Exercice 0:

1) Quels sont les noms des atomes qui correspondent aux symboles suivants ?

- H: Hydrogène

- C: Carbone

- O: Oxygène

- N : Azote

- Ca: Calcium

- Fe: Fer Mg: Magnésium 1) De quoi sont composés les molécules suivantes ?

- CO₂

Un atome de carbone et deux atomes d'oxygène.

- H₂O

Un atome d'hydrogène de et deux atomes d'oxygène.

- O₂

Deux atomes d'oxygène.

-N₂

Deux atomes d'azote.

Exercice 1:

1) Compléter le texte suivant avec : atomes, majuscule, boule, centaine, lettres, matière, minuscule, modèle, particules, symbole

Toute la matière (inerte et vivante) qui nous entoure est constituée de particules microscopiques : des atomes II existe une centaine de types d'atomes différents. A chaque atome correspond un symbole (composé d'une ou deux lettres) ; certains d'entre eux sont représentés par une boule colorée, leur modèle.

Remarque

Le symbole d'un atome est une lettre **majuscule** suivie éventuellement d'une lettre **minuscule** (ex : Fe pour l'atome de fer)

Le symbole d'un **atome** n'est pas toujours la première **lettre** de son nom (ex : N pour azote).

Exercice 2:

1) Compléter le texte suivant avec : atomes, constitue, formule, modèle moléculaire, molécule, nombre.

Une **molécule** est un assemblage d'**atomes.** À chaque molécule correspond une **formule** chimique qui nous renseigne sur le type et le **nombre** d'atomes qui la **constitue.** Une molécule est représentée par son **modèle moléculaire.**

2) Compléter le texte suivant avec :alphabétique, consonnes, un, voyelles.

Remarques: complète avec: alphabétique, consonnes, un, voyelles. -dans

une formule chimique, on ne marque jamais le nombre un (on écrit H₂O et pas H₂O₁)

Dans une formule chimique, on écrit en général les **consonnes** avant les **voyelles** et on respecte l'ordre **alphabétique** (ex : CH₄ et pas H₄C, CO₂et pas O₂C).

Exercice 3: La combustion du carbone

Pour brûler complètement 6 g de carbone, il faut 8 g de dioxygène.

1) Quelle masse de dioxyde de carbone va-t-on obtenir?

La masse se conserve lors d'une transformation chimique donc la masse des réactifs (le carbone et le dioxygène) est égale à la masse des produits (dioxyde de carbone) :

m_{réactifs}= m_{produits}

 $m_{\text{dioxygène}} + m_{\text{carbone}} = m_{\text{dioxyde de carbone}}$

 $m_{dioxyde\ de\ carbone} = 8 + 6 = 14g$

Donc la masse de dioxyde de carbone qui apparaît est de 14g.

(Autrement dit 6g de carbone et 8g de dioxygène disparaissent et 14g de dioxyde de carbone apparaissent.)

2) On fait maintenant brûler 4 g de carbone dans un flacon contenant 20g de dioxygène. Tout le dioxygène va-t-il être utilisé ? Si non, combien en restera-t-il ? Quelle masse de dioxyde de carbone va-t-on obtenir ?

Pour savoir de combien de dioxygène 4 g de carbone a besoin pour brûler, on fait un produit en croix en partant de l'information de la question 1 : "Pour brûler complètement 6 g de carbone, il faut 8 g de dioxygène."

Carbone	6g	4g	
Dioxygène	8g	5.33g	

Il faut donc 5,33g de dioxygène pour faire brûler le carbone.

L'expérience commence avec 20g de dioxygène dans le bocal, on enlève 5,33g : il reste 14,67g de dioxygène dans le bocal.

La masse se conserve pendant la réaction chimique! Au début de l'expérience il y a 20g de dioxygène et 4g de carbone pour un total de 24g.

Après combustion il reste 14,67g de dioxygène et tout le carbone à disparu, la masse restante est celle de dioxyde de carbone :

 $m_{dioxyde\ de\ carbone} = 24 - 14,67 = 9,33g$

conclusion : 5,33g de dioxygène ont été utilisé pour la combustion, il en reste 14,64g. La masse de dioxyde de carbone qui apparaît est de 9,33g.

3) Quelle masse de dioxygène faut-il pour brûler complètement 9 g de carbone ? Quelle masse de dioxyde de carbone va-t-on obtenir ?

Il faut refaire un produit en croix comme en question 2.

Carbone	6g	9g
Dioxygène	8g	12g

Donc il faut 12g de dioxygène pour brûler 9g de carbone.

4) On dispose un morceau de carbone enflammé de 10 grammes dans un bocal fermé. Après combustion il reste 6 grammes de carbone. Quelle quantité de dioxygène était présente dans le bocal ?

Il reste 6g de carbone donc il y a 10 - 6 = 4g de carbone qui ont disparu.

Carbone	6g	4g
Dioxygène	8g	5.33g

Pour disparaître ils ont réagit avec 5,33g de dioxygène.

Le reste du carbone n'a pas disparu car il n'y avait plus de dioxygène dans le bocal. **Donc il y avait 5,33g de dioxygène dans le bocal.**

Exercice 4 : Les équations suivantes sont-elles équilibrées ? Justifier.						
C + O₂ → CO₂ L'équation est équilibrée car il y a le même nombre d'atomes C et O de chaque côté.	1 C 4 H 4 O	→ CO₂ + H₂O À droite : 1 C 2 H 3 O t pas équilibrée	CH₄ + 2 O₂ → CO₂ + 2 H₂O L'équation est équilibrée car il y a le même nombre d'atomes C et O de chaque côté.			
$C_2 H_6 O + 3 O_2 \rightarrow 2 CO_2 + 3 H_2 O$ À gauche: À droite: 2 C $2 C6 H$ $7 O$ $7 OL'équation est équilibrée$	2 C ₄ H ₁₀ + 10 O ₂ · À gauche: 8 C 20 H 20 O L'équation n'es	→ 8 CO ₂ + 7 H ₂ O À droite: 8 C 14 H 15 0 t pas équilibrée	2 C₂H ₆ + 7 O₂ − À gauche: 4 C 12 H 14 O L'équation e	À droite: 4 C 12 H 14 O		