Periodic solutions of Euler-Lagrange equations in an anisotropic Orlicz-Sobolev space setting

Sonia Acinas *

Dpto. de Matemática, Facultad de Ciencias Exactas y Naturales Universidad Nacional de La Pampa (L6300CLB) Santa Rosa, La Pampa, Argentina sonia.acinas@gmail.com

Fernando D. Mazzone †

Dpto. de Matemática, Facultad de Ciencias Exactas, Físico-Químicas y Naturales
Universidad Nacional de Río Cuarto
(5800) Río Cuarto, Córdoba, Argentina,
fmazzone@exa.unrc.edu.ar

Abstract

1 Introduction

In this paper we obtain existence of solutions for systems of equations of the type:

$$\frac{d}{dt}D_{y}Lt, ut, u't = D_{x}Lt, ut, u't \quad \text{a.e. } t \in \mathcal{Z}, T,$$

$$u\mathcal{Z} - uT = u'\mathcal{Z} - u'T = \mathcal{Z},$$

$$(P)$$

where the function $L: (\not\approx, T \ | \ \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}, d \geqslant \not\subset \text{ (called the } \textit{Lagrange function or } \textit{lagrangian})$ satisfying that it is measurable in t for each $x, y \in \mathbb{R}^d \times \mathbb{R}^d$ and continuously differentiable in x, y for almost every $t \in (\not\approx, T \]$. The unknown function $u: (\not\approx, T \) \to \mathbb{R}^d$ is assumed absolutely continuous.

Our approach involves the direct method of the calculus of variations in the framework of *anisotropic Orlicz-Sobolev spaces*. We suggest the articles [14] for definitions and main results on anisotropic Orlicz spaces, see also [2]. These spaces allow us to unify and extend previous results on existences of solutions for systems like (P).

Keywords and phrases. .

^{*}SECyT-UNRC and FCEyN-UNLPam

[†]SECyT-UNRC, FCEyN-UNLPam and CONICET

²⁰¹⁰ AMS Subject Classification. Primary: . Secondary: .

Through this article we say that a function $\bullet : \mathbb{R}^d \to \mathscr{A}, +\infty$ is of N_∞ class if \bullet is convex, $\bullet \not\approx = \not\approx$, $\bullet y > \not\approx$ if $y \not\approx$ and $\bullet - y = \bullet y$, and

where $\begin{bmatrix} \cdot \\ \end{bmatrix}$ denotes the euclidean norm on \mathbb{R}^d . From [5, Cor. 2.35] a N_{∞} function is

Associated to \bullet we have the *complementary function* // which is defined in $\xi \in \mathbb{R}^d$

$$//\xi = \phi \sum_{y \in \mathbb{R}^d} \phi y \cdot \xi - \bullet y \tag{2}$$

then, from the continuity of \bullet and (1), we have that $\#: \mathbb{R}^d \to \mathscr{L}, \infty$. Moreover, it is easy to see that // is a convex function such that //2 = 2, //2 = 2. [9, Chapter 2]. Moreover // satisfies (1) (see [14, Th. 2.2]). i.e. // is N_{∞} function.

Some examples of N_{∞} functions are the following.

Example 1.1. $\bullet_p y := \bigvee_{p \mid p} p$, for $\not\subset \langle p \rangle \langle \infty$. In this case $||\xi| = \bigvee_{p \mid p} q q$, $|\xi| = \bigvee_{p \mid p} q q$ $p_{\uparrow}p - \not\subset$.

Example 1.2. If $\bullet : \mathbb{R} \to \mathscr{L}, +\infty$ is a N_{∞} function on \mathbb{R} then $\overline{\bullet}y = \bullet_{\parallel} y_{\parallel}$ is a N_{∞}

function on \mathbb{R}^d . In this example, as in the previous one, the function \bullet is *radial*, i.e. the value of $\bullet y$ depends on the norm of y and not on its direction. These cases are not authentically anisotropic.

Example 1.3. An anisotropic function •y depends on the direction of y. For example, if $\not\subset \langle p_{\not\subset}, p_{\not\supset} \rangle < \infty$, we define $lackbox{\bullet}_{p_{\not\subset}, p_{\not\supset}} : \mathbb{R}^d \times \mathbb{R}^d \to \mathcal{E}, +\infty$ by

$$\bullet_{p_{\mathcal{L}},p_{\mathcal{D}}}y_{\mathcal{L}},y_{\mathcal{D}}\coloneqq\frac{\bigcup^{y_{\mathcal{L}}}\bigcup^{p_{\mathcal{L}}}}{p_{\mathcal{L}}}+\frac{\bigcup^{y_{\mathcal{D}}}\bigcup^{p_{\mathcal{D}}}}{p_{\mathcal{D}}}.$$

Then $ullet_{p_{\zeta},p_{\bar{z}}}$ is a N_{∞} function. In this case the complementary function is the function $\bullet_{q_{\not\subset},q_{\supset}}$ with $q_i = p_{i_{\cap}}p_i - \not\subset$.

More generally, if $\bullet_k : \mathbb{R}^d \to (\not\approx, +\infty, k = \not\subset, \dots, n)$, are N_∞ functions, then $\bullet :$ $\mathbb{R}^d \times \cdots \times \mathbb{R}^d \to (\mathcal{Z}, +\infty \text{ defined by } \bullet y_{\mathcal{L}}, \ldots, y_n = \bullet_{\mathcal{L}} y_{\mathcal{L}} + \cdots + \bullet_n y_n \text{ is a } N_{\infty} \text{ function.}$

These functions are truly anisotropic, i.e. $\bigcup x \bigcup = \bigcup y \bigcup$ does not imply that $\bullet x = \bullet y$. $Example \ 1.4.$ If $\bullet : \mathbb{R} \to (\not\approx, +\infty)$ is a N_∞ function and $O \in GLd$, \mathbb{R} , then $\bullet y = \bullet Oy$ is a N_{∞} function.

Example 1.5. An anisotropic N_{∞} function is not necessarily controlled by powers if it does not satisfy the \S condition (see xxxxx). For example $\bullet : \mathbb{R}^d : \to \mathscr{L}, +\infty$ defined by

$$\bullet y = \leftrightarrow \pi \mathfrak{P}_{|\hspace{0.1cm}|\hspace{0.1cm}|} y_{|\hspace{0.1cm}|\hspace{0.1cm}|} - \not\subset \text{is } N_{\infty} \text{ function.}$$

The occurrence of Orlicz Spaces in this paper obeys to we will consider the following structure condition on the lagrangian:

$$\bigcup_{i} L_{\bigcup_{j}} + \bigcup_{i} \nabla_{x} L_{\bigcup_{j}} + /\!/ \nabla_{y} L \leq ax \ bt + \bullet \ \frac{y}{\lambda} \ , \tag{S}$$

for a.e. $t \in (\not\approx, T]$, where $a \in C \mathbb{R}^d$, $(\not\approx, +\infty, b \in L^{\not\subset} (\not\approx, T], (\not\approx, +\infty)$.

Our condition (S) includes structure conditions that have previously been considered in the literature. For example, it is easy to see that, when $\bullet x$ is as in Example 1.1, then the condition (S) is equivalent to the structure condition in [9, Th. 1.4]. If \bullet is a radial N_{∞} function such that # satisfies that # function then (S) is essentially equivalent????? to conditions [1, Eq. (2)-(4)] (see xxxx mas abajo). If \bullet is as in Example 1.3 and $L = Lt, x_{\not\subset}, x_{\not\supset}, y_{\not\subset}, y_{\not\supset}$ is a lagrangian with $L : (\not\succsim, T) \times \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ then inequality (S) is related to estructure conditions like [20, Lemma 3.1, Eq. (3.1)]. As can be seen, condition (S) is a more compact expression than [20, Lemma 3.1, Eq. (3.1)] and moreover weaker, because (S) does not imply a control of $D_{y_{\not\subset}}L$ independent of $y_{\not\supset}$. We will return to this point later.

An important example of lagrangian is giving by:

$$L_{\bullet,F}t, x, y := \bullet y + Ft, x. \tag{3}$$

Here the function Ft, x, which is often referred to potential, be differentiable with respect to x for a.e. $t \in (*, T]$. Moreover F satisfies the following conditions:

- (C) F and its gradient $\nabla_x F$, with respect to $x \in \mathbb{R}^d$, are Carathéodory functions, i.e. they are measurable functions with respect to $t \in (\mathcal{E}, T]$, for every $x \in \mathbb{R}^d$, and they are continuous functions with respect to $x \in \mathbb{R}^d$ for a.e. $t \in (\mathcal{E}, T]$.
- (A) For a.e. $t \in (*, T]$, it holds that

$$\bigcup^{Ft, x} \bigcup^{+} \bigcup^{\nabla_{x}Ft, x} \bigcup^{\leq} axbt. \tag{4}$$

where $a \in C \mathbb{R}^d$, $(\not\approx, +\infty)$ and $\not\approx \leqslant b \in L^{\not\subset}(\not\approx, T]$, \mathbb{R} .

The lagrangian $L_{\bullet,F}$ satisfies condition (S). In order to prove this, the only non trivial fact that we should to establish is is that $\|\nabla_y L\| \leq ax \ bt + \bullet \ y \wedge \lambda$. But, from inequality xxxx below, $\|\nabla_y L\| = \|\nabla \bullet y\| \leq \bullet \not\supset y$.

The laplacian $L_{\bullet,F}$ leads to the system

$$\frac{d}{dt} \nabla \bullet u't = \nabla_x Ft, ut \quad \text{a.e. } t \in \mathcal{Z}, T, u \mathcal{Z} - uT = u' \mathcal{Z} - u'T = \mathcal{Z},$$
 (P_{\bullet})

Problem (P_{\bullet}) contains, as a particular case, many problems that are usually considered in the literature. For example, the classic book [9] deals mainly with problem (P), for the lagrangian $L_{\bullet,F}$, with $\bullet x = \int_{-\infty}^{\infty} x dx$, through various methods: direct,

dual action, minimax, etc. The results in [9] were extended and improved in several articles, see [18, 16, 22, 17, 25] to cite some examples. The case $\bullet y = \bigcup_{p} y \bigcup_{n=1}^{p} p$, for arbitrary $\emptyset were considered in [20, 19], among other papers, and in this case <math>(P_{\bullet})$ is reduced to the p-laplacian system

$$\begin{array}{ll} \frac{d}{dt} \ u't \bigcup u' \bigcup^{p-\mathfrak{D}} = \nabla Ft, ut & \text{a.e. } t \in \mathcal{Z}, T \\ u \mathcal{Z} - uT = u' \mathcal{Z} - u'T = \mathcal{Z}. \end{array} \tag{P_p}$$

If ullet is as in Example 1.3 and $F: (\not\approx, T_{\bot} \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a Carathéodory function, then the equations (P_{ullet}) become

$$\frac{d}{dt} \bigcup_{\mathcal{U}_{\mathcal{D}}} u_{\mathcal{D}}' \bigcup_{p_{\mathcal{D}} - \mathcal{D}} u_{\mathcal{D}}' = F_{x_{\mathcal{D}}} t, u \quad \text{a.e. } t \in \mathcal{Z}, T$$

$$\frac{d}{dt} \bigcup_{\mathcal{U}_{\mathcal{D}}} u_{\mathcal{D}}' \bigcup_{p_{\mathcal{D}} - \mathcal{D}} u_{\mathcal{D}}' = F_{x_{\mathcal{D}}} t, u \quad \text{a.e. } t \in \mathcal{Z}, T \quad ,$$

$$u \mathcal{Z} - uT = u' \mathcal{Z} - u'T = \mathcal{Z}, \qquad (\mathbf{P}_{p_{\mathcal{D}}, p_{\mathcal{D}}})$$

where $x = x_{\neq}, x_{\neq} \in \mathbb{R}^d \times \mathbb{R}^d$ and $ut = u_{\neq}t, u_{\neq}t \in \mathbb{R}^d \times \mathbb{R}^d$. In the literature, these equations are known as p_{\neq}, p_{\neq} -Laplacian system, see [24, 13, 23, 10, 11, 12, 7].

In conclusion, the problem (P) with conditions (S) contains several problems that have been considered by many authors in the past. Moreover, our results still improve some results on p_{ϕ} , p_{ϕ} -lamplacian since our structure conditions are less restrictive even in that particular case.

2 Anisotropic Orlicz and Orlicz-Sobolev spaces

In this section, we give a short introduction to Orlicz and Orlicz-Sobolev spaces of vector valued functions associated to anisotropic N_{∞} functions $\bullet : \mathbb{R}^n \to \mathcal{E}, +\infty$. References for these topics are [6, 14, 15, 3, 4, 2, 21].

If \bullet is a N_{∞} function then from convexity and $\bullet \not\approx = \not\approx$ we obtain that

$$\bullet \lambda x \leq \lambda \bullet x, \quad \lambda \in (\not \approx, \not \subset), x \in \mathbb{R}^d.$$
 (5)

One of the greatest difficulties when dealing with anisotropic Orlicz spaces is the lack of monotony with respect to the Euclidean norm, i.e. $y \in y$ does not imply $\bullet x \leq \bullet y$. This problem is avoided if we consider functions whose values on a sphere are comparable (see[15]). However, from (5), we see that N_{∞} functions have the following form of radial monotony: $y \in y$ and $y = \lambda x$ imply $\bullet x \leq \bullet y$.

We say that $\bullet : \mathbb{R}^d \to \mathscr{E}, +\infty$ satisfies the \mathscr{E} -condition, denoted by $\bullet \in \mathscr{E}$, if there exist constants $K > \mathscr{E}$ and $M \geqslant \mathscr{E}$ such that

$$\bullet \not \supset x \leqslant K \bullet x, \tag{6}$$

for every x > M. If \bullet es a b function then \bullet is bounded by powers functions (see [6, Proof Lemma 2.4] and [4, Prop. 1]), i.e. there exists $\emptyset , <math>C > \emptyset$ and $C > \emptyset$ such that

$$\bullet x \leq C \underset{\bigcup}{x} \underset{\bigcup}{p}, \quad x \underset{\bigcup}{x} \geq r_{*}.$$

We consider that one of the most important aspects in considering N_{∞} functions is that it accounts for the Lagrange functions that present faster growth than powers, for example an exponential growth. Hence we consider it important to avoid imposing hypothesis that \bullet to be \mathfrak{b} . For some results we will need that $/\!/$ to be \mathfrak{b} .

Let
$$ullet_{\neq}$$
 and $ullet_{\supset}$ be N_{∞} functions. Following to [21] we write $ullet_{\supset}$,

We denote by $M := M_{\ell} \not\gtrsim T_{\ell}$, \mathbb{R}^d , with $d \geqslant \mathcal{L}$, the set of all measurable functions (i.e. functions which are limits of simple functions) defined on $\not\gtrsim T_{\ell}$ with values on \mathbb{R}^d and we write $u = u_{\mathcal{L}}, \dots, u_d$ for $u \in M$.

Given an N_{∞} function \bullet we define the modular function $\rho_{\bullet}: M \to \mathbb{R}^+ \cup +\infty$ by

$$\rho_{\bullet}u := \mathcal{R}_{\star}^T \bullet u \ dt.$$

Now, we introduce the *Orlicz class* $C^{\bullet} = C^{\bullet}$ ($^{\not\approx}, T$), \mathbb{R}^d by setting

$$C^{\bullet} := u \in M_{\bigcup} \rho_{\bullet} u < \infty . \tag{7}$$

The Orlicz space $L^{\bullet} = L^{\bullet}$ (*, T), \mathbb{R}^d is the linear hull of C^{\bullet} ; equivalently,

$$L^{\bullet} := u \in M_{\bigcup} \exists \lambda > \approx : \rho_{\bullet} \lambda u < \infty . \tag{8}$$

The Orlicz space L^{\bullet} equipped with the Luxemburg norm

$$\prod^{u} L^{\bullet} \coloneqq \boxtimes \lambda \longleftrightarrow \lambda \bigcup \rho_{\bullet} \frac{v}{\lambda} \ dt \leqslant \not\subset ,$$

is a Banach space.

The subspace $E^{\bullet} = E^{\bullet}$ ($\not\approx$, T), \mathbb{R}^d is defined as the closure in L^{\bullet} of the subspace L^{∞} ($\not\approx$, T), \mathbb{R}^d of all \mathbb{R}^d -valued essentially bounded functions. It is shown that (see [14, Thm. 5.1]) $u \in E^{\bullet}$ if and only if $\rho_{\bullet} \lambda u < \infty$ for any $\lambda > \not\approx$. The equality $L^{\bullet} = E^{\bullet}$ is true if and only if $\bullet \in \mathcal{P}_{b}$ (see [14, Thm. 5.2]).

A generalized version of *Hölder's inequality* holds in Orlicz spaces (see [14, Thm. 7.2]). Namely, if $u \in L^{\bullet}$ and $v \in L^{\#}$ then $u \cdot v \in L^{\#}$ and

$$\mathcal{R}_{\sharp}^{T} v \cdot u \ dt \leq D \prod_{i=1}^{N} u_{i} \prod_{i=1}^{N} v_{i} \prod_{i=1}^{N} v_{i}$$
 (9)

By $u \cdot v$ we denote the usual dot product in \mathbb{R}^d between u and v.

We consider the subset \mathbb{E}^{\bullet} , r of L^{\bullet} given by

This set is related to the Orlicz class C^{\bullet} by means of inclusions, namely,

$$E^{\bullet}, r \subset rC^{\bullet} \subset \overline{E^{\bullet}, r} \tag{10}$$

for any positive r. This relation is a trivial generalization of [14, Thm. 5.6]. If $\bullet \in \mathcal{P}_{\flat}$, then the sets L^{\bullet} , E^{\bullet} , E^{\bullet} , r and C^{\bullet} are equal.

As usual, if
$$X$$
, $\bigcap_{X} X$ is a normed space and Y , $\bigcap_{Y} Y$ is a linear subspace of X , we write $Y \hookrightarrow X$ and we say that Y is *embedded* in X when there exists $C > \not\approx$ such that $\bigcap_{X} Y \bigcap_{X} X \leqslant C \bigcap_{X} Y \bigcap_{X} Y$ for any $Y \in Y$. With this notation, Hölder's inequality states

that $L^{\bullet} \hookrightarrow (L^{\#})^*$, where a function $v \in L^{\bullet}$ is associated to $\xi_v \in (L^{\#})^*$ being

$$\xi_{\nu}u = \bigcup_{k} \xi_{\nu}, \widetilde{u} = \mathcal{R}_{*}^{T} v \cdot u \, dt, \tag{11}$$

We highlight the following result that is a consequence of Theorems 7.1 and 7.3 in [14].

Proposition 2.1. If $/\!/$ satisfies the \mathcal{L}^{\bullet} -condition then L^{\bullet} $(\mathcal{Z}, T_{\downarrow}, \mathbb{R}^d = \left(L^{/\!/}(\mathcal{Z}, T_{\downarrow}, \mathbb{R}^d)\right)^*$.

We define the *Sobolev-Orlicz space* $W^{\not\subset}L^{\bullet}$ by

$$W^{\not\subset}L^{\bullet}(\not\approx,T],\mathbb{R}^{d}:=u\bigcup u\in AC(\not\approx,T],\mathbb{R}^{d} \text{ and } u'\in L^{\bullet}(\not\approx,T],\mathbb{R}^{d},$$

where AC $(\not\approx,T]$, \mathbb{R}^d denotes the space of all \mathbb{R}^d valued absolutely continuous functions defined on $(\not\approx,T]$. The space $W^{\not\subset}L^{\bullet}$ $(\not\approx,T]$, \mathbb{R}^d is a Banach space when equipped with the norm

$$\prod^{u} W^{\varphi_{L} \bullet} = \prod^{u} L^{\bullet} + \prod^{u'} L^{\bullet}. \tag{12}$$

We introduce the following subspaces of $W^{\not\subset}L^{\bullet}$

$$W^{\neq} E^{\bullet} = u \in W^{\neq} L^{\bullet} \cup u' \in E^{\bullet},$$

$$W^{\neq} E^{\bullet}_{T} = u \in W^{\neq} E^{\bullet} \cup u \approx uT.$$
(13)

In order to find a modulus of continuity for functios in $W^{\not\subset}L^{\bullet}$, and from there, to obtain compact embedding of $W^{\not\subset}L^{\bullet}$, we define the function $A_{\bullet}:\mathbb{R}^+\to\mathbb{R}^+$ by

$$A_{\bullet}s = \aleph \boxtimes \hat{A} \bullet x \bigcup_{i} x_{i} = s , \qquad (14)$$

Let us establish some elementary properties of A_{\bullet} .

Proposition 2.2. *The function* A_{\bullet} *has the following properties:*

1. A_{\bullet} is continuous,

- 2. $A_{\bullet}s_{\bullet}s$ is increasing,
- 3. $A_{\bullet_{\mid \mid}} x_{\mid \mid}$ is the greatest radial minorant of $\bullet x$,
- 4. \bullet is N_{∞} if and only if $\square \boxtimes \aleph_{s \to +\infty} A_{\bullet} s_{\uparrow} s = +\infty$.

Proof. It is well known that finite and convex functions defined on finite dimensional vector spaces are locally Lipschitz functions (see [5]). This fact implies item 1 immediately.

In order to prove item 2, suppose $\not\approx \langle r \langle s \text{ and } x \in \mathbb{R}^d \text{ with } A_{\bullet} s = \bullet x$. Then, from the definition of A_{\bullet} and the convexity of \bullet ,

$$\frac{A_{\bullet}r}{r} \leqslant \frac{\bullet \frac{r}{s}x}{r} \leqslant \frac{\bullet x}{s} = \frac{A_{\bullet}s}{s}.$$

Property in items 3 and 4 are obtained easily.

Example 2.1. We compute A_{\bullet} for the function $\bullet = \bullet_{p_{\sigma}, p_{\bar{\sigma}}}$ given in Example (1.3). We apply the method of Lagrange multipliers (see [8, Ch. 11]) to solve the next minimization problem subject to constraints

The first order conditions are

$$\bigcup_{y_{\mathcal{L}}} \bigvee_{p_{\mathcal{L}} \to \mathcal{L}} y_{\mathcal{L}} + \lambda y_{\mathcal{L}} = \cancel{z}$$

$$\bigcup_{y_{\mathcal{L}}} \bigvee_{p_{\mathcal{L}} \to \mathcal{L}} y_{\mathcal{L}} + \lambda y_{\mathcal{L}} = \cancel{z}$$

$$\bigcup_{y_{\mathcal{L}}} \bigvee_{\mathcal{L}} y_{\mathcal{L}} + \bigcup_{\mathcal{L}} y_{\mathcal{L}} \downarrow^{\mathcal{L}} = r^{\mathcal{L}}$$
(15)

These equations are solved, among others, by the following two sets of citical points: a) x = r, y = t and $t = -r^{p_{\mathcal{I}} - t}$ and b) t = t, t = t, t = t and $t = -r^{p_{\mathcal{I}} - t}$. These sets are infinite when t = t. Associated with these critical points we have the following critical values: a) t = t and b) t = t and b) t = t being one of them (suppose t = t) different from 2.

We deal with $p_{\neq} \leqslant \not\supset$ and $p_{\not\supset} \leqslant \not\supset$ being one of them (suppose $p_{\not\supset}$) different from 2. The remaining cases can be treated with similar techniques.

If
$$y_{\mathcal{L}}, y_{\mathcal{D}}$$
 solve (15) with $y_{\mathcal{L}} \not\approx$ and $y_{\mathcal{D}} \not\approx$ then $y_{\mathcal{D}} = y_{\mathcal{L}} \cup y_{\mathcal{D}} \cup y_{\mathcal{D}}$

We use second order conditions for constrained problems. We have to consider the tangent plane at the point $y_{\mathcal{L}}, y_{\mathcal{D}} \in \mathbb{R}^{\mathcal{D}n}$, i.e. $M = \xi, \eta \in \mathbb{R}^{\mathcal{D}n} : \xi y_{\mathcal{L}}^t + \eta y_{\mathcal{D}}^T = \mathcal{E}$. Let L be the Lagrangian associated to the constrained problem: $Ly_{\mathcal{L}}, y_{\mathcal{D}}, \lambda = \bullet y_{\mathcal{L}}, y_{\mathcal{D}} + \lambda H y_{\mathcal{L}}, y_{\mathcal{D}}$ being $H = \mathcal{E}$ the constraint. We must analize the positivity of the quadratic form associated to the matrix of second partial derivatives $H = D^{\mathcal{D}} \bullet + \lambda D^{\mathcal{D}} H$ on the subspace M. By elementary computations we have for $\xi, \eta \in M$

$$\xi, \eta^t H \xi, \eta = \bigcup_{j=1}^{N} \lambda_{j,j} \xi^t x^{\mathcal{D}} (\bigcup_{j=1}^{N} y_{\mathcal{L}_{j,j}} \bigcup_{j=1}^{-\mathcal{D}} p_{\mathcal{L}_{j}} - \mathcal{D} + p_{\mathcal{D}_{j}} - \mathcal{D} \bigcup_{j=1}^{N} y_{\mathcal{D}_{j,j}} \bigcup_{j=1}^{-\mathcal{D}_{j,j}} \gamma_{\mathcal{D}_{j,j}}$$

on the subspace M. We note that $-y_{\not\supset}, y_{\not\subset} \in M$ and $-y_{\not\supset}, y_{\not\subset} ^t H - y_{\not\supset}, y_{\not\subset} < \not\approx$. Then, by second order necessary conditions [8, p.333], at $y_{\not\subset}, y_{\not\supset}$ there cannot be a minimum. Therefore, the only minima occur at $y_{\not\subset} = \not\approx$ or $y_{\not\supset} = \not\approx$, then

$$A_{\bullet}x, y = \mathbb{E} A r^{p_{\neq}} p_{\neq}, r^{p_{\Rightarrow}} p_{\neq}.$$

More generally, it holds that

$$K_{\mathcal{T}} \otimes \mathbb{A} r^{p_{\mathcal{T}}}, r^{p_{\mathcal{D}}} \leqslant A_{\bullet} \leqslant K_{\mathcal{D}} \otimes \mathbb{A} r^{p_{\mathcal{T}}}, r^{p_{\mathcal{D}}}$$

with $K_{\not\subset}$, $K_{\not\supset} > \not\approx$, for every $\not\subset < p_{\not\subset}$, $p_{\not\supset} < \infty$.

As is customary, we will use the decomposition $u = \overline{u} + u$ for a function $u \in L^{\mathcal{L}}(\mathcal{L}, T)$ where $\overline{u} = \frac{\mathcal{L}}{T} \mathcal{R}_{\mathcal{L}}^T ut \ dt$ and $u = u - \overline{u}$.

The following lemma is an elementary generalization to anisotropic Sobolev-Orlicz spaces of known results of Sobolev spaces.

Lemma 2.3. Let $\bullet : \mathbb{R}^d \to (\not\approx, +\infty)$ be a Young's function and let $u \in W^{\not\subset}L^{\bullet}$ $(\not\approx, T]$, \mathbb{R}^d . Let $A_{\bullet} : \mathbb{R}^+ \to \mathbb{R}^+$ be the function defined by (14). Then

1. For every
$$s, t \in (\mathcal{Z}, T)$$
, $s \neq t$,
$$\bigcup_{ut - us} u \leq \prod_{u'} u' \prod_{u' \in \mathcal{Z}} u' \leq \int_{u'} u' \prod_{u' \in \mathcal{Z}} u' \prod_{u' \in \mathcal{Z}} u' \leq \int_{u' \in \mathcal{Z}} u' \prod_{u' \in \mathcal{Z}} u' \prod_{u' \in \mathcal{Z}} u' \prod_{u' \in \mathcal{Z}} u' \leq \int_{u' \in \mathcal{Z}} u' \prod_{u' \in \mathcal{Z}} u' \prod_{u' \in \mathcal{Z}} u' \leq \int_{u' \in \mathcal{Z}} u' \prod_{u' \in \mathcal{Z}} u' \prod_{u' \in \mathcal{Z}} u' \leq \int_{u' \in \mathcal{Z}} u' \prod_{u' \in \mathcal{Z}} u' \prod_{u' \in \mathcal{Z}} u' \leq \int_{u' \in \mathcal{Z}} u' \prod_{u' \in \mathcal{Z}} u' \prod_{u' \in \mathcal{Z}} u' \leq \int_{u' \in \mathcal{Z}} u' \prod_{u' \in \mathcal{Z}}$$

2. We have $u \in L^{\infty}(^{\cancel{z}}, T], \mathbb{R}^d$ and

$$\prod^{u} L^{\infty} \leqslant T A_{\bullet}^{-\varphi} \stackrel{\not\subset}{T} \prod^{u'} L^{\bullet}$$
 (Sobolev-Wirtinger's inequality)

3. If ullet is N_{∞} then the space $W^{\not\subset}L^{ullet}(\not\gtrsim,T)$, \mathbb{R}^d is compactly embedded in the space of continuous functions $C(\not\gtrsim,T)$, \mathbb{R}^d .

Proof. By the absolutely continuity of u, Jensen's inequality and the definition of the Luxemburg norm, we have

$$\frac{ut - us}{\prod^{u'} \prod^{L^{\bullet}} \bigcup^{s - t} \bigcup} \leq \Phi \frac{\not\subset}{\bigcup^{s - t} \bigcup} \mathcal{R}_{s}^{t} \frac{u'r}{\prod^{u'} \prod^{L^{\bullet}}} dr \\
\leq \frac{\not\subset}{\bigcup^{s - t} \bigcup} \mathcal{R}_{s}^{t} \Phi \frac{u'r}{\prod^{u'} \prod^{L^{\bullet}}} dr \leq \frac{\not\subset}{\bigcup^{s - t} \bigcup}.$$

By Proposition 2.2(3) we have $A_{\bullet}^{-\varphi} \bullet x \ge x$, therefore we get

$$\frac{\bigcup^{ut-us}\bigcup}{\prod^{u'}\prod^{L^{\bullet}}\bigcup^{s-t}\bigcup} \leqslant A_{\bullet}^{-\varphi} \frac{\varphi}{\bigcup^{s-t}\bigcup},$$

then 1 holds.

Now, we use Morrey's inequality and Proposition 2.2 (2) and we have

$$\bigcup ut - \overline{u} \bigcup = \bigcup \frac{\cancel{C}}{T} \mathcal{R}_{*}^{T} ut - us \, ds \bigcup$$

$$\leq \frac{\cancel{C}}{T} \mathcal{R}_{*}^{T} \bigcup ut - us \bigcup ds$$

$$\leq \bigcup u' \bigcup L^{\bullet} T A_{\bullet}^{-\cancel{C}} \frac{\cancel{C}}{T}$$

In order to prove the Sobolev's inequality, we note that, using Jensen's inequality and the definition of $\prod_{i=1}^{n} u_{i} \int_{0}^{1} e^{-t} dt$, we obtain

$$\bullet \frac{\overline{u}}{\prod^{u} \prod^{L^{\bullet}}} \leqslant \frac{\not\subset}{T} \mathcal{R}_{*}^{T} \bullet \frac{us}{\prod^{u} \prod^{L^{\bullet}}} ds \leqslant \frac{\not\subset}{T}$$

Then by By Proposition 2.2(3)

$$\bigcup^{\overline{\mathcal{U}}}\bigcup \leqslant A_{\bullet}^{-\not\subset} \ \frac{\not\subset}{T} \ \prod^{\mathcal{U}} \prod^{L^{\bullet}}.$$

Therefore, from this and (Sobolev-Wirtinger's inequality) we get

$$\prod_{k=1}^{n} \prod_{k=1}^{n} \sum_{k=1}^{n} \prod_{k=1}^{n} \prod_{$$

In order to prove item 3, we take a bounded sequence u_n in $W^{\not\subset}L^{\bullet}$ ($\not\approx$, T), \mathbb{R}^d . Since

• is N_{∞} , from Proposition 2.2(4) we obtain $sA_{\bullet}^{-\not c} \not\subset_{\uparrow} s \to \not\approx$ when $s \to \not\approx$. Therefore (Morrey's inequality) implies that u_n are equicontinuous. Furthermore (??) implies that u_n is bounded in $C_{\bullet}(\not\approx,T_{\bullet})$, \mathbb{R}^d . Therefore by the Arzela-Ascoli Theorem we obtain a subsequence n_k and $u \in C_{\bullet}(\not\approx,T_{\bullet})$, \mathbb{R}^d with $u_{n_k} \to u$ in $C_{\bullet}(\not\approx,T_{\bullet})$, \mathbb{R}^d .

Lemma 2.4. Let $u_{nn\in\mathbb{N}}$ be a sequence of functions in \mathbb{E}^{\bullet} , $\not\subset$ converging to $u\in\mathbb{E}^{\bullet}$, $\not\subset$ in the L^{\bullet} -norm. Then, there exist a subsequence u_{n_k} and a real valued function $h\in L^{\not\subset}$, T, \mathbb{R} such that $u_{n_k}\to u$ a.e. and $\bullet u_{n_k}\leqslant h$ a.e.

Proof. Since $du, E^{\bullet} < \emptyset$ and u_n converges to u, there exists $u_{*} \in E^{\bullet}$, a subsequence of u_n (again denoted u_n) and $\# < r < \emptyset$ such that $du_n, u_{\#} < r$. Let $\lambda_{\#} \in r, \emptyset$. By extracting more subsequences, if necessary, we can assume that $u_n \to u$ a.e. and

$$\lambda_n := \prod_{n+\not\subset} u_{n+\not\subset} - u_n \prod_{n\not\subset} L^{\bullet} < \frac{\not\subset -\lambda_{\not\rightleftharpoons}}{\not\supset^n}, \quad \text{for } n \geqslant \not\subset.$$

We can assume $\lambda_n > \not\approx$ for every $n = \not\approx, \ldots$

Let $\lambda := \not\subset -\mathcal{P}_{n=*}^{\infty} \lambda_n$ and define $h: (\not\succsim, T) \to \mathbb{R}$ by

$$hx = \lambda \bullet \frac{u_{\sharp}}{\lambda} + \mathop{\mathcal{P}}_{n=\sharp}^{\infty} \lambda_n \bullet \frac{u_{n+\not\subset} - u_n}{\lambda_n} . \tag{16}$$

Note that $\mathcal{P}_{n=\neq}^{\infty} \lambda_n + \lambda = \emptyset$, therefore for any $n = \emptyset, \dots$

$$\bullet u_n = \bullet \lambda \frac{u_{\sharp}}{\lambda} + \stackrel{n-\varphi}{\mathcal{P}} \lambda_j \frac{u_{j+\varphi} - u_j}{\lambda_j}
\leqslant \lambda \bullet \frac{u_{\sharp}}{\lambda} + \stackrel{n-\varphi}{\mathcal{P}} \lambda_j \bullet \frac{u_{j+\varphi} - u_j}{\lambda_j} \leqslant h$$

Since $u_{\neq} \in E^{\bullet} \subset C^{\bullet}$ and E^{\bullet} is a subspace we have that $\bullet u_{\neq \uparrow} \lambda \in L^{\not\subset}(\not\approx, T]$, \mathbb{R} . On the other hand $u_{n+\not\subset} - u_n u_{n+\not\subset} = u_n$, therefore

$$\mathcal{R}_{*}^{T} \bullet \frac{u_{j+\not\subset} - u_{j}}{\lambda_{i}} dt \leqslant \not\subset.$$

Then $h \in L^{\not\subset}(^{\not\approx}, T_{\mid}, \mathbb{R}.$

3 Differentiability Gateâux of action integrals in anisotropic Orlicz spaces

Given a continuous function $a \in C\mathbb{R}^n$, \mathbb{R}^+ , we define the composition operator $a: M_d \to M_d$ by aux = aux.

We will often use the following result whose proof can be performed as that of Corollary 2.3 in [1].

Lemma 3.1. If $a \in \mathbb{CR}^d$, \mathbb{R}^+ then $\mathbf{a} : W^{\not\subset} L^{\bullet} \to L^{\infty}$, \mathbb{R}^+ , \mathbb{R}^+ is bounded. More concretely, there exists a non decreasing function $A : \mathbb{R}^+ \to \mathbb{R}^+$ such that $\mathbf{a} = \mathbf{a} = \mathbf$

$$A \prod u \prod^{W^{\not\subset} L^{\bullet}}$$
.

Proof. Let $A \in C\mathbb{R}^+, \mathbb{R}^+$ be a non decreasing, continuous function defined by $\alpha s := \Phi \oplus \mathbb{R}^+$. If $u \in W^{\not\subset}L_d^{\bullet}$ then, by Sobolev's inequality, for a.e. $t \in \mathbb{R}^+$, $t \in \mathbb{R}^+$

$$aut \leq \alpha \prod^u \prod^{L^\infty} \leq \alpha \ A_{\bullet}^{-\not\subset} \ \frac{\not\subset}{T} \ \text{with} \ T, T \prod^u \prod^{W^{\not\subset} L^\bullet} =: A \prod^u \prod^{W^{\not\subset} L^\bullet}.$$

HABRÍA QUE VER DÓNDE SE UBICA LA CONDICIÓN DE ESTRUCTURA...QUIZÁS EN LA INTRODUCCIÓN?....

Next, we deal with the differentiability of the action integral

$$Iu = \mathcal{R}_{+}^{T} Lt, ut, \dot{u}t dt. \tag{17}$$

Theorem 3.2. Let L be a differentiable Carathéodory function satisfying (S). Then the following statements hold:

- 1. The action integral given by (17) is finitely defined on $E^{\bullet} := W^{\neq} L^{\bullet} \cap u \bigcup \dot{u} \in E^{\bullet}, \not\subset$.
- 2. The function I is Gâteaux differentiable on E^{\bullet} and its derivative I' is demicontinuous from E^{\bullet} into $(W^{\not\subset}L^{\bullet})^*$. Moreover, I' is given by the following expression

$$\prod^{I'} u, v = \mathcal{R}_{\sharp}^T D_x Lt, u, \dot{u} \cdot v + D_y Lt, u, \dot{u} \cdot \dot{v} dt.$$
 (18)

3. If $\| \in \mathfrak{h}$ then I' is continuous from E^{\bullet} into $(W^{\not\subset}L^{\bullet})^*$ when both spaces are equipped with the strong topology.

Proof. Let $u \in E^{\bullet}$. As

$$\dot{u} \in \mathbb{E}^{\bullet}, \not\subset C_{\sigma}^{\bullet} \tag{19}$$

and (10), then $\bullet \dot{u}t \in L^{\not\subset}$. Now,

$$\bigcup^{L\cdot, u, \dot{u}} \bigcup^{+} \bigcup^{D_{x}L\cdot, u, \dot{u}} \bigcup^{+} /\!\!/ D_{y}L\cdot, u, \dot{u} \leqslant A \prod^{u} \prod^{w^{\varphi}L \bullet b} b + \bullet \dot{u} \in L^{\sharp}, \tag{20}$$

by (S) and Lemma 3.1. Thus item (1) is proved.

We split up the proof of item 2 into four steps.

Step 1. The non linear operator $u \mapsto D_x Lt$, u, \dot{u} is continuous from E^{\bullet} into $L^{\sharp}(\not\approx, T)$ with the strong topology on both sets.

Let $u_{nn\in\mathbb{N}}$ be a sequence of functions in E^{\bullet} and let $u \in E^{\bullet}$ such that $u_n \to u$ in $W^{\not\subset} L^{\bullet}$. By (Sobolev's inequality), we have

$$\bigcup_{n} u_n t - u t \bigcup_{n} \leqslant T A_{\bullet}^{-\not\subset} \frac{\not\subset}{T} \prod_{n} u_n - u \prod_{n} U_{\bullet}$$

then $u_n \to u$ uniformly. As $\dot{u}_n \to \dot{u} \in E^{\bullet}$, by Lemma 2.4, there exist a subsequence of \dot{u}_{n_k} (again denoted \dot{u}_{n_k}) and a function $h \in L^{\neq}(\not\approx, T)$, \mathbb{R} such that $\dot{u}_{n_k} \to \dot{u}$ a.e. and $\bullet \dot{u}_{n_k} \leqslant h$ a.e.

Since u_{n_k} , $k = \emptyset, \emptyset, \ldots$, is a strong convergent sequence in $W^{\emptyset}L^{\bullet}$, it is a bounded sequence in $W^{\emptyset}L^{\bullet}$. According to item (3) of Lemma 2.3, there exists $M > \mathcal{Z}$ such that $\prod_{k=0}^{\infty} au_{n_k} \prod_{k=0}^{\infty} au_{n_k} \prod_{$

$$\bigcup D_x L \cdot, u_{n_k}, \dot{u}_{n_k} \bigcup \leq a \bigcup u_{n_k} \bigcup b + \bullet \dot{u}_{n_k} \leq Mb + h \in L^{\not\subset}.$$

On the other hand, by the continuous differentiability of L, we have

$$D_x Lt, u_{n_k} t, \dot{u}_{n_k} t \to D_x Lt, ut, \dot{u}t$$
 for a.e. $t \in (^{\not\approx}, T]$

Applying the Dominated Convergence Theorem we conclude the proof of step 1. Step 2. The non linear operator $u \mapsto D_y Lt$, u, \dot{u} is continuous from E^{\bullet} with the strong topology into $(L^{\bullet})^*$ with the weak* topology.

Let $u \in E^{\bullet}$. From (20) it follows that

$$D_{y}L\cdot,u,\dot{u}\in C^{\#}.$$

Así? o conviene poner la cota de $//D_y$ explícitamente???

Note that (20), (21) and the imbeddings $W^{\not\subset}L^{\bullet} \hookrightarrow L^{\infty}$ and $L^{\#} \hookrightarrow (L^{\bullet}]^*$ imply that the second member of (18) defines an element of $(W^{\not\subset}L^{\bullet}]^*$.

Let $u_n, u \in E^{\bullet}$ such that $u_n \to u$ in the norm of $W^{\notin}L^{\bullet}$. We must prove that $D_yL_{\cdot}, u_n, \dot{u}_n \stackrel{w^*}{\rightharpoonup} D_yL_{\cdot}, u, \dot{u}$. On the contrary, there exist $v \in L^{\bullet}$, $\epsilon > \not\approx$ and a subsequence of u_n (denoted u_n for simplicity) such that

$$\bigcup_{\coprod} D_{y}L\cdot, u_{n}, \dot{u}_{n}, v \widetilde{} - \coprod D_{y}L\cdot, u, \dot{u}, v \widetilde{} \bigcup \geqslant \epsilon.$$
 (22)

We have $u_n \to u$ in L^{\bullet} and $\dot{u}_n \to \dot{u}$ in L^{\bullet} . By Lemma 2.4, there exist a subsequence of u_n (again denoted u_n for simplicity) and a function $h \in L^{\not\subset}(\not\approx, T)$, \mathbb{R} such that $u_n \to u$ uniformly, $\dot{u}_n \to \dot{u}$ a.e. and $\bullet \dot{u}_n \leqslant h$ a.e. As in the previous step, since u_n is a convergent sequence, Lemma 3.1 implies that $a \cup u_n t \cup u_n$ is uniformly bounded by a certain constant $M > \not\approx$. Therefore, from inequality (20) with u_n instead of u, we have

$$/\!/ D_{\nu} L_{\cdot}, u_{n}, \dot{u}_{n} \leqslant Mb + h \in L^{\mathcal{C}}. \tag{23}$$

As $v \in L^{\bullet}$ there exists $\lambda > 2$ such that $\bullet_{\lambda}^{\underline{v}} \in L^{\underline{v}}$. Now, by Young inequality and (23), we have

$$\lambda D_{y}L\cdot, u_{n_{k}}, \dot{u}_{n_{k}} \cdot \frac{vt}{\lambda}$$

$$\leq \lambda \left(//D_{y}L\cdot, u_{n_{k}}, \dot{u}_{n_{k}} + \bullet \frac{v}{\lambda} \right]$$

$$\leq \lambda Mb + h + \lambda \bullet \frac{v}{\lambda} \in L^{\mathcal{L}}$$
(24)

Finally, from the Lebesgue Dominated Convergence Theorem, we deduce

$$\mathcal{R}_{*}^{T} D_{v} Lt, u_{n_{k}}, \dot{u}_{n_{k}} \cdot v dt \rightarrow \mathcal{R}_{*}^{T} D_{v} Lt, u, \dot{u} \cdot v dt$$
 (25)

which contradicts the inequality (22). This completes the proof of step 2.

Step 3. We will prove (18). For $u \in E^{\bullet}$ and $\not\approx v \in W^{\not\subset L^{\bullet}}$, we define the function

$$Hs, t := Lt, ut + svt, \dot{u}t + s\dot{v}t.$$

For
$$\bigcup s \subseteq s_{\neq} := \aleph \boxtimes \lambda \not\subset -d\dot{u}, E^{\bullet} \cap \bigvee V \bigvee \mathscr{V} \not\subset -d\dot{u}, E^{\bullet}$$
, using triangle inequal-

ity we get $d\ \dot{u} + s\dot{v}, E^{\bullet} < \not\subset$ and thus $\dot{u} + s\dot{v} \in E^{\bullet}, \not\subset$. These facts imply, in virtue of Theorem 3.2 item 1, that Iu + sv is well defined and finite for $s \in S_{\pm}$.

We also have
$$\prod_{u + sv} u + sv \prod_{w \in L^{\bullet}} v \prod_{u \in L^{\infty}} v \prod_{w \in L^{\bullet}} v \prod_{w \in L^{\bullet}} v \text{ then, by Lemma}$$

3.1, there exists $M > 2$ such that $u = u + sv \prod_{u \in L^{\infty}} v = u$.

Let $\lambda > \not\approx$ such that $\bullet_{\lambda}^{\underline{\dot{\nu}}} \in L^{\not\subset}$. On the other hand, if $\dot{\nu} \in L^{\bullet}$ and $S \subseteq S_{\not\approx} \lambda^{-\not\subset}$, from the convexity and the parity of \bullet , we get

$$\bullet \dot{u} + s\dot{v} = \bullet \not\subset -s_{\cancel{z}} \frac{\dot{u}}{\not\subset -s_{\cancel{z}}} + s_{\cancel{z}} \frac{s}{s_{\cancel{z}}} \dot{v} \leqslant \not\subset -s_{\cancel{z}} \bullet \frac{\dot{u}}{\not\subset -s_{\cancel{z}}} + s_{\cancel{z}} \bullet \frac{s}{s_{\cancel{z}}} \dot{v}$$

$$\leqslant \not\subset -s_{\cancel{z}} \bullet \frac{\dot{u}}{\not\subset -s_{\cancel{z}}} + s_{\cancel{z}} \bullet \frac{\dot{v}}{\lambda} \in L^{\not\subset}$$

As $\dot{u} \in \mathbb{E}^{\bullet}$, $\not\subset$ then

$$d \frac{\dot{u}}{\not\subset -s_{\sharp}}, E^{\bullet} = \frac{\not\subset}{\not\subset -s_{\sharp}} d\dot{u}, E^{\bullet} < \not\subset$$

and therefore $\frac{\dot{u}}{\not\subset -s_{\neq}} \in C^{\bullet}$.

Now, applying (20), (24), the fact that $v \in L^{\infty}$ and $\dot{v} \in L^{\bullet}$, we get

$$\bigcup_{v} D_{s}Hs, t = \bigcup_{v} D_{x}Lt, u + sv, \dot{u} + s\dot{v} \cdot v + \lambda D_{y}Lt, u + sv, \dot{u} + s\dot{v} \cdot \frac{\dot{v}}{\lambda} \bigcup_{v} V \bigcup$$

Consequently, I has a directional derivative and

$$\coprod I'u, v = \frac{d}{ds}Iu + sv \bigcup_{s=*} = \mathcal{R}_*^T D_x Lt, u, \dot{u} \cdot v + D_y Lt, u, \dot{u} \cdot \dot{v} dt.$$

Moreover, from the previous formula, (20), (21), and Lemma 2.3, we obtain

$$\bigcup \coprod^{I'u, v \sim} \bigcup \leqslant \prod^{D_x L} \prod^{L^{\mathcal{I}}} \bigvee^{V} \prod^{L^{\infty}} + \prod^{D_y L} \prod^{L^{\mathcal{I}}} \bigvee^{\dot{V}} \prod^{L^{\bullet}} \leqslant C \prod^{V} \prod^{W^{\mathcal{I}} L^{\bullet}}$$

with a appropriate constant C.

This completes the proof of the Gâteaux differentiability of *I*.

Step 4. The operator $I': E^{\bullet} \to \left(W^{\not\subset}L_d^{\bullet}\right]^*$ is demicontinuous. This is a consequence of the continuity of the mappings $u \mapsto D_x Lt$, u, \dot{u} and $u \mapsto D_y Lt$, u, \dot{u} . Indeed, if u_n , $u \in E^{\bullet}$ with $u_n \to u$ in the norm of $W^{\not\subset}L^{\bullet}$ and $v \in W^{\not\subset}L^{\bullet}$, then

$$\coprod I'u_n, v \stackrel{\sim}{=} \mathcal{R}^T_{\sharp} D_x L t, u_n, \dot{u}_n \cdot v + D_y L t, u_n, \dot{u}_n \cdot \dot{v} dt
\rightarrow \mathcal{R}^T_{\sharp} D_x L t, u, \dot{u} \cdot v + D_y L t, u, \dot{u} \cdot \dot{v} dt
= \iint I'u, v \stackrel{\sim}{=} .$$

In order to prove item 3, it is necessary to see that the maps $u \mapsto D_x Lt$, u, \dot{u} and $u \mapsto D_y Lt$, u, \dot{u} are norm continuous from E^{\bullet} into $L^{\not\subset}$ and $L^{//}$, respectively.

The continuity of the first map has already been proved in step 1.

Si eliminamos la demicontinuidad del segundo item, hay que copiar la continuidad de D_x aquí!!!

Let
$$u_n, u \in E^{\bullet}$$
 with $\prod u_n - u \prod_{W^{\alpha} L^{\bullet}} \to \mathcal{Z}$.

Applying Lemma 2.4 to \dot{u}_n , there exists a subsequence (denoted \dot{u}_n for simplicity) such that $\dot{u}_n \in L^{\bullet}$ and a function $h \in L^{\neq}$ such that $||\dot{u}_n| \leq h$ and $\dot{u}_n \to \dot{u}$ a.e.

Then, by (24) we have $||v_n|| \le mt \in L^{\neq}$ being $v_n := D_y L$, u_n , \dot{u}_n and mt := Mb + h. In addition, from the continuous differentiability of L, we have that $v_n \to v$ a.e. where $D_y L$, u, \dot{u} .

As
$$\# \in \mathfrak{h}$$
, there exists $c: \mathbb{R}^+ \to \mathfrak{I} \mathfrak{I}$ such that $\# \lambda x \leqslant c \mathring{\bigcup} \lambda \mathring{\bigcup} \# x$. Then, $\# \frac{v_n - v}{\lambda} \leqslant c \mathring{\bigcup} \lambda \mathring{\bigcup} \# v_n - v$ for every $\lambda \in \mathbb{R}$.

Therefore,
$$\|\frac{v_n-v}{\lambda}\| \to *$$
 a.e. as $n \to \infty$ and $\|\frac{v_n-v}{\lambda}\| \le c \lambda \int_{-\infty}^{-\infty} K \|v_n\| + \|v\| \le c \lambda \int_{-\infty}^{-\infty} K \|mt\| + \|v\| \le L^{\frac{1}{2}}$.

Now, by Dominated Convergence Theorem, we get $\mathcal{R} /\!\!/ \frac{v_n - v}{\lambda} dt \to \not\approx$ for every $\lambda > \not\approx$. Thus, $v_n \to v$ in $L^{/\!/}$.

The continuity of I' follows from the continuity of D_xL and D_yL using the formula (18).

Acknowledgments

The authors are partially supported by a UNRC grant number 18/C417. The first author is partially supported by a UNSL grant number 22/F223.

References

- [1] S. Acinas, L. Buri, G. Giubergia, F. Mazzone, and E. Schwindt. Some existence results on periodic solutions of Euler-Lagrange equations in an Orlicz-Sobolev space setting. *Nonlinear Analysis, TMA.*, 125:681 698, 2015.
- [2] M Chamra and J Maksymiuk. Anisotropic orlicz-sobolev spaces of vector valued functions and lagrange equations. *arXiv* preprint arXiv:1702.08683, 2017.
- [3] A. Cianchi. A fully anisotropic Sobolev inequality. *Pacific J. Math.*, 196(2):283–295, 2000.
- [4] A. Cianchi. Local boundedness of minimizers of anisotropic functionals. *Ann. Inst. H. Poincaré Anal. Non Linéaire*, 17(2):147–168, 2000.
- [5] F. Clarke. Functional Analysis, Calculus of Variations and Optimal Control. Graduate Texts in Mathematics. 2013.
- [6] W. Desch and R. Grimmer. On the well-posedness of constitutive laws involving dissipation potentials. *Trans. Amer. Math. Soc*, (353):5095–5120, 2001.
- [7] Chun Li, Zeng-Qi Ou, and Chun-Lei Tang. Periodic solutions for non-autonomous second-order differential systems with (q, p)-laplacian. *Electronic Journal of Differential Equations*, 2014(64):1–13, 2014.
- [8] David G Luenberger and Yinyu Ye. *Linear and nonlinear programming*, volume 228. Springer, 2015.
- [9] J. Mawhin and M. Willem. *Critical point theory and Hamiltonian systems*. Springer-Verlag, New York, 1989.
- [10] Daniel Pasca. Periodic solutions of a class of nonautonomous second order differential systems with (q, p)-laplacian. *Bulletin of the Belgian Mathematical Society-Simon Stevin*, 17(5):841–851, 2010.
- [11] Daniel Paşca and Chun-Lei Tang. Some existence results on periodic solutions of nonautonomous second-order differential systems with *q*, *p*-laplacian. *Applied Mathematics Letters*, 23(3):246–251, 2010.
- [12] Daniel Pasca and Chun-Lei Tang. Some existence results on periodic solutions of ordinary (q, p)-laplacian systems. *Journal of applied mathematics & informatics*, 29(1_2):39–48, 2011.
- [13] Daniel Pasca and Zhiyong Wang. On periodic solutions of nonautonomous second order hamiltonian systems with *q*, *p*-laplacian. *Electronic Journal of Qualitative Theory of Differential Equations*, 2016(106):1–9, 2016.
- [14] G. Schappacher. A notion of Orlicz spaces for vector valued functions. *Appl. Math.*, 50(4):355–386, 2005.

- [15] M. S. Skaff. Vector valued Orlicz spaces. II. Pacific J. Math., 28(2):413–430, 1969.
- [16] C.-L. Tang. Periodic solutions for nonautonomous second order systems with sublinear nonlinearity. *Proc. Amer. Math. Soc.*, 126(11):3263–3270, 1998.
- [17] C. L. Tang and X.-P. Wu. Periodic solutions for second order systems with not uniformly coercive potential. J. Math. Anal. Appl., 259(2):386–397, 2001.
- [18] Chun-Lei Tang. Periodic solutions of non-autonomous second-order systems with γ -quasisubadditive potential. *Journal of Mathematical Analysis and Applications*, 189(3):671–675, 1995.
- [19] X. Tang and X. Zhang. Periodic solutions for second-order Hamiltonian systems with a *p*-Laplacian. *Ann. Univ. Mariae Curie-Skłodowska Sect. A*, 64(1):93–113, 2010.
- [20] Y. Tian and W. Ge. Periodic solutions of non-autonomous second-order systems with a *p*-Laplacian. *Nonlinear Anal.*, 66(1):192–203, 2007.
- [21] Neil Trudinger. An imbedding theorem for h°(g, â¦)-spaces. *Studia Mathematica*, 50(1):17–30, 1974.
- [22] X.-P. Wu and C.-L. Tang. Periodic solutions of a class of non-autonomous second-order systems. *J. Math. Anal. Appl.*, 236(2):227–235, 1999.
- [23] Xiaoxia Yang and Haibo Chen. Periodic solutions for a nonlinear (q, p)-laplacian dynamical system with impulsive effects. *Journal of Applied Mathematics and Computing*, 40(1-2):607–625, 2012.
- [24] Xiaoxia Yang and Haibo Chen. Existence of periodic solutions for sublinear second order dynamical system with (q, p)-laplacian. *Mathematica Slovaca*, 63(4):799–816, 2013.
- [25] F. Zhao and X. Wu. Periodic solutions for a class of non-autonomous second order systems. *J. Math. Anal. Appl.*, 296(2):422–434, 2004.