

Description

The VSM3400AY uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

• $V_{DS} = 30V, I_{D} = 5.8A$

 $R_{DS(ON)}$ < 45m Ω @ V_{GS} =2.5V

 $R_{DS(ON)}$ < 31m Ω @ V_{GS} =4.5V

 $R_{DS(ON)}$ < 27m Ω @ V_{GS} =10V

- High power and current handing capability
- Lead free product is acquired
- Surface mount package
- PWM applications
- Load switch
- Power management

SOT-23-3

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM3400AY-S2	VSM3400AY	SOT-23-3	Ø180mm	8 mm	3000 units

Absolute Maximum Ratings (T_A=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit
Drain-Source Voltage	V _{DS}	30	V
Gate-Source Voltage	V _G S	±12	V
Drain Current-Continuous	I _D	5.8	Α
Drain Current-Pulsed (Note 1)	I _{DM}	30	Α
Maximum Power Dissipation	P _D	1.4	W
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 150	℃

Thermal Characteristic

Thermal Resistance, Junction-to-Ambient (Note 2)	R _{0JA}	89	°C/W
--	------------------	----	------

Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit		
Off Characteristics								
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	30	33	-	V		
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =30V,V _{GS} =0V	-	-	1	μΑ		

Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±12V,V _{DS} =0V	-	-	±100	nA	
On Characteristics (Note 3)							
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS},I_{D}=250\mu A$	0.7	0.9	1.4	V	
rain-Source On-State Resistance		V_{GS} =2.5 V , I_{D} =4 A	-	24	45	mΩ	
	R _{DS(ON)}	V_{GS} =4.5 V , I_{D} =5 A	-	21	31	mΩ	
		V_{GS} =10V, I_D =5.8A	-	20	27	mΩ	
Forward Transconductance	9 FS	V_{DS} =5 V , I_{D} =5 A	10	-	ı	S	
Dynamic Characteristics (Note4)							
Input Capacitance	C _{lss}	V _{DS} =15V,V _{GS} =0V,	-	825	1	PF	
Output Capacitance	C_{oss}	V _{DS} -15V,V _{GS} -0V, F=1.0MHz	-	100	-	PF	
Reverse Transfer Capacitance	C _{rss}	F-1.0WI1Z	-	78	-	PF	
Switching Characteristics (Note 4)							
Turn-on Delay Time	t _{d(on)}		-	3.3	-	nS	
Turn-on Rise Time	t _r	V_{DD} =15V, R_L =2.7 Ω V_{GS} =10V, R_{GEN} =3 Ω	-	4.8	-	nS	
Turn-Off Delay Time	$t_{d(off)}$		-	26	-	nS	
Turn-Off Fall Time	t _f		-	4	-	nS	
Total Gate Charge	Q_g	V _{DS} =15V,I _D =5.8A, V _{GS} =4.5V	-	10	-	nC	
Gate-Source Charge	Q _{gs}		-	1.6	-	nC	
Gate-Drain Charge	Q_{gd}	v _{GS} -4.3v	-	3.1	-	nC	
Drain-Source Diode Characteristics							
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =5.8A	-	-	1.2	V	
Diode Forward Current (Note 2)	Is		-	-	5.8	А	

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production

Typical Electrical and Thermal Characteristics

Figure 1:Switching Test Circuit

Figure 3 Power Dissipation

Figure 5 Output Characteristics

Figure 2:Switching Waveforms

Figure 4 Drain Current

Figure 6 Drain-Source On-Resistance

Figure 7 Transfer Characteristics

Vgs Gate-Source Voltage (V)

Figure 9 Rdson vs Vgs

Figure 11 Gate Charge

Figure 8 Drain-Source On-Resistance

Figure 10 Capacitance vs Vds

Figure 12 Source- Drain Diode Forward

Figure 13 Safe Operation Area

Figure 14 Normalized Maximum Transient Thermal Impedance