## $01100111\ 01101111\ 00100000\ 01100111\ 01100101\ 01110100\ 00100000\ 01100001\ 00100000$ $01101100\ 01101001\ 01100101$

## MINTERM, MAXTERM:

Maxterm is the sum of zeros Minterm is the product of ones

• Each maxterm is *false* for exactly one combination of inputs.

| Row<br>number | $x_1$ | $x_2$ | $x_3$ | Minterm                                              | Maxterm                                                  |
|---------------|-------|-------|-------|------------------------------------------------------|----------------------------------------------------------|
| 0             | 0     | 0     | 0     | $m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ | $M_0 = x_1 + x_2 + x_3$                                  |
| 1             | 0     | 0     | 1     | $m_1 = \overline{x}_1 \overline{x}_2 x_3$            | $M_1 = x_1 + x_2 + \overline{x}_3$                       |
| 2             | 0     | 1     | 0     | $m_2 = \overline{x}_1 x_2 \overline{x}_3$            | $M_2 = x_1 + \overline{x}_2 + x_3$                       |
| 3             | 0     | 1     | 1     | $m_3 = \overline{x}_1 x_2 x_3$                       | $M_3 = x_1 + \overline{x}_2 + \overline{x}_3$            |
| 4             | 1     | 0     | 0     | $m_4 = x_1 \overline{x}_2 \overline{x}_3$            | $M_4 = \overline{x}_1 + x_2 + x_3$                       |
| 5             | 1     | 0     | 1     | $m_5 = x_1 \overline{x}_2 x_3$                       | $M_5 = \overline{x}_1 + x_2 + \overline{x}_3$            |
| 6             | 1     | 1     | 0     | $m_6 = x_1 x_2 \overline{x}_3$                       | $M_6 = \overline{x}_1 + \overline{x}_2 + x_3$            |
| 7             | 1     | 1     | 1     | $m_7 = x_1 x_2 x_3$                                  | $M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$ |

MSP: minimal sum of products (simplify the equation) ALSO BEEN A SOP

Valid Example:

$$X'Y' + YZ + X'Y = X+YZ$$

Invalid Example:

$$XY+XZ = X(Y+Z) // NOT A MSP!$$

 $01100111\ 01101111\ 00100000\ 01100111\ 01100101\ 01110100\ 00100000\ 01100001\ 00100000$   $01101100\ 01101001\ 01100110$ 

Design an Adder for 1-bit numbers: It's the same as Half adder , but different name

OVERFLOW: if you want to make an adder, but you want to deal with 2's complements, you need overflow to detect,

