Comp305

Biocomputation

Lecturer: Yi Dong

Comp305 Part I.

Artificial Neural Networks

Topic 2.

The McCulloch-Pitts Neuron (1943)

The McCulloch-Pitts Neuron (1943)

McCulloch and Pitts modelled the neuron as

- a **binary**, **discrete-time** input
- with excitatory and inhibitory connections and an excitation threshold.

MP-Neuron Logic: Two Inputs

a_1	a_2	"AND"
1	1	1
0	1	0
1	0	0
0	0	0

"AND" – the output fires if a_1 and a_2 both fire.

MP-Neuron Logic: Two Inputs

a_1	a_2	"OR"
1	1	1
0	1	1
1	0	1
0	0	0

"OR" – the output fires if a_1 fires or a_2 fires or both fire.

MP-Neuron Logic: Two Inputs

a_1	"NOT"
1	0
0	1

"NOT" – the output fires if a_1 does NOT fire and vice versa.

MP-Neuron as a Register Cell

a_1	"Reg"
1	1
0	0

$$a^{t-1} \xrightarrow{1} 1 \qquad X^t = a^{t-1}$$

Such a single neuron thus behaves as a single register cell able to <u>retain the input for one period elapsing between two instant</u>.

(Extended) MP-Neuron as a Memory Cell

With a <u>feedback loop</u> closed around the neuron, as it is shown above, we obtain a memory cell. Note that it is not a single MP-neuron with the classical definition.

Topic of Today's Lecture

What kind of propositions can be represented by a single MP neuron (without time)?

Representation Power

 A single MP neuron splits the input space (4 points in the case of 2 inputs) into two halves

• A single MP neuron splits the input space (4 points in the case of 2 inputs) into two halves

• Two categories: Points lying on or above the line $\sum_{i=1}^2 a_i - 1 = 0$ and points lying below this line

• In other words, all inputs firing the neuron will be one side of the line, while all inputs inhibiting the neuron lie on the other side.

• Does a MP neuron implement a boundary that linearly separates the input space? Let us see more examples...

• For "AND" operation, the MP neuron above represents a decision maker separating the input space linearly with $\sum_{i=1}^{2} a_i - 2 = 0$

Geometric Interpretation: Multiple Inputs Case

• What if we have more than 2 inputs?

Geometric Interpretation: Multiple Inputs Case

- What if we have more than 2 inputs?
- Instead of a line, we have a plane.

Representation Power of a single MP Neuron

- A single MP neuron can be used to represent <u>some</u> Boolean functions which are linearly separable.
- Linear separability (for Boolean functions): There exists a line (plane) such that all inputs which produce a 1 for the function lie on one side of the line (plane) and all inputs which produce a 0 lie on other side of the line (plane).

Representation Power of a single MP Neuron

- A single MP neuron can be used to represent <u>some</u> Boolean functions which are linearly separable.
- Linear separability (for Boolean functions): There exists a line (plane) such that all inputs which produce a 1 for the function lie on one side of the line (plane) and all inputs which produce a 0 lie on other side of the line (plane).
- Completeness: Can each linearly separable function be represented by a single MP neuron?

A Counterexample

• Try to prove there is no single MP neuron implementation for the linear separable function indicated in the figure.

Representation Power of a single MP Neuron

- A single MP neuron can be used to represent <u>some</u> Boolean functions which are linearly separable.
- Linear separability (for Boolean functions): There exists a line (plane) such that all inputs which produce a 1 for the function lie on one side of the line (plane) and all inputs which produce a 0 lie on other side of the line (plane).
- Completeness: Can each linearly separable function be represented by a single MP neuron? <u>No</u>!

Representation Power of a single MP Neuron

- A single MP neuron can be used to represent <u>some</u> Boolean functions which are linearly separable.
- Linear separability (for Boolean functions): There exists a line (plane) such that all inputs which produce a 1 for the function lie on one side of the line (plane) and all inputs which produce a 0 lie on other side of the line (plane).
- Completeness: Can each linearly separable function be represented by a single MP neuron? <u>No</u>!
- Is there any other function that can be represented by an MP neuron?

What if we have inhibitory connections?

• Enumerating all the cases, it is easy to obtain that only (0,1) fires the neuron. Does the neuron act as a linear boundary in this case?

Recall the definition of MP neuron.

$$X^{t} = 1$$
 if and only if $S^{t-1} = \sum_{i=1}^{n} w_{i} a_{i}^{t-1} \ge \theta$, and $w_{i} > 0$, $\forall a_{i}^{t-1} > 0$.

Assume that $w_1 = -1$,

$$S^{t-1} = \begin{cases} -1, & a_1 = 1 \\ \sum_{i=2}^n w_i a_i^{t-1} & a_1 = 0 \end{cases}$$
 A plain as a linear boundary.

Recall the definition of MP neuron.

$$X^{t} = 1$$
 if and only if $S^{t-1} = \sum_{i=1}^{n} w_{i} a_{i}^{t-1} \ge \theta$, and $w_{i} > 0$, $\forall a_{i}^{t-1} > 0$.

Assume that $w_1 = -1$,

$$S^{t-1} = \begin{cases} -1, & a_1 = 1 \\ \sum_{i=2}^{n} 1 \times a_i^{t-1} & a_1 = 0 \end{cases}$$
 A plain as a linear boundary.

Recall the definition of MP neuron.

$$X^{t} = 1$$
 if and only if $S^{t-1} = \sum_{i=1}^{n} w_{i} a_{i}^{t-1} \ge \theta$, and $w_{i} > 0$, $\forall a_{i}^{t-1} > 0$.

Assume that $w_1 = -1$,

$$S^{t-1} = \begin{cases} -1, & a_1 = 1 \\ \sum_{i=2}^n a_i^{t-1}, & a_1 = 0 \end{cases}$$
 The face of $a_1 = 1$. A plain as a linear boundary.

After obtaining a boundary, remove the face of $a_1 = 1$ from the positive side.

Recall the definition of MP neuron.

$$X^{t} = 1$$
 if and only if $S^{t-1} = \sum_{i=1}^{n} w_{i} a_{i}^{t-1} \ge \theta$, and $w_{i} > 0$, $\forall a_{i}^{t-1} > 0$.

Assume that $w_1 = -1$,

$$S^{t-1} = \begin{cases} -1, & a_1 = 1 \\ \sum_{i=2}^{n} a_i^{t-1}, & a_1 = 0 \end{cases}$$
 The face of $a_1 = 1$.
$$a_1 = 0$$
 Q: $a_1 = 0$ Q: $a_1 = 1$

After obtaining a boundary, remove the face of $a_1 = 1$ from the positive side.

Recall the definition of MP neuron.

$$X^{t} = 1$$
 if and only if $S^{t-1} = \sum_{i=1}^{n} w_{i} a_{i}^{t-1} \ge \theta$, and $w_{i} > 0$, $\forall a_{i}^{t-1} > 0$.

Assume that $w_1 = -1$,

$$S^{t-1} = \begin{cases} -1, & a_1 = 1 \\ \sum_{i=1}^{n} a_i^{t-1}, & a_1 = 0 \end{cases}$$
 The face of $a_1 = 1$.

For a plane $\sum_{i=1}^n a_i^{t-1} = \theta$, remove the face of $a_1 = 1$ from the positive side.

Recall the definition of MP neuron.

$$X^{t} = 1$$
 if and only if $S^{t-1} = \sum_{i=1}^{n} w_{i} a_{i}^{t-1} \ge \theta$, and $w_{i} > 0$, $\forall a_{i}^{t-1} > 0$.

Assume that $w_1 = -1$,

$$S^{t-1} = \begin{cases} -1, & a_1 = 1 \\ \sum_{i=1}^{n} a_i^{t-1}, & a_1 = 0 \end{cases}$$
 The face of $a_1 = 1$.

For a plane $\sum_{i=1}^{n} a_i^{t-1} = \theta$, remove the face of $a_1 = 1$ from the positive side.

Iteratively do the above, until all the inhibitory connections are considered.

• The state space is consisted of all the vertexes of a cube .

• We first consider the revised neuron as above.

• We first consider the revised neuron as above.

• The we remove the face of $a_1 = 1$ from the positive side.

• The inputs that fire the neuron are (0,1,1), (0,0,1), (0,1,0).

Another example

Another example

• The only input that fires the neuron is (0,0,1).

Representation Power of a single MP Neuron

- A single MP neuron can be used to represent <u>some</u> Boolean functions which are <u>linearly separable</u>.
- Linear separability (for Boolean functions): There exists a line (plane) such that all inputs which produce a 1 for the function lie on one side of the line (plane) and all inputs which produce a 0 lie on other side of the line (plane).
- Completeness: Can each linear separable function be represented by a single MP neuron? No!
- A single MP neuron describes a specific linear boundary that is only determined by the threshold in the hyper-cube state space, removing the faces corresponding to inhibitory connections.