浙江大学 20<u>11</u> - 20<u>12</u> 学年<u>春夏</u>学期 《 电磁场与电磁波 》课程期末考试试卷

课程号:	: 1112001	<u>0</u> , \mathcal{F}	干课学院:	信电系		
考试试	卷: √A卷、I	3 卷(请在选	定项上打 √)			
考试形	式:闭、√开	卷(请在选定	定项上打√),	允许带_ <u>课</u>	<u>本</u> 入场	
考试日期	期: 2012	年 <u>6</u> 月 <u>1</u>	9日,考试时	间: 120	分钟	
		诚信	淳考试,沉着 应	Z考,杜绝违	纪。	
考生姓名: _		学号:	<u>_</u> j	所属院系:		- -
题序	_	=	Ξ	四	五	总 分
得分						
评卷人						
一、单项选	择题(每小题:	2 分,共 30 タ	})			
1. 对于二个	在同一线性介	、质中传播的 ¹	电磁波,下列	描述正确的是	<u>(</u> (D)	
A. 一个	波的电场会影	响另一波的码	兹场 B	一个波的磁场	会影响另一波	的电场
C. 二个	波的电场和磁	场相互都有影	影响 D	一个波的传播	并不影响另一	个波的传播
2. 有关天线	增益的描述,	不正确 的是	(B)			
A. 与尹	尺线方向图有	密切的关系	B. 馈入天	线电磁信号的	的放大倍数	
C. 方向	可图主瓣越窄,	副瓣越小,	增益越高	D. 天线把输	俞 入功率集中辐	ā射的程度
3. 用铁锤敲	打矩形空腔谐	指器的顶部,	使之略有凹	陷,问其谐振	長频率(C)
A. 变小	B . 不变	C. 变大	D. 不一定			
4. 如右图所	示。同样一个	·负载,接特?	证阻抗为 100 0	2和 50Ω的传	输线时在阻抗	圆
图上的位	工置分别是(В)				
A. M.	N B. N.	M C. I	N, Q D.	M、P		K
5. 用于微波	皮炉加热食物的	内 <mark>容器</mark> ,其材	 料的主要特点	ī是(A)	

A. 导电率很小 B. 介电常数很大 C. 介电常数是复数 D. 损耗正切很大

6. 二个金属空腔谐振器,形状尺寸完全相同,一个材料是铝,一个材料是铜,比较二者的品质因素,

正确的是(B)

- A. 铝腔大 B. 铜腔大 C. 二者一样大 D. 频率低时铜腔大, 频率高时铝腔大
- 7. 各向同性介质是指:(A)
 - A. ε 、 μ 、 σ 与电磁波在空间传播的方向性无关; B. ε 、 μ 、 σ 与电磁波在空间传播的方向性有关
 - C. 不同方向的 E、H 相同 D. 不同传播方向的能量相同
- 8. 两个同频同方向传播的极化方向相互垂直的线极化波,如果(D),则合成的波一定是椭圆极化波。
 - A. 两者的相位差不为 0 和 π
 - B. 两者振幅不同
 - C. 两者的相位差不为 $\pm \pi/2$ D. 同时满足 A 和 B
- 9. 如右图所示,一理想导体平板前λ/4处放置一个与水平方向成 45°的金属栅, 若一 水平极化的平面波入射,则反射波为 (B) ?

- A. 水平极化波 B. 垂直极化波 C. 右旋圆极化波 D. 左旋圆极化波
- 10. **E**(**r**)和 **H**(**r**)分别是电场和磁场的复矢量形式,则**时间平均**坡印廷矢量为:

(B)

A.
$$\frac{1}{2} \text{Re} \big[\mathbf{E}(\mathbf{r}) \times \mathbf{H}(\mathbf{r}) \big]$$
 B. $\frac{1}{2} \text{Re} \big[\mathbf{E}(\mathbf{r}) \times \mathbf{H}^*(\mathbf{r}) \big]$ C. $\text{Re} \big[\mathbf{E}(\mathbf{r}) \times \mathbf{H}(\mathbf{r}) \big]$ D. $\text{Re} \big[\mathbf{E}(\mathbf{r}) \times \mathbf{H}^*(\mathbf{r}) \big]$

- 11. 一平面波以光轴垂直的方向入射单轴电各向异性介质,电磁波的极化方向与光轴成 45 度。已知各向 异性介质的 o 光折射率为 n_o , e 光折射率为 n_e , $\Delta n = |n_o - n_e|$, 则介质厚度为(C)时,出射的电 磁波为圆极化波。
- A. $\frac{\lambda}{2\Delta n}$ 的奇数倍 B. $\frac{\lambda}{2\Delta n}$ 的偶数倍 C. $\frac{\lambda}{4\Delta n}$ 的奇数倍
- D. $\frac{\lambda}{4\Delta n}$ 的偶数倍

 $Z_c = 50\Omega$

- 12. 右图所示为传输线上电压的驻波分布,判别负载 Z. 是什么性质的
 - 阻抗? (B)

A. 纯电阻 B. 电阻、电容都有

- C. 纯电抗 D. 电阻、电感都有
- 13. 天线外面通常加天线罩防护,最简单的天线罩是单层介质板。

如己知介质板的 $\varepsilon = \varepsilon_r \varepsilon_0$,则介质板的厚度应为(\mathbf{C})时,可使频率为 f_0 的电磁波(真空波长 λ_0) 在垂直入射于板面时没有反射。

A.
$$\frac{\sqrt{\varepsilon_r}\lambda_0}{2}$$

B.
$$\frac{\sqrt{\varepsilon_r}\lambda_0}{4}$$

C.
$$\frac{\lambda_0}{2\sqrt{\varepsilon_r}}$$

A.
$$\frac{\sqrt{\varepsilon_r}\lambda_0}{2}$$
 B. $\frac{\sqrt{\varepsilon_r}\lambda_0}{4}$ C. $\frac{\lambda_0}{2\sqrt{\varepsilon_r}}$ D. $\frac{\lambda_0}{4\sqrt{\varepsilon_r}}$

14. 有关光纤的数值孔径描述不正确的是(

- A. 数值孔径较大光纤传输带宽较大 B. 数值孔径较大光纤聚光能力较强
- C. 数值孔径较大光纤模间色散较大 D. 数值孔径较大纤芯和包层相对折射率差较大
- 15、一段传输线,其中电压驻波系数恒定为ho,沿线各参考面上能出现的最大电纳为(ho

A,
$$\pm \frac{\rho^2 + 1}{2\rho}$$
 B, $\pm \frac{\rho^2 - 1}{2\rho}$ C, $\pm \frac{\rho^2 + 1}{\rho}$ D, $\pm \frac{\rho^2 - 1}{\rho}$

$$B_{\gamma} \pm \frac{\rho^2 - 1}{2\rho}$$

$$C_{\cdot} \pm \frac{\rho^2 + 1}{\rho}$$

$$D_{\gamma} \pm \frac{\rho^2 - 1}{\rho}$$

二、简答题(20分)

(10分)已知自由空间中均匀平面波的电场为:

$$\mathbf{E}(\mathbf{r}) = (\mathbf{x}_0 + \mathbf{y}_0 2 + j\mathbf{z}_0 \sqrt{5})e^{-j(2x+by+cz)}V/m$$

试求波的传播方向(3分)、波长(3分)、极化状态(2分)以及磁场(2分)。

解:由题意得波矢量: $\mathbf{k} = \mathbf{x}_0 2 + \mathbf{y}_0 b + \mathbf{z}_0 c$,考虑平面波的电场与传播方向垂直,故 $\mathbf{k} \cdot \mathbf{E} = 0$,即:

$$\mathbf{k} \cdot \mathbf{E}_0 = (\mathbf{x}_0 2 + \mathbf{y}_0 b + \mathbf{z}_0 c) \cdot (\mathbf{x}_0 + \mathbf{y}_0 2 + \mathbf{z}_0 j \sqrt{5}) = 2 + 2b + j \sqrt{5}c = 0$$

b = -1, c = 0

因此,波矢量 $\mathbf{k} = \mathbf{x}_0 2 - \mathbf{y}_0$,则波传播方向的单位矢量为: $\kappa = \frac{\mathbf{k}}{k} = \frac{1}{\sqrt{5}} (\mathbf{x}_0 2 - \mathbf{y}_0)$

波长为:
$$\lambda = \frac{2\pi}{k} = \frac{2\pi}{\sqrt{5}} = 2.81m$$

另外, 电场的复振幅可写为:

$$\mathbf{E}_0 = (\mathbf{x}_0 + \mathbf{y}_0 2) + j\mathbf{z}_0 \sqrt{5} = \mathbf{E}_{0R} + \mathbf{E}_{0I}$$

 $|E_{0R}| = |E_{0I}| = \sqrt{5}$ 该均匀平面波是左旋圆极化波。

与 $\mathbf{E}(\mathbf{r})$ 相应的磁场为: $\mathbf{H}(\mathbf{r}) = \frac{1}{n} \kappa \times \mathbf{E}(\mathbf{r})$

$$= \frac{1}{120\pi} \frac{1}{\sqrt{5}} (\mathbf{x}_0 2 - \mathbf{y}_0) \times (\mathbf{x}_0 + \mathbf{y}_0 2 + j\mathbf{z}_0 \sqrt{5}) e^{-j(2x-y)}$$

$$= \frac{1}{120\pi} (-j\mathbf{x}_0 - \mathbf{y}_0 j2 + \mathbf{z}_0 \sqrt{5}) e^{-j(2x-y)}$$

- (10 分)一矩形波导内充空气,横截面尺寸为: $a \times b = 2.3 \times 1 \text{ cm}^2$,当工作波长为 1.8cm 时,问:
 - (1) (6分)波导可能传输的模式?
 - (2) (4分)为保证此波导只能传输 TE10模式,工作波段范围为最高波长比 TE10模式的临界波长低 10%, 最低波长比 TE20 模式的临界波长高 10%, 求其可工作的波段范围?

解: (1) 应用公式 $\lambda_c = \frac{2}{\sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}}$ 求出各种不同模式的临界波长为:

$$\sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$$

$$(\lambda_c)_{\text{TE}_{10}} = 2a = 2 \times 2.3 = 4.6 \quad (厘米)$$

$$(\lambda_c)_{\text{TE}_{10}} = 2b = 2 \times 1 = 2 \quad (厘米)$$

$$(\lambda_c)_{\text{TE}_{01}} = b = 1 \quad (厘米)$$

$$\left(\lambda_c\right)_{\mathrm{TE}_{20}} = a = 2.3$$
(厘米

$$(\lambda_c)_{TF} = 2b = 2 \times 1 = 2$$
 (**E***)

$$(\lambda_c)_{\text{TE}} = b = 1$$
 ($\underline{\mathbb{Z}}$ *

由此可见,当工作波长 $\lambda=1.8$ 厘米时,波导可能传播模式为 TE_{10} 、 TE_{01} 、 TE_{20} 、 TE_{11} 、 TM_{11} 模式;

- (2) 由前面计算结果得知 $(\lambda_c)_{TE_{10}} = 4.6$ (厘米) $(\lambda_c)_{TE_{20}} = 2.3$ (厘米) 所以波段范围为 $(4.6-4.6\times10\%)\sim(2.3+2.3\times10\%)=4.14\sim2.53$ (厘米)。
- 三、(15 分)有一均匀平面波垂直入射到z=0处的理想导电平面,其电场强度为 $\mathbf{E}=E_0(\mathbf{x}_0-j\mathbf{y}_0)e^{-jkz}$,确定
 - (1) (5分)入射波和反射波的极化方式;
 - (2) (5分)导电平面上面电流密度;
 - (3) $(5 \, \text{分})$ 写出 $z \leq 0$ 区域合成电场强度的瞬时值。

解: (1) 入射波 $\mathbf{E}^i = \mathbf{E}_0(\mathbf{x}_0 - \mathbf{j}\mathbf{y}_0)\mathbf{e}^{-\mathbf{j}\mathbf{k}z}$,是右手圆极化,对于反射波,为满足导体表面边界条件, E_x^r, E_y^r 与 E_x^i, E_y^i 都有 180 °相移,且波传播方向相反,所以 $\mathbf{E}^r = \mathbf{E}_0(-\mathbf{x}_0 + \mathbf{j}\mathbf{y}_0)\mathbf{e}^{\mathbf{j}\mathbf{k}z}$ 是左手圆极化。

(2)
$$\mathbf{H}^{i} = -\frac{1}{j\omega\mu}\nabla\times\mathbf{E} = -\frac{1}{j\omega\mu}\begin{vmatrix} \mathbf{x_{0}} & \mathbf{y_{0}} & \mathbf{z_{0}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ E_{0}e^{-jkz} & -jE_{0}e^{-jkz} & 0 \end{vmatrix} = (j\mathbf{x_{0}} + \mathbf{y_{0}})\frac{k}{\omega\mu_{0}}E_{0}e^{-jkz}$$

$$\mathbf{H}^{r} = -\frac{1}{j\omega\mu}\nabla\times\mathbf{E}^{r} = -\frac{1}{j\omega\mu}\begin{vmatrix} \mathbf{x_{0}} & \mathbf{y_{0}} & \mathbf{z_{0}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -E_{0}e^{jkz} & jE_{0}e^{jkz} & 0 \end{vmatrix} = (j\mathbf{x_{0}} + \mathbf{y_{0}})\frac{k}{\omega\mu_{0}}E_{0}e^{jkz}$$

$$z = 0$$
 的导电平面, $\mathbf{H} = \mathbf{H}^i + \mathbf{H}^r = (j\mathbf{x_0} + \mathbf{y_0}) \frac{2k}{\omega u_0} E_0$

所以导电平面上面电流密度 $J = n \times \mathbf{H} = -z_0 \times (j\mathbf{x_0} + \mathbf{y_0}) \frac{2k}{\omega \mu_0} E_0 = \frac{2k}{\omega \mu_0} E_0 (\mathbf{x_0} - j\mathbf{y_0})$

(3) 此入射波可看成是两个平面波的叠加。 $\mathbf{E}_1 = \mathbf{x_0} E_0 e^{-jkz}$, $\mathbf{E}_2 = -j \mathbf{y_0} E_0 e^{-jkz}$, 在这个坐标系下两个均为 TEM 波,

对平面波 1, 在 z \leq 0 区域合成电场强度 $E_x(z) = E_0(e^{-jkz} - e^{jkz}) = -2jE_0\sin kz$

对平面波 2, 在 z \leq 0 区域合成电场强度 $E_v(z) = -jE_0(e^{-jkz} - e^{jkz}) = -2E_0 \sin kz$

所以 $\mathbf{z} \leq \mathbf{0}$ 区域合成电场强度的瞬时值 $E_x(z) = 2\mathbf{x_0}E_0 \sin kz \sin \omega t - 2\mathbf{y_0}E_0 \sin kz \cos \omega t$

- 四.(15 分)如图所示,一平行板波导相距为 a,z<0 区域是自由空间(μ_0 ϵ_0),z>0 区域充满(μ_0 ϵ)的介质,假设波矢 k 在 x z 平面,可知,波在 x 方向谐振,沿 z 方向传播,
- (1) (4 %) 由横向谐振原理,求x 方向的波矢 k_r 。
- (2) (4 %)分别求出 z<0 区域和 z>0 区域中 z 方向的波矢 k_z 。
- (3) (4 分)画出 z 方向的传输线模型,求出 z<0 区域和 z>0 区域中 **TE** 波和 **TM** 波的特征阻抗

(4) (3分)当 TM 波从 z<0 区域投射介质分界面时,求出交界面无反射波时的频率。

解: (1) 横向谐振原理, x 方向的波矢 $k_x = \frac{m\pi}{a}$

(2)z<0 区域,
$$k_{0z} = \sqrt{\omega^2 \mu_0 \varepsilon_0 - (m\pi/a)^2}$$
; z>0 区域, $k_z = \sqrt{\omega^2 \mu_0 \varepsilon - (m\pi/a)^2}$

(3)z<0 区域 特征阻抗
$$Z_1 = \begin{cases} \frac{\omega \mu_0}{k_{0z}} & TE \\ \frac{k_{0z}}{\omega \varepsilon_0} & TM \end{cases}$$
; z>0 区域 特征阻抗 $Z_2 = \begin{cases} \frac{\omega \mu_0}{k_z} & TE \\ \frac{k_{z}}{\omega \varepsilon} & TM \end{cases}$

$$(2) \mathbf{z} < \mathbf{0} \ \, \mathbf{\boxtimes} \mathbf{\mathsf{y}}, \quad k_{0z} = \sqrt{\omega^2 \mu_0 \varepsilon_0 - \left(m\pi/a\right)^2} \ \, ; \quad \mathbf{z} > \mathbf{0} \ \, \mathbf{\boxtimes} \mathbf{\mathsf{y}}, \quad k_z = \sqrt{\omega^2 \mu_0 \varepsilon - \left(m\pi/a\right)^2}$$

$$(3) \mathbf{z} < \mathbf{0} \ \, \mathbf{\boxtimes} \mathbf{\mathsf{y}} \ \, \mathbf{\mathsf{f}} \mathbf{\mathsf{f}} \mathbf{\mathsf{E}} \mathbf{\mathsf{H}} \mathbf{\mathsf{H}} \mathbf{\mathsf{f}} \mathbf{\mathsf{Z}}_1 = \begin{cases} \frac{\omega \mu_0}{k_{0z}} & TE \\ \frac{k_{0z}}{\omega \varepsilon_0} & TM \end{cases} \quad ; \quad \mathbf{z} > \mathbf{0} \ \, \mathbf{\mathsf{E}} \mathbf{\mathsf{y}} \ \, \mathbf{\mathsf{f}} \mathbf{\mathsf{f}} \mathbf{\mathsf{H}} \mathbf{\mathsf{H}} \mathbf{\mathsf{H}} \mathbf{\mathsf{f}} \mathbf{\mathsf{Z}}_2 = \begin{cases} \frac{\omega \mu_0}{k_z} & TE \\ \frac{k_z}{\omega \varepsilon} & TM \end{cases}$$

$$(4) \mathbf{\mathsf{g}} \mathbf{\mathsf{f}} \mathbf{\mathsf{f}} \mathbf{\mathsf{T}} \mathbf{\mathsf{M}} \ \, \mathbf{\mathsf{g}} \mathbf{\mathsf{f}} \mathbf{\mathsf$$

- 五、(20分)如下图,y=0平面为地平面,上海金茂大厦位于x-y平面内,高 402.5米,在离它 697米、高于地面 y=h 处平行于地面沿 z 轴放置一电基本振子天线,信号频率为 10MHz,问
 - (1) (8分)画出该电基本振子天线的镜像,给出天线与镜像之间电流的相位关系,并说明理由。
 - (2) (7 分)若要使金茂大厦楼顶接收到的辐射最大, h 应为多大。
 - (2) (5 分)画出该振子天线在 x-y 平面内的辐射方向图。

- 解: (1) 镜像天线在地平面下离开地平面为 h 处,,它与地平面上的电基本振子的相位相差为 Pi,其原因是要满足地平面视为导体的边界条件,即切向电场为 0 。
- (2) 架设在地平面上的天线可视为一个两元的相位相差为 pi 的列阵天线,按题意,在金茂大厦顶楼,即 θ =90°, arctan φ =402.5/697, φ =30°处,接收到的辐射最大,已知阵因子 F (θ , φ) 最大的条件为 $kd\sin\theta\sin\varphi$ + π =0,2 π ,... 可得d=2h= λ =c/f=30 米,所以 h=15 米
- (2) $N\frac{kd\sin\theta\sin\phi+\pi}{2}=m\pi(m\neq0,N,2N...)$ 时,阵因子为 0,可以计算此时, $\phi=0,90^\circ$ 所以可以画出该天线在 x-y 平面内的辐射方向图为

