$Assignment\ 4$

Haohu Shen UCID: 30063099

MATH 271 - Discrete Mathematics

Instructor Jerrod Smith

March 30, 2019

Question 1

(a) Solution

Since

$$271 = 98 \times 2 + 75$$
 $98 = 75 \times 1 + 23$
 $75 = 23 \times 3 + 6$
 $23 = 6 \times 3 + 5$
 $6 = 5 \times 1 + 1$
 $5 = 1 \times 5 + 0$

We have

$$\gcd(271, 98) = \gcd(98, 75)$$

$$= \gcd(75, 23)$$

$$= \gcd(23, 6)$$

$$= \gcd(6, 5)$$

$$= \gcd(5, 1)$$

$$= \gcd(1, 0)$$

$$= 1$$

Using the table method, we have

	271	98	
271	1	0	R_1
98	0	1	R_2
75	1	-2	$R_3 \leftarrow R_1 - 2R_2$
23	-1	3	$R_4 \leftarrow R_2 - R_3$
6	4	-11	$R_5 \leftarrow R_3 - 3R_4$
5	-13	36	$R_6 \leftarrow R_4 - 3R_5$
1	17	-47	$R_7 \leftarrow R_5 - R_6$

Thus when x=17 and y=-47,

$$271x + 98y = 271 \times 17 + 98 \times (-47)$$

= $4607 - 4606$
= 1
= $gcd(271, 98)$

(b) Solution From part (a), we can see that -47 is an inverse of 98 modulo 271, that is

$$98 imes (-47) = 1 - 271 imes 17 = 1 + 271 imes (-17) \equiv 1 \pmod{271}$$

then 224 is another inverse of 98 modulo 271 because

$$98 \times 224 = 98 \times (-47) + 98 \times 271 \equiv 98 \times (-47) \equiv 1 \pmod{271}$$

Verification Since

$$224\times 98 = 21952 = 81\times 271 + 1$$

we have 271|(98 imes 224 - 1), thus

$$98 \times 224 \equiv 1 \pmod{271}$$

by definition, and 0 < 224 < 271.

(c) Solution Since $98b \equiv 99 \pmod{271}$ such that $b \in \mathbb{Z}$ and 0 < b < 271, we can see that 271|(98b-99) by the definition, thus $\exists k \in \mathbb{Z}$ such that

$$98b - 99 = 271k$$

thus

$$98b - 99 = 98b - 98 - 1 = 98(b - 1) - 1 = 271k$$

thus

$$271|(98(b-1)-1)$$

that is

$$98(b-1) \equiv 1 \pmod{271}$$

From **(b)**, we can have b - 1 = 224, that is b = 225 and 0 < b < 271.

Verification Since

$$98 \times 225 - 99 = 21951 = 271 \times 81$$

we have $271|(98 \times 225 - 99)$, thus

$$98 imes 225 \equiv 99 \pmod{271}$$

by definition, and 0 < 225 < 271.

Question 2

(a) Proof

• Reflexive

Suppose $X \in \mathcal{P}(S)$ is arbitrarily chosen, since |X - T| = |X - T|, we have $(X, X) \in \mathcal{R}$, that is $X\mathcal{R}X$, thus \mathcal{R} is reflexive by the definition.

• Symmetric

Suppose $X,Y\in\mathcal{P}(S)$ is arbitrarily chosen and $(X,Y)\in\mathcal{R}$, we show that $(Y,X)\in\mathcal{R}$: Since $(X,Y)\in\mathcal{R}$, we have |X-T|=|Y-T|, thus |Y-T|=|X-T|. Therefore, $(Y,X)\in\mathcal{R}$,

that is YRX, thus R is symmetric by the definition.

• Transitive

Suppose $X,Y,Z\in\mathcal{P}(S)$ is arbitrarily chosen and $(X,Y)\in\mathcal{R}$, $(Y,Z)\in\mathcal{R}$, we show that $(X,Z)\in\mathcal{R}$:

Since $(X,Y)\in\mathcal{R}$, |X-T|=|Y-T|; since $(Y,Z)\in\mathcal{R}$, |Y-T|=|Z-T|. Thus |X-T|=|Y-T|=|Z-T|, therefore, $(X,Z)\in\mathcal{R}$, that is $X\mathcal{R}Z$, thus \mathcal{R} is transitive by the definition.

Since \mathcal{R} is reflexive, symmetric and transitive, \mathcal{R} is an equivalence relation.

(b) Solution 6 equivalence classes.

Explain

Since $X - T = \{x \in X \text{ and } x \notin T\}$, the possible situations of |X - T| are list below:

Let
$$A=S-T=\{x\in S \ \mathrm{and} \ x{\not\in} T\}=\{1,3,5,7,9\}$$
, then

• When X does not choose any element from A,

$$|X - T| = 0$$

ullet When X chooses exactly 1 element from A,

$$|X-T|=1$$

$$|X-T|=2$$

ullet When X chooses exactly 3 elements from A,

$$|X - T| = 3$$

$$|X - T| = 4$$

• When X chooses all 5 elements from A,

$$|X - T| = 5$$

Thus, \mathcal{R} has totally 6 equivalence classes.

(c) Solution 16 elements.

Explain

$$\begin{aligned} [\varnothing] &= \{X \in \mathcal{P}(S) \mid (X, \varnothing) \in \mathcal{R}\} \\ &= \{X \in \mathcal{P}(S) \mid |X - T| = |\varnothing - T|\} \end{aligned}$$

Since $\varnothing - T = \varnothing$, we have

$$|X-T|=|arnothing-T|=|arnothing|=0$$

thus $X-T=\varnothing$, that is $X\subseteq T$, thus X is a subset of T . Therefore

$$|[\varnothing]| = |\mathcal{P}(T)| = 2^4 = 16$$

(d) Solution 160 elements.

Explain

$$\begin{aligned} [\{1,2,3,4\}] &= \{X \in \mathcal{P}(S) \mid (X,\{1,2,3,4\}) \in \mathcal{R}\} \\ &= \{X \in \mathcal{P}(S) \mid |X-T| = |\{1,2,3,4\} - T|\} \end{aligned}$$

Notice that

$$|X-T|=|\{1,2,3,4\}-T|=|\{1,2,3,4\}-\{2,4,6,8\}|=|\{1,3\}|=2$$

Thus here is a recipe to make X:

- Step 1: X must choose two elements from $\{1,3,5,7,9\}$, that is ${5 \choose 2}=10$ ways.
- ullet Step 2: X could choose or not choose each element in $\{2,4,6,8\}$, that is $2^4=16$ ways.

Therefore, there are totally 10 imes 16 = 160 ways to make X, thus

$$[\{1,2,3,4\}]=160$$

Question 3

(a)

- The statement is false.
- Its negation is: \exists function $f:A\to A$ and \exists relation $\mathcal R$ on A such that S is reflexive but R is not reflexive. We show its negation is true.
- Proof (of negation)

Let
$$f:A o A$$
 defined by

$$f(1) = 4, f(2) = 4, f(3) = 4, f(4) = 4$$

Let
$$\mathcal{R} = \{(4,4), (3,1), (2,1), (1,2)\}$$

Then

$$(f(1),f(1))=(4,4)\in \mathcal{R}$$
 $(f(2),f(2))=(4,4)\in \mathcal{R}$ $(f(3),f(3))=(4,4)\in \mathcal{R}$ $(f(4),f(4))=(4,4)\in \mathcal{R}$

Thus, $\forall x \in A$, $(f(x), f(x)) \in \mathcal{R}$, that is $x\mathcal{R}x$, therefore S is reflexive. But $3 \in A$ and $(3,3) \notin \mathcal{R}$, that is, $3 \not \mathcal{R} 3$, thus \mathcal{R} is not reflexive. The directed graph of \mathcal{R} is shown below:

(b)

- The statement is true.
- **Proof** Suppose $\mathcal R$ is reflexive and $a\in A$ such that a is arbitrarily chosen. Since $f:A\to A,\, f(a)\in A,$ thus $f(a)\mathcal Rf(a)$, that is $(f(a),f(a))\in \mathcal R$, thus aSa. Therefore, S is reflexive by the definition.

(c)

- The statement is false.
- Its negation is: \exists function $f:A\to A$ and relation $\mathcal R$ on A such that S is symmetric but $\mathcal R$ is not symmetric. We show its negation is true.
- Proof (of negation)

Let f:A o A defined by

$$f(1) = 4, f(2) = 4, f(3) = 4, f(4) = 4$$

that is

$$f = \{(1,4), (2,4), (3,4), (4,4)\}$$

Let $\mathcal{R}=\{(4,4),(3,1)\}$ on A. Since $\forall x,y\in A$, f(x)=f(y)=4, thus $(f(x),f(y))=(4,4)\in\mathcal{R}$ and $(f(y),f(x))=(4,4)\in\mathcal{R}$, that is, S is symmetric. But $3\in A$, $1\in A$, $3\mathcal{R}1$ and $1\not{\mathbb{R}}3$, because $(3,1)\in\mathcal{R}$ but $(1,3)\not\in\mathcal{R}$. Therefore, \mathcal{R} is not symmetric.

(d)

- The statement is true.
- **Proof** Suppose $a, b \in A$ are arbitrarily chosen and \mathcal{R} is symmetric and aSb, we prove that S is symmetric by showing bSa:

Since aSb, we have $(f(a),f(b))\in\mathcal{R}$. Because $f:A\to A$, we have $f(a)\in A$, $f(b)\in A$. Since \mathcal{R} is symmetric on A, $(f(b),f(a))\in\mathcal{R}$, thus we have bSa. Therefore, S is symmetric by the definition.