CURSO 2 – CD, AM E DM

REGRESSÃO UNIVARIADA E MULTIVARIADA MÉTRICAS DE REGRESSÃO

REGRESSÃO LINEAR UNIVARIADA

V	_	W	Y	_	R
Y	_	VV	Λ	+	D

X	Υ
0.2	3.0
0.25	3.5
0.3	4.1
0.33	4.2

$$W = ?$$

REGRESSÃO LINEAR UNIVARIADA

MÉTODO DOS MÍNIMOS QUADRADOS

RETA QUE **MELHOR** SE APROXIMA DOS DADOS

Regressão Linear (mínimos quadrados)

$$\Sigma (Yi - \hat{y}_i)^2$$
 $\hat{y}_i = WXi$

$$\frac{1}{2} \Sigma (Yi - Wxi)^2 ; W = ?$$

Derivar em rel. a W e igualar a zero $\frac{1}{2}(\Sigma Yi^2 - 2. \Sigma Yi Wxi + W^2 \Sigma Xi^2)$

$$\Sigma Yi Xi + W \Sigma Xi Xi = 0$$

$$W = (\Sigma Yi Xi)/\Sigma Xi Xi$$

Forma matricial: W = Yt X/ Xt X

REGRESSÃO LINEAR UNIVARIADA

•
$$Y = W X + B$$

•
$$\hat{y} = W X (SUPOR B = 0)$$

X	Υ	ŷ
X_0	Y_0	W X_0
X_1	Y_1	W X_1
••••	•••	
X_i	Y_i	W X_i
•••	•••	
X_m	Y_m	W X_m

$$\sum_{i=0}^{m} (Y_i - \hat{y}_i)^2 = \sum_{i=0}^{m} (Y_i - W X_i)^2$$

Minimizar esta soma

Forma matricial: $(Y - XW)^T (Y - XW)$ Derivando e igualando a zero

$$W = (X^T X)^{-1} X^T Y$$

REGRESSÃO LINEAR MULTIVARIADA

• A SOLUÇÃO É A MESMA:

$$W = (X^T X)^{-1} X^T Y$$

inversa precisa existir

Métricas de Regressão

- MSE
- MAE
- R^2

MÉTRICAS DE REGRESSÃO

MSE – MEAN SQUARE ERROR

$$MSE = 1/n \sum_{i=0}^{n-r} (y_i - \hat{y}_i)^2$$

ŷ é vetor previstoy é o vetor dadosn é no. de exemplos

MÉTRICAS DE REGRESSÃO

MAE – MEAN ABSOLUTE VALUE

MAE =
$$\frac{1}{n} \sum_{i=0}^{n-1} (|y_i - \hat{y}_i|)$$

ŷ é vetor previstoy é o vetor dadosn – no. de exemplos

MÉTRICAS DE REGRESSÃO

Medida R²

$$R^{2} = 1 - \sum_{i=0}^{n} (y_{i} - \hat{y}_{i})^{2} / (y_{i} - \bar{y})^{2}$$

y é media aritmética (do vetor de dados)

ŷ é vetor previsto

y é o vetor dados

$$e_i = (y_i - \hat{y}_i)$$

Quanto mais próximo de 1 melhor é o ajuste

Regressão Linear

sklearn.linear_model.LinearRegression

class sklearn.linear_model.LinearRegression(*, fit_intercept=True, normalize=False, copy_X=True, n_jobs=None, positive=False)
[source]

```
X_0
X_1
Y
1
6
1
2
8
2
9
2
3
11
```

```
Y = 1 * X_0 + 2 * X_1 + 3
```



```
>>> import numpy as np
>>> from sklearn.linear model import LinearRegression
>>> X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
>>> # y = 1 * x_0 + 2 * x_1 + 3
>>> y = np.dot(X, np.array([1, 2])) + 3
>>> reg = LinearRegression().fit(X, y)
>>> reg.score(X, y)
>>> reg.coef
array([1., 2.])
>>> reg.intercept
3.0...
>>> reg.predict(np.array([[3, 5]]))
array([16.])
```

 $h(x) = w_0 + w_1.x_1 + w_2.x_2$; **W** ótimo na regressão linear pois temos que prever um valor continuo

Na classificação temos que classificar ou categorizar em SIM=1 ou NÃO=0 (valores binários).

Estudantes foram ou não aprovados no VESTIBULAR

FUNÇÃO SIGMOID

g(x) =
$$1/(1 + \exp(-x)) = \frac{1}{1 + e^{-x}}$$

g(h(x)) =
$$1/(1 + \exp(-h(x))) = \frac{1}{1 + e^{-h(x)}}$$

g(h(x)) = $\frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2x_2)}}$

Regressão Logística

```
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
X, y = load_iris(return_X_y=True)
clf = LogisticRegression(random_state=0).fit(X, y)
clf.predict(X[:2, :])
```

R.: array([0, 0])

Regressão Logística

```
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
X, y = load_iris(return_X_y=True)
clf = LogisticRegression(random_state=0).fit(X, y)
clf.predict(X[50:54, :])
```

```
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
X, y = load_iris(return_X_y=True)
clf = LogisticRegression(random_state=0).fit(X, y)
clf.predict(X[100:104, :])
```

array([1, 1, 1, 1])

array([2, 2, 2, 2])

Underfitting e Overfitting

Degree 4 MSE = 4.32e-02(+/- 7.08e-02)

Degree 15 MSE = 1.82e+08(+/- 5.46e+08)

REGRESSÃO POLINOMIAL

CASO UNIDIMENSIONAL

$$Y = AX^2 + BX + C$$
 ; $A = ?, B = ?, C = ?$

$$Y = AX^3 + BX^2 + CX + D$$
; $A = ?, B = ?, C = ?, D = ?$

CASO BIDIMENSIONAL

$$Y = AX^2 + BY^2 + CX + DY + EXY + F$$

$$Y = AX^3 + BY^3 + CX^2 + DY^2 + EX + FY + GXY + H$$

import numpy as np

from sklearn.preprocessing import

PolynomialFeatures

$$X = np.arange(6).reshape(3, 2)$$

Χ

poly.fit_transform(X)

poly =PolynomialFeatures(interaction_only=**True**)

poly.fit_transform(X)

CASOS DE COVID

DADOS DE MARÇO A ABRIL DE 2021

A primeira técnica investigada foi a regressão polinomial. Escolheu-se os dados da cidade de São Paulo, como estudo de caso.

Usando a técnica de regressão polinomial, foram testadas regressões de vários graus diferentes 1, 2, 3, 4 e 5.

A **regressão polinomial de grau 4** foi a que melhor se ajustou aos dados de São Paulo e pode ser visualizada na Figura 1, considerando dados coletados para os meses de março a abril.

PREVISÃO PARA DADOS DE COVID

Segundo esta regressão, a previsão para o dia 09 de junho, por exemplo, fornece um valor previsto de beta igual a 4.5. O erro quadrático médio obtido foi de aproximadamente 0.00869.

EXEMPLO 5: REGRESSÃO MULTIVARIADA

