Practical Issues of Classification

Dr. Faisal Kamiran

Practical Issues of Classification

- Underfitting and Overfitting
- Missing Values

Data Fragmentation

Practical Issues of Classification

- Underfitting and Overfitting
- Missing Values

Data Fragmentation

Decision Boundary

- Border line between two neighboring regions of different classes is known as decision boundary
- Decision boundary is parallel to axes because test condition involves a single attribute at-a-time

Overfitting and Underfitting

- Overfitting results in decision trees that are more complex than necessary
- Training error no longer provides a good estimate of how well the tree will perform on previously unseen records
- Need new ways for estimating errors
- Underfitting: when model is too simple, both training and test errors are large

Underfitting and Overfitting

Underfitting: when model is too simple, both training and test errors are large

Overfitting due to Noise

Decision boundary is distorted by noise point

Overfitting due to Insufficient Examples

- Insufficient number of training records in the region causes the decision tree to predict the test examples using other training records that are irrelevant to the classification task

How to Address Overfitting

- Pre-Pruning (Early Stopping Rule)
 - Stop the algorithm before it becomes a fully-grown tree
 - Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
 - More restrictive conditions:
 - Stop if number of instances is less than some user-specified threshold
 - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).

How to Address Overfitting...

Post-pruning

- Grow decision tree to its entirety
- Trim the nodes of the decision tree in a bottom-up fashion
- If generalization error improves after trimming, replace sub-tree by a leaf node.
- Class label of leaf node is determined from majority class of instances in the sub-tree

- Re-substitution errors: error on training (Σ e(t))
- Generalization errors: error on testing (Σ e'(t))
- Methods for estimating generalization errors:
 - Optimistic approach: e'(t) = e(t)
 - Pessimistic approach:
 - For each leaf node: e'(t) = (e(t)+0.5)
 - Total errors: e'(T) = e(T) + N × 0.5 (N: number of leaf nodes)
 - For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances):
 Training error = 10/1000 = 1%
 Generalization error = (10 + 30×0.5)/1000 = 2.5%
 - Reduced error pruning (REP):
 - uses validation dataset to estimate generalization error
 - Validation set is part of training data used for preliminary validation of model during the learning process

 $E'(T_L) = (4+7*0.5)/24 = 7.5 / 24 = 0.3125$

$$E'(T_L) = (4+7*0.5)/24 = 7.5 / 24 = 0.3125$$

$$E'(T_R) = (6+4*0.5)/24 = 8/24 = 0.3333$$

Example of Post-Pruning

Training Error (Before splitting) = 10/30Pessimistic error = (10 + 0.5)/30 = 10.5/30

Dr. Faisal Kamiran

Information Technology University

Example of Post-Pruning

Occam's Razor

- Given two models of similar generalization errors, one should prefer the simpler model over the more complex model
- For complex models, there is a greater chance that it was fitted accidentally by errors in data

 Therefore, one should include model complexity when evaluating a model

Minimum Description Length (MDL)

X	У	Yes No	V	
X_1	1		X	У
-	ı	B?	X_1	?
X ₂	0	B_1 B_2	X ₂	
X ₃	0	C? 1	^2	?
	U	$A c_1 B$	X_3	?
X_4	1			
			X ₄	?
X _n	1			• • •
1	•		X _n	?

- Cost(Model, Data) = Cost(Data|Model) + Cost(Model)
 - Cost is the number of bits needed for encoding.
 - Search for the least costly model.
- Cost(Data|Model) encodes the misclassification errors.
- Cost(Model) uses node encoding (number of children) plus splitting condition encoding.

Decision Tree Based Classification

- Advantages:
 - Inexpensive to construct
 - Extremely fast at classifying unknown records
 - Easy to interpret for small-sized trees
 - Accuracy is comparable to other classification techniques for many simple data sets

Example: C4.5

- Simple depth-first construction.
- Uses Information Gain
- Needs entire data to fit in memory.
- Unsuitable for Large Datasets.
- You can download the software from:
 Machine Learning/Decision Trees/C4.5 Tutorial (uregina.ca)

Evaluation of Classification Models

Dr. Faisal Kamiran

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	а	b
	Class=No	С	d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation...

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10

- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Cost Matrix

	PREDICTED CLASS		
	C(i j)	Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	C(Yes Yes)	C(No Yes)
	Class=No	C(Yes No)	C(No No)

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS		
	C(i j)	+	-
ACTUAL CLASS	+	-1	100
01/100	-	1	0

Model M ₁	PREDICTED CLASS		
		+	-
ACTUAL CLASS	+	150	40
01/100	-	60	250

Model M ₂	PREDICTED CLASS		
		+	-
ACTUAL CLASS	+	250	45
OLAGO	-	5	200

Accuracy = 80%

Cost = 3910

Accuracy = 90%

Cost = 4255

Cost-Sensitive Measures

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

F-measure (F) =
$$\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$$

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	a (TP)	b (FN)
CLASS	Class=No	c (FP)	d (TN)

Precision vs. Recall

$$Precision = \frac{|RelRetrieved|}{|Retrieved|}$$

$$Recall = \frac{|RelRetrieved|}{|Rel in Collection|}$$

Retrieved vs. Relevant Documents

Very high precision, very low recall

Retrieved vs. Relevant Documents

High recall, but low precision

Retrieved vs. Relevant Documents

High precision, high recall (at last!)

Methods of Estimation

- Holdout
 - Reserve 2/3 for training and 1/3 for testing
- Stratified sampling
 - Oversampling vs undersampling
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n

10 Fold Cross Validation (Example)

- What if we don't have enough data to set aside a test dataset?
- Cross-Validation:
 - Each data point is used both as train and test data.
- Basic idea:
 - Fit model on 90% of the data; test on other 10%.
 - Now do this on a different 90/10 split.
 - Cycle through all 10 cases.
 - 10 "folds" a common rule of thumb.

10 Fold Cross Validation (Example)

- Divide data into 10 equal pieces
 P₁...P₁₀.
- Fit 10 models, each on 90% of the data.
- Each data point is treated as an out-of-sample data point by exactly one of the models.

10 Fold Cross Validation (Example)

 Collect the scores from the red diagonal...

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TP (on the y-axis) against FP (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
 - changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point