

Figure 1: PNS

MAM3

Mathématiques de l'ingénieur.e 1

2024-25

TD 4 - Convergence

Exercice 1

1.1

Déterminer, si elles existent, les limites suivantes :

$$\lim_{n\to\infty}\int_0^1\frac{1+nx}{(1+x)^n}\,\mathrm{d}x,\quad \lim_{n\to\infty}\int_0^1\sin\frac{1}{nx}\,\mathrm{d}x\quad (n\geq 1),\quad \lim_{n\to\infty}\int_0^ne^{-x}(n+x)\,\mathrm{d}x.$$

1.2

Montrer que

$$\lim_{n \to \infty} \int_0^\infty \frac{e^{-nx}}{\sqrt{x}} \, \mathrm{d}x = 0.$$

1.3

Déterminer, si elle existe, la limite suivante :

$$\lim_{n \to \infty} \int_0^n (1 - x/n)^n \cos x \, dx \quad (n \ge 1).$$

Exercice 2

Étant donné un réel α , on souhaite déterminer, si elle existe, la limite

$$L_{\alpha} := \lim_{n \to \infty} \int_{0}^{n} (1 - x/n)^{n} e^{\alpha x} dx \quad (n \ge 1).$$

2.1

Montrer que la limite existe pour $\alpha=1/2$ et déterminer $L_{1/2}$ à l'aide du théorème de convergence dominée.

2.2

On pose

$$h_n(x) := (1 - x/n)^n e^{\alpha x} \chi_{[0,n]}(x), \quad x \in \mathbf{R}_+ \quad (n \ge 1).$$

En étudiant $\ln(h_{n+1}(x)/h_n(x))$ pour $x \in [0, n[$, montrer que la suite h_n est croissante, puis conclure quant à l'existence de L_{α} et sa valeur éventuelle à l'aide du théorème de convergence monotone.