1 1変数多項式の終結式

多項式の係数はいずれも整域 R の元としておく、こうしておくと多項式の係数を商体 $\mathrm{Rat}(R)$ の元として分数に拡張できる、さらに方程式の解は代数閉包 $\overline{\mathrm{Rat}(R)}$ 上で考えられる。もしかしたら R を UFD くらいに仮定しといた方が安全かもしれない。

定義 (終結式). 多項式
$$f(x) = \sum_{i=0}^m a_m x^i$$
 と $g(x) = \sum_{j=0}^n b_n x^j \ (a_m, b_n \neq 0)$ に対して

を f と g のシルベスター行列といい、その行列式

$$resul(f, g) := det(Syl(f, g))$$

を f と g の終結式 (resultant) という. なお、零でない定数 $g(x) = b_0 \neq 0$ に対しては

$$\operatorname{Syl}(f, b_0) = \begin{bmatrix} b_0 & & \\ & \ddots & \\ & & b_0 \end{bmatrix}, \quad \operatorname{resul}(f, b_0) = b_0^m$$

であり、同様に $\operatorname{resul}(a_0,g)=a_m^n$ である。また、 $\operatorname{resul}(f,0)=\operatorname{resul}(0,g)=0$ と定める.

注意.上で定義した Syl(f,g) の転置行列をシルベスター行列と呼ぶ流儀もある.

例 1.
$$f(x) = x^3 + 1$$
, $g(x) = x^2 + 2x + 1$, $h(x) = x^2 + 1$ とする.

次の定理 1 から、f,g は共通根を持ち、f,h は共通根を持たないことがわかる.

以下, f,g は次のような多項式とする. ただし, $a_m,b_n\neq 0$ とする.

$$f(x) = \sum_{i=0}^{m} a_i x^i = a_m \prod_{i=1}^{m} (x - \alpha_i), \quad g(x) = \sum_{i=0}^{n} b_j x^j = b_n \prod_{i=1}^{n} (x - \beta_i)$$

定理 1. f と g は共通根を持つ. \iff resul(f,g)=0.

証明. (\Rightarrow) $f(\gamma) = g(\gamma) = 0$ とすると、 $\gamma^i f(\gamma) = \gamma^j g(\gamma) = 0$ なので以下が成り立つ.

$$\begin{bmatrix} a_3 & a_2 & a_1 & a_0 & 0 \\ 0 & a_3 & a_2 & a_1 & a_0 \\ b_2 & b_1 & b_0 & 0 & 0 \\ 0 & b_2 & b_1 & b_0 & 0 \\ 0 & 0 & b_2 & b_1 & b_0 \end{bmatrix} \begin{bmatrix} \gamma^4 \\ \gamma^3 \\ \gamma^2 \\ \gamma \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad (m = 3, n = 2 \text{ の場合})$$

同次形連立 1 次方程式 Syl(f,g)x = 0 が非自明解を持つので resul(f,g) = 0 である.

補題 1. resul
$$(f,g) = a_m^n b_n^m \prod_{i=1}^m \prod_{j=1}^n (\alpha_i - \beta_j)$$

証明. 定理 1 の (\Rightarrow) から $\alpha_i = \beta_j$ のとき $\operatorname{resul}(f,g) = 0$ なので,因数定理より $T := \prod \prod (\alpha_i - \beta_j)$ は $\operatorname{resul}(f,g)$ を割り切る.そこで,各 α_i,β_j の多項式として $\operatorname{resul}(f,g)$ と T の次数を評価し,係数を比較すればよい.

$$f(x)/a_m = x^m + A_1 x^{m-1} + \dots + A_m = \prod_{i=1}^m (x - \alpha_i),$$

$$g(x)/b_n = x^n + B_1 x^{n-1} + \dots + B_n = \prod_{j=1}^n (x - \beta_j)$$

とすると, m=3, n=2 の場合

resul
$$(f,g) = a_3^2 b_2^3$$
 $\begin{vmatrix} 1 & A_1 & A_2 & A_3 & 0 \\ 0 & 1 & A_1 & A_2 & A_3 \\ 1 & B_1 & B_2 & 0 & 0 \\ 0 & 1 & B_1 & B_2 & 0 \\ 0 & 0 & 1 & B_1 & B_2 \end{vmatrix}$

である。各 A_k は α_1,\ldots,α_m の,各 B_k は β_1,\ldots,β_n の k 次基本対称式の ± 1 倍である。また,各 A_i,B_j はそれぞれ α_i,β_j の 1 次式なので,resul(f,g) は α_i に関して高々 n 次で, β_j に関して高々 m 次である。従って,resul(f,g) は T の定数倍であり, α_1^n の係数を比較して,resul $(f,g)=a_m^nb_n^mT$ がわかる.

例 2. $f(x) = ax^2 + bx + c \ (a \neq 0)$ とする. f'(x) = 2ax + b であり,

resul
$$(f, f')$$
 = $\begin{vmatrix} a & b & c \\ 2a & b & 0 \\ 0 & 2a & b \end{vmatrix}$ = $-a(b^2 - 4ac)$

より、 $b^2 - 4ac = 0$ のとき f, f' は共通根を持つ. また、このとき f は重根を持つ.

定理 2. 非定数多項式 f に対して、以下は同値.

f は重根を持つ.

(2) f, f' は共通根を持つ. (3) resul(f, f') = 0.

定理 3.

resul
$$(f, f') = (-1)^{m(m-1)/2} a_m^{2m-1} \prod_{1 \le i \le j \le m} (\alpha_i - \alpha_j)^2$$

証明. 補題1より, 一般に

$$resul(f,g) = a_m^n \ b_n^m \ \prod_{i=1}^m \prod_{j=1}^n (\alpha_i - \beta_j) = a_m^n \ \prod_{i=1}^m \left(b_n \prod_{j=1}^n (\alpha_i - \beta_j) \right) = a_m^n \ \prod_{i=1}^m g(\alpha_i)$$

が成り立つ. これを g = f' として適用して

$$resul(f, f') = a_m^{m-1} \prod_{i=1}^m f'(\alpha_i)$$

を得る.
$$f'(x) = a_m \sum_{\substack{i=1 \ j \neq i}}^m \prod_{\substack{j=1 \ j \neq i}}^m (x - \alpha_j)$$
 より $f'(\alpha_i) = a_m \prod_{\substack{j=1 \ j \neq i}} (\alpha_i - \alpha_j)$ から従う.

定義 (判別式). 2 次以上の多項式 f に対して以下の $\mathrm{disc}(f)$ を f の判別式という.

$$\operatorname{disc}(f) = a_m^{2m-2} \prod_{1 \le i \le j \le m} (\alpha_i - \alpha_j)^2 = \frac{(-1)^{m(m-1)/2}}{a_m} \operatorname{resul}(f, f')$$

定理 2, 3 より、f が重根を持つことと $\operatorname{disc}(f) = 0$ は同値である.

例 3. $f(x) = x^3 + px + q$ とする. $f'(x) = 3x^2 + p$ より、 $\operatorname{disc}(f)$ は以下の通り.

$$\operatorname{disc}(f) = (-1)^{3} \operatorname{resul}(f, f') = - \begin{vmatrix} 1 & 0 & p & q & 0 \\ 0 & 1 & 0 & p & q \\ 3 & 0 & p & 0 & 0 \\ 0 & 3 & 0 & p & 0 \\ 0 & 0 & 3 & 0 & p \end{vmatrix} = -(4p^{3} + 27q^{2})$$

定理 4. f を実係数 3 次多項式とする.

$$\operatorname{disc}(f) = \begin{cases} > 0 & (f \text{ は相異なる 3 個の実根を持つ}) \\ = 0 & (f \text{ は重根を持ち, どの根も実数}) \\ < 0 & (f \text{ は 1 個の実根と 2 個の互いに共役な虚根を持つ}) \end{cases}$$

証明. f の根 $\alpha_1, \alpha_2, \alpha_3$ が互いに相異なる実数のとき、定義から $\mathrm{disc}(f) > 0$ である. f が重根を持つとき、 $\mathrm{disc}(f) = 0$ である. α_1 が実数で α_2, α_3 が互いに共役な虚数のとき、

$$\begin{aligned} \operatorname{disc}(f) &= a_m^{2m-2} (\alpha_1 - \alpha_2)^2 (\alpha_1 - \alpha_3)^2 (\alpha_2 - \alpha_3)^2 \\ &= a_m^{2m-2} \left((\alpha_1 - \alpha_2) \left(\overline{\alpha_1 - \alpha_2} \right) \right)^2 \left(2i \left(\Im \alpha_2 \right) \right)^2 = -4 a_m^{2m-2} \left| \alpha_1 - \alpha_2 \right|^2 \left(\Im \alpha_2 \right)^2 < 0 \end{aligned}$$
である。 f は実係数なので実根は 1 個以上あり、虚根は偶数個で重根ではない。

例 4 (接点 t 問題). 点 (a,b) から曲線 $y=x^3-3x$ に引ける接線の本数が 3 本になるときの a,b の条件を求めよう.

点 (a,b) を通る直線 y=m(x-a)+b と曲線 $y=x^3-3x$ が接するための必要十分条件は、3 次多項式 $f(x)=x^3-3x-(m(x-a)+b)$ が重根を持つこと、つまり

$$resul(f, f') = -4m^3 + 9(3a^2 - 4)m^2 - 54(ab + 2)m + 27(b - 2)(b + 2) = 0$$

が成り立つことである。そして、このような接線が 3 本存在することは、上の m に関する 3 次方程式が異なる 3 実解を持つことと同値である。つまり、

$$g(m) = -4m^3 + 9(3a^2 - 4)m^2 - 54(ab + 2)m + 27(b - 2)(b + 2)$$

とおいて、 $\operatorname{disc}(q) > 0$ となる条件を求めればよい.

$$\operatorname{disc}(g) = \frac{-1}{-4}\operatorname{resul}(g, g') = 314928(a^3 - 3a - b)(3a + b)^3$$

より, $(a^3 - 3a - b)(3a + b) > 0$ が求める条件である.

定理 5. 定数でない多項式 f,q に関して以下は同値である.

- (1) f, g は定数でない共通因子を持つ.
- (2) 以下を満たす多項式 U,V (少なくとも一方は非零多項式) が存在する.

$$Uf + Vg = 0$$
, $\deg U < n$, $\deg V < m$

(3) $\operatorname{resul}(f, g) = 0$.

証明. $(1) \Rightarrow (2) h$ を f, g の共通因子とし, $f = hf_1, g = hg_1$ とする.

$$g_1 \cdot f + (-f_1) \cdot g = g_1 h f_1 - f_1 h g = 0$$

より、 $U = q_1, V = -f_1$ とすればよい.

 $(2)\Rightarrow (1)~Uf+Vg=0,~\deg U< n,~\deg V< m,~V\neq 0$ とする. f,g が共通因子を持たないとすると, $\tilde{U}f+\tilde{V}g=1$ を満たす多項式 \tilde{U},\tilde{V} が存在する. Vg=-Uf なので

$$V = V(\tilde{U}f + \tilde{V}g) = \tilde{U}Vf + \tilde{V}Vg = \tilde{U}Vf + \tilde{V}(-Uf) = (\tilde{U}V - \tilde{V}U)f$$

である. $V \neq 0$ なので $\deg V \geq \deg f = n$ より、 $\deg V < n$ に矛盾する.

 $(2) \Leftrightarrow (3)$ 簡単のため、m=3, n=2 とする. 一般の場合も同様である.

$$U = \sum_{i=0}^{n-1} u_i x^i = u_1 x + u_0, \quad V = \sum_{j=0}^{m-1} v_j x^j = v_2 x^2 + v_1 x + v_0$$

とおき, $oldsymbol{w} = \left[egin{array}{cccc} u_1 & u_0 & v_2 & v_1 & v_0 \end{array}
ight]^ op$ とすると

$$Uf + Vg = 0 \Leftrightarrow \begin{cases} a_3u_1 + b_2v_2 = 0 \\ a_2u_1 + a_3u_0 + b_1v_2 + b_2v_1 = 0 \\ a_1u_1 + a_2u_0 + b_0v_2 + v_1v_1 + b_2v_0 = 0 \\ a_0u_1 + a_1u_0 + b_0v_1 + b_1v_0 = 0 \end{cases}$$
$$\Leftrightarrow \begin{bmatrix} a_3 & 0 & b_2 & 0 & 0 \\ a_2 & a_3 & b_1 & b_2 & 0 \\ a_1 & a_2 & b_0 & b_1 & b_2 \\ a_0 & a_1 & 0 & b_0 & b_1 \\ 0 & a_0 & 0 & 0 & b_0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_0 \\ v_2 \\ v_1 \\ v_0 \end{bmatrix} = \mathbf{0}_5 \Leftrightarrow \operatorname{Syl}(f, g)^{\top} \mathbf{w} = \mathbf{0}_5$$

なので、 $\operatorname{resul}(f,g) = \operatorname{det}\left(\operatorname{Syl}(f,g)^{\top}\right)$ と合わせて

 $(2) \Leftrightarrow 同次形連立 1 次方程式 Syl(f,g)^{\top} \boldsymbol{x} = \boldsymbol{0}$ が非自明解を持つ \Leftrightarrow (3)

を得る. □ □

定理5から定理1とその逆が証明できる.

定理 6. f,g は共通根を持つ. \Leftrightarrow resul(f,g)=0.

証明. f,g の一方が零多項式なら他方の根は零多項式の根であり、 $\operatorname{resul}(f,g)=0$ である. f,g が共に零多項式ではなく一方が定数なら共通根は存在せず、 $\operatorname{resul}(f,g)\neq0$ である. そこで、f,g は共に定数でないとする.

- (\Rightarrow) $f(\gamma)=g(\gamma)=0$ とすると、因数定理から f,g は共に $x-\gamma$ で割り切れる.つまり、f,g の共通因子 $x-\gamma$ が存在するので、定理 f より f resulf resulf f0 である.
 - (\Leftarrow) 定理 5 から f,g は非定数の共通因子 h を持ち, h の根は f,g の共通根である. \square

次の定理 7 は、終結式 $\operatorname{resul}(f,g)$ の値と f,g の根の間の明示的な関係式を与え、その系として定理 1 の逆を導くこともできる.

以下,
$$f(x) = \prod_{i=1}^{m} (x - \alpha_i), \ g(x) = \prod_{j=1}^{n} (x - \beta_j)$$
 とおく.

定理 7. resul
$$(f,g)=a_m^nb_n^m\prod_{i=1}^m\prod_{j=1}^n(\alpha_i-\beta_j)$$

証明. $T:=\prod_{i=1}^m\prod_{j=1}^n(\alpha_i-\beta_j)$ とおく. 定理 1 から $\alpha_i=\beta_j$ のとき $\mathrm{resul}(f,g)=0$ なので,

因数定理より T は $\operatorname{resul}(f,g)$ を割り切る. そこで、各 α_i,β_j の多項式として $\operatorname{resul}(f,g)$ と T の次数を評価し、係数を比較すればよい.

$$\frac{f(x)}{a_m} = x^m + A_1 x^{m-1} + \dots + A_m = \prod_{i=1}^m (x - \alpha_i),$$
$$\frac{g(x)}{b_n} = x^n + B_1 x^{n-1} + \dots + B_n = \prod_{i=1}^n (x - \beta_i)$$

とすると,

$$\operatorname{resul}(f,g) = a_m^n b_n^m \begin{vmatrix} 1 & A_1 & \cdots & A_m \\ & 1 & A_1 & \cdots & A_m \\ & & \ddots & \ddots & & \ddots \\ & & & 1 & A_1 & \cdots & A_m \\ & & 1 & B_1 & \cdots & B_n \\ & & 1 & B_1 & \cdots & B_n \\ & & & \ddots & \ddots & & \ddots \\ & & & & 1 & B_1 & \cdots & B_n \end{vmatrix}$$

である。各 A_k は α_1,\ldots,α_m の,各 B_k は β_1,\ldots,β_n の k 次基本対称式の ± 1 倍である。また,各 A_i,B_j はそれぞれ α_i,β_j の 1 次式なので,resul(f,g) は α_i に関して高々 n 次で, β_j に関して高々 m 次である。従って,resul(f,g) は T の定数倍であり, α_1^n の係数を比較して,resul $(f,g)=a_m^nb_n^mT$ がわかる.

次に、定理7を書き換えて、多項式の判別式と終結式の関係を導く.

$$a_m \prod_{i=1}^{m} (\alpha_i - \beta_j) = (-1)^m a_m \prod_{i=1}^{m} (\beta_j - \alpha_i) = (-1)^m f(\beta_j), \quad b_n \prod_{j=1}^{n} (\alpha_i - \beta_j) = g(\alpha_i)$$

より、次が成り立つ.

補題 2. resul
$$(f,g) = (-1)^{mn} b_n^m \prod_{j=1}^n f(\beta_j) = a_m^n \prod_{i=1}^m g(\alpha_i)$$

2 2変数多項式の終結式

参考文献

- [1] 長坂工作・岩根秀直(編),『計算機代数の基礎理論』, 共立出版 (2020).
- [2] 三宅敏恒,『線形代数概論』, 培風館 (2023).
- [3] 横山和弘,『多項式と計算機代数』,朝倉書店 (2022).
- [4] D. U. Cox, J. Little and D. O'Shea, *Ideals Varieties*, and *Ulgorithms 4th edition*, Springer (2015).
- [5] S. Lang, Algebra Revised 3rd edition, Springer (2004).