Aufgabe 1

a) Geben Sie ein Beispiel für eine nicht stetige Funktion f über cpo's an.

Definition der Stetigkeit aus VL: Seinen A und B cpo's

Eine Funktion $f: A \to B$ heißt **stetig**, wenn f(K) eine Kette in B ist und $f(\bigcup K) = \bigcup f(K)$ für alle $K \subseteq A$ mit K ist Kette in A.

Noch ein Blick auf die Kette aus der Vorlesung:

K ist Kette, wenn zu je zwei $k_1, k_2 \in K$ gilt: $k_1 \sqsubseteq_A k_2$ oder $k_2 \sqsubseteq_A k_1$.

cpo: $(\mathbb{N}_{\infty}, \leq)$

 $f(x) = x \mod 2 \min x \in \mathbb{N}$

Ist eine nicht stetige Funktion.

b) Beweisen Sie, dass die Komposition stetiger Funktionen wieder eine stetige Funktion ergibt. Skizze: Seien $f:A\to B$ und $g:B\to C$ stetige Funktionen und A,B und C cpo's und der \circ -Operator steht - wie üblich - für die Komposition.

Für alle Ketten $k \subseteq A$:

$$(g \circ f)(\bigsqcup k) = \bigsqcup (g \circ f)(k)$$
$$= \bigsqcup g(f(k))$$

Wegen Monotonie von f ist $f(k) \subseteq B$ eine Kette und wegen der Monotonie von g ist $g(f(k)) \subseteq B$ Kette in C.

q.e.d.

Aufgabe 2

a) Zeigen Sie, wie Sie zu gegebenen cpos $D_1, ..., D_n$ mit $n \ge 2$ den Bereich der disjunkten Vereinigung $(D_1 + ... + D_n)$ erklären können, ohne die minimalen Elemente zu verschmelzen.

$$D := D_1 + ... + S_2 = (\{(d, i) | 1 \le i \le nmd \in D_i\} \cup \bot_0, \sqsubseteq_0)$$

 $\bot_0 \sqsubseteq d \in D$

- $(d, i) \sqsubseteq_D (d', j)$ genau dann wenn i = j, und $d \sqsubseteq_{o_i} d'$ Da jedes D_i vorher cpo war und nun jeweils ein weiteres, gemeinsames Element, dass jeweils die Kritierien für \bot erfüllt, ist das Resultat auch ein cpo.
- b) Definieren Sie folgende Injektions-, Projektions- und Testfunktionen in kanonischer Weise:

$$\begin{array}{ll} in_{i}: & D_{i} \rightarrow \left(D_{1} + \ldots + D_{n}\right) \text{ für alle } 1 \leq i \leq n \\ d \mapsto \left(d,i\right) \text{ für } 1 \leq i \leq n \\ out_{i}: & \left(D_{1} + \ldots + D_{n}\right) \rightarrow D_{i} \text{ für alle } 1 \leq i \leq n \\ d \mapsto \begin{cases} d & \text{falls } x = \left(d,i\right) \\ \bot_{D_{i}} & \text{sonst} \end{cases} \\ is_{i}: & \left(D_{1} + \ldots + D_{n}\right) \rightarrow BOOL_{\bot} \text{ für alle } 1 \leq i \leq n \\ d \mapsto \begin{cases} \frac{true}{false}, & \text{falls } x = \left(d,i\right) \\ \bot_{L}, & \text{sonst} \end{cases} \\ \end{cases}$$

Aufgabe 3

Definieren Sie stetige Erweiterungen der Addition und des Tests auf Gleichheit, so dass diese Operationen total werden auf den cpo's \mathbb{N}_{\perp} und $BOOL_{\perp}$. Diskutieren Sie, ob es mehrere solche Erweiterungen gibt.

Aufgabe 4

Seien D_1 und D_2 cpo's und auf $f:D_1\to D_2$ und $g:D_2\to D_1$ stetige Funktionen. Beweisen Sie:

$$fix_{f \circ g} = f(fix_{g \circ f})$$
 und
 $fix_{g \circ f} = g(fix_{f \circ g})$

$$fix_j = \bigsqcup_{n \in \mathbb{N}} f^n(\bot)$$

$$fix_{f \circ g} = \bigsqcup_{n \in \mathbb{N}} (f \circ g)^n (\bot_{D_2})$$

$$[\text{weil } \bot_{D_2} \sqsubseteq_{D_2} f(\bot_{D_1}] = \bigsqcup_{n \in \mathbb{N}} (f \circ g)^n (f(\bot_{D_1}))$$

$$= \bigsqcup_{n \in \mathbb{N}} (f \circ (g \circ f)^n) (\bot_{D_1})$$

$$= f(\bigsqcup_{n \in \mathbb{N}} (g \circ f)^n (\bot_{D_1}))$$

$$= f(fix_{g \circ f})$$

(i)
$$fix_{f \circ g} \sqsubseteq_{D_2} f(fix_{g \circ f})$$

(ii) $fix_{g \circ f} \sqsubseteq_{D_1} g(fix_{f \circ g})$
(iii) $f(fix_{g \circ f}) \sqsubseteq_{D_1} f(g(fix_{f \circ g}))$, wegen (ii) und Monotonie von f
(iv) $g(fix_{f \circ g} \sqsubseteq_{D_2} fix_{g \circ f}) = (f \circ g)(fix_{f \circ g})$
 $fix_{f \circ g}$
Behauptung folgt aus (iii) und (iv) sowie Antisymetrie.