|
$$V_0 = -20i_2(50|150) = -20i_2(25)$$

| $V_3 \rightarrow 62$
| $V_3 \rightarrow 62$
| $V_4 \rightarrow 62$
| V

Rh 1. (cont.) VTh

Vth = Vo (open-circuit voltage between a & b) ENote that this is true since no current flows through Rm when a to b is left open }

· Rin can be found by shorting a to b and eaving $V_m \Rightarrow \frac{R_m}{V_m} = \frac{V_m}{V_m} = \frac{$ leaving Vn =>

VTh (in terms of 6) = V0 = -2012 (501150) $\frac{1}{120} = \frac{2012(25)}{-2015} = 25.1$

- Q. Give expressions for the sine-wave voltage signals having:
 - a. 5V peak amplitude and 1kHz frequency

 $\omega = 2 \pi 1 k = 6.2832 k \text{ rad/sec} = 5 \sin(6.2832 kt) V$

b. 120Vrms and 60Hz frequency

 $120*\sqrt{2}\sin(2\pi*60t)$ V

c. 200mV peak-to-peak and 1000-rad/s frequency

0.1sin(1000t) V

d. 0.1V peak and 10ms period

0.1sin(2π *100t) V

3 Procedural Steps for Bode Plots.

- 1. Determine the poles and the zeros.
- 2. Determine the starting point of the amplitude plot by plugging into the transfer function the first frequency on the plot.
- 3. Draw the amplitude plot; begin at the starting point. Start with the slope given by poles or zeros at $\omega=0$; at each zero add 20 dB/decade, and at each pole subtract 20 dB/decade. The pole/zero order determines how many 20 dB/decade one added or subtracted. Continue drawing, changing the slope until reaching the end of the graph.
- 4. Draw the phase plot.

Start Value = 0° if constants > 0 180° if constants < 0 +90° for each zero at the origin -90° for each pole at the origin

Each pole/zero contributes a 45° difference in the slope of the Bode Phase Diagram. Mark these on the plot; and the effect begins I decade before the pole/zero and ends I decade after the pole/zero.

4.a.
$$H(s) = \frac{10,000(s+10)}{(s+1,000)(s+100)}$$

Magnitude =>
$$H(s) = \frac{10,000*10\sqrt{\left(\frac{w}{10}\right)^2 + 1^2}}{1,000*100\sqrt{\left(\frac{w}{100}\right)^2 + 1^2}\sqrt{\left(\frac{w}{1000}\right)^2 + 1^2}}$$

Phase => DEGREES(ATAN(w/10)-ATAN(w/1000)-ATAN(w/100))

		•
ω (rad/sec)	Mag(dB)	Phase(Degrees)
0.1	0.00043	0.509913
0.8	0.027426	4.069728
0.9	0.034681	4.57555
1	0.042775	5.080359
2	0.168579	10.04958
3	0.370319	14.809
4	0.637567	19.28162
5	0.958148	23.41617
6	1.319626	27.18636
7	1.710421	30.58678
10	2.966652	38.71647
100	16.9897	33.57881
1000	16.94692	-39.8623
3000	9.995225	-69.8469
4000	7.692824	-74.6749
5000	5.848547	-77.6589
6000	4.316789	-79.6783
7000	3.009423	-81.1333
10000	-0.04364	-83.7738
100000	-20.0004	-89.3755
1000000	-40	-89.9375

Frequency (rad/sec)

Temperature: 27.0 Time: 13:26:11 100KHz ** Profile: "SCHEMATIC1-test" [E:\ECE2280\HW] Stuff\hwl-schematic1-test.sim] 10KHz (A) hwl-SCHEMATIC1-test.dat (active) 1.0KHz Frequency Page 1 100Hz 10Hz : P(V(C1:2,0)) Date: January 09, 2008 -100d 1.0Hz -0q --20d--40**d** -60g -809

$$V_{S} = R_{1} = V_{1}$$

$$V_{S} = R_{2} = V_{1} + C_{2} + C_{3} + R_{3} = C_{2} + C_{3} + R_{3} = C_{2} + C_{3} + C_{3$$

starting slope =20dB/dec until 250rad/sec (the pole value) => (add on the .This circuit operates et frequencies above 250rad/sec. · shase starts at -180° because of the negative sign. Add the sin top to -180° to