3º Trabalho Prático de Laboratório Andar Final de Amplificação em Classe A com Transístores Bipolares

André Boné 69937, Gabriel Farinha 70173

Instituto Superior Técnico Engenharia Física Tecnológica Complementos de Electrónica

26 de Janeiro de 2014

Abstract

Neste trabalho estudámos experimentalmente o funcionamento de um andar de saída em classe A.

Verificou-se um ganho de corrente $G_I = \beta_f + 1 = 151.40 \pm 0.63$, e um ganho de tensão próximo da unidade ($G_V = 0.95802 \pm 0.00031$). Verificámos no ponto de funcionamento em repouso algumas diferenças entre o modelo teórico, a simulação no PSPice e a experiência, que se devem ao facto de os componentes utilizados serem diferentes entre si e não ideiais, bem como um desvio dos modelos teóricos ao comportamento real. Os valores observados eram, no entanto, próximos.

Obtivémos um rendimento de 17.87 \pm 0.99% para $v_0 = v_{0_{max}}$, fornecendo à carga 2.313 \pm 0.072 W, e para $v_0 = v_{0_{max}}/2$ obtivémos $\eta = 5.56 \pm 0.29\%$ fornecendo à carga 0.653 \pm 0.018 W.

Observou-se ainda uma impedância de entrada elevada $Z_i=1630\pm100\,\Omega$, e uma impedância de saída baixa $Z_0=0.88\pm0.30\,\Omega$. Determinou-se que o limite superior da banda de frequências passante a -3db neste andar era de $10\,kHz$.

1 Introdução

Com este trabalho pretendemos montar e caracterizar um andar de saída em classe A.

Este tipo de andar permite fornecer correntes elevadas a uma carga de baixa impedância. A montagem utilizada (figura 1) proporciona um ganho de tensão $G_V \approx 1$, e um ganho de corrente G_I elevado.

Figura 1: Montagem utilizada do andar de saída em classe A.

Começaremos por determinar o ponto de funcionamento em repouso (com $v_i = 0$) e as potências dissipadas nos componentes da montagem , medindo as tensões e correntes nos diferentes nós e ramos.

Partindo do funcionamento dos transístores e das expressões dadas nas aulas, e supondo que são iguais, podemos escrever as seguintes expressões:

$$\frac{i_{e_1}}{\beta_F + 1} R_3 + \eta u_T \ln \frac{i_{e_1}}{I_{ES}} + R_1 (i_{e_1} - I) = 0 \tag{1}$$

$$I = \frac{\beta_F}{R_2(\beta_F + 2)} \left[Vcc - \eta u_T \ln \left(\frac{\beta_F + 1}{\beta_F} \frac{I}{I_{ES}} \right) \right]$$
 (2)

Estas equações não são resolúveis algebricamente, mas se conhecermos todos os termos podemos utilizar uma resolução numérica.

$$v_0 = R_1(i_{e_1} - I)$$
 $V_{BE_i} = \eta u_T \ln \frac{i_{e_i}}{I_{ES}}$ (3)

$$i_{b_i} = \frac{i_{e_i}}{\beta_F + 1}$$
 $V_{CB_1} = V_{CC} - V_{BE_1} - v_0$ (4)

$$i_{e_{2,3}} = \frac{\beta_F + 1}{\beta_F} I$$
 $V_{R_2} = -R_2(i_{c_2} + i_{b_2} + i_{b_3})$ (5)

$$V_{CE_2} = v_0 + V_{CC}$$
 $V_{BE_{2,3}} = V_{R_2} + V_{CC} = V_{CE_3}$ (6)

Utilizaremos as equações anteriores para comparar com os resultados obtidos experimentalmente.

Partindo do esquema 1 podemos facilmente escrever:

$$v_{i} = i_{B_{1}} R_{3} + v_{BE_{1}} + v_{0} \Leftrightarrow$$

$$\Leftrightarrow v_{i} = v_{0} + \eta u_{T} \ln \left[\frac{1}{I_{ES}} \left(\frac{v_{0}}{R_{1}} + I \right) \right] + \frac{R_{3}}{\beta_{F} + 1} \left(\frac{v_{0}}{R_{1}} + I \right) \quad (7)$$

$$i_{i} = \frac{i_{E_{1}}}{\beta_{F} + 1} \Leftrightarrow$$

Onde I é dado pela expressão (2). É necessário inverter a equação (7) numericamente para obter a função de transferência

 $\Leftrightarrow i_0 = i_i(\beta_F + 1) - I$ (8)

 $v_0(v_i)$ Já para a equação (8) vemos que característica $i_0(i_i)$ é linear. Assim podemos verificar experimentalmente o seu carácter linear, e retirar a partir de um ajuste o valor de β_F .

Conseguimos agora também escrever as expressões dos ganhos, (9) e (10):

$$G_I \approx \frac{\partial i_0}{\partial i_i} = \beta_F + 1$$
 (9)

$$G_V \approx \frac{\partial v_0}{\partial v_i} = \frac{1}{1 + \eta u_T \frac{I_{ES}}{v_0 + IR_1} + \frac{R_3}{R_1} \frac{1}{\beta_F + 1}}$$
 (10)

O valor $v_0 = v_{0_{max}}$ é atingido quando $v_{BC_1} = 0$, ou seja:

$$V_{CC} - \eta u_T \ln \left[\frac{1}{I_{ES}} \left(\frac{v_{0_{max}}}{R_1} + I \right) \right] = v_{0_{max}}$$

$$\tag{11}$$

Mais uma vez teremos que resolver esta expressão numericamente.

O rendimento deste andar de saída pode ser obtido facilmente. A Potência fornecida à carga P_{carga} , e as potências cedidas pelas fontes P_{V_1} e P_{V_2} são dadas pelas expressões:

$$P_{carga} = \langle v_0 i_0 \rangle = \frac{\langle v_0^2 \rangle}{R_1} \tag{12}$$

$$P_{V_1} + P_{V_2} = \langle V_{CC} i_{C_1} \rangle + \langle V_{CC} I \rangle \approx 2V_{CC} I \tag{13}$$

Onde temos $\langle v_0^2 \rangle = \langle v_{0_v}^2 \rangle + v_{0_c}^2$. Assim podemos escrever o rendimento:

$$\eta = \frac{P_{carga}}{P_{V_1} + P_{V_2}} = \frac{\langle v_{0v}^2 \rangle + v_{0c}^2}{2R_1 V_{CC} I} \tag{14}$$

As potências dissipadas pelos transístores são dadas pelas expressões:

$$P_{Q_{1}} = \langle v_{CE} i_{C} \rangle = \left\langle (V_{CC} - v_{0}) \left(I + \frac{v_{0}}{R_{L}} \right) \right\rangle =$$

$$= \left\langle V_{CC} I + V_{CC} \frac{v_{0}}{R_{L}} - v_{0} I - \frac{v_{0}^{2}}{R_{L}} \right\rangle$$

$$= V_{CC} I + \frac{V_{CC}}{R_{L}} v_{0_{c}} - I v_{0_{c}} - \frac{1}{R_{L}} \left\langle v_{0}^{2} \right\rangle$$

$$= I \left\langle v_{CE_{2}} \right\rangle = I \left\langle v_{0} + V_{CC} \right\rangle =$$

$$(15)$$

Iremos agora calcular a impedância de entrada e de saída Z_i e Z_0 respectivamente. Visto que $Z_i = \frac{\partial v_i}{\partial v_0} \frac{\partial v_0}{\partial i_i}$. O primeiro termo é dado pela expressão (10), e o segundo podemos calcular a partir da relação $i_{E_1} = (\beta_F + 1)i_i = I + \frac{v_0}{R_1} \Rightarrow \frac{\partial v_0}{\partial i_i} = R_1(\beta_F + 1)$. Já para Z_0 iremos recorrer ao esquema equivalente de

 $=IV_{CC}+Iv_{0}$

Já para Z_0 iremos recorrer ao esquema equivalente de Thévenin, e posteriormente aplicar uma aproximação em série de Taylor para resistências iguais. Assim:

$$Z_i \approx \left(1 + \frac{\eta u_T}{v_0 + I R_1}\right) (\beta_F + 1) R_1 + R_3$$
 (17)

$$Z_0 = \frac{R_g + R_3}{\beta_F + 1} + \frac{\eta u_T}{I + \frac{v_0}{R_1}} \tag{18}$$

2 Análise de Resultados

2.1 Função de Transferência, Característica $i_0(i_i)$, e valor máximo de saída.

Começamos por estudar a característica $i_0(i_i)$, no gráfico da figura 2.

Figura 2: Característica $i_0(i_i)$ e ajuste à expressão (8)

Tabela I: Resultados do ajuste à equação (8).

$i_0 = i_1(\beta_F + 1) - I$		
β_F	I	
150.40 ± 0.63	$0.31 \pm 0.50 \text{ mA}$	

Conhecendo a expressão teórica para esta característica, a expressão (8), podemos aplicar um ajuste linear aos pontos experimentais. A tabela VI contém os resultados do ajuste.

A figura 2 mostra-nos que a característica obedece a uma relação linear, com declive β_F+1 . Assim concluímos que o valor $\beta_F=150.40\pm0.63$. Este valor apresenta um desvio à precisão de 0.42%, e será utilizado nas simulações em PSPice e cálculos teóricos

Já o valor obtido $I=0.31\pm0.50$ apresenta um desvio à precisão de 161%, e é obtido como um valor de offset, pelo que não será considerado.

Figura 3: Função de Transferência $v_0(v_i)$.

Invertendo agora a expressão (7) graficamente, podemos comparar com os resultados experimentais (figura 3). Vemos assim,

(16)

que a função de transferência experimental se encaixa bem na função teórica.

Figura 4: Função de Transferência $v_0(v_i)$, simulado em PSPice, com saturação.

Testamos agora uma simulação em PSPice (figura 4). Esta figura apresenta a amplitude de v_0 em função de v_i , ao contrário das figuras anteriores, que apresentam os valores eficazes.

No laboratório determinou-se que a saturação ocorria em $v_{0_{max}}=7.10\pm0.05\,V$, que é comparável com os 7.7366 V da simulação, e os 7.288 V teóricos. É preciso relembrar que tanto a simulação como a teoria tomam os transístores como perfeitos e todos iguais, o que não acontece na realidade. E por isso, é de esperar alguns desvios entre os valores experimentais e os teóricos e simulados.

Agora, pelas expressões (9) e (10), retiramos os ganhos do andar:

Tabela II: Comparação dos ganhos teóricos, da simulação e experimentais

	Exp	Teórico
G_I G_V	151.40 ± 0.63 0.95802 ± 0.00031	151.4 0.99363

Como seria de esperar, o ganho de corrente G_I é elevado, mas o ganho de tensão G_V é próximo da unidade. O ganho de tensão experimental é um pouco mais baixo, pois os componentes não são ideais, nem os transístores exactamente iguais.

2.2 Ponto de Funcionamento em Repouso

Na tabela III comparamos os resultados obtidos na simulação com os resultados medidos no laboratório.

Os resultados teóricos diferem dos da simulação pois a última tem em conta modelos mais completos que aqueles dados nas aulas. Isto nota-se bem nos valores de $i_{e_{2,3}}$, que o modelo teórico prevê como iguais, e a simulação mostra que são diferentes.

Já os valores experimentais estão, a certo nível, em conformidade com os valores teóricos experimentais, encontrando-se perto destes. Com a excepção dos valores mais pequenos, que têm diferenças relativas maiores. Isto deve-se ao facto de serem valores pequenos, e mais uma vez relembramo-nos que os modelos teóricos e do PSPice têm em conta que os transístores são perfeitos e todos iguais.

Tabela III: Comparação entre os valores experimentais, da simulação em PSpice e teóricos, do ponto de funcionamento em repouso.

		1	2	3
	R_i	10.1 ± 0.1	9.9 ± 0.1	9.8 ± 0.1
	Exp.	-0.95 ± 0.01	-6.96 ± 0.01	0.25 ± 0.01
V_{R_i} (V)	\hat{SPice}	-1.049	-7.188	0.056
-1 ()	Teórico	-0.7279	-7.311	0.0425
Transistor		v_{CE_i} (V)	v_{BE_i} (V)	v_{CB_i} (V)
	Exp	9.08 ± 0.01	0.69 ± 0.01	8.38 ± 0.01
1	SPsice	9.14	0.71	8.44
	Teórico	8.73	0.69	8.04
	Exp	6.50 ± 0.01	0.68 ± 0.01	5.82 ± 0.01
2	SPsice	6.85	0.71	6.14
	Teórico	7.27	0.6891	6.583
	Exp	0.69 ± 0.01	0.69 ± 0.01	0
3	SPsice	0.71	0.71	0
	Teórico	0.6891	0.6891	0
Transistor		i_{E_i} (A)	i_{B_i} (A)	i_{C_i} (A)
	Exp	0.825 ± 0.011	0.0255 ± 0.0113	0.85 ± 0.01
1	SPsice	0.7042	0.0057	0.6985
	Teórico	0.66	0.0043	0.6524
	Exp	0.815 ± 0.005	0.0841 ± 0.017	0.731 ± 0.012
2	SPsice	0.8149	0.0069	0.8080
_	Teórico	0.7336	0.0048	0.7288
	Exp	0.619 ± 0.042	0.0841 ± 0.017	0.535 ± 0.025
3	SPsice	0.7266	0.0069	0.7196
~	Teórico	0.7336	0.0048	0.7288
		51.000	0.0010	5.1200
Potências		P_{Q_1} (W)	P_{Q_2} (W)	P_{Q_3} (W)
	Exp	7.718 ± 0.099	4.751 ± 0.085	0.369 ± 0.023
	SPice	6.384	5.535	0.511
	Teórico	5.695	5.298	0.502
	т.	Expressão (2)	SPice	Exp
	I	0.7288A	0.8080 A	0.731 ± 0.012

2.3 Potência AF fornecida à carga, fornecida pelas fontes, e dissipada. Rendimento.

Tabela IV: Dados retirados no laboratório.

	Ī	/0
	$v_0 = v_{0_{max}}$	$v_0 = v_{0_{max}}/2$
$< v_0 > (V)$	-0.94 ± 0.01	-0.97 ± 0.01
$(v_{0_{ef}})_{\langle AC \rangle}(V)$	4.74 ± 0.05	2.38 ± 0.02
$< v_0^2 > (V^2)$	23.37 ± 0.49	6.60 ± 0.11
$v_{i_e f}\left(V\right)$	4.83 ± 0.05	2.42 ± 0.03
$V_{CC_{+}}\left(V\right)$	8.1 ± 0.1	8.1 ± 0.1
$V_{CC_{-}}\left(V\right)$	7.8 ± 0.1	7.9 ± 0.1
I(A)	0.84 ± 0.01	0.84 ± 0.01

Usando agora os valores da tabela IV, e as expressões (12), (13), (15) e (16), calculamos os valores da seguinte tabela:

Tabela V: Potências calculadas.

	$v_0 = v_{0_{max}}$	$v_0 = v_{0_{max}}/2$
$P_{S_{+}}$	6.804 ± 0.17	6.804 ± 0.17
$P_{S_{-}}$	6.552 ± 0.16	6.636 ± 0.16
P_{Q_1}	4.53 ± 0.24	6.19 ± 0.19
P_{Q_2}	5.76 ± 0.16	5.81 ± 0.16
P_{Carga}	2.313 ± 0.072	0.653 ± 0.018

Assim, pela expressão (14), obtemos o rendimento $\eta=(17.87\pm0.99)\%$ para $v_0=v_{0_{max}}$, e para $v_0=v_{0_{max}}/2$ obtemos $\eta=(5.56\pm0.29)\%$

2.4 Impedâncias de Entrada e de Saída

A partir das expressões (17) e (18) podemos calcular os valores teóricos para as impedâncias de entrada e saída, respectivamente. Utilizaremos para para a entrada uma amplitude tal que $v_0 = v_{0_{max}}/5$. Assim:

$$v_{i_{ef}} = 1.014 \pm 0.005 \, V$$
 $V_{R_{3_{ef}}} = 6.1 \pm 0.2 \, mV$ $v_{0_{ef}}(R_1 = 10.1\Omega) = 0.9486 \pm 0.0047 \, V$ $v_{0_{ef}}(R_1 = 17.4\Omega) = 1.1774 \pm 0.0058 \, V$

Tabela VI: Comparação entre os valores teóricos e experimentais das impedâncias de entrada e saída para $v_0 = v_{0_{max}}/5$

	Exp	Teórico
$Z_i(\Omega)$	1630 ± 100	1544.67
$Z_0 (\Omega)$	0.88 ± 0.30	0.4328

2.5 Banda passante a -3db

Alterámos agora a resistência de entrada para $R_3=17.4~\Omega.$ Aplicou-se à entrada um sinal sinusoidal com uma amplitude de 2~V

Figura 5: i_0/i_i em função da frequência. Escala logarítmica.

A figura 5 mostra que o limite supeiror da banda passante a -3db está nos 10~kHz. Os -3db foram calculados a partir da média dos valores obtidos no patamar estável ($\frac{i_0}{i_i}=116.088$). Assim concluímos que os -3db correspondiam a $\frac{i_0}{i_i}=82.184$.

Nota-se que a partir dos $100\ kHz$ se tem um novo patamar. Este patamar deve-se ao facto de os transístores deixarem de responder correctamente, e por isso se observa um decréscimo da corrente de entrada para a mesma corrente de saída.

3 Conclusões

Neste trabalho observou-se que a função de transferência $v_0(v_i)$ e a característica $i_0(i_i)$ são lineares, pelo menos em primeira aproximação, onde os declives correspondem aos ganhos $G_V=0.95802\pm0.00031$ e $G_I=151.40\pm0.63$ respectivamente.

Observou-se também a saturação dos transístores, pois v_0 não ultrapassava o valor $v_{0_{max}}=7.10\pm0.05~V$, próximo do valor teórico de 7.288 V.

Chegou-se a um valor do rendimento para $v_0=v_{0_{max}}$ de $(17.84\pm0.99)\%$ um pouco aquém do valor teórico $\eta_{max}=25\%$. No entanto, temos que ter em conta que os elementos do andar não são ideais. Já para $v_0=v_{0_{max}}/2$ o rendimento observado foi de $\eta=5.56\pm0.29\%$

Calcularam-se ainda as impedâncias de entrada e de saída. A impedância de saída $Z_0 = 0.88 \pm 0.30 \,\Omega$ é baixa, como seria de esperar, enquanto que a impedância de entrada é elevada ($Z_i = 1630 \pm 100 \,\Omega$).

Por fim determinou-se o limite superior da banda passante a -3db, que se encontra nos $10\ kHz$. A partir desse valor o ganho de corrente cai brutalmente.

Notámos também algumas divergências entre valores experimentais, teóricos e da simulação em PSPice. Relembremo-nos então que o modelo teórico leccionado nas aulas é um modelo simples, e que supõe que os transístores são ideais e iguais entre si. Já o modelo do PSPice é mais complexo, aproximando-se por isso um pouco mais à realidade. No entanto, este continua a supor transístores com um comportamento bem definido e todos iguais entre si. Tal não se observa na experiência, e portanto observam-se diferenças entre os três valores.