

Project EcoTrek

A proof-of-concept of a mobile application/tool/code to track energy, water consumption, waste and lifestyle metrics to calculate the user's carbon footprint

NTU Clean Energy Club Task Number: 3

Submitted by

Denis Tan
Julian Paul Lee (Co-Lead)
Kelly Koh
Mahek Merchant (Co-Lead)
Soh Soo Yang

Table of Contents

Executive Summary	i
Acknowledgments	ii
1 Introduction	1
2 Data Collection	2
2.1 Electricity Grid Emission Metrics	2
2.2 Waste Emission Metrics	2
2.3 Water Consumption Emission Metrics	3
2.4 Transport Emission Metrics	5
2.5 Food Consumption Emission Metrics	5
3 Coding Process of the Application Core	11
4 Design of the Application Graphical User Interface (GUI)	13
5 Possibilities for Future Development	16
6 Conclusion	17
References	18

Executive Summary

Singapore has been ramping up its efforts to address climate change over the years. In 2009, Singapore pledged to reduce emission by 16% from business-as-usual levels by 2020 (NEA, n.d.). In addition, in a survey conducted by the National Climate Change Secretariat (NCCS) in 2019, over 90% of Singaporeans were aware of climate change and its impacts, and 78% were prepared to play their part towards a low-carbon Singapore (Tan, A., 2019). As such, there is a growing demand for items that are environmentally-friendly and trackers that track carbon emission for individuals and households.

This report looks into the process and results of the creation and design of an application graphic user interface (GUI) to calculate the carbon footprint. This will aid in the ease of individuals or households to track their carbon emission and contribute to combating climate change.

Acknowledgments

I would like to extend my sincere gratitude to the following individuals for their dedicated and valuable support throughout this project.

To Ms Rithika Thomas and Mr Chang Chia Chien from Project SHEA, thank you both for your timely replies to our requests for help and for availing yourselves for consultations even during your leave periods. It has been a real pleasure to work with both of you.

To Mr Bryan Lee and Mr Malani Sarvash of NTU Clean Energy Club, thank you both for providing many opportunities to connect with the Project SHEA team. Furthermore, thank you for providing the team with many useful summaries of each meeting and giving great feedback on our work.

I would also like to thank my team for this project for their excellent work.

Thank you, Kelly, Sooyang and Denis for being so responsible, timely and proactive. Each of you have shown me what a great team player looks like and I am glad that we had the chance to work together.

Finally, I would like to thank my fellow Co-Lead for this project, Mahek, for having the courage to step up as Co-Lead for the project and practically taking over my place as the main leader for the team. You have shown great resolve in completing the hard work of coding nearly single-handedly on top of organising the team. Thank you for your great tenacity to see the project through.

	ce	

Julian

EcoTrek Co-Lead

1 Introduction

Project EcoTrek is a project organised jointly by NTU Clean Energy Club (NCEC) and Project SHEA. As part of such projects, NCEC students are given the opportunity to work on specific tasks laid out by Project SHEA.

Project EcoTrek evolved from what was originally Task 3.

Task 3

To develop the <u>proof-of-concept</u> of a mobile application/tool/code to track **energy**, water **consumption**, waste and **lifestyle metrics** to calculate the user's carbon footprint based on reference datasets from volunteers.

In brief, the EcoTrek application takes in the input of energy, water consumption, waste and lifestyle metrics and outputs the user's estimated carbon footprint.

In order to be able to calculate the user's carbon footprint from their lifestyle metrics, the EcoTrek application has to refer to datasets detailing the carbon footprint of specific lifestyle metrics. This is elaborated on in Chapter 2 and 3 of this report.

Furthermore, a Graphical User Interface (GUI) is needed to allow the user to have a smooth experience when they input their lifestyle metrics. This is covered in greater detail in Chapter 4 of this report.

Chapter 5 details the possibilities of further development of the EcoTrek app.

Why is the app named 'EcoTrek'?

The thought process in choosing the name 'EcoTrek' is explained below:

- 'EcoTrek' is composed of two parts 'Eco' and 'Trek'.
- 'Eco' is derived from the word 'Ecology'.
- 'Trek' is a play on the word 'Track' and also plays on the idea of a 'carbon footprint'.
- EcoTrek is therefore a project for tracking the ecological footprint of the user.

2 Data Collection

2.1 Electricity Grid Emission Metrics

The electricity grid emission metrics are obtained from the Electricity Grid Emission Factor and Upstream Fugitive Methane Emission Factor, 2005 - 2019 provided by the Energy Market Authority (EMA).

	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Electricity Grid Emission Factors															
Average Operating Margin (OM) (kg CO2 /	0.525	0.530	0.504	0.496	0.497	0.508	0.508	0.477	0.438	0.427	0.422	0.423	0.421	0.420	0.408
kWh)	5	0	6	5	3	3	5	8	8	7	4	7	0	6	5
Build Margin (BM) (kg CO2 / kWh)	0.420	0.422	0.435	0.426	0.420	0.431	0.457	0.416	0.413	0.408	0.394	0.397	0.401	0.403	0.401
	5	5	2	4	8	9	8	4	7	6	1	7	8	1	3
Upstream Fugitive Methane Emission Factor	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.001	0.002	0.002
(kg CH4 / kWh)	16	18	25	21	22	22	28	18	18	20	17	16	98	13	12

Table 1: Electricity Grid Emission Factor and Upstream Fugitive Methane Emission Factor, 2005 - 2019

The Grid Emission Factor (GEF) measures the average CO2 emission emitted per MWh of electricity. It can be calculated using the Average Operating Margin (OM) or the Build Margin (BM) method. The OM measures the system-wide emissions factor while the BM measures the emissions factor of newer facilities. More details on the GEF could be found in the "Technical Notes" section of the Singapore Energy Statistics (SES) publication.

The 2017 and 2018 GEF have been revised to include fossil fuel-based carbon emissions from the incineration of non-plastics such as textile, rubber and leather.

2.2 Waste Emission Metrics

The waste emission metrics are obtained from the emission factors for different municipal solid waste (MSW) management systems treatment methods. A total of 6 different methods can be identified.

- 1) Landfill
- 2) Incineration
- 3) Sorting + Composting + Landfill
- 4) Sorting + Composting + Incineration
- 5) Sorting + Dry Biomethanization + Landfill
- 6) Sorting + Wet Biomethanization + Incineration + Landfill

Table 2 Emission factors for different municipal solid waste (MSW) management systems

treatment methods	emission factor /(tons CO ₂ -eq ^{a)} /tons of MSW)
landfill	1.97
incineration	1.67
sorting + composting + landfill	1.61
sorting + composting + incineration	1.41
$sorting + dry\ biomethanization + landfill$	1.42
$sorting + wet\ biomethanization + incineration + landfill$	1.19

Note: a) "CO2-eq" is "carbon dioxide equivalents"

Table 2: Emission factors for different municipal solid waste (MSW) management systems treatment methods

2.3 Water Consumption Emission Metrics

The water consumption emission metrics are obtained from the 2 tables below.

				S	ystem compon	ents for NEWater	at consumer		
Midpoint	Value	Abstracti							
impact		on of	Abstr						
category		fresh	action	Production				Collection	Distribution
		water	of	of	Productio	Production of	Production of	of	of Tap
		from	river	desalinated	n of	water from	reclaimed	wastewate	water/NEWa
		reservoir ^a	water	water ^b	NEWater ^b	Waterworks ^b	Water ^b	\mathbf{r}^{b}	ter ^b
Climate									
change	2.19 kg CO ₂ -Eq	0%	0%	0%	15%	0%	53%	27%	4%
Ozone layer	3.79E-05 kg								
depletion	CFC-11-Eq	0%	0%	0%	12%	0%	88%	0%	0%
Photochemi									
cal	0.00109 kg								
oxidation	NMVOC	0%	0%	0%	52%	0%	24%	14%	10%

Human	0.172 kg 1,4-								
toxicity	DCB-Eq	0%	0%	0%	61%	0%	32%	4%	3%
Particulate	7.94E-04 kg								
matter	PM10-Eq	0%	0%	0%	61%	0%	20%	11%	8%
Terrestrial	0.00282 kg SO ₂ -								
acidification	Eq	0%	0%	0%	48%	0%	32%	12%	9%
Fossil									
depletion	0.317 kg oil-Eq	0%	0%	0%	36%	0%	36%	16%	12%
Water									
depletion	0.00344 m ³	0%	0%	0%	46%	0%	32%	13%	9%

^a Only considers natural freshwater from stormwater collection. Excludes NEWater contribution to reservoir.

Table 3: Midpoint impact results and percentage breakdown for the individual system components contributing to NEWater at consumer based on functional unit of 1m3 of NEWater at consumer

			System components for Tap water at consumer									
Midpoint impact category	Value	Abstract ion of fresh		Producti		Producti on of	Product					
		water		on of	Producti	water	ion of	Collectio	Distribution			
		from reservoir	Abstraction of river	desalinat ed	on of NEWate	from Waterw	reclaim ed	n of wastewa	of Tap water/NEW			
		a	water	water ^b	${f r^b}$	orks ^b	Water ^b	ter ^b	ater ^b			
Climate												
change	1.30 kg CO ₂ -Eq	0%	0%	33%	1%	52%	4%	2%	7%			
Ozone layer	4.82E-06 kg CFC-											
depletion	11-Eq	0%	0%	61%	5%	2%	33%	0%	0%			
Photochemic	0.00127kg											
al oxidation	NMVOC	0%	0%	41%	2%	47%	1%	1%	9%			
Human	0.255 kg 1,4-DCB-											
toxicity	Eq	0%	0%	15%	2%	80%	1%	0%	2%			
Particulate	8.78E-04kg PM10-						-					
matter	Eq	0%	0%	36%	3%	53%	1%	0%	7%			

^b Includes operational inputs and emissions, excludes embodied impact of primary flow

Terrestrial									
acidification	0.00584 kg SO ₂ -Eq	0%	0%	19%	1%	74%	1%	0%	4%
Fossil									
depletion	0.271kg oil-Eq	0%	0%	57%	2%	24%	2%	1%	14%
Water									
depletion	0.882 m3	56%	43%	0%	0%	0%	0%	0%	0%

^a Only considers natural freshwater from stormwater collection. Excludes NEWater contribution to reservoir.

Table 4: Midpoint impact results and percentage breakdown for the individual system components contributing to Tap water at consumer based on functional unit of 1m3 of Tap water at consumer

2.4 Transport Emission Metrics

The transport emission metrics are obtained from the tables below. Data for 3 different modes of transport are provided. They are car (4-seater), bus, and MRT respectively.

Mode of transport	Carbon Footprint (kgCO ₂)
Car (4-seater)	0.14 kgCO ₂ /vehicle km
Bus	0.019 kgCO ₂ per passenger-kilometre
MRT	0.013 kgCO ₂ per passenger-kilometre

Table 5: Carbon footprint (kgCO2) for each mode of transport

2.5 Food Consumption Emission Metrics

The food consumption emission metrics are obtained from a joint study conducted by Temasek, Deloitte, A*STAR, and Singapore Institute of Manufacturing Technology ("Environmental Impact of Key Food Items in Singapore", 2019). The study analyzes the environmental impact of key food items in Singapore.

The study quantifies the environmental impact of the production, processing and transportation stages of food in Singapore in terms of GHG emissions, energy consumption and water consumption. The study covers 13 key food items which are the 11 items tracked by Singapore Food Agency (SFA) and 2 staples (rice and wheat).

The following tables show the environmental impact of the 13 key food items.

^b Includes operational inputs and emissions, excludes embodied impact of primary flow

Key Food Items	Specific Food Items	Country Source	Indicators	Units	Total	Production	Processing	Transportation	Percentage of Key Food Item
		Malaysia +	GHG Emissions	kg CO ₂ -eq	3.380368	2.995031	0.38144	0.003897	
	Fresh	processed in	Energy Consumption	kWh	21.969	20.95033	1.000041	0.018625	36%
		Singapore	Water Consumption	litres	543.7095	530.1613	13.54397	0.00432	
			GHG Emissions	kg CO ₂ -eq	3.763021	2.998928	0.761379	0.002714	
Chicken (kg meat)		Malaysia	Energy Consumption	kWh	23.29289	20.96896	2.310853	0.013085	1%
(ng mout)	2		Water Consumption	litres	544.5041	530.1656	14.3	0.00296	
	Frozen		GHG Emissions	kg CO ₂ -eq	3.63258	2.527702	0.680492	0.424386	
		Brazil	Energy Consumption	kWh	23.63409	19.64725	2.033393	1.953449	46%
			Water Consumption	litres	554.4439	551.7638	2.157743	0.522355	
		Malaysia +	GHG Emissions	kg CO ₂ -eq	4.142192	3.812459	0.325677	0.004056	
	Fresh	processed in	Energy Consumption	kWh	24.15862	22.69209	1.44714	0.019382	34%
Duck		Singapore	Water Consumption	litres	755.3193	753.7943	1.520562	0.004496	
(kg meat)		Malaysia +	GHG Emissions	kg CO ₂ -eq	4.250369	3.812459	0.433854	0.004056	
	Frozen	processed in	Energy Consumption	kWh	24.65039	22.69209	1.938915	0.019382	60%
		Singapore	Water Consumption	litres	755.6846	753.7943	1.885818	0.004496	
			GHG Emissions	kg CO ₂ -eq	21.2201	13.19894	0.900921	7.120243	
	Chilled	Australia	Energy Consumption	kWh	54.4563	18.54286	4.03252	31.88092	30%
Mutton			Water Consumption	litres	559.2277	534.2696	19.57792	5.380136	
(kg meat)			GHG Emissions	kg CO ₂ -eq	14.34296	13.19894	0.967689	0.176332	

Table 6: Environmental impact of chicken, duck, mutton

Key Food Items	Specific Food Items	Country Source	Indicators	Units	Total	Production	Processing	Transportation	Percentage of Key Food Item																	
		Indonesia +	GHG Emissions	kg CO ₂ -eq	9.00934731	7.22039819	1.7484542	0.04049491																		
	Fresh	processed in	Energy Consumption	kWh	36.3562596	27.8194819	8.35273176	0.18404597	17%																	
		Singapore	Water Consumption	litres	836.689216	825.609536	11.0328988	0.04678044																		
			GHG Emissions	kg CO ₂ -eq	26.9740328	7.2956226	0.81951735	18.8588928																		
		Brazil	Energy Consumption	kWh	118.671078	28.1040681	6.13965788	84.4273521	10%																	
	Chilled		Water Consumption	litres	854.989734	834.045794	6.70111408	14.2428261																		
	Chilled		GHG Emissions	kg CO ₂ -eq	18.3298817	7.13954458	4.07009369	7.12024343																		
		Australia	Energy Consumption	kWh	71.2620622	27.5491043	11.8343304	31.8786274	4%																	
			Water Consumption	litres	846.825389	817.660082	23.7851704	5.38013636																		
			GHG Emissions	kg CO ₂ -eq	8.56600375	7.2956226	0.84836555	0.4220156																		
Pork (kg meat)		Brazil	Energy Consumption	kWh	36.3957043	28.1040681	6.42275666	1.86887957	24%																	
(ng moat)			Water Consumption	litres	841.317456	834.045794	6.7713812	0.50028023																		
			GHG Emissions	kg CO ₂ -eq	11.4827046	7.13954458	4.16682801	0.17633204																		
		Australia	Australia	Australia	Australia	Australia	Australia	Australia	Australia	Australia	Australia	Australia	Australia	Australia	Australia	Australia	Australia	Australia	Australia	Energy Consumption	kWh	40.4501858	27.5491043	12.1171432	0.78393822	8%
	_		Water Consumption	litres	842.12738	817.660082	24.2590585	0.20823942																		
	Frozen		GHG Emissions	kg CO ₂ -eq	9.81102315	7.08577643	2.36322208	0.36202464																		
		Netherlands	Energy Consumption	kWh	39.5040827	27.3518598	10.548284	1.60393892	12%																	
			Water Consumption	litres	824.355139	811.824375	12.1017885	0.42897494																		
			GHG Emissions	kg CO₂-eq	9.36335679	7.2956226	1.77765705	0.29007714																		
		Spain	Energy Consumption	kWh	39.9909123	28.1040681	10.6006035	1.28624071	6%																	
			Water Consumption	litres	847.050753	834.045794	12.6615132	0.34344598																		

Table 7: Environmental impact of pork

Key Food Items	Specific Food Items	Country Source	Indicators	Units	Total	Production	Processing	Transportation	Percentage of Key Food Item				
			GHG Emissions	kg CO₂-eq	38.38723	18.83387	0.694466	18.85889					
		Brazil	Energy Consumption	kWh	106.1078	16.91075	4.763607	84.43343	16%				
			Water Consumption	litres	887.1052	867.0229	5.839463	14.24283					
			GHG Emissions	kg CO ₂ -eq	27.49682	18.85724	1.519332	7.120243					
	Chilled	Australia	Energy Consumption	kWh	54.65465	16.76855	6.005179	31.88092	8%				
			Water Consumption	litres	867.7766	852.116	10.28049	5.380136					
			GHG Emissions	kg CO ₂ -eq	29.29078	18.76068	0.632927	9.897177					
		New Zealand	Energy Consumption	kWh	65.28326	16.55886	4.411483	44.31291	3%				
Beef			Water Consumption	litres	864.9728	851.6393	5.856836	7.476722					
(kg meat)			GHG Emissions	kg CO ₂ -eq	19.9699	18.83387	0.714009	0.422016					
		Brazil	Brazil	Brazil	Brazil	Brazil	Energy Consumption	kWh	23.73801	16.91075	4.958246	1.869014	36%
			Water Consumption	litres	873.4112	867.0229	5.887969	0.50028					
			GHG Emissions	kg CO ₂ -eq	20.61967	18.85724	1.5861	0.176332					
	Frozen	Australia	Australia	Australia	Australia	Australia	Energy Consumption	kWh	23.75217	16.76855	6.199621	0.783995	20%
			Water Consumption	litres	862.934	852.116	10.60978	0.208239					
			GHG Emissions	kg CO ₂ -eq	19.64468	18.76068	0.648534	0.235474					
		New Zealand	Energy Consumption	kWh	22.20997	16.55886	4.605926	1.045184	8%				
			Water Consumption	litres	857.8354	851.6393	5.917614	0.278541					

Table 8: Environmental impact of beef

Key Food Items	Specific Food Items	Country Source	Indicators	Units	Total	Production	Processing	Transportation	Percentage of Key Food Item
			GHG Emissions	kg CO ₂ -eq	3.10849	3.045769	0.055363	0.007358	
		Malaysia	Energy Consumption	kWh	17.21907	17.00257	0.181337	0.035165	81%
Eggs			Water Consumption	litres	456.1129	455.8614	0.243262	0.008157	
(kg)	Fresh		GHG Emissions	kg CO ₂ -eq	2.955663	2.924229	0.031273	0.000161	
		Singapore	Energy Consumption	kWh	16.92422	16.80427	0.11918	0.000771	19%
			Water Consumption	litres	455.6971	455.5065	0.190444	0.000179	19%

Table 9: Environmental impact of eggs

Key Food Items	Specific Food Items	Country Source	Indicators	Units	Total	Production	Processing	Transportation	Percentage of Specific Food Item
			GHG Emissions	kg CO ₂ -eq	0.382615	0.191647	0.101987	0.088981	
		Malaysia	Energy Consumption	kWh	3.538681	2.423172	0.687575	0.427935	41%
			Water Consumption	litres	147.5876	145.5886	1.902155	0.0969	
	Banana		GHG Emissions	kg CO ₂ -eq	0.390919	0.199766	0.101987	0.089166	
		Philippines	Energy Consumption	kWh	3.534318	2.44772	0.687575	0.399024	42%
			Water Consumption	litres	143.1916	141.1891	1.902155	0.100377	
			GHG Emissions	kg CO ₂ -eq	0.318382	0.127414	0.101987	0.088981	
	Watermelon	Malaysia	Energy Consumption	kWh	2.123419	1.007909	0.687575	0.427935	99%
			Water Consumption	litres	76.40728	74.40823	1.902155	0.0969	
	Papaya		GHG Emissions	kg CO ₂ -eq	0.335058	0.14409	0.101987	0.088981	
		Malaysia	Energy Consumption	kWh	2.347446	1.231937	0.687575	0.427935	97%
			Water Consumption	litres	93.18457	91.18551	1.902155	0.0969	
	Pineapple		GHG Emissions	kg CO ₂ -eq	0.28408	0.093112	0.101987	0.088981	
Fruits (kg)		Malaysia	Energy Consumption	kWh	2.357335	1.241826	0.687575	0.427935	84%
(kg)			Water Consumption	litres	28.76637	26.76732	1.902155	0.0969	
		Australia	GHG Emissions	kg CO ₂ -eq	0.50028	0.19825	0.096674	0.205356	24%
			Energy Consumption	kWh	3.012304	1.436364	0.664308	0.911632	
			Water Consumption	litres	172.5841	170.5412	1.811324	0.231592	
			GHG Emissions	kg CO ₂ -eq	0.996865	0.156613	0.096674	0.743579	
		USA	Energy Consumption	kWh	5.372426	1.420645	0.664308	3.287473	31%
			Water Consumption	litres	173.0522	170.4015	1.811324	0.839338	
	Orange		GHG Emissions	kg CO ₂ -eq	0.593861	0.196074	0.101987	0.295801	
		South Africa	Energy Consumption	kWh	3.427926	1.429191	0.687575	1.31116	20%
			Water Consumption	litres	162.0502	159.8144	1.902155	0.333703	
			GHG Emissions	kg CO ₂ -eq	0.566273	0.180691	0.10312	0.282461	
		Egypt	Energy Consumption	kWh	3.422117	1.477244	0.692538	1.252335	16%
			Water Consumption	litres	177.4357	175.1955	1.921532	0.318637	

Table 10: Environmental impact of fruits

Key Food Items	Specific Food Items	Country Source	Indicators	Units	Total	Production	Processing	Transportation	Percentage of Specific Food Item
			GHG Emissions	kg CO ₂ -eq	0.598867	0.422768	0.101987	0.074113	
	Tomato	Malaysia	Energy Consumption	kWh	3.107066	2.062612	0.687575	0.356879	96%
			Water Consumption	litres	5.517014	3.53444	1.902155	0.080419	
			GHG Emissions	kg CO ₂ -eq	0.741585	0.534582	0.122128	0.084875	
		China	Energy Consumption	kWh	3.801334	2.699213	0.721776	0.380345	65%
	0.11		Water Consumption	litres	18.90912	16.90804	1.905877	0.095213	
	Cabbage		GHG Emissions	kg CO ₂ -eq	0.753856	0.579226	0.126156	0.048473	18%
		Indonesia	Energy Consumption	kWh	3.918827	2.967108	0.731996	0.219722	
			Water Consumption	litres	20.74055	18.7585	1.927948	0.054103	
Other		Australia	GHG Emissions	kg CO ₂ -eq	1.318346	0.743562	0.356276	0.218508	
Vegetables			Energy Consumption	kWh	5.744501	3.240385	1.533757	0.970359	47%
(kg)			Water Consumption	litres	30.05421	24.87218	4.935932	0.246094	
			GHG Emissions	kg CO ₂ -eq	1.173404	0.744659	0.344782	0.083962	31%
	Carrot	China	Energy Consumption	kWh	4.967622	3.099317	1.49205	0.376255	
			Water Consumption	litres	28.12657	23.25057	4.781811	0.09419	
			GHG Emissions	kg CO ₂ -eq	1.063548	0.584422	0.395864	0.083263	
		Malaysia	Energy Consumption	kWh	5.007851	2.9295	1.677412	0.400939	18%
			Water Consumption	litres	28.01693	22.45979	5.466791	0.090347	
			GHG Emissions	kg CO ₂ -eq	0.245715	0.048299	0.185325	0.012091	
	Beansprout	Singapore	Energy Consumption	kWh	2.592055	1.045716	1.492056	0.054283	86%
			Water Consumption	litres	3.65581	1.649057	1.993202	0.013553	

Table 11: Environmental impact of other vegetables

Key Food Items	Specific Food Items	Country Source	Indicators	Units	Total	Production	Processing	Transportation	Percentage of Specific Food Item
			GHG Emissions	kg CO₂-eq	0.990663	0.806908	0.099793	0.083962	
		China	Energy Consumption	kWh	4.438323	3.3841	0.677968	0.376255	8%
			Water Consumption	litres	23.84281	21.88397	1.86465	0.09419	
			GHG Emissions	kg CO ₂ -eq	0.843198	0.645356	0.11458	0.083263	
		Malaysia	Energy Consumption	kWh	4.351549	3.207886	0.742725	0.400939	15%
	Onion		Water Consumption	litres	23.33236	21.12456	2.117458	0.090347	
	Onion		GHG Emissions	kg CO ₂ -eq	1.186481	0.973262	0.11458	0.098639	53%
		India	Energy Consumption	kWh	5.209529	4.02493	0.742725	0.441874	
			Water Consumption	litres	24.65833	22.4302	2.117458	0.11067	
			GHG Emissions	kg CO ₂ -eq	1.119623	0.57053	0.101987	0.447106	
		Netherlands	Energy Consumption	kWh	5.945777	3.278819	0.687575	1.979383	9%
			Water Consumption	litres	24.0854	21.67901	1.902155	0.504229	
Other			GHG Emissions	kg CO ₂ -eq	0.414978	0.202175	0.11458	0.098222	
egetables		Bangladesh	Energy Consumption	kWh	3.4443	2.261539	0.742725	0.440037	11%
(kg)			Water Consumption	litres	151.2954	149.0677	2.117458	0.1102	
		China	GHG Emissions	kg CO ₂ -eq	0.396377	0.212621	0.099793	0.083962	45%
			Energy Consumption	kWh	3.310227	2.256003	0.677968	0.376255	
			Water Consumption	litres	154.4677	152.5089	1.86465	0.09419	
			GHG Emissions	kg CO ₂ -eq	0.371213	0.202175	0.11458	0.054458	
	Potato	Indonesia	Energy Consumption	kWh	3.251112	2.261539	0.742725	0.246848	8%
			Water Consumption	litres	151.246	149.0677	2.117458	0.060782	
			GHG Emissions	kg CO ₂ -eq	0.483097	0.202175	0.11458	0.166341	
		Pakistan	Energy Consumption	kWh	3.744994	2.261539	0.742725	0.74073	10%
			Water Consumption	litres	151.3723	149.0677	2.117458	0.187118	
			GHG Emissions	kg CO ₂ -eq	1.096731	0.201	0.10312	0.792612	
		USA	Energy Consumption	kWh	6.529572	2.332445	0.692538	3.504589	10%
			Water Consumption	litres	160.4084	157.5925	1.921532	0.894357	

Table 12: Environmental impact of other vegetables

Key Food Items	Specific Food Items	Country Source	Indicators	Units	Total	Production	Processing	Transportation	Percentage of Specific Food Item
			GHG Emissions	kg CO ₂ -eq	0.609043	0.445611	0.033018	0.130414	
		Australia	Energy Consumption	kWh	5.27265	4.419873	0.25851	0.594268	60%
Wheat			Water Consumption	litres	360.0115	359.826	0.030527	0.154908	
(kg)	Wheat		GHG Emissions	kg CO ₂ -eq	0.923174	0.490742	0.032978	0.399453	
		USA	Energy Consumption	kWh	6.824875	4.770377	0.258532	1.795966	34%
			Water Consumption	litres	569.3428	568.8287	0.030301	0.483853	
			GHG Emissions	kg CO ₂ -eq	2.533341	2.688972	-0.188235	0.032605	
		Thailand	Energy Consumption	kWh	6.270161	6.731953	-0.611380	0.149587	40%
			Water Consumption	litres	916.221650	917.122100	-0.938770	0.038302	
200			GHG Emissions	kg CO ₂ -eq	2.671638	2.954330	-0.330820	0.048128	
Rice (kg)	Rice	India	Energy Consumption	kWh	6.372628	7.113782	-0.960090	0.218936	29%
(kg)			Water Consumption	litres	937.566055	938.965400	-1.456620	0.057275	
			GHG Emissions	kg CO ₂ -eq	2.518485	2.688972	-0.221641	0.051153	
		Vietnam	Energy Consumption	kWh	6.161840	6.731953	-0.802540	0.232430	23%
			Water Consumption	litres	916.120389	917.122100	-1.062710	0.061000	
			GHG Emissions	kg CO ₂ -eq	0.429858	0.240616	0.100878	8.84E-02	
		China	Energy Consumption	kWh	1.697833	0.617993	0.682719	0.397121	53%
			Water Consumption	litres	49.62431	47.6421	1.883198	0.099014	
			GHG Emissions	kg CO ₂ -eq	0.43304	0.253411	0.101987	7.76E-02	
Leafy vegetables (kg)	Chinese Cabbage	Malaysia	Energy Consumption	kWh	1.703154	0.641726	0.687575	0.373853	18%
vegetables (kg)			Water Consumption	litres	52.97003	50.98361	1.902155	0.084265	
			GHG Emissions	kg CO ₂ -eq	0.342679	0.238802	0.100878	3.00E-03	
		Singapore	Energy Consumption	kWh	1.319076	0.621921	0.682719	0.014436	5%
			Water Consumption	litres	49.53329	47.64684	1.883198	0.003258	

Table 13: Environmental impact of wheat, rice, leafy vegetables

Key Food Items	Specific Food Items	Country Source	Indicators	Units	Total	Production	Processing	Transportation	Percentage of Specific Food Item
			GHG Emissions	kg CO ₂ -eq	0.273495	0.093198	0.102448	0.077848	
		Malaysia	Energy Consumption	kWh	1.960628	0.89654	0.689252	0.374835	69%
	Spinach		Water Consumption	litres	12.39289	9.948948	2.35945	0.084493	
	Spiriacri		GHG Emissions	kg CO ₂ -eq	0.18902	0.084638	0.101334	0.003047	
		Singapore	Energy Consumption	kWh	1.547779	0.848736	0.684378	0.014665	3%
			Water Consumption	litres	12.11771	9.778871	2.335524	0.003311	
			GHG Emissions	kg CO₂-eq	0.469264	0.289027	0.101987	0.07825	
		Malaysia	Energy Consumption	kWh	2.250134	1.185804	0.687575	0.376755	56%
			Water Consumption	litres	40.51441	38.52732	1.902155	0.084938	
			GHG Emissions	kg CO₂-eq	0.445305	0.290708	0.101987	0.05261	
		Indonesia	Energy Consumption	kWh	2.119376	1.192204	0.687575	0.239598	10%
Leafy			Water Consumption	litres	40.49578	38.53501	1.902155	0.058622	
Vegetables		Singapore (Soil- cultivated)	GHG Emissions	kg CO₂-eq	0.375591	0.271572	0.100878	0.003141	
(kg)			Energy Consumption	kWh	1.826109	1.128276	0.682719	0.015114	0.2%
			Water Consumption	litres	37.89475	36.00814	1.8832	0.003415	
	Lettuce	Singapore	GHG Emissions	kg CO₂-eq	0.422315	0.317957	0.101334	0.003023	
		(Greenhouse	Energy Consumption	kWh	2.443691	1.744761	0.684378	0.014551	0.2%
		soil-cultivated)	Water Consumption	litres	22.6083	20.26949	2.335524	0.003285	
		Singapore (Non-	GHG Emissions	kg CO ₂ -eq	0.26783	0.163904	0.100878	0.003048	
		greenhouse	Energy Consumption	kWh	1.652446	0.955056	0.682719	0.014671	0.2%
		hydroponics)	Water Consumption	litres	35.47109	33.58458	1.883198	0.003313	
		Singapore	GHG Emissions	kg CO₂-eq	1.537362	1.433359	0.100878	0.003125	
		(Greenhouse	Energy Consumption	kWh	7.507604	6.809953	0.682719	0.014933	(Used in future
		hydroponics- vertical)	Water Consumption	litres	14.00427	12.11761	1.883198	0.003464	scenario analysis)

Table 14: Environmental impact of leafy vegetables

Key Food Items	Specific Food Items	Country Source	Indicators	Units	Total	Production	Processing	Transportation	Percentage of Specific Food Item
			GHG Emissions	kg CO ₂ -eq	5.684848	4.577025	1.020249	0.087574	
	Catfish	Vietnam	Energy Consumption	kWh	31.18636	25.98651	4.803454	0.396395	97%
			Water Consumption	litres	654.0944	650.4875	3.505	0.102	
			GHG Emissions	kg CO ₂ -eq	13.57337	1.638121	0.120767	11.81448	
	Salmon (chilled)	Norway	Energy Consumption	kWh	61.50662	6.420893	2.18004	52.90569	59%
			Water Consumption	litres	230.5335	221.0685	0.532	8.93	
			GHG Emissions	kg CO ₂ -eq	2.294267	1.715716	0.152069	0.426482	
		Norway	Energy Consumption	kWh	11.95619	6.72504	3.330744	1.90041	3%
			Water Consumption	litres	232.9262	231.5402	0.883	0.503	
	Salmon (frozen)		GHG Emissions	kg CO ₂ -eq	2.25376	1.698352	0.460176	0.095233	
		Myanmar	Energy Consumption	kWh	14.03711	6.813679	6.78574	0.43769	20%
			Water Consumption	litres	235.421	231.1164	4.196	0.109	
			GHG Emissions	kg CO ₂ -eq	4.685541	3.836092	0.445285	0.404163	
Fish (kg meat)		Norway	Energy Consumption	kWh	15.16221	11.2934	2.068956	1.799852	23%
(kg meat)			Water Consumption	litres	2.32103	1.52562	0.319	0.477	
		China	GHG Emissions	kg CO ₂ -eq	5.557604	3.894808	1.566914	0.095882	31%
	Mackerel		Energy Consumption	kWh	16.02574	11.46626	4.120871	0.438615	
			Water Consumption	litres	5.30352	1.54897	3.644	0.11	
			GHG Emissions	kg CO ₂ -eq	5.171631	3.894808	1.096601	0.180222	
		Japan	Energy Consumption	kWh	15.58262	11.46626	3.305276	0.811086	12%
			Water Consumption	litres	3.77191	1.54897	2.012	0.211	
			GHG Emissions	kg CO ₂ -eq	3.73018	2.931717	0.791423	0.00704	
	Aquaculture	Singapore	Energy Consumption	kWh	20.83571	15.6612	5.140608	0.033898	81.3%
			Water Consumption	litres	433.3783	430.527	2.844	0.00764	
			GHG Emissions	kg CO ₂ -eq	4.262754	3.348328	0.891254	0.023171	
	Capture fishing	Singapore	Energy Consumption	kWh	16.1133	12.93904	3.062684	0.111578	18.7%
	7.1	28/6/	Water Consumption	litres	3.54565	1.74793	1.773	0.0251	

Table 15: Environmental impact of fish

Key Food Items	Specific Food Items	Country Source	Indicators	Units	Total	Production	Processing	Transportation	Percentage of Specific Food Item
			GHG Emissions	kg CO ₂ -eq	5.82830545	4.69009838	1.0417998	0.09640727	
		Vietnam	Energy Consumption	kWh	62.6322497	44.1890458	16.863006	1.58019786	10%
			Water Consumption	litres	0.21483072	0.21224691	0.00247245	0.00011136	
			GHG Emissions	kg CO ₂ -eq	5.90167102	4.75334663	1.0619243	0.0864001	48%
		Malaysia	Energy Consumption	kWh	60.7669715	42.8353327	16.4322778	1.49936105	
			Water Consumption	litres	0.21402444	0.21164831	0.00228199	9.41E-05	
			GHG Emissions	kg CO ₂ -eq	6.48815366	5.21829645	1.2098633	0.0599939	
	Shrimp (frozen)	Indonesia	Energy Consumption	kWh	64.1579809	45.7856457	17.3710165	1.00131867	8%
			Water Consumption	litres	0.22055221	0.21662018	0.00386395	6.81E-05	
			GHG Emissions	kg CO ₂ -eq	7.22324152	5.85517759	1.2781812	0.08988274	
		China	Energy Consumption	kWh	68.5560486	49.5998842	17.4796875	1.47647692	20%
Other			Water Consumption	litres	0.23303935	0.23017877	0.00275698	0.00010361	
Seafood (kg meat)		Singapore	GHG Emissions	kg CO ₂ -eq	5.13862442	4.50791726	0.61092601	0.01978115	2%
kg meat)			Energy Consumption	kWh	52.6379817	41.9781655	10.31654	0.34327609	
			Water Consumption	litres	0.2281306	0.22645048	0.00165857	2.16E-05	
			GHG Emissions	kg CO ₂ -eq	4.86431293	3.28595477	1.35239889	0.22595927	3%
		Indonesia	Energy Consumption	kWh	110.503004	53.8056526	52.9454732	3.75187822	
			Water Consumption	litres	0.00729949	0.00201923	0.00502252	0.00025773	
			GHG Emissions	kg CO ₂ -eq	4.96840779	3.28595477	1.31968914	0.36276389	
	Crab (frozen)	Philippines	Energy Consumption	kWh	112.509817	53.8056526	52.7774442	5.92672074	1%
			Water Consumption	litres	0.00706734	0.00201923	0.00462775	0.00042035	
			GHG Emissions	kg CO ₂ -eq	5.04473111	3.28595477	1.39885268	0.35992366	
		India	Energy Consumption	kWh	113.109537	53.8056526	53.4223163	5.88156841	10%
			Water Consumption	litres	0.00738888	0.00201923	0.00495267	0.00041697	

Table 16: Environmental impact of other seafood

Key Food Items	Specific Food Items	Country Source	Indicators	Units	Total	Production	Processing	Transportation	Percentage of Specific Food Item
			GHG Emissions	kg CO ₂ -eq	4.79812762	3.28595477	1.32956783	0.18260503	
		Indonesia	Energy Consumption	kWh	109.467273	53.8056526	52.5961077	3.06551298	31%
			Water Consumption	litres	0.00722643	0.00201923	0.00499708	0.00021012	
			GHG Emissions	kg CO ₂ -eq	4.84477302	3.28595477	1.29685807	0.26196018	
	Crab (fresh)	Philippines	Energy Consumption	kWh	110.57516	53.8056526	52.4280787	4.34142868	26%
			Water Consumption	litres	0.00692868	0.00201923	0.00460231	0.00030714	
			GHG Emissions	kg CO ₂ -eq	4.92228905	3.28595477	1.37602162	0.26031267	
		India	Energy Consumption	kWh	111.193543	53.8056526	53.0729508	4.31493914	11%
			Water Consumption	litres	0.00725158	0.00201923	0.00492722	0.00030513	
		Malaysia	GHG Emissions	kg CO ₂ -eq	4.76347232	4.60622846	0.06478344	0.09246042	
			Energy Consumption	kWh	70.0891032	65.3686048	3.11779944	1.60269893	27%
			Water Consumption	litres	0.00276216	0.00245316	0.00020867	1.00E-04	
Other	Squid (fresh)		GHG Emissions	kg CO ₂ -eq	4.73865097	4.60622846	0.06478344	0.06763907	
Seafood		Indonesia	Energy Consumption	kWh	69.6111336	65.3686048	3.11779944	1.12472929	1%
kg meat)			Water Consumption	litres	0.00273668	0.00245316	0.00020867	7.49E-05	
		China	GHG Emissions	kg CO ₂ -eq	4.90059262	4.77173857	0.03769647	0.09115758	2%
			Energy Consumption	kWh	72.1286191	67.7165892	2.9151303	1.49689962	
			Water Consumption	litres	0.00284145	0.00254128	0.00019506	0.00010511	
			GHG Emissions	kg CO ₂ -eq	4.94249148	4.60622846	0.24492955	0.09133346	
		Malaysia	Energy Consumption	kWh	80.2567391	65.3686048	13.303161	1.58497322	6%
			Water Consumption	litres	0.00363288	0.00245316	0.0010802	9.95E-05	
			GHG Emissions	kg CO ₂ -eq	4.91439978	4.60622846	0.24492955	0.06324177	
	Squid (frozen)	Indonesia	Energy Consumption	kWh	79.7269067	65.3686048	13.303161	1.0551409	17%
			Water Consumption	litres	0.00360515	0.00245316	0.0010802	7.18E-05	
			GHG Emissions	kg CO ₂ -eq	5.07338584	4.77173857	0.21048969	0.09115758	
		China	Energy Consumption	kWh	81.8982516	67.7165892	12.6847628	1.49689962	26%
			Water Consumption	litres	0.00367741	0.00254128	0.00103102	1.05E-04	

Table 17: Environmental impact of other seafood

3 Coding Process of the Application Core

After collecting the data for all the metrics, we translated the calculation steps into program code to compute the approximate carbon footprint of a person. The program was written in JAVA using the BlueJ IDE.

On executing the program, the user will be first asked to input the calendar year, month, and the number of household members. If the user provides a valid input for each field, he will be asked to input the data on energy consumption and lifestyle metrics. Else, the terminal window will display an error message.

After the user inputs the data on energy consumption and lifestyle metrics, it is first checked for validity. We have put constraints to ensure that the user enters positive values for electricity and water consumption and other metrics. The user can enter 0 when asked to input the distance travelled by a certain mode of transport that he does not use. However, negative values cannot be input for any metric.

If the user provides an invalid input for a particular field, the output for that field will be 0 and the BlueJ terminal window will display an error message. If the user provides a valid input for a particular field, the carbon footprint due to that metric will be computed according to the emission factors in the collected data and displayed in the unit of kgCO2 / day / person.

The program written in BlueJ only calculates the carbon footprint due to electricity, water, waste, and transport. It does not include food emission factors due to coding limitations. Nonetheless, this code forms the basis for designing the graphic user interface (GUI) of the application.

Program Code in BlueJ

Program Output

4 Design of the Application Graphical User Interface (GUI)

After coding the core of the application in BlueJ, the same program was used to design the graphic user interface (GUI) of the application in JavaFX using IntelliJ IDE. The design was edited over time after incorporating the suggestions from teammates and senior members of the NTU Clean Energy Club.

On executing the program, a popup window will ask the user to input the calendar year, month, and the number of household members. If the user provides a valid input for each field, he will be directed to the main window. Else, the terminal window will display an error message.

The JavaFX program in IntelliJ is similar to the JAVA program in BlueJ. The emissions due to electricity, water, waste, and transport are computed in the same manner. The output for all the metrics is displayed in the unit of kgCO2 / day / person. In case of an invalid input, the output for that particular field will be 0. No error message will be displayed.

However, unlike the previous program, the GUI asks the user to input the food items that he consumed during the day and the average quantity of each. This is implemented using a List Box that contains a list of food items, out of which one or more options can be selected. If the user provides a valid input for the average quantity of food items consumed, the output is computed according to the food emission factors in the collected data. Else, the output will be 0.

In addition to providing food inputs, the GUI also displays the emission factors for each metric next to the respective field. This measure is expected to increase awareness among the people regarding the actions that cause more pollution than others.

Popup window asking the user to input the calendar year, month, and the number of household members

Checking for invalid inputs

Checking for invalid inputs

Program output after giving valid inputs

5 Possibilities for Future Development

One of the possible ways for future development is via gamification of our application. To encourage more users to use the application, and to retain the users that already exist, elements of games and specifically challenges can be implemented into the application. Games that reward the users for completing challenges are positively reinforcing a specific behaviour. There are various ways in which games and challenges can be introduced into the app, for example a leaderboard, where users can compete on who has saved the most electricity or various metrics, would potentially encourage users to reduce their carbon footprint while using the application. Users could also potentially form teams to encourage and monitor other users to help further encourage usage of the application. Monetary benefits can also be included to help entice users to complete certain challenges such as reducing carbon footprint by 10% in a month. Examples of other applications using this system include popular fitness apps such as 42Race and HealthyWage, where users are rewarded when exercising, thus helping to promote a healthy living.

The Application can also allow advertisements which align with the interests of reducing emissions, such as with eco friendly companies or electric vehicles. This allows users to be introduced to more avenues where they are able to change their daily habits or use more environmentally friendly products while allowing the application to earn some revenue, which could then be used to further develop the application, or allow more companies to get on board.

The application can also be converted to cater to not only individuals and households, but towards industries and companies. More metrics can be added, with the application potentially automatically recording emissions from industries and companies via their systems, and thus allows these companies to also use the application to measure their emission levels, and potentially reduce their emissions. This would allow us to bring the application to a larger audience and thus help to bring greater awareness of the importance of reducing the carbon footprint.

These development goals potentially help to monetise the app, which could help bring aboard government agencies and companies on board thus furthering the development and usage of the application.

6 Conclusion

In conclusion, EcoTrek is a proof-of-concept application that allows its users to calculate their carbon footprint based on their lifestyle metrics.

This report has covered how EcoTrek works as well as how its user interface was created. Furthermore, ideas on how the app can be further developed were explored in the final section.

Hopefully, EcoTrek can be further developed to allow anyone and everyone to calculate their carbon footprint. It is said that the first step of change is awareness. With a greater awareness of their carbon footprint, perhaps humanity can change for the better and secure a brighter future for all of life.

References

- Singapore's efforts in addressing climate change. (n.d.) https://www.nea.gov.sg/our-services/climate-change-energy-efficiency/climate-change/singapore%27s-efforts-in-addressing-climate-change
- Tan, A. (2019) More in Singapore aware of climate change, and willing to bear costs and inconvenience to safeguard planet: Survey. https://www.straitstimes.com/singapore/environment/more-in-singapore-aware-of-climate-change-and-are-willing-to-bear-costs-and
- Environmental Impact of Key Food Items in Singapore. Ecosperity. (2019). Retrieved from https://www.ecosperity.sg/content/dam/ecosperity/en/reports/Environmental-Impact-of-Key-Food-Items-in-Singapore_Oct2019.pdf.