

China's Self-Reliance Goal: How Much Progress?

Barry Naughton & Zhuohan Fang

Context

1. Chinese Industrial Policy Focus on Security and Self-Reliance

- Three phases of Industrial Policy
- Shift in Objectives Requires new evaluation criteria
- 2. New Instruments (such as Innovation Consortia): Designed to achieve More effective Micro Interventions
- 3. Evaluate Progress in Reducing Import Dependence (Self-Reliance)
- Both macro and micro (specific commodities)

Three Phases of Chinese Industrial Policy

	Objective	Strategy	Additional
			Instruments
2006-	Economic	Target Sectors,	Traditional: Tax
2012	Growth	Opportunistically;	breaks; cheap
		Build Domestic	credit;
		Capacity	
2013-	Growth &	"Innovation-driven"	Government
2019	Holistic	New Technological	Guidance Funds;
	Security	Revolution	Gov't Research
2020-	Security &	S&T Self-Reliance;	Innovation Consortia
Present	Self-Reliance	Reduce Dependency	National S&T Forces
			"Modernized
			Industrial System"

Macro Trends

- Moderate reduction in "Big Economic Categories" (BEC), i.e., total imports of capital goods and Intermediates (scaled to GDP).
 - The two categories most likely to embody advanced technology.
- Moderate in the context of China's relatively lower engagement in foreign trade.

Preview of Procedures: Micro

- Selected 16 groups of commodities based on 2018 Chinese evaluation of "bottleneck" technologies:
 - Partitioned by growth and volatility of imports (2 by 2 matrix).
 - Then divide into three policy-relevant groups.
 - Semiconductors and Semiconductor Capital Goods are different
- 2. Substantial Variation Among Groups
 - 1) Identified a substantial group of successful import-substitution commodities.
 - 2) Identified a group with "no discernable impact" of technology self-reliance.
 - 3) Identified a large group of policy-impacted groups, displaying high volatility along with continued rapid growth.
 - Includes all semiconductor-related categories
 - Not yet achieved import substitution, but picture is complex
- 3. Validated this approach with two additional "batches" from 2023 and 2025.
- 4. Used this information to return to the Aggregated Data (subtracting semiconductor-related groups): China Customs data is timely and rich, but difficult to use.

Preview of Results: How Effectively Has China Substituted for Imports? (Excluding Semiconductors)

- ➤ Imported capital goods (adjusted) declined significantly as a share of GDP; from 2.06% of GDP in 2015 to 1.27% of GDP in 2024. Almost 40%!
- Imported intermediates (adjusted) declined from 6.40% of GDP in 2015 to 5.26% of GDP in 2024. Reduction of 18%.

After a small uptick in 2024, These two big categories together (Excluding Semiconductors) Declined from 8.46% of GDP to 6.53% of GDP. Almost 2 full percentage points

This is a large and economically Significant number.

NOT the focus of much of the "Tech War" Commentary on China's Trade

UC San Diego

What We Have Done

1. Looking at Commodity-Level and Aggregate Categories

Consistent and More Accurate Takeaways

2. Trends in **Technology Import Substitution**

Both at the individual commodity level and in the aggregated data, we observe consistent signs of import substitution - partial but significant

3. Externally validated our bottleneck commodities as the self-reliance focus

Utilized different batches of the sensitive technology product lists for cross-validation:

- Batch 1: Technological Vulnerabilities from Technology Daily 2018
- Batch 2: Advanced Manufacturing Roadmap from 2023
- Batch 3: Custom Tariff Exemption Products from 2025

4. Adjusted Trends Considering Stockpiling Distortion

Commodity-based patterns → ruling out precautionary stockpiling effects

Technology Groups

Unit of Analysis & Data

- Granularity
 - Chinese Harmonized System Code on 8-digit (Commodity HS8 Code)
- Data
 - Monthly trade volume by Commodity HS8 Code from China National Custom

How We Define Technology Groups

Identifying Bottleneck Technologies

- > **35 Technologies** from Science and Technology Daily (2018):
 - High Foreign Dependency
 - Lack of Substitutes
 - Strategic Importance
 - Vulnerability to Trade Restrictions
- > 35 Technologies → 85 Commodity HS8 Code

	35 项中国被"十	⇒脖子"	的关键技术
1	光刻机	19	高压柱塞泵
2	芯片	20	航空设计软件
3	操作系统	21	光刻胶
4	触觉传感器	22	高压共轨系统
5	真空蒸镀机	23	透射式电镜
6	手机射频器件	24	掘进机主轴承
7	航空发动机短舱	25	微球
8	iCLIP 技术	26	水下连接器
9	重型燃气轮机	27	高端焊接电源
10	激光雷达	28	钾电池隔膜
11	适航标准	29	燃料电池关键材料
12	高端电容电阻	30	医学影像设备元器件
13	核心工业软件	31	数据库管理系统
14	ITO 靶材	32	环氧树脂
15	核心算法	33	超精密抛光工艺
16	航空钢材	34	高强度不锈钢
17	铳刀	35	扫描电镜
18	高端轴承钢		

How We Define Technology Groups

Identifying Bottleneck Technologies

- **>** 85 Commodity HS8 Code → 16 Bottleneck Technology Groups
- ➤ 16 Groups → 4 Technology Commodity Categories (common sense):
 - Semiconductor intermediates (semiconductor intermediate)
 - Semiconductor-related capital goods (semiconductor capital)
 - All other intermediates embodying bottleneck technologies (other intermediate)
 - All other capital goods embodying bottleneck technologies (other capital)
- ➤ 16 Groups → 17 Groups (Medicaments added in the external validation process, as one of the top import commodities being exempted from tariffs)

How We Define Technology Groups

Table 1:	Technology Groups			
Sector	Category	Semiconductor-rel	ated?	
1 Passive Component	Capital Goods	Semi		
2 Integrated Circuits (ICs)	Intermediate	Semi		
3 Silicon Processing	Capital Goods	Semi		
4 Energy Equipment	Capital Goods	Other	Sixtee	n Groups from
5 Laser or Optical Measurement Devices	Capital Goods	Other		Bottleneck List
6 Lithography for Electronics	Capital Goods	Semi	Plus N	/ledicaments
7 Telecommunication Equipment	Capital Goods	Other	From	
8 Cleanroom Process Equipment	Capital Goods	Semi	1 10111	2020.
9 Fluid Control Equipment	Capital Goods	Other		
10 Bearings and Alloy Steel	Intermediate	Other		
11 Hot or Cold Process Equipment	Capital Goods	Semi		
12 Polymers	Intermediate	Other		
13 Batteries and Components	Intermediate	Other		
14 Automotive and Power Systems	Intermediate	Other		
15 Medical and Bio Precision Equipment	Capital Goods	Other		
16 Aviation & Aerospace	Capital Goods	Other		UC Can Diaga
17 Medicaments	Consumption Goods	Other		oc San Diego

Aggregate Trends

Semiconductor Tech Group Displays Distinct Patterns:

(Regression-based Validation in Paper)

Increase in semiconductor-related technology-embodying imports:

Semiconductor Capital Goods: $0.09\% \rightarrow 0.16\%$ of GDP 1 \$billion \rightarrow > 4 \$billion

Semiconductor Intermediate Goods: $1.85\% \rightarrow 2.12\% \rightarrow 1.64\%$ of GDP 15 \$billion \rightarrow >30 \$billion

The Rest of Total Capital Goods: $2\% \rightarrow ^{\sim}1.2\%$ of GDP

The Rest of Total Intermediate Goods .

 $6.5\% \rightarrow ^{\sim}5\%$ of GDP

How We Partition Trade Patterns by Tech Groups

Calculation of Volatility Index & Growth Index

Volatility Index - Capturing Degree of Import Fluctuations

Calculated using the coefficient of variation: $Volatility\ Index_i(COV) = \frac{SD(X_i)}{Mean(X_i)}$

- High values → erratic fluctuations
- Medium/low values → stable imports
- Growth Index Measuring Growth in Import

Reflect the direction and magnitude of long-term trends, with recent data weighted more heavily:

Growth Index_i =
$$\frac{\sum_{t=1}^{T} w_t \cdot X'_{it}}{\sum_{t=1}^{T} w_t}$$
, where $X'_{it} = index(X_{it}) = \frac{x_{i,t} - x_{i,1}}{x_{i,1}}$, $t = 1,2,...$ T

- High values → high growth in imports
- Low values → low growth in imports

How We Partition Trade Patterns by Tech Groups

Three Key Trade Patterns Partitioned:

- No Discernable Effect → High growth (Growth Index > 0.5) & Medium/low volatility (Volatility Index < 0.3)
- Successful Import
 Substitution → Low growth (Change Index < 0.5)

	High Growth (G > 0.5)	Low Growth (G < 0.5)
High Volatility (V > 0.3)	Cleanroom Process Equipment Energy Equipment Hot or Cold Process Equipment Lithography Equipment Medicines Silicon Processing Tools	Aviation & Aerospace
Medium Volatility (0.24 ≤ V < 0.3)	Integrated Circuits (ICs) Laser/Optical Devices Medical/Biotech Equipment	Passive Components Telecom Equipment
Low Volatility (V ≤ 0.23)	Fluid Control Equipment	Automotive / Power Systems Batteries and Components Bearings and Alloy Steel Polymers

Overview of Trade Patterns

Stockpiling vs No Discernable Effect vs Substitution

Stockpiling Behavior - The Semiconductor Rush

Evidence of precautionary purchases rather than technological in/dependence

- Import surges driven by stockpiling or other policy disturbance
- Key groups:
 - Integrated Circuits (ICs)
 - Lithography Equipment
 - Silicon Processing Tools
 - Cleanroom Process Equipment
 - Energy Equipment
 - Hot or Cold Process Equipment
 - Medicaments
- Perhaps evidence of a policy cycle that allows or encourages imports early in the implement phase for that industry. Might serve to establish a market for the commodity and give domestic producers the chance to reverse engineer and incrementally innovate.

Sectors with Persistent Foreign Dependence

Slow progress of self-reliance, indicating no discernable effect from industrial policy

- Continuously increasing import volumes = lack of viable domestic alternatives
- Key groups:
 - Medical/Biotech Precision Equipment
 - Laser/Optical Devices
 - Fluid Control Equipment

Sectors Showing Self-Reliance Success

Consistent decline signaling domestic import substitution

- Key groups:
 - Passive Components
 - Telecommunication Equipment
 - Automotive and Power Systems
 - Batteries and Components
 - Polymers
 - Aviation and Aerospace
 - Bearings and Alloy Steel

Updating the Analysis with More Recent "Bottleneck" Commodities (Validation)

- Batch 2: HS8 commodities extracted from 2023 China Advanced Manufacturing Greenbook
- Batch 1: HS8 commodities identified from 2018 Science and Technology Daily Chokepoint Tech List

Batch 3: HS8 commodities extracted from 2025 Custom Tariff Exemption Product List

Advanced Manufacturing 2023		
HS8 Code	Brief Label	
84561100 (84561000 pre-2022)	Machine-tools operated by laser process	
84799010	Assembly equipment for aerospace manufacturing	
84798999	Manufacturing equipment for ships and marine engineering	
84679910	High-speed, high-power electric spindles	
84669390	Milling heads with direct-drive mechanisms	
90262090	Pressure sensors for ultra-high-pressure applications	
85158090	Welding heads for alloy friction stir applications	
84775900 (84775990 pre-2022)	Heads for weaving, filament, and tape placement	
84775910	3D printers	
85158010	Heads for intelligent laser welding	
84141000	Vacuum systems for industrial processes	
84821010	Spindle bearings for high-performance machine tools	
84821020	Bearings for screw pairs	
84821030	Bearings for turntables	
84662000	Precision guide rails and screws	
85159000	Generators for high-power lasers	
84669400	Molds with ultra-precision specifications	
90319000	Encoders for high-precision measurements	
90271000	Sensors for high-temperature zirconia oxygen measuremen	

Other types of Import Dependency

Batch 2 import trend shows a pattern related to the industrial policy cycle

Other types of Import Dependency

➤ Batch 1 & Batch 3 comparison shows a reasonably high degree of persistence of crucial bottleneck areas

How Effectively Has China Substituted Technology Imports?

(Returning to Our Preview)

- Semiconductor-related imports must be handled separately due to stockpiling.
- Seven out of seventeen nonsemiconductor-related "bottleneck" groups' imports display significant domestic technology substitution.
- Imported capital goods (adjusted) declined significantly as a share of GDP; from 2.06% of GDP in 2015 to 1.27% of GDP in 2024.
- With Intermediates, total decline from 8.5% to 6.5% of GDP.

Conclusions

- China is making progress overall in reducing technology import dependence
- Strategic **stockpiling** distorts the true picture of self-reliance
- Planners have probably succeeded in narrowing dependencies rather than eliminating them
- Import reliance is increasingly limited to a few high-tech capital goods sectors
- In the **less glamorous, not-bleeding-edge** industrial technologies, China has made very substantial progress in import substitution.
- Trade imbalances are deepening export growth (5.9%) outpaced import growth (1.1%) in 2024

Extended Implications

- 1. This aspect of China's industrial policy is likely to be extremely costly.
 - The goals are non-economic; security at any price.
 - Investments go into products where China has a demonstrated lack of comparative advantage, by definition.
 - Costs are diffused throughout the economy.
- 2. Perhaps recognizing this, Chinese policymakers have built flexibility into their industrial policy instruments.
 - "Sustained pressure" to substitute for foreign inputs, rather than "commands."
 - Many micro-initiatives, so failure can be tolerated.
- 3. China restricts imports while promoting exports.
 - Not so evident from the US perspectives, since both sides are trying to decouple (reducing both supply and market dependence).
 - Very evident from a third-party perspective, as Chinese trade surpluses, especially in manufactured goods, are set to sustain and increase for the foreseeable future.
 - Large economic cost and huge geopolitical headache for China.

Thanks!