

Capstone Project

Building a System for Collecting and Processing Electrical Energy Data at Level of a City and Internal of Buildings

Supervisor: Co-Supervisors: Ph.D. **LE Quoc-Huy**

Assoc. Prof. **Benoit DELINCHANT**Research Director **Frédéric WURTZ**

Student:

HO Vu Duy Bao

Class:

15PFIEV2

Plan

I. Introduction

- 1. Context of project
- 2. Project's objectives

II. Analysing System and Building Hardware

- 1. Linky smart meter and LinkyTIC
- 2. GeeLink

III. From LoRa to Application Server

- 1. InfoTIC and TTN
- 2. Application server

IV. Review and Prospects

Introduction

Smart city

Energy distribution:

Decentralization!!!

- → Complex set of producers and consumers
- → Difficult to manage

Solution?

Introduction

A system:

- → Private communication network
- → Manage users' energy consumption

The first step to build this system

Framework of project:

Collect and Process energy data at level of a city and internal of buildings

- Collect and secure transmitted data
- Backup in a digital safe with secure access using API
- Data processing and visualization

The basic requirements

Architecture of the system

Linky smart meter

- Retrieve historical power consumption data
- Control electrical appliances in customers' homes
- Measure both of the electrical production and consumption
- Receive bills based on the actual consumption

AlimTIC

Specification	Value	
Power source	Minimum 130 mW	
Voltage	6 Vrms +/- 10%	
	(max 12V peak)	
Frequency	50 kHz	

μController & LoRa module

AlimTIC Emulation

- Vrms = 6 Volts
- Freq. = 50 kHz

Rectifier and Regulator

$$V_O = 1.25 \times \left(1 + \frac{R_2}{R_1}\right) + I_{Adj} \times R_2 = 3V3$$

3D Model

Result

No-load Output Voltage

Power consumption of RFM95W

consumes 1,6 mA.

However, for the *joining request*, it takes...

~80 mA

Series of 5 capacitors 4700µF vs Supercapacitor

Supercapacitor **1 Farad**Time to fully charge from 0V to 3,3V is **14 minutes**

Output current from TIC: ~40mA

Consumption of Low-Power mode on Pro Mini

Only Arduino Pro Mini @3.3V (8Mhz)	Keep power LED		Removed power LED	
	"Active" mode	Low-Power mode	"Active" mode	Low-Power mode
	6,34 mA	1,86 mA	4,18 mA	83,4 μΑ
	5,48 mA	1,45 mA	3,96 mA	81,6 μΑ

PCB Antenna 868MHz

RFM95W footprint + PCB Antenna 868MHz

From LoRa to Application server Review and Prospects

InfoTIC

ASK Modulation.

4....

Carrier Frequency: 50kHz

Physical Specification:

- Vevh0 = 25 Volts

VevI0 = 0.8 Volts

· Vevh1 = 0.4 Volts

 \cdot Tev0 = Tev1 = 50 µs

Demodulation & Decoding

Combination

InfoTIC mode Historic

Example of a frame from LinkyTIC in Historic mode:

IINST: instantaneous current in A,

PAPP: apparent power in VA,

HCHC: Off-peak hours index in Wh,

HCHP: Full hours index in Wh,

Group of Data:

LF(0x0A)	Label	SP(0x20)	DATA	SP(0x20)	Checksum	CR(0x0D)
	HCHP		000927475		5	

STX

ADCO 061864103475 D

OPTARIF HC.. <

ISOUSC 30 9

HCHC 003640462

HCHP 000927475 5

PTEC HP..

IINST 002 Y

IMAX 090 H

PAPP 00390 -

HHPHC A ,

MOTDETAT 000000 B

TTN Mapper & LoRaWAN gateway

The Things Network server

OPEN, *free-to-use* community network server.

Payload decoder on TTN

Payload Format

The payload format sent by your devices

Payload decoder on TTN

Payload

00 01 80 01 00 2D 02 00 27 8D 03 00 00 41 34 30 04 00 00 56 5A 97 05 00 00 97 8E C7 06 00 00


```
{
   "BASE (in KWh)": 9932.487,
   "HCHC (in KWh)": 4273.2,
   "HCHP (in KWh)": 5659.287,
   "IINST (in A)": 45,
   "PAPP (in VA)": 10125,
   "PTEC": 0,
   "VccTIC (in V)": 3.84
}
```


System Flowchart

from LinkyTIC to TTN

Node-RED on Application server

InfluxDB & Grafana

4	127.0.0	0.1:808	6/geelink gee	link1	
	Properties			•	
	≅ Server	127.0.0.1:8	3086/geelink	•	
	3 Measurement	geelink1			

InfluxDB & Grafana

Linky TIC

Review and Prospects

From LoRa to Application server Review and Prospects

GeeLink v1.0