Etapa 1

Leonardo de Andrade Santos

Para o desenvolvimento desse projeto foi escolhido o Transistor MP42141, cujo o datasheet esta disponivel no link do nome.

Esse transistor sera operado na frequencia de 2.4GHz para aplicações IoT.

Observou-se que, quando ele esta polarizado com uma corrente de $I_c=5mA$ e uma tensão $V_{\rm CE}=10V$ o parametro $h_{\rm FE}$ e 125, portanto esses foram os valores selecionados para utilizar como referência para a tabela de parâmetro S de espelhamento.

A partir dela foi gerado o arquivo .s2p o qual esta ilustrado pela Figure 1 a seguir:

!	MP42141 S PARAMETERS							
!	Vds=10V Id=5mA							
į.	LAST U	PDATED 30	-05-23					
!								
# MHZ S	MAR 5	0						
! FREQ	S11		S21		S12		S22	
!MHZ	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
400	.626	-112.9	7.563	110.3	.044	43.0	.726	-34.3
500	.618	-125.0	6.425	102.1	.046	38.9	.660	-32.9
800	.577	-150.8	4.363	84.7	.054	34.3	.616	-38.6
1200	.566	-170.1	3.073	67.7	.062	32.9	.577	-43.1
1600	.661	-175.9	2.344	54.1	.069	32.6	.578	-50.4
2000	.561	166.2	1.894	43.2	.078	32.6	.571	-63.6
2400	.597	156.6	1.608	30.6	.084	30.3	.572	-70.8
2800	.506	147.8	1.408	17.9	.093	27.0	.565	-81.4
3200	.630	141.1	1.200	6.8	.099	24.6	.583	-90.7
3600	.651	133.7	1.072	-4.6	.106	21.7	.597	-102.6
4000	.643	132.9	.933	-6.5	.109	24.7	.599	-109.2
4400	.643	127.7	.796	-18.4	.112	21.4	.637	-121.6
4800	.656	122.7	.702	-28.8	.123	17.0	.686	-135.2
5000	.652	120.1	.657	-34.1	.123	14	.693	-142.1

Figure 1: Tabela .s2p

Em seguida foi importado esse arquivo para dentro da carta de smith, que deram os seguintes resultados ilustrados pela Figure 2 a seguir:

Figure 2: Graficos da Carta de Smith

A partir da tabela de ganho ilustrada pela Figure 3, foi possivel selecionar a frequência de operação do transistor. Foi optado em utilizar a frequência de 2.4GHz pois apresenta um ganho e uma estabilidade razoaveis K<1.

Figure 3: Tabela de Ganho

Assim com base nessa tabela é de se esperar que o amlificador perfeitamente casado e que tenha um ganho aproximado de 9 dB para a frequência selecionada.