Estudo de Fenómenos de Interferência Ótica e Aplicações

Tomás Ornelas*

Departamento de Física e Astronomia Faculdade de Ciências da Universidade do Porto

Novembro de 2022

Resumo

Neste trabalho estudam-se os processos de Interferência Ótica (associados à sobreposição de ondas) via o Inte-ferómetro de Michelson, que possibilitou calcular experimentalmente o índice de refração do ar e de vidro a menos de um erro de 3% para ambos. Pôde-se também caracterizar grandezas de objetos através da sua interferência com luz controlada (Difração; regime de Fraunhofe): abertura de uma fenda linear, diâmetro de um fio de cobre e diâmetro de uma abertura circular a menos de erros de 96%, 22& e 2%

1 Introdução Teórica

A contextualização teórica, assim como procedimento experimental e objetivos que seguem são adaptados [1]. Apenas será aqui incluido a Atividade Experimental específica ao grupo em que estou inserido.

2 Objetivos

- Estudo de fenómenos associados à sobreposição de ondas com auxílio do Inteferómetro de Michelson;
- Estudo de fenómenos associados à prsença de obstáculos/aberturas (Difração);
- Dterminação do índice do ar e do vidro;
- Determinação do diâmetro de um fio de cobre, do diâmetro de uma abertura linear e de outra circular.

^{*}up202006738@up.pt

Conteúdo

1	Introdução Teórica				
2	Objetivos				
3	Atividade Experimental				
	3.1 Determinação do Índice de Refração do Ar, n_{ar}				
	3.2 Determinação do Índice de Refração do Vidro, n_{vidro}				
	3.3 Determinação da abertura de uma fenda linear				
	3.4 Determinação do diâmetro de um fio				
	3.5~ Determinação do diâmetro de um orifício circular				
4	Resultados Experimentais & Análise				
	4.1 Índice de Refração do ar, n_{ar}				
	4.2 ìndice de Refração do vidro, n_{vidro}				
	4.3 Determinação da abertura de uma fenda linear				
	4.4 Determinação do diâmetro de um fio				
	4.5 Determinação do diâmetro de um orifício circular				
5	Resultados Finais & Conclusão				
	5.1 Índice de Refração do Ar, n_{ar}				
	5.2 Índice de Refração do Vidro, n_{vidro}				
	5.3 Caracterízação de Grandezas de Objetos via Ótica Geométrica				
	5.4 Dados Da experiência				
	$5.4.1$ n_{ar} \dots				
	$5.4.2$ n_{vidro}				
	5.4.3 Grandezas de Objetos				

3 Atividade Experimental

Aqui a atividade divide-se em dois momentos:

- Utilização do Interferómetro de Michelson (Modelo Pasco Scientific(OS-9255A)) para determinar o índice de refração do ar e do vidro;
- Montagem com o ecrâ e o laser para a determinação das grandezas dos objetos a utilizar.

3.1 Determinação do Índice de Refração do Ar, n_{ar}

Figura 1: Modelo de Interferómetro Utilizado e Esquema Planificado ¹

Sem ainda ter posto a lente na fonte luminosa, alinhou-se os dois raios de luz no ecrâ (projeção final) e corrigiram-se até estarem coerentes/alinhados. Depois, meteu-se a lente de modo a que o centro do padrão de difração fosse visível e estivesse centrado no ecrâ.

Para medição de quantidades: fez-se um número N de passagens claro-escuro-claro, que eram moduladas pelo rodar do parafuso micrométrico no esquema acima à esquerda. Aqui a taxa de variação das passagens (visualmente) acontecia numa escala de tempo rápida o suficiente para confundir 1 por 2 passagens com apenas o mínimo torque aplicado no parafuso, pelo que se fez o critério de $u(N) \equiv 2$.

Registando N, medíu-se o deslocamento do parafuso micrométrico após essas N passagens e repetiu-se 10 vezes de modo a fazer uma média posterior.

A fórmula que correlaciona todos estes elementos é

$$n_{ar} = \frac{N\lambda_0}{2\Delta d_N} \tag{1}$$

onde $n_{ar}=1,00029,\,\lambda_0=632.8\,\,nm$ e $\Delta d_N=$ deslocamento provocado pelo parafuso (medido no mesmo).

3.2 Determinação do Índice de Refração do Vidro, n_{vidro}

Ese esquema apenas tem a pequena variação em relação à anterior, indicada pelos números a vermelho:

Figura 2: 1 - Alavanca para manipular o ângulo i; 2 - Placa de Vidro utilizada

Colocou-se a lâmina do vidro existente no laboratório no braço do espelho 2 (Figura 2). Alinhou-se novamente os raios de modo a obter coerência entre ondas no ecrâ. Com a lente perpendicular ao espelho (i=0, onde $i\equiv$ ângulo entre luz incidente e plano do vidro), rodou-se esta lentamente (via a alavanca presa ao corpo do suporto da placa de vidro inserida), contando novamente as N passagens claro-escuro-claro e anotando o ângulo i. Para obter o índice de refração do vidro, utiliza-se a expressão explorada em [1]:

$$n_{vidro} = \frac{hn_a^2 sin^2(i)}{hn_a sin^2(i) - N(i)\lambda} \eqno(2)$$

3.3 Determinação da abertura de uma fenda linear

Figura 3: Esquerda - esquema geral da difração para os 3 objetos; Direita - Esquema da fenomenologia de difração perante objetos no caminho da luz incidente

Alinhou-se uma fenda fixa por um suporte com a luz proveninente do laser He-Ne, onde indicava uma fenda de abertura $b_{linear} = 0.16$, a ser comparado com o valor experimental posteriormente. De modo a estarmos no regime de Frauhofer, distámos 2 metros entre a fonte (laster) e o plano de projeção onde o padrão de interferência se quantificava

através da medição de distâncias entre máx/mínimos correspondentes. A expressão que relaciona as várias grandezas é

$$b = m \frac{d\lambda_0}{nY_{min}}, \ m \pm 1, 2, 3, \dots$$
 (3)

onde $d_{exp}=234.0\pm0.5~(mm),~m\equiv$ m-ésimo máx/mínimo e os restantes parâmetros já são conhecidos.

3.4 Determinação do diâmetro de um fio

O procedimento experimental é idêntico ao anterior, exceto que se usa meramente um suporte específico.

3.5 Determinação do diâmetro de um orifício circular

Colocou-se o suporte com os orifícios circulares, alinhou-se com a luz incidente do laser de modo a projetar o padrão no plano de obsevação. Mediu-se a distância ao centro das primeiras coroas escuras, registando qual o seu posicionamento.

A expressão que nos permite calcular esta quantidade é

$$D_{1zero} = 1.22 \frac{\lambda_0 d}{nq_{1zero}}, D_{2zero} = 2.23 \frac{\lambda_0 d}{nq_{2zero}}, D_{3zero} = 3.24 \frac{\lambda_0 d}{nq_{3zero}}, \dots$$
 (4)

4 Resultados Experimentais & Análise

Eventuais cálculos intermédios ou de incerteza encontram-se no Anexo, assim como os dados medidos/retirados para as várias partes.

4.1 Índice de Refração do ar, n_{ar}

Como dito, fizeram-se 2 ensaios ² distintos para a medição do índice de refração do ar:

- gama reduzida de deslocamento Δd_N , em que basicamente se alternava para a frente e para trás (com o parafuso) num intervalo pequeno de deslocamentos;
- gama de deslocamento bastante maior após varrimento da mesma para descobrir o intervalo de valores relevantes.

Em ambos os casos é utilizada a relação (1), exceto que no primeiro (gama reduzida) a fórmula é aplicada diretamente para aplicar uma média posterior e no segundo (gama alargada) é feito um ajuste linear cujo declive equivale imediatamente ao índice de refração.

1º Método - Gama Reduzida - Média

(gráfico na página seguinte, cima)

Retiraram-se os pontos a vermelho pelo facto de distarem $\approx 15\%$ do comportamento esperado, não sendo albergado pela sua incerteza (experimental). A gama aprimorada faculta um Obteve-se

$\langle n_{ar} \rangle_{exp}$	1.03
inc_{exp}	1%
$n_{ar_{teo}}$	1.00029
erro	3 %

Tabela 1: Resultado de n_{ar} , 1º Método - Gama Reduzida de Δd_N

Infelizmente, a incerteza experimental da média não alberga o zero do erro % para com o valor teórico. Contudo, dado que todas as incertezas no gráfico b) albergam o valor médio experimental e que se trata de um erro de apenas

²embora os esteja a diferenciar, estes dois "métodos"são em boa verdade parte da mesma proa. A única questão é a extensão do varrimento de gama, que, em muitos contextos, pode ser fulcral em relação a encontrar ou não resultados fidedignos e coerentes.

(a) Gama Inicial

 $\mbox{\bf (b)}$ Pontos Duvidosos Retirados - Incertezas Exp. albergam tanto o valor tabelado como a média experimental

Figura 4: Média Ponderada de n_{aar} para Gama Reduzida

3%, fazer um estudo de n_{ar} deste modo, com uma gama reduzida, é promissor. No entanto, para melhores resultados, pensa-se que amostra deve rondar os 30 pontos para atingir um *sweetspot* de precisão.

2º Método - Gama Alargada - Ajuste

O segundo método visa percorrer uma gama de deslocamentos muito maior, mas o raciocínio é o mesmo. Aqui foi necessário repartir a gama em dois, porque as primeiras tentativas de rodar o parafuso para obter um deslocamento foram sobretudo experimentais (daí talvez a tendência sinusoidal na gama da esquerda), dado que o mais pequeno torque aplicado ao parafuso provoca um aumento substancial em Δd_N , que em si provoca as passagens claro-escuro-claro muito rápidas, induzindo o valor de n_{ar} em erro. Esta sensibilidade do parafuso em demasia é o fator negativo mais prevalecente nesta experiência. No método anterior era sobretudo mais fácil controlar isto dado que se estava a percorrer uma gama pequena de maneira monótona.

Figura 5: Dados experimentais para Gama Alargada de deslocamento com comportamento previsto por (1). Resíduos com cores respetivas aos ajustes

Não se apresentaram resíduos referentes à Gama 2 porque foi um fit linear perfeito, dado que a incerteza estatística era inferior à precisão computacional (10^{-16} casas).

Os resíduos da Gama 1 albergam o zero, excetuando 3 pontos, e por uma margem de $\approx 5\%$. Embora tenham uma dispersão algo biased, com um perfil sinusoidal, os resíduos tomam valores baixos (1 – 14%, com maior incidência nos

Dados Ajuste	Gama 1	Gama 2
m	0.93	1
u(m)	0.01	1e-17
b	-2.8	-7
u(b)	0.3	1e-17
R^2	0.998	1

Tabela 2: Tabela de Ajustes - n_{ar} para 2^{o} Método, Gama Alargada

valores baixos).

Algo não usual é a disparidade e os próprios valores que as ordenadas na origem dos ajustes tomam. A relação (1) prevê uma lineariedade centrada na origem, que não é albergada pela incerteza de b nos dois casos. O porquê de tal não foi identificado.

Optei aqui por não juntar os resultados ao fazer uma média, dado que os regimes diferem em metodologia de rotação do parafuso: a Gama 1 serviu para aprimorar o método e estabilidade (da rotação física) por quem estava a conduzir a experiência, ou seja, foi um regime de adaptação e experimental, enquanto que na Gama 2 já tinha sido ganha a sensibilidade necessária para manusear o aparato devidamente.

Podem ser verificados os resíduos originais sem a repartição de gama no Anexo, onde as tendências de distribuição se notam bastante.

Portanto, daqui serão apenas retirados os resultados da Gama 2.

4.2 indice de Refração do vidro, n_{vidro}

Esta secção é, em grande parte, homólogo à anteior (n_{ar}) relativamente ao cálculo do índice de refração pela média. Como dito, aqui é controlado o ângulo entre a luz incidente e o plano da lâmina, controlado pela alavanca associada à placa de vidro. Fazem-se apenas 2 medições: (N, i), de modo a utilizar a expressão

$$n_{vidro} = \frac{hn_a^2 sin^2(i)}{hn_a sin^2(i) - N(i)\lambda}$$

Infelizmente, não existe nenhuma manipulação algébrica desta expressão que devolva uma função N(i) com parâmetros facilmente descobertos via um ajuste, pelo que se remete para o cálculo da média, utilizando pares individuais (N, i) via (2).

<u>Nota</u>: nesta parte foi mais fácil e preciso o manuseamento da alavanca em comparação com o parafuso micrométrico para contar as *N* passagens *claro-escuro-claro*, de modo a que sejam expectável melhores resultados.

$1^{\underline{o}}$ Método - Gama Reduzida - Média

Figura 6: Média do índice de refração, utilizando pares de pontos (N, i) na relação (2)

Todos os pares de pontos albergam, com a sua incerteza experimental, o valor médio ponderado, assim como o valor tabelado/de referência $n_{vidro} = 1.517$, para vidro genérico.

Obteve-se, portanto

$\langle n_{vidro} \rangle_{exp}$	1.50
inc_{exp}	1%
$n_{vidro_{teo}}$	1.517
erro	1 %

Tabela 3: Resultados de n_{vidro} , por cálculo de média usando (2) para um Gama Reduzida de i

A incerteza alberga o zero do erro.

2º Método - Gama Alargada - Média

Aqui é usada uma gama alargada de $i \in [0, 14]$. Como dito, não é possível isolar uma função N(i) com ajuste fácil que possibilitaria retirar n_{vidro} , pelo que se remete novamente ao cálculo da média do índice de refração para cada par (N, i).

Figura 7: Média do índice de refração do vidro, utilizando uma gama maior de pares de pontos (N, i) na relação (2)

Vemos efetivamente que quase todos os pares albergam o valor médio com a sua incerteza, que ronda o valor 1. Contudo, isto aproxima-se do índice refração do ar, ao invés do do vidro: 1.517. Tentou-se identificar algum tipo de erro sistemático em medição ou do próprio cálculo no tratamento de dados, mas o problema é insolúvel. Por alguma razão, os dados retirados nesta gama alargada convergem para o índice de refração do ar.

$\langle n_{vidro} \rangle_{exp}$	1.02
inc_{exp}	1%
$n_{vidro_{teo}}$	1.517
erro	33 %

Tabela 4: Resultados de n_{vidro} , por cálculo de média usando (2) para um Gama Alargada de i

Este resultado é obviamente descartado pela margem de erro não compensável (tanto pela comparação com a incerteza como pela magnitude do erro).

4.3 Determinação da abertura de uma fenda linear

Nas 3 secções que seguem, onde é utilizada a ótica geométrica para determinar grandezas que caracterizam objetos, são utilizadas as expressões exploradas em [1]. Adicionalmente, existem algumas imagens no Anexo representativas da fenomonologia e montagem destas mesmas partes.

Obtiveram-se 4 valores para m, que nos permie calcular a abertura via

$$b=m\frac{d\lambda_0}{nY_{min}},\ m\pm1,2,3,\dots$$

onde $d_{exp} = 234.0 \pm 0.5 \ (mm)$ e os restantes parâmetros já são conhecidos.

$\pm m$	$Y_{min} \pm 0.05 \ (cm)$	b (cm)
1	5	3E-05
2	9	3E-05
3	13	3E-05
4	15	4E-05

Obtém-se, portanto,

$\langle b_{linear} \rangle$	$6.4~\mu m$
inc	20 %
erro	96 %

Tabela 5: Resultados obtidos p

Cujo erro foi calculado em relação ao valor apresentado no alvo de 0.16mm. Este é um erro exorbitante, e não um de ordem de grandeza, mas sim de algarismos. O porquê é provavelmente oriundo de uma incorreta medição de distância entre máx/mínimos, dado que para estar no regime de Fraunhofer, cujas expressões usadas dependem, é necessário que d>2m, que foi o caso da deste ensaio: $d_{exp}=2.34m$.

4.4 Determinação do diâmetro de um fio

Esta análise é homóloga à anterior, excetuando o facto de se tratar de um fio de cobre com geometria diferente que produz um padrão de difração distinto.

Mediu-se:

$\pm m$	$Y_{min}(\pm 0.05 \ cm)$	b
1	0.55	0.00026915
2	0.6	0.000493441
3	0.65	0.000683226
4	0.5	0.001184258
5	0.6	0.001233602
6	0.55	0.001614897
7	0.55	0.001884047
8	0.65	0.001821936
9	0.6	0.002220484
10	0.6	0.002467205
11	0.65	0.002505162
12	0.55	0.003229795
13	0.65	0.002960645
14	0.45	0.004605448
15	0.55	0.004037244
16	0.6	0.003947527
17	0.5	0.005033097
18	0.6	0.004440968
19	0.55	0.005113842
20	0.65	0.004554839
21	0.6	0.005181129

Tabela 6: Resultados obtidos p

Obteve.se:

$\langle d_{fio\ cobre} \rangle$	$2.8 \ mm$
inc	11 %
erro	12 %

Tabela 7: Resultados obtidos p

O valor expectável para o diâmetro de um fio de cobre genérico ronda os $d_{Cu,teo} \approx 2.5mm$, que devolve um erro cujo zero é quase albergado pela incerteza da grandeza.

4.5 Determinação do diâmetro de um orifício circular

Aqui é utilizada a expressão

$$D_{1zero} = 1.22 \frac{\lambda_0 d}{nq_{1zero}}, D_{2zero} = 2.23 \frac{\lambda_0 d}{nq_{2zero}}, D_{3zero} = 3.24 \frac{\lambda_0 d}{nq_{3zero}}, \dots$$

onde $q \equiv$ distâncias aos respetivos números dos círculos de intensidade do padrão de interferência. Mediu-se:

m	$Y_{min} \pm 0.05 \ cm$	D
1	0.55	3.28362 E-06
2	0.5	3.61199E-06
3	0.45	4.01332 E-06
4	0.45	4.01332 E-06
5	0.45	4.01332 E-06
6	0.4	4.51498E-06

Obteve-se

$\langle D_{circular} \rangle$	$0.391 \ mm$
inc	4 %
erro	2 %

Tabela 8: Resultados obtidos p

onde foi usado o valor de referência facultado no suporte de $D_{circular}=0.4\ mm$. Temos que a incerteza cobre o zero do erro.

5 Resultados Finais & Conclusão

Possíveis erros de calibração oriundos do parafuso micrométrico do Interferómetro de Michaelson podem ter induzido, em massa, a medição sistematicamente incorreta dos valores observados.

Foram utilizados 2 métodos diferentes para o cálculo do valor dos índices de refração do ar e vidro: o 1º visou retirar muita informação numa vizinhança mais local dentro da gama do parâmetro explorado (i.e., deslocamento ou ângulo), enquanto que o outro efetuava (indiretamente) um varrimento de gama maior, percorrendo os extremos dos regimes considerados. Em ambos os métodos são aplicadas médias para cálculo final das quantidades desejadas.

Em suma, o primeiro método aparenta ter mais sucesso pelos seus resultados, que leva a crer que existem de facto regimes (de parâmetros/quantidades) no contexto desta experiência que devem ter maior peso estatístico ou estão em regimes cujas aproximações ou considerações são coerentes e sem espaço para desvios substanciais.

5.1 Índice de Refração do Ar, n_{ar}

Foi possível utilizar 2 métodos de 'varrimento' de gama para calcular o índice de rfração do ar, em que o 1º, com um span de valores menor, teve mais sucesso

$M\'etodo$	$n_{ar_{exp}}$	inc	erro
1	1.03	1	3
2	0.93	1	7

Tabela 9: Resultados obtidos para n_{ar}

onde foi utilizado o valor de referência $n_{ar_{teo}} = 1.00029$ para comparação.

5.2 Índice de Refração do Vidro, n_{vidro}

O raciocínio é homólogo ao índice de refração do ar:

$M\'etodo$	$n_{vidro_{exp}}$	inc	erro
1	1.03	1	3
2	0.93	1	7

Tabela 10: Resultados obtidos para n_{vidro}

onde foi utilizado o valor de referência (vidro genérico) $n_{vidro_{teo}} = 1.517$ para comparação.

5.3 Caracterízação de Grandezas de Objetos via Ótica Geométrica

Remeteu-se a expressões (aproximações, mas que nos regimes usados têm baixo erro) derivadas através da interação da luz perante um objeto, especificamente no caso da difração, caracterizando a abertura de uma fenda linear, o diâmetro de um fio de cobre e o diâmetro de uma abertura circular:

Objeto	Grandeza	inc%	erro%
Fenda de Abertura Linear	$\langle b_{linear} \rangle = 6.4 \mu m$	20	96
Fio de Cobre	$\langle d_{fio\ cobre} \rangle = 2.8mm$	11	22
Fenda de Abertura Circular	$\langle D_{circular} \rangle = 0.391mm$	4	2

Tabela 11: Resultados obtidos para características dos objetos utilizados

onde foram utilizados os valores de referência $b_{linear} = 0.16 \ mm, \ d_{fio,cobre} \approx 2.5 \ mm, \ D_{circular} = 0.4 \ mm.$ Os erros prováveis foram na medição correta (por erro de identificação) das distâncias entre máx/mínimos correspondentes quando foram analisados os padrões de interferência no plano de projeção.

Referências

[1] Departamento de Física e Astronomia FCUP. Estudo de fenómenos de interferência Ótica e aplicações - laboratório de física iii - 2021/2022.

ANEXOS

A incerteza de uma grandeza $x=x(x_1,x_2,...,x_n)$ é dada por

$$u(x) = \left[\sum_{i=1}^{N} \left(\frac{\partial x}{\partial x_i} u(x_i)\right)^2\right]^{1/2}$$

Cálculo da incerteza de $\langle x \rangle$

$$u(\langle x \rangle) = \frac{\sigma_{amostra_x}}{\sqrt{N}}$$

Resíduos Gráfico (2) - $n_{ar}\,$

Figura 8: Resíduos de ajuste original com gama não repartida, 2^{0} Método - Gama de Δd_{N} Alargada

 ${\bf Imagens} \ {\bf Experimentais} \ {\bf do} \ snipershot \ {\bf e} \ {\bf padr\~ao} \ {\bf de} \ {\bf interfer\'encia} \ {\bf do} \ {\bf fio} \ {\bf de} \ {\bf cobre}, \ {\bf abertura} \ {\bf linear} \ {\bf e} \ {\bf circular} \ {\bf e} \ {\bf re}$

(a) Abertura Circula

(b) Padrão de Interferência observado (com régua a medir o espaçamento de \max/\min

 ${\bf (a)}$ Abertura linear - Padrão de Interferência

(b) Fio de Cobre - snipershop

Figura 10: Fotos de Esquema e Alguns Padrões de interferência

5.4 Dados Da experiência

5.4.1 n_{ar}

$\underline{1^{\underline{0}}\mathrm{M\acute{e}todo}}$

d(microm)	\mathbf{N}
10	30
11	30
9	30
8	27
9.5	31
11	29
10	32
9	29
8	26
10.5	34

$2^{\underline{a}}$ Método

d(microm)	\mathbf{N}
10	0
16	10
20	20
23.5	30
27	40
30	50
33	60
37	70
40	80
44	90
47	100
50	110
53	120
56	130
59	140
62	150
65	160
68	170

$\textbf{5.4.2} \quad n_{vidro}$

$\underline{1^0 M\acute{e}todo}$

i	\mathbf{N}
6	30
5.8	31
5.5	29
5.7	27
6	32
5.9	29
6	31
5.5	30
6	28

$2^{\underline{a}}$ Método

\mathbf{N}	i
0	0
1	1.3
2	2
3	2.7
4	3
5	3.2
6	3.4
7	3.6
8	3.8
9	4
10	4.1
11	4.2
14	4.5
19	5
24	5.5
29	5.9
36	6.6
43	7.6
50	8.1
60	8.7
75	9.4
95	10.6
115	11.4
135	13
155	14

5.4.3 Grandezas de Objetos

$\underline{ Fenda\ Abertura\ Linear}$

m (+/-)	y min (cm)
1	5.3
2	5.55
3	5.87
4	6.05

$\underline{\rm Fio~Cobre}$

m (+/-)	y min (cm)
1	0.55
2	0.6
3	0.65
4	0.5
5	0.6
6	0.55
7	0.55
8	0.65
9	0.6
10	0.6
11	0.65
12	0.55
13	0.65
14	0.45
15	0.55
16	0.6
17	0.5
18	0.6
19	0.55
20	0.65
21	0.6

Fenda Abertura Circular

m (+/-)	y min (cm)
1	0.55
2	0.5
3	0.45
4	0.45
5	0.45
6	0.4