Semaine n° 17 : du 22 janvier au 26 janvier

Lundi 22 janvier

- Cours à préparer : Chapitre XVI Polynômes
 - Partie 2.5: Décomposition en produit de polynômes irréductibles dans $\mathbb{C}[X]$, dans $\mathbb{R}[X]$.
 - Partie 3 : Polynôme dérivé; opérations; formule de Leibniz.

Mardi 23 janvier

- Cours à préparer : Chapitre XVI Polynômes
 - Partie 3 : Formule de Taylor Mac-Laurin ; formule de Taylor ; caractérisation de la multiplicité d'une racine par les polynômes dérivés successifs.
 - Partie 4.1 : Lemme d'Euclide; plus grands diviseurs communs de deux polynômes; existence et unicité du PGCD unitaire de deux polynômes non tous deux nuls.
- Exercices à corriger en classe
 - Feuille d'exercices nº 16 : exercices 1 et 2.

Jeudi 25 janvier

- Cours à préparer : Chapitre XVI Polynômes
 - Partie 4.1 : Propriétés des PGCD de deux polynômes ; relations de Bézout.
 - Partie 4.2 : Polynômes premiers en eux; théorème de Bézout; théorème de Gauss; unicité de la décomposition en produit de polynômes irréductibles.
 - $Partie\ 4.3$: PGCD de n polynômes; polynômes premiers entre eux dans leur ensemble; théorème de Bézout.
- Exercices à corriger en classe
 - Feuille d'exercices nº 16 : exercices 5 et 7.

Vendredi 26 janvier

- Cours à préparer : Chapitre XVI Polynômes
 - Partie 4.4 : Plus petits communs multiples de deux polynômes. Unicité du PPCM unitaire ou nul de deux polynômes; propriétés.
 - Partie 5 : Formule d'interpolation de Lagrange.

Échauffements

Mardi 23 janvier

3 · · · · ·	
 Cocher toutes les assertions vraies : Laquelle des conditions suivantes est suffisante pou soit continue en 0? □ f(x) ≤ x pour tout x dans [-1,1] □ f(x) ≤ x pour tout x dans [-1,1] □ la suite f(1/n) converge vers f(0) □ f est croissante sur [-1,1] Cocher toutes les assertions vraies : Soit A et B deux polynômes. □ Si deg A > deg B, alors deg(A + B) = deg A. □ deg(A + B) ≥ min(deg A, deg B). □ deg(A ∘ B) = (deg A) × (deg B). □ Si A B, alors deg A ≤ deg B. □ Si A B, toute racine de A est racine de B. □ Si toute racine de A est racine de B, alors A B. 	rr que f
Jeudi 25 janvier	
 Soit P = X⁶ - 3X⁵ - 6X⁴ + 6X³ + 9X² - 6X + 1 Calculez P(4) et donnez le quotient et de la division euclidienne de P par (X - 4). Cocher toutes les assertions vraies : Soit I un intervalle et f : I → ℝ, et a, b ∈ I tels que □ Si f est croissante, f([a, b]) = [f(a), f(b)]. □ Si f est décroissante et continue, f admet une limite à gauche en b. □ Si f est décroissante et continue, f([a, b]) = [f(a), lim f[. □ Si f est décroissante et continue, f([a, b]) = lim f, f(a)]. 	
Vendredi 26 janvier	
 Cocher toutes les assertions vraies : Soit f la fonction définie sur ℝ par f(x) = 2^{(x-1)^2+2} ☐ f est définie et continue sur ℝ. ☐ f est injective sur ℝ. ☐ f admet un minimum sur ℝ en 1 qui vaut 4. ☐ f est dérivable sur ℝ₊. Cocher toutes les assertions vraies : Soit A un polynôme. ☐ Si r₁, · · · , r_n sont les racines de P, et qu'elles sont de multiplicité m₁, · · · , m_n, alors ∑ ∑ m_i. ☐ Si λ est une racine de P de multiplicité m, alors λ est une racine de P de multiplicité ☐ Si λ est une racine de P' de multiplicité m, alors λ est une racine de P de multiplicité ☐ Si λ est une racine de P' de multiplicité m, alors λ est une racine de P de multiplicité 	$\deg P =$ é $m-1$.