

Klausuraufgaben

Hier findet ihr richtige Klausuraufgaben zum Üben, die wir auch in den Tutorien behandelt haben.

In der Klausur kommt aus jedem Themenkomplex eine Frage dran.

(1) Komplexe Zahlen

1. (a) Bestimmen Sie die kartesische Form von

$$z = \frac{(1+2i)(1-2i)}{3+(1+i)^2}.$$

(b) Bestimmen Sie sämtliche komplexen Lösungen der Gleichung

$$(z-2i)(z+1+i)^3 = -8z+16i.$$

(c) Skizzieren Sie in der Gaußschen Zahlenebene die Menge aller komplexen Zahlen z = x+iy, die die folgenden drei Bedingungen erfüllen:

$$|z - 2| \ge 1$$
, $|2\operatorname{Re}(z) - 1| \ge 1$ und $(\operatorname{Im}(z))^2 \le 1 + \operatorname{Re}(z)$.

Aus Ihrer Skizze sollte man erkennen, ob Randpunkte zur Menge gehören oder nicht.

a)

$$z = \frac{5}{13}(3 - 2i)$$

b)

$$z_1 = 2 \cdot i$$

$$z_2 = (\sqrt{3} - 1) \cdot i$$

$$z_3 = -3 - i$$

$$z_4 = -\left(\sqrt{3} + 1\right) \cdot i$$

- 1. (a) Für $z_1 = i 1$ und $z_2 = 3 2i$ berechne man $\frac{z_1}{z_2}$ und z_1^{10} . Die Ergebnisse sind in kartesischer Form anzugeben.
 - (b) Skizzieren Sie in der Gaußschen Zahlenebene die Menge aller komplexen Zahlen z = x+iy, die beide der folgenden Bedingungen erfüllen:

$$\text{Im } z - (\text{Re } z)^2 \ge -1 \quad \text{und} \quad |i - z| > 1.$$

Aus Ihrer Skizze sollte man erkennen, ob Randpunkte zur Menge gehören oder nicht.

$$\frac{z_1}{z_2} = \frac{-5+i}{13}$$

$$z_1^{10} = 32 \cdot e^{\frac{3}{2}\pi i} = -32 \cdot i$$

(2) Folgen und Reihen

2. (a) Bestimmen Sie den Grenzwert der Folge

$$a_n = \frac{n}{\sqrt{4n^2 - 2}} + \frac{2n - 3}{8 + n^2},$$

sofern er existiert.

(b) Berechnen Sie den Wert der Reihe

$$\sum_{k=2}^{\infty} \frac{2^k}{3^{k-2}}.$$

(c) Untersuchen Sie die Reihen

$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k+1} \quad \text{und} \quad \sum_{k=1}^{\infty} (-1)^k \frac{\cos(k\pi)}{k}$$

auf Konvergenz.

(3) Funktionen

3. Gegeben ist die abschnittsweise definierte Funktion

$$f: \mathbb{R} \to \mathbb{R}, \qquad f(x) = \left\{ egin{array}{ll} lpha \cos(lpha x), & ext{für } x \leq 0; \\ rac{1}{2}e^{eta x}, & ext{für } x > 0. \end{array}
ight.$$

- (a) Skizzieren Sie den Graphen von f für $\alpha = 2$ und $\beta = 1$ im Intervall $[-\pi, 1]$.
- (b) Geben Sie sämtliche Werte der reellen Parameters α und β an, für die f stetig ist.
- (c) Kann man die Parameter sogar so wählen, dass f differenzierbar ist?

a) Tafel

b)
$$\alpha = \frac{1}{2}$$
 und β beliebig

c)
$$\alpha = \frac{1}{2}$$
 und $\beta = 0$

3. Gegeben ist die abschnittsweise definierte Funktion

$$f: \mathbb{R} \to \mathbb{R}, \qquad f(x) = \left\{ \begin{array}{ll} 3\cos(2x), & \text{für } x < 0; \\ ax^3 + bx^2 + cx + d, & \text{für } 0 \le x \le 1; \\ 1 + \ln x, & \text{für } x > 1. \end{array} \right.$$

Bestimmen Sie alle Werte der Parameter a, b, c und d, für die f differenzierbar ist.

$$a = 5$$
 $b = -7$ $c = 0$ $d = 3$

3. Wir betrachten folgende abschnittsweise definierte Funktion:

$$f: \mathbb{R} \to \mathbb{R}, \qquad f(x) = \left\{ egin{array}{ll} eta + \sin(2x), & ext{für } x \leq 0; \\ \gamma x, & ext{für } x > 0. \end{array} \right.$$

Dabei sind β und γ reelle Parameter.

- (a) Skizzieren Sie den Graphen von f für $\beta = 1$ und $\gamma = 2$ über dem Intervall $[-2\pi, 1]$.
- (b) Welche Bedingungen sind an die Parameter β und γ zu stellen, damit f stetig ist?
- (c) Kann man die Parameter β und γ sogar so wählen, dass f differenzierbar ist? Wenn ja, geben Sie alle Möglichkeiten für eine solche Parameterwahl an.

- a) Tafel
- b) $\beta = 0$ und γ beliebig
- c) $\beta = 0$ und $\gamma = 2$

4. Gegeben ist die Funktion

$$f_t: \mathbb{R} \to \mathbb{R}, \qquad f_t(x) = \left(1 - \frac{x}{t}\right) e^{-tx}$$

mit einem Parameter t > 0.

- (a) Bestimmen Sie alle Nullstellen sowie Lage und Art der lokalen Extrema.
- (b) Analysieren Sie das Verhalten der Funktion f_t im Unendlichen, d. h. für $x \to \pm \infty$.
- (c) Geben Sie den Wertebereich der Funktion f_t an.
- (d) Für welche Werte von t besitzt f_t an der Stelle $x_0 = 0$ eine Tangente mit Anstieg -2? Geben Sie die Gleichung dieser Tangente an.

- a) Nullstellte $x_N = t$; Extremstellen $x_{min} = t + \frac{1}{t}$
- b) $\lim_{x \to -\infty} (1 \frac{x}{t}) \cdot e^{-tx} = \infty$; $\lim_{x \to \infty} (1 \frac{x}{t}) \cdot e^{-tx} = 0$

c)
$$f_t(x_{min}) = (1 - \frac{1}{t}(t + \frac{1}{t})) \cdot e^{-t(t+1/t)} = -\frac{1}{t^2}e^{-t^2-1}$$
; $W_{f_t} = [f_t(x_{min}), \infty)$

d) $f'(0) = -2 \Rightarrow t = 1$ und die Tangente ist dann h(x) = -2x + 1

(4) Integrale

5. (a) Berechnen Sie den Inhalt der endlichen Fläche zwischen den Graphen der Funktionen

$$f(x) = \sqrt{x}$$
 und $g(x) = x^4$.

Zeichnen Sie vor Beginn der Rechnung eine aussagekräftige Skizze.

(b) Berechnen Sie

$$\int_0^\pi x \sin(4x) \, dx \quad \text{und} \quad \int \frac{2x+1}{x^3 - 2x^2 + x} \, dx$$

unter Rückführung auf Grundintegrale.

a)
$$A = \frac{7}{15}$$

b)
$$\ln|x| - \ln|x - 1| - \frac{3}{x - 1} + c$$

5. (a) Bestimmen Sie sämtliche Stammfunktionen von

$$f(x) = \frac{x}{\sqrt{5x^2 + 3}}$$

durch Rückführung auf Grundintegrale.

(b) Berechnen Sie durch Rückführung auf Grundintegrale

$$\int \frac{x+1}{x^3 - 2x^2} \ dx.$$

(c) Untersuchen Sie das uneigentliche Integral

$$\int_{1}^{\infty} \frac{1}{\sqrt{x^3}} \, dx$$

auf Konvergenz. Geben Sie im Falle der Konvergenz den Wert des Integrals an.

(d) Wie lautet die erste Ableitung f' von

$$f: [0, \infty) \to \mathbb{R}, \qquad f(x) = \int_0^x (t^2 + 2t) \, dt$$
?

$$A = \frac{125}{6} = 20,83$$

- (a) Berechnen Sie den endlichen Flächeninhalt, der von der x-Achse und dem Graphen der Funktion $f(x) = (2x+1)^2 9$ begrenzt wird.
- (b) Bestimmen Sie

$$\int 4x \sin(x^2 + 1) \, dx \quad \text{und} \quad \int \frac{5x + 1}{(x + 2)(x^2 - 2x + 1)} \, dx$$

durch Rückführung auf Grundintegrale.

a)
$$A = 18$$

b)
$$-\ln|x+2| + \ln|x-1| - \frac{2}{x-1} + c$$

- 5. (a) Skizzieren Sie die Graphen der Funktionen $f(x) = 2 x^2$ und $g(x) = \sqrt{x}$. Berechnen Sie den endlichen Flächeninhalt, der von der y-Achse und den Graphen dieser beiden Funktionen begrenzt wird.
 - (b) Bestimmen Sie

$$\int_0^\infty \frac{3}{(2x+4)^2} \, dx \quad \text{und} \quad \int \frac{8x-4}{x^3+4x^2+4x} \, dx$$

durch Rückführung auf Grundintegrale.

a)
$$A = 1$$

b)
$$\int_0^\infty \frac{3}{(2x+4)^2} dx = \frac{3}{8}$$

$$\int \frac{8x - 4}{x^3 + 4x^2 + 4x} dx = -\ln|x| + \ln|x + 2| - \frac{10}{x + 2} + c$$

(5) Lineare Algebra

6. Gegeben seien eine Matrix A und ein Vektor \vec{b} wie folgt:

$$A = \left[egin{array}{cccc} eta & -eta & 0 \ 3 & -7 & 4 \ 2 & -3 & eta \end{array}
ight] \quad ext{ und } \quad ec{b} = \left[egin{array}{c} 7 \ 13 \ 12 \end{array}
ight].$$

Dabei ist $\beta \in \mathbb{R}$ ein Parameter.

- (a) Berechnen Sie die Determinante von A.
- (b) Wieviele Lösungen hat in Abhängigkeit vom Parameter β das lineare Gleichungssystem $A\vec{x}=\vec{0}$?
- (c) Berechnen Sie für $\beta=1$ die Lösung des linearen Gleichungssystems $A\vec{x}=\vec{b}$ mit Hilfe des Gaußschen Eliminationsverfahrens.
- (d) Gibt es im Fall $\beta = 1$ einen Vektor \vec{c} , für den das lineare Gleichungssystem $A\vec{x} = \vec{c}$ keine Lösung besitzt? Kann dieser Vektor \vec{c} der Nullvektor sein?

a)
$$\det(A) = -4 \cdot \beta^2 + 4 \cdot \beta$$

b) für alle $\beta \neq 0$ und $\beta \neq 1$

c)
$$x_3 = t$$
 $x_2 = 2 + t$ $x_1 = 9 + t$

d) ja, den gibt's

6. Gegeben seien eine Matrix A und ein Vektor \vec{b} wie folgt:

$$A = \left[egin{array}{cccc} eta & 0 & 3 \ 1 & 1 & 4 \ 0 & 1 & eta \end{array}
ight] \quad ext{ und } \quad ec{b} = \left[egin{array}{c} 2 \ 5 \ 3 \end{array}
ight].$$

Dabei ist $\beta \in \mathbb{R}$ ein Parameter.

- (a) Berechnen Sie die Determinante von A.
- (b) Für welche Werte von β besitzt das lineare Gleichungssystem $A\vec{x} = \vec{b}$ genau eine Lösung?
- (c) Berechnen Sie für $\beta=1$ die Lösung des linearen Gleichungssystems $A\vec{x}=\vec{b}$ mit Hilfe eines geeigneten Eliminationsverfahrens.
- (d) Geben Sie für $\beta = 1$ den Nullraum von A an.

a)
$$\det(A) = \beta^2 - 4 \cdot \beta + 3$$

b) für alle $\beta \neq 1$ und $\beta \neq 3$

c)
$$x_3 = t$$
 $x_2 = 3 - t$ $x_1 = 2 - 3 \cdot t$

d) Nullraum Lösungsmenge des homogenen LGS $A\vec{x}=0$