

PREDICTING TEXAS ELECTRICAL LOADS

Texas WiDS Datathon 2021

Open-Source Excellence Award

Amanda J. Wright

The Challenge:

Forecast the hourly electrical load for each ERCOT region in Texas for the week of June 13, 2021.

Electrical load forecasting is a time-series problem

Features often used in load forecasting:

- electrical load history
- weather
- population growth, number of businesses and homes, price

Common approaches to time-series modeling:

- ARIMA or SARIMA models
- Machine learning regression algorithms
- More advanced algorithms such as deep learning (neural networks),
 rule-based methods, metaheuristic methods, and hybrid models

Features came from 3 datasets

> Features used for model training also must be available for predicting

Datasets used:

- Historical electrical load data
- Historical weather data and predicted weather data
- Considered COVID-19 data, but rejected

Feature selection/engineering

Weather features: tempC, windspeedKmph, precipMM, humidity, visibility, pressure, cloudcover, DewPointC, uvindex, weather_class

Date_time features: year, month, day_of_week, hour, weekend

Other: loadyear_lag

Preparation:

- Standard scaled the numerical features
- One-hot encoded the categorical features

Evaluated many regression models

Linear Regression models:

- Linear Regression
- . Stochastic Gradient Descent Regression
- Ridge Regression
- Lasso Regression
- Elastic Net Regression

Tree-based models:

- Decision Tree Regressor
- Random Forest Regressor
- Gradient Boosting Regressor
- Extreme Gradient Boosting Regressor

Other models:

- K-Nearest Neighbors Regressor
- Support Vector Machines

Null model:

 naïve predictor that takes the last target value (y) of the training set and returns it as every predicted value

Validation metric:

root mean square error (RMSE)

Model validation schemes

• Cannot use cross validation as it is not appropriate to use future data to predict past or present values

Random Forest, Gradient Boost, and Xtreme Gradient Boost models performed the best

Results from the "West" region

model	sliding_rmse	expand_rmse
null_naive	399.3	399.2
lin_reg	8.52e+12	7.93e+12
SDG_reg	184.7	178.4
ridge_reg	157.6	164.0
lasso_reg	163.0	160.3
EN_reg	192.5	195.1
DT_reg	127.6	129.2
RF_reg	<mark>95.1</mark>	<mark>98.2</mark>
GB_reg	<mark>96.7</mark>	<mark>100.2</mark>
KN_reg	121.8	125.1
XGB_reg	<mark>90.8</mark>	<mark>91.3</mark>

For 7 out of 8 regions, Xtreme Gradient Boost was the best model

Lowest RMSE = $\frac{3}{2}$ 2^{nd} lowest RMSE = $\frac{3}{3}$

	RF_ slide	RF_ expand	GB_ slide	GB_ expand	XGB_ slide	XGB_ expand
West			1		<mark>3</mark>	2
South			1		2	3
North_Central		1			2	3
Coast	3				2	1
Far West			2	1	<mark>3</mark>	
South_Central		1			2	3
East		2			1	3
North				1	2	3
Total	3	4	4	2	15	18

Model Optimization

Feature importance:

- TempC: most important feature for 7/8 regions
- loadyear_lag: most important feature for the Far West region
- > Reran the models after removing features that were consistently in the bottom 30 for the 8 regional models, but model performance declined slightly so I used the larger feature set for the final model optimization.

Hyperparameter optimization:

Used an autoML tuner library, HyperOpt

The Xtreme Gradient Boost models outperformed the null models for all regions

RMSE error

	null_model	XGB_reg	times_better
West	187.430209	72.201993	2.595915
South	407.730529	191.473766	2.129433
North Central	3387.115596	1131.942963	2.992302
Coast	1246.488977	1099.359892	1.133832
Far West	192.997791	51.324080	3.760375
South Central	987.070433	586.539587	1.682871
East	332.539846	163.107765	2.038774
North	174.767288	59.821539	2.921478

Actual electrical load versus my predicted values

Acknowledgements

Thanks to WiDS Texas and their sponsors for hosting the datathon.

Thanks to Gia Gillis for project discussions.

To view my project:

https://www.kaggle.com/rhinophylla/wids-datathon-2021-forecasting-electrical-loads

Connect with me! and/or Hire me!

LinkedIn:

https://www.linkedin.com/in/amandawrightphd/

Portfolio:

https://rhinophylla.github.io