Fundamentals of image processing and image analysis

BIOL 542 Vincent Boudreau 28.11.2017

Why process images from a microscope?

Images are often pretty, but the really useful information is in the pixels

Why process images from a microscope? In the real world, images need processing all the time...

Terahertz time-gated spectroscopic imaging for content extraction through layered structures

Camera Culture MIT Media Lab

Authors:

A. R. Sanchez, B. Heshmat*, A. Aghasi, M. Zhang, S. Naqvi, J. Romberg, R. Raskar

Why process images from a microscope?

In the real world, images need processing all the time...

Why process images from a microscope?

In the real world, images need processing all the time...

Starting from the pixel up

What makes up an image?

Starting from the pixel up

What makes up an image?

Starting from the pixel up

What makes up an image?

Starting from the pixel up What makes up an image?

Photons...

Microscope body...

Microscope body...

Pixels!

Pixels!

Pixel value, gray value, gray level, colours,

Bit-depth and dynamic range

gray values = 2 #bits * #colours

256 gray values = 2^{8*1}

65536 gray values = 2^{16*1}

From gray values to masks

gray values = 2 #bits * #colours

Finding relevant objects

From gray values to masks

gray values = 2 #bits * #colours

Finding relevant objects

Creating a mask

Thresholding - fluorescence intensity

All grays

Low grays

High grays

Creating a mask

Edge detection

All grays

Variance filter (not yet binary)

Canny edge detection

Adjusting a mask

Filters

Fluorescence intensity thresholded mask

Erode (or minimum filter of 1)

Dilate (or maximum filter of 1)

Filtering kernels

(here: circular radius of 1.5 pixels)

0	0	$\frac{1}{13}$	0	0
0	1/13	$\frac{1}{13}$	1/13	0
$\frac{1}{13}$	1/13	$\frac{1}{13}$	1/13	$\frac{1}{13}$
0	1/13	$\frac{1}{13}$	1/13	0
0	0	$\frac{1}{13}$	0	0

Generate quantitative information

Images are data in themselves, but contain more information than what is immediately available

Tutorial #1

Quantify nuclear size

Tutorial #2

Quantify nuclear fluorescence intensity

Processing exercises

Intensity distribution + dynamic range Filtering

Thresholding

Analyzing particles

Measurements

Tutorial 1: shape descriptors - nuclei

- Open image: File > Open Samples > HeLa cells
- Separate channels: Image > Color > Split Channels
- Duplicate the nucleus image for #2
- Thresholding: Image > Adjust > Threshold
- Add to ROI manager: Analyze > Analyze Particles
- Adjust measurements: Analyze > Set Measurements > Area + Perimeter + Shape descriptors + Feret's diameter
- Measure: From ROI manager, click measure

Tutorial 2: fluorescence intensity

- Open image: Select original nucleus image
- Overlay: Image > Overlay > From ROI manager
- Adjust measurements: Analyze > Set Measurements > Mean + STD deviation + Min & Max + Mean, etc.
- Measure: From ROI manager, click measure

Tutorial 3: macro recorder

- Do #1 with macro recorder on
- Run it on new image...