Package 'edm1'

June 18, 2024

Title Simplify Complex Data Manipulation

Version 2.0.0.0

Description Provides complex sorting algorythms. Provides date manipulation algorythms. In addition to providing handy functions to discretize variables, an SQL joins alternatives, a set of function to work with geographical coordinates, and other functions to work with text mining.
License GPL (==3)
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.1
Imports stringr, stringi, dplyr, openxlsx Contents
all_stat
any_join_datf
appndr
better_match
better_split
better_sub
better_sub_mult
better_unique
can_be_num
closer_ptrn

 data_gen
 24

 data_meshup
 26

 date_addr
 27

 closer_ptrn_adv
 15

 clusterizer_v
 16

 colins_datf
 19

 converter_date
 20

 converter_format
 21

 cost_and_taxes
 21

2 Contents

date_converter_reverse	28
dcr_untl	29
dcr_val	29
depth_pairs_findr	30
diff_datf	30
elements_equalifier	31
_ 1	32
. –	32
	38
·	39
	40
- -	10 10
-	11
-	† 1 4 1
-	+1 12
0 =	
0 =	13
0	13
6 · r = · · · · · · · · · · · · · · · · ·	14
6 · I = · · · · · · · · · · · · · · · · ·	14
6 · 1 = · · · · · · · · · · · · · · · · ·	15
	16
	17
how_unif4	19
id_keepr	50
incr_fillr	51
infinite_char_seq	52
inner_all	53
	53
	54
	55
-	56
-	57
-	58
	59
-	59
, – –	50
1 —	
-	51
	52
-	52
-	53
- y	53
	54
nb2_follow	55
nb_follow	55
nb_to_letter	56
nestr_datf1	57
nestr_datf2	58
-	59
	59
	70
-	71
	71

Contents 3

pairs_findr
pairs_findr_merger
pairs_insertr
pairs_insertr2
paste_datf
pattern_generator
pattern_gettr
pattern_tuning
power_to_char
pre_to_post_idx
ptrn_switchr
ptrn_twkr
rearangr_v
regex_spe_detect
regroupr
r_print
save_untl
see_datf
see_diff
see_diff_all
see_file
see_idx
see_inside
see_mode
sort_date
sort_normal_qual
sort_normal_qual2
str_remove_untl
sub_mult
successive_diff
swipr
test_order
to_unique
union_all
union_keep
unique_datf
unique_ltr_from_v
unique_pos
unique_total
until_stnl
val_replacer
vector_replacor
vec_in_datf
vlookup_datf
wider_datf

113

Index

4 all_stat

Description

Allow to see all the main statistics indicators (mean, median, variance, standard deviation, sum, max, min, quantile) of variables in a dataframe by the modality of a variable in a column of the input datarame. In addition to that, you can get the occurence of other qualitative variables by your chosen qualitative variable, you have just to precise it in the vector "stat_var" where all the statistics indicators are given with "occu-var_you_want/".

Usage

```
all_stat(inpt_v, var_add = c(), stat_var = c(), inpt_datf)
```

Arguments

inpt_v is the modalities of the variables
var_add is the variables you want to get the stats from
stat_var is the stats indicators you want
inpt_datf is the input dataframe

```
datf <- data.frame("mod"=c("first", "seco", "seco", "first", "first", "third", "first"),</pre>
                "var1"=c(11, 22, 21, 22, 22, 11, 9),
               "var2"=c("d", "d", "z", "z", "z", "d",
               "var3"=c(45, 44, 43, 46, 45, 45, 42),
              "var4"=c("A", "A", "A", "A", "B", "C", "C"))
print(all_stat(inpt_v=c("first", "seco"), var_add = c("var1", "var2", "var3", "var4"),
 stat_var=c("sum", "mean", "median", "sd", "occu-var2/", "occu-var4/", "variance",
"quantile-0.75/"),
 inpt_datf=datf))
#
    modal_v var_vector occu sum mean med standard_devaition
                                                                       variance
#1
     first
#2
                              64
                                   16 16.5
                                             6.97614984548545 48.6666666666667
                  var1
#3
                var2-d
                          1
#4
                var2-z
#5
                            178 44.5
                                       45
                                             1.73205080756888
                                                                               3
                  var3
#6
                var4-A
                          2
#7
                var4-B
                          1
#8
                var4-C
                          1
#9
       seco
#10
                              43 21.5 21.5 0.707106781186548
                                                                            0.5
                  var1
#11
                var2-d
                          1
#12
                var2-z
                          1
#13
                              87 43.5 43.5 0.707106781186548
                                                                            0.5
                  var3
#14
                var4-A
                          2
#15
                var4-B
                          0
#16
                var4-C
    quantile-0.75
```

any_join_datf 5

```
#1
#2
              22
#3
#4
#5
         45.25
#6
#7
#8
#9
      21.75
#10
#11
#12
         43.75
#13
#14
#15
#16
```

any_join_datf

any_join_datf

Description

Allow to perform SQL joints with more features

Usage

```
any_join_datf(
  inpt_datf_l,
  join_type = "inner",
  join_spe = NA,
  id_v = c(),
  excl_col = c(),
  rtn_col = c(),
  d_val = NA
)
```

Arguments

inpt_datf_l	is a list containing all the dataframe
join_type	is the joint type. Defaults to inner but can be changed to a vector containing all the dataframes you want to take their ids to don external joints.
join_spe	can be equal to a vector to do an external joints on all the dataframes. In this case, join_type should not be equal to "inner"
id_v	is a vector containing all the ids name of the dataframes. The ids names can be changed to number of their columns taking in count their position in inpt_datf_l. It means that if my id is in the third column of the second dataframe and the first dataframe have 5 columns, the column number of the ids is $5 + 3 = 8$
excl_col	is a vector containing the column names to exclude, if this vector is filled so "rtn_col" should not be filled. You can also put the column number in the manner indicated for "id_v". Defaults to $c()$

6 any_join_datf

d_val is the default val when here is no match

Examples

#4 a34

a FALSE

```
datf1 \leftarrow data.frame("val"=c(1, 1, 2, 4), "ids"=c("e", "a", "z", "a"),
"last"=c("oui", "oui", "non", "oui"),
"second_ids"=c(13, 11, 12, 8), "third_col"=c(4:1))
datf2 \leftarrow data.frame("val"=c(3, 7, 2, 4, 1, 2), "ids"=c("a", "z", "z", "a", "a", "a"),
"bool"=c(TRUE, FALSE, FALSE, FALSE, TRUE, TRUE),
"second_ids"=c(13, 12, 8, 34, 22, 12))
datf3 <- data.frame("val"=c(1, 9, 2, 4), "ids"=c("a", "a", "z", "a"),
"last"=c("oui", "oui", "non", "oui"),
"second_ids"=c(13, 11, 12, 8))
print(any_join_datf(inpt_datf_l=list(datf1, datf2, datf3), join_type="inner",
id_v=c("ids", "second_ids"),
                excl_col=c(), rtn_col=c()))
# ids val ids last second_ids val ids bool second_ids val ids last second_ids
                          12 7 z FALSE
                                                  12
                                                     2
print(any_join_datf(inpt_datf_l=list(datf1, datf2, datf3), join_type="inner", id_v=c("ids
excl_col=c(), rtn_col=c()))
# ids val ids last second_ids val ids bool second_ids val ids last second_ids
#2
       1
           a oui
                          11 3
                                 a TRUE
                                                  1.3
                                                     1 a oui
                                                                         13
    а
#3
       2
            z non
                          12
                               7
                                   z FALSE
                                                  12
                                                       2
                                                                         12
    Z
                                                           z non
                           8
                               4
                                  a FALSE
                                                  34
                                                     9
                                                                         11
#4
            a oui
                                                         a oui
print(any_join_datf(inpt_datf_l=list(datf1, datf2, datf3), join_type=c(1), id_v=c("ids"),
               excl_col=c(), rtn_col=c()))
# ids val ids last second_ids val ids bool second_ids val ids last
                         13 <NA> <NA> <NA> <NA> <NA> <NA> <NA>
#1
       1 e oui
                          11 3 a TRUE
#2
        1 a oui
                                                   13
                                                       1 a oui
                             7
#3
   Z
       2
                         12
                                   z FALSE
                                                    12
                                                         2
                                                            z non
          z non
#4
       4
                          8 4
                                  a FALSE
                                                    34
                                                         9
           a oui
# second_ids
#1
        <NA>
#2
          13
#3
          12
#4
          11
print(any_join_datf(inpt_datf_l=list(datf2, datf1, datf3), join_type=c(1, 3),
                id_v=c("ids", "second_ids"),
                excl_col=c(), rtn_col=c()))
   ids val ids bool second_ids val ids last second_ids val ids last
#1 a13
          3
              a TRUE
                            13 <NA> <NA> <NA>
                                                   <NA>
                                                           1
                                                                a oui
#2 z12
          7
              z FALSE
                             12
                                 2 z non
                                                      12
                                                            2
                                                                 z non
#3
   z8
          2
            z FALSE
                              8 <NA> <NA> <NA>
                                                    <NA> <NA> <NA> <NA>
```

34 <NA> <NA> <NA>

<NA> <NA> <NA> <NA>

appndr 7

```
a22 1 a TRUE
a12 2 a TRUE
a13 <NA> <NA> <NA>
#5
                          22 <NA> <NA> <NA>
                                              <NA> <NA> <NA> <NA>
#6
                          12 <NA> <NA> <NA>
                                              <NA> <NA> <NA> <NA>
                       <NA> <NA> <NA> <NA>
#7
                                              <NA> <NA> <NA> <NA>
  all <NA> <NA> <NA>
                       <NA> 1 a oui
                                               11 9 a oui
#8
<NA> <NA> <NA> <NA>
                                             8
                                                   4 a oui
#
   second_ids
#1
       13
#2
         12
#3
       <NA>
#4
       <NA>
#5
       <NA>
#6
        <NA>
#7
       <NA>
#8
         11
#9
        <NA>
#10
```

```
#ids val ids last second_ids val ids bool second_ids val ids last
                 13 <NA> <NA> <NA> 11 3 a TRUE
                                         <NA> <NA> <NA> <NA>
       1
          e oui
                          3 a TRUE
7 z FALSE
#2
   а
       1
          а
             oui
                                              13
                                                  1
      2
                      12
                                                  2
         z non
                                              12
   Z
#3
                                                        z non
                       8 4 a FALSE
                                                  9
                                              34
      4
#4
   а
          а
             oui
                                                        а
                                                           oui
# second_ids
#1
      <NA>
#2
        13
#3
        12
#4
        11
```

appndr appndr

Description

Append to a vector "inpt_v" a special value "val" n times "mmn". The appending begins at "strt" index.

Usage

```
appndr(inpt_v, val = NA, hmn, strt = "max")
```

Arguments

inpt_v is the input vector

val is the special value

hmn is the number of special value element added

strt is the index from which appending begins, defaults to max which means the end of "inpt_v"

8 better_match

Examples

```
print(appndr(inpt_v=c(1:3), val="oui", hmn=5))
#[1] "1"    "2"    "3"    "oui" "oui" "oui" "oui" "oui"
print(appndr(inpt_v=c(1:3), val="oui", hmn=5, strt=1))
#[1] "1"    "oui" "oui" "oui" "oui" "oui" "2"    "3"
```

better_match

better_match

Description

Allow to get the nth element matched in a vector

Usage

```
better_match(inpt_v = c(), ptrn, untl = 1, nvr_here = NA)
```

Arguments

```
inpt_v is the input vector
ptrn is the pattern to be matched
untl is the maximum number of matched pattern outputed
nvr_here is a value you are sure is not present in inpt_v
```

```
print(better_match(inpt_v=c(1:12, 3, 4, 33, 3), ptrn=3, untl=1))
#[1] 3
print(better_match(inpt_v=c(1:12, 3, 4, 33, 3), ptrn=3, untl=5))
#[1] 3 13 16
print(better_match(inpt_v=c(1:12, 3, 4, 33, 3), ptrn=c(3, 4), untl=5))
[1] 3 13 16 4 14
print(better_match(inpt_v=c(1:12, 3, 4, 33, 3), ptrn=c(3, 4), untl=c(1, 5)))
[1] 3 4 14
```

better_split 9

better_split better_split

Description

Allows to split a string by multiple split, returns a vector and not a list.

Usage

```
better_split(inpt, split_v = c())
```

Arguments

inpt is the input character
split_v is the vector containing the splits

Examples

```
print(better_split(inpt = "o-u_i", split_v = c("-")))
[1] "o" "u_i"
print(better_split(inpt = "o-u_i", split_v = c("-", "_")))
[1] "o" "u" "i"
```

better_sub

better_sub

Description

Allow to perform a sub operation to a given number of matched patterns, see examples

Usage

```
better\_sub(inpt\_v = c(), pattern, replacement, untl\_v = c())
```

Arguments

 $\verb"inpt_v" is a vector containing all the elements that contains expressions to be substituted$

pattern is the expression that will be substituted replacement is the expression that will substituate pattern

untl_v is a vector containing, for each element of inpt_v, the number of pattern that will

be substituted

10 better_sub_mult

Examples

```
print(better_sub(inpt_v = c("yes NAME, i will call NAME and NAME",
                            "yes NAME, i will call NAME and NAME"),
                 pattern = "NAME",
                 replacement = "Kevin",
                 untl = c(2))
[1] "yes Kevin, i will call Kevin and NAME"
[2] "yes Kevin, i will call Kevin and NAME"
print(better_sub(inpt_v = c("yes NAME, i will call NAME and NAME",
                            "yes NAME, i will call NAME and NAME"),
                 pattern = "NAME",
                 replacement = "Kevin",
                 unt1 = c(2, 3))
[1] "yes Kevin, i will call Kevin and NAME"
[2] "yes Kevin, i will call Kevin and Kevin"
print(better_sub(inpt_v = c("yes NAME, i will call NAME and NAME",
                             "yes NAME, i will call NAME and NAME"),
                  pattern = "NAME",
                  replacement = "Kevin",
                  untl = c("max", 3))
[1] "yes Kevin, i will call Kevin and Kevin"
[2] "yes Kevin, i will call Kevin and Kevin"
```

better_sub_mult better_sub_mult

Description

Allow to perform a sub_mult operation to a given number of matched patterns, see examples

Usage

```
better_sub_mult(
  inpt_v = c(),
  pattern_v = c(),
  replacement_v = c(),
  untl_v = c()
)
```

Arguments

 $\begin{array}{ll} \text{inpt_v} & \text{is a vector containing all the elements that contains expressions to be substituted} \\ \text{pattern_v} & \text{is a vector containing all the patterns to be substituted in any elements of inpt_v} \\ \text{replacement_v} & \end{array}$

is a vector containing the expression that are going to substituate those provided by pattern_v

untl_v is a vector containing, for each element of inpt_v, the number of pattern that will be substituted

better_unique 11

Examples

better_unique

better_unique

Description

Returns the element that are not unique from the input vector

Usage

```
better_unique(inpt_v, occu = ">-1-")
```

Arguments

inpt_v is the i

is the input vector containing the elements

occu

is a parameter that specifies the occurence of the elements that must be returned, defaults to ">-1-" it means that the function will return all the elements that are present more than one time in inpt_v. The synthax is the following "comparaison_type-actual_value-". The comparaison type may be "==" or ">" or "<". Occu can also be a vector containing all the occurence that must have the elements to be returned.

```
print(better_unique(inpt_v=c("oui", "oui", "non", "non", "peut", "peut1", "non")))
#[1] "oui" "non"
print(better_unique(inpt_v=c("oui", "oui", "non", "non", "peut", "peut1", "non"), occu="=
#[1] "oui"
print(better_unique(inpt_v=c("oui", "oui", "non", "non", "peut", "peut1", "non"), occu=">
```

12 can_be_num

```
#[1] "non"
print(better_unique(inpt_v=c("oui", "oui", "non", "non", "peut", "peut1", "non"), occu=ce
#[1] "non"    "peut"    "peut1"
print(better_unique(inpt_v = c("a", "b", "c", "c"), occu = "==-1-"))
[1] "a" "b"
print(better_unique(inpt_v = c("a", "b", "c", "c"), occu = "<-2-"))
[1] "a" "b"</pre>
```

can_be_num

can_be_num

Description

Return TRUE if a variable can be converted to a number and FALSE if not (supports float)

Usage

```
can_be_num(x)
```

Arguments

Х

is the input value

```
print(can_be_num("34.677"))
#[1] TRUE
print(can_be_num("34"))
#[1] TRUE
print(can_be_num("3rt4"))
#[1] FALSE
print(can_be_num(34))
#[1] TRUE
```

closer_ptrn 13

closer_ptrn closer_ptrn

Description

Take a vector of patterns as input and output each chosen word with their closest patterns from chosen patterns.

Usage

```
closer_ptrn(
  inpt_v,
  base_v = c("?", letters),
  excl_v = c(),
  rtn_v = c(),
  sub_excl_v = c(),
  sub_rtn_v = c()
)
```

Arguments

inpt_v	is the input vector containing all the patterns
base_v	must contain all the characters that the patterns are succeptible to contain, defaults to c("?", letters). "?" is necessary because it is internaly the default value added to each element that does not have a sufficient length compared to the longest pattern in inpt_v. If set to NA, the function will find by itself the elements to be filled with but it may takes an extra time
excl_v	is the vector containing all the patterns from inpt_v to exclude for comparing them to others patterns. If this parameter is filled, so "rtn_v" must be empty.
rtn_v	is the vector containing all the patterns from inpt_v to keep for comparing them to others patterns. If this parameter is filled, so "rtn_v" must be empty.
sub_excl_v	is the vector containing all the patterns from inpt_v to exclude for using them to compare to another pattern. If this parameter is filled, so "sub_rtn_v" must be empty.
sub_rtn_v	is the vector containing all the patterns from inpt_v to retain for using them to compare to another pattern. If this parameter is filled, so "sub_excl_v" must be empty.

```
print(closer_ptrn(inpt_v=c("bonjour", "lpoerc", "nonnour", "bonnour", "nonjour", "aurevoir"
#[[1]]
#[1] "bonjour"
#
#[[2]]
#[1] "lpoerc" "nonnour" "bonnour" "aurevoir"
#
#[[3]]
#[1] 1 1 2 7 8
```

14 closer_ptrn

```
#[[4]]
#[1] "lpoerc"
#[[5]]
#[1] "bonjour" "nonnour" "bonnour" "nonjour" "aurevoir"
#[[6]]
#[1] 7 7 7 7 7
#[[7]]
#[1] "nonnour"
#[1] "bonjour" "lpoerc" "bonnour" "nonjour" "aurevoir"
#[[9]]
#[1] 1 1 2 7 8
#[[10]]
#[1] "bonnour"
#[[11]]
#[1] "bonjour" "lpoerc" "nonnour" "nonjour" "aurevoir"
#[[12]]
#[1] 1 1 2 7 8
#[[13]]
#[1] "nonjour"
#[[14]]
#[1] "bonjour" "lpoerc" "nonnour" "bonnour" "aurevoir"
#[[15]]
#[1] 1 1 2 7 8
#[[16]]
#[1] "aurevoir"
#[[17]]
#[1] "bonjour" "lpoerc" "nonnour" "bonnour" "nonjour"
#[[18]]
#[1] 7 8 8 8 8
print(closer_ptrn(inpt_v=c("bonjour", "lpoerc", "nonnour", "bonnour", "nonjour", "aurevoi
excl_v=c("nonnour", "nonjour"),
                sub_excl_v=c("nonnour")))
#[1] 3 5
#[[1]]
#[1] "bonjour"
#[[2]]
               "bonnour" "nonjour" "aurevoir"
#[1] "lpoerc"
```

closer_ptrn_adv 15

```
#[[3]]
#[1] 1 1 7 8
#[[4]]
#[1] "lpoerc"
#[[5]]
#[1] "bonjour" "bonnour" "nonjour" "aurevoir"
#[[6]]
#[1] 7 7 7 7
#[[7]]
#[1] "bonnour"
#[[8]]#
#[1] "bonjour" "lpoerc"
                           "bonnour" "nonjour" "aurevoir"
#[[9]]
#[1] 0 1 2 7 8
#[[10]]
#[1] "aurevoir"
#[[11]]
#[1] "bonjour" "lpoerc" "nonjour" "aurevoir"
#[[12]]
#[1] 0 7 8 8
```

closer_ptrn_adv closer_ptrn_adv

Description

Allow to find how patterns are far or near between each other relatively to a vector containing characters at each index ("base_v"). The function gets the sum of the indexes of each pattern letter relatively to the characters in base_v. So each pattern can be compared.

Usage

```
closer_ptrn_adv(
  inpt_v,
  res = "raw_stat",
  default_val = "?",
  base_v = c(default_val, letters),
  c_word = NA
)
```

Arguments

inpt_v is the input vector containing all the patterns to be analyzed

16 clusterizer_v

is a parameter controling the result. If set to "raw_stat", each word in inpt_v will come with its score (indexes of its letters relatively to base_v). If set to something else, so "c_word" parameter must be filled.

default_val is the value that will be added to all patterns that do not equal the length of the longest pattern in inpt_v. Those get this value added to make all patterns equal in length so they can be compared, defaults to "?"

base_v is the vector from which all pattern get its result (letters indexes for each pattern relatively to base_v), defaults to c("default_val", letters). "default_val" is another parameter and letters is all the western alphabetic letters in a vector is a pattern from which the nearest to the farest pattern in inpt_v will be compared

Examples

clusterizer v clusterizer v

Description

Allow to output clusters of elements. Takes as input a vector "inpt_v" containing a sequence of number. Can also take another vector "w_v" that has the same size of inpt_v because its elements are related to it. The way the clusters are made is related to an accuracy value which is "c_val". It means that if the difference between the values associated to 2 elements is superior to c_val, these two elements are in distinct clusters. The second element of the outputed list is the begin and end value of each cluster.

Usage

```
clusterizer_v(inpt_v, w_v = NA, c_val)
```

Arguments

inpt_v is the vector containing the sequence of numberw_v is the vector containing the elements related to inpt_v, defaults to NAc_val is the accuracy of the clusterization

clusterizer_v 17

```
print(clusterizer_v(inpt_v=sample.int(20, 26, replace=TRUE), w_v=NA, c_val=0.9))
# [[1]]
#[[1]][[1]]
#[1] 1
#[[1]][[2]]
#[1] 2
#[[1]][[3]]
#[1] 3
#[[1]][[4]]
#[1] 4
#[[1]][[5]]
#[1] 5 5
#[[1]][[6]]
#[1] 6 6 6 6
#[[1]][[7]]
#[1] 7 7 7
#[[1]][[8]]
#[1] 8 8 8
#[[1]][[9]]
#[1] 9
#[[1]][[10]]
#[1] 10
#[[1]][[11]]
#[1] 12
#[[1]][[12]]
#[1] 13 13 13
#[[1]][[13]]
#[1] 18 18 18
#[[1]][[14]]
#[1] 20
#[[2]]
# [1] "1" "1" "-" "2" "2" "-" "3" "3" "-" "4" "4" "-" "5" "5" "-"
#[16] "6" "6" "-" "7" "7" "-" "8" "8" "-" "9" "9" "-" "10" "10" "-"
#[31] "12" "12" "-" "13" "13" "-" "18" "18" "-" "20" "20"
print(clusterizer_v(inpt_v=sample.int(40, 26, replace=TRUE), w_v=letters, c_val=0.29))
#[[1]]
#[[1]][[1]]
```

18 clusterizer_v

```
#[1] "a"
#[[1]][[2]]
#[1] "b"
#[[1]][[3]]
#[1] "c" "d"
#[[1]][[4]]
#[1] "e" "f"
#[[1]][[5]]
#[1] "g" "h" "i" "j"
#[[1]][[6]]
#[1] "k"
#[[1]][[7]]
#[1] "1"
#[[1]][[8]]
#[1] "m" "n"
#[[1]][[9]]
#[1] "0"
#[[1]][[10]]
#[1] "p"
#[[1]][[11]]
#[1] "q" "r"
#[[1]][[12]]
#[1] "s" "t" "u"
#[[1]][[13]]
#[1] "v"
#[[1]][[14]]
#[1] "w"
#[[1]][[15]]
#[1] "x"
#[[1]][[16]]
#[1] "y"
#[[1]][[17]]
#[1] "z"
#[[2]]
# [1] "13" "13" "-" "14" "14" "-" "15" "15" "-" "16" "16" "-" "17" "17" "-"
#[16] "19" "19" "-" "21" "21" "-" "22" "22" "-" "23" "23" "-"
                                                                  "25" "25" "-"
#[31] "27" "27" "-" "29" "29" "-" "30" "30" "-" "31" "31" "-" "34" "34" "-"
#[46] "35" "35" "-" "37" "37"
```

colins_datf

Description

Allow to insert vectors into a dataframe.

Usage

```
colins_datf(inpt_datf, target_col = list(), target_pos = list())
```

Arguments

```
inpt_datf is the dataframe where vectors will be inserted
target_col is a list containing all the vectors to be inserted
target_pos is a list containing the vectors made of the columns names or numbers where
the associated vectors from target_col will be inserted after
```

```
datf1 <- data.frame("frst_col"=c(1:5), "scd_col"=c(5:1))</pre>
print(colins_datf(inpt_datf=datf1, target_col=list(c("oui", "oui", "oui", "non", "non"),
           c("u", "z", "z", "z", "u")),
              target_pos=list(c("frst_col", "scd_col"), c("scd_col"))))
# frst_col cur_col scd_col cur_col.1 cur_col
       1 oui 5 oui
#1
#2
         2
              oui
                       4
                              oui
                                        7.
        3
                      3
#3
              oui
                              oui
                                       Z
                       2
#4
        4
                              non
                                       Z
              non
#5
              non
                               non
print(colins_datf(inpt_datf=datf1, target_col=list(c("oui", "oui", "oui", "non", "non"),
           c("u", "z", "z", "z", "u")),
              \verb|target_pos=list(c(1, 2), c("frst_col")))|
# frst_col cur_col scd_col cur_col cur_col
        1 oui 5 u oui
#1
                       4
                              Z
#2
         2
              oui
                                    oui
                              Z
#3
        3
                       3
              oui
                                    oui
#4
        4
                       2
              non
                              Z
                                    non
#5
        5
                       1
              non
                                    non
```

20 converter_date

Description

Allow to convert any date like second/minute/hour/day/month/year to either second, minute...year. The input date should not necessarily have all its time units (second, minute...) but all the time units according to a format. Example: "snhdmy" is for second, hour, minute, day, month, year. And "mdy" is for month, day, year.

Usage

```
converter_date(inpt_date, convert_to, frmt = "snhdmy", sep_ = "-")
```

Arguments

```
inpt_date is the input date
convert_to is the time unit the input date will be converted ("s", "n", "h", "d", "m", "y")
frmt is the format of the input date
sep_ is the separator of the input date. For example this input date "12-07-2012" has
"-" as a separator
```

```
print(converter_date(inpt_date="14-04-11-2024", sep_="-", frmt="hdmy", convert_to="m"))
#[1] 24299.15
print(converter_date(inpt_date="14-04-11-2024", sep_="-", frmt="hdmy", convert_to="y"))
#[1] 2024.929
print(converter_date(inpt_date="14-04-11-2024", sep_="-", frmt="hdmy", convert_to="s"))
#[1] 63900626400
print(converter_date(inpt_date="63900626400", sep_="-", frmt="s", convert_to="y"))
#[1] 2024.929
print(converter_date(inpt_date="2024", sep_="-", frmt="y", convert_to="s"))
#[1] 63873964800
```

converter_format 21

```
converter_format converter_format
```

Description

Allow to convert a format to another

Usage

```
converter_format(inpt_val, sep_ = "-", inpt_frmt, frmt, default_val = "00")
```

Arguments

```
    inpt_val is the input value that is linked to the format
    sep_ is the separator of the value in inpt_val
    inpt_frmt is the format of the input value
    frmt is the format you want to convert to
    default_val is the default value given to the units that are not present in the input format
```

Examples

```
cost_and_taxes cost_and_taxes
```

Description

Allow to calculate basic variables related to cost and taxes from a bunch of products (elements). So put every variable you know in the following order:

Usage

```
cost_and_taxes(
  qte = NA,
  pu = NA,
  prix_ht = NA,
  tva = NA,
  prix_ttc = NA,
  prix_tva = NA,
```

22 cutr_v

```
pu_ttc = NA,
adjust = NA,
prix_d_ht = NA,
prix_d_ttc = NA,
pu_d = NA,
pu_d_ttc = NA
```

Arguments

qte is the quantity of elements is the price of a single elements without taxes рu is the duty-free price of the whole set of elements prix_ht is the percentage of all taxes tva is the price of all the elements with taxes prix_ttc is the cost of all the taxes prix_tva pu_ttc is the price of a single element taxes included adjust is the discount percentage is the free-duty price of an element after discount prix_d_ht is the price with taxes of an element after discount prix_d_ttc is the price of a single element after discount and without taxes pu_d pu_d_ttc is the free-duty price of a single element after discount

Examples

```
print(cost_and_taxes(pu=45, prix_ttc=2111, qte=23))
# [1] 23.000000 45.000000 1.039614 2111.000000 1076.000000
# [7] 45.000000 NA NA NA NA NA
```

Description

Allow to reduce all the elements in a vector to a defined size of nchar

Usage

```
cutr_v(inpt_v, untl = "min")
```

Arguments

inpt_v is the input vector
untl is the maximum size of nchar authorized by an element, defaults to "min", it
means the shortest element in the list

cut_v 23

Examples

```
test_v <- c("oui", "nonon", "ez", "aa", "a", "dsfsdsds")
print(cutr_v(inpt_v=test_v, untl="min"))
#[1] "o" "n" "e" "a" "a" "d"
print(cutr_v(inpt_v=test_v, untl=3))
#[1] "oui" "non" "ez" "aa" "a" "dsf"</pre>
```

cut_v

cut_v

Description

Allow to convert a vector to a dataframe according to a separator.

Usage

```
cut_v(inpt_v, sep_ = "")
```

Arguments

```
inpt_v is the input vector
sep_ is the separator of the elements in inpt_v, defaults to ""
```

24 data_gen

Description

Allo to generate in a csv all kind of data you can imagine according to what you provide

Usage

Arguments

type_	is a vector. Its arguments designates a column, a column can be made of numbers ("number"), string ("string") or both ("mixed")
strt_l	is a vector containing for each column the row from which the data will begin to be generated
nb_r	is a vector containing for each column, the number of row full from generated data
output	is the name of the output csv file, defaults to NA so no csv will be outputed by default
properties	is linked to type_distri because it is the parameters ("min_val-max_val") for "random type", ("u-x") for the poisson distribution, ("u-d") for gaussian distribution
type_distri	is a vector which, for each column, associate a type of distribution ("random", "poisson", "gaussian"), it meas that non only the number but also the length of the string will be randomly generated according to these distribution laws
str_source	is the source (vector) from which the character creating random string are (default set to the occidental alphabet)
round_l	is a vector which, for each column containing number, associate a round value, if the type of the value is numeric
sep_	is the separator used to write data in the csv

Value

new generated data in addition to saving it in the output

data_gen 25

```
print(data_gen())
# X1
      X2
            ХЗ
#1
  4
       2 <NA>
  2
       4
#2
           <NA>
      2
#3 5
           <NA>
#4
  2 abcd <NA>
#5 4 abcd <NA>
#6 2 4
           <NA>
#7
  2 abc
           <NA>
#8 4 abc <NA>
#9 4 3 <NA>
#10 4 abc abcd
#11 5 <NA> abc
#12 4 <NA>
           abc
#13 1 <NA>
           ab
#14 1 <NA> abcde
#15 2 <NA> abc
#16 4 <NA>
            a
#17 1 <NA> abcd
#18
    4 <NA>
           ab
#19 2 <NA> abcd
#20 3 <NA>
           ab
#21 3 <NA>
           abcd
#22 2 <NA>
#23 4 <NA>
            abc
#24 1 <NA> abcd
#25 4 <NA>
           abc
#26 4 <NA>
           ab
#27 2 <NA> abc
#28 5 <NA>
           ab
#29 3 <NA> abc
#30 5 <NA> abcd
#31 2 <NA> abc
#32 2 <NA> abc
#33 1 <NA>
           ab
#34 5 <NA>
            а
#35 4 <NA>
           ab
#36 1 <NA>
             ab
#37 1 <NA> abcde
#38 5 <NA>
          abc
#39
    4 <NA>
             ab
#40 5 <NA> abcde
#41 2 <NA>
             ab
#42
    3 <NA>
             ab
#43 2 <NA>
             ab
#44 4 <NA> abcd
#45 5 <NA>
           abcd
#46 3 <NA>
           abcd
#47 2 <NA>
           abcd
#48 3 <NA>
           abcd
#49 3 <NA> abcd
#50 4 <NA>
print(data_gen(strt_l=c(0, 0, 0), nb_r=c(5, 5, 5)))
```

26 data_meshup

```
# X1 X2 X3
#1 2 a abc
#2 3 abcde ab
#3 4 abcde a
#4 1 3 abc
#5 3 a abcd
```

data_meshup

data_meshup

Description

Allow to automatically arrange 1 dimensional data according to vector and parameters

Usage

```
data_meshup(
  data,
  cols = NA,
  file_ = NA,
  sep_ = ";",
  organisation = c(2, 1, 0),
  unic_sep1 = "_",
  unic_sep2 = "-"
)
```

Arguments

```
data
                     is the data provided (vector) each column is separated by a unic separator and
                     each dataset from the same column is separated by another unic separator (ex:
                     \mathtt{c}("",\,c("d",\,"\text{--"},\,"e",\,"\text{--"},\,"f"),\,\,"",\,\mathtt{c}("\mathtt{a}",\,"\mathtt{a}1",\,"\text{--"},\,"\mathtt{b}",\,"\text{--"},\,"\mathtt{c}",\,"\mathtt{c}1"),\,"\_")
cols
                     are the colnames of the data generated in a csv
                     is the file to which the data will be outputed, defaults to NA which means that
file_
                     the functio will return the dataframe generated and won't write it to a csv file
                     is the separator of the csv outputed
sep_
organisation is the way variables include themselves, for instance , resuming precedent ex-
                     ample, if organisation=c(1, 0) so the data output will be: d, a d, a1 e, c f, c f,
                     c1
                     is the unic separator between variables (default is "_")
unic_sep1
unic_sep2
                     is the unic separator between datasets (default is "-")
```

Examples

#3 e B

date_addr 27

```
#4 e r
#5 e uy
#6 f c
#7 f c1
```

date_addr

date_addr

Description

Allow to add or substract two dates that have the same time unit or not

Usage

```
date_addr(
  date1,
  date2,
  add = FALSE,
  frmt1,
  frmt2 = frmt1,
  sep_ = "-",
  convert_to = "dmy"
)
```

Arguments

```
date1 is the date from which the second date will be added or substracted
date2 is the date that will be added or will substract date1
add equals to FALSE if you want date1 - date2 and TRUE if you want date1 + date2
frmt1 is the format of date1 (snhdmy) (second, minute, hour, day, monthn year)
frmt2 is the format of date2 (snhdmy)
sep_ is the separator of date1 and date2
convert_to is the format of the outputed date
```

date_converter_reverse

date_converter_reverse

Description

Allow to convert single date value like 2025.36 year to a date like second/minutehour/day/month/year (snhdmy)

Usage

```
date_converter_reverse(inpt_date, convert_to = "dmy", frmt = "y", sep_ = "-")
```

Arguments

 $inpt_date$ is the input date

convert_to is the date format the input date will be converted

frmt is the time unit of the input date sep_ is the separator of the outputed date

```
print(date_converter_reverse(inpt_date="2024.929", convert_to="hmy", frmt="y", sep_="-"))
#[1] "110-11-2024"

print(date_converter_reverse(inpt_date="2024.929", convert_to="dmy", frmt="y", sep_="-"))
#[1] "4-11-2024"

print(date_converter_reverse(inpt_date="2024.929", convert_to="hdmy", frmt="y", sep_="-")
#[1] "14-4-11-2024"

print(date_converter_reverse(inpt_date="2024.929", convert_to="dhym", frmt="y", sep_="-")
```

dcr_untl 29

```
#[1] "4-14-2024-11"
```

dcr_untl dcr_untl

Description

Allow to get the final value of a incremental or decremental loop.

Usage

```
dcr_untl(strt_val, cr_val, stop_val = 0)
```

Arguments

strt_val is the start value
cr_val is the incremental (or decremental value)
stop_val is the value where the loop has to stop

Examples

```
print(dcr_untl(strt_val=50, cr_val=-5, stop_val=5))
#[1] 9
print(dcr_untl(strt_val=50, cr_val=5, stop_val=450))
#[1] 80
```

dcr_val dcr_val

Description

Allow to get the end value after an incremental (or decremental loop)

Usage

```
dcr_val(strt_val, cr_val, stop_val = 0)
```

Arguments

strt_val is the start value
cr_val is the incremental or decremental value
stop_val is the value the loop has to stop

30 diff_datf

Examples

```
print(dcr_val(strt_val=50, cr_val=-5, stop_val=5))
#[1] 5
print(dcr_val(strt_val=47, cr_val=-5, stop_val=5))
#[1] 7
print(dcr_val(strt_val=50, cr_val=5, stop_val=450))
#[1] 450
print(dcr_val(strt_val=53, cr_val=5, stop_val=450))
#[1] 448
```

```
depth_pairs_findr depth_pairs_findr
```

Description

Takes the pair vector as an input and associate to each pair a level of depth, see examples

Usage

```
depth_pairs_findr(inpt)
```

Arguments

inpt

is the pair vector

Examples

```
print(depth_pairs_findr(c(1, 1, 2, 3, 3, 4, 4, 2, 5, 6, 7, 7, 6, 5)))
[1] 1 1 1 2 2 2 2 1 1 2 3 3 2 1
```

```
diff_datf
```

diff_datf

Description

Returns a vector with the coordinates of the cell that are not equal between 2 dataframes (row, column).

Usage

```
diff_datf(datf1, datf2)
```

elements_equalifier 31

Arguments

```
datf1 is an an input dataframe datf2 is an an input dataframe
```

Examples

```
datf1 <- data.frame(c(1:6), c("oui", "oui", "oui", "oui", "oui", "oui", c(6:1))
datf2 <- data.frame(c(1:7), c("oui", "oui", "oui", "oui", "non", "oui", "zz"))
print(diff_datf(datf1=datf1, datf2=datf2))
#[1] 5 1 5 2</pre>
```

```
elements_equalifier

elements_equalifier
```

Description

Takes an input vector with elements that have different occurence, and output a vector with all these elements with the same number of occurence, see examples

Usage

```
elements_equalifier(inpt_v, untl = 3)
```

Arguments

inpt_v is the input vector
unt1 is how many times each elements will be in the output vector

```
print (elements_equalifier (letters, untl = 2))

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
[20] "t" "u" "v" "w" "x" "y" "z" "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l"
[39] "m" "n" "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z"

print (elements_equalifier(c(letters, letters[-1]), untl = 2))

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
[20] "t" "u" "v" "w" "x" "y" "z" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m"
[39] "n" "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z" "a"
```

```
equalizer_v equalizer_v
```

Description

Takes a vector of character as an input and returns a vector with the elements at the same size. The size can be chosen via depth parameter.

Usage

```
equalizer_v(inpt_v, depth = "max", default_val = "?")
```

Arguments

inpt_v is the input vector containing all the characters
depth is the depth parameter, defaults to "max" which means that it is equal to the character number of the element(s) in inpt_v that has the most
default_val is the default value that will be added to the output characters if those has an inferior length (characters) than the value of depth

Examples

```
print(equalizer_v(inpt_v=c("aa", "zzz", "q"), depth=2))
#[1] "aa" "zz" "q?"
print(equalizer_v(inpt_v=c("aa", "zzz", "q"), depth=12))
#[1] "aa?????????" "zzz???????" "q?????????"
```

extract_normal

extract_normal

Description

Allow to extract values that fits a normal distribution from any kind of dataset, see examples and parameters

Usage

```
extract_normal(
  inpt_datf,
  mean,
  sd,
  accuracy,
  round_value = 1,
  normalised = FALSE,
  n = NA,
  tries = 3
)
```

Arguments

inpt_datf is the input dataset as a dataframe, values/modalities are in the first column and frequency (not normalised) is in the second column is the mean of the target normal distribution mean sd is the standard deviation of the target normal distribution is how much of a difference beetween the points of the targeted normal distribuaccuracy tion and the actual points is tolerated is the round value for the normal distribution used under the hood to compare round_value the dataset and extract the best points, defaults to 1 is if the input frequency is divided by n, if TRUE the parameter n must be filled normalised n is the number of points is how many normal distributions are used under the hood to compare their tries points to the those in the input dataset, defaults to 3. The higher it is, the higher the number of different points from the input dataset will be in accordance for the normal distribution the function tries to build from the dataset. It does not increase by a lot but can be non-negligible and note that the higher the number of tries is, the higher the execution time of the function will be.

```
sample\_val \leftarrow round(rnorm(n = 72000, mean = 12, sd = 2), 1)
sample_freq <- unique_total(sample_val)</pre>
sample_qual <- infinite_char_seq(n = length(sample_freq))</pre>
datf_test <- data.frame(sample_qual, sample_freq)</pre>
n <- nrow(datf_test)</pre>
print(datf_test)
   sample_qual sample_freq
1
               а
2
               b
                          1155
3
                         1255
               С
4
               d
                          743
5
                е
                          696
               f
6
                          1028
7
                g
                          1160
8
                          1219
               h
9
               i
                          1353
10
                          1336
                j
11
               k
                          1308
12
               1
                           485
13
                          1306
               m
14
                          1429
                n
15
                           623
                0
16
                          1172
               р
17
                          1054
                q
18
                           999
               r
                           125
19
               S
2.0
                          1461
               t
21
                          1430
               u
22
               V
                           341
23
               W
                          1453
24
               Х
                           427
25
               У
                           869
```

26	Z	1395
27	aa	841
28	ab	952
29	ac	246
30	ad	468
31	ae	237
32	af	555
33	ag	1297
34	ah	571
35		349
	ai	
36	aj	773
37	ak	1086
38	al	1281
39	am	1471
40	an	1236
41	ao	394
42	ap	1433
43	aq	1328
44	ar	976
45	as	640
46	at	308
47	au	698
48	av	864
49		1346
	aw	
50	ax	1349
51	ay	6
52	az	1071
53	ba	248
54	bb	929
55	bc	925
56	bd	452
57	be	207
58	bf	546
		62
59	bg	
60	bh	107
61	bi	1184
62	bj	739
63	bk	624
64		850
	bl	
65	bm	1408
66	bn	620
67	bo	202
68	bp	10
69	bq	700
70	br	397
71	bs	1291
72	bt	178
73	bu	397
74	bv	1089
75	bw	1301
76	bx	328
77	by	1348
78	bz	97
79	ca	1452
80	cb	4
81	CC	100
82	cd	593
-		

83	00	503
	ce	
84	cf	164
85	cg	32
86	ch	259
87	ci	1089
88	cj	249
89	ck	165
90	cl	42
91	cm	143
92	cn	467
93	CO	347
94	ср	143
95	cq	69
96	cr	18
97	CS	290
98	ct	55
99	cu	141
100	CV	86
101		303
	CW	
102	CX	88
103	су	16
104	CZ	213
105	da	3
		75
106	db	
107	dc	32
108	dd	66
109	de	105
110	df	34
111	dg	56
112	dh	17
113	di	22
114	dj	120
115	dk	54
116	dl	9
117	dm	8
118	dn	36
119	do	20
120		26
	dp	
121	dq	54
122	dr	8
123	ds	10
124	dt	4
125	du	53
126	dv	29
127	dw	1
128	dx	8
129	dy	10
130	dz	4
131	ea	22
132	eb	9
133	ec	17
134	ed	55
135	ee	21
136	ef	6
137	eg	4
138	eh	3
139	ei	7
133	ЕT	/

```
140
          еj
141
           ek
                        2
142
           el
143
           em
144
                        4
           en
145
                       1
           eo
146
           ер
                       2
          eq
                       3
147
148
          er
149
                       4
          es
150
                       3
          et
                       3
151
          eu
                       2
152
          ev
                       2
153
          ew
                       2
154
          ex
155
                       1
           ey
156
                       2
           ez
157
           fa
                        2
158
           fb
teste <- extract_normal(inpt_datf = datf_test,</pre>
                   mean = 10,
                    sd = 2,
                    accuracy = .1,
                    round_value = 1,
                    normalised = FALSE,
                    tries = 5)
print(length(unique(teste[, 1])) / n)
[1] 0.2848101 # so nearly 28.5 % of the different points were in
 #accordance with the construction of the target normal distribution
print(teste)
   values frequency
    dw 0.0001406866
1
       dw 0.0001406866
2
3
       dw 0.0001406866
4
      el 0.0002813731
5
       el 0.0002813731
6
       el 0.0002813731
7
       el 0.0002813731
8
       da 0.0004220597
9
       da 0.0004220597
10
       cb 0.0005627462
11
       cb 0.0005627462
12
       em 0.0007034328
      ay 0.0008441193
13
      ay 0.0008441193
14
15
      ei 0.0009848059
16
      ei 0.0009848059
17
      ei 0.0009848059
18
       dm 0.0011254924
```

19

20 21 bp 0.0014068655 cy 0.0022509848

cy 0.0022509848

extract_normal 37

```
22
        cy 0.0022509848
23
        dh 0.0023916714
24
        dh 0.0023916714
25
        cr 0.0025323579
26
        ee 0.0029544176
27
       di 0.0030951041
28
       dp 0.0036578503
       dp 0.0036578503
29
30
       cq 0.0045019696
31
       cq 0.0045019696
32
       df 0.0047833427
33
        dn 0.0050647158
34
       cl 0.0059088351
        cl 0.0059088351
35
        du 0.0074563872
36
        du 0.0074563872
37
38
        dg 0.0078784468
39
        dg 0.0078784468
       bg 0.0087225661
40
41
        bg 0.0087225661
42
        dd 0.0092853123
43
        cq 0.0097073720
44
        cq 0.0097073720
45
        a 0.0101294316
46
        cv 0.0120990433
        cx 0.0123804164
47
48
        cx 0.0123804164
        bz 0.0136465954
49
50
        cc 0.0140686550
        bh 0.0150534609
51
       bh 0.0150534609
52
53
        dj 0.0168823860
54
        s 0.0175858188
55
        s 0.0175858188
56
       cm 0.0201181767
57
       cf 0.0230725943
       ck 0.0232132808
58
59
       bt 0.0250422060
       bt 0.0250422060
60
61
       be 0.0291221159
62
       be 0.0291221159
63
       cz 0.0299662352
64
        cz 0.0299662352
65
        be 0.0291221159
66
        bo 0.0284186832
67
       bt 0.0250422060
       ck 0.0232132808
68
69
       ck 0.0232132808
70
        cm 0.0201181767
71
       cu 0.0198368036
72
        s 0.0175858188
73
       di 0.0168823860
74
       bh 0.0150534609
75
       bh 0.0150534609
76
        de 0.0147720878
77
       bz 0.0136465954
78
       bz 0.0136465954
```

38 extrt_only_v

```
79
        cx 0.0123804164
80
       cv 0.0120990433
81
       db 0.0105514913
82
       a 0.0101294316
83
       cq 0.0097073720
       dd 0.0092853123
84
85
       dd 0.0092853123
86
       bg 0.0087225661
87
       bg 0.0087225661
       dq 0.0078784468
88
89
       dk 0.0075970737
90
       du 0.0074563872
91
       cl 0.0059088351
92
       cl 0.0059088351
93
       dn 0.0050647158
       df 0.0047833427
94
95
       df 0.0047833427
96
       cg 0.0045019696
97
       dv 0.0040799100
       dp 0.0036578503
98
99
       di 0.0030951041
100
       di 0.0030951041
101
       ee 0.0029544176
102
       cr 0.0025323579
       dh 0.0023916714
103
       cy 0.0022509848
104
       cy 0.0022509848
105
       cy 0.0022509848
106
107
       cy 0.0022509848
       dl 0.0012661790
108
       dm 0.0011254924
109
110
       ei 0.0009848059
111
       ei 0.0009848059
112
       ay 0.0008441193
113
       ay 0.0008441193
114
       em 0.0007034328
115
       em 0.0007034328
116
       cb 0.0005627462
117
       cb 0.0005627462
118
       da 0.0004220597
119
       da 0.0004220597
120
       el 0.0002813731
121
       el 0.0002813731
122
       el 0.0002813731
123
       el 0.0002813731
124
       dw 0.0001406866
125
       dw 0.0001406866
126
       dw 0.0001406866
```

```
extrt_only_v extrt_only_v
```

Description

Returns the elements from a vector "inpt_v" that are in another vector "pttrn_v"

fillr 39

Usage

```
extrt_only_v(inpt_v, pttrn_v)
```

Arguments

```
inpt_v is the input vector
pttrn_v is the vector contining all the elements that can be in inpt_v
```

Examples

```
print(extrt_only_v(inpt_v=c("oui", "non", "peut", "oo", "ll", "oui", "non", "oui", "oui")
    pttrn_v=c("oui")))
#[1] "oui" "oui" "oui" "oui"
```

fillr fillr

Description

Allow to fill a vector by the last element n times

Usage

```
fillr(inpt_v, ptrn_fill = "\\.\\.\\d")
```

Arguments

inpt_v is the input vector

ptrn_fill is the pattern used to detect where the function has to fill the vector by the last

element n times. It defaults to "...\d" where "\d" is the regex for an int value. So

this paramater has to have " \d " which designates n.

```
print(fillr(c("a", "b", "...3", "c")))
#[1] "a" "b" "b" "b" "c"
```

40 fold_rec

Description

Retur the elements of a vector "wrk_v" (1) that corresponds to the pattern of elements in another vector "cur_v" (2) according to another vector "pttrn_v" (3) that contains the patter felements.

Usage

```
fixer_nest_v(cur_v, pttrn_v, wrk_v)
```

Arguments

```
cur_v is the input vector

pttrn_v is the vector containing all the patterns that may be contained in cur_v

wrk_v is a vector containing all the indexes of cur_v taken in count in the function
```

Examples

fold_rec fold_rec

Description

Allow to get all the files recursively from a path according to an end and start depth value. If you want to have an other version of this function that uses a more sophisticated algorythm (which can be faster), check file_rec2. Depth example: if i have dir/dir2/dir3, dir/dir2b/dir3b, i have a depth equal to 3

Usage

```
fold_rec(xmax, xmin = 1, pathc = ".")
```

Arguments

xmax	is the end depth value
xmin	is the start depth value
pathc	is the reference path

fold_rec2 41

Description

Allow to find the directories and the subdirectories with a specified end and start depth value from a path. This function might be more powerfull than file_rec because it uses a custom algorythm that does not nee to perform a full recursive search before tuning it to only find the directories with a good value of depth. Depth example: if i have dir/dir2/dir3, dir/dir2b/dir3b, i have a depth equal to 3

Usage

```
fold_rec2(xmax, xmin = 1, pathc = ".")
```

Arguments

xmax	is the depth value
xmin	is the minimum value of depth
pat.hc	is the reference path, from which depth value is equal to 1

Description

Allow to convert xx-month-xxxx date type to xx-xx-xxxx

Usage

```
format_date(f_dialect, sentc, sep_in = "-", sep_out = "-")
```

Arguments

f_dialect are the months from the language of which the month come sentc is the date to convert sep_in is the separator of the dat input (default is "-") sep_out is the separator of the converted date (default is "-")

```
print(format_date(f_dialect=c("janvier", "février", "mars", "avril", "mai", "juin",
   "juillet", "aout", "septembre", "octobre", "novembre", "décembre"), sentc="11-septembre-2"
#[1] "11-09-2023"
```

42 geo_min

geo_min geo_min

Description

Return a dataframe containing the nearest geographical points (row) according to established geographical points (column).

Usage

```
geo_min(inpt_datf, established_datf)
```

Arguments

inpt_datf is the input dataframe of the set of geographical points to be classified, its firts column is for latitude, the second for the longitude and the third, if exists, is for the altitude. Each point is one row.

established_datf

is the dataframe containing the coordinates of the established geographical points

```
in_{-} \leftarrow data.frame(c(11, 33, 55), c(113, -143, 167))
in2_{-} \leftarrow data.frame(c(12, 55), c(115, 165))
print(geo_min(inpt_datf=in_, established_datf=in2_))
#
          X1
                    X2
   245.266
#1
                    NA
#2 24200.143
                    NA
#3
          NA 127.7004
in_{-} \leftarrow data.frame(c(51, 23, 55), c(113, -143, 167), c(6, 5, 1))
in2_ <- data.frame(c(12, 55), c(115, 165), c(2, 5))
print(geo_min(inpt_datf=in_, established_datf=in2_))
         Х1
                   X2
         NA 4343.720
#1
#2 26465.63 NA
#3
        NA 5825.517
```

get_rec 43

Description

Allow to get the value of directorie depth from a path.

Usage

```
get_rec(pathc = ".")
```

Arguments

pathc is the reference path example: if i have dir/dir2/dir3, dir/dir2b/dir3b, i have a depth equal to 3

Description

Allow to calculate the distances between a set of geographical points and another established geographical point. If the altitude is not filled, so the result returned won't take in count the altitude.

Usage

```
globe(lat_f, long_f, alt_f = NA, lat_n, long_n, alt_n = NA)
```

Arguments

lat_f	is the latitude of the established geographical point
long_f	is the longitude of the established geographical point
alt_f	is the altitude of the established geographical point, defaults to NA
lat_n	is a vector containing the latitude of the set of points
long_n	is a vector containing the longitude of the set of points
alt_n	is a vector containing the altitude of the set of points, defaults to NA

44 grep_all2

grep_all

 $grep_all$

Description

Allow to perform a grep function on multiple input elements

Usage

```
grep_all(inpt_v, pattern_v)
```

Arguments

```
inpt_v is the input vectors to grep elements from
pattern_v is a vector containing the patterns to grep
```

Examples

grep_all2

grep_all2

Description

Performs the grep_all function with another algorythm, potentially faster

Usage

```
grep_all2(inpt_v, pattern_v)
```

Arguments

```
inpt_v is the input vectors to grep elements from
pattern_v is a vector containing the patterns to grep
```

groupr_datf 45

Examples

groupr_datf

groupr_datf

Description

Allow to create groups from a dataframe. Indeed, you can create conditions that lead to a flag value for each cell of the input dataframeaccording to the cell value. This function is based on see_datf and nestr_datf2 functions.

Usage

```
groupr_datf(
  inpt_datf,
  condition_lst,
  val_lst,
  conjunction_lst,
  rtn_val_pos = c()
)
```

Arguments

46 gsub_mult

Examples

```
interactive()
datf1 <- data.frame(c(1, 2, 1), c(45, 22, 88), c(44, 88, 33))
val_lst <- list(list(c(1), c(1)), list(c(2)), list(c(44, 88)))
condition_lst <- list(c(">", "<"), c("%%"), c("==", "=="))
conjunction_lst <- list(c("|"), c(), c("|"))
rtn_val_pos <- c("+", "++", "+++")
print(groupr_datf(inpt_datf=datf1, val_lst=val_lst, condition_lst=condition_lst, conjunction_lst=conjunction_lst, rtn_val_pos=rtn_val_pos))
# X1 X2 X3
#1 <NA> + +++
#2 ++ ++++++
#3 <NA> ++++ ++
```

gsub_mult

gsub_mult

Description

Performs a gsub operation with n patterns and replacements.

Usage

```
gsub_mult(inpt_v, pattern_v = c(), replacement_v = c())
```

Arguments

inpt_v is a vector containing all the elements that contains expressions to be substituted
pattern_v is a vector containing all the patterns to be substituted in any elements of inpt_v
replacement_v

is a vector containing the expression that are going to substituate those provided by pattern_v

how_normal 47

Description

Allow to get how much a sequence of numbers fit a normal distribution with chosen parameters, see examples

Usage

```
how_normal(inpt_datf, normalised = TRUE, mean = 0, sd = 1)
```

Arguments

inpt_datf	is the input dataframe containing all the values in the first column and their frequency (normalised or no), in the second column
normalised	is a boolean, takes TRUE if the frequency for each value is divided by n, FALSE if not $$
mean	is the mean of the normal distribution that the dataset tries to fit
sd	is the standard deviation of the normal distribution the dataset tries to fit

```
sample\_val \leftarrow round(rnorm(n = 12000, mean = 6, sd = 1.25), 1)
sample_freq <- unique_total(sample_val)</pre>
datf_test <- data.frame(unique(sample_val), sample_freq)</pre>
print(datf_test)
  unique.sample_val. sample_freq
1
                  6.9
2
                  8.3
                              63
3
                  7.7
                              148
4
                  5.6
                              363
5
                  6.5
                              349
6
                  4.6
                             202
                              324
7
                  6.6
8
                  6.7
                              335
9
                  6.0
                              406
10
                  5.7
                              365
11
                  7.9
                              109
12
                  6.2
                              420
13
                  5.9
                              386
14
                  4.5
                              185
15
                  5.1
                              326
                  6.1
                              360
16
17
                  5.5
                              346
18
                  6.3
                              375
19
                  7.4
                              207
20
                  7.6
                              162
21
                  4.2
                              129
22
                  3.9
                              102
23
                  5.2
                              325
24
                  2.3
                                7
```

48 how_normal

0.5		
25	5.8	387
26	6.4	319
	9.1	
27		21
28	7.0	280
29	8.8	27
30		
	4.9	218
31	8.1	98
32	3.0	25
33	8.4	66
34	4.3	160
35	7.2	267
36	8.7	40
37	5.3	313
38	4.1	127
	5.0	
39		275
40	4.0	119
41	9.3	13
42	4.4	196
43	6.8	313
44	7.1	247
45		
	3.5	57
46	7.8	139
47	3.6	57
	7.5	
48		189
49	7.3	215
50	4.7	230
51	3.2	36
52	9.5	8
53	3.8	79
54	8.2	62
55	5.4	343
56	8.5	55
57	4.8	207
58	3.7	79
59	8.6	33
60	3.3	38
61	3.4	43
62	8.9	21
63	8.0	105
64	3.1	
		23
65	9.0	27
66	10.0	5
67	2.5	10
68	2.9	16
69	9.7	7
70	2.7	11
71	10.5	1
72	9.4	13
73	9.2	16
74	2.6	16
75	9.9	3
76	2.8	10
77	2.4	10
78	1.9	2
79	2.0	6
80	10.2	2
81	9.6	3

how_unif 49

```
82
                 11.3
83
                  1.8
                  2.2
                                3
84
                                2
85
                  2.1
86
                  1.6
                                1
87
                 10.6
                                1
88
                  9.8
                                1
89
                 10.4
                                1
90
                  1.7
print(how_normal(inpt_datf = datf_test,
                 normalised = FALSE,
                 mean = 6,
                 sd = 1))
[1] 9.003683
print(how_normal(inpt_datf = datf_test,
                 normalised = FALSE,
                 mean = 5,
                 sd = 1))
[1] 9.098484
```

how_unif

how_unif

Description

Allow to see how much a sequence of numbers fit a uniform distribution, see examples

Usage

```
how_unif(inpt_v, normalised = TRUE)
```

Arguments

normalised is a boolean, takes TRUE if the frequency for each value is divided by n, FALSE if not

inpt_datf is the input dataframe containing all the values in the first column and their frequency at the second column

id_keepr

```
3
                 25.5
                               414
4
                 26.0
                               366
5
                 26.6
                               400
6
                 25.7
                               419
7
                 24.3
                               389
8
                 24.1
                               423
9
                 26.1
                               404
10
                 26.5
                               406
                 26.2
11
                               356
12
                 26.8
                               407
13
                 24.6
                              388
14
                 25.3
                              402
15
                 26.3
                               388
                 25.4
16
                               422
                 25.0
17
                               436
                 25.9
18
                               373
19
                 25.2
                               423
20
                 25.6
                               388
21
                 27.0
                               202
22
                 24.2
                               380
23
                 24.9
                               404
24
                 25.1
                               417
25
                 26.4
                               401
26
                 26.7
                               431
27
                 24.5
                               392
28
                 24.0
                               218
29
                               407
                 26.9
30
                 25.8
                               371
                               394
31
                 24.7
print(how_unif(inpt_datf = datf_test, normalised = FALSE))
[1] 0.0752957
sample\_val \leftarrow round(rnorm(n = 12000, mean = 24, sd = 7), 1)
sample_freq <- unique_total(sample_val)</pre>
datf_test <- data.frame(unique(sample_val), sample_freq)</pre>
print(how_unif(inpt_datf = datf_test, normalised = FALSE))
[1] 0.7797352
```

```
id_keepr_datf
```

Description

Allow to get the original indexes after multiple equality comparaison according to the original number of row

Usage

```
id_keepr(inpt_datf, col_v = c(), el_v = c(), rstr_l = NA)
```

incr_fillr 51

Arguments

inpt_datf	is the input dataframe
col_v	is the vector containing the column numbers or names to be compared to their respective elements in "el_v" $$
el_v	is a vector containing the elements that may be contained in their respective column described in "col_v" $$
rstr_l	is a list containing the vector composed of the indexes of the elements chosen for each comparison. If the length of the list is inferior to the length of comparisons, so the last vector of rstr_l will be the same as the last one to fill make rstr_l equal in term of length to col_v and el_v

Examples

 $\verb"incr_fillr" incr_fillr"$

Description

Take a vector uniquely composed by double and sorted ascendingly, a step, another vector of elements whose length is equal to the length of the first vector, and a default value. If an element of the vector is not equal to its predecessor minus a user defined step, so these can be the output according to the parameters (see example):

Usage

```
incr_fillr(inpt_v, wrk_v = NA, default_val = NA, step = 1)
```

52 infinite_char_seq

Arguments

```
inpt_v is the asending double only composed vector
wrk_v is the other vector (size equal to inpt_v), defaults to NA
default_val is the default value put when the difference between two following elements of inpt_v is greater than step, defaults to NA
step is the allowed difference between two elements of inpt_v
```

Examples

```
print(incr_fillr(inpt_v=c(1, 2, 4, 5, 9, 10),
             wrk_v=NA,
             default_val="increasing"))
#[1] 1 2 3 4 5 6 7 8 9 10
print(incr_fillr(inpt_v=c(1, 1, 2, 4, 5, 9),
             wrk_v=c("ok", "ok", "ok", "ok", "ok"),
             default_val=NA))
print(incr_fillr(inpt_v=c(1, 2, 4, 5, 9, 10),
             wrk_v=NA,
             default_val="NAN"))
             "NAN" "4"
#[1] "1"
         "2"
                         "5"
                              "NAN" "NAN" "NAN" "9"
                                                  "10"
```

```
infinite_char_seq infinite_char_seq
```

Description

Allow to generate an infinite sequence of unique letters

Usage

```
infinite_char_seq(n, base_char = letters)
```

Arguments

```
n is how many sequence of numbers will be generated
base_char is the vector containing the elements from which the sequence is generated
```

```
print(infinite_char_seq(28))
                                          "i" "j"
 [1] "a"
         "b"
             "c"
                  "d"
                       "e"
                           "f"
                                "g" "h"
                                                   "k"
                                                        "1" "m" "n" "o"
              "r"
                                     "w"
                  "s"
                      "t"
                            "u"
                                "v"
                                          "x"
[16] "p"
         "a"
                                              "y"
                                                   "a"
                                                        "aa" "ab"
```

inner_all 53

inner_all

inner_all

Description

Allow to apply inner join on n dataframes, datatables, tibble

Usage

```
inner_all(..., keep_val = FALSE, id_v)
```

Arguments

```
are all the dataframes etckeep_val is if you want to keep the id columnid_v is the common id of all the dataframes etc
```

Examples

```
datf1 <- data.frame(</pre>
        "id1"=c(1:5),
        "var1"=c("oui", "oui", "oui", "non", "non")
)
datf2 <- data.frame(</pre>
        "id1"=c(1, 2, 3, 7, 9),
"var1"=c("oui2", "oui2", "oui2", "non2", "non2")
)
print(inner_all(datf1, datf2, keep_val=FALSE, id_v="id1"))
id1 var1.x var1.y
  1 oui oui2
  2
               oui2
2
         oui
              oui2
   3
         oui
```

insert_datf

edm1 insert_datf

Description

Allow to insert dataframe into another dataframe according to coordinates (row, column) from the dataframe that will be inserted

Usage

```
insert_datf(datf_in, datf_ins, ins_loc)
```

54 intersect_all

Arguments

```
datf_in is the dataframe that will be inserted
datf_ins is the dataset to be inserted
ins_loc is a vector containg two parameters (row, column) of the begining for the insertion
```

Examples

```
datf1 \leftarrow data.frame(c(1, 4), c(5, 3))
datf2 \leftarrow data.frame(c(1, 3, 5, 6), c(1:4), c(5, 4, 5, "ereer"))
print(insert_datf(datf_in=datf2, datf_ins=datf1, ins_loc=c(4, 2)))
   c.1..3..5..6. c.1.4. c.5..4..5...ereer..
# 1
             1
                    1
# 2
               3
# 3
                     3
               5
                     1
# 4
print(insert_datf(datf_in=datf2, datf_ins=datf1, ins_loc=c(3, 2)))
# c.1..3..5..6. c.1.4. c.5..4..5...ereer..
# 1
      1 1
# 2
               3
                      2
# 3
               5
                      1
# 4
               6
                      4
print(insert_datf(datf_in=datf2, datf_ins=datf1, ins_loc=c(2, 2)))
   c.1..3..5..6. c.1.4. c.5..4..5...ereer..
# 1
              1
                     1
               3
                                          5
# 2
                      1
               5
# 3
                      4
                                          3
# 4
               6
                                      ereer
```

Description

Allows to calculate the intersection between n vectors

Usage

```
intersect_all(...)
```

Arguments

is all the vector you want to calculate the intersection from

intersect_mod 55

Examples

```
print(intersect_all(c(1:5), c(1, 2, 3, 6), c(1:4)))
[1] 1 2 3
```

intersect_mod

intersect_mod

Description

Returns the mods that have elements in common

Usage

```
intersect_mod(datf, inter_col, mod_col, n_min, descendly_ordered = NA)
```

Arguments

inter_col is the column name or the column number of the values that may be commun
betwee the different mods

mod_col is the column name or the column number of the mods in the dataframe
n_min is the minimum elements in common a mod should have to be taken in count
ordered_descendly

in case that the elements in commun are numeric, this option can be enabled by giving a value of TRUE or FALSE see examples

```
datf <- data.frame("col1"=c("oui", "oui", "oui", "oui", "oui", "oui",</pre>
                     "non", "non", "non", "ee", "ee", "ee"), "col2"=c(1:6, 2:5, 1:
print(intersect_mod(datf=datf, inter_col=2, mod_col=1, n_min=2))
  coll col2
2
   oui
        2.
3
   oui
           3
7
   non
           2
8
   non
           3
12
           2
     ee
13
           3
print(intersect_mod(datf=datf, inter_col=2, mod_col=1, n_min=3))
  col1 col2
2
  oui
          2.
3
   oui
           3
4
   oui
          4
5
   oui
           5
7
   non
           2
   non
           3
```

inter_max

```
4
    non
10
    non
           5
print(intersect_mod(datf=datf, inter_col=2, mod_col=1, n_min=5))
  col1 col2
1 oui
          1
2
  0111
          2
3
  0111
          3
4 oui
          4
5 oui
          5
6 oui
datf <- data.frame("col1"=c("non", "non", "oui", "oui", "oui", "oui",</pre>
                       "non", "non", "non", "ee", "ee", "ee"), "col2"=c(1:6, 2:5, 1
print(intersect_mod(datf=datf, inter_col=2, mod_col=1, n_min=3))
   coll col2
8
    non
           3
9
    non
           4
10
   non
           5
    oui
           3
4
    oui
           4
5
           5
    oui
```

inter_max

inter_max

Description

Takes as input a list of vectors composed of ints or floats ascendly ordered (intervals) that can have a different step to one of another element ex: list(c(0, 2, 4), c(0, 4), c(1, 2, 2.3)). The function will return the list of lists altered according to the maximum step found in the input list.

Usage

```
inter_max(inpt_l, max_ = -1000, get_lst = TRUE)
```

Arguments

```
is the input list

max_ is a value you are sure is the minimum step value of all the sub-lists

get_lst is the parameter that, if set to True, will keep the last values of vectors in the return value if the last step exceeds the end value of the vector.
```

```
print(inter_max(inpt_l=list(c(0, 2, 4), c(0, 4), c(1, 2, 2.3)), get_lst=TRUE))
#[[1]]
#[1] 0 4
```

inter_min 57

```
#
#[[2]]
#[1] 0 4
#
#[[3]]
#[1] 1.0 2.3

print(inter_max(inpt_l=list(c(0, 2, 4), c(0, 4), c(1, 2, 2.3)), get_lst=FALSE))
# [[1]]
#[1] 0 4
#
#[[2]]
#[1] 0 4
#
#[[3]]
#[1] 1
```

inter_min

inter_min

Description

Takes as input a list of vectors composed of ints or floats ascendly ordered (intervals) that can have a different step to one of another element ex: list(c(0, 2, 4), c(0, 4), c(1, 2, 2.3)). This function will return the list of vectors with the same steps preserving the begin and end value of each interval. The way the algorythmn searches the common step of all the sub-lists is also given by the user as a parameter, see how_to paramaters.

Usage

```
inter_min(
  inpt_l,
  min_ = 1000,
  sensi = 3,
  sensi2 = 3,
  how_to_op = c("divide"),
  how_to_val = c(3)
)
```

Arguments

inpt_l	is the input list containing all the intervals
min_	is a value you are sure is superior to the maximum step value in all the intervals
sensi	is the decimal accuracy of how the difference between each value n to $n\!+\!1$ in an interval is calculated
sensi2	is the decimal accuracy of how the value with the common step is calculated in all the intervals
how_to_op	is a vector containing the operations to perform to the pre-common step value, defaults to only "divide". The operations can be "divide", "substract", "multiply" or "add". All type of operations can be in this parameter.

58 isnt_divisible

how_to_val is a vector containing the value relatives to the operations in hot_to_op, defaults to 3 output from ex:

Examples

```
print(inter_min(inpt_l=list(c(0, 2, 4), c(0, 4), c(1, 2, 2.3))))
# [[1]]
# [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
#[20] 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7
#[39] 3.8 3.9 4.0
#
#[[2]]
# [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
#[20] 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7
#[39] 3.8 3.9 4.0
#
#[[3]]
# [1] 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3
```

Description

Takes a vector as an input and returns all the elements that are not divisible by all choosen numbers from another vector.

Usage

```
isnt_divisible(inpt_v = c(), divisible_v = c())
```

Arguments

```
\label{eq:containing} \begin{array}{ll} \text{inpt\_v} & \text{is the input vector} \\ \text{divisible\_v} & \text{is the vector containing all the numbers that will try to divide those contained in} \\ \text{inpt\_v} & \\ \end{array}
```

```
print(isnt_divisible(inpt_v=c(1:111), divisible_v=c(2, 4, 5)))
                   11 13 17
                              19 21 23 27 29 31 33 37 39 41 43
# [1]
      1
         3
             7
                 9
                                                                     47
#[20]
     49
         51 53 57 59 61 63
                              67 69 71 73 77
                                                79 81 83 87
                                                                     93
#[39] 97 99 101 103 107 109 111
```

is_divisible 59

Description

Takes a vector as an input and returns all the elements that are divisible by all choosen numbers from another vector.

Usage

```
is\_divisible(inpt\_v = c(), divisible\_v = c())
```

Arguments

```
\label{eq:containing} \begin{array}{ll} \text{inpt\_v} & \text{is the input vector} \\ \text{divisible\_v} & \text{is the vector containing all the numbers that will try to divide those contained in} \\ \text{inpt\_v} & \\ \end{array}
```

Examples

```
print(is_divisible(inpt_v=c(1:111), divisible_v=c(2, 4, 5)))
#[1] 20 40 60 80 100
```

```
join_n_lvl join_n_lvl
```

Description

Allow to see the progress of the multi-level joins of the different variables modalities. Here, multi-level joins is a type of join that usually needs a concatenation of two or more variables to make a key. But here, there is no need to proceed to a concatenation. See examples.

Usage

```
join_n_lvl(frst_datf, scd_datf, join_type = c(), lst_pair = list())
```

Arguments

frst_datf	is the first data.frame (table)
scd_datf	is the second data.frame (table)
join_type	is a vector containing all the join type ("left", "inner", "right") for each variable
lst_pair	is a lis of vectors. The vectors refers to a multi-level join. Each vector should have a length of 1. Each vector should have a name. Its name refers to the column name of multi-level variable and its value refers to the column name of the join variable.

leap_yr

Examples

```
"charac"=c(1, 2, 2, 1, 2, 2),
                   "rev"=c(1250, 1430, 970, 1630, 2231, 1875),
                   "vil2" = c("one", "one", "one", "two", "two", "two"),
                   "idl2" = c(1:6))
datf4 <- data.frame("vil"=c("one", "one", "one", "two", "two", "three"),</pre>
                  "charac"=c(1, 2, 2, 1, 1, 2),
                   "rev"=c(1.250, 1430, 970, 1630, 593, 456),
                   "vil2" = c("one", "one", "one", "two", "two", "two"),
                   "idl2" = c(2, 3, 1, 5, 5, 5))
print(join_n_lvl(frst_datf=datf3, scd_datf=datf4, lst_pair=list(c("charac" = "vil"), c("v
               join_type=c("inner", "left")))
[1] "pair: charac vil"
| | 0%
1
|= | 50%
2
|==| 100%
[1] "pair: vil2 idl2"
| | 0%
one
|= | 50%
two
|==| 100%
 main_id.x vil.x charac.x rev.x vil2.x idl2.x main_id.y vil.y charac.y rev.y
1 1oneone1 one 1 1250 one 1 <NA> <NA> NA NA 2 2oneone2 one 2 1430 one 2 <NA> <NA> NA NA
                     2 970 one 3 20neone3 one 2 1430
1 1630 two 4 <NA> NA NA
3 2oneone3 one
4 1twotwo4 two
 vil2.y idl2.y
1
  <NA> NA
2
  <NA>
          NA
3
   one
           3
          NA
4 <NA>
```

Description

Get if the year is leap

Usage

```
leap_yr(year)
```

Arguments

year is the input year

left_all 61

Examples

```
print(leap_yr(year=2024))
#[1] TRUE
```

left_all

left_all

Description

Allow to apply left join on n dataframes, datatables, tibble

Usage

```
left_all(..., keep_val = FALSE, id_v)
```

Arguments

```
are all the dataframes etckeep_val is if you want to keep the id columnid_v is the common id of all the dataframes etc
```

```
datf1 <- data.frame(</pre>
        "id1"=c(1:5),
        "var1"=c("oui", "oui", "oui", "non", "non")
)
datf2 <- data.frame(</pre>
        "id1"=c(1, 2, 3, 7, 9),
"var1"=c("oui2", "oui2", "oui2", "non2", "non2")
print(left_all(datf1, datf2, datf2, datf2, keep_val=FALSE, id_v="id1"))
  id1 var1.x var1.y var1.x.x var1.y.y
             oui2 oui2
  1
       oui
                               oui2
  2
                                oui2
             oui2
                       oui2
        oui
   3
             oui2
                      oui2
                                oui2
        oui
       non <NA>
        non <NA> <NA> non <NA>
                      <NA>
                                <NA>
   5
                                <NA># '
print(left_all(datf1, datf2, datf2, keep_val=FALSE, id_v="id1"))
  id1 var1.x var1.y var1
1
  1 oui oui2 oui2
  2
        oui oui2 oui2
2
   3
             oui2 oui2
3
        oui
  4
             <NA> <NA>
4
       non
        non
             <NA> <NA>
```

list_files

Description

Allow to get the number of a spreadsheet based column by the letter ex: AAA = 703

Usage

```
letter_to_nb(letter)
```

Arguments

letter is the letter (name of the column)

Examples

```
print(letter_to_nb("rty"))
#[1] 12713
```

list_files

list_files

Description

A list.files() based function addressing the need of listing the files with extension a or or extension $b \dots$

Usage

```
list_files(patternc, pathc = ".")
```

Arguments

patternc is a vector containing all the exensions you want

pathc is the path, can be a vector of multiple path because list.files() supports it.

lst_flatnr 63

lst_flatnr

lst_flatnr

Description

Flatten a list to a vector

Usage

```
lst_flatnr(inpt_l)
```

Arguments

inpt_l

is the input list

Examples

```
print(lst_flatnr(inpt_l=list(c(1, 2), c(5, 3), c(7, 2, 7))))
#[1] 1 2 5 3 7 2 7
```

match_by

match_by

Description

Allow to match elements by ids, see examples.

Usage

```
match_by(to_match_v = c(), inpt_v = c(), inpt_ids = c())
```

Arguments

is the vector containing all the elements to match
 is the input vector containing all the elements that could contains the elements to match. Each elements is linked to an element from inpt_ids at any given index, see examples. So inpt_v and inpt_ids must be the same size
 is the vector containing all the ids for the elements in inpt_v. An element is linked to the id x is both are at the same index. So inpt_v and inpt_ids must be

the same size

64 multitud

Examples

multitud

multitud

Description

From a list containing vectors allow to generate a vector following this rule: list(c("a", "b"), c("1", "2"), c("A", "Z", "E")) -> c("a1A", "b1A", "a2A", "b2A", a1Z, ...)

Usage

```
multitud(l, sep_ = "")
```

Arguments

1 is the list

sep_ is the separator between elements (default is set to "" as you see in the example)

```
print(multitud(l=list(c("a", "b"), c("1", "2"), c("A", "Z", "E"), c("Q", "F")), sep_="/")
#[1] "a/1/A/Q" "b/1/A/Q" "a/2/A/Q" "b/2/A/Q" "a/1/Z/Q" "b/1/Z/Q" "a/2/Z/Q"
#[8] "b/2/Z/Q" "a/1/E/Q" "b/1/E/Q" "a/2/E/Q" "b/2/E/Q" "a/1/A/F" "b/1/A/F"
#[15] "a/2/A/F" "b/2/A/F" "a/1/Z/F" "b/1/Z/F" "a/2/Z/F" "b/2/Z/F" "a/1/E/F"
#[22] "b/1/E/F" "a/2/E/F" "b/2/E/F"
```

nb2_follow 65

```
nb2_follow nb2_follow
```

Description

Allows to get the number and pattern of potential continuous pattern after an index of a vector, see examples

Usage

```
nb2_follow(inpt_v, inpt_idx, inpt_follow_v = c())
```

Arguments

```
inpt_v is the input vector
inpt_idx is the index
inpt_follow_v
```

is a vector containing the patterns that are potentially just after inpt_nb

Examples

```
print(nb2_follow(inpt_v = c(1:12), inpt_idx = 4, inpt_follow_v = c(5)))
[1] 1 5
print(nb2_follow(inpt_v = c(1, "non", "oui", "oui", "oui", "nop", 5), inpt_idx = 2, inpt_
[1] "3" "oui"
```

```
nb_follow
```

nb_follow

Description

Allow to get the number of certains patterns that may be after an index of a vector, see examples

Usage

```
nb_follow(inpt_v, inpt_idx, inpt_follow_v = c())
```

Arguments

```
inpt_v is the input vector
inpt_idx is the index
inpt_follow_v
```

is a vector containing all the potential patterns that may follow the element in the vector at the index inpt_idx

66 nb_to_letter

Examples

nb_to_letter

nb_to_letter

Description

Allow to get the letter of a spreadsheet based column by the number ex: 703 = AAA

Usage

```
nb_to_letter(x)
```

Arguments

x

is the number of the column

```
print (nb_to_letter(5))

[1] "e"

print (nb_to_letter(27))

[1] "aa"

print (nb_to_letter(51))

[1] "ay"

print (nb_to_letter(52))

[1] "az"

print (nb_to_letter(53))

[1] "ba"

print (nb_to_letter(675))

[1] "yy"

print (nb_to_letter(676))
```

nestr_datf1 67

```
[1] "yz"
print(nb_to_letter(677))
[1] "za"
print(nb_to_letter(702))
[1] "zz"
print(nb_to_letter(703))
[1] "aaa"
print(nb_to_letter(18211))
[1] "zxk"
print(nb_to_letter(18277))
[1] "zzy"
print(nb_to_letter(18278))
[1] "zzz"
print(nb_to_letter(18279))
[1] "aaaa"
```

nestr_datf1

nestr_datf1

Description

Allow to write a value (1a) to a dataframe (1b) to its cells that have the same coordinates (row and column) than the cells whose value is equal to a another special value (2a), from another another dataframe (2b). The value (1a) depends of the cell value coordinates of the third dataframe (3b). If a cell coordinates (1c) of the first dataframe (1b) does not correspond to the coordinates of a good returning cell value (2a) from the dataframe (2b), so this cell (1c) can have its value changed to the same cell coordinates value (3a) of a third dataframe (4b), if (4b) is not set to NA.

Usage

```
nestr_datf1(
  inptf_datf,
  inptt_pos_datf,
  nestr_datf,
  yes_val = TRUE,
  inptt_neg_datf = NA
)
```

68 nestr_datf2

Arguments

Examples

```
print(nestr_datf1(inptf_datf=data.frame(c(1, 2, 1), c(1, 5, 7)))
inptt_pos_datf=data.frame(c(4, 4, 3), c(2, 1, 2)),
inptt_neg_datf=data.frame(c(44, 44, 33), c(12, 12, 12)),
nestr_datf=data.frame(c(TRUE, FALSE, TRUE), c(FALSE, FALSE, TRUE)), yes_val=TRUE))
# c.1..2..1. c.1..5..7.
#1
           4
                     12
           44
#2
                      12
           3
#3
print(nestr_datf1(inptf_datf=data.frame(c(1, 2, 1), c(1, 5, 7)))
inptt_pos_datf=data.frame(c(4, 4, 3), c(2, 1, 2)),
inptt_neg_datf=NA,
nestr_datf=data.frame(c(TRUE, FALSE, TRUE), c(FALSE, FALSE, TRUE)), yes_val=TRUE))
#
    c.1..2..1. c.1..5..7.
#1
            4
                       1
            2
                       5
#2
#3
            3
                       2
```

Description

Allow to write a special value (1a) in the cells of a dataframe (1b) that correspond (row and column) to whose of another dataframe (2b) that return another special value (2a). The cells whose coordinates do not match the coordinates of the dataframe (2b), another special value can be written (3a) if not set to NA.

Usage

```
nestr_datf2(inptf_datf, rtn_pos, rtn_neg = NA, nestr_datf, yes_val = T)
```

Arguments

```
inptf_datf is the input dataframe (1b)
rtn_pos is the special value (1a)
rtn_neg is the special value (3a)
nestr_datf is the dataframe (2b)
yes_val is the special value (2a)
```

nest_v 69

Examples

nest_v	nest_v
--------	--------

Description

Nest two vectors according to the following parameters.

Usage

```
nest_v(f_v, t_v, step = 1, after = 1)
```

Arguments

f_v	is the vector that will welcome the nested vector t_v
t_v	is the imbriquator vector
step	defines after how many elements of f_v the next element of t_v can be put in the output
after	defines after how many elements of f_v, the begining of t_v can be put

Examples

```
print(nest_v(f_v=c(1, 2, 3, 4, 5, 6), t_v=c("oui", "oui2", "oui3", "oui4", "oui5", "oui6"
    step=2, after=2))
#[1] "1"    "2"    "oui"    "3"    "4"    "oui2"    "5"    "6"    "oui3"    "oui4"
```

```
new_ordered new_ordered
```

Description

Returns the indexes of elements contained in "w_v" according to "f_v"

Usage

```
new_ordered(f_v, w_v, nvr_here = NA)
```

70 normal_dens

Arguments

f_v is the input vector

w_v is the vector containing the elements that can be in f_v

nvr_here is a value you are sure is not present in f_v

Examples

```
print(new_ordered(f_v=c("non", "non", "non", "oui"), w_v=c("oui", "non", "non")))
#[1] 4 1 2
```

normal_dens

normal_dens

Description

Calculates the normal distribution probality, see examples

Usage

```
normal_dens(target_v = c(), mean, sd)
```

Arguments

target_v is the target value(s) (one or bounded), see examples

mean is the mean of the normal distribution

is the standard deviation of the normal distribution

```
print (normal_dens(target_v = 13, mean = 12, sd = 2))
[1] 0.1760327
print (normal_dens(target_v = c(9, 11), mean = 12, sd = 1.5, step = 0.01))
[1] 0.2288579
print (normal_dens(target_v = c(1, 18), mean = 12, sd = 1.5, step = 0.01))
[1] 0.9999688
```

occu 71

occu occu

Description

Allow to see the occurence of each variable in a vector. Returns a datafame with, as the first column, the all the unique variable of the vector and, in he second column, their occurence respectively.

Usage

```
occu(inpt_v)
```

Arguments

inpt_v the input dataframe

Examples

Description

Allow to convert index of elements in a vector $inpt_v$ to index of an vector type 1:sum(nchar(inpt_v)), see examples

Usage

```
old_to_new_idx(inpt_v = c())
```

Arguments

```
inpt_v is the input vector
```

```
print(old_to_new_idx(inpt_v = c("oui", "no", "eeee")))
[1] 1 1 1 2 2 3 3 3 3
```

72 pairs_findr_merger

pairs_findr p	oairs_	findr
-----------------	--------	-------

Description

Takes a character as input and detect the pairs of pattern, like the parenthesis pais if the pattern is "(" and then ")"

Usage

```
pairs_findr(inpt, ptrn1 = "(", ptrn2 = ")")
```

Arguments

```
inpt is the input character
ptrn1 is the first pattern ecountered in the pair
ptrn2 is the second pattern in the pair
```

Examples

```
print (pairs_findr(inpt="ze+(yu*45/(jk+zz)*(o()p))-(re*(rt+qs)-fg)"))
[[1]]
[1] 4 1 1 3 2 2 3 4 6 5 5 6
[[2]]
[1] 4 11 17 19 21 22 24 25 27 31 37 41
```

```
pairs_findr_merger pairs_findr_merger
```

Description

Takes two different outputs from pairs_findr and merge them. Can be usefull when the pairs consists in different patterns, for example one output from the pairs_findr function with ptrn1 = "(" and ptrn2 = ")", and a second output from the pairs_findr function with ptrn1 = "" and ptrn2 = "".

Usage

```
pairs_findr_merger(lst1 = list(), lst2 = list())
```

Arguments

lst1	is the first ouput from pairs findr function
lst2	is the second ouput from pairs findr function

pairs_findr_merger 73

```
print(pairs_findr_merger(lst1=list(c(1, 2, 3, 3, 2, 1), c(3, 4, 5, 7, 8, 9)),
                        lst2=list(c(1, 1), c(1, 2)))
[[1]]
[1] 1 1 2 3 4 4 3 2
[[2]]
[1] 1 2 3 4 5 7 8 9
print(pairs_findr_merger(lst1=list(c(1, 2, 3, 3, 2, 1), c(3, 4, 5, 7, 8, 9))),
                         lst2=list(c(1, 1), c(1, 11)))
[[1]]
[1] 1 2 3 4 4 3 2 1
[[2]]
[1] 1 3 4 5 7 8 9 11
print (pairs\_findr\_merger(lst1=list(c(1, 2, 3, 3, 2, 1), c(3, 4, 5, 8, 10, 11)),\\
                        lst2=list(c(4, 4), c(6, 7)))
[[1]]
[1] 1 2 3 4 4 3 2 1
[[2]]
[1] 3 4 5 6 7 8 10 11
print(pairs_findr_merger(lst1=list(c(1, 2, 3, 3, 2, 1), c(3, 4, 5, 7, 10, 11)),
                         lst2=list(c(4, 4), c(8, 9))))
[[1]]
[1] 1 2 3 3 4 4 2 1
[[2]]
[1] 3 4 5 7 8 9 10 11
print(pairs_findr_merger(lst1=list(c(1, 2, 3, 3, 2, 1), c(3, 4, 5, 7, 10, 11))),\\
                         lst2=list(c(4, 4), c(18, 19)))
[[1]]
[1] 1 2 3 3 2 1 4 4
[[2]]
[1] 3 4 5 7 10 11 18 19
print(pairs_findr_merger(lst1 = list(c(1, 1, 2, 2, 3, 3), c(1, 25, 26, 32, 33, 38)),
                       lst2 = list(c(1, 1, 2, 2, 3, 3), c(7, 11, 13, 17, 19, 24))))
[[1]]
[1] 1 2 2 3 3 4 4 1 5 5 6 6
[1] 1 7 11 13 17 19 24 25 26 32 33 38
print(pairs_findr_merger(lst1 = list(c(1, 1, 2, 2, 3, 3), c(2, 7, 9, 10, 11, 15)),
```

74 pairs_insertr

pairs_insertr

pairs_insertr

Description

Takes a character representing an arbitrary condition (like ReGeX for example) or an information (to a parser for example), vectors containing all the pair of pattern that potentially surrounds condition (flagged_pair_v and corr_v), and a vector containing all the conjuntion character, as input and returns the character with all or some of the condition surrounded by the pair characters. See examples. All the pair characters are inserted according to the closest pair they found priotizing those found next to the condition and on the same depth-level and , if not found, the pair found at the n+1 depth-level.

Usage

```
pairs_insertr(
  inpt,
  algo_used = c(1:3),
  flagged_pair_v = c(")", "]"),
  corr_v = c("(", "["),
  flagged_conj_v = c("&", "|")
)
```

Arguments

inpt

is the input character representing an arbitrary condition, like ReGex for example, or information to a parser for example

algo_used

is a vector containing one or more of the 3 algorythms used. The first algorythm will simply put the pair of parenthesis at the condition surrounded and/or after a character flagged (in flagged_conj_v) as a conjunction. The second algorythm will put parenthesis at the condition that are located after other conditions that are surrounded by a pair. The third algorythm will put a pair at all the condition, it is very powerfull but takes a longer time. See examples and make experience to see which combination of algorythm(s) is the most efficient for your use case.

pairs_insertr2 75

```
flagged_pair_v
is a vector containing all the first character of the pairs
corr_v
is a vector containing all the last character of the pairs
flagged_conj_v
is a vector containing all the conjunction character
```

Examples

```
print(pairs_insertr(inpt = "([one]|two|twob)three(four)", algo_used = c(1)))
[1] "([one]|[two]|[twob])three(four)"
print(pairs_insertr(inpt = "(one|[two]|twob)three(four)", algo_used = c(2)))
[1] "(one|[two]|[twob])(three)(four)"
print(pairs_insertr(inpt = "(oneA|[one]|two|twob)three(four)", algo_used = c(1, 2)))
[1] "(oneA|[one]|[two]|[twob])(three)(four)"
print(pairs_insertr(inpt = "(oneA|[one]|two|twob)three(four)", algo_used = c(1, 2, 3)))
[1] "([oneA]|[one]|[two]|[twob])(three)(four)"
print(pairs_insertr(inpt = "(oneA|[one]|two|twob)three(four)", algo_used = c(3)))
[1] "([oneA]|[one]|(two)|(twob))(three)(four)"
print(pairs_insertr(inpt = "(oneA|[one]|two|twob)three((four))", algo_used = c(3)))
[1] "([oneA]|[(one)]|(two)|(twob))(three)((four))"
```

```
pairs_insertr2 pairs_insertr2
```

Description

Takes a character representing an arbitrary condition (like ReGeX for example) or an information (to a parser for example), vectors containing all the pair of pattern that potentially surrounds condition (flagged_pair_v and corr_v), and a vector containing all the conjuntion character, as input and returns the character with all or some of the condition surrounded by the pair characters. See examples. All the pair characters are inserted according to the closest pair they found priotizing those found next to the condition and on the same depth-level and , if not found, the pair found at the n+1 depth-level.

Usage

```
pairs_insertr2(
  inpt,
  algo_used = c(1:3),
  flagged_pair_v = c(")", "]"),
  corr_v = c("(", "["),
```

76 pairs_insertr2

```
flagged_conj_v = c("&", "|"),
method = c("(", ")")
)
```

Arguments

inpt is the input character representing an arbitrary condition, like ReGex for exam-

ple, or information to a parser for example

algo_used is a vector containing one or more of the 3 algorythms used. The first algorythm

will simply put the pair of parenthesis at the condition surrounded and/or after a character flagged (in flagged_conj_v) as a conjunction. The second algorythm will put parenthesis at the condition that are located after other conditions that are surrounded by a pair. The third algorythm will put a pair at all the condition, it is very powerfull but takes a longer time. See examples and make experience

to see which combination of algorythm(s) is the most efficient for your use case.

flagged_pair_v

is a vector containing all the first character of the pairs

corr_v is a vector containing all the last character of the pairs

flagged_conj_v

is a vector containing all the conjunction character

method is length 2 vector containing as a first index, the first character of the pair in-

serted, and at the last index, the second and last character of the pair

paste_datf 77

|--|--|

Description

Return a vector composed of pasted elements from the input dataframe at the same index.

Usage

```
paste_datf(inpt_datf, sep = "")
```

Arguments

```
inpt_datf is the input dataframe
sep is the separator between pasted elements, defaults to ""
```

Examples

```
print(paste_datf(inpt_datf=data.frame(c(1, 2, 1), c(33, 22, 55))))
#[1] "133" "222" "155"
```

```
pattern_generator pattern_generator
```

Description

Allow to create patterns which have a part that is varying randomly each time.

Usage

```
pattern_generator(base_, from_, nb, hmn = 1, after = 1, sep = "")
```

Arguments

base_	is the pattern that will be kept
from_	is the vector from which the elements of the random part will be generated
nb	is the number of random pattern chosen for the varying part
hmn	is how many of varying pattern from the same base will be created
after	is set to 1 by default, it means that the varying part will be after the fixed part, set to 0 if you want the varying part to be before
sep	is the separator between all patterns in the returned value

78 pattern_gettr

Examples

```
print(pattern_generator(base_="oui", from_=c("er", "re", "ere"), nb=1, hmn=3))
# [1] "ouier" "ouire" "ouier"
print(pattern_generator(base_="oui", from_=c("er", "re", "ere"), nb=2, hmn=3, after=0, set [1] "er-re-o-u-i" "ere-re-o-u-i" "ere-er-o-u-i"
```

pattern_gettr

pattern_gettr

Description

Search for pattern(s) contained in a vector in another vector and return a list containing matched one (first index) and their position (second index) according to these rules: First case: Search for patterns strictly, it means that the searched pattern(s) will be matched only if the patterns containded in the vector that is beeing explored by the function are present like this c("pattern_searched", "other", ..., "pattern_searched") and not as c("other_thing pattern_searched other_thing", "other", ..., "pattern_searched other_thing") Second case: It is the opposite to the first case, it means that if the pattern is partially present like in the first position and the last, it will be considered like a matched pattern. REGEX can also be used as pattern

Usage

```
pattern_gettr(
  word_,
  vct,
  occ = c(1),
  strict,
  btwn,
  all_in_word = "yes",
  notatall = "###"
)
```

Arguments

word_	is the vector containing the patterns
vct	is the vector being searched for patterns
occ	a vector containing the occurence of the pattern in word_ to be matched in the vector being searched, if the occurence is 2 for the nth pattern in word_ and only one occurence is found in vct so no pattern will be matched, put "forever" to no longer depend on the occurence for the associated pattern
strict	a vector containing the "strict" condition for each nth vector in word_ ("strict" is the string to activate this option)
btwn	is a vector containing the condition ("yes" to activate this option) meaning that if "yes", all elements between two matched patern in vct will be returned , so the patterns you enter in word_ have to be in the order you think it will appear in vct

pattern_tuning 79

```
all_in_word is a value (default set to "yes", "no" to activate this option) that, if activated, won't authorized a previous matched pattern to be matched again notatall is a string that you are sure is not present in vct
```

Examples

```
print(pattern_gettr(word_=c("oui", "non", "erer"), vct=c("oui", "oui", "non", "oui",
    "non", "opp", "opp", "erer", "non", "ok"), occ=c(1, 2, 1),
    btwn=c("no", "yes", "no"), strict=c("no", "no", "ee")))

#[[1]]
#[1] 1 5 8
#
#[[2]]
#[1] "oui" "non" "opp" "opp" "erer"
```

```
pattern_tuning pattern_tuning
```

Description

Allow to tune a pattern very precisely and output a vector containing its variations n times.

Usage

```
pattern_tuning(
  pattrn,
  spe_nb,
  spe_l,
  exclude_type,
  hmn = 1,
  rg = c(1, nchar(pattrn))
)
```

Arguments

```
pattrn is the character that will be tuned

spe_nb is the number of new character that will be replaced

spe_l is the source vector from which the new characters will replace old ones

exclude_type is character that won't be replaced

hmn is how many output the function will return

rg is a vector with two parameters (index of the first letter that will be replaced, index of the last letter that will be replaced) default is set to all the letters from the source pattern
```

```
print(pattern_tuning(pattrn="oui", spe_nb=2, spe_l=c("e", "r", "T", "O"), exclude_type="out"
#[1] "orT" "oTr" "oOi"
```

pre_to_post_idx

Description

Convert a scientific number to a string representing normally the number.

Usage

```
power_to_char(inpt_v = c())
```

Arguments

inpt_v is the input vector containing scientific number, but also other elements that won't be taken in count

Examples

```
print(power_to_char(inpt_v = c(22 * 10000000, 12, 9 * 0.0000002)))
[1] "2200000000" "12" "0.0000018"
```

Description

Allow to convert indexes from a pre-vector to post-indexes based on a current vector, see examples

Usage

```
pre_to_post_idx(inpt_v = c(), inpt_idx = c(1:length(inppt_v)))
```

Arguments

```
inpt_v is the new vector
inpt_idx is the vector containing the pre-indexes
```

```
print(pre_to_post_idx(inpt_v = c("oui", "no", "eee"), inpt_idx = c(1:8)))
[1] 1 1 1 2 2 3 3 3
As if the first vector was c("o", "u", "i", "n", "o", "e", "e", "e")
```

ptrn_switchr 81

|--|--|--|

Description

Allow to switch, copy pattern for each element in a vector. Here a pattern is the values that are separated by a same separator. Example: "xx-xxx-xx" or "xx/xx/xxxx". The xx like values can be switched or copied from whatever index to whatever index. Here, the index is like this 1-2-3 etcetera, it is relative of the separator.

Usage

```
ptrn_switchr(inpt_l, f_idx_l = c(), t_idx_l = c(), sep = "-", default_val = NA)
```

Arguments

inpt_l	is the input vector
f_idx_l	is a vector containing the indexes of the pattern you want to be altered.
t_idx_l	is a vector containing the indexes to which the indexes in f_idx_l are related.
sep	is the separator, defaults to "-"
default_val	is the default value , if not set to NA, of the pattern at the indexes in f_idx_l . If it is not set to NA, you do not need to fill t_idx_l because this is the vector containing the indexes of the patterns that will be set as new values relatively to the indexes in f_idx_l . Defaults to NA.

Examples

```
print(ptrn_switchr(inpt_l=c("2022-01-11", "2022-01-14", "2022-01-21",
   "2022-01-01"), f_idx_l=c(1, 2, 3), t_idx_l=c(3, 2, 1)))
#[1] "11-01-2022" "14-01-2022" "21-01-2022" "01-01-2022"

print(ptrn_switchr(inpt_l=c("2022-01-11", "2022-01-14", "2022-01-21",
   "2022-01-01"), f_idx_l=c(1), default_val="ee"))
#[1] "ee-01-11" "ee-01-14" "ee-01-21" "ee-01-01"
```

```
ptrn_twkr ptrn_twkr
```

Description

Allow to modify the pattern length of element in a vector according to arguments. What is here defined as a pattern is something like this xx-xx-xx or xx/xx/xxx... So it is defined by the separator

82 rearangr_v

Usage

```
ptrn_twkr(
  inpt_l,
  depth = "max",
  sep = "-",
  default_val = "0",
  add_sep = TRUE,
  end_ = TRUE
)
```

Arguments

inpt_l is the input vector depth is the number (numeric) of separator it will keep as a result. To keep the number of separator of the element that has the minimum amount of separator do depth="min" and depth="max" (character) for the opposite. This value defaults to "max". is the separator of the pattern, defaults to "-" sep is the default val that will be placed between the separator, defaults to "00" default val add_sep defaults to TRUE. If set to FALSE, it will remove the separator for the patterns that are included in the interval between the depth amount of separator and the actual number of separator of the element. is if the default_val will be added at the end or at the beginning of each element end that lacks length compared to depth

Examples

```
v <- c("2012-06-22", "2012-06-23", "2022-09-12", "2022")
ptrn_twkr(inpt_l=v, depth="max", sep="-", default_val="00", add_sep=TRUE)
#[1] "2012-06-22" "2012-06-23" "2022-09-12" "2022-00-00"
ptrn_twkr(inpt_l=v, depth=1, sep="-", default_val="00", add_sep=TRUE)
#[1] "2012-06" "2012-06" "2022-09" "2022-00"
ptrn_twkr(inpt_l=v, depth="max", sep="-", default_val="00", add_sep=TRUE, end_=FALSE)
#[1] "2012-06-22" "2012-06-23" "2022-09-12" "00-00-2022"</pre>
```

rearangr_v

rearangr_v

Description

Reanranges a vector "w_v" according to another vector "inpt_v". inpt_v contains a sequence of number. inpt_v and w_v have the same size and their indexes are related. The output will be a vector containing all the elements of w_v rearanges in descending or asending order according to inpt_v

regex_spe_detect 83

Usage

```
rearangr_v(inpt_v, w_v, how = "increasing")
```

Arguments

inpt_v is the vector that contains the sequence of number
 w_v is the vector containing the elements related to inpt_v
 how is the way the elements of w_v will be outputed according to if inpt_v will be sorted ascendigly or descendingly

Examples

```
print(rearangr_v(inpt_v=c(23, 21, 56), w_v=c("oui", "peut", "non"), how="decreasing"))
#[1] "non" "oui" "peut"
```

```
regex_spe_detect    regex_spe_detect
```

Description

Takes a character as input and returns its regex-friendly character for R.

Usage

```
regex_spe_detect(inpt)
```

Arguments

inpt the input character

```
print(regex_spe_detect("o"))

[1] "o"

print(regex_spe_detect("(")))

[1] "\\(")

print(regex_spe_detect("tr(o)m")))

[1] "tr\\(o\\)m"

print(regex_spe_detect(inpt="fggfg[fggf]fgfg(vg?fgfgf.gf)"))

[1] "fggfg\\[fggf\\]fgfg\\(vg\\?fgfgf\\.gf\\)"
```

84 regroupr

regroupr regroupr

Description

Allow to sort data like "c(X1/Y1/Z1, X2/Y1/Z2, ...)" to what you want. For example it can be to "c(X1/Y1/21, X1/Y1/Z2, ...)"

Usage

```
regroupr(
  inpt_v,
  sep_ = "-",
  order = c(1:length(unlist(strsplit(x = inpt_v[1], split = sep_)))),
  l_order = NA
)
```

Arguments

is the input vector containing all the data you want to sort in a specific way. All the sub-elements should be separated by a unique separator such as "-" or "/" sep_ is the unique separator separating the sub-elements in each elements of inpt_v order is a vector describing the way the elements should be sorted. For example if you want this dataset "c(X1/Y1/Z1, X2/Y1/Z2, ...)" to be sorted by the last element you should have order=c(3:1), for example, and it should returns something like this c(X1/Y1/Z1, X2/Y1/Z1, X1/Y2/Z1, ...) assuming you have only two values for X.

1_order is a list containing the vectors of values you want to order first for each sub-elements

```
vec <- multitud(l=list(c("a", "b"), c("1", "2"), c("A", "Z", "E"), c("Q", "F")), sep_="/"</pre>
print(vec)
# [1] "a/1/A/Q" "b/1/A/Q" "a/2/A/Q" "b/2/A/Q" "a/1/Z/Q" "b/1/Z/Q" "a/2/Z/Q"
# [8] "b/2/Z/Q" "a/1/E/Q" "b/1/E/Q" "a/2/E/Q" "b/2/E/Q" "a/1/A/F" "b/1/A/F"
#[15] "a/2/A/F" "b/2/A/F" "a/1/Z/F" "b/1/Z/F" "a/2/Z/F" "b/2/Z/F" "a/1/E/F"
#[22] "b/1/E/F" "a/2/E/F" "b/2/E/F"
print(regroupr(inpt_v=vec, sep_="/"))
# [1] "a/1/1/1"
                  "a/1/2/2"
                                           "a/1/4/4"
                                                       "a/1/5/5"
                                                                   "a/1/6/6"
                              "a/1/3/3"
# [7] "a/2/7/7"
                  "a/2/8/8"
                              "a/2/9/9"
                                           "a/2/10/10" "a/2/11/11" "a/2/12/12"
#[13] "b/1/13/13" "b/1/14/14" "b/1/15/15" "b/1/16/16" "b/1/17/17" "b/1/18/18"
#[19] "b/2/19/19" "b/2/20/20" "b/2/21/21" "b/2/22/22" "b/2/23/23" "b/2/24/24"
 vec <- vec[-2]
 print(regroupr(inpt_v=vec, sep_="/"))
```

r_print 85

```
# [1] "a/1/1/1"
                  "a/1/2/2"
                              "a/1/3/3"
                                          "a/1/4/4"
                                                      "a/1/5/5"
                                                                   "a/1/6/6"
                            "a/2/9/9"
                                        "a/2/10/10" "a/2/11/11" "a/2/12/12"
# [7] "a/2/7/7"
                  "a/2/8/8"
#[13] "b/1/13/13" "b/1/14/14" "b/1/15/15" "b/1/16/16" "b/1/17/17" "b/2/18/18"
#[19] "b/2/19/19" "b/2/20/20" "b/2/21/21" "b/2/22/22" "b/2/23/23"
print(regroupr(inpt_v=vec, sep_="/", order=c(4:1)))
#[1] "1/1/A/O"
                 "2/2/A/Q"
                             "3/3/A/0"
                                         "4/4/A/Q"
                                                     "5/5/Z/O"
                                                                  "6/6/Z/O"
                            "9/9/E/Q"
                                        "10/10/E/Q" "11/11/E/Q" "12/12/E/Q"
# [7] "7/7/Z/Q"
                 "8/8/Z/Q"
#[13] "13/13/A/F" "14/14/A/F" "15/15/A/F" "16/16/A/F" "17/17/Z/F" "18/18/Z/F"
#[19] "19/19/Z/F" "20/20/Z/F" "21/21/E/F" "22/22/E/F" "23/23/E/F" "24/24/E/F"
```

r_print

r_print

Description

Allow to print vector elements in one row.

Usage

```
r_print(inpt_v, sep_ = "and", begn = "This is", end = ", voila!")
```

Arguments

inpt_v is the input vector

sep_ is the separator between each elements

begn is the character put at the beginning of the print end is the character put at the end of the print

Examples

```
print(r_print(inpt_v=c(1:33))) \#[1] "This is 1 and 2 and 3 and 4 and 5 and 6 and 7 and 8 and 9 and 10 and 11 and 12 and \#[1] and 15 and 16 and 17 and 18 and 19 and 20 and 21 and 22 and 23 and 24 and 25 and \#[1] and 28 and 29 and 30 and 31 and 32 and 33 and , voila!"
```

save_untl

save_untl

Description

Get the elements in each vector from a list that are located before certain values

Usage

```
save_untl(inpt_l = list(), val_to_stop_v = c())
```

86 see_datf

Arguments

```
inpt_l is the input list containing all the vectors
val_to_stop_v
    is a vector containing the values that marks the end of the vectors returned in the
    returned list, see the examples
```

Examples

```
print(save_untl(inpt_l=list(c(1:4), c(1, 1, 3, 4), c(1, 2, 4, 3)), val_to_stop_v=c(3, 4))
#[[1]]
#[1] 1 2
#
#[[2]]
#[1] 1 1
#
#[[3]]
#[1] 1 2

print(save_untl(inpt_l=list(c(1:4), c(1, 1, 3, 4), c(1, 2, 4, 3)), val_to_stop_v=c(3)))
#[[1]]
#[1] 1 2
#
#[[2]]
#[1] 1 2
#
#[[2]]
#[1] 1 1
#
#
#[[3]]
#[1] 1 2 4
```

see_datf

see_datf

Description

Allow to return a dataframe with special value cells (ex: TRUE) where the condition entered are respected and another special value cell (ex: FALSE) where these are not

Usage

```
see_datf(
  datf,
  condition_l,
  val_l,
  conjunction_l = c(),
  rt_val = TRUE,
  f_val = FALSE
)
```

see_datf 87

Arguments

datf is the input dataframe is the vector of the possible conditions ("==", ">", "<", "!=", "%%", "reg", condition_l "not_reg", "sup_nchar", "inf_nchar", "nchar") (equal to some elements in a vector, greater than, lower than, not equal to, is divisible by, the regex condition returns TRUE, the regex condition returns FALSE, the length of the elements is strictly superior to X, the length of the element is strictly inferior to X, the length of the element is equal to one element in a vector), you can put the same condition n times. is the list of vectors containing the values or vector of values related to condival_l tion_l (so the vector of values has to be placed in the same order) conjunction_l contains the and or conjunctions, so if the length of condition_1 is equal to 3, there will be 2 conjunctions. If the length of conjunction_1 is inferior to the length of condition_1 minus 1, conjunction_1 will match its goal length value with its last argument as the last arguments. For example, c("&", "I", "&") with a goal length value of $5 \rightarrow c("\&", "|", "\&", "\&", "\&")$ is a special value cell returned when the conditions are respected rt_val is a special value cell returned when the conditions are not respected f_val

Details

This function will return an error if number only comparative conditions are given in addition to having character values in the input dataframe.

```
datf1 <- data.frame(c(1, 2, 4), c("a", "a", "zu"))</pre>
print(see_datf(datf=datf1, condition_l=c("nchar"), val_l=list(c(1))))
     X1
           X2
#1 TRUE TRUE
#2 TRUE TRUE
#3 TRUE FALSE
print(see_datf(datf=datf1, condition_l=c("=="), val_l=list(c("a", 1))))
    X1
           X2
#1
   TRUE TRUE
#2 FALSE
          TRUE
#3 FALSE FALSE
print(see_datf(datf=datf1, condition_l=c("nchar"), val_l=list(c(1, 2))))
          X2
     X1
#1 TRUE TRUE
#2 TRUE TRUE
#3 TRUE TRUE
print(see_datf(datf=datf1, condition_l=c("not_reg"), val_l=list("[a-z]")))
```

see_diff_all

```
# X1 X2
#1 TRUE FALSE
#2 TRUE FALSE
#3 TRUE FALSE
```

```
see_diff
```

see_diff

Description

Output the opposite of intersect(a, b). Already seen at: https://stackoverflow.com/questions/19797954/function-to-find-symmetric-difference-opposite-of-intersection-in-r

Usage

```
see\_diff(vec1 = c(), vec2 = c())
```

Arguments

vec1 is the first vector vec2 is the second vector

Examples

```
print(see_diff(c(1:7), c(4:12)))
[1] 1 2 3 8 9 10 11 12
```

```
see_diff_all
```

 see_diff_all

Description

Allow to perform the opposite of intersect function to n vectors.

Usage

```
see_diff_all(...)
```

Arguments

... are all the input vectors

see_file 89

Examples

```
vec1 <- c(3:6)
vec2 <- c(1:8)
vec3 <- c(12:16)

print(see_diff_all(vec1, vec2))

[1] 1 2 7 8

print(see_diff_all(vec1, vec2, vec3))

[1] 3 4 5 6 1 2 7 8 12 13 14 15 16</pre>
```

see_file

 see_file

Description

Allow to get the filename or its extension

Usage

```
see_file(string_, index_ext = 1, ext = TRUE)
```

Arguments

is the input string
index_ext is the occurence of the dot that separates the filename and its extension
ext is a boolean that if set to TRUE, will return the file extension and if set to FALSE, will return filename

```
print(see_file(string_="file.abc.xyz"))
#[1] ".abc.xyz"
print(see_file(string_="file.abc.xyz", ext=FALSE))
#[1] "file"
print(see_file(string_="file.abc.xyz", index_ext=2))
#[1] ".xyz"
```

90 see_inside

Description

Returns a boolean vector to see if a set of elements contained in v1 is also contained in another vector (v2)

Usage

```
see_idx(v1, v2)
```

Arguments

```
v1 is the first vector
v2 is the second vector
```

Examples

```
print(see_idx(v1=c("oui", "non", "peut", "oo"), v2=c("oui", "peut", "oui")))
#[1] TRUE FALSE TRUE FALSE
```

see_inside

see_inside

Description

Return a list containing all the column of the files in the current directory with a chosen file extension and its associated file and sheet if xlsx. For example if i have 2 files "out.csv" with 2 columns and "out.xlsx" with 1 column for its first sheet and 2 for its second one, the return will look like this: c(column_1, column_2, column_3, column_4, column_5, unique_separator, "1-2-out.csv", "3-3-sheet_1-out.xlsx", 4-5-sheet_2-out.xlsx)

Usage

```
see_inside(
  pattern_,
  path_ = ".",
  sep_ = c(","),
  unique_sep = "#####",
  rec = FALSE
)
```

see_mode 91

Arguments

pattern_ is a vector containin the file extension of the spreadsheets ("xlsx", "csv"...)

path_ is the path where are located the files

sep_ is a vector containing the separator for each csv type file in order following the

operating system file order, if the vector does not match the number of the csv files found, it will assume the separator for the rest of the files is the same as the last csv file found. It means that if you know the separator is the same for all the

csv type files, you just have to put the separator once in the vector.

unique_sep is a pattern that you know will never be in your input files

rec is a boolean allows to get files recursively if set to TRUE, defaults to TRUE If x

is the return value, to see all the files name, position of the columns and possible

sheet name associanted with, do the following:

 see_mode see_mode

Description

Allow to get the mode of a vector, see examples.

Usage

```
see\_mode(inpt\_v = c())
```

Arguments

inpt v is the input vector

```
print(see_mode(inpt_v = c(1, 1, 2, 2, 2, 3, 1, 2)))
[1] 2
print(see_mode(inpt_v = c(1, 1, 2, 2, 2, 3, 1)))
[1] 1
```

92 sort_date

Description

Allow to sort any vector containing a date, from any kind of format (my, hdmy, ymd ...), see examples.

Usage

```
sort_date(inpt_v, frmt, sep_ = "-", ascending = FALSE, give = "value")
```

Arguments

inpt_v is the input vector containing all the dates
frmt is the format of the dates, (any combinaison of letters "s" for second, "n", for minute, "h" for hour, "d" for day, "m" for month and "y" for year)
sep_ is the separator used for the dates
ascending is the used to sort the dates
give takes only two values "index" or "value", if give == "index", the function will output the index of sorted dates from inpt_v, if give == "value", the function will output the value, it means directly the sorted dates in inpt_v, see examples

```
sort_normal_qual sort_normal_qual
```

Description

Sort qualitative modalities that have their frequency normally distributed from an unordered dataset, see examples. This function uses an another algorythm than choose_normal_qual2 which may be faster

Usage

```
sort_normal_qual(inpt_datf)
```

Arguments

inpt_datf is the input dataframe, containing the values in the first column and their frequency in the second

```
sample\_val \leftarrow round(rnorm(n = 2000, mean = 12, sd = 2), 1)
sample_freq <- unique_total(sample_val)</pre>
sample_qual <- infinite_char_seq(n = length(sample_freq))</pre>
datf_test <- data.frame(sample_qual, sample_freq)</pre>
datf_test[, 2] <- datf_test[, 2] / sum(datf_test[, 2]) # optional</pre>
print(datf_test)
   sample_qual sample_freq
1
              a 0.208695652
2
              b 0.234782609
              c 0.321739130
              d 0.339130435
5
               e 0.330434783
6
              f 0.069565217
7
              g 0.234782609
8
              h 0.40000000
              i 0.347826087
9
10
              j 0.043478261
11
              k 0.278260870
12
              1 0.286956522
13
              m 0.243478261
14
              n 0.147826087
15
              o 0.234782609
              p 0.252173913
16
17
              q 0.417391304
18
              r 0.095652174
              s 0.313043478
19
2.0
              t 0.008695652
21
              u 0.130434783
22
              v 0.391304348
23
              w 0.113043478
24
              x 0.295652174
25
              y 0.243478261
```

26	Z	0.382608696
27	aa	0.008695652
28	ab	0.347826087
29	ac	0.330434783
30	ad	0.321739130
31	ae	0.347826087
32 33	af	0.321739130
34	ag ah	0.173913043 0.278260870
35	an	0.278260870
36	ai	0.347826087
37	ak	0.026086957
38	al	0.295652174
39	am	0.226086957
40	an	0.295652174
41	ao	0.234782609
42	ap	0.113043478
43	aq	0.234782609
44	ar	0.173913043
45	as	0.017391304
46	at	0.252173913
47	au	0.078260870
48	av	0.086956522
49	aw	0.278260870
50	ax	0.086956522
51	ay	0.20000000
52	az	0.295652174
53	ba	0.052173913
54	bb	0.165217391
55	bc	0.408695652
56 57	bd	0.269565217 0.104347826
58	be bf	0.391304348
59	bg	0.104347826
60	bh	0.043478261
61	bi	0.200000000
62	bj	0.095652174
63	bk	0.191304348
64	bl	0.008695652
65	bm	0.165217391
66	bn	0.226086957
67	bo	0.086956522
68	bp	0.017391304
69	bq	0.121739130
70	br	0.234782609
71	bs	0.121739130
72	bt	0.078260870
73	bu	0.173913043
74	bv	0.104347826
75	bw	0.208695652
76	bx	0.017391304
77	by ba	0.243478261
78 79	bz	0.034782609 0.017391304
80	ca cb	0.017391304
81	CC	0.173913043
82	cd	0.147826087
√ ∠	cu	0.11/02000/

```
83
             ce 0.060869565
84
             cf 0.017391304
85
             cq 0.060869565
86
             ch 0.008695652
87
             ci 0.208695652
             cj 0.043478261
88
             ck 0.052173913
89
90
             cl 0.017391304
91
             cm 0.017391304
92
             cn 0.095652174
93
             co 0.113043478
94
             cp 0.017391304
95
             cq 0.017391304
96
             cr 0.026086957
97
             cs 0.034782609
             ct 0.017391304
98
             cu 0.026086957
99
             cv 0.026086957
100
101
             cw 0.026086957
102
             cx 0.017391304
103
             cy 0.043478261
104
             cz 0.008695652
105
             da 0.034782609
106
             db 0.017391304
107
             dc 0.060869565
108
             dd 0.008695652
             de 0.008695652
109
             df 0.017391304
110
111
             dq 0.008695652
             dh 0.008695652
112
113
             di 0.017391304
114
             dj 0.008695652
115
             dk 0.008695652
print(sort_normal_qual(inpt_datf = datf_test))
0.00869565217391304 \ 0.00869565217391304 \ 0.00869565217391304 \ 0.00869565217391304
              "aa"
                                   "cb"
                                                        "CZ"
                                                                              "de"
0.00869565217391304 \ \ 0.00869565217391304 \ \ \ 0.0173913043478261 \ \ \ 0.0173913043478261
               "dh"
                                   "dk"
                                                         "dd"
                                                                              "ca"
0.0173913043478261
                    0.0173913043478261
                                         0.0173913043478261 0.0173913043478261
              "cl"
                                   "cp"
                                                        "ct"
0.0173913043478261
                    0.0260869565217391
                                          0.0260869565217391
                                                              0.0347826086956522
              "di"
                                   "cr"
0.0347826086956522
                    0.0434782608695652
                                          0.0434782608695652
                                                               0.0521739130434783
              "da"
                                   "bh"
                                                        "су"
                                                                             "ck"
0.0608695652173913
                    0.0695652173913043
                                          0.0782608695652174
                                                              0.0869565217391304
                                    " f "
              "cg"
                                                        "bt"
                                                                             "ax"
0.0956521739130435
                   0.0956521739130435
                                          0.104347826086957
                                                                0.11304347826087
               "r"
                                   "cn"
                                                        "ba"
                                                                              " w"
  0.11304347826087
                    0.121739130434783
                                          0.147826086956522
                                                                0.165217391304348
              "co"
                                   "bs"
                                                         "n"
                                                                             "bb"
 0.173913043478261
                                          0.191304347826087
                                                                              0.2
                    0.173913043478261
              "ag"
                                   "bu"
                                                        "bk"
                                                                             "bi"
 0.208695652173913
                    0.226086956521739
                                           0.234782608695652
                                                               0.234782608695652
```

"am"

0.243478260869565

"b"

0.243478260869565

" 0 "

0.252173913043478

"bw"

0.234782608695652

"aq"	"m"	"by"	"at"
0.278260869565217	0.278260869565217	0.28695652173913	0.295652173913043
"k"	"ai"	"1"	"al"
0.295652173913043	0.321739130434783	0.321739130434783	0.330434782608696
"az"	"c"	"af"	"ac"
0.347826086956522	0.347826086956522	0.382608695652174	0.391304347826087
"i"	"ae"	" _Z "	"bf"
0.408695652173913	0.417391304347826	0.4	0.391304347826087
"bc"	" q"	"h"	" _V "
0.347826086956522	0.347826086956522	0.339130434782609	0.330434782608696
"aj"	"ab"	"d"	"e"
0.321739130434783	0.31304347826087	0.295652173913043	0.295652173913043
"ad"	"s"	"an"	"x"
0.278260869565217	0.278260869565217	0.269565217391304	0.252173913043478
"aw"	"ah"	"bd"	"p"
0.243478260869565	0.234782608695652	0.234782608695652	0.234782608695652
"y"	"br"	"ao"	" g"
0.226086956521739	0.208695652173913	0.208695652173913	0.2
"bn"	"ci"	"a"	"ay"
0.173913043478261	0.173913043478261	0.165217391304348	0.147826086956522
"cc"	"ar"	"bm"	"cd"
0.130434782608696	0.121739130434783	0.11304347826087	0.104347826086957
"u"	"pq"	"ap"	"bv"
0.104347826086957	0.0956521739130435	0.0869565217391304	0.0869565217391304
"be"	"bj"	"bo"	"av"
0.0782608695652174	0.0608695652173913	0.0608695652173913	0.0521739130434783
"au"	"dc"	"ce"	"ba"
0.0434782608695652	0.0434782608695652	0.0347826086956522	0.0260869565217391
" cj"	" j"	"cs"	"CW"
0.0260869565217391	0.0260869565217391	0.0173913043478261	0.0173913043478261
"cu"	"ak"	"df"	"CX"
0.0173913043478261	0.0173913043478261	0.0173913043478261	0.0173913043478261
"cq"	"cm"	"cf"	"bx"
		0.00869565217391304	0.00869565217391304
"as"	"dj"	"dg"	"dd"
0.00869565217391304			1
"ch"	"bl"	"t"	

sort_normal_qual2 sort_normal_qual2

Description

Sort qualitative modalities that have their frequency normally distributed from an unordered dataset, see examples. This function uses an another algorythm than choose_normal_qual which may be faster.

Usage

```
sort_normal_qual2(inpt_datf)
```

Arguments

inpt_datf is the input dataframe, containing the values in the first column and their frequency in the second

```
sample_val \leftarrow round(rnorm(n = 2000, mean = 12, sd = 2), 1)
sample_freq <- unique_total(sample_val)</pre>
sample_qual <- infinite_char_seq(n = length(sample_freq))
datf_test <- data.frame(sample_qual, sample_freq)</pre>
datf_test[, 2] <- datf_test[, 2] / sum(datf_test[, 2])</pre>
print(datf_test)
   sample_qual sample_freq
             a 0.208695652
1
2
             b 0.234782609
3
             c 0.321739130
4
             d 0.339130435
5
             e 0.330434783
6
             f 0.069565217
7
             g 0.234782609
             h 0.40000000
8
9
             i 0.347826087
10
             j 0.043478261
11
              k 0.278260870
12
              1 0.286956522
13
             m 0.243478261
14
              n 0.147826087
15
              0 0.234782609
16
             p 0.252173913
17
              q 0.417391304
             r 0.095652174
18
19
             s 0.313043478
20
             t 0.008695652
21
            u 0.130434783
22
             v 0.391304348
23
            w 0.113043478
24
             x 0.295652174
25
            y 0.243478261
26
             z 0.382608696
27
           aa 0.008695652
28
           ab 0.347826087
29
           ac 0.330434783
           ad 0.321739130
30
           ae 0.347826087
31
           af 0.321739130
32
           ag 0.173913043
33
34
            ah 0.278260870
35
            ai 0.278260870
36
             aj 0.347826087
37
             ak 0.026086957
38
            al 0.295652174
39
            am 0.226086957
40
            an 0.295652174
            ao 0.234782609
41
42
            ap 0.113043478
43
           aq 0.234782609
44
           ar 0.173913043
45
           as 0.017391304
46
           at 0.252173913
```

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl	0.078260870 0.086956522 0.278260870 0.086956522 0.200000000 0.295652174 0.052173913 0.165217391 0.408695652 0.269565217 0.104347826 0.391304348 0.104347826 0.043478261 0.200000000 0.095652174 0.191304348 0.008695652 0.165217391
65 66	bm bn	0.226086957
67 68	bo bp	0.086956522 0.017391304
69	bq	0.121739130
70	br	0.234782609
71 72	bs bt	0.121739130 0.078260870
73	bu	0.173913043
74	bv	0.104347826
75	bw	0.208695652
76	bx	0.017391304
77 78	by ba	0.243478261 0.034782609
79	bz ca	0.034782809
80	cb	0.008695652
81	CC	0.173913043
82	cd	0.147826087
83 84	ce cf	0.060869565 0.017391304
85	cd	0.060869565
86	ch	0.008695652
87	ci	0.208695652
88	сj	0.043478261
89 90	ck cl	0.052173913
91	cm	0.017391304
92	cn	0.095652174
93	CO	0.113043478
94 95	ср	0.017391304
96	cq cr	0.017391304 0.026086957
97	CS	0.034782609
98	ct	0.017391304
99	cu	0.026086957
100 101	CV	0.026086957 0.026086957
102	CX	0.017391304
103	су	0.043478261

cz 0.008695652

```
105
             da 0.034782609
106
             db 0.017391304
107
             dc 0.060869565
            dd 0.008695652
108
            de 0.008695652
109
            df 0.017391304
110
111
            dq 0.008695652
112
             dh 0.008695652
113
             di 0.017391304
             dj 0.008695652
115
             dk 0.008695652
print(sort_normal_qual2(inpt_datf = datf_test))
0.00869565217391304 \ 0.00869565217391304 \ 0.00869565217391304 \ 0.00869565217391304
              "aa"
                                   "cb"
                                                       "CZ"
                                                                            "de"
0.00869565217391304 \ 0.00869565217391304 \ 0.0173913043478261 \ 0.0173913043478261
              "dh"
                                   "dk"
                                                        "dd"
                                                                             "ca"
0.0173913043478261
                    0.0173913043478261
                                         0.0173913043478261
                                                              0.0173913043478261
              "cl"
                                   "cp"
                                                        "ct"
0.0173913043478261
                    0.0260869565217391
                                          0.0260869565217391
                                                              0.0347826086956522
              "di"
                                   "cr"
                                                        "cv"
0.0347826086956522
                    0.0434782608695652
                                          0.0434782608695652
                                                              0.0521739130434783
              "da"
                                   "bh"
                                                        "cy"
                                                                             "ck"
0.0608695652173913
                    0.0695652173913043
                                          0.0782608695652174
                                                              0.0869565217391304
                                    "f"
              "cg"
                                                        "bt"
                                                                             "ax"
                    0.0956521739130435
                                           0.104347826086957
0.0956521739130435
                                                                0.11304347826087
                "r"
                                   "cn"
                                                        "ba"
                                                                              " w "
  0.11304347826087
                      0.121739130434783
                                          0.147826086956522
                                                                0.165217391304348
               "co"
                                   "bs"
                                                         "n"
                                                                             "bb"
 0.173913043478261
                      0.173913043478261
                                           0.191304347826087
                                                                              0.2
               "ag"
                                   "bu"
                                                        "bk"
                                                                             "bi"
 0.208695652173913
                      0.226086956521739
                                           0.234782608695652
                                                                0.234782608695652
                                                         "b"
              "bw"
                                   "am"
 0.234782608695652
                      0.243478260869565
                                           0.243478260869565
                                                                0.252173913043478
                                    "m"
               "aq"
                                                        "by"
                                                                             "at"
 0.278260869565217
                      0.278260869565217
                                           0.28695652173913
                                                                0.295652173913043
               " k "
                                   "ai"
                                                         " | "
                                                                             "al"
 0.295652173913043
                      0.321739130434783
                                          0.321739130434783
                                                                0.330434782608696
                                    " C "
               "az"
                                                        "af"
                                                                             "ac"
                      0.347826086956522
 0.347826086956522
                                           0.382608695652174
                                                                0.391304347826087
               "i"
                                   "ae"
                                                         "z"
 0.408695652173913
                      0.417391304347826
                                                         0.4
                                                                0.391304347826087
              "bc"
                                    "q"
                                                         "h"
 0.347826086956522
                      0.347826086956522
                                           0.339130434782609
                                                                0.330434782608696
              "aj"
                                   "ab"
                                                         "d"
                                                                              "e"
 0.321739130434783
                      0.31304347826087
                                           0.295652173913043
                                                                0.295652173913043
               "ad"
                                    "s"
                                                        "an"
                                                                              "x"
 0.278260869565217
                      0.278260869565217
                                           0.269565217391304
                                                                0.252173913043478
              "aw"
                                   "ah"
                                                        "bd"
 0.243478260869565
                      0.234782608695652
                                           0.234782608695652
                                                                0.234782608695652
               " y "
                                   "br"
                                                        "ao"
                                                                              "g"
 0.226086956521739
                      0.208695652173913
                                           0.208695652173913
              "bn"
                                   "ci"
                                                        "a"
                                                                             "ay"
 0.173913043478261
                      0.173913043478261
                                           0.165217391304348
                                                                0.147826086956522
              "cc"
                                   "ar"
                                                        "bm"
                                                                             "cd"
```

100 str_remove_untl

```
0.130434782608696
                  0.121739130434783
                                      0.11304347826087
                                                         0.104347826086957
                                                   "ap"
0.0869565217391304
                                                   "bo"
             "be"
                                "bj"
                                                                      "av"
0.0782608695652174 0.0608695652173913
                                                        0.0521739130434783
                                     0.0608695652173913
             "au"
                                "dc"
                                                   "ce"
0.0434782608695652 0.0434782608695652
                                     0.0347826086956522 0.0260869565217391
             "сј"
                                                   "cs"
                                                                      "CW"
0.0260869565217391 0.0260869565217391
                                     0.0173913043478261 0.0173913043478261
             "cu"
                                "ak"
                                                   "df"
                                                                      "CX"
0.0173913043478261 \quad 0.0173913043478261 \quad 0.0173913043478261 \quad 0.0173913043478261
             "cq"
                                "cm"
                                                   "cf"
0.0173913043478261 \ 0.00869565217391304 \ 0.00869565217391304 \ 0.00869565217391304
             "as"
                               "dj"
                                                   "dq"
                                                                      "dd"
0.00869565217391304 0.00869565217391304 0.00869565217391304
             "ch"
                                "b]"
```

```
str_remove_untl str_remove_untl
```

Description

Allow to remove pattern within elements from a vector precisely according to their occurence.

Usage

```
str_remove_untl(
  inpt_v,
  ptrn_rm_v = c(),
  untl = list(c(1)),
  nvr_following_ptrn = "NA"
)
```

Arguments

```
vec <- c("45/56-/98mm", "45/56-/98mm", "45/56-/98-mm//")
print(str_remove_untl(inpt_v=vec, ptrn_rm_v=c("-", "/"), untl=list(c("max"), c(1))))
#[1] "4556/98mm" "4556/98mm" "4556/98mm//"
print(str_remove_untl(inpt_v=vec, ptrn_rm_v=c("-", "/"), untl=list(c("max"), c(1:2))))</pre>
```

sub_mult 101

```
#[1] "455698mm" "455698mm" "455698mm//"
print(str_remove_untl(inpt_v=vec[1], ptrn_rm_v=c("-", "/"), untl=c("max")))
#[1] "455698mm" "455698mm" "455698mm"
```

sub_mult

sub_mult

Description

Performs a sub operation with n patterns and replacements.

Usage

```
sub_mult(inpt_v, pattern_v = c(), replacement_v = c())
```

Arguments

inpt_v is a vector containing all the elements that contains expressions to be substituted
pattern_v is a vector containing all the patterns to be substituted in any elements of inpt_v
replacement_v

is a vector containing the expression that are going to substituate those provided by pattern_v

Examples

successive_diff

successive_diff

Description

Allow to see the difference beteen the suxxessive elements of an numeric vector

Usage

```
successive_diff(inpt_v)
```

Arguments

inpt_v

is the input numeric vector

102 swipr

Examples

```
print(successive_diff(c(1:10)))
[1] 1 1 1 1 1
print(successive_diff(c(1:11, 13, 19)))
[1] 1 1 1 1 2 6
```

swipr swipr

Description

Returns an ordered dataframes according to the elements order given. The input datafram has two columns, one with the ids which can be bonded to multiple elements in the other column.

Usage

```
swipr(inpt_datf, how_to = c(), id_w = 2, id_ids = 1)
```

Arguments

inpt_datf
 is the input dataframe
 how_to
 is a vector containing the elements in the order wanted
 id_w
 is the column number or the column name of the elements
 id_ids
 is the column number or the column name of the ids

Examples

8

9

10

Arm

Arm

Al

G

В

В

```
datf <- data.frame("col1"=c("Af", "Al", "Al", "Al", "Arg", "Arg", "Arg", "Arm", "Arm", "A
        "col2"=c("B", "B", "G", "S", "B", "S", "G", "B", "G", "B"))
print(swipr(inpt_datf=datf, how_to=c("G", "S", "B")))
  coll col2
1
    Αf
          В
2
    Al
3
    Al
          S
4
    Al
          В
5
   Arg
          G
6
          S
   Arg
7
          В
   Arg
```

test_order 103

test_order

same_order

Description

Allow to get if two vectors have their commun elements in the same order, see examples

Usage

```
test_order(inpt_v_from, inpt_v_test)
```

Arguments

is

the vector we want to test if its commun element with inpt_v_from are in the same order

Examples

```
print(test_order(inpt_v_from = c(1:8), inpt_v_test = c(1, 4)))
[1] TRUE
print(test_order(inpt_v_from = c(1:8), inpt_v_test = c(1, 4, 2)))
[1] FALSE
```

to_unique

to_unique

Description

Allow to transform a vector containing elements that have more than 1 occurrence to a vector with only uniques elements.

Usage

```
to_unique(inpt_v, distinct_type = "suffix", distinct_val = "number", sep = "-")
```

Arguments

104 union_all

Examples

```
print(to_unique(inpt_v = c("a", "a", "e", "a", "i", "i"),
                distinct_type = "suffix",
                distinct_val = "number",
                sep = "-"))
[1] "a-1" "a-2" "e" "a-3" "i-1" "i-2"
print(to_unique(inpt_v = c("a", "a", "e", "a", "i", "i"),
                distinct_type = "suffix",
                distinct_val = "letter",
                sep = "-"))
[1] "a-a" "a-b" "e" "a-c" "i-a" "i-b"
print(to_unique(inpt_v = c("a", "a", "e", "a", "i", "i"),
                distinct_type = "prefix",
                distinct_val = "number",
                sep = "/"))
[1] "1/a" "2/a" "e" "3/a" "1/i" "2/i"
print(to_unique(inpt_v = c("a", "a", "e", "a", "i", "i"),
                distinct_type = "prefix",
                distinct_val = "letter",
                sep = "_"))
[1] "a_a" "b_a" "e"  "c_a" "a_i" "b_i"
```

union_all

union_all

Description

Allow to perform a union function to n vectors.

Usage

```
union_all(...)
```

Arguments

... are all the input vectors

```
print(union_all(c(1, 2), c(3, 4), c(1:8)))
[1] 1 2 3 4 5 6 7 8
print(union_all(c(1, 2), c(3, 4), c(7:8)))
[1] 1 2 3 4 7 8
```

union_keep 105

union_keep union_keep

Description

Performs a union operation keeping the number of elements of all input vectors, see examples

Usage

```
union_keep(...)
```

Arguments

... are all the input vectors

Examples

```
print(union_keep(c("a", "ee", "ee"), c("p", "p", "a", "i"), c("a", "a", "z")))
[1] "a" "ee" "ee" "p" "p" "i" "z"
print(union_keep(c("a", "ee", "ee"), c("p", "p", "a", "i")))
[1] "a" "ee" "ee" "p" "p" "i"
```

unique_datf

unique_datf

Description

Returns the input dataframe with the unique columns or rows.

Usage

```
unique_datf(inpt_datf, col = FALSE)
```

Arguments

 $\verb"inpt_datf" is the input data frame"$

col is a pa

is a parameter that specifies if the dataframe returned should have unique columns or rows, defaults to F, so the dataframe returned by default has unique rows

106 unique_ltr_from_v

Examples

```
datf1 <- data.frame(c(1, 2, 1, 3), c("a", "z", "a", "p"))</pre>
print (unique_datf(inpt_datf=datf1))
   c.1..2..1..3. c..a...z...a...p..
#1
               2
#2
               3
#4
datf1 <- data.frame(c(1, 2, 1, 3), c("a", "z", "a", "p"), c(1, 2, 1, 3))</pre>
print(unique_datf(inpt_datf=datf1, col=TRUE))
# cur_v cur_v
#1
#2
      2
     2 2
1 a
3 p
#3
#4
```

```
unique_ltr_from_v
```

Description

Returns the unique characters contained in all the elements from an input vector "inpt_v"

Usage

```
unique_ltr_from_v(inpt_v, keep_v = c("?", "!", ":", "&", ",", ".", letters))
```

Arguments

inpt_v is the input vector containing all the elements

keep_v is the vector containing all the characters that the elements in inpt_v may contain

```
print(unique_ltr_from_v(inpt_v=c("bonjour", "lpoerc", "nonnour", "bonnour", "nonjour", "a
#[1] "b" "o" "n" "j" "u" "r" "l" "p" "e" "c" "a" "v" "i"
```

unique_pos 107

unique_pos

unique_pos

Description

Allow to find the first index of the unique values from a vector.

Usage

```
unique_pos(vec)
```

Arguments

vec

is the input vector

Examples

```
print(unique_pos(vec=c(3, 4, 3, 5, 6)))
#[1] 1 2 4 5
```

unique_total

unique_total

Description

Returns a vector with the total amount of occurences for each element in the input vector. The occurences of each element follow the same order as the unique function does, see examples

Usage

```
unique_total(inpt_v = c())
```

Arguments

inpt_v

is the input vector containing all the elements

```
print(unique_total(inpt_v = c(1:12, 1)))
[1] 2 1 1 1 1 1 1 1 1 1 1

print(unique_total(inpt_v = c(1:12, 1, 11, 11)))
[1] 2 1 1 1 1 1 1 1 1 1 3 1

vec <- c(1:12, 1, 11, 11)

names(vec) <- c(1:15)

print(unique_total(inpt_v = vec))</pre>
```

108 val_replacer

```
1 2 3 4 5 6 7 8 9 10 11 12
2 1 1 1 1 1 1 1 1 1 3 1
```

```
until_stnl until_stnl
```

Description

Maxes a vector to a chosen length. ex: if i want my vector c(1, 2) to be 5 of length this function will return me: c(1, 2, 1, 2, 1)

Usage

```
until_stnl(vec1, goal)
```

Arguments

vec1 is the input vector goal is the length to reach

Examples

```
print(until_stnl(vec1=c(1, 3, 2), goal=56))
# [1] 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2
```

```
val_replacer val_replacer
```

Description

Allow to replace value from dataframe to another one.

Usage

```
val_replacer(datf, val_replaced, val_replacor = TRUE)
```

Arguments

```
datf is the input dataframe
val_replaced is a vector of the value(s) to be replaced
val_replacor is the value that will replace val_replaced
```

vector_replacor 109

Examples

```
vector_replacor
vector_replacor
```

Description

Allow to replace certain values in a vector.

Usage

```
vector_replacor(inpt_v = c(), sus_val = c(), rpl_val = c(), grep_ = FALSE)
```

Arguments

inpt_v	is the input vector
sus_val	is a vector containing all the values that will be replaced
rpl_val	is a vector containing the value of the elements to be replaced (sus_val), so sus_val and rpl_val should be the same size
grep_	is if the elements in sus_val should be equal to the elements to replace in inpt_v or if they just should found in the elements

110 vec_in_datf

Description

Allow to get if a vector is in a dataframe. Returns the row and column of the vector in the dataframe if the vector is contained in the dataframe.

Usage

```
vec_in_datf(
  inpt_datf,
  inpt_vec = c(),
  coeff = 0,
  stop_untl = 1,
  conventional = FALSE
)
```

Arguments

inpt_datf is the input dataframe
inpt_vec is the vector that may be in the input dataframe
coeff is the "slope coefficient" of inpt_vec
stop_untl is the maximum number of the input vector the function returns, if in the dataframe
conventional is if a positive slope coefficient means that the vector goes upward or downward

```
datf1 \leftarrow data.frame(c(1:5), c(5:1), c("a", "z", "z", "z", "a"))
print(datf1)
# c.1.5. c.5.1. c..a...z...z....z.....
#1
             5
       1
#2
        2
              4
             3
#3
        3
                                          Z
             2
#4
       4
                                          Z
#5
        5
print(vec_in_datf(inpt_datf=datf1, inpt_vec=c(5, 4, "z"), coeff=1))
#NULL
print(vec_in_datf(inpt_datf=datf1, inpt_vec=c(5, 2, "z"), coeff=1))
#[1] 5 1
print(vec_in_datf(inpt_datf=datf1, inpt_vec=c(3, "z"), coeff=1))
#[1] 3 2
print(vec_in_datf(inpt_datf=datf1, inpt_vec=c(4, "z"), coeff=-1))
```

vlookup_datf 111

```
#[1] 2 2
print(vec_in_datf(inpt_datf=datf1, inpt_vec=c(2, 3, "z"), coeff=-1))
#[1] 2 1
print(vec_in_datf(inpt_datf=datf1, inpt_vec=c(5, 2, "z"), coeff=-1, conventional=TRUE))
#[1] 5 1
datf1[4, 2] <- 1
print(vec_in_datf(inpt_datf=datf1, inpt_vec=c(1, "z"), coeff=-1, conventional=TRUE, stop_
#[1] 4 2 5 2</pre>
```

vlookup_datf

vlookup_datf

Description

Alow to perform a vlookup on a dataframe

Usage

```
vlookup_datf(datf, v_id, col_id = 1, included_col_id = "yes")
```

Arguments

```
datf is the input dataframe

v_id is a vector containing the ids

col_id is the column that contains the ids (default is equal to 1)

included_col_id

is if the result should return the col_id (default set to yes)
```

```
datf1 <- data.frame(c("az1", "az3", "az4", "az2"), c(1:4), c(4:1))</pre>
print(vlookup_datf(datf=datf1, v_id=c("az1", "az2", "az3", "az4")))
    c..az1....az3....az4....az2.. c.1.4. c.4.1.
#2
                                az1
#4
                                az2
                                         4
                                                 1
#21
                                az3
                                         2
                                                 3
                                         3
                                                 2
#3
                                az4
```

112 wider_datf

Description

Takes a dataframe as an input and the column to split according to a seprator.

Usage

```
wider_datf(inpt_datf, col_to_splt = c(), sep_ = "-")
```

Arguments

```
inpt_datf is the input dataframe
col_to_splt is a vector containing the number or the colnames of the columns to split according to a separator
sep_ is the separator of the elements to split to new columns in the input dataframe
```

```
datf1 \leftarrow data.frame(c(1:5), c("o-y", "hj-yy", "er-y", "k-ll", "ooo-mm"), c(5:1))
datf2 <- data.frame("col1"=c(1:5), "col2"=c("o-y", "hj-yy", "er-y", "k-ll", "ooo-mm"))</pre>
print(wider_datf(inpt_datf=datf1, col_to_splt=c(2), sep_="-"))
        pre_datf X.o. X.y.
              "o" "y" 5
#о-у
        1
#hj-yy 2
               "hj" "yy" 4
              "er" "y" 3
#er-y 3
#k-11 4
#000-mm 5
               "000" "mm" 1
print(wider_datf(inpt_datf=datf2, col_to_splt=c("col2"), sep_="-"))
        pre_datf X.o. X.y.
               "о" "у"
#о-у
       1
               "hj" "yy"
"er" "y"
"k" "ll"
#hj-yy 2
#er-y 3
#k-11 4
               "000" "mm"
#000-mm 5
```

Index

all_stat,4	grep_all2,44
any_join_datf,5	groupr_datf, 45
appndr, 7	gsub_mult, 46
	<i>y</i> — <i>y</i>
better_match, 8	how_normal,47
better_split,9	how_unif,49
better_sub, 9	
better_sub_mult, 10	id_keepr, 50
better_unique, 11	incr_fillr,51
-	infinite_char_seq,52
can_be_num, 12	inner_all,53
closer_ptrn, 13	insert_datf, 53
closer_ptrn_adv, 15	inter_max, 56
clusterizer_v, 16	inter_min, 57
colins_datf, 19	intersect_all, 54
converter_date, 20	intersect_mod, 55
converter_format, 21	is_divisible, 59
cost_and_taxes, 21	isnt_divisible, 58
cut_v, 23	_
cutr_v, 22	join_n_lvl, 59
data_gen, 24	leap_yr,60
data_meshup, 26	left_all, 61
date_addr, 27	letter_to_nb,62
date_converter_reverse, 28	list_files,62
dcr_untl, 29	lst_flatnr,63
dcr_val, 29	
depth_pairs_findr, 30	match_by, 63
diff_datf, 30	multitud, 64
elements_equalifier, 31	nb2_follow, 65
equalizer_v,32	nb_follow,65
extract_normal, 32	nb_to_letter,66
extrt_only_v,38	nest_v, <mark>69</mark>
	nestr_datf1,67
fillr, 39	nestr_datf2,68
fixer_nest_v,40	new_ordered,69
fold_rec,40	$normal_dens, 70$
fold_rec2,41	
format_date,41	occu, 71
	old_to_new_idx,71
geo_min, 42	
get_rec,43	pairs_findr, 72
globe, 43	pairs_findr_merger,72
grep_all,44	pairs_insertr,74

114 INDEX

```
pairs_insertr2,75
paste_datf, 77
pattern_generator, 77
pattern_gettr, 78
pattern_tuning, 79
{\tt power\_to\_char}, 80
pre_to_post_idx, 80
ptrn_switchr, 81
ptrn_twkr,81
r_print, 85
rearangr_v, 82
regex_spe_detect, 83
regroupr, 84
save_untl, 85
see_datf, 86
see_diff, 88
see_diff_all,88
see_file, 89
see_idx, 90
see_inside, 90
see\_mode, 91
sort_date, 92
sort_normal_qual, 93
sort_normal_qual2,96
str_remove_untl, 100
sub_mult, 101
successive_diff, 101
swipr, 102
test_order, 103
to_unique, 103
union_all, 104
union_keep, 105
{\tt unique\_datf}, 105
unique_ltr_from_v, 106
unique_pos, 107
unique_total, 107
until_stnl, 108
val_replacer, 108
vec_in_datf, 110
vector_replacor, 109
vlookup_datf, 111
wider_datf, 112
```