AD-A161 829

20000801190

TECHNICAL REPGRT BRL-TR-2684

HE HUGONIOTS OF M-30 PROPELLANT AND AN INERT SIMULATOR OF M-30

Vincent M. Boyle

October 1985

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

JS ARMY BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MARYLAND

Reproduced From Best Available Copy

Destroy this report when it is no longer needed. Do not return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM						
REPORT NUMBER 2. GOVT ACCESSION NO	O. 2 RECIPIENT'S CATALOG NUMBER						
Technical Report BRL-TR-2684 AD- F11618	2.0						
4. TITLE (and Subtitle)	TYPE OF RE. JRT & PERIOD COVERED						
THE HUGONIOTS OF M-30 PROPELLANT AND AN	Final						
INERT SIMULATOR OF M-30	6 PERFORMING ORG. REPORT NUMBER						
,	6. PERFORMING ONG. REPORT NEWBER						
7. AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(a)						
Vincent M. Boyle	1L162618AH80						
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS						
US Army Ballistic Research Laboratory							
ATTN: SLCBR-TB							
Aberdeen Proving Ground, MD 21005-5066							
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE						
US Army Ballistic Research Laboratory	October 1985						
ATTN: SLCBR-DD-T	13. NUMBER OF PAGES						
Aberdeen Proving Ground, MD 21005-5066	1						
worthowing detect that a portage and an obligating office,	Sec grant Constant Application						
	UNCLASSIFIED						
	150 DECLASSIFICATION DOWNGRADING						
• •	SCHEDULE						
16 DISTRIBUTION STATEMENT (of this Report)							
Approved for public release; distribution is unlim	nited.						
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fr	om Report)						
18 SUPPLEMENTARY NOTES							
	,						
	, <u> </u>						
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)						
, , , , , , , , , , , , , , , , , , , ,	^ .						
Hugoniot, M-30 Propellant, Porous Hugoniot							
Pro Contraction							
The Hugoniots of M-30 and an inert simulator of M-30 have been determined by shock velocity measurements in samples of these materials. Also, porous Hugoniots for both materials were calculated using the solid Hugoniot and the Mie-Gruneisen equation. A knowledge of the porous Hugoniot is important in predicting the response of a propellant bed to a shock wave.							
	·						

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

TABLE OF CONTENTS

		•				•																			ŀ	AGE
	LIST OF ILLUSTRATION	NS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
	LIST OF TABLES																									7
I.	INTRODUCTION		•	•	,•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9
II.	SAMPLE FREPARATION	• •	•	•	•	•	• ,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	9
	A. M-30 Propellant	•	•	•	•	•	•	•	•	•	•	•	. •	•	•	•	•	•	•	•	•	•	•	•		9
	B. Inert Simulator	•	•	•	•	•	•	•,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	, 9
III.	PROCEDURE		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	11
IV.	RESULTS	• •	•	•	•	•		•	•	•	•	•	•	•	•	•	÷	•	•	•	•	•	•	•	•	14
V.	DISCUSSION		•	.•	.•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•		•	22
	REFERENCES		•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	,•	•	•	•	•	•	•	23
	LIST OF SYMBOLS .		•	•	•	•	•	, •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		25
	DISTRIBUTION LIST		•																	•						27

RE: Distribution Unlimited
Distribution Statement A is correct for this
report. No information in the report is
damaging in the public domain.
Per Mr. Vincent M. Boyle, ABRL/SLCBR-TB

LIST OF ILLUSTRATIONS

FIGU	IKE .		•			٢	AGE
1.	Initial Configuration of the M-30 Propellant Grain	•	•	•	•	•	10
2.	Experimental Arrangement Used to Determine the Shock Velocit in the Sample		•	•		•	12
3A.	Graphical Interpretation of the Interface Equation for Reacting and Non-Reacting M-30	•	•	•	•		13
3B.	Graphical Interpretation of the Impedance-Matching Technique Reacting and Non-Reacting M-30		•			•	13
4.	Geometrical Interpretation of Equations (1), (2), and (3).	•	•	÷	•	•	17
5.	A Comparison of the Solid and Porous Hugoniots in the Pressure-Particle Velocity Plane	•				•	21

LIST OF TABLES

TAB	LE	.5
1.	M-30 Data	į
2.	M-30 Inert Simulator Data	5
3.	Gruneisen Gamma	6
4.	Porous Inert Hugoniot Calculations	}
5.	Porous M-30 Hugoniot Calculations)

I. INTRODUCTION

There was a need for the equation of state of porous propellant so that code calculations could be made to predict the response of propellant beds to shock pressures of varying intensity and duration.

The work reported here is related to the XM1 Compartmentalization Study. One threat to crew and tank is propellant initiation caused by shaped charge jet penetration. What shock pressure conditions will be produced in the propellant bed during shaped charge penetration? Will the propellant reaction under these conditions be so violent that quick venting is not possible? In order to answer these questions, it is helpful to know the shock Hugoniot of the impacted material. The work reported here was specifically directed toward the measurement of the shock Hugoniots for live and inert propellants and calculation of the shock Hugoniots of porous beds of these materials. The live propellant material is the seven perforation M-30 propellant which is used in the 105-mm APDS and HEAT rounds. The inert propellant consists of a thermoplastic material which has been extruded to the same configuration as the live propellant and has approximately the same density. The porous Hugoniots were calculated from the solid Hugoniots using the Mie-Gruneisen equation.

II. SAMPLE PREPARATION

A. M-30 Propellant

The propellant comes in the form of a grain approximately 1.59 cm long, 0.71 cm diameter with seven cylindrical perforations 0.08 cm diameter within the grain, parallel to the long axis, as shown in Figure 1. Samples approximately 0.32 cm long were machined from several propellant grains and carefully sanded and measured for thickness. The small sample thickness was necessitated by the small diameter of the propellant and the need to make a shock velocity measurement through the sample before rarefactions originating at the sample diameter boundary can influence the shock wave. The perforations were filled in with modeling clay in order to prevent jetting and eliminate rarefaction effects on the shock wave in the sample. The clay had a density of 1.65 gm/cm³; the propellant density was 1.66 gm/cm³. M-30 is a triple base propellant which has the following ingredients:

nitrocellulose	28.0 \$
nitroglycerine	22.5 %
nitroguanadine	47.7 %
ethyl centralite	1.5 %
cryolite	0.3 %

B. Inert Simulator

The inert simulator is an extruded thermoplastic made by Radford Army Ammunition Plant and it was made to simulate the density of M-30 propellant. It consists of the following:

Figure 1. Initial Configuration of the M-30 Propellant Grain.

cellulose acetate 64.2 % triacetin (plasticizer) 15.0 % graphite 2.4 % red lead (Pb₃0₄) 18.4 %

The inert simulator has a density of $1.55~\mathrm{gm/cm}^3$. It comes in the form of pellets having approximately the same dimensions and configuration as the live propellant. In order to obtain uniform samples suitable for our measurements the inert was heated to $100^{\circ}\mathrm{C}$ and compressed in a metallurgical press at 10,000 psi to get a solid cylinder 3.18 cm diameter by 3.81 cm high. Samples .95 cm thick were machined from this and measured for thickness.

III. PROCEDURE

The impedance matching technique was used to determine the solid Hugoniots for the live and inert propellant materials. We used a 10.16 cm diameter plane wave lens, a 2.54 cm thick TNT pad, and various buffer plates to provide a range of known pressures in the buffer plate. The sample of known thickness was placed on the buffer plate and front lighted by an argon bomb light source. The transit time of the shock through the sample was recorded by a Beckman and Whitley Model #770 streak camera writing at 16mm/s, and a shock velocity in the sample calculated. The impedance matching technique was used to calculate the corresponding pressure and particle velocity in the sample. This is illustrated in Figure 2.

Since it was anticipated that the M-30 propellant might react during these measurements, an additional pressure monitor (a Plexiglas pellet) was placed on the propellant free surface. The shock velocity in the Plexiglas pellet was measured and a pressure in the propellant was calculated by using the interface equation. This pressure determination in conjunction with that obtained using the impedance matching technique was used to insure that only unreacted data points would be accepted to calculate the Hugoniot.²

If the propellant were to react it would produce a higher pressure in the Plexiglas overlay than would unreacted M-30. When the interface equation is used, the computed particle velocity in M-30 would be high due to reaction as illustrated in Figure 3A. On the other hand, the particle velocity calculated by the impedance matching technique will be low if the M-30 reacts sufficiently to increase the shock velocity in the sample.

This can be seen by referring to Figure 3B where the particle velocity is determined by the intersection of the buffer plate release adiabat with a line having a slope of ${}^{\rho}_{\ \ 0}{}^{\ \ U}_{\ \ S}$ where ${}^{\rho}_{\ \ 0}$ is the initial density of M-30 and ${}^{U}_{\ \ S}$ is the shock velocity through the sample. Thus a deviation between the particle

Rice, McQueen, Walsh, "Compression of Solids by Strong Shock Waves," Solid State Physics, Volume 6, 1958.

²Boyle, Smothers, Ervin, "The Shock Hugoniot of Unreacted Explosives," Fifth Symposium on Detonation, August 18 - 21, 1970.

Figure 2. Experimental Arrangement Used to Determine the Shock Velocity in the Sample. Also, shown is a graphical illustration of the impedence-matching technique which was used to calculate the pressure and particle velocity in the sample.

Figure 3A. Graphical Interpretation of the Interface Equation for Reacting and Non-Reacting M-30.

Figure 3B. Graphical Interpretation of the Impedence-Matching Technique for Reacting and Mon-Reacting M-30.

velocity calculated at the buffer-M-30 interface and that calculated at the Plexiglas - M-30 in erface indicates reaction. Additional information is given in reference 2.

IV. RESULTS

The measured data points for M-30 propellant are shown in Table 1. The numbers in parentheses are data points determined using a Plexiglas overlay and the interface equation to determine particle velocity in the propellant. This was done to see if propellant reaction was affecting the data during the time of measurement (less than one microsecond). The first four lines of data showed little or no reaction and these eight points were used to determine the unreacted Hugoniot for solid M-30 propellant. A least squares fit of the form, $U_{\rm g} = b + su_{\rm p}$ gave

$$u_s = 2.661 \times 10^5 + 1.655 u_p \text{ cm/s}.$$

The measured data points for the M-30 inert simulator are given in Table 2. A least squares fit to these data points gave the following Hugoniot for the solid inert simulator.

$$u_s = 2.251 \times 10^5 + 1.509 u_p \text{ cm/s}$$

Table 1. M-30 Data.

, os	ប _ន	u _p	P · ·	Comments
	(cm/s)	(cm/sec)	(Kbars)*	
1.65	3.515 x 10 ⁵	.508 (.542) X 10 ⁵	29.6 (31.6)	
1.65	4.403 X 10 ⁵	1.032 (1.081) X 10 ⁵	75.4 (79.0)	
1.66	4.426 X 10 ⁵	1.031 (1.017) X 10 ⁵	75.8 (74.7)	
1.66	4.391 X 10 ⁵	1.032 (1.118) X 10 ⁵	75.3 (81.5)	
1.66	5.248 X 10 ⁵	1.464 (2.415) X 10 ⁵	127.5 (210.4)	Reaction
1.66	5.226 X 105	l 1.465 (2.258) X 10 ⁵	 127.1 (195.9)	Reaction
1.66	5.476 x 10 ⁵	1 1.445 (2.622) X 10 ⁵	131.3 (226.1)	Reaction

^{* 1} Kilobar = 10^9 dynes/cm²

Table 2. M-30 Inert Simulator Data.

Pos	u _s	up	P
(gm/cm ³)	(cm/s)	(cm/sec)	(Kbars)*
1.55	3.050 x 10 ⁵	•522 X 10 ⁵	24.7
1.55	3.051 X 10 ⁵	•522 X 10 ⁵	24.7
1.55	3.863 x 10 ⁵	1.064 x 10 ⁵	63.7
1.55	3.804 X 10 ⁵	1.066 x 10 ⁵	62.9
1.55	4.611 X 10 ⁵	1.548 x 10 ⁵	110.6
1.55	4.592 x 10 ⁵	1.550 x 10 ⁵	110.3

* 1 Kilobar = 10^9 dynes/cm²

The porous Hugoniots 3 4 5 6 were calculated from the solid Hugoniots using the Mie-Gruneisen equation with a Gruneisen gamma,

 $G = V \left(\frac{\partial P}{\partial E} \right)_V$ calculated from thermodynamic properties of the material at standard temperature and pressure. At standard conditions, the Gruneisen gamma, $G = aC_0^2/C_p$ where a is the volume coefficient of thermal expansion, C_o is the bulk sound velocity and C_p is the specific heat. These quantities are shown in Table III. The volume coefficient of thermal expansion for M-30 was assumed to be

3 X 10⁻⁴ cc . This agrees well with the values cited in the literature cc-c and is probably a good approximation. We assumed the same value for the inert simulator. The bulk sound velocity was obtained from the unreacted Hugoniot of the solid at zero particle velocity. The specific heat of M-30 was taken from the literature. The specific heat of the inert M-30 simulator was measured by Leon Decker, BRL, using differential scanning calorimetry.

- -

Herrmann W., "Constitutive Equation for the Dynamic Compaction of Ductile Porous Materials," JAP, Vol. 40, No. 6, May 1969.

Hoffman, Andrews, Maxwell, "Computed Shock Response of Porous Aluminum," JAP, Vol. 39, No. 10, Sept. 1968.

Erkman, Edwards, "Computed and Experimental Hugoniots for Unreacted Porous High Explosives," Sixth Symposium on Detonation, Aug. 24 - 27, 1976.

⁶Zeldovich, Raizer. "Physics of Shock Waves and High Temperature Hydrodynamic Phenomena," Vol. II, Academic Press, New York, 1967.

Table 3. Gruneisen Gamma.

Material a
$$C_0$$
 C_p C_p C_0 C_0

The porous Hugoni is were calculated using the following simplifying assumptions:

- 1. G remains constant at its zero pressure value over the range of interest.
- 2. The zero pressure specific internal energy of the solid and porous material are equal.
- 3. The materials possess zero strength.
- 4. Mechanical equilibrium has been established.
- 5. Thermal equilibrium has been established. Refer to the Discussion Section for more on assumptions 4 and 5.

The Mie-Gruneisen equation of state relates the thermal component of pressure to the thermal component of specific internal energy at a given volume. This can be expressed by the following equation:

$$(P_f - P_s) = \frac{C}{V} (E_f - E_s)$$
 (1)

where the subscript f refers to the porous material and the subscript s refers to the solid material. The validity of this equation is treated in references 3, 4, 5 and 6.

Using the Rankine-Hugoniot energy equation for the porous and the solid materials the following equations can be written;

$$E_{f} - E_{of} = 1/2 P_{f} (V_{of} - V)$$
 (2)

$$E_{s} - E_{OS} = 1/2 P_{s} (V_{OS} - V)$$
 (3)

Refer to Figure 4 for a geometrical interpretation of equations (1), (2), and (3). Since we assumed $E_{\text{of}} = E_{\text{os}}$ equations (1), (2), and (3) can be combined to give:

$$P_{f} = P_{S} \left(\frac{V_{OS} - V - \frac{2V}{G}}{V_{OS} - V - \frac{2V}{G}} \right)$$
 (4)

Since the Hugoniot of the solid material has been determined experimentally ($U_s = b + su_p$), we can use this relationship and the equations for conservation of mass and momentum across the shock wave to derive an expression for P_s , the shock pressure in the solid material,

Figure 4. Geometrical Interpretation of Equations (1), (2), and (3). $(P_f - P_s)^{V}_{G} = \frac{1}{2} P_f (V_{of} - V) - \frac{1}{2} P_s (V_{os} - V) .$

$$P_{s} = \frac{b^{2} (V_{os} - V)}{|V_{os} - s(V_{os} - V)|^{2}}$$
 (5)

Equation (4) can then be rewritten,

$$P_{f} = \frac{b^{2} (V_{os} - V)}{[V_{os} - s(V_{os} - V)]^{2}} \left(\frac{\frac{V_{os} - V - \frac{2V}{G}}{V_{of} - V - \frac{2V}{G}}}{10^{9}} \right) \text{ kbars}$$
 (6)

 P_f , the pressure in the porous material, is then calculated by substituting values for V, the specific volume of the shocked material, into Equation (6). V_f will be in kilobars for V in cm³/gm and b in cm/s. Conservation of mass across the shock front requires

$$\frac{V_{sf}}{V_{of}} = \frac{V_{sf} - u_{pf}}{V}$$
 (7)

Conservation of momentum requires

$$P_{f} - P_{of} = \frac{U_{sf} u_{pf}}{V_{of}}$$
 (8)

Simultaneous solution of equations (7) and (8) gives

$$U_{sf} = V_{of} \left(\frac{P_f - P_{of}}{V_{of} - V} \right)^{\frac{1}{2}}$$
 (9)

$$u_{pf} = \left[\left(P_{f} - P_{of} \right) \left(V_{of} - V \right) \right]^{\frac{1}{2}}$$
(10)

The porous Hugoniot values calculated using equations 6, 9, and 10 are shown in Tables 4 and 5.

Table 4. Porous Inert Hugoniot Calculations.

G	Vof	. V	$\mathbf{P}_{\mathbf{f}_{i}}$	u sr	u pf
	(cm ³ /gm)	(cm ³ /gm)	(Kbar)	(cm/s)	(cm/sec)
•				,	
1.216	1.250	•63	4.9	1.109 X 10 ⁵	• •550 X 10 ⁵
1.216	1.250	•62	8.8	1.481 X 10 ⁵	.747 X 10 ⁵
1.216	1.250	•61	13.6	1.821 X 10 ⁵	.932 X 10 ⁵
1.216	1.250	•60	19.3	2.152 x 10 ⁵	1.119 X 10 ⁵
1.216	1.250	•59	26.2	2.490 x 10 ⁵	. 1.315 X 10 ⁵
1.216	1.250	•58	34.7	2.844 X 10 ⁵	1.525 X 10 ⁵
1.216	1.250	•57	45.3	3.226 X 10 ⁵	1.755 X 10 ⁵
1.216	1.250	•56	58.8	3.648 X 10 ⁵	2.014 X 10 ⁵
1.216	1.250	•55	76.2	4.125 X 10 ⁵	2.310 X 10 ⁵
1.216	1.250	•54	99.6	4.681 X 10 ⁵	2.659 X 10 ⁵
1.216	1.250	•53	131.9	5•351 X 10 ⁵	3.082 X 10 ⁵
1.216	1.250	•52	179.2	6.193 X 10 ⁵	3.617 X 10 ⁵
1.216	1.250	•51	253.6	7.137 X 10 ⁵	4.332 X 10 ⁵
1.216	1.250	•50	385.5	8.961 x 10 ⁵	5.337 X 10 ⁵

A least squares fit of the shock and particle velocities shown above gives the porous inert $\operatorname{\mathsf{Hugoniot}}$.

Table 5. Porous M-30 Hugoniot Calculations.

G	Vof (cm ³ /gm)	v (cm ³ /gm)	P _f	u sf (cm/s)	upf (cm/s)
1.412	1.149	• 59	7.7	1.351 X 10 ⁵	.658 X 10 ⁵
1.412	1.149	•58	15.7	1.911 X 10 ⁵	.947 X 10 ⁵
1.412	1.149	•57	25.9	2.431 X 10 ⁵	1.225 X 10 ⁵
1.412	1.149	•56	39.1	2.959 X 10 ⁵	1.517 X 10 ⁵
1.412	1.149	• 5 5	56.5	3.528 X 10 ⁵	1.839 x 710 ⁵
1.412	1.149	•54	80.2	4.169 X 10 ⁵	2,210 X 10 ⁵
1.412	1.149	•53	113.8	4.926 x 10 ⁵	2.654 X 10 ⁵
1.412	1-149	•52	164.1	5.869 X 10 ⁵	3.214 X 10 ⁵
1.412	1.149	•51	245.9	7.129 X 10 ⁵	3.966 X 10 ⁵
1.412	1.149	•50	398.7	9.006 X 10 ⁵	5.088 X 10 ⁵

A least squares fit of the shock and particle velocities shown above gives the porous M-30 Hugoniot.

The Hugoniot of porous M-30 (bulk density = $.870 \text{ gm/cm}^3$) is represented by:

$$U_{sf} = .318 \times 10^5 + 1.720 \, u_{pf} \, cm/s.$$

The Hugoniot of the porous inert (bulk density = $.800 \text{ gm/cm}^3$) is represented by:

$$u_{sf} = .337 \times 10^5 + 1.617 u_{pf} \text{ cm/sec.}$$

These equations are least squares fits to the calculated porous Hugoniot values. There is no physical significance to the intercept value at zero particle velocity. A power function would provide a better fit to the low velocity points. The Hugoniots in the pressure - particle velocity plane are shown in Figure 5.

Figure 5. A Comparison of the Solid and Porous Hugoniots in the Pressure-Particle Velocity Plane.

V. DISCUSSION

The porous Hugoniot data allow one to calculate the pressure in the propellant bed due to shaped charge jet impact. This information is useful in performing hydrodynamic calculations for a non-reacting propellant bed. As shown in Table 1 the solid propellant undergoes violent reaction at an incident pressure of approximately 127 kbars, increasing to around 200 kbars within the measurement interval of one microsecond. However, it is anticipated that reaction could occur at lower pressures of longer duration, conditions which exist in the pressure field generated by jet impact. The solid Hugoniot reaction pressure may be a good way to, a priori, compare the response of various propellants upon shaped charge jet impact since impact pressures can be determined from known jet velocity and Hugoniots for the jet and propellant bed.

The question of the approach to mechanical equilibrium of porous samples is treated in reference 4. This reference used a one-dimensional Lagrangian computer program to simulate the response of powdered aluminum to a shock. The powdered aluminum was mocked up by a series of flat plates separated by gaps of width equal to the plate thickness. The calculated results were compared to experimental results on powdered aluminum and found to be in good agreement. The calculations showed an approach to equilibrium behind the shock for porous aluminum; the equilibrium states were consistent with the Rankine-Hugoniot jump conditions applied to the porou aluminum. The computational results indicated that the shock had to travel about ten times the plate thickness before mechanical equilibrium was established behind the shock wave.

The three-dimensional nature of a propellant bed would tend to promote a more rapid equilibration by the increased number of shock interactions per unit particle per unit time. On the other hand, "hot spots" would be produced in regions of convergent mass flow and because of the large grain size, these "hot spots" could persist over relatively long times. Therefore, the assumption of thermal equilibrium may not be strictly valid. Despite this limitation, it is believed that the pcrous Hugoniots calculated here are useful approximations to a real propellant bed.

REFERENCES

- 1. Rice, McQueen, Walsh, "Compression of Solids by Strong Shock Waves," Solid State Physics, Vol. 6, 1958.
- Boyle, Smothers, Ervin, "The Shock Hugoniot of Unreacted Explosives," Fifth Symposium on Detonation, Aug. 18 - 21, 1970.
- 3. Herrmann, W., "Constitutive Equation for the Dynamic Compaction of Ductile Porous Materials," JAP, Vol. 40, No. 6, May 1969.
- 4. Hoffman, Andrews, Maxwell, "Computed Shock Response of Porous Aluminum," JAP, Vol. 39, No. 10, Sept. 1968.
- 5. Erkman, Edwards, "Computed and Experimental Hugoniots for Unreacted Porous High Explosives," Sixth Symposium on Detonation, Aug. 24 27, 1976.
- Zeldovich, Raizer. "Physics of Shock Waves and High Temperature Hydrodynamic Phenomena," Vol. II, Academic Press, New York, 1967.

LIST OF SYMBOLS

SYMBOL

volume coefficient of thermal expansion coefficient in the Hugoniot relationship, $U_{q} = b + su_{p}$ coefficient in the Hugoniot relationship, $U_s = b + su_p$ bulk sound velocity specific heat at constant pressure E specific internal energy Ef specific internal energy of compressed porous material initial specific internal energy of porous material Eof specific internal energy of compressed solid material Es initial specific internal energy of solid material Eos Gruneisen constant P pressure pressure in compressed porous material Pr Pof initial pressure in porous material Ps pressure in compressed solid material Pos initial pressure in solid material ប្ទ shock velocity shock velocity in porous material · u particle velocity particle velocity in porous material ٧ specific volume of compressed material Vof initial specific volume of porous material v os initial specific volume of solid material ρ density of compressed material Pos initial density of solid material initial density of porous material of

DISTRIBUTION LIST

No. of Organization

- 12 Administrator
 Defense Technical Info Center
 ATTN: DTIC-DDA
 Cameron Station
 Alexandria, VA 22304-6145
- 1 HQDA DAMA-ART-M Washington, DC 20310
- 2 Chairman
 DOD Explosives Safety Board
 ATTN: Dr. T. Zaker
 COL O. Westry
 Room 856-C
 Hoffman Bldg 1
 2461 Eisenhower Avenue
 Alexandria, VA 22331
- 1 Commander
 US Army Materiel Command
 ATTN: AMCDRA-ST
 5001 Eisenhower Avenue
 Alexandria, VA 22333
- 1 Commander
 Armament R&D Center
 US Army AMCCOM
 ATTN: SMCAR-TSS
 Dover, NJ 07801
- 1 Commander
 Armament R&D Center
 US Army AMCCOM
 ATTN: SMCAR-LCE,
 Dr. R. F. Walker
 Dover, NJ 07801
- Air Force Armament Laboratory ATTN: AFATL/DLODL Eglin AFB, FL 32542-5000

No. of Copies Organization

- 1 Commander
 Armament R&D Center
 US Army AMCCOM
 ATTN: SMCAR-LCE, Dr. N. Slagg
 Dover, NJ 07801
 - 1 Commander
 Armament R&D Center
 US Army AMCCOM
 ATTN: SMCAR-LCN,
 Dr. P. Harris
 Dover, NJ 07801
- 1 Commander
 US Army Armament Materiel
 and Readiness Command
 ATTN: SMCAR-ESP-L
 Rock Island, IL 61299
- 1 Director
 Benet Weapons Laboratory
 US Army AMCCOM
 ATTN: SMCAR-LCB-TL
 Watervliet, NY 12189
- 1 Commander US Army Aviation Research and Development Command ATTN: AMSAV-E 4300 Goodfellow Boulevard St. Louis, MO 63120
- 1 Director
 US Army Air Mobility Research
 and Development Laboratory
 Ames Research Center
 Moffett Field, CA 94035
- 1 Commander
 US Army Communications
 Electronics Command
 ATTN: AMSEL-ED
 Fort Monmouth, NJ 07703

DISTRIBUTION LIST

No. of Copies Organization

- 1 Commander
 ERADCOM Technical Library
 ATTN: DELSD- L(Reports Section)
 Frot Monmouth, NJ 07703-5301
- 1 Commander
 US Army Missile Command
 ATTN: AMSMI-R
 Redstone Arsenal, AL 35809
 - 1 Commander
 US Army Missile Command
 ATTN: AMSMI-YDL
 Redstone Arsenal, AL 35809
 - 1 Commander
 US Army Missile Command
 ATTN: AMSME-RK, Dr. R.G. Rhoades
 Redstone Arsenal, AL 35809
- 1 Commander
 US Army Tank Automotive Command
 ATTN: AMSTA-TSL
 Warren, MI 48090
- 1 Director
 US Army TRADOC Systems
 Analysis Activity
 ATTN: ATAA-SI.
 White Sands Missile Range
 NM. 88002

Commandant
US Army Infantry School
ATTN: ATSH-CD-CSO-OR
Fort Benning, GA 31905

1 Commander
 JS Army Development & Employment
 Agency
ATTN: MODE-TED-SAB
Fort Lewis, WA 98433

No. of Copies Organization

- 1 Commander
 US Army Research Office
 ATTN: Chemistry Division
 P.O. Box 12211
 Research Triangle Park, NC 27709
- 1 Commander Office of Naval Research ATTN: Dr. J. Enig, Code 200B 800 N. Quincy Street Arlington, VA 22217
- 1 Commander
 Naval Sea Systems Command
 ATTN: Mr. R. Beauregard,
 SEA 64E
 Washington, DC 20362
 - 1 Commander
 Naval Explosive Ordnance
 Disposal Facility
 ATTN: Technical Library
 Code 604
 Indian Head, MD 20640
 - 1 Commander
 Naval Research Lab
 ATTN: Code 6100
 Washington, DC 20375
 - 1 Ccmmander
 Naval Surface Weapons Center
 ATTN: Code G13
 Dahlgren, VA 22448
 - 9 Commander
 Naval Surface Weapons Center
 ATTN: Mr. L. Roslund, R122
 Mr. M. Stosz, R121
 Code X211, Lib
 E. Zimet, R13
 R.R. Bernecker, R13
 J.W. Forbes, R13
 S.J. Jacobs, R10
 Dr. C. Dickinson
 J. Short, R12
 Silver Spring, MD 20910

DISTRIBUTION LIST

No. of Copies Organization

No. of Copies Organization

4 Commander

Naval Weapons Center

ATTN: Dr. L. Smith, Code 3205 Dr. A. Amster, Code 385 Dr. R. Reed, Jr., Code 388 Dr. K.J. Graham, Code 3835

China Lake, CA 93555

Commander
Naval Weapons Station

NEDED

ATTN: Dr. Louis Rothstein, Code 50

Yorktown, VA 23691

1 Commander

Fleet Marine Force, Atlantic

ATTN: G-4 (NSAP) Porfolk, VA 23511

1 Commander Air Force Rocket Propulsion Laboratory ATTN: Mr. R. Geisler, Code AFRPL MKPA Edwards AFB, CA 93523

- 1 AFWL/SUL Kirtland AFB, NM 87117
- 1 Commander
 Ballistic Missile Defense
 Advanced Technology Center
 ATTN: Dr. David C. Sayles
 P.O. Box 1500
 Huntsville, AL 35804
- 1 Director
 Lawrence Livermore National Lab
 University of California
 ATTN: Dr. M. Finger
 P.O. Box 808
 Livermore, CA 94550
- 1 Director
 Los Alamos National Lab
 ATTN: John Ramsey
 P.O. Box 1663
 Los Alamos, NM 87545

1 Director
Sandia National Lab
ATTN: Dr. J. Kennedy
Albuquerque, NM 87185

Aberdeen Proving Ground

Dir, USAMSAA
ATTN: AMXSY-D
AMXSY-MP, H. Cohen
Cdr, USATECOM
ATTN: AMSTE-TO-F

Cdr, CRDC, AMCCOM,
ATTN: SMCCR-RSP-A
SMCCR-MU
SMCCR-SPS-IL

.

USER EVALUATION SHEET/CHANGE OF ADDRESS

reports it	atory undertakes a continuir publishes. Your comments/a our efforts.		
1. BRL Re	port Number		ort
2. Date R	eport Received		
3. Does to	his report satisfy a need? of interest for which the r	(Comment on purpose, rela	ted project, or
4. How spedata, proce	ecifically, is the report be	ing used? (Information s	ource, design
			,
as man-hour	e information in this report rs or dollars saved, operati o, please elaborate.	ng costs avoided or effic	iencies achieved
6. Genera	l Comments. What do you thi	nk should be changed to in	mprove future
reports:	(Indicate changes to organiz	ation, technical content,	rormat, etc.)
			· ·
	Name		i
CURRENT	Organization	, ·	
ADDRESS	Address		
	City, State, Zip		
7. If indi New or Corr	cating a Change of Address o ect Address in Block 6 above	or Address Correction, ple and the Old or Incorrect	ase provide the address below.
	Name	,	
OLD ADDRESS	Organization		,
. #21,000	Address		

(Remove this sheet along the perforation, fold as indicated, staple or tape closed, and mail.)

City, State, Zip