# 第 13 周作业

#### T9.1

假设 f 是网络 N=(D,s,t,c) 上的流函数,证明:

$$\sum_{e \in lpha(t)} f(e) - \sum_{e \in eta(t)} f(e) = \sum_{e \in eta(s)} f(e) - \sum_{e \in lpha(s)} f(e)$$

因为 
$$\sum_{v \in V(D)} (\sum_{e \in \alpha(v)} f(e)) = \sum_{v \in V(D)} (\sum_{e \in \beta(v)} f(e))$$
,且由于  $\forall v \in V(D) - \{s,t\}$  有  $\sum_{e \in \alpha(v)} f(e) = \sum_{e \in \beta(v)} f(e)$ ,将其代入前式,可以得到  $\sum_{e \in \alpha(s)} f(e) + \sum_{e \in \alpha(t)} f(e) = \sum_{e \in \beta(s)} f(e) + \sum_{e \in \beta(t)} f(e)$ ,即  $\sum_{e \in \alpha(t)} f(e) - \sum_{e \in \beta(t)} f(e) = \sum_{e \in \beta(s)} f(e) - \sum_{e \in \alpha(s)} f(e)$ 

# T9.2

证明:在 Ford-Fulkerson 算法的第二步,通过可增载轨道得到的函数  $ar{f}$  是流函数

见引理 9.1 证明

#### T9.4

求图 9.14 中网络的最大流

• 取初始流,  $\forall e \in E(G), f(e) = 0$ 



• 可增载轨道 $uv_1v_3v_4t$ 



• 可增载轨道 $uv_3v_4t$ 



• 无可增载轨道,最大流为6

## T9.5

证明: 若网络中每条边的容量均为整数,则最大流的流量也一定是整数

最大流流量 = 最小截截量 =  $C(S,\bar{S})=\sum_{e\in(S,\bar{S})}c(e)$ 。因为每条边的容量都是整数,即 c(e) 为整数,所以最大流流量为整数。

# **T9.7**

在图 9.16 所示的网络中,除了边有容量外,源 s 与汇 t 没有容量,而其余的顶点都有容量,求此 网络的最大流

设  $d \rightarrow t$  的容量为 x

找到可增载轨道  $s \rightarrow a \rightarrow b \rightarrow t$ , 可增载量为 2

找到可增载轨道  $s \to e \to a \to b \to f \to t$ ,可增载量为 2(此时 b 已经达到容量值,无法继续增载)

找到可增载轨道  $s \to c \to f \to t$ ,可增载量为 2 (此时 f 已经达到容量值,无法继续增载,只剩下顶点 d 路径可以增载)

找到可增载轨道  $s \to a \to d \to t$ ,可增载量为  $\min(x,1)$ 

找到可增载轨道  $s \rightarrow e \rightarrow d \rightarrow t$ ,可增载量为  $\min(3, \max(x-1,0))$ 

## T9.8

- 1. 写一个如同 2F 算法的标志过程,但标记是由汇 t 开始的,到达 s 时即可得到一可增载轨道
- 2. 写一个定位算法,该算法能够确定某条边,当该边容量增大时,最大流量也随之增加
- 3. (2) 中表述的边是否一定存在
- 1. 1.  $S = \{t\}, \Leftrightarrow \operatorname{succ}(t) = *$ 
  - 2. 若  $s \in S$ ,则已经找到可增载轨道,通过  $\mathrm{succ}(s)$  回溯输出可增载轨道,算法终止;否则,转第 (3) 步
  - 3. 若存在  $u \in \bar{S}$ ,  $v \in S$ , 使得  $(u,v) \in E(D)$  且边 (u,v) 未满载,即  $f((u,v)) < c((u,v)) \; ((u,v)$  是正向边),则令  $S \leftarrow S \cup \{u\}$ ,succ(u) = v,转第 (2) 步;否则,转第 (4) 步
  - 4. 若存在  $u \in \bar{S}$ ,  $v \in S$ , 使得  $(u,v) \in E(D)$  且边 (u,v) 正载,即 f((u,v)) > 0 ((u,v) 是反向边) ,  $S \leftarrow S \cup \{u\}$ ,  $\mathrm{succ}(u) = v$ , 转第 (2) 步;否则,输出无可增载轨道,算法停止。
- 2. 遍历所有边, 计算其边容量变化前后的最大流量即可。
- 3. 不一定。

#### T9.10

证明:在有正下界 b(e) 但无上界  $c(e)=+\infty$  的网络中,存在可行流的充要条件是对每一条边 e ,要么 e 在一个有向回路上,要么 e 在由 s 到 t 或由 t 到 s 的有向轨道上。

 $\Rightarrow$  存在可行流。若边 e 不满足上述条件,则设边 e 在一个有向轨道 P 上,且 P 的终点不是汇 t。那么由于轨道终点的流出流量为 0,而流入边 e 的流量至少为 b(e),那么流入和流出的流量不相同,则会产生矛盾。

 $\Leftarrow$  对每一条边 e ,要么 e 在一个有向回路上,要么 e 在由 s 到 t 或由 t 到 s 的有向轨道上。可以通过不断增加流量的方式找到一个可行流。

## T9.13

在图 9.17 的两个图中,若存在可行流,请求出最大流与最小流;若不存在可行流,找出一个不含源和汇的顶点子集 V',需冒出流或者漏掉流。

不存在可行流,因为 c(a,d) < b(d,c) + b(d,t)。

取  $V'=\{a,b,c,d\}$ ,则  $\sum_{e\in \alpha(V')}c(e)-\sum_{e\in \beta(V')}b(e)=(5+6)-(9+3)<0$ ,所以 V' 需要冒出流。