九州ブロック 福岡ノード

DAISEN DSR-1202

熊抱 崚太 / 石原 廉太郎 / 松田 魁琉 / 目野 優輝

Vision System

OpenMV H7

Line Ring

Arduino Mega 2560

メインマイコン: Teensy 4.0

メインマイコンにはTeensy 4.0を 採用しました。モーター制御や画面表示 などの、ロボット制御を行っています。 以前まではTJ3B Loaderを使用して いましたが、入出力ピン数の多さや、 処理性能の高さからこちらを採用しました。

サブマイコン:ATmega2560

ラインセンサ:S4282-51

取得も可能にしました。

ラインセンサにはS4282-51(光変調フォト IC)を一機あたり25個搭載しています。 ト上の白線の読み取りを行っています。 外部からの光に影響を受けないため、 誤作動が起こりにくく扱いやすいので、 こちらを使用しています。また、複数個の 踏んでいるのかの取得を可能にしました。

カメラ:OpenMV H7

回路を自作しています。

汎用性が高いため、このマイコンを

採用しました。省スペース化のために

ボールセンサ・ジャイロセンサ、

ラインセンサの処理にATmega2560を

採用しました。センサーの値の読み取りや、 動作に必要な計算を行っています。

カメラにはOpenMV H7を 採用しました。ゴール・コートの 角度・距離を計算しています。 プログラムのしやすさや、入手件の高さ 他マイコンとの通信のしやすさから このカメラを採用しました。

ジャイロセンサ:MPU6050

ジャイロセンサにはMPU6050を 採用しています。最初に向いていた 方向からどのくらい角度がずれている のかを計算し、ロボットの姿勢制御に 利用しています。今まで利用していた センサよりもずれが小さく、角度が きれいに算出されるためこちらを 採用しました。

より早く、より正確に一ラインセンサの改良

コート上の白線を認識する ラインセンサは、円形+十字に配置 したものに改良しました。以前 よりもセンサーが外側に伸びたため、 早くラインに反応することができる ようになりました。また、反応した 位置から角度と距離を求め、条件を 分けることで最適な制御ができる ようになり、ルール改定による 白線外の空間の縮小にも対応する ことができました。

コート、ゴール、そして先を見る

僕たちのロボットにはOpenMV H7というカメラを搭載して います。このカメラを用いて、コートの中心の角度と距離、 青・黄ゴールの角度と距離を計算しています。これらのデータを 応用することで、現在自分がコートの中心からどのくらいの角度・ 距離にいるのかを知ることができたり、常に相手のゴールの方向を 見ながらボールを運ぶことを可能にしました。カメラを使うことで、 リアルタイムで常にコートの状況を見ることができるため、たとえ ロボットがゴールの一部を隠したとしても、空いている方向に口 ボットを傾けてシュートすることができます。

また、ディフェンス機では、自陣のゴールの角度と距離を使う ことで、相手口ボットから自陣を守るという行動をとれるように なりました。

蹴り一つで状況を変えるーソレノイドキッカーの搭載

今季から、ソレノイドキッカーを用いたキック機構を搭載しました。 キッカー機構を乗せることで、ロボットが普通にボールを運ぶよりも 強い力でシュートすることができます。

キック機構を用いることで、自分のロボットとボールを離して シュートできるため、ゴールに入る前に相手ロボットと接触していて もプッシングを取られないため、必然的にゴールに入る回数が増える ことになります。また、キック機構と他の機能を一緒に用いることで、 より強力なシュートを打つことができます。例えば、カメラを用いて ゴールの方向を向きながらボールをキックすることで、前を向いて キックするよりもはるかにゴールへのシュート率を上げることができ ます。また、自陣を守るロボットであっても、前方にボールをキック することができるため、アタック・ディフェンス両方の機能を兼ね備 えた強いロボットを作ることができます。

今までプッシングを取られていたシーンも…

<電圧・コンデンサの容量とキックパワーの関係>

ソレノイドキッカーは、かける電圧とコンデンサの容量によってキック パワーが変化します。そこで、どの電圧をかけ、どのコンデンサを搭載する ことでより長距離にボールをキックできるのかという実験を行いました。

コンデンサの容量を220μF~ 4700µFで変化させた時、 1000 uF未満では距離の変化の 割合が小さく、それ以上 では変化の割合が大きくなって いることが分かりました。 また、電圧を15V~40Vで 変化させた時、ほぼ直線的に 変化していることが わかりました。 このような結果から、コンデン サの容量を多く、電圧を高く することで威力を高められるこ とがわかりました。そのため、 僕たちのロボットでは、コンデ ンサの容量を、ロボットに 乗せることのできる最大サイス の4700µFに、電圧を45Vに

<結果・考察> 237 248 179 192 117 80 91 107 110 111 120 128 100 —63 43 20 25 30 35 40 45 50 55 60 (% 青:助走820mm 赤:助走320mm

モータのスピードと制動距離の関係

2023ルールから、コートの白線外の場所が狭くなり、ラインアウト判定が「壁に触れたとき」に変更 されたため、必然的にラインで正確に止まる必要が出てきました。しかし、僕たちのロボットは 「速く、正確に」を目指しているため、正確さをとるために速さを犠牲にしたくないため、速さ・正確さ を両立させるギリギリを探す必要がありました。そこで、モータのスピードによってどのくらい白線の外 に出てしまうのか、という実験を行いました。

白線からそれぞれ820mm、320mmの距離から一定のモーターのスピードでロボットを 走らせ、白線を踏んだ時点でモーターにブレーキをかけ、白線からはみ出た距離を計測する。

この長さを計測する V (値を指定するときはDSR-1202に20~60(5刻み)の値を指定。

雷源は8.3V程度

使用モーター: JMP-BE-3561

使用モータードライバ:DSR-1202

左のグラフのような結果となりました。 ライン外空間の幅は120mmであるため、この グラフから見ると、助走が長いときは30%程 度、助走が短いときは50%程度でモータを 動かせばよいことがわかりました。 しかし、この実験では、移動開始時は停止し ているため、実際の試合では直前の移動での 慣性が乗り、同じモーターの割合でもライン アウトする可能性があります。そのため、 この結果を参考にしつつ、どのような 処理をすればラインアウトをしないギリギリ で停止できるのかを調整していく必要が あります。

スポンサー

僕たちがロボット製作をしていくうえで、金銭面や技術面からサポートしていただいて おります。この場を借りてお礼申し上げます。

JLCPCB 様

基板の発注に際する発注費用や送料などの面でサポートをしていただいております。

3Dプリンタ、レーザーカッターなどの機械を利用させてもらうだけでなく、技術交流 の場としても活用させていただいております。

WSL-043

ツールを駆使する一様々なサービスの利用

ロボット製作をスムーズに行うため、様々なツールを駆使して活動を 行っています。例えば、ロボットの設計を早く、正確に行うために、 Fusion360(機体設計) や、KiCad(回路設計)などのソフトを 活用しています。ロボットの設計以外にも、チーム内で「今自分が 何をすべきなのか」、「まだどのタスクが終わってないのか」を はっきりさせるために、「Asana」というツールを利用しタスクの 明確化のみならず、日程の管理や情報伝達にも活用し、チーム内 での活動を円滑に進めています。また、Githubなどのデータ共有 サービスを利用し、チーム内での最新の進捗を常に素早く共有 しています。これらのおかげで、わずかな活動時間でも大きな進捗 を生み出せています。

駆使するツールはそれだけにとどまりません。例えば、SNSは 新しい技術や情報を身に着ける重要なツールの一つです。 僕たちは、RCJに参加するうえで、技術の共有をしていくことは 必要不可欠であると考えています。そのため、Twitterのアカウント チームのウェブサイトを作成し、私たちが持っている技術の公開・共有 を行っています。プレゼンシート右上にTwitterのユーザー名と ブログのQRコードを掲示しているので、ぜひ一度お訪ねください。

