Санкт-Петербургский государственный университет St Petersburg University Математико-Механический факультет Кафедра физической механики

ОТЧЕТ

по лабораторной работе N = 3 "Исследование электрических процессов в переходных цепях. Явление дифференцирования и интегрирования."

Выполнила: Куяшева Арина, 351 гр.

Цель работы:

- 1. Ознакомление с переходными, передаточными и спектральными характеристиками.
- 2. Преобразование форм различных сигналов на примере дифференцирования и интегрирования.

Схемы установок:

Рис. 1.

а) Дифференцирующая цепь;

б)Интегрирующая цепь

Рис. 2 Входное напряжение

Рис. 3. Выходное напряжение на дифференцирующей цепи

Рис. 4. Выходное напряжение на интегрирующей цепи

Расчетные формулы:

Дифференцирующая цепь:

$$A(\omega) = \frac{\omega \tau}{\sqrt{1 + (\omega \tau)^2}}$$
 - Амплитудно-частотная характеристика, где

А - амплитуда, ω - частота, τ - длительность импульса

$$\frac{U_{_{\mathrm{BJX}}}(t)}{U_{_{_{\mathrm{RX}}}}(t)} = e^{rac{-t}{RC}}$$
 - Выходное напряжение, где

 $U_{_{\mathrm{BLX}}}$ - выходное напряжение, $U_{_{\mathrm{BX}}}$ - входное напряжение, R - сопротивление резистора,

С - емкость конденсатора

Интегрирующая цепь:

$$A(\omega) = \frac{\omega \tau}{\sqrt{1 + (\omega \tau)^2}}$$
 - Амплитудно-частотная характеристика

$$\frac{U_{_{\mathrm{BJX}}}(t)}{U_{_{\mathrm{RX}}}(t)}=1$$
 - $e^{\frac{-t}{RC}}$ - Выходное напряжение

Расчет погрешностей:

$$\Delta U_2$$
= $0.5 U_{_{\mathrm{BX}}} \left(\frac{t}{RC} \right)^2$ - Абсолютная погрешность

$$\delta \approx 0.5 \frac{t}{RC}$$
 - Относительная погрешность

Экспериментальные и расчётные данные:

Дифференцирующая цепь:

Табл.1 Выходное напряжение

	t, мкс	0	1	2	3	4	5
τ=RC	U_r расч, В	5	0.623	0.078	0.010	0.001	0.001
	U_r эксп, В	3.3	0.78	0.18	0.02	-0.02	-0.14
τ=100RC	U_r расч, В	5	4.897	4.796	4.697	4.600	4.505
	U_r эксп, В	3.78	3.74	3.7	3.62	3.54	3.34

Табл.2 Амплитудно-частотная характеристика дифференцирующей цепи

							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	$f = \frac{\omega}{2\pi}$ кГц	0	2	5	10	20	50	100	300	500	700	1000
τ=RC	<i>A</i> (ω) pacч	0	0.006	0.015	0.030	0.060	0.149	0.289	0.671	0.833	0.904	0.949
	<i>A</i> (ω) эксп	0	0,005	0,014	0,029	0,057	0,141	0,270	0,572	0,660	0,692	0,700
τ=100RC	<i>A</i> (ω) pacч	0	0.517	0.833	0.949	0.987	0.998	0.999	1	1	1	1
	<i>A</i> (ω) эксп	0	0.428	0,660	0,732	0,756	0,764	0,768	0,788	0,788	0,788	0,788

о - Расчетные данные, * - Экспериментальные данные

Интегрирующая цепь:

Табл.3 Выходное напряжение

	t, мкс	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
τ=RC	U_r расч, В	0	0.054	0.108	0.161	0.213	0.265	0.316	0.367	0.417	0.467	0.516
	U_r эксп, В	0	0.034	0.082	0.126	0.166	0.210	0.250	0.294	0.334	0.374	0.414
τ=RC/100	U_r расч, В	0	3.318	4.434	4.810	4.936	4.978	4.993	4.998	4.999	4.999	4.999
	U_r эксп, В	0	1.54	3.26	4.14	4.5	4.74	4.86	4.9	4.94	4.98	4.98

о - Расчетные данные, * - Экспериментальные данные

Табл.4 Амплитудно-частотная характеристика интегрирующей цепи

	$f = \frac{\omega}{2\pi}$ кГц	0	2	5	10	20	50	100	300	500	700	1000
τ=RC	A(ω) расч	1	0.994	0.985	0.969	0.939	0.851	0.711	0.329	0.166	0.096	0.051
	<i>A</i> (ω) эксп	1	0.960	0.792	0.552	0.280	0.144	0.072	0.040	0.028	0.024	0.015
τ=RC/100	A(ω) расч	1	0.998	0.997	0.994	0.988	0.971	0.942	0.829	0.722	0.625	0.501
	<i>A</i> (ω) эксп	1	0.987	0.985	0.984	0.983	0.975	0.955	0.826	0.697	0.583	0.494

о - Расчетные данные, * - Экспериментальные данные

Вывод:

При выполнении данной работы рассмотрели преобразование сигнала прямоугольной формы на примере дифференцирования и интегрирования, а также амплитудно-частотную характеристику этого сигнала. При сравнении полученных

результатов и графиков напряжений на дифференцирующей цепи наблюдается резкое падение выходного напряжения. Получены сигналы с гладкими углами, это связано с несовершенством цепи.