

Tangents and Normals Ex 16.2 Q8

The given equations are

$$y^2 = ax^3 + b$$
 ---(i)
 $y = 4x - 5$ ---(ii) $P = (2,3)$

Differentiating (i) with respect to x, we get

$$2y\frac{dy}{dx} = 3ax^2$$

$$\therefore \qquad \frac{dy}{dx} = \frac{3ax^2}{2y}$$

$$m_1 = \left(\frac{dy}{dx}\right)_p = \frac{12a}{6} = 2a$$

$$m_2$$
 = slope of (ii) = 4

According to the question

$$m_1 = m_2 \Rightarrow 2a = 4 \Rightarrow a = 2$$

From (i)

$$y^2 = 2 \times 2^3 + b$$

Thus,

$$a = 2, b = -7$$

Tangents and Normals Ex 16.2 Q9

The given equatioins are,

$$y = x^2 + 4x - 16$$
 --- (i)
 $3x - y + 1 = 0$ --- (ii)

Slope m_1 of (i)

$$m_1 = \frac{dy}{dx} = 2x + 4$$

Slope m2 of (ii)

$$m_2 = 3$$

As per question

$$m_1 = m_2$$

$$\Rightarrow$$
 2x + 4 = 3

$$\Rightarrow x = \frac{-1}{2}$$

From (i)

$$y = \frac{1}{4} - 2 - 16 = -\frac{71}{4}$$

$$P = \left(\frac{-1}{2}, \frac{-71}{4}\right)$$

Thus, the equation of tangent

$$\left(y + \frac{71}{4}\right) = 3\left(x + \frac{1}{2}\right)$$

$$\Rightarrow 3x - y = \frac{71}{4} - \frac{3}{2}$$

$$\Rightarrow 3x - y = \frac{65}{4}$$

$$\Rightarrow$$
 12x - 4y - 65 = 0

Tangents and Normals Ex 16.2 Q10

The given equation is

$$y = x^3 + 2x + 6$$
 --- (i)
 $x + 14y + 4 = 0$ --- (ii)

Slope
$$m_1$$
 of (i)
$$m_1 = \frac{dy}{dx} = 3x^2 + 2$$

Slope
$$m_2$$
 of (ii)
$$m_2 = \frac{-1}{14}$$

.. Slope of normal to (i) is

$$\frac{-1}{m_1} = \frac{-1}{3x^2 + 2}$$

According to the question

$$\frac{-1}{3x^2 + 2} = \frac{-1}{14}$$

$$\Rightarrow 3x^2 = 14$$

$$\Rightarrow \qquad x^2 = 4$$

$$\Rightarrow \qquad x = \pm 2$$

$$\Rightarrow x = \pm 2$$

$$y = 8 + 4 + 6$$
 or $-8 - 4 + 6$
= 18 or -6

so,
$$P = (2,18)$$
 and $Q = (-2,-6)$

Thus, the equation of normal is

$$(y-18) = \frac{-1}{14}(x-2)$$
 \Rightarrow $x+14y+86=0$

or
$$(y+6) = \frac{-1}{14}(x+2)$$
 \Rightarrow $x+14y-254=0$

Tangents and Normals Ex 16.2 Q11

The given equations are,

$$y = 4x^3 - 3x + 5$$
 --- (i)
 $9y + x + 3 = 0$ --- (ii)

Slope
$$m_1$$
 of (i)
$$m_1 = \frac{dy}{dx} = 12x^2 - 3$$

Slope
$$m_2$$
 of (ii)
$$m_2 = \frac{-1}{q}$$

According to the question

$$m_1 \times m_2 = -1$$

$$\Rightarrow \left(12x^2 - 3\right) \left(-\frac{1}{9}\right) = -1$$

$$\Rightarrow 4x^2 - 1 = 3$$

$$\Rightarrow x^2 = 1$$

$$\Rightarrow x = \pm 1$$

From (i)

$$y = 4-3+5$$
 or $-4+3+5$
 $= 6$ or 4
 $\therefore P = (1,6)$ or $Q = (-,1,4)$

Thus, the equation of tangent is

$$(y-6) = 9(x-1)$$
 \Rightarrow $9x-y-3=0$
 $(y-4) = 9(x+1)$ \Rightarrow $9x-y+13=0$

********* END *******