Raport końcowy projektu z przedmiotu Dedykowane Algorytmy Diagnostyki Medycznej

į autorzy; 12 stycznia 2017

Klasyfikacja uderzeń serca

Spis treści

1	Line	ear SVM							
	1.1	Opis algorytmu							
		1.1.1 Metoda wektorów wspierających (SVM)							
		1.1.2 Sekwencyjna minimalna optymalizacja (SMO)							
		1.1.3 Poszukiwanie współczynników Lagrange'a							
		1.1.4 Heurystyka wyboru współczynników do optymalizacji							
		1.1.5 Obliczanie progu							
	1.2	Opis sposobu implementacji algorytmu							
		1.2.1 Schematy blokowe działania algorytmu							
		Wizualizacja działania algorytmu							
		1.3.1 Wizualizacja dla dwóch cech							
		1.3.2 Wizualizacja dla trzech cech							
	1.4	Opis informatyczny procedur							
2	Por	ównanie algorytmów							

1 Linear SVM

1.1 Opis algorytmu

1.1.1 Metoda wektorów wspierających (SVM)

Maszyny wektorów wspierających (support vector machines) są modelami uczenia nadzorowanego, które analizują dane użyte do klasyfikacji i analizy regresji. Wykorzystując zbiór danych uczących, każdy odpowiednio oznaczony zgodnie z klasą do której przynależy, algorytm SVM tworzy model, który potrafi przyporządkować analizowane dane do jednej z kategorii.

Model SVM jest reprezentacją danych w postaci punktów w przestrzeni. Punkty należące do różnych klas znajdują się w innych obszarach przestrzeni i są rozdzielone za pomocą luki o jak największej możliwej szerokości. Kolejno, analizowany nowy punkt jest odpowiednio przyporządkowywany do jednej z kategorii na podstawie tego, z której strony luki się znajduje. Na rysunku nr 1 został przedstawiony rozkład punktów płaszczyzny należących do dwóch różnych kategorii. W tym wypadku na osiach znajdują się cechy, dzięki którym klasyfikowane są analizowane przypadki.

Rysunek 1: Wizualizacja punktów należących do dwóch klas wraz z rozdzielającą je hiperpłaszczyzną (opracowanie własne)

Klasyfikacja danych jest najważniejszym zadaniem uczenia maszynowego. W metodzie wektorów wspierających dane są postaci wektora o rozmiarze p. Celem działania algorytmu jest wyznaczenie optymalnej hiperpłaszczyzny rozmiaru p-1, która rozdzielałaby dane należące do poszczególnych klas. Tego typu podejście jest nazywane klasyfikacją liniową.

Istnieje wiele hiperpłaszczyzn, które mogą rozdzielać dwie klasy. Przykładowo na rysunku 2 przedstawiono dwie klasy rozdzielone trzema różnymi hiperpłaszczyznami H_1, H_2, H_3 . Problem polega na tym, aby wybrać jak najlepszą hiperpłaszczyznę, która w sposób najbardziej optymalny będzie rozdzielać dwie klasy. Taka hiperpłaszczyzna zostaje wybrana w taki sposób, aby była jak najbardziej oddalona zarówno od jednej jak i drugiej klasy.

Rysunek 2: Wizualizacja trzech różnych hiperpłaszczyzn mogących rozdzielać dwie klasy (opracowanie własne)

Klasyfikator maksymalnego marginesu znajduje hiperpłaszczyznę rozdzielającą dane treningowe na dwie klasy w ten sposób, że maksymalizuje wartość marginesu geometrycznego dla wszystkich punktów treningowych. Marginesem geometrycznym hiperpłaszczyzny jest jej odległość od najbliższych punktów. Punkty położone najbliżej hiperpłaszczyzny są nazywane wektorami wspierającymi (ang. support vectors). Wektory wspierające zostały zaznaczone na rysunku 3.

Rysunek 3: Wektory wspierające oznaczone wśród punktów treningowych $(opracowanie\ własne)$

Klasyfikator maksymalnego marginesu jest klasyfikatorem liniowym i może być użyty do klasyfikacji danych, które są liniowo separowalne. W niniejszym projekcie przyjęto założenie, że separowane dane należą do dwóch klas. Klasyfikator maksymalnego marginesu jest klasyfikatorem binarnym. Załóżmy teraz, że mamy zbiór danych uczących składających się z n punktów postaci:

$$(\overrightarrow{x_1}, y_1), (\overrightarrow{x_2}, y_2), ..., (\overrightarrow{x_n}, y_n)$$
 (1)

gdzie y_i to 1 lub -1 w zależności od klasy, do której należą, czyli od położenia po dodatniej lub ujemnej stronie hiperpłaszczyzny H. Każdy wektor $\overrightarrow{x_i}$ jest rozmiaru p. Działanie algorytmu SVM polega na znalezieniu hiperpłaszczyzny o maksymalnym marginesie geometrycznym, która dzieli grupy punktów $\overrightarrow{x_i}$, dla których $y_i =$ -1 od grupy punktów $\overrightarrow{x_i}$, dla których $y_i =$ 1. Hiperpłaszczyzna H, n-wymiarowa określona jest wzorem:

$$(H)y(\overrightarrow{x}) = 0 \tag{2}$$

gdzie $(y(\overrightarrow{x}) = w^t + b, w$ - wektor wagowy, b - wyraz wolny. Po przedstawionym wcześniej założeniu, że y(x) = -1 lub y(x) = 1, możemy przedstawić wzór na odległość punktu x od danej hiperpłaszczyzny H. Przedstawia się on następująco:

$$d(x,H) = \frac{|y(x)|}{||w||}$$
 (3)

margines geometryczny natomiast, będzie dany wzorem:

$$\gamma = \frac{1}{||w||} \tag{4}$$

Klasyfikator maksymalnego marginesu znajduje hiperpłaszczyznę, która maksymalizuje wartość marginesu geometrycznego czyli taką, dla której wartość ||w|| jest minimalna. Maksymalizacja marginesu może zostać zapisana w postaci poniżej przedstawionego problemu optymalizacyjnego:

$$minimalizacja ||\overrightarrow{w}||^2$$

przy warunkach:

$$y_i(\overrightarrow{w}*\overrightarrow{x_i}-b)>1$$

gdzie $i \in \{1..N\}$ oraz istnieje założenie o liniowej separowalności wektorów.

Można następnie dla powyższego problemu optymalizacyjnego zapisać lagranżjan postaci:

$$L(w, b, \overrightarrow{\alpha}) = \frac{1}{2} \cdot ||\overrightarrow{w}||^2 - \sum_{i=1}^{N} \alpha_i (y_i(\overrightarrow{w} * \overrightarrow{x_i} + b) - 1)$$
 (5)

gdzie $\overrightarrow{\alpha}$ to wektor mnożników Lagrange'a, o rozmiarze N.

Korzystając z lagranżjanu, przedstawiony problem optymalizacyjny może zostać zamieniony na formę dualną, w której funkcja celu jest wyłącznie zależna od mnożników Lagrange'a:

 $minimalizacja\ funkcji:$

$$\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j (\overrightarrow{x_i} \cdot \overrightarrow{x_j}) \alpha_i \alpha_j - \sum_{i=1}^{N} \alpha_i$$

gdzie N to liczba punktów treningowych

przy warunkach:

$$\alpha_i \geq 0, \forall i$$

$$\sum_{i=1}^{N} y_i \alpha_i = 0$$

Kiedy współczynniki Lagrange'a zostaną wyznaczone, wektor \overrightarrow{w} oraz wyraz wolny b może zostać obliczony przy ich pomocy:

$$\overrightarrow{w} = \sum_{i=1}^{N} y_i \alpha_i \overrightarrow{x}_i, \tag{6}$$

$$b = \overrightarrow{w} \cdot \overrightarrow{x}_i - y_i \tag{7}$$

dla pewnych $\alpha_i > 0$

Oczywiście, nie wszystkie zbiory danych mogą być liniowo separowalne. Może się okazać, że nie istnieje hiperpłaszczyzna, które rozdziela wszystkie punkty należące do jednej klasy od punktów należących do drugiej klasy. W takim właśnie przypadku można skorzystać z pewnej modyfikacji oryginalnego problemu optymalizacyjnego. Prezentuje się ona następująco:

$$minimalizacja ||\overrightarrow{w}||^2 + C \sum_{i=1}^{N} \xi_i$$

przy warunkach:

$$y_i(\overrightarrow{w}\cdot\overrightarrow{x_i}-b)>1-\xi_i,\forall_i$$

gdzie ξ_i to tak zwana zmienna luzu, która pozwala na błąd marginesu.

Klasyfikator w tym wypadku bierze pod uwagę możliwe wahania wartości danych. Wektory wspierające w tym wypadku to nie tylko punkty znajdujące się najbliżej hiperpłaszczyzny, ale również dalsze.

Forma dualna powyższego problemu przedstawia się następująco:

 $minimalizacja\ funkcji:$

$$\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j K(\overrightarrow{x_i} \cdot \overrightarrow{x_j}) \alpha_i \alpha_j - \sum_{i=1}^{N} \alpha_i$$

gdzie N to liczba punktów treningowych

przy warunkach:

$$0 < \alpha_i < C, \forall i$$

$$\sum_{i=1}^{N} y_i \alpha_i = 0$$

W tym wypadku współczynniki α będą również ograniczone z góry.

Powyższy problem optymalizacyjny może zostać rozwiązany przy pomocy algorytmu sekwencyjnej minimalnej optymalizacji który został szczegółowo opisany w kolejnym podrozdziale.

1.1.2 Sekwencyjna minimalna optymalizacja (SMO)

SMO jest jednym z algorytmów pozwalających rozwiązać główny problem w nauczaniu SVM, czyli problem programowania kwadratowego (oznaczany jako QP). SMO pozwala na uniknięcie problemów związanych z optymizacją numeryczną poprzez rozkład całościowego problemu na podproblemy.

W każdym kroku SMO rozwiązuje najmniejszy możliwy problem optymalizacji, czyli przypadek dwóch współczynników Lagrange'a, które są ograniczone liniowo. Oba współczynniki są jednocześnie optymalizowane, po czym aktualizowana jest cała maszyna wektorów nośnych i następnie algorytm wybiera dwa kolejne współczynniki do optymalizacji.

SMO jest proste w implementacji oraz nie wymaga dużych zasobów pamięci do przechowywania zmiennych.

SMO składa się z dwóch części - analitycznego poszukiwania pary współczynników Lagrange'a oraz heurystyki służącej wybieraniu kolejnych współczynników do optymalizacji.

1.1.3 Poszukiwanie współczynników Lagrange'a

Pierwszą czynnością, którą realizuje SMO, jest obliczenie ograniczeń współczynników. Po ich obliczeniu możliwa jest poszukiwanie minimum w ograniczonej przestrzeni.

Liniowy warunek równości powoduje, że współczynniki Lagrange'a leżą na prostej, przez co minimum optymalizowanej funkcji również musi na niej leżeć. Aby SMO spełniało ten warunek w każdym kroku, konieczne jest użycie dwóch współczynników.

Algorytm oblicza drugi współczynnik Lagrange'a α_2 , po czym oblicza końce odcinka leżącego na prostej spełniającej warunek równości. Jeżeli koniec y_1 nie jest równy końcowi y_2 , wtedy stosuje się następujące ograniczenia dla α_2 :

$$L = max(0, \alpha_2 - \alpha_1), \quad H = (C, C + \alpha_2 - \alpha_1)$$
 (8)

Jeżeli koniec y_1 jest równy końcowi y_2 , wtedy ograniczenia α_2 zmieniają się następująco:

$$L = max(0, \alpha_2 + \alpha_1 - C), \quad H = (C, \alpha_2 + \alpha_1)$$
(9)

Drugą pochodną funkcji docelowej wzdłuż odcinka można wyrazić jako:

$$\eta = K(\overrightarrow{x_1}, \overrightarrow{x_1}) + K(\overrightarrow{x_2}, \overrightarrow{x_2}) - 2K(\overrightarrow{x_1}, \overrightarrow{x_2}) \tag{10}$$

W normalnych warunkach funkcja docelowa będzie określona dodatnio, minimum wystąpi wzdłuż prostej określonej liniowym warunkiem równości i η będzie większe od zera. W takim przypadku SMO oblicza nieograniczone minimum wzdłuż całej prostej zgodnie z równaniem:

$$\alpha_2^n owy = \alpha_2 + \frac{y_2(E_1 - E_2)}{\eta},\tag{11}$$

w którym $E_i = u_i - y_i$ oznacza błąd *i*-tej próbki ze zbioru uczącego. W kolejnym kroku znajdywane jest ograniczenie minimum poprzez porównanie z obliczonymi wcześniej końcami odcinka.

$$\alpha_2^{nowy,ograniczony} = \begin{cases} H & \text{jeżeli} & \alpha_2^{nowy} \ge H \\ \alpha_2^{nowy} & \text{jeżeli} & L < \alpha_2^{nowy} < H \\ L & \text{jeżeli} & \alpha_2^{nowy} \le L \end{cases}$$
(12)

Używając oznaczenia $s=y_1y_2$ wartość α_1 można obliczyć wykorzystując nowy, ograniczony współczynnik $\alpha 2$:

$$\alpha_1^{nowy} = \alpha_1 + s(\alpha_2 - \alpha_2^{nowy, ograniczony}). \tag{13}$$

W niezwykłych przypadkach η nie będzie dodatnie. Ujemne η wystąpi, gdy jądro K nie spełni warunku Mercera, przez co funkcja docelowa może stać się nieoznaczona. Zerowe η może wystąpić nawet z poprawnym jądrem, gdy więcej niż jedna próbka ucząca ma taki sami wektor wejściowy x. SMO zadziała nawet gdy η nie jest dodatnie, w takim przypadku funkcja docelowa Ψ powinna zostać policzona na każdym z końców odcinka:

$$f_1 = y_1(E_1 + b) - \alpha_1 \tag{14}$$

$$f_2 = y_2(E_2 + b) - s\alpha_1 \tag{15}$$

$$K(\overrightarrow{x_1}, \overrightarrow{x_2}) - \alpha_2 K(\overrightarrow{x_2}, \overrightarrow{x_2}),$$
 (16)

$$L_1 = \alpha_1 + s(\alpha_2 - L),\tag{17}$$

$$H_1 = \alpha_1 + s(\alpha_2 - H),\tag{18}$$

$$\Psi_L = L_1 f_1 + L f_2 + \frac{1}{2} L_1^2 K(\overrightarrow{x_1}, \overrightarrow{x_1}) + \frac{1}{2} L^2 K(\overrightarrow{x_2}, \overrightarrow{x_2}) + sLL_1 K(\overrightarrow{x_1}, \overrightarrow{x_2}), \tag{19}$$

$$\Psi_H = H_1 f_1 + H f_2 + \frac{1}{2} H_1^2 K(\overrightarrow{x_1}, \overrightarrow{x_1}) + \frac{1}{2} H^2 K(\overrightarrow{x_2}, \overrightarrow{x_2}) + sH H_1 K(\overrightarrow{x_1}, \overrightarrow{x_2}). \tag{20}$$

SMO przesunie współczynniki Lagrange'a na ten koniec odcinka, w którym wartość funkcji docelowej jest najmniejsza. Jeżeli funkcja docelowa ma takie same wartości na obu końcach odcinka (uwzględniając mały błąd ϵ z powodu błędów zaokrągleń) i jądro spełnia warunki Mercera, to optymalizacja nie może się zakończyć. Ten przypadek opisano poniżej.

1.1.4 Heurystyka wyboru współczynników do optymalizacji

Wartość funkcji docelowej zmniejszy się w każdym kroku działania algorytmu SMO, jeżeli zostanie zoptymalizowana para współczynników Lagrange'a i co najmniej jeden z nich przed optymalizacją łamał warunki KKT. To gwarantuje zbieżność algorytmu, której uzyskanie można przyspieszyć stosując heurystykę do wyboru pary współczynników do jednoczesnej optymalizacji.

Stosowane do tego są dwie różne heurystyki wyboru współczynników. Wybór pierwszego współczynnika gwarantuje zewnętrzna pętla algorytmu - iteruje po całym zbiorze uczącym sprawdzając które z przypadków naruszają warunki KKT. Jeżeli dana próbka nie spełnia tych warunków, może być optymalizowana. Po przejściu przez cały zbiór uczący, zewnętrzna pętla ponownie iteruje po wszystkich próbkach, dla których współczynniki Lagrange'a są różne od 0 i różne od C (przypadki niegraniczne). Ponownie dla każdego z takich przypadków są sprawdzane warunki KKT i optymalizacji mogą podlegać te, które ich nie spełniają. Zewnętrzna pętla powtarza przejścia po wszystkich przypadkach niegranicznych dopóki wszystkie przypadki naruszające warunki KKT nie będą leżały w granicach błędu ϵ . Następnie zewnętrzna pętla cofa się i ponownie iteruje po całym zbiorze uczącym. Pętla ta przełącza się między pojedynczymi przejściami po całym zbiorze uczącym i wielokrotnymi przejściami po podzbiorze niegranicznym do momentu, w którym cały zbiór spełnia warunki KKT w granicach ϵ . W tym momencie algorytm kończy działanie.

Heurystyka pierwszego wyboru skupia się na przypadkach, dla których prawdopodobieństwo złamania warunków KKT jest największe, czyli dla zbioru niegranicznego. Przypadki, które znajdują się na granicy, najprawdopodobniej na niej pozostaną, a te, które nie są na granicy, mogą się przesunąć. SMO optymalizuje więc najpierw podzbiór danych, a następnie przeszukuje cały zbiór w poszukiwaniu punktów, które mogły zacząć łamać warunki KKT w wyniki wcześniejszych zmian.

Typowa wartość błędu ϵ , dla którego warunki KKT są spełnione, to 10^{-3} . Zmniejszenie wartości dopuszczalnego błędu może spowodować wydłużenie czasu potrzebnego na optymalizację, jednak jest to typowe dla wszystkich algorytmów stosowanych do nauki SVM.

Po wyborze pierwszego współczynnika Lagrange'a, wybierany jest drugi współczynnik w taki sposób, aby zmaksymalizować wielkość kroku podczas optymalizacji pary. Obliczanie funkcji jądra K jest czasochłonne, więc SMO przybliża wielkość kroku o wartość bezwzględną licznika w równaniu 11: $|E_1 - E_2|$. SMO zapisuje wartość błędu E dla każdego przypadku niegranicznego w zbiorze uczącym i wybiera błąd tak, aby zmaksymalizować wielkość kroku. Jeżeli E_1 jest dodatnie, SMO wybierze przypadek z najmniejszą wartością błędu E_2 . Jeżeli E_1 jest ujemne, SMO wybierze przypadek z największym błędem E_2 .

W wyjątkowych sytuacjach SMO nie może znaleźć odpowiedniego współczynnika przy wykorzystaniu opisanej heurystyki drugiego wyboru, np. w przypadku, gdy dwie próbki mają takie same wartości cech. W takim przypadku SMO stosuje hierarchię heurystyki drugiego wyboru aż znajdzie parę współczynników Lagrange'a, które mogą być optymalizowane. Warunkiem skutecznej optymalizacji jest wykonanie niezerowego kroku. Hierarchię w tym przypadku można przestawić następująco - jeżeli optymalizacja nie jest skuteczna, SMO iteruje po przypadkach niegranicznych, poszukując przypadku, który pozwoli na sukces. Jeżeli żaden z niegranicznych przypadków na to nie pozwala, SMO zaczyna iterować po całym zbiorze uczącym aż zostanie znaleziony przypadków niegranicznych jak i całego zbioru rozpoczyna się od losowo wybranego elementu zbioru. Pozwala to uniknąć obciążenia SMO przez elementy znajdujące się na początku zbioru. W najgorszym przypadku żaden z pozostałych przypadków nie będzie się nadawał do optymalizacji. W takiej sytuacji dana próbka jest pomijana i SMO przechodzi do kolejnej wybranej próbki.

1.1.5 Obliczanie progu

Próg b jest obliczany w każdym kroku, dzięki czemu warunki KKT są spełnione dla obu optymalizowanych próbek. Przedstawiony na równaniu próg b_1 jest prawidłowy, gdy nowy współczynnik α_1 nie jest na granicy, ponieważ zmusza SVM, aby wyjściem było y_1 dla wejścia x_1 :

$$b_1 = E_1 + y_1(\alpha_1^{nowy} - \alpha_1)K(\overrightarrow{x_1}, \overrightarrow{x_1}) + y_2(\alpha_2^{nowy} - \alpha_2)K(\overrightarrow{x_1}, \overrightarrow{x_2}) + b$$
(21)

Opisany poniżej próg b_2 jest prawidłowy, gdy nowy współczynnik α_2 nie leży na granicy, ponieważ zmusza SVM, aby wyjściem było y_2 dla wejścia x_2 :

$$b_2 = E_2 + y_1(\alpha_1^{nowy} - \alpha_1)K(\overrightarrow{x_1}, \overrightarrow{x_2}) + y_2(\alpha_2^{nowy} - \alpha_2)K(\overrightarrow{x_2}, \overrightarrow{x_2}) + b$$
(22)

Jeżeli oba progi b_1 i b_2 są prawidłowe, to są sobie równe. Gdy oba współczynniki Lagrange'a leżą na granicy i gdy L nie jest równe H, wtedy odległością między b_1 i b_2 są wszystkie progi, które są zgodne z warunkami KKT. SMO wybiera wtedy próg leżący pośrodku między b_1 oraz b_2 .

1.2 Opis sposobu implementacji algorytmu

1.2.1 Schematy blokowe działania algorytmu

Sposób działania algorytmu przedstawiono za pomocą trzech schematów blokowych, które znajdują się poniżej:

Rysunek 4: Schemat blokowy głównej pętli programu $(opracowanie\ własne)$

Rysunek 5: Schemat blokowy badania pojedynczej obserwacji $(opracowanie\ własne)$

Rysunek 6: Schemat blokowy optymalizacji pary próbek (opracowanie własne)

1.3 Wizualizacja działania algorytmu

W celu zobrazowania sposobu działania prototypu algorytmu opracowanego w środowisku MATLAB, dokonano wizualizacji wyznaczonej hiperpłaszczyzny. Dane należące do dwóch różnych kategorii zostały wylosowane przy pomocy funkcji rand().

1.3.1 Wizualizacja dla dwóch cech

Na rysunku nr 4 przedstawiono dwa zbiory punktów należących do dwóch różnych klas, które zostały rozdzielone przy pomocy obliczonej hiperpłaszczyzny. W tym wypadku użyto dwóch cech, a przedstawione dane były liniowo separowalne.

Rysunek 7: Rezultat działania algorytmu dla dwóch wymiarów cech i liniowo separowalnych danych (opracowanie własne)

Na rysunku nr 5 przedstawiono dwa zbiory punktów należących do dwóch różnych klas, które zostały rozdzielone przy pomocy obliczonej hiperpłaszczyzny. W tym wypadku użyto dwóch cech, a przedstawione dane nie były liniowo separowalne.

Rysunek 8: Rezultat działania algorytmu dla dwóch wymiarów cech i danych nieseperowalnych liniowo (opracowanie własne)

1.3.2 Wizualizacja dla trzech cech

Na rysunku nr 6 przedstawiono dwa zbiory punktów należących do dwóch różnych klas, które zostały rozdzielone przy pomocy obliczonej hiperpłaszczyzny. W tym wypadku użyto trzech cech, a przedstawione dane były liniowo separowalne.

Rysunek 9: Rezultat działania algorytmu dla trzech wymiarów cech i liniowo separowalnych danych (opracowanie własne)

Na rysunku nr 7 przedstawiono dwa zbiory punktów należących do dwóch różnych klas, które zostały rozdzielone przy pomocy obliczonej hiperpłaszczyzny. W tym wypadku użyto trzech cech, a przedstawione dane nie były liniowo separowalne.

Rysunek 10: Rezultat działania algorytmu dla trzech wymiarów cech i danych nieseperowalnych liniowo (opracowanie własne)

1.4 Opis informatyczny procedur

funkcja optimizePair:

void optimizePair(MatrixXd labelSet, MatrixXd gramMatrix, int pairFirst, int pairSecond, MatrixXd sampleError, MatrixXd &lagrangeMultipliers, double const marginParameter, double &bias, bool &flagOptimizeSuccess)

Funkcja pozwala na optymalizację pary współczynników Lagrange'a.

Funkcja przyjmuje:

labelSet - macierz typu MatrixXd z oznaczeniem cech gramMatrix - macierz typu MatrixXd reprezentującą macierz Gramma pairFirst - liczba typu int reprezentująca analizowany indeks pairSecond - liczba typu int reprezentująca analizowany indeks sampleError macierz typu MatrixXd zawierająca wartości błędu dla poszczególnych próbek marginParameter - parametr marginesu

Funkcja przyjmuje w postaci referencji:

lagrange Multipliers - macierz typu MatrixXd ze współczynnikami Lagrange'a bias - liczba typu double oznaczająca przesunięcie granicy decyzyjności flag Optimize Success - wartość logiczna typu bool reprezentująca powodzenie lub niepowdzenie optymalizacji

funkcja examineSample:

void examineSample(int pairSecond, MatrixXd &sampleError, MatrixXd &lagrangeMultipliers, MatrixXd gramMatrix, MatrixXd labelSet, double &bias, double const marginParameter, double const tolerance, bool &flagExamineSuccess)

Funkcja pozwala na analizę danej próbki.

Funkcja przyjmuje:

pairSecond - liczba typu int reprezentująca analizowany indeks

gram
Matrix - macierz typu Matrix Xd reprezentującą macierz Gramma label
Set - macierz typu Matrix Xd z oznaczeniem cech margin
Parameter - parametr marginesu tolerance - liczba typu double reprezentująca tolerancję

Funkcja przyjmuje w postaci referencji:

sampleError macierz typu MatrixXd zawierająca wartości błędu dla poszczególnych próbek lagrangeMultipliers - macierz typu MatrixXd ze współczynnikami Lagrange'a bias - liczba typu double oznaczająca przesunięcie granicy decyzyjności flagExamineSuccess - wartość logiczna typu bool reprezentująca powodzenie lub niepowdzenie analizy

funkcja smosvm:

void smosvm(MatrixXd trainSet, MatrixXd labelSet, double const marginParameter, MatrixXd &w, double &bias, float &trainingTime)

Funkcja pozwala na wyznaczenie optymalnej hiperpłaszczyzny rozdzielającej dwie klasy.

Funkcja przyjmuje:

trainSet - macierz typu MatrixXd zawierającą cechy do trenowania algorytmu labelSet - macierz typu MatrixXd zawierającą oznaczenia cech marginParameter - parametr marginesu

Funkcja przyjmuje w postaci referencji:

w - macierz typu MatrixXd zawierającą współczynniki wyznaczonej hiperpłaszczyzny bias - liczba typu double oznaczająca przesunięcie granicy decyzyjności trainingTime - liczbę typu float reprezentującą czas trenowania

funkcja loadData:

bool loadData(std::string filename, MatrixXd &dataSet, MatrixXd &labelSet)

Funkcja pozwala na wczytanie danych treningowych oraz danych testowych.

Funkcja przyjmuje:

filename - string z nazwą pliku

Funkcja przyjmuje w postaci referencji:

data Set - macierz typu Matrix Xd z cechami które zostały wczytane label Set - macierz typu Matrix Xd z oznaczeniem cech

Funkcja zwraca wartość logiczną typu bool reprezentującą powodzenie lub niepowodzenie procesu wczytywania pliku:

funkcja symclassify:

MatrixXd symclassify(MatrixXd w, double bias, MatrixXd &dataSet, float &classification-Time)

Funkcja pozwala na klasyfikację zbioru testowego przy użyciu wcześniej obliczonych współczynników

klasyfikatora.

Funkcja przyjmuje:

w - macierz typu MatrixXd zawierającą współczynniki wyznaczonej hiperpłaszczyzny bias - liczba typu double oznaczająca przesunięcie granicy decyzyjności

Funkcja przyjmuje w postaci referencji:

data Set - macierz typu Matrix Xd zawierające dane, które mają zostać sklasyfikowane classification Time - liczba typu float reprezentująca czas klasyfikacji

Funkcja zwraca macierz typu MatrixXd zawierającą wyniki klasyfikacji uzyskanej przez algorytm:

funkcja checkAccuracy:

float checkAccuracy(MatrixXd const resultSet, MatrixXd const &trueResultSet)

Funkcja pozwala na sprawdzenie skuteczności klasyfikacji algorytmu.

Funkcja przyjmuje:

resultSet - macierz typu MatrixXd z wynikami klasyfikacji uzyskanymi przez algorytm

Funkcja przyjmuje w postaci referencji:

trueResultSet - macierz typu MatrixXd z poprawnymi wynikami klasyfikacji

Funkcja zwraca liczbę typu float reprezentującą skuteczność klasyfikacji algorytmu:

funkcja saveResult:

void saveResult(float const &trainingTime, float const &classificationTime, float const &accuracy)

Funkcja pozwala na zapisywanie rezultatów treningu oraz klasyfikacji do pliku tekstowego "linear SVM results.txt".

Funkcja przyjmuje w postaci referencji:

training Time - czas, którego algorytm potrzebował na nauczenie klasyfikatora classification Time - czas, którego algorytm potrzebował do klasyfikacji accurancy - skuteczność klasyfikacji algorytmu w %

 $funkcja\ getBiggerNumber:$

double getBiggerNumber(double firstNumber, double secondNumber)

Funkcja pozwala na znalezienie liczby większej spośród dwóch liczb.

Funkcja przyjmuje:

 $\begin{array}{l} {\rm firstNumber \; \text{--} \; liczb} \ {\rm typu \; double} \\ {\rm secondNumber \; \text{---} \; liczb} \ {\rm typu \; double} \end{array}$

Funkcja zwraca większą z dwóch analizowanych liczb:

funkcja getSmallerNumber:

$double\ getSmallerNumber(double\ firstNumber,\ double\ secondNumber)$

Funkcja pozwala na znalezienie liczby mniejszej spośród dwóch liczb.

Funkcja przyjmuje:

firstNumber - liczbę typu double secondNumber - liczbę typu double

Funkcja zwraca mniejszą z dwóch analizowanych liczb:

getNonboundSubset:

MatrixXd getNonboundSubset(MatrixXd lagrangeMultipliers, double marginParameter)

Funkcja przyjmuje:

lagrange Multipliers - macierz typu Matrix Xd ze współczynnikami Lagrange'a margin Parameter - liczba typu double z parametrem marginesu

Funkcja zwraca macierz typu MatrixXd z indeksami elementów macierzy lagrangeMultipliers, których wartość jest różna od 0 lub różna od wartości zmiennej marginParameter

funkcja randomizeIndexOrder:

void randomizeIndexOrder(MatrixXd dataSet, MatrixXd &randomizedIndices)

Funkcja pozwala na losowe ustawienie indeksów.

Funkcja przyjmuje:

dataSet - macierz typu MatrixXd z indeksami, które mają zostać zrandomizowane

Funkcja przyjmuje w postaci referencji:

randomizedIndices - macierz typu MatrixXd z indeksami, które zostały zrandomizowane

funkcja random_data_generator:

void random_data_generator(MatrixXd &trainSet, MatrixXd &labelSet))

Funkcja pozwala na wylosowanie danych do testowania działania algorytmu.

Funkcja przyjmuje w postaci referencji:

trainSet - macierz typu MatrixXd z cechami do trenowania labelSet - macierz typu MatrixXd z oznaczeniem klas

Literatura

- [1] Platt John Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines Microsoft Research, Technical Report MSR-TR-98-14, 1998
- [2] de Chazal Philip A Patient-Adapting Heartbeat Classifier Using ECG Morphology and Heartbeat Interval Features, IEEE Transactions On Biomedical Engineering, Vol. 53, No. 12, 2006
- [3] Stefanowski Jerzy Metoda wektorów nośnych słajdy dodatkowe do wykładu http://www.cs.put.poznan.pl/jstefanowski/ml/SVM.pdf Institute of Computing Sciences, Poznań University of Technology
- [4] SVM Tutorial *Understending the math*, http://www.svm-tutorial.com/2014/11/svm-understanding-math-part-2/

2 Porównanie algorytmów

Tabela 1: Skuteczność klasyfikacji

kNN + ENN	Linear SVM	SVM + RBF	Naive Bayes	LDA
	76%	99%	96%	

Tabela 2: Czasy uczenia i klasyfikacji

		kNN + ENN	Linear SVM	SVM + RBF	Naive Bayes	LDA
	Czas uczenia		8517 ms	$13481 \ ms$	21.9034 ms	15 ms
	Czas klasyfikacji		1 ms	79 ms	$29.2936 \ ms$	< 1 ms

Testy wykonano na komputerze wyposażonym w procesor Intel Core i5-4200H o taktowaniu 2.80GHz oraz 8 Gb RAM w systemie operacyjnym Windows 10 64-bit.