Banco de Dados I

Introdução

Cap. 1 e 2 (Elmasri) Cap. 1 (Silberschatz) Cap. 1 (Ramakrihsnan)

Denio Duarte duarte@uffs.edu.br

Dados

- Podemos definir como a menor característica de um objeto
 - Nome, idade, cor, altura, potência, valor, dimensão, coordenada x, capacidade ...
 - Os dados têm um domínio associado:
 - Nome é representado por uma cadeia de caracteres
 - Idade é representado por um inteiro entre 0 e 110
 - Cor pode ser azul, vermelho e verde
 - ...

- **Dados**
 - Porém os dados estão "soltos" por aí

Gustavo Kuerten Magda Cotrofe Salvador Dali Rosangela Santos

Banco de Dados I Sistemas Operacionais Fisiologia I História Medieval

1,9;M;10/09/1976

1,65;F;20/12/1990

1,75;F;18/01/1963 1,68;M;11/05/1904

Ciência da Computação Ciência da Computação Física História

Temos que organizá-los para serem úteis

- Banco de Dados
 - Conjunto de dados integrados e relacionados que tem como objetivo atender uma comunidade de usuários.
 - Propriedades implícitas
 - Representa aspectos do mundo real (minimundo ou universo de discurso).
 - Coleção de dados logicamente coerentes com algum significado inerente.
 - Projetado, construído e povoado (instanciado) para aplicações específicas

- Banco de Dados
 - Exemplos de minimundos ou universos de discurso
 - Universidade
 - Acadêmico: preocupado com os dados dos alunos, componentes curriculares, matrículas, professores, etc
 - Gestão de Pessoas: preocupado com os servidores (professores e técnicos administrativos, titulação, cargo, horas trabalhadas, férias, etc)

Banco de Dados

Acadêmico

Mat	Nome	Altura	Sexo	Data Nasc	Curso
22 33	Gustavo Kuerten Magda Cotrofe Salvador Dali Rosangela Santos	1,9 1,75 1,68 1,65	M F M F	±0/00/±0.0	1 3 1 2

		Código	Código Nome		ver Dados		
Código	Nome	1 2 3	Ciência da Co Educação Fís História	•	Mat	Disciplina	Média
1 2 3 4	Banco de Dados I Sistemas Operacio Fisiologia I História Medieval	nais		2012-1 2012-2 2013-1 2013-1	11 22 33 22	4	7,5 5,6 8,0 6,3

- Questões para refletir:
 - Como os dados estão organizados no disco?
 - Como acessar os dados armazenados?
 - Como estes programas "enxergam" os dados no disco?

Como os dados estão organizados no disco?

Como os dados estão organizados no disco?

Como os dados estão organizados no disco?

- Como acessar os dados armazenados?
 - Depende da interface utilizada pelo programador:
 - Diretamente
 - Pouco utilizada (necessário conhecer o hardware)
 - Sistema Operacional
 - Utiliza a camada Sistema de Arquivos
 - Sistema Gerenciador de Banco de Dados (SGBD)
 - Interface que separa o programa do banco de dados

- Como estes programas "enxergam" os dados no disco?
 - Os dados estão organizados no disco como um sequência de bytes
 - Esse formato n\u00e3o \u00e9 interessante para os programas
 - Organização na memória RAM:
 - Lista encadeada
 - Vetor
 - Árvore
 - Pilha, etc

- Dois pontos nos interessam
 - Como acessar os dados
 - Como os dados são vistos pelos programas (ou como são organizados pela interface)
 - Chamaremos Modelo de Dados

Como Acessar os Dados

- Sistema de arquivos
 - Os dados podem ser gerenciados diretamente pelo sistema de arquivos do sistema operacional
 - Volume pequeno de dados
 - Problema com redundância, segurança, confiança
 - Dados são sequência de bytes
- Sistema Gerenciador de Banco de Dados SGBD
 - Grande volume de dados
 - Oferece controle de redundância, segurança e confiança

Modelo de Dados

- Os SGBDs tratam seus dados de várias formas
 - Essas formas são chamadas de modelo de dados (como os dados são organizados para os programas acessarem)
 - Hierárquico
 - Redes
 - Relacional
 - Orientado a objetos
 - Objeto-Relacional
 - Semi-estruturado
 -

Evolução

Aplicações de BD: evolução

- Sistemas de Arquivos
 - Não utilizam software específico para gerenciar os dados
 - Apoiados nas funções do Sistema Operacional
 - ISAM
 - VSAM

- Modelo Hierárquico (IMS IBM)
 - Baseado em estrutura de árvores

Hierárquico

- Modelo de Rede (CODASYL)
 - Baseado em links e conexões
 - Representa dados como tipos de registros
 - Relaciona um registro com um ou vários outros através de ponteiramento

Redes

Relacional

- Dados são vistos como relação (tabelas)
- O relacionamento entre as relação é feito através de valores comuns entre as mesmas
- Proposto por Codd em 1970
- Primeiras implementações comerciais a partir de 1980

Relacional

STORE		
Store_key	City	Region
1	New York	East
2	Chicago	Central
3	Atlanta	East
4	Los Angeles	West
5	San Francisco	West
6	Philadelphia	East

PRODUCT					
Product_key	Description	Brand			
1	Beautiful Girls	MKF Studios			
2	Toy Story	Wolf			
3	Sense and Sensibility	Parabuster Inc.			
4	Holiday of the Year	Wolf			
5	Pulp Fiction	MKF Studios			
6	The Juror	MKF Studios			
7	From Dusk Till Dawn	Parabuster Inc.			
8	Hellraiser: Bloodline	Big Studios			
•					

SALES_FACT Product_key Store_key Sales Cost Profit 2.39 1.15 1.24 16.7 6.91 9.79 4.40 7.16 2.75 4.77 1.84 2.93 11.93 4.59 7.34 14.31 8.80 5.51

- Relacional
 - Modelo baseado em um formalismo matemática
 - Definido sobre o mesmo a álgebra relacional
 - A base matemática permite
 - Otimizar consultas
 - Otimizar acesso
 - Otimizar armazenamento
 - Entre outros

- Relacional
 - Modelo de banco de dados mais utilizado por aplicações comerciais
 - Oracle
 - SQLServer
 - DB2
 - MySQL
 - PostgreSQL
 - Firebird

- Modelos Semânticos
- Extensões do modelo relacional
- Orientado a objetos
- Objetos-relacionais
- Semiestruturados

- SGBD NoSQL (Not Only SQL)
 - Classe de SGBD para trabalhar com quantidade volumosa de dados distribuídos em diferentes nós de uma rede
 - Modelos de dados
 - Orientado a documentos (JSON, XML)
 - MongoDB, CouchBase, eXist
 - Orientado a colunas
 - MonetDB, C-store, Cassandra
 - Orientado a chave/valor
 - DynamoDB, SimpleDB, Redis, Riak
 - Orientado a grafos
 - Neo4j, GraphBase

- Banco de dados convencionais
 - Características
 - Dados bem estruturados
 - Tipos de dados simples (inteiros, caracteres, data, reais, ...)
 - Transações simples e curtas
 - Acesso através de chaves

- Banco de dados convencionais
 - Aplicações
 - Folha de pagamentos
 - Controle de estoque
 - Contas a pagar
 - Sistema acadêmico
 - Gerações
 - 1a. e 2a.

- Banco de dados não convencionais
 - Características
 - Grande volume de dados (às vezes, não estruturados)
 - Tipos de dados complexos (gráficos, imagens, sons, ...)
 - Transações longas
 - Caminho de acessos não triviais
 - Controle de versões

- Banco de dados não convencionais
 - Aplicações
 - Controle de dados geográficos
 - Controle de dados geoespaciais
 - Projeto assistido por computador (CAD)
 - Geração
 - 3a.

- Big Data
 - Conjunto de problemas e suas soluções tecnológicas em computação para tratar certos tipos de dados:
 - Volumosos, heterogêneos, fácil acesso
 - SGBDs NoSQL foram propostos para atender Big Data
 - Volume
 - Giga (G): bilhões
 - Tera (T): trilhões
 - Peta (P): mil trilhões
 - Exa (E): milhões de trilhões
 - 5E → todas as palavras ditas pelos humanos

SGBD

- Modelo relacional
 - Os dados são organizados em tabelas ou relações
 - Conjunto de tuplas ou linhas
 - Organizados em atributos ou colunas
 - Conceitos de chaves
 - Primárias e estrangeiras

SGBD

• Sistema Gerenciando de Banco de Dados (SGBD)

SGBD

Sistema Gerenciando de Banco de Dados (SGBD)

Conjunto de programas que permite ao usuário manter um banco de dados de forma consistente e segura

Arquitetura três-camadas (ANSI/SPARC)

Arquitetura três-camadas

Arquitetura três-camadas

```
create table Func (
  Nome varchar2(30),
  CPF   number(11),
  Sal      number(10,2),
  CProf  number(4),
  CDepto  number(4))
```


Arquitetura três-camadas

Arquitetura três-camadas

Independência lógica dos dados: O nivel conceitual pode ser alterado sem afetar o nível externo.

Arquitetura três-camadas

Independência lógica dos dados: O nivel conceitual pode ser alterado sem afetar o nível externo.

```
Create table Func (
Nome varchar2(30),
CPF number(11),
Ender varchar2(40),
Sal number(10,2),
CProf number(4),
CDepto number(4))
```

Arquitetura três-camadas

Independência lógica dos dados: O nivel conceitual pode ser alterado sem afetar o nível externo.

```
Create table Func (
Nome varchar2(30),
CPF number(11),
Ender varchar2(40),
Sal number(10,2),
CProf number(4),
CDepto number(4))
```

Arquitetura três-camadas

Independência física dos dados: capacidade de alterar o esquema interno sem a necessidade de alteração do esquema conceitual.

Funções Básicas

- Integridade semântica
 - Dados corretos em relação ao domínio da aplicação
 - Tamanho de uma sequência de caracteres
 - Cardinalidade entre tabelas 1:N, 1:1, etc
 - Regras de integridade
 - Chaves primárias/estrangeiras

Funções Básicas

- Cópia, restauração e recuperação de dados
 - Backup, restore (restauração), recovery (recuperação)
- Desempenho: mecanismos de otimização
- Segurança
 - Não permitir inconsistências nos dados
 - Segurança de acesso
 - Permissões, visões
 - Segurança contra falhas
 - Gerenciamento de transações
 - Gerenciamento de recuperação

Funções Básicas

- Concorrência
 - Permitir acessos simultâneos aos dados com garantia da consistência
- Independência dos dados
- Capacidade dos dados de um BD persistirem aolongo de diferentes execuções de programas de aplicação (persistência)

Componentes SGBD

Componentes de um SGBD

Fonte: <u>Database Systems</u>: the Complete <u>Book</u> <u>Garcia-Molina</u>, <u>Ullman</u>, <u>Widom</u>