

UNIVERSIDAD PRIVADA DE TACNA FACULTAD DE INGENIERÍA

Escuela Profesional de Ingeniería de Sistemas

Sistema de alerta basado en tecnología LoRaWAN para optimizar la respuesta de emergencias por violencia contra la mujer e integrantes del grupo familiar en Perú, 2025

Curso: Construcción de Software I

Docente: Ing. Alberto Johnatan Flor Rodríguez

Integrantes:

Daleska Nicolle Fernandez Villanueva

(2021070308)

Tacna – Perú 2025 Sistema de alerta basado en tecnología LoRaWAN para optimizar la respuesta de emergencias por violencia contra la mujer e integrantes del grupo familiar en Perú, 2025

Versión 1.0

	CONTROL DE VERSIONES					
Versión	Hecha por	Revisada por	Aprobada por	Fecha	Motivo	
2.0	DFV	DFV	DFV	29/10/2025	Versión Original	

ÍNDICE

. Introducción	4
1.1. Propósito (Diagrama 4+1)	4
1.2. Alcance	4
. Objetivos y restricciones arquitectónicas	6
2.1. Objetivos	6
2.2. Priorización de requerimientos	7
2.3. Requerimientos Funcionales	9
2.4. Requerimientos No Funcionales – Atributos de Calidad	14
2.5. Restricciones	18
. Representación de la arquitectura del sistema	19
3.1. Vista de Caso de uso	19
3.1.1. Diagramas de Casos de uso	19
3.2. Vista Lógica	20
3.2.1. Diagrama de Subsistemas (paquetes)	20
3.2.2. Diagrama de Secuencia (vista de diseño)	20
3.2.3. Diagrama de Objetos	29
3.2.4. Diagrama de Clases	36
3.2.5. Diagrama de Base de datos (relacional o no relacional)	37
3.3. Vista de Implementación	37
3.3.1. Diagrama de arquitectura del sistema (Diagrama de compor	nentes) 37
3.4. Vista de procesos	38
3.4.1. Diagrama de Procesos del sistema (diagrama de actividad)	38
3.5. Vista de Despliegue (vista física)	39
3.5.1. Diagrama de despliegue	39
Atributos de calidad de software	30

1. Introducción

1.1. Propósito (Dlagrama C4)

1.2. Alcance

El sistema se encargará de las siguientes funcionalidades y módulos principales:

Gestión del Dispositivo Autónomo de Alerta Personal:

- Implementar el firmware optimizado (en C/C++) para la gestión eficiente de la energía (modo deep sleep), la activación bajo demanda del módulo GPS para geolocalización precisa, la compilación de datos de alerta (ID del dispositivo, coordenadas GPS, nivel de batería) y su transmisión vía LoRaWAN.
- Controlar un LED de confirmación en el dispositivo para indicar al usuario el envío exitoso de la alerta, proporcionando retroalimentación visual inmediata.

Conectividad y Reenvío de Datos LoRaWAN:

- Utilizar el servidor de red The Things Stack (TTS) para la recepción segura, desduplicación, desencriptación y reenvío confiable de los paquetes de datos LoRaWAN originados en el dispositivo autónomo.
- Configurar integraciones (Webhooks o MQTT) en TTS para asegurar una entrega de datos en tiempo real y estructurada al Servidor Central de Monitoreo.

• Procesamiento Central de Alertas (Servidor Central de Monitoreo):

- Desarrollar la capacidad del backend para recibir, decodificar y procesar los datos de alerta enviados desde The Things Stack.
- Consultar la base de datos Firestore para correlacionar el ID del dispositivo con el perfil completo de la víctima y la información en tiempo real de las unidades de respuesta.
- Implementar la lógica para identificar la unidad policial o de serenazgo más cercana a la ubicación de la alerta y automatizar el despacho digital de dicha alerta.

• Almacenamiento y Gestión de Datos en Tiempo Real (Firestore):

 Establecer una base de datos Firestore para el almacenamiento seguro y la gestión en tiempo real de perfiles de víctimas, registros históricos de alertas y, crucialmente, la ubicación actualizada de las unidades de respuesta (cada 5 segundos).

- Facilitar la sincronización de datos en tiempo real para que tanto el dashboard central como las aplicaciones de las patrullas vean la información más reciente de manera instantánea.

• Interfaz y Gestión para Unidades de Respuesta (Aplicación Móvil/Tablet):

- Desarrollar una aplicación móvil para el personal de la PNP y Serenazgo,
 que sirva como interfaz de usuario primaria en campo.
- Proveer funcionalidades para la visualización interactiva de las alertas en un mapa (vía API de Google Maps), mostrando la ubicación de la víctima, los datos de su perfil y la posición de la propia patrulla y otras unidades.
- Permitir la actualización del estado de la emergencia (aceptar, en ruta, resuelto) y el envío de la ubicación de la patrulla cada 5 segundos.

Validación y Pruebas del Prototipo:

 Ejecutar pruebas exhaustivas en laboratorio y en un entorno de campo controlado para validar la eficiencia energética del dispositivo, la tasa de éxito y la latencia de transmisión de la alerta de extremo a extremo, así como la precisión de la geolocalización y la efectividad del sistema de despacho automatizado.

2. Objetivos y restricciones arquitectónicas

2.1. Objetivos

Objetivo general

Diseñar e implementar un sistema de alertas basado en tecnología LoRaWAN para las respuestas de emergencia en casos de violencia contra la mujer e integrantes del grupo

familiar en Perú, asegurando confiabilidad, cobertura y eficiencia en la transmisión de alertas.

Objetivos Específicos

- Diseñar e implementar el firmware del dispositivo autónomo para gestionar la activación de la alerta, la obtención de coordenadas GPS y la transmisión de datos vía LoRaWAN, priorizando la eficiencia energética.
- Desarrollar el hardware del dispositivo autónomo que integre un microcontrolador, un módulo LoRaWAN, un módulo GPS, una batería de larga duración y un indicador LED de confirmación de envío.
- Configurar la red LoRaWAN (The Things Stack) y sus integraciones para asegurar la recepción y el reenvío eficiente de los paquetes de datos del dispositivo al Servidor Central de Monitoreo.
- Implementar el Servidor Central de Monitoreo (basado en la nube) capaz de recibir, decodificar y procesar las alertas, identificar a la víctima y la unidad de respuesta más cercana, y enviar la alerta digital automatizada.
- Desarrollar la aplicación cliente para las unidades de respuesta (PNP/Serenazgo) que permita la visualización en tiempo real de las alertas, la ubicación de la víctima, y la gestión del estado de la emergencia.
- Realizar pruebas de rendimiento del sistema para validar que la latencia de transmisión de la alerta es de 5 segundos o menos y que la confiabilidad de transmisión supera el 98% en diversas condiciones de entorno.
- Evaluar la autonomía energética del dispositivo autónomo, verificando que la duración de la batería permita un funcionamiento continuo de al menos 6 meses en modo de reposo o un mínimo de 500 activaciones de emergencia.

2.2. Priorización de requerimientos

ID	Nombre del Caso	Actores	Requisitos Funcionales Asociados
	de Uso		

CUS-01	Enviar Alerta de Emergencia	Víctima	RF-003: Compilación y Preparación de Datos de Alerta. RF-004: Transmisión LoRaWAN de Alerta. RF-005: Indicador LED de Confirmación
CUS-02	Obtener Ubicación GPS	-	RF-002: Activación y Captura de Ubicación GPS
CUS-03	Gestionar Batería	-	RF-001: Gestión de Energía del Dispositivo
CUS-04	Recibir y Reenviar Alerta	Servidor LoRaWAN	RF-006: Recepción y Procesamiento de Datos LoRaWAN (TTS) RF-007: Reenvío de Alertas a Servidor Central (TTS) RF-024: Reenvío de Alerta del Servidor LoRaWAN
CUS-05	Procesar Alerta en Servidor	Servidor Central	RF-008: Recepción y Decodificación de Alertas (SCM) RF-009: Correlación de Dispositivo/Víctima. RF-010: Identificación de Unidad de Respuesta Cercana.
CUS-06	Despachar Alerta a Unidad	Servidor Central	RF-011: Despacho Automatizado de Alerta
CUS-07	Iniciar Sesión App	Patrullero	RF-019: Autenticación de Patrullero

CUS-08	Visualizar Alerta y Gestionar Estado	Patrullero	RF-014: Visualización de Alertas en Mapa. RF-015: Visualización de Perfil de Víctima. RF-016: Gestión del Estado de la Alerta.
CUS-09	Actualizar Ubicación de Patrulla	Patrullero	RF-017: Actualización de Ubicación de Patrulla (App Patrulla) RF-023: Actualización de Ubicación de Patrulla.
CUS-10	Iniciar Sesión Dashboard	Operador, Administrad or	RF-020: Autenticación para Dashboard.
CUS-11	Monitorear Alertas en la Central	Operador, Administrad or	RF-018: Interfaz de Usuario para Central de Monitoreo.
CUS-12	Ver Ubicación de Patrullas	Operador, Administrad or	RF-018: Interfaz de Usuario para Central de Monitoreo.
CUS-13	Ver Detalles de Alerta	Patrullero, Operador, Administrad or	RF-015: Visualización de Perfil de Víctima.
CUS-14	Gestionar Usuarios y Roles	Administrad or del Sistema	RF-021: Gestión de Usuarios y Roles.
CUS-15	Registrar Dispositivo/Víctima	Operador, Administrad or	RF-022: Registro de Dispositivo y Víctima.

2.3. Requerimientos Funcionales

ID	Nombre del Requisito	Descripción de Requisito	Prioridad
RF-001	Gestión de Energía de Dispositivo	anaraía utilizanda madaa da baia	Alta
RF-002	Activación y Captura de Ubicación GPS	El dispositivo autónomo debe activar el módulo GPS bajo demanda (tras una pulsación) para adquirir las coordenadas geográficas precisas de la víctima.	Alta
RF-003	Compilación y Preparación de Datos de Alerta	El firmware debe compilar los datos de alerta, incluyendo el ID único del dispositivo, las coordenadas GPS obtenidas y el nivel actual de la batería, en un formato apto para transmisión LoRaWAN.	Alta
RF-004	Transmisión LoRaWAN de Alerta	El dispositivo autónomo debe transmitir de forma robusta y segura el paquete de datos de alerta a través del módulo LoRaWAN hacia la red LoRaWAN (The Things Stack).	Alta

RF-005	Indicador LED de Confirmación	El dispositivo autónomo debe activar un LED de confirmación para proporcionar retroalimentación visual al usuario sobre el envío exitoso de la alerta.	Alta
RF-006	Recepción y Procesamiento de Datos LoRaWAN (TTS)	El servidor de red The Things Stack (TTS) debe recibir, desduplicar y desencriptar los paquetes de datos provenientes de los dispositivos LoRaWAN.	Alta
RF-007	Reenvío de Alertas a Servidor Central (TTS)	The Things Stack debe reenviar los datos de alerta procesados al Servidor Central de Monitoreo mediante integraciones configuradas (Webhooks o MQTT) en tiempo real.	Alta
RF-008	Recepción y Decodificación de Alertas (SCM)	El Servidor Central de Monitoreo debe ser capaz de recibir y decodificar los datos de alerta enviados por The Things Stack.	Alta
RF-009	Correlación de Dispositivo/Víctim a	El Servidor Central de Monitoreo debe consultar la base de datos Firestore para correlacionar el ID del dispositivo de alerta con el perfil completo de la víctima asociada.	Alta
RF-010	Identificación de Unidad de Respuesta Cercana	El Servidor Central de Monitoreo debe identificar la unidad policial o de serenazgo más cercana a la ubicación de la alerta activa, basándose en las	Alta

		posiciones actualizadas de las patrullas en Firestore.	
RF-011	Despacho Automatizado de Alerta	El Servidor Central de Monitoreo debe enviar de forma automatizada la alerta digital, incluyendo los datos de la víctima y su ubicación, a la Aplicación Cliente de la unidad de respuesta identificada.	Media
RF-012	Almacenamiento y Gestión de Datos (Firestore)	El sistema debe utilizar Firestore para almacenar de forma segura los perfiles de víctimas, los registros históricos de alertas y las ubicaciones en tiempo real de las unidades de respuesta.	Alta
RF-013	Sincronización de Datos en Tiempo Real	Firestore debe sincronizar en tiempo real las ubicaciones de las patrullas y el estado de las alertas entre el Servidor Central y las Aplicaciones Cliente, garantizando información actualizada para todos los usuarios.	Alta
RF-014	Visualización de Alertas en Mapa (App Patrulla)	La Aplicación Cliente (móvil/tablet) para las unidades de respuesta debe mostrar interactivamente la ubicación de las alertas activas, la víctima y la propia patrulla en un mapa (API Google Maps).	Alta
RF-015	Visualización de Perfil de Víctima (App Patrulla)	La Aplicación Cliente debe permitir al personal de la patrulla visualizar el perfil	Media

		completo de la víctima asociada a una alerta.	
RF-016	Gestión del Estado de la Alerta (App Patrulla)	La Aplicación Cliente debe permitir a la unidad de respuesta actualizar el estado de la emergencia (ej. "aceptar", "en ruta", "resuelto").	Alta
RF-017	Actualización de Ubicación de Patrulla (App Patrulla)	La Aplicación Cliente debe enviar la ubicación actual de la patrulla al Servidor Central de Monitoreo cada 5 segundos para su registro y análisis de proximidad.	Alta
RF-018	Interfaz de Usuario para Central de Monitoreo (Dashboard)	El Servidor Central de Monitoreo debe proporcionar una interfaz de usuario web (dashboard) para la visualización y gestión global de alertas y unidades por parte del personal de la central.	Alta
RF-019	Autenticación de Patrullero	El sistema debe requerir que el patrullero inicie sesión en la aplicación móvil con credenciales válidas antes de acceder a las funcionalidades de gestión de alertas.	Alta
RF-020	Autenticación para Dashboard	El sistema debe requerir que el operador y el administrador inicien sesión en la interfaz web (dashboard) para acceder a las funciones de monitoreo y administración.	Alta

RF-021	Gestión de Usuarios y Roles	El administrador del sistema debe poder crear, editar, eliminar y asignar roles (patrullero, operador, administrador) a los usuarios del sistema.	Alta
RF-022	Registro de Dispositivo y Víctima	El operador o el administrador deben poder registrar un nuevo dispositivo de alerta, asociándolo con el perfil de una víctima específica en la base de datos del sistema.	Alta
RF-023	Actualización de Ubicación de Patrulla	La aplicación del patrullero debe enviar automáticamente la ubicación actual de la unidad al servidor central en intervalos regulares para su monitoreo y correlación con las alertas.	Alta
RF-024	Reenvío de Alerta del Servidor LoRaWAN	El Servidor LoRaWAN (The Thing Stack) debe estar configurado para reenviar los datos de alerta, de forma inmediata y automática, al Servidor Central de Monitoreo.	Alta

2.4. Requerimientos No Funcionales – Atributos de Calidad

ID Nombre del Requerimient o	Descripción	Prioridad
------------------------------------	-------------	-----------

	RNF0 01	Disponibilidad del Sistema	El Servidor Central de Monitoreo, la base de datos Firestore y las integraciones con The Things Stack deben estar operativos y accesibles (24/7).	Alta
	RNF0 02	Resistencia a Fallos de Transmisión (Dispositivo)	El firmware del dispositivo autónomo debe implementar mecanismos, como por ejemplo: reintentos de envío para asegurar que, ante una pérdida momentánea de señal LoRaWAN, la alerta se transmite exitosamente tan pronto como la red esté disponible.	Alta
Fiabilidad	RNF0 03	Tolerancia a Fallos de Componentes (Dispositivo)	El dispositivo debe estar diseñado con componentes robustos para resistir condiciones ambientales moderadas (temperatura, humedad) propias del uso diario en exteriores, sin que esto comprometa su funcionalidad principal.	Media
Tiabilidad	RNF0 04	Manejo de Errores (Sistema)	El Servidor Central de Monitoreo y las aplicaciones cliente deben manejar de forma elegante y robusta los errores, por ejemplo: GPS no disponible, pérdida de conexión a Internet, datos inválidos.	Alta
	RNF0	Latencia de	El tiempo transcurrido desde la	Crítica

	05	Alerta	activación del botón en el dispositivo hasta la notificación de la alerta en la Aplicación Cliente del patrullero y en el Dashboard del operador no debe exceder los 15 segundos. Esto es crucial para la inmediatez de la respuesta.	
Rendimiento	RNF0 06	Frecuencia de Actualización de Ubicación de Patrullas	La Aplicación Cliente de los patrulleros debe actualizar su ubicación en la base de datos con una frecuencia de cada 10 segundos para permitir una identificación precisa de la unidad más cercana.	Alta
	RNF0 07	Capacidad de Procesamiento	El Servidor Central de Monitoreo debe ser capaz de procesar y despachar simultáneamente al menos 10 alertas por minuto sin degradación significativa del rendimiento. (Este valor puede ajustarse en base a la expectativa de incidentes).	Media
	RNF0 08	Simplicidad de Activación (Dispositivo)	La activación de la alerta en el dispositivo autónomo debe realizarse mediante una única acción de pulsar un botón, sin requerir secuencias complejas, pantallas o habilidades técnicas previas por parte del usuario vulnerable.	Crítica

Usabilidad	RNF0 09	Claridad de Interfaz (Aplicaciones)	La Aplicación Cliente del patrullero y el Dashboard de la Central deben presentar la información de manera clara, concisa e intuitiva, con elementos visuales fáciles de interpretar (mapas, iconos, estados de alerta).	Alta
	RNF0 10	Operación Táctil Intuitiva (Aplicaciones)	La Aplicación Cliente debe ser totalmente funcional y fácil de operar mediante gestos táctiles en dispositivos móviles, incluso en condiciones de estrés.	Alta
	RNF0 11	Autenticación de Dispositivos	Cada dispositivo autónomo debe autenticarse de forma segura en la red LoRaWAN (TTS) utilizando credenciales únicas (DevEUI, AppKey, NwkKey) para asegurar que solo dispositivos autorizados puedan transmitir alertas.	Alta
Seguridad	RNF0 12	Acceso Controlado a la Información	El Servidor Central de Monitoreo (SCM) y las aplicaciones deben implementar un sistema de autenticación y autorización basado en roles, como: patrullero, operador, para asegurar que solo el personal autorizado acceda a la información pertinente (perfiles de víctimas, ubicación de patrullas, gestión de alertas).	Alta

	RNF0 13	Comunicación Segura	Todas las comunicaciones entre los componentes del sistema (TTS a SCM, SCM a Aplicaciones Cliente) deben realizarse a través de canales seguros, como: HTTPS, MQTT sobre TL para proteger la integridad y confidencialidad de los datos transmitidos.	Alta
Mantenibilid	RNF0 14	Autonomía del Dispositivo	El dispositivo autónomo debe tener una autonomía de batería de al menos 6 meses aproximadamente en modo de reposo o soportar un mínimo de 100 activaciones de emergencia, para reducir la frecuencia de recarga y asegurar su disponibilidad a largo plazo.	Crítica
ad y Escalabilida d	RNF0 15	_	El código fuente del firmware (ESP-IDF), el backend (Python/Node.js) y las aplicaciones cliente debe estar bien estructurado, modularizado y documentado para facilitar su futura modificación, mantenimiento y extensión.	Media

2.5. Restricciones

• Tecnológicas:

Existen restricciones impuestas por la tecnología seleccionada. El sistema depende de la cobertura y capacidad de la red LoRaWAN en la provincia de Tacna, así como

de la compatibilidad entre los dispositivos, gateways y las plataformas de backend. La autonomía y capacidad de procesamiento del dispositivo autónomo están limitadas por las características del hardware (memoria, batería, precisión del GPS). Asimismo, se deben considerar las limitaciones de las APIs externas (como Google Maps), la escalabilidad de FireBase.

Seguridad y Privacidad:

Debido a la naturaleza sensible de la información gestionada —datos personales de víctimas, ubicaciones en tiempo real y registros de emergencias—, el sistema debe cumplir con estrictos requisitos de seguridad y privacidad. Esto implica implementar mecanismos de autenticación robustos, cifrado de datos en tránsito y en reposo, control de acceso basado en roles y buenas prácticas de protección de información personal según la legislación peruana vigente. Cualquier vulnerabilidad en estos aspectos podría comprometer la confidencialidad e integridad de los datos y la confianza de los usuarios en el sistema.

3. Representación de la arquitectura del sistema

3.1. Vista de Caso de uso

3.1.1. Diagramas de Casos de uso

https://drive.google.com/file/d/1wRhitCffQwXFgBCiw5y32uQml-79trWV/view?usp=sharing

3.2. Vista Lógica

3.2.1. Diagrama de Subsistemas (paquetes)

https://drive.google.com/file/d/1WIPatHQCFipPHUgErLxDde5q0Vqii72j/view?usp=sharing

3.2.2. Diagrama de Secuencia (vista de diseño)

CUS001 - Activar Alerta de Emergencia

CUS002 - Obtener Ubicación GPS

microcontrolador:Microcontrolador ref include CUS001 - Activar Alerta de Emergencia activar_gps() buscar_satelites() El módulo GPS triangula la posición. alt [Posición obtenida a tiempo] retornar_coordenadas(latitud, longitud) [Sí no se obtiene la posición en el tiempo límite] retornar_ultima_posicion() Marcar la posición como aproximada microcontrolador:Microcontrolador gps:ModuloGPS

CUS003 - Gestionar Batería

CUS004 - Recibir y Reenviar Alerta

CUS004: Recibir y Reenviar Alerta

CUS005 - Procesar Alerta en Servidor

CUS005: Procesar Alerta en Servidor

CUS006 - Despachar Alerta a Unidad

CUS006: Despachar Alerta a Unidad

CUS007 - Iniciar Sesión App

CUS007: Iniciar Sesión App

CUS008 - Visualizar Alerta y Gestionar Estado

CUS009 - Actualizar Ubicación de Patrulla

CUS010 - Iniciar Sesión Dashboard

1 ingresar_credenciales(usuario, contrasena)

[Credenciales correctas]

8 redirigir_a_pagina_principal()

10 mostrar_mensaje_error()

[Credenciales incorrectas]

Dashboard Web Servidor Central Base de Datos asena) 2 solicitar_autenticacion(usuario, contrasena) 4 retorno_usuario_valido_o_error() 5 generar_token_seguro()

Servidor Central

Base de Datos

CUS010: Iniciar Sesión Dashboard

9 respuesta_fallida(error)

CUS011 - Monitorear Alertas en la Central

Dashboard Web

CUS012 - Ver Ubicación de Patrullas

CUS012: Ver Ubicación de Patrullas

CUS013 - Ver Detalles de Alerta

Operador

CUS013: Ver Detalles (Operador)

Patrullero

CUS013: Ver Detalles (Patrullero)

CUS014 - Gestionar Usuarios y Roles

CUS014: Gestionar Usuarios y Roles

CUS015 - Registrar Dispositivo/Víctima

CUS015: Registrar Dispositivo/Víctima

3.2.3. Diagrama de Objetos

CUS001 - Activar Alerta de Emergencia

CUS002 - Obtener Ubicación GPS

CUS002: Obtener Ubicación GPS

CUS003 - Gestionar Batería

CUS003: Gestionar Batería

CUS004 - Recibir y Reenviar Alerta

CUS004: Recibir y Reenviar Alerta

CUS005 - Procesar Alerta en Servidor

Diagrama de Objetos - CUS005: Procesar Alerta en Servidor paquete:PaqueteDeDatos servidor Central: Servidor CentralbaseDeDatos:BaseDeDatos id = "ID_DISPOSITIVO" coordenadas = "LAT, LON" bateria = "0%" **C** servidorCentral estado = "Procesando" puerto = "8080" estado = "Conectada" tablas = "Victimas, Patrullas, Alertas' ▶ decodifica ▼ consulta_y_actualiza **▲** crea alerta:Alerta patrulla:Patrulla victima:Victima **C** alerta **C** paquete (C) base De Datos id = "ALERTA 001" id = "VICTIMA_01" nombre = "Juan Perez" id = "PATRULLA_03" ubicacion = "LAT, LON" estado = "Pendiente" hora = "2025-08-27T10:00:00Z" , contiene contiene **C** victima **C** patrulla

CUS006 - Despachar Alerta a Unidad

CUS006: Despachar Alerta a Unidad alerta:Alerta servidorCentral:ServidorCentral patrulla:Patrulla estado = "Listo para Despachar" version = "1.0" **C** servidorCentral id = "ALERTA_001" id = "PATRULLA_03" estado = "Asignada" idPatrulla = "PATRULLA_03" disponible = "true" lee datos lee id ▼ notifica actualiza appMovil:AplicacionMovilPatrullero dashboard:DashboardOperador C alerta **C** patrulla **C** appMovil **C** dashboard estado = "En linea" version = "1.1" estado = "Monitoreando" sesion = "activa"

CUS007 - Iniciar Sesión App

CUS008 - Visualizar Alerta y Gestionar Estado

CUS008: Visualizar Alerta y Gestionar Estado

CUS009 - Actualizar Ubicación de Patrulla

CUS010 - Iniciar Sesión Dashboard

CUS010: Iniciar Sesión Dashboard

CUS011 - Monitorear Alertas en la Central

CUS011: Monitorear Alertas en la Central

CUS012 - Ver Ubicación de Patrullas

CUS012: Ver Ubicación de Patrullas

CUS013 - Ver Detalles de Alerta

CUS014 - Gestionar Usuarios y Roles

CUS014: Gestionar Usuarios y Roles

CUS015 - Registrar Dispositivo/Víctima

CUS015: Registrar Dispositivo/Víctima

3.2.4. Diagrama de Clases

https://drive.google.com/file/d/1zb_EjA5_ykg9YMr7FKTM9ll_HPMgcr0C/view?usp=sharing

3.2.5. Diagrama de Base de datos (relacional o no relacional)

Diagrama de Base de Datos No Relacional (Firestore) - Sistema de Alerta LoRaWAN

3.3. Vista de Implementación

3.3.1. Diagrama de arquitectura del sistema (Diagrama de componentes)

https://drive.google.com/file/d/1wnlvsEkHclv984ql_HJhuHNSZZiMt2y6/view?usp=sharing

3.4. Vista de procesos

3.4.1. Diagrama de Procesos del sistema (diagrama de actividad)

3.5. Vista de Despliegue (vista física)

3.5.1. Diagrama de despliegue

https://drive.google.com/file/d/1f5_Vn0NR-CGB4JAm58xlfFNsxgm-Cxnr/view?usp=s haring

4. Atributos de calidad de software

El sistema de alerta ha sido diseñado considerando diversos atributos de calidad de o implica alta disponibilidad de los servicios backend y de la base de datos, así como resistencia a fallos en la transmisión LoRaWAN y tolerancia a errores software, los cuales se reflejan directamente en sus requerimientos no funcionales. Estos atributos son fundamentales para garantizar que el sistema no solo cumpla con su propósito funcional, sino que también sea confiable, eficiente, seguro y sostenible a largo plazo.

Fiabilidad:

El sistema debe garantizar un funcionamiento continuo y sin fallos, especialmente en situaciones de emergencia. Están los dispositivos. La fiabilidad se asegura mediante

mecanismos de reintentos automáticos, monitoreo del estado del sistema y la robustez de los componentes electrónicos seleccionados para el dispositivo autónomo.

Rendimiento:

Uno de los principales atributos de calidad es la capacidad del sistema para transmitir y procesar alertas en tiempo real, minimizando la latencia entre la activación del botón y la notificación a las unidades de respuesta. Se establece como meta que la alerta se procese y despacha en menos de 15 segundos, y que las ubicaciones de las patrullas se actualicen frecuentemente para una respuesta óptima. Además, el sistema debe soportar la atención de múltiples alertas simultáneamente sin degradar el rendimiento.

Usabilidad:

El sistema está orientado a usuarios en situaciones de alto estrés y vulnerabilidad, por lo que la interfaz del dispositivo debe ser simple e intuitiva. La activación de la alerta se da mediante una única pulsación, y la confirmación visual (LED) asegura al usuario que su solicitud fue enviada. Las aplicaciones móviles y el dashboard web presentan interfaces claras, con mapas e iconos fácilmente interpretables, facilitando la toma de decisiones y la gestión eficiente de emergencias.

Seguridad y Privacidad:

El sistema maneja información sensible, como datos personales y ubicaciones. Por ello, se han implementado medidas de seguridad como la autenticación de dispositivos, el control de acceso basado en roles y el cifrado de datos en tránsito y en reposo. Esto garantiza que solo personal autorizado pueda acceder a la información, cumpliendo con la legislación vigente sobre protección de datos personales en Perú.

Mantenibilidad y Escalabilidad:

La arquitectura modular del sistema, junto con una clara estructuración y documentación del código, facilita su mantenimiento y la incorporación de nuevas funcionalidades a futuro. Además, el uso de tecnologías escalables en la nube permite que el sistema pueda crecer en número de usuarios y dispositivos sin afectar su desempeño, adaptándose a nuevas necesidades o a un despliegue en mayor escala.

Portabilidad:

El sistema ha sido diseñado para ser portable y adaptable a diferentes entornos. La elección de tecnologías abiertas y multiplataforma (como Flutter para la aplicación móvil y React para el dashboard web) facilita su implementación en distintos tipos de

dispositivos y sistemas operativos, asegurando una experiencia homogénea para todos
los usuarios.