6.1 (A)

Der früheren Studie ist ein Fehler zweiter Art unterlaufen. H0 wurde angenommen, obwohl sie nicht zutraf.

6.1 (B)

```
In [120...
    import numpy as np

autoren = [79,52,80,57,47,41,37,46,46,34,73,62,47,66,46,29,62,80,39]
    sample_size = len(autoren)
    reps = 10000
    results= []
    for i in range(reps):
        subsample = np.random.choice(autoren, size=sample_size, replace=True)
        results.append(subsample.mean())

print(np.mean(autoren))
    print(np.quantile(results, 0.025))
    print(np.quantile(results, 0.975))

53.8421052631579
15.594409112494997
46.94736842105263
```

Der Mittelwert der Stichprobe (x) liegt bei 54. Der wahre Mittelwert (μ) liegt mit 95%iger Wahrscheinlichkeit zwischen 47 und 61 Jahren.

6.2 1.

```
In [108...
    romanautoren = [48,68,70,60,77,68,58,58,73,81,77,70,49,85,64,71,66,61,47,98]
    mw1 = np.mean(autoren)
    mw2 = np.mean(romanautoren)
    mw_differenz = mw1 -mw2
    print(mw_differenz)
```

-13.607894736842105

7., 49., 56., 58., 63., 51.,

1., 68., 54., 64., 55., 43.,

19., 50., 70., 20., 38., 68., 45.],

60.89473684210526

[63., 65., 53., 32., 68., 65., 85., 19., 63., 25., 46., 73., 75.,

35., 64., 48., 39., 35., 54., 79.]]), array([[47., 46., 42., 98., 48., 78., 64., 3

70., 51., 66., 58., 78., 39., 72.]]), array([[50., 59., 28., 74., 55., 79., 60., 6

```
56., 41., 40., 61., 51., 50., 59.],
       [51., 52., 82., 55., 79., 42., 61., 11., 57., 52., 47., 45., 62.,
       25., 52., 64., 69., 23., 59., 61.]]), array([[44., 34., 37., 53., 63., 45., 84., 3
7., 47., 32., 51., 61., 55.,
        87., 65., 54., 58., 37., 59., 25.],
       [61., 63., 69., 61., 35., 80., 47., 49., 46., 77., 49., 46., 71.,
        40., 72., 51., 78., 53., 52., 42.]]), array([[60., 24., 33., 64., 34., 44., 40., 4
0., 49., 66., 62., 51., 55.,
        36., 43., 60., 72., 57., 47., 58.],
       [34., 40., 84., 21., 58., 71., 58., 33., 63., 28., 36., 63., 52.,
       27., 35., 22., 63., 47., 49., 56.]]), array([[ 33., 43., 37., 45., 27., 46.,
    32., 33., 36., 83.,
59.,
         54., 68., 47., 101., 44., 49., 44., 63.,
                                                        44.],
       [ 61., 26., 61., 24., 58., 62., 27., 31.,
                                                        67., 42., 69.,
                   57., 58., 58.,
                                     70., 27., 47., 61.]]), array([[87., 59., 39., 5
             49.,
0., 32., 46., 81., 57., 63., 28., 55., 78., 56.,
        60., 72., 36., 45., 45., 50., 29.],
       [41., 29., 44., 54., 72., 46., 52., 74., 39., 68., 36., 62., 73.,
        65., 75., 59., 77., 63., 29., 71.]]), array([[60., 37., 17., 71., 54., 54., 55., 8
2., 53., 49., 55., 84., 45.,
       58., 72., 52., 58., 48., 52., 67.],
       [66., 17., 73., 33., 42., 51., 53., 65., 59., 28., 72., 41., 66.,
        66., 58., 42., 73., 68., 73., 59.]]), array([[60., 50., 51., 63., 52., 76., 57., 5
7., 50., 49., 42., 65., 50.,
       49., 34., 21., 43., 47., 48., 42.],
       [29., 64., 60., 61., 63., 47., 58., 32., 49., 76., 52., 49., 67.,
        40., 66., -0., 33., 56., 66., 68.]])]
```

6.2 3.

```
In [103...
    liste_mw_diff= []
    for i,value in enumerate(liste2):
        liste_mw_diff.append(np.mean(liste2[i][0]) - np.mean(liste2[i][1]))
    print(liste_mw_diff)
```

[-2.0, 4.8499999999994, -5.9499999999996, 2.9499999999997, -5.70000000000003, 2.7 5, -1.850000000000014, -3.050000000000043, 0.89999999999986, -1.5]

6.2 4.

```
In [111...
counter = 0
for i in liste_mw_diff:
    if abs(i) > 13.60:
        counter += 1
print("In" , counter , "Fällen ist die Mittelwertdifferenz größer als die real gemessene.
```

In O Fällen ist die Mittelwertdifferenz größer als die real gemessene.

6.2 5.

Nein, da die einfache Mittelwertdifferenz die Variabilität innerhalb der Stichproben nicht berücksichtigt. Man müsste die Mittelwertdifferenz noch ins Verhältnis zur Standardabweichung bringen und die Qunatile der daraus entstehenden T-Verteilungen berechnen.

6.3 (A)

```
In [115... span_autoren = [46,68,70,60,77,68,58,58,73,81,77,70,49,85,64,71,66,61,47,98]

std_span_aut = np.std(span_autoren)/np.sqrt(10)

std_aut = np.std(autoren)/np.sqrt(10)

unten = np.sqrt((std_span_aut**2) + (std_aut**2)) #varianz + wurzel

t = (np.mean(autoren) - np.mean(span_autoren))/unten

print(t)
```

-2.130961602215577

6.3 (B)

```
from scipy import stats
    stats.ttest_ind(autoren, span_autoren, equal_var = True)

Ttest indResult(statistic=-2.9053172311876216, pvalue=0.006159661065142522)
```

Out[122... Titest_Indresult(Statistic==2.9033172311070210, pvalue=0.00

6.3 (C)

Die Personen der Stichprobe "autoren" erreichten ein Lebensalter von durchschnittlich 54 Jahren +- 16 Jahre die der Stichprobe "Spanische Autoren" (span_autoren) wurden mit 67 +- 13 Jahren signifikant älter (t-Test:t40 = -2.9, P < 0.05).