III Probabilités conditionnelles

III Probabilités conditionnelles

1) Définition :

	B_1 ($1^{\text{ière}}$ année)	B_2	B_3	Total
F (Formation initiale)	56	62	48	166
A (Alternants)	8	10	12	30
Total	64	72	60	196

	B_1 (1 ^{ière} année)	B_2	B_3	Total
F (Formation initiale)	56	62	48	166
A (Alternants)	8	10	12	30
Total	64	72	60	196

$$P(B_2 \cap F) = \frac{62}{196} \left(= \frac{31}{98} \right)$$

	B_1 (1 ^{ière} année)	B_2	B_3	Total
F (Formation initiale)	56	62	48	166
A (Alternants)	8	10	12	30
Total	64	72	60	196

$$P(B_2 \cap F) = \frac{62}{196} \left(= \frac{31}{98} \right)$$

$$P(F) = \frac{166}{196} \left(= \frac{83}{98} \right)$$

	B_1 ($1^{ m ière}$ année)	B_2	B_3	Total
F (Formation initiale)	56	62	48	166
A (Alternants)	8	10	12	30
Total	64	72	60	196

$$P(B_2 \cap F) = \frac{62}{196} \left(= \frac{31}{98} \right)$$

$$P(F) = \frac{166}{196} \left(= \frac{83}{98} \right)$$

$$P_F(B_2) = \frac{62}{166} \left(= \frac{31}{83} \right)$$

	B_1 $(1^{i\grave{e}re}$ année)	B_2	B_3	Total
F (Formation initiale)	56	62	48	166
A (Alternants)	8	10	12	30
Total	64	72	60	196

$$P(B_2 \cap F) = \frac{62}{196} \left(= \frac{31}{98} \right)$$

$$P(F) = \frac{166}{196} \left(= \frac{83}{98} \right)$$

$$P_F(B_2) = \frac{62}{166} \left(= \frac{31}{83} \right)$$

$$\frac{P(B_2 \cap F)}{P(F)} =$$

	B_1 ($1^{ m ière}$ année)	B_2	B_3	Total
F (Formation initiale)	56	62	48	166
A (Alternants)	8	10	12	30
Total	64	72	60	196

$$P(B_2 \cap F) = \frac{62}{196} \left(= \frac{31}{98} \right)$$

$$P(F) = \frac{166}{196} \left(= \frac{83}{98} \right)$$

$$P_F(B_2) = \frac{62}{166} \left(= \frac{31}{83} \right)$$

$$\frac{P(B_2 \cap F)}{P(F)} = \frac{\frac{62}{196}}{\frac{166}{196}} =$$

	B_1 $(1^{ m ière}$ année)	B_2	B_3	Total
F (Formation initiale)	56	62	48	166
A (Alternants)	8	10	12	30
Total	64	72	60	196

$$P(B_2 \cap F) = \frac{62}{196} \left(= \frac{31}{98} \right)$$

$$P(F) = \frac{166}{196} \left(= \frac{83}{98} \right)$$

$$P_F(B_2) = \frac{62}{166} \left(= \frac{31}{83} \right)$$

$$\frac{P(B_2 \cap F)}{P(F)} = \frac{\frac{62}{196}}{\frac{166}{196}} = \frac{62}{166} =$$

	B_1 $(1^{ m ière}$ année)	B_2	B_3	Total
F (Formation initiale)	56	62	48	166
A (Alternants)	8	10	12	30
Total	64	72	60	196

$$P(B_2 \cap F) = \frac{62}{196} \left(= \frac{31}{98} \right)$$

$$P(F) = \frac{166}{196} \left(= \frac{83}{98} \right)$$

$$P_F(B_2) = \frac{62}{166} \left(= \frac{31}{83} \right)$$

$$\frac{P(B_2 \cap F)}{P(F)} = \frac{\frac{62}{196}}{\frac{166}{196}} = \frac{62}{166} = P_F(B_2)$$

<u>Définition</u>: Soient A et B deux événements avec P(B) > 0.

La probabilité conditionnelle de *A* sachant *B* est donnée par

$$P_B(A) = P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Remarque : Si A et B sont deux événements de probabilités non nulles, alors

$$P(A \cap B) = P_B(A) \times P(B)$$
 et $P(A \cap B) = P_A(B) \times P(A)$.

Exemple: Une urne contient dix jetons : 2 bleus, 5 noirs et 3 rouges. On effectue 2 tirages sans remise. On note B_1 l'événement "obtenir un jeton bleu au premier tirage". On définit de façon analogue B_2 , N_1 , N_2 , R_1 et R_2 . Calculer $P(N_1 \cap B_2)$.

$$P(N_1 \cap B_2) = P_{N_1}(B_2) \times P(N_1) = \frac{2}{9} \times \frac{1}{2} = \frac{1}{9}.$$

2) Formule des probabilités totales :

2) Formule des probabilités totales :

Définition : Une partition d'un univers Ω est une suite d'événement $(B_i)_{i\in I}$ vérifiant $B_i \cap B_j = \emptyset$ pour tout $i \neq j$ et $\bigcup B_i = \Omega$.

Proposition : (Formule des probabilités totales)

Soit $(B_i)_{i\in I}$ une partition finie ou dénombrable de Ω telle que pour tout i, $P(B_i) > 0$.

Pour tout événement
$$A$$
,

$$P(A) = \sum P(A \cap B_i)$$
 c'est à dire

$$P(A) = \sum_{i \in I} P_{B_i}(A) P(B_i).$$

Exemple: On reprend la situation précédente. Quelle est la probabilité de tirer un jeton bleu au second tirage? D'après la formule des probabilités totales, $P(B_2) = P(B_2 \cap B_1) + P(B_2 \cap N_1) + P(B_2 \cap R_1)$ $= P_{B_1}(B_2)P(B_1) + P_{N_1}(B_2)P(N_1) +$ $P_{R_1}(B_2)P(R_1) = \frac{1}{9} \times \frac{1}{5} + \frac{2}{9} \times \frac{1}{2} + \frac{2}{9} \times \frac{3}{10}$

Remarque : B et B forme une partition de l'univers. Dans ce cas, la formule des probabilités totales s'écrit : $P(A) = P(A \cap B) + P(A \cap \overline{B})$

Remarque : B et \overline{B} forme une partition de l'univers. Dans ce cas, la formule des probabilités totales s'écrit :

$$P(A) = P(A \cap B) + P(A \cap \overline{B})$$

= $P_B(A)P(B) + P_{\overline{B}}(A)P(\overline{B})$

3) Formule de Bayes :

Proposition: (Formule de Bayes)
Soit $(A_i)_{i \in I}$ une partition finie ou dénombrable de Ω et soit B tel que P(B) > 0.
Pour tout i, on a: $P_{P}(A_i) = \frac{P(A_i)P_{A_i}(B)}{P_{A_i}(B)}$

Pour tout
$$i$$
, on a:

$$P_B(A_i) = \frac{P(A_i)P_{A_i}(B)}{\sum_{j \in I} P_{A_j}(B)P(A_j)}.$$