附件1: 教学大纲的基本格式和内容

(教学大纲封面)

中山大学本科课程教学大纲

学院(系)_	物理学院	

课程名称 ____大学物理(工) I_____

大学物理(工) I 教学大纲

(编写日期: 2018 年 7 月)

一、课程基本说明

课程名称:(中文) 大学物理(工)I (英文) College Physics (Engineering) I					
课程性质	必修	课程编码	PHY130	学分	4
授课学时	72	主讲教师 (职称) I		开课单位	物理学院
面向专业	工科专业	授课年级		先修课程	微积分

物理学是研究物质的基本结构、基本运动形式、相互作用的自然科学。它的基本理论渗透在自然科学的各个领域,应用于生产技术的许多部门,是其他自然科学和工程技术的基础。本课程的目的在于向工科专业学生介绍牛顿力学、机械振动和机械波、分子动理论和热力学等领域的基本模型和概念;通过实例和练习,让学生掌握对物理问题的分析和求解的基本技能;训练学生使用物理概念和方法来解决具体问题的能力;为学生学习有关专业课程提供必要的基础知识。

课程目的与 教学基本要求 需要牢固掌握:质点运动的描述;相对运动;牛顿定律及其应用;变力下的质点动力学问题;质心;质心运动定律;质点系的动量定理及守恒;变力的功;动能定理;保守力及势能;机械能守恒定理;刚体定轴转动定律;转动惯量;质点及刚体的角动量和角动量守恒;简谐振动的数学表述;相位;简谐振动的动力学方程;简谐振动的机械能;一维简谐振动的合成;拍;机械波的基本特征;平面简谐波;波的能量和能流密度;惠更斯原理;波的衍射;机械波的多普勒效应;平衡态;态参量;热力学第零、一和第二定律;理想气体物态方程;准静态过程;热量和内能;典型热力学过程;热机效率;制冷系数;卡诺热机;玻尔兹曼熵、克劳修斯熵;理想气体的压强与温度;能量均分定理;麦克斯韦速率分布;三种统计

速率; 气体分子平均自由程和碰撞频率。

一般掌握:非惯性系和惯性力;科里奥利力;对称性与守恒定律;刚体转动中的功和能;刚体进动;理想流体;伯努利方程;阻尼振动和受迫振动;整数比的简谐运动合成;狭义相对论的两个基本假设;洛伦兹变换和速度变换;多方过程;范德瓦尔斯方程;玻尔兹曼分布。

一般了解:弹弓效应;湍流;混沌现象;声波;超声波、次声波和声强;相对论动力学基础;开放系统的熵变;近平衡态;远离平衡态。

(请明确基本要求的三个档次,即牢固掌握、一般掌握和一般了解)

二、课程基本内容

(一) 教学讲度表

(含学时分配,学时分配要落实到"章"或"节",并对各章节的重点、难点内容加以必要的说明)

周次(细化 到每周)	主要教学内容及学时分配	其他需备注说明 的情况
第一周	质点的运动学: 质点模型; 参考系; 位矢、速度、加速度; 在笛卡尔坐标系、极坐标系、柱坐标系中对质点运动的描写; 相对运动; 圆周运动; 抛体运动。重点: 质点模型; 质点运动定理; 相对运动。难点: 如何使用微积分解决运动学问题; 在非笛卡尔坐标系中对时间求导。	
第二周	运动和力: 牛顿定理及其应用; 几种常见的力; 基本相互作用力; 量纲分析; 非惯性系与惯性力; 科里奥利力; 潮汐。 重点: 牛顿定律及其应用; 变力下质点的动力学问题。 难点: 惯性力。	
第三周	动量与角动量:冲量与动量定理;动量守恒定理及其守恒条件;质点系;质心;质心运动定理;质点的角动量和角动量定理。 重点:质心;动量守恒定理;质心运动定理;角动量。 难点:角动量	
第四周	角动量守恒定理; 质点系的动量定理; 质点系的 角动量定理; 质心系中的角动量; 功; 动能定理; 保	

	守力;势能;引力势能;势能与保守力之间的联系。 重点:角动量守恒定理;质点系的动量定理;质	
	点系的角动量定理;动能定理;变力的功;保守力的	
	功:势能。	
	机械能守恒定理;对称性与守恒定律;碰撞;弹	
	弓效应; 理想流体模型; 伯努利方程。	
第五周	重点: 机械能守恒定理; 理想流体模型; 伯努利	
	方程。	
	刚体的转动: 刚体模型; 刚体运动的描述; 定轴	
	转动定律;转动惯量;刚体转动中的功和能;角动量	
	及角动量守恒的条件; 刚体进动。	
第六周	重点: 刚体模型; 定轴转动定律; 转动惯量; 刚	
	体的角动量。	
	难点: 刚体进动	
	振动:简谐振动的描述,相位,简谐振动的动力	
646 L ET	学; 能量。	
第七周	重点:简谐振动的数学描述;相位;旋转矢量法;	
	简谐振动的动力学方程;简谐振动的机械能。	
	阻尼振动; 受迫振动; 共振; 振动的合成及分解;	
第八周	拍。	
	重点:一维简谐振动的合成;拍。	
	波动: 机械波的基本特征; 平面简谐波; 弹性波	
第九周	及其波速;波的能量。	
第 儿间	重点: 机械波的特征; 平面简谐波; 博得能量;	
	能流密度。	
第十周	期中考	
	惠更斯原理;波的反射和折射;波的叠加;驻波;	
<i>///</i>	波程差;波的衍射;机械波的多普勒效应;声波;水	
第十一周	波。	
	重点: 惠更斯原理; 波的衍射; 波的叠加; 驻波;	
	相位突变;机械波的多普勒效应。	
	狭义相对论基础: 狭义相对论的两个基本假设;	
	洛伦兹变换和速度变换;同时的相对性;时空收缩; 相对论动力学基础。	
第十二周	重点:狭义相对论的两个基本假设;洛伦兹变换	
	和速度变换;同时的相对性;时空收缩;相对论动力	
	一种逐度交换; 问时的相对性; 时至权组; 相对比幼儿 学基础。	
	字 整 础。	
	量;温度;温标;理想气体模型;理想气体的物态方	
	里; 血及; 血体; 连忠 (体院至; 连忠 (体的初恋力) 程。	
第十三周	^{住。} 重点:平衡态:态参量:热力学第零定律:理想	
	里点: 丁偰芯; 芯多里; 然刀字弟令定律; 理芯 气体模型; 理想气体的物态方程; 理想气体的压强、	
	温度。	

第十四周	气体分子的无规运动;平均自由程;温度的微观	
	意义;能量均分;麦克斯韦速率分布;玻尔兹曼分布。	
	重点:理想气体的平均自由程;能量均分;麦克	
	斯韦速率分布; 三种统计速率。	
	范德瓦尔斯方程;输运现象;热力学第一定律及	
第十五周	其应用。	
	重点: 热力学第一定律及其应用。	
	准静态过程;热容;等温过程;等体过程;等压	
 第十六周	过程;绝热过程;热机;热机效率;制冷机;制冷系	
35 1 7 () FU	数。	
	重点:典型热力学过程;热机效率;制冷系数	
	卡诺热机;卡诺定理;制冷循环;自然过程的方	
	向性;不可逆过程的相互依存;热力学第二定律及其	
第十七周	微观意义; 热力学概率与自然过程的方向性; 玻尔兹	
	曼熵。	
	重点:卡诺循环;热力学第二定律;玻尔兹曼熵。	
第十八周	熵增加原理;可逆过程;克劳修斯熵;熵是态函	
	数;克劳修斯熵变化的计算;熵图。	
	重点: 熵增加原理; 克劳修斯熵。	
	难点:克劳修斯熵的引入	
第十九周	熵和能量衰退; 开放系统的熵变; 近平衡态; 远	
	离平衡态。	
第二十周		
저→ 1 /박		

(二) 教学环节安排

(对各种教学环节的安排如:实验、实习、习题课、作业等以及本课程与其他相关课程的联系、分工等作必要说明)

本课程主要由主讲老师课堂讲授,辅加习题和作业讲解。

(三) 教学方法

(包括课堂讲授、提问研讨,课后习题和答疑等情况)

主要为课堂讲授,辅助适当的课堂演示实验(或演示视频)。

(四) 课程教材

主讲教材

《大学物理: 力学、热学》(A版)张三慧编著,清华大学出版社,第三版,2008.

(五) 主要参考书目

(要求推荐若干参考书,并注明书名、作者、出版社、版本、出版日期等)

- 1. 《新概念物理教程:力学》,赵凯华、罗蔚茵、高等教育出版社,1995
- 2. 《新概念物理教程:热学》,赵凯华,罗蔚茵,高等教育出版社,1998
- 3. 《物理学基础》 D. Halliday et. al.,(著), 张三慧 等(译), 机械工业出版社, 2013

(六) 成绩评定方式

其中考核方式: 闭卷

期末考核方式: 闭卷统一考试

总评成绩计算方式: 平时: 期中: 期末 = 20%: 20%: 60%

注: 教学大纲一律使用 A4 纸,正文为小四号宋体。