Isaac Physics Skills

Linking concepts in pre-university physics

Lisa Jardine-Wright, Keith Dalby, Robin Hughes, Nicki Humphry-Baker, Anton Machacek, Ingrid Murray and Lee Phillips Isaac Physics Project

TABLE OF PHYSICAL CONSTANTS

Quantity & Symbol	Magnitude	Unit	
Permittivity of free space	ϵ_0	8.85×10^{-12}	${\sf F}{\sf m}^{-1}$
Electrostatic force constant	$1/4\pi\epsilon_0$	8.99×10^{9}	N m 2 C $^{-2}$
Speed of light in vacuum	С	3.00×10^{8}	${\sf m}{\sf s}^{-1}$
Specific heat capacity of water	c_{water}	4180	$ m Jkg^{-1}K^{-1}$
Charge of proton	е	1.60×10^{-19}	С
Gravitational field strength on Earth	8	9.81	N ${ m kg}^{-1}$
Universal gravitational constant	G	6.67×10^{-11}	N m 2 kg $^{-2}$
Planck constant	h	6.63×10^{-34}	Js
Boltzmann constant	k_{B}	1.38×10^{-23}	$ m JK^{-1}$
Mass of electron	m_{e}	9.11×10^{-31}	kg
Mass of neutron	m_{n}	1.67×10^{-27}	kg
Mass of proton	m_{p}	1.67×10^{-27}	kg
Mass of Earth	M_{Earth}	5.97×10^{24}	kg
Mass of Sun	M_{Sun}	2.00×10^{30}	kg
Avogadro constant	N_{A}	6.02×10^{23}	mol^{-1}
Gas constant	R	8.31	$\rm J~mol^{-1}~K^{-1}$
Radius of Earth	R_{Earth}	6.37×10^{6}	m

OTHER INFORMATION YOU MAY FIND USEFUL

Electron volt	1 eV	=	$1.60 \times 10^{-19} \mathrm{J}$
Unified mass unit	1 u	=	$1.66 \times 10^{-27} \text{ kg}$
Absolute zero	0 K	=	−273 °C
Year	$1 \mathrm{yr}$	=	$3.16 imes 10^7 ext{ s}$
Light year	1 ly	=	$9.46\times10^{15}~\text{m}$
Parsec	1 pc	=	$3.09 \times 10^{16} \text{ m}$

PREFIXES

1 km = 1000 m	$1 \text{Mm} = 10^6 \text{m}$	$1 \text{ Gm} = 10^9 \text{ m}$	$1 \text{ Tm} = 10^{12} \text{ m}$
1 mm = 0.001 m	$1 \mu \text{m} = 10^{-6} \text{m}$	$1 \text{ nm} = 10^{-9} \text{ m}$	$1 \text{ pm} = 10^{-12} \text{ m}$

8 Potential dividers with LEDs

It is helpful to be able to calculate the resistances necessary to obtain a particular output voltage from a potential divider circuit containing an LED.

Example context: this section builds on **Section 7** about photon flux by considering the LED in a circuit in series with a fixed resistor. The fixed resistor is needed to make sure the LED receives the correct current.

Quantities: ε e.m.f. (V)

V p.d. across fixed resistor (V)

 V_{LED} p.d. across LED (V)

I current through circuit (A)

R fixed resistor resistance (Ω)

E photon energy (J)

 λ wavelength of emitted light (m)

$$V = IR$$
 $\varepsilon = V_{\text{LED}} + V$ $V_{\text{LED}} = \frac{E}{e}$ $E = \frac{hc}{\lambda}$

- 8.1 Use the equations to derive expressions for
 - a) the resistance of the fixed resistor R in terms of the e.m.f. ε , the p.d. across the LED $V_{\rm LED}$ and the current I,
 - b) the resistance of the fixed resistor R in terms of the e.m.f. ε , the wavelength of the LED λ , the current I and the physical constants h, c and e.
- 8.2 Fill in the missing entries in the table below.

e.m.f. / V	current / mA	fixed resistor	LED
		resistance / Ω	p.d. / V
9.00	12.1	(a)	4.14
6.00	(b)	300	1.78
(c)	8.05	73.6	3.11
5.00	10.1	250	(d)
7.40	51.5	(e)	2.25
12.0	28.8	330	(f)

Example 1 – Calculate the resistance R needed when a 652 nm LED is connec-

ted to a 6.00 V battery if the current is to be
$$50.0$$
 mA.
$$E = \frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \times 3.00 \times 10^8}{652 \times 10^{-9}} = 3.051 \times 10^{-19} \text{ J},$$
 so $V_{\text{LED}} = \frac{E}{e} = 1.904 \text{ V}. \ V = \varepsilon - V_{\text{LED}} = 6.00 - 1.90 = 4.10 \text{ V}.$
$$R = \frac{V}{I} = \frac{4.10}{0.050} = 81.9 \ \Omega.$$

- A blue LED produces light of wavelength 480 nm. It is powered using a 8.3 9.00 V battery using the circuit design shown above. Assume that there is no internal resistance in the power supply and calculate
 - a) the p.d. across the LED,
 - b) the minimum value of R to ensure the current through the LED does not exceed 50.0 mA.
 - c) the resistance of the LED.

Example 2 – Calculate the current through a 510 nm LED (with a p.d. of 2.44 V across it) connected to an e.m.f. of 5.00 V, in series with a 300 Ω resistor. P.d. is shared, so p.d. across the resistor must be $5.00 - 2.44 = 2.56 \,\mathrm{V}$ Fixed resistor is ohmic, so use Ohm's law $I = \frac{V}{R} = \frac{2.56}{300} = 8.53 \, \mathrm{mA}$ As resistor and LED are in series, currents are the same

- A red LED produces light of wavelength 680 nm. It is powered using a $7.4\,\mathrm{V}$ 8.4 battery with no internal resistance. Calculate
 - a) the p.d. across the LED,
 - b) the current through the LED when its power is 102 mW (use P = IV),
 - c) the resistance of the LED when its power is 102 mW,
 - d) the resistance of the fixed resistor R.
- 8.5 Two LEDs (labelled A and B) are connected in parallel to a 3.7 V cell. Each LED is protected by its own resistor in series. LED A is protected by a 330 Ω resistor, whereas LED B is protected by a $165\,\Omega$ resistor. Both LEDs produce light of wavelength 650 nm. Presenting your answer as a decimal, calculate
 - a) the ratio of the p.d. across LED A to the p.d. across LED B,
 - b) the ratio of the current through LED A to the current through LED B,

9 Current division

It is helpful to be able to calculate the fraction of an electric current which takes each branch of a parallel circuit.

Example context: voltmeters are not perfect insulators. When the voltage across a component is measured, a fraction of the current flows through the voltmeter, and this affects the circuit. A knowledge of the fraction of current no longer flowing through the component enables a correction to be made.

Quantities: I current (A) V voltage (V)

R resistance (Ω) G conductance $(\Omega^{-1} \text{ or S})$

Subscripts _{1,2} label components. Subscript _C refers to the circuit.

Equations: $R = \frac{V}{I}$ $G = \frac{I}{V} = \frac{1}{R}$ $R_{\text{parallel}} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \cdots\right)^{-1}$ For components in parallel: $I_C = I_1 + I_2 + \dots$ $V_1 = V_2 = \dots$

- 9.1 Two resistors R_1 and R_2 are in parallel, and carry a total current I_C . Use the equations to write or derive expressions (in terms of I_C , R_1 and R_2) for
 - a) the voltage V across each resistor,
 - b) the current I_1 through resistor R_1 ,
 - c) the fraction of the total current which flows through R_1 : $\frac{I_1}{I_C}$,
 - d) the conductance G_1 of resistor R_1 ,
 - e) the total conductance $G_C = G_1 + G_2$ of the two resistors
 - f) the fraction $\frac{G_1}{G_C}$.

Example – $A3.0\,\Omega$ resistor is wired in parallel with a $6.0\,\Omega$ resistor, and between them, they carry 24 mA. Calculate the current carried by the $6.0\,\Omega$ resistor.

Overall resistance $R_{\rm C}=\left(3.0^{-1}+6.0^{-1}\right)^{-1}=2.0~\Omega$ Voltage across combination $V=I_{\rm C}R_{\rm C}=0.024\times2.0=0.048~{\rm V}$ Current through the $6.0~\Omega$ resistor $I_6=\frac{V}{R}=\frac{0.048}{6}=8.0~{\rm mA}$

- 9.2 A 9.0 Ω resistor is connected in parallel with a 81 Ω resistor. What fraction of the total current flows through the 81 Ω resistor?
- 9.3 How much current flows through a 330 Ω resistor which is connected in parallel with a 68 Ω resistor which is carrying 40 mA by itself?

- 9.4 I am going to connect two resistors in parallel to share a 13 A current so that 5.0 A flows through one resistor. The resistor with the larger resistance is a 2.2 Ω resistor. Calculate the resistance of the other resistor.
- 9.5 Fill in the missing entries in the table below. In this circuit, three resistors (R_1, R_2, R_3) are connected in parallel.

R_1	R ₂	R ₃	I_1	I_2	I_3	Ic	V
/ Ω			/ A			/ V	
1.0	2.0	3.0	(a)	(b)	(⊂)	2.4	(d)
5.0	15	20	(e)	(f)	(g)	(h)	12
48	(i)	7.5	5.0	20	(j)	(k)	(1)

- 9.6 A wire in an oven typically carries 20 A. I wish to put an LED in the circuit which will light up when the current is flowing. The LED requires a voltage of 1.8 V to light, and takes a current of 25 mA when it is lit. I will connect the LED in parallel with a resistor, and place the combination in series with the oven's heater element.
 - a) Calculate the resistance of the LED when it is lit.
 - b) Calculate the current through the resistor when the LED is lit.
 - c) Calculate the resistance of the resistor needed.
- 9.7 An ammeter designed for electricians has a resistance of $0.10~\text{m}\Omega$ and it can measure a maximum of 200~A. I wish to adapt it so it can measure currents up to 1000~A by connecting a resistor in parallel with it.
 - a) What is the voltage across the ammeter when it carries 200 A?
 - b) Once the resistor is connected, what fraction of the total current should flow through the ammeter?
 - c) When the resistor is connected and the combination is carrying $1000\,\mathrm{A}$, what is the current through the resistor?
 - d) Calculate the resistance of the resistor.
 - e) Using P=IV calculate the power dissipated in the resistor when the combination is carrying $1000~{\rm A}$.

10 Power in a potential divider

It is helpful to be able to calculate the power (or fraction of the total power) dissipated in one part of a potential divider circuit.

Example context: Electrical generators have internal resistance. A power supply company wishes to maximise the efficiency of the system by ensuring that as much of the electricity generated as possible is passed on to customers.

 $\begin{array}{ll} \text{Quantities:} & I \text{ current (A)} & P \text{ load power (W)} \\ & R \text{ load resistance } (\Omega) & V \text{ voltage or p.d. across load (V)} \\ & r \text{ internal resistance } (\Omega) & \eta \text{ efficiency (no unit)} \\ & \varepsilon \text{ electromotive force (emf) of supply (V)} \end{array}$

Equations:
$$P = IV = I^2R = \frac{V^2}{R}$$
 $V = IR$ $\epsilon = V + Ir$ $\eta = \frac{P}{I\epsilon}$

- 10.1 Use the equations to derive expressions for
 - a) the current I in terms of ϵ , R and r,
 - b) the voltage V in terms of ϵ , R and r,
 - c) the power P in terms of ϵ , R and r,
 - d) the efficiency η in terms of ϵ , R and r.

Example 1 – Calculate the efficiency if a 20 Ω resistor is supplied from a 12 V battery with an internal resistance of 4 Ω .

Total resistance is
$$20+4=24~\Omega$$
, so current $I=\frac{12~\text{V}}{24~\Omega}=0.50~\text{A}$. Power in load $P=IV=I\times IR=I^2R=0.50^2\times 20=5.0~\text{W}$. Power supplied $I\epsilon=0.50\times 12=6.0~\text{W}$. Efficiency $=\frac{5.0~\text{W}}{6.0~\text{W}}=0.83$

- 10.2 Calculate the load power P for an $\epsilon=240$ V generator with internal resistance $2.5~\Omega$ when it is supplying $4.2~\mathrm{A}$. Hint: use $\epsilon=V+Ir$
- 10.3 Calculate the efficiency η of the generator in question 10.2.

10.4 An $\epsilon=12$ V battery has an internal resistance r=4.0 Ω . Fill in the missing entries in the table below.

R/Ω	V/V	I/A	P/W	Efficiency η	
0.10	(a)	(b)	(c)	(d)	
2.0	(e)	(f)	(g)	(h)	
4.0	(i)	(j)	(k)	(1)	
6.0	(m)	(n)	(0)	(p)	
50	(q)	(r)	(s)	(t)	

- 10.5 Use your answers to question 10.4 to state the value of r/R which gives the greatest load power P for given, fixed values of ϵ and r.
- 10.6 Use your answers to question 10.4 (or other reasoning) to state the value of r/R which gives the greatest efficiency for given values of ϵ and r.
- 10.7 Calculate *r* if P = 500 MW, V = 23 kV and $\eta = 0.99$.

Example 2 – The load resistor R in the circuit shown is replaced by $30~\Omega$ and $60~\Omega$ heaters wired in parallel. Calculate the power dissipated in the $30~\Omega$ heater if $\epsilon=230~V$ and $r=3.0~\Omega$.

Resistance of the two heaters in parallel $R = (30^{-1} + 60^{-1})^{-1} = 20 \Omega$.

Total circuit resistance = $20 + 3 = 23 \Omega$, so current = $\frac{230 \text{ V}}{23 \Omega} = 10 \text{ A}$.

Voltage across the heaters is $V = IR = 10 \text{ A} \times 20 \Omega = 200 \text{ V}$.

Power in $30~\Omega$ heater is given by $\frac{\text{Voltage}^2}{\text{Resistance}} = \frac{200^2}{30} = 1300~\text{W}$ to 2sf.

- 10.8 An $\epsilon=5.4$ V power supply (with $r=8.0~\Omega$) powers a $50~\Omega$ phone. A voltmeter (with resistance $200~\Omega$) is connected to measure V.
 - a) How much voltage \boldsymbol{V} is measured across the phone?
 - b) Calculate the power delivered to the phone.
- 10.9 Calculate the voltage, current and power for each of the resistors in the circuit below.

(b) Analysing motion from high point to end
$$s_y=h+D$$
, $u_y=0$, $a_y=g$
$$v_{y,\text{final}}^2=u_y^2+2a_ys_y=0+2g\left(h+D\right), \text{ so } v_{y,\text{final}}=\sqrt{2g\left(h+D\right)}$$

(c) Using
$$v_y = u_y + a_y t$$
 over the whole motion, $v_{y, final} = -u \sin \theta + g T$

$$T = \frac{v_{\text{y,final}} + u \sin \theta}{g} = \frac{\sqrt{2g(h+D)} + u \sin \theta}{g}$$
$$= \frac{\sqrt{u^2 \sin^2 \theta + 2gD} + u \sin \theta}{g}$$

(d)
$$u_x=v_x$$
 because $a_x=0$
$$R=u_xT=u\cos\theta\times\frac{\sqrt{u^2\sin^2\theta+2gD}+u\sin\theta}{g}$$

7 Photon flux for an LED

(a)
$$I = \frac{\text{charge}}{t} = \frac{ne}{t} = \frac{n}{t} \cdot e = \Phi_{q}e$$

(b)
$$V = \frac{E}{e} = \frac{hc}{\lambda} \cdot \frac{1}{e} = \frac{hc}{e\lambda}$$

(c)
$$P = IV = \Phi_{q}e \cdot \frac{hc}{e\lambda} = \Phi_{q}\frac{hc}{\lambda}$$

8 Potential dividers with LEDs

(a)
$$V = IR$$
 so $R = \frac{V}{I} = \frac{\varepsilon - V_{\text{LED}}}{I}$

(b)
$$R = \frac{\varepsilon - V_{\text{LED}}}{I} = \frac{\varepsilon}{I} - \frac{hc}{Ie\lambda}$$

9 Current division

(a)
$$V = I_{\mathsf{C}} R_{\mathsf{parallel}} = I_{\mathsf{C}} \left(R_1^{-1} + R_2^{-1} \right)^{-1} = \frac{I_{\mathsf{C}}}{R_1^{-1} + R_2^{-1}}$$

(b)
$$I_1 = \frac{V}{R_1} = VR_1^{-1} = \frac{I_CR_1^{-1}}{R_1^{-1} + R_2^{-1}}$$

(c)
$$\frac{I_1}{I_C} = I_1 \times \frac{1}{I_C} = \frac{I_C R_1^{-1}}{R_1^{-1} + R_2^{-1}} \times \frac{1}{I_C} = \frac{R_1^{-1}}{R_1^{-1} + R_2^{-1}}$$

(d)
$$G_1 = \frac{I_1}{V} = \frac{1}{R_1} = R_1^{-1}$$

(e)
$$G_C = G_1 + G_2 = R_1^{-1} + R_2^{-1}$$

(f)
$$\frac{G_1}{G_C} = \frac{R_1^{-1}}{R_1^{-1} + R_2^{-1}}$$

We hope you noticed that $\frac{G_1}{G_C} = \frac{I_1}{I_C}$. If one resistor has two thirds of the conductance, it will carry two thirds of the current.

10 Power in a potential divider

(a)
$$I = \frac{\epsilon}{\text{Circuit resistance}} = \frac{\epsilon}{R+r}$$

(b)
$$V = IR = \frac{\epsilon}{R+r} \times R = \frac{\epsilon R}{R+r}$$

(c)
$$P = IV = \frac{\epsilon}{R+r} \times \frac{\epsilon R}{R+r} = \frac{\epsilon^2 R}{(R+r)^2}$$

(d)
$$\eta = \frac{P}{I\epsilon} = P \times \frac{1}{\epsilon I} = \frac{\epsilon^2 R}{(R+r)^2} \times \frac{1}{\epsilon \times \epsilon / (R+r)} = \frac{R}{R+r}$$

11 Path and phase difference

(a)
$$\Delta \phi = \frac{\Delta L}{\lambda} \times 360^{\circ} = \frac{d \sin \theta}{\lambda} \times 360^{\circ}$$

(b)
$$\sin \theta = \frac{\Delta L}{d} = \frac{n\lambda}{d}$$
 for constructive interference

(c)
$$\sin \theta = \frac{n\lambda}{d} = \frac{n\lambda}{1 \text{ mm/N}} = \frac{nN\lambda}{1 \times 10^{-3} \text{ m}}$$

(d)
$$\sin \theta = \frac{nN\lambda}{1 \times 10^{-3} \text{ m}} = \frac{nN \ (v/f)}{1 \times 10^{-3} \text{ m}} = \frac{nNv}{1 \times 10^{-3} \text{ m} \times f}$$

(e)
$$y = D \tan \theta \approx D \sin \theta = D \times \frac{n\lambda}{d} = \frac{1 \times \lambda D}{d} = \frac{\lambda D}{d}$$

(f)
$$y = D \tan \theta \approx D \sin \theta = D \times \frac{n\lambda}{d} = \frac{5 \times (v/f) D}{d} = \frac{5vD}{df}$$

(g)
$$\Delta L = (\frac{1}{2}D + y) - (\frac{1}{2}D - y) = 2y$$