CALCUL NUMERIC -LABORATOR #8

- **Ex. 1** Să se afle polinomul de interpolare Lagrange $P_2(x)$ al funcției f(x) = sin(x) relativ la diviziunea $(-\frac{\pi}{2}, 0, \frac{\pi}{2})$ conform metodelor directă și Lagrange. Să se evalueze eroarea de trunchiere $|P_2(\frac{\pi}{6}) f(\frac{\pi}{6})|$.
- Ex. 2 1) Să se construiască în Python următoarele proceduri conform sintaxelor:
 - a) MetDirecta(X, Y, x)
 - b) MetLagrange(X, Y, x)

conform metodelor directă și Lagrange. Vectorii X, Y reprezintă nodurile de interpolare, respectiv valorile funcției f în nodurile de interpolare. Ambele proceduri returnează valoarea polinomului $y = P_n(x)$.

- 2) Să se construiască în Python în aceeași figură, graficele funcției f pe intervalul [a,b], punctele $(X_i,Y_i), i=\overline{1,n+1}$ și polinomul P_n obținut alternativ prin metodele specificate. Datele problemei sunt: $f(x)=\sin(x), n=3, a=-\pi/2, b=\pi/2$. Se va considera diviziunea $(X_i)_{i=\overline{1,n+1}}$ echidistantă. Pentru construcția graficelor funcției f și P_n , folosiți o discretizare cu 100 noduri.
- 3) Reprezentați grafic într-o altă figură eroarea $e_t = |f P_n|$.
- 4) Creşteţi progresiv gradul polinomului P_n şi rulaţi programele. Ce observaţi în comportamentul polinomului P_n ? Deduceţi n maxim pentru care polinomu P_n îşi pierde caracterul.

Obs.: Polinoamele Lagrange sunt instabile pentru n mare, i.e., la o variație mică în coeficienți apar variații semnificative în valorile polinomului.

Ex. 3 Fie funcția $f(x) = \frac{1}{1+25x^2}$ definită pe intervalul [-1,1]. Să se construiască grafic funcția f(x), polinomul Lagrange $P_n(x)$ și punctele $(X_i,Y_i), i=\overline{1,n+1}$ pentru cazul unei discretizări uniforme cu 7 puncte. Măriți progresiv valoarea lui n. Construiți într-o altă figură eroarea de trunchiere $e_t(x) = |f(x) - P_n(x)|$. Ce observați? Alegeți o discretizare neuniformă folosind nodurile Chebyshev. Ce observați în noile figuri?