FORMULÁRIO TRANSFERÊNCIA DE CALOR EM ESTADO ESTACIONÁRIO

CONDUÇÃO \Rightarrow 1º Lei de Fourier: $Q = -k \cdot A \cdot \frac{dT}{dx}$

→ Casos práticos:

$$Q = \frac{1}{R} \cdot (T_1 - T_2)$$

Placa semi ∞	Cilindro semi ∞	Circulo
$R = \frac{L}{A \cdot k}$	$R = \frac{r_2 - r_1}{A_{lm} \cdot k} = \frac{r_2 - r_1}{\frac{A_2 - A_1}{ln \frac{r_2}{r_1}}} = \frac{ln \frac{r_2}{r_1}}{2 \cdot \pi \cdot Lk}$	$R = \frac{\frac{1}{r_1} - \frac{1}{r_2}}{4 \cdot \pi \cdot k}$

CONVECÇÃO \Rightarrow Lei de Newton: $Q = h \cdot A \cdot (T_S - T_a)$

RADIAÇÃO →

$$\begin{split} q^E &= \epsilon \sigma A T_s^4 \\ q^E &= \epsilon \sigma A \big(T_s^4 - T_{s'}^4 \big) \end{split}$$

RAIO CRÍTICO DE ISOLAMENTO

$$r_{cr,esfera} = \frac{2 \cdot k}{h}$$

$$r_{cr,cilindro} = \frac{k}{h}$$

RESISTÊNCIAS EM SÉRIE E PARALELO

$$R_{\text{serie}} = R_{\text{conv},1} + R_{\text{wall},1}$$

$$\frac{1}{R_{paralelo}} = \frac{1}{R_1} + \frac{1}{R_2}$$

FÓRMULAS IMPORTANTES:

 $Mv = u \cdot S \iff M = Mv \cdot \rho$

$$A_{circulo} = \pi \times r^2$$

$$A_{esfera} = 4 \times \pi \times r^2$$

$$A_{cilindro} = 2 \times \pi \times r \times L$$

$$A_{placa} = comp \times largura$$

PERMUTADORES DE CALOR

$$Q = U \cdot A \cdot \triangle T_{lm} = \frac{\triangle T}{R}$$

$$\triangle T_{lm} = \frac{\triangle T_1 - \triangle T_2}{\ln(\triangle T_1 / \triangle T_2)}$$

$$Q = M \cdot c_p \cdot \triangle T$$

Números adimensionais

Número de Reynolds	$Re = \frac{\rho \cdot u \cdot L}{\mu}$	Razão entre as forças cinemáticas (ou de inércia) e as forças viscosas
Número de Nusselt	$Nu = \frac{h \cdot L}{k}$	Razão entre o calor trocado por convecção e o calor que seria trocado por condução se o fluido estivesse parado
Número de Prandtl	$Pr = \frac{C_p \cdot \mu}{k}$	Razão entre a difusividade da quantidade de movimento (viscosidade cinemática) e a difusividade térmica
Número de Péclet	$Pe = Pr \cdot Re$	Produto entre o nº de Reynolds e o nº de Prandtl
Número de Grashof	$Gr = \frac{D^3 \cdot \rho^2 \cdot g \cdot \beta \cdot (T_s - T_f)}{\mu^2}$	Razão entre as F.impulsão e as F. viscosas
Número de Rayleigh	$Ra = Gr \cdot Pr$	Produto entre o nº de Grashof e o nº de Prandtl

	Convecção Forçada						
	Situação Nu						
Placa plana	La	ıminar	$Nu = \frac{h L}{k} = 0.664 Re_L^{0.5} Pr^{1/3}$			$Re_L < 5 \times 10^5$	
Placa	tur	bulento	$Nu = \frac{h L}{k} = 0.037 Re_L^{0.8} Pr^{1/3}$			$5 \times 10^5 \le Re_L \le 10^7$ $0.6 \le Pr \le 60$	
Fora		$\frac{T_{\infty} - T_s}{2}$	$Nu = 0.3 + \frac{0.62Re^{\frac{1}{2}} \cdot Pr^{\frac{1}{3}}}{(1 + (0.4/Pr)^{2/3})^{1/4}} \cdot \left[1\right]$	$\frac{0.62Re^{\frac{1}{2}} \cdot Pr^{\frac{1}{3}}}{1 + (0.4/Pr)^{2/3})^{1/4}} \cdot \left[1 + \left(\frac{Re}{282}\right)^{\frac{5}{8}}\right]^{\frac{4}{5}}$			
. I	Esfera $T = T_{\infty}$		$Nu = 2 + \left(0.4Re^{\frac{1}{2}} + 0.6Re^{\frac{2}{3}}\right) \cdot Pr^{0.4}$	3.5 < Re < 80000 0.7 < Pr < 380			
	R. turbulento Re > 4000		$Nu = 0.023 \cdot Re^{0.8} \cdot Pr^n$			n = 0.4 - Aquecer n = 0.3 - Arrefecer Desenvolvido	
c	$T = \frac{T_{\infty} - T_{s}}{2}$		$Nu = 0.027 \cdot Re^{0.8} \cdot Pr^{1/3} \cdot \left(\frac{\mu}{\mu}\right)$	μ varia com a temp.			
Dentro da tubagem	R. transição $T = \frac{T_{\infty} - T_{s}}{2}$		$Nu = 0.116 \left(Re^{\frac{2}{3}} - 125 \right) \cdot Pr^{\frac{1}{3}} \left(1 + \frac{1}{3} \right)$				
Dentro	R. laminar Re < 2000		Nu = 4.1		$\frac{Re \cdot Pr \cdot d}{L} < 17$ Desenvolvido		
	$T = \frac{T_{\infty} - T_s}{2}$		$Nu = 1.86 \cdot \left(\frac{Re \cdot Pr \cdot d}{L}\right)^{1/3} \cdot \left(\frac{\mu}{\mu_s}\right)^{0.14}$			$\frac{Re \cdot Pr \cdot d}{L} > 12$ $\mu \text{ varia c/ a temp.}$	
	Interior de uma serpentina $h=$		$h = h \cdot \left(1 + 3.4 \ \frac{d}{d_c}\right)$	$= h \cdot \left(1 + 3.4 \frac{d}{d_c}\right)$			
22	Gás		$Nu = \frac{0.455}{\varepsilon} \cdot Re^{*0.593} \cdot Pr$	$Re^* = \frac{\imath}{2}$	$l_s \cdot d_p \cdot \mu$ μ		
ento	Leito fixo		C	Re	С	n	
ame		Liquido	$Nu = \frac{c}{\varepsilon} \cdot Re^{*n} \cdot Pr^{1/3}$	1.6E3 - 55	1.09 0.25	0.8	
Escoamento	Leito	Gás $Nu = \frac{0.455}{\epsilon} \cdot Re^{*0.593} \cdot Pr^{1/3}$		0.25	0.69		
	fluidiza do	Liquido	£	Re	С	n	
			$Nu = \frac{C}{s} \cdot Re^{*n} \cdot Pr^{1/3}$	1 - 10	1.107	0.28	
			3	10 - 400	0.455	0.593	
Tanque	Liquido agitado		$\frac{h \cdot D_T}{k} = 0.9 \cdot Pr^{1/3} \cdot \left(\frac{D_A^2 \cdot N \cdot p}{\mu}\right)$	$\frac{h \cdot D_T}{k} = 0.9 \cdot Pr^{1/3} \cdot \left(\frac{D_A^2 \cdot N \cdot \rho}{\mu}\right)^{0.62}$		anque gitador dade de (rot/s)	
	Com ca	misa e 25	$\frac{h \cdot D_T}{k} = Pr^{1/3} \cdot C \cdot \left(\frac{D_A^2 \cdot N \cdot \rho}{\mu}\right)^{2/3}$			C = 0.4 - Aquecer C = 0.55 - arrefece	

DETERMINAR h

Convecção forçada no exterior de tubos								
Situação	Nu							
Tubo isolado		$Nu_m = C Re^n Pr^{1/3}$	Re		С		n	
	$Nu_m = rac{h_m \ d_0}{k}$		0.4 - 4		0.989		0.33	
Feixe de tubos			4 - 40		0.911		0.385	
			40 - 4000		0.683		0.466	
			4000 - 40 000		0.193		0.618	
			40 000 - 400 000		0.027		0.805	
			$Re^m = u_{m\acute{a}x} d_0 ho / \mu$ Re	Tubos alinhados		Tubos desencontrados		
				Ke	а	m	а	m
		$Nu_m = a Re^m Pr^{1/3}$	10 - 300		0.742	0.431	1.309	0.360
			300 - 200 000		0.211	0.651	0.273	0.635
			200 000 - 2 000 000		0.166	0.700	0.124	0.700

Convecção Natural				
Geometria	Valor de Ra	Nu		
	$10^4 - 10^9$	$Nu = 0.59 \cdot Ra^{1/4}$		
Plano vertical	$10^9 - 10^{13}$	$Nu = 0.1 \cdot Ra^{1/3}$		
Tiano vertical	Outros	$Nu = \left(0.825 + \frac{0.387 \cdot Ra^{1/6}}{\left(1 + (0.492/Pr)^{9/16}\right)^{8/27}}\right)^2$		
Plano inclinado	$g = g \cdot sen(\theta)$	Utilizar valores de cima		
Plano horizontal	$10^4 - 10^7$	$Nu = 0.54 \cdot Ra^{1/4}$		
(isolado em baixo)	$10^7 - 10^{11}$	$Nu = 0.15 \cdot Ra^{1/3}$		
Plano horizontal (isolado em cima)	$10^5 - 10^{11}$	$Nu = 0.27 \cdot Ra^{1/4}$		
Cilindro vertical		Vertical plano se $D \ge \frac{35 \cdot L}{Gr^{0.25}}$		
Cilindro horizontal	10 ⁻⁵ -10 ¹²	$Nu = \left(0.6 + \frac{0.387 \cdot Ra^{1/6}}{\left(1 + (0.559/Pr)^{9/16}\right)^{8/27}}\right)^2$		
Esfera	Ra ≤ 10 ¹¹ Pr ≥ 0.7	$Nu = 2 + \frac{0.589 \cdot Ra^{1/4}}{(1 + (0.469/Pr)^{9/16})^{4/9}}$		