

Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva Zavod za osnove elektrotehnike i električka mjerenja

2. TEMA

OSNOVNI MJERITELJSKI POJMOVI

Predmet "Mjerenja u elektrotehnici" Prof.dr.sc. Damir Ilić Zagreb, 2020.

Teme cjeline

- Međunarodni mjeriteljski dokumenti
- Osnovni mjeriteljski pojmovi vezani uz mjerenje
- Kako pristupiti mjerenju?
- Metoda najmanjih kvadrata
- Gaussova razdioba
- Studentova t-razdioba
- Slučajni i sustavni učinci

Osnovni mjeriteljski dokumenti

- Dva osnovna dokumenta, donesena s međunarodnom suglasnošću na svjetskoj razini:
- International vocabulary of metrology Basic and general concepts and associated terms (VIM), 3rd edition, JCGM 200:2012

Evaluation of measurement data – Guide to the expression of uncertainty in measurement, JCGM 100:2008

Na prikaznicama što slijede pojmovi su prevedeni na hrvatski jezik (to nije "službeni" prijevod)

- Mjeriteljstvo (metrology) znanost o mjerenju i njegovim primjenama
- Mjerenje (measurement) proces eksperimentalnog određivanja jedne ili više vrijednosti veličina koje se razumno mogu pridružiti veličini
- Vrijednost veličine (quantity value) svojstvo pojave, tijela ili tvari, gdje svojstvo ima velikoću koja se može izraziti brojem i referencom
 - referenca može biti mjerna jedinica, mjerni postupak, referentni materijal, ili njihova kombinacija
 - primjer: pad napona između točaka A i B u strujnom krugu je 1,2 V
 - generički koncept <u>veličine</u> (*value*) može se podijeliti na nekoliko specifičnih razina, npr.:
 - električni otpor R (općenito)
 - električni otpor otpornika u određenom krugu R_i (specifično)
 - koncentracija tvari (općenito)
 - Rockwell C tvrdoća (općenito)
 - ...

- Mjerena veličina (measurand) veličina koja se nastoji izmjeriti
 - mjerenje, uključujući mjerni sustav i uvjete pod kojima se ono provodi, može promijeniti svojstvo pojave, tijela ili tvari tako da se, veličina koja se izmjeri, može razlikovati od mjerene veličine
 - primjeri: spajanje voltmetra ili ampermetra u strujni krug
 - ključno razmatranje (ili problem mjerenja): kako definirati mjerenu veličinu za konkretno mjerenje
 - pitanje: kakve to ima veze s točnošću mjerenja?
- Utjecajna veličina (influence quantity) veličina koja, u izravnom mjerenju, ne utječe na veličinu koja se mjeri, ali utječe na odnos između pokazivanja i mjernog rezultata
 - ukratko, veličina koja nije mjerena veličina, ali utječe na mjerni rezultat
 - npr. temperatura mikrometra koji se rabi za mjerenje duljine
 - npr. frekvencija kod mjerenja amplitude izmjeničnog napona
 - > npr. okolišni uvjeti (temperatura, tlak, polje, i dr.)

- Mjerno načelo (measurement principle) pojava koja služi kao osnova za mjerenje
 - pojava može u svojoj prirodi biti fizikalna, kemijska ili biološka
 - npr. termoelektrički efekt za mjerenje temperature
- Mjerna metoda (measurement method) općeniti opis logičkog slijeda djelovanja koji se rabi za mjerenje
 - to može biti izravna metoda, ništična metoda, metoda zamjene, i dr.
- Mjerni postupak (measurement procedure) detaljan opis mjerenja prema jednom ili više mjernih postupaka i prema određenoj mjernoj metodi, koji se temelji na mjernom modelu i uključuje sve izračune kako bi se odredio mjerni rezultat
 - redovito treba biti toliko detaljno dokumentiran koliko je potrebno da mjeritelj obavi mjerenje

- Prava vrijednost veličine (true quantity value) vrijednost veličine u skladu s definicijom veličine
 - valja prepoznati da, zbog svojstveno nekompletne količine detalja u definiciji veličine, postoji ne jedna prava vrijednost veličine, već niz pravih vrijednosti veličine; međutim, on se u načelu i u praksi ne može spoznati
 - ako je nesigurnost definicije veličine pridružena mjerenoj veličini zanemarivo malena u usporedbi s ostalim sastavnicama mjerne nesigurnosti, možemo smatrati da postoji "zapravo jedinstvena" prava vrijednost veličine
- Dogovorna vrijednost veličine (conventional quantity value) vrijednost veličine dogovorom pridijeljena veličini za određenu svrhu
 - \triangleright npr. normirano ubrzanje slobodnoga pada $g_n = 9,806 65 \text{ m} \cdot \text{s}^{-2}$

- Mjerni rezultat (measurement result) niz vrijednosti veličine pridružen mjerenoj veličini zajedno s bilo kojom pripadajućom raspoloživom informacijom
 - općenito, iskaz mjernog rezultata čini izmjerena vrijednost veličine i mjerna nesigurnost
 - iznimno, ako je mjerna nesigurnost zanemariva za određene namjene,
 može se izostaviti (taj slučaj nas u pravilu ne zanima)
- Izmjerena vrijednost veličine (measured quantity value) vrijednost veličine predstavljena mjernim rezultatom
 - ako je opseg pravih vrijednosti veličine, koji predstavlja mjerenu veličinu, mali u usporedbi s mjernom nesigurnošću, izmjerena vrijednost veličine može se smatrati procjenom "zapravo jedinstvene" prave vrijednosti veličine
 - smatramo da je to "procjena vrijednosti mjerene veličine", ili jednostavnije, "procjena mjerene veličine"

- Mjerna točnost (measurement accuracy) bliskost slaganja izmjerene vrijednosti veličine (measured quantity value) i prave vrijednost veličine (true quantity value) mjerene veličine (measurand)
 - općenito, mjerna točnost nije veličina i ne daje joj se brojčana vrijednost
 - kaže se da je mjerenje točnije ako nudi manju mjernu pogrešku
- Mjerna preciznost (measurement precision) bliskost slaganja izmjerenih vrijednosti veličinâ kod ponovljenih mjerenja na istim ili sličnim objektima pod određenim uvjetima
 - mjerna preciznost obično se iskazuje brojčano mjerom nepreciznosti, kao što je standardno odstupanje, varijanca, ili dr.
 - "određeni uvjeti" mogu biti ponovljivi uvjeti mjerenja ili obnovljivi uvjeti mjerenja
 - mjerna preciznost koristi se za definiranje mjerne ponovljivosti

- Mjerna nesigurnost (measurement uncertainty) nenegativni parametar koji označuje rasipanje vrijednosti veličina pridruženih mjerenoj veličini, temeljen na uporabljenim informacijama
 - sadrži sastavnice koje se pojavljuju kao sustavni učinci (ispravci, vrijednosti mjernih etalona, i dr.)
 - u načelu sadrži više sastavnica, ili vrste A ili vrste B, a svaka od njih predočuje se kao standardna nesigurnost (o čemu ćemo još učiti)
 - smatra se da se mjerna nesigurnost navodi uz iskazanu vrijednost veličine koja je pridružena mjerenoj veličini

u užem smislu: to je brojčana mjera u konceptualnom smislu: to je "sumnja u ispravnost rezultata"

Utjecaj mjerne nesigurnosti

Usporedba dvaju uzoraka

Utjecaj mjerne nesigurnosti

Usporedba dvaju uzoraka

Utjecaj mjerne nesigurnosti

- Što možemo zaključiti iz ovih primjera?
 - 1. Mjerni rezultat bez iskazane mjerne nesigurnosti zapravo je nekompletan!
 - 2. Mjerni rezultat bez iskazane mjerne nesigurnosti može upućivati na sasvim krive zaključke!
 - 3. Mjernu nesigurnost trebamo (moramo) izračunati!
 - 4. Da bismo mogli uspoređivati kakvoću (ispravnost) mjernih rezultata, treba postojati jednoznačan postupak računanja mjerne nesigurnosti!

- Referentna vrijednost veličine (reference quantity value) vrijednost veličine koja se koristi kao osnova za usporedbu vrijednosti veličina iste vrste
 - referentna vrijednost veličine može biti prava vrijednost veličine (koja je nepoznata), ili dogovorna vrijednost veličine (koja je poznata)
 - > referentna vrijednost veličine s **pridruženom mjernom nesigurnošću** obično se daje s referencom na usporedbu s mjernim etalonom
 - praktično razmatranje: ako je prava vrijednost veličine nepoznata (što je redovit slučaj) referentnu vrijednost veličine s pridruženom mjernom nesigurnošću možemo koristiti kao vrijednost koja nadomješta pravu vrijednost, ako je za određenu namjenu i u određenom slučaju pripadna mjerna nesigurnost prihvatljiva (tj. "dovoljno mala")

- Mjerna pogreška (measurement error) izmjerena vrijednost veličine minus referentna vrijednost veličine
 - pogreška:

$$E_X = X - X_{ref}$$

> relativna pogreška:

$$e_X = (X - X_{ref}) / X_{ref}$$

> relativna postotna pogreška:

$$e_{X\%} = [(X - X_{ref}) / X_{ref}] \cdot 100 \%$$

- pojam "izmjerena vrijednost" ovdje se odnosi na mjerila, a kad se radi o mjerama umjesto "izmjerene vrijednosti" u gornjim izrazima stoji "naznačena vrijednost"
- ovdje smo pogrešku označili velikim slovom "E" (prema eng. "error") kad označava veličinu te malim slovom "e" kad označava relativnu veličinu; mogli smo je označiti i npr. kao:

$$E_X = p_X = X_p$$
 $e_X = p_{Xr} = X_{pr}$

- Sustavna mjerna pogreška (systematic measurement error) sastavnica mjerne pogreške koja u ponovljenim mjerenjima ostaje stalna ili se mijenja na predvidljiv način
 - može biti poznata ili nepoznata; za poznate se može primijeniti ispravak
 - općenito nastaje zbog nesavršenosti mjerila, instrumenata i mjernog postupka
 - u nepromijenjenim uvjetima najčešće ostaje stalna po veličini i predznaku
 - primjer: utjecajne veličine koje utječu na pokazivanje mjernih instrumenata (frekvencija, strano magnetsko i električno polje, temperatura i tlak okoline, i dr.)
 - primjer: neispravan instrument uvijek pokazuje krivo (to se ispravlja njegovim ugađanjem, ako je moguće, ili se kalibracijom utvrđuje njegova pogreška)

- Slučajna mjerna pogreška (random measurement error) sastavnica mjerne pogreške koja se u ponovljenim mjerenjima mijenja na nepredvidljiv način
 - posljedica je neobuhvatljivih i neizbježnih promjena koje nastaju u mjerilima i mjernom objektu
 - mijenja se po iznosu i predznaku te općenito čini mjerni rezultat nesigurnim
 - razdioba slučajnih pogrešaka niza ponovljenih mjerenja ima svoju varijancu i očekivanje (koje je općenito jednako 0)
 - njihov utjecaj može se smanjiti ponavljanjem mjerenja
 - zašto je to tako: pa sjetite se Brownovog gibanja

- Ispravak (correction) vrijednost koja kompenzira procijenjeni sustavni učinak
 - ako smo kod sustavne mjerne pogreške naveli da se za poznate pogreške može primijeniti ispravak, to znači da je po vrijednosti ispravak jednak pogrešci, no suprotnog je predznaka
 - to vrijedi i za veličine i za relativne veličine:

$$C_X = -E_X$$

$$c_X = -e_X$$

zbog toga za mjerila vrijedi:

ispravljena vrijednost = izmjerena vrijednost + ispravak

zbog toga za mjere vrijedi:

ispravljena vrijednost = naznačena vrijednost + ispravak

 analogno označavanju pogreške, ovdje smo korekciju označili velikim slovom "C" (prema eng. "correction") kad označava veličinu te malim slovom "c" kad označava relativnu veličinu; budući da znak korekcije nije normiran, mogli smo je označiti i kao:

$$C_X = k_X = X_k$$
 $c_X = k_{Xr} = X_{kr}$

Pogreška i ispravak - primjeri

Mjerila:

- pod mjerilima smatramo različite vrste mjernih instrumenata ili mjernih sustava
- neka je na umjeravanom voltmetru očitan napon U = 10,0025 V, a na referentnom voltmetru napon $U_{\text{ref}} = 10,0000 \text{ V}$ (kad su oni priključeni paralelno na isti napon)
- u tom su slučaju pogreška i relativna pogreška redom:

$$E_U = U - U_{\text{ref}} = 10,0025 \text{ V} - 10,0000 \text{ V} = 2,5 \text{ mV}$$

$$e_U = (U - U_{\text{ref}}) / U_{\text{ref}} = (10,0025 \text{ V} - 10,0000 \text{ V}) / 10,0000 \text{ V} = 2,5 \cdot 10^{-4}$$

nadalje, u tom su slučaju ispravak i relativni ispravak redom:

$$C_U = -E_U = -2.5 \text{ mV}$$

 $c_U = -e_U = -2.5 \cdot 10^{-4}$

• osim ovog preporučenog načina označavanja, za ovaj primjer u kojem se radi o naponu, mogli smo pogrešku i ispravak te njihove relativne vrijednosti označiti i kao: $E_U = p_U = U_p$; $C_U = k_U = U_k$

$$e_U = p_{Ur} = U_{pr}$$
; $c_U = k_{Ur} = U_{kr}$

Pogreška i ispravak - primjeri

· Mjere:

- pod mjerama smatramo različite vrste mjernih uređaja (npr. kalibratora) ili etalona (npr. otpora, napona) koji "generiraju" neku veličinu, odnosno imaju iskazanu naznačenu (postavljenu) vrijednost veličine
- neka je na umjeravanom etalonu otpora naznačena vrijednost R = 100 Ω , dok smo umjeravanjem referentnim mjernim etalonom utvrdili da je otpor umjeravanog etalona $R_{\rm ref}$ = 100,0043 Ω
- u tom su slučaju pogreška i relativna pogreška redom:

$$E_R = R - R_{\rm ref} = 100~\Omega - 100,0043~\Omega = -4,3~{\rm m}\Omega$$

$$e_R = (R - R_{\rm ref}) \ / \ R_{\rm ref} = (100~\Omega - 100,0043~\Omega) \ / \ 100,0043~\Omega = -4,3 \cdot 10^{-5}$$

nadalje, u tom su slučaju ispravak i relativni ispravak redom:

$$C_R = -E_R = 4.3 \text{ m}\Omega$$
; $c_R = -e_R = 4.3 \cdot 10^{-5}$

• osim ovog preporučenog načina označavanja, za ovaj primjer u kojem se radi o otporu, mogli smo pogrešku i ispravak te njihove relativne vrijednosti označiti i kao: $E_R = p_R = R_D$; $C_R = k_R = R_k$

$$e_R = p_{Rr} = R_{pr}$$
; $c_R = k_{Rr} = R_{kr}$

- Mjerna ponovljivost (measurement repeatability) mjerna preciznost ostvarena uz niz ponovljivih uvjeta mjerenja (isti mjerni postupak, isti mjerni sustav, isti mjeritelj, isti radni uvjeti, kratak vremenski interval)
- Mjerna obnovljivost (measurement reproducibility) mjerna preciznost ostvarena uz niz različitih uvjeta mjerenja (različit mjerni sustav, različita lokacija, drugi mjeritelj, različit mjerni postupak)
- Mjerni etalon (measurement standard) ostvarenje definicije pojedine veličine, s iskazanom vrijednošću veličine i pripadnom mjernom nesigurnošću, koje se rabi kao referenca
- Mjeriteljski lanac sljedivosti (metrological traceability chain) slijed mjernih etalona i umjeravanja kojim se mjerni rezultat dovodi u vezi s referencom (referentnom vrijednošću)

Da zaključimo:

- ovdje navedene sustavna i slučajna mjerna pogreška nam ukazuju na način na koji utječu na rezultat (ne i na način na koji ćemo računati mjernu nesigurnost)
- ovakav načelni pristup nas uvodi u pojmove sustavan učinak (systematic effect) i slučajan učinak (random effect)

Zašto dalje?

- Jednostavno, zato što moramo, jer je mjerenje neizostavan dio svakodnevnog života!
- Jer nam mjerenje služi da bismo donosili odluke što je u redu, a što nije!

Kako pristupiti mjerenju?

- Budući da jedino što imamo od konkretnog mjerenja su opažene vrijednosti (observable quantities), moramo se na njih i osloniti
- To su nam dostupne, ili poznate, informacije dobivene iz konkretnog mjerenja, iz podataka o uporabljenim mjernim uređajima, iz tabličnih podataka ili sličnih izvora, iz dokumenata o umjeravanju referenci, iz prije utvrđenih ovisnosti (npr. temperaturnih ili naponskih), i dr.
- Tako dolazimo do koncepta nesigurnosti kod kojeg se oslanjamo na poznate veličine

Koncept nesigurnosti

Koncept nesigurnosti

- ✓ Prethodna slika predstavlja suština onoga što mjerenjem radimo - pokušavamo odrediti izmjerenu vrijednost veličine i pripadnu mjernu nesigurnost:
 - ✓ ponavljanjem mjerenja smanjujemo slučajne učinke
 - ✓ ispravljamo dobiveni rezultat za sve poznate sustavne učinke
 - ✓ određujemo nesigurnost svih doprinosa
 - ✓ iskazujemo mjerni rezultat: izmjerenu vrijednost veličine i mjernu nesigurnost
- ✓ Ovaj koncept primijenjen je u GUM-u

Granice mjerne tehnike

- U gospodarstvu, industriji i razvoju nastoji se točnost i preciznost mjerenja poboljšati do one granice koja je ekonomski opravdana ili podnošljiva
- No, i kad ne bi bilo bilo kakvih ograničenja, postoje prirodne granice, koje opisuju Heisenbergove relacije neodređenosti:
 - $\Delta x \cdot \Delta v = h \text{ (Planckova stalnica } h = 6,626\,0693\cdot10^{-34}\,\text{Js)}$
 - pokazuje da se ne može istodobno bespogrešno odrediti položaj i brzina čestice
 - Werner Heisenberg (1901 1976)

Granice mjerne tehnike

- Znanstveno mjeriteljstvo samo se u izuzetnim slučajevima može približiti tim granicama
- Praktično mjeriteljstvo bavi se nesigurnostima koje su jako daleko (tj. puno su veće) od navednih granica

Uzrok:

- mnogo malih neizbježnih stalnih promjena u mjerilima, okolini ili kod samog mjeritelja
- karakteristično je da se mijenjaju po veličini i predznaku te mjerni rezultat čine nesigurnim
- Neka je izvršeno "n" mjerenja i pojedinačni rezultati iznose x₁, x₂, ..., x_n. Dobiveni su pod istim uvjetima pa ni jedan od njih nema prednost pred drugim. Najvjerojatniju vrijednost mjerene veličine dobit ćemo prema "metodi najmanjih kvadrata"
 - Carl Friedrich Gauß (1777. 1855.)

- Metoda najmanjih kvadrata
 - najvjerojatnije približenje pravoj vrijednosti mjerene veličine može se izračunati iz uvjeta:

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \text{minimum}$$

odavde slijedi da je aritmetička sredina

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n}$$

zbroj svih razlika pojedine vrijednosti i aritmetičke sredine je nula

$$\sum_{i=1}^{n} \left(x_i - \overline{x} \right) = 0$$

Procjena ponovljivosti:

■ ako je očekivanje μ prava vrijednost veličine, tada su prave pogreške jednake $a_i = x_i - \mu$, pa je standardno odstupanje beskonačnog skupa σ :

$$n \cdot \sigma^2 = \sum_{i=1}^n a_i^2 \implies \sigma = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2}$$

kako nam je μ redovito nepoznato, standardno odstupanje σ procjenjujemo (eksperimentalnim) standardnim odstupanjem s

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

■ pri dovoljno velikom *n* vrijedi da je $s \approx \sigma$

- Standardno odstupanje sredine:
 - ponavljajuća mjerenja daju niz aritmetičkih sredina koje se međusobno razlikuju i rasipaju oko neke vrijednosti
 - procjenu koliko pojedina aritmetička sredina odstupa od prave vrijednosti veličine računamo kako slijedi

$$s_{\overline{x}} = \frac{s}{\sqrt{n}}$$

veliki n nema smisla!

Primjer: Mjerenje otpora

i	R_i/Ω	$(R_i - \overline{R})/\Omega$	$(R_i - \overline{R})^2 / \Omega^2$
1	100,1	0,06	0,0036
2	100,0	-0,04	0,0016
3	99,9	-0,14	0,0196
4	100,2	0,16	0,0256
5	100,0	-0,04	0,0016
Σ	500,2	0	0,052

$$\overline{R} = \frac{\sum_{i=1}^{n} R_i}{n} = \frac{500,2 \,\Omega}{5} = 100,04 \,\Omega$$

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (R_i - \overline{R})^2} = \sqrt{\frac{1}{4} 0,052 \Omega^2} = 0,114 \Omega$$

$$s_{\overline{R}} = \frac{s}{\sqrt{n}} = \frac{0,114 \Omega}{\sqrt{5}} = 51 \text{ m}\Omega$$

Opća aritmetička sredina

- Sigurnost u ispravnost rezultata raste ako se ista mjerena veličina mjeri različitim metodama i uređajima
 - pozitivni brojevi p_1 , p_2 , ..., p_m nazivaju se težinama (težinskim faktorima) i određuju na sljedeći način

$$p_i = \frac{K}{s_{\bar{x}i}^2}$$

opća aritmetička sredina i pripadno standardno odstupanje su

$$\bar{x}_{s} = \frac{\sum_{i=1}^{m} p_{i} \bar{x}_{i}}{\sum_{i=1}^{m} p_{i}} = \frac{p_{1} \bar{x}_{1} + p_{2} \bar{x}_{2} + \ldots + p_{m} \bar{x}_{m}}{p_{1} + p_{2} + \ldots + p_{m}} \qquad s_{\bar{x}_{s}} = \frac{1}{\sqrt{\sum_{i=1}^{m} \frac{1}{s_{\bar{x}_{i}}^{2}}}}$$

ovakav pristup može se primijeniti ne samo za slučajne pojave,
 <u>već i kod računanja mjerne nesigurnosti</u> (tada težine pridjeljujemo prema izračunatim nesigurnostima)

Opća aritmetička sredina

Primjer za dva niza mjerenja:

Polazni podaci dva niza			
$\overline{R}_1 = 100,04 \Omega$	$s_{\overline{R}_1} = 51 \mathrm{m}\Omega$		
$\overline{R}_2 = 100,12 \Omega$	$s_{\overline{R}_2} = 97 \text{ m}\Omega$		
$K = 51 \text{ m}\Omega \cdot 97 \text{ m}\Omega$			

$$\overline{R}_{s} = \frac{p_{1}\overline{R}_{1} + p_{2}\overline{R}_{2}}{p_{1} + p_{2}} = \frac{1,902 \cdot 100,04 \Omega + 0,526 \cdot 100,12 \Omega}{1,902 + 0,526} = 100,057 \Omega$$

$$s_{\overline{R}_{s}} = \frac{1}{\sqrt{\frac{1}{(51 \,\mathrm{m}\Omega)^{2}} + \frac{1}{(97 \,\mathrm{m}\Omega)^{2}}}} = 45 \,\mathrm{m}\Omega$$

Gaussova (normalna) razdioba

- Aksiomi teorije slučajnih učinaka
 - Pri velikom broju ponovljenih mjerenja jednako vjerojatno nastaju slučajne pogreške jednakog iznosa, a suprotnih predznaka
 - Vjerojatnost nastajanja malih pogrešaka je veća od vjerojatnosti nastanka većih pogrešaka
- Funkcija gustoće vjerojatnosti Gaussove razdiobe
 - x je kontinuirana slučajna varijabla, μ je očekivanje, a σ standardno odstupanje beskonačnog skupa

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right]$$

- Ta krivulja ima zvonolik oblik, simetrična je s obzirom na ordinatnu os, apscisi se približava asimptotski i jednoznačno je određena s μ i $\sigma \Rightarrow N\{\mu, \sigma^2\}$
 - primjer: dvije Gaussove razdiobe s istim očekivanjem μ uz različite σ_1 =1 μm i σ_2 =1,5 μm

- Površina ispod krivulje za -∞ < x < +∞ jednaka je 1, odnosno vjerojatnost je 100 % da se slučajna varijabla x nalazi u tom intervalu
- Površina ispod krivulje, određena intervalom $[x_1, x_2]$ predstavlja vjerojatnost da se slučajna varijabla nalazi između x_1 i x_2 , a dobiva se integracijom kako slijedi:

$$P_{x_1 < x < x_2} = \frac{1}{\sigma \sqrt{2\pi}} \int_{x_1}^{x_2} e^{-\frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^2} dx$$

Za svaki takav konačan interval vjerojatnost P je manja od 1 (ili 100 %), što znači da postoji vjerojatnost da se slučajna varijabla x nalazi i izvan tog intervala

- Vjerojatnost P može se izračunati za bilo koji interval slučajne varijable
- Da bi to računanje bilo neovisno o konkretnoj fizikalnoj veličini (dakle uniformno), uvodi se slučajna varijabla

$$z = \frac{x - \mu}{\sigma}$$

pa dobivamo normaliziranu krivulju Gaussove razdiobe

$$\varphi(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z^2\right)$$

U priručnicima mogu se pronaći tablične vrijednosti integrala

$$\Phi(z) = \int_{0}^{z} \varphi(z) dz$$

- Uzmimo da je $x_1 = \mu \sigma$ i $x_2 = \mu + \sigma$; tada je $z_1 = -1$ i $z_2 = 1$
- $lue{}$ S obzirom na simetričnost funkcije arphi(z), slijedi da je:

$$P = \int_{x_1}^{x_2} f(x) dx = \int_{z_1}^{z_2} \varphi(z) dz = 2 \int_{0}^{z=1} \varphi(z) dz = 2 \Phi(z=1)$$

Iz tabličnih podataka tada se dobiva

$$2\Phi(z=1)=0.6827$$

pa je vjerojatnost da se slučajna varijabla x nalazi u intervalu $[\mu - \sigma, \mu + \sigma]$ jednaka P = 68,27 %

Neke karakteristične vrijednosti

Granice	Vjerojatnost <i>P</i> da je <i>x</i>			
Granice	unutar	izvan		
$\mu \pm 0.674\sigma$	50,00%	50,00%		
$\mu \pm \sigma$	68,27%	31,73%		
$\mu \pm 1,96\sigma$	95,00%	5,00%		
$\mu \pm 2\sigma$	95,45%	4,55%		
$\mu \pm 2,576\sigma$	99,00%	1,00%		
$\mu \pm 3\sigma$	99,73%	0,27%		

Valja uočiti: $P_{-\infty < x < \mu} = P_{\mu < x < +\infty} = 50 \%$

Gaussova razdioba vrijedi i u slučajevima kad n nije beskonačan, što je redovito slučaj u praksi kad uzimamo uzorak iz beskonačnog skupa, pa tada μ procjenjujemo sa x̄, a σ sa s:

$$f(x) = \frac{1}{s\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{x-\overline{x}}{s}\right)^2\right]$$

Primjer: Za veliku seriju nogometnih lopti utvrđeno je da im je aritmetička sredina promjera jednaka 20 cm uz standardno odstupanje od 1 cm. Ako nasumce uzmemo jednu loptu iz te grupe, koja je vjerojatnost da je promjer te lopte manji od 19 cm?

Rješenje: *P* = 15,87 %

- Procjena očekivanja μ:
 - standardno odstupanje sredine računa se izrazom

$$S_{\overline{x}} = \frac{S}{\sqrt{n}}$$

- ponavljanjem određivanje aritmetičke sredine, dobili bismo rezultate koji se rasipaju kao slučajna varijabla i pokoravaju opet Gaussovoj razdiobi
- ako je $s_{\bar{x}}$ dobra procjena standardnog odstupanja $\sigma_{\bar{x}}$, tada zaključujemo da <u>vrijede svi netom pokazani izrazi</u>
- tako vrijedi da je vjerojatnost P da se očekivanje μ nalazi u intervalu:

P = **68,27** % za
$$[\bar{x} \pm s_{\bar{x}}]$$

P = 95,45 % za
$$[\bar{x} \pm 2s_{\bar{x}}]$$

P = 99,73 % za
$$[\bar{x} \pm 3s_{\bar{x}}]$$

$$|\overline{x} - zs_{\overline{x}} \le \mu \le \overline{x} + zs_{\overline{x}}|$$

- Prethodna razmatranja vrijede ako je n dovoljno velik (sa statističkog stajališta) pa je opravdano procjenjivati σ sa s (a isto tako i standardno odstupanje sredine)
- Ovaj izraz "dovoljno velik" možemo prevesti kao n > 30

A što kad je *n* manji?

- William Sealy Gosset ("Student")
- U slučaju tipično n<30 upotrebljava se tzv. Studentova t-razdioba, koja je objavljena 1908. godine
- Počela se primjenjivati za procjenjivanje ispravnosti svih primjeraka na temelju malog broja uzoraka
- Kakve to ima veze s pivom?

Funkcija gustoće vjerojatnosti Studentove t-razdiobe:

$$f(n,t) = K(n) \left[1 + \frac{t(n,P)}{n-1} \right]^{-n/2}$$

gdje je k = n - 1 stupanj slobode; za $n \to \infty$ teži ka Gaussovoj razdiobi

Neke karakteristične vrijednosti faktora t

n	3	5	10	20	30	200
k = n - 1	2	4	9	19	29	∞
P = 68,3 %	1,32	1,14	1,06	1,03	1,02	1
P = 95 %	4,30	2,78	2,26	2,09	2,04	1,96
P = 99 %	9,92	4,60	3,25	2,86	2,75	2,576
P = 99,73 %	19,21	6,62	4,09	3,45	3,27	3

Odavde slijedi da se za neki n i odabranu vjerojatnost P očekivanje μ nalazi u intervalu:

$$\overline{x} - t \cdot s_{\overline{x}} \le \mu \le \overline{x} + t \cdot s_{\overline{x}}$$

Primjer: Mjerenje otpora

i	R_i/Ω	$(R_i - \overline{R})/\Omega$	$(R_i - \overline{R})^2 / \Omega^2$
1	100,1	0,06	0,0036
2	100,0	-0,04	0,0016
3	99,9	-0,14	0,0196
4	100,2	0,16	0,0256
5	100,0	-0,04	0,0016
Σ	500,2	0	0,052

$$\overline{R} = \frac{\sum_{i=1}^{n} R_i}{n} = 100,04 \Omega$$

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (R_i - \overline{R})^2} = 0.114 \Omega$$

$$s_{\overline{R}} = \frac{s}{\sqrt{n}} = 51 \,\mathrm{m}\Omega$$

$$t \cdot s_{\overline{R}} = 1{,}14 \cdot 51 \,\mathrm{m}\Omega = 58 \,\mathrm{m}\Omega$$

□ Dakle, procjenjujemo da je uz P = 68,3 %

$$\overline{R} - 58 \,\mathrm{m}\Omega \le \mu \le \overline{R} + 58 \,\mathrm{m}\Omega$$

Pogreška i ispravak - primjeri

- Sustavni učinci mogu biti poznati ili nepoznati
- Poznate sustavne učinke možemo ispraviti tako da primijenimo odgovarajuće ispravke (korekcije)

- Primjer za analogni instrument
- Svaki ispravak ima svoju nesigurnost

Zaključak

- Važno je naglasiti da je svako mjerenje u svojoj biti donekle pogrešno, ili da kažemo nesigurno, te da nikad ne možemo odrediti pravu vrijednost mjerene veličine
- Unatoč tomu mi i dalje provodimo mjerenja jer i na temelju takvih (nesavršenih) mjerenja možemo dobiti dovoljno dobru procjenu mjerene veličine
- Ipak treba biti oprezan i kritičan u pretpostavkama i zaključcima

