§ 2 反三角函数不等式

$$x < \arcsin x < \frac{x}{1 - x^2}$$
.

提示:利用 arcsinx 的 Taylor 级数展开式.

- 2. $\ddot{A} 1 \leq x < 1/\sqrt{2}$,则 $\arcsin x < \arccos x$; 若 $1/\sqrt{2} < x \leq 1$,则不等号反向.
- 3. 若 $0 \le x < 1/2$,则

$$\arcsin x < \arcsin(1-x)$$
.

- 4. 若 $-1 \le x < 0$,则 $\arccos x^2 < \arccos x$.
- 5. 若 $0 < x < \pi$,则 $\arcsin(x/6) + \arcsin[(2/3)\sin(x/4)] < x/3$.见[305]1991,98(1).
 - 6. 若0 < x < 1,则 $\sin(\arccos x) < \arcsin(\cos x)$.

提示:利用三角恒等式 $\sin(\arccos x) = \sqrt{1-x^2}$,

$$\arcsin(\cos x) = \arcsin[\sin(\pi/2 - x)] = \pi/2 - x$$
,只要证 $\sqrt{1 - x^2} < \pi/2 - x$.

7. 当 $|x| \leq 1$ 时,有 $\cos(\arcsin x) < \arcsin(\cos x)$.

提示:令
$$x = \cos\alpha$$
,则 $\arcsin(\cos x) - \cos(\arcsin x) = \frac{\pi}{2} - x - \sqrt{1 - x^2} = \frac{\pi}{2} - (\cos\alpha + \sin\alpha) = \frac{\pi}{2} - \sqrt{2}\sin(\alpha + \frac{\pi}{4}) > \frac{\pi}{2} - \sqrt{2} > 0.$

- 8. Shafer-Fink 不等式: $\frac{3x}{2+\sqrt{1-x^2}} \leqslant \arcsin x \leqslant \frac{\pi x}{2+(\pi-2)\sqrt{1-x^2}};$

$$\frac{6\sqrt{1-x}}{2\sqrt{2}+\sqrt{1+x}} < \arccos x < \frac{\sqrt[3]{4} \cdot \sqrt{1-x}}{(1+x)^{1/6}}.$$

10.
$$|\arctan x| < \frac{2|x|}{1+\sqrt{1+x^2}} < 2.$$

- 11. $| \operatorname{arctg} x \operatorname{arctg} y | \leq 2 | \operatorname{arctg} \frac{x y}{2} | \leq | x y |$.
- 12. Rangarajan 不等式:设x < y, xy > -1, 则

$$arctgy - arctgx < \frac{\pi}{2} \cdot \frac{y - x}{\sqrt{(1 + x^2)(1 + y^2)}}$$
. ($\mathbb{R}[4]P.462$)

13. 设x > 0,则

(1)
$$\frac{x}{1+x^2} < \arctan x < x$$
; (2) $x - x^3/3 < \arctan x < x$.

(3)
$$(x + x^{-1}) \operatorname{arctg} x > 1$$
.

$$(x + x^{-1})\operatorname{arctg} x = \frac{2\alpha}{\sin 2\alpha} > 1.$$

14. 设x > 0,则

$$\frac{1}{2x}\ln(1+x^2) < \arctan(x < (1+x)\ln(1+x);$$

而当
$$\frac{1}{2} \le x \le 1$$
 时,有 $\arctan x \ge \ln(1+x^2) - \ln 2 + (\pi/4)$.

15. [MCM]. 设 x, y, z 为正数,且 $arctgx + arctgy + arctgz < \pi$.则 xyz < x + y + z.

16. 设
$$0 < \alpha_k < \frac{\pi}{2} \cdot \sum_{k=1}^n (\sin \alpha_k)^2 = 1$$
,则
$$\sum_{k=1}^n \alpha_k \leqslant n \arcsin \frac{1}{\sqrt{n}} \cdot (程若礼, [348], 2000, 5:25 - 26)$$