Здравствуйте!

Лекция №7

Определение 1. Функция f(x) называется непрерывной в точке x_0 , если $\lim_{x\to x_0} f(x) = f(x_0)$.

Дадим несколько расшифровок этого важнейшего определения.

а) Вспоминая понятие предела, запишем непрерывность f(x) в точке x_0 в виде

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \mid x - x_0 \mid < \delta \quad |f(x) - f(x_0)| < \varepsilon.$$

б) Так как $x_0 = \lim_{x \to x_0} x$, то непрерывность в точке x_0 можно записать в виде

$$\lim_{x\to x_0} f(x) = f(\lim_{x\to x_0} x).$$

Отсюда следует важнейшее свойство непрерывной функции: для непрерывной функции можно переставлять местами знак функции и знак предельного перехода

$$\lim f(...) = f(\lim ...)$$

в) Обозначим $\Delta x = x - x_0$ (приращение аргумента) и $\Delta f = f(x) - f(x_0)$ (приращение функции). Тогда непрерывность в точке x_0 означает, что $\lim_{\Delta x \to 0} \Delta f = 0$, то есть бесконечно-малому приращению аргумента соответствует бесконечно-малое приращение функции.

Ведем обозначения:

$$\lim_{x \to x_0 \to 0} f(x) = f(x_0 \to 0), \quad \lim_{x \to x_0 \to 0} f(x) = f(x_0 \to 0),$$

если эти пределы существуют.

<u>Определение 2.</u> Функция f(x) называется непрерывной в точке x_0 <u>слева</u> (справа) если $f(x_0)=f(x_0-0)$ ($f(x_0)=f(x_0+0)$). Очевидно, что непрерывность в точке x_0 означает непрерывность слева и справа одновременно.

<u>Определение</u> 3. Функция f(x) называется непрерывной некотором множестве X, если она непрерывна в каждой точке этого множества, то есть если

$$\forall x_0 \in X \quad \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in X \quad |x - x_0| < \delta \quad |f(x) - f(x_0)| < \varepsilon$$
Of datute behavior the ctout krahton $\forall x \in X$ at a bank of

Обратите внимание, где стоит квантор $\forall x_0 \in X$, это важно.

<u>Определение</u>. Если функция f(x) не является непрерывной в точке x_0 , то говорят, что в точке x_0 функция f(x) имеет разрыв.

Типы разрывов.

А. Пусть существуют конечные $f(x_0-0)$ и $f(x_0+0)$, они равны друг другу, но не равны значению функции в точке x_0 , то есть выполнено условие

$$f(x_0-0) = f(x_0+0) \neq f(x_0),$$

то говорят, что в точке x_0 функция f(x) имеет <u>устранимый</u> разрыв. Действительно, достаточно изменить значение функции в точке x_0 и разрыв исчезнет.

В. Пусть существуют конечные $f(x_0-0)$ и $f(x_0+0)$, но они <u>не равны</u> друг другу $(f(x_0-0) \neq f(x_0+0))$. Тогда говорят, что в точке x_0 функция f(x) имеет разрыв І рода или скачок.

Величина $|f(x_0+0)-f(x_0-0)|$ называется величиной скачка функции f(x) в точке x_0 .

Если хотя бы один из пределов $\lim_{x\to x_0-0} f(x)$ или $\lim_{x\to x_0+0} f(x)$ бесконечен или не существует, то говорят, что в точке x_0 функция f(x) имеет разрыв второго рода.

$$f(x) = \frac{1}{x}$$
, $\lim_{x \to +0} f(x) = +\infty$, $\lim_{x \to -0} f(x) = -\infty$

 $f(x) = \frac{1}{x^2}$, $\lim_{x \to +0} f(x) = +\infty$, $\lim_{x \to -0} f(x) = +\infty$

$$\lim_{x \to +0} f(x) = +\infty, \lim_{x \to -0} f(x) = 0$$

Свойства непрерывных функций.

Теорема. Пусть функции f(x) и g(x) непрерывны в точке x_0 .

Тогда функции
$$f(x)\pm g(x)$$
, $f(x)g(x)$ и $\frac{f(x)}{g(x)}$ (если $g(x_0)\neq 0$)

непрерывны в точке x_0 .

Доказательство.

Пусть f(x) и g(x) непрерывны в точке x_0 . Это значит, что $\lim_{x\to x_0} f(x) = f(x_0)$ и $\lim_{x\to x_0} g(x) = g(x_0)$. Но тогда, по свойствам

пределов

$$\lim_{x \to x_0} [f(x) \pm g(x)] = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x) = f(x_0) \pm g(x_0),$$

$$\lim_{x \to x_0} [f(x) \cdot g(x)] = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x) = f(x_0) \cdot g(x_0),$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{f(x_0)}{g(x_0)}.$$

Последнее свойство верно, если $\lim_{x\to x_0} g(x) = g(x_0) \neq 0$.

Непрерывность сложной функции.

Пусть y=f(x), но x, в свою очередь, является функцией некоторого аргумента t: $x=\varphi(t)$. Тогда комбинация $y=f(\varphi(t))$ называется сложной функцией, или суперпозицией функций f(x) и $\varphi(t)$.

Примеры:

- a) $y=\sin(x)$, $x=e^t \Rightarrow y=\sin(e^t)$
- 6) $y=e^x$, $x=\sin(t) \implies y=e^{\sin(t)}$

Теорема о непрерывности сложной функции.

Пусть функция $\varphi(t)$ непрерывна в точке t_0 и функция f(x) непрерывна в точке $x_0 = \varphi(t_0)$. Тогда функция $f(\varphi(t))$ непрерывна в точке t_0 .

Доказательство.

f(x) непрерывна в точке $x_0 \Rightarrow$

$$\underline{\forall \varepsilon} > 0 \quad \exists \delta \quad \forall x \quad |x - x_0| < \delta \quad |f(x) - f(x_0)| < \varepsilon,$$

 $\varphi(t)$ непрерывна в точке $t_0 \Rightarrow$

$$\forall \delta > 0 \quad \underline{\exists \eta} \quad \underline{\forall t} \quad |t - t_0| < \eta \quad |\varphi(t) - \varphi(t_0)| < \delta , \text{ или } |x - x_0| < \delta.$$

Выписывая подчеркнутые кванторы, получим, что

$$\forall \varepsilon > 0 \quad \exists \eta \quad \forall t \quad |t - t_0| < \eta \quad |f(\varphi(t)) - f(\varphi(t_0))| < \varepsilon,$$

что и говорит о том, что $f(\varphi(t))$ непрерывна в точке t_0 .

Обратите внимание на следующие детали:

- а) так как $x = \varphi(t)$, то $|\varphi(t) \varphi(t_0)| < \delta \square$ может быть записано как $|x x_0| < \delta \square$, и f(x) превращается в $f(\varphi(t))$;
- б) при определении непрерывности $\varphi(t)$ в точке t_0 в первом кванторе стоит буква δ . Это необходимо для согласования с квантором $\exists \delta$ в предыдущей строке и взаимного уничтожения $\exists \delta$ и $\forall \delta$. Любая другая буква на этом месте не дала бы верного результата.

Первая теорема Больцано-Коши. Пусть f(x) определена и непрерывна на отрезке [a, b] и на концах этого отрезка принимает разные по знаку значения. Тогда существует точка $c \in [a, b]$ в которой f(c) = 0.

Доказательство.

Пусть, для определенности, f(a)<0, f(b)>0. Ситуация выглядит так:

1. Деление отрезков пополам.

Разделим отрезок [a, b] пополам. Серединой его будет точка $\frac{a+b}{2}$. Тогда возможны такие варианты:

- а) $f\left(\frac{a+b}{2}\right) = 0$. В этом случае, взяв $c = \frac{a+b}{2}$, теорему можно считать доказанной.
- б) $f\left(\frac{a+b}{2}\right) > 0$. В этом случае для дальнейшего рассмотрения оставим отрезок $\left[a, \frac{a+b}{2}\right]$, который обозначим $[a_1, b_1]$.
- в) $f\left(\frac{a+b}{2}\right) < 0$ В этом случае для дальнейшего рассмотрения оставим отрезок $\left[\frac{a+b}{2},b\right]$, который обозначим $[a_1,b_1]$.

Проделаем такую же процедуру с отрезком $[a_1, b_1]$, получив отрезок $[a_2, b_2]$, затем то же самое с отрезком $[a_2, b_2]$, получив отрезок $[a_3, b_3]$ и т.д. Заметим, что для дальнейшего рассмотрения все время оставляется тот отрезок, для которого $f(a_n) < 0$ и $f(b_n) > 0$.

<u>2. Построение точки *с*.</u>

В результате этой процедуры возможны два варианта.

А. На каком-то шаге n получится, что $f\left(\frac{a_n+b_n}{2}\right)=0$. В этом случае в качестве точки c следует взять $c=\frac{a_n+b_n}{2}$ и теорема будет доказана.

6.
$$\forall n \ f\left(\frac{a_n+b_n}{2}\right) \neq 0.$$

В этом случае мы получаем систему отрезков $[a_n, b_n]$, для которой

a) $[a, b] \supset [a_1, b_1] \supset [a_2, b_2] \supset [a_3, b_3]...$

6)
$$b_n - a_n = \frac{b - a}{2^n} \to 0$$

- в) $f(a_n) < 0$; $f(b_n) > 0$.
- 3. Но тогда, по лемме о вложенных отрезках, существует $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = c \in [a,b]$. Используя непрерывность функции f(x),

получим

$$\lim_{n\to\infty} f(a_n) = f(\lim_{n\to\infty} a_n) = f(c) \le 0,$$

$$\lim_{n\to\infty} f(b_n) = f(\lim_{n\to\infty} b_n) = f(c) \ge 0,$$

так как всегда было $f(a_n)<0$, $f(b_n)>0$. Сравнивая эти два неравенства получим, что f(c)=0, что и требовалось доказать.

Вторая теорема Больцано-Коши. Пусть f(x) определена и непрерывна на отрезке $\langle a,b \rangle$ и $m = \inf_{x \in \langle a,b \rangle} f(x)$ и

 $M = \sup_{x \in \langle a,b \rangle} f(x)$. Тогда $\forall C \quad m < C < M \quad \exists c \in \langle a,b \rangle f(c) = C$.

<u>Примечание</u>. Символ < означает любой из двух символов — (или [, а символ > — любой из двух символов —) или]. Таким образом, отрезок $\langle a, b \rangle$ означает <u>любой</u> из следующих отрезков — [a, b], (a, b], [a, b), или (a, b).

Доказательство.

Так как к супремуму и инфимуму можно подойти сколь угодно близко, то можно утверждать, что

$$\exists x_1 \in \langle a, b \rangle \qquad m < f(x_1) < C,$$

$$\exists x_2 \in \langle a, b \rangle$$
 $C < f(x_2) < M$

Очевидно, что отрезок $[x_1, x_2] \subset \langle a, b \rangle$.

Рассмотрим функцию $\phi(x) = f(x) - C$. Для нее имеем:

$$\varphi(x_1) = f(x_1) - C < 0; \quad \varphi(x_2) = f(x_2) - C > 0.$$

Согласно первой теореме Больцано-Коши, $\exists c \in [x_1, x_2]$, такая, что $\varphi(c)=0$. Но тогда эта же точка $c \in \langle a, b \rangle$ и для нее $\varphi(c)=f(c)-C=0$, то есть $\varphi(c)=f(c)$

Первая теорема Вейерштрасса.

Пусть функция f(x) определена и непрерывна на замкнутом отрезке [a, b]. Тогда она ограничена на этом отрезке, то есть существуют такие числа m и M, что $\forall x \in [a, b]$ $m \le f(x) \le M$.

Доказательство.

Доказательство этой теоремы проведем методом от противного. Предположим противное — пусть, например, функция f(x) неограничена сверху.

1. Построение последовательности. Мы предположили, что f(x) неограничена сверху на [a, b]. Это означает, что для любого числа A найдется такая точка $x \in [a, b]$, что f(x) > A.

Возьмем в качестве числа A числа 1, 2, 3, 4,... Тогда $\forall n \exists x_n$, что $f(x_n) > n$. Мы получили, таким образом, некоторую последовательность $\{x_n\} \in [a, b]$ и удовлетворяющую свойству $f(x_n) > n$.

2. Выделение подпоследовательности. Так как последовательность $\{x_n\}$ ограничена, то по лемме Больцано-Вейерштрасса из нее можно выделить сходящуюся последовательность $\{x_{n_k}\}$, то есть $\exists \lim_{k \to \infty} x_{n_k} = c$. В силу

замкнутости отрезка [a, b] точка $c \in [a,b]$.

(Отметим, что в этом месте используется ограничение теоремы – замкнутость [a, b]. Если бы, например, был (a, b), то c могла бы и не принадлежать (a, b)).

3. Сведение к противоречию. Так как согласно п.1 $f(x_{n_k}) > n_k$, то, переходя к пределу $k \to \infty$, получим

$$\lim_{k\to\infty} f(x_{n_k}) = f(\lim_{k\to\infty} x_{n_k}) = f(c) \ge \lim_{k\to\infty} n_k = +\infty,$$

то есть $f(c)=+\infty$, что противоречит условию теоремы, где сказано, что f(x) определена на отрезке [a,b], что означает, что f(c) должна иметь конечное значение.

Существенность ограничений теоремы.

В теореме два ограничения — непрерывность функции f(x) и замкнутость отрезка [a, b]. Покажем на примерах, что отказ от любого из этих ограничений приводит к тому, что теорема становится неверной.

1. Непрерывность функции.

Рассмотрим функцию $f(x) = \begin{cases} 1/x, & \text{если } x \neq 0, \\ 0, & \text{если } x = 0, \end{cases}$ и $x \in [-1,1]$. Как видно из рисунка, эта функция неограничена на [-1,1].

2. Замкнутость отрезка.

Вторая теорема Вейерштрасса.

Пусть функция f(x) определена и непрерывна на замкнутом отрезке [a,b]. Тогда существуют такие точки $x_1, x_2 \in [a,b]$, что $f(x_1) = \inf_{x \in [a,b]} f(x), \ f(x_2) = \sup_{x \in [a,b]} f(x)$, то есть инфимум и

супремум f(x) достигаются на [a, b].

Доказательство.

Докажем теорему только для супремума.

<u>1. Построение последовательности</u>. По первой теореме Вейерштрасса, f(x) ограничена сверху на [a,b], то есть $\exists \sup_{x \in [a,b]} f(x) = M$

По свойствам супремума, к нему можно подойти сколь угодно близко. Поэтому $\forall n \ \exists x_n \in [a,b] \ M - \frac{1}{n} \leq f(x_n) \leq M$. Беря $n=1,2,3,\ldots$ получим последовательность $\{x_1,\ x_2,\ x_3,\ldots\}$ такую, что $\forall n \ M - \frac{1}{n} \leq f(x_n) \leq M$.

- 2. Выделение подпоследовательности. Так как $\forall n \ a \le x_n \le b$, то по лемме Больцано-Вейерштрасса, из последовательности $\{x_n\}$ можно выделить сходящуюся подпоследовательность $\{x_{n_k}\}$ такую, что $\exists \lim_{k \to \infty} x_{n_k} = c$, причем $c \in [a, b]$ в силу его замкнутости.
- <u>3. Достижение супремума</u>. Для нашей подпоследовательности верно условие

$$\forall k \quad M - \frac{1}{n_k} \le f(x_{n_k}) \le M.$$

Переходя к пределу $k \rightarrow \infty$, получим

$$\lim_{k\to\infty} \left(M - \frac{1}{n_k} \right) \le \lim_{k\to\infty} f(x_{n_k}) \le M.$$

Но $n_k \to \infty$, кроме того, в силу непрерывности f(x), $\lim_{k\to\infty} f(x_{n_k}) = f(\lim_{k\to\infty} x_{n_k}) = f(c)$. В результате получим, что

 $M \le f(c) \le M$, то есть f(c) = M и супремум f(x) достигается в точке c.

Существенность ограничений теоремы.

В этой теореме также два ограничения — непрерывность функции f(x) и замкнутость отрезка [a, b]. Покажем на примерах, что отказ от любого из этих ограничений приводит к тому, что теорема становится неверной.

1. Непрерывность функции.

Рассмотрим функцию f(x) = $=x-[x]=\operatorname{frac}(x)$, называемую дробной частью числа х. Ее график приведен на рисунке. Ясно, что супремум этой функции равен 1, но OH нигде не достигается.

2. Замкнутость отрезка.

