

Bio

- Born in Lima, Peru (naturalized 2023)
- Living in Virginia
- Attended Virginia Tech
- Materials Science & Engineering (Green Engineering, Politics, Philosophy, and Economics)
- Switched tracks from space systems to sustainability/renewables
- I speak Spanish, English, German (intermediate)
- Love soccer, backpacking/travel, cooking, photography/filmmaking (watch plotless French movie), snowboarding

Inspiration

- Exploring the Pastoruri Glacier in La Cordillera Blanca of the Andes near Huaraz, Peru
- Connected stories of its past to my experience & education in the US
- Instilling a sense of urgency in innovating solutions for the climate crisis

Microturbine Design

Table of Contents

- Mission Statement & Milestones
- Initial vs Final System Configuration
- Data Analysis Overview
- Design:
 - Blades
 - Mechanical
 - Electrical
- Regulatory Standards
- Further Improvements
- Appendix

Mission Statement & Milestones

Goals	Milestones Achieved
Design a micro turbine that generates at least 10% more real power with 15% less overall mass	Max Power Output: 27-29W (11-15m/s), reduced weight of base plate by factor of 7
Decrease manufacturing lead time	3-D printing automated part of manufacturing
Improve blade durability at speeds 5-22m/s*	CF blades reduce risk of breakage at all speeds and rotational inertia, faster pitching

^{*}Average wind speed on site is about 7.4 m/s (Gulf of Mexico)

Initial Configuration

- Mainly steel (density 7.85 g/cm³)
- Bulky with excessive rotational inertia
 - Physical brake
 - Slow pitch control
 - Overweight baseplate
- Unbalanced
- Weak blade

Final Configuration & Prototypes

- Carbon Fiber, PLA, and Steel
 - CF Density: 1.6g/cm^3
 - PLA Density: 1.43g/cm³
- Physical break replaced by electronic power system function & pitch control
- Improved pitch control with stepper motor
- Lighter base plate allows for improved mobility
- 3k Tow 2x2 twill weave CF Blades
 - Tensile strength: 3500 MPA vs 60 MPA (PLA)
 - CF & PLA composite prototypes also tested

Data Analysis

- Blade Element Momentum Theory (BEMT)
- MATLAB & Python Programs
 - Outputs optimal chord and twist parameters based on use-case (high vs low wind speed)
- Maximum Power Point Tracking (MPPT) to help match load resistance to rotor RPM and maximize power
- XFOIL
 - Simulated blade parameters (lift/drag, coef. of power (Cp), Reynold number)
- Annual Energy Production

$$AEP = (Operating Hours Per Year) \int_{0}^{\infty} (P(V))(Probability(V)) dV$$

Wind speed probability

$$f(V_1 < V < V_2) = exp(-(V_1/A)^k) - exp(-(V_2/A)^k)$$

- E10.7-8 - 306049

Blade Design

- Hybrid Blade Geometry:
 - Experimental EYO 7-8 (tip)
 - SG 6043 (root)
 - Transition point at 50% of radial position
- Conditions:
 - Reynolds Number: 70,000-150,000
 - Optimal Tip-Speed Ratio: 1.5
 - Best for cut-in and low speeds under 10 m/s
- Temporary Negative Mold method
 - PLA mold dissolved with acetone inside CF

Mechanical

- Auto-actuating pitch control optimizes angle of attack
 - Based on resolver feedback
- Swashplate & links + stepper motor actuation for smooth motion, stability, and compactness
- CF base plate & blades lower mass, improve balance, ease yaw

Electrical

- Universally Controllable Load
 - Controllable load resistance
 - Closed loop Voltage regulator
 - Modes: constant current, resistance, power, voltage, MPPT
- MPPT for max power at any wind speed
 - Matches load (UCL) impedance with calculated optimal generator impedance
- Short circuit for braking on turbine side
- Encoder reads blade pitch

Standards

- Interconnection with CenterPoint Energy utility
 - 345-kV and 138-kV transformers and transmission lines
 - IEEE1547-2018
 - UL1741
 - NEC 705
- Site under federal jurisdiction
 - Site Assessment Plan, Facility & Design Report, Fabrication & Installation Report, Construction & Operations Plan

Further Improvement

- Heavy blade-hub coupler could be male to female connection
- More granular MPPT/pitch adjustments
- High chord reduced performance at high wind speeds
- 3-D print more system components (linkages, swashplate, etc.) to decrease manufacturing time and increase iteration
 - First 3-D printer was pitched by myself and acquired after long negotiations with team
- Further research and integration of CF/PLA composite blades
 - Possibility to be additively manufactured

Appendix

Financials

- Production life: 20 years
- Total Project Cost: \$2.87 Billion
- Levelized Cost of Energy used for market research
- Power Purchase Agreement prices calculated between 9.64¢/kWh and 10.08¢/kWh
 - Avg residential cost: 12.24¢/kWh
- Annual Energy Production

$$AEP = (Operating Hours Per Year) \int_{0}^{\infty} (P(V))(Probability(V)) dV$$

Wind speed probability

$$f(V_1 < V < V_2) = exp(-(V_1/A)^k) - exp(-(V_2/A)^k)$$

Financials

Electrical Components

- Maxon RE-50 brushed DC generator
- STM32 Microcontroller
 - Contains Finite State Machine
- Finite State Machine relays instruction to other systems depending on function state (Safety, Cut-In, Durability, Power)
- Perturb and Observe algorithm
 - Iteratively measures power at different resistances
 - If current W is higher than previous, resistance increases or vice-versa
- Optocoupler used for communication between UCL and STM32 to isolate turbine side from load side, preventing power flow

Wind Farm

- Estimated capacity factor of 42.5%
- Estimated total annual energy production of 44.7 Million kWh/turbine
- Substation was placed in the middle of site to reduce cable lengths and reduce electrical efficiency
- Connection between the offshore substation and land (55km) will require two 220kV cables (to create redundancy and avoid failures)
 - Individual turbines will be connected with 66kV wires

*EYO airfoil research

