Practical Parallel Computing (実践的並列コンピューティング)

2025 Class No.4
[OpenMP Part] (2)
Sample Programs with Data Parallelism

Toshio Endo endo@scrc.iir.isct.ac.jp

- Introduction Part
 - 2 classes
- OpenMP (OMP) Part
 - 4 classes
- ← We are here (2/4)
- Report (required)
- OpenACC (ACC) Part
 - 2 classes
 - Report (required)
- CUDA Part
 - 3 classes
 - Report (elective)
- MPI Part
 - 3 classes
 - Report (elective)

Slack channel in Science Tokyo Workspace

#dp-ppcomp-mcs-t418-2025

OpenMP is for shared-memory parallel programming

- #pragma omp parallel defines a parallel region, where multiple threads work simultaneously
- With #pragma omp for, loop-based programs can be parallelized easily
- Shared variables and private variables
- We have reviewed OpenMP version of mm sample

Choose one of [O1]—[O4], and submit a report

Due date: May 1 (Thu)

[O1] Parallelize "diffusion" sample program by OpenMP.

[O2] Parallelize "bsort" sample program by OpenMP.

[O3] Parallelize "qsort" sample program by OpenMP.

[O4] (Freestyle) Parallelize any program by OpenMP.

- Sample programs written with "for" loops are explained:
 - diffusion and bsort
- Sequential versions are at base/diffusion, base/bsort
 - There are already omp/diffusion, omp/bsort directories
 - They are only template and <u>NOT</u> parallelized
 - You can edit .c file there to solve [O1] or [O2]

"diffusion" Sample Program (Target of [01])

An example of diffusion phenomena:

Pour a drop of ink into a water glass

$$rac{\partial \phi}{\partial t} = D
abla^2 \phi(ec{r},t)$$

The ink spreads gradually, and finally the density becomes uniform (Figure by Prof. T. Aoki, SCRC)

- Density of ink in each point vary according to time → Simulated by computers
 - cf) Weather forecast compute wind speed, temperature, air pressure...

"diffusion" Sample on TSUBAME

Available at ppcomp-ex/base/diffusion/
Go to the directory and do "make" command

- Execution:./diffusion [nt]
- nt: Number of time steps
- nx, ny: Space grid size
 - nx=20000, ny=20000 (Fixed. See the code)
 - How can we make them variables? (mm sample will be useful as a reference)
- Compute Complexity: O(nx × ny × nt)

Expression of Space to be Simulated

 Space to be simulated are divided into grids, and expressed by arrays (2D in this sample)

Array elements are computed via timestep, by using

Stencil Computations

- A data point (x,y) at time t+1 is computed using following data
 - point (x,y) at time t
 - "Neighbor" points of (x,y) at time t

- In diffusion sample, the computation is simply "average of 5 points"
- Computations of similar type are called "stencil computations"
 - Frequently used in fluid simulations

Original meanings of "stencil"

Initial Conditions & Boundary Conditions

In stencil computations, following data points cannot be computed

Instead, we have to give them (for example, as input data)

- All points at t=0 (Initial conditions)
 - In diffusion sample, given in init()
- "Boundary" points for all t (Boundary conditions)
 - In diffusion sample, they are constant during simulation
 - → See ranges of for-loops in calc(); boundaries are skipped
 - This is not good for simulation of a water glass ☺, but it's simple...

A Single Array Does not Work

Let us compute t → t+1

With a single 2D array (Bug! ☺)

We need neighbor points at time t, but some have been already updated to t+1 ⊗

With separate 2D arrays (Good ©)

We can access "old" neighbor points correctly ©

We repeat update of the array for NT times

A simple way is to make arrays for all time steps float data[NT+1][NY][NX]

- This uses too much memory
- Do we need all of (NT+1) arrays?

Double Buffering Technique

- It is sufficient to have "current" array and "next" array.
- It is better to use only "Double buffers"

The diffusion sample program uses float data[2][NY][NX];

How Do We Parallelize "diffusion"?

calc() takes long time, complexity is O(nx ny nt) It mainly uses "for" loops

→ #pragma omp parallel for is useful! But...

There are 3 (t, x, y) loops. Which should be parallelized? [Hint1] Parallelizing either of spatial loop (x, y) would be good. Then spaces are divided into multiple threads

→ [Q] Parallelizing t loop is a not good idea. Why?

[Hint2] Take care of "pitfall in nested loops" (see slides in previous class)

Towards "Correct" Parallel Programming

There are several types of bugs in parallel programming

- Bugs in compile time
- Bugs in run time
 - Bugs that abort execution (cf. segmentation fault)
 - Silent bugs → Hardest to find!

All bugs should be avoided!

- Loops with some (complex) forms cannot be supported, unfortunately ⁽³⁾
- The target loop must be in the following form

```
#pragma omp for
for (i = value; i op value; incr-part)
body
```

```
"op": <, >, <=, >=, etc.
"incr-part": i++, i--, i+=c, i-=c, etc.
```

```
OK \odot: for (x = n; x >= 0; x-=4) \cdots

ERROR \odot: for (i = 0; \underline{test(i)}; i++) \cdots

ERROR \odot: for (p = head; p != NULL; \underline{p = p->next})

Comp
```

Errors in compile time

What are Differences between These Codes?


```
#pragma omp parallel for
for (i = 0; i < 100; i++) {
    D[i] = D[i]+1.0;
}</pre>
```

double D[100];

Code B

```
#pragma omp parallel for
  for (i = 0; i < 99; i++) {
     D[i+1] = D[i]+1.0;
}</pre>
```

- Both codes can be compiled and executed...
- But only code A is correct ☺ , code B has a bug ☺
 - Code B's results may be wrong

Sequential Execution and Parallel Execution of Loop

[Sequential]

for
$$(i = 0; i < 100; i++) \dots$$

[Parallel]

#pragma omp parallel for for (i = 0; i < 100; i++) ...

in case of 2 threads, i=50 is computed before i=49

Difference between Two Codes


```
Code A
```

```
#pragma omp parallel for
  for (i = 0; i < 100; i++) {
    D[i] = D[i]+1.0;
}</pre>
```

OK

It is ok to reorder 100 computations

```
Code B
```

```
#pragma omp parallel for
  for (i = 0; i < 99; i++) {
     D[i+1] = D[i]+1.0;
}</pre>
```

NG

Computations must be done in an order (i=0,1,2...)

→ Parallelization breaks the order

Dependency between Computations

We define following sets for computation C

- Read set R(C): the set of variables read by C
- Write set W(C): the set of variables written by C
 - Ex) C: $x = y+z \rightarrow R(C) = \{y, z\}, W(C) = \{x\}$

We define dependency between C1 and C2

- •If $(W(C1) \cap R(C2) \neq \emptyset)$, C1 and C2 are dependent (write vs read)
- •If $(R(C1) \cap W(C2) \neq \emptyset)$, C1 and C2 are dependent (read vs write)
- If (W(C1) ∩ W(C2) ≠ Ø), C1 and C2 are dependent (write vs write)
- Otherwise, C1 and C2 are independent
 - ※ read vs read cases are independent

If C1 and C2 are independent, parallelization of C1 and C2 is safe ©

Example of Dependency

Code A

```
R(A_i) = \{D[i]\}, W(A_i) = \{D[i]\}
```

All 100 computations are independent

Code B

```
#pragma omp parallel for
  for (i = 0; i < 99; i++) {
     D[i+1] = D[i]+1.0; ← B<sub>i</sub>
}
```

$$R(B_i) = \{D[i]\}, W(B_i) = \{D[i+1]\}$$

$$R(B_{i+1}) \cap W(B_i) = \{D[i+1]\} \neq \emptyset \rightarrow Dependent!$$

Dependency and Parallelism in Stencil Computations

Consider 1D stencil computation:

for (t = 0; t < NT; t++)
for (x = 1; x < NX-1; x++)

$$f_{t+1,x} = (f_{t,x-1} + f_{t,x} + f_{t,x+1}) / 3.0 /* c_{t,x} */$$

※ This is simpler than
"diffusion" (2D) sample

We let $c_{t,x}$ be computation of a single point $f_{t+1,x}$

$$R(c_{t,x}) = \{f_{t,x-1}, f_{t,x}, f_{t,x+1}\}, W(c_{t,x}) = \{f_{t+1,x}\}$$

X This figure omits double buffering technique

Discussion on Stencil: Case of Spatial Loop


```
for (t = 0; t < NT; t++)

for (x = 1; x < NX-1; x++) \leftarrow Is this loop parallelizable?

f_{t+1,x} = (f_{t,x-1} + f_{t,x} + f_{t,x+1}) / 3.0 /* c_{t,x} */
```

- Can we compute $c_{5,20}$ and $c_{5,21}$ in parallel? (t is same, x is different)
 - $R(C_{5,20})=\{f_{5,19},f_{5,20},f_{5,21},\},\ W(C_{5,20})=\{f_{6,20}\}$
 - $R(C_{5,21}) = \{f_{5,20}, f_{5,21}, f_{5,22}\}, W(C_{5,21}) = \{f_{6,21}\}$
 - → They are indepéndent ⊕, for all pairs of x
 - x loop can be parallelized

Discussion on Stencil: Case of Temporal Loop

for (t = 0; t < NT; t++)
(for (x = 1; x < NX-1; x++))
(
$$f_{t+1,x} = (f_{t,x-1} + f_{t,x} + f_{t,x+1}) / 3.0$$
)

- Can we compute C_5 and C_6 in parallel? (t is different)
 - $R(C_5) = \{f_{5,0}, ..., f_{5,NX-1}\}, W(C_5) = \{f_{6,1}, ..., f_{6,NX-2}\}$
 - $R(C_6) = \{f_{6,0,\ldots}, f_{6,NX-1}\}, W(C_6) = \{f_{7,1,\ldots}, f_{7,NX-2}\}$
 - → $R(C_6) \cap W(C_5) = \{f_{6,1}, ..., f_{6,NX-2}\} \neq \emptyset$
 - → They are dependent 🕾

dependent!!

In Assignment [O1]

- it is OK to parallelize x-loop or y-loop
- it is NG to parallelize t-loop

Advanced Topic: More Speed in Stencil

We see dependency more in detail:

- $c_{6.20}$ depends on $c_{5,19}$, $c_{5,20}$, $c_{5,21}$
 - The same point or its direct neighbor
- But not on $c_{5.22}$

- Can be parallelized
 - Can be reordered

Temporal blocking technique:

After computations in (1) finish, we can start (2)

"Trapezoids" in the same stage can be parallelized

→ Speed is improved for better access locality

"bsort" Sample Program (Target of [O2])

Sort an array with bitonic sort algorithm

- There are many famous sorting algorithm with different compute complexity:
 - bubble sort and insertion sort, O(N²)
 - bitonic sort [O2], $O(N log^2N) = O(N (log N)^2)$
 - quick sort [O3], O(N log N)
 - merge sort, O(N log N)
 - radix sort

Overview of bitonic sort

the figure is from Wikipedia

sub-step sub-step substep

After blue box, data are sorted in ascending order

After green box, data are sorted in descending order

if interested in its proof, please try Google/ChatGPT²⁷

Sub-step: O(N) → Step k: O(kN)

Total step number S = log N

Total complexity:
$$O(N + 2N + 3N + ... + S N)$$

= $O(S^2 N) = O(N log^2 N)$

- Bitonic sort assumes number of data is power of 2
- We compute N2 ≥ N, N2 is power of 2, and copy data

```
loop structure of sort() 1 < i = 2^i. (< i s bit-shift)
```

Program is a bit complicated for bit operations, but you can use as it is ©

How Do We Parallelize "bsort"?

- Since steps/sub-steps cannot be reordered, we should NOT parallelize i, j loops
- Please confirm that parallelizing k loops is safe

Why Do We Use both bsort and qsort?

- Quick sort with O(N log N) complexity is usually faster than bitonic sort with O(N log² N)
- Bitonic sort is easier for parallelization
 - In OpenMP, we can use #pragma omp for
 - OpenMP version of qsort will be explained in next class
 - Also parallelizing bsort with OpenACC/CUDA/MPI is easier
 - qsort is harder, and out of scope in this class ☺
 - cf) Cederman et al. "GPU-Quicksort: A practical Quicksort algorithm for graphics processors", JEA vol14, 2010

Assignments in OpenMP Part (Abstract)

Choose one of [O1]—[O4], and submit a report

Due date: May 1 (Thu)

[O1] Parallelize "diffusion" sample program by OpenMP.

[O2] Parallelize "bsort" sample program by OpenMP.

[O3] Parallelize "qsort" sample program by OpenMP.

[O4] (Freestyle) Parallelize any program by OpenMP.

For more detail, please see ppcomp25-3 slides

Plan of OMP Part

- Class #3
 - Introduction to OpenMP
- Class #4 (Today)
 - Data parallelism with for loops
 - diffusion sample [O1], bsort sample [O2]
- Class #5
 - Task parallelism
 - qsort sample [O3]
- Class #6
 - What are bottlenecks, race conditions?