Proteini i njihove trodimenzionalne strukture

Boris Mildner

•

Proteine izgrađuju dvadeset različitih aminokiselina

➤ Proteini su linearni polimeri a nastaju povezivanjem monomernih jedinica, koje nazivamo aminokiselinama. Proteini se spontano nabiru u trodimenzionalne strukture koje su predodređene slijedom (sekvencom) aminokiselina tog proteina.

Struktura proteina

Konformacija proteina = prostorni raspored atoma u proteinu (protein može poprimiti bilo koju konformaciju a da pri tome ne dođe do cijepanja kovalentnih veza). Najčešće, konformacije koje zauzima protein su termodinamički najstabilnije (najmanja Gibbsova slobodna energija). Funkcionalni proteini nabiru se u svoju funkcionalnu, prirodnu (nativnu), konformaciju.

Stabilnost proteina može se definirati kao tendencija proteina da zadrže svoju funkcionalnu konformaciju. Konformacija proteina nije jako stabilna; ∆G između nabrane (funkcionalne konformacije) i odmotane (denaturirane, nefunkcionalne) konformacije iznosi svega 20 – 50 kJ·mol⁻¹.

Hidrofobne interakcije najviše pridonose stabilnosti konformacije proteina u vodenim otopinama. U unutrašnjosti proteina guste su nakupine hidrofobnih bočnih ostataka i ove skupine ne dolaze u kontakt s vodom.

Broj vodikovih veza i ionske interakcije unutar strukture proteina je maksimalno mogući.

3

Proteini imaju jedinstvenu aminokiselinsku sekvencu (aminokiselinski slijed) koju određuju geni

Biochemistry, Sixth Edition © 2007 W. H. Freeman and Company

F. Sanger

1953. godine F. Sanger odredio je aminokiselinsku sekvencu inzulina. Ovim radom prvi puta se dokazalo da protein ima definiran aminokiselinski slijed i da su sve aminokiseline u proteinu L- 4 aminokiseline.

Sekundarne strukture: polipeptidni lanci se mogu nabirati u pravilne strukture

Dva su glavna oblika pravilnih sekundarnih struktura: α-zavojnica i β-lanci koji se povezuju u β-nabranu ploču. Dodatno, u sekundarnu strukturu se ubrajaju i petlje kao i oštri zavoji (β-zavoji).

5

Sekundarne strukture: polipeptidni lanci se mogu nabirati u pravilne strukture

- α-zavojnice, β-nabrane ploče i zavoji nastaju zbog pravilnog stvaranja vodikovih veza između NH i CO skupina u peptidnim vezama.
- U α-zavojnici polipeptidni lanac zavija u smjeru kazaljke na satu (desni navoj vijka) i stvara strukturu čvrsto pakiranog valjka. Unutar zavojnice, CO skupina svake aminokiseline povezana je vodikovim vezama s NH skupinom aminokiseline koja je za 3 aminokiseline od nje udaljena.

Stabilnost α uzvojnice ovisi o: 1) intrinzičnom svojstvu bočnog ogranka aminokiseline; 2) interakciji između R-skupina koje su udaljene za 3 ili 4 aminokiselinska ostatka; 3) voluminoznosti susjednih R-skupina; 4) pojavi glicinskih ili prolinskih ostataka; 5) interakciji između aminokiselinskih ostataka na krajevima uzvojnice kao i električnom dipolu α uzvojnice.

Prema tome, da li će određeni segment polipeptidnog lanca činiti α -uzvojnicu ovisi o slijedu aminokiselina u tom segmentu.

Carboxyl terminus

Uzvojnica je dipol. Električni dipol peptidne veze prenosi se duž α -uzvojnice vodikovim vezama uzvojnice. U ovom prikazu amino (NH) i karbonilne skupine (CO) svake peptidne veze prikazani su kao + ili - . Aminokiseline na krajevima uzvojnice koje nisu povezane vodikovim vezama prikazane su crvenim simbolima.

9

Sekundarne strukture: polipeptidni lanci se mogu nabirati u pravilne strukture

- U β-lancu, polipeptidni lanac je gotovo sasvim izdužen. Dva ili više β-lanca koji su međusobno povezani NH····CO vodikovim vezama stvaraju β-nabranu ploču.
- Lanci aminokiselina koji su međusobno povezani vodikovim vezama u β-nabrane ploče mogu biti paralelni, antiparalelni ili mogu biti kombinacija i parelelnih i antiparalelnih lanaca.

Pauling i Corey predvidjeli su i drugu sekundarnu strukturu tzv. βnabranu ploču koju često nazivamo i β-pločom. β-ploču izgrađuju dva ili više β -lanca. Za razliku od kompaktne α -uzvojnice gdje su aminokiselinski bočni ogranci udaljeni 1,5 Å, u β-lancu aminokiselinski bočni ogranci međusobno su udaljeni 3,5 Å.

Struktura β-lanca. Bočni ogranci (zeleno) su naizmjenično iznad ili ispod ravnine lanca.

11

Strukture β -ploča. β -lanci koji grade β -ploče obično su blizu u aminokiselinskom slijedu ali mogu biti i vrlo udaljeni. β-ploče mogu graditi sekvence različitih proteina.

Bez obzira na usmjerenost lanaca unutar jedne β-ploče, lance u pločama povezuju vodikove veze između karbonilne skupine i NH skupine okosnice β-lanca. Obično 4 - 5 β-lanaca, ali moguće je da i njih deset, čine jednu β-ploču.

smjerovima lanaca

Svojstva aminokiselina određuju koja će struktura nastati

- Aminokiseline teže stvaranju α-uzvojnica, ali kemijska građa nekih aminokiselina destabilizira ovu strukturu.
- Naka pravila:
 - Ala, Glu, Leu stvaraju α-uzvojnice,
 - Val i Ile, teže da budu u β-nabranim pločama.
 - Gly, Pro, Asn često se javljaju u β-okretima

Razlozi: β-C atomi aminokiselina koji se dodatno granaju (Val, Thr, Ile) destabiliziraju α–uzvojnicu iz steričkih razloga te zbog toga stvaraju βnabrane ploče.

- Ser, Asp i Asn razaraju α -uzvojnice budući da imaju bočne skupine koje su donori ili akceptori vodikovih atoma (hidroksilne skupine) i nalaze se neposredno uz okosnicu peptidnog lanca te ovi donori i akceptori protona razaraju vodikove veze u α -zavojnici.
- Pro razara strukture i α -zavojnice i β -nabrane ploče budući da nema slobodnu NH₂ skupinu kao i činjenica da struktura prstena ograničava Φ

15

Relativna učestalost aminokiselina u sekundarnim strukturama

TABLE 2.3 Relative frequencies of amino acid residues in secondary structures

Amino acid	α helix	β sheet	Reverse turn
Glu	1.59	0.52	1.01
Ala	1.41	0.72	0.82
Leu	1.34	1.22	0.57
Met	1.30	1.14	0.52
Gln	1.27	0.98	0.84
Lys	1.23	0.69	1.07
Arg	1.21	0.84	0.90
His	1.05	0.80	0.81
Val	0.90	1.87	0.41
lle	1.09	1.67	0.47
Tyr	0.74	1.45	0.76
Cys	0.66	1.40	0.54
Trp	1.02	1.35	0.65
Phe	1.16	1.33	0.59
Thr	0.76	1.17	0.96
Gly	0.43	0.58	1.77
Asn	0.76	0.48	1.34
Pro	0.34	0.31	1.32
Ser	0.57	0.96	1.22
Asp	0.99	0.39	1.24

Note: The amino acids are grouped according to their preference for α helices (top group), β sheets (second group), or turns (third group).

SOURCE: T. E. Creighton, Proteins: Structus Company, 1992), p. 256.

Table 2-3 Biochemistry, Sixth Edition © 2007 W.H. Freeman and Cor

 Tercijarna struktura – trodimenzionalni raspored (konformacija) svih atoma jednog polipeptidnog lanca.

17

Tercijarna struktura proteina topljivih u vodi

$Trodimenzionalna\ struktura\ mioglobina.$

Vrpčasti dijagram koji prikazuje da je mioglobin većinom izgrađen od α-zavojnica. (Zbog bolje preglednosti jedna α-zavojnica je plavo obojena). Model proteina u identičnoj orijentaciji kao i u (A) napravljen je kao "model kuglica". Može se primijetiti da je struktura vrlo kompaktna.

Tercijarna struktura proteina topljivih u vodi

- Polipeptidni lanac se nabire u funkcionalni protein tako da su hidrofobne aminokiseline u njegovoj unutrašnjosti, a hidrofilne aminokiseline na njegovoj površini.
- Takav raspored je moguć zbog amfipatičnosti αuzvojnica i β-nabranih ploča, tj. sekundarne strukture imaju s jedne strane hidrofobne, a s druge strane hidrofilne aminokiselinske ostatke.
- Dijelovi proteina koji nisu u sekundarnim strukturama izloženi su vodi.

19

Tercijarna struktura proteina topljivih u vodi

Raspored aminokiselina u mioglobinu.

(A) Model intaktne molekule mioglobina. Hidrofobne aminokiseline su žute, hidrofilne aminokiseline su plave, a ostale su prikazane kao bijele kuglice.

(B) Poprečni presjek kroz model mioglobina. Značajno je da su u unutrašnjosti proteina uglavnom hidrofobne aminokiseline dok su hidrofilne aminokiseline na njegovoj vanjskoj površini.

Neka pravila o nabiranju polipeptida za proteine topljive u vodi

- Hidrofobne interakcije uvelike doprinose stabilnosti strukture proteina.
- Kada su prisutne u proteinu, α i β uzvojnice nalaze se u proteinu kao zasebne strukture. To je zbog toga što okosnica β strukture ne može stvarati vodikove veze s α uzvojnicom.
- Segmenti aminokiselinskog slijeda koji su međusobno blizu, obično počnu stvarati sekundarnu strukturu. Udaljeni segmenti aminokiselinskog slijeda mogu se prostorno približiti u tercijarnoj strukturi, ali to nije pravilo.
- Poveznice između dvije uobičajene sekundarne strukture međusobno se ne prepleću (ne rade čvorove).
- β konformacija je najstabilnija kada su pojedine β-ploče zakrivljene udesno.

Model porina (protein koji stvara pore u membrani) ("iznimke potvrđuju pravila")

Na vanjskoj strani porina (koja je u kontaktu s hidrofobnim molekulama membrane) razmješteni su hidrofobni bočni ostaci aminokiselina, a u unutrašnjosti pore, koja je u kontaktu s vodenim medijem, nalaze se hidrofilni aminokiselinski bočni ostaci.

23

- Super-sekundarna struktura (strukturni motiv) dio ukupne strukture proteina za koju su prepoznati elementi sekundarnih struktura i dijelovi koji povezuju te sekundarne strukture.
- Super porodice proteini zadržavaju trodimenzionalnu strukturu iako imaju različite primarne strukture.

Zavojnica-petlja-zavojnica je motiv koji se često nalazi kod proteina koji se vežu na DNA.

25

Primjeri super-sekundarnih struktura

- Domena dio polipeptidnog lanca koji je sam dovoljno stabilan i može obavljati određene fizikalne ili kemijske zadaće, kao što je vezanje određenog supstrata ili nekog liganda.
- Većina domena je modularna, a međusobno su slične i u primarnoj sekvenci i u trodimenzionalnom obliku.
- Slične domene mogu imati raznovrsni proteini.
- Jednostavni proteini, posebice oni koji reagiraju s jednim supstratom (mioglobin, lizozim, trioza-fosfat-izomeraza) imaju jednu domenu.
- Proteini koji mogu vezati više supstrata imaju nekoliko domena.

27

Strukturne domene troponina C. Protein veže kalcij i ima dvije odvojene domene koje nezavisno jedna od druge vežu kalcij.

CD4, protein koji se nalazi na površini stanica ima četiri slične domene

Biochemistry, Sixth Edition

2007 W. H. Freeman and Company

29

- Proteini koji imaju više domena (vežu po nekoliko supstrata) mogu se međusobno udruživati te mogu nastati funkcionalni proteini koji su izgrađeni od nekoliko polipeptidnih lanaca (podjedinica) oligomerni proteini.
- Homomeri sadrže istovjetne polipeptidne lance (podjedinice) (najčešće su to homodimeri)
- **Heteromeri** sadrže različite polipeptidne lance (podjedinice)
- Grčka slova $(\alpha, \beta, \gamma \text{ itd.})$ služe za razlikovanje pojedinih podjedinica dok brojevi u indeksu predočuju brojnost svake podjedinice.

- Kvaterna struktura Prostorni raspored svih podjedinica jednog proteina čini kvaternu strukturu.
- Kvaterna struktura može biti jednostavna, kao npr. protein izgrađen od dvije identične podjedinice, ili kompleksna kad je protein izgrađen od mnogo različitih podjedinica.
- U većini slučajeva, podjedinice funkcionalnog proteina međusobno se povezuju nekovalentnim vezama.

Aminokiselinski slijed proteina određuje njegovu trodimenzionalnu strukturu

- Pokus koji je pokazao da se denaturirani protein može renaturirati u nativnu funkcionalnu konformaciju bio je prvi dokaz da se jednodimenzionalna informacija iz gena širi u trodimenzionalni prostor, budući da proteini imaju svojstvo da se spontano nabiru.
- Slijed aminokiselina određuje trodimenzionalnu strukturu proteina kao i druga svojstva tog proteina.

33

Prvi dokaz da aminokiselinski slijed proteina određuje njegovu trodimenzionalnu strukturu prikazao je C. Anfinsen u pokusu denaturacije i renaturacije ribonukleaze

Disulfidne veze u nativnoj RNazi označene su različitim bojama.

Spojevi (denaturanti) koji lagano cijepaju nekovalentne veze u proteinima.

Anfinsenov plan je bio da razori trodimenzionalnu strukturu proteina i da prati uvjete koji su potrebni da se ponovno stabilizira funkcionalna struktura.

Mehanizam djelovanja merkaptoetanola. (redukcijom disulfidnih veza merkaptoetanol

merkaptoetanol se oksidira)

Denaturacija i renaturacija RNaze

Anfinsenov pokus prvi je dokaz da slijed aminokiselina određuje njegovu trodimenzionalnu funkcionalnu strukturu.

Dijalizom se uklanja ureja i merkaptoetanol

Renaturirani, katalitički aktivni enzim u kojem su ponovno nastali ispravni disulfidni mostovi.

35

Svojstva aminokiselina određuju koja će struktura nastati

Stabilnost proteina može se definirati kao tendencija proteina da zadrže svoju funkcionalnu konformaciju. Konformacija proteina nije jako stabilna; ∆G između nabrane (funkcionalne konformacije) i odmotane (denaturirane, nefunkcionalne) konformacije iznosi svega 20 – 50 kJ·mol⁻¹.

Hidrofobne interakcije najviše pridonose stabilnosti konformacije proteina u vodenim otopinama. U unutrašnjosti proteina guste su nakupine hidrofobnih bočnih ostataka i ove skupine ne dolaze u kontakt s vodom.

Broj vodikovih veza i ionske interakcije unutar strukture proteina je maksimalno mogući.

Simulacija nabiranja proteina

Nabiranje proteina najvjerojatnije je postepeni proces u kojem se stabiliziraju prvo neke strukture koje omogućavaju nastajanje potpune

strukture. U ovom vrlo kooperativnom procesu ne dolazi do nagomilavanja nabranih odnosno ne-nabranih struktura.

Simulacija nabiranja peptida od 36 aminokiselina. Cjelokupno nabiranje je trajalo 1 ms.

Neke od funkcija koje obnašaju proteini

Svjetlo koje proizvode krijesnice rezultat je interakcije proteina luciferina i ATP, a reakciju

Figure 3-1
Lehninger Principles of Biochemistry, Fifth Edition
© 2008 W. H. Freeman and Company

Eritrociti sadrže velike količine hemoglobina

Keratin, glavni je strukturni protein kose, ljuštura, rogova, vune, noktiju, kopita i pera (ptica).

41

Svojstva koja omogućavju proteinima da obnašaju različite funkcije

- Proteini imaju mnogo funkcionalnih skupina i većina je funkcionalnih skupina kemijski aktivna.
- Proteini reagiraju jedan s drugim ali i s drugim biološkim makromolekulama, pa nastaju različite kompleksne cjeline.

Kovalentne modifikacije aminokiselina dodatno povećavaju raznolikost u strukturi proteina

Figure 2-67 Biochemistry, Sixth Edition © 2007 W.H. Freeman and Company

43

Kovalentnim modifikacijama aminokiselina nastaju važne promjene u proteinima

- Hidroksiprolin u kolagenu stabilizira strukturu kolagena i ne dolazi do skorbuta (vitamin C)
- > Acetilacijom N-krajeva dodatno se stabilizira struktura proteina
- > γ-karboksiglutamat je važan kod zgrušavanja
- > Glikozilacijom se dodatno omogućavaju interakcije proteina
- > Reverzibilnim vezanjem fosfata na Thr, Ser i Tyr aminokiselinske ostatke kontrolira se aktivnost mnogih enzima.

Neispravno nabiranje proteina povezano je s nekim neurološkim bolestima

- Spužvasta encefalopatija (kravlje ludilo)
- Alzheimerova bolest
- Parkinsonova bolest

Model prijenosa priona

Iz jezgre (nukleusa) priona nastaje nenormalna konformacija iz inače normalnih staničnih proteina.

47

Neke bolesti nastaju zbog pogrešnog nabiranja proteina (amiloidoze)

Struktura amiloidnih vlakana. A β fibrili stvaraju nakupine zbog nastanka velikih agregata paralelnih β -nabranih ploča.

 $\ensuremath{\mathsf{A}\beta}$ fibrili nastaju razgradnjom amiloidnih prekursorskih proteina.