WFC3 Detector Timing for Scan Mode Observations

Yifan Zhou

December 16, 2016

1 BASIC DATA

Key data for calculating the read/resetting rate for WFC3 detector.

Table 1: WFC3 detector read/reset rate

subarray	readout time (theoretical)	readout time (measured)	readout speed per row (s ⁻ 1)
64x64	0.011	0.04	800
128x128	0.045	0.092	696
256x256	0.1825	0.257	498
512x512	0.730	0.832	308

2 DERIVATION

2.1 Example: down stream scan, no mid line passing

$$y_{10} = \frac{v_{\rm r} - v_{\rm s}}{v_{\rm r}} y_1 \tag{1}$$

$$y_{20} = \frac{v_{\rm r} - v_{\rm s}}{v_{\rm r}} y_2 \tag{2}$$

$$L_0 = y_{20} - y_{10} \tag{3}$$

Table 2: Parameter definitions

Names	Definition
exptime	exposure time, the time between the start of the reset and the start of the last read
${S}_0$	planned scan length, scan length from the start of the zeroth read and the start of the last read
L	array size
y_{10}	pointing position when the reset starts
y_1	pointing position when the reset past the telescope pointing position, real start of scan
y_{20}	poiting position when last read starts
y_2	read end of the scan
v_{s}	scan speed (row/s)
$v_{\rm r}$	read/reset speed

Therefore

$$S = y_2 - y_1 = \frac{v_r}{v_r - v_s} S_0 \tag{4}$$

3 LIST OF SCAN LENGTH

• Down stream scan, no mid line passing

$$S = \frac{v_{\rm r}}{v_{\rm r} - v_{\rm s}} S_0$$

• Up stream scan, no mid line passing

$$S = \frac{v_{\rm r}}{v_{\rm r} + v_{\rm s}} S_0$$

• Mid Line passing

$$S = \frac{v_{\rm r}}{v_{\rm s} + v_{\rm r}} S_0 + \frac{v_{\rm s}}{v_{\rm s} + v_{\rm r}} L - 2 \frac{v_{\rm s}}{v_{\rm s} + v_{\rm r}} (L - y_1)$$

or

$$S = \frac{v_{\mathrm{r}}}{v_{\mathrm{s}} + v_{\mathrm{r}}} S_0 + \frac{v_{\mathrm{s}}}{v_{\mathrm{s}} + v_{\mathrm{r}}} L - 2 \frac{v_{\mathrm{s}}}{v_{\mathrm{s}} + v_{\mathrm{r}}} y_1$$