Cache-based Recurrent Transformer Network

概览

对于时间步 \mathfrak{t} ,输入片段(向量)为 $X_t \in R^{L \times d}$,Memory 为 $\mathcal{M} = \{K_i, V_i\}_{i=1}^N$,网络的更新步骤大致分为

查询

$$\{\alpha_i, Z_i\}_k = Query(X_t, \mathcal{M})$$
 (1)

其中 Z_i 为需要进行回忆(以 Transformer Memory 的方式拼接进当前区域)的 k 个区域, α_i 为其对应的权重

M 是 Memory,存储 N 个 Key-Value 对,Value 即为区域,对应的 Key 为该区域的一个意义向量。

更新 hidden state

$$h_t^{1:m} = Transformer(\alpha_{1:k}, Z_{1:k}, X_t)$$
 (2)

更新 Memory

$$\mathcal{M} = renew(h_t^{1:m}, \mathcal{M}) \tag{3}$$

1 查询

• 1.1 standard

$$\{\alpha_i, Z_i\}_k = topk(softmax(summary(X_t) \cdot Keys^T))$$

其中 summary 函数与之后更新 Memory 时使用的相同

• **1.2** computefirst: $\{\alpha_i, Z_i\}_k = Query(summary(Transformer(X_t)), \mathcal{M})$

$$\{\alpha_i, Z_i\}_k = topk(softmax(summary(Transformer(X_t)) \cdot Keys^T))$$

其中 summary 函数与之后更新 Memory 时使用的相同, Transformer 共享模型参数

2 更新 hidden state

• 3.1 standard: 采用 Transformer-XL 的方法

对于 n=1, ..., m
$$\mathbf{m}^{n-1}_t = concat(Z_{1:k}^{n-1})$$

$$\tilde{\mathbf{m}}_t^{n-1} = concat(\{\alpha_i Z_i^{n-1}\}_{i=1}^k)$$

$$\tilde{\mathbf{h}}_t^{n-1} = \left[\operatorname{SG}\left(\mathbf{m}_t^{n-1}\right) \circ \mathbf{h}_t^{n-1}\right]$$

$$\hat{\mathbf{h}}_t^{n-1} = \left[\operatorname{SG}\left(\tilde{\mathbf{m}}_t^{n-1}\right) \circ \mathbf{h}_t^{n-1}\right]$$

$$\mathbf{q}_t^n, \mathbf{k}_t^n, \mathbf{v}_t^n = \mathbf{h}_t^{n-1} \mathbf{W}_q^{n\top}, \tilde{\mathbf{h}}_t^{n-1} \mathbf{W}_{k,E}^{n\top}, \hat{\mathbf{h}}_t^{n-1} \mathbf{W}_v^{n\top}$$

$$\mathbf{A}_{t,i,j}^n = \mathbf{q}_{t,i}^{n\top} \mathbf{k}_{t,j}^n + \mathbf{q}_{t,i}^{n\top} \mathbf{W}_{k,R}^n \mathbf{R}_{i-j} + u^{\top} \mathbf{k}_{t,j} + v^{\top} \mathbf{W}_{k,R}^n \mathbf{R}_{i-j}$$

$$\mathbf{a}_t^n = \operatorname{Masked} - \operatorname{Softmax}\left(\mathbf{A}_t^n\right) \mathbf{v}_t^n$$

$$\mathbf{o}_t^n = \operatorname{LayerNorm}\left(\operatorname{Linear}\left(\mathbf{a}_t^n\right) + \mathbf{h}_t^{n-1}\right)$$

$$\mathbf{h}_t^n = \operatorname{Positionwise-Feed-Forward}\left(\mathbf{o}_t^n\right)$$

 $h_t^{1:m} = \text{Transfromer-XL}(\alpha_{1:k}, Z_{1:k}, X_t)$

3 更新 Memory

Memory 的大小为 N 个 Key-Value 对,每个 Value 为一个片段 X_i 的所有层的表示。将上一步生成的 $h_t^{1:m}$ 存入 Memory:

• 将第一个 Key-Value 对删除,其余的向前递补,最后一个 Key-Value 对为空,将 $h_t^{1:m}$ 填入 Memory 中的第一个空位

对于填入 $h^{(t)}$ 的 Key-Value 对,需要更新其 Key,用最顶层表示更新 Key:

$$Key = summary(h_t^n)$$

- **4.1** $Key = ReLU(W_S \cdot h_t^n + b_S)$
- **4.2** $Key = MLP(h_t^n)$

$$(N\times)$$
 $x = ReLU(Wx + b)$

• **4.3** $Key = BiLSTM(h_t^n)$