Ministerul Educației și Cercetării Centrul Național de Evaluare și Examinare

Examenul de bacalaureat naţional 2020 Proba E, d) **FIZICA**

Filiera teoretică – profilul real, Filiera vocațională – profilul militar

Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

 Se acordă 10 puncte din oficiu. • Timpul de lucru efectiv este de 3 ore.

A. MECANICĂ Test 9

Se consideră accelerația gravitațională $g = 10 \text{m/s}^2$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Dacă puterea mecanică a motorului unui autoturism este constantă iar viteza autoturismului creste, atunci modulul fortei de tractiune dezvoltate de motor:
- a. este constant
- b. creste
- c. scade
- d. este mai mic decât viteza

(3p)

- 2. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, teorema variatiei impulsului unui punct material se scrie în forma:
- **a.** $\Delta \vec{p} = \vec{F} \cdot \Delta t$
- **b.** $\Delta \vec{p} = \vec{F} \cdot \Delta x$
- **c.** $\Delta p = \vec{F} \cdot \vec{d}$
- **d.** $\Delta \vec{p} = m \cdot \vec{v}$ (3p)
- 3. Unitatea de măsură în S.I. a energiei potențiale gravitaționale poate fi scrisă în forma:
- **a.** $kg^2 \cdot m \cdot s^{-1}$
- **b.** $kg \cdot m^{-2} \cdot s^2$
- **c.** $kg \cdot m \cdot s^{-1}$
- (3p)
- **4.** Un mobil, aflat în repaus la momentul $t_0 = 0$ s, se mişcă rectiliniu sub AF(N)acțiunea unei forțe rezultante al cărei modul variază în funcție de timp conform 4 graficului din figura alăturată. Orientarea forței nu se modifică. Mobilul atinge viteza maximă la momentul: **d.** 2s

- **a.** 8s
- **c.** 4s
- 5. Un corp, legat la capătul unei corzi elastice având masa neglijabilă, este tractat pe o suprafată orizontală rugoasă. Forța de tracțiune este exercitată orizontal la celălalt capăt al corzii elastice. Sub acțiunea acestei forțe, corpul se deplasează rectiliniu uniform. Lungimea corzii elastice este în această situație ℓ_4 . La un moment dat corpul intră pe o suprafață cu un coeficient de frecare de două ori mai mare. Pentru a se deplasa de asemenea rectiliniu uniform, forța de tracțiune își modifică valoarea, astfel încât lungimea corzii elastice devine ℓ_2 . În stare nedeformată, coarda elastică are lungimea:

$$\mathbf{a.} \left(\frac{\ell_1 + \ell_2}{2} \right)$$

b.
$$\left(\frac{\ell_1 - \ell_2}{2}\right)$$
 c. $\frac{\ell_1 \ell_2}{\ell_1 + \ell_2}$

$$\mathbf{C.} \ \frac{\ell_1 \ell_2}{\ell_1 + \ell_2}$$

d.
$$2\ell_1 - \ell_2$$
 (3p)

II. Rezolvaţi următoarea problemă:

Un schior, plecând din repaus, alunecă pe o pantă de unghi α ($\sin \alpha = 0.20;\cos \alpha = 0.98$), după care își continuă mișcarea pe o porțiune orizontală. Schiorul ajunge la baza pantei după un interval de timp $\Delta t = 10,0$ s, având viteza v = 15,0 m/s. Valoarea coeficientului de frecare la alunecare este aceeași atât pe pantă cât și pe porțiunea orizontală. Calculați:

- a. accelerația schiorului în timpul coborârii pantei;
- **b.** coeficientul de frecare la alunecare;
- **c.** lungimea pantei;
- d. modulul accelerației schiorului în timpul deplasării pe porțiunea orizontală.

III. Rezolvați următoarea problemă:

(15 puncte)

Un colet, aflat inițial în repaus, este deplasat pe o suprafață orizontală sub acțiunea unei forțe constante F, orientată sub un unghi $\alpha = 30^{\circ}$ față de orizontală, ca în figura alăturată. Masa coletului este m = 40 kg. După parcurgerea distanței d = 5 m, viteza coletului este v = 2 m/s. Lucrul mecanic efectuat asupra coletului de forța \vec{F} pe distanța d este L=850 J. Considerați $\sqrt{3}\approx 1,7$. Determinați:

- **a.** valoarea forței \vec{F} ;
- **b.** energia cinetică a coletului după parcurgerea distanţei *d* ;
- **c.** lucrul mecanic efectuat de forţa de frecare pe distanţa *d* ;
- d. coeficientul de frecare la alunecare între colet și suprafața orizontală.

Examenul de bacalaureat naţional 2020 Proba E, d)

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. • Timpul de lucru efectiv este de 3 ore.

B. ELEMENTE DE TERMODINAMICĂ

Test 9

(3p)

(3p)

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \text{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \frac{\text{J}}{\text{mol} \cdot \text{K}}$. Între parametrii

de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = \nu RT$. Exponentul adiabatic este definit prin relația: $\gamma = \frac{C_P}{C}$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect.

- 1. Mărimea fizică a cărei valoare este aceeași pentru două sisteme termodinamice aflate în echilibru termic se numeşte:
- a. capacitate calorică b. exponent adiabatic c. temperatură d. căldură specifică
- 2. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, NU este corectă relația:
- **b.** $R = \mu \cdot (c_p c_V)$ **c.** $c_p = c_V R \cdot \mu^{-1}$ **d.** $c_V = (c_p \cdot \mu R) \cdot \mu^{-1}$ **a.** $R = C_p - C_V$
- 3. O masă dată de gaz ideal suferă transformarea $1 \rightarrow 2 \rightarrow 3$, reprezentată în coordonate V-T în figura alăturată. Între presiunile gazului în stările 1, 2 și 3 există relația:

b.
$$p_2 > p_3 > p_1$$

c.
$$p_2 > p_1 > p_3$$

$$p_1 > p_2 > p_3$$
 (3p)

- **b**. 20°C
- **c**. 35°C

(3p)

- 5. Știind că simbolurile mărimilor fizice sunt cele utilizate în manualele de fizică, unitatea de măsură a produsului $(\gamma - 1) \cdot C_{\nu}$ este:
- **b.** $\frac{J}{\text{mol} \cdot \kappa}$
- c. $\frac{J \cdot kg}{mod}$
- d. J

II. Rezolvaţi următoarea problemă:

(15 puncte)

O butelie având volumul $\dot{V}=8,31\mathrm{L}$, conţine un amestec de oxigen $\left(\mu_{\mathrm{O}_{\!2}}=32\,\mathrm{g/mol}\right)$ şi azot $\left(\mu_{\mathrm{N}_{\!2}}=28\,\mathrm{g/mol}\right)$,

la presiunea $p = 10^5$ Pa şi temperatura T = 400 K. Masa oxigenului din butelie este $m_1 = 4$ g. Determinaţi:

- a. cantitatea de oxigen din butelie;
- **b.** masa azotului din butelie;
- c. masa molară medie a amestecului;
- d. numărul total de molecule din butelie.

III. Rezolvaţi următoarea problemă:

(15 puncte)

O cantitate dată de gaz ideal monoatomic $(C_V = 1,5R)$ este supusă unui proces ciclic reprezentat în coordonate densitate-presiune (ρ, p) ca în figura alăturată. Parametrii gazului în starea 2 sunt $p_2=10^5 \,\mathrm{Pa}$, $V_2=2 \,\mathrm{L}$. Lucrul mecanic schimbat de gaz cu mediul exterior în transformarea 2-3 este $L_{23}=200$ J. Considerați că $\ln 2 \cong 0,69$.

- **a.** Reprezentaţi procesul ciclic în coordonate p-V.
- **b.** Determinaţi variaţia energiei interne a gazului în transformarea 2-3.
- c. Calculați căldura schimbată de gaz cu exteriorul în transformarea 3-1.
- d. Calculați lucrul mecanic total schimbat de gaz cu mediul exterior în timpul unui ciclu.

Examenul de bacalaureat naţional 2020 Proba E, d) **FIZICA**

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore.

C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU

Test 9

(3p)

(3p)

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

 Prin gruparea în paralel a n generatoare identice având fiecare tensiunea electromotoare E şi rezistenţa interioară r, se obține o baterie care debitează pe un circuit exterior de rezistență R un curent electric continuu a cărui intensitate este:

a.
$$I = \frac{E}{R + r}$$

b.
$$I = \frac{nE}{nR+r}$$
 c. $I = \frac{nE}{R+r}$

c.
$$I = \frac{nE}{R+r}$$

$$d. I = \frac{E}{R + nr}$$

2. În graficul din figura alăturată este reprezentată dependența randamentului η , al unui circuit simplu, de intensitatea curentului electric continuu ce se stabilește în circuit atunci când rezistența circuitului exterior sursei este variabilă. Dacă tensiunea electromotoare a sursei este E = 6 V atunci rezistența internă a acesteia este:

- $\mathbf{a}.0.5\Omega$
- **b.** 1Ω
- $d.3\Omega$

- 3. Unitatea de măsură în S.I. a mărimii fizice exprimate prin raportul dintre sarcina electrică și durată este:
- a. V
- 4. Energia de 1kWh exprimată în unitatea de măsură din S.I. este egală cu:
- **a.** 360J
- **b.** 1000J
- **c.** $3.6 \cdot 10^3$ J
- **d.** $3.6 \cdot 10^6$ J
- (3p)

- 5. Sensul convenţional al curentului electric într-un circuit simplu este:

- a. de la borna "-" la borna "+" în circuitul exterior sursei
 b. de la borna "-" la borna "+" în circuitul interior sursei
 c. de la borna "+" la borna "-" în circuitul interior sursei
- d. același cu sensul deplasării electronilor în circuit.

(3p)

(15 puncte)

II. Rezolvaţi următoarea problemă:

Circuitul alăturat conține două generatoare G_1 și G_2 , instrumente de măsură ideale $\left(R_{_{\!A}}\cong 0,\,R_{_{\!V}}\to\infty\right)$, întrerupătoarele $K_{_{\!1}}$ și $K_{_{\!2}}$ și rezistorul de rezistență electrică

 $E_2 = 7 \text{ V}$, iar rezistențele interioare sunt $r_1 = 1\Omega$ şi, respectiv, $r_2 = 0.5\Omega$. Determinați:

- a. indicația voltmetrului când ambele întrerupătoare sunt deschise;
- **b.** indicaţia ampermetrului când întrerupătorul K₁ este închis şi K₂ este deschis;
- c. valoarea intensității curentului electric indicat de ampermetru dacă întrerupătorul K, este deschis, iar K2 închis;

d. lungimea firului din care e confecționat rezistorul, cunoscând că diametrul secțiunii sale transversale are valoarea d = 2mm şi rezistivitatea materialului este $\rho = \frac{\pi}{3} \cdot 10^{-7} \,\Omega \cdot \text{m}$.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Un elev realizează circuitul a cărui schemă este reprezentată în figura alăturată. Sursa de tensiune utilizată are tensiunea electromotoare E = 48 V și rezistența interioară $r = 2 \Omega$. Rezistența totală a reostatului este $R = 28\Omega$, iar ampermetrul utilizat poate fi considerat ideal ($R_A \cong 0$). Pe bec sunt înscrise valorile

12 W, 12 V . Elevul închide comutatorul şi deplasează cursorul C al reostatului până când becul luminează normal. În acest caz ampermetrul indică $I_2 = 2 \text{ A}$. Se neglijează rezistența firelor de legătură. Determinați:

- a. puterea totală dezvoltată de sursă când comutatorul este deschis;
- **b.** valoarea raportului $R_{\scriptscriptstyle MC}/R_{\scriptscriptstyle CN}$ în care cursorul împarte reostatul când becul luminează normal;
- c. valoarea energiei electrice consumate de bec într-o oră;
- d. temperatura filamentului becului în timpul funcționării la parametri nominali, dacă la 0°C rezistența electrică a filamentului becului este $R_0 = 3\Omega$, iar coeficientul de temperatură al rezistivității materialului filamentului este $\alpha = 1.5 \cdot 10^{-3} \, \text{grad}^{-1}$. Se neglijează efectele dilatării.

Examenul de bacalaureat național 2020 Proba E. d) FIZICĂ

Filiera teoretică - profilul real, Filiera vocațională - profilul militar

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

 So apportă 10 puncto din eficiu.
- Se acordă 10 puncte din oficiu.Timpul de lucru efectiv este de 3 ore.

D. OPTICĂ Test 9

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

1. O rază de lumină monocromatică trece din aer în apă. Unghiul format de raza incidentă cu suprafaţa de separare aer-apă este $\alpha=60^\circ$. Indicele de refracţie relativ al apei faţă de aer este $n_a=\frac{4}{3}$. Direcţia razei refractate este:

- a. perpendiculară pe direcţia normală la suprafaţa de separare
- b. mai depărtată de normala la suprafața de separare decât direcția razei incidente
- c. pe aceeași direcție cu raza incidentă
- d. mai apropiată de normala la suprafața de separare decât direcția razei incidente (3p)
- **2.** Un sistem de două lentile subțiri acolate (alipite), având convergențele C_1 și C_2 , este echivalent cu o singură lentilă subțire având convergența dată de relația:
- **a.** $C_S = C_1 \cdot C_2$ **b.** $\frac{1}{C_S} = \frac{1}{C_1} + \frac{1}{C_2}$ **c.** $C_S = C_1 + C_2$ **d.** $C_S = \frac{C_1}{C_2}$ (3p)
- **3.** Simbolurile mărimilor fizice şi ale unităților de măsură fiind cele utilizate în manualele de fizică, unitatea de măsură în S.I. a mărimii fizice exprimată prin raportul $\frac{h \cdot v}{c}$ este:
- **a.** Hz **b.** $J \cdot s \cdot m^{-1}$ **c.** $J \cdot s^{-1} \cdot m^{-1}$ **d.** $J \cdot s \cdot m$ (3p)
- 4. Două unde luminoase sunt coerente între ele dacă au:
- a. frecvențe diferite și diferență de fază variabilă în timp
- b. aceeași intensitate și frecvențe diferite
- c. lungimi de undă constante în timp și intensități diferite
- d. aceeaşi frecvenţă şi diferenţa de fază constantă în timp
- **5.** Două lentile subțiri convergente L_1 și L_2 sunt așezate pe aceeași axă optică principală. Un fascicul de lumină paralel cu axa optică principală, incident pe lentila L_1 , rămâne tot paralel cu axa optică principală după trecerea prin lentila L_2 , dar își mărește diametrul de două ori. Raportul dintre distanța focală a lentilei L_1 și distanța focală a lentilei L_2 are valoarea:

a. 0,25 **b.** 0,5 **c.** 2 **d.** 4 (3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

(3p)

Un obiect AB cu înălţimea de 2cm este aşezat perpendicular pe axa optică principală a unei lentile subţiri L_1 cu distanţa focală $f_1 = 30$ cm . Imaginea obţinută pe un ecran are înălţimea de trei ori mai mare decât obiectul.

- a. Calculați convergența lentilei L.
- **b.** Calculați distanța la care este așezat obiectul față de lentila L_1 .
- c. Calculați distanța de la obiect la ecranul pe care se formează imaginea.
- **d.** O a doua lentilă subțire L_2 având convergența $C_2 = 4 \text{ m}^{-1}$ se așază la distanța a = 1,5 m de lentila L_1 , ca în figura alăturată. Poziția obiectului față de lentila L_1 rămâne nemodificată. Determinați înălțimea imaginii formate de sistemul optic pentru obiectul AB.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Într-o experiență de interferență cu un dispozitiv Young, sursa de lumină coerentă se află pe axa de simetrie a sistemului la distanța $d=0.50\,\mathrm{m}$ de planul fantelor. Distanța dintre fante este $2\ell=1\,\mathrm{mm}$, iar distanța de la planul fantelor la ecranul pe care se observă figura de interferență este $D=2\,\mathrm{m}$. Dispozitivul este iluminat cu o radiație monocromatică cu lungimea de undă $\lambda=500\,\mathrm{nm}$. Determinați:

- a. valoarea interfranjei;
- **b.** distanța dintre maximul de ordinul întâi aflat de o parte a maximului central și al doilea minim de interferență aflat de cealaltă parte a maximului central;
- **c.** distanța pe care se deplasează maximul central, dacă sursa se deplasează cu distanța h = 1mm pe o direcție paralelă cu planul fantelor și perpendiculară pe fante.
- **d.** noua valoare a interfranjei dacă dispozitivul este scufundat în apă $(n_{apa} = 4/3)$