RESOLUCIÓN DE ALGUNOS EJERCICIOS DEL TRABAJO PRÁCTICO Nº2

(Estadística CA-C- D 2020)

1) a)
$$\Omega = \{(R_1, R_2), (V_1, V_2), (A_1, A_2), (R_1, A_2), (R_1, V_2), (V_1, A_2), (V_1, R_2), (A_1, R_2), (A_1, V_2)\}$$

b) A = "el estudiante debe detenerse en al menos un semáforo"

$$A = \{(R_1, R_2), (A_1, A_2), (R_1, A_2), (R_1, V_2), (V_1, A_2), (V_1, R_2), (A_1, R_2), (A_1, V_2)\}$$

- c) i) A = "el estudiante debe detenerse en ambos semáforos"
 - ii) B = "el estudiante no debe detenerse en ningún semáforo"
 - iii) C = "el estudiante debe detenerse en a lo sumo un semáforo"

3)

Género	Opinión		
	Satisfactoria (S)	No Satisfactoria (NS)	
Femenino (M)	80	120	200
Masculino (H)	55	45	100
Total	135	165	300

^{*}entre paréntesis letras utilizadas para designar a los eventos en esta resolución

- a) P(M) = 200/300
- b) $P(S/H) = P(S \cap H)/P(H) = \frac{55/300}{100/300} = 55/100$ (también podría observarse directamente en la tabla)
- c) P(M/S) = 80/135
- d) P (H \cap NS) = P (H) \times P (NS/H) = 100/300 \times 45/100 = 45/300 (también podría observarse directamente en la tabla)
- 4) a)

Sector	Opinión sobre la economía			
	Estable (D)	Expansión (E)	Recesión (F)	
Industria (A)	10	26	22	58
Agropecuario (B)	40	86	46	172
Financiero (C)	30	42	18	90
Total	80	154	86	320

*entre paréntesis letras utilizadas para designar a los eventos en esta resolución

b) i)
$$P(E) = 154/320 = 0.48$$

ii)
$$P(F/B) = P(F \cap B) / P(B) = (46/320) / (172/320) = \frac{46}{172} = 0.2374$$

- iii) $P(C \cap D) = 30/320 = 0.09$
- iv) Si fuesen independientes, se cumpliría que: $P(A \cap B) = P(A)^*P(B)$. Sin embargo, se verifica que:

$$P(A \cap B) \neq P(A)^*P(B)$$

(18/320) \neq (90/320)×(86/320)

Por lo tanto, los eventos no son independientes.

5) a)

i) P (no llegan a una resolución) = P
$$[(A_1 \cap D_2) \cup (D_1 \cap A_2)]$$
 = P $(A_1 \cap D_2) + P(D_1 \cap A_2)$ =

$$= P (A_1) \times P (D_2) + P (D_1) \times P (A_2) = 0.50 \times 0.50 + 0.50 \times 0.50 = 0.5$$

ii) P (llegan a una resolución) = P
$$[(A_1 \cap A_2) \cup (D_1 \cap D_2)]$$
 = P $(A_1 \cap A_2) + P(D_1 \cap D_2)$ =

$$= P (A_1) \times P (A_2) + P (D_1) \times P (D_2) = 0.50 \times 0.50 + 0.50 \times 0.50 = 0.50$$

6)

Condición		Total		
	Joven (C)	Adulto (D)	Adulto Mayor (E)	
Fumador (A)	155	95	70	320
No Fumador (B)	12	65	103	180
Total	167	160	173	500

*entre paréntesis letras utilizadas para designar a los eventos en esta resolución

a) P (A
$$\cap$$
 C) = $\frac{155}{500}$
b) P(A/C) = $\frac{155}{167}$
c) P(D/B) = $\frac{65}{180}$
d) P (B) = $\frac{180}{500}$

b)
$$P(A/C) = \frac{155}{167}$$

c)
$$P(D/B) = \frac{65}{180}$$

d) P (B) =
$$\frac{180}{500}$$

7) a) Representar la información en un diagrama de Venn.

T = {el ejecutivo recibe un teléfono móvil}

N = {el ejecutivo recibe notebook}

b) i)
$$P(T) = \frac{\text{número de veces que ocurrió el evento } T}{\text{numero total de observaciones}} = \frac{155}{254}$$

ii)
$$P(T \cap N) = \frac{110}{254}$$

iii)
$$P(T \cup N) = P(T) + P(N) - P(T \cap N) = \frac{155}{254} + \frac{152}{254} - \frac{110}{254} = \frac{197}{254}$$

iv) No, pues
$$P(A \cap B) = \frac{110}{254} \neq P(A) \times P(B) = \frac{155}{254} \times \frac{152}{254} = \frac{5890}{16129}$$

9) a)

TV: rubro TV

A: rubro audio

C: venta en cuota

 $P(C) = P[(TV \cap C) \cup (A \cap C)] = P(TV \cap C) + P(A \cap C) = P(TV) \times P(C/TV) + P(A) \times P(C/A) = 0.65 \times 0.5 + 0.35 \times 0.28 = 0.423$

TV: rubro TV

E: venta al contado

C: venta en cuota

$$P(TV/E) = \frac{P(TV \cap E)}{P(E)} = \frac{P(TV) \times P(E/TV)}{P(E)} = \frac{0,65 \times 0,5}{0,577} = 0,5632$$

Donde P (E) = 1- P (C) = 1- 0,423 = 0,577 \qquad y \qquad P (E/Tv) = 1- P (C/Tv) = 1 - 0,5 = 0,5