Tarea 1

OLIMPIADA MEXICANA DE FÍSICA, SMF Fecha de entrega: 22 enero 2016

Entrenamiento 2016

Problema 1

Sin el uso de calculadora completa los espacios vacíos la siguiente tabla con los valores correctos de las funciones trigonométricas que se especifican en cada columna, también haz las conversiones a radianes los ángulos.

θ (grados)	θ ángulo (radianes)	$\sin \theta$	$\cos \theta$	$\tan \theta$
0°	0	0	1	0
45°		$1/\sqrt{2}$		
30°				
60°				
90°	$\pi/2$	1	0	∞
120°				
135°				-1
150°	$15\pi/18$			
180°	π	0	-1	0
210°				
225°				
240°				
270°		-1	0	∞
300°				
315°				
330°				
360°	2π	0	1	0

Tabla 1

Sugerencias:

Te pueden servir los siguientes triangulo

También puedes hacer uso las formulas del seno y coseno para la suma de ángulos:

$$\sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \sin\beta\cos\alpha$$

$$\cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$$
(1)

Problema 2

Calcula las siguientes sumas:

a)
$$(1+2+3+4+5)+(10+9+8+7+6) =$$

b)
$$(1+16) + (2+15) + (3+14) + (4+13) + (5+12) + (6+11) + (7+10) + (8+9) =$$

c)
$$1+2+3+4+\ldots+35=$$

d)
$$1 + 2 + 3 + 4 + \ldots + 1000 =$$

Problema 3

En el cuadrilátero ABCD de la figura, los ángulos $\angle BDA = \angle CDB = 50^{\circ}$, $\angle DAC = 20^{\circ}$ y $\angle CAB = 80^{\circ}$ Determina el valor de los ángulos $\angle BCA$ y $\angle DBC$

Problema 4

Una barra uniforme de longitud L, sección transversal de área A y densidad ρ esta sumergida parcialmente en agua (densidad $\rho_0 = 1 \text{ gr/cm}^3$). Uno de los extremos de la barra esta sujeto en un punto P a una distancia L/2 por debajo de la superficie del líquido. Todo el sistema esta sujeto a la gravedad en la dirección vertical hacia abajo.

Cuál debe ser la densidad ρ de la barra, necesaria para que se mantenga fija a 45°. ¿Es posible que la barra se mantenga en equilibrio para cualquier valor de la densidad ρ de la barra?

Problema 5

En la figura se muestra el interior de un condensador de placas paralelas (la placa superior esta con polaridad positiva) que esta conectado a una diferencia de potencial $\Delta V = 5 \times 10^5 \,\mathrm{V}$, la separación entre las placas es $d=1 \,\mathrm{cm}$. En la placa inferior se encuentra una fuente de partículas α (las partículas α son núcleos de Helio, es decir que están formadas por 2 protones y 2 neutrones) y por la pequeña apertura (Slit S) emergen dos partículas α a la misma velocidad $v_0 = 6 \times 10^6 \,\mathrm{m/s}$ pero a diferentes ángulos $\theta_1 = 45^\circ + 1^\circ$ y $\theta_2 = 45^\circ - 1^\circ$. Responde las siguientes preguntas (desprecia la gravedad):

- a) Demuestra que las dos partículas α son proyectadas en la placa inferior sobre un mismo punto P.
- **b)** Calcula el valor del alcance R al que son proyectadas las partículas en la placa inferior.
- c) Calcula el valor de $h_1 h_2$, donde h_1 y h_2 corresponden a la altura máxima de la partícula con ángulo de salida θ_1 y θ_2 respectivamente.

