Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-221. Вариант 18

- 1. Пусть $z = \frac{\sqrt{3}}{2} \frac{i}{2}$. Вычислить значение $\sqrt[5]{z^3}$, для которого число $\frac{\sqrt[5]{z^3}}{2 2\sqrt{3}i}$ имеет аргумент $\frac{11\pi}{6}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(-9-15i) + y(-14-15i) = 181 - 376i \\ x(-10+i) + y(13-i) = -90 + 3i \end{cases}$$

- 3. Найти корни многочлена $x^6 2x^5 10x^4 48x^3 + 104x^2 + 1280x 3200$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1 = -2 + 4i, x_2 = 3 i, x_3 = 4.$
- 4. Даны 3 комплексных числа: 20-18i, -21+18i, -7+5i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1=-3, z_2=-\frac{3}{2}-\frac{3\sqrt{3}i}{2}$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+i| < 1\\ |arg(z-2+4i)| < \frac{5\pi}{6} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (-3, -5, -1), b = (6, 0, 1), c = (3, 6, 1). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-8,10,-2) и плоскость P:-2x-16z+82=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(5,11,4), $M_1(0,-12,9)$, $M_2(14,2,9)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} x - 2y + z - 1 = 0 \\ -x + 6y - 18z - 102 = 0 \end{cases}$$

$$L_2: \begin{cases} 2x - 8y + 19z + 3104 = 0 \\ -x - 17y + 14z + 2830 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.