3.1-BOXPLOT O boxplot (gráfico de caixa) é um gráfico utilizado para avaliar a distribuição empírica do dados. O boxplot é formado pelo primeiro e terceiro quartil (/estatistica-basica/23-outras-estatisticas-descritivas#quartis) e pela mediana (/estatistica-basica/21-medidas-de-posicao#mediana). As hastes inferiores e superiores se estendem, respectivamente, do quartil inferior até o menor valor não inferior ao limite inferior e do quartil superior até o maior valor não superior ao limite superior. Os limites são calculados da forma abaixo Limite inferior: $\max\{\min(\mathrm{dados}); Q_1-1, 5(Q_3-Q_1)\}$. Limite superior: $\min\{\max(\mathrm{dados}); Q_3+1, 5(Q_3-Q_1)\}$.

Para este caso, os pontos fora destes limites são considerados valores discrepantes (outliers) e são denotados por

asterisco (*). A Figura a seguir apresenta um exemplo do formato de um boxplot.

O boxplot pode ainda ser utilizado para uma comparação visual entre dois ou mais grupos. Por exemplo, duas ou mais caixas são colocadas lado a lado e se compara a variabilidade entre elas, a mediana (/estatistica-basica/21-medidas-de-posicao#mediana) e assim por diante. Outro ponto importante é a diferença entre os quartis (Q_3-Q_1) que é uma medida da variabilidade dos dados.

Exemplo 3.1.1:

Na Tabela a seguir temos as medidas da altura de 20 hastes. Faça o boxplot correspondente.

Dados da usinagem							
903,88	1036,92 1098,04		1011,26				
1020,70	915,38	1014,53	1097,79				
934,52	1214,08	993,45	1120,19				
860,41	1039,19	950,38	941,83				
936,78	1086,98	1144,94	1066,12				

clique aqui para efetuar o download dos dados utilizados nesse exemplo

(/sites/default/files/EstatisticaBasica/planilhas/exemplo3.1.1.xls)

O boxplot é dado por

Exemplo 3.1.2:

Utilizando os dados do Exemplo 2.3.4 (http://www.portalaction.com.br/estatistica-basica/23-quartis#Ex234), temos

clique aqui para efetuar o download dos dados utilizados nesse exemplo

(/sites/default/files/EstatisticaBasica/planilhas/exemplo2.3.3.xls)

Mínimo	1,58		
1° Quartil	1,6		
Tri-Média	1,714545		
3° Quartil	1,8		
Máximo	1,87		
Assimetria	0,111765		
Curtose	-1,569809		
Amplitude	0,29		

Assim, obtemos o seguinte boxplot

Para entender como executar essa função do *Software Action*, você pode consultar o **manual do usuário.** (/manual-graficos/grafico-boxplot-para-medidas-das-alturas-de-hastes)

Podemos utilizar o Boxplot para comparar dados estratificados e comparar diferenças nas distribuições empíricas dos estratos

Exemplo 3.1.3

Uma indústria produz uma peça automotiva cujo valor de referência é 75cm. Após verificar lotes com peças fora de especificação, enviaram duas equipes de trabalhadores (A e B) para um treinamento. Para verificar a eficiência do treinamento, foram selecionadas 10 peças produzidas pelas equipes A e B e 10 peças produzidas pelas equipes C e D que não participaram do treinamento.

А		В		С		D	
75,27	74,93	74,94	74,75	75,93	73,34	75,98	76,75
75,33	74,72	75,25	74,65	76,95	74,04	75,61	76,78
74,58	74,53	75,44	74,94	75,47	75	74,2	74,74
75,01	75,32	74,62	74,92	73,6	76,18	76,44	72,58
75,71	74,05	75,35	75,46	74,85	75,33	76,84	72,86

clique aqui para efetuar o download dos dados utilizados nesse exemplo

(/sites/default/files/EstatisticaBasica/planilhas/exemplo3.1.3.xlsx)

Análisando o gráfico podemos observar que:

As equipes A e B produzem peças com menor variabilidade, indicando que o treinamento teve o efeito desejado:

A equipe D é a que produz peças com maior variabilidade:

A equipe B é a que produz peças com menor variabilidade.

Considerações: Como as peças das equipes A e B tem menor variabilidade e com valor médio próximo do valor de referência, vale a pena enviar as demais equipes para o treinamento.