# BST 261: Data Science II

#### Heather Mattie

Department of Biostatistics Harvard T.H. Chan School of Public Health Harvard University

April 23, 2018

Recurrent Neural Networks

#### Recurrent Neural Networks

- We will now learn about deep learning models that can process text, timeseries, and sequence data in general
- The two algorithms we will cover are recurrent neural networks and 1D CNNs
- Applications:
  - Document and timeseries classification e.g. identifying the topic of an article or the author of a book
  - Timeseries comparisons e.g. estimating how closely related two documents are
  - Sentiment analysis
  - Timeseries forecasting e.g. predicting weather (something that needs major improvement for Boston...)
  - Sequence-to-sequence learning e.g. decoding an English sentence into Turkish
  - Speech recognition
  - DNA sequence analysis
  - · Name entity recognition
  - etc.

#### Text Data

- Text data can be understood as either a sequence of characters or a sequence of words
  - Most common to work at the level of words
- Like all other neural networks, we can't simply input raw text we must vectorize
  the text: transform it into numeric tensors
- · We can do this in multiple ways:
  - · Segment text into words, and transform each word into a vector
  - Segment text into characters and transform each character into a vector
  - Extract n-grams (overlapping groups of multiple consecutive words or characters) of words or characters, and transform each n-gram into a vector
- The different units into which you break down text (words, characters, n-grams) are called tokens, and the action of breaking text into tokens is tokenization
- There are multiple ways to associate a vector with a token
  - One-hot encoding
  - Token embedding (or word embedding)

# Tokenization and Embedding



#### N-grams

- Word n-grams are groups of N (or fewer) consecutive words that you can extract from a sentence. The same concept may also be applied to characters instead of words.
- For example, the sentence "Data science rocks my socks off!" can be decomposed into a set of 3-grams:
  - {"Data", "Data science", "science", "science rocks", "Data science rocks",
     "rocks", "rocks my", "science rocks my", "my", "my socks", "socks", "rocks my
     socks", "off", "socks off", "my socks off"}
- This set is called a bag of 3-grams, which refers to the fact that it is a set of tokens, rather than a list or sequence: the tokens have no specific order
- This family of tokenization methods is called bag-of-words
- Order is not preserved, so the general structure of the sentence is lost
- Typically only used in **shallow** language-processing models
- Extracting n-grams is a form of feature engineering that deep learning does automatically in another way

## One-hot Encoding

- Most common and most basic way to turn a token into a vector
- We used this with the IMDB and Reuters data sets
- First, associate a unique integer index with every word
- Then, turn the integer index i into a binary vector of size N (the size of the vocabulary, or number of words in the set)
- The vector is all 0s except for the ith entry, which is 1



# Terminology and One-hot Encoding

Suppose we want to recognize names in a sentence:

Example sentence (x): Marcello Pagano and Heather Mattie are writing a book.

Example output (y): [1, 1, 0, 1, 1, 0, 0, 0, 0]

# One-hot Encoding in Keras

```
from keras.preprocessing.text import Tokenizer
   samples = ['The cat sat on the mat.'. 'The dog ate my homework.']
   # We create a tokenizer, configured to only take
   # into account the top-1000 most common words
   tokenizer = Tokenizer(num words=1000)
   # This builds the word index
   tokenizer.fit_on_texts(samples)
10
11
   # This turns strings into lists of integer indices.
12
   sequences = tokenizer.texts_to_sequences(samples)
13
   # You could also directly get the one-hot binary representations.
   # Note that other vectorization modes than one-hot encoding are supported!
15
   one hot results = tokenizer.texts to matrix(samples, mode='binary')
16
17
   # This is how you can recover the word index that was computed
   word_index = tokenizer.word_index
  print('Found %s unique tokens.' % len(word index))
```

## One-hot Hashing

- A variant of one-hot encoding is the one-hot hashing trick
- Useful when the number of unique tokens is too large to handle explicitly
- Instead of explicitly assigning an index to each word and keeping a reference of these indices in a dictionary, you can hash words into vectors of fixed size
- Main advantage: saves memory and allows generation of tokens before all of the data has been seen
- Main drawback: hash collisions
  - Two different words end up with the same hash
  - The likelihood of this decreases when the dimensionality of the hashing space is much larger than the total number of unique tokens being hashed

## One-hot Hashing

```
samples = ['The cat sat on the mat.'. 'The dog ate my homework.']
   # We will store our words as vectors of size 1000.
   # Note that if you have close to 1000 words (or more)
   # you will start seeing many hash collisions, which
  # will decrease the accuracy of this encoding method.
   dimensionality = 1000
  max_length = 10
   results = np.zeros((len(samples), max_length, dimensionality))
   for i, sample in enumerate(samples):
       for j, word in list(enumerate(sample.split()))[:max_length]:
12
           # Hash the word into a "random" integer index
13
           # that is between 0 and 1000
14
           index = abs(hash(word)) % dimensionality
15
           results[i, j, index] = 1.
16
```

## Word Embeddings

- . Another common and powerful way to associate a vector with a word is the use of dense word vectors or word embeddings
- Word embeddings are dense, low-dimensional floating-point vectors
- Are learned from the data rather than hard coded
- 256, 512 and 1024-dimensional word embeddings are common



One-hot word vectors:

- Sparse Hardcoded
- High-dimensional



Word embeddings:

- Dense
- Lower-dimensional
- Learned from data

## Word Embeddings

- There are 2 ways to obtain word embeddings:
  - Learn word embeddings jointly with the main task you care about
    - Start with random word vectors and then learn word vectors in the same way you learn the weights of the network
  - Use pre-trained word embeddings
    - Load into your model word embeddings that were precomputed using a different machine-learning task than the one you're trying to solve

## Learning Word Embeddings

- It's easy to simply associate a vector with a word randomly but this results in an embedding space without structure, and things like synonyms that could be interchangeable will have completely different embeddings
- This makes it difficult for a deep neural network to make sense of these representations
- It is better for similar words to have similar embeddings, and dissimilar words to have dissimilar embeddings
  - We can, for example, relate the L2 distance to the similarity of the words with a smaller distance meaning the words are similar and bigger distances indicating very different words



## Word Embeddings

- Common examples of useful geometric transformations are "sex" and "plural" vectors:
  - Adding a "female" vector to the vector "king" will result in the vector "queen"
  - Adding the "plural" vector to the vector "elephant" will result in the vector "elephants"
- Is there a word-embedding space that would perfectly map human language and be used in any natural-language processing task?
  - Maybe, but we haven't discovered it yet
  - Very complicated many different languages that are not isomorphic due to specific cultures and contexts
  - A "good" word-embedding space depends on the task

## The Embedding Layer

- Keras has a function that enables learning word-embeddings: the embedding layer
- Basically a dictionary that maps integer indices (that represent words) to dense vectors
- It takes integers as input, looks up the integers in an internal dictionary, and returns the associated vectors

Word index  $\rightarrow$  Embedding layer  $\rightarrow$  Corresponding word vector

- Input: 2D tensor of integers of shape (samples, sequence\_length)
- Note that you need to select a sequence length that is the same for all sequences
  - If a sequence is shorter than the set sequence\_length, pad the remaining entries with 0s
  - If a sequence is longer than the set sequence\_length, truncate the sequence

```
from keras.layers import Embedding
embedding_layer = Embedding(1000, 64)
```

 The embedding layer returns a 3D tensor of shape (samples, sequence\_length, embedding\_dimensionality)

- Recall the IMDB movie review sentiment prediction task from an earlier lecture
- We have thousands of reviews and we want to classify them as either positive or negative

```
from keras.datasets import imdb
   from keras import preprocessing
3
   # Number of words to consider as features
  max features = 10000
  # Cut texts after this number of words
  # (among top max_features most common words)
  maxlen = 20
10
  # Load the data as lists of integers.
   (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
  # This turns our lists of integers
  # into a 2D integer tensor of shape '(samples, maxlen)'
  x_train = preprocessing.sequence.pad_sequences(x_train, maxlen=maxlen)
  x_test = preprocessing.sequence.pad_sequences(x_test, maxlen=maxlen)
```

```
from keras.models import Sequential
   from keras.layers import Flatten, Dense
 3
   model = Sequential()
   # We specify the maximum input length to our Embedding layer
   # so we can later flatten the embedded inputs
   model.add(Embedding(10000, 8, input_length=maxlen))
   # After the Embedding laver.
   # our activations have shape '(samples, maxlen, 8)'.
10
   # We flatten the 3D tensor of embeddings
11
   # into a 2D tensor of shape '(samples, maxlen * 8)'
   model.add(Flatten())
14
   # We add the classifier on top
15
   model.add(Dense(1, activation='sigmoid'))
   model.compile(optimizer='rmsprop', loss='binary crossentropy', metrics=['acc'])
   model.summarv()
18
19
20
   history = model.fit(x_train, y_train,
21
                        epochs=10.
22
                        batch size=32.
                        validation_split=0.2)
23
```

- This simple model reaches an accuracy of approximately 76%
- Note that this model treats each word in the input sequence separately, without considering inter-word relationships and sentence structure
- For example, the following two reviews might both be classified as positive:
  - "The cast was absolutely spectacular."
  - "This was a spectacular waste of my time."
- We need to add recurrent layers or 1D convolutional layers on top of the embedded sequences in order to take into account the sequence as a whole

# Using pre-trained Word Embeddings

- Similar to using pre-trained convolutional bases, we can use pre-trained word embeddings
- Particularly useful when your sample size is small
- Load embedding vectors from a precomputed embedding space that is highly structured with useful properties
  - Captures generic aspects of language structure
- These embeddings are typically computed using word-occurrence statistics: observations about what words co-occur in sentences or documents
- Various word-embedding methods exist:
  - Word2vec algorithm (developed by Tomas Mikolov at Google in 2013)
  - GloVe: Global Vectors for Word Representation (developed by researchers at Stanford in 2014)
- · Both embeddings can be used in Keras

- This time we will download the original text data and use pre-trained word embeddings
- You can download the data from http://ai.stanford.edu/~amaas/data/sentiment/

```
import os
   imdb_dir = '/home/ubuntu/data/aclImdb'
   train dir = os.path.join(imdb dir, 'train')
   labels = []
   texts = []
8
   for label_type in ['neg', 'pos']:
       dir_name = os.path.join(train_dir, label_type)
10
       for fname in os.listdir(dir_name):
           if fname[-4:] == '.txt':
               f = open(os.path.join(dir_name, fname))
               texts.append(f.read())
14
               f.close()
15
               if label_type == 'neg':
16
                    labels.append(0)
17
18
                else:
19
                    labels.append(1)
```

```
from keras.preprocessing.text import Tokenizer
   from keras.preprocessing.sequence import pad sequences
   import numpy as np
   maxlen = 100 # We will cut reviews after 100 words
   training samples = 200 # We will be training on 200 samples
   validation_samples = 10000 # We will be validating on 10000 samples
   max_words = 10000 # We will only consider the top 10,000 words in the dataset
9
10
   tokenizer = Tokenizer(num words=max words)
   tokenizer.fit_on_texts(texts)
   sequences = tokenizer.texts_to_sequences(texts)
13
14
   word index = tokenizer.word index
   print('Found %s unique tokens.' % len(word_index))
15
16
   data = pad_sequences(sequences, maxlen=maxlen)
17
18
   labels = np.asarrav(labels)
   print('Shape of data tensor:', data.shape)
   print('Shape of label tensor:', labels.shape)
22
  Found 88582 unique tokens.
   Shape of data tensor: (25000, 100)
24
   Shape of label tensor: (25000,)
```

```
# Split the data into a training set and a validation set

# But first, shuffle the data, since we started from data

# where sample are ordered (all negative first, then all positive).

indices = np.arange(data.shape[0])

np.random.shuffle(indices)

data = data[indices]

labels = labels[indices]

x_train = data[:training_samples]

y_train = labels[:training_samples]

x_val = data[training_samples: training_samples + validation_samples]

y_val = labels[training_samples: training_samples + validation_samples]
```

- Download the GloVe pre-computed word embeddings from 2014 English Wikipedia from https://nlp.stanford.edu/projects/glove/
- It contains 100-dimensional embedding vectors for 400,000 words (or non-word tokens)

```
glove dir = '/home/ubuntu/data/'
   embeddings_index = {}
   f = open(os.path.join(glove_dir, 'glove.6B.100d.txt'))
   for line in f:
       values = line.split()
6
      word = values[0]
       coefs = np.asarray(values[1:], dtype='float32')
8
       embeddings_index[word] = coefs
   f.close()
11
   print('Found %s word vectors.' % len(embeddings_index))
12
   Found 400000 word vectors.
13
```

- Now build an embedding matrix that we will be able to load into an Embedding layer
- Needs to be of shape (max\_words, embedding\_dim), where each entry i contains
  the embedding\_dim-dimensional vector for the word of index i in the reference
  word index

Now build a model with the same architecture as before

```
from keras.models import Sequential
from keras.layers import Embedding, Flatten, Dense

model = Sequential()
model.add(Embedding(max_words, embedding_dim, input_length=maxlen))
model.add(Flatten())
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
```

Load the GloVe embeddings in the model

```
model.layers[0].set_weights([embedding_matrix])
model.layers[0].trainable = False
```

Train and evaluate



- Now let's see what happens when we train the same model without loading the pre-trained word embeddings and without freezing the embedding layer
- Here, we are learning a task-specific embedding of our input tokens
- This is generally more powerful than pre-trained word embeddings, but only when a lot of data is available

```
from keras.models import Sequential
   from keras.layers import Embedding, Flatten, Dense
3
   model = Sequential()
   model.add(Embedding(max words, embedding dim, input length=maxlen))
  model.add(Flatten())
   model.add(Dense(32, activation='relu'))
   model.add(Dense(1, activation='sigmoid'))
9
   model.compile(optimizer='rmsprop',
                 loss='binary_crossentropy',
                 metrics=['acc'])
12
   history = model.fit(x train, v train,
                       epochs=10,
14
                       batch_size=32,
                       validation_data=(x_val, y_val))
16
```



#### **RNNs**

- When we were studying deep feedforward networks and CNNs, each input was processed independently and no "state" was kept between examples
- When reading text data, we process it word by word, keeping memories of what came before and eventually discovering the meaning of the whole sentence
- This "memory" property is the main difference between feedforward networks and CNNs, which are memoryless
- RNNs process sequences by iterating through the sequence elements and maintaining a state containing the information relative to what it has seen so far
  - Some like to think of it as a network with an internal loop



 The state of the RNN is reset between processing two different, independent sequences (examples), so you can still think of each sequence as a single data point, but that each data point is processed with an internal loop rather than in a single step RNN Models: "Many-to-many" with  $T_x = T_y$ 

RNN Models: "Many-to-one"

RNN Models: "One-to-many"

RNN Models: "Many-to-many" with  $T_x \neq T_y$ 

#### **RNNs**

- Note that the time step index need not literally refer to the passage of time in the real world - it refers only to the position in the sequence.
- Recurrent networks share parameters in a different way than what we saw with CNNs
- Each member of the output is a function of the previous members of the output
- Each member of the output is produced using the same update rule applied to the previous outputs
- This recurrent formulation results in the sharing of parameters through a very deep computational graph

$$h^{< t>} = f(h^{(< t-1)}, x^{< t>}; w)$$
 (1)



Figure 10.2: A recurrent network with no outputs. This recurrent network just processes information from the input x by incorporating it into the state h that is passed forward through time. (Left) Circuit diagram. The black square indicates a delay of a single time step. (Right) The same network seen as an unfolded computational graph, where each node is now associated with one particular time instance.

#### **Unfolded RNN**



 For better intuition, we can write how a training example is fed through an RNN with the following code

```
import numpy as np
   timesteps = 100
                             # Number of timesteps in the input sequence
   input features = 32  # Dimensionality of the input feature shape
   output features = 64  # Dimensionality of the output feature shape
   # Input random data just as an example
   inputs = np.random.random((timesteps, input features))
   # Initial state: a zero vector
   state_t = np.zeros((output_features, ))
10
   # Create random weight matrices
   W = U = np.random.random((output_features, input_features))
   U = np.random.random((output_features, output_features))
   b = np.random.random((output_features, ))
14
15
   successive outputs = []
16
   for input_t in inputs:
17
       # Combines the input with the current state (the previous output) to obtain
18
            the current output
       output t = np.tanh(np.dot(W. input t) + np.dot(U. state t) + b)
19
       # Stores the output in a list
20
       sucessive_outputs.append(output_t)
21
       # Updates the state of the network for the next time step
22
23
       state t = output t
24
   # The final output is a 2D tensor of shape (timesteps, output_features)
   final_output_sequence = np.concatenate(successive_outputs, axis = 0)
```

## Simple RNN Layer

- The SimpleRNN processes batches of of sequences
- Takes as input a 3D tensor of shape (batch\_size, timesteps, input\_features)
- The output can return either the full sequence of successive outputs for each timestep, or only the last output for each input sequence
  - This is controlled by the return\_sequences argument
- Only the last timestep:

```
from keras.models import Sequential
from keras.layers import Embedding, SimpleRNN

model = Sequential()
model.add(Embedding(10000, 32))
model.add(SimpleRNN(32))
```

The full state sequence:

```
model = Sequential()
model.add(Embedding(10000, 32))
model.add(SimpleRNN(32, return_sequences=True))
```

#### Simple RNN

- It can be useful to stack several recurrent layers in order to increase the representational power of the network
- All of the intermediate layers must return full sequence outputs:

```
model = Sequential()
model.add(Embedding(10000, 32))
model.add(SimpleRNN(32, return_sequences=True))
model.add(SimpleRNN(32, return_sequences=True))
model.add(SimpleRNN(32, return_sequences=True))
model.add(SimpleRNN(32)) # This last layer only returns the last outputs.
```

## IMDB Example with SimpleRNN

#### Preprocess the data

```
from keras.datasets import imdb
   from keras.preprocessing import sequence
   max_features = 10000 # number of words to consider as features
   maxlen = 500 # cut texts after this number of words (among top max features
        most common words)
   batch size = 32
   print('Loading data...')
   (input train, v train), (input test, v test) = imdb.load data(num words=
        max features)
   print(len(input_train), 'train sequences')
   print(len(input_test), 'test sequences')
   print('Pad sequences (samples x time)')
   input_train = sequence.pad_sequences(input_train, maxlen=maxlen)
   input_test = sequence.pad_sequences(input_test, maxlen=maxlen)
   print('input train shape:', input train.shape)
   print('input_test shape:', input_test.shape)
18
  Loading data ...
   25000 train sequences
   25000 test sequences
  Pad sequences (samples x time)
   input_train shape: (25000, 500)
   input_test shape: (25000, 500)
```

## IMDB Example with SimpleRNN

Train the model

## IMDB Example with SimpleRNN

- The simple RNN performs worse than the feedforward network we used earlier in the course
  - Here we only consider the first 500 words and not the entire sequences
  - SimpleRNN isn't great at processing long sequences such as text

