Microcomputers I – CE 320

Mohammad Ghamari, Ph.D.

Electrical and Computer Engineering

Kettering University

Announcement

• Homework exercise 5 will be uploaded on BB this week.

Lecture 14: The Stack

Today's Topics

Learn how HCS12 stack functions

What is the Stack?

Last In, First Out (LIFO)

- The stack is a last-in, first-out (LIFO) data structure.
 - Elements can be accessed from only its top.
- Allows dynamic variable storage
 - Mainly used by microprocessors for calling subroutines.
- Two fundamental operations
 - Push: add to the top of the list.
 - Pop/Pull: removes an item from the top of the list.
- Think books stacked on a table
- c.f. Queue
 - First-in, first-out (FIFO) data structure

The Stack

Memory diagram of a stack

The Stack

 Physically, a stack can grow from a high address toward lower addresses or from a low address toward higher addresses.

 Here the HCSI2 stack grows from a high address toward lower addresses and has a 16-bit stack pointer (SP) that points to the top byte of the stack.

Diagram of the HCS12 stack

Important Concepts about Stacks

- A section of regular RAM (stack space) that all programs agree will be used for nothing else.
 - There is typically nothing in hardware that enforces this boundary.
- Much like variable-length array that uses a portion of the available stack space.
- Standard convention is that the stack grows towards lower addresses when data is added.

• The **stack pointer register (SP)** holds the address of the top byte and moves up (*decrements*) when items are added and moves down (*increments*) when data is removed.

Important Concepts about Stacks

- Depth:
 - The number of bytes stored on the stack
- Empty:
 - If the <u>depth</u> is 0, we say the stack is <u>empty</u>
- Underflow
 - Removing a byte from an <u>empty</u> stack
- Overflow
 - The depth is larger than the available stack space

Manipulating the Stack & Stack Pointer Register

Adding/Removing an item to a stack

PSHx

- Push an item to the stack
- X: A, B, CCR (C), D, X, Y
- S register is <u>first decremented</u> by the number of bytes to be pushed, then the register value is copied into the newly generated "hole".
- No affect on CCR bits

PULx

- Pull or Pop an item from the stack
- X: A, B, CCR (C), D, X, Y
- One or two bytes at the top of the stack is/are copied into the specified register, then the S register is incremented.
- No affect on CCR (unless PULC)
- Again, there is no separate space for the stack. The stack is just a chunk of RAM. S register holds the current position.

Manipulating the Stack & Stack Pointer Register

• LDS

- Loads the S (also referred as SP) register
- Supports multiple addressing modes, but we will typically use only immediate addressing
- Typically done once at the beginning of a program to "initialize" the stack, at least for this class.

Other Useful Stack Operations ...

- It is also useful at times to *allocate space on the stack* for variables without having the data to push onto the stack first.
- Also, we may want to remove a number of bytes without having to pull the unneeded data into registers with pull operations.
- This can be done using the Load Effective Address instruction.
- LEAS ±n, SP
 - Uses multiple addressing modes, but we will use indexed off of S almost exclusively.
 - With negative offsets, creates (allocates) space on the top of the stack.
 - With positive offsets, removes (de-allocates) data from the top of the stack.

Where is the Runtime Stack?

- SP = address of the top element
- Before any PSH/PUL instruction, SP must be initialized.
 - LDS #\$3DFF

Stack is any RAM area in main memory

- Who initializes?
 - Simulator: Your program must use \$3DFF
 - NoICE: Auto-init's to \$3DFF

		After Line				
1: LDS	#\$3600	1	4	5	6	7
2: LDAA 3: LDAB	#\$AA #\$BB	35FD	35FD	35FD	35FD	35FD
4: PSHA	·	35FE	35FE	35FE	35FE	35FE
5: PSHB 6: PULB 7: PULA		35FF	35FF	35FF	35FF	35FF
		3600	3600	3600	3600	3600
		SP	SP	SP	SP	SP

1: LDS	#\$3600	Afte	After Line After Line After Lin 1 4 5			After Line 6		After Line 7			
2: LDAA 3: LDAB	#\$AA #\$BB	35FD	XX	35FD	XX	35FD	XX	35FD	XX	35FD	XX
4: PSHA	·	35FE	XX	35FE	XX	35FE	BB	35FE	XX	35FE	XX
5: PSHB		35FF	XX	35FF	AA	35FF	AA	35FF	AA	35FF	XX
6: PULB 7: PULA		3600	XX	3600	XX	3600	XX	3600	XX	3600	XX
								'		·	
		SP	3600	SP	35FF	SP	35FE	SP	35FF	SP	3600

		Afte		r Line Afte 1	er Line Afte 4	er Line Afte 5	After Line 6	
1:	LDS	#\$3600	35FD	35FD	35FD	35FD		
2:		#\$AA	35FE	35FE	35FE	35FE		
3: LDAB	#\$BB	35FF	35FF	35FF	35FF			
4: 5:	PSHD LDD	#\$CCDD	3600	3600	3600	3600		
6:	LEAS	2,SP						
			SP	SP	SP	SP		

			After Line 1	Afte	After Line 4		After Line 5		After Line 6	
1:	LDS	#\$3600	35FD XX	35FD	XX	35FD	XX	35FD	XX	
2:		#\$AA	35FE XX	35FE	AA	35FE	AA	35FE	XX	
3: LDAB	#\$BB	35FF XX	35FF	BB	35FF	BB	35FF	XX		
4: 5:		#\$CCDD 2,SP	3600 XX	3600	XX	3600	XX	3600	XX	
6:	LEAS							·		
			SP 360	0 SP	35FE	SP	35FE	SP	3600	

Questions?

Wrap-up

What we've learned

Stack

• PUSx, PULx, LDS, LEAS

What to Come

Subroutines