Statistical Operations and Matrices (II)

Predictive Modeling & Statistical Learning

Gaston Sanchez

CC BY-SA 4.0

Data Matrix Perspectives

Motivation

I want to discuss how we can use vector-matrix notation to represent some basic statistical operations and summaries.

First we need to quickly review some concepts around inner products.

Geometry of the Data Matrix

Matrix Structure

Data

The analyzed data can be expressed in matrix format X:

$$\mathbf{X}_{n \times p} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$$

- ightharpoonup n objects in the rows
- p quantitative variables in the columns

Looking at Rows and Columns

Data Concerns

Two sides of the same coin

When the analyzed data can be expressed as a matrix with objects in rows, and variables in columns, we commonly care for two issues:

- Study the resemblance between objects
- Study the relationships among variables

Data Perspectives

looking at a data matrix from two perspectives

Objects Perspective

Objects as points in a p-dimensional space

Variables Perspective

Variables as points in a *n*-dimensional space

Raw Data

Raw Data Matrix

The analyzed data can be expressed in matrix format X:

$$\mathbf{X}_{n \times p} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$$

- n objects in the rows
- p quantitative variables in the columns

Data set mtcars

First 10 rows:

	mpg	cyl	disp	hp	drat	wt	qsec	٧s	am	gear	carb
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4

Let's use variables: mpg, disp, hp, and wt.

Raw values

Centering Data Matrix

Mean-Centered Data Matrix

A common operation consists of **centering** the data, which involves mean-centering the variables so that they all have mean zero.

Mean-Centered Data Matrix

The mean-centered (a.k.a. column centered) matrix X_C :

$$\mathbf{X_{C}} = \begin{bmatrix} x_{11} - \bar{x}_{1} & x_{12} - \bar{x}_{2} & \cdots & x_{1p} - \bar{x}_{p} \\ x_{21} - \bar{x}_{1} & x_{22} - \bar{x}_{2} & \cdots & x_{2p} - \bar{x}_{p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} - \bar{x}_{1} & x_{n2} - \bar{x}_{2} & \cdots & x_{np} - \bar{x}_{p} \end{bmatrix}$$

where \bar{x}_j is the mean of the j-th variable $(j=1,\ldots,p)$

Mean-Centered Data Matrix

Using matrix notation, the centering operation is expressed as:

$$\mathbf{X}_{\mathbf{C}} = (\mathbf{I} - \frac{1}{n} \mathbf{1} \mathbf{1}^{\mathsf{T}}) \mathbf{X}$$

- ▶ I is the $n \times n$ identity matrix
- ▶ 1 is an $n \times 1$ vector of ones
- $I \frac{1}{n} \mathbf{1} \mathbf{1}^{\mathsf{T}}$ is sometimes called the *centering* operator

Centering Effects

What does mean-centering do to the cloud of points?

What does column-centering do in general?

Centered values

Centering Matrices in R

Centering with scale()

```
X_centered <- scale(X, center = TRUE, scale = FALSE)</pre>
```

Or also like this:

```
centroid <- colMeans(X)
X_centered <- sweep(X, 2, centroid, FUN = "-")</pre>
```

Scaled Data Matrix

Scaled or Normalized Data Matrix

The scaled or *Normalized* matrix X_N :

$$\mathbf{X_{N}}_{n \times p} = \begin{bmatrix} a_{1}x_{11} & a_{2}x_{12} & \cdots & a_{p}x_{1p} \\ a_{1}x_{21} & a_{2}x_{22} & \cdots & a_{p}x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1}x_{n1} & a_{2}x_{n2} & \cdots & a_{p}x_{np} \end{bmatrix}$$

where a_j is a scaling factor for the j-th column

Scaled values

Some Scaling Options

- ▶ Standard Deviation: $a_j = sd_j = \frac{1}{n} \sum_{i=1}^n (x_{ij} \bar{x}_j)^2$
- $ightharpoonup L_1$ -norm: $a_j = \sum_{i=1}^n |x_{ij}|$
- $ightharpoonup L_2$ -norm: $a_j = \sqrt{\sum_{i=1}^n (x_{ij})^2}$
- $L_{\infty}\text{-norm: } a_j = max\{|x_{i1}|, \dots, |x_{ip}|\}$
- L_p -norm: $a_j = (\sum_{i=1}^n |x_{ij}|^p)^{1/p}$

Scaled or Normalized Data Matrix

The scaling factors a_j can be put in a diagonal matrix $\mathbf{D_a}$

$$\mathbf{D_a} = \begin{bmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_p \end{bmatrix}$$

then

$$X_N = XD_a$$

Normalizing Effects

What does normalizing (i.e. scaling) do to the cloud of points?

Scaling Matrices in R

Scaling with standard deviation

```
scaling <- apply(X, 2, sd)

X_scaled <- scale(X, center = FALSE, scale = scaling)</pre>
```

Scaling Matrices in R

Scaling with L_1 -norm

```
# L-1 norm
one_norms <- apply(X, 2, function(u) sum(abs(u)))

X_scaled <- scale(X, center = FALSE, scale = one_norms)</pre>
```

Scaling in R examples

Scaling with L_2 -norm

```
# L-2 norm
two_norms <- apply(X, 2, function(u) sqrt(sum(u*u)))
X_scaled <- scale(X, center = FALSE, scale = two_norms)</pre>
```

Scaling Matrices in R

Scaling with L_{∞} -norm

```
# L-inf norm
inf_norms <- apply(X, 2, function(u) max(abs(u)))

X_scaled <- scale(X, center = FALSE, scale = inf_norms)</pre>
```

Standardized Data Matrix

Standardized Data Matrix

The standardized matrix $\mathbf{X_S}$ is the mean-centered and scaled (by the standard deviation) matrix:

$$\mathbf{X_S} = \begin{bmatrix} \frac{x_{11} - \bar{x}_1}{sd_1} & \frac{x_{12} - \bar{x}_2}{sd_2} & \dots & \frac{x_{1p} - \bar{x}_p}{sd_p} \\ \frac{x_{21} - \bar{x}_1}{sd_1} & \frac{x_{22} - \bar{x}_2}{sd_2} & \dots & \frac{x_{2p} - \bar{x}_p}{sd_p} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{x_{n1} - \bar{x}_1}{sd_1} & \frac{x_{n2} - \bar{x}_2}{sd_2} & \dots & \frac{x_{np} - \bar{x}_p}{sd_p} \end{bmatrix}$$

- $ightharpoonup \bar{x}_i$ is the mean of the j-th variable
- $ightharpoonup sd_j$ is the standard deviation of the j-th variable

Standardized values

Standardized Data Matrix

When the scaling factors a_j are the standard deviations sd_j , the scaling matrix $\mathbf{D}_{\underline{1}_j}$ is:

$$\mathbf{D}_{\frac{1}{sd}} = \begin{bmatrix} \frac{1}{sd_1} & 0 & \cdots & 0\\ 0 & \frac{1}{sd_2} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \frac{1}{sd_p} \end{bmatrix}$$

then the standardized data matrix $\mathbf{X_S}$

$$\mathbf{X_S} = \mathbf{X_C} \mathbf{D}_{\frac{1}{sd}} = (\mathbf{I} - \frac{1}{n} \mathbf{1} \mathbf{1}^\mathsf{T}) \mathbf{X} \mathbf{D}_{\frac{1}{sd}}$$

Standardizing Matrices in R

Standardizing with scale()

```
X_std <- scale(X, center = TRUE, scale = TRUE)
# equivalent to
X_std <- scale(X)</pre>
```

Objects and their weights

Weights of Objects

- We can assume that each object is associated to a weight
- ▶ Think of a weight as the "importance" of an observation
- Usually, we assume equal weights 1/n (i.e. equal importance)
- If we assume that objects come from a random sample, then the n objects have the same chance 1/n of being selected
- Sometimes, however, it is convenient to assume that each object has a general weight $w_i > 0$, such that $\sum_{i=1}^n w_i = 1$

Weights of Objects

We can consider a diagonal matrix of object weights D:

$$\mathbf{D}_{n \times p} = \begin{bmatrix} w_1 & 0 & \cdots & 0 \\ 0 & w_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & w_n \end{bmatrix}$$

In the more common case that all weights are equal, we have $\mathbf{D} = \frac{1}{n}\mathbf{I}$

Weights of Objects

The vector \mathbf{g} containing the means $\bar{X}_1, \bar{X}_2, \dots, \bar{X}_p$ of all variables can be written as:

$$g = X^T D1_n$$

where $\mathbf{1}_n$ is an $n \times 1$ vector of ones.

The vector g is also known as the **centroid** of the objects.

Centered Data Matrix

Using D and g we can write an expression to get a centered data matrix $\tilde{\mathbf{X}}$

$$\tilde{\mathbf{X}} = \mathbf{X} - \mathbf{1}\mathbf{g}^\mathsf{T} = (\mathbf{I} - \mathbf{1}\mathbf{1}^\mathsf{T}\mathbf{D})\mathbf{X}$$

Cross-Products

Data Matrix Products

Matrix Products

There are two fundamental matrix products that play a crucial role when the data is in an $n \times p$ matrix X with objects in rows, and variables in columns (typically assuming that n > p):

- ► $\mathbf{X}^\mathsf{T}\mathbf{X}$ association matrix for the variables a.k.a. "minor product" because is of size $p \times p$
- $ightharpoonup XX^{\mathsf{T}}$ association matrix for the objects a.k.a. "major product" because is of size $n \times n$

(keep in mind we are assuming centered data)

Covariance Matrix

If X is mean-centered, then

$$\frac{1}{n}\mathbf{X}^\mathsf{T}\mathbf{X}$$
 and $\frac{1}{n-1}\mathbf{X}^\mathsf{T}\mathbf{X}$

are the covariance matrices (population and sample flavors)

Correlation Matrix

If X is standardized, then

$$\frac{1}{n}\mathbf{X}^\mathsf{T}\mathbf{X}$$
 and $\frac{1}{n-1}\mathbf{X}^\mathsf{T}\mathbf{X}$

are the correlation matrices (population and sample flavors)