GRAMMAR

Dr. A. Beulah AP/CSE

LEARNING OBJECTIVE

• To Understand the need of formal languages, and grammars (K3)

INTRODUCTION

• The theory of formal languages is used in the field of Linguistics- to define valid sentences and give structural descriptions of sentences.

$$S \rightarrow < noun > < verb > < adverb >$$
 $S \rightarrow < noun > < verb >$
 $< noun > \rightarrow Andrew$
 $< noun > \rightarrow Joe$
 $< verb > \rightarrow ran$
 $< verb > \rightarrow ate$
 $< adverb > \rightarrow slowly$
 $< adverb > \rightarrow quickly$
 $S \rightarrow (N, V, A)$
 $S \rightarrow (N, V, A)$

INTRODUCTION

- S variable to denote a sentence
- → represents a rule meaning that the word on the right side of the arrow can replace the word on the left side of the arrow.
- P collection of rules (or) productions.
- The sentences are derived from the above mentioned productions by:
 - Starting with S
 - Replacing words using the productions
 - Terminating when a string of terminals is obtained.

EXAMPLE

- S→ <noun><verb><adverb>
- $S \rightarrow Joe$ ate slowly

- $S \rightarrow < noun > < verb >$
- $S \rightarrow Andrew ran$

BACKUS-NAUR FORM

- Backus-Naur Form or Backus Normal Form → BNF
- BNF is formal and precise
 - BNF is a notation for context-free grammars
- BNF is essential in compiler construction
- Example

```
<number> ::= <digit> | <number> <digit>
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
```


FORMAL GRAMMAR - DEFINITION

A formal grammar $G = (N, \Sigma, P, S)$ consists of:

of:
$$G = (N, T, P, S)$$

 $S = N$
 $G = (V, T, P, S)$

- A finite set *N* of non terminal symbols.
- A finite set Σ of terminal symbols that is disjoint from N.
- A finite set P of production rules where a rule is of the form
 - string in $(\Sigma \cup N)^* \rightarrow \text{string in } (\Sigma \cup N)^*$
 - the left-hand side of a rule must contain at least one non terminal symbol.
- A symbol S in N that is indicated as the start symbol.

EXAMPLE

- $G = (N, \Sigma, P, S)$
- N = {<sentence>,<noun>,<verb>,<adverb>}
- $\Sigma = \{\text{Andrew, Joe, ate, ran ,slowly, quickly}\}\$
- S = <sentence>
- P 8

EXAMPLE

•The grammar G with $N = \{S, B\}$, $\Sigma = \{a, b, c\}$, P consisting of the following productions

$$- \underline{S} \rightarrow \underline{a}BS\underline{c}$$

$$- S \rightarrow abc$$

$$- \underline{B}a \rightarrow aB$$

$$- \underline{B}b \rightarrow bb$$

NOTATIONS

Names Beginning with	Represent Symbols In	Examples
Uppercase	N	A, B, C, Prefix
Lowercase and punctuation	Σ	a, b, c, <u>if</u> , then, (, <u>;</u>
X, Y	$N \cup \Sigma$	X_i, Y_3
Other Greek letters	$(N \cup \Sigma)^*$	α, β, γ

DERIVATION

- If $\alpha \rightarrow \beta$ is a production in a grammar G and γ , δ are any two strings on NU Σ , then we say $\gamma \alpha \delta$ directly derives $\gamma \beta \delta$ in G.
 - (i.e.) $\gamma \alpha \delta$ ⇒ $\gamma \beta \delta$
- This process is called *one-step derivation*.
- In particular, if $\alpha \rightarrow \beta$ is a production, then $\alpha \rightarrow \beta$

DERIVATION

- The purpose of a grammar is to derive strings in the language defined by the grammar
- $\alpha \Rightarrow \beta$, β can be derived from α in one step
- ⇒ derived in one or more steps
- ⇒ * derived in any number of steps
- \Rightarrow_{lm} leftmost derivation

- Always substitute the leftmost non-terminal
- \Rightarrow_{rm} rightmost derivation
 - Always substitute the rightmost non-terminal

EXAMPLE

• G = (
$$\{S\}$$
, $\{0,1\}$, $\{S\rightarrow 0S1, S\rightarrow 01\}$, S) then the derivation is:

•
$$S \Rightarrow OS1$$

$$\Rightarrow OO11$$

$$S \Rightarrow OS1$$

is a one step derivation, where S is replaced by 01.

EXAMPLE

$$\begin{array}{c} \underline{S} \rightarrow AB \\ B \rightarrow b \\ A \rightarrow aA \mid c \end{array}$$

Derivation

$$S \Rightarrow AB$$

$$\Rightarrow aAB$$

$$\Rightarrow aAB$$

$$\Rightarrow aAb$$

$$\Rightarrow aAb$$

$$\Rightarrow aaAb$$

LANGUAGE

- The language generated by a grammar G, L(G) is defined as $\{w \in \Sigma^* \mid S \Rightarrow^* w\}$.
- The elements of L(G) are called sentences.
- Stated in simple way, L(G) is the set of all terminal strings derived from the start symbol S.

$$L(G) = \{ \omega \mid \omega \in T^*, S \Rightarrow \omega \}$$

LANGUAGE

- G₁ and G₂ are equivalent if L(G₁) = L(G₂)
- A \rightarrow α_1 , A \rightarrow α_2 A \rightarrow α_m said to be A-productions, rewritten as

$$A \rightarrow \alpha_1 |\alpha_2|....\alpha_m$$

CHOMSKY HIERARCHY OF LANGUAGES

Ms. A. Beulah
AP/CSE

LEARNING OBJECTIVE

• To Understand the need of formal languages, and grammars (K3)

CHOMSKY HIERARCHY OF LANGUAGES

 According to Chomsky hierarchy, grammars are divided of 4 types:

```
- Type 0 → Unrestricted grammar. → Recursively enumerable language (ReL)
```

- Type 1 \rightarrow Context sensitive grammar. \rightarrow C5L
- Type 2 → Context free grammar. → C F Language CFL
- Type 3 → Regular Grammar. → Regular language (RL)

CHOMSKY HIERARCHY OF LANGUAGES

• $L_{rl} \subseteq L_{cfl} \subseteq L_{\underline{csl}} \subseteq L_{\underline{rel}}$

TYPE 0: UNRESTRICTED GRAMMAR

- Type 0 grammar language are recognized by TM.
- Languages -> Recursively Enumerable languages.
- Grammar Production in the form of

$$\gamma A \delta \rightarrow \gamma \alpha \delta$$

where

 γ is left content, δ is right content

 γ , δ is (V / T)*

V: Variables or Non Terminals

T: Terminals.

G= (N,T, P, S)

In type 0 there must be at least one variable or Non-terminal on left side of production.

TYPE 0: UNRESTRICTED GRAMMAR

abAbcd→abABbcd

where

ab-left context

bcd-right context

 α is AB

ab AB beg

A - left context

ε - right context

 α is ϵ

 ϵ - left and right context

 α is ϵ

TYPE 1: CONTEXT SENSITIVE GRAMMAR

- Type-1 grammars generate the context-sensitive languages.
- The language generated by the grammar are recognized by the Linear Bound Automata

In Type 1

- I. All Type 1 grammar should be Type 0.
- II. Grammar Production in the form of

```
\gammaAδ\rightarrow \gammaαδ

where

\gamma is left content, \delta is right content

\gamma, \delta is ( V / T)*

V: Variables or Non Terminals
```

T: Terminals.

 $\alpha \neq \epsilon$

The rule $S \rightarrow \epsilon$ is allowed if S does not appear on the right side of any rule

TYPE 1: CONTEXT SENSITIVE GRAMMAR

aAbcD→abcDbcD

where a - left context

bcD - right context

A is replaced by $bcD \neq \varepsilon$

 $AB \rightarrow AbBC$

where A - left context

ε - right context

B is replaced by bBC $\neq \epsilon$

TYPE 1: CONTEXT SENSITIVE GRAMMAR

$A \rightarrow abA$

where

 ϵ - left & right context.

A - abA ≠ ε

 $A \rightarrow \epsilon$ is allowed but A does not appear on the right handside of any production of the grammar

TYPE 2: CONTEXT FREE GRAMMAR

- Type-2 grammars generate the context-free languages.
- The language generated by the grammar is recognized by a Pushdown automata.
- In Type 2,
 - 1. All Type 2 grammar should be Type 1.
 - 2. Left hand side of production can have only one variable NT.

$$A \rightarrow \alpha$$

TYPE 2: CONTEXT FREE GRAMMAR

$$S \rightarrow Aa$$

$$\underline{A} \rightarrow \underline{a}$$

$$A \rightarrow \epsilon$$

TYPE 3: REGULAR GRAMMAR

- Type-3 grammars generate regular languages.
- The language generated by the regular grammar is accepted by a finite automata.
- Type 3 is most restricted form of grammar.
- Type 3 should be in the given form only:
- V → VT / T (left linear grammar) –NT left (or)
- V → TV /T (right linear grammar)-NT

TYPE 3: REGULAR GRAMMAR

 $S \rightarrow b \mid c$

 $S \rightarrow bA$

 $S \rightarrow \underline{a}$

 $A \rightarrow \epsilon$ is allowed but A does not appear on the right handside of any production of the grammar

$$S \rightarrow Aa$$
 3
 $A \rightarrow \tilde{c} \mid BaB$ 2
 $B \rightarrow abc$ 2
 CFG

- A→BaB, B→abc type 2.
 (because productions are of the form A→α)
- S \rightarrow Aa, A \rightarrow c type 3 (because production of the form A \rightarrow a)
- ∴ the type number is 2 (CFG).

$$S \rightarrow ASB \mid d_{3}$$

$$A \rightarrow aA_{3}$$
CFG

- S \rightarrow ASB type 2 (i.e. A $\rightarrow \alpha$)
- S \rightarrow d, A \rightarrow aA type 3 (i.e. A \rightarrow a, A \rightarrow aB)
- ∴ the highest type number is 2.

S→0SA2	2
S→012	2

$$1A \rightarrow 11$$
 1

 $S \rightarrow 0SA2$

S→012

 $2A \rightarrow A12$

 $1A \rightarrow 11$

• Context sensitive grammar - type 1

S→aSBC | aBC

 $CB \rightarrow BC$

aB→ab

bB→bb

bC→bc

cC→cc

 $CB \rightarrow BC$

aB→ab

bB→bb

bC→bc

 $cC \rightarrow cc$

Context sensitive grammar - type 1

$$S \rightarrow aSa \mid bSb$$

 $S \rightarrow a \mid b$
 $S \rightarrow \lambda$

$$S \rightarrow a \mid b$$

$$S \rightarrow \lambda$$

Context free grammar - type 2

SUMMARY

- Definition of Grammar
- Notations followed in grammar
- Different types of grammar
- Language of a grammar

TEST YOUR KNOWLEDGE

- The entity which generate Language is termed as:
 - a) Automata
 - b) Tokens
 - c) Grammar
 - d) Data
- The minimum number of productions required to produce a language consisting of palindrome strings over ∑={a,b} is
 - a) 3
 - b) 7

c) 5 d) 6

TEST YOUR KNOWLEDGE

- The Grammar can be defined as: G=(V, ∑, p, S)
 In the given definition, what does S represents?
 - a) Accepting State
 - b) Starting Variable
 - c) Sensitive Grammar
 - d) None of these

LEARNING OUTCOME

On successful completion of this topic, the student will be able to:

 To Understand the need of formal languages, and grammars (K3)

REFERENCE

 Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2008

