章节 07 递归类型

LATEX Definitions are here.

泛性质

默认对象 N 在范畴 \mathcal{C} 中有下述性质:

• $(\mathbf{1} \xrightarrow{c} \mathbf{x}) \overset{c_{at}}{\times} (\mathbf{x} \xrightarrow{c} \mathbf{x}) \cong (\mathbf{N} \xrightarrow{c} \mathbf{x})$, \mathbf{x} 为任意 \mathcal{C} 中对象 — **泛性质**。 rec 即对应的同构 (上式从左至右)。

默认函子 [_]: $\mathcal{C} \xrightarrow{\mathcal{C}at} \mathcal{C}$ 在范畴 \mathcal{C} 中有下述性质:

• $(1 \xrightarrow{c} x) \overset{cat}{\times} ((x \overset{c}{\times} b) \xrightarrow{c} x) \cong ([b] \xrightarrow{c} x)$, x 为任意 C 中对象 — **泛性质**。 foldr 即对应的同构 (上述等式从左至右)。

函子性

如何证明[_]构成函子呢?请看

- [_]:_{:b1}id → _{:[b1}]id
 ——[_] 保持恒等箭头;
- [_]: $(g_1 \overset{c}{\circ} g_2) \longmapsto (h_1 \overset{c}{\circ} h_2)$ —— [_] **保持箭头复合运算**。 下图便于形象理解证明过程。

