m1901q2s	Write your SID here	\longrightarrow									
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·									
THE UN	VIVERSITY OF SYDNEY										
School of Mathematics and Statistics			Family Name:								
MATH		Other Names:									
C	ALCULUS (ADV)	Da	Day/Time/Room:								
SA	MPLE QUIZ 2										
	_										
worth 1 mark working, if ne	d: 40 minutes. Write your k. Non-programmable cal ecessary. Rough working the end of the quiz. Plea	lculators will not	s may be m	be use arked.	ed. Use	e the l	olank	spaces	provi	ded for	r rough
The actual q	uiz will resemble this san	nple qui	z, but	not no	ecessai	rily co	ver th	e sam	e topic	cs.	
to ans	wer this question witho	out takn	ng an	y derr	vative	S.)					
	A	Answer			$T_2(x)$	=					
							4/9				
2. What	is the right derivative of	of the fu	ınctio	n, f(a)	x)=3	x +	$4x^{4/3}$,	at x	=0.		
	A	Answer			$f'_{+}(0$) =					

3. What is the limit, $L = \lim_{x \to \infty} x e^{-\sqrt{x}}$?

Answer
$$L =$$

4. Use a suitable Taylor polynomial for e^x to evaluate the 30th derivative of $f(x) = \exp(x^{10})$ at x = 0. (Express your answer in terms of factorials.)

Answer
$$f^{(30)}(0) =$$

5. Let $f(x) = x^{3/5} \cos x$. If f'(0) exists, write its value in the box. If the graph of y = f(x) has a vertical tangent or cusp at x = 0, write "vertical tangent" or "cusp" as appropriate in the box. If f'(0) does not exist for any other reason, write "does not exist" in the box.

Answer
$$f'(0) =$$

- **6.** In the case of the functions $f(x) = x + \sin x$ and $g(x) = 2x + \cos x$, l'Hôpital's rule fails to evaluate the limit $\lim_{x\to\infty} f(x)/g(x)$ because (a) the limit is not of 0/0 type or ∞/∞ type;

 - (b) the limit of f(x)/g(x) as $x \to \infty$ does not exist;
 - (c) the limit of f'(x)/g'(x) as $x \to \infty$ does not exist;
 - (d) there are zeros in the denominator as the limit is approached;
 - (e) none of the above, because l'Hôpital's rule gives the correct limit.

7. The function $f(x) = a\sqrt{x} - bx$ is continuous on [0, 1] and differentiable on (0, 1). Find all points $c \in (0,1)$ that satisfy the Mean Value Theorem (as it is usually stated) for f(x)on [0, 1].

8. Find the critical points of the function, $f(x) = \begin{cases} \sin 2x, & x \ge 0 \\ \sinh 2x, & x < 0, \end{cases}$ on the interval (-1, 1).

9. [2 marks] Sketch the natural domain $D \subseteq \mathbf{R}^2$ of the function, $f: D \to \mathbf{R}, (x,y) \mapsto \ln(4-x^2-y^2)$.

Answers:

1.
$$T_2(x) = 2x^2$$

2.
$$f'_{+}(0) = 3$$

3.
$$L = 0$$

1.
$$T_2(x) = 2x^2$$
 2. $f'_+(0) = 3$ **3.** $L = 0$ **4.** $f^{(30)}(0) = 30!/3!$

5.
$$f'(0) =$$
 "vertical tangent" **6.** (c) **7.** $c = 1/4$ only **8.** $x = \pi/4$ only

7.
$$c = 1/4$$
 only

8.
$$x = \pi/4$$
 only

9. [2 marks] Interior of circle (dashed), radius 2