Regular Expressions and NFAs (20 pts)

Consider the following NFA \mathcal{A} .

1. State and give the intuition behind the proof of *Arden's Lemma* that we used in the a method to represent the language accepted by an NFA as a regular expression. This method is also called *Brzozowski method*.

(10 pts)

2. Describe L(A) as a regular expression, using the Brzozowski method.

(10 pts)

Weak Monadic Second-Order Logic (30 pts)

1. Define WMSO formulas $\phi_1(x, y)$ and $\phi_2(x, y)$ respectively, describing the following propositions:

•
$$x = y$$
 (clearly without using = itself) (5 pts)

•
$$y = x + k \text{ (for fixed } k \in \mathbb{N})$$
 (5 pts)

2. Define a WMSO formula ψ (over second-order variables $\{P_{\mathsf{a}} \mid \mathsf{a} \in \Sigma\}$), such that

$$\mathsf{L}(\psi) = \{ w \mid \text{ on each } k^{\text{th}} \text{ position of } w \text{ there is an } \mathsf{a} \}$$
 .

Hint: To solve this part of the question, you may use the assertions of the first (10 pts) part.

3. A WMSO formula ϕ is called *positive*, if ϕ doesn't contain negations. Prove that satisfiability of positive WMSO formulas can be decided in polynomial time. (10 pts)

Alternating Finite Automata (20 pts)

1. Let M be a subset of states Q. M is called *minimal model* of $f \in \mathbb{B}^+(Q)$, if $M \models f$ but for all $N \subsetneq M$, $N \not\models f$.

Prove or give a counter-example that each $f \in \mathbb{B}^+(Q)$ has a minimal model. (10 pts)

2. Let $\Sigma = \{a, b, c\}$. Consider the language

 $L = \{w \in \Sigma^* \mid \text{ each b is eventually followed by a a} \}.$

Define a memoryless AFA \mathcal{A} accepting L.

(10 pts)

Reachability Games (10 pts)

For this question, we define reachability games between player P_0 and P_1 as finite, acyclic directed graphs $G = (V, V_0, V_1, E)$ with nodes V, edges E such that $V = V_0 \cup V_1$ and $V_0 \cap V_1 = \emptyset$. Let v_0, \ldots, v_n denote a play. Then Player P_i wins the play, if $v_n \in V_{1-i}$.

Prove that either player P_0 or P_1 has a winning strategy, that is, such reachability games are determined.

(10 pts)

Büchi Automata & Linear Temporal Logic (20 pts)

Consider the following NBA \mathcal{A}

- 1. Define L(A), that is, state the language accepted by A as a (extended) regular expression (for infinite words). (10 pts)
- 2. Define an LTL-formula ϕ such that $L(\phi) = L(A)$. (10 pts)