apontamentos

Álgebra Linear aulas teóricas

Mestrado Integrado em Engenharia Mecânica, 1º semestre 2012/13

Lina Oliveira

Departamento de Matemática, Instituto Superior Técnico

Índice

Índice		
1	Matrizes, sistemas de equações lineares e método de eliminação de Gauss Matrizes	3 3 5
2	Característica, variáveis dependentes e variáveis independentes Característica duma matriz	10 10 12
3	Método de eliminação de Gauss-JordanForma canónica ou reduzida de escada de linhasMétodo de eliminação de Gauss-JordanComentários	14 14 14 17
4	Cálculo matricialAdição e multiplicação por escalaresMultiplicação de matrizesMatriz transposta	18 18 20 25
5	Matriz inversaMatriz inversaCálculo da matriz inversaPropriedades da matriz inversa	28 28 30 32
6	Matrizes elementares	33 39

7	Determinantes: axiomática e cálculo	41
8	Determinantes, invertibilidade e fórmula de Laplace	48
	Determinante e invertibilidade	48
	Fórmula de Laplace	53

1

Matrizes, sistemas de equações lineares e método de eliminação de Gauss

Matrizes

Uma **matriz de tipo** $k \times n$ é um quadro

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{1n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kj} & \dots & a_{kn} \end{bmatrix}$$

de números ou escalares reais (respetivamente, complexos) com k linhas e n colunas. Os números a_{ij} , para todos os índices $i=1,\ldots,k$ e $j=1,\ldots,n$, dizem-se as **entradas** da matriz. O índice i indica o número da linha da matriz onde a **entrada**-(ij) (i.e, o escalar a_{ij}) se encontra, e o índice j indica a coluna.

Exemplo

A entrada-(23) da matriz

$$\begin{bmatrix} 1 & -2 & 5 & 1 \\ 2 & -1 & 7 & 3 \end{bmatrix}$$

é o número que se encontra na linha 2 e na coluna 3, ou seja, $a_{23}=7$.

A linha i da matriz é

$$L_i = \begin{bmatrix} a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{1n} \end{bmatrix},$$

Matrizes, sistemas de equações lineares e método de eliminação de Gauss

e a coluna j é

$$C_j = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{ji} \\ \vdots \\ a_{kj} \end{bmatrix}.$$

A matriz pode ser apresentada abreviadamente como $[a_{ij}]_{\substack{i=1,\dots,k\\j=1,\dots,n}}$, ou apenas $[a_{ij}]$ sempre que o tipo da matriz for claro a partir do contexto. A matriz diz-se:

- Matriz retangular, se $k \neq n$.
- Matriz quadrada, se k = n. Neste último caso, a matriz diz-se uma matriz quadrada de **ordem** n (ou k).
- Matriz coluna ou vetor coluna, se n = 1.
- Matriz linha ou vetor linha, se k = 1.

Uma matriz $A = [a_{ij}]$ diz-se estar **em escada de linhas** ou que é uma **matriz em escada de linhas** se satisfizer as duas condições seguintes.

- 1. Não existem linhas nulas acima de linhas não nulas.
- 2. Sendo L_i e L_{i+1} duas quaisquer linhas não nulas consecutivas de A, a primeira entrada não nula da linha L_{i+1} encontra-se (numa coluna) à direita (da coluna) da primeira entrada não nula da linha L_i .

A primeira entrada não nula de cada linha duma matriz em escada de linhas designa-se por **pivô**.

Exemplo

A matriz da alínea (a) é uma matriz em escada de linhas cujos pivôs são 1, 4 e 6. As matrizes das alíneas (b) e (c) não são matrizes em escada de linhas.

(a)
$$\begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 0 & 4 & -2 \\ 0 & 0 & 0 & 6 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 0 & 1 & 0 & 4 & 5 \\ 0 & 0 & 0 & 8 & 2 \\ 0 & 0 & 0 & 7 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 1 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 8 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Operações elementares

Existem três operações elementares sobre as linhas de uma matriz.

- Substituição da linha L_i por $L_i + \alpha L_j$, com α escalar e $i \neq j$.
- Troca da linha L_i com a linha L_j (com $i \neq j$).
- Substituição da linha L_i por αL_i , com $\alpha \neq 0$.

Estas operações aplicar-se-ão seguidamente na resolução de sistemas de equações lineares, altura em que serão descritas.

Sistemas de equações lineares

Uma equação linear é uma equação da forma

$$a_1x_1 + a_2x_2 + \dots + a_{n-1}x_{n-1} + a_nx_n = b,$$

onde $a_1, a_2, \ldots, a_{n-1}, a_n, b$ são escalares e $x_1, x_2, \ldots, x_{n-1}, x_n$ são as **incógnitas** ou **variáveis**. Um **sistema de equações lineares** (SEL) é uma conjunção de equações lineares

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{k1}x_1 + a_{k22}x_2 + \dots + a_{kn}x_n = b_k \end{cases}$$

O sistema diz-se **homogéneo** se $b_1=b_2=\cdots=b_k=0$ e, caso contrário, diz-se **não homogéneo**.

Resolver um sistema de equações lineares é determinar o conjunto de todas as sequências (x_1, x_2, \ldots, x_n) de n números que satisfazem todas as equações do SEL. Este conjunto diz-se a **solução geral** ou o **conjunto das soluções** do SEL.

Dois sistemas de equações lineares dizem-se **equivalentes** se tiverem a mesma solução geral. Os sistemas de equações lineares classificam-se segundo a sua **natureza**. Um sistema de equações lineares diz-se:

Matrizes, sistemas de equações lineares e método de eliminação de Gauss

- possível e determinado, se tem uma única solução
- possível e indeterminado, se tem mais que uma solução. ¹
- impossível, se o conjunto das soluções é vazio.

Um sistema de equações lineares homogéneo é sempre possível.

Um SEL homogéneo tem sempre a **solução nula**, i.e., a solução em que todas as variáveis são nulas.

Matrizes associadas ao sistema de equações lineares

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{k1} & a_{k22} & \dots & a_{kn} \end{bmatrix} \qquad \longleftarrow \quad \textbf{Matriz dos coeficientes}$$

$$b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix} \qquad \longleftarrow \quad \text{Matriz (coluna) dos termos independentes}$$

$$[A|b] = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{k1} & a_{k22} & \dots & a_{kn} & b_k \end{bmatrix} \qquad \longleftarrow \quad \textbf{Matriz aumentada}$$

A matriz aumentada também pode ser simplesmente representada sem a linha de separação vertical

$$[A|b] = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{k1} & a_{k22} & \dots & a_{kn} & b_k \end{bmatrix}.$$

¹ Neste caso, o SEL tem infinitas soluções como se verá adiante na Secção 2.

Como resolver um sistema de equações lineares

Consideremos o sistema de equações lineares

$$\begin{cases} x+y+z=3\\ x-y+2z=2\\ 2x+y-z=2 \end{cases}.$$

A matriz aumentada do sistema é

$$[A|b] = \begin{bmatrix} 1 & 1 & 1 & | & 3 \\ 1 & -1 & 2 & | & 2 \\ 2 & 1 & -1 & | & 2 \end{bmatrix}.$$

Se se efetuar uma operação elementar sobre as linhas da matriz aumentada [A|b], obtém-se a matriz aumentada dum sistema de equações lineares equivalente.

Este facto será usado para "simplificar" a matriz aumentada de modo a obter um sistema equivalente ao inicial mas cuja solução seja mais fácil de determinar.

Objetivo: Reduzir a matriz aumentada a uma matriz em escada de linhas à custa de operações elementares, usando o **método de eliminação de Gauss**.

O método de eliminação de Gauss (MEG) consiste em:

- 1. Colocar todas as linhas nulas da matriz abaixo das linhas não nulas, fazendo as trocas de linhas necessárias.
- 2. Escolher uma das entradas não nulas situada numa coluna o mais à esquerda possível e colocá-la na primeira linha da matriz, trocando eventualmente linhas.
- 3. Usar operações elementares para reduzir a zero as entradas situadas na mesma coluna e nas linhas abaixo.
- 4. Repetir os passos anteriores "descendo" uma linha, i.e., considerando a *submatriz* formada apenas pelas linhas abaixo da linha 1.
- 5. Continuar o mesmo processo "descendo" mais uma linha, i.e., considerando apenas as linhas abaixo da linha 2.

Matrizes, sistemas de equações lineares e método de eliminação de Gauss

6. Esta "descida" na matriz repete-se até se obter uma matriz em escada de linhas.

Aplica-se agora o método de eliminação de Gauss à matriz aumentada do sistema.

$$\begin{bmatrix} 1 & 1 & 1 & | & 3 \\ 1 & -1 & 2 & | & 2 \\ 2 & 1 & -1 & | & 2 \end{bmatrix} \xrightarrow[L_2-L_1]{L_2-L_1} \begin{bmatrix} 1 & 1 & 1 & | & 3 \\ 0 & -2 & 1 & | & -1 \\ 0 & -1 & -3 & | & -4 \end{bmatrix} \cdots$$

$$\cdots \xrightarrow[L_2 \leftrightarrow \bar{L}_3]{} \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & -1 & -3 & -4 \\ 0 & -2 & 1 & -1 \end{bmatrix} \xrightarrow[L_3 -2\bar{L}_2]{} \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & -1 & -3 & -4 \\ 0 & 0 & 7 & 7 \end{bmatrix}$$

As operações elementares indicadas sob as setas são as seguintes:

- L_2-L_1 indica que se somou à linha 2 a linha 1 multiplicada por -1, e L_3-2L_1 indica que se somou à linha 3 a linha 1 multiplicada por -2.
- $L_2 \leftrightarrow L_3$ indica que se trocou a linha 2 com a linha 3.
- $L_3 2L_2$ indica que se somou à linha 3 a linha 2 multiplicada por -2.

Note que adotamos a seguinte convenção:

A linha modificada é sempre a primeira a ser escrita. \leftarrow ATENÇÃO

A matriz

$$\begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & -1 & -3 & -4 \\ 0 & 0 & 7 & 7 \end{bmatrix}$$
 (Quais são os pivôs?)

está em escada de linhas e é a matriz aumentada do SEL

$$\begin{cases} x+y+z=3\\ -y-3z=-4 \end{cases},$$

$$7z=7$$

tendo-se

$$\begin{cases} x+y+z=3\\ x-y+2z=2\\ 2x+y-z=2 \end{cases} \iff \begin{cases} x+y+z=3\\ -y-3z=-4\\ 7z=7 \end{cases}.$$

Matrizes, sistemas de equações lineares e método de eliminação de Gauss

Começando a resolver o SEL pela equação mais simples, ou seja a última, tem-se z=1. Substituindo z na segunda equação, obtém-se

$$-y - 3 = -4$$
,

ou seja y=1. Finalmente, usando a última equação e os valores obtidos de y e z, tem-se que

$$x + 1 + 1 = 3$$

e, portanto, x=1. É agora imediato concluir que o conjunto das soluções ou a solução geral é $\{(1,1,1)\}$ e que, portanto, o SEL possível e determinado.

Note que, uma vez obtido o sistema correspondente à matriz (aumentada) em escada de linhas, a resolução faz-se "de baixo para cima": começa-se com a última equação e vai-se "subindo" no sistema.

Em resumo, relembre que se resolve um sistema de equações lineares em três passos:

- 1. Obtém-se a matriz aumentada [A|b] do sistema;
- 2. Reduz-se [A|b] a uma matriz R em escada de linhas usando o método de eliminação de Gauss ou, em esquema,

$$[A|b] \xrightarrow{\mathrm{MEG}} R$$

3. Resolve-se o SEL cuja matriz aumentada é R.

No exemplo anterior:

$$[A|b] = \begin{bmatrix} 1 & 1 & 1 & 3 \\ 1 & -1 & 2 & 2 \\ 2 & 1 & -1 & 2 \end{bmatrix} \xrightarrow{\text{MEG}} \begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & -1 & -3 & -4 \\ 0 & 0 & 7 & 7 \end{bmatrix} = R$$

2

Característica, variáveis dependentes e variáveis independentes

Característica duma matriz

Quando se reduz uma matriz a uma matriz em escada de linhas à custa de operações elementares, o número de pivôs não depende das operações elementares realizadas.

Porquê?

A característica duma matriz A de tipo $k \times n$ é o número de pivôs de qualquer matriz em escada de linhas que se obtenha a partir de A à custa de operações elementares. Designa-se por $\operatorname{car} A$ a característica da matriz A.

Exemplo

Resolvamos o sistema de equações lineares

$$\begin{cases} x - y - 2z = 0 \\ 2x - 3y - 2z = 3 \\ -x + 2y = -3 \end{cases}$$

Aplicando o método de eliminação de Gauss à matriz aumentada deste SEL, obtém-se:

$$[A|b] = \begin{bmatrix} 1 & -1 & -2 & 0 \\ 2 & -3 & -2 & 3 \\ -1 & 2 & 0 & -3 \end{bmatrix} \xrightarrow[L_2 \to L_1]{} \begin{bmatrix} 1 & -1 & -2 & 0 \\ 0 & -1 & 2 & 3 \\ 0 & 1 & -2 & -3 \end{bmatrix} \xrightarrow[L_3 \to L_2]{} \begin{bmatrix} 1 & -1 & -2 & 0 \\ 0 & -1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Característica, variáveis dependentes e variáveis independentes

Tem-se então que

$$\begin{cases} x - y + 2z = 0 \\ 2x - 3y - 2z = 3 \\ -x + 2y = -3 \end{cases} \iff \begin{cases} x - y + 2z = 0 \\ -y - 2z = 3 \end{cases} \iff \begin{cases} x = 4z - 3 \\ y = -2z - 3 \end{cases}.$$

Este sistema não tem obviamente solução única.

Como escolher as variáveis independentes ou livres e as variáveis dependentes

- As variáveis dependentes são as variáveis que correspondem às colunas com pivôs.
- As variáveis independentes são as restantes, i.e., as variáveis que correspondem às colunas sem pivôs.

De acordo com a regra acima, as variáveis dependentes são x e y, e a variável independente ou livre é z. A solução geral do sistema é

$$\{(x, y, z) \in \mathbb{R}^3 : x = 4z - 3 \land y = 2z + 3\}$$

e, portanto, o SEL tem um número infinito de soluções.

O grau de indeterminação dum sistema é

- G.I. = número de variáveis independentes
 - = número de variáveis número de variáveis dependentes
 - = número de colunas da matriz dos coeficientes característica da matriz dos coeficientes
 - = número de colunas de A car A

onde A é a matriz dos coeficientes do sistema.

O SEL que acabámos de resolver é possível e indeterminado e o seu grau de indeterminação é

$$G.I. = 3 - 2 = 1.$$

Exemplo

Aplicando o MEG ao sistema

$$\begin{cases} x+y-2z=1\\ -x+y=0\\ y-z=0 \end{cases}$$

obtém-se

$$[A|b] = \begin{bmatrix} 1 & 1 & -2 & 1 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 \end{bmatrix} \xrightarrow[L_2 + L_1]{} \begin{bmatrix} 1 & 1 & -2 & 1 \\ 0 & 2 & -2 & 1 \\ 0 & 1 & -1 & 0 \end{bmatrix} \xrightarrow[L_3 -\frac{1}{2}L_2]{} \begin{bmatrix} 1 & 1 & -2 & 1 \\ 0 & 2 & -2 & 1 \\ 0 & 0 & 0 & -\frac{1}{2} \end{bmatrix}.$$

Assim,

$$\begin{cases} x + y - 2z = 1 \\ -x + y = 0 \\ y - z = 0 \end{cases} \iff \begin{cases} x + y - 2z = 1 \\ 2y - 2z = 1 \\ 0 = -\frac{1}{2} \end{cases}.$$

Conclui-se que o sistema é impossível e que, portanto, a sua solução geral é o conjunto \varnothing .

Classificação dos sistemas de equações lineares

Usa-se a noção de característica para classificar os sistemas de equações lineares quanto à sua natureza.

$$\begin{array}{ccc} & \text{Natureza do SEL} \\ \operatorname{car} A = \operatorname{car}[A|b] & \to & \operatorname{poss\'{n}vel} \\ \operatorname{car} A \neq \operatorname{car}[A|b] & \to & \operatorname{imposs\'{n}vel} \end{array}$$

Note que, quando $\operatorname{car} A \neq \operatorname{car}[A|b]$, a única hipótese é ter-se $\operatorname{car} A < \operatorname{car}[A|b]$.

Característica, variáveis dependentes e variáveis independentes

Possível e determinado \to $\operatorname{car} A = \operatorname{n\'umero}$ de colunas de A Possível e indeterminado \to $\operatorname{car} A < \operatorname{n\'umero}$ de colunas de A

 $G.I. = n^{\underline{o}}$ colunas de A - car A

Da análise que temos vindo a fazer, podemos concluir que

Um sistema de equações lineares possível e indeterminado tem um número infinito de soluções.

3

Método de eliminação de Gauss-Jordan

Forma canónica ou reduzida de escada de linhas

Uma matriz diz-se estar em forma canónica de escada de linhas ou em forma reduzida de escada de linhas se satisfizer as três condições seguintes:

- A matriz está em escada de linhas.
- Os pivôs são todos iguais a 1.
- Em cada coluna com pivô, todas as entradas são iguais a 0 à exceção do pivô.

Exemplo

A matriz A é uma matriz em escada de linhas mas não está em forma canónica de escada de linhas. A matriz B é uma matriz em forma canónica de escada de linhas.

$$A = \begin{bmatrix} 1 & -2 & 3 & 9 \\ 0 & 0 & 4 & -2 \\ 0 & 0 & 0 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 & -7 & 0 & 4 \\ 0 & 1 & 8 & 0 & 5 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Método de eliminação de Gauss-Jordan

O método de eliminação de Gauss-Jordan é usado para, dada uma matriz, reduzi-la a uma matriz em forma canónica de escada de linhas à custa de operações elementares. Este método desenvolve-se em várias fases, sendo a primeira delas o método de eliminação de Gauss.

Dada uma matriz, o **método de eliminação de Gauss-Jordan** (MEG-J) consiste em:

- 1. Reduzir a matriz a uma matriz em escada de linhas usando o método de eliminação de Gauss.
- Usar o pivô situado numa coluna o mais à direita possível (ou seja na linha mais abaixo possível) e as operações elementares necessárias para reduzir a zero as entradas situadas na mesma coluna e nas linhas acima da linha do pivô.
 - Repetir os passos anteriores "subindo" uma linha, i.e., considerando a submatriz formada apenas pelas linhas acima da linha do ponto anterior.
 - Continuar o mesmo processo "subindo" mais uma linha, i.e., considerando apenas as linhas acima da linha do segundo pivô considerado.
 - Esta "subida" na matriz repete-se até se chegar à primeira linha da matriz (ou seja, até se obter uma matriz em que, nas colunas dos pivôs, estes são as únicas entradas não nulas).
- 3. Usar as operações elementares convenientes para obter uma matriz em que todos os pivôs são iguais a 1.

Exemplo

Objetivo: Dada uma matriz, pretende-se reduzi-la a uma matriz em forma canónica de escada de linhas à custa de operações elementares, usando o método de eliminação de Gauss-Jordan.

Apliquemos o método de eliminação de Gauss-Jordan à matriz

$$\begin{bmatrix} 1 & -2 & 0 & 2 \\ -\frac{1}{2} & 0 & 1 & 2 \\ -1 & -1 & 2 & 0 \\ 0 & -3 & 2 & 2 \end{bmatrix}$$

para a reduzir a uma matriz em forma canónica de escada de linhas:

$$\begin{bmatrix} 1 & -2 & 0 & 2 \\ -\frac{1}{2} & 0 & 1 & 2 \\ -1 & -1 & 2 & 0 \\ 0 & -3 & 2 & 2 \end{bmatrix} \xrightarrow[L_2 + \frac{1}{2}L_1]{} \begin{bmatrix} 1 & -2 & 0 & 2 \\ 0 & -1 & 1 & 3 \\ 0 & -3 & 2 & 2 \\ 0 & -3 & 2 & 2 \end{bmatrix} \xrightarrow[L_3 - 3L_2]{} \xrightarrow[L_3 - 3L_2]{} \begin{bmatrix} 1 & -2 & 0 & 2 \\ 0 & -1 & 1 & 3 \\ 0 & 0 & -1 & -7 \\ 0 & 0 & -1 & -7 \end{bmatrix} \cdots$$

$$\cdots \xrightarrow{\overline{L_4 - L_3}} \begin{bmatrix} 1 & -2 & 0 & 2 \\ 0 & -1 & 1 & 3 \\ 0 & 0 & -1 & -7 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\overline{L_2 + L_3}} \begin{bmatrix} 1 & -2 & 0 & 2 \\ 0 & -1 & 0 & -4 \\ 0 & 0 & -1 & -7 \\ 0 & 0 & 0 & 0 \end{bmatrix} \cdots$$

$$\cdots \xrightarrow[L_1-2L_2]{\begin{bmatrix} 1 & 0 & 0 & 10 \\ 0 & -1 & 0 & -4 \\ 0 & 0 & -1 & -7 \\ 0 & 0 & 0 & 0 \end{bmatrix}} \xrightarrow[\stackrel{(-1)L_3}{(-1)L_2} \begin{bmatrix} 1 & 0 & 0 & 10 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

- Os pontos 2. e 3. da descrição do MEG-J não têm que ser realizados por esta ordem (i.e., primeiro o ponto 2. e depois o ponto 3.). Pode ser conveniente tornar um pivô igual a 1 (ou até todos os pivôs) antes de completar o ponto 2., ou mesmo antes do ponto 2.
- Nos pontos 2. e 3. do MEG-J não se pode trocar linhas.
- O método de eliminação de Gauss-Jordan também pode ser usado na resolução de sistemas de equações lineares.

Proposição 1. Seja A uma matriz $k \times n$ e sejam R e R' matrizes em forma canónica de escada de linhas obtidas a partir de A à custa de operações elementares. Então R = R'.

Uma demonstração deste resultado pode ser encontrada em Thomas Yuster, "The Reduced Row Echelon Form of a Matrix is Unique: A Simple Proof", Mathematics Magazine, Vol. 57, No. 2 (Mar., 1984), pp. 93-94.

A forma canónica de escada de linhas ou a forma reduzida de escada de linhas duma matriz A é a matriz em forma canónica de escada de linhas que se obtém de A à custa de operações elementares.

No exemplo anterior, a matriz

$$\begin{bmatrix} 1 & 0 & 0 & 10 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Método de eliminação de Gauss-Jordan

é a forma reduzida de escada de linhas da matriz

$$\begin{bmatrix} 1 & -2 & 0 & 2 \\ -\frac{1}{2} & 0 & 1 & 2 \\ -1 & -1 & 2 & 0 \\ 0 & -3 & 2 & 2 \end{bmatrix}.$$

A partir de uma mesma matriz A, e à custa de operações elementares, podem-se obter diferentes matrizes em escada de linhas mas somente uma **única** matriz em forma canónica de escada de linhas.

Comentários

- P: Como resolver um sistema de equações lineares?
 - **R:** Usando o método de eliminação de Gauss ou o método de eliminação de Gauss–Jordan.
- P: Como apresentar a solução de um sistema de equações lineares?
 - **R:** Apresenta-se abaixo um exemplo de várias possibilidades de escrever a solução geral de um sistema de equações lineares (supõe-se que neste exemplo as variáveis são x,y,z e w e que o sistema é indeterminado com grau de indeterminação 2):
 - a) $\{(-z, -z w, z, w) : z, w \in \mathbb{R}\}$
 - b) $\{(x, y, z, w) \in \mathbb{R}^4 : x = -z \land y = -z w\}$
 - c) $\{(x, y, z, w) : x = -t \land y = -t s \land z = t \land w = s \ (t, s \in \mathbb{R})\}$
 - d) $\{(-t, -t s, t, s) : t, s \in \mathbb{R}\}$

4

Cálculo matricial

Adição e multiplicação por escalares

Definem-se seguidamente duas operações no conjunto $\mathbb{M}_{k\times n}(\mathbb{K})$ das matrizes de tipo $k\times n$. 2

Adição (+)

$$+: \mathbb{M}_{k \times n}(\mathbb{K}) \times \mathbb{M}_{k \times n}(\mathbb{K}) \to \mathbb{M}_{k \times n}(\mathbb{K})$$

 $(A, B) \mapsto A + B$

Sendo $A=[a_{ij}]$ e $B=[b_{ij}]$, define-se $A+B=[c_{ij}]$ como a matriz $k\times n$ tal que $c_{ij}\stackrel{\mathrm{def}}{=} a_{ij}+b_{ij}$.

Exemplo

$$A = \begin{bmatrix} 1 & -2 & 3 & 7 \\ 0 & 0 & 4 & -2 \\ -3 & 0 & 0 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} -1 & 0 & 4 & 5 \\ -2 & 3 & 11 & 2 \\ 0 & 6 & 7 & -1 \end{bmatrix} \qquad A + B = \begin{bmatrix} 0 & -2 & 7 & 12 \\ -2 & 3 & 15 & 0 \\ -3 & 6 & 7 & 5 \end{bmatrix}$$

Multiplicação por escalares (mpe)

mpe:
$$\mathbb{K} \times \mathbb{M}_{k \times n}(\mathbb{K}) \to \mathbb{M}_{k \times n}(\mathbb{K})$$

 $(\alpha, A) \mapsto \alpha A$

Sendo $A=[a_{ij}]$, define-se $\alpha A=[c_{ij}]$ como a matriz $k\times n$ tal que $c_{ij}\stackrel{\mathrm{def}}{=} \alpha a_{ij}$.

 $^{^2}$ K designa R ou C conforme as matrizes forem, respetivamente, reais ou complexas.

Exemplo

$$A = \begin{bmatrix} 1 & -2 & 3 & 5 \\ 0 & 0 & 4 & -2 \\ -3 & 0 & 0 & 6 \end{bmatrix} \qquad 2A = \begin{bmatrix} 2 & -4 & 6 & 10 \\ 0 & 0 & 8 & -4 \\ -6 & 0 & 0 & 12 \end{bmatrix}$$

Propriedades da adição e da multiplicação por escalares

Quaisquer que sejam as matrizes $A, B, C \in \mathbb{M}_{k \times n}$, tem-se:

- i) A + B = B + A
- ii) A + (B + C) = (A + B) + C
- iii) Existe um **elemento neutro** 0, i.e., qualquer que seja A,

$$A + 0 = A = 0 + A$$

iv) Todo o elemento $A \in \mathbb{M}_{k \times n}$ admite um **elemento simétrico** $-A \in \mathbb{M}_{k \times n}$, i.e.,

$$A + (-A) = 0 = (-A) + A$$

Quaisquer que sejam as matrizes $A,B\in\mathbb{M}_{k\times n}$ e os escalares $\alpha,\beta\in\mathbb{K}$, tem-se:

- i) $\alpha(A+B) = \alpha A + \alpha B$
- ii) $(\alpha\beta)A = \alpha(\beta A)$
- iii) $(\alpha + \beta)A = \alpha A + \beta A$
- iv) 1A = A

O elemento neutro da adição é único. O elemento neutro da adição é a matriz nula [0] de tipo $k \times n$.

O elemento simétrico duma matriz $A=(a_{ij})$ é único. O simétrico de A é a matriz $-A=(-a_{ij})$.

Multiplicação de matrizes

Multiplicação duma matriz por um vetor coluna

Seja A uma matriz de tipo $k \times n$ e consideremos um vetor coluna

$$\mathbf{b} = egin{bmatrix} b_{11} \ \vdots \ b_{i1} \ \vdots \ b_{k1} \end{bmatrix}$$

de tipo $n \times 1$. Define-se o produto da matriz A e do vetor \mathbf{b}

$$A\mathbf{b} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{1n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kj} & \dots & a_{kn} \end{bmatrix} \begin{bmatrix} b_{11} \\ \vdots \\ b_{ij} \\ \vdots \\ b_{ij} \\ \vdots \\ \vdots \\ b_{k1} \end{bmatrix} = \begin{bmatrix} c_{11} \\ \vdots \\ c_{i1} \\ \vdots \\ c_{k1} \end{bmatrix}$$

como a matriz coluna $A\mathbf{b} = [c_{i1}]_{i=1,\dots,k}$ de tipo $k \times 1$ tal que, para todos os valores dos índices $i = 1, \dots, k$, se tem

$$c_{i1} = a_{i1}b_{11} + a_{i2}b_{21} + \dots + a_{in}b_{n1}.$$

Note que, para ser possível multiplicar as matrizes A e \mathbf{b} , o número de colunas de A tem que ser igual ao número de linhas de \mathbf{b} .

Exemplo

Consideremos as matrizes

$$A = \begin{bmatrix} 2 & -1 & 5 \\ -4 & 6 & 3 \end{bmatrix} \qquad \mathbf{e} \qquad \mathbf{b} = \begin{bmatrix} 7 \\ -2 \\ 1 \end{bmatrix},$$

de tipo 2×3 e 3×1 , respetivamente. A multiplicação destas duas matrizes é possível porque o número de colunas de A e o número de linhas de $\mathbf b$ coincidem.

O produto $A\mathbf{b}$ será então um vetor coluna de tipo 2×1 tal que

$$A\mathbf{b} = \begin{bmatrix} 2 & -1 & 5 \\ -4 & 6 & 3 \end{bmatrix} \begin{bmatrix} 7 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 21 \\ -37 \end{bmatrix}.$$

A $\underline{\mathsf{linha}\ 1}$ de $A\mathbf{b}$ foi calculada usando $\underline{\mathsf{a}\ \mathsf{linha}\ 1}$ de $\underline{\mathsf{A}}$ e o vetor coluna \mathbf{b} de acordo com

$$2 \times 7 + (-1) \times (-2) + 5 \times 1 = 21.$$

Analogamente, <u>a linha 2</u> de $A\mathbf{b}$ foi calculada usando <u>a linha 2 de A</u> e o vetor coluna \mathbf{b} , obtendo-se

$$-4 \times 7 + 6 \times (-2) + 3 \times 1 = -37.$$

Como pode ser facilmente verificado na expressão geral do produto $A\mathbf{b}$, o cálculo duma $\liminf i$ (genérica) da matriz $A\mathbf{b}$ faz-se usando também a $\liminf i$ da matriz A.

Voltando à definição geral de $A\mathbf{b}$, ainda podemos exprimir o produto de outro modo:

$$A\mathbf{b} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{1n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kj} & \dots & a_{kn} \end{bmatrix} \begin{bmatrix} b_{11} \\ \vdots \\ b_{ij} \\ \vdots \\ b_{k1} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} + \dots + a_{1n}b_{n1} \\ \vdots \\ a_{i1}b_{11} + a_{i2}b_{21} + \dots + a_{in}b_{n1} \\ \vdots \\ a_{k1}b_{11} + a_{k2}b_{21} + \dots + a_{kn}b_{n1} \end{bmatrix}.$$

Temos então que

$$A\mathbf{b} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} + \dots + a_{1n}b_{n1} \\ \vdots \\ a_{i1}b_{11} + a_{i2}b_{21} + \dots + a_{in}b_{n1} \\ \vdots \\ a_{k1}b_{11} + a_{k2}b_{21} + \dots + a_{kn}b_{n1} \end{bmatrix} = b_{11}\mathbf{c}_1 + b_{21}\mathbf{c}_2 + \dots + b_{n1}\mathbf{c}_n,$$

onde c_1, c_2, \ldots, c_n são as colunas de A.

Seja $A = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_n \end{bmatrix}$ uma matriz de tipo $k \times n$, designa-se por **combinação linear das colunas de** A qualquer vetor coluna da forma

$$\alpha_1 \mathbf{c}_1 + \alpha_2 \mathbf{c}_2 + \cdots + \alpha_n \mathbf{c}_n$$

onde $\alpha_1, \alpha_2, \ldots, \alpha_n$ são escalares.

Podemos então concluir que:

↓ ATENÇÃO ↓

O produto $A\mathbf{b}$ duma matriz A e dum vetor coluna \mathbf{b} é uma combinação linear das colunas da matriz A.

Multiplicação de duas matrizes

Para ser possível multiplicar duas matrizes A e B, o número de colunas de A tem que ser igual ao número de linhas de ${\bf b}$.

Dadas matrizes A de tipo $k \times p$ e B de tipo $p \times n$, define-se o produto

$$AB = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1l} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2l} & \dots & a_{2p} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{il} & \dots & a_{1p} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kl} & \dots & a_{kp} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1j} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2j} & \dots & b_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ b_{l1} & b_{l2} & \dots & b_{lj} & \dots & b_{ln} \\ \vdots & \vdots & & \vdots & & \vdots \\ b_{p1} & b_{p2} & \dots & b_{pj} & \dots & b_{pn} \end{bmatrix}$$

como a matriz $AB=[c_{ij}]_{\substack{i=1,\dots,k\\j=1,\dots,n}}$ de tipo $k\times n$ tal que, para todos os índices i,j, se tem

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{ip}b_{pj} = \sum_{l=1}^{p} a_{il}b_{lj}.$$

O cálculo da entrada-(ij) da matriz AB faz-se multiplicando a linha i da matriz A pela coluna j da matriz B.

Exemplo

Consideremos as matrizes

$$A = \begin{bmatrix} 2 & -1 & 5 \\ -4 & 6 & 3 \end{bmatrix} \qquad \mathbf{e} \qquad B = \begin{bmatrix} 7 & 0 & -1 \\ -2 & 1 & 0 \\ 1 & 0 & -3 \end{bmatrix},$$

de tipo 2×3 e 3×3 , respetivamente. A multiplicação destas duas matrizes é possível porque o número de colunas de A e o número de linhas de B coincidem. O produto AB será então a matriz de tipo 2×3

$$AB = \begin{bmatrix} 2 & -1 & 5 \\ -4 & 6 & 3 \end{bmatrix} \begin{bmatrix} 7 & 0 & -1 \\ -2 & 1 & 0 \\ 1 & 0 & -3 \end{bmatrix} = \begin{bmatrix} 21 & -1 & -17 \\ -37 & 6 & -5 \end{bmatrix}.$$

A entrada-(11) de AB foi calculada usando <u>a linha 1 de A</u> e a <u>coluna 1 de B</u> de <u>acordo com</u>

$$2 \times 7 + (-1) \times (-2) + 5 \times 1 = 21.$$

A entrada-(12) de AB foi calculada usando <u>a linha 1 de A</u> e a <u>coluna 2 de B</u> de acordo com

$$2 \times 0 + (-1) \times 1 + 5 \times 0 = -1.$$

A $\underline{\mathsf{entrada-}(13)}$ de AB foi calculada usando $\underline{\mathsf{a}}$ $\underline{\mathsf{linha}}$ $\underline{\mathsf{1}}$ de \underline{A} e a $\underline{\mathsf{coluna}}$ $\underline{\mathsf{3}}$ de \underline{B} de $\underline{\mathsf{acordo}}$ com

$$2 \times (-1) + (-1) \times 0 + 5 \times (-3) = -17.$$

Analogamente, a linha 2 de AB foi calculada usando a linha 2 de Ae todas as colunas de B.

O produto AB de matrizes A de tipo $k \times p$ e B de tipo $p \times n$ pode ainda ser descrito por colunas como

$$AB = \begin{bmatrix} A\mathbf{b_1} & | & A\mathbf{b_2} & | & \cdots & | & A\mathbf{b_n} \end{bmatrix},$$

onde b_1, b_2, \dots, b_n são as colunas de B. Alternativamente, o produto AB pode ainda ser apresentado por linhas

$$AB = \begin{bmatrix} \mathbf{a_1}B \\ \mathbf{a_2}B \\ \vdots \\ \mathbf{a_k}B \end{bmatrix},$$

sendo a_1, a_2, \ldots, a_k são as linhas de A.

Propriedades da multiplicação de matrizes

Quaisquer que sejam as matrizes A,B,C de tipos apropriados e os escalares $\alpha,\beta\in\mathbb{K}$, tem-se:

i)
$$A(BC) = (AB)C$$

ii)

$$(A+B)C = AC + BC$$
$$A(B+C) = AB + AC$$

iii)
$$\alpha(AB) = (\alpha A)B = A(\alpha B)$$

A multiplicação de matrizes não é uma operação comutativa.

Por exemplo, $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$ e $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}$.

Sistemas de equações lineares e multiplicação de matrizes

Consideremos um sistema de k equações lineares a n incógnitas x_1, x_2, \ldots, x_n e designemos por A a matriz dos coeficientes (de tipo $k \times n$), por $\mathbf b$ o vetor coluna dos termos independentes e por

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

o vetor coluna das variáveis. O SEL pode agora ser apresentado como a **equação matricial**

$$A\mathbf{x} = \mathbf{b}$$
.

No caso de ${\bf b}$ ser o vetor coluna nulo, temos um SEL homogéneo que é representado pela equação

$$A\mathbf{x} = \mathbf{0}.$$

Exemplo

O sistema de equações lineares

$$\begin{cases} x+y+z=3\\ x-y+2z=2\\ 2x+y-z=2 \end{cases}$$

é apresentado em notação matricial como

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix}.$$

Matriz transposta

Sendo A uma matriz de tipo $k \times n$, a **matriz transposta de** A, que se designa por A^T , é a matriz de tipo $n \times k$ definida por

$$A^T = [c_{ij}] \qquad \mathsf{com} \qquad c_{ij} = a_{ji} \ .$$

Exemplo

A matriz transposta ${\cal A}^T$ da matriz

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 1 & -1 & 2 \\ 1 & 1 & -1 \\ 9 & 8 & 7 \end{bmatrix}$$

é a matriz

$$A^T = \begin{bmatrix} 1 & 1 & 1 & 9 \\ 3 & -1 & 1 & 8 \\ 2 & 2 & -1 & 7 \end{bmatrix}.$$

Propriedades da operação $\cdot^T : \mathbb{M}_{k \times n} \to \mathbb{M}_{n \times k}$

Proposição 2. Quaisquer que sejam as matrizes A, B e o escalar $\alpha \in \mathbb{K}$, tem-se:

$$i) (A^T)^T = A$$

 $(A+B)^T = A^T + B^T$ "a transposta da soma é a soma das transpostas"

$$iii) (\alpha A)^T = \alpha A^T$$

$$iv) (AB)^T = B^T A^T$$

"a transposta do produto é o produto das transpostas por ordem contrária"

Uma matriz quadrada diz-se uma matriz simétrica se

$$A = A^T$$

ou, equivalentemente, se

$$a_{ij} = a_{ji}$$
 para todos os índices i, j .

Uma matriz quadrada A diz-se uma **matriz anti-simétrica** se

$$A = -A^T$$

ou, equivalentemente, se

$$a_{ij} = -a_{ji}$$
 para todos os índices i, j .

Exemplo

Considerem-se as matrizes

$$A = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 4 & 5 \\ -3 & 5 & -6 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 2 & -3 \\ -2 & 0 & 5 \\ 3 & -5 & 0 \end{bmatrix}.$$

A matriz A é simétrica e a matriz B é anti-simétrica.

Dada uma matriz quadrada $A = [a_{ij}]$ de ordem n, a **diagonal** da matriz A é constituída pelas n entradas a_{ii} , com $i = 1, \ldots, n$. Note que:

• A diagonal duma matriz anti-simétrica é nula, i.e., todas as entradas da diagonal são iguais a 0.

- A diagonal duma matriz simétrica "funciona como um espelho".
- ullet Qualquer matriz A se pode escrever como a soma de uma matriz simétrica com uma matriz anti-simétrica:

$$A = \frac{1}{2}(A + A^{T}) + \frac{1}{2}(A - A^{T}).$$

5

Matriz inversa

Matriz inversa

Uma matriz quadrada $A=[a_{ij}]$ diz-se uma **matriz diagonal** se todas as suas entradas a_{ij} , com $i\neq j$, são nulas. Por outras palavras, A é uma matriz diagonal se todas as suas entradas "fora" da diagonal são iguais a 0. Por exemplo, as matrizes

$$\begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 9 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

são matrizes diagonais.

A matriz identidade de ordem n, designada por I_n , é a matriz diagonal de ordem n em que todas as entradas da diagonal são iguais a 1. A matriz identidade poderá ser designada por I quando a sua ordem for aparente no contexto.

Proposição 3. Seja A uma matriz de tipo $n \times k$ e seja B uma matriz $k \times n$. Então:

- i) $I_nA = A$.
- ii) $BI_n = B$.

No conjunto $\mathbb{M}_{n\times n}(\mathbb{K})$ das matrizes quadradas de ordem n, a multiplicação de quaisquer duas matrizes é sempre possível e o produto é ainda uma matriz quadrada de ordem n.

No conjunto $\mathbb{M}_{n\times n}(\mathbb{K})$ das matrizes quadradas de ordem n, a matriz identidade I_n é o elemento neutro da multiplicação de matrizes: qualquer que seja a matriz A em $\mathbb{M}_{n\times n}(\mathbb{K})$,

$$AI = A = IA$$
.

Seja A uma matriz quadrada de ordem n. Uma matriz B diz-se **matriz** inversa de A se

$$AB = I = BA. (1)$$

Note que, se a matriz B existir, B é uma matriz quadrada de ordem n.

Lema 1. Se existir uma matriz B nas condições de (1), essa matriz é única.

Demonstração. Suponhamos que B e C são matrizes inversas de A. Então

$$B(AC) = BI = B$$
 e $(BA)C = IC = C$.

Uma vez que a multiplicação de matrizes é associativa, tem-se B(AC) = (BA)C e, consequentemente, B = C.

Podemos assim designar por A^{-1} a (<u>única</u>) matriz inversa de A. A matriz A diz-se **invertível** ou **não singular** se admitir matriz inversa.

Alguns dos exemplos seguintes estão propositadamente incompletos para que o leitor possa fazer uma aplicação direta do conceito de matriz inversa.

Exemplos

- ullet A matriz inversa $\left[\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right]^{-1}$ da matriz identidade de ordem 2 é
- _____
- $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}^{-1} = \begin{pmatrix} 2 & \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix}^{-1} = \dots$
- Uma matriz com uma linha nula não é invertível porque . . .
- Uma matriz com uma coluna nula não é invertível porque . . .
- Seja A uma matriz invertível e consideremos um sistema de equações lineares $A\mathbf{x} = \mathbf{b}$. Multiplicando à esquerda ambos os membros da equação por A^{-1} , tem-se

$$A^{-1}(A\mathbf{x}) = A^{-1}\mathbf{b} \Leftrightarrow (A^{-1}A)\mathbf{x} = A^{-1}\mathbf{b}$$
$$\Leftrightarrow I\mathbf{x} = A^{-1}\mathbf{b}$$
$$\Leftrightarrow \mathbf{x} = A^{-1}\mathbf{b}$$

Vemos assim que nestas condições o sistema de equações lineares é possível e determinado.

Cálculo da matriz inversa

Consideremos por exemplo a matriz

$$A = \begin{bmatrix} 1 & -2 \\ -1 & 1 \end{bmatrix}.$$

Em seguida, procuraremos determinar se a matriz A é invertível e, em caso afirmativo, calcular a sua inversa. Pretendemos então, se possível, determinar uma matriz

$$B = \begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \end{bmatrix}$$

 $\mathsf{tal} \ \mathsf{que} \ AB = I \ \mathsf{e} \ BA = I.$

Começando por analisar a equação AB = I, tem-se

$$A \begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Ou seja, teremos que resolver os dois sistemas

$$A \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad A \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Atendendo a que ambos os sistemas têm a mesma matriz dos coeficientes, resolvê-los-emos em simultâneo, usando o método de eliminação de Gauss-Jordan. Assim,

$$\begin{bmatrix} 1 & -2 & | & 1 & 0 \\ -1 & 1 & | & 0 & 1 \end{bmatrix} \xrightarrow{\overline{L_2 + L_1}} \begin{bmatrix} 1 & -2 & | & 1 & 0 \\ 0 & -1 & | & 1 & 1 \end{bmatrix} \xrightarrow{\overline{L_1 - 2L_2}} \begin{bmatrix} 1 & 0 & | & -1 & -2 \\ 0 & -1 & | & 1 & 1 \end{bmatrix} \cdots$$

$$\cdots \xrightarrow{-1L_2} \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & -1 & -1 \end{bmatrix}.$$

Concluimos pois que a única matriz B que satisfaz AB = I é

$$B = \begin{bmatrix} -1 & -2 \\ -1 & -1 \end{bmatrix}.$$

Para concluir que a matriz A é invertível e que a sua inversa

$$A^{-1} = \begin{bmatrix} -1 & -2 \\ -1 & -1 \end{bmatrix},$$

Matriz inversa

basta verificar também se se tem BA = I, o que de facto acontece.

Em resumo, podemos descrever os cálculos que acabámos de fazer esquematicamente como:

1. Resolvemos os sistemas AB=I usando o método de eliminação de Gauss-Jordan:

$$[A|I] = \begin{bmatrix} 1 & -2 & | & 1 & 0 \\ -1 & 1 & | & 0 & 1 \end{bmatrix} \xrightarrow{\widetilde{\text{MEG-J}}} \begin{bmatrix} 1 & 0 & | & -1 & -2 \\ 0 & 1 & | & -1 & -1 \end{bmatrix} = [I|B]$$

- 2. Verificámos que BA = I.
- 3. Concluimos que $A^{-1} = B$.

O passo 2. acima pode ser evitado como mostra a proposição seguinte.

Proposição 4. Sejam A, B matrizes quadradas de ordem n e I a matriz identidade de ordem n. Então AB = I se e só se BA = I.

Esta proposição será demonstrada adiante (cf. Proposição 7).

Finalmente, resumimos o procedimento geral para calcular a matriz inversa (se existir) duma matriz quadrada A de ordem n.

Reduz-se a matriz [A|I] à matriz $[I|A^{-1}]$ usando o método de eliminação de Gauss-Jordan:

$$[A|I] \xrightarrow{\text{MEG-J}} [I|A^{-1}]$$

Propriedades da matriz inversa

Sendo A uma matriz quadrada de ordem k, define-se a potência de expoente n de A, com $n \in \mathbb{N}_0$, de acordo com o seguinte:

$$A^{0} = I_{k}$$

$$A^{1} = A$$

$$A^{n} = AA^{n-1} \qquad (n \ge 2)$$

Ou seja, quando n é um inteiro maior ou igual a 1, A^n é o produto de n fatores iguais a A:

$$A^n = \underbrace{A \cdots A}_n$$

Proposição 5. Sejam A e B matrizes invertíveis, seja α um escalar não nulo e seja $n \in \mathbb{N}_0$. Então as matrizes A^{-1} , AB, A^n , αA , A^T são invertíveis, e

$$i) (A^{-1})^{-1} = A$$

$$(AB)^{-1} = B^{-1}A^{-1}$$

$$(A^n)^{-1} = (A^{-1})^n$$

$$iv) (\alpha A)^{-1} = \frac{1}{\alpha} A^{-1}$$

$$v) \ (A^T)^{-1} = (A^{-1})^T \qquad \ \ (\text{``a inversa da transposta \'e a transposta da inversa''})$$

Demonstração. Demonstra-se apenas a propriedade ii). As demonstrações das outras afirmações ficam como exercício.

Calculando diretamente $(B^{-1}A^{-1})(AB)$ e atendendo a que a multiplicação é associativa, tem-se

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I.$$

A Proposição 4 garante agora que $B^{-1}A^{-1}$ é a matriz inversa de AB. \square

6

Matrizes elementares

Matrizes elementares de ordem n

As matrizes elementares de ordem n são obtidas da matriz identidade à custa de uma <u>única</u> operação elementar. Seguidamente descrevem-se os três tipos diferentes de matrizes elementares.

Matrizes elementares de ordem n

- P_{ij} : matriz que resulta de I trocando a linha i com a linha j (sendo I a matriz identidade de ordem n e $i \neq j$)
- $E_{ij}(\alpha)$ (com $i \neq j$): matriz que resulta de I somando à linha i a linha j multiplicada por α
- $D_i(\alpha)$ (com $\alpha \neq 0$): matriz que resulta de I multiplicando a linha i por α

Nas figuras seguintes, apresentam-se exemplos dos diferentes tipos de matrizes elementares no caso particular de i < j. As linhas e as colunas i estão representadas a amarelo, e as linhas e as colunas j estão representadas a cinzento.

$$E_{ij}(\alpha) = \begin{bmatrix} 1 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 & \cdots & \alpha & \cdots & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{bmatrix}$$

$$D_{i}(\alpha) = \begin{bmatrix} 1 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \alpha & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{bmatrix}$$

Multiplicação por matrizes elementares

Sendo A uma matriz $n \times p$, descrevem-se em seguida as matrizes que resultam de A após a multiplicação desta pelas matrizes elementares (à esquerda).

$$\bullet \ A' = P_{ij}A$$

Matrizes elementares

A' é a matriz que se obtém de A trocando a linha i com a linha j. Utilizando a notação já estabelecida, tem-se:

$$A \underset{L_i \leftrightarrow L_j}{\longrightarrow} A' = P_{ij}A$$

• $A' = E_{ij}(\alpha)A$

A' é a matriz que se obtém de A somando à linha i a linha j multiplicada por α . Ou seja,

$$A \underset{L_i + \alpha L_j}{\longrightarrow} A' = E_{ij}(\alpha)A$$

• $A' = D_i(\alpha)A$

A' é a matriz que se obtém de A multiplicando a linha i por α ,

$$A \xrightarrow{\alpha L_i} A' = D_i(\alpha)A$$

Efetuar uma operação elementar sobre uma matriz A corresponde a multiplicar essa matriz à esquerda por uma matriz elementar específica. Na tabela abaixo apresenta-se a correspondência entre as operações elementares e a multiplicação pelas matrizes elementares.

"Dicionário"

Operação elementar

Multiplicação pela matriz elementar

$$A \xrightarrow[L_i \leftrightarrow L_j]{} A'$$

$$P_{ij}A = A'$$

$$A \xrightarrow[L_i + \alpha L_i]{} A'$$

$$E_{ij}(\alpha)A = A'$$

$$A \xrightarrow{\alpha L_i} A'$$

$$D_i(\alpha)A = A'$$

Matrizes elementares

Exemplo

O cálculo da matriz inversa da matriz

$$A = \begin{bmatrix} 1 & -2 \\ -1 & 1 \end{bmatrix}$$

que fizémos na Secção 5 pode agora ser descrito usando a multiplicação por matrizes elementares. As operações elementares que efetuámos sobre a matriz [A|I] correspondem a termos efetuado as seguintes multiplicações por matrizes elementares:

Operação elementar

Multiplicação pela matriz elementar

$$L_{2} + L_{1} \qquad [E_{21}(1)A \mid E_{21}(1)I]$$

$$L_{1} + (-1)L_{2} \qquad [E_{12}(-1)E_{21}(1)A \mid E_{12}(-1)E_{21}(1)I]$$

$$(-1)L_{2} \qquad [D_{2}(-1)E_{12}(-1)E_{21}(1)A \mid D_{2}(-1)E_{12}(-1)E_{21}(1)I]$$

Obteve-se deste modo

$$D_2(-1)E_{12}(-1)E_{21}(1)A=I$$
 $D_2(-1)E_{12}(-1)E_{21}(1)I=A^{-1}$ (cf. Secção 5). Assim, a matriz A^{-1} é o produto de matrizes elementares
$$A^{-1}=D_2(-1)E_{12}(-1)E_{21}(1).$$

Matrizes inversas das matrizes elementares

As matrizes elementares são invertíveis e as suas matrizes inversas são matrizes elementares do mesmo género. Não é difícil verificar que:

Matrizes inversas das matrizes elementares

$$P_{ij}^{-1} = P_{ij}$$

$$E_{ij}(\alpha)^{-1} = E_{ij}(-\alpha)$$

$$(D_i(\alpha))^{-1} = D_i\left(\frac{1}{\alpha}\right)$$

Proposição 6. Seja A uma matriz quadrada de ordem n. A matriz A é invertível se e só se car A = n.

Demonstração. Temos que demonstrar as duas implicações

$$\operatorname{car} A = n \Rightarrow A \circ \operatorname{invertivel}$$

е

$$A \neq \text{invertivel} \Rightarrow \text{car } A = n.$$

Comecemos por demonstrar a primeira. Dada uma matriz quadrada A de ordem n, podemos reduzi-la à sua forma canónica de escada de linhas R usando um certo número finito k de operações elementares. Ou seja, existem matrizes elementares E_1, E_2, \ldots, E_k tais que

$$E_1 E_2 \dots E_{k-1} E_k A = R.$$

Como a característica de $A \in n$, a matriz $R \in a$ matriz identidade I. Então

$$E_{1}^{-1}(E_{1}E_{2}\dots E_{k-1}E_{k}A) = E_{1}^{-1}I$$

$$\iff$$

$$(E_{1}^{-1}E_{1})E_{2}\dots E_{k-1}E_{k}A = E_{1}^{-1}$$

$$\iff$$

$$IE_{2}\dots E_{k-1}E_{k}A = E_{1}^{-1}$$

$$\iff$$

$$E_{2}\dots E_{k-1}E_{k}A = E_{1}^{-1}.$$

Multiplicando à direita ambos os membros da equação sucessivamente por $E_2^{-1},\dots,E_{k-1}^{-1},E_k^{-1},$ obtém-se

$$A = E_k^{-1} E_{k-1}^{-1} \dots E_2^{-1} E_1^{-1}.$$

Verificamos assim que A é um produto de matrizes invertíveis. Usando a Proposição 5 ii), tem-se que A é invertível.

Resta agora provar a implicação:

$$A \neq \text{invertivel} \Rightarrow \text{car } A = n$$

Provaremos a implicação equivalente:

$$\operatorname{car} A \neq n \Rightarrow A$$
 não é invertível

Se car A < n, a matriz R tem (pelo menos) uma linha nula. Suponhamos que existe uma matriz quadrada B de ordem n tal que AB = I e BA = I. A igualdade AB = I implica que

$$\underbrace{E_1 E_2 \dots E_{k-1} E_k A}_{B} B = E_1 E_2 \dots E_{k-1} E_k.$$

Como concluimos acima, a matriz $R = E_1 E_2 \dots E_{k-1} E_k A$ tem uma linha nula e, portanto, o mesmo acontece com $E_1 E_2 \dots E_{k-1} E_k AB$. Temos então que $E_1 E_2 \dots E_{k-1} E_k$ tem uma linha nula. Resulta assim uma contradição já que se trata duma matriz invertível por ser um produto de matrizes invertíveis (cf. Proposição 5 ii)). Note que, como vimos na Secção 5, uma matriz com uma linha nula não é invertível.

Demonstraremos agora a Proposição 4, cujo enunciado relembramos em seguida.

Proposição 7. Sejam A, B matrizes quadradas de ordem n e I a matriz identidade de ordem n. Então AB = I se e só se BA = I.

Demonstração. Suponhamos inicialmente que AB = I e sejam E_1, E_2, \ldots, E_k matrizes elementares tais que $E_1E_2 \ldots E_kA$ é a forma canónica de escadas de linhas de A. A forma canónica de escada de linhas de A não pode ter qualquer linha nula. De facto, se essa matriz tivesse linhas nulas, como

$$E_1E_2\dots E_kAB=E_1E_2\dots E_kI$$
,

a matriz $E_1E_2...E_kI$ também teria, o que é impossível já que esta matriz é invertível por ser o produto de matrizes invertíveis (cf. Proposição 5 ii)). Concluimos assim que

$$\underbrace{E_1E_2\dots E_kA}_IB=E_1E_2\dots E_k.$$

Ou seja, a matriz B é um produto de matrizes invertíveis e, portanto, é invertível. Multiplicando à direita ambos os membros da igualdade AB = I por B^{-1} , tem-se que

$$(AB)B^{-1} = IB^{-1} \quad \iff \quad A = B^{-1}.$$

Resulta agora diretamente da definição de matriz inversa que AB=BA=I

Trocando os papeis das matrizes A e B no raciocínio acima, analogamente se mostra que, se BA = I, então AB = I.

Condições necessárias e suficientes de invertibilidade

Teorema 1. Seja A uma matriz quadrada de ordem n. As afirmações seguintes são equivalentes.

- i) A é invertível.
- ii) car A = n.
- iii) A é um produto de matrizes elementares.
- iv) A pode ser transformada na matriz identidade à custa de operações elementares.
- v) A forma reduzida de escada de linhas de A é a matriz identidade.
- vi) O sistema de equações lineares homogéneo $A\mathbf{x} = \mathbf{0}$ admite apenas a solução trivial.
- vii) Dada uma matriz coluna \mathbf{b} de tipo $n \times 1$, o sistema de equações lineares $A\mathbf{x} = \mathbf{b}$ é possível e determinado.

Demonstração. Mostraremos que

$$(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (vi) \Rightarrow (vii) \Rightarrow (i)$$
.

A equivalência entre i) e ii) já foi demonstrada (cf. Proposição 6).

 $ii) \Rightarrow iii)$ Sendo R a forma canónica de escada de linhas de A, existem matrizes elementares E_1, E_2, \ldots, E_k tais que $E_1 E_2 \ldots E_k A = R$.

Como por definição car $A = \operatorname{car} R$, tem-se que car R = n. Então R = I e $E_1 E_2 \dots E_k A = I$. Multiplicando à esquerda ambos os membros desta igualdade sucessivamente por $E_1^{-1}, E_2^{-1}, \dots, E_k^{-1}$, tem-se

$$A = E_k^{-1} \cdots E_2^{-1} E_1^{-1},$$

donde se conclui que A é um produto de matrizes elementares.

 $iii) \Rightarrow iv$) Se A é um produto de matrizes elementares, então A é um produto de matrizes invertíveis e, portanto, invertível também (cf. Proposição 5). Nestas condições, a Proposição 6 garante que car A = n, donde

se conclui que a forma canónica de escada de linhas de A é a matriz identidade, como pretendíamos.

- $iv) \Rightarrow v$) Esta implicação é óbvia (trata-se mesmo de uma equivalência).
- $v) \Rightarrow vi$) Se a forma reduzida de escada de linhas de A é a matriz identidade, então existem matrizes elementares E_1, E_2, \ldots, E_k tais que

$$E_1E_2\dots E_kA=I$$
.

Multplicando à esquerda ambos os membros da equação $A\mathbf{x} = \mathbf{0}$ por $E_1 E_2 \dots E_k$, tem-se

$$\underbrace{E_1 E_2 \dots E_k A}_{I} \mathbf{x} = \mathbf{0} \qquad \iff \qquad \mathbf{x} = \mathbf{0}.$$

 $vi) \Rightarrow vii$) Começaremos por ver que, qualquer que seja o vetor coluna **b**, o sistema $A\mathbf{x} = \mathbf{b}$ é possível.

Suponhamos contrariamente que existia \mathbf{b} tal que $A\mathbf{x} = \mathbf{b}$ é impossível. Então ter-se-ia car A < n e, consequentemente, o sistema homogéneo $A\mathbf{x} = \mathbf{0}$ seria indeterminado, o que contradiria a hipótese.

Vejamos agora que o sistema $A\mathbf{x} = \mathbf{b}$ é determinado. Suponhamos que $\mathbf{x}_1, \mathbf{x}_2$ são soluções $A\mathbf{x} = \mathbf{b}$. Então

$$A\mathbf{x}_1 = A\mathbf{x}_2 \qquad \Longleftrightarrow \qquad A(\mathbf{x}_1 - \mathbf{x}_2) = \mathbf{0}.$$

Como por hipótese o sistema homogéneo só admite a solução trivial, concluimos que

$$\mathbf{x}_1 - \mathbf{x}_2 = \mathbf{0} \qquad \iff \qquad \mathbf{x}_1 = \mathbf{x}_2.$$

 $vii) \Rightarrow i$) Queremos agora provar que A é invertível, ou seja, queremos provar que existe uma matriz B tal que AB = I (cf. Proposição 7). Por outras palavras, pretende-se mostrar que os n sistemas abaixo são possíveis 3 :

$$A\mathbf{x} = \begin{bmatrix} 1\\0\\\vdots\\0\\0 \end{bmatrix} \qquad A\mathbf{x} = \begin{bmatrix} 0\\1\\\vdots\\0\\0 \end{bmatrix} \qquad \dots \qquad A\mathbf{x} = \begin{bmatrix} 0\\0\\\vdots\\0\\1 \end{bmatrix}$$

A afirmação vii) garante precisamente que os sistemas da forma $A\mathbf{x} = \mathbf{b}$ são possíveis (e determinados). Como os sistemas anteriores são um caso particular dos sistemas da forma $A\mathbf{x} = \mathbf{b}$, conclui-se que são possíveis e que, portanto, A é invertível.

 $^{^3}$ Note que, se os n sistemas forem simultaneamente possíveis, então são necessariamente determinados, dada a unicidade da matriz inversa.

7

Determinantes: axiomática e cálculo

A função determinante

$$\det: \mathbb{M}_n(\mathbb{K}) \to \mathbb{K}$$
$$A \mapsto \det A$$

é a função que satisfaz os axiomas seguintes:

- i) $\det I = 1$
- ii) $\det(P_{ij}A) = -\det A \pmod{i \neq j}$
- iii) Qualquer que seja $\alpha \in \mathbb{K}$,

$$\det \begin{bmatrix} \vdots \\ \alpha L \\ \vdots \end{bmatrix} = \alpha \det \begin{bmatrix} \vdots \\ \dot{L} \\ \vdots \end{bmatrix}$$

$$\det \begin{bmatrix} L_1 \\ \vdots \\ L_{i-1} \\ L_i + L'_i \\ L_{i+1} \\ \vdots \\ L_n \end{bmatrix} = \det \begin{bmatrix} L_1 \\ \vdots \\ L_{i-1} \\ L_i \\ L_{i+1} \\ \vdots \\ L_n \end{bmatrix} + \det \begin{bmatrix} L_1 \\ \vdots \\ L_{i-1} \\ L'_i \\ L_{i+1} \\ \vdots \\ L_n \end{bmatrix}$$

onde L,L_i,L_i' são linhas das matrizes. (Note que lpha pode ser 0.)

Prova-se que existe uma única função que satisfaz os axiomas acima.

O determinante duma matriz A também pode ser designado por |A|.

Exemplo

Cálculo do determinante duma matriz 1×1 e duma matriz diagonal.

- 1. det[a] = a det[1] = a1 = a (usámos o Axioma iii)).
- 2. Após uma aplicação repetida do Axioma iii) obtém-se

$$\det \begin{bmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & 0 & \cdots & 0 \\ 0 & 0 & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{bmatrix} = a_{11} \det \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & 0 & \cdots & 0 \\ 0 & 0 & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{bmatrix} =$$

$$= a_{11}a_{22} \det \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{bmatrix} = a_{11}a_{22}a_{33} \dots a_{nn} \det \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}.$$

Usando o Axioma i), tem-se

$$\det \begin{bmatrix} a_{11} & 0 & 0 & \cdots & 0 \\ 0 & a_{22} & 0 & \cdots & 0 \\ 0 & 0 & a_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{bmatrix} = a_{11}a_{22}a_{33}\dots a_{nn} \det I$$

$$= a_{11}a_{22}a_{33}\dots a_{nn}1$$

$$=a_{11}a_{22}a_{33}\ldots a_{nn}$$

Proposição 8.

- i) Uma matriz com duas linhas iguais tem determinante nulo.
- ii) O determinante de uma matriz com uma linha nula é igual a 0.
- iii) O determinante de uma matriz não se altera se somarmos a uma linha outra linha multiplicada por um escalar.

Determinantes: axiomática e cálculo

Demonstração. i) Sendo A uma matriz com a linha i igual à linha j (com $i \neq j$), tem-se que $A = P_{ij}A$ e, consequentemente,

$$\det A = \det(P_{ij}A).$$

Por outro lado, o Axioma ii) garante que $\det(P_{ij}A) = -\det A$. Tem-se então que

$$\det A = \det(P_{ij}A) = -\det A$$

e que, portanto,

$$\det A = -\det A \Leftrightarrow 2\det A = 0 \Leftrightarrow \det A = 0.$$

ii) Seja L_i a linha nula da matriz A e seja A' a matriz que se obtém de A multiplicando a linha L_i por $\alpha = 0$. Usando o Axioma iii), tem-se

$$\det A = \det A' = \alpha \det A = 0 \det A = 0.$$

iii) Consideremos a matriz

$$A = \begin{bmatrix} L_1 \\ \vdots \\ L_i \\ \vdots \\ L_j \\ \vdots \\ L_n \end{bmatrix}.$$

Usando o Axioma iii), obtém-se

$$\det\begin{bmatrix} L_1 \\ \vdots \\ L_{i-1} \\ L_i + \alpha L_j \\ L_{i+1} \\ \vdots \\ L_j \\ \vdots \\ L_n \end{bmatrix} = \det\begin{bmatrix} L_1 \\ \vdots \\ L_{i-1} \\ L_i \\ L_{i+1} \\ \vdots \\ L_j \\ \vdots \\ L_n \end{bmatrix} + \det\begin{bmatrix} L_1 \\ \vdots \\ L_{i-1} \\ \alpha L_j \\ L_{i+1} \\ \vdots \\ L_j \\ \vdots \\ L_n \end{bmatrix}$$

$$= \det\begin{bmatrix} L_1 \\ \vdots \\ L_{i-1} \\ \vdots \\ L_{i-1} \\ L_{i} \\ L_{i+1} \\ \vdots \\ L_j \\ \vdots \\ L_j \end{bmatrix} + \alpha \det\begin{bmatrix} L_1 \\ \vdots \\ L_{i-1} \\ \vdots \\ L_{i-1} \\ L_j \\ \vdots \\ L_j \\ \vdots \\ L_j \end{bmatrix}$$

Atendendo a que a última matriz tem duas linhas iguais, a afirmação i) deste teorema conduz a que

$$\det \begin{bmatrix} L_1 \\ \vdots \\ L_{i-1} \\ L_i + \alpha L_j \\ L_{i+1} \\ \vdots \\ L_j \\ \vdots \\ L_n \end{bmatrix} = \det \begin{bmatrix} L_1 \\ \vdots \\ L_{i-1} \\ L_i \\ L_{i+1} \\ \vdots \\ L_j \\ \vdots \\ L_n \end{bmatrix} + 0 = \det A$$

Cálculo do determinante duma matriz triangular superior

Uma matriz quadrada $A=(a_{ij})$ de ordem n diz-se uma **matriz triangular** superior se, quaisquer que sejam $i,j=1,\ldots,n$ com i>j, se tem $a_{ij}=0$. Sendo A uma matriz triangular superior, dois casos podem ocorrer:

1. A matriz A tem todas as entradas da diagonal diferentes de 0.

2. A matriz A tem alguma entrada nula na diagonal.

No primeiro caso, usando apenas operações elementares em que se substitui uma linha L_i por $L_i+\alpha L_j$ (com $i\neq j$ e $\alpha\neq 0$), o método de eliminação de Gauss-Jordan dá origem a uma matriz diagonal (a forma canónica de escadas de linhas de A). Isto é,

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} \xrightarrow{\text{MEG-J}} \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

Usando agora a Proposição 8 iii), temos

$$\det A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} = \det \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} = a_{11}a_{22}\cdots a_{nn}.$$

No segundo caso, seja a_{kk} a primeira entrada nula da diagonal, a contar de baixo. Usando o método de eliminação de Gauss–Jordan e as entradas

Determinantes: axiomática e cálculo

 $a_{nn},\ldots,a_{k+1,k+1}$, é possível transformar a linha k da matriz numa linha nula. Ou seja,

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & \cdots & a_{1k} & a_{1,k+1} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & \cdots & a_{2k} & a_{2,k+1} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & 0 & a_{k,k+1} & \cdots & a_{kn} \\ 0 & 0 & \cdots & 0 & 0 & a_{k+1,k+1} & \cdots & a_{k+1,n} \\ \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 & a_{n-1,n-1} & a_{n-1,n} \\ 0 & 0 & \cdots & 0 & 0 & 0 & 0 & a_{nn} \end{bmatrix}$$

$$\overrightarrow{\text{MEG-J}} \begin{bmatrix} a_{11} & a_{12} & \cdots & \cdots & a_{1k} & 0 & \cdots & 0 & 0 \\ 0 & a_{22} & \cdots & \cdots & a_{2k} & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 & a_{k+1,k+1} & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & a_{n-1,n-1} & 0 \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & a_{nn} \end{bmatrix}$$

Atendendo a que, mais uma vez, só se utilizaram operações elementares em que se substituiu uma linha L_i por $L_i+\alpha L_j$ (com $i\neq j$ e $\alpha\neq 0$), pela Proposição 8 iii) tem-se

$$\det A = \det \begin{bmatrix} a_{11} & a_{12} & \cdots & \cdots & a_{1k} & 0 & \cdots & 0 & 0 \\ 0 & a_{22} & \cdots & \cdots & a_{2k} & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 & a_{k+1,k+1} & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & a_{n-1,n-1} & 0 \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & a_{nn} \end{bmatrix} = 0.$$

Concluimos assim que o determinante duma matriz triangular superior é igual ao produto das entradas da diagonal.

$$\det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & & & \vdots \\ 0 & \cdots & 0 & a_{nn} \end{bmatrix} = a_{11}a_{22}\cdots a_{nn}.$$

Os axiomas da função determinante conjuntamente com a Proposição 8 esclarecem completamente como as operações elementares alteram o determinante. Além disso.

Qualquer forma de escada de linhas de uma matriz quadrada $n \times n$ é uma matriz triangular superior. (Se a matriz tiver característica n, a sua forma reduzida de escada de linhas é uma matriz diagonal.)

Assim, possuimos agora toda a informação necessária para calcular o determinante de qualquer matriz quadrada. Vamos agora fazer o cálculo do determinante num exemplo concreto.

Exemplo

$$|A| = \begin{vmatrix} 3 & -3 & -3 \\ 0 & 1 & -1 \\ -1 & 0 & 0 \end{vmatrix} = 3 \underbrace{\begin{vmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ -1 & 0 & 0 \end{vmatrix}}_{|B|} = 3 \begin{vmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & -1 & -1 \end{vmatrix} = 3 \begin{vmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & -2 \end{vmatrix} = 3(-2) = 6.$$

Note que a matriz A resulta da matriz B após a multiplicação da linha 1 de B por 3 (cf. Axioma iii)).

Cálculo do determinante duma matriz A

- 1. Reduz-se a matriz A a uma matriz triangular superior A' usando o MEG.
- 2. Calcula-se o determinante de A à custa do cálculo do determinante A', tendo em conta como as operações elementares efetuadas alteraram o determinante.

Determinantes: axiomática e cálculo

Cálculo do determinante duma matriz 2×2

Sendo A a matriz

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix},$$

consideremos separadamente os casos $a \neq 0$ e a = 0.

• $a \neq 0$ Usando o método de eliminação de Gauss, tem-se

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \xrightarrow{L2-\frac{c}{a}L_1} \begin{bmatrix} a & b \\ 0 & d-\frac{c}{a}b \end{bmatrix},$$

donde se conclui que

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = \begin{vmatrix} a & b \\ 0 & d - \frac{c}{a}b \end{vmatrix} = ad - bc.$$

• a = 0

$$A = \begin{bmatrix} 0 & b \\ c & d \end{bmatrix} \xrightarrow[\overline{L_1 \leftrightarrow L_2}]{} \begin{bmatrix} c & d \\ 0 & b \end{bmatrix},$$

donde se conclui que

$$|A| = \begin{vmatrix} 0 & b \\ c & d \end{vmatrix} = - \begin{vmatrix} c & d \\ 0 & b \end{vmatrix} = cb = ad - bc.$$

Em resumo, o determinante duma matriz quadrada A de ordem 2 é:

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Determinantes, invertibilidade e fórmula de Laplace

Determinante e invertibilidade

Determinantes das matrizes elementares

Os determinantes das matrizes elementares calculam-se sem dificuldade usando os resultados da Secção 7.

- ullet $\det P_{ij} = -1$ (P_{ij} resulta da matriz identidade trocando duas linhas; cf. Axioma ii))
- $ullet \det E_{ij}(lpha) = 1$ (cf. Proposição 8 iii))
- $\det D_i(\alpha) = \alpha$ (cf. ax. 3)

Quando se multiplica uma matriz A à esquerda por uma matriz elementar E obtém-se a matriz EA cujo determinante se calcula imediatamente relembrando como as operações elementares modificam o determinante. Temos assim

$$|P_{ij}A| = -|A|$$
 $|E_{ij}(\alpha)A| = |A|$ $|D(\alpha)A| = \alpha|A|$.

Podemos pois concluir que:

Proposição 9. Seja A uma matriz de ordem n e seja E uma matriz elementar da mesma ordem. Então

$$|EA| = |E||A|$$

Teorema 2. Seja A uma matriz quadrada de ordem n. As afirmações seguintes são equivalentes.

- i) A é invertível.
- $ii) |A| \neq 0.$

Determinantes, invertibilidade e fórmula de Laplace

Demonstração. i) \Rightarrow ii) Suponhamos que A é invertível. O Teorema 1 assegura que existem matrizes elementares E_1, \ldots, E_k tais que

$$A = E_1 E_2 \cdots E_k.$$

Então, usando a Proposição 9, tem-se

$$|A| = |E_1||E_2|\cdots|E_k|$$

e, sendo o determinante de cada uma das matrizes elementares diferente de zero, resulta que $|A| \neq 0$.

ii) ⇒ i) Demonstraremos a afirmação equivalente:

$$A$$
 não é invertível $\Rightarrow |A| = 0$

Suponhamos então que A não é invertível. O Teorema 1 garante que a forma reduzida de escada de linhas R da matriz A tem uma linha nula. Ou seja, existem matrizes elementares E_1, \ldots, E_m tais que

$$E_1E_2\cdots E_mA=R$$
,

donde, aplicando a Proposição 9 e a Proposição 8, se conclui que

$$|E_1||E_2|\cdots|E_m||A| = |R| = 0.$$

Como os determinantes das matrizes elementares são diferentes de zero, tem-se finalmente que |A|=0.

Obtivémos assim uma condição necessária e suficiente de invertibilidade duma matriz expressa em termos do determinante que pode ser agora acrescentada ao teorema da Secção 6.

Teorema 3. Seja A uma matriz quadrada de ordem n. As afirmações seguintes são equivalentes.

- i) A é invertível.
- ii) car A = n.
- iii) A é um produto de matrizes elementares.
- iv) A pode ser transformada na matriz identidade à custa de operações elementares.

- v) A forma reduzida de escada de linhas de A é a matriz identidade.
- vi) O sistema de equações lineares homogéneo A**x** = 0 admite apenas a solução trivial.
- vii) Dada uma matriz coluna \mathbf{b} de tipo $n \times 1$, o sistema de equações lineares $A\mathbf{x} = \mathbf{b}$ é possível e determinado.
- $viii) |A| \neq 0.$

Proposição 10. Sejam A e B matrizes quadradas de ordem n. Então

$$|AB| = |A||B|.$$

Demonstração. Suponhamos primeiramente que A é invertível e que, portanto, existem matrizes elementares E_1, \ldots, E_m tais que $A = E_1 E_2 \cdots E_m$ (cf. Teorema 3). Então, aplicando a Proposição 9, tem-se

$$|AB| = |E_1 E_2 \cdots E_m B|$$

$$= |E_1||E_2 \cdots E_m B|$$

$$= |E_1||E_2| \cdots |E_m||B|$$

$$= |E_1 E_2 \cdots E_m||B|$$

$$= |A||B|.$$

Se A não for invertível, então a forma reduzida de escada de linhas R da matriz A tem uma linha nula (cf. Teorema 3). Existem assim matrizes elementares E_1, \ldots, E_r tais que

$$|E_1E_2\cdots E_rAB|=|RB|=0,$$

uma vez que a matriz RB tem uma linha nula (cf. Proposição 8 ii)). Aplicando agora a Proposição 9,

$$|E_1 E_2 \cdots E_r AB| = \underbrace{|E_1||E_2| \cdots |E_r|}_{\neq 0} |AB| = 0.$$

Atendendo a que |A| = 0 (cf. Teorema 3), conclui-se que

$$0 = |AB| = |A||B|.$$

Corolário 1. Seja A uma matriz quadrada de ordem n invertível. Então

$$|A^{-1}| = \frac{1}{|A|} \, .$$

Demonstração. Usando a Proposição 10,

$$|AA^{-1}| = |A||A^{-1}|,$$

donde se conclui que

$$1 = |I| = |AA^{-1}| = |A||A^{-1}| \iff |A^{-1}| = \frac{1}{|A|}.$$

Lema 2. Seja E uma matriz elementar de ordem n. Então $|E^T| = |E|$.

Demonstração. Se E for uma matriz elementar P_{ij} oue $D_i(\alpha)$, como estas matrizes são simétricas, o resultado é imediato. Quanto às matrizes $E_{ij}(\alpha)$, tem-se

$$E_{ij}(\alpha)^T = E_{ji}(\alpha)$$

e, portanto,

$$|E_{ij}(\alpha)^T| = |E_{ji}(\alpha)| = 1 = E_{ij}(\alpha).$$

Proposição 11. Seja A uma matriz quadrada de ordem n. Então

$$|A^T| = |A|.$$

Demonstração. Se A for invertível, então existem matrizes elementares E_1, \ldots, E_m tais que $A = E_1 E_2 \cdots E_m$ (cf. Teorema 3). Então, aplicando a Proposição

10 e o Lema 2, tem-se

$$|A^{T}| = |(E_{1}E_{2} \cdots E_{m})^{T}|$$

$$= |E_{m}^{T} \cdots E_{2}^{T}E_{1}^{T}|$$

$$= |E_{m}^{T}| \cdots |E_{2}^{T}||E_{1}^{T}|$$

$$= |E_{m}| \cdots |E_{2}||E_{1}|$$

$$= |E_{1}||E_{2}| \cdots |E_{m}|$$

$$= |E_{1}E_{2} \cdots E_{m}|$$

$$= |A|.$$

No caso em que A não é invertivel, a matriz A^T também não é invertivel (cf. Proposição 2 i) e Proposição 5 v)). Assim, aplicando o Teorema 3 viii), tem-se

$$|A^T| = 0 = |A|.$$

Uma matriz quadrada $A = (a_{ij})$ de ordem n diz-se uma **matriz triangular inferior** se, quaisquer que sejam i, j = 1, ..., n com i < j, se tem $a_{ij} = 0$.

Atendendo a que uma matriz triangular inferior é a matriz transposta duma matriz triangular superior, obtemos a seguinte consequência da alínea iii) desta proposição:

Seja $A = [a_{ij}]$ uma matriz triangular inferior A. Então

$$\det A = a_{11}a_{22}\cdots a_{nn}.$$

A igualdade entre o determinante duma matriz e o determinante da sua matriz transposta permite ainda uma versão "em termos de colunas" das propriedades do determinante (compare com a Proposição 8).

Proposição 12.

- i) Uma matriz com duas colunas iguais tem determinante nulo.
- ii) O determinante de uma matriz com uma coluna nula é igual a 0.

Fórmula de Laplace

Sendo A uma matriz quadrada de ordem n e $i, k = 1, \ldots, n$, definem-se:

Submatriz A_{ik} : matriz quadrada de ordem n-1 que se obtém a partir de A retirando a linha i e a coluna k.

Menor-(ik):

$$M_{ik} = \det A_{ik}$$

Cofator-(ik):

$$C_{ik} = (-1)^{i+k} M_{ik}$$

Dada uma matriz quadrada A de ordem n e fixando uma qualquer linha i de A, pode demonstrar-se que o determinante de A se obtém de acordo com a fórmula seguinte:

Fórmula de Laplace com expansão na linha i

$$|A| = \sum_{k=1}^{n} a_{ik} C_{ik}$$

Exemplo

Calculemos o determinante da matriz

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 3 & 0 & -1 \\ 1 & 3 & 1 \end{bmatrix}$$

usando a fórmula de Laplace com expansão na linha 3. De acordo com a fórmula, tem-se:

$$|A| = \begin{vmatrix} 1 & 0 & 2 \\ 3 & 0 & -1 \\ 1 & 3 & 1 \end{vmatrix} = a_{31}C_{31} + a_{32}C_{32} + a_{33}C_{33}$$

$$= 1(-1)^{3+1} \begin{vmatrix} 0 & 2 \\ 0 & -1 \end{vmatrix} + 3(-1)^{3+2} \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix} + 1(-1)^{3+3} \begin{vmatrix} 1 & 0 \\ 3 & 0 \end{vmatrix}$$

$$= 0 + -3(1 \times (-1) - 2 \times 3) + 0$$

$$= 21$$

Determinantes, invertibilidade e fórmula de Laplace

Também existe uma fórmula para o cálculo do determinante duma matriz A de ordem n expressa em termos de colunas. Dada uma qualquer coluna k de A, tem-se:

Fórmula de Laplace com expansão na coluna k

$$|A| = \sum_{i=1}^{n} a_{ik} C_{ik}$$

Exemplo

Calculemos agora o determinante da matriz do exemplo anterior usando a fórmula de Laplace com expansão na coluna 2.

$$|A| = \begin{vmatrix} 1 & 0 & 2 \\ 0 & -1 \\ 1 & 3 & 1 \end{vmatrix} = a_{12}C_{12} + a_{22}C_{22} + a_{32}C_{32}$$

$$= 0 \times (-1)^{1+2} \begin{vmatrix} 3 & -1 \\ 1 & 1 \end{vmatrix} + 0 \times (-1)^{2+2} \begin{vmatrix} 1 & 2 \\ 1 & 1 \end{vmatrix} + 3 \times (-1)^{3+2} \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix}$$

$$= 0 + 0 - 3 \times (1 \times (-1) - 2 \times 3)$$

$$= 21$$

Os exemplos anteriores mostram que a escolha da linha ou da coluna é importante quando se calcula o determinante usando a fórmula de Laplace: a escolha justa da expansão pode permitir uma simplificação dos cálculos.

Seja A uma matriz quadrada de ordem n. A **matriz dos cofatores** de A é a matriz definida por

$$\cot A = [C_{ik}]_{i,k=1,...,n}$$

e a **matriz adjunta** de A é a matriz definida por

$$\operatorname{adj} A = (\operatorname{cof} A)^T$$
.

Lema 3. Seja A uma matriz quadrada de ordem n. Então

$$A \operatorname{adj} A = (\det A)I = (\operatorname{adj} A)A$$
.

Proposição 13. Seja A uma matriz quadrada de ordem n. Se $\det A \neq 0$, então

$$A^{-1} = \frac{1}{\det A} \operatorname{adj} A .$$