Seminarski

Simbolicka regresija

autori: mi19108, mi19255

Uvod

Simbolicka regresija (SR) je tip regresione analize koja trazi matematičke izraze kako bi našla model koji se najbolje uklapa u dati set podataka.

Naš pristup se bazira na konceptu Expression Tree-ja, kod kojeg se izgradi stablo sačinjeno od objekata tipa Node, čija se definicija može naći ispod.

```
class Node:
    def __init__(self, operation=None, left=None, right=None, value=None):
        self.operation = operation
        self.left = left
        self.right = right
        self.value = value
```

Ovde možemo uočiti da klasa Node sadrži četiri vrednosti, tako da može biti ili operacija gde se vrednosti čuvaju u levom i desnom podstablu (tip Node), ili može imati vrednost na koju se odgovara nadoperacijom.

Pristup

Naš izabrani pristup se svodi na genetsko programiranje za nalaženje najbolje populacije kao sam odgovor na pitanje, i biranje najbolje jedinke iz te populacije kao funkciju kojom će tačke na grafiku biti opisane.

Biranje početnih podataka

```
X = np.random.rand(100, 1)

y = X + np.random.randn(100, 1)
```

Početni podaci se nalaze u vidu tačaka izabranih pseudo nasumično, gde su tačke na x osi ključevi, a na y osi vrednosti na date ključeve (parametre).

Algoritam

Opredelili smo se za genetski algoritam koji ćemo ručno implementirati. Jedine dodatne biblioteke koje su u projekat ubačene su:

- 1. numpy
- 2. random
- 3. math
- 4. matplotlib

Početak

Na početku se generišu izrazi nasumično:

Merenje greške

Za projekat je korišćena MSE metrika za fitness funkciju:

```
def fitness(individual, X, y):
    predictions = [individual.evaluate(x) for x in X]
    for i in range(len(predictions)):
        if predictions[i] == None:
            predictions[i] = 0.0

    mse = ((predictions - y) ** 2).mean()
    return 1 / (mse + 1e-9) # Dodajemo ovu malu konstantu
```

Inicijalni grafici

Na inicijalnim graficima je prikazano ponašanje sa manjim brojem funkcija, i nasumično odabranim vrednostima za broj izraza, veličinu izraza, dubinu izraza, veličinu jedne generacije, šansu za mutaciju:

Scatter Plot of Generated Data

Daljim menjanjem ovih vrednosti, kao i dodavanjem trigonometrijskih funkcija, dobijeni su bolji rezultati:

Posle dodatnog menjanja funkcija, rezulat je počeo da bolje prijanja uz same vrednosti.

Reference

- 1. https://proceedings.mlr.press/v139/biggio21a.html
- 2. Mark J. Willis; Hugo G. Hiden; Ben McKay; Gary A. Montague; Peter Marenbach (1997). "Genetic programming: An introduction and survey of applications"
- 3. Askhat Diveev, Elizaveta Shmalko Machine Learning Control by Symbolic Regression [1 ed.]