EEL7030 - Microprocessadores

Laboratório de Comunicações e Sistemas Embarcados

Prof. Raimes Moraes
EEL-UFSC

Organização da RAM Interna

7F	7E	7D	7C	7B	7A	79	78	2FH
0F	0E	0D	0C	0B	0A	09	08	21H
07	06	05	04	03	02	01	00	20H
	R0 - R7							
	Banco 3							
R0 - R7								17H
Banco 2								10H
R0 - R7							0FH	
Banco 1							08H	
R0 - R7								07H
			Ban	co 0				00H

Registrador de Flags

PSW - Program Status Word - Bit Addressable

7	6	5	4	3	2	1	0	_
CY	AC	F0	RS1	RS0	OV		P	D0H

Nome	Localização	Descrição
CY	PSW.7	Carry flag
AC	PSW.6	Auxiliary carry flag
F0	PSW.5	Definido pelo usuário
RS1	PSW.4	Bit 1 do seletor de Register Bank
RS0	PSW.3	Bit 0 do seletor de Register Bank
OV	PSW.2	Overflow flag
	PSW.1	Definido pelo usuário
Р	PSW.0	Flag de paridade. 1 = ímpar.

Organização da RAM Interna

RS0 e RS1 do registrador PSW

	RS0=0	RS0=1
RS1=0	Banco 0	Banco 1
RS1=1	Banco 2	Banco 3

- Região da memória RAM utilizada pelo programador e processador;
- Pelo programador: armazenar dados temporariamente;
- Pelo processador: armazenar endereços e flags quando de alteração do fluxo de execução do programa (subrotina e interrupção);

Registradores do 8051

- Em microprocessadores, programador deve informar o processador sobre área de memória RAM disponível para a pilha, inicializando o registrador *Stack Pointer* [SP ponteiro de pilha]*.
- No 8051, ao ser resetado, o SP é inicializado com o valor 07H

*OBS: Quando o processador executa sistema operacional, este gerencia a pilha.

[Exemplo de utilização da pilha pelo programador]

Supondo: [A] = CAH; [SP]=07H

END.	Mnemônico
010E	PUSH ACC
0200	MOV A,#3
0202	ADD A,R0
0203	MOV R0,A

SP	07H (valor inicial)	
SP+1	08H (valor final)	САН

END.

DADO

PILHA

Eventos durante execução

[SP] ← [SP] + 1

[{[SP]}]← [A]

PUSH ACC

[Exemplo de utilização da pilha pelo programador]

Supondo: [SP]=08H

END.	Mnemônico
010E	PUSH ACC
0200	MOV A,#3
0202	ADD A,R0
0203	MOV R0,A
0204	POP ACC

SP-1	07H (valor final)	
SP	08H (valor inicial)	САН

END.

DADO

PILHA

Eventos durante execução

[A] ← [{[SP]}]

[SP] ← [SP] - 1

POP ACC

OBS: UTILIZAR ENDEREÇOS DOS REGISTRADORES de R0 a R7

 $[\mathbf{R0}] = \mathbf{3BH};$ Supondo: [SP]=1FH (do banco 1)

END.	Mnemônico		
010E	PUSH 08H		
0200	•••		
0202	•••		
0203	•••		
0204	POP 08H		

(R0 do banco 1)

, (14) 1)% ("4)					
do banco 1)	PILHA	END.	DADO		
PUSH 08H	SP	1FH			
	SP+1	(valor inicial) 20H (valor final)	3BH		

Eventos durante execução

[SP] ← [SP] + 1

[{[SP]}] ← [08H]

OBS: UTILIZAR ENDEREÇOS DOS REGISTRADORES de R0 a R7

Supondo: [SP]=20H

END.	Mnemônico					
010E	PUSH 08H	(R	0 do banco 1)	DULLA	END	DADO
0200	•••		,	PILHA	END.	DADO
0202	•••					
0203	•••					
0204	POP 08H	(R0	do banco 1)	SP-1	1FH (valor final)	
[R0] = 3BH; (do banco 1)		POP 08H	SP	20H (valor inicial)	3ВН	
Eventos durante execução						

[08] ←[{[SP]}]

[SP] ← [SP] - 1

Exemplo de uso de bancos de registradores

(OBS: Modesta compressão do código da subrotina com uso de banco)

; Programa Principal

CLR RS0

CLR RS1

MOV SP,#0FH

.

MOV R0,#5

MOV R1,#0

RPSUB: MOV A,P2

PUSH ACC

CALL SUBRT

POP ACC

ADD A,R1

MOV R1,A

DJNZ R0, RPSUB

_ _ _ _ _

; V1 - SEM MUDAR O BANCO DE REGISTRADORES SUBRT:

PUSH 00H PUSH 01H

MOV R0,#8 MOV R1,#0

Loop: RLC A

JNC Salta

INC R1

Salta: DJNZ R0,Loop

MOV P1,R1 POP 01H POP 00H

RET

; V2 - MUDANDO O BANCO DE REGISTRADORES SUBRT:

SETB RS0

MOV R0,#8

MOV R1,#0

Loop: RLC A

JNC Salta

INC R1

Salta: DJNZ R0,Loop

MOV P1,R1

CLR RS0

RET

CALL Ninst fim do programa Ninst: **RET**

SUBROTINA

• Conjunto de instruções para o qual o fluxo de execução do programa é desviado pela instrução:

CALL [endereço]

• A instrução RET faz com que o microprocessador retorne à executar instrução que se segue à chamada da subrotina.

[Aguarde!!! Voltaremos a falar da pilha em breve]

Mnemônicos para SUBROTINA (2 cycles)

LCALL: Especifica endereço de 16 bits. A instrução possui 3 bytes (opcode + 16 bits de endereço). Endereço de destino em qualquer lugar da memória (64 kiB).

ACALL: Especifica endereço de 11 bits. A instrução possui 2 bytes (opcode + 11 bits de endereço). Endereço de destino distante em até 2KiB (2¹¹).

SUBROTINA

- 1 8051 lê código de 3 bytes de LCALL e atualiza o valor do PC (de 000AH para 000DH)
- 2 Salva atual PC (000DH) na pilha.

• • • •

Eventos durante execução de LCALL

$$[\{[SP]\}] \leftarrow [PC_{LSB}]$$

$$[\{[SP]\}] \leftarrow [PC_{MSB}]$$

END.	Mnemônico	CÓDIGO
000A	LCALL 2028H	12 20 28
000D	MOV A,B	E5 F0

PILHA	END.	DADO	
SP	07H (valor inicial)		
SP+1	08H	0DH [PC LSB]	
SP+1	09H (valor final)	00H [PC MSB]	

[Exemplo de utilização da pilha pelo processador]

SUBROTINA

• • • •

- 3 Sobrescreve PC com endereço da subrotina; ([PC] = 2028H)
- 4 Executa subrotina;
- 5 Retorna à instrução que se segue ao LCALL no programa principal (instrução RET).

END.	Mnemônico	CÓDIGO [Hex]
000A	LCALL 2028H	12 20 28
000D	MOV A,B	E5 F0

END.	Mnemônico	CÓDIGO [Hex]
2028	INC B	05 F0
202A	RET	22

SUBROTINA

• • • •

5 Retorna à instrução que se segue ao LCALL no programa principal (instrução RET).

Eventos durante execução de RET

$$[PC_{MSB}] \leftarrow [\{[SP]\}]$$

$$[PC_{LSB}] \leftarrow [\{[SP]\}]$$

END.	Mnemônico	CÓDIGO
000A	LCALL 2028H	12 20 28
000D	MOV A,B	E5 F0

PILHA	END.	DADO	
SP -1	07H (valor final)		
SP-1	08H	0DH [PC LSB]	
SP	09H (valor inicial)	00H [PC MSB]	

[Exemplo de utilização da pilha pelo processador]

Subrotina modifica registrador cujo conteúdo se quer preservar?

PUSH (endereço direto)

$$[SP] \leftarrow [SP] + 1$$

$$\{[SP]\} \leftarrow [endereço direto]$$

END.	Mnemônico
010E	PUSH B
0200	LCALL 34C2H
0203	POP B

Sendo:

$$[B] = 32H$$
$$[SP] = 2FH;$$

[PC] ← 34C2

[Exemplo de utilização da pilha pelo programador e processador]

Sendo: [B] = 32h; [SP]=2Fh			PILHA	END.	DADO	
END.	Mnemônico					
010E 0200	PUSH B LCALL 34C2H			SP	2FH (valor inicial)	
0203	•••	PUSH B		SP+1	30H	32H
Eventos durante a execução [SP] ← [SP] + 1 [{[SP]}]← [B]			L C A	SP+1	31H	03H
$[PC] \leftarrow [PC] + 3 \text{ (leitura do código de LCALL 34C2H)}$ $[SP] \leftarrow [SP] + 1$ $[\{[SP]\}] \leftarrow [PC_{LSB}]$ $[SP] \leftarrow [SP] + 1$ $[\{[SP]\}] \leftarrow [PC_{MSB}]$			L L 34 C2	SP+1	32H (valor final)	02H
			OZ.			

[Exemplo de utilização da pilha pelo programador e processador]

END.	Mnemônico
0203	POP B
••••	••••
34C2	••••
••••	••••
343F	RET

		PILITA	LND.	DADO	
		SP	2FH (valor final)		
	POP B		SP-1	30H	32H
RETe		R	SP-1	31H	03H
		E T	SP-1	32H (valor inicial)	02H

FND

DADO

Eventos durante execução de RET e POP B $[PC_{MSB}] \leftarrow [\{[SP]\}] \\ [SP] \leftarrow [SP] - 1 \\ [PC_{LSB}] \leftarrow [\{[SP]\}] \\ [SP] \leftarrow [SP] - 1 \\ [B] \leftarrow [\{[SP]\}] \\ [SP] \leftarrow [SP] - 1 \\ [B] \leftarrow [\{[SP]\}] \\ [SP] \leftarrow [SP] - 1 \\ [SP] \leftarrow [SP] -$

Ao se utilizar a mesma, ter em mente a localização do banco 1 de registradores.

Exemplo de uso de bancos de registradores e necessidade de alteração do local da pilha

Loop:

; Programa Principal

CLR RS0 CLR RS1

MOV SP,#0FH

.

MOV R0,#5 MOV R1,#0

RPSUB: MOV A,P2
PUSH ACC
CALL SUBRT

POP ACC ADD A,R1 MOV R1,A

DJNZ R0, RPSUB

; V2 - MUDANDO O BANCO DE REGISTRADORES SUBRT:

SETB RS0 MOV R0,#8 MOV R1,#0 RLC A

JNC Salta

Salta: DJNZ R0,Loop

MOV P1,R1

CLR RS0

RET