Package 'nipnTK'

April 7, 2024

Type PackageTitle National Information Platforms for Nutrition Anthropometric Data Toolkit

Version 0.2.0

Description An implementation of the National Information Platforms for Nutrition or NiPN's analytic methods for assessing quality of anthropometric datasets that include measurements of weight, height or length, middle upper arm circumference, sex and age. The focus is on anthropometric status but many of the presented methods could be applied to other variables.

License GPL-3

Depends R (>= 2.10)

Imports stats, graphics, withr

Suggests testthat, knitr, rmarkdown, tufte, spelling, covr, kableExtra

Encoding UTF-8

Language en-GB

LazyData true

RoxygenNote 7.3.1

URL https://nutriverse.io/nipnTK/,
https://github.com/nutriverse/nipnTK

 $\pmb{BugReports} \ \, \texttt{https://github.com/nutriverse/nipnTK/issues}$

VignetteBuilder knitr **NeedsCompilation** no

Author Mark Myatt [aut] (https://orcid.org/0000-0003-1119-1474),

Ernest Guevarra [aut, cre] (https://orcid.org/0000-0002-4887-4415)

Maintainer Ernest Guevarra <ernest@guevarra.io>

Repository CRAN

Date/Publication 2024-04-06 23:42:58 UTC

31

Index

R topics documented:

ageChildren	3
ageHeaping	4
ageRatioTest	5
ah.ex01	6
as.ex01	6
as.ex02	7
boxText	7
digitPreference	8
dist.ex01	9
dp.ex01	10
dp.ex02	10
dp.ex03	11
flag.ex01	12
flag.ex02	12
flag.ex03	13
fullTable	13
greensIndex	14
histNormal	15
national.SMART	16
outliersMD	17
outliersUV	18
plot.ageChildren	18
plot.ageHeaping	19
plot.digitPreference	20
print.ageChildren	20
print.ageHeaping	21
print.ageRatioTest	22
print.digitPreference	22
print.greensIndex	23
print.sexRatioTest	24
print.skewKurt	24
pyramid.plot	25
qqNormalPlot	26
rl.ex01	27
sexRatioTest	27
skewKurt	28
sp.ex01	29
sp.ex02	29

ageChildren 3

	ageChildren	Goodness of fit to an expected model-based age distribution
--	-------------	---

Description

A simple model-based method for calculating expected numbers using exponential decay in a population in which births and deaths balance each other and with a 1:1 male to female sex ratio. This function is built specifically to test goodness of fit for a sample of children aged 6-59 months old grouped into four 1 year age groups and 1 half year age group (6 to less than 18 months, 18 to less than 30 months, 30 to less than 42 months, 42 to less than 54 months, and 54 months to less than 60 months).

Usage

```
ageChildren(age, u5mr = 1)
```

Arguments

age	A vector of ages. Should either be in whole months (integer) or in calculated decimal months (numeric).
u5mr	A numeric value for under five years mortality rate expressed as deaths / 10,000 persons / day. Default is set to 1.

Value

A list of class "ageChildren" with:

Variable	Description
u5mr	Under five years mortality rate as deaths / 10000 persons / day
observed	Table of counts in each (year-centred) age group
expected	Table of expected counts in each (year-centred) age group
<i>X</i> 2	Chi-squared test statistic
df	Degrees of freedom for Chi-squared test
p	p-value for Chi-squared test

```
# Chi-Squared test for age of children in dp.ex02 sample dataset using an
# u5mr of 1 / 10,000 / day.
svy <- dp.ex02
ac <- ageChildren(svy$age, u5mr = 1)
ac

# Apply function to each sex separately
# Males
acM <- ageChildren(svy$age[svy$sex == 1], u5mr = 1)
acM</pre>
```

4 ageHeaping

```
# Females
acF <- ageChildren(svy$age[svy$sex == 2], u5mr = 1)
# Simplified call to function by sex
by(svy$age, svy$sex, ageChildren, u5mr = 1)</pre>
```

ageHeaping

Age-heaping analysis

Description

Age heaping is the tendency to report children's ages to the nearest year or adults' ages to the nearest multiple of five or ten years. Age heaping is very common. This is a major reason why data from nutritional anthropometry surveys is often analysed and reported using broad age groups.

Usage

```
ageHeaping(x, divisor = 12)
```

Arguments

A vector of ages. Should either be in whole months (integer) or in calculated decimal months (numeric).
 Divisor (usually 5, 6, 10, or 12); default is 12

Value

A list of class "ageHeaping" with:

Variable	Description
<i>X</i> 2	Chi-squared test statistic
df	Degrees of freedom or Chi-squared test
p	p-value for Chi-squared test
tab	Table of remainders (for x \%\% divisor)
pct	Table of proportions (\%) of remainders for x \%\% divisor)

```
# Test for age heaping using SMART survey data in Kabul, Afghanistan (dp.ex02)
# using a divisor of 12
svy <- dp.ex02
ah12 <- ageHeaping(svy$age)
ah12
# Test for age heaping using SMART survey data in Kabul, Afthanistan (dp.ex02)
# using a divisor of 6</pre>
```

ageRatioTest 5

```
ah6 <- ageHeaping(svy$age, divisor = 6)
ah6</pre>
```

Description

Age ratio test is an age-related test of survey and data quality. In this test, the ratio of the number of children aged from 6 to 29 months to the number of children aged from 30 to 59 months is calculated. This ratio is then compared to an expected ratio (usually set at 0.85). The difference of the observed ratio to the expected ratio is then compared statistically using Chi-squared test.

Usage

```
ageRatioTest(x, ratio = 0.85)
```

Arguments

X	A vector of ages. Should either be in whole months (integer) or in calculated
	decimal months (numeric).
ratio	Expected age ratio. Default is 0.85.

Value

A lit of class "ageRatioTest" with:

Variable	Description
expectedR	Expected sex ratio
expectedP	Expected proportion aged 6:29 months
observedR	Observed sex ratio
observedP	Observed proportion aged 6:29 months
X2	Chi-squared test statistic
df	Degrees of freedom for Chi-squared test
p	p-value for Chi-squared test

```
# Age-ratio test on survey dataset from Kabul, Afghanistan (`dp.ex02`)
# with an age ratio of 0.85
svy <- dp.ex02
ageRatioTest(svy$age, ratio = 0.85)
# The age ratio test applied to data for each sex separately
by(svy$age, svy$sex, ageRatioTest, ratio = 0.85)</pre>
```

6 as.ex01

ah.ex01

Example dataset for age heaping function

Description

Anthropometric data from a Rapid Assessment Method for Older People (RAM-OP) survey in the Dadaab refugee camp in Garissa, Kenya. This is a survey of people aged sixty years and older.

Usage

ah.ex01

Format

A data frame with 593 observations and 10 variables

Variable	Description
psu	Primary sampling unit
camp	Camp name code
block	Block code
age	Age (years)
sex	Sex
weight	Weight (kg)
height	Height (cm)
demispan	Demispan (cm)
тиас	Mid-upper arm circumference (cm)
oedema	Oedema

Source

Data courtesy of HelpAge International

as.ex01

Example dataset for age and sex distributions function

Description

Data taken from household rosters collected as part of a household survey in Tanzania.

Usage

as.ex01

Format

A data frame of 8736 observations and 2 variables

boxText 7

Variable Description

age Age (years)

sex Sex (1 = Male / 2 = Female)

as.ex02

Example dataset for age and sex distributions function

Description

Census data of Tanzania taken from the WolframlAlpha knowledge engine.

Usage

as.ex02

Format

A data frame with 20 observations and 4 variables

Description
Age group
Total male population
Total female population
Total population

Source

http://www.wolframalpha.com/input/?i=Tanzania+age+distribution

boxText

Plot text in a coloured bounding box.

Description

Plot text in a coloured bounding box.

Usage

```
boxText(
   x,
   y,
   labels,
   cex = 0.75,
```

8 digitPreference

```
col = "white",
border = FALSE,
lwd = 0.5,
pad = TRUE
)
```

Arguments

x, y	Co-ordinates of text that is to be plotted
labels	Text to be plotted
cex	Character expansion
col	Background colour
border	Border colour
lwd	Border width
pad	Add padding to (L) and (R) ends of bounding box

Examples

digitPreference

Digit preference test

Description

Digit preference is the observation that the final number in a measurement occurs with a greater frequency that is expected by chance. This can occur because of rounding, the practice of increasing or decreasing the value in a measurement to the nearest whole or half unit, or because data are made up. The digitPreference() function assesses the level by which digit preference exists in a given dataset using a digit preference score (DPS).

Usage

```
digitPreference(x, digits = 1, values = 0:9)
```

dist.ex01

Arguments

X	Numeric vector of measurements
digits	Number of decimal places in x. Using digits = 1 (e.g.) allows 105 to be treated as 105.0
values	A vector of possible values for the final digit (default = 0.9)

Details

DPS definition from:

Kari Kuulasmaa K, Hense HW, Tolonen H (for the WHO MONICA Project), Quality Assessment of Data on Blood Pressure in the WHO MONICA Project, WHO MONICA Project e-publications No. 9, WHO, Geneva, May 1998 available from https://www.thl.fi/publications/monica/bp/bpqa.htm

Value

A list of class "digitPreference" with:

Variable	Description
dps	Digit Preference Score (DPS)
tab	Table of final digit counts
pct	Table of proportions (\%) of final digit counts

Examples

```
# Digit preference test applied to anthropometric data from a single state
# from a DHS survey in a West African country
svy <- dp.ex01
digitPreference(svy$wt, digits = 1)</pre>
```

dist.ex01

Example dataset for distributions of variables and indices

Description

Anthropometric data from a SMART survey in Kabul, Afghanistan.

Usage

dist.ex01

Format

A data frame with 873 observations and 11 variables

10 dp.ex02

Variable	Description
psu	Primary sampling unit
age	Age of child (months)
sex	Gender of child
weight	Weight of child (kgs)
height	Height of child (cm)
тиас	Mid-upper arm circumference (mm)
oedema	Presence or absence of oedema
haz	Height-for-age z-score
waz	Weight-for-age z-score
whz	Weight-for-height z-score
flag	Data quality flag

dp.ex01

Example dataset for digit preference function

Description

Anthropometric data from a single state from a Demographic and Health Survey (DHS) of a West African country.

Usage

dp.ex01

Format

A data frame with 796 observations and 6 variables

Variable	Description
psu	Primary sampling unit
age	Age (months)
sex	Gender
wt	Weight (kg)
ht	height (cm)
oedema	Presence or absence of oedema

dp.ex02

Example dataset for digit preference function

dp.ex03

Description

Anthropometric data from a SMART survey in Kabul, Afghanistan in a comma-separated-value (CSV) file format. This is a survey of children aged 6-59 months old.

Usage

dp.ex02

Format

A data frame with 873 observations and 7 variables

Variable	Description
psu	Primary sampling unit
age	Age of child (months)
sex	Gender of child
weight	Weight of child (kgs)
height	Height of child (cm)
тиас	Mid-upper arm circumference (mm)
oedema	Presence or absence of oedema

dp.ex03

Example dataset for digit preference

Description

Anthropometric data for a sample of children living in a refugee camp in a West African country.

Usage

dp.ex03

Format

A data frame with 374 observations and 6 variables

variable	Description
age	Age (months)
sex	Gender $(1 = Male / 2 = Female)$
weight	Weight (kg)
height	Height (cm)
тиас	Mid-upper arm circumference (mm)
oedema	Presence or absence of oedema

flag.ex02

flag.ex01

Example dataset for identifying outliers using flags

Description

Anthropometric data from a SMART survey in Sudan.

Usage

flag.ex01

Format

A data frame with 786 observations and 11 variables

Description
Primary sampling unit
Child ID
Age (months)
Gender $(1 = Male / 2 = Female)$
Weight (kg)
Height (cm)
Mid-upper arm circumference (mm)
Presence or absence of oedema
Height-for-age z-score
Weight-for-age z-score
Weight-for-height z-score

flag.ex02

Example dataset for identifying outliers using flags

Description

Anthropometric data from a survey of children 11 years or older attending school in Ethiopia.

Usage

flag.ex02

Format

A data.frame with 973 observations and 7 variables.

Variable Description

fullTable 13

school School ID

sex Gender (1 = Male / 2 = Female)

ageMonthsAge (months)weightWeight (kg)heightHeight (cm)

haz Height-for-age z-score

baz Body mass index (BMI)-for-age z-score

flag.ex03

Example dataset for identifying outliers using flags

Description

Anthropometric data from a national survey in Nigeria.

Usage

flag.ex03

Format

A data frame with 18330 observations and 10 variables

Variable	Description
psu	Primary sampling unit
region	Region code
state	State
age	Age (months)
sex	Gender $(1 = Male / 2 = Female)$
weight	Weight (kg)
height	Height (cm)
haz	Height-for-age z-score
waz	Weight-for-age z-score
whz	Weight-for-height z-score

fullTable

Fill out a one-dimensional table to include a specified range of values

Description

Fill out a one-dimensional table to include a specified range of values

14 greensIndex

Usage

```
fullTable(x, values = min(x, na.rm = TRUE):max(x, na.rm = TRUE))
```

Arguments

x A vector to tabulate

values A vector of values to be included in a table. Default is: min(x, na.rm = TRUE): max(x, na.rm = TRUE)

na.rm = TRUE)

Value

A table object including zero cells

Examples

```
# Generate some artificial data and then apply `fullTable()`
set.seed(0)
finalDigits <- sample(x = 0:9, size = 1000, replace = TRUE)
fullTable(finalDigits)</pre>
```

greensIndex

Green's Index of Dispersion

Description

Implementation of the Green's Index of Dispersion by bootstrap. The sampling distribution of the Green's Index is not well described hence bootstrapping is used to test whether the distribution of cases across primary sampling units is random.

Usage

```
greensIndex(data, psu, case, replicates = 999)
```

Arguments

data Survey dataset (as an R data.frame)

psu Name of variable holding PSU (cluster) data as a character vector of length = 1

(e.g. psu)

case Name of variable holding case status as a character vector of length = 1 (e.g.

GAM). The function assumes that case status is coded with 1 = case

replicates Number of bootstrap replicates (default is 9999)

Details

The value of Green's Index can range between -1/(n-1) for maximum uniformity (specific to the dataset) and one for maximum clumping. The interpretation of Green's Index is straightforward:

histNormal 15

Green's Index Value	Interpretation
Green's Index close to 0	Random
Green's Index greater than 0	Clumped (i.e. more clumped than random)
Green's Index less than 0	Uniform (i.e. more uniform than random)

Value

A list of class GI with names:

Variable	Description
GI	Estimate of Green's index
LCL	95\% LCL for GI
UCL	95\% UCL for GI
minGI	Minimum possible GI (maximum uniformity) for the data
p	p-value (H0: = Random distribution of cases across PSUs)

Examples

histNormal Hist

Histogram with normal curve superimposed to help with "by-eye" assessments of normality of distribution

Description

Histogram with normal curve superimposed to help with "by-eye" assessments of normality of distribution

16 national.SMART

Usage

```
histNormal(
    x,
    xlab = deparse(substitute(x)),
    ylab = "Frequency",
    main = deparse(substitute(x)),
    breaks = "Sturges",
    ylim = NULL
)
```

Arguments

```
x A numeric vector

xlab x-axis label

ylab y-axis label

main Plot title

breaks Passed to hist() function (?hist for details)

ylim y-axis limits
```

Examples

```
# histNormal() with data from a SMART survey in Kabul, Afghanistan
# (dist.ex01)
svy <- dist.ex01
histNormal(svy$muac)
histNormal(svy$haz)
histNormal(svy$waz)
histNormal(svy$whz)</pre>
```

national.SMART

Add SMART flags to a stratified sample survey (e.g. MICS, DHS, national SMART)

Description

Add SMART flags to a stratified sample survey (e.g. MICS, DHS, national SMART)

Usage

```
national.SMART(x, strata, indices = c("haz", "whz", "waz"))
```

Arguments

x Survey dataset (as an R data.frame) with indices present

strata Name of column in x that defines the strata indices Names of columns in x containing indices

outliersMD 17

Value

A data.frame with same structure as x with a flagSMART column added. This column is coded using sums of powers of two

Examples

```
# Use the national.SMART() function to flag indices from a national
# SMART survey in Nigeria (flag.ex03)
svy <- flag.ex03
svyFlagged <- national.SMART(x = svy, strata = "state")

# Exclude records with flagging codes relevant to whz:
svyFlagged <- svyFlagged[!(svyFlagged$flagSMART %in% c(2, 3, 6, 7)), ]</pre>
```

outliersMD

Mahalanobis distance to detect bivariate outliers

Description

Mahalanobis distance to detect bivariate outliers

Usage

```
outliersMD(x, y, alpha = 0.001)
```

Arguments

x Numeric vectory Numeric vector

alpha Critical alpha value to detect an outlier (defaults to 0.001)

Value

A logical vector (TRUE for an outlier at p < alpha)

```
# Use outliersMD() to detect outliers in an anthropometric data from
# a SMART survey from the Democratic Republic of Congo (sp.ex01)
svy <- sp.ex01
svy[outliersMD(svy$height,svy$weight), ]</pre>
```

18 plot.ageChildren

outliersUV

IQR to detect univariate outliers

Description

IQR to detect univariate outliers

Usage

```
outliersUV(x, fence = 1.5)
```

Arguments

x Numeric vector

fence IQR multiplier (defaults to 1.5)

Value

A logical vector (TRUE for an outlier)

Examples

```
# Use outliersUV() to detect univariate outliers in an anthropometric
# dataset from a SMART survey from Angola (rl.ex01)
svy <- rl.ex01
svy[outliersUV(svy$muac), ]</pre>
```

plot.ageChildren

Plot helper function for ageChildren() function

Description

Plot helper function for ageChildren() function

Usage

```
## S3 method for class 'ageChildren'
plot(x, ...)
```

Arguments

x Object resulting from applying ageChildren() function

... Additional barplot() graphical parameters

plot.ageHeaping 19

Value

Bar plot comparing table of observed counts vs table of expected counts

Examples

```
# Plot Chi-Squared test for age of children in dp.ex02 sample dataset using
# an u5mr of 1 / 10,000 / day.
svy <- dp.ex02
ac <- ageChildren(svy$age, u5mr = 1)
plot(ac)</pre>
```

plot.ageHeaping

plot() helper functions for ageHeaping() functions

Description

```
plot() helper functions for ageHeaping() functions
```

Usage

```
## S3 method for class 'ageHeaping'
plot(x, main = "", xlab = "Remainder", ylab = "Frequency", cex = 0.75, ...)
```

Arguments

Х	Object resulting from applying the ageHeaping() function
main	Title of plot
xlab	x-axis label; default is Remainder
ylab	y-axis label; default is Frequency
cex	Character expansion (numeric); default is 0.75
	Additional plot() graphical parameters

Value

Barplot of frequency of remainders of age when divided by a specified divisor

```
# Plot age heaping test results on SMART survey data in Kabul, Afghanistan
# (dp.ex02) using a divisor of 12
svy <- dp.ex02
ah12 <- ageHeaping(svy$age)
plot(ah12)</pre>
```

20 print.ageChildren

```
plot.digitPreference plot() helper function for digitPreference() function
```

Description

```
plot() helper function for digitPreference() function
```

Usage

```
## S3 method for class 'digitPreference'
plot(x, main = "", xlab = "Final Digit", ylab = "Frequency", cex = 0.75, ...)
```

Arguments

Χ	Object resulting from applying the digitPreference() function.
main	Title of plot
xlab	x-axis label; default is "Final Digit"
ylab	y-axis label; default is "Frequency"
cex	Character expansion; default is 0.75
	Additional plot() parameters

Value

Plotted output of digitPreference() function comparing the frequencies of the various final digits

Examples

```
# Plot output of digit preference test applied to anthropometric data from a
# single state from a DHS survey in a West African country
svy <- dp.ex01
digitPreference(svy$wt, digits = 1)
plot(digitPreference(svy$wt, digits = 1))</pre>
```

```
\verb|print.ageChildren| print() \textit{ helper function for ageChildren() function}|
```

Description

```
print() helper function for ageChildren() function
```

Usage

```
## S3 method for class 'ageChildren'
print(x, ...)
```

print.ageHeaping 21

Arguments

. . .

```
Object resulting from applying ageChildren() function
Х
                  Additional print() arguments
```

Value

Printed output of ageChildren() function

Examples

```
# Print Chi-Squared test for age of children in dp.ex02 sample dataset using
# an u5mr of 1 / 10,000 / day.
svy <- dp.ex02
ac <- ageChildren(svy$age, u5mr = 1)</pre>
print(ac)
```

print.ageHeaping

print() helper functions for ageHeaping() functions

Description

```
print() helper functions for ageHeaping() functions
```

Usage

```
## S3 method for class 'ageHeaping'
print(x, ...)
```

Arguments

Object resulting from applying the ageHeaping() function Χ

Additional print() arguments

Value

Printed output of the ageHeaping() function

```
# Print age heaping test on SMART survey data in Kabul, Afghanistan (dp.ex02)
# using a divisor of 12
svy <- dp.ex02
ah12 <- ageHeaping(svy$age)</pre>
print(ah12)
```

22 print.digitPreference

Description

```
print() helper function for ageRatioTest() function
```

Usage

```
## S3 method for class 'ageRatioTest'
print(x, ...)
```

Arguments

- x Object resulting from applying ageRatioTest() function
- ... Additional print() arguments

Value

Printed output of ageRatioTest() function

Examples

```
# Print age-ratio test results for survey dataset from Kabul, Afghanistan
svy <- dp.ex02
print(ageRatioTest(svy$age, ratio = 0.85))</pre>
```

```
print.digitPreference print() helper function for digitPreference() function
```

Description

```
print() helper function for digitPreference() function
```

Usage

```
## S3 method for class 'digitPreference'
print(x, ...)
```

Arguments

- x Object resulting from applying the digitPreference() function.
- ... Additional print() parameters

print.greensIndex 23

Value

Printed output of digitPreference() function

Examples

```
# Print output of digit preference test applied to anthropometric data from a
#single state from a DHS survey in a West African country
svy <- dp.ex01
print(digitPreference(svy$wt, digits = 1))</pre>
```

print.greensIndex

print() helper function for print.greensIndex() function

Description

```
print() helper function for print.greensIndex() function
```

Usage

```
## S3 method for class 'greensIndex'
print(x, ...)
```

Arguments

x Object resulting from applying the greensIndex() function
... Additional print() parameters

Value

Printed output of greensIndex() function

```
# Apply Green's Index using anthropometric data from a SMART survey in Sudan
# (flag.ex01)
svy <- flag.ex01
svy$flag <- 0
svy$flag <- ifelse(!is.na(svy$haz) & (svy$haz < -6 | svy$haz > 6), svy$flag + 1, svy$flag)
svy$flag <- ifelse(!is.na(svy$whz) & (svy$whz < -5 | svy$whz > 5), svy$flag + 2, svy$flag)
svy$flag <- ifelse(!is.na(svy$waz) & (svy$waz < -6 | svy$waz > 5), svy$flag + 4, svy$flag)
svy <- svy[svy$flag == 0, ]
svy$stunted <- ifelse(svy$haz < -2, 1, 2)
gi <- greensIndex(data = svy, psu = "psu", case = "stunted")
print(gi)</pre>
```

24 print.skewKurt

Description

```
print() helper function for sexRatioTest() function
```

Usage

```
## S3 method for class 'sexRatioTest'
print(x, ...)
```

Arguments

x Output resulting from applying the sexRatioTest() function... Additional print() parameters

Value

Printed output of sexRatioTest() function

Examples

```
# Use sexRatioTest() on household roster data from a survey in Tanzania
# (as.ex01) and census data of Tanzania extracted from Wolfram|Alpha knowledge
# engine (as.ex02)
svy <- as.ex01
ref <- as.ex02
censusM <- sum(ref$Males)
censusF <- sum(ref$Females)
srt <- sexRatioTest(svy$sex, codes = c(1, 2), pop = c(censusM, censusF))
print(srt)</pre>
```

print.skewKurt

print() helper function for skewKurt() function

Description

```
print() helper function for skewKurt() function
```

Usage

```
## S3 method for class 'skewKurt'
print(x, ...)
```

pyramid.plot 25

Arguments

```
x Object resulting from applying the skewKurt() function
... Additional print() parameters
```

Value

Printed output of skewKurt() function

Examples

```
# Use skewKurt() on an anthropometric data from a SMART survey in
# Kabul, Afghanistan (dist.ex01)
svy <- dist.ex01
sk <- skewKurt(svy$muac)
print(sk)</pre>
```

pyramid.plot

Pyramid plot function for creating population pyramids.

Description

Pyramid plot function for creating population pyramids.

Usage

```
pyramid.plot(
    x,
    g,
    main = paste("Pyramid plot of", deparse(substitute(x)), "by", deparse(substitute(g))),
    xlab = paste(deparse(substitute(g)), "(", levels(as.factor(g))[1], "/",
        levels(as.factor(g))[2], ")"),
    ylab = deparse(substitute(x)),
    col = "white",
    ...
)
```

Arguments

```
    x Vector of ages (usually grouped)
    g Vector of groups (usually sex)
    main Plot title
    xlab x-axis label
    ylab y-axis label
```

26 qqNormalPlot

col

Colours for bars. Either a single colour (default is col = "white") for all bars, two colours (e.g. col = c("lightblue", "pink")) for left hand side bars and right hand side bars respectively, or many colours allocated on a checkerboard basis to each bar

... Other graphical parameters

Value

```
A table of x by g (invisible)
```

Examples

```
# Use pyramid.plot() on anthropometric data from a SMART survey in
# Kabul, Afghanistan (dp.ex02)
svy <- dp.ex02
pyramid.plot(svy$age, svy$sex)</pre>
```

qqNormalPlot

Normal quantile-quantile plot

Description

Normal quantile-quantile plot

Usage

```
qqNormalPlot(x)
```

Arguments

х

A numeric vector

```
# qqNormalPlot() with data from a SMART survey in Kabul, Afghanistan
# (dist.ex01)
svy <- dist.ex01
qqNormalPlot(svy$muac)
qqNormalPlot(svy$haz)
qqNormalPlot(svy$waz)
qqNormalPlot(svy$waz)</pre>
```

sexRatioTest 27

rl.ex01

Example dataset for checking ranges and legal values

Description

Anthropometric data from a SMART survey in Angola.

Usage

rl.ex01

Format

A data frame with 906 observations and 6 variables

Variable	Description
age	Age (months)
sex	Gender $(1 = Male / 2 = Female)$
weight	Weight (kg)
height	Height (cm)
тиас	Mid-upper arm circumference (mm)
oedema	Presence or absence of oedema

sexRatioTest

Sex Ratio Test

Description

Sex Ratio Test

Usage

```
sexRatioTest(sex, codes = c(1, 2), pop = c(1, 1))
```

Arguments

sex A vector of values that indicate sex

codes Codes used to identify males and females (in that order)

pop Relative populations of males and females (in that order)

Value

A list of class "sexRatioTest" with:

28 skewKurt

Variable	Description
pM	Observed proportion male
eM	Expected proportion male
<i>X</i> 2	Chi-squared test statistic
df	Degrees of freedom for Chi-squared test
p	p-value for Chi-squared test

Examples

```
# Use sexRatioTest() on household roster data from a survey in Tanzania
# (as.ex01) and census data of Tanzania extracted from Wolfram|Alpha knowledge
# engine (as.ex02)
svy <- as.ex01
ref <- as.ex02
censusM <- sum(ref$Males)
censusF <- sum(ref$Females)
sexRatioTest(svy$sex, codes = c(1, 2), pop = c(censusM, censusF))</pre>
```

skewKurt

Skew and kurtosis

Description

Skew and kurtosis

Usage

skewKurt(x)

Arguments

x

Numeric vector

Value

A list of class "skewKurt" with:

Variable	Description
S	Skewness with direction
s.se	Standard error of skewness
s.z	Test statistic $(s.z = s / s.se)$
s.p	p-value(s!=0)
k	Excess kurtosis with direction
k.se	Standard error of excess kurtosis
k.z	Test statistic $(k.z = k / k.se)$
k.p	p-value (k != 0)

sp.ex02

Examples

```
# Use skewKurt() on an anthropometric data from a SMART survey in
# Kabul, Afghanistan (dist.ex01)
svy <- dist.ex01
skewKurt(svy$muac)</pre>
```

sp.ex01

Example dataset for using scatterplots to identify outliers

Description

Anthropometric data from a SMART survey in the Democratic Republic of Congo.

Usage

sp.ex01

Format

A data frame with 895 observations and 6 variables

Variable	Description
age	Age (months)
sex	Gender $(1 = Male / 2 = Female)$
weight	Weight (kg)
height	Height (cm)
тиас	Mid-upper arm circumference (mm)
oedema	Presence or absence of oedema

sp.ex02

Example dataset for using scatterplots to identify outliers

Description

Anthropometric data from a survey of school-age (i.e., between 5 and 15 years) children from Pakistan

Usage

sp.ex02

Format

A data frame with 849 observations and 9 variables

30 sp.ex02

Variable	Description
region	Region code
school	School code
ageMonths	Age (months)

sex Sex (1 = Male / 2 = Female)

weight Weight (kg) height Height (cm)

haz Height-for-age z-score waz Weight-for-age z-score

baz Body mass index (BMI)-for-age z-score

Index

	<pre>greensIndex(), 23</pre>
ah.ex01, 6	
	hist(), 16
as.ex02, 7	histNormal, 15
dist.ex01,9	
dp.ex01, 10	national.SMART, 16
dp.ex02, 10	autlianaMD 17
UN EXM3 II	outliersMD, 17
flag.ex01, 12	outliersUV, 18
flog 0v02 12	nla+() 10 20
flor 0v02 12	plot(), 19, 20
ml av01 27	plot.ageChildren, 18
01 20	plot.ageHeaping, 19
	plot.digitPreference, 20
•	print(), 20-25
ageChildren. 3	print.ageChildren, 20
ageChildren(), 18, 20, 21	print.ageHeaping, 21
ageHeaning 4	print.ageRatioTest, 22
ageHeaning() 19 21	print.digitPreference, 22
ageRatioTest, 5	<pre>print.greensIndex, 23</pre>
ageRatioTest(), 22	print.sexRatioTest, 24
ah.ex01, 6	print.skewKurt,24
as.ex01, 6	pyramid.plot, 25
as.ex02,7	qqNormalPlot, 26
barplot(), 18	rl.ex01,27
boxText, 7	
digitDrafanana 0	sexRatioTest, 27
digitPreference, 8	<pre>sexRatioTest(), 24</pre>
digitPreference(), 8, 20, 22, 23	skewKurt, 28
dist.ex01,9	skewKurt(), 24, 25
ap.ex01, 10	sp.ex01, 29
ap.ex02, 10	sp.ex02, 29
dp.ex03, 11	
flag.ex01, 12	
flag.ex02, 12	
flag.ex03, 13	
fullTable, 13	
141114016, 13	
greensIndex, 14	