UNIVERSIDAD DE LOS ANDES, VENEZUELA FACULTAD DE CIENCIAS.
DEPARTAMENTO DE FÍSICA.

Óptica Geométrica 2

Experimento

Javier A Salcedo Castañeda

Laboratorio 3 de Física.

Junio, 2025

Fig. 1. Euclide de Alejandría. [9]

Fig. 2. Aberración óptica.

Objetivos

- Estudiar el fenómeno de refracción sobre diversos elementos ópticos y comprobar los modelos teóricos.
- Analizar la ecuación para lentes delgadas.
- Estudiar las aberraciones en lentes.
- Construir un instrumento óptico.

Procedimiento Experimental

- Comprobar la ecuación para lentes delgadas.
- Estudiar las aberraciones en lentes:
 - Cromáticas.
 - Monocromáticas.
- Construir un instrumento óptico:
 - o Telescopio astronómico y terrestre.

Montaje experimental a usar.

Fig. 3. Montaje experimental a usar.

Fig. 4. Lentes a usar.

Comprobar la ecuación para lentes delgadas.

Fig. 5. Diagrama de rayos para obtener la ecuación de lentes delgadas. [1]

Ecuación de lentes delgadas:

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v} \tag{1}$$

Magnificación lateral:

$$M = -\frac{i}{o}$$
 (2)

Fig. 6. Lentes convergentes. (Biconvexa) [2]

Fig. 7. Lentes convergentes. (Bicóncavo) [2]

Fig. 8. Reflexión interna. (Biconvexa) [2]

Fig. 9. Reflexión interna. (Bicóncavo) [2]

Tabla I Comprobar la ecuación para lentes delgadas

u(cm)	u(cm) $v(cm)$ $o($		i(cm)	M_t	M_e	f(cm)
Lente	+150mm	(Convergente)				
29.3	32.8	3.0	-3.3	-0.89	-0.90	15.5
18.5	127.5	3.0 -23.		-0.15	-0.13	16.2
60.2	21.2	3.0	-1.1	-2.84	-2.72	15.7
Lente	+30mm	(Convergente)				
89.3	46.5	3.0	-1.5	-1.92	-2.00	30.6
67.2	55.2	3.0	-2.4	-1.22	-1.25	30.3
40.7	129.7	3.0	-9.9	-0.31	-0.30	30.7
Lente	+5mm	(Convergente)				
11.8	11.7	3.0	-2.4	-0.71	-0.81	5.9
31.4	8.3	3.0	-0.5	-3.78	-5	6.7
9.7	11.7	3.0	-2.4	-0.71	-1.25	5.4
$\Delta cm = 0,1$				$\Delta M_t = 0.01$	$\Delta M_e = 0.01$	

Fig. 10. Parámetros para encontrar f.

Aberración Cromática

Fig. 11. Aberración cromática. [5]

Fig. 12. Filtros a usar.

Tabla II ABERRACIÓN CROMÁTICAS								
u(cm)	v(cm)	o(cm)	i(cm)	M_t	M_e	f(cm)		
Filtro Azul								
21.4	52.8	3.0	-7.8	-0.41	-0.38	15.2		
Filtro Naranja								
21.4	55.0	3.0	-8.1	-0.39	-0.37	15.4		
Filtro Rojo								
21.4	57.9	3.0	-8.5	-0.37	-0.35	15.6		
$\Delta \ cm = 0.1$				$\Delta M_t = 0.01$	$\Delta M_e = 0.01$			

09

Fig. 13. Aberración cromática con filtro azul.

Aberración Esférica

Fig. 14. Aberración esférica. [6]

Fig. 15. Obstáculos.

Fig. 17. Observación con obstáculo 2.

Aberración Coma

Fig. 18. Aberración coma. [6]

Fig. 19. Aberración coma, rotación de la lente hacia la izquierda.

Fig. 20. Imagen sin rotación de la lente.

Fig. 21. Aberración coma, rotación de la lente hacia la derecha.

Aberración Campo de Curvatura

Fig. 22. Aberración campo de curvatura. [7]

BIO SEODING

Fig. 24. Aberración campo de curvatura.

15

Fig. 23. Cuadriculas a usar.

Aberración Distorsión

Fig. 25. Aberración de distorsión. [6]

Fig. 26. Aberración de distorsión.

Aberración Astigmatismo

Fig. 28. Aberración astigmatismo. [6]

Construir instrumento óptico: Telescopio astronómico y terrestre

Fig. 31. Montaje experimental para la construcción de un telescopio.

Fig. 32. Telescopio x3.3

Fig. 33. Lente objetivo +500mm

Fig. 34. Telescopio x2

Fig. 35. Lente objetivo +500mm

Conclusiones.

- Se validó la ecuación de lentes delgadas y la magnificación.
- Algunas aberraciones ópticas fueron muy notables y otras no tanto, pero se identificaron, excepto la de distorsión.
- Se construyeron dos telescopios funcionales.

Referencias

- [1] F. W. Sears, M. W. Zemansky, H. D. Young, and R. A. Freedman, Física Universitaria con Física Moderna, 12th ed. México: Pearson Educación, 2009, vol. 2.
- [2] D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics, 10th ed. United States of America: Wiley, 2014, vol. Extended.
- [3] R. A. Serway and J. W. Jewett, Física para ciencias e ingeniería con Física Moderna, 7th ed. México: Cengage Learning, 2009, vol. 2.
- [4] J. Martín and F. Dugarte, Guías de laboratorio (Laboratorio III), Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela, (Material no publicado).
- [5] Chamanexperience.com, "Aberraciones Cromáticas," Chamanexperience.com, [En línea]. Disponible en: https://chamanexperience.com/fotografia/aberraciones-cromaticas/. [Consultado: 11-jun-2025].
- [6] E. Hecht, Optics, 4th ed. USA: Addison-Wesley, 2002.
- [7] R. Nave, "Aberraciones ópticas," HyperPhysics, [En línea]. Disponible en: http://hyperphysics.phy-astr.gsu.edu/hbasees/geoopt/aber3.html. [Consultado: 11-jun-2025].

Referencias

- [8] J. P. Zapater, "Cómo corregir los problemas ópticos de nuestras fotografías con Adobe Lightroom," Xataka Foto, [En línea]. Disponible en: https://www.xatakafoto.com/tutoriales/como-corregir-los-problemas-opticos-de-nuestras-fotografias-con-adobe-lightroom. [Consultado: 11-jun-2025].
- [9] Superprof.es, "Euclides: historia de las matemáticas," Superprof.es, [En línea]. Disponible en: https://www.superprof.es/blog/euclides-historia-matematicas/. [Consultado: 11-jun-2025].