Iterative Linearized Control: Stable Algorithms and Complexity Guarantees

Vincent Roulet, Siddhartha Srinavasa, Dmitry Drusviatskiy, Zaid Harchaoui

University of Washington

Overview

Algorithms for nonlinear discrete time control are heuristics

- We provide regularized and accelerated variants of those heuristics with proven convergence to a stationary point
- We characterize optimization oracles as dynamic programming procedures and present implementations with automatic-differentiation

Nonlinear control

Discrete time nonlinear control problem with finite horizon τ

$$\min_{\substack{x_0, \dots, x_\tau \\ u_0, \dots, u_{\tau-1}}} \sum_{t=1}^{\tau} h_t(x_t) + \sum_{t=0}^{\tau-1} g_t(u_t)$$
 (Cost)

s.t.
$$x_{t+1} = \phi_t(x_t, u_t)$$
 $x_0 = \hat{x}_0$ (Dyn)

- state $x_t \in \mathbb{R}^d$, control $u_t \in \mathbb{R}^p$
- h_t convex state cost, e.g., $h_t(x_t) = \frac{1}{2}(x_t \hat{x}_t)^{\top}H_t(x_t \hat{x}_t)$
- g_t convex control penalty, e.g., $g_t(u_t) = \frac{1}{2}u_t^{ op}G_tu_t$
- ϕ_t nonlinear dynamic given by physics laws, e.g., pendulum movement

Iterative Linear Quadratic Regulator

1. Given current iterate u_t with x_t given by (Dyn), solve by dynamic programming

$$\min_{\substack{y_0, \dots y_\tau \\ v_0, \dots, v_{\tau-1}}} \sum_{t=1}^{\tau} q_{h_t}(x_t + y_t) + \sum_{t=0}^{\tau-1} q_{g_t}(u_t + v_t)$$

$$\text{s.t.} \quad y_{t+1} = \ell_{\phi_t}(y_t, v_t) \qquad y_0 = 0$$

$$(LQR)$$

- $\cdot q_{h_t}$ quad. approx. of h_t around x_t
- $\cdot q_{q_t}$ quad. approx. of g_t around u_t
- ℓ_{ϕ_t} linear approx. of ϕ_t around (x_t, u_t)
- 2. Get next iterate $u_t^+ = u_t + \alpha v_t^*$ by line-search

Optimization of compositions

Trajectory $\bar{x}(\bar{u})=(\bar{x}_1(\bar{u});\ldots;\bar{x}_{\tau}(\bar{u}))$ function of $\bar{u}=(u_0;\ldots;u_{\tau-1})$ as

$$\bar{x}_{t+1}(\bar{u}) = \phi_t(\bar{x}_t(\bar{u}), u_t)$$
 $\bar{x}_1(\bar{u}) = \phi_0(\hat{x}_0, u_0)$ (Traj)

Reformulation as optimization of compositions

$$\min_{\bar{u}} \quad h(\bar{x}(\bar{u})) + g(\bar{u})$$

with $h(ar{x}) = \sum_{t=1}^{ au} h_t(x_t)$, $g(ar{u}) = \sum_{t=0}^{ au-1} g_t(u_t)$

Oracles

Model-minimization steps

- 1. Model the objective at iterate $ar{u}$ by
- linearizing the trajectory $\bar{x}(\bar{u}+\bar{v}) \approx \bar{x}(\bar{u}) + \nabla \bar{x}(\bar{u})^{\top} \bar{v}$
- approx. cost $h(\bar x+\bar y)pprox m_h(\bar x+\bar y)$, penalty $g(\bar u+\bar v)pprox m_q(\bar u+\bar v)$
- 2. Minimize model with proximal term to get next iterate \bar{u}^+

$$\bar{u}^{+} = \bar{u} + \arg\min_{\bar{v}} \left\{ m_h \left(\bar{x}(\bar{u}) + \nabla \bar{x}(\bar{u})^{\top} \bar{v} \right) + m_g(\bar{u} + \bar{v}) + \frac{1}{2\gamma} ||\bar{v}||_2^2 \right\}$$
(Oracle)

Examples

- Gradient step: $m_h(\bar x + \bar y) = h(\bar x) + \nabla h(\bar x)^{ op} \bar y$, same for m_q
- Regularized Gauss-Newton:

$$m_h(ar x+ar y)=h(ar x)+
abla h(ar x)^{ op}ar y+ frac{1}{2}y^{ op}
abla^2h(ar x)y$$
, same for m_g

Optimization steps by dynamic programming

- Subproblems (Oracle) are given by $\bar{u}^+ = \bar{u} + \bar{v}^*$ where \bar{v}^* solves

$$\min_{\substack{y_0, \dots y_\tau \\ v_0, \dots, v_{\tau-1}}} \sum_{t=1}^{\tau} m_{h_t}(x_t + y_t) + \sum_{t=0}^{\tau-1} m_{g_t}(u_t + v_t) + \frac{1}{2\gamma} \|v_t\|^2$$
 s.t.
$$y_{t+1} = \Phi_{t,x}^\top y_t + \Phi_{t,y}^\top v_t \qquad y_0 = 0$$

where $\Phi_{t,x} = \nabla_x \phi_t(x_t, u_t)$, $\Phi_{t,u} = \nabla_u \phi_t(x_t, u_t)$ and $x_t = \bar{x}_t(\bar{u})$.

- For m_{h_t}, m_{g_t} linear or quadratics this is solved in linear time w.r.t. auby dynamic programming

Consequences

- → Classical gradient back-propagation is a dynamic programming method
- ightarrow Gradient and regularized Gauss-Newton steps have same cost w.r.t. au
- → ILQR is Gauss-Newton: needs regularization from optim. viewpoint

Optimization steps by automatic differentiation oracle

Define automatic differentiation oracle as any procedure that computes

$$z \to \nabla \bar{x}(\bar{u})z$$

for $\bar{x}:\mathbb{R}^{\tau p}\to\mathbb{R}^{\tau d}$ defined as in (Traj), $\bar{u}\in\mathbb{R}^{\tau p}$ and $z\in\mathbb{R}^{\tau d}$.

For final-state cost, $h=h_{\tau}$, dual of optimization step (Oracle) reads

$$\min_{z \in \mathbb{R}^d} \ m_{h_{\tau}}^*(z) + \left(m_g + \frac{1}{2\gamma} \| \cdot \|_2^2 \right)^* \left(-\nabla \bar{x}_{\tau}(\bar{u})z \right)$$

Consequence

 \rightarrow For m_h, m_q quadratics, step (Oracle) given by 2d+1 calls to an automatic differentiation oracle using conjugate gradient method to solve the dual problem

Regularized and Accelerated ILQR

Denote $\bar{u}^+ = \operatorname{oracle}(\bar{u}, \gamma)$ the step in (Oracle) for m_h, m_g quadratics

Regularized ILQR

Regularized ILQR reads

$$\bar{u}^{(k+1)} = \operatorname{oracle}(\bar{u}^{(k)}, \gamma_k)$$

where step-size γ_k is chosen such that

$$f(\bar{u}^{(k+1)}) \le m_f(\bar{u}^{(k+1)}) + \frac{1}{2\gamma_k} \|\bar{u}^{(k+1)} - \bar{u}^{(k)}\|_2^2$$

with f the objective, m_f the model around $ar{u}^{(k)}$

For h, g quadratics, such step-sizes exist and convergence to an ε stationary point is guaranteed after $\mathcal{O}(arepsilon^2)$ iterations

Accelerated Regularized ILQR

Use extrapolation steps

$$\bar{v}^{(k)} = \bar{u}^{(k)} + \theta_k(\bar{u}^{(k)} - \bar{u}^{(k-1)})$$
 $\bar{u}^{(k+1)} = \text{oracle}(\bar{v}^{(k)}, \delta_k)$

For h, g quadratics, if $m_f(\bar u+\bar v)\leq f(\bar u+\bar v)$ then convergence to an ε -minimum is guaranteed after $\mathcal{O}(\sqrt{\varepsilon})$

Synthetic experiments

Compare ILQR, Regularized ILQR and Accelerated Regularized ILQR on synthetic control experiments

Figure 1: Swing-up a pendulum

Figure 2: Moving two-link arm robot

Code available at https://github.com/vroulet/ilqc

References

Li, W. and Todorov, E. [2007], 'Iterative linearization methods for approximately optimal control and estimation of non-linear stochastic systems', International Journal of Control