8. (12 points) Let A be a 3×3 matrix such that rank(A) = 2 and $A^3 = 0$.

- (a) Prove that $rank(A^2) = 1$.
- (b) Let $\alpha_1 \in \mathbb{R}^3$ be a nonzero vector such that $A\alpha_1 = 0$. Prove that there exist vectors α_2 , α_3 such that $A\alpha_2 = \alpha_1$, $A^2\alpha_3 = \alpha_1$.
- (c) For any vectors α_2, α_3 described as above, show that $\alpha_1, \alpha_2, \alpha_3$ are linearly independent.

(In this problem, you are allowed to assume the statements of some questions to answer subsequent questions.)

WITH WILLY

WALL AM C. I LAK

- (a) 证明 $rank(A^2) = 1$.
- (b) 设 $\alpha_1 \in \mathbb{R}^3$ 是满足 $A\alpha_1 = 0$ 的非零向量. 证明: 存在向量 α_2 , α_3 使得 $A\alpha_2 = \alpha_1$, $A^2\alpha_3 = \alpha_1$.
- (c) 证明: 对于任意满足上述条件的向量 α_2, α_3 , 向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关.

(本题中, 允许承认前面小题的结果来用于后续问题的解答.)

a) $A^3 = 0$ 视作 $A \cdot A^2 = 0$, 贝有 $C(A^2) \subseteq N(A)$. 故 $\Gamma(A^2) \leqslant \dim N(A) = 3 - \Gamma(A) = 1$ 若 $\Gamma(A^2) = 0$. 则 $\dim N(A^3) = 3$. 故 $N(A^2) = IR^3$. 由 $\Gamma(A^2) = IR^3$ 由 $\Gamma(A^2) = IR^3$ 力 $\Gamma(A^2) = IR$

b) $\forall x \in N(A)$, 有 $A \propto = 0$, 自然有 $A^2 \propto = 0$, 故 $x \in N(A^2)$. 因此 $N(A) \subseteq N(A^2)$. dim N(A) = 3 - r(A) = 1. 题目任取 $d_1 \neq 0$ s.t. $A d_1 = 0$, 有信提 N(A)的基 (i.e., $N(A) = \{kd_1 \mid k \in R\}$). $d_1 \in N(A) \subseteq N(A^2)$. 计算 $\dim N(A^2) = 3 - r(A^2) = 2$. 由 扩基定理知,存在 $U_2 \in N(A^2)$, s.t. $\{d_1, V_2\}$ 和成 $N(A^2)$ 的一组基. 特别地, $V_2 \in N(A^2)$ 图 $P(A^2 \vee_2 = 0)$, $P(A(A \vee_2) = 0)$. 故 $A \bowtie \in N(A) = \{kd_1 \mid k \in R\}$. 区此、存在 $C \in R^*$, s.t. $A U_2 = C d_1$. $A U_3 = C d_1$. $A U_4 = C d_1$.

同理易证 fai, de} CN(A²) CN(A³),且dimN(A³)=3-r(A³)=3-0=3. 由扩基定主里,可将fai, de} fai, de, ve} 成为N(A³) 的一组基.

于是找到了满足 A²d3=d1, Ad2=d1 白勺 d3, d2.

C) $\forall C_1 d_1 + C_2 d_2 + C_3 d_3 = 0$ (*), w.t.s. $C_1 = C_2 = C_3 = 0$.