

MASTER 1 INFO 2021–2022

OPTIMISATION ALGORITHMIQUE

Contrôle du 28 octobre 2021, durée 1h30

Tout document est interdit.

Tout appareil électronique, même à titre d'horloge, est également interdit.

Nombre de pages de l'énoncé : 2

Il faut justifier les réponses. Il sera tenu compte de la rédaction de la copie.

Questions de cours

Soit f une fonction définie et de classe \mathbb{C}^1 sur \mathbb{R}^2 et on suppose qu'il existe un minimum unique $x^* = \arg\min_x f(x)$.

- 1. Expliquer la mise en place d'un algorithme de descente général pour déterminer x^* .
- 2. Donner la définition d'une direction de descente en un point $x \in \mathbb{R}^2$. Expliquer ce que va entraı̂ner cette définition?
- 3. Soit $x = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, on suppose que $\nabla f(x) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Donner 3 exemples de directions de descente $d \in \mathbb{R}^2$ au point x. Faire un schéma pour représenter tout.

Exercice 1

Soit
$$f(x,y) = 100(x-y)^2 + (1-x)^2$$
.

- 1. Que vaut $x^* = \underset{(x,y) \in \mathbb{R}^2}{\arg \min} f(x,y)$?
- 2. Calculer $\nabla f(x,y)$ et $H_f(x,y)$ au point $(x,y) \in \mathbb{R}^2$.
- 3. Écrivez f comme une fonction quadratique. Retrouvez ∇f et H_f .
- 4. On va appliquer la méthode de descente de gradient avec $x^{(0)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Que vaut alors $d^{(0)}$? où se trouvera $x^{(1)}$? on pourra faire un schéma.

Exercice 2

Soit
$$g(x,y) = e^{x+y} + e^{x-y}$$
.

- 1. Calculer $\nabla g(x,y)$ et $H_g(x,y)$ au point $(x,y) \in \mathbb{R}^2$.
- 2. Est-ce que g admet des points critiques?
- 3. Est-ce que $x^* = \underset{(x,y) \in \mathbb{R}^2}{\arg \min} g(x,y)$ existe?
- 4. Si on applique la méthode de descente de gradient avec $x^{(0)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Que vaut alors $d^{(0)}$? où se trouvera $x^{(1)}$? que va valoir $d^{(1)}$? Expliquer ce qui va se passer si on itère, on pourra faire un schéma.