课程编号: A3705060010

自然语言处理

姓			名	王硕	学		号	20182338	
班			级	软信 1802	学		院	软件学院	
项	目	名	称	搭建 LSTM 语言模型					
开	设	学	期	2021-2022 秋季学期					
开	设	时	间	第 1 周 — — 第 8 周					
报	告	日	期	2021年11月13日					
仓	库	地	址	https://github.com/Aa-bN/NLP_work					
报	告	内	容	1. 设计思路 2. 代码说明 3. 模型测试 4. 问题总结					
评	定	成	绩		评评	定足	人期	肖桐	
					দ	Æ 11	劝		

1. 设计思路

该部分为构建模型的具体思路,分为三部分:模型功能,数据形状,核心算法。

1.1 模型功能

- ① 完成基本的 LSTM 过程;
- ② 可以选择 LSTM 的层数,通过传入参数,实现 1 层或多层 LSTM 的使用;
- ③ 可以选择性地传入 hidden state、cell state、batch first 等参数;
- ④ 输出每层最终的 hidden state, cell state 和 outputs。

可用下图表示:

图源: https://zhuanlan.zhihu.com/p/79064602

1.2 数据形状

虽然项目只要求完成模型的搭建过程,但是对整个程序中数据类型或形状的分析,有助于更好地了解 LSTM 模型的输入和输出,也有利于为我们自己的函数提供良好的接口。通过对示例程序的 debug,我提取并总结了程序中比较重要的变量,以及它们的形状。如下图:

```
Main:
n_class = 7615
                    emb_size = 256
                                        batch_size = 128
n_hidden = 128
                    n_{step} = 5
all_input_batch
                    torch.Size([603, 128, 5])
                                                  T Tensor 5
                                                                      data Tensor 603
all_target_batch
                    torch.Size([603, 128])
                                                  T Tensor 128
                                                                      data Tensor 603
Model:
_init_:
          C = Embedding(7615, 256)
          LSTM = LSTM(256, 128)
          W = Linear(128, 7615)
          b = Parameter(torch.ones([n_class]))
forward:
          (self, X)
                                                            torch.Size([128, 5])
                                                                                          T 5
                                                                                                     data 128
                                                                                                                         len(X) 128
          X = C(X)

X = X.transpose(0, 1)
                                                            torch.Size([128, 5, 256])
                                                                                          T 256
T 256
                                                                                                     data 128
                                                                                                                         len(X) 128
                                                            torch.Size([5, 128, 256])
                                                  Χ
                                                                                                     data 5
                                                                                                                         len(X) 5
          outputs, (_, _) = LSTM(X)
                                                            torch.Size([5, 128, 128])
                                                                                          T 128
                                                                                                     data 5
                                                  output
                                                            torch.Size([1, 128, 128])
                                                                                          T 128
                                                                                                     data 1
          outputs = outputs[-1]
                                                  output
                                                            torch.Size([128, 128])
                                                                                           T 128
                                                                                                     data 128
          model = W(outputs) + b
                                                  model
                                                            torch.Size([128, 7615])
                                                                                          T 7615
                                                                                                     data 128
          return model
Train:
          for input_batch, target_batch in zip(all_input_batch, all_target_batch):
                                                                                           input_batch
                                                                                                              torch.Size([128, 5])
                                                                                          target_batch
                                                                                                              torch.Size([128])
                    output = model(input_batch)
                                                                                                              torch.Size([128, 7615])
                                                                                          output
                    loss = crit(output, target_batch)
```

图源:项目过程中的分析记录

1.3 核心算法

查阅官方文档,可以得到 LSTM 的核心算法:

```
CLASS torch.nn.LSTM(*args, **kwargs) [SOURCE]
```

Applies a multi-layer long short-term memory (LSTM) RNN to an input sequence.

For each element in the input sequence, each layer computes the following function:

$$\begin{split} i_t &= \sigma(W_{ii}x_t + b_{ii} + W_{hi}h_{t-1} + b_{hi}) \\ f_t &= \sigma(W_{if}x_t + b_{if} + W_{hf}h_{t-1} + b_{hf}) \\ g_t &= \tanh(W_{ig}x_t + b_{ig} + W_{hg}h_{t-1} + b_{hg}) \\ o_t &= \sigma(W_{io}x_t + b_{io} + W_{ho}h_{t-1} + b_{ho}) \\ c_t &= f_t \odot c_{t-1} + i_t \odot g_t \\ h_t &= o_t \odot \tanh(c_t) \end{split}$$

where h_t is the hidden state at time t,c_t is the cell state at time t,x_t is the input at time t,h_{t-1} is the hidden state of the

图源: pytorch 官方文档

在实现时,可以把同一个表达式中的两个偏移量合并成一个。并且需要提前在 init()函数中定义好权重和偏移量。在这些算法中,用到了两种不同的 tensor 数 据类型的乘法,在实现过程中,需要加以区分。

2. 代码说明

模型在 myLSTM.py 的 72-227 行,下面结合源码注释进行代码说明。

2.1 首先来看 init()函数: (73-106 行)

```
super(TextLSTM, self).__init__()
 self.C = nn.Embedding(n_class, embedding_dim=emb_size)
 self.W = nn.Linear(n_hidden, n_class, bias=False)
self.b = nn.Parameter(torch.ones([n_class]))
# 定义LSTM中的需要的参数,参考pytorch官方文档中的实现方式
self.Wif = nn.Parameter(torch.Tensor(emb_size, n_hidden))
self.Whf = nn.Parameter(torch.Tensor(n_hidden, n_hidden))
self.bf = nn.Parameter(torch.Tensor(batch_size, n_hidden))
self.Wii = nn.Parameter(torch.Tensor(emb_size, n_hidden))
self.Whi = nn.Parameter(torch.Tensor(n_hidden, n_hidden))
self.bi = nn.Parameter(torch.Tensor(batch_size, n_hidden))
 self.Wig = nn.Parameter(torch.Tensor(emb_size, n_hidden))
self.Whg = nn.Parameter(torch.Tensor(n_hidden, n_hidden))
self.bg = nn.Parameter(torch.Tensor(batch_size, n_hidden))
self.Wio = nn.Parameter(torch.Tensor(emb_size, n_hidden))
 self.Who = nn.Parameter(torch.Tensor(n_hidden, n_hidden))
self.bo = nn.Parameter(torch.Tensor(batch_size, n_hidden))
self.sig = nn.Sigmoid()
self.tah = nn.Tanh()
self.Wif2 = nn.Parameter(torch.Tensor(batch_size, n_hidden))
self.Wii2 = nn.Parameter(torch.Tensor(batch_size, n_hidden))
self.Wig2 = nn.Parameter(torch.Tensor(batch_size, n_hidden))
self.Wio2 = nn.Parameter(torch.Tensor(batch_size, n_hidden))
```

在75-78行, 定义了嵌入层、线性层和一个偏移量 (不用于 LSTM 内部)。

在80-100 行,定义了 LSTM 内部的权重与偏移量,激活函数。

在 102-106 行,定义了第二层及以后层的 LSTM,需要使用的权重和偏移量。

这些变量的 size 可以根据 1.3 核心算法推导出来。

2.2 再来看我们建立的 myLSTM 函数: (122-227 行)

第122-143行

第122行,可以得到函数的六个参数。

在写 myLSTM 函数的过程中,参考了 pytorch 的官方文档,确定了函数的参数,

输入数据的形状,以及函数的返回值。具体如下列表:

表 2-1 参数列表

参数名称	参数说明	形状		
Х	数据	[sequence length, batch size, input size] 或者		
		[batch size, sequence length, input size]		
hidden_size	隐含层大小	int (256)		
num_layers	LSTM 的层数	int (≥1, default=1)		
hidden_state	隐层状态	[num layers, batch size, hidden size]		
cell_state	细胞状态	[num layers, batch size, hidden size]		
batch_first	batch 是否在首位	bool, 若为 False, 则 X 为第一种形状; 若为 True, 则 X 为第		
		二种形状		

第 123-132 行,注释对数据 X 的 shape 和参数 batch first 进行了详细的说明。

第 133-137 行, 通过对 batch_first 参数的判断, 调整 X 的 shape, 并获取 batch size, 即程序中的 len(X)。

第 139-143 行,先判断有无初始的 hidden_state 和 cell_state,若无,则创建一个默认值。

第 145-157 行

```
# 后续操作的总体思路, LSTM cell -> RNN -> LSTM, 循环 LSTM 实现多层的LSTM

# 生成xt
# 首先获取数据的 sequence_length, 由于已经把数据转换成batch_first,即(N, L, Hin)的形式

# 所以第二个参数 L 即为sequence_length. 也就是我们主程序中的n_step
sequence_length = X.shape[1] # 5

# 存储每层LSTM最后一个cell生成的 hidden_state 和 cell_state,即每层的hn.ctn
hidden_state_layer_final = []
cell_state_layer_final = []

# 存储每层LSTM生成的 hidden_state,即[h1, h2, ..., hn]. 用来向下一层传递
hidden_state_one_layer = []
```

第 150 行,得到了序列长度,也可以直接使用主函数中的 n_step。

第 153-154 行, 两列表分别存储每层 LSTM 最后一个 cell 生成的 hidden_state 和 cell state。

第 157 行,存储每层 LSTM 生成的 hidden_state,即[h1, h2, ..., hn],用 来向下一层传递。

第 161-190 行

该部分代码,构建了第一层 LSTM。同时,完成了核心算法的执行和相关数据的存储,为权重的传播做准备。在其中 (第 165-186 行),以 for 循环的形式,完成了 LSTM cell 的实现。

```
# 第一层 LSTM (index=8) # 取出第一个值、作为第一层LSTM中,h8和Cs的初始值 h8 = hidden_state[0] # [128, 128] [batch_size, hidden_size] c8 = cell_state[0] # [128, 128] [batch_size, hidden_size] c8 = cell_state[0] # [128, 128] for i in range(sequence_length):
# batch_size^句子, 每个句子的第1个单词的词向量 xt = X[:, i, :] # [128, 256] [batch_size, input_size]

# LSTM cell # 一下交童的格式 [batch_size, hidden_size] [128, 128] # 遗忘[] ft = self.sig(xt @ self.wif + h0 @ self.whf + self.bf) # ft = torch.sigmoid(xt @ self.wif + h0 @ self.whf + self.bf) # ft = nn.functional.sigmoid(xt @ self.wif + h0 @ self.whf + self.bf) # ft = self.sig(xt @ self.wii + h0 @ self.whi + self.bb) # in t = self.sig(xt @ self.wii + h0 @ self.whi + self.bb) # in t = self.sig(xt @ self.wii + h0 @ self.whi + self.bb) # in t = self.sig(xt @ self.wii + h0 @ self.whi + self.bb) # in t = self.sig(xt @ self.wii + h0 @ self.who + self.bb) # in t = self.sig(xt @ self.wii + h0 @ self.who + self.bb) # in t = self.sig(xt @ self.wii + h0 @ self.who + self.bb) # in t = self.sig(xt @ self.wii + h0 @ self.who + self.bb) # in t = self.sig(xt @ self.wii + h0 @ self.who + self.bb) # in t = self.sig(xt @ self.wii + h0 @ self.who + self.bb) # in t = self.sig(xt @ self.wii + h0 @ self.who + self.bb) # in t = self.sig(xt @ self.wii + h0 @ self.who + self.bb) # in t = self.sig(xt @ self.wii + h0 @ self.who + self.bb) # in t = self.sig(xt @ self.wii + h0 @ self.who + self.bb) # in t = self.sig(xt @ self.wii + h0 @ self.who + self.bb) # in t = self.sig(xt @ self.wii + h0 @ self.who + self.bb) # in t = self.sig(xt @ self.wii + h0 @ self.who + self.bb) # in t = self.sig(xt @ self.wii + h0 @ self.who + self.bb) # in t = self.sig(xt @ self.wii + h0 @ self.who + self.bb) # in t = self.sig(xt @ self.wii + h0 @ self.who + self.bb) # in t = self.sig(xt @ self.wii + h0 @ self.who + self.bb) # in t = self.sig(xt @ self.wii + h0 @ self.who + self.bb) # in t = self.sig(xt @ self.wii + h0 @ self.who + self.bb) # in t = self.bb) # in t = self.sig(xt @ self.wii + h0 @ self.who + self.bb) # in t = self.bb) # in t = self.bb) # i
```

第 163-164 行, 获取了第一层 LSTM, h0 和 c0 的初始值。

第 165 行,以 for 循环的形式实现 LSTM cell。

第 167 行,完成数据的变形,即 batch_size 个句子,分别取每个句子的第 i 个单词的词向量,带入 LSTM cell 中。

第 169-183 行,完成了三个门的实现和记忆更新。

第 186 行,保存本层 LSTM 中,每一个 LSTM cell 产生的 hidden_state,用以 传入下一层。

第 189-190 行,第一层的 LSTM 结束,将最终的 hn 和 cn 添加到列表,其 shape 由[128, 128]变为[1, 128, 128]。

第 192-215 行

判断 num_layers 是否大于等于 2,若是,则意味着用户指定了多层 LSTM,第二层及以后层的 LSTM 在这段代码中实现。代码思路与前面基本一致。

第 217-227 行

```
# 到这里、所有的层的LSTM均执行完毕,此时hidden_state_one_layer为最后一层的输出。len=5
outputs_temp = []
for i in range(len(hidden_state_one_layer)):
    last_layer_output_each_cell = hidden_state_one_layer[i].unsqueeze(0) # [128, 128] -> [1, 128, 128]

outputs_temp.append(last_layer_output_each_cell) # 最终中有5个tensor.形状为[1,128,128]

outputs_return = torch.cat(outputs_temp, dim=0) # [sequence_length, batch_size, hidden_size]
hidden_state_return = torch.cat(hidden_state_layer_final, dim=0) # [num_layers, batch_size, hidden_size]

cell_state_return = torch.cat(cell_state_layer_final, dim=0) # [num_layers, batch_size, hidden_size]

return outputs_return, hidden_state_return, cell_state_return
```

到这里, 所有的 LSTM 层执行完毕, 返回 outputs, shape 为[sequence_length, batch_size, hidden_size]; 返回 hidden_state 和 cell_state, shape 均为 [num_layers, batch_size, hidden_size]。

2.3 最后看 forward()函数: (108-120 行)

这部分主要完成了模型的前向传播过程,其中 num_layers, hidden_state, cell state, batch first 等参数,都是用户可选择的。

在最后,调整了数据的形状,从 outputs 中获取了我们需要的 ht, 经过后续线性层, 完成了模型。

这里, 我们的模型不仅完成了单层和双层的 LSTM 网络, 理论上也可以实现任意 n(n≥1)层的 LSTM 网络。

3. 模型测试

① 示例程序运行结果 (层数=1, 默认 hidden state, cell state):

② 项目模型 (层数=1, 默认 hidden state, cell state):

③ 项目模型 (层数=1, 随机 hidden_state, cell_state):

④ 项目模型 (层数=2, 默认 hidden_state, cell_state):

⑤ 项目模型 (层数=2, 随机 hidden_state, cell_state):

- ⑥ 项目模型 (层数=3, 默认 hidden state, cell state): 略
- ⑦ 项目模型 (层数=3, 随机 hidden_state, cell_state): 略

由于代码底层原因,使用项目模型时,当层数≥3 时,计算速度过慢。我的 GPU 好像已经不允许我这么测试了。最终结果如下表:

序号	模型	LSTM 层数	hidden\cell state	loss	ppl
1	示例模型	1	default	5.733653	309.096
2	项目模型	1	default	5.851284	347.681
3	项目模型	1	random	5.791554	327.522
4	项目模型	2	default	6.007491	406.462
5	项目模型	2	random	5.941532	380.517

表 3-1 测试结果

4. 问题总结

Q1:注释中有的 tensor 数据的 shape 标注的不太准确,如示例程序 LSTMLM.py 的第 106 行。

Q2:如果使用 GPU 的话,构建或使用模型过程中,产生的新 tensor 要及时加载到 GPU 中,否则会报错。

Q3: 自己构建的 LSTM 函数的接口不是很完善。

Q4: 没有对传入的参数进行检查, 存在安全性问题。

Q5: 在程序执行的过程中,有可能产生 loss 和 ppl 为 nan 的问题。原因或解决方案: ① 减小学习率; ② 数据归一化; ③ 加入 gradient clipping; ④ 数据出了问题。(为了与示例程序做对比,没有加入上述操作。)

Q6:由于底层原因,随着层数增多,运行速度变慢。