Area between two Curves (Area is always positive, like distance, speed, volume, etc)

1. Find the area of the region between $y = \sec^2 x$ and $y = \sin x$ from x = 0 to $x = \frac{\pi}{4}$. (Hint: $y = \sec^2 x$ doesn't look terribly different from $y = \sec x$ on this interval; point-plot).

from
$$y = \sec x$$
 on this interval; point
$$\int_{4}^{4} \left(\sec^{2} x - \sin x \right) dx$$

$$\int_{6}^{4} \left(1 + \sqrt{2} \right) - \left(0 + 1 \right)$$

$$\int_{6}^{4} \left(1 + \sqrt{2} \right) dx$$

2. Find the area of the region enclosed by the parabola $y = 2 - x^2$ and the line y = -x.

3. Find the area of the region enclosed by the graphs of $y = 2\cos x$ and $y = x^2 - 1$. (Hint: use a calculator for this one. Graph the curves and find their points of intersection, store the values, and integrate numerically via calculator.)

and their points of intersection, store the value
$$2 \int_{-2}^{9} (2\cos x - (x^2 - 1)) dx$$

$$= \underbrace{4.994}$$

4. Find the area in the first quadrant enclosed by the curves y = x and $y = \frac{x^2}{4}$ and below the line y = 1.

$$-x(x-3)$$

5. Find the area enclosed by the curves
$$y = -x^2 + 3x$$
 and $y = 2x^3 - x^2 - 5x$.

$$-x^2 + 3x = 2x^3 - x^2 - 5x$$

$$0 = 2x^3 - 8x$$

$$2x(x^2 - 4) = 0$$

$$x = 0, 2, -2$$

$$= 1 \pm \sqrt{4}$$

$$= 1 \pm \sqrt{4}$$

$$= \frac{1 \pm \sqrt{41}}{4} < \frac{15}{8}$$

$$(2 \times ^{3} - \times^{2} - 5 \times) - (-x^{2} + 3x) dx$$

$$\begin{array}{c|c}
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -2 \\
 & -$$

$$\int_{0}^{2} \left[-x^{2} + 3x \right] - \left(2x^{3} - x^{2} - 5x \right) dx$$

$$(0-0)-(8-16)+(16-8)-(0-0)$$

8 +8 = [16]