが好ましいが、特に臭素含有率の高い臭素化ポリ

【0013】本発明の特徴は、触媒としてハロゲン化ア ルミニウムおよびアルミニウム粉末を併用するととにあ る。ハロゲン化アルミニウムとしては、塩化アルミニウ ム。臭化アルミニウム、ヨウ化アルミニウムが挙げられ るが、特に塩化アルミニウムが好ましい。ハロゲン化ア ルミニウム及び併用するアルミニウム紛末の形態として は特に限定は無いが、副反応、反応液中での分散等を考 虚して、高純度且つ微粉末状のものが好ましい。また、 アルミニウム粉末の添加時期は、奥素滴下前にハロゲン 化アルミニウムと共に添加してもよいし、臭素滴下途 中、臭素滴下終了後何れでもよいが、実用上臭素滴下前 にハロゲン化アルミニウムと同時に添加する事が好まし い。触媒の使用量は余りに少ないと反応時間が長くなる ため、実用上ハロゲン化アルミニウムとアルミニウム粉 末の化学置論の和がポリスチレンの芳香環1モル当り、 通常(), 1~1()モル%、好ましくは1~5モル%であ る。また、ハロゲン化アルミニウムとアルミニウム粉末 との割合は、重量比で1/0.01~0.01/1であ るが、アルミニウムの割合を高くすると得られる臭素化 ポリスチレンの着色が大きくなる傾向があるので、好ま 20 ~80℃)へ攪拌下1時間かけて滴下し、析出した固体 しくは1/0.1~1/1である。

- . Y₁ .

【()() 14】本発明にあっては、通常上記有機溶媒にポ リスチレンを溶解し、次いで所定置のハロゲン化アルミ ニウムおよびアルミニウム粉末を投入した後、臭素を齎 下する。 臭素化反応は温度を0~30℃、好ましくは5 ~2.0℃に保持しながら臭素を適下することによって行 う。反応温度がり℃未満では反応速度が遅くなり、30 ℃より高いと得られる臭素化ポリスチレンの着色が大き くなる傾向がある。適下終了後更に5~1.5℃に保持し て1()分~2時間機枠を継続して反応を完結させる。反 30 応終了後、反応溶液を水中に投入するか反応溶液に水を 投入して触媒を失活させ、水層を分離し、有機溶媒層を 水で洗浄して不純物を除去する。洗浄後の有機溶媒層に 含まれる臭素化ポリスチレンを単離するには任意の方 法、例えばメタノール等の低級アルコール類、炭素数5 ~8の飽和脂肪族炭化水素中に有機溶媒層を注いで析出 させてもよいし、温水中に反応溶媒層を注ぎ、溶媒を蒸 発させて析出させてもよい。また、スプレー乾燥の如き 真空下で恣媒を留去する方法によってもよい。

【① 015】本発明の方法で得られる臭素化ポリスチレ ンは、ポリスチレンの芳香環1個当り1~3個の臭素原 子を有し、色钼や耐熱性に優れているので例えばポリカ ーボネート、ポリエステル、ポリプロピレン、ステレン 系樹脂、ポリアミド等のプラスチック用難燃剤として幅 広く使用できる。

[0016]

【実施例】以下に実施例をあげて本発明を更に説明す る。なお、実施例中の色組および耐熱性は下記の方法に

 10g秤量後、50mlの塩化メチレンに溶解し、 この溶液をハーゼン色数標準液と比較して色相(APH A) を測定した。値は小さい程色相が良いことを示す。 【0018】耐熱性:TAインスツルメント社製109 ○ B型熱分析システム951型TGAにより、窒素寡罰 気中昇温速度20℃/minで3%減量温度にて評価し た。

[0019]

【実能例1】温度計、適下ロートおよび冷却管を付した 16 容量 1 1 の四つ口フラスコに塩化メチレン5 3 0 g 及び ポリスチレン [大日本インキ(株)製エラスチレン20 0. 重置平均分子置55,000]34gを仕込み、5 ~7°Cに保持して鏝掉下塩化アルミニウム1.15gお よびアルミニウム粉末0.07gを投入した後、5~1 0℃にて臭素139gを45分間かけて適下した。適下 終了後更に1時間機拌して反応を完結した。得られた反 応溶液を250m!の水中へ10分かけて滴下して触媒 を失活させた。水層を除去し、更に有機溶媒層を400 m 1 の水で 2 回洗浄、濾過後 4 0 0 m 1 の温水中(5 0 を纏別、乾燥して白色の臭素化ポリスチレン(臭素含有 率6.7%、2. 6.5 B r 体) 9.4 g を得た。得られた巣 | 素化ポリスチレンの色相|| 耐熱性の評価結果を表1に示

[0020]

【実施例2~4】塩化アルミニウムおよびアルミニウム 粉末の使用量を変更した以外は実施例1と同様な方法に より倹討を行った。その際に得られた臭素化ポリスチレ ンの色相、耐熱性の評価結果を併せて表しに示した。

[0021]

【比較例】】温度計、滴下ロートおよび冷却管を付した 容量11の四つ口フラスコに塩化メチレン530g及び ポリスチレン [大日本インキ(株) 製エラスチレン20 0. 重置平均分子置55,000]34gを仕込み、5 ~? *Cに保持して機枠下塩化アルミニウム1. ?Ogを 投入した後、5~10℃にて臭素139gを45分間か けて滴下した。滴下終了後更に1時間捌掉して反応を完 結した。得られた反応溶液を250mlの水中へ10分 かけて満下して触媒を失活させた。水層を除去し、更に 有機溶媒層を400m!の水で2回洗浄、濾過後400 m1の温水中(50~80℃)へ縄拌下1時間かけて満 下し、析出した固体を徳別、乾燥して白色の臭素化ポリ スチレン (臭素含有率67%、2.65B r体) 92 g を得た。得られた具素化ポリスチレンの色相、耐熱性の 評価結果を表しに実施例と共に併記した。

[0022]

【比較例2】温度計、適下ロートおよび冷却管を付した 容量11の四つ□フラスコに塩化メチレン530g、及

特闘平7-126320

7°Cに保持して捌拌下塩化アルミニウム1.498を投 入した後、5~10℃にて臭素139gを45分間かけ て満下した。 滴下終了後更に 1 時間捌拌して反応を完結 した。得られた反応溶液を250mlの水中へ10分か けて滴下して触媒を失活させた。この時、水層は褐色に 帯色しており、未反応臭素の残存が確認された。水圏を 除去し更に有機溶媒層を400mlの水で2回洗浄、流※ * 過後400mlの温水中(50~80℃)へ機絆下1時 間かけて満下し、析出した固体を濾別、乾燥して白色の 臭素化ポリスチレン(臭素含有率65%、2.35Br 体) 88gを得た。得られた臭素化ポリスチレンの色 相、耐熱性の評価結果を表1に併記した。

[0023]

【表1】

	陸線量		色相	副無性	Br Cont.	収量
	AICI ₃	Al [g]	(APWA) [-]	TGA-3X減量 [℃]	かりァス法 [%]	[g]
実施例 1	1. 15	0. 07	25	385	67	94
2	1. 00	0. 10	10	383	67	05
3	0. 87	0. 13	35	384	67	94
4	0. 76	0. 15	-35	386	67	92
止較例 1	1.70	-	15	372	67	92
2	1.49		3 5	125	65	88

[0024]

【発明の効果】本発明の方法によって得られる臭素化ポ リスチレンは色相、耐熱性共に優れており難燃剤として

傾広く使用するととができる。特に、本発明の方法はポ リスチレンを臭素化するに際し、得られる臭素化ポリス チレンの耐熱性改善に著しい効果を発揮する。