Social Data Science Soc 114 Winter 2025

Supervised Machine Learning

Learning goals for today

By the end of class, you will be able to

- ▶ use statistical learning to estimate when data are sparse
- ▶ work with models that are "wrong"

Prediction function

A prediction function is an input-output function:

- ightharpoonup input a vector of predictors \vec{x}
- ightharpoonup output a predicted outcome $\hat{y} = \hat{f}(\vec{x})$

	Age	Sex	Employed
cases for learning	26	F	1
	40	М	1
	61	М	0
	32	F	1

 ${\sf case}\ {\sf to}\ {\sf predict}$

F

63

OLS is a prediction function

Input $\vec{x} \rightarrow \mathsf{Output} \ \hat{y}$

$$\hat{y} = \hat{f}(\vec{x}) = \hat{eta}_0 + \hat{eta}_1(\mathsf{Sex} = \mathsf{Male}) + \hat{eta}_2(\mathsf{Age})$$

- ► Learn \hat{f} in a **learning sample** with $\{\vec{x_i}, y_i\}_{i=1}^n$
 - \blacktriangleright Computer finds $\hat{\beta}_0,~\hat{\beta}_1,~\hat{\beta}_2$ that predict well in the learning sample
- ► At a new \vec{x} value, predict $\hat{f}(\vec{x})$

Logistic regression is a prediction function

Input
$$\vec{x} \rightarrow \text{Output } \hat{y}$$

$$\hat{y} = \hat{f}(ec{x}) = \mathsf{logit}^{-1}\left(\hat{eta}_0 + \hat{eta}_1(\mathsf{Sex} = \mathsf{Male}) + \hat{eta}_2(\mathsf{Age})
ight)$$

- ► Learn \hat{f} in a **learning sample** with $\{\vec{x_i}, y_i\}_{i=1}^n$
 - ► Computer finds $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\beta}_2$ that predict well in the learning sample
- ► At a new \vec{x} value, predict $\hat{f}(\vec{x})$

Matching is a prediction function

Input $\vec{x} \rightarrow \mathsf{Output} \ \hat{y}$

$$\hat{y} = \hat{f}(\vec{x}) = y_i$$

where unit j is the best match among the learning sample, which minimizes a distance from the case to predict: $d(\vec{x}, \vec{x_i})$ is small

- ▶ Learn \hat{f} in a learning sample with $\{\vec{x_i}, y_i\}_{i=1}^n$
 - ► Computer finds j with $\vec{x_i}$ most similar to \vec{x}
- ► At a new \vec{x} value, predict $\hat{f}(\vec{x})$

There are many prediction functions

- ightharpoonup input a vector of predictors \vec{x}
- $lackbox{ }$ output a predicted outcome $\hat{y}=\hat{f}(\vec{x})$

A tree can be interpretable

TODO: real data example

Learning goals for today

By the end of class, you will be able to

- ▶ use statistical learning to estimate when data are sparse
- ▶ work with models that are "wrong"