

DEM AND CFD COUPLING

LUCILLA ALMEIDA

www.rocky-dem.com

OUTLINE

- DEM-CFD Coupling Formulation
- Validation cases

DEM

Euler's Equations:
$$\mathbf{I}_p \frac{d\mathbf{\omega}_p}{dt} - (\mathbf{I}_p \cdot \mathbf{\omega}_p) \times \mathbf{\omega}_p = \mathbf{T}_p + \mathbf{T}_p^{f \to p}$$

DRAG MODELS

Dilute flows

- Schiller & Naumann (1933)
- DallaValle (1948)
- Haider & Levenspiel (1989)
- Ganser (1993)

Dense flows

- Wen & Yu (1966)
- Ergun (1958)
- Huilin & Gidaspow (2003)
- Di Felice (1994)

$C_D = \frac{\mathbf{F}_{\mathrm{D}}}{\frac{1}{2}\rho_f A' \left| \mathbf{u}_f - \mathbf{v}_p \right| \left(\mathbf{u}_f - \mathbf{v}_p \right)}$

Spherical particles

Takes into account shape

FLUID-PARTICLES INTERACTION FORCES

Virtual mass force

$$\mathbf{F}_{\mathrm{VM}} = C_{\mathrm{VM}} \rho_f V_p \mathbf{a}_r$$

- Available virtual mass models:
 - Constant
 - Ishii & Mishima (1984)
 - Paladino (2005)

• Lift force

$$C_L = \frac{\mathbf{F}_L}{\rho_f V_p \mathbf{u}_r \times (\nabla \times \mathbf{u})}$$

- Available lift models:
 - Saffman (1968)
 - Mei (1992)

PARTICLE HEAT TRANSFER

• For stardard (lumped) formulation: $T_p(R,t) \cong T_{av}(t)$

• For improved (lumped) formulation: $T_p(R,t) = \frac{8k_pT_{av}(t) + h(t)RT_{av}(t) - q''(t)R}{8k_p + h(t)R}$

PARTICLE HEAT TRANSFER

Heat transfer coefficient based on Nusselt number:

$$Nu = \frac{hd_p}{k_f}$$

- Available Nusselt number correlations:
 - Ranz & Marschall (1952)Whitaker (1972)Single particle

Gunn (1978) Fixed or fluidized beds

CFD

DEM software

 Influence of particle on the fluid flow is taken into account by the volume fraction and momentum exchange force.

$$\frac{\partial}{\partial t} (\alpha_{f} \rho_{f}) + \nabla \cdot (\alpha_{f} \rho_{f} \mathbf{u}) = 0$$

$$\frac{\partial}{\partial t} (\alpha_{f} \rho_{f} \mathbf{u}) + \nabla \cdot (\alpha_{f} \rho_{f} \mathbf{u} \mathbf{u}) = -\alpha_{f} \nabla P + \alpha_{f} \nabla \cdot \tau_{f} + \alpha_{f} \rho_{f} \mathbf{g} \cdot \mathbf{F}^{p \to F}$$

$$\mathbf{F}^{p \to F} = \frac{\sum_{p=1}^{N} \mathbf{F}_{p}^{F \to p}}{V_{cell}}$$
particle-fluid interaction

CASE 1 — FREE FALLING PARTICLE

Free falling particle in water

$$m_{p}\frac{dv_{z}}{dt}=m_{p}\left(\rho_{p}-\rho_{f}\right)V_{p}g_{z}-\frac{1}{2}\rho_{f}C_{D}Av_{z_{r}}^{2}$$

• Schiller & Naumann drag correlation

$$C_D = \max\left[\frac{24}{Re_p}\left(1 + 0.15Re_p^{0.687}\right), 0.44\right]$$

CASE 1 – FREE FALLING PARTICLE

- Free falling particle
- Laminar flow

		Value	Unit
Domain	Dimensions	4x8x4	mm
	Mesh size	0.25	mm
Particle	Diameter	0.2	mm
	Density	2500	Kg/m³
Water	Viscosity	0.001	Pa.s
	Density	1000	Kg/m³

CASE 1 — FREE FALLING PARTICLE

Velocity and position

CASE 1 – FREE FALLING PARTICLE

Free falling particle

CASE 2 — FREE FALLING PARTICLE IN TWO-FLUIDS DOMAIN

• Free falling particle in two-fluids domain

		Value	Unit
Domain	Dimensions	4x8x4	mm
	Mesh size	0.25	mm
Particle	Diameter	0.2	mm
	Density	2500	Kg/m³
Air	Viscosity	0.00001	Pa.s
	Density	1	Kg/m³
Water	Viscosity	0.001	Pa.s
	Density	1000	Kg/m³

CASE 2 — FREE FALLING PARTICLE IN TWO-FLUIDS DOMAIN

Velocity and position

CASE 2 — FREE FALLING PARTICLE IN TWO-FLUIDS DOMAIN

Free falling particle

CASE 3 – COOLING PARTICLE WITH STANDARD FORMULATION

Cooling particle in water

$$m_p \frac{dv_z}{dt} = m_p \left(\rho_p - \rho_f\right) V_p g_z - \frac{1}{2} \rho_f C_D A v_{z_r}^2$$

Schiller & Naumann drag correlation

$$C_D = \max \left[\frac{24}{Re_p} \left(1 + 0.15 Re_p^{0.687} \right), 0.44 \right]$$

Temperature variation as function of heat exchange with water

$$T_p = T_p^0 + \frac{q_{f \to p} \Delta t}{m_p c_p}$$
 $q_{f \to p} = \left(\frac{Nu \, k_f}{d_p}\right) A_p \left(T_f - T_p^0\right)$

Whitaker and Ranz & Marshal correlation for Nusselt number

CASE 3 – COOLING PARTICLE WITH STANDARD FORMULATION

		Value	Unit
	Dimensions	4x8x4	mm
Domain	Mesh size	0.25	mm
	Diameter	0.2	mm
	Density	2500	Kg/m³
Particle	Heat Capacity	1000	J/kg.K
	Thermal conductivity	100	W/m.K
	Initial temperature	500	К
	Viscosity	0.001	Pa.s
	Density	1000	Kg/m³
Water	Heat Capacity	5000	J/kg.K
	Thermal conductivity	0.5	W/m.K
	Temperature	300	К

CASE 3 – COOLING PARTICLE WITH STANDARD FORMULATION

- Standard formulation
- Thermal conductivity = 100 W/m.K
 - Bi =0.01

Cooling particle in water

$$m_p \frac{dv_z}{dt} = m_p \left(\rho_p - \rho_f\right) V_p g_z - \frac{1}{2} \rho_f C_D A v_{z_r}^2$$

- Schiller & Naumann drag correlation
- Ranz & Marshal correlation for Nusselt number

• Temperature variation as function of heat exchange with water

$$T_p = T_p^0 + \frac{q_{f \to p} \Delta t}{m_p c_p} \qquad q_{f \to p} = \left(\frac{Nu \, k_f}{d_p}\right) A_p \left(T_f - T_p^0\right)$$

		Value	Unit
Domain	Dimensions	4x8x4	mm
	Mesh size	0.25	mm
	Diameter	0.2	mm
	Density	2500	Kg/m³
Particle	Heat Capacity	1000	J/kg.K
	Thermal conductivity	Case dependent	W/m.K
	Initial temperature	500	К
	Viscosity	0.001	Pa.s
	Density	1000	Kg/m³
Water	Heat Capacity	5000	J/kg.K
	Thermal conductivity	0.5	W/m.K
	Temperature	300	К

- Standard vs. improved formulation
- Thermal conductivity modified in order to have different Biot numbers
 - Bi =0. 1, 1.0 and 10.0

- Standard vs. improved formulation
- Thermal conductivity modified in order to have different Biot numbers
 - Bi =0. 1, 1.0 and 10.0

Cooling particle with volumetric heat source in water

$$m_p \frac{dv_z}{dt} = m_p \left(\rho_p - \rho_f\right) V_p g_z - \frac{1}{2} \rho_f C_D A v_{z_r}^2$$

- Schiller & Naumann drag correlation
- Ranz & Marshal correlation for Nusselt number

Temperature variation as function of heat exchange with water

$$m_p c_p \frac{\partial T_{av}(t)}{\partial t} = A_p h \left(T_m(t) - T_p(R, t) \right) - A_p q'' + V_p q'''$$

- Standard formulation
- Three different heat source values

- Standard x improved formulation
- Thermal conductivity modified in order to have different Biot numbers
 - Bi =0. 1, 1.0 and 10.0

- Standard x improved formulation
- Thermal conductivity modified in order to have different Biot numbers
 - Bi =0. 1, 1.0 and 10.0

- Standard x improved formulation
- Thermal conductivity modified in order to have different Biot numbers
 - Bi =0. 1, 1.0 and 10.0

- Water flowing through fixed bed of particles
- Pressure drop comparison against Ergun correlation

$$\frac{\Delta p}{\Delta y} = 150 \frac{(1 - \epsilon)^2 \,\mu U}{\epsilon^3 d_p^2} + 1,75 \frac{(1 - \epsilon) \,\rho_f U^2}{d_p}$$

Fluid velocity as function of void fraction

$$u = \frac{U}{\epsilon}$$

Huilin & Gidaspow drag corrleation

		Value	Unit
Domain	Dimensions	10x10x80	cm
	Mesh size	10	mm
Particle	Diameter	3.95	mm
	Number of particles	92798	-
	Bed height	0.5	m
	Density	500	Kg/m³
Water	Viscosity	0.001	Pa.s
	Density	1000	Kg/m³

Velocity and position

- Pressure drop in the bed is 46728 Pa/m
- Ergun's correlation estimative is 45836.77
 Pa/m
- Error is 1.94 %

CASE 7 – FLUIDIZED BED

- NETL small scale tests widely used to improve the reliability of computational modeling of multiphase flows by validating with accurate and well defined experimental data
- 3 x 9 x 48 in bubbling fluidized bed
- Geldart D uniform sized particles
- 2-way coupling test using dense drag law

(a) SSCP-I test facility and (b) Experimental facility showing pressure intakes

CASE 7 - FLUIDIZED BED

Uniform grid 23808 cells

Cell volume = 50 * particle volume

Case	Inlet velocity [m/s]
Small velocity	2.19
Medium velocity	3.28
High velocity	4.38

CASE 7 - PARTICLES BEHAVIOUR

CASE 7 - PRESSURE DROP

- Experimental and simulation minimum fluidization velocities coincide well.
- Good agreement between experimental and simulation pressure drop results after fluidization.

Small velocity case Evolution of
pressure drop
between the two
pressure intake
locations

CASE 7 – BUBBLE/BED DYNAMICS

- Isosurfaces of $\alpha p = 0.3$
- Bubbles formation since
 Umf, as expected for a
 Geldart D bed
- ◆ ↑ gas velocity
- ↑ bubble volume
- ↑ bed height
- ↓ interface definition

CASE 7 – BUBBLE/BED DYNAMICS

$$\langle z_p \rangle = \frac{\sum_{k}^{N_c} \alpha_{p,k} \ z_{p,k}}{\sum_{k}^{N_c} \alpha_{p,k}}$$

- Reflects the characteristic fluctuation of bubbling fluidized beds
- ↑ gas velocity
- ↑ bed height
- † fluctuations
- Agreement with published results

Time evolution of bed average heights (divided by the initial bed height) for each of the cases

CASE 7 – TEMPERATURE

- Before fluidization, particles at initial position (a)
- First layers have lower T due to heat transfer with cooler gas (b)

- After fluidization, particles at the bottom with lower temperatures go upper (c)
- New particles get in contact with cooler gas
 (d)
- Intimate mixing and agitation result in uniform temperature throughout the bed (e)

CASE 7 - TEMPERATURE

- Dual recirculation pattern was observed.
- Same pattern reported in literature.
- Average velocity of the particles in 5 different regions of the bed (according to NETL report)
- Positive vertical velocity in the central region where the bubbles carry particles upward
- Negative values near the walls, where the particles return to fill the empty region.

FUTURE DEVELOPMENTS

- PARTICLE SCALE-DOWN MODEL
 - Parcel concept
 - Particle bigger than mesh cell