1*. Suppose that
$$A \cap B = \emptyset$$
. Then $C^{A \cup B} \sim C^A \times C^B$.

Consider a bijection
$$f: AUB \rightarrow C^A \times C^B$$

defined the following way: if a number coame
from $A: C^A \times C^B = (1, C) \times (0, C)$. If it was from
 $B: C^A \times C^B = (0, C) \times (1, C)$. Hence, the first value
acts as an indicator function and $C^{AUB} \rightarrow C^A \times C^B$

2. Let
$$\mathcal{P}_1(A)$$
 be the set of all subsets of A of the form $\{x\}$. Prove that $\mathcal{P}_1(A) \sim A$ for any A.

Let A have n many elements. Then
$$P_1(A) \text{ has n many single tons from A. Hence,}$$

$$P_1(A) \sim A.$$

3. Using indicator functions, prove the following statements for arbitrary A, B, C:

a)
$$(A \cup B) \smallsetminus C = (A \smallsetminus C) \cup (B \smallsetminus C);$$

b)
$$(A \setminus B) \cup B = A \iff B \subseteq A$$
.

$$\frac{1}{(A \cup B)} = \frac{1}{(C \cap B$$

$$= \mathcal{U}_{B} - \mathcal{U}_{C} \mathcal{U}_{B} + \mathcal{U}_{A} - \mathcal{U}_{C} \mathcal{U}_{A} - \left(\mathcal{U}_{B} \mathcal{U}_{A} - \mathcal{U}_{C} \mathcal{U}_{A} \mathcal{U}_{B} - \mathcal{U}_{A} \mathcal{U}_{B} - \mathcal{U}_{A} \mathcal{U}_{B} \right) = \mathcal{U}_{C} \mathcal{U}_{B} + \mathcal{U}_{A} - \mathcal{U}_{C} \mathcal{U}_{A} - \mathcal{U}_{C} \mathcal{U}_{A} - \mathcal{U}_{C} \mathcal{U}_{A} \mathcal{U}_{B} =$$

$$= (\mathcal{A} \cup \mathcal{B}) \setminus \mathcal{C}$$

$$= \mathcal{U}_{A} \cdot \mathcal{U}_{B} + \mathcal{U}_{B} = \mathcal{U}_{A} \cdot \mathcal{U}_{B} + \mathcal{U}_{B} - \mathcal{U}_{A} \cdot \mathcal{U}_{B} =$$

$$= \mathcal{U}_{A} \cdot \mathcal{U}_{B} + \mathcal{U}_{B} = \mathcal{U}_{A} + \mathcal{U}_{B} = \mathcal{U}_{A} + \mathcal{U}_{B} =$$

$$= \mathcal{U}_{A} + \mathcal{U}_{B} - \mathcal{U}_{A} \mathcal{U}_{B} \Rightarrow \mathcal{A} \cup \mathcal{B} = \mathcal{A}$$

$$= \mathcal{U}_{A} + \mathcal{U}_{B} - \mathcal{U}_{A} \mathcal{U}_{B} \Rightarrow \mathcal{A} \cup \mathcal{B} = \mathcal{A}$$

- 4. Applying Cantor-Bernstein-Schröder theorem (if you need), prove that:
- a) $\mathbb{N}^{\mathbb{N}\times\mathbb{Q}}\times\mathbb{N}\sim\mathbb{R}^{\mathbb{Q}}$;
- b) $5^{\mathbb{N}} \sim 3^{\mathbb{N}}$;
- c) any square (with the interior) and disc (the interior of a circle) in the plane are equivalent to each other; (Hint: think of the motions of the plane.)
- d) the set of all possible triangles in the plane is equivalent to $\mathbb R$

C)) sq Henc	war	CE (9N	α	pla	me	has	5 4	po	ints	X ₁ ,	Xz	41,42
	di	żΚ	on	а	plo	un e	h	aς	3 p	oint	S X	, y, v		
	Hence	:e, 1	, L	iŚ	R ³			2		V				
4,	l tri Hen	and	7/e	on	Ol	P) an	<u>o</u> ,	has	3	וסק.	nts	x,y,	Z
	Hen	ice	17	15	R	' م	R.							

 5^* . Let X be some set of pairwise disjoint figures-of-eight in the plane. Prove that $X \lesssim \mathbb{N}$, that is, there are no more than countably many such figures in X.

Let $8 \in X$, then $f: 8 \Rightarrow Q^2 \times Q^2$, where Q^2 is a point inside the loop of 8.

If any two figures of Q_1 Q_2 eight intersect, they must Q_3 Q_4 share an ordered pair Q_4 Q_4 Q_5 Q_7 which is Q_8 Q_8

6*. Prove that there exists a set $S \subseteq \mathcal{P}(\mathbb{R})$ such that all of the following hold: (a) $S \sim \mathbb{R}$; (b) if $X, Y \in S$ and $X \neq Y$, then $X \cap Y = \emptyset$; (c) if $X \in S$, then $X \sim \mathbb{R}$. (*Hint: try to find a similar set* $S' \subseteq \mathcal{P}(\mathbb{R}^2)$; then apply a bijection.)

Let f be a bijection: $\mathbb{R}^2 \rightarrow \mathbb{R}$ and $S = \{ \{ \{x\} \times \mathbb{R} \} | x \in \mathbb{R}^2 \}$

Let $f(\{c3xR)\in S$, then $g:R \rightarrow f(\{c3xR)$ g(x) = f(c,x) is a bijection, hence $f(\{c3xR) \sim R$ (c) holds Let $h:R \rightarrow S$ as $h(x) = f(\{x\}xR)$ is a bijection and $S \sim R$.

7*. Let $C = \{ f \in \mathbb{R}^{\mathbb{R}} \mid \text{the function } f \text{ is continuous} \}$. Prove that $C \sim \mathbb{R}$. (Heine's (sequential) definition of continuity might be helpful.)

From Heine's dofinition:

Vx & R exists a sequence qn, n & N of

rationals converging to X.

f 13 continuous => f(x) = lim f(qn)

So, for any value of x there's a sequence,

hence, R ~ Q ~ R