Examen 101 - Arquitectura del Sistema

Este examen se centra en la comprensión de la arquitectura fundamental de un sistema Linux, el proceso de arranque, la gestión de hardware y los niveles de ejecución.

101.1 Determinar y configurar ajustes hardware

Teoría Profunda:

El sistema operativo Linux necesita interactuar con el hardware subyacente para funcionar. Esta interacción se realiza a través de controladores de dispositivo (drivers), que son módulos de código dentro del kernel de Linux. La detección de hardware ocurre principalmente durante el arranque del sistema (boot).

1. Detección de Hardware:

- Durante el arranque, el kernel sondea el bus de hardware (como PCI, USB) para identificar los dispositivos conectados.
- Utiliza identificadores únicos de hardware (Vendor ID, Product ID) para determinar el tipo de dispositivo.
- Una vez identificado, el kernel carga el módulo (driver) apropiado que sabe cómo comunicarse con ese hardware específico.
- El directorio /dev/ es crucial aquí. No contiene archivos "reales" en el sentido tradicional, sino que proporciona interfaces (nodos de dispositivo) para interactuar con el hardware. Por ejemplo, /dev/sda representa el primer disco SATA, /dev/ttyS0 el primer puerto serie, etc. Estos nodos pueden ser de "carácter" (para dispositivos que se leen/escriben byte a byte, como terminales) o de "bloque" (para dispositivos que manejan datos en bloques, como discos).

2. Información del Hardware en Tiempo de Ejecución:

- El **sistema de archivos virtual /proc** es una mina de oro de información del sistema en tiempo de ejecución, *incluyendo hardware*.
 - /proc/cpuinfo: Detalles sobre el(los) procesador(es).
 - /proc/meminfo: Información sobre la memoria RAM (total, libre, buffers, caché, swap).
 - /proc/devices: Lista los dispositivos de caracteres y bloque mayores asignados y sus nombres internos.
 - /proc/interrupts, /proc/ioports, /proc/dma: Muestran qué dispositivos están usando qué recursos del sistema (interrupciones, puertos I/O, canales DMA).
- El **sistema de archivos virtual /sys** proporciona una vista jerárquica y más estructurada de los dispositivos del sistema, los buses, los controladores, etc. Es una interfaz más moderna y programática al kernel que **/proc**. Permite a los programas y scripts interactuar con el hardware de una manera más organizada.

24/1523 ADMINISTRACIÓN DE SISTEMAS OPERATIVOS LINUX – LPIC 1 - 101

- Herramientas de usuario: Varias herramientas de línea de comandos interactúan con /proc y /sys (o directamente con las interfaces del kernel) para mostrar información legible:
 - lspci: Lista dispositivos PCI (tarjetas gráficas, de red, sonido, etc.). Lee información del directorio /sys/bus/pci/devices/.
 - lsusb: Lista dispositivos USB. Interactúa con el subsistema USB del kernel, a menudo a través de /sys.
 - lshw: Lista información detallada sobre todo el hardware. Agrega información de varias fuentes (/proc, /sys, DMI/BIOS).
 - dmidecode: Reporta información de hardware desde la DMI/BIOS.
 - lsblk: Lista dispositivos de bloques (discos, particiones, LVM). Lee información de /sys/block.
 - fdisk, parted: Herramientas para gestionar particiones en dispositivos de bloque.

3. Gestión de Módulos del Kernel (Drivers):

- Los drivers suelen estar compilados como módulos (.ko files) que pueden cargarse o descargarse del kernel en tiempo de ejecución. Esto permite que el kernel sea más pequeño y cargue solo los drivers necesarios.
- Comandos clave:
 - lsmod: Lista los módulos del kernel cargados actualmente. Muestra dependencias entre módulos.
 - modinfo <module_name>: Muestra información detallada sobre un módulo específico (autor, descripción, dependencias, parámetros).
 - modprobe <module_name>: Carga un módulo del kernel (y sus dependencias).
 - rmmod <module_name>: Descarga un módulo del kernel (si no está en uso y no tiene dependencias cargadas que lo requieran).
- Los archivos de configuración para modprobe se encuentran típicamente en /etc/modprobe.d/. Esto permite configurar alias para módulos, opciones de carga, o prohibir la carga de ciertos módulos (blacklist).

4. Configuración de Hardware:

- Aunque gran parte de la configuración de hardware es automática, a veces se necesita intervención manual:
 - Configurar parámetros del kernel al arrancar (ver 101.2).
 - Usar archivos en /etc/modprobe.d/ para pasar opciones a los módulos o manejar conflictos.
 - Configurar dispositivos a través de herramientas específicas de usuario (ej: ip para redes, hdparm para discos, xrandr para pantallas).
 - Editar archivos de configuración en /etc/udev/rules.d/ para personalizar la forma en que udev (el demonio que gestiona los dispositivos

24/1523 ADMINISTRACIÓN DE SISTEMAS OPERATIVOS LINUX – LPIC 1 - 101

en /dev) nombra o configura dispositivos al detectarlos (ej: asegurar que una unidad USB particular siempre se monte en un punto específico).

Conceptos Clave: Kernel Modules, /dev, /proc, /sys, udev, PCI, USB, IRQ, DMA, I/O Ports.