

Integrantes: Milovan Bustamante

Diego Curin

Estructura de limpieza de data

Leer dataset

 Abrimos una casilla de Read CSV para leer al archivo con la data de análisis de aceite. En el apartado de path colocamos la ruta y en name el nombre del archivo

Renombrar columnas

 Debido a que las columnas estaban corridas renombramos las columnas con la casilla Rename Columns, moviendo cada nombre de columna una casilla a la derecha una por una

Quitar columnas irrelevantes

 Con Drop Columns quitamos las columnas ID, ESTADO, RECOMENDACIÓN Y COMENTARIO. Esto debido a que no representan mayor relevancia en el análisis de datos

Corregimos nombres

 El diagnostico de la data es nuestro estado de salud, por lo que le asignamos este nombre con Rename Columns

Reemplazar valores

 Para una correcta lectura de data se le debe asignar números a algunos apartados. Para esto ocupamos Replace Values

Replace Values

- label

reemplazar valores de diagnostico

Replace Values

Replace values of Estado de salud

with

where:

Estado de salud == Normal

×

Replace values of

column
Estado de salud

with

type
number

value
2

Replace values of

value
3

Replace values of

column
Estado de salud

with

type
number

value
4

Replace values of

+ WHERE

Resultados finales más relevantes

	value counts	normalized value counts					
Estado de salud							
0	6156	0.492322					
1	3391	0.271193					
2	1251	0.100048					
3	671	0.053663					
4	530	0.042386					
5	505	0.040387					

Distribution

Análisis

 La información que se tiene sirve para poder crear un sistema predictivo para mantenimiento industrial basado en el análisis de aceites, debido a que permite detectar fallos mecánicos, contaminación y degradación del lubricante antes de que ocurran daños mayores

	FIERRO	CROMO	ALUMINIO	COBRE	PLOMO	NICKEL	PLATA	ESTANO	TITANIO	VANADIO	 FOSFORO	V40	CONTENIDO DE AGUA	ÍNDICE PQ	OXIDACIÓN	PARTICULAS > 4um	Partículas > 6um	Partículas > 14um	Family	Estado de salud
0	4.6	0.1	0.1	2.1	0.8	0.1	0.1	0.6	0.1	0.1	 171.0	325.45	0.0	5	3.41	59773	13379	2215	Pumps	0
1	8.9	0.1	0.2	7.4	13.4	0.1	0.1	1.5	0.1	0.1	 0.1	46.61	0.0	0	1.34	100707	19985	1602	Pumps	0
2	18.6	0.2	0.6	17.8	5.6	0.2	0.1	0.9	0.1	0.1	 0.1	45.87	0.0	5	2.10	175972	35857	1438	Pumps	0
3	10.9	0.1	0.5	8.1	3.1	0.1	0.1	2.1	0.1	0.3	 0.1	44.18	0.0	5	3.14	66324	12836	498	Pumps	0
4	24.8	0.4	2.3	4.5	3.2	0.2	0.1	0.2	0.2	0.2	 0.1	44.71	0.0	20	1.64	251923	34960	480	Pumps	0
12499	1.2	0.1	0.1	3.9	0.1	0.1	0.1	1.5	0.1	0.1	 0.1	32.28	0.0	10	2.03	71963	16835	954	Shafts	3
12500	10.1	0.8	0.1	2.9	8.4	0.1	0.1	33.8	0.1	0.1	 0.1	46.81	0.0	5	1.46	694905	112978	2194	Shafts	3
12501	8.1	0.1	0.1	1.7	0.1	0.1	0.1	4.8	0.1	0.3	 0.1	35.30	0.0	10	1.53	82773	15980	340	Shafts	3
12502	0.1	0.1	0.1	1.0	0.1	0.1	0.1	0.1	0.1	0.6	 0.1	37.44	0.0	5	2.65	3479	1939	286	Shafts	3
12503	2.3	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	 0.1	33.48	0.0	5	2.21	4360	821	41	Shafts	3

12504 rows × 31 columns

Variables clave para diagnóstico

- Metales: Hierro (Fe), Cromo (Cr), Plomo (Pb), Silicio (Si).
- **Partículas**: Concentraciones >4μm, >6μm, >14μm.
- **Degradación**: Índice de oxidación, contenido de agua.

Falla	Indicadores Clave	Umbrales Críticos (PPT)				
Desgaste mecánico	Fe > 50 ppm + partículas >14µm > 100/ml	Daño en rodamientos/engranajes.				
Contaminación por tierra	Si > 5 ppm + partículas >4µm altas	Sellos defectuosos o filtros rotos.				
Degradación del aceite	Oxidación > 10 + agua > 500 ppm	Vida útil reducida del lubricante				

• Como podemos ver en los resultados finales un 65 de la muestra presenta resultados normales, pero otro 20% un índice de desgaste y el porcentaje restante de contaminación de distintos tipos, sea polvo o agua entre otros.

Podemos ver que:

- 15% de las muestras tienen contaminación grave (ej: tierra, agua).
- 18% muestran desgaste mecánico (hierro elevado).
- Muestra más crítica: #12,500 con 112,978 partículas >14µm → Falla inminente.

Conclusiones

- Con los datos obtenidos podemos ver hay máquinas con desgaste (hierro alto), aceites sucios (muchas partículas/silicio) y aceites viejos (oxidación alta).
- Esto podría ser solucionado usando estas datos para predecir fallas y actuar antes de que rompan los componentes.