Exercises(2) February 27, 2024

- 1. (8 points) Prove that $\sum_{n=1}^{\infty} \frac{x}{n^{\alpha}(1+nx^2)}$ converges uniformly on every finite interval in \mathbb{R} if $\alpha > 1/2$. Is the convergence uniform on \mathbb{R} ? (Justify your answer.)
- 2. (6 points) Let $f_k : \mathbb{R} \to \mathbb{R}$ be a sequence of continuous function. Prove if that f_k converges uniformly to a function f on \mathbb{R} , then

$$\lim_{k \to \infty} f_k(x_k) = f(x)$$

for every sequence of points x_k with $x_k \to x$ in \mathbb{R} .

3. (8 points) Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of real value continuous functions defined on [0, 1] and assume that $f_n \to f$ uniformly on [0, 1]. Prove or disprove

$$\lim_{n \to \infty} \int_0^{1 - 1/n} f_n(x) dx = \int_0^1 f(x) dx.$$

4. (8 points) Suppose g and $f_n(n = 1, 2, 3, ...)$ are defined on $(0, \infty)$, are Riemann-integrable on [t, T] whenever $0 < t < T < \infty$, $|f_n| \le g$, $f_n \to f$ uniformly on every compact subset of $(0, \infty)$, and

$$\int_0^\infty g(x) < \infty.$$

Prove that

$$\lim_{n \to \infty} \int_0^\infty f_n(x) dx = \int_0^\infty f(x) dx.$$