Porazdelitev praštevil

Matevž Miščič

Fakulteta za matematiko in fiziko

21. 8. 2023

Praštevila

Praštevila

Definicija

Praštevilo je naravno število, ki ima natanko dva delitelja.

Naravno število, ki ima vsaj tri delitelje, imejujemo **sestavljeno število**.

Matevž Miščič (FMF) Porazdelitev praštevil 21. 8. 2023

Praštevila

Definicija

Praštevilo je naravno število, ki ima natanko dva delitelja. Naravno število, ki ima vsaj tri delitelje, imejujemo **sestavljeno število**.

Zgled

Prvih nekaj praštevil je $2, 3, 5, 7, 11, 13, \ldots$

Število 6 je sestavljeno število, ker ima štiri delitelje: 1, 2, 3, 6.

Trditev

Vsako naravno število, večje od 1, se da zapisati kot produkt praštevil.

Trditev

Vsako naravno število, večje od 1, se da zapisati kot produkt praštevil.

Trditev

Praštevil je neskončno mnogo.

Praštevilski izrek

Med večjimi števili so praštevila bolj redka.

Praštevilski izrek

Med večjimi števili so praštevila bolj redka.

Definicija

Za naravno število $n \in \mathbb{N}$ s $\pi(n)$ označimo število praštevil manjših ali enakih n.

Praštevilski izrek

Med večjimi števili so praštevila bolj redka.

Definicija

Za naravno število $n \in \mathbb{N}$ s $\pi(n)$ označimo število praštevil manjših ali enakih n.

Zanima nas, kako raste funkcija π .

Izrek (Čebišov)

Obstajata pozitivni realni števili A,B>0, da za vsak dovolj velik $n\in\mathbb{N}$ velja

$$A\frac{n}{\log n} < \pi(n) < B\frac{n}{\log n}.$$

Izrek (Praštevilski izrek)

Velja

$$\lim_{n\to\infty}\frac{\pi(n)}{n/\log n}=1.$$

Zgled

Če je a=3 in b=6, dobimo aritmetično zaporedje $6,9,12,15,18,21,24,\ldots$ V tem zaporedju so vsi členi deljivi s 3, ki je največji skupni delitelj a in b.

Zgled

Če je a=3 in b=6, dobimo aritmetično zaporedje $6,9,12,15,18,21,24,\ldots$ V tem zaporedju so vsi členi deljivi s 3, ki je največji skupni delitelj a in b.

Izrek (Dirichlet)

Naj bosta $a, b \in \mathbb{N}$ tuji si števili. Potem je med členi zaporedja $an + b, n \in \mathbb{N}_0$ neskončno praštevil.

Zgled

Če je a=3 in b=6, dobimo aritmetično zaporedje $6,9,12,15,18,21,24,\ldots$ V tem zaporedju so vsi členi deljivi s 3, ki je največji skupni delitelj a in b.

Izrek (Dirichlet)

Naj bosta $a,b \in \mathbb{N}$ tuji si števili. Potem je med členi zaporedja $an+b,n \in \mathbb{N}_0$ neskončno praštevil.

Zgled

Če je a=3 in b=8, dobimo zaporedje $8,11,14,17,20,23,26,29,\ldots$ Od tega so 11,17,23,29 praštevila. Po Dirichletovem izreku obstaja neskončno praštevilskih členov tega zaporedja.

Trditev

Med števili oblike 6n + 5 je neskončno praštevil.

Razmaki med praštevili

Trdiitev

Obstajajo poljubno veliki bloki zaporednih naravnih števil, ki so vsa sestavljena števila.

Matevž Miščič (FMF) Porazdelitev praštevil 21. 8. 2023 12 / 20

Razmaki med praštevili

Trditev

Obstajajo poljubno veliki bloki zaporednih naravnih števil, ki so vsa sestavljena števila.

Po praštevilskem izreku je povprečen razmak med preštevili manjšimi od n približno $\log n$. Razmaki torej postajajo vse večji.

Matevž Miščič (FMF) Porazdelitev praštevil 21. 8. 2023

Praštevilski dvojček je par praštevil (p,q), za katerega velja q-p=2.

Praštevilski dvojček je par praštevil (p,q), za katerega velja q-p=2.

Zgled

Primeri praštevilskih dvojčkov so (3, 5), (5, 7), (9, 11), (11, 13).

Praštevilski dvojček je par praštevil (p,q), za katerega velja q-p=2.

Zgled

Primeri praštevilskih dvojčkov so (3,5), (5,7), (9,11), (11,13).

Domneva

Ali obstaja neskončno praštevilskih dvojčkov?

Bertrandov postulat

Izrek

Za vsako naravno število $n \in \mathbb{N}$ obstaja praštevilo p za katero velja n .

Izrek je prvi dokazal Pafnuti Čebišov leta 1850, mi pa si bomo ogledali enostavnejši dokaz, ki ga je podal Paul Erdős leta 1932.

Paul Erdős

Binomski koeficienti

Definicija

Binomski koeficient je število

$$\binom{n}{k} = \frac{(n)!}{(n-k)! \, k!}.$$

Binomski koeficienti

Definicija

Binomski koeficient je število

$$\binom{n}{k} = \frac{(n)!}{(n-k)! \, k!}.$$

Centralni binomski koeficient je število

$$C_n = \binom{2n}{n} = \frac{(2n)!}{n!^2}.$$

Centralni binomski koeficient je število

$$C_n = \binom{2n}{n} = \frac{(2n)!}{n!^2}.$$

Prvih nekaj centralnih binomskih koeficientov je $C_1 = 2, C_2 = 6, C_3 = 20, C_4 = 70, C_5 = 252.$

Centralni binomski koeficient je število

$$C_n = \binom{2n}{n} = \frac{(2n)!}{n!^2}.$$

Prvih nekaj centralnih binomskih koeficientov je $C_1 = 2, C_2 = 6, C_3 = 20, C_4 = 70, C_5 = 252.$

Lema 1

Za vsako naravno število n velja $\frac{4^n}{2n} \leq C_n$.

Centralni binomski koeficient je število

$$C_n = \binom{2n}{n} = \frac{(2n)!}{n!^2}.$$

Prvih nekaj centralnih binomskih koeficientov je $C_1=2, C_2=6, C_3=20, C_4=70, C_5=252.$

Lema 1

Za vsako naravno število n velja $\frac{4^n}{2n} \leq C_n$.

Lema 2

Za vsako naravno število $n \in \mathbb{N}$ za praštevilski razcep $C_n = p_1^{a_1} \cdots p_r^{a_r}$ velja $p_i^{a_i} \leq 2n$ za vsak $i = 1, \ldots, r$.

Lema 3

Za vsako naravno število $n \in \mathbb{N}$ in praštevilo $p z \frac{2n}{3} velja, da <math>p$ ne deli C_n .

Lema 3

Za vsako naravno število $n \in \mathbb{N}$ in praštevilo $p \ z \ \frac{2n}{3} velja, da <math>p$ ne deli C_n .

Definicija

Za naravno število $n \in \mathbb{N}$ definirajmo n-to primorielo kot produkt vseh praštevil manjših ali enakih n in jo označimo z n#.

Lema 3

Za vsako naravno število $n \in \mathbb{N}$ in praštevilo $p \ z \ \frac{2n}{3} velja, da <math>p$ ne deli C_n .

Definicija

Za naravno število $n \in \mathbb{N}$ definirajmo n-to primorielo kot produkt vseh praštevil manjših ali enakih n in jo označimo z n#.

Lema 4

Za vsako naravno število $n \in \mathbb{N}$ velja $n\# < 4^n$.

