Lecture 12

Simple Linear Regression

EECS 398: Practical Data Science, Spring 2025

practicaldsc.org • github.com/practicaldsc/sp25 • See latest announcements here on Ed

Agenda 📅

- Empirical risk minimization.
- Towards simple linear regression.
- Minimizing mean squared error for the simple linear model.
- Correlation.
- Interpreting the formulas.

There are several important videos for Lectures 11 and 12; they are all in this YouTube playlist.

Empirical risk minimization

The modeling recipe

- Last lecture, we made two full passes through our modeling recipe.
 - 1. Choose a model.

2. Choose a loss function.

3. Minimize average loss to find optimal model parameters.

Empirical risk minimization

- The formal name for the process of minimizing average loss is empirical risk minimization; another name for "average loss" is empirical risk.
- When we use the squared loss function, $L_{\rm sq}(y_i,h)=(y_i-h)^2$, the corresponding empirical risk is mean squared error:

$$R_{ ext{sq}}(h) = rac{1}{n} \sum_{i=1}^n (y_i - h)^2 \implies h^* = ext{Mean}(y_1, y_2, \dots, y_n)$$

• When we use the absolute loss function, $L_{
m abs}(y_i,h)=|y_i-h|$, the corresponding empirical risk is mean absolute error:

$$R_{ ext{abs}}(h) = rac{1}{n} \sum_{i=1}^n |y_i - h| \implies h^* = \operatorname{Median}(y_1, y_2, \dots, y_n)$$

Empirical risk minimization, in general

ullet Key idea: If L is any loss function, and H is any hypothesis function, the corresponding empirical risk is:

$$R(H) = rac{1}{n} \sum_{i=1}^n L(y_i, H(x_i))$$

- In Homework 6 and tomorrow's discussion, there are several questions where:
 - \circ You are given a new loss function L.
 - \circ You have to find the optimal parameter h^* for the constant model $H(x_i)=h$.

Towards simple linear regression

Recap: Hypothesis functions and parameters

- A hypothesis function, H, takes in an x_i as input and returns a predicted y_i .
- **Parameters** define the relationship between the input and output of a hypothesis function.
- Example: The simple linear regression model, $H(x_i) = w_0 + w_1 x_i$, has two parameters: w_0 and w_1 .

The modeling recipe

1. Choose a model.

2. Choose a loss function.

3. Minimize average loss to find optimal model parameters.

Minimizing mean squared error for the simple linear model

- We'll choose squared loss, since it's the easiest to minimize.
- Our goal, then, is to find the linear hypothesis function $H^st(x_i)$ that minimizes empirical risk:

$$R_{ ext{sq}}(H) = rac{1}{n} \sum_{i=1}^n \left(y_i - H(x_i)
ight)^2$$

• Since linear hypothesis functions are of the form $H(x_i)=w_0+w_1x_i$, we can rewrite $R_{
m sq}$ as a function of w_0 and w_1 :

$$\left| R_{ ext{sq}}(w_0, w_1) = rac{1}{n} \sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight)^2
ight|$$

• How do we find the parameters w_0^* and w_1^* that minimize $R_{
m sq}(w_0,w_1)$?

For the constant model, the graph of $R_{
m sq}(h)$ looked like a parabola.

The graph of $R_{\rm sq}(w_0,w_1)$ for the simple linear regression model is 3 dimensional **bowl**, and is called a **loss surface**.

Minimizing mean squared error for the simple linear model

Minimizing multivariate functions

ullet Our goal is to find the parameters w_0^* and w_1^* that minimize mean squared error:

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n} \sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight)^2.$$

- $R_{
 m sq}$ is a function of two variables: w_0 and w_1 , and is a bowl-like shape in 3D.
- To minimize a function of multiple variables:
 - Take partial derivatives with respect to each variable.
 - Set all partial derivatives to 0 and solve the resulting system of equations.
 - Ensure that you've found a minimum, rather than a maximum or saddle point (using the second derivative test for multivariate functions).
- To save time, we won't do the derivation live in class, but you are responsible for it!
 Here's a video of me walking through it, and the slides will be annotated with it.

Example

Find the point (x, y, z) at which the following function is minimized.

$$f(x,y) = x^2 - 8x + y^2 + 6y - 7$$

Minimizing mean squared error

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n} \sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight)^2$$

To find the w_0^* and w_1^* that minimize $R_{
m sq}(w_0,w_1)$, we'll:

- 1. Find $\frac{\partial R_{\mathrm{sq}}}{\partial w_0}$ and set it equal to 0.
- 2. Find $\frac{\partial R_{\mathrm{sq}}}{\partial w_1}$ and set it equal to 0.
- 3. Solve the resulting system of equations.

$$egin{align} R_{ ext{sq}}(w_0,w_1) &= rac{1}{n} \sum_{i=1}^n \left(y_i - \left(w_0 + w_1 x_i
ight)
ight)^2 \ rac{\partial R_{ ext{sq}}}{\partial w_0} &=
onumber \ rac{\partial R_$$

$$egin{align} R_{ ext{sq}}(w_0,w_1) &= rac{1}{n} \sum_{i=1}^n \left(y_i - \left(w_0 + w_1 x_i
ight)
ight)^2 \ rac{\partial R_{ ext{sq}}}{\partial w_1} &=
onumber \ rac{\partial R_{ ext{sq}}}{\partial w_2} &=
onumber \ rac{\partial R_{ ext{sq}}}{\partial w_1} &=
onumber \ rac{\partial R_{ ext{sq}}}{\partial w_2} &=
onumber \ rac{\partial R_{ ex$$

Strategy

• We have a system of two equations and two unknowns (w_0 and w_1):

$$-rac{2}{n}\sum_{i=1}^n\left(y_i-(w_0+w_1x_i)
ight)=0 \qquad -rac{2}{n}\sum_{i=1}^n\left(y_i-(w_0+w_1x_i)
ight)\!x_i=0$$

- To proceed, we'll:
 - 1. Solve for w_0 in the first equation.

The result becomes w_0^st , because it's the "best intercept."

2. Plug w_0^* into the second equation and solve for w_1 .

The result becomes w_1^* , because it's the "best slope."

Solving for w_0^*

$$-rac{2}{n}\sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight) = 0$$

Solving for w_1^*

$$-rac{2}{n}\sum_{i=1}^n{(y_i-(w_0+w_1x_i))x_i}=0$$

Least squares solutions

ullet We've found that the values w_0^* and w_1^* that minimize $R_{
m sq}$ are:

$$w_1^* = rac{\displaystyle\sum_{i=1}^n (y_i - ar{y}) x_i}{\displaystyle\sum_{i=1}^n (x_i - ar{x}) x_i} \qquad \qquad w_0^* = ar{y} - w_1^* ar{x}$$

where:

$$ar{x} = rac{1}{n} \sum_{i=1}^n x_i \qquad \qquad ar{y} = rac{1}{n} \sum_{i=1}^n y_i$$

• These formulas work, but let's re-write w_1^st to be a little more symmetric.

An equivalent formula for w_1^st

• Claim:

$$w_1^* = rac{\displaystyle\sum_{i=1}^n (y_i - ar{y}) x_i}{\displaystyle\sum_{i=1}^n (x_i - ar{x}) (y_i - ar{y})} = rac{\displaystyle\sum_{i=1}^n (x_i - ar{x}) (y_i - ar{y})}{\displaystyle\sum_{i=1}^n (x_i - ar{x})^2}$$

• Proof:

Least squares solutions

• The **least squares solutions** for the intercept w_0 and slope w_1 are:

$$w_1^* = rac{\displaystyle\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\displaystyle\sum_{i=1}^n (x_i - ar{x})^2} \qquad \qquad w_0^* = ar{y} - w_1^* ar{x}$$

- We say w_0^* and w_1^* are **optimal parameters**, and the resulting line is called the regression line.
- The process of minimizing empirical risk to find optimal parameters is also called "fitting to the data."
- ullet To make predictions about the future, we use $igg|H^*(x_i)=w_0^*+w_1^*x_iigg|.$

Predicted Commute Time = 142.25 - 8.19 * Departure Hour

Question 🤔

Answer at practicaldsc.org/q

Consider a dataset with just two points, (2,5) and (4,15). Suppose we want to fit a linear hypothesis function to this dataset using squared loss. What are the values of w_0^* and w_1^* that minimize empirical risk?

• A.
$$w_0^* = 2$$
, $w_1^* = 5$

• B.
$$w_0^* = 3$$
, $w_1^* = 10$

• C.
$$w_0^* = -2$$
, $w_1^* = 5$

$$ullet$$
 D. $w_0^st=-5$, $w_1^st=5$

Correlation

Quantifying patterns in scatter plots

- The correlation coefficient, r, is a measure of the strength of the linear association of two variables, x and y.
- Intuitively, it measures how tightly clustered a scatter plot is around a straight line.
- It ranges between -1 and 1.

The correlation coefficient

- The correlation coefficient, r, is defined as the average of the product of x and y, when both are standardized.
- Let σ_x be the standard deviation of the x_i s, and \bar{x} be the mean of the x_i s.
- x_i standardized is $\frac{x_i \bar{x}}{\sigma_x}$.
- The correlation coefficient, then, is:

$$r = rac{1}{n} \sum_{i=1}^n \left(rac{x_i - ar{x}}{\sigma_x}
ight) \left(rac{y_i - ar{y}}{\sigma_y}
ight)$$

The correlation coefficient, visualized

Another way to express w_1^st

• It turns out that w_1^* , the optimal slope for the linear hypothesis function when using squared loss (i.e. the regression line), can be written in terms of r!

$$w_1^* = rac{\displaystyle\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\displaystyle\sum_{i=1}^n (x_i - ar{x})^2} = r rac{\sigma_y}{\sigma_x}$$

- It's not surprising that r is related to w_1^st , since r is a measure of linear association.
- Concise way of writing w_0^st and w_1^st :

$$w_1^* = r rac{\sigma_y}{\sigma_x} \qquad w_0^* = ar{y} - w_1^* ar{x}$$

Proof that
$$w_1^* = r rac{\sigma_y}{\sigma_x}$$

Recap: Simple linear regression

- Goal: Use the modeling recipe to find the "best" simple linear hypothesis function.
 - 1. Model: $H(x_i) = w_0 + w_1 x_i$.
 - 2. Loss function: $L_{\mathrm{sq}}(y_i,H(x_i))=(y_i-H(x_i))^2$.
 - 3. Minimize empirical risk: $R_{ ext{sq}}(w_0,w_1)=rac{1}{n}\sum_{i=1}^n\left(y_i-(w_0+w_1x_i)
 ight)^2.$

$$\Rightarrow w_1^* = rac{\displaystyle\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\displaystyle\sum_{i=1}^n (x_i - ar{x})^2} = r rac{\sigma_y}{\sigma_x} \qquad \qquad w_0^* = ar{y} - w_1^* ar{x}$$

• The resulting line, $H^*(x_i) = w_0^* + w_1^*x_i$, is the line that minimizes mean squared error. It's often called the **least squares regression line**.

Interpreting the formulas

Causality

• Can we conclude that leaving later causes you to get to school earlier?

Interpreting the slope

$$w_1^* = r rac{\sigma_y}{\sigma_x}$$

- The units of the slope are units of y per units of x.
- In our commute times example, in $H^*(x_i)=142.25-8.19x_i$, our predicted commute time decreases by 8.19 minutes per hour.

Interpreting the slope

$$w_1^* = r rac{\sigma_y}{\sigma_x}$$

- Since $\sigma_x \geq 0$ and $\sigma_y \geq 0$, the slope's sign is r's sign.
- ullet As the y values get more spread out, σ_y increases, so the slope gets steeper.
- ullet As the x values get more spread out, σ_x increases, so the slope gets shallower.

Interpreting the intercept

Predicted Commute Time = 142.25 - 8.19 * Departure Hour

$$w_0^*=ar{y}-w_1^*ar{x}$$

What are the units of the intercept?

• What is the value of $H^*(\bar{x})$?

Question 🤔

Answer at practicaldsc.org/q

We fit a regression line to predict commute times given departure hour. Then, we add 75 minutes to all commute times in our dataset. What happens to the resulting regression line?

- A. Slope increases, intercept increases.
- B. Slope decreases, intercept increases.
- C. Slope stays the same, intercept increases.
- D. Slope stays the same, intercept stays the same.