DAT2 week 9

Misrab

Agenda

- Learning Theory
- Reinforcement Learning
- CS
- HMMs

Bias / Variance: parameters, models

How much data needed?

Which models to even consider?

Lemma. (The union bound). Let A_1, A_2, \ldots, A_k be k different events (that may not be independent). Then

$$P(A_1 \cup \cdots \cup A_k) \leq P(A_1) + \ldots + P(A_k).$$

Lemma. (Hoeffding inequality) Let Z_1, \ldots, Z_m be m independent and identically distributed (iid) random variables drawn from a Bernoulli(ϕ) distribution. I.e., $P(Z_i = 1) = \phi$, and $P(Z_i = 0) = 1 - \phi$. Let $\hat{\phi} = (1/m) \sum_{i=1}^m Z_i$ be the mean of these random variables, and let any $\gamma > 0$ be fixed. Then

$$P(|\phi - \hat{\phi}| > \gamma) \le 2 \exp(-2\gamma^2 m)$$

How many training points (samples) to be within 0.01 of each other with probability 95%?

Binary classification empirical error

$$\hat{\varepsilon}(h) = \frac{1}{m} \sum_{i=1}^{m} 1\{h(x^{(i)}) \neq y^{(i)}\}.$$

(fraction misclassified)

Generalisation error

$$\varepsilon(h) = P_{(x,y)\sim\mathcal{D}}(h(x) \neq y).$$

PAC framework "probably approximately correct"

i.e. training and testing from same distribution

Minimising training error

$$\hat{ heta} = rg \min_{ heta} \hat{arepsilon}(h_{ heta}).$$

$$\mathcal{H} = \{h_{\theta} : h_{\theta}(x) = 1\{\theta^{T}x \geq 0\}, \theta \in \mathbb{R}^{n+1}\}$$

equivalent to
$$\hat{h} = \arg \min_{h \in \mathcal{H}} \hat{\varepsilon}(h)$$

Finite
$$\mathcal{H} = \{h_1, \dots, h_k\}$$

We want guarantees on generalisation error when we minimise empirical error

- theoretical framework
- applied cases e.g. too few data points for cross-validation

- Take fixed h_i in H

- Let
$$Z_j = 1\{h_i(x^{(j)}) \neq y^{(j)}\}$$

- Training error of h_i

$$\hat{arepsilon}(h_i) = rac{1}{m} \sum_{j=1}^m Z_j.$$

- Hoeffding

$$P(|\varepsilon(h_i) - \hat{\varepsilon}(h_i)| > \gamma) \le 2\exp(-2\gamma^2 m).$$

Great. But we don't just want this for one h_i, we want it for all of H simultaneously

$$P(|arepsilon(h_i) - \hat{arepsilon}(h_i)| > \gamma) \leq 2\exp(-2\gamma^2 m).$$
 $P(A_i)$

$$P(\exists h \in \mathcal{H}.|\varepsilon(h_i) - \hat{\varepsilon}(h_i)| > \gamma) = P(A_1 \cup \dots \cup A_k)$$

$$\leq \sum_{i=1}^k P(A_i)$$

$$\leq \sum_{i=1}^k 2 \exp(-2\gamma^2 m)$$

$$= 2k \exp(-2\gamma^2 m)$$

$$P(\exists h \in \mathcal{H}.|\varepsilon(h_i) - \hat{\varepsilon}(h_i)| > \gamma) = P(A_1 \cup \dots \cup A_k)$$

$$\leq \sum_{i=1}^k P(A_i)$$

$$\leq \sum_{i=1}^k 2 \exp(-2\gamma^2 m)$$

$$= 2k \exp(-2\gamma^2 m)$$

If we subtract both sides from 1, we find that

$$P(\neg \exists h \in \mathcal{H}. |\varepsilon(h_i) - \hat{\varepsilon}(h_i)| > \gamma) = P(\forall h \in \mathcal{H}. |\varepsilon(h_i) - \hat{\varepsilon}(h_i)| \le \gamma)$$

$$\ge 1 - 2k \exp(-2\gamma^2 m)$$

Example

For instance, we can ask the following question: Given γ and some $\delta > 0$, how large must m be before we can guarantee that with probability at least $1 - \delta$, training error will be within γ of generalization error? By setting $\delta = 2k \exp(-2\gamma^2 m)$ and solving for m, [you should convince yourself this is the right thing to do!], we find that if

$$m \ge \frac{1}{2\gamma^2} \log \frac{2k}{\delta},$$

then with probability at least $1 - \delta$, we have that $|\varepsilon(h) - \hat{\varepsilon}(h)| \leq \gamma$ for all $h \in \mathcal{H}$. (Equivalently, this shows that the probability that $|\varepsilon(h) - \hat{\varepsilon}(h)| > \gamma$ for some $h \in \mathcal{H}$ is at most δ .) This bound tells us how many training examples we need in order make a guarantee. The training set size m that a certain method or algorithm requires in order to achieve a certain level of performance is also called the algorithm's **sample complexity**.

With just a bit more effort, we can get an explicit guarantee on generalisation error

Theorem. Let $|\mathcal{H}| = k$, and let any m, δ be fixed. Then with probability at least $1 - \delta$, we have that

$$\varepsilon(\hat{h}) \le \left(\min_{h \in \mathcal{H}} \varepsilon(h)\right) + 2\sqrt{\frac{1}{2m} \log \frac{2k}{\delta}}.$$

lower bias: increasing H class

variance tradeoff of increasing H class

In summary, given a hypothesis class of complexity k, we can figure out how many training examples we need to be within a certain distance from minimising generalisation error when carrying out empirical risk minimisation

Analog for continuous case: Vapnik-Chervonenki (VC) dimension

Previously, y had a "correct" value

Now instead, what if the best we can provide is a reward function

e.g. robot motion, gaming...trading?

https://www.youtube.com/watch?v=qv6UVOQ0F44 https://www.youtube.com/watch?v=M8YjvHYbZ9w https://www.youtube.com/watch?v=rVlhMGQgDkY

A Markov decision process is a tuple $(S, A, \{P_{sa}\}, \gamma, R)$, where:

- S is a set of states. (For example, in autonomous helicopter flight, S
 might be the set of all possible positions and orientations of the helicopter.)
- A is a set of actions. (For example, the set of all possible directions in which you can push the helicopter's control sticks.)
- P_{sa} are the state transition probabilities. For each state $s \in S$ and action $a \in A$, P_{sa} is a distribution over the state space. We'll say more about this later, but briefly, P_{sa} gives the distribution over what states we will transition to if we take action a in state s.
- $\gamma \in [0, 1)$ is called the **discount factor**.
- R: S × A → R is the reward function. (Rewards are sometimes also written as a function of a state S only, in which case we would have R: S → R).

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} s_3 \xrightarrow{a_3} \dots$$

$$s_1 \sim P_{s_0 a_0}$$

Upon visiting the sequence of states s_0, s_1, \ldots with actions a_0, a_1, \ldots , our total payoff is given by

$$R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \cdots$$

Or, when we are writing rewards as a function of the states only, this becomes

$$R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots$$

We want to maximise expected discounted reward

Economic interpretation of gamma?

$$\mathrm{E}\left[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots\right]$$

Policy to choose actions

$$\pi: S \mapsto A$$

$$a=\pi(s)$$

Value function based on policy

$$V^{\pi}(s) = \mathbb{E}\left[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots \mid s_0 = s, \pi\right].$$

$$V^{\pi}(s) = \mathrm{E}\left[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots \mid s_0 = s, \pi\right].$$

Bellman equation

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s').$$

Can you draw this (perhaps as a decision tree?)

We want to find the optimal value

$$V^*(s) = \max_{\pi} V^{\pi}(s).$$

or

$$V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s').$$

max over possible actions

Exponential paths to explore

Hansel and Grettel!

Recommended for Dynamic Programming and Value Iteration:

https://en.wikipedia.org/wiki/Memoization

https://www.youtube.com/watch?v=oefOCk3koZo

https://www.youtube.com/watch?v=ip4iSMRW5X4

Extensions:

Learning P_sa

Continuous space (discretisation)

Computer Science

Scope and the call stack

```
def f():

x = 2

return x + 4
```

```
x = 3 print f()
```

what is printed?

$$x = 3$$
 print f()

what is printed?

Recursion: function calling itself

Pointers!

How pythons can bite!

```
arr = [ \{ ... \}, \{ ... \}, \{ ... \} ]
results = []
for ...
 x = arr[i]
 x.moo = "foo"
 results.append(x)
```

What's wrong?

. . .

results =
$$[x, x, x, x]$$

x —> the last item

```
arr = [ \{ ... \}, \{ ... \}, \{ ... \} ]
results = []
for ...
 x = copy.deepcopy(arr[i])
 x.moo = "foo"
 results.append(x)
```

Practice!

```
int *moo // pointer int moo // actual value
```

```
int moo = 3
&moo // address of value
```

```
int *moo
*moo = 3 // set value!
```

http://www.gdsw.at/languages/c/programming-bbrown/c_0771.htm

Hidden Markov Models

Sequence of words over time based on audio

Other examples?

Easy case: we observe the actual state

Observed over time:

$$z1 = sun, z2 = cloud, z3 = sun...$$

$$P(z_t|z_{t-1}, z_{t-2}, ..., z_1) = P(z_t|z_{t-1})$$

Simplifying Assumptions

Limited horizon: $P(z_t|z_{t-1}, z_{t-2}, ..., z_1) = P(z_t|z_{t-1})$

Stationary process: $P(z_t|z_{t-1}) = P(z_2|z_1); t \in 2...T$

Can you explain this in a picture?

State transition matrix

		s_0	s_{sun}	s_{cloud}	s_{rain}
	s_0	0	.33	.33	.33
A =	s_{sun}	0	.8	.1	.1
	s_{cloud}	0	.2	.6	.2
	s_{rain}	0	.1	.2	.7

What's the prob of a given sequence?

$$P(\vec{z}) = P(z_{t}, z_{t-1}, ..., z_{1}; A)$$

$$= P(z_{t}, z_{t-1}, ..., z_{1}, z_{0}; A)$$

$$= P(z_{t}|z_{t-1}, z_{t-2}, ..., z_{1}; A)P(z_{t-1}|z_{t-2}, ..., z_{1}; A)...P(z_{1}|z_{0}; A)$$

$$= P(z_{t}|z_{t-1}; A)P(z_{t-1}|z_{t-2}; A)...P(z_{2}|z_{1}; A)P(z_{1}|z_{0}; A)$$

$$= \prod_{t=1}^{T} P(z_{t}|z_{t-1}; A)$$

$$= \prod_{t=1}^{T} A_{z_{t-1}z_{t}}$$

Compute this:

$$P(z_1=s_{sun},z_2=s_{cloud},z_3=s_{rain},z_4=s_{rain},z_5=s_{cloud})$$

		s_0	s_{sun}	s_{cloud}	s_{rain}
	s_0	0	.33	.33	.33
A =	s_{sun}	0	.8	.1	.1
	s_{cloud}	0	.2	.6	.2
	s_{rain}	0	.1	.2	.7

If we had a sequence **z**, we could use maximum likelihood to figure out **A**

Examples?

Hidden Markov Models

We don't observe the sequence directly

e.g. words vs audio waves

New matrix **B** that also tells us P($y_t = i \mid x_t = j$)

use observe sequence z

$$\begin{split} P(\vec{x};A,B) &= \sum_{\vec{z}} P(\vec{x},\vec{z};A,B) \\ &= \sum_{\vec{z}} P(\vec{x}|\vec{z};A,B) P(\vec{z};A,B) \end{split}$$

use HMM assumptions

$$P(\vec{x}; A, B) = \sum_{\vec{z}} P(\vec{x}|\vec{z}; A, B) P(\vec{z}; A, B)$$

$$= \sum_{\vec{z}} (\prod_{t=1}^{T} P(x_t|z_t; B)) (\prod_{t=1}^{T} P(z_t|z_{t-1}; A))$$

$$= \sum_{\vec{z}} (\prod_{t=1}^{T} B_{z_t x_t}) (\prod_{t=1}^{T} A_{z_{t-1} z_t})$$

This is relatively advanced. Even sklearn has outsourced it:

https://github.com/hmmlearn/hmmlearn