

10.020 Data Driven World

Linear Regression: Testing

Peng Song, ISTD

Week 9, Lesson 2, 2021

Revision: Linear Regression

Revision: Linear Regression

- Hypothesis: $h_{\beta}(x) = \beta_0 + \beta_1 x$
- Cost function: $J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\beta}(x^{(i)}) y^{(i)})^2$
- Gradient Descent:

$$\beta_0 := \beta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\beta(x^{(i)}) - y^{(i)})$$

$$\beta_1 := \beta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\beta(x^{(i)}) - y^{(i)}) x^{(i)}$$

Revision: Linear Regression

• Hypothesis:
$$\widehat{y} = X \times b$$

• Cost Function:
$$J(\beta_0, \beta_1) = \frac{1}{2m} (\widehat{y} - y)^{\mathrm{T}} \times (\widehat{y} - y)$$

• Gradient Descent:
$$\mathbf{b} = \mathbf{b} - \alpha \frac{1}{m} \mathbf{X}^{\mathrm{T}} \times (\mathbf{X} \times \mathbf{b} - \mathbf{y})$$

where
$$\hat{\mathbf{y}} = \begin{bmatrix} \hat{y}^1 \\ \hat{y}^2 \\ \hat{y}^3 \\ \vdots \\ \hat{y}^m \end{bmatrix}$$
 $\mathbf{X} = \begin{bmatrix} 1 & x^1 \\ 1 & x^2 \\ 1 & x^m \end{bmatrix}$ $\mathbf{b} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$ $\mathbf{y} = \begin{bmatrix} y^1 \\ y^2 \\ y^3 \\ \vdots \\ y^m \end{bmatrix}$

House Pricing Prediction

Data Acquisition and Preprocessing

Size in feet^2	Price (\$) in 1000's
(x)	(y)
2104	460
1416	232
1534	315
852	178
•••	

House Pricing Prediction

Visualize preprocessed data as a scatter plot

Data Splitting

Split data into a training dataset and a testing dataset randomly

Data Splitting

Split data into a training dataset and a testing dataset randomly

Linear Regression: Training

• Hypothesis: $h_{\beta}(x) = \beta_0 + \beta_1 x$

Linear Regression: Training

- Hypothesis: $h_{\beta}(x) = \beta_0 + \beta_1 x$
- Determine β_0 , β_1 in the hypothesis using a gradient descent method

Linear Regression: Prediction

• Predict y according to a given x using the model $y = \hat{\beta}_0 + \hat{\beta}_1 x$

How to assess whether our prediction is good or not?

Learned Model May Not be Useful

Case 1: relation between y and x is not linear

Learned Model May Not be Useful

Case 1: relation between y and x is not linear

Learned Model May Not be Useful

Case 2: no correlation between y and x

• **Goal**: assess accuracy of learned linear model $y = \hat{\beta}_0 + \hat{\beta}_1 x$ using the test dataset

• **Goal**: assess accuracy of learned linear model $y = \hat{\beta}_0 + \hat{\beta}_1 x$ using the test dataset

• Goal: assess accuracy of learned linear model $y = \hat{\beta}_0 + \hat{\beta}_1 x$ using the test dataset

- **Goal**: assess accuracy of learned linear model $y = \hat{\beta}_0 + \hat{\beta}_1 x$ using the test dataset
- Two metrics
 - 1. Mean Squared Error
 - 2. R² Coefficient of Determination

Mean Squared Error (MSE) measures the average squared difference between the predicted values and the actual values.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y^i - \hat{y}^i)^2$$

number of predicted data points in the **test** data set

 y^i : actual value in the **test** data set

 \hat{y}^i : predicted value obtained using the hypothesis and x^i in the **test** data set.

20

Mean Squared Error vs Cost Function

Mean Squared Error

What are the differences?

Cost Function

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y^i - \hat{y}^i)^2$$

 $J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} (y^i - \hat{y}^i)^2$

n is the number of predicted data points in the *test* dataset

used for **testing** a model

m is the number of predicted data points in the *training* dataset

used for training a model

R2 coefficient of determination is the proportion of the variation in the dependent variable that is predictable from the independent variable.

$$R^2 = 1 - \frac{ss_{res}}{ss_{tot}}$$

Residual sum of squares

Total sum of squares

where
$$ss_{res} = \sum_{i=1}^{n} (y^i - \hat{y}^i)^2$$

$$ss_{tot} = \sum_{i=1}^{n} (y^i - \bar{y})^2 \qquad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

<u>Wikipedia</u>

R2 coefficient of determination is the proportion of the variation in the dependent variable that is predictable from the independent variable.

$$R^2 = 1 - \frac{\text{SS}_{\text{res}}}{\text{SS}_{\text{tot}}}$$

where $ss_{res} = \sum_{i=1}^{n} (y^i - \hat{y}^i)^2$

$$ss_{tot} = \sum_{i=1}^{n} (y^i - \bar{y})^2$$

Wikipedia 27

$$R^{2} = 1 - \frac{\text{ss}_{\text{res}}}{\text{ss}_{\text{tot}}} = 1 - \frac{\sum_{i=1}^{n} (y^{i} - \hat{y}^{i})^{2}}{\sum_{i=1}^{n} (y^{i} - \bar{y})^{2}}$$

What is the R² value?

$$R^{2} = 1 - \frac{\text{ss}_{\text{res}}}{\text{ss}_{\text{tot}}} = 1 - \frac{\sum_{i=1}^{n} (y^{i} - \hat{y}^{i})^{2}}{\sum_{i=1}^{n} (y^{i} - \bar{y})^{2}}$$

What is the R² value?

$$R^{2} = 1 - \frac{\text{ss}_{\text{res}}}{\text{ss}_{\text{tot}}} = 1 - \frac{\sum_{i=1}^{n} (y^{i} - \hat{y}^{i})^{2}}{\sum_{i=1}^{n} (y^{i} - \bar{y})^{2}}$$

- R² = 1.0 when the predicted values match the observed values exactly
- $R^2 = 0.0$ when we choose the baseline model that always predict \bar{y}

$$R^{2} = 1 - \frac{\text{ss}_{\text{res}}}{\text{ss}_{\text{tot}}} = 1 - \frac{\sum_{i=1}^{n} (y^{i} - \hat{y}^{i})^{2}}{\sum_{i=1}^{n} (y^{i} - \bar{y})^{2}}$$

Which figure has a larger R2 value?

- R² is close to 1.0 if the test data is close to the learned linear function
- R² is close to 0.0 if there is no correlation between x and y

$$R^{2} = 1 - \frac{\text{ss}_{\text{res}}}{\text{ss}_{\text{tot}}} = 1 - \frac{\sum_{i=1}^{n} (y^{i} - \hat{y}^{i})^{2}}{\sum_{i=1}^{n} (y^{i} - \bar{y})^{2}}$$

Which figure has a larger R2 value?

• Data **preprocessing** (e.g., removing outliers) and **visualization** are useful for training and testing a machine learning model.

R2 vs MSE

What is the relation between R² and MSE?

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y^{i} - \hat{y}^{i})^{2}}{\sum_{i=1}^{n} (y^{i} - \bar{y})^{2}}$$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y^i - \hat{y}^i)^2$$

R2 vs MSE

What is the relation between R² and MSE?

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y^{i} - \hat{y}^{i})^{2}}{\sum_{i=1}^{n} (y^{i} - \bar{y})^{2}} = 1 - \frac{\frac{1}{n} \sum_{i=1}^{n} (y^{i} - \hat{y}^{i})^{2}}{\frac{1}{n} \sum_{i=1}^{n} (y^{i} - \bar{y})^{2}}$$
$$= 1 - \frac{MSE}{\frac{1}{n} \sum_{i=1}^{n} (y^{i} - \bar{y})^{2}}$$

$$= 1 - \frac{MSE}{C} \qquad \text{where } C = \frac{1}{n} \sum_{i=1}^{n} (y^i - \bar{y})^2$$

R2 vs MSE

Answer: R² is a rescaling of MSE to range [0, 1]

$$R^2 = 1 - \frac{\text{MSE}}{C}$$
 where $C = \frac{1}{n} \sum_{i=1}^{n} (y^i - \bar{y})^2$

CS3. Predict: Write two functions

```
def predict_norm(X, beta) and
def predict(df_feature, beta)
```

that calculate the straight line equation given the features and its coefficient.

Hypothesis (learned model): $\hat{y} = X \times b$

CS4. Splitting data: Do the following tasks:

- Read RM as the feature and MEDV as the target from the data frame.
- Use Week 9's function split_data() to split the data into train and test using random_state=100 and test_size=0.3.
- Normalize and prepare the features and the target.
- Use the training data set and call gradient_descent() to obtain the theta.
- Use the test data set to get the predicted values.

```
Read Data: get_features_targets()

Split Data: split_data()

Training model: gradient_descent()

Use model: predict()
```

CS5. R2 Coefficient of Determination: Write a function to calculate the coefficient of determination as given by the following equations.

$$R^{2} = 1 - \frac{\text{ss}_{\text{res}}}{\text{ss}_{\text{tot}}} = 1 - \frac{\sum_{i=1}^{n} (y^{i} - \hat{y}^{i})^{2}}{\sum_{i=1}^{n} (y^{i} - \bar{y})^{2}} \qquad \text{where } \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i}$$

CS6. Mean Squared Error: Create a function to calculate the MSE as given below.

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y^i - \hat{y}^i)^2$$

Thank You!