Advanced Data Analysis

DATA 71200

Class 12: Unsupervised Learning (Clustering)

Clustering

- Algorithms that assign data points to groups (especially for unlabeled data)
 - In the absence of labels, evaluation is challenging
 - Often performed through visualization
- Useful for
 - Exploratory data analysis
 - Pre-processing data

- k number of clusters specified
- Finds cluster centers through an iterative process
 - Assign data points to cluster with nearest cluster center
 - Initialized randomly for the first iteration
 - Update the cluster center with the assigned data points
- Repeat until no updates are needed
- Boundaries are determined by placement of cluster centers

Figure 3-24. Cluster centers and cluster boundaries found by the k-means algorithm

Figure 3-23. Input data and three steps of the k-means algorithm

Figure 3-26. Cluster assignments found by k-means using two clusters (top) and five clusters (bottom)

- Assumes the classes have the same width/diameter
- This causes issues with non-spherical clusters or clusters with complex shapes

Figure 3-28. k-means fails to identify nonspherical clusters

Figure 3-27. Cluster assignments found by k-means when clusters have different densities

Figure 3-29. k-means fails to identify clusters with complex shapes

The constant-width limitation can be partially overcome with a larger number of clusters

Figure 3-29. k-means fails to identify clusters with complex shapes

Figure 3-32. Using many k-means clusters to cover the variation in a complex dataset

Muller, Andreas C. and Sarah Guido. (2016). Introduction to Machine Learning with Python, O'Reilly Media, Inc.

Best Practices

Can run in batches on very large datasets

Strengths

- Easy to understand
- Runs relatively quickly

Weaknesses

- Based on random initialization
- Need to specify the number of clusters
- Clusters have consistent widths and shapes

Agglomerative Clustering

- Starts by creating a cluster for each point
- Then amalgamates nearest clusters based on linkage criteria until the stopping criteria is reached

Figure 3-33. Agglomerative clustering iteratively joins the two closest clusters

Agglomerative Clustering

- Looking at all possible clusters simultaneously provides information about the hierarchical relationship of the clusters
- Dendrograms allow for visualization of multidimensional datasets, also providing information about cluster distance

Figure 3-35. Hierarchical cluster assignment (shown as lines) generated with agglomerative clustering, with numbered data points (cf. Figure 3-36)

Figure 3-36. Dendrogram of the clustering shown in Figure 3-35 with lines indicating splits into two and three clusters

Agglomerative Clustering

Parameters

- Linkage criteria: ward, average, complete
- Stopping criteria: number of clusters

Strengths

Easy to understand/visualize

Weaknesses

- Not able to make prediction on new data
- In scikit-learn you need to specify the number of clusters

- Density-based spatial clustering of applications with noise
- Do not need to specify the number of clusters
- Attempts to distinguish between densely and sparsely populated areas of the data space

Figure 3-38. Cluster assignment found by DBSCAN using the default value of eps=0.5

- Core points cluster centers
- Boundary points within a cluster
- Noise

- Procedure (repeated until clusterable data has been addressed)
 - Select a data point and check how many other data points are within the specified distance
 - If there are as many as the specified minimum number, data point is considered a core sample
 - Data points within the minimum distance are boundary points
 - If there are multiple core samples within the specified distance, they are merged into a single cluster and their neighbors are also visited
- If points aren't clustered, they are classified as noise

- Increasing eps results in more points per cluster
- Increasing min_samples results in more being classified as noise

Figure 3-37. Cluster assignments found by DBSCAN with varying settings for the min_samples and eps parameters

Muller, Andreas C. and Sarah Guido. (2016). Introduction to Machine Learning with Python, O'Reilly Media, Inc.

Best Practices

Scaling data can improve clustering results with DBSCAN

Parameters

- eps determines distance the algorithm looks for data points
- min_samples determines the minimum number of data points within eps distance necessary to form a cluster

Strengths

Able to cluster complex shapes

Weaknesses

- Cluster assignment depends on order the points are visited
- Results sensitive to the settings of min_samples and eps

Evaluating Clustering

With Ground Truth: Adjusted Rand Index (ARI)

Figure 3-39. Comparing random assignment, k-means, agglomerative clustering, and DBSCAN on the two_moons dataset using the supervised ARI score

With No Ground Truth: Silhouette Coefficient

Figure 3-40. Comparing random assignment, k-means, agglomerative clustering, and DBSCAN on the two_moons dataset using the unsupervised silhouette score—the more intuitive result of DBSCAN has a lower silhouette score than the assignments found by k-means