数分(中)课堂笔记

TheUnknownThing

2025年3月5日

1 多元函数的性质

1.1 \mathbb{R}^n 的度量

有内积,就可以诱导(induce)出范数(norm)。通过内积诱导出范数可以这样做:

$$||x|| = \sqrt{\langle x, x \rangle}$$

有范数,就可以诱导出度量(距离)。度量需要满足的性质是如下三条:

- 1. $d(x,y) \ge 0$; $\coprod d(x,y) = 0$ iff x = y
- 2. d(x, y) = d(y, x)
- 3. $d(x,z) \le d(x,y) + d(y,z)$

但是并不一定需要有"范数",只需要空间有度量即可。

Def (metric space)

设 X 为一集合, $d: X \times X \to \mathbb{R}_{\geq 0}$.

称 (X,d) 为一度量空间, 若 d 满足:

- (i) $\forall x, y \in X, d(x, y) \ge 0$; $\exists d(x, y) = 0$ iff x = y
- (ii) $d(x,y) = d(y,x) \ \forall x,y \in X$
- (iii) $d(x,z) \le d(x,y) + d(y,z) \ \forall x,y,z \in X$

有度量,就有邻域。

Def (邻域)

设 (X,d) metric space.

对 $a \in X$, r > 0, 称

$$B_r(a) := \{ x \in X \mid d(a, x) < r \} \quad (B(a, r))$$

为以 a 为中心, 以 r 为半径的开球, 或称为 a 的 r 邻域.

邻域长成什么样,跟度量有关系,图示两个例子给出不同度量下定义的邻域。 **Example.** \mathbb{R}^n , $B_1(0)$.

•
$$n = 1$$
: $(-1, 1)$

$$\leftarrow$$
 -1 0 1

• n = 2:

• n = 3:

 $(\mathbb{R}^n, d_\infty), d_\infty(x, y) = \max_{1 \le i \le n} |x^i - y^i|$ 同样,我们考虑不同维数情况下 $B_1(0)$

• n = 1: (-1, 1)

• n = 2:

• n=3: 一个边长为 1 的立方体。

类似的, 我们定义了度量, 就可以定义极限。

Def

设 (X,d) metric space.

设 $\{x_k\} \subset X, a \in X,$ 定义

$$\lim_{k \to \infty} x_k = a \iff \forall \varepsilon > 0, \exists K, \forall k > K : d(x_k, a) < \varepsilon$$

我们考虑 \mathbb{R}^n 下,使用欧式度量定义的极限。那么我们可以思考:一个"点列"收敛到一个点,其分量是否收敛?不难想象,这个命题其实是平凡的。

Theorem

设 $\{x_k\} \subset \mathbb{R}^n$, $a \in \mathbb{R}^n$.

$$\lim_{k \to \infty} x_k = a \iff \forall \, 1 \le j \le n, \lim_{k \to \infty} x_k^j = a^j$$

Proof.

$$|x_k^j - a^j| \le ||x_k - a|| = \sqrt{\sum_{i=1}^n (x_k^i - a^i)^2} \le \sum_{i=1}^n |x_k^i - a^i|$$

也即,对 \mathbb{R}^n 而言,点列收敛,等价于点列中每个分量作为数列收敛。那么刚才我们考虑了有限维,对于无限维呢?

$$\textit{Remark.} \quad \ell^2(\mathbb{R}) := \{(x^1, x^2, \dots) \mid \sqrt{\sum_{i=1}^{\infty} (x^i)^2} < +\infty\} \,, \quad \text{if} \quad \{x_k\} \subset \ell^2(\mathbb{R}), \forall j \in \mathbb{N}, \lim_{k \to \infty} x_k^j = a^j \} \,.$$

Question:

$$\lim_{k \to \infty} x_k \stackrel{?}{=} a$$

 \Diamond

Answer. 答案是否定的, 反例: $x_i = (0,0,\cdots,1,0,\cdots)$.

由于"点列收敛,等价于点列中每个分量作为数列收敛", $\mathbb R$ 中数列极限的一些性质可以直接搬到 $\mathbb R^n$ 。

性质	\mathbb{R}	\mathbb{R}^n
唯一性	\checkmark	✓
有界性	\checkmark	\checkmark
保号性	\checkmark	×
夹逼性	\checkmark	×

定义 $\{x_k\}$ 有界: $\exists M > 0, \forall k \in \mathbb{N}, ||x_k|| < M$.

1.2 \mathbb{R}^n 的拓扑 (开,闭)

目标: 类比 (a,b) 开区间, [a,b] 闭区间的高维情形.

(a,b): $\forall x \in (a,b), \exists \delta > 0$: $(x-\delta,x+\delta) \subset (a,b)$

[a,b]: 对取极限封闭。(设 $\{x_k\} \subset [a,b]$ 且 $\lim_{k\to\infty} x_k = \xi$, 则 $\xi \in [a,b]$)

Def (点与集合的关系)

设 $E \subset \mathbb{R}^n$

1. 称 $x \in \mathbb{R}^n$ 为 E 的内点,若 $\exists \delta > 0$ s.t. $B_{\delta}(x) \subset E$ (interior point) 记 E 的所有内点构成的集合为 E° (也记为 $\operatorname{int}(E)$)

- 2. 称 $x \in \mathbb{R}^n$ 为 E 的外点, 若 $\exists \delta > 0$ s.t. $B_{\delta}(x) \cap E = \emptyset$ (即 x 是 E^c 的内点) 记 E 的所有外点构成的集合为 ext(E) (即 $(E^c)^\circ$)
- 3. 称 x 为 E 的边界点, 若

$$\forall \delta > 0, \quad B_{\delta}(x) \cap E \neq \emptyset \neq B_{\delta}(x) \cap E^{c}$$

记 E 的所有边界点构成的集合为 ∂E 。

$$\mathbb{R}^n = E^\circ \cup (E^c)^\circ \cup \partial E \quad (无交并)$$

4. 称 x 为 E 的聚点 (accumulation point) (也称为极限点 (limiting point)), 若

$$\forall \delta > 0 : \#(B_{\delta}(x) \cap E) = \infty$$

记 E 的所有聚点构成的集合为 E'。

5. 称 x 为 E 的孤立点 (isolated point), 若

$$\exists \delta > 0, \text{s.t. } B_{\delta}(x) \cap E = \{x\}$$

Example.

1. \mathbb{R}^n , $E = B_{\delta}(a) \ (\delta > 0)$

Claim: $E^{\circ} = E$

证明. 设 $x \in B_{\delta}(a)$. 令 r = ||a - x||, 则 $0 < r < \delta$.

取
$$\rho = \frac{1}{4} \min\{r, \delta - r\} > 0$$
. 考虑 $B_{\rho}(x)$.

$$y \in B_{\rho}(x) \implies ||x - y|| < \rho$$

$$\|y-a\|\leq \|y-x\|+\|x-a\|<\rho+r\leq \frac{\delta-r}{4}+r=\frac{\delta+3r}{4}<\frac{\delta+3\delta}{4}=\delta.$$

因此, $y \in B_{\delta}(a)$. 所以 $B_{\rho}(x) \subset B_{\delta}(a) = E$. 因此 $x \in E^{\circ}$. 所以 $E \subset E^{\circ}$.

又因为 $E^{\circ} \subset E$ (根据定义), 所以 $E^{\circ} = E$.

$$\operatorname{ext}(E) = \{ x \in \mathbb{R}^n \mid ||x - a|| > \delta \}$$

$$\partial E = \{ x \in \mathbb{R}^n \mid ||x - a|| = \delta \}$$

$$E' = \{ x \in \mathbb{R}^n \mid ||x - a|| \le \delta \}$$

2. $E = \mathbb{O}^n$

$$E^{\circ} = \emptyset$$

$$(E^c)^\circ = \emptyset$$

$$E' = \mathbb{R}^n$$

Def (\mathbb{R}^n 的拓扑: 开集与闭集)

- 称 G 为 ℝⁿ 中的开集, 若 ∀x ∈ G, x 是 G 的内点 (即 G = G°)
 称 F 为 ℝⁿ 中的闭集, 若 ∀x ∈ F', x ∈ F (即 F ⊃ F')
 称 E := E ∪ E' 为 E 的闭包 (closure)

Remark. 空集 Ø 既是开集也是闭集。

 \Diamond

- 1. E° 是 E 中的最大开集 (即若 G 开且 $G \subset E$, 则 $G \subset E^{\circ}$)
 2. \overline{E} 是包含 E 的最小闭集 (即若 F 闭且 $F \supset E$, 则 $F \supset \overline{E}$)

3. 对 \mathbb{R}^n ,

$$B_r(a) = \{ x \in \mathbb{R}^n \mid d(x, a) < r \}$$

$$\overline{B_r(a)} = \{ x \in \mathbb{R}^n \mid d(x, a) \le r \}$$

Q: 设 (X,d) metric space. 是否仍有

$$\overline{\{x \in X \mid d(x, a) < r\}} \stackrel{?}{=} \{x \in X \mid d(x, a) \le r\}$$

Theorem

 $F \in \mathbb{R}^n$ 中的闭集 $\iff F^c \in \mathbb{R}^n$ 中的开集.

Proof. (\Longrightarrow) 设 $x \in F^c$, $x \notin F$, 因 F 闭, x 非 F 的聚点。

 (\Leftarrow) 设 $x \in F'$, 反证, 若 $x \notin F$, 则 $x \in F^c$ 。

因 F^c 开, $\exists \delta > 0$: $B_\delta(x) \subset F^c$, 与 x 是 F 的聚点矛盾。(因为如果 x 是 F 的聚点,那么所有以 x 为中心的开球都应该与 F 有非空交集。但是,由于 F^c 是开集,我们找到了一个以 x 为中心的开球,它完全位于 F^c 中,与 F 没有任何交集。)

Theorem

 \mathbb{R}^n 中的开、闭集具有以下性质:

(i) 任意个开集的并仍是开集.

(设
$$\{G_{\alpha}, \alpha \in \Lambda\}$$
 是一族开集, 则 $\bigcup_{\alpha \in \Lambda} G_{\alpha}$ 是开集.)

- (ii) 有限个开集的交仍是开集.
- (iii) 任意个闭集的交仍是闭集.
- (iv) 有限个闭集的并仍是闭集.

Proof. (i) 设 $x \in \bigcup_{\alpha \in \Lambda} G_{\alpha}$, 则 $\exists \alpha_* \in \Lambda$,s.t. $x \in G_*$.

因
$$G_*$$
 开, $\exists \delta > 0$, s.t. $B_{\delta}(x) \subset G_* \subset \bigcup_{\alpha \in \Lambda} G_{\alpha}$.

$$\forall i = 1, \dots, l, x \in G_i$$
. $\boxtimes G_i \not = \exists \delta_i > 0$, s.t. $B_{\delta_i}(x) \subset G_i$.

取
$$\delta := \min\{\delta_1, \ldots, \delta_l\} > 0$$
, 有 $B_{\delta}(x) \subset G_i$, $(\forall i)$,

$$\Rightarrow B_{\delta}(x) \subset \bigcap_{i=1}^{l} G_i.$$

(iii) $\{F_{\alpha}, \alpha \in \Lambda\}$ 一族闭集.

则

$$\bigcap_{\alpha \in \Lambda} F_\alpha \ \ \, \mbox{闭} \ \ \Longleftrightarrow \ \ \left(\bigcap_{\alpha \in \Lambda} F_\alpha\right)^c \ \ \, \mbox{\emph{H}} \ \, (\mbox{de Morgan}) \ \ \Longleftrightarrow \ \ \bigcup_{\alpha \in \Lambda} F_\alpha^c \ \mbox{\emph{H}}$$

Def (拓扑)

(ii) 设
$$G_{\alpha} \in \tau$$
 ($\forall \alpha \in \Lambda$), 则 $\bigcup_{\alpha \in \Lambda} G_{\alpha} \in \tau$

Def (拓扑)
设
$$X$$
 为一集合, $\tau = 2^X$, 称 (X, τ) 为一拓扑空间, 若 τ 满足:
(i) $\emptyset, X \in \tau$
(ii) 设 $G_{\alpha} \in \tau$ ($\forall \alpha \in \Lambda$), 则 $\bigcup_{\alpha \in \Lambda} G_{\alpha} \in \tau$
(iii) 设 $G_1, G_2, \ldots, G_l \in \tau$, 则 $\bigcap_{i=1}^l G_i \in \tau$.
将 τ 中的元素称为 X 中的开集.
设 $x \in X$, $\exists \tau \ni G \ni x$, 则称 G 是 x 的一个邻域.

 $\textit{Remark.} \quad \lim_{k \to \infty} x_k = A \iff \forall \varepsilon > 0, \exists K, \forall k > K :$

$$d(x_k, A) < \varepsilon$$

$$x_k \in B_{\varepsilon}(A)$$

在拓扑空间中 (X,τ)

$$\lim_{k \to \infty} x_k = A \iff \forall G \in \tau \& G \ni A \quad \exists K, \forall k > K : x_k \in G$$

$$(X, d_X) \xrightarrow{f} (Y, d_Y)$$

$$\lim_{x \to x_0} f(x) = A$$

1.3 \mathbb{R}^n 的基本定理

我们要考虑 \mathbb{R}^n 的基本定理之前,我们先来看看我们 \mathbb{R} 中基本定理是如何推导的。 \mathbb{R} 的构造 \Longrightarrow 确界存在 \Longrightarrow 单调有界必收敛 \Longrightarrow Bolzano-Weierstrass 定理

闭区间套 ← Cauchy 收敛原理

当然上述的推导的路径只是其中的一条,你可以直接通过 B-W 推出闭区间套,也可以通过闭区间套推单调有界必收敛……但这个我们现在并不关心,我们关心的是,我们能不能把这个推导路径推广到 \mathbb{R}^n 中。

但是和 \mathbb{R} 中不同的是, \mathbb{R}^n 无序结构。所以说"单调"就没有了,但是"有界"之类的还是存在的,所以说你可以期待 B-W,Cauchy 收敛原理,闭区间套这三个定理在 \mathbb{R}^n 中的推广。

Bolzano-Weierstrass

 \mathbb{R}^n 中有界点列 $\{x_k\}$ 必有收敛子列.

Proof. 已知 $\{x_k\} \subset \mathbb{R}^n$ 中收敛 $\iff \forall j \in \{1, ..., n\}, \{x_k^{(j)}\}$ $(x_k$ 的第 j 个分量作为数列) 收敛 设 $\{x_k\}$ 为 \mathbb{R}^n 中有界点列.

则 $\{x_k^{(j)}\}_{k=1}^{\infty}$ 为有界数列, $j=1,\ldots,n$.

今 j = 1, 2, ..., n, 利用 ℝ 的 B-W 定理

依次取子列即可可得 $\{x_{k_l}\}$ 收敛子列.

Cauchy

 $\{x_k\}$ 在 \mathbb{R}^n 中收敛 \iff $\{x_k\}$ 是 Cauchy 列.

Proof.(⇒) 显然

$$||x_k - x_l|| \le ||x_k - A|| + ||A - x_l||$$

(⇐=) 有两种方法:

- 1. 依照 \mathbb{R}^n 的情形, 由 B-W 推出
- 2. $\{x_n\}$ Cauchy $\Longrightarrow \{x_k^{(j)}\}$ Cauchy, $j=1,\ldots,n$ $\{x_k^{(j)}\}$ 收敛, $j=1,\ldots,n$

Cantor 闭集套

设 $\{F_k, k \in \mathbb{N}\}$ 是 \mathbb{R}^n 中一列非空闭集, 满足

- (i) $F_1 \supset F_2 \supset F_3 \supset \dots$
- (ii) $\lim_{k\to\infty} \operatorname{diam}(F_k) = 0$

其中 $\operatorname{diam}(E) := \sup_{x,y \in E} d(x,y)$.

8

则
$$\exists ! \ \xi \in \bigcap_{k=1}^{\infty} F_k$$
.

Proof. $\forall k \in \mathbb{N}_+, \ \mathbb{R} \ x_k \in F_k$.

由闭集套的性质 (i), 有

$$\{x_k, x_{k+1}, x_{k+2}, \dots\} \subset F_k \ (\forall k \in \mathbb{N}_+)$$

由性质 (ii), $\{x_k\}_{k=1}^{\infty}$ 为一个 Cauchy 列, 则 $\exists \ \xi \in \mathbb{R}^n$, s.t. $\lim_{k \to \infty} x_k = \xi$ ($\forall k$).

若 $\{x_k\}_{k=1}^{\infty}$ 仅有有限个不同的点, 显然成立。

否则 $\{x_k\}_{k=1}^{\infty}$ 中有无限个相同的点 ξ , 则 ξ 是 F_k 的聚点 $(\forall k)$, F_k 闭, 有 $\xi \in F_k$ $(\forall k)$.

故
$$\xi \in \bigcap_{k=1}^{\infty} F_k$$
. 唯一性显然.

Remark. 思考:如何从闭集套推出 B-W?

一维情况下使用二分区间的方式证明,多维情况下如何证明?提示:二维四分,三维八分,n 维 2^n 分区间。维数有限非常重要。

接下来我们介绍 \mathbb{R}^n 中有界闭集的一个等价刻画。

开覆盖

设 $E \subset \mathbb{R}^n$, 若一族开集 $\{G_\alpha, \alpha \in \Lambda\}$ 满足

$$\bigcup_{\alpha \in \Lambda} G_{\alpha} \supset E,$$

则称 $\{G_{\alpha}\}_{{\alpha}\in\Lambda}$ 为 E 的一个开覆盖.

紧集

称 $K \subset \mathbb{R}^n$ 为紧集 (Compact Set), 若 K 的任何一个开覆盖, 均存在有限子覆盖.

「也即: 若
$$\{G_{\alpha}, \alpha \in \Lambda\}$$
为 K 的一个开覆盖,则一定存在 $G_{\alpha_1}, \ldots, G_{\alpha_N}$, s.t. $\bigcup_{i=1}^N G_{\alpha_i} \supset K$.]

Heine-Borel 定理

 \mathbb{R}^n \dotplus

K 紧 \iff K 有界闭集

 $Proof.(\Longrightarrow)$ 设 K 是紧集.

- 1. 证明 K 有界: 考虑开球族 $\{B(0,n): n \in \mathbb{N}\}$, 显然 $\bigcup_{n=1}^{\infty} B(0,n) = \mathbb{R}^n \supset K$. 由于 K 是紧集, 存在有限子覆盖, 即存在 $N \in \mathbb{N}$, 使得 $K \subset B(0,N)$. 因此, K 是有界的.
- 2. 证明 K 是闭集: 只需证明 K^{c} 是开集. 任取 $x \in K^{c}$, 对任意 $y \in K$, 由于 $x \neq y$, 存在开球 $U_{y} = B(y, r_{y})$ 和 $V_{y} = B(x, r_{y})$ 使得 $r_{y} = \frac{1}{2}|x y|$ 且 $U_{y} \cap V_{y} = \emptyset$. 显然 $\{U_{y} : y \in K\}$ 构成 K 的一个开覆盖. 由于 K 是紧的, 存在有限子覆盖, 即存在 $y_{1}, \ldots, y_{m} \in K$, 使得 $K \subset \bigcup_{i=1}^{m} U_{y_{i}}$. 令 $V = \bigcap_{i=1}^{m} V_{y_{i}}$, 则 V 是 x 的一个开邻域, 且 $V \cap K = \emptyset$. 因此, $V \subset K^{c}$, 这表明 K^{c} 是开集, 从而 K 是闭集.
- (⇐=) 反证法。考虑 n=2 的情形。

设 $\{G_{\alpha}\}_{\alpha\in\Lambda}$ 为 K 的一个开覆盖, 但其不存在任何有限开子集可覆盖 K.

将 I 四等分,则其中必有一块 (记为 I_1) 与 K 的交 $\{G_{\alpha}\}$ 有限覆盖.

再将 I_1 四等分,则其中必有一块 (记为 I_2) 与 K 的交 $\{G_{\alpha}\}$ 有限覆盖.

继续可得一列闭矩形 $I_k, k = 1, 2, ...$

- 1. $\forall k, I_k \cap K$ 不能被 $\{G_\alpha\}_{\alpha \in \Lambda}$ 的有限个覆盖.
- $2. \lim_{k \to \infty} \operatorname{diam}(I_k \cap K) = 0.$

由 Cantor 区间套定理知:

$$\exists ! \xi \in \bigcap_{k=1}^{\infty} (I_k \cap K)$$

$$\xi \in K \subset \bigcup_{\alpha \in \Lambda} G_{\alpha} \Rightarrow \exists G_*, \text{s.t.} \xi \in G_*$$

 $G_* \not \exists \delta > 0, \text{s.t.} B_{\delta}(\xi) \subset G_*.$

由于 $\xi \in I_k \cap K(\forall k)$

 $\lim_{k\to\infty} \operatorname{diam}(I_k\cap K), \, \text{ in } \, k \, \, \text{ 充分大时, } \, f \, \, I_k\cap K\subset B_\delta(\xi).$

与 $I_k \cap K$ 不能被 $\{G_\alpha\}_{\alpha \in \Lambda}$ 有限个覆盖矛盾.

设 $K \subset \mathbb{R}^n$, 则以下三个命题等价:

- (1) K 有界闭.
- (2) K 紧.
- (3) K 中任何序列均有收敛子列, 且其极限 $\in K$. (自列紧)

Proof. (1) \iff (2) 已证.

- $(1) \Longrightarrow (3)$ 显然. (B-W)
- $(3) \Longrightarrow (1)$ 反证法. K 闭是显然的,因为要求聚点都在 K 中。

下面反证 K 有界. 设 K 无界,则存在 $\{x_k\} \subset K$ 满足 $\|x_k\| > k$,但 $\{x_k\}$ 不可能有收敛子 列.

多元连续映射 1.4

多元连续映射

 $\Re f: D \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$

$$x \longmapsto f(x)$$

为 n 元 m 维向量值函数.

D 称为 f 的定义域.

 $f(D) := \{f(x) \mid x \in D\}$ 称为 f 的像集.

 $Graph(f) := \{(x, f(x)) \mid x \in D\}$ 称为 f 的图像.

多元函数极限

设 $D \subset \mathbb{R}^n$, x_0 是 D 的一个聚点. $f: D \setminus \{x_0\} \to \mathbb{R}^m$

$$\lim_{x \to x_0} f(x) = A \iff \forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in B_{\delta}(x_0) \cap (D \setminus \{x_0\}) :$$

$$||f(x) - A|| < \varepsilon$$

Remark. 极限存在意味着: 自变量无论以什么样趋近于 x_0 时, 对应的函数值均趋于 A.

所以, 若x 沿某条曲线趋近于 x_0 时, 极限不存在, 或x 沿某两条曲线趋近于 x_0 时, 得到不同 的极限,则 f 在 x_0 处极限不存在. \Diamond

(1)
$$f(x,y) = \frac{xy}{x^2 + y^2}$$
, $(x,y) \neq (0,0)$.

E.g.
$$(1) \ f(x,y) = \frac{xy}{x^2 + y^2}, (x,y) \neq (0,0).$$

$$(2) \ f(x,y) = \frac{x^2y}{x^4 + y^2}, (x,y) \neq (0,0).$$

(1) 探讨 $\lim_{(x,y)\to(0,0)} f(x,y)$ 存在与否? 我们沿着 y = kx 趋近于 (0,0).

$$\lim_{\substack{x \to 0 \\ x \to 0}} \frac{xy}{x^2 + y^2} = 0.$$

$$\lim_{\substack{x \to 0 \ y = kx}} \frac{xkx}{x^2 + k^2x^2} = \frac{k}{1 + k^2}$$
. 极限不存在.

(1) 探讨
$$\lim_{(x,y)\to(0,0)} f(x,y)$$
 存在与否? 我们沿着 $y = kx$ 趋近于 $(0,0)$.
$$\lim_{\substack{x\to 0\\y=0}} \frac{xy}{x^2+y^2} = 0.$$

$$\lim_{\substack{x\to 0\\y=kx}} \frac{xkx}{x^2+k^2x^2} = \frac{k}{1+k^2}.$$
 极限不存在.
$$(2) k \neq 0, 类似的, 我们沿着 $y = kx$ 趋近于 $(0,0)$.
$$\lim_{\substack{x\to 0\\y=kx}} \frac{x^2kx}{x^4+k^2x^2} = 0.$$

$$\lim_{(x,y)\to(0,0)} f(x,y)$$
 不存在.$$

$$\lim_{(x,y)\to(0,0)} f(x,y)$$
 不存在.

与一元函数极限一样,多元函数极限同样拥有唯一性、局部有界性、夹逼性、局部保序性等性 质,也同样可以进行四则运算。

也可引入另一种极限概念: 设 f 在 D 上有定义,若 $\forall y \neq y_0$, $\lim_{x \to x_0} f(x,y) = \varphi(y)$ 存在,则可考虑 $\lim_{y \to y_0} \varphi(y) = \lim_{y \to y_0} \lim_{x \to x_0} f(x,y)$. (比如你可以先固定 x,然后让 y 趋近于 y_0 ,然后再让 x 趋近于 x_0) 称为 f 在 (x_0, y_0) 处先 x 后 y 的累次极限.

Prop

设 f 在 (x_0, y_0) 的一个空心邻域上有定义,设 $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A$ 且 $\forall y \neq y_0$,有 $\lim_{x\to x_0} f(x,y) = \varphi(y)$ 存在,则

$$\lim_{y \to y_0} \lim_{x \to x_0} f(x, y) = A.$$

讨论完了极限, 我们可以继续讨论连续性。

连续性

(1) 设 $f: D \to \mathbb{R}^m$, $x_0 \in D$, 称 f 在 x_0 处连续, 若

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in B_{\delta}(x_0) \cap D: \ |f(x) - f(x_0)| < \varepsilon$$

(2) 若 $\forall x \in D$, f 在 x 处连续, 则称 $f \in C(D, \mathbb{R}^m)$.

如果将定义拓展到度量空间上: 设 (X, d_X) , (Y, d_Y) 为两个度量空间, $f: X \to Y$. 设 $x_0 \in X$, 称 f 在 x_0 处连续, 若

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in X, d_X(x, x_0) < \delta : \ d_Y(f(x), f(x_0)) < \varepsilon.$$

Remark. 若 x_0 为 D 的孤立点,则天然地 f 在 x 处连续;若 x_0 是 D 的聚点,则 $\lim_{x\to x_0}f(x)=f(x_0)$.

Prop

设 $D \subset \mathbb{R}^n$, $x_0 \in D$, $f: D \to \mathbb{R}^m$,

则 f 在 x_0 处连续 $\iff f^i: D \to \mathbb{R} \ (i=1,\ldots,m)$ 在 x_0 处连续.

思考题

 $f \in C((X, d_X), (Y, d_Y))$ $\iff \forall Y$ 中的开集 V, 有 $f^{-1}(V)$ 在 X 中是开集. $(f^{-1}(V) = \{x \in X | f(x) \in V\})$

同样,和一元函数一样,多元函数连续性也有四则运算,复合运算等性质。(设 $g: D \to \mathbb{R}^k$, $f: \Omega \to \mathbb{R}^m$,且 $g(D) \subset \Omega$. 设 g 在 x_0 处连续,f 在 $g(x_0)$ 处连续,则 $f \circ g$ 在 x_0 处连续.)

1.5 连续映射的整体性质

我们这章节需要证明两个东西:

设 $k \subset \mathbb{R}^n, f \in C(k, \mathbb{R}^m)$, 则 f(紧集) = 紧, f(连通) = 连通.

运用这个"高维"的视角再来看一元函数我们证明的结论,我们发现一元情形下是这个的特例。一元时: [a,b] 紧,f([a,b]) 有界,有最值(相当于就在说 f([a,b]) 紧); [a,b] 连续,f([a,b]) 有介值定理(相当于就在说 f([a,b]) 连通)。

设 $k \subset \mathbb{R}^n$, $f \in C(k, \mathbb{R}^m)$, 则 f(k) 紧.

我们使用两种方法来证明。两种方法分别对应紧集的两个性质: 自列紧和有限开覆盖。

Proof. 1. 设 $\{y_k\} \subset f(k)$

则
$$\exists x_k \in K$$
 ,s.t. $f(x_k) = y_k \ (\forall k)$
$$\{x_k\} \subset K, \ K \ 列紧 \implies \exists \ \mathcal{F} \ \mathcal{J} \ \{x_{k_l}\} \to \xi \in K$$

$$f(k) \xleftarrow{f \ \text{在}\xi \ \text{处连续}} f(x_{k_l}) = y_{k_l}$$

2. 设 $\{G_{\alpha}, \alpha \in \Lambda\}$ 为 f(k) 的一个开覆盖.

由 f 的连续性, $f^{-1}(G_{\alpha})$ 在 k 中开 $(\forall \alpha \in \Lambda)$

$$(f^{-1}(\ \mathcal{H}\)=\mathcal{H})\ \coprod f^{-1}(\bigcup_{\alpha\in\Lambda}G_{\alpha})=\bigcup_{\alpha\in\Lambda}f^{-1}(G_{\alpha})\supset K$$

$$k \not \mathbb{K} \implies f^{-1}(G_{\alpha_1}) \cup \dots \cup f^{-1}(G_{\alpha_l}) \supset K \implies G_{\alpha_1} \cup \dots \cup G_{\alpha_l} \supset f(k)$$

Cantor

设 $f \in C(k,\mathbb{R}^m),\, k \subset \mathbb{R}^n$ 紧, 则 f 在 k 上一致连续.

即 $\forall \varepsilon > 0$, $\exists \delta > 0$, $\forall x_1, x_2 \in k$ 且 $|x_1 - x_2| < \delta$:

$$|f(x_1) - f(x_2)| < \varepsilon$$

连通

(1) 设 $E \subset \mathbb{R}^n$, 设 $\gamma \in C([0,1],\mathbb{R}^n)$ 且 $\gamma([0,1]) \subset E$, 则称 γ 是 E 中从 $\gamma(0)$ 起至 $\gamma(1)$ 终的一条 道路.

(2) 称 $E \subset \mathbb{R}^n$ 为 (道路) 连通集, 若 $\forall a,b \in E$, 存在 E 中一条道路以 a,b 为起止点.

设 $E \subset \mathbb{R}^n$ 连通, $f \in C(E, \mathbb{R}^m)$, 则 f(E) 连通.

证明.

$$f\circ\gamma\in C([0,1],\mathbb{R}^n)$$

$$f\circ\gamma([0,1])\subset f(E)$$

 $f \circ \gamma$ 是连接 y_1, y_2 的一条道路.

2 多元函数的微分学

2.1 偏导数与微分

偏导数

设 $D \subset \mathbb{R}^2$ 开, $f: D \to \mathbb{R}$, $(x_0, y_0) \in D$, 称

$$\frac{\partial f}{\partial x}(x_0, y_0) := \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$

为 f 在 (x_0, y_0) 处关于 x 的偏导数, 也可记为 f_x . $\forall (x,y) \in D$, f 在 (x,y) 处关于 x 的偏导数存在, 则

$$\frac{\partial f}{\partial x}:D\longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto \frac{\partial f}{\partial x}$$

称为 f 关于 x 的偏导函数.

Remark. (1) $\frac{\partial f}{\partial y}$ 可类似定义

$$\frac{\partial f}{\partial y}(x_0, y_0) := \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}$$

(2) $f: D \subset \mathbb{R}^n \longrightarrow \mathbb{R}$

$$\frac{\partial f}{\partial x^i}(X_0) := \lim_{h \to 0} \frac{f(x_0^1, \dots, x_0^{i-1}, x_0^i + h, x_0^{i+1}, \dots, x_0^n) - f(X_0)}{h}$$

 \Diamond

高阶偏导

设 $f:D\subset\mathbb{R}^n\to\mathbb{R}$, 关于 x^i 可求偏导, 且 $\frac{\partial f}{\partial x^i}:D\to\mathbb{R}$ 关于 x^j 可继续求偏导, 称其关于 x^j 的 偏导数为 f 关于 x^i, x^j 的二阶偏导, 记为

$$\frac{\partial^2 f}{\partial x^j \partial x^i} = \frac{\partial}{\partial x^j} \left(\frac{\partial f}{\partial x^i} \right)$$

$$f_{x^i x^j} = (f_{x^i})_{x^j}$$

Example.
$$f(\vec{x}) = \|\vec{x} - \vec{x}_0\|, \ \vec{x} \in \mathbb{R}^n = \left(\sum_{k=1}^n (x^k - x_0^k)^2\right)^{\frac{1}{2}}$$

$$\frac{\partial f}{\partial x^i} = \frac{1}{2} \left(\sum_{k=1}^n (x^k - x_0^k)^2 \right)^{-\frac{1}{2}} \cdot 2(x^i - x_0^i) = \frac{x^i - x_0^i}{\|\vec{x} - \vec{x}_0\|}$$

$$\left(\frac{\partial f}{\partial x^1}, \cdots, \frac{\partial f}{\partial x^n}\right) = \frac{\vec{x} - \vec{x}_0}{\|\vec{x} - \vec{x}_0\|}$$

 \Diamond

Remark. $f: D \subset \mathbb{R}^n \to \mathbb{R}$

$$\nabla f(x) := \left(\frac{\partial f}{\partial x^1}, \cdots, \frac{\partial f}{\partial x^n}\right)(x)$$

称为 f 的梯度, grad f.

然而,偏导数存在并不意味着函数连续,比如 $f(x,y) = \frac{xy}{x^2 + y^2}$ 在 (0,0) 处的偏导数存在,但 f 在 (0,0) 处极限不存在。我们需要一个更强的性质来保证函数的连续性。

偏导数有界 ⇒ **连续** 设 f 在 (x_0,y_0) 的某个邻域内关于 x,y 偏导数均存在且有界, 则 f 在 (x_0,y_0) 处连续.

Proof.

$$|f(x,y) - f(x_0,y_0)| \le |f(x,y) - f(x_0,y)| + |f(x_0,y) - f(x_0,y_0)|$$

$$\stackrel{A}{=} \left| \frac{\partial f}{\partial x}(\xi_1, y) \right| |x - x_0| + \left| \frac{\partial f}{\partial y}(x_0, \xi_2) \right| |y - y_0|$$

$$\leq M \left(|x - x_0| + |y - y_0| \right)$$

 \Diamond

A: 一元函数微分中值定理. $\xi_1 \in (x_0, x), \, \xi_2 \in (y_0, y)$.

Remark. 这是一个充分条件,(而且是很强的一个,相当于是一个局部的 Lipschitz 条件)但不是必要条件,比如 \sqrt{x} 在 x=0 处的导数不存在,但是在 x=0 处连续。

方向导数

设 $f:D\subset\mathbb{R}^n\to\mathbb{R},\,x_0\in D,\, \pmb{V}\in\mathbb{R}^n,\,$ 定义 f 在 x_0 处沿 \pmb{V} 的方向导数为 (沿 \pmb{V} 正方向逼近)

$$D_{\mathbf{V}}f(x_0) := \lim_{t \to 0^+} \frac{f(x_0 + t\mathbf{V}) - f(x_0)}{t}$$

Remark.
$$\mathbf{V} = e_i = (0, 0, \underbrace{1}_i, 0, \dots, 0) \ D_{e_i} f(x_0) = -D_{-e_i}(x_0) \Rightarrow D_{e_i} f(x_0) = \frac{\partial f}{\partial x^i}(x_0).$$

Example. $f = ||x||, x \in \mathbb{R}^n$

$$D_V f(x) = \lim_{t \to 0^+} \frac{\|x + tV\| - \|x\|}{t} = \frac{\mathrm{d}}{\mathrm{d}t}|_{t=0} \|x + tV\|$$

$$\frac{\mathrm{d}}{\mathrm{d}t}|_{t=0} \left(\sum_{i=1}^{n} (x^{i} + tv^{i})^{2} \right)^{\frac{1}{2}} = \frac{1}{2} \left(\sum_{i=1}^{n} (x^{i} + tv^{i})^{2} \right)^{-\frac{1}{2}} \cdot 2 \sum_{i=1}^{n} (x^{i} + tv^{i})v^{i}|_{t=0} = \frac{x \cdot V}{\|x\|} = \nabla f(x) \cdot V$$