## ARQUITECTURA DE COMPUTADORES GRUPO A. BENCHMARK del TEMA 2 Estudiante:

1. Escriba la expresión de la ley de Gustafson en términos de los parámetros f y p:





- 2. Teniendo en cuenta la figura anterior
  - ¿Qué valor tiene el parámetro f en la ley de Gustafson:

$$f_g = 0.8/2.0$$

- Escriba el valor del parámetro f en la ley de Amdalh (en función del número de procesadores p)  $f_a=0.8/(0.8+1.2p)$ 

3. Complete la siguiente Tabla de Ganancias de Velocidad:

| Fracción no<br>paralela en <u>T</u> s | Grado de<br>Paralelismo | Overhead                    | Ganancia                                    |
|---------------------------------------|-------------------------|-----------------------------|---------------------------------------------|
| 0                                     | ilimitado               | 0                           | p                                           |
| f                                     | ilimitado               | 0                           | p/(1+f(p-1))                                |
| f                                     | n                       | 0                           | p/(1+f(p-1)) (p<=n) y<br>n/(1+f(n-1)) (p>n) |
| f                                     | ilimitado               | <u>T</u> <sub>0</sub> (p)=p | 1/(f+(1-f)/p+(p/Ţ_s))                       |

## 4. Responda Verdadero (V) o Falso (F):

La reducción implica comunicación colectiva todos-a-uno

(V)

- La acumulación (gather) implica comunicación colectiva todos-con-todos

(F)

MPI es una biblioteca de paso de mensajes

(V)

 En la asignación de carga estática se asigna el trabajo que va a realizar cada procesador, antes de la ejecución

(V)

- El tiempo de sincronización entre procesos forma parte del overhead de un programa paralelo

(V)