```
In [4]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   sns.set()
```

```
In [5]: from sklearn.datasets import load boston
        boston = load boston()
        C:\Users\Joshua Deshmukh\AppData\Local\Programs\Python\Python310\lib\site-packages\sklearn\utils\deprecation.py:87: FutureWarnin
        g: Function load boston is deprecated; `load boston` is deprecated in 1.0 and will be removed in 1.2.
            The Boston housing prices dataset has an ethical problem. You can refer to
            the documentation of this function for further details.
            The scikit-learn maintainers therefore strongly discourage the use of this
            dataset unless the purpose of the code is to study and educate about
            ethical issues in data science and machine learning.
            In this special case, you can fetch the dataset from the original
            source::
                import pandas as pd
                import numpy as np
                data url = "http://lib.stat.cmu.edu/datasets/boston"
                raw df = pd.read csv(data url, sep="\s+", skiprows=22, header=None)
                data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
                target = raw df.values[1::2, 2]
            Alternative datasets include the California housing dataset (i.e.
            :func:`~sklearn.datasets.fetch california housing`) and the Ames housing
             dataset. You can load the datasets as follows::
                from sklearn.datasets import fetch california housing
                housing = fetch california housing()
            for the California housing dataset and::
                from sklearn.datasets import fetch openml
                housing = fetch openml(name="house prices", as frame=True)
            for the Ames housing dataset.
          warnings.warn(msg, category=FutureWarning)
```

```
In [6]: boston.DESCR
```

Out[6]: ".. boston dataset:\n\nBoston house prices dataset\n------\n\n**Data Set Characteristics:** \n\n :Numbe :Number of Attributes: 13 numeric/categorical predictive. Median Value (attribute 14) is usually the r of Instances: 506 \n\n :Attribute Information (in order):\n per capita crime rate by town\n target.\n\n - CRIM - ZN proportio n of residential land zoned for lots over 25,000 sq.ft.\n - INDUS proportion of non-retail business acres per town\n Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)\n - NOX nitric oxides concentration average number of rooms per dwelling\n (parts per 10 million)\n - RM - AGE proportion of owner-occupied units built prior to 1940\n weighted distances to five Boston employment centres\n - DIS - RAD index of a ccessibility to radial highways\n - TAX full-value property-tax rate per \$10,000\n - PTRATIO pupil-teacher ra tio by town\n - B 1000(Bk - 0.63)^2 where Bk is the proportion of black people by town\n LSTAT % lower status of the population\n MEDV Median value of owner-occupied homes in \$1000's\n\n :Missing Attribute Values: No :Creator: Harrison, D. and Rubinfeld, D.L.\n\nThis is a copy of UCI ML housing dataset.\nhttps://archive.ics.uci.edu/m 1/machine-learning-databases/housing/\n\nThis dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.\n\nThe Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic\nprices and the demand for clean air', J. Environ. Economics & Management,\nvol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics\n...', Wiley, 198 0. N.B. Various transformations are used in the table on\npages 244-261 of the latter.\n\nThe Boston house-price data has been used in many machine learning papers that address regression\nproblems. \n \n.. topic:: References\n\n - Belsley, Kuh & W elsch, 'Regression diagnostics: Identifying Influential Data and Sources of Collinearity', Wiley, 1980. 244-261.\n - Ouinlan,R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learni ng, 236-243, University of Massachusetts, Amherst. Morgan Kaufmann.\n"

```
In [7]: df = pd.DataFrame(boston.data,columns=boston.feature_names)
    df['Price'] = boston.target
```

In [8]: df

Out[8]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	Price
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2
501	0.06263	0.0	11.93	0.0	0.573	6.593	69.1	2.4786	1.0	273.0	21.0	391.99	9.67	22.4
502	0.04527	0.0	11.93	0.0	0.573	6.120	76.7	2.2875	1.0	273.0	21.0	396.90	9.08	20.6
503	0.06076	0.0	11.93	0.0	0.573	6.976	91.0	2.1675	1.0	273.0	21.0	396.90	5.64	23.9
504	0.10959	0.0	11.93	0.0	0.573	6.794	89.3	2.3889	1.0	273.0	21.0	393.45	6.48	22.0
505	0.04741	0.0	11.93	0.0	0.573	6.030	80.8	2.5050	1.0	273.0	21.0	396.90	7.88	11.9

506 rows × 14 columns

In [9]: | df.describe()

Out[9]:

		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	Lŧ
CC	ount	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.00
m	ean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407	408.237154	18.455534	356.674032	12.65
	std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259	168.537116	2.164946	91.294864	7.14
	min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	12.600000	0.320000	1.730
2	25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000	279.000000	17.400000	375.377500	6.950
,	50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000	330.000000	19.050000	391.440000	11.360
7	75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000	666.000000	20.200000	396.225000	16.95
r	max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.000000	396.900000	37.970

```
In [10]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 506 entries, 0 to 505
         Data columns (total 14 columns):
              Column
                       Non-Null Count Dtype
              _____
                       506 non-null
                                       float64
          0
              CRIM
                       506 non-null
                                       float64
          1
              ΖN
                       506 non-null
                                       float64
          2
              INDUS
          3
              CHAS
                       506 non-null
                                       float64
                       506 non-null
                                       float64
          4
              NOX
              RM
                       506 non-null
                                       float64
          5
                       506 non-null
                                       float64
              AGE
              DIS
                       506 non-null
                                       float64
          7
                       506 non-null
          8
              RAD
                                       float64
              TAX
                       506 non-null
                                       float64
          9
             PTRATIO 506 non-null
                                       float64
          10
          11 B
                       506 non-null
                                       float64
          12 LSTAT
                       506 non-null
                                       float64
          13 Price
                       506 non-null
                                       float64
         dtypes: float64(14)
         memory usage: 55.5 KB
         df.isnull().sum()
In [11]:
Out[11]: CRIM
                    0
                    0
         ΖN
         INDUS
                    0
         CHAS
                    0
         NOX
         RM
                    0
         AGE
         DIS
         RAD
         TAX
         PTRATIO
                    0
         В
                    0
         LSTAT
```

Price

dtype: int64

```
In [13]: row = 2
  col = 7
  s = 0
  fig, ax=plt.subplots(nrows=row, ncols=col, figsize=(15,8))
  for i in range(row):
     for j in range(col):
          sns.histplot(x=df.columns[s], data=df, kde=True, ax=ax[i][j])
          s+=1
```



```
In [14]: fig, ax = plt.subplots(figsize = (18,12))
sns.heatmap(data=df.corr(), annot=True, ax=ax)
```

Out[14]: <AxesSubplot:>

CRIM	1	-0.2	0.41	-0.056	0.42	-0.22	0.35	-0.38	0.63	0.58	0.29	-0.39	0.46	-0.39		
K	-0.2	1	-0.53	-0.043	-0.52	0.31	-0.57	0.66	-0.31	-0.31	-0.39	0.18	-0.41	0.36		
SNON	0.41	-0.53	1	0.063	0.76	-0.39	0.64	-0.71	0.6	0.72	0.38	-0.36	0.6	-0.48		
CHAS	-0.056	-0.043	0.063	1	0.091	0.091	0.087	-0.099	-0.0074	-0.036	-0.12	0.049	-0.054	0.18		
XOX	0.42	-0.52	0.76	0.091	1	-0.3	0.73	-0.77	0.61	0.67	0.19	-0.38	0.59	-0.43		
RM	-0.22	0.31	-0.39	0.091	-0.3	1	-0.24	0.21	-0.21	-0.29	-0.36	0.13	-0.61	0.7		
AGE	0.35	-0.57	0.64	0.087	0.73	-0.24	1	-0.75	0.46	0.51	0.26	-0.27	0.6	-0.38		
DIS	-0.38	0.66	-0.71	-0.099	-0.77	0.21	-0.75	1	-0.49	-0.53	-0.23	0.29	-0.5	0.25		
RAD	0.63	-0.31	0.6	-0.0074	0.61	-0.21	0.46	-0.49	1	0.91	0.46	-0.44	0.49	-0.38		
TAX	0.58	-0.31	0.72	-0.036	0.67	-0.29	0.51	-0.53	0.91	1	0.46	-0.44	0.54	-0.47		
PTRATIO	0.29	-0.39	0.38	-0.12	0.19	-0.36	0.26	-0.23	0.46	0.46	1	-0.18	0.37	-0.51		
В	-0.39	0.18	-0.36	0.049	-0.38	0.13	-0.27	0.29	-0.44	-0.44	-0.18	1	-0.37	0.33		
LSTAT	0.46	-0.41	0.6	-0.054	0.59	-0.61	0.6	-0.5	0.49	0.54	0.37	-0.37	1	-0.74		
Price	-0.39	0.36	-0.48	0.18	-0.43	0.7	-0.38	0.25	-0.38	-0.47	-0.51	0.33	-0.74	1		
	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	Price	'	

•

In [16]: df

Out[16]:

	INDUS	RM	TAX	PTRATIO	LSTAT	Price
0	2.31	6.575	296.0	15.3	4.98	24.0
1	7.07	6.421	242.0	17.8	9.14	21.6
2	7.07	7.185	242.0	17.8	4.03	34.7
3	2.18	6.998	222.0	18.7	2.94	33.4
4	2.18	7.147	222.0	18.7	5.33	36.2
501	11.93	6.593	273.0	21.0	9.67	22.4
502	11.93	6.120	273.0	21.0	9.08	20.6
503	11.93	6.976	273.0	21.0	5.64	23.9
504	11.93	6.794	273.0	21.0	6.48	22.0
505	11.93	6.030	273.0	21.0	7.88	11.9

506 rows × 6 columns

```
In [17]: x = df.drop(labels=['Price'],axis=1)
y = df['Price']
```

```
In [18]: x.head()
Out[18]:
             INDUS
                          TAX PTRATIO LSTAT
               2.31 6.575
                         296.0
                                   15.3
                                         4.98
               7.07 6.421 242.0
                                   17.8
                                         9.14
               7.07 7.185 242.0
                                   17.8
                                         4.03
          2
               2.18 6.998 222.0
                                   18.7
                                         2.94
               2.18 7.147 222.0
                                   18.7
                                         5.33
In [19]: from sklearn.model selection import train test split
         x train, x test, y train, y test = train test split(x,y, test size=0.3, random state=42)
In [20]: x train.shape , x test.shape
Out[20]: ((354, 5), (152, 5))
In [21]: from sklearn.linear model import LinearRegression
         lr = LinearRegression()
         lr.fit(x train,y train)
Out[21]: LinearRegression()
In [22]: lr.coef
Out[22]: array([ 8.89192908e-02, 4.58472965e+00, -3.21801353e-03, -8.30469649e-01,
                -6.14838082e-01])
In [23]: lr.intercept
Out[23]: 17.150526471659887
```

```
In [24]: | y pred = lr.predict(x test)
         y_pred
Out[24]: array([26.62981059, 31.10008241, 16.95701338, 25.59771173, 18.09307064,
                22.90871478, 17.61601889, 13.53637406, 20.48659658, 19.63042973,
                20.14356915, 21.23936603, -2.17703728, 22.46574239, 19.55741359,
                24.67368263, 19.10912156, 3.38842032, 38.69074984, 17.05082016,
                26.1619823 , 27.58438964, 11.74375654, 24.17459161, 17.7242101 ,
                13.56944671, 22.81648456, 19.18372228, 18.46079157, 18.70360048,
                19.2864636 , 25.64061437 , 25.10598582 , 18.15940204 , 14.25506589 ,
                21.85273114, 32.68155189, 20.99806076, 20.54233085, 25.18099014,
                12.5229096 , 28.12041259, 39.52307563, 18.48292269, 25.8060045 ,
                15.51396261, 14.30180164, 26.47373087, 18.0995971, 30.77991619,
                23.61711953, 33.50182842, 16.09617732, 25.6923864, 38.16291719,
                22.27510835, 18.15355162, 30.2656657, 24.76833162, 15.09517744,
                25.49349461, 31.94366429, 29.9910815, 17.2733645, 27.56807723,
                12.05824047, 18.98303931, 25.66074343, 28.98449592, 15.55155416,
                19.97704179, 26.02936009, 12.05329111, 21.7655206, 23.31666209,
                 6.03391556, 20.01221693, 38.12144014, 16.8875505, 10.72075752,
                22.46088278, 9.36198278, 24.09343534, 7.14093828, 22.17983415,
                28.15116909, 20.46791378, 26.25420747, 27.1620727, 20.70409881,
                24.1563809 , 7.77940126, 21.54982615, 20.04604896, 11.78985685,
                22.46163913, 22.48055429, -0.07257436, 18.36539259, 17.31496289,
                21.06156734, 24.80376727, 8.84307115, 20.98617093, 25.51248652,
                13.50230783, 18.76790985, 26.96699475, 22.8688555, 27.5586772,
                11.78407124, 19.09435201, 24.89518268, 24.32419065, 31.1937723,
                18.97618967, 32.91808139, 14.96546128, 19.58974059, 28.640961 ,
                18.70459566, 26.86127531, 14.47455498, 23.13989195, 26.86074285,
                23.56807441, 27.48834026, 31.80605265, 24.3571917, 37.91833369,
                11.93795084, 26.54212343, 19.26752655, 19.29065717, 11.75099637,
                21.90166758, 22.66230052, 32.72490364, 31.18752369, 16.58461442,
                17.88939265, 29.94107039, 23.23104109, 11.78611835, 8.36515471,
                24.64330163, 24.19025911, 17.20942048, 13.87458909, 39.4187899,
                19.37592804, 18.39248868])
```

```
In [25]: pred_df=pd.DataFrame(np.c_[ y_test, y_pred], columns = ["Price_original", "Price_predicted"])
pred_df
```

Out[25]:		Price_original	Price_predicted
	0	23.6	26.629811
	1	32.4	31.100082
	2	13.6	16.957013
	3	22.8	25.597712
	4	16.1	18.093071
14	7	17.1	17.209420
14	8	14.5	13.874589
14	9	50.0	39.418790
15	0	14.3	19.375928
15	1	12.6	18.392489

152 rows × 2 columns

```
In [26]: from sklearn.metrics import r2_score
lr.score(x_test,y_test)
```

Out[26]: 0.6499135956539925

In [27]: from sklearn.ensemble import RandomForestRegressor

```
In [28]: rf = RandomForestRegressor()
rf.fit(x_train,y_train)
```

Out[28]: RandomForestRegressor()

```
In [29]: y_pred = rf.predict(x test)
         y_pred
Out[29]: array([22.79, 31.42, 17.212, 23.11, 15.309, 21.744, 20.294, 14.599,
                21.656, 21.527, 21.135, 20.206, 12.55, 21.966, 18.41, 25.179,
                19.719, 8.576, 46.466, 15.646, 24.447, 24.189, 14.054, 23.025,
                14.996, 14.878, 24.305, 16.193, 20.784, 21.237, 18.798, 23.29,
                26.444, 21.41, 10.588, 16.656, 35.483, 19.321, 20.404, 23.269,
                15.53, 29.268, 45.572, 20.356, 23.262, 14.475, 17.28, 23.639,
                15.239, 29.454, 22.301, 34.702, 17.868, 25.872, 43.895, 21.051,
                15.809, 33.086, 22.272, 19.617, 25.793, 34.747, 29.585, 19.324,
                26.71 , 20.405, 15.626, 22.965, 28.081, 20.448, 20.465, 31.97 ,
                10.85 , 22.128, 22.047, 7.744, 20.521, 47.725, 12.196, 11.4 ,
                22.783, 8.313, 23.154, 9.293, 21.6 , 27.652, 15. , 23.166,
                23.439, 17.367, 21.153, 8.465, 19.754, 19.614, 32.306, 19.631,
                26.371, 10.978, 14.92 , 12.454, 19.932, 27.169, 11.098, 21.447,
                21.883, 12.086, 18.351, 24.556, 20.315, 23.644, 7.698, 13.563,
                23.387, 25.076, 32.805, 15.947, 43.107, 16.964, 17.706, 23.838,
                20.121, 24.059, 9.675, 20.379, 23.965, 21.377, 24.495, 35.854,
                18.997, 47.512, 17.886, 22.144, 19.358, 18.827, 14.21, 21.555,
                21.367, 32.007, 29.392, 16.872, 17.313, 25.865, 20.816, 20.508,
                 8.312, 22.072, 18.461, 12.582, 13.678, 42.133, 15.365, 15.653])
         rf.score(x_test,y test)
Out[30]: 0.8013549394401752
```

In []: