### INFERÊNCIA CAUSAL COM MACHINE LEARNING

uma aplicação para evasão fiscal

Rafael Felipe Bressan

2021-03-14

Receita Federal do Brasil

# Motivação

#### Causalidade

- Limite de velocidade reduz as mortes no trânsito?
- Permissão para cobrança de bagagem aérea reduziu o preço das tarifas?
- O recebimento de uma carta-cobrança da Receita Federal faz com que o contribuinte recolha seus impostos devidos?
- Essas questões são causais em sua natureza. Requerem conhecimento do processo de geração dos dados. Suas respostas não podem ser calculadas apenas com os dados observados.

#### Causalidade

- Análise causal requer manipulação/intervenção no processo gerador
- Uma quebra estrutural é induzida
- Correlações anteriores não são mais válidas
- Dados puramente observacionais n\u00e3o carregam toda a informa\u00e7\u00e3o necess\u00e1ria

### Machine Learning sem Viés

$$Y_i = f(\mathsf{X}_i, \epsilon_i; \theta)$$

- Causalidade requer inferência sobre parâmetros da distribuição, heta
  - Machine Learning tradicional oferece correlações a partir de dados observacionais
  - Inferência ≠ previsão
    - ML: minimiza  $\hat{e} = \hat{y} Y$
    - Análise causal: estima  $\hat{\theta}$  com intervalo de confiança
  - Boa previsão não garante correta estimação de parâmetros
  - Viés de regularização:  $\hat{f}_1(\cdot;\hat{\theta}_1) \approx \hat{f}_2(\cdot;\hat{\theta}_2)$  mesmo se  $\hat{\theta}_1 \neq \hat{\theta}_2$

### Machine Learning sem Viés

- Como fazer com que algoritmos de ML façam estimação causal não-viesada?
- · Fronteira do conhecimento em inferência causal
  - Chernozhukov et al. (2018) Double Machine Learning
  - Wager and Athey (2018) Causal Forests
  - Syrgkanis et al. (2019) Doubly Robust Instrumental Variables

**Experimento Randomizado** 

### **Experimento Randomizado**

- Experimentos randomizados são o padrão-ouro para inferência causal
- Re-analisaremos o trabalho de Fellner, Sausgruber, and Traxler (2013)
- Correspondências fiscais para mais de 50.000 contribuintes
- Analisar efeitos de variação no conteúdo
  - · Valores médios por tipo de carta
  - Heterogeneidade nos efeitos

## Descrição do Experimento

| Tratamento | Descrição    | Observações | Proporção |  |
|------------|--------------|-------------|-----------|--|
| То         | Sem Correio  | 2586        | 0.0512099 |  |
| T1         | Correio      | 7984        | 0.1581053 |  |
| T2         | Ameaça       | 7821        | 0.1548774 |  |
| T3         | Info         | 7998        | 0.1583825 |  |
| T4         | Info&Ameaça  | 8101        | 0.1604222 |  |
| T5         | Moral        | 8084        | 0.1600855 |  |
| Т6         | Moral&Ameaça | 7924        | 0.1569171 |  |

#### **Problema de Atrito**

- Atrito: contribuintes que deveriam receber a correspondência mas não foram encontrados
- Pode comprometer a aleatorização do experimento e gerar viés na inferência

| Tratamento | Descrição    | Cartas | Não Entregues | Taxa Atrito |
|------------|--------------|--------|---------------|-------------|
| T1         | Correio      | 7984   | 1126          | 0.1410      |
| T2         | Ameaça       | 7821   | 1127          | 0.1441      |
| T3         | Info         | 7998   | 1173          | 0.1467      |
| T4         | Info&Ameaça  | 8101   | 1141          | 0.1408      |
| T5         | Moral        | 8084   | 1164          | 0.1440      |
| Т6         | Moral&Ameaça | 7924   | 1174          | 0.1482      |

### Análise Exploratória

 Uma boa aleatorização implica em balanceamento das covariadas (features) entre os tratamentos

| Tratamento | Descrição    | Gênero | Idade   | Renda      | População  | Dens. pop. | Compliance |
|------------|--------------|--------|---------|------------|------------|------------|------------|
| То         | Sem Correio  | 0.6458 | 48.0170 | 20928.4068 | 45815.2715 | 8.1711     | 0.9355     |
| T1         | Correio      | 0.6338 | 47.9969 | 20878.9958 | 43377.1935 | 8.5625     | 0.9352     |
| T2         | Ameaça       | 0.6367 | 47.9931 | 20901.1614 | 44542.5883 | 7.9605     | 0.9346     |
| Т3         | Info         | 0.6260 | 48.0300 | 20882.6636 | 43903.0189 | 8.1142     | 0.9347     |
| T4         | Info&Ameaça  | 0.6335 | 48.0051 | 20879.6138 | 43319.4736 | 8.3540     | 0.9352     |
| T5         | Moral        | 0.6251 | 47.9982 | 20888.4584 | 44301.3718 | 8.4832     | 0.9343     |
| T6         | Moral&Ameaça | 0.6422 | 47.9904 | 20876.3062 | 43610.1972 | 8.0468     | 0.9343     |
| Anova:     | p-values     | 0.1715 | 0.3993  | 0.9393     | 0.7577     | 0.5795     | 0.8614     |

### Análise Exploratória

• Atrito pode quebrar o balanceamento e comprometer a aleatorização

| Tratamento     | Gênero | Idade   | Renda      | População  | Dens. pop. | Compliance |
|----------------|--------|---------|------------|------------|------------|------------|
| То             | 0.6458 | 48.0170 | 20928.4068 | 45815.2715 | 8.1711     | 0.9355     |
| T1             | 0.6403 | 47.7868 | 21100.3921 | 52084.9822 | 7.6001     | 0.9322     |
| T2             | 0.6211 | 47.7127 | 21106.0117 | 48882.0302 | 6.5860     | 0.9337     |
| Т3             | 0.6138 | 47.8580 | 21077.8894 | 51027.8338 | 6.6317     | 0.9313     |
| T4             | 0.6240 | 47.8056 | 20945.2352 | 48251.5259 | 6.5957     | 0.9318     |
| T <sub>5</sub> | 0.6177 | 47.7952 | 20864.3756 | 43273.7019 | 6.3919     | 0.9308     |
| T6             | 0.6320 | 47.8117 | 20966.9995 | 46539.3467 | 6.4614     | 0.9324     |
| Anova p-valor  | 0.4319 | 0.0000  | 0.0095     | 0.0936     | 0.0094     | 0.1122     |

### **Modelos e Resultados**

#### **Estimandos Causais**

 Framework de Resultados potenciais. Observamos apenas um resultado potencial dado um tratamento. Problema fundamental da inferência causal

$$Y_i = D_i \cdot Y_i(1) + (1 - D_i) \cdot Y_i(0), \quad D_i \in \{0, 1\}$$

• Estimandos Casusais:

$$\begin{split} ATE &= \mathbb{E}[Y_i(1) - Y_i(0)], \qquad CATE(x) = \mathbb{E}[Y_i(1) - Y_i(0) | \mathbf{X} = x] \\ ATT &= \mathbb{E}[Y_i(1) - Y_i(0) | D_i = 1], \quad CATT(x) = \mathbb{E}[Y_i(1) - Y_i(0) | \mathbf{X} = x, D_i = 1] \\ LATE(x) &= \frac{\mathbb{E}[Y_i(1, D_i(1)) - Y_i(0, D_i(0))]}{\mathbb{E}[D_i(1) - D_i(0)]} \end{split}$$

### Hipóteses de Identificação

- SUTVA: não existe interferência entre os indivíduos tratados e não tratados. Não pode haver efeitos de transbordamento do tratamento de algum indivíduo para outro que esteja no grupo de controle
- CIA (unconfoundedness): condicionado às características observadas,  $X_i$ , os resultados potenciais são independentes do tratamento  $D_i$ ,  $\{Y_i(1),Y_i(0)\}\perp D_i|X_i$

#### Quando usamos variáveis instrumentais

- Exclusão do instrumento: designação para tratamento não afeta diretamente os resultados potenciais
- Relevância do instrumento: designação para o tratamento aumenta a probabilidade de ser tratado.  $\mathbb{E}[D_i(1)-D_i(0)]>0$

#### **Modelo ForestDML**

• Modelo parcialmente linear. Tratamento T é exógeno, não é necessária instrumentalização

$$\begin{split} Y &= \theta(\mathsf{X}) \cdot T + g(\mathsf{X}, \mathsf{W}) + \epsilon \\ T &= f(\mathsf{X}, \mathsf{W}) + \eta \\ \mathbb{E}[\eta \cdot \epsilon \mid \mathsf{X}, \mathsf{W}] &= 0 \end{split}$$
 
$$\mathbb{E}[\eta \cdot \mathsf{X}, \mathsf{W}] = 0$$

Através de DML (ortogonalização de Neyman e cross-fitting)

$$\hat{\theta}(x) = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{n} K_{x}\left(X_{i}\right) \cdot \left(Y_{i} - \hat{q}\left(X_{i}, W_{i}\right) - \theta \cdot \left(T_{i} - \hat{f}\left(X_{i}, W_{i}\right)\right)\right)^{2}$$

• Kernel  $K_x$  é uma floresta causal

#### **Modelo DRIV**

• Tratamento é endógeno. Necessita de variável instrumental

$$Y = \theta(\mathsf{X}) \cdot T + g(\mathsf{X}) + \epsilon, \qquad \mathbb{E}[\epsilon \mid \mathsf{X}, Z] = 0$$

$$Z = m(\mathsf{X}) + \eta, \qquad \mathbb{E}[\eta \mid \mathsf{X}] = 0$$

$$\mathbb{E}[\eta \cdot \epsilon \mid \mathsf{X}, Z] = 0$$

$$\mathbb{E}[T \cdot \epsilon \mid \mathsf{X}] \neq 0$$

• Estimativa preliminar de  $\theta(x)$  e algoritmo Doubly Robust

$$\hat{\theta}_{DR}(x) = \underset{\theta}{\operatorname{argmin}} \sum_{i \in \mathcal{I}} \left( \theta_{\mathsf{pre}} \left( x \right) + \frac{ \left( \hat{\tilde{Y}}_i - \theta_{\mathsf{pre}} \left( x \right) \hat{\tilde{T}}_i \right) \hat{\tilde{Z}}_i}{\hat{\beta}(X_i)} - \theta(X_i) \right)^2$$

#### Resultados

- Receber uma correspondência tem efeito positivo sobre o registro para pagamento do tributo
- Uma ameaça na carta aumenta este efeito
- Informações e apelo moral não possui efeito estatisticamente significativo

|         | OLS           | ForestDML     |               | IV2SLS        | DRIV          |
|---------|---------------|---------------|---------------|---------------|---------------|
|         | ATE           | ATE ATT       |               | LATE          | LATE          |
| Correio | 0,0650        | 0,0766        | 0,0766        | 0,0767        | 0,0588        |
| Ameaça  | <b>0,0750</b> | <b>0,0850</b> | <b>0,0848</b> | <b>0,0872</b> | <b>0,0650</b> |
| Info    | 0,0646        | 0,0762        | 0,0760        | 0,0728        | 0,0547        |
| Moral   | 0,0648        | 0,0695        | 0,0695        | 0,0724        | 0,0513        |

### **Efeitos Heterogêneos**

- Existem características que moderam o efeito causal?
- Heterogeneidade: efeito causal depende de características individuais
- · Regressão linear
  - Simples estimação e interpretação
  - · Hipótese a priori das características
- Machine Learning
  - descobre a heterogeneidade presente nos dados
  - modelos mais complexos
- Árvores de decisão são um bom compromisso. Aliam interpretabilidade com algoritmo data-driven



### Conclusão

#### Conclusão

- · Árvores de decisão são de fácil interpretação. Conjunto de regras
- Fornece informação sobre as características mais relevantes para detectar efeitos heterogêneos
- Os métodos de DML e Causal Forests estimam efeitos livres de viés, heterogêneos e não-paramétricos
- Com base nestas estimações, uma política ótima de tratamento pode ser implementada, focando nos indivíduos com maior potencial de resposta

#### Referências i

- Chernozhukov, Victor, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and James Robins. 2018. "Double/debiased machine learning for treatment and structural parameters." *The Econometrics Journal* 21 (1): C1–68. https://doi.org/10.1111/ectj.12097.
- Fellner, Gerlinde, Rupert Sausgruber, and Christian Traxler. 2013. "Testing Enforcement Strategies in the Field: Threat, Moral Appeal and Social Information." Journal of the European Economic Association 11 (3): 634–60.
- Syrgkanis, Vasilis, Victor Lei, Miruna Oprescu, Maggie Hei, Keith Battocchi, and Greg Lewis. 2019. "Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments." http://arxiv.org/abs/1905.10176.
- Wager, Stefan, and Susan Athey. 2018. "Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests." Journal of the American Statistical Association 113 (523): 1228–42.