Глобальные градиентные методы оптимизации

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ

Факультет компбютерных наук Прикладная математика и информатика Москва

> Судаков Илья Александрович Февраль 2023

1 Постановка задачи

Многие методы оптимизации (координатный спуск, градиентный спуск, метод сопряженного гадиента и др.) используют так называемый локальный поиск, т.е. поиск минимума одномерной функции вдоль луча в п-мерном евклидовом пространстве. При этом всегда находится локальный минимум. В проекте предлагается исследовать потенциал применения методов глобальной одномерной оптимизации для организации линейного поиска. В каких случаях удастся найти глобальной минимум многомерной функции, используя глобальный линейный поиск в контексте классических градиентных методов.

- 1. Программная реализация методов глобального линейного поиска. 2. Автоматическая проекция функции на направление с использованием пакета sympy. 3. Реализация алгоритма оптимизации многомерной функции. 4. Экспериментальное и теоретическое исследование.
- "1. Алгоритм поиска глобального минимума одномерной функции. 2. Алгоритм оптимизации многомерной функции, основанный на комбинировании классического градиентного подхода и глобального линейного поиска. 3. Программная реализация алгоритма на языке Python. 4. Результаты вычислительных экспериментов. 5. Возможно написание статьи по результатам проекта."

2 Градиентный спуск

Пусть целевая функция имеет вид: $F(X): X \to R$

Задача оптимизации задана в следующем виде: $F(X) \to min$

Основная идея метода заключается в том, чтобы идти в направлении наискорейшего спуска, а это направление задаётся антиградиентом $-\nabla F$

и $X^{[i+1]} = X^{[i]} - \lambda^{[i]} \nabla F(X^{[i]})$ где $\lambda^{[j]}$ задает скорость градиентного спуска и может быть выбрана как

- постоянная, тогда метод может не сходиться
- убывать по какому-то закону
- гарантировать наискорейший спуск

2.1 Алгоритм градиентного спуска

- Задают начальное приближение и точность расчёта: X_0, ε
- Рассчитывают $X^{[i+1]} = X^{[i]} \lambda^{[i]} \nabla F(X^{[i]})$
- Проверяют условие остановки (на усмотрение):

$$- |x^{[j]} - x^{[j+1]}| < \varepsilon$$

$$- |F(x^{[j]}) - F(x^{[j+1]})| < \varepsilon$$

$$-\nabla F(X^{[i]}) < \varepsilon$$

– иначе переходят к пункту 2

Этот алгоритм будет реализован на python

2.2 Метод наискорейшего спуска

В случае наискорейшего спуска $\lambda^{[j]}$ определяется как:

$$\lambda^{[j]} = argminF(X^{[j+1]}) = argminF(X^{[j]} - \lambda \nabla F(X^{[i]}))$$

чтобы вычислить $\lambda^{[j]}$ будем использовать метод золотого сечения

3 Метод золотого сечения

3.1 Описание

Метод золотого сечения — это эффективная реализации троичного поиска, служащего для нахождения минимума/максимума унимодальной функции на отрезке. Лучше тем, что на каждой итерации вычисляется значение в одной, а не двух точках.

Пусть хотим найти минимум на отрезке [a,b], тогда разобьем его на 3 части 2 точками s_1,s_2 , так чтобы при отсекании одного из крайних подотрезков, одна из точек осталась границей подотрезков, а соотношение длин подотрезков оставалось прежним.

$$\begin{split} |[a,s_1]| &= |[s_2,b]| = l_1 \\ |[s_1,s_2]| &= l_2 \\ \text{тогда: } \frac{l_2}{l_1} &= \frac{l_1-l_2}{l_2} \Rightarrow l_1^2 - l_1 \cdot l_2 - l_2^2 = 0 \Rightarrow \frac{l_1}{l_2} = \frac{1+\sqrt{5}}{2} = \phi \end{split}$$

3.2 Алгоритм тернарного поиска

написать ли

3.3 Оценка сложности

Так как на каждой итерации длина рассматриваемого отрезка умножается на $\frac{l_1+l_2}{l_1+l_2+l_2}=\frac{3+\sqrt{5}}{4+2\sqrt{5}}=\phi^{-1}$, то для достижения точности δ потребуется $\frac{\ln(\frac{|[a,b]|}{\delta})}{\ln(\phi)}\approx 2\ln(\frac{|[a,b]|}{\delta})$ итераций.

3.4 Применение

А что если функция не унимодальная, тогда к чему сойдется этот метод? К точке, которая является одним из локальных минимумов функции либо одному из концов, в котором производная неположительная.

4 Глобальная одномерная оптимизация

Алгоритм поиска глобального минимума функции вдоль одного направления будет основываться на интервальном анализе. Перечислим основные определения и теоремы, которые нам пригодятся для посторения алгоритма.

4.1 Определение

Интервалом [a, b] называется следующее множество:

$$[a,b] := \{x \in \mathbb{R} | a \le x \le b\}$$

4.2 Арифметические свойства интервалов

- $\mathbf{x} + \mathbf{y} = \underline{\mathbf{x}} + \mathbf{y}, \overline{\mathbf{x}} + \overline{\mathbf{y}}$
- $\bullet \ \mathbf{x} \mathbf{y} = \underline{\mathbf{x}} \overline{\mathbf{y}}, \overline{\mathbf{x}} \mathbf{y}$
- $\mathbf{x} \cdot \mathbf{y} = min(\underline{\mathbf{x}}\mathbf{y}, \underline{\mathbf{x}}\overline{\mathbf{y}}, \overline{\mathbf{x}}\mathbf{y}, \overline{\mathbf{x}}\overline{\mathbf{y}}), max(\underline{\mathbf{x}}\mathbf{y}, \underline{\mathbf{x}}\overline{\mathbf{y}}, \overline{\mathbf{x}}\mathbf{y}, \overline{\mathbf{x}}\overline{\mathbf{y}})$
- $\mathbf{x} \div \mathbf{y} = \mathbf{x} \cdot [1/\overline{\mathbf{y}}, 1/\mathbf{y}]$, если $0 \notin y$

а как быть с другими функциями

4.3 Основная теорема интервальной арифметики

Пусть $f(x_1,...,x_n)$ - рациональная функция вещественных аргументов $x_1,...,x_n$, и для нее определен результат $\mathbf{F}(\mathbf{X_1},...,\mathbf{X_n})$ подстановки вместо аргументов интервалов их изменения $(X_1,...,X_n) \subset \mathbb{R}^n$ и для $(X_1,...,X_n)$ операциии выполняются по правилам интервальной арифметики. Тогда

$$\{f\{x_1,...,x_n\}|x_1 \in \mathbf{X_1},...,x_n \in \mathbf{X_n}\} \subset \mathbf{F}(\mathbf{X_1},...,\mathbf{X_n})$$

как лучше преобразовать выражение чтобы функция быстрее сходилась

4.4 Утверждение

Пусть $f(x_1,...,x_n)$ - рациональная функция вещественных аргументов $x_1,...,x_n$, и $\mathbf{F}(\mathbf{X_1},...,\mathbf{X_n})$ соответствующая ей интервальная функция, тогда выполняется монотонность по включению. Пусть $\mathbf{X_1},...,\mathbf{X_n}$ и $\mathbf{Y_1},...,\mathbf{Y_n}$, такие что $\mathbf{X_1}\subset\mathbf{Y_1},...,\mathbf{X_n}\subset\mathbf{Y_n}$, тогда

$$f\{X_1, ..., X_n\} \subset f\{Y_1, ..., Y_n\}$$

4.5 Определение

Пусть N>0 натуральное число. Тогда если $\langle S_0,...,S_{n-1}\rangle$ семейство непустых подмножеств множества S, тогда будем называть его разбиением множества S. В частности, объединение $S_0,...,S_{n-1}$ равно S, тогда последовательность $\langle S_0,...,S_{n-1}\rangle$ является покрытием S.

4.6 Теорема

Рассмотрим задачу безусовной глобальной оптимизации. Пусть $\langle B_0,...,B_{n-1}\rangle$ семейство множеств, содержащее глобальный минимум, такое что упорядочено по возрастанию нижней границы $f(B_i)$ для i=0,1,2,...,N-1. Пусть U наименьшая из верхних значений функции для подмножеств $\langle f(B_0),...,f(B_{n-1})\rangle$. Тогда интервал $[lb(f(B_0)),U]$ содержит глобальным минимум μ .

используя это напишем алгоритм поиска глобального минимума вдоль направления

5 Тестирование

5.1 Функция Растригина

5.1.1 График функции при n=2

5.1.2 Формула

$$f(x) = 10n + \sum_{i=1}^{n} (x_i^2 - 10 \cdot \cos(2\pi \cdot x_i))$$

5.1.3 Результаты тестирования

n	точность	метод	время	минимум
5	10-3	Golden ratio	$2.22 \mathrm{\ ms}$	4.974821275706137
	10-3	Moore-Skelboe	178 ms	9.238348694395881e-05
10	10-3	Golden ratio	$4.78 \mathrm{\ ms}$	9.94964255141227
	10-3	Moore-Skelboe	736 ms	0.00018476697390212848
20	10-3	Golden ratio	13.3 ms	19.899285102824635
	10-3	Moore-Skelboe	2.52 s	0.0003695339478184678
30	10-3	Golden ratio	24.1 ms	29.84892765423696
	10-3	Moore-Skelboe	$5.38 \mathrm{\ s}$	0.0005543009217348072
40	10-3	Golden ratio	43.2 ms	39.79857020564907
	10-3	Moore-Skelboe	9.58 s	0.0007390678956511465
50	10-3	Golden ratio	58.8 ms	49.748212757061154
	10-3	Moore-Skelboe	14.9 s	0.0009238348695674858

5.2 Функция Растригина новгородская

5.2.1 График функции при n=2

5.2.2 Формула

$$f(x) = n + \sum_{i=1}^{n} (x_i^2 - \cos(18 \cdot x_i^2))$$

5.2.3 Результаты тестирования

n	точность	метод	время	значение
5	10-3	Golden ratio	1.36 ms	1.542458003137213
	10-3	Moore-Skelboe	151 ms	0.0007449817996270092
10	10-3	Golden ratio	5.18 ms	3.0849160062744287
	10-3	Moore-Skelboe	636 ms	0.0014899635992544624
20	10-3	Golden ratio	20.8 ms	6.16983201254885
	10-3	Moore-Skelboe	1.94 s	0.002979927198509369
30	10-3	Golden ratio	37 ms	9.254748018823253
	10-3	Moore-Skelboe	4.54 s	0.0044698907977642754
40	10-3	Golden ratio	54.2 ms	12.339664025097658
	10-3	Moore-Skelboe	7.79 s	0.005959854397019182
50	10-3	Golden ratio	79.7 ms	15.424580031372061
	10^{-3}	Moore-Skelboe	11.6 s	0.0074498179962740885

5.3 Функция Розенброка

5.3.1 График функции при n=2

5.3.2 Формула

$$f(x) = \sum_{i=1}^{n-1} \left(100 \left(x_{i+1} - x_i^2 \right)^2 + \left(1 - x_i \right)^2 \right)$$

5.3.3 Результаты тестирования

n	точность	метод	время	значение
2	10-3	Golden ratio	1.12 ms	0.16956582889643249
	10-3	Moore-Skelboe	155 ms	0.16036252999621464
3	10-3	Golden ratio	5.95 ms	0.259397310396006
	10-3	Moore-Skelboe	3.99 s	0.11254106932659813
4	10-3	Golden ratio	17 ms	0.28064340055794645
	10-3	Moore-Skelboe	8.75 s	0.11734786681147619
5	10-3	Golden ratio	27.3 ms	0.2830939134564683
	10-3	Moore-Skelboe	15.6 s	0.11851270446807871
6	10-3	Golden ratio	40.4 ms	0.29047947563212634
	10-3	Moore-Skelboe	24.5 s	0.11879389607067276
7	10-3	Golden ratio	49.2 ms	0.29064024190256904
	10-3	Moore-Skelboe	$35.6 \mathrm{\ s}$	0.1136410373197746
8	10-3	Golden ratio	18.5 ms	0.33244082803407593
	10-3	Moore-Skelboe	41.7 s	0.14015453688727936

5.4 Функция Экли

5.4.1 График функции при n=2

5.4.2 Формула

$$f(x) = 20 + e - 20e^{-0.2\sqrt{\frac{1}{n}\sum_{i=1}^{n}x_i^2}} - e^{\frac{1}{n}\sum_{i=1}^{n}\cos(2\pi \cdot x_i)}$$

5.4.3 Результаты тестирования

n	точность	метод	время	значение
5	10-3	Golden ratio	2.41 ms	-4.440892098500626e-16
	10-3	Moore-Skelboe	553 ms	0.0012256630393632229
20	10-3	Golden ratio	9.06 ms	3.5744545080266543
	10-3	Moore-Skelboe	1.35 s	0.0012256630393632229
20	10-3	Golden ratio	30.6 ms	3.5744545080266543
	10^{-3}	Moore-Skelboe	3.41 s	0.0012256630393632229
30	10-3	Golden ratio	58.5 ms	3.574454508026655
	10^{-3}	Moore-Skelboe	$6.23 \; s$	0.0012256630393645551
40	10-3	Golden ratio	84.1 ms	3.574454508026654
	10^{-3}	Moore-Skelboe	10.6 s	0.0012256630393632229
50	10-3	Golden ratio	124 ms	3.5744545080266525
	10^{-3}	Moore-Skelboe	14.9 s	0.0012256630393618906

5.5 Функция Гриванка

5.5.1 График функции при n=2

5.5.2 Формула

$$f(x) = \sum_{i=1}^{n} \frac{x_i^2}{4000} - \prod_{i=1}^{n} \cos\left(\frac{x_i}{\sqrt{i}}\right) + 1$$

5.5.3 Результаты тестирования

n	точность	метод	время	значение
5	10-3	Golden ratio	2.41 ms	0.009864698515380743
	10-3	Moore-Skelboe	183 ms	1.0644240466817223e-07
10	10-3	Golden ratio	$6.05~\mathrm{ms}$	0.009864698515380743
	10-3	Moore-Skelboe	739 ms	1.3662353537391425e-07
20	10-3	Golden ratio	21.4 ms	0.009864698515380743
	10-3	Moore-Skelboe	2.44 s	1.6799845647952338e-07
30	10-3	Golden ratio	40.2 ms	0.009864698515380743
	10-3	Moore-Skelboe	5.16 s	1.867295605917363e-07
40	10-3	Golden ratio	59.3 ms	0.009864698515380743
	10-3	Moore-Skelboe	9.09 s	2.0016648982768004e-07
50	10-3	Golden ratio	84.4 ms	0.009864698515380743
	10-3	Moore-Skelboe	14 s	2.1067470723501458e-07

5.6 Функция Швефеля

5.6.1 График функции при n=2

5.6.2 Формула

$$f(x) = 418.9829n - \sum_{i=1}^{n} \left(x_i \sin\left(\sqrt{|x_i|}\right) \right)$$

5.6.3 Результаты тестирования

n	точность	метод	время	значение
2	10-3	Golden ratio	721 µs	236.8766946858181
	10-3	Moore-Skelboe	4.98 s	2.5455285594944144e-05
3	10-3	Golden ratio	800 μs	355.3150420287272
	10-3	Moore-Skelboe	9.41 s	3.8182928392416216e-05
4	10-3	Golden ratio	1.44 ms	473.7533893716363
	10-3	Moore-Skelboe	15 s	5.091057118988829e-05
5	10-3	Golden ratio	1.4 ms	592.1917367145454
	10-3	Moore-Skelboe	22 s	6.363821398736036e-05
6	10-3	Golden ratio	2.19 ms	710.6300840574543
	10-3	Moore-Skelboe	31.1 s	7.636585655745876e-05
7	10-3	Golden ratio	1.88 ms	829.0684314003631
	10-3	Moore-Skelboe	40 s	8.909349912755715e-05
8	10-3	Golden ratio	4.92 ms	947.5067787432718
	10-3	Moore-Skelboe	52 s	0.00010182114169765555

Список литературы

- Сергиенко А. Б. Тестовые функции для глобальной оптимизации.
- Пантелеев, Летова: Методы оптимизации в примерах и задачах.
- Ratschek, Rokne. New Computer Methods for Global Optimization.