Tutorato Algebra Lineare e Geometria (A.A. 2023/24)

Lezione 6

11/04/2024

Esercizio 1

Consideriamo la matrice

$$A = \begin{pmatrix} 1 & 1 & 2 & 3 \\ 2 & 0 & 1 & 2 \\ 1 & 3 & t & 7 \end{pmatrix}$$

- 1. Calcolare il rango di A al variare di $t \in \mathbb{R}$ mediante l'algoritmo di eliminazione di Gauss.
- 2. Sia t=5 e sia $u=(-1,\alpha,0)$. Determinare per quale valore di α il sistema Ax=u ammette soluzioni.
- 3. Sia t=5. Determinare tutte le soluzioni del sistema Ax=v, con v=(1,1,2).
- 4. Esiste un valore di t tale che il sistema $AX = \vec{0}$ abbia come **unica** soluzione $X = \vec{0}$?

Esercizio 2

Sia $f: \mathbb{R}^4 \to \mathbb{R}^3$ l'applicazione lineare la cui matrice, rispetto alle basi canoniche, è la seguente:

$$A = \begin{pmatrix} 1 & -2 & 1 & 0 \\ 1 & 0 & 2 & -1 \\ 1 & -6 & -1 & 2 \end{pmatrix}$$

- (a) Si determinino le basi del nucleo e dell'immagine di f.
- (b) Dato il vettore $u_t = (7, 2, t, 1)$, si determini t in modo che $u_t \in Ker(f)$.
- (c) Dato il vettore $w_t = (2, t, 0)$ si dica per quale valore di t esiste $f^{-1}(w_t)$.
- (d) Si stabilisca se esiste una funzione lineare $g: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ tale che la funzione composta $f \circ g: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ sia l'identità. Se una tale g esiste se ne determini la matrice associata.

Esercizio 3

Sia $f:\mathbb{R}^4 \to \mathbb{R}^4$ la funzione lineare la cui matrice, rispetto alla base canonica, è la seguente:

$$A = \begin{pmatrix} 0 & 3 & -1 & 1 \\ -1 & 2 & 0 & 1 \\ -2 & 1 & -1 & 3 \\ -1 & 2 & -2 & 3 \end{pmatrix}$$

- (a) Determinare una base del nucleo e una base dell'immagine di f.
- (b) Trovare per quale valore di t il vettore v = (1, 1, t, 1) appartiene all'immagine di f. Per tale valore di t determinare la controimmagine di v.
- (c) Trovare una base di un sottospazio U di dimensione 3 tale che la funzione $f|_U: U \to \mathbb{R}^4$, $u \mapsto f(u)$, sia iniettiva.
- (d) Sia W il sottospazio generato dai vettori $w_1 = (1, 0, -1, 0)$ e $w_2 = (0, 1, 0, -1)$. Verificare che per ogni $w \in W$ si ha $f(w) \in W$. Sia $g: W \to W$ la funzione definita ponendo g(w) = f(w). Scrivere la matrice di g rispetto alla base $\{w_1, w_2\}$ di W.