Computer Science 230: Computer Architecture and Assembly Language

Background: Computer Organization and Systems

Stl: Chapter 1; 2.1 (history – actually quite important to read!); 2.2; (2.3 and 2.4 read); 2.5; part of 3.4

(Optional M&H: Chapter 1; 4.1)

What Exactly are?

Computer architecture:

deals with the functional behavior of a computer system as viewed by a programmer

e.g. the size of a data type32 bits to an integer

Computer organization:

deals with *structural* relationships that are not visible to the programmer

e.g. clock frequency or the size of the physical memory

There are Many Levels at which to consider architecture:

highest level → where the user is running programs lowest level → circuits

Levels of Machine Organization

High level Languages, User Applications

Assembly Language, Machine Code

Control (e.g. datapath, bus, microprogramming)

Functional Units (e.g. Memory, ALU, peripherals)

Transistors, Wires, Gates

How do we define?

What is a microprocessor?

- 8-bit, 16-bit, 32-bit: refers to number of bits manipulated in one operation (usually the size of the registers).
- □ It requires external memory to execute programs.
- ☐ It cannot directly interface to I/O devices, thus peripheral chips are needed.

A processor is built from a large number of integrated circuits.

A microprocessor is a processor packaged as a single IC (Integrated Circuit = chip).

A microcomputer is a computer that uses a microprocessor as its CPU.

Close-up of a PC motherboard

(Computer case source http://www.baber.com/cases/mpe_md14_silver.htm. Motherboard source ftp://ftp.tyan.com/img_mobo/i_s2895.tif)

The von Neumann Model

- 1. Input
- 2. Output
- 3. ALU
- 4. Control Unit
- 5. Memory unit

The System Bus Model: Refining the von Neumann model

- □ CPU (ALU and control), memory, and an input/output unit.
- □ Communication is handled by a shared pathway called the system bus,
 - o data bus, address bus, and control bus

Quick Quiz

The von Neumann Model consists of the Input Unit, Output Unit, ALU, Control Unit and
A is a processor packaged as a single IC
The system bus consists of theBus,Bus andBus.
True or False Functional Units (e.g. Memory, ALU, peripherals) are the lowest level of Machine Organization.
If you have 32K bytes of byte-addressable memory to address, how many wires does the address bus need?

What's Inside the CPU?

The Processor

Processor (CPU)

Control unit

Arithmetic Logic Unit

Registers

Registers hold data and address values. How many? It depends on the CPU design

- ☐ It contains the hardware instruction logic
- ✓☐ It fetches machine language instructions from memory
 - ☐ It directs the other units in the execution of those instructions
 - ☐ It decodes and monitors the execution of instructions
 - □ Activities are synchronized by the system clock and measured in clock cycles (2 GHz = 2000 million ticks, or cycles, per second)
 - It uses a set of special purpose (housekeeping) registers:
 - PC = program counter
 - IR = instruction register
 - CCR = Condition Code Register (Status)

It performs the arithmetic and logic operations

Bus Structures Processor (CPU) System bus Control unit **Arithmetic Output** Input & Logic Unit units units (peripherals) (peripherals) **Memory** Data Program Registers storage storage

A bus is used to transfer information between the units. The bus carries:

- address
- data and
- control information.

What is usually on the Motherboard?

Functionality of the Bus

Two main choices of architectures for bus structures

Port I/O

- ☐ separate buses for:
 - CPU to memory

and

- > CPU to peripherals
- special instructions for accessing ports

Memory mapped I/O

- single bus between CPU and all other components
- all components are treated just like memory
- CPU reads or writes data to specific locations
- locations are recognized eventually as I/O devices or as memory
- no extra instructions

Older and mainly INTEL

Port I/O

Older and mainly INTEL

- > separate buses for:
 - CPU to memory and
 - CPU to peripherals
- > separate set of instructions
- possibly different sizes of buses
- each bus still logically composed of address, data and control

Memory Mapped I/O

- ☐ single bus between CPU and all other elements
- □ logically composed of address, data and control
- ☐ given an address on the address bus, a location at that address is recognized eventually as an I/O device or memory
- ☐ e.g. office 520 or office 266
 - √ 5th floor, office 20
 - √ 2nd floor, office 66
 - ✓ the first digit distinguishes between the types of location (here a floor)

Separate memory and I/O buses (Port I/O)

Reality 2 Reality 1 Motherboard Motherboard **MEMORY MEMORY** n-bit memory bus **CPU CPU** n-bit k-bit I/O bus system bus **INPUT/OUTPUT INPUT/OUTPUT**

input/output devices

input/output devices

Storage Hierarchy

Component	Registers	Cache in CPU	RAM	Disk	CD
Access type	random	random	random	direct	direct
Capacity	64-1024	8-256KB	8K-?MB	1-80GB	740MB
Latency	1-10ns	20ns	50ns	10ms	10ms-1s
Block size	1 word	16 words	16 words	4KB	4KB
Bandwidth	system clock rate	8MB/s	1MB/s	1MB/s	1MB/s
Cost/MB	high	500	30	0.25	0.02

Registers – inside the CPU (Processor)

Registers in CPU: operational only, few of them

- ARM has 16 general purpose registers, each of 32 bits
- 68HC11 has 2
- Registers simply contain n bits (could be data or address)

R A M – Random Access Memory (on the board, not inside the CPU)

- → array of cells accessed by their address (mailboxes?)
- volatile/non-volatile memory (retention or not of information after power is shut off)
- access time time to select and read / write from a location
- □ random all locations accessible in approximately same access time
- static versus dynamic (expanded on later)

Types of Semiconductor Memory (definitions only here – more later)

- ✓ RAM random access memory (static / dynamic)
- ✓ ROM read only memory
- ✓ PROM programmable ROM
- ✓ EPROM erasable PROM (only a few times, using UV light)

Input / Output or, more generally, Peripherals (last part of the course)

Input and output units enable the transfer of information between the system and the outside environment.

- ☐ Example input devices: switches, keyboard, mouse, sensors.
- □ Example output devices: LEDs, video display, printer, motors.

End-to-End Communication in Network

Architectural components include computers, hubs, switches, routers, firewalls, multiplexers, and phone switches.

Moore's Law

Computing power doubles every 18 months, for the same price.

Moore's Law Restated

- □ Computing power doubles every 18 months for the same price.
- □ Project planning needs to take this observation seriously: an architectural innovation that is being developed for a projected benefit that quadruples performance in three years may no longer be relevant
- □ The architectures that exist by then may already offer quadrupled performance and may look entirely different from what the innovation needs to be effective.

CPU Transistor Counts 1971-2008 & Moore's Law

Quick Quiz

The processor (CPU consists) of the Control Unit, the Arithmetic Logic Unit					
(ALU) and	•				
☐Theusually on the Mot	and Memory are therboard.				
□In a Port I/O architecture, there are separate buses for CPU to memory and CPU to					
☐ True or False Read is volatile.	d Only Memory (ROM)				

Pascal's Calculating Machine (mid 1600's)

Performs basic arithmetic operations

(Source: IBM Archives photograph.)

Does not have what may be considered the basic parts of a computer

Babbage's Difference Engine #1

The first known automatic calculator

(© SSPL/The ImageWorks.)

Does not have what may be considered the basic parts of a computer > but "idea of algorithm"

The Jacquard Pattern Weaving Loom

The Jacquard pattern weaving loom (ca. 1804).

(Source: The Deutsches

Museum.)

Possibly first "embedded system"?

Enigma and Colossus: the War Effort

Siemens Halkse T-52 Sturgeon (Enigma)

cipher machine.

(Photo and copy courtesy John Alexander, G7GCK Leicester, England.)

(ca. 1944)

(Source: http://www.turing.org.uk/turing/scrapbook/electronic.html.)

The **ENIAC**

(Time & Life Pictures/Getty Images.)

UltraSPARC IV+ Layout

• Die photo of UltraSPARC IV+, 295 million transistors, 19.7 mm × 17.0 mm.

(Source: "Best Servers of 2004", Kevin Krewell, 1/18/05, Microprocessor, www.MPRonline.com, Reed Electronics Group, ref: h10018.www1.hp.com/.)

The Motherboard

An AMD Opteron 200 based motherboard.

Source: Courtesy Tyan Computer Corp. (USA).