UNCLASSIFIED

Contract No. 00019-68-C-0247

AD 85928

COLLOCATION FLUTTER ANALYSIS STUDY

This document is subject to special export controls and transmittal to foreign governments or foreign nationals may be made only with prior approval of the Naval Air Systems Command (AIR-520014).

VOLUME III (Continued)

AICs - COMPUTER PROGRAM TO CALCULATE UNSTEADY AERODYNAMIC INFLUENCE COEFFICIENTS FOR SUBSONIC, TRANSONIC AND SUPERSONIC FLIGHT

APRIL 1969

MISSILE SYSTEMS DIVISION

HUGHES

"ok"

COFA

COLLOCATION FLUTTER ANALYSIS STUDY

VOLUME III (CONT'D) .

AICs - COMPUTER PROGRAM TO CALCULATE UNSTEADY AERODYNAMIC INFLUENCE COEFFICIENTS FOR SUESONIC, TRANSONIC, AND SUPERSONIC FLIGHT

Prepared by Dynamics & Environments Section Personnel Hughes Aircraft Company, Missile Systems Division Contract No.00019-68-C-0247

APRIL 1969

This document is subject to special export controls and transmittal to foreign governments or foreign nationals may be made only with prior approval of the Naval Air Systems Command.

NOTICE TO USERS

Portions of this document have been judged by the Clearinghouse to be of poor reproduction quality and not fully legibie. However, in an effort to make as much information as possible available to the public, the Clearinghouse sells this document with the understanding that if the user is not satisfied, the document may be returned for refund.

If you return this document, please include this notice together with the IBM order card (label) to:

Clearinghouse Attn: 152.12 Springfield, Va. 22151

TABLE OF CONTENTS

Part			/	Page
	TABI	LE OF	CONTENTS	ii
	ABST	TRACT		iii
ı	INTE	RODUCI	TION	1
II	NOMI	ENCLA!	TURE	3
III			ON OF THE DERIVATION OF MIC INFLUENCE COEFFICIENTS	5
IV	SUBS	SONIC	PROGRAM	
	Α.		HNICAL DISCUSSION OF THE SONIC KERNEL FUNCTION METHOD	27
	В.	_	SONIC AIC COMPUTER PROGRAM CRIPTION	36
		1.	PROCESSING REQUIREMENTS	40
		2.	INPUT INSTRUCTIONS	.41
		3.	SAMPLE PROBLEMS	48
		4.	PROGRAM LISTING	88
		5.	FLOW CHAPTS	126
v	TRA	NSONI	C PROGRAM	
	A.		HNICAL DISCUSSION OF THE NSONIC BOX METHOD	206
	В.		NSONIC AIC COMPUTER PROGRAM CRIPTION	210
		1.	PROCESSING REQUIREMENTS	?15
		2.	INPUT INSTRUCTIONS	. 216
		3.	SAMPLE PROBLEMS	224
		4.	PROGRAM LISTING	251
		5.	FLOW CHARTS	290
VI	SUP	ERSON	IC PROGRAM	
	Α.		HNICAL DISCUSSION OF THE ERSONIC BOX METHOD	374
	В.		ERSONIC AIC COMPUTER PROGRAM CRIPTION	381
		1.	PROCESSING REQUIREMENTS	387
		2.	INPUT INSTRUCTIONS	388
		3.	SAMPLE PROBLEMS	394
		4.	PROGRAM LISTING	421
		5.	FLOW CHARTS	4459
VII	REF	ERENC	ES	520

ABSTRACT

Subsonic Kernel function, transonic box, and supersonic box methods for computing unsteady aerodynamics are applied to the problem of interaction of a general trapezoidal wing with a downstream rectangular control surface lying in the wake of the wing. The unsteady aerodynamic forces are related to a set of collocation stations through a series of matrix transformations, interpolations, and differentiations. The resulting matrix is a set of aerodynamic influence coefficients (AICs) that are directly applicable to flutter snalysis.

The transformation of the unsteady aerodynamics into AICs is presented as a separate discussion; followed by discussions for the developments of analytical techniques for each flight regime. The analytical developments and a discussion of the basic single-planar-surface are presented, followed by the complete two-surface solutions for the general aerodynamic forces. Each of the three numerical methods is developed by detailing the complete set of equations necessary to compute airloads on the configurations considered. A computer program to determine the AIC matrix for each flight regime is presented with a complete discussion of usage and logical flow. Also included are program listings; flow charts and sample input and output problems.

PART V - SECTION A

TECHNICAL DISCUSSION OF THE TRANSONIC BOX METHOD

When the flight speed approaches the acoustic speed (i.e., transonic flow), the Mach number is near unity and Equation 4.1 can be rewritten

$$\phi_{yy} + \phi_{zz} = M^2 (2ik\phi_x - k^2\phi)$$
 (5.1)

which is valid according to Reference 6 if $k \gg |M-1|$. Using this version of the linearized flow equation leads to a similarity rule in transonic flow. Air loads for Mach numbers near unity may be computed by a transformation of the geometry and flow field to the equivalent problem at M=1. The absence of the ϕ_{XX} term because of β^2 being of small order restricts the flow to one that has no variation in local Mach number along the surface. This restriction supplements the thin airfoil assumptions previously used in linearization. The condition can be simply stated as

$$k \gg \left[1 - M_{T_1}\right]$$

where M, is the local Mach number over the surface.

A pulsating doublet placed in the M=1 free stream with the axis parallel to the z axis is a solution to Equation 5:1 and produces a velocity potential at (x, y, z) given by

$$\Phi_{D} = \frac{i k (z - \zeta)}{2 \pi (x - \xi)^{2}} \exp \left[-1/2 i k \left[(x - \xi) + \frac{(y - \eta)^{2} + (z - \zeta)^{2}}{(x - \xi)} \right] \right]$$
 (5.2)

where the doublet is positioned at the point (ξ,η,ζ) . The doublet in transonic flow has no influence at points upstream of the line $x=\xi$. Consequently, the potential is zero in that region. The velocity potential due to a doublet is discontinuous at the point (ξ,η,ζ) .

That Equation 5.2 satisfies equation 5.1 may be checked by substitution. Furthermore, a solution to 5.1 may be obtained by superposition. This solution will be represented in the form

$$\phi(x,y,z) = \iint \phi(\xi,\eta) \, \phi_D(x,y,z,\xi,\eta,0) \, d\xi d\eta$$
(5.3)

and it may be further shown that in the limit as $z \rightarrow 0$

$$\left[\phi(x,y,z)_{z+} - \phi(x,y,z)_{z+}\right] = \phi(x,y)$$

A sheet of these doublets covering the wing, wake, and tail will then provide the required lifting antisymmetry and jump in potential between upper and lower sides when the doublet strength function is determined by the appropriate boundary conditions. The velocity potential required to produce the necessary vertical velocity at a point (x,y) on the wing can be determined by application of the tangential flow boundary condition

$$w_W = \iint_W \phi(\xi, \eta) \psi(x-\xi, y-\eta) d\xi d\eta$$
 (5.4)

where

$$\psi(x-\xi, y-\eta) = \lim_{z\to 0} \frac{1}{z} \phi_{D} = \frac{ik}{2\pi} \frac{1}{(x-\xi)^{2}} \exp \left[-\frac{1}{2} ik \left((x-\xi) + \frac{(y-\eta)^{2}}{(x-\xi)} \right) \right]$$

The function ψ is in effect the limit as -0 of $\frac{\partial \Phi_D}{\partial z}$ when $\xi = 0$. It is, consequently, the doublet downwash influence function when $\xi \leq x$. The zero pressure jump condition is written here for the wake velocity potential in terms of the wing trailing edge quantities

$$\phi_{\text{Wake}} = \phi_{\text{WTE}} \exp \left[-ik \left(x - x_{\text{WTE}}\right)\right]$$
 (5.5)

and further matching of the tangential flow condition gives the velocity potential required to produce downwash at a similar point on the tail as

$$w_{T} = \iint \phi(\xi, \eta) \psi(x-\xi, y-\eta) d\xi d\eta$$

$$T + Wake + W$$
(5,6)

where the region of integration is over the entire doublet sheet forward of the line $\xi = x$ (see Reference 12).

Equations 5.4, 5.5, and 5.6 then constitute a system of equations whereby the potential jump may be determined.

Figure 5.1 Transonic Box Overlay for a Typical Configuration at Sonic Mach Number

To compute the velocity potential distribution for each Mach number near unity and reduced frequency greater than zero, following the approach developed in Reference 1, we overlay the two surfaces and intervening wake with a system of square boxes of relative length Δ adjusted so that box centers lie along the x axis and the wing trailing edge and so that box edges lie along the y axis. A typical box overlay on a trapezoidal wing, wake, and downstream control surface is shown in Figure 5.1. Only boxes that have their centers within the respective regions are considered in this development.

If the potential function $\phi(x,y)$ is approximated by a function which is constant in each of the boxes and equal to the value at its center in the wake region, the downwash condition on the wing and control surfaces is matched at the center of each box.

The boxes will be designated by n and v in the chordwise direction and by m and μ in the spanwise direction. Then for (n, m) on the wing

$$W_{n,m} = \sum_{\nu} \sum_{\mu} \phi_{\nu,\mu} A (n-\nu, |m-\mu|)$$
 (5.7)

for (n,m) on wake,

$$\phi_{n, n_1} = \phi_{W_{TE_{n_1}}} \exp \left[-ik \left(n - n_{W_{TE}}\right)\right]$$
 (5.8)

and for (n,m) on T, (ν,μ) on W, T, and wake,

$$w_{n, m} = \sum_{\nu} \sum_{\mu} \varphi_{\nu, \mu} A (n-\nu, |m-\mu|)$$
 (5.9)

where $n = x/\Delta$, $m = y/\Delta$, $v = \xi/\Delta$, and $\mu = \eta/\Delta$ are coordinates of the box centers and $v \le n$. The aerodynamic influence coefficients (AIC's) are given by

A
$$(n-\nu, |m-\mu|) = \iint \psi(x-\xi, y-\eta) d\xi d\eta$$
 (5.40)

and are computed for each pair of relative box locations by integration of the doublet influence function, ψ , over that portion of the sending box centered at (ν,μ) that influences the receiving point (n,m). Approximation formulas and integration techniques for evaluation of the transonic AIC's are developed in Reference 12.

Solutions to Equation 5.Dat each box center can be obtained most efficiently by the separation of the terms in the nth row from the remainder of the sum to

obtain the smaller system of equations for the wing, W,

$$\sum_{\mu} A(o, |m-\mu|) \phi_{n, \mu} = w_{n, m} - \sum_{\nu < n, \mu} \sum_{\mu < n, \mu} A(n-\nu, |m-\mu|) \phi_{\nu, \mu}$$
 (5.11)

where the AIC's A(o, $|m-\mu|$) represent the effect of every other box in the nth row on the mth box, and the double summation gives the contribution to the downwash at the box center of all the boxes located in all the upstream rows. Since the downwash is directly calculable from tangential flow considerations (Equation 5.4), and since the velocity potential to be computed at the box center is contained in a sum, Equation 5.11 has to be applied to the entire nth row to solve for the velocity potentials at all box centers in that row simultaneously. The procedure would build up the velocity potential distribution over the wing one row at a time until the trailing edge row as completed. The numerical complexity is not increased, however, by a large number of box rows over the configuration because the influence coming from more than 15 rows away is negligible. Therefore, the AIC's for $n-\nu > 15$ are not needed.

With the wing trailing edge velocity potential values now available, the distribution is continued downstream in the wake region for all boxes by simply employing Equation 5.8 for each box. This method adequately determines the velocity potential distribution between the wing trailing edge and tail leading edge under the assumptions that no rolling up of wing tip vortices occurs. The downwash in this region is not readily computed, but fortunately is not required in subsequent computations.

To compute the velocity potential distribution on the tail, rewrite Equation 5.9 in the smaller system of equations with the velocity potentials in the nth row segregated from the upstream influence. For (n,m) on the tail, T,

$$\sum_{\mu} A(o, |m-\mu|) \phi_{n, \mu} = w_{n, m} - \sum_{\nu < n} \sum_{\mu} A(n-\nu, |m-\mu|) \phi_{\nu, \mu}$$
 (5.12)

where the terms are defined as above. Here again the velocity potentials for the entire ath row on the tail are computed at once, but with the double summation now extending at most 15 rows upstream. This upstream influence includes contributions not only from the tail itself, but also from the wake and wing regions included in the fifteen rows.

PART V - SECTION B TRANSONIC AIC COMPUTER PROGRAM DESCRIPTION

A FORTRAN IV computer program is presented which calculates transonic unsteady aerodynamic influence coefficients for a variety of single or tandem lifting surfaces. The computer solution is based on a doublet superposition approach, and a square box approximation is employed to reduce the integral equations to sums of constant values times doublet strengths at box centers times integrals dependent upon relative position, Mach number, and reduced frequency.

The various tandem configurations which can be analyzed are shown in Figure 5.2. Also it is possible to analyze a single surface (the wing). The aerodynamic surfaces are assumed to have a plane of symmetry parallel to the free stream flow. The upstream surface must have an unswept trailing edge and the rectangular trailing surface must have the same spanwise dimension as the trailing edge of the wing.

The program allows up to 40 AIC control points. The AIC stations must satisfy the following requirements:

- (1) The chordwise rows must be parallel to the flow stream.
- (2) The chordwise rows on a surface must have the same number of control points.
- (3) The control points in each spanwise row must have the same fractional chordwise location.
- (4) The origin for the AIC station coordinates and the wing and control surface coordinates must be at the leading edge root of the wing.

Examples of acceptable AIC control point patterns for the transonic program are illustrated in Figure 5.3.

FIGURE 5.2 TANDEM COPLANAR CONFIGURATIONS AT TRANSONIC MACH NUMBERS

FIGURE 5.3. EXAMPLES OF ACCEPTABLE ALC CONTROL POINT
FATTERNS FOR THE TRANSONIC PROGRAM
212

The transonic program is presently limit. Ito 45 boxes on the aerodynamic surfaces. This limitation does not include the diaphragm boxes in the gap region. The restriction results from performing all operations on the computer in core without utilizing peripheral tape and disc units.

The user specifies the number of boxes along the wing root and the computer program determines the size of the boxes and overlay pattern which will cover the planform. The box centers of the first chordwise row will lie along the root of the surfaces. The last spanwise row of boxes on the wing will have their centers on the trailing edge. If NBW is selected by the user as the number of boxes along the wing root and if the wing root dimension is $20 \, \mathrm{p}_r$, then the box size will be $\Delta \times \Delta$ where $\Delta = 20 \, \mathrm{p}_r'$ (NBW -.5). Knowing the size of the boxes and the planform geometry, the user can estimate if the 45 box restriction is satisfied. An example of a typical box overlay is shown in Figure 5.4.

The transonic AIC computer program consists of a main program (MAIN) and 20 subroutines and function subprogram. Execution begins with MAIN calling subroutine DAIN which reads the input data. Control then passes into a Mach number loop where a test is made to determine if the Mach number satisfies the criterion |M-1.0| < 0.05. Subroutine CODE is called to approximate the surface and gap regions with a sonic box overlay. The output subroutine POUT is called and the input flight conditions, geometry, and map of the sonic box overlay are printed. The AIC station locations are also printed if the option is exercised. A check is made in MAIN to determine if the number of boxes on the wing and control surface does not exceed 45.

The subroutine TRAMP is called by MAIN to generate the substantial derivative matrix [w]. The [W] matrix relates the Mach boxes on the surfaces to the AIC stations and serves as a substantital derivative operator. Subroutines called by TRAMP are CMAT, SMAT, TMAT, BMAT, RMAT, and MINV.

Control passes into the frequency loop and a test is made to determine that a non-zero frequency or reduced frequency is being considered. Subroutine POT2H is called to compute in-plane velocity potential influence coefficients for the reduced frequency. These coefficients are dependent only on the relative position of the boxes, the Mach number and reduced frequency.

The main program now passes into a loop which examines each box and for boxes on the surfaces, the subroutine PHIB is called to form the product of velocity potentials computed for boxes within the zone of influences times the appropriate velocity potential influence coefficient.

The influence of each box on the other boxes is constructed and the resulting system of simultaneous complex equations is solved by the subroutine MSINEC to determine the velocity potential at box centers. The velocity potentials are converted to pressure through a substantial derivative operator constructed by subroutine SD2. Multiplying pressure by the box area yields the force at each box center on the surfaces. These forces are transferred to the AIC stations through static considerations thereby forming the AIC matrix. This operation is performed by subroutine FORCE. The output subroutine POUT is called to print the AIC matrix.

1.0 PROCESSING REQUIREMENTS

The input and output files used by the program are 05 and 06, respectively. All read and write statements are contained in MAIN, POUT, and DAIN. Peripheral tape and disc inputs are not used by the program. Approximately 40,000 cells of core storage is required.

A standard input form of six 12-column fields per card is used by the program. Floating point numbers (6E12.5 format) may lie anywhere within the appropriate field but fixed point numbers (6I12 format) must be right adjusted. Detailed instructions for data input are given and listings of data cards for sample problems are provided.

2.0 INPUT INSTRUCTIONS

Instructions for preparing input data for the transonic AIC computer program are presented here. The field location and format for each quantity is specified. Any sec of units may be used for geometric dimensions and acoustic velocity as long as they are consistent, e.g., if inches is used for length, then the acoustic velocity must have dimensions of inches per second. The required data and the sequence in which the information is entered is as follows:

1. Streamwise Coordinates (6E12.5 format)

Column	1-12	13-24	25-36	37.45	49-60	61-72
Name	X(1)	X(2)	X(3)	Χ(4)	X(5)	
Item	(1)	(2)	(3)	(4)	(5)	

- (1) X(1) Wing root leading edge coordinate
- (2) X(2) Wing tip leading edge coordinate
- (3) X(3) Wing trailing edge coordinate
- (4) X(4) Control surface leading edge coordinate
- (5) X(5) Control surface trailing edge coordinate

A single surface, the wing, may be analyzed by setting X(4) and X(5) equal to X(3). The various configurations are generated as shown in Table 5.1. The origin for the planform and AIC station coordinates must be at the leading edge root of the wing, therefore X(1) and Y(1), described below, must always be zero.

2. Spanwise Coordinates and Acoustic Velocity (6E12.5 format)

Column	1-12	13-24	25-36	37-48	49-60	61-72
Name	Y(1)	Y(2)	Y(3)	SOUND		
Itom	(1)	(2)	(3)	(4)		

- (1) Y(1) Wing root spanwise coordinate
- (2) Y(2) Wing leading edge spanwise coordinate
- (3) Y(3) Wing (and control surface) tip spanwise coordinate
- (4) SOUND Speed of sound at altitude for which analysis is performed

FIGURE 5.4 MENMETRIC MENERIPTION AND SOUTE BOX ONERLAY

TABLE 5.1 OPTIONAL CONFIGURATIONS

CONFIGURATION	CHORDWISE COORDINATE	SPANWISE COORDINATE
	X(1) = 0.0	Y(1) = 0.0
	X(2) = 0.0	Y(2) = 0.0
RECTANGULAR	X(3) > 0.0	Y(3) > 0.0
	$X(4) \geq X(3)$	
	$X(5) \geq X(4)$	
	X(1) = 0.0	Y(1) = 0.0
	X(2) > 0.0	Y(2) = 0.0
	X(3) = X(2)	Y(3) > 0.0
DELIA	$X(4) \ge X(3)$	
	$X(5) \ge X(4)$	
	X(1) = 0.0	Y(1) = 0.0
	X(2) > 0.0	Y(2) > 0.0
TRAPEZOIDAL	X(3) = X(2)	Y(3) > Y(2)
•	$X(4) \ge X(3)$	
	$X(5) \ge X(4)$	
	X(1) = 0.0	Y(1) = 0.0
	X(2) > X(1)	Y(2) > 0.0
TRAPEZOIDAL (CROPPED)	$\Sigma(3) > X(2)$	Y(3) > Y(2)
	$X(4) \ge X(3)$	
	$X(5) \ge X(4)$	
	X(1) = 0.0	Y(1) = 0.0
	X(2) > 0.0	Y(2) = 0.0
DELTA (CROPPED)	X(3) > X(2)	Y(3) > Y(2)
	$X(4) \ge X(3)$	
	$X(5) \ge X(4)$	

3. General Information (6112 format)

Column	1-12	13-24	25-36	37-48	49-60	61-72
Name	NMACH	KF	NFREQ	NBW	LPUNCH	
Item	(1)	(2)	(3)	(4)	(5)	

(1) NMACH Number of Mach numbers: (Maximum 6)

(2) KF Option to input frequencies or reduced frequencies:

KF = 0 frequencies

KF = 1 reduced frequencies

(3) NFREQ Number of frequencies or reduced frequencies at each Mach number (maximum 10)

(4) NBW Number of chordwise boxes on wing

(5) LPUNCH Option to punch AICs on cards:

LPUNCH = 0 no punched output

LPUNCH = 1 punch AICs for wing only

LPUNCH = 2 punch AICs for control surface only

LPUNCH = 3 punch individual AIC matrix for wing

and control surface

LPUNCH = 4 punch total AIC matrix for wing-control surface combination

The AIC matrices are punched by rows with a 1P6E12.5 format. Each row of an AIC matrix begins on a new card.

4. Mach Numbers (6E12.5 format)

Column	1-12	13-24	24-36	37-48	49-60	61-72
Name	FMACH(1)	FMACH(2)	FMACH93)	FMACH(4)	FMACH(5)	FMACH(6)
Item	(1)	(2)	(3)	(4)	(5)	(6)

- (1) FMACH (1) Mach number
- (2) FMACH (2) Mach number

• • • • •

(NMACH) FMACH (NMACH) Mach number

Enter NMACH values of Mach number (see Part 3, Item 1). Mach numbers must be in the range 0.95 to 1.05.

5. Frequencies (or Reduced Frequencies) (6E12.5 format)

Column	1-12	13-24	25-36	37-48	49-60	61-72
Name	FREQ(1)	FREQ(2)	FREQ(3)	FREQ(4)	FREQ(5)	FREQ(6)
Item	(1)	(2)	(3)	(4)	(5)	(6)

Input NFREQ values of frequency or reduced frequency (see Part 3, Items 2 and 3). Reduced frequency is defines as $k_r = \frac{\omega - b_r}{U}$ where b_r is the semi-chord of the wing root, U is the free stream velocity and ω is the oscillatory angular frequency in radians/sec

(1)	FREQ	(1)	frequency	(CPS)	or	k _r
(2)	FREQ	(2)	frequency	(CPS)	or	k _r
•	٠		•	•		•
•	•		•	•		•
•	•		•	•		•
	•			•		•

(NFREQ) FREQ (NFREQ) frequency (CPS) or k

II NFREQ >6, continue input of FREQ (7) to FREQ (NFREQ) on new card.

6. Number of AIC Stations (6I12 format)

Column	1-12	13-24	25-36	37-48	49-60	61-72
Name	NXWING	NYWING	NXCS	NYCS		
Item	(1)	(2)	(3)	(4)		

NXWING Number of chordwise AIC collocation stations on wing
 NYWING Number of spanwise AIC collocation stations on wing
 NXCS Number of chordwise AIC collocation stations on control surface. Set equal to zero if analysis is for wing only
 NYCS Number of spanwise AIC collocation stations on control surface. Set equal to zero if analysis is for wing only.

7. Spanwise Location of AIC Station; on Wing (6E12.5 format)

Column	1-12	13-24	25-36	37-48	49-60	61-72
Name	YAIC(1,W)	YAIC(2,W)	YAIC(3,W)	YAIC(4,W)	YAIC(5,W)	YAIC(6,W)
Item	(1)	(2)	(3)	(4)	(5)	(6)

(1) YAIC(1,W) Spanwise coordinate of first row of AIC collocation stations on wing

(2) YAIC(2,W) Spanwise coordinate of second row of AIC collocation stations on wing

(NYWING) YAIC (NYWING, W) Spanwise coordinate of last row of AIC collocation stations on wing

AIC station rows are numbered from root to tip of surface. If NYWING > 6, continue input on new card(s).

8. Spanwise Location of AIC Stations on Control Surface (6E12.5 format)

Column	1-12	13-24	25-36	37-48	49-60	61-72
Name	YAIC(1,CS)	YAIC(2,CS)	YAIC(3,CS)	YAIC(4,CS)	YAIC(5,CS)	YAIC(6,CS)
Item	(1)	(2)	(3)	(4)	(5)	(6)

- (1) YAIC(1,CS) Spanwise coordinate of first row of AIC collocation stations on control surface
- (2) YAIC(2,CS) Spanwise coordinate of second row of AIC collocation stations on control surface

(NYCS) YAIC(NYCS,CS) Spanwise coordinate of last row of AIC collocation stations on control surface

Omit this input if only the wing is analyzed. For NYCS 6, continue input on new card(s). AIC station rows are numbered from root to tip of surface.

9. Chordwise Location of AIC Stations on Wing (6E12.5 format)

Column	1-12	13-24	25-36	37-48	49-60	61-72
Name	XAIC(W,1,1)	XAIC(W,1,2)	XAIC(W,1,3)	• • •	• • •	
Item	(1)	(2)	(3)	(4)	(5)	(6)

- (1) XAIC(W,1,1) Streamwise coordinate of first AIC collocation station in first row on wing
- (2) XAIC(W,1,2) Streamwise coordinate of second AIC collocation station in first row on wing

(NXWING * NYWING) XAIC (W, NYWING, NXWING) Streamwise coordinate of last

AIC collocation station in
last row on wing

9. continued

Streamwise numbering sequence is from leading edge to trailing edge (see Figure 5.3). Continue input of values for each row immediately after the last value of the preceeding row; do not begin input of each row on new card.

10. Chordwise Location of AIC Stations on Control Surface (6E12.5 format)

Column	1-12	13-24	25-36	37-118	49-60	61-72
Name	XAIC(CS,1,1)	XAIC(CS,1.2)	XAIC(CS,1.3)			
Item	(1)	(2)	(3)	(4)	(5)	(6)

Procedure to input streamwise coordinate location of AIC stations on control surface is the same as wing above. Omit this input if only wing is analyzed.

3.0 SAMPLE PROPLEMS

The operation of the transonic AIC program is demonstrated with three sample problems. A trapezoidal Wing-rectangular control surface combination, a cropped trapezoidal and a delta configuration are analyzed. Explanation of input parameters and complete listings of input cards and computer output are given for each sample problem.

Sample Problem 1.

Transonic AIC's are obtained for a trapezoidal wing and rectangular control surface. The planform geometry and AIC stations are shown in Figure 5.5. The dimensional unit used for length is feet, therefore the acoustic velocity is entered as feet/sec. Five boxes were specified for NBW. The box overlay, which is included with the output, has 21 boxes on the wing and 10 on the control surface, thereby satisfying the 45 box limitation. There are 10 diaphragm boxes in the gap area. The analysis is performed for M = 1.0, $k_{x} = 0.10$ and a = 1116.87 ft/sec (sea level). Input parameters are summarized below and a listing of the input data cards and computer output follows.

$X(1) = 0.0^{\circ}$	X(2) = 1.0'	X(3) = 2.0'	X(4) = 3.0'	X(5) = 4.0'
$Y(1) = 0.0^{\dagger}$	$Y(2) = 0.0^{\circ}$	$Y(3) = 2.0^{\circ}$		
SOUND = 116.87 f	t/sec acou	stic velocity (s	ea level)	
NMACH = 1	numb	er of Mach numbe	rs	
KF = 1	inpu	t reduced freque	ency	
NFREQ = 1	numh	er of reduced fr	equencies	
NBW ~ 5	ոստե	er of chordwise	boxes on wing	
LPUNCH - 4	punc	h combined wing-	control surface	e AIC matrix
	on c	ards		
FMACH (1) - 1.0	Maci	number		
FREQ (1) - 0.10	redu	ced frequency		
NXWING = 3	numb	er of chordwise	AIC stations or	n wing
NYWING ~ 5	numb	er of spanwise A	AIC stations on	wing
NXCS 2	numb	er of chordwise	AIC stations or	n control surface
NYCS - 3	numb	er of spanwise A	AIC stations on	control surface

YAIC(1,W) = 0.2' $YAIC(2,W) = 0.6^{\circ}$ YAIC(3,W) = 1.0'YAIC(4,W) = 1.4YAIC(5,W) = 1.8'7AIC(1,CS) = 0.4YAIC(2,CS) = 1.0'YAIC(3,CS) = 1.6'XAIC(1,1,W) = 0.575XAIC(1,2,W) = 1.050XAIC(1,3,W) = 1.525' $XAIC(2,1,W) = 0.725^{\circ}$ XAIC(2,2,W) = 1.150'XAIC(2,3,W) = 1.575'XAIC(3,1.W) = 0.875XAIC(3,2,W) = 1.250'XAIC(3,3,W) = 1.625' $XAIC(4,1,W) = 1.025^{\circ}$ $XAIC(4,2,W) = 1.350^{\circ}$ XAIC(4,3,W) = 1.675XAIC(5,1,W) = 1.175'XAIC(5,2,W) = 1.450'XAIC(5,3,W) = 1.725'XAIC(1,1,CS) = 3.25'XAIC(1,2,CS) = 3.75'XAIC(2,1,CS) = 3.25'XAIC(2,2,CS) = 3.75XAIC(3,1,CS) = 3.25'XAIC(3,2,CS) = 3.75

AIC CONTROL STATION

TRANSONIC SAMPLE PROBLEM 1. FIGURE 5.5.

DATA CARD COLUMN NUMBER

5

127156740.127455753.12715c749H12445b28H12345c789H1234567B3H1234567B3H1234567B9H1234567B0, 111111111111027 2722831631314444444444445555555660666666171111111

	MACH NO. Red freg	Y-WING	SXIX-X	SNIN-X	X-NING	X-TAIL
•	•		1.575	1.675	•	3.15
	. •	1.8	1.150	1.350		3.25
3.0	·	1.4	601.11	1.425		3.15
	· c		1.525	1.625	1.725	3.25
9 · C	· •	9•6	1.050	1.250	1.450	3.75
7 % C C	1.9 0.1	C + • €	0.575	0.875	1.175	3.25

1111111111122222222233333333344444444555555556666666677777778 12345678911234567891123156789812345678981234567898123456789812345678481234567898

DATA CARD COLUMN NUMBER

LISTING OF INPUT DATA CARDS FOR TRANSONIC SAMPLE PROBLEM 1. FIGURE 5.6.

HUGHES AIRCRAFT CO. TRANSONIC AIC PROGRAM

FLIGHT CONDITIONS AND GEOMETRY

# 1116.870 L/T RHO* 1,00	FING	3,000	2,000 1.000	0. 2.000	2,000 2.000	1,000	6,000 4.000	2	رح د	
SPEED OF SOUND										
MACH NUMBER # 1.00000		L.E. STATION (L)	ROOT CHORD (L)	L.E. SPAN (L)	T.E. SPAN (L)	TIP CHORG (L)	TOTAL AREA (L*L)	CHORDWISE BOXES	SPANHISE BOXES	

HUGHES AIRCRAFT CO, THANSONIC AIC PROGRAM (COUT-D)

S.	88 88 88 88 88 88 88 88 88 88 88 88 88	S8SSS	88888	 	18685
BOA OV	7.	(S) - TAIL	(.) - MAKE		

YAIC 0.200000E U0	xaic values- c.575n50E 00 c.725n00E 00 0.875000E 00	.UES 00 00 00	0.1050005 N1 0.115000E N1 0.125000E N1	91	xaic values u0 0.575n55E 00 0.1050n0E n1 0.1525n0E 01 00 0.725900E 50 0.115000E n1 0.157500E 01 01 0.875000E 50 0.125000E n1 0.162500E 01 01 0.102500E 01 0.135000E n1 0.167500E 01
0 10 300000	0.117500E 01	01	9.145000E n1	=	0.172500E 01

HUGHES AIRCRAFT CO. TRANSONIC AIC PROGRAM (CONT-D)

AIG COLLPGATION STATION COCRDINATES ON THE TAIL

ヾ

HUGNES AIRCRAFT CO. TRANSONIC AIC PROGRAM (CONT-D)

CHARLES OF THE PROPERTY OF THE

PEFERENCE CHORD 1.00000€ 00

REDUCED FREQUENCY (REF. CHORD) 1.00000€-01

REDUCED VELOCITY (REF. CHORD) 1.00000€ 05

FREE STREAM MACH NUMBER 1.00000€ 00

FREE STREAM VELOCITY 1.11687E 03

DENSITY 1.00

DYNAMIC PRESSURE (1/2-RHO+VEL++2) 6.23699€ 09

AERODYNAMIC INFLUENCE CREFFICIENTS

			•		
X.	-3,00136 01 5,89826 01 -5,51106 00	A.1207E 03 -1.9964E 01 -3.4178F 01	A.3588 00 -3,30276 00 7,52376 01	-2.384 WE 31 -2.786 E 31 -1.107 WE 31	7,59n7e n0 -3,3493E n1 -1,6132E n1
ŧ	-4:56998 2:6998 0:9498 0:09498	-1.0191E 01 3.0298E 01 2.7992E 01 0.	-2.9218E 01 9:3284E 01 -2.4299E 01	2.7146F 01 -4.5482F 01 2.7537F 01 0.	1.7538F 01 5.2479E 01 6.1981E 00
a	1.9477E 01. -1.4959E 02. 8.7265E 90.	-4.4509E 00 7.3469E 01 9.9841E 01	-8-8199E 00 	1.4935 01 -7.7736 01 2.92466 01 0.	-3.7024F
J.	2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	. 3.7351ff 00 -4.6392ff 01 -6.1245ff 01 0		-1.2547E 01 1.6890E 02 -0.0113E 01	-1.0135E 01 -1.0365E 92 -3.4514E 81 0.
I.	-0.3091E 00 3.9792E 02 -4.0889E 00 0.	2.3969è 01 -1.4999E 02 -6.6442E 01	12, 100 67, 01 0. 14, 00, 01 0. 14, 01 0. 10, 01 0. 10, 01	1.4067E-01 2.2227E 02 -1.9198E 01	2.0863E 01 -1.5681E 02 -8.7037E 01
A.	1.1546E 01 -7.7229E 02 4.6931E 01 0.	-6.5761E 01 5.2679E 01 5.2388E 01	-1.2908p op 3 2139e o2 7.0983e o0 n.	4.5807F 00 -5.0648F 02 5.2280E 01	-4.5467E 01 1.5648E 02 2.7762E 01
E,	4.2813E 01 -2.5678E 02 2.3319E 01	-5.3567E 01.7.4964E 012.8032E 01.	-5.7294 1.25626 02 2.84336 00 0.	1.7757E 01 -1.5121E 02 6.9461E 00 0.	-4.7584F 01 6.4461E 01 -2.1080E 01 0.
F.	-1.3410E 02 4.8711E 02 -7.7316E 01 0.	1.1770E 02 -6.4991E 00 3.4346E 01	2.4457 -1.4150E 02 5.4660E 01	-7.9182E 01 3.3510E 02 -3.3972E 01 0.	A.4276E 91 -8.2261E 91 5.0399E 01
Ξ.	-3.8899E 01 1.1797E 01 -778906E 01 0:	2,898%E 01 -3,5520E 00 6,8227E 01 0;	3:8595E 01 -2:4229E 00 6:3011E-01 0:	-2:1286E 01 8:5637E 00 -3:1862E 01 0:	2,6439E 01 -3,7734E 00 9,4544E 01 0;
ă	ROW = 1 1.71286 02 -1.12996 01 2.35206 02 0.	ADM = 2 -5.1919E 31 6.4329E 03 -6.4973E 01 0.	POU = 3 -1.:478E 02 1.:402E 01 -1.:633E 62 0.	7.36F - 01 7.36F - 01 1.4329E 01 1.3619E 02	AC. = 5 -7.5609E 01 -7.158E 00 -1.323E 02 0.00
_	252			^ ~	<u> </u>

į

	000	040	004	202	010	000	0 E C	900	0 4 0
	4,8347E 5,3193E 5,8049E	9.4622E -3.1014E -0.9596E	3,626E -5,1095E 1,3237F	5,0285F-2,7724E	7.07978 -1.3026F -3.0266E	1,9303E -1,2582E 9,8995E	1.29746 1.2448E	**1400 *********************************	1.1201E -7.1977E 4.8477E 0.
	000	100	### 6 0 0	252	000	000	000	000	900
	1,1507E 5,937GE -5,4172F	-2. 6.0. 6.0. 6.0. 6.0. 6.0. 6.0. 6.0. 6.	-2.0198E 3.4525E -3.1120F	-3.7192E 5.2674E -8.9792E 0.	-1.2637 -3.6096 1.840F	-8.1068E -1.7715E -3.0378E 0.	-1.6717F -3.3947E -7.5579E	-4.7147F -1.2892E -8.5793E G.	-3,7079r -8,50608r -8,53848
	040	0 1 1	000	000	000	0000100	0 0 0	000	200
	-3.7299E 5.1503E -1.3609F	-5.1668E 7.0748E 3.8246E 0.	-2.3915E 2.8227E -2.8764E 0.	-1.2727E 6.8311E -4.8677E 0.	-3.5919E 6.0146F 2.1026E 0.	-1.2380E 1.5972F -2.2917E 0.	11.1788 11.1305 13.3040 10.00	-1.8392E 2.6789E -4.3888E 0.	-7.2361F 9.4004E -4.4433E
	999	184	000	400	900	000	000	000	0000
	6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6	1.1622 1.1.35828 1.7.27.0 1.0.35838	9.6244E -1.2754E 5.1102E 0.	1.0370 1.741538 0.41538	4.6229E -A.8257W -8.4768E 0.	3.81776 -5.97366 5.47306	8.2003 1.2420 1.47726 0.	2.02%15 -4.4260 1.63696 9.	1.74465 -3.36228 1.17258
	100	120	0 0 0	000	484	000	000	000	0 0 0
	1.1902F -1.3665E 7.7505F 0.	7.2333E -1.5167E -2.9354E	7.1149E	2.3107E 2.9760E 0.	7.09225 -1.2260E -1.94ABE	4.54246 -3.98726 1.28476 A.	2.6989E -3.7737E 2.0501E	7.7533E -4.2110E 2.5125E 0.	7.4964E -2.3892E 0.5170E
	000	1221	1200	001	005	002	922	91	155
	. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	-3,5081E 2,6701E 4,0997E 0	-2.9758E 2.4173E -1.9936F	-5,6801E 4,7732E -8,4432E 0.	-2.7322E 1.2625E 6.5899E 0.	1.6881F 1.1259E -2.4284E 0.	-3.43738 2.44268 -7.19628 n.	-1.5201F 7.9023E -7.7806E	-1.0915E 6.4198E -5.7309E 0.
	1100	444	110	110	1111	000	446	440	666
	-3,8275E 8,4292E 8,9079E 0.	-4.6908E 7.9261E -2.0471E 0.	-2.1931E 4.2435E -1.5007E 0.	-1.2962E 3.3348E 8.6764E 0.	-4.2341E 6.0558E -1.1773E 0.	-1.1878E 2.3691E -1.4244E 0.	-1.0721E 2.6290E -2.9217E 0.	-1.8768E 3.4981E -8.9493E	16.9289 1.4385k 16.4769E
	0020	02	012	020	0110	0110	622	0110	90
	1.5418E -1.3006E 6.1369E D.	5.3949E -1.1109E 6.2894E 0.	5.4599E -1.1382E 3.5124E 0.	11.11.139 72.391.08 5.2836 0.	3.6195E -3.8080E -4.5854E	3.1209E -5.2638E -1.7499E 0.	6.7180E -1.1965E -3.3687E 0.	2,6863E -3,4483E -1,2448E	2
	00 01 01	000	1000	555	200	900	00.	000	0010
	2.5877E -3.0514E -1.2098E 0.	54- 54- 55-50 55-4- 56-60 56-6	1.2540E 7.6680E 0.	1:05936 7:86716- -1:14256 0:0	2.0579E -3.3313E 2.4974E 0.00000000000000000000000000000000000	7.2227E -6.7195E- 2.7100E 0.	7.9547 -1.0692E 4.9994E 0	1,0360E -1,2731E 2,3346E 0:	4,3832 13,8738 1,3806
	1000	011	222	001	00	000	901	000	000
	# 7.2190E #7.2190E #5.1906E #1.2143E 0.00	POM = 7 -1.0859E 1.4700E -1.2357E 0.	ROW = 6 -2.4696E 1.3540E -6.9782E 9.	RGN = 9 -5.4314E 1.9763E -1.0568E 0.	80% =10 -8.9328E 8.3170E 7.1893E	ROJ =11 -1.4234E -1.2736E 3.5187E 0.	ROW =12 -3.2628E 8.4826E 6.7602E	2.5291E	POA = 14 - 04 / 1135 1. 451135 1. 68316 0.
•	-				233				•
									,

410	0440	2446	5556	4440	004M	0040
76- 76-	9600	404C	0 10 0 C	27.7.0 THE THE	9 0 0 4 mm m m	₩ ₩₩₩
189 396 375	0404 0404 0404	8 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0000 0000 0000 0000	0.4 C C C	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	744 748 848
00+0	6 4 4		7-77	7 - 7 0	V 4 W V	759-
800	0 000 0	5555	2222	5555	4444	5550
46 46 77 77	9494 9847 8866	7448	6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0000 0000 0000	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 40 4 4 10 0 70 11 11 11 11
4 6 4	9 D4 9	400 4 00 WV 40 4 V 4 4 80	N. 00 00 00 00 00 00 00 00 00 00 00 00 00	00 44 40 49	7 8 7 4	740H
2400	e 20 to 10	40.04	તું ન ું તું	ทหุหาท	+ + 6 +	નું નું જ
# 0 0 0 0	0 0 0 0	0000	8000	0000	8555	8885
0 1 1 0 10 0 11 11 11	200 200 200 200 200 200 200 200 200 200	4400 4400 mmm	14 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 4 6 6 0 0 4 0 mmmf	75 5 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
8 6 6	9400	W W @ 0	4 8 6 K	6 0 N H	4 0.00	. 157 . 1742 . 171 . 251
***	4 40 0	4 40 10	40.00	4 412 10	STOR	whra
000	9000	0000	0000	4000	0000	0000
2.4.4 2.5.4 3.7.7.7	40 00 V 40 40 V 40 V V V V V V V V V V V V V V V V V V V	4000 4004 #####	0244 0804 mmmm	40.00 00.00 mmmm	2047 404 666	たまま よ り ひょ ボギ 宇 田
6 4 A	0 HH 0	8. 44 48 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	40 V 4	0 0 4 W	4 4 0 V	5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
81 €	in only us	3000	5 4 5 G	4040	1 1 1 W Q 44 RV	4 444
000	10000	9000	4040	4040	9000 F	4056
20 0 1 20 00 20 00	8 4 4 7 8 6 6 7 8 8 8 8 8	7.00 6.00 7.00 7.00 7.00 7.00 7.00 7.00	37 E 50 E 30 E	325 435 635 635 635 635 635 635 635 635 635 6	0.0€ 9 4.40.4 mmmmm	27 27 25 20 20 20 20 30 30 30
6 V 4	N 54 N	N 00 K	447	0000	7 00 4 9 00 00	98.67
40.60	4 4 4 4	# 0.10 U	\$ 4 C 4	to entro	U +1 U +	1 11
400	2000	000000000000000000000000000000000000000	0000	0000	010	000
4 4 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 8 8 8 5 8 8 8 8 5 9 9 9 9	77. 1.00.04 1.00.04	0.00 0.00 € 0.00 0.00 1.00 0.00	80 00 80 80 0 44 81 81 81 81	7.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04	677 120 146 146
9 00	89 24	4044	80 8 H	0 0 0 4	44.00 W	000 000 000 000 000
4460	4000	4400	w 0. 0. W	e m m n	10 to 4 ft	4 40.4
000	### 0 0 0 0 0	2000	1110	4444	0000	000
30 440 10 4 0 11 11 11	4466 8466 8466 8466	4450 1450	376 776 196 466	6 4 9 6 0 0 0 0 0 0 0 0	200 300 300 300 300 300 300 300 300 300	14 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
040 4 NW	200 C	2000	17 K 8	2000	0 0 0 M	4 9 W W
* * * 0	0044	9989	० ० ० ०	0,40	4 WW 12	おがとい
000	9999	8699	1000	4666	2005	2000 1111
6 6 4 7 10 10 10 10 10	306 376 165	200 200 200 200 200 200 200 200 200 200	24 48 2004 3004	36E 36E 06E	500 50 500 50 500 50 500 50 500 50 500 50 500 50 500 50 500 50 50 50 50 50 50 50 50 50 50 50 50 50 5	0 0 0 0 0 0 0 0
0 0 N	9.99 9.99 0.90	200	7223	4 6 6 4	0.4 W W	99.59.99
2440	Land	4464	4464	+ 466	2446	2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
600			######################################	##### 10000 10104	ттттт ссе 10400	######################################
24E	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.	222 222 221 4135 4135	04948 84848 0448	000 000 000 000 000 000 000 000 000 00	4416 2007 3000 400
40.00 40.00 40.00	88844 88844	4 4 5 5 5 6	8000 H R	9 49 9 N	00004	04 444 04 6 6 6
•	• • •				7 117	
# 6 6 6	00000	40000 10101		2000 B	00030 40454	FE THE THE THE THE THE THE THE THE THE TH
357E 199E	6216 6216 6216 6316	17 40 40 130 695 695	10 6266 6266 6266 1266 1266	455 455 470 770 671 671	2244 2244 2344 284	2371 7371 8116 3916
W W OW	# 0 0 W V 4	11 17 10 00 11 11	3.545 E	11 12 6 0 4 7	3 11 0 W 4	3 - 2 5 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6
20 t t t t t t t t t t t t t t t t t t t	#0# -6 -0 -3	ROE 1 4 4	5 147	30 100 1	311/04/4	0 1

Sample Problem 2.

YAIC(4,W) = 1.8'

A cropped trapezoidal wing is analyzed for M = 1.0, $k_r = 0.10$ and '16.87 ft/sed (sea level). The trailing surface is removed from the analysis by setting X(5) = X(4) = X(3). The wing geometry and AIC stations are shown in Figure 5.7. Six chordwise boxes were specified for the wing. The resulting box overlay has 33 boxes. Input information is summarized below and a listing of the data input cards and computer output follows.

$$X(1) = 0.0'$$
 $X(2) = 1.0'$ $X(3) = 2.0'$ $X(4) = 2.0'$ $X(5) = 2.0'$ $Y(1) = 0.0'$ $Y(2) = 1.0'$ $Y(3) = 2.0'$

SOUND = 116.87 ft/sec	acoustic velocity (sea level)
NMACH = 1	number of Mach numbers
FK = 1	input reduced frequency
NFREQ = 1	number of reduced frequencies
NBW = 6	number of chordwise boxes on wing
LPUNCH = 1	punch wing AIC matrix on cards
FMACH $(1) = 1.0$	reduced frequency
NWWING = 4	number of chordwise AIC stations on wing
NYWING = 4	number of spanwise AIC stations on wing
NXCS = 0	number of chordwise AIC stations on control surface
NYCS = 0	number of spanwise AIC stations on control surface
YAIC(1,W) = 0.2'	YAIC(2,W) = 0.7' YAIC(3, W) = 1.3'

$$XAIC(1,1,W) = 0.100^{\circ}$$
 $XAIC(1,2,W) = 0.700^{\circ}$ $XAIC(1,3,W) = 1.300^{\circ}$ $XAIC(1,4,W) = 1.900^{\circ}$ $XAIC(2,1,W) = 0.100^{\circ}$ $XAIC(2,2,W) = 0.700^{\circ}$ $XAIC(2,3,W) = 1.300^{\circ}$ $XAIC(2,4W) = 1.900^{\circ}$ $XAIC(3,1,W) = 0.380^{\circ}$ $XAIC(3,2,W) = 0.900^{\circ}$ $XAIC(3,3,W) = 1.405^{\circ}$ $XAIC(3,4,W) = 1.915^{\circ}$ $XAIC(4,1,W) = 0.860^{\circ}$ $XAIC(4,2,W) = 1.220^{\circ}$ $XAIC(4,3,W) = 1.580^{\circ}$ $XAIC(4,4,W) = 1.940^{\circ}$

ATC CONTROL STATION

TRANSONIC GAMPLE PROBLEM FIGURE

######################################	123456789:123456789:1123456789:112345678901123456789011234567890112345678901123456789011234567890
--	---

	MACH NO. Red Fred	O O O O O O O O O O O O O O O O O O O
		1.915
2.0	, -	1.405
2.0 1116.8/	ı e	1.890 1.900 1.900 1.900
3 3 • • N N	. •	1.390 1.6390 0.530 1.530
⊕ • • • • • • • • • • • • • • • • • • •	, •	9.700 9.700 1.900
e e	1.8	8.208 0.10 1.300 0.860

11111111111122222222233173337374444444455555555556666666666677777778 123456789n123456789n1234567890123456/89012345678901234567b901234567b901234567b901234567B90

DATA CARD COLUMN NUMBER

LISTING OF INPUT DATA CARDS FOR TRANSONIC SAMPLE PROBLEM 2. FIGURE 5.8.

HUGHES AIRCRAFT CO. TRANSOFIC AIR PRIGRAM

FLIGHT CONDITIONS AND GEOMETRY

	5NI A	TATL
L.E. STATION (1)	.0	2.000
8001 "HORP (L)	2.000	
L.F. SPAN (1)	1.000	2.040
T.E. SPAN (L)	2.000	2.000
TIP CHORD (L)	1.000	.0
TOTAL AREA (L+L)	7.000	Ö
CHORNAISE HOXES	¢	E
SPAN41SE BOXES	c	٧.

HUGHES AIRCRAFT CO. TRANSONIC AIC PROGRAM (CONT-D)

AIC COLLOCATION STATION COORDINATES ON THE MING

	70	2	i c	1
	0.1900000 01	9.1900n0E 81	9.1915nge 01	n.1940ncE n1
	11	10	10	10
	0.130000€ 01	0.130nonE 01	0.140530£ 01	0.158ngnE 01
	Û	00	00	ç
	0.706600 00	0.70000E 00	0.900000F 00	D.122000E #1
UFS	00	00	60	90
XAIR VAI UFS	0.199ngng 00	U.100000E 00	0.3810006 30	0.8000006 50
	00	00	10	0.1
¥410	0.200300£ 00	0.790009E 00	0.130000# 01	0.180000g 01

HUGHES AIRCRAFT GO. TRANSONIC AIC PROGRAM (COLT-D)

~ . . .

DSCILLATORY FREGJENCY (CPS) 1.77755E 01

REFERENCE CHORD 1.000CPE 30
REDUCED FREQUENCY (REF. CHORD) 1.000006-01

REDUCED VELOCITY (REF. CHORD) 1.40000E 01

FREE STREAM HACH HUMBER 1.00000E 00

FREE STREAM VELOCITY 1.11687E n3

1.03

DENSITY

DYNAMIC PRESSURE (1/2+RHO+VEL-+2) 6,23699E 05

AERODYNAMIC INFLUENCE COEFFICIENTS

		##8	0110	900	9 1 9	# 4 8 6 3 6	# # # 6 0
		0 0 0 0 0	A	19 E F	86 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	446	448
	<u>.</u>	. 5346E.	200	8183E 3868E 3217E	-5.9036F 6.53176 -7.3185E	46.00% 5.00% 7.00% 1.00% 1.00%	2.0564E -2.7674E -2.4916E
		-4.8346E+03 4.6386F 91 5.2075F 00	1.7924E -2.906/E -2.2550F	5.8163E 7.3217E	r, er	d.n.n.	4.50
		## @	101	1001	000	100	6 6 6
		1,6124F -5,5868F -2,6938F	-1.3620E 2.6793E 1.7997E	-2.6187E 1.1855E -4.7585E	-2.05378 9.91496 -5.3728	7.6007F -8.4860F -4.415F	-3.5722E 9.7653E 2.7497E
	4	.6124F .5868F .6938F	W 4 7	40.6	9 9 10	\$ < .	20.1.
		41 86				V & 4	
		555	0000	555	0 0 C	5.0943F+01 -3.5218F 01 -1.3466F 01	#0# cce
	ĭ	1.7125F-0 -3.1868F -1.6434F	-9.21 egs 2.0933 5.18334	1.4881E 3.5261F -9.3772F	1.5160F -1.425&F -1.1426E	5.0943F -3.5218E -1.3466F	-1.0573E 2.0396F 5.6469E
	_	<u> </u>	0 0 k	400	8,4 4	10 to	~ 01 m
		0 1 1 0 1 1 0 0 0	# # # # # # # # # # # # # # # # # # #	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 1 5 5 5	000	
						### Pos	W W W
	€	.1.4649E 3.8597E 1.0147E	600 500 500 500 500 500 500 500 500 500	.5308E .1237E .0658F	932 946 3921	1.5078F 5.9906E 1.5444F	7.0061F 1.8650F 5.560BF
		- HB H	3.2615F 1.5039E -3.5121F	-1.5308E -4.1237E 2.0658F	-4.9324E -1.6940E 6.3921E	-1.5078F 5.99068 1.5464F	2.0061F U1 1.8650F 01 -8.5666F 01
			122	222	ينو ليو ليو	656	2 2 2
2	_	7.n967E nn 2.2773E-01 1.7229F n1	4.0923F -8.5277E -3.2240F	-3.61946 1.32616 3.73586	-4.7161E 0 1.3654E 0 1.1462E 0	5.2457F	4.7002E. 9.3869E 3.5601E
	ï	7.0967E 2.2773E 1.7229F	22.5	322	77. 98. 44.	40 K	4.7002E -9.3869E -3.5401F
			466		क् सम		• •
		-1.5762F n1 -9.2102E-01 -7.6487F 00	8 4 4	466	5 5 5	000	222
<u>ب</u>	F.	62F 02F 77F	22.25 2.4.4 2.4.4	9771F 3559E 3789E	36. 36. 30. 30. 30.	4916 2986 7326	.8246F .7379E
	W.	-1.5762F -9.2102E -7.6487F	-1.4525E 1.3524E 1.9204E		9.9043E -2.1766E -2.309E	-4.1491E -1.4298F -1.1732F	-8.8246F 2.73/9F 3.1583F
ERODYNALIC INFLUENCE COEFFICIENTS		111	1100	100	- T T	111 202 655	2
ت ا							
T T	Ξ	361 21′ 833	-9.6834F 3.8015F -5.611üF	.3423E .9080F .7753E	3.9852F -3.9014F 2.9411F	4.3619E 6.1652F 2.7675F	6.19716 4.14836 6.23088
200		-1.3361F 5.921'c 2.4633F	ສຸບ ພາ ເບ້ ຕະສາ ຕໍ່	1.3423E -2.9080F -2.2753E	n h v	• • •	-6.19715 4.14835 -6.23025
A E		00 00 00	255	111	222	325	4 0 0 à
					-5.1672E 0 3.7929E 0 -1.6042E 0		3.8381E -1.2168E 1.0281E
	젒	79.0	1.5961E -9.9686E 4.8522E	9.7046E 3.3349E i.8819E	60	-2.0432E -1.1392E -4.3196E	22.22
		-1.2296E -3.5707E -2.7950E	•	•	10 10 14		
		7000	0000	900	3000	900	565
	i	2.3762E-01 -6.9629E 00 -1.8351E 01 -7.7325F-01	2.31976 -4.85276 2.63216 2.90516	7.3866E 9.4583E 7.9778E -1.7545E	-7.9546E 3.1150E -8.06376 7.1322F	-3.5473E 00 -8.2974F 00 -2.1428E 01 -8.6966E-61	2.2939E -5.4508E 2.9935E
		20.00	6.4.0.0 1.50.0.0	W.40.4	9.1.7	20.08	0. 4 A
			•	t	, ,		
		5255	#### 1015	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	#### 2555	8 C C C	11: 11: 11: 12: 4: 12:
	¥	2.91046 1.20486 1.92176 4.84186	4.7385 5.95595 5.95595 2.51656	5.1305F 6.1281F 9.5698F 1.7708F	12 = 4 2.3167 1.4526 1.7383 1.3104 1.3104	2.554tc q1 1.363tc q1 3.0356F q1 7.3496F-01	H = 6 2.0428E 1.2980E 3.989BE
		30000	30H = 2 -4.738E 5.9559E -2.5165E -2.5335E	# 100 m	90u = 4 2.3167E -1.4526F 1.7383F	2.554th 2.554th 2.363th 3.33567 7.34967	204 = 6 -2.0426E 1.2980E
		241	21 11	ğ. ,	ř,	ă '	ี่∝ั′
	_	¢41		_			

	7.30	7.20	1.50	1.89n -6.16p	11. 2 4.4. 4.4. 4.0.	-4.486 4.774 -4.300	4.223 -1.997 6.079	1,479 -3,752 6,633	-1.582 1.446 -5.936	4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 .
	222	98E	7 6 6	22.0	100	90	9010	9 1 1	貫턴물	्रहा <u>च</u>
	4.1836E 1.6846F 7.5764E	8.4739E 7.0516F 6.0331F	1.2768F 5.0940F 1.8647E	2.7109F 1.7104F 2.2504E	1.7789F 1.7789F 1.1007F	1.9464F 6.1351F 7.5529F	4. 198851 7. 0444 7. 0444	2,7366F 3,8555F 3,9478F	0.1739F- 1.3240E 5.5430F	3. 6746 - 1.9827F 7.5232F
	1 1 2 0	1 1 222	5 6 6 5 4 8	955	4 4 4	566	1 1	001)	e e e
	1.6037F 3.0756F -1.0286F	1.8439E	-1.5930E	. 1426F 2.4746F 4.0612F	1.5691F 1.5023F -7.4329E	1.3058F -0.5044F -1.1052F	5.4745F-(9.2698F (4.5462F	5.101° 6	7 2637E -1-1-0620F
	866	181	011	222	9 4 6	101	911	900	909	е е н
	-3.52846 -6.16446 4.83628	-3.1276F -8.4673E 7.4325E		1.2421E -5.5748E -6.6281F	-5.6511F -9.8036F 1.2870F	-1.4748F 6.2737E 4.6808F	1.8452E -1.798BE 8.025BE	-3.0665E -1.7598E 7.8798E	-7.0923E 7.6441E-6.2608E	
	## I	225		107	### 6000	6 8 6	255	400	100	200
	-3.4636F 1.5676F 4.0649F	-5.3342E 1.4966E 1.3973E	1.5409E -2.5191E -3.8886F	3.0851E -6.0498E -3.1267E	-4.0074F 1.3942F 3.5483E	-3.66388 1.04448 1.04648	3.67936 5.51006 7.71026	-1.1364E 4.0642E 4.6797E	-1.4335E 4.2248E 3.2806E	-0.7473F 1.7962F 3.34312
	116	117	700	777	00	# # # # # # # # # # # # # # # # # # #	121	285	185	# e C
	4.3278F 1.1069E 1.5155F	5.7763E 4.1402E 2.7340E	1.0364E 3.1809F 1.9834F	5.7811F 1.7475F 6.2655F	8.3497E 1.4027F 4.5751F	2.4543F 1.8874F 2.1016E	1.3857F 1.5661E 2.8476F	1.1468F 4.9454F 3.8113E	1.4089F A.4229F 1.1517F	1.344E n.9667E 4.3047E
	0 H C	- 1 T	555	440	111	225 255	665	C 40	1 1 m er 63	
	9.0531F 0 -8.5590F 0 -2.3849F 0	4,4108F C. 2349F C. 3,2349F	1.5674F 1.4398F -3.2728F	-5.5574F 5	2.6004F 0 -3.6622F n 7.0450F n	2.9332F n -3.0281F n 7.0265F n	-9.7809F n 2.7943F n -1.6790F n	6.5565F n -1.0181F n 2.4342F n	1.116.F n -1.2134F n 5.7208F n	5.7689E -5.7608E 3.181E
	44 5	55 5	256	111	000	216	1100	888	323	ರಕ್ಷ
	4.6134E -4.2795E 2.5274E	-9.38776 9.11856 -2.88246	-9.84726 -2.04756 2.26016	6.1084F -7.9539F 3.0163E	7.8844E 1.2298E 7.6939E	-6.7594E 3.3706E -4.2514E	1.6753E -1.3473E 4.2846E	7.1851E 9.3191F 9.1584F	-5.3309P 1.5041F -3.,747E	-7 1004E 1.3974E -1.0542F
0	6000	0000	5555	2222	00110	9000 1110	9000	0000	00 00 03 03	4 9 5 5
3.2049£	8.9212F 1.3275F 3.284yF -1.9464E	-8.7486E 3.6079E -8.9305F 7.4334E	1.9056E -1.6213E -1.35276 7.1304E	2.2887E -4.6544E 4.3965E -2.2762E	-1.9932F 2.4452F -1.1024F -9.5679E	-5.9458F 2.4211F -5.9562E 4.9474F	5.2570E -7.3909F 1.1918F -1.5832F	6.7988F 6.3037E -3.6051E -8.1711E	-1.9886F 9.447F -1.9544F 7.2849F	-1.1221E 4.9588E -1.1641E
ê	22.29	5555	25.55	2000	2550	866	93	5 5 5 5	2000	2525
-3.822E	-3.8812F -3.8812F -3.8204F -1.5160F 2.5829F	AGN = 8 -2.2110F -4.0281E 4.4719F 1.3526F	0H = 9 1.3856F 4.1323F 4.6699F=-2.6737F	04 #10 -1.5778F 8.9062F -1.4567F 4.5544F	0W =11 -1.4516F 1.2721E -7.2251E 2.7331F	04 #12 -7.8039F -1.2659E -1.0790F	0W =13 -4.7319E 1.6763F -3.9727E 1.8456F	OW =14 -4.15296 2.45846 -2.13416	04 = 15 -2.5742F- -5.5255F 4.3113F	3.5762F- 7.3223F- 7.4223F- 3.4569F-

Sample Problem 3.

XAIC(4,1,W) = 1.520

XAIC(4,4,W) = 1.880'

Transonic AIC's are computed for a 45° delta wing at M = 1.01, f = 5.5 cps and a =1116.87 ft/sec (sea level). Figure ',...) shows the wing geometry and AIC stations. The trailing surface is removed from the analysis by setting X(5) = X(4) = X(3). There are 8 chordwise boxes on the wing and a total of 36 boxes in the overlay. Input parameters are summarized below and a listing of the data input cards and computer output follows.

$$X(1) = 0.0'$$
 $X(2) = 2.0'$ $X(3) = 2.0'$ $X(4) = 2.0'$ $X(5) = 2.0'$
 $Y(1) = 0.0'$ $Y(2) = 0.0'$ $Y(3) = 2.0'$

SOUND = 1116.87	acoustic velocity (sea level)
NMACH = 1	number of Mach numbers
KF = 0	input frequency
NFREQ = 1	number of frequencies
NBW = 8	number of chordwise boxes on wing
LPUNCH = 1	punch AIC matrix for wing on cards
FMACH $(L) = 1.01$	Mach number
FREQ (1) = 5.5	frequency (cps)
NXWING = 4	number of chordwise AIC stations on wing
NYWING = 4	number of spanwise AIC stations on wing
NXCS = 0	number of chordwise AIC stations on control surfac
NYCS = 0	number of spanwise AIC stations on control surface
	ı
YAIC(1,W) = 0.2'	YAIC(2,W) = 0.6' $YAIC(3,W) = 1.0'$
YA1C(4,W) = 1.4'	
V174/1 1 10 0 5/01	W.T.C.(1 C)
XAIC(1,1,W) = 0.560'	XAIC(1,2,W) = 0.920' $XAIC(1,3,W) = 1.280'$
XAIC(1,r.W) = 1.640'	
XAIC(2,1,N) = 0.880	XAIC(2,2,W) = 1.160' $XAIC(2,3,W) = 1.440'$
XA1G(2,4,W) = 1.720'	
XAIC(3,1,W) = 1.200' XAIC(3,4,W) = 1.800'	XAIC(3,2,W) = 1.400' $XAIC(3,3,W) = 1.600'$
XA1C(3,4,W) = 1.800'	" (','','', ''', '''', '''', '''', '''', '''', '''', '''', ''''', ''''', ''''', ''''''

XAIC(4,2,W) = 1.640'

 $XAIC(4,3,W) = 1.760^{\circ}$

AIC CONTROL STATION

SAMPLE PROBLEM J.

TRANCONIC

FIGURE

DATA CARD COLUMN NUMBER

123456789#123456789#123456789#123456789#123456789#1234567b9#1234567b9#1234567B9#1234567B9#

	FRED.	9 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
=		1.168
2.0	9	6.86 1.600
2.0 1114.87		1.4
	•	1.3
2 3 2 0 2 0	•	1.028 1.726 1.046
a • •	1.81 5.5	6.2 6.566 1.446 1.570

12345678011234567891123456789812145678981234567898123456785112345678981234567898

DATA CARD COLUMN NUMBER

FIGURE 5.10. LISTING OF INPUT DATA CARDS FOR TRANSONIC SAMPLE PROBLEM 3.

HUGHES AIRCRAFT CO. TRANSONIC AIC PROGRAM

FLIGHT CONDITIONS AND GEOMETRY

RHD# 1,00	TAIL	2.080	ů	2.000	2.000	•		c	£	BOX \$PAN * 2.04026E-01
SPEED OF SOUND = 1116.870 L/T	9×1 4	.0	2:000	:0	5:000	:0	4.000	œ	cc	BOX CHORD = 2.466675-01 L
MACH NUMBER # 1.01966		L.E. STATION (L)	ROOT CHORD (L)	i.E. SPA4 (L)	T.E. SPA4 (L)	ניי מאסהט פוד	TOTAL AREA (L	CHORDAISE BOXES	SPANHISE BUXES	TOTAL CHORDWISE BOXES # &

HUGHES AIRCRAFT CO. TRANSONIC AIC PROGRAM (CONT-D)

HUGHES AIRCHAFT CO. TRANSONIC A:C PROGRAM (CONT-D)

AIC COLLOCATION STATION COORDINATES ON THE WING

	Į.	7	E	10
A.1640706 A1		0.1720008 #1	0.180000E #1	0.1880nDE 01
	0.128000€ 01	0.144000£ 01	0.16005gE 01	0.17600BE 01
	0.92,000 00	0.1150006 "1	0.140000F 81	0.164000E #1
XAIC VALUES	0.5400006 00	0.8800006 00	0.120000E 01 0	0.1520006 01 0
4A1C	0.2000005.0	0.600000E 00	3,100000E UL	9.140000E 01

HUGHES AIRCRAFT CO, TRANSONIC AIC PROGRAM (CONT.D)

OSCILLATORY FREQUENCY (CPS) 5.50000E 00
REFERENCE CHORD 1.00060E 00
REDUCED FREQUENCY (REF. CHORD) 3.26424E 01

FREE STREAM MACH VUMBER 1.01000E 00 FREE STREAM VELOGITY 1:12804E 03

DENSITY 1.00

DYNAHIC PRESSURE (1/2*RHO*VEL**2) 6,36236E 05

AFRODYNAMIC INFLUENCE COEFFICIENTS

	256	# % # C C C	565	C C C	555	200
ı	244 244 344	500F 332E 792E	736 1146 1717	6 44 0 0 44 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 20 20 20 20 20 20 20 20 20 20 20 20 2	530E 517F 506E
_	h. 2. 4 W 4. 4 Ø Ø Ø	200	0 4 4 0 4 6	9.44	44.6	0 4 6 W CW
	666	, 8 6 6 9	1 1	644	1 888	10 10 00 1
	60 (316) C C C	74 - W	20 2	4 00 மாமா	2 4 4 mm m	
젍	000	235 229 229	718 536 216	277	456	0000 0000 0000 0000 0000
	~~~	444	in a	. 79	**	704
	000	4 44	400	0 0 0 W 44	500	900
I	1976 5436 2166	737F 688E 707E	987 997 999 9	2.4. 2.0.0. 6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	3346 9826 1246	662E 702E
_	25.5 25.6	8.20	4.00 00.0	440	6.0°.	8 44
	# # # # # # # # # # # # # # # # # # #	1 1 1 8 8 8 8 6 8	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 6 C N 61 4	111 886	1 1 1 0 0 5
	60 CC CD CD C	Mini D.	mm m	7.50 E	<b>26.2</b>	P # P
교	464 674 081	3662 0466 0637	6 8 8 80 9 9 9	916 739 80 0	11 EV	. 264 267
	¢ 0.0	× 9.00	ન ન લું	1 E		an entit
	000	0 0 0	6 0 0 4 0 4	966	461	- C 0
Í	4 0 4 0 7 0 0 1 0 0 1 0 0 1 0 0	356E 726E 517E	2836 7156 4246	2.00 0.00 0.00 0.00	344 535 535 535 535 535 535	440E 272F 796E
	S AM	का काम्य का काम्य	7 0 K	64.	64.	4 44
į	200	1 12 20 20 10 20 0	002	000 646	50 H	ر دو د دو
; }	4 10 C	ភាព ភា	37 B T	<b>mm</b> m	# W	35 th
5.	696 390 630	6 6 6 6 7 8 6 7 8	152	.323 .039 .729	184	.257 .813
	v in in	444	444	~ u.t	1 1 1	4
• •	000	9 1 1 1	322	996	9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	400
I	2715 6385 9926	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	444 5006 982F	20 50 4 4 50 50 50 50 50 50 50 50 50 50 50 50 50	337F 996E 694F	2506 4506 4306
	5 0 5 5 0 5	4 10 4 V 14	4 H H	N 90 1	444 460 900	V 44
<u>:</u>	600 110 1	0 0 0 0 0 0	1 1 1 966	000 644	033 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
				6 80 % 50 % 50 m		
Ą	1.4753 <u>6</u> 7.5176E 1.4950E	5483E 1702E 3316E	1.5654E 2.7001E 2.6169E	527	. 297E . 3960È . 139F	. 72636 5. 72636 5. 02376
	424	ည မှည့်	700	in in it	त्व स्वद्ध	0 (67)
	0000	1000	0000	0600 4044	#### 60003	200
<u>z</u>	20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	4571E 3060E 3530E 4178E	5.6674E 5.9216E 1.9738E	563 116 126 136 136 136 136 136 136 136 136 136 13	1.4962E 7.5390E 5.3875E 1.4957E	3.34.85E 2.9664E
	1,53976 5,73086 6,21946 6,25283	~ ~~~	61 LA 44 CC.	-6.1947 -6.3663 -3.3418 -2.2452	4.7. 9.88.4.4	~ / <b>(4 4</b>
	0000	5555 1 1	9000 8888	0000	6 0 0 0 0 0 0 0 0	0 0 0 0
					4447	
곡	7025 4037 45546 45546	3155E 3155E 3157E 3177E	॥ ठठ के के ले	1 4 4 4 E 1 4 7 9 2 E 1	11 C 4 2	2.2847E
	36.44.4	30E	80% 	202 200 100 100 100 100 100 100 100 100	211	200 100 100 100 100 100 100 100 100 100
	249	-	-	-	-	-

8 P P	444	5 <u>6 6</u>	101	400	000 000	400	5 5 5 100	5 5 E	400
1,7754E -1,5126E -2,4321E	7,6132E 7,6964E 7,6995E	A,0669F	1,0275F -1,1031E 3,1546F	10,6556 0,8505E 1,3535E	-1.2777 -5.0607 3480F	-9,3230H 9,7886F 2,473F	-2,7641E -5,6857F -1,4225E	-0.5779 -1.0900 -4.0786E	-7.22616 -2.05278 -5.18728
nnn e e e	966	255	222	46.E	000	G C 5.	900	C C C	C C L
2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	2.9146E -2.4938E -6.7515E	1.7987F 1.7987F 1.7019F	-1,9744F 1,1199F -4,2610F	-4.08898 -2.62948 -1.97658	8.08 8.08 8.08 8.08 8.08 8.08	2.35116 -3.19256 -1.21769	1.5820F 3.9040F 9.4584F		3.0145F 1.0296F 3.2486F
040	000	2001	555	100	100	200	448	98	4.5.5
7.1756F 2.0391F 1.4535F	7.4654E 4.5696E -1.2970E	1.5347E -4.1138E 2.5739E	3.7651E 5.2291E 2.8934E	5.5670E 6.6667E -4.0260F	2,2460E 1,7188E 5,4237F	9.4293F 4.5824E -1.2033F	*1.9536E 4.31.1E 6.6184E	-0.6377 1.5085F 2.3155F	1.3535F 1.3535F 2.4399F
222	N 0 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	225	222	200	000	200	000 04	30.5
7. 9. 9. 9. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	-2.4071E -7.7872E -3.2608E	-8.6206E 3.9758E	-2.4370E -5.6787E -3.9682E	-2.9342E -5.2114E 9.5517E	-2.7587E -7.6936E -3.4641E	-4,5067 -8,1305 -6,5345 	1.4017E	4.4560g 4.07366 4.07366	5.0466F -6.1419E -9.5274F
122	200	222	500	960	46.0	900	600	9 K K	1 H G 2 G C
-7.25756 4.82526 -1.53466	-1.32198 -4.09198 6.36n28	-2,4716E 6,7980E -3,1037E	-8.6968E 1.7468E -3.6424E	-1.1445E -1.3913E -7.3359E	-6.4773E 4.6641E -6.8347E	-1.7323E -5.2618F 4.3922E	2.7530g 3.6551g -4.43016		1,2875 1,2875 -1,4514
222	0 0 0 W 4 W	910	252	000	000	999	000	256	260
4.3413E 9.6721E 7.1349F	4.3145E 1.3757E 1.4361E	-6.1709F -8.9045F 3.2135E	4.7212E 6.4565E- 2.3499E	5.5966F 1.4030F 1.2237F	5.90995 -2.7212F 4.0297F	7.7256F 2.2.67F .4.3258F	-2.2962E -2.2836E 2.0118E	-8.569E -7.6927E 7.3412E	-6.26806 -7.68875 3.20286
222	000 044 1	226	### ## ## ## ## ## ## ## ## ## ## ## ##	1000	400	488	000	45 25 25	1 2 C
1,1729E (-7,4400E (-1,4841E (	5.8578E 1.0400E 1.4769E	5.6743E -3.7622E -2.6445E	6.2048E -3.3268E 1.7740E	6.5264F 2.1730F 4.8740E	4.1916E -8.8048E -6.1126E	8,92746 1,3665	-8.20916 -6.45156 -7.4130E		2 -5.47)86 4 -2.2603E 4 -2.7312E
000	0 0 0 0 4 4	0020	922	000	000	998	48 W	年記 エロロ グルイ	8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
-4.7937E 5.5383E 4.5300E	-1.9772E -2.3224E -3.6012E	2.2396E ~6.4727E 1.2545E	-2.74046 -2.13156 -2.66076	-2.9245E -2.5705E -1.4765E	-3.2677E 5.0250E 2.4740E	-3.1336 -3.91276 -6.06446	9.4374 4.0006 4.77046	3.50 in 1.4002 1.9096	5. 2. 2. 3. 3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.
1000	10000	2222	4544	0000	5000	0000	9000	4500	0 D L B
-5:30326 1:03686 2:97266 1:14286	-1,2039E -4,2303E -2,5686E -1,4560E	1.8919E -1.2108E 5.1218E 2.1093E	-1.3382E 5.1865E 3.9135E	-7.0390E -5.2061E -6.3958E -4.2180E	7;3377E 5,3936E 9;4752E 8,6971E	-3.1123E -3.4374E -2.4121E -1.3157E	4.2278E 3.0637E 1.2682E 8.3300E	1.4797E 1.1723E 4.4387E 2.4135E	1.1376F 1.1425E 4.6831E
2000	4000	01 03 03	00 00 00 00 00 00	01 03 03 02	100 100 100 100 100	00 00 4 2	0000	. C.	0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
805 = 7 5.402F 1.4670E -9.4639E -2.8194E	ROA ± 8 6.9638E 9.1765E 6.1724E 3.5344F	90. = 9 -7.c142E -3.0892E -7.c799E	RUA = 10 4.5586E 4.6994E -2.8609E 2.3669E	80H #11 7.52.746 7.58.36 8.9876 8.9876	#0# #12 2.16266 -2.4026 -3.0946 -5.257	20. = 13. 	804 414 - 13 79996 - 13 - 67996 - 13 - 67986 - 15 - 1136	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7

2.6428E 02 -1.0841E 02

PART V - SECTION B4.0

LISTING OF TRANSONIC AIC COMPUTER PROGRAM

```
CHAIN
            MAIN
      COMPLEX Z,W,F.VPIC,DS,PHIW,CK,CZERO,PHI,PHITE,DPHI,
              SPHI.ASQ.EXF.AIC
      DIMENSION ASQ(40,40),F(45,45),S(45,45),R(45,45),C(45.45),B(45,45),
                 T(45.45), TEMP(45.45), TM(45.45), TI(45.45), TR(45.45)
     1
      COMMON/C1/KBOX(1040).XE(5),YE(3).AR(3),X1,X2,X3,X4,Y1,Y2,BETA,NBS
      COMMON/C2/AS.NMACH.FMACH(6),NFREQ,FREQ(10),NMODE,NSURF,LPUNCH
      COMMON/C3/VPIC(80,15),DS(2025).PHIN(50),CK(40).DXE(6),TPI,KF
      COMMON/C4/MOR(100), NBL(100), FQ. IFR.XL, NS. NTM, NBW, NBT
      COMMON/C5/X, Y, NX. DY, EM. EK, EKB, EKR, NP, MP, NB, NROX, KODE. MODE
      COMMON/C5/CZFRO,PHI,PHITE.DPHI.SPHI,RHO,NXCS,NYCS,NYQX(40)
      COMMON/CB/XAIC(10,14,2),YAIC(14,2),NXBX(44),NXBXCS,NYWING,NYWING
      COMMON/C9/W(45.45).AIC(45,45)
      FOUIVALENCE (C.S.R), (ASO, W.B), (DS, F, TM), (AIC, TEMP)
    1 CALL DAIN
      IF (NMODE .L.F. 45) BO TO 5
      WRITE (6,8)
    A FORMAT (1H1, 5x.50H NUMBER OF AIC STATIONS EXCEEDS MAY ALLOWABLE (4
     15)/5X,16H CASE TERMINATED)
      GO TO 1
    5 CONTINUE
      DO 1000 MACH=1.NMACH
      FM = FMACH(MACH)
      IF(ABS(EM-1.0).GT.0.05) 60 TO 1000
      CALL CODE
      CALL POUT(1)
      CALL POUT(2)
      NTRS=0
      DO / I=1.NBS
    7 NTRS=NTRS+NXRX(I)+NXBXCS
      IF (NTRS .LE. 45) 80 TO 1/
      WRITE (6,14)
   14 FORMAT(1H),5%,48H NUMBER OF MACH BOXES EXCEEDS MAX ALLOHABLE (45)
      1/5x,14H CASE TERMINATED)
      BU TO 1
   17 CONTINUE
       TPU=TPI/(AS+EM)
       RFM = DX
      CALL TRAMP (2, NTRS, NTCS, S, R, C, B, T, TR, TI, TM)
       DO 550 I=1,NTRS
       00 550 J=1.NTCS
  550 TEMP([,J)=TR(1,J)
       CALL TRAMP (1.NTRS.NTCS,S,R,C,R,T,TR,11,TM)
       DO 460 J=1,NTRS
       DO UNO JELINTOS
  56" TR(1,J)=TEMP(1,J)
      DO VON JER #1.NERLO
       TF (KF .FO. 1) FREQ(IFR)=FREQ(IFR)+FMACH(MACH)+AS/(TPI+X1+0.5)
      FK=+R+O(1FR)+TPU
       TF (FK.FQ.U.U) BG TO 900
      FKR #FK#RFM
      FKR = FK+X1/2.8
      NMODESTICS
      CALL POT2H
       ARG: EK+DX
      FXF: CMPLX(COS(ARG) - SIN(ARG))
      DO SOU MODE: SNHOUF
       X=0.5.0X
       NH - I
       DU > 0 : NP=1.NROX
       MH=MOH(NP)
```

```
Y=0.0
   KODF = KBOX(NB)
   NS =1
   80 10 (12,11,12,11,11,120).KOUF
11 NS =2
12 DO 20 MP=1.MR
   SPHI = CZERO
   IF(NP.GT.L) CALL PHIR
   IF (NS .EQ. 2) 60 TO 13
   IR=#
   DO 21 IL=1, MP
21 IR=IR+NXBX(IL)
   IR=IR+NP-NXBX(1)
   80 TO 26
13 IR=6
   00 27 IL=1.NRS
22 TR=IR+NXBX(IL)
   00 /3 IL=1,MP
23 IR=IR+NXBXCS
    IR=IR-NBOX+NP
26 SR=TR(IR, MODF)
   SI=11(IR, MODF)+TPI+FREQ(IFR)/(FN+AS)
   CK(MP)=CMPLX(SR,SI)
    DS(NB)=CK(MP)
   DS(NB) = DS(NB) - SPHI
    Y = Y + DY
20 NB = NB+1
    NB = NB-MB
    AM.1=DI Dr. Od
    DO .50 JQ=1, MR
    IJO = IABS(IQ-JQ)+1
25 \text{ ASQ}(10,J0) = VPIC(1J0,1)
    IF(JQ.EQ.1) GO TO 30
    1JQ=10+J0-1
    ASQ(10, JQ) = ASQ(10, JQ) + VP1C(1JQ.1)
30 CONTINUE
    LSO=MSIMES(40, MB. 1, ASO. DS(NB))
    IF(LS4.EQ.1) GO TO 39
    60 TO 90U
39 CO"TINUE
    Y = 0.8
    IF(NP.NF.1) GO TO 56
    DO 45 MP=1,MR
 45 \text{ DS(MP)} = \text{DS(MP)} + 2.0/3.1415927
50 CONTINUE
    IF (KODF.NE.4) GO TO BO
    BO AB MP=1.MB
    DS(NB) = PHIW(MP) + (DS(NB) - PHIW(MP)) + 2 \cdot 0/3 \cdot 1415927
60 NB=NB+1
    NH=NR-MR
HO CONTINUE
    00 100 MP=1,MR
    IF (KODF.FO.3) PHIW(MP)=DS(NB)*EXF
    IF(NP.EQ.NAUX-1) PH:W(MP)=DS(NH)
    PHITF = DS(NR)
    IF(NP.FU.NBOX) PHITE = PHITE+(PHITE-PHIW(MP))+DXE(5)
    PHI = DS(NB)
    80 TO (128,171,128,121,121,12/),KONE
178 IC=11
    00 122 IL=1,MP
122 IC=IC+NXBX(IL)
```

```
IC=[C+NP-NXBX(1)
    GO TO 126
121 IC=+
    00 123 IL=1.NBS
123 [C=1C+NXBX(1L)
    00 124 IL=1.MP
1/4 IC=IC+NXBXCS
    IC=IC-NBOX+NP
126 AIC(IC, MODE)=DS(NB)/FM
1/7 CONTINUE
    NB = NB + 1
100 Y=Y+DY
    80 10 200
120 00 130 MP=1.MH
    DS(NB)=PHIW(MP)
    PHIW(MP) = FXF*PHIW(MP)
    CK(hP)=CZERO
130 NB = NB+1
200 X = X+DX
500 CONTINUE
    CALL SD2 (S.R.C.B.T.TR.TM)
    DO /OI I=1.NTRS
     DO / 01 J=1, NTRS
     $1=0.0
     IF (I .EQ. J) SI=TPI+FREQ(IFR)/(FM+AS)
     SR=TM(1,J)
701 W(), J)=CMPLX(SR,SI)
     00 /02 1=1,NTRS
     DO /02 J=1,NTCS
     F(1,J)=(0.0,0.0)
     DO /02 K=1.NTRS
 7112 F(1,J)=F(1,J)+W(1,K)*AIC(K,J)
     GALL FORCE (R)
     DO /OH [=1,NTCS
     DO / 0H J=1.NTCS
     AIC(1,3) = (0.9,0.0)
     DO / 08 K=1.NTRS
     Z=GMPLX(C(1,K)+FQ/(H.5+(TPI+FRFQ(1FR))++2+(YE(3)-YE(+))+(XE(3)-XE(
    11))***/),0.0)
 7118 AIC(1,J)=AIC(1,J)-Z*F(K,J)
     CALL POUT (3)
     IF (IPUNCH .RT. 0) CALL POUT(4)
 OND CONTINUE
1009 COMILINUE
     80 TO 1
     FND
```

```
CFORCE
            FORCE
      SURPOUTINE FORCE (R)
      COMPLEX CZERO, PHI. PHITF, DPHI. SPHI
     COMPLEX VPIC. DS. PHIH, CK
      DIMENSION R(45,45)
      COMMON/C1/KBOX(logo),XE(5),YE(3),AR(3),X1,X2,X3,X4,Y1,Y2,BETA,NBS
      COMMON/C?/AS.NMACH.FMACH(6),NFREQ.FREQ(14),NMODE,NSURF.LPUNCH
      COMMON/C3/VPIC(80,15).DS(2025).PHIW(56).CK(40).DXE(6).TPI.KF
      COMMON/G4/MOR(100).NBL(100).FQ.IFR.XL,NS.NTM.NBW.NRT
      COMMON/C5/X, Y, DX. DY, EM. EK, EKB. EKR, NP. MP, NB, NBOX, KODE. MO35
      COMMON/C6/CZFRO, PHI, PHITE, DPHI, SPHI, RHO, NXCS, NYCS, NYRX(54)
      COMMON/CB/XAIC(10.10.2), YAIC(10.2). NXBX(40), NXBXCS, NYWING NYWING
      NSUH=NXBX(1)
      MB=MOB(NBOX)
      NMBXW=B
      00 CO I=1.MR
   SO NMRXW=NMRXW+NXRX(I)
      KROW=NXWING*NYWING*NXCS*NYCS
      KCOL = 0
      DO 100 1=1,KR
  1 II RCOL = KCOL + NXRX(1) + NXBXCS
      DO 150 [=1, KROW
      BO 154 J=1,KCOL
  150 R(I,J)=0.0
      DO (8) [=1, MR
      NCK=0
      FRR=1.0
      FRT=1.0
      FOF = 1.0
      YR=NY+FLOAT(1)-DY
       II=NYWING-1
      DO 610 [[[=].[]
       IF (0.5+(YAIC(III,1)+YAIC(III+1,1))-YE(1) .GT. YR-.5+DY) GO TO 650
  KIN CONTINUE
       III=NYWING
       60 10 629
  650 CONTINUE
       IF (YR-H.5#HY .LT. H.5#(YAIC(III,1)+YAIC(III+1,1))-YF(1) .AND.
           YR+H.5*DY .GT. H.5*(YAIC([[],])+YAIC([[];L,1))-YE(1)) NCK=1
       IF (NCK .EQ. h) GO TO 620
       FRR=(4.5*(YAIG(III.))+YAIG(III+1.1))-YE(1)-YR+0.5*DY)/DY
       FRT:1.0-FRB
  AZH NROW=NXWING*(III-1)
       NCOL = 1
       DO 450 TITE1, F
   650 NCOL = NCOL + NXRX(IIII)
       NCOL = NCOL - NXRX(I)
       KK-NXBX(I)
       00 /5# K=1.3K
       OO JOH JEL, NYWING
       TF (XATC(1,111,1)-XF(1) .GE. (FLOAT(NXBX(1)-NXBX(1)+K)-,5)+UX)
      180 10 710
       IF (XAIC(NXWIND, [II.1)-XE(1) .LE. (FLOAT(NXBX(1)-NXBX(T)+K)--5)*
      INX) 60 TO 720
       IF (XAIC(J, III, 1)-XF(1) .GT. (FLOAT(NXRX(1)-NXRX(1)+K)-,5)+UX)
      160 10 740
  760 CONTINUE
   710 NRF-NROH+1
       NCF - NCOL + K
       R(NRF, NCF) = FRH
       IF (I .FQ. 1) R(NHF, NCF)=R(NRF, NCF)+0.5
```

```
IF (K .FQ. KK) R(NRF,NCF)=R(NR-,NCF)+0.5
    IF (1 .EQ. MB) FOF = (YE(3)-YE(1)-(FLOAT(MB)-1.5)+DY)/DY
    IF (I .FO. MR) R(NRF, NCF)=R(NRE, NCF)+FOE
    80 10 740
7/0 MRF=MROW+NXWING
    NCF=NCOL+K
    R(NPF,NCF)=FRR
    # (1 .E0. 1) R(NRF,NCF)=R(NRF,NC) +0.5
    IF (K .FO. KK) R(NRF, NGF)=R(NRF, NGF)+0.5
    IF (I .FQ. MR) FOE = (YE(3)-YE(1)-(FLOAT(MR)-1.5)+DY)/DY
    IF (I .EQ. HR) R(NRF, NCF)=R(NRF, NCF)+FQ%
    80 10 740
7:0 R1=XAIC(J, III, 1)-XF(1)-(FLOAT(NXRX(1)-NXRX(1)+K)-U.5)+DX
    R3=XAIC(J, 111, 1) - XAIC(J-1, 111, 1)
    NRF=NROH+J
    NCF = NCOL + K
    R(NRF, NCF) = (1.n-R:/R3) #FRB
    R(NPF-1,NCF)=(R1/R3)+FRB
    if (1 .EQ. 1) R(NRF, NCF)=u.5*R(NRF, NCF)
    IF (I .FO. 1) R(NRF-1, NCF)=U.5+R(NRF-1, NCF)
    IF (K .FQ. KK) R(NRF, NCF) *R(NRF, NCF) *0.5
    IF (K .EQ. KK) R(NRF-1,NCF)=R(NRF-1,NCF)+4.5
    IF (I .EQ. MR) FOF = (YE(3)-YE(1)-(FLOAT(MR)-1)
                                                       **DY1/0Y
    IF (I .EO. MA) R(NRF,NCF)=R(NRF,NCF)+FOE
    IF (I .FQ. MP) R(NRF-1,NCF)=R(NRF-1,NCF)+FQE
740 CONTINUE
    IF (NCK .EQ. ) .AND. K .FQ. KK) BO TO 760
    90 10 75F
760 DO 450 KT=1.KK
    DO FOO JT=1.NXWING
    IF (XAIC(1,1TI+1,1)-XE(1) **GF** (FLOAT(NXRX(1)-NXBX(1)+KT)-***)**DX)
   160 TL 81"
    IF (XAIC(NXWING, [[[+1,1]-XF(1] .LE. (FLOAT(NXBX(1)-NXBX([)+KT)-.5)
   1 * DX ) GO TO 878
    IF (XAIC(JT,111+1,1)-XF(1) .GT. (FLOAT(NXBX(1)-NXBX(1)+KT)-.5)*UX)
   180 TO 838
AND CONTINUE
BIO NRF=NROW+NXWING+1
    NCF = NCOL+KT
    R(NPF,NCF)=FRT+FOE
    IF (KT .FG. KK) R(NRF,NCF)=R(NRF,MCF)+0.5
    00 TO 840
829 NRF: NROW+2*NXWING
    NCF : NCOL + KT
    R(NKF, NCF) = FRT+FOE
    IF (KT .EQ. KK) R(NRF,NCF)=R(NRF,NCF)+0.5
    60 10 840
8.50 RI=XAIC(JT,1TI+1,1)-XE(1)-(FLOAT(NXBX(1)-NXBX(I)+KT)-0-5)+DX
    R3=XAIC(JT, ITI+1, 1)-XAIC(JT-1, III+1, 1)
    NRF-NROWINXWING+JT
    NCF: WCOL+KT
    R(NPF,NCF)=(1.6-R)/R3)#FRT#FOE
    R(NRF-1, NCF)=(R1/R3)*FRT*FOE
    IF (1 .FQ. 1) R(NRF, NCF)=0.5+R(NRF, NCF)
    IF (1 .FQ. |) R(NRF-1,NCF)=0.5*R(NRF-1,NCF)
    IF (KI .Fu. Kk) P NRF, NCF) = U.5+R(NRF, NCF)
    IF (KT .FQ. KK)
                       NRF-1, NCF) = 11.5 + R(NRF-1, NCF)
849 CONTINUE
ACOULTINGS BOR
750 CONTINUE
6HR CONTINUE
```

```
DO 400 1=1, MR
    KK=NXRXCS
    NCK=f
    FRR=1.8
    FRT=1.0
    FOF = 1.0
    YR=BY+FLOAT(T)-DY
    II=NYCS-1
    DO 4111 111=1.11
    IF (0.5+(YAIC(III,2)+YAIC(III+1,2))-YE(1) .GT. YR-.5+DY) 60 TO 430
410 CONTINUE
    III=NYCS
    60 10 420
450 CONTINUE
    IF (YR-4.5+DY .LT. 0.5+(YAIC(111.7)+YAIC(111+1.2))-YE(1) .AND.
        YR+H.5+DY .GT. U.5+(YAIC(III./)+YAIC(III+1.2))-YF(1)) NCK=1
    IF (NCK .EQ. #) GO TO 420
    FRR=(0.5+(YATC([]],2)+YATC([]].2))-YE(1)-YR+0.5+DY)/DY
    FRT-1.0-FRB
420 MROW=NXWING+NYWING+NY "+(III-1)
    NCOL=NMBXW+(I-1)*NXBXL..
    DO 454 K=1.NXBXCS
    DO ON J=1.NXCS
    IF (XAIC(1, | | 1.2)-XE(1) .GE. (FLOAT(NBOX-NXBXCS+K)-.5)#BX)
   160 TO 910
    IF (XAIC(NXCS.III.2)-XE(1) .LE. (FLOAT(NROX-NXRXCS+K)-.5)+DX)
   160 TO 920
    IF (XAIC(J.III.2)-XE(1) .GT. (FLOAT(NBOX-NXHXCS+K)-.5)+DX)
   160 TO 930
9HP CONTINUE
910 NRF=NROW+L
    NCF=NCOL+K
    R(NRF, NCF) = FRH
    IF (1 .FQ. 1) R(NRF,NCF)=R(NRF,NCF)+B.5
    IF (K .FQ. I) R(NRF.NCF)=R(NRF.NCF)+((FLOAT(NBOX-NXBXCS+1))+DX
   1-XF(4)+XF(1))/DX
    IF (K .FO. KK) R(NRF, NCF)=R(NRF, NCF)+(XF(5)-XF(1)-(FIOAT(NBOX-1))+
   10X)/0X
    IF (I .FQ. MR) FOE=(YE(3)-YE(1)-(FLUAT(MR)-1.5)+DY)/nY
       (I .FQ.MB) R(NRF,NCF)=R(NRF,NCF)#FDE
    IF
    90 10 948
920 NRF=NROW+NXCS
    NCF : NCOL + K
    R(NRF.NCF)=FRB
    IF (I .EQ. 1) R(NRF,NCF)=R(NRF,NCF)+0.5
    IF (K .EO. 1) R(NRF,NCF)=R(NRF.NCF)+((FLOAT(NHOX-NXHYCS+1))+DX-
   1 XF(4)+XF(1))/DX
    TF (K .FQ. KK) R(NRF, NCF)=R(NRF, NCF)+(XE(5)-XE(1)-(F)UAT(NBOX-1))+
   10x1/0x
    IF (I .FQ. MR) FOF = (YE(3)-YE(1)-(FLOAT(MB)-1.5)+DY1/DY
    IF (I .FQ.MH) R(NRF,NCF)=R(NRF,NCF)=FOF
    60 10 940
930 RI=YA[C(J,][1:2)-XF(1)-(FLOAT(NBOX-NXBXCS+K)-.5)+DX
    RATYAIC(J.111.2)-XAIC(J-1,111,2)
    NRF NROW+J
    NCF - NCOL + K
    R(NMF.NCF)=(1.0-R1/R3)#FRA
    R(NPF-1, NCF)=(R1/R3)+FRB
    IF (1 .19. I) R(NRF-1, NCF)=0.5*R(NRF-1, NCF)
    IF (I .FG. I) R(NRF, NCF) = II.5 * R(NRF, NCF)
    IF (K .FQ. 1) R(NRF, NCF) = R(NRF, NCF) + ( FLOAT(NROX-NXBXCS+K) + DX
```

```
1-XF(4)+XE(1))/DX
    TF (K .FQ. 1) R(NRF-1.NCF,=R(NRF-1.NCF)+( FLOAT(NBOX-NXBXL3+K)+BX
  1-XF(4)+XF(1))/DX
    IF (K .FQ. KK) R(NRF,NCF)=R(NRF,NCF)+( XF(5)-XF(1)- FLOAT(NBOX-1)+
  100)/00
    IF (K .FQ. KK) R(NRF-1,NCF)=R(NRF-1,NCF)+(XE(5)-XE(1)-
   1FLOAT(NHOX-I)#DX)/DX
    IF (I .EQ. MR) FOE = (YE(3)-YE(1)-(FLOAT(MB)-1.5)+DY)/DY
    IF (I .EQ. MR) R(NRF, NCF) = R(NRF, NCF) + FOE
    IF (I .EO. MR) R(NRF-L,NCF)=R(NRF-1,NCF)+FOE
940 CONTINUE
    IF (NCK .EQ. 1 .AND. K .EQ. KK) BO TO 960
    GO T0450
960 BO 550 KT=1,KK
    DO 300 JT=1,NXCS
    IF (XAIC(1,III+1,/)-XE(1) .GF. (FLOAT(NBOX-NXHXCS+KI)--5)+DX)
   160 TO 310
    TF (XAIC(NXCS.TIT+1,2)-XE(1) .LE. (FLOAT(NBOX-NXBXCS.KT)-.5)+UX)
   166 10 320
    IF (XAIC(JT,III+1,2)-XF(1) .GT. (FLOAT(NBOX-NXBXCS+KT)-.5)+DX)
   160 10 330
300 CONTINUE
310 NRF=NROW+NXCS+1
    NCF=NCOL+KT
    R(NRF,NCF)=FRT+FOE
    IF (KT .EQ. KK) R(NRF,NCF)=R(NRF,NCF)+(XE(5)-XF(1)- rLOAT(NBOX-1)+
   10X1/DX
    IF (KT .FQ. 1) R(NRF,NCF)=R(NRF,NCF)+( FLOAT(NBOX-NX4XCS+1)+DX
   1-XF(4)+XF(1))/NX
    GO TO 140
320 NRF=NROW+2*NXCS
    NCF=NCOL+KT
    R(NRF, NCF)=FRT*FOE
    IF (KT .EQ. KK) R(NRF,NCF)=R(NRF,NCF)+(XE(5)-XE(1)~ FLOAT(NBOX-1)
   19X)/DX
    IF (KT .EQ. 1) R(NRF,NCF)=R(NRF,NCF)+( FLOAT(NBOX-NXRXCS+1)+DX
   1-XF(4)+XE(1))/DX
    BO TO 340
330 R1=XATC(JT, | | | +1, /)-XE(1)-(FLOAT(NBOX-NXBXCS+KT)+DX-.5+DX)
    RA-XAIC(JT, 111+1.2)-XAIC(JT-1, 111+1,2)
    NRF "NROW+NXCS+JT
    NCF=NCOL+KT
    R(NRF.NCF)=(1.H-R./R3)+FRT+FOE
    R(NRF-1,NCF)=(R1/R3)#FRT#FOE
    IF (1 .FQ. 1) P(NRF,NCF)=0.5*R(NRF,NCF)
    IF (1 .FQ. 1) R(NRF-1,NCF)=U.5*R(NRF-1,NCF)
    IF (KT .FQ. 1) R(NRF,NCF)=R(NRF,NCF)+ (FLUAT(NBOX-NX0XCS+1)+DX-
   1 XF(4)+XF(1))/DX
    TF (KT .EU. 1) R(NRF-1.NCF)=R(NRF-1.NCF)+(FLOAF(NBOX-NXHXCS+1)+UX-
   1 XF (4) + XF (1) ) / DX
    If (KT .EQ. KK) R(NRF,NCF)=R(NRF,NCF)+(XE(5)-XE(1)-F(OAT(NBOX-1)+
   INX)/NX
    IF (KT .FQ. KK) R(NRF-1,NGF)=R(NRF-1,NGF)+(XF(5)-XF(·)-FLOAT(NBUX-
   11)*BX)/BX
340 CONTINUE
350 CONTINUE
95A CONTINUE
4HD CONTINUE
    RFTURN
```

END

```
CCODE
             CODE
      SURROUTINE CODE
      COMPLEX CZERO, PHI, PHITF, DPHI, SPHI
      COMPLEX VPIC, DS, PHIW, CK
      COMMON/C1/KBOX{10:00},XE(5),YE(4).AR(3).X1,X2,X3,X4,Y1,Y2,BETA,NBS
      COMMON/C2/AS.NMACH.FMACH(6).NFREQ.FREG.10).NMODE.NSURF.LPUNCH
      COMMON/C? (VPIC(An, 15), DS(2025).PHIW(50), CK(40).DXE(6), TPI, KF
      COMMON/C4 )R(1UA), NBL(1AU), FO. IFR. XL, NS, NTM, NBH, NBT
      COMMON/C5/X, Y, DX, DY, EM, EK, EKB, EKR, NP, MP, NB, NROX, KODE. MODE
      COMMON/C6/CZERO, PHI, PHITE, DPHI, SPHI, RHO, NXCS, NYCS, NYXX(4")
      COMMON/CR/XATC(10.10.2), YAIC(10.2). NXBX(40), NXBXCS, NXHING, NYHING
      RETA = EM
      X1 = XF(3) - XF(1)
      XP = XE(3) - XF(2)
      XA = XE(4) - XE(1)
      X4 = XF(5) - XF(4)
      Xy = XF(5) - XF(1)
      Y1 \cdot YF(2) - YF(1)
      Y2 - YF(3) - YF(1)
     · IF(x2.GT.X1.0R.X1.GT.X3.0R.X3.GT.X5.0R.X2.LT.0.0) 60 TO 50
     -IF(Y1 3T.Y2.0R.Y1.LT.0.0) GO TO 50
      TWI = 0.0
      IF(Y2.NF.Y1) TWL = (X1 - X2) / (Y2 - Y1)
      AR(1) =
                     (Y^{2}*(X^{2}+X_{1}) - Y_{1} * (X_{2}-X_{1}))
      AR(2) = Y2*X4*2.0
      AR(3) = AR(1) + AR(2)
   IN DX = X1/(FLOAT(NBW) = 0.5)
      IF (100.0* DX .GT. X5) 80 TO 2"
   15 NHW = NBW-1
      80 10 10
   20 DY : DX/BETA
      YN1 = Y1/DY
      YN2 = Y2/DY
      XNE = Y_{ij} Z - (X1-XZ) / DX
      XNT = YN2 + X5/DX
      XNIF = X3/DX
      XNTE
              = X5/DX
      NBOx=XNTE+0.5000011
      NBS = Y2/DY + 1.0
      NHT = X4/DX + 0.5
      DXF(1) = 1.0
      DXF(2) = 1.0
      DXF(3) = 0.0
      DXF(4) = AINT(XNLE + 1.5) - XNLF
      DXF(5) = XNTF
                        - FLOAT(NAOX-1)
      DXF(6) = 0.8
      X = 0.5 * DX
      NB · n
      KODF = 1
      DO 80 11=1, MR
   40 NXRX(11)=0
      NXRXCS=0
      DO 40 NP = 1.NROX
      XN
            FIGAT(NP) - H.5
      YW
            YNY
       IF (THE .GT. H.D) YHEAMINICYW, YNI + XN/(THE/BETA))
            IF IX (YW) + 1
      MH
   78 M(JP(NP) = Mb
       1F (MB.GT.40) GO TO 15
       IF (NP .FQ. NHW) KODE =3
       IF (NSURF .FQ.1) 80 TO 29
```

T

```
if (X .GT. XI) KODE =6
    IF INP .EQ. NHH) KODE =3
    IF (X .GT. X3 ) KODE #4
   IF (X .GT. XT+NX) KODE=2
   IF (NP .EQ. NHOX) KODE #5
29 IF (NB+MB+GT-2996) 60 TO 15
   HHI (NP) = NH
   10 HP = 1.MM
   IF thus: Fu. 1 .OR. KODE .EQ. 3) 80 TO 74
   80 TO 71
78 NXRX(MP)=NXHX(Mi)...
21 CONTINUE
   IF (MP .NE. 1) GO TO /3
   15 (KODE .EO. 2 .OR. KODE .EQ. 4 .OR. KUD. 18 57 GO TO /2
   80 10 7.1
/? NXRXCS=NXBXCS+1
/3 CONTINUE
   NB = NB + 1
   Y=NY*FLOAT(MP)+0.5*DY
IN KBOX (NR ) = KODE
   IF(KODE .EQ. | .OR. KODE .EQ. () NYBX(NP)=MP
49 X=Y+DX
  QGRHO = 0.5+(AS+FH)+#2
  FQ = -R.8+0X+0Y+QORHO/FM+RHO
  RETURN
on CALL EXIT
  RETURN
  END
```

```
CPOUT
            POUT
      SUBROUTINE POUT (IND)
      COMPLEX WATC
      COMPLEX VPIC.BS.PHIW.CK
      COMPLEX CZERO, PKI, PNITE, DPHI, SPHI
      DIMFNSION SW(5.6), SURF(2.3), COD(7), C(50)
      GOMMON/C1/KBOX(1000), ME(5), YE(3), AR(3), X1, X2, X3, X4, Y1, Y2, BETA, NBS
      COHMON/C2/AS.NMACH.FMACH(6).NFREG.FREO(10).NMODE.NSURF.LPUNCH
      COMMON/C3/VPIC(80,15),DS(2025).PHIW(50).CK(40).DXE(6).TPI.KF
      COMMON/C4/MOR(106), NBL(100), FO. IFR, XL, NS, NTM. NBN, NBT
      COMMON/C5/X,Y,DX,DY,EM.GK,EKB,EKR,NP,MP,N&,NBOX,KODE.MODE
      COMMON/C6/CZ#PO.PHI.PHITE.DPHI.SPHI.RHO.NXCS.NYCS.NYRX(40)
      COMMON/CR/XA1; 10,10,2), YAIC(10,2), NXBX(40), NXBXCS, NXWING, NYWING
      COMMON/C9/W(45,45),AIC(45,45)
      DATA (SW(1,1),1=1,6)/26HMAP OF SONIC BOX OVERLAY
                            26HON HING, VAIL AND WAKE
                                         (S) - KING
                            26H
                                         (S) - TAIL
     3
                            26H
                                         (.) - WAKE
                            SUH
                            SYH
                                         AHTAIL
                                                     ,11HWING + TAIL /.
      DATA (SURF(1,1),1=1,3)/8HWING
      DATA COD/145,148,148,148,145,14,,14./
      BO TO (10,20,30,40), IND
                   FM.AS,RHU,XE(1),XF(4),X1,X4,Y1,Y2,Y2,Y2,X2,X4,
   10 WRITE(6,11)
     1AR(1), AR(2), NBW, NBT, NRS, NBS
   11 FORMAT(1H1//// 32X,42HHUGHES AIRCRAFT CO. TRANSONIC AIC PROGRAM
     1 ///3/X,30HFLIGHT CONDITIONS AND GFOMETRY/1H0//15X, 13HMACH NUMBER
     2 =, F8.5, 4X, 16HSPEED OF SOUND =F10.3, 4H L/T, 4X, 4HRHO=, F5.2 //1H0/
     854X,4HWING,18X.
     3 4HTAIL///22x,16HL.E. STATION (L),2F22.3//22x,16HROOT CHORD
                                                                        (L),
     4 2F22.3// 22X,16HL.E. SPAN
                                      (L),2F22.3//22X,16HT.E. SPAN
                                                                        (L).
     5 2F22.3// 22X,16HTIP CHORD
                                      (L), 2F22.3//22X, 16HTOTAL AREA (L+L),
      2F??.3// 22X,16HCHORDWISE BOXFS ,119,122//
                 22X,16HSPANWISE BOXES
                                         ,119,122)
      WRITE(6,12)NROX,DX,DY
   12 FORMAT(1H0/,11X,25HTOTAL CHORDWISE BOXES =,[3, 5X,11HBOX CHORD =,
     1 1P1E12.5,2H L, 5X,10HBOX SPAN =,1P1E12.5,2H L/
      WRITE (6,109)
  109 FORMAT (1H1,//// 31X,50HHUGHES AIRCRAFT CO. TRANSONIC AIC PROGRAM
     1(CONT-D)
                11111
      NB = 1
      00 17 NP = 1.NBUX
      MB = MOB(NP)
      00.13 \text{ MP} = 1.\text{MR}
      K = KROX(NB)
      C(MP) = COD(K)
   13 NB = M3 + 1
      IF(NP.GT.6) GO TO 15
      WRITF(6,14)(SW(1,NP),1=1.5),(G(MP).MP=1,MB)
   14 FORMAT(10X,5A6,50A1)
      80 10 17
   th WRITE(6,16) (C(MP),MP=1,MB)
   IN FORMAT(404,50A1)
   17 CONTINUE
      80 TO 1000
   20 NYS=NYWING
      NXS=NXWING
      DO 200 NS=1.2
      WRITE (6,201) (SURF(I,NS), [=1,")
  201 FORMATCIHI, 30 X, 50 HHUGHES AIRCRAFT CO. TRANSONIC AIC PROGRAM (CONT-
     10) //// 28x,43HAIC COLLOCATION STATION COORDINATES ON THE 2A6/1Hu
```

```
2.19x, 4HYAIG, 15x,13HXAIC VALUFS--) ,
    70 202 1Y=1,NYS
    YC=YAIC(IY,NS)
202 WRITE (6,203) YC. (XAIC(IX, IY, NS), IX=1, NXS)
    NYS=NYCS
    NXS=NXCS
    IF (NYS .EQ. II .OR. NXS .EQ. U) GO TO
                                            205
200 CONTINUE
205 RETURN
203 FORMAT (1H0,12X,5E17.6/(1H ,29X,4E17.6))
 30 VEL =EM+AS
    Q=0.5*RHO~VEL**2
    RV=1.0/EKR
    BR=X1/2.0
    WRITE (6,220) FREQ(IFR),BR,EKR,RV,EM,VEL,RHO,Q
220 FORMAT(1H1,30X ,50HHUGHES AIRCRAFT CO. TRANSONIC AIC PROGRAM (CONT
   1-D)////9X,28H OSCILLATORY FREQUENCY (CPS),4X,1PE12.5./1H0,9X,15HRE
   2FERFNCF CHORD, 4x, 1PE12.5, /1HD.9x.30HREDUCED FREQUENCY (REF. CHORD)
   3,4x,1PF12.5,/1H0,9X,29HREDUCED VELOCITY (REF. CHORD).4X,1PE12.5,
   4/1Hm,9X,23HFRFE STREAM MACH NUMBER,4X,1PE12.5,/1H0,9Y,20HFREE STRE
   5AM VFLOCITY,4x.1PE12.5,/1H0,9X,7HDENSITY,4X,0PF5.2,/1H0,9X,33HDYNA
   6MIC PRESSURF (1/2+RHO+VEL++2),4X,1PE12.5,////)
    WRITE (6,271)
221 FORMAT(///35x,34HAERODYNAMIC INFLUENCE COEFFICIENTS,//4x,2HRL, 1#X,
   12HJM, 10X, 2HRL, 10X, 2HIM, 10X, 2HRL, 10X, 2HIM, 10X, 2HRL, 10Y, 2HIM, 10X, 2HR
   2L.10X.2HIM./)
    MROWS=NYWING+NXWING+NYCS+NXCS
    DO 222 NROW=1, NROWS
    WRITE (6,223)NPOW
    WRITE (6,224) (AIC(NROW, NCOL), NCOL=1, NROWS)
223 FORMAT (/ 5HROW = 12)
224 FORMAT (1P10F12.4)
222 CONTINUE
     RETURN
 40 NW=NXWING=NYWING
    NC=NXCS+NYCS
     NT=NW+NC
    NW1 = NW+1
     BO TO (81,82,83,84), LPUNCH
 81 CONTINUE
     DO 301 I=1.NW
     PUNCH 85, (AIC(I,J),J=1,NW)
301 CONTINUE
 HE FORMAT (1P6E12.5)
     RETURN
 H? CONTINUE
    DO 302 [=NW1.NT
     PUNCH R5, (AIC(I,J),J=NW1,NT)
342 CONTINUE
     RETURN
 83 CONTINUE
     DO 303 [=1.NW
     (WA.TEL.(L.I))IA) . CR HINUP
 303 CONTINUE
     DO 364 F=NW1.NT
     PUNCH 85, (AIC(I,J),J=NW1,NT)
304 CONTINUE
     RETURN
 H4 CONTINUE
```

DO 305 1=1,NT

PUNCH 85, (AIC(I,J),J=1,NT)
305 CONTINUE
1000 RETURN
END

```
CDAIN
            DAIN
      SUPPOUTINF DAIN
      COMPLEX VPIC. DS, PHIH, CK
      COMPLEX CZERO.PHI.PHITF, DPHI.SPHI
      GOMMON/G1/KBOX(1900).XF(5).YE(3).AR(3).X1,X2.X3,X4,Y1,Y2.BFTA.NBS
      COMMON/C2/AS, NMACH, FMACH(6), NFREQ, FREQ(10), NMODE, NSURF, LPUNCH
      GOMMON/C3/VPTC(80,15),DS(2025).PHIW(50),GK(40).DXE(6),TPT,KF
      COMMON/C4/MOR(100).NBL(100).FQ.IFR.XL,NS.NTH.NBH.NBT
      COMMON/C5/X,Y,DX,DY,EM.EK,EKB,EKR,NP.MP,48,NBOX,KODE,MODE
      COMMON/C6/CZFRO, PHI, PHITE, DPHI, SPHI, RHO, NXCS, NYCS, NYCX(40)
      COMMON/CB/XAIC(10.10.2), YAIC(10.2), NXBX(40), NXBXCS, NXWING, NYWING
      READ(5,11) (XF(1),1=1,5)
      READ (5,11) (YF(I), I=1.3), AS
      READ (5,12) NMACH, KF, NFREQ, NBW, LPUNCH
      READ(5,11) (FMACH(I).[=1,NMACH)
      REAH(5,11) (FREQ(1),1=1,NFREQ)
      NSURF = ?
      IF(xF(4).LT.xF(5)) GO TO LO
      NSURF=1
      XE(4)=XF(3)
      XE(5)=XE(3)
   IN READ (5,12) NXWING, NYWING, NXCS. NYCS
      READ (5,11) (YAIC(1,1), [=1, NYWING)
      IF (NXCS .NE. ") READ (5,11)(YAIC(1,2),1=1,NYCS)
      READ (5,11) ((XAIC(I,J,1),I=1,NXWING),J=1,NYWING)
      IF (NXCS .NE. 0) READ(5,11)((XAIC(1,J,2),1=1.NXCS),J=1,NYCS)
      NMODE = NXWING + NYWING + NXCS + NYCS
      RHO=1.0
   11 FORMAT(6E12.8)
   12 FORMAT(6112)
      RETURN
```

END

CCSIS
BLO(K DATA
COMPLEX CZERO, PHI, PHITF, DPHI, SPHI
COMPLEX VPIC, DS, PHIW, CK
COMMON/C3/VPIC(80,15), DS(2025), PHIW(50), CK(40), DXE(6); TPI, KF
COMMON/C6/CZFRO, PHI, PHITE, DPHI, SPHI, RHO, NXCS, NYCS, NYC

```
CPOT2H
             POT2H
      SUBROUTINE POT2H
      COMPLEX CZERO, PHI, PHITF, DPHI, SPKI
      COMPLEX VPIC.DS.PHIH.CK
      COMPLEX CEX
      COMMON/C1/KBOX(1010),XF(5),YF(4).AR(3),X1,X2,X3,X4,Y1,Y2,BETA,NBS
      COMMON/C?/AS.NMACH.FMACH(6),NFREQ,FREQ(10).NMODE,NSURF.LPUNCH
      COMMON/C3/VPIC(80,15),DS(2025),PHIW(50),CK(40),DXE(6),TPI,KF
      COMMON/C4/MOR(100).NBL(100),FQ.IFR.XL,NS.NTH,NBW,NRT
      COMMON/C5/X,Y,DX,DY,FM,EK,EKR,FKR,NP,MP,NB,NPOX,KODE.MODE
      COMMON/CO/CZERO, PHI, PHITE, BPHI, SPHI, RHO, NXCS, NYCS, NYCX(40)
      COMMON/C8/XAIC(10,10,2), YAIC(10,2), NXBX(40), NXBXCS, NXWING, NYWING
      M=2+MOB(NBOX)
      N=MING(NBOX, 15)
      DK=FKB
      DK2=DK++2
      M1 = M - 1
      DKR=DK2/R.O
      DK4=2.0+DK8
      DK12=DK2/12.4
      CM=11.5
      DH=DK+0.5
      DM=! . 5+DH
      DD= . . 0 + DK
      DDM=DD
      D1=0.25*DK2
      Ro=DKノノン4.A
      DO . 1=1.M
      91=# . i
      84=>.0/DM
      82=H5/84-DH
      A3=-1.5+85
       113=11H+84+85
       D4=1KH+B4
       DD4=2.0+D4
       CN=1.0
       G3=#.#
       C4=0.0
       C7=0.0
       CH=# . #
       DO : J=1.N
       A1=HM/CN
       CirCM+ COS(A1)
       CPE-CH+ SIN(A))
       CALL GSIN(AL.C5.C5)
       Chal Mach
       Cos-CH+Co
      Gy=1'1-GA
      610:62-64
      611:65-67
      612:66-68
       VRF: 8 1409-84 +010-8540 1-814011-824012
       VIM=84+09+83+010-85+64+82+611-81+612
       VPIC(I.J)=CMPLX(VRF.VIM)
   21 G3=01
      64=17
      6/=1,5
       CH=E6
       A1=41-D1
       H3=43-D3
```

84=H4-D4

```
74=14+114
  CN=CN+2.0
2 CONTINUE
  CH=CH+1.0
  DM=BM+BBM
3 DDM=DDM+DD
  00 5 J=1.N
  DO 4 1=1.M1
  K=H- I
4 VPIC(K+1.J)=VPIC(K+1.J)=VPIC(K.J)
5 VPIC(1,J)=2.0*VPIC(1,J)
  CM=H.B
  DM=0.0
 · DBM=BK
  00 12 I=1.M
  C/=0.9
  C8=0.3
  にんニャ・リ
  C10=0.0
  P1=0.0
  P2=1.4
  CN=1.0
  86=1:.5#DK12
  10 10 J=1.N
  A1=CM/CN
  A2=DM/CN
  IF (A1-8.2) 7,7,8
7 B1=2.0-A1++2/1.0
  82=-DK/(6.0+CN)
  60 10 9
8 83= SIN(A1)/41
  B1=>.0+B3
  R2=(B3- COS(A1))/A2-DH/CN+B3
9 R3= COS(A2)/CN
  R4= SIN(A2)/CN
  C3=P1 #B3+B2#B4
  C4=R2+R3-H1+R4
  B5=DH+CN
  G1=#5+G4-2.#+C1
  C2=-2.0+C4-85+C3
  65=61-67
  C6=C2-CH
  P3+P2-R6+CN
   P4-P5+7.0*DK1/*(CN-1.0)
   VRF_C5-P1+C6+P1+C3-P4+C9
   VIM: Cn+P1+C>+P4+C10
   VPIC(1.J)=VPIC(1.J)+GMPLX(VRF,VIK,
   P1=P1+DH
   P?=P?+CN+BK4
   CN=CN+2.0
   C/=1:1
   CH=C2
   69=13
  C10=C4
   86=H6+DK12
IN CONTINUE
   CM=CM+DK
   DM=HM+DDM
12 DDM: DDM+DD
   D3=1 K/(2.0+3.14159265)
   Alz#.H
```

BO 14 J=1.N CEX=D.S+CMPLX(SIN(A1), GOS(A1)) BO 13 I=1.M 13 VPIC(I,J)=CEX+VPIC(I,J) 14 A1=A1+DH RETHRN FND

```
CPHIR
            PHIB
      SUBROUTINE PHIR
      COMPLEX CZERO.PHI.PHITF, DPHI.SPH?
      COMPLEX VPIC. DS, PHIN. CK
      GUMMON/C1/KHOX(1040),XF(5),YE(3).AR(3),X1,X2,X3,X4,Y1,Y2,BETA,NBS
      COMMON/CZ/AS.NMACH.FMACH(6).NFREQ.FREQ(10).NMODE.NSUBF.LPUNCH
      CUMMON/C3/VPIC(80.15).DS(2025).PH1W(50).CK(40).DXE(6).TPI.KF
      COMMON/C4/MOR(100), NBL(100), FQ. IFR. XL, NS, NTM. NBW, NRT
      COMMON/C5/X,Y,DX,DY,EM,EK,EKR,FKR,NP,MP,NB,NROX,KODE,MODF
      COMMON/C6/CZFRO, PHI, PHITE, DPHI, SPHI, RHO, NXCS, NYCS, NYRX(48)
      COMMON/CB/XAIC(10,10,2),YAIC(10,2),NXBX(40),NXBXCS,NYWING,NYWING
      NQ=MINO(NP, 15)
      DO >0 1=2,NO
      NU=NP-1+1
      JR=MOB(NU)
      NJ=NBL(NU)+1
      DO : 0 J=1.JR
      K=1+IARS(MP-J)
      DPHI=VPIC(K, 1)
      IF (J.EQ.1) GO TO 10
      K=MP+J-1
      DPHI=BPHI+VPIC(K.I)
   In SPHI=SPHI+DPHI+DS(NJ)
   T+LN=LN NY
      RETURN
      END
```

```
CSD
            SDZ
      SURPOUTINE SON (S.R.C.R.T.TR.TM)
      COMPLEX CZERO, PHI. PHITE, DPHI. SPHI
      COMPLEX VPIC.DS, PHIN, CK
      DIMENSION S(45.45), R(45,45), C(45.45), B(45,45), T(45,45),
                 TR(45,45),TM(45,45)
     1
      COMMON/C1/KROX(1040),XF(5),YE(3).AR(3),X1,X2,X3,X4,Y1,Y2,BETA,NUS
      COMMON/CZ/AS.NMACH.FMACH(6).NFREQ.FREQ(10).NMODE,NSURF.LPUNCH
      COMMON/C3/YPIC(80.15), DS(2025).PHIW(50), CK(40).DXE(6).TPI, KF
      COMMON/C4/MOR(100).NBL(100),FQ.IFR.XL,NS.NTM.NAW,NRT
      COMMON/C5/X.Y.DX.DY,EM,EK,EKB,FKR,NP,MP,NB,NROX,KODE MODE
      COMMON/CA/CZFRO.PHI.PHITE.DPHI.SPHI.RHO.NXCS.NYCS.NYCX(4:)
      COMMON/CH/XATC(10.10.2), YATC(10.2). NXBX(40). NXBXCS. NYWING. NYWING
C *** THIS SURROUTINE GENERATES THE REAL PART OF THE SUBSTANTIAL
C *** DERIVATIVE MATRIX FOR THE VELOCITY POTENTIAL
      MB=MOB(NBOX)
      NKTH
      00 10 I=1,MH
   IR NM=NM+NXBX(I)+NXBXCS
       DO 20 I=1,NM
       D() / () J=1.NM
       1.0=(L,I)MT
      00 108 1=1.MR
       IF (NXBX(1) .EQ. 1) GO TO 100
       NXS=NXBX(I)
       CALL BMAT (NXS.NRSB.NCSB.B)
       CALL THAT (NXS.1.1.1.MSIZE,2.T.R)
       DO 101 MR=1, MSTZE
       DO 101 MC=1,NCSB
       TR(MR.MC)=0.0
       DO 101 MRC=1.MS17h
   101 TR(MR,MC)=TR(MR,MC)+T(MR,MRC)+R(MRC,MC)
       CALL CMAT (NXS.1.2.1, NRSC, NCSC.2.C)
       DO 102 MR=1, NRSC
       DO :02 MC=1.NCSB
       T(MR,MC)=U.U
       DO 102 MRC=1.NCSC
   182 T(MR.MC)=T(MR.MC)+C(MR.MRC)+TR(MRC,MC)
       KROW##
       DO 140 II=1.1
   149 KROW=KROW+NXBX([])
       KROW=KROW-NXRX(1)
       NO IRII LR=1,NXS
       I ROW=KROW+LR
       90 180 LC=1.NXS
       ICOL=KROW+LC
   180 THOUSON, ECOLD = TOUR, LCD
   THE CONTINUE
       11 (4XBXCS .11. 2) GO TO 300
       DO : 00 1=1,MR
       CALL RMAT (NXRXCS.NRSH,NCSB,B)
       CALL IMAT (NXHXCS,1,2,1,MSIZE,4,T,R)
       DO . 01 MR=1.MS1ZF
       DO FOI MC=1, NOSA
       TR(MR,MC)=0.0
       DO 201 MRC=).MS17F
   201 TR(MR,MC)=TR(MR,MC)+T(MR,MRC)+R(MRC,MC)
       CALL CHAT (NXHXCS.1,2,2,NRSC.NCSC, 1,C)
       DO 202 MR=1.NRSC
       DO SON MC=1.NOSB
```

T(MR.MC)=0.0

DO POP MRC=1.NCSC 2H2 T(MP, MC)=T(MR, MG)+C(MR, MRC)+TR(MRC, MC) KROW=# 00 :03 JJ=1.MH 203 KROW=KROW+NXRX(1J) KROW=KROW+(I-I)*NXBXCS DO 204 LR=1.NXRXCS NROW=KROW+LK KCOL = KROW DO YOR LC=1, NXBXCS NCOI = KCOL+LC 208 TH(NROW, NCOL)=T(LR, LC) 240 CONTINUE 349 CONTINUE RETURN FND

T

```
CTRAMP
      SURPOUTINE TRAMP (NIF, MROWS, KCOLS, S, R, C, R, T, TR, [I, TM)
      COMPLEX CZERO, PHI, PHITF, DPHI, SPHI
      COMPLEX VPIC.DS.PHIW.CK
      DIMENSION S(45.45), R(45,45), C(45.45), B(45,45), T(45,46), TR(45,45),
                 T1(45,40), TM(45,45)
      COMMON/C1/KBOX(LOHO), XF(5), YE(3), AR(3), X1, X2, X3, X4, Y1, Y2, BETA, NBS
      COMMCM/C2/AS.NMACH.FMACH(6).NFREQ.FREQ(10).NMODE.NSURF.LPUMCH
      GOMMON/G3/VPTG(80,15),DS(2025).PHIW(50),GK(40),DXE(6),TPI,KF
      COMMON/C4/MOR(190), NRL(109), FQ. IFR.XL, NS. NTH, NRH, NRT
      COMMON/C5/X,Y,DX,DY,EM.EK,EKR,FKR,NP,MP,NH,NAOX,KODE.MODF
      COMMON/C6/CZFRO, PHI, PHITE, DPHI, SPHI, RHO, NXCS, NYCS, NYCX(40)
      COMMON/CH/XAIC(10,16,2), YAIC(10,2), NXBX(40), NXBXCS, NYWING, NYWING
      MH=MOH(NBOX)
      KCOLS=NXWING+NYWING+NXCS+NYCS
       KROWS=MH+(NXWING+NXCS)
 *** ZERO IM MATRIX FOR SPANNISE INTERPOLATION
       no on I=1, Krows
       DO PO J=1.KCOLS
   0.0=(L.I)MT 05
C *** SPANNISE INTERPOLATION (WING)
       IF (NYWING .FQ. 0) GO TO 1999
       DO 1000 I=1, NXWING
       CALL HMAT (NYWING, NRSB, NCSB, B)
      CALL THAT (NYWING, 2, 1, 1, MSIZE, 1, T, R)
       DO 1001 MR=1.MSIZE
       DO INC. MC=1-NCSR
       TR(MR,MC)=n.n
       DO IDUI MRC=1.MSIZE
 1001 TR(MR,MC)=TR(MR,MC)+T(MR,MRC)+B(MRC,MC)
       CALL SHAT (MR.NYWING.1.NRSC.NCSC.S)
       00 1002 MR=1.NRSC
       DO 1002 MC=1.NCSB
       T(MR,MC)=U.B
       DO 1002 MRC=1.NCSC
 10"2 T(MR, MC)=T(MR, MC)+S(MR, MRC)+TR(MRC, MC)
       KROW=(I-1)+MB
       DO 1080 LR=1.MR
       LROW=KROW+LR
       KCO! = (1-1) + NYWING
       DO 1080 LC=1.NYWING
       I.COI = KCOL+LC
 1040 TM(IROW, ICOL)-T(ER, EC)
 1000 CONTINUE
 1999 CONTINUE
G *** SPANNISE TRANSFORMATION (CONTROL SURFACE)
       IF (NYCS .EQ. 0) GO TO 2949
       DO POHO I=1, NXCS
       CALL RMAT (NYCS, NRSB, NCSB, R)
       GALL THAT (NYCS.2.2.1.MSIZF.1.T.R)
       00 :001 MR=1.MS1ZF
       DO 2001 MC=1.NCSB
       TR(MR.MC)=0.0
       DO 2001 MRC=1.MSIZE
 POUT TR(MR, MC)=TR(MR, MC)+T(MR, MRC)+H(MRC, MC)
       CALL SHAT (HR. NYCS. 2. NRSC. NCSC. S)
       DO 2012 MR=1.NRSC
       DO 2002 MC=1.NCSA
       T(MR,MC)=0.0
       DO : PH2 MRC=1.NCSC
 2002 T(MR, MC) = T(MR, MC) + S(MR, MRC) + TR(MRC, MC)
```

5.15

```
KROH=MB*NXWING+(I-1)*MB
      DO 2080 LR=1.MB
      LROW=KROW+LR
      KCOL = NXWING * NYWING * (I-1) * NYCS
      DO 2040 LC=1.NYCS
      LCOI =KCOL+LC
 2030 TH(| ROW, LCOL) = T(LR, LC)
 2010 CONTINUE
 2949 CONTINUE
C *** REARRANGE ROWS AND COLUMNS FOR CHORDWISE TRANSFORMATION
      CALL RMAT (MR. NXWING. MR. NXCS. MSIZE, R)
      DO 2050 MR=1.MSIZE
      DO 2050 MC=1.KCOLS
      TI(MR,MC)=0.0
      DO 2050 MRC=1.KRONS
 2050 TI(MP, MC)=TI(MR, MC)+R(MR, MRC) +TM(MRC, MC)
C *** 7ERF IM MATRIX FOR CHORDWISE INTERPOLATION
      MCOIS=MH#(NXWING+NXCS)
      MROWS=0
      DO 10 1=1.MR
   IN MROHS=MROHS+NXRX(1)+NXRXCS
      DO 40 I=1, MROWS
      DO AN J=1.MEOLS
   50 TM(I,J)=0.0
C *** CHORDWISE INTERPOLATION (WING)
      IF (NXWING .FQ. A) GO TO 3999
      DO 3900 I=1,MA
      GALL BHAT (NXWING, NRSB, NCSB, B)
      CALL THAT (NXWING.1,1,1,MSIZF,1,T,R)
      DO 3041 MR=1.MS176
      DO 1001 MC=1.NCSR
      TR(MR,MC)=0.0
      DO SOUT MRC=1, MSIZE
 3071 TR(MR, MC)=TR(MR, MC)+T(MR, MRC)+B(MRC, MC)
      CALL CHAT (NYHING: F.NIF. 1, NRSC: NGSG: 1, C)
      DO 3842 MR=1.NRSC
      DO MUIS MC=1.NCSA
      T(MP,MC)=0.0
      DO ARHO MRC=1.NCSC
 3002 T(Mk,MC)=T(MR,MC)+C(MR,MRC)+TR(MRC,MC)
      KROW= 0
      DO 40 11=1.1
   40 KROW=KROW+NXBX([])
      KROW=KROW-NXRX(1)
      (I)XHXN=LL
      DO SOMO IRELAM
      LROW=KROW+LR
      KCOL = (1-1) *NXWING
      DO SOBO LC=1.NXWING
      1 COL = KCOL + FC
· SOME THEIROW.LCOLI:T(IR.LG)
 1000 CONTINUE
 3949 CONTINUE
C *** CHOPDWISE INTERPOLATION (CONTROL SURFACE)
      IF (NXCS .EQ. n) 80 TO 4949
      DO 4000 1=1.MB
      GALL BMAT (NXCS, NRSH, NCSR, R)
      GALL THAT (NXCS.1,2,1,MSIZE,1,T,R)
      DO 4801 MR=1.MSIZE
      00 4841 MC=1.NCSB
      TR(MR,MC)=0.0
```

```
DO 4001 MRC=1.MSIZE
48U1 TR(MR, MC)=TR(MR, MC)+T(MR, MRC)+R(MRC, MC)
     CALL CMAT (NXCS.I.NIF, 2, NRSC.NCSC, 1, C)
     DO 4002 MR=1, NRSC
     DO 4002 MC=1.NCSB
     T(MR, MC)=0.0
     DO 40112 MRC=1,NCSC
4002 T(MR, MC)=T(MR, MC)+C(MR, MRC)+TR(MRC.MC)
     KROW=LROW+(I-+)*NXBXCS
     DO 40HO LR=1.NXBXCS
     NHOW=KROW+LR
      KCOI = MB + NXWING + (I-1) + NXCS
      DO ANHO LC=1.NXGS
      NCOL = KCBL+LC
40HB TM(NROW, NCOL) = T(LR, LC)
4000 CONTINUE
4999 CONTINUE
      DO 5001 MR=1.MROWS
      NO + NUL MC=1.KCOLS
      TR(MR, MC)=0.0
      no bout MRC=1. MCOLS
on:1 TR(MR, MC)=TR(MR, MC)+TM(MR, MRC)*TI(MRC, MC)
      CALL RHAT (NXHING, NYHING, NXCS, NYCS, MSIZE, R)
      DO 5050 1=1, MROWS
      DO SOSO J=1.MSIZF
      n.n=(L.[)IT
      DO 5050 K=1.MSIZE
 5000 TI([,J)=TI([,J)+TR([,K)+R(K,J)
      00 5002 1=1, MROWS
      DO 5052 J=1.MSIZF
 5002 TR(1,J)=T1(1.J)
      RETHRN
      END
```

```
CCHAT
      SURROUTINE CHAT (NAICPX, IY, NIF, MS, NRS, NGS, NE, C)
      COMPLEX CZERO, PHI, PHITF, DPHI, SPHI
      COMPLEX VPIC. NS. PHIW. CK
      DIMENSION C(45.45)
      COMMON/C1/KBOX(1040),XE(5),YE(4).AR(3),X1,X2,X3,X4,Y1,Y2,UcTA,NBS
      COMMON/C?/AS.NMAGH, FMAGH(A), NFREO, FREO(10), NMODE, NSURF, LPUNCH
      COMMON/C3/VPIC(80.15), DS(2025).PHIN(50), CK(40), DXE(6), TPI, KF
      COMMON/C5/X, Y. DX. DY, EM. EK. EKR. FKR. NP. NP. NB. NBOX, KODE. MOUF
      COMMON/C6/CZFRO.PHI.PHITE.DPHI.SPHI.RHO.NXCS.NYCS.NYCX(40)
      COMMON/CR/XATC(In.111./), YATC(III./), NXBX(4U), NXBXCS, NYHINB, NYHING
C *** FOR CHORDWISE INTERPOLATION
 *** NPTS = NUMBER OF CHORDWISE MACH BOXES
  *** NATURY = NUMBER OF CHORDWISE AIC CONTROL POINTS
 *** I' = SPAN NUMBER
C *** NIF = CONTROL FOR DIFFFRENTIATION
                                           (1=NO DERIVATIVE AND 2=D()/DX)
C *** NS : SURFACE (1=WING AND >=TAIL)
      IF (NAICPX .GT. .1) GO TO 5
      NRS=NXBX(IY)
      IF (NS .FQ. 2) NRS=NXBXCS
      NCS=NAICPX
      DO 1 I=1.NRS
      DO | J=1.NCS
    1 C(1,J)=n.u
      GO TO 100
    3 NRS=NXBX(IY)
      IF (NS .EQ. ?) NRS=NXHXCS
      NCS=3+(NAICPX-2)
      00 4 1=1.NRS
      DO 4 J=1.NCS
    4 G(1.J)=0.0
 100 IF (NCS -GT. 5) GO TO 500
      IF (NCS .EQ. 6) 80 TO 400
      GU TO (200,200,300).NCS
C *** TWO CHORDWISE AIR CONTROL POINTS
  200 DO 210 I=1.NRS
      G(1.1)=1.0
      C(1,2)=XBOX(1,1Y.NS.NE)
      IF (NIF .EQ. 2) C(1,1)=0.0
      IF (NIF .EQ. /) C(1,2)=1.0
  210 CONTINUE
      RFTHRN
C *** THREE CHORDWISE ALC CONTROL POINTS
  300 00 310 1=1.NRS
      G(1,1)=1.0
      C(1.2) = XHUX(1.14, NS.NE)
      C(1.3)=XROX(1.1Y.NS.NF)++>
      II (NIF .LQ. ') G(1.1)=0.0
         (NIF .FQ. ') C(1,2)=1.0
      II (NIF .FQ. /) C(1.3) = 2. H = XHOX(1, IY, NS, NE)
  410 CONTINUE
      RI TURN
C *** FOUR CHORDWISE ALC CONTROL POINTS
  400 DO 410 1=1.NRS
      NX=NAICPX-1
      00 406 J=1,NX
      IF (0.5+(XINT(.J. IY.NS.NE)+XINT(J+1. IY.NS.NF)) .GT. XROX(1, IY.NS.NE
     11) 60 TO 40/
  446 CONTINUE
      NX=NAICPX
```

275

00 10 408

```
417 NX=J
  405 KC=1
      IF (NX .GT. ") KC=4
      C(1,KC)=1.0
      C(1,KC+1)=XBOX(1,1Y,NS,NE)
      C(1,KC+2)=C(1,KC+1)++2
      IF (NIF .EQ. 2) C(I,KC)=0.0
      IF (NIF .EQ. 2) C(I.KC+1)=1.4
      IF (NIF .EQ. /) C(1.KC+2)=2.0+XBOX(1,1Y,NS,NF)
  418 CONTINUE
      RETURN
C *** .GT. FOUR AIR CONTROL POINTS
  500 DO 510 1=1,NRS
      NX=NAICPX-1
      DO 404 J=1.NX
      IF (0.5+(XINT(J,1Y,NS.NE)+XINT(J+1.1Y,NS.NF)) .GT. XROX(1,1Y,NS.NE
     1)) 60 TO 50/
  566 CONTINUE
      NX=NAICPX
      00 10 5118
  547 NX=J
  508 IF (NX .LT. 3) 60 TO 550
      IF (NX .GT. NAICPX-2) GO TO 58"
      KC=(NX-2)+3+1
      C(1,KC)=1.0
      C(1,KC+1)=XBOX(1,1Y,NS.NE)
      C(1.KC+2) *C(1.KC+1) **
      IF (NIF .EO. 2) C(1,KC+1)=1.8
      IF (NIF .EQ. >) C(I,KC+2)=XBOX(I,IY,NS,NE)
      IF (NIF .EQ. 2) G(I,KC)=0.0
      60 10 510
  500 C(1.1)=1.0
      C(1,2)=XBOX(1,1Y,NS,NE)
      C(1.3)=C(1.2)++2
      IF (NIF .EQ. /) C(1.1)=0.0
      IF (NIF .EQ. 2) C(1,2)=1.0
      IF (NIF .EQ. 2) C(1,3)=XBOX(1,1Y.NS.NE)
      80 TO 510
  560 C(1.NCS-2)=1.0
      C(1,NCS-1)=XBOX(1,1Y,NS,NE)
      G(1.NGS)=G(1.NGS-1)**2
       IF (NIF .EQ. ?) C(1,NCS-?)=0.0
       IF (NIF .EQ. 2) C(1,NCS-1)=1.0
       IF (NIF .EQ. 2) C(I.NCS)=XBUX(I.IY.NS.NE)
  510 CONTINUE
      RFTURN
      FND
```

```
CTMAT
       TMAT
      SURROUTINE THAT (NPTS.ND.NS.IY.MSIZE,NE,T,R)
      DIMENSION T(49,45),R(45,45)
      COMMON/CR/XAIC(10,10,2), YAIC(10,2). NXBX(40), NXBXCS, NXWING, NYWING
     GENERATES (T) ** (-1) MATRIX
 *** NPTS = NUMBER OF AIC POINTS ALONG STRIP IN NU DIRECTION
                       T
 *** MSI7F = ORDER OF
                           MATRIX
                    (1=WING AND 2=CONTRUL SURFACE)
 *** NS = SURFACE
 *** ND = INTERPOLATION DIRECTION (1=CHORDWISE AND 2=SPANWISE)
      IF (NPTS .LT. 4) MSIZE=NPTS
         (NPTS .GT. 3) MSIZE=3*NPTS-6
      00 1 J=1.MS17F
      DO 1 K=1.MS17F
    1 T(.t.K)=0.0
      IF (NPTS .BT. 4) GO TO 5000
      30 10 (2000,2000, 1000,4000), NPTS
C *** NPTS=2 (TWO POINTS ALONG STRIP)
 2000 T(1.1)=1.U
      T(2,1)=1.U
      IF (ND .EQ. 1) T(1,2)=XINT(1,1Y,NS.NF)
        (ND .FQ. 1) T(2,2)=XINT(2,17,NS,NE)
         (ND .FQ. ?) T(1,?)=YAIC(1.NS)
      IF
         (ND .EQ. 2) T(/,2)=YAIC(2,NS)
      GO 10 6000
C *** NPTS=3 (THREE POINTS ALONG STRIP)
 3000 T(1.1)=1.0
      T(2,1)=1.0
      T(3.1)=1.0
      IF (ND .20. 2) BO TO 3010
      NPTS=3 CHORDWISE DIRECTION
      T(1.2)=XINT(1, TY, NS, NE)
      T(1.3)=T(1,2)++2
      T(2.2)=XINT(2.1Y,NS,NE)
      T(2,3)=T(2,2)++2
      T(3,2)=X1AT(3,1Y,NS,NE)
      て(ス,ろ)=て(ろ,と)##2
      80 10 41111
C *** NPTS=5 SPANWISE DIRECTION
 3018 T(1.2)=YAIC(1.NS)
      T(1.3)=T(1,2)**/
      T(2.2)=YAIC(2.NS)
      T(".3)=T(2,2)**2
      T(3,2)=YAIG(3,NS)
      T(3,3)=T(3,2)**2
      80 10 6000
--- NPTS=4 (FOUR POINTS ALONG STRIP)
 4040 T(1.1)=1.0
      T(2,1)=1.0
      T(3,1)=1.0
      T(4,2)=1.0
      T(5,4)=1.0
      7(6.4)=1.0
      T(3,4)=-1.0
      T(4,5)=-1.N
      IF (ND .FQ. 2) BO TO 4010
      NPTS-4 CHOPDWISE DIRECTION
      T(1.2)=XINT(1.1Y.NS.NE)
      T(1, 5)=T(1,2)+*2
      T(2,2)=XINT(2,1Y,NS,NE)
      T(2,3)=T(2,2)**2
```

T(3,2)=0.5*(XINT(2,1Y,NS,NE)*XINT(3,1Y,NS,NE))

```
S**(5,8)T=(6,F)T
       T(3,5)=-T(3,0)
       T(3.6)=-T(3,3)
       T(4,3)=2.0+7(3,2)
       T(4,6)=-T(4,3)
       T(5,5)=XINT(3,1Y,NS,NE)
       T(5,6)=T(5,5)**2
       T(6.5)=XINT(4,1Y,NS,NE)
       T(6,6)=T(6,5)++2
       60 10 6000
C *** NPTS=4 SPANNISE DIRECTION
 .4910 T(1,2)=YALG(1,NS)
       T(1,3)=T(1,2)**2
       1(2,2)=YAIC(2,NS)
       T(2,3)=T(2,2)**2
       T(3,2)=0.5+(YATC(3.NS;+YATC(3.NS))
       T(3,3)=T(3,2)**
       T(3.5)=-T(3,0)
      T(3,6)=-T(3,3)
      T(4,3)=2.00T(3.2)
      T(4,6)=-T(4,3)
      T(5,5)=YAIC(3,NS)
      T(5,6)=T(5,5)**?
      T(6,5)=YAIC(4,NS)
      T(6,6)=T(6,5)**?
      60 to knou
C *** MPTS .GT. 4
 5040 EF (NO .EQ. ?) GO TO 5500
C ... NPTS .GT. 4 (CHORDWISF DIRECTION)
      T(1.1)=1.8
      T(1,7)=XINT(1,1Y.NS,NE)
      T(1,3)=T(1,2)**2
      T(2,1)=1.0
      T(2,2)=XINT(2,17,NS,NE)
      1(2,3)=1(2,2)++2
      T(MSIZE, MSIZF-2)=1.0
      T(HSIZF, HSIZF-1)=XINT(NPTS, IY, NS, NF)
      T(MSIZE, MSIZE)=T(MSIZE, MSIZE-1)++2
      T(MS1ZF-1, MS1ZF-2)=1.0
     T(MSIZF-1.MSIZF-1)=XINT(NPTS-1.IY,NS.NE)
     T(MSIZE-1, MSIZF)=T(MSIZE-1, MSIZE-1)++2
     NT=NPTS-4
     no soin N=1,NT
     NR=2+54N
     MC=. + N+ 1
     NP=N+7
     T(NR.NC)=1.#
     T(NH.NC+1)=XINT(NP.IY.NS.NE)
5010 T(NK.NC+2)=1(NR.NC+1)++2
     NI=NPIS-3
     00 5070 N=1.NT
     NR-.CON
     NC=3+N-2
    T(NR.NC)=1.6
    T(NR+1,NC+1)=1.0
    T(NR, NC+3)=-1.0
    T(NR+1,NG+4)=-1.0
    T(NP.NG+1)=#.5*(XINT(N+1.|Y.NS.NF)+XINT(N+2,|Y.NS.NE))
    T(NR.NC+2)=1(NR.NC+1)=+2
    T(NR, NC+4)=-T(NR, NC+1)
    T(NR.NC+5)=-T(NR.NC+2)
```

```
T(NP+1,NC+2)=>.u+f(NR,NC+1)
 5020 T(NP+1,NC+5)=-T(NR+1,NC+2)
      00 70 6000
C *** NPTS .GT. 4
                    (SPANWISE DIRECTION)
 5500 T(1,1)=1.0
      T(1,2)=YAIC(1,NS)
      T(1,3)=T(1,2)**2
      T(2,1)=1.0
      T(2,2)=YA1C(2,NS)
      T(2.3)=T(2.2)**2
      T(MSIZE, MSIZE-2)=1.0
      T(HSIZE, HSIZE-1)=YAIC(NPTS, NS)
      T(MS!ZE, MSIZF)=T(MSIZE, MSIZE-1)**2
      T(MSIZF-1, MSIZF-2)=1.0
      T(MSIZE-1, MSIZE-1) #YAIC(NPTS-1, NS)
      T(MSIZE-1, MSIZE)=T(MSIZE-1, MSIZE-1)++2
      NT=NPTS-4
      DO 5510 N=1,NT
      NR=2+3+N
      NC=.1+N+1
      NP=N+?
      T(NR, NC)=1.0
      T(NR.NC+1)=YAIC(NP.NS)
 5510 T(NR,NC+2)=1(NR,NC+1)++2
      NT=NPTS-3
      00 5520 N=1,NT
      NR= . + N
      NC=14N-2
      T(NR, NC)=1.1
      T(NP+1.NC+1)=1.0
      T(NP,NC+3)=-1.0
      T(NR+i,NC+4)=-1.0
      T(NR, NC+1)=0.5*(YAIC(N+1, NS)+YAIC(N+2, NS))
      T(NR,NC+2)=T(NR,NC+1)++2
      T(NR,NC+4)=-T(NR,NC+1)
      T(NP,NC+5)=-T(NR,NC+2)
      T(NR+1,NC+2)=2.0+T(NR,NC+1)
 5520 T(NP+1,NC+5)=-T(NR+1.NC+2)
C *** INVERT
              T MATRIX
 SOUR CONTINUE
      GALL MINV (MSIZE.T.R)
      RETURN
      FND
```

```
CCSIN
           CSIN
      SUBPOUTINE CSIN(X1.U.S)
ſ.
      SINE AND COSINF INTEGRAL SUBROUTINE
C
r.
      C AND S ARE THE INTEGRALS OVER T FROM 1 TO INFINITY OF
C
          COS(XT)/T AND SIN(XT)/T
C
      SG=1.0
      X=X1
      IF (X) 1,2,2
    1 SG=-SG
      X=-X
    2 X2=X+X
      TF (X-1.0) 3.3.4
r.
C
      FOR ABS(X) LFSS THAN 1 A SERIES FXPANSION IS USED
C
    3 V=(((X2/98.0-0.6)».05*X2+[.U)*X2/L8.0-1.0)*X+1.57U79433
      U=((X2/45.0-1.0)*X2/24.0+1.0)*X2/4.0-.5/7215665-ALOG(X)
      60 TO 5
C
C
      FOR ABS(X) GREATER THAN 1 APPROXIMATIONS OF HASTINGS ARE USED
C
    4 P=(((X2+19.594119)+X2+47.411558)+X2+8.493536)/((((X2:21.561050)
     1 *x2+70.376496)*X2+30.038227)*X)
      Q=(((X2+21.383724)+X2+49.719775)+X2+5.0d9504)/(((X2+27.1/7958)
        *X2+119.918932)*X2+76.787876)*X2)
      CO=COS (X)
       SI=SIN (X)
      U=Q+C0-P+SI
       V=P+C0+0+SI
     5 S=V+SG
       RETURN
       END
```

```
CHSINEC
            MSIMEC
      FUNCTION MSIMEC(M,N,L,A,B)
      COMPLEX A.B.G
      DIMENSION A(M.1).B(M.1)
      0.30 I = 1.0
      C = 0.0
      00 10 J = 1.0
   IN G=AMAX1(C.AHS(REAL(A(1.J))),ABS(AIMAG(A(I.J))))
      1F(C.FQ.0.0) GO TO 1040
      DO 20 J = 1.N
   O((L \cdot I)A = (L, I)A \cap I
      1.1 = 1.1
   > n R(I,J) = R(I,J)/C
      IF(N.EQ.1) GO TO 205
      NM = N - 1
      NO / NN J = 1.NM
      C = 0.9
      K = U
      NO 48 1 = J,N
      D=ARS(RFAL(A(1.J)))+AHS(AIMAG(A(1,J)))
      IF((..GF.D) GO TO 40
      K = I
      C = D
   49 CONTINUE
       IF(K.EQ.0.OR.C.LT.1.F-7) GO TO 1000
       1F(K.EQ.J) GO TO /0
       00.90 \text{ JJ} = \text{J.N}
       R=A(J,JJ)
       A(J,JJ) = A(K,JJ)
    on A(K,JJ)=G
       00 \text{ AP JJ} = 1.L
       G=R(J,JJ)
       B(J,JJ) = B(K,JJ)
    60 B(K,JJ)=G
    70 G=1.0/A(J,J)
       JP = J + 1
       DO AN JJ = JP.N
    80 A(J,JJ)=A(J,JJ)+B
    90 00 100 JJ = 1.L
   146 B(J,JJ)=B(J,JJ)+B
       00 200 I = 1.N
       IF(1.EQ.J) GO TO > 90
       G=A(1.J)
       00 110 JJ = 1P.N
   (LL,L)A+0-(LL,1)A=(LL,1)A 011
       1.1 = 1.1
   1.'0 A(I,JJ)=R(I,JJ)-G+R(J,JJ)
   240 CONTINUE
   205 G=A(N.N)
       IF (ABS(REAL(G))+ARS(AIMAG(G)).LT.1.E-7) GO TO 1000
       00 210 J = 1.L
   210 B(N,J)=B(N,J)/G
       IF(N.FQ.1) GO TO 230
       DO 220 T = 1.NM
       1.1 = UL 084 00
   2/1 R(1,JJ)=R(1,JJ)-A(1,N)+B(N,JJ)
   230 MSTMFC=1
       PFTIIRN
  1000 MSTMFC=2
       RETHAN
       FND
```

```
CRMAT
      SURROUTINE RMAT (NXWING, NYWING. NXCS, NYCS, MSI7E.R)
      DIMENSION R(45.45)
      MSIZE=NXWING+NYWING+NXCS+NYCS
      DO 100 1=1.MS17E
      NO INU J=1. MSIZE
  100 R(1,J)=0.0
      IF (NXWING .FQ. 0) GO TO 250
      K=1
      KK=1
      II=NYWING+NXWING
      00 /08 1=1.11
      R(1.K)=1.0
      K=K · NXWING
      ff (K .GT. 11) KK=KK+L
      IF (K .GT. ]]) K=KK
  200 CONTINUE
  250 CONTINUE
      IF (NXCS .EQ. (1) GO TO 350
      II=NXCS+NYWING
      K=NXWING*NYHING+1
      KK=NXWING+NYWING+;
      NO 300 [=1, []
       IK=I+NXWING*NYWING
      R(1+,K)=1.0
       K=K . NXCS
       IF (K .GT. MSIZE) KK#KK+1
       IF (K .GT. MSI7E) K=KK
  300 CONTINUE
  150 CONTINUE
       RETURN
```

FND

```
CXINT
      FUNCTION XINT(NX.NY.NS.NE)
      GOMMON/C1/KROX(1000),XF(5),YF(3).AR(3),X1,X2.X3,X4,Y1.Y2.0ETA,NUS
      COMMON/C5/X, Y, DX, DY, EM, EK, EKR, EKR, NP, MP, NB, NROX, KODE. MODE
      GOMMON/CR/XAIC(10,10,2), YAIC(10,2), NXBX(4u), NX6xCS, NXWING, NYWING
      IF (NE .BT. 1) BD TO 400
      IF (NS .EQ. 1) 60 TO 200
      XINT=XAIC(NX.1,NS)
      RETURN
  200 IF (FLOAT(NY)+DY-DY .GF. YF(2)) GO TO 300
      XINT=XAIC(NX.1.NS)
      RETURN
  300 IF (YAIC(1,1) .LF. YE(2))
     1SLOPE=(YAIC(NYWING,1)-YE(Y))/(XAIC(NX,NYWING.1)-XAIC(NX,1,1))
      IF (YAIC(1.1) .GT. YE(2))
     1SLOPF=(YAIC(NYWING.1)-YAIC(1.1))/(XAIC(NX,NYWING,1)-YAIC(NX,1.1))
      IF (YAIG(1.1) .LF. YF(2))
     IXINT=(DY-FLOAT(NY)-DY-YE(>)+YE(1))/SLOPE + XAIC(NX,1.1)
      IF (YAIG(1.1) .GT. YE(2))
     1XINT=(DY*FLOAT(NY)-DY-YAIC(1,1)+YE(1))/SLOPE + XAIC(NX,),1)
      RETURN
  440 XINT=DX+(FLOAT(NX)-0.5)
      RETURN
      FNN
```

The second of the second secon

CXROX

FUNCTION XROX(NX.NY.NS.NE)

COMMON/C1/KHOX(10:00).XE(5).YE(4).AR(3).X1.X2.X3.X4.Y*.Y.BETA.NBS

COMMON/C5/X.Y.DX.DY.EM.EK.EKR.EKR.NP.NP.NB.NROX.KODE.MODE

COMMON/C6/XAIC(10.10.2).YAIC(10.2).NXBX(40).NXBXCS,NYWING.NYWING

IF (NE .GT. 1) GO TO 400

IF (NS .FQ. 2) GO TO 200

XBOX=DX*(FLOAT(NXHX(1))-FLOAT(NXRX(NY)))*DX*FLOAT(NX)-0.5*DX

RETURN

200 XBOX=XE(4)+DX*(FLOAT(NX)-0.5)

RETURN

310 XBOX=DX*(FLOAT(NX)-0.5)

RETURN

END

CYBOX

FUNCTION YBOX(NY)
COMMON/C5/X,Y,DX.DY,EM.EK.EKR.EKR.NP,MP.NB.NBOX,KODE.MOUE
YBOX=DY+(FLOAT(NY)-1.D)
RETURN
END

```
C BMAT
      SURHOUTINE HMAT (NPTS, TROWS, ICOLS, B)
      DIMENSION B(41.45)
 *** B = B(IROWS, ICOLS)
                           MATRIX
C *** NPTS = NUMBER OF AIC STATIONS ALONG STRIP (CHORDWISE OR SPANNISE)
      ICOI S=NPTS
      IF (NPTS .GT. 3) GO TO 2011
      TROWS=NPTS
      DO 50 I=1, IROUS
      NO 50 J=1, ICOLS
      B(1,J)=0.0
      IF (I .EQ. J) A(I,J)=1.0
   50 CONTINUE
      RETURN
  200 IROHS=6+(NPIS-4)+1
      DO SOU I=1. IROWS
      no and J=1, Icots
  300 B(1,J)=0.0
      R(1,1)=1.0
      9(2,2)=1.U
      A(THOWS, ICOLS)=1.0
      8(TROWS-1, TCOLS-1)=1.0
      IF (NPTS .EU. 4) GO TO 400
      K=NPTS-4
      80 . 1 1=1.K
       NR=, 1.5+1
       NC=211
  3-0 R(NR.NC)=1.0
  4HR RETURN
       FND
```

```
CSMAT
       SURROUTINE SMAT (NIY, MAICPY, NS. NRS. NCS. S)
       DIMENSION S(45.45)
       COMMON/C1/KBOX(10H0).XE(5).YE(3).AR(3).X1,X2,X3,X4,Y1,Y/,BETA.NUS
       COMMON/CS/XATC(10.10.2). YATC(10.2). NXBX(40), NXBXCS. NYWING. NYWING
  *** NIY = NUMBER OF SPANNISE MACH ROXES
  *** NATCPY = NUMBER OF SPANNISE AIC CONTROL POINTS
  *** NS = SURFACE (1=WING AND 2=TAIL)
  *** NRS = NUMBER OF ROWS IN S-MATRIX
  *** NCS = NUMBER OF COLUMNS IN S-MATRIX
       COMMON
       IF (NAICPY .GT. 3) GO TO B
       NRS=NIY
       NCS=NAICPY
       10 6 1=1 NRS
       DO n J=1.NCS
    0.0=(L.1)2 A
       60 TO 198
    R NRS=NIY
       NCS=3+(NAICPY-2)
       00 4 1=1.NRS
       no y J=1.NCS
    9 S(1,J)=11.11
  100 IF (NCS .GT. 5) 80 TO 500
       IF (NCS .EQ. a) 80 TO 400
      88 TO (200.200.300).NCS
C *** THO AIC POINTS
  2" 0 0 764 I=1, NIY
      5(1,1)=1.0
      S(1,2)=YROX(1)
  250 CONTINUE
      RETHRN
C *** THREE AIC POINTS
  300 DO 360 I=1,NIY
      $(1,1)=1.0
      $(1,2)=YBOX(1)
      $(1,3)=$(1,2)**2
  TAR CONTINUE
      RETURN
C *** FOUR AIC POINTS
  400 00 494 1=1.NTY
      10=1
      IF (YROX(I) .LT. H.5*(YAIG(2.NS)+YAIG(3.NS))) IC#1
      $(1.10)=1.0
      S([, [C+1)=YHOX([)
      S(1.10+2)=S(1.1C+1)++2
  490 CONTINUE
      RI TURN
C ***
      -GT. FOUR AIC POINTS
  500 DO 420 J=1,NJY
      NI=NAICPY-2
      00 525 J=1.NT
      IF (H.SH (YAIC(J.NS)+YAIG(J.I.NS)) .GT. YHOX(I)) GO TO 523
 525 CONTINUE
      IC= 1+NAICPY-R
      80 10 524
 523 10=(J-2)#3+4
      IF (J .1 T. 3) 10=1
 5/4 $(1,10)=1.0
      S(1.1C+1)=YH0x(1)
```

The state of the s

S(1.1C+2)=S(1.1C+1)+#2 520 CONTINUE RETURN END

1 (1) 1 (1)

```
CHINV
          MINV
      SUBROUTINE MINV (NM, A, U)
      DIMENSION A(45.45). ((45,45)
      NO .... 1=1.NM
      NO 0041 J=1.NM
      U(1,J)=n.n
      IF (1.FQ.J) U(1.J)=1.U
9981 CONTINUE
      FPS=0.00000000
      00 9015 J=1.NM
      K=1
      IF (I-NM) 9021.9017,9021
9021 IF (A(I.I)-FPS) 900.9006.9007
4016 If (-A(I+I)-FPS) 9886,988/
4046 K:K11
      NA. 1=1 > 200 00
     11(1.7)=11(1.4)·11(K.7)
9023 A(1.J)=A(1.J)+A(K.J)
      80 10 9021
9067 DIV.A(1.1)
     MM. f=L 91111 01
     N(1'1)n=(['1)\\bis)
VIN(L.I)A=(L.I)A PUNG
     00 4015 MM=1.NF
     DEI T=A(MM, 1)
     IF (ABS(DELT)-FPS) 9815,9815,9836
9016 IF (MM-1) 9010.9015,9010
9010 00 0011 J=1, NM
     # (HM, J) = # (HM, J) - # (I, J) + DELT
9011 A(HM.J)=A(HM.J)-A(1,J)+DELT
9015 CONTINUE
     NO 98 33 1=1, NM
     00 4053 J=1, NM
(L.I)U=(L.I)A 2:00
     RETHRN
     FND
```

T

PART V - SECTION B5.0

FLOW CHARTS FOR TRANSONIC AIC COMPUTER PROGRAM

#### DIMENSIONED VARIABLES

જ પશ્ચા.	REP REPL	MARN.	PROPERTY.	PYMEN.	STERMEN	STABLE	FIRM WHI	SYMEN.	REN REST.
<b>YQ</b>	40, 40	•	45, 45	8	45,45		45,45	•	48 48
R	45,45	Ŧ	45, 45	-			4.54.4.5	•	45, 45
700		•	40140	TIPE	45, 45	T4	45,45	TI	45.45



PWE 1



COMPLEX Z.W.F. VPIC.DS, PHIW.CK, CZERO, PHI . PHITE, DPHI.



# NOT REPRODUCIBLE



# NOT REPRODUCIBLE

COMPLEX Z.W.F. VPIC.DS, PHIW, CK, CZERO, PHI, PHITE, DPHI,

P XX









TKM TKM

## DIMENSIONED VARIABLES

Subl.	SEN HOLS	SADI.	STORACES	SMD.	STRAGE	SYMBOL.	જ્યમ મેંદ્રાપ્ટ	San.	STOR WAS
SIRF	2,2	\nq	50	MC	4 <b>0,</b> 40	<b>#</b> 141	40		



## NOT REPRODUCIBLE



# NOT REPRODUCIBLE



## DOK RELIGIOUS GIRLS



нясе нясе

### DIMENSIONED VARIABLES

STAID, STRARS SYATA, STORARS SYATA, STORARS SYATA, STORARS SYATA, STORARS B 45,45











## SUTPOUTINE PORCE (R)



















DHY DAIN

(575 (575

FROCK DYF4

0.435

321

кизн килзн



ACT HEN IN THE WATER PORT



PKE 2



eus eus



SDZ SDZ

age age

## DIMENSIONED VARIABLES

อ.สมเ	STOR VES	STOX.	FTORACES	SYMPH.	STORAGES	SABOL	STORAGES	STADI.	STOR NAS
s	45, 45	R	45, 45	c	45, 45	В	45,45	т	45, 45
TH	45, 45	тч	45, 45						





TR \MP

## DIMENSIONED VARIABLES

SYMBI.	STOR VES	Syani.	STOR VES	SYMPOL.	STEP REST.	SYMPOL.	STORAGES	S'MI.	SEN RITE
3	45, 45	R	45,45	c	45, 45	В	45,45	٣	45,45
TR	45, 45	Tt	45,45	TH	45,45				



F KE 1



A THE STATE OF THE







## SCHPOLTINE TRAVE (NIF, MONS, MODIS, S.R.C. B.T. TR.TI. TM)



OM

DIMENSIONED VARIABLES

C 45,45











THY THY

DIMENSIONED

STEN RESTS STADI. ST(31/45)TR STADI. 45, 45

45, 45

## MAN THEMSODECE IN



# NOT REPRODUCIBLE



# NOT REPRODUCIBLE



(SIN (SIN

348



PAGE 1



MEINING MEINING

53. 7 TO MINOR

#### DIMENSIONED VARIABLES

KSP/PC	STAN NAME	MMDI.	STORACITY.	STABIN.	REMARTIR	Ness.	FTOR NOW	esteds.	REV ROTE
A	4,1	8	M, 1						

## NOT REPRODUCIBLE



NOT REPRODUCIBLE

PNE Z



TULDOLOUGH ZON

AUT

DIMENSIONED VARIABLES

ovadi. Paras serbadis serbadis varias varias varias varias serbadis esta kas





XIYT



MATTON (FIG) TO(NA) (0.5)

OBY







1 ADE

FINCTION VERY (NY)

FV3



13MI

## DIMENSIONED VARIABLES

अपना, जात्रप्रदेव अपना, जात्रप्रदेव अपना, जात्रप्रदेव अपना, जात्रप्रदेव अपना, जात्रप्रदेव अपना, जात्रप्रदेव

B 45,45



SHIT

#### DIMENSIONED VARIABLES

STARTS STARTS STARTS STARTS STARTS STARTS STARTS STARTS STARTS STARTS



## SCHECKTINE SHIT (NIV. NAION, NS. NES. NOS. S)

PAR 2



and the second of the second o

न्त्र १४ भी १८

## DIMENSIONED VARIABLES

SYMEN.	STOR NOS	SYMDH	STORAGES	SYMON.	STOR VOPS	sym.	ery rate	97 <b>417)</b> .	स्द्रभ क्ष्मान
1	43, 45	4:	45, 45					, `	



9011 9015 HEPENT TO 9033 REPENT TO 9033 POR A(1,J)=U(1,J) = U(1,J)=U(1,J) = U(1,J) = U

#### PART VI - SECTION A

# TECHNICAL DISCUSSION OF THE SUPERSONIC BOX METHOD

The linearized flow equation is in the form of a hyperbolic differential equation when the flight speed exceeds the speed of sound. The supersonic version

$$\beta^2 . \Phi_{xx} - \Phi_{yy} - \Phi_{zz} = -M^2 \left[ 2ik \Phi_x - k^2 \Phi \right]$$
 (6.1)

where  $\beta^2 = \text{M}^2$  -1, has solutions only within characteristic regions, called Mach cones. Linearized supersonic flow theory has led to closed-form solutions for many types of lifting so faces in steady flow (Reference 11), such as the rectangular wing, delta wing, and trapezoidal wing. These solutions are derived easily because the influence of a small perturbation is confined to its downstream or aft Mach cone. Conversely, the only disturbances that can influence a particular point are confined to its upstream or fore Mach cone.

The most elementary disturbance that can be placed in the flow and that is a solution to Equation (6.1) is the pulsating source. The source, placed at  $(\xi, \eta, \zeta)$  emanates spherical disturbances and has a velocity potential induced at x, y, z, given by

$$\phi_{S} = \Lambda (\xi, \eta, \xi) G (x - \xi, y - \eta, z - \xi)$$

$$G (x - \xi, y - \eta, z - \xi) = -\frac{1}{\pi R} \exp \left[-\frac{1}{K} (x - \xi)\right] \cos \left[\frac{\overline{k}}{M} R\right] \qquad (6.2)$$

here
$$R = \sqrt{(x-\xi)^2 + \beta^2 \left[ (y-\eta)^2 + (z-\xi)^2 \right]}, \ k = k M^2/\beta^2, \text{ and } \Lambda (\xi, \eta, \xi)$$

represents the strength of the source. This type of disturbance has no influence outside the downstream Mach cone and is discontinuous at the point  $(\xi, \eta, \zeta)$ . To provide the necessary antisymmetry of disturbances with the symmetric source solution, we could place a pair of sources on either side of the z=0 plane and require the lower source strength to be equal in magnitude and opposite in sense if we could isolate the lower from the upper half space. Since disturbances are confined to Mach cones, this isolation is possible if the entire region of disturbances in the z=0 plane is covered with two source sheets placed on both sides with the distance between them infinitesimally small.

Applying this source-superposition technique to the wing and down-stream: control surface problem requires constructing for the configuration a Mach envelope that contains all possible disturbances. The entire z=0 plane within that boundary is covered with source sheets immediately above and below the plane. A typical configuration with foremost and aftmost Mach cone intercepts with the z=0 plane is shown in Figure 6.1.



FIGURE 6.1 - SUPERSONIC BOX OVERLAY FOR A TYPICAL CONFIGURATION AT LOW SUPERSONIC MACH NUMBER

The strength distribution over the bottom sheets is to be equal at adjacent points but opposite in sense,

$$A(\xi, \eta, o^{\dagger}) = -A(\xi, \eta, o^{\bar{}})$$
 (6.3)

and determined by boundary conditions so that loading acts only on regions superposed over lifting surfaces. This strength distribution has been shown (Reference 12) to be equal everywhere to the local downwash. When this condition is used, A ( $\xi$ ,  $\eta$ , o⁺) = w ( $\xi$ ,  $\eta$ , o⁺), the velocity potential at (x, y, o⁺) can be written as

$$\Phi = \int \int w (\xi, \eta) G (x - \xi, y - \eta) d\xi d\eta \qquad (6.4)$$

where the range of integration extends over the region of the source sheet contained in the upstream Mach cone from the point. Substitution of the tangential flow condition for the downwash would yield a solvable integral equation if the source sheet covered only a lifting surface. Such is not the case when the Mach number normal to any swept edge is subsonic.

The downwash distribution between any subsonic edge and the Mach envelope (diaphragm) can be determined (Reference 13) by simply satisfying the condition that the pressure is continuous between any two adjacent field points that are not on opposite sides of a lifting surface. If no disturbances lie upstream along the line, y = constant, z = constant, then the velocity potential will also be continuous and the linearized pressure-velocity potential relation yields the condition that

$$\phi(x, y, o^{\dagger}) = \phi(x, y, o^{-}) = 0$$

which leads to

$$\phi(x, y, o^{\dagger}) = \phi(x, y, o^{-}) = 0$$
 (6.5)

when the antisymmetric condition that the upper potential equals minus the lower potential is applied. The downwash in the diaphragm region can then be evaluated by the integral equation

$$o = \iint w(\xi, \eta) G(x - \xi, y - \eta) d\xi d\eta$$
 (6.6)

which has been solved for special cases (Reference 13).

The downwash distribution in the wake region can also be determined by satisfaction of the continuous pressure condition. In this case the potential has a non-zero constant value at (x, y). Substitution of the wake condition,  $\phi_{\text{wake}} \phi_{\text{TE}} = \exp -i\mathbf{k}(\mathbf{x} - \mathbf{x}_{\text{TE}})$  (6.7)

into Equation (6.4) provides the relationship

$$\Phi_{W_{TE}} \left[ \exp -ik \left( x - x_{W_{TE}} \right) \right] = \iint w (\xi, \eta) G (x - \xi, y - \eta) d\xi d\eta \qquad (6.8)$$

which requires knowledge of the upstream downwash distribution within the fore Mach cone to solve for the local wake downwash.

Computation of the downwash (source strength) distribution over the entire disturbance region and subsequent velocity potential distribution over the lifting surfaces for any supersonic Mach number and any nonnegative reduced frequency for configurations of interest can be accomplished if the method developed in Reference 14 and extended in Reference 3 is followed. We cover the region of disturbances with a grid of rectangular boxes of length  $\Delta$  and width  $\Delta/\beta$  adjusted so that box edges lie along the y-axis and box centers lie along the x-axis and wing trailing edge. The box width is determined so that the box diagonals are parallel with Mach lines, hence the name Mach box. The configuration used in this development is shown in Figure 3 with Mach boxes covering the wing, wake, tail, and diaphragm regions. Boxes are in each of these regions according to the location of their respective centers.

Consider the downwash or source strength distribution to be approximated by a set of point values determined by satisfying the appropriate boundary conditions at box centers. When each central value is considered constant over its associated box, the velocity potential at any box center can be computed from

$$\phi_{n,m} = \sum_{\nu} \sum_{\mu}^{n} w_{\nu,\mu} \phi(n-\nu, |m-\mu|)$$
 (6.9)

where  $n=x/\Delta$ ,  $m=\beta y/\Delta$ ,  $\nu=\xi/\Delta$ ,  $\mu=\beta\eta/\Delta$  are box center coordinates. The influence coefficients (IC) are given by

$$\phi(n-\nu, |m-\mu|) = \iint_{BOX} G(n-\nu, m-\mu) d\xi d\eta \qquad (6.10)$$
AREA

where the unit source potential, G, is integrated over that portion of the box area at  $(\nu, \mu)$  that is within the fore Mach cone from the box center at (n, m). Methods of evaluation of the IC for each pair of relative box locations at a particular Mach number and reduced frequency are presented in Reference 3.

Equation (6.9) is applied to the boxes one at a time beginning at the center box in the first row, then proceeding outward. After completing the first row, the same procedure is followed in the second row, etc. In following this procedure, it is found that there exists only one unknown in each box, since all of the upstream quantities except those in the box being computed will be available. This advantage is obtained because of the use of Mach boxes wherein the forward integration cone from the box center will not include any areas from the same row. Then in evaluating Equation (6.9) It follows that only  $\emptyset_{n,m}$  and  $W_{n,m}$  are unknown, and one may then write

$$\phi_{n,m} = w_{n,m} \quad \Phi(o, o) = \sum_{\nu > n} \sum_{\mu > m} w_{\nu,\mu} \quad \Phi(n - \nu, |m - \mu|)$$
 (6.11)

where  $\Phi(0, 0)$  as is indicated in Equation (6.19) represents the integral of G over the forward quarter of the Mach box. This relationship has all the upstream influence represented on the right side and the total minus the local velocity potential on the left side.

Any box on either surface has its downwash given by the tangential flow condition and its velocity potential given by Equation (6.11).  $\varphi_{n,m} \quad \text{can then be determined from this equation.}$ 

Boxes entirely in the diaphragm region have zero velocity potential and the source strength is then determined by

$$W_{n,m} = -\frac{1}{\Phi(0, 0)} \sum_{\nu > n} \sum_{\mu > m} W_{\nu, \mu} \Phi(n - \nu, | m - \mu|)$$
 (6.12)

which is Equation (6.11) with  $\phi_{n,m}=0$ . Any box that is intersected by a subsonic edge has its source strength modified by a linear interpolation between the downwash at the box center computed as if it were first a surface box and then a diaphragm box (Reference 15). This interpolation is based on the proportion of the box area lying in the two regions. The downwash at the center of a wake box is computed by substituting Equation (6.7) into Equation (6.11) to obtain

$$w_{n,m} = -\frac{1}{\Phi(o, o)} \left\{ \Phi_{TE} \exp \left[ -ik(n-nW_{TE}) \right] \sum_{\nu>n} \sum_{\mu>m} w_{\nu,\mu} \Phi(n-\nu,|m-\mu|) \right\}$$
 (6.13)

where the velocity potential at the wing trailing edge ties in the same box column (m = constant) with the wake box of interest.

Utilizing the above equations for either downwash or velocity potential, we can build up the point value distribution of velocity potential for both surfaces deforming harmonically at the same frequency. The values at the wing trailing edge are at box centers, and the values at the tail leading and trailing edge may be computed by the method described in the previous section.

### PART VI - SECTION B

### SUPERSONIC AIC COMPUTER PROGRAM DESCRIPTION

A FORTRAN IV computer program is presented which computes supersonic unsteady aerodynamic influence coefficients for a variety of single or tandem lifting surfaces. The solution is based on the source superposition method and a Mach box approximation is employed to reduce the integral equations to sums of constant values of source strengths at box centers times integrals which are functions of relative position, Mach number and reduced frequency.

The various tandem configurations which can be analyzed are shown in Figure 6.2. Also it is possible to analyze a single surface (the wing). The aerodynamic surfaces are assumed to have a plane of symmetry parallel to the free stream flow. The upstream surface must have an unswept trailing edge and the rectangular trailing surface must have the same spanwise dimension as the trailing edge of the wing.

The program allows up to 40 AIC control points. The AIC stations must satisfy the following requirements:

- (1) The chordwise rows must be parallel to the flow stream
- (2) The chordwise rows on a surface must have the same number of control points
- (3) The control points in each spanwise row must have the same fractional chordwise location
- (4) The origin for the AIC station coordinates and the wing and control surface coordinates must be at the leading edge root of the wing.

Examples of acceptable AIC control point patterns for the supersonic program are illustrated in Figure 6.3.

The supersonic AIC program is presently limited to 45 boxes on the aerodynamic surfaces. This limitation does not include the diaphragm boxes in the gap and outboard region. The restriction results from performing all operations on the computer in core without utilizing peripheral tape and disc units.

The user specifies the number of boxes along the wing root and the computer program determines the size of the boxes and overlay pattern which will cover the planform. The box centers of the first chordwise row will lie along the root of the surfaces. The last spanwise row of boxes on the wing will have their centers on the trailing edge. If NBW is selected by the user as the number of chordwise boxes on the wing root and if the wing root dimension is  $2b_r$ , then

the box size will be  $\Delta_c \times \Delta_s$  where  $\Delta_c = 2b_r/(NBW-.5)$  and  $\Delta_s = \Delta_c/\sqrt{M^2-1}$ .  $\Delta_c$  is the chordwise width and  $\Delta_s$  is the spanwise box width. Knowing the size of the boxes and the planform geometry, the user can estimate if the 45 box restriction is sacisfied. An example of a typical overlay is shown in Figure 6.4.



Figure **6.2** -

MARKISAGIA REGIONI

Tandem Coplanar Configurations at Supersonic Mach Number



S.

FIGURE 6.4 - GEOMETRIC DESCRIPTION AND SUPERSONIC BOX OVERLAY

The supersonic AIC computer program consists of a main program (DRIVE) and 20 subroutines and function subprogram. Execution begins with DRIVE calling DAIN which reads the input data. Control then passes to a Mach number loop where a check is made to insure M≥1.1. Subroutine CODE is called to approximate the surface and diaphragm regions with a Mach box overlay. The subroutine POUT is called and the input flight conditions, geometry and map of the Mach box overlay are printed. The AIC station locations are also printed if the option is exercised. Following POUT, a check is made to determine if the number of boxes on the wing and control surface does not exceed 45.

the subroutine TRAMP is called by DRIVE to generate the substantial derivative matrix [W]. The [W] matrix relates the Mach boxes on the surface to the AIC control points and serves as a substantial derivative operator. Subroutines called by TRAMP are CMAT, SMAT, TMAT, BMAT, RMAT and MINV.

A frequency loop is entered and velocity potential influence coefficients are calculated by subroutine CAFI. The coefficients are dependent on relative position of the Mach boxes, Mach number and reduced frequency.

The velocity potential is computed next. The source strength of the surface boxes is determined by satisfying the tangential flow boundary condition and source strength of the diaphragm boxes is computed through satisfaction of the boundary condition requiring the velocity potential at the box centers be zero. Diaphragm boxes in the wake of the leading surface have their source strength computed through satisfaction of the condition that the velocity potential be equal to the value computed by the wake condition. Boxes intersected by a leading or side edge have their source strengths adjusted by a linear interpolation formula based on the portion of the box area actually on the surface. This adjustment is performed by function subp. gram ARLE. The velocity potential at the box centers on the surfaces is computed by subroutine PHIB by summing the box contributions.

The velocity potentials are converted to pressure through a substantial derivative operator generated by SD2. Multiplying pressure by the box area yields the force at each box center on the surfaces. These forces are transferred to the AIC stations through static considerations, thereby forming the AIC matrix. This operation is performed by subroutine FORCE. The output subroutine POUT is called to print the AIC matrix.

### 1.0 PROCESSING REQUIREMENTS

The input and output files used by the program are 05 and 06, respectively. All read and write statements are contained in the main program (DRIVE) and subroutines DAIN and POUT. Peripheral tape and disc units are not used by the program. Approximately 40,000 cells of core storage is required.

A standard input form of six 12-column fields per card is used by the program. Floating point numbers (6212.5 format) may be anywhere within the appropriate field, but fixed point numbers (6112 format) must be right adjusted. Detailed instructions for data input are given and listings of data cards for sample problems are provided.

### 2.0 INPUT INSTRUCTIONS

Instructions for preparing input data for the supersonic AIC computer program are presented here. The field location and format for each quantity is specified. Any set of units may be used for geometric dimensions and acoustic velocity as long as they are consistent, e.g., if inches is used for length, then the acoustic velocity must have dimensions of inches per second. The required data and the sequence in which the information is entered is as follows:

### 1. Streamwise Coordinates (6E12.5 format)

Column	1-12	13-24	25-36	37-48	49-60	61-72
Name	X(1)	X(2)	X(3)	X(4)	X(5)	
Item	(1)	(2)	(3)	(4)	(5)	

- (1) X(1) Wing root leading edge coordinate
- (2) X(2) Wing tip leading edge coordinate
- (3) X(3) Wing trailing edge coordinate
- (4) X(4) Control surface leading edge coordinate
- (5) X(5) Control surface trailing edge coordinate

A single surface, the wing, may be analyzed by setting X(4) and X(5) equal to X(3). The various configurations are generated as shown in Table 6.1. The origin for the planform and AIC station coordinates must be at the leading edge root of the wing, therefore X(1) and Y(1) described below, must always be zero.

### 2. Spanwise Coordinates and Acoustic Velocity (6E12.5 format)

Column	1-12	13-24	25-36	37-48	49-60	61-72
Name	Y(1)	Y(2)	Y(3)	SOUND		
Item	(1)	(2)	(3)	(4)		

- (1) Y(1) Wing root spanwise coordinate
- (2) Y(2) Wing leading edge spanwise coordinate
- (3) Y(3) Wing (and control surface) tip spanwise coordinate
- (4) SOUND Speed of sound at altitude for which analysis is performed

TABLE 6.1 - OPTIONAL CONFIGURATIONS

CONFIGURATION	CHORDWISE COORDINATE	Spanwise Coordinate
RECTANGULAR	X(1) = 0.0 X(2) = 0.0 X(3) > 0.0 $X(4) \ge X(3)$ $X(5) \ge X(4)$	Y(1) = 0.0 Y(2) = 0.0 Y(3) > 0.0
DELTA	X(1) = 0.0 X(2) > 0.0 X(3) = X(2) $X(4) \ge X(3)$ $X(5) \ge X(4)$	Y(1) = 0.0 Y(2) = 0.0 Y(3) > 0.0
TRAPEZOIDAL	X(1) = 0.0 X(2) > 0.0 X(3) = X(2) $X(4) \ge X(3)$ $X(5) \ge X(4)$	X(3) > X(5) X(5) > 0.0 X(1) = 0.0
TRAPEZOIDAL (CROPPED)	X(1) = 0.0 X(2) > X(1) X(3) > X(2) $X(4) \ge X(3)$ $X(5) \ge X(4)$	A(3) > A(5) A(5) > 0.0 A(1) = 0.0
DELTA (CR)PPED)	X(1) = 0.0 X(2) > 0.0 X(3) > X(2) $X(4) \ge X(3)$ $X(5) \ge X(4)$	Y(1) = 0.0 Y(3) > Y(2)

3. General Information (6112 format)

Column	1-12	1.3-24	25-36	37-48	49-60	61-72
Name	NMACH	KF	nfreq	NBW	LPUNCH	
Item	(1)	(2)	(3)	(4)	(5)	

(1) NMACH Numbe

Number of Mach numbers (maximum 5)

(2) KF

Option to input frequencies or reduced frequencies:

KF = 0 frequencies

KF = 1 reduced frequency

(3) NFREQ

Number of frequencies or reduced frequencies at

each Mach number (maximum 10)

(4) NBW

Number of chordwise boxes on wing

(5) LPUNCH

Option to punch AICs on cards:

LPUNCH = 0 no punch output

LPUNCH = 1 punch AICs for wing only

LPUNCH = 2 punch AICs for control surface only

LPUNCH = 3 punch individual AIC matrix for

wing and control surface

LPUNCH = 4 punch total AIC matrix for wing-

control surface combination

The AIC matrices are punched by rows with a IP6F12.5 format. Each row of an AIC matrix begins on a new card.

4. Mach Numbers (SE12.5 format)

Column	1-12	13-24	25-36	37-48	49-60	61-72
Name		FMACH(2)	FMACH(3)	FMACH(4)	FMACH(5)	FMACH(6)
Item	(1)	(2)	(3)	(4)	(5)	(6)

(1) FMACH (1)

Mach number

(") FMACH (2)

Mach number

(NMACH) FMACH (NMACH) Mach number

Enter NMACH value of Mach number (see Part 3, Item 1). Mach numbers must be greater than 1.1.

### 5. Frequencies (or Reduced Frequencies (6E12.5 format)

Column	1-12	13-24	25-36	37-48	49-60	61-72
Name	FREQ(1)	freq(2)	FREQ(3)	FREQ(4)	FREQ(5)	FREQ(6)
Item	(1)	(2)	(3)	(4)	(5)	(6)

Input NFREQ values of frequency or reduced frequency (see Part 3, Items 2 and 3). Reduced frequency is defined as  $k_r = \frac{\omega b_r}{U}$  where  $b_r$  is the semi-chord of the wing root, U is the free stream velocity and is the oscillatory angular frequency in radians/sec.

(1) FREQ (1)

frequency (cps) or k,

(2) FREQ (2)

frequency (cps) or k

(NFREQ) FREQ (NFREQ)

frequency (cps) or  $k_r$ 

If NFREQ > 6, continue input of FREQ (7) to FREQ (NFREQ) on new card.

### 6. Number of AIC Stations (6112 format)

Column	1-12	13-24	25-36	37-48	49-60	61-72
Name	NXWING	NYWING	iexos	nycs		
Item	(1)	(2)	(3)	(4)		

(1) NXWING

Number of chordwise AIC collocation stations

on wing

(2) NYWING

number of spanwise AIC collocation stations

on wing

(3) NXCS

Number of chordwise AIC collocation stations

on control surface. Set equal to zero if

analysis is for wing only

(4) NYCS

Number of spanwise AIC collecation stations

on control surface. Set equal to zero if

analysis is for wing only

7. Spanwise Location of AIC Stations on Wing (6E12.5 format)

Column	1-12	13-24	25-36	37-48	49-60	61-72
Name	YAIC(1,W)	YAIC(2,W)	YAIC(3,W)	YAIC(4,W)	YAIC(5,W)	YAIC(6,W)
Item	(1)	(5)	(3)	(4)	(5)	(6)

(1) YAIC (1,W)

Spanwise coordinate of first row of AIC

collocation stations on wing

(S) YAIC (2,W)

Spanwise coordinate of second row of AIC

collocation stations on wing

(NYWING) YAIC (NYWING, W)

Spanwise coordinate of last row of AIC collocation stations on wing

AIC station rows are numbered from root to tip of surface. If NYWING > 6, continue input on new card(s).

8. Spanwise Location of AIC Stations on Control Surface (6E12.5 format)

Column	1-12	13-24	25-36	37-48	49-60	61-72
Name	YAIC(1,CS)	YAIC(2,CS)	YAIC(3,CS)	YAIC(4,CS)	YAIC(5,CS)	YACI(6,CS)
Item	(1)	(2)	(3)	(4)	(5)	(6)

(1) YAIC (1,CS)

Spanwise coordinate for first row of AIC

collocation stations on control surface

(2) YAIC (2,CS)

Spanwise coordinate of second row of AIC

collocation stations on control surface

(NYCS) YAIC (NYCS, CS)

Spanwise coordinate of last row of AIC collocation stations on control surface

Omit this input if only the wing is analyzed. For NYCS > 6, continue input on new card(s). AIC station rows are numbered from root to tip of surface.

9. Chordwise Location of AIC Stations on Wing (6E12.5 format)

Column	1-12	13-24	25-36	37-48	49-60	61-72
Name	XAIC(W,1,1)	XAIC(W,1,2)	XAIC(W1,3)	•••	•••	• • •
Item	(1)	(2)	(3)	(4)	(5)	(6)

(1) XAIC (W,1,1)

Streamwise coordinate of first AIC collocation

station in first row on wing

(2) XAIC (W,1,2)

Streamwise coordinate of second AIC collocation

station in first row on wing

(NXWING) XAIC(W, NYWING, NXWING)Streamwise coordinate of last AIC collocation station in last row on wing

Streamwise numbering sequence is from leading edge to trailing edge (see Figure 6.3). Continue input of values for each row immediately after the last value of the preceeding row; do not begin input of each row on new card.

10. Chordwise Location of AIC Stations on Control Surface (6E12.5 format)

Column	1-12	13-24	25-36	37-48	49-60	61-72
Nume	TAIC(CS,1,1)	XAIC(CS,1,2)	XAIC(CS,1,3)	•••	• • •	•••
Item	(1)	(2)	(3)	(4)	(5)	(6)

Procedure to input streamwise coordinate location of AIC stations on control surface is the same as wing above. Omit this input if only wing is analyzed.

### 3.0 SAMPLE PROBLEMS

Three sample problems are presented to demonstrate the use of the supersonic ATC computer program. Configurations analyzed include a trapezoidal wing-rectangular control surface combination, a cropped trapezoidal wing and a delta wing. Description of input parameters and complete listing of input data cards and computer output are given with each sample problem.

### Sample Problem 1.

Supersonic AICs are computed for a trapezoidal wing and rectangular control surface. The pranform geometry and AIC stations are shown in Figure 6.5. The dimensional unit used for length is feet, therefore the acoustic velocity is entered as ft/sec. The analysis is for M = 1.5,  $k_r = 0.10$  and a =1116.87 ft/sec (sea level). Four chordwise boxes are used for the wing. The resulting box overlay has 15 boxes on the wing and 8 on the control surface, thereby satisfying the 45 box limitation. Also, there are 13 diaphragm boxes in the gap and outboard region. Input parameters are summarized below and a listing of the input data cards and computer output follows.

y(z) = 0.0	x(2) - 1 01	X(3) = 2.0'  X(4) = 3.0'  X(5) = 4.0'
Y(1) = 0.0'	Y(2) = 1.0'	Y(3) = 2.0'
SOUND = 1116.87 f	lt/sec	Acoustic velocity (sea level)
MMACH = 1		Number of Mach numbers
KP = 1		Input reduced frequency
NPREQ = 1		Number of reduced frequencies
NBW = 4		Number of chordwise boxes on wing
LPUNCH = 4		Punch combined wing-control surface AIC
		matrix on cards
FMACH $(x) = 1.5$		Mach number
FREQ (1) $= 0.10$		Reduced frequency
NXWING - 4		Number of chordwise AIC stations on wing
NYWING = 4		Number of spanwise AIC stations on wing
NXCB * S		Number of chordwise AIC stations on
		control surface
NYCS = 3		Number of spanwise AIC stations on
		control surface

YAIC(1,W) = 0.2, YAIC(4,W) = 1.8	YAIC(2,W) = 0.7°	suc(',W) = 1.3'
YAIC(1,CS) = .3'	YAIC(2,CS) = 1.0°	YAIC(3,CS) = 1.7'
XAIC(1,1,W) = 0.10' XAIC(1,4,W) = 1.90'	XAIC(1,2,W) = 0.70'	XAIC(1,5,8° = 1.70'
XAIC(2,1,W) = 0.10' XAIC(2,4,W) = 1.90'	$XAIC(2,2,W) = 0.70^{\circ}$	XAIC(2,3,W) = 1.30'
XAIC(3,1,W) = 0.38' XAIC(3,4,W) = 1.915'	XAIC(3,2,W) = 0.90'	XAIC(3,3,W) = 1.405
XAIC(4,1,W) = 0.86' $XAIC(4,4,W) = 1.94$ '	XAIC(4,2,W) = 1.22'	XAIC(4,3,W) = 1.58'
XAIC(1,1,CS) = 3.25'	XAIC(1,2,CS) = 3.75'	
XAIC(2,1,CS) = 3.25'	XAIC(2,2,CS) = 3.75'	
XAIC(3,1,CS) = 3.25'	XAIC(3,2,CB) = 3.75'	

YAIC(1,W) = 0.2'YAIC(2,W) = 0.7'%(",W) = 1.3' YAIC(4,W) = 1.8YAIC(1,CS) = .3'YAIC(2,CS) = 1.0'YAIC(3,CS) = 1.7XAIC(1,2,W) = 0.70'  $XAIC(1,5.8^{\circ} = 1.30^{\circ})$ XAIC(1,1,W) = 0.10'XAIC(1,4,W) = 1.90'XAIC(2,1,W) = 0.10' $XAIC(2,2,W) = 0.70^{\circ}$ XAIC(2,3,W) = 1.30'XAIC(2,4,W) = 1.90'XAIC(3,1,W) = 0.38'XAIC(3,2,W) = 0.90'XAIC(3,3,W) = 1.405XAIC(3,4,W) = 1.915'XAIC(4,1,W) = 0.86'XAIC(4,2,W) = 1.22'XAIC(4,3,W) = 1.58'XAIC(4,4,W) = 1.94'XAIC(1,1,CS) = 3.25'XAIC(1,2,CS) = 3.75'XAIC(2,1,CS) = 3.25'XAIC(2,2,CS) = 3.75'XAIC(3,2,CE) = 3.75 XAIC(3,1,CS) = 3.25'



• AIC CONTROL STATION

SUPERSONIC SAMPLE PROBLEM 1. FIGURE 6.5 -

### DATA CARD COLUMN NUMBER

123456789#123456789#123456789B123456789#123456789#1234567b9#1234567b9#1234567b9#1 

			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	N T W T A	0 2 1 1 - X	X-EING	SEIR-X	X-TAIL
	•	-			0.708	1.915		3.750
<b>4</b> ⇔	<b>অ</b>	163	1		0.100	1.405	٠.	3.250
3.0		?	1.80		1.9nu.	0.900	1.940	3.758
0 0 0		4	1.30	1.70	1.500	n . 380	1.580	3.250
n	<b>-</b>	₹*	0.70	1.00	0.700	106-E	1.221	3.750
	1.5		0.20	0.30	0.100	1.386	10.85E	3.256

12345578961234567898123456789812345678981234567898123456789812345678981234567898 

DATA CARD COLUMN NUMBER

RE 6.6 .- LISTING OF INPUT DATA CARDS FOR SUPERSONIC PROBLEM 1.

HUGHES AIRCRAFT CO. SUPERSONIC ALC PROGRAM

FLIGHT CONDITIONS AND GEOMETRY

HACH NUMBER = 1,50000	SPEEC OF SOUND = 1116.870 L/T	RHOR 1.00
	9×1×.	TAIL
L.E. STATION (L)	•0	3,000
ROOT CHORD (L)	2.000	1.000
L.E. SPAN (L.)	1.050	2.000
T.E. SPAN (L)	2,000	2.000
TIP CHORD (L)	000.4	1,000
TOTAL AREA (1.4L)	7.000	4.000
CHORDHISE BOXES	4	۵
SPANWISE BOXES	4	4
TOTAL CHORDWISE BOXES = 7	BOX CHORD = 5.71429E-01 L	BOX SPAN = 5.11101E-01 L

i.

	223	SSSS	SSSS,	5555	******	2535	5838,
2	•	WING, TAIL, AND DIAPHRAGH	ONIM - (S)	1 - TAI	( ) L MAKE	(.) - DIAPHRAGM	

9N1 A
THE.
20
TES
Ž.
COUPDINA
STATION
COLLOCATION
ដ
A I C

	0,1900000 01	0,190003E 01	0.191500ë 01	0.1940006 01
	.ĝ.130000E ĝ1	0,13c000E 01	0.146500E 01	0.158090E 01
	0,700600F 00.	00.₹00000€ 00	0.9000000000	6.122090F 01
XAIC VALUES	0.1000001.0	0.1000000 00	C.380000E 00	0.8500008 00
YAIC	0,200,000 00	0,7000006 00	9.130000E 01	0,1800006 01

STEELS.

と対

CONTRACT

**X** 

AIC COLLOCATION STATION COORDINATES ON THE TAIL	XAIC VALUES	6,325000E 61 0,375000F 01	0.325000E 01 0,375000E 01	
AIC COLLCCATIC	XAIC	Ů4 6,3250(		
	YAIC	0,3900065	9,100000E 01	1700000

# HUGHES AIRCRAFT CO. SUPERSONIC AIC PROGRAM (CONT-D)

AERODYNAMIC INFLUENCE COEFFICIENTS 1,00000E-01 1,00000E.01 2,66633E 01 1,50000E 00 1,679308 03 DYNAHIC PRESSURE (1/2*RHO*VEL**2) 1,00000E 00 REDUCED FREQUENCY (REF, CHORD) REDUCED VELOCITY (REF. CHORD) OSCILLATORY FREQUENCY (CPS) FREE STREAM HACH NUMBER FREE STREAM VELOCITY REFERENCE CHOAD DENSITY

RY. IN RL RL INTUENDE COEFFICIENT;  85 6 10 -2.135GE 00 -7.4711E CD 1.1745E 00 -1.7052E 01 -5.3347E-01 5.9062E 00 6.5727E-02 8.5079E 00  7.904E 01 8.0807E-01 1.737FE 01 -4.5722E-01 -2.4199E 00. 8.6106E-02 1.7666E-01 7.9466E-02 -6.8265E-01  7.904E 01 8.0807E-01 1.737FE 01 -4.5722E-01 -2.4199E 00. 8.6106E-02 1.7666E-01 7.9466E-02 -6.8265E-01  7.904E 01 7.9415E-03 6.1357FE 01 5.2591E-03 -1.3995E-01 -3.4482E-02 1.7666E-01 4.6109E-02 1.2277FE-01  7.906E 01 -1.7703E-01 1.7189E 01 -7.4886E-01 -2.1317F 01 -4.7041E-01 -1.2466E-01 4.6109E-02 1.1807F 01  7.906E 01 -1.7703E-01 1.789E 01 -7.8876E 01 -2.1317F 01 -4.7041E-01 -2.6466E 00 -3.5345E-02 1.1807F 01  7.904E-03 -1.5341E-03 0.  7.904E-03 -1.5341E-03 0.  7.904E-03 -1.7703E-01 1.7896E 01 -2.7376E-01 -3.7466E-01 -3.7376E-01 -3.7466E-01 -3.7376E-01		<u>.</u>	-5,3460E-01 -2,1813E-01 2,2419E-03	-1,5450E 00 3,3208E=01 1,8560E=02 0,	-1,0442E 00 3,6573E-01. 2,4689E-03	7,2075E=01 -5,4621E-01 -6,0818E=02	-3,85926-01 9,50016-01 4,96786-02
AEKODYNAHIC INFUGACE CDEPFICIENT;  18 RL 1		교	8.5079E 00 -6.8265E-01 2.2277E-01 0.	1.1807E 01 -1,1039E 00 3,0762E-01	5,1414E 00 8,6434E=01 7,7395E=02	5.1481E 00 8,9012E-02 5,8988E-01 0.	3.51768 -0.06458 -1.02958
AEKODYNAMIC INFUGACE COEFFICIENTY  14 RL  18 RL  19 RL  19 RL  10 1-2,1350E 00 -7,4711E CD 1,1745E 00 -1,7522E 01 -5,3347E-01 5,9082E 00 7,945E-03 6,1367E-01 5,252E-01 -2,4169E 00 0 3,468E-02 3,4689E-03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		¥.	6,5727E-02 7,9486E-02 4,6109E-02	4,8262E-02 5,2381E-01 5,5795E-02 0,	-8,58266-01 -9,56926-01 3,18356-02	-1,00562 00 -5,82655-01 2,69105-01 0,	1:28726-61 -9.21376-01 -2.06366-01 0.
IM		ጸ	5,90828 1,72668 3,48698≕ 0,	1.2466 3.2466 2.0671 0.	2.1619E 01 3.4387E 00 3.6956E-01 0.	3,5132E 01 1,7865F 00 1,4007E 00	-9.16596-01 7.7272E 00 .2,6694E 00
AEKODYNAMIC INFLUENCE COE 1	N Z I L	ĸ	-5.33476-01 8,61406-02 -3.44826-02 0.	.4,70416-01 -4,27946-02 8,74246-02 0,	-1,0673E 00 1,8758E-01 8,5600E-03	-3,6780E-01 4,9600E-01 -2,3905E-01 0,	-7,5430E-01 -4,1859E-02 2,6727E-01 0
1	FLUENCE COEP	11	-1,7022E 01 -2,4169E 00 -1,3995E-01 0,	.1317E 01 .4872E-01 .1404E-01	1,6454E 01 2,5698E 00 5,9097E-02 0.	6.2089E G1 -1.7884E-G1 1.3096F C9 0.	8,4535F 00 5,9850E 00 -2,42498 00
1	RODYNAMIC IN	1	1.1745E 00 4.5722E-01 5.2591E-03 0.	-7.4886E-01 1.8774E-01 1.2573E-02 0.	-9.8145E-01 6.4721E-01 -3.0093E-02 0.	7.1643E-03 3.7016E-01 -1.6069E-01 0.	1,4477E 00 1,5970E-01 8,4067E-02 0,
11	Ą	3	-7,4711E 1,1737E 6,1367E-0	1,7189E 0 3,0776E 0 2,9927E-0 0,	1.7835E -1.1642E -2,7424E 0.	ент 00 110 00	-2.46556 -2.13256 -4.95736
1466 6466 666 6464 4444		¥.	-2.1350E 00 8.0830E-01 7.9415E-03 -1.1001E-03	,7703E-0 ,1834E-0 ,4747E-0	1,4622E 00 -4,8789E-01 1,1292E-01 2,2609E-03	8866	-1,4548E -4,9408E -5,0032E
		ă.	8526E 7824E 7824E 7426E	2209E 3209E 3303E 1352E	2637E 01 8143E 00 8238E-02 9197E-01	8186	2, 7100 E U1 1400 E U1 1400 E U1 1400 E U1 1700 E U

322	400 445 02	000000000000000000000000000000000000000	000	000	000000	000	0.00 1.00	ਜ਼ਮੂਜ਼ 6 G G
245ë	8856-0 9786-0 1986-0	891F 816E 494E	743E 651E 374E	514E 780E 039E+	449 1928 396 1-1	66 88 94 94 94 95	9745 6756 6426-	8 8 4 8 8 4 7 4 4 7 4 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 10 4 C	46.80 8.89	22,72	5.4.0 5.4.0 5.4.0	-2,25 -4,27 0.00	44.4 40.4 88.5	4 4 50 0 6 5 50 0 7 50 50 50 0 7 50 50 50 0 7	24.35 24.95	2 th 4 th
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	000 000 100	200 200	8 8 8 9 9 4 4 6 9 4 4 6 9 9 4 4 6 9 9 9 9 9 9	(D)	000 000	0 0 d	ជី ជី ជី ជី ជី ជី	# # # # # # # # # # # # # # # # # # # #
-4:27156 -1:74566 7:04496	-6.34026 4.92808 -7.64116 0.	5.21276 -2.42666 -3.85776	2.29346 2.29346 1.15436 0.	8.80636 4.62875 -1.78226 0.	-8.84568 8.56715 5.27698	-2.71688 -9.58876 1.22886	1.35828 4.24228 -1.25138	4:15916 3:04006
3,62186-02 6,42276-01 5,00616-02 0.	1,3769E-01 4,4518E-01 9,2178E-02 0	2,6576F-01 8,3385E-01 5,0119E-02 0,	1,02246-02 1,01226.00 6,83496-02 0,	4.6689E+02 2.8525E+03 3.9927E+01 0.	2,3562E-03 8,9534E-01 1,5793F-01 0,	4,9331E-02 1,6344E 00 6,0431E-01	2,9594F-02 1,5540F-01 2,9381F-01 0,	F.5638F-04 3.7046E-01 6.5012F-03
404	000	458	100	200	100	1 1 7 7 7 5 5 5 5	101	4 2 2 2
3,9372F- .6.66n9E -6.1797E-	-4,2394E 2,0881E -2,0918E	1,2200F 1,2151E 2,4774E 0,	-5.5214F- -7.1084E 8.1475F-	-1.4332E- -4.3915E 8.6125E	5,5196F- -6.9172F 1,8338E	5,97988- -1,03206 -4,20716- 0.	-1.02994- -6.3942F 1.1827E 6.	-1.2013E- -3.21916 -6.5226E- 6.
000 000 111 888	4 1 1 1 0 0 0 1 1 1	m - 001	### 111 002 122	E - 01	100 100 110 100 100 100 100 100 100 100	の 100 110 110 110 110 110 110 110 110 11	######################################	1
9,30606 6,12096 3,91136	4,21446 -3,36546 -2,71736	2,41346 41,16636 70,33646	2,01608 8,44788 1,16408	-3.21246 -1.75928 -4.77586	4.0965E 9.00005 1.7874E 0.	1.04388 4.95388 0.	-8.76205 -11.17266 -7:49345 n.	-8.6530F 3.1633E 1.0140E 0.
# 00 # 01 102	8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		9 E E E	F 00 1 00 1 00 1 1 0 1 1 1 1 1 1 1 1 1 1	9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 -	2/10 0 0/10 0 0/10 0	7-01 7-01 00	4 H H H H H H H H H H H H H H H H H H H
-3.6703 -4.3771 -9.6993 0.	-8.4425 -1.6786 2.3126 0.	8,6800 -2,3530 5,0321 0.	1,8203 1,8068 -1,5794 0.	2.2566 -1.4762 9.1662 0.	-3.6600 -5.85051 -8.93051 0.	-8.5665 -9.1396 -3.8383 0.	6.4069 3.6905 -1.1119 0.	6.8285 6.8895 6.1693
E-01 E-01 E-02	កាការ ១១ + ១១ 2	市 100 101 111	E 00 E-01 E-02	### 	E 00 E-03	6-01 6-91 6-01	# - 0 1 - 0 1 - 0 1	E-07
8.0769 -5.9517 -2.418 0.	-1.0407 -1.1136 7.4561 0.	-2.3873 2.1651 1.0633 0.	-1.3422 -7.9483 -4.55693 0	5.3458 1.3482 -1.2215 0.	1.9974 -3.2553 -4.9391 0.0	3.1948 -6.2899 -1.1533 0.	-6.5472 -2.4573 -1.6999 0.	7.6358 5.4276 4.3529 0.
555 854	90 90 90	ត្តក 6 0 0 មហ្គ	8 B B B B B B B B B B B B B B B B B B B	m m m 0 0 0 0 0 0	F 00 F 01 F 01	7 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 3 9 9 9 9 9 9 9
-1.25556 -1.62615 2.31746 0.	1,1198 1,9651 -5,69351 0.	1,08451 4,62721 -1,21921 0	1.67348 -2.27248 4.82778 0.	-7.43768 -5.39799 9.74978 0.	-9.22288	3.9376 1.55066 -3.70536 0.	1.46421 3.05051 1.09761 0.	-2,519CE -3,3561E -7,4396E
田 田 日 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E 101	mm 00 101 101 102	mmmm 100 100 100 100 100 100 100 100 100	mm - 01 100 100 100	0,000 0,000 1000 1000 1000 1000 1000 10	m - 00 - 00 - 00 - 00 - 00 - 00 - 00 -	77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-1,9826 -7,6767 4,2693 -2,6306	-6,1050 8,1771 -3,7827 1,7651	1,3901 1,7542 4,5693 5,1899	2.9035 2.9035 6.9035	4.3124 1.3629 3.4108 7.6775	-3.2864 -11.3656 -1.4669 -5.14469	-1,9871 -6,0563 6,4397 -2,8992	1.0999 3.1157 7.8628 9,7641	-6.2167 -8.1067 -5.5707 -2.6411
0000	е е е е е е е е е е е е е е е е е е е	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	60 00 00 00 00 00 00 00 00 00 00 00 00 0	ан н 000 100 100	4440	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 440	0,50.0
= 6 57326 09875 17986 22076	#346 3466 4666 4666 4666 4666	3730 3730 7980 5890 5890	# 8 8 9 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	#10 17967 1797 1685 2801	*11 21296 50406 65256 21796	8 8 1 1 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	=13 6477 71446 71206 79366	=14 42n9E 9000E 5n63E 7207E
5 HOW H C	3 4 10 4 10 0	308 17 12 14 10	င်္ကိုလိုလိုက် လူလိုလိုက် လူလိုလိုက် လ	30, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2	200000	202 20 20 20 20 20 20 20 20 20 20 20 20 20 2	30 1 1 4 V C	30000 N

	기 에 레 0 0 0 F E E	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 5 5	000	0000	0000	00000	9999
	319E 772E 857E	26 894 626 626 626	4.00 c 0.00 c 0.4.00 c m m m m	6,420 6,420 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430 6,430	6416 8007 9008 9008	400 000 000 000 000 000 000 000 000 000	3328 6006 4696 941F	515 332 392 60 60 60 60 60 60 60 60 60 60 60 60 60
	4 040	4440	8 4 4 V	200 C	40,40	6 % 4 @ 6 % 4 @	44 0 H	4444
	H 88	0010	0000	2222	8585	8588	9 1 2 1	6952
	356 256 226	4 5 V 8 0 0 8 0 0	4 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6.0 8 4 1.0 9 9 11 11 11 11	35. 5.25. 7.25. 7.35. 7.35. 7.35.	707 908 908 908	<b>4.0</b> 008 <b>4.0</b> 008 <b>4.0</b> 000	158 258 258 578
	6 7 4 0 0 7 4 1 0 0 8 1 1	2 4 4 0 4 0 4 0	6 8 8 4 4 5 8 5	7.06 7.10 7.06 7.06 7.06 7.06 7.06 7.06 7.06 7.0	4 4 6 6 4 4 6 6 4 4 4	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.71 9.91 9.91 2.42	-2.61 -1.95 -2.75
	စ် <u>စ</u> စ် မိ မမ	8 11 11	8854	0000	8898	8895	8488	5 4 5 5
	2 04 2 04 m m m	ல் கை 2007 4 ராரார்	ង ស ស ខ្លុំ ៣ ភា ស្ពឺ ពួ	2 2 2 4 2 2 2 5 3 11 11 11 11	27E 96E 53E 76E	074 074 076 016 016	# 52 8 7 8 7 8 7 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	95.00 95.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 10 10 10 10 10 10 10 10 10 10 10 10 1
	မ်း စာ စာ မရိတ် (၁၉၇)	4 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4.02.44.44.44.44.44.44.44.44.44.44.44.44.44	14, 44 14, 44 14, 44	2,06 1,78 2,04 1,94	# # # # # # # # # # # # # # # # # # #	20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00	-3.69 -2.64 -2.64
			4848	5858	0000	9000	8582	100
	98.2 8.00.0 9.00.0	2846- 3508 6378	35E 37E 22E	7.56 5.56 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	788 788 936 816	87.20 88.40 mmmm	463E 595E 325E 530E
	440.50 74.00 50.00	04 to 0	4 0 4 4 0 0 4 0	46.00 40.00 40.00	6 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9. 9. e.'S 9. E. e.'s	4000 ·
	1 1 7 1 0 0 0	100	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6446 6446	0000 0000 1 (	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6669
	9 2 2 4 2 5 4 5 4 5 5 4 5 5 5 5 5 5 5 5 5	4 C B B B B B B B B B B B B B B B B B B	8 4 6 8 6 4 2 8 6 4 7 8 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	60 12 60 6 64 12 4 11 11 11 11 11	63 4 4 2 6 3 6 4 6 4 6 6 4 6 6 6 6 6 6 6 6 6 6 6	8 to 9 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	236 016 256 946	16E 74E- 39E- 86E-
	4440 488 989	4 4 2 C 8 8 8 6 9 8 4	7.04 ti	20.00 m 20.00 m 20.00 m	44.00 68.00 70 70	4484 88946	84.6 6.03 84.6 84.8	3.11 7.29 2.71 2.27
	1. 1.00	100	00,44 00,00	0000	9000	0000 0101	000 1.000 1.1000	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	2 4 2 2 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	938 938 976	44 0 4 4 0 0 4 8 8 6 4 8 8 8 8	276 116 1276 1376 136	7 7 2 E	4 0 0 0 4 0 0 4 mmmm	3325 3325 3325 3325 3325 3325 3325 3325	74 4 8 1 60 4 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	2 0 S	0,00 0,00	6, 4, 4, 4, 4, 4, 6, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	5.12	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8 1 3 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2000 2000 2000 2000 2000 2000 2000 200	44.0 40.0 40.0 40.0 40.0 40.0 40.0
	० मण् ० मचे ले	0 m m	)     	04000	00001	04004	00000	40040
	4 40 6 6 6 6 6 6	9 49 9 11 11 11 11 11 11 11 11 11 11 11 11 11	00 4 W 1	800 100 100 100 100 100 100 100 100 100	79 E 0 7 E 0 0 E E 0 0 E E 0 0 E E 0 0 E E 0 0 E E 0 0 E E 0 E E 0 E E 0 E E E 0 E E E 0 E E E 0 E E E E 0 E E E E 0 E E E E 0 E E E E 0 E E E E E E E E E E E E E E E E E E E E	80 4 4 8 mmanman 0 0 0 0 1	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25E -0 25E 0 2E 0
	0 4 9 0 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	320 330 3070	0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	. 923 . 898 . 615 . 169	247 739 749 740 834	W 0 4 4 W W W 0 9 K	740 909 747 330 0750	955 7269 111
ó	44800	004	00040 04064	00040 8889	क्षेत्र मुख्य १ वर्ग मुख्य	<b>40444</b>	90000	3 N H H N
	m m m 0 0 0 0 0 4	ел па 2002	20000	2002 2002	2000 2000 2000 2000 2000 2000	mmmmm 29999	mmrnm 99999	តាភាភាភិព ១១១១១
	8787 6225 0247	350 3180 3180 3180	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4467 4264 4265 4265 4265	38466 38256 38256 0518	4464 6464 8464 6464	32 33 33 33 33 33 33 33 33 33 33 33 33 3	955 4945 3332 9484
	4460	70.000	dip of a h	Ludub	o * ਜੋ ਜੋ ਜ਼ੋ	<b>คั</b> ด คีก ค	अर्थ अस	w @ 4 gi 4
	0000	E 00 E 00 E-01	mmmm 2000 1000 1000	л п п п п п п п п п п п п п п п п п п п	60000 00000	ппппппп-000-00-00-00-00-00-00-00-00-00-0	mmm 100 100 100 100 100 100 100 100 100	0 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
	160 160 160 177 177	574 972 899 612	25 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	44 E G 4 6 G 4 E 8 6 6 E E 6	665540 7455380 665338	888 888 7088 7088 7088	44864 2000 2000 2000 2000 2000	4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
0	4 4 6 B C.	0.4 to 0.00	44 44 44 44 44 44 44 44 44 44 44 44 44	80 140 4 0 48 7 9	40044	4 00 th	क फेर्स स्फ क जाए स्फ्र	20 20 4 E
	0000	00000	00000	88888	00000	000000000000000000000000000000000000000	00 00 00 00 00 00	00000
	40004 04444 0404 0004	316 8687E 5602E 9059E 8634E	54226 30396 787396 78776 51776	*18 6991E 6903E 6508E 0395E	*19 00286 67286 01416 15306	*20 0407E 5383E 0466E 7610E	*21 68216 72256 25236 78196 36506	#22 91596 77096 41186 99646 54926
0	ZN NO NO	20 H W W W W W W W W W W W W W W W W W W	344000	3 410 0 4 10	2000	X 44 4 4	35 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3000
	••	-	-	_	-	-	-	-

Service of the servic

4 Y.

Sample Problem 2.

A cropped trapezoidal wing is analyzed at M=2.0,  $k_r=0.10$  and a=1116.67 ft/sec (sea level). The trailing surface is removed from the analysis by setting X(5)=X(4)=X(3). The wing geometry and AIC stations are shown in Figure 6.7. Five chordwise boxes were specified. The resulting overlay has 32 boxes on the wing and 2 diaphragm boxes. Input information is summarized below and a listing of the input data cards and computer output follows.

X(1) = 0.0, $X(2) = 1.0$	X(3) = 2.0' $X(4) = 2.0'$ $X(5) = 2.0'$
Y(1) = 0.0' $Y(2) = 1.0'$	Y(3) = 2.0'
SOUND = 1116.85 ft/sec	Acoustic velocity (sea level)
NMACH = 1	Number of Mach numbers
KF = 1	Input reduced frequency
NFREQ = 1	Number of reduced frequencies
NDW = 5	Number of chordwise boxes on wing
LPUNCH = 0	Do not punch AIC matrix on cards
FMACH $(1) = 2.0$	Mach number
FREQ (1) = 0.10	Reduced frequency
NXWING = 3	Number of chordwise AIC stations on wing
NYWING = 5	Number of spanwise AIC stations on wing
NXCS = 0	Number of chordwise AIC stations on
	control surface
NYCC = ()	Number of spanwise AIC stations on
	control surface
	CONVENT SUFFECE

YAIC(1,W) - 0.20*	YAIC(2,W) = 0.00' YAIC(5,W) = 1.80'	YAIC(3,W) = 1,00°
XAIC(1,1,W) = 0.575'	$XAIC(1,2,W) = 1.050^{\circ}$	XAIC(1,3,W) = 1.525'
XAIC(2,1,W) = 0.725'	$XAIC(2,2,W) = 1.150^{\circ}$	XAIC(2,3,W) = 1.575'
XAIC(3,1,W) = 0.875'	$XAIC(3,2,W) = 1.250^{\circ}$	XAIC(3,3,W) = 1.625'
XAIC(4.1,W) = 1.025'	$XAIC(4.2,W) = 1.350^{\circ}$	XAIC(4,3,W) = 1.675'
XAIC(5,1,W) = 1.175'	$XAIC(5,2,W) = 1.450^{\circ}$	XAIC(5,3,W) = 1.725'



FIGURE 6.7 SUPERSONIC SAMPLE PROBLEM 2

### DATA CARD COLUMN NUMBER

**

	MACH NO. Red freq	Y-WING	SN: M-X	NIM-X	X-FING
	2		1.575	1.675	
0 - 2	: ۸	1.800	1.15#	1.350	
1116.87	- :		0.725	1.625	
# EL V N	·- :	1.000	1.525	1.025	1.125
3 <b>•</b>	- ·		1.45.	1.25"	1.45
ව ව • • සි සි	7.6 7.1	8.240	0.575	8.875	1.175

123456789+123456789+123456789812345678901234567898+23456789812345678981234567898 

DATA CARD COLUMN NUMBER

FIGURE 6.8 - LISTING OF DATA CARDS FOR SUPERSOURC SAMPLE PROBLEM 2.

HUGHES AIRCRAFT CO. SUPERSONIC AIC PROGRAM

FLIGHT CONDITIONS AND GEOMETRY

Manual Ma	TAIL	2.000	0.	2,000	2.000			¢.	œ	BOX SPAN = 2,56600E=01 L
SPEED OF SCUND = 1116.870 L/T	e i ng	0.	2,000		2,000	1.000	6.000	ĸ.	<b>4</b> 0	BOX CHORD # 4.4444E-01 [
MACH NUMBER = 2.00000		L.E. STATION (L)	ROOT CHORD (L)	L.E. SPAR (L)	T.E. SPAR (L)	TIP CHORE (L)	TOTAL AREA (L-L)	CHORDWISE BOXES	SPANNISE BOXES	TOTAL CHORDWISE BOXES # 5

HUGHES AIRCRAFT CO. SUPERSONIC AIC PROGRAM (CONT-D)

HAP OF PACH BOX OVERLAY ON HING, TAIL, AND DIAPHRAGH (S) - WING (S) - TAIL (,) - WAKE

# HUGHES AIRCRAFT CO. SUPERSONIC AIC PROGRAM (CONT-D)

the state of the s

THE HING		0,152500E 01	0.157500€ 01	0,162500E 01	0.167500E 01	0,172500E 01
COORDINATES ON		0.105000E 01	0.115000E 01	0,1250006 01	0.135300E 01	0,145000E 01
AIC COLLOCATION STATION COORDINATES ON THE WING	XAIC VALUES	0.575300E 00	0.725000E 00	0.875000E 00	0.102500E 01	0.117500€ 01
AIC	YAIC	0.20000E 00	9.60000GE 00	0.100000E 01	0.140C00E 01	0.1800008 01

## HUGHES AIPCRAFT CO. SUPERSONIC AIC PROGRAM (CONT-D)

2,49480E 06 1,00000E-01 1,00000E 01 3.55511E 01 2.00000E 00 2.23374E 03 DYNAMIC PRESSURE (1/2-RHO-VEL++2) REFERENCE CHORD 1.00000E 00 REDUCED VELOCITY (REF, CHORD) REDUCED FREQUENCY (REF. CHORD) OSCILLATORY FPEQUENCY (CPS) FARE STREAM MACH NUMBER FREE STREAM VELOCITY 1.00 DENSITY

### AERODYNAMIC INFLUENCE COEFFICIENTS

							•
<u>.</u>	-3.2721E 00 1.8129E-01 -4.8110E-03	-3.244E-01	4,7232E 00 -1,0737E 00 1,9583E-01	1,13996-01 3,58638-01 -2,79426-07	-2.4848E 30 8.3685E-02 -2.2045E-02	1,3921E 00 -1,2563E 00 9,1096E-02	-8,4034E-01 -3,7603E-01 -9,4889E-98
<b>.</b>	5.9121E 01 -2.4720E 00 1.2651E-01	-5.8896E 00 1.1671E-02 1.5422E-02	-6.8665E 01 4.3162E 00 -7.8496E-01	-3.0703E 01 -4.2412E 00 5.7791E-01	2.5992E 01 -1.4290E 00 2.4287E-01	7.7156E 01 8.6051E 00 -1.2905E 00	2,3922E 00 1,9771E 00 1.4288E-01
I	3.1016E 00 -4.4785E-01 1.3461E-02	4.7476E-01 9.0601E-02 2.2557E-02	-3.2900E 00 1.6383E 00 -4.7069E-01	-1.1990E 00 -4.492BE-01 7.0455E-02	1,720\$E 00 -4.9435E-01 7,6932E-02	9,11326-61 5,44766-91 -2,40286-01	1,0428E 00 15,3229E-01
T.	-3.9196E 01 8.1718E 00 -3.7253E-01	1.0975E 00 -2.0535E 00 -9.6511E-02	3.9416E B1. -1.0593E D1. 2.1875E D0	2.6346E 01 9.1347E 00 -1.4423E 00	-8.5560E 00 3.7333E 00 -1.0188E 00	-3.7901E f1 -1.8834F £1 2.0766E 00	-3.5070E 00 1.4070E 01 -1.0204E:00
E.	-1,5152E 00 1,2691E 00 -1,4841E-02	-6.2222E-01 -3.6046E-01 -1.7226E-02	-1,4610E 00 -5,6525E 00 3,3746E-01	-7.8776E-01 1.0676E 00 -5.2861E-02	-5,5055E-01 1,5364E 00 -7,5140E-02	7,2570E-01 -1,3584F 30 1,2896E-01	1,17615-01 1,5565E GO
<b>4</b>	4.3569E 01 -2.3936E 01 2.4598E-01	5.1599E 00 3.0098E 00 8.1137E-02	-3.2107E 01 2.6893E 01 -1.3972E 00	7.6242E 00 -2.2820E 01 8.6450E-01	2.6903E 00 -1.6791E 01 7.7461E-01	-1.4266E D1 2.3455F A1 -7.3634E-01	-1.0003E 00 -5.9050E 01
I.	4.0978E 00 -1,2014E 00 6.6115E-02	6.42306-01 2.01896-01 -5.45866-01	-4.2077E-01 4.2059E 00 -4.5779E-01	1.6968E 50 -7.7754E-01 2.0255E-01	1.5001E 00 -1.4058E 00 -1.8297E-02	-1.2715E 00 2.6633E-01 -6.0963E-01	-1.5439E-02 -2.1969E 00 -2.1964E 00 -
₹	-1.2642E 02 1.5757E 01 -1.2797E 00	-3.1793E 01 -9.5343E-01 2.5425E-01	4.2487E 01 -1.6221E 01 2.6342E 06	-1.946GE 01 1.3691F 01 -2.8145F 00	-1.2765E 01 1.3034E 01 4.0722F-02	1.5116E 01 -4.65C4F 00 6.7824E 00	1.7264E 00 4.4956E 01 4.8316E 01
I	-4.5122E 00 1.1306E 00 -1.8728E-01	-1.0626E 00 1.0759E-01 1.5682E-02	8.2589E-01 -1.8321E 00 1.4718E (0	-9.0918E-61 1.0679E-01 -5.1117E-01	-1.6108E 00 4.3785E-01 -6.4131E-63	-1.0041E-01 -2.337F rn 1.6362E 00	-1.31936-01 3.60176-02 7.74688488
J.	70K # 1 6.2860E 01 -1.9901E 01 3.7527E 09	ROW = 2 2.6640E 01 4.0119E 00 -2.6594E-01	RON = 3 -1.0319E 91 2.9249E 01 -6.9687E 00	ROW = 4 7.8467E 00 4.1258E 00 7.0563E 00	ROW = 5 1.0078E 01 -1.5403F 01 1.3913E 00	ROW = 6 -9.6771E-01 -3.9178F (1 -1.4809E 01	7.3981E-01 1.2561E-01 1.2561E-01
^	•	•	. ~			•	~ *

~ ~	~ ~	^	•	-		•	^
A 41.0	ž ''	ă	ă	€.	412	œ '	β. '
0H = 8 1.3463E -1.7116E-	1.2453E 1.1152E -1.0645E	ROW #10 4.3502E -7.7233E -3.9528E	ROW =11 1.4089E 0 1.5627E-0 1.6918E 0	ROW =12 -4.2925E-0 4.7321E 0 8.1322E 0	40W #13 -3.5710E -7.9653E -4.7524E	0W =14 1.9916E-0 -3.6209E 0 3.6267E 0	ROW #15 2.24546 -4.15986 3.1987E
3E 00 6F-01 9F 00	3E 01 2E 01 5E 01	2E 00 3E 00 BE 00	9E 00 7E-01 8E 01	5E-01 1E 00 2E 01	000	6E-01 9E-00 7E-00	4E 00 8E 00 7E 01
	, ,			404 V. 1. 4	60 to to	1 1	
-4.1179E-0 -9.5724E-0 4.825F-0	3.0616E 0	-5.7173E-01 7.4115E-01 -1.8736E 00	-2.7444E-01 1.2526E-02 -6.4243E-01	-7.4189E-02 -5.3532E-01 4.9875E-01	2.9335E-01 5.3625E-01 5.9586E-01	2.3901E-01 4.2679E-01 3.3586E-01	-5.7706E-01 7.3725E-01 -1.5447E 00
40 H	44.0	 	• •	474	777		, ,
-2.9841E -4.6664E 3.5874E	7128	5.8496 7.2814 5.1725	1.7376 5.3944 1.2751	-4.0991 -7.7962 -4.5419	. 764 . 423	3.4365	-3.8351 1.46331 -1.97951
minim 900	8E 01 4F 01 7E-01	ការក ក 848	йй т 601	4 m m m	34 01 01 01 01 01 01 01 01 01 01 01 01 01		8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7.77	3.35	2.5- 1.6.6.4	2.82	1 4.03 1 8.46 1 -1.41	2.57	6.72 3 -6.89 1.20	8.5- 4.28
756E-01 196E-01 107E-02	14E 00 126E 00 169E-01	1726-01 1826-01 1886-01	2246-01 327E-01 139E-02	326E-01 541E-01 175E-00	175E 00 166E 00 163E 00	248E-01 24E-01 153E-01	536E-01 99E 00 593E-01
40.0	4 HW	4.00	w 4 0	8000 440	444	5.4. 1.5.5.	4 6.4
387E 278E 068E	039E 416E 913E	4678E 0245E 0502E	372E	80 0 kV 80 0 kV 11 mm m	1404E 6146E 3377E	2440E 5568E 2027E	5819F 2895E 8770E
900-	888	000	200	228	555	200	000
84.49 64.64	4,31	3.33	-6.27 -5.19	-2,67 -1,82 -1,10	-2.74	1.04	3.12
905E-0	756E 0	1371E 0	20 E	67E- 36E	86E- 83E 37E	7910E-0 0454E 7354E-0	87E- 63E 43E
41.4	0000	4- 10	195	400	400	265	400
000 000 000	7657	.651 .741 .661	1.2443g 3.7177 3.4363E	9,562 4,9610	474	2.4803 3.2383 3.1631	8 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
<b>76.</b> 17.00 17.00	## ## ## ## ## ## ## ## ## ## ## ## ##	04 40 mm m		29E 01 09E 01 92E-01	24 to 0	600 600	4 7 0 11 17 18 0 0 0
8 + 6 0 + 0	4 4 kg	- คีคี - คคค	440	मूं के ने क्रमण	4.0 H	9 M H	4 6 6 4 6 6
.4211E .3910E .4963E	3376E 9092E 4742E	,8200E ,2254E ,0229E	.0317E	.6658E .6248E .0513E	8814E 8674E	. 4629E . 0362E	. 5889E . 6423E . 3946E
### ### ###	884	000	111	000	1100	1110	850
-4,656; 6,007 -1,097	2,957	2,428 9,133 6,111	1,394	-1,433 -3,587 -6,184	8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6.103	1.215
4.0.4 mmm	0.00 0.00 0.00 0.00	338E 34E 16E 0	44 44 67 60 60 60 60 60 60 60 60 60 60 60 60 60	ព្រះពិត	4.0 6.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	036E 042E 591E	28E 0
868 84r	722	11 -2 10 -3	777	446	844 มีมีข้	111	01 -2 01 -8 01 -7
000 000	7.27 7.17	40.0	2007	3.050	V 48	1614 18229 18667	729
440 W	M Gib M M M C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C	328 348 308 10 10 10 10 10 10 10 10 10 10 10 10 10	2004 1000 1000 1000	07E 07E 07E 07E	326-0 866-0 475-0	407 mm m 000	7E 0 7E-0 7E-9
. 2.2	944	오랜턴	정보험	유선적	201	900	무선선

Sample Problem 3.

A  $45^{\circ}$  delta wing is analyzed at M = 2.0, f = 5.5 cps and a = 1116.87 ft/sec (sea level). The trailing surface is removed from the analysis by setting X(5) = X(4) = X(3). The wing geometry and AIC station locations are shown in Figure 6.9. Six boxes were specified along wing root. The Mach box overlay has 34 boxes. Input parameters are summarized below and a listing of the input data cards and computer output follows.

$X(1) = 0.0^{\circ}$ $X(2) = 2.0^{\circ}$	x(3) = 2.0' $x(4) = 2.0'$ $x(5) = 2.0'$
Y(1) = 0.0' $Y(2) = 0.0'$	Y(3) = 2.0'
SOUND = 1116.87 ft/sec	Acoustic velocity (sea level)
NMACH = 1	Number of Mach numbers
<b>KF</b> = 0	Input frequency
NFREQ = 1	Number of frequencies
NBW = 6	Number of chordwise boxes on wing
LPUNCH = 1	Punch AIC matrix for wing on cards
FMACH (1) = 2.0	Mach number
FREQ (1) = 5.5	Frequency (cps)
NXWING = 3	Number of chordwise AIC stations on wing
NYWING = 4	Number of spanwise AIC stations on wing
NXCS = 0	Number of chordwise AIC stations on
	control surface
NYCS = 0	Number of spanwise AIC stations on
	control surface
	* * * * * * * * * * * * * * * * * * * *

YAIC(1,W) = 0.2' $YAIC(4,W) = 1.4'$	YAIC(2,W) = 0.6'	YAIC(3,W) = 1.0'
XAIC(1,1,W) = 0.560'	XAIC(1,2,W) = 1.100'	XAIC(1,3.W) = 1.640'
XA1C(2,1,W) = 0.880'	XAIC(2,2,W) = 1.300'	XAIC(2,3,W) = 1.720'
xAIC(3,1.W) = 1.200'	XAIC(3,2,W) = 1.500	$XAIC(3,3,W) = 1.800^{\circ}$
XAIC(4,1.W) = 1.520'	XAIC(4,2.W) = 1.700'	XAIC(4,3.W) = 1.880



· AIC CONTROL STATION

SUPERSONIC JAMPLE FROBLEM 3. FIGURE 6.9 -

414

DATA CARD COLUMN NUMBER

The state of the s

123456759x1233456789u123356789B123456789u1233456789U123456789B123456789B123456789B 

	MACH NO.	922 927 73 74 74 74
,	<b></b> -	1.724
5.0	<b>o</b> =	1.300
2.0	-i :	1.400
	<b>-</b>	1.640
0 0	η · μ	3.600 1.100 1.500
o o	5.5	0.240 0.560 1.240

123456789n123456789n123456789p123456789p123456789p123456789p 

DATA CARD COLUMN NUMBER

FIGURE 6.10 - LISTING OF INDUT DATA CARDS FOR SUPERSORIC SAMPER PROBLEM 3.

HUGHES AIRCRAFT OF SUPERSONIC AIC PROGRAM

## PLIGHT COVETTIONS AND GEOMETRY:

MACH NUMBER # 2.00000	SPEEN OF SOUND # 1116.870 L/T	/T RMD# 1.00
	9% <b>1</b> 4	7. A.T.
L.E. STATION (L)	.0	2.500
ROOT CHORD (L)	2.000	e.
L.E. SPA4 (L)	.0	2.040
T.E. SPA4 (L)	2.310	2.000
TIP CHORD (L.)	• • •	ė
TOTAL AREA (Lel, )	4.000	8
CHORTAISE BOXES	·c	•
SPANTISE ROXES	Ç. <b>#</b>	rı
TOTAL CHORDWISE BOXES = ~	ROX C40RD = 3.53636E-01 L	23 SPAH # 2.099465-01 L

HUNNES ALFORAFT FO. SUPEPSOVIC AIC PROGRAT (CONT-D)

HUGHES AIRCRAFT CO. SUPERSONIC AIG PROGRAM (CONT-D)

A STATE OF THE STA

A1C TOLLOGATION STATION COORDINATES ON THE WING

	AA III VAI JI SHA		4
3	1. 3.000.c. i	o-II-dende	1: 3:00+01:0
3.607690E r3	1.880203E CC	0.136900F n1	9.172000E 01
10 3000001.6	6.129000E 01	1.150gree at	0.180000E 01
6.140000E 01	9.152n04E 01	0.1700000 01	6.148nn7E 05

.5\$ 1383055

## HUGHES AIRCHAFT CO. SUPERSONIC AIC PROGRAM (CONT-D)

-

nSCILLATCRY FRED 15.10% (CPS) 5.50070E 00
PEFERENCE CHORD 1.00% 06 0.0
REDUCED FREDUE1GY (REF. CHORD) 1.547075-02
REDUCED VELOCITY (REF. CHORD) 6.46303E 01
FREE STREAM MACH NUMBER 2.0000NE 30
FREE STREAM VELOCITY 2.23374F n3
nEWSITY 1.00

NYNAMIC PRESSURE (1/2*RHO*VEL**2) 2.49480E 36

## AFRODYNAMIC INFLUENCE COEFFICIENTS

3.5605E-02 1.3720F n1 -7.4748E-n1 -9.7844F CO 1.7618E-C1 -1. . 7 . 8 E 01 9. 1670 E-12 -1. (533E 90 -6.2339E. 02 /1.9870E-01 1.1718E ng 20 21 200 2 10 25 200 겉덩 -4.4593F A.0287F -1.6529E -9.9725F 4.7535g 20 1.7983F 5 00 9 0 ع ن 7.0756F 90 -2.1606F-01 -1.1029F 00 1.1835F-02 -5.3096E-01 6.1951F 2.57/26, p.e. 2.05588 n2 +1.73448 n0 .6.06488 n2 4.13928 -3.6448 n0 -6.9328 p2 2.40408 20 1.57498 n2 1.73928 n 9.2832F 42:-3.6264F 1.5348E 62 -2.2106F 9.4132E 02 -9.6589F -1.5190E 02 1.7223F 7 -7.0278F 62 -1.3674F 72 -9 -3.7919E G1 -6.3365E-01 2.1712F 02 -8.1782F 01 -9.3514E 91 2.7620F ft 1.0037F 00 4.7067F 50 000 n2 -4.3389E-01 n2 -5.5718F-01 90 -1.0644E 00 7.0703F-01 000 -1.24285 ( -9.3385E -5.4068E 3 86 68 21 P 2 2 8.5 3.9882E -1.1997E -1.º763F 5.0377E -8.1395E 3.8197E 3.7666E からないないはからししょう かっぱい ちゃく 4.2036F 90 -1.7167F 90 --3.3729F 00 1.2637F 00 -4.9075F-62 3.5863F 00 6.9199F 00 -1.8519F-61 -2.4617E-91 -1.4617E-91 -1.4137E-93 1.1052F 01 -1.7794F 00 2.2666F-01 2.725.F 02 - 3.4647E 01 - 3.4647E 01 7.4682E 02 上のないまでまるいである。 3000 358 26.22 222 0 t 0 4.4426E 0 3.2352E 0 -4.0483E 0 -6.9225E 0 -6.850RE 0 4.087F 0 9.5114F 7 -2.3005E 0 1.6931F 0 -6.2173E 0 2.4654% p -1.71-(21 0 -4.6957E C +.9298E G 9.5256E R -7.9149E-01 -9.7192E 00 • -5.4558 00 1.36265 00 -9,47395-51 -3.2339F 60 -6.5403F-01 1.0601E n2 - 2.4294E 60 1.6601E n3 -7.5464F-n2 66 -1.4918E CO -2.5374E-01 3.5 -4.9035E-111 2.1489E-01 6.2112F-41 2.8083F -1.5037F -6.2877F マンはないでして 2.0741F 02 -1.0741F 02 -1.0054F 03 -7.9710E 01 929 5 10 2 102 825 2 20 ROW * 2 7.0303F ( 2.2683F ( 1.3215F 1.3215F 2.7155F 2.45±0F 6.8901F 2.9583E 70# = 5 3.5916F | -4.3740F | 6.9160F -2-1046E -1.6419F -4.2149E 7.6467F 302 202

**

-3.9334F 00 -9.5576F-11 ပ္ <u>ဝ</u> 000 900 -6.7317F -2.0919F 1.6346E -8.3986E 2.7458E 1.5790F #2 5.1966E #2 25 96 5.2420E-1 1.5641E 1.7329F-01 000 900 4.4422F 3.2944F 3.9547F n2 -1.9813E n0 3.4884F n1 3.9547F n2 -1.Fi45F+n1 -4.588nF n2 2.50 200 100 -1.76RBF : -2.9849F 4.9854E -5.0762F 000 -2.f149F 00 000 -1.7726F 9.7377F -1,4152E 6.1018E P1 2.3845E 93 25 ئ ق 7.2561F 1.0445E 5.9661F PO -9.6264F FU 5.9168F- 1 7.2924F f. 1.8504F f. -2.8514F-f1 -1.01638 A2 5.30298 90 9.78348 A1 -5.01528-01 4.31258 A0 -2.74358-01 3.6458F n0 -4.5357F nc -8.5176F-01 -1.0703F-01 0 6 kg 83 2 2 **2** 888 -0.5149F 1.0155E 1.8584F 1.8495F 1.1591E -2.74:1F 00 1.575:1F 00 8.262:F-61 -6.4651F 00 2.3614E 00 7.2385F-01 -1.6-21E 00 6.56-3E-01 -3.2557F 30 000 C. 2.7447F ( 2.0558E ( -4.5362F ( 1.9165E 6 10 C C 200 ₹? E # & M 6.4107F -2.2549F 80w = 8 6.52556 -1.92296 -1.3196F 2000 = 0 2000 = 0 3000 = 0 3000 = 0 804 = 11 3.1375E | -1.0565E | 1.9168E | -2.6795E

34.5

2,5

55

5.1634F -3.7054E

ភ្នំ ភ្នំ

-1.9336F

-1.9620E 61 7.6702F 01

1.5610F

600

1.13746

:: 2

7.1469E

5000

-2.7171E -1.4524E -1.1103E

9000

1.0564E (-3.2599E (1.0792E (

7.1618E-01 3.7255F 01 1.5952E 03 ,

. .

٠.

. .

٠.

٠.

٠.

. .

PART VI - SECTION B4.0

LISTING OF SUPERSONIC AIC COMPUTER PROGRAM

```
CORIVE
            DRIVE
      COMPLEX CZERO. VPIC.SS, PHIW. SPHI, PHI, PHITE, DPHI, EXF, W.F. AIC. Z
      DIMENSION F(45.45). W(45,45), S(45,45), R(45,45),
                 TEMP(45,45).R(45,45).C(45,45).T(45,45).TM(45,45).
     1
                 T:(45,45),TR(45,45)
      COMMON/C1/KHOX(1000).XF(5).YE(3).X1,Y2.X3,X4.Y1,Y2.BFTA.NBS
      COMMON/C2/AS.NMACH.FMACH(6).NFREQ.FRFQ(18).NMODE.NSURF.LPUNCK.KF
      COMMON/C3/VPIC(2025).SS(2025).PHIW(50).SPHI.CZERQ.PHI.PHITE.DPHI
      COMMON/C4/MOR(50), NRL(50), KC(50), KL(28), RSL(20), DXE(7), TPI, U
      COMMON/C5/X,Y,DX.DY,EH.EK.EKB,FKR,NP,MP,NB,NBOX,KODE.MODE,NBW.NBT
      COMMON/C6/XL.NS,K.J,TFR,TWL,RHO
      COMMON/C7/XAIC(ln,14,2),YAIC(l4,2).NXBX(44),NYBX(40).NXBXCS
      COMMON/CR/NXWING.NYWING.NXCS.NYCS
      COMMON/C9/A1C(45,45),AR(3)
      EQUIVALENCE (C.S.R), (VPIC, W, R), (SS.F, TM), (AIC, TEMP)
    1 CALL DAIN
       IF (NMODE .LF. 45) GO TO 5
       WRITE (6,8)
     R FORMAT (1H1.5x.50K NUMBER OF AIC STATIONS EXCEEDS MAY ALLOWABLE (4
      15)/4X,16H CASE TERMINATED)
       80 TO 1
     5 CONTINUE
       BO 1000 MACH=1.NMACH
       FM=FMACH(MACH)
       IF (EM .LT. 1.1) GO TO 1000
       CALL CODE
       TOR=TWL/RETA
       CALL POUT(1)
       CALL POUT(2)
       NTRS=II
       00 / I=1.NBS
     7 NTRS=NTRS+NXRX(I)+NXHXCS
       IF (NTRS .LE. 45) GO TO 13
       URITE (6,14)
    14 FORMAT(1H1,5X,48H NUMBER OF MACH HOXES EXCREDS MAX ALLOWABLE (45)
      1/5X,16H CASE TERMINATED)
       60 10 1
    13 CONTINUE
       U=AS+EM
       TPII: TPI/U
       RFM-DX+(FM/HF1A)++2
       CALL TRAMP (2.NTRS.NTCS,S.R.C.B.T.TR.TI.TM)
       DO 550 I=1.NTRS
       DO 550 JEL-NTUS
   SUBJECT STREET OF
       CALL TRAMP (LINTRS, NTCS, S, R, C, R, T, TR, TI, TM)
       00 460 1m1, NTRS
       NO 468 J#1.NTCS
   568 TR(1.J)=TEMP(1.J)
       NMODE = NTCS
       DO THE IFREE, NERFO
       IF (KF .FQ. 1) FREQ(IFR)=FREQ(IFR)+FMACH(MACH)+AS/(IPI+X1+8.5)
       FK=FRFO(IFR)+TPU
       FKA-FK+RFM
       FKP-FK+X1/2.11
       CALL CAFT
       ARR.. FK . IIX
       FXI: CMPL X(COS(ARG).-SIN(ARG))
       no son monest, mone
       X=0.5+DX
       NH=1
                                      422
```

```
DO ZOU NP=1,NBOX
   KD=KBOX(NB)
   NS=1
   60 TO (/0.60./0.60.60.70./0).KD
60 NS=2
/O MR=MOB(NP)
   Y=n.n
   DO 100 MP=1,MH
   KODF = KBOX(NH)
   SPHI=CZERO
   IF (NP .GT. 1) CALL PHIB
   SPHI = SPHI + DY
   PHI = CZFRO
   GO TO (40,40,40,40,40,20,30). KONE
VA SPHI=SPHI-PHIW(MP)
   PHI=PHIW(MP)
   PHIW(MP)=PHIW(MP)*EXF
   80 TO 51
10 IF (KI) .LT. 4) GO TO 40
50 SS(NB)=-SPHI/VPIC/DY
   GO TO 90
40 IF (NS .FQ. 2) GO TO 45
   1R=0
   00 21 IL=1.MP
/1 TR=[R+NXBX(]])
    IR=IR+NP-NXHX(1)
   80 10 26
45 IR=11
    00 /2 IL=1,NRS
>? IR=[R+NXRX(]])
    DO 23 IL=1,MP
23 TR=IR+NXBXCS
    TR= | R-NHOX+NP
26 SR=FM+AS+TR(TR MODE)
    SI=TPI+FREQ(IFR)+TI(IR, MODE)
    SS(NB)=CMPLX(SR,SI)
    IF (KD .LT. A) SS(NB)=SS(NB)-ARLF(TOB)+(SS(NB)+SPHI/VPIC/DY)
    IF (KODE .GF. A) GO TO 90
    PHI=SPHI+SS(NH) * VPIC*BY
    IF (KODF .FQ. 4) PHIW(MP)=PHI*FXF
    IF (NP .FQ. NBOX-1) PHIH(MP)=PHI
    IF (NP .FU. NHOX) PHITF=PHI+(PHI-PHIH(MP))+DXE(>)
    RO TO (128,121.128.121.121.121.12/.12/),KODE
128 [C=0
    BO 122 IL=1.MP
122 IC= | C+NXBX( | | )
    IC-IC+NP-NXBX(1)
    80 10 126
121 IC*+
    00 125 IL=1.NRS
123 [C-1C+NXBX(11)
    DO 121 IL=1,MP
124 TC=1C+NXBXCS
    IC=IC-NHOX+NP
126 AIC(IC, MODE)=PHI
127 CONTINUE
 YP CONTINUE
    NH=NH+1
    KU*KODE
100 Y=Y+DY
                               423
```

2111 X=X+DX

```
SHO CONTINUE
    CALL SD2 (S.R.C.A.T.TR.TM)
    DO /01 J=1.NTRS
    00 /01 J=1.NTRS
    SI=0.0
    IF (1 .FO. J) SI=TPI+FREQ(IFR)/(FM+AS)
    SR=TM(I,J)
701 W(1, J)=CMPLX(SR, S1)
    NO /NV [=1.NTRS
    DO /02 J=1.NTCS
    F(1,J)=(0.0.0.0.0)
    DO / 11 × K=1.NTRS
782 F(1,J)=F(1,J)-W(1,K)+A1C(K,J)
    ZCON=(4.0+DX+DY+FM+AS)/((TP1+FREQ(TFR))++2+(YE(3)-YE(1))+
   1(XF(3)-XF(1))**2)
    CALL FORCE (R)
     00 /08 I=1.NTCS
     DO /08 J=1.NTCS
     A[C(1,J)=(0.0.0.0)
     DO /08 K=1.NTRS
     Z=CMPLX(G(I,K)+ZCON, n.n)
7HR AIC(I,J)=AIC(I,J)-Z+F(K,J)
     CALL POUT(3)
     IF (LPUNCH .RT. A) CALL POUT(4)
 9110 CONTINUE
1000 CONTINUE
     90 TO 1
     END
```

```
CDAIN
            DAIN
      SUPPOUTINE DAIN
      COMPLEX CZERO, VPIC, SS, PHIN, SPHI, PHI, PHITE, TPHI
      COMMON/C1/KBOX(10:00).XE(5),YE(3),X1,X2,X3,X4.Y1,Y2,BFTA,NBS
      COMMON/C2/AS.NMACH, FMACH(6), NFREO, FREO(10).NMODE, NSURF.LPUNCH, KF
      COMMON/C3/VPIC(20/5),SS(20/5),PHIN(50),SPHI,CZERO,PHI,PHITE,DPHI
      COMMON/C4/MOR(50), NRL(50), KC(50), KL(28), ASL(28), DXE(7), TP1, U
      COMMON/C5/X, Y, DX, BY, EM, EK, EKB, EKR, NP, MP, NB, NROX, KODE, MOUE, NBW, NBT
      COMMON/C6/XL.NS,K,J,IFR,TWL,RHO
      COMMON/C7/XAIC(19,18,2), YAIC(18,2). NXBX(40), NYAX(48). NXBXCS
      COMMON/CB/NXHING.NYHING, NXCS.NYCS
      READ(5.11) (XF(1),1=1,5)
      RFAD(5,11) (YF(1),1=1,3),AS
      READ (5.12) NMACH. KF, NFREQ. NBW. LPUNCH
      READ(5,11) (FMACH(1),1=1,NMACH)
      RFAN(5,11) (FRFQ(1),1=1,NFREQ)
      NSURF = 2
      1F(XF(4).LT.XE(5)) GO TO 19
      NSURF = 1
      XE(4) = XE(3)
      XE(5)=XF(3)
   IN READ (5,12) NXWING, NYWING, NXCS, NYCS
      READ (5,11) (YAIG(1,1). I=1. NYWING)
      IF (NXCS .NF. 0) READ (5.11) (YAIC(1,2),[=1,NYCS)
      READ (5,11) ((XAIC(I,J.1),I=1,NXWING),J=1,NYWING)
      IF (NXCS .Nt. ") RFAD (5,11) ((XAIG(1,J.2),1=1,NXCS).J=1.NYCS)
      RHO=1.0
      MMODIF = NXWING + NYHING + NXCS + NYCS
   11 FORMAT(6F12.8)
   12 FORMAT(6112)
      RETURN
      END
```

```
CCODE
            CODE
      SURROUTINE CODE
      COMPLEX CZERO. VPIC. SS. PHIN. SPHI, PHI, PHITE, DPHI
      COMPLEX AIG
      COMMON/C1/KBOX(1000).XF(5).YE(1).X1.X2.X3.X4.Y1.Y2.BFTA.NBS
      COMMON/C2/AS.NMACH.FMACH(6).NFRED.FREQ(30).NMODE.NSURF.EPUNCH.KF
      COMMON/C3/VPIC(20/5).SS(20/25).PHIR(50).SPHI.CZERO.PHI.PHITE.DPHI
      COMMON/C4/MOR(50), NBL(50), KC(50), KL(28), 8SL(20), DXE(7), TP1, U
      COMMON/C5/X, Y, DX.DY, EM. EK, EKR, EKR, NP 3P, NB, NOX, KODE HODE, NBW, NBT
      COMMON/C6/XL.NS,K.J.IFR,TWL,RHO
      COMMON/C7/XAIC(LA,14.2).YAIC(L4.2).NXBX(48),NYBX(48).NXBXCS
      COMPON/CB/NXWING.NYWING.NXCS.NYCS
      COMMON/C9/AIG(45,45),AR(3)
      RETA = SQRT((FM + FM)-1.0)
      X1 = XF(3) - XF(1)
      X2 = XF(3) - XF(2)
       XS = XF(4) - XF(1)
       X4 = XF(5) - XF(4)
       X5 : XF(5) - XF(1)
       Y1 : YF(2) - YF(1)
       YP = YF(3) - YF(1)
       TF(X2.GT.X1.OR.X1.GT.X3.OR.X1.GT.X5.GR.X2.11.0.0) GU 10 50
       15(Y1.GT.Y2.OR.Y1.LT.0.0) 80 TO 50
       Y'mi = 0.0
                      THI. = (X1 - X2) / (Y^{0} - Y1)
       TF . YP. NE . Y1)
                      (Y2*(X2+X1) - Y1 * (X2-X1))
       AR(1) =
       \Delta R(2) = Y2*X4*2.0
       Ag(3) = AR(1) + AR(2)
    10 0% = X1/(FLOAT(NAW) -0.5)
       ## (50.0 × 0x .GT. X5) GO TO 20
    15 NEW = NBW-1
       80 10 18
    20 DY = DX/RET:
       YN1 = Y1/DY
       YN2 = Y2/DY
       XNI = YNP - (XI-XZ) / DX
       XNT a YNV + X970X
       XNIF = X3/DX
       XNTF=X5/DX
       NROX=XNTE+0.50000001
       NBS = Y2/DY . 1-0
       NHT = Xa/BX + ".5
       DXF(1) = 1.0
       DXF(2) = 1.6
       DXF(5) = 0.5
       DXF(4) = AIN''(XNLE + 1.5) - XNLE
       DXF(*)=XNIF-FLOAT(NROX-1)
       DXF(6) = 0.0
       DXF(7) = Had
       X = 6.4 * DX
       PH = 414
       NEC MINICAMAXICXNE+FEDATONBOX)-0.5.YN1+FEDATONBOX)-0.5).XNT-FEDAT
                (NBOX) (6.5)+1
       BO BO TIEL, NAC
    NO NXRX(11) TH
       NXAXC5=0
       DO 40 NP = 1.NHOX
       XN = FLOAT(NP) - 1.5
        YW - YNZ
        IF (TWL .GT. H.D) YW=AMIN1(YW,YN?+XN/(TWL/RETA))
        1F(x.GT.XE(2)) GO TO 24
                                     426
```

```
MB = MIN1( : 1AX1(YW.XN+YN1).XNT-XN)+1
   80 TO 28
24 MB = MIN1 (AMAX1 (XNL+XN.XN+YN1).XNT-XN)+1
28 \text{ HOR(NP)} = 83
   KODF = 1
   IF (NP .EQ. NRW) KODE =3
   IF (NSURF .EQ.1) GO TO 29
   IF (X .GT. X1) KODE =6
   IF(NP.FQ.NBW)KODF=3
   IF (X .GT. X! ) KODE =4
   IF (X .GT. X SEDX) KODE=2
   IF (NP .FQ. NROX) KODE =5
29 IF (NR+MR.GT.2040) 80 TO 15
   NBI (NP) = NH
   00 40 MP = 1.MR
   YN = MP-1
   NB = NR + 1
   IF (YN .GT. YW) KODE =7
   IF (KODE .FU. 1 .OR. KODE .EQ. 3) 80 TO 70
   GO TO 71
/N NXRX(MP)=NXRX(MP)+1
71 CONTINUE
   IF (MP .NE. 1) GO TO 73
   IF (KODE .EQ. 2 .OR. KODE .EQ. 4 .OR. KODE .FQ. 5) Go TO /2
   60 10 73
/2 NXRXGS=NXBXGS+1
/3 CONTINUE
   Y=BY*FLOAT(MP)-0.0*DY
   IF (KODE .Fu. 1 .OR. KODE .EQ. 3) NYBX(MP)=MP
             ) = KODE
AN KBOX (NB
40 X = X + DX
   RETURN
on CALL EXIT
   RETURN
   FND
```

```
CPOUT
            POUT
      SUBROUTINE POUT (IND)
      COMPLEX CZERO, VPIC, SS, PHIN, SPHI, PHI, PHITE, DPHI
      COMPLEX W.AIC
      DIMENSION SW(5,6), SURF(2,5), COD(7), C(50)
      COMMON/C1/KROX(10H0),XE(5),YE(3),X1,X2,X3,X4,Y1,Y2,BETA,NUS
      COMMON/C2/AS.NMACH, FMACH(6), NFREQ, FREQ(10), NMODE, NSURF, LPUNCH, KF
      COMMON/C3/VPIC(2025).SS(2025).PHIW(50).SPHI.CZERO.PHI.PHITE.UPHI
      COMMON/C4/MOR(50), NBL(50), KC(50), KL(28), BSL(20), DXE(7), TPI, U
      COMMON/C5/X,Y,DX,DY,EM.EK.EKR,EKR,NP,MP.NB.NBOX,KODE.HODE.NBW.NBT
      COMMON/C6/XL, NS, K, J, IFR, THL, RHO
      COMMON/C7/XAIC(10.10.2), YAIC(10.2), NXBX(40), NYBX(40). NXBXCS
      COMMON'CB/NXWING, NYWING, NXCS, NYCS
      COMMON/C9/A16(45,45),AR(3)
      DATA (SW(1,1), 1=1,6)/26HMAP OF MACH BOX OVERLAY ON,
                            26HWING, TAIL, AND DIAPHRAGM,
                                         (S) - WING
     2
                            26H
     3
                            26H
                                         (S) - TAIL
                                         (.) - WAKE
                            26H
                            26H
                                         (.) - DIAPHRAGM
      DATA (SURF(1.1), I=1,3)/8HWING
                                         AHTAIL
                                                    .1) HWING + TAIL /
      DATA COD/1H5,1H5,1H5,1H5,1H5,1H,,1H./
      GO TO (10,20,30,40), IND
   10 WRITE(6,11)EM.AS.RHO,XE(1),XE(4),X1,X4,Y1,Y2,Y2,Y2,X2,X4,AR(1),
     1 AR(2), NRW, NRT, NRS, NRS
   11 FORMAT(1H1//// 32X,43HHUGHES AIRCRAFT CO. SUPERSONIC AIC PROGRAM
     1 ///37x,30HFLIGHT CONDITIONS AND GEOMETRY/1H0//15x, 13HMACH NUMBER
     2 = FB.5,4X,16HSPEED OF SOUND =F10.3,4H L/T,4X,4HRHO=,F6.2 //1Hn/
     X54X,4HWING,1AX,
     3 4HTAIL///22X,16HL.F. STATION (L),2F22.3//22X,16HROOT CHORD
                                                                        (L).
      4 2F22.3// 22X,16HL.E. SPAN
                                     (L),2F22.3//22X,16HT.E. SPAN
                                                                        (L),
     5 2F27.3// 22X,16HTIP CHORD
                                      (L),2F22.3//22X,16HT01AL AREA (L+L),
      6 2F22.3// 22X,16HCHORDWISE BOXFS , 119,122//22X,
      716HSPANWISE BOXES , 119, 122)
       WRITE(6,12)NAOX,DX,DY
    12 FORMAT(1H0/,11x,23HTOTAL CHORDWISE BOXES =,13, 5x,11µBOX CHORD =,
      1 1P1E12.5,2H (. 5X,10HROX SPAN =,1P1E12.5,2H L/
       WRITE(6,91)
    41 FORMAT(1H1//// 2HX,51HHUGHES AIRCRAFT CO. SUPERSONIE AIC PROGRAM
      1(CONT-D) ////)
       NB = 1
       DO 17 NP = 1.NBOX
       MR = MOR(NP)
       IF(MB.GT.50) GO TO BOO
       DO 15 MP = 1.MR
       K = KBOX(NB)
       C(MP) = COD(K)
    13 NB = NB + 1
       IF(NP.GT.6) OD TO 15
       WRITF(6,14)(SW(I,NP),[=1,5),(C(MP).MP=1,MB)
    14 FORMAT(10X,5AA.50A1)
       60 10 17
    15 WRITE(6,16) (C(MP),MP=1,MB)
    16 FURMAT(40X,50A1)
    17 CONTINUE
       80 TO 1000
  MIN WRITE (6,811)
  BUT FORMATION, 57 HWHEN MOR FXCEFDS ON THE MAP PRINTING IS DISCONTINUED
                         CALCULATIONS PROCEED IN NORMAL MANNER
      1//1H0,48H
       80 10 1000
                                   428
   20 NYS=NYWING
```

```
NXS=NXWING
    NO 200 NS=1,2
    WRITE (6,201) (SURF(I,NS), 1=1,2)
201 FORMAT(1H1, 28x, 51HHUBHES AIRCRAFT CO. SUPERSONIC AIC PROGRAM (CONT
   1-D) ////28x.43HAIC COLLOCATION STATION COORDINATES ON THE 2A6/1HU
   2,19x, 4HYAIC, 13x,13HXAIC VALUES--)
    00 202 1Y=1.NYS
    YC=YAIC(IY,NS)
202 WRITE (6,203) YG, (XAIC(IX, IY, NS), IX=1, NXS)
    NYS=NYCS
    NXS=NXCS
    IF (NYS .EQ. II .OR. NXS .EQ. U) GO TO 205
200 CONTINUE
215 RETURN
2.3 FORMAT (1H0,12X,5E17.6/(1H ,29X,4E17.6))
 30 VEI = EM+AS
    Q=0.5*RHO*VEL**2
    RV=1.0/EKR
    RR=x1/2.0
    WRITE (6,220) FREQ(IFR), BR, EKR, RV, EM, VEL, RHQ, Q
220 FORMAT(1H1.31x.51HHUBHES AIRCRAFT CO. SUPERSONIC AIC PROBRAM (CONT
   1-D)////9X,28H OSCILLATORY FREQUENCY (CPS),4X,1PE12.5,/1H0,9X,15HRE
   PERFNCE CHORD, 4x, 1PF12.5, /1H0, 9x, 30HREDUCED FREQUENCY (REF. CHORD)
   3,4x,1PF12.5,/1H0,9x,29HREDUCED VELOCITY (REF. CHORD).4x,1PE12.5,
   4/1H0,9X,23HFRFF STRFAM MACH NUMBER,4X,1PE12,5,/1M0,9X,20MFREE STRE
   5AM VFLOCITY,4x.1PE12.5,/1H0,9X.7HDFNSITY;4X,0PF5.2,/1H8,9X,33HDYNA
   641C PRESSURE (1/2+RHO+VEL++2),4X,1PE12.5,////)
    WRITE (6,221)
221 FORMAT(///35x.34HAERODYNAMIC INFLUENCE COEFFICIENTS,//5x.2HRL,10x,
   12H!M,10X,2HRI,10X,2HIM,10X,2HRL,1UX,2HIM,10X,2HRL,1UX,2HIM,184,2HR
   2L,10X,2HIH,/)
    NROHS=NYWING+NXWING+NYCS+NXCS
    DO 222 NROW=1, NROWS
    WRITE (6,223) NROW
    WRITE (4,224) (A)C(NROW, NCOL), NCOL=1, NROWS)
223 FORMAT (/ 5HROW = 12)
224 FORMAT (1P10F12.4)
222 CONTINUE
    RETURN
 4h NW=NXWING*NYWING
    NC=NXCS+NYCS
    NT=NW+NC
    NW1 = NW+1
    GO 10 (81,82.83,84).LPUNCH
 HI CONTINUE
    DO 301 1=1.NW
    PUNCH 85, (AIC(I,J),J=1,NW)
301 CONTINUE
 HS FORMAT (1PAF12.5)
    RETURN
 82 CONTINUE
    DO 302 [=NW1.NT
    PUNCH 85. (AIC(I.J), J=NW1.NT)
302 CONTINUE
    RETURN
 H'S CONTINUE
    DO 383 I=1,NW
    PUNCH 85, (AIC(I,J),J=1,NW)
305 CONTINUE
```

٠.

DO 384 J=NW1.NT

PUNCH 85, (AIC(I,J),J=NW1,NT)
384 CONTINUE
RETURN
84 CONTINUE
DO 305 I=1,NT
PUNCH 85, (AIC(I,J),J=1,NT)
305 CONTINUE
1080 RETURN
END

```
CFORCE
            FORCE
      SUBROUTINE FORCE (R)
      DIMENSION R(45,45)
      COMMON/C1/KHOX(1000).XE(5),YE(3),X1,X2,X3,X4,Y1,Y2,BETA.NBS
      COMMON/C5/X, Y, DX, DY, EH, EK, EKB, EKR, NP, PP, NO, NBOX, KODE, MODE, NBW, NBT
      COMMON/C7/XAIC(1G,10,2), YAIC(10,2), NXBX(40), NYBX(40), NXBXCS
      COMMON/C8/NXWING, NYWING, NXCS, NYCS
      MR=NBS
      NMBXW=0
      00 50 T=1,MH
   50 MMRXW=NMBXW+NXBX(I)
      KROW=NXWING*NYWING*NXCS*NYES
      KCOL = 0
      NO 100 1=1, MR
  100 KCOL = KCOL + NXBX(1) + NXBXCS
       00 150 I=1, FROW
       00 150 J=1,kCOL
  156 2(1, J)=0.0
       00 600 1=1, MR
       ACK=0
       FKR=1.0
       FRT=1.0
       FOF = 1.0
       YR=DY+FLOAT(1)-DY
       II=NYWING-1
       90 610 111=1.11
       IF (0.5*(YAIC()))+YAC()))+1,1))-YF(1) .GT. YR-.5*DY) GO TO 630
   610 CONTINUE
       III=NYWING
       90 10 620
   630 CONTINUE
       IF (YR-0.5+HY .LT. 0.5+(YAIC(111,1)+YAIC(111+1,1))-YE(1) .AND.
           YR+0.5*HY .GT. 0.5*(YAIC(III,1)+YAIC(III+1,1))-YE(1)) NCK=1
       IF (NCK . EQ. II) GU TO 620
       FRR=(0.5*(YAIG(III,1)+YAIG(III+1,1))-YE(1)-YR+0.5*DY)/DY
       FRT=1.0-FRB
   620 ARON=NXWING*(111-1)
       VCOL = 0
       00 650 1111=1,1
   650 NCOL=NCUL+NXRX([III])
       NCOL=NCOL-NXBX(I)
       KK=N%HX(I)
       00 750 K=1.KK
       NO JOB J=1. BXWING
       IF (XAIG(1,111,1)-XF(1) .GE. (FLOAT(NXBX(1)-NXBX(1)+K)-.5)+DX)
      100 10 710
       IF (XAIG(NXWING, []], 1)-XE(1) .LE. (FLUAT(NXBX(1)-NXBX([)+K)-.5)*
      10X) BO TO 720
       IF (XAIC(J, | | | , 1) - XE(1) .GT. (FLOAT(NXBX(1)-NXBX(1)+K)-.5)+DX)
      100 10 730
   100 CONTINUE
   710 NRF=NROW+1
       NCF = NCOi + K
       R(NRF, NCF)=1 RR
        If (1 .EQ. 1) R(NRF, NCF) = R(NRF, NCF) + 0.5
        IF (K .FU. FK) R(NRF, NCF)=R(NRF, NCF)+0.5
        IF (I .FU. MR) FOF = (YE(3)-YE(1)-(FLUAT(MR)-1.5)+DY)/DY
        IF () .EQ. MR) K(NRF, NGF)=R(NRF, NCF)+FDE
        60 10 740
    720 NPF=NROW+NXHIMS
                                           431
        NOF = NOOL + K
```

THE PARTY OF THE P

```
R(NRF, NCF) = FRB
   IF (I .EQ. 1) R(NRF,NCF)=R(NRF,NCF)+0.5
    IF (K .EQ. KK) R(NRF,NCF)=R(NRF,NCF)+U.5
    IF (I .EQ. MB) FOE = (YE(3)-YE(1)-(FLOAT(MB)-1.5)+DY)/DY
    IF (1 .EQ. MR) R(NRF, NCF)=R(NRF, NCF)+FQE
    60 10 740
730 R1=XA1C(J, 111, 1)-XE(1)-(FLOAT(NXBX(1)-NXBX(1)+K)-0.5)+DX
    P3=XAIC(J, [ | 1 , 1 ) - XAIC(J-1, | 1 | 1 , 1 )
    NRF=NROH+J
    NCF=NCOL+K
    R(NRF,NCF)=(1.0-R1/k3)*FRB
    R(NRF-1,NCF)=(R1/R3)*FRB
    IF (I .Eu. 1) R(NRF,NCF)=0.5*R(NRF,NCF)
      (I .EQ. 1) R(NRF-1,NCF)=0.5+R(NRF-1,NCF)
      (K .EQ. KK) R(NRF,NCF)=R(NRF,NCF)+U.5
      (K .EQ. KK) R(NRF-1,NCF)=R(NRF-1,NCF)+U.5
    IF (1 .EQ. MR) FOE=(YE(3)-YE(1)-(FLOAT(MB)-1.5)+DY)/DY
    IF (I .EQ. MR; R(NRF, NCF)=R(NRF, NCF)+FOE
    IF (I .EQ. MR) R(NRF-1,NCF)=R(NRF-1,NCF)+FOE
740 CONTINUE
    IF (NCK .EQ. 1 .AND. K .EQ. KK) GO TO 760
    BO TO 750
768 NO 850 KT=1,KK
    DO 800 JT=1, NXWING
    IF (XAIC(1,|||+1,1)-XE(1) .GE. (FLOAT(NXBX(1)-NXBX(|)+K|)-.5)+DX)
   160 10 810
    IF (XAIC(NXWING, III+1,1)-XE(1) .LE. (FLOAT(NXBX(1)-NXBX(I)+KT)-.5)
   1 * DX ) GO TO 820
    IF (XAIC(J1,[[]+1,1)-XE(1) .GI. (FLOAT(NXBX(1)-NXBX([)+KT)-.5)*BX)
   160 TO 830
800 CONTINUE
810 NRF=NROW+NXWING+1
     NCF=NCOL+KT
     R(NRF, NCF)=FRT+FOE
     IF (KT .EU. KK) R(NRF,NCF)=R(NRF,NCF)+0.5
     GO 10 840
820 MRF=MROW+2+MXWING
     NCF=NCOL+KT
     R(NKF, NCF)=| RT+FOE
     IF (KT .EQ. KK) R(NRF,NCF)=R(NRF,NCF)+0.5
     00 16 840
 830 R1=xA[C(JT,||T+1,1)-XF(1)-(FLOAT(NXBX(1)-NXBX(I)+KT)-0.5)*DX
     R3=XAIC(JI, | | | +1,1)-XAIC(JT-1, | | | +1,1)
     NRF=NROW+NXWIUG+JI
     SCF = NCOL + KT
     R(NRF, NCF) = (1.0-R1/R3) # ERT#FOE
     R(NRF-1,NCF)=(R1/R3)*FRT*FOE
     IF (I .EQ. 1) R(NRF, NCF)=0.5+R(NRF, NCF)
     IF (| .|u. 1) R(NRF-1,NCF)=0.5*R(NRF-1,NCF)
       (KT .EU. KK) R(NRF,NCF)=U.5*R(NRF,NCF)
     IF (KT .FW. KK) R(NRF-1,NCF)=0.5*R(NRF-1 CF)
840 CONTINUE
850 CONTINUE
 750 CONTINUE
 600 CONTINUE
     DO 400 I=1,MR
     KK=NXHXCS
     HCK=0
     FRH=1.0
     FRT=1.0
     FOF = 1.0
                                         432
```

```
YR=DY+FLOAT([)-DY
    II=NYCS-1
    IF (0.5+(YAIC(111,2)+YAIC(111+1,2))-YE(1) .GT. YR-.5+DY) GO TO 430
410 CONTINUE
    III=NYCS
    60 10 420
430 CONTINUE
    IF (YR-0.5+BY .LT. 0.5+(YAIC(III,2)+YAIC(III+1,2))-YE(1) .AND.
        YR+0.5+DY .GT. 0.5+(YAIC(111,2)+YAIC(111+1,2))-YE(1)) NCK=1
    IF (NCK .EQ. 0) GO TO 420
    FRR=(0.5*(YAIC(III,2)+YAIC(III+1,2))-YE(1)-YR+0.5*DY)/DY
    FRT=1.0-FRB
420 YROW=NXWING*NYWING*NXCS*(III-1)
    NCOL = NMBXW+(I-1) + NXBXCS
    an 950 K=1, NXAXCS
    30 400 J=1, NXCS
    IF (XAIC(1,)]|,2)-XE(1) .GE. (FLOAT(NBOX-NXBXCS+K)-.5)+DX)
   160 10 910
    IF (XAIC(NXCS, III, 2)-XE(1) .LE. (FLOAT(NBOX-NXBXCS+K)-.5)+DX)
   160 TO 920
    IF (XAIC(J,1!I,2)-XE(1) .GT. (FLOAT(NBOX-NXBXCS+K)-.5)+DX)
   100 10 930
900 CONTINUE
910 4RF=NROW+1
    YCF=NCOL+K
    R(NRF, NCF)=FRH
    !F (1 .EQ. 1) R(NRF, NCF)=R(NRF, NCF)+0.5
    IF (K .EQ. 1) R(NRF,NCF)=R(NRF,NCF)+((FLOAT(NBOX-NXBXCS+1))+DX
   1-XF(4)+XE(1))/NX
    IF (K .EQ. KK) R(NRF, NCF)=R(NRF, NCF)+(XE(5)-XE(1)-(FLOAT(NBOX-1))+
   10X)/DX
    IF (] .EQ. MR) FOE=(YE(3)-YE(1)-(FLOAT(MB)-1.5)+DY)/DY
    IF (I .EO. MR) R(NRF, NCF) = R(NRF, NCF) + FOE
    60 10 940
920 NRF=NROW+NXCS
     NCF=NCOL+K
     R(NRF, NCF) = 1 RH
     IF (1 .EQ. 1) R(NRF, NCF) = R(NRF, NCF) + 0.5
     IF (K .EO. 1) R(NRF, NCF)=R(NRF, NCF)+((FLOAT(NBOX-NXBXCS+1))+DX-
    1XF(4)+XF(1))/NX
     IF (K .EG. KK) R(NRF,NCF)=R(NRF,NCF)+(XE(5)-XE(1)-(FLOAI(NBOX-1))+
    10X)/DX
     IF (] .FQ. MR) FOR=(YE(3)-YE(1)-(FLOAT(MB)-1.5)+DY)/DY
     IF (I .EQ.HH) R(NRF, NCF) = R(NRF, NCF) = FGE
    60 10 940
930 R1 = XA(C(J, [11,2)-XF(1)-(FLOAT(NBOX-NXUXCS+K)-.5)+DX
     RS=XA(C(J,))(1,2)-XA(C(J-1,1)1,2)
     NRF = NROH+ J
     NCF = NCOL + K
     R(NRF, NCF) = (1.0-R1/R3) + FRH
     R(NRF-1,NCF)=(R1/R3)+FRB
     if (1 .Fu. 1) R(NRF-1, NCF)=0.5+R(NRF-1, NCF)
     if (| .FQ. 1) R(NRF,NCF)=0.5*R(NRF,NCF)
     IF (K .FQ. 1) R(NRF, NCF)=R(NRF, NCF)+( FLOAT(NBOX-NXBXCS+K)+DX
    1-XF (4)+XF(1))/NX
     # (K .FO. 1) R(NHF-1,NCF)=R(NRF-1,NCF)=( FLOAT(NBOX-NXHXCS+K)+DX
    1-x+(4)+X+(1))/DX
     IF (K .FU. KK) R(NRF,NCF)=R(NRF,NCF)+( XE(5)-XE(1)- FLOAT(NBOX-1)+
    19X)/DX
                                   433
```

```
IF (K . EQ. KK) R(NRF-1,NCF)=R(NRF-1,NCF)+(XE(5)-XE(1)-
  1FLOAT(NBOX-1)+DX)/DX
    IF (1 .EQ. MR) FOE=(YE(3)-YE(1)-(FLOAT(MB)-1.5)+DY)/DY
    IF (I .EQ. MR) R(NRF, NCF)=R(NRF, NCF)+FOE
    IF (I .EQ. MR) R(NRF-1,NCF)=R(NRF-1,NCF)+FQE
940 CONTINUE
    IF (NCK .EQ. 1 .AND. K .EQ. KK) GO TO 968
    88 T0950
968 88 350 KT=1,KK
    00 300 JT=1.NXCS
    IF (XAIC(1,1[1+1,2)-XE(1) .GE. (FLOAT(NBOX-NXBXCS+KT)-.5)+DX)
   160 10 310
    IF (XAIC(NXCS,III+1,?)-XE(1) .LE. (FLUAT(NBOX-NXBXCS+KT)-.5)+DX)
   180 10 320
    IF (XAIC(JT, III+1,2)-XF(1) .GT. (FLOAT(NBOX-NXBXCS+KT)-.5)+DX)
   160 10 330
300 CONTINUE
310 NRF=NROW+NXCS+1
    NCF=NCQL+KT
    R(NRF, NCF /= + RT + FOL
    IF (KT .Eu. KK) R(NRF,NCF)=R(NRF,NCF)+(XE(5)-XE(1)- FLOAT(NBOX-1)+
   10x)/DX
    IF (KT .EU. 1) R(NRF, NCF)=R(NRF, NCF)+( FLOAT(NBOX-NXBXCS+1)+DX
   1-XE(4)+XE(1))/NX
    60 TO340
320 MRF=NHOW+2*NXCS
    NCF=NCOL+KT
    R(NRF, NCF)=FRT+FOE
    IF (KT .Eu. KK) R(NRF,NCF)=R(NRF,NCF)=(XE(5)-XE(1)- FLOAT(NBOX-1)+
   19X)/DX
    IF (KT .EO. 1) R(NRF,NCF)=R(NRF,NCF)+( FLUAT(NBOX-NXBXCS+1)+DX
   1-XF(4)+XE(1))/NX
    90 10 340
330 R1=xA[C(Jf,|[[+1,2]-XE(1)-(FLOAT(NBOX-NXBXCS+KT)+DX-.5+UX)
     R3=XAIC(JI, [1]+1,2)-XAIC(JT-1,1][+1,2)
    NRF=NROW+NXCS+JI
     NCF=NCOL+KT
     R(NRF,NCF)=(1.0-R1/R3)*FRT*FOE
     R(NRF-1, NCF)=(R1/R3)+FRT+FOL
    IF (I .EQ. 1) R(NRF, NCF)=0.5*R(NRF, NCF)
     IF (I .EQ. 1) R(NRF-1, NCF)=0.5*R(NRF-1, NCF)
     IF (KT .EU. 1) R(NRF,NCF)=R(NRF,NCF)+ (FLUAI(NBOX-NXBXCS+1)+DX-
    1 XF (4) + XF (1) )/IIX
     IF (KI .fu. 1) R(NRF-1,NCF)=R(NRF-1,NCF)+(FLOAT(NBOX-NXHXCS+1)+DX-
    1 XF (4)+XF(1))/IIX
    TF (KT .EU. KK) R(NHF,NCF)=R(NRF,NCF)+(XE(5)-XE(1)-FLUAT(NBUX-1)+
    * DX > / DX
     IF (KI .tu. KK) R(NRF-1,NGF)=K(NRF-1,NGF)+(XE(5)-XE(1)-FLUAT(NBUX-
    1 ( ) * DX ) / DX
348 CONTINUE
 350 CONTINUE
950 CONFINIS
 40 R CONTINUE
     RETURN
     FND
```

```
CS02
            202
      SURROUTINE SD2 (S.R.C.R.T.TR.TM)
      DIMENSION S(45,45),R(45,45),C(45,45),b(45,45),T(45,45),
     1
                 TR(45,45), TH(45,45)
      COMMON/C1/KHOX(1000), XE(5), YE(3), X1, X2, X3, X4, Y1, Y2, BETA, NBS
      GOMMON/C4/MOR(50).NRL(50).KC(50),KL(20).BSL(20).DXE(7).TPI,U
      COMMON/C5/X,Y,DX,DY,EM,FK,EKB,EKR,NP,PP,NB,NBOX,KODE,MODE,NBW,NBT
      COMMON/C7/XAIC(10,10,2),YAIC(10,2),NXBX(40),NYBX(40),NXBXCS
      COMMON/CR/NXWING, NYWING, NXCS, NYCS
C *** THIS SUBROUTINE GENERATES THE REAL PART OF THE SUBSTANTIAL
 *** DERIVATIVE MATRIX FOR THE VELOCITY POTENTIAL
      4SUH=NXBX(1)
      MH=NBS
      44=11
      90 10 1=1, MR
   10 MM=NM+NXBX(1)+NXBXCS
      70 20 I=1,NM
      10 20 J=1,NM
       0.0 = (0.1) MT
      DO 100 I=1.MR
      IF (NXBX(1) .FO. 1) GO TO 100
      MXS=NXBX(I)
      CALL BMAT (NXS, NRSB, NCSB, B)
      CALL THAT (NXS,1,1,1,HSIZE,2,T,R)
      DO 101 MR=1, MSIZE
      00 101 MC=1,NCSB
      TR(MR,MC)=0.0
      DO 101 MRC=1.MSIZE
  181 TR(MR, MC)=TP(MR, MC)+T(MR, MRC)+B(MRC, MC)
      CALL CHAT (NXS.1,2,1,NRSC,NCSC,2,C)
       90 102 MR=1,NPSC
       BD 102 MC=1,NCSH
       T(MP, MC)=0.0
       BO 102 MRC=1.NCSC
  102 F(MR, MC)=F(MR, MC)+". HR, MRC)+TR(MRC, MC)
       KRUH=0
       NO 140 li=1, I
  140 KPOW=KROW+NXBX([...
       KROW=KROW-NXAX(I)
       00 180 LR=1,NXS
       LROW=KROW+LR
       DO 180 LC=1,NXS
       I COL = KROW+LC
  1HO TH(| ROW, | CO| )=T(| R, | C)
  100 CONTINUE
       IF (NXBXCS .11. 2) GO TO 300
       00 200 1=1,MA
      CALL RMAT (NXHXCS, NRSH, NCSB, B)
      CALL IMAT (NXHXCS, 1, 2, 1, MSIZE, 3, 1, R)
       00 201 MR=1.MSIZF
       00 201 MC=1,NCSH
       IR(MP,MC)=0.0
       00 201 MRC=1, MSIZE
  201 TR(MR,MC)=TK(MR,MC)+T(MR,MRC)+B(MRC,MC)
       CALL CMAT (NXHXCS, 1, 2, 2, NRSC, NCSC, 3, C)
       00 202 MR=1, NRSC
       00 202 MC=1,NCSH
       T(MP, MC)=0.0
       90 202 MRC=1,NCSC
  202 T(MR, MC)=I(MR, MC)+C(MR, MRC)+TR(MRC, MC)
```

KRUH=0

DO 203 IJ=1,MH

203 KROW=KROW+NXRX(IJ)
KROW=KROW+(I-1)*NXBXCS
OO 208 LR=1,NXRXCS
NROW=KROW+LR
KCOL=KROW
OO 208 LC=1,NXRXCS
NCOL=KCOL+LC
208 TM(NROW,NCOL)=T(LR,LC)
200 CONTINUE
300 CONTINUE
RETURN
END

```
CIRAMP
      SUBROUTINE TRAMP (NIF, MROWS, KCOLS, S, R, C, B, T, TR, TI, TM)
      #INFNSION S(45,45),R(45,45),C(45,45),B(45,45),T(45,45),IR(45,45),
                 T1(45,45), TM(45,45)
      COMMON/C1/KHOX(1000), XF(5), YE(3), X1, X2, X3, X4, Y1, Y2, BETA, NBS
      COMMON/C4/MOR(50),NHL(50),KC(50),KL(28),BSL(20),DXE(7),TP1,U
      COMMON/C5/X,Y,DX,DY,EM,EK,EKB,EKR,NP,MP,NB,NBOX,KODE.MODE,NHW,NBT
      COMMON/C7/XATC(10,10,2), YATC(10,2), NXBX(40), NYBX(40), NXBXCS
      COMMON/C8/NXWING, NYWING, NXCS, NYCS
      MR=NBS
      KCOLS=NXWING+NYWING+NXCS+NYCS
      KROWS=0
      00 19 I=1.MR
   19 KPOWS=NXBX(I)+NXBXCS+KROWS
  ••• ZEPO TH MATRIX FOR SPANNISE INTERPOLATION
      70 20 I=1,KKOWS
      00 20 J=1, KUNLS
   20 \text{ TM}(1.1) = 0.0
C *** SPANWISE INTERPOLATION (WING)
      IF (NYWING .FO. 0) GO TO 1999
      00 1000 I=1, NXWING
      CALL HMAT (NYHING, NRSH, NCSB, B)
      CALL THAT (NYWING, 2, 1, 1, MSIZE, 1, T, R)
      90 1001 MR=1, MS1ZE
      00 1001 MC=1.NCSB
      TR(MR,MC)=0.0
      DO 1001 MRC=1, MSI/E
 1001 TR(MR, MC)=TP(MR, MC)+T(MR, MRC)+B(MKC, ML)
      CALL SMAT (MR, NYWING, 1, NRSC, NCSC, S)
      00 1002 MR=1,NRSC
      00 1002 MC=1.NCSB
      T(MR,MC)=0.0
      00 1002 MRC=1,NCSC
 1002 T(MR,MC)=T(MR,MC)+S(MR,MRC)+TR(MRC,MC)
      KROW=(!-1)*MR
      DO 1080 LR=1.MR
      LROW=KROW+LK
      KCOL = (I-1) + NYHING
      DO 1080 LC=1.NYWING
      LCOI = KCOL + LC
 1080 TM(IROW, LCOI)=T(LR, IC)
 1000 CONTINUE
 1999 CONTINUE
1' ...
     SPANNISH TRANSFORMATION (CONTROL SURFACE)
      IF (NYCS .FO. 0) GO TO 2999
      00 2000 1=1.NxCS
      CALL BMAT (NYCS, NRSH, NCSB, B)
      CALL IMAT (NYCS, 2, 2, 1, MSIZE, 1, T, R)
      00 2001 MR=1,MSIZE
      00 2001 MC=1.NCSB
      (R(MR,MC)=0.0
      00 2001 MRC=1,MS1ZF
 2001 TR(MR, MC) = TR(MR, MC) + T(MR, MRC) + B(MRC, MC)
      CALL SMAT (MR, NYCS, 2, NRSC, NCSC, S)
      00 2002 MR=1,NRSC
      00 2002 MC=1, MCSB
      T(MM, MC)=0.0
      00 2002 MRC=1,NCSC
 2002 [(MP,MC)=[(NP,MC)+S(MR,MRC)+TR(MRC,MC)
      KROW=MB*NXWING+(I-1)*MB
```

NO 2080 LR=1, MR

```
I ROW=KROW+LK
      KCOL = NXWING * NYWING + (I-1) * NYCS
      00 2080 LC=1,NYCS
      1 COI = KCOL+LC
 2080 TM(|ROW, LCO|) = T(LR, |C)
 2000 CONTINUE
 2999 CONTINUE
C *** REARRANGE RUNS AND COLUMNS FOR CHURDNISE TRANSFORMATION
      CALL RMAT (HR, NXWING. MB, NXCS, MSIZE, R)
      DO 2050 MR=1.MSIZE
      00 2050 MC=1,KCOLS
       TI(MR,MC)=0.0
       00 2050 MRC=1, KROHS
 2050 TI(HR, MC)=TI(HR, MC)+R(HR, MRC)+TM(MRC, FC)
  *** ZERO IM MATRIX FOR CHURDWISE INTERPOLATION
       MCOLS=MB+(NXWING+NXCS)
       4KNWS=0
       00 10 1=1, MK
   10 MROWS=MROWS+NXBX(I)+NXBXCS
       DO 60 T=1, MROWS
       00 60 J=1,MCOLS
    0.0=(L,I)MT 00
r *** CHORDWISE INTERPOLATION (WING)
       IF (NXWING .FO. 0) GO TO 3999
       DO 3000 I=1,MR
       CALL BMAT (NXWING, NRSH, NCSB, B)
       CALL THAT (NXHING, 1, 1, 1, MSIZE, 1, T, R)
       DO 3001 MR=1.MSIZE
       00 3001 MC=1.NCSB
       TR(MR, MC)=0.0
       00 3001 MRC=1.MSIZE
  3001 FR(MR, MC)=TR(MR, MC)+T(MR, MRC)+B(MRC, MC)
       CALL CHAT (NXWING, I, NIF, 1, NRSC, NCSC, 1, C)
       NO 3002 MR=1,NRSC
       NO 3002 MC=1.NCSB
       T(MK, MC)=0.0
       DO 3002 MRC=1,NCSC
  3002 T(MR, MC)=1(MR, MC)+C(MR, MRC)+TR(MRC, MC)
       KROW=0
       DO 40 | |=1, |
    40 KROW=KROW+NXRX(II)
       KROH=KROW-NXBX(I)
       (I)XHXN=LL
       DO 3080 LR=1, 13
       I ROW=KROW+LR
       KCOI = (I-1) * NXWING
       DO 3080 LC=1, NXWING
       COL=KCOL+LI
  SOBO FM(LROW, LCOL) = T(LR, LC)
  3000 CONTINUE
  JOYS CONTINUE
 C *** CHORDWISE INTERPOLATION (CONTROL SURFACE)
        IF (NXCS .FU. 0) 00 TO 4999
       00 4000 I=1.MH
       CALL BMAT (NXCS, NRSB, NCSB, B)
       CALL THAT (NXCS, 1, 2, 1, MSIZE, 1, T, R)
       00 4001 MR=1, MSIZE
       90 4001 MC=1, NCSB
        IR(MR,MC)=0.0
       DO 4001 MRC=1, MSIZE
  4001 TR(MR, MC)=TR(MR, MC)+T(MR, MRC)+B(MRC, MC)
                                                     438
```

```
CALL CHAT (HXCS, 1, NIF, 2, NRSC, NCSC, 1, C)
     DO 4002 MR=1.NRSC
     110 4002 MC=1.NCSB
     T(MR, MC)=0.8
     00 4002 MRC=1.NCSC
4002 T(MR, MC)=T(MR, MC)+C(MR, MRC)+TR(MRC, MC)
     KROW=LROW+(I-1)+NXBXCS
     DO 4080 LR=1,NXBXCS
     ARUM=KROM+FK
     KCOL=MB+NXWING+(I-1)+NXCS
     DO 4080 LC=1,NXCS
     YCOL=KCOL+LC
4080 TM(NROW, NCOL)=T(LR, LC)
4700 CONTINUE
4999 CONTINUE
     90 5001 MR=1, MROWS
     00 5001 MC=1,KCOLS
     TR(MR,MC)=0.0
     DO 5001 MRC=1, MCOLS
5001 TR(MR, MC)=TP(MR, MC)+TM(MR, MRG)+TI(MRC, MC)
     CALL RMAT (NYHING, NYWING, NXCS, NYCS, MSIZE, R)
     00 5050 1=1, MROWS
     00 5050 J=1,MSIZE
     T1(1,J)=0.0
     DO 5050 K=1, MSIZE
5050 TI(1,J)=TI(1,J)+TR( ,K)+R(K,J)
     NO 5052 I=1, MROWS
     DO 5052 J=1, MSIZE
5052 [R([,J)=T1(],J)
     RETURN
     END
```

```
CRSLS
            BSLS
      SUBROUTINE HSLS(ARG, N)
      COMMON/C4/MUR(50), NBL(50), KC(50), KL(20), BSL(20), DXE(7), IPI, U
      00 1 1=1,20
    1 8SL(1) = 0.0
      ASQ = ARG**2
      IF(ASQ.LT.0.01) GO TO 50
      N = MIN1(17.0, (ARG + 10.0))
      \Gamma = 2*N + 4
      HSL(N+2) = (4.0*F*(F-1.0)/ASG-(F-1.0)/F)*U.3F.30
      PF = 0.0
      J = 0
      00 10 1 = J.N
      4 = N - l + 1
      F = 2+H + 1
      HSI (M)=(4.0+(+-1.0)/ASQ-1.0/F-1.0/(F-2.0))+HSI (M+1)-RSL(M+2)/F
   10 PF = PF + 2.8*(F-2.8)*BSL(M+1)
       PF = PF + BSL(1)
       F = 0.0
       (F(ABS(PF).GT.1.0) F = ABS(PF)*1.E-10
       N = N + 2
       00 30 I = 1.N
       IF(f.GE.AHS(RSL(I))) GO TO 20
       RSL(I) = 8SL \cdot I)/PF
       GO TO 30
    20.951(1) = 0.0
    3n CONTINUE
       RETURN
    50 4SL(2) = 0.125*ASU
       HSI(1) = 1.0 - 2.0 + HSL(2)
       N = 2
       RETURN
       FND
```

CCONS CUNS PLOCK DATA COMPLEX CZERO, VPIC, SS, PHIH, SPHI, PHI, PHILE, DPHI COMMON/C1/KBOX(1000), XE(5), YE(3), X1, X2, X3, X4, Y1, Y2, BETA, NBS COMMON/C2/AS, NMACH, FMACH(6), NFREQ, FREQ(10), NMODE, NSURF, LPUNCH, KF GOMMON/C3/VPIC(2025),SS(2025),PHIN(50),SPHI,CZERO,PHI,PHITE,DPHI COMMON/C4/MOR(50), NBL(50), KC(50), KL(20), BSL(20), DXE(7), TPI, U COMMON/C5/X, Y, DX, DY, EM, EK; EKB, EKR, NP, MP, NB, NBOX, KODE, MODE, NBW, NBT COMMON/C6/XI, NS, K, J, IFR, TWL, RHO CUMMON/C7/XATC(10,10,2),YAIC(10,2),NXEX(40),NYEX(40),NXEXCS COMMON/CB/NXWING, NYWING, NXCS, NYCS MATA KC/1,2,4,7,11,16,22,29,3/,46,56,67,79,92,106,121,137,154,172, 1191,211,232,254,277,301,326,352,379,407,436,466,497,529,562,596, 2631,667,704,742,781,821,862,904,947,991,1036,1082,1129,1177,1226/, 3TP1/6.2831853/,CZER0/(0.0,0.0)/ DATA KL/1,1,1,2,3,1,4,5,6,1,7,8,9,10,1,11,12,13,14,15,1,16,17,18, 1 19,20,21,1/

END

```
CCAFI
             CAF I
      SUBROUTINE CAFT
      COMPLEX CZERO, VPIC, SS, PHIN, SPHI, PHI, PHITE, DPHI
      DIMENSION P(5), W(5)
      GUMMON/G1/KHOX(1000).XE(5);YE(3),X1,X2,X3,X4,Y1,Y2,BE1A,NBS
      COMMON/C2/A5.NMACH.FMACH(6),NFREQ.FREG(10),NMGDE,NSURF,LPUNCH.KF
      COMMON/C3/VPTC(2025),SS(2025),PHTH(50),SPHT,CZERQ,PHT,PHTFE,DPHI
      COMMON/C4/NOA(50),NHL(50),KC(50),KL(24),BSL(20),DXE(7),TPL,U
      COMMON/C5/X, Y, DX, DY, EM, FK, EKB, EKR, NP, KP, NB, NBOX, KODE, MOUE, NBM, NBT
       COMMON/C6/XL, NS, K, J, IFR, TWL, RHO
       NATA P/0.95304992.0.76923465.0.5.0.23076535.0.$4691008/
          . W/O.11646344.0.23931434.0.28444444.0.23931434.0.11646344/
       PI = IP1/2.0
       IF(EKB.GT.O.A) UO TO 10
       VPIC = (-1.0, 0.0)
       90 10 30
   10 VPIC = CZERO
       00 20 1 = 1.5
       ARG = FKB*P(1)/2.0
       F = -(0.5 + ARG/FM) + *2
       ZJ = 1.0
       FI = 1.0
       AF = 1.0
       00 15 K = 1.20
       AF = AE + F/F1++2
       FI = FI + 1.0
       IF(ABS(AE).1F.1.E-5) GO TO 20
   15 7J = 7J + AF
   20 VPIC = VPIG - ZJ+H(1)+CMPLX(CUS(ARG),-SIN(ARG))
    30 00 80 NP = 2,NBUX
       KI = KC(NP)
       KZ = KC(NP+1) - 1
       00.40 \text{ K} = \text{K1.K7}
    40 VPIC(K) = CZFRO
       NII = NP - 1
       00 80 1 = 1.5
      \cdot X = FLOAT(NU) - 0.5 + P(1)
       ARG = EKB+X
       PHI = H(I) + CMPLX(-CUS(ARG), SIN(ARG)) + 2.0/PI
       GALL BSI.S (AKB/FM, N)
       \cdot K = KC(NP)
       00.70 \text{ MP} = 1.40
       EOX = (FLOAT(MP) - 0.5)/X
       G = SORI(1.0 - FOX**2)
       AF = 2.0*ATAN(FOX/(1.0 + C))
       5 = 2.0 * EUX * C
       C = 2.0 * C * C - 1.0
       50 = 0.0
       VIN = BSL +At
       F = 1.0
     - FI = 1.0
       00.50 1 = 1.0
       VIN = RSL(1+1)*5/FI - VIN
       SN = 2.0*5*6 - 50
       80 = 8
       S = SN
       F = - F
    50 F1 = F1 + 1.0
       OPHI = PHI + VIN + F
       VPIC(K) = VPIC(K) + DPHI
       VPIC(K+1) = VPIC(K+1) - DPHI
```

a Ballania are the maler Corte Continues

IF(MP.EQ.1) VPIC(K) = VPIC(K) + DPHI
70 K = K + 1
80 VPIC(K) = VPIC(K) +PI+BSL+PHI/2.0
RETURN
END

CPHIR PHIB SURROUTINE PHIR COMPLEX CZERO, VPIC, SS, PHIN, SPHI, PHI, PHITE, DPHI COMMON/C3/VPIC(2025), SS(2025), PHIN(50), SPHI, CZERO, PHI, PHITE, DPHI COMMON/C4/MOR(50), NHL(50), KC(50), KL(28), BSL(20), DXE(7), 1PI, U COMMON/C5/X, Y, DX, BY, EM, EK, EKB, EKR, NP, PP, NB, NROX, KODE, NOUE, NBW, NBT COMMON/C6/XL.NS.K.J.IFR.THL.RHO 00 20 I=2,NP NU=NP-I+1 JL=MAX0(1, HP-1+1) IR=MINO(MOB(NII), MP+[-1) IL+(UN) IHN=LN NO 20 J=JL, JR K=KC(I)+IABS(MP-J) DPH1=VP1C(K) IF (J.GT.1-MP+1.0R.J.FQ.1) GO TO 18 K=KC(1)+MP+J-2 OPHI=DPHI+VPIC(K) 10 SPHI=SPHI+DPHI+SS(NJ) 20 NJ=NJ+1 RETURN

END

```
CARLE
            ARLE
      FUNCTION ARIF(TOB)
      COMMON/C1/KHOX(1900), XF(5), YE(3), X1, X2, X3, X4, Y1, Y2, BETA, NBS
                        UY, EH, EK, EKB, EKR, NP, PP, NH, NBUX, KODE, HOUE, NBW, NBT
      COMMON/C5/X,
      COMMON/C6/XI.NS.K.J.IFR.TWL,RHO
      IF(X-0.5+DX.GF.X1-X2) GO TO 10
      IF (TOB .Eu. n.u .OR. TOB .GT. 1.0F+10) 80 TO 20
      YI = (Y-YI)/NY+0.5-(X/NX-0.5)/IOB
      XR = YT+TUB
      YR = AMAX1(0.0, AMIN1(1.0, YT-1.0/TOB))
      YT = AMIN1(1.0,AMAX1(0.0,YT))
      XL = AMAX1(0.0, AMIN1(1.0, XR-TOB))
      XP = AMINI(1.0,AMAX1(0.0,XR))
      APLE = AMAX1(0.5+(YT+(XR+XL)+YB+(XR-XL)),0.0)
      IF (MP.EQ.1) ARIF = 2.0+ARLE
      RETURN
   10 ARLE = AMIN1(1.0, AMAX1(0.0, (Y-Y2)/DY+0.5))
      RETURN
   20 ARIF = 0.0
       RETURN
      END
```

```
CCHAT
      SUBROUTINE CMAT (NAICPX, IY, NIF, NS, NRS, NCS, NE, C)
      DIMENSION C(45,45)
      COMMON/C1/KHOX(1000), XF(5), YE(3), X1, X2, X3, X4, Y1, Y2, BETA, NBS
      COMMON/C5/X, Y, DX, BY, EH, EK, EKB, EKR, NP, PP, NB, NBOX, KODE, MOUE, NBW, NBT
      COMMON/C7/XAIC(1C,10,2),YAIC(10,2),NXEX(40),NYBX(40),NXEXCS
      COMMON/CB/NXWING, NYWING, NXCS, NYCS
 *** FOR CHORDWISE INTERPOLATION
 *** NPTS = NUMBER OF CHORDNISE MACH BUXES
 *** NATCPX = NUMBER OF CHORDNISE AIC CONTROL POINTS
 ... IY = SPAN NUMBER
 *** HIF = CONTROL FOR DIFFERENTIATION (1=NO DERIVATIVE AND 2=D()/DX)
C *** HS = SHPFACE (1=WING AND Z=TAIL)
      IF (NAICPX .GT. 3) GO TO 3
      YRS=NXBX(IY)
      IF (NS .Eu. 2) NRS=NXBXCS
      NCS=NAICPX
      00 1 [=1,NRS
      UO 1 J=1,NCS
    1 C(1,J)=0.0
      60 TO 100
    3 NRS=NXBX(IY)
       IF (NS .EQ. 2) NRS=NXHXCS
      NCS=3+(NAICPX-2)
      00 4 1=1,NRS
       70 4 J=1,NCS
     4 C(1,J)=0.0
 100
      IF (NCS .GT. 6) GO TO 500
       IF (NCS .FQ. 6) BU TO 400
      GO 10 (200,200,300),NCS
C *** THO CHORDWISE AIC CONTROL POINTS
  200 00 210 I=1,NRS
       C(1,1)=1.0
       C(1,2) = XBUX(1,1Y,NS,NE)
       IF (NIF •EQ. 2) C(1,1)=0.0
       IF (NIF .EQ. 2) C(1,2)=1.0
  210 CONTINUE
       RETURN
  *** THREE CHORDWISE AIC CONTROL POINTS
   300 00 310 I=1.NRS
       C(1,1)=1.0
       C(1,2)=XBOX(1,1Y,NS,NE)
       C(1,3)=XBOX(1,1Y,NS,NE)**2
       IF (NIF .E.Q. 2) C(1,1)=0.0
         (NIF \cdotEQ. 2) C(1,2)=1.0
       If (NIF +FQ. 2) C(1,3)=2.0*XBOX(1,1Y,NS,NE)
  518 CONTINUE
       RETURN
C *** FOUR CHURDWISE AIC CONTROL POINTS
  400 00 410 I=1,NRS
       NX=NAJCPX-1
       ## 406 J=1.NX
       IF (0.5+(XINT(J, IY, NS, NE)+XINT(J+1, IY, NS, NE)) .GT. XBOX(I, IY, NS, NE
      1)) 60 [0 40/
  406 CONTINUE
       MX=NAICPX
       90 10 408
  467 48=3
   408 K()=1
       IF (NX .GT. 2) KC=4
```

C(1,KC)=1.0

```
C(I,KC+1)=XROX(I,IY,NS,NE)
    C(1,KC+2)=C(1,KC+1)+*2
    IF (NIF .EQ. 2) C(I,KC)=0.0
     IF (NIF .EQ. 2) C(1,KC+1)=1.0
     IF (NIF .EQ. ?) C(I,KC+2)=2.0+XBOX(I,IY,NS,NE)
410 CONTINUE
     RETURN
*** .GT. FOUR AIC CONTROL POINTS
500 00 510 I=1.NRS
     TX=NAICPX-1
     30 506 J=1,NX
     IF (0.5*(XINT(J, IY, NS, NE)+XINI(J+1, IY, NS, NE)) .GT. XBOX(I, IY, NS, NE
   1)) 60 10 50/
506 CONTINUE
     NX=NAICPX
     60 10 508
 507 NX=J
 508 IF (NX .LT. 3) GO TO 550
     IF (NX .GI. NAICPX-2) GO TO 580
     KC=(NX-2)+3+1
     C(1,KC)=1.0
     C(I,KC+1)=XHOX(I,IY,NS,NE)
     C(1,KC+2)=C(1,KC+1)**2
     IF (NIF -EQ. 2) G(1,KC+1)=1.0
     IF (NIF .EQ. 2) C(I,KC+2)=XBOX(1,1Y,NS,NE)
     IF (NIF .Eu. 2) C(1,KC)=0.0
     80 TO 510
 550 C(1,1)=1.0
     C(1,2)=XBOX(1,1Y,NS,NE)
     C(1,3)=C(1,2)**2
     IF (NIF \bulletEQ. 2) C(I,1)=0.0
     JF (NIF .EQ. 2) C(1,2)=1.0
     IF (NIF .EQ. 2) C(I,3)=XBOX(I,IY,NS,NE)
     90 TO 510
 580 C(I,NCS-2)=1.0
     C(I,NCS-1)=XBUX(I,IY,NS,NE)
     C(1,NCS)=C(1,NCS-1)**2
     IF (NIF .EQ. 2) C(1,NCS-2)=0.0
     IF (NIF .EQ. 2) C(I,NCS-1)=1.0
     IF (NIF .HO. 2) C(1,NCS)=XBOX(1,1Y,NS,NE)
 510 CONTINUE
     RETURN
     FND
```

```
SURROUTINE RMAT (NXWING.NYWING, NXCS, NYCS, MSIZE, R)
    BIMENSION R(45,45)
    MST/F=NXHING+NYHING+NXCS+NYCS
    00 100 1=1.MSIZE
    00 100 J=1, HS17F
100 R(|, J)=0.0
    IF (NXHING .FQ. 8) GO TO 250
    K=1
    KK=1
    II=NYWING*NXWING
    no 200 [=1, []
    R(1,K)=1.0
    K=K+NXHING
    IF (K .GT. 11) KK=KK+1
    IF (K .GT. 11) K=KK
200 CONTINUE
250 CONTINUE
    IF (NXCS .EQ. 0) 60 TO 350
    I I=NXCS+NYWING
    K=NXWING+NYWING+1
    KK=NXWING+NYWING+1
    70 300 1=1,11
    IK=I+NXHING+NYHING
    R(1K,K)=1.0
    K=K+NXCS
    IF (K .GT. HSIZE) KK=KK+1
    IF (K .GT. MSI7E) K=KK
300 CONTINUE
350 CONTINUE
    RETURN
    END
```

CRMAT

```
CXINT
      FUNCTION XINT(NX, NY, NS, NE)
      COMMON/C1/KKOX(1000),XF(5),YE(3),X1,X2,X3,X4,Y1,Y2,BETA,NBS
      COMMON/C4/MOR(50), NRL(50), KC(50), KL(28), BSL(20), DXF(7), TPI, U
      COMMON/C5/X, Y, DX, DY, FM, EK, EKB, EKR, NP, PP, NB, NBOX, KODE, NODE, NBW, NBT
      COMMON/C7/XAIC(10,10,2), YAIC(10,2), NXHX(40), NYBX(40), NXHXCS
      COMMON/CB/NXWING, NYWING, NXCS, NYCS
      IF (NE .GT. 1) GO TO 400
      IF (NS .EQ. 1) GO TO 200
      XINT=XAIC(NX,1,NS)
      RETURN
  PUR IF (FLOAT(NY)+DY-DY .GE. YE(2)) GO TO 300
      XINT=XAIC(NX.1.NS)
      RETURN
  300 IF (YAIC(1,1) .LE. YE(2))
     1SI OPF=(YALC(NYWING,1)-YE(2))/(XAIC(NX,NYWING,1)-XAIC(NX,1,1))
       IF (YAIC(1,1) .GT. YE(2))
     15LOPF=(YAIC(NYHING,1)-YAIC(1,1))/(XAIC(NX,NYHING,1)-XAIC(NX,1,1))
       IF (YAIC(1,1) .LF. YF(2))
     1 XINT = (BY*FLUAT(NY)-BY-YE(2)+YE(1))/SLOPE + XAIC(NX,1,1)
       IF (YAIC(1,1) .GT. YE(2))
     1 XINT=(DY*FLUAT(NY)-BY-YAIC(1,1)+YE(1))/SLOPE + XAIC(NX,1,1)
       RETURN
  400 XINT=DX+(FLUAT(NX)-0.5)
       RETURN
      FND
```

CXBUX

END

FUNCTION XBUX(NX,NY,NS,NE)

COMMON/C1/KHOX(1000),XF(5),YE(3),X1,X2,X3,X4,Y1,Y2,BFIA,NBS

COMMON/C5/X,Y,DX,DY,EM,EK,EKB,EKR,NP,PP,NB,NBUX,KUDE,NDW,NBT

COMMON/C7/XAIC(10,10,2),YAIC(10,2),NXEX(40),NYBX(40),NXBXCS

IF (NE .GI. 1) GD TO 300

IF (NS .Eu. 2) GO TO 200

XBOX=DX+(FLOAT(NXBX(1))-FLOAT(NXBX(NY)))+DX+FLOAT(NX)-0.5+DX

RETURN

200 XBOX=XE(4)+DX+(FLOAT(NX)-0.5)

RETURN

300 XBOX=BX+(FLOAT(NX)-0.5)

RETURN

CYBOX

FUNCTION YBOX(NY)
COMMON/C5/X, Y.DX, BY, FM, EK, EKB, EKR, NP, MP, NB, NBOX, KODE, MODE, NBW, NBT
YBOX=DY+(FLUAT(NY)-1.0)
RETURN
FND

```
C BHAT
      SUBROUTINE HMAT (NPTS, IRONS, ICOLS, B)
      DIMENSION B(45,45)
C *** R = B(IROWS, ICOLS) MATRIX
C *** NPTS = NUMBER OF AIC STATIONS ALONG STRIP (CHORDWISE OR SPANWISE)
      ICOI S=NPTS
      IF (NPTS .GT. 3) GO TO 200
      IROWS=NPTS
      00 50 1=1,1KOWS
      00 50 J=1, [COIS
      3(1,J)=0.0
      IF (I .EQ. J) R(I,J)=1.0
   50 CONTINUE
      RETURN
  208 180WS=6+(NPIS-4)+3
      no 300 (=1, (ROWS
      00 300 J=1,100LS
  300 9(1, 1)=0.0
      R(1,1)=1.0
      H(2,2)=1.0
      B(IROWS, ICOLS)=1.0
      B(IRONS-1, ICOLS-1)=1.0
      IF (NPTS .E4. 4) GO TO 400
      K=NPTS-4
      no 350 I=1.k
      NR=2+3+1
      NC=2+1
  350 B(NR, NC)=1.0
  400 RETURN
```

END

```
CSMAT
      SURPOUTINE SMAT (NIY, NAICPY, NS, NRS, NCS, S)
      DIMENSION S(45,45)
      COMMON/C7/XATC(10,10,2),YAIC(10,2),NXbX(40),NYBX(40),NXbXCS
      COMMON/C8/NXWING, NYWING, NXCS, NYCS
      NATCRY = NUMBER OF SPANNISE AIC CONTROL PUINTS
      NS = SURFACE (1=WING AND 2=TAIL)
  *** NRS = NUMBER OF ROWS IN S-MATRIX
C
     MCS = NUMBER OF COLUMNS IN S-HATRIX
C
C
      COMMON
      IF (NAICPY .ST. 3) GO TO 8
      HPS=HIY
      4CS=NAICPY
      00 6 1=1.NRS
      00 6 J=1,NC5
    6 S(I, J)=U.U
      60 10 100
    8 NRS=NIY
      NCS=3+(NAICPY-2)
      00 9 I=1.NRS
      110 9 J=1.NCS
    9 S(1, J)=0.0
  100 IF (NCS .GT. 6) GO 10 500
       IF (NCS .EQ. 6) GO TO 400
      GO TO (200,200,300),NCS
  *** TWO AIC POINTS
  200 00 260 I=1,NIY
       S(1,1)=1.0
      S(1,2) = YROX(1)
  268 CONTINUE
      RETURN
  *** THREE AIC POINTS
  300 00 360 1=1,NIY
       S(1,1)=1.U
       S(1,2) = YROX(1)
       S(1,3)=S(1,2)**2
  360 CONTINUE
       RFTURN
  *** FOUR AIC POINTS
  400 00 490 I=1,NIY
       1 C = 4
       IF (YROX(1) .11. 0.5+(YAIC(2,NS)+YAIC(3,NS))) IC=1
       S(1,10)=1.0
       S(1.1C+1)=Ynnx(1)
       S(1, IC+2)=S(1, IC+1)++2
  490 CONTINUE
       RETURN
  *** .GT. FOUR AIC POINTS
  500 00 520 1=1,614
      NI=NAICPY-2
      00 525 J=1,NT
       IF (0.5 * (YAIC(J.NS) + YAIC(J+1.NS)) .GT. YBOX(I)) GO TO 523
  525 CONTINUE
       IC=S*NAICPY-B
      80 10 524
  523 (C=(J-2)*3+4
       ff (J .1 T. 3) 1C=1
  524 5(1,10)=1.9
       5(1,1C+1)=YHOX(1)
       S(1,1C+2)=S(1,1C+1)**2
                                      453
  520 CONTINUE
```

RETURN END

```
CIMAT
      TMAT
      SURROUTINE IMAT (NPIS, ND, NS, IY, MSIZE, NE, T, R)
      01MENSION 1(45,45),R(45,45)
      COMMON/C7/XAIC(10,10,2), YAIC(10,2), NXBX(4U), NYBX(4 + , , NXBXCS
      COMMON/C8/NXWING, NYWING, NXCS, NYCS
     GENERATES (T) ** (-1) MATRIX
 *** NPTS = NUMBER OF AIC POINTS ALONG STRIP IN NO DIRECTION
 *** MSIZE = ORDER OF
                       Ŧ
                            MATRIX
 *** 4S = SURFACE
                   (1=HING AND 2=CUNTROL SURFACE)
                                    (1=CHORUWISE AND 2=SPANWISE)
     ND = INTERPOLATION DIRECTION
      IF (NPTS .II. 4) MSIZE=NPTS
      IF (NPTS .GI. 3) MSIZE=3*NPTS-6
      00 1 J=1,MS17F
      40 1 K=1.MS1/1
    1 (J,K)=0.0
      IF (NPTS .GI. 4) GO TO 5000
      GO TO (2000,2000,3000,4000), NPTS
      NPTS=2 (INU POINTS ALONG STRIP)
 ***
 2000 T(1,1)=1.0
      1(2,1)=1.0
        (ND .EQ. 1) T(1,2)=XINT(1,1Y,NS,NE)
      1 F
      IF (ND .EU. 1) T(2,2)=XINT(2,1Y,NS,NE)
      IF (ND .EU. 2) T(1,2)=YAIC(1,NS)
      IF (NB .Eu. 2) T(2,2)=YAIC(2,NS)
      60 10 '6000
      NPTS=3 (THREE POINTS ALONG STRIP)
 3000 T(1,1)=1.0
      1(2,1)=1.0
      T(3.1)=1.0
      IF (N) .EU. 2) GO TO 3010
     MPTS=3 CHOKDWISE DIRECTION
      T(1,2)=XINT(1,IY,NS,NE)
      1(1,3)=[(1,2)**2
      T(2,2)=XINT(2,TY,NS,NE)
      1(2,3)=1(2,2)**2
      f(3,2)=XINT(3,1Y,NS,NE)
      1(3,3)=1(3,2)**2
      GO TO GUOU
  *** NPTS=3 SPANNISE DIRECTION
 3010 T(1,2)=YAIC(1,NS)
      1(1,3)=1(1,2)**2
      T(2,2)=YAIC(2,NS)
      1(2,3)=1(2,2)**?
      f(3,2)=YAIC(3,N5)
      f(3,3) = f(3,2) * * ?
      90 10 6000
               CHOUR POINTS ALONG STRIP)
      4015=4
  ...
 4000 ((1,1)=1.0
      1(2.1)=1.0
      1(5,1):1.0
      1(4,2)71.0
      1(5,4)=1.0
      1(6,4)=1.8
      I(3,4) = -1.0
      1(4,5)=-1.0
      IF (No .FO. 2) GO TO 4010
      4215=4
              CHOPOWISE DIRECTION
       1(1,2)=XINT(1,14,NS,NF)
       1(1,3)=1(1,2)**2
       T(2,2)=XINT(2,1Y,NS,NE)
```

اَمِ يَهُمُ فِي اللهِ الله اللهِ ال

```
1(2,3)=1(2,2)**2
      T(3,2)=U.5*(XINT(2,1Y,NS,NF)+XINT(3,1Y,NS,NE))
      T(3,3)=T(3,2)**2
      T(3,5)=-T(3,2)
      T(3,6)=-T(3,3)
      T(4,3)=2.0*1(3,2)
      I(4,6) = -I(4,5)
      \Gamma(5,5)=XINT(3,1Y,NS,NE)
      1(5,6)=1(5,5)**2
      \Gamma(6,5)=XINT(4,1Y,NS,NE)
      \Gamma(6,6) = \Gamma(6,5) **2
      60 10 6000
     NPTS=4
              SPANNISE DIRECTION
4010 ((1,2)=YAIC(1,NS)
      ((1,3)=1(1,2)**2
      ((2,2)=YAIC(2,NS)
      1(2,3)=1(2,2)**2
      f(3,2)=0.5+(YAIC(2,NS)+YAIC(3,NS))
      T(3,3)=1(3,2)**2
      T(3,5)=-T(3,2)
      T(3,6) = -T(3,3)
      f(4,3)=2.0*1(3,2)
      T(4,6) = -T(4.3)
      1(5,5)=YAIC(3,N5)
      T(5,6)=T(5,5)*#2
      T(6,5)=YAIC(4,NS)
      T(6,6)=T(6,5) # *2
      GO 10 6000
r *** NPTS .GT. 4
5000 IF (ND .EW. 2) GO TO 5500
C *** NPTS .GT. 4
                   (CHORDWISE DIRECTION)
      T(1,1)=1.0
      T(1,2)=XINT(1,TY,NS,NE)
      1(1,3)=1(1,2)**2
      1(2,1)=1.0
      T(2,2)=XINT(2,1Y,NS,NE)
      T(2,3)=T(2,2)++2
      T(MSIZE, MSIZE-2)=1.0
      T(MSIZE, MSI/F-1)=XINT(NPTS, IY, NS, NE)
      f(MSTZF,MST/F)=f(MSTZF,MSTZE=1)**2
      T(MS121-1, MS17F-2)=1.0
      T(MSI/F-1,MSI/F-1)=XINT(NPTS-1,1Y,NS
                                                F)
      [(M517F-1,M517F)=[(MS17F-1,MS1ZF-1)4
      N1=NP15-4
      00 5010 Nº1,NI
      マック・マーン・マー
      MC=4*N+1
      4P=N+2
       I(NK,NC)=1.6
      I(NX,NC+1)=xINT(NP,1Y,NS,NE)
 5010 T(NK,NC+2)=1(HK,NC+1)++2
      N1=NP15-3
      90 5020 N=1.NT
      N8 - 5 . N
      11C=30N-2
      [(NP.NC)=1.0
       ((N)+1,NC+1)-1.0
       1(04,40+5)=-1.0
       1(NK+1,NC+4)=-1.0
       「(NK,NC+1)=0.5*(XINT(N+1,1Y,NS,NF)+XINT(N+2,1Y,NS,NE))
       [(NR,NC+2)=1(RR.NC+1)++2
```

```
T(NR,NC+4) = -T(NR,NC+1)
     T(NR,NC+5)=-T(NR,NC+2)
     T(NR+1,NC+2)=2.0+f(NR,NC+1)
5020 [(NR+1,NC+5)=-T(NR+1,NC+2)
     80 10 6000
    4P15 .G1. 4
                   (SPANWISE DIRECTION)
5500 1(2,1)=1.0
     T(1,2)=YAIC(1,NS)
     f(1,3)=1(1,2)**2
     1(2,1;=1.0
     T(2,2)=YAIC(2,NS)
     1(2,3)=1(2,2)**2
     T(MS17F, MS1/F-2)=1.0
     I(MSIZF, MSI/F-1)=YAIC(NPTS, NS)
     T(MSIZE, MSIZE) = T(MSIZE, MSIZE = 1) + +2
     T(MS17F-1, MS17F-2)=1.0
     I(MSIZE-1, MSI/F-1)=YALC(NPTS-1, NS)
     T(MS17F-1, MS1ZE)=T(MS1ZE-1, MS1ZE-1)+#2
     NI=NPIS-4
     NO 5510 N=1,NI
     NR=2+3+N
     4C=3+N+1
     NP=N+2
     T(NR, NC)=1.6
     T(NR, NC+1) = YAIC(NP, NS)
     [(NR,NC+2)=1(HR,NC+1)++2
     NI=NPTS-3
     00 5520 N=1,NI
     NR=3+N
     NC=5+N-2
     T(NR, NC)=1.0
     T(NR+1,NC+1)=1.0
     T(NR,NC+3) = -1.8
     f(NK+1,NC+4)=-1.0
     T(NR, NC+1)=U.5+(YAIC(N+1, NS)+YAIC(N+2, NS))
     I(Nk, NC+2)=1(nR, NC+1)+#2
     \Gamma(NR,NC+4) = -T(NR,NC+1)
     \Gamma(NR,NC+5) = -T(NR,NC+2)
     T(NR+1,NC+2)=2.0+T(NR,NC+1)
5520 F(NR+1,NC+5)=-T(NR+1,NC+2)
     INVERT I MATRIX
6000 CONTINUE
     CALL MINV (MSI/F.T.R)
     RETURN
```

FND

THE THE RESERVE AND A MARKING THE PROPERTY AND A SECOND ASSESSMENT OF THE PROPERTY AND A SECOND ASSESSMENT OF THE PROPERTY AND A SECOND ASSESSMENT OF THE PROPERTY OF THE PROPERTY

```
CMINY
         MINV
      SURROUTING MINV (NM, A, U)
      DIMENSION A(45,45), H(45,45)
      00 9001 l=1.NM
      nn 9001 J=1, NM
      U.0=(L,1)#
      (F ([.E0.J) H([,J)=1.0
 9001 CONTINUE
      EPS=0.00000001
      00 9015 I=1,NM
       K = 1
       IF (I-NM) 9021, 9007, 9021
 9021 IF (A(I,I)-FPS) 9005,9006,900/
 9005 IF (-A(I,I)-FPS) 9006,9006,9007
 9006 K=K+1
       DO 9023 J=1,NM
       \Pi(T,J) = \Pi(T,J) + \Pi(K,J)
 9023 A(1,J)=A(1,J)+A(K,J)
       60 10 9021
 9007 DIV=A(1,1)
       00 4009 J=1,NM
       VIU/([,1])=([,1])h
 VIII/(U,I)A=(U,I)A PDDP
       00 9015 MM=1,4M
       DELI=A(MM, I)
       IF (ABS(DELT)-EPS) 9015,9015,9016
  9016 IF (MM-I) 9010,9015,9010
  9810 80 9011 J=1,NM
       J(MM,J)=U(MM,J)-U(I,J)+DELT
  9011 A(MM,J)=A(MM,J)-A(I,J)+DELT
  9015 CONTINUE
       00 9033 l=1,NM
       00 9033 J=1.NM
  9033 A(1,J)=U(1,J)
       RETURN
       END
```

PART VI - SECTION B5.0

FLOW CHARTS FOR SUPERSONIC AIC COMPUTER PROGRAM

# DIMENNIONED VARIABLES

9.414	2431 JULY	अक्ष	24N WIE	STOP	शक्त प्रकृष	ल जा।	24N WILS	~> <b>~B</b> **	न्त्रभ प्रकृत
F	45, 45	w	45,45	<u>s</u>	15,45	R	45, 45	<b>ጉ</b> ሞ	45, 15
B	45, 85	C	45, 45	τ	45, 45	TH	15, 45	ΤI	45, 15
TR	45, 45								

A STANCE OF THE PARTY





------





THE MARKET OF THE SECTION

HHIT Ħ

MITTENT IN 70#

HH

. Ynis

FOLD FOLD WOLKS NOW,

01 PF 11 '05 70#

1131

, vres

10 PF AC 10 70#

COSPIEX COMO, VPICASS, PHIWASPHI, PHI, PHITE, DHO, ESE, W.E. NICAZ

TP (1900) (PD) (* 24 (NECT) NECT) (NECT) (NECT) (NECT) (NECT)

MC(1, 1) (0 0, 0)

# COMMEN COROLAPICISS, PHINISPHILANI, PHITE, DAHILENE, N.F. M.C. Z



CHRISTISCO CONTRACTOR OF THE



1' X 2'



The state of the s



All Child Control of the Control of





DIMENSIONED VARIABLES

क्ष व्यक्तिः व्यक्ति १५६० - इत्यक्ति १५५४ १५५४। १५५४। १५५४ १५५४। १५५४। १५५४। १५५४। १५५४। १५५४। १५५४। १५५४। १५५४ व





# NOT REPRODUCIELE



SUPPORTUSE PURCE (R)

PAN















### DIMENSIONED NAMIABLES

. ल अस	<b>ታ</b> ፈክ አዩኪ-	ગળા.	%4 <i>H</i> H7F?	SYMOL	STEN HETE	STARN.	24N KN2	टा नाम	<b>24% MIT</b>
<b>~</b>	3,6	SIMP	2,1	OS.	7	c	30		



1 377





# DIMENSIONED VARIABLES

ગ પાસ.	इंड्रभ प्रशास	જપછા.	इस्स स्राप्तः	SYMDI.	STEN REST?	જગામ.	24 y ROT?	5 <b>) (10)</b> .	स्था प्रभात
è	45, 45	R	45,45	c	45,45	R	45, 45	т	45, 45
TR	45, 45	ТЧ	45,45						



Same of the same o

PXF 1





બ નક્ષ	err mae	KBi P.	STOR KASS	9 4DI.	स्माम एक्ट	STANI.	श्र⊈भ मधार	S1 10101	न्द्रभ सङ्ग
	45,45	R	45,45	c	45, 45	В	45,45	τ	45, 15
TR	45, 45	TI	45, 45	™	45, 45				





PNY 3 SUBJUITING TRANS (NIF, MORS, KONS, S.R.C. B.T. TR.TI. TH (T) TO 3999 REPEAT TO 60 REPEAT TO 60 0.CH.(VI.W/ T4(1,J)=0.0 SYMEST CONTRACTOR SHORT 1=1,1+1,...,\$ROM J=1,1+1,...,MUNS REPETT TO 3001 HEPENT TO 3000 THE NUMBER OF REPORT OF MITCHELLS OF REPOVER HH HTR BATT TMT 4R=1,1+1,...,461728 9001 NG, 1, 1, 1, 1, NK 17E, 1, T, P 1001 REPEAT TO 3001 REPERT TO 3001 MX. HR TROOM, NO STROME, NO STOOP, NRC ) + HOME, NC) TROPRINCHED.O REPEAT TO 3002 SOOF OF TY SHISH SPITIONIE OF RESPIRE POR MR=1,1+1,...,MRSC F()# VC=1,1+1,...,A(%)# T(48,40)=0.0 CHT WING, 1, NF, 1, MSC, NSC, 1, 3002 DA CH TESPESA REPENT TO 3002

REPEAT TO 30MG

30/0

C'AT, RATT: C.RS) I, WSGINCT

NRW:0

IRM:NROM-IR

K(T4,2(1-1)+1/NING

1000

DALINE

ONTINE

1999 (3) 20)

1115.HD. 9

VI.

with the same well as the state of the same of the same

TOR, NO FTOR, NO+COR, NO ATROMO, NO

NEWSNEW SYRY(I)

COMBASSEC

TENERON HAY

RIR

AC=1,1+1,...,N(SC

NROW=NROW+NABN(11)

HEPENT TO TOPO

gr1,1+1, ...,588(50)

THE PARTY OF THE P



## SUBBOUTURE TRAVE (NIP. STORS, KODES, S.R. C. R.T. TR, T1, TM)

PKE 5





r vien. Stur von Stur ver stur von stur von stur von stur von P 5 k 5



The state of the second control of the second secon



WHE=0.0

TRIE=AM NI(1.0, NANI(0.0, (Y-12)/DY+0.5))

ত বহার, সামার প্রস্তুর ক্রাবারের ক্রাবারের ক্রাবারের ক্রাবারের ক্রাবারের ক্রাবারের ক্রাবারের ক্রাবারের ক্রাবার বা





CHARLES AND REMARKS



SEN ROTE, KIEW CO. ZEN ROTE, KIEW CO. LEW ROTE, KIEW CO. ZEN ROTE. KIEW CO. ZEN ROTE. KIEW CO. ZEN ROTE. KIEW CO. ZEN ROTE. KIEW CO. ZEN ROTE.



NEXT DV (FIDATION) (0.5)



PME



FUNCTION VIDY(NY)

PYE

of view alter and second seconds. Substance of view seconds seconds seconds seconds and view are also as

*



त क्या १६६ - व्यवस्था १५५० । ज्यात १६६६ - १५५०० । व्यवस्था १५५०० । व्यवस्था १५५०० । व्यवस्था १५५०० । व्यवस्था

مهدور بالد خدر والمعارض بالأواد





et -4\$)!	SAN ULUS	STADI.	25 N R(112	SWD.	REN RITE	જપાપ્તા.	ट्रसभ समूद	S.484.	ZEN RITE
٦	45, 45	R	45, 45						



APROPRIES AND APPLICATION OF THE PARTY OF TH





F 481



9 તકા	न्यस प्रसन्	KIP' (*	इन्स्य प्रशास्त्र	SYMM.	STOR VOS	SYMBI.	STOR WAS	Sam.	अक्ता १८५%
1	45,45	t	45, 45	•					





#### PART VII

### REFERENCES

- C. E. Watkins, D. S. Woolston, and H. J. Cunningham.
   "A Systematic Kernel Function Procedure for Determining Aerodynamic Forces on Oscillating or Steady Finite Wings at Subsonic Speeds."
   NASA TR R-48, 1959.
- 2. M. T. Moore and A. C. Park. "Unsteady Aerodynamics for Missile Wings and Control Surfaces." North American Aviation, Inc., Report SID 65-1254, March 1966.
- 3. L. V. Andrew. "Unsteady Aerodynamics for Missile Wings and Control Surfaces." North American Aviation, Inc., Report NA-67-574, 15 September 1967.
- 4. G. Zartarian and P. T. Hsu. "Theoretical Studies on the Prediction of Unsteady Supersonic Airloads on Elastic Wings, Parts I and II." WADC TR 56-97, 1955-56.
- 5. M. T. Moore and L. V. Andrew. "Unsteady Aerodynamics for Advanced Configurations, Part IV Application of the Supersonic Mach Box Method to Intersecting Planar Lifting Surfaces."

  AFFDL-TDR-64-152, 1965.
- 6. E. R. Rodemich and L. V. Andrew. "Unsteady Aerodynamics for Advanced Configurations, Part II A Transonic Box Method for Planar Lifting Surfaces." AFFDL-TDR-64-152, 1965.
- 7. P. T. Hsu. "Some Recent Developments in Flutter Analysis of Low-Aspect Ratio Wings." <u>Proceedings of the IAS National Specialists Meeting on Dynamics and Aeroelasticity</u>, November 6-7, 1958.
- 8. H. T. Vivian and L. V. Andrew. "Unsteady Aerodynamics for Advanced Configurations, Part I Application of the Subsonic Kernel Function to Nonplanar Lifting Surfaces." AFFDL-TDR-64-152, 1965.
- 9. M. T. Landahl. "Kernel Function for Nonplanar Oscillating Surfaces in a Subsonic Flow". AIAA Journal, Vol. 5, No. 5, May 1967, pp. 1045-46
- 10. W. P. Rodden and J. D. Revell. "The Status of Unsteady Aerodynamic Influence Coefficients." S.M.F. Fund Paper No. FF-33, presented at IAS 30th Annual Meeting, New York, January 1962; preprinted as Aerospace Corp. Report TDR-930 (2230-09) TN-2, 22 November 1961.

- 11. W. S. Rowe. "Collocation Method for Calculating the Aerodynamic Pressure Distribution on a Lifting Surface Oscillating in Subsonic Compressible Flow." Proceedings of the AIAA Symposium on Structural Dynamics and Aeroelasticity, Boston, August 1965.
- 12. Z. Kopal. "Numerical Analysis" John Wiley & Sons, New York, 1955.

Th	CT.	155	TFT	ED

AND THE PROPERTY OF THE PROPER				
Security Classification				
DOCUMENT C	CONTROL DATA - R	& D		
(Security classification of title, body of abstract and indi-	exing annotation must be			
ORIGINATING ACTIVITY (Corporate author)	AMIL BYITHYAN	1	SECURITY CLASSIFICATION	
HUGHES AIRCRAFT COMPANY, MISSILE SYS	EXEMS DIAISION	UNCLASSIFIED		
FALLBROOK AND ROSCOE BLVDS.		Zb. GROUP		
CANOGA PARK, CALIFORNIA 91304		1		
REPORT TITLE				
COLLOCATION FLUTTER ANALYSIS STUDY	,			
OESCRIPTIVE NOTES (Type of report and inclusive dates)		<del></del>		
FINAL REPORT (MARCH 1968 THROUGH MAI	RCH 1969)			
s. AUTHOR(S) (First name, middle initial, leat name)				
NUMBER OF THE PROPERTY AND ADDRESS OF THE				
DYNAMICS AND ENVIRONMENT SECTION, IX	ONALD R. ULBRICA	H		
	74. TOTAL NO.	F PAGES	76. NO. OF REFS	
APRIL 4, 1969				
APRIL 4, 1969	78. TOTAL NO. (			
APRIL 4, 1969				
APRIL 4, 1969				
APRIL 4, 1969  CONTRACT OF GRANT NO  NOO019-68-C-0247  b. FROJECT NO.	Se. ORIGINATOR	'S REPORT NU	JMBER(S)	
APRIL 4, 1969	Se. ORIGINATOR	'S REPORT NU		
APRIL 4, 1969  ** CONTRACT OF GRANT NO  NOO019-68-C-0247  b. FROJECT NO.	Se. ORIGINATOR	'S REPORT NU	JMBER(S)	
APRIL 4, 1969  ** CONTRACT OF GRANT NO  NOO019-68-C-0247  b. FROJECT NO.  c.  d.	Se. ORIGINATOR	'S REPORT NU	JMBER(S)	
APRIL 4, 1969  CONTRACT OF GRANT NO  NOO019-68-C-0247  B. PROJECT NO.  C.  d.  I. DISTRIBUTION STATEMENT  IN ADDITION TO STATEMENT  IN ADDITION TO STATEMENT	Se. ORIGINATOR	O THE DOOR	other numbers that may be asold	
APRIL 4, 1969  DOCUMENT OF GRANT NO  NOO019-68-C-0247  D. FROJECT NO.  d.  10. DISTRIBUTION STATEMENT  IN ADDITION TO STATEMENT  EACH TRANSMITT OF HIS DOCUMENT C	WHICH AMER TO TSIDE AGEN	O THE DOOR	other numbers that may be asold	
APRIL 4, 1969  CONTRACT OF GRANT NO  NOO019-68-C-0247  b. FROJECT NO.  c.  d.	WHICH AMER TO TSIDE AGEN	O THE DOOR	other numbers that may be asold	
APRIL 4, 1969  NOO019-68-C-0247  D. PROJECT NO.  C.  d.  IN ADDITION TO STATEMENT TO ADDITION TO SEACH TRANSMITT OF THE COMMUST HAVE PROJECT APPROVAL OF THE PROJECT APPROVAL OF	WHICH AMER TO TSIDE AGEN	ORT NO(5) (An)	CUPTAL AND MUST BE MUST GOVERN THE	
APRIL 4, 1969  DE CONTRACT OF GRANT NO  NOO019-68-C-0247  D. PROJECT NO.  C.  d.  d.  IN ADDITION TO STATEMENT  IN ADDITION TO STATEMENT  EACH TRANSMITH OF THE COM- MUST HAVE PROVAL OF THE COM-	WHICH ATTE AGENTS IDE ASENTAL AGENTAL	ORT NO(5) (An) OTH B DO	cure. AND MUS. BE MUS. GOVERN THE	
APRIL 4, 1969  ** CONTRACT OF GRANT NO  NOO019-68-C-0247  **.  **.  **.  **.  **.  **.  **.  *	WHICH AT AGEN TSIDE AS AGEN AN NASC	OTH B DOCCLES OF	CULT AND MUST BE MUST COMMANDS	
APRIL 4, 1969  CONTRACT OF GRANT NO  NOOO19-68-C-0247  B. FROJECT NO.  C.  d.  IO. DISTHICUTION STATEMENT  IN ADDITION TO SO ORLY REPORTED TO SEACH TRANSMITT OF HIS DOUMENT C	WHICH AT AGEN TSIDE AS AGEN AN NASC	OTH B DOCLES OF THE SYSTEMS	CULT AND MUST BE MUST COMMANDS	

THIS STUDY COVERS THE DEVELOPMENT OF A SET OF COMPUTER PROCRAM TO PERFORM
FLUTTER ANALYSIS BY THE COLLOCATION METHOD. WHILE THIS METHOD HAS BEEN KNOWN FOR SOME TIME, ONLY RECENTLY HAVE ADVANCES IN COMPUTER TECHNOLOGY MADE THE METHOD TECHNICALLY AND FINANCIALLY FEASIBLE. THE INGREDIENTS OF A COLLOCATION FLUTTER ANALYSIS ARE 1) A FLEXIBILITY MATRIX, 2) APPRODYNAMIC INFLUENCE COEFFICIENT MATRIX, AND 3) AN EIGENVALUE SOLUTION. THIS STUDY IS PRESENTED IN YOUR VOLUMES.
VOLUME I CONTAINS A GENERAL PROGRAM DISCUSSION. VOLUME II CONTAINS THE PROGRAM FLUENC WHICH CALCULATES THE FLEXIBILITY MATRIX. VOLUME III CONTAINS A SET OF THREE PROGRAMS TO CALCULATE AERODYNAMIC INFLUENCE COEFFICIENTS FOR SUBSONIC, TRANSONIC, AND SUPERCONIC FLIGHT RECIMES. VOLUME IV CONTAINS THE PROGRAM COFA WHICH SETS UP AND SOLVES THE FLUTTER EIGENVALUE MATRIX.

DD 1084.1473

UNCIASSIFIED
Security Classification

UNITASSIFTED
Security Classification LINK B .INK C HOLE WT ROLE ROLE W T FLUTTER **VIBRATION** AERODYNAMIC INFLUENCE COEFFICIENTS 1.4)(1

UNCLASSIFIED
Security Classification