#1 $P \neq NP$?!

Describe the error in the following fallacious "proof" that $P \neq NP$.

Proof. Assume that P = NP and obtain a contradiction. If P = NP, then $SAT \in P$ and so for some k, $SAT \in TIME(n^k)$. Because every language in NP is polynomial time reducible to SAT, you have NP $\subseteq TIME(n^k)$. Therefore, $P \subseteq TIME(n^k)$. But by the time hierarchy theorem, $TIME(n^{k+1})$ contains a language that isn't in $TIME(n^k)$, which contradicts $P \subseteq TIME(n^k)$. Therefore, $P \neq NP$.

#2 Complexity Review

Recall each of the complexity classes we have studied thus far (time and space). For each:

- Give the definition.
- Give a classic example (or examples) of languages that have that particular complexity.
- Give an outline of how to prove that a language is in that given complexity class.

#3 Complexity relationships

Describe, as completely as possible, what we know about the relationships between the complexity classes you listed in the previous problem. Additionally, clearly state which relationships are currently <u>unknown</u>. For these unknown relationship, give an informed hypothesis.