Sequential P Systems with Active Membranes Working on Sets

Michal Kováč

FMFI UK, Slovakia

30.9.2015

Membrane structure

- Multisets
- Rewriting rules
- Passive vs. Active

Computation

- Maximal parallel vs. sequential
- Language
 - generating mode
 - accepting mode

Overview of formal models

- P systems
- Models with set semantics
- Sequential active set membrane systems
 - Original semantics
 - inject-or-create semantics
 - wrap-or-create semantics

P system with active membranes

- $\Pi = (\Sigma, C_0, R_1, \dots R_m)$
- C = (T, I, c)
 - $I:V(T) \rightarrow \{1,\ldots,m\}$
 - $c:V(T)\to \widetilde{\mathbb{N}}^{\Sigma}$
- Rewriting rules
 - $u \rightarrow v$
 - $u \rightarrow v\delta$
 - $u \rightarrow [jv]_j$,

where $u\in\mathbb{N}^{\Sigma}, |u|\geq 1$ and $v\in\mathbb{N}^{\Sigma\times\{\cdot,\uparrow,\downarrow_{j}\}}$

Multiset vs. set semantics

- How realistic is the counting?
- Effectiveness of verification techniques
- No conflict (objects can participate as reactants in as many rules as they want)

Reaction systems

TODO: definition

Set membane systems

- Alhazov [?]: multiplicities of objects are ignored R, with active membranes universal
- Kleijn, Koutny [?]: min-enabledcomputational step ⇒ sequential R
- maximal parallel ⇒ deterministic

Sequential active set membrane systems

Proof of universality

TODO: proof of universality

inject-or-create

TODO: definition

TODO: definition

inject-or-create

TODO: proof of universality

Overview of formal models Sequential active set membrane systems wrap-or-create

TODO: definition

wrap-or-create

TODO: proof of universality

Thanks for your attention!