Lecture 8.1: Singular Value Decomposition

Optimization and Computational Linear Algebra for Data Science

PCA

- "Covariance matrix" $S = A^T A \in \mathbb{R}^{m \times m}$.
- S is symmetric positive semi-definite.
- **Spectral Theorem:** there exists an orthonormal basis v_1, \ldots, v_m of \mathbb{R}^m such that the v_i 's are eigenvectors of S associated with the eigenvalues $\lambda_1 \geq \cdots \geq \lambda_m \geq 0$.

Consequence:
$$\begin{cases} \lambda_1 \geqslant -- \geqslant \lambda_r > 0 \\ \lambda_{r+1} = -- = \lambda_m = 0 \end{cases}$$

Singular values/vectors

For $i=1,\ldots,m$: square roots of eigenvalues of A^TA

- we define $\sigma_i = \sqrt{\lambda_i}$, called the i^{th} singular value of A.
- we call v_j the $i^{ ext{th}}$ right singular vector of A.

What about the left singular vectors?

We define

for i = 1, --, r

Left

Singular vector

A Di ER singular vector

If < n: we are going to add vectors ung_Un

in order to get an orthonormal basis (u_ en) of 1Rn

Singular Value decomposition

Theorem

Let $A \in \mathbb{R}^{n \times m}$. Then there exists two orthogonal matrices $\underline{U \in \mathbb{R}^{n \times n}}$ and $\underline{V \in \mathbb{R}^{m \times m}}$ and a matrix $\underline{\Sigma} \in \mathbb{R}^{n \times m}$ such that $\underline{\Sigma}_{1,1} \geq \underline{\Sigma}_{2,2} \geq \cdots \geq 0$ and $\underline{\Sigma}_{i,j} = 0$ for $i \neq j$ that verify

$$A = U\Sigma V^{\mathsf{T}}.$$

Geometric interpretation of $U\Sigma V^{\mathsf{T}}$

