Content-based рекомендации

Введение

В этом уроке мы поговорим об использовании других данных для рекомендаций. Не только о «рейтингах», но и о любой иной информации об объектах и/или пользователях.

Ранее в сериале...

Обобщающий пример

U – субъекты (пользователи) I – объекты r_{ui} = [измеримая функция описывающая взаимодействие и и i]

Задача:

- Восстановить матрицу R
- Найти близкие («похожие») элементы по и
- Найти близкие («похожие») элементы по і

Разложение матрицы R

$$\hat{r}_{ui} = \langle oldsymbol{p}_u, oldsymbol{q}_i
angle$$

Factorization Machines (FM)

Идея FM на картинке:

Первые 4 столбца (синие) - индикаторы для активного пользователя. Следующие 5 (красных) переменных индикатора для **активного** элемента.

Следующие 5 столбцов (желтые) содержат дополнительные неявные индикаторы (т.е. другие фильмы, которые оценил пользователь).(Зеленый) представляет время до оценки. Последние 5 столбцов (коричневые) содержат индикаторы для последнего фильма, который пользователь оценил до активного.

Косинусное расстояние

Основная идея, на которой базируется расчет косинусного расстояния, заключается в том, что строку из символов можно преобразовать в числовой вектор. Если проделать эту процедуру с двумя сравниваемыми строками, то меру их сходства можно оценить через косинус между двумя числовыми векторами.

$$similarity = \cos(\theta) = \frac{XY}{\|X\| \|Y\|} = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2 \sum_{i=1}^{n} y_i^2}}$$

Из курса школьной математики известно, что если угол между векторами равен 0 (то есть векторы полностью совпадают), то косинус равен 1.

План

Использование информации об объектах

Использование текстовых признаков

Использование картинок

Постановка задачи

Использование информации об объектах

Content-based рекомендации

 Рассчитываются признаки для пользователей и объектов

 Строится модель классификации/ регрессии, приближающая оценки пользователей

Content-based рекомендации

- Процесс рекомендации в состоит в сопоставлении атрибутов профиля пользователя с атрибутами объекта содержимого.
- Результатом является оценка релевантности, которая отражает уровень интереса пользователя к этому объекту.

Постановка задачи рекомедации

U – субъекты (пользователи) I – объекты r_{ui} = [измеримая функция описывающая взаимодействие и и i]

Задача:

- Восстановить матрицу R
- Найти близкие («похожие») элементы по и
- Найти близкие («похожие») элементы по і

Постановка задачи рекомедации

U – субъекты (пользователи)

I – объекты

 r_{ui} = [измеримая функция описывающая взаимодействие и и i]

Теперь мы дополнительно знаем:

 $\tilde{\imath}$ - признаки, которые можем извлечь об item

 $ilde{u}$ - признаки, которые можем извлечь о user

Задача:

- Восстановить матрицу R
- Найти близкие («похожие») элементы по u
- Найти близкие («похожие») элементы по

Какие бывают типы признаков

- Числовые (год выпуска фильма, бюджет)
- Категориальные (жанр фильма)
- Текстовые (описание фильма, тизер)
- Изображение (кадр из фильма, обложка)
- Аудио (саундтрек)

• ...

Категориальные признаки

Многие классические методы машинного обучения предполагают, что все признаки $X^j \in \mathbb{R}$. Однако в некоторых задачах признаки могут принимать значения из множеств, не совпадающих с множествами вещественных чисел. Так, например, признаки могут принимать значения из конечного неупорядоченного множества. Например, это может быть признак Город со значениями из множества {Москва, Санкт-Петербург, Новосибирск, Казань, ...}.

Такие признаки называются **категориальными, факторными или номинальными.**

One-Hot Encoding

Алгоритм:

- Выбираем все значения переменной и создаем из них колонки
- Заполняем их бинарными значениями (1/0)
 - 1 если было такое значение было в изначальной колонке
 - 0 если не такое
- Profit!

Аналогично со списками.

Использование текстовых признаков

Мешок слов (bag-of-words)

Мешок слов (англ. bag-of-words) — упрощенное представление текста, которое используется в обработке естественных языков и информационном поиске.

Мы можем создать мешок слов из любого текста (описания фильмов или названия и т.д. или из описания профиля)

```
«Иван», «любит», «смотреть», «фильмы», «Мария», «тоже», «любит», «фильмы»
«Иван», «также», «любит», «смотреть», «футбольные», «матчи»
```

Из этих списков можно создать объекты, представляющие мешок слов:

```
BoW1 = { "Иван" : 1, "любит" : 2, "смотреть" : 1, "фильмы" : 2, "Мария" : 1, "тоже" : 1 };
BoW2 = { "Иван" : 1, "также" : 1, "любит" : 1, "смотреть" : 1, "футбольные" : 1, "матчи" : 1 };
```

Мешок слов (bag-of-words)

Далее мешок слов можно закодировать one-hot encoding.

Можно использовать кодирование только частотные слова.

TF-IDF

TF (term frequency — частота слова) – отношение числа вхождений слова к общему числу слов документа.

IDF (inverse document frequency — обратная частота документа) — инверсия частоты, с которой некоторое слово встречается в документах коллекции.

TF-IDF = TF*IDF

TF-IDF

$$w_{x,y} = t f_{x,y} \times \log\left(\frac{N}{df_x}\right)$$

 $tf_{x,y}$ - частота слова x в тексте y df_x - количество текстов, содержащих слово x N — общее количество текстов

Взвешивание признаков

Кроме того, мы можем извлечь такие характеристики, как оценка настроений и **оценки TF-IDF** из описаний фильмов и обзоров.

Оценка TF-IDF отражает, насколько важно слово для документа в наборе документов.

Взвешивание признаков

Существует целое семейство похожих преобразований (например, BM25 и аналогичные), но содержательно все они повторяют ту же логику, что TF-IDF: редкие атрибуты должны иметь больший вес при сравнении товаров.

Извлечение признаков

Энг Ли, комедия, поколение, еда, 1994...

(слова, извлеченные из названия/описания)

Комедия, роман, классика...

(слова, извлеченные из фильмов, которые пользователь высоко оценил, посмотрел или из покупок)

Методы ML (векторизация, TF-IDF) Векторное представление слов

 $(0.15, 0.4, 0.1, \dots)$

 $(0.3, 0.2, -0.1, \dots)$

Векторные представления объектов

Чтобы построить и обучить модель, используют **технику embedding**, когда каждый объект превращается в вектор фиксированной длины, и близким объектам соответствуют близкие векторы. Практически всем известным моделям требуется, чтобы данные на входе были фиксированной длины, и набор векторов — простой способ привести их к такому виду.

Один из первых embedding-методов — word2vec.

Построение векторного описания объекта

Есть два принципиально разных способа построения векторного описания товара:

- использовать контент сверточные нейронные сети для извлечения признаков из фотографий, рекуррентные сети или мешок слов для анализа текстового описания;
- использование данных о взаимодействиях пользователей с товаром:
 какие товары и как часто смотрят/добавляют в корзину вместе с данным.

Word2vec

Word2vec — общее название для совокупности моделей на основе искусственных нейронных сетей, предназначенных для получения векторных представлений слов на естественном языке.

Word2vec

Работа алгоритма осуществляется следующим образом: word2vec принимает большой текстовый корпус в качестве входных данных и сопоставляет каждому слову вектор, выдавая координаты слов на выходе. Сначала он генерирует словарь корпуса, а затем вычисляет векторное представление слов, «обучаясь» на входных текстах.

Векторное представление основывается на контекстной близости: слова, встречающиеся в тексте рядом с одинаковыми словами (а следовательно, имеющие схожий смысл), будут иметь близкие (по косинусному расстоянию) векторы. Полученные векторные представления слов могут быть использованы для обработки естественного языка и машинного обучения.

Использование картинок

Сверточные нейронные сети

Сверточные нейронные сети - специальная архитектура искусственных нейронных сетей, предложенная Яном Лекуном в 1988 году и нацеленная на эффективное распознавание образов.

Ян Лекун

Сверточный слой в нейросети

Соберем это все в сверточную сеть

LeNet-5 архитектура (1998) для распознавания рукописных цифр (датасет MNIST):

Демо: визуализация обученной сети для MNIST

http://scs.ryerson.ca/~aharley/vis/conv/flat.html

Content-based image retrieval (CBIR)

Поиск изображений по содержанию (англ. Content-based image retrieval (CBIR)) — раздел компьютерного зрения, решающий задачу поиска изображений, которые имеют требуемое содержание, в большом наборе цифровых изображений.

Алгоритм поиска должен анализировать содержание изображения, например, цвет представленных на нём объектов, их форму, текстуру, композицию сцены. При отсутствии возможности проанализировать сцену при поиске рассматриваются метаданные: ключевые слова, метки.

Content-based image retrieval (CBIR)

Поиск изображений по содержанию (англ. Content-based image retrieval (CBIR)) — это любой поиск, в котором участвуют изображения.

Content-based image retrieval (CBIR)

Алгоритм поиска должен анализировать содержание изображения, например, цвет представленных на нём объектов, их форму, текстуру, композицию сцены. При отсутствии возможности проанализировать сцену при поиске рассматриваются метаданные: ключевые слова, метки.

Примеры использования

Мы берем векторное представление (последний слой).

Что значит «последний слой» в нейронной сети?

Если после него можно применяется линейная фикцию (+в сигмоид) – и классификация показывает хорошее качество?

Это означает, что это векторное представление хорошо описывает объект в латентном пространстве.

Аудио.

https://github.com/mdeff/fma

Постановка задачи

Постановка задачи рекомедации

U – субъекты (пользователи)

I – объекты

 r_{ui} = [измеримая функция описывающая взаимодействие и и i]

Теперь мы дополнительно знаем:

 $\tilde{\imath}$ - признаки, которые можем извлечь об item

 $ilde{u}$ - признаки, которые можем извлечь о user

Задача:

- Восстановить матрицу R
- Найти близкие («похожие») элементы по u
- Найти близкие («похожие») элементы по

Постановка задачи

Если мы говорим про рейтинги – то можно поставить задачи регрессии.

$$(\tilde{\iota}, \tilde{u}) \rightarrow r$$

Аналогично как с факторизиацонной машиной:

\bigcap	Feature vector x																Target y						
X ⁽¹⁾	1	0	0		1	0	0	0		0.3	0.3	0.3	0		13	0	0	0	0		$\ \lceil$	5	y ⁽¹⁾
X ⁽²⁾	1	0	0		0	1	0	0		0.3	0.3	0.3	0		14	1	0	0	0			3	y ⁽²⁾
X ⁽³⁾	1	0	0		0	0	1	0		0.3	0.3	0.3	0		16	0	1	0	0			1	y ⁽²⁾
X ⁽⁴⁾	0	1	0		0	0	1	0		0	0	0.5	0.5		5	0	0	0	0			4	$y^{(3)}$
X ⁽⁵⁾	0	1	0		0	0	0	1		0	0	0.5	0.5		8	0	0	1	0			5	y ⁽⁴⁾
X ⁽⁶⁾	0	0	1		1	0	0	0		0.5	0	0.5	0		9	0	0	0	0			1	y ⁽⁵⁾
X ⁽⁷⁾	0	0	1		0	0	1	0		0.5	0	0.5	0		12	1	0	0	0			5	y ⁽⁶⁾
	A B C User			TI NH SW ST Movie				TI Oth	Other Movies rated Time TI NH SW ST Last Movie rated							 ed	$\Big\ ^-$		_				

Постановка задачи

Если мы говорим про рейтинги – то можно поставить задачи регрессии.

$$(\tilde{\iota}, \tilde{u}) \rightarrow r$$

Если мы для пользователей не знаем ничего, то, например, можно использовать его представление из факторизационной машины.

После этого мы получаем регрессионную модель на признаках.

$$f(\tilde{\imath}, \tilde{u}) \rightarrow r$$

ВОПРОС: Какую метрику качества выбрать?

Какую задачу мы решаем?

Можно просто найти «соседей»

Если нам нужно выдать топ-*х* рекомендаций, то можно применить простой алгоритм:

- Взять элементы с большим рейтингом
- Найти топ-*х* ближайших соседей по какой-то метрики близости.

$$similarity = \cos(\theta) = \frac{XY}{\|X\| \|Y\|} = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2 \sum_{i=1}^{n} y_i^2}}$$

Проблема: у разных компонент (признаков) может быть разный вес. У картинок текста, жанра, режиссера и т.д. (и их латентного представления) может быть разная значимость при выборе.

Ну и напрашивается...

А давайте соединим Content-base и Collaborative filtering.

Так и сделаем но на следующей лекции! :)

Заключение

Давайте вместе напишем заключение:

- Можно легко использовать эмбединги для пользователей и объектов. Решить задачу регрессии над ним.
- Content-based гарантированно улучшает FM.
- Эмбединги нужны не только для рекомендации!
- Можно использовать только content-based (для топ-k товаров) в стиле k-nn.

Семинар: content-based рекомендации

Dataset List

- •MQ2007
- •MQ2008
- •MQ2007-semi
- •MQ2008-semi
- •MQ2007-agg
- •MQ2008-agg
- •MQ2007-list
- •MQ2008-list