Diskretne strukture UNI Vaje 6

- 1. Dane so množice $A = \{1, 2, 3\}, B = \{2, 3, 4\}$ in $C = \{0, 1, 4, 5\}$. Določi naslednje množice:
 - (a) $C + (A \cup C)$,
 - (b) $(B \setminus A) \cap C$,
 - (c) $\mathfrak{P}(A \cap B) \setminus B$,
 - (d) $\mathcal{P}(A \cap C) + \mathcal{P}(B \cap C)$.
- 2. Na ravni elementov pokaži, da velja
 - (a) $A \subseteq B \Rightarrow \mathcal{P}(A) \subseteq \mathcal{P}(B)$,
 - (b) $A \subseteq B \Leftrightarrow A \cap B = A$.
- 3. Ali velja
 - (a) $(A+B) \setminus A = B \setminus A$,
 - (b) (A+B) + (A+C) = A + (B+C),
 - (c) $(A \setminus B) + (C \setminus B) = (A + C) \setminus B$,
 - (d) $(A + C) \setminus (A + B) = (A \cap B) + C$,
 - (e) $(A+C)\setminus (A+B)=(A\cap B)+C$ pod pogojem $C\subseteq A\cap B$,
 - (f) $(A+C)\setminus (A+B)\subseteq (A\cap B)+C$,
 - (g) $(A+B) \setminus C \subseteq (B \setminus (A+C)) \cup (A \setminus (B \cup C))$,
 - (h) $(A+B) \setminus C = (B \setminus (A+C)) \cup (A \setminus (B \cup C))$, če sta A in B disjunktni,
 - (i) $(A + B) \setminus C = (A \cup C) + (A \cup B)$,
 - $(j) (A \cap C) + (B \cap C) = C \setminus (A \cap B),$
 - (k) $(A \cap C) + (B \cap C) \subseteq C \setminus (A \cap B)$,
 - (l) $(A \cap C) + (B \cap C) = C \setminus (A \cap B)$, če je $C \subseteq A \cup B$,
 - (m) $(A \setminus C) + B = (A+B) \setminus C$,
 - (n) $(A \setminus C) + B \subseteq (A+B) \setminus C$,
 - (o) $(A \setminus C) + B = (A + B) \setminus C$, če je $C \subseteq A \setminus B$?
- 4. Pokaži, da množice $B \cap C$, $(B+C) \cap A$ in $(A+C) \setminus B$ predstavljajo razbitje za množico $A \cup C$.