Movie Recommendation

Shengjie Li, Junlin Lu

Rutgers University

April 24, 2020

Project Background and Goal

- Background
 A recommender system is a system that seeks to predict the
 "rating" or "preference" a user would give to an item [1].
 Recommender systems are used in a variety of areas, e.g., playlist
 generator for music and video services, product recommendation
 for online shopping, content recommendation for news services.
- Goal
 To build a movie recommender system and predict users' ratings to recommended movies.

Dataset

MovieLens Latest Datasets-small¹

A public dataset provided by MovieLens, which contains 100,000 ratings and 3,600 tag applications applied to 9,000 movies by more than 600 users

The dataset contains 4 csv files:

- ratings.csv: (userld, movield, rating, timestamp)
- movies.csv: (movield, title, genres)
- tags.csv: (userld, movield, tag, timestamp)
- links.csv: (movield, imdbld, tmdbld)

¹https://grouplens.org/datasets/movielens/

Dataset

The first 5 rows of each file are shown in the following tables:

userld	movield	rating	timestamp	userld	movield	tag	timestamp
1	1	4.0	964982703	2	60756	funny	1445714994
1	3	4.0	964981247	2	60756	Highly quotable	1445714996
1	6	4.0	964982224	2	60756	will ferrell	1445714992
1	47	5.0	964983815	2	89774	Boxing story	1445715207
1	50	5.0	964982931	2	89774	MMA	1445715200

(a) ratings.csv

(b) tags.csv

movield	title	genres	timestamp
1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy	1445714994
2	Jumanji (1995)	Adventure Children Fantasy	1445714996
3	Grumpier Old Men (1995)	Comedy Romance	1445714992
4	Waiting to Exhale (1995)	Comedy Drama Romance	1445715207
5	Father of the Bride Part II (1995)	Comedy	1445715200

(c) movies.csv

Preprocessing - Bias Removal

Ratings contain bias! To formalize, we have:

$$r_{xi} = b_x + b_i + r'_{xi}$$

- r_{xi} : user x's rating of movie i
- $b_x = \overline{r_x} \overline{r}$: rating deviation of user x ((avg. rating of user x) (overall mean movie rating))
- $b_i = \overline{r_i} \overline{r}$: the rating deviation of movie i
- r'_{xi} : real unbiased rating.

$$r'_{xi} = r_{xi} - b_x - b_i$$

 $r'_{xi} = r_{xi} + 2 * \overline{r} - \overline{r_i} - \overline{r_x}$

Preprocessing - Time Correction

Timestamp: seconds since 12:00AM of January 1, 1970 UTC

Timestamp: weeks since the first review of each movie

$$t = \frac{t - t_{\textit{first}}}{3600 \times 24 \times 7}$$

Preprocessing - Time Correction

Figure: Ratings of some movies over time

$$k = \frac{\sum_{t,r} (t - \bar{t})(r - \bar{r})}{\sum_{r} (r - \bar{r})^2} = -4.5739 \times 10^{-20}, b = \bar{r} - k\bar{t} = 3.5596$$

Preprocessing - Time Correction

Figure: Ratings of some movies over time

$$r' = r - kt$$

Preprocessing - Dataset Splitting

5-fold cross validation:

- Split the dataset into 5 equal sized parts
- Of these 5 parts, a single part is retained as the testing dataset, and the remaining 4 parts are used as the training dataset. (We make sure each training dataset has all movies and users)
- Repeat this process for 5 times

	# of rows in train set	# of rows in test set	# of users in test set	# of movies in test set
fold ₁	82729	18107	609	3991
$fold_2$	82729	18107	608	3950
fold ₃	82729	18107	609	3985
$fold_4$	82730	18106	608	3946
fold ₅	82730	18106	610	3963

Table: Some statistics information of our dataset

Content-based Model

Main idea: recommend movies to user x that are similar to previous movies rated highly by x.

 Item profile: 'title', 'genres' from movies.csv, 'tag' from tags.csv
 TF-IDF:

$$TF_{ij} = log(f_{ij} + 1)$$
 $IDF_i = log \frac{N}{n_i}$
 $TF\text{-}IDF_{ij} = TF_{ij} \times IDF_i$

 f_{ii} : frequency of feature i in movie j

 n_i : the number of movies that have feature i

N: the total number of movies.

Content-based Model

- User profile: 'title', 'genres' from movies.csv, 'tag' from tags.csv
 - Weighted average of all rated item profiles
 - 2 Average of item profiles of the top 20 rated movies
- Movie recommendation:

Use user profile x to calculate cosine similarity score against all movies, and then find k movies with the highest cosine similarity scores:

$$\underset{i}{\operatorname{argmax}} cos(x, i) = \underset{i}{\operatorname{argmax}} \frac{x \cdot i}{\|x\| \cdot \|i\|}$$

• Rating prediction:

For rating prediction given user x and movie i, we find the most similar 10 movies to movie i that user x has watched and rated, and let the average rating of this 10 movies be the predicted rating for movie i.

User-Based Collaborative Filtering

For target user:

- Find a set of similar users
- From this set, Find the movies that these users rated and recommend the ones with the highest rating

Use cosine similarity to calculate user similarities:

$$Sim_{uv} = rac{|M(u) \cap M(v)|}{\sqrt{|M(u)||M(v)|}}$$

Where M(u) represents the set of movies user u has watched.

Item-Based Collaborative Filtering

For each movie target user watched:

- Find similar movies based on their cosine similarity
- For each movie target user didn't watch, rate them based on the weighted sum
- Recommend top k movies with the highest rating

Movie similarity:

$$Sim_{mn} = rac{|V(m) \cdot V(n)|}{\sqrt{|V(m)||V(n)|}}$$

Where V is the rating vector of a movie.

Predicted rating for a movie:

$$r(m) = \sum_{n \subset K} r(n) \times Sim_{uv}$$

Where K is the set of top k similar movies.

Latent Factor Model

Dimensional reduction:

- Remove noisy features
- Find hidden correlations between users and movies

$$A_{m\times n}=U_{m\times m}\Sigma_{m\times n}V_{n\times n}^{T}$$

- U: User feature matrix, represents the users' interest
- Σ: Diagonal matrix of singular values
- V^T: Movie feature matrix, represents each feature's relevance to each movie

After dimensional reduction, we take the dot product of U, Σ and V^T to predict the rating and recommend the movies with the highest rating.

Results and Conclusions

Model	Precision	Recall	F-measure	NDCG	MAE	RMSE
СВ	0.035	0.012	0.018	0.014	0.689	0.899
UserCF	0.240	0.081	0.121	0.675	0.631	0.821
ItemCF	0.232	0.073	0.121	0.668	0.745	0.849
LF	0.264	0.089	0.133	0.719	1.688	1.959

Table: Average Performance of Each Model

Conclusions:

- The latent factor model performs best in the movie recommendation task
- The user-based collaborative filtering model performs best in the rating prediction task
- The content-based model doesn't have a competitive performance in the movie recommendation task, but performs good in the rating prediction task.

Future Work

Future works:

- Use more data
- Deal with missing value more effectively in Latent Factor Model
- Build a hybrid model
- Extract more features for the content-based model

References

[1] Francesco Ricci, Lior Rokach, and Bracha Shapira. Recommender Systems Handbook, pages 1–35. Springer, Boston, MA, USA, 10 2010.

Thank You