

Shireen Elhabian and Aly A. Farag University of Louisville, CVIP Lab September 2009

Outline

- LDA objective
- Recall ... PCA
- Now ... LDA
- LDA ... Two Classes
 - Counter example
- LDA ... C Classes
 - Illustrative Example
- LDA vs PCA Example
- Limitations of LDA

LDA Objective

- The objective of LDA is to perform dimensionality reduction ...
 - So what, PCA does this ⊗...
- However, we want to preserve as much of the class discriminatory information as possible.
 - OK, that's new, let dwell deeper ◎ ...

Recall ... PCA

- In PCA, the main idea to re-express the available dataset to extract the relevant information by reducing the redundancy and minimize the noise.
- We didn't care about whether this dataset represent features from one or more classes, i.e. the <u>discrimination power was not taken into consideration</u> while we were talking about PCA.
- In PCA, we had a dataset matrix \mathbf{X} with dimensions mxn, where columns represent different data samples.
- We first started by subtracting the mean to have a zero mean dataset, then we computed the covariance matrix $S_x = XX^T$.
- Eigen values and eigen vectors were then computed for S_x . Hence the new basis vectors are those eigen vectors with highest eigen values, where the number of those vectors was our choice.
- Thus, using the new basis, we can project the dataset onto a less dimensional space with more powerful data representation.

Now ... LDA

- Consider a pattern classification problem, where we have C-classes, e.g. seabass, tuna, salmon ...
- Each class has N_i *m*-dimensional samples, where i = 1, 2, ..., C.
- Hence we have a set of *m*-dimensional samples $\{x^1, x^2, ..., x^{Ni}\}$ belong to class ω_i .
- Stacking these samples from different classes into one big fat matrix **X** such that each column represents one sample.
- We seek to obtain a transformation of X to Y through projecting the samples in X onto a hyperplane with dimension *C-1*.
- Let's see what does this mean?

This line succeeded in separating the two classes and in the meantime reducing the dimensionality of our problem from two features (**x**₁,**x**₂) to only a scalar value **y**.

- Assume we have *m*-dimensional samples $\{\mathbf{x^1}, \mathbf{x^2}, \dots, \mathbf{x^N}\}$, N_1 of which belong to ω_1 and N_2 belong to ω_2 .
- We seek to obtain a scalar y by projecting the samples x onto a line (C-1 space, C = 2).

$$y = w^{T}x \qquad where \quad x = \begin{bmatrix} x_{1} \\ \cdot \\ \cdot \\ x_{m} \end{bmatrix} \qquad and \quad w = \begin{bmatrix} w_{1} \\ \cdot \\ \cdot \\ w_{m} \end{bmatrix}$$

where w is the projection vectors used to project x to y.

Of all the possible lines we would like to select the one that maximizes the separability of the scalars.

- In order to find a good projection vector, we need to define a measure of separation between the projections.
- The mean vector of each class in \mathbf{x} and \mathbf{y} feature space is:

$$\mu_{i} = \frac{1}{N_{i}} \sum_{x \in \omega_{i}} x \quad and \quad \widetilde{\mu}_{i} = \frac{1}{N_{i}} \sum_{y \in \omega_{i}} y = \frac{1}{N_{i}} \sum_{x \in \omega_{i}} w^{T} x$$

$$= w^T \frac{1}{N_i} \sum_{x \in \omega_i} x = w^T \mu$$

- $= w^T \frac{1}{N_i} \sum_{\mathbf{x} \in \omega_i} \mathbf{x} = w^T \mu_i$ i.e. projecting **x** to **y** will lead to projecting the mean of **x** to the mean of **y.**
- We could then choose the distance between the projected means as our objective function

$$J(w) = |\widetilde{\mu}_{1} - \widetilde{\mu}_{2}| = |w^{T} \mu_{1} - w^{T} \mu_{2}| = |w^{T} (\mu_{1} - \mu_{2})|$$

• However, the distance between the projected means is <u>not a very</u> good measure since it does not take into account the standard deviation within the classes.

This axis yields better class separability

This axis has a larger distance between means

- The solution proposed by Fisher is to maximize a function that represents the difference between the means, normalized by a measure of the within-class variability, or the so-called *scatter*.
- For each class we define the **scatter**, an equivalent of the variance, as; (sum of square differences between the projected samples and their class mean).

$$\widetilde{s}_i^2 = \sum_{y \in \omega_i} (y - \widetilde{\mu}_i)^2$$

- \widetilde{S}_i^2 measures the variability within class ω_i after projecting it on the y-space.
- Thus $\widetilde{S}_1^2 + \widetilde{S}_2^2$ measures the variability within the two classes at hand after projection, hence it is called *within-class scatter* of the projected samples.

• The Fisher linear discriminant is defined as the linear function $\mathbf{w^Tx}$ that maximizes the criterion function: (the distance between the projected means normalized by the within-class scatter of the projected samples.

$$J(w) = \frac{\left|\widetilde{\mu}_{1} - \widetilde{\mu}_{2}\right|^{2}}{\widetilde{s}_{1}^{2} + \widetilde{s}_{2}^{2}}$$

• Therefore, we will be looking for a projection where examples from the same class are projected very close to each other and, at the same time, the projected means are as farther apart as possible

- In order to find the optimum projection w^* , we need to express J(w) as an explicit function of w.
- We will define a measure of the scatter in multivariate feature space **x** which are denoted as *scatter matrices*;

$$S_i = \sum_{x \in \omega_i} (x - \mu_i) (x - \mu_i)^T$$

$$J(w) =$$

$$S_w = S_1 + S_2$$

• Where S_i is the <u>covariance matrix</u> of class ω_i , and S_w is called the *within-class scatter matrix*.

• Now, the scatter of the projection y can then be expressed as a function of the scatter matrix in feature space x.

$$\widetilde{S}_{i}^{2} = \sum_{y \in \omega_{i}} (y - \widetilde{\mu}_{i})^{2} = \sum_{x \in \omega_{i}} (w^{T}x - w^{T}\mu_{i})^{2}$$

$$= \sum_{x \in \omega_{i}} w^{T} (x - \mu_{i})(x - \mu_{i})^{T} w$$

$$= w^{T} \left(\sum_{x \in \omega_{i}} (x - \mu_{i})(x - \mu_{i})^{T} \right) w = w^{T} S_{i} w$$

$$\widetilde{S}_{1}^{2} + \widetilde{S}_{2}^{2} = w^{T} S_{1} w + w^{T} S_{2} w = w^{T} (S_{1} + S_{2}) w = w^{T} S_{W} w = \widetilde{S}_{W}$$

Where \widetilde{S}_{W} is the <u>within-class scatter matrix</u> of the projected samples **y**.

• Similarly, the difference between the projected means (in y-space) can be expressed in terms of the means in the original feature space (x-space).

$$(\widetilde{\mu}_{1} - \widetilde{\mu}_{2})^{2} = (w^{T} \mu_{1} - w^{T} \mu_{2})^{2}$$

$$= w^{T} (\underline{\mu}_{1} - \underline{\mu}_{2})(\underline{\mu}_{1} - \underline{\mu}_{2})^{T} w$$

$$= w^{T} S_{B} w = \widetilde{S}_{B}$$

$$J(w) = \frac{|\widetilde{\mu}_{1}|}{\widetilde{S}_{1}^{2}}$$

- The matrix S_B is called the <u>between-class scatter</u> of the original samples/feature vectors, while \widetilde{S}_B is the between-class scatter of the projected samples y.
- Since S_B is the outer product of two vectors, its rank is at most one.

• We can finally express the Fisher criterion in terms of S_W and S_B as:

$$J(w) = \frac{\left|\widetilde{\mu}_{1} - \widetilde{\mu}_{2}\right|^{2}}{\widetilde{S}_{1}^{2} + \widetilde{S}_{2}^{2}} = \frac{w^{T} S_{B} w}{w^{T} S_{W} w}$$

• Hence J(w) is a measure of the difference between class means (encoded in the between-class scatter matrix) normalized by a measure of the within-class scatter matrix.

• To find the maximum of J(w), we differentiate and equate to zero.

$$\frac{d}{dw}J(w) = \frac{d}{dw}\left(\frac{w^T S_B w}{w^T S_W w}\right) = 0$$

$$\Rightarrow (w^T S_W w) \frac{d}{dw} (w^T S_B w) - (w^T S_B w) \frac{d}{dw} (w^T S_W w) = 0$$
$$\Rightarrow (w^T S_W w) 2S_B w - (w^T S_B w) 2S_W w = 0$$

Dividing by $2w^T S_w w$:

$$\Rightarrow \left(\frac{w^T S_W w}{w^T S_W w}\right) S_B w - \left(\frac{w^T S_B w}{w^T S_W w}\right) S_W w = 0$$

$$\Rightarrow S_B w - J(w) S_W w = 0$$

$$\Rightarrow S_W^{-1} S_B w - J(w) w = 0$$

Solving the generalized eigen value problem

yields

$$S_W^{-1}S_Bw = \lambda w$$
 where $\lambda = J(w) = scalar$

$$w^* = \underset{w}{\operatorname{arg\,max}} J(w) = \underset{w}{\operatorname{arg\,max}} \left(\frac{w^T S_B w}{w^T S_W w} \right) = S_W^{-1} (\mu_1 - \mu_2)$$

- This is known as Fisher's Linear Discriminant, although it is not a discriminant but rather a specific choice of direction for the projection of the data down to one dimension.
- Using the same notation as PCA, the solution will be the eigen vector(s) of $S_X = S_W^{-1} S_R$

- Compute the Linear Discriminant projection for the following twodimensional dataset.
 - Samples for class ω_1 : $\mathbf{X}_1 = (x_1, x_2) = \{(4,2), (2,4), (2,3), (3,6), (4,4)\}$
 - Sample for class ω_2 : $\mathbf{X}_2 = (x_1, x_2) = \{(9,10), (6,8), (9,5), (8,7), (10,8)\}$

• The classes mean are:

$$\mu_{1} = \frac{1}{N_{1}} \sum_{x \in \omega_{1}} x = \frac{1}{5} \left[\binom{4}{2} + \binom{2}{4} + \binom{2}{3} + \binom{3}{6} + \binom{4}{4} \right] = \binom{3}{3.8}$$

$$\mu_{2} = \frac{1}{N_{2}} \sum_{x \in \omega_{2}} x = \frac{1}{5} \left[\binom{9}{10} + \binom{6}{8} + \binom{9}{5} + \binom{8}{7} + \binom{10}{8} \right] = \binom{8.4}{7.6}$$

```
% class means
Mu1 = mean(X1)';
Mu2 = mean(X2)';
```

• Covariance matrix of the first class:

$$S_{1} = \sum_{x \in \omega_{1}} (x - \mu_{1})(x - \mu_{1})^{T} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 2 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3 \end{bmatrix} - \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3 \end{bmatrix} - \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix}$$

% covariance matrix of the first class S1 = cov(X1);

Covariance matrix of the second class:

$$S_{2} = \sum_{x \in \omega_{2}} (x - \mu_{2})(x - \mu_{2})^{T} = \left[\begin{pmatrix} 9 \\ 10 \end{pmatrix} - \begin{pmatrix} 8.4 \\ 7.6 \end{pmatrix} \right]^{2} + \left[\begin{pmatrix} 6 \\ 8 \end{pmatrix} - \begin{pmatrix} 8.4 \\ 7.6 \end{pmatrix} \right]^{2} + \left[\begin{pmatrix} 9 \\ 5 \end{pmatrix} - \begin{pmatrix} 8.4 \\ 7.6 \end{pmatrix} \right]^{2} + \left[\begin{pmatrix} 8 \\ 7 \end{pmatrix} - \begin{pmatrix} 8.4 \\ 7.6 \end{pmatrix} \right]^{2} + \left[\begin{pmatrix} 10 \\ 8 \end{pmatrix} - \begin{pmatrix} 8.4 \\ 7.6 \end{pmatrix} \right]^{2} + \left[\begin{pmatrix} 2.3 \\ -0.05 \\ 3.3 \end{pmatrix} \right]^{2}$$

% covariance matrix of the first class S2 = cov(X2);

• Within-class scatter matrix:

$$S_{w} = S_{1} + S_{2} = \begin{pmatrix} 1 & -0.25 \\ -0.25 & 2.2 \end{pmatrix} + \begin{pmatrix} 2.3 & -0.05 \\ -0.05 & 3.3 \end{pmatrix}$$
$$= \begin{pmatrix} 3.3 & -0.3 \\ -0.3 & 5.5 \end{pmatrix}$$

% within-class scatter matrix Sw = S1 + S2 ;

Between-class scatter matrix:

$$S_{B} = (\mu_{1} - \mu_{2})(\mu_{1} - \mu_{2})^{T}$$

$$= \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} - \begin{bmatrix} 8.4 \\ 7.6 \end{bmatrix} \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} - \begin{bmatrix} 8.4 \\ 7.6 \end{bmatrix}^{T}$$

$$= \begin{bmatrix} -5.4 \\ -3.8 \end{bmatrix} (-5.4 \quad -3.8)$$

$$= \begin{pmatrix} 29.16 & 20.52 \\ 20.52 & 14.44 \end{pmatrix}$$
 % between-class scatter matrix SB = (Mu1-Mu2)*(Mu1-Mu2)';

• The LDA projection is then obtained as the solution of the generalized eigen value problem $S^{-1}S^{-1} = 2w$

 $\Rightarrow \lambda_1 = 0, \lambda_2 = 12.2007$

$$S_W^{-1}S_B w = \lambda w$$

$$\Rightarrow \begin{vmatrix} S_W^{-1}S_B - \lambda I \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} 3.3 & -0.3 \\ -0.3 & 5.5 \end{vmatrix}^{-1} \begin{pmatrix} 29.16 & 20.52 \\ 20.52 & 14.44 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} 0.3045 & 0.0166 \\ 0.0166 & 0.1827 \end{vmatrix} \begin{pmatrix} 29.16 & 20.52 \\ 20.52 & 14.44 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} 9.2213 - \lambda & 6.489 \\ 4.2339 & 2.9794 - \lambda \end{vmatrix}$$

$$= (9.2213 - \lambda)(2.9794 - \lambda) - 6.489 \times 4.2339 = 0$$

$$\Rightarrow \lambda^2 - 12.2007\lambda = 0 \Rightarrow \lambda(\lambda - 12.2007) = 0$$

Hence

$$\begin{pmatrix} 9.2213 & 6.489 \\ 4.2339 & 2.9794 \end{pmatrix} w_1 = 0 \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$$

and

$$\begin{pmatrix} 9.2213 & 6.489 \\ 4.2339 & 2.9794 \end{pmatrix} w_2 = \underbrace{12.2007}_{\lambda_2} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$$

```
% computing the LDA projection
 invSw = inv(Sw);
 invSw_by_SB = invSw * SB;
% getting the projection vector [V,D] = eig(invSw_by_SB)
 \% the projection vector
```

Thus;

$$w_1 = \begin{pmatrix} -0.5755 \\ 0.8178 \end{pmatrix}$$
 and $w_2 = \begin{pmatrix} 0.9088 \\ 0.4173 \end{pmatrix} = w^*$

$$w_2 = \begin{pmatrix} 0.9088 \\ 0.4173 \end{pmatrix} = w^*$$

The optimal projection is the one that given maximum $\lambda = I(w)$

Or directly;

$$w^* = S_W^{-1}(\mu_1 - \mu_2) = \begin{pmatrix} 3.3 & -0.3 \\ -0.3 & 5.5 \end{pmatrix}^{-1} \begin{bmatrix} 3 \\ 3.8 \end{pmatrix} - \begin{pmatrix} 8.4 \\ 7.6 \end{bmatrix}$$

$$= \begin{pmatrix} 0.3045 & 0.0166 \\ 0.0166 & 0.1827 \end{pmatrix} \begin{pmatrix} -5.4 \\ -3.8 \end{pmatrix}$$

$$= \begin{pmatrix} 0.9088 \\ 0.4173 \end{pmatrix}$$

LDA - Projection

LDA - Projection

LDA ... C-Classes

- Now, we have C-classes instead of just two.
- We are now seeking (C-1) projections $[y_1, y_2, ..., y_{C-1}]$ by means of (C-1) projection vectors $\mathbf{w_i}$.
- $\mathbf{w_i}$ can be arranged by *columns* into a projection matrix $\mathbf{W} =$ $[\mathbf{w_1} | \mathbf{w_2} | \dots | \mathbf{w_{C-1}}]$ such that:

$$y_{i} = w_{i}^{T} x \qquad \Rightarrow \qquad y = W^{T} x$$

$$where \quad x_{m \times 1} = \begin{bmatrix} x_{1} \\ \vdots \\ x_{m} \end{bmatrix}, \quad y_{C-1 \times 1} = \begin{bmatrix} y_{1} \\ \vdots \\ y_{C-1} \end{bmatrix}$$

$$and \quad W_{m \times C-1} = \begin{bmatrix} w_{1} & w_{2} & \dots & w_{C-1} \end{bmatrix}$$

and
$$W_{m \times C-1} = [w_1 \mid w_2 \mid \dots \mid w_{C-1}]$$

LDA ... C-Classes

• If we have *n*-feature vectors, we can stack them into one matrix as follows;

$$Y = W^T X$$

$$where \quad X_{m \times n} = \begin{bmatrix} x_1^1 & x_1^2 & . & x_1^n \\ . & . & . & . \\ . & . & . & . \\ x_m^1 & x_m^2 & . & x_m^n \end{bmatrix} \quad , \quad Y_{C-1 \times n} = \begin{bmatrix} y_1^1 & y_1^2 & . & y_1^n \\ . & . & . & . \\ . & . & . & . \\ y_{C-1}^1 & y_{C-1}^2 & . & y_{C-1}^n \end{bmatrix}$$

$$and \quad W_{m \times C-1} = \begin{bmatrix} w_1 & w_2 & . & . & | w_{C-1} \end{bmatrix}$$

• Recall the two classes case, the within-class scatter was computed as:

$$S_w = S_1 + S_2$$

• This can be generalized in the *C*-classes case as:

$$S_W = \sum_{i=1}^C S_i$$

where
$$S_i = \sum_{x \in \omega_i} (x - \mu_i)(x - \mu_i)^T$$

and
$$\mu_i = \frac{1}{N_i} \sum_{x \in \omega_i} x$$

Example of two-dimensional features (m = 2), with three classes C = 3.

 N_i : number of data samples in class ω_i .

• Recall the two classes case, the *between-class scatter* was computed as:

$$S_B = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^T$$

• For *C*-classes case, we will measure the between-class scatter with respect to the mean of all classes as follows:

$$S_{B} = \sum_{i=1}^{C} N_{i} (\mu_{i} - \mu) (\mu_{i} - \mu)^{T}$$

where
$$\mu = \frac{1}{N} \sum_{\forall x} x = \frac{1}{N} \sum_{\forall x} N_i \mu_i$$

and
$$\mu_i = \frac{1}{N_i} \sum_{x \in \omega_i} x$$

Example of two-dimensional features (m = 2), with three classes C = 3.

ightharpoonup N: number of all data .

 N_i : number of data samples in class ω_i .

- Similarly,
 - We can define the mean vectors for the projected samples y as:

$$\widetilde{\mu}_{i} = \frac{1}{N_{i}} \sum_{y \in \omega_{i}} y$$
 and $\widetilde{\mu} = \frac{1}{N} \sum_{\forall y} y$

- While the scatter matrices for the projected samples y will be:

$$\widetilde{S}_{W} = \sum_{i=1}^{C} \widetilde{S}_{i} = \sum_{i=1}^{C} \sum_{y \in \omega_{i}} (y - \widetilde{\mu}_{i}) (y - \widetilde{\mu}_{i})^{T}$$

$$\widetilde{S}_{B} = \sum_{i=1}^{C} N_{i} (\widetilde{\mu}_{i} - \widetilde{\mu}) (\widetilde{\mu}_{i} - \widetilde{\mu})^{T}$$

• Recall in two-classes case, we have expressed the scatter matrices of the projected samples in terms of those of the original samples as:

$$\widetilde{S}_W = W^T S_W W$$

$$\widetilde{S}_R = W^T S_R W$$
 This still hold in *C*-classes case.

- Recall that we are looking for a projection that maximizes the ratio of between-class to within-class scatter.
- Since the projection is no longer a scalar (it has *C-1* dimensions), we then use the determinant of the scatter matrices to obtain a scalar objective function:

$$J(W) = \frac{\left|\widetilde{S}_{B}\right|}{\left|\widetilde{S}_{W}\right|} = \frac{\left|W^{T}S_{B}W\right|}{\left|W^{T}S_{W}W\right|}$$

• And we will seek the projection \mathbf{W}^* that maximizes this ratio.

- To find the maximum of J(W), we differentiate with respect to **W** and equate to zero.
- Recall in two-classes case, we solved the eigen value problem.

$$S_W^{-1}S_B w = \lambda w$$
 where $\lambda = J(w) = scalar$

• For *C*-classes case, we have *C-1* projection vectors, hence the eigen value problem can be generalized to the *C*-classes case as:

$$S_W^{-1}S_Bw_i = \lambda_i w_i$$
 where $\lambda_i = J(w_i) = scalar$ and $i = 1, 2, ... C - 1$

• Thus, It can be shown that the optimal projection matrix **W*** is the one whose columns are the eigenvectors corresponding to the largest eigen values of the following generalized eigen value problem:

$$S_W^{-1}S_BW^* = \lambda W^*$$

 $where \quad \lambda = J(W^*) = scalar \quad and \quad W^* = \begin{bmatrix} w_1^* & w_2^* & \dots & w_{C-1}^* \end{bmatrix}$

Illustration – 3 Classes

- Let's generate a dataset for each class to simulate the three classes shown
- For each class do the following,
 - Use the random number generator to generate a uniform stream of 500 samples that follows U(0,1).
 - Using the Box-Muller approach, convert the generated uniform stream to N(0,1).

- Then use the method of eigen values and eigen vectors to manipulate the standard normal to have the required mean vector and covariance matrix.
- Estimate the mean and covariance matrix of the resulted dataset.

Dataset Generation

• By visual inspection of the figure, classes parameters (means and covariance matrices can be given as follows:

Overall mean
$$\mu = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$$

$$\mu_1 = \mu + \begin{bmatrix} -3 \\ 7 \end{bmatrix}, \quad \mu_2 = \mu + \begin{bmatrix} -2.5 \\ -3.5 \end{bmatrix}, \quad \mu_3 = \mu + \begin{bmatrix} 7 \\ 5 \end{bmatrix}$$

$$S_1 = \begin{pmatrix} 5 & -1 \\ -3 & 3 \end{pmatrix}$$
 Negative covariance to lead to data samples distributed along the $y = -x$ line.

$$S_2 = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$$
 Zero covariance to lead to data samples distributed *horizontally*.

$$S_3 = \begin{pmatrix} 3.5 & 1 \\ 3 & 2.5 \end{pmatrix}$$
 Positive covariance to lead to data samples distributed along the $y = x$ line.

In Matlab ©

```
% let the center of all classes be
Mu = [5;5];
%% for the first class
Mu1 = [Mu(1)-3; Mu(2)+7];
CovM1 = [5 -1; -3 3];
% Generating feature vectors using Box-Muller approach
% Generate a random variable following uniform(0,1) having two features and
% 1000 feature vectors
U = rand(2,1000);
% Extracting from the generated uniform random variable two independent
% uniform random variables
u1 = V(:,1:2:end);
u2 = V(:,2:2:end);
% Using u1 and u2, we will use Box-Muller method to generate the feature
% vectors to follow standard normal
X = sqrt((-2).*loq(u1)) .* (cos(2*pi.*u2));
clear u1 u2 U;
% Now ... Manipulating the generated Features N(0,1) to following certain
% mean and covariance other than the standard normal
% First we will change its variance then we will change its mean
% Getting the eigen vectors and values of the covariance matrix
[V,D] = eig(CovM1); % D is the eigen values matrix and V is the eigen vectors
matrix
newX = X;
for j = 1 : size(X,2)
    newX(:,j) = V * sqrt(D) * X(:,j);
end
% changing its mean
newX = newX + repmat(Mu1,1,size(newX,2));
% now our dataset for the first class matrix will be
X1 = newX ; % each column is a feature vector, each row is a single feature
% ... do the same for the other two classes with difference means and
covariance matrices
```

It's Working ... ©

Computing LDA Projection Vectors

```
%% computing the LDA
% class means
Mu1 = mean(X1')':
Mu2 = mean(X2')';
Mu3 = mean(X3')';
% overall mean
Mu = (Mu1 + Mu2 + Mu3)./3;
% class covariance matrices
S1 = cov(X1');
S2 = cov(X2');
S3 = cov(X3');
% within-class scatter matrix
Sw = S1 + S2 + S3;
% number of samples of each class
N1 = size(X1,2);
N2 = size(X2,2);
N3 = size(X3,2);
% between-class scatter matrix
SB1 = N1 . * (Mu1-Mu) * (Mu1-Mu) ' ;
SB2 = N2 .* (Mu2-Mu) * (Mu2-Mu) ';
SB3 = N3 .* (Mu3-Mu) * (Mu3-Mu) ';
SB = SB1 + SB2 + SB3;
% computing the LDA projection
invSw = inv(Sw);
invSw by SB = invSw * SB;
% getting the projection vectors
%[V,D] = EIG(X) produces a diagonal matrix D of eigenvalues and a
%full matrix V whose columns are the corresponding eigenvectors
[V,D] = eig(invSw by SB);
% the projection vectors - we will have at most C-1 projection vectors,
% from which we can choose the most important ones ranked by their
% corresponding eigen values ... lets investigate the two projection
% vectors
W1 = V(:,1);
W2 = V(:,2);
```

Recall ...

$$S_{W} = \sum_{i=1}^{C} S_{i}$$
where $S_{i} = \sum_{x \in \omega_{i}} (x - \mu_{i})(x - \mu_{i})^{T}$
and $\mu_{i} = \frac{1}{N_{i}} \sum_{x \in \omega_{i}} x$

$$S_{B} = \sum_{i=1}^{C} N_{i} (\mu_{i} - \mu)(\mu_{i} - \mu)^{T}$$

$$where \qquad \mu = \frac{1}{N} \sum_{\forall x} x = \frac{1}{N} \sum_{\forall x} N_{i} \mu_{i}$$

$$and \qquad \mu_{i} = \frac{1}{N_{i}} \sum_{x \in \omega_{i}} x$$

Let's visualize the projection vectors W

```
%% lets visualize them ...
% we will plot the scatter plot to better visualize the features
hfig = figure;
axes1 = axes('Parent', hfig, 'FontWeight', 'bold', 'FontSize', 12);
hold('all');
                                                                               20
% Create xlabel
xlabel('X 1 - the first feature', 'FontWeight', 'bold', 'FontSize', 12,...
                                                                               15
    'FontName', 'Garamond');

    the second feature

% Create ylabel
                                                                               10
vlabel('X 2 - the second feature', 'FontWeight', 'bold', 'FontSize', 12,
    'FontName', 'Garamond');
% the first class
scatter(X1(1,:),X1(2,:), 'r','LineWidth',2,'Parent',axes1);
hold on
                                                                                0
% class's mean
plot(Mu1_est(1),Mu1_est(2),'co','MarkerSize',8,'MarkerEdgeColor','c',...
    'Color','c','LineWidth',2,'MarkerFaceColor','c','Parent',axes1);
hold on
% the second class
                                                                              -10 <sup>L</sup>
scatter(X2(1,:),X2(2,:), 'g', 'LineWidth',2, 'Parent', axes1);
                                                                                 -15
hold on
% class's mean
plot(Mu2 est(1),Mu2 est(2),'mo','MarkerSize',8,'MarkerEdgeColor','m',...
    'Color', 'm', 'LineWidth', 2, 'MarkerFaceColor', 'm', 'Parent', axes1);
hold on
% the third class
scatter(X3(1,:),X3(2,:), 'b','LineWidth',2,'Parent',axes1);
hold on
% class's mean
plot(Mu3_est(1),Mu3_est(2),'yo','LineWidth',2,'MarkerSize',8,'MarkerEdgeColor',...
    'y', 'Color', 'y', 'MarkerFaceColor', 'y', 'Parent', axes1);
hold on
```

```
-10
         -5
                           5
                                   10
                                            15
                                                    20
                                                             25
                 X_1 - the first feature
```

```
% drawing the projection vectors
% the first vector
t = -10:25;
line_x1 = t .* w1(1);
line_y1 = t .* w1(1);

% the second vector
t = -5:20;
line_x2 = t .* w2(1);
line_y2 = t .* w2(2);

plot(line_x1,line_y1,'k-','LineWidth',3);
hold on
plot(line_x2,line_y2,'m-','LineWidth',3);
grid on
```

Projection ... $y = W^Tx$

Along first projection vector

Projection ... $y = W^Tx$

Along second projection vector

Which is Better?!!!

• Apparently, the projection vector that has the **highest eigen** value provides higher discrimination power between classes

PCA vs LDA

Limitations of LDA ®

LDA produces at most C-1 feature projections

 If the classification error estimates establish that more features are needed, some other method must be employed to provide those additional features

• LDA is a parametric method since it assumes unimodal Gaussian likelihoods

- If the distributions are significantly non-Gaussian, the LDA projections will not be able to preserve any complex structure of the data, which may be needed for classification.

Limitations of LDA ⁽²⁾

• LDA will fail when the discriminatory information is not in the mean but rather in the variance of the data

Thank You