

Ministério da Educação Universidade Federal do ABC

Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas

Disciplina: ESTS018-17 - TRANSF. DE CALOR APLICADA A SIST. AEROESPACIAIS - 2021-02.QS

Prof. Dr. Alexandre Alves - Segunda Avaliação (P2) - 29/07/2021

Aluno:	RA:
--------	-----

INSTRUÇÕES:

- A) A interpretação faz parte da prova e nenhuma pergunta referente à solução das questões de prova será respondida pelo professor;
- B) Utilize todas as casas decimais, valores arredondados serão considerados errados;
- C) Identifique <u>todas</u> as folhas de resolução da prova com o seu nome e as numere na sequência em que as questões forem respondidas, digitalize suas respostas e as envie por meio de correio eletrônico para o seguinte endereço: <u>a.alves@ufabc.edu.br</u>;
- D) A resolução da prova deverá OBRIGATORIAMENTE ser enviada em formato pdf;
- E) Resoluções de provas fotografadas ou arquivos compactados não serão aceitos;
- F) A responsabilidade pela integridade do arquivo a ser enviado em <u>pdf</u> é exclusiva do aluno e, por isso, não serão aceitos envios ne outros arquivos após o prazo final de entrega;
- G) A prova foi disponibilizada no SIGAA dia 29/07/2021 as 21 horas e estará disponível para download até dia 01/08/2021 as 22 horas;
- H) Até o dia 01/08/2021 as 22:00 hs <u>todos</u> os alunos deverão entregar a prova, não serão aceitas provas entregues após este dia e horário;
- I) A solução das questões deverá ser lógica e apresentada passo a passo. Resultados <u>não</u> justificados serão considerados **errados**;
- J) A reprodução gráfica ou divulgação online, parcial ou integral desta, sem autorização prévia e expressa do professor, constitui ofensa aos seus direitos autorais, conforme art.
 29 da lei 9.610/98, que dispõe sobre direitos autorais.

Ministério da Educação Universidade Federal do ABC

Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas

Disciplina: ESTS018-17 - TRANSF. DE CALOR APLICADA A SIST. AEROESPACIAIS - 2021-02.QS

Prof. Dr. Alexandre Alves - Segunda Avaliação (P2) - 29/07/2021

Aluno: RA:		
	Aluno:	RA.

- 1. Um engenheiro aeroespacial trabalha em uma indústria fabricante de motores aeronáuticos e atua no projeto de desenvolvimento da câmara de combustão para um novo turbofan. Durante a fase de caracterização experimental em laboratório, as paredes da câmara de combustão foram substituídas por visores de quartzo, permitindo assim a visualização dos processos envolvidos e também a utilização de técnicas de diagnósticos ópticos. Sabendo que a transmissividade do visor é zero com exceção do comprimento de onda que encontra entre o intervalo de 0,3 µm e 0,8 µm, onde seu valor é de 0,32. Considerando que a radiação da câmara de combustão pode ser aproximada a radiação de um corpo negro a 2200 K e as informações apresentadas na tabela abaixo, calcule:
 - (a) a fração de radiação emitida que é transmitida através do quartzo; (1,5)
 - (b) a energia de radiação emitida que é transmitida através do quartzo. (1,5)

λΤ	$f_{0-\lambda}$	λΤ	$f_{0-\lambda}$	λT	$f_{0-\lambda}$	λT	$f_{0-\lambda}$
(µm-K)		(µm-K)		(µm-K)		(µm-K)	
400	0,0000	3800	0,4434	7200	0,8192	14500	0,9661
600	0,0000	4000	0,4809	7400	0,8295	15000	0,9689
800	0,000016	4200	0,5160	7600	0,8480	16000	0,9738
1000	0,00032	4400	0,5488	7800	0,8480	17000	0,9776
1200	0,00213	4600	0,5793	8000	0,8563	18000	0,9808
1400	0,0078	4800	0,6075	8500	0,8746	19000	0,9834
1600	0,0197	5000	0,6337	9000	0,8900	20000	0,9855
1800	0,0393	5200	0,6590	9500	0,9031	25000	0,9922
2000	0,0667	5400	0,6804	10000	0,9142	30000	0,9953
2200	0,1009	5600	0,7010	10500	0,9237	35000	0,9969
2400	0,1403	5800	0,7201	11000	0,9319	40000	0,9979
2600	0,1831	6000	0,7378	11500	0,9399	45000	0,9985
2800	0,2279	6200	0,7541	12000	0,9451	50000	0,9989
3000	0,2731	6400	0,7962	12500	0,9505	75000	0,9997
3200	0,3181	6600	0,7832	13000	0,9551	100000	0,9999
3400	0,3617	6800	0,7961	13500	0,9592	∞	1,0000
3600	0,4036	7000	0,8081	14000	0,9628	-	-

Ministério da Educação Universidade Federal do ABC

Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas

Disciplina: ESTS018-17 - TRANSF. DE CALOR APLICADA A SIST. AEROESPACIAIS - 2021-02.QS

Prof. Dr. Alexandre Alves - Segunda Avaliação (P2) - 29/07/2021

Aluno:	RA:
--------	-----

2. Você, engenheiro formado pela UFABC, foi contratado por uma grande indústria alimentícia para garantir que a implantação de novo processo de envasamento com o menor consumo de energia possível. Na unidade fabril em questão, cada linha de produção a ser implementada deverá envasar 1.000 quilogramas de requeijão por hora. Para tanto, em uma parte desse processo o requeijão deverá ser bombeado a 15 °C através de um tubo mantido a temperatura constante de 95 °C, com 8 centímetros de diâmetro interno e 1,5 metros de comprimento. Para garantir a otimização no consumo de energia, determine: a temperatura do requeijão ao deixar o tubo de aquecimento e a taxa de calor transferido do tubo para o requeijão. As propriedades físicas do requeijão são: ρ = 1150 kg/m³, μ = 22,5 kg/m.s, c_p = 2750 J/kg.°C, k = 0,42 W/m.°C. A seguinte correlação é válida para o escoamento laminar no interior do tubo: **(4,0)**

$$Nu = \frac{hd}{k} = 3,65 + \frac{0,067 \frac{d}{l} Re Pr}{1 + 0,04 \left(\frac{d}{l} Re Pr\right)^{0,67}}$$

3. Considere uma lâmpada incandescente acessa que consome 60 W e cujo filamento de tungstênio é um retângulo de cinco milímetros por dois milímetros e atinge a temperatura de 2860 K. Se o filamento for considerado como sendo cinza, qual a fração da energia total emitida pela lâmpada no espectro do comprimento de onda do visível entre o intervalo de 0,35 µm e 0,7 µm? Determine a eficiência da lâmpada e avalie quantitativamente a sua eficácia como fonte de luz. Se julgar necessário utilize a tabela apresentada no primeiro exercício desta avaliação. (3,0)