Episode

O(nlogn) Closest Pair and Mathematical Induction

Closest Pair: $O(n \log n)$

- Solution 1: From 黄相阁 and 李竞翔
 - Use Merge Sort idea to maintain the sorted-by-y lists.
 - In the combine step, we also merge two sorted lists.
- Solution 2: From 王煌基
 - Sort by x and Sort by y at the beginning.

Solution 1

Function ClosestPair(S)

- Sort the points (by the x-coordinate) and draw all the vertical lines.
- Divide:
 - 1. Sort the points (by the x-coordinate).
 - 2. Draw such a vertical line ℓ that each side has n/2 points.
- Recurse
 - 3. Find the closest pair in each side, let δ_L , δ_R be the distance.
- Combine
 - 4. Let $\delta = \min{\{\delta_L, \delta_R\}}$ and S' be the set of points at most δ from ℓ .
 - 5. Sort S' by the y-coordinate.
 - 6. Merge two sorted-by-y point lists
 - 7. For each $a \in S'$, check 7 b above a inside S', find the closest pair.
 - 8. Return the closest pair among step 3 and 6.

Solution 2

Function ClosestPair(S)

- Sort the points (by the x-coordinate) and draw all the vertical lines.
- Sort the points (by the y-coordinate).
- Divide:
 - 1. Sort the points (by the x-coordinate).
 - 2. Draw such a vertical line ℓ that each side has n/2 points.
 - 3. Loop the sorted-by-y point lists and make two sorted-by-y sublists.
- Recurse
 - 3. Find the closest pair in each side, let δ_L , δ_R be the distance.
- Combine
 - 4. Let $\delta = \min\{\delta_L, \delta_R\}$ and S' be the set of points at most δ from ℓ .
 - 5. The list is sorted by y.
 - 6. For each $a \in S'$, check 7 b above a inside S', find the closest pair.
 - 7. Return the closest pair among step 3 and 6.

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n\log n)$$

Solution 1: Explore

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n\log n) \le 4T\left(\frac{n}{4}\right) + C \cdot n\log n + 2C \cdot \frac{n}{2}\log \frac{n}{2}$$

$$= 2^{\log n} T(1) + C \cdot (n \log n + n \log \frac{n}{2} + n \log \frac{n}{4} + \cdots)$$

$$= nT(1) + Cn \log^2 n - Cn(\log 1 + \log 2 + \log 4 + \dots \log n)$$

$$= O(n\log^2 n)$$

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n\log n)$$

- Solution 2: Induction
- Base

$$-T(1) = O(n\log^2 n)$$

- Induction
 - Assume $T(n) = O(n \log^2 n)$ for all n < N

$$- T(n) = 2T\left(\frac{n}{2}\right) + O(n\log n) = 2O\left(\frac{n}{2}\log^2\frac{n}{2}\right) + O(n\log n)$$
$$= O(n\log^2 n) + O(n\log n) = O(n\log^2 n)$$

Is it Correct?

Discussion

- T(n) = O(n)
- There exists a constant C_n , such that $T(n) \le Cn$ for all $n > n_0$.
- What happens when we do induction?
- T(n) = T(n-1) + O(n)
- $T(1) \leq Cn$
- $T(2) \leq 2Cn$
- $T(n) \leq nCn$
- At some moment, kC is not a constant.

Be careful when we use induction!

$$T(n) = 2T\left(\frac{n}{2}\right) + O(n\log n)$$

- Solution 2: Induction
- Prove: $T(n) \leq Bn \log^2 n$
- Base
 - $T(1) \le Bn \log^2 n$
- Induction
 - Assume $T(k) = Bk \log^2 k$ for all k < n
 - $T(n) = 2T\left(\frac{n}{2}\right) + O(n\log n) = Bn\log^2\frac{n}{2} + C \cdot n\log n$ $\leq Bn\log n\left(\log\frac{n}{2} + \frac{C}{B}\right)$ $\leq Bn\log n\log n \text{ if } C < B$
- Guess B > C!

An Interesting Induction!

Proof: All the flower is red.

- Observation: I see a red flower today.
- Lemma: All the flowers are the same color.
- Base case:
 - One flower is the same color.
- Induction
 - Assume all k flowers are the same color, for all k < n.
 - Remove the first flower, all the other n-1 flowers are the same color.
 - Remove the last flower, all the other n-1 flowers are the same color.
 - The first flower and the last flower are the same color.
 - All the n flowers are the same color.

What's wrong?

Wrong!

We can not go through n = 2 from n = 1.