问题. Rudin. Ex. 14. (Hardy-ineq.) 1 则

- 1. $||F||_p \le \frac{p}{p-1} ||f||_p$.
- 2. 等号成立当且仅当f=0, a.e..
- 3. 假定 $\{a_n\}$ 是正数序列, 当1 时, 证明:

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} a_k \right)^p \le \left(\frac{p}{p-1} \right)^p \left(\sum_{n=1}^{\infty} a_n^p \right).$$

问题. $1 \le p \le \infty$, g可测, 若 $\forall f \in L^p$, 有 $fg \in L^1$, 证明 $g \in L^{p'}$.

问题. 序列 $\{f_n\}$ 在 L^1 中紧, 在 L^q 中有界, 则对于任意的 $p \in [1,q)$, $\{f_n\}$ 在 L^p 中紧.

问题. 构造一个测度 μ , 使 $L^{1}(\mu)$ 的对偶空间不是 $L^{\infty}(\mu)$.

问题. (related to Saks theorem *)证明或否定以下命题, 若

$$f_n \rightharpoonup f$$
 in L^2 ,

则

$$\frac{f_1 + f_2 + \dots + f_n}{n} \to f \quad \text{in } L^2.$$