Computer-Aided Program Design Spring 2015, Rice University

Unit 3

Swarat Chaudhuri

February 5, 2015

Temporal logic

- Propositional logic is a good language for describing properties of program states.
- ► However, programs have *dynamics*: a program's state evolves during its execution.
- ► Temporal logics are useful for reasoning about this dynamics.
 - ► Long history: goes back to Greek philosophers
 - Introduced to computer science by Pnueli and Manna.

(Propositional) Linear Temporal Logic: Syntax

Let Prop be a set of $propositional\ variables$. A formula φ in (propositional) Linear Temporal Logic (LTL) has the form

$$\varphi ::= p \mid \top \mid \bot \mid \neg \varphi_1 \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \mathbf{X} \ \varphi_1 \mid \varphi_1 \mathbf{U} \varphi_2$$

where $p \in Prop$.

- ▶ In the above, φ_1 and φ_2 are *subformulas* of φ .
- ▶ A *state formula* is a formula of the form p or $\neg p$, where $p \in Prop$.

[http://www.cmi.ac.in/~madhavan/papers/pdf/isical97.pdf.]

LTL: Semantics

Interpretations are infinite words over 2^{Prop} :

$$\begin{split} w &= \{P,Q\}.\{Q\}.\{Q,R\}.\cdots \\ w,m &\models \varphi \quad \text{if } \varphi \text{ evaluates to} \quad \text{true} \quad \text{on } w \text{ at time point } m \\ w,m \not\models \varphi \qquad \qquad \text{false} \end{split}$$

LTL: Semantics

Interpretations are infinite words over 2^{Prop} :

$$w = \{P, Q\}.\{Q\}.\{Q, R\}. \cdots$$

$$w, m \models \varphi \quad \text{if } \varphi \text{ evaluates to} \quad \text{true} \quad \text{on } w \text{ at time point } m$$

$$w, m \not\models \varphi \qquad \qquad \text{false}$$

Inductive definition of semantics:

- ▶ Eventually, P will hold. This is abbreviated as $\mathbf{F}P$ or $\Diamond P$.
- ▶ P always holds. This is abbreviated as $\mathbf{G} P$ or $\square P$.

- ▶ Eventually, P will hold. This is abbreviated as $\mathbf{F}P$ or $\Diamond P$.
- ▶ P always holds. This is abbreviated as $\mathbf{G} P$ or $\square P$.
- ▶ After a certain "stable point", P holds forever.

- ▶ Eventually, P will hold. This is abbreviated as $\mathbf{F}P$ or $\Diamond P$.
- ▶ P always holds. This is abbreviated as $\mathbf{G} P$ or $\square P$.
- ▶ After a certain "stable point", P holds forever.
- P holds infinitely often in the trace.

- ▶ Eventually, P will hold. This is abbreviated as $\mathbf{F} P$ or $\Diamond P$.
- ▶ P always holds. This is abbreviated as $\mathbf{G} P$ or $\square P$.
- After a certain "stable point", P holds forever.
- P holds infinitely often in the trace.
- ► Consider a system that schedules access to a shared resource among *k* competing processes named 1, . . . , *k*. Express:
 - Mutual exclusion
 - Processes are scheduled "fairly"
 - When a process requests the resource, it stays in a requesting state until the request is granted.

Write in LTL:

- ▶ If A occurs at least twice, then A occurs infinitely often.
- ▶ A holds at all states s_{3k} and does not hold at all states s_{3k+1}, s_{3k+2} , where k = 0, 1, ...

What do the following properties mean?

► FGA

What do the following properties mean?

- ► FGA
- ightharpoonup FG($A \rightarrow XA$)

What do the following properties mean?

- ► FGA
- ightharpoonup FG(A o XA)
- ► *A* **U** ¬*A*

LTL verification

- ▶ Given: Symbolic transition system \mathcal{M} , LTL property φ .
- Question: Do all paths in \mathcal{M} starting from an initial state satisfy φ ?

To start with, let us assume with a transition system that is represented explicitly:

(
$$States, InitStates, --+, \lambda$$
)

- States is a finite set of states
- ▶ *InitStates* ⊆ *States* is a finite set of initial states
- ightharpoonup ----> \subseteq States \times States is a transition relation
- ▶ $\lambda : States \rightarrow 2^{Prop}$ is a labeling of states with atomic propositions.

Key: relationship between LTL and automata

- ► A Büchi automaton A is a finite automaton that runs on infinite words
- Definition:

$$\mathcal{A} = (S, \Sigma, S_{in}, \hookrightarrow, G)$$

- S is a set of states
- Σ is an input alphabet
- $S_{in} \subseteq S$ is a set of initial states
- ▶ \hookrightarrow \subseteq $S \times \Sigma \times S$ is a transition relation
- ▶ *G* is a set of *accepting* states.

Semantics of Büchi automata

- Let $w = w_0 w_1 w_2 \dots$ be an infinite word over Σ.
- ▶ Run of \mathcal{A} on w: infinite word $\rho = s_0 s_1 s_2 \dots$ over S such that
 - $ightharpoonup s_0 \in S_{in}$
 - ▶ for all $i \ge 0$, $(s_i, w_i, s_{i+1}) \in \hookrightarrow$.
- \blacktriangleright The run ρ is accepting iff an accepting state appears infinitely often in ρ
- $ightharpoonup \mathcal{A}$ accepts w iff \mathcal{A} has an accepting run on w.

- ► Construct an automaton with input alphabet {a, b} that accepts:
 - ▶ All words where *a* occurs infinitely often

- ► Construct an automaton with input alphabet {a, b} that accepts:
 - ▶ All words where *a* occurs infinitely often
 - ▶ All words where *a* occurs only finitely often

- ► Construct an automaton with input alphabet {a, b} that accepts:
 - ▶ All words where a occurs infinitely often
 - ▶ All words where *a* occurs only finitely often
 - ▶ All words with an infinite suffix consisting only of b's.

- ► Construct an automaton with input alphabet {a, b} that accepts:
 - ▶ All words where a occurs infinitely often
 - ▶ All words where *a* occurs only finitely often
 - ► All words with an infinite suffix consisting only of b's.
- Compute a Buchi automaton that accepts the intersection of the languages of two given Buchi automata.

LTL to Büchi automata

Every LTL formula φ can be converted to a Büchi automaton \mathcal{A}_{φ} over the input alphabet 2^{Prop} such that for any word w over 2^{Prop} , $w \models \varphi$ iff \mathcal{A}_{φ} accepts w.

See construction in chapter http://www.cmi.ac.in/~madhavan/papers/pdf/isical97.pdf.

Before we go there: algorithms for Büchi automata

- ▶ Let $\mathcal{L}(A)$, the *language of* A, be the set of words accepted by A.
- ▶ Given two Buchi automata A_1 and A_2 , construct an automaton that accepts
 - $ightharpoonup \mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_2)$

Before we go there: algorithms for Büchi automata

- ▶ Let $\mathcal{L}(A)$, the *language of* A, be the set of words accepted by A.
- ▶ Given two Buchi automata A_1 and A_2 , construct an automaton that accepts
 - $ightharpoonup \mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_2)$
 - $\qquad \qquad \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2).$

Before we go there: algorithms for Büchi automata

- Let $\mathcal{L}(A)$, the *language of* A, be the set of words accepted by A.
- ▶ Given two Buchi automata A_1 and A_2 , construct an automaton that accepts
 - $\triangleright \mathcal{L}(\mathcal{A}_1) \cup \mathcal{L}(\mathcal{A}_2)$
 - $\blacktriangleright \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2).$
- ▶ Give an algorithm to check, for given A, if L(A) is empty.

Generalized Büchi automata

ightharpoonup Büchi automata with k sets of accepting states.

$$\mathcal{A}^{\#} = (S, \Sigma, S_{in}, \hookrightarrow, \langle G_1, \ldots, G_k \rangle)$$

▶ A run is accepting iff it visits *every* set G_1, \ldots, G_k infinitely often.

Generalized Büchi automata

▶ Büchi automata with *k* sets of accepting states.

$$\mathcal{A}^{\#} = (S, \Sigma, S_{in}, \hookrightarrow, \langle G_1, \ldots, G_k \rangle)$$

- ▶ A run is accepting iff it visits *every* set $G_1, ..., G_k$ infinitely often.
- ▶ Let A_i be $(S, \Sigma, S_{in}, \hookrightarrow, G_i)$. It is easy to see that

$$\mathcal{L}(\mathcal{A}^{\#}) = \bigcap_{i} \mathcal{L}(\mathcal{A}_{i})$$

.

Generalized Büchi automata

▶ Büchi automata with *k* sets of accepting states.

$$\mathcal{A}^{\#} = (S, \Sigma, S_{in}, \hookrightarrow, \langle G_1, \ldots, G_k \rangle)$$

- ▶ A run is accepting iff it visits *every* set $G_1, ..., G_k$ infinitely often.
- ▶ Let A_i be $(S, \Sigma, S_{in}, \hookrightarrow, G_i)$. It is easy to see that

$$\mathcal{L}(\mathcal{A}^{\#}) = \bigcap_{i} \mathcal{L}(\mathcal{A}_{i})$$

.

▶ Question: what's the complexity of converting a Generalized Buchi automaton to a regular Buchi automaton? (Hint: use a variant of the "round-robin" argument used for intersection.)

LTL to Büchi: steps

- Fischer-Ladner closure
- Atoms: construction of automaton states
- Construction of generalized Büchi automaton
- ► Conversion into standard Büchi automaton (optional).

LTL to Büchi: Fischer-Ladner closure

Suppose φ is the formula that we want to convert to a Buchi automaton. The (Fischer-Ladner) closure FL_{φ} of φ is defined as the least set of formulas such that:

- ▶ If $\varphi \in FL_{\varphi}$
- ▶ If $\psi \in FL_{\varphi}$ then $\neg \psi \in FL_{\varphi}$ (we identify $\neg \neg \psi$ with ψ)
- ▶ If $\psi_1 \wedge \psi_2 \in FL_{\varphi}$ then $\psi_1, \psi_2 \in FL_{\varphi}$
- ▶ If $\psi_1 \lor \psi_2 \in FL_{\varphi}$ then $\psi_1, \psi_2 \in FL_{\varphi}$
- If $\mathbf{X} \psi_1 \in \mathit{FL}_{\varphi}$ then $\psi_1 \in \mathit{FL}_{\varphi}$
- $\blacktriangleright \ \psi_1 \ \mathbf{U} \ \psi_2 \in \mathit{FL}_{\varphi} \ \text{then} \ \psi_1, \psi_2, \mathbf{X} \ (\psi_1 \ \mathbf{U} \ \psi_2) \in \mathit{FL}_{\varphi}.$

Atoms

A *atom* is a set $S \subseteq FL_{\varphi}$ such that:

- $\psi \in S$ iff $\neg \psi \notin S$
- $\psi_1 \land \psi_2 \in S$ iff $\psi_1 \in S$ and $\psi_2 \in S$
- $\psi_1 \lor \psi_2 \in S$ iff $\psi_1 \in S$ or $\psi_2 \in S$
- $\psi_1 \mathbf{U} \psi_2 \in S$ iff either $\psi_2 \in S$ or $\psi_1, \mathbf{X} (\psi_1 \mathbf{U} \psi_2) \in S$

Let the set of all atoms constructed this way be called $Atom_{\varphi}$.

▶ Set of states: $Atom_{\varphi}$

- ▶ Set of states: $Atom_{\varphi}$
- lacktriangle Initial states: any state that contains arphi

- ▶ Set of states: $Atom_{\varphi}$
- lacktriangle Initial states: any state that contains arphi
- ▶ Transitions: triples (S_1, P, S_2) where:
 - **X** $\psi \in S_1$ and $\psi \in S_2$ for some ψ
 - ▶ \neg **X** $\psi \in S_1$ and $\neg \psi \in S_2$ for some ψ
 - ▶ P is the set of atomic propositions in S_1 .

- ▶ Set of states: $Atom_{\varphi}$
- lacktriangle Initial states: any state that contains arphi
- ▶ Transitions: triples (S_1, P, S_2) where:
 - **X** $\psi \in S_1$ and $\psi \in S_2$ for some ψ
 - ▶ \neg **X** $\psi \in S_1$ and $\neg \psi \in S_2$ for some ψ
 - ▶ P is the set of atomic propositions in S_1 .
- Accepting states: For each formula $\psi_1 \mathbf{U} \psi_2 \in FL_{\varphi}$, define a set of accepting states G_i , consisting of all states S such that:
 - either $\psi_2 \in S$
 - or $\psi_1 \mathbf{U} \psi_2 \notin S$.

- ▶ Set of states: $Atom_{\varphi}$
- lacktriangle Initial states: any state that contains arphi
- ▶ Transitions: triples (S_1, P, S_2) where:
 - **X** $\psi \in S_1$ and $\psi \in S_2$ for some ψ
 - ▶ \neg **X** $\psi \in S_1$ and $\neg \psi \in S_2$ for some ψ
 - ▶ P is the set of atomic propositions in S_1 .
- Accepting states: For each formula $\psi_1 \mathbf{U} \psi_2 \in FL_{\varphi}$, define a set of accepting states G_i , consisting of all states S such that:
 - either $\psi_2 \in S$
 - or $\psi_1 \mathbf{U} \psi_2 \notin S$.
- ➤ You can go from generalized Buchi automaton to Buchi automaton by a variant of the intersection construction.
- ► For verification, you can work on generalized Buchi automaton directly.

Automata-theoretic verification for LTL

- Given:
 - 1. (Explicit) transition system $\mathcal{M} = (States, InitStates, --+, \lambda)$
 - 2. LTL formula φ .

Each execution of \mathcal{M} is an interpretation for φ . Let the set of all such interpretations be $\mathcal{L}(\mathcal{M})$.

• Question: Verify that all executions of $\mathcal M$ satisfy φ .

Automata-theoretic verification for LTL

- ► Given:
 - 1. (Explicit) transition system $\mathcal{M} = (States, InitStates, --+, \lambda)$
 - 2. LTL formula φ .

Each execution of \mathcal{M} is an interpretation for φ . Let the set of all such interpretations be $\mathcal{L}(\mathcal{M})$.

• Question: Verify that all executions of $\mathcal M$ satisfy φ .

Solution:

- 1. Convert $\neg \varphi$ into a (generalized) Buchi automaton $\overline{\mathcal{A}}$.
- 2. Question: $\mathcal{L}(\mathcal{M}) \cap \mathcal{L}(\overline{\mathcal{A}}) = \emptyset$?

Verification using SPIN

► SPIN: system for LTL verification of finite-state systems: http://www.spinroot.com.

Verification using SPIN

- ► SPIN: system for LTL verification of finite-state systems: http://www.spinroot.com.
- ► Formula to Buchi automaton: spin -f ''[]p''
- Verification:
 - \$ spin -a zune.pml
 - \$ cc pan.c
 - \$ a.out -a
- Try out the examples in the Tests folder, in particular Peterson's protocol and the Zune bug.

SPIN internals

- Essence of algorithm for Buchi emptiness: search for a cycle that is: (a) reachable from an initial state; and (b) contains an accepting state.
- ▶ Algorithm: Nested DFS, implemented in SPIN system.
- Question: What is the naive DFS algorithm for LTL verification?

Avoiding the quadratic complexity

- ▶ Suppose you have nodes u and v, and you know:
 - \triangleright u is an ancestor of v in a DFS tree
 - You know that v is not in a cycle
- ► Theorem: No cycle containing *u* contains nodes reachable from *v*.
- ▶ In other words, you can ignore states reached from *v* while doing the nested search from *u*.

Nested DFS

```
DFS(s):
  if error then report error
  add <s,0> to Visited
  for t \in Next(s):
    if <t,0> ∉ Visited:
      DFS(t)
  if accepting(s):
     seed = s; NDFS(s)
NDFS(s):
  add <s,1> to Visited
  for all t in Next(s):
     if <t,1> ∉ Visited:
       NDFS(t)
     else if t == seed:
       report cycle
```

Question for discussion

▶ Do we really require a finite state system to apply nested DFS?

Question for discussion

- ▶ Do we really require a finite state system to apply nested DFS?
- ▶ What happens when we go from explicit transition systems to symbolic transition systems?

SAT-based bounded model checking for LTL

- ▶ Earlier, we studied bounded verification for assertions.
- ▶ In the language of LTL, they are safety properties of the form G p.
- What about general LTL properties?

SAT-based bounded model checking for LTL

- Earlier, we studied bounded verification for assertions.
- ▶ In the language of LTL, they are safety properties of the form G p.
- What about general LTL properties?
 - Idea: search for "lassos" in a bounded way:
 - ► For example, to find if the property F p is violated in k steps or less, check satisfiability of

$$B(k) = In(X_0) \wedge \bigwedge_{i=0}^{k-1} T(X_i, X_{i+1}) \wedge \bigwedge_{i=0}^{k} \neg P(X_i) \wedge \bigvee_{i=0}^{k} (X_i = X_k)$$