Actions

A. Polymath

ABSTRACT.

1. Preliminaries

Let $\Delta \subseteq L_{xz}(\mathcal{U})$. Given any $\mathfrak{X} \subseteq \mathcal{U}^x$ and $\mathfrak{Z} \subseteq \mathcal{U}^z$, we define the structure $\mathcal{U}^\Delta = \langle \mathfrak{X}; \mathfrak{Z} \rangle$. This is a 2-sorted structure whose signature I^Δ contains relation symbols for every formula $\varphi(x;z) \in \Delta$. As there is little risk of confusion, these relations symbols are also denoted by $\varphi(x;z)$, and we identify I^Δ with a subset of I.

When $\mathfrak X$ and $\mathfrak Z$ are type definable and Δ is small, $\mathcal U^{\Delta}$ is a saturated structure. As compactness is not always required, these sets are arbitrary unless explicitly required.

In the first few sections we only work a subset of the quantifier-free fragment of L^{Δ} . Let $\Delta^{\mathbb{B}}(\mathbb{Z})$ be the set of Boolean combinations of the sets $\varphi(\mathfrak{X};b)$, for $\varphi(x;z)\in\Delta$ and $b\in\mathbb{Z}$. The same symbol is also used to denote the collection of formulas defining these sets. A $\Delta^{\mathbb{B}}(\mathbb{Z})$ -type is a collection of $\Delta^{\mathbb{B}}(\mathbb{Z})$ -formulas. A $\Delta^{\mathbb{B}}(\mathbb{Z})$ -type-definable set is one defined by a $\Delta^{\mathbb{B}}(\mathbb{Z})$ -type of small cardinality.

We write $S_{\Delta}(\mathcal{Z})$ for the set of $\Delta^{B}(\mathcal{Z})$ -types that are maximally finitely consistent (in \mathcal{X}) – which we may conveniently identify with a sets of $\Delta(\mathcal{Z})$ and negated $\Delta(\mathcal{Z})$ -formulas. Note that the types in $S_{\Delta}(\mathcal{Z})$ are required to be finitely consistent \mathcal{X} – a piece of information that we will not display in the notation. When the types are required to be finitely consistent in some $\mathcal{Y} \subseteq \mathcal{X}$ we write $S_{\Delta,\mathcal{Y}}(\mathcal{Z})$.

When p(x) a type (i.e. any set of formulas) and $\mathcal{D} \subseteq \mathcal{X}$ we write $p(x) \vdash x \in \mathcal{D}$ if the inclusion $\psi(\mathcal{X}) \subseteq \mathcal{D}$ holds for some $\psi(x)$ that is conjunctions of formulas in p(x).

Let $G \leq \operatorname{Aut}(\mathcal{U}^{\Delta})$. We view G as a group acting on \mathcal{U}^{Δ} and write \cdot for such action. We write $g \cdot \mathcal{D}$ for the natural action of $g \in G$ on $\mathcal{D} \subseteq \mathcal{X}$. If $\Delta = \varphi(\mathcal{X}; b)$ then $g \cdot \mathcal{D} = \varphi(\mathcal{X}; g \cdot b)$. A formula is G-invariant if the set it defines is G-invariant (i.e. fixed by the action of G).

If p(x) is a $\Delta^{\mathbb{B}}(\mathbb{Z})$ -type, we write $g \cdot p(x)$ for the set of formulas of the form $\varphi(\mathfrak{X}; g \cdot b)$ for $\varphi(\mathfrak{X}; b) \in p$. We say that the type $p(x) \subseteq \Delta^{\mathbb{B}}(\mathbb{Z})$ is G-invariant accordingly.

Let $\mathcal{Y} \subseteq \mathcal{X}$. We say that a set $\mathcal{D} \subseteq \mathcal{X}$ is syndetic under the action of G relative to \mathcal{Y} , or G-syndetic for short, if finitely many G-translates of \mathcal{D} cover \mathcal{Y} . Dually, we say that \mathcal{D} is thick under the action of G relative to \mathcal{Y} , or G-thick for short, if the intersection of any finitely many G-translates of \mathcal{D} is consistent with \mathcal{Y} .

Dipartimento di Matematica, Università di Torino, via Carlo Alberto 10, 10123 Torino.

1

2 A. POLYMATH

We omit reference to \mathcal{Y} when this is \mathcal{X} or if it is made crystal clear by the context.

The same properties may be attributed to formulas (as these are identified with the set they define). When these properties are attributed to a type p(x), we understand that they hold for every conjunction of formulas in p(x).

Our terminology is taken from topological dynamics. In similars context syndetic sets are called *generic*, see eg. [?N09]. In [?CK] the authors write *quasi-non-dividing* for *thick* under the action of Aut(U/A).

Notation: for $\mathcal{D} \subseteq \mathcal{X}$ and $C \subseteq G$ we write $C \cdot \mathcal{D}$ for $\{h \cdot \mathcal{D} : h \in C\}$.

In this chapter many proofs require some juggling with negations as epitomized by the following fact which is proved by spelling out the definitions

- **1 Fact** Work relative to some given $\mathcal{Y} \subseteq \mathcal{X}$. The following are equivalent
 - 1. \mathcal{D} is not *G*-syndetic
 - 2. $\neg \mathcal{D}$ is *G*-thick.

Define the following type

```
\Sigma_{G,\mathcal{Y}}(x) = \{\vartheta(x) \in \Delta^{\mathsf{B}}(\mathcal{Z}) : \vartheta(x) \text{ is } G\text{-syndetic relative to } \mathcal{Y}\}.
```

We write $\Sigma_G(x)$ for $\Sigma_{G,\mathcal{X}}(x)$.

- **2 Theorem** Work relative to some given $\mathcal{Y} \subseteq \mathcal{X}$. For every $p(x) \in S_{\Delta,\mathcal{Y}}(\mathcal{Z})$ the following are equivalent
 - 1. p(x) is *G*-invariant
 - 2. $p(x) \vdash \Sigma_{G, \mathcal{Y}}(x)$
 - 3. p(x) is G-thick.

Proof. $1\Rightarrow 2$. Let $\mathcal{D}\in\Delta^{\mathbb{B}}(\mathcal{Z})$ be a G-syndetic. Pick $C\subseteq G$ be finite such that $\mathcal{Y}\subseteq\cup C\cdot\mathcal{D}$. Then p(x) is finitely consistent with $x\in\cup C\cdot\mathcal{D}$. By completeness, $p(x)\vdash x\in h\mathcal{D}$ for some $h\in C$. Finally, by invariance, $p(x)\vdash x\in\mathcal{D}$.

2⇒3. Let $\varphi(x) \in p$. As $\Sigma_{G, \mathcal{Y}}(x) \cup \{\varphi(x)\}$ is finitely consistent in \mathcal{Y} , it cannot be that $\neg \varphi(x)$ is G-syndetic. Then from Fact 1 we obtain that $\varphi(x)$ is G-thick.

3⇒1. Negate 1. Let $\mathcal{D} \in \Delta^{\mathbb{B}}(\mathbb{Z})$ and $g \in G$ such that $p(x) \vdash x \in \mathcal{D}$ and $p(x) \nvdash g \cdot \mathcal{D}$. By completeness $p(x) \vdash x \in (\mathcal{D} \cap \neg g \cdot \mathcal{D})$. Clearly $\mathcal{D} \cap \neg g \cdot \mathcal{D}$ is not G-thick as it is inconsistent with its g-translate.

The following theorem gives a necessary and sufficient condition for the existence of global G-invariant $\Delta^{B}(\mathbb{Z})$ -type. Ideally, we would like that every G-thick $\Delta^{B}(Z)$ -type extends to a global thick type. Unfortunately this is not true in general (it is a strong assumption, see Section $\ref{eq:property}$).

ACTIONS 3

A set \mathcal{D} is G-wide relative to \mathcal{Y} if every finite cover of $\mathcal{D} \cap \mathcal{Y}$ by $\Delta^{B}(\mathfrak{Z})$ -sets contains a set that is G-thick relative to \mathcal{Y} . A type is G-wide if every conjunction of formulas in the type is G-wide.

In [?CK] a similar property is called *quasi-non-forking*. Our use of the term *wide* is consistent with [?Hr], though we apply it to a narrow context.

- **3 Theorem** Work relative to some given $\mathcal{Y} \subseteq \mathcal{X}$. For every $\mathcal{D} \in \Delta^{B}(\mathcal{Z})$ the following are equivalent
 - 1. $\Sigma_{G,\mathcal{Y}}(x) \cup \{x \in \mathcal{D}\}\$ is finitely consistent in \mathcal{Y}
 - 2. there is a *G*-thick type $p(x) \in S_{\Delta, \mathcal{Y}}(\mathcal{Z})$ that entails $x \in \mathcal{D}$
 - 3. \mathcal{D} is G-wide.

Proof. 1 \Rightarrow 2. By Theorem 2, it suffices to pick any $p(x) \in S_{\Delta, \mathcal{Y}}(\mathcal{Z})$ extending the type $\Sigma_{G, \mathcal{Y}}(x) \cup \{x \in \mathcal{D}\}.$

 $2 \Rightarrow 1$. By Theorem 2.

2⇒3. Let $\mathcal{C}_1, \dots, \mathcal{C}_n$ be $\Delta^{\mathsf{B}}(\mathcal{Z})$ -sets that cover \mathcal{D} . Pick p(x) as in 2. By completeness, $p(x) \vdash x \in \mathcal{C}_i$ for some i. Therefore, \mathcal{C}_i is G-thick.

 $3\Rightarrow 2$. Let p(x) be maximal among the $\Delta^{\mathbb{B}}(\mathbb{Z})$ -types that are finitely satisfiable in $Y\cap \mathbb{D}$ and are G-wide. We claim that p(x) is a complete $\Delta^{\mathbb{B}}(\mathbb{Z})$ -type. Suppose for a contradiction that $\theta(x)$, $\neg \theta(x) \notin p$. By maximality there is some formula $\psi(x)$, a conjunction of formulas in p(x), and some $\Delta^{\mathbb{B}}(\mathbb{Z})$ -sets $\mathcal{C}_1, \dots, \mathcal{C}_n$ that cover both $\psi(\mathfrak{X}) \cap \theta(\mathfrak{X})$ and $\psi(\mathfrak{X}) \sim \theta(\mathfrak{X})$ and such that no \mathcal{C}_i is G-thick. As $\mathcal{C}_1, \dots, \mathcal{C}_n$ cover $\psi(\mathfrak{X})$ this is a contradiction. It is only left to show that p(x) is G-thick. This follows from completeness and Theorem 2.

2. Connected components

Let $G \leq \operatorname{Aut}(\mathcal{U}^{\Delta})$. Unfortunately, syndeticity is not preserved under intersection. In particular $\Sigma_G(x)$ is not a G-syndetic type, and it may even be inconsistent. Then following notion is relevant.

4 Definition

 $Q_G = \{q(x) \subseteq \Sigma_G(x) : q(x) \text{ maximally } G\text{-syndetic}\}.$

In other words, the types in Q_G are maximal among the subtypes of $\Sigma_G(x)$ that are closed under conjunction.

It is easy to see that Q_G is closed under the action of G. We write $\operatorname{Stab}(q)$ for the stabilizer of $q(x) \subseteq \Delta^{\mathbb{B}}(\mathbb{Z})$ in G, that is, the subgroup $\{g \in G : g \cdot q(x) = q(x)\}$. We write $\operatorname{Stab}(\mathcal{D})$ with a similar meaning. Finally we define

$$G^1$$
 = Stab(Q_G) = $\bigcap_{q \in Q_G}$ Stab(q).

It is easy to verify that $G^1 \subseteq G$.

A. POLYMATH

5 Proposition

4

$$G^1 = \{g \in G : \mathcal{D} \cap g \cdot \mathcal{D} \in \Sigma_G(x) \text{ whenever } \mathcal{D} \in \Sigma_G(x)\}.$$

Proof. \subseteq . Pick any $k \in G^1$ and $\mathcal{D} \in \Sigma_G(x)$. Let $q(x) \in Q_G$ be a type containing $x \in \mathcal{D}$. From the G^1 -invariance of q(x) we obtain that $q(x) \vdash x \in k \cdot \mathcal{D}$. Then $q(x) \vdash x \in \mathcal{D} \cap k \cdot \mathcal{D}$, hence $\mathcal{D} \cap k \cdot \mathcal{D}$ is G-syndetic.

- \supseteq . Pick any $g \notin G^1$. Then $q(x) \neq g \cdot q(x)$ for some $q(x) \in Q_G$. Let $\varphi(x) \in q$ such that $q(x) \not\vdash g \cdot \varphi(x)$. By maximality, $\psi(x) \land g \cdot \varphi(x)$ is not G-syndetic for some $\psi(x) \in q$. As q(x) is closed under conjunction, we can assume $\varphi(x) = \psi(x)$, then g does not belong to the set on the r.h.s.
- **6 Theorem** Any finite conjunction of formulas in $\Sigma_{G^1}(x)$ is G-syndetic. In particular $\Sigma_{G^1}(x)$ is finitely consistent.

Proof. Notice that from Proposition 8 it easily follows that for every $\mathcal{D} \in \Sigma_G(x)$ and every finite $F \subseteq G^1$ the set $\cap F \cdot \mathcal{D}$ is G-syndetic.

Let $\mathcal{D}_1, \ldots, \mathcal{D}_n \in \Sigma_{G^1}(x)$. Assume inductively that $\mathcal{D}_1 \cap \cdots \cap \mathcal{D}_{n-1}$ is G-syndetic. Let $F \subseteq G^1$ be such that $\cup F \cdot \mathcal{D}_n = \mathcal{X}$. Then

$$\cup F \cdot [\mathcal{D}_1 \cap \dots \cap \mathcal{D}_n] \supseteq \cap F \cdot [\mathcal{D}_1 \cap \dots \cap \mathcal{D}_{n-1}] \cap \cup F \cdot \mathcal{D}_n$$

$$= \cap F \cdot [\mathcal{D}_1 \cap \dots \cap \mathcal{D}_{n-1}].$$

This last set is *G*-syndetic by the inductive hypothesis and what remarked above. The *G*-syndeticity of $\mathcal{D}_1 \cap \cdots \cap \mathcal{D}_n$ follows.

Unfortunately, we are unable to conclude that the intersection of G^1 -syndetic sets is G^1 -syndetic.

7 Definition

$$P_G = \{p(x) \subseteq \Sigma_G(x) : p(x) \text{ maximally finitely consistent}\}.$$

Along the same lines as above, we define

$$G^{11}$$
 = Stab(P_G) = $\bigcap_{p \in P_G}$ Stab(p).

By the following proposition, $G^1 \leq G^{11}$. We do not know if the inclusion is strict.

8 Proposition

$$G^{11} = \{g \in G : q(x) \cup g \cdot q(x) \text{ is finitely consistent for every } q(x) \in Q_G\}.$$

Proof. \subseteq . Pick any $k \in G^{11}$ and $q(x) \in Q_G$. Let $p(x) \in P_G$ be a type containing q(x). From the G^{11} -invariance of p(x) we obtain that $p(x) \vdash k \cdot q(x)$. Then $q(x) \cup k \cdot q(x)$ is finitely consistent.

ACTIONS 5

 \supseteq . Pick any $g \notin G^{11}$. Then $q(x) \cup g \cdot q(x)$ is not finitely consistent for some $q(x) \in Q_G$. Let $\varphi(x) \in q$ such that $\varphi(x) \wedge g \cdot \varphi(x)$ is inconsistent. but $\varphi(x) \in p$ then g does not belong to the set on the r.h.s.

9 Theorem Any finite conjunction of formulas in $\Sigma_{G^1}(x)$ is G-syndetic. In particular $\Sigma_{G^1}(x)$ is finitely consistent.

Proof. Notice that from Proposition 8 it easily follows that for every $\mathcal{D} \in \Sigma_G(x)$ and every finite $F \subseteq G^1$ the set $\cap F \cdot \mathcal{D}$ is G-syndetic.

Let $\mathcal{D}_1, \ldots, \mathcal{D}_n \in \Sigma_{G^1}(x)$. Assume inductively that $\mathcal{D}_1 \cap \cdots \cap \mathcal{D}_{n-1}$ is G-syndetic. Let $F \subseteq G^1$ be such that $\cup F \cdot \mathcal{D}_n = \mathcal{X}$. Then

$$\cup F \cdot [\mathcal{D}_1 \cap \dots \cap \mathcal{D}_n] \supseteq \cap F \cdot [\mathcal{D}_1 \cap \dots \cap \mathcal{D}_{n-1}] \cap \cup F \cdot \mathcal{D}_n$$

$$= \cap F \cdot [\mathcal{D}_1 \cap \dots \cap \mathcal{D}_{n-1}].$$

This last set is *G*-syndetic by the inductive hypothesis and what remarked above. The *G*-syndeticity of $\mathcal{D}_1 \cap \cdots \cap \mathcal{D}_n$ follows.

From Theorems 3 and 9 it follows that G^1 -syndetic sets are G^1 -wide. But we can do better. First, we remark a useful consequence of normality.

10 Remark Assume $H \subseteq G$. For every $\mathcal{D} \subseteq \mathcal{X}$ and every $g \in G$

$$\mathcal{D}$$
 is H -foo \Leftarrow $g \cdot \mathcal{D}$ is H -foo,

where *foo* can be replaced by *syndetic, invariant, thick, wide.* In particular, the type $\Sigma_H(x)$ is *G*-invariant.

Recall that when $\Sigma_H(x)$ is finitely consistent then H-syndetic sets are H-wide, see Theorem 3. As it happens, under the assumption of normality, this can be strengthened as follows.

11 Proposition Assume $H \subseteq G$ and that $\Sigma_H(x)$ is finitely consistent. Then every G-syndetic $\mathcal{D} \in \Delta^{\mathbb{B}}(\mathcal{Z})$ is H-wide. In particular all types in Q_G are G^1 -wide.

Proof. Let $p(x) \in S_{\Delta}(\mathbb{Z})$ be finitely consistent with $\Sigma_H(x)$. As \mathcal{D} is G-syndetic, by completeness $p(x) \vdash x \in g \cdot \mathcal{D}$ for some $g \in G$. Equivalently, $g^{-1} \cdot p(x) \vdash x \in \mathcal{D}$. As p(x) is H-thick, by Remark 10 also $g^{-1} \cdot p(x)$ is H-thick. Then the proposition follows from Theorem 3.

When the context suggests it, $\Delta^B(\mathbb{Z})$ will denote the broader class that includes also formulas obtained substituting y for x and is closed under Boolean connectives. A $\Delta^B(\mathbb{Z})$ -definable equivalence relation is an equivalence relation defined by some formula $\varepsilon(x,y)\in\Delta^B(\mathbb{Z})$. We define $\Delta^B(\mathbb{Z})$ -type-definable equivalence relations similarly. Note that if $\varepsilon(x,y)$ is a $\Delta^B(\mathbb{Z})$ -definable, or type-definable, equivalence relation then $\varepsilon(x,a)$, for any $a\in\mathcal{X}$, is equivalent to a $\Delta^B(\mathbb{Z})$ -formula, respectively a $\Delta^B(\mathbb{Z})$ -type.

An equivalence relation is bounded if it has a small number of equivalence classes.

12 **Definition** Let Φ^0 be the collection of sets that are equivalence classes of a bounded G-invariant $\Delta^B(\mathfrak{Z})$ -type-definable equivalence relation. Let Φ^{00} be the collection of sets that are equivalence classes of a bounded G-invariant $\Delta^B(\mathfrak{Z})$ -type-definable equivalence relation. Define

$$G^0$$
 = Stab(Φ^0) = $\bigcap \{ \operatorname{Stab}(\mathcal{D}) : \mathcal{D} \in \Phi^0 \}$

and

6

$$G^{00} = \operatorname{Stab}(\Phi^{00}) = \bigcap \{ \operatorname{Stab}(\mathcal{Y}) : \mathcal{Y} \in \Phi^{00} \}.$$

13 Proposition Let $\mathcal X$ be type-definable. Assume that G acts transitively on $\mathcal X$. Then $G^{11} \leq G^{00} \leq G^0$.

Proof. The inclusion $G^{00} \leq G^0$ is trivial. Let $\mathcal{Y} \in \Phi^{00}$ and $\mathcal{Y} \subseteq \mathcal{D} \in \Delta^{\mathbb{B}}(\mathcal{Z})$. Then a small number of G-translates of \mathcal{D} cover \mathcal{X} . Therefore, by compactness, \mathcal{D} is G-syndetic. Then the type defining \mathcal{Y} is G-syndetic. Then this type extends to some $p(x) \in P_G$. By G^{11} -invariance p(x) entails also $k \cdot \mathcal{Y}$ for every $k \in G^{11}$. Then k is in the stabilizer of \mathcal{Y} .