

We will start first draft video presentations next week on Wednesday / Friday

SEND ME BY EMAIL:

- 1). your title
- 2). which day you would prefer to present

At the start of class NEXT Wednesday - hand in question cards for course up to this point (things you are not sure you can answer)

questions about exam questions / answers? : answer key

Sex-Linked Inheritance

who carries the disease allele?

Inheritance of Red-Green Blindness: an X-linked Recessive Trait

repeat diseases (genetic anticipation)- increasing severity Trinucleotide repeat diseases Huntington's disease and many SCAs Fragile-X Syndrome Friedreich ataxia Myotonic dystrophy CGG CAG GAA CTG UTR UTR Exon Intron Exon UTR = untranslated region SCA = spinocerebellar ataxia Premutation range (may expand to a full mutation in the next generation) Normal alleles

repeat diseases

- pre-mutation below threshold no phenotype
- intermediate expansion
- pathogenic severity linked to extent of expansion
- some (fragile X repeats in non-coding region of FMR1 gene) due to get worse (longer) in maternal lineage
- mother's children more likely to display phenotype
- males do not transmit (contraction of repeat region)
- others (Huntington's disease Htt gene) get worse paternal lineage; father's children more likely to display phenotype
- stable/contracts in maternal lineage.
- mechanisms uncertain

Chromosomal instability during neurogenesis in Huntington's disease

Albert Ruzo^{1,*}, Gist F. Croft^{1,*}, Jakob J. Metzger^{1,2,*}, Szilvia Galgoczi¹, Lauren J. Gerber¹, Cecilia Pellegrini¹, Hanbin Wang, Jr¹, Maria Fenner¹, Stephanie Tse¹, Adam Marks¹, Corbyn Nchako¹ and Ali H. Brivanlou^{1,‡} 2018

Surprisingly, the same phenotype emerged in $HTT^{-/-}$ but not $HTT^{+/-}$ lines. We conclude that HD is a developmental disorder characterized by chromosomal instability that impairs neurogenesis, and that HD represents a genetic dominant-negative loss of function, contrary to the prevalent gain-of-toxic-function hypothesis. The consequences of developmental alterations should be considered as a new target for HD therapies.

	Metastases Drug resistant	
1 mutant cell Time: months / decades covert	\rightarrow	

Charles Darwin, 1837, Notebook B

