Dimensionality Reduction with PCA and Non-Negative Matrix Factorization Harold Okai

PCA

Introduction

In this project my goal was to improve a Logistic Regression I worked on a couple of weeks ago. The dataset was acquired from the University of California Irvine's Machine Learning Repository. Later on I will also do some unsupervised clustering with NMF, of which dataset I acquired from Kaggle. The goal of this project was to show the techniques used in dimensionality reduction and unsupervised learning methods.

The Datasets

The first dataset involves a binary classification to simulate the classification of primary gammas (signal) and hadronic showers (background). The data had ten features including the binary feature of whether it be signal or background radiation.

	description	units	missing_values
0	major axis of ellipse	mm	no
1	minor axis of ellipse	mm	no
2	10-log of sum of content of all pixels	#phot	no
3	ratio of sum of two highest pixels over fSize	None	no
4	ratio of highest pixel over fSize	None	no
5	distance from highest pixel to center, project	None	no
6	3rd root of third moment along major axis	mm	no
7	3rd root of third moment along minor axis	mm	no
8	angle of major axis with vector to origin	deg	no
9	distance from origin to center of ellipse	mm	no
10	gamma (signal), hadron (background)	None	no

Here is the data showing the columns with skews with a threshold of over 0.75. Then a pairplot was constructed to show the relationships of the columns with each other.

After that using the Standard Scaler, I checked to see if there were any missing values, but that fortunately returned false. This is the correlation of the features.

	fLength (scaled)	fWidth (scaled)	fSize (scaled)	fConc (scaled)	fConc1 (scaled)	fAsym (scaled)	fM3Long (scaled)	fM3Trans (scaled)	fAlpha (scaled)	fDist (scaled)
fLength (scaled)	1.000000	0.725438	0.800756	-0.785819	-0.750379	-0.280978	0.015461	0.010772	-0.204598	0.483181
fWidth (scaled)	0.725438	1.000000	0.786416	-0.771972	-0.739520	-0.226068	-0.054786	0.025357	-0.108442	0.369950
fSize (scaled)	0.800756	0.786416	1.000000	-0.870436	-0.826897	-0.155549	0.102162	0.014897	-0.280378	0.437004
fConc (scaled)	-0.785819	-0.771972	-0.870436	1.000000	0.976412	0.112272	-0.121899	-0.011294	0.294386	-0.328332
fConc1 (scaled)	-0.750379	-0.739520	-0.826897	0.976412	1.000000	0.100159	-0.118769	-0.010966	0.286200	-0.304625
fAsym (scaled)	-0.280978	-0.226068	-0.155549	0.112272	0.100159	1.000000	0.274045	0.002553		-0.206730
fM3Long (scaled)	0.015461	-0.054786	0.102162	-0.121899	-0.118769	0.274045	1.000000	-0.017197	-0.216126	0.037025
fM3Trans	0.010772	0.025357	0.014897	-0.011294	-0.010966	0.002553	-0.017197	1.000000	0.005968	0.011427

Applying PCA
After applying PCA, here are some of the projections of each component onto others.

	Projection on Component 1	Projection on Component 2	Projection on Component 3	Projection on Component 4	Projection on Component 5	Projection on Component 6	Projection on Component 7	Projec Compo
0	0.962500	0.305616	0.916411	-1.324925	-0.063962	-0.427227	0.002376	-0.12
1	1.608331	0.690461	-1.014410	0.302893	-0.130574	0.309573	0.271516	0.60
2	-4.447499	-0.592512	0.536003	-3.227812	-0.607456	2.911260	0.729073	0.47
3	2.729489	0.230764	-0.347814	-0.114217	-0.668016	-0.101919	0.232733	0.68
4	-2.012905	0.315194	-0.497171	1.842128	0.444696	0.949483	0.293273	0.09

Next we find the explained variance with a threshold of 95%, we find that the number of principal components in the model is about 5-7.

The fitted PCA data was then trained on a Logistic, with L2 penalty. After that, these are the metric we got

```
{'accuracy': 0.827900455660708,
 'recall': array([0.91108108, 0.67447657]),
 'precision': array([0.83772366, 0.80439952]),
 'f1score': array([0.8728638, 0.73373102])}
```

Now we do a side by side comparison of the Logistic Regression with and without PCA.

```
{'accuracy': 0.7956536978618998,
  'recall': array([0.90108108, 0.60119641]),
  'precision': array([0.80648283, 0.76717557]),
  'f1score': array([0.8511616 , 0.67411962])}
```

Before Applying PCA

```
{'accuracy': 0.827900455660708,
  'recall': array([0.91108108, 0.67447657]),
  'precision': array([0.83772366, 0.80439952]),
  'f1score': array([0.8728638, 0.73373102])}
```

After Applying PCA

We can see that some of the scores in each iteration of the Logistic Regression had some scores increase and some of the scores decreased. For example the F1 score was much better before applying PCA, but the recall score went up from 90 to 91. This is because like I stated in the

red component accounts for 82.02% of explained variance black component accounts for 10.36% of explained variance green component accounts for 7.62% of explained variance

beginning, this dataset is not a prime candidate for PCA.
So even from a 3D view, no matter which angle you look at it from, there is no real improvement visually, since from all angles it is clear that the 3D plot still looks the same way. And there are no two real dominant directions of variance with respect to the

original data, except for the red component.

Transforming the Dataset into a Higher Dimension

How about if we transformed the dataset into a higher dimension? After transforming the data into a higher dimension, we can see that there is still real improvement in terms of a linearly separable solution.

After applying PCA, we end up with a mean accuracy score that is less than what we started with.

```
lr= LogisticRegression().fit(PHI_train, y_train)
print(str.format("Test set mean accuracy score for for Kernal PCA: {}"

Test set mean accuracy score for for Kernal PCA: 0.831230283911672
```

Non Negative Matrix Factorization

The Dataset

The dataset used in this unsupervised clustering was acquired on Kaggle. It is a collection of news articles collected from the Huffington Post with corresponding topics and dates of publication etc.

	link	headline	category	short_description	authors	date
0	https://www.huffpost.com/entry/covid- boosters	Over 4 Million Americans Roll Up Sleeves For O	U.S. NEWS	Health experts said it is too early to predict	Carla K. Johnson, AP	2022-09- 23
1	https://www.huffpost.com/entry/american-airlin	American Airlines Flyer Charged, Banned For Li	U.S. NEWS	He was subdued by passengers and crew when he	Mary Papenfuss	2022-09- 23
2	https://www.huffpost.com/entry/funniest-tweets	23 Of The Funniest Tweets About Cats And Dogs	COMEDY	"Until you have a dog you don't understand wha	Elyse Wanshel	2022-09- 23
3	https://www.huffpost.com/entry/funniest- parent	The Funniest Tweets From Parents This Week (Se	PARENTING	"Accidentally put grown-up toothpaste on my to	Caroline Bologna	2022-09- 23
4	https://www.huffpost.com/entry/amy-cooper-lose	Woman Who Called Cops On Black Bird-Watcher Lo	U.S. NEWS	Amy Cooper accused investment firm Franklin Te	Nina Golgowski	2022-09- 22

The analysis was only limited to only 10,000 articles, because as we can see the entire data is quite large.

```
boston_doj_pressrelease_df.shape
(209527, 6)
```

Applying NMF

There were 29 unique topics dataset, that is according to the 10,000 index cutoff.

```
# Surpress warnings from using older version of sklearn:
def warn(*args, **kwargs):
    pass
import warnings
warnings.warn = warn

from sklearn.decomposition import NMF
model = NMF(n_components=29, init='random', random_state=818)
doc_topic = model.fit_transform(tfidf_mat)

doc_topic.shape
# we should have 10000 observations (articles) and five Latent features

(10000, 29)

model.components_.shape
(29, 2000)
```

These are dataframe showing how each word contributes to the various clustered topics.

		abc	able	abortion	abortions	absolutely	abuse	academy	access	according	account
topic	:_1	0.004	0.001	0.000	0.0	0.002	0.000	0.000	0.001	0.000	0.002
topic	_2	0.000	0.000	0.000	0.0	0.000	0.000	0.000	0.000	0.009	0.002
topic	_3	0.003	0.000	0.015	0.0	0.000	0.000	0.000	0.004	0.001	0.012
topic	_ 4	0.003	0.000	0.000	0.0	0.000	0.009	0.001	0.001	0.028	0.000
topic	_5	0.000	0.000	0.000	0.0	0.003	0.000	0.000	0.003	0.000	0.000

5 rows × 2000 columns

The dataframe below also shows the topics and which category it most relates to.

Topic 1 mostly relates to Crime, topic 2 mostly to Media and so on.

topic_1	CRIME
topic_2	MEDIA
topic_3	EDUCATION
topic_4	LATINO VOICES
topic_5	POLITICS
topic_6	POLITICS
topic_7	WOMEN
topic_8	ENTERTAINMENT
topic_9	COMEDY
topic_10	PARENTING
topic_11	WOMEN
topic_12	CRIME
topic_13	POLITICS
topic_14	POLITICS
topic_15	TECH
topic_16	COMEDY
topic_17	POLITICS
topic_18	MEDIA
topic_19	SCIENCE
topic_20	BUSINESS
topic_21	TRAVEL
topic_22	WELLNESS
topic_23	CRIME
topic_24	EDUCATION
topic_25	WELLNESS
topic_26	ENTERTAINMENT
topic_27	CRIME
topic_28	IMPACT
topic_29	TECH
dtype: obje	ct

opics_wor	d.T.sort_	_values	(by='to	pic_1	', asc	ending	=False)
	topic_1 to	pic_2 to	opic_3 t	opic_4	topic_	_5 topic	_6 topic
said	0.651	0.000	0.000	0.000	0.00	0.0	0.0
officials	0.030	0.001	0.094	0.019	0.00	0.0	85 0.0
official	0.024	0.015	0.000	0.005	0.00	0.0	0.0
authorities	0.022	0.000	0.053	0.000	0.00	0.0	0.0
opics_wor	d.T.sort	_value	s(by='1	topic_	_2', a	scendi	ng= Fal s
	topic_	1 topic	_2 topic	c_3 to	pic_4	topic_5	topic_6
trui	np 0.00	0 0.79	90 0.0	001	0.000	0.000	0.000
dona	ald 0.00	0 0.3	59 0.0	000	0.000	0.022	0.000
administrati	on 0.00	1 0.06	62 0.0	800	0.016	0.000	0.001
campai	gn 0.00	0.06	61 0.0	000	0.020	0.006	0.000
electi	on 0.00	0.03	39 0.0	001	0.000	0.000	0.033
opics_wor	rd.T.sort	_value	s(by='	topic _.	_29',	ascend	ding=F a
	topic_1	topic_2	topic_3	3 topio	c_4 to	pic_5 t	opic_6
media	0.000	0.00	0.000	0.0	000	0.000	0.000
social	0.000	0.00	0.000	0.0	000	0.000	0.000
called	0.000	0.01	0.000	0.0	800	0.029	0.005
right	0.001	0.00	0.007	7 0.0	000	0.002	0.000
twitter	0.000	0.00	0.001	1 0.0	000	0.037	0.000

Finally we look at how each of the words relates to the topics and the category. We can see that with topics 1 which mostly relates to crime we have words like, 'said', 'officials', 'authorities' etc. With topic 2 which is related to Media we have words like 'trump', 'administration', 'election' etc. For Tech we have 'media', 'social', 'twitter' etc.

Conclusion

In conclusion our machine learning could benefit from a more 'apt' dataset when it comes to Logistic Regression. Probably a dataset that was more "cyclic" and prone to inaccuracies when it comes to prediction. The dataset was okay without PCA, but we cannot inject our own sentiments to a dataset as data comes as it is collected. With NMF we could have done better with a much larger dataset. That is including the whole dataset in the analysis, but for the lack of computational resources we had to limit the data. Also a better approach would have been to use more deep learning methods as they are more suited to Natural Language Processing (NLP).

References

Wolberg, William, Mangasarian, Olvi, Street, Nick, and Street, W.. (1995). Breast Cancer Wisconsin (Diagnostic). UCI Machine Learning Repository. https://doi.org/10.24432/C5DW2B.

D. Heck et al., CORSIKA, A Monte Carlo code to simulate extensive air showers, Forschungszentrum Karlsruhe FZKA 6019 (1998).

http://rexa.info/paper?id=ac6e674e9af20979b23d3ed4521f1570765e8d68

Ismael Mousa. (2024). Raw Google News [Data set]. Kaggle. https://doi.org/10.34740/KAGGLE/DS/5094567