

CIS 522: Lecture 5

Regularization

Lyle Ungar

Today

- (I) Admin
- (2) Review last week
- (3) Regularization = shrinkage
- (4) Dropout
- (5) Meta-learning

Course Goals

- Lectures
- Worksheets
- Pods
- Final project

Time Expectations

- 1.5 lecture
- I.0 pod
- 3.0 worksheets (median:1.5+1.5 hours)
- 2.0 homework
- 2.5 other: extra reading

10 hours/week

Last week: Gradient descent

Loss function of geometry leads to poorly conditioned gradients

- Momentum
- Rate schedule
 - Shrink learning weights over time
- Adjust learning rates for each weight
- Minibatch size and normalization
- Fairness

	Method	Update equation
Many	SGD	$egin{aligned} g_t &= abla_{ heta_t} J(heta_t) \ \Delta heta_t &= -\eta \cdot g_t \ heta_t &= heta_t + \Delta heta_t \end{aligned}$
methods;	Momentum NAG Adagrad	$\Delta\theta_{t} = -\gamma \ v_{t-1} - \eta g_{t}$ $\Delta\theta_{t} = -\gamma \ v_{t-1} - \eta \nabla_{\theta} J(\theta - \gamma v_{t-1})$ $\Delta\theta_{t} = -\frac{\eta}{\sqrt{G_{t} + \epsilon}} \odot g_{t}$
Few concepts	Adadelta RMSprop	$\Delta heta_t = -rac{\dot{R}M\dot{S}[\Delta heta]_{t-1}}{RM\dot{S}[g]_t}g_t$
	Adam	$\Delta heta_t = -rac{\eta}{\sqrt{E[g^2]_t + \epsilon}} g_t \ \Delta heta_t = -rac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t$

Momentum

- Keep moving the the same direction you were going
 - Less time bouncing up and down steep directions
 - So more doing down the slower directions
 - Gives an approximation to the Hessian

Reduce learning rates over time

- Take big steps initially, when you are far from the optimum
- Slow down as you get closer

Adagrad

- Good: automatically picks learning rate for each weight
- Bad: learning can slow too fast

$$w_j := w_j - rac{\eta}{\sqrt{G_{j,j}}} g_j. \qquad \quad G_{j,j} = \sum_{ au=1}^t g_{ au,j}^2$$

RMSprop

Exponentially forgets the previous gradients

$$w_j := w_j - rac{\eta}{\sqrt{G_{j,j}}} g_j.$$
 Intuitively: $G_{j,j} = \sum_{ au=1}^t g_{ au,j}^2$. $\gamma^{ au-t}$

Adam

- Behaves like a heavy ball with friction
- Lots of adjustments to make things work better

Minibatch size

- Bigger is faster per observation
 - As long as minibatch fits in GPU DRAM
- Smaller usually gives better models
 - Finds shallower minima
 - May converge faster
- Common: 32, 64, or 128 points
 - Smaller often gives better generalization
 - Depending on other hyperparameters

Minibatch size - theory

- What can you fit on a GPU DRAM?
- Model: 4 bytes * 4 * #weights
 - 4 bytes = 32 bit floating point
 - 4 = |weight, gradient, sum of gradients, previous change|
 - Alexnet: 62,378,344 weights -> IGB
- Inputs: 4 bytes * #features * #training_points
 - Alexnet: $4 * 227 \times 227 \times 3 * 32 = 5 MB$
- Gradients: 4 bytes * #weights * #training_points
 - Alexnet * 32 pts -> 8 GB

Minibatch size - worksheet example

- Model

- # of parameters = [(784 * 128) + 128] + [(128 * 10) + 10]
- **Gradients** (stored for every observation)
 - # of gradients = # of observations * # of parameters

- Inputs

- # of inputs = # of observations * 28 * 28
- Storage: 4 * (# of parameters + # of gradients + # of inputs) (bytes)
 - Vanilla GD: # of observations = 60000
 - Cost ~ 25 GB
 - Mini-batch GD: # of observations = 50
 - Cost ~ 0.02 GB

Minibatch size - practice

- GPUs often use 32 minibatch samples of 32-bit floating-point data to create 32*32= 1024-bit-wide data vectors.
 - Gives local storage requirement of over 2 GB.
- In practice, ResNet-50 training with a mini-batch of 32 on a typical GPU needs over 7.5 GB of local DRAM.

Batch Normalization

- Standardize every input to every neuron within each minibatch
- Can increase learning rate by I0x
 - "reduces internal covariate shift"
- Provides regularization

This week

Regularization

- LI, L2 penalties
- Early stopping
- Data augmentation
- Gradient descent (implicitly)
- Dropout

Hyperparameter tuning + AutoML

Distillation

Adversarial attacks

Regularization is Shrinkage

L1, L2 penalties

Early stopping

Gradient descent (implicitly)

Dropout

Double Descent (revisited)

Dropout - Review

(a) Standard Neural Net

(b) After applying dropout.

Each minibatch:

Remove a random fraction *p* of the nodes

At test time:

Multiply weights by (I-p)

Dropout - theory

- Approximates an <u>ensemble</u>
- Avoids local minima
- Avoids "dead neurons"
- Tends to make the norm of weight vectors of all the hidden nodes in a layer equal

Dropout - practice

- Often use dropout p=0.5
 - 0.5 gives maximum regularization
- Sometimes limit to certain layers
 - often use less (or no) dropout on input
 - And in convolutional layers
 - where dropout is <u>weird</u> because the same filter is used many times

AutoML - Gluon

- automatic hyperparameter tuning
- model selection/ensembling
- architecture search
- data processing
- Separate modules for
 - images, text, tabular data

AutoML – Gluon pytorch

Two layer MLP where we optimize over:

- the number of units on the first layer
- the number of units on the second layer
- the dropout rate after each layer
- the learning rate
- the scaling

AutoML – Gluon pytorch

Searchers:

- Random
- Bayesian Optimization
 - Gaussian Process-based
 - SkOpt
 - Fair

Bayesian Optimization

- $argmin_{x} f(x)$
 - \circ f(x) is the testing error for hyperparameters, **x**
- Model f(x) by a Gaussian Process
 - Gives uncertainties as well as values
- Use f(x) to decide which x to evaluate next

Gaussian Processes

- Training data Y
 - Specifies the prior based on earlier experiments
- New data X
 - Accuracy at new points
- Predict f(x) at |X| = N new points
 - Generates N-dimensional multivariate Gaussian distribution. (i.e. in the dual)

Bayesian Optimization

- $argmin_x f(x)$
 - \circ f(x) is the testing error for hyperparameters, x
- Model f(x) by a Gaussian Process
 - Gives mean and standard deviation at all points
- Use f(x) to decide which x to next evaluate
 - E.g., maximize Expected Improvement (EI)
 - Or El per second

AutoML

- Auto-Pytorch
 - From the auto-Sklearn team
 - Tabular only
- AutoML competitions: <u>automl.ai</u>

Adversarial Deep Learning

- Pick an input to change the output
 - Object recognition
 - Credit scoring
 - Chatbots
- Modify the training data to change the model

For fun: what is google doing?

- More Capable, General-Purpose ML Models
- Continued Efficiency Improvements for ML
- ML Is Becoming More Personally and Communally Beneficial
- Growing Benefits of ML in Science, Health and Sustainability
- Deeper and Broader Understanding of ML

Questions?

Have an awesome week!