

Engineering of Critical-Safety Systems at CERN

Testing of Safety Functions

ICALEPCS - 06-11 October 2013

Authors: P. Ninin, F. Valentini

Edms: **1316516**

Outline

The return of experience of CERN in the development and validation of Safety Personnel Protection Systems showed us that the realization of a performing Test Platform is essential to ensure the quality of the Verification and Validation activities. However the adoption of a Formal Language for the specification of the Safety Functions in another essential Key.

- PS-PPS Project Scope
- Safety Test Bench Conception
- Safety Functions Formal Definition Language
- Model-Based Testing Approach for Validation
- Conclusions

07/10/2013 Edms: **1316516**

Safety Test Bench Conception

Safety

- Validate Safety Software of each zone controller.
- > Validate safety communication between zone controllers (min. 3).

Operation _____

- Validate all operational synoptic.
- ➤ Integrate real access devices (PAD/MAD) within the simulated signals.

Usability _____

- > Quick reconfiguration of the Platform (max. 2h to load new PS sites).
- Quick modification of Platform architecture (ADD/REMOVE access devices).
- > Be able to run automatic test case scenarios.

07/10/2013 Edms: **1316516** 21

Safety Test Bench Conception

SIEMENS SIMBA Box

07/10/2013 Edms: **1316516** 215

Safety Test Bench Conception

(SIMULATION CONSOLE)

(SIMULATION CONSOLE)

(SIMULATION CONSOLE)

SIF – Formal Definition Language

SECTION 1: SIF Informal Presentation

FIS CODE	SIL TARGET	OPERATING MODE	PROBABILITY	REDUNDANCY
FIS_1	SIL3	CONTINUOUS	PFH	1002

MITIGATED HAZARDS: Exposition to radiations coming from injected/circulating beam, activated materials or radiation coming from a source (LINAC4). Other risks covered are related to the exposition to X-Rays from RF cavities, SEPTA Electrostatic Magnets (PS RING and BOOSTER), working KLISTRONS or Deflecting Cavities (CTF3-DL-CR).

Exposition Conditions: unintended start of the Beam. Intrusion during Beam operations.

SAFETY ACTIONS: Computation of REPLI Mode (NO ACCESS/NO BEAM) of the ZIV.

Activation of Evacuation Sirens.

Sending of protection requests to all Upstream ZIVs.

Computation of the Safe State signal (SECU_OK) for all Downstream ZIVs.

<u>GENERAL DESCRIPTION</u>: The function main scope is to ensure that **NO Beam** is permitted when the Access mode is set and **NO Access** is granted when Beam is allowed in the ZIV. In case of loss of this invariant condition (ex. intrusion during beam mode or loss of the Safe state of at least 1 *EIS beam* during access) the function disables the current exploitation mode and activates the REPLI MODE (No Access – No Beam) described by the **FIS 17**.

During the REPLI MODE, the Function asks to all upstream ZIVs to put in SAFE state all their EIS_b if at least 1 EIS_b of the ZIV is in an UNSAFE position.

The Function starts the EVACUATION sirens if at least 2 EIS_b are in an UNSAFE position.

Additionally, this FIS computes continuously the signal SECU_OK sent to all downstream zones to inform that all the EIS-beams of the ZIV are SAFE.

Logic Solver Technology:	Safety PLC Wired System	Reaction Time:	2s	Spurious Trip Frequency:		< 1/year
Failsafe Behavior:	Application of REPLI Mode for the ZIV.	By-pass needs:	FIS_2	?	Periodical Tests frequency:	1/year

SIF – Formal Definition Language

SECTION 2: SIF Input / Output Interface

	SIGNALS

VARIABLE	SIGNAL	SOURCE	PLC Type	
EISa_Safe	Position (SAFE/UNSAFE) resultant for all EIS- access of the ZIV. Refer to the specific definition of SAFE/UNSAFE state given for the different models of EIS-A: EISa_Safe=0 → 1 EISa is UNSAFE	2 Mechanical switches	FDI	
EISh_Pos	Position of all EIS-beam of the ZIV: FISb Pos=1 → All EIS-beam are SAFE	2 Mechanical switches	FDI	
KEY_Out	Position of all keys used to put out of chain the Downstream ZIVs. KEY_Out=1 → The ZIV is out of chain	2 Micro-switches	FDI	
MODE_Bea	The Beam mode status of the ZIV: MODE_Bea=1 → ZIV in BEAM ON	Network (OKC PLC)	INT VAR	
MODE_Acc	The Access mode status for the ZIV: MODE_Acc=1 → ZIV in ACCESS ON	Network (OKC PLC)	INT VAR	
MODE_Tra	Status of TRANSITION RFA/RFB Mode: MODE_Tra=1 → ZIV in RFA/RFB Mode	Network (OKC PLC)	INT VAR	
MODE_TFA	Status of TRANSITION FROM ACCESS Mode: MODE_TFA=1 → ZIV in TFA mode	Program	INT VAR	
ACCE_Tst	Status of the mode TEST EIS-b for the ZIV: ACCE_Ist=1 → TEST mode authorized	Program	INT VAR	
ACCE_TET	Status of the mode TFT for the ZIV: ACCE_TII=1 → TFT Mode activated	Program	INT VAR	
SECU_Dwn	Request from downstream ZIV for setting all EIS-b of the ZIV in a SAFE state: SECU_Dwn=0 → Safety requested	Cabled signal from downstream PLC	FDI	
ZIV_Srch	Search state for the ZIV: ZIV_Srch=1 → ZIV Search is Armed	Program	INT VAR	

3.1.2 FIS Output Signals

VARIABLE	SIGNAL	SOURCE	PLC Type
MODE_Rep	The REPLI mode status for the ZIV: MODE_Rep=1 → ZIV in REPLI Mode	PLC Program	INT VAR
EVAC_Cmd	Command to the BIW system to start the Evacuation sirens: EVAC_Cmd=1 → Evacuation activated	PLC output	FDO
SECU_Ok	Signal sent to all downstream ZONES to inform that all EIS beam of the ZIV are safe: SECU_Ok=1 → All EIS-beam are SAFE	PLC output	FD0
SECU_UP	Signal sent to all upstream Zones to ask them to put in SAFE state their EIS beam: SECU_Up=0 → Safety Request activated	PLC output	FDO

SIF – Formal Definition Language

SECTION 3: SIF Formal Description

TRIGGERING EVENT- ACTIVATION OF THE REPLI MODE FOR THE ZIV:

TRIGGERING EVENT- ACTIVATION OF THE EVACUATION SIREN FOR THE ZIV:

```
((MODE_Bea = \mathbf{1} \lor MODE_TFB = \mathbf{1}) \land ZIV\_Srch = \mathbf{0}) \lor

(MODE_Rep = \mathbf{1} \land EISh\_Pos\{>1\} = \mathbf{0} \land EISa\_Safe = \mathbf{0})

PLC OUTPUT \rightarrow EVAC\_Cmd = \mathbf{1}
```

TRIGGERING EVENT- PROTECTION REQUEST TO ALL THE UPSTREAM ZONES:

```
(MODE_Rep. = 1 \land EISb\_Pos = 0 \land EISa\_Safe = 0)

PLC OUTPUT \Rightarrow SECU_Up = 0
```

TRIGGERING EVENT- ZIV SAFE STATE SENT TO ALL DOWNSTREAM ZONES:

```
(EISb_Pos = 1 \land MODE_Bea = 0) \lor (ACC_Tst = 1) \lor (ACC_TFT = 1)

PLC OUTPUT \rightarrow SECU_Ok = 1
```


07/10/2013 Edms: **1316516**

MAIN OBJECTIVE:

Validate efficiently all Safety Instrumented Functions in order to discover all major bugs related to safety before the final system deployment phase.

MAIN OBJECTIVE:

Validate efficiently all Safety Instrumented Functions in order to discover all major bugs related to safety before the final system deployment phase.

MAIN OBJECTIVE:

Validate efficiently all Safety Instrumented Functions in order to discover all major bugs related to safety before the final system deployment phase.

Solution 1: **EXAUSTIVE TESTING STRATEGY**

- Simple to implement
- Detect 100% of system errors
- Unsustainable execution times and costs

07/10/2013 Edms: **1316516** 23⁻¹

Solution 2: MODEL-BASED TESTING STRATEGY

Solution 2: MODEL-BASED TESTING STRATEGY

Solution 2: MODEL-BASED TESTING STRATEGY

- Maximize the probability of detecting errors, reducing the tests execution costs.
- Mathematical proof of the test Coverage (**C**) obtained: **C** = <# Executed Tests> / <# Total Tests>
- Do not guarantee 100% detection of all system errors. In general: Er(x) = C * P(x)(Confidence index for detecting an error x)

Test Criterion:

Verify the output values for all possible events triggering the SIF interlock actions.

FIS CODE	TEST CASE SCENARIO	CATEGORY
FIS_1	ACTIVATION OF THE REPLI MODE FOR THE ZIV	SAFETY

TEST CASE MODEL:

 $\Phi_{1_1} = ((MODE_Acc = 1 \lor MODE_TFA = 1 \lor MODE_Tra = 1) \land ACC_Tst = 0 \land ACC_TfT = 0 \land EISb_Pos = 0) \lor (MODE_Acc = 0 \land EISa_Safe = 0)$

TEST CASE RESTRICTIONS:

R1 = (MODE_Acc=1 \(\text{MODE_TFA=1} \) \(\text{(MODE_Acc=1} \(\text{MODE_Tra} = 1 \) \(\text{(MODE_TFA=1} \(\text{MODE_Tra} = 1 \) \)

 $\mathbf{R}_2 = (ACC. Tst = 1 \land ACC. TfT = 1)$

 $R_3 = (MODE_Acc=0) \land (ACC_Tst=1 \lor ACC_TfT=1)$

TEST CASE GENERATION MODEL:

(1):
$$(\Phi_{1} = 1) \land (R_1 = 0) \land (R_2 = 0) \land (R_3 = 0)$$

SYSTEM VERIFICATION PROPERTY:

(MODE Rep = 1)

Total Variables:	7	Total State Space:	128	Scenario State Space:	10
I/O Types:	DIGITAL	Test Impact:	PLC ZIVX PLC OKC	Execution Strategy:	MANUAL

Test Instances auto-generated by MATLAB:

	MQDE_Acc	MODE_TFA	MODE_Tra	ACC_Tst	ACC_IfT	EISb_Pos	ElSa_Safe	RESULTS
Test 1	0	0	0	0	0	1	0	
Test 2	0	0	0	0	0	0	0	
Test 3	0	0	1	0	0	0	1	
Test 4	0	0	1	0	0	0	0	
Test 5	0	0	1	0	0	1	0	
Test 6	0	1	0	0	0	0	1	
Test 7	0	1	0	0	0	0	0	
Test 8	0	1	0	0	0	1	0	
Test 9	1	0	0	0	0	0	1	
Test 10	1	0	0	0	0	0	0	

Test Instances auto-generated by MATLAB:

	MODE_Acc	MODE_TFA	MODE_Tra	ACC_Tst	ACCLIT	EISb_Pos	ElSa_Safe	RESULTS
Test 1	0	0	0	0	0	1	0	
Test 2	0	0	0	0	0	0	0	
Test 3	0	0	1	0	0	0	1	
Test 4	0	0	1	0	0	0	0	
Test 5	0	0	1	0	0	1	0	
Test 6	0	1	0	0	0	0	1	
Test 7	0	1	0	0	0	0	0	
Test 8	0	1	0	0	0	1	0	
Test 9	1	0	0	0	0	0	1	
Test 10	1	0	0	0	0	0	0	

<u>Test Instances auto-generated by MATLAB:</u>

	MQDE_Acc	MODE_TFA	MODE_Tra	ACC_Tst	ACC_IfT	EISb_Pos	ElSa_Safe	RESULTS
Test 1	0	0	0	0	0	1	0	
Test 2	0	0	0	0	0	0	0	
Test 3	0	0	1	0	0	0	1	
Test 4	0	0	1	0	0	0	0	
Test 5	0	0	1	0	0	1	0	
Test 6	0	1	0	0	0	0	1	
Test 7	0	1	0	0	0	0	0	
Test 8	0	1	0	0	0	1	0	
Test 9	1	0	0	0	0	0	1	
Test 10	1	0	0	0	0	0	0	

Future Works

Conclusions

- It is essential to clearly fix the testing objectives in order to obtain a performing Test Bench for Safety Validation.
- The main Test Bench realization principles shall be related to: Scalability, Flexibility, coherence with the real system, easy operability and maintainability.
- The adoption of formal languages for the Safety Functions modeling is an essential key to implement a Model-Based Testing strategy, improving the quality of the final Validation Test Plan.

07/10/2013 239

