Лабораторная работа: классы C#. Вопросы для обсуждения

- Описание класса
- Простые свойства. Индексаторы.
- Метод для чтения.
- Метод для записи.
- Связь свойства с полем.
- Свойства с индексом.
- Модульное тестирование.

Разработка класса Матрицы.

Лабораторная работа. Класс для работы с матрицами.

Тема: Классы.

Цель: Сформировать практические навыки описания и использования классов и свойств для обработки данных хранимых в объектах классов.

Задание

Разработайте класс Матрица (Matrix) для операций матричной алгебры и протестируйте методы этого класса в режиме консольного приложения.

Спецификация типа данных Матрица

ADT Matrix

Данные

Матрица (тип Matrix) - это двумерная матрица со значениями целого типа. Объект типа Матрица - изменяемый.

Операции

операции				
Конструктор (Matrix)				
Вход:	Число строк і и столбцов ј.			
Предусловия:	Число строк и столбцов должно быть			
	больше 0.			
Процесс:	Создаёт объект типа Matrix с			
	заданным числом строк и столбцов.			
	Заносит число строк и столбцов в			
	соответствующие свойства І и Ј.			
Сложить (operator+)				
Вход:	(b) – объект тип Matrix.			
Предусловия:	Число строк и столбцов в			
-	суммируемых матрицах должны			
	совпадать			
Процесс:	Создаёт новый объект типа Matrix,			
	элементы которого, получены путём			
	сложения элементов объектов this и b с одинаковыми индексами.			
Выход:	Объект типа Matrix.			
Постусловия:	Нет.			
Вычесть (operator-)				
Вход:	(b) – объект тип Matrix.			
Предусловия:	Число строк и столбцов в матрицах,			
	участвующих в вычитании, должнь			
	совпадать.			
Процесс:	Создаёт новый объект типа Matrix,			
	элементы которого, получены путём			
	вычитания элементов объектов this и b c			
	одинаковыми индексами.			

Выход:	Объект типа Matrix.			
Постусловия:	Нет.			
•				
Умножить (operator*)				
Вход:	(b) – объект типа Matrix.			
Предусловия:	Матрицы, участвующие в умножении,			
	должны быть согласованы для этой			
	операции по числу строк и столбцов.			
Процесс:	Создаёт новый объект типа Matrix,			
	элементы которого, получены путём			
	умножения элементов объектов this и b в			
	соответствии с правилами			
	перемножения матриц.			
Выход:	Объект типа Matrix.			
Постусловия:	Нет.			
Pавно (operator==)				
Вход:	(b) – объект типа Matrix.			
Предусловия:	Число строк и столбцов в матрицах,			
	участвующих в вычитании, должны			
	совпадать.			
Процесс:	Возвращает значение true, если			
	элементы объектов this и b в на			
	одинаковых позициях равны.			
Выход:	Значение типа bool.			
Постусловия:	Нет.			
Транспонировать (Transp)				
Вход:	Нет.			
Предусловия:	Матрица, подвергаемая			
	транспонированию, должна иметь			
	одинаковое число строк и столбцов.			
Процесс:	Создаёт новый объект типа Matrix,			
	элементы которого, получены путём			
	транспонирования элементов объекта			
D	this.			
Выход:	Объект типа Matrix.			
Постусловия:	Нет.			
Management				
Минимальный элемент(Min)	Пот			
Вход:	Нет.			
Предусловия:	Нет.			
Процесс:	Отыскивает и возвращает			
	минимальный среди элементов объекта			
	this.			

	-			
Выход:	Значение типа int.			
Постусловия:	Нет.			
ПреобразоватьВстроку(ToStri				
ng)				
Вход:	Нет.			
Предусловия:	Нет.			
Процесс:	Преобразует элементы матрицы this в			
	строковое представление построчно.			
	Напрмер: {{1,2,3},{4,5,6},{7,8,9}}			
Выход:	Нет.			
Постусловия:	Нет.			
Взять элемент с индексами і, ј				
(this [i,j])				
Вход:	Значения i, j типа int.			
Предусловия:	Значения і, ј должны находиться в			
	допустимых диапазонах.			
Процесс:	Возвращает элемент матрицы с			
	индексами i,j .			
Выход:	Значение типа int.			
Постусловия:	Нет.			
Записать элемент с				
индексами i,j (this [i,j])				
Вход:	Значения i, j типа int, n - новое			
	значение элемента типа int.			
Предусловия:	Значения і, ј должны находиться в			
	допустимых диапазонах.			
Процесс:	Заменяет элемент матрицы с			
	индексами i,j на значение n.			
Выход:	Нет.			
Постусловия:	Элемент матрицы с индексами і, ј			
	получает значение n.			
73.6				

end Matrix

Рекомендации к выполнению

- 1. Тип данных реализовать, используя класс С#.
- 2. Матрицу храните в поле типа двумерный массив целого типа.
- 3. Для доступа к элементам матрицы используйте индексатор.
- 4. Для доступа к числу строк и столбцов используйте свойство (property).
- 5. Тип данных реализовать в отдельном файле Matrix.
- 6. Для тестирования используйте модульные тесты.

Ниже приведён пример описания класса Matrix:

//-----

```
using System;
  using System.Collections.Generic;
  using System.Linq;
  using System.Text;
  using System.Threading.Tasks;
  namespace ConsoleApplicationMatrix
  {
      public class MyException: Exception
          public MyException(string s): base(s)
          { }
      public class Matrix
          int[,] m;
          //Свойство для работы с числом строк.
          public int I { get; set; }
          //Свойство для работы с числом столбцов.
          public int J { get; set; }
          //Конструктор.
          public Matrix(int i, int j)
              if
                              i
                                              0
                                                              throw
                                      <=
                                                                         new
MyException(string.Format("недопустимое значение i = {0}", i));
              if
                   (
                              j
                                      <=
                                              0
                                                              throw
                                                                         new
MyException(string.Format("недопустимое значение j = {0}", j));
              I = i;
              J = j;
              m = new int[i, j];
          //Индексатор для доступа к значениям компонентов матрицы.
          public int this[int i, int j]
                  if ( i <
                                                  I -
                                  0
                                          i
                                              >
                                                                 throw
                                                                         new
MyException(string.Format("неверное значение i = {0}",i));
                  if ( j <
                                  0
                                      i
                                                  J - 1
                                                                 throw
                                              >
                                                                         new
MyException(string.Format("неверное значение j = {0}", j));
                  return m[i, j];
              }
              set
                  if
                       (i
                                                            1)
                            <
                                 0
                                     i
                                                   Ι
                                                                 throw
                                              >
                                                                         new
MyException(string.Format("неверное значение i = {0}", i));
                  if (j <
                                 0
                                   j
                                                   J
                                                            1)
                                                                 throw
                                                                         new
MyException(string.Format("неверное значение j = {0}", j));
                  m[i, j] = value;
              }
          //Сложение матриц.
          public static Matrix operator+(Matrix a, Matrix b)
              Matrix c = new Matrix(a.I, a.J);
```

```
for (int j = 0; j < a.J; j++)
                      c[i,j] = a.m[i, j] + b.m[i,j];
              return c;
          public static bool operator ==(Matrix a, Matrix b)
              bool q = true;
              for (int i = 0; i < a.I; i++)</pre>
                  for (int j = 0; j < a.J; j++)
                      if (a[i, j] != b[i, j])
                          q = false; break;
              return q;
          public static bool operator !=(Matrix a, Matrix b)
              return !(a==b);
          }
          //Вывод значений компонентов на консоль.
          public void Show()
              for (int i = 0; i < I; i++)
                  for (int j = 0; j < J; j++)
                      Console.Write("\t" + this[i,j] );
                  Console.WriteLine();
              Console.WriteLine();
          public override bool Equals(object obj)
              return (this as Matrix )== (obj as Matrix);
      }
  }
                     ConsoleApplicationMatrix,
  Текст
            файла
                                                 содержащего
                                                                   консольное
приложение ConsoleApplicationMatrix приведено ниже:
  using System;
  using System.Collections.Generic;
  using System.Linq;
  using System.Text;
  using System.Threading.Tasks;
  namespace ConsoleApplicationMatrix
  {
                                      6
```

for (int i = 0; i < a.I; i++)</pre>

```
static void Main(string[] args)
             try
                 //Создаём матрицу а.
                 Matrix a = new Matrix(3, 3);
                 //Создаём матрицу b.
                 Matrix b = new Matrix(3, 3);
                 //Объявляем матрицу с.
                 Matrix c;
                 //Заполняем матрицу а.
                 for (int i = 0; i < a.I; i++)</pre>
                 {
                      for (int j = 0; j < a.J; j++)</pre>
                          a[i, j] = a.J * i + j;
                 //Выводим матрицу а.
                 a.Show();
                 //Заполняем матрицу b.
                 for (int i = 0; i < a.I; i++)</pre>
                      for (int j = 0; j < a.J; j++)</pre>
                          b[i, j] = a.J * i + j + 1;
                 //Выводим матрицу а.
                 b.Show();
                 //Складываем матрицы а и b.
                 c = a + b;
                 //Выводим матрицу с.
                 c.Show();
             catch (MyException e)
                 Console.WriteLine(e.Message);
        }
    }
Запустив это приложение, мы увидим на экране:
        036
                 1
4
7
                         2
5
8
                 2
5
8
                 3
9
15
        1
7
13
Для продолжения нажмите любую клавишу
```

class Program

Модульное тестирование класса средствами Visual Studio.

Для тестирования классов в Visual Studio имеется проект модульного теста. С помощью модульного теста вы можете протестировать все методы класса. Для тестирования классов вашего проекта вам необходимо добавить в решение, в котором находится тестируемый проект, добавить проект модульного теста. Затем необходимо сделать классы проекта доступными в проекте модульного теста.

Добавим в наше решение проект модульного теста MatrixTests. В окне Обозреватель решений необходимо по правой клавише мыши во всплывающих меню выбрать команды Добавить > Создать проект.

В появившемся окне Добавить новый проект выберите Visual C# > Tecт > Проект модульного теста. Дадим проекту имя MatrixTests и нажимаем OK.

Открывается окно редактора с заготовкой класса модульного теста UnitTest1, в котором имеется один тестовый метод TestMethod1.

Тестовый класс имеет обязательный атрибут [TestClass], который предшествует заголовку класса. Тестовый метод также имеет обязательный атрибут [TestMethod], который предшествует заголовку метода. Операторы необходимые для выполнения тестов необходимо помещать в тестовые методы. В тестовый класс вы можете добавить произвольное число тестовых методов.

Добавим ссылку на тестируемый проект ConsoleApplicationMatrix с помощью окна Обозреватель решений. Выполните команды References > Добавить ссылку

В появившемся окне Менеджер ссылок в Решение>Проекты поставьте галочку напротив имени тестируемого проекта.

После этого в окне Обозреватель решений в проекте модульного теста появится ссылка на тестируемый проект.

Изменим уровень видимости для классов Matrix, MyException на public public class MyException: Exception public class Matrix

Поменяем имя файла содержащего тестовый класс и имя тестового класса на MatrixTests.

Добавим предложение using в файл модульного теста using ConsoleApplicationMatrix;

Поменяем имя метода Method1 на Matrix_Expected_MyException_i. Потому что в этом методе мы протестируем возбуждение исключительной ситуации в конструкторе при недопустимом значении число строк і в матрице. тестовый Добавим ещё метод ДЛЯ тестирования исключения недопустимом значении числа столбцов матрице Matrix_Expected_MyException_j. Тогда текст файла модульного теста примет следующий вид:

```
using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using ConsoleApplicationMatrix;
namespace MatrixTests
```

```
{
    [TestClass]
    public class MatrixTests
    {
        [TestMethod]
        [ExpectedException(typeof(MyException))] //Тип ожидаемого исключения.
        public void Matrix_Expected_MyException_i()
        {
            Matrix a = new Matrix(0, 2);
        }
        [TestMethod]
        [ExpectedException(typeof(MyException))]//Тип ожидаемого исключения.
        public void Matrix_Expected_MyException_j()
        {
            Matrix a = new Matrix(2, -1);
        }
    }
}
```

Запустим тесты на выполнение, выполнив команды **Выполнить** > **Все** тесты

В окне Обозреватель тестов получим результат

Оба теста успешно пройдены.

Добавим в тестовый класс тестовые методы для тестирования работы индексатора, операции равно и операции суммирования. Полученный тестовый класс представлен ниже

```
using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using ConsoleApplicationMatrix;
namespace MatrixTests
```

```
[TestClass]
public class MatrixTests
    [TestMethod]
    [ExpectedException(typeof(MyException))]
    public void Matrix_Expected_MyException_i()
        //act (выполнить)
        Matrix a = new Matrix(0, 2);
    [TestMethod]
    [ExpectedException(typeof(MyException))]
    public void Matrix_Expected_MyException_j()
        //act (выполнить)
        Matrix a = new Matrix(2, -1);
    [TestMethod]
    [ExpectedException(typeof(MyException))]
    public void this_Expected_MyException_set_j()
        //act (выполнить)
        Matrix a = new Matrix(2, 2);
        a[1, 3] = 2;
    [TestMethod]
    [ExpectedException(typeof(MyException))]
    public void this_Expected_MyException_get_i()
        //act (выполнить)
        Matrix a = new Matrix(2, 2);
        int r = a[3, 1];
    [TestMethod]
    public void Equel()
        //arrange(обеспечить)
        Matrix a = new Matrix(2, 2);
        a[0, 0] = 1; a[0, 1] = 1; a[1, 0] = 1; a[1, 1] = 1;
        Matrix b = new Matrix(2, 2);
        b[0, 0] = 1; b[0, 1] = 1; b[1, 0] = 1; b[1, 1] = 1;
        //act (выполнить)
        //bool r = a == b;
        //assert(доказать)
        //Assert.IsTrue(r);
        Assert.AreEqual(a, b);
    [TestMethod]
    public void Summa()
    {
        //arrange(обеспечить)
        Matrix a = new Matrix(2, 2);
        a[0, 0] = 1; a[0, 1] = 1; a[1, 0] = 1; a[1, 1] = 1;
        Matrix b = new Matrix(2, 2);
        b[0, 0] = 2; b[0, 1] = 2; b[1, 0] = 2; b[1, 1] = 2;
        Matrix expected = new Matrix(2, 2);
        expected[0, 0] = 3; expected[0, 1] = 3;
        expected[1, 0] = 3; expected[1, 1] = 3;
        Matrix actual = new Matrix(2, 2);
        //act (выполнить)
```

{

```
actual = a + b;
//assert(доказать)
Assert.IsTrue(actual == expected);//Оракул
}
}
```

Запустив тесты на выполнение, получим следующий результат

Указания к выполнению

- 1. Создайте проект Консольное приложение под именем ConsoleApplicationMatrix. В его состав включите класс Matrix.
 - 2. Добавьте в решение проект Модульный тест.
- 3. Реализуйте в соответствии с заданием класс Matrix. Протестируйте Matrix с помощью класса модульного теста, добавляя в него необходимые тестовые методы.

Таблица 1. Тестовый набор.

Тестовый набор						
Номер теста	Исходные данные			Ожидаем ый результат		
1						
2						

Содержание отчета

- 1. Задание.
- 2. Исходные тексты приложения.
- 3. Исполняемый файл приложения.
- 4. Результат тестирования методов класса Matrix.

- **Контрольные вопросы**1. Синтаксис описания свойства?
- 2. Сигнатура метода для чтения свойства?
- 3. Сигнатура метода для записи свойства?
- 4. Синтаксис индексаторов?
- 5. Назначение свойства?
- 6. Использование свойства?