DIFFERENTIABLE MANIFOLDS HOMEWORK 3

DUE MAR. 5, 2013 IN CLASS

(1) Let (x, y) denote the standard coordinates on \mathbb{R}^2 . Suppose (\tilde{x}, \tilde{y}) are given by

$$\tilde{x} = x, \tilde{y} = f(x, y)$$

for a smooth function f defined on \mathbb{R}^2 . Find the condition on f so that \tilde{x} and \tilde{y} become another global smooth coordinates on \mathbb{R}^2 . Show that in general

$$\frac{\partial}{\partial x}|_p \neq \frac{\partial}{\partial \tilde{x}}|_p$$

even though the coordinate functions x and \tilde{x} are identically equal.

(2) Recall that in problem (1) of homework 1, the transition map $\psi \circ \phi^{-1}$ is given by

$$(u,v) \mapsto (\tilde{u},\tilde{v}) = (\frac{4u}{u^2 + v^2}, \frac{4v}{u^2 + v^2}) \text{ for } (u,v) \neq (0,0).$$

Show that the vector filed $u\frac{\partial}{\partial u} + v\frac{\partial}{\partial v}$ can be extend smoothly to the whole S^2 . What about the vector field $v\frac{\partial}{\partial u} - u\frac{\partial}{\partial v}$?

- (3) Consider $T = \mathbb{R}^2/\sim$ in which the equivalence relation is given by $(x,y)\sim(x+1,y)$ and $(x,y)\sim(x,y+1)$. Show that T is a differentiable manifolds and that $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$ are global smooth vector fields on T.
- (4) Let x, y be the standard coordinates on \mathbb{R}^2 and X is a vector field given by $X(x, y) = y \frac{\partial}{\partial x} x \frac{\partial}{\partial y}$. Find a C^{∞} map $\phi : \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$, such that $\phi(0, x, y) = (x, y)$ and $\frac{\partial \phi}{\partial t}(t, x, y) = X(\phi(t, x, y))$.
- \mathbb{R}^2 , such that $\phi(0, x, y) = (x, y)$ and $\frac{\partial \phi}{\partial t}(t, x, y) = X(\phi(t, x, y))$. (5) Let X be the smooth vector field on S^2 which is the extension of $u\frac{\partial}{\partial u} + v\frac{\partial}{\partial v}$ from $U = S^2 \{(0, 0, 1)\}$ to the whole S^2 . Find the one-parameter group of diffeomorphisms ϕ_t generated by X. What is the behavior of ϕ_t near the two poles?
- (6) 8-20 on page 202 of [1].
- (7) 10-13 on page 270 of [1].

Date: Feb. 19, 2013.

References

[1] Lee, John M. Introduction to Smooth Manifolds, Second edition, Graduate Texts in Mathematics, 218, Springer-Verlag, New York, 2012.