We use the notation $\mathcal{O}^*(f(n))$ to hide factors polynomial in the input length, e.g., $\mathcal{O}(2^n n^2) = \mathcal{O}^*(2^n)$.

1 Method: Branching

1.1 Vertex Cover

Recall the definition from day 1.

Definition 1. A vertex cover of a graph G = (V, E) is a set of vertices $X \subseteq V$ such that for every edge $e \in E$, $e = \{u, v\}$, at least one endpoint of e lies in X (that is, $u \in X$ or $v \in X$).

Vertex Cover

Input: Graph G = (V, E)

Question: Find a minimum vertex cover of G

Given in class: Vertex Cover can be solved in time $\mathcal{O}^*(1.3803^n)$ (recurrence T(n) = T(n-1) + T(n-4)).

1.2 k-SAT

Definition 2. A k-CNF formula is a boolean formula $\mathbb{F} = C_1 \wedge \ldots \wedge C_m$, where each C_i is a k-clause $(l_1 \vee \ldots \vee l'_k)$, $k' \leq k$, and each l_i is either x or $\neg x$ for some variable x. (Example: $(a \vee b \vee c) \wedge (\neg a \vee \neg b) \wedge (\neg c \vee d)$ is a 3-CNF formula.)

3-SAT

Input: A 3-CNF formula.

Question: Does the formula have a satisfying assignment?

Given in class: k-SAT can be solved in time $\mathcal{O}^*(c_k^n)$ where $c_k < 2$ for every fixed k.

Problem 1. (Repeated from pre-course exercises.) 2-SAT can be solved in polynomial time.

1.3 Exact Hitting Set

EXACT HITTING SET

Input: A set system: A set U, and a set $S = \{S_1, \ldots, S_m\}$ of subsets of U.

Question: Find a set $X \subseteq U$ which intersects every set $S_i \in \mathcal{S}$ exactly once (if one exists).

Problem 2. Solve Exact Hitting Set in time $\mathcal{O}^*(1.4656^n)$ (recurrence T(n) = T(n-1) + T(n-3)).

Remark 1. The HITTING SET problem (accidentally called SET COVER on the approximation problem set) seems to be much harder for exact algorithms than EXACT HITTING SET; no algorithm with running time $\mathcal{O}^*(c^n)$ for c < 2 is known for HITTING SET (and some researchers conjecture that none exists).

2 Method: Dynamic Programming

2.1 Subset Sum

Subset Sum

Input: A set of integers x_1, \ldots, x_n ; a target integer T.

Question: Is there a subset of the integers that sum to T?

You may assume that the integers are non-negative (it makes no difference, but it might be easier to think about). In day 1, we saw that SUBSET SUM can be solved via dynamic programming in time $\mathcal{O}^*(T)$ (note that T can be exponentially large in the size of the input, since writing down T only takes $\log T$ bits). Here, we ask for a different direction.

Problem 3. Solve Subset Sum in $\mathcal{O}^*(2^{n/2})$ time.

2.2 Chromatic Number

Definition 3. A k-coloring of a graph G = (V, E) is a labeling $f : V \to \{1, ..., k\}$ of the vertices, such that for every edge $\{u, v\} \in E$, we have $f(u) \neq f(v)$.

Graph k-coloring

Input: A graph G, an integer k. **Question:** Does G have a k-coloring?

Problem 4. Solve Graph k-coloring in time $\mathcal{O}^*(c^n)$, preferrably c=3. (Note that the size of the search space is k^n .)

Remark 2. Via a method known as principle of inclusion-exclusion it is possible to do this in time $\mathcal{O}^*(2^n)$ and exponential space, or in time $\mathcal{O}^*(c^n)$, 2 < c < 3, with polynomial space.