Circuitos digitais

Amanda Aparcida Machado Goulart - 133569

Setembro 2020

1 Laboratório 01

1.1 Objetivo

Implemente um circuito digital que simule um jogo de dados entre dois jogadores. Como entrada, o circuito possui 3 sinais de entrada para cada jogador que representará um valor entre 1 e 6. Dados os valores das entradas, o jogo deve gerar como saída um de três sinais que indicará a vitória do jogador 1, a vitória do jogador 2 ou um empate. Use switches para os sinais de entrada e leds para as saídas.

1.2 Implementação

Partindo da sequência lógica para a implementação:

- 1. Entender a lógica do problema
- 2. Criar tabela verdade ou mapa de Karnaugh
- 3. Gerar expressão correspondente
- 4. Desenhar circuito

1.2.1 Lógica

<u>Tabl</u>	<u>e 1:</u>	Entra	ıdε

x2,x1,x0	Valor
001	1
010	2
011	3
100	4
101	5
110	6

1.2.2 Mapa de Karnaugh

Primeiramente para fazer a conversão de binário para Grey foi feita o seguinte mapa da karnaugh.

Para y0:

	00	01	11	10
x2 x1				
x0				
0	D	1	1	0
1	1	0	D	1

Resultando em: (x1 !x0)+(!x1 x0)

Para y1:

	00	01	11	10
x2 x1				
x0				
0	D	1	0	1
1	0	1	D	1

Resultando em: (!x2 x1)+(x2 !x1)

Para y2:

	00	01	11	10
x2 x1				
x0				
110				
0	D	0	1	1
1	0	0	D	1

Resultando em: (x2 !x0)+(x2 !x1)

Posteriomente foi feita uma comparação para verificar se são identicos.

00	01	11	10
1	0	1	0

Resultando em $(\overline{xiyi}) + (xiyi) = xi \oplus yi$ Para verificar se é maior ou menor: Para x2:

x0y0 x1y1	00	01	11	10
00	0	1	0	0
01	1	1	1	1
11	0	1	0	0
10	0	0	0	0

Para y2:

x0y0 x1y1	00	01	11	10
00	1	1	1	1
01	1	1	1	1
11	1	1	1	1
10	1	1	1	1

Para y1:

x0y0 x1y1	00	01	11	10
00	0	1	0	0
01	1	1	1	1
11	0	1	0	0
10	0	0	0	. 0

Para x1:

± 0 y 0 ± 1 y 1	00	01.	11	10
00	-0	0	0	0
01	-0	0	0	0.
11	0	-0	0	-0
10	-0	0	0	0

Resultando em: $(\overline{x2}y2) + (\overline{x2x1}y1) + (\overline{x2x1x0}y0) + (x2y1\overline{x0}y0) + (y2\overline{x1}y1) + (y2\overline{x1}x0y0) + (y2y1\overline{x0}y0)$

1.3 Circuito

Figure 1: Circuito do laboratório 01

O arquivo .panda pode ser encontrado no seguinte repositório