

2013中国数据库技术大会

DATABASE TECHNOLOGY CONFERENCE CHINA 2013 大数据数据库架构与优化数据治理与分析

基于0racle数据库的数据防护

演讲嘉宾: 熊军

magic007cn@gmail.com

About Me

- 云和恩墨西区技术总监
- Oracle ACE
- 超过10年数据库专业经验
- 独立开发出Oracle恢复软件ODU
- 个人网

站:http://www.laoxiong.net

数据有多重要?

四个小故事之一

某准金融系统,使用了两套存储,其中一套存储 掉电,大量数据损坏。

没有物理备份,只有数天前的逻辑备份。

在线日志文件在两套存储上有冗余,挽救了很多数据。

四个小故事之二

某公司生产机房在香港,容灾机房在广州,通过 异步LVM同步的方式进行容灾。

生产系统存储故障,以为容灾机房已经同步到最新,实际并没有。

由于维护操作不当,丢失一个归档文件,导致约10分钟的数据丢失。

四个小故事之三

某省级系统跨三个机房容灾。

由于某机房网络故障,进行切换,切换后数据文件丢失。

用RMAN备份恢复时,发现磁带介质上归档备份丢失。

四个小故事之四

某运营商的一套重要系统, 个别数据文件损坏。

恢复时发现某些归档的备份信息已经不在catalog中,但实际备份文件还在磁带库上。

用了比正常恢复多得多的时间。

备份时rman的输出日志帮助恢复归档。

数据面临的风险

人为误操作

应用软件BUG

数据库BUG

文件损坏或丢失

磁盘损坏

灾难或自然灾害

如何保护数据?

备份重于一切

容灾

正确的处理方法

备份恢复原理

事务级一致性

使用日志前滚所有更改

使用UND0回滚未提交事务

crash recovery

Buffer cache

数据 文件

- ◆任意时刻,内存修改过的块的数据总 是比数据文件上的块新。
- ◆事务提交时, redo会从log buffer写入到online redo logfile
- ◆Crash时, buffer cache中修改过的 块的事务可能被提交,也可能没有
- ◆Crash时, buffer cache中修改过的 块的日志可能已经写入日志文件,也 可能没有
- ◆写入数据文件的块,其redo一定是写 入到了日志文件中

crash recovery

Buffer cache

数据 文件

- ◆恢复时,使用online redo logfile 恢复数据块到崩溃时的状态。
- ◆有可能崩溃时修改过的块的日志没有 写入online redo logfile, 因此不 能得到恢复。但是这样的块的事务一 定是没有提交的。

transaction recovery

index	state	cflags	wrap#	uel
0x00 0x01 0x02	9 9 9	0x00 0x00	0x03fe 0x03fd 0x03fd	0x0015 0x000a 0x0008

- ◆Crash recovery完成后,使用UNDO段 头事务表查找未提交事务。
- ◆回滚未提交事务。
- ◆此时数据库已经可以打开。
- ◆Open阶段报错,可能是一致性读出错, 而不是因为smon在事务回滚。

关于redo的例外

PL/SQL 循环中的commit

```
commit_write参数:
```

' {IMMEDIATE | BATCH}, {WAIT

NOWAIT}'

Commit write语句

介质恢复

数据文件头的checkpoint count

控制文件中记录的数据文件的 checkpoint count

文件头上的checkpoint rba

RMAN备份

在线热备份

物理备份

可以进行数据回溯

要求归档模式

RMAN备份

检查点

T1时间开始备份

T2时间备份完成

T1至T2时间点的归档不可缺少

V\$backup_datafile中的 ABSOLUTE FUZZY CHANGE#列

exp/expdp备份

表之间数据可能不一致

只能恢复到备份时刻

恢复部分数据时较快

跨平台和版本支持

备份介质

备份一定不要放在生产库所在硬盘上

备份要放在专用的存储介质上

备份的catalog

尽量使用catalog库

control_file_record_keep_time

参数

Block change tracking

提高增量备份速度

```
Alter database enable
block change tracking
using file
```


BCT文件

每个实例1个BCT文件

32K可以记录7686M大小数据块的 变更信息

BCT文件的变化

增加数据文件时, BCT中分配新的空间

删除表空间/数据文件时,清除数据

更改块时,如果相应位还没设成1,就设置成1

BCT文件的变化

增量备份时,BCT分配一个新的位图版本(一共8个版本)

新的版本 (current version)
startSCN为此次增量备份的checkpoint

scn

上一个版本的startSCN为前一次增量备份的checkpoint scn, end scn为本次增量备份的checkpoint scn

防范误操作和应用软件BUG

权限限制和操作限制

闪回Flash back

日志挖掘 log miner

权限限制和操作限制

最小权限化原则

使用触发器限制DDL操作

```
create or replace trigger SYS. DDL_AUDIT_TRIGGER
  before ddl on database
declare
...
  select count(*)
    into l_trace
    from dual
    where lower(l_str_stmt) like '%drop%table%'
        or lower(l_str_stmt) like '%truncate%table%';
...
  if l_enabled <> 'Y' then
        raise_application_error(-20001, 'You can not execute this
ddl.');
  end if;
...
```


闪回

Recyclebin参数

尽可能大的UNDO表空间

Alter tablespace undotbs1 retention guarantee

数据库级闪回,但是负担较高

日志挖掘

开启归档,即使没有备份

清理归档: Delete archivelog until time 'sysdate-1'

in memory undo的影响

开启附加日志: alter database add supplemental log data;

归档日志和在线日志

归档日志视同为备份,因此必 须在与数据文件不同的存储介 质上。

在线日志文件视同为生产和备份兼 有,因此需要在与数据文件不同的 存储介质上有冗余。

关于ASM

ASM元数据损坏是最常见的故障

通常只有磁盘头块是静态的

数据库的备份是重中之中

用于存储归档和第二份online redo logfile的ASM磁盘组至少要在不同 的RAID GROUP组

容灾

同平台,使用data guard

异构平台,使用golden gate或第三 方软件

基于存储级复制

双存储ASM/extended RAC。

Data Guard

三种模式

archive_lag_target参数

重点保护Online redo logfile

正确的处理方法

数据损坏时最重要的是保护现场

理解每一个操作的含义和风险

常见不正确的做法

表被drop/truncate后,用逻辑备份导回

在没有备份的情况下, 贸然强制打开数据库

在备份没有验证的情况下,使用备份来还原和恢复

在文件系统出现异常的情况下,继续往文件系统复制文件

贸然使用open resetlogs

总结

人为误操作	备份、权限控制,闪回查询
应用软件BUG	备份、闪回查询
数据库BUG	备份、数据库闪回
文件损坏或丢失	备份、data guard
磁盘损坏	备份、容灾
灾难或自然灾害	备份、容灾

