Определение индекса популярности банкомата

Команда:

- Вершинин Сергей
- Зайцев Антон
- Лукманова Алина

Куратор проекта:

Гаврилова Елизавета

Постановка и данные задачи

Задача прогнозирования уровня популярности банкомата сводится к задаче **регрессии**. Значение целевой переменной является некой числовой функцией от количества операций с устройствами.

Источник данных: данные о местоположении и значении индекса популярности банкоматов с соревнования https://boosters.pro.

- address адрес в транслитерации.
- address_rus адрес на русском языке.
- lat, long широта и долгота локации.
- atm_group идентификатор банка, которому принадлежит банкомат.

Данные задачи

Источник данных: данные с соревнования по машинному обучению, проводимого Росбанком на платформе https://boosters.pro.

Данные содержат информацию о местоположении и значении индекса популярности 6261 банкомата Росбанка и его партнеров.

- address адрес в транслитерации.
- address_rus адрес на русском языке.
- lat, long широта и долгота локации.
- atm_group идентификатор банка, которому принадлежит банкомат.

Конвейер подготовки обучающей выборки

Exploratory Data Analysis

- Набор данных состоит из **6261 записей** о популярности банкоматов.
- Анализ распределения зависимости целевой переменной от категориальных признаков (банк, регион расположения).
- Анализ корреляций между числовыми признаками (выделяется связь с долготой и количеством банков поблизости)
- Информация о наличии метро поблизости было получено для 1223 банкоматов из 6261 решено отказаться от него
- Анализ выбросов в данных, полученных на предыдущем шаге (некорректность работы сервиса DaData).

Распределение популярности банкомата у различных банков

Зависимость индекса популярности банкомата от его местоположения

Чем банкомат находится восточнее или севернее, тем он более привлекателен для пользователей.

Рассмотренные модели

- **Линейные** модели (Lasso, Ridge, ElasticNet) с подбором гиперпараметров.
- Решающие деревья (DecisionTreeRegressor, RandomForest)
- Стекинг моделей StackingRegressor на Lasso и Catboost.
- Модификации бустинга –(CatBoost, LGBMRegressor)

Результаты обучения моделей

	RMSE (train/test)	R2 (train/test)		RMSE (train/test)	R2 (train/test)
Lasso (OHE)	0.0449 / 0.0469	0.7303916 0.691578	LGBMRegressor	0.0315 / 0.0453	0.8670599 / 0.717860
Lasso (MeanTarget)	0.0462 / 0.0472	0.714396 0.688708	Catboost	0.0360 / 0.0445	0.826122 / 0.722630
RandomForest	0.0181 / 0.0442	0.955890 / 0.7261498	StackingRegres sor	0.0311/	0.870857 / 0.728667
DecisionTreeRe gressor	0.0528/ 0.0593	0.626790/ 0.508407	(Lasso, Catboost)		

Анализ результатов лучшей линейной модели (Lasso, OHE)

Вывод:

- определенные банки более популярны.
- Увеличение количества банков поблизости увеличивает индекс популярности.
- Чем севернее и восточнее находится банкомат, тем он популярнее.

Анализ результатов лучшей линейной модели (Lasso, MeanTarget)

Выводы:

- Наличие супермаркетов, алкогольных и других магазинов увеличивает популярность банкомата.
- Близость Книжных магазинов - снижает.

Выбор оптимальной модели

Для итоговой реализации была выбрана модель, показавшая лучшее качество - StackingRegressor (Lasso, Catboost)

Основные компоненты разработанного продукта

Цикл выпуска и развертывания продукта (CI/CD pipeline)

unit-тестирование, проверка качества кода (github actions)

project)

сборка docker-образов, размещение в Docker Hub (github actions, release

загрузка/обновление образов, запуск системы (docker compose pull, docker

контейнеры с компонентами системы на ВМ OS Ubuntu

remove layer caching for im...

Add capital_marker field to e...

.github/workflows

data_collection

Планы развития

На следующих этапах развития проекта планируется:

- разработать Web-клиент для более удобного взаимодействия пользователей с сервисом;
- выделить функциональность по обогащению входных данных пользователя в отдельный сервис;
- настроить механизмы мониторинга работающего сервиса (логирование, метрики и т.п.);
- внедрить в процесс разработки практики MLOps;
- посмотреть другие ансамблевые модели, попытаться подобрать гиперпараметры.