VJEROJATNOST I STATISTIKA

ZADACI ZA VJEŽBU

12. Testiranje hipoteza

FER, Zagreb

SADRŽAJ:

Zadaci za vježbu iz udžbenika Nevena Elezovića: Statistika i procesi Cjelina 12 – Testiranje hipoteza

*** Prije rješavanja zadataka treba proći teoretsko gradivo ove cjeline ***

1. Formule	3
2. Zadaci	5
3. Rješeni zadaci	.7
4. Službena rješenja1	14
5. Tablica normalne razdiobe1	15
6. Kvantili Hi-kvadrat razdiobe (tablica)1	۱7
6. Kvantili Studentove razdiobe (tablica)1	19
7. Kvantili standardne normalne razdiobe $u_{\mathfrak{p}}$ (tablica)	21
8. Literatura	22

NAPOMENA

Potrebno je rješiti SVE zadatke!

Zadaci koji nedostaju: 10,17,19,20,22

Posebna zahvala LORD OF THE LIGHT na rješenjima nekih zadataka!

FORMULE:

12. TESTIRANJE HIPOTEZA

Hipoteza je bilo koja pretpostavka o distribuciji neke slučajne varijable.

U-test: hipoteza o očekivanju normalne razdiobe uz poznatu disperziju σ^2 :

$$H_0$$
..... $a = a_0$

$$U = \frac{\overline{X} - a_0}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$$

Kriterij za odbacivanje H₀:

 $H_1 ... a \neq a_0$: $|\hat{u}| > u_{1-\alpha/2}$ $H_1 ... a < a_0$: $\hat{u} > -u_{1-\alpha}$ $H_1 ... a > a_0$: $\hat{u} > u_{1-\alpha}$

T-test: hipoteza o očekivanju normalne razdiobe uz nepoznatu disperziju σ^2 :

$$H_0$$
..... $a = a_0$

$$T = \frac{\overline{X} - a_0}{S/\sqrt{n}} \sim t(n-1)$$

Kriterij za odbacivanje H₀:

$$\begin{split} & H_1 ... \, a \neq a_0 \colon \ |\hat{t}| > t_{n-1,1-\alpha/2} \\ & H_1 ... \, a < a_0 \colon \ \hat{t} > -t_{n-1,1-\alpha} \\ & H_1 ... \, a > a_0 \colon \ \hat{t} > t_{n-1,1-\alpha} \end{split}$$

Hipoteza o proporciji

$$H_0$$
.... $p = p_0$

$$U = \left(\frac{m}{n} - p_0\right) \sqrt{\frac{n}{p_0 q_0}} \sim \mathcal{N}(0, 1)$$

Kriterij za odbacivanje H₀:

H₁ ... $a \neq a_0$: $|\hat{u}| > u_{1-\alpha/2}$ H₁ ... $a < a_0$: $\hat{u} > -u_{1-\alpha}$ H₁ ... $a > a_0$: $\hat{u} > u_{1-\alpha}$

USPOREDBA DVIJU POPULACIJA

Hipoteza o jednakosti očekivanja dvaju normalnih uzoraka $X \sim \mathcal{N}(\mu, \sigma_X^2)$, $Y \sim \mathcal{N}(\nu, \sigma_Y^2)$, uz poznate disperzije:

$$H_0$$
..... $\mu = \nu$

$$\sigma_Z^2 = \frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}, \quad U = \frac{\overline{X} - \overline{Y}}{\sigma_Z} \sim \mathcal{N}(0, 1)$$

Kriterij za odbacivanje H₀:

$$H_1 ... \mu \neq \nu$$
: $|\hat{u}| > u_{1-\alpha/2}$

$$H_1 ... \mu < \nu$$
: $\hat{u} > -u_{1-\alpha}$

$$H_1 ... \mu > \nu$$
: $\hat{u} > u_{1-\alpha}$

 $Hipoteza\ o\ jednakosti\ očekivanja\ dvaju\ normalnih\ uzoraka\ X \sim \mathcal{N}\big(\mu,\sigma_X^2\big), Y \sim \mathcal{N}\big(\nu,\sigma_Y^2\big),\ uz\ poznate\ disperzije:$

$$H_0..... \mu = \nu$$

$$S_X^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2, \quad S_Y^2 = \frac{1}{m-1} \sum_{j=1}^m \bigl(Y_j - \overline{Y}\bigr)^2$$

$$S_Z^2 = \frac{1}{n+m-2}[(n-1)S_X^2 + (m-1)S_Y^2]$$

$$T = \frac{\overline{X} - \overline{Y}}{S_Z} \sqrt{\frac{nm}{n+m}} \sim t(m+n-2)$$

Kriterij za odbacivanje H₀:

$$H_1 ... \mu \neq \nu$$
: $|\hat{t}| > t_{m+n-2,1-\alpha/2}$

$$H_1 ... \mu < \nu$$
: $\hat{t} > -t_{m+n-2,1-\alpha}$

$$H_1 ... \mu > \nu$$
: $\hat{t} > t_{m+n-2,1-\alpha}$

Hipoteza o jednakosti proporcija:

$$H_0....p' = p''$$

$$p = \frac{m_1 + m_2}{n_1 + n_2}, \quad \sigma^2 = p(1 - p); \quad U = \frac{p_1 - p_2}{\sqrt{\frac{\sigma^2}{n_1} + \frac{\sigma^2}{n_2}}} \sim \mathcal{N}(0, 1)$$

Kriterij za odbacivanje H₀:

$$H_1 \dots p_1 \neq p_2$$
: $|\hat{u}| > u_{1-\alpha/2}$

$$H_1 \dots p_1 < p_2 : \hat{u} > -u_{1-\alpha}$$

$$H_1 \dots p_1 > p_2$$
: $\hat{u} > u_{1-\alpha}$

HI-KVADRAT TEST

Hi-kvadrat test: test prilagodbe razdiobama

m – broj razreda (one razrede za koje je $n_i < 5$ spajamo s njima susjednim),

n_k – broj realizacija u pojedinom razredu

p_k – teorijska vjerojatnost pojedinog razreda

Stupanj slobode = m - r - 1

r – broj parametara razdiobe procjenjenih iz uzorka

$$\chi_q^2 = \sum_{j=1}^m \frac{(n_j - np_j)^2}{np_j} \sim \chi^2(m - r - 1)$$

Kriterij za odbacivanje:

$$\chi_q^2 > \chi_{m-r-1,1-\alpha}^2$$

ZADACI:

§ 12. Zadatci za vježbu

- 1. Slučajna varijabla X je normalno distribuirana s nepoznatim očekivanjem i disperzijom $\sigma^2=6$. Uzorak od n=100 mjerenja dao je srednju vrijednost $\overline{x}=16.2$. Uz nivo značajnosti $\alpha=0.05$ testirajte hipotezu $H_0 \dots a=15$, uz alternativu $H_1 \dots a \neq 15$.
- 2. Slučajna varijabla X je normalno distribuirana s nepoznatim očekivanjem i nepoznatom disperzijom. Uzorak od n=50 mjerenja dao je srednju vrijednost $\bar{x}=24.2$ i $\hat{s}^2=4.8$. Uz nivo značajnosti $\alpha=0.05$ testirajte hipotezu $H_0\ldots a=25$, uz alternativu $H_1\ldots a<25$.
- 3. Pseudoslučajnim generatorom simulirano je bacanje novčića 10000 puta. Pismo je registrirano 5120 puta. S kojim nivoom značajnosti možemo potvrditi hipotezu o ispravnosti generatora?
- **4.** Pri proizvodnji u normalnim uvjetima, stroj daje 2% škarta. Na uzorku od 500 proizvoda primjećeno je 16 škartnih proizvoda. Provjeri hipotezu o ispravnosti deklaracije, uz nivo značajnosti 5%.
- 5. Srednja vrijednost uzorka volumena 50 iznosi $\overline{x}=12.6$, uz devijaciju $\hat{s}=.53$. provjeri hipotezu $H_0\ldots a=12$, uz nivo značajnosti $\alpha=0.05$.
- 6. U tablici su dana odstupanja promjera valjaka obrađivanih na preciznom tokarskom stroju u μ m od nominale

$$\mu$$
m | 0–5 5–10 10–15 15–20 +20 n_j | 15 75 100 50 10

Pomoću χ^2 -testa, uz nivo značajnosti $\alpha=0.2$, provjeri suglasnost ovih podataka sa normalnom razdiobom.

- 7. Proizvođač tvrdi da je vrijeme rada nekog uređaja barem 200 dana. Izabran je uzorak od 8 proizvoda koji je dao rezultate:
- 165 , 170 , 182 , 185 , 193 , 200 , 203 , 210 Provjeri ispravnost tvrdnje proizvođača uz nivo značajnosti $\alpha=0.05$.
- 8. Rezultati nekog mjerenja dani su u tablici:

Pomoću χ^2 -testa provjeri hipotezu da se ovi podaci pokoravaju binomnom zakonu B(8,0.4) uz nivo značajnosti $\alpha=0.90$.

9. Rezultati mjerenja slučajne varijable *X* dani su u tablici:

S pomoću χ^2 -testa provjeri hipotezu da se ovi podaci ravnaju po Poissonovoj razdiobi, uz nivo značajnosti 0.05.

10. Uzastopnim ponavljanjem nekog pokusa dobivene su sljedeće vrijednosti neprekidne slučajne varijable X

$$[a,b]$$
 0-5
 5-10
 10-15
 15-20
 20-25

 m_i
 15
 60
 90
 50
 10

Pomoću χ^2 -testa provjeri suglasnost ovih podataka sa normalnom razdiobom, uz nivo značajnosti $\alpha=0.8$.

11. Proizvođač tvrdi da je tvornička težina nekog proizvoda 100 p. Uzorak od 20 proizvoda dao je rezultate:

težina	98	99	100	101	102	
broj uzoraka	4	6	6	3	1	

Provjeri ispravnost tvrdnje proizvođača uz nivo značajnosti $\alpha=0.05$.

12. Rezultati mjerenja slučajne varijable X dani su u tablici:

Provjeri, uz nivo značajnosti $\alpha = 0.05$, hipotezu da slučajna varijabla X ima Poissonov zakon razdiobe.

13. Ispitaj suglasnost podataka u tablici

$$x_j$$
 0 1 2 3 4 5 6 7 n_j 21 62 50 40 22 0 5 0

s Poissonovom razdiobom, uz nivo značajnosti 0.05.

14. Realizacije slučajne varijable *X* zadane su tablicom:

Pomoću χ^2 -testa, uz nivo značajnosti 0.05, provjeri suglasnost tih podataka s Poissonovom razdiobom.

15. Rezultati mjerenja slučajne varijable *X* dani su u tablici:

x_j	0	1	2	3	4	
m_j	130	52	18	4	1	

Pomoću χ^2 -texta provjeri hipotezu da se ovi podaci ravnaju po Poissonovoj razdiobi, uz nivo značajnosti 0.05.

16. Rezultati nekog pokusa u kojem se u 1000 ispitivanja bilježio broj x_j pojavljivanja nekog događaja, dani su u tablici:

Provjeri pomoću χ^2 -testa, uz nivo značajnosti 0.05, suglasnost ovih podataka s Poissonovom razdiobom.

17. 100 puta su bačena četiri novčića i bilježen je broj X pojavljivanja grbova:

Pomoću χ^2 -testa provjeri hipotezu da X ima binomnu razdiobu s parametrom p=0.5, uz nivo značajnosti $\alpha=0.05$.

18. Rezultati mjerenja slučajne varijable X dani su u tablici

Pomoću χ^2 -testa provjeri hipotezu da se ovi podaci ravnaju po Poissonovoj razdiobi, uz nivo značajnosti 0,05.

19. 220 puta je bačeno 5 novčića i bilježen je broj *X* pojavljivanja grbova:

Pomoću χ^2 -testa provjeri hipotezu da X ima binomnu razdiobu s parametrom $p=\frac{1}{2}$, uz nivo značajnosti 0.95.

20. U 320 obitelji sa petoro djece izbrojena su muška odnosno ženska djeca, i dobiven je rezultat prema tabeli

	muška dj.	5	4	3	2	1	0	
	ženska dj.	0	1	2	3	4	5	_
-	broj obitelji	18	56	110	88	40	8	_

S nivoom značajnosti 5 % testiraj hipotezu da su muška i ženska djeca jednako vjerojatna!

21. U Mendeljejevim eksperimentima sa graškom ispitano je 560 zrna i dobiveno je

317	okruglih i žutih
109	okruglih i zelenih
102	smežuranih i žutih
32	smežurana i zelena

Prema njegovoj teoriji o naslijeđivanju, ovi brojevi bi morali biti u omjeru 9:3:3:1. S nivoom značajnosti 5% odgovori treba li prihvatiti ili odbaciti ovu pretpostavku.

22. 4 kovana novčica bačena su istovremeno 96 puta i svaki put je zabilježen broj grbova:

S nivoom značajnosti 5% provjeri da li se dobiveni rezultati slažu s hipotezom o ispravnosti svih novčica.

23. Igraća kocka bačena je 180 puta i dobiveni su sljedeći rezultati:

Pomoću χ^2 -testa provjeri da li se ovi podaci ravnaju po jednolikoj razdiobi, uz nivo značajnosti $\alpha=0.90$.

24. Ispitaj suglasnost podataka u tablici

s Poissonovom razdiobom, uz nivo značajnosti 0.05.

25. Kocka je bačena 180 puta i dobiveni su sljedeći rezultati

Pomoću χ^2 –testa provjeri da li se ovi podaci ravnaju po jednolikoj razdiobi, uz nivo značajnosti 0.1.

26. U prvih 800 znamenaka decimalnog prikaza broja π znamenke 0, 1,...,9 pojavljuju se 74, 92, 83, 79, 80, 73, 77, 75, 76, 91 put. Provjeri χ^2 -testom hipotezu da je pojava svih znamenaka u tom prikazu jednako vjerojatna, uz nivo značajnosti $\alpha=0.1$.