Milestone 5

Code:

```
# Julia Cuellar
# DSC 540
# Final project
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import urllib.request as urllib2
from bs4 import BeautifulSoup
import urllib3
import requests
import sqlite3
# Read csv file
def read csv file():
    evcp = pd.read csv('2019 EVCP use Q1 and Q2.csv')
   print("Csv data:\n", evcp)
# Drop 1st column from csv file
def csv drop():
    evcp = pd.read csv('2019 EVCP use Q1 and Q2.csv')
    evcp.drop('Charging event', axis=1, inplace=True)
    print("Remove 1st column from csv data:\n", evcp)
# Check, replace, and recheck the nulls from csv file
def csv cpr null():
    evcp = pd.read csv('2019 EVCP use Q1 and Q2.csv')
    evcp.drop('Charging event', axis=1, inplace=True)
    print("Display csv data with null:\n", evcp.isnull())
    print("Display counts of null from csv data:\n", evcp.isnull().sum())
    evcp = evcp.fillna(" ")
    print("Display csv data with replaced nulls:\n", evcp)
    print("Display recounts of null from csv data:\n", evcp.isnull().sum())
# Rename Model column from csv file
def csv rename col():
    evcp = pd.read csv('2019 EVCP use Q1 and Q2.csv')
    evcp.drop('Charging event', axis=1, inplace=True)
    evcp = evcp.fillna(" ")
    evcp.rename(columns={'Model': 'Charge'}, inplace=True)
    print("Rename Model column from csv data:\n", evcp)
# Display count plot of Total kWh column from csv file
def csv showCountplot kWh():
    evcp = pd.read csv('2019 EVCP use Q1 and Q2.csv')
    evcp.drop('Charging event', axis=1, inplace=True)
    evcp = evcp.fillna(" ")
    evcp.rename(columns={'Model': 'Charge'}, inplace=True)
```

```
sns.countplot(x='Total kWh', data=evcp)
   plt.title('kWh')
   plt.show()
# Display count plot of Site column from csv file
def csv showCountplot Site():
    evcp = pd.read csv('2019 EVCP use Q1 and Q2.csv')
    evcp.drop('Charging event', axis=1, inplace=True)
    evcp = evcp.fillna(" ")
    evcp.rename(columns={'Model': 'Charge'}, inplace=True)
    sns.countplot(x='Site', data=evcp)
    plt.title('Site')
   plt.show()
# Display count plot of Charge column from csv file
def csv showCountplot Charge():
    evcp = pd.read csv('2019 EVCP use Q1 and Q2.csv')
    evcp.drop('Charging event', axis=1, inplace=True)
    evcp = evcp.fillna(" ")
    evcp.rename(columns={'Model': 'Charge'}, inplace=True)
    sns.countplot(x='Charge', data=evcp)
    plt.title('Charge')
   plt.show()
# Display final format of csv file
def read csv 2():
    evcp = pd.read csv('2019 EVCP use Q1 and Q2.csv')
    evcp.drop('Charging event', axis=1, inplace=True)
    evcp = evcp.fillna(" ")
    evcp.rename(columns={'Model': 'Charge'}, inplace=True)
    evcp.to csv('2019 EVCP use Q1-Q2.csv')
# Read web data
def read web():
    response = urllib2.urlopen('https://data.wa.gov/Transportation/Electric-
Vehicle-Population-Data/f6w7-q2d2/data')
    html doc = response.read()
    soup = BeautifulSoup(html doc, 'html.parser')
    evcp = soup.prettify()
    print(evcp)
    evcp web = pd.read csv('Electric Vehicle Population Data.csv')
    print("Web data:\n", evcp web)
# Drop 1st column from web data
def web drop():
    response = urllib2.urlopen('https://data.wa.gov/Transportation/Electric-
Vehicle-Population-Data/f6w7-q2d2/data')
   html doc = response.read()
    soup = BeautifulSoup(html doc, 'html.parser')
    evcp = soup.prettify()
    evcp web = pd.read csv('Electric Vehicle Population Data.csv')
    evcp web.drop('VIN (1-10)', axis=1, inplace=True)
```

```
print("Remove 1st column from web data:\n", evcp web)
# Check, replace, and recheck the nulls from web data
def web cpr null():
    response = urllib2.urlopen('https://data.wa.gov/Transportation/Electric-
Vehicle-Population-Data/f6w7-q2d2/data')
   html doc = response.read()
    soup = BeautifulSoup(html doc, 'html.parser')
    evcp = soup.prettifv()
    evcp_web = pd.read_csv('Electric_Vehicle Population Data.csv')
    evcp web.drop('VIN (1-10)', axis=1, inplace=True)
    print("Display web data with null:\n", evcp web.isnull())
   print("Display counts of null from web data:\n", evcp web.isnull().sum())
    evcp web = evcp web.fillna(" ")
    print("Display web data with replaced nulls:\n", evcp web)
    print("Display recounts of null from web data:\n",
evcp web.isnull().sum())
# Rename Electric Vehicle Type column from web data
def web rename col():
    response = urllib2.urlopen('https://data.wa.gov/Transportation/Electric-
Vehicle-Population-Data/f6w7-q2d2/data')
   html doc = response.read()
    soup = BeautifulSoup(html doc, 'html.parser')
    evcp = soup.prettify()
    evcp web = pd.read csv('Electric Vehicle Population Data.csv')
    evcp web.drop('VIN (1-10)', axis=1, inplace=True)
    evcp web = evcp web.fillna(" ")
    evcp web.rename(columns={'Electric Vehicle Type': 'Charge'},
inplace=True)
    print("Rename Electric Vehicle Type column from web data:\n", evcp web)
# Display count plot of Electric Range column from web data
def web showCountplot ER():
    response = urllib2.urlopen('https://data.wa.gov/Transportation/Electric-
Vehicle-Population-Data/f6w7-q2d2/data')
   html doc = response.read()
    soup = BeautifulSoup(html doc, 'html.parser')
    evcp = soup.prettify()
    evcp web = pd.read csv('Electric Vehicle Population Data.csv')
    evcp web.drop('VIN (1-10)', axis=1, inplace=True)
    evcp web = evcp web.fillna(" ")
    evcp web.rename(columns={'Electric Vehicle Type': 'Charge'},
inplace=True)
    sns.countplot(x='Electric Range', data=evcp web)
   plt.title('ER')
   plt.show()
# Display count plot of County column from web data
def web showCountplot County():
    response = urllib2.urlopen('https://data.wa.gov/Transportation/Electric-
Vehicle-Population-Data/f6w7-q2d2/data')
    html doc = response.read()
```

```
soup = BeautifulSoup(html doc, 'html.parser')
    evcp = soup.prettify()
    evcp web = pd.read csv('Electric Vehicle Population Data.csv')
    evcp web.drop('VIN (1-10)', axis=1, inplace=True)
    evcp_web = evcp_web.fillna(" ")
    evcp web.rename(columns={'Electric Vehicle Type': 'Charge'},
inplace=True)
    sns.countplot(x='County', data=evcp web)
    plt.title('county')
    plt.show()
# Display count plot of Charge column from web data
def web showCountplot Charge():
    response = urllib2.urlopen('https://data.wa.gov/Transportation/Electric-
Vehicle-Population-Data/f6w7-q2d2/data')
    html doc = response.read()
    soup = BeautifulSoup(html doc, 'html.parser')
    evcp = soup.prettify()
    evcp web = pd.read csv('Electric Vehicle Population Data.csv')
    evcp web.drop('VIN (1-10)', axis=1, inplace=True)
    evcp web = evcp web.fillna(" ")
    evcp web.rename(columns={'Electric Vehicle Type': 'Charge'},
inplace=True)
    sns.countplot(x='Charge', data=evcp web)
    plt.title('charge')
   plt.show()
# Display final format of web data
def read web 2():
    response = urllib2.urlopen('https://data.wa.gov/Transportation/Electric-
Vehicle-Population-Data/f6w7-q2d2/data')
    html doc = response.read()
    soup = BeautifulSoup(html doc, 'html.parser')
    evcp = soup.prettify()
    evcp web = pd.read csv('Electric Vehicle Population Data.csv')
    evcp web.drop('VIN (1-10)', axis=1, inplace=True)
    evcp web = evcp web.fillna(" ")
    evcp web.rename(columns={'Electric Vehicle Type': 'Charge'},
inplace=True)
    evcp web.to csv('Electric Vehicle Pop Data.csv')
# Read api data
def read api():
    res = requests.get('https://data.wa.gov/resource/rpr4-cgyd.json')
   print(res)
    evcp api =
pd.read csv('Electric Vehicle Title and Registration Activity.csv')
    print("API data:\n", evcp api)
# Drop multiple columns from api data
def api drop():
    res = requests.get('https://data.wa.gov/resource/rpr4-cgyd.json')
    evcp api =
```

```
pd.read csv('Electric Vehicle Title and Registration Activity.csv')
    evcp api.drop(['VIN (1-10)', 'Sale Price', 'DOL Transaction Date', '2015
HB 2778 Exemption Eligibility',
                   'Sale Date', '2019 HB 2042 Clean Alternative Fuel Vehicle
(CAFV) Eligibility',
                   'Meets 2019 HB 2042 Electric Range Requirement', 'Meets
2019 HB 2042 Sale Date Requirement',
                   'Meets 2019 HB 2042 Sale Price/Value Requirement',
'Odometer Reading', 'Odometer Code'],
                  axis=1, inplace=True)
    print("Removal of multiple columns from api data:\n", evcp api)
# Check, replace, and recheck the nulls from api data
def api cpr null():
    res = requests.get('https://data.wa.gov/resource/rpr4-cgyd.json')
    evcp api =
pd.read csv('Electric Vehicle Title and Registration Activity.csv')
    evcp api.drop(['VIN (1-10)', 'Sale Price', 'DOL Transaction Date', '2015
HB 2778 Exemption Eligibility',
                   'Sale Date', '2019 HB 2042 Clean Alternative Fuel Vehicle
(CAFV) Eligibility',
                   'Meets 2019 HB 2042 Electric Range Requirement', 'Meets
2019 HB 2042 Sale Date Requirement',
                   'Meets 2019 HB 2042 Sale Price/Value Requirement',
'Odometer Reading', 'Odometer Code'],
                  axis=1, inplace=True)
   print("Display api data with null:\n", evcp api.isnull())
   print("Display counts of null from api data:\n", evcp api.isnull().sum())
    evcp api = evcp api.fillna(" ")
    print("Display api data with replaced nulls:\n", evcp api)
    print("Display recounts of null from api data:\n",
evcp api.isnull().sum())
# Rename Clean Alternative Fuel Vehicle Type column from api data
def api rename col():
    res = requests.get('https://data.wa.gov/resource/rpr4-cgyd.json')
    evcp api =
pd.read csv('Electric Vehicle Title and Registration Activity.csv')
    evcp api.drop(['VIN (1-10)', 'Sale Price', 'DOL Transaction Date', '2015
HB 2778 Exemption Eligibility',
                   'Sale Date', '2019 HB 2042 Clean Alternative Fuel Vehicle
(CAFV) Eligibility',
                   'Meets 2019 HB 2042 Electric Range Requirement', 'Meets
2019 HB 2042 Sale Date Requirement',
                   'Meets 2019 HB 2042 Sale Price/Value Requirement',
'Odometer Reading', 'Odometer Code'],
                  axis=1, inplace=True)
    evcp_api = evcp api.fillna(" ")
    evcp api.rename(columns={'Clean Alternative Fuel Vehicle Type':
'Charge'}, inplace=True)
   print ("Rename Clean Alternative Fuel Vehicle Type column from api
data:\n", evcp api)
```

Display count plot of New or Used Vehicle column from api data

```
def api showCountplot NU():
    res = requests.get('https://data.wa.gov/resource/rpr4-cgyd.json')
    evcp api =
pd.read csv('Electric Vehicle Title and Registration Activity.csv')
    evcp api.drop(['VIN (1-10)', 'Sale Price', 'DOL Transaction Date', '2015
HB 2778 Exemption Eligibility',
                   'Sale Date', '2019 HB 2042 Clean Alternative Fuel Vehicle
(CAFV) Eligibility',
                   'Meets 2019 HB 2042 Electric Range Requirement', 'Meets
2019 HB 2042 Sale Date Requirement',
                   'Meets 2019 HB 2042 Sale Price/Value Requirement',
'Odometer Reading', 'Odometer Code'],
                  axis=1, inplace=True)
    evcp api = evcp api.fillna(" ")
    evcp api.rename (columns={'Clean Alternative Fuel Vehicle Type':
'Charge' }, inplace=True)
    sns.countplot(x='New or Used Vehicle', data=evcp api)
    plt.title('N/U')
    plt.show()
# Display count plot of Electric Vehicle Fee Paid column from api data
def api showCountplot Fee():
    res = requests.get('https://data.wa.gov/resource/rpr4-cgyd.json')
    evcp api =
pd.read csv('Electric Vehicle Title and Registration Activity.csv')
    evcp api.drop(['VIN (1-10)', 'Sale Price', 'DOL Transaction Date', '2015
HB 2778 Exemption Eligibility',
                   'Sale Date', '2019 HB 2042 Clean Alternative Fuel Vehicle
(CAFV) Eligibility',
                   'Meets 2019 HB 2042 Electric Range Requirement', 'Meets
2019 HB 2042 Sale Date Requirement',
                   'Meets 2019 HB 2042 Sale Price/Value Requirement',
'Odometer Reading', 'Odometer Code'],
                  axis=1, inplace=True)
    evcp api = evcp api.fillna(" ")
    evcp api.rename(columns={'Clean Alternative Fuel Vehicle Type':
'Charge' }, inplace=True)
    sns.countplot(x='Electric Vehicle Fee Paid', data=evcp api)
    plt.title('Fee')
   plt.show()
# Display count plot of Charge column from api data
def api showCountplot Charge():
    res = requests.get('https://data.wa.gov/resource/rpr4-cgyd.json')
    evcp api =
pd.read csv('Electric Vehicle Title and Registration Activity.csv')
    evcp api.drop(['VIN (1-10)', 'Sale Price', 'DOL Transaction Date', '2015
HB 2778 Exemption Eligibility',
                   'Sale Date', '2019 HB 2042 Clean Alternative Fuel Vehicle
(CAFV) Eligibility',
                   'Meets 2019 HB 2042 Electric Range Requirement', 'Meets
2019 HB 2042 Sale Date Requirement',
                   'Meets 2019 HB 2042 Sale Price/Value Requirement',
'Odometer Reading', 'Odometer Code'],
                  axis=1, inplace=True)
```

```
evcp api = evcp api.fillna(" ")
    evcp api.rename(columns={'Clean Alternative Fuel Vehicle Type':
'Charge'}, inplace=True)
    sns.countplot(x='Charge', data=evcp api)
    plt.title('charge')
   plt.show()
# Display final format of api data
def read api 2():
    res = requests.get('https://data.wa.gov/resource/rpr4-cgyd.json')
    evcp api =
pd.read csv('Electric Vehicle Title and Registration Activity.csv')
    evcp api.drop(['VIN (1-10)', 'Sale Price', 'DOL Transaction Date', '2015
HB 2778 Exemption Eligibility',
                   'Sale Date', '2019 HB 2042 Clean Alternative Fuel Vehicle
(CAFV) Eligibility',
                   'Meets 2019 HB 2042 Electric Range Requirement', 'Meets
2019 HB 2042 Sale Date Requirement',
                   'Meets 2019 HB 2042 Sale Price/Value Requirement',
'Odometer Reading', 'Odometer Code'],
                  axis=1, inplace=True)
    evcp api = evcp api.fillna(" ")
    evcp api.rename(columns={'Clean Alternative Fuel Vehicle Type':
'Charge'}, inplace=True)
    evcp api.to csv('Electric Vehicle Title-Registration Activity.csv')
# Read db file
def read db file():
    conn = sqlite3.connect("EVCP")
    cur = conn.cursor()
    cur.execute("SELECT UserID, CPID, Connector, StartDate, StartTime,
EndDate, EndTime, TotalkWh, Site, Charge FROM "
                "0102")
    table = cur.fetchall()
    for i in table:
       print(i)
    cur.execute("SELECT County, City, State, ZIPCode, ModelYear, Make, Model,
Charge, CAFV, ElectricRange, BaseMSRP, "
                "LegislativeDistrict, DOLVehicleID, VehicleLocation FROM
Pop")
    table2 = cur.fetchall()
    for i in table2:
       print(i)
    cur.execute("SELECT Charge, ModelYear, Make, Model, NewUsed,
TransactionType, TransactionYear, FeePaid, County, "
                "City, Zip, ElectricRange, BaseMSRP, PrimaryUse, State,
DOLVehicleID, LegislativeDistrict FROM "
                "TitleRegistration")
    table3 = cur.fetchall()
    for i in table3:
```

```
# Combine tables from db file
def db merge():
    conn = sqlite3.connect("EVCP")
    cur = conn.cursor()
    cur.execute("SELECT UserID, CPID, Connector, StartDate, StartTime,
EndDate, EndTime, TotalkWh, Site, Charge FROM "
               "Q1Q2")
    table = cur.fetchall()
    df = pd.read csv('2019 EVCP use Q1-Q2.csv')
    print(df)
    cur.execute("SELECT County, City, State, ZIPCode, ModelYear, Make, Model,
Charge, CAFV, ElectricRange, BaseMSRP, "
                "LegislativeDistrict, DOLVehicleID, VehicleLocation FROM
Pop")
    table2 = cur.fetchall()
    df2 = pd.read csv('Electric Vehicle Pop Data.csv')
    cur.execute("SELECT Charge, ModelYear, Make, Model, NewUsed,
TransactionType, TransactionYear, FeePaid, County, "
               "City, Zip, ElectricRange, BaseMSRP, PrimaryUse, State,
DOLVehicleID, LegislativeDistrict FROM "
                "TitleRegistration")
    table3 = cur.fetchall()
    df3 = pd.read csv('Electric Vehicle Title-Registration Activity.csv')
    print(df3)
    df final = df.merge(df2, how='outer') \
        .merge(df3, how='outer')
    print("Database shape: ", df final.shape)
# Plots of db file
def db showPlots():
    conn = sqlite3.connect("EVCP")
    cur = conn.cursor()
    cur.execute("SELECT UserID, CPID, Connector, StartDate, StartTime,
EndDate, EndTime, TotalkWh, Site, Charge FROM "
                "0102")
    table = cur.fetchall()
    df = pd.read csv('2019 EVCP use Q1-Q2.csv')
    cur.execute("SELECT County, City, State, ZIPCode, ModelYear, Make, Model,
Charge, CAFV, ElectricRange, BaseMSRP, "
                "LegislativeDistrict, DOLVehicleID, VehicleLocation FROM
Pop")
    table2 = cur.fetchall()
    df2 = pd.read csv('Electric Vehicle Pop Data.csv')
    cur.execute("SELECT Charge, ModelYear, Make, Model, NewUsed,
TransactionType, TransactionYear, FeePaid, County, "
               "City, Zip, ElectricRange, BaseMSRP, PrimaryUse, State,
DOLVehicleID, LegislativeDistrict FROM "
                "TitleRegistration")
    table3 = cur.fetchall()
    df3 = pd.read csv('Electric Vehicle Title-Registration Activity.csv')
    df final = df.merge(df2, how='outer') \
        .merge(df3, how='outer')
```

print(i)

```
db = pd.read csv('EVCP.csv')
    print(db)
    sns.countplot(x='Charge', data=db)
    plt.title('charge')
    plt.show()
    sns.countplot(x='Electric Range', data=db)
    plt.title('ER')
    plt.show()
    sns.countplot(x='Base MSRP', data=db)
    plt.title('b MSRP')
    plt.show()
    sns.countplot(y='Make', data=db)
    plt.title('make')
    plt.show()
    sns.countplot(x='Model', data=db)
    plt.title('model')
    plt.show()
if name == " main ":
    read csv file()
    csv drop()
    csv_cpr_null()
    csv rename col()
    csv showCountplot kWh()
    csv showCountplot Site()
    csv showCountplot Charge()
    read web()
    web drop()
    web cpr null()
    web_rename col()
    web_showCountplot_ER()
    web showCountplot County()
    web showCountplot Charge()
    read api()
    api drop()
    api cpr null()
    api rename col()
    api showCountplot NU()
    api showCountplot Fee()
    api showCountplot Charge()
    read db file()
    db merge()
    db showPlots()
```

Output:

Csv data:

Cha	arging event	Model
0	8124494	APT 7kW Dual Outlet
1	8124522	APT 7kW Dual Outlet
2	8124828	APT 7kW Dual Outlet
3	8124987	APT 7kW Dual Outlet
4	8125100	APT 7kW Dual Outlet
•••		
3401	8702065	APT Triple Rapid Charger
3402	8702103	APT Triple Rapid Charger
3403	8702255	APT Triple Rapid Charger
3404	8702426	APT 7kW Dual Outlet
3405	8702978	APT 7kW Dual Outlet

[3406 rows x 11 columns]

Remove 1st column from csv data:

	User ID (CP ID	Site	Model
0	User 406	70204	Woodhouse Lane Car Park	APT 7kW Dual Outlet
1	User 546	70204	Woodhouse Lane Car Park	APT 7kW Dual Outlet
2	User 279	80085 T	emple Green Park and Ride	APT 7kW Dual Outlet
3	User 399	70202	Woodhouse Lane Car Park	APT 7kW Dual Outlet
4	User 771	70202	Woodhouse Lane Car Park	APT 7kW Dual Outlet
•••				
340	1 User 131	80164	Elland Road Park and Ride	APT Triple Rapid Charger
340	2 User 573	8 80164	Elland Road Park and Ride	APT Triple Rapid Charger
340	3 User 418	8 80164	Elland Road Park and Ride	APT Triple Rapid Charger
340	4 User 306	5 70204	Woodhouse Lane Car Par	k APT 7kW Dual Outlet

[3406 rows x 10 columns]

Display csv data with null:

User ID CP ID Connector Start Date ... End Time Total kWh Site Model

0	False False	False	False	False	False False False
1	False False	False	False	False	False False False
2	False False	False	False	False	False False False
3	False False	False	False	False	False False False
4	False False	False	False	False	False False False

...

3401	False False	False	False	True	True False False
3402	False False	False	False	False	False False False
3403	False False	False	False	False	False False False
3404	False False	False	False	False	False False False
3405	False False	False	False	False	False False False

[3406 rows x 10 columns]

Display counts of null from csv data:

User ID 0

CP ID 0

Connector 0

Start Date 0

Start Time 0

End Date 52

End Time 52

Total kWh 52

Site 0

```
Model 0
```

dtype: int64

Display csv data with replaced nulls:

	User ID	CP ID	Site	Model
0	User 406	70204	Woodhouse Lane Car Park	APT 7kW Dual Outlet
1	User 546	70204	Woodhouse Lane Car Park	APT 7kW Dual Outlet
2	User 279	80085	Temple Green Park and Ride	APT 7kW Dual Outlet
3	User 399	70202	Woodhouse Lane Car Park	APT 7kW Dual Outlet
4	User 771	70202	Woodhouse Lane Car Park	APT 7kW Dual Outlet
		•••		
340	1 User 13	1 80164	. Elland Road Park and Ride	APT Triple Rapid Charger
340	2 User 57	3 80164	. Elland Road Park and Ride	APT Triple Rapid Charger
340	3 User 41	8 80164	. Elland Road Park and Ride	APT Triple Rapid Charger
340	4 User 30	6 70204	. Woodhouse Lane Car Park	APT 7kW Dual Outlet
340	5 User 30	8 70204	. Woodhouse Lane Car Park	APT 7kW Dual Outlet

[3406 rows x 10 columns]

Display recounts of null from csv data:

User ID 0

CP ID 0

Connector 0

Start Date 0

Start Time 0

End Date 0

End Time 0

Total kWh 0

Site 0

Model 0

dtype: int64

Rename Model column from csv data:

User ID	CP ID	Site	Charge
0 User 406	5 70204	Woodhouse Lane Car Park	APT 7kW Dual Outlet
1 User 546	5 70204	Woodhouse Lane Car Park	APT 7kW Dual Outlet
2 User 279	80085 Т	Semple Green Park and Ride	APT 7kW Dual Outlet
3 User 399	70202	Woodhouse Lane Car Park	APT 7kW Dual Outlet
4 User 771	70202	Woodhouse Lane Car Park	APT 7kW Dual Outlet
3401 User 1	31 80164	Elland Road Park and Ride	APT Triple Rapid Charger
3402 User 5	73 80164	Elland Road Park and Ride	APT Triple Rapid Charger
3403 User 4	18 80164	Elland Road Park and Ride	APT Triple Rapid Charger
3404 User 3	06 70204	Woodhouse Lane Car Park	APT 7kW Dual Outlet
3405 User 3	08 70204	Woodhouse Lane Car Park	APT 7kW Dual Outlet

[3406 rows x 10 columns]

Web data:

VIN (1-10) ... Vehicle Location

- 0 3FA6P0SU3L ... POINT (-122.11667400000002 47.363112)
- 1 5YJYGDEE6L ... POINT (-122.137386 47.444808)
- 2 KNDCC3LG6L ... POINT (-122.215501 47.476576)
- 3 1N4AZ0CP5D ... POINT (-122.31336800000001 47.54411)
- 4 5YJSA1H22E ... POINT (-122.297534 47.685291)

...

- 63850 YV4BC0ZX1H ... POINT (-117.50543600000002 47.633834)
- 63851 5YJ3E1EC5L ... POINT (-122.30033 47.585339)
- 63852 KNDCE3LG3K ... POINT (-122.9799689999998 47.078241)
- 63853 5YJ3E1EBXJ ... POINT (-122.227947 47.565443)
- 63854 5YJ3E1EA1L ... POINT (-122.132064 47.494834)

[63855 rows x 15 columns]

Remove 1st column from web data:

- County ... Vehicle Location
- 0 King ... POINT (-122.11667400000002 47.363112)
- 1 King ... POINT (-122.137386 47.444808)
- 2 King ... POINT (-122.215501 47.476576)
- 3 King ... POINT (-122.31336800000001 47.54411)
- 4 King ... POINT (-122.297534 47.685291)

...

- 63850 Spokane ... POINT (-117.50543600000002 47.633834)
- 63851 King ... POINT (-122.30033 47.585339)
- 63852 Thurston ... POINT (-122.97996899999998 47.078241)
- 63853 King ... POINT (-122.227947 47.565443)
- 63854 King ... POINT (-122.132064 47.494834)

[63855 rows x 14 columns]

Display web data with null:

0

County City	DOL Vehicle ID	Vehicle Location
False False	False	False

1 False False ... False False

2 False False ... False False

3 False False ... False False

4 False False ... False False

...

63850	False	False		False	False
-------	-------	-------	--	-------	-------

63851 False False ... False False

63852 False False ... False False

63853 False False ... False False

63854 False False ... False False

[63855 rows x 14 columns]

Display counts of null from web data:

County 2

City 0

State 0

ZIP Code 0

Model Year 0

Make 0

Model 0

Electric Vehicle Type 0

Clean Alternative Fuel Vehicle (CAFV) Eligibility 0

Electric Range 0

Base MSRP 0

Legislative District 43

DOL Vehicle ID 0

Vehicle Location 2

dtype: int64

Display web data with replaced nulls:

County ... Vehicle Location

0 King ... POINT (-122.11667400000002 47.363112) 1 POINT (-122.137386 47.444808) King ... 2 POINT (-122.215501 47.476576) King ... King ... POINT (-122.31336800000001 47.54411) 3 4 King ... POINT (-122.297534 47.685291) 63850 Spokane ... POINT (-117.50543600000002 47.633834) 63851 King ... POINT (-122.30033 47.585339) 63852 Thurston ... POINT (-122.9799689999998 47.078241) 63853 King ... POINT (-122.227947 47.565443) 63854 King ... POINT (-122.132064 47.494834)

[63855 rows x 14 columns]

Display recounts of null from web data:

County 0
City 0
State 0
ZIP Code 0
Model Year 0
Make 0
Model 0
Electric Vehicle Type

Clean Alternative Fuel Vehicle (CAFV) Eligibility 0

0

Electric Range	0
Base MSRP	0
Legislative District	0
DOL Vehicle ID	0
Vehicle Location	0

dtype: int64

Rename Electric Vehicle Type column from web data:

(County	Vehicle Location
0	King POIN	VT (-122.11667400000002 47.363112)
1	King	POINT (-122.137386 47.444808)
2	King	POINT (-122.215501 47.476576)
3	King POI	NT (-122.31336800000001 47.54411)
4	King	POINT (-122.297534 47.685291)
63850	Spokane I	POINT (-117.50543600000002 47.633834)
63851	King	POINT (-122.30033 47.585339)
63852	Thurston F	OINT (-122.97996899999998 47.078241)
63853	King	POINT (-122.227947 47.565443)
63854	King	POINT (-122.132064 47.494834)

[63855 rows x 14 columns]

<Response [200]>

API data:

C	lean Alternative Fuel Vehicle Type .	Odometer Code
0	Battery Electric Vehicle (BEV)	Odometer reading is not collected at time of r
1	Battery Electric Vehicle (BEV)	Odometer reading is not collected at time of r
2	Plug-in Hybrid Electric Vehicle	Odometer reading is not collected at time of r
3	Plug-in Hybrid Electric Vehicle	Odometer reading is not collected at time of r
4	Battery Electric Vehicle (BEV)	Odometer reading is not collected at time of r
366734	4 Plug-in Hybrid Electric Vehicle	Odometer reading is not collected at time of r
366735	5 Plug-in Hybrid Electric Vehicle	Actual Mileage
366736	6 Plug-in Hybrid Electric Vehicle	Odometer reading is not collected at time of r
366737	7 Plug-in Hybrid Electric Vehicle	Actual Mileage
366738	8 Battery Electric Vehicle (BEV)	Odometer reading is not collected at time of r

[366739 rows x 28 columns]

Removal of multiple columns from api data:

Clean Alternative Fuel Vehicle Type ... Legislative District

0 E	Battery Electric Vehicle (BEV)	41.0
1 E	Battery Electric Vehicle (BEV)	24.0
2 P	lug-in Hybrid Electric Vehicle	37.0
3 P	lug-in Hybrid Electric Vehicle	24.0
4 E	Battery Electric Vehicle (BEV)	39.0
366734	Plug-in Hybrid Electric Vehicle	40.0
366735	Plug-in Hybrid Electric Vehicle	40.0
366736	Plug-in Hybrid Electric Vehicle	24.0
366737	Plug-in Hybrid Electric Vehicle	24.0
366738	Battery Electric Vehicle (BEV)	21.0

[366739 rows x 17 columns]

Display api data with null:

Clean Alternative Fuel Vehicle Type ... Legislative District

0	False	False
1	False	False
2	False	False
3	False	False
4	False	False
366734	False	False
366735	False	False
366736	False	False
366737	False	False
366738	False	False

[366739 rows x 17 columns]

Display counts of	of null	from	api data:
-------------------	---------	------	-----------

Clean Alternative Fuel V	Vehicle Type	0
--------------------------	--------------	---

Model Year 0

Make 0

Model 0

New or Used Vehicle 0

Transaction Type 0

Transaction Year 0

Electric Vehicle Fee Paid 0

County 12

City 91

Zip 4

Electric Range 0

Base MSRP 0

Vehicle Primary Use 0

State of Residence 4

DOL Vehicle ID 0

Legislative District 465

dtype: int64

Display api data with replaced nulls:

Clean Alternative Fuel Vehicle Type ... Legislative District

0	Battery Electric	Vehicle (BEV)	41.0

- 1 Battery Electric Vehicle (BEV) ... 24.0
- 2 Plug-in Hybrid Electric Vehicle ... 37.0
- 3 Plug-in Hybrid Electric Vehicle ... 24.0
- 4 Battery Electric Vehicle (BEV) ... 39.0

...

366734 Plug-in Hybrid Electric Vehicle ... 40.0

366735	Plug-in Hybrid Electric Vehicle	40.0
366736	Plug-in Hybrid Electric Vehicle	24.0
366737	Plug-in Hybrid Electric Vehicle	24.0
366738	Battery Electric Vehicle (BEV)	21.0

[366739 rows x 17 columns]

Display recounts of null from api data:

Clean Alternative Fuel Vehicle Type 0

Model Year 0

Make 0

Model 0

New or Used Vehicle 0

Transaction Type 0

Transaction Year 0

Electric Vehicle Fee Paid 0

County 0

City 0

Zip 0

Electric Range 0

Base MSRP 0

Vehicle Primary Use 0

State of Residence 0

DOL Vehicle ID 0

Legislative District 0

dtype: int64

Rename Clean Alternative Fuel Vehicle Type column from api data:

Charge ... Legislative District

0 Battery Electric Vehicle (BEV) ... 41.0

1 Battery Electric Vehicle (BEV)	24.0
2 Plug-in Hybrid Electric Vehicle	37.0
3 Plug-in Hybrid Electric Vehicle	24.0
4 Battery Electric Vehicle (BEV)	39.0
366734 Plug-in Hybrid Electric Vehicle	40.0
366735 Plug-in Hybrid Electric Vehicle	40.0
366736 Plug-in Hybrid Electric Vehicle	24.0
366737 Plug-in Hybrid Electric Vehicle	24.0
366738 Battery Electric Vehicle (BEV)	21.0

[366739 rows x 17 columns]

	Unnamed: 0	Charge
0	0	APT 7kW Dual Outlet
1	1	APT 7kW Dual Outlet
2	2	APT 7kW Dual Outlet
3	3	APT 7kW Dual Outlet
4	4	APT 7kW Dual Outlet

```
3401 3401 ... APT Triple Rapid Charger
3402 3402 ... APT Triple Rapid Charger
3403 3403 ... APT Triple Rapid Charger
3404 3404 ... APT 7kW Dual Outlet
3405 3405 ... APT 7kW Dual Outlet
```

[3406 rows x 11 columns]

Unna	amed: 0	Vehicle Location
0	0 POI	NT (-122.11667400000002 47.363112)
1	1	POINT (-122.137386 47.444808)
2	2	POINT (-122.215501 47.476576)
3	3 PO	INT (-122.31336800000001 47.54411)
4	4	POINT (-122.297534 47.685291)
63850	63850	POINT (-117.50543600000002 47.633834)
63851	63851	POINT (-122.30033 47.585339)
63852	63852	POINT (-122.97996899999998 47.078241)
63853	63853	POINT (-122.227947 47.565443)
63854	63854	POINT (-122.132064 47.494834)

[63855 rows x 15 columns]

Unnamed: 0 ... Legislative District

0	0	41.0
1	1	24.0
2	2	37.0
3	3	24.0
4	4	39.0

366734	366734	40.0
366735	366735	40.0
366736	366736	24.0
366737	366737	24.0
366738	366738	21.0

[366739 rows x 18 columns]

Database shape: (434000, 31)

Database:

Unnamed: 0 User ID ... Vehicle Primary Use State of Residence

0	0 User 406	NaN	NaN
1	1 User 546	NaN	NaN
2	2 User 279	NaN	NaN
3	3 User 399	NaN	NaN
4	4 User 771	NaN	NaN
433995	366734 NaN	Passenger	WA
433996	366735 NaN	Passenger	WA
433997	366736 NaN	Passenger	WA
433998	366737 NaN	Passenger	WA
433999	366738 NaN	Passenger	WA

[434000 rows x 31 columns]

Unnamed: 0 User ID ... Zip Vehicle Primary Use

0	0.0 User 406 98056	Passenger
1	1.0 User 546 98382	Passenger
2	2.0 User 279 98144	Passenger
3	3.0 User 399 98368	Passenger

4	4.0 User 7	71 982	90	Passenger
433995	NaN	NaN	NaN	NaN
433996	NaN	NaN	NaN	NaN
433997	NaN	NaN	NaN	NaN
433998	NaN	NaN	NaN	NaN
433999	NaN	NaN	NaN	NaN

[434000 rows x 30 columns]

