(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 9. September 2005 (09.09.2005) (10) Internationale Veröffentlichungsnummer WO 2005/083517 A3

(51) Internationale Patentklassifikation: G03F 7/20 (2006.01)

(21) Internationales Aktenzeichen: PCT/EP2005/001948

(22) Internationales Anmeldedatum:

24. Februar 2005 (24.02.2005)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 10 2004 010 569.3

26. Februar 2004 (26.02.2004) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): CARL ZEISS SMT AG [DE/DE]; Carl-Zeiss-Strasse 22, 73447 Oberkochen (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): FIOLKA, Damian [DE/DE]; Heckenrosenweg 36, 73447 Oberkochen (DE).

ZENZINGER, Markus [DE/DE]; Gutenbergstrasse 7, 89073 Ulm (DE).

- (74) Anwalt: PATENTANWÄLTE RUFF, WILHELM, BEIER, DAUSTER & PARTNER; Kronenstrasse 30, 70174 Stuttgart (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU,

[Fortsetzung auf der nächsten Seite]

- (54) Title: ILLUMINATION SYSTEM FOR A MICROLITHOGRAPHY PROJECTION EXPOSURE INSTALLATION
- (54) Bezeichnung: BELEUCHTUNGSSYSTEM FÜR EINE MIKROLITHOGRAPHIE-PROJEKTIONSBELICHTUNGSANLAGE

(57) Abstract: The invention relates to an illumination system for a microlithography projection exposure installation for illuminating an illumination field (7) with the light from an associated light source (10). Said system comprises at least one polarisation compensator (11) which is arranged in a pupil plane (23) of the illumination system and can be used to at least partially compensate a polarisation modification introduced by elements (5) which modify the polarisation according to the angle. Said polarisation compensator (11) comprises polarisation modification means for modifying the polarisation according to the location, said means being embodied as double-refractive elements or elements comprising a double-refractive structure. Such a polarisation compensation can improve the transmission characteristics of the microlithography projection exposure installation, especially when using a downstream projection objective with a physical beam splitter.

(57) Zusammenfassung: Ein Beleuchtungssystem für eine Mikrolithographie-Projektionsbelichtungsanlage zur Beleuchtung eines Beleuchtungsfeldes (7) mit dem Licht einer zugeordneten Lichtquelle (10) hat mindestens einen Polarisationskompensator (11) in einer Pupillenebene (23) des Beleuchtungssystems. Mit diesem kann eine von winkelabhängig polarisationsverändernden Elementen (5) eingeführte Polarisationsveränderung mindestens teilweise kompensiert werden. Der Polarisationskompensator (11) weist zur ortsabhängigen Polarisationsveränderung Polarisationsveränderungsmittel auf, die als doppelbrechende Elemente oder Elemente mit einer doppelbrechenden Struktur ausgebildet sein können. Durch eine solche Polarisationskompensation können insbesondere bei Verwendung eines nachfolgenden Projektionsobjektivs mit physikalischem Strahlteiler die Transmissionseigenschaften der Mikrolithographie-Projektionsbelichtungsanlage gesteigert werden.

O 2005/003517 A 2

WO 2005/083517 A3

TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen
- (88) Veröffentlichungsdatum des internationalen Recherchenberichts: 13. April 2006

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.