Optymalizacja Kombinatoryczna - Projekt

Ant System dla problemu komiwojażera

Michał Łatka 160263 Stanisław Fiedler 160250

Politechnika Poznańska, Styczeń 2025

Spis treści

1	Ant	System	1
	1.1	Inicjalizacja	1
	1.2	Opis Algorytmu	2
	1.3	Pseudokod	2
	1.4	Przykład obrazujący działanie	4
	1.5	Finalizacja	5
2	Wy]	kresy	6
	2.1	Porównanie z algorytmem zachłannym	6
	2.2	Wartości błędu do wartości optymalnej	6
	2.3	Wyniki algorytmu dla instancii rankingowych	7

1 Ant System

1.1 Inicjalizacja

Instancja początkowa reprezentowana jest przez następujące dane: liczbę wierzchołków (n) oraz n par liczb całkowitych (x_i, y_i) oznaczających rozmieszczenie tych wierzchołków na płaszczyźnie kartezjańskiej.

1.2 Opis Algorytmu

Algorytmy mrówkowe są stosowane przy rozwiązywaniu niektórych problemów NP-trudnych. W przeszukiwaniu przestrzeni rozwiązań symulują one zachowanie kolonii mrówek. Każde znalezione rozwiązanie pozostawia informacje używane do budowy następnego.

Dla problemu komiwojażera w każdej iteracji wypuszczana jest pewna ilość mrówek które mają znaleźć rozwiązanie. Dla każdej mrówki, po znalezieniu ścieżki, na każdej krawędzi z której jest zbudowana, jest dodawana wartość (tzw. feromony) odwrotnie proporcjonalna do długości znalezionego rozwiązania. Mrówka tworząc trasę wybiera wierzchołki z prawdopodobieństwem zgodnym z siłą feromonów na krawędziach. Po każdej iteracji z krawędzi jest usuwany pewien procent feromonów.

Działanie algorytmu jest zależne od ustawionych parametrów:

INITIAL FEROMONES: początkowa wartość feromonów na krawędziach

EVAPORATION RATE: ułamek feromonów usuwany przy każdej iteracji

Q: stała określająca ilość feromonów pozostawianych przez mrówki

A, B: stałe używane przy wyborze następnego wierzchołka

1.3 Pseudokod

```
for each edge:
2
  begin
       edge.lenght = distance(egde.start, edge.end);
3
       edge.feromones = INITIAL_FEROMONES;
4
  end
  for i in O..ITERATION_MAX:
7
8
  begin
      for each vertex:
9
      begin
           new ant:
           ant.visited[vertex] = true;
12
           ant.path += vertex;
14
           while ant.path < number_of_verteces:</pre>
16
           begin
               //find next unvisited vertex based on probabilites
17
               next_vertex = find_next_vertex();
18
               ant.path += next_vertex;
19
20
           end
      end
21
22
23
      for each edge:
       begin
           edge.feromones *= EVAPORATION_RATE;
27
      for each ant:
28
29
      begin
           tour_length = length(ant.path);
30
           shortest_path = min(shortest_path, tour_length);
31
           for each edge in ant.path:
           begin
33
               edge.feromones += Q/tour_length;
34
35
36
37
```

1.4 Przykład obrazujący działanie

Intensywność feromonów na krawędziach po 1 iteracji:

Intensywność feromonów na krawędziach po 2 iteracjach:

Intensywność feromonów na krawędziach po 5 iteracjach:

1.5 Finalizacja

Intensywność feromonów na krawędziach po zakończeniu programu:

Najkrótsza znaleziona ścieżka (długości 298.551 j):

2 Wykresy

2.1 Porównanie z algorytmem zachłannym

Porównanie optymalizowanej wartości dla algorytmu Ant System z algorytmem zachłannym:

2.2 Wartości błędu do wartości optymalnej

Wykres wartości błędu względnego algorytmu Ant System w stosunku do wartości optymalnej:

2.3 Wyniki algorytmu dla instancji rankingowych

Nazwa instancji	Wynik
berlin52	7677
bier127	123903
tsp250	13414
tsp500	93377
${\mathrm{tsp1000}}$	27362