MATH 1853 Tutorial

Wenyong Zhou

Sept 2024

Tutorial 1: Matrix Operation

Tips: The following exercises are provided **for reference only** and as a supplement to the tutorial material.

1. Please calculate
$$\begin{bmatrix} 1 & 3 \\ 5 & 2 \\ -1 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ 3 & 0 \\ 0 & 1 \end{bmatrix}.$$

Hints:
$$\begin{bmatrix} 1 & 3 \\ 5 & 2 \\ -1 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ 3 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 2 & 2 \\ -1 & -1 \end{bmatrix}.$$

2. Please calculate
$$3 \cdot \begin{bmatrix} 1 & 1 \\ 3 & 0 \\ 0 & 1 \end{bmatrix}$$
.

Hints:
$$3 \cdot \begin{bmatrix} 1 & 1 \\ 3 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 9 & 0 \\ 0 & 3 \end{bmatrix}.$$

3. Assume
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 2 & -1 \\ -1 & 0 & -1 & 0 \end{bmatrix}$. Please calculate

AB

Hints:
$$\begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 2 & -1 \\ -1 & 0 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 3 & 1 & 4 & 1 \end{bmatrix}$$

4. Assume
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 4 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$. Please calculate \mathbf{AB} and \mathbf{BA} .

Hints:
$$\mathbf{AB} = \begin{bmatrix} 1 & 0 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = 1. \ \mathbf{BA} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 4 \\ 1 & 0 & 4 \\ 0 & 0 & 0 \end{bmatrix}$$

5. Assume $\mathbf{A} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. Please calculate \mathbf{AB} and \mathbf{BA} .

$$\mathbf{Hints:\ AB} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.\ \mathbf{BA} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

odd number, then $\mathbf{A}^n = 4^{\frac{n-1}{2}} \mathbf{A}$.

Tutorial 2: Solving Linear Equations

Tips: The following exercises are provided for reference only and as a supplement to the tutorial material.

1. Please solving the linear equations $\begin{cases} 2x_1 - x_2 - x_3 + x_4 = 2\\ x_1 + x_2 - 2x_3 + x_4 = 4\\ 4x_1 - 6x_2 + 2x_3 - 2x_4 = 4\\ 3x_1 + 6x_2 - 9x_3 + 7x_4 = 9 \end{cases}$

$$(3x_1 + 6x_2 - 9x_3 + 7x_4 = 9)$$
Hints:

$$\begin{bmatrix} 2 & -1 & -1 & 1 & 2 \\ 1 & 1 & -2 & 1 & 4 \\ 4 & -6 & 2 & -2 & 4 \\ 3 & 6 & -9 & 7 & 9 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & -2 & 1 & 4 \\ 2 & -1 & -1 & 1 & 2 \\ 2 & -3 & 1 & -1 & 2 \\ 3 & 6 & -9 & 7 & 9 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & -2 & 1 & 4 \\ 0 & 2 & -2 & 2 & 0 \\ 0 & -5 & 5 & -3 & -6 \\ 0 & 3 & -3 & 4 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & -2 & 1 & 4 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 2 & -6 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 & 4 \\ 0 & 1 & -1 & 0 & 3 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} .$$

$$(x_1 = x_2 + 4)$$

$$\begin{bmatrix} 1 & 1 & -2 & 1 & 4 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 2 & -6 \\ 0 & 0 & 0 & 1 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & -2 & 1 & 4 \\ 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 & 4 \\ 0 & 1 & -1 & 0 & 3 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

2. Please solving the linear equations $\begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 0 \\ 2x_1 + x_2 - 2x_3 - 2x_4 = 0 \\ x_1 - x_2 - 4x_3 - 3x_4 = 0 \end{cases}$.

Hints:
$$\begin{bmatrix} 1 & 2 & 2 & 1 \\ 2 & 1 & -2 & -2 \\ 1 & -1 & -4 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & -3 & -6 & -4 \\ 0 & -3 & -6 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & 2 & \frac{4}{3} \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -2 & -\frac{5}{3} \\ 0 & 1 & 2 & \frac{4}{3} \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$
 Therefore,
$$\begin{cases} x_1 = 2x_3 + \frac{5}{3}x_4 \\ x_2 = -2x_3 - \frac{4}{3}x_4 \end{cases}$$
.

3. Please solving the linear equations $\begin{cases} x_1 - 2x_2 + 3x_3 - x_4 = 1\\ 3x_1 - x_2 + 5x_3 - 3x_4 = 2\\ 2x_1 + x_2 + 2x_3 - 2x_4 = 3 \end{cases}$

Hints:
$$\begin{bmatrix} 1 & -2 & 3 & -1 & 1 \\ 3 & -1 & 5 & -3 & 2 \\ 2 & 1 & 2 & -2 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 3 & -1 & 1 \\ 0 & 5 & -4 & 0 & -1 \\ 0 & 5 & -4 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 3 & -1 & 1 \\ 0 & 5 & -4 & 0 & -1 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}.$$
Therefore there is no solution for original linear equations.

4. Please solving the linear equations $\begin{cases} x_1 + x_2 - 3x_3 - x_4 = 1\\ 3x_1 - x_2 - 3x_3 + 4x_4 = 4\\ x_1 + 5x_2 - 9x_3 - 8x_4 = 0 \end{cases}$

5. Please solving the linear equations $\begin{cases} x_1 - x_2 - x_3 = 2\\ 2x_1 - x_2 - 3x_3 = 1\\ 3x_1 + 2x_2 - 5x_3 = 0 \end{cases}$.

6. Please solving the equation: $\mathbf{AX} = \mathbf{B}$, where $\mathbf{A} = \begin{bmatrix} 2 & 1 & -3 \\ 1 & 2 & -2 \\ -1 & 3 & 2 \end{bmatrix}$ and

$$\mathbf{B} = \begin{bmatrix} 1 & -1 \\ 2 & 0 \\ -2 & 5 \end{bmatrix}.$$

Hints:
$$\mathbf{A}, \mathbf{B} = \begin{bmatrix} 2 & 1 & -3 & 1 & -1 \\ 1 & 2 & -2 & 2 & 0 \\ -1 & 3 & 2 & -2 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -2 & 2 & 0 \\ 0 & -3 & 1 & -3 & -1 \\ 0 & 5 & 0 & 0 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -4 & 2 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & -3 & 2 \end{bmatrix}$$
. Therefore, $\mathbf{X} = \mathbf{A}^{-1}\mathbf{B} = \begin{bmatrix} -4 & 2 \\ 0 & 1 \\ -3 & 2 \end{bmatrix}$ is the solution.

Tutorial 3: Vector Spaces and Linear Spaces

Tips: The following exercises are provided **for reference only** and as a supplement to the tutorial material.

1. For what values of a are the following vectors linearly dependent?

$$\mathbf{a}_1 = \begin{pmatrix} a \\ 1 \\ 1 \end{pmatrix}, \mathbf{a}_2 = \begin{pmatrix} 1 \\ a \\ -1 \end{pmatrix}, \mathbf{a}_3 = \begin{pmatrix} 1 \\ -1 \\ a \end{pmatrix}$$

Hints: Vectors \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 are linearly dependent if and only if $R(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3) < 3$, that is, $|\mathbf{A}| = 0$, where $\mathbf{A} = (\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3)$.

$$|\mathbf{A}| = \begin{vmatrix} a & 1 & 1 \\ 1 & a & -1 \\ 1 & -1 & a \end{vmatrix} = \begin{vmatrix} 0 & a+1 & 1-a^2 \\ 0 & a+1 & -1-a \\ 1 & -1 & a \end{vmatrix} = (a+1)^2(a-2).$$

Therefore, the vectors are linearly dependent when a = -1 or a = 2.

Given that vectors a₁, a₂ are linearly independent, and a₁ + b, a₂ + b are linearly dependent, find the linear representation of vector b using a₁, a₂.
 Hints: Let b = k₁a₁ + k₂a₂. Since a₁ + b, a₂ + b are linearly dependent, there exist non-zero x₁, x₂ such that

$$x_1(\mathbf{a}_1 + \mathbf{b}) + x_2(\mathbf{a}_2 + \mathbf{b}) = \mathbf{0}.$$

Substituting $\mathbf{b} = k_1 \mathbf{a}_1 + k_2 \mathbf{a}_2$, we get

$$[x_1(k_1+1) + x_2k_1]\mathbf{a}_1 + [x_1k_2 + x_2(k_2+1)]\mathbf{a}_2 = \mathbf{0}.$$
 (2.1)

Since \mathbf{a}_1 , \mathbf{a}_2 are linearly independent, we have

$$\begin{cases} x_1(k_1+1) + x_2k_1 = 0, \\ x_1k_2 + x_2(k_2+1) = 0. \end{cases}$$
 (2.2)

For non-zero x_1 , x_2 , the coefficient matrix of system (4.2) must have zero determinant, thus

$$\begin{vmatrix} k_1 + 1 & k_1 \\ k_2 & k_2 + 1 \end{vmatrix} = k_1 + k_2 + 1 = 0.$$

Therefore,

$$\mathbf{b} = k_1 \mathbf{a}_1 + k_2 \mathbf{a}_2 = k_1 \mathbf{a}_1 - (1 + k_1) \mathbf{a}_2,$$

or equivalently

$$\mathbf{b} = c\mathbf{a}_1 - (1+c)\mathbf{a}_2, \quad (c \in \mathbb{R}).$$

3. Let $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ be a group of *n*-dimensional vectors. Given that *n* unit coordinate vectors $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ can be linearly represented by them, prove that $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ are linearly independent.

Hints: If vector group $\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n$ can be linearly represented by vector group $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n$, then

$$R(\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n) \le R(\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n).$$
 (1)

And since

$$R(\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_n) = n$$
, and $R(\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n) \leq n$,

therefore

$$R(\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n) = n.$$

Thus $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_n$ are linearly independent.

4. Let $\mathbf{b}_1 = \mathbf{a}_1$, $\mathbf{b}_2 = \mathbf{a}_1 + \mathbf{a}_2$, \cdots , $\mathbf{b}_r = \mathbf{a}_1 + \mathbf{a}_2 + \cdots + \mathbf{a}_r$, and vector group $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_r$ is linearly independent. Prove that vector group $\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_r$ is linearly independent.

Hints: Let

$$k_1 \mathbf{b}_1 + k_2 \mathbf{b}_2 + \dots + k_r \mathbf{b}_r = \mathbf{0}, \tag{4.1}$$

then

$$(k_1 + \dots + k_r)\mathbf{a}_1 + (k_2 + \dots + k_r)\mathbf{a}_2 + \dots + (k_i + \dots + k_r)\mathbf{a}_i + \dots + k_r\mathbf{a}_r = \mathbf{0}.$$
(4.2)

Since vector group $\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_r$ is linearly independent, we have

$$\begin{cases} k_1 + k_2 + \dots + k_r = 0, \\ k_2 + \dots + k_r = 0, \\ \dots \\ k_r = 0. \end{cases}$$
(4.3)

By back substitution, we can directly solve to get $k_1 = k_2 = \cdots = k_r = 0$. Therefore, equation (4.1) holds if and only if $k_1 = k_2 = \cdots = k_r = 0$. Thus $\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_r$ are linearly independent. 5. Let vector group $B: \mathbf{b}_1, \cdots, \mathbf{b}_r$ be linearly represented by vector group $A: \mathbf{a}_1, \cdots, \mathbf{a}_s$ as

$$(\mathbf{b}_1, \cdots, \mathbf{b}_r) = (\mathbf{a}_1, \cdots, \mathbf{a}_s)\mathbf{K}$$

where **K** is an $s \times r$ matrix, and vector group A is linearly independent. Please prove that the necessary and sufficient condition for vector group B to be linearly independent is that the rank $R(\mathbf{K}) = r$.

Hints: (Necessity) Suppose vector group B is linearly independent. Let $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_r), \mathbf{A} = (\mathbf{a}_1, \dots, \mathbf{a}_s)$ then we have

$$\mathbf{B} = \mathbf{AK}.\tag{5.1}$$

From matrix properties, we know

$$R(\mathbf{B}) = R(\mathbf{AK}) \le R(\mathbf{K}). \tag{5.2}$$

Since vector group B is linearly independent, we know $R(\mathbf{B}) = r$, thus $R(\mathbf{K}) \geq r$.

Also, **K** is an $r \times s$ matrix, so $R(\mathbf{K}) \leq \min\{r, s\} \leq r$.

Therefore, we know $R(\mathbf{K}) = r$.

(Sufficiency) If $R(\mathbf{K}) = r$. Let

$$x_1\mathbf{b}_1 + x_2\mathbf{b}_2 + \dots + x_r\mathbf{b}_r = \mathbf{0}. ag{5.3}$$

To prove equation (5.3) has only zero solution. Let equation (5.3) be written as

$$\mathbf{Bx} = \mathbf{0}.\tag{5.4}$$

Substituting (5.1) gives

$$\mathbf{AKx} = \mathbf{0}.\tag{5.5}$$

Since vector group $A: \mathbf{a}_1, \dots, \mathbf{a}_s$ is linearly independent, we have $R(\mathbf{A}) = r$. Therefore, equation (5.5) has only zero solution:

$$\mathbf{K}\mathbf{x} = \mathbf{0}.\tag{5.6}$$

Also, since $R(\mathbf{K}) = r$, equation (4.13) has only zero solution:

$$\mathbf{x} = \mathbf{0}$$

Therefore, $\mathbf{b}_1, \mathbf{b}_2, \cdots, \mathbf{b}_r$ are linearly independent.

6. Given a 3rd order matrix \mathbf{A} and a 3-dimensional vector \mathbf{x} satisfying $\mathbf{A}^3\mathbf{x} = 3\mathbf{A}\mathbf{x} - \mathbf{A}^2\mathbf{x}$, and vectors \mathbf{x} , $\mathbf{A}\mathbf{x}$, $\mathbf{A}^2\mathbf{x}$ are linearly independent. Let $\mathbf{P} = (\mathbf{x}, \mathbf{A}\mathbf{x}, \mathbf{A}^2\mathbf{x})$, find a 3rd order matrix \mathbf{B} such that $\mathbf{A}\mathbf{P} = \mathbf{P}\mathbf{B}$ and find $|\mathbf{A}|$.

Hints: (1) From $\mathbf{P} = (\mathbf{x}, \mathbf{A}\mathbf{x}, \mathbf{A}^2\mathbf{x})$, we have

$$\begin{split} \mathbf{AP} &= \mathbf{A}(\mathbf{x}, \mathbf{Ax}, \mathbf{A}^2 \mathbf{x}) \\ &= (\mathbf{Ax}, \mathbf{A}^2 \mathbf{x}, \mathbf{A}^3 \mathbf{x}) \\ &= (\mathbf{x}, \mathbf{Ax}, \mathbf{A}^2 \mathbf{x}) \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 3 \\ 0 & 1 & -1 \end{pmatrix} \quad \text{(since } \mathbf{A}^3 \mathbf{x} = 3\mathbf{Ax} - \mathbf{A}^2 \mathbf{x}) \\ &= \mathbf{P} \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 3 \\ 0 & 1 & -1 \end{pmatrix}. \end{split}$$

Note that matrix \mathbf{P} is a 3rd order matrix, and since vectors \mathbf{x} , $\mathbf{A}\mathbf{x}$, $\mathbf{A}^2\mathbf{x}$ are linearly independent, matrix \mathbf{P} is invertible. Therefore,

$$\mathbf{B} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \mathbf{P}^{-1} \mathbf{P} \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 3 \\ 0 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 3 \\ 0 & 1 & -1 \end{pmatrix}.$$

(2) From $\mathbf{A} = \mathbf{P}\mathbf{B}\mathbf{P}^{-1}$, taking determinants of both sides gives

$$|\mathbf{A}| = |\mathbf{B}| = 0.$$

Tutorial 4: Determinant

Tips: The following exercises are provided **for reference only** and as a supplement to the tutorial material.

1. Please calculate $\begin{vmatrix} 2 & 0 & 1 \\ 1 & -4 & -1 \\ -1 & 8 & 3 \end{vmatrix}$.

Hints:

$$\begin{vmatrix} 2 & 0 & 1 \\ 1 & -4 & -1 \\ -1 & 8 & 3 \end{vmatrix} = 2 \times (-4) \times 3 + 0 \times (-1) \times 1 + 1 \times 8 - 0 \times 1 \times 3 - 2 \times (-1) \times 8 - 1 \times (-4) \times (-1)$$

$$= -24 + 8 + 16 - 4 = -4.$$

.

2. Please calculate $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$.

Hints:

$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = acb + bac + cba - bbb - aaa - ccc = 3abc - a^3 - b^3 - c^3.$$

.

3. Please calculate $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$.

Hints:

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = bc^2 + ca^2 + ab^2 - ac^2 - ba^2 - cb^2 = (a-b)(b-c)(c-a).$$

.

4. Please calculate $\begin{vmatrix} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{vmatrix}$.

Hints:

$$\begin{vmatrix} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{vmatrix} = x(x+y)y + yx(x+y) + (x+y)yx - y^3 - (x+y)^3 - x^3$$

$$=3xy(x+y)-y^3-3x^2y-3y^2x-x^3-y^3=-2(x^3+y^3).$$

.

5. Please calculate
$$\begin{vmatrix} a^2 & ab & b^2 \\ 2a & a+b & 2b \\ 1 & 1 & 1 \end{vmatrix}$$
.

Hints:

$$\begin{vmatrix} a^2 & ab & b^2 \\ 2a & a+b & 2b \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} a^2 & ab-a^2 & b^2-a^2 \\ 2a & b-a & 2b-2a \\ 1 & 0 & 0 \end{vmatrix} = (-1)^{3+1} \begin{vmatrix} ab-a^2 & b^2-a^2 \\ b-a & 2b-2a \end{vmatrix}$$
$$= (b-a)(b-a) \begin{vmatrix} a & b+a \\ 1 & 2 \end{vmatrix} = (a-b)^3.$$

6. Please calculate
$$\begin{vmatrix} ax + by & ay + bz & az + bx \\ ay + bz & az + bx & ax + by \\ az + bx & ax + by & ay + bz \end{vmatrix}$$

Hints:

$$\begin{vmatrix} ax+by & ay+bz & az+bx \\ ay+bz & az+bx & ax+by \\ az+bx & ax+by & ay+bz \end{vmatrix} = a \begin{vmatrix} x & ay+bz & az+bx \\ y & az+bx & ax+by \\ z & ax+by & ay+bz \end{vmatrix} + b \begin{vmatrix} y & ay+bz & az+bx \\ z & az+bx & ax+by \\ x & ax+by & ay+bz \end{vmatrix}.$$

$$= a^2 \begin{vmatrix} x & ay + bz & z \\ y & az + bx & x \\ z & ax + by & y \end{vmatrix} + b^2 \begin{vmatrix} y & z & az + bx \\ z & x & ax + by \\ x & y & ay + bx \end{vmatrix} = a^3 \begin{vmatrix} y & z & x \\ z & x & y \\ x & y & z \end{vmatrix} + b^3 \begin{vmatrix} x & y & z \\ y & z & x \\ z & x & y \end{vmatrix}.$$

$$= (a^3 + b^3) \begin{vmatrix} x & y & z \\ y & z & x \\ z & x & y \end{vmatrix}.$$

Tutorial 5: Eigenvalue and Eigenvector

Tips: The following exercises are provided for reference only and as a supplement to the tutorial material.

1. Please find the eigenvalues and eigenvectors of $\begin{pmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{pmatrix}$.

Hints: By

$$|\mathbf{A} - \lambda \mathbf{E}| = \begin{vmatrix} 2 - \lambda & -1 & 2 \\ 5 & -3 - \lambda & 3 \\ -1 & 0 & -2 - \lambda \end{vmatrix} = -(\lambda + 1)^3,$$

Therefore, the eigenvalues of **A** are $\lambda_1 = \lambda_2 = \lambda_3 = -1$.

When $\lambda_1 = \lambda_2 = \lambda_3 = -1$, solve $(\mathbf{A} + \mathbf{E})\mathbf{x} = \mathbf{0}$. By

$$(\mathbf{A} + \mathbf{E}) = \begin{pmatrix} 3 & -1 & 2 \\ 5 & -2 & 3 \\ -1 & 0 & -1 \end{pmatrix} \sim \begin{pmatrix} 0 & -1 & -1 \\ 0 & -2 & -2 \\ -1 & 0 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix},$$

We get the basic solution $\mathbf{p} = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$. Therefore, $k\mathbf{p}$ $(k \neq 0)$ is the general eigenvector corresponding to $\lambda_1 = \lambda_2 = \lambda_3 = -1$.

2. Let **A**, **B** be *n*-th order matrices satisfying $R(\mathbf{A}) + R(\mathbf{B}) < n$. Prove that **A** and **B** have common eigenvalues and common eigenvectors.

Hints: Since $R(\mathbf{A}) + R(\mathbf{B}) < n$, we have $R(\mathbf{A}) < n$, and

$$R(\mathbf{A}) < n \Leftrightarrow |\mathbf{A}| = 0 \Leftrightarrow |\mathbf{A} - 0\mathbf{E}| = 0 \Leftrightarrow 0$$
 is an eigenvalue of \mathbf{A} .

Similarly, 0 is also an eigenvalue of **B**. Therefore, **A** and **B** have a common eigenvalue 0.

Now we prove **A** and **B** have common eigenvectors corresponding to $\lambda = 0$.

A and **B** have common eigenvectors corresponding to $\lambda = 0$

- \Leftrightarrow there exists a non-zero vector **p** simultaneously satisfying $\mathbf{Ap} = \mathbf{0p}, \mathbf{Bp} = \mathbf{0p}$
- $\Leftrightarrow \text{ system of equations } \begin{cases} \mathbf{A}\mathbf{x} = \mathbf{0} \\ \mathbf{B}\mathbf{x} = \mathbf{0} \end{cases} \text{ has non-zero solutions}$ $\Leftrightarrow \text{ system of equations } \begin{pmatrix} \mathbf{A} \\ \mathbf{B} \end{pmatrix} \mathbf{x} = \mathbf{0} \text{ has non-zero solutions}$

And

$$R\begin{pmatrix} \mathbf{A} \\ \mathbf{B} \end{pmatrix} \le R(\mathbf{A}) + R(\mathbf{B}) < n.$$

Therefore, \mathbf{A} and \mathbf{B} have common eigenvectors.

3. Let ${\bf A}$ be an n-th order matrix. Prove that ${\bf A}^{\rm T}$ and ${\bf A}$ have the same eigenvalues.

Hints: It suffices to prove that they have the same characteristic equation (or characteristic polynomial). By the property $|\mathbf{A}^{T}| = |\mathbf{A}|$, we know

$$|\mathbf{A}^{\mathrm{T}} - \lambda \mathbf{E}| = |(\mathbf{A} - \lambda \mathbf{E})^{\mathrm{T}}| = |\mathbf{A} - \lambda \mathbf{E}|.$$
 (2)

Therefore, \mathbf{A}^{T} and \mathbf{A} have the same eigenvalues.

4. Let $\lambda \neq 0$ be an eigenvalue of the $m \times n$ matrix $\mathbf{A}_{m \times n} \mathbf{B}_{n \times m}$. Please prove that λ is also an eigenvalue of the $n \times n$ matrix $\mathbf{B}\mathbf{A}$.

Hints: Let **p** be an eigenvector of $\mathbf{A}_{m \times n} \mathbf{B}_{n \times m}$ corresponding to eigenvalue λ , then

$$(\mathbf{AB})\mathbf{p} = \lambda \mathbf{p}$$

Multiply both sides of the equation by **B** to get $\mathbf{B}(\mathbf{AB})\mathbf{p} = \mathbf{B}\lambda\mathbf{p}$, i.e.,

$$(\mathbf{B}\mathbf{A})(\mathbf{B}\mathbf{p}) = \lambda(\mathbf{B}\mathbf{p})$$

Now we prove that \mathbf{Bp} is non-zero. Because, if $\mathbf{Bp} = \mathbf{0}$, then from the first equation, the left side $(\mathbf{AB})\mathbf{p} = \mathbf{A}(\mathbf{Bp}) = \mathbf{0}$; however, since $\lambda \neq 0$ and eigenvector \mathbf{p} is non-zero, we have $\lambda \mathbf{p} \neq \mathbf{0}$. This leads to a contradiction.

Therefore, λ is also an eigenvalue of the $n \times n$ matrix **BA**.

5. Let **A** be an orthogonal matrix, and $|\mathbf{A}| = -1$. Please prove that $\lambda = -1$ is an eigenvalue of **A**.

Hints: We need to prove that $\lambda = -1$ satisfies the characteristic equation $|\mathbf{A} - \lambda \mathbf{E}| = 0$, i.e., $|\mathbf{A} + \mathbf{E}| = 0$. Because

$$|\mathbf{A} + \mathbf{E}| = |\mathbf{A} + \mathbf{A}^{T} \mathbf{A}|$$

$$= |\mathbf{E} + \mathbf{A}^{T}||\mathbf{A}|$$

$$= -|\mathbf{A}^{T} + \mathbf{E}|$$

$$= -|(\mathbf{A} + \mathbf{E})^{T}|$$

$$= -|\mathbf{A} + \mathbf{E}|$$
(A is orthogonal)
$$(|\mathbf{A}| = -1)$$

$$= -|\mathbf{A} + \mathbf{E}|$$

Therefore $2|\mathbf{A} + \mathbf{E}| = 0$, i.e., $|\mathbf{A} + \mathbf{E}| = 0$. This proves that $\lambda = -1$ is an eigenvalue of \mathbf{A} .

6. Let $\mathbf{A}^2 - 3\mathbf{A} + 2\mathbf{E} = \mathbf{O}$. Please prove that the eigenvalues of \mathbf{A} can only be 1 or 2

Hints: Let λ be an eigenvalue of \mathbf{A} , then $\lambda^2 - 3\lambda + 2$ is an eigenvalue of $\mathbf{A}^2 - 3\mathbf{A} + 2\mathbf{E}$. Therefore, there exists a non-zero vector \mathbf{p} such that

$$(\mathbf{A}^2 - 3\mathbf{A} + 2\mathbf{E})\mathbf{p} = (\lambda^2 - 3\lambda + 2)\mathbf{p}$$

Also, since $\mathbf{A}^2 - 3\mathbf{A} + 2\mathbf{E} = \mathbf{O}$, substituting into the above equation yields

$$(\lambda^2 - 3\lambda + 2)\mathbf{p} = \mathbf{0}$$

Since the eigenvector $\mathbf{p} \neq \mathbf{0}$, we must have

$$\lambda^2 - 3\lambda + 2 = 0$$

Solving this equation gives $\lambda = 1$ or 2.

Therefore, the eigenvalues of A can only be 1 or 2.