Actividad #7

Generación, Visualización y Almacenamiento de dinamico de Datasets CSV

- Nombre:
- Fecha:
- Reposiroty: https://github.com/vasanza/SSE
- Refrence: https://github.com/vasanza/Matlab Code/tree/main

Table of Contents

Descripción:	. 1
Objetivos:	
Copia la actividad en tu respaldo	
Desarrollo de la Actividad	. 2
Paso 1: Borrar variables en el workspace y limpiar cmd	. 2
Paso 2: Crear un codigo basico	. 2
Paso 3: TimeStamp (dd-MMM-yyyy HH:mm:ss)	
Paso 4: Mostrar resultados con plot.	
Paso 5: crear dataset usando tablas	. 4
Paso 5: Guardar los carchivos VSC en el computador	-

Descripción:

Objetivos:

- Generar y visualizar señales senoidales con diferentes parámetros.
- Organizar los datos en un arreglo tipo dataset combinando múltiples señales y **TimeStamp**.
- Exportar datos generados en MATLAB a un archivo dataset.CSV utilizando funciones personalizadas.
- Mantener una estructura de proyecto ordenada y respaldada usando carpetas y funciones (src, git_sse, fSave_file).

Copia la actividad en tu respaldo

```
cd(fullfile(repositorio,nombreCarpeta))
end
```

Desarrollo de la Actividad

Paso 1: Borrar variables en el workspace y limpiar cmd

```
clear % Borrar variables en el workspace y libera memoria RAM
clc % Limpia el Command Window
addpath(genpath('./src'));
```

Paso 2: Crear un codigo basico

```
% Parámetros
f = 10;
               % Frecuencia de la señal en Hz
A1 = 3;
               % Amplitud1
A2 = 16;
                  % Amplitud1
               % Fase1
fase1 = 0;
fase2 = 10;
               % Fase2
T = 10;
               % Duración en segundos
              % Frecuencia de muestreo minima (Nyquist-Shannon)
fsmin = f*2;
              % Frecuencia de muestreo en Hz
fs = 100;
```

Documentacion de la senal senoidal

```
help senal senoidal
  --- SEÑAL SENOIDAL ---
function [y] = senal_senoidal(frecuencia,amplitud,fase,tiempo,fs)
 Parámetros:
 f = 10;
                % Frecuencia en Hz
 A = 1;
                % Amplitud
 fase1 = 0; fase2 = 10;
                             % Fase
 T = 1;
                % Duración en segundos
 fs = 1000;
                % Frecuencia de muestreo en Hz
% Usamos la funcion: senal_senoidal(frecuencia,amplitud,fase,tiempo,fs)
y1 = senal senoidal(f,A1,fase1,T,fs)';
y2 = senal_senoidal(f,A2,fase2,T,fs)';
y3 = y1 + y2;
```

Paso 3: TimeStamp (dd-MMM-yyyy HH:mm:ss)

```
simulationTime = seconds(0:1/fs:T)

simulationTime = 1×1001 duration
0 sec    0.01 sec    0.02 sec    0.03 sec    0.04 sec    0.05 sec    0....

startTime = datetime('now')

startTime = datetime
13-Jun-2025 20:17:42
```

```
timeStamp = (startTime + simulationTime)'
timeStamp = 1001×1 datetime
13-Jun-2025 20:17:42
timeStamp.Format
ans =
'dd-MMM-uuuu HH:mm:ss'
size(timeStamp) %filas, columnas
ans = 1 \times 2
                      1
       1001
```

Paso 4: Mostrar resultados con plot

```
figure
plot(timeStamp.Second,y1) %Señal 1
hold on
plot(timeStamp.Second,y2) %Señal 2
plot(timeStamp.Second,y3) %Señal 3
title("Señal Senosoidal")
xlabel("Tiempo (Seg)")
ylabel("Value")
legend("Señal 1, fase1 = 0", "Señal 1, fase2 = 10", "Señal 3 = s1 + s2")
hold off
```


Paso 5: crear dataset usando tablas

```
%cell array
VariableNames = {'TimeStamp', 'Sin1', 'Sin2', 'Sin1 + Sin2'}

VariableNames = 1×4 cell
'TimeStamp' 'Sin1' 'Sin2' 'Sin1 + Sin2'

% Para la tabla el timeStamp debe ser una columna
dataset = table(timeStamp, y1, y2, y3, 'VariableNames', VariableNames)
```

dataset = 1001×4 table

	TimeStamp	Sin1	Sin2	Sin1 + Sin2
1	13-Jun-2025 20:17:42	0	-8.7043	-8.7043
2	13-Jun-2025 20:17:42	1.7634	-14.9331	-13.1697
3	13-Jun-2025 20:17:42	2.8532	-15.4579	-12.6047
4	13-Jun-2025 20:17:42	2.8532	-10.0783	-7.2251
5	13-Jun-2025 20:17:42	1.7634	-0.8491	0.9142
6	13-Jun-2025 20:17:42	0	8.7043	8.7043
7	13-Jun-2025 20:17:42	-1.7634	14.9331	13.1697
8	13-Jun-2025 20:17:42	-2.8532	15.4579	12.6047
9	13-Jun-2025 20:17:42	-2.8532	10.0783	7.2251

	TimeStamp	Sin1	Sin2	Sin1 + Sin2
10	13-Jun-2025 20:17:42	-1.7634	0.8491	-0.9142
11	13-Jun-2025 20:17:42	-0	-8.7043	-8.7043
12	13-Jun-2025 20:17:42	1.7634	-14.9331	-13.1697
13	13-Jun-2025 20:17:42	2.8532	-15.4579	-12.6047
14	13-Jun-2025 20:17:42	2.8532	-10.0783	-7.2251
15	13-Jun-2025 20:17:42	1.7634	-0.8491	0.9142
16	13-Jun-2025 20:17:42	0	8.7043	8.7043
17	13-Jun-2025 20:17:42	-1.7634	14.9331	13.1697
18	13-Jun-2025 20:17:42	-2.8532	15.4579	12.6047
19	13-Jun-2025 20:17:42	-2.8532	10.0783	7.2251
20	13-Jun-2025 20:17:42	-1.7634	0.8491	-0.9142
21	13-Jun-2025 20:17:42	-0	-8.7043	-8.7043
22	13-Jun-2025 20:17:42	1.7634	-14.9331	-13.1697
23	13-Jun-2025 20:17:42	2.8532	-15.4579	-12.6047
24	13-Jun-2025 20:17:42	2.8532	-10.0783	-7.2251
25	13-Jun-2025 20:17:42	1.7634	-0.8491	0.9142
26	13-Jun-2025 20:17:42	0	8.7043	8.7043
27	13-Jun-2025 20:17:42	-1.7634	14.9331	13.1697
28	13-Jun-2025 20:17:42	-2.8532	15.4579	12.6047
29	13-Jun-2025 20:17:42	-2.8532	10.0783	7.2251
30	13-Jun-2025 20:17:42	-1.7634	0.8491	-0.9142
31	13-Jun-2025 20:17:42	-0	-8.7043	-8.7043
32	13-Jun-2025 20:17:42	1.7634	-14.9331	-13.1697
33	13-Jun-2025 20:17:42	2.8532	-15.4579	-12.6047
34	13-Jun-2025 20:17:42	2.8532	-10.0783	-7.2251
35	13-Jun-2025 20:17:42	1.7634	-0.8491	0.9142
36	13-Jun-2025 20:17:42	-0	8.7043	8.7043
37	13-Jun-2025 20:17:42	-1.7634	14.9331	13.1697
38	13-Jun-2025 20:17:42	-2.8532	15.4579	12.6047
39	13-Jun-2025 20:17:42	-2.8532	10.0783	7.2251
40	13-Jun-2025 20:17:42	-1.7634	0.8491	-0.9142
41	13-Jun-2025 20:17:42	-0	-8.7043	-8.7043
42	13-Jun-2025 20:17:42	1.7634	-14.9331	-13.1697

	TimeStamp	Sin1	Sin2	Sin1 + Sin2
43	13-Jun-2025 20:17:42	2.8532	-15.4579	-12.6047
44	13-Jun-2025 20:17:42	2.8532	-10.0783	-7.2251
45	13-Jun-2025 20:17:42	1.7634	-0.8491	0.9142
46	13-Jun-2025 20:17:42	0	8.7043	8.7043
47	13-Jun-2025 20:17:42	-1.7634	14.9331	13.1697
48	13-Jun-2025 20:17:42	-2.8532	15.4579	12.6047
49	13-Jun-2025 20:17:42	-2.8532	10.0783	7.2251
50	13-Jun-2025 20:17:43	-1.7634	0.8491	-0.9142
51	13-Jun-2025 20:17:43	-0	-8.7043	-8.7043
52	13-Jun-2025 20:17:43	1.7634	-14.9331	-13.1697
53	13-Jun-2025 20:17:43	2.8532	-15.4579	-12.6047
54	13-Jun-2025 20:17:43	2.8532	-10.0783	-7.2251
55	13-Jun-2025 20:17:43	1.7634	-0.8491	0.9142
56	13-Jun-2025 20:17:43	-0	8.7043	8.7043
57	13-Jun-2025 20:17:43	-1.7634	14.9331	13.1697
58	13-Jun-2025 20:17:43	-2.8532	15.4579	12.6047
59	13-Jun-2025 20:17:43	-2.8532	10.0783	7.2251
60	13-Jun-2025 20:17:43	-1.7634	0.8491	-0.9142
61	13-Jun-2025 20:17:43	-0	-8.7043	-8.7043
62	13-Jun-2025 20:17:43	1.7634	-14.9331	-13.1697
63	13-Jun-2025 20:17:43	2.8532	-15.4579	-12.6047
64	13-Jun-2025 20:17:43	2.8532	-10.0783	-7.2251
65	13-Jun-2025 20:17:43	1.7634	-0.8491	0.9142
66	13-Jun-2025 20:17:43	-0	8.7043	8.7043
67	13-Jun-2025 20:17:43	-1.7634	14.9331	13.1697
68	13-Jun-2025 20:17:43	-2.8532	15.4579	12.6047
69	13-Jun-2025 20:17:43	-2.8532	10.0783	7.2251
70	13-Jun-2025 20:17:43	-1.7634	0.8491	-0.9142
71	13-Jun-2025 20:17:43	0	-8.7043	-8.7043
72	13-Jun-2025 20:17:43	1.7634	-14.9331	-13.1697
73	13-Jun-2025 20:17:43	2.8532	-15.4579	-12.6047
74	13-Jun-2025 20:17:43	2.8532	-10.0783	-7.2251
75	13-Jun-2025 20:17:43	1.7634	-0.8491	0.9142

	TimeStamp	Sin1	Sin2	Sin1 + Sin2
76	13-Jun-2025 20:17:43	0	8.7043	8.7043
77	13-Jun-2025 20:17:43	-1.7634	14.9331	13.1697
78	13-Jun-2025 20:17:43	-2.8532	15.4579	12.6047
79	13-Jun-2025 20:17:43	-2.8532	10.0783	7.2251
80	13-Jun-2025 20:17:43	-1.7634	0.8491	-0.9142
81	13-Jun-2025 20:17:43	-0	-8.7043	-8.7043
82	13-Jun-2025 20:17:43	1.7634	-14.9331	-13.1697
83	13-Jun-2025 20:17:43	2.8532	-15.4579	-12.6047
84	13-Jun-2025 20:17:43	2.8532	-10.0783	-7.2251
85	13-Jun-2025 20:17:43	1.7634	-0.8491	0.9142
86	13-Jun-2025 20:17:43	0	8.7043	8.7043
87	13-Jun-2025 20:17:43	-1.7634	14.9331	13.1697
88	13-Jun-2025 20:17:43	-2.8532	15.4579	12.6047
89	13-Jun-2025 20:17:43	-2.8532	10.0783	7.2251
90	13-Jun-2025 20:17:43	-1.7634	0.8491	-0.9142
91	13-Jun-2025 20:17:43	-0	-8.7043	-8.7043
92	13-Jun-2025 20:17:43	1.7634	-14.9331	-13.1697
93	13-Jun-2025 20:17:43	2.8532	-15.4579	-12.6047
94	13-Jun-2025 20:17:43	2.8532	-10.0783	-7.2251
95	13-Jun-2025 20:17:43	1.7634	-0.8491	0.9142
96	13-Jun-2025 20:17:43	-0	8.7043	8.7043
97	13-Jun-2025 20:17:43	-1.7634	14.9331	13.1697
98	13-Jun-2025 20:17:43	-2.8532	15.4579	12.6047
99	13-Jun-2025 20:17:43	-2.8532	10.0783	7.2251
100	13-Jun-2025 20:17:43	-1.7634	0.8491	-0.9142

dataset.Properties.VariableNames

```
ans = 1×4 cell
'TimeStamp' 'Sin1' 'Sin2' 'Sin1 + Sin2'
```

height(dataset)

ans = 1001

Paso 6: Guardar los carchivos VSC en el computador

```
filename = 'dataset.csv';
fSave_dataset(filename,dataset)
```