Spatial Modeling in Ecology

Marie-Josée Fortin

Ecology and Evolutionary Biology University of Toronto

Dependencies in Data due to Space

Tobler's First Law of Geography: "Everything is related to everything else, but near things are more related than distant things."

Dependencies in Data due to Space

Spatial Autocorrelation

Correlation of the values of a variable according to distance

Fortin & Dale 2009

Spatial Structure = Autocorrelation + Dependence

Spatially Distributed Seeds Due to Dispersal Processes from the Trees and the Spatially Distributed Environmental Factors

Spatially Distributed Seeds

Due to the Spatially

Distributed Environmental Factors

Spatially Distributed Environmental Factors

Fortin & Dale 2009

Other Dependencies: Processes and Analysis

Structure: size and spacing Process: range of action and

scale of effect

Spatial Aspects

x-y Coordinates
Euclidean Distances
Least-cost Distances

Spatial Autocorrelation Spatial Dependence

Spatial Relationship

Spatial Legacy Spatial Contingency

Spatial Perception

Multiscale Analysis

Metapopulation Metacommunity Metaecosystem Metanetwork

Fortin et al 2012

Spatial Dependence + Spatial Autocorrelation

Environmental and Spatial Contributions

Dale & Fortin 2014

Spatial Structure

SPATIAL NUISANCE (Space is your Enemy)
Space as a weight: Spatial autocorrelation as part of residual variation

SPATIAL LEGACY (Space is your Friend)

Space as a term: Spatial autocorrelation as a function

C/W = Spatial Matrix

Peres-Neto & Legendre 2010

Regression

Name Model

Independent Errors (no spatial dependence)

$$Y = X\beta + \epsilon$$

Linear Regression

$$y = 0.5x + 0.5u$$

Predictor & Response: spatially independent

- Moran's I of residuals = -0.002
- Slope estimate $(b \pm SE) = 0.500 \pm 0.025$
- True SE of slope: 0.025
- Type I error rate: 0.050

Linear Regression

Wagner & Fortin 2016

Spatial Autocorrelation

Spatial Autocorrelation may:	What does this mean?
Inflate type I error rates	Risk of false positives
Bias parameter estimates	Effect size may be over-estimated
Inflate variability of parameter estimates	Confidence intervals are calculated too small

Wagner & Fortin 2016

Spatial Dependence + Spatial Autocorrelation

Environmental and Spatial Contributions

EFI - ESA Statistical Methods Series - February 6, 2023

Spatial Regression

Spatial Regression (GLMM, Error, Lag)

Spatial process creates spatial autocorrelation

Need to account for spatial autocorrelation

Spatial Regression (Spatial Filtering)

Multiple processes at different spatial scales

Need to partial out spatial variations at all scales

Spatial Regression: Trend Surface Analysis

Linear regression (e.g., OLS): $\{x_1(s), ... x_m(s)\}$ \longrightarrow y(s) \longleftarrow ϵ Linear regression adding spatial coordinates as predictors using OLS: $\{x_1(s), ... x_m(s), lat, long\} \longrightarrow y(s) \longleftarrow$ ϵ

Dale & Fortin 2014

Spatial Regression: Trend Surface Analysis

Regression including *x-y* coordinates Polynomial regression

- → Only explanatory variables are powers and cross products of the x-y coordinates
- → Power of the polynomial
 → Linear, quadratic, cubic, etc.

$$Y = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \dots + \beta_m x_i^m + \varepsilon$$

Regression

Adapted from Zuur et al (2009) [Zuur & Ieno: January 9, 2023]

Linear Regression

Linear regression (e.g., OLS):

$$\{X_1(S), ... X_m(S)\}$$

Linear regression adding spatial coordinates as predictors using OLS:

$$\{x_1(s), ... x_m(s), lat, long\} \longrightarrow y(s) \blacktriangleleft$$

Linear regression adding spatial coordinates as random effects using Generalised Linear Mixed Model (GLMM):

$$\{X_1(S_i), \dots X_m(S_i), Z_i\}$$
 \longrightarrow $y(S_i)$

Dale & Fortin 2014

Spatial Regression

Name

Model

 $Y = X\beta + \varepsilon$

Independent Errors (no spatial dependence)

Autoregressive (AR)

 $Y = X\beta + \rho WY + \epsilon$

Spatial Regression

Name	Model
Independent Errors (no spatial dependence)	$Y = X\beta + \epsilon$
Autoregressive (AR)	$Y = X\beta + \rho WY + \epsilon$
Simultaneous Autoregressive (SAR) Predict from error at neighboring location	
Conditional Autoregressive (CAR) Predict from response at neighboring lo	$Y = X\beta + \rho C(Y - X\beta) + \epsilon$ cations

Spatial filtering regression add lagged covariates using conditional autoregressive(CAR) or simultaneous autoregressive (SAR): $\{x_1(s), ... \ x_m(s), \ x_1(s\pm h), ... \ x_m(s\pm h)\} \longrightarrow y(s) \longleftarrow \epsilon$ where (s $\pm h$) is the neibourhood of s

Dale & Fortin 2014

Common Objectives of Spatial Autoregressive Models

Model Comparison & Selection	CAR and SAR models are often part of a spatial (generalized) linear model. Prior to inference, one may compare models, and then choose one.
Regression	Estimate the spatial regression coefficients that quantify how an explanatory variable affects the response variable.
Auto- correlation	Estimate the strength of autocorrelation (or spatial connectivity) that quantifies how similarly sites change in the residual errors, after accounting for regression effects.
Connectivity	Estimate covariate effects on connectivity (neighborhood) structure.
Prediction	Goal of geostatistics (but rarely used in CAR and SAR). If sites have missing data, prediction is possible.
Smoothing	Create values at spatial sites that smooth over observed data by using values from nearby locations to provide better estimates.

Conditional Autoregressive Models

Harbor seals in Alaska: 463 polygons

Ver Hoef et al 2018 Ecological Monographs

Spatial Regression

Spatial autocorrelation and Spatial dependence

Generalized Least Square (GLS) Spatial Error Model (SEM)

$$y_i = \beta_0 + \beta_i x_i + \epsilon_i + \gamma \epsilon_k$$

Model Spatial Error Covariance

- Accounts for spatial autocorrelation that depends on distance only
- Fits a variogram model to errors (geostatistics)

Estimating GLS residuals is an iterative process that first involves parameter estimation by OLS because before the regression is performed, the residuals are unknown.

Several Processes -> Several Scales

Dale & Fortin 2014

Spatial Filtering Regression

Spatial filteringregression: add spatial predictors (e.g. Moran's Eigenvector Maps):

$$\{x_1(s), \dots x_m(s), MEMi, MEMk\} \longrightarrow y(s) \blacktriangleleft$$

Dale & Fortin 2014

Principal Coordinate Neighbor Matrix (PCNM/dbMEM)

Truncate the matrix of geographic distances

Decompose **D** by Principal Coordinate Analysis (PCoA)

Centre **D** and then compute eigenvalues and eigenvectors

Borcard & Legendre 2002, Dray 2011

Several Processes + Several Regions

Geographically Weighted Regression

Geographically Weighted Regression (GWR) using neighbourhood to compute a linear regression at each sampling location

$$\{X_1(S_i), \dots X_m(S_i)\}$$
 \longrightarrow $y(S_i)$

Account for localized spatial heterogeneity

$$y_{i} = \beta_{0}(i) + \beta_{1}(i)x_{1i} + \beta_{2}(i)x_{21i} + \dots + \beta_{n}(i)x_{ni} + \varepsilon_{i}$$

Weights specific to each location *i* such that observations nearer to *i* are given greater weight in the regression than observations further away.

Geographically Weighted Regression

Residuals from GWR are much lower and are less spatially autocorrelated than those of linear regression

GWR gives a much better fits even accounting for increases in the number of parameters

→ Because it is overfitting

Forest cover (squares), Mean number of ovenbirds (circles) in an Atlas square 10×10 km (n=1359). Solid symbols indicate significant Moran's $I(p \le 0.05)$

Fortin & Melles 2009

Ordinary Least Square Regression

 $R^2 = 0.43$

Geographically Weighted Regression

 $R^2 = 0.19$ to 0.82

Ordinary Least Square Regression $R^2 = 0.43$

Regression Kriging ≈ GLS

Regression kriging on residuals of linear regression

Fortin & Melles 2009

Ordinary Least Square Regression $R^2 = 0.43$

Fortin & Melles 2009

Spatial Dependence + Spatial Autocorrelation

Environmental and Spatial Contributions

EFI - ESA Statistical Methods Series - February 6, 2023

Ovenbird Sightings ~ Forest Cover bird_forest.csv


```
library(lme4)
                 # GLMM
library(MuMIn)
                 # r.squaredGLMM
library(nlme)
                 # GLS
library(spdep)
                  # GLS (SAR-err), SAR-lag
                  # Geographically Weighted Regression
library(spgwr)
library(vegan)
                  # spatial filtering using MEM
library(care)
                # CAR
library(spatialreg) # spatial filtering using MEM
```

```
## OLS - Linear Regression
Call: lm(formula = Bird ~ Forest)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.268e-02 8.054e-03 1.575 0.115
Forest 6.322e-05 1.748e-06 36.168 <2e-16 ***
R-squared: 0.4908, Adjusted R-squared: 0.4905
F-statistic: 1308 on 1 and 1357 DF,
p-value: < 2.2e-16
## Linear regression - Trend Surface (x-y coordinates)
Call: lm(formula = Bird ~ Forest + xUTM + yUTM)
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -8.179e+00 4.913e-01 -16.65 <2e-16 ***
Forest 4.968e-05 1.971e-06 25.21 <2e-16 ***
xUTM -3.672e-07 2.882e-08 -12.74 <2e-16 ***
yUTM 7.282e-07 4.169e-08 17.47 <2e-16 ***
R-squared: 0.607, Adjusted R-squared: 0.6061
F-statistic: 697.6 on 3 and 1355 DF
p-value: < 2.2e-16
```

EFI - ESA Statistical Methods Series - February 6, 2023

	AIC	$AdjR^2$	
Bird.lm	-900.3632	0.4908	
Bird.lm.xy	-1248.2828	0.6061	
Bird.random	-836.0008		0.4816
Bird.GLMM	-898.5819	0.4859	0.4880

Spatial Regression: GLS (nlme)

	AIC	$\mathtt{Adj}\mathit{R}^2$	
Bird.lm	-900.3632	0.4908	
Bird.lm.xy	-1248.2828	0.6061	
Bird.random	-836.0008		0.4816
Bird.GLMM	-898.5819	0.4859	0.4880
Bird.GLSx	-885.3516		
Bird.GLSy	-930.9072		
Bird.corLin	-1219.8813		
Bird.corSpher	-1449.1100		

Forest (squares), Ovenbirds (circles) 10×10 km (*n*=1359)

Principal Coordinate Neighbor Matrix (PCNM/dbMEM)

Truncate the matrix of geographic distances

Decompose **D** by Principal Coordinate Analysis (PCoA)

Centre **D** and then compute eigenvalues and eigenvectors

Borcard & Legendre 2002

```
AIC AdjR^2
Bird.lm -900.3632 0.4908
Bird.lm.xy -1248.2828 0.6061
Bird.random -836.0008
                              0.4816
Bird.GLMM -898.5819 0.4859 0.4880
Bird.GLSx -885.3516
Bird.GLSy -930.9072
Bird.corLin -1219.8813
Bird.corSpher -1449.1100
Spatial Filtering (PCNM/dbMEM)
dbMEM711 (out of 1359): AdjR^2: 0.7168
dbMEM10 (out of 1359): AdjR^2: 0.5374
```

Several Processes + Several Regions

Spatial Regression: GWR

```
> Bird.gwr
Call:
gwr(formula = Bird ~ Forest, data = bird,
    coords = cbind(bird$xUTM,
    bird$yUTM) , adapt = BirdGWRbandwidth,
    hatmatrix = TRUE, se.fit = TRUE)
Kernel function: gwr.Gauss
Summary of GWR coefficient estimates at data points:
                    Min.
                          Median
                                        Max. Global
X.Intercept. -2.6903e-01 2.1842e-02 1.4355e+00 0.0127
Forest
             -1.1257e-04 3.5399e-05 1.2214e-04 0.0001
Number of data points: 1359
Quasi-global R2: 0.7676538
```

> summary(bird\$grw.R2)

Min. 1st Qu. Median Mean 3rd Qu. Max. -0.5295 0.2005 0.3261 0.3394 0.4585 0.8126

AIC AdjR²
Bird.lm -900.3632 0.4908
Bird.lm.xy -1248.2828 0.6061
Bird.random -836.0008 0.4816
Bird.GLMM -898.5819 0.4859 0.4880
Bird.GLSx -885.3516
Bird.GLSy -930.9072
Bird.corLin -1219.8813
Bird.corSpher -1449.1100

Spatial Filtering (PCNM/dbMEM)

dbMEM711: $AdjR^2$: 0.7168 dbMEM10: $AdjR^2$: 0.5374

Geographically Weighted Regression R^2

Min. Median Mean Max. -0.5295 0.3261 0.3394 0.8126

Spatial Aspects

x-y Coordinates Euclidean Distances Least-cost Distances

Spatial Autocorrelation Spatial Dependence

Spatial Relationship

Spatial Legacy Spatial Contingency

Spatial Perception

Multiscale Analysis

Metapopulation Metacommunity Metaecosystem Metanetwork

Space does not replace Environmental Factors

Better Fit: Include Space

Better Prediction/Knowledge:

Include Processes & Factors