WO 01/23535

	A.	
	-	
<u>_</u>		

SEQUENCE LISTING <110> Degussa-Hüls Aktiengesellschaft <120> Hydantoin-Racemase <130> 990097 AM <140> 10 <141> <160> 5 <170> PatentIn Ver. 2.1 15 <210> 1 <211> 27 <212> DNA <213> Artificial Sequence 20 <223> Description of Artificial Sequence: Primer 1137 <400> 1 25 agaacatatg agaatcctcg tgatcaa 27 <210> 2 <211> 30 30 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Primer 1138 35 <400> 2 30 aaaactgcag ctagaggtac tgcttctctg <210> 3 40 <211> 711 <212> DNA <213> Arthrobacter aurescens <220> 45 <221> CDS <222> (1) ... (711) <400> 3 atg aga atc ctc gtg atc aac ccc aac agt tcc agc gcc ctt act gaa 50 Met Arg Ile Leu Val Ile Asn Pro Asn Ser Ser Ser Ala Leu Thr Glu 1 10 tcg gtt gcg gac gca gca caa caa gtt gtc gcg acc ggc acc ata att 96 Ser Val Ala Asp Ala Ala Gln Gln Val Val Ala Thr Gly Thr Ile Ile 55 20 25 tot goo ato aac coo too aga gga coo goo gto att gaa ggo ago ttt Ser Ala Ile Asn Pro Ser Arg Gly Pro Ala Val Ile Glu Gly Ser Phe

1

5	gac Asp	gaa Glu 50	Ala	ctg Leu	gcc Ala	acg Thr	ttc Phe 55	cat His	ctc Leu	att Ile	gaa Glu	gag Glu 60	gtg Val	gag Glu	cgc Arg	gct Ala	192
		Arg				ccc Pro 70											240
10						gtc Val											288
15						atc Ile							_	_			336
20						ctc Leu											384
25						gcg Ala											432
23						gcc Ala 150				_	_		_	_	_		480
30						gcc Ala											528
35						tgc Cys											576
40						gtc Val											624
45						ttg Leu											672
40						ccg Pro 230							tag				711
50	<212	> 23 > PR	T														
55	<400	> 4				ures Ile			Asn	Ser 10	Ser	Ser	Ala	Leu	Thr 15	Glu	

	Ser	Val	Ala	Asp 20	Ala	Ala	Gln	Gln	Val 25	Val	Ala	Thr	Gly	Thr 30	Ile	Ile
5	Ser	Ala	Ile 35	Asn	Pro	Ser	Arg	Gly 40	Pro	Ala	Val	Ile	Glu 45	Gly	Ser	Ph∈
	Asp	Glu 50	Ala	Leu	Ala	Thr	Phe 55	His	Leu	Ile	Glu	Glu 60	Val	Glu	Arg	Ala
10	Glu 65	Arg	Glu	Asn	Pro	Pro 70	Asp	Ala	Tyr	Val	Ile 75	Ala	Cys	Phe	Gly	Asp 80
15	Pro	Gly	Leu	Asp	Ala 85	Val	Lys	Glu	Leu	Thr .90	Asp	Arg	Pro	Val	Val 95	Gly
	Val	Ala	Glu	Ala 100	Ala	Ile	His	Met	Ser 105	Ser	Phe	Val	Ala	Ala 110	Thr	Phe
20	Ser	Ile	Val 115	Ser	Ile	Leu	Pro	Arg 120	Val	Arg	Lys	His	Leu 125	His	Glu	Leu
	Val	Arg 130	Gln	Ala	Gly	Ala	Thr 135	Asn	Arg	Leu	Ala	Ser 140	Ile	Lys	Leu	Pro
25	Asn 145	Leu	Gly	Val	Met	Ala 150	Phe	His	Glu	Asp	Glu 155	His	Ala	Ala	Leu	Glu 160
3 0	Thr	Leu	Lys	Gln	Ala 165	Ala	Lys	Glu	Ala	Val 170	Gln	Glu	Asp	Gly	Ala 175	Glu
	Ser	Ile	Val	Leu 180	Gly	Cys	Ala	Gly	Met 185	Val	Gly	Phe	Ala	Arg 190	Gln	Lev
35	Ser	Asp	Glu 195	Leu	Gly	Val	Pro	Val 200	Ile	Asp	Pro	Val	Glu 205	Ala	Ala	Cys
	Arg	Val 210	Ala	Glu	Ser	Leu	Val 215	Ala	Leu	Gly	Tyr	Gln 220	Thr	Ser	Lys	Ala
10	Asn 225	Ser	Tyr	Gln	Lys	Pro 230	Thr	Glu	Lys	Gln	Tyr 235	Leu				