Анализ эффективности векторизующих компиляторов на архитектурах Intel 64 и Intel Xeon Phi

Ольга Владимировна Молдованова 1,2

Михаил Георгиевич Курносов 1,2

ovm@sibguti.ru, ovm@isp.nsc.ru

WWW: www.mkurnosov.net

¹ Кафедра вычислительных систем Сибирский государственный университет телекоммуникаций и информатики, Новосибирск

² Лаборатория вычислительных систем Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск

Всероссийская научная конференция памяти А.Л. Фуксмана «Языки программирования и компиляторы» (PLC-2017) г. Ростов-на-Дону, 3-5 апреля 2017 г.

Векторные вычислительные системы и процессоры

1970 – 1990 гг.

- Векторно-конвейерные процессоры и системы
 - CDC STAR-100, CYBER-203, CYBER-205
 - Cray 1, Cray X-MP, Cray Y-MP, NEC SX,
 IBM ViVA, Fujitsu FACOM VP, Hitachi HITAC S-810

- Длинные векторные регистры
- Ускорение x64-128 раз

1995 – н. в.

- SIMD-процессоры (наборы векторных инструкций)
 - Intel MMX/SSE/AVX
 - IBM AltiVec
 - ARM NEON SIMD
 - MIPS MSA

- Короткие векторные регистры
- Ускорение х2-64 раза

SIMD-инструкции процессоров

Наборы векторных инструкций

- Intel MMX/SSE/AVX/AVX-3, AVX-512
- IBM AltiVec
- ARM NEON SIMD
- MIPS MSA

Достигаемые ускорения

Тип данных	Intel SSE (регистры 128 бит)	Intel AVX (регистры 256 бит)	Intel AVX-512 (регистры 512 бит)	ARMv8 Scalable Vector Extension (регистры 128-2048 бит, RIKEN Post-K supercomputer, 2020)
double	x2	х4	x8	x32
float	x4	x8	x16	x64
int	x4	x8	x16	x64
short int	x8	x16	x32	x128

■ Причины снижения ускорения

- Адреса массивов не выравнены на заданную границу (32 байта для AVX и 64 байта для AVX-512)
- Смешанное использование SSE- и AVX-инструкций (AVX-SSE Transition Penalties) [1]

Векторные регистры (Intel 64, Intel Xeon Phi)

Способы векторизации кода

Ассемблерные вставки

Интринсики (intrinsics) встроенные функции и типы данных компилятора

SIMD-директивы компиляторов, стандартов OpenMP, OpenACC

```
void add sse(float *a, float *b, float *c) {
  asm volatile (
    "movaps (%[a]), %%xmm0 \n\t"
   "movaps (%[b]), %%xmm1 \n\t"
   "addps %%xmm1, %%xmm0 \n\t"
    "movaps %%xmm0, %[c] \n\t"
```

```
void add sse(float *a, float *b, float *c) {
    m128 t0, t1;
   t0 = mm load ps(a);
   t1 = mm load ps(b);
   t0 = mm add ps(t0, t1);
    _mm_store_ps(c, t0);
```

```
void f(double *a, double *b, double *c, int n) {
    #pragma omp simd
    for (int i = 0; i < n; i++)
        c[i] += a[i] * b[i];
```

- Языковые расширения (Intel Array Notation, Intel ISPC, Apple Swift SIMD) и библиотеки (C++17 SIMD, Boost.SIMD, SIMD.js)
- Автоматическая векторизация компилятором

```
$ gcc -ftree-vectorize ./vec.c
vec.c:13:5: note: loop vectorized
vec.c:18:5: note: not vectorized, possible dependence between data-refs
```

Цель работы

- Определение основных видов циклов, автоматическая векторизация которых компиляторами Intel C/C++, PGI C/C++, GNU GCC, LLVM/Clang на архитектурах Intel 64 и Intel Xeon Phi затруднена
- Оценка времени выполнения и ускорения векторизованных циклов

Набор тестовых циклов

Векторные ВС: Cray, NEC, IBM, DEC, Fujitsu, Hitachi TSVC – Test Suite for Vectorizing Compilers [1] (122 цикла на Fortran)

Наборы векторных инструкций: Intel SSE/AVX, IBM AltiVec, ARM NEON SIMD, MIPS MSA

ETSVC – Extended Test Suite for Vectorizing Compilers [2, 3] (151 цикл на C)

1991

2011

Категории циклов ETSVC

Категория	Число циклов
Анализ зависимостей по данным (dependence analysis)	36
Анализ потока управления и трансформация циклов (vectorization)	52
Распознавание идиоматических конструкций (idiom recognition)	27
Полнота понимания языка программирования (language completeness)	23
Контрольные циклы (control loops)	13

- [1] Levine D., Callahan D., Dongarra J. A Comparative Study of Automatic Vectorizing Compilers // Journal of Parallel Computing. 1991. Vol. 17. pp. 1223–1244.
- [2] Maleki S., Gao Ya. Garzarán M.J., Wong T., Padua D.A. *An Evaluation of Vectorizing Compilers* // Proc. of the Int. Conf. on Parallel Architectures and Compilation Techniques (PACT-11), 2011. pp. 372–382.
- [3] Extended Test Suite for Vectorizing Compilers. URL: http://polaris.cs.uiuc.edu/~maleki1/TSVC.tar.gz

```
#define TYPE float
#define LEN (125 * 1024 / sizeof(TYPE))
#define LEN2 256
#define ntimes 200000
#ifdef MIC
   #define ALIGN 64
#else
   #define ALIGN 32
#endif
attribute ((aligned(ALIGN))) TYPE X[LEN], Y[LEN], Z[LEN], U[LEN], V[LEN];
attribute ((aligned(ALIGN))) TYPE aa[LEN2][LEN2], bb[LEN2][LEN2], cc[LEN2][LEN2];
int s000() {
                                                             Каждый цикл – отдельная функция (всего 151 функция)
    init("s000 ");
    clock t start t = clock();
    for (int nl = 0; nl < 2 * ntimes; nl++) {</pre>
        for (int i = 0; i < LEN; i++)
            X[i] = Y[i] + 1;
        dummy((TYPE*)X, (TYPE*)Y, (TYPE*)Z, (TYPE*)U, (TYPE*)V, aa, bb, cc, 0.0);
    clock t end t = clock();
    printf("S000\t %.2f \t\t", (double)((end t - start t)/1000000.0));
    check(1);
    return 0;
```

```
#define TYPE float
                                                          TYPE — тип данных массивов: double, float, int, short int
#define LEN (125 * 1024 / sizeof(TYPE))
#define LEN2 256
#define ntimes 200000
#ifdef MIC
   #define ALIGN 64
#else
   #define ALIGN 32
#endif
attribute ((aligned(ALIGN))) TYPE X[LEN], Y[LEN], Z[LEN], U[LEN], V[LEN];
attribute ((aligned(ALIGN))) TYPE aa[LEN2][LEN2], bb[LEN2][LEN2], cc[LEN2][LEN2];
int s000() {
    init("s000 ");
    clock t start t = clock();
    for (int nl = 0; nl < 2 * ntimes; nl++) {</pre>
       for (int i = 0; i < LEN; i++)
           X[i] = Y[i] + 1;
       dummy((TYPE*)X, (TYPE*)Y, (TYPE*)Z, (TYPE*)U, (TYPE*)V, aa, bb, cc, 0.0);
    clock t end t = clock();
    printf("S000\t %.2f \t\t", (double)((end t - start t)/1000000.0));
    check(1);
    return 0;
```

```
#define TYPE float
                                                          TYPE — тип данных массивов: double, float, int, short int
#define LEN (125 * 1024 / sizeof(TYPE))
#define LEN2 256
#define ntimes 200000
                                                          LEN, LEN2 — размеры одномерных и двумерных массивов
#ifdef MIC
   #define ALIGN 64
#else
   #define ALIGN 32
#endif
attribute ((aligned(ALIGN))) TYPE X[LEN], Y[LEN], Z[LEN], U[LEN], V[LEN];
attribute ((aligned(ALIGN))) TYPE aa[LEN2][LEN2], bb[LEN2][LEN2], cc[LEN2][LEN2];
int s000() {
    init("s000 ");
    clock t start t = clock();
    for (int nl = 0; nl < 2 * ntimes; nl++) {</pre>
        for (int i = 0; i < LEN; i++)</pre>
           X[i] = Y[i] + 1;
        dummy((TYPE*)X, (TYPE*)Y, (TYPE*)Z, (TYPE*)U, (TYPE*)V, aa, bb, cc, 0.0);
    clock t end t = clock();
    printf("S000\t %.2f \t\t", (double)((end t - start t)/1000000.0));
    check(1);
    return 0;
```

```
#define TYPE float
                                                          TYPE — тип данных массивов: double, float, int, short int
#define LEN (125 * 1024 / sizeof(TYPE))
#define LEN2 256
#define ntimes 200000
                                                          LEN, LEN2 — размеры одномерных и двумерных массивов
#ifdef MIC
                                                          ntimes — количество повторений внешнего цикла
   #define ALIGN 64
#else
   #define ALIGN 32
#endif
attribute ((aligned(ALIGN))) TYPE X[LEN], Y[LEN], Z[LEN], U[LEN], V[LEN];
attribute ((aligned(ALIGN))) TYPE aa[LEN2][LEN2], bb[LEN2][LEN2], cc[LEN2][LEN2];
int s000() {
    init("s000 ");
    clock t start t = clock();
    for (int nl = 0; nl < 2 * ntimes; nl++) {</pre>
       for (int i = 0; i < LEN; i++)
           X[i] = Y[i] + 1;
       dummy((TYPE*)X, (TYPE*)Y, (TYPE*)Z, (TYPE*)U, (TYPE*)V, aa, bb, cc, 0.0);
    clock t end t = clock();
    printf("S000\t %.2f \t\t", (double)((end t - start t)/1000000.0));
    check(1);
    return 0;
```

```
#define TYPE float
                                                          TYPE — тип данных массивов: double, float, int, short int
#define LEN (125 * 1024 / sizeof(TYPE))
#define LEN2 256
#define ntimes 200000
                                                          LEN, LEN2 — размеры одномерных и двумерных массивов
#ifdef MIC
                                                          ntimes — количество повторений внешнего цикла
   #define ALIGN 64
#else
   #define ALIGN 32
#endif
attribute ((aligned(ALIGN))) TYPE X[LEN], Y[LEN], Z[LEN], U[LEN], V[LEN];
attribute ((aligned(ALIGN))) TYPE aa[LEN2][LEN2], bb[LEN2][LEN2], cc[LEN2][LEN2];
int s000() {
    init("s000 ");
    clock t start t = clock();
    for (int nl = 0; nl < 2 * ntimes; nl++) {</pre>
       for (int i = 0; i < LEN; i++)
            X[i] = Y[i] + 1;
        dummy((TYPE*)X, (TYPE*)Y, (TYPE*)Z, (TYPE*)U, (TYPE*)V, aa, bb, cc, 0.0);
    clock t end t = clock();
    printf("S000\t %.2f \t\t", (double)((end t - start t)/1000000.0));
    check(1);
    return 0;
```

Выравнивание адресов массивов на заданную границу

```
#define TYPE float
                                                          TYPE — тип данных массивов: double, float, int, short int
#define LEN (125 * 1024 / sizeof(TYPE))
#define LEN2 256
#define ntimes 200000
                                                          LEN, LEN2 — размеры одномерных и двумерных массивов
#ifdef MIC
                                                          ntimes — количество повторений внешнего цикла
   #define ALIGN 64
#else
   #define ALIGN 32
#endif
                                                                                         Выравнивание адресов
attribute ((aligned(ALIGN))) TYPE X[LEN], Y[LEN], Z[LEN], U[LEN], V[LEN];
                                                                                         массивов на заданную
attribute ((aligned(ALIGN))) TYPE aa[LEN2][LEN2], bb[LEN2][LEN2], cc[LEN2][LEN2];
                                                                                        границу
int s000() {
    init("s000 ");
                                                        Инициализация массивов значениями, характерными для теста
    clock t start t = clock();
    for (int nl = 0; nl < 2 * ntimes; nl++) {</pre>
       for (int i = 0; i < LEN; i++)
            X[i] = Y[i] + 1;
        dummy((TYPE*)X, (TYPE*)Y, (TYPE*)Z, (TYPE*)U, (TYPE*)V, aa, bb, cc, 0.0);
    clock t end t = clock();
    printf("S000\t %.2f \t\t", (double)((end t - start t)/1000000.0));
    check(1);
    return 0;
```

```
#define TYPE float
                                                          TYPE — тип данных массивов: double, float, int, short int
#define LEN (125 * 1024 / sizeof(TYPE))
#define LEN2 256
#define ntimes 200000
                                                          LEN, LEN2 — размеры одномерных и двумерных массивов
#ifdef MIC
                                                          ntimes — количество повторений внешнего цикла
   #define ALIGN 64
#else
   #define ALIGN 32
#endif
                                                                                         Выравнивание адресов
attribute__ ((aligned(ALIGN))) TYPE X[LEN], Y[LEN], Z[LEN], U[LEN], V[LEN];
                                                                                         массивов на заданную
attribute ((aligned(ALIGN))) TYPE aa[LEN2][LEN2], bb[LEN2][LEN2], cc[LEN2][LEN2];
                                                                                         границу
int s000() {
    init("s000 ");
                                                        Инициализация массивов значениями, характерными для теста
    clock t start t = clock();
    for (int nl = 0; nl < 2 * ntimes; nl++) {</pre>
                                                                                         Увеличение времени
        for (int i = 0; i < LEN; i++)
                                                                                         выполнения теста
            X[i] = Y[i] + 1;
        dummy((TYPE*)X, (TYPE*)Y, (TYPE*)Z, (TYPE*)U, (TYPE*)V, aa, bb, cc, 0.0);
                                                                                         (формирование статистики)
    clock t end t = clock();
    printf("S000\t %.2f \t\t", (double)((end t - start t)/1000000.0));
    check(1);
    return 0;
```

```
#define TYPE float
                                                          TYPE — тип данных массивов: double, float, int, short int
#define LEN (125 * 1024 / sizeof(TYPE))
#define LEN2 256
#define ntimes 200000
                                                          LEN, LEN2 — размеры одномерных и двумерных массивов
#ifdef MIC
                                                          ntimes – количество повторений внешнего цикла
   #define ALIGN 64
#else
   #define ALIGN 32
#endif
                                                                                         Выравнивание адресов
attribute ((aligned(ALIGN))) TYPE X[LEN], Y[LEN], Z[LEN], U[LEN], V[LEN];
                                                                                        массивов на заданную
attribute ((aligned(ALIGN))) TYPE aa[LEN2][LEN2], bb[LEN2][LEN2], cc[LEN2][LEN2];
                                                                                        границу
int s000() {
    init("s000 ");
                                                        Инициализация массивов значениями, характерными для теста
    clock t start_t = clock();
    for (int nl = 0; nl < 2 * ntimes; nl++) {</pre>
                                                                                        Увеличение времени
        for (int i = 0; i < LEN; i++)
                                                                                        выполнения теста
            X[i] = Y[i] + 1;
        dummy((TYPE*)X, (TYPE*)Y, (TYPE*)Z, (TYPE*)U, (TYPE*)V, aa, bb, cc, 0.0);
                                                                                         (формирование статистики)
    clock t end t = clock();
                                                                                         Предотвращение
    printf("S000\t %.2f \t\t", (double)((end_t - start_t)/1000000.0));
                                                                                        нежелательной
    check(1);
                                                                                        оптимизации внешнего
    return 0;
                                                                                        цикла
```

```
#define TYPE float
                                                          TYPE — тип данных массивов: double, float, int, short int
#define LEN (125 * 1024 / sizeof(TYPE))
#define LEN2 256
#define ntimes 200000
                                                          LEN, LEN2 — размеры одномерных и двумерных массивов
#ifdef MIC
                                                          ntimes – количество повторений внешнего цикла
   #define ALIGN 64
#else
   #define ALIGN 32
#endif
                                                                                         Выравнивание адресов
attribute__ ((aligned(ALIGN))) TYPE X[LEN], Y[LEN], Z[LEN], U[LEN], V[LEN];
                                                                                         массивов на заданную
attribute ((aligned(ALIGN))) TYPE aa[LEN2][LEN2], bb[LEN2][LEN2], cc[LEN2][LEN2];
                                                                                        границу
int s000() {
    init("s000 ");
                                                        Инициализация массивов значениями, характерными для теста
    clock t start_t = clock();
    for (int nl = 0; nl < 2 * ntimes; nl++) {</pre>
                                                                                         Увеличение времени
        for (int i = 0; i < LEN; i++)
                                                                                         выполнения теста
            X[i] = Y[i] + 1;
        dummy((TYPE*)X, (TYPE*)Y, (TYPE*)Z, (TYPE*)U, (TYPE*)V, aa, bb, cc, 0.0);
                                                                                         (формирование статистики)
    clock t end t = clock();
                                                                                         Предотвращение
    printf("S000\t %.2f \t\t", (double)((end_t - start_t)/1000000.0));
                                                                                        нежелательной
    check(1);
                                                                                         оптимизации внешнего
                  Вычисление контрольной суммы элементов итогового массива
    return 0;
                                                                                         цикла
```

Целевые архитектуры: Intel 64 и Intel Xeon Phi

■ Двухпроцессорный NUMA-сервер

- 2 процессора Intel Xeon E5-2620 v4: архитектура Intel 64, микроархитектура Broadwell, 8 ядер, Hyper-Threading включен, группа векторных АЛУ с поддержкой AVX 2.0
- Память: 64 GiB, DDR4,
- Операционная система: GNU/Linux CentOS 7.3 x86-64 (ядро linux 3.10.0-514.2.2.el7)

https://en.wikichip.org/wiki/intel/microarchitectures/broadwell

Сопроцессор Intel Xeon Phi 3120A

- **57 ядер** с микроархитектурой Intel Knights Corner: in-order, 4-way SMT, SIMD Unit: 1 векторная AVX-512 операция за такт, 32 векторных регистра, vector gather/scatter, IEEE 754 2008
- Память: 6 GiB
- Программное обеспечение: MPSS 3.8

http://semiaccurate.com/2012/08/28/intel-detailsknights-corner-architecture-at-long-last/

Целевые компиляторы

Компилятор	Опции компиляции	Отключение векторизатора
	-03 -xHost -qopt-report3	
Intel C/C++ 17.0	-qopt-report-phase=vec,loop	-no-vec
	-qopt-report-embed	
	-03 -ffast-math	
	-fivopts -march=native	
GCC C/C++ 6.3.0	-fopt-info-vec	-fno-tree-vectorize
	-fopt-info-vec-missed	
	-fno-tree-vectorize	
	-03 -ffast-math -fvectorize	
	-Rpass=loop-vectorize	for weatoning
LLVM/Clang 3.9.1	-Rpass-missed=loop-vectorize	-fno-vectorize
	-Rpass-analysis=loop-vectorize	
PGI C/C++ 16.10	-03 -Mvect -Minfo=loop,vect	
Community Edition	-Mneginfo=loop,vect	-Mnovect

Результаты экспериментов

Количество автоматически векторизованных циклов

Компиляторы	Число циклов, векторизованных <u>только</u> указанными компиляторами
Intel C/C++, GCC C/C++, LLVM/Clang, PGI C/C++	37
Intel C/C++, GCC C/C++, LLVM/Clang	4
Intel C/C++, GCC C/C++, PGI C/C++	21
Intel C/C++, LLVM/Clang, PGI C/C++	5
GCC C/C++, LLVM/Clang, PGI C/C++	6
Intel C/C++, GCC C/C++	5
Intel C/C++, LLVM/Clang	0
Intel C/C++, PGI C/C++	16
GCC C/C++, PGI C/C++	4
GCC C/C++, LLVM/Clang	0
LLVM/Clang, PGI C/C++	1
Intel C/C++	7
GCC C/C++	0
LLVM/Clang	4
PGI C/C++	13

37 циклов векторизовано всеми компиляторами

Количество автоматически векторизованных циклов

Компиляторы	Число циклов, векторизованных <u>только</u> указанными компиляторами
Intel C/C++, GCC C/C++, LLVM/Clang, PGI C/C++	37
Intel C/C++, GCC C/C++, LLVM/Clang	4
Intel C/C++, GCC C/C++, PGI C/C++	21
Intel C/C++, LLVM/Clang, PGI C/C++	5
GCC C/C++, LLVM/Clang, PGI C/C++	6
Intel C/C++, GCC C/C++	5
Intel C/C++, LLVM/Clang	0
Intel C/C++, PGI C/C++	16
GCC C/C++, PGI C/C++	4
GCC C/C++, LLVM/Clang	0
LLVM/Clang, PGI C/C++	1
Intel C/C++	7
GCC C/C++	0
LLVM/Clang	4
DCI	

37 циклов векторизовано всеми компиляторами

28 циклов (18,5 %) не векторизованы ни одним из компиляторов!

Результаты автоматической векторизации циклов (Intel 64, тип данных double)

															•					-											•																
	Цикл	век	тор	изов	зан			NA.		1	T14D	000	40	LOCT						NI	He	воз	ком	кно	ВЫ	чис	лит	Ь				L	Знач	чени	е н	е мо	жет	бы	ТЬ								
V	полн	ость	Ю					M	IV	туль	пив	ерси	10HF	1001	ь					INT	кол	ич	есте	во и	тер	аці	ий						исп	ольз	ова	но з	а пр	еде	элам	ии ц	икл	a					
P\	<mark>,</mark> Цикл	век	тор	изов	зан			ВС		000	пуо	חחווו	20.0	NEOP	2111	40				CF	He	воз	ком	кно	ОП	оед	цели	ТЬ				IV	Век	гори	ізато	р н	е мо	эже	т по	нять	Ь						
Ρ\	часті	1ЧНО						ВС	'''	CIIO	длод	дящ	ал С	лер	лаци	ΊЛ					наі	тра	вле	ние	е по	ток	а уп	pae	злен	ия		•	пот	ж у	прав	лен	ия Е	3 ЦИ	кле								
R۱	Оста	ток L	ЦИΚЛ	па н	9			AF	C.	лож	ный	і ша	бло	н до	эсту	па і	≺			SS	Ци	кл і	не п	ΙΟД	ходи	1T Д	ұля і	зек	торн	ной		w	Нал	ичи	е оп	epa	гора	ı SW	itc	h			_				
	вект	риз	ова	Н					ЭЛ			aw w									заг	ІИСІ	и по	не	CME	жн	ЫМ	адр	eca	M			ВЦИ	кле										11.4		225	
	Вект	сыас	аци	ія вс	змс	жна						≘, ко	-								Ци	кл (с не	СКО	льк	имі	и вь	ιχοι	цамі	и			Неп	олл	ерж	ива	емо	e								235	
IF	но н	-					,	R			-	ици				-	-			ME			ком						-		U	5			-				жен	ии			B	зекто	-		
			<u> </u>						p	едун	кциі	и, ис	ПОЛ	ьзу	ется	ВН	е ці	икла)																									GC	ССи	PGI	
	Зави	симс	ость	по	дан	ным			П	epe	мен	ная	-сче	тчи	к вн	утр	ень	его						•					нкц				В ба	30B	ом б	ЛОК	е не	ΞT									
D	преп							IL		-		явл								FC						•	ые н	евс	ЭМС	жнс		iS	сгру	ппи	ров	эннь	ых О	пер	аци	ій за	эпи(СИ					
																					пр	ран	али	зир	ОВа	ΙΤЬ																Ш.					
	IC	V	IE	V	IF	V	V	D '	V 7	VV	7 V	D	V	D	V	D	D	V	V	D	V	V	V,	V	D .	V	D :	D .	V	d D	D	V	V	D	V 7	7 V		PV	V	PV	М	D	IF	V	V P	7 PV	PV
	PG	V	IF	V	V	V	V	D '	V 7	VV	7 D	V	V	V	V	NI	D	D	V	D	V	D	V,	V	D F	C I	FC :	D .	VI	D D	NI	V	V	NI	V	D D	D	D	D	D	V	D	IF	V ,	VV	D	D
	LLVN	1 ∨	IE	V	D	V	D	D I	D I	D I	FR	. R	V	V	V	NI	CF	CF	V	R	IF]	F	V ,	V	R	V	V	CF C	CF V	JV	NI	V	V	NI	V	R	R	R	V	R	R	R	IF	R	RR	. D	R
	GC	V	V	V	V	V	V	VE	7 08	V A	P D	IL	V	V	V	NI	SS	V	V	AP	V	V	V ,	V	IL	V	M I	M :	M N	V	NI	V	V	NI	V	D D	D	D	V	D	V	IL	IL	D !	M V	D	D
	Цикл	7: 000	S111	111	S112	112	S113	S1113	2114	S115 S1115	S116	S118	S119	S1119	S121	S122	S123	S124	S125	S126	5127	2178	5131	5132	S141	5151	S152	5161	51161	S102 S171	S172	S173	S174	S175	S176	5211	113	5221	21	5222	5231	5232	S1232	5233	2233 S235	S241	S242
	•	S	S	S1111	S1	S1112	S	S11	7 2	2 2	S	S	S	S11	S1	S1	S1	S	S	S	S	7	S	2	S	<u>ک</u>	S	2 2	511	y S	S1	S1	S1	S	S	γ (γ	S1213	SS	S1221	SZ	SZ	SS	S12	SS	S2233 S235	SZ	SZ
	IC	C PY	V PV	/ PV	V	V	V	D ,	V 7	V	7 V	D	D	D	D	V	V	V	V	V	V	V	V	D	V .	V	V .	∨ .	V V	J D	V	V	V	D	IF P	V D	V	IF	V	V	V	IF	V	V	V V	D	V
	PG	D	D	D	D	V	V	V .	V 7	V	7 V	. ^	D	D	V	D	V	V	V	V	D	V	IF :	D	V .	V	V .	ν .	V V	J D	V	V	V	D	IF '	7 V	V	FC	V	V	V	V	V	V	V V	V	V
	LLVN	1	D	D	V	V	V	R	V 7	V C	F V	R	R	OL	R	R	CF	CF	CF	CF	R I	FU	UV C	CF C	CF C	CF	CF C	CF C	CF C	F D	V	R	R	D	IF I	FR	V	FC	V	V	V	R	V	V	R V	R	V
	GC	D	D	D	V	V	V	US '	V U	s v	FC	US	AP	во	US	D	V	V	V	V	CF	V	V	D	М	CF (CF	ν .	V	JV	V	US	US	V	IF I	F D	V	FC	V	V	V	CF	V	V	JS V	V	V
		S243	S244	4	44	S251	51	51	51	2525	S254	S255	S256	5257	S258	S261	S271	S272	S273	S274	S275	3	5276	5277	S278	2	6 3	3 ;	11	S281	81	5291	S292	S293	01	1 1	S311	11	S312	5313	5314	S315	5316	S317	S318 S319	10	10
		S	S S	S1244	S2244	SZ	S1251	\$2251	23251	3 S	S S	S	S	SZ	SZ	SZ	SZ	SZ	S	SZ	SZ	\$777	S S	25 5	S S	7	S1279	52710	S2/11 52/11	25 S	S1281	SZ	SZ	SZ	52101	52102	; s	S31111	S3	S3	SS	83	S	S S	አ S	S3110	S13110
	ICO	V	D	V	D	D :	D 7	V MI	E D	D	D	V	V	V	IF	v ,	V	M M	I M	J V	7 V	V	V	V	V	V	V	ME	ME	IF	VI	F V	V	V	V	V	VV	VII		V	V	V	V	V	V V	7 V	V
	PG	_	V	V	D			V MI		V	V	V	V			_		VV	_	_	7 V	V	V	V		V	V	FC	ME		V I			V	V	_		F V			V	V	V		V V		V
	LLVN		R	V	R			R UV		r CF	CF	IF	V			_		v v	+	_		SW				R	V	UV	NI		FI			IF	IF	VE		FIF	F CF	F V	V	V	V	V	V V	7 V	V
	GC	_	US	V	D			IS CI	_	SUS	SS	V	V		BO .	_	_	<i>y v</i>	+	_		CF	V	BO	V	V	V	CF.	CF	SS	V S	s v	V	V	V	V		V SS	S V	V	V	V	V	V	V	V	V
	000		2	Ť						2		1	Ę.	-		•					01	2	m	1	2	8	1	1	2	-	7 8) 4	- 2	9	7		-		2 1 1 1 1	<u> </u>	-	>	S	2	> 5		
		S3111	S3112	S3113	5321	S322	5323	5332	S341	S342	S343	S351	S1351	S352	5353	S421	51421	2422 S423	\$424	242	S441	S442	S443	S451	S452	S453	S461	S481	S482	S491	S4112	S4114	\$4115	\$4116	\$4117	S4121	> 3	vag	vas Vif	, dy	₹	vpvtv	vpvts	ndndn	vtvtv	vdotr	vbor
		٠,											٠,				•																٠,	, ,	٠,									طلل		السلام	

Результаты автоматической векторизации циклов (Intel Xeon Phi, тип данных double)

	V	Цикл векторизован полностью	М	Мультиверсионность	NI	Невозможно вычислить количество итераций	OL	Значение не может быть использовано за пределами цикла
ı	PV	Цикл векторизован частично	во	Неподходящая операция	CF	Невозможно определить направление потока управления	UV	Векторизатор не может понять поток управления в цикле
ı	RV	Остаток цикла не векторизован	AP	Сложный шаблон доступа к элементам массива	ss	Цикл не подходит для векторной записи по несмежным адресам	SW	Наличие оператора switch в цикле
	IF	Векторизация возможна, но не эффективна	R	Значение, которое не может быть идентифицировано как результат редукции, используется вне цикла	ME	Цикл с несколькими выходами невозможно векторизовать	US	Неподдерживаемое использование в выражении
	D	Зависимость по данным препятствует векторизации	IL	Переменная-счетчик внутреннего цикла не является инвариантом	FC	Цикл содержит вызовы функций или данные, которые невозможно проанализировать	GS	В базовом блоке нет сгруппированных операций записи

Intel C/C++ Compiler 17.0 (-mmic) native mode

double	V	V	V	V	V	V	D ,	V	V	V	PV	D	V	D	V	D	D	J	7	V	D	V	V	V	V	D	V	D	7 C	V	1 D	D	V	V	D	V	V	V	V	PV	RV	PV	М	D	IF	V	V	PV	PV	D
float	V	V	V	V	V	V	D,	V	V	V	PV	D	V	D	V	D	D	7 (7	V	D	V	V	V	V	D	V	D	7 C	V	1 D	D	V	V	D	V	V	V	V	PV	PV	PV	М	D	V	V	V	PV	PV	PV
	2000	S111	S1111	S112	\$1112	S113	\$1113	S114	\$115	51115	S116	S118	S119	S1119	S121	S122	\$123	212	3124	\$125	S126	5127	S128	S131	S132	S141	S151	S152	2101	51161	5171	5172	S173	S174	S175	S176	S211	S212	S1213	S221	S1221	S222	S231	S232	S1232	5233	\$2233	S235	S241	S242
double	PV	PV	PV	V	V	V	D,	V	V	V	V	D	D	D	D	V	V	7	7	V	V	V]	PV	V	D	V	V	V	J	7 V	7 D	V	V	V	D	V	PV	D	V	IF	V	V	V	V	V	V	V	V	D	V
float	PV	PV	PV	V	V	V	D ,	V	V	V	V	D	D	D	D	V	V	7	7 7	V	V	V]	PV	V	D	V	V	V	J	V 7	7 D	V	V	V	D	V	PV	D	V	IF	V	V	V	V	V	V	V	V	D	V
-	S243	S244	S1244	S2244	\$251	S1251	\$2251	53251	\$252	2253	S254	\$255	S256	S257	S258	S261	5271	57.73	2/26	5773	S274	S275	S2275	S276	S277	S278	S279	\$1279	32710	22/11	52 720	51281	S291	S292	S293	S2101	S2102	S2111	S311	S31111	S312	5313	S314	S315	S316	S317	S318	S319	S3110	S13110
double		D S244	< S1244		+	_	S2251	S	S252 A	5253	Z S254	S255			S258	< S261	\$271	72,72 M	3/7C M	S773	S274	S275	S2275	S276		S278	S279	S1279	32/10 ME	11 / 7C ME	4	\perp	S291	S292	Z Z 293	S2101	_	S2111	S311	S31111	< S312	< S313	< S314	< S315	S316	< S317	< S318	< S319	< S3110	< \$13110
double float				D	D I	D .		E 7		, 7	S254	7 P	. V	V			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		M	M	V	V	V		V	V		S1279	ME	ME	V	V	V F	S292	S293	7 V	7 V		< S311		V	< S313	< S314	< S315		< S317				< < S13110

Классы невекторизованных циклов

Классы невекторизованных циклов

Категория / Подкатегория	Общее число циклов	Число невекторизованных циклов
Анализ зависимостей по данным (dependence analysis)	36	9
Линейная зависимость по данным (linear dependence)	14	2
Распознавание индуктивной переменной (induction variable recognition)	8	3
Нелинейная зависимость (nonlinear dependence)	1	1
Условные и безусловные переходы (control flow)	3	1
Переменные в границах цикла или шаге выполнения итераций (symbolics)	6	2
Анализ потока управления и трансформация циклов (vectorization)	52	11
Расщепление тела цикла (loop distribution)	3	2
Перестановка циклов (loop interchange)	6	2
Расщепление вершин в графе зависимостей по данным (node splitting)	6	4
Растягивание скаляров и массивов» (scalar and array expansion)	12	2
Условные и безусловные переходы (control flow)	14	1
Распознавание идиоматических конструкций (idiom recognition)	27	6
Рекуррентности (recurrences)	3	3
Поиск элемента в массиве (search loops)	2	1
Свертка цикла (loop rerolling)	4	1
Редукции (reductions)	15	1
Полнота понимания языка программирования (language completeness)	23	2
Прерывание вычислений в цикле» (nonlocal GOTO)	2	2

Подкатегория «Линейная зависимость по данным» (linear dependence)

Невекторизованный цикл s1113

■ Зависимость по данным вида «чтение после записи» (read-after-write, RAW), начиная с итерации N / 2 + 1

Раскрутка цикла s1113 по итерациям

```
X[0] = X[N/2] + Y[0];
X[1] = X[N/2] + Y[1];
...

X[N/2] = X[N/2] + Y[N/2];
X[N/2+1] = X[N/2] + Y[N/2+1];
...

X[N-1] = X[N/2] + Y[N-1];
```

Подкатегория «Линейная зависимость по данным» (linear dependence)

Невекторизованный цикл s1113	Возможная трансформация цикла s1113
<pre>for (int i = 0; i < N; i++) X[i] = X[N/2] + Y[i];</pre>	int k = N / 2;
	<pre>for (int i = 0; i <= k; i++) X[i] = X[k] + Y[i];</pre>
	<pre>for (int i = k + 1; i < N; i++) X[i] = X[k] + Y[i];</pre>

• Зависимость по данным вида «чтение после записи» (read-after-write, RAW), начиная с итерации N / 2 + 1

- Pаспределение путем разбиения имен (fission by name)
- Ускорение в 2 раза для типа double и компилятора ICC на Intel Xeon E5-2620 v4

Подкатегория «Распознавание индуктивной переменной» (induction variable recognition)

Невекторизованный цикл s126	Возможная трансформация цикла s126
<pre>int k = 1; for (int i = 0; i < N; i++) { for (int j = 1; j < N; j++) { X[j][i] = X[j - 1][i] +</pre>	<pre>for (int j = 1; j < N; j++) { for (int i = 0; i < N; i++) { X[j][i] = X[j - 1][i] +</pre>

- Индуктивная переменная k
- Внешний цикл осуществляет проход по столбцам матриц *X* и *Z*, а внутренний по строкам

- Перестановка циклов и удаление индуктивной переменной k
- Ускорение в 8.5 раз для типа double и компилятора ICC на Intel Xeon E5-2620 v4

Подкатегория «Нелинейная зависимость» (nonlinear dependence)

Невекторизованный цикл s141 Возможная трансформация цикла s141 int k; for (int i = 0; i < N; i++) { int k = 0; k = (i + 1) * ((i + 1) - 1) /for (int j = 0; j < N; j++) { 2 + (i + 1) - 1;for (int i = 0; i <= j; i++) { for (int j = i; j < N; j++) X[k] += Y[j][i];k++; X[k] += Y[j][i];k += j + 1;Шаг = NЗначение индуктивной переменной k зависит от i и jУпрощение вычисления значения индуктивной

Внешний цикл осуществляет проход по столбцам матрицы Ү, а внутренний – по строкам

- переменной к и перестановка циклов
- Ускорение в 3.5 раза для типа double и компилятора ICC на Intel Xeon E5-2620 v4

Подкатегория «Условные и безусловные переходы» (control flow)

Невекторизованный цикл s161

```
for (int i = 0; i < N - 1; ++i)
{
    if (Y[i] < 0)
        goto L20;

    X[i] = Z[i] + V[i] * W[i];
    goto L10;

L20: Z[i + 1] = X[i] + V[i] * V[i];
L10: ;
}</pre>
```

Раскрутка цикла s161 по итерациям

```
i = 0:
       if (Y[0] < 0)
       Z[1] = X[0] + V[0] * V[0];
       else 📏
          X[0] = Z[0] + V[0] * W[0];
i = 1:
                                 S_1 \delta < S_2
       if (Y[1] < 0)
S_1^1:
         Z[2] = X[1] + V[1] * V[1];
       else
S_2^1:
         X[1] = Z[1] + V[1] * W[1];
```

Возможная зависимость выражения S_2 на итерации i от выражения S_1 на итерации i - 1 вида «чтение после записи» (read-after-write, RAW)

Подкатегория «Переменные в границах цикла или шаге выполнения итераций» (symbolics)

```
Невекторизованный цикл s172

void s172(int n1, int n3)
{
    for (int i = n1 - 1; i < N; i += n3)
        X[i] += Y[i];
}
```

Переменные, используемые в качестве нижней и(или) верхней границы цикла и(или) шага выполнения итераций

Подкатегория «Расщепление тела цикла» (loop distribution)

- Зависимость выражения S_2 на итерации i от выражения S_1 на той же итерации вида «чтение после записи» (read-after-write, RAW)
- Зависимость выражения S_2 на итерации i от выражения S_2 на итерации i-1 вида «чтение после записи» (read-after-write, RAW)

Подкатегория «Перестановка циклов» (loop interchange)

Невекторизованный цикл s1232	Возможная трансформация цикла s1232
<pre>for (int j = 0; j < N; j++) for (int i = j; i < N; i++) X[i][j] = Y[i][j] + Z[i][j];</pre>	<pre>for (int i = 0; i < N; i++) for (int j = 0; j <= i; j++) X[i][j] = Y[i][j] + Z[i][j];</pre>

■ Внешний цикл осуществляет проход по столбцам матриц *X, Y, Z,* а внутренний — по строкам

- Перестановка циклов
- Ускорение в 8.6 раз для типа double и компилятора
 ICC на Intel Xeon E5-2620 v4

Подкатегория «Расщепление вершин в графе зависимостей по данным» (node splitting)

- Зависимость выражения S_2 на итерации i от выражения S_1 на той же итерации вида «запись после чтения» (write-after-read, WAR)
- Зависимость выражения S_3 на итерации i от выражения S_2 на той же итерации вида «чтение после записи» (read-after-write, RAW)
- Зависимость выражения S_1 на итерации i от выражения S_3 на итерации i-1 вида «запись после чтения» (write-after-read, WAR)

Подкатегория «Растягивание скаляров и массивов» (scalar and array expansion)

Невекторизованный цикл s257	Возможная трансформация цикла s257
<pre>for (int i = 1; i < N; i++) {</pre>	<pre>for (int i = 1; i < N; i++) for (int j = 0; j < N; j++)</pre>
for (int j = 0; j < N; j++)	X[i] = Y[j][i] - X[i - 1];
S_1 : $X[i] = Y[j][i] - X[i - 1];$ S_2 : $Y[j][i] = X[i] + Z[j][i];$	<pre>for (int i = 1; i < N; i++) for (int j = 0; j < N; j++)</pre>
$S_{1} \delta_{1} \delta_{2} S_{1} S_{1} \delta_{2} S_{2} S_{1} \delta_{-,=} S_{2}$	Y[j][i] = Y[j][i] - X[i - 1] + Z[j][i];

- Зависимость выражения S_1 на итерации i от S_1 на итерации i 1 вида «чтение после записи» (read-after-write)
- Зависимость выражения S_2 на итерации i от S_1 на той же итерации вида «чтение после записи» (read-after-write)
- Зависимость выражения S_2 на итерациях i, j от S_1 на тех же итерациях вида «запись после чтения» (write-after-read)

- Расщепление тела цикла (loop fission, loop distribution)
- Ускорение в 9.3 раза для типа double и компилятора ICC на Intel Xeon E5-2620 v4

Категория «Распознавание идиоматических конструкций» (idiom recognition)

Подкатегория «Рекуррентности» (recurrences)

Зависимость выражения S_1 на итерации i от выражения S_1 на итерациях i-1 и i-2 вида «чтение после записи» (read-after-write, RAW)

Категория «Распознавание идиоматических конструкций» (idiom recognition)

Подкатегория «Поиск элемента в массиве» (search loops)

Невекторизованный цикл s332 Возможная трансформация цикла s332 void s332(double t) { void s332(double t) { int index = -2; int index = -2; double value = (double)-1.; double value = (double)-1.; for (int i = 0; i < N; i++) { for (i = 0; i < N && X[i] <= t; i++) if (X[i] > t) { if (X[i] > t) { index = i;index = i;value = X[i]; value = X[i]; goto L20; L20: Векторизован только компилятором Intel C/C++

■ Условный и безусловный переходы в теле цикла

- Условный переход вынесен за пределы тела цикла
- Ускорение в 2.4 раза для типа double и компилятора ICC на Intel Xeon E5-2620 v4

Категория «Распознавание идиоматических конструкций» (idiom recognition)

Подкатегория «Свертка цикла» (loop rerolling)

```
Невекторизованный цикл s353
void s353(int* __restrict__ ip) {
    double alpha = Z[0];
    for (int i = 0; i < N; i += 5) {
        X[i] += alpha * Y[ip[i]];
        X[i+1] += alpha * Y[ip[i+1]];
        X[i+2] += alpha * Y[ip[i+2]];
        X[i+3] += alpha * Y[ip[i+3]];
        X[i+4] += alpha * Y[ip[i+4]];
```

Косвенная адресация при обращении к элементам массива Y[ip[i]]

Категория «Распознавание идиоматических конструкций» (idiom recognition)

Подкатегория «Редукции» (reductions)

Невекторизованный цикл s31111

```
double test(double* A) {
   double s = (double)0.;
   for (int i = 0; i < 4; i++)
        s += A[i];
   return s;
void s31111() {
   double sum;
   for (int i = 0; i < N; i++) {
        sum = (double)0.;
        sum += test(X);
        sum += test(&X[4]);
        sum += test(&X[8]);
        sum += test(&X[12]);
        sum += test(&X[16]);
        sum += test(&X[20]);
        sum += test(&X[24]);
        sum += test(&X[28]);
```

Наличие вызова функции в теле цикла

Категория «Полнота понимания языка программирования» (language completeness)

Подкатегория «Прерывание вычислений в цикле» (nonlocal GOTO)

Невекторизованный цикл s481 for (int i = 0; i < N; i++) { if (V[i] < (double)0.) exit(0); X[i] += Y[i] * Z[i]; }

Наличие вызова функции exit в теле цикла

Категория «Полнота понимания языка программирования» (language completeness)

Подкатегория «Прерывание вычислений в цикле» (nonlocal GOTO)

Невекторизованный цикл s482 for (int i = 0; i < N; i++) { X[i] += Y[i] * Z[i]; if (Z[i] > Y[i]) break; }

Наличие break в теле цикла

Сокращение времени выполнения векторизованных циклов

Время выполнения векторизованных циклов на процессоре Intel Xeon E5-2620 v4

Суммарное время выполнения теста (всех 151 циклов) для типов данных double, float, int и short int

Время выполнения векторизованных циклов на процессоре Intel Xeon E5-2620 v4

Суммарное время выполнения теста (всех 151 циклов) для типов данных double, float, int и short int

Ускорение выполнения векторизованных циклов на процессоре Intel Xeon E5-2620 v4

Медиана ускорения (учитывались только ускорения больше 1.15)

Максимальное ускорение

Ускорение выполнения векторизованных циклов на процессоре Intel Xeon E5-2620 v4

^[1] Nuzman D., Rosen I., Zaks A. *Auto-vectorization of interleaved data for SIMD* // Proc. of the 27th ACM SIGPLAN Conf. on Programming Language Design and Implementation (PLDI '06). 2006. pp. 132–143.

Ускорение выполнения векторизованных циклов на процессоре Intel Xeon E5-2620 v4

Медиана ускорения (учитывались только ускорения больше 1.15)

Вычисления в цикле не производились в результате оптимизации

Направление дальнейшей работы

 Анализ известных методов векторизации и распараллеливания циклов (полиэдральные модели: GCC Graphite, LLVM/Clang PollyLabs)

- Разработка методов векторизации установленного класса проблемных циклов из пакета ETSVC
- Анализ возможностей применения JIT-компиляции и оптимизации по результатам профилирования (profile-guided optimization) для автоматической векторизации кода

Спасибо за внимание!

Ольга Владимировна Молдованова 1,2

Михаил Георгиевич Курносов 1,2

ovm@sibguti.ru, ovm@isp.nsc.ru

WWW: www.mkurnosov.net

¹ Кафедра вычислительных систем Сибирский государственный университет телекоммуникаций и информатики, Новосибирск

² Лаборатория вычислительных систем Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск

Всероссийская научная конференция памяти А.Л. Фуксмана «Языки программирования и компиляторы» (PLC-2017) г. Ростов-на-Дону, 3-5 апреля 2017 г.

Сравнение результатов с предыдущими работами

2011 г. [<mark>1</mark>]		2017 г.	
Intel C/C++ 12.0	90 циклов (59.6 %)	Intel C/C++ 17.0	95 циклов (62.9 %)
GCC C/C++ 4.7.0	59 циклов (39 %)	GCC C/C++ 6.3.0	79 циклов (52.3 %)

^[1] Maleki S., Gao Ya. Garzarán M.J., Wong T., Padua D.A. *An Evaluation of Vectorizing Compilers* // Proc. of the Int. Conf. on Parallel Architectures and Compilation Techniques (PACT-11), 2011. pp. 372–382.

Ссылки на литературу

- 1. Maleki S., Gao Ya. Garzarán M.J., Wong T., Padua D.A. An Evaluation of Vectorizing Compilers // Proc. of the Int. Conf. on Parallel Architectures and Compilation Techniques (PACT'11), 2011. pp. 372–382.
- 2. Extended Test Suite for Vectorizing Compilers. URL: http://polaris.cs.uiuc.edu/~maleki1/TSVC.tar.gz.
- 3. Callahan D., Dongarra J., Levine D. Vectorizing Compilers: A Test Suite and Results // Proc. of the ACM/IEEE conf. on Supercomputing (Supercomputing '88), 1988. pp. 98–105.
- 4. Levine D., Callahan D., Dongarra J. A Comparative Study of Automatic Vectorizing Compilers // Journal of Parallel Computing. 1991. Vol. 17. pp. 1223–1244.
- 5. Konsor P. Avoiding AVX-SSE Transition Penalties. URL: https://software.intel.com/en-us/articles/avoiding-avx-sse-transition-penalties.
- 6. Jibaja I., Jensen P., Hu N., Haghighat M., McCutchan J., Gohman D., Blackburn S., McKinley K. Vector Parallelism in JavaScript: Language and Compiler Support for SIMD // Proc. of the Int. Conf. on Parallel Architecture and Compilation (PACT-2015). 2015. pp. 407–418.
- 7. Векторизация программ: теория, методы, реализация. Сб. статей: Пер. с англ. и нем. М.: Мир, 1991. 275 с.
- 8. Metzger R.C., Wen Zh. Automatic Algorithm Recognition and Replacement: A New Approach to Program Optimization. MIT Press. 2000. 219 p.
- 9. Nuzman D., Rosen I., Zaks A. Auto-vectorization of interleaved data for SIMD // Proc. of the 27th ACM SIGPLAN Conf. on Programming Language Design and Implementation (PLDI '06). 2006. pp. 132–143.
- 10. Rohou E., Williams K., Yuste D. Vectorization Technology To Improve Interpreter Performance // ACM Transactions on Architecture and Code Optimization. 2013. 9 (4). pp. 26:1-26:22.

Виды зависимостей

■ Потоковая (истинная) зависимость («чтение после записи», read-after-write, RAW)

```
for (int i = 0; i < N; i++) 

\{S_1: A[i] = B[i] + C[i]; S_1\delta = S_2 

S_2: D[i] = A[i]; 

\{S_2: S_2 \}
```

Антизависимость («запись после чтения», write-after-read, WAR)

```
for (int i = 0; i < N; i++) 

{
S_1: A[i] = B[i] + C[i]; S_1 \delta_= S_2
S_2: D[i] = A[i]; S_3 \overline{\delta}_= S_1
S_3: S_1 \delta_0 = S_1
```


■ Выходная зависимость («запись после записи», write-after-write, WAW)

```
for (int i = 0; i < N; i++) 

{
S_1: A[i] = B[i] + C[i]; S_1 \delta_= S_2
S_2: A[i+1] = A[i] + D[i]; S_2 \delta_>^o S_1
```