ALGORITHM ANALYSIS-ASYMPTOTIC ANALYSIS

Tanjina Helaly Algorithms

HOW TO MEASURE THE TIME TO RUN AN ALGORITHM?

- One **naïve** way is to implement the algorithm and run it in a machine.
- This time depends on
 - the speed of the computer,
 - the programming language,
 - the compiler that translates the program to machine code.
 - the program itself.
 - And many other factors
- So, you may get different time for the same algorithm.
- Hence, not a good tool to compare different algorithm.
- To overcome these issues, need to model Time complexity.

TIME COMPLEXITY

- Developing a **formula** for **predicting** *how fast* an algorithm is, based on the **size of the input**
 - To compare algorithms
 - Measure of efficiency/goodness of algorithm
- 3 types of complexity
 - Best case
 - Lower bound.
 - Minimum number of steps/operations to execute an algorithm.
 - Measure the minimum time required to run an algorithm.
 - Not a good measure of Algorithm's performance.

TIME COMPLEXITY

- Worst case
 - Upper Bound
 - Maximum # of operations/time required to execute
 - Main focus
 - Reduce risks as it gives the highest time of algorithm execution
- Average case
 - the amount of some computational resource (typically time) used by the algorithm, averaged over all possible inputs.
 - Difficult to determine
 - Typically follow the same curve as worst

TIME COMPLEXITY

- The best, worst, and average case time complexities for any given algorithm are numerical functions over the size of possible problem instances.
- However, it is **very difficult** to work **precisely** with these functions,
 - Depends on specific input size.
 - Not a smooth curve
 - Require too much detail
 - So, need more **simplification** or **abstraction**.

ASYMPTOTIC ANALYSIS

- We ignore too much details steps such as
 - Initialization cost
 - Implementation of specific operation.
- Rather we focus on
 - how the time change if input doubles/triples
 - Or how many more operations do we need for that change.

A SAMPLE COMPLEXITY EQUATION

- How does each term effected by change of n?
 - For n=1000
 - \circ 2n²=2000000

 - Ratio: $2n^2/10n = 200 \rightarrow 0.5\%$ of $2n^2$
 - For n = 1000000
 - \circ 2n² = 200000000000000

 - Ratio: $2n^2/10n = 2000000 \rightarrow 0.0005\%$ of $2n^2$
- So, as n grows the lower order term become insignificant.

A SAMPLE COMPLEXITY EQUATION

- Do similar analysis for the equations below.
 - $f(n) = 2n^2 + 10n + 3$
 - $f(n) = 5n^2 + 6n + 35$
- Will you get different result?
 - No,
 - As $n \rightarrow \infty$, all lower order terms become so insignificant that we can just ignore them.
- Order of growth:
 - How the time grow with input size
 - Leading term/Highest order term in the equation

More to think

- Tell me what types of equation are the following 2?
 - $f(n) = 2n^2$
 - $f(n) = 5n^2$
- Does the coefficient impact the characteristics of the curve?
- Can we ignore the coefficient?
 - YES,
 - Why:
 - constant factors are less significant than the rate of growth in determining computational efficiency for large inputs.

More to think

- So, in terms of algorithm analysis, we can think
 - $f(n) = 2n^2 + 10n + 3 \sim n^2 \text{ or } \Theta(n^2)$
 - $f(n) = 5n^2 + 6n + 35 \sim n^2 \text{ or } \Theta(n^2)$

ASYMPTOTIC ANALYSIS

- Classifying functions into different category.
- \circ Formally, given functions f and g of a variable n, we define a binary relation
 - $f \sim g (as n \rightarrow \infty)$
- of and g grows the same way as their input grows.
- In Asymptotic Analysis,
 - we evaluate the performance of an algorithm in terms of input size
 - Do not measure the actual running time
 - We calculate, **how does** the time (or space) taken by an algorithm **increases with the input size**.

ASYMPTOTIC NOTATION

- There are 3 Asymptotic notations as follows:
- Big Theta
 - $f(n) = \Theta(g(n))$ means $c1 \cdot g(n)$ is an upper bound on f(n) and $c2 \cdot g(n)$ is a lower bound on f(n), for all $n \ge n_0$. Thus there exist constants c1 and c2 such that $f(n) \le c1 \cdot g(n)$ and $f(n) \ge c2 \cdot g(n)$. This means that g(n) provides a nice, tight bound on f(n).
- Big Oh
 - f(n) = O(g(n)) means $c \cdot g(n)$ is an upper bound on f(n). Thus there exists some constant c such that f(n) is always $\leq c \cdot g(n)$, for large enough n (i.e. $n \geq n_0$ for some constant n_0).
- Big Omega
 - $f(n) = \Omega(g(n))$ means $c \cdot g(n)$ is a lower bound on f(n). Thus there exists some constant c such that f(n) is always $\geq c \cdot g(n)$, for all $n \geq n_0$.

BIG O NOTATION

• The Big O notation defines an **upper bound** of an algorithm, it bounds a function only from above.

 $O(g(n)) = \{ f(n): \text{ there exist positive constants c and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$

BIG OMEGA - Ω NOTATION

• Just as Big O notation provides an asymptotic upper bound on a function, Ω notation provides an asymptotic lower bound.

 Ω (g(n)) = {f(n): there exist positive constants c and n₀ such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$ }.

• Similar to the best case, the Omega notation is the least used notation among all three.

BIG THETA- @ NOTATION

• $\Theta(g(n)) = \{f(n): \text{ there exist positive constants } c_1, c_2 \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n >= n_0 \}$

- The theta notation bounds a functions from **above** and **below**, so it defines exact **asymptotic** behavior.
- Thus g(n) provides a nice, **tight bound** on f(n).
- Note:
 - The definition of asymptotic is a line that approaches a curve but never touches.

BIG THETA- @ NOTATION

- Easy way to get Theta notation is to
 - Drop lower-order terms
 - Ignore leading constant.
- So, an³+bn+c = = $\Theta(n^3)$

HOW DO WE SHOW THAT?

- \circ To prove that we need to find a c_1 , c_2 and n_0 so that
 - $c_1 n^2 \le 2n^2 + 10n + 3 \le c_2 n^2 \text{ for } n \ge n_0$
- Obviously
 - $2n^2 \le 2n^2 + 10n + 3$ for any n • $c_1 = 2$
- To calculate c_2 lets increase the power of each term to the highest power
 - $2n^2 + 10n + 3 \le 2n^2 + 10n^2 + 3n^2 = 15n^2$
 - $c_2 = 15$

ANOTHER EXAMPLE

- \circ To prove that we need to find a c_1 , c_2 and n_0 so that
 - $c_1 n^2 \le 5n^2 + 6n + 35 \le c_2 n^2 \text{ for } n \ge n_0$
- Obviously
 - $5n^2 \le 5n^2 + 6n + 35$ for any n > 0• $c_1 = 5$
- To calculate c_2 lets increase the power of each term to the highest power
 - $5n^2 + 6n + 35 \le 5n^2 + 6n^2 + 35n^2 = 46n^2$
 - $c_2 = 46 \text{ for } n > 0$

MORE EXAMPLES

- $o f(n) = 3n^3 + 5n + 6 = \Theta(n^3)$
- $of(n) = n log n + 10n = \Theta(n log n)$
- \circ f(n) = 2 + 1/n = $\Theta(1)$

RELATIONSHIP AMONG THOSE NOTATION

- For any two functions f(n) and g(n),
 - we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.
 - $\Theta(g(n)) = O(g(n)) \cap \Omega(g(n)).$

DIFFERENT FUNCTIONS

- Constant functions, f(n) = c
- Logarithmic functions, $f(n) = \log n$
- Linear functions, f(n) = n
- Superlinear functions, $f(n) = n \lg n$
- Quadratic functions, $f(n) = n^2$
- Cubic functions, $f(n) = n^3$
- Exponential functions, $f(n) = c^n$
- Factorial functions, f(n) = n!
- o $n! \ge 2^n \ge n^3 \ge n^2 \ge n \log n \ge n \ge \log n \ge c$

TRY THESE

- Is $2^{n+1} = O(2^n)$?
- Is $2^{2n} = O(2^n)$?
- For each of the following pairs of functions, either f(n) is in O(g(n)), f(n) is in $\Omega(g(n))$, or $f(n) = \Theta(g(n))$. Determine which relationship is correct and briefly explain why.
 - $f(n) = \log n^2$; $g(n) = \log n$
 - $f(n) = \sqrt{n}$; $g(n) = \log n^2$
 - $f(n) = \log^2 n$; $g(n) = \log n$
 - $f(n) = n; g(n) = \log^2 n$
 - $f(n) = n \log n + n$; $g(n) = \log n$
 - $f(n) = 10; g(n) = \log 10$
 - $f(n) = 2^n$; $g(n) = 10n^2$
 - $f(n) = 2^n$; $g(n) = 3^n$

THE BIG OH NOTATIONS

Figure 3.1 Graphic examples of the Θ , O, and Ω notations. In each part, the value of n_0 shown is the minimum possible value; any greater value would also work. (a) Θ -notation bounds a function to within constant factors. We write $f(n) = \Theta(g(n))$ if there exist positive constants n_0 , c_1 , and c_2 such that at and to the right of n_0 , the value of f(n) always lies between $c_1g(n)$ and $c_2g(n)$ inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write f(n) = O(g(n)) if there are positive constants n_0 and c such that at and to the right of n_0 , the value of f(n) always lies on or below cg(n). (c) Ω -notation gives a lower bound for a function to within a constant factor. We write $f(n) = \Omega(g(n))$ if there are positive constants n_0 and c such that at and to the right of n_0 , the value of f(n) always lies on or above cg(n).

THE BIG OH NOTATION

$$\circ$$
 $3n^2 - 100n + 6 = O(n^2)$,

$$\circ$$
 $3n^2 - 100n + 6 = O(n^3)$,

$$\circ$$
 $3n^2 - 100n + 6 \neq O(n)$,

Because for
$$c = 3$$
, $3n^2 > 3n^2 - 100n + 6$;

Because for c = 1, $n^3 > 3n^2 - 100n + 6$ when n > 3;

Because for any c, $c \times n < 3n2$ when n > c;

$$\circ$$
 $3n^2 - 100n + 6 = \Omega(n^2)$,

$$\circ$$
 $3n^2 - 100n + 6 \neq \Omega(n^3)$,

$$\circ$$
 $3n^2 - 100n + 6 = \Omega(n)$,

Because for
$$c = 2$$
, $2n^2 < 3n^2 - 100n + 6$ when $n > 100$;

Because for
$$c = 3$$
, $3n^2 - 100n + 6 < n^3$ when $n > 3$;

Because for any c, $cn < 3n^2 - 100n + 6$ when n > 100c;

$$3n^2 - 100n + 6 = \Theta(n^2),$$

$$\circ$$
 $3n^2 - 100n + 6 \neq \Theta(n^3)$,

$$\circ$$
 $3n^2 - 100n + 6 \neq \Theta(n)$,

Because both
$$O$$
 and Ω apply;

Because only O applies;

Because only Ω applies.

REFERENCE

• Chapter 2 + 3 (Cormen)