

SEQUENCE LISTING

<110> Corvas International , Inc.
 Vlasuk, George Phillip
 Stanssens, Patrick Eric Hugo
 Messens, Joris Hila Lieven
 Lauwereys, Marc Josef
 Laroche, Yves Rene
 Jespers, Laurent Stephane
 Gansemans, Yannick Georges Jozef
 Moyle, Matthew
 Bergum, Peter W.

RECEIVED

APR 1 5 2002

TECH CENTER 1600/2900

<120> NEMATODE-EXTRACTED SERINE PROTEASE INHIBITORS AND ANTICOAGULANT PROTEIN

- <130> 018813/0272487
- <140> 09/498,556
- <141> 2000-04/02
- <150> 08/809,455
- <151> 1997-04-17
- <150> PCT/US95/13231
- <151> 1995-10-17
- <150> 08/486,399
- <151> 1995-06-05
- <150> 08/486,397
- <151> 1995-06-05
- <150> 08/465,380
- <151> 1995-06-05
- <150> 08/461,965
- <151> 1995-06-05
- <150> 08/326,110
- <151> 1994-10-18
- <160> 356
- <170> PatentIn version 3.1
- <210> 1
- <211> 234
- <212> DNA
- <213>
- <400> 1

AAGGCATACC CGGAGTGTGG TGAGAATGAA TGGCTCGACG ACTGTGGAAC TCAGAAGCCA

60

TGCGAGGCCA AGTGCAATGA GGAACCCCCT GAGGAGGAAG ATCCGATATG CCGCTCACGT

120

GGTTGTTTAT TACCTCCTC	GC TTGCGTATGC AA	AGACGGAT TO	CTACAGAGA CACGGTGAT	C 180
GGCGACTGTG TTAGGGAAC	ga agaatgcgac ca	ACATGAGA T	YATACATGT CTGA	234
<210> 2 <211> 228 <212> DNA <213>				
<400> 2				
AAGGCATACC CGGAGTGTG	GG TGAGAATGAA TG	GCTCGACG TO	CTGTGGAAC TAAGAAGCC	'A 60
TGCGAGGCCA AGTGCAGTG	ga ggaagaggag ga	AGATCCGA TA	ATGCCGATC ATTTTCTTG	T 120
CCGGGTCCCG CTGCTTGCG	ET ATGCGAAGAC GG	ATT~TACA GA	AGACACGGT GATCGGCGA	.C 180
TGTGTTAAGG AAGAAGAAT	G CGACCAACAT GA	GATTATAC AT	IGTCTGA	228
<210> 3 <211> 461 <212> DNA <213> Ancyclos <220> <221> CDS <222> (22)(<220> <221> misc_fe <223> <400> 3	(321)			
GAATTCCGCT ACTACTCAA			CT ATC GCT ATA ATG la Ile Ala Ile Met 10	51
TTT CTC CTG GTA TCA Phe Leu Leu Val Ser 15	TTA TGC AGC GCA	AGA ACA GI	IG AGO AAG GCA TAC	99
CCG GAG TGT GGT GAG Pro Glu Cys Gly Glu 30		GAC GAC TO	GT GGA ACT CAG AAG	147
CCA TGC GAG OCC AAG Pro Cys Glu Ala Lys 45	TGC RAT GAG GRA		AG GAG GAA OAT CCG	195
ATA TGC CGC TCA CGT Ile Cys Arg Ser Arg 60	GOT TGT TTA TTA		CT TGC GTA TGC AAA la Cys Val Cys Lys	243
GAC OGA TTC TAC AGA Asp Gly Phe Tyr Arg 75		GGC GAC TO	OT GTT AGO GAA GAA	291
GAA TOC GAC CAR CAT Giu Cys Asp Gin His 95			CGAGAAA GCAACAATAA	CC 344

AAAGGTTCCA ACTCTCGCTC TGCAAAATCG CTAGTTGOAT GTCTCTTTTG CGTCCGAATA	404
GTTTTAGTTG ATGTTAAGTA AGAACTCCTG CTGGAGAGAA TAAAGCTTTC CAACTCC	461
<210> 4	
<211> 77	
<212> PRT	
<213> Ascyclostoma caninum	
<400> 4	
Lys Ala Tyr Pro Glu Cys Gly Glu Asn Glu Trp Leu Asp Asp	
1 5 10	
Cys Gly Thr Gln Lys Pro Cys Glu Ala Lys Cys Asn Glu Glu	
Pro Pro Glu Glu Glu Asp Pro Ile Cys Arg Ser Arg Gly Cys	
30 35 40	
Leu Leu Pro Pro Ala Cys Val Cys Lys Asp Gly Phe Tyr Arg	
45 50 55 Asp Thr Val Ile Gly Asp Cys Val Arg Glu Glu Glu Cys Asp	
60 65 70	
Gln His Glu Ile Ile His Val	
75	
<210> 5	
<211> 455 <212> DNA	
<212> DNA <213> Ancyclostoma caninum	
•	
<220>	
<221> CDS <222> (22)(315)	
<220>	
<221> misc_feature <223>	
<400> 5	
GAATTCCGCT ACTACTCAAC A ATG AAG ATG CTT TAC GCT ATC GCT ATA ATG	51
Met Lys Met Leu Tyr Ala Ile Ala Ile Met	
1 5 10 TTT CTC CTG GTG TCA TTA TGC AGC ACA AGA ACA GTG AGG AAG GCA TAC	99
Phe Leu Leu Val Ser Leu Cys Ser Thr Arg Thr Val Arg Lys Ala Tyr	99
15 20 25	
CCG GAG TGT GGT GAG AAT GAA TGG CTC GAC GTC TGT GGA ACT AAG AAG	147
Pro Glu Cys Gly Glu Asn Glu Trp Leu Asp Val Cys Gly Thr Lys Lys 30 35 40	
CCA TGC GAG GCC AAG TGC AGT GAG GAA GAG GAG GAA GAT CCG ATA TGC	195
Pro Cys Glu Ala Lys Cys Ser Glu Glu Glu Glu Glu Asp Pro Ile Cys	
45 50 55 CGA TCA TTT TCT TGT CCG GGT CCC GCT GCT TGC GTA TGC GAA GAC GGA	243

Arg	Ser 60	Phe	Ser	Cys	Pro	Gly 65	Pro	Ala	Ala	Cys	Val 70	Cys	Glu	Asp	Gly			
	TAC Tyr					ATC					AAG						2	291
GAC	CAA Gin				ATT			TGA	ACGA(AGCA(GTRA'	ra a	CCAA	AGGTT	С	-	346
CAA	CTTT	CGC :	TCTA(CAAA	AT C	GCTA	GTTG	G AT	rtct(CCTT	TGC	GTGC	GAA '	TAGT'	TTTAG'	T	4	406
TGA'	TATTA	AAG :	TAAAI	ACCT(CC TO	GTTGA	AAGA	G AA	A AA1	GCTT	TCC	AACT	ГC				4	455
	<. <.		PR		ostor	ma ca	anin	,/ um/	·									
	< 4	100>	6					÷										
Lys 1	Ala	Tyr	Pro	Glu 5	Cys	Gly	Glʻu	Asn	Glu 10	Trp	Leu	Asp	Val	Cys 15	Gly			
	Lys	Lys	Pro 20	_	Glu	Ala	Lys	Cys 25		Glu	Glu	Glu	Glu 30		Asp			
Pro	Ile	Cys 35		Ser	Phe	Ser	Cys 40		Gly	Pro	Ala	Ala 45		Val	Cys			
Glu	Asp 50	Gly	Phe	Tyr	Arg	Asp 55	Thr	Val	Ile	Gly	Asp 60	Cys	Val	Lys	Glu			
Glu 65	Glu	Cys	Asp	Gln	His 70	Glu	Ile	Ile	His	Val 75								
	<: <: <:	210> 211> 212> 213>	7 81 PR: Asc	_	ostor	ma ca	aninu	ım										
Arg	Thr	Val	Arg	Lys	Ala	Tyr	Pro	Glu	Cys	Gly	Glu	Asn	Glu	Trp	Leu			
1 Asp	Asp	Cys	_	5 Thr	Gln	Lys	Pro		10 Glu	Ala	Lys	Cys		15 Glu	Glu			
Pro	Pro	Glu 35	20 Glu	Glu	Asp	Pro	Ile 40	25 Cys	Arg	Ser	Arg	Gly 45	30 Cys	Leu	Leu			
Pro	Pro 50		Cys	Val	Cys	Lys 55		Gly	Phe	Tyr	Arg 60		Thr	Val	Ile			
Gly 65 Val	Asp	Cys	Val	Arg	Glu 70		Glu	Cys	Asp	Gln 75		Glu	Ile	Ile	His 80			

<210> 8 <211> 79 <212> PRT <213> Ascyclostoma caninum <400> 8 Arg Thr Val Arg Lys Ala Tyr Pro Glu Cys Gly Glu Asn Glu Trp Leu 1.0 Asp Val Cys Gly Thr Lys Lys Pro Cys Glu Ala Lys Cys Ser Glu Glu 25 Glu Glu Glu Asp Pro Ile Cys Arg Ser Phe Ser Cys Pro Gly Pro Ala 40 Ala Cys Val Cys Glu Asp Gly Phe Tyr Arg Asp Thr Val Ile Gly Asp Cys Val Lys Glu Glu Glu Cys Asp Gln His Glu Ile IIe His VaL <210> 9 <211> 711 <212> DNA <213> Ancyclostoma ceylanicum <220> <221> CDS <222> (21)..(590) <220> <221> misc feature <223> <400> 9 GAATTCACTA TTATCCAACA ATG GCG GTG CTT TAT TCA GTA GCA ATA GCG 50 Met Ala Val Leu Tyr Ser Val Ala Ile Ala 1 5 TTA CTA CTG GTA TCA CAA TGC AGT GGG AAA CCG AAC AAT GTG ATG ACT 98 Leu Leu Val Ser Gln Cys Ser Gly Lys Pro Asn Asn Val Met Thr 20 AAC GCT TGT GGT CTT AAT GAA TAT TTC GCT GAG TGT GGC AAT ATG AAG 146 Asn Ala Cys Gly Leu Asn Glu Tyr Phe Ala Glu Cys Gly Asn Met Lys 35 GAA TGC GAG CAC AGA TGC AAT GAG GAA AAT GAG GAA AGG GAC GAG 194 Glu Cys Glu His Arg Cys Asn Glu Glu Glu Asn Glu Glu Arg Asp Glu 45 50 GAA AGA ATA ACG GCA TGC CTC ATC CGT GTG TGT TTC CGT CCT GGT GCT 242 Glu Arg Ile Thr Ala Cyc Leu Ile Arg Val Cys Phe Arg Pro Gly Ala 65 TGC GTA TGC AAA GAC GGA TTC TAT AGA AAC AGA ACA GGC AGC TGT GTG 290 Cys Val Cys Lys Asp Gly Phe Tyr Arg Asn Arg Thr Gly Ser Cys Val 75 80 85 GAA GAA GAT GAC TGC GAG TAC GAG AAT ATG GAG TTC ATT ACT TTT GCA 338 Gln Glu Asp Asp Cys Glu Tyr Glu Asn Met Glu Phe Ile Thr Phe Ala 100 95 CCA GAA GTA CCG ATA TGT GGT TCC AAC GAA AGG TAC TCC GAC TGC GGC 386 Pro GLn Val Pro Ile Cys Gly Ser Asn Glu Arg Tyr Ser Asp Cys Gly 115

						CGC Arg											434
GGA	GAT	GAG	GCA	TGC	CGC	TCA	CAT	GTT	TGT	GAA	CGT	CCT	GGT	GCC	TGT		482
						Ser 145											
GTA		GAA	GAC	GGG	TTC	TAC	AGA	AAC	AAA	AAA	GGT	AGC	TGT	GTG	GAA		530
						Tyr											
155	1		-	-	160	-			1	165	4		- 1		170		
AGC	GAT	GAC	TGC	GAA	TAC	GAT	AAT	ATG	GAT	TTC	ATC	ACT	TTT	GCA	CCA		578
						Asp											
GAA	ACC	TCA	CGA		CCAAZ	AGA T	гасти	ACCTO		TACC	CAAC	~ TC(CGCTC		GAG	GTT	636
	Thr											. 10.		J	0.10		
GAT:	rcaci	raa (CTTGO	CATC	TC AF	RCATT	TTTT	r TTC	GTGA:	rgct	GTG	CATC	rga (GCTTI	RACC:	rg	696
ATA	AAGCC	CTA :	rggt(3													711
		210>	10														
		211>	425	5													
		212>	DNA														
					st oma	a cey	/lan-	i cum									
	-		11110]	70101	o c O i ii c		Lan.	Leam									
	<2	220>															
	<2	221>	CDS	3													
	< 2	222>	(1)	(2	291)												
		220>		_													
		221>	mis	sc_fe	eatur	ce											
	< -	123>															
	< 4	< 0.04	10														
ח א איי	nmaaa	חות וייני	מב. בים	ית אנ	70 O	nci mir		דור אר	יייי יייע	אות אות		7.7 mr	מעים וחים	pa ar	rc at	T.C.	51
GAA	11000		et Ar				r Le				le Tı				eu II		21
TCG	CAR			GGA	Z Z Z	GGA		CCG	מממ	ጥርጥ			ΣPT	CZZ	A C A		99
						Ala											, , ,
15	0111	0,0			20	•••			272	25				J	30		
	GAO	GTG	TGT	GGC		CTG	AAG	GAG	TGC		CTC	AAG	TGC	GAT			147
						Leu											
			-	35	- /		•		40			-	1	45			
GAC	CCT	AAG	ATA	TGC	TCT	CGT	GCA	TGT	ATT	CGT	CCC	CCT	GCT	TGC	GTA		195
Asp	Pro	Lys	Ile	Cys	Ser	Arg	Ala	Cys	Ile	Arg	Pro	Pro	Ala	Cys	Val		
			50					55					60				
						AGA											243
Cys	Asp	_	Gly	Phe	Tyr	Arg	_	Lys	Tyr	Gly	Phe	_	Val	Gln	Gln		
		65					70					75					
															AAA	TG	293
Asp		Cys	Asn	Asp	Met	Glu	Ile	Ile	Thr	Phe		Pro	Gln	Thr	Lys		
	80					85					90						
ΔΤ(27	المراجعة	AG C	حداششاء ح	ים ררי י	רידי ידיר	יגיד עודה.	יים מיי	י יייריי	<u>የ</u> ሞረግአ ረ	יידיביר	ттся	יייי איייי אריא כיל	تربت د	ריטהיאל	2D ("D 7	у TT	353

TTAGAAGTTC TGCTTGACTT TGTCTATTTG AAATTGTTCA CACTARTGGG GGAAGTAAAG	413
CATTTCACG AC	425
<210> 11 <211> 471 <212> DNA <213> Ancyclostoma ceylanicum	
<220>	
<221> CDS	
<222> (23)(237)	
<220>	
<221> misc_feature	
<223>	
<400> 11	
GAATTCCGCT ACATTTTCAA CA ATG TCG ACG CTT TAT GTT ATC GCA ATA TGT	52
Met Ser Thr Len Tyr Val Ile Ala Ile Cys	52
1 5 10	
TTG CTG CTT GTT TCG CAA TGC AAT GGA AGA ACG GTG AAG AAG TGT GGC	100
Leu Leu Val Ser Gln Cys Asn Gly Arg Thr Val Lys Lys Cys Gly 15 20 25	
AAG AAT GAA AGA TAC GAC GAC TGT GGC AAT CGA AAG GAC TGC GAG ACC	148
Lys Asn Glu Arg Tyr Asp Asp Cys Gly Asn Ala Lys Asp Cys Glu Thr	
30 35 40	
AAG TGC GGT GAA GAG GAA AAG GTG TGC CGT TCG CGT GAG TGT ACT AGT	196
Lys Cys Gly Glu Glu Lys Val Cys Arg Ser Arg Glu Cys Thr Ser 45 50 55	
CCT GGT GCC TGC GTA TGC GAA CAA GGA TTC TAC AGA GAT CCG GCT GGC	244
Pro Gly Ala Cys Val Cys Glu Glu Gly Phe Tyr Arg Asp Pro Ala Gly	
60 65 70 GAC TGT GTC ACT GAT GAA GAA TGT GAT GAA TGG AAC AAT ATG GAG ATC	292
Asp Cys Val Thr Asp Glu Glu Cys Asp Glu Trp Asn Asn Met Glu Ile	- 72
75 80 85 90	
ATT ACT ATG CCA AAA CAG TAGTGCGAAG TTCCCTTCTT TCTCCAAATC TGCTCCGTG Ile Thr Met Pro Lys Gln 95	349
CTCAATTATC ACACACCTCC ACTAGTTAAG ATTGACTGAC TCTCTTGCAT TGTAGTATTT	409
CICARITATE ACACACCICE ACIAGITAAG ATIGACIGAE TETETIGEAT IGIAGIATIT	400
TCGCTTGACT CTGTGCATTT AAGCATGAGA TACTACTAGG GAGAATAAAA ATTACTAACT	469
AC	471
<210> 12	
<211> 396	
<212> DNA	
<213> Ancyclostoma duodenale	
<220>	
<221> CDS	
<222> (10)(237)	

<220>	
<221> misc_feature <223>	
<400> 12	
GAATTCCGG AAA TGT CCT ACC GAT GAA TGG TTC GAT TGG TGT GGA ACT TAC	51
Lys Cys Pro Thr Asp Glu Trp Phe Asp Trp Cys Gly Thr Tyr	
1 5 10	
AAG CAT TGC GAA CTC AAG TGC GAT AGG GAG CTA ACT GAG AAA GAA GAG	99
Lys His Cys Glu Leu Lys Cys Asp Arg Glu Leu Thr Glu Lys Glu Glu	
15 20 25 30	7 4 5
CAG GCA TGT CTC TCA CGT GTT TGT GAG AAG TCC GCT TGC GTA TGC AAT Gln Ala Cys Leu Ser Arg Val Cys Glu Lys Ser Ala Cys Val Cys Asn	147
35 40 45	
GAC GGA TTA TAC AGA GAC AAG TTT GGC AAC TGT GTT GAA AAA GAC GAA	195
Asp Gly Leu Tyr Arg Asp Lys Phe Gly Asn Cys Val Glu Lys Asp Glu	
50 55 60 TGC AAC GAT ATG GAG ATT ATT ACT TTT GCA CCA GAA ACC AAA TAATGGCCTA	247
Cys Asn Asp Met Glu Ile Ile Thr Phe Ala Pro Glu Thr Lys	24
65 70 75	
AGGTTCCAAA CCTTGCTACA CACCGTCAGT GCTTTACTGT TTCCTCTACG TGTTAGTAGT	307
TTTGCTTGAC TCTGTGTATT TAAGCATTGT CTACTAATGG GCAAAGTAAA GCATTGTAAG	367
TITUCTIONS TOTOTTATI TANGCATTUT CTACTANTOU UCAAAUTAAA UCATTUTAAU	507
GACATAATAA TGAGTAAACC TTCTGATTT	396
<210> 13 <211> 688	
<211> 000 <212> DNA	
<213> Ancyclostoma ceylanicum	
<220>	
<221> CDS <222> (21)(560)	
<220>	
<221> misc_feature	
<223>	
<400> 13	
GAATTCCGGG CGGCAGAAAG ATG CGA ATG CTC TAC CTT GTT CCT ATC TGG Mot Arg Mot Low Tyr Low Vol Bro Ilo Trp	50
Met Arg Met Leu Tyr Leu Val Pro Ile Trp 1 5 10	
TTG CTG CTC ATT TCG CTA TGC AGT GGA AAA GCT GCG AAG AAA TGT GGT	98
Leu Leu Leu Ile Ser Leu Cys Ser Gly Lys Ala Ala Lys Lys Cys Gly	
15 20 25	
CTC AAT GAA AGG CTG GAC TGT GGC AAT CTG AAG CAA TGC GAG CCC AAG Leu Asn Glu Arg Leu Asp Cys Gly Asn Leu Lys Gln Cys Glu Pro Lys	146
30 35 40	
TGC AGC GAC TTG GAA AGT GAG GAG TAT GAG GAG GAA GAT GAG TCG AAA	194
Cys Ser Asp Leu Glu Ser Glu Glu Tyr Glu Glu Glu Asp Glu Ser Lys	
4 5 50 55	

	CGA Arg 60															242
	TAC Tyr					GGC					AAA					290
GAC	GAC Asp				ATT					CCA					GGT	338
	GAT Asp								Asn					Glu		386
	TGC Cys		GAG					AAA Lys	AAT				TGC	CTC		434
Arg	GCT Ala 140	TGT Cys	Thr	Gly	Arg	Ala 145	TGC Cys	GTA Val	Cys	Lys	Asp 150	GGA Gly	Leu	Tyr	Arg	482
	GAC Asp										Cys					
	ATC Ile				Pro					TGA	CCAGA	AGG (CTCCA	AACTO	CT CGCT	584
ACA	CAAC	GTC A	AGGG(GGCC	CCTC	r GC(ragt	AGT	TTTG(CTT (GACT(CTGCTT	644
	<1 <1 <1 <1 <1 <1 <1 <1	210 > 211 > 212 > 213 > 220 > 221 > 222 > 223 > 233 >	CDS (49 mis	A igmos	(276)		poly	/gyrı	ıs							
GAA'	rtcc	GCG (CACCI	rgag <i>i</i>	AG GI	rgago	CTACC	G CAA	AGTCT	TTCG	CTGC	GTACA		t Ile	C CGA e Arg	57
	CTC Leu 5												GCG	AAG		105
ACC Thr 20	TGT									TGC						153
	Cys	Ory		11011	25	31 a	4		014	30	O ± y	1111	110	CID	35	
	AAG Lys	TGC	TAA	GAA	25 CCG	ATG	CCA	GAC	ATC	30 TGT	ACT	CTG	AAC	TGC	35 ATC	201

```
55
                                60
                                                    65
TGC GTC GCC CCC GGA CCA GGC TGT AAA TAGTTCTCCA CCTGCCCTTT CGTTGGAA
Cys Val Ala Pro Gly Pro Gly Cys Lys
      <210> 15
      <211> 432
      <212> DNA
      <213> Heligmosomoides polygyrus
      <220>
      <221> CDS
      <222> (40)..(393)
      <220>
      <221> misc feature
      <223>
      <400> 15
AAGCTTTGCT AACATACTGC GTAATAAGGA GTCTTAATC ATG CCA GTT CTT TTG
                                                                           54
                                          Met Pro Val Len Leu
GGT ATT CCG TTA TTG CGT TTC CTC GGT TTC CTT CTG GTA ACT TTG
                                                                          102
Gly Ile Pro Leu Leu Arg Phe Leu Gly Phe Leu Val Thr Leu
               10
                                  15
TTC GGC TAT CTG CTT ACT TTC CTT AAA AAG GGC TTC GGT AAG ATA GCT
                                                                          150
Phe Gly Tyr Leu Leu Thr Phe Leu Lys Lys Gly Phe Gly Lys Ile Ala
            25
                               30
                                                   35
ATT GCT ATT TCA TTG TTT CTT GCT CTT ATT ATT GGG CTT AAC TCA ATT
                                                                          198
Ile Ala Ile Ser Leu Phe Leu Ala Leu Ile Ile Gly Leu Asn Ser Ile
                           45
CTT GTG GGT TAT CTC TCT GAT ATT AGC GCA CAA TTA CCC TCT GAT TTT
                                                                          246
Leu Val Gly Tyr Leu Ser Asp Ile Ser Ala Gln Leu Pro Ser Asp Phe
                       60
GTT CAG GGC GTT CAG TTA ATT CTC CCG TCT AAT GCG CTT CCC TGT TTT
                                                                          294
Val Gln Gly Val Gln Leu Ile Leu Pro Ser Asn Ala Leu Pro Cys Phe
                   75
                                       80
TAT GTT ATT CTC TCT GTA AAG GCT GCT ATT TTC ATT TTT GAC GTT AAA
                                                                          342
Tyr Val Ile Leu Ser Val Lys Ala Ala Ile Phe Ile Phe Asp Val Lys
                                    95
CAA AAA ATC GTT TCT TAT TTG GAT TGG GAT AAA GGT GGA GGC TCA GGC
                                                                          390
Gln Lys Ile Val Ser Tyr Leu Asp Trp Asp Lys Gly Gly Ser Gly
           105
                               110
GGA GGCCAAGTCG GCCATCCCAT ATCACGCGGC CGCGGATCC
                                                                          432
Gly
      <210> 16
      <211> 433
      <212> DNA
     <213> Heligmosomoides polygyrus
     <220>
      <221> CDS
      <222> (40)..(393)
```

		221>	mis	sc_f	eatu:	re										
	< -	100>	16													
AAG	CTTT	GCT A	AACA:	ract(GC G'	TAAT	AAGG!	A GT	CTTA				GTT (Val 1			54
	ATT Ile										CTT				TTG	102
	GGC Gly		Leu	CTT				Lys	AAG				Lys	ATA		150
	GCT Ala	Ile					Ala									198
	GTG Val					Asp					Leu	CCC				246
Val	55 CAG Gln									Asn					Phe	294
	GTT Val			Ser	GTA				Ile					Val		342
	AAA Lys		Val					Trp					Gly			390
GGA Gly	GGG	CCAAC	105 GTC (GCCZ	ATCC(CA TA	ATCA(110 CGCGC	G CC	GCGG2	ATCC		115			433
	< î < î	210> 211> 212> 213>	17 429 DNA Hel	A	osomo	oides	s pol	lygyı	rus							
	< 2	20> 221> 222>	CDS	5) (2	291)											
	< 2	220> 221> 223>	mis	sc_fe	eatui	re										
	<	100>	17													
AAG	CTTT(GCT A	AACA:	ract(GC GT	TAAT	AAGG!	A GTO	CTTA				GTT (Val 1			54
	ATT Ile										CTT				TTG	102
	GGC Gly			CTT					AAG					ATA		150

<220>

		Ile			TTT Phe		Ala					Leu				198
					TCT											246
Leu	Val 55	Gly	Tyr	Leu	Ser	Asp 60	Ile	Ser	Ala	Gln	Leu 65	Pro	Ser	Asp	Phe	
					TTA Leu 75											294
TAT				Ser	GTA Val				Ile	TTC				Val	AAA	342
					TAT Tyr											390
GGA Gly	TCG	GCCAZ	105 AGT (CGGC	CATC	CC AT	ГАТСА	110 ACGC	G GC	CGCG(GATC	С	115			434
-	<:	210>	18													
		211>	6													
		212>	PR	Γ												
	<1	213>														
	< -	100>	18													
Gly 1	Gly	Gly	Ser	Gly 5	Gly											
		210>	19	_												
		11>	425													
		112>	DNA				,									
	<.	113>	Ancy	YC108	stoma	a cey	/lan:	LCUM								
	<.	220>														
	< 2	221>	CDS	5												
	<:	222>	(10))	(282))										
		220>				_		_								
		221>	"W	'sta	ands	ior	A 01	c T								
	< -	400>	19													
GAA.	TTCC(Le					s Se					ır Me			GT GGT Ys Gly	51
GAG	AAT	GAA	AAG	TAC	GAT	TCG	TGC	GGT	AGC	AAG	GAG	TGC	GAT	AAG	AAG	99
					Asp											
15			~	-	20		-	-		25		-	-	-	30	
TGC	AAA	TAT	GAC	GGA	GTT	GAG	GAG	GAA	GAC	GAC	GAG	GAA	CCT	AAT	GTG	147
Cys	Lys	Tyr	Asp	G1y 35	Val	Glu	Glu	Glu	Asp 40	Asp	Glu	Glu	Pro	Asn 45	Val	
CCA	TGC	CTA	GTA		GTG	TGT	CAT	CAA		TGC	GTA	TGC	GAA		GGA	195
					Val											
ጥጥር	ጥለጥ	בא		מ מ מ	GAT	GNC	ע ע ע		CTN	тсл	CCA	CDD		TCC	CDD	243
					Asp											243
	-	_		-	_	_	-	-					_	-		

			ATG Met										TGAZ	ACGAZ	AGG CTC	295
CAT		GCT (GCACA	AAGA:	rc ga		rctc:	r cc	CCTG	CATC		GTAG:	TTT	IGCT/	ACATTG	355
TATA	ATGG:	rag (CAAAA	TAAA	ra go	CTTA	GGGA	G AA	TAAA	ATCT	TTA	CCTAT	rat :	TAA!	rcaatg	415
AAG:	TTAT	CTC :	TTTC	Γ												430
	< 2	210>	20													
		211>														
			PR: And		ostor	na ca	anin	ım								
		100>		•												
Mot				Ш. г.	ת ה	+ 1.0	ת א	T1.	Mot	Dho	Ton	Leu	77-7	Cox	Lou	
ме с 1	гур	Met	ьец	5	Ala	116	Ата	TIE	10	FILE	Leu	Leu	vai	15	Leu	
Cys	Ser	Ala	Arg 20	Thr	Val	Arg	Lys	Ala 25	Tyr	Pro	Glu	Cys	Gly 30	Glu	Asn	
Glu	Trp	Leu 35	Asp	Asp	Cys	Gly	Thr 40	Gln	Lys	Pro	Суѕ	Glu 45	Ala	Lys	Cys	
Asn	Glu 50		Pro	Pro	Glu	Glu 55		Asp	Pro	Ile	Cys 60	Arg	Ser	Arg	Gly	
Cys 65	-	Leu	Pro	Pro	Ala 70		Val	Cys	Lys	Asp		Phe	Tyr	Arg	Asp 80	
	Val	Ile	Gly	Asp 85		Val	Arg	Glu	Glu 90		Cys	Asp	Gln	His		
Ile	Ile	His	Val	0.5					70					,,,		
	,	3.1.0														
		210> 211>	21 98													
			PR:	Γ												
	< 2	213>	Āno	cyclo	ostor	na ca	anin	ım								
	< 4	100>	21													
Met 1	Lys	Met	Leu	Tyr 5	Ala	Ile	Ala	Ile	Met 10	Phe	Leu	Leu	Val	Ser 15	Leu	
Cys	Ser	Thr		Thr	Val	Arg	Lys		Tyr	Pro	Glu	Cys		Glu	Asn	
Glu	Trp		20 Asp	Val	Cys	Gly		25 Lys	Lys	Pro	Cys	Glu	30 Ala	Lys	Cys	
Ser	Glu	35 Glu	Glu	Glu	Glu	Asp	40 Pro	Ile	Cys	Arg	Ser	45 Phe	Ser	Cys	Pro	
	50					5 5					60					
65	Pro	Ala	Ala	Cys	70	Cys	GIU	Asp	GTÀ	75	Tyr	Arg	Asp	Thr	80	
Ile	Gly	Asp	Cys	Val 85	Lys	Glu	Glu	Glu	Cys 90	Asp	Gln	His	Glu	Ile 95	Ile	
His	Val															
	<1	210>	22													
	< 2	11>	94													
		212>	PRT				7		_							
	< .	113>	And	cyclo	STO	na Ce	=y⊥ar	11 Cur	I I							

<400> 22

 Met
 Arg
 Thr
 Leu
 Tyr
 Leu
 Ile
 Ser
 Ile
 Trp
 Leu
 Phe
 Leu
 Ile
 Ser
 Gln

 1
 1
 5
 1
 10
 1
 1
 15
 1

 Cys
 Asn
 Gly
 Lys
 Ala
 Phe
 Pro
 Lys
 Cys
 Asp
 Val
 Arg
 Arg
 Phe
 Glu
 Cys
 Glu
 Leu
 Lys
 Cys
 Asp
 Asp
 Glu
 Arg
 Arg
 Arg
 Arg
 Ala
 Cys
 Ile
 Arg
 Pro
 Pro
 Ala
 Cys
 Asp
 Glu
 Cys
 Asp
 Glu
 Arg
 Arg
 Arg
 Tyr
 Tyr
 Gly
 Phe
 Cys
 Val
 Cys
 Arg
 Arg
 Arg
 Tyr
 Tyr
 Gly
 Phe
 Cys
 Val
 Glu
 Arg
 Arg
 Arg
 Tyr
 Tyr
 Gly
 Phe
 Cys
 Val
 Glu
 Arg</t

<210> 23 <211> 96

<212> PRT

<213> Ancyclostoma ceylanicum

<400> 23

 Met
 Ser
 Thr
 Leu
 Tyr
 Val
 Ile
 Ala
 Ile
 Cys
 Leu
 Leu
 Leu
 Val
 Ser
 Gln

 Cys
 Asn
 Gly
 Asn
 Thr
 Val
 Lys
 Lys
 Cys
 Gly
 Lys
 Asn
 Glu
 Arg
 Tyr
 Asp

 Asp
 Cys
 Gly
 Asp
 Asp
 Cys
 Glu
 Thr
 Lys
 Cys
 Gly
 Gly
 Glu
 Glu
 Glu
 Thr
 Ser
 Asp
 Cys
 Thr
 Ser
 Asp
 Cys
 Thr
 Ser
 Asp
 Cys
 Thr
 Ser
 Asp
 Cys
 Thr
 Ser
 Pro
 Asp
 Cys
 Glu
 Asp
 Cys
 Thr
 Ser
 Pro
 Asp
 Cys
 Val
 Thr
 Asp
 Cys
 Asp
 Cys
 Asp
 Cys
 Thr
 Asp
 Cys
 Asp
 Cys
 Asp
 Cys
 Asp
 Cys
 Thr
 Asp

<210> 23

<211> 96

<212> PRT

<213> Ancyclostoma ceylanicum

<400> 23

<210> 24

<211> 108

<212> PRT

<213> Ancyclostoma ceylanicum

<400> 24

50 55 60 Leu Ile Arg Val Cys Phe Arg Pro Gly Ala Cys Val Cys Lys Asp Gly 70 75 Phe Tyr Arg Asn Arg Thr Gly Ser Cys Val Glu Glu Asp Asp Cys Glu 85 Tyr Glu Asn Met Glu Phe Ile Thr Phe Ala Pro Glu 100 <210> 25 <211> 82 <212> PRT <213> Ancyclostoma ceylanicum <400> 25 Val Pro Ile Cys Gly Ser Asn Glu Arg Tyr Ser Asp Cys Gly Asn Asp 10 Lys Gln Cys Glu Arg Lys Cys Asn Glu Asp Asp Tyr Glu Lys Gly Asp Glu Ala Cys Arg Ser His Val Cys Glu Arg Pro Gly Ala Cys Val Cys 40 Glu Asp Gly Phe Tyr Arg Asn Lys Lys Gly Ser Cys Val Glu Ser Asp 55 Asp Cys Glu Tyr Asp Asn Met Asp Phe Ile Thr Phe Ala Pro Glu Thr Ser Arg <210> 26 <211> 75 <212> PRT <213> Ancyclostoma duodenale <400> 26 Lys Cys Pro Thr Asp Glu Trp Phe Asp Trp Cys Gly Thr Tyr Lys His 10 Cys Glu Leu Lys Cys Asp Arg Glu Leu Thr Glu Glu Glu Gln Ala Cys Leu Ser Arg Val Cys Glu Lys Ser Ala Cys Val Cys Asn Asp Gly Leu 40 Tyr Arg Asp Lys Phe Gly Asn Cys Val Glu Lys Asp Glu Cys Asn Asp 55 Met Glu Ile Ile Thr Phe Ala Pro Glu Thr Lys <210> 27 <211> 102 <212> PRT <213> Ancyclostoma duodenale <400> 27 Met Arg Met Leu Tyr Leu Val Pro Ile Trp Leu Leu Leu Ile Ser Leu 10 Cys Ser Gly Lys Ala Ala Lys Lys Cys Gly Leu Asn Glu Arg Leu Asp 25

Cys Gly Asn Leu Lys Gln Cys Glu Pro Lys Cys Ser Asp Leu Glu Ser

40 Glu Glu Tyr Glu Glu Glu Asp Glu Ser Lys Cys Arg Ser Arg Glu Cys 55 Ser Arg Arg Val Cys Val Cys Asp Glu gly Phe Tyr Arg Asn Lys Lys Gly Lys Cys Val Ala Lys Asp Val Cys Glu Asp Asp Asn Met Glu Ile 85 Ile Thr Phe Pro Pro Glu 100 <210> 28 <211> 78 <212> PRT <213> Ancyclostoma duodenale <400> 28 Asp Glu Cys Gly Pro Asp Glu Trp Phe Asp Tyr Cys Gly Asn Tyr Lys Lys Cys Glu Arg Lys Cys Ser Glu Glu Thr Ser Glu Lys Asn Glu Glu Ala Cys Leu Ser Arg Ala Cys Thr Gly Arg Ala Cys Val Cys Lys Asp 40 Gly Leu Tyr Arg Asp Asp Phe Gly Asn Cys Val Pro His Asp Glu Cys 55 Asn Asp Met Glu Ile Ile Thr Phe Pro Pro Glu Thr Lys His <210> 29 <211> 76 <212> PRT <213> Helogmosomoides polygyrus <400> 29 Met Ile Arg Lys Leu Val Leu Leu Thr Ala Ile Val Thr Val Val Leu 10 Ser Ala Lys Thr Cys Gly Pro Asn Glu Glu Tyr Thr Glu Cys Gly Thr 25 Pro Cys Glu Pro Lys Cys Asn Glu Pro Met Pro Asp Ile Cys Thr Len 40 Asn Cys Ile Val Asn Val Cys Gln Cys Lys Pro Gly Phe Lys Arg Gly 55 Pro Lys Gly Cys Val Ala Pro Gly Pro Gly Cys Lys <210> 30 <211> 187 <212> DNA <213> <400> 30 TTATTCGAAA CGATGTTCTC TCCAATTTTG TCCTTGGAAA TTATTTTAGC TACTTTGCAA

TCTGTCTTCG CCCAGCCAGT TATCTCCACT ACCGTTGGTT CCGCTGCCGA GGGTTCTTTG

60

120

GAC	AAGA(GGC (CTAT	CCGC	GG A	ATTC	AGAT	C TG	AATG	CGGC	CGC'	rcga(GAC '	ragt(GGAT(CC	180
TTA	GACA																187
	< ; < ;	210> 211> 212> 213>	495 DN	A cyclo	osto	ma ca	anin	am									
	< 3	220> 221> 222>	CD:	S 6)	(356)											
	< .	220> 221> 223>	mi:	sc_f	eatu:	re											
	< •	100>	31														
GAA'	rtcc(GCG (GAAT'	TCCG	CT TO	GCTA(CTAC'	r cai				ACG (Thr 1					53
				TCG Ser													101
				GGT Gly													149
				AAG Lys													197
				ACC Thr													245
				TGC Cys 75													293
				ACT Thr													341
	ACT Thr				TAA	ACCC?	AAT A	AATG?	ACCA	AT G	ACTC(CCAT:	r ct:	rcgt(GATC	AG	398
CGT	CGGT	GGT :	rgac <i>i</i>	AGTC:	rc co	CCTA	CATC	TA(GTAG'	PTTT	GCT:	rgat <i>i</i>	TAA	GTATA	ACATA	A.A	458
ACTO	GTACT	TTT (CTGA	GATA	GA A	TAAA(GCTC:	r caz	ACTA	C							495
	<1 <1	110> 111> 112> 113>	478 DN	A cyclo	ostor	ma ca	anin	ım									
		220>	CD:	S													

<222> (24)..(341)

<220>	
<221> misc_feature	
<223>	
422	
<400> 32	
GAATTCCGCG GAATTCCGCA ACG ATG AAG ACG CTC TAT ATT ATC GCT ATA TGC	53
Met Lys Thr Leu Tyr Ile Ile Ala Ile Cys	33
1 5 10	
TCG CTC CTC ATT TCG TTG TGT ACT GGA AGA CCG GAA AAA AAG TGC GGT	101
Ser Leu Leu Ile Ser Leu Cys Thr Gly Arg Pro Glu Lys Lys Cys Gly	
15 20 25	
CCC GGT GAA AGA CTC GCC TGT GGC AAT AAG AAG CCA TGC GAG CGC AAG	149
Pro Gly Glu Arg Leu Ala Cys Gly Asn Lys Lys Pro Cys Glu Arg Lys	
30 35 40	
TGC AAA ATA GAG AGA AGT GAG GAG GAG GAT GAC TAC CCA GAG GGA ACC	197
Cys Lys Ile Glu Thr Ser Glu Glu Glu Asp Asp Tyr Pro Glu Gly Thr	
45 50 55	
GAA CGT TTT CGA TGC CTC TTA CGT GTG TGT GAT CAG CCT TAT GAA TGC	245
Glu Arg Phe Arg Cys Leu Leu Arg Val Cys Asp Gln Pro Tyr Glu Cys	
60 65 70	
ATA TGC GAT GAT GGA TAC TAC AGA AAC AAG AAA GGC GAA TGT GTG ACT	293
Ile Cys Asp Asp Gly Tyr Tyr Arg Asn Lys Lys Gly Glu Cys Val Thr	
75 80 85 90	
GAT GAT GTA TGC CAG GAA GAC TTT ATG GAG TTT ATT ACT TTC GCA CCA	341
Asp Asp Val Cys Gln Glu Asp Phe Met Glu Phe Ile Thr Phe Ala Pro	
95 100 105	
The branch of the state of the	101
TAAACCCAAT AATGACCACT GGCTCCCATT CTTCGTGACC AGCGTCGGTG GTTGACAGTC	401
TCCCCTGCAT CTTAGTAGTT TTGCTTGATA ATGTATCCAT AAACAGTACT TTCTGAGATA	461
recection citagradit fideridata arguatecat aaacagract fierdagara	401
GAATAAAGCT CTCAACT	478
<210> 33	
<211> 472	
<212> DNA	
<213> Ancyclostoma caninum	
<220>	
<221> CDS	
<222> (21)(335)	
<220>	
<221> misc_feature	
<223>	
<400> 33	
CAADDOCCODA CONCONACO ADO AAC ACO COO DAD ADD ADD ADD TOO	F.0
GAATTCCGTA CTACTCAACG ATG AAG ACG CTC TAT ATT ATC GCT ATA TGC	50
Met Lys Thr Leu Tyr Ile Ile Ala Ile Cys 1 5 10	
TCG CTG CTC TTT TCA CTG TGT ACT GGA AGA CCG GAA AAA AAG TGC GGT	98
Ser Leu Leu Phe Ser Leu Cys Thr Gly Arg Pro Glu Lys Lys Cys Gly	38
15 20 25	
20 20	

					GAC Asp												146
					AGT Ser												194
					GTA Val												242
					TAC Tyr 80												290
					GAC Asp										TAA	ACC.	341
CAATAATGAC CACTGGCTCC CATTCTTCGT GATCAGCGTC GGTGGTTGAC AGTCTCCCCT													401				
GCATCTTAGT TGCTTTGCTT GATAATCTAT ACATAAACAG TACTTTCTGA GATAGAATAA													461				
AGC'	rctc2	AAC :	Г														472
	<1 <1 <1 <1 <1 <1 <1 <1 <1	213>	And And CDS (5)	cyclo 5 7)	ostor (347) eatur		aninu	mL									
GAA'	TTCC(GGA (CTTA(CTAG'	ra ci	rcag(CGAAT	r ca <i>i</i>)ATA	CGAC	TTAC	CTAC	rac :	ГСАА	CG AC Me	et	59
					ATC Ile										TGC	L	107
					TGG Trp												155
					AAG Lys												203
	GAA				ATG Met 55												251
CCT					GAA Glu					AGA					CAA		299
				GAA	GAA				GAG					GCR		TG	349

AAGCAAATGA CAGCCGATGG TTTGGACTCT CGCTACAGAT CACAGCTTTA CTGTTTCCCT	409													
TGCATCATAG TAGTTTTGCT AGATAGTGTA TATATTAGCA TGATTTTCTG ATAGGGAGAA	469													
TAAAGCTTTC CAATTTTC	487													
<210 > 35 <211 > 477														
<212> DNA <213> Ancyclostoma caninum														
<220>														
<221> CDS														
<222> (24)(338)														
<220> <221> misc feature														
<223>														
<400> 35														
GAATTCCGCG GAATTCCGCA ACG ATG AAG ACG CTC TAT ATT ATC GCT ATA TGC	53													
Met Lys Thr Leu Tyr Ile Ile Ala Ile Cys 1 5 10														
TCG CTC CTC ATT TCG CTG TGT ACT GGA AGA CCG GAA AAA AAG TGC GGT	101													
Ser Leu Leu Ile Ser Leu Cys Thr Gly Arg Pro Glu Lys Lys Cys Gly 15 20 25														
CCC GGT GAA AGA CTC GAC TGT GCC AAC AAG AAG CCA TGC GAG CCC AAG Pro Gly Glu Arg Leu Asp Cys Ala Asn Lys Lys Pro Cys Glu Pro Lys	149													
30 35 40	105													
TGC AAA ATA GAG ACA AGT GAG GAG GAG GAT GAC GAC GTA GAG GAA ACC Cys Lys Ile Glu Thr Ser Glu Glu Glu Asp Asp Asp Val Glu Glu Thr	197													
45 50 55 GAT GTG AGA TGC CTC GTA CGT GTG TGT GAA CGG CCT CTT AAA TGC ATA	245													
Asp Val Arg Cys Leu Val Arg Val Cys Glu Arg Pro Leu Lys Cys Ile														
60 65 70 TGC AAG GAT GGA TAC TAC AGA AAC AAG AAA GGC GAA TGT GTG ACT GAT	293													
Cys Lys Asp Gly Tyr Tyr Arg Asn Lys Lys Gly Glu Cys Val Thr Asp 75 80 85 90														
GAT GTA TGC CAG GAA GAC TTT ATG GAG TTT ATT ACT TTC GCA CCA TAAACC	344													
Asp Val Cys Gln Glu Asp Phe Met Glu Phe Ile Thr Phe Ala Pro 95 100 105														
CAATAATGAC CACTGGCTCC CATTCTTCGT GATCAGCGTC GGTGGTTGAC AGTCTCCCCT	404													
GCATCTTAGT TGCTTTGCTT GATAATCTAT ACATAAACAG TACTTTCTGA GATAGAATAA	464													
AGCTCTCAAC TAC	477													
<210> 36														

<211> 686

<212> DNA <213> Ancyclostoma caninum

	< ;	220>														
	< 2	221>	CD:	S												
	< .	222>	(1	4)	(556)										
	< .	220>														
	<	221>	mi	sc f	eatu:	re										
	< 2	223>		_												
	< '	100>	36													
AAT'	TCCG(GA AZ					eu T	yr L				TC TC				4
				1_~~		~~•		5	~ ~ ~			10				_
												TGT				9
		15					20					Cys 25				
												AAA				14
	30					35		-		_	40	Lys	_			
												GAG				19
_	Leu	Asp	Asn	Glu		Asp	Tyr	Lys	Glu		Asp	Glu	Ser	Lys	-	
45	m ~ ~	~ ~ m	077	mam	50	COM	aam	amm	mam	55	maa	a.m	~~~	201	60	0.
				Cys					Cys			GAT Asp				24
				65					70							
												GAT				28
ıyı	AIG	ASII	80	гуя	σту	GIII	Cys	85	1111	Arg	Asp	Asp	90	GIU	Tyr	
GAC	AAT	ATG	GAG	ATT	ATC	ACT	TTT	CCA	CCA	GAA	GAT	AAA	TGT	GGT	CCC	33
Asp	Asn	Met 95	Glu	Ile	Ile	Thr	Phe 100	Pro	Pro	Glu	Asp	Lys 101	Cys	Gly	Pro	
GAT	GAA	TGG	TTC	GAC	TGG	TGT		ACT	TAC	AAG	CAG	TGT	GAG	CGC	AAG	38
Asp	Glu 110	Trp	Phe	Asp	Trp	Cys 115	Gly	Thr	Tyr	Lys	Gln 120	Cys	Glu	Arg	Lys	
TGC		AAG	GAG	CTA	AGT	GAG	AAA	GAT	GAA	GAG		TGC	CTC	TCA	CGT	43
Cys 125	Asn	Lys	Glu	Leu	Ser 130	Glu	Lys	Asp	Glu	Glu 135	Ala	Cys	Leu	Ser	Arg	
	TGT	ACT	GGT	CGT		TGT	GTT	TGC	AAC		GGA	CTG	TAC	AGA	GAC	48
												Leu				
				145					150					155		
												GAT				52
Asp	Phe	Gly	Asn 160	Cys	Val	Glu	Lys	Asp 165	Glu	Cys	Asn	Asp	Met 170	Glu	Ile	
ATC	ACT	TTT	CCA	CCG	GAA	ACC	AAA	CAC	TGA	CCAA	AGG (CTCTA	AACT	CT CC	GCTACAT	58
Ile	Thr	Phe 175	Pro	Pro	Glu	Thr	Lys 180	His								
AAC	GTCAG	GTG (CTTGA	TTAL	GC C	CCTT	racg <i>i</i>	A GT	ragt <i>i</i>	TTAA	TTG	ACTA	ACT (CTGTO	STAATT	64
GAGG	ጉምጥ ልጉ	ייייי	<u> የ</u> Δ ረግጥ	ጌ ጆጥር(GT GA	ימממנ	ומממו	3 TG	ኮሞ⇔Δ∶	ATGT	CТ					68
32330	-4111			J. 1.1. CV	or or	<u>п</u> пт.	CIAM	. 10	LICA	.1	Ç1					30
		210>														
		211>		_												
	< :	!12>	DNA	7												

<213> Ancyclostoma caninum

	< .	220>														
	<	221>	> CDS													
	<.	222>	(34	4)	(576)										
	< 2	220>														
	< 2	221>	mi	sc_f	eatu:	re										
	< .	223>														
	<.	100>	37													
GAA'	rtcc(GCG (GAAT'	TCCG	GT TO	GGCG	GCAG	A AA	A ATO	G CTO	G ATO	G CTO	C TAC	C CT	r gtt	5.
															ı Val	
												AAA				101
Pro	Ile	Trp 10	Phe	Leu	Leu	Ile	Ser 15	Glu	Cys	Ser	Gly	Lys 20	Ser	Ala	Lys	
												CTG				150
Lys	Cys 25	Gly	Leu	Asn	Glu	Lys 30	Leu	Asp	Cys	Gly	Asn 35	Leu	Lys	Ala	Cys	
GAG	AAA	AAG	TGC	AGC	GAC	TTG	GAC	AAT	GAG	GAG	GAT	TAT	GGG	GAG	GAA	198
Glu	Lys	Lys	Cys	Ser	Asp	Leu	Asp	Asn	Glu	Glu	Asp	Tyr	Gly	Glu	Glu	
40					45					50					55	
												CGT				246
_			_	60					65		_	Arg		70		
												TGT				294
Cys	Asp	Glu	Gly 75	Phe	Tyr	Arg	Asn	Lys 80	Lys	Gly	Gln	Cys	Val 85	Thr	Arg	
GAC	GAT	TGC	GAG	TAT	GAC	AAT	ATG	GAG	ATT	ATC	ACT	TTT	CCA	CCA	GAA	342
Asp	Asp	Cys 90	Glu	Tyr	Asp	Asn	Met 95	Glu	Ile	Ile	Thr	Phe 100	Pro	Pro	Glu	
GAT	AAA	TGT	GGT	CCC	GAT	GAA	TGG	TTC	GAC	TGG	TGT	GGA	ACT	TAC	AAG	390
Asp	Lys 105	Cys	Gly	Pro	Asp	Glu 110	Trp	Phe	Asp	Trp	Cys 115	Gly	Thr	Tyr	Lys	
CAG	TGT	GAG	CGC	AAG	TGC	AGT	GAG	GAG	CTA	AOT	GAG	AAA	AAT	GAG	GAG	438
Gln	Cys	Glu	Arg	Lys	Cys	Ser	Glu	Glu	Leu	Ser	Glu	Lys	Asn	Glu	Glu	
120					125					130					135	
												GTT				486
Ala	Cys	Leu	Ser	Arg	Ala ,	Cys	Thr	GIY	Arg	Ala	Cys	Val	Cys	150	Asp	
												AAA				534
Gly	Leu	Tyr	Arg 155	Asp	Asp	Phe	Gly	Asn 160	Cys	Val	Glu	Lys	Asp	Glu	Cys	
מאכ	GAT	ATG		ירידי ∆	ΔТС	ΔСТ	ттт		CCG	GAA	ACC	ΔΔΔ		ТСА	CCAAAGG	586
												Lys		IOA	CAMAGG	500
		170					175					180				
CTC	rage:	rct (CGCTA	ACATA	AA C	GTCA(GTGC:	r TGA	TTAL	FTCC	CTT	racg:	rgt :	ragt <i>i</i>	AATTTT	646
GAC.	raac:	CT (GTGT#	TTTA	GA G	CATTO	GTCTA	A CTA	AATG	GTGA	AAA	rgaa(GCT :	rttca	AATGAC	706
T																707
	<2	210>	38													
		211>														
			DNA	Ą												

```
<213> Ancyclostoma caninum
     <220>
      <221> CDS
      <222> (31)..(309)
     <220>
     <221> misc_feature
     <223>
     <400> 38
GAATTCCGTA CGACCTACTA CTACTCAACG ATG AAG GCG CTC TAT GTT ATC TCT
                                                                         54
                                Met Lys Ala Leu Tyr Val Ile Ser
                                                5
                                 1
ATA ACG TTG CTC CTG GTA TGG CAA TGC AGT GCA AGA ACA GCG AGG AAA
                                                                         102
Ile Thr Leu Leu Val Trp Gln Cys Ser Ala Arq Thr Ala Arq Lys
                       15
CCC CCA ACG TGT GGT GAA AAT GAA AGG GTC GAA TGG TGT GGC AAG CAG
                                                                         150
Pro Pro Thr Cys Gly Glu Asn Glu Arg Val Glu Trp Cys Gly Lys Gln
                    30
                                       35
TGC GAG ATC ACA TGT GAC GAC CCA GAT AAG ATA TGC CGC TCA CTC GCT
                                                                         198
Cys Glu Ile Thr Cys Asp Asp Pro Asp Lys Ile Cys Arg Ser Leu Ala
                45
                                   5.0
TGT CCT GGT CCT GCT TGC GTA TGC GAC GAC GGA TAC TAC AGA GAC
                                                                         246
Cys Pro Gly Pro Pro Ala Cys Val Cys Asp Asp Gly Tyr Tyr Arg Asp
                               65
                                                   70
ACG AAC GTT GGC TTG TGT GTA CAA TAT GAC GAA TGC AAC GAT ATG GAT
                                                                         294
Thr Asn Val Gly Leu Cys Val Gln Tyr Asp Glu Cys Asn Asp Met Asp
                            80
ATT ATT ATG GTT TCA TAGGGTTGAC TGAAGAATCG AACAACCGGT GCACAACTTC
                                                                         349
Ile Ile Met Val Ser
    90
TATGCTTGAC TATCTCTCTT GCATCATGCA AGTTTAGCTA GATAGTGTAT ATATTAGCAA
                                                                         409
GACCCCTTGG GGAGAATGAA GCTTCCCAAC TATATTAAAT CAATAACGTT TTCGCTTCAT
                                                                         469
GTACACGTGC TCAGCACATT CATATCCACT CCTCACACTC CATGAAAGCA GTGAAATGTT
                                                                         529
     <210> 39
     <211> 361
     <212> DNA
     <213> Necator americanus
     <220>
     <221> CDS
     <222> (16)..(252)
     <220>
     <221> misc_feature
     <223>
     <400> 39
```

GCCAACTCTT CGAAC ATG ATT CGA GGC CTC GTT CTT CTT CTC CTG TTT

70016337v1

```
Met Ile Arg Gly Leu Val Leu Leu Ser Leu Leu Phe
                 1
                                5
TGC GTC ACT TTT GCA GCG AAG AGA GAT TGT CCA GCA AAT GAG GAA TGG
                                                                       99
Cys Val Thr Phe Ala Ala Lys Arg Asp Cys Pro Ala Asn Glu Glu Trp
                           20
                                              25
AGG GAA TGT GGC ACT CCA TGT GAA CCA AAA TGC AAT CAA CCG ATG CCA
                                                                       147
Arg Glu Cys Gly Thr Pro Cys Glu Pro Lys Cys Asn Gln Pro Met Pro
                       35
                                         40
GAT ATA TGT ACT ATG AAT TGT ATC GTC GAT GTG TGT CAA TGC AAG GAG
                                                                       195
Asp Ile Cys Thr Met Asn Cys Ile Val Asp Val Cys Gln Cys Lys Glu
45
                    50
                                       55
GGA TAC AAG CGT CAT GAA ACG AAG GGA TGC TTA AAG GAA GGA TCA GCT
                                                                       243
Gly Tyr Lys Arq His Glu Thr Lys Gly Cys Leu Lys Glu Gly Ser Ala
                65
                                   70
GAT TGT AAA TAAGTTATCA GAACGCTCGT TTTGTCTTAC ATTAGATGGG TGAGCTGATG
                                                                       302
Asp Cys Lys
361
     <210> 40
     <211> 77
     <212> PRT
     <213> Ancyclostoma caninum
     <220>
     <221> misc feature
     <223>
     <400> 40
Lys Ala Tyr Pro Glu Cys Gly Glu Asn Glu Trp Leu Asp Asp Cys Gly
                                   10
Thr Gln Lys Pro Cys Glu Ala Lys Cys Asn Glu Glu Pro Pro Glu Glu
                               25
Glu Asp Pro Ile Cys Arg Ser Arg Gly Cys Leu Leu Pro Pro Ala Cys
                           40
Val Cys Lys Asp Gly Phe Tyr Arg Asp Thr Val Ile Gly Asp Cys Val
                       55
Arg Glu Glu Cys Asp Glu His Glu Ile Ile His Val
65
                    70
     <210> 41
     <211> 75
     <212> PRT
     <213> Ancyclostoma caninum
     <220>
     <221> misc feature
     <223>
     <400> 41
```

Lys Ala Tyr Pro Glu Cys Gly Glu Asn Glu Trp Leu Asp Val Cys Gly

```
5
                            10
Thr Lys Lys Pro Cys Glu Ala Lys Cys Ser Glu Glu Glu Glu Asp
                                25
Pro Ile Cys Arg Ser Phe Ser Cys Fro Gly Pro Ala Ala Cys Val Cys
                            40
Glu Asp Gly Phe Tyr Arg Asp Thr Val Ile Gly Asp Cys Val Lys Glu
                        55
Glu Glu Cys Asp Gln His Glu Ile Ile His Val
                    7.0
     <210> 42
     <211> 74
     <212> PRT
     <213> Ancyclostoma caninum
     <220>
     <221> misc feature
     <223>
     <400> 42
Arg Thr Ala Arg Lys Pro Pro Thr Cys Gly Glu Asn Glu Arg Val Glu
                 5
                                     10
Trp Cys Gly Lys Glu Cys Glu Ile Thr Cys Asp Asp Pro Asp Lys Ile
                                25
Cys Arg Ser Leu Ala Cys Pro Gly Pro Pro Ala Cys Val Cys Asp Asp
                           40
Gly Tyr Tyr Arg Asp Thr Asn Val Gly Leu Cys Val Gln Tyr Asp Glu
                       55
Cys Asn Asp Met Asp Ile Ile Met Val Ser
     <210> 43
     <211> 88
     <212> PRT
     <213> Ancyclostoma caninum
     <220>
     <221> misc feature
     <223>
     <400> 43
Lys Pro Ser Glu Lys Glu Cys Gly Pro His Glu Arg Leu Asp Cys Gly
                                    10
Asn Lys Lys Pro Cys Glu Arg Lys Cys Lys Ile Glu Thr Ser Glu Glu
Glu Asp Asp Tyr Glu Glu Gly Thr Glu Arg Phe Arg Cys Leu Leu Arg
                            40
Val Cys Asp Glu Pro Tyr Glu Cys Ile Cys Asp Asp Gly Tyr Tyr Arg
                        55
                                            60
Asn Lys Lys Gly Glu Cys Val Thr Asp Asp Val Cys Glu Glu Asp Phe
                    70
                                       75
Met Glu Phe Ile Thr Phe Ala Pro
                85
```

<210> 44 <211> 87 <212> PRT <213> Ancyclostoma caninum <220> <221> misc_feature <223> <400> 44 Arg Pro Glu Lys Lys Cys Gly Pro Gly Glu Arg Leu Ala Cys Gly Asn Lys Lys Pro Cys Glu Arg Lys Cys Lys Ile Glu Thr Ser Glu Glu Glu 20 25 Asp Asp Tyr Pro Glu Gly Thr Glu Arg Phe Arg Cys Leu Leu Arg Val Cys Asp Gln Pro Tyr Glu Cys Ile Cys Asp Asp Gly Tyr Tyr Arg Asn 55 Lys Lys Gly Glu Cys Val Thr Asp Asp Val Cys Gln Glu Asp Phe Met 70 Glu Phe Ile Thr Phe Ala Pro 85 <210> 45 <211> 86 <212> PRT <213> Ancyclostoma caninum <220> <221> misc feature <223> <400> 45 Arg Pro Glu Lys Lys Cys Gly Pro Gly Glu Arg Leu Asp Cys Ala Asn 5 10 Lys Lys Pro Cys Glu Pro Lys Cys Lys Ile Glu Thr Ser Glu Glu Glu 25 Asp Asp Asp Val Glu Asp Thr Asp Val Arg Cys Leu Val Arg Val Cys 40 Glu Arg Pro Leu Lys Cys Ile Cys Lys Asp Gly Tyr Tyr Arg Asn Lys Lys Gly Glu Cys Val Thr Asp Asp Val Cys Gln Glu Asp Phe Met Glu Phe Ile Thr Phe Ala Pro <210> 46 <211> 86 <212> PRT <213> Ancyclostoma caninum <220> <221> misc feature

<223>

<400> 46

 Arg
 Pro
 Glu
 Lys
 Lys
 Cys
 Gly
 Pro
 Gly
 Glu
 Arg
 Leu
 Asp
 Cys
 Ala
 Asn

 Lys
 Lys
 Pro
 Cys
 Glu
 Pro
 Lys
 Cys
 Lys
 Ile
 Glu
 Thr
 Ser
 Glu
 Glu
 Glu
 Glu
 Arg
 Lys
 Leu
 Val
 Arg
 Val
 Arg
 Val
 Arg
 Val
 Arg
 A

<210> 47 <211> 78

<212> PRT

<213> Ancyclostoma caninum

<220>

<221> misc_feature

<223>

<400> 47

<210> 48

<211> 89

<212> PRT

<213> Ancyclostoma ceylanicum

<220>

<221> misc_feature

<223>

<400> 48

Val Cys Phe Arg Pro Gly Ala Cys Val Cys Lys Asp Gly Phe Tyr Arg Asn Arg Thr Gly Ser Cys Val Glu Glu Asp Asp Cys Glu Tyr Glu Asn 70 Met Glu Phe Ile Thr Phe Ala Pro Glu <210> 49 <211> 82 <212> PRT <213> Ancyclostoma ceylanicum <220> <221> misc feature <223> <400> 49 Val Pro Ile Cys Gly Ser Asn Glu Arg Tyr Ser Asp Cys Gly Asn Asp Lys Gln Cys Glu Arg Lys Cys Asn Glu Asp Asp Tyr Glu Lys Gly Asp 25 Glu Ala Cys Arg Ser His Val Cys Glu Arg Pro Gly Ala Cys Val Cys 40 Glu Asp Gly Phe Tyr Arg Asn Lys Lys Gly Ser Cys Val Glu Ser Asp 55 60 Asp Cys Glu Tyr Asp Asn Met Asp Phe Ile Thr Phe Ala Pro Glu Thr Ser Arg <210> 50 <211> 84 <212> PRT <213> Ancyclostoma caninum <220> <221> misc feature <223> <400> 50 Lys Ser Ala Lys Lys Cys Gly Leu Asn Glu Lys Leu Asp Cys Gly Asn 1 5 10 Leu Lys Ala Cys Glu Lys Lys Cys Ser Asp Leu Asp Asn Glu Glu Asp 2.0 Tyr Lys Glu Glu Asp Glu Ser Lys Cys Arg Ser Arg Glu Cys Ser Arg Arg Val Cys Val Cys Asp Glu Gly Phe Tyr Arg Asn Lys Lys Gly Gln 55 Cys Val Thr Arg Asp Asp Cys Glu Tyr Asp Asn Met Glu Ile Ile Thr 70 Phe Pro Pro Glu <210> 51 <211> 84 <212> PRT <213> Ancyclostoma caninum

<220> <221> misc_feature <223> <400> 51 Lys Ser Ala Lys Lys Cys Gly Leu Asn Glu Lys Leu Asp Cys Gly Asn 5 Leu Lys Ala Cys Glu Lys Lys Cys Ser Asp Leu Asp Asn Glu Glu Asp Tyr Gly Glu Glu Asp Glu Ser Lys Cys Arg Ser Arg Glu Cys Ile Gly 40 Arg Val Cys Val Cys Asp Glu Gly Phe Tyr Arg Asn Lys Lys Gly Gln Cys Val Thr Arg Asp Asp Cys Glu Tyr Asp Asn Met Glu Ile Ile Thr Phe Pro Pro Glu <210> 52 <211> 83 <212> PRT <213> Ancyclostoma duodenale <220> <221> misc_feature <223> <400> 52 Lys Ala Ala Lys Lys Cys Gly Leu Asn Glu Arg Leu Asp Cys Gly Asn 10 Leu Lys Gln Cys Glu Pro Lys Cys Ser Asp Leu Glu Ser Glu Glu Tyr 25 Glu Glu Glu Asp Glu Ser Lys Cys Arg Ser Arg Glu Cys Ser Arg Arg 40 Val Cys Val Cys Asp Glu Gly Phe Tyr Arg Asn Lys Lys Gly Lys Cys 55 Val Ala Lys Asp Val Cys Glu Asp Asp Asn Met Glu Ile Ile Thr Phe 70 Pro Pro Glu <210> 53 <211> 78 <212> PRT <213> Ancyclostoma caninum <220> <221> misc_feature <223> <400> 53 Asp Lys Cys Gly Pro Asp Glu Trp Fhe Asp Trp Cys Gly Thr Tyr Lys 10 Gln Cys Glu Arg Lys Cys Asn Lys Glu Leu Ser Glu Lys Asp Glu Glu 20

Ala Cys Leu Ser Arg Ala Cys Thr Gly Arg Ala Cys Val Cys Asn Asp Gly Leu Tyr Arg Asp Asp Phe Gly Asn Cys Val Glu Lys Asp Glu Cys 55 Asn Asp Met Glu Ile Ile Thr Phe Pro Pro Glu Thr Lys His 70 <210> 54 <211> 78 <212> PRT <213> Ancyclostoma caninum <220> <221> misc_feature <223> <400> 54 Asp Lys Cys Gly Pro Asp Glu Trp Phe Asp Trp Cys Gly Thr Tyr Lys Gln Cys Glu Arg Lys Cys Ser Glu Glu Leu Ser Glu Lys Asn Glu Glu 25 Ala Cys Leu Ser Arg Ala Cys Thr Gly Arg Ala Cys Val Cys Asn Asp Gly Leu Tyr Arg Asp Asp Phe Gly Asn Cys Val Glu Lys Asp Glu Cys 55 Asn Asp Met Glu Ile Ile Thr Phe Pro Pro Glu Thr Lys His <210> 55 <211> 77 <212> PRT <213> Ancyclostoma duodenale <220> <221> misc feature <223> <400> 55 Lys Cys Pro Thr Asp Glu Trp Phe Asp Trp Cys Gly Thr Tyr Lys His 10 Cys Glu Leu Lys Cys Asp Arg Glu Leu Thr Glu Lys Glu Glu Gln Ala Cys Leu Ser Arg Val Cys Glu Lys Ser Ala Cys Val Cys Asn Asp Gly 40 Leu Tyr Arg Asp Lys Phe Gly Asn Cys Val Glu Lys Asp Glu Cys Asn 55 Asp Met Glu Ile Ile Thr Phe Ala Pro Glu Glu Thr Lys 70 <210> 56 <211> 78 <212> PRT <213> Ancyclostoma duodenale

<220> <221> misc feature <223> <400> 56 Asp Glu Cys Gly Pro Asp Glu Trp Phe Asp Tyr Cys Gly Asn Tyr Lys 10 Lys Cys Glu Arg Lys Cys Ser Glu Glu Thr Ser Glu Lys Asn Glu Glu 25 Ala Cys Leu Ser Arg Ala Cys Thr Gly Arg Ala Cys Val Cys Lys Asp Gly Leu Tyr Arg Asp Asp Phe Gly Asn Cys Val Pro His Asp Glu Cys 55 Asn Asp Met Glu Ile Ile Thr Phe Fro Pro Glu Thr Lys His 70 <210> 57 <211> 75 <212> PRT <213> Ancyclostoma ceylanicum <220> <221> misc_feature <223> <400> 57 Lys Ala Phe Pro Lys Cys Asp Val Asn Glu Arg Phe Glu Val Cys Gly 10 Asn Leu Lys Glu Cys Glu Leu Lys Cys Asp Glu Asp Pro Lys Ile Cys 25 Ser Arg Ala Cys Ile Arg Pro Pro Ala Cys Val Cys Asp Asp Gly Phe 40 Tyr Arg Asp Lys Tyr Gly Phe Cys Val Glu Glu Asp Glu Cys Asn Asp 55 Met Glu Ile Ile Thr Phe Pro Pro Glu Thr Lys 65 <210> 58 <211> 77 <212> PRT <213> Ancyclostoma ceylanicum <220> <221> misc feature <223> <400> 58 Arg Thr Val Lys Lys Cys Gly Lys Asn Glu Arg Tyr Asp Asp Cys Gly Asn Ala Lys Asp Cys Glu Thr Lys Cys Gly Glu Glu Lys Val Cys 25 Arg Ser Arg Glu Cys Thr Ser Pro Gly Ala Cys Val Cys Glu Gln Gly

```
40
                                                45
Phe Tyr Arg Asp Pro Ala Gly Asp Cys Val Thr Asp Glu Glu Cys Asp
                    55
Glu Trp Asn Asn Met Glu Ile Ile Thr Met Pro Lys Gln
                    70
      <210> 59
      <211> 84
      <212> PRT
      <213> Ancyclostoma caninum
      <220>
      <221> misc_feature
      <223>
      <400> 59
Lys Ala Thr Met Gln Cys Gly Glu Asn Glu Lys Tyr Asp Ser Cys Gly
                                    10
Ser Lys Glu Cys Asp Lys Lys Cys Lys Tyr Asp Gly Val Glu Glu Glu
                                25
                                                    30
Asp Asp Glu Glu Pro Asn Val Pro Cys Leu Val Arg Val Cys His Glu
                           40
Asp Cys Val Cys Glu Glu Gly Phe Tyr Arg Asn Lys Asp Asp Lys Cys
                       55
Val Ser Ala Glu Asp Cys Glu Leu Asp Asn Met Asp Phe Ile Tyr Pro
                    70
Gly Thr Arg Asn
      <210> 60
      <211> 58
      <212> PRT
      <213> Heligmosomoides polygyrus
      <220>
      <221> misc_feature
      <223>
      <400> 60
Lys Thr Cys Gly Pro Asn Glu Glu Tyr Thr Glu Cys Gly Thr Pro Cys
1
Glu Pro Lys Cys Asn Glu Pro Met Pro Asp Ile Cys Thr Leu Asn Cys
           20
Ile Val Asn Val Cys Gln Cys Lys Pro Gly Phe Lys Arg Gly Pro Lys
                           4.0
Gly Cys Val Ala Pro Gly Pro Gly Cys Lys
      <210> 61
      <211> 61
      <212> PRT
      <213> Necator americanus
```

<220>

<221> misc feature <223> <400> 61 Lys Arg Asp Cys Pro Ala Asn Glu Glu Trp Arg Glu Cys Gly Thr Pro Cys Glu Pro Lys Cys Asn Gln Pro Met Pro Asp Ile Cys Thr Met Asn 20 25 Cys Ile Val Asp Val Cys Gln Cys Lys Glu Gly Tyr Lys Arg His Glu 40 Thr Lys Gly Cys Leu Lys Glu Gly Ser Ala Asp Cys Lys 50 <210> 62 <211> 171 <212> PRT <213> Ancyclostoma ceylanicum <220> <221> misc_feature <223> <400> 62 Lys Pro Asn Asn Val Met Thr Asn Ala Cys Gly Leu Asn Glu Tyr Phe 5 10 Ala Glu Cys Gly Asn Met Lys Glu Cys Glu His Arg Cys Asn Glu Glu Glu Asn Glu Glu Arg Asp Glu Glu Arg Ile Thr Ala Cys Leu Ile Arg Val Cys Phe Arg Pro Gly Ala Cys Val Cys Lys Asp Gly Phe Tyr Arg Asn Arg Thr Gly Ser Cys Val Glu Glu Asp Asp Cys Glu Tyr Glu Asn 70 75 Met Glu phe Ile Thr Phe Ala Pro Glu Val Pro Ile Cys Gly Ser Asn Glu Arg Tyr Ser Asp Cys Gly Asn Asp Lys Gln Cys Glu Arg Lys Cys 105 Asn Glu Asp Asp Tyr Glu Lys Gly Asp Glu Ala Cys Arg Ser His Val 120 Cys Glu Arg Pro Gly Ala Cys Val Cys Glu Asp Gly Phe Tyr Arg Asn 135 140 Lys Lys Gly Ser Cys Val Glu Ser Asp Asp Cys Glu Tyr Asp Asn Met 150 155 Asp Phe Ile Thr Phe Ala Pro Glu Thr Ser Arg <210> 63 <211> 162 <212> PRT <213> Ancyclostoma caninum <220>

<221> misc feature

<400> 63

Lys Ser Ala Lys Lys Cys Gly Leu Asn Glu Lys Leu Asp Cys Gly Asn Leu Lys Ala Cys Glu Lys Lys Cys Ser Asp Leu Asp Asn Glu Glu Asp 20 25 Tyr Lys Glu Glu Asp Glu Ser Lys Cys Arg Ser Arg Glu Cys Ser Arg Arg Val Cys Val Cys Asp Glu Gly Phe Tyr Arg Asn Lys Lys Gly Gln Cys Val Thr Arg Asp Asp Cys Glu Tyr Asp Asn Met Glu Ile Ile Thr 70 Phe Pro Pro Glu Asp Lys Cys Gly Pro Asp Glu Trp Phe Asp Trp Cys 85 90 Gly Thr Tyr Lys Glu Cys Glu Arg Lys Cys Asn Lys Glu Leu Ser Glu 100 105 Lys Asp Glu Glu Ala Cys Leu Ser Arg Ala Cys Thr Gly Arg Ala Cys 115 120 Val Cys Asn Asp Gly Leu Tyr Arg Asp Asp Phe Gly Asn Cys Val Glu 135 140 Lys Asp Glu Cys Asn Asp Met Glu Ile Ile Thr Phe Pro Pro Glu Thr 145 150 155 Lys His

<210> 64 <211> 162 <212> PRT

<213> Ancyclostoma caninum

<220> <221> misc_feature <223>

<400> 64

Lys Ser Ala Lys Lys Cys Gly Leu Asn Glu Lys Leu Asp Cys Gly Asn 10 Leu Lys Ala Cys Glu Lys Lys Cys Ser Asp Leu Asp Asn Glu Glu Asp Tyr Gly Glu Glu Asp Glu Ser Lys Cys Arg Ser Arg Glu Cys Ile Gly Arg Val Cys Val Cys Asp Glu Gly Phe Tyr Arg Asn Lys Lys Gly Glu Cys Val Thr Arg Asp Asp Cys Glu Tyr Asp Asn Met Glu Ile Ile Thr 70 75 Phe Pro Pro Glu Asp Lys Cys Gly Pro Asp Glu Trp Phe Asp Trp Cys Gly Thr Tyr Lys Gln Cys Glu Arg Lys Cys Ser Glu Glu Leu Ser Glu 105 Lys Asn Glu Glu Ala Cys Leu Ser Arg Ala Cys Thr Gly Arg Ala Cys 120 115 125 Val Cys Asn Asp Gly Leu Tyr Arg Asp Asp Phe Gly Asn Cys Val Glu 135 Lys Asp Glu Cys Asn Asp Met Glu Ile Ile Thr Phe Pro Pro Glu Thr

```
150
                                       155
                                                          160
145
Lys His
     <210> 65
      <211> 161
      <212> PRT
      <213> Ancyclostoma duodenale
     <220>
      <221> misc feature
      <223>
      <400> 65
Lys Ala Ala Lys Lys Cys Gly Leu Asn Glu Arg Leu Asp Cys Gly Asn
                        10
Leu Lys Gln Cys Glu Pro Lys Cys Ser Asp Leu Glu Ser Glu Glu Tyr
                               2.5
Glu Glu Glu Asp Glu Ser Lys Cys Arg Ser Arg Glu Cys Ser Arg Arg
                           40
Val Cys Val Cys Asp Glu Gly Phe Tyr Arg Asn Lys Lys Gly Lys Cys
                       55
                                           60
Val Ala Lys Asp Val Cys Glu Asp Asp Asn Met Glu Ile Ile Thr Phe
                   70
                                       75
Pro Pro Glu Asp Glu Cys Gly Pro Asp Glu Trp Phe Asp Tyr Cys Gly
                                  90
               85
Asn Tyr Lys Lys Cys Glu Arg Lys Cys Ser Glu Glu Thr Ser Glu Lys
        100
                               105
Asn Glu Glu Ala Cys Leu Ser Arg Ala Cys Thr Gly Arg Ala Cys Val
                           120
       115
Cys Lys Asp Gly Leu Tyr Arg Asp Asp Phe Gly Asn Cys Val Pro His
               135
Asp Glu Cys Asn Asp Met Glu Ile Ile Thr Phe Pro Pro Glu Thr Lys
145
                   150
                                       155
His
     <210> 66
      <211> 9
      <212> PRT
      <213>
      <220>
      <221> CDS
      <222>
            (2)..(9)
     <220>
      <221> "Xaa" is an amino 2 to 9 acid
      <223>
      <400> 66
```

Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa

```
<210> 67
      <211> 9
      <212> PRT
      <213>
     <220>
      <221> CDS
      <222> (2)..(9)
     <220>
      <221> "Xaa" is an amino 2 to 9 acid
      <223>
      <400> 67
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
     <210> 68
     <211> 7
      <212> PRT
     <213>
     <220>
      <221> CDS
     <222> (1)..(2)
     <220>
     <221> "Xaa" at locations 1 and 2 is an amino acid, provided that at
     least one of Xaa at location 1 and 2 is Glu or Asp, Xaa in locations 3
     to 8 is an amino acid
     <223>
     <400> 68
Xaa Xaa Xaa Xaa Xaa Xaa
     <210> 69
     <211> 5
      <212> PET
     <213>
     <220>
     <221> misc_feature
     <223>
     <400> 69
Gly Phe Tyr Arg Asp
     <210> 70
     <211> 5
     <212> PRT
     <213>
```

```
<220>
      <221> misc_feature
      <223>
     <400> 70
Gly Phe Tyr Arg Asn
     <210> 71
     <211> 5
     <212> PRT
     <213>
     <220>
     <221> misc_feature
     <223>
     <400> 71
Gly Tyr Tyr Arg Asp
1
     <210> 72
     <211> 5
     <212> PRT
     <213>
     <220>
     <221> misc_feature
     <223>
     <400> 72
Gly Try Tyr Arg Asn
     <210> 73
     <211> 5
     <212> PRT
     <213>
     <220>
     <221> misc_feature
     <223>
     <400> 73
Gly Leu Tyr Arg Asp
```

```
<210> 74
     <211> 5
     <212> PRT
     <213>
     <220>
     <221> misc_feature
     <223>
     <400> 74
Glu Ile Ile His Val
     <210> 75
     <211> 5
     <212> PRT
     <213>
     <220>
     <221> misc_feature
     <223>
     <400> 75
Asp Ile Ile Met Val
 1 5
     <210> 76
     <211> 6
     <212> PRT
     <213>
     <220>
     <221> misc_feature
     <223>
     <400> 76
Phe Ile Thr Phe Ala Pro
 1
     <210> 77
     <211> 5
     <212> PRT
     <213>
     <220>
     <221> misc_feature
     <223>
     <400> 77
```

```
Met Glu Ile Ile Thr
     <210> 78
     <211> 5
     <212> PRT
     <213>
     <220>
     <221> "Xaa" in locations 1 and 2 is an amino acid, provided that at
     least one Xaa is Glu or Asp
     <223>
     <400> 78
Xaa Xaa Gly Phe Tyr Arg Asp
     5
     <210> 79
     <211> 7
     <212> PRT
     <213>
     <220>
     <221> "Xaa" in locations 1 and 2 is an amino acid, provided that at
     least one Xaa is Glu or Asp
     <223>
     <400> 79
Xaa Xaa Gly Phe Tyr Arg Asn
 1
                5
     <210> 80
     <211> 7
     <212> PRT
     <213>
     <220>
     <221> "Xaa" in locations 1 and 2 is an amino acid, provided that at
     least one Xaa is Glu or Asp
     <223>
     <400> 80
Xaa Xaa Gly Tyr Tyr Arg Asp
 1
     <210> 81
     <211> 7
     <212> PRT
     <213>
```

```
<220>
      <221> "Xaa" in locations 1 and 2 is an amino acid, provided that at
      least one Xaa is Glu or Asp
      <223>
     <400> 81
Xaa Xaa Gly Tyr Tyr Arg Asn
     <210> 82
     <211> 7
     <212> PRT
     <213>
     <220>
     <221> "Xaa" in locations 1 and 2 is an amino acid, provided that at
     least one Xaa is Glu or Asp
     <223>
     <400> 82
Xaa Xaa Gly Leu Tyr Arg Asp
 1
                 5
     <210> 83
     <211> 9
     <212> PRT
     <213>
     <220>
     <221> "Xaa" in locations 2 to 9 is an amino acid
     <223>
     <400> 83
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
 1
     <210> 84
     <211> 4
     <212> PRT
     <213>
     <220>
     <221> "Xaa" in locations 1 is an amino acid, perferably Leu; Xaa in
     location 2 is an amino acid; Xaa in location 3 is an amino acid,
     perferably Arg; Xaa in location 4 is an amino acid
     <223>
     <400> 84
```

Xaa Xaa Xaa Xaa

```
1
     <210> 85
     <211> 4
     <212> PRT
     <213>
     <220>
     <221> "Xaa" in locations 1 to 4 is an amino acid
     <223>
     <400> 85
Xaa Xaa Xaa Xaa
 1
     <210> 86
     <211> 9
     <212> PRT
     <213>
     <220>
     <221> "Xaa" in locations 1 to 2 is an amino acid
     <223>
     <400> 86
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
            5
     <210> 87
     <211> 9
     <212> PRT
     <213>
     <220>
     <221> "Xaa" in locations 1 to 2 is an amino acid
     <223>
     <400> 87
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
 1
            5
     <210> 88
     <211> 25
     <212> DNA
     <213>
     <400> 88
```

TCAGACATGT ATAATCTCAT GTTGG

```
<210> 89
      <211> 25
      <212> DNA
      <213>
      <400> 89
AACCCATACC CCCACTCTOC TC
                                                                            22
      <210> 90
      <211> 21
      <212> PRT
      <213>
      < 220>
      <221> "Xaa" in locations 1 to 2 is an amino acid
      <223>
      <400> 90
AARCCNTGYG ARMGGAARTG Y 21
      <210> 91
      <211> 23
      <212> PRT
      <213> Ancyclostoma caninum
     <220>
      <221> "W" stands for A or T; "R" stands for A of G; "N" stands for any
     base; and "Y" stands for C or T.
      <223>
      <400> 91
TWRWANCCNT CYTTRCANAC RCA
                                                                            23
      <210> 92
      <211> 13
      <212> PRT
     <213> Ancyclostoma caninum
      <220>
      <221> misc_feature
      <223>
      <400> 92
Lys Ala Tyr Pro Glu Cys Gly Glu Asn Glu Trp Leu Aop
     <210> 93
      <211> 11
      <212> PRT
      <213> Ancyclostoma caninum
```

```
<220>
      <221> misc_feature
      <223>
     <400> 93
Lys Ala Tyr Pro Glu Cys Gly Glu Asn Glu Trp
               5
1
     <210> 94
     <211> 28
     <212> DNA
     <213> Ancyclostoma caninum
     <220>
     <DD1> "R" stands for A or G; "N" stands for inosine; "Y" stands for C
     or T
     <223>
     <400> 94
AARGCNTAYC CNGARTGYGG NGARAAYGAR TGG
                                                                           33
     <210> 95
     <211> 28
     <112> DNA
     <213> Ancyclostoma caninum
     <220>
     <221> misc_feature
     <223>
     <400> 95
AATTCGCGGC CGCTTTTTTT TTTTTTTT
                                                                           28
     <210> 96
     <211> 24
     <212> DNA
     <213>
     <220>
     <221> misc_feature
     <223>
     <400> 96
CCTGGCGACG ACTCCTGGAG CCCC
                                                                           24
     <210> 97
     <211> 20
     <212> PRT
     <213> Ancyclostoma caninum
     <220>
```

```
<221> misc_feature
      <223> N-terminal caninum
      <400> 97
Lys Ala Tyr Pro Glu Cys Gly Glu Asn Glu Tip Leu Asp Asp Cys Gly Thr
                 5
                                    10
Gb Lys Pro
       20
     <210> 98
     <211> 10
     <212> DNA
     <213> Ancyclostoma caninum
     <220>
     <221> misc_feature
     <223>
     <400> 98
                                                                           10
CGGAATTCCG
     <210> 99
     <211> 18
     <212> DNA
     <213> Ancyclostoma caninum
     <220>
     <221> misc_feature
     <223>
     <400> 99
TGGCCTAGCG TCAGGAGT
                                                                           18
     <210> 100
     <211> 18
     <212> DNA
     <213> Ancyclostoma caninum
     <220>
     <221> misc_feature
     <223>
     <400> 100
CCTGACGCTA GGCCATGG
                                                                           18
     <210> 101
     <211> 24
     <212> DNA
     <213> Ancyclostoma caninum
     <220>
     <221> misc_feature
```

```
<223>
      <400> 101
AGCGGATAAC AATTTCACAC AGGA
                                                                            24
      <210> 102
      <211> 66
      <212> DNA
      <213> Ancyclostoma caninum
      <220>
      <221> misc_feature
      <223>
      <400> 102
ATGTTCTCTC CAATTTTGTC CTTGGAAATT ATTTTAGCTT TGGCTACTTT GCAATCTGTC
                                                                            60
TTCGCT
                                                                            66
      <210> 103
      <211> 57
      <212> DNA
      <213> Ancyclostoma caninum
      <220>
      <221> misc feature
      <223>
      <400> 103
CAGCCAGGTA TCTCCACTAC CGTTGGTTCC GCTGCCGAGG GTTCTTTGGA CAAGAGG
                                                                           57
     <210> 104
     <211> 51
      <212> DNA
     <213> Ancyclostoma caninum
     <220>
      <221> misc_feature
     <223>
     <400> 104
CCTATCCGCG GAATTCAGAT CTGAATGCGG CCGCTCGAGA CTAGTGGATC C
                                                                            51
     <210> 105
     <211> 41
     <212> DNA
     <213> Ancyclostoma caninum
     <220>
     <221> misc_feature
     <223>
```

GCTCGCTCTA	GAAGCTTCAG ACATGTATAA TCTCATGTTG C	41
<210>	106	
<211>	36	
<212>		
	Ancyclostoma caninum	
<220>		
	misc_feature	
	N-terminal fragment	
<400>	106	
Lys Ala Tyr	Pro Glu	
i i	5	
<210>	107	
<211>		
<212>		
	Ancyclostoma caninum	
12137		
<220>		
	misc_feature	
<223>		
<400>	107	
GACCACTCTA	GACAATGAAG ATGCTTTACG CTATCC	36
<210>	108	
<211>		
<212>		
	Ancyclostoma caninum	
<220>		
	misc feature	
<223>	–	
<400>	108	
CTGGGAGACC	TGATACTCTC AAG	23
<210>	109	
<211>	9	
<212>	PRT	
<213>	Ancyclostoma caninum	
<220>		
<221>	misc_feature	
	N-terminal fragment	
<400>	109	
Arg Thr Val	Arg Lys Ala Tyr Pro Glu	
_		

```
5
 1
     <210> 110
     <211> 5
     <212> PRT
     <213> Ancyclostoma caninum
     <220>
     <221> misc_feature
     <223> N-terminal fragment
     <400> 110
Arq Thr Val Arq Lys
1
     <210> 111
     <211> 33
     <212> DNA
     <213> Ancyclostoma caninum
     <220>
     <221> misc_feature
     <223>
     <400> 111
ATCCGAAGCT TTGCTAACAT ACTGCGTAAT AAG
                                                                          33
     <210> 112
     <211> 60
     <212> DNA
     <213>
     <220>
     <221> misc_feature
     <223>
     <400> 112
TATGGGATGG CCGACTTGGC CTCCGCCTGA GCCTCCACCT TTATCCCAAT CCAAATAAGA
                                                                          60
     <210> 113
     <211> 60
     <212> DNA
     <213>
     <220>
     <221> misc_feature
     <223>
     <400> 113
ATGGGATGGC CGACTTGGCC CTCCGCCTGA GCCTCCACCT TTATCCCAAT CCAAATAAGA
                                                                          60
     <210> 114
```

<211> 60

```
<212> DNA
     <213>
     <220>
     <221> misc_feature
     <223>
     <400> 114
TATGGCATGC CCGACTTGGC CCATCCGCCT GAGCCTCCAC CTTTATCCCA ATCCAAATAA
                                                                         60
     <210> 115
     <211> 45
     <212> DNA
     <213>
     <220>
     <221> misc_feature
     <223>
     <400> 115
AGGAGGGGAT CCGCGGCCGC GTGATATGGG ATGGCCCACT TGGCC
                                                                          45
     <210> 116
     <211> 24
     <212> DNA
     <213>
     <220>
     <221> misc_feature
     <223>
     <400> 116
CGCCAGGGTT TTCCCAGTCA CGAC
                                                                          24
     <210> 117
     <211> 28
     <212> DNA
     <213>
     <220>
     <221> misc_feature
     <223>
     <400> 117
GTTTCGAGTT CCGGGATATA TAAAGTCC
                                                                          28
     <210> 118
     <211> 7
     <212> PRT
     <213>
     <220>
```

```
<221> "Xaa" in location 5 is Arg, Pro or Lys
      <223>
     <400> 118
Lys Pro Cys Glu Xaa Lys Cys
     <210> 119
     <211> 8
     <212> PRT
     <213>
     <220>
     <221> "Xaa" in location 2 is Val, Ile or Gln; Xaa in location 4 is
     Lys, Asp, Glu or Gln; Xaa in location 5 is Asp or Glu; Xaa in location
     7 is Phe or Tyr
     <223>
     <400> 119
Cys Xaa Cys Xaa Xaa Gly Xaa Tyr
     <210> 120
     <211> 44
     <212> DNA
     <213>
     <220>
     <221> misc feature
     <223>
     <400> 120
GACCAGTCTA GACCACCATG GCGGTGCTTT ATTCAGTAGC AATA
                                                                            44
     <210> 121
     <211> 40
     <212> DNA
     <213>
     <220>
     <221> misc_feature
     <223>
     <400> 121
GCTCGCTCTA GATTATCGTG AGGTTTCTGG TGCAAAAGTG
                                                                            40
     <210> 122
     <211> 24
     <212> DNA
     <213>
     <220>
```

```
<221> misc_feature
      <223>
      <400> 122
AAAGCAACGA TGCAGTGTGG TGAG
                                                                           24
     <210> 123
      <211> 47
     <212> DNA
     <213>
     <220>
     <221> misc_feature
     <223>
     <400> 123
GCTCGCTCTA GAAGCTTCAG TTTCGAGTTC CGGGATATAT AAAGTCC
                                                                           47
     <210> 124
      <211> 30
     <212> DNA
     <213>
     <220>
     <221> misc_feature
     <223>
     <400> 124
GAGACTTTTA AATCACTCTC CCATCAGAAG
                                                                           30
     <210> 125
     <211> 33
     <212> DNA
     <213>
     <220>
     <221> misc_feature
     <223>
     <400> 125
TTCAGGACTA GTTCATOGTG CGRAAGTAAT AAA
                                                                           33
     <210> 126
     <211> 28
     <212> DNA
     <213>
     <220>
     <221> misc_feature
     <223>
     <400> 126
```

46

```
<210> 127
      <211> 46
      <212> DNA
      <213>
      <220>
      <221> misc feature
      <223>
      <400> 127
CGCTCTAGAA GCTTCATGGG TTTCGAGTTC COGGATATAT AAAGTC
      <210> 128
      <211> 91
      <212> PRT
      <213> Ancyclostoma caninum
      <220>
      <221> misc feature
      <223>
      <400> 128
Leu Val Ear Tyr Cys Ser Gly Lys Ala Thr Met Gln Cys Gly Glu Asn
Glu Lys Tyr Asp Ser Cys Gly Ser Lys Glu Cys Asp Lys Lys Cys Lys
Tyr Asp Gly Val Glu Glu Glu Asp Asp Glu Glu Pro Asn Val Pro Cys
Leu Val Arg Val Cys His Gln Asp Cys Val Cys Glu Glu Gly Phe Tyr
Arg Asn Lys Asp Asp Lys Cys Val Ser Ala Glu Asp Cys Glu Leu Asp
                    70
Asn Met Asp Phe Ile Tyr Pro Gly Thr Arg Asn
      <210> 129
      <211> 8
      <212> PRT
      <213>
      <220>
      <221> Xaa in locations 2 to 8 is an amino acid <223> Internal fragment
```

<400> 129

```
Cys Xaa Xaa Xaa Xaa Xaa Xaa
1 5
     <210> 130
     <211> 7
     <212> PRT
     <213>
     <220>
     <221> misc_feature
     <223>
     <400> 130
Cys Xaa Xaa Xaa Xaa Cys
     <210> 131
     <211> 6
     <212> DNA
     <213>
     <220>
     <221> Xaa in location 2 to 5 is an amino acid
     <223> Internal fragment
     <400> 131
Cys Xaa Xaa Xaa Cys
     <210> 132
     <211> 5
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 4 is an amino acid
     <223> Internal fragment
     <400> 132
Cys Xaa Xaa Xaa Cys
     <210> 133
     <211> 4
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 and 3 is an amino acid
     <223> Internal fragment
     <400> 133
```

```
Cys Xaa Xaa Cys
    <210> 134
    <211> 21
    <212> PRT
    <213>
    <220>
    <221> Internal fragment
    <223> Xaa in locations 1 to 3 and 5 to 21 is an amino acid
    <400> 134
10
Xaa Xaa Xaa Xaa
    <210> 135
    <211> 20
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and 5 to 20 is an amino acid
    <223> Internal fragment
    <400> 135
5
Xaa Xaa Xaa Xaa
    <210> 136
    <211> 19
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and 5 to 19 is an amino acid
    <223> Internal fragment
    <400> 136
1
        5
               10
Xaa Xaa Xaa
    <210> 137
    <211> 18
    <212> PRT
```

```
<213>
    <220>
    <221> Xaa in locations 1 to 3 and 5 to 18 is an amino acid
    <223> Internal fragment
    <400> 137
5
                        10
Xaa Xaa
    <210> 138
    <211> 17
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and 5 to 17 is an amino acid
    <223> Internal fragment
    <400> 138
1
           5
                         10
Xaa
    <210> 139
    <211> 16
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and 5 to 16 is an amino acid
    <223> Internal fragment
    <400> 139
10
1
    <210> 140
    <211> 15
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and 5 to 15 is an amino acid
    <223> Internal fragment
    <400> 140
5
                         10
```

```
<210> 141
     <211> 14
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 1 to 3 and 5 to 14 is an amino acid
     <223> Internal fragment
     <400> 141
1
             5
                               10
     <210> 142
     <111> 13
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 1 to 3 and 5 to 13 is an amino acid
     <223> Internal fragment
     <400> 142
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
1
                               1.0
     <110> 143
     <211> 12
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 1 to 3 and 5 to 12 is an amino acid
     <223> Internal fragment
     <400> 143
1
             5
     <210> 144
     <211> 11
     <212> PRT
     <213>
     <221> Xaa in locations 1 to 3 and 5 to 11 is an amino acid
     <223> Internal fragment
     <400> 144
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
1
                               10
```

```
<210> 145
      <211> 10
      <212> PRT
      <213>
     <220>
      <221> Xaa in locations 1 to 3 and 5 to 10 is an amino acid
     <223> Internal fragment
      <400> 145
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa
 1
               5
     <210> 146
     <211> 5
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 5 is an amino acid
     <223> Internal fragment
     <400> 146
Cys Xaa Xaa Xaa Xaa
1
     <210> 147
     <211> 4
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 4 is an amino acid
     <223> Internal fragment
     <400> 147
Cys Xaa Xaa Xaa
1
     <210> 148
     <211> 6
     <212> PRT
     <213>
     <221> Xaa in locations 2 to 6 is an amino acid
     <223> Internal fragment
     <400> 148
Cys Xaa Xaa Xaa Xaa
1
```

```
<210> 149
    <211> 5
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 2 to 5 is an amino acid
    <223> Internal fragment
    <400> 149
Cys Xaa Xaa Xaa Xaa
1
    <210> 150
    <211> 4
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 2 to 4 is an amino acid
    <223> Internal fragment
    <400> 150
Cys Xaa Xaa Xaa
1
    <210> 151
    <211> 15
    <212> PRT
    <213>
    <220>
    <221> Maa in locations 2 and 4 is an amino acid
    <223> Internal fragment
    <400> 151
1
         5
                             10
    <210> 152
    <211> 14
    <212> PRT
    <213>
    <221> Xaa in locations 2 and locations 4 to 14 is an amino acid
    <223> Internal fragment
    <400> 152
1
             5
                              10
```

```
<210> 153
     <211> 13
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 and locations 4 to 13 is an amino acid
     <223> Internal fragment
     <400> 153
Cys Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
1
     5
     <210> 154
     <211> 8
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 and 7 is an amino acid
     <223> Internal fragment
     <400> 154
Cys Xaa Xaa Xaa Xaa Xaa Cys
     <210> 155
     <211> 7
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 6 is an amino acid
     <223> Internal fragment
     <400> 155
Cys Xaa Xaa Xaa Xaa Cys
1
     <210> 156
     <211> 8
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 8 is an amino acid
     <223> Internal fragment
     <400> 156
Cys Xaa Xaa Xaa Xaa Xaa Xaa
```

```
<210> 157
     <211> 7
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 6 is an amino acid
     <223> Internal fragment
     <400> 157
Cys Xaa Xaa Xaa Xaa Cys
1
     <210> 158
     <211> 6
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 5 is an amino acid
     <223> Internal fragment
     <400> 158
Cys Xaa Xaa Xaa Cys
1
     <210> 159
     <211> 5
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 4 is an amino acid
     <223> Internal fragment
     <400> 159
Cys Xaa Xaa Xaa Cys
1
          5
     <210> 160
     <211> 23
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 1 to 3 and locations 5 to 23 is an amino acid
     <223> Internal fragment
     <400> 160
5
1
                               10
```

```
Xaa Xaa Xaa Xaa Xaa Xaa
        20
    <210> 161
    <211> 22
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 22 is an amino acid
    <223> Internal fragment
    <400> 161
10
Xaa Xaa Xaa Xaa Xaa
         20
    <210> 162
    <211> 21
    <212> PRT
    <213>
    <221> Xaa in locations 1 to 3 and locations 5 to 21 is an amino acid
    <223> Internal fragment
    <400> 162
1
           5
                         10
Xaa Xaa Xaa Xaa
         20
    <210> 163
    <211> 20
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 20 is an amino acid
    <223> Internal fragment
    <400> 163
1
   5
               10
Xaa Xaa Xaa Xaa
         20
    <210> 164
    <211> 19
```

```
<212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 19 is an amino acid
    <223> Internal fragment
    <400> 164
5
                           10
1
                                           15
Xaa Xaa Xaa
    <210> 165
    <211> 18
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 18 is an amino acid
    <223> Internal fragment
    <400> 165
1
            5
                            10
Xaa Xaa
    <210> 166
    <211> 17
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 17 is an amino acid
    <223> Internal fragment
    <400> 166
1
         5
                           10
Xaa
    <210> 167
    <211> 16
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 16 is an amino acid
    <223> Internal fragment
    <400> 167
```

```
10
    <210> 168
    <211> 15
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 15 is an amino acid
    <223> Internal fragment
    <400> 168
<210> 169
    <211> 14
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 14 is an amino acid
    <223> Internal fragment
    <400> 169
<210> 170
    <211> 13
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 13 is an amino acid
    <223> Internal fragment
    <400> 170
5
    <210> 171
    <211> 12
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 12 is an amino acid
    <223> Internal fragment
    <400> 171
```

```
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
     <210> 172
     <211> 11
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 1 to 3 and locations 5 to 11 is an amino acid
     <223> Internal fragment
     <400> 172
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa
    5
     <210> 173
     <211> 10
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 1 to 3 and locations 5 to 10 is an amino acid
     <223> Internal fragment
     <400> 173
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa
               5
     <210> 174
     <211> 20
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 5 is an amino acid
     <223> Internal fragment
     <400> 174
Cys Xaa Xaa Xaa Xaa
1
     <210> 175
     <211> 20
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 4 is an amino acid
     <223> Internal fragment
     <400> 175
```

```
Cys Xaa Xaa Xaa
     <210> 176
     <211> 6
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 6 is an amino acid
     <223> Internal fragment
     <400> 176
Cys Xaa Xaa Xaa Xaa
1
     <210> 177
     <211> 5
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 5 is an amino acid
     <223> Internal fragment
     <400> 177
Cys Xaa Xaa Xaa Xaa
1
     <210> 178
     <211> 4
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 4 is an amino acid
     <223> Internal fragment
     <400> 178
Cys Xaa Xaa Xaa
1
     <210> 180
     <211> 14
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 and locations 4 to 14 is an amino acid
     <223> Internal fragment
     <400> 180
```

```
<210> 181
    <211> 8
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 2 to 8 is an amino acid
    <223> Internal fragment
    <400> 181
5
    <210> 182
    <211> 7
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 2 to 7 is an amino acid
    <223> Internal fragment
    <400> 182
Cys Xaa Xaa Xaa Xaa Xaa Xaa
1
    <210> 183
    <211> 6
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 2 to 6 is an amino acid
    <223> Internal fragment
    <400> 183
Cys Xaa Xaa Xaa Xaa Xaa
1
    <210> 184
    <211> 26
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 2 to 26 is an amino acid
    <223> Internal fragment
    <400> 184
```

```
Cys Xaa Xaa Xaa Xaa
    <210> 185
    <211> 25
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 2 to 25 is an amino acid
    <223> Internal fragment
    <400> 185
5
1
                       10
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
        20
    <210> 186
    <211> 24
    <212> PRT
    <213>
   <220>
    <221> Maa in locations 2 to 24 is an amino acid
    <223> Internal fragment
    <400> 186
5
                   10
Xaa Xaa Xaa Xaa Xaa Xaa Xaa
        20
   <210> 187
   <211> 23
   <212> PRT
   <213>
   <221> Xaa in locations 2 to 23 is an amino acid
   <223> Internal fragment
   <400> 187
1 5
                  10
Xaa Xaa Xaa Xaa Xaa Xaa Xaa
        20
   <210> 188
```

```
<211> 22
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 2 to 22 is an amino acid
    <223> Internal fragment
    <400> 188
1
                         10
Xaa Xaa Xaa Xaa Xaa Xaa
        20
    <210> 189
    <211> 21
    <212> PRT
    <213>
    <221> Xaa in locations 2 to 21 is an amino acid
    <223> Internal fragment
    <400> 189
5
                         10
Xaa Xaa Xaa Xaa Xaa
         20
    <210> 190
    <211> 20
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 2 to 20 is an amino acid
    <223> Internal fragment
    <400> 190
5
                         10
Xaa Xaa Xaa Xaa
        20
    <210> 191
    <211> 19
    <212> PRT
    <213>
    <220>
```

```
<221> Xaa in locations 2 to 19 is an amino acid
    <223> Internal fragment
   <400> 191
10
Xaa Xaa Xaa Xaa
        20
   <210> 192
   <211> 18
   <212> PRT
   <213>
   <220>
   <221> Xaa in locations 2 to 18 is an amino acid
   <223> Internal fragment
   <400> 192
1
           5
                       10
Xaa Xaa Xaa
   <210> 193
   <211> 17
   <212> PRT
   <213>
   <220>
   <221> Xaa in locations 2 to 17 is an amino acid
   <223> Internal fragment
   <400> 193
1
                       10
Xaa Xaa
   <210> 194
   <211> 16
   <212> PRT
   <213>
   <220>
   <221> Xaa in locations 2 to 16 is an amino acid
   <223> Internal fragment
   <400> 194
5
                   10
```

```
Xaa
```

```
<210> 195
    <211> 15
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 2 to 15 is an amino acid
    <223> Internal fragment
    <400> 195
1
            5
                           10
    <210> 196
    <211> 14
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 2 to 14 is an amino acid
    <223> Internal fragment
    <400> 196
1
                          10
                                          15
    <210> 197
    <211> 13
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 2 to 13 is an amino acid
    <223> Internal fragment
    <400> 197
5
1
                          10
    <210> 198
    <211> 20
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 2 to 12 is an amino acid
    <223> Internal fragment
    <400> 198
```

```
<210> 199
     <211> 11
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 11 is an amino acid
     <223> Internal fragment
     <400> 199
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
1
       5
     <210> 200
     <211> 10
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 10 is an amino acid
     <223> Internal fragment
     <400> 200
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
1
              5
     <210> 201
     <211> 9
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 9 is an amino acid
     <223> Internal fragment
     <400> 201
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
     <210> 202
     <211> 8
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 8 is an amino acid
     <223> Internal fragment
     <400> 202
```

```
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
1
     <210> 203
     <211> 7
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 7 is an amino acid
     <223> Internal fragment
     <400> 203
Cys Xaa Xaa Xaa Xaa Xaa Xaa
     5
     <210> 204
     <211> 6
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 7 is an amino acid
     <223> Internal fragment
     <400> 204
Cys Xaa Xaa Xaa Xaa Xaa
     <210> 204
     <211> 6
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 6 is an amino acid
     <223> Internal fragment
     <400> 204
Cys Xaa Xaa Xaa Xaa
1
     <210> 205
     <211> 8
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 8 is an amino acid
     <223> Internal fragment
     <400> 205
```

```
Cys Xaa Xaa Xaa Xaa Xaa Xaa
     <210> 206
     <211> 7
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 6 is an amino acid
     <223> Internal fragment
     <400> 206
Cys Xaa Xaa Xaa Xaa Cys
1
     <210> 207
     <211> 6
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 5 is an amino acid
     <223> Internal fragment
     <400> 207
Cys Xaa Xaa Xaa Cys
1
     <210> 207
     <211> 6
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 5 is an amino acid
     <223> Internal fragment
     <400> 207
Cys Xaa Xaa Xaa Cys
     <210> 209
     <211> 23
     <212> PRT
     <213>
     <221> Xaa in locations 1 to 3 and locations 5 to 23 is an amino acid
     <223> Internal fragment
     <400> 209
```

```
Xaa Xaa Xaa Xaa Xaa Xaa
        20
    <210> 210
    <211> 22
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 22 is an amino acid
    <223> Internal fragment
    <400> 210
10
Xaa Xaa Xaa Xaa Xaa
        20
    <210> 211
    <211> 21
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 21 is an amino acid
    <223> Internal fragment
   <400> 211
5
Xaa Xaa Xaa Xaa
        20
   <210> 212
    <211> 20
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 20 is an amino acid
    <223> Internal fragment
    <400> 212
5
```

Xaa Xaa Xaa Xaa

```
20
    <210> 213
    <211> 19
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 19 is an amino acid
    <223> Internal fragment
    <400> 213
1 5
                         10
Xaa Xaa Xaa
    <210> 214
    <211> 18
    <212> PRT
    <213>
    <220>
    <221> Maa in locations 1 to 3 and locations 5 to 18 is an amino acid
    <223> Internal fragment
    <400> 214
10
Xaa Xaa
    <210> 215
    <211> 17
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 17 is an amino acid
    <223> Internal fragment
    <400> 215
5
                          10
1
Xaa
    <210> 216
    <211> 16
    <212> PRT
    <213>
    <220>
```

```
<221> Xaa in locations 1 to 3 and locations 5 to 16 is an amino acid
    <223> Internal fragment
    <400> 216
5
                            10
    <210> 217
    <211> 15
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 15 is an amino acid
    <223> Internal fragment
    <400> 217
5
                           10
    <210> 218
    <211> 14
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 14 is an amino acid
    <223> Internal fragment
    <400> 218
1
            5
                            10
    <210> 219
    <211> 13
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 13 is an amino acid
    <223> Internal fragment
    <400> 219
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
            5
                            1.0
    <210> 220
    <211> 12
    <212> PRT
    <213>
    <220>
```

```
<221> Xaa in locations 1 to 3 and locations 5 to 12 is an amino acid
                       <223> Internal fragment
                       <400> 220
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa
                                                            5
                      <210> 221
                      <211> 11
                      <212> PRT
                      <213>
                      <220>
                      <221> Xaa in locations 1 to 3 and locations 5 to 11 is an amino acid
                      < color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block">color="block"
                      <400> 221
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa
                                 5
                      <210> 222
                      <211> 10
                      <212> PRT
                      <213>
                      <220>
                      <221> Xaa in locations 1 to 3 and locations 5 to 10 is an amino acid
                      <223> Internal fragment
                      <400> 222
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa
   1
                                                           5
                      <210> 223
                      <211> 5
                      <212> PRT
                      <213>
                      <220>
                      <221> Xaa in locations 2 to 5 is an amino acid
                      <223> Internal fragment
                      <400> 223
Cys Xaa Xaa Xaa Xaa
                      <210> 224
                      <211> 4
                      <212> PRT
                      <213>
                      <220>
```

```
<221> Xaa in locations 2 to 4 is an amino acid
      <223> Internal fragment
      <400> 224
Cys Xaa Xaa Xaa
1
     <210> 225
     <211> 6
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 6 is an amino acid
     <223> Internal fragment
     <400> 225
Cys Xaa Xaa Xaa Xaa
     <210> 226
     <211> 5
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 5 is an amino acid
     <223> Internal fragment
     <400> 226
Cys Xaa Xaa Xaa Xaa
     <210> 227
     <211> 4
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 4 is an amino acid
     <223> Internal fragment
     <400> 227
Cys Xaa Xaa Xaa
1
     <210> 228
     <211> 15
     <212> PRT
     <213>
     <220>
```

```
<221> Xaa in location 2 and locations 4 to 15 is an amino acid
     <223> Internal fragment
     <400> 228
10
    <210> 229
     <211> 14
     <212> PRT
     <213>
    <220>
     <221> Maa in location 2 and locations 4 to 14 is an amino acid
     <223> Internal fragment
     <400> 229
10
    <210> 230
     <211> 8
     <212> PRT
     <213>
    <220>
    <221> Xaa in location 2 to 8 is an amino acid
     <223> Internal fragment
    <400> 230
Cys Xaa Xaa Xaa Xaa Xaa Xaa
    <210> 231
    <211> 7
    <212> PRT
    <213>
    <220>
    <221> Xaa in location 2 to 7 is an amino acid
    <223> Internal fragment
    <400> 231
Cys Xaa Xaa Xaa Xaa Xaa
    <210> 232
    <211> 6
    <212> PRT
    <213>
    <220>
```

<221> Xaa in location 2 to 6 is an amino acid <223> Internal fragment <400> 232 Cys Xaa Xaa Xaa Xaa <210> 233 <211> 26 <212> PRT <213> <220> <221> Xaa in location 2 to 26 is an amino acid <223> Internal fragment <400> 233 1 5 10 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 20 25 <210> 234 <211> 25 <212> PRT <213> <220> <221> Xaa in location 2 to 25 is an amino acid <223> Internal fragment <400> 234 10 Xee Xaa Xaa Xaa Xaa Xaa Xaa Xaa 20 <210> 235 <211> 24 <212> PRT <213> <221> Xaa in location 2 to 24 is an amino acid <223> Internal fragment <400> 235 10

```
Xaa Xaa Xaa Xaa Xaa Xaa Xaa
         20
    <210> 236
    <211> 23
    <212> PRT
    <213>
    < 220 >
    <221> Xaa in location 2 to 23 is an amino acid
    <223> Internal fragment
    <400> 236
10
Xaa Xaa Xaa Xaa Xaa Xaa
         20
    <210> 237
    <211> 22
    <212> PRT
    <213>
    <220>
    <221> Xaa in location 2 to 22 is an amino acid
    <223> Internal fragment
    <400> 237
5
                                                            10
Xaa Xaa Xaa Xaa Xaa
         20
    <210> 238
    <211> 21
    <212> PRT
    <213>
    <220>
    <221> Xaa in location 2 to 21 is an amino acid
    <223> Internal fragment
    <400> 238
10
1
Xaa Xaa Xaa Xaa
         20
    <210> 239
```

<211> 20

```
<212> PRT
    <213>
    <220>
    <221> Xaa in location 2 to 20 is an amino acid
    <223> Internal fragment
    <400> 239
1
                                                              10
Xaa Xaa Xaa Xaa
         20
    <210> 240
    <211> 19
    <212> PRT
    <213>
    <220>
    <221> Xaa in location 2 to 19 is an amino acid
    <223> Internal fragment
    <400> 240
1
                                                         5
                                                              10
Xaa Xaa Xaa
    <210> 241
    <211> 18
    <212> PRT
    <213>
    <220>
    <221> Xaa in location 2 to 18 is an amino acid
    <223> Internal fragment
    <400> 241
5
                                                              10
Xaa Xaa
    <210> 242
    <211> 17
    <212> PRT
    <213>
    <220>
    <221> Xaa in location 2 to 17 is an amino acid
    <223> Internal fragment
    <400> 242
```

Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xa	5	10
<210> 243 <211> 16 <212> PRT <213>		
<220> <221> Xaa in location 2 to 16 is an amino acid <223> Internal fragment		
<400> 243		
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xa	5	10
<210> 244 <211> 15 <212> PRT <213>		
<220> <221> Xaa in location 2 to 15 is an amino acid <223> Internal fragment		
<400> 244		
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xa	5	10
<210> 245 <211> 14 <212> PRT <213>		
<220> <221> Xaa in location 2 to 14 is an amino acid <223> Internal fragment		
<400> 245		
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xa	5	10
<210> 246 <211> 13 <212> PRT <213>		
<220> <221> Xaa in location 2 to 13 is an amino acid <223> Internal fragment		

<400> 246

Cys Xaa Xaa 1	Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa	5	10
<210> <211> <212> <213>	12		
<220> <221> <223>	Xaa in location 2 to 12 is an amino acid Internal fragment		
<400>	247		
Cys Xaa Xaa 1	Xaa Xaa Xaa Xaa Xaa Xaa Xaa	5	10
<210> <211> <212> <213>			
<220> <221> <223>	Xaa in location 2 to 11 is an amino acid Internal fragment		
<400>	248		
Cys Xaa Xaa 1	Xaa Xaa Xaa Xaa Xaa Xaa	5	10
<210> <211> <212> <213>			
<220> <221> <223>	Xaa in location 2 to 11 is an amino acid Internal fragment		
<400>	248		
Cys Xaa Xaa 1	Xaa Xaa Xaa Xaa Xaa	5	10
<210> <211> <212> <213>	10		
<220> <221> <223>	Xaa in location 2 to 10 is an amino acid Internal fragment		

```
<400> 249
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
     <210> 250
     <211> 9
     <212> PRT
     <213>
     <220>
     <221> Xaa in location 2 to 9 is an amino acid
     <223> Internal fragment
     <400> 250
Cys Xaa Xaa Xaa Xaa Xaa Xaa
     <210> 251
     <211> 8
     <212> PRT
     <213>
     <220>
     <221> Xaa in location 2 to 8 is an amino acid
     <223> Internal fragment
     <400> 251
Cys Xaa Xaa Xaa Xaa Xaa
1
     <210> 252
     <211> 7
     <212> PRT
     <213>
     <220>
     <221> Xaa in location 2 to 7 is an amino acid
     <223> Internal fragment
     <400> 252
Cys Xaa Xaa Xaa Xaa
1
     <210> 253
     <211> 16
     <212> PRT
     <213>
     <220>
     <221> Xaa in location 2 to 16 is an amino acid
     <223> Internal fragment
```

5

5

5

```
<400> 253
Cys Xaa Xaa Xaa Xaa Xaa Xaa
                                                                  5
     <210> 254
     <211> 8
     <212> PRT
     <213>
     <220>
     <221> Xaa in location 2 to 8 is an amino acid
     <223> Internal fragment
     <400> 254
Cys Xaa Xaa Xaa Xaa Cys
1
     <210> 255
     <211> 7
     <212> PRT
     <213>
     <220>
     <221> Xaa in location 2 to 6 is an amino acid
     <223> Internal fragment
     <400> 255
Cys Xaa Xaa Xaa Cys
1
Cys Xaa Xaa Xaa Cys
1
                                                                  5
     <210> 257
     <211> 5
     <212> PRT
     <213>
     <220>
     <221> Xaa in location 2 to 4 is an amino acid
     <223> Internal fragment
     <400> 257
5
                                                                        10
Xaa Xaa Xaa Xaa Xaa Xaa
```

<210> 258

```
<211> 23
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 2 and locations 5 to 23 is an amino acid
    <223> Internal fragment
    <400> 258
10
Xaa Xaa Xaa Xaa Xaa
         20
    <210> 259
    <211> 22
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 22 is an amino acid
        Internal fragment
    <400> 259
5
                                                             10
1
Xaa Xaa Xaa Xaa
         20
    <210> 260
    <211> 21
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 21 is an amino acid
    <223> Internal fragment
    <400> 260
5
                                                             10
Xaa Xaa Xaa Xaa
    <210> 261
    <211> 20
    <212> PRT
    <213>
    <220>
```

```
<221> Xaa in locations 1 to 3 and locations 5 to 20 is an amino acid
    <223> Internal fragment
    <400> 261
5
                                                           10
Xaa Xaa Xaa
    <210> 262
    <211> 219
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 19 is an amino acid
    <223> Internal fragment
    <400> 262
1
                                                      5
                                                           10
Xaa Xaa
    <210> 263
    <211> 18
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 18 is an amino acid
    <223> Internal fragment
    <400> 263
5
1
                                                           10
Xaa
    <210> 264
    <211> 17
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 17 is an amino acid
    <223> Internal fragment
    <400> 264
```

```
1
                                                                       5
                                                                             10
     <210> 265
     <211> 16
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 1 to 3 and locations 5 to 16 is an amino acid
     <223> Internal fragment
     <400> 265
5
                                                                             10
1
     <210> 266
     <211> 15
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 1 to 3 and locations 5 to 15 is an amino acid
     <223> Internal fragment
     <400> 266
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                                                                       5
1
                                                                             10
     <210> 267
     <211> 14
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 1 to 3 and locations 5 to 14 is an amino acid
     <223> Internal fragment
     <400> 267
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
1
                                                                       5
                                                                             10
     <210> 269
     <211> 12
     <212> PRT
     <213>
     <221> Xaa in locations 1 to 3 and locations 5 to 12 is an amino acid
     <223> Internal fragment
     <400> 269
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
```

```
1
                                                                             5
                                                                                    10
      <210> 270
      <211> 11
      <212> PRT
      <213>
      <220>
      <221> Xaa in locations 1 to 3 and locations 5 to 11 is an amino acid
      <223> Internal fragment
      <400> 270
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa
                                                                             5
1
                                                                                    10
      <210> 271
      <211> 10
      <212> PRT
      <213>
      <220>
      <221> Xaa in locations 1 to 3 and locations 5 to 10 is an amino acid
      <223> Internal fragment
      <400> 271
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa
                                                                             5
1
                                                                                    10
     <210> 272
      <211> 5
      <212> PRT
      <213>
     <220>
      <221> Xaa in locations 2 to 5 is an amino acid
      <223> Internal fragment
      <400> 272
Cys Xaa Xaa Xaa Xaa
1
                                                                             5
     <210> 273
     <211> 4
     <212> PRT
      <213>
      <220>
     <221> Xaa in locations 2 to 4 is an amino acid
      <223> Internal fragment
      <400> 273
Cys Xaa Xaa Xaa
```

```
1
      <210> 274
      <211> 6
      <212> PRT
      <213>
      <220>
      <221> Xaa in locations 2 to 6 is an amino acid
      <223> Internal fragment
      <400> 274
Cys Xaa Xaa Xaa Xaa
                                                                              5
 1
      <210> 275
      <211> 5
      <212> PRT
      <213>
      <220>
      <221> Xaa in locations 2 to 5 is an amino acid
      <223>
            Internal fragment
      <400> 275
Cys Xaa Xaa Xaa Xaa
                                                                              5
      <210> 276
      <211> 4
      <212> PRT
      <213>
      <220>
      <221> Xaa in locations 2 to 4 is an amino acid
      <223> Internal fragment
      <400> 276
Cys Xaa Xaa Xaa
1
      <210> 277
      <211> 15
      <212> PRT
      <213>
      <220>
      <221> Xaa in location 2 and locations 4 to 15 is an amino acid
      <223> Internal fragment
      <400> 277
```

Cys Xaa Cys Xaa Xaa Xaa Xaa Esa Xaa Xaa Xaa Xaa Xaa Xaa Xaa

```
1
                                                                       5
                                                                             10
     <210> 278
     <211> 14
     <212> PRT
     <213>
     <220>
     <221> Maa in location 2 and locations 4 to 14 is an amino acid
     <223> Internal fragment
     <400> 278
5
                                                                             10
     <210> 279
     <211> 13
     <212> PRT
     <213>
     <220>
     <221> Xaa in location 2 and locations 4 to 13 is an amino acid
     <223> Internal fragment
     <400> 279
Cys Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                                                                       5
                                                                             10
     <210> 280
     <211> 8
     <212> PRT
     <213>
     <220>
     <221> Xaa in location 2 to 8 is an amino acid
     <223> Internal fragment
     <400> 280
Cys Xaa Xaa Xaa Xaa Xaa Xaa
1
                                                                       5
     <210> 281
     <211> 7
     <212> PRT
     <213>
     <220>
     <221> Xaa in location 2 to 7 is an amino acid
     <223> Internal fragment
     <400> 281
Cys Xaa Xaa Xaa Xaa Xaa
```

```
<210> 282
<211> 6
<212> PRT
<213>

<220>
<221> Xaa in locations 2 to 6 is an amino acid
<223> Internal fragment
<400> 282
Cha Yaa Yaa Yaa Yaa Yaa Yaa
```

Cys Xaa Xaa Xaa Xaa Xaa 1 5

70016337v1

```
<210> 283
    <211> 26
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 2 to 26 is an amino acid
    <223> Internal fragment
    <400> 283
5
                                                            10
1
Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
        20
                                                      25
    <210> 284
    <211> 25
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 2 to 25 is an amino acid
    <223> Internal fragment
    <400> 284
5
1
                                                            10
Xaa Xaa Xaa Xaa Xaa Xaa Xaa
         20
                                                      25
    <210> 285
    <211> 24
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 2 to 24 is an amino acid
    <223> Internal fragment
    <400> 285
5
                                                            10
1
Xaa Xaa Xaa Xaa Xaa Xaa Xaa
         20
    <210> 286
    <211> 23
    <212> PRT
```

```
<213>
    <220>
    <221> Xaa in locations 2 to 23 is an amino acid
    <223> Internal fragment
    <400> 286
5
                                                          10
Xaa Xaa Xaa Xaa Xaa Xaa
        20
    <210> 287
    <211> 22
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 2 to 22 is an amino acid
    <223> Internal fragment
    <400> 287
5
1
                                                          10
Xaa Xaa Xaa Xaa Xaa
        20
    <210> 288
    <211> 21
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 2 to 21 is an amino acid
    <223> Internal fragment
    <400> 288
10
Xaa Xaa Xaa Xaa
    <210> 289
    <211> 20
    <212> PRT
    <213>
```

```
<220>
    <221> Xaa in locations 2 to 20 is an amino acid
    <223> Internal fragment
    <400> 289
5
                                                              10
Xaa Xaa Xaa Xaa
         20
    <210> 290
    <211> 19
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 2 to 19 is an amino acid
    <223> Internal fragment
    <400> 290
1
                                                         5
                                                              10
Xaa Xaa Xaa
    <210> 291
    <211> 18
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 2 to 18 is an amino acid
    <223> Internal fragment
    <400> 291
5
                                                              10
Xaa Xaa
    <210> 292
    <211> 17
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 2 to 17 is an amino acid
    <223> Internal fragment
    <400> 292
```

```
5
1
                                                         10
Xaa
    <210> 293
    <211> 16
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 2 to 16 is an amino acid
    <223> Internal fragment
    <400> 293
5
                                                         10
    <210> 294
    <211> 15
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 2 to 15 is an amino acid
    <223> Internal fragment
    <400> 294
5
                                                         10
    <210> 295
    <211> 14
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 2 to 14 is an amino acid
    <223> Internal fragment
    <400> 295
1
                                                         10
    <210> 296
    <211> 13
    <212> PRT
    <213>
    <221> Xaa in locations 2 to 13 is an amino acid
    <223> Internal fragment
```

```
<400> 296
5
                                                                            10
     <210> 297
     <211> 12
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 12 is an amino acid
     <223> Internal fragment
     <400> 297
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                                                                     5
1
                                                                           10
     <210> 298
     <211> 111
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 11 is an amino acid
     <223> Internal fragment
     <400> 298
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                                                                     5
                                                                            10
1
     <210> 299
     <211> 10
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 10 is an amino acid
     <223> Internal fragment
     <400> 299
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                                                                     5
                                                                            10
     <210> 300
     <211> 9
     <212> PRT
```

<213>

<220>

<223> Internal fragment

<221> Xaa in locations 2 to 9 is an amino acid

```
<400> 300
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
      <210> 301
      <211> 8
      <212> PRT
      <213>
     <220>
      <221> Xaa in locations 2 to 8 is an amino acid
      <223> Internal fragment
     <400> 301
Cys Xaa Xaa Xaa Xaa Xaa Xaa
1
     <210> 302
     <211> 7
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 7 is an amino acid
     <223> Internal fragment
     <400> 302
Cys Xaa Xaa Xaa Xaa Xaa
1
     <210> 303
     <211> 6
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 6 is an amino acid
     <223> Internal fragment
     <400> 303
Cys Xaa Xaa Xaa Xaa
     <210> 304
     <211> 5
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 5 is an amino acid
```

5

5

5

<223> Internal fragment

```
<400> 304
Cys Xaa Xaa Xaa Xaa
     <210> 305
     <211> 4
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 4 is an amino acid
     <223> Internal fragment
     <400> 305
Cys Xaa Xaa Xaa
     <210> 306
     <211> 3
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 3 is an amino acid
     <223> Internal fragment
     <400> 306
Cys Xaa Xaa
1
     <210> 307
     <211> 2
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 2 is an amino acid
     <223> Internal fragment
     <400> 307
Cys Xaa
1
     <210> 308
     <211> 8
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 8 is an amino acid
     <223> Internal fragment
```

```
<400> 308
Cys Xaa Xaa Xaa Xaa Xaa Xaa
     <210> 309
      <211> 7
      <212> PRT
      <213>
     <220>
     <221> Xaa in locations 2 to 6 is an amino acid
     <223> Internal fragment
     <400> 309
Cys Xaa Xaa Xaa Xaa Cys
     <210> 310
     <211> 6
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 5 is an amino acid
     <223> Internal fragment
     <400> 310
Cys Xaa Xaa Xaa Cys
     <210> 311
     <211> 5
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 4 is an amino acid
     <223> Internal fragment
     <400> 311
Cys Xaa Xaa Xaa Cys
1
     <210> 312
     <211> 23
     <212> PRT
     <213>
     <221> Xaa in locations 1 to 3 and locations 5 to 23 is an amino acid
```

5

5

5

<223> Internal fragment

<400> 312 10 Xaa Xaa Xaa Xaa Xaa Xaa <210> 313 <211> 22 <212> PRT <213> <220> <221> Xaa in locations 1 to 3 and locations 5 to 22 is an amino acid <223> Internal fragment <400> 313 5 10 Xaa Xaa Xaa Xaa Xaa 20 <210> 314 <211> 21 <212> PRT <213> <220> <221> Xaa in locations 1 to 3 and locations 5 to 21 is an amino acid <223> Internal fragment <400> 314 5 10 Xaa Xaa Xaa Xaa 20 <210> 315 <211> 20 <212> PRT <213> <220>

<221> Xaa in locations 1 to 3 and locations 5 to 20 is an amino acid

10

Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Eas Xaa Xaa Xaa Xaa

70016337v1

<223> Internal fragment

<400> 315

```
Xaa Xaa Xaa Xaa
         20
    <210> 316
    <211> 19
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 19 is an amino acid
    <223> Internal fragment
    <400> 316
5
1
                                                             10
Xaa Xaa Xaa
    <210> 317
    <211> 18
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 18 is an amino acid
    <223> Internal fragment
    <400> 317
5
1
                                                             10
Xaa Xaa
    <210> 318
    <211> 17
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 17 is an amino acid
    <223> Internal fragment
    <400> 318
1
                                                        5
                                                             10
Xaa
```

70016337v1

<210> 319 <211> 16 <212> PRT <213>

1

```
<220>
    <221> Xaa in locations 1 to 3 and locations 5 to 16 is an amino acid
    <223> Internal fragment
    <400> 319
5
                                                            10
    <210> 320
    <211> 15
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 15 is an amino acid
    <223> Internal fragment
    <400> 320
10
    <210> 321
    <211> 14
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 14 is an amino acid
    <223> Internal fragment
    <400> 321
5
                                                            10
    <210> 322
    <211> 13
    <212> PRT
    <213>
    <220>
    <221> Xaa in locations 1 to 3 and locations 5 to 13 is an amino acid
    <223> Internal fragment
    <400> 322
5
1
                                                             10
    <210> 323
    <211> 13
    <212> PRT
    <213>
```

```
<220>
      <221> Xaa in locations 1 to 3 and locations 5 to 12 is an amino acid
      <223> Internal fragment
      <400> 323
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                                                                            5
                                                                                   10
      <210> 324
      <211> 11
      <212> PRT
      <213>
      <220>
      <221> Xaa in locations 1 to 3 and locations 5 to 11 is an amino acid
      <223> Internal fragment
      <400> 324
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa
                                                                            5
                                                                                   10
 1
      <210> 325
      <211> 10
      <212> PRT
      <213>
      <220>
      <221> Xaa in locations 1 to 3 and locations 5 to 10 is an amino acid
      <223> Internal fragment
      <400> 325
Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa
                                                                            5
                                                                                   10
      <210> 326
      <211> 5
      <212> PRT
      <213>
      <220>
      <221> Xaa in locations 2 to 5 is an amino acid
      <223> Internal fragment
      <400> 326
Cys Xaa Xaa Xaa Xaa
                                                                            5
      <210> 327
      <211> 4
      <212> PRT
      <213>
```

```
<220>
      <221> Xaa in locations 2 to 4 is an amino acid
      <223> Internal fragment
      <400> 327
Cys Xaa Xaa Xaa
1
     <210> 328
     <211> 6
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 6 is an amino acid
     <223> Internal fragment
     <400> 328
Cys Xaa Xaa Xaa Xaa
                                                                             5
1
     <210> 329
     <211> 5
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 5 is an amino acid
     <223> Internal fragment
     <400> 329
Cys Xaa Xaa Xaa Xaa
                                                                             5
     <210> 330
     <211> 4
     <212> PRT
     <213>
     <220>
     <221> Xaa in locations 2 to 4 is an amino acid
     <223> Internal fragment
     <400> 330
Cys Xaa Xaa Xaa
1
     <210> 331
     <211> 15
     <212> PRT
     <213>
```

```
<220>
     <221> Xaa in location 2 and locations 4 to 15 is an amino acid
     <223> Internal fragment
     <400> 331
5
                                                                           10
     <210> 332
     <211> 14
     <212> PRT
     <213>
     <220>
     <221> Xaa in location 2 and locations 4 to 14 is an amino acid
     <223> Internal fragment
     <400> 332
Cys Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
1
                                                                     5
                                                                            10
     <210> 333
     <211> 8
     <212> PRT
     <213>
     <220>
     <221> Xaa in location 2 to 8 is an amino acid
     <223> Internal fragment
     <400> 333
Cys Xaa Xaa Xaa Xaa Xaa Xaa
                                                                     5
     <210> 334
     <211> 7
     <212> PRT
     <213>
     <220>
     <221> Xaa in location 2 to 7 is an amino acid
     <223> Internal fragment
     <400> 334
Cys Xaa Xaa Xaa Xaa Xaa
1
                                                                     5
     <210> 335
     <211> 6
     <212> PRT
     <213>
```

	<220> <221> <223>	Xaa in location 2 to 6 is an amino acid Internal fragment		
	<400>	335		
Cys 1	Xaa Xaa	Xaa Xaa Xaa	5	
	<210><211><211><212><213>	26		
	<220> <221> <223>	Xaa in location 2 to 26 is an amino acid Internal fragment		
	<400>	336		
Cys 1	Xaa Xaa	Xaa	5	10
Xaa	Xaa Xaa	Xaa Xaa Xaa Xaa Xaa Xaa 20	25	
	<210><211><212><213>	25		
	<220> <221> <223>	Xaa in location 2 to 25 is an amino acid Internal fragment		
	<400>	337		
Cys 1	Xaa Xaa	Xaa	5	10
Xaa	Xaa Xaa	Xaa Xaa Xaa Xaa Xaa 20	25	
	<210><211><212><213>	24		
	<220><221><223>	Xaa in location 2 to 24 is an amino acid Internal fragment		
	<400>	338		
Cys 1	Xaa Xaa	Xaa	5	10

```
Xaa Xaa Xaa Xaa Xaa Xaa Xaa
         20
    <210> 339
    <211> 23
    <212> PRT
    <213>
    <220>
    <221> Xaa in location 2 to 23 is an amino acid
    <223> Internal fragment
    <400> 339
10
                                                       5
Xaa Xaa Xaa Xaa Xaa Xaa
         20
    <210> 340
    <211> 22
    <212> PRT
    <213>
    <220>
    <221> Xaa in location 2 to 22 is an amino acid
    <223> Internal fragment
    <400> 340
5
                                                            10
Xaa Xaa Xaa Xaa Xaa
         20
    <210> 341
    <211> 21
    <212> PRT
    <213>
    <220>
    <221> Xaa in location 2 to 21 is an amino acid
    <223> Internal fragment
    <400> 341
5
                                                            10
Xaa Xaa Xaa Xaa
         20
    <210> 342
    <211> 20
```

```
<212> PRT
    <213>
    <220>
    <221> Xaa in location 2 to 20 is an amino acid
    <223> Internal fragment
    <400> 342
1
                                                             10
Xaa Xaa Xaa Xaa
    <210> 343
    <211> 19
    <212> PRT
    <213>
    <220>
    <221> Xaa in location 2 to 19 is an amino acid
    <223> Internal fragment
    <400> 343
1
                                                        5
                                                             10
Xaa Xaa Xaa
    <210> 344
    <211> 18
    <212> PRT
    <213>
    <220>
    <221> Xaa in location 2 to 18 is an amino acid
    <223> Internal fragment
    <400> 344
5
                                                             10
Xaa Xaa
    <210> 345
    <211> 17
    <212> PRT
    <213>
    <220>
    <221> Xaa in location 2 to 17 is an amino acid
    <223> Internal fragment
```

```
<400> 345
```

Cys Xaa Xaa 1	Xaa	5	10
Xaa			
<210> <211> <212> <213>	16 PRT		
<220> <221> <223>	Xaa in location 2 to 16 is an amino acid Internal fragment		
<400>	346		
Cys Xaa Xaa 1	Xaa	5	10
<210> <211> <212> <213>	15 PRT		
<220> <221> <223>	Xaa in location 2 to 15 is an amino acid Internal fragment		
<400>	347		
Cys Xaa Xaa 1	Xaa	5	10
<210> <211> <212> <213>	14 PRT		
<220> <221> <223>	Xaa in location 2 to 14 is an amino acid Internal fragment		
<400>	348		
Cys Xaa Xaa 1	Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa	5	10
<210> <211> <212> <213>	13 PRT		
<220> <221>	Xaa in location 2 to 13 is an amino acid		

```
<223> Internal fragment
     <400> 349
10
     <210> 350
     <211> 12
     <212> PRT
     <213>
    <220>
     <221> Xaa in location 2 to 12 is an amino acid
     <223> Internal fragment
     <400> 350
5
                                                                       10
     <210> 351
     <211> 11
     <212> PRT
     <213>
     <220>
     <221> Xaa in location 2 to 11 is an amino acid
     <223> Internal fragment
     <400> 351
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                                                                       10
     <210> 352
     <211> 10
     <212> PRT
     <213>
     <220>
     <221> Xaa in location 2 to 10 is an amino acid
     <223> Internal fragment
     <400> 352
Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                                                                 5
                                                                       10
     <210> 353
     <211> 9
     <212> PRT
     <213>
     ∢220>
     <221> Xaa in location 2 to 9 is an amino acid
```

```
<223> Internal fragment
                   <400> 353
            ₹;s Xaa Xaa Xaa Xaa Xaa Xaa Xaa
                                                                                                  5
                   <210> 354
                   <211> 8
                   <212> PRT
                   <213>

<220>
<221> Xaa in location 2 to
<223> Internal fragment

<400> 354

Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
1
                  <221> Xaa in location 2 to 8 is an amino acid
                                                                                                  5
                   <210> 355
                   <211> 7
                   <212> PRT
                   <213>
                   <220>
                   <221> Xaa in location 2 to 7 is an amino acid
                   <223> Internal fragment
                   <400> 355
            Cys Xaa Xaa Xaa Xaa Xaa
                                                                                                  5
                   <210> 356
                   <211> 6
                   <212> PRT
                   <213>
                   <220>
                   <221> Xaa in location 2 to 6 is an amino acid
                   <223> Internal fragment
                   <400> 356
            Cys Xaa Xaa Xaa Xaa
                                                                                                  5
```