Greedy

What is Greedy?

Follows the "looks good" strategy.

Recap the Graph Algorithm

- DFS (walking in a maze)
 - If we can explore, then explore.
 - If we can not explore, backtrack.
 - Do not re-visit a vertex.
 - Applications
 - Cycle
 - Topological
 - SCC

Recap the Graph Algorithm

- BFS (waterfront)
 - 1 step from r
 - 2 steps from r
 - ...
 - Application
 - Shortest Path

Recap the Graph Algorithm

- Dijkstra (a generalized BFS)
 - Explore s.
 - Explore the closet vertex from s.
 - Explore the second closest vertex from s.
 - ...
 - We can use Fibonacci heap to improve it.
- Bellman-Ford

Are they Greedy?

Do we have any other Greedy?

Examples

- Finding Shortest Path
 - Dijkstra.
- Finishing homework
 - Keep finishing the one with the **closest** deadline.

Is that optimal?

Formalize the problem

- Input: n homework, each homework j has a size s_j , and a deadline d_j .
- Output: output a time schedule of doing homework!

Algorithm

- Greedy
 - Keep finishing the homework with the **closest** deadline.
- Prove it is optimal.
- What is optimal?
- Claim: If we can not finish all the homework by the greedy order, then no one can finish all the homework on time.

Discussion

Proof

- Claim: If we can not finish all the homework by the greedy order, then no one can finish all the homework on time.
- Proof:
 - If there exist i, finished later than d_i , what do we have?

Proof

- Claim: If we can not finish all the homework by the greedy order, then no one can finish all the homework on time.
- Proof:
 - If there exist i, finished later than d_i , what do we have?

Minimum Spanning Tree

Prime & Kruskal

Spanning Tree

- **Input:** Given a connected undirected graph G = (V, E)
- Output: A spanning tree of G is, i.e., a subset of edges that forms a tree and contains all the vertices in G.
- Applications
 - Building a network, connecting all hubs via minimum number of cables.
- Solutions
 - BFS, DFS.

Minimum Spanning Tree

- **Input:** Given a connected undirected graph G = (V, E), and a weight function w(e) for each $e \in E$.
- Output: A spanning tree of G is, i.e., a subset of edges, with minimized total weight.
- Applications
 - Building a network, connecting all hubs via minimum number of cables.

Minimum Spanning Tree

- **Input:** Given a connected undirected graph G = (V, E), and a weight function w(e) for each $e \in E$.
- Output: A spanning tree of G is, i.e., a subset of edges, with minimized total weight.
- Applications
 - Building a network, connecting all hubs via minimum number of cables.

Dijkstra's growing idea

- Given a small SPT,
- Choose a proper vertex v to find a larger SPT.
- New Plan for MST:
- Given a small MST,
- choose a proper vertex v to find a larger MST.

Prim's growing idea

- Given a small MST,
- Choose a proper vertex \boldsymbol{v} to find a larger MST.
- Which v is good?
- Dijkstra: v with smallest T-distance to s.
- Now: v with smallest cost!

Prim's growing idea

- Given a small MST,
- Choose a proper vertex v to find a larger MST.
- Grow v with smallest cost!
- Is it correct?
- Challenge:
 - How to define small MST

How to define small MST?

- T = (V', E') is a small MST if it is an MST for V'.
- Problem
 - Does it suffice to say those edges are small?
 - Each two-vertex subgraph are small MST.
- A better choice:
- T is a P-MST (Partial MST) if it is a part of a complete MST for G.

- Prove by contradiction again!
- Let's say T^* is a complete MST that contains T We assume $\forall T^*$, $(a, v) \notin T^*$.

- **Given:** a small P-MST T.
- Want: a larger P-MST.
- Can we explore v
 (smallest cost) into T?

- Let's say T^* is a complete MST that contains T We assume $\forall T^*$, $(a, v) \notin T^*$.
- **Given:** a small P-MST T.
- Want: a larger P-MST.
- Can we explore v (smallest cost) into T?

- Let's say T^* is a complete MST that contains T We assume $\forall T^*$, $(a, v) \notin T^*$.
- **Given:** a small P-MST T.
- Want: a larger P-MST.
- Can we explore v
 (smallest cost) into T?

- Let's say T^* is a complete MST that contains T We assume $\forall T^*$, $(a, v) \notin T^*$.
- **Given:** a small P-MST T.
- Want: a larger P-MST.
- Can we explore v
 (smallest cost) into T?

• Let's say T^* is a complete MST that contains T We assume $\forall T^*$, $(a, v) \notin T^*$.

• **Given:** a small P-MST T.

Want: a larger P-MST.

Can we explore v
 (smallest cost) into T?

Repacing (b, u) with (a, u): still an MST.

There must be a path from T to v.

Its weight must be at least 5.

There must be a vertex u adjacent to T.

• Let's say T^* is a complete MST that contains T We assume $\forall T^*$, $(a, v) \notin T^*$.

• **Given:** a small P-MST T.

Want: a larger P-MST.

Can we explore v (smallest cost) into T?

u adjacent to T.

(a, u): still an MST.

Contradiction!

There must be a path from T to v.

There must be a vertex

Its weight must

be at least 5.

Repacing (b, u) with

Does negative weight matters?

Prim Algorithm [Jarník '30, Prim '57, Dijkstra '59]

Prim(G = (V, E))

1. Initialize

- T ← { }, S ← {s}; #s is an arbitrary vertex.
- cost[s] = 0, $cost[v] \leftarrow \infty$ for all v other than s.
- $-cost[v] \leftarrow w(s,v), pre[v] = s \text{ for all } (s,v) \in E.$

2. Explore

- Find $v \notin S$ with smallest cost[v].
- S ← S + {v}; T ← T + {(pre[v], v)}

3. Update cost[u]

- $cost[u] = min\{cost[u], w(v, u)\}$ for all $(v, u) \in E$
- If cost[u] is updated, then pre[u] = v.

Running Time

- I believe you know how to analyze it:
- We have
 - |E| rounds Update.
 - |V| rounds PopMin.
- We can do it in $O(|E| + |V| \log |V|)$.
- Fibonacci Heap again!

Kruskal Algorithm [Kruskal 1956]

Another Greedy!

$$Kruskal(G = (V, E))$$

- Sort the edge set E to ascending order.
- For each $e \in E$ in ascending order
 - If e do not create a cycle, then choose it.

Kruskal(G = (V, E))

- Sort the edge set E to ascending order.
- For each $e \in E$ in ascending order
 - If e do not create a cycle, then choose it.

Kruskal(G = (V, E))

- Sort the edge set E to ascending order.
- For each $e \in E$ in ascending order
 - If e do not create a cycle, then choose it.

Kruskal(G = (V, E))

- Sort the edge set E to ascending order.
- For each $e \in E$ in ascending order
 - If e do not create a cycle, then choose it.

Kruskal(G = (V, E))

- Sort the edge set E to ascending order.
- For each $e \in E$ in ascending order
 - If e do not create a cycle, then choose it.

Kruskal(G = (V, E))

- Sort the edge set E to ascending order.
- For each $e \in E$ in ascending order
 - If e do not create a cycle, then choose it.

Kruskal(G = (V, E))

- Sort the edge set E to ascending order.
- For each $e \in E$ in ascending order
 - If e do not create a cycle, then choose it.

Kruskal(G = (V, E))

- Sort the edge set E to ascending order.
- For each $e \in E$ in ascending order
 - If e do not create a cycle, then choose it.

Correctness of Prim's Growing idea

- **Given:** a small P-MST T.
- Want: a larger P-MST.
- Can we explore v
 (smallest cost) into T?

Correctness of Kruskal's Growing idea

- **Given:** a small P-MST T.
- Want: a larger P-MST.

Correctness of Kruskal's Growing idea

- Given: a small P-MST T.
- Want: a larger P-MST.
- Add the smallest red edge get a larger P-MST.

Correctness of Kruskal's Growing idea

- Given: a small P-MST T.
- Want: a larger P-MST.
- Add the smallest red edge get a larger P-MST

Running Time

Kruskal(G = (V, E))

- Sort the edge set E to ascending order.
- For each $e \in E$ in ascending order
 - If e do not create a cycle, then choose it.
- $O(|E|\log|E|) = O(|E|\log|V|)$ for sorting.
- |*E*| round: check cycle!

Recall DFS

- When an edge is a back edge (to marked vertices),
- It forms a cycle.

During Kruskal

- Cycle: When an edge connect the same group vertices.
- Change: $Marked[v] \rightarrow Group[v]$.

Kruskal (refine)

Kruskal(G = (V, E))

- Sort the edge set E to ascending order.
- For each $(u, v) \in E$ in ascending order
 - If group(u)! = group(v)
 - Choose (*u*, *v*).
 - union(group(u), group(v))

Running Time: Kruskal (refine)

Kruskal(G = (V, E))

- Sort the edge set E to ascending order.
- For each $(u, v) \in E$ in ascending order
 - If group(u)! = group(v)
 - Choose (*u*, *v*).
 - union(group(u), group(v))
- $O(|E|\log|E|)$ for sorting.
- 2|E| round: check group
- |V| round: union group

Union-Find Set

- Recall Union-Find Set
 - Find: $O(\log n)$
 - Union: 0(1)
- Kruskal
 - $O(|E|\log|E|)$ for sorting.
 - -2|E| round: check group
 - |V| round: union group
 - $O(|E|\log|E|) = O(|E|\log|V|)$
- Prime
 - $O(|E| + |V| \log |V|)$

Time Complexity

- Find
 - O(max{Tree height})
- Union
 - 0(1)

O(n) tree height

How to improve

- Find
 - O(max{Tree height})
 - O(n)!
- Union
 - 0(1)
- To Do
 - Reduce Tree Height

Amortized?

- The cost we pay is $1 + 2 + 3 + 4 + \dots + n$
- The amortized cost is still O(n).

Intuition

BAD

Intuition

GOOD

We should merge to a same root!
We should merge short tree to high tree!

Implement

- Record Tree's Height (also called rank).
- rank[v]: the rank of tree rooted at v.
- Union: u and v.
 - Rooted at u: if $rank[u] \ge rank[v]$
 - Rooted at v: if rank[u] < rank[v]
 - Update rank[u] + +: if rank[u] = rank[v]
- We make it hard to build a large rank tree!

How to build a rank k tree?

How to build a rank k tree?

How to build a rank k tree?

We should at least use 2^k nodes!

Max tree height

- Build a rank k tree: We should at least use 2^k nodes!
- What is the max tree height (rank)? O(log n)
- Find
 - O(max{Tree height})
 - $-O(\log n)!$
- Union (rank based)
 - -0(1)

Union-Find Set

- Recall Union-Find Set
 - Find: $O(\log n)$
 - Union: 0(1)
- Kruskal
 - $O(|E|\log|E|)$ for sorting.
 - -2|E| round: check group
 - |V| round: union group
 - $O(|E|\log|E|) = O(|E|\log|V|)$
- Prime
 - $O(|E| + |V| \log |V|)$

Can we do better for MST?

- m = |E|!
- Karger-Klein Tarjan (1995)
 - -0(m) randomized algorithm.
- Chazelle (2000)
 - $O(m \cdot \alpha(n))$ deterministic algorithm.
 - $\alpha(n)$ is the inverse Ackermann function $\alpha(9876!) \leq 5$.
 - Ackermann function: $A(4,4) \approx 2^{2^{2^{16}}}$.
- Pettie-Ramachandran (2002)
 - O(optimal #comparison to determine solution)
 - We know #comparison = $\Omega(n) = O(m \cdot \alpha(n))$

Can we do better

- Kruskal
 - $O(|E|\log|E|)$ for sorting.
 - -2|E| round: check group
 - |V| round: union group
 - $-O(|E|\log|E|) = O(|E|\log|V|)$
- There are two bottlenecks
 - Sorting
 - Union and Find.
- If we do not need to sort, can we do better?

Can we do better for Union-Find Set?

Have you heard **Path Compression**?

Why not do some good things for the future?

FIND

We put every red vertices to the first level.

FIND

We put every red vertices to the first level.

FIND

We put every red vertices to the first level.

Good for next FIND!

Does it useful in analysis?

Amortized Analysis

Time Complexity

- Find (Path Compression)
 - $\hat{C} = O(\log^* n)$ [Hopcroft & Ullman 1973]
 - $\log^*(2^{2^{2^2}}) = \log^*(2^{65536}) = 5$
 - $\hat{C} = O(\alpha(n)) \text{ [Tarjan 1975]}$
 - $\alpha(n)$ is the inverse Ackermann function $\alpha(9876!) = 5$.
- Union (rank based)
 - -0(1)
- They hold when #Finds $\geq n$.

Rank Based Union + Find with Path Compression

- It is still an amortized analysis
- We prove:
 - Any m find operations totally cost $O(m \log^* n + n \log^* n)$.
- The n log* n cost does not increase by m
- We can say the amortized cost of **Find** is $O(\log^* n)$ for each operation.
- We may view $n \log^n n$ as a base cost.
- It does not matter when m becomes large.

The Big Picture

We use pure charging argument today!

No potential functions this time.

Basic Charging

Find

FIND

Cost=number of red edges.

Key Idea: Charge Cost to Vertices

FIND

Cost=number of red edges.

Cost(Find)

- *0*(1)
- Charged Cost.

Total cost of m Finds.

- Total cost of m Finds.
 - Self Payment: O(m)
 - Charging Cost: $\sum_{v} C(v)$

• C(v): The cost v has paid.

The Big Picture

Self Payment O(m)Cost of m Finds. **Charged Cost**

How much each vertex will be charge?

What is the rank now?

We do not update rank when we do path compression.

When do we update rank[v]?

We update rank when we merge two tree.

When do we update rank[v]?

We do not update any rank in path compression.

Some Difference

- $rank[v] \neq height[v]$
 - Because we may change the height in path compression.
- $rank[v] \ge height[v]$.
 - Because we only decrease tree's height.

We still have good properties!

- Lemma 1. Parent's rank is strictly larger than the child.
- Proof
 - We only merge small rank to large rank.
 - If we merge two same root, the new root's rank will +1.
 - Path compression only make parent's rank larger!
- Lemma 2. The tree of v has at least $2^{rank[v]}$ vertices.
- Proof
 - It is because we union by rank.
 - Path compression never remove some vertices from a tree.
 - (*remark) It may remove vertices from a subtree.

Key Fact in FIND

The rank on the path is strictly increasing.

Do Some Amazing Analysis!

Group Vertices

- Group vertices by rank
 - Group 1: $k_1 = 0$
 - Group 2: $k_2 = 1$
 - Group *i*: $k_i = 2^{k_{i-1}}$

1...1 2...2 3...4 5...16 17...65536 k+1... 2^k

k

Move back to charging.

FIND

Cost=number of red edges.

Cost(Find)

- *0*(1)
- Charged Cost.

Different kind of charging.

- Two kind of charging
 - Same Group Charging (SGC)
 - Across Group Charing (AGC)

The Big Picture

Self Payment O(m)Cost of m Finds. Same Group Charing (SGC) **Charged Cost** Across Group Charing (AGC)

Same Group Charging (SGC)

Across Group Charing (AGC)

Group Number

- Lemma 3. We have at most $\log^* n$ groups.
- Proof
 - The largest rank is at most $\log n$.
 - The last group is $[k = \log n, 2^k]$.
 - How many groups before $[k = \log n, 2^k]$
 - $-k_i = 2^{k_{i-1}} \to k_{i-1} = \log k_i$
 - $-k_{\log^* n} = \log n$

11 22 34 516 1765536 <i>k</i> +12	11	22	34	516	1765536	k+1 2
-----------------------------------	----	----	----	-----	---------	-------

Vertices in a group

- Lemma 4. Group $[k + 1,2^k]$ at most have $n/2^k$ vertices.
- A wrong proof
 - All vertices inside has rank at least k.
 - By Lemma 2. The tree of v has at least $2^{rank[v]}$ vertices.
 - Creating v need $2^{rank[v]}$ vertices.
 - n vertices can only create $n/2^k$ vertices with rank at least k.

Why it is wrong

We may double count some vertices!

Why it is wrong

We may double count some vertices!

Why it is wrong

We may double count some vertices!

The property we have

- Fact. The number of vertices of exactly rank k is at most $n/2^k$.
- Proof
 - Key Fact: a vertex can only used to create one rank k root!

A Correct Proof

- Lemma 4. Group $[k + 1,2^k]$ at most have $n/2^k$ vertices.
- A Correct Proof
 - The Number of vertices in the group is at most

$$\frac{n}{2^{k+1}} + \frac{n}{2^{k+2}} + \cdots + \frac{n}{2^{2^k}} \le \frac{n}{2^k}$$

Conclusion

- Grouping
 - **Definition**: v is in group i iff $rank[v] \in [k_i + 1, 2^{k_i}]$.
 - Lemma 3: We have at most $\log^* n$ groups.
 - **Lemma 4**: Group $[k + 1,2^k]$ at most have $n/2^k$ vertices.

 $\log^* n$

Across Group Charing (AGC)

- Each Find incurs:
 - At most $\log^* n$ AGC.
- Why?
 - The rank is increasing!
 - Lemma 1. Parent's rank is strictly larger than the child.

+1

 $\log^* n$

Cost of Across Group Charing (AGC)

The Big Picture

What about SGC

We considers each v but not each Find.

- Consider all SGC for a vertex v.
- We want to say each v can not have so many SGC.

- After m FIND
 - v have many SGC
 - By $(u1, v), (u_2, v) \dots$
 - $u_1, u_2, ...$ is each SGC's parent

2...2

- They are SGC
 - u_1, u_2 ... is in the same group of v.

3...4

5...16

Parent of it become 10.

- What are the properties of $u_1, u_2 \dots$?
- rank=10

After the FIND, we will do Path Compression.

If it is an

- Can $rank[u_x] = rank[u_y]$?
- No!

rank=8

- Path Compression
 - $rank[u_3] > rank[u_2] > rank[u_1] > rank[v]$.
- rank=5
- Every time we make SGC, we also do a path compression.
- Parent of v become $r \rightarrow$ Parent's rank **increase**!
- That is why we do not charge to root's children.
- At most $2^k (k + 1) < 2^k$ SGC for v.

Parent of it become larger than 5

After m FIND

- v can be SGC many times

rank=10

rank=8

- In a group $[k + 1 ... 2^k]$
 - Lemma 4: $n/2^k$ vertices.
 - Each vertex has at most 2^k SGC.
 - Totally at most n SGC in a group.

- At most $2^{k} - (k + 1) < 2^{k}$ SGC for v.

- Totally: $n \log^* n SGC$
 - Lemma 3: $\log^* n$ groups.

17...65536 $k+1...2^{k}$ 5...16 2...2 3...4

After the FIND, we will do Path Compression.

> If it is an SGC.

+1 rank=5

rank=4

+1 rank=2

Can you answer this question?

- Question
 - Yes, if a vertex is at a group $[k + 1, 2^k]$, we at most have 2^k SGC.
 - But, if the vertex's rank increase, it will change a group.
 - Why not we have more SGC for this vertex?

Can you answer this question?

- Answer
 - Only non-root vertex can be charged!
 - Only root vertex's rank will increase!

Bound Total cost

- Total Cost of m FIND
 - O(m)(to root)
 - Total AGC
 - $m \cdot \log^* n$
 - Total SGC
 - $n \cdot \log^* n$
 - Total: $O(m \log^* n + n \log^* n)$

Other union Method

- Union By Size v.s. Union By Rank
- Using Union By Size with Path Compression
- [Tarjan 1975] Any $m \ge n$ Find Operations and n 1 Union operations cost $O(\alpha(m, n))$ time.
- Union by random
 - Give a rank for each vertex uniformly random in [0,1].

Other Path compression

Path splitting. Make every node on path point to its χ_1 grandparent. χ_1 χ_2 χ_2 χ_3 χ_3 χ_4 χ_5

Other Path compression

• Path halving. Make every even node on path point to its grandparent.

All of them are somehow equivalent!

• Theorem. [Tarjan-van Leeuwen 1984]

Union by {rank,size} with {path compression, path splitting, path halving} perform $m \ge n$ Find Operations and n-1 Union Operations in $O(\alpha(m,n))$ time.

Today's goal

- Learn what is Greedy!
- Learn to use Greedy to finish homework!
- Learn Prim and Kruskal!
- Again, how to use Data Structure to improve Algorithms.
- Review Union-Find Set!
- Learn another Amortized Analysis!