

소프트웨어/하드웨어의 아키텍처 및 시스템의 정의, 분석, 설계, 검증을 지원하는 효과적인 방법론

효율적인 협업환경 지원

운영 요구사항에 대한 적합성 검증 및 영향 분석

Operational Analysis 사용자들이 시스템을 통하여 얻고자 하는 목표 및 요구조건

Functional& Non Functional Need 시스템이 제공해야 할 기능 및 요구도

Logical Architecture 시스템의 작동 방식 및 논리적 구조

Physical Architecture 실제 시스템의 물리적 구조 및 개발/제작 방식

top-down bottom-up, iterative, legacy-based, mixed 방식 등 대부분의 개발 프로세스와의 호환성

Customer Operational Need Analysis

사용자들이 시스템을 통해 얻고자 하는 목표 및 요구 조건

- ✔ 기능 동작 (특성) 정의
- ✔ 필요 기능 분석 수행

System/ SW/HW Need Analysis

시스템이 제공해야 할 기능 및 요구도

- ✓ 시스템 성능에 대한 Trade-off 분석 수행
- ✓ Functional, Non-functi onal 분석 수행
- ✓ Requirements의 형식화 및 통합화

Logical Architecture Design

시스템의 작동방식 및 논리적 구조

- ✔ 아키텍처의 Driver 및 Viewpoint 정의
- → 컴포넌트 내 아키텍처의 구조 정의
- ✔ 최적의 절충 아키텍처 선택

Physical Architecture Design

실제 시스템의 물리적 구조 및 개발/제작 방식

- ✔ 아키텍처 패턴(양식) 정의
- ✓ 기존 물리적 설계 자산의 재사용
- ✔ 참조용 아키텍처 설계
- ✔ 검증 및 확인

Development Contracts

개별 설계자/이해관계자 요구사항

- ✔ 부품 품질 검즁 전략 수립
- ✓ 부품 구성 (Product Brea kdown Structure)과 해당 부품들 간의 연동 방식 정의

- 특정 동작 기능
- 주변 장치, 동작 개체
- 주변 장치 동작
- 주변 장치 및 동작들과의 연동
- 동작 및 연동에 사용되는 정보
- 기능 동작 절차와 연계 활동
- 동적 기능 시나리오
- 주변 장치와 시스템, 특정 기능
- 시스템 기늉들과 주변 장치들
- 기능들간 Dataflow 교환
- Dataflow 기반 Functional Chain
- 기늉 내/기늉 간 사용되는 정보와 Data Model
- 동적 기능 시나리오
- Mode와 State

Plus:

- 컴포넌트(내부 요소)
- 내부 포트와 인터페이스
- 내부 요소들간 전달
- 내부 요소 별 기능 배분
- 내부 요소간 인터페이스 검증

Plus:

- 논리를 정의하고 그 기반으로 동작 하는 요소들
- 동작 실행에 필요한 리소스를 제공 하는 시스템 구현 요소
- 시스템 구현 요소 간의 물리적 연결

- 구성 요소 트리
- 파트 번호와 수량
- 구현 규칙 (예상 동작, 인터페이스, 시나리오 , 필요 리소스, 비기능적 특성 등)

Dataflow : functions, op. activities interactions & exchanges

Scenarios:

actors, system, components interactions & exchanges

Functional chains, operational processes through functions & op.activities

Modes & states of actors, system, components

MODE 1

MODE 2

Breakdown of functions & components

Data model :

dataflow & scenario contents, definition & justification of interfaces

Component wiring: all kinds of components

Allocation

of op.activities to actors, of functions to components, of behav.components to impl.components, of dataflows to interfaces, FUNCTION

FUNCTION

BEHAVIORAL COMPONENT

BEHAVIORAL COMPONENT

of elements to configuration items

Verifying & checking solution against

Non-functional & Industrial Stakes

Method layers	Performance specific data sample	Safety specific data sample
OPERATIONAL NEED ANALYSIS	위험요소에 대한 최대 반용 시간	불안 요소들
FUNCTIONAL/NONFUNCTIONAL NEED ANALYSIS	위험요소에 대처하는 Functional Chain Functional Chain의 임계치	이벤트 처리에 할당된 필수 Functional Chain
LOGICAL ARCHITECTURE DESIGN	처리와 교환의 복잡성 Functional Chain ഇ당량	Functional Chain을 보장하기 위한 중복 경로
PHYSICAL ARCHITECTURE DESIGN	Functional Chain에서 소모되는 리소스 결과 계산 지연 시간	일반적 실패 모드 Functional Chain으로부터 전파되는 오류
CONTRACTS FOR DEVELOPMENT & IVVQ	지연 시간을 만족하기 위해 힐당된 리소스	요구 신뢰도 수준

- 비용 & 일정
- 인터페이스
- 성능

- ✓ 유지보수성
- 안전성/보안성
- ✓ 기타 등등

- **IVVQ**
- 제품 정책

THALES