1. Let $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$. Note that $\mathbb{Q}(\sqrt{2})$ is field and more specifically it is known as an algebraic number field. The binary operations on $\mathbb{Q}(\sqrt{2})$ are the standard addition and multiplication of numbers. Verify for all $\alpha \neq 0$ in $\mathbb{Q}(\sqrt{2})$ that there exists a $\beta \in \mathbb{Q}(\sqrt{2})$ such that $\alpha \cdot \beta = 1$.

For the next two problems let $\mathbb F$ be an arbitrary field. We define the following vector space over $\mathbb F.$ Let

$$\mathbb{F}^n = \{(x_1, x_2, \dots, x_n) : x_j \in \mathbb{F}, \ j = 1, \dots n\}$$

where scalar multiplication and vector addition is defined thusly,

$$\lambda \cdot (x_1, \dots, x_n) = (\lambda x_1, \dots, \lambda x_n)$$

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots x_n+y_n).$$

- 2. (#13 §1.A) Show that (ab)x = a(bx) for all $x \in \mathbb{F}^n$ and all $a, b \in \mathbb{F}$.
- 3. $(\# 15\S1.A)$ Show that $\lambda \cdot (x+y) = \lambda x + \lambda y$ for all $\lambda \in \mathbb{F}$ and all $x, y \in \mathbb{F}^n$.

For the next two problems let \mathbb{F} be an arbitrary field and V a vector space over \mathbb{F} .

- 4. $(\#1 \S 1.B)$ Prove that -(-v) = v for every $v \in V$.
- 5. (#2 §1.B) Suppose $a \in \mathbb{F}$, $v \in V$, and av = 0. Prove a = 0 or v = 0.