Álgebra Universal e Categorias

- 2º teste (9 de junho de 2017) — duração: 2 horas — duraçõo: 2 horas

1. Considere a categoria C definida por

onde $i = f \circ h = g \circ h$, $j = k \circ h$.

Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações:

- (a) Para quaisquer C-morfismos $p:X\to Y$ e $q:Y\to Z$, se p não é um epimorfismo, então $q\circ p$ não é um epimorfismo.
- (b) Para qualquer objeto X de \mathbb{C} , se X não é um objeto terminal da categoria \mathbb{C} , então (X, id_X) não é um objeto terminal da categoria \mathbb{C}/A . (Nota: Representa-se por \mathbb{C}/A a categoria dos objetos sobre A).
- (c) O par $(C, (id_C, f))$ é um produto de C e D.
- 2. Sejam ${\bf C}$ uma categoria e $f:A\to B$ e $g:B\to C$ morfismos de ${\bf C}$. Mostre que se $g\circ f$ é invertível à direita, então g é um epimorfismo.
- 3. Mostre que se \mathbf{C} e \mathbf{D} são categorias com objetos terminais, então a categoria $\mathbf{C} \times \mathbf{D}$ também tem objetos terminais. Conclua que a categoria $\mathbf{Set} \times \mathbf{Set}$ tem objetos terminais. Dê um exemplo de um objeto terminal da categoria $\mathbf{Set} \times \mathbf{Set}$. Justifique a sua resposta.
- 4. Sejam $f:A\to B$ e $g:B\to A$ morfismos de uma categoria ${\bf C}$ tais que $f\circ g=id_B$. Mostre que (B,f) é um coigualizador de $g\circ f$ e ${\rm id}_A$.
- 5. Numa categoria C, considere o seguinte diagrama

Mostre que se o diagrama anterior é comutativo e $(A,(f_1,f_2))$ é um produto fibrado de (h_1,h_2) , então $(A,(f_1,f_2))$ é um produto fibrado de (g_1,g_2) .

- 6. Sejam X um conjunto e \mathcal{F}_X a correspondência que
 - a cada conjunto A associa o conjunto $F_X(A) = A \times X$;
 - a cada função $f:A\to B$ associa a função

$$F_X(f): A \times X \rightarrow B \times X$$

 $(a,x) \mapsto (f(a),x)$.

- (a) Mostre que, para qualquer conjunto X, F_X é um funtor de **Set** em **Set**.
- (b) Diga, justificando, se o funtor F_X é um funtor fiel quando: (i) $X = \emptyset$. (ii) $X \neq \emptyset$.