

Statistical Collusion by Collectives on Learning Platforms

Etienne Gauthier¹ Francis Bach¹

Michael I. Jordan^{1,2}

¹ Inria, ENS, PSL University

² UC Berkeley

Framework Overview

Motivation

 Study how collectives can influence learning platforms by strategically modifying their data in a coordinated way.

Problem Setting

- Platform uses data from an i.i.d. population to train an algorithm.
- A subset (the **collective**) wants to steer the algorithm's behavior.
- Collective can modify features/labels via a shared strategy.

Challenges

- Limited information: The collective lacks access to platform internals and the rest of the population, requiring inference of key parameters and strategies from local data.
- Goal: Assess the collective's impact as a function of its size.

Three Different Objectives

Signal Unplanting:

Signal Planting:

Signal Erasing:

Theoretical Analysis

Setup

- Platform: Trains a classifier f on a dataset of N consumers $D^{(n)} \uplus D^{(N-n)}$ initially drawn i.i.d. from a distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$.
- Collective: The subset $D^{(n)}$ of n < N consumers applies a shared strategy $h: \mathcal{X} \times \mathcal{Y} \to \mathcal{X} \times \mathcal{Y}$ to influence the platform, yielding a modified dataset $\tilde{D}^{(n)}$.
- Data Model:
 - \circ Each data point: $(x,y) \in \mathcal{X} \times \mathcal{Y}$ (finite universe).
 - \circ Collective creates a modified empirical distribution $\hat{\mathcal{P}}$ by applying h .

Assumptions

- ullet The collective knows the total number of users N.
- It does not know the data of non-collective users.
- It can pool its own data to estimate distributions, parameters, and success of strategy h with concentration inequalities (e.g., Hoeffding).

Agent behaviors

- ullet Platform behavior: selects ${\mathcal P}$ that is Bayes-optimal for a distribution within total variation ε of \mathcal{P} .
- Collective goal: influence test-time performance on $D_{\mathrm{test}} \overset{i.i.d.}{\sim} \mathcal{D}$ by optimizing success metric S(n):

Objective	Signal planting	Signal unplanting	Signal erasing
Success $\hat{S}(n)$	$\hat{\mathbb{P}}_{x \sim D_{\text{test}}}(\hat{f}(g(x)) = y^*)$	$\hat{\mathbb{P}}_{x \sim D_{\text{test}}}(\hat{f}(g(x)) \neq y^*)$	$\hat{\mathbb{P}}_{x \sim D_{\text{test}}}(\hat{f}(g(x)) = \hat{f}(x))$

Results

• For each objective, we analyze strategies and derive strategy-dependent highprobability lower bounds on $\hat{S}(n)$.

Example: Signal Planting

Dataset

• Synthetic tabular dataset: Simulated vehicle data with features like Model Type, Fuel Type, and Country of Manufacture, labeled by evaluation (*Excellent, Good, Average, Poor*). Fixed transformation g.

• Natural strategy: flood the platform with $h(x,y)=(g(x),y^*)$.

Theoretical Lower Bound

• We derive a high-probability lower bound on $\hat{S}(n)$, fully computable by **the collective**, which take the following form up to $1/\sqrt{n}$ error terms:

$$\hat{S}(n) \ge \hat{\mathbb{P}}_{\tilde{x} \sim \tilde{D}^{(n)}} [\text{Prevalence} - \text{Counteracting Influence} - \text{Robustness} > 0]$$

Indicates the prevalence of the modified feature in the Captures how non-collective individuals hinder the collective's Platform robustness : the more frequently \tilde{x} appears in the ability to plant the signal, reflecting how strongly the target label (increasing function poisoned data, the greater the collective's ability to is tied to the features \tilde{x} ; if other labels are far more likely than y^* , influence the associated label (proportional to n/N). planting the signal becomes more difficult (scales with 1 - n/N).

• Interpretation: As the collective size n/N grows, features \tilde{x} are planted one by one, breaking in order of decreasing resistance.

Experimental Evaluation

Signal planting for different target labels. For example, the lower bound for Poor suggests 10% of agents are needed to plant the signal, but in practice only 5% suffice.

As N grows, collectives of the same proportion achieve better success bounds. Larger platforms face higher risks from collective action.

CODE