ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ ОБЩЕЙ И ПРИКЛАДНОЙ ФИЗИКИ

Лабораторная работа № 4.3.3 Исследование разрешающей способности микроскопа методом Аббе

Серебренников Даниил Группа Б02-826 **Цель работы:** определение дифракционного предела разрешения объектива микроскопа методом Аббе.

В работе используются: лазер; кассета с набором сеток разного периода; линзы; щель с микрометрическим винтом; оптический стол с набором рейтеров и крепежных винтов; экран; линейка.

1 Теоретическая часть

Pазрешающей способностью оптического прибора называют минимальное расстояние l_{\min} между двумя точками в пространстве предметов, которое прибор может разрешить. Если наблюдения с помощью микроскопа ведутся при внешнем освещении, то, как правило, различные точки предмета рассеивают когерентные волны. Теория разрешающей способности для случая освещаемых объектов была разработана Λ 66e.

Рассмотрим когерентно освещенный объект, наблюдаемый в объектив микроскопа. Минимальное разрешаемое объективом расстояние определяется условием

$$l_{\min} \approx \frac{\lambda}{\sin A} \approx \frac{\lambda}{D/2f},$$
 (1)

где A – апертурный угол микроскопа, D – диаметр диафрагмы. При этом диафрагма, расположенная симетрично, пропускает нулевой и ± 1 дифракционные максимумы.

В нашей работе применяется двумерная решётка – сетка. В таком случае главные максимумы возникают тогда, когда одновременно выполняются условия:

$$\begin{cases} d\sin\theta_x = m_x \lambda, \\ d\sin\theta_y = m_y \lambda, \end{cases}$$
 (2)

где m_x и m_y – целые числа, харакетризующие порядки дифракционных максимумов, θ_x и θ_y – направления нв главные дифракционные максимумы в горизонтальное и вертикальной плоскостях соответственно.

Максимумы, удовлетворяющие условию $\theta_x, \theta_y < A$, создают в задней фокальной плоскости F объектива картину дифракции Фраунгофера (рис. 1) – первичное изображение.

Рис. 1: Дифракция Фраунгофера на двумерной решётке (сетке). Максимумы изображены кружками, размеры которых характеризуют интенсивности.

Если теперь поместить в фокальной плоскости щель так, чтобы через неё проходили дифракционные максимумы с $m_x=0$ и $m_y=0,\pm 1,\pm 2,...$ (с $m_y=0$ и $m_x=0,\pm 1,\pm 2,...$), то в плоскости P_2 получится изображение решётки с горизонтальными (вертикальными) штрихами. Таким образом можно продемонстрировать явление npocmpahcmbehnoù фильтрации – выделение различных структур в изображении.

2 Экспериментальная установка

Схема модели проекционного микроскопа приведена на рис. 2. Предметом служат сетки, расположенные в кассете. Смена сеток осуществляется поворотом внешнего кольца кассеты.

Рис. 2: Схема экспериментальной установки – модель проекционного микроскопа.

Изображение сетки периодически повторяется — *penpodyцируется* — в пространстве между сеткой и первой линзой. Для выделения геометрического изображения среди множества репродуцированных изображений сетки на одну из сеток наложена тонкая проволока, то есть непереодический объект, изображение которого не репродуцируется.

3 Ход работы

- 1. Определение периода решёток по их пространственному спектру
- 2. Определение периода решёток по изображению, увеличенному с помощью модели микроскопа
- 3. Определение периодов решёток по оценке разрешающей способности микроскопа
- 4. Наблюдение явлений пространственной фильтрации и мультиплицирования.

4 Экспериментальные данные

Измерим расстояние L=140 см от сетки до экрана и определим периоды решёток по их пространственному спектру. Для этого из формулы (2) выразим $d=m\lambda/\sin\theta$, причем $\sin\theta\approx(l/n)/L$ и m=1, где l – расстояние между удалёнными друг от друга максимумами. Используемый нами лазер имеет длину волны $\lambda=532$ нм.

Таблица 1: Результаты измерений 1 способом.

N	1	2	3	4	5
n	1	1	3	5	6
l, MM	38	27	39	32	29
d, MKM	19,6	27,6	57,3	116	154

Измерим расстояния $a_1=145$ мм, $b_1+a_2=655$ мм, $b_2=1200$ мм, $a_2\approx f_2=25$ мм, $f_1=110$ мм и определим периоды решёток по изображеннию, увеличенному с помощью микроскопа по очевидной формуле $d=(l/n)/\Gamma$, где $\Gamma=\frac{b_1b_2}{a_1a_2}=209$ увеличение для оптической системы.

Таблица 2: Результаты измерений 2 способом.

N	1	2	3	4	5
n	20	10	10	5	5
l, MM	52	40	77	80	105
d, MKM	12,5	19,14	36,8	76,6	100

Определим для каждой решётки минимальный размер диафрагмы D, при котором на экране ещё видно изображение сетки. Из формулы (1) следует, что $d = 2\lambda f_1/D$.

Таблица 3: Результаты измерений 3 способом.

N		3	4	5
D, M	KM	1660	840	510
d, MI	KM	70,5	139	229

Сравним результаты рассчетов периодов решёток разными способами.

Таблица 4: Сравнение результатов.

N	1	2	3	4	5
d_1 , MKM	19,6	27,6	57,3	116	154
d_2 , MKM	12,5	19,14	36,8	76,6	100
d_3 , MKM	_	_	70,5	139	229

5 Обработка результатов

Для проверки теории аббе построим график зависимости d = d(1/D), взяв периоды сеток, определенные по спектру.

Таблица 5: Данные для построения d = d(1/D).

N	3	4	5
$1/D$, ${\rm HM}^{-1}$	0,602	1,05	1,96
d, MKM	57,3	116	154

Рис. 3: Зависимость d = d(1/D).

6 Обсуждение результатов

В ходе данной лабораторной работы мы определили периоды дифракционных решёток различными способами (табл. 4). Полученные результаты отличаются друг от друга существуенно (наименьший от наибольшего в два раза), хотя имеют одинаковый порядок величины. Это может быть связано с приближенным характером используемой теории, неточностью определения величин a_2 и b_1 , неисправностью источника света, который в ходе выполнения лабораторной работы периодически выключался.

Стоит отметить, что у всех величин, полученных прямым измерением, мы принебрегли случайной погрешностью, так как она мала по сравнению с систематической, которая явным образом повлияла на разброс результатов.

Не смотря на расхождения, нам удалось убедиться в справедливости формулы (1), то есть проверка теории Аббе оказалась положительной. Действительно, периоды решёток, определенные в первом и третьем способах, отличаются от их среднего значения на 20 %, что может навести на мысль о том, что во втором способе, скорее всего, имеется грубая ошибка и эксперимент требует повторного проведения.

Выход из строя источника света не позволил пронаблюдать за явлениями фильтрации и мультиплицирования.

7 Выводы

- 1. Вычислили периоды решёток различными способами;
- 2. Метод Аббе по определению дифракционного предела разрешения объектива микроскопа даёт верные результаты.