Calculus - Chapter SZ - Relative Max / Min.

Dehnition:

Assume z = f(x,y) tos relatine mox (amin) at voire Polxo,yo,zo).

Any plane through Po perpendicular to the explane outstree enviore in a owner having a relative max/min at Po.

Directoral derivative .

$$\frac{\partial f}{\partial x}\cos \theta + \frac{\partial f}{\partial y}\sin \theta$$
 of $z = ((x,y))$ mix equal 0 of Po.

In particular, when 0 = 0, 310 = 0 and coso = 1,

When $\theta = \pi/2$, $\sin \theta = 1$ and $\cos \theta = 0$ so that $\frac{c}{dy} = 0$.

theorem:

Z = f(x,y) has relative externum at $Po(x_0, y_0, z_0)$ and $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ exist at (x_0, y_0) . Then $\frac{\partial f}{\partial x} = 0$ and $\frac{\partial f}{\partial y} = 0$ at (x_0, y_0) .

Thearem:

$$z = \{(x,y), \frac{2f}{2x} = 0, \frac{2f}{2y} = 0, \text{ notine } \Delta = \left(\frac{2f}{2x^2y}\right)^2 - \left(\frac{2^2L}{2x^2}\right)\left(\frac{2^2L}{2y^2}\right)^2$$

Assume D<0 at (xo, yo) then:

$$z = f(x,y) hos \begin{cases} o relative minimum of (xo,yu) & if $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} > 0 \\ a relative maximum of (xo,yu) & if $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} < 0. \end{cases}$$$$

If $\Delta > 0$, there is neither a relative maximum or minimum of (x_0, y_0) if $\Delta = 0$, no information.