Procesarea semnalelor Transformata Fourier.

Paul Irofti

Universitatea din București
Facultatea de Matematică și Informatică
Departmentul de Informatică
Email: paul.irofti@fmi.unibuc.ro

Discretizare și eșantionare

Continuu:

$$x(t) = \sin(2\pi f_0 t) \tag{1}$$

Discret:

$$x(n) = \sin(2\pi f_0 n t_s) = \sin(2\pi (f_0 + k f_s) n t_s)$$
 (2)

unde

- ▶ f₀ frecvenţa (Hz) măsoară numărul de oscilaţii într-o secundă
- \triangleright n eşantionul, indexul în şirul de timpi $0, 1, 2 \dots$
- t_s perioada de eșantionare; constantă (ex. la fiecare secundă)
- nt_s orizontul de timp (s)
- ► f₀nt_s numărul de oscilații măsurat
- \triangleright $2\pi f_0 nt$ unghiul măsurat în radiani (vezi note de curs)
- ► f_s frecvența de eșantionare (Hz)
- $ightharpoonup f_0 + kf_s$ frecvenţa de aliere, $\forall k \in \mathbb{N}$

Cum trecem în frecvență și înapoi în timp?

Transformata Fourier și Transformata Fourier Inversă ne ajută să trecem din domeniul timpului în domeniul frecvenței și vice-versa.

Transformata Fourier Continuă (TF)

Definitie

Transformata Fourier a unui semnal continuu:

$$X(f) = \int_{-\infty}^{+\infty} x(t)e^{-j2\pi ft}$$
 (3)

transformă semnalul continuu din domeniul timpului x(t) în semnalul continuu X(f) din domeniul frecvenței.

Aici e este numărul lui Euler, baza logaritmului natural, și j reprezintă numărul complex $j=\sqrt{-1}$.

Relația lui Euler

Definiție

Relația lui Euler

$$e^{j\alpha} = \cos \alpha + j \sin \alpha \tag{4}$$

pune în legătură numerele complexe, funcțiile trigonometrice și funcțiile exponențiale.

Pentru un număr complex $z \in \mathbb{C}$:

$$z = a + jb = |z|(\cos\varphi + j\sin\varphi) = re^{j\varphi}$$
 (5)

unde $r=\sqrt{a^2+b^2}$ este magnitudinea și $\varphi=\arctan \frac{b}{a}$

Pentru Transformata Fourier Continuă:

$$e^{-j\alpha} = \cos(-\alpha) + j\sin(-\alpha) = \cos\alpha - j\sin\alpha$$
 (6)

Radiani

Definitie

Radianii descriu unghiul unui arc de cerc drept raportul dintre lungimea arcului împărțită la rază.

Exemplu

 $1 \text{ rad} = 180^{\circ}/\pi$

 $2\pi \ rad = 360^{\circ}$

Frecvența unghiulară și frecvența de eșantionare

Definitie

Frecvența unghiulară este frecvența exprimată în radiani pe secundă:

$$\Omega = \frac{\omega}{T} = \frac{[rad]}{[s]} = \omega f \tag{7}$$

Definitie

Frecvența de eșantionare în frecvență este:

$$\Omega_s = \frac{2\pi}{T} = 2\pi f_s \tag{8}$$

Discretizare

Dacă un semnal este periodic, iar eșantioanele x[n] se repetă o dată la fiecare N măsurători atunci discretizarea timp-frecvență devine:

- ightharpoonup discretizarea timpului $t o nt_s$ și
- frecvența $f o rac{1}{N}$
- lacktriangle frecvența unghiulară $\Omega
 ightarrow rac{\omega}{N}$
- lacktriangle frecvența unghiulară de eșantionare $\Omega
 ightarrow rac{2\pi}{N}$
- $ightharpoonup e^{-j\Omega t}=e^{-j2\pi ft}
 ightarrow e^{-j2\pi f_s nt_s}=e^{-jrac{2\pi}{N}nt_s}$

Transformata Fourier Discretizată în Timp (DTFT)

Definitie

Transformata Fourier Continuă a unui semnal discretizat în timp:

$$X(f) = \int_{-\infty}^{+\infty} x(t)e^{-j2\pi ft} =$$
 (9)

$$=\sum_{n=-\infty}^{+\infty}x(nt_s)e^{-j2\pi fnt_s}=\sum_{n=-\infty}^{+\infty}x(nt_s)e^{-j\Omega nt_s}$$
 (10)

$$=\sum_{n=-\infty}^{+\infty}x[n]e^{-j2\pi fnt_s}=\sum_{n=-\infty}^{+\infty}x[n]e^{-j\Omega nt_s}$$
 (11)

numită în literatură Discrete-Time Fourier Transform (DTFT).

Transformata Fourier Discretizată în Timp (DFS)

Fie un sir x[n] cu perioadă N a.î. x[n] = x[n + kN], $\forall n, k \in \mathbb{N}$.

Definitie

Transformata Fourier a semnalului x[n] cu perioadă N este:

$$X(m) = \sum_{n} x(n)e^{-j2\pi mn/N}$$
 (12)

$$X(m) = \sum_{n} x(n)e^{-j2\pi mn/N}$$

$$x(n) = \frac{1}{N} \sum_{m} X(m)e^{j2\pi mn/N}$$
(12)

numită în literatură Discrete Fourier Sequence (DFS).

Remarcă

Dacă semnalul este periodic, observăm că informatia se repetă o dată la N eșantioane a.î. putem limita capetele sumei la intervalul 0...N-1.

Transformata Fourier Discretă (DFT)

Definiție

Transformata Fourier a unui semnal discret (aperiodic):

$$X(m) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi mn/N}$$

$$= \sum_{n=0}^{N-1} x(n) \left[\cos(2\pi mn/N) - j\sin(2\pi mn/N)\right]$$
(14)

- \blacktriangleright X(m) componenta m DFT (ex. X(0), X(1), X(2), ...)
- ▶ m indicele componentei DFT în domeniul frecvenței (m = 0, 1, ..., N 1)
- \rightarrow x(n) eșantioanele în timp (ex. x(0), x(1), x(2), ...)
- ▶ n indicele eşantioanelor în domeniul timpului (n = 0, 1, ..., N 1)
- N numărul eșantioanelor în timp la intrare și numărul componentelor în frecventă la iesire

CFT, DTFT, DFT

Exemplu DFT N = 4

Pentru N=4 eșantioane, vom avea $n, m=\{0,1,2,3\}$:

$$X(m) = \sum_{n=0}^{3} x(n) \left[\cos(2\pi mn/4) - j \sin(2\pi mn/4) \right]$$
 (15)

Pentru m = 0:

$$X(0) = x(0) \left[\cos(2\pi \underbrace{0 \cdot 0}_{m \cdot n} / 4) - j \sin(2\pi \underbrace{0 \cdot 0}_{m \cdot n} / 4) \right]$$

$$+ x(1) \left[\cos(2\pi 0 \cdot 1 / 4) - j \sin(2\pi 0 \cdot 1 / 4) \right]$$

$$+ x(2) \left[\cos(2\pi 0 \cdot 2 / 4) - j \sin(2\pi 0 \cdot 2 / 4) \right]$$

$$+ x(3) \left[\cos(2\pi 0 \cdot 3 / 4) - j \sin(2\pi 0 \cdot 3 / 4) \right]$$

Exemplu DFT N = 4

$$X(1) = x(0)[\cos(2\pi \frac{1 \cdot 0}{4}) - j\sin(2\pi \frac{1 \cdot 0}{4})]$$

$$+ x(1)[\cos(2\pi \frac{1 \cdot 1}{4}) - j\sin(2\pi \frac{1 \cdot 1}{4})]$$

$$+ x(2)[\cos(2\pi \frac{1 \cdot 2}{4}) - j\sin(2\pi \frac{1 \cdot 2}{4})]$$

$$+ x(3)[\cos(2\pi \frac{1 \cdot 3}{4}) - j\sin(2\pi \frac{1 \cdot 3}{4})]$$

$$X(2) = x(0)[\cos(2\pi \frac{2 \cdot 0}{4}) - j\sin(2\pi \frac{2 \cdot 0}{4})]$$

$$+ x(1)[\cos(2\pi \frac{2 \cdot 1}{4}) - j\sin(2\pi \frac{2 \cdot 1}{4})]$$

$$+ x(2)[\cos(2\pi \frac{2 \cdot 1}{4}) - j\sin(2\pi \frac{2 \cdot 2}{4})]$$

$$+ x(3)[\cos(2\pi \frac{2 \cdot 3}{4}) - j\sin(2\pi \frac{2 \cdot 3}{4})]$$

$$X(3) = x(0)[\cos(2\pi \frac{3 \cdot 0}{4}) - j\sin(2\pi \frac{3 \cdot 0}{4})]$$

$$+ x(1)[\cos(2\pi \frac{3 \cdot 1}{4}) - j\sin(2\pi \frac{3 \cdot 1}{4})]$$

$$+ x(2)[\cos(2\pi \frac{3 \cdot 2}{4}) - j\sin(2\pi \frac{3 \cdot 2}{4})]$$

$$+ x(3)[\cos(2\pi \frac{3 \cdot 3}{4}) - j\sin(2\pi \frac{3 \cdot 3}{4})]$$

Transformata Fourier inversă

Transformata Fourier a unui semnal discret:

$$X(m) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi mn/N}$$

$$= \sum_{n=0}^{N-1} x(n) \left[\cos(2\pi mn/N) - j\sin(2\pi mn/N) \right]$$

Definitie

Transformata Fourier inversă a unui semnal discret (IDFT):

$$x(n) = \frac{1}{N} \sum_{m=0}^{N-1} X(m) e^{j2\pi mn/N}$$

$$= \frac{1}{N} \sum_{m=0}^{N-1} X(m) \left[\cos(2\pi mn/N) + j \sin(2\pi mn/N) \right]$$
(16)

Recapitulare: Semnale trece-jos (lowpass)

Definiție

Un semnal trece-jos este un semnal limitat în bandă și centrat în jurul frecvenței zero.

Remarcă

Din considerente didactice, aici am analizat spectrul continuu obținut din Transformata Fourier Continuă. În practică folosim Transformata Fourier Discretă.

Extinderea unui semnal discret

Dacă avem de a face cu un semnal discret aperiodic, îl putem extinde la un semnal periodic pentru a aplica DFT.

Exemplu eșantionare a transformatei Fourier cu N=12:

Sursă: (Oppenheim and Schafer 2014)

Extinderea unui semnal discret

Atenție la fenomenul de aliere când extindem (exemplu N = 7).

Sursă: (Oppenheim and Schafer 2014)

Remarcă

Problema alierii este aceiași în frecvență ca și în timp. Metoda de discretizare și eșantionare fiind aceiași. Doar domeniul se schimbă.

Exemplu: treaptă

Atenție la efectele secundare extinderii unui semnal aperiodic.

Frecvențe importante

Frecvența fundamentală este

$$f = \frac{t_s}{N} \tag{17}$$

Frecventele analizate sunt:

$$f_a(m) = \frac{mf_s}{N} \tag{18}$$

Componenta m=0 este numită componenta curent continuu (Direct Current (DC))

$$X(0) = \sum_{n=0}^{N-1} x(n) [\cos(0) - j\sin(0)] = \sum_{n=0}^{N-1} x(n)$$
 (19)

Magnitudine și puterea componentelor (power spectrum (PS)):

$$X(m) = X_{\text{real}}(m) + jX_{\text{imag}}(m)$$
 (20)

$$X_{\text{mag}} = |X(m)|$$
 $X_{\text{PS}}(m) = X_{\text{mag}}(m)^2$ (21)

Exemplu: Frecvențe importante

Pentru un semnal continuu eșantionat cu 500 eșantioane pe secundă asupra căruia se aplică DFT în 16 puncte avem:

$$f = \frac{f_s}{N} = \frac{500}{16} = 31,25Hz$$

Frecvențele analizate sunt:

$$X(0)=0\cdot 31.25=0$$
 (prima componentă în frecvență) $X(1)=1\cdot 31.25=31,25$ (a doua componentă în frecvență) $X(2)=2\cdot 31.25=62,5$ (a treia componentă în frecvență) $X(3)=3\cdot 31.25=93,75$ (a patra componentă în frecvență) $X(15)=15\cdot 31.25=468,75$ (componenta 16 în frecvență)

Vom calcula 8 componente DFT pentru semnalul alcătuit din două componente de 1kHz și 2kHz:

$$x(t) = \sin(2\pi \cdot 1000 \cdot t) + \frac{1}{2}\sin(2\pi \cdot 2000 \cdot t + \frac{3\pi}{4})$$

pentru asta avem nevoie de N=8 eșantioane în timp pentru care alegem frecvența de eșantionare $f_s=8000$.

$$f_a(m) = \frac{mf_s}{N} =$$

Vom calcula 8 componente DFT pentru semnalul alcătuit din două componente de 1kHz și 2kHz:

$$x(t) = \sin(2\pi \cdot 1000 \cdot t) + \frac{1}{2}\sin(2\pi \cdot 2000 \cdot t + \frac{3\pi}{4})$$

pentru asta avem nevoie de N=8 eșantioane în timp pentru care alegem frecvența de eșantionare $f_s=8000$.

$$f_a(m) = \frac{mf_s}{N} = \{0kHz, 1kHz, 2kHz, \dots, 7kHz\}$$
 (22)

Vom calcula 8 componente DFT pentru semnalul alcătuit din două componente de 1kHz și 2kHz:

$$x(t) = \sin(2\pi \cdot 1000 \cdot t) + \frac{1}{2}\sin(2\pi \cdot 2000 \cdot t + \frac{3\pi}{4})$$

pentru asta avem nevoie de N=8 eșantioane în timp pentru care alegem frecvența de eșantionare $f_s=8000$.

$$f_a(m) = \frac{mf_s}{N} = \{0kHz, 1kHz, 2kHz, \dots, 7kHz\}$$
 (22)

Transformata Fourier devine:

$$X(m) = \sum_{n=0}^{7} x(n) \left[\cos(2\pi mn/8) + j \sin(2\pi mn/8) \right]$$
$$X(1) = \sum_{n=0}^{7} x(n) \left[\cos(2\pi n/8) + j \sin(2\pi n/8) \right]$$

Fie cele 8 eșantioane în timp:

$$x[0] = 0,3535,$$
 $x[1] = 0,3535$
 $x[2] = 0,6464,$ $x[3] = 1,0607$
 $x[4] = 0,3535,$ $x[5] = -1,0607$
 $x[6] = -1,3535,$ $x[7] = -0,3535$

$$X(1) = \sum_{n=0}^{7} x(n) \left[\cos(2\pi n/8) + j \sin(2\pi n/8) \right] =$$

$$= x(0) \cos(0) - jx(0) \sin(0) +$$

$$+ x(1) \cos(\pi/4) - jx(1) \sin(\pi/4) +$$

$$+ x(2) \cos(\pi/2) - jx(2) \sin(\pi/2) +$$

$$+ x(3) \cos(3\pi/4) - jx(3) \sin(3\pi/4) +$$

$$+ x(4) \cos(\pi) - jx(4) \sin(\pi) +$$

$$+ x(5) \cos(5\pi/4) - jx(5) \sin(5\pi/4) +$$

$$+ x(6) \cos(3\pi/2) - jx(6) \sin(3\pi/2) +$$

$$+ x(7) \cos(7\pi/4) - jx(7) \sin(7\pi/4) =$$

$$= \cdots = 0, 0 - j4, 0$$

Aplicăm formula pentru calculul celorlalte componente:

$$X(1) = 0, 0 - j4, 0$$

$$X(2) = 1,414 + j1,414$$

$$X(3) = 0, 0 + j0, 0$$

$$X(4) = 0, 0 + j0, 0$$

$$X(5) = 0, 0 + j0, 0$$

$$X(6) = 1,414 - j1,414$$

$$X(7) = 0, 0 + j4, 0$$

Cât este X(0) ?

Exemplu: Componentele DFT

Cum arată componentele cos și sin în funcție de m?

Exemplu: Componentele DFT

Exemplu: Rezultate DFT

Simetrie și anti-simetrie în componentele spectrale:

wave having an initial phase of -90°.

Sursă: (Lyons 2004)

Simetrie

Pentru semnale x(n) reale, DFT este simetrică în jurul N/2.

$$X(m) = |X(m)|e^{j\varphi} = |X(N-m)|e^{-j\varphi} = \overline{X}(N-m)$$
 (23)

Putem arăta ușor această proprietate folosind forma exponențială:

$$X(N - m) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi n(N-m)/N} =$$

$$= \sum_{n=0}^{N-1} x(n) \underbrace{e^{-j2\pi nN/N}}_{\cos(2\pi n) - j\sin(2\pi n)} e^{j2\pi nm/N} =$$

$$= \sum_{n=0}^{N-1} x(n)e^{j2\pi nm/N} = \overline{X}(N - m)$$

Liniaritate

Fie $x(n) = x_1(n) + x_2(n)$, atunci DFT este suma DFT-urilor pe componente:

$$X(m) = X_1(m) + X_2(m)$$
 (24)

Putem demonstra din nou ușor folosind forma exponențială:

$$X(m) = \sum_{n=0}^{N-1} \underbrace{\left[x_1(n) + x_2(n)\right]}_{x(n)} e^{-j2\pi nm/N} =$$

$$= \sum_{n=0}^{N-1} x_1(n) e^{-j2\pi nm/N} + \sum_{n=0}^{N-1} x_2(n) e^{-j2\pi nm/N}$$

$$= X_1(m) + X_2(m)$$

Magnitudine

De ce nu corespunde amplitudinea în timp cu cea în frecvență?

Magnitudine

De ce nu corespunde amplitudinea în timp cu cea în frecvență?

Dacă avem o sinusoidă cu

- frecvența $f < f_s/2$
- ► amplitudinea A₀
- ► cu număr întreg de perioade de-alungul celor *N* eșantioane atunci amplitudinea în frecvență este:

$$M_r = A_0 N/2 \tag{25}$$

dacă semnalul este complex:

$$M_c = A_0 N \tag{26}$$

Din această cauză întâlnim în practică DFT scalat cu $\frac{1}{N}$ sau $\frac{1}{\sqrt{N}}$:

$$X(m) = \frac{1}{N} \sum_{n=0}^{N-1} x(n) e^{-j2\pi nm/N}$$
 (27)

Axa frecvenței

Care este frecvența cu cea mai mare magnitudine |X(m)| în Hz din figură? (în figură pe axa frecvenței avem valorile lui m)

Axa frecvenței

Care este frecvența cu cea mai mare magnitudine |X(m)| în Hz din figură? (în figură pe axa frecvenței avem valorile lui m)

Răspuns: Depinde de rata de eșantionare f_s . În figură ne interesează m=1 pentru care aplicăm (22) cu $f_s=8000Hz$:

$$f_a(m) = \frac{mf_s}{N} = f_a(1) = \frac{1 \cdot 8000}{8} = 1000 Hz$$
 (28)

Pentru frecvența de eșantionare $f_s = 75Hz$ obținem altă frecvență:

$$f_a(1) = \frac{1 \cdot 75}{8} = 9,375Hz \tag{29}$$

pentru că rezoluția (spațiul între eșantioanele frecvenței) este f_s/N .

Shifting

Teoremă

O deplasare k în timp a semnalului periodic x(n) rezultă într-o deplasare constantă a fazei în domeniul frecvenței cu $2\pi km/n$ radiani (sau 360km/N grade).

$$X_{shifted}(m) = e^{j2\pi km/N}X(m)$$
 (30)

În exemplul noastru, o întârziere cu k=3 rezultă într-o multiplicare cu $e^{j2\pi 3\cdot m/8}$ iar pentru m=1 avem:

$$X_{\text{shifted}}(1) = e^{j2\pi 3 \cdot 1/8} X(1) = e^{j2\pi 3 \cdot 1/8} 4e^{-j\pi/2} = 4e^{j\pi/4}$$

DFT în practică

Transformata DFT pentru sinusoida noastră din primul curs. Ce se întâmplă în punctul 19? Dar în punctele 2 și 3?

DFT în practică

Ce semnal reprezintă această spectrogramă?

DFT în practică

Ce semnal reprezintă această spectrogramă?

Tot o sinusoidă! Frecvența diferă: $f_0 = 1,5Hz$.

Leakage

În practică DFT produce rezultate în domeniul frecvenței ce pot induce în eroare datorită frecvențelor de analiză:

$$f_a(m) = \frac{mf_s}{N}, \ m = \{0, 1, 2, \dots, N - 1\}$$
 (31)

DFT reflectă realitatea doar când energia semnalului dat coincide cu frecvențele de analiză din (31).

Remarcă

Dacă semnalul dat conține o componentă în frecvență intermediară frecvențelor de analiză (31), atunci aceasta va apărea parțial în toate cele N componente: leakage.

Definiție

Componentele în frecvență se numesc output bins sau simplu bins.

Exemplu fără leak

Fie un semnal sinusoidal eșantionat în N=64 de puncte cu 3 perioade complete în orizontul de timp analizat.

Observăm că toate frecvențele în afară de bin-ul m=3 sunt nule.

Exemplu leak

Fie un semnal sinusoidal eșantionat în N=64 de puncte cu **3,4** perioade complete în orizontul de timp analizat.

Sursă: (Lyons 2004)

Observăm că apare fenomenul de leak în celelalte bin-uri.

Apariția unui leak

Remarcă

Fenomenul de leak apare când semnalul nu are un număr întreg de perioade în orizontul de timp eșantionat.

Teoremă

Pentru un semnal sinusoidal având $k \in \mathbb{R}$ perioade în orizontul de timp de N eșantioane, putem aproxima amplitudinea unui bin DFT în funcție de m cu ajutorul funcției sinc:

$$X(m) = \frac{A_0 N}{2} \frac{\sin[\pi(k-m)]}{\pi(k-m)}$$
 (32)

Funcția sinc. Lobi.

N eșantioane DFT ce conțin k perioade a unei sinusoide: sus avem amplitudinea în funcție de bin-ul m, jos magnitudinea în frecvență.

Figură compusă din lobul principal și loburi secundare mai mici.

Eșantionarea sinc

Fie o sinusoidă de 8kHz eșantionată la 32kHz. În figură avem DFT-ul în N=32 puncte (bin-uri distanțate la $f_s/N=1kHz$).

Leak când frecventa sinusoidei nu este centrată în lobul principal.

Asimetrie

De ce este DFT asimetrică în exemplul de mai devreme? (ex. m=4)

Am arătat că DFT este simetrică și se repetă o dată la N puncte. În cazul semnalelor reale chiar N/2!

Înfășurare

DFT se repetă din N în N puncte creând un cerc de-alungul căruia eșantioanele DFT se înfășoară.

Sursă: (Lyons 2004)

Înfășurare linarizată

Expus liniar, discul pentru un semnal cu k = 3,4 perioade în fereastra de N = 64 esantione devine:

Sursă: (Lyons 2004)

Ce se întâmplă cu semnalele reale?

Înfășurare semnale reale

Semnalele reale se repetă la N/2 a.î. |X(m)| = |X(N-m)| cf. (23) Magnitudinea DFT pentru k = 32 - 3, 4 și k = 3, 4 este similară.

Pentru semnale reale avem înfășurare și în jurul m = N/2.

Înfășurare semnale reale

Alt exemplu pentru k = 16, 4 și N = 64.

Sursă: (Lyons 2004)

Leak minim la N/4 ce crește când ne îndepărtăm de lobul principal.

Ferestre

Definitie

Ferestrele sunt folosite pentru a atenua amplitudinea semnalului la începutul și la capătul orizontului de eșantionare astfel încât să reducă fenomenul de leak.

Remarcă

De fiecare dată când aplicăm DFT folosim o fereastră dreptunghiulară în care înmulțim fiecare eșantion cu o secvență, sau fereastră, de eșantioane de valoare unu.

În afara ferestrei secvența este nulă.

Propoziție

DFT a ferestrei dreptunghiulare este funcția sinc.

Exemple de ferestre (Lyons 2004)

Aplicarea unei ferestre

Înainte de a aplica DFT, eșantioanele semnalului x(n) sunt înmulțit cu coeficienții corespunzători din fereastra w(n):

$$X_w(m) = \sum_{n=0}^{N-1} w(n)x(n)e^{-j2\pi nm/N}$$
 (33)

unde w(n) este o fereastră:

Dreptunghilară
$$w(n) = 1$$

$$w(n) = \begin{cases} \frac{n}{N/2}, n = 2k \\ 2 - \frac{n}{N/2}, n = 2k + 1 \end{cases}$$
 Hanning
$$w(n) = \frac{1}{2} - \frac{1}{2}\cos(\frac{2\pi n}{N})$$
 Hamming
$$w(n) = 0,54 - 0,46\cos(\frac{2\pi n}{N})$$

Magnitudinea răspunsului în frecvență

Ferestrele alternative reduc lobii secundari (vs. dreptunghiular).

Observăm că lobul principal scade în magnitudine: **processing** gain sau loss al ferestrei.

Magnitudinea (dB) răspunsului în frecvență

$$|W_{dB}(m)| = 20 \log_{10} \left(\frac{|W(m)|}{|W(0)|} \right)$$
 (34)

Obs: Scad lobii secundari, dar scade și rezoluția frecvenței.

Exemplu: Hanning pentru k = 3, 4

Exemplu: Hanning pentru detecție semnal de nivel scăzut

Alegerea ferestrei

Alegerea ferestrei potrivite este un compromis între:

- ► lățirea lobului principal
- nivelele primelor loburi secundare (ex. Hanning vs. Hamming)
- viteza de descrestere a loburilor secundare

Dimensiunea și forma ferestrei afectează direct rezoluția și sensivitatea semnalului.

Rezoluție. Zero padding.

Creștem artificial rezoluția DFT prin adăugarea de eșantioane nule.

Gain, SNR

Creștem puterea semnalului (sau gain) prin creșterea lui N.

