CSCI-351 Data communication and Networks

Lecture 11: Middleboxes and NAT (Duct tape for IPv4)

Middleboxes

- Devices in the network that interact with network traffic from the IP layer and up
- Common functions
 - NAT
 - Firewall and other security
 - Proxy
 - Filtering
 - Caching
 - **-** ...

3 Outline

- NAT
- Other middleboxes

The IPv4 Shortage

- Problem: consumer ISPs typically only give one IP address per-household
 - Additional IPs cost extra
 - More IPs may not be available
- Today's households have more networked devices than ever
 - Laptops and desktops
 - TV, bluray players, game consoles
 - Tablets, smartphones, eReaders
- How to get all these devices online?

Private IP Networks

- Idea: create a range of private IPs that are separate from the rest of the network
 - Use the private IPs for internal routing
 - Use a special router to bridge the LAN and the WAN
- Properties of private IPs
 - Not globally unique
 - Usually taken from non-routable IP ranges (why?)
- Typical private IP ranges
 - 10.0.0.0 10.255.255.255
 - 172.16.0.0 172.31.255.255
 - □ 192.168.0.0 **-** 192.168.255.255

Private Networks

92.168.0.1 192.168.0.1 Private Private Network Network 192.168.0.2 192.168.0.2 pternet NAT 192.168.0.0 192.168.0.0 66.31.210.69

Network Address Translation (NAT)

- NAT allows hosts on a private network to communicate with the Internet
 - Warning: connectivity is not seamless
- Special router at the boundary of a private network
 - Replaces internal IPs with external IP
 - This is "Network Address Translation"
 - May also replace TCP/UDP port numbers
- Maintains a table of active flows
 - Outgoing packets initialize a table entry
 - Incoming packets are rewritten based on the table

Basic NAT Operation

Source: 192.168.0.1

Dest: 74.125.228.67

Internet

Source: 66.31.210.69

Dest: 74.125.228.67

Private Address	Public Address
192.168.0.1:2345	74.125.228.67:80

192.168.0.1

66.31.210.69

74.125.228.67

Source: 74.125.228.67

Dest: 192.168.0.1

Source: 74.125.228.67 Dest: 66.31.210.69

Advantages of NATs

- Allow multiple hosts to share a single public IP
- Allow migration between ISPs
 - Even if the public IP address changes, you don't need to reconfigure the machines on the LAN
- Load balancing
 - Forward traffic from a single public IP to multiple private hosts

Natural Firewall

Concerns About NAT

- Performance/scalability issues
 - Per flow state!
 - Modifying IP and Port numbers means NAT must recompute IP and TCP checksums
- Breaks the layered network abstraction
- Breaks end-to-end Internet connectivity
 - □ 192.168.*.* addresses are private
 - Cannot be routed to on the Internet
 - Problem is worse when both hosts are behind NATs
- What about IPs embedded in data payloads?

Port Forwarding

13 Outline

- NAT
- Other middleboxes

Firewall

- A device that blocks traffic according to a set of rules
 - Why?
 - Services with vulnerabilities turned on by default
 - ISP policy forbidding certain traffic due to ToS
- Typically specified using a 5-tuple
 - E.g., block outbound SMTP; block inbound SQL server reqs
- GFC (Great Firewall of China)
 - Known to block based on IP, filter DNS requests, etc.

Web caching

- ISP installs cache near network edge that caches copies of Web pages
 - Why?
 - Performance: Content is closer to clients, TCP will perform better with lower RTTs
 - Cost: "free" for the ISP to serve from inside the network
- Limitations
 - Much of today's content is not static (why does this matter?)
 - Content ownership
 - Potential privacy issues
 - Long tail of content popularity

Web caching

- ISP installs cache near network edge that caches copies of Web pages
 - Why?
 - Performance: Content is closer to clients, TCP will perform better with lower RTTs
 - Cost: "free" for the ISP to serve from inside the network

Proxying

17

Non-split connections

Like NAT, but IP address is no longer the one assigned to you

Split connections

Middlebox maintains two flows:C-M and M-S

Can be done transparently

■ Hows

Proxying

- Advantages
 - RTT is lower on each end
 - Can use different MTUs
 - Particularly useful in cell ntwks
- Disadvantages
 - Extra delay can be bad for small flows
 - Buffering/state makes it potentially costly

Questions

- Middleboxes that breaks end-to-end integrity
 - □ APs?
- How can we tell if middle boxes does do that?
 - ISP? Software on your computer? How can we tell that?
- Net-neutrality

CSCI-351 Data communication and Networks

Lecture 11 ext: DHCP

DHCP: Dynamic Host Configuration Protocol

- Let's say that a ISP has X customers, How many IPs does it need to have?
 - □ Xṡ
- Goal: allow host to dynamically obtain its IP address from network server when it joins network
 - can renew its lease on address in use
 - allows reuse of addresses (only hold address while connected/"on")
 - support for mobile users who want to join network (more shortly)

DHCP Client-Server

DHCP Client-Server

DHCP: More than IP address

- DHCP can return more than just allocated IP address on subnet
 - address of first-hop router for client
 - name and IP address of DNS sever
 - network mask (indicating network versus host portion of address)

DHCP Header (Do not memorize)

Dynamic Host Configuration Protocol					
Bit Offset	0–15		16–31		
0	OpCode	Hardware Type	Hardware Length	Hops	
32	Transaction ID				
64	Seconds Elapsed		Flags		
96	Client IP Address				
128	Your IP Address				
160	Server IP Address				
196	Gateway IP Address				
228+	Client Hardware Address (16 bytes)				
Server Host Name (64 bytes)					
	Boot File (128 bytes)				
	Options				

DHCP: example

- connecting laptop needs its IP address, addr of first-hop router, addr of DNS server: use DHCP
- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.1 Ethernet
- Ethernet frame broadcast (dest: FFFFFFFFFFFF) on LAN, received at router running DHCP server
- Ethernet demuxed to IP demuxed, UDP demuxed to DHCP

DHCP: example

- DCP server formulates DHCP ACK containing client's IP address, IP address of firsthop router for client, name & IP address of DNS server
- encapsulation of DHCP server, frame forwarded to client, demuxing up to DHCP at client
- client now knows its IP address, name and IP address of DSN server, IP address of its first-hop router