ON CRITICALLY h-CONNECTED SIMPLE GRAPHS

Yaha Ould HAMIDOUNE

Université Pierre et Marie Curie, U.E.R. 48, E.R. Combinatoire, 4 Place Jussieu 75230 Paris, France

Received 2 January 1979 Revised 25 September 1979

Chartrand, Kaugars and Lick proved that every critically h-connected graph contains a vertex of degree not exceeding $\frac{3}{2}h - 1$. We prove here that there are two such vertices. Moreover for every h ($h \ge 3$) there is a critically h-connected graph having exactly two vertices of degree not exceeding $\frac{3}{2}h - 1$.

1. Introduction

We use terminology and notations of Berge [1]. A graph G = (V, E) is h-connected if for every $A \subset V$ with |A| < h, G_{V-A} is connected (where G_{V-A} is the subgraph of G induced by V-A). The connectivity of G is

$$\kappa(G) = \operatorname{Max}(h: G \text{ is } h\text{-connected}).$$

The graph G is critically h-connected if $\kappa(G) = h$ and for every $x \in V$, $\kappa(G_{V-x}) = h-1$.

Let G = (V, E) be a raph and $A \subseteq V$. We use the following notations.

$$N(A) = \Gamma(A) - A$$
; $\tilde{A} = V - (A \cup N(A))$.

Suppose G is connected and noncomplete. The set A is a *cut-set* of G if G_{V-A} is not connected. A cut-set of G with cardinality $\kappa(G)$ is called a *minimum cut-set* of G. The set A is said to be a fragment of G if $\tilde{A} \neq \emptyset$ and $|N(A)| = \kappa(G)$ (i.z. if N(A) is a minimum cut-set of G). Observe that A is a fragment of G if and only if \tilde{A} is so. Let A be a fragment and let N(A) = T. We will say that A is a fragment with respect to T. A fragment containing no other fragment as a proper subset is called an *end*. A fragment with minimal cardinality is called an *atom*. A fundamental property of atoms is the following.

Theorem A (Mader [6]). Let G be a connected graph, A be an atom of G and T be a minimum cut-set of G. If $A \cap T \neq \emptyset$, then $A \subseteq T$ and $|A| \leq \frac{1}{2}\kappa(G)$.

A generalization of this theorem to the case of digraphs is proved in [4].

Chartrand, Kaugars and Lick proved in [2] that a critically h-connected graph contains at least a vertex of degree not exceeding $\frac{3}{2}h-1$. A short proof for this

result is obtained by Mader in [5], using Theorem A. Nebesky proved in [7] that a critically 2-connected graph of order ≥ 6 contains at least four vertices of degree 2. Entringer and Slater proved in [3] that every critically 3-connected graph contains at least two vertices of degree 3. The above two results generalize the result of Chartrand, Kaugars and Lick for h=2 and h=3 respectively. We prove in this paper that a critically h-connected graph contains at least two vertices of degree not exceeding $\frac{3}{2}h-1$. We construct a critically h-connected graph with exactly two vertices of degree not exceeding $\frac{3}{2}h-1$ for $h\geq 3$.

Our method uses, among many properties of fragments, Mader Theorem A and the following lemma.

Lemma B (Mader [5]). Let A and B be two fragments of a connected graph G such that $A \cap B \neq \emptyset$. Then $|\bar{B} \cap N(A)| \leq |A \cap N(B)|$. Moreover if A is an end not contained in B, then the above inequality is strict.

We note that Lemma B is only implicit in [5]. A generalization of this lemma to the directed case is proved in [4].

2. Some properties of fragments

We prove in this section some properties of fragments of graphs. We use some methods related to those of our paper [4] and those used by Mader [5, 6].

Lemma 2.1. Let G = (V, E) be a graph, A and B be two subsett of V such that $N(A) = N(\tilde{A})$ and $N(B) = N(\tilde{B})$. Then

$$|N(A \cap B)| + |N(\widetilde{A} \cap \widetilde{B})| \leq |N(A)| + |N(B)|.$$

Proof. We verify easily that

$$N(A \cap B) = ((A \cup N(A)) \cap (B \cup N(B)) - (A \cap B)$$
$$= (N(A) - \bar{B}) \cup (A \cap N(B)).$$

Similarly,

$$N(\bar{A} \cap \bar{B}) \subset (N(\bar{A}) \cap \bar{B}) \cup (N(\bar{B}) - A).$$

The lemma follows from the above two relations easily.

Lemma 2.2. Let A be an end of a noncomplete graph G = (V, E) and F be a fragment of G not containing A. Then $A \cap F = \emptyset$ or $\overline{A} \cap \overline{F} = \emptyset$.

Proof. Suppose $A \cap F \neq \emptyset$. Then $|N(A \cap F)| > \kappa(G)$, otherwise $A \cap F$ would be a fragment of G (observe that $\overline{A \cap F} \supset \overline{A} \neq \emptyset$), which is a contradiction since A is an

end and $A \cap F$ is a proper subset of A. By Lemma 2.1, we have

$$|N(A \cap F)| + |N(\overline{A} \cap \overline{F})| \leq |N(A)| + |N(F)| = 2\kappa(G).$$

Using the above two relations, we have $|N(\bar{A} \cap \bar{F})| < \kappa(G)$. But $\bar{A} \cap \bar{F} \supset \bar{A} \neq \emptyset$. Thus $\bar{A} \cap \bar{F} = \emptyset$ (observe that $\kappa(G) = \min(|N^{\hat{\kappa}}(A)| : A \neq \emptyset$ and $\bar{A} \neq \emptyset$)).

We say that a fragment A is a proper fragment if $|A| \le |\tilde{A}|$. The proper fragments have the following property.

Proposition 2.3. Let G = (V, E) be a connected noncomplete graph, A be a proper end of G and F be a proper fragment of G not containing A. Then $A \cap F = \emptyset$.

Proof. Suppose $A \cap F \neq \emptyset$. By Lemma B, we have $|\overline{F} \cap N(A)| \leq |A \cap N(F)|$ and $|\overline{A} \cap N(F)| \leq |F \cap N(A)|$. Using Lemma 2.2, we have $\overline{A} \cap \overline{F} = \emptyset$. It follows that

$$|\vec{F}| = |\vec{F} \cap A| + |\vec{F} \cap N(A)| \le |\vec{F} \cap A| + |A \cap N(F)| = |A - F| < |A|$$

(observe that $A \cup N(A) \cup A$ is a partition of V).

Similarly $|\bar{A}| < |F|$. By addition we have $|\bar{A}| + |\bar{F}| < |A| + |F|$, which is a contradiction since $|A| \le |\bar{A}|$ and $|F| \le |\bar{F}|$.

Lemma 2.4. Let A and F be two fragments of a noncomplete graph G = (V, E) such that $A \subseteq N(F)$. If $\bar{A} \cap F \neq \emptyset$ and $\bar{A} \cap \bar{F} \neq \emptyset$, then $|A| \leq \frac{1}{2} \kappa(G)$.

Proof. By Lemma B, applied to \bar{A} and \bar{F} , we have $|A| = |A \cap N(F)| \le |\bar{F} \cap N(A)|$. Similarly $|A| = |A \cap N(F)| \le |F \cap N(A)|$. By addition we have

$$2|A| \leq |\bar{F} \cap N(A)| + |F \cap N(A)| \leq |N(A)| = \kappa(G).$$

Lemma 2.5. Let G = (V, E) be a connected noncomplete graph, A be a fragment of G and T be a minimum cut-set of G containing A. If $|A| > \frac{1}{2}\kappa(G)$, then there is a fragment B with respect to T such that $|B| \le \frac{1}{2}\kappa(G)$.

Proof. Let C be a fragment with respect to T. Using Lemma 2.4, we have $C \cap \bar{A} = \emptyset$ or $\bar{C} \cap \bar{A} = \emptyset$. We assume, without loss of generality, $C \cap \bar{A} = \emptyset$. Therefore $C \subset N(A)$. If $\bar{C} \cap \bar{A} = \emptyset$, then $\bar{C} \subset N(A)$. Hence $C \cup \bar{C} \subset N(A)$. It follows that $|C| \leq \frac{1}{2}\kappa(G)$ or $|\bar{C}| \leq \frac{1}{2}\kappa(G)$. Suppose $\bar{C} \cap \bar{A} \neq \emptyset$. By Lemma B, applied to \bar{C} and \bar{A} , we have

$$|A| = |A \cap T| = |A \cap N(C)| \le |\overline{C} \cap N(A)|$$

$$\le |N(A) - C| = |N(A)| - |C| = \kappa(G) - |C|.$$

It follows that $|C| < \frac{1}{2}\kappa(G)$.

3. Critically h-connected graphs

We verify easily that a graph G is critically h-connected if and only if $\kappa(G) = h$ and the family of minimum cut-sets covers the vertex set of G. A graph G = (V, E) is said to be a maximal critically h-connected graph if G is critically h-connected and if the graph obtained by addition of any edge not belonging to E is not critically h-connected. The following lemma implies that every critically h-connected graph is a spanning subgraph of a maximal critically h-connected graph.

Lemma 3.1. Let G be a critically h-connected graph and G' be the graph obtained by addition of one edge to G. Then $\kappa(G') = h$.

Proof. We have clearly $\kappa(G') \ge \kappa(G) = h$. Let T be a minimum cut-set of G containing a vertex incident to the added edge. We see easily that T is a cut-set of G'. Therefore $\kappa(G') \le |T| = h$.

Lemma 3.2. Let $G = (V, \mathbb{Z})$ be a maximal critically h-connected graph, x and y be two nonadjacent vertices of G. Then there is a fragment F of G such that $x \in F$ and $y \in \overline{F}$.

Proof. By definition the graph $G' = (V, E \cup \{\{x, y\}\})$ is not critically h-connected. We see, using Lemma 3.1, that there is a vertex $z \in V$ which belongs to no minimum cut-set of G'. Let T be a minimum cut-set of G containing z. We have $T \cap \{x, y\} = \emptyset$, otherwise T would be a cut-set of G'. Let F be a fragment of G such that $x \in F$ and N(F) = T. Then $y \in \overline{F}$, otherwise T would a cut-set of G'.

Lemma 3.3. Let G = (V, E) be a maximal critically h-connected graph, and B be an end of G. Then G_B is a complete graph or $|\bar{B}| \leq \frac{1}{2}h$.

Proof. Suppose G_B not complete. By Lemma 3.2, there is a fragment F such that $F \cap B \neq \emptyset$ and $\vec{F} \cap B \neq \emptyset$. By Lemma 2.2, we have $\vec{F} \cap \vec{B} = \emptyset$ and $F \cap \vec{B} = \emptyset$. Thus $\vec{B} \subseteq N(F)$. Using Lemma 2.4, we have $|\vec{B}| \leq \frac{1}{2}\kappa(G) = \frac{1}{2}h$.

Proposition 3.4. Let G = (V, E) be a maximal critically h-connected graph and A be an atom of G. Then there is a fragment F of G such that $F \neq A$ and $|F| \leq \frac{1}{2}\kappa(G)$.

Proof. Suppose the contrary. We prove the following.

(1) There is an end B such that $B \neq N(A)$, $B \neq A$ and $B \neq \overline{A}$.

Consider a minimum cut-set T of G such that $A \cap T \neq \emptyset$. By Mader Theorem A, $A \subseteq T$. Let C be a fragment with respect to T, B_1 and B_2 be two ends contained in C and \overline{C} respectively. We have $B_1 \not\subset N(A)$ or $B_2 \not\subset N(A)$, since

 $|B_1| > \frac{1}{2}\kappa(G)$ and $|B_2| > \frac{1}{2}\kappa G$. We may assume without loss of generality $B = B_1$. From the above construction, we see that $B \neq A$ and $\vec{B} \neq A$.

(2) G_B is a complete graph.

By the last remark of (1) and Lemma 3.3, G_B is complete otherwise G would contain a fragment distinct from A with cardinality $\leq \frac{1}{2}\kappa(G)$.

Let $(T_i)_{1 \le i \le k}$ be a minimum covering of B with minimum cut-sets.

(3) $k \ge 2$.

Suppose $B \subseteq T_1$. By Lemma 2.5 (observe that $|B| > \frac{1}{2}\kappa(G)$), there is a fragment A_1 with respect to T_1 such that $|A_1| \le \frac{1}{2}\kappa(G)$. This relation contradicts our hypothesis since $A_1 \ne A$ (observe that $B \subseteq N(A_1)$ and $B \ne N(A)$ by (1)).

(4) Let A_i be a fragment with respect to T_i such that $\bar{A_i} \cap B = \emptyset$: such a fragment exists since G_B is a complete graph, $i=1,\ldots,k$. Thus $B \subset (A_i \cup T_i)$, $1 \le i \le k$. Hence $B \cap A_i \ne \emptyset$, otherwise $B \subset T_i$ contradicting the minimality of the covering. We have also $B \not\subset A_i$, otherwise $(T_i)_{i\ne i}$ would be a covering of B. It follows, using Lemma 2.2, that $\bar{B} \cap \bar{A_i} = \emptyset$, $i=1,\ldots,k$. Hence $\bar{A_i} \subset N(B)$. There is $p, 1 \le p \le k$, such that $T_p \ne N(A)$ (observe that $T_i \ne T_j$ for $i\ne j$, by the minimality of the covering). By our hypothesis $|\bar{A_p}| > \frac{1}{2}\kappa(G)$. By Lemma 2.2, there is a fragment with respect to N(B) having a cardinality $\le \frac{1}{2}\kappa(G)$. Therefore $|B| \le \frac{1}{2}\kappa(G)$ or $|\bar{B}| \le \frac{1}{2}\kappa(G)$ (since B is an end), a contradiction. This contradiction proves the proposition.

Theorem 3.5. Let G be a critically h-connected graph. Then G contains two vertices of degree not exceeding $\frac{3}{2}h - 1$.

Proof. It is sufficient to prove the theorem in the case of a maximal critically h-connected graph. Let A be an atom of G. By Proposition 3, there is a fragment $F \neq A$ such that $|F| \leq \frac{1}{2}\kappa(G)$. Let $x \in A$ and $y \in F - A$. We have $d(y) \leq |F| - 1 + |N(F)| \leq \frac{3}{2}h - 1$. Similarly we see that $d(x) \leq \frac{3}{2}h - 1$.

Let X and Y be two disjoint sets such that |X| = |Y| = h - 1 ($h \le 3$), x and y be two distinct vertices such that $\{x, y\} \cap (X \cup Y) = \emptyset$. Consider a complete graph on $X \cup Y$. We construct a graph G by adding to the above complete graph the vertices x and y such that

$$N(x) = X \cup \{y\}; \qquad N(y) = Y \cup \{x\}.$$

The graph G is critically h-connected, since its vertex-set can be covered by two minimum cut-sets $(X \cup \{y\})$ and $Y \cup \{x\}$. The only vertices of G with degree not exceeding $\frac{3}{2}h - 1$ are x and y.

Corollary 3.6 (Entringer and Slater [3]). In any critically 3-connected graph there are at least two vertices of degree 3.

References

- [1] C. Berge, Graphes et Hypergraphes (Dunod, Paris, 1970).
- [2] G. Chartrand, A. Kaugars and D.R. Lick, Critically n-connected graphs, Proc. Amer. Math. Soc. 32 (1972) 63-68.
- [3] R.E. Entringer and P.J. Slater, A theorem on critically 3-connected graphs, Nanta Math. 11 (1977) 141-147.
- [4] Y.O. Hamidoune, Sur sex atomes d'un graphe orienté, C.R. Acad. Sc. Paris 284 (1977) A1253-A1256.
- [5] W. Mader, Eine Eigenschaft der Atome endlischer Graphen, Arch. Math. 22 (1971) 333-336.
- [6] W. Mader, Endlichkeitssätze für k-kritische Graphen, Math. Ann. 229 (1977) 143-13.
- [7] L. Nebesky, On induced subgraphs of a block, J. Graph Theory 1 (1977) 69-74.