Bem vindo ao Classe.tex. Seu documento foi gerado com êxito, veja abaixo as questões que foram adicionadas aleatoriamente.

Aluno(a):		
()		
Professor(a):		

1. Hipótese de indução: Seja $a \in \mathbb{N}$ tal que, P(k), para todo $k \in [0..a]$

...

Passo Indutivo: Vamos provar que P(a + 1).

...

Pela hipótese da indução, temos que |...|, então:

...

Portanto P(a+1).

Base Indutiva: Vamos provar que P(k), para todo $k \in \mathbb{N}$ ao qual o argumento do Passo de Indução não se aplica.

Portanto, P(k), para todo $n \in \mathbb{N}$

2. **Hipótese Indutiva**: Seja $a \in \mathbb{N}$ tal que, para todo $k \in [0..a]$, se $A_1, A_2, ..., A_k$ são conjuntos finitos dois a dois finitos entre si, então

$$|\bigcup_{i=1}^{k} A_i| = \sum_{i=1}^{k} |A_i|$$

Passo Indutivo: Vamos provar que se $A_1, A_2, ..., A_{a+1}$, são conjuntos finitos distintos entre si, então:

$$|\bigcup_{i=1}^{a+1} A_i| = \sum_{i=1}^{a+1} |A_i|$$

Como:

$$\bigcup_{i=1}^{a+1} A_i = (\bigcup_{i=1}^{a} A_i) \cup A_{a+1}$$

Seja $a \geq 2$, pela hipotese intudiva, temos que $|\bigcup_{i=1}^k A_i| = \sum_{i=1}^k |A_i|$, então:

$$|\bigcup_{i=1}^{a+1} A_i| = |\bigcup_{i=1}^{a} A_i| + |A_{a+1}|$$

$$|\bigcup_{i=1}^{a+1} A_i| = |\sum_{i=1}^{a} A_i| + |A_{a+1}|$$

$$|\bigcup_{i=1}^{a+1} A_i| = |\sum_{i=1}^{a+1} A_i|$$

Base Indutiva: