## Virtual Lab – Diagnostics2

We will continue with the use of the mtcars data set in R (in the car package). For this lab, find the best model (be sure to explore diagnostics, multicollinearity and influential points).

```
mpg ~ wt + hp + wt:hp
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                       3.60516 13.816 5.01e-14 ***
(Intercept) 49.80842
wt
           -8.21662 1.26971 -6.471 5.20e-07 ***
           -0.12010 0.02470 -4.863 4.04e-05 ***
hp
wt:hp
           0.02785
                        0.00742 3.753 0.000811 ***
ggplot(lm.model2, aes(x=fitted.values(lm.model2), y=resid(lm.model2)))+q
eom point()
> ggplot(lm.model2,aes(x=wt,y=resid(lm.model2)))+geom point()
> ggplot(lm.model2,aes(x=hp,y=resid(lm.model2)))+geom point()
> qqnorm(resid(lm.model2))
> qqline(resid(lm.model2))
> n.index=seq(1,nrow(mtcars))
qqplot(lm.model2,aes(x=n.index,y=cooks.distance(lm.model2)))+qeom poin
t()
> ggplot(lm.model2,aes(x=n.index,y=hatvalues(lm.model2)))+geom point()
> ggplot(lm.model2,aes(x=n.index,y=dffits(lm.model2)))+geom point()
> ggplot(lm.model2,aes(x=n.index,y=rstudent(lm.model2)))+geom point()
p=4
n = 32
```











Cook's D: 0.148



Hat: 0.25



Dffits: 0.71





## > mtcars[17:20,]

|                   | mpg  | cyl | disp  | hp  | drat | wt    | qsec  | vs | am | gear | carb |
|-------------------|------|-----|-------|-----|------|-------|-------|----|----|------|------|
| Chrysler Imperial | 14.7 | 8   | 440.0 | 230 | 3.23 | 5.345 | 17.42 | 0  | 0  | 3    | 4    |
| Fiat 128          | 32.4 | 4   | 78.7  | 66  | 4.08 | 2.200 | 19.47 | 1  | 1  | 4    | 1    |
| Honda Civic       | 30.4 | 4   | 75.7  | 52  | 4.93 | 1.615 | 18.52 | 1  | 1  | 4    | 2    |
| Toyota Corolla    | 33.9 | 4   | 71.1  | 65  | 4.22 | 1.835 | 19.90 | 1  | 1  | 4    | 1    |