Synthetic Control

Luiz Renato Lima (The University of Tennessee)

Time Series Econometrics - Fall 2020

- Athey and Imbens describe synthetic controls as the most important innovation in the policy evaluation literature in the last 15 years
- it has been applied to study:
 - 1 the effects of right-to-carry laws (Donohue et al., 2017)

- Athey and Imbens describe synthetic controls as the most important innovation in the policy evaluation literature in the last 15 years
- it has been applied to study:
 - 1 the effects of right-to-carry laws (Donohue et al., 2017)
 - 2 legalized prostitution (Cunningham and Shah, 2018)

- Athey and Imbens describe synthetic controls as the most important innovation in the policy evaluation literature in the last 15 years
- it has been applied to study:
 - 1 the effects of right-to-carry laws (Donohue et al., 2017)
 - legalized prostitution (Cunningham and Shah, 2018)
 - immigration policy (Bohn et al., 2014),

- Athey and Imbens describe synthetic controls as the most important innovation in the policy evaluation literature in the last 15 years
- it has been applied to study:
 - 1 the effects of right-to-carry laws (Donohue et al., 2017)
 - @ legalized prostitution (Cunningham and Shah, 2018)
 - 3 immigration policy (Bohn et al., 2014),
 - organized crime (Pinotti, 2015)

- Athey and Imbens describe synthetic controls as the most important innovation in the policy evaluation literature in the last 15 years
- it has been applied to study:
 - the effects of right-to-carry laws (Donohue et al., 2017)
 - legalized prostitution (Cunningham and Shah, 2018)
 - 3 immigration policy (Bohn et al., 2014),
 - organized crime (Pinotti, 2015)
 - ominimum wages (Allegretto et al., 2017; Jardim et al., 2017)

- Only one aggregate unit, such as a state, or a school district, is exposed to an event or intervention of interest.
- For example, Abadie et al. (2010) study the effect of a large tobacco-control program adopted in California in 1988;
- Bifulco et al. (2017) evaluate the effects of an educational program adopted in the Syracuse, NY, school district in 2008.

• Suppose that we obtain data for J+1 units: j=1,2,...,J+1.

- Suppose that we obtain data for J+1 units: j=1,2,...,J+1.
- we assume that the first unit (j = 1) is the treated unit, that is, the unit affected by the policy intervention of interest

- Suppose that we obtain data for J+1 units: j=1,2,...,J+1.
- ullet we assume that the first unit (j=1) is the treated unit, that is, the unit affected by the policy intervention of interest
- The "donor pool", that is, the control group, j=2,...,J+1 is a collection of untreated units, not affected by the intervention

- Suppose that we obtain data for J+1 units: j=1,2,...,J+1.
- ullet we assume that the first unit (j=1) is the treated unit, that is, the unit affected by the policy intervention of interest
- The "donor pool", that is, the control group, j=2,...,J+1 is a collection of untreated units, not affected by the intervention
- We assume that our data span T periods and that the first T_0 periods are before the intervention

- Suppose that we obtain data for J+1 units: j=1,2,...,J+1.
- ullet we assume that the first unit (j=1) is the treated unit, that is, the unit affected by the policy intervention of interest
- The "donor pool", that is, the control group, j=2,...,J+1 is a collection of untreated units, not affected by the intervention
- We assume that our data span T periods and that the firrst T_0 periods are before the intervention
- For each unit, j, and time, t, we observe the outcome of interest, Y_{jt} .

- Suppose that we obtain data for J+1 units: j=1,2,...,J+1.
- ullet we assume that the first unit (j=1) is the treated unit, that is, the unit affected by the policy intervention of interest
- ullet The "donor pool", that is, the control group, j=2,...,J+1 is a collection of untreated units, not affected by the intervention
- ullet We assume that our data span T periods and that the firrst T_0 periods are before the intervention
- For each unit, j, and time, t, we observe the outcome of interest, Y_{jt} .
- For each unit, j, we also observe a set of k predictors of the outcome, $X_{1j}...X_{kj}$, which may include pre-intervention values of Y_{jt}

- ullet Suppose that we obtain data for J+1 units: j=1,2,...,J+1.
- ullet we assume that the first unit (j=1) is the treated unit, that is, the unit affected by the policy intervention of interest
- ullet The "donor pool", that is, the control group, j=2,...,J+1 is a collection of untreated units, not affected by the intervention
- ullet We assume that our data span T periods and that the firrst T_0 periods are before the intervention
- For each unit, j, and time, t, we observe the outcome of interest, Y_{jt} .
- For each unit, j, we also observe a set of k predictors of the outcome, $X_{1j}...X_{kj}$, which may include pre-intervention values of Y_{jt}
- The $k \times 1$ vectors $X_1, ..., X_{J+1}$ contain the values of the predictors for units j = 1, ..., J+1

- Suppose that we obtain data for J+1 units: j=1,2,...,J+1.
- we assume that the first unit (j = 1) is the treated unit, that is, the unit affected by the policy intervention of interest
- The "donor pool", that is, the control group, j=2,...,J+1 is a collection of untreated units, not affected by the intervention
- We assume that our data span T periods and that the firrst T_0 periods are before the intervention
- For each unit, j, and time, t, we observe the outcome of interest, Y_{jt} .
- For each unit, j, we also observe a set of k predictors of the outcome, $X_{1j}...X_{kj}$, which may include pre-intervention values of Y_{jt}
- The $k \times 1$ vectors $X_1, ..., X_{J+1}$ contain the values of the predictors for units j = 1, ..., J+1
- The $k \times J$ matrix $X_0 = [X_2...X_{J+1}]$ collects the values of the predictors for the J untreated units.

- For each unit, j, and time period, t, we defite Y_{jt}^N to be the potential response without intervention.
- For the unit affected by the intervention, j=1, and a post-intervention period, $t>T_0$, we define Y_{1t}^I to be the potential response under the intervention.
- Then, the effect of the intervention of interest for the affected unit in period t (with $t > T_0$) is:

$$\tau_{1t} = Y_{1t}^I - Y_{1t}^N$$

Challenge

$$\tau_{1t} = Y_{1t}^{I} - Y_{1t}^{N} \tag{1}$$

- Because unit "one" is exposed to the intervention after period T_0 , it follows that for $t>T_0$ we have $Y_{1t}=Y_{1t}'$
- The great policy evaluation challenge is to estimate the counterfactual Y_{1t}^N for $t > T_0$.
- Notice that (1) allows the effect of the intervention to change in time.
- intervention effects may not be instantaneous and may accumulate or dissipate as time after the intervention passes.

Estimation

• A synthetic control (Y_{1t}^N) is defined as a weighted average of the units in the control group

$$\hat{Y}_{1t}^{N} = \sum_{j=2}^{J+1} \omega_{j} Y_{jt}
\tau_{1t} = Y_{1t}^{I} - \hat{Y}_{1t}^{N}$$

- weights are restricted to be non-negative and to sum to one,so synthetic controls are weighted averages of the units in the donor pool (control group)
- how the weights ω_2 , ω_3 , ..., ω_{J+1} should be chosen in practice.
- Some examples: $\omega_j = 1/J$ (equal weights).
- ω_j is the population in unit j (e.g., at the time of the intervention) as a fraction of the total population in the donor pool.
- ullet Many other methods to estimate ω_i

• Abadie et al. (2010) propose to choose the synthetic control, $W^*=\left(w_2^*,...,w_{J+1}^*\right)$ that minimizes

$$||X_1 - X_0 W|| = \left(\sum_{h=1}^k v_h \left(X_{h1} - w_2 X_{h2} - \dots - w_{J+1} X_{hJ+1} \right)^2 \right)^{1/2}$$

The positive constants $v_1, ..., v_k$ reflect the relative importance of the synthetic control reproducing the values of each of the k predictors for the treated unit.

Economic growth predictor means before the German reunification

	West	Synthetic	OECD
	Germany	West Germany	Sample
	(1)	(2)	(3)
GDP per-capita	15808.9	15802.24	13669.4
Trade openness	56.8	56.9	59.8
Inflation rate	2.6	3.5	7.6
Industry share	34.5	34.5	34.0
Schooling	55.5	55.2	38.7
Investment rate	27.0	27.0	25.9

Data requirements.

- Aggregate data on predictors and outcomesfor the unit exposed to the intervention of interest and a set of comparison units.
- Examples or these types of outcomes are state-level crime rates, country-level per-capita GDP, etc
- Sufficient pre-intervention information.
 - The credibility of a synthetic control estimator depends on its ability to track the trajectory of the outcome variable for the affected unit before the intervention.
- Suffcient post-intervention information.

Data requirements.

- Aggregate data on predictors and outcomesfor the unit exposed to the intervention of interest and a set of comparison units.
- Examples or these types of outcomes are state-level crime rates, country-level per-capita GDP, etc
- Sufficient pre-intervention information.
 - The credibility of a synthetic control estimator depends on its ability to track the trajectory of the outcome variable for the affected unit before the intervention.
- Suffcient post-intervention information.
 - Extensive post intervention information allows a more complete picture of the effects of the intervention

Thank you!