

Generalized Non-Deterministic Finite Automaton

Shashank Gupta
Assistant Professor
Department of Computer Science and Information Systems

Generalized NFA (GNFA)

• A GNFA is a NFA with the transitions being labelled by regular expressions.

For visualizing the property of GNF without the loss of any Generality, we can remove the self transitions from state A and B and the revised label of transition from A to B will become (bb*).(a*b).(a+bb)*

Generalized NFA (GNFA)

A GNFA is said to accept a string w if w can be written as $w = w_1 \ w_2 - - - w_k$ and \exists states q_0 , q_1 , --- q_k in the GNFA s.t.

- q₀ is the initial state
- q_k is the accept state
- \forall i if R_i is label on the transition q_{i-1} to q_i , then $w_i \in L(R_i)$

Infact, all standard DFA transitions are generalized transitions with regular expressions of a single symbol.

Properties of GNFA

GNFA has a unique accept state.

- If multiple accept states are already there, include new accept state and include epsilon transitions from the set of old accept states to this new accept state.
- Also, make old accept states as non-accept states.

There are no incoming transitions to the start state and no outgoing transitions from the accept state.

Steps for Conversion for DFA to GNFA

Step 1

• Create new start state s and new accepting state t.

Step 2

• Add \in transition from s to old start state.

Step 3

• Add \in transitions from old accept states to t.

Step 4

• Delete states (except s and t) one at a time. replace the resulting transitions with suitable labels as described further.

Step 5

• Repeat the step 4 until all states (except s and t) gets deleted.

More About Step 4

On removing the state C

Example

• Convert the following DFA into regular expression

Removing A

Removing B

More Examples

• Convert the following DFA into regular expression

Removing A

14

