Objective 1 - Set Notation

Describe solutions as sets of numbers.

Link to section in online textbook.

We start with a terminology review.

A set is a collection of mathematical objects. We'll commonly look at sets of numbers like the Natural numbers: $\{1, 2, 3, 4, \ldots\}$.

An **interval** is a collection of Real numbers. For example, (1,2) is the set of Real numbers between 1 and 2 (but not including 1 or 2). If we want to include the endpoints of an interval, we use brackets, such as [1,2].

We can describe solutions that exist in an interval by using the notation $x \in (a,b)$. We read this as "x is an element of (a,b)" and means that x is some number between a and b. For example, $x \in [1,2]$ means that x is some number between 1 and 2 (and could be one of the two numbers).

We can also describe intervals using **inequalities**. For example, to describe the set of $x \in (1,2)$ using inequalities, we would use 1 < x < 2. This is usually a more natural way for students to read "x is a Real number between 1 and 2." If we want to include the endpoints of an inequality, we use the symbols \leq or \geq .

Question 1 Write each set described in Interval notation.

Learning outcomes: Understand and solve linear inequalities. Author(s): Darryl Chamberlain Jr.

 $Objective \ 1 - Set \ Notation$

Set described in words	Inequality Notation	Interval Notation
All Real numbers between a and b, but not including a or b	a < x < b	$\{x \mid x \in \boxed{(a,b)}\}$
All Real numbers greater than a, but not including a	x > a	$\{x \mid x \in \boxed{(a,\infty)}\}$
All Real numbers less than b, but not including b	x < b	$\{x \mid x \in \boxed{(-\infty, b)}\}$
All Real numbers greater than a , including a	$x \ge a$	$\{x \mid x \in \boxed{[a,\infty)}\}$
All Real numbers less than b, including b	$x \leq b$	$\{x \mid x \in \boxed{(-\infty, b]}\}$
All Real numbers between a and b , including a	$a \le x < b$	$\{x \mid x \in \boxed{[a,b)}\}$
All Real numbers between a and b , including b	$a < x \le b$	$\{x x \in \boxed{(a,b]}\}$
All Real numbers between a and b , including a and b	$a \le x \le b$	$\{x \mid x \in \boxed{[a,b]}\}$
All Real numbers less than a or greater than b	x < a or x > b	$ \left\{ x x \in \boxed{(-\infty, a)} \cup \boxed{(b, \infty)} \right\} $
All Real numbers	$x \ge a \text{ or } x < a$	$\{x \mid x \in \boxed{(-\infty, \infty)}\}$

Question 2 On exams, you will answer questions primarily using interval notation. Solve the linear equation below and choose the interval that contains the solution.

$$x + 3 = 5.5$$

Multiple Choice:

- (a) x = a, where $a \in [-2, -1]$
- (b) x = a, where $a \in [-1, 0]$
- (c) x = a, where $a \in [0, 1]$
- (d) x = a, where $a \in [1, 2]$
- (e) x = a, where $a \in [2,3]$ \checkmark