

Ayudantía 12 - Teoría de números

21 de junio de 2024

Martín Atria, Paula Grune, Caetano Borges

Resumen

- Relación divide a: La relación divide a, denotada por | sobre $\mathbb{Z}\setminus 0$, es tal que $a\mid b$ si y solo si $\exists k\in\mathbb{Z}$ tal que $b=k\cdot a$.
- Identidad de Bézout: Esta identidad enuncia que si $a, b \in \mathbb{Z}$ son distintos de 0 y gcd(a, b) = d, entonces existen $x, y \in \mathbb{Z}$ tales que:

$$a \cdot x + b \cdot y = d$$

- Relación módulo n: La relación módulo n, denotada por \equiv_n sobre \mathbb{Z} , es tal que $a \equiv_n b$ si y solo si $n \mid (b-a)$. Esta relación es de equivalencia.
- Teorema:

$$a \equiv_n b \iff a \mod n = b \mod n$$

- Operación módulo n: La operación módulo n entrega el resto de la división por n, se denota por $a \mod n$.
- Máximo común divisor: Dados a y b diremos que su máximo común divisor denotado como gcd(a, b) es el máximo natural n tal que $n \mid a$ y $n \mid b$.

1. Representación de números

Demuestre que todo número $n \in \mathbb{N}$ se puede representar de la forma:

$$n = e_k \cdot 3^k + \dots + e_1 \cdot 3^1 + e_0$$

donde $e_0, \ldots, e_k \in \{1, 0, -1\}$

2. Divisibilidad

- 1. Demuestre que si gcd(a, b) = 1 y $a \mid bc$, entonces $a \mid c$.
- 2. Demuestre que si p es primo y $p \mid ab$, entonces $p \mid a$ o $p \mid b$.
- 3. En clases se demostró que todo número natural n>1 se puede descomponer como:

$$n = p_1 \cdot p_2 \cdot \dots \cdot p_k$$

con p_1, \ldots, p_k primos y $p_1 \le p_2 \le \cdots \le p_k$. Demuestre usando el resultado en el punto anterior que esta descompocición es única.

3. Uno cortito

Sean $a, b \in \mathbb{Z}$ tales que a, b > 0. Demuestre que $a \mid (a+1)^b - 1$.