Содержание

1	Модели случайных графов	2
2	Общая теория случайных подмножеств	3
3	Монотонные и выпуклые свойства	3
4	Асимптотическая эквивалентность моделей	4
5	Связь в обратную сторону	6
6	Пороговые вероятности	7

1 Модели случайных графов

Определение 1. *Случайный граф* — случайный элемент со значениями в некотором конечном множестве графов.

Определение 2. Равномерная модель. K_n — полный граф, $0 \le m \le C_n^2$, \mathcal{G}_m — множество всех остовных подграфов K_n , имеющих ровно m рёбер. Случайный граф в этой модели — случайный элемент с равномерным распределением на \mathcal{G}_m .

$$P(G(n,m) = F) = \frac{1}{C_{C_2}^m} \forall F \in \mathcal{G}_m$$

Фиксировано число рёбер, но другие характеристики выглядят посложнее, скажем $\deg v$ имеет гипергеометрическое распределение.

Определение 3. Биномиальная модель. \mathcal{G} — множество всех остовных подграфов K_n , $p \in [0,1]$. Случайный граф в этой модели — случайный элемент на \mathcal{G} со следующим распределением:

$$P(G(n,p) = F) = p^{|E(F)|} (1-p)^{C_n^2 - |E(F)|} \, \forall F \in \mathcal{G}$$

Много независимых событий, из-за чего многие характеристики имеют удобное распределение, например $\deg v \sim B(n-1,P)$. Число рёбер, впрочем, случайно.

Другие модели:

- Граф G, схема Бернулли на его рёбрах. Скажем, $G = K_{n,m}$ случайный двудольный граф.
- Равномерное распределение на какой-то совокупности графов \mathcal{F} . Например, случайный d-регулярный граф
 - -d=1 случайное совершенное паросочетание
 - -d=2 случайный набор циклов
 - -d=3 можно показать, что а.п.н. это гамильтонов цикл плюс какое-то совершенное паросочетание
- Случайный процесс на графе
 - С дискретным временем: $\tilde{G}=(\tilde{G}(n,m), m=0\dots C_n^2)$, в котором на каждом шаге появляется новое случайное равномерно выбранное ребро. $\tilde{G}(n,m)\stackrel{d}{=} G(n,m)$. Можно смотреть случайные моменты
 - * $\tau_1(n) = \min\{m : \delta(\tilde{G}(n,m)) \geqslant 1\}$
 - * $\sigma_1(n) = \min\{m : \hat{G}(n,m) \text{ связен}\}$

Теорема 1 (Баллобаш, Томасон).

$$P(\tau_1(n) = \sigma_1(n)) \to 1, n \to \infty$$

— С непрерывным временем: пусть для каждого ребра e графа K_n задана случайная величина T_e . Тогда для $\forall t>0$ можно рассмотреть процесс:

$$\tilde{G}_T = \{e \mid T_e \leqslant t\}$$

Если все T_e распределены одинаково, $\tilde{G}_T(n,t) \stackrel{d}{=} G(n,p)$, где $p = P(T_e \leq t)$.

— Triangle-free process. На каждом шаге включаем одно случайное ребро так, чтобы не возникало треугольников. Можно по-казать, что в результате такого процесса α (итогового графа) = $O(\sqrt{n \ln n})$. Следствие: оценка на число Рамсея $R(3,t) \geqslant c \frac{t^2}{\ln t}$.

2 Общая теория случайных подмножеств

Пусть Γ — конечное множество, $|\Gamma| = N$.

- $\Gamma(p)$ схема Бернулли на Γ .
- $\Gamma(n)$ случайное подмножество размера n с равномерным распределением
- $\tilde{\Gamma}(m)$ случайный процесс, включающий элементы последовательно

В асимптотиских утверждениях $\Gamma = \Gamma_n, n \in \mathbb{N}$ — последовательность, притом N = N(n).

3 Монотонные и выпуклые свойства

Определение 4. Q — семейство подмножеств Γ называется возрастающим, если $A \in Q, A \subset B \to B \in Q$, убывающим, если $A \supset B \to B \in Q$, монотонным, если оно возрастающее или убывающее.

Ясно, что Q — возрастающее тогда и только тогда, когда $\overline{Q}=2^{\Gamma}\setminus Q$ — убывающее. Будем обозначать $\Gamma(p)\models Q\Leftrightarrow \Gamma(p)\in Q$ («обладает свойством Q»).

Пример 1. Γ — рёбра K_n . Возрастающие свойства:

- связность
- содержит какой-то подграф
- $\delta(G) \geqslant k$

Убывающие свойтва:

- планарность
- $\chi(G) \leqslant k$

• ацикличность

Лемма 1. Пусть Q — возрастющее свойство. Тогда $\forall p_1 \leqslant p_2, m_1 \leqslant m_2$:

$$P(\Gamma(p_1) \models Q) \leqslant P(\Gamma(p_2) \models Q)$$

$$P(\Gamma(m_1) \models Q) \leqslant P(\Gamma(m_2) \models Q)$$

Доказательство.

- $P(\Gamma(m_1) \models Q) = P(\tilde{\Gamma}(m_1) \models Q) \leqslant P(\tilde{\Gamma}(m_2) \models Q) = P(\Gamma(m_2) \models Q)$
- Пусть $\Gamma(p') \perp \Gamma(p'')$ два независимых подмножества. Тогда $\Gamma(p') \cup \Gamma(p'') \stackrel{d}{=} \Gamma(p)$, где p = p' + p'' p'p''. Тогда можно положить $p' = \frac{p_2 p_1}{1 p_1}$, а также, что $\Gamma(p') \perp \Gamma(p_1)$. Тогда

$$P(\Gamma(p_1) \models Q) \leqslant P(\Gamma(p_1) \cup \Gamma(p') \models Q) = P(\Gamma(p_2) \models Q).$$

Определение 5. Свойство Q называется $\mathit{выпуклым},$ если $A \subset C \subset B \in Q \Rightarrow C \in Q$

Пример 2.

- все монотонные выпуклы
- $\chi(G) = k$

4 Асимптотическая эквивалентность моделей

Хотим установить какую-то связь между моделями $\Gamma(p)$ и $\Gamma(m)$ при $pN\sim m$. Для этого введём следующий контекст:

- $\Gamma(n), n \in \mathbb{N}$ последовательность конечных множеств
- $N = N(n) \to +\infty$
- $\bullet \ Q = Q(n)$
- $p = p(n) \in [0, 1]$
- $m = m(n) \in \{0, \dots, N\}$
- $\Gamma(n,p),\Gamma(n,m)$ случайные подмножества $\Gamma(n)$

Лемма 2. Пусть Q — свойство $\Gamma(n)$. Пусть $p = p(n) \in [0,1]$ — некоторая функция. Если для любой последовательности m = m(n), такой что

$$m = Np + O(\sqrt{Npq}), q = 1 - p$$

выполнено

$$P(\Gamma(n,m) \models Q) \rightarrow a, n \rightarrow \infty$$

mo

$$P(\Gamma(n,p) \models Q) \rightarrow a, n \rightarrow \infty.$$

Доказательство. Пусть C > 0 — большая константа и положим M(C) = $\{m \mid |m-Np| \leqslant C\sqrt{Npq}\}$. Обозначим

$$m_* = \underset{m \in M(C)}{\operatorname{argmin}} P(\Gamma(n, m) \models Q)$$

$$m^* = \underset{m \in M(C)}{\operatorname{argmax}} P(\Gamma(n,m) \models Q)$$

По формуле полной вероятности:

$$P(\Gamma(n,p) \models Q) = \sum_{m=0}^{N} P(\Gamma(n,p) \models Q \mid |\Gamma(n,p)| = m) P(|\Gamma(n,p)| = m) = \sum_{m=0}^{N} P(\Gamma(n,m) \models Q) P(|\Gamma(n,p)| = m) \geqslant \sum_{m \in M(C)} P(\Gamma(n,m) \models Q) P(|\Gamma(n,p)| = m) \geqslant P(\Gamma(n,m) \models Q) P(|\Gamma(n,p)| \in M(C)|)$$

Но $|\Gamma(n,p)| \sim Bin(N,p), E|\Gamma(n,p)| = Np, D|\Gamma(n,p)| = Npq$. По неравенству Чебышева:

$$P(||\Gamma(n,p)| - Np| > C\sqrt{Npq}) \leqslant \frac{Npq}{C^2Npq} = \frac{1}{C^2}$$

Значит $P(\Gamma(n,p) \models Q) \geqslant P(\Gamma(n,m_*) \models Q) \left(1 - \frac{1}{C^2}\right)$. Аналогично

$$\begin{split} P(\Gamma(n,p) \models Q) \leqslant \sum_{m \in M(C)} P(\Gamma(n,m) \in Q) P(|\Gamma(n,p)| = m) + \sum_{m \notin M(C)} P(|\Gamma(n,p)| = m) \\ \leqslant P(\Gamma(n,m^*) \in Q) + \frac{1}{C^2} \end{split}$$

Значит $\overline{\lim_{n \to \infty}} P(\Gamma(n,p) \models Q) \leqslant a + \frac{1}{C^2}.$ Также $\lim_{n \to \infty} P(\Gamma(n,p) \models Q) \geqslant a(1 - \frac{1}{C^2}).$

Это верно для любого C>0. Тогда $\exists \lim P(\Gamma(n,p)\models Q)=a$.

5 Связь в обратную сторону

Лемма 3. Пусть Q — монотонное свойтво, $a \in [0,1]$. Если $\forall p = p(n)$ такой, что $p = \frac{m}{N} + o(\sqrt{\frac{m(N-m)}{N^3}})$ выполнено, что $P(\Gamma(n,p) \models Q) \to a$, то $P(\Gamma(n,m) \models Q) \to a$.

Докажем только ослабленный вариант, где a=0 или a=1.

Пемма 4. Пусть Q — монотонное свойство, $m=m(n), m(n)\to +\infty$ и $\overline{\lim_{n\to\infty}\frac{m}{N}}<1$. Тогда если $P(\Gamma(n,\frac{m}{N})\models Q)\to 1$, то $P(\Gamma(n,m)\models Q)\to 1$.

Доказательство.

1. Если Q — возрастающее свойство, то

$$\begin{split} P(\Gamma(n,\frac{m}{N}) \models Q) &= \sum_{k=0}^{N} P(\Gamma(n,\frac{m}{N}) \models Q \mid |\Gamma(n,\frac{m}{N})| = k) P(|\Gamma(n,\frac{m}{N})| = k) \leqslant \\ &\sum_{k=0}^{N} P(\Gamma(n,k) \models Q) P(|\Gamma(n,\frac{m}{N})| = k) \leqslant \sum_{k=0}^{m} + \sum_{k>m+1} \leqslant \\ &P(\Gamma(n,m) \models Q) P(|\Gamma(n,\frac{m}{N})| \leqslant m) + P(|\Gamma(n,\frac{m}{N})| > m) \end{split}$$

По ЦПТ (условие на скорость роста m(n) позволяет ею воспользоваться), получаем, что

$$1 \leqslant \frac{1}{2} \varliminf_n P(\Gamma(n, m) \models Q) + \frac{1}{2}$$

Значит $\exists \lim_{n} P(\Gamma(n,m) \models Q) = 1.$

2. Если Q — убывающее, то $P(\Gamma(n, \frac{m}{N}) \models Q) \leqslant P(|\Gamma(n, m)| > m)P(\Gamma(n, m) \models Q) + P(|\Gamma(n, m)| \leqslant m)$. Далее, все тоже самое.

Следствие. То же самое верно u для a = 0.

Следствие (Асимптотическая эквивалентность моделей). Пусть Q- возрастающее свойство, $m=m(n)\to +\infty, \overline{\lim_n \frac{m}{N}}\leqslant 1-\delta.$ Тогда

- 1. $P(\Gamma(n, \frac{m}{N}) \models Q) \rightarrow 1 \Rightarrow P(\Gamma(n, m) \models Q) \rightarrow 1$.
- 2. $P(\Gamma(n, \frac{m}{N}) \models Q) \rightarrow 0 \Rightarrow P(\Gamma(n, m) \models Q) \rightarrow 0$.
- 3. $P(\Gamma(n,m) \models Q) \to 1 \Rightarrow \forall \varepsilon > 0 P(\Gamma(n,\frac{m}{N}(1+\varepsilon)) \models Q) \to 1$.
- 4. $P(\Gamma(n,m) \models Q) \rightarrow 0 \Rightarrow \forall \varepsilon > 0 P(\Gamma(n, \frac{m}{N}(1-\varepsilon)) \models Q) \rightarrow 0$.

Доказательство. Первые два — это лемма и следствие. Положим $\frac{m}{N}(1+\varepsilon)=p(n)$. Тогда если $m'(n)=NP+O(\sqrt{Npq})=(1+\varepsilon)m+O(\sqrt{m})$, то $m'(n)\geqslant m(n)$ начиная с какого-то момента, значит в силу возрастания Q $P(\Gamma(n,m')\models Q)\geqslant P(\Gamma(n,m)\models Q)\to 1$. Значит $P(\Gamma(n,m')\models Q)\to 1$, то есть по лемме $P(\Gamma(n,\frac{m}{N}(1+\varepsilon))\models Q)\to 1$. Аналогично следует последний пункт.

6 Пороговые вероятности

Мы доказали эквивалентность моделей только в случае вероятности, стремящейся к 0 или к 1. Однако, это самый важный случай, так как имеет место эффект «пороговой вероятности».

Определение 6. Пусть Q — возрастающее свойство подмножеств $\Gamma(n)$. Функция $\hat{p} = \hat{p}(n)$ называется пороговой вероятностью для Q, если выполнено $\lim_{n \to \infty} P(\Gamma(n,p) \models Q) = 1$ при $p = \omega(\hat{p})$ и 0, если $p = o(\hat{p})$.

Определение 7. Если Q — возрастающее свойство, то функция $\hat{m} = \hat{m}(n)$ называется пороговой функцией для Q, если выполнено $\lim_{n\to\infty} P(\Gamma(n,m) \models Q) = 1$ при $m = \omega(\hat{m})$ и 0 при $m = o(\hat{m})$.

 $\it Замечание.$ Для убывающих свойств все то же самое, с точностью до наоборот.

3амечание. \hat{m} — пороговая вероятность $\Leftrightarrow \hat{p} = \frac{\hat{m}}{N}$ — пороговая функция.

Пример 3. • $\Gamma(n)=\{1,\ldots,n\}, Q=\{$ внутри есть 3-прогрессия $\}$. Тогда $\hat{p}=n^{-\frac{2}{3}}$ — пороговая вероятность, $\hat{m}=n^{\frac{1}{3}}$ — пороговая функция.

• $\Gamma(n)$ — рёбра $K_n, Q = \{$ есть $\Delta \}$. Тогда $\hat{p} = \frac{1}{n}$ — пороговая вероятность.

Утверждение 1. Пусть Q — нетривиальное возрастающее свойство подмножеств $\Gamma(n)$. Тогда функция $f(p) = P(\Gamma(n,p) \models Q)$ является непрерывной, строго возрастающей на [0;1], f(0) = 0, f(1) = 1.

Доказательство. Возрастание следует из предыдущих лемм.

$$f(p) = \sum_{A \in Q} P(\Gamma(n, p) = A) = \sum_{A \in Q} p^{|A|} (1 - p)^{N - |A|}.$$

Это многочлен, строго возрастающая непрерывная функция.

Определение 8. Если Q — возрастающее свойство, то $\forall a \in (0,1)$ положим $p(a,n)=f_n^{-1}(a)$. Введём также $m(a,n)=\min\{m: P(\Gamma(n,m)\models Q)\geqslant a\}.$

Лемма 5. Пусть Q — возрастающее свойство, тогда $\hat{p} = \hat{p}(n)$ является пороговой вероятностью для $Q \Leftrightarrow \forall a \in (0,1)$ выполнено $\hat{p} \times p(a,n)$. И \hat{m} — пороговая вероятность для $Q \Leftrightarrow \forall a \in (0,1)$ выполнено $\hat{m} \times m(a,n)$.

Доказательство. Докажем для равномерной модели. Пусть \hat{m} — пороговая, но $\exists a :\in (0,1)$ такое, что $\hat{m} \not \asymp m(a,n)$. Тогда существует подпоследовательность \hat{m}_{n_k} такая, что отношение $\frac{\hat{m}_{n_k}}{m(a,n_k)} \to 0$ или $+\infty$.

Пусть предел нулевой. Тогда $m'=m(a,n_k)-1$ есть $\omega(\hat{m})$. В таком случае $\lim_{\substack{k\to\infty\\\text{ude}}} P(\Gamma(n,m'(n_k))\models Q)=1$. Но $P(\Gamma(n,m'(n_k))\models Q)\leqslant a<1$, противоречие.

Если же предел равен $+\infty$, то $m(n_k)=o(\hat{m})$. Тогда $\lim_k P(\Gamma(n,m(n_k))\models Q)=0$. Но для любого k выполнено $P(\Gamma(n,m(n_k))\models Q)\geqslant a>0$, противоречие.

В обратную сторону: пусть $\hat{m} = \omega(\hat{m})$. Тогда $\forall a \in (0,1) \, m = \omega(m(a,n))$, значит в силу возрастания Q $P(\Gamma(n,m) \models Q) \geqslant P(\Gamma(n,m(a,n)) \models Q) \Rightarrow \lim_{n} P(\Gamma(n,m) \models Q) \geqslant \lim_{n} P(\Gamma(n,m(a,n)) \models Q) \geqslant a$, то есть $\exists \lim_{n} P(\Gamma(n,m) \models Q) = 1$.

Если $m = o(\hat{m})$, то все аналогично.

Теорема 2. Каждое монотонное свойство имеет пороговую вероятность.

Доказательство. Считаем, что Q — возрастающее свойство. Надо показать, что все функции p(a,n) имеют один и тот же порядок. Возьмём $\varepsilon \in (0,\frac{1}{2})$ и такое m, что $(1-\varepsilon)^m \leqslant \varepsilon$. Рассмотрим $\Gamma^{(1)}(n,p(\varepsilon,n)),\ldots,\Gamma^{(m)}(n,p(\varepsilon,n))$ — н.о.р. случайные подмножества $\Gamma(n)$. Тогда

$$\tilde{\Gamma} = \Gamma^{(1)}(n, p(\varepsilon, n)) \cup \ldots \cup \Gamma^{(m)}(n, p(\varepsilon, n)) \stackrel{d}{=} \Gamma(n, p'),$$

где $p' = 1 - (1 - p(\varepsilon, n))^m \leq mp(\varepsilon, n).$

 $P(\tilde{\Gamma} \models Q) = P(\Gamma(n, p') \models Q) \leqslant P(\Gamma(n, mp(\varepsilon, n)) \models Q).$

С другой стороны $P(\tilde{\Gamma} \not\models Q) \leqslant P(\forall i \Gamma^{(i)}(n, p(\varepsilon, n)) \not\models Q) = P^m(\Gamma^{(1)}(n, p(\varepsilon, n)) \not\models Q) = (1 - \varepsilon)^m \leqslant \varepsilon$. Тогда $P(\tilde{\Gamma} \models Q) \geqslant 1 - \varepsilon) = P(\Gamma(n, p(1 - \varepsilon, n)) \models Q)$.

Значит $\forall n \, mp(\varepsilon,n) \geqslant p(1-\varepsilon,n)$. Итого $p(\varepsilon,n) \leqslant p(\frac{1}{2},n) \leqslant p(1-\varepsilon,n) \leqslant mp(\varepsilon,n)$. Значит по лемме, $p(\frac{1}{2},n) = \hat{p}$ — пороговая вероятность для Q. \square

Следствие. Для \forall монотонного свойства \exists пороговая функция \hat{m} .

Определение 9. Пусть Q — выпуклое свойство. Тогда функции $\hat{p_1} \leqslant \hat{p_2}$ называются *пороговыми* для Q, если...

Пример 4. $\Gamma(n)$ — рёбра K_n .

- $Q = \{\text{обхват} = 4\}, \ \hat{p_1} = \hat{p_2} = \frac{1}{n}$
- $Q=\{$ кликовое число $=4\},\,\hat{p_1}=n^{-\frac{2}{3}},\,\hat{p_2}=n^{-\frac{1}{2}}$

Определение 10. Пусть Q — возрастающее. Тогда $\hat{p} = \hat{p}(n)$ называется точной пороговой вероятностью для Q, если $\forall \varepsilon > 0$ выполнено $\lim_{n \to \infty} P(\Gamma(n,p) \models Q) = 1$ при $p \geqslant (1+\varepsilon)\hat{p}$ и 0 при $p \leqslant (1-\varepsilon)\hat{p}$.

Пример 5. $\Gamma(n)$ — рёбра K_n .

- $Q = \{\text{связность}\},\, \hat{p} = \frac{\ln n}{n}$ точная пороговая вероятность
- $Q=\{\text{есть }\Delta\},\,\hat{p}=\frac{1}{n}$ пороговая вероятность, но точной пороговой вероятности нет
- $Q = \{$ ацикличность $\}, \, \hat{p} = \frac{1}{n}$ пороговая вероятность для Q, но точна она только с одной стороны

Теорема 3 (Фридгут). Пусть Q — монотонное свойство графов, \hat{p} — пороговая u она не точная. Тогда существует конечное разбиение $N_j, j=1,\ldots,k$ множества $\mathbb N$ u рациональные числа $\alpha_1,\ldots,\alpha_k>0$ такие, что $\forall n\in N_j$ выполнено $\hat{p}(n)\asymp n^{-\alpha_j}$.