

Sharif University of Technology

Department of Computer Engineering

Low Power Digital System Design

Gate-Level and Circuit-Level Techniques (Cont.)

A. Ejlali

Input Reordering

- Input Reordering: Changing the spatial order in which the inputs are entered to a Boolean network without changing the network logic.
 - Input reordering at the gate level of abstraction
 - Activity Postponement
 - Input reordering at the circuit level of abstraction
 - Sometimes requires transistor reordering

Activity Postponement

- The basic concept is to postpone introduction of high activity signals as long as possible. In this way, the fewest gates are affected by the rapidly switching signals.
 - Objective: Reducing activity α
- Example:

Activity Postponement: Example 2

$$F(A, B, C, D) = AB + BC + CD =$$

 $F_1(A, B, C, D) = B(A + C) + CD =$
 $F_2(A, B, C, D) = AB + C(B + D) =$

- Assuming that:
 - A:P1=1/2
 - B:P1=1/4
 - C:P1=1/4
 - D:P1=1/4
- When A is a rapidly switching signal F_2 dissipates less switching power than F_1 .

Example 2 (Cont.)

$$F(A, B, C, D) = AB + BC + CD = B(A + C) + CD = AB + C(B + D)$$

Input reordering at the circuit level

- The main objective is to reduce the switching power of low capacitance internal nodes.
 - Diffusion capacitance $\cong 20\%$ of the gate capacitance
- Rules for input ordering (transistor ordering):
 - Signals with a high probability of switching are placed nearest the output.
 - Signals with a high probability of being off are placed nearest the output.
 - Signals with high probability of being on are placed nearest the supply node.

Input and Transistor Reordering

Input Reordering

Transistor Reordering

Assignment

- Design a parity generator circuit with minimum PDP (Power Delay Product)
 - 8-bit Parity Generator

• Probability distribution:

$$P(B_i = 1) = \frac{1}{2^{i+1}}$$

- LSB: *i*=0, MSB: *i*=7
- The probabilities are independent
- Gate level estimation:
 - Power = Transition * Fan-out
 - Delay = Number of circuit levels (Only 2-input XOR gates are allowed)

References

C.-Y. Tsui, et. al., "Power Efficient Technology Decomposition and Mapping Under an Extended Power Consumption Model", IEEE Transactions on CAD, 1994.

B. Moyer, "Low-Power Design for Embedded Processors", Proceedings of the IEEE, 2001.