708935916 J.D-1 786N Linear Algebra 1. (15 pts) A symmetric matrix A over \mathbb{R} is called positive semidefinite (PSD) if for every vector $\mathbf{v}, \mathbf{v}^{\mathsf{T}} A \mathbf{v} \geq 0.$ (a) Show that a symmetric matrix A is PSD if and only if it can be written as $A = XX^T$, if and only if all of its eigenvalues are non-negative. (3) Hint: Recall that a real symmetric matrix A can be decomposed as $A = QDQ^T$, where Q is an orthogonal matrix whose columns are eigenvectors of A and D is a diagonal matrix with eigenvalues of A as its diagonal elements. פענוך 1626361 (101) P-77N A Se il X. 181 (32 VEAV20 P-77N V 71671 SS SIC PSO 15-7 A אינפל ב פרחים א לב שימוש בינשא A: Q Q Q T = Q. VO. VO. QT = (Q VO) (VO QT) $\frac{1}{\sqrt{N}}; \quad i:j$ or the shell of the property of the proper الدال و جال المر الاعد حركم P-J.SC.IC PONT PY CAD A: MMT Soy, M: QTO MS YELL

Calculus and Probability

- 1. (15 pts) Let $X_1, ..., X_n$ be i.i.d U([0,1]) (uniform) continuous random variables. Let $Y = \max(X_1, ..., X_n)$.
 - (a) What is the PDF of Y? Write the mathematical formula and plot the PDF as well. Compute $\mathbb{E}[Y]$ and Var[Y] how do they behave as a function of n as n grows large?

$$P(Y \le x) : P(X_1 \le x, X_1 \le x, \dots, X_n \le x) = \inf_{i=1}^n P(X_i \le x) : F_n(x)$$

$$f_n(y) = \begin{cases} 0 & y < 0 \\ y & 0 \le y \le n \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$(F_n(y) = \begin{cases} 0 & y < 0 \end{cases}$$

$$($$

=)
$$Var(Y) : \frac{n}{n+1} - (\frac{n}{n+n})^2 : (h(n+n)^2 - n^2(n+1))$$

$$(n+1)^2$$

Optimal Classifiers and Decision Rules

- 1. (**15 pts**)
 - (a) Let X and Y be random variables where Y can take values in $\mathcal{Y} = \{1, \ldots, L\}$. Let ℓ_{0-1} be the 0-1 loss function defined in class. Show that $h = \arg\min_{f:\mathcal{X}\to\mathcal{Y}}\mathbb{E}\left[\ell_{0-1}(Y,f(X))\right]$ is

$$h(x) = \arg\max_{i \in \mathcal{V}} \mathbb{P}[Y = i | X = x]$$

$$P[X-X,Y-2] \cdot h_{0-1}(Y,h(x)) \qquad \text{if } M \in \mathbb{N} \text{ is } M \in \mathbb{N} \text{ in } M \text{ in } M \in \mathbb{N} \text{ in } M \text{ in } M \in \mathbb{N} \text{ in } M \text{ in } M \in \mathbb{N} \text{ in } M \in \mathbb{N} \text{ in } M \text{ in } M$$

b) Let X and Y be rando following asymmetric l	oss function:	y can take values in $y = \hat{y}$ $y = 0, \hat{y} = 1$ $y = 1, \hat{y} = 0$,	$y = \{0,1\}$. Let Δ t	e the	PKS	ا، م ط	n.c 4	>Y , (I	d h	· Jo	1129	PIND
where $a, b \in (0, 1]$ (note the optimal decatisfies:	cision rule h for the										re X	
	$f: x \to y$										19,1	
P[X=	r Y=	571	(5 h	(x)) <u>-</u>	PJ	Yak Y	•					P . JAN
+ 1								21(0)				,
				•) (, , ,)	∡ P	Γν	1 X	~7 1	(1, h(x))
			- 0/X	-				7, 6	- 1 - 7	<i> </i> -	4 ر ۸	
			= 0 / = 1 /									
		LI	= 1 /	נ <i>א</i> בּ ו		h(x)	- O					
	L .			_	\ /			ОГ	ī	را	7	
	<i>II (x)</i>	: 01	9 miv	n (o		b(1-y	•)) •	72.	1 - 1 - <u>.</u>	9 1X	[x =	<u>{</u> =
	•		(1	0	PEY	-0/	<i>Y=</i> x_	<u> </u>	b · P	LY:	1	X-x]
=)	h (r)	- 5	0	β.	PL							X = x]
						4	7 P	ZX=>	() ·	શ્રિક જ	ת קבן	(NEU *

$$\frac{1}{\sqrt{2HJ_{0}^{2}}} \frac{(x-M)^{2}}{\sqrt{2HJ_{0}^{2}}} > 1-P_{0}$$

$$\frac{1}{\sqrt{2HJ_{0}^{2}}} \cdot e^{-\frac{1}{2J_{0}^{2}}} \frac{(x-M)^{2}}{\sqrt{2HJ_{0}^{2}}} \cdot e^{-\frac{1}{2J_{0}^{2}}} \frac{(x-M)^{2}}{\sqrt{2J_{0}^{2}}} = \frac{(x-M)^{2}}{\sqrt{2}} \cdot \frac{(x-M)^{2}}{\sqrt{2J_{0}^{2}}} \times \frac{($$

(a)
$$r_0 > 3r_0 > \frac{1}{2r_0^2} > \frac{$$

חלק תכנותי:

שאלה 1

סעיפים א+ב. מצורפת גרסה רציפה.

שאלה 1

סעיף ג׳

שאלה 2

עבור הפרמטרים איתם התבקשנו להריץ: k=10, n=1000 איתם התבקשנו להריץ: 0.846.

המשמעות הינה – 846 מתמונות המבחן קיבלו פרדיקציה נכונה. גודל המדגם של הlables הינו 10 (הספרות 9-0) -> נצפה לדיוק של 0.1 עיי predictor שיפעל באופן רדנומלי.

סעיף ג׳

קל לראות כי ככל שערך K גדל -> רמת הדיוק של הפרדיקציה פוחתת.

נשים לב כי עבור k=1 אנו מקבלים את הדיוק הטוב ביותר.

הסבר אפשרי לכך : ככל שערך K גדל, תוצאת ההערכה (הפרדיקציה) תהיה מושפעת ע"י תמונות (ובפרט labels שלהן בהתאמה) אשר פחות קרובות לתמונה המקורית.

למשל עבור המקרה בו k הוא מספר כל התמונות, נקבל כי אין משמעות לקירוב הנל, שכן כל התמונות יהיו ״קרובות״ במידה שווה לתמונה שלנו.

סעיף די

לעומת הסעיף הקודם – כאן רמת הדיוק של הפרדיקציה גדלה ככל שערך n גדל.

הסבר מתבקש – ככל שמדגם המבחן שלנו גדול יותר (בדוגמא הנל יותר תמונות להתאמן עליהן) נקבל רמת דיוק גבוהה יותר.