C. Counting Self-Rotating Subsets

Time limit: 1s

A set of points in the plane is *self-rotating* if there is a point **P**, *the center*, and *an angle* α , expressed in degrees, where $0 < \alpha < 360$, such that the rotation of the plane, with center **P** and angle, maps every point in the set to some point also in the set.

You are given a set of N distinct points, all having <u>integer</u> coordinates. Find the number of distinct subsets of size $1, 2, \ldots, N$ that are self-rotating. Two subsets are considered distinct if one contains a point that the other does not contain.

Input

The first line of the input contains one integer **N** representing the number of points in the input set (1 \leq **N** \leq 1000). Each of the following **N** lines describes a different point of the set, and contains two integers **X** and **Y** giving its coordinates in a Cartesian coordinate system ($-10^9 \leq$ **X**, **Y** \leq 10 9). All points in the input set are distinct.

Output

Output a single line containing **N** integers S_1, S_2, \ldots, S_N . For $i = 1, 2, \ldots, N$ the integer S_i must be the number of subsets of i points of the input set that are self-rotating. Since these numbers can be very big, output them modulo $10^9 + 7$.

Input Samples	Output Samples
3	3 3 0
1 1	
2 2	
1 0	
7	7 21 5 5 3 1 1
-2 0	0 0 0 1 1
-1 1	
0 2	
0 0	
2 0	
1 -1	
0 -2	
1	1
-1000000000 1000000000	

ACM/ICPC South America Contest 2016

By Pablo Ariel Heiber 🔼 Argentina