

Projeto Final de Curso

Dimensionamento de um Sistema Fotovoltaico Ligado à Rede

Índice

Indice	3
Simbologia	4
Introdução	5
Dimensionamento	5
Importância de um correto Dimensionamento	5
O Enunciado	6
O Painel Solar	7
Características Físicas e do Material	7
Características Mecânicas	8
Características Elétricas	9
Características de Temperatura	10
Instalações Elétricas Ligadas à Rede	11
Esquema Simplificado	11
Elementos de Medição	11
Restantes Equipamentos	12
O Inversor	12
Caracteristicas	13
Configurações	14
Díodos de bypass e de fileira	15
Requisitos de uma instalação elétrica	16
O Dimensionamento	17
Dados Importantes	17
Numero de painéis	17
Potencia do inversor	17
Numero de painéis ligados em serie	18
Coeficiente de temperatura	18
Numero Máximo	18
Numero Mínimo	19

Energias Renováveis com Especialização em Manutenção de Sistemas Solares e Eólico	master.b
Numero de Ramais	20
Outros Dimensionamentos	21
Bibliografia	22

Simbologia

➤ **AC** - Corrente Alternada, Alternating Current

> FV - Fotovoltaica

➤ **NMOT** - Nominal Module Operating Temperature

STC - Standart Test ConditionsSI - Sistema Internacional

▶ Pa - Pascal unidade SI de pressão. 1 Pa = 1Nm/m2

Psf - Ponds square foot . 1 Psf (lbf/ft2) = 47.88 Nm/m2

> VAC

➤ **Watt, W** - Unidade SI de potencia. Equivalente a um joule por segundo.

▶ Wp, kWp, MWp - Múltiplos da unidade de medida de de potência energética Watt-pico.
Potência medida, quando este sistema é irradiado por uma luz que simula a luz solar com a potência de 1000 W/m², à temperatura de 25 °C.

➤ W/m2 - Unidade SI para irradiância. A energia solar é dada p

Introdução

Introdução - Dimensionamento

Sendo o trabalho sobre o dimensionamento de uma instalação, neste caso fotovoltaica, é importante começar por falar do que é fazer o mesmo. Consiste numa serie de passos:

- Averiguar necessidades energéticas. Realizar uma avaliação da energia diária a fornecer que a instalação tem de fornecer tendo em conta os consumos.
- Estudo dos recursos energéticos, neste caso a energia solar do local e como obter o melhor rendimento.
- Escolha adequada dos equipamentos, de produção, retificação e de proteção. Realizar uma pesquisa sobre os produtos e fabricantes atuais no mercado quais as vantagens e desvantagens e a escolha adequada dos mesmos. Não queremos ter produtos desatualizados nem queremos pagar mais por funções que não vamos precisar.
- Planeamento e estudo para a instalação dos equipamentos. Equipamentos como inversores são pesados, geram calor durante o seu funcionamento. Tem de ser pensado onde e como estes equipamentos vão ser instalados se queremos ter uma instalação duradoura.

Fundamentalmente queremos evitar duas situações. Em evitar o que se chama de sobredimensionamento ou por outras palavras, termos mais do que é preciso, ou o oposto, o subdimensionamento, o insuficiente para a nossa aplicação.

Introdução - Importância de um Correto Dimensionamento

O sobredimensionamento de uma instalação pode levar a desperdício quer financeiro, com a aquisição de equipamentos mais dispendiosos, com potência mais elevada do que é necessário, podendo levar a perda de eficiência e mesmo perda de vida util não sendo a potencia nominal à qual foram desenvolvidos adequada. Por outro lado o subdimensionamento fica-se áquem das necessidades energéticas, isto pode ser também prejudicial para o cliente financeiramente, não obtendo o retorno esperado do investimento feito. Mais perigoso é o subdimensionamento dos equipamentos, ou material. Fazer mal o dimensionamento da instalação, da cablagem e da sua devida proteção por exemplo é perigoso podendo levar a incêndios.

Introdução - O Enunciado

O enunciado para a realização deste projeto final, pede-nos o dimensionamento de um sistema fotovoltaico com ligação à rede. Esta é uma característica importante, pois vai diferenciar o tipo de instalação a ser feita. A segunda característica dada pelo enunciado é a potência energética, que fica nos 4,7kWp.Vai ser a potencia da instalação e os cálculos para o dimensionamento irão ser feitos com base neste valor. Diz-nos que será uma instalação pequena para uma casa de 3 ou 4 pessoas. Para obtermos essa quantidade energética iremos ter de calcular a quantidade de painéis necessários. Por fim é-nos dado o painel fotovoltaico a ser usado, o LG330N1K-V5.

\

O Painel Solar

Fig 1. Painel LG330N1K-V5

O painel FV - Características físicas e do material

Comecemos pela ultima parte do enunciado, por ver as características do painel escolhido. Num bom dimensionamento a escolha do painel ideal é de extrema importância. Se nos encontramos em ambientes climatéricos mais exigentes se o painel escolhido não tiver as devidas certificações e ratings a vida útil do mesmo será drasticamente menor ou podemos mesmo obter falha total do mesmo. A garantia, a degradação da células fotovoltaicas são também parâmetros a ter em conta no investimento a ser feito e no seu retorno.

Certifications and W	Varranty				
Certifications	IEC 61215, IEC (IEC 61215, IEC 61730-1/- Module Fire Performance Type 2			
	2, UL 1703, ISO	9001,			
	IEC 62716 (Ammonia				
	Test), IEC 61701(Salt Mist				
	Corrosion Test)				
Product Warranty	25 years	Output Warranty of Pmax Linear Warranty			

Fig 1. Características do material e algumas características fisícas do painel LG330N1K-V5

O painel FV - Características mecânicas

Na figura 3 retiramos o tipo de célula usada pelo painel, célula mono-cristalina que são as que apresentam melhor rendimento no mercado, entre 15% e 23% (ver fig 2). Usada em cálculos futuros temos a dimensão do painel em milímetros. O material do frame em alumínio anodizado de cor preta e o vidro temperado , mais resistente a riscos que protege as células. Outras informações como o tipo de ligadores avaliados com IP67. É nos dado também informação a ter em conta para a fabricação ou escolha das estruturas que suportam o painel, as carga frontal e traseira e o peso do painel.

Tipos de células		Rendimento	
	Rendimento usual	Máximo rendimento em aplicações	Máximo rendimento em laboratório
Monocristalinas	15 - 18%	23%	24%
Policristalinas	13 - 15%	15,1%	18,6%
Silício amorfo	5 - 7%	10%	13%

Fig 2. Rendimento retirado pelo painel em cada tipo de celula

Mechanical Properties				
Cells	6x10	Cell Vendor	LG	
Cell Type	Monocrystalline / N type	Cell Dimensions	15675x15675mm / 6	
			inches	
# of Busbar	12 (Multi Wire Bar	Dimensions (L x W x H)	1640 x 1000x 40 mm	
Front Load	6000Pa / 125 psf	Rear Load	5400 Pa / 113 psf	
Weight	17.0 +-0.5kg / 367.48 +-1.1 lbs	Connector Type	MC4, MC4 Compatible,	
			IP67	
Junction Box	IP 67 with bypass diodes	Frame	Anodized Aluminium	
Glass	Tempered Glass with AR Coatin	gCables	1000mm x 2 ea	

Fig 3. Características Mecânicas do painel LG330N1K-V5

\

O painel FV - Características Elétricas

As características mais relevantes para o nosso dimensionamento são as seguintes:

- **Tensão máxima** U_{MPP} , V_{M} ou $U_{M\acute{A}X}$ ou tensão à máxima potência: é a tensão elétrica entregue a uma carga à máxima potência;
- **Tensão de circuito aberto** U_{OC} : é a tensão máxima que uma célula pode entregar a uma carga sabendo que o valor de circulação da corrente é nulo. A U_{OC} pode-se medir com um voltímetro;
- Corrente de curto-circuito I_{SC} ou I_{CC} , com U = 0 V é o valor máximo de corrente que uma célula pode entregar a uma carga a um valor de tensão nula;
- **Corrente máxima** I_{MPP} , I_{M} , I_{MAX} ou corrente à máxima potência: é a corrente elétrica entregue a uma carga à máxima potência;
- **Potência máxima** ($P_{M\!A\!X}$ ou $P_{M\!P\!P}$ ou potência de pico: é o valor máximo de potência que se entrega a uma carga. Como a potência é produto da tensão pela corrente, esta será máxima apenas para uma única combinação de valores $I_{M\!P\!P}$, $U_{M\!P\!P}$;
- Eficiência (η) de uma célula fotovoltaica: é o quociente entre a energia fornecida pela célula e a radiação solar que incide na célula:

$$\eta = \frac{P_{MPP}}{(A \times G)}$$

- Em que A é a área da célula em metros quadrados e G a radiação solar incidente por unidade de superfície em W/m2;
- Fator de forma (FF): este conceito teórico que serve para medir a qualidade da célula fotovoltaica.
 O fator de forma relaciona a potência máxima com a corrente em curto-circuito e a tensão em circuito aberto:

$$FF = \frac{P_{MPP}}{(I_{SC} \times U_{OC})}$$

Electrical Properties (STC*)				
MPP Voltage (Umpp)	32.5 V	MPP Current (Impp)		7.7 A
Open Circuit Voltage (Uoc)	39.7 V	Short Circuit Current (Isc)		9.7 A
Module Efficiency (%)	18.3	Maximum Power (Pmax)	,	330 W
Maximum System Voltage	1000 (IEC/UL)	Maximum Series Fuse Rating		20 A
Bifaciality Coefficient of Power (%)	10	Power Tolerance (%)	0	

Fig 4. Caracteristicas eletricas do painel LG330N1K-V5

O painel FV - Características de Temperatura

Aqui encontramos dados como o coeficiente de temperatura, que vamos precisar para os cálculos do dimensionamento da instalação. Indica-nos a variação da Potencia máxima do painel, tensão de circuito aberto e corrente de curto-circuito em função da temperatura. O NMOT (Nominal Module Operating Temperature) é a temperatura nominal de funcionamento do painel, rondando os 42 °C. por isso por cada com a subida de um grau Celsius haverá uma descida de .36% no valor de potencia máxima do painel.

Temperature Characteristics			
NMOT*	* (°C)	42 ±- 3	
Pmax	(% / °C)	- 0.36	
Voc	(% / °C)	- 0.27	
Isc	(%/°C)	0.03	

Fig 5. Caracteristicas de temperatura do painel LG330N1K-V5 $NMOT-Irradiance~800~W/m2, Ambient~temperature~20^{\circ}C, \\Wind~speed~1~m/s, Spectrum~AM~1.5$

Instalações Fotovoltaicas elétricas ligadas à rede

Na segunda parte do enunciado fala-se de uma instalação FV ligada à rede, um dos vários tipos de instalações solares FV. Comecemos por ver o esquema elétrico simplificado deste tipo de instalação e falaremos de alguns dos componentes elétricos que nela se encontram, alguns característicos e outros comuns, que se encontram em todas as instalações solares FV.

Instalações FV ligadas à rede - Esquema Simplificado

Fig 6. Esquema unifilar duma instalação elétrica trifásica ligada à rede

Instalações FV ligadas à rede - Equipamentos de medição

Num esquema fotovoltaico ligado à rede elétrica nacional destacam-se dois equipamentos característicos deste tipo de ligação. Olhando para a figura 6 no quadro elétrico ligados ao barramento principal, neste caso trifásico, temos dois contadores de energia. Um contador controla a energia que os painéis injetam para o barramento principal (contador de saída). Este contador pode ser chamado também de contador de consumo importador-exportador. Outro controla a energia que é retirada do barramento (contador de entrada), a diferença será a quantidade de energia que o cliente foi buscar à rede da empresa fornecedora. São estes equipamentos que controlam um evento inerente neste tipo de instalação, a venda à rede publica. Na figura 7 mostra melhor a posição destes equipamentos na instalação.

Fig 7. Ilustração instalação ligada à rede elétrica

Instalações FV ligadas à rede – Restantes equipamentos

No tópico anterior falou-se dum equipamento característicos das instalações FV ligadas à rede. Falaremos agora dos restantes equipamentos elétricos comuns para os outros tipos de instalações FV.

Instalações FV ligadas à rede – Restantes equipamentos – O inversor

São poucos a gama de aparelhos elétricos que não necessite da tensão e do tipo de corrente próprio da nossa rede elétrica nacional, os 220VAC. O inversor trata de por disponível esse tipo de tensão e corrente elétrica para o consumo e para o acoplamento elétrico à rede. Com este acoplamento é importante ver as características de onda do mesmo, pois a forma de onda AC gerada pelo inversor tem de estar perfeitamente coordenada com a que esta na rede elétrica. Os inversores neste tipo de instalações possuem também uma segurança para cortar a energia vinda dos painéis em caso de falha de energia da rede elétrica.

Fig 8. Varios modelos de inversores da marca SMA Solar.

Instalações FV ligadas à rede – Restantes equipamentos – O inversor –

Características

Para a nossa instalação FV, vai ser escolhido um inversor da SMA Solar, o modelo Sunny Boy. Há de varias gamas de potencia, mas para nós, e de acordo com a formula do dimensionamento do inversor vista em baixo, vai-se optar pelo inversor de 3.0 com 5500Wp. Não havendo informação acerca das cargas de AC, focamo-nos apenas nas características de entrada do inversor, entre o modelo 3.0 e 3.0, as diferenças residem na potencia de saída do inversor em AC.

Fig 9. Inversor Solar Sunny Boy

Há varias coisas a ter em conta quando procuramos um inversor para uma instalação ligada à rede. Em baixo no catálogo vê-se algumas das características.

- > Range da tensão de entrada
- Potência do inversor
- Numero de Ramais admissíveis
- > Informações de reporte e diagnósticos
- Proteções elétricas internas
- Certificações e ambiente de operação

Technical data	Sunny Boy 3.0	Sunny Boy 3.6	Sunny Boy 4.0	Sunny Boy 5.0	Sunny Boy 6.0
Input (DC)					
Max. generator power	5500 Wp	5500 Wp	7500 Wp	7500 Wp	9000 Wp
Max. input voltage			600 V		
MPP voltage range	110 V to 500 V	130 V to 500 V	140 V to 500 V	175 V to 500 V	210 V to 500 V
Rated input voltage			365 V		
Min. input voltage / initial input voltage			100 V / 125 V		
Max. usable input current input A / input B			15 A / 15 A		
Max. DC short-circuit current input A / input B			20 A / 20 A		
Number of independent MPP inputs / strings per MPP input			2 / A:2; B:2		
Output (AC)					
Rated power (at 230 V, 50 Hz)	3000 W	3680 W	4000 W	5000 W ¹⁾	6000 W
Rated / Max. apparent power	3000 VA / 3000 VA	3680 VA / 3680 VA	4000 VA / 4000 VA	5000 VA1/5000 VA1	6000 VA / 6000 V
Rated voltage / range		220 V, 2	230 V, 240 V / 180 V	to 280 V	
Power frequency / range		50 H	Hz, 60 Hz / -5 Hz to +	5 Hz	
Rated power frequency / rated grid voltage			50 Hz / 230 V		
Rated / Max. output current	13.1 A / 13.7 A	16 A / 16 A	17.4 A / 18.2 A	22 A / 22.8 A	26.1 A / 26.1 A
Power factor at rated power			1		
Adjustable displacement power factor		0.8 0	verexcited to 0.8 under	excited	
Feed-in phases / connection phases			1/1		
Efficiency					
Max. efficiency / European Efficiency	97.0% / 96.4%	97.0% / 96.5%	97.0% / 96.5%	97.0% / 96.5%	97.0 % / 96.6 %
Protective devices					
Input-side disconnection point			•		
Ground fault monitoring / grid monitoring			•/•		
DC reverse polarity protection / AC short circuit current capability / galvanically isolated			•/•/-		
All-pole-sensitive residual-current monitoring unit			•		
Protection class (as per IEC 61140) / overvoltage category (according to IEC 60664-1)			1/111		
Arc-fault circuit interrupter (AFCI) / I-V and P-V diagnostic function			•/•		

Figura 10. Dados Técnicos do inversor Solar Sunny Boy

Instalações FV ligadas à rede – Restantes equipamentos – O inversor – Configurações

Este pode ser encontrado de diversas maneiras numa instalação. Cada tipo de configuração tem as suas vantagens e desvantagens. Hoje em dia instalações com potencias superiores as 5 kWp possuem um inversor por ramal, tendo a nossa instalação uma potencia de 4,7 kWp usaremos a configuração de inversor centralizado, em que temos os vários ramais ligados a um único inversor.

Fig 11. Configuração de inversor centralizado

Instalações FV ligadas à rede – Restantes equipamentos – Díodos de bypass e Díodos de fileira

Os díodos de bypass ligam-se em paralelo com associações de células ligadas em série, para impedir que todos os elementos da série se descarreguem sobre a célula que estiver coberta. Os díodos de bloqueio para impedir a circulação de corrente entre ramos em paralelo durante o dia, caso haja situações de cobertura. Podem também servir para evitar as descargas das baterias através dos painéis durante a noite.

Figura 12. Díodos de fileira e de bypass exemplificados em esquema

<u>Instalações FV ligadas à rede</u> Restantes equipamentos – Requisitos duma instalação elétrica

Para a devida proteção duma instalação elétrica recorre-se às indicações das Regras Técnicas de Instalações Elétricas (RTIE) ou no IEC 60364-7-712, mais adequado à sistemas FV. Lá encontra-se as devidas medidas protetivas. Estamos a falar de aparelhos de corte, isolamento ou comutação, aparelhos para proteger de falhas elétricas, ou de isolamento de cablagens, por exemplo, e como estas devem ser protegidas. Em baixo um excerto do que se encontra no IEC 60364-7-712.

712.4	Protection for safety	22
712.41	Protection against electric shock	22
712.410	Introduction	22
712.412	Protective measure: double or reinforced insulation	23
712.414	Protective measure: extra-low-voltage provided by SELV and PELV	23
712.42	Protection against thermal effects	23
712.421	Protection against fire caused by electrical equipment	23
712.43	Protection against overcurrent	24
712.432	Nature of protective devices	25
712.433	Protection against overload current	25
712.434	Protection against short-circuit currents	29
712.44	Protection against voltage disturbances and electromagnetic disturbances	29
712.443	Protection against transient overvoltages of atmospheric origin or due to switching	29
712.444	Measures against electromagnetic influences	30
712.5	Selection and erection of electrical equipment	30
712.51	Common rules	30
712.511	Compliance with standards	31
712.512	Operational conditions and external influences	31
712.513	Accessibility	32
712.514	Identification	32
712.515	Prevention of mutual detrimental influence	34
712.52	Wiring systems	35
712.521	Types of wiring systems	35
712.522	Selection and erection of wiring systems in relation to external influences	37
712.523	Current-carrying capacities	38
712.524	Cross-sectional areas of conductors	38
712.525	Voltage drop in consumers installations	39
712.526	Electrical connections	40
712.527	Selection and erection of wiring systems to minimize spread of fire	41
712.528	Proximity of wiring systems to other services	
712.529	Selection and erection of wiring systems in relation to maintainability, including cleaning	41
712.53	Isolation, switching and control	41

Fig 13. Excerto do index do IEC 60364-7-712

Dimensionamento

Dimensionamento – Dados importantes

No enunciado não nos é dado a localização geográfica da instalação, sendo um diferentes fatores que determinam a seleção e a conceção do sistema.

Dimensionamento – Numero de painéis

Para determinar o numero de painéis para a nossa instalação precisamos de saber a potencia de pico do campo FV e a potencia máxima do painel FV. Formando a seguinte formula:

$$\frac{P_{pfv}}{P_{max}} = N$$

Para a nossa aplicação teremos então:

$$\frac{4,7}{330} \approx 14$$
 paineis

Dimensionamento – Potência do Inversor

Sendo uma instalação de potencia inferior a 5 kWp vamos usar a configuração de um único inversor centralizado. O dimensionamento do inversor serve para termos uma potencia do mesmo capaz de suportar sobrecargas e termos não estarmos muito abaixo do que é preciso. Com a formula em baixo ficamos com um valor ideal de potencia do inversor, estando compreendido entre 20% a mais de $P_{\it pfv}$ e não menos do que 30% $P_{\it pfv}$.

$$0.7 \cdot Ppfv < Pinv dc < 1.2 \cdot Ppfv$$

Para a nossa instalação e aplicando a formula vemos que temos uma potencia compreendida entre os 3,2 kWp e os 5,6kWp :

$$0,7 \cdot 4,700 = 3290$$

$$1,2 \times 4700 = 5640$$

3290 < Pinv dc < 5640

Dimensionamento – Numero de painéis ligados em série

Nesta parte do dimensionamento, vamo-nos assegurar que em certas condições climatéricas, não haverá um nível de tensão insuficiente nem ultrapassagem da tensão máxima admissível pelo nosso inversor à saída do campo gerador FV. Isto porque, com variações da temperatura climatérica varia também o nível de tensão em circuito aberto das células FV, U_{oc} , e visto que estão ligadas em serie, a tensão total do arranjo é a soma das tensões de cada célula, o que poderia levar a uma sobretensão à entrada do inversor.

Dimensionamento – Numero de painéis ligados em série – Coeficiente de temperatura

As células FV possuem um coeficiente de temperatura, que é o que nos diz o valor da variação da tensão em circuito aberto, U_{oc} , à medida que a temperatura aumenta ou desce. Geralmente, para a maioria dos materiais semicondutores usados em painéis solares, o coeficiente é negativo, ou seja, à medida que a temperatura aumenta, a tensão de saída de cada célula diminui. No nosso painel solar LG330N1K-V5 podemos encontrar no catalogo nas características de temperatura, U_{oc} de - 0,27 [% / ° C], como visto na figura 5 pagina 9.

Dimensionamento – Numero de painéis ligados em série – Numero Máximo

Para determinar o numero máximo de painéis em serie vamos calcular U_{oc} para um clima frio, neste caso para uma temperatura ambiente de -10 °C. Porque como já vimos, a diminuição da temperatura influencia um aumento de U_{oc} das células fotovoltaicas. Vamos recorrer à seguinte expressão:

$$U_{OC(-10\,{}^{\circ}\!C)} = U_{OC}(STC) \times 1 + \frac{\alpha \cdot (T - T_{STC})}{100}$$

 α – Coeficiente de Temperatura do painel

 $U_{oc}(STC)$ – Tensão circuito aberto em condições de teste padrão

T − T emperatura desejada \rightarrow −10 $^{\circ}C$

 T_{STC} – Temperatura deteste padrão \rightarrow 25 °c

Para a nossa aplicação e com a expressão anterior, segue-se:

$$\begin{array}{ll} U_{OC(-10\,^{\circ}\!C)} \; = \; 41 \times 1 + \frac{0,27 \cdot \left(-10 - 25\right)}{100} \\ U_{OC(-10\,^{\circ}\!C)} \; = \; 41 \times 1 + 0,945 \\ U_{OC(-10\,^{\circ}\!C)} \; = \; 41 \times 1,0945 \\ U_{OC(-10\,^{\circ}\!C)} \; \approx \; 45 \, V \end{array}$$

Agora, para calcular o numero máximo de painéis em serie, usa-se a seguinte expressão:

$$N_{ extit{máx}} = rac{U_{ extit{máxinv}}}{U_{ extit{OC}}(-10\,^{\circ}\!C)}$$
 $N_{ extit{máx}} = rac{500}{45}$
 $N_{ extit{máx}} pprox 11 \, paineis$

Dimensionamento – Numero de painéis ligados em série – Numero Mínimo

Em dias de elevadas temperaturas da-se o fenómeno contrario. Em dias de calor vai haver uma redução do U_{MPP} nas células FV. Com isto, pode haver o corte do inversor por falta de tensão elétrica vinda do campo gerador FV, que no nosso caso, com o inversor que escolhemos, está no 110V. Tem de haver um mínimo de painéis ligados em serie para evitar esta situação. O mesmo é calculado com as seguintes expressões.

Calcular U_{MPP} a uma temperatura de 70°C:

$$U_{MPP(70^{\circ}C)} = U_{MPP}(STC) \times 1 + \frac{\alpha \cdot (T - T_{STC})}{100}$$

 $U_{\mathit{MPP(STC)}}$ – Tensão Ponto Maximo de Potencia do painel em condições de teste padrao

 α -Coeficiente de temperatura do painel

T − *Temperatura desejada* → 70 °*C*

 T_{STC} – Temperatura de teste padrão \rightarrow 25 °c

Calcular o numero mínimo de painéis em serie:

$$n_{\rm min}\,=\,\frac{U_{\rm \,mininv}}{U_{\rm \,MPP(70\,^{\circ}\!C)}}$$

 $U_{MPP\,mininv}$ – Tensão minima do Ponto Maximo de Potencia do nosso inversor $ightarrow 110\,\mathrm{V}$

Aplicando as formulas em cima:

$$\begin{array}{l} U_{\mathit{MPP}(70^{\circ}\!C)} \; = \; 34.1 \times 1 + \frac{-0.27 \cdot (70 - 25)}{100} \\ \\ U_{\mathit{MPP}(70^{\circ}\!C)} \; = \; 34.1 \times 1 + \frac{-12,15}{100} \\ \\ U_{\mathit{MPP}(70^{\circ}\!C)} \; = \; 34.1 \times 1 - 0,1215 \\ \\ U_{\mathit{MPP}(70^{\circ}\!C)} \; = \; 34.1 \times 0,8785 \\ \\ U_{\mathit{MPP}(70^{\circ}\!C)} \; \approx \; 30 \, V \\ \\ \\ n_{\mathit{min}} \; = \; \frac{110}{30} \\ \\ n_{\mathit{min}} \; \approx \; 4 \; \mathit{paine} \mathit{is} \\ \end{array}$$

Dimensionamento – Numero de ramais

Por fim calculamos o numero máximo de ramais ou fileiras admissíveis para o nosso inversor. Usa-se a seguinte expressão.

$$n_{\text{fileiras}} = \frac{I_{\text{máx inv}}}{I_{Mpp}}$$

 $I_{m\acute{a}xinv}-Corrente\ m\acute{a}xima\ do\ nosso\ inversor\ o 15\ A$ $I_{Impp}\ -Corrente\ m\acute{a}xima\ do\ painel\ \grave{a}\ m\acute{a}xima\ potencia\ o 7.73\ A$

$$n_{\text{fileiras}} = \frac{15}{7.73} \approx 2 \text{ ramais}$$

Dimensionamento – Outros dimensionamentos

O dimensionamento até agora foi da envolvente da produção de energia solar. O dimensionamento do campo gerador deu-nos uma ideia de quantos painéis podemos ligar. O inversor também foi dimensionado para a produção elétrica que queremos atingir. Falta-nos fazer o dimensionamentos de outros equipamentos da componente elétrica. Os aparelhos de proteção e de corte, que terão de ser instalados segundo as normas de instalações elétricas de baixa tensão (até 1000V), têm de ser dimensionados e escolhidos, pois entre eles também há várias gamas de operação, várias classes de operação. O dimensionar das cablagens, retificar problemas como quedas de tensão que podem ser causados pelo subdimensionamento de uma cablagem.

Conclusão

Com a finalização dos cálculos feitos no dimensionamento, seguia-se a escolha da configuração dos painéis. Isto ia depender as condições do local. Pode ser melhor optar por três ramais em vez de dois. Há varias alternativas o importante será estarmos dentro dos limites que calculamos, como o numero máximo e mínimo de painéis calculados.

Bibliografia

- Painel Sola https://www.lg.com/us/business/solar-panels/lg-lg330n1k-v5
- Figuras 8,9,10 https://www.sma.de/en/
- Figuras 12,11,7,6,2 Sebentas do módulo da Energia Solar do curso masterd.
- > Outras Referencias Solar Electricity Handbook version 2012 e 2017 de Michael Boxwell
- Fig 13 IEC 60364-7-712.<u>https://webstore.iec.ch/preview/info_iec60364-7-712%7Bed2.0.RLV_%7Den.pdf</u>
- https://diariodarepublica.pt/dr/detalhe/decreto-lei/162-2019-125692189