W09 - Binary Search Tree - Treap

Due 10 Mar at 23:59 **Points** 20 **Questions** 8

Available 6 Mar at 8:00 - 10 Mar at 23:59 Time limit None

Allowed attempts Unlimited

Instructions

Content and Background

This quiz relates to the content covered in the course up till now. It may also draw upon supporting knowledge and skills expected from a CS sophomore. Please make sure that you are up to date on the coursework before attempting the quiz.

Difficulty

This quiz is equivalent to an in-class exercise. Have pen and paper ready and be prepared to work on challenging problems.

Discussion

Please use Discussion forum to discuss any of the questions. Do not reveal your answers.

Take the quiz again

Attempt history

	Attempt	Time	Score
LATEST	Attempt 1	11 minutes	20 out of 20

(!) Correct answers are hidden.

Score for this attempt: 20 out of 20

Submitted 7 Mar at 22:13
This attempt took 11 minutes.

Question 1	3 / 3 pts		
Suppose the <i>find</i> function is called with some unknown value of BST that stores values 1,2,,127.	·		
How many nodes will the find function have to check in the wo			
How many nodes will the <i>find</i> function have to check in the bes	st case?		
Answer 1:			
Answer 2:			
1			
Question 2	3 / 3 pts		
Suppose a BST is being populated with a 100 values using the <i>add</i> function. The entire process takes longest when (check all that apply):			
✓ Values are added in ascending order			

them

✓ Values are added in descending order

Values are added in ascending order but there are duplicates amongst

Values are added in perfectly random order

Question 3 2 / 2 pts The *remove* function can be thought of as consisting of a *find* part (the *if* and *else if* case), and a part where the meat of the remove happens (the *else* case). Consider running the *remove* function on an arbitrary value. What is the time complexity of the meat of the function (the *else* case) in terms of Big-O? O(log(n))

Question 5 2 / 2 pts

A new node in a BST is always inserted as a:		
right child		
O left child		
leaf node		
internal node		

Consider the 24 BSTs generated using every permutation of 1,...,4.

1. Consider generating a **randomized BST** by first obtaining a random permutation of 1,...,4 and then inserting those values in that order into the

BST. Such a **randomized BST** will have a height of 2 with probability (round your answer to 3 s.f.) 0.666

2. Compute the average (mean) height of the BSTs (round your answer to

```
3 s.f.): 2.333
```

Answer 1:

0.666

Answer 2:

2.333

Question 7

2 / 2 pts

The *rotate_right*(u) / *rotate_left*(u) helper functions are defined to help in the Treap *add* function. What, according to your intuition, should be the time complexity of *rotate_right* / *rotate_left* ?

O(1)
\sim (')

O(n)

O(log n)

Quiz score: 20 out of 20