

SINGLE CHANNEL DRIVER

Features

- Floating channel designed for bootstrap operation Fully operational to +600V
 Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 10 to 20V
- Undervoltage lockout
- CMOS Schmitt-triggered inputs with pull-down
- Output in phase with input (IR2117) or out of phase with input (IR2118)
- Also available LEAD-FREE

Description

The IR2117/IR2118(S) is a high voltage, high speed power MOSFET and IGBT driver. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS outputs. The output driver features a high pulse current buffer stage designed for minimum cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high or low side configuration which operates up to 600 volts.

Product Summary

Voffset	600V max.
I _O +/-	200 mA / 420 mA
Vout	10 - 20V
t _{on/off} (typ.)	125 & 105 ns

Packages

Typical Connection

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figures 5 through 8.

Symbol	Definition	Min.	Max.	Units	
V _B	High side floating supply voltage		-0.3	625	
Vs	High side floating supply offset voltage		V _B - 25	V _B + 0.3	
V _{HO}	High side floating output voltage		V _S - 0.3	V _B + 0.3	V
V _{CC}	Logic supply voltage		-0.3	25	
V _{IN}	Logic input voltage		-0.3	V _{CC} + 0.3	
dV _s /dt	Allowable offset supply voltage transient (figure 2)		_	50	V/ns
P_{D}	Package power dissipation @ T _A ≤ +25°C	(8 lead PDIP)	_	1.0	
		(8 lead SOIC)	_	0.625	W
Rth _{JA}	Thermal resistance, junction to ambient	(8 lead PDIP)	_	125	°C/W
		(8 lead SOIC)	_	200	0,,,,
TJ	Junction temperature		_	150	
T _S	Storage temperature		-55	150	°C
TL	Lead temperature (soldering, 10 seconds)		_	300	

Recommended Operating Conditions

The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at 15V differential.

Symbol	Definition	Min.	Max.	Units	
V _B	High side floating supply absolute voltage	V _S + 10	V _S + 20		
Vs	High side floating supply offset voltage	Note 1	600		
V _{HO}	High side floating output voltage	Vs	V _B	V	
Vcc	Logic supply voltage	10	20		
V _{IN}	Logic input voltage	0	V _{CC}		
TA	Ambient temperature	-40	125	°C	

Note 1: Logic operational for V_S of -5 to +600V. Logic state held for V_S of -5V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC}, V_{BS}) = 15V, C_L = 1000 pF and T_A = 25°C unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
t _{on}	Turn-on propagation delay	_	125	200		V _S = 0V
t _{off}	Turn-off propagation delay	_	105	180		V _S = 600V
t _r	Turn-on rise time	_	80	130	ns	
t _f	Turn-off fall time	_	40	65		

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Symbol	Definition		Min.	Тур.	Max.	Units	Test Conditions
V _{IH}	input voltage - logic "1" (IR21	17) logic "0" (IR2118)	9.5	_	_	V	
V _{IL}	Input voltage - logic "0" (IR21	17) logic "1" (IR2118)	_	_	6.0	V	
V _{OH}	High level output voltage, VBI	AS - VO	_	_	100	mV	I _O = 0A
V _{OL}	Low level output voltage, VO		_	_	100	IIIV	I _O = 0A
ILK	Offset supply leakage curren	t	_	_	50		V _B = V _S = 600V
I _{QBS}	Quiescent V _{BS} supply curren	t	_	50	240		V _{IN} = 0V or V _{CC}
IQCC	Quiescent V _{CC} Supply Curre	nt	_	70	340		V _{IN} = 0V or V _{CC}
I _{IN+}	Logic "1" input bias current	(IR2117)		20) 40	μA	V _{IN} = V _{CC}
		(IR2118)		20	40		V _{IN} = 0V
I _{IN-}	Logic "0" input bias current	(IR2117)			1.0		V _{IN} = 0V
	•	(IR2118)	_	_	1.0		V _{IN} = V _{CC}
V _{BSUV+}	V _{BS} supply undervoltage positive going threshold		7.6	8.6	9.6		
V _{BSUV} -	V _{BS} supply undervoltage negative going threshold		7.2	8.2	9.2	V	
V _{CCUV+}	V _{CC} supply undervoltage pos	sitive going threshold	7.6	8.6	9.6	·	
V _{CCUV} -	V _{CC} supply undervoltage ne	gative going threshold	7.2	8.2	9.2		
I _{O+}	Output high short circuit puls	ed current	200	250	_		V _O = 0V
							V _{IN} = Logic "1"
						^	PW ≤ 10 µs
I _{O-}	Output low short circuit pulsed current		420	500	_	mA	V _O = 15V
							V _{IN} = Logic "0"
							PW ≤ 10 µs

International TOR Rectifier

IR2117(S)/IR2118(S) & (PbF)

Functional Block Diagram (IR2117)

Functional Block Diagram (IR2118)

Lead Definitions

Symbol	Description
Vcc	Logic and gate drive supply
IN	Logic input for gate driver output (HO), in phase with HO (IR2117)
ĪN	Logic input for gate driver output (HO), out of phase with HO (IR2118)
COM	Logic ground
V _B	High side floating supply
НО	High side gate drive output
Vs	High side floating supply return

Lead Assignments

Figure 1. Input/Output Timing Diagram

Figure 2. Floating Supply Voltage Transient Test Circuit

Figure 3. Switching Time Test Circuit

Figure 4. Switching Time Waveform Definition

Figure 4A. Turn-On Time vs. Temperature

Figure 4B. Turn-On Time vs. Supply Voltage

Figure 5A. Turn-Off Time vs. Temperature

Figure 5B. Turn-Off Time vs. Supply Voltage

Fiure 6A. Turn-On Rise Time vs.Temperature

Figure 6B. Turn-On Rise Time vs. Supply Voltage

Figure 7A. Turn-Off Fall Time vs. Temperature

Figure 7B. Turn-Off Fall Time vs. Supply Voltage

Figure 8A. Logic "1" (IR2118 "0") Input Voltage vs. Temperature

Figure 8B. Logic "1" (IR2118 "0") Input Voltage vs. Supply Voltage

Figure 9A. Logic "0" (IR2118 "1") Input Voltage vs. Temperature

Figure 9B. Logic "0" (IR2118 "1") Input Voltage vs. Supply Voltage

Figure 10A. High Level Output vs. Temperature

Figure 10B. High Level Output vs. Supply Voltage

Figure 11A. Low Level Output vs.Temperature

Figure 11B. Low Level Output vs. Supply Voltage

Figure 12A. Offset Supply Leakage Current vs. Temperature

Figure 12B. Offset Supply Leakage Current vs. V_B Boost Voltage

Figure 13A. V_{BS} Supply Current vs. Temperature

Figure 13B. V_{BS} Supply Current vs. Supply Voltage

Figure 14A. V_{cc} Supply Current vs. Temperature

Figure 14B. V_{cc} Supply Current vs. Supply Voltage

Figure 15A. Logic "1" (2118 "0") Input Current vs. Temperature

Figure 15B. Logic "1" (2118 "0") Input Current vs. Supply Voltage

Figure 16A. Logic "0" (2118"1") Input Current vs. Temperature

Figure 16B. Logic "0" (2118"1") Input Current vs. Supply Voltage

Figure 17A. V_{cc} Undervoltage Threshold (+) vs. Temperature

Figure 18A. V_{cc} Undervoltage Threshold (-) vs. Temperature

16 Ves Supply Current (点件) 14 12 10 8 Min. 6 -50 -25 25 50 75 100 125 Temperature (°C)

Figure 19A. V_{BS} Undervoltage Threshold (+) vs. Temperature

Figure 20A. $V_{\rm BS}$ Undervoltage Threshold (-) vs. Temperature

Figure 21A. Output Source Current vs. Temperature

Figure 21B. Output Source Current vs. Supply Voltage

500

Figure 22A. Output Sink Current vs.Temperature

Figure 22B. Output Sink Current vs. Supply Voltage

Figure 23B. Maximum VS Negative Offset vs. Supply Voltage

Figure 24. IR2117/IR2118 T_J vs. Frequency (IRFBC20) $R_{GATE} = 33\Omega, V_{CC} = 15V$

Figure 25. IR2117/IR2118 T_J vs. Frequency (IRFBC30) $R_{GATE} = 22\Omega, V_{CC} = 15V$

Figure 26. IR2117/IR2118 T_J vs. Frequency (IRFBC40) R_{GATE} = 15Ω , Vcc = 15V

Figure 27. IR2117/IR2118 T_J vs. Frequency (IRFPE50) R_{GATE} = 10 Ω , V_{CC} = 15V

Case outlines

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

Basic Part (Non-Lead Free)

8-Lead PDIP IR2117 order IR2117 8-Lead PDIP IR2118 order IR2118 8-Lead SOIC IR2117S order IR2117S 8-Lead SOIC IR2118S order IR2118S

Leadfree Part

8-Lead PDIP IR2117 order IR2117PbF 8-Lead PDIP IR2118 order IR2118PbF 8-Lead SOIC IR2117S order IR2117SPbF 8-Lead SOIC IR2118S order IR2118SPbF

International

TOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

This product has been qualified per industrial level

Data and specifications subject to change without notice. 5/14/2007