18.445 Introduction to Stochastic Processes Lecture 15: Introduction to martingales

Hao Wu

MIT

08 April 2015

Hao Wu (MIT) 18.445 08 April 2015 1 / 11

About the midterm: total=23

Today's Goal:

- probability space
- conditional expectation
- introduction to martingales

Probability space

Definition

 Ω : a set. A collection $\mathcal F$ of subsets of Ω is called a σ -algebra on Ω if

- \mathbf{o} $\Omega \in \mathcal{F}$
- $F \in \mathcal{F} \Longrightarrow F^c \in \mathcal{F}$
- $F_1, F_2, ... \in \mathcal{F} \Longrightarrow \cup_n F_n \in \mathcal{F}$.

The pair (Ω, \mathcal{F}) is called a measurable space.

Definition

Let (Ω, \mathcal{F}) be a measurable space. A map $\mathbb{P}: \mathcal{F} \to [0,1]$ is called a **probability measure** if

- $\mathbb{P}[\emptyset] = 0$, $\mathbb{P}[\Omega] = 1$
- it is countably additive : whenever $(F_n)_{n\geq 0}$ is a sequence of disjoint sets in Ω , then $\mathbb{P}[\cup_n F_n] = \sum_n \mathbb{P}[F_n]$.

Probability space

 $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space

 \bullet Ω : state space

• \mathcal{F} : σ -algebra

■ P : probability measure

Conditional expectation—motivation

- $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space
- X, Z two random variables
- elementary conditional probability :

$$\mathbb{P}[X=x\,|\,Z=z]=\mathbb{P}[X=x,Z=z]/\mathbb{P}[Z=z]$$

elementary conditional expectation :

$$\mathbb{E}[X \mid Z = z] = \sum_{x} x \mathbb{P}[X = x \mid Z = z]$$

- $Y = \mathbb{E}[X \mid \sigma(Z)]$?
 - Y is measurable with respect to $\sigma(Z)$
 - $\mathbb{E}[Y1_{Z=z}] = \mathbb{E}[X1_{Z=z}]$

Hao Wu (MIT) 18.445

5/11

Conditional Expectation

- $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space
- ullet X is a random variable on the probability space with $\mathbb{E}[|X|]<\infty$
- $A \subset \mathcal{F}$ is a sub σ -algebra

Then there exists a random variable Y such that

- Y is \mathcal{A} -measurable with $\mathbb{E}[|Y|] < \infty$
- for any $A \in \mathcal{A}$, we have $\mathbb{E}[Y1_A] = \mathbb{E}[X1_A]$.

Moreover, if \tilde{Y} also satisfies the above two properties, then $\tilde{Y} = Y$ a.s. A random variable Y with the above two properties is called the **conditional expectation** of X given A, and we denote it by $\mathbb{E}[X \mid A]$.

Remark:

- If $A = \{\emptyset, \Omega\}$, then $\mathbb{E}[X \mid A] = \mathbb{E}[X]$.
- If X is A-measurable, then $\mathbb{E}[X \mid A] = X$.
- If $Y = \mathbb{E}[X \mid A]$, then $\mathbb{E}[Y] = \mathbb{E}[X]$

6/11

Hao Wu (MIT) 18.445 08 April 2015

Conditional Expectation—Basic properties

Suppose that $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space and that

- X, X_n are random variables on the probability space in L^1
- $A \subset \mathcal{F}$ is a sub σ -algebra

Then we have the following.

- (Linearity) $\mathbb{E}[a_1X_1 + a_2X_2 \mid \mathcal{A}] = a_1\mathbb{E}[X_1 \mid \mathcal{A}] + a_2\mathbb{E}[X_2 \mid \mathcal{A}]$ for constants a_1, a_2 .
- (Positivity) If $X \ge 0$ a.s., then $\mathbb{E}[X \mid A] \ge 0$ a.s.
- (Monotone convergence) If $0 \le X_n \uparrow X$ a.s. then $\mathbb{E}[X_n \mid \mathcal{A}] \uparrow \mathbb{E}[X \mid \mathcal{A}]$ a.s.
- (Fatou's Lemma) If $X_n \ge 0$, then $\mathbb{E}[\liminf_n X_n \mid \mathcal{A}] \le \liminf_n \mathbb{E}[X_n \mid \mathcal{A}]$ a.s.
- (Dominated convergence) If $|X_n| \le Z$ with $Z \in L^1$ and $X_n \to X$ a.s., then $\mathbb{E}[X_n \mid A] \to \mathbb{E}[X \mid A]$ a.s.
- (Jensen inequality) If $\varphi : \mathbb{R} \to \mathbb{R}$ is convex and $\mathbb{E}[|\varphi(X)|] < \infty$, then $\mathbb{E}[\varphi(X) \mid \mathcal{A}] \ge \varphi(\mathbb{E}[X \mid \mathcal{A}])$.

Conditional Expectation—Basic properties

Suppose that $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space and that

- X, X_n are random variables on the probability space in L^1
- $A \subset \mathcal{F}$ is a sub σ -algebra

Then we have the following.

- (Tower property) If \mathcal{B} is a sub- σ -algebra of \mathcal{A} , then $\mathbb{E}[\mathbb{E}[X \mid \mathcal{A}] \mid \mathcal{B}] = \mathbb{E}[X \mid \mathcal{B}]$ a.s.
- ("Taking out what is known") If Z is A-measurable and bounded, then E[XZ | A] = ZE[X | A] a.s.
- (Independence) If $\mathcal B$ is independent of $\sigma(\sigma(X),\mathcal A)$, then $\mathbb E[X\,|\,\sigma(\mathcal A,\mathcal B)]=\mathbb E[X\,|\,\mathcal A]$ a.s. In particular, if X is independent of $\mathcal B$, then $\mathbb E[X\,|\,\mathcal B]=\mathbb E[X]$ a.s.

Conditional expectation—example

Suppose that $(X_n)_{n\geq 0}$ are i.i.d. with the same distribution as X with $\mathbb{E}[|X|]<\infty$. Let $S_n=X_1+X_2+\cdots+X_n$, and define

$$\mathcal{A}_n = \sigma(\mathcal{S}_n, \mathcal{S}_{n+1}, ...) = \sigma(\mathcal{S}_n, X_{n+1}, ...).$$

Question : $\mathbb{E}[X_1 | A_n]$?

Answer : $\mathbb{E}[X_1 \mid A_n] = S_n/n$.

9/11

Hao Wu (MIT) 18.445 08 April 2015

Martingales

 $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space

A filtration $(\mathcal{F}_n)_{n\geq 0}$ is an increasing family of sub σ -algebras of \mathcal{F} .

A sequence of random variables $X = (X_n)_{n \ge 0}$ is adapted to $(\mathcal{F}_n)_{n \ge 0}$ if X_n is measurable with respect to \mathcal{F}_n for all n.

Let $(X_n)_{n\geq 0}$ be a sequence of random variables.

The natural filtration $(\mathcal{F}_n)_{n\geq 0}$ associated to $(X_n)_{n\geq 0}$ is given by

$$\mathcal{F}_n = \sigma(X_k, k \leq n).$$

We say that $(X_n)_{n\geq 0}$ is integrable if X_n is integrable for all n.

Definition

Let $X = (X_n)_{n \ge 0}$ be an integrable process.

- X is a martingale if $\mathbb{E}[X_n | \mathcal{F}_m] = X_m \ a.s.$ for all $n \geq m$.
- X is a supermartingale if $\mathbb{E}[X_n | \mathcal{F}_m] \leq X_m$ a.s. for all $n \geq m$.
- X is a submartingale if $\mathbb{E}[X_n | \mathcal{F}_m] \geq X_m$ a.s. for all $n \geq m$.

Hao Wu (MIT) 18.445 08 April 2015 10 / 11

Examples

Example 1 Let $(\xi_i)_{i\geq 1}$ be i.i.d with $\mathbb{E}[\xi_1] = 0$. Then $X_n = \sum_{1}^n \xi_i$ is a martingale.

Example 2 Let $(\xi_i)_{i\geq 1}$ be i.i.d with $\mathbb{E}[\xi_1] = 1$. Then $X_n = \Pi_1^n \xi_i$ is a martingale.

Example 3 Consider biased gambler's ruin : at each step, the gambler gains one dollar with probability p and losses one dollar with probability (1 - p). Let X_n be the money in purse at time n.

- If p = 1/2, then (X_n) is a martingale.
- If p < 1/2, then (X_n) is a supermartingale.
- If p > 1/2, then (X_n) is a submartingale.

Hao Wu (MIT) 18.445 08 April 2015 11 / 11