

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Experiment no 4

Aim:

Create basic charts using R programming language on dataset Crime or Police / Law and Order

- Basic Bar chart, Pie chart, Histogram, Time line chart, Scatter plot, Bubble plot
- Write observations from each chart

Example

https://app.powerbigov.us/view?r=eyJrljoiYmU4MDhiYWItYjEwOS00ZDg5LTk1OTUtNzNIMmU0 MDFjNTk5liwidCl6ljl5MzU3MDllLWMxMGMtNDgwOS1hMzAyLTg1MmQzNjlmODcwMCJ9

Objectives:

- To understand and apply basic data visualization techniques in R.
- To create various types of charts (Bar chart, Pie chart, Histogram, Timeline chart, Scatter plot, Bubble plot) using a crime-related dataset.
- To interpret and analyze the data through visual representations.

Theory:

Data visualization is an essential skill in data analysis that helps in understanding trends, patterns, and relationships within a dataset. R, a powerful statistical programming language, provides a wide range of tools for creating visually appealing and informative charts. In this experiment, we will use basic chart types to analyze crime data and derive insights.

Chart Types:

- 1. **Bar Chart:** A bar chart is used to display categorical data with rectangular bars representing the frequency or count of each category.
- 2. **Pie Chart:** A pie chart shows the proportion of categories as slices of a pie, useful for comparing parts of a whole.
- 3. **Histogram:** A histogram is used to represent the distribution of numerical data by grouping it into bins.
- 4. **Timeline Chart:** A timeline chart visualizes data points in chronological order, often used to show trends over time.
- 5. **Scatter Plot:** A scatter plot displays the relationship between two numerical variables using points in a Cartesian plane.
- 6. **Bubble Plot:** A bubble plot is an extension of a scatter plot where the size of the points (bubbles) represents an additional variable.

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Steps to Perform in R:

1. Set Up the Environment:

Install and load necessary libraries.

R Copy code install.packages("ggplot2") install.packages("dplyr") library(ggplot2) library(dplyr)

2. Load the Dataset:

 Load the crime dataset (replace crime_data.csv with your dataset's file name).

```
R
Copy code
crime_data <- read.csv("crime_data.csv")</pre>
```

3. Data Preprocessing:

 Inspect and clean the data if necessary (handle missing values, filter relevant columns, etc.).

```
R
Copy code
crime_data <- crime_data %>% na.omit()
```

4. Create Visualizations:

```
Bar Chart:
```

```
R
Copy code
ggplot(crime_data, aes(x = Crime_Type)) +
  geom_bar() +
  ggtitle("Number of Crimes by Type") +
  xlab("Type of Crime") + ylab("Number of Incidents")
```

 Observation: This chart shows the frequency of each crime type, helping identify the most and least common crimes.

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

Pie Chart:

R

Copy code

```
crime_summary <- crime_data %>% group_by(Crime_Type) %>%
summarise(Count = n())
ggplot(crime_summary, aes(x = "", y = Count, fill = Crime_Type)) +
  geom_bar(width = 1, stat = "identity") +
  coord_polar("y") +
  ggtitle("Crime Type Distribution")
```

 Observation: The pie chart illustrates the proportion of each crime type within the dataset, revealing dominant categories.

Histogram:

R

Copy code

```
ggplot(crime_data, aes(x = Crime_Severity)) +
  geom_histogram(binwidth = 1) +
  ggtitle("Distribution of Crime Severity") +
  xlab("Crime Severity") + ylab("Frequency")
```

 Observation: The histogram shows the distribution of crime severity, identifying common severity levels.

Timeline Chart:

```
R
Copy code
```

```
ggplot(crime_data, aes(x = Date, y = Crime_Count)) +
  geom_line() +
  ggtitle("Trend of Crimes Over Time") +
  xlab("Date") + ylab("Number of Crimes")
```

 Observation: The timeline chart highlights trends in crime frequency over time, revealing periods of high and low crime rates.

Scatter Plot:

```
R
Copy code
```

```
ggplot(crime_data, aes(x = Crime_Severity, y = Police_Response_Time))
+
   geom_point() +
   ggtitle("Crime Severity vs Police Response Time") +
   xlab("Crime Severity") + ylab("Response Time (minutes)")
```

Observation: The scatter plot examines the relationship between crime severity

Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai) Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India and police response time, identifying any correlation.

Bubble Plot:

R

Copy code

```
ggplot(crime_data, aes(x = Crime_Severity, y = Police_Response_Time,
size = Crime_Count)) +
  geom_point(alpha = 0.5) +
  ggtitle("Crime Severity, Response Time, and Frequency") +
  xlab("Crime Severity") + ylab("Response Time (minutes)")
```

 Observation: The bubble plot adds another dimension by showing the frequency of crimes with varying severity and response times.

Outcomes:

- Successfully created multiple types of charts using R to visualize crime data.
- Gained insights into the distribution, frequency, and relationships within the crime dataset.
- Developed an understanding of how different chart types can be used to analyze and present data effectively.

Conclusion:

This experiment demonstrated the power of data visualization in uncovering patterns and trends in a crime dataset. By using R, we efficiently created visual representations that allowed us to explore the data from different perspectives, leading to better-informed conclusions.

Submission

https://docs.google.com/forms/d/e/1FAIpQLScrs2IYhqrJPz7M9IVvAqZn3M8cM5H1hc58ZpJRC O2jxcWuxg/viewform?usp=sf link