MESTRADOS INTEGRADOS EM ENGª MECÂNICA E EM ENGª E GESTÃO INDUSTRIAL | 2020-21

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 1h30m (10m de tolerância).

2ª Prova de Reavaliação

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A entrega da prova e a desistência só serão possíveis após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular e microcomputadores;
- * Resolva cada um dos <u>quatro grupos</u> utilizando <u>folhas de capa distintas</u>. Na resolução da prova deve utilizar uma esferográfica azul ou preta. Em cada pergunta da prova é apresentada a cotação prevista.

GRUPO I

1. [5,5] Sejam as transformações lineares $S \in L(\mathbb{R}^2, \mathbb{R}^3)$ e $T \in L(\mathbb{R}^3, \mathbb{R}^2)$, definidas por S(x, y) = (x + 2y, -x - y, -3x - 4y) e T(x, y, z) = (x + y - z, -x + z)

em relação às bases canónicas, E_3 , para o espaço \mathbb{R}^3 , e E_2 , para o espaço \mathbb{R}^2 .

- a) Obtenha o núcleo e o contradomínio de S. Para cada um desses subespaços, indique uma base e conclua em relação à sua dimensão.
- **b)** Classifique as funções dadas quanto à sua injetividade e sobrejetividade. Determine a função inversa para os casos em que tal é possível.
- **2.** [2,0] Sejam $A \in C = (A \alpha I)^2$, $\alpha \in \mathbb{R}$, matrizes quadradas de ordem n, sendo I a matriz identidade. Seja X um vetor próprio de A associado ao valor próprio λ .
 - a) Mostre que X é um vetor próprio de C associado ao valor próprio $(\lambda \alpha)^2$.
 - **b)** Para que valores de λ a matriz C é não singular? Justifique.

GRUPO II

- **3.** [3,8] Considere as transformações lineares definidas na questão 1. e a base $V = \{\vec{v}_1, \vec{v}_2\} = \{(1,2), (1,1)\} \subset \mathbb{R}^2$.
 - a) Usando o cálculo matricial, obtenha $m(S)_{V,E_3}$, representação matricial de S em relação às bases V (domínio) e E_3 (conjunto de chegada).
 - **b)** Usando preferencialmente a matriz obtida na alínea anterior, obtenha a representação matricial da composição possível de *S* com *T* em relação à base V (domínio e conjunto de chegada).

.....(continua no verso,

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 1h30m (10m de tolerância).

2ª Prova de Reavaliação

GRUPO III

4. [3,2] Seja a matriz real:

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & -1 & k \\ 1 & -1 & k+1 & 2 \\ 1 & 0 & 1 & k \\ k+1 & 1 & 0 & 2k \end{bmatrix}$$

- a) Obtenha, indicando todas as operações efetuadas, os valores do parâmetro k para os quais a matriz A é não singular.
- **b)** Sejam B, C e D matrizes quadradas de ordem 4, tais que |B| = 4 e $C = 2(B^TD)B^{-2}$. Relacione o |C| com o |D|.

GRUPO IV

5. [5,5] Considere a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ representada pela matriz

$$m(T) = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 6 & 8 \\ 1 & 3 & 4 \end{bmatrix}$$

em relação à base canónica, E, para o espaço \mathbb{R}^3 . Seja $U = \{(\alpha, 0, \delta), (1, 2, 1), (\delta, 1, -\delta)\}$ um conjunto de vetores próprios de m(T) e $B = \{(0, 0, 1), (0, 1, 0), (1, 0, 0)\}$ uma base para o espaço \mathbb{R}^3 . Determine:

- a) Os valores próprios e os respetivos vetores próprios e espaços próprios; indique, para cada um dos espaços próprios, uma base e a dimensão.
- **b)** Os valores de $\alpha, \delta \in \mathbb{R}$, de modo que U seja uma base de vetores próprios para \mathbb{R}^3 . Obtenha as matrizes $m(T)_{\mathrm{U},\mathrm{U}}$ e $m(T)_{\mathrm{B},\mathrm{B}}$ e verifique se estas matrizes são semelhantes, apresentando as expressões matriciais que as relacionam. Justifique devidamente.