

Laboratory Report

Laboratory Exercise No.:	4	Date Performed:	October 7, 2023
Laboratory Exercise Title:	Memory Interfacing (with Addressing Decoding)		
Name of Student:	Zach Riane Machacon	Document Version:	1.0

Activity #1 Circuit Diagram:

Simulated address decoding and RAM write/read data:

Address (A	₁₉ A ₀)	M/IO	\overline{WR}	BHE	Memory Set Enabled	HWR	LWR	Observati ons
0000 0000 1111 0000 0001	00F01H	1	0	0	RAM Set 2	0	1	high bank 8-bit transfer (write)
1111 1100 0110 1000 0010	FC680H	1	0	1	ROM Set 4	1	0	low bank 8-bit transfer (write)
0000 0101 1010 0111 1100	05A7CH	1	1	0	none	1	1	address out of range
1111 1111 0000 0000 0010	FF002H	0	0	0	none	0	0	Access is isolated since M/IO is logic-0.
0000 0001 1111 1111 1111	01FFFH	1	1	1	RAM Set 4	1	1	No bank enabled; Read operation done
0000 0000 0000 0000 0001	00001H	1	1	0	RAM Set 1	1	1	No bank enabled; Read operation done
1111 1011 1111 0000 0011	FBF03H	1	0	0	none	0	1	high bank 8-bit transfer (write)
0000 0000 1111 1100 1110	00FCEH	0	1	1	none	1	1	Access is isolated since M/IO is logic-0.

0000 0100 0000 0000 0000	04000H	1	0	0	none	0	0	Address is out of range
0000 0010 0110 0101 1001	02659H	1	0	1	RAM Set 5	1	1	No bank enabled

a. How many RAM and ROM chips are used?

ROM: 4 sets * 2 banks = 8 chips

RAM: 8 sets * 2 banks = 16 chips

b. What is the chip size of the RAM and ROM?

RAM: $2^{11} = 2048 = 2k \times 8$

ROM: $2^{12} = 4096 = 4k \times 8$

c. Determine the address range of the RAM and ROM.

RAM: 00000H - 03FFFH

ROM: FC000H - FFFFFH

d. Based on the number of chips and chip size, calculate and determine the address range (start and end) of each chip sets for both RAM and ROM.

RAM: 007FFH (0 -> 2047)

Set	Start Address	End Address	Address Range
1	00000Н	00000H + 007FFH = 007FFH	00000H - 007FFH
2	007FFH + 1 = 00800H	00800H + 007FFH = 00FFFH	00800H - 00FFFH
3	00FFFH + 1 = 01000H	01000H + 007FFH = 017FFH	01000H - 017FFH
4	017FFH + 1 = 01800H	01800H + 007FFH = 01FFFH	01800H - 01FFFH
5	01FFFH + 1 = 02000H	02000H + 007FFH = 027FFH	02000H - 027FFH

6	027FFH + 1 = 02800H	02800H + 007FFH = 02FFFH	02800H - 02FFFH
7	02FFFH + 1 = 03000H	03000H + 007FFH = 037FFH	03000H - 037FFH
8	037FFH + 1 = 03800H	03800H + 007FFH = 03FFFH	03800H - 03FFFH

ROM: 00FFFH (0 -> 4095)

Set	Start Address	End Address	Address Range
1	FFFFFH - 00FFFH = FF000H	FFFFFH	FF000H - FFFFFH
2	FEFFFH - 00FFFH = FE000H	FF000H - 1 = FEFFFH	FE000H - FEFFFH
3	FDFFFH - 00FFFH = FD000H	FE000H - 1 = FDFFFH	FD000H - FDFFFH
4	FCFFFH - 00FFFH = FC000H	FD000H - 1 = FCFFFH	FC000H - FCFFFH

e. Suggest an actual RAM (static RAM) and ROM (EPROM) integrated circuit (IC) with the same size as determined in (b).

RAM: CY7C128A

ROM: 2732

Activity #2

Address Ranges:

RAM: 00000H - 03FFFH (0 -> 16383)

ROM: FC000H - FFFFFH (0 -> 16383)

Sets:

RAM:
$$\frac{16k}{8k} \cdot 2 \ banks =$$
4 RAM chips

$$\frac{4 RAM chips}{2 banks} = 2 RAM sets$$

ROM:
$$\frac{16k}{8k} \cdot 2 \ banks = 4 \ ROM \ chips$$

$$\frac{4 ROM chips}{2 banks} = 2 ROM sets$$

Address Decoding:

RAM: 01FFFH (0 -> 8191)

Set	Start Address	End Address	Address Range
1	00000Н	00000H + 01FFFH = 01FFFH	00000H - 01FFFH
2	01FFFH + 1 = 02000H	02000H + 01FFFH = 03FFFH	02000H - 03FFFH

RAM Chip Selection:

Set 1: 0000 00<mark>0</mark>0 0000 0000 0000

0000 0001 1111 1111 1111

Set 2: 0000 0010 0000 0000 0000

0000 0011 1111 1111 1111

^ Chip Selection (A₁₃)

ROM: 01FFFH (0 -> 8191)

Set	Start Address	End Address	Address Range
1	FFFFFH - 01FFFH = FE000H	FFFFFH	FE000H - FFFFFH
2	FDFFFH - 01FFFH = FC000H	FE000H - 1 = FDFFFH	FC000H - FDFFFH

ROM Chip Selection:

Set 1: 1111 11<mark>1</mark>0 0000 0000 0000

1111 11<mark>1</mark>1 1111 1111 1111

Set 2: 1111 1100 0000 0000 0000

1111 11<mark>0</mark>1 1111 1111 1111

[^] Chip Selection (A₁₃)

References

N/A

