

UNIVERSITÄT Bern

ACM SIGCOMM Software Radio Implementation Forum (SRIF) 2014

SDR-based Passive Indoor Localization System for GSM

Islam Alyafawi, Desislava Dimitrova, <u>Torsten Braun</u> Universität Bern

braun@iam.unibe.ch, cds.unibe.ch

Passive Localization of Wireless Devices

b Universität Bern

- System can
 - overhear radio (e.g., GSM, WiFi) signals,
 - process them to retrieve user identity, and
 - locate user based on the signal properties.
- > System components based on software-defined radio
 - Radio signal acquisition
 - Signal property retrieval, e.g., timestamps, power levels
 - Message parsing, e.g., identifiers
 - Localization algorithms
- > Applications
 - Analysis of customer behaviour in shopping centres / amusement parks
 - Analysis of number of people and movements in public areas

Passive Localisation System

UNIVERSITÄT BERN

Universal Software Radio Peripheral

UNIVERSITÄT Bern

- USRP hardware is controlled by open source USRP Hardware Driver, which translates instructions between FPGA hardware and signal processing software
- Solution > GNUradio applications
 - Airprobe intercepts
 GSM downlink messages.
 - OpenBTS implements
 base station protocol stack
 up to layer 3.

System Implementation

UNIVERSITÄT BERN

u^{b}

GSM Message Capturing

UNIVERSITÄT Bern

- a. Sample capturing
- b. GNUradiolow pass filter
- c. Interpolator
- d. Time synchronization
 - Training sequence discovery
 - Normal burst detection
 - Message reconstruction
- e. Message parsing

GNURADIO USRP YES Estimating Interpo-**UHD** BSIC (c) Calculatingthe burst start Pulling 1 burst from the stream Updating shift-register (d) with the new burst If register Nο has 4 bursts Yes Deinterleave Decode Tail bits Shift the register No equal zeros towards oldest burst Yes Message parser

Alyafawi et al.: Real-Time Passive Capturing of the GSM Radio, IEEE ICC 2014

Localization Algorithms

UNIVERSITÄT BERN

- > Range-based positioning using Time/Angle (Difference) of Arrival, Received Signal Strength (RSSI) and multi-lateration
- > Finger-printing
- Proximity-based positioning, e.g., Centroid

Chicago, August 18, 2014

u

Linear Weighted Centroid (LWC)

UNIVERSITÄT Bern

u'

Differential RSS

b UNIVERSITÄT BERN

w3_{DRSS}

>
$$RSS = P_r(d) = A - 10 \alpha \log\left(\frac{d}{d_0}\right) - \Psi$$

>
$$DRSS_{ij} = RSS_i - RSS_j = P_r(d_i) - P_r(d_j) = 10 \alpha \log\left(\frac{a_j}{d_i}\right) - \Psi_{ij}$$

- Select 3 ANs with largest RSS values
- > Calculate DRSS values between each AN pair

$$-X = RSS_1 - RSS_2$$
 Anchor node (AN)

$$-$$
 Y = RSS₁ - RSS₃

$$-Z = RSS_2 - RSS_3$$

$$> Q_2 = Z/X$$

$$Q_3 = Z/Y$$

 $\omega_1:\omega_2:\omega_3=Q_1:Q_2:Q_3$

 $w2_{\text{DRSS}}$

w2_{LWC}

Combined Differential RSS (CDRSS)

UNIVERSITÄT

- Form all possible K triangles
- 2. Calculate weights $\omega_{ik,DRSS}$

$$- i = 1,2,3$$

— k = 1..K for all K triangles

3. Calculate weights $\omega_{i,CDRSS}$ for the 3 ANs with highest RSS

$$w_{i_{\text{CDRSS}}} = \frac{1}{\text{K}} \sum_{k=1}^{\text{K}} w_{ik_{\text{DRSS}}} \text{ for } i = 1,2,3$$

Anchor node (AN)

CDRSS location estimation

Weighted Circumcenter (WCC)

UNIVERSITÄT

AN3 LRSS3

Form triangle using 3 ANs with largest RSS values

- Calculate circumcenter
- Calculate DRSS values 3.
 - $X = RSS_1 RSS_2$
 - Y = RSS₁ RSS₃
 - Z = RSS₂ RSS₃
 - $h_1 = X/Y, h_2 = X/Z, h_3 = Y/Z$

Move circumcenter point to each AN:

$$(x_i', y_i') = h_i * O(x_{wcc}, y_{wcc}) + (1 - h_i) * (x_i, y_i)$$

Anchor node (AN)

Triangle circumcenter

CC location estimation

Shifted circumcenters

Calculate AN weights
$$\omega_{i,WCC}$$
 using differential RSS for new triangle Estimate coordinates of mobile device
$$(x_{\text{est}},y_{\text{est}}) = \begin{pmatrix} \sum_{i=1}^{3} w_{i_{WCC}} * (x'_i,y'_i) \\ \sum_{i=1}^{3} w_{i_{WCC}} \end{pmatrix}$$

Localization Performance

UNIVERSITÄT Bern

MD Location	LWC		CDRSS		WCC	
	μ	σ	μ	σ	μ	σ
L1	3.36	0.28	2.52	0.93	2.72	1.18
L2	6.45	0.09	4.47	0.20	3.19	0.02
L3	6.68	0.21	4.21	0.91	4.38	0.87
L4	3.76	0.08	2.68	1.49	2.14	1.46
L5	5.17	0.12	3.67	0.19	1.83	0.21
L6	1.94	0.76	0.74	0.17	1.02	0.48
L7	6.52	0.19	4.88	0.77	3.54	1.29
L8	8.42	0.20	4.50	0.19	3.67	1.18
L9	4.52	0.10	1.15	0.11	0.97	0.13
L10	5.91	0.11	3.67	0.20	2.01	0.51
L11	6.37	0.27	4.85	0.11	3.10	0.40
L12	2.25	1.15	2.17	1.54	2.00	2.65
L13	4.58	0.83	2.50	0.41	1.25	1.01
L14	0.57	0.06	2.95	1.01	2.32	1.89
Average	4.75	0.31	3.21	0.54	2.43	0.90

Impact of Open/Closed Doors

UNIVERSITÄT BERN

Chicago, August 18, 2014

RSS of (Non-)Line-of-Sight Signals

UNIVERSITÄT BERN

Summary and Outlook

b UNIVERSITÄT BERN

- SDR systems allow new opportunities for signal processing
- Positioning based on proximity-based localization algorithms (CDRSS and WCC) outperform LWC
- Promising results but challenges remain, main challenge: multi-path mitigation

b Universität Bern

Thanks for your attention!

- > <u>braun@iam.unibe.ch</u>
- > cds.unibe.ch

Chicago, August 18, 2014