Residual resampling in SMC

Suzie Brown

February 7, 2019

The offspring counts are sampled according to:

$$v_t^{(i)} = \lfloor N w_t^{(i)} \rfloor + X_i$$

 $X_i \sim \text{Multinomial}(N - k, (\bar{w}_t^{(1)}, \dots, \bar{w}_t^{(N)}))$

where $k := \sum_{i=1}^{N} \lfloor Nw_t^{(i)} \rfloor$ is the number of offspring assigned deterministically, and $\bar{w}_t^{(i)} := \frac{Nw_t^{(i)} - \lfloor Nw_t^{(i)} \rfloor}{N-k}$ are the residual weights. Let us also define the residuals $r_i := Nw_t^{(i)} - \lfloor Nw_t^{(i)} \rfloor$. So $\sum_{i=1}^{N} r_i = N - k$.

The coalescence rate is defined as

$$c_N(t) := \frac{1}{(N)_2} \sum_{i=1}^N (v_t^{(i)})_2.$$

We will use $c_N^m(t)$ and $c_N^r(t)$ to denote the coalescence rates with multinomial and residual resampling respectively. The expectation then comes out as

$$\begin{split} \mathbb{E}[(v_t^{(i)})_2|\mathcal{F}_{t-1}] &= \mathbb{E}[(v_t^{(i)})^2|\mathcal{F}_{t-1}] - \mathbb{E}[v_t^{(i)}|\mathcal{F}_{t-1}] \\ &= \mathbb{E}[\lfloor Nw_t^{(i)}\rfloor^2|\mathcal{F}_{t-1}] + 2\mathbb{E}[\lfloor Nw_t^{(i)}\rfloor r_i|\mathcal{F}_{t-1}] + \mathbb{E}\left[r_i\left(1 - \frac{r_i}{N-k} + r_i\right)|\mathcal{F}_{t-1}\right] - \mathbb{E}[Nw_t^{(i)}|\mathcal{F}_{t-1}] \\ &= \mathbb{E}[\lfloor Nw_t^{(i)}\rfloor^2|\mathcal{F}_{t-1}] - \mathbb{E}[\lfloor Nw_t^{(i)}\rfloor|\mathcal{F}_{t-1}] + 2\mathbb{E}[\lfloor Nw_t^{(i)}\rfloor r_i|\mathcal{F}_{t-1}] + \mathbb{E}\left[r_i^2\left(1 - \frac{1}{N-k}\right)|\mathcal{F}_{t-1}\right] \\ &= \mathbb{E}[(Nw_t^{(i)})^2|\mathcal{F}_{t-1}] - \mathbb{E}[\lfloor Nw_t^{(i)}\rfloor|\mathcal{F}_{t-1}] - \mathbb{E}\left[\frac{r_i^2}{N-k}|\mathcal{F}_{t-1}\right] \end{split}$$

so we get

$$\begin{split} \mathbb{E}[c_N^r(t)|\mathcal{F}_{t-1}] &= \frac{1}{(N)_2} \sum_{i=1}^N \mathbb{E}[(v_t^{(i)})_2|\mathcal{F}_{t-1}] \\ &= \frac{N}{N-1} \sum_{i=1}^N \mathbb{E}[(w_t^{(i)})^2|\mathcal{F}_{t-1}] - \frac{1}{(N)_2} \sum_{i=1}^N \mathbb{E}\left[\frac{r_i^2}{N-k}|\mathcal{F}_{t-1}\right] - \frac{1}{(N)_2} \mathbb{E}[k|\mathcal{F}_{t-1}] \\ &= \mathbb{E}[c_N^m(t)|\mathcal{F}_{t-1}] \left(1 + \frac{1}{N-1}\right) - \frac{1}{(N)_2} \mathbb{E}\left[\frac{\sum_{i=1}^N (Nw_t^{(i)} - \lfloor Nw_t^{(i)} \rfloor)^2}{\sum_{j=1}^N (Nw_t^{(j)} - \lfloor Nw_t^{(j)} \rfloor)}|\mathcal{F}_{t-1}\right] \\ &- \frac{1}{(N)_2} \mathbb{E}\left[\sum_{i=1}^N \lfloor Nw_t^{(i)} \rfloor |\mathcal{F}_{t-1}\right] \end{split}$$

Sanity check:

When the weights are all equal, $w_t^{(i)} \equiv 1/N$, we should have $\mathbb{E}[c_N^r(t)|\mathcal{F}_{t-1}] = 0$ since each particle will have exactly one offspring so it is impossible for any lineages to coalesce. In this case we have $\mathbb{E}[c_N^m(t)|\mathcal{F}_{t-1}] = \sum_{i=1}^N \mathbb{E}[(w_t^{(i)})^2|\mathcal{F}_{t-1}] = 1/N$ for multinomial resampling. We also have that $Nw_t^{(i)} \equiv \lfloor Nw_t^{(i)} \rfloor \equiv 1$ and hence $r_i = 0$ and k = N. Thus the RHS comes out as

$$\frac{1}{N}\frac{N}{N-1} - 0 - \frac{1}{(N)_2}N = \frac{1}{N-1} - \frac{1}{N-1} = 0$$

as expected.

Suzie Brown 1