

Maschinelles Lernen

Datenvorverarbeitung

Prof. Dr. Rainer Stollhoff

Univariate Vorverarbeitung - Datentypkonvertierung

Nominelle Variablen

- Character <-> Factor
 - Für viele Verfahren nicht notwendig, da automatisch angewandt
- Dummy-Kodierung (One-Off-Kodierung)
 - Übersetzt nominalen Faktor mit n Werten in n separate 0/1-Variablen (Variante n-1 Variablen)
 - Bei manchen Verfahren notwendige Vorverarbeitung, bei anderen Verfahren integriert

Numerische Variablen

- Zahlenwert als Faktor
 - Notwendig: falls Klassifikationsaufgabe und Klassenkodierung als Zahlenwert sonst automatisch Regressionsverfahren
 - Ermöglicht Einsatz von Klassifikationsverfahren in Regressionsproblemen
 - Diskretisierung z.B. zur Visualisierung als Histogramm
- Faktor als Zahlenwert
 - Ermöglicht Einsatz von Regressionsverfahren für Klassifikationsaufgaben aber Vorsicht: nur sinnvoll für ordinale Merkmale!

Univariate Vorverarbeitung – Imputation fehlender Werte

Mittelwert / Median

- Ersetzt für eine Beobachtung fehlende Werte in einer Variable durch den Mittelwert bzw. Median dieser Variable in anderen Beobachtungen
- Vorteile
 - Einfach und Robust
 - Alle Beobachtungen können verwendet werden
- Nachteile
 - Ignoriert Zusammenhänge zwischen Variablen

(lokal)-lineare Modell

- Schätzt fehlende Werte in einer Variablen anhand eines Regressionsmodells, das auf allen anderen Variablen geschätzt wird
- Vorteile
 - Berücksichtigt Zusammenhänge zwischen Variablen
- Nachteile
- Zusätzlicher Rechenaufwand

Univariate Vorverarbeitung - Transformation

Standardisierung der Variablen

 Abziehen des Mittelwerts und teilen durch die Standardabweichung

$$z = \frac{x - \bar{x}}{\sigma(x)}$$

Normalisierung des Wertebereichs auf [0,1]

$$\tilde{\chi} = \frac{\chi - \chi_{min}}{\chi_{max} - \chi_{min}}$$

- Vorteile
 - Eingangsvariablen in Modelle haben vergleichbare Skala / Auflösung
 - Parameter in einem Regressionsmodell können direkt verglichen werden
- Nachteile
 - Einheiten gehen verloren
 - Zusätzlicher Rechenaufwand

Nicht-lineare Zusammenhänge aufnehmen

- Beispiele:
 - Quadratischer Zusammenhang x^2
 - Polynomieller Zusammenhang x^n
 - Betragsmäßiger Zusammenhang |x|
 - Logarithmische Skalierung ln(x)
- Vorteile
 - Abbildung von Vorkenntnissen z.B. physikalischer
 Gesetzmäßigkeiten $E = \frac{1}{2}mv^2$
 - Erweiterung linearer Verfahren z.B. lineare Regression
- Nachteile
- Zusätzlicher Rechenaufwand
- Kein Vorteil bei Verfahren mit eingebauter Transformation bzw. Unabhängigkeit ggb. Transformationen z.B. Bäume/rekursive Partitionierung

Multivariate Vorverarbeitung

Dimensions reduktion

(vgl. Unsupervised Learning)

- Korrelationen herausnehmen
 - Hauptkomponentenanalyse durchführen
 - Statt Variablen Hauptkomponenten verwenden
- Embeddings
 - Vielzahl von Dummy-Variablen in metrischen Raum einbetten (z.B. Worträume)
- Vorteile
 - Geringere Speicherbelegung
 - Notwendig in linearer Regression, falls
 Ausgangsvariablen linear abhängig
- Nachteile
 - U.U. Verlust von Informationen
 - Verfahren sind datengetrieben

Interaktionen berechnen

- Beispiele:
 - Zweifaches Produkt $x_1 \cdot x_2$
 - mehrfaches Produkt $x_1 \cdot x_2 \cdot x_3 \cdots$
 - Exponent $x_1^{x_2}$
 - Quadratischer Abstand $(x_1 x_2)^2$
- Vorteile
 - Abbildung von Vorkenntnissen z.B. physikalischer
 Gesetzmäßigkeiten $E = \frac{1}{2}mv^2$
 - Erweiterung linearer Verfahren z.B. lineare Regression
- Nachteile
- Zusätzlicher Rechenaufwand
- Kein Vorteil bei Verfahren mit eingebauter
 Interaktionsmöglichkeit z.B. Bäume/rekursive
 Partitionierung