第七章 参数估计

第七章 参数估计

7.1 参数估计的基本原理

7.1.2 点估计和区间估计

7.1.3 评价估计量的标准

7.2 一个总体参数的估计

7.2.1 总体均值的区间估计

7.2.2 总体比例的区间估计

7.2.3 总体方差的区间估计

7.3 两个总体参数的区间估计

7.3.1 两个总体均值之差

7.3.2 两个总体比例之差的区间估计

7.3.3 两个总体方差比的区间估计

7.4 样本量的确定

7.1 参数估计的基本原理

参数估计是用样本统计量 $\hat{\theta}$ 估计总体参数 θ ,用一个样本计算出来的估计量的数值为估计值(没有符号)。

7.1.2 点估计和区间估计

点估计是用样本统计量 $\hat{\theta}$ 直接作为总体参数 θ 的估计值,区间估计是在此基础上,给出总体参数估计的一个区间范围。

区间估计解决的问题,是要根据样本得到一个区间,这个区间包含参数的概率为 $1-\alpha$ 。

由样本统计量所构造的总体参数的估计区间称为置信区间,置信水平为 $1-\alpha$ 。总体均值的置信区间表达式为

$$\left[\overline{X} - z \frac{\sigma}{\sqrt{n}}, \overline{X} + z \frac{\sigma}{\sqrt{n}}\right] \tag{1}$$

z 值的含义是标准正态分布曲线下右侧面积为 lpha/2 的自变量值,也就是 $1-\Phi(z)=lpha/2$ 。

其他直接查表就好了,例如置信度为 0.95 的置信区间, z 就是查分位数表里的0.975。

7.1.3 评价估计量的标准

无偏性 $E(\hat{\theta}) = \theta$

不难证明 $E(\overline{x})=\mu, E(p)=\pi, E(s^2)=\sigma^2$, \overline{x}, p, s^2 都是对应参数 (μ,π,σ^2) 的无偏估计量。

插入一下: 样本方差的分布是右偏的, 但是样本方差是方差的无偏估计量。

有效性 是一个比较量 $D(\hat{\theta}_1) < D(\hat{\theta}_2)$,前提是 $\hat{\theta}_1$ 和 $\hat{\theta}_2$ 是无偏估计量。

一致性 随着样本量增加,估计量的值越来越接近带骨参数的真值。

7.2 一个总体参数的估计

7.2.1 总体均值的区间估计

Case 1 已知方差的正态总体或样本量足够大的非正态总体,用标准正态分布 (z) 处理

$$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1) \tag{2}$$

均值的 $1 - \alpha$ 置信区间的上下限分别表示为

$$\overline{x} \pm z_{lpha/2} \frac{\sigma}{\sqrt{n}}$$
 (3)

Case 2 未知方差的正态总体,在小样本的情况下,用 t 分布处理 (t 分布可以处理小样本未知方 差的情况)。

$$t = \frac{\overline{x} - \mu}{s / \sqrt{n}} \sim t(n - 1) \tag{4}$$

均值的 $1 - \alpha$ 置信区间的上下限分别表示为

$$\overline{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}} \tag{5}$$

7.2.2 总体比例的区间估计

只考虑大样本 ($\{np \geq 5\} \cup \{n(1-p) \geq 5\}$)

$$z = \frac{p - \pi}{\sqrt{\pi (1 - \pi)/n}} \sim \mathcal{N}(0, 1) \tag{6}$$

对于样本比例 p, $E(p)=\pi,\sigma_p^2=\pi(1-\pi)/n$, 因此总体比例的置信区间上下限分别为

$$p \pm z_{\alpha/2} \sqrt{\frac{p(1-p)}{n}} \tag{7}$$

7.2.3 总体方差的区间估计

样本方差的抽样分布服从 $\chi^2(n-1)$ 分布

$$\frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1) \tag{8}$$

因为 χ^2 分布不对称,所以置信区间为

$$\left[\frac{(n-1)s^2}{\chi_{\alpha/2}^2}, \frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}\right] \tag{9}$$

7.3 两个总体参数的区间估计

7.3.1 两个总体均值之差

对于独立样本

两个总体正态,或者两个都是大样本。

$$z = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim \mathcal{N}(0, 1)$$
 (10)

均值之差在 $1-\alpha$ 置信水平下的置信区间为

$$(\overline{x}_1 - \overline{x}_2) \pm z_{lpha/2} \sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}$$
 (11)

两个小样本正态 (P140)

- 样本方差未知但相等,合并估计量的样本方差
- 样本方差未知且不相等,近似服从 t 分布,重新计算自由度 v

 $m {\color{blue} CDMP142}$,即两组数据中的值——对应,用 d 表示两个匹配样本的数据差值,d 表示差值的均值, σ_d 表示差值的标准差,均值差 μ_d 的置信区间

$$\begin{cases} \overline{d} \pm t_{\alpha/2} (n-1) \frac{s_d}{\sqrt{n}}, & \text{小样本} \\ \overline{d} \pm z_{\alpha/2} \frac{\sigma^2}{\sqrt{n}}, & \text{大样本} \end{cases}$$
 (12)

7.3.2 两个总体比例之差的区间估计

$$Z = \frac{(p_1 - p_2) - (\pi_1 - \pi_2)}{\sqrt{\frac{\pi_1(1 - \pi_1)}{n_1} + \frac{\pi_2(1 - \pi_2)}{n_2}}} \sim \mathcal{N}(0, 1)$$
(13)

当总体比例 π_1 和 π_2 未知的时候,可以用样本比例 p_1 和 p_2 代替,得到置信区间

$$(p_1-p_2)\pm z_{lpha/2}\sqrt{rac{p_1(1-p_1)}{n_1}+rac{p_2(1-p_2)}{n_2}} \eqno(14)$$

7.3.3 两个总体方差比的区间估计

用F 分布构造两个总体方差比 σ_1^2/σ_2^2 的置信区间,对于方差,有

$$rac{s_1^2}{s_2^2} \cdot rac{\sigma_2^2}{\sigma_1^2} \sim F(n_1 - 1, n_2 - 1)$$
 (15)

置信区间为

$$\frac{s_1^2/s_2^2}{F_{\alpha/2}} \le \frac{\sigma_1^2}{\sigma_2^2} \le \frac{s_1^2/s_2^2}{F_{1-\alpha/2}}$$

$$F_{\alpha/2} = F_{\alpha/2}(n_1 - 1, n_2 - 1)$$

$$F_{\alpha/2} = F_{\alpha/2}(n_1 - 1, n_2 - 1)$$
(16)

另外,有

$$F_{1-\alpha/2}(n_1-1,n_2-1) = \frac{1}{F_{\alpha/2}(n_2-1,n_1-1)}$$
 (17)

如果需要公式,看表就好了 (146-147)

7.4 样本量的确定

在重复抽样或者无限总体抽样下, 估计总体均值

$$n = \frac{(z_{\alpha/2})^2 \sigma^2}{E^2} \tag{18}$$

在重复抽样或者无限总体抽样下,估计总体比例

$$n = \frac{(z_{\alpha/2})^2 \sigma^2 \pi (1 - \pi)}{E^2} \tag{19}$$

如果 π 未知,则用 0.5 (因为最大)。·