Álgebra I. Hoja de ejercicios 5: Aritmética I Universidad de El Salvador, ciclo impar 2019

Por cualquier pregunta, no duden en escribir al grupo ues-algebra-2019@googlegroups.com.

Ejercicio 1. Sea p un número primo. Para el anillo $\mathbb{Z}_{(p)} := \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, \ p \nmid b \right\}$ definamos

$$v_p\left(\frac{a}{b}\right) := \max\{k \mid p^k \mid a\}, \quad v_p(0) := +\infty.$$

1) Demuestre que para cualesquiera $x, y \in \mathbb{Z}_{(p)}$ se cumple

$$v_p(xy) = v_p(x) + v_p(y).$$

- 2) Demuestre que todo elemento no nulo $x \in \mathbb{Z}_{(p)}$ puede ser escrito como up^n donde $u \in \mathbb{Z}_{(p)}^{\times}$ y $n = v_p(x)$.
- 3) Demuestre que todo elemento irreducible en $\mathbb{Z}_{(p)}$ está asociado con p.

Ejercicio 2. Sea k un cuerpo. Consideremos el anillo de las series de potencias k[[X]]. Definamos para $f = \sum_{i \ge 0} a_i X^i \in k[[X]]$

$$v(f) := \min\{i \mid a_i \neq 0\}, \quad v(0) := +\infty$$

(recuerde el primer ejercicio de la hoja 4).

- 1) Demuestre que toda serie no nula $f \in k[[X]]$ puede ser escrita como gX^n donde $g \in k[[X]] \times y$ n = v(f).
- 2) Demuestre que todo elemento irreducible en k[X] está asociado con X.

Ejercicio 3. Sea $n \le -3$ un entero negativo libre de cuadrados. Usando la norma, demuestre que los números 2 y $1 \pm \sqrt{n}$ son irreducibles en el anillo $\mathbb{Z}[\sqrt{n}]$

Ejercicio 4. Sea $n \le -3$ un entero negativo libre de cuadrados. Demuestre que 2 no es primo en $\mathbb{Z}[\sqrt{n}]$. Sugerencia: note que si n es par, entonces $2 \mid (\sqrt{n})^2$, y si n es impar, entonces $2 \mid (1 + \sqrt{n})(1 - \sqrt{n})$.

Ejercicio 5. Demuestre que en el anillo $\mathbb{Z}[\sqrt{3}]$ no existe un elemento invertible α tal que $1 < \alpha < 2 + \sqrt{3}$. Encuentre los elementos invertibles en $\mathbb{Z}[\sqrt{3}]$.

Ejercicio 6. Sea k un cuerpo. Demuestre que un polinomio f es irreducible en el anillo k[X] si y solo si f no es constante y f no se puede escribir como f = gh con $\deg g, \deg h < \deg f$.

Ejercicio 7. Encuentre los polinomios irreducibles en el anillo $\mathbb{C}[X]$.

Ejercicio 8. Sean k un cuerpo y $f \in k[X]$ un polinomio de grado 2 o 3. Demuestre que f es irreducible si y solo si f no tiene raíces en k.

Ejercicio 9. Encuentre todos los polinomios mónicos irreducibles de grado 2 y 3 en el anillo $\mathbb{F}_p[X]$ para p = 2,3.

Ejercicio 10. Para algún cuerpo k encuentre un polinomio de grado 4 en k[X] que no tiene raíces en k pero es reducible.