

Progress Towards Error Correction (Scaling)

In same device: more qubits and connectivity, lower errors

Need to specify average, not hero gates

Qubit Control

Analog control
Optimal (shaped) waveforms

After years of research, errors ~1%
Typically degrade for array
No error tradeoffs to simplify control

Sycamore array: 2-qubit gates 0.6% Improve coherence time, control Retain control flexibility

Need complex control

Thy: 2 param's/gate

Exp: 100 param's/qubit

Information complexity

1 Gs/s shaped waveform 10kB waveform memory

Scaling of control uses CMOS

Outline

- 1) Quantum Systems Engineering tradeoffs
- 2) Error correction surface code
- 3) Technical readiness level maturity
- 4) Software and scaling
- 5) Scalable control system info. constraints, size
- 6) Testing 40% of effort
 - (Cloud services as system testing)
 - System benchmarking XEB
 - Surface code experiment

Quantum Systems Engineering

For one device, qubits have

Coherence

Coupling

Measurement

Low errors

competing requirements

- Good control <u>each</u> qubit
- Room for control circuitry
- Reprogrammable
- Flexible architecture
- Scalable general purpose

What's so hard?

Systems vs. Control:

Can't copy quantum information
Hard to separate into sub-functions

Example: System Spec's for Error correction

Surf Code System Requirement

0.1%	10x below threshold
1000	Qubit number for 10 ⁻¹⁰ error
4 NN	Architecture (connectivity)
SupComp	Error decoding complexity
Larger	Logical qubits
Yes	1-logical gate
Braiding	CNOT gate
Physical	Measurement
Yes	Parallel logical gates
Yes	Long distance logical gates
90%	T-state distillation overhead
Ok?	Sensitivity to correlated errors (y-rays)

Technical Readiness Level

TRL

- Need to predict to optimize and scale
- Tend to overestimate deductive knowledge

Practical tool

Software: How to Scale

- 1) Designs must be turned into software to scale Hardware: need step-by-step recipe
- 2) Stack easy; interfaces are subtle and critical
- 3) Interface example: control system
 - a) Program waveforms to FPGA: slower, but general
 - b) Program gates to FPGA: faster, but more constrained
 - c) After a), then b) to microprocessor next to FPGA
- 4) Reliability is key to scaling
 - a) Good specifications & documentation
 - b) Testing
 - c) Expert code review
 - d) Continuous software testing of system

Information Constraints on Scalable Control

arXiv: 2012:14270

Present technology

100+ param's per qubit for error optimization

Large area & volume

Large qubits?

Maybe future

Eng. margin to simplify control

If low error qubits (<0.01%)

Error Characterization

- 1) Quantum state and process tomography
 - a) Most fundamental
 - b) Full quantum description with phases
 - c) Hard to separate out SPAM (state prep. and meas.) errors
 - d) Not obvious how to improve gates
 - e) Scales badly 2^{4N}, difficult beyond few qubits
 - f) (Not what needed for error correction)

- 2) Randomized benchmarking (RB)
 - a) Errors from random but repeated gates
 - b) Subtracts away SPAM
 - c) More scalable, but hard to invert for large number
 - d) Uses Clifford gates, not matched to analog control
- 3) Cross-entropy benchmarking (XEB)
 - a) Similar to RB
 - b) But for arbitrary gates: best fit + error
 - c) Can measure purity (decoherence only)
 - d) Can be used to optimize, even every gate
 - e) Works up to 30-50 qubits (or more with appx.'s)
 - f) Predicts performance with error probability (not ampl.)

Testing the 54-qubit Sycamore Processor

4-NN: Forward compatible SC error correction

Adjustable coupler:

- +: low off errors fast
- -: more control wires

Control Hardware

Custom built High speed High precision

Low Errors using Fast 2-Qubit Gates (12 ns)

Average error Isolated Simultaneous Single-qubit (e1) 0.15% 0.16% Two-qubit (e2) 0.36% 0.62% Two-qubit, cycle (e2c) 0.65% 0.93% Readout (er) 3.1% 3.8%

Need to quote: **All** qubits **Average** and **Simultaneous**

Quantum Supremacy Data

Summary

- Scaling also includes Quantum Systems Engineering
- 2) Low errors is a scaling issue
- 3) Technical readiness better physics
- 4) Information constraints on control
- 5) Importance of testing & benchmarks

