

Métodos Numéricos para la Ciencia e Ingeniería

Título del informe

Tema a tratar

Integrantes: Pablo Pizarro R.
Profesor: Valentino González C.

Auxiliares: Ignacio Armijo

María Constanza Flores V. Mario A. Osvaldo Aguilar F.

Fecha de realización: 16 de septiembre de 2016 Fecha de entrega: 16 de septiembre de 2016 Santiago, Chile Índice de Contenidos I

Índice de Contenidos

1.	Pregunta 1	1
	1.1. Introducción	1
	1.2. Procedimiento	1
	1.3. Resultados	1
	1.4. Conclusiones	2
L	ista de Figuras 1.1. Un ejemplo de gráfico	1
L	ista de Tablas	
	1.1 Figurals de table	2

1. Pregunta 1

1. Pregunta 1

1.1. Introducción

Se busca integrar la siguiente ecuación diferencial:

$$\left(\frac{d^2}{dr^2} - \frac{2}{r^2}\right)\Phi(r) = -8\pi r e^{-r^2} \tag{1.1}$$

Para $1 < r < \infty$, cumpliendo las condiciones de borde $\Phi(1) = 1$ y $\Phi(\infty) = 0$.

Acá introduzco el problema a resolver, parámetros como las condiciones de borde, etc. Recuerden incluir toda la información necesaria para que alguien pueda reproducir su programa/resultados leyendo su informe - pero sean concisos, lo mejor es una explicación corta y clara.

1.2. Procedimiento

¿Cómo resolver el problema que planteamos recién? con algún algoritmo o método de resolución numérica. El método de, en este caso utilizamos...., etc, etc, por medio de la expresión

$$\Phi(r) = \bar{\Phi}(r) + \frac{\Phi_b - \bar{\Phi}(b)}{\Phi_h(b)} \Phi_h(r)$$
(1.2)

Explicaciones cortas y claras. Aquí expliquen qué hicieron y con qué parámetros (por ejemplo, su valor de h o ϵ).

1.3. Resultados

Aquí van los resultados de su tarea. Apóyense en tablas y gráficos, como muestra la Figura 1.

Figura 1.1: Un ejemplo de gráfico.

1.4 Conclusiones 2

1.4. Conclusiones

Análisis y conclusiones a partir de los resultados obtenidos. Cuiden que sus informes sean ordenados y coherentes, pueden agregar subsecciones donde lo consideren necesario.

Tabla 1.1: Ejemplo de tabla.

Columna 1	Columna 2	Columna 3
ω	ν	δ
∂	∇	Ω
β	γ	ϵ
arepsilon	v	φ
Φ	Θ	${\it \Sigma}$
ω	u	δ
∂	∇	Ω