

Basic Details of the Team & Problem Statement

Ministry: DEPARTMENT OF NATIONAL COMMISSION FOR INDIAN SYSTEM OF MEDICINE,

MINISTRY OF AYUSH.

PS Code: SIH1344

Problem Statement Title: AI-BASED TOOL FOR PRELIMINARY DIAGNOSIS OF DERMATOLOGICAL

MANIFESTATIONS.

Team Name: MedTech Explorers

Team Leader Name: SUMIT RANJAN SATAPATHY

Institute Code (AISHE): C-30068

Institute Name: PARALA MAHARAJA ENGINEERING COLLEGE, SITALAPALLI, BERHAMPUR,

ODISHA, INDIA, 761003

Theme Name: MEDTECH / BIOTECH / HEALTHTECH

Idea/Approach Details

Objective: AI based Chatbot assistant termed AI Dermatology Diagnostic Assistant (ADDA) with image processing capability for preliminary diagnosis of Dermatological Manifestations basing on severity stage analysis

General Idea:

- > Using Transfer learning, Models are pre-trained on big data, customized for our medical tasks.
- Aims to Automate patient query resolution by training on question-answer pairs to provide informative
- Enhanced with skin image processing capabilities for versatile functionality & increased accuracy of the overall model

Approch to the Problem:

➤ Answer Search:

Problem: Generate answers to patient queries.

Approach: We frame it as a supervised seq2seq task, generating answers from past question-answer pairs in response to the patient's query.

Semantic Search :

Problem: Retrieve similar questions with answers from historical data.

Approach: When unsatisfied with the responses, we perform unsupervised semantic search to display similar previously answered doctor's questions & answers to the patient .

➤ Image Processing :

Problem: Enhance the **ChatBot's** capabilities by processing medical images.

Approach: Integrate a separate image-processing based model to interpret skin disease image dataset.

Model Components:

▶ BioBERT:

Specialized BERT model termed with BioBERT for biomedical & clinical text .

Pretrained on medical & biological data for healthcare-related tasks.

ResNet50:

Deep neural network for image classification.

Pretrained on large image datasets like ImageNet for computer vision tasks.

GPT-2 (**Gererative Pre-trained Transformer 2**):

Language model for Natural Language understanding & generation.

Pretrained on a broad range of internet text data, ideal for question-answering systems & virtual assistants.

References

Tschandl, P., Rosendahl, C., & Kittler, H. (2018). The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific data, 5(1), 1-9.

- 2 . Medical-Q&A : https://github.com/LasseRegin/medical-question answer-data
- 3. Hestiningsih, I., Thohari, A. N. A., & Kamarudin, N. D. (2023) Mobile Skin Disease Classification using MobileNetV2 and NASNetMobile. International Journal on Advanced Science, Engineering & Information Technology, 13(4).
- 4. Dermnet: //www.kaggle.com/datasets/shubl

Novel Integrations

- 1. Integration of OCR technology can able to scan medical test reports.
- 2. For regional language translation, google translator API will be integrated.
- 3. Voice assistant feature.
- **4.** Generation of comprehensive medical report.
- 5. Introduce Gamification elements to motivate User

Proposed Prototype User Interface

Image Metadata with labeled Stages for ChatBot Prediction Analysis

ENSEMBLE MODEL

Image	Descriptive Symptoms	Conditions	Outcomes	Potential Dermatological Medications	Appointment Status
	Persistent inflammatory lesions , Skin thickening , Scaly patches .	Severe psoriasis , Lichen planus .	Complex or Chronic conditions .	Topical corticosteroids , calcineurin inhibitors , phototherapy or systemic medications . Biologic agents for severe cases .	Virtual Doctor consultation is essential .
	Presence of unusual skin growths , Changes in moles , Ulcerations .	Melanoma (Skin cancer) , Squamous cell carcinoma .	Potentially dangerous or Non curable conditions .	Medications may not be effective for these severe conditions . Treatment typically involves surgery , radiation therapy or chemotherapy .	Immediate in person consultation with a dermatologist is crucial for diagnosis & treatment planning.

Stages Of Impetigo

Diagnostic

Pustule Crusted lesion-groin area Crusted lesion-facial area

Proposed Algorithm

Keyframe Selection & Skin Image Processing:

Input: Video frames of a skin condition in case of video input along with image input.

Output: Skin disease detection report & recommendations.

- Initialize an empty list to store selected keyframes.
- Initialize an empty graph G for frame similarity.
- Initialize a variable to keep track of the number of clusters.
- FOR each frame in the video DO:
 - a . Extract image features using Multi-feature Fusion Algorithm .
 - b. Calculate frame similarity with other frames using a cosine similarity metric :

Cosine Similarity(Frame1, Frame2) = (Frame1 * Frame2) (||Frame1|| * ||Frame2||)

- c . Add the frame to graph G as a node .
- Apply Graph Modularity Clustering Algorithm to G to identify clusters based on modularity scores
- Calculate modularity (O) of the graph:

$Q = \sum [e(ij) - (a(i) * a(j) / (2m))] * \delta(c(i), c(j))$

where e(ii) is the fraction of edges that connect nodes in communities c(i) & c(j), a(i) is the fraction of edges connected to nodes in community c(i), m is the total number of edges &

$\delta(c(i), c(j))$ is the Kronecker delta function.

- FOR each cluster in identified clusters DO:
 - a. Calculate the average frame quality score for frames in the cluster.
 - b. Select the frame with the highest quality based on quality metrics . c . Add the keyframe to the list of selected keyframes
- FOR each selected keyframe DO:
 - a . Apply skin image processing using ResNet-50 .
- b. Classify the skin condition type & severity stage Generate a diagnostic report based on classification results
- Integrate the report with the AI Dermatology Diagnostic Assistant (ADDA)
- In ADDA, use the severity stage for user recommendations
- Fine-Tuning the ResNet-50 Model:

Input: Skin infection images.

Output: Pre-trained ResNet-50 model with custom layers removed & feature embeddings.

- Load the dataset containing skin infection images .
- Load the pre-trained ResNet-50 model.
- Create a sequential model " model " & add layers :

model.add(layers.Dense(units , activation = 'relu')) model.add(layers.Flatten())

Train the model with the dataset. The loss function can include classification loss that is Categorical Cross -

Entropy & regularization terms that is **L2 regularization**: Loss = ClassificationLoss + λ * L2RegularizationTerm

- Compile the model with a suitable loss function & optimizer.
- Remove the custom classification layers, leaving the ResNet-50 base.
- Pass each image through the base model to obtain feature embeddings.
- Save the extracted feature embeddings for later use.

Fine-Tuning the BioBERT Model:

Input: Medical question-answer dataset.

Output: Fine-tuned BioBERT model for question-answer embeddings.

- Load the BioBERT model .
- Feed your medical question-answer dataset to the model & fine-tune it . The loss function can include mean squared error (MSE) for similarity prediction:

Loss = MSE(PredictedSimilarity, ActualSimilarity)

- Extract the question & answer embeddings using the q ffn & a ffn layers of the FFN (Feed Forward Neural Network) transformer layers .
- Train the model to predict similarity scores.
- Calculate cosine similarity between the question & answer embeddings:

CosineSimilarity(QuestionEmbedding, AnswerEmbedding) = $(Q * A)/(\|Q\|*\|A\|)$

Amalgamation of Embeddings & GPT-2:

Input: Text & Image embeddings, User Questions, Precomputed question-answer embeddings .

Output: GPT-2 model with Context-Aware Learning & Weighted Loss Mask (WLS).

Generate embeddings separately for text (ET) & images (EI) & concatenate them:

Concatenated Embeddings (CE) = $[E_T, E_I]$

- Obtain embeddings for original user questions using BioBERT:
- Question Embeddings (QE) = BioBERT(User Questions) Employ FAISS for Cosine Similarity-based search to compare the Current Question (CQ) with pre-computed question-answer embeddings:

Similar Pairs = FAISS(CO, Pre-computed Question-Answer Embeddings)

- Retrieve top-ranked Similar Ouestion-Answer pairs (SO) & integrate them with the original content to establish context.
- Calculate a Loss Mask (LM) for context-aware learning based on the similarity between the Current Question (CQ) & retrieved question-answer pairs . Here , We used a weighted combination of Cosine Similarities (CS) between the Current Question (CQ) & each similar pair

$$LM = \sum_i CS_i imes ext{Weight}_i$$

Train GPT-2 with context-aware learning, applying a weighted loss mask (WLM) during training to encourage context-aware learning & align with retrieved similar pairs :

Weighted Loss = $LM \times Loss$

Predefined Algorithm used in our Proposed Algorithm

- 1. FAISS (Facebook AI Similarity Search): An efficient & versatile library developed by Facebook AI Research, tailored for conducting similarity searches & clustering large datasets whether it's image or text-based . In our proposed algorithms , FAISS finds application in two key areas . First , in Algorithm for Keyframe Selection & Skin Image Processing, it aids in identifying visually similar video frames which a vital for skin image processing . Second , in Algorithm for Amalgamat Embeddings & GPT-2. FAISS enables similarity-based searches for matching user questions with pre-computed embeddings, enhancing context integration for more context-aware responses with the GPT-2 model
- 2 . Feed Forward Neural Network (FFN): A foundational neural network architecture which is integral to our proposed algorithms. Within Algorithm for Fine-Tuning the BioBERT Model, it fine-tunes the BioBERT model by enhancing question-answer similarity prediction through suitable mapping of embeddings . Within Algorithm for Amalgamation Embeddings & GPT-2, it utilizes FFN to extract question & answer embeddings, creating a context-rich environment for effective user interactions . Overall , FFN's contributions significantly boost the system ability to provide accurate responses & recomm related queries, making it a central component in the solution

JavaScript

Transformers

Dependencies / Show stopper

- Regulatory Compliance
- Data Privacy
- Cybersecurity
- Patient Feedback
- Feedback Data Iteration

Team Member Details

Team Leader Name: SUMIT RANJAN SATAPATHY

Branch: B. Tech Stream: CSE Year: IV

Team Member 1 Name: ABHISEK TRIPATHY

Branch: B. Tech Stream: CSE Year: IV

Team Member 2 Name: AISWARIYA DASH

Branch: B. Tech Stream: CSE Year: IV

Team Member 3 Name: PRACHI PRAGNYA PADHI

Branch: B. Tech Stream: CSE Year: III

Team Member 4 Name: SHRIMAN ADITYA RANJAN NAYAK

Branch: B. Tech Stream: CSE Year: III

Team Member 5 Name: DEBASISH PADHY

Branch: B. Tech Stream: CSE Year: IV

Team Mentor 1 Name: DR. NIRANJAN PANIGRAHI

Category: Academic Expertise: Wireless Sensor Network Domain Experience (in years): 16

,

Team Mentor 2 Name: DR. DEBASIS MAHAPATRA

Category: Academic Expertise: Complex Networks Domain Experience (in years):13