

MARDS UNIVERSITY OF THE YEAR

Imputation Strategies

Dr. Fani Deligianni,

fani.deligianni@glasgow.ac.uk

Lecturer (Assistant Professor)

Lead of the Computing Technologies for Healthcare Theme

ps://www.gla.ac.uk/schools/comp

WORLD CHANGING GLASGOW

Missing Values

- Most prediction models cannot be used when predictive variables have missing values
- Population characteristics such as mean and covariance can be used to generate imputations specific to an individual

Mean Imputation

Missing values are replaced by the sample mean

Mean across patients (training data)

Predictive Variables

Step 1: Estimate means of all predictors using only the training data

Individual Patient Data

Step 2: Identify missing values

Imputation

Step 3: Use means across patient data to fill in missing values

Mean Imputation - Limitations

- Mean imputation might be inadequate when the predictive variable with missing values is a strong predictor, or it has high variability
- Mean imputation does not distinguish between patients
- Mean imputation makes uncertainties about the imputed values unclear

Joint Modeling Imputation

Predictive Variables

Mean across patients

Covariance Matrix $oldsymbol{X} \cdot oldsymbol{X}^T$

X is an *m-by-n* matrix, m -> num of predictors n -> num of samples

Individual Patient Data

Conditional
Multivariate Normal
Distribution

Step 1: Estimate means of all predictors using only the training data

Step 2: Estimate covariance matrix of training data

Step 3: Identify missing values

Step 4: Exploit derived distribution to generate imputation for missing values

Joint Modeling Imputation - Limitations

- Better than mean imputation as it considers the interaction between predictors
- It only requires population statistics in order to be computed
- It assumes that the predictor variables are normally distributed

Conditional Modeling Imputation

dependent Independent

Model 2 Model 2

Step 1: Derive a regression/prediction model for each predictor

Model m

Patient B [___]

Step 2: Identify if a patient has one or more values missing

Conditional Modeling Imputation

| dependent | Independent

Model 1 Model 2

Step 1: Derive a regression/prediction model for each predictor

Model m

Patient A

Step 3: When a single predictor has a

Step 2: Identify if a patient has one or

more values missing

missing value use directly the corresponding model to fill the gap

Imputation

Conditional Modeling Imputation

dependent Independent

Model 1 Model 2

Step 1: Derive a regression/prediction model for each predictor

Model m

Patient B ...

Step 2: Identify if a patient has one or more values missing

Model 1 & Model 3

Imputation

Step 3: When multiple predictors are missing, the fitted regression models are combined via Markov Chain Monte Carlo Sampling

Evaluation of Imputation

- Leave-One-Out Cross Validation
- Root Mean Squared Error (RMSE) between the average of the multiple imputed predicted values and the true, original value (missing values selected at random)
- RMSE accumulates errors due to bias and variability
- Assessed confidence intervals around the imputed predictor variables
- Prediction performance with the actual values compared to imputed values

- Mean imputation underestimate the risk in high-risk patients
- The difference between mean imputation and both JMI and CMI is larger in high-risk patients
- Mean imputation is considered insufficient when strong predictors are missing

References

- Nijman et al. 'Real-time imputation of missing predictor values improved the application of prediction models in daily practice', Journal of Clinical Epidemiology, 2021.
- Carreras et al. 'Missing not at random in end-of-life care studies: multiple imputation and sensitivity analysis on data from the ACTION study', BMC Medical Research Methodology, 2021