Faculté de mathématiques. Département d'analyse L1MI8 Analyse1 Corrigé de l'épreuve Finale

Exercice n°1 (15pts)

Partie A (7 pts) Soit la fonction numérique $f(x) = \begin{cases} e^{sinx} + a & si \ x < 0 \\ \frac{7x+4}{3(x+1)} & si \ x \ge 0 \end{cases}$

1) Comment peut-on choisir le nombre réel a pour que f soit continue en $x_0=0$. /2,5pts

f est défini dans \mathbb{R} et $f(0) = \frac{4}{3}$.

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} e^{\sin x} + a = e^{\sin 0} + a = e^{0} + a = 1 + a = f(0) \iff 1 + a = \frac{4}{3} \iff a = \frac{1}{3}$$

f est continue en $x_0 = 0$ à gauche si, et seulement si, $a = \frac{1}{3}$. (1pt)

 $\frac{7x+4}{3(x+1)}$ est continue dans $\mathbb{R}/\{-1\}$ donc f est continue en $x_0=0$ à droite. (1pt)

Donc on peut choisir $a=\frac{1}{3}$ pour que f soit continue en $x_0=0$. (0,5 pt)

2) f est-elle dérivable en $x_0 = 0$? Si oui donner f'(0). /2pts

D'après 1 on considère la fonction pour $a = \frac{1}{3}$: $f(x) = \begin{cases} e^{sinx} + \frac{1}{3} & si \ x < 0 \\ \frac{7x+4}{3(x+1)} & si \ x \ge 0 \end{cases}$

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{-}} \frac{e^{\sin x} + \frac{1}{3} - \frac{4}{3}}{x} = \lim_{x \to 0^{-}} \frac{e^{\sin x} - 1}{x} = \left(e^{\sin x}\right)'_{|x=0} = \left(\cos x e^{\sin x}\right)_{|x=0} = 1 = f'_g(0)$$

Donc f est dérivable en $x_0 = 0$ à gauche. (1pt)

 $\frac{7x+4}{3(x+1)} \text{ est dérivable dans } \mathbb{R} / \{-1\} \text{ et } \left(\frac{7x+4}{3(x+1)}\right)' = \frac{1}{(x+1)^2} \text{donc } f \text{ est dérivable en } x_0 = 0 \text{ à droite et } f_d'(0) = 1 \text{ (0,5pt)}.$

Les deux nombres dérivés en $x_0=0$ sont égaux donc f est dérivable en $x_0=0$ et f'(0)=1. (0,5 pt)

3) Montrer en utilisant le théorème adéquat que l'équation f(x) = x possède une solution unique s dans le segment [0,3]. On ne calculera pas s. **/2,5pts**

Dans le segment [0,3],

$$f(x) = x \Leftrightarrow \frac{7x+4}{3(x+1)} = x \Leftrightarrow 7x+4 = 3x(x+1) \Leftrightarrow 3x^2 - 4x - 4 = 0$$

On pose $g(x) = 3x^2 - 4x - 4$; g est continue dans [0,3] et g(0) = -4 et g(3) = 11 (1pt) alors d'après le théorème des valeurs intermédiares il existe $s \in [0,3]$ tel que g(c) = 0 donc l'équation f(x) = x possède une solution s dans le segment [0,3]. (0,5 pt)

D'autre part g est dérivable et g'(x) = 6x - 4 d'où

x	0		<u>2</u> 3		3
g'(x)		_	0	+	
g(x)	-4				11
		7		7	
			$-\frac{16}{3}$		

$$6x - 4 \ge 0 \Leftrightarrow x \ge \frac{2}{3} \text{ et } 6x - 4 < 0 \Leftrightarrow x < \frac{2}{3} \text{ et } g\left(\frac{2}{3}\right) = -\frac{16}{3} < 0$$

Donc s est unique dans [0,3]. (1pt)

Partie B (8~pts) Soit la suite récurrente (u_n) définie par $\begin{cases} u_0=0\\ u_{n+1}=f(u_n) & n\geq 0 \end{cases}$

1) Montrer que $\forall n, 0 \leq u_n \leq 4$. /2pts

$$\forall x \ge 0, f(x) = \frac{7x+4}{3(x+1)}$$
 est dérivable et $f'(x) = \frac{1}{(x+1)^2} > 0$ donc f est croissante.

Montrons par récurrence que $\forall n, 0 \leq u_n \leq 4$.

Pour n = 0, $u_0 = 0$ donc $0 \le u_0 \le 4$ (0,5pt)

Soit $n \in \mathbb{N}$ et supposons par récurrence que $0 \le u_n \le 4$ alors $f(0) \le f(u_n) \le f(4)$

$$u_{n+1} = f(u_n), f(0) = \frac{4}{3} > 0$$
 et $f(4) = \frac{32}{15} < 4$ d'où $0 \le u_{n+1} \le 4$. (1,5pt)

2) Montrer que la suite (u_n) est convergente. On ne calculera pas sa limite. /2pts

La suite (u_n) est définie par une fonction croissante et $u_1 - u_0 = \frac{4}{3} > 0$ donc la suite est croissante (1,5pt). D'après le théorème de la limite monotone (u_n) est convergente. (0,5pt)

3) Montrer que $\forall n \in \mathbb{N}^*$, $|u_n - 2| \le \frac{1}{3} |u_{n-1} - 2|$. **/1,5pt**

$$\forall n \in \mathbb{N}^*, |u_n - 2| = |f(u_{n-1}) - 2| = \left| \frac{7u_{n-1} + 4}{3(u_{n-1} + 1)} - 2 \right| = \left| \frac{u_{n-1} - 2}{3(u_{n-1} + 1)} \right| = \frac{1}{3} \left| \frac{1}{u_{n-1} + 1} \right| |u_{n-1} - 2|$$
 (0,5pt)

D'après la question B-1 on a $0 \le u_{n-1} \le 4$ d'où $\left| \frac{1}{u_{n-1}+1} \right| \le 1$. (0,5pt)

Alors $|u_n - 2| \le \frac{1}{3} |u_{n-1} - 2|$ (0,5pt)

4) En déduire que $\forall n \in \mathbb{N}, \ |u_n-2| \leq \left(\frac{1}{3}\right)^n |u_0-2|$ puis que $\lim_{n \to +\infty} u_n = 2$. /2pt

Montrons par récurrence que $\forall n \in \mathbb{N}, \ |u_n-2| \leq \left(\frac{1}{3}\right)^n |u_0-2|.$

Pour
$$n = 0$$
, $|u_0 - 2| = |u_0 - 2| = \left(\frac{1}{3}\right)^0 |u_0 - 2|$ (0,5pt)

Soit $n \in \mathbb{N}$ et supposons par récurrence que $|u_n-2| \leq \left(\frac{1}{3}\right)^n |u_0-2|$

D'autre part, d'après la question précédente, $|u_{n+1}-2| \leq \frac{1}{3}|u_n-2|$

D'où
$$|u_{n+1}-2| \le \frac{1}{3} \left(\frac{1}{3}\right)^n |u_0-2| = \left(\frac{1}{3}\right)^{n+1} |u_0-2|$$
 (0,5pt).

Alors
$$\forall n \in \mathbb{N}$$
, $|u_n - 2| \le \left(\frac{1}{3}\right)^n |u_0 - 2|$

Par passage à la limite, $0 \le \lim_{n \to \infty} |u_n - 2| \le \lim_{n \to \infty} \left(\frac{1}{3}\right)^n |u_0 - 2| = 0$ d'où (0,5pt) d'où

 $\lim_{n \to \infty} |u_n - 2| = 0$ (0,5pt) ce qui est équivalent à $\lim_{n \to \infty} u_n = 2$. (0,5pt)

5) Comparer 2 avec la valeur de s de la question 3 de la partie A. Justifier votre réponse. /1

La limite l de (u_n) est solution de f(x) = x dans l'intervalle [0,4] comme $l = 2 \in [0,3]$ et s est unique solution de f(x) = x dans [0,3] alors s = 2. (1pt)

Exercice n°2 (/5 pts)

Peut-on prolonger par continuité la fonction $f(x) = \frac{x^{n}-1}{\sqrt{x}-1}$, $n \in \mathbb{N}$, en $x_0 = 1$? /3pts

Si oui, donner son prolongement. /2 pts

f est défini dans $[0,1[\ \cup\]1,+\infty[\ .$

1ère méthode

$$\lim_{x \to 1} \frac{x^{n-1}}{\sqrt{x}-1} = \lim_{x \to 1} \frac{\frac{x^{n-1}}{x-1}}{\frac{\sqrt{x}-1}{x-1}} = \frac{g'(1)}{h'(1)} = 2n \text{ où } g(x) = x^n \text{ et } h(x) = \sqrt{x} \text{ sont dérivables en 1 et}$$

$$g'(1) = n \text{ et } h'(1) = \frac{1}{2} \text{ (3pts)}$$

2ème méthode

Posons $X = \sqrt{x}$ alors

$$\lim_{x \to 1} \frac{x^{n}-1}{\sqrt{x}-1} = \frac{x^{n}-1}{\sqrt{x}-1} = \lim_{X \to 1} \frac{X^{2n}-1}{X-1} = k'(1) \text{ où } k(X) = X^{2n} \text{ est dérivable en } 1 \text{ et } k'(1) = 2n$$
 d'où $\lim_{x \to 1} \frac{x^{n}-1}{\sqrt{x}-1} = 2n$. (3pts)

f admet une limite en 1 donc f est prolongeable par continuité en 1 (1pt) et son prolongement qu'on note \tilde{f} est défini par

$$\tilde{f}(x) = \begin{cases} \frac{x^{n}-1}{\sqrt{x}-1} & si \ x \in [0,1[\ \cup\]1,+\infty[\ ,(1pt)]] \\ 2n & si \ x = 1 \end{cases}$$