Total No. of Questions: 09]

[Total No. of Pages: 02

## Paper ID [CS203]

(Please fill this Paper ID in OMR Sheet)

DE1-07

B.Tech. (Sem. - 3<sup>rd</sup>/4<sup>th</sup>) www.allnehectily ou.com.
MATHEMATICS - III (CS - 203)

Time: 03 Hours

Maximum Marks: 60

**Instruction to Candidates:** 

- 1) Section A is Compulsory.
- 2) Attempt any Four questions from Section B.
- 3) Attempt any Two questions from Section C.

## **Section - A**

Q1)

 $(10 \times 2 = 20)$ 

- a) State Taylor's Expansion.
- b) State and prove second shifting property of Laplace transforms.
- c) Find the inverse Laplace transform of  $2s/4s^2 + 16$ .
- d) State Cauchy's integral theorem.
- e) Show that function  $|z|^2$  is not analytic at any point.
- f) Write down one dimensional, two dimensional heat flow equations.
- g) Show that if |z+1| < 1,  $z^{-2} = 1 + \sum_{n=1}^{\infty} (n+1)(z+1)^n$ .
- h) Find the length of the curve  $y = \frac{4}{3} x^{3/2}$  for  $0 \le x \le 20$ .
- i) State and prove sufficient condition for a function to be analytic.
- j) Determine a,b,c,d so that function  $f(z) = (x^2 + axy + by^2) + i(cx^2 + dxy + y^2)$  is analytic.

*P.T.O.* 

R-60

## Section - B

$$(4 \times 5 = 20)$$

- **Q2)** Expand  $f(z) = \frac{1}{z^2(z-i)}$  as a Laurent's series about i and hence find the residue. There at.
- Q3) Evaluate  $\oint_C \frac{z-23}{z^2-4z-5} dz$ , where C is the circle |z-2|=4
- **Q4)** Find the image of circle |z-1| = 1 in the w-plane under the mapping  $w = z^2$ .
- **Q5**) Determine the analytic function whose real part is  $e^x (\cos y y \sin y)$ .
- **Q6**) Verify the Roll's theorem to the function  $f(x) = e^{-x} \sin x$ ,  $x \in [0, \pi]$ .

## Section - C

$$(2 \times 10 = 20)$$

- **Q7)** Evaluate  $\int_{-\infty}^{\infty} \frac{\cos x}{x^2 + a^2} dx.$
- **Q8)** solve  $\nabla^2 u = 0$ , under the condition (h = k = 1), u(0,y) = 0, u(4,y) = 12 + y, for  $0 \le y \le 4$ ; u(x,0) = 3x,  $u(x,4) = x^2$  for  $0 \le x \le 4$ .
- **Q9)** A string of length ' $\ell$ ' is initially at rest in equilibrium position and each of its points is given the velocity  $\left(\frac{\partial y}{\partial t}\right)_{t=0} = b \sin^3 \frac{\pi x}{\ell}$ . Find the displacement y(x,t).

