الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2011

امتحان بكالوريا النعليم الثانوي

الشعبة : رياضيات

المدة: 4 ساعات ونصف

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التعريف الأول: (04.5 نقطة)

 $O(\overline{u}, \overline{v})$ المستوي منسوب إلى المعلم المتعامد المتجانس.

 $z_{c}=\sqrt{3}\left(1+l\right)$ ، $z_{g}=-1+l$ ، $z_{s}=l-l$. للترتيب: $z_{c}=\sqrt{3}\left(1+l\right)$ ، $z_{g}=-1+l$ ، $z_{s}=l-l$. كتب على الشكل الأسى الأعداد السركية: z_{c} ، z_{s} ، z_{c} ، الكتب على الشكل الأسى الأعداد السركية: z_{c} ، z_{s} ، z_{c} ،

المحمد الطويلة وعمدة للعدد العركب $\frac{z_B-z_A}{z_C-z_A}$ ، ثم فستر هندسيا النتائج المحصل عليها.

ب/ حدّد طبيعة المثلث ABC.

3/ عين الاحقة النقطة D بحيث يكون الرباعي ACBD معينا.

z' التحويل النقطي الذي يرفق بكل نقطة M من المستوي لاحقتها z النقطة M' ذات اللاحقة z' عيث: z'=(-1+i)z+1-3i

أ) عين طبيعة التحول T وعناصره المميزة.

ب/ استنتج طبيعة للتحول ToT وعناصره المميزة.

التعرين الثاني: (04.5 نقطة)

 $\left(O\;;ec{i}\;,ec{j}\;,ec{k}\;
ight)$ القضاء منسوب إلى المعلم المتعامد المتجلس

C (-1;1;1) ، B (1;1;4) ، A (1;0;2) انعثير النقط (1;1;1) ، A (1;0;2)

أَمُ أَنْبُتُ أَنَّ النَّفَطَ A ، B و C تَعَيِّنُ مستوباً.

ب/ بيُن أن الشعاع (2-;4;6) عمودي على كل من الشعاعين \overline{AB} و \overline{AC} ثم استنتج معادلة ديكاردنية المستوي (ABC)

 $P_{1}(P_{2}):2x-2y-z-1=0$ و $P_{1}(P_{1}):3x+4y-2z+1=0$ و $P_{2}(P_{2})$ و $P_{1}(P_{2})$ و $P_{2}(P_{1}):2x-2y-z-1=0$ و $P_{1}(P_{2})$ متعامدان.

 P_1 ب عين تمثيلا وسبطيا للمستقيم P_2 تقاطع المستوبين P_1 و P_2

 $A(\Delta)$ لا تَتَمَى إلى O(0;0;0) لا تَتَمَى إلى

 $dig(O;(\Delta)ig)$ واستنتج المسافقين $dig(O;(P_i)ig)$ و $dig(O;(P_i)ig)$

التمرين الثالث: (04 نقاط)

متتالية حسابية متزاودة تعلما حدودها أعداد طبيعية تحقق: (U_n)

$$\begin{cases} m = PPCM (U_3, U_5) \\ d = PGCD (U_3, U_5) \end{cases} : \underbrace{\frac{t_{max}}{t}}_{m+d} \begin{cases} U_4 = 15 \\ m+d = 42 \end{cases}$$

 U_0 عين الحدين U_0 و U_0 ثم استنج I

 U_n لکتب U_n بدلالة u، ثم بيّن أن: 2010 حد من حدود U_n وعين رتبته، U_n

الحد الذي ابتداء منه يكون مجموع 5 حدود متعاقبة من (U_n) يساوي 10080 J

4/ ۾ عدد طبيعي غير معدوم،

 $S = U_0 + U_1 + U_2 + ... + U_{2n}$ أ) احسب بدلالة n المجموع $S = U_0 + U_1 + U_2 + ... + U_{2n}$

 $S_1 = U_0 + U_2 + U_4 + ... + U_{2n}$: جيث $S_1 = S_1$ المجموعين $S_1 = S_1$ المجموعين (ب $S_2 = U_1 + U_3 + U_5 + \dots + U_{2m+1}$

التمرين الرابع: (07 نقاط)

 $f(x) = (3x + 4)x^2$ إلى الدالة العددية f المعرفة على \Re كما يلى: $f(x) = (3x + 4)x^2$

 $\{o(i,j)\}$ تمثیلها البیانی فی المستوی المنسوب الی المعلم المتعامد و العتجانس $\{c_{j}\}$

1/ ا) المصلب الرم الرائم برهن بالقراجع أنَّه من أجل كل عدد طبيعي بر غير معدوم فإن: f المشتقات المتثابعة للدالة $f^{(n)}$ $f^{(n)}$ ، $f^{(n)}$ حيث: $f^{(n)}(x) = (3x + 3n + 4)e^x$

 $y'' = (3x + 16)e^{x}$: أستنتج حل المعادلة التفاضلية

اً) بيتن أن: $6 = (x) = \lim_{x \to \infty} f(x)$ وفسر النتيجة هندسيا

ب) لدرس انجاء تغير الدالة ٢ ثم شكَّل جنول تغير لنها.

 $-rac{-10}{2}$ اكتب معادلة للمماس (Δ) للمتحنى ($C_{
m p}$) في النقطة Ω التي فاصلتها $-rac{-10}{2}$ -

 (C_f) , (C_f) , (C_f) , (C_f) , (C_f)

ج) ارسم (۵) و (رC_f) على المجال [0;∞-[.

اً x عدد حقيقي من المجال [0;0]، باستعمال التكامل بالتجزئة جد $[a^{\dagger}dt]$ ثم استنتج دالة أصطبة xللدالة f على المجال[0;∞-[.

ب) لاعدد حقيقي أصغر شماما من 🚣-

احسب بدلالة χ المساحة $\Lambda(\lambda)$ للحيز من المستوى المحدد بالمنحني (γ) و المستقيمات التي $\lim_{\lambda \to -\infty} A(\lambda)$ محادلاتها: y = 0 ، $x = \lambda$ و $x = -\frac{4}{3}$ ، y = 0

الموضسوع الثائسي

التمرين الأولى: (04 نقاط)

(1) نعتبر المعادلة : (E) ... (E) = 13x - 7y = -1 حوث: $x \in Y$ عددان صحيحان. حل المعادلة (E).

$$\begin{cases} a \equiv -1[7] \\ a \equiv 0[13] \end{cases}$$
 :حيث الأعداد الصحيحة النسبية $a \equiv 0[13]$

ادرس حسب قيم العند الطبيعي « ، بواقي القسمة الإقليدية العند "9 على كل من 7 و 13.

 $\overline{lpha^{00}eta^{086}}$: ليكن العند الطبيعي b المكتوب، في نظام التعداد ذي الأساس a كما يلي a عددان طبيعيان a

عَيْنِ α و β حتى يكون b قابلاً للقيمة على 91.

التمرين الثاني: (05 نقاط)

 $\left(O; \widetilde{i}, \widetilde{f}, \widetilde{k}'
ight)$ الغضباء منسوب إلى المعلم المتعامد المتجانس

 $G\left(rac{1}{3};rac{2}{3};i
ight)$ و C(0;0;3) ، B(0;2;0) ، A(1;0;0) و نعتبر النقط

C المستقيم الذي يشمل النقطة R وشعاع توجيهه $\sqrt{-1};1;rac{3}{2}$ و A المستقيم الذي يشمل النقطة C وشعاع توجيهه $\sqrt{-1};1;-3$

 $\{-1\}$ اكتب تعثيلا ومبيطيا لكل من المستقيمين $\{D\}$ و $\{\Delta\}$ ثم ادرس الوضع النصبي لهما.

ثن ان: $\overline{GA} + \overline{GB} + \overline{GC} = 0$ ، ملاا تستنج بالنسبة للنقطة -2

3- عين شعاعا ناظميا ۾ لئمستري (ABC) ثم لکتب معادلة له.

4- احسب المسافة بين النقطة O والعستوي (ABC).

B المستقط العمودي للنقطة B على المستقيم H

ا) جد إحداثيات النقطة ١٠٠

ب) استنج المسافة بين النقطة B والمستقيم (D).

التمرين الثالث: (04 نقاط)

أجب بمحديج أر خطأ مع التبرير في كل حالة من الحالات الأتية:

 $-\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}$ هو $a = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$ هو أ1/1

a حيث: \overline{a} مراثق $a^{2011} + \overline{a} = 0$

 $(O;\overline{u},\overline{v})$ في المنسوب إلى المعلم المتعامد والمتجلس $(O;\overline{u},\overline{v})$.

اً) التحويل 7 الذي كتابته المعركبة:
$$z' = \left(-\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right)z$$
 دور ان زاويته $-\frac{\pi}{4}$ ومركزه مبدأ المعلم

ب) مجموعة النقط M ذلت اللاحقة z حيث: $\frac{-\pi}{4} = \frac{\pi}{4}$ هي المستقيم (۵) الذي يشمل النقطة إر ذات اللاحقة i وشعاع توجيهه T لاحقته i+1 .

$$u_{n+1} = \frac{3}{4}u_n + \frac{1}{6}$$
 . n was decomposed by $u_0 = \frac{1}{12}$: $u_0 = \frac{1}{12}$ (u_n) /3

$$u_n = -\frac{7}{12} \left(\frac{3}{4}\right)^n + \frac{2}{3} \left(\frac{1}{4}\right)^n$$

ب) (µ_n) متناقصة نماما على N

يد) (μ_n) مثباعدة

التمرين الرابع: (07 نقاط)

 $g(x) = x^2 + \ln x^2 - 1$ إلدالة العددية المعرفة على المجال $g(x) = x^2 + \ln x^2 - 1$ إلدالة العددية المعرفة على المجال $g(x) = x^2 + \ln x^2 - 1$

إل ادرس انجاه تغير الدائة ع ثم شكل جدول تغير انها.

g(x) في المجال g(x) في المجال g(x) في المجال g(x)

 $f(x) = (1 - \frac{1}{x^2}) \ln x$: كما يلي: $g(x) = (1 - \frac{1}{x^2}) \ln x$ الدالة العددية المعرفة على المجال f(x)

 $oldsymbol{c}_{(C_f)}$ و $oldsymbol{c}_{(C_f)}$ مثيلها البياني في المستوي المزود بالمعلم المتعامد المتجانس $oldsymbol{c}_{(C_f)}$

$$f'(x) = \frac{g(x)}{x^3}$$
 ولن: $f(x) = \frac{g(x)}{x^3}$ ولن: $f(x) = \frac{g(x)}{x^3}$

استتنج اتجاء تغير الدالة ﴿ أَنَّمَ شَكَّلَ جَمُولَ تَغَيِّر النَّهَا.

 $[0;+\infty[$ المنحنى الممثل الدالة $x\mapsto \ln x$ على المجال المجال الم

$$rac{1}{2}$$
ادرس وضعیة (C_f) بالنسبة إلى (δ) ثم جد $rac{1}{2}$ ا $rac{1}{2}$ ، ماذا نستتنج $rac{1}{2}$

- ارسم (δ) و (C_r) .

 $\int_{1}^{x} \frac{1}{t^{2}} \ln t \, dt$ عند حقيقي من المجال $[1;+\infty]$ ، ياستعمال التكامل بالتجزئة جد $x \not = 3$

تحقق أن: x → x lnx -x هي دالة أصلية للدالة x → lnx على المجال [a;+cc].

استنتج دالة أصلية للدالة ∫ على المجال [1;+∞].

ب/ αعد حقيقي لكبر تماما من إ.

الحسب بدلالة lpha المساحة lpha للحيز المستوي المحدد بالمنحنيين (C_f) و (δ) والمستقيمين اللذين معادلتيهما: $x=\alpha$ و x=1 ، ثم احسب a