

CI 5 : ÉTUDE DU COMPORTEMENT DES SYSTÈMES NUMÉRIQUES

CHAPITRE 1 – ÉTUDE DES SYSTÈMES LOGIQUES (APPELÉS AUSSI COMBINATOIRES)

APPLICATIONS DIRECTES

D'après ressources de Jean-Pierre Pupier.

Algèbre de Boole

Question 1

Simplifier les équations suivantes en utilisant uniquement l'algèbre de Boole :

$$S_{1} = a + ab + abc$$

$$S_{2} = \overline{abc} + ac + (a + b)\overline{c}$$

$$S_{3} = bc + ac + ab + b$$

$$S_{4} = a\overline{b}\overline{c} + \overline{ac} + (a + b + c)\overline{c}$$

$$S_{5} = (\overline{ab} + ab + a\overline{b})(c\overline{d} + \overline{c}\overline{d}) + \overline{c}d(\overline{ab} + ab)$$

Logigramme

Question 1

Simplifier l'équation suivante en utilisant uniquement l'algèbre de Boole puis tracer son logigramme :

$$F = b\overline{c}\overline{d} + ab\overline{d} + \overline{a}bc\overline{d}$$

Allumez la lumière!

Trois interrupteurs a, b, c commandent l'allumage de deux lampes R et S suivant les conditions suivantes :

- dès qu'un ou plusieurs interrupteurs sont activés la lampe *R* doit s'allumer;
- la lampe S ne doit s'allumer que si au moins deux interrupteurs sont activés.

Question 1

Calculer les expressions des fonctions binaires R et S et dessiner le logigramme.

Étude d'un transcodeur

Considérons le système logique à 4 entrées x_1 , x_2 , x_3 et x_4 et 4 sorties z_1 , z_2 , z_3 et z_4 qui reçoit sur ses entrées le code binaire réfléchi d'un chiffre décimal et produit en sorties le code à excès de trois correspondant. Le code à excès de 3 d'un chiffre décimal A est égal au code binaire naturel du nombre A+3. Un tel système est appelé transcodeur. La table de vérité suivante définit les 4 fonctions logiques réalisées par ce système.

Question 1

Écrire les expressions minimales de chacune des 4 fonctions réalisées par le transcodeur. Il faudra tenir compte des combinaisons non utilisées.

Question 2

Faire le logigramme correspondant aux 4 fonctions ainsi déterminées.

	x_4	x_3	x_2	x_1	z_4	z_3	z_2	z_1
0	0	0	0	0	0	0	1	1
1	0	0	0	1	0	1	0	0
2	0	0	1	1	0	1	0	1
3	0	0	1	0	0	1	1	0
4	0	1	1	0	0	1	1	1
5	0	1	1	1	1	0	0	0
6	0	1	0	1	1	0	0	1
7	0	1	0	0	1	0	1	0
8	1	1	0	0	1	0	1	1
9	1	1	0	1	1	1	0	0

Logigramme

Question 1

Donner l'équation de sortie H : cette équation sera telle qu'aucun de ses termes ne soit complémenté.

Pont

Un pont peut soutenir 7 tonnes au maximum et on doit surveiller le poids des véhicules se présentant aux deux extrémités A et B où deux bascules mesurent les poids respectifs a et b des véhicules.

On suppose que tous les véhicules ont un poids inférieur à 7 tonnes :

- si un seul véhicule se présente la barrière correspondante A (ou B) s'ouvre ;
- si a + b < 7 tonnes, les barrières A et B s'ouvrent;
- si a + b > 7 tonnes, la barrière correspondant au véhicule le plus léger s'ouvre ;
- $-\sin a = b$, la barrière A s'ouvre en priorité.

a et *b* ne sont pas des variables binaires. Il convient donc de créer deux variables binaires X et Y et de reformuler l'énoncé du problème.

Question 1

Déterminer les équations de fonctionnement de A et B en fonction de X et Y.

Question 2

Tracer le logigramme.

Perceuse

Une perceuse est actionnée par un moteur électrique M. Le moteur ne peut fonctionner que si l'interrupteur de commande s est actionné et si les conditions de sécurité suivantes sont respectées :

- la protection de sécurité *p* est en place;
- le courant de surcharge c n'est pas dépassé.

Outre ces conditions normales de fonctionnement une clé k doit permettre de faire tourner le moteur sans que la protection soit en place.

Question 1

Établir l'équation logique permettant de commander le moteur M.

Question 2

Faire le schéma électrique correspondant.

Usine de brique

Dans une usine de brique, on effectue un contrôle de qualité selon quatre critères : poids *P*, longueur *Lo*, largeur *la*, hauteur *H*. 1 correspond à une valeur correcte, 0 à une valeur incorrecte. Cela permet de classer les briques en 3 catégories :

- qualité A : le poids P et deux dimensions au moins sont corrects ;
- qualité B: le poids P seul est incorrect (les autres dimensions le sont, correctes) ou le poids étant correct deux dimensions au moins sont incorrectes;
- qualité C : le poids P est incorrect ainsi qu'une ou plusieurs dimensions.

Ouestion 1

Faire les tables de vérité et les tableaux de Karnaugh si nécessaire et écrivez les équations des fonctions A, B et C.

Question 2

Simplifier ces équations.

Question 3

Dessiner le logigramme à l'aide de 2 circuits intégrés contenant 3 ET-NON à trois entrées et de 1 circuit intégré contenant quatre OU-NON à deux entrées. On dispose des variables P, Lo, la, H sous une forme directe seulement.

Usine de brique

Le schéma logique ci-dessous est un additionneur soustracteur dont S est la sortie, R+ est le report, R- est la retenue, r est le report de la retenue de poids inférieur.

Question 1

Il est demandé de démontrer cette affirmation au regard des sorties S, R+, R-.

