

TRAVEO™ T2G family

About this document

Scope and purpose

This user guide describes the architecture, configuration, and use of the PORT driver. This guide also explains the functionality of the driver and provides a reference to the driver's API.

The installation, build process, and general information about the use of the EB tresos Studio are not within the scope of this document. See the EB tresos Studio for ACG8 user's guide [7] for a detailed description of these topics.

Intended audience

This document is intended for anyone who uses the PORT driver of the TRAVEO™ T2G family.

Document structure

Chapter 1 General overview provides a brief introduction to the PORT driver, explains the embedding of the driver in the AUTOSAR environment, and describes the supported hardware and development environment.

Chapter 2 Using the PORT driver details the steps required to use the PORT driver in your application.

Chapter 3 Structure and dependencies describes the file structure and the dependencies for the PORT driver.

Chapter 4 EB tresos Studio configuration interface describes the driver's configuration with the EB tresos Studio.

Chapter 5 Functional description provides a functional description of all services offered by the PORT driver.

Chapter 6 Hardware resources describes the hardware resources used.

The Appendix provides a complete API reference and access register table.

Abbreviations and definitions

Abbreviations	Description
API	Application Programming Interface
ASIL	Automotive Safety Integrity Level
AUTOSAR	Automotive Open System Architecture
BSW	Basic Software. Standardized part of software which does not fulfill a vehicle functional job.
DEM	Diagnostic Event Manager
DET	Default Error Tracer
EB tresos Studio	Elektrobit Automotive configuration framework
HSIOM	High-Speed I/O Matrix
HW	Hardware

About this document

Abbreviations	Description
MCAL	Microcontroller Abstraction Layer
MCU	Microcontroller Unit
OS	Operating System
Smart I/O	Programmable I/O
SW	Software
UTF-8	8-Bit Universal Character Set Transformation Format
μC	Microcontroller

Related documents

AUTOSAR requirements and specifications

Bibliography

- General specification of basic software modules, AUTOSAR release 4.2.2 [1]
- [2] Specification of PORT driver, AUTOSAR release 4.2.2
- [3] Specification of standard types, AUTOSAR release 4.2.2
- [4] Specification of ECU configuration parameters, AUTOSAR release 4.2.2
- Specification of default error tracer, AUTOSAR release 4.2.2 [5]
- Specification of memory mapping, AUTOSAR release 4.2.2 [6]

Elektrobit automotive documentation

Bibliography

[7] EB tresos Studio for ACG8 user's guide

Hardware documentation

The hardware documents are listed in the delivery notes.

Related standards and norms

Bibliography

[8] Layered software architecture, AUTOSAR release 4.2.2

Table of contents

Table of contents

About thi	s document	1
Table of c	contents	3
1 Gen	neral overview	6
1.1	Introduction to the PORT driver	
1.2	User profile	
1.3	Embedding in the AUTOSAR environment	
1.4	Supported hardware	
1.5	Development environment	
1.6	Character set and encoding	8
1.7	Multicore support	8
1.7.1	Multicore type	
1.7.1.1	Single core only (multicore type I)	
1.7.1.2	Core-dependent instances (multicore type II)	
1.7.1.3	Core-independent instances (multicore type III)	10
2 Usiı	ng the PORT driver	
2.1	Installation and prerequisites	
2.2	Configuring the PORT driver	
2.2.1	Architecture specifics	
2.3	Adapting your application	
2.4	Starting the build process	
2.5	Measuring the stack consumption	
2.6	Memory mapping	14
2.6.1	Memory allocation keyword	15
2.6.2	Memory allocation and constraints	15
3 Stru	ucture and dependencies	16
3.1	Static files	16
3.2	Configuration files	16
3.3	Generated files	16
3.4	Dependencies	17
3.4.1	DET	17
3.4.2	Resource file	17
3.4.3	BSW scheduler	17
3.4.4	Error callout handler	
3.4.5	Callout functions for multicore exclusive access	17
4 EBt	tresos Studio configuration interface	18
4.1	General configuration	18
4.2	Port configuration set	19
4.3	Port configuration	19
4.4	Port pin configuration	
4.5	AMUX splitter cell configuration	
4.6	Port default configuration set	
4.7	Port default configuration	
4.8	Port default pin configuration	
4.9	Port default AMUX splitter cell configuration	
4.10	Port trigger configuration set	
4.11	Port trigger group configuration	
4.12	Port output trigger configuration	27

Table of contents

4.13	Port trigger 1-to-1 group configuration	28
4.14	Port 1-to-1 output trigger configuration	28
5 Fı	unctional description	30
5.1	Required header file	30
5.2	Initialization	30
5.3	Runtime reconfiguration	31
5.4	Ports and port pins	32
5.5	Trigger command	32
5.6	API parameter checking	33
5.7	Configuration checking	35
5.8	Reentrancy	37
5.9	Function availability in multicore	37
5.10	Debugging support	38
6 H	lardware resources	39
6.1	Ports and pins	39
6.2	SMART I/O blocks	39
6.3	AMUX splitter cells	39
6.4	Trigger groups and trigger 1-to-1 groups	39
6.5	Timer	
6.6	Interrupts	39
7 Aı	ppendix A – API reference	40
7.1	Data types	
7.1.1	Port_ConfigType	
7.1.2	Port_PinType	
7.1.3	Port_PinModeType	
7.1.4	Port_PinDirectionType	40
7.1.5	Port_PinLevelValueType	41
7.1.6	Port_StatusType	41
7.1.7	Port_AmuxCellType	43
7.1.8	Port_AmuxSplitCtlStatusType	43
7.1.9	Port_TriggerGroupIdType	44
7.1.10	Port_TriggerIdType	44
7.1.11	Port_TriggerSensitiveType	44
7.1.12	Port_TriggerActivationType	45
7.1.13	Port_TriggerIdStatusType	45
7.1.14	Port_TriggerCmdStatusType	45
7.2	Constants	46
7.2.1	Error codes	46
7.2.2	Version information	46
7.2.3	Module information	47
7.2.4	API service IDs	47
7.2.5	Port pin status	47
7.2.6	AMUX splitter cell status	53
7.2.7	Trigger status	53
7.3	Functions	53
7.3.1	Port_Init	53
7.3.2	Port_SetPinDirection	54
7.3.3	Port_RefreshPortDirection	55
7.3.4	Port_GetVersionInfo	55

Table of contents

	D	
7.3.5		56
7.3.6	_	57
7.3.7	Port_GetAmuxSplitCtlStatus	57
7.3.8	Port_SetToDioMode	58
7.3.9	Port_SetToAlternateMode	59
7.3.10	Port_SetTrigger	60
7.3.11	Port_ActTrigger	61
7.3.12	Port_DeactTrigger	61
7.3.13	Port_GetTriggerIdStatus	62
7.3.14	Port_GetTriggerCmdStatus	63
7.4	Required callback functions	64
7.4.1	DET	64
7.4.1.1	Det_ReportError	64
7.5	Callout functions	65
7.5.1	Error callout API	65
7.5.2	Callout Port Enter	66
7.5.3	Callout Port Exit	67
8 Apr	oendix B – Access register table	68
8.1	——————————————————————————————————————	68
8.2	GPIO	68
8.3	SMART I/O	69
8.4	PERI	69
Revision	history	70
Disclaime	•	71

1 General overview

1 General overview

1.1 Introduction to the PORT driver

The PORT driver is a set of software routines for initializing the whole port structure of the microcontroller.

Many port pins can be assigned to various functionalities such as the following:

- GPIO
- ADC
- CAN
- ICU
- PWM
- SPI

For this purpose, the PORT driver provides configuration options for each port pin for the following:

- Mode
- Direction
- Level value
- Direction changeable flag
- Mode changeable flag

The driver conforms to the AUTOSAR standard and is implemented according to the *specification of PORT driver* [2].

In addition, the PORT driver is delivered with a plugin for the EB tresos Studio, which allows the user to statically configure the driver. It provides an interface to define symbolic names and functionality of all port pins used in GPIO or alternative mode.

The PORT driver provides software routines for initializing the high-speed I/O matrix (HSIOM), the programmable I/O (SMART I/O), and the trigger multiplexers. The trigger multiplexers control the communication between peripherals.

For this purpose, the PORT driver provides configuration options for the following:

- HSIOM setting
- SMART I/O setting
- Trigger group
- Trigger 1-to-1 group

1.2 User profile

This guide is intended for users with a basic knowledge of the following:

- Embedded systems
- The C programming language
- The AUTOSAR standard
- The target hardware architecture

1.3 Embedding in the AUTOSAR environment

Figure 1 Overview of AUTOSAR software layers

Figure 1 depicts the layered AUTOSAR software architecture. The PORT driver (Figure 2) is part of the microcontroller abstraction layer (MCAL), the lowest layer of the basic software in the AUTOSAR environment.

As an internal I/O driver, it provides a standardized and microcontroller-independent interface to higher software layers for accessing ports and port pins of the ECU hardware.

For a thorough overview of the AUTOSAR-layered software architecture, refer to *Layered software architecture* [8].

Figure 2 PORT driver in MCAL layer

1.4 Supported hardware

This version of the PORT driver supports the TRAVEO™ T2G microcontroller. The supported derivatives are listed in the release notes.

Smaller derivatives have only a subset of the available port pins. Additional derivatives can be implemented or supported via a resource file without change of the PORT driver and/or this document. Refer to the Resource plugin for a list of all supported derivatives.

1.5 Development environment

The development environment corresponds to AUTOSAR release 4.2.2. The modules BASE, Make, and Resource are needed for proper functionality of the PORT driver.

1.6 Character set and encoding

All source code files of the PORT driver are restricted to the ASCII character set. The files are encoded in UTF-8 format, with only the 7-bit subset (values 0x00 ... 0x7F) being used.

1.7 Multicore support

The PORT driver supports the multicore type I. The multicore type III can also be supported for some APIs (for example, read-only API or atomic-write API). For each multicore type, see following sections.

1.7.1 Multicore type

In this section, type I, type II, and type III are defined as multicore characteristics.

1.7.1.1 Single core only (multicore type I)

For this multicore type, the driver is available only on a single core. This type is referred as multicore type I.

Following is the characteristic of multicore type I:

The peripheral channels are accessed by only one core.

Figure 3 Overview of the multicore type I

1.7.1.2 Core-dependent instances (multicore type II)

For this multicore type, the driver has core-dependent instances with individually allocable hardware. This type is referred as multicore type II.

Multicore type II has the following characteristics:

- The driver code is shared among all cores:
 - A common binary is used for all cores.
 - A configuration is common for all cores.
- Each core runs an instance of the driver.
- Peripheral channels and their data can be individually allocated to cores, but cannot be shared among cores.
- One core will be the master; the master core must be initialized first:
 - Cores other than the master core are called satellite cores.

Figure 4 Overview of the multicore type II

1.7.1.3 Core-independent instances (multicore type III)

For this multicore type, the driver has core-independent instances with globally available hardware. This type is referred as multicore type III.

Multicore type III has the following characteristics:

- The driver code is shared among all cores:
 - A common binary is used for all cores.
 - A configuration is common for all cores.
- Each core runs an instance of the driver.
- Peripheral channels are globally available for all cores.

Figure 5 Overview of the multicore type III

2 Using the PORT driver

2 Using the PORT driver

2.1 Installation and prerequisites

Note: Before you start, see the EB tresos Studio for ACG8 user's guide for the following information:

- 1. How to install EB tresos ECU AUTOSAR components.
- 2. How to use EB tresos Studio.
- 3. How to use the EB tresos ECU AUTOSAR build environment (includes an explanation of how to set up and integrate your application within the EB tresos ECU AUTOSAR build environment).

The installation of the PORT driver complies with the general installation procedure for EB tresos ECU AUTOSAR components given in the documents mentioned above. If the driver is successfully installed, it will appear in the module list of the EB tresos Studio (see *EB tresos Studio for ACG8 user's guide* [7]).

In the following section, it is assumed that the project is properly set up and is using the application template as described in the *EB tresos Studio for ACG8 user's guide* [7]. This template provides the necessary folder structure, project and Makefiles needed to configure and compile your application within the build environment. You need to be familiar with the usage of the command shell.

2.2 Configuring the PORT driver

The following container is used to configure common behavior.

• *PortGeneral*: This container is mainly used to restrict/extend the API of the PORT module and enable/disable default error trace.

For detailed information and description, see chapter 4 EB tresos Studio configuration interface.

Note:

Ensure that your application also includes an AUTOSAR-compliant DET when default error detection is enabled. Otherwise, your application will not compile if the **default error detection** option is switched on.

You should provide values for the following characteristics for each configured or required port pin:

- PortPinDirection
- PortPinLevelValue
- PortPinDirectionChangeable at runtime
- PortPinModeChangeable at runtime

The *PortPin* container describes the information of the individual port pin. It has a user-changeable symbolic name which can be used in the application.

The PORT driver initializes the whole port structure of the microcontroller. All port pins that are not configured are initialized with the value in port default pin configuration. For detailed information and description, see 0

2 Using the PORT driver

Port default pin configuration.

2.2.1 Architecture specifics

Refer to Chapter 4 EB tresos Studio configuration interface where all configuration parameters are described.

2.3 Adapting your application

1. To use the PORT driver in your application, include the PORT driver header file by adding the following line to your source file:

```
#include "Port.h" /* PORT Driver */
```

This publishes all needed function/data prototypes and symbolic names of the configuration into the application.

2. Implement the error callout function for ASIL safety extension.

Declare the error callout function in the specified file by the PortIncludeFile parameter and implement in your application (see 7.4 Required callback functions, Error callout API).

3. Implement callout functions for multicore exclusive access control.

Declare the callout functions in the specified file by the PortIncludeFile parameter and implement in your application (see 7.4 Required callback functions, Callout port enter and callout port exit).

4. Initialize and configure the ports and port pins as described in chapter 4 EB tresos Studio configuration interface. The PORT module will be automatically enabled if an appropriate parameter configuration of the PORT module is available in your application.

The port initialization can be done (in an initialization task) with the following function call and parameter.

```
Port Init(&Port Config[0]);
```

Note: Port Init() must be called on the master core.

```
API functions can be called with the symbolic names (for example, PortConf_PortPin_MY_IO_PIN, PortConf_PortTrGroupContainer_MY_TRIGGER_GROUP, PortConf_PortOutputTrigger_MY_OUTPUT_TRIGGER, PortConf_PortTr1To1GroupContainer_MY_TRIGGER_1TO1_GROUP and PortConf_Port1To1OutputTrigger_MY_1TO1_OUTPUT_TRIGGER) from your configuration after Port Init().
```

For more information about the Port_SetPinDirection function and other services, see chapter 5 Functional description.

```
Port SetPinDirection(PortConf PortPin MY IO PIN, PORT PIN OUT);
```

The pin mode can be changed at runtime using the Port_SetPinMode() function. The user is responsible to pass the architecture-specific mode value listed the datasheet for the selected subderivative. A list of all available modes can be found in the /generated/include/Port_Cfg_Der.h file.

```
Port_SetPinMode(PortConf_PortPin_MY_IO_PIN, PORT_PIN_MODE_P000_0_GPIO);
```

The pin mode can be switched between DIO mode (PORT_PIN_MODE_GPIO) and configured mode at runtime using the Port_SetToDioMode() and Port_SetToAlternateMode() functions. If the pin's configured mode is DIO mode, these APIs have no effect.

```
/\!\!\!\!\!^{\star} Switch from the configured mode to DIO mode ^{\star}/\!\!\!\!
```


2 Using the PORT driver

```
Port_SetToDioMode(PortConf_PortPin_MY_IO_PIN);

/* Switch from DIO mode to the configured mode */
Port SetToAlternateMode(PortConf PortPin MY IO PIN);
```

The trigger setting can be changed at runtime using the Port_SetTrigger() function. The user is responsible to pass the architecture-specific input trigger listed the datasheet for the selected subderivative. A list of all available input triggers can be found in the /generated/include/Port_Cfg_Der.h file.

Users can control trigger activation with the trigger command at runtime. The specified output trigger can be activated or deactivated using the <code>Port_ActTrigger()</code> and <code>Port_DeactTrigger()</code> functions. The trigger command functionality can control only one trigger activation. This feature cannot be used by multiple tasks or modules at the same time. The status of the trigger command can be acquired using the

```
Port GetTriggerCmdStatus() function.
```

```
/* If trcmd status.activate = 1U, Trigger Command is not available because used by
other tasks or modules. */
Port GetTriggerCmdStatus(&trcmd status);
/* If the sensitive type is set to PORT TR SENSITIVE LEVEL, the specified output
trigger / 1-to-1 output trigger continues the activated status until calling
Port DeactTrigger(). */
Port ActTrigger (PortConf PortTrGroupContainer MY TRIGGER GROUP,
                PortConf PortOutputTrigger MY OUTPUT TRIGGER,
                PORT TR ACTIVATION OUTPUT,
                PORT TR SENSITIVE LEVEL);
(PortConf PortOutputTrigger MY OUTPUT TRIGGER is being activated)
/* The activating output trigger is deactivated */
Port DeactTrigger();
/* If the sensitive type is set to PORT TR SENSITIVE EDGE, the specified output
trigger is activated for two "clk_peri" cycles. Port_DeactTrigger does not have to be
called. After generating two cycle pulse, the output trigger is deactivated by
hardware. */
Port ActTrigger(PortConf PortTrGroupContainer MY TRIGGER GROUP,
                PortConf PortOutputTrigger MY OUTPUT TRIGGER,
                PORT TR ACTIVATION OUTPUT,
                PORT TR SENSITIVE EDGE);
/* If setting the input trigger for Trigger Command, the multiple output triggers
connected to the specified input trigger can be activated at the same time. ^{\star}/
Port ActTrigger (PortConf PortTrGroupContainer MY TRIGGER GROUP,
                PORT_TR_GROUP_DW0_TR_IN_CPUSS_DW0_TR_OUT_0,
                PORT TR ACTIVATION INPUT,
                PORT TR SENSITIVE EDGE);
```

Additional functions:

• Port RefreshPortDirection();

2 Using the PORT driver

```
• Port GetVersionInfo(Std VersionInfoType*);
```

- Port GetStatus(PortConf PortPin MY IO PIN, Port StatusType*);
- Port_GetAmuxSplitCtlStatus(PortConf_PortAmuxSplitCell_MY_CELL, Port AmuxSplitCtlStatusType*);
- Port_GetTriggerIdStatus(PortConf_PortTrGroupContainer_MY_TRIGGER_GROUP, PortConf PortOutputTrigger MY OUTPUT TRIGGER, Port TriggerIdStatusType*);

These functions can be used wherever needed.

2.4 Starting the build process

Do the following to build your application:

Note: For a clean build, use the build command with target clean all before! (make clean all).

1. On the command shell, type the following command to generate the necessary configuration-dependent files. See 3.3 Generated files:

```
> make generate
```

2. Type the following command to resolve the required file dependencies:

```
> make depend
```

3. Type the following command to compile and link the application:

```
> make (optional target: all)
```

The application is now built. All files are compiled and linked to a binary file which can be downloaded to the target CPU cores.

2.5 Measuring the stack consumption

Do the following to measure the stack consumption. The BASE module is needed for proper measurement.

Note:

All files (including library files) should be rebuilt with the dedicated compiler option. The executable file built by this step must be used only for stack consumption measurement.

1. Add the following compiler option to the Makefile to enable stack consumption measurement.

```
-DSTACK ANALYSIS ENABLE
```

2. Type the following command to clean library files.

```
> make clean lib
```

- 3. Follow the build process described in 2.4 Starting the build process.
- 4. Follow the instructions in the release notes and measure the stack consumption.

2.6 Memory mapping

The Port_MemMap.h file in the \$ (TRESOS_BASE) /plugins/MemMap_TS_T40D13M0I0R0/include directory is a sample. This sample file is replaced by the file generated by the MEMMAP module. Input to the MEMMAP module is generated as Port_Bswmd.arxml in the \$ (PROJECT_ROOT) /output/generated/swcd directory of your project folder.

2 Using the PORT driver

2.6.1 Memory allocation keyword

- PORT_START_SEC_CODE_ASIL_B / PORT_STOP_SEC_CODE_ASIL_B
 Memory section type is CODE. All executable code is allocated in this section.
- PORT_START_SEC_CONST_ASIL_B_UNSPECIFIED / PORT_STOP_SEC_CONST_ASIL_B_UNSPECIFIED
 Memory section type is CONST. The following constants are allocated in this section:
 - Port configuration data
 - Hardware register base address data
- PORT_START_SEC_VAR_INIT_ASIL_B_UNSPECIFIED / PORT_STOP_SEC_VAR_INIT_ASIL_B_UNSPECIFIED
 Memory section type is VAR. The following variable is allocated in this section:
 - Pointer to the configuration data

2.6.2 Memory allocation and constraints

All the memory sections must be zero-initialized before any driver function is executed on any core.

• VAR INIT ASIL B UNSPECIFIED

This section is read/write-accessed from the master core and read-accessed from other cores. So, this section must not be allocated to TCRAM. For the master core, this section must be allocated to either non-cache or write-through cache SRAM area. For other cores, this section must be allocated to the non-cache SRAM area.

3 Structure and dependencies

3 Structure and dependencies

The PORT driver consists of a static configuration and generated files.

3.1 Static files

Folder	Description
\$(PLUGIN_PATH)= \$(TRESOS_BASE)/plugins/Port_TS_*	Path to the PORT module plugin.
\$(PLUGIN_PATH)/lib_src	Contains all static source files of the PORT driver. These files contain the functionality of the driver, which does not depend on the current configuration. The files are grouped into a static library.
\$(PLUGIN_PATH)/src	Contains configuration-dependent source files or special derivative files. Each file will be built again when the configuration is changed. All necessary source files will be automatically compiled and linked during the build process and all include paths will be set if the PORT driver is enabled.
\$(PLUGIN_PATH)/include	Basic public include directory needed to include <i>Port.h</i> .
\$(PLUGIN_PATH)/autosar	Contains the AUTOSAR ECU parameter definition with adaptations specific to vendor, architecture, and derivative to create a correct matching parameter configuration for the PORT module.

3.2 Configuration files

The configuration of the PORT driver is done with the EB tresos Studio. When saving a project, the configuration description is written to the *Port.xdm* file in \$ (PROJECT_ROOT) /config in your project folder. This file is the input to generate configuration-dependent source and header files during the build process.

3.3 Generated files

During the build process, the following files are generated based on the current configuration description. These files are in the sub folder <code>output/generated</code> of your project folder.

File	Description
include/Port_Cfg.h include/Port_Cfg_Der.h	Define all symbolic names for configured port pins. These files will be included in <i>Port.h</i> . Settings are separated into architecture- and derivative-specific.
include/Port_Cfg_Der_Internal_User.h	Defines the configuration for the user configured port pins.
include/Port_Cfg_Der_Internal_Defaults.h	Defines subderivative-specific default values for all pins. If a port pin is not configured by the user, the default configuration of the pin is added and used to create a complete port configuration structure to initialize the whole port structure of the microcontroller.
include/Port_Cfg_Include.h	Defines the custom include headers generated from the configuration.
src/Port_PBcfg.c	Contains the constant structure for the PORT configuration.
src/Port_PBcfg_Der.c	Contains the error check function dependent on the hardware.

3 Structure and dependencies

File	Description
swcd/Port_Bswmd.arxml	Contains BswModuleDescription.

Note: You do not need to add the generated source files to your application make file. They will be

compiled and linked automatically during the build process.

Note: Additional steps are required for the generation of BSW module description. In EB tresos Studio,

select Project > Build Project > generate_swcd.

3.4 Dependencies

3.4.1 DET

If default error detection is enabled in the PORT module configuration, DET must be installed, configured, and built into the application.

3.4.2 Resource file

The PORT driver needs registered and configured Resource module. The PORT driver will report errors such as "port pin not available in this derivative" or "PortPinMode/PortPinDirection not possible" if this dependency is not resolved properly.

3.4.3 BSW scheduler

The Port handler/driver uses the following services of the BSW scheduler to enter and leave critical sections:

- SchM Enter Port PORT EXCLUSIVE AREA 0 (void)
- SchM Exit Port PORT EXCLUSIVE AREA 0 (void)

Make sure that the BSW scheduler is properly configured and initialized before using the Port handler/driver.

3.4.4 Error callout handler

The error callout handler is called on every error that is detected regardless of whether the default error detection is enabled or disabled. The error callout handler is an ASIL safety extension that is not specified by AUTOSAR. It is configured via the PortErrorCalloutFunction configuration parameter.

3.4.5 Callout functions for multicore exclusive access

Callout functions are called where multicore exclusive access is needed. Callout functions are configured via the PortCalloutPortEnter and PortCalloutPortExit configuration parameters.

4 EB tresos Studio configuration interface

EB tresos Studio configuration interface 4

The GUI is not part of the current delivery. For further information, see *EB tresos Studio for ACG8 user's guide* [7].

4.1 **General configuration**

Parameter	Description	
PortDevErrorDetect	Enables or disables the default error notification for the PORT module. Setting this parameter to false will disable the notification of development errors via DET. However, in contrast to the AUTOSAR specification, detection of development errors is still enabled as a safety mechanism (fault detection).	
PortSetPinDirectionApi	Enables or disables the Port_SetPinDirection function.	
PortSetPinModeApi	Enables or disables the Port_SetPinMode function.	
PortVersionInfoApi	Enables or disables the Port_GetVersionInfo function.	
PortSafetyFunctionApi	Enables or disables the Port_GetStatus, Port_GetAmuxSplitCtlStatus, and Port_GetTriggerIdStatus functions.	
PortSetToDioAlternateModeApi	Enables or disables the Port_SetToDioMode and Port_SetToAlternateMode functions.	
PortSetTriggerApi	Enables or disables the Port_SetTrigger function.	
PortTriggerCommandApi	<pre>Enables or disables the Port_ActTrigger, Port_DeactTrigger, and Port_GetTriggerCmdStatus functions.</pre>	
PortErrorCalloutFunction	Used to specify the error callout function name. The function is called on every error. The ASIL level of this function limits the ASIL level of the PORT driver. Note: PortErrorCalloutFunction must be valid C function name, otherwise an error would occur in the	
PortCalloutPortEnter	Used to specify the callout function name. The function is called on at the start of area where multicore exclusive access is needed.	
	Note: PortCalloutPortEnter must be valid C function name, otherwise an error would occur in the configuration phase.	
PortCalloutPortExit	Used to specify the callout function name. The function is called on at the end of area where multicore exclusive access is needed.	
	Note: PortCalloutPortExit must be valid C function name, otherwise an error would occur in the configuration phase.	

4 EB tresos Studio configuration interface

Parameter	Description	on	
PortIncludeFile	applicatio error callo	Lists the file names that shall be included within the driver. Any application-specific symbol that is used by the Port configuration (e.g., error callout function) should be included by configuring this parameter.	
	Note:	PortIncludeFile must be a filename with extension .h and a unique name, otherwise some errors would occur in the configuration phase.	

4.2 Port configuration set

Port configuration is used as a configuration pointer parameter of Port_Init(). The symbolic name is derived from the PortConfigSet container short name prefixed with "PortConf_PortConfigSet_".

The value is configuration data (that is, Port_Config[0], Port_Config[1]) and defined as the user-changeable symbolic name which can be used in the application.

• PortTriggerReference refers to the PortTriggerConfigSet for this PortConfigSet.

4.3 Port configuration

The following parameters are available to configure the ports:

Parameter	Description
PortNumberOfPortPins	Number of specified <i>PortPins</i> in this <i>PortContainer</i> .
PortId	Port ID in this <i>PortContainer</i> .
PortCalloutEnable	Specifies whether PortCalloutPortEnter and PortCalloutPortExit callouts will be called when processing the port. If a port will be configured on several cores, it needs to be set true. If enabled, PortCalloutPortEnter and PortCalloutPortExit are called inside of a critical section. The integrator shall be aware that the execution time of those functions adds up to the blocking time of the critical section.
PortSmartioClockSource	Source of clock ("clk_fabric") and reset ("rst_fabric_n") for the SMART I/O block.
PortSmartioHoldOverrideEnable	If checked, the SMART I/O controls the IO cell hold override functionality for the SMART I/O block. If not checked, it is controlled by the HSIOM.
PortSmartioPipelineEnable	If checked, the pipeline setting is enabled for the SMART I/O block.
PortSmartioEnable	If checked, the programmable I/O setting is enabled for the SMART I/O block.
PortSmartioDataUnitTr0Source	Data unit input signal "tr0_in" source for the SMART I/O block. Refer to Table 17 for selectable values.
PortSmartioDataUnitTrlSource	Data unit input signal "tr1_in" source for the SMART I/O block. Refer to Table 17 for selectable values.

4 EB tresos Studio configuration interface

Parameter	Description
PortSmartioDataUnitTr2Source	Data unit input signal "tr2_in" source for the SMART I/O block. Refer to Table 17 for selectable values.
PortSmartioDataUnitDataOSource	Data unit input data "data0_in" source for the SMART I/O block. Refer to Table 18 for selectable values.
PortSmartioDataUnitData1Source	Data unit input data "data1_in" source for the SMART I/O block. Refer to Table 18 for selectable values.
PortSmartioDataUnitBitSize	Size/width of the data unit data operands (in bits) for the SMART I/O block.
PortSmartioDataUnitOperation	Data unit opcode specifies the data unit operation for the SMART I/O block. Refer to Table 19 for selectable values.
PortSmartioDataUnitSource	Data unit input data source for the SMART I/O block.

Note: You can configure some PortContainers into a PortConfigSet. Only one port can be configured in

one PortContainer. Therefore, configure the required PortContainers for each port and create only

those PortPins which you want to use in each PortContainer.

Note: The parameters for the SMART I/O block can be changed only if the SMART I/O functionality of the

specified port is valid.

See the hardware manual for details about the SMART I/O configuration.

4.4 Port pin configuration

The following parameters are available to configure port pins:

Parameter	Description	on	
PortPinDirection	PORT_PIN	The initial direction of the pin (IN, OUT or IN/OUT disabled). PORT_PIN_IN_OUT_DISABLED is for Analog I/O. It can be set if PortPinInitialMode is AMUXA, AMUXB, AMUXA_DSI, or AMUXB_DSI. Refer to Port_PinDirectionType for selectable	
	Note:	If the pin is used in the AMUXA, AMUXA_DSI, AMUXB, or AMUXB_DSI mode, the pin direction must be set to PORT_PIN_IN_OUT_DISABLED. For other modes, the pin direction must be set to PORT_PIN_IN or PORT_PIN_OUT.	
	Note:	If the pin is used for the analog port in the GPIO mode, set the pin direction to PORT_PIN_OUT. In addition, set the PortPinOutputInBufEnable to false and PortPinOutputDrive to PORT_PIN_OUT_MODE_HIGHZ.	
	Note:	Hardware registers do not have the feature to fix the direction to input only. When the pin direction is set to PORT PIN IN, the pin drive mode is forced	

4 EB tresos Studio configuration interface

Parameter	Description
	to be PORT_PIN_OUT_MODE_HIGHZ to disable the output direction. If any drive mode, other than PORT_PIN_OUT_MODE_HIGHZ, is required for the applications, set the pin direction to PORT_PIN_OUT with PortPinOutputInBufEnable as true (enable input and output direction).
PortPinDirectionChangeable	If checked, the direction is changeable on a port pin during runtime.
PortPinId	The pin ID of the port pin. This value will be assigned to the symbolic name derived from the port pin container short name.
PortPinName	The port pin name. The symbolic name derived from the <i>PortPin</i> container, a short name prefixed with "PortConf_PortPin_".
PortPinInitialMode	The initial mode of the port pin. The allowed modes for a certain pin are hardware-dependent. Note that PortPinInitialMode influences the I/O behavior.
PortPinModeChangeable	If checked, the mode can be changed on a port pin during runtime.
PortPinLevelValue	The level value from the port pin and can be configured with each <i>PortPin</i> . Refer to Port_PinLevelValueType for selectable values.
	Note: When the pin mode is not GPIO, the pin output shall be controlled by the peripheral functionality. Therefore, if the initialized pin mode is not GPIO, the configuration parameter PortPinLevelValue is ignored.
PortPinOutputDrive	The output drive mode of the port pin and can be configured the available output drive with each <i>PortPin</i> . Refer to Table 7 for selectable values.
PortPinOutputInBufEnable	If checked, the input buffer is enabled when the pin direction is PORT_PIN_OUT. The actual output level can be read by this setting. If not checked, the input buffer is disabled and the level setting on the hardware can be read.
PortPinMode	PortPinMode will be ignored; the parameter PortPinInitialMode will be used. Selectable port pin mode is fixed in each subderivative.
PortPinSmartioBypassEnable	If checked, the SMART I/O path is bypassed for this pin's signal. It means that the SMART I/O block is not present for this port pin.

4 EB tresos Studio configuration interface

Parameter	Description
PortPinSmartioSyncIoEnable	If checked, I/O pin input signals to the SMART I/O block are synchronized to "clk_fabric", which is configured with PortSmartioClockSource.
PortPinSmartioSyncChipEnable	If checked, chip pin input signals to the SMART I/O block are synchronized to "clk_fabric", which is configured with PortSmartioClockSource.
PortPinSmartioLutTr0Source	The source of the LUT input signal "tr0_in". Refer to Table 15 for selectable values.
PortPinSmartioLutTr1Source	The source of the LUT input signal "tr1_in". Refer to Table 15 for selectable values.
PortPinSmartioLutTr2Source	The source of the LUT input signal "tr2_in". Refer to Table 15 for selectable values.
PortPinSmartioLut	The LUT configuration setting. It is used to determine the LUT output signal and the next sequential state.
PortPinSmartioLutOperation	The LUT opcode that specifies the LUT operation configuration. Refer to Table 16 for selectable values.
PortPinInputBufferMode	The input buffer mode (trip points and hysteresis). This parameter is available for IO cell types other than HSIO_ENH, HSIO_ENH_PDIFF, HSIO_ENH_STG and HSIO_ENH_PDIFF_STG. See Table 8 for selectable values.
PortPinOutputSlowSlewRateEnable	If checked, this port pin works in slow slew rate. If not checked, this port pin works in fast slew rate.
	Note: PortPinOutputSlowSlewRateEnable can be changed only if the specified pin has slow slew rate functionality.
PortPinOutputDriveStrength	This parameter is available for IO cell types other than HSIO_STDLN, HSIO_ENH, HSIO_ENH_PDIFF, HSIO_ENH_STG and HSIO_ENH_PDIFF_STG. The GPIO drive strength setting. See Table 9 for selectable values.
Port5VPinInputBufferMode	The input buffer mode (trip points and hysteresis) for S40E GPIO upper bit. This parameter is available for IO cell types other than HSIO_STD, HSIO_STDLN, HSIO_STD_STG, HSIO_ENH, HSIO_ENH_PDIFF, HSIO_ENH_STG and HSIO_ENH_PDIFF_STG. See Table 10 for selectable values.
PortPinOutputDriveSelectTrim	The GPIO drive select trim setting. Refer to Table 11 for selectable values. This parameter is available for TRAVEO™ T2G 2D cluster series only.
PortPinOutputSlewExt	The GPIO output extra slew rate control. See Table 12 for selectable values.

4 EB tresos Studio configuration interface

Parameter	Description	
	Note:	PortPinOutputSlewExt is editable only if the extra slew rate control functionality of the specified pin is valid.
PortPinOutputDriveExt	The GPIO output extra drive strength control. See Table 13 for selectable values.	
	Note:	PortPinOutputDriveExt is editable only if the extra drive strength functionality of the specified pin is valid.

AMUX splitter cell configuration 4.5

The following parameters are available to configure AMUX splitter cells. PortAmuxSplitCell is the name of this container.

Parameter	Description
PortAmuxSplitCellId	The cell ID of the AMUX splitter cell in the PortAmuxSplitCell container. The range is 0 to (the number of AMUX splitter cells - 1).
PortAmuxBusaSwitchSL	The T-switch control for left AMUXBUSA switch in this PortAmuxSplitCell. See Table 20 for selectable values.
PortAmuxBusaSwitchSR	The T-switch control for right AMUXBUSA switch in this PortAmuxSplitCell. See Table 20 for selectable values.
PortAmuxBusaSwitchS0	The T-switch control for AMUXBUSA vssa/ground switch in this PortAmuxSplitCell. See Table 20 for selectable values.
PortAmuxBusbSwitchSL	The T-switch control for left AMUXBUSB switch in this PortAmuxSplitCell. See Table 20 for selectable values.
PortAmuxBusbSwitchSR	The T-switch control for right AMUXBUSB switch in this PortAmuxSplitCell. See Table 20 for selectable values.
PortAmuxBusbSwitchS0	The T-switch control for AMUXBUSB vssa/ground switch in this PortAmuxSplitCell. See Table 20 for selectable values.

4 EB tresos Studio configuration interface

4.6 Port default configuration set

The port default configuration is used as default parameters for unconfigured port pins and AMUX splitter cells. Pins and cells that are not configured in PortConfigSet are initialized with PortDefaultConfigSet.

4.7 Port default configuration

• The PortDefaultContainer configuration provides the default parameters for unconfigured ports.

Parameter	Description
PortDefCalloutEnable	Specifies whether PortCalloutPortEnter and PortCalloutPortExit callouts will be called when processing the port. If default ports are configured on several cores, it needs to be set true. If enabled, PortCalloutPortEnter and PortCalloutPortExit are called inside of a critical section. The integrator must note that the execution time of those functions adds up to the blocking time of the critical section.
PortDefSmartioClockSource	The source of a clock ("clk_fabric") and a reset ("rst_fabric_n") for the SMART I/O block.
PortDefSmartioHoldOverrideEnable	If checked, the SMART I/O controls the I/O cell hold override functionality for the SMART I/O block. If not checked, it is controlled by the HSIOM.
PortDefSmartioPipelineEnable	If checked, the pipeline setting is enabled for the SMART I/O block.
PortDefSmartioEnable	If checked, the programmable I/O setting is enabled for the SMART I/O block.
PortDefSmartioDataUnitTr0Source	The source of a data unit input signal ("tr0_in") for the SMART I/O block. See Table 17 for selectable values.
PortDefSmartioDataUnitTr1Source	The source of a data unit input signal ("tr1_in") for the SMART I/O block. See Table 17 for selectable values.
PortDefSmartioDataUnitTr2Source	The source of a data unit input signal ("tr2_in") for the SMART I/O block. See Table 17 for selectable values.
PortDefSmartioDataUnitDataOSource	The source of a data unit input data ("data0_in") for the SMART I/O block. See Table 18 for selectable values.
PortDefSmartioDataUnitData1Source	The source of a data unit input data ("data1_in") for the SMART I/O block. See Table 18 for selectable values.
PortDefSmartioDataUnitBitSize	The size/width of the data unit data operands (in bits) for the SMART I/O block.
PortDefSmartioDataUnitOperation	The data unit opcode that specifies the data unit operation for the SMART I/O block. See Table 19 for selectable values.
PortDefSmartioDataUnitSource	The data unit input data source for the SMART I/O block.

4 EB tresos Studio configuration interface

Port default pin configuration 4.8

The port default pin configuration provides the default parameters for unconfigured port pins.

Parameter	Description
PortDefPinDirection	The initial direction of unconfigured pins. (IN, OUT, or IN/OUT disabled). PORT_PIN_IN_OUT_DISABLED is for analog I/O. It can be set if PortDefPinInitialMode is AMUXA, AMUXB, AMUXA_DSI, or AMUXB_DSI. See Port_PinDirectionType for selectable values.
PortDefPinDirectionChangeable	If checked, the direction can be changed on unconfigured port pins during runtime.
PortDefPinInitialMode	The initial mode of unconfigured pins.
PortDefPinModeChangeable	If checked, the mode can be changed on unconfigured port pins during runtime.
PortDefPinLevelValue	The level value from unconfigured port pins. Refer to Port_PinLevelValueType for selectable values.
	Note: When the pin mode is not GPIO, the pin output is controlled by the peripheral functionality. Therefore, if the initialized pin mode is not GPIO, the configuration parameter PortDefPinLevelValue is ignored.
PortDefPinOutputDrive	The output drive mode of unconfigured port pins. See Table 7 for selectable values.
	Note: When the pin mode is set to PORT_PIN_OUT_MODE_PULLUP_DOWN_ATST, the unconfigured pins will generally perform the same as the STRONG drive mode although this is not guaranteed for all use cases.
PortDefPinOutputInBufEnable	If checked, the input buffer is enabled when the pin direction is PORT_PIN_OUT. The actual output level can be read by this setting. If not checked, the input buffer is disabled and the level setting on the hardware can be read.
PortDefPinSmartioBypassEnable	If checked, the SMART I/O path is bypassed for unconfigured pins' signal. It means that the SMART I/O blocks are not present for unconfigured port pins.
PortDefPinSmartioSyncIoEnable	If checked, the I/O pin input signals to the SMART I/O block are synchronized to "clk_fabric", which is configured with PortDefSmartioClockSource.
PortDefPinSmartioSyncChipEnable	If checked, the chip pin input signals to the SMART I/O block are synchronized to "clk_fabric", which is configured with PortDefSmartioClockSource.

4 EB tresos Studio configuration interface

Parameter	Description
PortDefPinSmartioLutTr0Source	The source of the LUT input signal "tr0_in" on unconfigured port pins. See Table 15 for selectable values.
PortDefPinSmartioLutTr1Source	The source of the LUT input signal "tr1_in" on unconfigured port pins. See Table 15 for selectable values.
PortDefPinSmartioLutTr2Source	The source of the LUT input signal "tr2_in" on unconfigured port pins. See Table 15 for selectable values.
PortDefPinSmartioLut	The LUT configuration setting. It is used to determine the LUT output signal and the next sequential state.
PortDefPinSmartioLutOperation	The LUT opcode that specifies the LUT operation setting on unconfigured port pins. See Table 16 for selectable values.
PortDefPinInputBufferMode	The input buffer mode (trip points and hysteresis) on unconfigured port pins. See Table 8 for selectable values.
PortDefPinOutputSlowSlewRateEnable	If checked, unconfigured port pins work in slow slew rate. If not checked, these port pins work in fast slew rate.
PortDefPinOutputDriveStrength	The GPIO drive strength setting on unconfigured port pins. See Table 9 for selectable values.
PortDef5VPinInputBufferMode	The input buffer mode (trip points and hysteresis) for S40E GPIO upper bit on unconfigured port pins. See Table 10 for selectable values.
PortDefPinOutputDriveSelectTrim	The GPIO drive select trim setting on unconfigured port pins. See Table 11 for selectable values. This parameter is available for TRAVEO™ T2G 2D cluster series only.
PortDefPinOutputSlewExt	The GPIO output extra slew rate control. See Table 12 for selectable values. This parameter is available for TRAVEO™ T2G 2D cluster series only.
PortDefPinOutputDriveExt	The GPIO output extra drive strength control. See Table 13 for selectable values. This parameter is available for TRAVEO™ T2G 2D cluster series only.

4.9 Port default AMUX splitter cell configuration

The PortDefaultAmuxSplitCell configuration provides the default parameters for unconfigured AMUX splitter cells.

Parameter	Description
PortDefAmuxBusaSwitchSL	The T-switch control for the left AMUXBUSA switch. See Table 20 for selectable values.
PortDefAmuxBusaSwitchSR	The T-switch control for the right AMUXBUSA switch. See Table 20 for selectable values.
PortDefAmuxBusaSwitchS0	The T-switch control for the AMUXBUSA vssa/ground switch. See Table 20 for selectable values.
PortDefAmuxBusbSwitchSL	The T-switch control for the left AMUXBUSB switch. See Table 20 for selectable values.
PortDefAmuxBusbSwitchSR	The T-switch control for the right AMUXBUSB switch. See Table 20 for selectable values.

4 EB tresos Studio configuration interface

Parameter	Description	
PortDefAmuxBusbSwitchS0	The T-switch control for the AMUXBUSB vssa/ground switch. See Table 20 for selectable values.	

4.10 Port trigger configuration set

The Port Trigger Configuration provides the configuration parameters for trigger groups and trigger 1-to-1 groups. See the hardware manual for details about triggers.

Parameter	Description	
PortTriggerConfigSetId	The ID number of <i>PortTriggerConfigSet</i> . The range is 0 to (the number of	
	PortTriggerConfigSet - 1).	

4.11 Port trigger group configuration

The port trigger group configuration provides the configuration parameters for trigger groups.

Parameter	Description	Description	
PortTrGroupId	The ID of t	The ID of the trigger group specified by PortTrGroupName.	
PortTrGroupName	dependen The symbo	of selected trigger group. Selectable trigger groups are hardware t. clic name is derived from the PortTrGroupContainer container e prefixed with "PortConf_PortTrGroupContainer_". Set PortTrGroupName, and then press the calculate button of the PortTrGroupId parameter to get the corresponding PortTrGroupId.	

4.12 Port output trigger configuration

The port output trigger configuration provides the configuration parameters for output triggers.

Parameter	Description		
PortTrOutputName	The name of selected output trigger. Selectable output triggers depend on the		
	trigger group in PortTrGroupName.		
	The symbolic name is derived from the <i>PortOutputTrigger</i> container short		
	name prefixed with "PortConf_PortOutputTrigger_".		
PortTrInputName	The name of input trigger connected to output trigger for this		
	PortOutputTrigger. The selectable input triggers depend on the trigger group in		
	PortTrGroupName.		
PortTrInvertEnable	If checked, the output trigger invert functionality is enabled in this		
	PortOutputTrigger.		
PortTrSensitiveType	The output trigger edge sensitive functionality type in this <i>PortOutputTrigger</i> .		
	See Port_TriggerSensitiveType for selectable values.		

4 EB tresos Studio configuration interface

Parameter	Description		
	Note: PortTrInvertEnable and PortTrSensitiveType can be changed only if trigger groups have trigger manipulation features.		
PortTrDbgFreezeEnable	If checked, the debug freeze functionality is enabled in this <i>PortOutputTrigger</i> .		
	Note: When calling Port_Init(), unconfigured output triggers are initialized as follows: PortTrInputName=0, PortTrInvertEnable=disable, PortTrSensitiveType="Level Sensitive" and PortTrDbgFreezeEnable=disable.		

4.13 Port trigger 1-to-1 group configuration

The port trigger 1-to-1 group configuration provides the configuration parameters for trigger 1-to-1 groups.

Parameter	Description		
PortTr1To1GroupId	The ID of the trigger 1-to-1 group specified by PortTrlTolGroupName.		
PortTr1To1GroupName	The name of selected trigger 1-to-1 group. Selectable trigger 1-to-1 groups are hardware-dependent. The symbolic name is derived from the <i>PortTr1To1GroupContainer</i> container short name prefixed with "PortConf_PortTr1To1GroupContainer_".		
	Note: Set PortTr1To1GroupName and then press the calculate button of the PortTr1To1GroupId parameter to get the corresponding PortTr1To1GroupId.		

4.14 Port 1-to-1 output trigger configuration

The port 1-to-1 output trigger configuration provides the configuration parameters for 1-to-1 output triggers.

Parameter	Description The name of selected 1-to-1 output trigger. Selectable 1-to-1 output triggers depend on the trigger 1-to-1 group in PortTr1To1GroupName. The symbolic name is derived from the Port1To1OutputTrigger container short name prefixed with "PortConf Port1To1OutputTrigger".	
PortTr1To1OutputName		
PortTrlTolInputType	The input trigger type in this <i>Port1To1OutputTrigger</i> . See Table 21 for selectable values.	
PortTr1To1InvertEnable	If checked, the output trigger invert functionality is enabled in this Port1To1OutputTrigger.	
PortTrlTo1SensitiveType	PortTr1To1SensitiveType is the output trigger edge sensitive functionality type in this <i>Port1To1OutputTrigger</i> . See Port_TriggerSensitiveType for selectable values.	

4 EB tresos Studio configuration interface

Parameter	Description		
	Note:	PortTr1To1InvertEnable and PortTr1To1SensitiveType can be changed only if trigger 1-to-1 groups have trigger manipulation features.	
PortTr1To1DbgFreezeEnable	If checked, the debug freeze functionality is enabled in this Port1To1OutputTrigger.		
	Note:	When calling Port_Init(), unconfigured 1-to-1 output triggers are initialized as follows: PortTr1To1InputType=Constant signal level '0', PortTr1To1InvertEnable=disable, PortTr1To1SensitiveType="Level Sensitive" and PortTr1To1DbgFreezeEnable=disable.	

5 Functional description

Functional description 5

5.1 Required header file

The Port.h file includes all necessary external identifiers. Therefore, the application only needs to include Port.h to make all API functions and data types available.

Initialization 5.2

The PORT driver provides an initialization function for initializing the microcontroller's whole port structure. As it is possible to configure more than one configuration, the Port Init function can be called with different configuration sets. The Port Init function must be called at least once after reset; it can be called several times in order to reconfigure the ports and port pins of the microcontroller. It must be called on the master core.

Code Listing 1 Example using the Port_Init() function using the 1st configuration set

Port Init(&Port Config[0]);

Note:

The PORT driver module's environment must call the Port Init function first to initialize the port for use.

If this function is not called first, no operation can occur on microcontroller ports and port pins. When the initialized pin direction is output and is the same as the previous setting, Port Init will keep the pin output. However, if the pin's output configuration is updated with this function call, output signals may be sent with the previous setting for a short period.

To configure SMART I/O, the functionality must be disabled while SMARTIO_PRT registers are updated. Note that the disabled period must occur during initialization.

This function enters/exits critical sections of every initialization of each port or trigger group. The duration for initializing a trigger group depends on the number of output triggers. Therefore, if a trigger group has many output triggers, the exclusive control period becomes long.

Flash boot configures the JTAG reset input pin to SWJ_TRSTN mode upon reset (see the device datasheet for the exact pin number). This pin is optional for JTAG debug protocol and can be configured to some other mode. If the debug protocol is JTAG and this pin is being configured to some other mode (GPIO, for example) via Port Init(), then debug session becomes unstable. This applies only when the debug protocol is JTAG. This issue can be avoided by modifying the JTAG reset input to GPIO in the scope of the debug script with the following register modification sequence before executing Port Init() inside the application code.

- 1. Modify the HSIOM_PRT_SEL register.
- Modify the GPIO_PRT_CFG register.

5 Functional description

5.3 Runtime reconfiguration

Changing the port pin direction is available only for port pins configured with the ability to change the direction.

Changing the port pin mode is available only for port pins configured with the ability to change mode.

Note:

Port_Init() can be used to reconfigure the whole port structure according to the configuration set provided by the ConfigPtr parameter.

Code Listing 2 Example using the Port_SetPinDirection() function and Port_SetPinMode() function

```
#include "Port.h"
/* ... */
/* initialize ports */
/* ... */
/* set pin direction */
Port_SetPinDirection(PortConf_PortPin_MY_IO_PIN, PORT_PIN_IN);
/* set pin mode */
Port_SetPinMode(PortConf_PortPin_MY_IO_PIN, my_pin_mode);
```

The direction of port pins configured as direction unchangeable can be refreshed. All changes at runtime for port directions of port pins that are configured as "direction changeable at runtime" keep their last state.

Code Listing 3 Example using the Port_RefreshPortDirection() function

```
#include "Port.h"
/* ... */
/* initialize ports */
/* ... */
/* refresh pin direction */
Port_RefreshPortDirection(void);
```

The PORT driver provides a reconfiguration function for an output trigger setting and a 1-to-1 output trigger setting.

Code Listing 4 Example using the Port_SetTrigger() function for output trigger and 1-to-1 output trigger

5 Functional description

Code Listing 4 Example using the Port_SetTrigger() function for output trigger and 1-to-1 output trigger

5.4 Ports and port pins

A port pin represents a single pin of the microcontroller. The value of a single pin can either be 0 or 1.

A port represents several port pins, which are grouped according to hardware and are controlled by one hardware register. The corresponding data type for a port's value depends on the bit width of the largest port. Writing to a port with a smaller width ignores the upper bits.

Note:

The PORT module only handles port pins. An overall grouping or configuring into ports is not possible.

5.5 Trigger command

The trigger command provides software control over trigger activation. This is useful for software-initiated triggers or for debugging purposes. The command enables software activation of one specific input trigger or output trigger of the trigger multiplexer setting.

Code Listing 5 Example using the Port_ActTrigger() and Port_DeactTrigger() function.

Note:

Modules that use the trigger command must call the Port_GetTriggerCmdStatus function to confirm that the edge-sensitive trigger has been completed.

Modules that use the trigger command must ensure that the trigger command activation status is deactivated using Port GetTriggerCmdStatus before calling Port ActTrigger.

5 Functional description

Modules that use the trigger command must call the <code>Port_DeactTrigger</code> function only if the trigger command is successfully activated as level-sensitive.

5.6 API parameter checking

The driver's services perform regular error checks.

When an error occurs, the error hook routine (configured via PortErrorCalloutFunction) is called, and the error code, as well as service ID, module ID and instance ID are passed as parameters.

If default error detection is enabled, all errors are also reported to the DET, a central error hook function within the AUTOSAR environment. The checking itself cannot be deactivated for safety reasons.

The following development error checks are performed by the services of the PORT driver:

- The Port Init function checks whether the parameter configuration pointer ConfigPtr is valid.
 - If invalid, the error code *PORT_E_INIT_FAILED* is reported.
- The following functions check whether the ports and port pins have been initialized. If the module initialization function is not called before, or configuration is invalid, *PORT_E_UNINIT* is reported.
 - Port SetPinDirection
 - Port SetPinMode
 - Port RefreshPortDirection
 - Port GetStatus
 - Port SetToDioMode
 - Port SetToAlternateMode
 - Port_GetAmuxSplitCtlStatus
 - Port_SetTrigger
 - Port ActTrigger
 - Port_DeactTrigger
 - PortGetTriggerIdStatus
 - Port GetTriggerCmdStatus
- The Port SetPinDirection function checks whether the parameter pin identifier Pin is valid.
 - If invalid, the error code PORT_E_PARAM_PIN is reported.
 - If PortPinDirectionChangeable is set to unchangeable for this Pin, the error code PORT_E_DIRECTION_UNCHANGEABLE is reported.
 - When a direction change to an unknown Direction (different from PORT_PIN_IN, PORT_PIN_OUT or PORT_PIN_IN_OUT_DISABLED) is requested, the error code PORT_E_PARAM_INVALID_DIRECTION will be reported.
- The Port SetPinMode function checks whether the parameter pin identifier Pin is valid.
 - If invalid, the error code PORT_E_PARAM_PIN is reported.
 - If PortPinModeChangeable is set to unchangeable for this Pin, the error code PORT_E_MODE_UNCHANGEABLE is reported.
 - If the new requested <code>Mode</code> is not valid, the error code <code>PORT_E_PARAM_INVALID_MODE</code> is reported.
- The Port_GetVersionInfo function checks whether the parameter version information pointer versioninfo is a NULL pointer.
 - If NULL pointer, the error code *PORT_E_PARAM_POINTER* is reported.

5 Functional description

- The Port_GetStatus function checks whether the parameter port status information pointer PortStatusInfoPtr is a NULL pointer.
 - If NULL pointer, the error code PORT_E_PARAM_POINTER is reported.
- The Port GetStatus function checks whether the parameter pin identifier Pin is valid.
 - If invalid, the error code PORT_E_PARAM_PIN is reported.
- The Port GetStatus function checks whether the register values are valid.
 - If the register value is invalid, the error code *PORT_E_ REGISTER* is reported.
- The Port_SetToDioMode and Port_SetToAlternateMode functions check whether the parameter pin identifier Pin is valid.
 - If invalid, the error code PORT_E_PARAM_PIN is reported.
 - If PortPinModeChangeable is set to unchangeable for this Pin, the error code PORT E_MODE_UNCHANGEABLE is reported.
- The Port_GetAmuxSplitCtlStatus function checks whether the parameter AMUX splitter cell status information pointer AmuxSplitCtlStatusInfoPtr is a NULL pointer.
 - If NULL pointer, the error code PORT_E_PARAM_POINTER is reported.
- The Port GetAmuxSplitCtlStatus function checks whether the parameter cell identifier Cell is valid.
 - If invalid, the error code PORT_E_PARAM_CELL is reported.
- The Port_SetTrigger, Port_ActTrigger, and Port_GetTriggerIdStatus functions check whether the parameter trigger group identifier group id is valid.
 - If invalid, the error code PORT_E_PARAM_TR_GROUP is reported.
- The Port_SetTrigger and Port_GetTriggerIdStatus functions check whether the parameter output trigger identifier out trg is valid.
 - If invalid, the error code PORT_E_PARAM_TR_OUTPUT is reported.
- The Port_SetTrigger function checks whether the parameter trigger group identifier group_id is being used in trigger command.
 - If the trigger command is activated with the same trigger group as this <code>group_id</code>, the error code <code>PORT_E_TR_CMD_STATUS</code> is reported.
- The Port SetTrigger function checks whether the parameter input trigger identifier in trg is valid.
 - If invalid, the error code PORT_E_PARAM_TR_INPUT is reported.
- The Port_SetTrigger function checks whether the parameter trigger group identifier group_id indicates the trigger group which has trigger manipulation features.
 - If it does not have trigger manipulation features when inv_flg is true or sensitive_type is PORT_TR_SENSITIVE_EDGE, the error code PORT_E_TR_MANIPULATION_NOT_PRESENT is reported.
- The Port_SetTrigger and Port_ActTrigger functions check whether the parameter trigger sensitive type sensitive type is valid.
 - If invalid, the error code PORT_E_PARAM_TR_SENSITIVE is reported.
- The Port ActTrigger function checks whether the parameter trigger activation type act type is valid.
 - If invalid, the error code PORT_E_PARAM_TR_ACTIVATION is reported.
- The Port_ActTrigger function checks whether the parameter trigger identifier trg_id is valid for input trigger when the parameter trigger activation type act type is PORT_TR_ACTIVATION_INPUT.
 - If invalid, the error code PORT_E_PARAM_TR_INPUT is reported.
- The Port_ActTrigger function checks whether the parameter trigger identifier trg_id is valid for output trigger when the parameter trigger activation type act type is PORT_TR_ACTIVATION_OUTPUT.

5 Functional description

- If invalid, the error code PORT_E_PARAM_TR_OUTPUT is reported.
- The Port_ActTrigger function checks whether the trigger command is deactivated.
 - If the trigger command is activated, the error code *PORT_E_TR_CMD_STATUS* is reported.
- The Port_DeactTrigger function checks whether the trigger command is activated as level sensitive.
 - If that trigger command is deactivated or activated as edge sensitive, the error code PORT_E_TR_CMD_STATUS is reported.
- The Port_GetTriggerIdStatus function checks whether the parameter trigger ID status information pointer TrigIdStatusInfoPtr is a NULL pointer.
 - If a NULL pointer, the error code PORT_E_PARAM_POINTER is reported.
- The Port_GetTriggerCmdStatus function checks whether the parameter trigger command status information pointer TrigCmdStatusInfoPtr is a NULL pointer.
 - If a NULL pointer, the error code PORT_E_PARAM_POINTER is reported.

5.7 Configuration checking

The following conditions are checked when configuring the PORT driver with EB tresos Studio:

- Multiple occurrences of the same short name for PortConfigSet containers
 - The short name for the *PortConfigSet* container must be unique.
- Multiple occurrences of the same short name for *PortContainer* containers
 - The short name for the *PortContainer* container must be unique in the same configuration set.
- The short name for the *PortContainer* container is different from *PortContainer* which has the same PortId.
 - All Portid values of containers with the same short name should be the same in all configuration sets.
- Multiple occurrences of the same short name for *PortPin* containers
 - The short name for the PortPin container must be unique in the same configuration set.
- The short name for the PortPin container is different from PortPin which has same PortPinId.
 - All PortPinId values of the container with the same short name should be the same in all configuration sets.
- Multiple occurrences of the same PortId
 - PortId must be unique in the same configuration set.
- Multiple occurrences of the same PortPinId
 - Each PortPinId must be used once to create a symbolic name and configuration for this pin. It is not possible to configure additional pins (different symbolic name) referring the same PortPinId.
- Architecture- or derivative-specific port pin configuration check
 - Some basic checks are done for each port pin to ensure that the initial mode, direction, level, and direction change could be covered by this pin. If the mode is not supported by this pin, an error is reported at project generation time.
- Multiple occurrences of the same PortPinName
 - PortPinName must be unique in the same configuration set.

5 Functional description

Multiple occurrences of the same short name for PortAmuxSplitCell containers

The short name for the PortAmuxSplitCell container must be unique in the same configuration set.

• The short name for the *PortAmuxSplitCell* container is different from *PortAmuxSplitCell*, which has same <code>PortAmuxSplitCellId</code>.

All PortAmuxSplitCellId of the container with the same short name should be the same in all configuration sets.

Multiple occurrences of the same PortAmuxSplitCellId

PortAmuxSplitCellId must be unique in the same configuration set.

Multiple occurrences of the same short name for PortTriggerConfigSet containers

The short name for the *PortTriggerConfigSet* container must be unique.

Multiple occurrences of the same PortTriggerConfigSetId

PortTriggerConfigSetId must be unique across all port sequences.

• Multiple occurrences of the same short name for PortTrGroupContainer containers

The short name for the PortTrGroupContainer container must be unique in the same configuration set.

• The short name for the *PortTrGroupContainer* container is different from *PortTrGroupContainer*, which has the same <code>PortTrGroupId</code>.

All PortTrGroupId of the container with the same short name should be the same in all configuration sets.

• Multiple occurrences of same PortTrGroupName

The trigger group name must be unique in the same configuration set.

• Multiple occurrences of the same short name for PortOutputTrigger containers

The short name for the *PortOutputTrigger* container must be unique in the same configuration set.

• The short name for the *PortOutputTrigger* container is different from *PortOutputTrigger*, which has the same PortTrOutputName.

All PortTrOutputName of the container with the same short name should be the same in all configuration sets.

Multiple occurrences of the same PortTrOutputName

The output trigger name must be unique in the same configuration set.

• Multiple occurrences of the same short name for *PortTr1To1GroupContainer* containers

The short name for the PortTr1To1GroupContainer container must be unique in the same configuration set.

• The short name for the PortTr1To1GroupContainer container is different from PortTr1To1GroupContainer, which has the same PortTr1To1GroupId.

All PortTr1To1GroupId of the container with the same short name should be the same in all configuration sets.

• Multiple occurrences of the same PortTr1To1GroupName

5 Functional description

The trigger 1-to-1 group name must be unique in the same configuration set.

• Multiple occurrences of the same short name for Port1To1OutputTrigger containers

The short name for the Port1To1OutputTrigger container must be unique in the same configuration set.

• The short name for *Port1To1OutputTrigger* container is different from *Port1To1OutputTrigger*, which has the same PortTr1To1OutputName.

All PortTr1To1OutputName of the container with the same short name should be the same all configuration sets.

Multiple occurrences of the same PortTr1To1OutputName

The 1-to-1 output trigger name must be unique in the same configuration set.

5.8 Reentrancy

The following functions are not reentrant.

- Port Init()
- Port_RefreshPortDirection()
- Port ActTrigger()
- Port DeactTrigger()

All other functions are re-entrant to each other and itself if accessing different pins (independent of a port) or different output triggers (independent of a trigger group).

5.9 Function availability in multicore

The following functions are available on any core without any restriction:

- Port_GetVersionInfo()
- Port GetStatus()
- Port GetAmuxSplitCtlStatus()
- Port GetTriggerIdStatus()
- Port GetTriggerCmdStatus()

The following function is available only on the master core:

• Port Init()

The following functions are available only on one of the cores:

- Port SetTrigger()
- Port ActTrigger()
- Port DeactTrigger()

The following functions are available on any cores with restrictions:

- Port SetPinDirection()
- Port SetPinMode()
- Port_SetToDioMode()
- Port SetToAlternateMode()
- Port RefreshPortDirection()

5 Functional description

Note:

If these API functions are used on several cores to configure the same port, PortCalloutEnable in the PortContainer must be set to true. When the port is in PortDefContainer, PortCalloutDefEnable must be set to true. In addition, multicore access control callout functions (PortCalloutPortEnter and PortCalloutPortExit) must be implemented. If these API functions are used under following conditions, there is no restriction.

- When these API functions are used on a single core.
- When these API functions are used on several cores and these APIs aren't used to configure a same port.

In that case, PortCalloutEnable and PortCalloutDefEnable can be set to false, and function body of PortCalloutPortEnter and PortCalloutPortExit can be empty.

5.10 Debugging support

The PORT driver does not support debugging.

6 Hardware resources

6 Hardware resources

6.1 Ports and pins

All GPIO pins of the TRAVEO™ T2G microcontroller can be used as digital I/O using the PORT driver.

Any port can operate in 8-pin or 1-pin units and all registers can be read or written in 1-bit or 32-bit units. The maximum number of ports and the available mode combination depend on the subderivative. For more details, refer to the respective Hardware Manual.

6.2 SMART I/O blocks

SMART I/O blocks allow Boolean operations on signals going to the GPIO pins from the device subsystems or on signals coming into the device. Operation can be synchronous or asynchronous and the blocks operate in low-power modes, such as DeepSleep.

Several ports have their own SMART I/O blocks depending on the subderivative. For more details, refer to the respective hardware manual.

6.3 AMUX splitter cells

An AMUX splitter cell is capable of grounding, disconnecting, or feeding through each AMUXBUS, and can act as a bridge between two AMUXBUS segments in different analog supply domains.

The number of AMUX splitter cells depends on the subderivative. For more details, refer to the respective hardware manual.

6.4 Trigger groups and trigger 1-to-1 groups

In general, a trigger input signal indicates the completion of a peripheral action or a peripheral event. A trigger output signal initiates a peripheral action. A trigger group is a multiplexer-based connectivity group. This type connects a peripheral input trigger to multiple peripheral output triggers. The selection is under software control. Trigger 1-to-1 group is a 1-to-1-based connectivity group. This type connects a peripheral input trigger to one specific peripheral output trigger.

The types of trigger groups/trigger 1-to-1 groups, the types of output triggers/1-to-1 output triggers for each trigger group/ trigger 1-to-1 group and the types of input triggers for each trigger group depend on the subderivative. For more details, refer to the respective Hardware Manual.

6.5 Timer

The PORT driver does not use any hardware timers.

6.6 Interrupts

The PORT driver does not use any interrupts.

7 Appendix A - API reference

7 Appendix A – API reference

7.1 Data types

7.1.1 Port_ConfigType

Type

typedef struct

Description

Defines a structure which holds the PORT driver configuration set and a pointer to the configuration data for each channel.

7.1.2 Port_PinType

Type

uint16

Description

Stores an identifier for each pin. It contains the port number of the pin in the upper 13 bits and the pin number within the port in the lower 3 bits.

7.1.3 Port_PinModeType

Type

uint8

Description

Stores the possible different modes that can be changed at runtime. Modes resulting in the same change of HW register are grouped together.

7.1.4 Port_PinDirectionType

Type

```
typedef enum
{
    PORT_PIN_IN = 0,
    PORT_PIN_OUT = 1,
    PORT_PIN_IN_OUT_DISABLED = 2
} Port_PinDirectionType
```

Description

This type defines an enum describing the possible directions a port pin can have. Use PORT_PIN_IN to set the pin input direction. Use PORT_PIN_OUT to set the pin output direction. Use PORT_PIN_IN_OUT_DISABLED to disable input and output directions while the pin mode is AMUXA, AMUXB, AMUXA_DSI, or AMUXB_DSI.

7 Appendix A - API reference

Port_PinLevelValueType 7.1.5

Type

```
typedef enum
   PORT PIN LEVEL LOW = 0,
   PORT PIN LEVEL HIGH = 1
} Port PinLevelValueType
```

Description

This type defines an enum describing the possible level value of a port pin. Use PORT_PIN_LEVEL_LOW to set the port pin as LOW. Use PORT_PIN_LEVEL_HIGH to set the port pin as HIGH.

7.1.6 Port StatusType

Type

```
typedef struct
   uint8
          direction;
   uint8 mode;
   uint8 outputDrive;
   uint8 inputBufferMode;
   uint8    outputSlowSlewRateEnable;
   uint8    outputDriveStrength;
   uint8 inputBufferMode5VPin;
   uint8    outputDriveSelectTrim;
   uint8    outputSlewRateExt;
   uint8    outputDriveStrengthExt;
   uint8 sioPinsOutputBufferMode;
   uint8 sioPinsInputBufferMode;
   uint8 sioPinsInputBufferVrefTripPoint;
   uint8 sioPinsInputBufferVohOutputLevel;
   uint8 sioPinsAnalogDftEnable;
   uint8 smartioBypassEnable;
   uint8    smartioClockSource;
   uint8    smartioHoldOverrideEnable;
   uint8    smartioPipelineEnable;
   uint8 smartioEnable;
   uint8 smartioSyncIoEnable;
   uint8 smartioSyncChipEnable;
   uint8    smartioLutTr0Source;
   uint8    smartioLutTr1Source;
   uint8    smartioLutTr2Source;
   uint8 smartioLut;
   uint8 smartioLutOperation;
   uint8    smartioDataUnitTr0Source;
   uint8    smartioDataUnitTr1Source;
   uint8 smartioDataUnitDataOSource;
   uint8    smartioDataUnitData1Source;
   uint8    smartioDataUnitBitSize;
   uint8    smartioDataUnitOperation;
   11 i n t 8
          smartioDataUnitSource;
} Port StatusType
```


7 Appendix A - API reference

Description

Structure for informing the setting of the PORT channel read from the HW register.

- direction Port pin direction (see Port_PinDirectionType).
 When port pin direction is PORT_PIN_OUT and GPIO output drive mode is configured to
 PORT_PIN_OUT_MODE_HIGHZ, PORT_PIN_IN or PORT_PIN_IN_OUT_DISABLED is returned. This is because
 the hardware status is the same as the returned direction. If PortPinOutputInBufEnable is true,
 PORT_PIN_IN is returned. If false, PORT_PIN_IN_OUT_DISABLED is returned.
- mode Port pin mode (see Table 6).
- outputDrive GPIO output drive mode (see Table 7).
- inputBufferMode Input buffer mode (trip points and hysteresis) (see Table 8).
- outputSlowSlewRateEnable Setting of the slow slew rate (Enabled=1U, Disabled=0U)
- outputDriveStrength GPIO drive strength (see Table 9).
- inputBufferMode5VPin Input buffer mode (trip points and hysteresis) for S40E GPIO upper bit (see Table 10).
- outputDriveSelectTrim GPIO drive select trim. (see Table 11) If the pin does not have the drive select trim function, returns fixed 0x00.
- outputSlewRateExt Output extra slew rate (see Table 12). If the pin does not have the output extra slew rate control function, returns fixed 0x00.
- outputDriveStrengthExt Output extra drive strength (see Table 13). If the pin does not have the output extra drive strength control function, returns fixed 0x00.
- sioPinsOutputBufferMode Output buffer mode. If the pin does not have the SIO function, returns fixed 0x00.
- sioPinsInputBufferMode Input buffer trip point in single ended input buffer mode. If the pin does not have the SIO function, returns fixed 0x00.
- sioPinsInputBufferVrefTripPoint Reference voltage (Vref) trip-point of the input buffer setting. If the pin does not have the SIO function, returns fixed 0x00.
- sioPinsInputBufferVohOutputLevel Regulated V_{OH} output level and trip point of the input buffer for a specific SIO pin pair. If the pin does not have the SIO function, returns fixed 0x00.
- sioPinsAnalogDftEnable Reserved.
- smartioBypassEnable Setting of the programmable I/O bypass (Enabled=1U, Disabled=0U). If the pin does not have the SMART I/O function, returns fixed 0x00.
- smartioClockSource Clock ("clk_fabric") and reset ("rst_fabric_n") source (see Table 14). If the pin does not have the SMART I/O function, returns fixed 0x00.
- smartioHoldOverrideEnable Setting of the I/O cell hold override functionality (Enabled=1U, Disabled=0U). If the pin does not have the SMART I/O function, returns fixed 0x00.
- smartioPipelineEnable Setting of the pipeline register (Enabled=1U, Disabled=0U). If the pin does not have the SMART I/O function, returns fixed 0x00.
- smartioEnable Setting of the programmable I/O (Enabled=1U, Disabled=0U). If the pin does not have the SMART I/O function, returns fixed 0x00.
- smartioSyncloEnable Setting of the I/O pin input signal synchronization to "clk_fabric" (Enabled=1U, Disabled=0U). If the pin does not have the SMART I/O function, returns fixed 0x00.
- smartioSyncChipEnable Setting of the chip input signal synchronization to "clk_fabric" (Enabled=1U, Disabled=0U). If the pin does not have the SMART I/O function, returns fixed 0x00.

7 Appendix A - API reference

- smartioLutTr0Source LUT input signal "tr0_in" source (see Table 15). If the pin does not have the SMART I/O function, returns fixed 0x00.
- smartioLutTr1Source LUT input signal "tr1_in" source (see Table 15). If the pin does not have the SMART I/O function, returns fixed 0x00.
- smartioLutTr2Source LUT input signal "tr2_in" source (see Table 15). If the pin does not have the SMART I/O function, returns fixed 0x00.
- smartioLut LUT configuration. If the pin does not have the SMART I/O function, returns fixed 0x00.
- smartioLutOperation LUT operation (see Table 16). If the pin does not have the SMART I/O function, returns fixed 0x00.
- smartioDataUnitTr0Source Data unit input signal "tr0_in" source (see Table 17). If the pin does not have the SMART I/O function, returns fixed 0x00.
- smartioDataUnitTr1Source Data unit input signal "tr1_in" source (see Table 17). If the pin does not have the SMART I/O function, returns fixed 0x00.
- smartioDataUnitTr2Source Data unit input signal "tr2_in" source (see Table 17). If the pin does not have the SMART I/O function, returns fixed 0x00.
- smartioDataUnitData0Source Data unit input data "data0_in" source (see Table 18). If the pin does not have the SMART I/O function, returns fixed 0x00.
- smartioDataUnitData1Source Data unit input data "data1_in" source (see Table 18). If the pin does not have the SMART I/O function, returns fixed 0x00.
- smartioDataUnitBitSize Size / width of the data unit data operands (in bits). If the pin does not have the SMART I/O function, returns fixed 0x00.
- smartioDataUnitOperation Data unit operation (see Table 19). If the pin does not have the SMART I/O function, returns fixed 0x00.
- smartioDataUnitSource Data unit input data source. If the pin does not have the SMART I/O function, returns fixed 0x00.

7.1.7 Port_AmuxCellType

Type

uint8

Description

Stores the AMUX splitter cell. Available values are dependent on HW.

7.1.8 Port_AmuxSplitCtlStatusType

Type

```
typedef struct
{
    uint8    amuxBusaSwitchSL;
    uint8    amuxBusaSwitchSR;
    uint8    amuxBusaSwitchSO;
    uint8    amuxBusbSwitchSL;
    uint8    amuxBusbSwitchSR;
    uint8    amuxBusbSwitchSO;
} Port AmuxSplitCtlStatusType
```


7 Appendix A - API reference

Description

Structure for informing the setting of AMUX splitter cell read from the HW register.

- amuxBusaSwitchSL T-switch control for Left AMUXBUSA switch (see Table 20).
- amuxBusaSwitchSR T-switch control for Right AMUXBUSA switch (see Table 20).
- amuxBusaSwitchS0 T-switch control for AMUXBUSA vssa/ground switch (see Table 20).
- amuxBusbSwitchSL T-switch control for Left AMUXBUSB switch (see Table 20).
- amuxBusbSwitchSR T-switch control for Right AMUXBUSB switch (see Table 20).
- amuxBusbSwitchS0 T-switch control for AMUXBUSB vssa/ground switch (see Table 20).

7.1.9 Port_TriggerGroupIdType

Type

uint8

Description

Stores the trigger group Id. 0 - 15: Trigger group 16 - 31: Trigger 1-to-1 group. Available values are dependent on HW.

7.1.10 Port_TriggerIdType

Type

uint8

Description

Stores the trigger ID type for output triggers, input triggers, and 1-to-1 output triggers. Available values are dependent on HW.

7.1.11 Port_TriggerSensitiveType

Type

```
typedef enum
{
    PORT_TR_SENSITIVE_LEVEL = 0,
    PORT_TR_SENSITIVE_EDGE = 1
} Port TriggerSensitiveType;
```

Description

Defines an enum describing the trigger sensitive type. Use PORT_TR_SENSITIVE_LEVEL to set level-sensitive. Use PORT_TR_SENSITIVE_EDGE to set edge-sensitive.

7 Appendix A - API reference

7.1.12 Port_TriggerActivationType

Type

```
typedef enum
{
    PORT_TR_ACTIVATION_INPUT = 0,
    PORT_TR_ACTIVATION_OUTPUT = 1
} Port TriggerActivationType;
```

Description

Defines an enum describing the trigger activation type.
Use PORT_TR_ACTIVATION_INPUT to set the input trigger.
Use PORT_TR_ACTIVATION_OUTPUT to set the output trigger.

7.1.13 Port_TriggerIdStatusType

Type

Description

Structure for informing the setting of output trigger / 1-to-1 output trigger read from the HW register.

- trlnput Input trigger ID for output trigger. Input trigger type for 1-to-1 output trigger.
- trInvertEnable Setting of the trigger invert (Enabled=1U, Disabled=0U).
- trSensitiveType Trigger sensitive type.
- trDbgFreezeEnable Setting of the trigger debug freeze (Enabled=1U, Disabled=0U).

7.1.14 Port_TriggerCmdStatusType

Type

```
typedef struct
{
    Port_TriggerGroupIdType group_id;
    Port_TriggerIdType trg_id;
    Port_TriggerActivationType act_type;
    Port_TriggerSensitiveType sensitive_type;
    uint8 activate;
}
```

Description

Structure for informing the setting of trigger command read from the HW register.

- group_id Trigger group Id. 0 15: Trigger group 16 31: Trigger 1-to-1 group.
- trg_id Output trigger ID or 1-to-1 output trigger ID in case of act_type=PORT_TR_ACTIVATION_OUTPUT. Input trigger ID in case of act_type=PORT_TR_ACTIVATION_INPUT.
- act_type Trigger activation type.

7 Appendix A – API reference

- sensitive_type Trigger sensitive type.
- activate Trigger command activation status (Activated=1U, Deactivated=0U).

7.2 Constants

7.2.1 Error codes

The service might return the error codes, show in Table 1 if default error detection is enabled:

Table 1 Error codes

Name	Value	Description
PORT_E_PARAM_PIN	10	Incorrect port pin ID is passed.
PORT_E_DIRECTION_UNCHANGEABLE	11	Port pin is not configured as changeable.
PORT_E_INIT_FAILED	12	NULL pointer is passed, or parameter is out of range.
PORT_E_PARAM_INVALID_MODE	13	Requested mode is not valid.
PORT_E_MODE_UNCHANGEABLE	14	Mode is not changeable.
PORT_E_UNINIT	15	PORT driver is not initialized or configuration is invalid.
PORT_E_PARAM_POINTER	16	NULL pointer is passed.
PORT_E_PARAM_CELL	29	The cell value is invalid.
PORT_E_PARAM_INVALID_DIRECTION	32	Requested direction not valid.
PORT_E_REGISTER	33	The register value and the configuration do not match, or register value for setting the port pin is not valid.
PORT_E_PARAM_TR_GROUP	34	The trigger group ID value is invalid.
PORT_E_PARAM_TR_OUTPUT	35	The output trigger ID value is invalid.
PORT_E_PARAM_TR_INPUT	36	The input trigger ID value is invalid.
PORT_E_PARAM_TR_SENSITIVE	37	The trigger sensitive type value is invalid.
PORT_E_PARAM_TR_ACTIVATION	38	The trigger activation type value is invalid.
PORT_E_TR_CMD_STATUS	39	The trigger command status is invalid.
PORT_E_TR_MANIPULATION_NOT_PRESENT	40	The trigger group does not have trigger manipulation features.

7.2.2 Version information

Table 2 lists the version information published in the driver's header file.

Table 2 Version information

Name	Value	Description
PORT_SW_MAJOR_VERSION	Refer to release notes	Major version number
PORT_SW_MINOR_VERSION	Refer to release notes	Minor version number
PORT_SW_PATCH_VERSION	Refer to release notes	Patch version number

7 Appendix A – API reference

7.2.3 Module information

Table 3 Module information

Name	Value	Description
PORT_MODULE_ID	124	Module ID
PORT_VENDOR_ID	66	Vendor ID

7.2.4 API service IDs

The API service IDs, listed in Table 4, are published in the driver's header file.

Table 4 API service IDs

Name	Value	Description
PORT_API_INIT	0x0	Port initialization service
PORT_API_SET_PIN_DIRECTION	0x1	Set pin direction service
PORT_API_REFRESH_PORT_DIRECTION	0x2	Refresh port direction service
PORT_API_GET_VERSION_INFO	0x3	Get version information service
PORT_API_SET_PIN_MODE	0x4	Set pin mode service
PORT_API_SET_TRIGGER	0xF7	Set trigger service
PORT_API_ACT_TRIGGER	0xF8	Activate trigger command service
PORT_API_DEACT_TRIGGER	0xF9	Deactivate trigger command service
PORT_API_GET_STATUS_TR_ID	0xFA	Get trigger status service
PORT_API_GET_STATUS_TR_CMD	0xFB	Get trigger command status service
PORT_API_SET_TO_DIO_MODE	0xFC	Set GPIO mode service
PORT_API_SET_TO_ALTERNATE_MODE	0xFD	Set alternate mode service
PORT_API_GET_STATUS	0xFE	Get pin setting service
PORT_API_GET_AMUX_CTL_STATUS	0xFF	Get AMUX splitter cell status service

7.2.5 Port pin status

The following port pin status are published in the driver's header file:

Table 5 Common

Name	Value	Description
PORT_PIN_STATUS_FAILURE	0xFF	An abnormal value is set.

Table 6 Port pin mode

Name	Value	Description
PORT_PIN_MODE_GPIO	0	GPIO controls "out"
PORT_PIN_MODE_GPIO_DSI	1	GPIO controls "out", DSI controls "output enable"
PORT_PIN_MODE_DSI_DSI	2	DSI controls "out" and "output enable"
PORT_PIN_MODE_DSI_GPIO	3	DSI controls "out", GPIO controls "output enable"
PORT_PIN_MODE_AMUXA	4	Analog mux bus A

7 Appendix A – API reference

Name	Value	Description
PORT_PIN_MODE_AMUXB	5	Analog mux bus B
PORT_PIN_MODE_AMUXA_DSI	6	Analog mux bus A, DSI control
PORT_PIN_MODE_AMUXB_DSI	7	Analog mux bus B, DSI control

Other values (8-31) and corresponding modes are hardware dependent. Available pin modes are different for each port pin. For details of each type, see Hardware documentation.

Table 7 Output drive

Name	Value	Description
PORT_PIN_OUT_MODE_HIGHZ	0	High impedance (high-z)
PORT_PIN_OUT_MODE_PULLUP_DOWN_ATST	1	Resistive pull up and down at the same time for SMC
PORT_PIN_OUT_MODE_PULLUP	2	Resistive pull up
PORT_PIN_OUT_MODE_PULLDOWN	3	Resistive pull down
PORT_PIN_OUT_MODE_OD_LOW	4	Open drain, drives low
PORT_PIN_OUT_MODE_OD_HIGH	5	Open drain, drives high
PORT_PIN_OUT_MODE_STRONG	6	Strong
PORT_PIN_OUT_MODE_PULLUP_DOWN	7	Resistive pull up and down

For details of each type, see Hardware documentation.

Table 8 Input buffer mode

Name	Value	Description
PORT_PIN_IN_MODE_CMOS	0	Input buffer compatible with CMOS and I2C interfaces
PORT_PIN_IN_MODE_TTL	1	Input buffer compatible with TTL interfaces

For details of each type, see Hardware documentation.

Table 9 Output drive strength

Name	Value	Description
PORT_PIN_OUT_STRENGTH_DEFAULT	0	When the pin is GPIO_STD/GPIO_ENH/ GPIO_STD_STG/GPIO_ENH_STG:
		GPIO drives current at its max rated spec.
		When the pin is SMC/HSIO_STD/SMC_STG/HSIO_STD_STG:
		SMC/HSIO_STD /SMC_STG/HSIO_STD_STG default mode.
PORT_PIN_OUT_STRENGTH_FULL	1	When the pin is GPIO_STD/GPIO_ENH/ GPIO_STD_STG/GPIO_ENH_STG:
		GPIO drives current at its max rated spec (same meaning as PORT_PIN_OUT_STRENGTH_DEFAULT)
		When the pin is SMC/HSIO_STD/SMC_STG/HSIO_STD_STG:
		GPIO drives current at its max rated spec.
PORT_PIN_OUT_STRENGTH_1_2	2	GPIO drives current at 1/2 of its max rated spec.
PORT_PIN_OUT_STRENGTH_1_4	3	GPIO drives current at 1/4 of its max rated spec.

7 Appendix A – API reference

Table 10 Input buffer mode for S40E GPIO

Name	Value	Description
PORT_PIN_5V_IN_MODE_CMOS_OR_TTL	0	Input buffer is compatible with CMOS/TTL interfaces. If input buffer mode is PORT_PIN_IN_MODE_CMOS, the digital input buffer mode is set to CMOS. If input buffer mode is PORT_PIN_IN_MODE_TTL, the digital input buffer mode is set to TTL.
PORT_PIN_5V_IN_MODE_AUTO	1	Input buffer is compatible with AUTO (elevated Vil) interfaces.

For details of each type, see Hardware documentation.

Table 11 Output drive select trim

Name	Value	Description
PORT_PIN_OUT_TRIM_DEFAULT	0	Default (50 ohms)
PORT_PIN_OUT_TRIM_DS_1200HM	1	120 Ω
PORT_PIN_OUT_TRIM_DS_900HM	2	90 Ω
PORT_PIN_OUT_TRIM_DS_600HM	3	60 Ω
PORT_PIN_OUT_TRIM_DS_500HM	4	50 Ω
PORT_PIN_OUT_TRIM_DS_300HM	5	30 Ω
PORT_PIN_OUT_TRIM_DS_200HM	6	20 Ω
PORT_PIN_OUT_TRIM_DS_150HM	7	15 Ω

For details of each type, see Hardware documentation.

Table 12Output extra slew rate control

Name	Value	Description
PORT_PIN_OUT_SLEW_EXT_FAST	0	Fastest slew rate
PORT_PIN_OUT_SLEW_EXT_SLOW	1	Slowest slew rate

Table 13 Output extra drive strength control

Name	Value	Description
PORT_PIN_OUT_STRENGTH_EXT_0	0	When PortPinOutputSlewExt is
		PORT_PIN_OUT_SLEW_EXT_FAST:
		133 MHz at 15 pF, xSPI-266 mode (default)
		When PortPinOutputSlewExt is
		PORT_PIN_OUT_SLEW_EXT_SLOW:
		125 MHz at 15 pF
PORT_PIN_OUT_STRENGTH_EXT_1	1	When PortPinOutputSlewExt is
		PORT_PIN_OUT_SLEW_EXT_FAST:
		100 MHz at 15 pF, xSPI-200 mode
		When PortPinOutputSlewExt is
		PORT_PIN_OUT_SLEW_EXT_SLOW:

7 Appendix A – API reference

Name	Value	Description
		90 MHz at 15 pF
PORT_PIN_OUT_STRENGTH_EXT_2	2	When PortPinOutputSlewExt is
		PORT_PIN_OUT_SLEW_EXT_FAST:
		80 MHz at 15 pF, Graphics
		When PortPinOutputSlewExt is
		PORT_PIN_OUT_SLEW_EXT_SLOW:
		60 MHz at 15 pF
PORT_PIN_OUT_STRENGTH_EXT_3	3	When PortPinOutputSlewExt is
		PORT_PIN_OUT_SLEW_EXT_FAST:
		64 MHz at 15 pF
		When PortPinOutputSlewExt is
		PORT_PIN_OUT_SLEW_EXT_SLOW:
		50 MHz at 15 pF, Ethernet
PORT_PIN_OUT_STRENGTH_EXT_4	4	12 MHz at 20 pF, 25 MHz at 10 pF, SPI

Table 14 Clock and reset source

me	Value	Description
RT_SMART_CLK_SRC_IO0	0	Clock / reset sources are io_data_in[0] / '1'.
RT_SMART_CLK_SRC_IO1	1	Clock / reset sources are io_data_in[1] / '1'.
RT_SMART_CLK_SRC_IO2	2	Clock / reset sources are io_data_in[2] / '1'.
RT_SMART_CLK_SRC_IO3	3	Clock / reset sources are io_data_in[3] / '1'.
RT_SMART_CLK_SRC_IO4	4	Clock / reset sources are io_data_in[4] / '1'.
RT_SMART_CLK_SRC_IO5	5	Clock / reset sources are io_data_in[5] / '1'.
RT_SMART_CLK_SRC_IO6	6	Clock / reset sources are io_data_in[6] / '1'.
RT_SMART_CLK_SRC_IO7	7	Clock / reset sources are io_data_in[7] / '1'.
RT_SMART_CLK_SRC_CHIP0	8	Clock / reset sources are chip_data[0] / '1'.
RT_SMART_CLK_SRC_CHIP1	9	Clock / reset sources are chip_data[1] / '1'.
RT_SMART_CLK_SRC_CHIP2	10	Clock / reset sources are chip_data[2] / '1'.
RT_SMART_CLK_SRC_CHIP3	11	Clock / reset sources are chip_data[3] / '1'.
RT_SMART_CLK_SRC_CHIP4	12	Clock / reset sources are chip_data[4] / '1'.
RT_SMART_CLK_SRC_CHIP5	13	Clock / reset sources are chip_data[5] / '1'.
RT_SMART_CLK_SRC_CHIP6	14	Clock / reset sources are chip_data[6] / '1'.
RT_SMART_CLK_SRC_CHIP7	15	Clock / reset sources are chip_data[7] / '1'.
RT_SMART_CLK_SRC_CLK_SM_RST_ACT	16	Clock / reset sources are clk_smartio /
		rst_sys_act_n
RT_SMART_CLK_SRC_CLK_SM_RST_DS	17	Clock / reset sources are clk_smartio /
		rst_sys_dpslp_n
RT_SMART_CLK_SRC_CLK_SM_RST_DS_HIB	18	Same as PORT_SMART_CLK_SRC_CLK_SM_RST_DS.
RT_SMART_CLK_SRC_CHIP7 RT_SMART_CLK_SRC_CLK_SM_RST_ACT RT_SMART_CLK_SRC_CLK_SM_RST_DS	15 16 17	Clock / reset sources are chip_data[6] / '1'. Clock / reset sources are chip_data[7] / '1'. Clock / reset sources are clk_smartio / rst_sys_act_n Clock / reset sources are clk_smartio / rst_sys_dpslp_n

7 Appendix A – API reference

Name	Value	Description
PORT_SMART_CLK_SRC_CLK_LF_RST_LF_DS	19	Clock / reset sources are clk_lf/rst_lf_dpslp_n
		(note that "clk_lf" is available in DeepSleep power mode)
PORT_SMART_CLK_SRC_CONST0	20	Clock / reset sources are constant '0'
PORT_SMART_CLK_SRC_ASYNC	31	Clock / reset sources are asynchronous mode / '1'

For details of each type, see Hardware documentation.

Table 15 LUT input signal source

Table 13 Lot imput signat source				
Name	Value	Description		
PORT_SMART_LUT_TR_DU	0	Data unit output (for "tr0_in")		
PORT_SMART_LUT_TR_LUT0	0	LUT 0 output (for "tr1_in" or "tr2_in")		
PORT_SMART_LUT_TR_LUT1	1	LUT 1 output		
PORT_SMART_LUT_TR_LUT2	2	LUT 2 output		
PORT_SMART_LUT_TR_LUT3	3	LUT 3 output		
PORT_SMART_LUT_TR_LUT4	4	LUT 4 output		
PORT_SMART_LUT_TR_LUT5	5	LUT 5 output		
PORT_SMART_LUT_TR_LUT6	6	LUT 6 output		
PORT_SMART_LUT_TR_LUT7	7	LUT 7 output		
PORT_SMART_LUT_TR_CHIP04	8	chip_data[0] (for LUTs 0, 1, 2, 3)		
		chip_data[4] (for LUTs 4, 5, 6, 7)		
PORT_SMART_LUT_TR_CHIP15	9	chip_data[1] (for LUTs 0, 1, 2, 3)		
		chip_data[5] (for LUTs 4, 5, 6, 7)		
PORT_SMART_LUT_TR_CHIP26	10	chip_data[2] (for LUTs 0, 1, 2, 3)		
		chip_data[6] (for LUTs 4, 5, 6, 7)		
PORT_SMART_LUT_TR_CHIP37	11	chip_data[3] (for LUTs 0, 1, 2, 3)		
		chip_data[7] (for LUTs 4, 5, 6, 7)		
PORT_SMART_LUT_TR_IO04	12	io_data_in[0] (for LUTs 0, 1, 2, 3)		
		io_data_in[4] (for LUTs 4, 5, 6, 7)		
PORT_SMART_LUT_TR_IO15	13	io_data_in[1] (for LUTs 0, 1, 2, 3)		
		io_data_in[5] (for LUTs 4, 5, 6, 7)		
PORT_SMART_LUT_TR_IO26	14	io_data_in[2] (for LUTs 0, 1, 2, 3)		
		io_data_in[6] (for LUTs 4, 5, 6, 7)		
PORT_SMART_LUT_TR_IO37	15	io_data_in[3] (for LUTs 0, 1, 2, 3)		
		io_data_in[7] (for LUTs 4, 5, 6, 7)		

Table 16 LUT opcode

Name	Value	Description
PORT_SMART_LUT_OPC_COM_OUT_NO_FB	0	Combinatorial output, no feedback
PORT_SMART_LUT_OPC_COM_OUT_FB	1	Combinatorial output, feedback

7 Appendix A – API reference

Name	Value	Description
PORT_SMART_LUT_OPC_SEQ_OUT_NO_FB	2	Sequential output, no feedback
PORT_SMART_LUT_OPC_REG_ASYNC	3	Register with asynchronous set and reset

For details of each type, see Hardware documentation.

Table 17 Data unit input signal source

Name	Value	Description
PORT_SMART_DU_TR_CONST0	0	Constant '0'
PORT_SMART_DU_TR_CONST1	1	Constant '1'
PORT_SMART_DU_TR_DU	2	Data unit output
PORT_SMART_DU_TR_LUT0	3	LUT 0 output
PORT_SMART_DU_TR_LUT1	4	LUT 1 output
PORT_SMART_DU_TR_LUT2	5	LUT 2 output
PORT_SMART_DU_TR_LUT3	6	LUT 3 output
PORT_SMART_DU_TR_LUT4	7	LUT 4 output
PORT_SMART_DU_TR_LUT5	8	LUT 5 output
PORT_SMART_DU_TR_LUT6	9	LUT 6 output
PORT_SMART_DU_TR_LUT7	10	LUT 7 output

For details of each type, see Hardware documentation.

Table 18 Data unit input data source

Name	Value	Description
PORT_SMART_DU_DATA_CONSTO	0	Constant "0"
PORT_SMART_DU_DATA_CHIP	1	chip_data[7:0]
PORT_SMART_DU_DATA_IO	2	io_data_in[7:0]
PORT_SMART_DU_DATA_DATA_REG	3	DATA.DATA MMIO register field

Table 19 Data unit opcode

Name	Value	Description
PORT_SMART_DU_OPC_INCR	1	INCR
PORT_SMART_DU_OPC_DECR	2	DECR
PORT_SMART_DU_OPC_INCR_WRAP	3	INCR_WRAP
PORT_SMART_DU_OPC_DECR_WRAP	4	DECR_WRAP
PORT_SMART_DU_OPC_INCR_DECR	5	INCR_DECR
PORT_SMART_DU_OPC_INCR_DECR_WRAP	6	INCR_DECR_WRAP
PORT_SMART_DU_OPC_ROR	7	ROR
PORT_SMART_DU_OPC_SHR	8	SHR
PORT_SMART_DU_OPC_AND_OR	9	AND_OR
PORT_SMART_DU_OPC_SHR_MAJ3	10	SHR_MAJ3

7 Appendix A – API reference

Name	Value	Description
PORT_SMART_DU_OPC_SHR_EQL	11	SHR_EQL

For details of each type, see Hardware documentation.

7.2.6 AMUX splitter cell status

The following AMUX splitter cell status is published in the driver's header file:

Table 20 AMUX T-switch

Name	Value	Description
PORT_AMUX_SWITCH_OPEN	0	AMUX T-switch is open
PORT_AMUX_SWITCH_CLOSED	1	AMUX T-switch is closed

For details of each type, see Hardware documentation.

7.2.7 Trigger status

The following trigger status is published in the driver's header file:

Table 21 Trigger 1-to-1 input type

Name	Value	Description
PORT_TR_1TO1_IN_CONST0	0	Constant signal level '0'.
PORT_TR_1TO1_IN_INPUT	1	Input trigger.

For details of each type, see Hardware documentation.

7.3 Functions

7.3.1 Port_Init

Syntax

```
void Port_Init
(
    const Port_ConfigType* ConfigPtr
)
```

Service ID

0x0

Parameters (in)

• ConfigPtr - Pointer to configuration set

Parameters (out)

None

Return value

None

7 Appendix A - API reference

DET errors

• *PORT_E_INIT_FAILED* – NULL pointer is given to this function, or ConfigPtr is not the pointer to the configuration information of the PORT module.

DEM errors

None

Description

This service initializes all ports and port pins, AMUX splitter cells, trigger groups, and trigger commands with the configuration set. It is the responsibility of the calling environment to execute Port_Init on the master core only, and not on any other core. The PORT module does not check whether Port_Init is called on the master core or not; therefore, any error report will not be generated if Port_Init is called from a core other than the master core.

7.3.2 Port_SetPinDirection

Syntax

Service ID

0x1

Parameters (in)

- Pin Port pin ID.
- Direction Port pin direction

Parameters (out)

None

Return value

None

DET errors

- PORT_E_PARAM_PIN The port pin ID is invalid.
- PORT_E_DIRECTION_UNCHANGEABLE Port pin is configured as direction unchangeable.
- *PORT_E_UNINIT* The ports are not initialized, or configuration is invalid.
- PORT_E_PARAM_INVALID_DIRECTION The direction requested is not valid.

DEM errors

None

Description

The service sets the port pin direction during runtime.

7 Appendix A - API reference

7.3.3 Port_RefreshPortDirection

Syntax

```
void Port_RefreshPortDirection
(
    void
)
```

Service ID

0x2

Parameters (in)

None

Parameters (out)

None

Return value

None

DET errors

• *PORT_E_UNINIT* – The ports are not initialized, or configuration is invalid.

DEM errors

None

Description

The service refreshes the directions of pins whose directions are configured as not changeable.

7.3.4 Port_GetVersionInfo

Syntax

```
void Port_GetVersionInfo
(
    Std_VersionInfoType* versioninfo
)
```

Service ID

0x3

Parameters (in)

None

Parameters (out)

• versioninfo - Pointer to where to store the version information of this module

Return value

None

7 Appendix A – API reference

DET errors

• PORT_E_PARAM_POINTER - Parameter versioninfo is a NULL pointer.

DEM errors

None

Description

This service returns the module version and vendor and module ID information of the PORT module.

7.3.5 Port_SetPinMode

Syntax

```
void Port_SetPinMode
(
    Port_PinType Pin,
    Port_PinModeType Mode
)
```

Service ID

0x4

Parameters (in)

- Pin Port in ID.
- Mode Port pin mode.

Parameters (out)

None

Return value

None

DET Errors

- PORT_E_PARAM_PIN The port pin ID is invalid.
- PORT_E_UNINIT The ports are not initialized, or configuration is invalid.
- PORT_E_PARAM_INVALID_MODE The mode is out of range.
- PORT_E_MODE_UNCHANGEABLE Port pin is configured as mode unchangeable.

DEM Errors

None

Description

This service changes the current mode of the port pin.

7 Appendix A - API reference

7.3.6 Port_GetStatus

Syntax

```
void Port_GetStatus
(
    Port_PinType Pin,
    Port_StatusType* PortStatusInfoPtr
```

Service ID

0xFE

Parameters (in)

• Pin - Port pin ID

Parameters (out)

• PortStatusInfoPtr - Where to place the port pin status information

Return value

None

DET errors

- PORT_E_PARAM_POINTER Parameter PortStatusInfoPtr is a NULL pointer.
- PORT_E_UNINIT The ports are not initialized, or configuration is invalid.
- PORT_E_PARAM_PIN The port pin ID is invalid.
- PORT_E_REGISTER The register value is invalid.

DEM errors

None

Description

This service returns the hardware register status of the specified pin.

7.3.7 Port_GetAmuxSplitCtlStatus

Syntax

Service ID

0xFF

Parameters (in)

• Cell -The ID of AMUX splitter cell.

7 Appendix A – API reference

Parameters (out)

• AmuxSplitCtlStatusInfoPtr - Where to place the AMUX splitter cell status information.

Return value

None

DET errors

- PORT_E_UNINIT The ports are not initialized, or configuration is invalid.
- PORT_E_PARAM_POINTER The AmuxSplitCtlStatusInfoPtr parameter is a NULL pointer.
- PORT_E_PARAM_CELL The ID of AMUX splitter cell is invalid.

DEM errors

None

Description

This service returns the hardware register status of the specified AMUX splitter cell.

7.3.8 Port_SetToDioMode

Syntax

```
void Port_SetToDioMode
(
    Port_PinType PortId
)
```

Service ID

0xFC

Parameters (in)

• PortId - Port pin ID

Parameters (out)

None

Return value

None

DET errors

- *PORT_E_UNINIT* The ports are not initialized, or configuration is invalid.
- PORT_E_PARAM_PIN The port pin ID is invalid.
- PORT_E_MODE_UNCHANGEABLE Port pin is configured as mode unchangeable.

DEM errors

None

Description

This service switches a port pin from the configured mode to DIO mode (PORT_PIN_MODE_GPIO).

7 Appendix A – API reference

Note: If the configured mode of a pin is "Dio", this API has no effect.

7.3.9 Port_SetToAlternateMode

Syntax

```
void Port_SetToAlternateMode
(
    Port_PinType PortId
)
```

Service ID

0xFD

Parameters (in)

• PortId - Port pin ID

Parameters (out)

None

Return value

None

DET errors

- *PORT_E_UNINIT* The ports are not initialized, or configuration is invalid.
- PORT_E_PARAM_PIN The port pin ID is invalid.
- PORT_E_MODE_UNCHANGEABLE Port pin is configured as mode unchangeable.

DEM errors

None

Description

This service switches a port pin from DIO mode (PORT_PIN_MODE_GPIO) to the configured mode.

Note: If the configured mode of a pin is "Dio", this API has no effect.

7 Appendix A - API reference

7.3.10 Port_SetTrigger

Syntax

Service ID

0xF7

Parameters (in)

- group id Trigger group ID.
- out trg Output trigger ID.
- in_trg Input trigger ID if that group_id is trigger group. Input trigger type if that group_id is trigger 1-to-1 group.
- inv_flg Trigger invert flag.
- sensitive type Trigger sensitive type.
- dbg freeze flg Debug freeze flag.

Parameters (out)

None

Return value

None

DET errors

- PORT_E_UNINIT The ports are not initialized, or configuration is invalid.
- PORT_E_PARAM_TR_GROUP The trigger group ID is invalid.
- PORT_E_PARAM_TR_OUTPUT The output trigger ID is invalid.
- PORT_E_PARAM_TR_INPUT The input trigger ID or input trigger type is invalid.
- PORT_E_TR_CMD_STATUS Trigger command is being activated with the trigger group ID.
- PORT_E_PARAM_TR_SENSITIVE The trigger sensitive type is invalid.
- PORT_E_TR_MANIPULATION_NOT_PRESENT The trigger group does not have trigger manipulation features.

DEM errors

None

Description

This service sets the configuration for specified trigger.

7 Appendix A - API reference

7.3.11 Port_ActTrigger

Syntax

Service ID

0xF8

Parameters (in)

- group id Trigger group ID
- trg_id -Trigger ID
- act type Trigger activation type
- sensitive type Trigger sensitive type

Parameters (out)

None

Return value

- TRUE Activation success
- FALSE Activation failure

DET errors

- PORT_E_UNINIT The ports are not initialized, or configuration is invalid.
- PORT_E_PARAM_TR_GROUP The trigger group ID is invalid.
- PORT_E_PARAM_TR_ACTIVATION The trigger activation type is invalid.
- PORT_E_PARAM_TR_SENSITIVE The trigger sensitive type is invalid.
- PORT_E_PARAM_TR_OUTPUT The trigger ID is invalid for output trigger when parameter act_type is PORT_TR_ACTIVATION_OUTPUT.
- PORT_E_PARAM_TR_INPUT The trigger ID is invalid for input trigger when parameter act_type is PORT_TR_ACTIVATION_INPUT.
- PORT_E_TR_CMD_STATUS Trigger command is being activated.

DEM errors

None

Description

This service activates the specified trigger.

7.3.12 Port_DeactTrigger

Syntax

7 Appendix A - API reference

```
void Port DeactTrigger
    void
```

Service ID

0xF9

Parameters (in)

None

Parameters (out)

None

Return value

None

DET errors

- PORT_E_UNINIT The ports are not initialized, or configuration is invalid.
- PORT_E_TR_CMD_STATUS The trigger command is being deactivated or activated with edge sensitive.

DEM errors

None

Description

This service deactivates the trigger activated by Port ActTrigger.

This function must be called only if the trigger command is successfully activated with the level sensitive.

Port_GetTriggerIdStatus 7.3.13

Syntax

```
void Port_GetTriggerIdStatus
   Port TriggerGroupIdType group id,
   Port TriggerIdType
                        out trg,
   Port TriggerIdStatusType* TrigIdStatusInfoPtr
```

Service ID

0xFA

Parameters (in)

- group id Trigger group ID
- out trg Output trigger ID

Parameters (out)

• TrigIdStatusInfoPtr - Where to place the output trigger status information.

Return value

7 Appendix A - API reference

None

DET errors

- PORT_E_UNINIT The ports are not initialized, or configuration is invalid.
- PORT_E_PARAM_POINTER Parameter TrigIdStatusInfoPtr is a NULL pointer.
- PORT_E_PARAM_TR_GROUP The trigger group ID is invalid.
- PORT_E_PARAM_TR_OUTPUT The output trigger ID is invalid.

DEM errors

None

Description

This service returns the hardware register status of the specified output trigger or 1-to-1 output trigger.

7.3.14 Port_GetTriggerCmdStatus

Syntax

```
void Port_GetTriggerCmdStatus
(
        Port_TriggerCmdStatusType* TrigCmdStatusInfoPtr
)
```

Service ID

0xFB

Parameters (in)

None

Parameters (out)

• TrigCmdStatusInfoPtr - Where to place the trigger command status information.

Return value

None

DET errors

- PORT_E_UNINIT The ports are not initialized, or configuration is invalid.
- PORT_E_PARAM_POINTER Parameter TrigCmdStatusInfoPtr is a NULL pointer.

DEM errors

None

Description

This service gets the status of trigger command.

7 Appendix A - API reference

7.4 Required callback functions

7.4.1 DET

If default error detection is enabled, the PORT driver uses the following callback function that is provided by DET. If you do not use DET, you have to implement this function within your application.

7.4.1.1 Det_ReportError

Syntax

```
Std_ReturnType Det_ReportError
(
    uint16 ModuleId,
    uint8 InstanceId,
    uint8 ApiId,
    uint8 ErrorId
)
```

Reentrancy

Reentrant

Parameters (in)

- ModuleId Module ID of the calling module.
- InstanceId Instance ID of the calling module.
- Apild ID of the API service that calls this function.
- ErrorId ID of the detected development error.

Return value

Returns always E_OK (is required for services).

Description

Service for reporting development errors.

7 Appendix A – API reference

7.5 Callout functions

7.5.1 Error callout API

The AUTOSAR PORT module requires an error callout handler. Each error is reported to this handler; error checking cannot be switched off. The name of the function to be called can be configured with the PortErrorCalloutFunction parameter.

Syntax

```
void Error_Handler_Name
(
    uint16 ModuleId,
    uint8 InstanceId,
    uint8 ApiId,
    uint8 ErrorId
)
```

Reentrancy

Reentrant

Parameters (in)

- ModuleId Module ID of the calling module.
- InstanceId Instance ID of the calling module.
- Apild ID of the API service that calls this function.
- ErrorId ID of the detected error.

Return value

None

Description

Service for reporting errors.

7 Appendix A – API reference

7.5.2 **Callout Port Enter**

The service will be called at the start of the area where exclusive control is needed. The name of the function to be called can be configured with the PortCalloutPortEnter parameter.

Syntax

```
void Callout_Port_Enter_Name
    Port_PortType PortId
)
```

Reentrancy

Reentrant

Parameters (in)

• PortId - The ID of a port that needs multicore exclusive access control.

Return value

None

Description

Port driver's environment must implement multicore exclusive access control for the PortId if the following APIs are called on several cores to configure the same PortId.

- Port SetPinDirection
- Port SetPinMode
- Port SetToDioMode
- Port SetToAlternateMode
- Port RefreshPortDirection

If those APIs will be called only on a one of cores, the callout function body can be empty.

Note that a file that implements the callout function must include *Port.h* to refer the Port PortType.

7 Appendix A – API reference

7.5.3 **Callout Port Exit**

The service will be called at the end of the area where exclusive control is needed. The name of the function to be called can be configured with the PortCalloutPortExit parameter.

Syntax

```
void Callout_Port_Exit_Name
    Port_PortType PortId
)
```

Reentrancy

Reentrant

Parameters (in)

• PortId - The ID of a port that needs multicore exclusive access control.

Return value

None

Description

Port driver's environment must implement multicore exclusive access control for the PortId if the following APIs are called on several cores to configure the same PortId.

- Port SetPinDirection
- Port SetPinMode
- Port SetToDioMode
- Port SetToAlternateMode
- Port RefreshPortDirection

If those APIs will be called only on a one of cores, the callout function body can be empty.

Note that a file that implements the callout function must include *Port.h* to refer the Port PortType.

8 Appendix B – Access register table

8 Appendix B – Access register table

8.1 HSIOM

Table 22 HSIOM access register table

Register	Bit No.	Access size	Value	Description	Timing	Mask value	Monitoring value
HSIOM_PRT_PORT_SEL0 (Port selection 0)	31:0	Word (32 bits)	Depends on the configuration value or API.	The hardware peripheral connection (pin mode) to I/O pins 0-3.	Port_Init Port_SetPinMode Port_SetToDioMode Port_SetToAlternateMode Port_GetStatus	0x00000000 (Monitoring is not needed.)	0x00000000 (Monitoring is not needed.)
HSIOM_PRT_PORT_SEL1 (Port selection 1)	31:0	Word (32 bits)	Depends on the configuration value or API.	The hardware peripheral connection (pin mode) to I/O pins 4-7.	Port_Init Port_SetPinMode Port_SetToDioMode Port_SetToAlternateMode Port_GetStatus	0x00000000 (Monitoring is not needed.)	0x00000000 (Monitoring is not needed.)
HSIOM_AMUX_SPLIT_CTL (AMUX splitter cell control)	31:0	Word (32 bits)	Depends on the configuration value or API.	This register controls the breaking of AMUX buses A and B into multiple segments.	Port_Init Port_GetAmuxSplitCtlStatus	0x00000000 (Monitoring is not needed.)	0x00000000 (Monitoring is not needed.)

8.2 **GPIO**

Table 23 GPIO access register table

Register	Bit No.	Access size	Value	Description	Timing	Mask value	Monitoring value
GPIO_PRT_OUT (Port output data register)	31:0	Word (32 bits)	Depends on the configuration value or API	The output data for the IO pins in the port.	Port_Init	0x00000000 (Monitoring is not needed.)	0x00000000 (Monitoring is not needed.)
GPIO_PRT_CFG (Port configuration register)	31:0	Word (32 bits)	Depends on the configuration value or API	Configuration of drive mode and input buffer enable for each pin.	Port_Init Port_RefreshPortDirection Port_SetPinDirection Port_GetStatus	0x00000000 (Monitoring is not needed.)	0x00000000 (Monitoring is not needed.)
GPIO_PRT_CFG_IN (Port input buffer configuration register)	31:0	Word (32 bits)	Depends on the configuration value or API	The input buffer for each pin. This register is common for S40S & S40E GPIO pins.	Port_Init Port_GetStatus	0x00000000 (Monitoring is not needed.)	0x00000000 (Monitoring is not needed.)
GPIO_PRT_CFG_OUT (Port output buffer configuration register)	31:0	Word (32 bits)	Depends on the configuration value or API	The output driver for each pin.	Port_Init Port_GetStatus	0x00000000 (Monitoring is not needed.)	0x00000000 (Monitoring is not needed.)
GPIO_PRT_CFG_SIO (Port SIO configuration register)	31:0	Word (32 bits)	Depends on the configuration value or API	The features that are specific to SIO ports.	Port_Init Port_GetStatus	0x00000000 (Monitoring is not needed.)	0x00000000 (Monitoring is not needed.)
GPIO_PRT_CFG_IN_AUTOLVL (Port S40E GPIO input buffer configuration register)	31:0	Word (32 bits)	Depends on the configuration value or API	The S40E GPIO input buffer upper bit for each pin.	Port_Init Port_GetStatus	0x00000000 (Monitoring is not needed.)	0x00000000 (Monitoring is not needed.)
GPIO_PRT_CFG_OUT2 (Port output buffer configuration register 2)	31:0	Word (32 bits)	Depends on the configuration value or API	The output driver for each pin. This register is for TRAVEO™ T2G 2D cluster series only.	Port_Init Port_GetStatus	0x00000000 (Monitoring is not needed.)	0x00000000 (Monitoring is not needed.)
CFG_SLEW_EXT (Port output buffer slew extension configuration register)	31:0	Word (32 bits)	Depends on the configuration value or API	Controls the slew rate for each pin. This register is for TRAVEO™ T2G 2D cluster series only.	Port_Init Port_GetStatus	0x00000000 (Monitoring is not needed.)	0x00000000 (Monitoring is not needed.)

8 Appendix B – Access register table

Register	Bit No.	Access size	Value	Description	Timing	Mask value	Monitoring value
CFG_DRIVE_EXT0 (Port output buffer drive extension configuration register)	31:0	Word (32 bits)	Depends on the configuration value or API	The output driver for each pin. This register is for TRAVEO™ T2G 2D cluster series only.	Port_Init Port_GetStatus	0x00000000 (Monitoring is not needed.)	0x00000000 (Monitoring is not needed.)
CFG_DRIVE_EXT1 (Port output buffer drive extension configuration register)	31:0	Word (32 bits)	Depends on the configuration value or API	The output driver for each pin. This register is for TRAVEO™ T2G 2D cluster series only.	Port_Init Port_GetStatus	0x00000000 (Monitoring is not needed.)	0x00000000 (Monitoring is not needed.)

8.3 SMART I/O

Table 24 SMARTIO access register table

Register	Bit No.	Access size	Value	Description	Timing	Mask value	Monitoring value
SMARTIO_PRT_CTL (Control register)	31:0	Word (32 bits)	Depends on the configuration value or API	This register controls programmable I/O port.	Port_Init Port_GetStatus	0x00000000 (Monitoring is not needed.)	0x00000000 (Monitoring is not needed.)
SMARTIO_PRT_SYNC_CTL (Synchronization control register)	31:0	Word (32 bits)	Depends on the configuration value or API	This register controls synchronization setting for each I/O pin.	Port_Init Port_GetStatus	0x00000000 (Monitoring is not needed.)	0x00000000 (Monitoring is not needed.)
SMARTIO_PRT_LUT_SELx (LUT component input selection for LUT x)	31:0	Word (32 bits)	Depends on the configuration value or API	LUT input signal source for LUT x (x is 0 to 7	Port_Init Port_GetStatus	0x00000000 (Monitoring is not needed.)	0x00000000 (Monitoring is not needed.)
SMARTIO_PRT_LUT_CTLx (LUT component control register for LUT x)	31:0	Word (32 bits)	Depends on the configuration value or API	Determines the LUT output signal for LUT x (x is 0 to 7)	Port_Init Port_GetStatus	0x00000000 (Monitoring is not needed.)	0x00000000 (Monitoring is not needed.)
SMARTIO_PRT_DU_SEL (Data unit component input selection)	31:0	Word (32 bits)	Depends on the configuration value or API	Data unit input signal/data source.	Port_Init Port_GetStatus	0x00000000 (Monitoring is not needed.)	0x00000000 (Monitoring is not needed.)
SMARTIO_PRT_DU_CTL (Data unit component control register)	31:0	Word (32 bits)	Depends on the configuration value or API	This register selects size/width of the data unit data operands.	Port_Init Port_GetStatus	0x00000000 (Monitoring is not needed.)	0x00000000 (Monitoring is not needed.)
SMARTIO_PRT_DATA (Data register)	31:0	Word (32 bits)	Depends on the configuration value or API	Data unit input data source.	Port_Init Port_GetStatus	0x00000000 (Monitoring is not needed.)	0x00000000 (Monitoring is not needed.)

8.4 PERI

Table 25 PERI access register table

Register	Bit No.	Access size	Value	Description	Timing	Mask value	Monitoring value
PERI_TR_CMD (Trigger command)	31:0	Word (32 bits)	Depends on the configuration value or API	This register provides SW control over trigger activation.	Port_Init Port_ActTrigger Port_DeactTrigger Port_SetTrigger Port_GetTriggerCmdStatus	0x00000000 (Monitoring is not needed.)	0x00000000 (Monitoring is not needed.)
PERI_TR_GR_TR_CTL (Trigger control register)	31:0	Word (32 bits)	Depends on the configuration value or API	This register specifies the input trigger for a specific output trigger.	Port_Init Port_SetTrigger Port_GetTriggerIdStatus	0x00000000 (Monitoring is not needed.)	0x00000000 (Monitoring is not needed.)
PERI_TR_1TO1_GR_TR_CTL (Trigger control register)	31:0	Word (32 bits)	Depends on the configuration value or API	This register specifies 1-to-1 triggers.	Port_Init Port_SetTrigger Port_GetTriggerIdStatus	0x00000000 (Monitoring is not needed.)	0x00000000 (Monitoring is not needed.)

Revision history

Revision history

Revision Issue date		Description of change				
**	2020-09-10	New spec.				
*A	2020-11-19	Changed a memmap file include folder in section "Memory mapping". Updated definition values in Table 9. Output drive strength. Added description for new configurations in 4.4 Port pin configuration, 4.8 Port default pin configuration. Added configuration table in Table 12, Table 13. Added description for pin doesn't have specific function in 7.1.1 Data types Port_StatusType.				
		Added registers in 8.1.2 GPIO. MOVED TO INFINEON TEMPLATE.				
*B	2021-05-18	Added description for pins that do not have specific function in 4.4 Port pin configuration. Removed "reserve" from 7.1.8 Port_AmuxSplitCtlStatusType and 7.1.14 Port_TriggerCmdStatusType. Changed description of 4.7 Port default configuration, 4.8 Port default pin configuration, 4.9 Port default AMUX splitter cell configuration.				
*C	2021-12-22	Updated to Infineon style.				
*D	2022-06-27	Added the I/O cell type that do not have specific function in Section 4.4, "Port pin configuration". Changed the description in Table 9, "Output drive strength". Changed the description in Table 13, "Output extra drive strength control".				
*E	2022-09-27	Added note for PortPinDirection parameter description in Port pin configuration section.				
*F	2023-10-06	Add limitation for Port5VPinInputBufferMode in 4.4 Port Pin Configuration.				
*G	2023-12-08	Web release. No content updates.				
*H	2024-03-18	Added note for PortPinDirection parameter description in Port pin configuration section.				
*	2024-07-22	Added note for PortDefPinOutputDrive parameter description in Port default pin configuration section. Added definition for Resistive pull up and down at the same time for SMC in Port pin status section.				

Trademarks

 $All\ referenced\ product\ or\ service\ names\ and\ trademarks\ are\ the\ property\ of\ their\ respective\ owners.$

Edition 2024-07-22 Published by

Infineon Technologies AG 81726 Munich, Germany

© 2024 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email:

erratum@infineon.com

Document reference 002-30202 Rev. *I

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.