# 第十一章 磁场中的磁介质

## § 11.1 磁介质的磁化、磁化强度矢量

#### 一、磁介质的分类

相对磁导率 
$$\mu_r = \frac{B}{B_0}$$
 { <1: 抗磁质(diamagnetism matter) <>1: 顺磁质(naramagnetism matter) <>>1: 铁磁质 (ferromagnetics matter)

#### 二、磁化的微观机制 ——抗磁质、顺磁质

电子{绕核运动——轨道磁矩(orbital magnetic moment) 自旋运动——自旋磁矩(spin magnetic moment)

### 介质分子中各电子磁矩的矢量合<sup>∞</sup>→分子磁矩 P<sub>m</sub> 分子磁矩对应的等效圆电流<sup>∞</sup>→分子电流

- \*分子磁矩在外磁场 $\bar{B}_o$ 中受到磁力矩, $\bar{M} = \bar{P}_m \times \bar{B}$ 使 $\bar{P}_m$ 向磁场方向偏转。
- \*在外磁场中,电子的拉莫进动产生一附加磁矩(感应磁矩) $\Delta \bar{P}_m$ ,与外场  $\bar{B}_0$  反向。(P137~138)

#### 分子电流所对应的磁矩在外磁场中的行为决定介质的特性。

无外场: 抗磁质——分子固有磁矩  $\bar{P}_m = 0 \rightarrow \sum \bar{P}_m = 0$ 顺磁质——分子固有磁矩  $\bar{P}_m \neq 0 \rightarrow \sum \bar{P}_m = 0$ 分子无规则热运动

#### 在外磁场中:

顺磁质: 产生与  $\bar{B}_0$ 同向的附加磁场  $\bar{B}' \to \bar{B} > \bar{B}_0 \leftarrow \sum \bar{P}_m \neq 0$ 

抗磁质: 产生与  $\bar{B}_0$  反向的附加磁场  $\bar{B}' \to \bar{B} < \bar{B}_0 \leftarrow \sum \Delta \bar{P}_m \neq 0$ 

外磁场 $\bar{B}_0$ 与磁介质相互作用,使其从 $\sum \bar{P}_m = 0 \rightarrow \sum \bar{P}_m \neq 0$ 

#### 三、磁化强度矢量 M

$$\frac{\vec{M} = \sum \vec{P}_m}{\Delta V} \begin{cases} \text{顺磁质: } \vec{M}, \vec{B}_0 \text{同 o} \\ \text{抗磁质: } \vec{M}, \vec{B}_0 \text{反 o} \end{cases} \rightarrow \text{产生磁化电流}$$

均匀磁化:介质中各点M相同

#### 四、磁化强度矢量与磁化电流的关系

顺磁质,均匀磁化:

$$\left|\sum \vec{P}_{m}\right| = i_{s}l \cdot S$$
 右手螺旋

$$\left| \vec{M} \right| = \frac{\sum P_m}{\Delta V} = \frac{i_s lS}{lS} = i_s$$





東缚电流、分子电流 $\leftarrow$ 磁化面电流:  $I_s$ 

東缚电流面密度 垂直于电流流动方向上  $\leftarrow$  磁化面电流密度:  $i_s$ 单位长度的磁化面电流

### § 11.2 有磁介质时的高斯定理、安培环路定律

#### 一、有磁介质时的高斯定理

介质中: 
$$\vec{B} = \vec{B}_0 + \vec{B}' \rightarrow \int_S \vec{B} \cdot d\vec{S} = \int_S (\vec{B}_0 + \vec{B}') \cdot d\vec{S} = 0$$

#### 二、有介质时的环路定律、磁场强度

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 \left( \sum I + \sum I_s \right) 
\oint \vec{M} \cdot d\vec{l} = \sum I_s$$

$$\oint L \left( \frac{\vec{B}_0}{\mu_0} - \vec{M} \right) \cdot d\vec{l} = \sum I$$

定义: 
$$\bar{H} = \frac{\bar{B}}{\mu_0} - \bar{M} \longrightarrow$$
 磁场强度

#### 介质中的安培环路定律:

$$\int_{L} \vec{H} \cdot d\vec{l} = \sum_{I} I \begin{cases} \vec{H} - \vec{I} & \text{ if } \vec{I} \leq \vec{I} \end{cases}$$

$$\int_{L} \vec{H} \cdot d\vec{l} + \vec{I} = \sum_{I} I \begin{cases} \vec{H} - \vec{I} & \text{ if } \vec{I} \leq \vec{I} \end{cases}$$
导电流  $I$  有关

实验结论:  $M = \chi_m H$  (各向同性均匀磁介质中)

 $\chi_m$ : 磁化率(magnetic susceptibility)  $\begin{cases} \text{顺磁质}: \chi_m > 0 \\ \text{抗磁质}: \chi_m < 0 \end{cases}$   $\mu_r = \frac{B}{B_0}: \text{相对磁导率} \quad \mu_r = 1 + \chi_m$ 

 $\mu = \mu_0 \mu_r$ : 磁导率 (permeability)  $\vec{B} = \mu_0 \mu_r \vec{H} = \mu \vec{H}$ 

例1: 同轴电缆,内外筒半径 $R_1$ 、 $R_2$ ,内筒外包以半径为R的顺磁质( $\mu$ )。通电流I,求:

1)  $\vec{H}$ 、 $\vec{B}$ 分布; 2) 介质中的 $\vec{M}$ 、 $i_s$ ; 3) 电缆单位长度 $\phi_m$ 

解: 1) 
$$R_1 < r < R_2$$
:  $\int \vec{H} \cdot d\vec{l} = H \cdot 2\pi r = I \rightarrow H = \frac{I}{2\pi r}$ 

$$\begin{cases} R_1 < r < R \colon B_1 = \mu_o \mu_r H = \mu H \\ R < r < R_2 \colon B_2 = \mu_0 H \\ R_1 < r, r > R_2 \colon H = 0, B = 0 \end{cases}$$

2) 
$$M = \frac{B}{\mu_o} - H = (\frac{\mu}{\mu_o} - 1) \frac{I}{2\pi r} \begin{cases} i_{s1} = M(R_1) \\ i_{s2} = M(R_2) \end{cases}$$

3) 
$$\phi_m = \int_S \vec{B} \cdot d\vec{S} = \int_S B \cdot 1 dr$$
  

$$= \int_{R_1}^R B_1 dr + \int_R^{R_2} B_2 dr = \frac{\mu I}{2\pi} \ln \frac{R}{R_1} + \frac{\mu_0 I}{2\pi} \ln \frac{R_2}{R}$$

例2:长直螺旋管内充满均匀磁介质( $\mu_r$ ),设励磁电流  $I_\sigma$ ,单位长度上的匝数为n。求管内的磁感应强度和磁介质表面的磁化面电流密度。

解: 取安培回路 
$$abcd$$

$$\oint_{L} \vec{H} \cdot d\vec{l} = \sum_{T} I$$

$$\therefore lH = nlI_0 \rightarrow H = nI_0$$

$$\therefore B = \mu_0 \mu_r H = \mu_0 \mu_r n I_0$$

$$\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M} \rightarrow M = (\mu_r - 1)nI_0$$

$$M = i_s$$

顺磁质  $\mu_r > 1, i_s > 0$  抗磁质  $\mu_r < 1, i_s < 0$  (束缚电流与传导电流反向)



 $\mu_0, \mu_r, \mu = \mu_0 \mu_r$ 

 $\chi_m \to \mu_r = 1 + \chi_m$ 

 $\vec{B}, \vec{M} = \frac{\sum P_m}{\Lambda V}, M = i_s$ 

实验规律: 相互关系:

描述介质

性质:

档述场:

 $\vec{B} = \mu_0 \mu_r \vec{H}$ 

 $\int_{S} \vec{B} \cdot d\vec{S} = 0$ 场方程:

 $\int_{I} \vec{H} \cdot d\vec{l} = \sum I$ 

 $\oint_{I} \vec{B} \cdot d\vec{l} = \mu_{0} \sum_{i} I + \mu_{0} \sum_{i} I_{s}$ 

介质中的电场

 $\varepsilon_0, \varepsilon_r, \varepsilon = \varepsilon_0 \varepsilon_r$ 

 $\chi_e \to \varepsilon_r = 1 + \chi_e$ 

 $\vec{E}, \vec{P} = \frac{\sum P_e}{\Delta V}, P_n = \sigma'$ 

端助量:  $ar{H} = rac{B}{...} - ar{M}$ (磁场强度矢量)  $ar{D} = arepsilon_0 ar{E} + ar{P}$ (电位移矢量)

 $\vec{M}=\chi_{m}\vec{H}$  各向同性介质  $\vec{P}=\epsilon_{0}\chi_{e}\bar{E}$ 

 $\vec{D} = \varepsilon_0 \varepsilon_r \vec{E}$ 

 $\int \int_{S} \vec{D} \cdot d\vec{S} = \sum q_0$  $\begin{cases}
\oint_{r} \vec{E} \cdot d\vec{l} = 0
\end{cases}$ 

 $\oint_{S} \vec{E} \cdot d\vec{S} = \frac{1}{\varepsilon_{0}} \sum_{S} (q_{0} + q')$