MAT1830 - Discrete Mathematics for Computer Science Tutorial Sheet #10 Solutions

1. (a) Note that $a_0 = 2^0 = 1$.

Also, $a_n = 2^n = 2(2^{n-1}) = 2a_{n-1}$ for $n \ge 1$.

So " $a_0 = 1$ and $a_n = 2a_{n-1}$ for all integers $n \ge 1$ " is a recursive definition for the sequence.

(b) Note that $b_0 = 0^2 = 0$.

Also, $b_n = n^2 = (n-1)^2 + 2n - 1 = b_{n-1} + 2n - 1$ for $n \ge 1$.

So " $b_0 = 0$ and $b_n = b_{n-1} + 2n - 1$ for all integers $n \ge 1$ " is a recursive definition the sequence.

2. (a) Vertex set: $\{P,Q,R,S\}$

Edge set: $\{PQ, PR, PS\}$

(b) Vertex set: $\{P, Q, R, S, T\}$

Edge set: $\{PQ, PR, PS, QR, QS, RS\}$

(c) Vertex set: $\{P, Q, R, S, T\}$

Edge set: $\{PS, QS, QT, RS, ST\}$

3. There is only one way of writing 1 in this form: "1".

There are two ways of writing 2: "1 + 1" and "2".

So $s_1 = 1$ and $s_2 = 2$.

If the first term in such a sum is a 1, then there are s_{n-1} ways to finish it so that it adds to n. If the first term in such a sum is a 2, then there are s_{n-2} ways to finish it so that it adds to n. These two cases account for every possible sum.

So $s_1 = 1$, $s_2 = 2$ and $s_n = s_{n-1} + s_{n-2}$ for all integers $n \ge 3$.

4. (a)

- (b) 1. The walk is V_1, V_2, V_1, V_2 .
- (c) For any $n \geq 2$:
 - The 1st entry in the top row of M^n is the number of walks of length n from V_1 to V_1 , which is 1 for any even $n \geq 2$ (the walk is $V_1, V_2, V_1, V_2, \dots, V_1$).
 - The 2nd entry in the top row of M^n is the number of walks of length n from V_1 to V_2 , which is 0 for any even $n \geq 2$.
 - The 3rd entry in the top row of M^n is the number of walks of length n from V_1 to V_3 , which is 0 for any even $n \geq 2$.
 - The 4th entry in the top row of M^n is the number of walks of length n from V_1 to V_4 , which is 0 for any even $n \geq 2$.

So the top row of \overline{M}^n for any even $n \geq 2$ is "1 0 0 0".

5. One line creates two regions, so $r_1 = 2$.

The nth line added intersects each of the n-1 previous lines exactly once because it is not parallel to any of them. The n-1 intersection points created are all different because no three lines meet at a point. These n-1 intersection points divide the nth line into n segments and each of these segments splits a region in two. So the new number of regions is n more than the previous number.

Thus $r_1 = 2$ and $r_n = r_{n-1} + n$ for all integers $n \ge 2$.