

Cambridge Assessment International Education

Cambridge International Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
FURTHER MATHEM	ATICS		9231/21
Paper 2			May/June 2019
			3 hours
Candidates answer o	n the Question Paper.		
Additional Materials:	List of Formulae (MF10)		

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

Where a numerical value is necessary, take the acceleration due to gravity to be 10 m s^{-2} .

The use of a calculator is expected, where appropriate.

Results obtained solely from a graphic calculator, without supporting working or reasoning, will not receive credit.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

BLANK PAGE

A particle P moves along an arc of a circle with centre O and radius 2 m. At time t seconds, the angle

Show								
	•••••		•••••	•••••		•••••		•••••
	•••••		•••••				•••••	•••••
	•••••		•••••			•••••		•••••
•••••	•••••		•••••					••••
•••••	•••••		•••••				•••••	••••
Find t						ration of P v		
Find t			ansverse co	omponent c	of the accele		when $t = \frac{1}{6}\pi$	ī.
Find t	he magnitu	de of the tr	cansverse co	omponent c	of the accele	ration of P v	when $t = \frac{1}{6}\pi$	ī.
	he magnitu	de of the tr	ansverse co	omponent o	f the accele	ration of P v	when $t = \frac{1}{6}\pi$	
	he magnitu	de of the tr	ansverse co	omponent o	f the accele	ration of P v	when $t = \frac{1}{6}\pi$	
	he magnitu	de of the tr	ansverse co	omponent o	f the accele	ration of P v	when $t = \frac{1}{6}\pi$	
	he magnitu	de of the tr	ansverse co	omponent o	of the accele	ration of P v	when $t = \frac{1}{6}\pi$	
	he magnitu	de of the tr	ansverse co	omponent o	of the accele	ration of P v	when $t = \frac{1}{6}\pi$	
	he magnitu	de of the tr	ansverse co	omponent o	of the accele	ration of P v	when $t = \frac{1}{6}\pi$	
	he magnitu	de of the tr	ransverse co	omponent o	of the accele	ration of P v	when $t = \frac{1}{6}\pi$	
	he magnitu	de of the tr	ransverse co	omponent o	of the accele	ration of P v	when $t = \frac{1}{6}\pi$	
	he magnitu	de of the tr	ransverse co	omponent o	of the accele	ration of P v	when $t = \frac{1}{6}\pi$	
	he magnitu	de of the tr	ansverse co	omponent o	of the accele	ration of P v	when $t = \frac{1}{6}\pi$	
	he magnitu	de of the tr	ansverse co	omponent o	of the accele	ration of P v	when $t = \frac{1}{6}\pi$	
	he magnitu	de of the tr	ransverse co	omponent o	of the accele	ration of P v	when $t = \frac{1}{6}\pi$	

A particle P moves on a straight line in simple harmonic motion. The centre of the motion is O. The

Find the speed of P when it is at O .					
	Find the speed of P when it is at O .				

•••••

Three uniform small spheres A, B and C have equal radii and masses 2m, 4m and m respectively. The

Find the velocities of A and B after this collision. Solution in the velocities of A and B after this collision. Solution is a second in the velocities of A and B after this collision. Solution is a second in the velocities of A and B after this collision. Solution is a second in the velocities of A and B after this collision. Solution is a second in the velocities of A and B after this collision.	
here C is moving towards B with speed $\frac{4}{3}u$ and now collides with it. As a result of this colorought to rest.	•••••
here C is moving towards B with speed $\frac{4}{3}u$ and now collides with it. As a result of this colorought to rest.	
here C is moving towards B with speed $\frac{4}{3}u$ and now collides with it. As a result of this colorought to rest.	
here C is moving towards B with speed $\frac{4}{3}u$ and now collides with it. As a result of this col rought to rest.	
are C is moving towards B with speed $\frac{4}{3}u$ and now collides with it. As a result of this colought to rest.	
ere C is moving towards B with speed $\frac{4}{3}u$ and now collides with it. As a result of this colrought to rest.	•••••
ere C is moving towards B with speed $\frac{4}{3}u$ and now collides with it. As a result of this colrought to rest.	•••••
ere C is moving towards B with speed $\frac{4}{3}u$ and now collides with it. As a result of this colrought to rest.	•••••
ere C is moving towards B with speed $\frac{4}{3}u$ and now collides with it. As a result of this col rought to rest.	•••••
ere C is moving towards B with speed $\frac{4}{3}u$ and now collides with it. As a result of this colrought to rest.	
ere C is moving towards B with speed $\frac{4}{3}u$ and now collides with it. As a result of this colcought to rest.	
ere C is moving towards B with speed $\frac{4}{3}u$ and now collides with it. As a result of this colcought to rest.	
ere C is moving towards B with speed $\frac{4}{3}u$ and now collides with it. As a result of this colought to rest.	•••••
here C is moving towards B with speed $\frac{4}{3}u$ and now collides with it. As a result of this colling rought to rest.	•••••
rought to rest.	
rought to rest.	
	lisic
Tind the value of e.	
	•••••

		•••••
		•••••
/ ***		
(iii)	iii) Find the total kinetic energy lost by the three spheres as a result of t	he two collisions. [3]

A uniform rod AB of length 4a and weight W rests with the end A in contact with a rough vertical wall. A light inextensible string of length $\frac{5}{2}a$ has one end attached to the point C on the rod, where $AC = \frac{5}{2}a$. The other end of the string is attached to a point D on the wall, vertically above A. The vertical plane containing the rod AB is perpendicular to the wall. The angle between the rod and the wall is θ , where $\tan \theta = 2$ (see diagram). The end A of the rod is on the point of slipping down the wall and the coefficient of friction between the rod and the wall is μ .

Find, in either order, the tension in the string and the value of μ .	[10]

 	 	•••••
	 	•••••
 	 	•••••
 	 	•••••
	 	•••••
	 	•••••
	 	•••••
	 	•••••
 	 	•••••
 	 	•••••
 	 	•••••
 	 	•••••
 	 	•••••

A thin uniform rod AB has mass kM and length 2a. The end A of the rod is rigidly attached to the surface of a uniform hollow sphere with centre O, mass kM and radius 2a. The end B of the rod is rigidly attached to the circumference of a uniform ring with centre C, mass M and radius a. The points C, B, A, O lie in a straight line. The horizontal axis L passes through the mid-point of the rod and is perpendicular to the rod and in the plane of the ring (see diagram). The object consisting of the rod, the ring and the hollow sphere can rotate freely about L.

(i)	Show that the moment of inertia of the object about L is $\frac{3}{2}(8k+3)Ma^2$.	[6]
		•••••
		•••••
		•••••
		•••••

Find the set	t of possible val	ues of k and the	e period of t	hese oscillat	ions in terms	of k .
••••••	••••••		••••••	••••••	•••••	••••••
• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	•••••	•••••	•••••
		••••••		•••••		
••••••	•••••	••••••••••	••••••••••	••••••	•••••	•••••
				•••••		
				•••••		
•••••	•••••	••••••	••••••	•••••	•••••	
•••••				•••••	•••••	
				••••		
•••••		••••••		•••••		•••••
		•••••				

A fair six-sided die is thrown until a 3 or a 4 is obtained. The number of throws taken is denoted by

(i)	State the mean value of X .	[:
(ii)	Find the probability that obtaining a 3 or a 4 takes exactly 6 throws.	[
iii)	Find the probability that obtaining a 3 or a 4 takes more than 4 throws.	
ii)	Find the probability that obtaining a 3 or a 4 takes more than 4 throws.	[:
iii)	Find the probability that obtaining a 3 or a 4 takes more than 4 throws.	[2
iii)	Find the probability that obtaining a 3 or a 4 takes more than 4 throws.	[2
iii)	Find the probability that obtaining a 3 or a 4 takes more than 4 throws.	[:
iii)	Find the probability that obtaining a 3 or a 4 takes more than 4 throws.	[:
iii)	Find the probability that obtaining a 3 or a 4 takes more than 4 throws.	[2
iii)	Find the probability that obtaining a 3 or a 4 takes more than 4 throws.	[2
iii)	Find the probability that obtaining a 3 or a 4 takes more than 4 throws.	[2
iii)	Find the probability that obtaining a 3 or a 4 takes more than 4 throws.	[2
iii)	Find the probability that obtaining a 3 or a 4 takes more than 4 throws.	

is less than 0.95.			
	 ••••••	 •••••	
	 ••••••	 	

7	The continuous	random	variable X	has	probability	density	function	f given	by

ble
$$X$$
 has probability density function f given by
$$f(x) = \begin{cases} \frac{3}{4x^2} + \frac{1}{4} & 1 \le x \le 3, \\ 0 & \text{otherwise.} \end{cases}$$

(i)	Find the distribution function of X .	[3]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

•••••				•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••
•••••									
	•••••	•••••••	••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	•••••
•••••	•••••		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••
•••••	•••••	••••••••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	•••••
	•••••								
	•••••								
•••••	•••••		••••••	•••••	•••••			•••••	
•••••	•••••	•	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•	••••••	•••••
									••••
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••
•••••	•••••		•••••	•••••	•••••			•••••	•••••
	•••••		••••••		•			••••••	
									•••••
•••••									
•••••	•••••	•••••••	••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••
	•••••								
•••••	•••••		•••••	•••••	•••••			•••••	•••••

A large number of runners are attending a summer training camp. A random sample of 6 runners is chosen and their times to run 1500 m at the beginning of the camp and at the end of the camp are recorded. Their times, in minutes, are shown in the following table.

Runner	A	В	C	D	E	F
Time at beginning of camp	3.82	3.62	3.55	3.71	3.75	3.92
Time at end of camp	3.72	3.55	3.52	3.68	3.54	3.73

The organiser of the training camp claims that a runner's time will improve by more than 0.05 minutes between the beginning and end of the camp. Assuming that differences in time over the two runs are normally distributed, test at the 10% significance level whether the organiser's claim is justified. [8]

9 A random sample of 50 observations of the continuous random variable X was taken and the values are summarised in the following table.

Interval	$0 \leqslant x < 0.8$	$0.8 \le x < 1.6$	$1.6 \le x < 2.4$	$2.4 \le x < 3.2$	$3.2 \leqslant x < 4$
Observed frequency	18	16	8	6	2

It is required to test the goodness of fit of the distribution with probability density function f given by

$$f(x) = \begin{cases} \frac{3}{16}(4-x)^{\frac{1}{2}} & 0 \le x < 4, \\ 0 & \text{otherwise.} \end{cases}$$

The relevant expected frequencies, correct to 2 decimal places, are given in the following table.

Interval	$0 \leqslant x < 0.8$	0.8 ≤ <i>x</i> < 1.6	$1.6 \le x < 2.4$	$2.4 \le x < 3.2$	$3.2 \leqslant x < 4$
Expected frequency	14.22	12.54	10.59	8.18	4.47

(i)	Show how the expected frequency for $1.6 \le x < 2.4$ is obtained.	[3]

10 The values from a random sample of five pairs (x, y) taken from a bivariate distribution are shown below

x	3	4	4	6	8
y	5	7	q	6	7

The equation of the regression line of x on y is given by $x = \frac{5}{4}y + c$.

(i)	Given that q is an integer, find its value.	[5]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

]	Find the value of c .	
•		•••••
•		•••••
•		•••••
•		•••••
•		•••••
•		•••••
•		•••••
•		•••••
•		•••••
•		•••••
•		
•		•••••
]	Find the value of the product moment correlation coefficient.	•••••
	Find the value of the product moment correlation coefficient.	
	Find the value of the product moment correlation coefficient.	
	Find the value of the product moment correlation coefficient.	
	Find the value of the product moment correlation coefficient.	
	Find the value of the product moment correlation coefficient.	
	Find the value of the product moment correlation coefficient.	
	Find the value of the product moment correlation coefficient.	
	Find the value of the product moment correlation coefficient.	
	Find the value of the product moment correlation coefficient.	
	Find the value of the product moment correlation coefficient.	

11 Answer only **one** of the following two alternatives.

EITHER

A particle P, of mass m, is able to move in a vertical circle on the smooth inner surface of a sphere with centre O and radius a. Points A and B are on the inner surface of the sphere and AOB is a horizontal diameter. Initially, P is projected vertically downwards with speed $\sqrt{\left(\frac{21}{2}ag\right)}$ from A and begins to move in a vertical circle. At the lowest point of its path, vertically below O, the particle P collides with a stationary particle Q, of mass Am, and rebounds. The speed acquired by Q, as a result of the collision, is just sufficient for it to reach the point B.

(i)	Find the speed of P and the speed of Q immediately after their collision. [7]

In its subsequent motion, P loses contact with the inner surface of the sphere at the point D, where the angle between OD and the upward vertical through O is θ .

Find $\cos \theta$.	[5

OR

A farmer grows two different types of cherries, Type A and Type B. He assumes that the masses of
each type are normally distributed. He chooses a random sample of 8 cherries of Type A. He finds
that the sample mean mass is 15.1 g and that a 95% confidence interval for the population mean mass,
μ g, is $13.5 \le \mu \le 16.7$.

•••••	• • • • • • • • • • • • • • • • • • • •							• • • • • • • • • • • • • • • • • • • •	•••••
•	• • • • • • • • • • • • • • • • • • • •	••••••		••••••	•	•		•••••	•••••
		•••••			•••••			• • • • • • • • • • • • • • • • • • • •	••••
•••••	••••••	••••••			• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	• • • • •
									• • • • •
		•••••			•••••			•••••	••••
• • • • • • • • • • • • • • • • • • • •	••••••	•••••			•••••			• • • • • • • • • • • • • • • • • • • •	••••
armer now cho	ooses a ran 12.2	dom sam	_		Type <i>B</i> ar	nd records	s their ma	asses as	fol
Test at the 5% mean mass of	12.2 significar	13.3 nce level f Type A.	16.4 whether t	14.0 he mean	13.9 mass of c	15.4 herries of	Type B	is less	tha
Test at the 5% mean mass of	12.2 significar	13.3 nce level f Type A.	16.4 whether t	14.0 he mean	13.9 mass of c	15.4 herries of	Type B	is less	tha
Test at the 5% mean mass of	12.2 significar	13.3 nce level f Type A.	16.4 whether t	14.0 he mean	13.9 mass of c	15.4 herries of	Type B	is less	tha
Test at the 5% mean mass of	12.2 significar	13.3 nce level f Type A.	16.4 whether t	14.0 he mean	13.9 mass of c	15.4 herries of	Type B	is less	tha
Test at the 5% mean mass of	12.2 significar	13.3 nce level f Type A.	16.4 whether t	14.0 he mean	13.9 mass of c	15.4 herries of	Type B	is less	tha
Test at the 5% mean mass of	12.2 significar	13.3 nce level f Type A.	16.4 whether t	14.0 he mean	13.9 mass of c	15.4 herries of	Type B	is less	tha
Test at the 5% mean mass of o	12.2 significar	13.3 nce level f Type A.	16.4 whether t	14.0 he mean	13.9 mass of c	15.4 herries of	Type B	is less	tha
Test at the 5% mean mass of types of cherry	12.2 significar	13.3 nce level f Type A.	16.4 whether t	14.0 he mean	13.9 mass of c	15.4 herries of	Type B	is less	tha

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.