

Dot Product/Length is defined as \(\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v} = (u, u_2...) \big(\vec{v}_1 \big) = u,v, + u,v_2 + ... Dot Product of 2 vectors if and v length / manitude of a vector is: لم ظ. له = العال الوال صه e b what values of k is it. v=0? ||u|| = -u.u = -u. + u. + ... u. $\vec{\mathsf{U}} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \vec{\mathsf{V}} = \begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix}$ lo a and for bac O vectors, OR 0 = 90° Ly licvil = Ic|||vil -> length of cv 1.v = 1 v = -1 (4) + k + 6 =0 G||a||=5, 117||=13, a.√=-1 If il, il, and ii are in Rn, cER find 11 a + v 11 (linearity → (v+ =) · = v· + = . . . 11 x+v112=(-1(x+v).(x+v)) unit vector - if v has length 1 Scalars → (c tl)· w = c(tl·tl) - (ス+ス) (ス+ス) Lymmetry → \(\vec{u}\cdot\vec{u}\) = \(\vec{u}\cdot\vec{u}\) true ble ALL entries are real entries are real if and analy \(\vec{u}\cdot\v なな+でな+な・ひ・な・な・ガ・ガ・ P 61:(9) = (6) distance between it and it is Ilii-VII 4. Distance between $\vec{u} = \begin{pmatrix} 7 \\ 1 \end{pmatrix}$ and $\vec{v} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$ = 2 5 + 3 - 2 = 26 → 11 v + v 11 2 = 26 126 = 112 + 11 Or the gonality 4 0 is orthogonal to every vector in Rn Two vectors on orthogonal if u.v = 0 if االآوتاء * ااتاء القاء القامة القاء * القامة القاء (القاء القامة القاء القامة القامة القامة القامة القامة ا Gorthongonality usually refers to non-zero vectors (s pythogonen theorem - n-dimensional version Sketch the set of vectors that are orthogonal to v: (3). Is the set a subspace? If $\vec{u}=(!)$ and $\vec{v}=(-!)$, then $\vec{u}\cdot\vec{v}=0$, and な・┇₌Ѻ $(u, u_1)(\frac{3}{2}) = 0$ $\overline{u} = (-\frac{2}{3}) \text{ and any multiple of } \overline{u}$ $\overline{u} \text{ is a subspace be the } \underline{line} \text{ (span)}$ goes through the signs $||\vec{u} + \vec{v}||^2 = ||(\frac{2}{6})||^2 = (\sqrt{2^2 + 0^2})^2 = 4$ $\|\vec{\mathbf{u}}\|^{2} = \sqrt{\vec{\mathbf{u}} \cdot \vec{\mathbf{u}}} = \sqrt{2} = 2$ $\|\vec{\mathbf{v}}\|^{2} = \sqrt{\vec{\mathbf{v}} \cdot \vec{\mathbf{v}}} = \sqrt{2} = \sqrt{2} = 2$ Orthogonal Compliments If Wis a suspece of Rn, v is orthogonal to Wif z is orthogonal to every vector in W Line L is subspace R3 spanned by V=(-12) Space L' is a plane, construct L' (s The set of all vectors orthogon to W is the orthogonal compliant of W, W ("W perp") W= \zero \times \in \times \ti if ueL and u=(Y), then u.v=(-Y) x-y+22=0, so if solving for z, 22=4-x A = (123), find (LolA) if ColA is spor of of = (12) ((a)A) is span = (2) Find (Null A) (13) -> (13) X2 is face) x= x2(-3) or (Null A) is spon (3)

The Four Fundamental	Sibspires
ROWA (ROW Spee) - space spanned by	
La Basis for ROWA is given by pivot rows of	
Ls din (Rowa) = din (GIA)	If v is in NulA. Av = 0 definition
GROWA = COLAT	God product of A.v. o, so vis orthogonal to rows of A
S In general, Rowa and Cola am NOT related a other	vectors in R
A = (000), construct:	than Subspaces Grant A is orthogonal to NulAT, ColA = NulAT Subspaces
Row A: {(130), (001)}	vectors in RM
Row A : NullA, X2 is free, X3 0 > X2 1	$(-\frac{3}{2})$ $\left\{\begin{pmatrix} -\frac{3}{2} \end{pmatrix}\right\}$
(a) A: \(\(\frac{1}{6} \), \(\frac{1}{6} \) \(\frac{1}{6} \)	
(61A1: Null AT, (3 98) - (5 00) X, =	0×3 -> x = x 3 (°) 5 (°) \$
	Par.
Orthogonal Bases	
	nal set of vectors if for each j x k, tij Ltik (all mutually orthogonal)
Marke the orthogonal set: HAS to be $\vec{u}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \vec{u}_2 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \vec{u}_3 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$	If it are all non-zero, then the arthogonal set one ALL linearly independent
4(-2)+0+x=0 -2(0)+0++2=0	If \(\vec{\pi} \), \(\vec{\pi} \) is an orthogonal basis of \(\W, \vec{\pi} \) \(\vec{\pi}
X - 8 : 0	
x = 8	(5) You can ONLY apply the theorem if you have an orthogonal localis for W
Wis on orthogonal set to Xi confirm that on	orthogonal basis is given by it and it, and compute the expansion of it is a basis for W:
A 22 - 1 - 1 1 1 1 1 1 1	= (1), v=(-1), v=(-1), s=(-1) Both on in set W, proven
a) the solution of the solutio	3, 3, 3, 3, 3,
	α.α V·V Ω.α μπ.ι.)
1-2+1=0,-1+0+1=0 -1+0	71-0
	1
Orthonormal Basis - orthogonal basis &	e ū, ūρ β when every vector has unit legth:
Wis perpendicular to \$, find coefficient for	
$X = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ u = \frac{1}{42} \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \ v = \frac{1}{46} \begin{pmatrix} -2 \\ -1 \end{pmatrix}$	Bases are NOT uniquel
u needs to EW, and u·u=1	v neds to $EW, u.v. 0$, $ v = 1$ $v = \frac{1}{16} \left(\frac{c_1}{c_2}\right) \rightarrow u.v$, $c_1 = c_3$ $v = \frac{1}{16} \left(\frac{c_1}{c_2}\right) \rightarrow u.v$, $c_1 = c_3$ $v = \frac{1}{16} \left(\frac{c_1}{c_2}\right) \rightarrow u.v$, $c_2 = c_3$
u. x = 0 , u =	William as and lines constrained (CC1, CZ, C3)
$\frac{1}{2}(10^{-1})(\frac{1}{1})=0$ $1\frac{1}{5}+(-1)\frac{1}{5}(\frac{1}{1})=$	
12 (= 1	Choosing c1=1, c2=-2 and c3=1; if v =1, k=6

Orthogonal Projections Y and it are 2 non-zero vectors, and it is in the spon of W The orthogonal projection of it anto it is the La The closest vector in W is 9; how do you find 9? vector in the span of it closest to \$\vec{y}\$, \$\vec{y}\$ by = 9+2, = EW+; how do you And 9 and 2? Proja 7 = T. T , T = 9+2 where ZEW Orthogonal Projection 6 119112 = 119112 + 112112 If \vec{u} is in 10 subspace S, and S¹ is also a 10 subspace, projection of \vec{u} onto S¹ is $\vec{0}$ G If $\vec{x} \in S^1$, $\vec{x} \neq \vec{0}$, then project $\vec{x} = \vec{x} \cdot \vec{x} \neq \vec{0}$ $\vec{x} \cdot \vec{x} \neq \vec{0}$ TRUE 40=(4-ka).a = 7. 1 - h 1 1 - h = 1 1 1 1 1 1 1 1 1 1 $\varphi = \frac{\overline{Y} \cdot \overline{U}}{\overline{z} \cdot \overline{z}} \overline{U} \leftarrow ---$ Lis spanned by it, it=(1), y=(3); Calculate projection if onto L; what is distance the Y/L $point \vec{y} = \frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}} \vec{u} = \frac{9}{3} \vec{u} = \left(\frac{3}{3}\right) \longrightarrow \vec{v} = \vec{z} + \vec{v} \rightarrow \left(\frac{3}{2}\right) = \vec{z} + \left(\frac{3}{3}\right), \vec{z} = \left(\frac{9}{3}\right)$ distance = 1/211, - 102+12+(-1)2 Matrices with Orthonormal Columns An MXN Months U has orthonormal columns if and only if UTU= In / i) || U オ || = || オ || ₹ → Ux preserves length + orthogonaling Gorthogonal Mortix - Square motifix with orthonormal columns 2) (Ux)·(Uy) = x.y 3) (Ux)·(Uy)=0 ↔ x.y=0 > Proof: ||Ux||2 = (Ux).(Ux) SIF U is an orthogonal matrix, U"= UT 6 det 0 = 1 or -1 = xTUTUx = x T I x Proof: | = det I = det(ATA) = det AT . det A = 1.1 or -1.-1 = x^Tx = (| x || 2 || x || = || v_x|| True or Folise? DIF U is orthogonal, its columns are linearly independent true! 2) If the determinant of a matrix is 1, then the matrix must be orthogonal failsel The Best Approximation Theorem W is a subspace of R", if ER", if is the orthogonal projection of if anto W→ Than for ANNY vector v +i, v ∈w: (> 11 \$ - \$11 < 11 \$ - \$11 → \$ is the unique vector in W closect to \$ 6 4-0=4-0+(3-4)=(4-4)+(4+0) If v is a vector in Road W is a subspace, then projuc (projur) = projur true! La Projuvi = û, û EW, projuv = û, so projuv = û What is the distance between if and subspace w= sport vi, vizz? Y=(3), vi=(3), vi=(3), vi=(3), vi=(3), vi=(3) $Y=2+\hat{Y}\rightarrow \begin{pmatrix} 1\\ 3 \end{pmatrix}: 2+\begin{pmatrix} 2\\ \frac{1}{3} \end{pmatrix} \rightarrow 2=\begin{pmatrix} -2\\ -\frac{1}{6} \end{pmatrix} \rightarrow ||2||^2: 2^2+(-2)^2+0^2 \rightarrow 2=\sqrt{8} \rightarrow 2=2\sqrt{2}$ Orthogonal Decomposition Theorem Let W be a subspace of R"-Then & ER" has 立,... · us is an orthonormal lowis for PS - Let W spor を切りする Go For any vector ERS, can we construct of and z so that \$ = 9+2, 2 EW and &EW the unique decomposition = 9+2, 9 EW, z EW+ Ly U; spons Rs, so \$ = \$ ciai And, if ii, ... if is any orthogonal bacis for W, = (,14, + (,14, + (,14, +), +), +) $\hat{Y} = \frac{\vec{Y} \cdot \vec{u_1}}{\vec{u_1} \cdot \vec{u_1}} \cdot \vec{u_1} + \dots + \frac{\vec{Y} \cdot \vec{u_p}}{\vec{u_p} \cdot \vec{u_p}} \cdot \vec{u_p} \cdot \vec{u_p}$ With the set is orthonormal

Construct on QR fectorization for $A = \begin{pmatrix} 3 & -2 \\ 2 & 3 \end{pmatrix}$ (5) Columns of Q form an arthonormal basis for colA, but columns of A are calculated orthogonal (* Special Case *)
(5) Q = (3/173 3/174), P = QTA, P = (13/173 0)
(14/174)
(17/174)

Least-Squares Solution to Inconsistent Systems

Let A be an man matrix - a least-squees solution to Ax= b is the solution of for which || b-AxII ≤ || b-AxII for all x ∈ R" > Identify x that minimizes 11 b-Ax11, denoted as x

If BECOLA, then AR=B is consistent () We need 2 so that A is as close to is as possible Least-Squares Error-distance from 6 to Aix

> If all of these one true, then least-squares is

2=(ATA)-1AT6

The closest vector in $\operatorname{Col} A$ to \overrightarrow{b} is $A\widehat{x}$.

Normal Equations

Orthogonal decomposition theorem - if A& is the closest vector in GOIA to be 6, then 6-Ax is GOIA+ -> GOIA+=NUIIAT

G AT(\$-Ax)= 0 ⇒ ATA 2 = AT6 Normal Equations -> ATAR = ATB

4 Theorems: -> Golumns are linearly independent

→ Matrix ATA is invarible

→ Equation Ax= 16 has a unique less+-squares solution for each 16 E R **

Compute least-squeres for Azit

 $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ $\vec{b} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$

 $A^TA\hat{x} = A^Tb$, $\begin{pmatrix} 0 & -1 \\ 0 & -1 \end{pmatrix}\begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}\hat{x} = \begin{pmatrix} 0 & 1 & -1 \\ 0 & 1 & -1 \end{pmatrix}\begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$ $\begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} \hat{X} = \begin{pmatrix} 2+2+1 \\ 0+2+1 \end{pmatrix}$

 $\binom{0}{3} \binom{1}{0} \times = \binom{3}{3}$

 $\begin{pmatrix} 3 & 3 \\ 0 & 2 & 3 \end{pmatrix} \rightarrow \hat{X} = \begin{pmatrix} 1 \\ 3/2 \end{pmatrix}$

QR and Least-Squares

If AERMEN has linearly independent columns, then A=QR, and for curry to ERM, Ax=6 has the unique least-squares solution 4 1. construct QR decomposition of A -> get Q, orthonormal basis of Col A (using Wan-Schnidt), get R = GTA

2. Solve Ri= QTb to get is Chiven data: X -2 -1 0 1 2 Find y=C1+C2x

 $A_{\vec{X}}^{-1} = \begin{pmatrix} 1 & -\frac{1}{2} \\ 1 & -\frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} \zeta_1 \\ \zeta_2 \\ 1 \end{pmatrix} = \vec{\zeta} \rightarrow QR = \begin{pmatrix} 1/\sqrt{15} & -2\sqrt{160} \\ \vdots & \vdots \\ 1/\sqrt{15} & 2\sqrt{160} \end{pmatrix} \begin{pmatrix} \frac{5}{\sqrt{15}} & 0 \\ 0 & \frac{10}{\sqrt{160}} \end{pmatrix}, \ Q^{T}\vec{b} = \begin{pmatrix} 2\sqrt{7} \\ 11/\sqrt{160} \end{pmatrix}, \ R\hat{\chi} = Q^{T}\vec{b}, \hat{\chi} = \begin{pmatrix} 2/5 \\ 11/\sqrt{160} \end{pmatrix}$

invehille + upper friagular
Ris = OTB

	Residuals			als	and	le	4 } _	Sgu	acs																		
X,						Fina					f y =	Co+ C,	×														
Y.		1	ı	Ч	3	(ΑŞ	= 6																			
							/:	2\/(ا ره	<u>'{ </u>	۸۷ د	, اعس	A [™] A ŵ	: ATG	\	- v - (S + 16	×							
X		2	5	า	8		(;;	} /\	1)=1	(3) -	→ Q£	, R 	- QTi)	مدا	adel	C·L 7	. 0			-3	19	ì _x .			
	+		(~											13801		(for c		4 C(x	i = 2	(· 4	2			
Y;	+	1					`	_														1					
ŷ	i .	.67	2.02	2.93	3.38											_											
R	esid	uals	ーゞ	that.	Minim	ized [[Aż-	- 7 [1	over	م الم	oos; U	اد ټا (₽^ -	> equ	al to	winiw	izing	ΠAŻ	-7 112								
						: 11711																					
						C+	ϳ ʹフ ^ϯ	T minin	isc Su	ر~																	
L	, II	cll ²	is 1	N s		d dis	loore	beta	le a	 	d C	nl A															
						ion (سر	y U		.,,															
1.																											
US/	mon	Proc	tice i	when i	using	model	y = 0	6+ C.	ر ب ~	compo	c own	αγ , ₹	of th	L X-US	ulues !	hertni o	bee a	~w ,	الحادة مما	X _k	= 4-	ĸ.					
X,	+	2	· .	ר	8	→ avi	(rage /1 -3.	value .s\.c.	of x	i is 5	= 5.	5 , x-	-values	-₹ -	٠ ٠ ٠	(₀ + 0	ı X _{de}	, e	ean-de	wiation	form						
Y.	_	1	ı	ч	3	له	(-	;)(;	') = A	s = (¾))= 6 -	→ A ^T A	\ = (0 dice	ر (د اند	4 ^T ÿ =	(a.s)-	⇒ γ=	21 +	45 x.								
													y.u.,	,													
		ùer	LIG	1 Li	NA	Mad	kl																				
ر) یا						s with		rves	/non	-strai	ight 1	lins		Ls	Lenst	Square	r [tit],	→ v	= Ca +	c, f,C	x) + C	.f.cx) +	Cre fre	(x)		
						ition wi																		u pololo			
l. aa	. دورون	1 1			٥.,	Mir.	giarise Icase	, , , ,		1							, ,	, ,,	U 1 U1	00410			10.00	<u></u> proc			
Sei	bna	Orde	Pol	provie	- ۱.	→ Find	coeffi	cients	c, and	c ₂ f	6/ Y	= C ₁ X +	C2 X2	that .	best f	15 the	deta							. 6	c,		
X	+	-1	0	0	1	→ Find → Y	= 4×	+ C,	x² →	04	Oc.	, i _		6	x =	(1)	→ A ^τ	Aŵ=	ATĞ,	$\binom{2}{0}$	2)\$	-(⁴)), ♀	= (² ų	-> Y =	2×+	4ײ
Y	_	2	١	0	6					C, +	(3:	: 6	\ i	1/		6/								,,,	•		
						= Co+																					
						mother																					
M	داملہ	٠. ٢																									
×	.	-2	-I	0	0	1	2	۲.	-2c,	+62 =	2	11	-2	ι\	,	2\					/1	, n,		/o\			
,		ı	ı	-3	-1	1 -2	ı	حک رہ ح	- در - +0در-	362 =	۱ _,	. :	0 -	3	;	; \	→ A	^τ Α 🕏 :	ΑTE	→(0	10 0) x	_(-11) -3 2 :	- <u>II</u> x	- 2 Y
	+	,		-	٥	-2.	-2	رہ	+ 0c,	-C ₂ =	0 -2	1	1 1	' /	^ \	-2					0	0 14	/	۱ ۲	/		
Z		۷	'					c _o	+ 2c,	+(3 =	-2	1	- 1	/	`	(2)											