E.5

5.1,5.2,

* bey points from Lecture

· modes for delay, jitter and loss

- · Compensation for known and unknown delays
- · identify and select appropriate Controller realization
- · quantization

* extra notes

James Taylor jamest@kth.se laperss@kth.se

E 5.1 * parallel form motive: control functions that an only handle lower-order difference equations * Robust to pertubation in parameter and states * parallel form implementation, as a cascade of first and second-order filters Hextra notes implementation by y(k) ditect Form canonical form. Sobservable Both sensitive P25-29, 15 $H(Z) = \frac{1}{(Z-1)(Z-1/2)(Z^2+1/2Z+1/4)}$ (2+4)2+3 $= \frac{A}{Z-1} + \frac{B}{Z-1/2} + \frac{CZ+D}{Z^2+1/2Z+1/4}$ $\Rightarrow A=1.14, B=-2.67, C=1.52, D=0.95$ Implementation of three parts (see E4.1 (b) for canonical representation). $\frac{A}{Z-1}$: $\frac{X_1(k+1) = X_1(k) + Y(k)}{U_1(k) = 1.14 X_1(k)}$ (Same for = 1) $\chi_{1}(k+1) = \chi_{2}(k)$ uck) Xz(k+1)=-本X1(k)-= X2(k)+y(k) =4(K)+42(K) U3(k) = C X2(k) + DX(k)

+ 1/3(K)

wider of first order term

$$U(z) = \frac{\beta_1}{z - \lambda_1} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\beta_1}{z - \lambda_1} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1 z + \alpha_2}{z^2 + \beta_1 z + \beta_2} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1 z + \alpha_2}{z^2 + \beta_1 z + \beta_2} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1 z + \alpha_2}{z^2 + \beta_1 z + \beta_2} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1 z + \alpha_2}{z^2 + \beta_1 z + \beta_2} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1 z + \alpha_2}{z^2 + \beta_1 z + \beta_2} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1 z + \alpha_2}{z^2 + \beta_1 z + \beta_2} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1 z + \alpha_2}{z^2 + \beta_1 z + \beta_2} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1 z + \alpha_2}{z^2 + \beta_1 z + \beta_2} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1 z + \alpha_2}{z^2 + \beta_1 z + \beta_2} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1 z + \alpha_2}{z^2 + \beta_1 z + \beta_2} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1 z + \alpha_2}{z^2 + \beta_1 z + \beta_2} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1 z + \alpha_2}{z^2 + \beta_1 z + \beta_2} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1 z + \alpha_2}{z^2 + \beta_1 z + \beta_2} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1 z + \alpha_2}{z^2 + \beta_1 z + \beta_2} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1 z + \alpha_2}{z^2 + \beta_1 z + \beta_2} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1 z + \alpha_2}{z^2 + \beta_1 z + \beta_2} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1 z + \alpha_2}{z^2 + \beta_1 z + \beta_2} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1 z + \alpha_2}{z^2 + \beta_1 z + \beta_2} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1 z + \alpha_2}{z^2 + \beta_1 z + \beta_2} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1 z + \alpha_2}{z^2 + \beta_1 z + \beta_2} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1 z + \alpha_2}{z^2 + \beta_1 z + \beta_2} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1 z + \alpha_2}{z^2 + \beta_1 z + \beta_2} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1 z + \alpha_2}{z^2 + \beta_1 z + \beta_2} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1 z + \alpha_2}{z^2 + \beta_1 z + \beta_2} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1 z + \alpha_2}{z^2 + \alpha_1 z + \alpha_2} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1 z + \alpha_2}{z^2 + \alpha_1 z + \alpha_2} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1 z + \alpha_2}{z^2 + \alpha_1 z + \alpha_2} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1 z + \alpha_2}{z^2 + \alpha_1 z + \alpha_2} Y(z) \quad \text{distinct poles}$$

$$U(z) = \frac{\alpha_1$$

$$H = \frac{|.52 Z + 0.95|}{Z^2 + ||_{2} Z + 1/4}$$

$$\begin{bmatrix} S_3(k+1) \\ S_4(k+1) \end{bmatrix} = \begin{bmatrix} -\frac{1}{4} & \frac{13}{4} \\ -\frac{13}{4} & -\frac{1}{4} \end{bmatrix} \begin{bmatrix} S_3(k) \\ S_4(k) \end{bmatrix} + \begin{bmatrix} 1.756 \\ 1.521 \end{bmatrix} y(k)$$

$$\exists u(k) = \begin{bmatrix} 0.8677 & 0 \end{bmatrix} \begin{bmatrix} S_3(k) \\ S_4(k) \end{bmatrix}$$

& extra notes

(a)
$$C_{s}(s) \Rightarrow H_{cl}(s) = \frac{C_{s}(s)P(s)e^{-s\tau}}{1+C_{s}(s)P(s)e^{-s\tau}} = \frac{C(s)P(s)}{1+C(s)P(s)} e^{-s\tau}$$

$$\Rightarrow C_{s}(s) = \frac{1}{1+C(s)P(s)-C(s)P(s)e^{-s\tau}} = \frac{1+C(s)P(s)}{1+C(s)P(s)} e^{-s\tau}$$

how to derive Smith predicator diagram

see above.

(b) $P(s) = \frac{1}{s+1}$, $H_{cl}(s) = \frac{8}{s^{2}+4s+8}e^{-s\tau} = \frac{C(s)P(s)}{1+C(s)P(s)}e^{-s\tau}$

$$\Rightarrow C(s) = \frac{8s+8}{s^{2}+4s}$$

$$\Rightarrow C_{s}(s) = \frac{8(s+1)}{s^{2}+4s+8(1-e^{-s\tau})}$$

E5.3	D
* time delay & Stability	P7-9, 15
OCTS with phase margin In	at Wc, then the maximum efixed,
time delay & stability OCTs with phase margin Im time delay: T < Im/wc	(Nyquist Chitation)
Z < 9m/Wc	
2) cts with unknown time-	varying delay, 0<7(t)< Too
Sufficient condition P(jw) C(jw)	< There , Ywe[0, \infty]
	(Small-gain theorem)
3) PTS with unknown time-1	varying dolay, 0< T(t) < N-h
It Pleim) Cle	(Small-gain theorem) varying delay, 0< T(t) < N-h why < NIEJWAIT, YW \(\in [0,2T] \)
& extra notes	Proof see Paper 3 of P.h.D
ejwh_05 lejw_1	thesis [1]
$= \sqrt{(0.50-1)^2 + \sin^2 0}$	Very interesting to construct the transfermed system
12	transformed system
$n = (600 - 0.5)^2 + \sin^2 \theta \qquad (0 = 0)$	
k?	
* apply the criterion 3.	
closed-loop system withou	t delay
$H_{0}(Z) = P(Z)C(Z)$	$= \frac{\mathcal{Z} \left[(k_p + k_i) \mathcal{Z} - k_p \right]}{(\mathcal{Z} - 0.5)(\mathcal{Z} - 1) + (k_p + k_i) \mathcal{Z}^2 - k_p \mathcal{Z}}$
1+ P(Z) C(Z)	(Z-0.5)(Z-1)+(kp+ki)Z2-kpZ
$=$ $0.3 \pm 2^{2} - 0.2$	- DAP U.DV C.TT
1.372-1.77	Stable
=> plot Ha (ein) · lei	find upper-band h=1?
explicit Calculation —	find upper-band h=1?
enven for low-	7332 × 1.003 N=1
Inder system	function bode)
esun= Coso +sing i	Juiction bode)

```
% E 5.3
ts=1; %100
DTS = tf([0.3 -0.2 1], [1.3 -1.7 0.5], ts);
delay1 = tf([1], 1*[1 -1], ts);
delay2 = tf([1], 2*[1 -1], ts);
delay3 = tf([1], 3*[1 -1], ts);
figure(1)
bodemag(DTS,'b',delay1,'r',delay2,'k',delay3,'c')
legend('DTS','N=1','N=2','N=3')
```

