

802.11 QoS Overview

Philippe Klein

IEEE Plenary Meeting – Nov 08 Dallas, TX

Disclaimer

This presentation is not a highly detailed technical presentation but a crash course aiming to provide - prior to the joint meeting with the 802.11 WG- a basic understanding of the QoS mechanisms currently defined in the IEEE 802.11-2007 specifications

Abbreviations & Acronyms

ADDTS	add traffic stream	
AIFS	arbitration interframe space	
AIFSN	arbitration interframe space number	
AP	access point	
APSD	automatic power-save delivery	
BSS	basic service set	
CSMA/CA	carrier sense multiple access with collision avoidance	
CW	contention window	
DELTS	delete traffic stream	
DIFS	distributed (coordination function) interframe space	
DLS	direct-link setup	
EDCA	enhanced distributed channel access	
EDCAF	enhanced distributed channel access function	
EIFS	extended interframe space	
HCCA	HCF controlled channel access	
HCF	hybrid coordination function	
MAC	medium access control	
MPDU	MAC protocol data unit	
NAV	network allocation vector	
PIFS	point (coordination function) interframe space	
PS	power save (mode)	
QoS	quality of service	
S-APSD	scheduled automatic power-save delivery	
SIFS	short interframe space	
SP	service period	
STA	station	
TXOP	transmission opportunity	
U-APSD	unscheduled automatic power-save delivery	
WMM	WiFi Multimedia	

802.11 MAC Legacy Access Protocol

802.11 MAC Access Protocol

1. Distributed Coordinated Function (DCF)

Contention access

Based on Carrier Sense Media Access /Collision Avoidance (PHY Carrier Sense & Network Allocation Vector)

2. Point Coordinated Function (PCF)

Contention Free access:

Access Point (AP) coordinates access for AP and STA transmissions

Optional !!!

DCF Contention Mechanism

Interframe Spacing in 802.11

	802.11b	802.11a	802.11g
SIFS	10 µs	16 µs	10 µs
Slot time	20 µs	9 µs	9 µs
PIFS (= SIFS + 1 x Slot time)	30 µs	28 µs	19 µs
DIFS (= SIFS + 2 x Slot time)	50 µs	34 µs	28 µs

Random Backoff Time

Backoff Time = Random() * SlotTime

Random() = Pseudo-random [0,CW]

CWmin =< CW <= Cwmax

CW:

- Incremented by 2n-1 on each retransmission
- Reset after successful Txm

Distributed Coordinated Function

PCF: Point Coordinator Function

- Poll and response protocol to eliminate the possibility of contention for the medium.
- A Point Coordinator (PC) always located in an Access Point - controls the PCF
 - To operate in PCF, stations register to the PC
 - PC regularly polls the registered stations for traffic while delivering traffic to theses stations.

PCF Operation

Quality of Service Limitations

- Both PHY's DCF and PCF methods do not differentiate between traffic types or sources and do not provide QoS
- PCF provides only iso-synchronous services
 - worse latency access only is deterministic
 - access latency is function of the number of registered stations, the CF traffic and the CFP/CP ratio

Medium Access Control Quality of Service Enhancements

(previously 802.11e amendment, now part of 802.11-2007)

Major Enhancements in 802.11e

- Basic Elements for QoS
 Traffic Differentiation
 Concept of Transmission Opportunity (TXOP)
- New Contention Channel Access
 Enhanced Distributed Channel Access (EDCA)
- New Contention Free Channel Access
 HCF Controlled Channel Access (HCCA)

Major Enhancements in 802.11e

- Automatic Power-Save Delivery (APSD)
- New mechanisms for higher throughput Block Acknowledgement (Block Ack)
 Direct Link Setup (DLS)

Enhanced Distributed Channel Access (EDCA)

- Same Contention Based that EDC but....
 - 1. 8 priority levels per station (identical to IEEE 802.1D priority tags) mapped to 4 access categories (AC)
 - 2. Different Arbitration InterFrame Space (AIFS) per access categories
 - 3. TxOP Burst Limits

EDCA Frame Priorities

Priority	User Priority (same as 802.1D user priority	802.1D Designation	Access category (AC)	Designation (Informative)
Lowest	1	BK	AC_BK	Background
	2	-	AC_BK	Background
	0	BE	AC_BE	Best Effort
	3	EE	AC_BE	Video
	4	CL	AC_VI	Video
+	5	VI	AC_VI	Video
highest	6	VO	AC_VO	Voice
	7	NC	AC_VO	Voice

EDCA Implementation Model

Traffic Prioritization & Collision Resolution

- Depends on 2 timing parameters that vary for each AC:
 - AIFSN (Arbitrary Inter-Frame Space Number)
 - 2. CW (Contention Window)

 (and TxOP Limit for AC_VI and AC_VO)

Arbitration InterFrame Space

EDCA + Admission Control

- Capability Negotiation of Admission Control per Access Category (AC) occurs during association:
 - STA sends an Add Traffic Stream (ADDTS) request with Txm Specifications (TSPEC) prior to sending packet on a particular AC.
 - TSPEC can be for upstream, downstream, or bi-directional traffic.
 - AP has proprietary algorithm to accept/deny ADDTS request.

802.11 TSPEC Element

802.11 TSPEC Main Parameters

User Priority	0 (lowest) to 7 (highest)	
Maximum MSDU size	maximum size of the packets (octets)	
Maximum Burst Size	maximum size of the data burst that can be transmitted at the peak data rate (octets)	
Minimum PHY rate	physical bit rate assumed by the scheduler for transmit time and admission control calculations (b/s)	
Peak data Rate	maximum bit rate allowed for transfer of the packets	
Mean data rate	average bit rate for transfer of the packets (b/s)	
Delay bound	maximum delay allowed to transport a packet across the wireless interface (including queuing delay, in ms)	
Nominal MSDU size	nominal size of the packets (octets)	
Maximum Service Interval	interval required by TS in this TSPEC between the start of two successive TXOPs	

EDCA Limitations

- Still no guaranty of service provided but...
- Probabilistic priority mechanism only to allocate bandwidth based on traffic categories

HCF Controlled Channel Access (HCCA)

- HCF = Hybrid Coordination Function
- Hybrid Coordinator (HC) operates at QoS-AP
 - Controls the iteration of Contention Free Period (CFP) and Contention Period (CP)
 - Schedule Transmit Opportunities for contention free accesses

HCF Controlled Channel Access (HCCA)

Similar to PCF

 Same polling mechanism to assign Transmission Opportunity (TXOP) to QoS-STA

but

- Polling can be issued in both CFP and CP (in Controlled Access Periods)
- HC Polling is scheduled according to Transmit specifications (TSPECs)

PCF vs HCF Comparison

802.11e Media Access Summary

802.11e Automatic Power-Save Delivery

Automatic Power-Save Delivery (APSD)

- Enhancing Power Saving mode in QoS Basic Service Set
- QoS-AP automatically delivers downlink frames, which belong to some specified Access Category, to Power-Saving stations
- Two types of delivery mechanism
 - Unscheduled APSD (U-APSD)
 - Scheduled APSD (S-APSD)

Unscheduled APSD (U-APSD)

- 1. Power-saving QoS-STA wakes up and send a "trigger" data frame belonging to "trigger-enabled" AC to QoS-AP
- 2. After receiving "trigger" frame, a Service Period (SP) is started
- QoS-AP send frames belonging to "delivery-enabled" AC to QoS-STA

Scheduled APSD (S-APSD)

- 1. QoS-STA negotiates a APSD Schedule with QoS-AP
- QoS-AP start transmitting the frames of the specified Traffic Stream at Service Start Time and the following periods
- QoS-STA must wake up at Service Start Time and the following periods to receive frames

802.11e Throughput Enhancements

Block ACK

- Improves channel efficiency by aggregating several acknowledgments into one frame.
- 2 types of Block Ack mechanisms:
 - immediate and delayed

Direct Link Protocol

 Ability to exchange data directly between two stations in the network, without traversing the AP.

WMM (Wi-Fi Multimedia[™])

- Certification program initiated by the Wi-Fi Alliance (www.wi-fi.org)
- Specification document:
 - Wi-Fi Alliance Technical Committee Quality of Service (QoS) Task Group, WMM (including WMM[™] Power Save) Specification Version 1.1
- Subset of IEEE 802.11e: EDCA & U-APSD only

Thank you