Université de Sherbrooke Département d'informatique

MAT115 : Logique et mathématiques discrètes

Examen final

Professeur : Marc Frappier

Lundi 14 décembre 2015, 9h à 12h Salles : D3-2036, D3-2039, D3-2041

Notes importantes:

- Documentation permise.
- Tout appareil électronique interdit.
- Ne dégrafez pas ce questionnaire.
- \bullet La correction est, entre autres, basée sur le fait que chacune de vos réponses soit :
 - claire, c'est-à-dire lisible et compréhensible pour le lecteur;
 - précise, c'est-à-dire exacte et sans erreur;
 - concise, c'est-à-dire qu'il n'y ait pas d'élément superflu;
 - complète, c'est-à-dire que tous les éléments requis sont présents.
- La note de l'examen est sur 100. Le total des points des questions donne 110. Votre note sera tronquée à 100 si elle dépasse 100. Vous pouvez répondre à toutes les questions.

Pondération:

Question	Point	Question	Point
1	10	2	10
3	10	4	10
5	10	6	15
7	5	8	10
9	15	10	15
		total	110

Nom:	Prenom :	
Cionaturo :	Matriaula :	
Signoturo :	Matriculo :	

1.	(10 pt)) Prouvez	la	formule	suivante	par	induction.
----	---------	-----------	----	---------	----------	-----	------------

$$\forall x \cdot x \in \mathbb{N} \Rightarrow \sum_{i=0}^{x} 4^{i} = \frac{4^{x+1} - 1}{3}$$

_

$r \rhd T = r \cap (S \times T)$

2. (10 pt) Prouvez la formule suivante. Soit $r \in S \leftrightarrow S, \, T \subseteq S$

$dom(r_1 \cup r_2) = dom(r_1) \cup dom(r_2)$

4. (10 pt) Prouvez la formule suivante par induction sur les ensembles finis.

$$\forall A, B \cdot \mathsf{finite}(A) \land \mathsf{finite}(B) \Rightarrow (A \cap B = \varnothing \ \Rightarrow \ \mathsf{card}(A \cup B) = \mathsf{card}(A) + \mathsf{card}(B))$$

Indice: Pour le cas $A \neq \emptyset$, posez $A_0 = A - \{z\}$ avec $z \in A$.

Rappel: l'union est associative

$$(A \cup B) \cup C = A \cup (B \cup C) \tag{1}$$

On utilise aussi la définition suivante de la cardinalité

$$z \not\in B \Rightarrow \operatorname{card}(\{z\} \cup B) = 1 + \operatorname{card}(B) \tag{2}$$

$$\operatorname{card}(\varnothing) = 0 \tag{3}$$

5. (10 pt) Complétez la preuve suivante. Les parties manquantes sont identifiées par des boites. Selon, le contexte, vous devez donner soit la formule manquante, soit la justification.

$$\begin{split} r \in S &\leftrightarrow S \wedge T \subseteq S \\ \Rightarrow & \operatorname{id}(T) ; (r_1 \cap r_2) = (\operatorname{id}(T) ; r_1) \cap (\operatorname{id}(T) ; r_2) \end{split}$$

Preuve.	
Supposons	
Prouvons	
$id(T); (r_1 \cap r_2)$	
= {	
$\{x \mapsto y \exists z \cdot x \mapsto z \in \operatorname{id}(T) \land z \mapsto y \in (r_1 \cap r_2)\}$	
$= \{ \lfloor x \mapsto y \exists z \cdot x \mapsto z \in \operatorname{id}(T) \land z \mapsto y \in r_1 \land z \mapsto y \in r_2 \}$	
$= \left\{ \left[\begin{array}{c} \\ \\ \end{array} \right] \right\}$	
$\{x \mapsto y \exists z \ x \mapsto z \in \operatorname{id}(T) \land z \mapsto y \in r_1 \land x \mapsto z \in \operatorname{id}(T) \land z \mapsto y \in r_2\}$	
$= \{ \left[\left[x \mapsto y \exists z \cdot x \mapsto z \in \operatorname{id}(T) \land z \mapsto y \in r_1 \land x \mapsto x \in \operatorname{id}(T) \land x \mapsto y \in r_2 \right] \}$	
$= \left\{ \begin{bmatrix} x + y \end{bmatrix} \exists x = x + y \in \operatorname{Id}(1) \land x + y \in \operatorname$	
$\{x \mapsto y \exists z \ x \mapsto z \in \operatorname{id}(T) \land z \mapsto y \in r_1) \land \exists z \cdot (z = x \land x \mapsto z \in \operatorname{id}(T) \land z \mapsto y \in r_2\}$	<u>(</u> !)}
$\{x \mapsto y \exists z \cdot (x \mapsto z \in id(T) \land z \mapsto y \in r_1) \land \exists z \cdot (x \mapsto z \in id(T) \land z \mapsto y \in r_2)\}$	
$= \{ \lfloor x \mapsto y x \mapsto y \in \operatorname{id}(T) ; r_1 \land x \mapsto y \in \operatorname{id}(T) ; r_2 \}$	
$id(T); r_1 \cap \overline{id(T); r_2}$	

6. (15 pt) Pour chaque relation ci-dessous, indiquez les propriétés qu'elle satisfait, en indiquant un X dans la case correspondante. On suppose que $r \in S \leftrightarrow S$ et $S = \{0, 1\}$.

					anti-	antisymétrique
r	réflexive	irréflexive	transitive	symétrique	symétrique	forte
{(0,1),(1,0)}						
{(0,0),(1.1)}						
{(0,0)}						
{}						
{(0,1),(1,0),(0,0)}						

7.	(5 pt) Soit $r \in S \leftrightarrow S$. Donnez une expression e telle que e satisfait les propriétés suivantes. Par exemple, pour la propriété "la plus petite relation e telle que e est réflexive et $r \subseteq e$ ", la réponse est $e = r \cup id(S)$
	(a) la plus petite relation e telle que e est symétrique et $r \subseteq e$
	(b) la plus petite relation e telle que e est transitive et $r \subseteq e$
	(c) la plus grande relation e telle que $e \subseteq r$ et e est irréflexive
8.	(10 pt) Soit $\Sigma = \{a, b, c\}$. Définissez un automate pour chaque sous-question suivante. L'automate doit accepter seulement les suites décrites, et refuser toutes les autres suites. Il n'est pas nécessaire de donner l'état puits.
	(a) Chaque sous-suite $[a, a]$ doit être séparée de la prochaine sous-suite $[a, a]$ par exactement un b ; un c peut survenir n'importe où. Une suite qui ne contient aucun a est acceptée. Une suite acceptée a donc la forme générale
	$[\ldots,a,a,\ldots,b,\ldots,a,a\ldots,b,\ldots,a,a\ldots]$
	(b) Une suite acceptée ne contient pas de sous-suite $[a, a]$.

9. (15 pt) Déterminisez l'automate suivant, en supposant que $\Sigma = \{a,b\}$

Donnez la valeur de λ -closure.

Donnez la valeur de t .		

Dessinez l'automate déterministe ici:

10. (15 pt) Minimisez l'automate suivant, en supposant que $\Sigma = \{a,b\}$. Donnez le tableau du calcul de la minimisation.

Remplissez le tableau du calcul suivant:

Paire	D	r	Е
{0,1)			
{0,2} {0,3}			
{0,3)			
{1,2)			
{1,3} {2,3}			
{2,3}			

Dessinez l'automate minimisé ici:

Dessinez i automate minimise ici.