Categories	Publications
MLP	[2, 13, 20, 27, 38, 47, 53, 54, 66, 92, 95, 157, 166, 185],
	[12, 39, 93, 112, 134, 154, 182, 183]
Autoencoder	[34, 88, 89, 114, 116, 125, 136, 137, 140, 159, 177, 187, 207],
	[4, 10, 32, 94, 150, 151, 158, 170, 171, 188, 196, 208, 209]
CNNs	[25, 49, 50, 75, 76, 98, 105, 127, 130, 153, 165, 172, 202, 206],
	[6, 44, 51, 83, 110, 126, 143, 148, 169, 190, 191]
RNNs	[5, 28, 35, 56, 57, 73, 78, 90, 117, 132, 139, 142, 174–176],
	[24, 29, 33, 55, 68, 91, 108, 113, 133, 141, 149, 173, 179]
RBM	[42, 71, 72, 100, 123, 167, 180]
NADE	[36, 203, 204]
Neural Attention	[14, 44, 70, 90, 99, 101, 127, 145, 169, 189, 194, 205],
	[62, 146, 193]
Adversary Network	[9, 52, 162, 164]
DRL	[16, 21, 107, 168, 198–200]
Hybrid Models	[17, 38, 41, 82, 84, 87, 118, 135, 160, 192, 193]

Table 1. A lookup table for reviewed publications.

NCF(MLP)

기존 선형적인 모델에서 MLP을 통해 비선형성을 추가한 모델

- 유저의 선호도와 상품 특징 간의 양방향성 상호작용을 활용
- 고차원 벡터를 표현

필요 데이터

- 사용자 데이터 사용자 아이디, 사용자 선호 카테고리 혹은 키워드, 행동 데이터(클릭, 찜)
- 상품 데이터 상품 id. 키워드 혹은 카테고리, 가격 등의 상품 정보들

추천 시스템에서의 MLP 모델의 발전

- Locally-Connected wide & deep Learning Model
 - Locally-Connected Network를 통해, 실행시간을 10배 감소
 (Locally-Connected Network는 Convolutional Neural Network(CNN)에서 아이디어를 차용한 구조.)
 - Feature Engineering 감소
 - Youtube DNN(사용 사례)
 - <u>Candidate Generation과 Candidate Ranking</u> 두 단계로 구성
 - Feature Engineering의 많은 노력을 기울임 → 중요성을 확인

⇒ 요약문헌

Figure 5: A 5-layer locally connected DNN (LC-DNN).

Deep FM ,wide & deep Learning Model

저차원 뿐만 아니라 고차원 간의 상관 관계

Collaborative Metric Learning(CML)

- User와 Item의 임베딩을 고도화 User가 싫어하는 Item은 거리를 최대화 & User가 좋아하는 Item은 거리를 최소화
- 유클리디안 거리를 통해 선호도를 학습

Figure 1: An illustration of collaborative metric learning. The hinge loss defined in Eq. 1 creates a gradient that *pulls* positive items closer to the user and *pushes* the intruding impostor items (i.e., items that the user did not like) away until they are beyond the safety margin.

Metric Learning

- 분류(class) 대상이 매일 바뀌는 경우 (ex. 얼굴인식, 상품 검색)
- 핵심
 - 1. 사용하는 거리(유사도)
 - 2. Loss
 - → Contrastive Loss, Triplet Loss, Margin Loss 등

- 장점:
 - 1. 일반적인 Classfication은 학습한 이미지에 대해서만 인식 가능 그러나 ML은 학습하지 않은 이미지도 DB에 구축 시 인식
 - 2. ML은 비유사한 Feature들을 멀리 떨어지도록 학습
 - → Feature 공간을 더 잘 사용 가능

⇒ 요약문헌

AUTOENCODER

<u>참고 문헌</u> → 협업인데 고객 리뷰 별점을 이요한 듯, 여기서도 리뷰 별로 없다고 희박하다 함

GRAPH CNNs

- Graph CNN은 소셜 네트워크, Knowledge Graph 등과 같은 관계성 데이터에 적합
- 추천 분야는 이분 그래프(Bipartite Graph)로 표현할 수 있음

- 핀터레스트에서 사용 중인 추천 모델

SKlearn 이용한 추천 모델

Naive Bayes

- 베이즈라는 예측 모델
- 모든 상품이 독립적이라는 가정이 들어감
- 모델 속도가 매우 빠름
- 간단함
- 협업 기반이긴 하지만 참고하면 좋을 것 같은 논문 $\rightarrow \frac{문헌}{}$

K neighbers classfier (+클러스터링)

- 유클리디언 거리 계산법 사용
- 저희 수업시간에 배웠죠? 그거임

SVD(MF)

- Rating Matrix R에 대해 유저와 아이템의 <u>잠재 요인을 포함할 수 있는 행렬로</u> 분해한다.
- SVD는 선형대수학 기반의 행렬 분해 방법으로, 추천 시스템에서 MF와 유사한 역할을 하지만, 명확한 수학적 정의를 기반으로 동작합니다.
- 장점
- 수학적 최적화: 분해 과정이 명확히 정의되어 있어 안정적인 결과를 보장.
- 데이터 압축: 중요한 정보만 남기고 차원을 축소하므로, 계산량 감소.
- 단점
- 희소 행렬 한계: 사용자-아이템 행렬에 공백이 많으면 직접 사용하기 어려움.
- 콜드 스타트 문제: 새로운 사용자나 아이템 처리에 한계.

MF

- SVD의 개념과 유사하지만, MF는 관측된 선호도(평점)만 모델링에 활용하고 <u>관측되지 않은 선호도를 예측하는 일반적인 모델</u>을 만든다.
- SVD와는 다르게 <u>실제 관측된 데이터만을 사용</u>하여 모델을 학습
- 장점
- 잠재적 관계 학습: 사용자와 아이템 간의 숨겨진 패턴(예: 사용자가 특정 장르를 선호함)을 학습.

- 효율적: 행렬이 희소할 때에도 적은 데이터로 잘 학습 가능.
- 단점
- 콜드 스타트 문제: 새로운 사용자나 아이템에 대해 학습된 정보가 없어 추천이 어려움.
- 데이터 의존: 충분히 크고 다양한 사용자-아이템 데이터가 필요.

특징	MF	SVD
방식	데이터 기반 최적화 (주로 경사하강법 사용).	선형대수학 기반 분해.
입력 데이터	희소 행렬에서 직접 학습 가능.	완전한 행렬이 필요 (공백 처리 필요).
사용 사례	대규모 데이터에서 효율적.	작거나 완전한 데이터에 적합.

홈쇼핑 모아에서 고려하고 있는 추천 모델

RNN

- GRU4Rec
- GRU 기반 세션 추천: Gated Recurrent Unit(GRU)을 활용하여 세션 내 사용자 행동 시퀀스를 모델링.
- 시간 순서 학습: 사용자 행동의 순차적 패턴을 학습하여 다음 행동을 예측.
- 세션 기반 특화: 짧은 시간 동안의 사용자 선호 변화를 반영한 실시간 추천에 강점.
- 장점
 - 1. 효율적인 시퀀스 모델링: GRU로 기울기 소실 문제를 완화하고 긴 시퀀스도 처리 가능.
 - 2. 실시간 추천 가능: 세션 내 행동을 실시간 분석하여 바로 추천 제공.
 - 3. 간결한 구조: LSTM보다 단순해 계산 효율이 높음.
- 단점
 - 1. 긴 시퀀스 처리 한계: 매우 긴 시퀀스에서는 성능 저하 가능.
 - 2. 하이퍼파라미터 튜닝 필요: 모델 성능 최적화를 위해 세심한 설정이 요구됨.
 - 3. 콜드 스타트 문제: 새로운 사용자나 아이템에 대한 데이터 부족 시 성능 한계.

- 1. 콘텐츠 기반 필터링
- 소비한 콘텐츠를 기준으로 유사한 특성을 가진 콘텐츠 추천
- 키워드로 TF-IDF 계산(TF-IDF: 키워드 빈도를 구해 가중치 적용)
- 유사도
- * 코사인 유사도 => 한 상품을 클릭했을 때, 코사인 유사도가 높은 키워드를 가지고있는 상품 추천
- * 유클리드 거리 => 유클리드 거리의 값이 작을수록 키워드간 비슷한 의미를 가짐(코사인만큼 유용하지는 못함)
- * 자카드 유사도 => 두 집합의 합집합에서 교집합의 비율
- * 피어슨 유사도 => 아이템의 벡터간 선형 상관관계
- 추론기반(Word2Vec)
- * CBOW: 주변 단어(맥락)를 통해서 중심 단어를 채우는 방법
- * Skip-Gram: 중심 단어를 통해서 주변 단어를 채우는 방법
- => 1. 특정 상품 제목의 벡터와 가장 유사한 벡터를 가진 다른 상품 추천(제목 전처리 필요)
 - 2. 사용자가 입력한 키워드와 유사한 키워드를 포함하는 상품 추천
 - 3. 키워드 벡터를 클러스터링하여 비슷한 상품 그룹화
- 사용자가 관심 카테고리로 선택한 카테고리와 유사도를 비교하여 상품 추천

- 참고 논문
- * 코사인 유사도 기법을 이용한 뉴스 추천

시스템(https://scienceon.kisti.re.kr/srch/selectPORSrchArticle.do?cn=NPAP12013299)

item2vec

https://github.com/comsa33/Recommedation_System

Word2Vec의 SGNS에서 영감을 받아 추천시스템에 적용한 형태