• 试验研究 •

UV H2O2 联用工艺去除水中阿特拉津的研究

高燕飞,徐力克,刘 豪,陶佩俊,高乃云,崔 婧

(同济大学污染控制与资源化研究国家重点实验室,上海 200092)

摘要:采用间歇式反应器考察了 UV H_2O_2 高级氧化技术去除水中阿特拉津的效果及其影响因素,并进行了相关的反应 动力学研究。结果表明,在 pH值 6.9,阿特拉津初始浓度 500μ g/L 紫外辐照强度 172μ W/cm² 时, H_2O_2 投加量 50mg/L 反应 10min后,阿特拉津的去除率 >90%。 UV H_2O_2 联用工艺对阿特拉津的降解符合一级反应动力学。 H_2O_2 在该联用工艺降解阿特拉津中具有双重作用,一方面,当 H_2O_2 投加量较小时,一级反应速率常数随 H_2O_2 投加量的增加基本呈现线性增加的趋势;另一方面,当 H_2O_2 浓度增加到一定程度 (90mg/L)后,阿特拉津的降解速率随 H_2O_2 浓度的变化已不明显,而 H_2O_2 浓度为 102mg/L时,则出现了抑制作用。

关键词: 阿特拉津; 高级氧化技术; 反应动力学

中图分类号: X703.1

文献标识码: A

文章编号: 1001-3644(2010)04-0005-04

Study on Removal of Atrazine from Water Using UV H₂O₂ Combination Process GAO Yan-fei XU Li-ke LIU Hao TAO Pei-jun GAO Nai-yun CUI Jing

(State Key Laboratory of Pollution Control & Resource Reuse Tongji University, Shangha i 200092, China)

Abstract Effect on a trazine removal from water and its affecting factors of the advanced oxidation technology UV H_2O_2 were studied in batch reactors. The relevant kinetic analysis was conducted as well. The results show that at the conditions of pH 6.9, initial atrazine concentration as 250μ g/L. UV irradiation intensity as 172μ W /cm² and H_2O_2 dosage as 50 mg/L with 10 m inutes reaction time, the removal rate of atrazine reached above 90%. The degradation of atrazine accorded with first-order reaction kinetics H_2O_2 played bidirectional role in the degradation of atrazine. On one hand, when the dosage of H_2O_2 was low, the speed constant of first-order reaction increased with the H_2O_2 dosage linearly. On the other hand, when the H_2O_2 concentration increased to a certain extent (90mg/L), the rate of atrazine degradation with the H_2O_2 dosage insignificantly. Inhibition of H_2O_2 appeared when the concentration reached 102mg/L

Keywords Atrazine advanced oxidation technology reaction kinetics

我国在 20世纪 80年代开始使用阿特拉津,到 20世纪 90年代在华北、东北地区的得到广泛推广和大量应用。阿特拉津已被证明是内分泌干扰物。内分泌干扰物对人体和动物引起的影响作用是缓慢的,可能要 10到 20年后才能被发现,但是一旦发现,可能已经影响了当代或后代人的健康^[1,2],并

且常规处理工艺对阿特拉津很难去除。因此研究水中微量农药类内分泌干扰物的去除具有十分重要的意义。此次实验研究以阿特拉津为例,考察了 $UV-H_2O_2$ 高级氧化技术对阿特拉津的去除效果,并进行了相关动力学研究。

______ 1 实验部分 收稿日期: ²⁰¹⁰⁻⁰¹⁻¹⁶

基金项目: 国家创新性实验 (SIIP); 国家科技重大专项资助 (2008**ZX**07421-002); 国家 "十一五"科技支撑计划 阿特拉

 $(2006BAJ08B06)_{\circ}$

作者简介:高燕飞(1985一),男,河北邢台人,同济大学市政工程专业 2009级硕士研究生,研究方向为水处理理论与技术。

1.1 实验装置

阿特拉津的高级氧化 (UV H₂O₂ 联用) 试验 工艺流程图如图 ¹所示。反应器有效体积 ²⁰L 双 是不锈钢体壳。中源冷却水。促持反应器中温度恒

业 400% 级硕士研究生,研究万同为水处埋埋论与技术。 (C)1994-2023 China Academic Journal Electronic Publishing House. All rights reserved. 保持反应器内温度恒 定。反应器中均匀布置了 3盏紫外灯管。通过循环水泵使反应液在反应器内高速循环,循环流量为 27501L/h。加入反应液后开启循环泵, 15m in后开始取样,以保证完全混合的效果。紫外灯主波长为 253.7 mm,通过控制紫外灯管开关数来控制紫外光照射强度。光强的测定采用北京师范大学光电仪器 厂生产的紫外测光仪,测定点为反应器顶部中心点 (反应器内有水)。

1.石英套管;2.紫外灯;3.循环水泵;4.循环水泵流量计;5.压力表; 6.温度计;7.取样口;8.冷却水进水口;9.冷却水出水口;10.放空阀。

图 1 实验装置

Fig. 1 Schematic diagram of experimental apparatus

1.2 实验试剂

根据试验需要,小试试验分别采用蒸馏水和市 政管网自来水配制阿特拉津溶液,各项水质指标如 表 1所示。

表 1 实验水质

 ${\sf Tab} \cdot 1$ Experimental water quality

水质指标	pН	DOC (mg/L)	浑浊度 (NTU)	电导率 (μ _s / _{cm})
蒸馏水	7.13~7.56	1.37~1.67	0	<0.006
自来水	6.95~7.43	4.60~7.02	606~720	0.09~0.12

试验用到的试剂有: 阿特拉津 (A trazine)、 H_2O_2 试剂、液相色谱流动相为乙腈 (HPLC级,Signa公司生产)。其他常规药品为分析纯。

1.3 分析方法

中间产物测定采用梯度洗脱,流动相流速0.8 mL/m in。检测波长 210 nm,分析时间 15 m in,梯度程序为: $0.01 \sim 15 \text{m}$ in,乙腈:水 =5:95,4 m in 乙腈:30% in 对

标准物质的保留时间与降解产物的保留时间对比进行定性分析。测试中采用内标法,以抵消操作过程中产生的系统误差,提高分析精确度,标准曲线的相关系数 >0.995。

2 降解阿特拉津的影响因素分析

2.1 **pH**值

阿特拉津初始浓度 $500\mu_g$ /L 紫外辐照强度 $115\mu_W$ / cm^2 , H_2O_2 投加量 $50m_g$ /L 不同 pH 值条件下,反应前 5m inUV H_2O_2 工艺对阿特拉津的降解情况如图 2 所示。

图 2 不同 pH值对 UV H₂O₂ 工艺去除阿特拉津的影响 Fig. 2 Effect of different pH values on removal of atrazine by UV H₂O₂ process

从图 2可看出,随着 pH值的降低,反应速率逐渐加快。这表明水体中的阿特拉津在酸性条件下光解反应速率比碱性条件下稍快。这是由于在酸性条件下更有利于 $UV H_2 O_2$ 工艺产生大量的羟基自由基,且 H^+ 的存在能够阻止 $H_2 O_2$ 分解生成 HOO^- (HOO^- 是捕获羟基自由基的一种集团)。因此 $UV H_2 O_2$ 工艺在偏酸性或中性的条件下降解阿特拉津的效果更好。

2.2 A trazine初始浓度

阿特拉津溶液 pH 值 6.9、紫外辐照强度 115μ W /cm², H_2 O₂ 投加量 50mg/L 不同阿特拉津 初始浓度条件下,UV H_2 O₂ 工艺对阿特拉津的降解情况如图 3所示。

从图 3可见,随着阿特拉津初始浓度的增加,UV H_2 O_2 工艺降解阿特拉津的速率加快。

乙腈升亮到 30% ... 15m in 乙腈升高到 180% 通过 Publishing House. All rights reserved. http://www.cnki.net

图 3 不同初始浓度对 UV H₂O₂ 工艺去除阿特拉津的影响 Fig. 3 Effect of different initial concentrations on removal of atrazine by UV H₂O₂ process

2.3 紫外辐照强度

阿特拉津初始浓度 $500\mu_g/L$ pH 值 6.9, H_2O_2 投加量 $50m_g/L$ 不同紫外辐照强度条件下, $UV H_2O_2$ 工艺对阿特拉津的降解情况如图 4所示。

图 4 不同紫外辐照强度下阿特拉津的去除率 Fig. 4 Removal rates of atrazine at different UV irradiation intensities

从图 4可见,当紫外辐照强度由 $56\mu\text{W}/\text{cm}^2$ 升高时,随着紫外辐照强度的增加阿特拉津的降解速率明显加快。当紫外线辐照度升至 $172\mu\text{W}/\text{cm}^2$ 时,反应到 10m in时系统对阿特拉津的去除率 >90%。

2.4 H_2O_2 投加量

阿特拉津初始浓度 $500\mu_{\rm g}/L$ pH值 6.9, 紫外辐照强度 $115\mu_{\rm W}/cm^2$, 不同 H_2O_2 投加量条件下, UV H_2O_2 工艺对阿特拉津的降解情况如图 5所示。

从图 5可见,当 H_2O_2 投加量 $<90_{mg}$ L 时,

图 5 不同 H_2O_2 投加量对 $UV H_2O_2$ 工艺去除阿特拉津的影响

Fig. 5 Effect of different $H_2\,O_2$ dosages on removal of atrazine by UV $H_2\,O_2$ process

津的速率明显加快;但当 H_2O_2 投加量继续增加至 102_{mg} /L时降解速率反而开始下降。其原因为当水中 H_2O_2 不饱和时, H_2O_2 在紫外线激发下所产生的羟基自由基随着 H_2O_2 投加量的增加而急剧增加,当水中 H_2O_2 饱和甚至过量时,由于 H_2O_2 可捕获羟基自由基,所以当 H_2O_2 的投加量超过一定数值时,系统对阿特拉津的降解速率开始下降 $[3^{44}]$ 。

3 降解阿特拉津的动力学分析

3.1 UV辐照强度分析

不同紫外线辐照强度条件下,阿特拉津的光解 曲线呈现一级反应动力学的特征^[5]。进行一级动 力学方程拟合,其相应的动力学方程参数见表²。

表 2 不同光强条件下阿特拉津一级反应动力学参数 Tab-2 First order K inetics parameters of a trazine at different UV intensities

光 强 (#W /cm²)	拟合方程 K	(min^{-1})	\mathbb{R}^2
56	LnC = -0.375 t + 6.214	0.375	0.983
115	LnC = -0.496 t + 6.215	0.496	0.987
172	LnC = -0.684 t + 6.217	0.684	0.993

拟合结果表明:本实验阿特拉津在不同光强条件的光解反应均很好的符合一级反应动力学模型。从表中可知,光解反应的一级反应速率常数受光强影响较大。反应速度常数随着 UV 辐射量的增加而增加。分子吸收光的本质是在紫外光辐射的作用

随着、H₂O₂投量的增加,UV H₂O₂工艺降解阿特拉 Lectronic Publis增加,HQLLLL设置,是在紫外光辐射的作用。 下,物质分子的能态发生了改变,即分子的转动、振动、或者电子能级发生变化,由低能态被激发至高能态 (即活化),进而发生各种反应。增加光强实质上提高单位反应体积内的光子流量,光子流量的增加会使单位时间内被活化的物质分子数增加,反应速率也会随之提高。因此,可以通过增加紫外照射光强,来提高阿特拉津光氧化降解的效率,但这也相应增加了运行费用。

3.2 H₂O₂ 浓度分析

不同 H_2O_2 浓度条件下,阿特拉津的光解曲线 呈现一级反应动力学的特征 [5],进行一级动力学 方程拟合,其相应的动力学方程参数见表 3。

表 3 不同 H₂O₂ 浓度条件下阿特拉津一级反应动力学参数 Tab·3 First-order k inetics parameters of atrazine at different concentrations of H₂O₂

H ₂ O ₂ 浓度 (mg/L)	拟合方程	K	(min^{-1})	R^2
20	LnC = -0.481 t + 6.211		0.481	0.991
28	LnC = -0.487 t + 6.216		0.487	0.996
48	LnC = -0.492 t + 6.213		0.492	0.989
78	LnC = -0.512t + 6.215		0.512	0.992
90	LnC = -0.813t + 6.219		0.813	0.995
102	LnC = -0.417 t + 6.214		0.417	0.997

分析拟合结果可得: H_2O_2 在 $UV H_2O_2$ 工艺降解阿特拉津时具有双重作用,一方面,当 H_2O_2 投加量较小时,一级反应速率常数随 H_2O_2 投加量的增加急剧增加。这是由于 H_2O_2 在紫外线照射下能分解成具有强氧化性的羟基自由基 $^{[6,7]}$,增大 H_2O_2 浓度会导致有更多羟基自由基产生,从而使得阿特拉津降解速度明显提高。另一方面,当 H_2O_2 浓度增加到一定程度(90mg/L)后,阿特拉津的降解速率随 H_2O_2 浓度的变化已不明显。 H_2O_2 浓度为 90mg/L基本达到最大值。而 H_2O_2 浓度为 102mg/L时,则出现了抑制作用。 H_2O_2 作为羟基自由基的捕获剂,溶液中过量的 H_2O_2 会与羟基自由基反应,其反应式如下:

$$OH \cdot +_{H_2}O_2 \Rightarrow HO_2 \cdot +_{H_2}O$$

由于生成的过氧化羟基自由基氧化能力较弱, 因此 H_2 O_2 浓度越高过氧化羟基自由基就越多,使 得阿特拉津的降解速率反而降低。

4 结 论

4.1 UV H_2O_2 工艺能有效去除饮用水中的阿特拉津,在 H_2O_2 投加量为 50 mg/L pH 值为 6.9,阿特拉津初始浓度约为 $500 \mu_{\text{g}}/\text{L}$ 紫外线辐照度为 $172 \mu_{\text{W}}/\text{cm}^2$ 时,反应 10 m in阿特拉津的去除率为 >90%。

4.2 UV H_2 O_2 工艺对阿特拉津的降解符合一级反应动力学。 H_2 O_2 在 UV H_2 O_2 工艺降解阿特拉津时具有双重作用,一方面,当 H_2 O_2 投加量较小时,一级反应速率常数随 H_2 O_2 投加量的增加基本呈现线性增加的趋势;另一方面,当 H_2 O_2 浓度增加到一定程度(90mg/L)后,阿特拉津的降解速率随 H_2 O_2 浓度的变化已不明显。 H_2 O_2 浓度为 90mg/L 基本达到最大值。而 H_2 O_2 浓度为 102mg/L时,则出现了抑制作用。

4.3 pH值对 UV H_2 O_2 工艺去除阿特拉津的效果 有一定影响,当 pH值为中性和偏酸性时更有利于系统对阿特拉津的去除。

参考文献:

- [1] Felsot A. S. Racke K. D. Hamilton D. J. Disposalanddegradation of pesticidewaste [J]. Rev. Environ. Contam. Toxicol. 2003, 177: 123-186.
- [2] Silva E. Fialho M. Sa—Correja I. Bums R.G. Show L.J. Combined bioaugmentation and biostimu lation to clean upsoil contaminated with high concentrations of atrazine [J]. Environ. Sci. Technol. 2004, 38, 632-637.
- [3] Camel V, Bernard A. The use of ozone and associated oxidation processes in drinking water treatment [J] WaterRes, 1998, 32; 3208-3222.
- [4] A leboyeh A zam. Moussa Yasser A leboyeh Ham id. Kinetics of oxidative decoliurisation of Acid Orange 7 in water by ultraviolet mdiation in the presence of hydrogen peroxide [J]. Sep Purif Technol, 2005, 43(2): 143-148.
- [5] Kusic H. Koprivanac N. LoncaricBozic A. Papic S. Petemel I Vujevic D. Reactive dye degrad—ation by AOPs—development of a kinetic model for UV/H₂O₂ process [J]. Chem. Biochem. Eng. O. 2006, 20, 293-300.
- [6] Alnaizy R. Akgerman A. Advanced oxidation of phenolic compounds[J]. Advances in Environmental Research. 2000, 4: 233-244.
- [7] Chan K. H. Chu W. Atrazine removal by catalytic oxidation processes with or without UV irra—diation. PartI Quantification and rate enhancement via kineticstudy [J]. Applied CatalysisB Environmental 2005, 58, 157-163.