Universidade Federal do Paraná - UFPR CENTRO POLITÉCNICO

DEPARTAMENTO DE MATEMÁTICA

Disciplina: Cálculo I Código: CM201 Semestre letivo: 2017/1 Turma: H

Professor: Roberto Ribeiro Santos Junior

Aluna(o):

Prova 3

Observações:

- É proibido o uso de qualquer equipamento eletrônico (celular, calculadora, etc).
- A avaliação é individual e sem consulta a qualquer tipo de material.
- Respostas sem justificativas não serão consideradas.
- A organização na exposição dos argumentos também é um critério de avaliação.
- 1. (1 ponto) Ache todos os números reais que satisfazem a desigualdade:

(a)
$$(2x-1)(x-3) > 5$$
.

(b)
$$\frac{2x-1}{x-3} \ge 5$$
.

2. (2 pontos) Calcule:

(a)
$$\lim_{x \to 0} \frac{x + \sin x}{x + \cos x}$$

(b)
$$\lim_{x \to +\infty} x e^{-x^2}$$

(c)
$$\frac{d}{dx} [\ln(\sec x)]$$

(a)
$$\lim_{x \to 0} \frac{x + \sin x}{x + \cos x}$$
 (b) $\lim_{x \to +\infty} xe^{-x^2}$ (c) $\frac{d}{dx} [\ln(\sec x)]$ (d) $\lim_{x \to 0} \frac{\ln(\sec x)}{x}$

- 3. (1,5 ponto) Esboce o gráfico da função *f* sabendo que:
 - (a) O domínio de f é o conjunto $\{x \in \mathbb{R} : x \neq -4 \text{ e } x \neq 4\}$.

(b)
$$f(-5) = -1/2$$
, $f(0) = -4$, $f(5) = 0$ e $f'(-5) = f'(0) = f'(6) = 0$.

(c)
$$f'(x) > 0$$
 para todo $x \in (-5, -4) \cup (4, 6)$;
 $f'(x) < 0$ para todo $x \in (-\infty, -5) \cup (-4, 4) \cup (4, +\infty)$.

(d)
$$\lim_{x \to -4^{-}} f(x) = +\infty$$

(e)
$$\lim_{x \to -4^+} f(x) = -\infty$$

(f)
$$\lim_{x \to 4^-} f(x) = -\infty$$

(g)
$$\lim_{x \to 4^+} f(x) = -\infty$$

(h)
$$\lim_{x \to +\infty} f(x) = 3$$

(i)
$$\lim_{x \to -\infty} (f(x) - (-x - 4)) = +\infty$$

4. (5,5 pontos) Calcule:

(a)
$$\int \sqrt[3]{6+x} \, dx$$

(c)
$$\int xe^{2x} dx$$

(e)
$$\int \sin^2 x \, dx$$

(b)
$$\int x\sqrt{x^2-9}\,dx$$

(d)
$$\int \sin^3 x \cos^2 x \, dx$$

(a)
$$\int \sqrt[3]{6+x} \, dx$$
 (c) $\int xe^{2x} \, dx$ (e) $\int \sin^2 x \, dx$
 (b) $\int x\sqrt{x^2-9} \, dx$ (d) $\int \sin^3 x \cos^2 x \, dx$ (f) $\int \frac{12x^3+4x}{3x^4+2x^2+1} \, dx$