The Performance Analysis of Cache Architecture based on Alluxio over Virtualized Infrastructure

Xu Chang, Li Zha

Contents

- Background
- Related Works
- Motivation
- Experiments
- Results
- Conclusion
- Future Work

Background

- Cloud Computing
 - Computing as a service
 - Application of resources on demand and payment on demand
- Virtualization
 - Integrates and encapsulates the resources
 - Provide the resource in piece
 - Transparent to users

Background

Traditional Architecture

Compute Node Data Node Compute Node
Data Node

Compute Node
Data Node

Decoupling vs Traditional

Advantage:

- More flexible
- Overall cost is reduced

Shortcoming:

Performance decline

Related Works

For making up the loss of performance

- Traditional optimization method
 - Speed up the shuffle part of jobs with SSDs
 - [kambatla2014truth] [ruan2017improving]
- Reduce the frequency of accessing the object storage
 - Construct the cache layer between applications and object storage
 - [shankar2017performance] [qureshi2014cache]

Related Works

Alluxio (Tachyon)

- The world's first memory speed virtual distributed storage system
- Resides between computation frameworks and storage systems

Motivation

- Only concern about performance, do not care about cost
- Cost reduction is critical
- Question:
 - How to design the caching architecture to make the cost performance highest?

Experiments

System architecture

Experiments

Experimental environment

Experiment 1:

Platform: AWS

Servers: m3.2xlarge * 4

Object storage: S3

Experiment 2:

Platform: G-Cloud

Servers: 8 cores & 30G

memory * 4

Object storage: Ceph

Experiments

Experimental scheme

- Experiment 1:
 - Workload: Terasort * 6
- Experiment 2:
 - Workload: Hive-Join * 3
- Data Size: 120G
- Cost ratio of memory to SSD

Memory: SSD 8:0	7:1	5:3	3:5	1:7	0:8
-----------------	-----	-----	-----	-----	-----

Results

Experimental 1:

Results

Experimental 2:

Cost Performance

Conclusion

- Hybrid cache architecture is recommended.
- For the workload with large size of output and small size of hot data, the cost ratio of memory to SSD in cache should be around 1:7

• For the workload with small size of output and large size of hot data, the cost ratio of memory to SSD in cache should be around 5:3

Future Work

• Study several aspects that affect the cost performance, and try to give a configuration scheme with the best cost performance

• Increase workload types and application scenarios, so that the conclusion is closer to the real scene and has generality

Q & A

Thanks!

