Міністерство освіти і науки України Національний технічний університет України «Київський Політехнічний Інститут імені Ігоря Сікорського» Кафедра конструювання електронно-обчислювальної апаратури

Звіт З виконання лабораторної роботи №1 з дисципліни "Аналогова електроніка"

Виконали:

студенти групи ДК-82

Краповницький €. I.

Бобронніков А.

Перевірив:

доц. Короткий Є В.

1. Дослідження суматора напруги на резисторі

Під час лабораторного заняття було складено суматор напруги за наступною схемою:

У якості джерел напруг були використані два генератора Waveform generator платы Analog Discovery 2. Щоб запобігти протіканню великого струму в колі я використав 2 резистори опором 50кОМ. З першого джерела напруги була подана постійна напруга 2В а з другого 3В.

Виходячи з принципу суматора напруг на резисторах, теоретичне значення вихідної напруги для даної схеми має бути :

$$Uout = \frac{E_1 + E_2}{2} = \frac{2+3}{2} = 2.5B$$

Экспериментальний результат:

Що відповідає 2.45В, тобто майже экспериментальний результат майже зійшовся з теоретичним.

Симуляція в LTSpice підтверджує результат:

Після цього з першого генератора Analog Discovery 2 була подана імпульсна напруга амплітудою 1В і частотою $1 \, \mathrm{k} \, \mathrm{\Gamma} \, \mathrm{u}$, а з другого синусоїдальна напруга амплітудаю 1В і частотою $5 \, \mathrm{k} \, \mathrm{\Gamma} \, \mathrm{u}$. На картинці сигнал з першого канала був зсунутий на -2В ,шоб вони на накладались один на одного на осцилографі.

Вихідна напруга має такий вигляд:

Її я також зсунув на -2В. Такий результат відповідає теоретичним очікуванням. В цьому допомагає переконатись LTSpice:

2. Дослідження RC ланцюжка.

Під час лабораторної роботи було складено інтегруючий RC ланцюжок з наступними параметрими:

R=1κOM

С=150нФ

Тривалість заряду-розряду такого ланцюжка:

$$t = 5 * R * C = 5 * 10^3 * 150 * 10^{-9} = 0.75 \text{mC}$$

На вхід була подана імпульсна напруга амплітудою 1В і частотою 133.33Гц.

У результаті експерименту бачимо,що за 750мкС(ΔX) конденсатор встигає зарядитись майже на 100%

Результати симуляції в LTSpice були ідентичні:

3. Дослідження RC-фільтру низької частоти.

Під час лабораторної роботи було складено ФНЧ з такими параметрами:

R=1κOM

С=150нФ

Частота зрізу такого фільтру:

$$f_{
m 3pi3.} = rac{1}{R*C*2*\pi} = rac{1}{10^3*150*10^{-9}*2*3.14} = 1061.6$$
Гц

На вхід фільтру було подану синусойду амплітудою 1В і з частотою зрізу.

Після проходження через фільтр її амплітуда стала 0.739B (позначено Δ на картинці), що ε коректним результатом, бо її амлітуда в теорії мала б впасти до 0.707B. З урахуванням похибки експериментальний результат ε цілком правильним і точним.

Для визначення AЧX фільтру, що було складено, використали Network Analyzer у складі плати Analog Discovery. Було отримано наступні результати:

Точка частоти зрізу знаходится на частоті 1002Γ ц що, з урахуванням похибки є правильним результатом. Також бачимо що зсув фаз між вхідним і вихідним сигналом дорівнює майже -45

Я розрахував теоретичні та практичні значення Ки фільтру для частот до і після частоти зрізу. В мене вийшли такі значення:

f,Hz	Ku	Ки теор	Відн.Похибка,%
0	1	1	0
200	0,977	0,982	0,509
400	0,927	0,935	0,856
600	0,862	0,87	0,920
800	0,796	0,799	0,375
1000	0,728	0,727	0,138
1061	0,716	0,707	1,273
1200	0,66	0,662	0,302
1400	0,62	0,604	2,649
1600	0,58	0,552	5,072

Теоретині значення Ки розраховані за формулою: $K_u = \frac{1}{\sqrt{(WRC)^2 + 1}}$

Також я виміряв АЧХ за допомогою LTSpice:

Форма теоретичної та практичної AYX відповідають одна одній і ϵ майже ідентичними.

Висновок

Я виконав лабораторну роботу і дослідив суматор напруг та інтегруюче RC коло. Теоретичні результати та результати моїх дослідів зійшлися з великою точністю, це може свідчити про те, что всі виміри і розрахунки було зроблені коректно. Під час лабораторної роботи я використовував плату Analog Discovery 2, яка комбінує у собі генератори напруги та осцилограф, що я дуже зручним для роботи і зберіганні результатів. Також я промоделював всі схеми в програмі LTSpice. Вона допомагає у розумінні принципу роботи даної схеми та у перевірці самого себе що до вимірів.