CMPSCI 240: First Summary

1 Basic Probability Definitions

The basic language

- 1. Experiment: a process resulting in exactly one of several possible outcomes, e.g., rolling a dice
- 2. Sample space: the set of all possible outcomes of an experiment, e.g., $\Omega = \{1, 2, 3, 4, 5, 6\}$
- 3. Event: a subset of Ω , e.g., A = "odd number" = $\{1, 3, 5\}$
- 4. Atomic event: event consisting of a single outcome, e.g., {1}
- 5. Probability law: A function $P(\cdot)$ that maps event to a number between 0 and 1 such that:
 - (a) Nonnegativity: $P(A) \ge 0$ for every $A \subseteq \Omega$
 - (b) Normalization: $P(\Omega) = 1$
 - (c) Additivity: $P(A \cup B) = P(A) + P(B)$ if A and B are disjoint

Basic properties include:

- 1. Probability of the Empty Event: $P(\emptyset) = 0$
- 2. Probability of Event Complement: $P(A^c) = 1 P(A)$
- 3. Probability of Unions: If A_1, \ldots, A_N are mutually disjoint,

$$P(A_1 \cup ... \cup A_N) = P(A_1) + P(A_2) + ... + P(A_N)$$
.

4. Uniform Probability: If Ω is finite and all outcomes are equally likely, then $P(A) = |A|/|\Omega|$

2 Conditional Probability Definitions

Given two events A and B, the probability of A conditioned on B is defined as

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

and so $P(A|B) = |A \cap B|/|B|$ if the probability is uniform. All the properties of probability also hold for conditional probability. For example,

$$P(A|B) \ge 0$$
, $P(\Omega|B) = 1$, $P(A^c|B) = 1 - P(A|B)$, and $P(\emptyset|B) = 0$

and if A_1, \ldots, A_N are mutually disjoint, $P(A_1 \cup \ldots \cup A_N | B) = P(A_1 | B) + P(A_2 | B) + \ldots + P(A_N | B)$. Other useful properties of conditional probability include:

1. Multiplication Rule: For any k events A_1, A_2, \ldots, A_k

$$P(A_1 \cap A_2 \cap \ldots \cap A_k) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2) \ldots P(A_k|A_1 \cap A_2 \cap \ldots \cap A_{k-1})$$

2. Law of Total Probability: Suppose A_1, \ldots, A_k are partitioning events then

$$P(B) = P(A_1)P(B|A_1) + P(A_2)P(B|A_2) + \ldots + P(A_k)P(B|A_k)$$

3. Bayes' Rule: Suppose A_1, \ldots, A_k are partitioning events then

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(A_i)P(B|A_i)}{P(A_1)P(B|A_1) + P(A_2)P(B|A_2) + \ldots + P(A_k)P(B|A_k)}$$

We say two events A and B and independent if $P(A \cap B) = P(A)P(B)$. We say three events A, B, C are independent if all the following inequalities are true.

$$P(A\cap B)=P(A)P(B)\quad,\quad P(A\cap C)=P(A)P(C)$$

$$P(B\cap C)=P(B)P(C)\quad,\quad P(A\cap B\cap C)=P(A)P(B)P(C)\ .$$

Note that it is possible for the first three equalities to be satisfied but the last one not to be true. We say two events A and B are independent conditioned of event C if $P(A \cap B|C) = P(A|C)P(B|C)$. Note that even if A and B are independent, it is not necessarily the case that A and B are independent conditioned on C. Similarly, even if A and B are independent conditioned on C, A and B need not be independent.

3 Counting

- Permutations: There are $n! = n \times (n-1) \times (n-2) \times ... \times 1$ ways to order n different objects.
- k Permutations: There are $n!/(n-k)! = n \times (n-1) \times (n-2) \times ... \times (n-k+1)$ ways to determine an ordering of k different objects amongst a set of n different elements.
- Combinations: There are $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ subsets of size k that can be chosen from a set of n distinct elements.

¹Recall that events are partitioning when exactly one of them occurs, i.e., $A_1 \cup A_2 \cup \ldots \cup A_k = \Omega$ and $A_i \cap A_j = \emptyset$ for any $i \neq j$.