UNIVERSIDADE FEDERAL DE MINAS GERAIS

DISCIPLINA: Redes Neurais Artificial

PROFESSORES: Frederico Gualberto Ferreira Coelho ALUNO: Antonio Carlos da Anunciação – 2018019443

TRABALHO PRATICO 4

Aplicação do Preceptor para Problemas de Classificações:

Exercícios 1-2: Dada distribuições normais no espaço **R2**, ou seja, duas distribuições com duas variáveis cada, (X_1 , X_2), gerando um conjunto de dados com duas classes, caracterizadas como $\mathcal{N}([2, 2], \sigma = 0.4)$ e $\mathcal{N}([4, 4], \sigma = 0.4)$, como pode ser visualizado na **FIG01**. Com o tamanho das amostras *nc* igual a 100 para cada classe.

FIG01: Distribuição dos Dados

Neste trabalho será gerar as superfícies de separação utilizando um modelo para o **Adaline** e outro para o **Perceptron**, e obter as equação da fronteira de separação, ou seja, os pesos da rede.

Resultados:

Parâmetros de Rede, Adaline:

X _{C2}	W_0	W ₁ /W ₂		
1	5.69	-0.93		

FIG02: Curva de Separação, Adaline

FIG03: Superfície 3D de Separação, Adaline

Parâmetros de Rede, Perceptron:

X _{C2}	W ₀	W ₁ /W ₂			
1	9.63	- 2.19			

FIG04: Curva de Separação, Perceptron

FIG05: Superfície 3D de Separação, Perceptron

De acordo com os resultados podemos fazer algumas observações:

- 1- Para problema de regressão linear o Adaline se mostra muito mais efetivo, uma vez que generalizou bem os resultados e se aproximou com bastante da reta objetivo.
- 2- O Perceptron se mostra mais útil para problemas de classificação, uma vez que tem uma superfície de separação mais ampla, além de não generalizar tão bem quanto o Adaline.

Exercício 2: Agora vamos treinar nosso modelo do **Perceptron** e aplica-lo em um problema real, utilizando o dataset "Breast Cancer", que é composto por 9 atributos. Então de antemão esperamos encontrar um modelo de **Perceptron** com 10 pesos.

Resultados:

Parâmetros de Rede:

fold	W_0	W_1	W ₂	W ₃	W ₄	W_5	W ₆	W_7	W ₈	W ₉
1	5.0853	-0.2413	0.1984	0.1357	-0.3371	0.3287	-0.2679	-0.3874	-0.5915	-0.7227
2	0.8521	0.2333	-0.2778	-0.2186	-0.2185	0.1324	-0.2387	0.1909	-0.2508	0.2297
3	4.6864	-0.2628	0.2479	-0.2966	0.0726	-0.2382	-0.2476	-0.1505	-0.1634	-1.2183
4	1.0558	-0.0308	-0.2631	-0.1708	0.1287	0.1755	-0.1065	-0.0264	0.0659	-0.2474
5	1.9568	0.0875	0.1826	-0.0998	-0.0807	0.0740	-0.5038	-0.1557	-0.0775	-0.0861
6	0.5650	-0.0259	-0.5323	0.0248	-0.0722	0.2737	-0.0839	0.1370	-0.0803	0.1260
7	0.6031	0.0556	-0.2719	-0.0597	0.0304	0.2960	-0.2703	0.0572	-0.1551	0.1402
8	4.0230	-0.2693	-0.3969	-0.4354	0.6930	0.0798	-0.0628	-0.1896	-0.3028	-0.2490
9	1.2827	0.0206	-0.1607	-0.0051	0.0925	0.0050	-0.1888	-0.1178	-0.0708	0.0118
10	1.2635	0.0963	-1.0580	-0.2931	-0.1102	0.5480	-0.4219	0.2808	0.3677	-0.0651

TAB01: Pesos da Rede por Fold

Precisão dos Resultados:

fold	Acurácia	Desvio Padrão				
1	0.9873	0.2523				
2	0.9714	0.2750				
3	0.9603	0.2258				
4	0.9857	0.2790				
5	0.9698	0.3050				
6	0.9587	0.3165				
7	0.9952	0.2676				
8	0.9634	0.3043				
9	0.9825	0.2140				
10	0.9635	0.3292				
Valores Médio	0.9738	0.2769				

TAB02: Acurácia da Rede por Fold

Os resultados do Modelo do Perceptron para o problema de Classificação Real se mostrou com uma acurácia bem alta, embora tenhamos duas tabelas, uma com os pesos e outras com os valores de acurácia de desvio padrão, não temos uma clara relação entre os valores de acurácia e os pesos, foi observado também, se normalizando os valores dos pesos para $\mathbf{W_0} = \mathbf{1}$, que alguns valores desses pesos tendem a desaparecer para determinados folds. Então a análise das influencias dos parâmetros de rede na acurácia demandaria uma análise mais detalhada.

Parâmetros de Rede, Normalizados:										
fold	W ₀	W ₁	W ₂	Wз	W ₄	W 5	W ₆	W ₇	W ₈	W 9
1	1.0000	0.0829	0.1586	0.1478	0.0664	0.1810	0.0783	0.0577	0.0226	0.0000
2	1.0000	0.4523	0.0000	0.0525	0.0525	0.3631	0.0346	0.4149	0.0239	0.4492
3	1.0000	0.1618	0.2483	0.1561	0.2186	0.1660	0.1644	0.1808	0.1787	0.0000
4	1.0000	0.1761	0.0000	0.0699	0.2970	0.3325	0.1187	0.1794	0.2494	0.0119
5	1.0000	0.2403	0.2790	0.1642	0.1719	0.2348	0.0000	0.1415	0.1733	0.1698
6	1.0000	0.4615	0.0000	0.5077	0.4193	0.7345	0.4086	0.6099	0.4119	0.5999
7	1.0000	0.3743	0.0000	0.2425	0.3455	0.6490	0.0019	0.3761	0.1335	0.4710
8	1.0000	0.0373	0.0087	0.0000	0.2531	0.1156	0.0836	0.0551	0.0298	0.0418
9	1.0000	0.1423	0.0191	0.1248	0.1911	0.1317	0.0000	0.0483	0.0802	0.1363
10	1.0000	0.4972	0.0000	0.3295	0.4083	0.6918	0.2740	0.5767	0.6141	0.4277

TAB03: Pesos da Rede por Fold, normalizados