1. Notations

Données. Soit M une variété réelle lisse ou analytique de dimension 2n munie d'une structure complexe I intégrable. On dispose au voisinage d'un point $O \in M$ de coordonnées réelles x^i centrées en O. On notera $u^a = x^a + ix^{a+n}$.

On introduit les objets suivants :

- 1.1. Les différents faisceaux naturels, (on notera $\Gamma(U, \mathcal{F})$ les sections de \mathcal{F} sur l'ouvert U) :
 - Les faisceaux constants $\underline{\mathbb{R}}$, $\underline{\mathbb{C}}$. Dont les sections sont les fonctions localement constantes à valeurs dans \mathbb{R} , resp. \mathbb{C} .
 - Le faisceau structural (lisse) \mathcal{C}^{∞} ou \mathcal{C}_{M}^{∞} , dont les sections sont les fonctions lisses à valeurs complexes.
 - Le faisceau structural analytique \mathcal{C}^{ω} ou \mathcal{C}_{M}^{ω} , dont les sections sont les fonctions analytiques à valeurs complexes.
- 1.2. Le fibré tangent $T_{\mathbb{R}}M$ à M, ses sections lisses forment de manière naturelle un faisceau de \mathbb{R} -espaces vectoriels de dimensions 2n que l'on notera \mathfrak{X} . Une base locale des sections est donnée par la famille :

$$\frac{\partial}{\partial x^1}, \frac{\partial}{\partial x^2}, \cdots, \frac{\partial}{\partial x^{2n}}$$

On identifie les champs de vecteurs et les dérivations réelles sur l'anneau des fonctions réelles sur M.

1.3. Son complexifié $T_{\mathbb{C}}M := T_{\mathbb{R}}M \otimes_{\mathbb{R}} \mathbb{C}$ dont le faisceau associé est $\mathfrak{X}_{\mathbb{C}} = \mathfrak{X} \otimes_{\underline{\mathbb{R}}} \underline{\mathbb{C}}$. Une base locale des sections est donnée par la famille précédente ou par :

$$\frac{\partial}{\partial u^1}, \frac{\partial}{\partial u^2}, \cdots, \frac{\partial}{\partial u^n}, \frac{\partial}{\partial \bar{u}^1}, \frac{\partial}{\partial \bar{u}^2}, \cdots, \frac{\partial}{\partial \bar{u}^n}$$

On a la décomposition spectrale (fibre à fibres)

$$T_{\mathbb{C}}M = T^{1,0}M \oplus T^{0,1}M$$

qui s'écrit en terme de faisceaux

$$\mathfrak{X}_{\mathbb{C}} = \mathcal{X} \oplus \bar{\mathcal{X}}$$

qui fait apparaître

- L'espace propre pour la valeur propre i de l'opérateur $I: T^{1,0}M$. Fibré vectoriel complexe de dimension n dont les sections sont appelés *champs* de vecteurs I-holomorphes.
 - Il s'identifie naturellement au fibré tangent réel par l'application partie réelle $T^{1,0}M \to T_{\mathbb{R}}M$; on le notera par la suite TM.
- L'espace propre pour la valeur propre -i de l'opérateur $I: T^{0,1}M$. Fibré vectoriel complexe de dimension n dont les sections sont appelés champs $de \ vecteurs \ (I-)antiholomorphes.$
- Une opération $X \mapsto \bar{X} \operatorname{sur} T_{\mathbb{C}}M = T_{\mathbb{R}}M \otimes_{\mathbb{R}} \mathbb{C}$ qui échange $T^{1,0}M$ et $T^{0,1}M$.

- 1.4. L'espace des 1-formes réelles $\Omega_{\mathbb{R},M} := \operatorname{Hom}_{\mathbb{R}}(T_{\mathbb{R}}M,\mathbb{R})$.
- 1.5. Son complexifié $\Omega_{\mathbb{C},M} := \operatorname{Hom}_{\mathbb{C}}(T_{\mathbb{C}}M,\mathbb{C}) = \operatorname{Hom}_{\mathbb{R}}(T_{\mathbb{R}}M)$ On a la décomposition obtenue par dualité :

$$\Omega_{\mathbb{C},M}=\Omega^{0,1}\oplus\Omega^{1,0}$$

- $\Omega^{1,0} := (T^{0,1}M)^{\perp}$ faisceau des formes qui s'annulent sur les (0,1)-vecteurs. Fibré vectoriel complexe de dimension n.
 - C'est également l'espace des formes propres de valeur propre i pour l'operateur I^* .
- $\Omega^{0,1} := (T^{1,0}M)^{\perp}$ faisceau des formes qui s'annulent sur les (1,0)-vecteurs. Fibré vectoriel complexe de dimension n.
 - C'est également l'espace des formes propres de valeur propre -i pour l'operateur I^* .
- 1.6. On définit les m-formes à valeur complexes par :

$$\Omega^m := \bigwedge^m \Omega_{\mathbb{C},M}$$

C'est le faisceau des formes m-linéaires alternées sur TM à valeurs complexes. On remarquera que $\Omega^0=\mathcal{C}_M^\infty$ faisceau des fonctions complexes lisses.

1.7. Enfin, on définit les (p,q)-formes de la façon suivante :

$$\Omega^{p,q} := \bigwedge^p \Omega^{1,0} \wedge \bigwedge^q \Omega^{0,1} \ \subset \ \Omega^m$$

Si on pose m = p + q. C'est également le faisceau des formes m-linéaires alternées sur $T_{\mathbb{C}}M$ qui s'annulent sur les m-uplets de vecteurs $(X_1, \dots X_m)$ dès lors que

- au moins p+1 des X_i sont de type (1,0)
- ou au moins q + 1 des X_i sont de type (0, 1).

On a alors la décomposition

$$\Omega^m = \bigoplus_{p+q=m} \Omega^{p,q}$$

1.8. Les opérateurs d : $\Omega^k \to \Omega^{k+1}$ en définissant $(\mathrm{d}\theta)(X)$ pour $\theta \in \Omega^k$, $X = (X_1, X_2, \cdots, X_{k+1})$ où les $X_i \in TM$ par :

$$\sum_{1 \le j \le k} (-1)^j X_j \left(\theta \left(\check{X}^j \right) \right) + \sum_{1 \le j < i \le k} (-1)^{j+i} \theta \left([X_j, X_i], \check{\check{X}}^{j,i} \right)$$

- Dans le cas k = 0, la deuxième partie de la formule est vide, et on retrouve l'opération $f \mapsto X(f)$, ainsi (df)(X) = X(f).
- Cette définition intrinsèque coïncide dans des coordonnées avec

$$d\theta = d(\theta_K dx^K) = \frac{\partial \theta_K}{\partial x^i} dx^i \wedge dx^K$$

$$d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^{\deg(\alpha)} \alpha \wedge d\beta$$

1.9. On dispose naturellement des projections

$$\pi^{p,q}:\Omega^{p+q}\longrightarrow\Omega^{p,q}$$

On peut dès lors définir les opérateurs ∂ et $\bar{\partial}$ comme

- la partie de type (p+1,q) de la différentielle d'une (p,q)-forme : $\partial=\pi^{p+1,q}\circ \mathrm{d}_{|\Omega^{p,q}}$
- la partie de type (p,q+1) de la différentielle d'une (p,q)-forme : $\bar{\partial}=\pi^{p,q+1}\circ \mathrm{d}_{|\Omega^{p,q}}$
- 1.10. On définit \mathcal{O}_M (ou $\mathcal{O}_{(M,I)}$ si il y a ambiguïté) le faisceau des fonctions holomorphes sur M à valeurs complexes comme le noyau de l'opérateur $\bar{\partial}: \mathcal{C}_M^\infty \to \Omega^1$. C'est automatiquement un sous-faisceau de \mathcal{C}_M^ω (conséquence de la formule de CAUCHY).

De même on définit $\mathcal{O}_M(E)$ pour $E \to M$ fibré vectoriel holomorphe, comme le faisceau des sections holomorphes de E.

- 1.11. La structure presque complexe I est dite in-tégrable si l'une des conditions équivalentes est satisfaite :
 - (i) Le tenseur de NIJENHUIS défini par : $N_I(X,Y) := IX, IY I[X, IY] I[X, Y] + I^2[X, Y]$ est identiquement nul.
 - (ii) Pour tout champ de vecteur complexes X,Y sur M satisfaisant IX=iX et IY=iY, le crochet de LIE [X,Y] satisfait également I[X,Y]=i[X,Y]
- (iii) L'espace tangent $I\text{-holomorphe}\ TM=T^{1,0}M\subset T_{\mathbb C}$ est stable par crochet de Lie. C'est-à-dire $[TM,TM]\subseteq TM$
- (iv) Pour toute famille $(\omega^{\alpha})_{\alpha}$ de $(1,0)_{I}$ -formes sur M de rang n, et pour tout α , $d\omega^{\alpha} = \theta^{\alpha}_{\beta} \wedge \omega^{\beta}$ pour des 1-formes θ^{α}_{β} .
- (v) Le dual de l'espace tangent I-holomorphe $\Omega^{1,0} \subseteq \Omega^1$ satisfait $d\Omega^{1,0} \subseteq \Omega^1 \wedge \Omega^{1,0}_M$.
- (vi) d = ∂ + $\bar{\partial},$ ce qui signifie que la différentielle d'une (p,q)-forme est une somme de (p+1,q) et (p,q+1)-formes.
- $(vii) \ \mathbf{d} = \partial + \bar{\partial} \ \mathrm{sur} \ \Omega_M^1.$
- (viii) Le diagramme suivant commute :

$$\Omega^{0,1} \xleftarrow[\pi^{0,1}]{\pi^{0,1}} \Omega^1 \xrightarrow[]{\pi^{1,0}} \Omega^{1,0}$$

$$\downarrow \bar{\partial} \qquad \qquad \downarrow d \qquad \qquad \downarrow \partial$$

$$\Omega^{0,2} \xleftarrow[\pi^{0,2}]{\pi^{0,2}} \Omega^2 \xrightarrow[]{\pi^{2,0}} \Omega^{2,0}$$

Cette propriété d'intégrabilité est détaillé en appendice ??.

(ix)
$$\partial^2 f = 0$$
 pour tout $f \in \Gamma(M, \mathcal{C}^{\infty})$.

Todo.

- Anti-symétrisation
- Notation tensorielle
- d (définition tensorielle)

Formulaire.

$$\begin{split} \mathrm{d}f &= \frac{\partial f}{\partial z} \; \mathrm{d}z + \frac{\partial f}{\partial \bar{z}} \; \overline{\mathrm{d}z} \\ \bar{\partial} f &= \frac{\partial f}{\partial z} \; \bar{\partial} z + \frac{\partial f}{\partial \bar{z}} \; \bar{\partial} z \\ \partial f &= \frac{\partial f}{\partial z} \; \partial z + \frac{\partial f}{\partial \bar{z}} \; \bar{\bar{\partial}} \bar{z} \end{split}$$