

23.10.26.

다변량 스팀 사용 이상 감지 및 영향 변수의 원인 분석

서울과학기술대학교 산업공학과/데이터사이언스학과

이성호 <u>sean0310@.seoultech.ac.kr</u>

배소희 <u>shbae2819@g.seoultech.ac.kr</u>

심재웅 jaewoong@seoultech.ac.kr

Contents

- 데이터
 - 데이터 이해
 - 실험 데이터 전처리
- 모델링
 - 머신러닝 모델 (Linear regression, Random forest)
 - 딥러닝 모델 (1D CNN, LSTM)
- 향후 계획

- 이용 데이터
 - df_ext(2023-04-01~2023-08-31,51250385)_2023-10-17 10-58-30 -seoultec (제품 1종에 대한 한달간 센서 데이터)
 - 제품 코드: 51230385
 - 기간: 2023-04-05 14:59:00 ~ 2023-08-27 03:00:00 (분)

실험 데이터 전처리

■ 이용 데이터 전처리

- output : ei와 중복이기 때문에 제거

- sstable : 동일값(1)이기 때문에 제거

- jr : 생산품의 번호 제거

- shift, wclass : 카테고리 변수로 제거

- stop: 정상가동으로 동일값(0)이기 때문에 제거

Data split

- Stop 및 다른 이유로 인해 끊긴 시간대 지점들을 고려하여 다음과 같은 비율로 분할

- Train: Test = 0.8: 0.2 (딥러닝 모델의 경우 train set의 일부를 early stopping에 사용)

- 예측 모델 구성
 - Regression 모델
 - input(X): 과거 7분 동안의 38개 sensor값
 - 끊긴 시간대로 인해 잘려서 기록된 데이터의 최소 크기가 7(2023-04-13 02:53:00 ~ 02:59:00)이기 때문
 - output(y) : ei값

date	날짜
tag	Sensor (38개)
output	제품 생산량 계산값(현재)
ei	원단위 계산값(=스팀 사용량/output)
sstabl e	원단위 상태 분석값 0 : 좋음 1 : 적당 2 : 나쁜 -
jr	단위 공정값 / 제품 생산 주기 (생산품 번호)
shift	작업팀 구분값
wclass	작업팀 구분값
stop	공정 분석값 0 : 가동 1 : 중지·이벤트·발생 2 : 중지·복구

Contents

- 데이터
 - 데이터 이해
 - 실험 데이터 전처리
- 모델링
 - 머신러닝 모델 (Linear regression, Random forest)
 - 딥러닝 모델 (1D CNN, LSTM)
- 향후 계획

머신 러닝 모델 (Linear regression)

■ 예측 성능 지표

- R2: -1112.9390

- MSE: 4.0667

■ 변수 중요도 해석

* 모델 예측 성능이 좋지 않아 변수 별 중요도를 신뢰하기 어려움

머신 러닝 모델 (Random forest)

■ 예측 성능 지표

- R2: 0.9644

- MSE: 0.0001301

■ 변수 중요도 해석

None

딥러닝 모델 (1D CNN)

■ 모델 구조

- 기존 CNN모델에서 input 및 kernel의 차원을 축소한 모델
- 시간에 따른 연속적인 패턴이나 특성을 식별하는데 유용
- 3개의 1D Conv layer(64-128-256 / kernel=3) + 3개의 linear layer (256-128-64-1)

Experiment setting

– Epoch : 200

- optimizer : Adam(Ir=1e-4)

Result

- R2: 0.6970

- MSE: 0.0011

- MAE: 0.0242

딥러닝 모델 (LSTM)

- 모델 구조
 - RNN의 한 종류로 시퀀스 데이터 학습에 효과적
 - LSTM layer(hidden=256, layer=6) + attention layer (모델 해석을 위함)

- Experiment setting
 - Epoch : 200
 - optimizer : Adam(lr=1e-4)

Result

- R2: 0.9429

- MSE: 0.0002

- MAE: 0.0113

<Attention map>

과거 시점이 아닌 동일 시점의 영향력이 가장 큼

tg02 vs ei

Contents

- 데이터
 - 데이터 이해
 - 실험 데이터 전처리
- 모델링
 - 머신러닝 모델 (Linear regression, Random forest)
 - 딥러닝 모델 (1D CNN, LSTM)
- 향후 계획

향후 계획 및 논의

- 추가 방법론 구축/적용
 - 추가적인 딥러닝 모델 구축 TCN (Temporal Convolutional Network) 등
 - 딥러닝 모델에 대한 해석 방법 개선 Saliency Map, LRP, SHAP 등
- 동 시점을 제외한 과거 시점의 센서 데이터만을 활용한 모델링
- '이상'을 정의하는 방법
 - Classification을 활용한 접근 용이

- 의미 상 변수 선택
 - 각 센서의 의미 이해
 - 의미 상 중복 변수 제거 / 주요 변수를 선택

감사합니다