

IKI30320 Kuliah 4 5 Sep 2007

Manurung

Ulasan

Breadth-first

Uniform-cost

Iterative-

Pengulangan

Ringkasar

IKI 30320: Sistem Cerdas Kuliah 4: Uninformed Search Strategies (Rev.)

Ruli Manurung

Fakultas Ilmu Komputer Universitas Indonesia

5 September 2007

Outline

IKI30320 Kuliah 4 5 Sep 2007

uli Manurun

- ----

Breadth-firs

0111101111-003

Iterative-

Pengulangai

Ringkasan

- 1 Ulasan
- 2 Breadth-first
- Uniform-cost
- Depth-first
- Iterative-deepening
- 6 Pengulangan state
- Ringkasan

Outline

IKI30320 Kuliah 4 5 Sep 2007

Ulasan

Ulasan

Breadth-firs

Iniform-cos

Uniform-cost

Iterativedeepenin

Depth-first

Pengulangai state

Iterative-deepening

Ringkasar

6 Pengulangan *state*

7

Ringkasan

Problem-solving agent & search

IKI30320 Kuliah 4 5 Sep 2007

ıli Manurung

Ulasan

Breadth-firs

Onlionn-cc

Depth-first

Iterativedeepening

Pengulangai state

Ringkasaı

Sebuah problem-solving agent memecahkan sebuah masalah dalam 2 tahap:

- Goal & problem formulation: masalah dinyatakan sebagai sebuah state space, yang sering direpresentasikan dalam bentuk graph.
 Action adalah abstraksi tindakan yang dapat diambil State adalah abstraksi keadaan yang dapat terjadi
- Solution search: solusi diperoleh dengan mencari rangkaian tindakan (action sequence) yang membawa agent ke goal state.

Algoritma penelusuran search tree

IKI30320 Kuliah 4 5 Sep 2007

Ulasan

Breadth-firs

0111101111-00

Depth-first

Iterativedeepening

Pengulangai state

Ringkasaı

- Pada awalnya, *fringe* = himpunan node yang mewakili *initial state*.
- 2 Pilih satu node dari *fringe* sebagai current node (Kalau *fringe* kosong, selesai dengan gagal).
- 3 Jika node tsb. lolos *goal test*, selesai dengan sukses!
- Jika tidak, lakukan node expansion terhadap current node tsb. Tambahkan semua node yang dihasilkan ke fringe.
- Ulangi langkah 2.

function TreeSearch (problem, fringe) returns solution or failure

 $fringe \leftarrow Insert(MakeNode(InitialState(problem)), fringe)$ **loop do**

if EMPTY?(fringe) then return failure
node ← REMOVEFIRST(fringe)

if GOALTEST(problem) applied to STATE(node) succeeds
then return SOLUTION(node)

 $fringe \leftarrow InsertAll(Expand(node,problem),fringe)$

Strategi pencarian

IKI30320 Kuliah 4 5 Sep 2007

i tuli iviariuru

Ulasan

Breadth-first

Uniform-cos

. Iterative-

Pengulangar

- Terdapat berbagai jenis strategi untuk melakukan search.
- Semua strategi ini berbeda dalam satu hal: urutan dari node expansion.
- Search strategy di-evaluasi berdasarkan:
 - completeness: apakah solusi (jika ada) pasti ditemukan?
 - time complexity: jumlah node yang di-generate.
 - space complexity: jumlah maksimum node di dalam memory.
 - optimality: apakah solusi dengan minimum cost pasti ditemukan?
- Time & space complexity diukur berdasarkan
 - *b* branching factor dari search tree
 - d depth (kedalaman) dari solusi optimal
 - m kedalaman maksimum dari search tree (bisa infinite!)

Uninformed search strategies

IKI30320 Kuliah 4 5 Sep 2007

Ulasan

Dieadiii-iii3

Uniionn-cos

Iterative-

Pengulangar state

Ringkasaı

 Uninformed strategy hanya menggunakan informasi dari definisi masalah.

- Bisa diterapkan secara generik terhadap semua jenis masalah yang bisa direpresentasikan dalam sebuah state space.
- Ada beberapa jenis:
 - Breadth-first search
 - Uniform-cost search
 - Depth-first search
 - Depth-limited search
 - Iterative-deepening search

Outline

IKI30320 Kuliah 4 5 Sep 2007

Manurung

Ulasali

Breadth-first

Uniform-cos

Iterative-

Pengulangar

Ringkasan

- Ulasan
- 2 Breadth-first
- Uniform-cost
- 4 Depth-first
- Iterative-deepening
- 6 Pengulangan state
 - Ringkasan

IKI30320 Kuliah 4 5 Sep 2007

lanuruna

Ulasa

Breadth-first

Offiloffii-CC

Depth-first

Iterativedeepening

Pengulangai state

Ringkasaı

Prinsip algoritma breadth-first search

- Implementasi: fringe adalah sebuah queue, data struktur FIFO (First In First Out)
- Hasil node expansion (successor function) ditaruh di belakang

IKI30320 Kuliah 4 5 Sep 2007

Appurung

lllacan

Breadth-first

Unitorm-co

Depth-first

Iterativedeepening

Pengulangai state

Ringkasaı

Prinsip algoritma breadth-first search

- Implementasi: fringe adalah sebuah queue, data struktur FIFO (First In First Out)
- Hasil node expansion (successor function) ditaruh di belakang

IKI30320 Kuliah 4 5 Sep 2007

Manuruna.

Ulasa

Breadth-first

Offinorini-cc

Depth-first

Iterativedeepening

Pengulangai state

Ringkasaı

Prinsip algoritma breadth-first search

- Implementasi: fringe adalah sebuah queue, data struktur FIFO (First In First Out)
- Hasil node expansion (successor function) ditaruh di belakang

IKI30320 Kuliah 4 5 Sep 2007

Appurupa

...

Breadth-first

Depth-lirst

deepening

Pengulangai state

Ringkasaı

Prinsip algoritma breadth-first search

- Implementasi: fringe adalah sebuah queue, data struktur FIFO (First In First Out)
- Hasil node expansion (successor function) ditaruh di belakang

IKI30320 Kuliah 4 5 Sep 2007

/lanurung

Ulasaı

Breadth-first

Uniform-cos

Iterative-

Pengulangan state

Ringkasar

Complete?

IKI30320 Kuliah 4 5 Sep 2007

Manurunc

Breadth-first

Uniform coc

Iterative-

Pengulangar state

Ringkasar

IKI30320 Kuliah 4 5 Sep 2007

Manurung

- -----

Breadth-first

Uniform-cos

.. ..

deepening

Pengulangar state

Ringkasar

- Complete? Ya, jika *b* terbatas
- Time complexity?

IKI30320 Kuliah 4 5 Sep 2007

Manurung

Ulasali

Breadth-first

Uniform-cos

Depth-first

Iterativedeepenin

Pengulangai state

Ringkasar

- Complete? Ya, jika b terbatas
- Time complexity? $b+b^2+b^3+\ldots+b^d+b(b^d-1)=O(b^{d+1})\to$ eksponensial dlm. d.

IKI30320 Kuliah 4 5 Sep 2007

Manurung

Olabali

Breadth-first

Uniform-cos

Iterative-

Pengulanga

Ringkasaı

- Time complexity? $b+b^2+b^3+\ldots+b^d+b(b^d-1)=O(b^{d+1})\to$ eksponensial dlm. d.
- Space complexity?

IKI30320 Kuliah 4 5 Sep 2007

i Manurunç

Olasali

Breadth-first

Uniform-cost

. Iterative-

Pengulanga

Ringkasaı

- Time complexity? $b+b^2+b^3+\ldots+b^d+b(b^d-1)=O(b^{d+1})\to$ eksponensial dlm. d.
- Space complexity? $O(b^{d+1})$, karena semua node yang di-*generate* harus disimpan.

IKI30320 Kuliah 4 5 Sep 2007

Manurung

Olabali

Breadth-first

Uniform-cos

Iterative-

Pengulangai

Ringkasaı

- Time complexity? $b+b^2+b^3+\ldots+b^d+b(b^d-1)=O(b^{d+1})\to$ eksponensial dlm. d.
- Space complexity? $O(b^{d+1})$, karena semua node yang di-generate harus disimpan.
- Optimal?

IKI30320 Kuliah 4 5 Sep 2007

Manurung

Ulasali

Breadth-first

Uniform-cos

Depth-first

Iterativedeepening

Pengulangar state

Ringkasar

- Time complexity? $b + b^2 + b^3 + ... + b^d + b(b^d 1) = O(b^{d+1}) \rightarrow$ eksponensial dlm. d.
- Space complexity? $O(b^{d+1})$, karena semua node yang di-generate harus disimpan.
- Optimal? Ya, jika semua step cost sama, tapi pada umumnya tidak optimal.

IKI30320 Kuliah 4 5 Sep 2007

li Manurunç

Ulasali

Breadth-first

_ . ..

Depth-first

deepening

Pengulanga state

Ringka

Complete? Ya, jika b terbatas

- Time complexity? $b+b^2+b^3+\ldots+b^d+b(b^d-1)=O(b^{d+1})\to eksponensial dlm. <math>d$.
- Space complexity? $O(b^{d+1})$, karena semua node yang di-generate harus disimpan.
- Optimal? Ya, jika semua step cost sama, tapi pada umumnya tidak optimal.

Masalah utama breadth-first search adalah space

Mis: 1 node memakan 1000 byte, dan b = 10

Jika d = 6, ada 10^7 node ≈ 10 gigabyte.

Jika d = 12, ada 10^{13} node ≈ 10 petabyte!

Outline

IKI30320 Kuliah 4 5 Sep 2007

Manurung

Ulasali

Breadth-first

Uniform-cost

Iterative-

deepening Pengulangai

Siale

Ringkasan

- Ulasan
- 2 Breadth-first
- Uniform-cost
- 4 Depth-first
- Iterative-deepening
- 6 Pengulangan state
- Ringkasan

Uniform-cost search

IKI30320 Kuliah 4 5 Sep 2007

Manurung

Ulasan

Breadth-first Uniform-cost

Depth-first

Iterativedeepening

Pengulangal state

Ringkasa

Prinsip algoritma uniform-cost search

Lakukan node expansion terhadap node di *fringe* yang path cost-nya paling kecil.

- Implementasi: fringe adalah sebuah priority queue di mana node disortir berdasarkan path cost function g(n).
- Jika semua step cost sama, uniform-cost sama dengan breadth-first.
- Bandingkan dengan shortest-path algorithm-nya Dijkstra!

IKI30320 Kuliah 4 5 Sep 2007

ı Manurunç

Ulasa

Breadth-firs

Uniform-cost

Develop Const

Iterativedeepening

Pengulangan state

Ringkasar

Complete?

IKI30320 Kuliah 4 5 Sep 2007

i Manurung

Ulasar

Breadth-fire

Uniform-cost

Iterativedeepenin

Pengulangar state

Ringkasar

• Complete? Ya, jika *step cost* $\geq \epsilon$ untuk $\epsilon > 0$

IKI30320 Kuliah 4 5 Sep 2007

Manurung

Ulasan

Breadth-firs

Uniform-cost

Iterative-

Pengulangai

- Complete? Ya, jika *step cost* $\geq \epsilon$ untuk $\epsilon > 0$
- Time complexity?

IKI30320 Kuliah 4 5 Sep 2007

nuli ivialiulu

Ulasali

Breadth-firs

Uniform-cost

Iterative-

Pengulangar

- Complete? Ya, jika *step cost* $\geq \epsilon$ untuk $\epsilon > 0$
- Time complexity? Jumlah node dengan
 g(n) ≤ C* = O(b^{⌊C*/ϵ⌋+1}) di mana C* adalah cost dari
 optimal solution

IKI30320 Kuliah 4 5 Sep 2007

Ruli Manuru

Olasaii

Breadth-firs

Uniform-cost

Donth first

Iterativedeepening

Pengulangai state

- Complete? Ya, jika step $cost \ge \epsilon$ untuk $\epsilon > 0$
- Time complexity? Jumlah node dengan
 g(n) ≤ C* = O(b^{⌊C*/ϵ⌋+1}) di mana C* adalah cost dari
 optimal solution
- Space complexity?

IKI30320 Kuliah 4 5 Sep 2007

Hull Manuru

Ulasan

Breadth-firs

Uniform-cost

Itorativo

deepening

Pengulangar state

Ringkasar

- Complete? Ya, jika step $cost \ge \epsilon$ untuk $\epsilon > 0$
- Time complexity? Jumlah node dengan
 g(n) ≤ C* = O(b^{⌊C*/ϵ⌋+1}) di mana C* adalah cost dari
 optimal solution
- Space complexity? Semua node yang di-generate harus disimpan ≈ O(b^{[C*/ϵ]+1})

IKI30320 Kuliah 4 5 Sep 2007

Ruli Manuru

Olasali

Breadth-first

Uniform-cost

Iterative-

Pengulanga

state

Ringkasan

- Complete? Ya, jika step cost $\geq \epsilon$ untuk $\epsilon > 0$
- Time complexity? Jumlah node dengan
 g(n) ≤ C* = O(b^{⌊C*/ϵ⌋+1}) di mana C* adalah cost dari
 optimal solution
- Space complexity? Semua node yang di-generate harus disimpan ≈ O(b^{[C*/ϵ]+1})
- Optimal?

IKI30320 Kuliah 4 5 Sep 2007

Rull Manuru

Ulasali

Breadth-first

Uniform-cost

Depth-first

Iterativedeepening

Pengulangar state

Ringkasar

- Complete? Ya, jika step cost $\geq \epsilon$ untuk $\epsilon > 0$
- Time complexity? Jumlah node dengan
 g(n) ≤ C* = O(b^{⌊C*/ϵ⌋+1}) di mana C* adalah cost dari
 optimal solution
- Space complexity? Semua node yang di-generate harus disimpan ≈ O(b^{[C*/ϵ]+1})
- Optimal? Ya, karena urutan *node expansion* dilakukan urut g(n).

Contoh uniform-cost search

IKI30320 Kuliah 4 5 Sep 2007

Manurung

Ulasan

Breadth-firs

Uniform-cost

Depth-first

Iterativedeepening

Pengulangan state

Ringkasan

Coba gunakan uniform-cost search untuk mencari optimal solution dari Arad ke Bucharest!

Outline

IKI30320 Kuliah 4 5 Sep 2007

Manurung

Ulasan

Breadth-first

Uniform-cost

Depth-first

Iterativedeepening

Pengulangar state

Ringkasan

- 1 Ulasan
- 2 Breadth-first
- Uniform-cost
- Depth-first
- Iterative-deepening
- 6 Pengulangan state
 - Ringkasan

Depth-first search

IKI30320 Kuliah 4 5 Sep 2007

/lanurung

Ulasa

Breadth-first

Depth-first

Iterativedeepening

Pengulangai state

Ringkasaı

Prinsip algoritma depth-first search

- Implementasi: fringe adalah sebuah stack, data struktur LIFO (Last In First Out)
- Hasil *node expansion* ditaruh di depan
- Depth-first search sangat cocok diimplementasikan secara rekursif.

Depth-first search

IKI30320 Kuliah 4 5 Sep 2007

Manurung

Ulasa

Breadth-first

Depth-first

Iterativedeepening

Pengulangar state

Ringkasaı

Prinsip algoritma depth-first search

- Implementasi: fringe adalah sebuah stack, data struktur LIFO (Last In First Out)
- Hasil *node expansion* ditaruh di depan
- Depth-first search sangat cocok diimplementasikan secara rekursif.

Depth-first search

IKI30320 Kuliah 4 5 Sep 2007

Manurung

Ulasa

Breadth-first

Depth-first

Iterativedeepening

Pengulangar state

Ringkasaı

Prinsip algoritma depth-first search

- Implementasi: fringe adalah sebuah stack, data struktur LIFO (Last In First Out)
- Hasil node expansion ditaruh di depan
- Depth-first search sangat cocok diimplementasikan secara rekursif.

IKI30320 Kuliah 4 5 Sep 2007

//anurung

Ulasa

Breadth-first

Depth-first

Iterativedeepening

Pengulangai state

Ringkasaı

Prinsip algoritma depth-first search

- Implementasi: fringe adalah sebuah stack, data struktur LIFO (Last In First Out)
- Hasil node expansion ditaruh di depan
- Depth-first search sangat cocok diimplementasikan secara rekursif.

IKI30320 Kuliah 4 5 Sep 2007

Manurung

Ulasa

Breadth-first

Depth-first

Iterativedeepening

Pengulangai state

Ringkasaı

Prinsip algoritma depth-first search

- Implementasi: fringe adalah sebuah stack, data struktur LIFO (Last In First Out)
- Hasil node expansion ditaruh di depan
- Depth-first search sangat cocok diimplementasikan secara rekursif.

IKI30320 Kuliah 4 5 Sep 2007

Manurung

Ulasa

Breadth-first

Depth-first

Iterativedeepening

Pengulangai state

Ringkasaı

Prinsip algoritma depth-first search

- Implementasi: fringe adalah sebuah stack, data struktur LIFO (Last In First Out)
- Hasil node expansion ditaruh di depan
- Depth-first search sangat cocok diimplementasikan secara rekursif.

IKI30320 Kuliah 4 5 Sep 2007

Manurung

Ulasa

Breadth-first

Depth-first

Iterativedeepening

Pengulangai state

Ringkasaı

Prinsip algoritma depth-first search

- Implementasi: fringe adalah sebuah stack, data struktur LIFO (Last In First Out)
- Hasil node expansion ditaruh di depan
- Depth-first search sangat cocok diimplementasikan secara rekursif.

IKI30320 Kuliah 4 5 Sep 2007

Manurung

Ulasa

Breadth-first

Depth-first

Iterativedeepening

Pengulangai state

Ringkasaı

Prinsip algoritma depth-first search

- Implementasi: fringe adalah sebuah stack, data struktur LIFO (Last In First Out)
- Hasil node expansion ditaruh di depan
- Depth-first search sangat cocok diimplementasikan secara rekursif.

IKI30320 Kuliah 4 5 Sep 2007

Manurung

Ulasa

Breadth-first

Depth-first

Iterativedeepening

Pengulangai state

Ringkasar

Prinsip algoritma depth-first search

- Implementasi: fringe adalah sebuah stack, data struktur LIFO (Last In First Out)
- Hasil node expansion ditaruh di depan
- Depth-first search sangat cocok diimplementasikan secara rekursif.

IKI30320 Kuliah 4 5 Sep 2007

Manurung

Ulasar

Breadth-first

Depth-first

Iterativedeepening

Pengulangai state

Ringkasar

Prinsip algoritma depth-first search

- Implementasi: fringe adalah sebuah stack, data struktur LIFO (Last In First Out)
- Hasil node expansion ditaruh di depan
- Depth-first search sangat cocok diimplementasikan secara rekursif.

IKI30320 Kuliah 4 5 Sep 2007

Manurung

Ulasa

Breadth-first

Depth-first

Iterativedeepening

Pengulangai state

Ringkasar

Prinsip algoritma depth-first search

- Implementasi: fringe adalah sebuah stack, data struktur LIFO (Last In First Out)
- Hasil node expansion ditaruh di depan
- Depth-first search sangat cocok diimplementasikan secara rekursif.

IKI30320 Kuliah 4 5 Sep 2007

1anuruna

Ulasa

Breadth-first

Depth-first

Iterativedeepening

Pengulangar state

Ringkasar

Prinsip algoritma depth-first search

- Implementasi: fringe adalah sebuah stack, data struktur LIFO (Last In First Out)
- Hasil node expansion ditaruh di depan
- Depth-first search sangat cocok diimplementasikan secara rekursif.

IKI30320 Kuliah 4 5 Sep 2007

Manurung

Ulasai

Breadth-fire

11.77

Depth-first

Iterativedeepening

Pengulangan state

Ringkasar

Complete?

IKI30320 Kuliah 4 5 Sep 2007

,

. ...

Breadth-firs

0111101111-003

Depth-first

Iterative-

Pengulangar state

- Complete? Tidak, bisa gagal jika m tak terbatas, atau state space dengan loop.
- Time complexity?

IKI30320 Kuliah 4 5 Sep 2007

.

Breadth-first

.

Depth-first

Iterativedeepening

Pengulangar state

- Complete? Tidak, bisa gagal jika m tak terbatas, atau state space dengan loop.
- Time complexity? $O(b^m) \rightarrow \text{jika } m \gg d$, parah!

IKI30320 Kuliah 4 5 Sep 2007

Breadth-first

Depth-first

Iterative-

Pengulangar

- Complete? Tidak, *bisa* gagal jika *m* tak terbatas, atau state space dengan *loop*.
- Time complexity? $O(b^m) \rightarrow \text{jika } m \gg d$, parah!
- Space complexity?

IKI30320 Kuliah 4 5 Sep 2007

uli Manurung

J.aoa..

Breadth-first

Depth-first

Iterativedeepening

Pengulangar state

- Complete? Tidak, bisa gagal jika m tak terbatas, atau state space dengan loop.
- Time complexity? $O(b^m) \rightarrow \text{jika } m \gg d$, parah!
- Space complexity? *O*(*bm*) → *linear space*!

IKI30320 Kuliah 4 5 Sep 2007

Breadth-firs

Depth-first

Iterativedeepening

Pengulangar state

- Complete? Tidak, bisa gagal jika m tak terbatas, atau state space dengan loop.
- Time complexity? $O(b^m) \rightarrow \text{jika } m \gg d$, parah!
- Space complexity? O(bm) → linear space!
- Optimal?

Kuliah 4 5 Sep 2007

nuli ivialiululi

J.aJa..

Diedulii-iiisi

Depth-first

Iterativedeepening

Pengulangan *state*

Ringkasar

- Complete? Tidak, bisa gagal jika m tak terbatas, atau state space dengan loop.
- Time complexity? $O(b^m) \rightarrow \text{jika } m \gg d$, parah!
- Space complexity? *O*(*bm*) → *linear space*!
- Optimal? Tidak.

Depth-first search mengatasi masalah space

Mis: 1 node memakan 1000 byte, dan b=10Jika d=12, space yang dibutuhkan hanya 118 kilobyte . . . bandingkan dengan 10 petabyte!

Variasi depth-first search

IKI30320 Kuliah 4 5 Sep 2007

ı Manurunç

Ulasan

Liniform and

Depth-first

Iterativedeepening

Pengulangan state

Ringkasar

- Backtracking search: lakukan node expansion satu-per-satu. Jika gagal backtrack dan coba nilai successor function yang lain.
- Depth-limited search: Batasi kedalaman maksimal yang dilihat adalah ℓ.
 - Mengatasi masalah untuk state space tak terbatas.
 - Sayangnya, ada unsur *incompleteness* baru, jika $\ell < d$.
 - Biasanya d tidak diketahui (tapi bisa ada estimasi, mis. diameter suatu graph).

Implementasi rekursif depth-limited search

IKI30320 Kuliah 4 5 Sep 2007

Manurung

Jiasan

Breadth-first

J....J....

Depth-first

Iterativedeepening

Pengulangar state

Ringkasar

function RecursiveDLS (node, problem, limit) returns solution or failure/cutoff

cutoff_occurred? ← *false*

if GOALTEST[problem](STATE[node]) **then return** SOLUTION(node)

else if DEPTH[node] = limit then return cutoff

else for each successor in EXPAND(node,problem) do

 $result \leftarrow \texttt{RECURSIVEDLS}(successor, problem, limit)$

 $\textbf{if } \textit{result} = \textit{cutoff } \textbf{then } \textit{cutoff_occurred?} \rightarrow \textit{true}$

else if $\textit{result} \neq \textit{failure}$ then return result

if cutoff_occurred? then return cutoff else return failure

function DEPTHLIMITEDSEARCH (problem, limit) returns solution or failure/cutoff

return RecursiveDLS(MakeNode(InitialState[problem]), problem, limit)

Perhatikan perbedaan antara cutoff dan failure.

Outline

IKI30320 Kuliah 4 5 Sep 2007

Manurunç

O.aoa..

Breadth-firs

Uniform-cost

Iterativedeepening

Pengulangar

Ringkasan

Ulasan

2 Breadth-first

Uniform-cost

Depth-first

Iterative-deepening

6 Pengulangan state

Ringkasan

Iterative-deepening search

Kuliah 4 5 Sep 2007

Manuruna

nuli Manurun

Ulasar

Breadth-first

Donth fire

Iterativedeepening

Pengulangai state

Ringkasar

Prinsip algoritma iterative-deepening search

Lakukan depth-limited search secara bertahap dengan nilai ℓ yang incremental.

- Strategi ini menggabungkan manfaat depth dan breadth first: space complexity linier dan completeness terjamin!
- Lakukan depth-limited search dengan $\ell=0,1,2,\ldots$ sampai tidak *cutoff*.

function ITERATIVEDEEPENINGSEARCH (problem) **returns** solution or failure

```
for depth \to 0 to \infty do 
 result \to \mathsf{DEPTHLIMITEDSEARCH}(problem, depth)
 if result \neq cutoff then return result
```


IKI30320 Kuliah 4 5 Sep 2007

ıli Manurun

Ulasai

Breadth-fire

Uniform-cos

Depth-first

Iterativedeepening

Pengulangar state

Ringkasan

 $\ell = 0$

Limit = 0

IKI30320 Kuliah 4 5 Sep 2007

Manurung

Jiasan

Breadth-fire

Uniform-cos

Iterative-

deepening
Pengulangai

Ringkasan

IKI30320 Kuliah 4 5 Sep 2007

Manurung

Ulasaı

Breadth-firs

_

Depth-first

Iterativedeepening

Pengulangar state

Ringkasar

IKI30320 Kuliah 4 5 Sep 2007

Manurung

 $\ell = 3$

Ulasa

Breadth-firs

Depth-first

Iterativedeepening

Pengulangan state

Ringkasar

IKI30320 Kuliah 4 5 Sep 2007

Ulasan

Breadth-fire

Uniform-cos

Iterativedeepening

Pengulangan state

Ringkasar

Complete?

IKI30320 Kuliah 4 5 Sep 2007

Ulasan

Breadth-fire

Uniform-cos

Iterativedeepening

Pengulangar state

Ringkasar

Complete? Ya.

IKI30320 Kuliah 4 5 Sep 2007

Ruli Manurur

Ulasan

Breadth-firs

Uniform-cost

Iterativedeepening

Pengulangar

Ringkasan

- Complete? Ya.
- Time complexity?

IKI30320 Kuliah 4 5 Sep 2007

Ruli Manurur

Ulasan

Breadth-firs

Uniform-cost

Iterative-

deepening

Pengulangar state

Ringkasar

Complete? Ya.

• Time complexity? $db^1 + (d-1)b^2 + ... + b^d = O(b^d)$

Space complexity?

IKI30320 Kuliah 4 5 Sep 2007

Ruli Manurur

Olasali

Breadth-fire

Uniform-cos

Iterative-

deepening

Pengulangai state

Ringkasar

Complete? Ya.

• Time complexity? $db^1 + (d-1)b^2 + ... + b^d = O(b^d)$

• Space complexity? O(bd)

IKI30320 Kuliah 4 5 Sep 2007

Ruli Manurun

Ulasali

Breadth-fire

Uniform-cost

Iterative-

deepening

Pengulangai state

Ringkasar

Complete? Ya.

- Time complexity? $db^1 + (d-1)b^2 + ... + b^d = O(b^d)$
- Space complexity? O(bd)
- Optimal?

Kuliah 4 5 Sep 2007

Ruli Manurui

Ulasali

Breadth-firs

Uniform-cost

Iterativedeepening

Pengulangar

Ringkasan

Complete? Ya.

- Time complexity? $db^1 + (d-1)b^2 + ... + b^d = O(b^d)$
- Space complexity? O(bd)
- Optimal? Ya, jika semua step cost sama. Bisa dimodifikasi spt. uniform-cost tree, namanya iterative lengthening search.

Kineria iterative-deepening search

Kuliah 4 5 Sep 2007

Iterativedeepening

Secara sekilas, strategi ini kelihatan tidak efisien, atau boros: banyak usaha terulang!

Iterative-deepening search malah lebih cepat dari breadth-first search!

$$N(IDS) = db + (d-1)b^2 + \dots + (1)b^d$$

 $N(BFS) = b + b^2 + \dots + b^d + (b^{d+1} - b)$

Untuk $b = 10 \operatorname{dan} d = 5$:

$$N(IDS) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450$$

$$N(BFS) = 10+100+1,000+10,000+100,000+999,990 = 1,111,100.$$

Pada umumnya, *iterative deepening search* adalah uninformed search strategy yang terbaik jika state space besar dan kedalaman solusi (d) tidak diketahui.

Perbandingan strategi pencarian

IKI30320 Kuliah 4 5 Sep 2007

lanurung

Ulasa

Breadth-firs

Uniform-cos

Iterativedeepening

Pengulanga state

Ringkasar

Criterion	Breadth-	Uniform-	Depth-	Depth-	Iterative
	First	Cost	First	Limited	Deepening
Complete?	Ya*	Ya*	Tidak	Ya, jk ℓ ≥ d	Ya
Time	b^{d+1}	$b^{\lfloor C^*/\epsilon floor +1}$	b^m	${\boldsymbol{\mathcal{b}}}^\ell$	b ^d
Space	b^{d+1}	$b^{\lfloor C^*/\epsilon floor +1}$	bm	$oldsymbol{b}\ell$	bd
Optimal?	Ya*	Ya*	Tidak	Tidak	Ya

Outline

IKI30320 Kuliah 4 5 Sep 2007

Ulasan

...

2 Breadth-first

Iniform-cos

Uniform-cost

Iterativedeepenin

4 Depth-first

Pengulangan state

Iterative-deepening

Ringkasan

Pengulangan state

7

Ringkasan

Masalah: *state* yang mengulang di dalam *search tree*

IKI30320 Kuliah 4 5 Sep 2007

Ruli Manuri

Ulasan

Breadth-first

O....O....

Depth-first

Iterativedeepening

Pengulangan state

Ringkas

Kegagalan menangani *state* yang mengulang dapat membuat masalah linier menjadi eksponensial!

Ingat dua variasi definisi masalah 8-queens problem.

Solusi: belajar dari sejarah

IKI30320 Kuliah 4 5 Sep 2007

Ruli Manuru

Ulasan

Breadth-first

. . . .

рерш-шас

deepening

Pengulangan state

Ringkasar

- Algorithms that forget their history are doomed to repeat it...
- Solusinya adalah untuk mencatat state mana yang sudah pernah dicoba. Catatan ini disebut closed list (fringe = open list).
- Modifikasi algoritma TREESEARCH dengan closed list menjadi GRAPHSEARCH.

Algoritma GRAPHSEARCH

 $closed \leftarrow \{\}$

IKI30320 Kuliah 4 5 Sep 2007

Manurung

Ulasan

Breadth-firs

Uniform-cost

Iterative-

deepening

Pengulangan state

Ringkasar

function GraphSearch (problem, fringe) returns solution or failure

```
fringe ← INSERT(MAKENODE(INITIALSTATE(problem)),fringe)
loop do

if EMPTY?(fringe) then return failure

node ← REMOVEFIRST(fringe)

if GOALTEST(problem) applied to STATE(node) succeeds

then return SOLUTION(node)

if STATE[node] ∉ closed then

add STATE[node] to closed
```

 $fringe \leftarrow InsertAll(Expand(node,problem),fringe)$

Sifat GRAPHSEARCH

Kuliah 4 5 Sep 2007

Ruli Manurun

Ulasali

Breadth-first

Offiloffii-co:

Iterative-

Pengulangan state

Ringkasar

- Time complexity: sama, jika kita asumsi operasi STATE[node] ∉ closed = O(1) (implementasi dengan hashtable?)
- Space complexity: DFS dan IDS tidak lagi linier!
- GRAPHSEARCH tidak mencatat path menuju suatu state. Ini mempengaruhi sifat optimality suatu strategi:
 - Uniform-cost dan breadth-first search dengan step cost konstanta masih optimal (kenapa?).
 - Untuk variasi Depth-first dan iterative-deepening search, jika state mengulang ditemukan, periksa apakah path cost-nya lebih kecil → update info node dan anak-anaknya!

Outline

IKI30320 Kuliah 4 5 Sep 2007

Manurung

Breadth-firs

Unitorm-cost

Iterative-

Pengulangar

Ringkasan

- 1 Ulasan
- 2 Breadth-first
- Uniform-cost
- Depth-first
- 5 Iterative-deepening
- 6 Pengulangan state
- Ringkasan

Ringkasan

IKI30320 Kuliah 4 5 Sep 2007

Lllanon

Breadth-firs

Offiloffii-CO

Depth-first

deepening

Pengulangar state

Ringkasan

- Breadth-first search: completeness terjamin, tapi rakus memory.
- Uniform-cost search: mirip BFS, optimality terjamin jika $cost\ path \ge \epsilon$ untuk $\epsilon > 0$.
- Depth-first search: Space complexity linier, tetapi tidak complete (maupun optimal).
- Depth-limited search: mirip DFS, tetapi kedalaman search dibatasi sampai ℓ .
- Iterative-deepening search: lakukan DLS secara bertahap dengan $\ell = 0, 1, 2, \dots$
- Pengulangan state bisa dihindari dengan mencatat state yang sudah pernah dicoba.
 TREESEARCH → GRAPHSEARCH.