VidyaSagar Education Centre

Pg-(1) Dir.

Chapter :- 01 Exercise :- Important Point R.B.SINGH

* य्विलव विभाजन एएगोरिश्म Euclid's Division Algorithm

युविल र विभाजन प्रमेम पूर्णांकों की विभाज्यता सै संबंधित है। इसके अनुसार एक धनात्मक पूर्णीक 'व' को किसी दुसरे धनाटमक पूर्णांक 'छ' से इस प्रकार विभाजित किया आह कि बोबफल हें ही, तो है का मान के से छोटा होता है।

युक्लिव विभाजन एलगोरियम या प्रमेय का उपयोग दी धनाटमक पूर्णीकों के महतम समापवर्तक (HCF) जात करने में होता है।

: भाज्य = a भाजक = क भागफल = Q शेषफल = ४

आजक आज्य भागफल

बीबफल (४)

.: भाज्य = भाजक Xभागफल + श्रेषफल => a = bq+8

: युक्लिन विभाजन रहगीरिध्म या प्रमेथिका से a= bg+8 util 058<b

=> ब्रोबफल के बारे में उद्ध महत्वपूर्ण बाते:-

(i) बीषफल का मान ० या ० से बड़ा होता है लेकिन भाजक (b) से हमेशा छोटा होता है।

.: 05xcp

अंक्जिणित के आधारभूत प्रमेय का संबंध धनाटमक पूर्णीकों के जुणन से ध

हम जानते हैं कि प्रत्येक भाज्य संत्या - (Composite Number) की अद्वितीय रूप से अभाज्य गुणनखंडों (Prime factor) के गुणनफल के रूप में व्यक्त किया जा सकता है। इसे ही अंक्जिणित का आधारभूत प्रमेय कहा जाता है।

- => इस प्रमेय का प्रयोग मुख्यतः दो रूपों में होता है।
 - (i) कुछ संत्याओ भेसे 12,13,15 हवं उन आदि की अपरिमेयता सिद्ध करना ।
- (ii) कोई परिमेय संख्या के दशमतय प्रसार की जींच करना कि यह कब स्रोत खंक्य असांत आवर्ती हैं।

Note: - आज्य संत्या की अभाज्य संत्याओं की चातों के गुणनफल के रूप में लिखा जा सकता है।

* महत्वपूर्ण तथ्य:-

- (i) युक्तिपतु विभाजन प्रमिधिका :- दो द्यानाटमक पूर्णीक व और के दिए रहने पर हम 0=bq+४, 0<४<b को संतुष्ट करने वाली पूर्ण संख्याएं 'q' और '४' जात कर सकते हैं अर्थीत् हेंसी संख्याओं का अस्तिन्व हैं और ये अद्वितीय हैं।
- (ii) अंदर्गाणित का आच्यारभूत प्रमेय:- प्रत्येक भाज्य संख्या को अभाज्य संख्याओं के रुक गुणनफल के रूप में किया जा सदता है तथा यह गुणनखण्ड अद्वितीय होता है।

Teacher Rakesh Sir Mob.7488409608

VidyaSagar Education Centre

Pg. 3

Chapter :- 01 Exercise :- Important Point R.B.SINGH

Example: - युक्लिड विभाजन एल्जी रिध्म का प्रयोग करहे HCF जात हरे। (i) 396 और 1080

$$396)1080$$
 (2
 792 (2
 288) 396 (1
 288) 288 (2
 216) 288 (2
 216) 288 (2
 216) 288 (2
 216) 288 (1
 216) 288 (1
 216) 288 (1
 216) 288 (1
 216) 288 (2
 216) 216) 216 (1
 216) 216) 216 (1
 216) 216) 216 (2
 216) 216)

108 = 72×1+36

72 = 36x2+0

ः श्रीष्फल = 0

" HCF = 36 Any

(ii) 52, 1234

°: श्रेषफल = 0

: HCF = 2 Any

4 = 2x2+0

Teacher Rakesh Sir Mob.7488409608

VidyaSagar Education Centre

Chapter :- 01 Exercise :- 1.1

Pg. 5 Dir. R.B.SINGH

Exercise - 1.1

(1) निम्निसिवित संख्याओं का HCF ज्ञात करने के लिए युम्लिव विभाजन हल्जोरियम का प्रयोग कीजिए — (1) 135 और 225

°: श्रीषफल = 0

in HCF = 45 Am

(i) 196 3HZ 38220

(iii) 867 3HZ 255

(3) स्तंभी की अधिकतम संख्या = 616 और 32 का मन्स०

· स्तंभो नि अधिकतम् संत्या = 8 Am

Chapter:-01 Exercise:- 1-1

Pg. 7 Dir. R.B.SINGH

(2.) माना कि धानाटमक विषम पूर्णांक = a

युक्लि विभाजन रहा रिश्म से, $a = bq + \gamma$ अहाँ $0 \le \gamma < b$ $\Rightarrow a = 6q + \gamma$ अहाँ $0 \le \gamma < 6$

· v= 0,1,2,3,4,5

यदि ४=0 a=62+0=62

यदि ४=। a=62+1

यदि ४=3

a = 69+3

यदि ४=4 a=69+4

यदि ४=5 a=62+5

°: 62,62+2,62+4 एक धानात्मक सम पूर्णांक के रूप में हैं।

.: 69+1, 69+3, 69+5 एक धनाटमक विषम पूर्णांक के

Ans

Chapter :- 01 Exercise :- 1.1

Dir. R.B.SINGH

(6.) साना कि धनाटमक पूर्णींक = a .: b = 9

युम्लिङ विभाजन रुल्गोरिध्म से, a= bq+४ जहाँ 0<४८b

> a= 99+४ जहाँ 0<४८9

·: v= 0,1,2,3,4,5,6,7,8

यदि ४=०

a = 92+0 = 92

 $a^3 = (92)^3$

= 72993

= 9 (8123)

= 9m [: m= 8193 es yolis El]

यदि ४=।

a=92+1

 $a^3 = (99+1)^3$

=(92)3+13+3×92×1 (99+1)

 $=7299^3+1+2439^2+279$

= 72993+24392+279+1

= 9 (8193+2792+39)+1

= 9 m+1 [: m= 8193+2792+39 05 goli = 8]

ं किसी धनात्मक पूर्णांक म्र धन 3m, 3m+1,9m+8 के रतप में होगा।