Finally, we come back to Corollary 5.9. If in condition (ii) we demand that D(A) is not only a sublattice but an ideal of E we obtain a characterization of multiplication semigroups.

Here we call a semigroup $(T(t))_{t\geq 0}$ multiplication semigroup if T(t) is a multiplication operator (i.e., an element of the center) for every t>0.

Theorem 5.13. Let A be the generator of a strongly continuous semigroup $(T(t))_{t\geq 0}$ on a σ -order complete real or complex Banach lattice E. The following assertions are equivalent.

- (i) $(T(t))_{t\geq 0}$ is a multiplication semigroup.
- (ii) There exists $\lambda \in \rho(A)$ such that $R(\lambda,A)$ is a multiplication operator.
- (iii) $R(\lambda,A)$ is a multiplication operator for all $\lambda \in \rho(A)$.
- (iv) A is local and D(A) is an ideal in E.
- (v) If $f \in D(A)$ then $Pf \in D(A)$ for every band projection P on E and APf = PAf.

<u>Proof.</u> Assume that (i) holds and let $\lambda > \omega(A)$. Since $R(\lambda,A)$ is the Laplace transform of the semigroup, it follows that $R(\lambda,A)$ is local since T(t) is local for all $t \ge 0$. This implies $R(\lambda,A) \in Z(E)$ (see C-I,Sec.9).

We show that (ii) implies (v). Assume that $\lambda \in \rho(A)$ such that $R(\lambda,A)$ is a multiplication operator. Let P be a band projection. Then $PR(\lambda,A) = R(\lambda,A)P$. Let $f \in D(A)$, $g := (\lambda-A)f$. Then $Pf = PR(\lambda,A)g = R(\lambda,A)Pg$. Hence $Pf \in D(A)$ and $(\lambda-A)Pf = Pg$. Thus $APf = \lambda Pf - Pg = P(\lambda f - g) = PAf$.

We show that (v) implies (iii). Let $\lambda \in \rho(A)$ and P be a band projection. We have to show that $PR(\lambda,A) = R(\lambda,A)P$. Let $g \in E$, $f := R(\lambda,A)g$. Then $Pf \in D(A)$ and APf = PAf. Hence $PR(\lambda,A)g = Pf = R(\lambda,A)(\lambda-A)Pf = R(\lambda,A)P(\lambda-A)f = R(\lambda,A)Pg$. It follows from C-I,Sec.9 that $R(\lambda,A) \in Z(E)$.

(iii) implies (i) since $T(t) = \lim_{n \to \infty} [n/tR(n/t,A)]^n$ strongly for all t > 0.

It remains to show the equivalence of (iv) and (v). Assume that (iv) holds, let $f \in D(A)$ and P be a band projection. Then Pf $\in D(A)$ and (Id-P) $f \in D(A)$ by the assumption. Since A is local we have APf = PAPf + (Id-P)APf = PAPf = PAPf + PA(Id-P)f = PAf. Conversely, assume (v). Let $f \in D(A)$ and $|g| \le |f|$. Then there exists a band projection P such that Pf = g. Hence $g \in D(A)$. We have shown