

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : A61K 38/00, 47/12, C07C 229/00, 233/00, 317/14, C07D 209/02, 239/02, 241/02, 257/04, 311/04		A1	(11) International Publication Number: WO 98/34632 (43) International Publication Date: 13 August 1998 (13.08.98)																																		
(21) International Application Number: PCT/US98/02619 (22) International Filing Date: 6 February 1998 (06.02.98) (30) Priority Data: 08/796,336 7 February 1997 (07.02.97) US 08/796,340 7 February 1997 (07.02.97) US 08/796,338 7 February 1997 (07.02.97) US 08/797,813 7 February 1997 (07.02.97) US 08/797,816 7 February 1997 (07.02.97) US 08/797,820 7 February 1997 (07.02.97) US 08/797,100 7 February 1997 (07.02.97) US 08/796,337 7 February 1997 (07.02.97) US 08/796,334 7 February 1997 (07.02.97) US 08/796,341 7 February 1997 (07.02.97) US 08/796,339 7 February 1997 (07.02.97) US 08/797,817 7 February 1997 (07.02.97) US 08/796,335 7 February 1997 (07.02.97) US			Filed on US Filed on US Filed on US Filed on US Filed on US Filed on US Filed on US (71) Applicant (for all designated States except US): EMISPHERE TECHNOLOGIES, INC. [US/US]; 15 Skyline Drive, Hawthorne, NY 10532 (US). (72) Inventors; and (75) Inventors/Applicants (for US only): LEONE-BAY, Andrea [US/US]; 20 Woodland Way, Ridgefield, CT 06877 (US). HO, Koc-Kan [-US]; 104 Pheasant Run, Monmouth Junction, NJ 08852 (US). LEIPOLD, Harry, R. [US/US]; 63 Town Green Drive, Elmsford, NY 10523 (US). MILSTEIN, Sam, J. [US/US]; 15 Beechtree Lane, Larchmont, NY 10538 (US). SARRUBI, Donald, J. [US/US]; 18 Lawton Lane, Bronxville, NY 10708 (US). WANG, Eric [CN/US]; 1120 Warburton Avenue #1F, Yonkers, NY 10701 (US). GSCHNEIDNER, David [US/US]; 44 Cerretta Street #6, Stamford, CT 06907 (US). (74) Agents: ROBINSON, Joseph, R. et al.; Darby & Darby P.C., 805 Third Avenue, New York, NY 10022 (US). (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).																																		
<p>(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications</p> <table> <tr><td>US</td><td>08/796,336 (CON)</td></tr> <tr><td>Filed on US</td><td>7 February 1997 (07.02.97)</td></tr> <tr><td>US</td><td>08/796,340 (CON)</td></tr> <tr><td>Filed on US</td><td>7 February 1997 (07.02.97)</td></tr> <tr><td>US</td><td>08/796,338 (CON)</td></tr> <tr><td>Filed on US</td><td>7 February 1997 (07.02.97)</td></tr> <tr><td>US</td><td>08/797,813 (CON)</td></tr> <tr><td>Filed on US</td><td>7 February 1997 (07.02.97)</td></tr> <tr><td>US</td><td>08/797,816 (CON)</td></tr> <tr><td>Filed on US</td><td>7 February 1997 (07.02.97)</td></tr> <tr><td>US</td><td>08/797,820 (CON)</td></tr> <tr><td>Filed on US</td><td>7 February 1997 (07.02.97)</td></tr> <tr><td>US</td><td>08/797,100 (CON)</td></tr> <tr><td>Filed on US</td><td>7 February 1997 (07.02.97)</td></tr> <tr><td>US</td><td>08/796,337 (CON)</td></tr> <tr><td>Filed on US</td><td>7 February 1997 (07.02.97)</td></tr> <tr><td>US</td><td>08/796,334 (CON)</td></tr> </table> <p>Published With international search report.</p>				US	08/796,336 (CON)	Filed on US	7 February 1997 (07.02.97)	US	08/796,340 (CON)	Filed on US	7 February 1997 (07.02.97)	US	08/796,338 (CON)	Filed on US	7 February 1997 (07.02.97)	US	08/797,813 (CON)	Filed on US	7 February 1997 (07.02.97)	US	08/797,816 (CON)	Filed on US	7 February 1997 (07.02.97)	US	08/797,820 (CON)	Filed on US	7 February 1997 (07.02.97)	US	08/797,100 (CON)	Filed on US	7 February 1997 (07.02.97)	US	08/796,337 (CON)	Filed on US	7 February 1997 (07.02.97)	US	08/796,334 (CON)
US	08/796,336 (CON)																																				
Filed on US	7 February 1997 (07.02.97)																																				
US	08/796,340 (CON)																																				
Filed on US	7 February 1997 (07.02.97)																																				
US	08/796,338 (CON)																																				
Filed on US	7 February 1997 (07.02.97)																																				
US	08/797,813 (CON)																																				
Filed on US	7 February 1997 (07.02.97)																																				
US	08/797,816 (CON)																																				
Filed on US	7 February 1997 (07.02.97)																																				
US	08/797,820 (CON)																																				
Filed on US	7 February 1997 (07.02.97)																																				
US	08/797,100 (CON)																																				
Filed on US	7 February 1997 (07.02.97)																																				
US	08/796,337 (CON)																																				
Filed on US	7 February 1997 (07.02.97)																																				
US	08/796,334 (CON)																																				
(54) Title: COMPOUNDS AND COMPOSITIONS FOR DELIVERING ACTIVE AGENTS																																					
(57) Abstract																																					
<p>Carrier compounds and compositions which are useful in the delivery of active agents are provided. The carrier compound can be an amino acid derivative, and the active agent can be a peptide, mucopolysaccharide, carbohydrate, or lipid. Methods of administration, including oral administration, and preparation are provided as well.</p>																																					

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

COMPOUNDS AND COMPOSITIONS FOR DELIVERING ACTIVE AGENTS

FIELD OF THE INVENTION

The present invention relates to compounds for delivering active agents, and particularly biologically or chemically active agents. These compounds are used as carriers to facilitate the delivery of a cargo to a target. The carrier compounds are well suited to form non-covalent mixtures with biologically-active agents for oral administration to animals. Methods for the preparation administration of such compositions are also disclosed.

10

BACKGROUND OF THE INVENTION

Conventional means for delivering active agents are often severely limited by biological, chemical, and physical barriers. Typically, these barriers are imposed by the environment through which delivery occurs, the environment of the target for delivery, or the target itself. Biologically or chemically active agents are particularly vulnerable to such barriers.

For example in the delivery to animals of biologically active or chemically active pharmacological and therapeutic agents, barriers are imposed by the body. Examples of physical barriers are the skin and various organ membranes

that must be traversed before reaching a target. Chemical barriers include, but are not limited to, pH variations, lipid bi-layers, and degrading enzymes.

These barriers are of particular significance in the design of oral delivery systems. Oral delivery of many biologically or chemically active agents would be the route of choice for administration to animals if not for biological, chemical, and physical barriers such as varying pH in the gastro-intestinal (GI) tract, powerful digestive enzymes, and active agent impermeable gastro-intestinal membranes. Among the numerous agents which are not typically amenable to oral administration are biologically or chemically active peptides, such as calcitonin and insulin; polysaccharides, and in particular mucopolysaccharides including, but not limited to, heparin; heparinoids; antibiotics; and other organic substances. These agents are rapidly rendered ineffective or are destroyed in the gastro-intestinal tract by acid hydrolysis, enzymes, or the like.

Earlier methods for orally administering vulnerable pharmacological agents have relied on the co-administration of adjuvants (e.g., resorcinols and non-ionic surfactants such as polyoxyethylene oleyl ether and n-hexadecylpolyethylene ether) to increase artificially the permeability of the intestinal walls, as well as the co-administration of enzymatic inhibitors (e.g., pancreatic trypsin inhibitors, diisopropylfluorophosphate (DFF) and trasylol) to inhibit enzymatic degradation.

Liposomes have also been described as drug delivery systems for insulin and heparin. See, for example, U.S. Patent No. 4,239,754; Patel et al. (1976), *FEBS Letters*, Vol. 62, pg. 60; and Hashimoto et al. (1979), *Endocrinology Japan*, Vol. 26, pg. 337.

However, broad spectrum use of such drug delivery systems is precluded because: (1) the systems require toxic amounts of adjuvants or inhibitors; (2) suitable low molecular weight cargos, i.e. active agents, are not available; (3) the systems exhibit poor stability and inadequate shelf life; (4) the systems are difficult to manufacture; (5) the systems fail to protect the active agent (cargo); (6) the systems adversely alter the active agent; or (7) the systems fail to allow or promote absorption of the active agent.

More recently, microspheres of artificial polymers of mixed amino acids (proteinoids) have been used to deliver pharmaceuticals. For example, U.S. Patent No. 4,925,673 describes drug-containing proteinoid microsphere carriers as well as methods for their preparation and use. These proteinoid microspheres are useful
5 for the delivery of a number of active agents.

There is still a need in the art for simple, inexpensive delivery systems which are easily prepared and which can deliver a broad range of active agents.

SUMMARY OF THE INVENTION

10 Compounds and compositions which are useful in the delivery of active agents are provided. These compositions include at least one active agent, preferably a biologically or chemically active agent, and at least one of the following compounds 1-193, or salts thereof.

4

1

6-N-(3,5-dichloro-2-hydroxybenzoyl)aminocaproic acid

2

8(2-aminobenzoylamino)caprylic acid

3

8(2-trifluoromethoxybenzoylamino)caprylic acid

4

N-(2-hydroxybenzoyl)isonipecotic acid

5

4-[4-(2-aminobenzoylamino)phenyl]butyrylhydroxamic acid

5

4-(4-(pentafluorobenzoyl)aminophenyl)butyric acid

6

4-(4-(3-anisoyl)aminophenyl)butyric acid

7

8

8-(3-anisoyl)aminocaprylic acid

9

4-(4-(phenoxyacetyl)aminophenyl)butyric acid

6

4-(4-(2-nitrobenzenesulfonyl)aminophenyl)butyric acid

10

8-(2-nitrobenzenesulfonyl)aminocaprylic acid

11

6-(4-(salicyloyl)aminophenyl)hexanoic acid

12

8-(2-methoxylbenzoyl)amino caprylic acid

13

2-[4-Salicyloylamino]phenyl ethyl methyl sulfone

14

7

1-Salicyloyl-2-succinyl hydrazide

15

3-(4-(2,5-dimethoxycinnamoyl)aminophenyl)propionic acid

16

4-(4-(2,5-dimethoxycinnamoyl)aminophenyl)butyric acid

17

1-salicyloyl-2-glutaryl hydrazide

18

8

19

20

21

22

4-(4-(2-pyrazinecarbonyl)amino)phenylbutyric acid

9

23

6-(4-(N-2-Nitrobenzoyl)aminophenyl)hexanoic acid

24

6-(4-(N-2-aminobenzoyl)aminophenyl)hexanoic acid

25

4-(4-(2-(3-carboxy)pyrazinecarboxyl)aminophenyl)butyric acid

26

4(2-Nitrobenzoyl)aminophenylsuccinic acid

10

27

8-(2-(trifluoromethoxy)benzoyl)aminocaprylic acid

28

29

8-(Benzylcarbonylamino)caprylic acid

30

8-(phenylcarbonylamino)caprylic acid

11

31

2-[4-(2-Methoxybenzoylamino)phenyl]ethyl H₂PO₄

32

1-salicyloyl-2-suberyl hydrazide

33

4-(4-benzyloxycarbonylaminophenyl)butyric acid

34

4-(4-(2-hydroxynicotinoyl)aminophenyl)butyric acid

35

9-Salicyloylaminononanic acid

12

4-(4-phenyloxycarbonylaminophenyl)butyric acid

36

3-(2-methoxybenzoylamino)-1-propanol

37

8-(2-Hydroxynicotinoyl)aminocaprylic acid

38

6-(2-methoxybenzoyl)amino nicotinic acid

39

salicyloylglycine

40

4-(1-(2-pyrimidyl)piperazinoyl)butyric acid

41

8-(chromone-3-carbonyl)aminocaprylic acid

42

8-(vinylbenzoyl)aminocaprylic acid

43

4-(4-(chromone-3-carbonyl)aminophenyl)butyric acid

44

8-cinnamoylaminocaprylic acid

45

5-(N-salicyloylamino)valeric acid

46

14

9-(2-hydroxybenzamido)nonanic acid

47

N-(4-salicyloylamino)-6-caproic acid

48

4'-flavonic acid

49

50

11-cinnamoylaminoundecanoic acid

51

4-octanoylamino-3-hydroxybenzoic acid

52

(3-phenyl-2,3-dihydroxypropanoyl)8aminocaprylic acid

15

8-[N-(3-coumarincarbonyl)]aminocaprylic acid

53

54

8-[N-(4-chlorobenzoyl)]aminocaprylic acid

55

8-[N-(3-fluorobenzoyl)]aminocaprylic acid

56

8-(N-2,5-Dihydroxybenzoyl)aminocaprylic acid

57

8-(N-2,3-Dimethoxybenzoyl)aminocaprylic acid

58

8-(N-2,4-Dihydroxybenzoyl)aminocaprylic acid

59

8-(N-2,5-Dimethoxybenzoyl)aminocaprylic acid

16

8-(N-3,5-Diacetyloxybenzoyl)aminocaprylic acid

60

8-(N-4-Hydroxybenzoyl)aminocaprylic acid (dimer)

61

8-(N-2,4-Dihydroxybenzoyl)aminocaprylic acid

62

10-(N-2-Methoxyanilino)sebalic acid

63

10-(N-2-Methoxyanilino)sebacic acid

64

2-Methoxybenzenaminodecanoic acid

65

17

8-(N-benzoyl)aminocaprylic acid

66

8-(N-2-Hydroxy-4-methoxybenzoyl)aminocaprylic acid

67

8-[N-(4-fluorobenzoyl)]aminocaprylic acid

68

8-[N-(3-bromobenzoyl)]aminocaprylic acid

69

8-(4-(1,2-dihydroxyethyl)benzoyl)aminocaprylic acid

70

8-[N-(4-bromobenzoyl)]aminocaprylic acid

71

8-[N-(4-iodobenzoyl)]aminocaprylic acid

72

18

4-(4-[N-(2-iodobenzoyl)aminophenyl]butyric acid

73

4-(4-[N-(1-hydroxy-2-naphthoyl)aminophenyl]butyric acid

74

4-(4-[2,4-dimethoxybenzoyl]aminophenyl)butyric acid

75

4-(o-anisoyl)aminophenylacetic acid

76

3-[4-(2,4-dimethoxybenzoyl) aminophenyl] propionic acid

77

4-(4-[N-(4-iodobenzoyl)] aminophenyl) butyric acid

78

3-[4-(2,3-dimethoxybenzoyl) aminophenyl] propionic acid

79

19

4-(4-[N-2-bromobenzoyl] aminophenyl) butyric acid

80

81

82

83

84

85

86

8-(2-hydroxy-4-chlorobenzoyl)aminocaprylic acid

87

8-(N-2,6-Dihydroxybenzoyl)aminocaprylic acid

88

8-(N-2-Hydroxy-6-methoxybenzoyl)aminocaprylic acid

89

8-(5-chloro-o-anisoyl)aminocaprylic acid

90

4-(4-(2,3-dimethoxybenzoyl)aminophenyl)butyric acid

91

4-(4-(5-chloro-o-anisoyl)aminophenyl)butyric acid

92

4-(4-(4-chloro-o-anisoyl)aminophenyl)butyric acid

21

8-(4-chloro-o-anisoyl)aminocaprylic acid

93

3-(4-(2,5-dimethoxybenzoyl)aminophenyl)propionic acid

94

4-(N-[4-(3-iodobenzoyl)aminophenyl]butyric acid

95

7-cinnamoylaminoheptanoic acid

96

8-N-(3-iodobenzoyl)aminocaprylic acid

97

8-N-(4-methoxy-3-nitrobenzoyl)aminocaprylic acid

98

8-N-(2-methoxy-4-nitrobenzoyl)aminocaprylic acid

99

22

100

4-(N-[4-(2-methoxy-4-nitrobenzoyl)aminophenyl]butyric acid

101

4-(4-(2,5-dimethoxybenzoyl)aminophenyl)butyric acid

102

8-(N-2-hydroxy-5-bromobenzoyl)aminocaprylic acid

103

3-Indolebutyric acid

104

105

23

106

107

4-(4-(2,6-dimethoxybenzoyl)aminophenylbutyric acid

108

4-[4-N-(4-methoxy-3-nitrobenzoyl)aminophenyl]butyric acid

109

8-(N-2-hydroxy-5-chlorobenzoyl)aminocaprylic acid

110

8-(N-2-hydroxy-5-iodobenzoyl)aminocaprylic acid

111

8-(3-hydroxy-2-naphthoyl)aminocaprylic acid

112

8-(N-2-hydroxy-4-nitrobenzoyl)aminocaprylic acid

24

113

4-[N-(2-hydroxy-4-bromobenzoyl)aminophenyl]butyric acid

114

8-(N-2,3-Dihydroxybenzoyl)aminocaprylic acid

115

8-(N-3-methylsalicyloyl)aminocaprylic acid

116

8-(N-5-methylsalicyloyl)aminocaprylic acid

117

9-(cinnamoylamino)nonanoic acid

25

118

4-(4-(2-chloro-5-nitrobenzoyl)aminophenyl)butyric acid

119

4-{[N-(2-hydroxy-5-iodobenzoyl)]aminophenyl}butyric acid

120

N-2-nitrophenyl-N'-(8-octanoic acid) urea

121

N-(2-methoxy-5-nitrophenyl) sebacyl amide

122

8-[N-(2-acetoxy-3,5-dichlorobenzoyl)]aminocaprylic acid

123

8-[N-(2-acetoxy-3,5-dibromobenzoyl)]aminocaprylic acid

8-N-(2-chloro-6-fluorobenzoyl)aminocaprylic acid

125

126

127

128

129

4-(4-[N-(3-hydroxy-2-naphthoyl)aminophenyl]butyric acid

8-(4-chloro-3-nitrobenzoyl)aminocaprylic acid

130

131

132

4-(4-phthalimidophenyl)butyric acid

133

134

135

136

8-(N-2-hydroxy-3,5-diiodobenzoyl)aminocaprylic acid

28

8-(N-2-chloro-4-fluorobenzoyl)aminocaprylic acid

137

8-(2-(1,2-dihydroisoindole-1-one))octanoic acid

138

8-(N-1-hydroxy-2-naphthoyl)aminocaprylic acid

139

8-(phthalimido)caprylic acid

140

10-(4-chloro-2-hydroxyanilino)sebacic acid monoamide

141

6-(anisoyl)aminocaproic acid

4-(4-chloro-3-nitrobenzoyl)aminophenylbutyric acid

11-N-(1-hydroxy-2-naphthoyl)aminoundecanoic acid

Bis(N-2carboxyphenyl-N-(N'-8-octanoic acid)ureido)oxalyl diamide

2-[2-N-(2-chlorobenzoyl)aminoethoxy]ethanol

2-[2-N-(4-chlorobenzoyl)aminoethoxy]ethanol

30

4-(2-methoxybenzoyl)amino 3-carboxysultoxide

148

149

4-(2-methoxybenzoyl)amino 3-carboxypropylsulfone

150

4-(4-(3-hydroxyphthalimido)phenyl)butyric acid

151

2-[2-N-(2-methoxybenzoyl)aminoethoxy]ethanol

152

2-[2-N-(3-chlorobenzoyl)aminoethoxy]ethanol

153

Bis(N-2-carboxyphenyl-N-(N'-3(4-aminophenyl)propionic acid)ureal)oxaylyl diamide

154

trans-4-(2-aminobenzamidomethyl)cyclohexameric acid

155

11-N-(3,5-dichloro-2-hydroxybenzoyl)aminoundecanoic acid

156

2-[N-(2-bromobenzoyl)aminoethoxy]ethanol

157

7-N-(3,5-dichloro-2-hydroxybenzoyl)aminoheptanoic acid

158

N-[3,5-dichloro-2-hydroxybenzoyl]-4-(4-aminophenyl)butyric acid

159

trans-4-(N-salicyloylaminomethyl)cyclohexane carboxylic acid

160

N-[3,5-dichloro-2-hydroxybenzoyl]-3-(4-aminophenyl)propionic acid

161

12-N-(3,5-dichloro-2-hydroxybenzoyl)aminododecanoic acid

162

N-(2-hydroxy-4-carboxy-6-heptenyl)benzylamine

163

N-(2-bromobenzoyl)morpholine

164

8-N-cyclohexanoylaminoctanoic acid

165

2-[N-(2-iodobenzoyl)aminoethoxy]ethanol

166

5-(4-chloro-2-hydroxyanilinocarbonyl)valeric acid

167

8-(2-hydroxyphenoxy)-aminocaprylic acid

168

N-Salicoyl-5-(3-aminophenyl)valeric acid

169

4-(4-(2-ethoxybenzoyl)aminophenyl)butyric acid

170

9-[2-(3-hydroxy)pyridylaminocarbonyl] nonanic acid

171

7-(2-hydroxyphenoxyacetyl)aminocaprylic acid

172

2-[N-(2-hydroxybenzoyl)amino]ethoxyethanol

34

4-[N-(3,5-dichloro-2-hydroxybenzoyl)]aminophenylacetic acid

173

8-(2-hydroxy-5-chloroanilinocarbonyl)octanoic acid

174

N-salicyloyl-5-(4-aminophenyl)valeric acid

175

9-(2-hydroxy-5-methylanilinocarbonyl)nonanoic acid

176

5-(2-hydroxy-5-methylanilinocarbonyl)valeric acid

177

35

8-(pentafluorobenzoyl)aminocaprylic acid

178

179

180

181

182

8-(3-Phenoxypropionylamino)caprylic acid

36

4-(Salicyloyl)aminophenylethyltetrazole**8(-(4-(N-Salicyloyl)-4aminophenyl)butyric)aminocaprylic acid [sic]****4-(4-(N-(2-Fluorocinnamoyl))aminophenyl) butyric****4-(4-(N-8(Salicyloyl)aminocaprylic)aminophenyl)butyric acid**

8-(p-anisoyl)aminocaprylic acid

187

188

189

190

191

192

N-10-(2-hydroxy-5-nitroanilino)decanoic acid

193

4-(4-(2-chloronicotinoyl)aminophenyl)butyric acid

Compositions comprising the carrier compounds discussed above and active agents are effective in delivering active agents to selected biological systems.

5 **DETAILED DESCRIPTION OF THE INVENTION**

The specific compositions of the present invention include an active agent and a carrier. These compositions may be used to deliver various active agents through various biological, chemical, and physical barriers and are particularly suited for delivering active agents which are subject to environmental 10 degradation. The compositions of the subject invention are particularly useful for delivering or administering biologically or chemically active agents to any animals such as birds including, but not limited to, chickens; mammals, such as primates and particularly humans; and insects.

Other advantages of the present invention include the use of easy to 15 prepare, inexpensive raw materials. The compositions and the formulation methods of the present invention are cost effective, simple to perform, and amenable to industrial scale up for commercial production.

Subcutaneous, sublingual, and intranasal coadministration of an active agent, such as, for example, recombinant human growth hormone (rhGH); salmon 20 calcitonin; heparin, including, but not limited to, low molecular weight heparin; parathyroid hormone; and compounds in compositions as described herein result in an increased bioavailability of the active agent compared to administration of the active agent alone.

25 **Active Agents**

Active agents suitable for use in the present invention include biologically or chemically active agents, chemically active agents, including, but not limited to, fragrances, as well as other active agents such as, for example, cosmetics.

Biologically or chemically active agents include, but are not limited to, pesticides, pharmacological agents, and therapeutic agents. For example, biologically or chemically active agents suitable for use in the present invention include, but are not limited to, peptides, and particularly small peptides; hormones, 5 and particularly hormones which by themselves do not or only a fraction of the administered dose passes through the gastro-intestinal mucosa and/or are susceptible to chemical cleavage by acids and enzymes in the gastro-intestinal tract; polysaccharides, and particularly mixtures of muco-polysaccharides; carbohydrates; lipids; or any combination thereof. Further examples include, but 10 are not limited to, human growth hormones; bovine growth hormones; growth releasing hormones; interferons; interleukin-1; insulin; heparin, and particularly low molecular weight heparin; calcitonin; erythropoietin; atrial natriuretic factor; antigens; monoclonal antibodies; somatostatin; adrenocorticotropin, gonadotropin releasing hormone; oxytocin; vasopressin; cromolyn sodium (sodium or disodium 15 chromoglycate); vancomycin; desferrioxamine (DFO); parathyroid hormone antimicrobials, including, but not limited to anti-fungal agents; or any combination thereof.

Carriers

20 Although compounds 1-193 above have been found to act as carriers for the oral delivery of biologically or chemically active agents, special mention is made of compounds 9, 35, 64, 67, 79, 102, 109, 111, 117, 122, 136, and 141, above.

Properties of compounds 1-193 are listed in Table 1, below.

TABLE 1 - Carrier Properties

Compound	Anal. Calculated For				Found				Melting Point (°C)
	C	H	N	S	C	H	N	S	
1	48.8	4.70	4.40		48.81	4.64	4.39		
2	64.73	7.97	10.06		64.54	7.81	10.19		
3	55.33	5.80	4.03		55.40	5.79	3.96		69-71
4	62.64	6.06	5.62		62.75	6.08	5.51		151-154
5	65.16	6.11	13.40		65.29	6.03	13.29		144-145
6	54.70	3.24	3.75		54.29	3.24	3.54		165-169
7	69.00	6.11	4.47		69.09	6.24	4.43		126-129
8	65.51	7.90	4.78		65.60	8.25	4.83		89-90
9	68.99	6.11	4.47		69.01	6.08	4.47		104-107
10	52.74	4.42	7.69		52.91	4.45	7.49		142-145
11	48.83	5.85	8.14		48.95	5.89	8.02		120-122
12	69.71	6.47	4.28		69.56	6.47	4.38		144-146
13	65.51	7.90	4.77		65.23	7.88	4.72		72.5-74.5
14	60.17	5.36	4.39	10.04	60.09	5.36	4.35	9.99	155-156
15	52.38	4.79	11.11		52.45	4.94	11.08		220-222
16	67.60	5.95	3.94		67.34	6.01	3.91		219-222
17	68.09	6.53	3.78		67.77	6.24	3.81		130-133
18	54.13	5.30	10.52		54.12	5.24	10.54		192.5-195.5
19	55.26	4.21	7.16		54.48	4.32	6.86		>280 dec
20	65.51	7.90	4.77		65.52	7.90	4.77		75-80
21	58.85	7.21	15.84		58.86	7.16	15.69		120-122
22	63.15	5.30	14.73		63.30	5.43	14.18		197-201
23	64.04	5.66	7.86		64.17	5.67	7.75		188-190
24	69.91	6.88	8.46		69.98	6.79	8.58		131-134
25	58.36	4.56	12.76		58.20	4.63	12.61		138-141
26	56.98	3.94	7.82		56.39	3.92	7.74		221-223

TABLE 1 - Carrier Properties

Compound	Anal. Calculated For				Found				Melting Point (°C)
	C	H	N	S	C	H	N	S	
27	55.33	5.80	4.03		55.47	6.10	4.04		70-72
28									
29	65.74	7.58	4.79		65.51	7.89	4.78		52-55
30	64.50	7.57	5.02		64.07	7.81	5.40		70-74
31	54.70	5.17	3.99		54.50	4.99	3.95		173-174
32	58.63	5.94	9.12		58.73	6.20	10.34		125-129
33	69.00	6.10	4.47		69.18	6.08	4.54		100-102
34	63.99	5.37	9.33		63.46	5.35	9.06		218-221c
35	65.5	7.90	4.78		65.37	8.00	4.66		96-97C
36	68.22	5.72	4.68		67.88	5.65	4.55		134-137
37	63.14	7.23	6.69		63.15	7.29	6.58		53.5-56
38	60.00	7.14	10.00		59.78	7.31	9.94		135-138
39	61.67	4.41	10.29		61.69	4.41	10.12		>225
40	55.39	4.65	7.18		55.52	4.77	7.30		162.5-166
41	56.10	6.52	20.14		55.66	6.71	19.69		129-131
42	65.24	6.39	4.23		65.42	6.16	3.78		130-133.5
43	70.59	7.96	4.84		70.35	8.13	4.79		111-113
44	68.37	4.88	3.99		68.61	4.89	3.79		120-123
45	70.59	7.96	4.84		70.48	7.97	4.71		108-110
46	60.75	6.37	5.90		60.97	6.18	5.80		100.5-103
47	64.50	7.57	5.02		64.42	7.58	5.01		97-100
48	64.86	5.98	7.56		64.50	6.01	7.52		165-169
49	72.18	3.76	0.00		72.13	3.84	0.00		>225
50	72.51	8.76	4.23		72.39	8.84	4.12		120-122
51	64.50	7.58	5.01		64.75	7.65	4.69		200.5-204

TABLE 1 - Carrier Properties

Compound	Anal. Calculated For				Found				Melting Point (°C)
	C	H	N	S	C	H	N	S	
52		7.74	4.33			7.82	4.30		88-89
53	65.24	6.39	4.23		65.15	6.46	4.23		93-97
54	60.49	6.77	4.70		60.54	6.76	4.65		114-116
55	64.04	7.17	4.98		63.90	7.11	4.93		105-106
56	61.00	7.17	4.74		60.49	6.92	4.65		146-148
57	63.14	7.79	4.33		63.22	7.82	4.36		59-61
58	63.14	7.79	4.33		63.17	7.86	4.26		102-104
59	63.14	7.79	4.33		63.35	7.68	4.20		89-90
60	60.15	6.64	3.69		59.84	6.66	3.64		112-113
61	65.53	8.85	6.65		65.34	8.73	6.67		89-92
62	61.00	7.17	4.74		60.94	7.12	4.49		104-108
63	66.43	8.20	4.56		66.29	8.23	4.36		77-78
64	65.51	7.90	4.77		65.52	8.06	4.54		97-98
65	69.59	9.28	4.77		69.64	9.35	4.86		62-65
66	68.41	8.04	5.32		68.41	8.06	5.28		88-89
67	62.12	7.49	4.53		61.94	7.45	4.43		98-99
68	64.04	7.17	4.98		64.07	7.16	4.95		106-107
69	52.64	5.89	4.09		52.63	5.85	4.03		109-110
70	63.15	7.74	4.33		63.26	7.90	4.14		97-100
71	52.64	5.89	4.09		52.67	5.99	3.97		114-115
72	46.31	5.18	3.61		46.25	4.86	3.52		143-144
73	49.89	3.94	3.42		49.92	3.85	3.39		170-171
74	72.19	5.48	4.01		71.51	5.33	3.75		180
75	66.46	6.16	4.08		66.47	6.26	4.06		168.5-171
76	67.37	5.26	4.91		67.31	5.25	5.07		130-133
77	65.65	5.78	4.26		65.49	6.04	4.26		179-183
78	49.89	3.94	3.42		49.8	3.71	3.29		237-238

TABLE 1 - Carrier Properties

Compound	Anal. Calculated For				Found				Melting Point (°C)
	C	H	N	S	C	H	N	S	
79	65.65	5.78	4.26		65.21	6.05	4.24		156-158
80	56.38	4.45	3.87		56.4	4.21	3.91		130-131
81	56.38	4.45	3.87		56.46	4.5	3.84		197-198
82	56.6	7.49	4.4		56.3	7.49	4.14		58-62
83	57.03	8.2	3.91		57.17	7.8	3.7		138-140
84	57.58	7.11	3.95		57.52	7.7	3.94		
85	56.38	4.45	3.87		56.31	4.25	3.64		230-231
86	57.42	6.42	4.46		57.14	6.45	4.2		116-117
87	61	7.17	4.74		61.18	7.05	4.65		108-109
88	62.12	7.49	4.53		62.34	7.21	4.39		107-109
89	58.63	6.76	4.27		58.53	6.81	4.2		117-118
90	66.46	6.16	4.08		66.18	6.15	3.84		100-104
91	62.16	5.21	4.03		61.93	4.97	3.86		183-185
92	62.16	5.21	4.03		62.2	5.14	3.98		167-170
93	58.63	6.76	4.27		58.64	6.83	4.19		106-108
94	65.65	5.81	4.25		65.56	5.64	4.2		153-156
95	49.89	3.94	3.42		49.9	3.81	3.18		216-217
96	69.82	7.64	5.09		69.91	7.66	5.02		129-131
97	46.31	5.18	3.61		46.54	4.95	3.64		122-123
98	56.8	6.55	8.28		56.69	6.67	8.1		
99	56.8	6.55	8.28		57.37	6.57	8.33		117-118
100	60.33	5.06	7.82		59.98	4.97	7.67		207-209
101	66.46	6.16	4.08		66.37	6.32	3.96		126-128
102	50.29	5.63	3.91		50.14	5.7	3.76		129-131
103	70.93	5.95	6.89		70.94	6.44	6.89		
104	65.84	6.14	8.53		65.94	6.19	8.54		228-231
105	64.96	5.77	8.91		64.89	5.82	8.82		

TABLE 1 - Carrier Properties

Compound	Anal. Calculated For				Found				Melting Point (°C)
	C	H	N	S	C	H	N	S	
106	66.65	6.48	8.18		66.39	6.49	8.05		140-142
107	66.47	6.12	4.07		66.5	6.26	4.08		140-142
108	60.33	5.06	7.82		60.32	4.99	7.78		150-151
109	57.41	6.42	4.46		57.07	6.44	4.39		121-123
110	44.46	4.97	3.46						133-135
111	69.28	7.03	4.25		68.86	7.07	4.11		147-149
112	55.55	6.22	8.64		55.27	5.99	8.5		120-121
113	53.99	4.26	3.7		53.98	4.25	3.63		210 decom
114	57.49	7.39	4.74		57.72	7.57	4.43		80-83
115	65.5	7.9	4.77		64.97	7.79	4.75		90-92
116	65.5	7.9	4.77		65.11	8.03	4.71		125-127
117	71.26	8.3	4.2		70.6	7.89	4.83		94-96
118	56.29	4.17	7.72		56.23	4.01	7.6		173-175
119	47.89	3.81	3.29		47.52	3.71	3.16		236-237
120	55.7	6.55	13		55.71	6.58	13.05		123-5
121	57.98	5.81	7.95		57.9	7.11	7.82		131-133
122	51.74	5.5	4.02		51.41	5.43	3.61		118-119.5
123	41.22	4.38	3.2		41.45	4.36	2.94		143-144.5
124	57.06	6.06	4.44		57.02	6.12	4.35		57-58
125	61.18	4.83	4.2		60.71	4.76	3.89		214 decom
126	55.55	6.22	8.64		55.4	6.24	8.53		150-151
127	65.17	4.83	4.47		65.27	4.87	4.48		208-209
128	73.03	8.99	4.06		72.92	9.36	4.1		99-101
129	72.25	5.44	4		72.14	5.24	4.01		216-217
130	52.56	5.58	8.17		52.66	5.44	8.21		96-100

TABLE 1 - Carrier Properties

Compound	Anal. Calculated For				Found				Melting Point (°C)
	C	H	N	S	C	H	N	S	
131	56.28	6.41	9.38		56.32	6.42	9.28		98-100
132	52.56	5.58	8.17		52.46	5.65	7.86		150-153
133	69.89	4.89	4.53		69.64	5	4.54		136-9
134	71.68	5.2	4.2		71.24	5.1	4.13		251-253
135	65.64	5.78	4.25		65.3	5.91	4.04		79-83
136	33.92	3.61	2.64		34.48	3.84	2.48		164-165
137	57.06	6.06	4.44		57.09	6.17	4.45		88-89
138	69.79	7.69	5.09		69.68	7.78	5.08		102-3
139	69.28	7.04	4.25		68.99	7	4.1		107-108
140	66.42	6.62	4.84		66.2	6.49	4.81		88-9
141	58.62	6.76	4.27		58.66	6.93	4.18		134-135
142	63.38	7.21	5.28		63.22	7.28	5.24		71-73
143	56.29	4.17	7.72		56.19	4.04	7.65		156-160
144	71.13	7.88	3.77		70.39	7.91	3.64		95-97
145	58.44	6.06	8.02		58.25	6.38	7.84		165-8
146	54.22	5.79	5.75		54.26	5.65	5.69		77-78.5
147	54.22	5.79	5.75		54.21	5.85	5.61		80-81
148	58.78	4.93	40.3		58.64	4.89	3.97		172-173
149	56.19	4.72	3.85		56.31	4.67	3.86		177
150	66.46	4.65	4.31		66.41	4.56	4.23		158-160
151	58.61	7.24	5.69		58.79	7.35	5.66		
152	54.22	5.79	5.75		54.21	5.72	5.62		54-55
153	60.85	4.25	7.89		60.27	4.37	7.89		>260
154	62.5	7.3	10.14		64.77	7.27	9.9		187-190
155	55.4	6.5	3.6		55.56	6.51	3.5		114-116
156	45.85	4.9	4.86		46.06	4.78	4.71		67-68
156	48.8	4.7	4.4		48.81	4.64	4.39		144-146

TABLE 1 - Carrier Properties

Compound	Anal. Calculated For				Found				Melting Point (°C)
	C	H	N	S	C	H	N	S	
157	50.3	5.1	4.2		50.25	5.12	3.99		141-143
158	55.5	4.1	3.8		55.55	3.88	3.75		190-192
159	64.97	6.9	5.05		64.7	6.82	5.02		171-174
160	54.3	3.7	4		54.31	3.58	3.83		222-224
161	56.4	6.7	3.5		56.69	6.98	3.11		76-78
162	63.63	6.47	5.3		64.76	6.84	4.74		188-191
163	48.91	4.48	5.19		48.89	4.31	5.10		88.5-90
164	66.66	10.04	5.18		66.69	10.77	5.16		67.5-70.5
165	39.42	4.21	4.18		39.19	4.35	3.88		oil
166	53.05	5.19	5.16		53.06	5.03	4.86		151-152
167	65.53	7.85	4.78		65.4	7.84	4.57		85-89
168	68.99	6.11	4.47		68.62	5.87	4.49		162-6
169	69.71	6.47	4.28		69.67	6.58	4.50		132.5-135
170	61.21	7.53	9.52		61.21	7.68	9.46		134-135
171	62.14	7.44	4.53		61.96	7.52	4.57		101-104
172	58.63	6.71	6.22		58.15	6.83	6.04		
173	52.96	3.26	4.12		52.96	3.28	4.02		225-227
174	57.42	6.42	4.46		57.3	6.38	4.39		119-120
175	68.99	6.11	4.47		68.84	6.08	4.51		131-4
176	66.43	8.2	4.56		66.42	8.16	4.51		109-110
177	62.14	6.82	5.57		61.96	6.66	5.52		127-128
178	51.00	4.56	3.97		51.09	4.61	3.93		
179	67.36	5.30	4.90		67.26	5.24	4.91		185-186
180	66.43	8.20	4.56		66.32	8.60	5.12		51.5-55
181	69.92	6.79	8.58		67.02	6.93	8.20		81-84
182	66.46	8.14	4.56		66.43	8.34	4.47		82-84
183	62.13	4.89	22.64		62.05	4.88	22.45		271-272

TABLE 1 - Carrier Properties

Compound	Anal. Calculated For				Found				Melting Point (°C)
	C	H	N	S	C	H	N	S	
184	68.16	7.32	6.36		67.73	7.44	6.70		114-117
185	71.30	5.98	5.73		71.10	5.97	5.74		146-149
186	68.16	7.32	6.36		67.94	7.31	6.41		105-108
187	65.51	7.90	4.77		65.35	7.63	4.59		102-103
188	64.50	7.58	5.01		64.19	7.69	4.83		133-134
189	64.5	7.58	5.01		64.5	7.57	4.90		116-118
190	61.15	7.71	3.97		61.27	7.79	4.08		124-127
191	65.5	7.9	4.77		65.32	7.94	4.7		114-115
192	56.77	6.51	8.28		56.83	6.76	8.21		141-143
193	60.29	4.74	8.79		60.17	4.58	8.74		202-205
194	48.8	4.7	4.4		48.81	4.64	4.39		144-146

These carrier compounds or poly amino acids, and peptides, including the amino acids, may be used to deliver active agents including, but not limited to, biologically or chemically active agents such as for example, pharmacological and therapeutic agents.

5 An amino acid is any carboxylic acid having at least one free amine group and includes naturally occurring and synthetic amino acids.

Poly amino acids are either peptides or two or more amino acids linked by a bond formed by other groups which can be linked, e.g. an ester, anhydride, or an anhydride linkage.

10 Peptides are two or more amino acids joined by a peptide bond. Peptides can vary in length from dipeptides with two amino acids to poly peptides with several hundred amino acids. See Chambers Biological Dictionary, editor Peter M. B. Walker, Cambridge, England: Chambers Cambridge, 1989, page 215. Special mention is made of di-peptides, tri-peptides, tetra-peptides, and penta-peptides.

Salts such as, for example, sodium salt of these carrier compounds can be used as well.

Many of the compounds described herein are derived from amino acids.

5 Many of the compounds of the present invention can be readily prepared from amino acids including, but not limited to, aminocaprylic acid, butyrylhydroxaminic acid, aminophenylbutyric acid, aminophenylhexanoic acid, aminophenylpropionic acid, amino salicylic acid, aminophenylsuccinic acid, aminononanic acid, aminonicotinic acid, amino valenic acid, aminophenylacetic acid,
10 aminocaproic acid, aminoundecanoic acid, aminoheptanoic acid, aminohydroxybenzoic acid, and aminodecanoic acid by methods within the skill of those in the art based upon the present disclosure and the methods described in U.S. patent application serial nos. 60/017,902, filed March 29, 1996; 08/414,654, filed March 31, 1995; 08/335,148, filed October 25, 1994; and 60/003,111, filed
15 September 1, 1995.

For example, these compounds may be prepared by reacting the single acid with the appropriate agent which reacts with free amino moiety present in the amino acids to form amides. Protecting groups may be used to avoid unwanted side reactions as would be known to those skilled in the art.

20 The carrier compound may be purified by recrystallization or by fractionation on solid column supports. Suitable recrystallization solvent systems include acetonitrile, methanol and tetrahydrofuran. Fractionation may be performed on a suitable solid column supports such as alumina, using methanol/n-propanol mixtures as the mobile phase; reverse phase column supports using trifluoroacetic
25 acid/acetonitrile mixtures as the mobile phase; and ion exchange chromatography using water as the mobile phase. When anion exchange chromatography is performed, preferably a subsequent 0-500 mM sodium chloride gradient is employed.

Delivery Systems

The compositions of the present invention may include one or more active agents.

5 In one embodiment, compounds or salts of compounds 1-193 or poly amino acids or peptides that include at least one of these compounds or salts may be used directly as a delivery carrier by simply mixing one or more compound or salt, poly amino acid or peptide with the active agent prior to administration.

10 The administration mixtures are prepared by mixing an aqueous solution of the carrier with an aqueous solution of the active ingredient, just prior to administration. Alternatively, the carrier and the biologically or chemically active ingredient can be admixed during the manufacturing process. The solutions may optionally contain additives such as phosphate buffer salts, citric acid, acetic acid, gelatin, and gum acacia.

15 Stabilizing additives may be incorporated into the carrier solution. With some drugs, the presence of such additives promotes the stability and dispersibility of the agent in solution.

20 The stabilizing additives may be employed at a concentration ranging between about 0.1 and 5 % (W/V), preferably about 0.5 % (W/V). Suitable, but non-limiting, examples of stabilizing additives include gum acacia, gelatin, methyl cellulose, polyethylene glycol, carboxylic acids and salts thereof, and polylysine. The preferred stabilizing additives are gum acacia, gelatin and methyl cellulose.

25 The amount of active agent is an amount effective to accomplish the purpose of the particular active agent. The amount in the composition typically is a pharmacologically, biologically, therapeutically, or chemically effective amount. However, the amount can be less than a pharmacologically, biologically, therapeutically, or chemically effective amount when the composition is used in a dosage unit form, such as a capsule, a tablet or a liquid, because the dosage unit form may contain a multiplicity of carrier/biologically or chemically active agent 30 compositions or may contain a divided pharmacologically, biologically,

therapeutically, or chemically effective amount. The total effective amounts can then be administered in cumulative units containing, in total, pharmacologically, biologically, therapeutically or chemically active amounts of biologically or pharmacologically active agent.

5 The total amount of active agent, and particularly biologically or chemically active agent, to be used can be determined by those skilled in the art. However, it has surprisingly been found that with some biologically or chemically active agents, the use of the presently disclosed carriers provides extremely efficient delivery, particularly in oral, intranasal, sublingual, intraduodenal, rectal,
10 vaginal, buccal, ophthalmic, or subcutaneous systems as well as systems for crossing the blood/brain barrier. Therefore, lower amounts of biologically or chemically active agent than those used in prior dosage unit forms or delivery systems can be administered to the subject, while still achieving the same blood levels and therapeutic effects.

15 The amount of carrier in the present composition is a delivery effective amount and can be determined for any particular carrier or biologically or chemically active agent by methods known to those skilled in the art.

Dosage unit forms can also include any of excipients; diluents; disintegrants; lubricants; plasticizers; colorants; and dosing vehicles, including, but
20 not limited to water, 1,2-propane diol, ethanol, olive oil, or any combination thereof.

Administration of the present compositions or dosage unit forms preferably is oral or by intraduodenal injection.

The delivery compositions of the present invention may also include one or more enzyme inhibitors. Such enzyme inhibitors include, but are not limited
25 to, compounds such as actinonin or epiactinonin and derivatives thereof. These compounds have the formulas below:

51

5

10

15

20

Derivatives of these compounds are disclosed in U.S. Patent No. 5,206,384.

Actinonin derivatives have the formula:

25

30

wherein R⁵ is sulfoxymethyl or carboxyl or a substituted carboxy group selected from carboxamide, hydroxyaminocarbonyl and alkoxy carbonyl groups; and R⁶ is hydroxyl, alkoxy, hydroxyamino or sulfoxyamino group. Other enzyme inhibitors include, but are not limited to, aprotinin (Trasylol) and Bowman-Birk inhibitor.

5 The compounds and compositions of the subject invention are useful for administering biologically or chemically active agents to any animals such as birds; mammals, such as primates and particularly humans; and insects. The system is particularly advantageous for delivering chemically or biologically or chemically active agents which would otherwise be destroyed or rendered less
10 effective by conditions encountered before the active agent its target zone (i.e. the area in which the active agent of the delivery composition are to be released) and within the body of the animal to which they are administered. Particularly, the compounds and compositions of the present invention are useful in orally administering active agents, especially those which are not ordinarily orally
15 deliverable.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following examples illustrate the invention without limitation. All parts are given by weight unless otherwise indicated.

20

Example 1 - Carrier Preparation

General Preparations of Carriers. The following procedures were used to prepare the compounds described herein. Many of the compounds were prepared by reaction of the appropriate amino acid with the appropriate acid
25 chloride. The preparation of compound 79 is given as a representative example of the compounds prepared in this manner.

Preparation of Compound 79. Method A. A 1 L round bottom flask fitted with a magnetic stirrer was charged with 3-(4-aminophenyl)propionic acid
30 (46.3 g, 0.28 moles, 1.17 equiv.) and 2 M aqueous sodium hydroxide (300 mL).

2,3-dimethoxybenzoylchloride (48.0 g, 0.24 moles, 1.00 equiv.) was added portionwise over 1 h to the stirred solution. After the addition, the reaction was stirred for 2.5 h at ambient temperature, and the pH of the solution was kept at ca 10 by the addition of 10 M sodium hydroxide. The solution was then acidified with 5 1 M hydrochloric acid (3 x 100 mL), water (100 mL), and air dried. It was redissolved in boiling acetone (ca 500 mL), decolorized with activated charcoal (3g), and filtered. Water (1.5 L) was added to the filtrate to induce the formation of a brown oil. The brown oil solidified upon stirring at room temperature for 10 min. The crude solid was collected by filtration and recrystallized from 70% methanol-10 water (v/v) to afford compound 79 as a tan solid (39.5) g, 50%).

Compounds 1, 5, 30, 31, 33, 36, 53-66, 68, 69, 71-74, 78, 80-88, 95, 97-99, 102, 108-110, 112-115, 119, 121-126, 136, 137, 139, 141, 144, 146, 147, 151, 152, 155-158, 160, 161, 163, 165, 166, 170, 172-174, 176, 177, 184-186, 188, 189, 191 and 192 were also prepared by this process.

15

Preparation of Compound 79. Method B. A 2 L three-neck round bottom flask was fitted with a magnetic stirrer and two addition funnels under an argon atmosphere. A suspension of 3-(4-aminophenyl)propionic acid (46.3 g, 0.28 moles, 1.17 equiv.) in ethyl acetate (700 mL) was added to the flask. A solution 20 of 2,3-dimethoxybenzoylchloride (48.0 g, 0.24 moles, 1.00 equiv.) in ethyl acetate (250 mL) was charged to one of the addition funnels and added dropwise over 1 h. Triethylamine (28.20 g, 0.28 moles, 1.00 equiv.) was subsequently charged to the second funnel and added dropwise over 15 min. The reaction was stirred at ambient temperature for 3 h, and the solvent was evaporated *in vacuo* giving a 25 residual brown oil. Water (600 mL) was added to the residue followed by sodium hydroxide (2 M, 500 mL), and the mixture was stirred at ambient temperature for 3 hours. The resultant brown solution was acidified with 2 M hydrochloric acid (ca 1 L). After cooling the mixture in an ice bath for 1 h, a yellow solid formed and was collected by filtration. The solid was washed with water (3 x 1.5 L) and

recrystallized from 50% ethanol-water (v/v) to give compound 79 as a tan solid (59.2 g, 68%).

Compounds 18, 32, 37, 41, 168, 175, and 183 were also prepared by this process.

5

Preparation of Compound 79. Method C. A 2 L round bottom flask equipped with a magnetic stirrer and a reflux condenser was charged with a suspension of 3-(4-aminophenyl)propionic acid (46.3 g, 0.28 moles, 1.17 equiv.) in dichloromethane (560 mL). Chlorotrimethylsilane (62.36 g, 0.57 moles, 2.05 equiv.) was added in one portion, and the mixture was heated to reflux for 1 h under argon. The reaction was allowed to cool to room temperature and was placed in an ice bath (internal temperature <10°C). The reflux condenser was replaced with an addition funnel containing triethylamine (42.50 g, 0.42 moles, 1.50 equiv.). The triethylamine was added dropwise over 15 min, and a yellow solid formed during the addition. The funnel was replaced by another addition funnel containing a solution of 2,3-dimethoxybenzoylchloride (48.0 g, 0.24 moles, 1.00 equiv. in dichloromethane (100 mL). The solution was added dropwise over 30 min. The reaction was stirred in the ice bath for another 30 min and at ambient temperature for 1 h. The dichloromethane was evaporated *in vacuo* to give a brown oil. The brown oil was cooled in an ice bath, and an ice-cold solution of 2 M sodium hydroxide (700 mL) was added. The ice bath was removed, and the reaction was stirred for 2 h to afford a clear brown solution. The solution was acidified with 2 M sulfuric acid (400 mL) and stored at *ca* 5°C for 1 hour. A yellow solid formed and was collected by filtration. The solid was washed with water (3 x 100 mL) and recrystallized from 50% ethanol-water (v/v) to afford compound 79 as tan needles (64.7 g, 82%).

Compounds 2-4, 6-17, 19-29, 34, 38-40, 42-48, 50-52, 67, 70, 75-77, 89-94, 96, 100, 101, 107, 111, 116-118, 127-132, 134, 135, 193, 142, 143, 148, 149, 159, 162, 164, 169, 178-182, 187, and 190 were also prepared by this process.

Preparation of Compound 35. A solution of *O*-acetylsalicyloyl chloride (24.68 g, 124 mmol, 1 equiv) in tetrahydrofuran (300 mL) was cooled in an ice bath. Triethylamine (25 g, 249 mmol, 2 equiv) was added dropwise via an additional funnel. The methyl 9-aminononanoate hydrochloride was dissolved in 5 DMF (190 mL, slightly warm to dissolve), charged to an addition funnel and added dropwise to the above mixture. The reaction was stirred in the ice-bath for 20 min and at room temperature for 2 h. Evaporation of the THF under reduced pressure gave a pink DMF solution. The pink solution was cooled in an ice-bath, and 2 M aqueous sodium hydroxide (300 mL) was added. After being stirred at room 10 temperature for 12 h, the mixture was acidified with 2 M hydrochloric acid (500 mL). The solution was cooled in an ice-bath, and a solid formed. The solid was collected by filtration and was recrystallized from 50% ethanol/water to give compound 35 (32 g, 87%) as an off-white solid.

15 **Preparation of Compound 49.** 1-(2-hydroxyphenyl)-3-(4-methyl benzoate)-1,3-propane dione (3.00 g, 0.0101 mol.) is placed in a 100 ml round bottomed flask fitted with argon purge, magnetic stir bar and cold water condenser. Glacial acetic acid (20 mls) and concentrated sulfuric acid (5 mls) were added, and heating of the reaction mixture was initiated. The reaction mixture was allowed to 20 heat at reflux for 6 h before heating was discontinued. The reaction mixture was allowed to come to room temperature, and then was poured into 100 mls of ice/water. This was stirred for approximately 1/2 h before the mixture was filtered, and a brown solid was isolated. The brown solid was recrystallized twice from acetic acid, yielding compound 49 as a tan solid (1.44 g, 53.8%).

25

Preparation of Compound 167. 2-coumaranone (4.21 g, 0.0314 mol) was dissolved, with stirring, in acetonitrile (75 mls) in a 250 ml round bottomed flask fitted with a magnetic stir bar, argon purge and cold water condenser. Triethylamine (3.18 g, 0.0314 mol) and 8-aminocaprylic acid (5.00 g, 0.0314 mol) 30 were added, and a tan slurry was formed. Heating was started, and the reaction

mixture was allowed to reflux overnight. After heating overnight, thin layer chromatography of the reaction mixture (50% ethyl acetate / 50% hexane) indicated that the reaction had gone to completion. Heating was stopped, the reaction mixture was allowed to cool to room temperature, and was concentrated
5 *in vacuo*. The resulting residue was taken up in methylene chloride, and was washed with two, 100 ml portions of 1N hydrochloric acid solution. The methylene chloride layer was dried with sodium sulfate and was concentrated *in vacuo*. The resulting tan solid was allowed to dry *in vacuo* overnight, yielding compound 167 as a tan solid (8.35 g, 70.4%).

10

Preparation of Compound 171. 1,4-benzodioxan-2-one (3.93 g, 0.0262 mol) was dissolved, with stirring, in acetonitrile (70 mls) in a 250 ml round bottomed flask fitted with a magnetic stir bar, argon purge and cold water condenser. Triethylamine (2.64 g, 0.0262 mol) and 8-aminocaprylic acid (500 g, 15 0.0262 mol) were added and a tan slurry was formed. Heating was started, and the reaction mixture was allowed to reflux for approximately 3 hours. At this time, thin layer chromatography of the reaction mixture (50% ethyl acetate /50% hexane) indicated that the reaction had gone to completion. Heating was discontinued, and the reaction mixture was allowed to cool to room temperature and was
20 concentrated *in vacuo*. The resulting residue was taken up in methylene chloride and was washed with a 100 ml portion of 1N hydrochloric acid solution. At this time, a tan solid was noted to precipitate, and it was isolated by filtration. This tan solid was washed further with an additional 100 ml portion of 1 N hydrochloric acid solution, and then with 100 ml of water. The resulting tan solid was allowed to dry
25 *in vacuo* overnight yielding Compound 171 as a tan solid (7.73 g, 95.6%).

Preparation of Compound 120. A solution of 3.00 g (18.3 mmol) of 2-nitrophenylisocyanate and 5 mL of tetrahydrofuran was dropwise over 10 min to an ice bath-cooled solution of 2.08 g (13.1 mmol) of 8-aminocaprylic acid, 1.40 mL
30 of 10 N NaOH and 40 mL of water. The reaction mixture was stirred an additional

30 min, warmed to 25°C and treated with 3% HCl solution until the pH was 5. The yellow precipitate was filtered off and rinsed with 100 ml of water. The yellow solid was recrystallized in 2-propanol and water to give 3.7 g of compound 120 as pale yellow crystals.

5 Compounds 104-106 were also prepared by this procedure.

Preparation of Compound 133. A suspension of 2.40 g (16.3 mmol) and 2.80 g (15.6 mmol) of 4-(4aminophenyl)butyric acid in 20 mL of propylene glycol, 2.40 mL (1.74 g, 17.3 mmol) of triethylamine and 10 mg (0.08 mmol) of 10 dimethylaminopyridine was heated to 140°C. The mixture became a clear solution after 5 min at 140°C. After stirring for 330 min, the reaction mixture was cooled to 25°C and diluted with 20 mL of water. The solid phthalimide which had formed was filtered off. The filtrate was acidified with 3% HCl solution. The resulting solid was filtered off and was recrystallized from 2-propanol and water to give 0.62 15 g of compound 133 as a tan solid.

Preparation of Compound 138. A solution of 1.73 g (12.9 mmol) of phthalic dialdehyde, 2.04 g 8-aminocaprylic acid and 20 mL of acetic acid was heated to reflux for 10 min. The reaction mixture was cooled to 40°C, diluted with 20 water and extracted with CH₂Cl₂ (2 X 20 mL). The organic phase was washed with water and brine, dried over Na₂SO₄ and evaporated. The residue was dissolved in ether and extracted with 2N NaOH. The layers were separated. The aqueous layer was made acidic with 3% HCl and extracted with CH₂Cl₂. The organic phase was dried over Na₂SO₄ and evaporated. The yellow residue was crystallized from 25 acetonitrile and water to give 1.25 g of compound 138 as a yellow solid.

Preparation of Compound 140. A mixture of 1.40 g (9.48 mmol) of phthalic anhydride and 1.51 g (9.48 mmol) of 8-aminocaprylic acid was heated to 150°C for 5 min. Upon cooling, 2.61 g of solid compound 140 was received.

30 Compound 150 was also prepared by this procedure.

Preparation of Compound 145. A suspension of 2.11 g (10.1 mmol) ethyl carbamoylantranilic acid and 5 mL of CH₂Cl₂ was treated with 2.20 mL of oxalyl chloride. After stirring for 1 h the volatiles were stripped off. At that same time, a suspension of 1.60 g (10.1 mmol) of 8-aminocaprylic acid and 15 mL of 5 CH₂Cl₂ was treated with 2.60 mL (2.23 g, 20.5 mmol) of TMSCl. This mixture was heated to reflux for 90 min, cooled in an ice bath and treated with 4.30 mL (3.12 g, 30.9 mmol) of triethylamine. Five min later, a slurry of the residue from the oxalyl chloride reaction in 20 mL of CH₂Cl₂ was added. The reaction mixture was warmed to 25°C and stirred overnight. Upon acidification of the mixture with 3% 10 HCl, a white solid formed. The solid was filtered off and recrystallized from EtOH and water to give 1.88 g of compound 145.

Compound 153 was also prepared by this procedure.

Preparation of Compound 154. A suspension of 4.02 g(25.6 mmol) 15 of trans-4-aminomethylcyclohexane-carboxylic acid, 4.18 g (25.6 mmol) of isatoic anhydride, 20 mL of CH₂Cl₂, 20 mL of dioxane, and 4 mL of water was heated to reflux for 12 h. The solution was cooled to 25°C and extracted with ether (4 x 20 mL). The organic layer was dried over Na₂SO₄ and concentrated. The resulting solid was recrystallized from EtOH and water to give 4.95 g of compound 154.

20 Compound 103 is available from Aldrich Chemical Company, Inc., Milwaukee, WI.

Example 2 - Parathyroid Hormone Dosing Solutions

Intracolonic ("IC") dosing compositions containing 100 mg/kg of carrier 25 and 25 µg/kg of parathyroid hormone in 25% aqueous propylene glycol or oral gavage "PO" dosing solution containing 400 mg/kg of carrier and 100 µg/kg of parathyroid hormone in water, were prepared with carriers 9, 33, 35, 77, 79, 109, 110, 123, 136, 141, and 169. The dosing solutions are designated P- carrier number - DS.

Comparative Example 2A - Parathyroid Hormone Dosing Solutions

An intracolonic dosing composition containing 100 mg/kg of a carrier having the formula

5

10

and 25 ug/kg of parathyroid hormone in 25% aqueous propylene glycol was prepared. The dosing solution is identified as P-9A-DS.

15 Examples 3 - *In vivo* Parathyroid Hormone Delivery

Male Sprague-Dawley rats weighing between 200-250g were fasted for 24 hours and were administered ketamine (44 mg/kg) and chlorpromazine (1.5 mg/kg) 15 minutes prior to dosing. The rats were administered one of dosing solutions P-9-DS, P-33-DS, P-35-DS, P-77-DS, P-79-DS, and P-141-DS by oral gavage ("PO") or intra-colonic instillation ("IC"). Blood samples were collected serially from the tail artery for serum determination of parathyroid hormone concentration. Serum parathyroid hormone concentrations were quantified by a parathyroid hormone immunoaccuracy test host.

Results are illustrated in Table 2, below.

25

Comparative Example 3A - *In vivo* Parathyroid Hormone Delivery

The procedure of Example 3 was followed substituting dosing solution P-9A-DS for dosing solution P-9-DS. Results are illustrated in Table 2, below.

30 Comparative Example 3B - *In vivo* Parathyroid Hormone Delivery

60

The procedure of Example 3 was followed with a dosing solution (at a dose of 25 µg/kg of parathyroid hormone (intra-colonic) or 100 µg/kg of parathyroid hormone (oral)), P-ØA-DS, that omitted the carrier.

Results are illustrated in Table 2, below.

5

TABLE 2 - *In vivo* Parathyroid Hormone Delivery

Dosing Solution	Mean Peak Serum [PTH] ± Standard Deviation (pg/ml)
P-9-DS	155 ± 105 (IC)
P-33-DS	58 ± 18 (IC)
P-35-DS	50 ± 27 (IC)
P-77-DS	358 ± 274 (PO)
P-79-DS	521 ± 128 (PO)
P-109-DS	128 ± 25 (IC)
P-110-DS	35 ± 11 (IC)
P-123-DS	49 ± 22 (IC)
P-136-DS	106 ± 72 (IC)
P-141-DS	120 ± 120 (PO)
P-169-DS	19 ± 33 (IC)
P-9A-DS	116 ± 48 (IC)
P-ØA-DS	11 ± 2 (PO), 27 ± 27 (IC)

10

15

20

Examples 4 - Recombinant Human Growth Hormone Dosing Solutions

Intracolonic dosing compositions containing 25 mg/kg of carrier and 1 mg/kg of rHGH in phosphate buffer or oral gavage dosing solutions containing 600 mg/kg of carrier and 3 mg/kg of rHGH in phosphate buffer were prepared with carriers 9, 35, 25 36, 47, 62, 64, 67, 77, 79, 90, 94, 107, 109, 136, and 141.

The dosing solutions are designated R- carrier number - DS.

30 **Comparative Example 4A - Recombinant Human Growth Hormone Dosing Solutions**

61

An intracolonic dosing solution was prepared according to the procedure of Example 4, substituting a carrier having the formula

5

10 for the carrier. This dosing solution is designated as R-35A-DS.

Comparative Example 4B - Recombinant Human Growth Hormone Dosing Solutions

An intracolonic dosing solution was prepared according to the procedure of Example 4, substituting a carrier having the formula

15

20

for the carrier. This dosing solution is designated as R-35B-DS.

Comparative Example 4C - Recombinant Human Growth Hormone Dosing Solutions

25 An intracolonic dosing solution was prepared according to the procedure of Example 4, substituting a carrier having the formula

30

for the carrier. This dosing solution is designated as R-9A-DS.

5 **Example 5 - *In Vivo Recombinant Human Growth Hormone Delivery***

Male Sprague-Dawley rats weighing 200-250g were fasted for 24 hours and administered ketamine (44 mg/kg) and chlorpromazine (1.5 mg/kg) 15 minutes prior to dosing. The rats were administered one of the dosing solutions of Example 3 by either oral gavage or intracolonic instillation. Blood samples were 10 collected serially from the tail artery for determination of serum rHGH concentrations. Serum rHGH concentrations were quantified by an rHGH immunoassay test kit.

Results are illustrated in Table 3, below.

15 **Comparative Example 5A - *In Vivo Recombinant Human Growth Hormone Delivery***

The procedure of Example 5 was followed, substituting the dosing solutions of Comparative Examples 3A-3C for the dosing solutions.

Results are illustrated in Table 3, below.

20 **Comparative Example 5B - *In Vivo Recombinant Human Growth Hormone Delivery***

The procedure of Example 5 was followed, with dosing solutions of active agent (at a dose of 1 mg of rHGH/kg (intracolonic) or 3 mg of rHGH/kg (oral) and no carrier. These dosing solutions are designated R-ØD-DS and R-ØE-DS, respectively. Results are illustrated in Table 3, below.

TABLE 3 - *In Vivo* Recombinant Human Growth Hormone Delivery

Dosing Solution	Mean Peak Serum [rHGH] ± Standard Deviation (ng/ml)
R-9-DS	125 ± 34 (IC)
R-35-DS	41 ± 46 (PO) 108 ± 56 (IC)
R-36-DS	28 ± 11 (IC)
R-47-DS	0 (IC)
R-62-DS	11 ± 12 (IC)
R-64-DS	72 ± 22 (PO)
R-67-DS	19 ± 22 (PO) 88 ± 24 (IC)
R-77-DS	34 ± 10 (PO)
R-79-DS	62 ± 51 (PO)
R-90-DS	9 ± 13 (PO)
R-94-DS	39 ± 35 (PO)
R-107-DS	0 ± 0 (PO)
R-109-DS	128 ± 25 (IC)
R-136-DS	106 ± 72 (IC)
R-141-DS	95 ± 14 (IC)
R-35A-DS	17 ± 3 (IC)
R-35B-DS	42 ± 28 (IC)
R-9A-DS	55 ± 17 (IC)
R-ØD-DS	0 ± 0 (IC)
R-ØE-DS	0 ± 0 (IC)

Example 6 - *In Vivo* Interferon Delivery

An intracolonic dosing composition containing 50 mg/kg of carrier 9
 30 and 250 µg/kg of interferon in 50% propylene glycol was prepared. Rats were

administered the dosing composition by intracolonic instillation. Delivery was evaluated by use of an ELISA assay for human interferon α from Biosource, Inc. Mean peak serum interferon concentration was 2611 ± 695 .

5 Comparative Example 6A - *In Vivo* Interferon Delivery

Rats were administered, orally and by intracolonic instillation, dosing solutions of 1 mg/kg of interferon and no carrier. Delivery was evaluated according to the procedure of Example 6. Mean peak serum interferon concentration was 1951 ± 1857 (PO) and 79 ± 100 (IC).

10

Example 7 - Heparin Dosing Solutions

Intracolonic dosing compositions containing 50 mg/kg of carrier and 25 mg/kg of heparin in 25% aqueous propylene glycol or oral gavage dosing solutions containing 300 mg/kg of carrier and 100 mg/kg of heparin in 25% aqueous propylene glycol were prepared with carriers 9, 35, 47, 50, 58, 62, 64, 67, 76, 96, 102, 109, 110, 111, 117, 122, 123, 139, 141, 144, and 169. The dosing solutions are designated H-carrier number-DS.

Comparative Example 7A - Heparin Dosing Solutions

20 Comparative intracolonic dosing compositions were prepared according to the procedure of Example 7, substituting the following carriers for the carrier.

65

5

10

15

These dosing solutions are designated H-35A-DS, H-35B-DS, and H-109A-DS, respectively.

20

Examples 8 - In Vivo Evaluation of Heparin in Rats

The dosing solutions of Example 7 were administered to fasted rats either by oral gavage or intracolonic instillation.

Blood samples were collected by cardiac puncture following the 25 administration of ketamine (44 mg/kg). Heparin activity was determined by utilizing the activated partial thromboplastin time (APTT) according to the method of Henry, J.B., Clinical Diagnosis and Management by Laboratory Methods; Philadelphia, PA; W.B. Saunders (1979).

Results are illustrated in Table 4, below.

30

Comparative Examples 8A - *In Vivo* Evaluation of Heparin in Rats

The dosing solutions of Comparative Example 7A were administered to fasted rats by intracolonic instillation. Blood samples were collected and heparin activity was determined by the method of Example 8.

5 Results are illustrated in Table 4, below.

Comparative Example 8B - *In Vivo* Evaluation of Heparin in Rats

An intracolonic dosing solution of 25 mg/kg of heparin and an oral gavage dosing solution of 100 mg/kg of heparin were administered to fasted rats.

10 These dosage solutions were designated H-ØA-DS and H-ØB-DS, respectively.

Blood samples were collected, and heparin activity was determined by the methods of Example 8.

Results are illustrated in Table 4, below.

TABLE 4 - *In Vivo* Evaluation of Heparin in Rats

Dosing Solution	Heparin APTT (sec)
H-9-DS	48 ± 18 (IC)
H-35-DS	54 ± 27 (PO), 177 ± 85 (IC)
H-47-DS	30 ± 14 (IC)
H-50-DS	40 ± 22 (IC)
H-58-DS	24 ± 4 (IC)
H-62-DS	37 ± 13 (IC)
H-64-DS	59 ± 28 (PO), 168 ± 75 (IC)
H-67-DS	76 ± 36 (IC)
H-76-DS	63 ± 27 (PO)
H-96-DS	36 ± 8 (IC)
H-102-DS	111 ± 108 (IC)
H-109-DS	56 ± 28 (IC)
H-110-DS	37 ± 9 (IC)
H-111-DS	71 ± 39 (IC)
H-117-DS	140 ± 128 (IC)
H-122-DS	49 ± 21 (IC), 207 ± 7 (PO)
H-123-DS	42 ± 14 (PO)
H-139-DS	31 ± 11 (IC)
H-141-DS	59 ± 26 (IC)
H-144-DS	26 ± 3 (IC)
H-35A-DS	61 ± 29 (IC)
H-35B-DS	51 ± 30 (IC)
H-169-DS	23 ± 2 (IC)
H-ØA-DS	23 ± 2 (PO)
H-ØB-DS	33 ± 6 (IC)

The above mentioned patents, applications, test methods, and publications are hereby incorporated by reference in their entirety.

Many variations of the present invention will suggest themselves to those skilled in the art in light of the above detailed description. All such obvious
5 variations are within the full intended scope of the appended claims.

WHAT IS CLAIMED IS:

1 1. A composition comprising:
2 (A) at least one active agent; and
3 (B) at least one carrier selected from the group consisting of

1

6-N-(3,5-dichloro-2-hydroxybenzoyl)aminocaproic acid

2

8(2-aminobenzoylamino)caprylic acid

3

8(2-trifluoromethoxy)benzoylamino caprylic acid

4

N-(2-hydroxybenzoyl)isonipeptic acid

70

4-[4-(2-aminobenzoylamino)phenyl]butyrylhydroxamic acid

5

4-(4-(pentafluorobenzoyl)aminophenyl)butyric acid

6

4-(4-(3-anisoyl)aminophenyl)butyric acid

7

8-(3-anisoyl)aminocaprylic acid

8

4-(4-(phenoxyacetyl)aminophenyl)butyric acid

9

71

4-(4-(2-nitrobenzenesulfonyl)aminophenyl)butyric acid

10

8-(2-nitrobenzenesulfonyl)aminocaprylic acid

11

6-(4-(salicyloyl)aminophenyl)hexanoic acid

12

8-(2-methoxylbenzoyl)amino caprylic acid

13

2-[4-Salicyloylamino]phenyl ethyl methyl sulfone

14

72

1-Salicyloyl-2-succinyl hydrazide

15

3-(4-(2,5-dimethoxycinnamoyl)aminophenyl)propionic acid

16

4-(4-(2,5-dimethoxycinnamoyl)aminophenyl)butyric acid

17

1-salicyloyl-2-glutaryl hydrazide

18

73

19

Succinyl-4-aminosalicylic acid

20

8-(Phenoxyacetylamino)caprylic acid

21

8-(2-pyrazinecarbonyl)aminocaprylic acid

22

4-(4-(2-pyrazinecarbonyl)aminophenyl)butyric acid

74

23

6-(4-(N-2-Nitrobenzoyl)aminophenyl)hexanoic acid

24

6-(4-(N-2-aminobenzoyl)aminophenyl)hexanoic acid

25

4-(4-(2-(3-carboxy)pyrazinecarboxyl)aminophenyl)butyric acid

26

4(2-Nitrobenzoyl)aminophenylsuccinic acid

75

27

8-(2-(trifluoromethoxy)benzoyl)aminocaprylic acid

28

29

8-(Benzylcarbonylamino)caprylic acid

30

8-(phenylcarbonylamino)caprylic acid

76

31

2-[4-(2-Methoxybenzoylamino)phenyl]ethyl H_2PO_4

32

1-salicyloyl-2-suberyl hydrazide

33

4-(4-benzyloxycarbonylaminophenyl)butyric acid

34

4-(4-(2-hydroxynicotinoyl)aminophenyl)butyric acid

35

77

4-(4-phenyloxycarbonylaminophenyl)butyric acid

36

3-(2-methoxybenzoylamino)-1-propanol

37

8-(2-Hydroxynicotinoyl)aminocaprylic acid

38

6-(2-methoxybenzoyl)amino nicotinic acid

39

78

salicyloylglycine

40

4-(1-(2-pyrimidyl)piperazinoyl)butyric acid

41

8-(chromone-3-carbonyl)aminocaprylic acid

42

8-(vinylbenzoyl)aminocaprylic acid

43

4-(4-(chromone-3-carbonyl)aminophenyl)butyric acid

44

8-cinnamoylaminocaprylic acid

45

5-(N-salicyloylamino)valeric acid

46

79

47

48

49

50

51

52

80

8-[N-(3-coumarincarbonyl)]aminocaprylic acid

53

8-[N-(4-chlorobenzoyl)]aminocaprylic acid

54

8-[N-(3-fluorobenzoyl)]aminocaprylic acid

55

8-(N-2,5-Dihydroxybenzoyl)aminocaprylic acid

56

8-(N-2,3-Dimethoxybenzoyl)aminocaprylic acid

57

8-(N-2,4-Dihydroxybenzoyl)aminocaprylic acid

58

8-(N-2,5-Dimethoxybenzoyl)aminocaprylic acid

59

81

8-(N-3,5-Diacetoxybenzoyl)aminocaprylic acid

60

8-(N-4-Hydroxybenzoyl)aminocaprylic acid (dimer)

61

8-(N-2,4-Dihydroxybenzoyl)aminocaprylic acid

62

10-(N-2-Methoxyanilino)sebalic acid

63

64

65

2-Methoxybenzenaminodecanoic acid

82

8-(N-benzoyl)aminocaprylic acid

66

67

68

69

70

71

72

83

4-(N-(2-iodobenzoyl)aminophenyl)butyric acid

73

4-(4-[1-hydroxy-2-naphthoyl]aminophenyl)butyric acid

74

4-(4-(2,4-dimethoxybenzoyl)aminophenyl)butyric acid

75

4-(o-anisoyl)aminophenylacetic acid

76

4-(4-(2,4-dimethoxybenzoyl)aminophenyl)acetic acid

77

3-(4-(2,4-dimethoxybenzoyl)aminophenyl)propionic acid

78

4-(4-(4-iodobenzoyl)aminophenyl)butyric acid

79

84

4-(4-[N-2-bromobenzoyl]) aminophenyl butyric acid

80

4-(4-[N-3-bromobenzoyl]) aminophenyl butyric acid

81

8-(N-3,5-Dihydroxybenzoyl)aminocaprylic acid

82

8-(N-3,5-Dimethoxy 4-hydroxybenzoyl)aminocaprylic acid

83

8-(N-2,6-Dimethoxybenzoyl)aminocaprylic acid

84

4-(4-[N-(4-bromobenzoyl)aminophenyl])butyric acid

85

8-(2-hydroxy-4-chlorobenzoyl)aminocaprylic acid

86

85

8-(N-2,6-Dihydroxybenzoyl)aminocaprylic acid

87

8-(N-2-Hydroxy6-methoxybenzoyl)aminocaprylic acid

88

89

90

4-(4-(2,3-dimethoxybenzoyl)aminophenyl)butyric acid

91

4-(4-(5-chloro-o-anisoyl)aminophenyl)butyric acid

92

4-(4-(4-chloro-o-anisoyl)aminophenyl)butyric acid

86

8-(4-chloro-o-anisoyl)aminocaprylic acid

93

3-(4-(2,5-dimethoxybenzoyl)aminophenyl)propionic acid

94

4-(N-[4-(3-iodobenzoyl)aminophenyl])butyric acid

95

7-cinnamoylaminoheptanoic acid

96

8-N-(3-iodobenzoyl)aminocaprylic acid

97

8-N-(4-methoxy-3-nitrobenzoyl)aminocaprylic acid

98

8-N-(2-methoxy-4-nitrobenzoyl)aminocaprylic acid

99

87

4-{N-[4-(2-methoxy-4-nitrobenzoyl)aminophenyl]}butyric acid

100

4-(4-(2,5-dimethoxybenzoyl)aminophenyl)butyric acid

101

102

103

104

105

88

106

107

4-(4-(2,6-dimethoxybenzoyl)aminophenylbutyric acid

108

4-[4-N-(4-methoxy-3-nitrobenzoyl)aminophenylbutyric acid

109

110

8-(N-2-hydroxy-5-iodobenzoyl)aminocaprylic acid

111

112

8-(N-2-hydroxy-4-nitrobenzoyl)aminocaprylic acid

89

113

4-[N-(2-hydroxy-4-bromobenzoyl)aminophenyl]butyric acid

114

8-(N-2,3-Dihydroxybenzoyl)aminocaprylic acid

115

116

8-(N-5-methylsalicyloyl)aminocaprylic acid

117

90

4-(4-(2-chloro-5-nitrobenzoyl)aminophenyl)butyric acid

118

119

120

N-2-nitrophenyl-N'-(8-octanoic acid) urea

121

122

123

8-[N-(2-acetoxy-3,5-dibromobenzoyl)]aminocaprylic acid

91

124

8-N-(2-chloro-6-fluorobenzoyl)aminocaprylic acid

125

126

8-N-(4-hydroxy-3-nitrobenzoyl)caprylic acid

127

4-(4-Salicyloylaminophenyl)-4-oxobutyric acid

128

12-cinnamoyldodecanoic acid

129

4-{4-[N-(3-hydroxy-2-naphthoyl)aminophenyl]}butyric acid

130

8-(4-chloro-3-nitrobenzoyl)aminocaprylic acid

131

8-(2-chloronicotinoyl)aminocaprylic acid

132

8-(2-chloro-5-nitrobenzoyl)aminocaprylic acid

133

4-(4-phthalimidophenyl)butyric acid

134

4-{[N-(3-hydroxy-2-naphthoyl)aminophenyl]propanoic acid

135

3-(4-(2,6-dimethoxybenzoyl)aminophenyl)propionic acid

136

8-(N-2-chloro-4-fluorobenzoyl)aminocaprylic acid

138

139

8-(phthalimido)caprylic acid

141

6-(anisoyl)aminocaproic acid

4-(4-(4-chloro-3-nitrobenzoyl)aminophenyl)butyric acid

11-N-(1-hydroxy-2-naphthoyl)aminoundecanoic acid

Bis(N-2carboxyphenyl-N-(N'-8-octanoic acid)ureal)oxalyl diamide

2-[2-N-(2-chlorobenzoyl)aminoethoxy]ethanol

2-[2-N-(4-chlorobenzoyl)aminoethoxy]ethanol

95

148

4-(2-methoxybenzoyl)amino 3-carboxysulfoxide

149

4-(2-methoxybenzoyl)amino 3-carboxypropylsulfone

150

4-(4-(3-hydroxyphthalimido)phenyl)butyric acid

151

2-[2-N-(2-methoxybenzoyl)aminoethoxy]ethanol

152

2-[2-N-(3-chlorobenzoyl)aminoethoxy]ethanol

153

Bis(N-2-carboxyphenyl-N-(N'-3(4-aminophenyl)propionic acid)ureal)oxayl diamide

96

154

trans-4-(2-aminobenzamidomethyl)cyclohexanecarboxylic acid

155

11-N-(3,5-dichloro-2-hydroxybenzoyl)aminoundecanoic acid

156

2-[N-(2-bromobenzoyl)aminoethoxy]ethanol

157

7-N-(3,5-dichloro-2-hydroxybenzoyl)aminoheptanoic acid

158

N-[3,5-dichloro-2-hydroxybenzoyl]-4-(4-aminophenyl)butyric acid

159

trans-4-(N-salicyloylaminomethyl)cyclohexane carboxylic acid

160

N-(3,5-dichloro-2-hydroxybenzoyl)-3-(4-aminophenyl)propionic acid

97

161

12-N-(3,5-dichloro-2-hydroxybenzoyl)aminododecanoic acid

162

N-(2-hydroxy-4-carboxy)-6-heptenamide

163

N-(2-bromobenzoyl)morpholine

164

8-N-cyclohexanoylaminocaprylic acid

165

2-[N-(2-iodobenzoyl)aminoethoxy]ethanol

166

5-(4-chloro-2-hydroxyanilinocarbonyl)valeric acid

8-(2-hydroxyphenoxy)aminocaprylic acid

167

N-Salicyloyl-5-(3-aminophenyl)valeric acid

168

4-(4-(2-ethoxybenzoyl)aminophenyl)butyric acid

169

170

9-[2-(3-hydroxy)pyridylaminocarbonyl] nonanic acid

171

7-(2-hydroxyphenoxyacetyl)aminocaprylic acid

172

2-[N-(2-hydroxybenzoylamino)ethoxy]ethanol

99

173

4-[N-(3,5-dichloro-2-hydroxybenzoyl)]aminophenylacetic acid

174

8-(2-hydroxy-5-chloroanilinocarbonyl)octanoic acid

175

N-salicyloyl-5-(4-aminophenyl)valeric acid

176

9-(2-hydroxy-5-methylanilinocarbonyl)nonanoic acid

177

5-(2-hydroxy-5-methylanilinocarbonyl)valeric acid

100

8-(pentafluorobenzoyl)aminocaprylic acid

178

3-(3-(salicyloyl)aminophenyl)propionic acid

179

8-(2-ethoxybenzoyl)aminocaprylic acid

180

181

4-(4-(2-Dimethylamino benzoic)aminophenyl)butyric acid

182

8-(3-Phenoxypropionylamino)caprylic acid

101

4-(Salicyloyl)aminophenylethyltetrazole

8-(4-(4-Salicyloyl-4aminophenyl)butyric)aminocaprylic acid [sic]

4-(4-(N-(2-Fluorocinnamoyl))aminophenyl) butyric

4-(4-(N-B(Salicyloyl)aminocaprylic)aminophenyl)butyric acid

102

8-(p-anisoyl)aminocaprylic acid

187

188

189

190

191

192

193

4-(4-(2-chloronicotinoyl)aminophenyl)butyric acid

4 and a salt of any of the foregoing.

1 2. A composition as defined in claim 1, wherein said active agent
2 is selected from the group consisting of a biologically active agent, a chemically
3 active agent, or a combination thereof.

1 3. A composition as defined in claim 2, wherein said biologically
2 active agent comprises at least one peptide, mucopolysaccharide, carbohydrate, or
3 lipid.

1 4. A composition as defined in claim 2, wherein said biologically
2 active agent is selected from the group consisting of human growth hormone,
3 bovine growth hormone, growth hormone-releasing hormone, an interferon,
4 interleukin-II, insulin, heparin, low molecular weight heparin, calcitonin,
5 erythropoietin, atrial natriuretic factor, an antigen, a monoclonal antibody,
6 somatostatin, adrenocorticotropin, gonadotropin releasing hormone, oxytocin,
7 vasopressin, cromolyn sodium, vancomycin, parathyroid hormone, desferrioxamine
8 (DFO), or any combination thereof.

1 5. A composition as defined in claim 4, wherein said biologically
2 active agent comprises an interferon, interleukin-II, insulin, heparin, low molecular
3 weight heparin, calcitonin, oxytocin, vasopressin, vancomycin, DFO, parathyroid
4 hormone, and combinations thereof.

1 6. A composition as defined in claim 1, wherein said carrier
2 comprises a poly(amino acid).

1 7. A composition as defined in claim 1, wherein said carrier
2 comprises a polypeptide.

1 9. A composition as defined in claim 8, wherein said active agent
2 is selected from the group consisting of a biologically active agent, a chemically
3 active agent, or a combination thereof.

1 10. A composition as defined in claim 9, wherein said biologically
2 active agent comprises at least one peptide, mucopolysaccharide, carbohydrate, or
3 lipid.

1 11. A composition as defined in claim 9, wherein said biologically
2 active agent is selected from the group consisting of human growth hormone,
3 bovine growth hormone, growth hormone-releasing hormone, an interferon,
4 interleukin-II, insulin, heparin, low molecular weight heparin, calcitonin,
5 erythropoietin, atrial natriuretic factor, an antigen, a monoclonal antibody,
6 somatostatin, adrenocorticotropin, gonadotropin releasing hormone, oxytocin,
7 vasopressin, cromolyn sodium, vancomycin, parathyroid hormone, desferrioxamine
8 (DFO), or any combination thereof.

1 12. A composition as defined in claim 11, wherein said biologically
2 active agent comprises an interferon, interleukin-II, insulin, heparin, low molecular

3 weight heparin, calcitonin, oxytocin, vasopressin, vancomycin, DFO, parathyroid
4 hormone, and combinations thereof.

1 13. A dosage unit form comprising
2 (A) a composition as defined in claim 6; and
3 (B) (a) an excipient
4 (b) a diluent,
5 (c) a disintegrant,
6 (d) a lubricant,
7 (e) a plasticizer,
8 (f) a colorant,
9 (g) a dosing vehicle, or
10 (h) any combination thereof.

1 14. A composition as defined in claim 13, wherein said active agent
2 is selected from the group consisting of a biologically active agent, a chemically
3 active agent, or a combination thereof.

1 15. A composition as defined in claim 14, wherein said biologically
2 active agent comprises at least one peptide, mucopolysaccharide, carbohydrate, or
3 lipid.

1 16. A composition as defined in claim 14, wherein said biologically
2 active agent is selected from the group consisting of human growth hormone,
3 bovine growth hormone, growth hormone-releasing hormone, an interferon,
4 interleukin-II, insulin, heparin, low molecular weight heparin, calcitonin,
5 erythropoietin, atrial natriuretic factor, an antigen, a monoclonal antibody,
6 somatostatin, adrenocorticotropin, gonadotropin releasing hormone, oxytocin,
7 vasopressin, cromolyn sodium, vancomycin, parathyroid hormone, desferrioxamine
8 (DFO), or any combination thereof.

1 17. A composition as defined in claim 16, wherein said biologically
2 active agent comprises an interferon, interleukin-II, insulin, heparin, low molecular
3 weight heparin, calcitonin, oxytocin, vasopressin, vancomycin, DFO, parathyroid
4 hormone, and combinations thereof.

1 19. A composition as defined in claim 18, wherein said active agent
2 is selected from the group consisting of a biologically active agent, a chemically
3 active agent, or a combination thereof.

1 20. A composition as defined in claim 19, wherein said biologically
2 active agent comprises at least one peptide, mucopolysaccharide, carbohydrate, or
3 lipid.

1 21. A composition as defined in claim 19, wherein said biologically
2 active agent is selected from the group consisting of human growth hormone,
3 bovine growth hormone, growth hormone-releasing hormone, an interferon,
4 interleukin-II, insulin, heparin, low molecular weight heparin, calcitonin,
5 erythropoietin, atrial natriuretic factor, an antigen, a monoclonal antibody,
6 somatostatin, adrenocorticotropin, gonadotropin releasing hormone, oxytocin,

7 vasopressin, cromolyn sodium, vancomycin, parathyroid hormone, desferrioxamine
8 (DFO), or any combination thereof.

1 22. A composition as defined in claim 21, wherein said biologically
2 active agent comprises an interferon, interleukin-II, insulin, heparin, low molecular
3 weight heparin, calcitonin, oxytocin, vasopressin, vancomycin, DFO, parathyroid
4 hormone, and combinations thereof.

1 23. A dosage unit form as defined in claim 8, comprising a tablet,
2 a capsule, or a liquid.

1 24. A dosage unit form as defined in claim 23, wherein said dosing
2 vehicle is selected from the group consisting of water, 1,2-propane diol, ethanol,
3 or any combination thereof.

1 25. A dosage unit form as defined in claim 13, comprising a tablet,
2 a capsule, or a liquid.

1 26. A dosage unit form as defined in claim 25, wherein said dosing
2 vehicle is selected from the group consisting of water, 1,2-propane diol, ethanol,
3 or any combination thereof.

1 27. A dosage unit form as defined in claim 18, comprising a tablet,
2 a capsule, or a liquid.

1 28. A dosage unit form as defined in claim 27, wherein said dosing
2 vehicle is selected from the group consisting of water, 1,2-propane diol, ethanol,
3 or any combination thereof.

1 29. A method for administering a biologically-active agent to an
2 animal in need of said agent, said method comprising administering orally to said
3 animal a composition as defined in claim 2.

4 30. A compound selected from the group consisting of

1

6-N-(3,5-dichloro-2-hydroxybenzoyl)aminocaproic acid

2

8(2-aminobenzoylamino)caprylic acid

3

8(2-trifluoromethoxy)benzoylamino caprylic acid

4

N-(2-hydroxybenzoyl)isonipeptic acid

109

5

4-[4-(2-aminobenzoylamino)phenyl]butyrylhydroxamic acid

6

4-(4-(pentafluorobenzoyl)aminophenyl)butyric acid

7

4-(4-(3-anisoyl)aminophenyl)butyric acid

8

8-(3-anisoyl)aminocaprylic acid

9

4-(4-(phenoxyacetyl)aminophenyl)butyric acid

110

10

4-(4-(2-nitrobenzenesulfonyl)aminophenyl)butyric acid

11

8-(2-nitrobenzenesulfonyl)aminocaprylic acid

12

6-(4-(salicyloyl)aminophenyl)hexanoic acid

13

8-(2-methoxylbenzoyl)amino caprylic acid

14

2-[4-Salicyloylamino]phenyl]ethyl methyl sulfone

111

1-Salicyloyl-2-succinyl hydrazide

15

3-(4-(2,5-dimethoxycinnamoyl)aminophenyl)propionic acid

16

4-(4-(2,5-dimethoxycinnamoyl)aminophenyl)butyric acid

17

1-salicyloyl-2-glutaryl hydrazide

18

112

Succinyl-4-aminosalicylic acid

19

8-(Phenoxyacetyl)amino caprylic acid

20

8-(2-pyrazinecarbonyl)aminocaprylic acid

21

4-(4-(2-pyrazinecarbonyl)aminophenyl)butyric acid

22

113

23

6-(4-(N-2-Nitrobenzoyl)aminophenyl)hexanoic acid

24

6-(4-(N-2-aminobenzoyl)aminophenyl)hexanoic acid

25

4-(4-(2-(3-carboxy)pyrazinecarboxyl)aminophenyl)butyric acid

26

4(2-Nitrobenzoyl)aminophenylsuccinic acid

114

27

8-(2-(trifluoromethoxy)benzoyl)amino caprylic acid

28

29

8-(Benzylcarbonylamino)caprylic acid

30

8-(phenylcarbonylamino)caprylic acid

115

31

2-[4-(2-Methoxybenzoylamino)phenyl]ethyl H_2PO_4^-

32

1-salicyloyl-2-suberyl hydrazide

33

4-(4-benzyloxycarbonylaminophenyl)butyric acid

34

4-(4-(2-hydroxynicotinoyl)aminophenyl)butyric acid

35

116

4-(4-phenyloxycarbonylaminophenyl)butyric acid

36

3-(2-methoxybenzoylamino)-1-propanol

37

8-(2-Hydroxynicotinoyl)aminocaprylic acid

38

6-(2-methoxybenzoyl)amino nicotinic acid

39

117

salicyloylglycine

40

41

42

43

44

45

46

47

9-(2-hydroxybenzamido)nonanic acid

48

N-(4-salicyloylamino)-6-capric acid

49

4'-flavonic acid

50

11-cinnamoylaminoundecanoic acid

51

4-octanoylamino-3-hydroxybenzoic acid

52

(3-phenyl-2,3-dihydroxypropanoyl)8aminocaprylic acid

119

53

8-[N-(3-coumarincarbonyl)]aminocaprylic acid

54

8-[N-(4-chlorobenzoyl)]aminocaprylic acid

55

8-[N-(3-fluorobenzoyl)]aminocaprylic acid

56

8-(N-2,5-Dihydroxybenzoyl)aminocaprylic acid

57

8-(N-2,3-Dimethoxybenzoyl)aminocaprylic acid

58

8-(N-2,4-Dihydroxybenzoyl)aminocaprylic acid

59

8-(N-2,5-Dimethoxybenzoyl)aminocaprylic acid

120

8-(N-3,5-Diacetyloxybenzoyl)aminocaprylic acid

60

8-(N-4-Hydroxybenzoyl)aminocaprylic acid (dimer)

61

8-(N-2,4-Dihydroxybenzoyl)aminocaprylic acid

62

10-(N-2-Methoxyanilino)sebalic acid

63

64

65

2-Methoxybenzenaminodecanoic acid

66

8-(N-benzoyl)aminocaprylic acid

67

68

8-[N-(4-fluorobenzoyl)]aminocaprylic acid

69

8-[N-(3-bromobenzoyl)]aminocaprylic acid

70

8-(4-(1,2-dihydroxyethyl)benzoyl)aminocaprylic acid

71

8-[N-(4-bromobenzoyl)]aminocaprylic acid

72

8-[N-(4-iodobenzoyl)]aminocaprylic acid

122

4-(4-[N-(2-iodobenzoyl)aminophenyl]butyric acid

73

4-(4-[N-(1-hydroxy-2-naphthoyl)aminophenyl]butyric acid

74

4-(4-[N-(2,4-dimethoxybenzoyl)aminophenyl]butyric acid

75

4-(o-anisoyl)aminophenylacetic acid

76

3-[4-(2,4-dimethoxybenzoyl) aminophenyl] propionic acid

77

4-(4-[N-(4-iodobenzoyl)] aminophenyl) butyric acid

78

79

123

4-(4-[N-2-bromobenzoyl] aminophenyl) butyric acid

80

4-(4-[N-3-bromobenzoyl] aminophenyl) butyric acid

81

8-(N-3,5-Dihydroxybenzoyl)aminocaprylic acid

82

8-(N-3,5-Dimethoxybenzoyl)aminocaprylic acid

83

8-(N-2,6-Dimethoxybenzoyl)aminocaprylic acid

84

4-(4-[N-(4-bromobenzoyl) aminophenyl])butyric acid

85

8-(2-hydroxy-4-chlorobenzoyl)aminocaprylic acid

86

124

87

8-(N-2,6-Dihydroxybenzoyl)aminocaprylic acid

88

8-(N-2-Hydroxy6-methoxybenzoyl)aminocaprylic acid

89

8-(5-chloro-o-anisoyl)aminocaprylic acid

90

4-(4-(2,3-dimethoxybenzoyl)aminophenyl)butyric acid

91

4-(4-(5-chloro-o-anisoyl)aminophenyl)butyric acid

92

4-(4-(4-chloro-o-anisoyl)aminophenyl)butyric acid

125

8-(4-chloro-o-anisoyl)aminocaprylic acid

93

3-(4-(2,5-dimethoxybenzoyl)aminophenyl)propionic acid

94

4-{N-[4-(3-iodobenzoyl)aminophenyl]}butyric acid

95

7-cinnamoylaminoheptanoic acid

96

8-N-(3-iodobenzoyl)aminocaprylic acid

97

8-N-(4-methoxy-3-nitrobenzoyl)aminocaprylic acid

98

8-N-(2-methoxy-4-nitrobenzoyl)aminocaprylic acid

99

126

4-(N-[4-(2-methoxy-4-nitrobenzoyl)aminophenyl]butyric acid

100

4-(4-(2,5-dimethoxybenzoyl)aminophenyl)butyric acid

101

102

104

105

127

106

107

4-(4-(2,6-dimethoxybenzoyl)aminophenyl)butyric acid

108

4-[4-N-(4-methoxy-3-nitrobenzoyl)aminophenyl]butyric acid

109

110

8-(N-2-hydroxy-5-iodobenzoyl)aminocaprylic acid

111

112

8-(N-2-hydroxy-4-nitrobenzoyl)aminocaprylic acid

128

113

4-[N-(2-hydroxy-4-bromobenzoyl)aminophenyl]butyric acid

114

8-(N-2,3-Dihydroxybenzoyl)aminocaprylic acid

115

8-(N-3-methylsalicyloyl)aminocaprylic acid

116

8-(N-5-methylsalicyloyl)aminocaprylic acid

117

129

118

4-(4-(2-chloro-5-nitrobenzoyl)aminophenyl)butyric acid

119

4-(N-(2-hydroxy-5-iodobenzoyl))aminophenyl butyric acid

120

N-2-nitrophenyl-N'-(8-octanoic acid) urea

121

N-(2-methoxy-5-nitrophenyl) sebacyl amide acid

122

123

8-[N-(2-acetoxy-3,5-dibromobenzoyl)]aminocaprylic acid

130

8-N-(2-chloro-6-fluorobenzoyl)aminocaprylic acid

124

125

8-N-(4-hydroxy-3-nitrobenzoyl)caprylic acid

126

4-(4-Salicyloylaminophenyl)-4-oxobutyric acid

127

12-cinnamoyldodecanoic acid

128

4-(4-[N-(3-hydroxy-2-naphthoyl)aminophenyl])butyric acid

129

130

8-(4-chloro-3-nitrobenzoyl)aminocaprylic acid

131

8-(2-chloronicotinoyl)aminocaprylic acid

132

133

4-(4-phthalimidophenyl)butyric acid

134

4-{4-[N-(3-hydroxy-2-naphthoyl)aminophenyl]}propanoic acid

135

3-(4-(2,6-dimethoxybenzoyl)aminophenyl)propionic acid

8-(N-2-chloro-4-fluorobenzoyl)aminocaprylic acid

8-(N-2-(1,2-dihydroisoindole-1-one))octanoic acid

8-(N-1-hydroxy-2-naphthoyl)aminocaprylic acid

8-(phthalimido)caprylic acid

133

6-(anisoyl)aminocaproic acid

142

4-(4-chloro-3-nitrobenzoyl)aminophenylbutyric acid

143

11-N-(1-hydroxy-2-naphthoyl)aminoundecanoic acid

144

Bis(N-2carboxyphenyl-N-(N'-8-octanoic acid)ureal)oxalyl diamide

145

2-[2-N-(2-chlorobenzoyl)aminoethoxy]ethanol

146

2-[2-N-(4-chlorobenzoyl)aminoethoxy]ethanol

147

134

4-(2-methoxybenzoyl)amino 3-carboxysulfoxide

148

4-(2-methoxybenzoyl)amino 3-carboxypropylsulfone

149

150

4-(4-(3-hydroxyphtalimido)phenyl)butyric acid

151

2-[2-N-(2-methoxybenzoyl)aminoethoxy]ethanol

152

2-[2-N-(3-chlorobenzoyl)aminoethoxy]ethanol

153

Bis(N-2-carboxyphenyl-N-(N'-3(4-aminophenyl)propionic acid)ureal)oxaylyl diamide

154

trans-4-(2-aminobenzamidomethyl)cyclohexanecarboxylic acid

155

11-N-(3,5-dichloro-2-hydroxybenzoyl)aminoundecanoic acid

156

2-[N-(2-bromobenzoyl)aminoethoxy]ethanol

157

7-N-(3,5-dichloro-2-hydroxybenzoyl)aminoheptanoic acid

158

N-[3,5-dichloro-2-hydroxybenzoyl]-4-(4-aminophenyl)butyric acid

159

trans-4-(N-salicyloylaminomethyl)cyclohexane carboxylic acid

160

N-[3,5-dichloro-2-hydroxybenzoyl]-3-(4-aminophenyl)propionic acid

136

12-N-(3,5-dichloro-2-hydroxybenzoyl)aminododecanoic acid

161

162

163

164

165

166

137

8-(2-hydroxyphenoxy)-aminocaprylic acid

167

168

169

170

171

172

138

4-[N-(3,5-dichloro-2-hydroxybenzoyl)]aminophenylacetic acid

173

8-(2-hydroxy-5-chloroanilinocarbonyl)octanoic acid

174

N-salicyloyl-5-(4-aminophenyl)valeric acid

175

176

9-(2-hydroxy-5-methylanilinocarbonyl)nonanoic acid

177

5-(2-hydroxy-5-methylanilinocarbonyl)valeric acid

139

8-(pentafluorobenzoyl)aminocaprylic acid

178

3-(3-(salicyloyl)aminophenyl)propionic acid

179

8-(2-ethoxybenzoyl)aminocaprylic acid

180

4-(4-(2-Dimethylamino benzoic)aminophenyl)butyric acid

181

8-(3-Phenoxypropionylamino)caprylic acid

182

140

4-(Salicyloyl)aminophenylethylenetetrazole**8-(4-(N-Salicyloyl)-4aminophenyl)butyric acid [sic]****4-(4-(N-(2-Fluorocinnamoyl))aminophenyl) butyric****4-(4-(N-(8(Salicyloyl)aminocaprylic)aminophenyl)butyric acid**

141

8-(p-anisoyl)aminocaprylic acid

187

8-(4-Hydroxybenzoyl)aminocaprylic acid

188

8-(3-Hydroxybenzoyl)aminocaprylic acid

189

8-(3,4,5-Trimethoxybenzoyl)aminocaprylic acid

190

8-(N-4-Methylsalicyloyl)aminocaprylic acid [sic]

191

N-10-(2-hydroxy-5-nitroanilino)decanoic acid

192

4-(4-(2-chloronicotinoyl)aminophenyl)butyric acid

193

1 37. A method for administering a biologically active agent to an
2 animal in need of said agent, said method comprising administering vaginally to said
3 animal a composition as defined in claim 2.

1 38. A method for administering a biologically active agent to an
2 animal in need of said agent, said method comprising administering buccally to said
3 animal a composition as defined in claim 2.

1 39. A method for administering a biologically active agent to an
2 animal in need of said agent, said method comprising administering ophthalmically
3 to said animal a composition as defined in claim 2.

1 40. A method for passing a biologically active agent across the
2 blood/brain barrier of an animal in need of said agent, said method comprising
3 administering to said animal a composition as defined in claim 2.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US98/02619

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) : Please See Extra Sheet.

US CL : Please See Extra Sheet.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : Please See Extra Sheet.

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS, Chemical Abstracts

search terms: oral, carrier, chemical structures

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5,541,155 A (LEONE-BAY ET AL) 30 July 1996 (30/07/96).	1-30, 37-40
X	US 4,238,506 A (STACH, DECEASED ET AL) 09 December 1980 (09/12/80), column 1, lines 11-34, column 6, line 55 - column 7, line 11.	1-3, 8-10, 23, 24, 29, 30, 40
X,P	US 5,705,529 A (MATYUS ET AL) 06 January 1998 (06/01/98), column 1, lines 8-51, column 8, lines 55-57, column 11, lines 4-26.	1-3, 8-10, 23, 24, 29, 30, 40
X	WO 96/30036 A1 (EMISPHERE TECHNOLOGIES, INC.) 03 October 1996 (03/10/96), see entire document.	1-30, 37-40

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"B" earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Z"	document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

01 APRIL 1998

Date of mailing of the international search report

29 MAY 1998

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer
JEFFREY E. RUSSEL

Telephone No. (703) 308-0196

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US98/02619

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 4,757,066 A (SHIOKARI ET AL) 12 July 1988 (12/07/88), column 11, lines 61-68, column 12, lines 38-56, column 14, lines 19-26, column 35, lines 12-25.	1, 2, 8, 9, 23, 24, 30, 40
A,P	US 5,643,957 A (LEONE-BAY ET AL) 01 July 1997 (01/07/97).	1-30, 37-40
A,P	US 5,650,386 A (LEONE-BAY ET AL) 22 July 1997 (22/07/97).	1-30, 37-40

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/US98/02619**A. CLASSIFICATION OF SUBJECT MATTER:**
IPC (6):**A61K 38/00, 47/12; C07C 229/00, 233/00, 317/14; C07D 209/02, 239/02, 241/02, 257/04, 311/04****A. CLASSIFICATION OF SUBJECT MATTER:**
US CL :**424/85.2, 85.4, 141.1, 184.1; 514/2, 3, 11, 12, 21, 56, 773, 784, 788; 544/242, 336; 548/250, 452; 549/396; 562/11,
405, 553; 564/155****B. FIELDS SEARCHED**

Minimum documentation searched

Classification System: U.S.

**424/85.2, 85.4, 141.1, 184.1; 514/2, 3, 11, 12, 21, 56, 773, 784, 788; 544/242, 336; 548/250, 452; 549/396; 562/11,
405, 553; 564/155**