Semidefinite Programming

Zhiwei Zhang

April 4, 2019

1 Semidefinite Programming

Definition 1. A symmetric $n \times n$ matrix A is PSD if $x^T A x \ge 0 \forall x$

Theorem 1.1. The following are equivalent:

1.
$$x^T A x \ge 0 \forall x$$

2.
$$A = \sum_{i=0}^{n} \lambda_i v_i v_i^T$$
, where $\lambda_i \in \mathbb{R}^+$ and v_i are orthonormal.

3.
$$A = B^T B$$
 for some B

Proof. 1. 1)
$$\implies$$
 2):

$$2. \ 2) \implies 3)$$
:

$$3. \ 3) \implies 1)$$
:

3) implies that if A is SDP, $A_{ij} = \langle b_i, b_j \rangle$ SDP: $\min_{X \in \mathbb{R}^{n \times n}}$