Logica cu predicate de ordinul I Curs 5 - Deducția naturală

Ștefan Ciobâcă

9 ianuarie 2017

Reminder - Sintaxa

O nouă logică, mai expresivă decât LP.

Mulțimea termenilor (\mathcal{T}):

$$t ::= x \mid c \mid f(\underbrace{t, \dots, t}_{n})$$
 $x \in \mathcal{X}, c \in \mathcal{F}_{0}, f \in \mathcal{F}_{n}$

Mulțimea formulelor atomice (At):

$$a := P \mid Q(\underbrace{t, \dots, t}_{n}) \qquad P \in \mathcal{P}_{0}, Q \in \mathcal{P}_{n}$$

Mulțimea formulelor de ordinul I (LP1):

$$F ::= a \mid (\neg F) \mid (F) \mid (F \lor F) \mid (F \land F) \mid (F \to F) \mid (\forall x.F) \mid (\exists x.F) \quad a \in At, x \in \mathcal{X}$$

Reminder - Sintaxa - Exemple

$$P \in LP1$$

$$Q(x) \in LP1 \qquad R\left(h(x), f(x, y)\right) \in LP1 \qquad (\neg Q(f(x, y))) \in LP1$$

$$(P \land Q(x)) \in LP1 \qquad \left(Q(x) \lor R\left(h(x), f(x, y)\right)\right) \in LP1$$

$$(Q(x) \to R(x, y)) \in LP1 \qquad ((Q(x) \land P) \lor Q(y)) \in LP1$$

$$(\forall x.(Q(x) \lor P)) \in LP1 \qquad ((\exists x.Q(x)) \lor (\neg P)) \in LP1$$

Reminder - Semantica LP1 - Exemplu de structură

Fie $\mathcal{F}_0 = \{e\}$, $\mathcal{F}_1 = \{i\}$, $\mathcal{F}_2 = \{f\}$ și $\mathcal{P}_2 = \{equals\}$. Vom considera structura S = (U, I), unde $U = \mathbb{Z}$ si:

1. $I_e:\mathbb{Z}^0 o\mathbb{Z}$, definită prin

$$I_{e}=0;$$

2. $I_i:\mathbb{Z}^1 o\mathbb{Z}$, definită prin

$$I_i(u) = -u,$$

 $I_f(u,v)=u+v,$

pentru orice $u \in \mathbb{Z}$;

3.
$$I_f: \mathbb{Z}^2 \to \mathbb{Z}$$
, definită prin

pentru orice
$$u, v \in \mathbb{Z}$$
;

4. $I_{equals}: \mathbb{Z}^2 \to \mathbb{B}$, definit prin

$$I_{equals}(u,v) = \left\{egin{array}{ll} 1 & \mathsf{dac}reve{a} \ 0 & \mathsf{dac}reve{a} \ u
eq v; \end{array}
ight.$$

5. $I_x \in \mathbb{Z}$, definită prin $I_x = 7$, pentru orice variabilă $x \in \mathcal{X}$.

Reminder - Interpretarea termenilor/formulelor într-o structură

- 1. S(f(f(x,e),i(x))) = 0;
- 2. S(equals(x, y)) = 1;
- 3. S(equals(x, e)) = 0;
- 4. $S[x \mapsto 0](equals(x, e)) = 1;$
- 5. $S(\exists x.(equals(x,e))) = 1;$
- 6. $S(\forall x.(equals(x,e))) = 0;$

Noțiuni semantice

- formulă validă (F este validă dacă este adevărată în orice structură);
- 2. formulă satisfiabilă (F este satisfiabilă dacă este adevărată măcăr într-o structură);
- 3. consecință semantică $(F_1, \ldots, F_n \models F \text{ dacă } F \text{ este adevărată}$ în orice structură în care F_1, \ldots, F_n sunt adevărate).

Semialgoritmi

Input: $F \in LP1$

Output: da/nu, dacă F e validă

Semialgoritm: da, dacă se poate obține □ dintr-o FNSC a formulei

 $\neg F$ prin rezoluție.

Input: $F \in LP1$

Output: da/nu, dacă F e satisfiabilă

Semialgoritm: da, dacă $\neg F$ e validă (folosind semialgoritmul de

mai sus).

Input: $F, F_1, \ldots, F_n \in LP1$

Output, da/nu, dacă $F_1, \ldots, F_n \models F$

Semialgoritm: verifică dacă $(F_1 \wedge \ldots \wedge F_n) \to F$ este validă

(folosind semialgoritmul de mai sus).

Exercițiu. Demonstrați că formula $(F_1 \wedge ... \wedge F_n) \rightarrow F$ este validă ddacă $F_1,...,F_n \models F$.

Demonstrații prin rezoluție

Cum putem convinge pe cineva că $\forall x.(P(x) \rightarrow Q(x)), P(a) \models Q(a)$? Opțiuni:

- 1. Considerăm o structură S astfel încât $S(\forall x.(P(x) \rightarrow Q(x)))$ și S(P(a)) = 1. Arătăm că, în mod necesar, S(Q(a)) = 1. (demonstrație bazată pe semantica LP1);
- 2. Facem o demosntrație pe bază de rezoluție a faptului că formula $\neg((\forall x.(P(x) \rightarrow Q(x)) \land P(a)) \rightarrow Q(a))$ este nesatisfiabilă:
 - 2.1 $\neg P(x) \lor Q(x)$ (clauză din FNSC-ul formulei de mai sus)
 - 2.2 P(a) (clauză din FNSC)
 - 2.3 $\neg Q(a)$ (clauză din FNSC)
 - 2.4 Q(a) (rezoluție între 1 și 2)
 - 2.5 □ (rezoluție între 3 și 4)

Demonstrații prin rezoluție

Cum putem convinge pe cineva că $\forall x.(P(x) \rightarrow Q(x)), P(a) \models Q(a)$?

- 1. $\neg P(x) \lor Q(x)$ (clauză din FNSC-ul formulei de mai sus)
- 2. P(a) (clauză din FNSC)
- 3. $\neg Q(a)$ (clauză din FNSC)
- 4. Q(a) (rezoluție între 1 și 2)
- 5. □ (rezoluție între 3 și 4)

Putem verifica mecanic/sintactic că fiecare pas al demonstrației prin rezoluție este corect (în sensul că respectă regula de rezoluție).

Sisteme Deductive

Rezoluția este un exemplu de sistem deductiv.

Un sistem deductiv este alcătuit dintr-o mulțime de *reguli de inferență*.

Regulă de inferență:

NUMELE REGULII
$$\frac{\mathsf{ipotez}\check{\mathsf{a}}_1}{\mathsf{concluzie}}$$
 \cdots $\frac{\mathsf{ipotez}\check{\mathsf{a}}_n}{\mathsf{condit}}$

Ipotezele și concluziile sunt meta-formule.

Exemplu de sistem deductiv (rezoluția)

Meta-formulele din sistemul deductiv = clauze din LP1.

Reguli de inferență:

(BINARY) RESOLUTION

$$P(t_{1},...,t_{n}) \lor C \neg P(t'_{1},...,t'_{n}) \lor D \quad \sigma \in mgu\{t_{1} \doteq t'_{1},...t_{n} \doteq t'_{n}\}$$

$$var(P(t_{1},...,t_{n}) \lor C) \cap var(\neg P(t'_{1},...,t'_{n}) \lor D) = \emptyset$$

$$(C \lor D)\sigma$$

(Positive) Factoring

$$P(t_1,\ldots,t_n) \vee P(t'_1,\ldots,t'_n) \vee C \qquad \sigma \in mgu\{t_1 \doteq t'_1,\ldots t_n \doteq t'_n\}$$

$$(P(t_1,\ldots,t_n) \vee C)\sigma$$

Exemplu de sistem deductiv (deducția naturală/prezentarea Fitch)

Meta-formulele din sistemul deductiv = formule din LP + "căsuțe/dreptunghiuri".

$$\wedge i \, \frac{F - G}{F \wedge G} \qquad \qquad \wedge e_1 \, \frac{F \wedge G}{F} \qquad \qquad \wedge e_2 \, \frac{F \wedge G}{G}$$

Demonstrație formală într-un sistem deductiv

Definition

O demonstrație formală este o listă de meta-formule, cu proprietatea că fiecare meta-formulă este obținută din meta-formulele anterioare printr-o regulă de inferență a sistemului deductiv.

Exemplu:

1.	$\neg P(x)$	V	Q(x)
	' (^)	•	41	· · ·	,

1. *P*

ipoteză

2. *P*(*a*)

3. $\neg Q(a)$

2. Q

ipoteză

4. Q(a)

5. □

3. $P \wedge Q$

 $\wedge_i 12$

Sistem Deductiv sau

- 1. sistem de inferență
- 2. sistem de demonstrare
- 3. proof system
- 4. deductive system
- 5. inference (rule) system

Deducția naturală

În acest curs vom studia un sistem deductiv important care se numește "deducția naturală":

- 1. Deducția naturală, folosind prezentarea bazată pe secvențe;
- 2. Deducția naturală, folosind prezentarea în stil Fitch.

Deducția naturală - prezentarea bazată pe secvențe

Meta-formulele sunt de forma $F_1, \ldots, F_n \vdash F$ (citesc "F consecință sintactică din F_1, \ldots, F_n "). Aceste meta-formule se mai numesc și "secvente".

Reguli de inferență:

$$\wedge i \; \frac{A \vdash F \qquad A \vdash G}{A \vdash F \land G} \qquad \wedge e_1 \; \frac{A \vdash F \land G}{A \vdash F} \qquad \wedge e_2 \; \frac{A \vdash F \land G}{A \vdash G}$$

Axiome

NUMELE REGULII — condiții concluzie

Regulile de inferență cu n=0 ipoteze sunt axiome.

IPOTEZĂ
$$\overline{A \vdash F} \ F \in A$$

Demonstrație formală

Definiție

O demonstrație formală este o listă de meta-formule din sistemul deductiv astfel încât orice meta-formulă din listă este obținută din formule de mai sus prin aplicarea unor reguli de inferență.

- 1. $P \wedge Q, R \vdash R$ (IPOTEZĂ)
- 2. $P \wedge Q, R \vdash P \wedge Q$ (IPOTEZĂ)
- 3. $P \wedge Q, R \vdash P (\wedge e_1, 2)$
- 4. $P \wedge Q, R \vdash R \wedge P \ (\wedge i, 1, 3)$

Demonstrație formală

Definiție

În mod echivalent, o demonstrație formală este un arbore în care nodurile sunt meta-formule din sistemul deductiv astfel încât orice meta-formulă din arbore este obținută din formulele-copil prin aplicarea unor reguli de inferență.

$$\frac{P \land Q, R \vdash R}{P \land Q, R \vdash R} \xrightarrow{\text{IPOTEZĂ}} \frac{\overline{P \land Q, R \vdash P \land Q}}{P \land Q, R \vdash P} \land e_1}{P \land Q, R \vdash R \land P} \land e_1$$

De ce deducție "naturală"?

Theorem

Dacă "Ana are mere și afară plouă" și "Dacă Ana are mere atunci Ana este fericită", atunci "Ana este fericită".

Demonstrație:

Din prima ipoteză, deoarece este o conjucție, deducem că prima propoziție a conjuncției este adevărată și deci că "Ana are mere". Dar a doua ipoteză ne spune că "Dacă Ana are mere atunci Ana este fericită"; cum am stabilit deja că "Ana are mere", concluzionăm că "Ana este fericită", ceea ce trebuia să demonstrăm.

De ce deducție "naturală"?

$$P \wedge Q, P \rightarrow R \vdash R$$

- 1. $P \wedge Q, P \rightarrow R \vdash P \wedge Q$ (ipoteză)
- 2. $P \wedge Q, P \rightarrow R \vdash P (\wedge e_1 \ 1)$
- 3. $P \land Q, P \rightarrow R \vdash P \rightarrow R$ (ipoteză)
- 4. $P \wedge Q, P \rightarrow R \vdash R (\rightarrow e \ 3 \ 2)$

$$\rightarrow e \frac{A \vdash F \rightarrow G \qquad A \vdash F}{A \vdash G}$$

Deducția naturală (1)

Deducția naturală (2)

$$\forall i_{1} \frac{A \vdash F_{1}}{A \vdash F_{1} \lor F_{2}} \qquad \forall i_{2} \frac{A \vdash F_{2}}{A \vdash F_{1} \lor F_{2}}$$

$$\forall e \frac{A \vdash F_{1} \lor F_{2}}{A \vdash G} \qquad A, F_{1} \vdash G \qquad A, F_{2} \vdash G$$

$$\forall e \frac{A \vdash \forall x.F}{A \vdash F\{x \mapsto t\}} \qquad \forall i \frac{A \vdash F\{x \mapsto x_{0}\}}{A \vdash \forall x.F} x_{0} \notin var(A, F)$$

$$\exists i \frac{A \vdash F\{x \mapsto t\}}{A \vdash \exists x.F}$$

$$\exists e \frac{A \vdash \exists x.F}{A \vdash G} \qquad x_{0} \notin var(A, F, G)$$

Regulile pentru \forall,\exists

$$\forall e \; \frac{A \vdash \forall x.F}{A \vdash F\{x \mapsto t\}}$$

Știu că: (1) pentru orice x, dacă x este număr real, atunci x^2 este nenegativ și că (2) $\sqrt{2}$ este număr real. Arăt că $\sqrt{2}^2$ este nenegativ.

Demonstrație. Din (1), pentru $x=\sqrt{2}$, obținem că dacă $\sqrt{2}$ este număr real, atunci $\sqrt{2}^2$ este nenegativ. Dar din (2) știu că $\sqrt{2}$ este număr real, deci $\sqrt{2}^2$ este nenegativ, q.e.d.

$$\forall x. (P(x) \rightarrow Q(f(x))), P(g(a)) \vdash Q(f(g(a)))$$

- 1. $\forall x.(P(x) \rightarrow Q(f(x))), P(g(a)) \vdash \forall x.(P(x) \rightarrow Q(f(x)))$ (ipoteză)
- 2. $\forall x.(P(x) \rightarrow Q(f(x))), P(g(a)) \vdash P(g(a)) \rightarrow Q(f(g(a))) \ (\forall e \ 1, \ t = g(a))$
- 3. $\forall x. (P(x) \rightarrow Q(f(x))), P(g(a)) \vdash P(g(a))$ (ipoteză)
- 4. $\forall x.(P(x) \rightarrow Q(f(x))), P(g(a)) \vdash Q(f(g(a))) (\rightarrow e \ 3 \ 2)$

Deducția naturală - prezentarea Fitch

Dacă ipotezele A nu se schimbă într-o regulă, nu le mai menționăm:

$$\wedge i \; \frac{F \quad G}{F \wedge G} \qquad \qquad \wedge e_1 \; \frac{F \wedge G}{F} \qquad \qquad \wedge e_2 \; \frac{F \wedge G}{G}$$

Dacă "adaugăm" ipoteze, introducem un chenar în care sunt valabile ipotezele adăugate:

Corectitudine și completitudine pentru deducția naturală

Theorem (Corectitudine)

Pentru orice formule $F_1, \ldots, F_n, F \in LP1$, dacă secvența $F_1, \ldots, F_n \vdash F$ este derivabilă folosind regulile deducției naturale, atunci $F_1, \ldots, F_n \models F$.

Theorem (Completitudine)

Pentru orice formule $F_1, \ldots, F_n, F \in LP1$, dacă $F_1, \ldots, F_n \models F$ atunci secvența $F_1, \ldots, F_n \vdash F$ este derivabilă folosind regulile deducției naturale.

Exemple

- 1. $P(x) \rightarrow Q(x), P(x) \land R(x) \vdash Q(x) \land R(x)$
- 2. $P(t), \forall x. (P(x) \rightarrow \neg Q(x)) \vdash \neg Q(t)$
- 3. $\forall x.(P(x) \rightarrow Q(x)), \forall x.P(x) \vdash \forall x.Q(x)$
- 4. $\forall x.P(x) \vdash \exists x.Q(x)$
- 5. $\forall x.(P(x) \rightarrow Q(x)), \exists x.P(x) \vdash \exists x.Q(x)$
- 6. $\forall x.(Q(x) \rightarrow P(x)), \exists x.(P(x) \land Q(x)) \vdash \exists x.(P(x) \land R(x))$
- 7. $\neg \forall x. P(x) \dashv \vdash \exists x. \neg P(x)$

Sisteme deductive de tip Hilbert

Un sistem de deducție de tip Hilbert are multe axiome și puține reguli de inferență care nu sunt axiome.

$$A1 \frac{1}{F \to (G \to F)}$$

$$A2 \frac{1}{(F \to (G \to H)) \to ((F \to G) \to (F \to H))}$$

$$A3 \frac{1}{(\neg F \to \neg G) \to (G \to F)}$$

$$A4 \frac{1}{\forall x.F \to F\{x \mapsto t\}}$$

$$A5 \frac{1}{\forall x.(F \to G) \to (\forall x.F \to \forall x.G)}$$

$$A6 \frac{1}{F \to \forall x.F} \times \notin free(F)$$

$$MP \frac{F = F \to G}{G}$$