Gene expression workflow for Cryptococcus hybrid samples

Kayla Wilhoit 4/15/2024

Scientific Importance

- Cryptococcus neoformans
 - Ubiquitous fungal pathogen affecting immunocompromised patients
 - ~1 million cases/year
 - ~150,000 deaths/year
- Limited antifungal options
 - Drug resistance
- In-Host evolution
 - Aneuploidy
 - Hybridization with other Cryptococcus strains

Cryptococcal Hybrids

Cryptococcal Hybrids

Previous analysis of clinical Cryptococcus samples

Preserved cultures
isolated and
sequenced with
Illumina short-read
sequencing

 Sample reads mapped to genomes of all sequenced Cryptococcus strains

 Read depth analysis to find structural variants

Genomic read depth analysis

Genomic read depth analysis

Main Questions

- 1) How are hybrid cryptococcus samples behaving transcriptionally?
 - Are parental haplotypes separately regulated?
 - Cis/trans effects?
 - Differences from synthetic hybrids?
 - Isoforms?
- 2) How do ploidy changes affect transcriptional regulation in clinical cryptococcus samples?
 - Linear increase in expression?
 - Differences in hybrids/nonhybrids?
- 3) How do chromosomal rearrangements affect transcriptional regulation in hybrid samples?
 - Cis/trans changes?
 - Physical interactions?

RNA-sequencing overview

1 Isolate RNA from samples

Ligate sequencing adapters and amplify

5 Perform NGS sequencing

6 Map sequencing reads to the transcriptome/genome

Correct and normalize transcript counts

8 Identify differential gene expression

RNA-sequencing overview

2 Fragment RNA into short segments

Convert RNA fragments into cDNA

4 Ligate sequencing adapters and amplify

5 Perform NGS sequencing

6 Map sequencing reads to the transcriptome/genome

Correct and normalize transcript counts

8 Identify differential gene expression

Analysis tools

- 1) How are hybrid cryptococcus samples behaving transcriptionally?
 - Quality control: FastQC, Trimmomatic, Cutadapt, Skewer
 - Read mapping/alignment: STAR, Stampy, Bowtie2
 - Differential expression: DESeq2, edgeR
- 2) How do ploidy changes affect transcriptional regulation in clinical cryptococcus samples?
 - Normalization: RSEM, edgeR
- 3) How do chromosomal rearrangements affect transcriptional regulation in hybrid samples?
 - de novo assembly: Trinity, Trans-ABySS, SOAPdenovo-Trans, BUSCO, DETONATE

Data formats

- 1) How are hybrid cryptococcus samples behaving transcriptionally?
 - RNA-sequencing
 - fastq raw reads and fasta reference genome
 - SAM/BAM files alignment mapping
 - **GFF/GTF** files gene annotations, isoform information
 - Output = Count matrix (csv)
- 2) How do ploidy changes affect transcriptional regulation in clinical cryptococcus samples?
- 3) How do chromosomal rearrangements affect transcriptional regulation in hybrid samples?
 - Metadata (csv/tsv) hybrid status, ploidy estimates, known translocations
 - Count matrix and Normalized count matrix
 - Differential gene expression output = Volcano plots, etc.
 - Hi-C / methylation information?

Computing needs and workflow

- Many small genomes (19 Mb) Many intermediate files that can be very large (BAM/SAM, BED, GFF)
 - Both temporary and long term storage needed

- Workflow structure in Snakemake
 - Conda environments for software version consistency
 - Modular workflow + small genomes = not as much working memory needed
 - Already tested and works well on local cluster

Decisions

- Isoforms
 - May depend on sequencing platform and cost
 - Long + short reads?
 - Likely to be complicated in messy hybrids
 - May need preliminary data first
- Alignment of reads
 - Mostly reference-based
 - May also create de novo genome assemblies
- Differential expression
 - Looking for specific genes or general patterns?
 - What are the significance cutoffs?

Statistical challenges

- Normalization and differential expression
 - How to deal with ploidy changes?

"The **overall expression** of diploids was remarkably similar to that of the haploids in the same condition (**r=0.94**, **0.93** for S. cerevisiae and S. paradoxus, respectively) and the **between-species differences** were also highly correlated between the haploids and diploids (**r=0.82**), suggesting that the results are not affected by ploidy level"

- Recombination + structural variation
 - Unknown area of research
 - May vary by strain and mating type

Statistical challenges

- Synthetic hybrids vs. clinical hybrids
 - Creating in vitro hybrids = better cis/trans calling, compare early/established hybrids
 - Both parents known and available
 - May not be stable or 'realistic'
 - Clinical strains may not have clear parental strains available
 - Could split haplotypes and treat as parents?
 - Could use closest sequenced strain to each haplotype?

Future Plans

- Testing on example data
 - Choosing software tools
 - Testing with/without parents included
 - Testing with imputed parents from offspring haplotypes
- Finding more information on current software
 - Isoform information
 - Cis/trans calling
 - Short + long read sequencing
 - Hybrid organisms
- Narrowing goals
 - Looking for specific genes (drug resistance)
 - Patterns temporally/geographically