산학캡스톤 프로젝트 제안서

신청 기업명	(주)엠웨이브스			사업장 위치	안산시 상록구	
담당자	소 속		성 명	명남수	직 위	대표
	연락처	010-8685-1668	e-mail	nsmyung@gmail.com		
관련분야	□ 빅데이터 처리 □ 애플리케이션SW □ 인공지능 □ 컴퓨터 보안 ■ 임베디드SW □ 멀티미디어컨텐츠(AR/VR, 게임 등) ■ 기타 (융합기술, EV, 친환경, Free piston engine, 발전기)					
프로젝트 명	DAPPEM/Free piston engine 융합 친환경 발전기/충전기/ESS					
프로젝트 개요	DAPPEM/FPE 융합 친환경발전기/충전기/ESS					
	□ 배경/ 필요성 - 산업현장 문제점 기술					
추진 배경	DAPPEM 전동기는 광대역 작동영역에서 고효율 발전/모터로 작동하여, 크랭크 없이 왕복운동 (내연) 피스톤 엔진 (FPE, Free piston engine) 과 접목하여, 기계적 측면에서 비교적 단순한 구조를 가지어 신뢰성 내구성이 높으며, 매우 높은 에너지 효율을 가지는 발전기 구현이 가능하다. 본 프로젝트에서는, 압축공기, Bio-fuel (알코올) 등 에너지원(연료)를 사용할 수 있는 친환경 발전기 구현을 목표로 한다. (응용분야는 전기차의 운행 중 베터리 충전으로 주행거리를 늘리는 system 혹은 DAPPEM Motor/ FPE로 압축공기 에너지저장 시스템 포함)					
개발 목표	□ 개발 목표 – 개발하고자 하는 시스템의 목표					
	압축공기를 에너지원으로 하는FPE/DAPPEM 발전기 시제품, 설계, 제작, 시현 3D CAD prototype 설계, 3D print를 사용한 Working model, Metal 3D print Bio-fuel FPE Computer simulation					
	□ 기업체 지원 가능 사항 (산업체 멘토, 개발 도구, 개발용 샘플 등)					
	신호처리 및 제어 이론/관련 (전문가 초빙) 기술 멘토링 이중 동동구동 전동기 선형모터 기본 설계, 및 구동 Electronics 설계 및 제작 지원					
결과물	□ 최종 기대 결과물 (졸업작품으로 전시할 소프트웨어 시현물)					
	 3D print FPE/DAPPEM 공기압축 에너지 저장/충전 시스템 설계문서, (동영상포함) 자체시험결과문서, 시현물(demo system) 					
인턴십 연계	■ 여름방학 인턴십 ■ 겨울방학 인턴십 □ 인턴십 안함					