

CLAIMS

1 1. A regenerative amplifier system, comprising:
2 a pump source that produces a pump beam;
3 first and second mirrors that define a resonant cavity
4 a gain medium positioned in the resonant cavity and optically coupled to the
5 pump source;
6 an oscillator that produces multiple seed pulses;
7 a first electro-optic switch positioned external to the cavity, the first electro-
8 optic switch configured to provide selection of a single seed pulse for the cavity and
9 directs an amplified pulse produced in the cavity in a direction away from the
10 oscillator, and
11 a second electro-optic switch positioned in the cavity that switches the seed
12 pulse in and out of the cavity.

1 2. The system of claim 1, wherein the first and second electro-optic
2 switches are Pockels cells.

1 3. The system of claim 1, wherein the gain media is selected from
2 Yb:KGW, Yb:KYW, Yb:YAG, Yb:SYS, Yb:BOYS, Yb:GdCOB, Yb:glass, Nd:KGW,
3 Nd:glass, Cr:LiSAF, Cr:LiCAF, Ti:sapphire, Nd:YAG, Nd:YLF and Nd:YVO₄.

1 4. The system of claim 1, wherein the gain media is Yb:KGW.

1 5. The system of claim 1, wherein the pump beam has a power in the
2 range of 1-100 W.

1 6. The system of claim 1, wherein the pump beam has a power in the
2 range of 1-30 W.

1 7. The system of claim 1, wherein the pump beam has a power in the
2 range of 1-10 W.

1 8. The system of claim 1, wherein the pump beam has a wavelength in
2 the range of 800 to 1000 nm.

1 9. The system of claim 1, wherein the seed pulse has a duration in the
2 range of about 100 fs.

1 10. The system of claim 1, wherein the seed pulse has a duration in the
2 range of about 300 fs.

1 11. The system of claim 1, wherein the seed pulse has a duration in the
2 range of about 1ps.

1 12. The system of claim 1, wherein the stretched seed pulse has a duration
2 in the range of about 100 ps.

1 13. The system of claim 1, wherein the stretched seed pulse has a duration
2 in the range of about 300 ps.

1 14. The system of claim 1, wherein the stretched seed pulse has a duration
2 in the range of about 1ns.

1 15. The system of claim 1, wherein the full power of the seed pulse can be
2 switched in to the cavity.

1 16. The system of claim 1, wherein the undesired seed pulses do not pass
2 through the gain medium.

1 17. The system of claim 1, wherein the pump source is selected from a
2 diode, a diode bar, a fiber-coupled diode bar, and a single fiber-coupled diode bar.

1 18. The system of claim 1, wherein the pump source is a single fiber-
2 coupled diode source.

1 19. A method for producing an amplified pulse from a regenerative
2 amplifier system, comprising:

3 producing a pump beam from a pump source;
4 producing multiple seed pulses from the oscillator;
5 selecting a single seed pulse for the cavity; and
6 excluding the undesired seed pulses from the cavity, and
7 switching the seed pulse in and out of the cavity; and

8 directing an amplified pulse produced in the cavity in a direction away from
9 the oscillator.

1 20. The method of claim 19, wherein the regenerative amplifier system
2 includes a cavity, gain medium, first and second electro-optic switches and an
3 oscillator.

1 21. The method of claim 19, wherein selecting the single seed pulse for the
2 cavity improves a contrast ratio of the amplified pulse to a pre-pulse.

1 22. The method of claim 19, wherein the first electro-optic switch is
2 positioned external to the cavity, and the second electro-optic switch is positioned in
3 the cavity.

1 23. The method of claim 22, wherein the first electro-optic switch selects
2 the single seed pulse for the cavity.

1 24. The method of claim 22, wherein the second electro-optic switch
2 switches the seed pulse in and out of the cavity.

1 25. The method of claim 22, wherein the first electro-optic switch directs
2 the amplified pulse produced in the cavity in a direction away from the oscillator.

1 26. A method for producing an amplified pulse, comprising:
2 providing a regenerative amplifier system that includes a cavity, gain medium,
3 an electro-optic switch for switching a pulse in to and out of the amplifier and an
4 oscillator;
5 producing a pump beam from a pump source;
6 producing multiple seed pulses from the oscillator;
7 generating a high voltage pulse with on and off voltage edges to drive the
8 electro-optic switch; and
9 synchronizing the on and off voltage edges applied to the electro-optic switch
10 by counting pulses from the oscillator.

1 27. The method of claim 26, wherein synchronizing the on and off voltage
2 edges applied to the electro-optic switch reduces jitter in the voltage edges.

1 28. The method of claim 26, wherein synchronizing the on and off voltage
2 edges applied to the electro-optic switch increases the pre-pulse contrast ratio.

1 29. The method of claim 26, wherein synchronizing the on and off voltage
2 edges applied to the electro-optic switch increases the post-pulse contrast ratio