Lecture 7

Binary Search Trees and Red-Black Trees

Motivation for binary search trees

- We've been assuming that we have access to some basic data structures:
 - (Sorted) linked lists

• (Sorted) arrays

1 2 3 4 5 7 8

Sorted linked lists

 O(1) insert/delete (assuming we have a pointer to the location of the insert/delete):

HEAD
$$\rightarrow$$
 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 7 \rightarrow 8 \rightarrow 0(n) search/select:

Sorted Arrays

1 2 3 4 5 7 8

O(n) insert/delete:

O(log(n)) search, O(1) select:

The best of both worlds

TODAY!

	Sorted Arrays	Linked Lists	Binary Search Trees*
Search	O(log(n))	O(n)	O(log(n))
Insert/Delete	O(n)	O(1)	O(log(n))

- It's a binary tree so that:
 - Every LEFT descendent of a node has key less than that node.
 - Every RIGHT descendent of a node has key larger than that node.
- Example of building a binary search tree:

- It's a binary tree so that:
 - Every LEFT descendent of a node has key less than that node.
 - Every RIGHT descendent of a node has key larger than that node.
- Example of building a binary search tree:

- It's a binary tree so that:
 - Every LEFT descendent of a node has key less than that node.
 - Every RIGHT descendent of a node has key larger than that node.
- Example of building a binary search tree:

- It's a binary tree so that:
 - Every LEFT descendent of a node has key less than that node.
 - Every RIGHT descendent of a node has key larger than that node.
- Example of building a binary search tree:

- It's a binary tree so that:
 - Every LEFT descendent of a node has key less than that node.
 - Every RIGHT descendent of a node has key larger than that node.
- Example of building a binary search tree:

Aside: this should look familiar

kinda like QuickSort

- It's a binary tree so that:
 - Every LEFT descendent of a node has key less than that node.
 - Every RIGHT descendent of a node has key larger than that node.

SEARCH in a Binary Search Tree definition by example

EXAMPLE: Search for 4.

EXAMPLE: Search for 4.5

- It turns out it will be convenient to return 4 in this case
- (that is, **return** the last node before we went off the tree)

INSERT in a Binary Search Tree

EXAMPLE: Insert 4.5

- INSERT(key):
 - x = SEARCH(key)
 - **if** key > x.key:
 - Make a new node with the correct key, and put it as the right child of x.
 - **if** key < x.key:
 - Make a new node with the correct key, and put it as the left child of x.
 - **if** x.key == key:
 - return

DELETE in a Binary Search Tree

EXAMPLE: Delete 2

- DELETE(key):
 - x = SEARCH(key)
 - **if** x.key == key:
 -delete x....

How long do these operations take?

- SEARCH is the big one.
- Everything else just calls SEARCH and then does some small O(1)-time operation.

Wait...

What to do?

Keep track of how deep the tree is getting.

Idea 1: Rotations

 Maintain Binary Search Tree (BST) property, while moving stuff around.

This seems helpful

Idea 2: have some proxy for balance

- Maintaining perfect balance is too hard.
- Instead, come up with some proxy for balance:
 - If the tree satisfies [SOME PROPERTY], then it's pretty balanced.
 - We can maintain [SOME PROPERTY] using rotations.

Red-Black Trees

- A Binary Search Tree that balances itself!
- No more time-consuming by-hand balancing!
- Be the envy of your friends and neighbors with the time-saving...

Red-Black tree.

Maintain balance by stipulating that black nodes are balanced, and that there aren't too many red nodes.

It's just good sense!

Red-Black Trees

these rules are the proxy for balance

- Every node is colored red or black.
- The root node is a black node.
- NIL children count as black nodes.
- Children of a red node are black nodes.

Examples(?)

- Every node is colored red or black.
- The root node is a black node.
- NONE children count as black nodes.
- Children of a red node are black nodes.
- For all nodes x:
 - all paths from x to NONE's have the same number of black nodes on them.

That turns out the be basically right.

Χ

[proof sketch]

- Say there are b(x) black nodes in any path from x to NONE.
 - (including x).

• Claim:

- Then there are at least 2^{b(x)} 1 nodes in the subtree underneath x.
- [Proof by induction on board if time]

Then:

$$n \geq 2^{b(root)} - 1$$
 using the Claim $\geq 2^{height/2} - 1$ b(root) >= height/2 because of RBTree rules.

Rearranging:

$$n+1 \ge 2^{height/2} \Rightarrow height \le 2\log(n+1)$$

Okay, so it's balanced... ...but can we maintain it?

Yes!

- Make a new red node.
- Insert it as you would normally.

- Make a new red node.
- Insert it as you would normally.
- Fix things up if needed.

Example: insert 0

What if it looks like this?

- Make a new red node.
- Insert it as you would normally.
- Fix things up if needed.

3

Example: insert 0

Can't we just insert 0 as a **black node?**

- Make a new red node.
- Insert it as you would normally.
- Fix things up if needed.

Need to argue:

RB-Tree properties still hold.

- What about the red root?
 - if 6 is actually the root, color it black.
 - Else, recursively re-color up the tree.

Now the problem looks like this, where I'm inserting 6

What if it looks like this?

Example: insert 0

ish

-1

3 7

- Make a new red node.
- Insert it as you would normally.

What if it looks like this?

• Fix things up if needed.

Example: Insert 0.

- Actually, this can't happen?
- It might happen that we just turned 0 red from the previous step.
- Or it could happen ifis actually NIL.

Recall Rotations

 Maintain Binary Search Tree (BST) property, while moving stuff around.

- Make a new red node.
- Insert it as you would normally.
- Fix things up if needed.

That's basically it

- A few things still left to check for INSERT!
 - Anything else that might happen looks basically like what we just did.
 - Formally dealing with the recursion.
 - You check these! (or see CLRS)
- DELETE is similar.

The punchline:

- Red-Black Trees always have height at most 2log(n+1).
- As with general Binary Search Trees, all operations are O(height)
- So all operations are O(log(n)).

Conclusion: The best of both worlds

	Sorted Arrays	Linked Lists	Balanced Binary Search Trees
Search	O(log(n))	O(n)	O(log(n))
Insert/Delete	O(n)	O(1)	O(log(n))

Summary

- Balanced binary trees are the best of both worlds!
- But we need to keep them balanced.
- Red-Black Trees do that for us.
 - We get O(log(n))-time INSERT/DELETE/SEARCH
 - Clever idea: have a proxy for balance