Многочлены над полем рациональных чисел и кольцом целых чисел. Примитивные многочлены и их свойства.

Теорема о разложимости над Q

Пусть $f(x) \in \mathbb{Z}[x]$. f(x) разложим над \mathbb{Z} тогда и только тогда, когда он разложим над \mathbb{Q} . Доказательство

От противного. Пусть $f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0,\ f(x)\in\mathbb{Z}[x]$ разложим над Q, то есть $f(x)=g(x)h(x)\in\mathbb{Q}[x]$. Тогда $g(x)=\frac{c_1}{b_1}g_1(x)$ и $h\left(x\right)=\frac{c_2}{b_2}h_1(x)$. При этом $g_1(x)$ и $h_1(x)$ - примитивные. Тогда $f(x)=a_nx^n+\cdots+a_1x+a_0=g(x)h(x)=\frac{c_1c_2}{b_1b_2}g_1(x)h_1(x)$. По лемме Гаусса $g_1(x)h_1(x)$ - примитивный. Если $\frac{c_1}{c_2}=\frac{p}{q}$, то это означает, что $\frac{p}{q}f_1(x)$ - многочлен, то при $q\neq 1$ хотя бы один из коэффициентов которого - рациональная дробь.

Примитивные многочлены

Многочлен $f(x) \in \mathbb{Z}[x]$ называется <mark>примитивным</mark>, если НОД его коэффициентов равен 1.

Лемма Гаусса

Произведение примитивных многочленов $g(x) \cdot h(x) = f(x)$ является примитивным.

Доказательство

 $g(x)=b_kx^k+\cdots+b_1x+b_0$. При этом $\mathrm{HOД}(b_k,\ldots,b_0)=1$ и $h(x)=c_kx^k+\cdots+c_1x+c_0$, $\mathrm{HOД}(c_k,\ldots,c_0)=1$. $f(x)=g(x)\cdot h(x)$, то есть $a_n=c_mb_{n-m},\ a_{n-1}=c_{m-1}b_m+c_{m-1}b_{n-m},$ $a_i=c_0b_i+c_1b_{i-1}+\cdots+c_ib_{k-i}$. Пусть f(x) - не примитивный. Тогда $\exists d\neq 1$ такое, что d делит любой коэффициент f(x). Будем считать, что d - простое. Возьмём наименьший индекс i_0 такой, что c_{i_0} не делится на d (если все коэффициенты h(x) делятся на d, то h(x) - не примитивный). По аналогии возьмём j_0 такой, что b_{j_0} не делится на d. Рассмотрим коэффициент $a_{i_0+j_0}$ при степени $x^{i_0+j_0}$.

$$a_{i_0+j_0} = c_0 b_{i_0+j_0} + c_1 b_{i_0-1} + \dots + c_{i_0} b_{j_0} + c_{i_0+1} b_{j_0-1} + \dots + c_{i_0+j_0} b_0$$

. Тогда $c_{i_0}b_{j_0}$ не делится на d, то есть пришли к противоречию.