Aula 08 Processo de Fresamento

Fresamento

Generalidades

Generalidades do processo de fresamento

O fresamento se diferencia do torneamento pela sua:

- cinemática
 - torneamento peça rotaciona e ferramenta translada
 - fresamento peça translada e ferramenta gira

Generalidades do processo de fresamento

O fresamento se diferencia do torneamento pela sua:

- formas geradas
 - torneamento ==> peças com simetria de revolução
 - fresamento ==> peças prismáticas

Características da fresa

Generalidades do processo de fresamento

- Processo de remoção de cavaco com movimento de corte circular da ferramenta
- Ferramenta com um ou vários gumes atuando simultaneamente para a geração de superfícies
- Processo utilizado na geração de superfícies que não são de revolução, como as produzidas no torneamento
- O movimento de corte transcorre de forma normal ou oblíqua à direção de rotação da ferramenta.

Parâmetros de usinagem no fresamento

• Informações gerais (v_c, f, a_p, etc)

Fresamento concordante / discordante

- Diâmetro da fresa
- Número de dentes (Z)
- Penetração de trabalho (a_e)
- Avanço por dente (f_z)
- Ângulo de engajamento (definido por j_E e j_A)

Fresamento segundo a posição da ferramenta

Fresamento Frontal

Fresamento Periférico

Movimentos e Forças no Fresamento

Generalidades do processo de fresamento

Divisão do processo de fresamento - norma DIN 8589

- Fresamento plano
- Fresamento circular
- Fresamento de forma
- Fresamento de geração (engrenagens)
- Fresamento de perfil

Superfícies planas

• Superfícies circulares

• Obtenção de roscas

• Obtenção de superfícies perfiladas

• Obtenção de cópia de superfícies

Divisão de acordo com a cinemática do processo

Fresamento concordante / Fresamento discordante

Fresamento Concordante

Fresamento Discordante

Fresamento Concordante / Discordante

Parte Concordante

Parte Discordante

Descrição das condições de usinagem em fresamento

Materiais de ferramenta comumente utilizados em fresamento

• Os materiais empregados para o fresamento não podem ser comparados diretamente com os empregadas no torneamento

• Foram desenvolvidos especificamente para apresentam resistências térmica e mecânica a esforços alternantes elevados

Materiais de ferramenta comumente utilizados em fresamento

Material da peça	Material da ferramenta	
Aço	Aços rápidos e metais duro P15 a P40	
Fofo, metais não ferrosos, plásticos e aços temperados	metais duro K10 a K30	
Aços HB<300	Cermets	
Desbaste de fofo	Cerâmicas de Si₃N₄	
Fofo cinzento, fofo duro, aços para cementação, aços de beneficiamento, aços temperados	Cerâmicas óxidas mista	
Aços para beneficamento de alta resistência (HRC > 45)	CBN	

Tipo de Fresas

Tipo de Fresas

Quanto à forma geométrica		
Fresa cilíndrica	Fresa de disco	Fresa angular
Fresa detalonada		Fresa de topo

Influências dos principais parâmetros de corte no fresamento

- Influência da velocidade de corte no desgaste da fresa
- v_C é o parâmetro de maior influência na vida da ferramenta devido principalmente às altas temperaturas geradas
- Em fresamento de topo reto, com Q cte pode-se aumentar a vida da ferramenta diminuindo-se v_C e aumentando-se f_Z
- Para Q cte a influência da redução de v_C na vida da ferramenta é maior que a devida à redução f_Z
- Os efeitos de ap , ae e da aplicação de fluido de corte sobre a qualidade superficial devem ser avaliados

Variações do processo e características específicas

Fresamento frontal

Exemplos de fresas frontais

- É usual inclinar-se o eixo da fresa de 0,5 a 1º para evitar o contato da parte não ativa do cabeçote de fresar
- O ângulo de direção do gume tem uma grande influência sobre as forças ativas e passivas e conseqüentemente sobre a estabilidade do processo
- O fresamento de acabamento tem ganhado importância devido à possibilidade crescente do trabalho completo em apenas uma máquina

Processo utilizado para usinagem de grandes superfícies

• Superfície da peça gerada pelo gume secundário, c = 90° - fresamento de canto - superfície gerada pelos gumes principal e secundário

• ae consideravelmente maior que ap

- Usinagem de rasgos de chavetas, seções retangulares e furos longos - fresas maciças de aço rápido, ferramentas com insertos reversíveis ou brasados
- Usinagem de superfícies grandes e planas cabeçotes de fresar com insertos reversíveis
- Tamanho e número de dentes do cabeçote de acordo comdimensões da superfície e da potência de acionamento da máquina

- Para evitar vibrações regenerativas do sistema, os cabeçotes são providos de uma divisão não regular dos dentes
- Cabeçotes de fresar grandes são subdivididos em duas partes para facilitar a troca da ferramenta - troca do anel externo com os insertos
- •Flexibilidade no uso dos cabeçotes uso de cassetes insertos de diferentes tamanhos e formas

Fresamento frontal Ferramentas de acabamento

Fresamento de acabamento

Número de dentes 10 a 60

$$a_{p} = 0.3 a 1 mm$$

$$f_{z} = 0.3 \text{ a } 0.5 \text{ mm}$$

Fresamento de alisamento

Número de dentes 1 a 7

$$a_{D} = 0.05 \text{ a } 0.2 \text{ mm}$$

$$f_z = 0.5 a 6 mm$$

Fresamento de acabamento com pastilhas de acabamento e pastilhas de alisamento

Número de gumes de acabamento 20 a 30 Número de gumes de alisamento 1 a 2 Pastilhas de acabamento $a_{p1} = 0.5$ a 2 mm

$$f_{71} = 0.1 \text{ a } 0.3 \text{ mm}$$

Pastilhas de alisamento

$$f_{72} = 2 a 5 mm$$

Ferramentas de acabamento

- Fresamento com ferramentas de acabamento com grande número de insertos (a_D e f_Z pequenos)
- Fresamento com ferramentas de acabamento com pequeno número de insertos (ap pequena e fz grande)
- Fresamento combinado gumes de desgaste de acabamento

Variações do processo e características específicas Fresamento tangêncial

Variações do processo e características específicas

Fresamento tangêncial

a_p consideravelmente maior que a_e

- Superfície da peça gerada pelo gume principal
- Em geral é empregado fresamento tangencial discordante
- Ferramentas podem ser de aço rápido ou com insertos de metalduro

Variações do processo e características específicas

Fresamento tangêncial

- Dentes retos alta solicitação dinâmica
- Dentes helicoidais
- Menor solicitação dinâmica
- Força axial que pode levar ao deslocamento da peça e / ou da ferramenta

Fresamento tangêncial

• Fresa espinha de peixe - eliminação das solicitações axiais

Exemplo de fresa espinha de peixe

Fresamento tangêncial

• Obtenção de perfis com cantos vivos - fresas combinadas

Exemplo de fresa combinada – topo+tangencial

Fresamento de perfil

Exemplo de fresa de perfil

Fresamento de perfil

- As ferramentas para fresamento de perfil são adequadas à forma do perfil que deve ser executado
- Ferramentas maciças (fresa de forma) ou compostas
- Ferramentas maciças construídas em aço rápido
- Usinagem de rasgos, raios, rodas dentadas e cremalheiras, guias de máquinas-ferramentas.

Fresamento de topo

Exemplos de fresas de topo

Fresamento de topo

- Processo de fresamento contínuo frontal e periférico
- Usinagem de formas complexas ex. matrizes, rasgos etc.
- Dependendo da aplicação, as ferramentas tem índice de esbeltez elevado (I/D = 5 a 10) - problema de vibrações
- Vibrações implicam desgaste acentuado, lascamentos do gume, erros de forma e dimensionais
- Ferramentas de aço rápido revestido e com insertos

Fresamento de topo

Tipo de Fresa	Aplicação
	Fresa para ranhuras com cone morse
	Fresa de topo com haste cilíndrica Corte à direita com hélice direita
	Fresa de topo com cone morse Corte à direita com hélice esquerda
	Fresa de topo semi-esférico com haste cilíndrica Corte à direita com hélice direita
	Fresa de topo cônica para matrizaria Corte à direita com hélice direita

Fresamento de topo Classificação em grupos segundo o material a usinar

Tipo da Hélice	Campo de aplicação	Ferramenta
N	Usinagem de materiais com resitência e dureza normais	
Н	Usinagem de materiais duros, tenazes duros e/ou cavacos curtos	
W	Usinagem de materiais moles, tenazes e/ou de cavacos longos	

Fresamento de topo

• Perfilamento do gume principal em fresas de desbaste

Grupo N	Grupo H
	Grupo N

Fresamento de geração

v Velocidade de corte

f Avanço axial

f_w Avanço da engrenagem

Cinemática na geração por fresamento

Exemplo de fresas de geração

Engrenagem

- ₫₂ Diâmetro
- Z₂ Número de dentes
- $oldsymbol{eta_2}^-$ Ângulo de inclinação
- b Largura

<u>Fresa</u>

- **₫**an Diâmetro da fresa
- Z_O Número de espiras
- γ_O Ângulo de inclinação
- € Passo axial
- 11 Número de segmentos

Processo

- η Ângulo de inclinação
 - $\eta = \beta_2 \pm \gamma_0$
- fa Avanço axial
- Profundidade de mergulho

Cinemática na geração por fresamento

- A ferramenta é utilizada sem revestimento nas faces
- O desgaste de cratera substitui o desgaste de flanco na determinação da vida da ferramenta
- Aumento de até 500% no volume de cavacos usinados, em comparação com ferramentas não-revestidaso

Formação do cavaco no fresamento de geração

- Uma alternativa para aumentar a vida da fresa geradoraé o aumento do número de pentes
- O volume usinado se distribui por um maior número de dentes
- Interferência variáveis entre ferramenta e peça formação de cavacos de espessuras e formas distintas
- O perfil evolvente do dente é obtido devido ao movimento entre a ferramenta e a peça nos cortes sucessivos
- Cada dente do caracol retira cavacos sempre com a mesma forma geométrica

Fontes de vibrações no fresamento

Causas

- Força surgida entre ferramenta e peça
- Freqüência de contato do dente da fresa (geralmente entre 200 e 400 Hz)
- Ressonâncias surgidas no processo
- Folgas indevidas na fixação da peça
- Formação inadequada do cavaco

Fontes de vibraçõe no fresamento

Soluções

- Massas adicionais na máquina
- Alteração de v_C, a_p ou n
- Mudança de estratégia (concordante/discordante)
- Melhora na fixação

Fresadoras

Requisitos gerais de fresadoras

- As máquinas devem ser projetadas para altas solicitações estáticas e dinâmicas
- O posicionamento da árvore deve ser radial ou axial sem folgas
- O acionamento da árvore deve ser contínuo e sem folgas para evitar vibrações e permitir altas vidas das ferramentas
- Fresamento sincronizado necessita de cuidados no acionamento e no avanço da mesa e dos carros
- Facilidade na operação visor eletrônico de posicionamento,
 aplicação de comando numérico

Tipos de Fresadoras

Fresadora horizontal

Fresadora vertical

Fresadoras Universal

Fresadora de portal ou Gantry

Fresadoras paralelas

Fresadora de mesa circular

Fresadora copiadora

Fim aula - 8