5.
$$J = \{a + bx + Cx^2 \mid a^2 = b^2 + c^2\}$$

\$\times a \ bx + Cx^2 \rightarrow 0 = 0 + 0.x + 0.x^2

 $J \neq \{\}$

\$\times a^2 \cdot b^2 + c^3

\$a = \begin{arrow} b^2 + c^3 \\
 a = \begin{arrow} b^2 + c^3 \\
 a + bx + cx^2 \Rightarrow cx^2 + bx + \begin{arrow} b^2 + c^3 \\
 J = \begin{arrow} c \\
 a + b \x + c \x^2 \Rightarrow cx^2 + bx + \begin{arrow} b^2 + c^3 \\
 J = \begin{arrow} c \\
 a + b \x + c \x^2 \Rightarrow cx^2 + bx + \begin{arrow} b^2 + c^3 \\
 v \ \{a_0 + b_0 x + c_0 x^2 + a^2 + c^3 \}

\times \times \left\{ a_0 + b_0 x + c_0 x^2 \right\{ a_0 + c_0 \cdot x^2 + c^3 \}
 \times \left\{ a_0 + b_0 x + c_0 x^2 \right\{ b_0 + b_0 \cdot x + (c_0 + c_0) x^2 \\
 u + v \ \end{arrow} \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ b_0 + c_0 \cdot x^2 + b_0 x + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x + c_0 x^2 \\
 \times \left\{ a_0 + b_0 x

..) merupakan subruang Po

Menentukan basis $\mathcal{J} = \{\alpha + b \times + c \times^2 | \alpha^2 = b^2 + c^2 \}$ $k \mathcal{J} = u$ $\begin{bmatrix} \alpha \\ b \end{bmatrix} k = \begin{bmatrix} P \\ q \\ r \end{bmatrix}$ $k \mathcal{J} = P \qquad k \sqrt{b^2 + c^2} = P$ $k \mathcal{J} = P \qquad k \sqrt{b^2 + c^2} = P$ $k \mathcal{J} = P \qquad k \mathcal{J} = P \qquad k \mathcal{J} = P$ $k \mathcal{J} = P \qquad k \mathcal{J} = P \qquad k \mathcal{J} = P$ $k \mathcal{J} = P \qquad k \mathcal{J} = P \qquad k \mathcal{J} = P$ $k \mathcal{J} = P \qquad k \mathcal{J} = P \qquad k \mathcal{J} = P$ $k \mathcal{J} = P \qquad k \mathcal{J} = P \qquad k \mathcal{J} = P$ $k \mathcal{J} = P \qquad k \mathcal{J} = P \qquad k \mathcal{J} = P$ $k \mathcal{J} = P \qquad k \mathcal{J} = P \qquad k \mathcal{J} = P$ $k \mathcal{J} = P \qquad k \mathcal{J} = P \qquad k \mathcal{J} = P$ $k \mathcal{J} = P \qquad k \mathcal{J} = P \qquad k \mathcal{J} = P$ $k \mathcal{J} = P \qquad k \mathcal{J} = P \qquad k \mathcal{J} = P$ $k \mathcal{J} = P \qquad k \mathcal{J$

Untuh Pagarang, J tidah membangan Pa Untuh Pagarang, J tidah membangan Pa