Registration. Lecture 1

Bulat Ibragimov

bulat@di.ku.dk

Department of Computer Science University of Copenhagen

UNIVERSITY OF COPENHAGEN

Todays Learning Objectives

- Why do we need registration?
- Similarity measures
- Rigid registration

Why do we need registration?

Registration geometrically transforms one image into another

Why do we need registration?

Atlas-based segmentation

Why do we need registration?

Atlas-based segmentation:

- (-) Segmentation speed linearly depends on the number of training images
- (+) Segmentation speed does not depend on the number of target structures
- (+) Needs way less training samples than deep learning

More examples at the end

Image registration

Information type

Intrinsic or extrinsic

Similarity measure

• Pixelwise difference, correlation, mutual information

Transformation

• Rigid, non-rigid

UN

Image registration: information type

Intrinsic information

• The images are visually similar (non-necessarily by absolute intensities):

Image registration: information type

Extrinsic information

- The images are too different from each other visually
- We need to help registration by providing correspondences

Mean sum of squared differences:

$$MSE = \frac{1}{n} \frac{1}{m} \sum_{x=1}^{n} \sum_{y=1}^{m} (I(x, y) - J(x, y))^{2}$$

$$\frac{1}{4}\frac{1}{4}(0+\cdots+(4-2)^2+(2-4)^2+\cdots+0)=0.5$$

MINIMIZATION

Normalized sum of squared differences:

$$I^* = \frac{I - \bar{I}}{\sigma(I)}$$

$$MSE = 1.5$$

Normalized cross-correlation:

$$NCC = \frac{\sum_{x,y} ((I(x,y) - \bar{I}) \cdot (J(x,y) - \bar{J}))}{\sqrt{\sum_{x,y} (I(x,y) - \bar{I})^2 \sum_{x,y} (J(x,y) - \bar{J})^2}}$$

$$NCC = \frac{12}{\sqrt{16 \cdot 16}} = 0.75$$

2	2	4	4
2	2	4	4
2	2	4	4
2	2	4	4

1	1	1	3
1	1	3	3
1	1	3	3
1	3	3	3

MAXIMIZATION

Will MSE and NCC work for CT-MR image registration?

MSE and NCC try to match high intensity with high intensity, and low intensity with low intensity.

But we want to match patterns not individual intensities.

Mutual image information:

Mutual image information:

$$MI = E(I,J)$$

250

Mutual image information:

Every pixel is a dot with coordinates defined by colors in two images

Mutual image information:

$$E(I,J) = -\sum_{i \in I} \sum_{j \in I} P(i,j) \log_2 \frac{P(i,j)}{P(i) \cdot P(j)}$$

$$P(i) = \sum_{j} P(j,i) \sum_{j} P(i,j)$$

How does mutual information behaves?

$$MI = 1.15$$

MI = 0.23

MAXIMIZATION

Image registration: rigid transformations

Translation

Scaling

Image registration: transformations

Interpolation

The contribution of I(0,0):

 Proportional to the opposite "rectangle"

$$(1-x) \cdot (1-y) \cdot I(0,0)$$

•

Image registration: transformations

Image registration: transformations

Interpolation 0,0 $I(\bullet)$ $= (1 - x) \cdot (1 - y) \cdot I(0,0)$ $+x\cdot(1-y)\cdot I(1,0)$ $+(1-x)\cdot y\cdot I(0,1)$ + $x \cdot y \cdot I(1,1)$ X 0,1

Break

We want to optimize:

$$\min \sum_{i,j} d(I(i,j) - J(x(i,j,\theta), y(i,j,\theta)))$$

d(I, I) – similarly measure

 $x(i, j, \theta)$ – transformation for first coordinate

 $y(i, j, \theta)$ – transformation for second coordinate

We want to optimize:

$$\min \sum_{i,j} d(I(i,j) - J(x(i,j,\theta), y(i,j,\theta)))$$

$$d(I(i,j),J(x,y)) = (I(i,j) - J(x,y))^{2}$$

 $f(I,J,\theta)$ – translation using θ

$$f(i,j,\Theta) = [i + \Theta_x, j + \Theta_y]$$

We want to optimize:

$$E(\theta) = \sum_{i,j} (I(i,j) - J(x(i,j,\theta), y(i,j,\theta)))^2$$

Gradient decent algorithm:

$$\nabla E(\Theta) = \frac{\partial E(\Theta)}{\partial \Theta}$$

$$\Theta_{t+1} = \Theta_t + \eta \nabla E(\Theta)$$

Gradient:

$$\nabla E(\Theta) = \nabla \sum_{i,j} (I(i,j) - J(x(i,j,\Theta), y(i,j,\Theta)))^2 =$$

$$-\sum_{i,j} 2(I(i,j) - J(x(i,j,\theta), y(i,j,\theta))) \cdot \frac{\partial J}{\partial \theta}$$

$$\frac{\partial J}{\partial \Theta} = \frac{\partial J}{\partial X} \cdot \frac{\partial X}{\partial \Theta}$$

Transformed coordinates

Gradient
$$\frac{\partial J}{\partial \Theta} = \frac{\partial J}{\partial X} \cdot \frac{\partial X}{\partial \Theta}$$
:

$$\frac{\partial J}{\partial X} = \left[\frac{\partial J(x(i,j,\theta), y(i,j,\theta))}{\partial x}; \frac{\partial J(x(i,j,\theta), y(i,j,\theta))}{\partial y} \right]$$

$$\frac{\partial J}{\partial x} = \frac{1}{2}(I(x+1,y) - I(x-1,y))$$

$$\frac{\partial J}{\partial y} = \frac{1}{2}(I(x, y+1) - I(x, y-1))$$

Gradient
$$\frac{\partial J}{\partial \Theta} = \frac{\partial J}{\partial X} \cdot \frac{\partial X}{\partial \Theta}$$
:

$$T(x,y) = \begin{bmatrix} 1 & 0 & \theta_x \\ 0 & 1 & \theta_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = [x + \theta_x, y + \theta_y]$$

$$\frac{\partial X}{\partial \Theta} = \left[\frac{\partial X}{\partial \Theta_x}; \frac{\partial X}{\partial \Theta_y} \right] = [1, 1]$$

$$\frac{\partial J}{\partial \Theta} = \left[\frac{1}{2} \left(I(x+1, y) - I(x-1, y) \right), \frac{1}{2} \left(I(x, y+1) - I(x, y-1) \right) \right]$$

Gradient:

$$\nabla E(\Theta) = \begin{bmatrix} -\sum_{i,j} 2(I(i,j) - J(x(i,j,\Theta), y(i,j,\Theta))) \cdot \frac{1}{2} (I(x+1,y) - I(x-1,y)) \\ -\sum_{i,j} 2(I(i,j) - J(x(i,j,\Theta), y(i,j,\Theta))) \cdot \frac{1}{2} (I(x,y+1) - I(x,y-1)) \end{bmatrix}$$

$$\Theta_{t+1} = \Theta_t + \eta \nabla E(\Theta)$$

Problem with optimization:

$$\min \sum_{i,j} d(I(i,j) - J(x(i,j,\theta), y(i,j,\theta)))$$

- d(I,J) can be complex and expensive to compute (mutual information)
- θ can contain many variables:
 - 9 for similarity transformation

$$\begin{bmatrix} \theta_1 & \theta_2 & \theta_3 \\ \theta_4 & \theta_5 & \theta_6 \\ \theta_7 & \theta_8 & \theta_9 \end{bmatrix}$$

• thousands for non-rigid transformations

How to simplify this?

Multi-resolution pyramid registration:

- Downscale (and smooth) reference and moving images x16
- Register them and memorize transformation
- Downscale (and smooth) reference and moving images x8, apply memorized transformation
- Register images and combine transformations from both steps
- Continue

Grid-based registration:

Do not perform registration per pixel but use a sparse grid

Non-rigid image registration

Reference

Moving

Transformation

Non-rigid image registration

Transformation field:

- The connections between points are not straight lines
- The connections are kinda smooth but how to generate them?

Linear interpolation:

- We connect knots with straight lines
- The problem is that the curve break at knots

Curve breaks at non-differentiable points:

$$df_1(2) = 2$$
 $df_2(2) = -1$ $df_1(2) \neq df_2(2)$

Curve breaks at non-differentiable points:

Use quadratic polynomials

$$f_n(x) = a_n x^2 + b_n x + c_n$$

- We have:
 - 3*3 variables, i.e. three segments f_n with 3 unknowns each
 - 2*3 conditions, i.e. each of the three segments should pass through the corresponding knots

Curve breaks at non-differentiable points:

- Three more equations are needed
- Let's ensure smoothness of the curve

$$df_1(2) = df_2(2)$$

$$df_2(3) = df_3(3)$$

$$a_1 \cdot 1 + b_1 \cdot 1 + c_1 = 1$$

$$a_1 \cdot 4 + b_1 \cdot 2 + c_1 = 3$$

$$a_2 \cdot 4 + b_2 \cdot 2 + c_2 = 3$$

$$a_2 \cdot 9 + b_2 \cdot 3 + c_2 = 2$$

$$a_3 \cdot 9 + b_3 \cdot 3 + c_3 = 2$$

$$a_3 \cdot 16 + b_3 \cdot 4 + c_3 = 1.5$$

$$2a_2 \cdot 3 + b_2 = 2a_3 \cdot 3 + b_3$$

Curve breaks at non-differentiable points:

- Three more equations are needed
- Last equations could be anything reasonable

$$df_1(1) = 0$$

$$2a_1 \cdot 1 + b_1 = 0$$

$$0$$

$$1$$

$$2 \quad 3$$

$$0$$

$$1$$

$$2 \quad 3$$

$$4$$

The curve will be oriented horizontally at this point

$$2a_1 + b_1 = 0$$
 \rightarrow $b_1 = -2a_1$

$$a_1 \cdot 1 + b_1 \cdot 1 + c_1 = 1$$
 \rightarrow $c_1 - a_1 = 1$

$$a_1 \cdot 4 + b_1 \cdot 2 + c_1 = 3$$
 \rightarrow $c_1 = 3; a_1 = 2; b_1 = -4$

$$f_1(x) = 2x^2 - 4x + 3$$

$$a_1 = 2$$
; $b_1 = -4$; $c_1 = 3$

$$2a_{1} \cdot 2 + b_{1} = 2a_{2} \cdot 2 + b_{2} \rightarrow 4a_{2} + b_{2} = 4$$

$$a_{2} \cdot 4 + b_{2} \cdot 2 + c_{2} = 3 \rightarrow b_{2} + c_{2} = -1$$

$$a_{2} \cdot 9 + b_{2} \cdot 3 + c_{2} = 2 \rightarrow a_{2} = -5; b_{2} = 24; c_{2} = -25$$

$$a_{2} + 2(4a_{2} + b_{2}) + (b_{2} + c_{2})$$

$$f_2(x) = -5x^2 + 24x - 25$$

$$a_2 = -5; b_2 = 24; c_2 = -25$$

$$2a_2 \cdot 3 + b_2 = 2a_3 \cdot 3 + b_3$$
 \rightarrow $6a_3 + b_3 = -6$
 $a_3 \cdot 9 + b_3 \cdot 3 + c_3 = 2$ $a_3 = 5.5;$
 $a_3 \cdot 16 + b_3 \cdot 4 + c_3 = 1.5$ $b_3 = -39;$
 $c_3 = 69.5$

$$f_3(x) = 5.5x^2 - 39x + 69.5$$

We can apply spline interpolation for each row and column of the grid

Questions?