Dice Probability

Imagine that we roll two fair six-sided dice (i.e., all six sides have equal probability). Let X1 and X2 be the independent random variables representing these outcomes. Let S = X1 + X2 be the sum of the two rolls.

3a) What is the variance of S, i.e., what is V [S]?

$$= \frac{1}{36} \left(2+3(2) + 12+20+30 + 42+40 + 36+30+22+12 \right)$$

$$= \frac{262}{36}$$

$$= \mathcal{E}_{S \in S} (s - \mathcal{E}(s))^2 \rho(s)$$

$$= \frac{1}{36} \times (2-1)^2 + \frac{2}{36} \times (3-1)^2 + \frac{3}{36} \times (4-1)^2$$

$$+\frac{4}{36}\times(5-7)^2+\frac{5}{36}\times(6-7)^2+\frac{6}{36}\times(7-7)^2$$

$$+ \frac{5}{36} \times (8-7)^2 + \frac{4}{36} \times (9-7)^2 + \frac{3}{36} \times (10-7)^2$$

$$+\frac{2}{36}\times(11-7)^2+\frac{1}{36}\times(12-7)^2$$

$$= \frac{1}{36} \left(25 + 32 + 24 + 16 + 5 + 0 + 5 + 16 + 24 + 32 \right)$$

$$= \frac{1}{36} \times 2 \times 106$$

$$=\frac{210}{20}$$

(b.) The probability distribution is us below,									
P(x)	$\begin{array}{c c} 2 \\ \hline 0 \\ \hline 36 \\ \end{array}$	3 4			# 8 6 5 36 36	9 4 36	10 11 3 2 36 36	1	
-> It seems to be discrete uniform distribution where probability is Similar with euch other.									
x2 X1=	/ 1] 3	2 3	4	6	6				
-	2 3	4	5	6	7				
2	3 4	- 5	6	7	8				
3	4 5	6	+	8-	9				
4	5 6	17	8	9	10				
5	6 7	8	9	(0	()				
6	+ 18	19	(0)	11	1 (2				
As above can be the number of occurrence of S values, which are summed up from X, and X2.									

- 3c) Write a simple one-line formula describing this probability distribution.
- 3d) What is the expected value of VS, i.e., what is EhVSi?

(e) For a third dice,

$$\begin{array}{l}
+ \exp(x_1 + x_2 + x_3)^2 \\
= & \left((x_1 + x_2 + x_3)^2 \right) \\
= & \left((x_1 + x_2 + x_3)^2 \right) \\
= & \left((x_1^2 + x_2^2 + x_3^2 + 2x_1 x_2 + 2x_3 x_1 + 2x_2 x_3) \right) \\
= & \left((x_1^2 + x_2^2 + x_3^2 + 2x_1 x_2 + 2x_3 x_1 + 2x_2 x_3) \right) \\
= & \left((x_1^2 + x_2^2 + x_3^2 + 2x_1 x_2 + 2x_3 x_1 + 2x_2 x_3) \right) \\
= & \left((x_1^2 + x_2^2 + x_3^2 + 2x_1 x_2 + 2x_3 x_1 + 2x_2 x_3) \right) \\
+ & \left((x_1^2 + x_2^2 + x_3^2 + 2x_1 x_2 + 2x_3 x_1 + 2x_2 x_3) \right) \\
= & \left((x_1^2 + x_2^2 + x_3^2 + 2x_1 x_2 + 2x_3 x_1 + 2x_2 x_3) \right) \\
= & \left((x_1^2 + x_2^2 + x_3^2 + 2x_1 x_2 + 2x_3 x_1 + 2x_2 x_3) \right) \\
= & \left((x_1^2 + x_2^2 + x_3^2 + 2x_1 x_2 + 2x_3 x_1 + 2x_2 x_3) \right) \\
= & \left((x_1^2 + x_2^2 + x_3^2 + 2x_1 x_2 + 2x_3 x_1 + 2x_2 x_3) \right) \\
= & \left((x_1^2 + x_2^2 + x_3^2 + 2x_1 x_2 + 2x_3 x_1 + 2x_2 x_3) \right) \\
= & \left((x_1^2 + x_2^2 + x_3^2 + 2x_1 x_2 + 2x_3 x_1 + 2x_2 x_3) \right) \\
= & \left((x_1^2 + x_2^2 + x_3^2 + 2x_1 x_2 + 2x_3 x_1 + 2x_2 x_3) \right) \\
= & \left((x_1^2 + x_2^2 + x_3^2 + 2x_1 x_2 + 2x_3 x_1 + 2x_2 x_3) \right) \\
= & \left((x_1^2 + x_2^2 + x_3^2 + 2x_1 x_2 + 2x_3 x_1 + 2x_2 x_3) \right) \\
= & \left((x_1^2 + x_2^2 + x_3^2 + 2x_1 x_2 + 2x_3 x_1 + 2x_2 x_3) \right) \\
= & \left((x_1^2 + x_2^2 + x_3^2 + 2x_1 x_2 + 2x_3 x_1 + 2x_2 x_3) \right) \\
= & \left((x_1^2 + x_2^2 + x_3^2 + 2x_1 x_2 + 2x_3 x_1 + 2x_2 x_3) \right) \\
= & \left((x_1^2 + x_2^2 + x_3^2 + 2x_1 x_2 + 2x_3 x_1 + 2x_2 x_3) \right) \\
= & \left((x_1^2 + x_2^2 + x_3^2 + 2x_1 x_2 + 2x_3 x_1 + 2x_2 x_3) \right) \\
= & \left((x_1^2 + x_2^2 + x_3^2 + 2x_1 x_2 + 2x_3 x_1 + 2x_2 x_3) \right) \\
= & \left((x_1^2 + x_2^2 + x_3^2 + 2x_1 x_2 + 2x_3 x_1 + 2x_2 x_3) \right) \\
= & \left((x_1^2 + x_2^2 + x_3^2 + 2x_1 x_2 + 2x_1 x_2 + 2x_2 x_3) \right) \\
= & \left((x_1^2 + x_2^2 + x_3^2 + 2x_1 x_2 + 2x_1 x_2 + 2x_2 x_3) \right) \\
= & \left((x_1^2 + x_2^2 + x_3^2 + 2x_1 x_2 + 2x_2 x_3 + 2x_2 x_3 + 2x_2 x_3 \right) \\
= & \left((x_1^2 + x_2^2 + x_3^2 + 2x_1 x_2 + 2x_2 x_3 + 2x_2 x_3 + 2x_2 x_3 + 2x_1 x_2 + 2x_2 x_3 + 2x_2 x_3 \right) \\
= & \left((x_1^2 + x_1 + x_1 + x_1 + x_1 + x_2 + x_2 + 2x_2 x_3 + 2x_1 + 2x_2 x_3 + 2x_1 + 2x_2 x_3 + 2x_1 + 2x_1 + 2x_1 + 2x_2 x_3 + 2x_1 + 2x_2 x_3 +$$