Computer Vision and Image Processing

Gil Ben-Artzi

Agenda

- Topic 1
 - Image Enhancement: histogram, quantization
- Topic 2
 - Filtering: smoothing, median filtering, sharpening
 - Low level detection: Template matching, Edges, Line, Circles
- Topic 3
 - Image Pyramids and Blending,
- Topic 4
 - Optical Flow
- Topic 5
 - Geometry: 2D Transformations, Image Warping

Image Warping

Image Warping: 2D->2D

Image Warping

image filtering: change the *intensities* of the image

$$g(x,y) = T(f(x,y))$$

image warping: change the *coordinates* of the image

$$g(x,y) = f(T(x,y))$$

Image Warping

Transformation T is a **coordinate-changing** machine:

$$p' = T(p)$$

- Two types of transformations
 - Local
 - Global
- Local transformation is different for each position and is usually described as a vector field (Flow)

Global Parametric Warping

Global transformation T:

- Has the same form for any point p
- Determined by just a few numbers (parameters)

We will represent T by a matrix: p' = Mp

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{M} \begin{bmatrix} x \\ y \end{bmatrix}$$

Global Parametric Warping

Examples of parametric warps:

translation

scaling

rotation

mirror

shear

perspective

Translation

Translation of a coordinate means adding a scalar to each of its components:

Q: How to represent in matrix form?

Scaling

Scaling a coordinate means multiplying each of its components by a scalar

Uniform scaling means this scalar is the same for all components (dimensions):

Scaling

Non-uniform scaling: different scalars per component (dimension):

Scaling

$$x' = ax$$

$$y' = by$$

In matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

scaling matrix S

(What is the inverse of S?)

2-D Rotation

2-D Rotation

$$x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)$$

 $y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)$

Substitute...

$$x' = x \cos(\theta) - y \sin(\theta)$$

 $y' = x \sin(\theta) + y \cos(\theta)$

2-D Rotation

This is easy to capture in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Even though $sin(\theta)$ and $cos(\theta)$ are nonlinear functions of θ ,

- x' is a linear combination of x and y
- y' is a linear combination of x and y

What is the inverse transformation?

- Rotation by $-\theta$
- For rotation matrices, $\det(R) = 1$ so $\mathbf{R}^{-1} = \mathbf{R}^T$

$$\mathbf{R}^{-1} = \mathbf{R}^T$$

Which types of transformations can be represented by 2x2 matrices?

2D Identity:

$$x' = x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Scale around (0,0):

$$x' = s_x \cdot x$$
$$y' = s_y \cdot y$$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} \mathbf{s}_x & 0 \\ 0 & \mathbf{s}_y \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

Which types of transformations can be represented by 2x2 matrices?

2D Rotate around (0,0):

$$x' = \cos\Theta \cdot x - \sin\Theta \cdot y$$

$$y' = \sin \Theta \cdot x + \cos \Theta \cdot y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Shear:

$$x' = x + sh_x \cdot y$$

$$y' = sh_y \cdot x + y$$

$$\begin{bmatrix} \mathbf{x'} \\ \mathbf{y'} \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x \\ s\mathbf{h}_y & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

→ → x Shear along x axis

Which types of transformations can be represented by 2x2 matrices?

2D Mirror over the Y axis:

$$x' = -x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Mirror over (0,0):

$$x' = -x$$
$$y' = -y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Which types of transformations can be represented by 2x2 matrices?

2D Translation?

$$x' = x + t_x$$
 $y' = y + t_y$
NO!

2D translation is not a linear transformation from R² to R²! (e.g. it is not homogenous)

All 2D Linear Transformations

Linear transformations are combinations of scale, rotation and shear.

Properties of linear transformations:

 $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved along lines
- Closed under composition:
- Easy to find inverse when nonsingular

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} i & j \\ k & l \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Q: How can we represent translation as a 3x3 matrix?

$$x' = x + t_x$$
$$y' = y + t_y$$

A: Add a 3rd coordinate to every 2D point

represent coordinates in 2 dimensions with a 3-vector

Scalar multiplication does not change the point:

$$\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \cong \begin{pmatrix} 2x \\ 2y \\ 2 \end{pmatrix} \cong \begin{pmatrix} 3.5x \\ 3.5y \\ 3.5 \end{pmatrix} \cong \begin{pmatrix} \lambda x \\ \lambda y \\ \lambda \end{pmatrix}$$

are all equivalent to
$$\begin{pmatrix} x \\ y \end{pmatrix}$$

Add a 3rd coordinate to every 2D point

- (x, y, w) represents a point at location (x/w, y/w)
- (x, y, 0) represents a point at infinity
- (0, 0, 0) is not allowed

Convenient coordinate system to represent many useful transformations

Q: How can we represent translation as a 3x3 matrix?

$$x' = x + t_x$$
$$y' = y + t_y$$

A: Using the rightmost column

$$\mathbf{T}ranslation = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Translation: Example

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix}$$

Homogeneous Coordinates

Basic 2D Transformations

Basic 2D transformations as 3x3 matrices

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & sh_x & 0 \\ sh_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Rotate

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{x} & 0 & 0 \\ 0 & \mathbf{s}_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Scale

$$\begin{bmatrix} \mathbf{x'} \\ \mathbf{y'} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x & 0 \\ s\mathbf{h}_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Shear

Matrix Composition

Transformations can be combined by matrix multiplication:

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$\mathbf{p}' = \mathsf{T}(\mathsf{t}_{\mathsf{x}},\mathsf{t}_{\mathsf{y}}) \qquad \mathsf{R}(\mathsf{Q}) \qquad \mathsf{S}(\mathsf{s}_{\mathsf{x}},\mathsf{s}_{\mathsf{y}}) \qquad \mathbf{p}$$

Advantages:

- General purpose representation
- Hardware implementation

Be aware: the order is important!

p' = TRSp

Matrix multiplication is not commutative

Rigid Transformations

Combination of translation and rotation

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & t_x \\ \sin(\theta) & \cos(\theta) & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- # Parameters: 3 (t_x, t_y, θ)
- Preserves all information except of orientation (lengths, angles etc.)

Similarity Transformations

Combination of translation, rotation and uniform scaling

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} s \cdot \cos(\theta) & -s \cdot \sin(\theta) & t_x \\ s \cdot \sin(\theta) & s \cdot \cos(\theta) & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- •# Parameters: 4 (s, t_x , t_y , θ)
- Preserves proportions and angles, but not lengths and orientation

Similarity Transformations

When do we meet them?

When the camera is scanning a plane in parallel

Change of Coordinates

What is the meaning of transforming one image to the other?

- We change the coordinate system of one to the other
- Translation as an example

Image warping

Given a coordinate transform (x',y') = T(x,y) and a source image f(x,y), how do we compute a transformed image g(x',y') = f(x,y)?

Important Note: T can be either a function (like we saw before) or any other mapping, i.e. flow field

Forward warping

Send each pixel (x,y) to its corresponding location (x',y') = T(x,y) in the second image

Q: what if pixel lands "between" two pixels?

Q: what about "holes" between pixels?

Forward warping

Send each pixel f(x,y) to its corresponding location (x',y') = T(x,y) in the second image

Q: what if pixel lands "between" two pixels?

A: distribute its color among the neighboring pixels of (x',y')

Known as "splatting"

Backward (inverse) warping

Get each pixel (x',y') from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image

Q: what if pixel comes from "between" two pixels?

Inverse warping

Get each pixel g(x',y') from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image

Q: what if pixel comes from "between" two pixels?

A: Interpolate the color value from its neighbors

nearest neighbor, bilinear, bicubic, Gaussian

Bilinear interpolation

Sampling at f(x,y):

$$f(x,y) = (1-a)(1-b) f[i,j] +a(1-b) f[i+1,j] +ab f[i+1,j+1] +(1-a)b f[i,j+1]$$

Forward vs. inverse warping

Q: which is better?

A: usually inverse – eliminates holes

however, it requires an invertible warp function, which isn't always available.

OpenCV:

https://docs.opencv.org/3.4/d1/da0/tutorial_remap.html

https://docs.opencv.org/2.4/modules/imgproc/doc/geometric_transformations.html