Frequent pattern mining: association rules

CS434

What Is Frequent Pattern Mining?

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.)
 that occurs frequently in a data set
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
- Broad applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis
 - Web log (click stream) analysis
 - DNA sequence analysis

Association rules

Data: Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

```
{Diaper} \rightarrow {Beer},
{Milk, Bread} \rightarrow {Eggs,Coke},
{Beer, Bread} \rightarrow {Milk},
```

Implication means co-occurrence, not causality!

Given a set of transactions, find rules that will **predict the occurrence of** an item based on the occurrences of other items in the transaction

Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - An itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset
- E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

Support

- Fraction of transactions that contain an itemset
- E.g. $s(\{Milk, Bread, Diaper\}) = 2/5$

• Frequent Itemset

 An itemset whose support is greater than or equal to a *minsup* threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

- Association Rule
 - An implication expression of the form
 X → Y, where X and Y are itemsets
 - Example:{Milk, Diaper} → {Beer}
- Rule Evaluation Metrics
 - Support (s)
 - Fraction of transactions that contain both X and Y: P(X ^ Y)
 - Confidence (c)
 - Measures how often items in Y appear in transactions that contain X : P(Y|X)

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example:

 $\{Milk, Diaper\} \Rightarrow Beer$

$$s = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk,Diaper,Beer})}{\sigma(\text{Milk,Diaper})} = \frac{2}{3} = 0.67$$

Problem definition: Association Rules Mining

Transaction-id	Items bought
10	A, B, C
20	A, C
30	A, D
40	B, E, F

• Inputs:

Itemset X={x₁, ..., x_k},
thresholds: min_sup, min_conf

• Output:

All the rules $X \rightarrow Y$ having: support $(P(X^Y)) \ge min_sup$ confidence $(P(Y|X)) \ge min_conf$

Let
$$min_sup = 50\%$$
, $min_conf = 50\%$:
 $A \rightarrow C$ (50%, 66.7%)
 $C \rightarrow A$ (50%, 100%)

Brute-force solution

- List all possible association rules
- Compute the support and confidence for each rule
- Prune rules that fail the min_sup and min_conf thresholds
- ⇒ Computationally prohibitive!

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)

{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)

{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)

{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)

{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)

{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```

Observations:

- All the above rules are binary partitions of the same itemset:
 {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements
- We can first find all frequent itemsets that satisfy the support requirement

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup

2. Rule Generation

- Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2^d !!!

Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Illustrating Apriori Principle

Illustrating Apriori Principle

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Itemset	Count
{Bread,Milk}	3
{Bread,Beer}	2
{Bread,Diaper}	3
{Milk,Beer}	2
{Milk,Diaper}	3
{Beer,Diaper}	3

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Min Support count = 3

Triplets (3-itemsets)

If every subset is considered,
$C_1^6 + C_2^6 + C_3^6 = 41$
With support-based pruning,
6 + 6 + 1 = 13

Itemset	Count
{Bread,Milk,Diaper}	3

The Apriori Algorithm

- Identify all frequent itemsets (with given minsup)
- Method:
 - Let k=1
 - Generate frequent itemsets of length 1
 - Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - Count the support of each candidate by scanning the DB
 - Eliminate candidates that are infrequent, leaving only those that are frequent

The Apriori Algorithm

Pseudo-code: C_k : Candidate itemset of size k L_{ν} : frequent itemset of size k $L_1 = \{ frequent items \};$ for $(k = 1; L_k != \emptyset; k++)$ do begin C_{k+1} = candidates generated from L_k ; for each transaction t in database do increment the count of all candidates in C_{k+1} that are contained in t L_{k+1} = candidates in C_{k+1} with min_support end return $\bigcup_k L_k$;

How to Generate Candidates?

- Suppose the items in L_k are listed in an order (e.g., alphabetic ordering)
- Step 1: self-joining L_k
 For all itemsets **p** and **q** in L_k such that
 p.item_i=q.item_i for I = 1, 2, ..., k-1 and p.item_k<q.item_k
 Add to C_{k+1}
 p.item₁, p.item₂, ..., p.item_k, q.item_k
- Step 2: pruning

 For all *itemsets* c *in* C_{k+1} do

 For all (k)-subsets s of c do

 if (s is not in L_k) then delete c from C_{k+1}

Important Details of Apriori

Self-joining rule:

- 1. we join two itemsets if and only if they only differ by their last item
- 2. When joining, the items are always ranked based on a fixed ordering of the items (e.g., alphabetic ordering)
- Example of Candidate-generation
 - L_3 ={abc, abd, acd, ace, bcd}
 - Self-joining: L_3*L_3
 - abcd from abc and abd
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in L₃
 - $-C_{4}=\{abcd\}$

Why not abd, and acd -> abcd?

Why should this work?

- How can we be sure we are not missing any possible itemset?
- This can be seen by proving that for every possible frequent k+1-itemset, it will be included using this self-joining process

Proof

For any k +1 item set S (with items ranked), it will be included by joining the following two subsets:

- 1. $S_k = \{\text{the first k items of S}\}$
- 2. $S'_k = S$ with the k-th item removed

Clearly S_k and S'_k are frequent, and differ by only the last item. So they must satisfy the self-join condition and $S_k \cap S'_k = S$

The Apriori Algorithm—An Example

 $Sup_{min} = 2/4$

Database TDB

Tid	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

 \boldsymbol{C}_{I}

1st scan

sup
2
3
3
1
3

 $\begin{array}{c|ccccc} L_1 & & & & & & & \\ \hline & \{A\} & & 2 & & \\ & \{B\} & & 3 & & \\ \hline & \{C\} & & 3 & & \\ & \{E\} & & 3 & & \\ \end{array}$

 Itemset
 sup

 {A, B}
 1

 {A, C}
 2

 {A, E}
 1

 {B, C}
 2

 {B, E}
 3

 {C, E}
 2

 C_2 $2^{\text{nd}} \text{ scan}$

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

 $3^{\text{rd}} \operatorname{scan} L_3$

Itemset	sup
{B, C, E}	2

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup

2. Rule Generation

- Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Enumerate all possible rules from the frequent itemset and out these of high confidence

Example: Generating rules

• Min_conf = 80%

Database TDB

Tid	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

Itemset	sup
{A}	2
{B}	3
{C}	3
{E}	3

L2

Itemset	sup
{A, C}	2
{B, C}	2
{B, E}	3
{C, E}	2

L3

Itemset	sup
{B, C, E}	2

 $A \rightarrow C$: 100%

 $C \to A$: 66.7%

 $B \to C: 66.7\%$

 $C \to B: 66.7\%$

 $B \rightarrow E$: 100%

 $E \rightarrow B$: 100%

 $C \to E$: 66.7%

 $E \to C$: 66.7%

 $B, C \rightarrow E$: 100%

B, *E* → *C*: 66.7%

 $C, E \rightarrow B: 100\%$

Frequent-Pattern Mining: Summary

- Frequent pattern mining—an important task in data mining
- "Scalable" frequent pattern mining methods
 - Apriori (Candidate generation & test)
- The Apriori property has also been used in mining other type of patterns such as sequential and structured patterns
- Problem: frequent patterns are not necessarily interesting patterns
 - Bread -> milk is not really interesting although it has high support and confidence
 - Many other measures of interestingness exist to address this problem
 - Such as "unexpectedness"

Comparing Association rule with Supervised learning

- Supervised learning
 - Have predefined class variable
 - Focus on difference one class from another
- Association rule mining
 - Do not have predefined target class variable
 - Right hand side of the rule can have many items
 - We could place the class variable C on the right hand side of a rule, but it does not focus on differentiating classes, but more on characterizing a class

What you need to know

- What is an association rule?
- What are the support and confidence of a rule?
- The apriori property
- How to find frequent itemset using the aprioir property
 - The Candidate Generation : self-join, and prune
 - Why is it correct?
- How to produce association rules based on frequent itemsets?