UMWELT-PRODUKTDEKLARATION

nach ISO 14025 und EN 15804

Deklarationsinhaber FPX - Fachvereinigung Polystyrol-Extruderschaumstoff

Herausgeber Institut Bauen und Umwelt e.V. (IBU)
Programmhalter Institut Bauen und Umwelt e.V. (IBU)

Deklarationsnummer EPD-FPX-20140157-IBE1-DE

Ausstellungsdatum 12.11.2014
Gültig bis 11.11.2019

Extrudierter Polystyrolhartschaum (XPS) mit alternativem Flammschutzmittel

FPX – Fachvereinigung Polystyrol-Extruderschaumstoff

www.bau-umwelt.com / https://epd-online.com

1. Allgemeine Angaben

FPX - Fachvereinigung Polystyrol-**Extrudierter Polystyrolhartschaum** Extruderschaumstoff (XPS) Programmhalter Inhaber der Deklaration IBU - Institut Bauen und Umwelt e.V. FPX Fachvereinigung Panoramastr. 1 Polystyrol-Extruderschaumstoff 10178 Berlin Odenwaldring 68 D- 64380 Rossdorf Deutschland In Kooperation mit EXIBA - European Extruded Polystyrene Insulation **Board Association** Avenue E. van Nieuwenhuyse, 4 B - 1160 Brussels Deklarationsnummer Deklariertes Produkt/deklarierte Einheit (extrudierter Polystyrolhartschaum) EPD-FPX-20140157-IBE1-DE hergestellt von EXIBA und FPX Mitgliedsfirmen. Die Deklaration bezieht sich auf 1 m² einer 100 mm dicken XPS Platte mit alternativem Flammschutzmittel, entsprechend 0,1 m³, mit einer mittleren Dichte von 34,6 kg/m³ Diese Deklaration basiert auf den Gültigkeitsbereich: Produktkategorienregeln: Die an der Datenerhebung beteiligen Firmen Dämmstoffe aus Schaumkunststoffen, 07.2014 produzieren mehr als 90% der XPS Platten in (PCR geprüft und zugelassen durch den unabhängigen Deutschland. Es wurden die Daten von 12 Standorten Sachverständigenausschuss) von sechs Unternehmen aus dem Jahr 2012 verwendet Ausstellungsdatum Der Deklarationsinhaber haftet für die zugrunde 12.11.2014 liegenden Angaben und Nachweise. Der Inhaber der Deklaration haftet für die zugrundeliegenden Angaben und Nachweise; eine Haftung des IBU in Bezug auf Gültig bis Herstellerinformationen, Ökobilanzdaten und 11.11.2019 Nachweise ist ausgeschlossen. Verifizierung Wermanes Die CEN Norm EN 15804 dient als Kern-PCR Verifizierung der EPD durch eine/n unabhängige/n Dritte/n gemäß ISO 14025 Prof. Dr.-Ing. Horst J. Bossenmayer intern extern (Präsident des Instituts Bauen und Umwelt e.V.) Dr. Burkhart Lehmann Prof. Dr. Birgit Grahl, (Geschäftsführer IBU) Unabhängige/r Prüfer/in vom SVA bestellt

2. Produkt

2.1 Produktbeschreibung

Extrudierter Polystyrolhartschaum (XPS) ist ein Kunststoffschaumdämmstoff entsprechend der /DIN EN 13164/, der in Form von Platten im Rohdichtenbereich von 20 bis 50 kg/m³ produziert wird

Die Platten werden in unterschiedlichen Druckfestigkeitsstufen von 150 bis 700 kPa im Dickenbereich 20 bis 200 mm geliefert, Produkte mit Dicken bis 320 mm werden als werksseitig verklebte Mehrschichtplatten geliefert. Für die unterschiedlichen Anwendungsbereiche können die Platten unterschiedliche Oberflächen (mit Extrusionshaut, gefräst, gerillt oder thermisch geprägt) aufweisen. XPS Platten werden mit Glattkanten-, Stufenfalz- und Nut & Feder-Kantenausprägung geliefert. Die vorliegende Umweltdeklaration bezieht sich ausschließlich auf

unkaschierte und nicht gesondert weiter verarbeitete XPS-Platten.

Die Grundlage für die Ermittlung des Durchschnitts-Produktes bildet der mengenmäßige Marktanteil der an der Datenerhebung beteiligten Hersteller in Deutschland.

2.2 Anwendung

Anwendungsgebiete sind nach der /DIN 4108-10/ Wärmedämmung von Dach, Decke, Wand, Boden und Perimeter mit dort festgelegten Anforderungen an die physikalischen Eigenschaften: Perimeterdämmung der Bodenplatte, Perimeterdämmung der Kelleraußenwände, Flachdachdämmung nach dem Umkehrdachprinzip, Wärmedämmung von Fußböden z.B. hochbelasteter Industriefußböden, Außenwanddämmung, insbesondere

Wärmebrückendämmung von Betonbauteilen und als Kerndämmung in zweischaligem Mauerwerk, Wärmedämmverbund-systeme (WDVS), Wärmedämmung von Decken in landwirtschaftlichen Bauten, Innendämmung von Wänden, Innendämmung von Decken, Wärme-dämmung von Steildächern oberhalb und unterhalb der Sparren, Kernmaterial für Sandwichelemente.

Technische Anlagen (z. B. Rohrisolierungen).

2.3 Technische Daten

Bautechnische Daten

Dautechnische Daten			
Bezeichnung	Wert	Einheit	
Rohdichte	20 - 50	kg/m³	
Wärmeleitfähigkeit nach /DIN EN 12667/ und /DIN EN 13164/ Annex C	0,03 - 0,04	W/(mK)	
Verformungsverhalten nach /DIN EN 1605/	≤ 5	%	
Druckspannung oder Druckfestigkeit bei 10% Stauchung nach /DIN EN 826/	150 - 700	kPa	
Elastizitätsmodul nach /DIN EN 826/	10000 - 40000	kPa	
Zugfestigkeit nach /DIN EN 1607/	100 - 400	kPa	
Kriechverhalten bzw. Dauerdruckfestigkeit nach /DIN EN 1606/	< 250	kPa	
Wasseraufnahme nach Diffusion nach /EN 12088/	3 - 5	Vol%	
Wasserdampfdiffusionswiderstandsza hl nach /EN 12088/	50 - 250	ı	
Widerstandsfähigkeit gegen Frost- Tauwechsel nach /DIN EN 12091/	≤2	Vol%	
Dimensionsstabilität nach /DIN EN 1604/	≤ 5	%	

Schallschutz ist keine relevante Eigenschaft für XPS.

2.4 Inverkehrbringung/Anwendungsregeln

Herstellung und CE-Kennzeichnung nach Produktnorm /DIN EN 13164/. Anwendung nach Bauaufsichtlicher Zulassung des DIBt (siehe Kapitel 8). Die Produkte werden kontrolliert und zertifiziert durch externe Prüflabore wie FIW, FMPA und MPA.

2.5 Lieferzustand

Länge: 1000 – 3000 mm/ Breite: 600 mm/ Dicke: 20 – 200 mm (320 mm bei mehrlagigen Produkten) Für diese Deklaration wird eine Dicke von 100 mm zugrunde gelegt.

2.6 Grundstoffe/Hilfsstoffe

Als Hauptrohstoff wird Standard Polystyrol (GPPS) [CAS 9003-53-6] mit 90 bis 95 Masse-% eingesetzt. Dieses wird mit Hilfe eines Treibmittels mit ca. 8 Masse-% aufgeschäumt. Das Treibmittel besteht aus Kohlendioxid [CAS 124-38-9] und halogenfreien Co-Treibmitteln.

Rohstoffe/Hilfsstoffe	Massenanteil
Polystyrol	90 - 95 %
Treibmittel	5 - 8 %
davon Kohlendioxid	40 - 80 %
und Co-Treibmittel	20 - 60 %
Flammschutzmittel	0,5 - 3 %
Additive (z. B. Farbstoffe)	< 1%

Als Zusatzmittel wird alternatives Flammschutzmittel eingesetzt. Das XPS enthält kein HBCD und keine anderen nach /REACH/ besonders Besorgnis erregenden Stoffe (SVHC). Weiter werden dem Extrusionsprozess Zusatzstoffe (wie z. B. Verarbeitungshilfsstoffe, Farbstoffe) unter 1% zugeführt. Polystyrol und die Co-Treibmittel werden aus Erdöl und -gas hergestellt. Es wird auf der Straße oder per Pipeline von den Produktionsstandorten zu den XPS-Herstellwerken transportiert. CO₂ wird als Nebenprodukt aus verschiedenen Prozessen gewonnen und ist unbegrenzt verfügbar.

2.7 Herstellung

XPS wird in einem kontinuierlichen Extrusionsprozess mit Strom als Hauptenergieträger hergestellt. Polystyrol-Granulat wird zusammen mit den Hilfsstoffen im Extruder unter hohem Druck aufgeschmolzen. Das Treibmittel wird der Schmelze hinzugegeben und in ihr gelöst. Die Schmelze wird durch eine Breitschlitzdüse ausgetragen. Durch den dabei abfallenden Gegendruck schäumt das Treibmittel die Schmelze auf, kühlt diese dabei ab und das Polystyrol verfestigt sich. Es entsteht ein endloser Strang aus homogenem und geschlossenzelligem Polystyrolhartschaum. Dieser wird weiter abgekühlt und anschließend dimensioniert, besäumt, eventuell in der Oberfläche modifiziert und in einer 4- oder 6-Seitenverpackung mit Polyethylenfilm verpackt und palettiert. Durch die Verwendung von unterschiedlichen Düsen können Plattenstärken von 20 bis 200 mm produziert werden. XPS aus Produktionsabschnitten und Produktionsausschuss wird direkt in den Produktionen recycliert und wieder zur Produktion von XPS eingesetzt. Polystyrol ist ein thermoplastisches Material und kann deshalb einfach und kostengünstig durch Aufschmelzen recycliert werden.

Ein Großteil der Produktionsstandorte ist nach der /ISO 9001/ zertifiziert.

2.8 Umwelt und Gesundheit während der Herstellung

Bei der Herstellung des XPS sind in allen Produktionsschritten zum Schutz der Gesundheit der Mitarbeiter keine weiteren Maßnahmen über die nationalen Arbeitsschutzvorschriften hinaus notwendig. Ein Großteil der Produktionsstandorte ist nach der /ISO 14001/ zertifiziert.

2.9 Produktverarbeitung/Installation

Produkt- und anwendungsabhängige Einbauempfehlungen sind in Prospekten, Verarbeitungshinweisen und Produktdatenblättern der Hersteller beschrieben. Diese können bei den Herstellern direkt oder über das Internet bezogen werden. Es ist kein spezieller Personenschutz bei der Verarbeitung von XPS notwendig. Restmaterial XPS-Bauabfälle, welche als Verschnitt auf der Baustelle anfallen, sollen getrennt gesammelt und einer fachgerechten Entsorgung zugeführt werden.

2.10 Verpackung

Die Verpackung besteht aus Polyethylenfolien, diese sollen getrennt gesammelt und einer fachgerechten Entsorgung zugeführt werden. Polyethylen kann dann recycliert werden.

2.11 Nutzungszustand

Alle eingesetzten Stoffe sind im Einbauzustand alterungsbeständig und feuchtigkeitsresistent, wodurch die Dämmleistung sowie die mechanischen Eigenschaften während der gesamten Nutzungsdauer unverändert erhalten bleiben.

2.12 Umwelt & Gesundheit während der Nutzung

XPS ist in den meisten Anwendungen nicht im direkten Kontakt mit der Umwelt und mit der Innenraumluft. Belastungen für die Gesundheit bei der Verwendung von XPS für Innenraumdämmungen sind laut anerkannten Messungen von /AgBB/ u. a. nicht bedeutend (siehe 7.1 VOC Emissionen).

2.13 Referenz-Nutzungsdauer

Die Nutzungsdauer des XPS ist gleich der Nutzungsdauer des Bauteils, in dem es verwendet wird. Dies ist begründet in den ausgezeichneten mechanischen Festigkeiten und Beständigkeiten gegenüber Wassereinwirkung.

2.14 Außergewöhnliche Einwirkungen

Brand

XPS-Dämmstoffprodukte sind als Euroklasse E entsprechend der /DIN EN 13501-1/ eingestuft. Das Brandverhalten ist im Rahmen der allgemeinen bauaufsichtlichen Zulassungen weiter festgelegt.

Brandschutz

Bezeichnung	Wert
Baustoffklasse nach /DIN EN 13501-1/	E

Wasser

XPS-Hartschaum ist chemisch neutral, nicht wasserlöslich und gibt bei bestimmungsgemäßem Gebrauch keine wasserlöslichen Stoffe ab, die zu einer Verunreinigung des Grundwassers, der Flüsse und Meere führen könnten. Die Wärmeleitfähigkeit des XPS wird durch die Einwirkung von Wasser oder Wasserdampf praktisch nicht beeinflusst.

Mechanische Zerstörung

Nicht relevant für XPS-Produkte mit ihren ausgezeichneten mechanischen Eigenschaften.

2.15 Nachnutzungsphase

Will man das volle Wiederverwendungspotential der XPS-Dämmprodukte ausnutzen, sollte die Verlegung der Dämmplatten möglichst so erfolgen, dass die Platten mit nur geringer oder keiner Beschädigung zurückgebaut werden können: Nichtverklebte Systeme, Trennlagen zwischen Dämmung und Beton, mechanische Befestigungen. Auf Umkehrdächern werden Platten aus extrudiertem Polystyrol-Hartschaum lose verlegt und können daher weitestgehend zerstörungsfrei vom Dach entfernt und auf einem anderen Dach wieder verlegt werden. Bei einem bestehenden konventionellen Flachdach können die XPS-Dämmplatten an Ort und Stelle verbleiben, wenn zur wärmedämmtechnischen Aufwertung daraus ein "Plusdach" wird. Rückgebaute, wiederverwendbare XPS-Dämmplatten aus mechanisch fixierten Anwendungen können z. B. zur Dämmung von Kellerwänden, oder nichttragenden Bodenplatten eingesetzt werden.

Die Hersteller empfehlen als Entsorgungsweg eine thermische Verwertung des Produkts. Die im Schaumstoff enthaltene Energie wird damit zurück gewonnen, wodurch zusätzlich erforderliche Stützfeuerung bei Müllverbrennungsanlagen eingespart wird. Die Energie von 1 kg XPS-Hartschaum entspricht dem von ca. 1,1 Liter Heizöl. Zusätzlich kann die anfallende Abwärme bei der Müllverbrennung sowohl zur Strom- als auch zur Fernwärmeerzeugung genutzt werden.

2.16 Entsorgung

Abfallschlüssel nach Europäischem Abfallkatalog / Abfallverzeichnis-Verordnung (/AVV/): 17 06 04 Dämmmaterial mit Ausnahme desjenigen, das unter 17 06 01 und 17 06 03 fällt.

2.17 Weitere Informationen

Weitere Informationen finden Sie unter www.fpx-daemmstoffe.de www.austrotherm.de www.styrodur.de www.dowbaustoffe.de www.jackon-insulation.com www.ursa.de

3. LCA: Rechenregeln

3.1 Deklarierte Einheit

Diese Deklaration bezieht sich auf 1 m² XPS-Platte mit einer Stärke von 100 mm, d.h. 0,1 m³ mit einer Dichte von 34,6 kg/m³.

Deklarierte Einheit

Bezeichnung	Wert	Einheit
Deklarierte Einheit mit 100 mm	1	m ²
Dicke	'	111-
Umrechnungsfaktor zu 1 kg	0,29	-
Rohdichte	34,6	kg/m³
Deklarierte Einheit	0,1	m ³
Deklarierte Einheit	-	λ

Bei XPS-Produkten mit abweichender Rohdichte von der Referenzrohdichte von 34,6 kg/m³ und abweichenden Produktdicken ist für die

Umweltindikatoren und Sachbilanzparameter folgende Umrechnung vorzunehmen:

$$I_{adap} = I_{ref} \times \frac{\rho_{adap}}{\rho_{ref}} \times \frac{d_{adap}}{d_{ref}}$$

I_{adap} – adaptierter Umweltindikator oder Sachbilanzparameter

 I_{ref} – Umweltindikator oder Sachbilanzparameter für Rohdichte 34,6 kg/m³

ρ_{adap} – adaptierte Rohdichte

 $\rho_{\text{ref}} - \, \text{Referenz-Rohdichte 34,6 kg/m}^{\text{3}}$

 d_{adap} – adaptierte Produktdicke

d_{ref} - Referenz-Produktdicke (100 mm)

3.2 Systemgrenze

Typ der EPD: Wiege bis Werktor (A1-A3) – mit Optionen

Die Ökobilanz betrachtet die folgenden Punkte des Lebenszyklus:

- Extraktion und Aufbereitung von Rohstoffen (A1)
- Transport zur Herstellung (A2)
- Herstellung der XPS-Platte (A3)
- Herstellung der Verpackung (A3)
- Transporte zur Nutzung (A4)
- Abfallbeseitigung (C4) mit zwei Szenarien (Deponierung (Sz. 1) und thermische Verwertung (Sz. 2))
- Rückgewinnungs- und Recyclingpotentiale
 (D) außerhalb der Systemgrenzen

3.3 Abschätzungen und Annahmen

Das Umweltprofil des Flammschutzmittels basiert auf einer soliden Abschätzung auf Grundlage von Literatur, v .a. /Ullmanns/.

3.4 Abschneideregeln

In der Untersuchung werden alle wesentlichen Produktionsdaten betrachtet, u. a. Rohmaterialien, Stromverbrauch und Verpackungseinsatz. Einzelne Additive mit geringem Masseanteil sind nicht gesondert betrachtet, sondern werden in der Kalkulation mit Polysyrol abgeschätzt. Die Gesamtheit dieser Additive liegt unter 5% der Rezeptur. Beispielsweise kommen als Füllstoffe Talk und Zitronensäure zum Einsatz. Diese haben keine nennenswerte Auswirkung in Bezug auf die hier betrachteten Wirkkategorien und Mengen. Darüber hinaus werden Pigmente verwendet, welche bereits in der Polystyrolmenge berücksichtigt sind, da das Polystyrol-Granulat bereits eingefärbt ist.

3.5 Hintergrunddaten

Als Hintergrunddaten wurden Daten aus der GaBi 6 Datenbank verwendet /GaBi 2013/. Dokumentationen der einzelnen Hintergrunddatensätze sind beschrieben unter www.gabi-software.com/databases.

3.6 Datenqualität

Die Produktionsdaten, wie Menge an Rohmaterialien und Stromverbrauch stammen aus Messungen an den einzelnen Standorten. Die meisten Ökobilanzinventare

der Hintergrundprozesse, z. B. externe Stromerzeugung, sind Teil der GaBi 6 Datenbank, die zuletzt 2013 überarbeitet wurde.

3.7 Betrachtungszeitraum

Als Datengrundlage dienen Fertigungsinformationen des Jahres 2012.

3.8 Allokation

Während der XPS-Platten-Produktion fallen keine Koppelprodukte an. Allokationen wurden ausschließlich für Abfall- und Recyclingprozesse sowie in verschiedenen Hintergrundprozessen durchgeführt.

Allokation von Abfällen

In der Produktion anfallender XPS-Abfall, u. a. Plattenverschnitte werden zum Teil wieder in den Produktionsprozess eingebracht. Nicht direkt verwertbare Anteile werden thermisch verwertet. Allen betrachteten Verbrennungsprozessen liegt eine Teilstrombetrachtung zugrunde, die die spezifische Stoffzusammensetzung des Verbrennungsgutes berücksichtigt. Für die Müllverbrennungsanlage wird ein R1-Wert von kleiner 0,6 angenommen. Generierter Strom und thermische Energie aus Abfällen, die innerhalb von Modul A1-A3 anfallen, werden direkt dort angerechnet. Umweltlasten der Verbrennung des Produkts im EoL-Szenario werden dem Modul C4 zugeschrieben: resultierende Gutschriften für thermische und elektrische Energie werden in Modul D deklariert. Die Gutschriften erfolgen über europäische Durchschnittsdaten für elektrische Energie und thermische Energie aus Erdgas.

Allokation in vorgelagerten Prozessen

Bei allen Raffinerieprodukten werden Allokationen nach Masse und unterem Heizwert verwendet. Für jedes Raffinerieprodukt werden die Umweltlasten der Produktion spezifisch berechnet.

Bei anderen Materialien, deren Inventar für die Herstellungsberechnung herangezogen wird, werden die Allokationsregeln angewendet, die dafür jeweils geeignet sind. Informationen zu den einzelnen Datensätzen sind dokumentiert unter http://databasedocumentation.gabi-software.com/support/gabi/.

3.9 Vergleichbarkeit

Grundsätzlich ist eine Gegenüberstellung oder die Bewertung von EPD Daten nur möglich, wenn alle zu vergleichenden Datensätze nach /EN 15804/ erstellt wurden und der Gebäudekontext, bzw. die produktspezifischen Leistungsmerkmale, berücksichtigt werden.

4. LCA: Szenarien und weitere technische Informationen

Die folgenden technischen Informationen sind Grundlage für die deklarierten Module oder können für die Entwicklung von spezifischen Szenarien im Kontext einer Gebäudebewertung genutzt werden, wenn Module nicht deklariert werden (MND).

Transport zu Baustelle (A4)

Transport za Baastons (A-1)			
Bezeichnung	Wert	Einheit	
Liter Treibstoff (Diesel) unter	0.018	l/100km	
maximaler Beladung	0,010	III TOOKIII	
Transport Distanz	528	km	
Auslastung (einschließlich Leerfahrten)	70	%	
Rohdichte der transportierten Produkte	34,6	kg/m ³	

Volumen-Auslastungsfaktor	1	-
Nutzlast des LKW (EURO 5)	5	t

Ende des Lebenswegs (C1-C4)

Zwei EoL-Szenarien werden betrachtet: Szenario 1 geht von der Deponierung des Produktes aus, Szenario 2 spiegelt die thermische Verwertung wider. Die Verbrennung führt zu Energiegutschriften auf Basis des europäischen Strommixes und thermischer Energie aus Erdgas unter europäischen Randbedingungen.

Bezeichnung	Wert	Einheit	l

Getrennt gesammelt XPS	3,46	kg
Als gemischter Bauabfall gesammelt	0	kg
Zur Wiederverwendung	0	kg
Zum Recycling	0	kg
Zur Deponierung (Szenario 1)	3,46	kg
Zur Energierückgewinnung (Szenario 2)	3,46	kg

Wiederverwendungs- Rückgewinnungs- und Recyclingpotential (D), relevante Szenarioangaben

Modul D beinhaltet Gutschriften aus der Verbrennung der XPS-Platten nach der Nutzung (C4).

5. LCA: Ergebnisse

Die folgenden Tabellen bilden die Umweltwirkung und Sachbilanzparameter entsprechend der Norm /EN 15804/ für den Lebensweg von 1 m² XPS-Platte ab. Die Module C4 und D werden für zwei EoL-Szenarien ausgewiesen. C4/1 und D1 beziehen sich auf die Deponierung, C4/2 und D2 auf die thermische Verwertung in der Nachnutzungsphase

	ANGABE DER SYSTEMGRENZEN (X = IN ÖKOBILANZ ENTHALTEN; MND = MODUL NICHT DEKLARIERT)															
Produktionsstadiu m		Stadium der Errichtung des Bauwerks			Nutzungsstadium			Ent	sorgun	gsstadi	um	Gutschriften und Lasten außerhalb der Systemgrenze				
Rohstoffversorgung	Transport	Herstellung	Transport vom Hersteller zum Verwendungsort	Montage	Nutzung / Anwendung	Instandhaltung	Reparatur	Ersatz	Erneuerung	Energieeinsatz für das Betreiben des Gebäudes	Wassereinsatz für das Betreiben des Gebäudes	Rückbau / Abriss	Transport	Abfallbehandlung	Beseitigung	Wiederverwendungs-, Rückgewinnungs- oder Recyclingpotenzial
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Х	Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	Χ	MND	Х	X

ERGEBNISSE DER ÖKOBILANZ UMWELTAUSWIRKUNGEN: 1 m² XPS-Platte mit 100 mm Dicke

Param eter	Einheit	A1-A3	A4	C2	C4/1	C4/2	D/1	D/2
GWP	[kg CO ₂ -Äq.]	9,59	0,29	0,03	0,25	11,48	0,00	-5,43
ODP	[kg CFC11-Äq.]	1,33E-9	1,39E-12	1,29E-13	9,64E-12	2,99E-11	0,00E+0	-1,72E-9
AP	[kg SO ₂ -Äq.]	2,30E-2	8,01E-4	7,42E-5	7,68E-4	7,04E-4	0,00E+0	-1,41E-2
EP	[kg (PO ₄) ³ - Äq.]	2,10E-3	1,65E-4	1,53E-5	9,21E-4	1,39E-4	0,00E+0	-9,58E-4
POCP	[kg Ethen Äq.]	2,45E-2	-2,06E-4	-1,91E-5	9,58E-5	8,30E-5	0,00E+0	-1,14E-3
ADPE	[kg Sb Äq.]	4,48E-6	1,10E-8	1,02E-9	4,94E-8	1,54E-7	0,00E+0	-4,47E-7
ADPF	[MJ]	279,16	4,02	0,37	3,57	1,26	0,00	-76,05

GWP = Globales Erwärmungspotenzial; ODP = Abbau Potential der stratosphärischen Ozonschicht; AP = Versauerungspotenzial von Boden und Legende Wasser; EP = Eutrophierungspotenzial; POCP = Bildungspotential für troposphärisches Ozon; ADPE = Potenzial für den abiotischen Abbau nicht fossiler Ressourcen; ADPF = Potenzial für den abiotischen Abbau fossiler Brennstoffe

ERGEBNISSE DER ÖKOBILANZ RESSOURCENEINSATZ: 1 m² XPS-Platte mit 100 mm Dicke

Parameter	Einheit	A1-A3	A4	C2	C4/1	C4/2	D/1	D/2
PERE	[MJ]	7,12	IND	IND	IND	IND	IND	IND
PERM	[MJ]	0,00	IND	IND	IND	IND	IND	IND
PERT	[MJ]	7,12	0,16	0,01	0,19	0,14	0,00	-8,19
PENRE	[MJ]	155,26	IND	IND	IND	IND	IND	IND
PENRM	[MJ]	138,10	IND	IND	IND	IND	IND	IND
PENRT	[MJ]	293,36	4,03	0,37	3,74	1,46	0,00	-92,25
SM	[kg]	0,00	0,00	0,00	0,00	0,00	0,00	0,00
RSF	[MJ]	0,00	0,00	0,00	0,00	0,00	0,00	0,00
NRSF	[MJ]	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FW	[m³]	4,24E-2	1,12E-4	1,04E-5	-3,31E-3	2,21E-2	0,00E+0	-2,03E-2

PERE = Erneuerbare Primärenergie als Energieträger; PERM = Erneuerbare Primärenergie zur stofflichen Nutzung; PERT = Total

Legende erneuerbare Primärenergie; PENRE = Nicht-erneuerbare Primärenergie als Energieträger; PENRM = Nicht-erneuerbare Primärenergie

zur stofflichen Nutzung; PENRT = Total nicht erneuerbare Primärenergie; SM = Einsatz von Sekundärstoffen; RSF = Erneuerbare

Sekundärbrennstoffe; NRSF = Nicht erneuerbare Sekundärbrennstoffe; FW = Einsatz von Süßwasserressourcen

ERGEBNISSE DER ÖKOBILANZ OUTPUT-FLÜSSE UND ABFALLKATEGORIEN: 1 m² XPS-Platte mit 100 mm Dicke

Parameter	Einheit	A1-A3	A4	C2	C4/1	C4/2	D/1	D/2
HWD	[kg]	9,38E-3	9,18E-6	8,51E-7	1,24E-4	4,50E-6	0,00E+0	-6,20E-3
NHWD	[kg]	4,02E-2	5,07E-4	4,70E-5	3,44E+0	7,92E-2	0,00E+0	-2,03E-2
RWD	[kg]	5,64E-3	5,28E-6	4,89E-7	6,61E-5	8,54E-5	0,00E+0	-6,45E-3
CRU	[kg]	0,00	0,00	0,00	0,00	0,00	IND	IND
MFR	[kg]	0,00	0,00	0,00	0,00	0,00	IND	IND
MER	[kg]	0,00	0,00	0,00	0,00	0,00	IND	IND
EEE	[MJ]	0,00	0,00	0,00	0,00	0,00	IND	IND
EET	[MJ]	0,00	0,00	0,00	0,00	0,00	IND	IND

HWD = Gefährlicher Abfall zur Deponie; NHWD = Entsorgter nicht gefährlicher Abfall; RWD = Entsorgter radioaktiver Abfall; CRU = Legende Komponenten für die Wiederverwendung; MFR = Stoffe zum Recycling; MER = Stoffe für die Energierückgewinnung; EEE = Exportierte Energie thermisch

6. LCA: Interpretation

Generell wird ein Großteil der Umweltwirkungen durch die Polystyrol-Herstellung verursacht. Ein weiterer wichtiger umweltrelevanter Prozess ist die Stromerzeugung, die 58% zum Ozonabbaupotential (ODP) beträgt sowie 11% zum Versauerungspotential (AP). Grund für die versauernde Wirkung ist die

Verbrennung fossiler Brennstoffe zur Stromerzeugung durch Emissionen von Schwefeldioxid und Stickoxiden. Der Beitrag zum Ozonabbau resultiert aus den verwendeten Kühlungsmitteln in Kernkraftwerken. Emissionen von Treibmitteln direkt aus der XPS-Produktion tragen mit einem Anteil von 87%

hauptsächlich zur bodennahen Ozonbildung bei. Transporte und die Herstellung von Treibmitteln und Flammschutzmittel sind wenig relevant in Hinblick auf die betrachteten Umweltwirkkategorien.

Das Eutrophierungspotential (EP) wird zu einem Drittel durch die Deponie verursacht. Das ist zum einen bedingt dadurch, dass die eutrophierende Gesamtbelastung mangels organischer Bestandteile im Produkt auf einem geringen Niveau liegt. Zum anderen ist ein Teil des EP auf Einschränkungen des verwendeten Deponie-Ökobilanzmodells zurückzuführen. Kunststoffe ohne Weichmacher sind innerhalb der betrachteten 100 Jahre nicht abbaubar und verbleiben praktisch unverändert und ohne Stoffe zu entlassen auf der Deponie. Das Deponiemodell bezieht sich jedoch auf die Ablagerung von Hausmüll mit einer Standard-Hintergrundbelastung, so dass in die Ergebnisse Emissionen einfließen, die nicht durch das XPS veruracht sind.

Aus den Ergebnissen geht darüber hinaus hervor, dass die Deponie Frischwasser (FW) "generiert" (negativer Wert in Modul C4). Der Grund für dieses unrealistische Ergebnis liegt in der Charakterisierung der Input- und Output-Wasserflüsse. Regenwasser, das auf die Deponie fällt, wird im Gegensatz zum entlassenen Wasser in den Vorfluter nicht als Frischwasser berücksichtigt.

Bezüglich des erneuerbaren Primärenergiebedarfs (PERT) besteht eine Diskrepanz zwischen A1-A3 und D2 von plus 14%. Dort wird mehr Energie aus erneuerbaren Ressourcen berücksichtigt als in das System eingeht. Grund dafür ist, dass die erneuerbare Primärenergie in dieser Studie ausschließlich mit dem Stromverbrauch gekoppelt ist und infolge des hohen Energiegehaltes des Produktes mehr Strom durch die

Verbrennung erzeugt wird, als für die Herstellung (A1-A3) benötigt wird.

Das gewählte Entsorgungsszenario zieht signifikante Unterschiede in den Ökobilanz-Ergebnissen nach sich. Unterstützend zeigen die folgenden Abbildungen den Beitrag der einzelnen Module zum globalen Erwärmungspotential (GWP) sowie zum nichterneuerbaren Primärenergiebedarf (PENRT).

Figure 6-1

Figure 6-2

7. Nachweise

XPS Produkte können für die Innenanwendung benutzt werden, da kein Kontakt mit der Innenraumluft zu erwarten ist und XPS durch Systeme geschützt wird.

7.1 VOC-Emissionen

Emissionen leicht-flüchtiger organischer Verbindungen (VOC) der EXIBA XPS-Produkte entsprechend des AgBB-Schemas wurden anhand von 14 Proben von 9 EXIBA-Mitgliedsunternehmen im Juli 2011 durch Eurofins Product testing in Dänemark geprüft. Die getesteten Produkte wurden als konform zu den Anforderungen von DIBt und AgBB für die Nutzung im Innenraum eingestuft.

VOC Emissionen

Bezeichnung	Wert	Einheit
TVOC (C6 - C16)	0 - 1000	μg/m³
Summe SVOC (C16 - C22)	0 - 100	μg/m³
R (dimensionslos)	0 - 1	-
VOC ohne NIK *	0 - 100	μg/m³
Kanzerogene	nicht detektier t	μg/m³

^{)*} Nik = niedrigste (toxikologisch) interessierende Konzentration

7.2 Auslaugung

Untersuchungen zum Auslaugverhalten sind für XPS derzeit nicht gefordert.

7.2 Auslaugung

Messung des Auslaugverhaltens (Eluat-Analyse) unter Nennung des Meßverfahrens sofern für den Anwendungsbereich relevant, z.B. in Anlehnung an DIN EN 12457/1-4 oder DIN/CEN TS 14405 in Verbindung mit der Entschei¬dung des Rates vom 19.12.2002 (2002/33/EC).

8. Literaturhinweise

Institut Bauen und Umwelt e.V., Berlin (Hrsg.):

ISO 14025

DIN EN ISO 14025:2011-10, Environmental labels and declarations — Type III environmental declarations — Principles and procedures.

EN 15804

EN 15804:2012-04+A1 2013, Sustainability of construction works — Environmental product declarations — Core rules for the product category of construction products.

AgBB

Ausschuss zur gesundheitlichen Bewertung von Bauprodukten, Berlin

DIBt

Deutsches Institut für Bautechnik, Berlin www.dibt.de

PCR 2013, Teil A

PCR - Part A: Calculation rules for the Life Cycle Assessment and Requirements on the Background Report, Version 1.2, Institut Bauen und Umwelt e.V., 2013

www.bau-umwelt.com

PCR 2013, Teil B

Produktkategorienregeln für Bauprodukte Teil B: Anforderungen an die EPD für Dämmstoffe aus Schaumkunststoffen, Version 1.5, 2013 www.bau-umwelt.de

ISO 9001

DIN EN ISO 9001:2008-12:

Qualitätsmanagementsysteme - Anforderungen

ISO 14001

DIN EN ISO 14001:2009-11:

Umweltmanagementsysteme – Anforderungen mit Anleitung zur Anwendung

DIN EN 1604

DIN EN 1604:2013-05: Wärmedämmstoffe für das Bauwesen - Bestimmung der Dimensionsstabilität bei definierten Temperatur- und Feuchtebedingungen

DIN EN 1605

DIN EN 1605:2013-05: Wärmedämmstoffe für das Bauwesen - Bestimmung der Verformung bei definierter Druck- und Temperaturbeanspruchung

DIN EN 1606

DIN EN 1606: 2013-05: Wärmedämmstoffe für das Bauwesen - Bestimmung des Langzeit-Kriechverhaltens bei Druckbeanspruchung

DIN EN 1607

DIN EN 1607:2013-05 Wärmedämmstoffe für das Bauwesen - Bestimmung der Zugfestigkeit senkrecht zur Plattenebene

DIN 4108-10

DIN 4108-10: 2008-06 Wärmeschutz und Energie-Einsparung in Gebäuden - Teil 10: Anwendungsbezogene Anforderungen an Wärmedämmstoffe - Werkmäßig hergestellte Wärmedämmstoffe

DIN EN 12086

DIN EN 12086: 2013-06: Wärmedämmstoffe für das Bauwesen - Bestimmung der Wasserdampfdurchlässigkeit

DIN EN 12088

DIN EN 12088: 2013-06: Wärmedämmstoffe für das Bauwesen - Bestimmung der Wasseraufnahme durch Diffusion

DIN EN 12091

DIN EN 12091: 2013-06: Wärmedämmstoffe für das Bauwesen - Bestimmung des Verhaltens bei Frost-Tau- Wechselbeanspruchung

DIN EN 826

DIN EN 826: 2013-05: Wärmedämmstoffe für das Bauwesen - Bestimmung des Verhaltens bei Druckbeanspruchung

DIN EN 15804

DIN EN 15804:2012-04, Nachhaltigkeit von Bauwerken - Umweltproduktdeklarationen - Grundregeln für die Produktkategorie Bauprodukte

DIN EN 13501-1

DIN EN 13501-1: 2010-01: Klassifizierung von Bauprodukten und Bauarten zu ihrem Brandverhalten -Teil 1: Klassifizierung mit den Ergebnissen aus den Prüfungen zum Brandverhalten von Bauprodukten

DIN EN 12667

DIN EN 12667: 2001-05: Wärmetechnisches Verhalten von Baustoffen und Bauprodukten - Bestimmung des Wärmedurchlasswiderstandes nach dem Verfahren mit dem Plattengerät und dem Wärmestrommessplatten-Gerät - Produkte mit hohem und mittlerem Wärmedurchlasswiderstand

DIN EN 13164

DIN EN 13164: 2013-03, Wärmedämmstoffe für Gebäude - Werk-mäßig hergestellte Produkte aus extrudiertem Polystyrolschaum (XPS) – Spezifikation

ΔV۱

Verordnung über das Europäische Abfallverzeichnis (Abfallverzeichnis-Verordnung – AVV): Abfallverzeichnis-Verordnung vom 10. Dezember 2011 (BGBI I S. 3379), die zuletzt durch Artikel 5 Absatz 22 des Gesetzes vom 24. Februar 2012 (BGBI. I S. 212) geändert worden ist.

GaBi 2013

GaBi 6 Software & Dokumentation, Datenbank zur Ganzheitlichen Bilanzierung. LBP, Universität Stuttgart und PE International, Dokumentation der GaBi 6-Datensätze, 2013 http://www.gabi-software.com/databases

REACH

Registrierung, Bewertung, Zulassung und Beschränkung chemischer Stoffe, 2014

Zulassungen

Z-23.15-1416 (Stoffzulassung - Austrotherm)
Z-23.15-1481 (Stoffzulassung - BASF)
Z-23.15-1476 (Stoffzulassung – Dow Deutschland GmbH)

Z-23.15-1477 (Stoffzulassung – JACKON Insulation) Z-23.15-1516 (Stoffzulassung – URSA Insulation)

Herausgeber

 Institut Bauen und Umwelt e.V.
 Tel
 +49 (0)30 3087748- 0

 Panoramastr.1
 Fax
 +49 (0)30 3087748- 29

 10178 Berlin
 Mail
 info@bau-umwelt.com

 Deutschland
 Web
 www.bau-umwelt.com

Programmhalter

 Institut Bauen und Umwelt e.V.
 Tel
 +49 (0)30 3087748- 0

 Panoramastr.1
 Fax
 +49 (0)30 3087748- 29

 10178 Berlin
 Mail
 info@bau-umwelt.com

 Deutschland
 Web
 www.bau-umwelt.com

Ersteller der Ökobilanz

PE INTERNATIONAL
Hauptstraße 111
Fax
70771 Leinfelden-Echterdingen
Germany

Tel
+49 711 341817-0
+49 711 341817-25
info@pe-international.com
www.pe-international.com

Inhaber der Deklaration

In Kooperation mit

Germany

EXIBA - European Extruded Polystyrene
Insultation Board Association
Avenue E. van Nieuwenhuyse 4
We
1160 Brussels
Belgium

Tel +32 2 676 72 62 Fax +32 2 676 74 47 Mail coo@cefic.be Web www.exiba.org