## Title: ReMCA: A Reconfigurable Multi-Core Architecture for Full RNS Variant of BFV Homomorphic Evaluation

(TCAS I)

#### **Preliminaries**

#### The Textbook BFV Scheme

- BFV.KeyGen( $\lambda, \omega$ )
- BFV.Enc(m, pk)
- BFV.Dec(ct, sk)
- BFV.HomAdd( $ct_0, ct_1$ )
- BFV.HomMult( $ct_0, ct_1, rlk$ )

#### **Preliminaries**

#### **Parameter Setup**

- polynomial degree: 4096
- the standard deviation of the Gaussian distribution to  $\sigma$ : 3.19
- the size of modulus q: 128 bit(product of four 32 bit primes)?
- the size of the larger modulus Q to at least 288-bit(product of nine 32 bit primes)
- 32-bit primes to construct the RNS for our implementation

#### Algorithm And **Approach**

#### **Unified Low-Complexity** NTT/INTT

It is a algorithm can control the butterfly unit to do NTT or INTT, decrease the complexity of memory access.

$$(rac{N}{2}log_2^N+N)+(rac{N}{2}log_2^N+2N)->(Nlog_2^N+N)$$

#### **Algorithm 1** Unified Low-Complexity CG NTT/INTT

```
Let coefficient vector \mathbf{a} = (a_0, \dots, a_{N-1}) and \mathbf{A} = (A_0, \dots, A_{N-1}). Let
\omega_N to be the primitive N-th root of unity and \psi_{2N} = \omega_N^{1/2} \mod q.
Input: a, N, q, sel, \psi_{2N}^{i}, \psi_{2N}^{-i}, where i = 1, 2, ..., N - 1.
Output: \mathbf{A} = NTT_{\psi_{2N}}^{N}(\mathbf{a}) \text{ or } INTT_{\psi_{2N}}^{N}(\mathbf{a})
1: a \leftarrow BitReverse(a)
2: for (s = 1; s \le \log_2 N; s = s + 1) do
3: for (j = 0; j < N/2; j = j + 1) do
        if sel = 1 then //NTT
           k_1 = |j/2^{\log_2(N) - s}| \cdot 2^{\log_2(N) - s}
           k_2 = \bar{N}/2^{s}
      A[j] \leftarrow a[2j] + a[2j+1] \cdot \psi_{2N}^{2k_1 + k_2} \mod q
         A[j+N/2] \leftarrow a[2j] - a[2j+1] \cdot \psi_{2N}^{2k_1+k_2} \mod q
        k_1 = \left| \text{BitReverse}(j)/2^{s-1} \right| \cdot 2^{s-1}
        k_2 = 2^{s-1}
       A[j] \leftarrow (a[2j] + a[2j+1]) \cdot (1/2) \mod q

A[j+N/2] \leftarrow (a[2j] - a[2j+1]) \cdot (\psi_{2N}^{-(2k_1+k_2)}/2) \mod q
14:
         end if
15: end for
16: if s \neq \log_2 N then
17: a = A
18: end if
19: end for
20: Return (A)
```

### Algorithm And Approach

#### **RNS Basis Extension**

Chinese remainder theorem(<u>https://zh.wikipedia.</u> <u>org/zh-hans/中国剩余定理</u>)

$$egin{aligned} q = \prod_{i=1}^k q_i, p = \prod_{j=k+1}^{k+k'} q_j, Q = p*q \ where \quad k=4 \quad k'=5 \end{aligned}$$

$$egin{aligned} A_j &\equiv (\sum (A_i * ilde{q}_i mod q_i) * q_i^* - V' * q) mod q_j \ V' &= ig \lfloor \sum (A_i * ilde{q}_i mod q_i^*) / q_i ig 
brace \end{aligned}$$

#### Algorithm 2 RNS Basis Extension

Let 
$$\mathbf{A}_i \in R_{q_i}, q_i^* = q/q_i, \tilde{q}_i = (q_i^*)^{-1} \mod q_i, q = \prod_{i=1}^k q_i,$$

$$p = \prod_{j=k+1}^{k+k'} q_j, \ Q = q \cdot p, \text{ where } i = 1, \dots, k, \ j = k+1, \dots, k+k'.$$

**Input:**  $A_i, q_i, 1/q_i, \tilde{q}_i, q_i^*, q_j, q$ .

**Output:**  $A_i = BasisExtension(A_i)$ .

1: **for** 
$$(i = 1, i \le k, i = i + 1)$$
 **do**

2: 
$$\mathbf{A}'_i = \mathbf{A}_i \cdot \tilde{q}_i \mod q_i /\!/ \text{ Step } 1$$

3: end for

4: **for** 
$$(j = k + 1, j \le k + k', j = j + 1)$$
 **do**

5: 
$$\mathbf{A}'_j = \sum_{i=1}^k \mathbf{A}'_i \cdot q_i^* \mod q_j /\!/ \text{ Step 2}$$

6: 
$$\mathbf{V}_j = \lfloor \sum_{i=1}^k \mathbf{A}_i' \cdot (1/q_i) \rfloor \mod q_j / / \text{ Step 3}$$

7: 
$$\mathbf{V}'_j = \mathbf{V}_j \cdot q \mod q_j / / \text{Step 4}$$

8: 
$$\mathbf{A}_j' = \mathbf{A}_j' - \mathbf{V}_j' \mod q_j / | \text{Step 5}$$

9: **end for** 

10: **Return**  $(\mathbf{A}_j)$ 

#### Algorithm And **Approach**

#### **RNS Basis**

After complete the RNS basis extension, the ciphertext multiplication is performed in the RNS of R Q in parallel. Then, the extended tensored ciphertexts need to be scaled down

#### Algorithm 3 RNS Basis Scaling

Let  $A_i \in R_{q_i}, A_j \in R_{q_j}, Q = q \cdot p, Q_i^* = Q/q_i, Q_j^* =$  $Q/q_j, \ \tilde{Q}_i = (Q_i^*)^{-1} \bmod q_i, \ \tilde{Q}_j = (Q_i^*)^{-1} \bmod q_j, \ I_i = Q_i^*$  $\operatorname{Int}\{(t \cdot \tilde{Q}_i \cdot p)/q_i\}, R_i = \operatorname{Real}\{(t \cdot \tilde{Q}_i \cdot p)/q_i\}, \text{ where } i = 1$  $1, \ldots, k, j = k + 1, \ldots, k + k'.$ **Input:**  $A_i$ ,  $A_j$ ,  $I_i$ ,  $R_i$ , t,  $q_j$ ,  $Q_j$ . **Output:**  $CT_i = BasisScaling(A_i, A_i)$ . 1: **for**  $(j = k + 1, j \le k + k', j = j + 1)$  **do** 

1: for 
$$(j = k + 1, j \le k + k', j = j + 1)$$
 do

2: 
$$\mathbf{S}_{I,j} = \sum_{i=1}^k \mathbf{A}_i \cdot I_i \mod q_j // \text{ Step } 1$$

3: 
$$\mathbf{S}_{R,j} = \lfloor \sum_{i=1}^k \mathbf{A}_i \cdot R_i \rceil \mod q_j / / \text{Step 2}$$

4: 
$$\mathbf{A}'_{j} = \mathbf{A}_{j} \cdot t \tilde{Q}_{j} q_{j}^{*} \mod q_{j} / \! / \text{Step } 3$$

5: 
$$\mathbf{CT}_j = \mathbf{S}_{I,j} + \mathbf{S}_{R,j} + \mathbf{A}'_j \mod q_j /\!/ \text{ Step 4}$$

6: end for

7: 
$$\mathbf{CT}_i = BasisExtension(\mathbf{CT}_j)$$
// Step 5

8: **Return** ( $CT_i$ )

#### Algorithm And **Approach**

#### **RNS Basis**

$$egin{aligned} \lfloor t/q * A_i 
ceil mod q_j = \ & \lfloor \sum A_i * (t ilde{Q_i}P/q_i) \ & + A_j * (t ilde{Q_i}q_j^*) mod q_j 
ceil mod q_j \end{aligned}$$

#### **Algorithm 3** RNS Basis Scaling

Let  $A_i \in R_{q_i}, A_j \in R_{q_j}, Q = q \cdot p, Q_i^* = Q/q_i, Q_j^* = Q/q_i$  $Q/q_j, \ \tilde{Q}_i = (Q_i^*)^{-1} \bmod q_i, \ \tilde{Q}_j = (Q_i^*)^{-1} \bmod q_j, \ I_i = Q_i^*$  $\operatorname{Int}\{(t\cdot \tilde{Q}_i\cdot p)/q_i\},\ R_i=\operatorname{Real}\{(t\cdot \tilde{Q}_i\cdot p)/q_i\},\ \text{where }i=1,2,\ldots,n$  $1, \ldots, k, j = k + 1, \ldots, k + k'.$ Input:  $A_i$ ,  $A_j$ ,  $I_i$ ,  $R_i$ , t,  $q_j$ ,  $Q_j$ . **Output:**  $CT_i = BasisScaling(A_i, A_i)$ . 1: **for**  $(j = k + 1, j \le k + k', j = j + 1)$  **do** 

2: 
$$\mathbf{S}_{I,j} = \sum_{i=1}^{k} \overline{\mathbf{A}_i} \cdot I_i \mod q_j // \text{ Step } 1$$

3: 
$$\mathbf{S}_{R,j} = \lfloor \sum_{i=1}^k \mathbf{A}_i \cdot R_i \rceil \mod q_j / / \text{Step 2}$$

4: 
$$\mathbf{A}'_{j} = \mathbf{A}_{j} \cdot t \tilde{Q}_{j} q_{j}^{*} \mod q_{j} / / \text{Step } 3$$

5: 
$$\mathbf{CT}_j = \mathbf{S}_{I,j} + \mathbf{S}_{R,j} + \mathbf{A}'_j \mod q_j /\!/ \text{ Step 4}$$

6: end for

7: 
$$\mathbf{CT}_i = BasisExtension(\mathbf{CT}_i)$$
 | Step 5

8: **Return** ( $CT_i$ )

## Architecture Overall Architecture

Reconfigurable PE Array: perform NTT/INTT, the modular multplication TF ROM Array: store the twiddle factor array Data RAM Array: store the input polynomials, intermediate results and final results



One row or multiple rows of PE can be configured as a channel to perform the polynomial arithmetic operations on one RNS base.

Total of 40 PEs, in which each row corresponds to one channel and each channel contains two slices and 8 PEs (4 for each slice). To maximize the parallelism of the processing path and match the number of extended RNS bases, set five channels in PE array.

#### **Architecture**

#### Reconfigurable PE Unit

Reconfigurable PE:
INTT,NTT,MULT
Barrett modular multiplier:
modular multiplier, modular
reduction



Fig. 2. Architecture of reconfigurable PE. (a) Reconfigurable PE, (b) Barrett modular multiplier.

1.PE not only supports the functions with the variable modulus, but also supports the summation of modular multiplication 2.By merging the multiplicative factor 1/2 into the twiddle factors, the reconfigurable PE eliminates the multiplication of 1/2 in the subtraction path and improves the performance of PE unit.  $\frac{x}{2} = (2\lfloor \frac{x}{2} \rfloor + 1) \frac{q+1}{2} = \lfloor \frac{x}{2} \rfloor (q+1) + \frac{q+1}{2} = \lfloor \frac{x}{2} \rfloor + \frac{q+1}{2} (modq)?$  3.The Barrett modular multiplier we presented employs a

reconfigurable architecture and avoids the needs of other computing

units for ReMCA.

11

#### **Architecture**

### **Confilct-Free Memory Access for NTT/INTT**

Bank is dual-port pattern(could select the bank read port based on PEs) For the bit-reversal operation, could change the address mapping pattern to avoid timing-consuming or memoryconsuming.



Fig. 3. Data memory access pattern of NTT for N = 32, P = 4.

# Architecture Unified Computing Model Unified Hardware Architecture Mapping Model:

• model 1: compute 32 bits modular mult of four contiguous integers in vector  $A_i$  nad vector  $B_i$  or four constants in parallel.



Fig. 4. Unified hardware architecture mapping model of ReMCA.

 model 2: compute the summation of four products, while the inputs of four products are from four different vectors and four constants respectively(A2 S2;A3 S1)



Fig. 4. Unified hardware architecture mapping model of ReMCA.

- model 3: The NTT/INTT transforms are computed using Mode 3
- model 4: requires the cooperation of first four channels.Compute the summation of four products followed by a rounding operation (A2 S3)



Fig. 4. Unified hardware architecture mapping model of ReMCA.

#### **Architecture**

#### **Unified Computing Model**

**Unified Data Memory Organization Model:** 

MEM consists of four memory banks, where each memory bank further contains four 1024-depth and 32-bit-width dual-port RAMs.



Fig. 5. Unified data memory organization model of ReMCA.

- MEMA is used to store the inputs/outputs and intermediates results of almost all functional units in homomorphic evaluation of RNS-BFV except for the NTT and INTT.
- MEMB is mainly used to store the inputs/outputs and intermediate results of NTT and INTT(MEMB is enough?4096\*2?)



Fig. 6. Detailed structure of interconnection network of each slice.

#### **Mapping Method And Execution Flow**

The homomorphic multiplication of RNS-BFV includes four computing units: basis extension, ciphertext multiplication, basis scaling and relinearization

## Mapping Method And Execution Flow

### **Computing Units Mapping Basis Extension Unit**



Fig. 7. Mapping method of basis extension unit.

# Mapping Method And Execution Flow Computing Units Mapping Ciphertext Multiplication Unit



Fig. 8. Mapping method of ciphertext multiplication unit.

## Mapping Method And Execution Flow Computing Units Mapping Basis Scaling Unit:



Fig. 9. Mapping method of basis scaling unit.

## Mapping Method And Execution Flow Computing Units Mapping relinearization unit:



Fig. 10. Mapping method of RNS based relinearization unit.

#### **Execution Flow of RNS-BFV**



Fig. 11. Overall execution flow of RNS-BFV on ReMCA.

## IMPLEMENTATION RESULTS AND COMPARISONS

#### **FPGA Implementation Result**

Xilinx Vivado tool Virtex-7 XC7VX1140T synthesized the design and achieved 250MHz frequency under the parameter set (N = 4096, log(q) = 128-bit, log(qi) = 32-bit)

TABLE III  $\label{eq:performance comparison of NTT/INTT } PERFORMANCE COMPARISON OF NTT/INTT$ 

| Design         | Platform  | N     | logq <sub>i</sub><br>(bit) | No.<br>bases | Freq<br>(MHz) | Cycles | Time<br>(µs) | Thr†<br>(MB/s) | LUT<br>/ATP††     | FF<br>/ATP††     | BRAM<br>/ATP††  | DSP<br>/ATP††   |
|----------------|-----------|-------|----------------------------|--------------|---------------|--------|--------------|----------------|-------------------|------------------|-----------------|-----------------|
| Mert [15]      | Virtext-7 | 4096  | 30                         | 1            | 200           | _      | 2.3          | 6793.5         | 70000<br>/0.16    | <u> </u>         | 129<br>/0.30    | 559<br>/1.38    |
| ReMCA          | Virtext-7 | 4096  | 32                         | 1            | 250           | 6144   | 24.58        | 635.68         | 5968<br>/0.15     | 4394<br>/0.11    | 40<br>/0.98     | 40<br>/0.98     |
| Cathébras [14] | Virtext-7 | 4096  | 30                         | 4            | 200           | _      | 150          | 390.63         | 41964<br>/6.30    | 50961<br>/7.64   | 147<br>/22.05   | 363<br>/54.45   |
| ReMCA          | Virtext-7 | 4096  | 32                         | 4            | 250           | 6144   | 24.58        | 2542.72        | 46591<br>/1.15    | 35551<br>/0.87   | 392<br>/9.74    | 400<br>/9.83    |
| Öztürk [32]    | Virtext-7 | 32768 | 32                         | 41           | 250           | _      | 2086.9       | 2551.02        | 219192<br>/457.43 | 90789<br>/189.47 | 193<br>/402.77  | 768<br>/1602.74 |
| ReMCA          | Virtext-7 | 32768 | 32                         | 41           | 250           | 61440  | 245.76       | 20853.68       | 194084<br>/47.70  | 153050<br>/37.61 | 1759<br>/432.29 | 1680<br>/412.88 |

<sup>†</sup>Throughput (Thr) =  $N \times (\text{No. of bits } (q))/\text{Time. } † \text{ATP=No. LUT or FF or BRAM or DSP multiply the total time (second (column #11, #12) or millisecond (column #13, #14));}$ 

TABLE I FPGA IMPLEMENTATION RESULT OF REMCA ON XC7VX1140T

| N=4096             | Slice LUTs | Slice Registers | RAMB36E1 | DSP48E1  |
|--------------------|------------|-----------------|----------|----------|
| Total<br>available | 712000     | 1424000         | 1880     | 3360     |
| ReMCA              | 46591      | 35551           | 392      | 400      |
| Kewica             | (6.54%)    | (2.50%)         | (20.85%) | (11.90%) |
| Each               | 1043       | 811             | _        | 10       |
| PE                 | (0.15%)    | (0.06%)         | _        | (0.30%)  |
| Each               | 560        | 553             | _        | 10       |
| Barrett            | (0.08%)    | (0.04%)         | _        | (0.30%)  |

TABLE II
TIMING RESULTS OF PRIMITIVE OPERATIONS

| Onevation            | Spee     | Speed  |  |  |  |  |  |  |
|----------------------|----------|--------|--|--|--|--|--|--|
| Operation            | (cycles) | (µs)   |  |  |  |  |  |  |
| Basis Extension      | 16384    | 65.54  |  |  |  |  |  |  |
| Ciphertext Mult      | 47104    | 188.42 |  |  |  |  |  |  |
| Basis Scaling        | 24576    | 98.30  |  |  |  |  |  |  |
| Relinearization      | 22528    | 90.11  |  |  |  |  |  |  |
| Total                | 110592   | 442.37 |  |  |  |  |  |  |
| Each NTT             | 6144     | 24.58  |  |  |  |  |  |  |
| Each INTT            | 6144     | 24.58  |  |  |  |  |  |  |
| Each Point-wise Mult | 1024     | 4.10   |  |  |  |  |  |  |



Fig. 12. The relationship between the number of PEs and performance.

#### **Comparison of NTT/INTT Acceleration**

TABLE III
PERFORMANCE COMPARISON OF NTT/INTT

| Design         | Platform  | N     | logq <sub>i</sub><br>(bit) | No.<br>bases | Freq<br>(MHz) | Cycles | Time<br>(μs) | Thr†<br>(MB/s) | LUT<br>/ATP††     | FF<br>/ATP††     | BRAM<br>/ATP††  | DSP<br>/ATP††   |
|----------------|-----------|-------|----------------------------|--------------|---------------|--------|--------------|----------------|-------------------|------------------|-----------------|-----------------|
| Mert [15]      | Virtext-7 | 4096  | 30                         | 1            | 200           | _      | 2.3          | 6793.5         | 70000<br>/0.16    | <u> </u>         | 129<br>/0.30    | 559<br>/1.38    |
| ReMCA          | Virtext-7 | 4096  | 32                         | 1            | 250           | 6144   | 24.58        | 635.68         | 5968<br>/0.15     | 4394<br>/0.11    | 40<br>/0.98     | 40<br>/0.98     |
| Cathébras [14] | Virtext-7 | 4096  | 30                         | 4            | 200           | _      | 150          | 390.63         | 41964<br>/6.30    | 50961<br>/7.64   | 147<br>/22.05   | 363<br>/54.45   |
| ReMCA          | Virtext-7 | 4096  | 32                         | 4            | 250           | 6144   | 24.58        | 2542.72        | 46591<br>/1.15    | 35551<br>/0.87   | 392<br>/9.74    | 400<br>/9.83    |
| Öztürk [32]    | Virtext-7 | 32768 | 32                         | 41           | 250           | _      | 2086.9       | 2551.02        | 219192<br>/457.43 | 90789<br>/189.47 | 193<br>/402.77  | 768<br>/1602.74 |
| ReMCA          | Virtext-7 | 32768 | 32                         | 41           | 250           | 61440  | 245.76       | 20853.68       | 194084<br>/47.70  | 153050<br>/37.61 | 1759<br>/432.29 | 1680<br>/412.88 |

<sup>†</sup>Throughput (Thr) =  $N \times (No. \text{ of bits } (q))/\text{Time.}$  ††ATP=No. LUT or FF or BRAM or DSP multiply the total time (second (column #11, #12) or millisecond (column #13, #14));

#### **Comparison of BFV Acceleration**

#### PERFORMANCE COMPARISON OF HOMOMORPHIC EVALUATION OF RNS-BFV

| Design     | Platform     | N         | logqi | No.   | Freq<br>(MHz) | Cycles  | Time (µs) |       |       | Thr        | LUT     | FF      | BRAM   | DSP    |
|------------|--------------|-----------|-------|-------|---------------|---------|-----------|-------|-------|------------|---------|---------|--------|--------|
| Design     | r latioi ili |           | (bit) | bases |               |         | Mult      | Relin | Total | (MB/s)     | /ATP††  | /ATP††  | /ATP†† | /ATP†† |
| Cathébras  | Virtext-7    | 4096      | 30    | 4     | 200           | _       | 300       | 300   | 600   | 97.66      | 54188   | 66444   | 208    | 517    |
| [14]       |              |           |       |       |               |         |           |       |       |            | /32.51  | /39.87  | /0.12  | /0.31  |
| ReMCA      | Virtext-7    | 4096      | 32    | 4     | 250           | 110592  | 352.3     | 90.1  | 442.4 | 141.27     | 46591   | 35551   | 392    | 400    |
| Revier     | VII text-/   | 4070      | ] 32  | 7     |               |         |           |       |       |            | /20.61  | /15.73  | /0.17  | /0.18  |
| Roy [17]   | Zynq         | 4096      | 30    | 6     | 200           | 5349567 | _         | _     | 4458  | 19.72      | 63522   | 25622   | 388    | 208    |
| Koy [17]   | UltraScale+  | 4090   30 | 30    | U     | 200           | 3349307 |           |       | 1430  | 19.72      | /283.18 | /114.22 | /1.73  | /0.93  |
| Turan [19] | Virtex       | 4096      | 30    | 6     | 200           | _       | _         | _     | 4340  | 20.25      | 57877   | 33989   | 305††† | 208    |
| Turan [18] | UltraScale+  | 4096   30 | 30    | 6     | 200           | _       |           | _     | 4340  | 40   20.23 | /251.19 | /147.51 | /1.32  | /0.90  |
| ReMCA      | Zynq         | 4096      | 32    | 6     | 380           | 120832  | 255.6     | 58.6  | 314.2 | 298.38     | 64057   | 49307   | 552    | 560    |
| Kewica     | UltraScale+  | 4090      | 32    | 6     | 360           | 120032  | 233.0     | 36.0  | 314.2 | 290.30     | /20.13  | /15.50  | /0.17  | /0.18  |

<sup>†</sup>Throughput (Thr) =  $N \times (\text{No. of bits } (q))/\text{Time.}$  ††ATP=No. LUT or FF or BRAM or DSP multiply the total time (second); ††No. BRAM = No. BRAMs (249) + No. URAMs (56).