Towards a model-independent measurement of γ through $B^{\pm} \rightarrow D(\rightarrow 4\pi)K^{\pm}$ decays with LHCb and CLEO-c

Claire Prouve, Jonas Rademaker – University of Bristol

Measurement of CKM angle y through interference in $B^{\pm} \rightarrow D(\rightarrow f_D)K^{\pm}$

Partial decay width

$$d\Gamma(B \to D^{0}(\to f_{D})K^{-}) \propto A_{B}^{2} \cdot \left(A_{D^{0}}^{2} + r_{B}^{2} A_{\bar{D^{0}}}^{2} + 2r_{B} \mathbb{R}(A_{D^{0}} A_{\bar{D^{0}}}^{*} e^{-i(\delta_{B} - \gamma)}) \right) dp$$

y becomes an observable in the interference term

Reconstruction of the D mesons in self-conjugate final state $f_D = \pi^+(p_1) \pi^+(p_2) \pi^-(p_3) \pi^-(p_4)$

$$\begin{array}{c} \mathsf{CP}\text{-conjugation*} \\ A_{\bar{D^0}}(\pi^+(\vec{p_1})\pi^+(\vec{p_2})\pi^-(\vec{p_3})\pi^-(\vec{p_4})) & \stackrel{\bullet}{=} & e^{i\Delta\delta(\vec{p_1},\vec{p_2},\vec{p_3},\vec{p_4})}A_{D^0}(\pi^+(-\mathbf{\vec{p_3}})\pi^+(-\mathbf{\vec{p_4}})\pi^-(-\mathbf{\vec{p_1}})\pi^-(-\mathbf{\vec{p_2}})) \\ & \equiv & e^{i\Delta\delta} \ \overline{A_{D^0}} \\ & \rightarrow & \mathsf{strong\ phase\ difference\ between} \\ \mathsf{A_{D^0}\ and\ A_{D^0}} \end{array}$$

amplitude-weighted average of $cos(\Delta\delta)$ amplitude-weighted average of $sin(\Delta\delta)$

(*) Assuming no CP-V in the D decays and neglecting 2nd order effects from charm mixing

Model independent determination of c_i and s_i with CLEO-c using correlated D meson pairs from Ψ(3770)→DD

 C_i : Reconstruct D $\rightarrow 4\pi$ as flavour or CP eigenstate by using opposite side tagging and combine information of CP (M[±]_i) and flavour (K_i) Dalizt plots $\Psi(3770)$

Flavour/ CP

 $\pi^{-}(p_3) \pi^{-}(p_4)$

$\pi^{+}(p_1) \pi^{+}(p_2)$ $M_i^{\pm} = h_{CP^{\pm}} \left(K_i \pm 2 c_i \sqrt{K_i K_{\overline{i}}} + K_{\overline{i}} \right)$ eigenstate

S_i : Reconstruct $\Psi(3770) \rightarrow (DD) \rightarrow (4\pi)(4\pi')$ and use **interference** between both possible decay paths

 $\Psi(3770)$ $\pi^{+}(p'_{1}) \pi^{+}(p'_{2})$ $(\pi^{+}(p_1)\pi^{+}(p_2)$ $\pi^{-}(p'_{3}) \pi^{-}(p'_{4})$ $\pi^{-}(p_3) \pi^{-}(p_4)$ Event rate in ith bin of first and jth bin of second Dalitz plot:

$$M_{ij} = h_{corr} \left(K_i K_{\bar{j}} + K_{\bar{i}} K_j - 2 \sqrt{K_i K_{\bar{j}} K_{\bar{i}} K_j} \left(c_i c_j + s_i s_j \right) \right)$$

Model inspired binning

The highest sensitivity to y can be obtained by using bins with minimal variation of $\Delta\delta$.

Note: The binning only influences the sensitivity of the y measurement but not the y value itself.

Analysis procedure for the future:

Measurement of c_i and s_i using

Chamber ~ 9500 flavour tagged

~ 1000 CP tagged $D(\rightarrow 4\pi)$ events

and performing a 5 dimensional fit for each bin in phase space.

2. LHCb

Simultaneous fit of r_B , δ_B and γ in all bins of phase space using

a few $10^3 B^{\pm} \rightarrow D(\rightarrow 4\pi)K^{\pm}$ events

and the c_i and s_i extracted from CLEO-c.