

Hoja de Ejercicios 5 Complejidad Algorítmica 2022

Ejercicio 1: Ordenamiento Topológico

- 1. Implemente un algoritmo iterativo para calcular el orden topológico de un grafo.
- 2. Modifique el algoritmo por recorrido DFS para obtener el orden topológico de un grafo.

Ejercicio 3: Componentes Fuertemente Conexos (CFC)

Algoritmo exhaustivo

```
Implemente el siguiente algoritmo para calcular los CFC de un grafo.
Para cada nodo x hacer
    CFC[x] = x // cada nodo esta en su propia CFC
Para cada arista x→y hacer
    Si CFC[x] != CFC[y] entonces
    Para cada nodo z hacer
    Si CFC[z]==CFC[y] entonces CFC[z]=CFC[x]
```

Algoritmo de Kosaraju

Implemente el algoritmo de Kosaraju para calcular los CFC de un grafo.

Algoritmo de Tarjan

Implemente el algoritmo de Tarjan para calcular los CFC de un grafo.

Comportamiento de los algoritmos

Compare el comportamiento de estos 3 algoritmos, corralos 10,20,100,... veces con diferentes tamanos de grafos (n=10,100,1000,... y m=50,500,5000,...) y estime cual es mas eficaz.

Ejercicio 4: Tamanos de las CFC

Escriba una funcion que calculer los tamanos (numero de nodos) de las CFC. Escriba una funcion que calcula el numero de CFC de talla i y que la muestra.

Ejemplo del resultado: Hay 389 nodos isolados Hay 50 CFC de tamano 2 Hay 11 CFC de tamano 3 Hay 6 CFC de tamano 4 Hay 1 CFC de tamano 4447

Haga variar n y m para observar la aparicion de una CFC gigante (mucho mas grande que las otras).

Cuando n = 10000 y m = 5000, cual es la proportion de nodos isolados? y para n = 10000 et m = 10000.

Ejercicio 5: Optimizacion

Mejore el algoritmo exhaustivo:

- Cuando se lee una arista $x \rightarrow y$, si CFC[x] = CFC[y], solo los nodos z que verifican CFC[z] = CFC[x] seran leidas y afectadas a CFC[x].
- Entre CFC[x] y CFC[y], elegir en prioridad la CFC de talla minina.