

Техническое задание:

Исходные данные представлены в двух CSV-файлах:

- Factories.csv информация о российских цехах с площадью зала до 2500 кв.м.
- Products.csv информация о выпускаемой продукции на данных цехах.

Основное задание: обработка и чистка данных, их визуализация и подготовка к статистическому анализу.

Дополнительное задание: исследование гипотезы. Гипотеза: температура на цехах влияет на рост количества брака.

Что сделано в рамках проекта?

- 1. Обработаны NaN-значения.
- 2. Обработаны дубликаты.
- 3. Скорректированы типы данных, проведено округление.
- 4. После предварительной очистки и обработки данных, проведено объединение двух датафреймов.
- 5. Проведена сортировка данных.
- 6. Проведена фильтрация данных.
- 7. Выявлены, а также визуализированы (с использованием boxplot) аномалии и выбросы. Проведена очистка данных.
- 8. Проведена группировка данных. Результаты визуализированы (с использованием столбчатых диаграмм, а также тепловой карты).
- 9. Проведен корреляционный анализ с целью выявления взаимосвязей между отдельными числовыми данными, в частности, выявлена взаимосвязь между температурой на цехах и количеством брака.
- 10. Даны выводы и рекомендации.

Шаг 1. Импортируем необходимые библиотки для анализа и визуализации данных:

```
In [87]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Шаг 2. Чтение данных из CSV-файлов:

- Factories.csv информация о российских цехах с площадью зала до 2500 кв.м.
- Products.csv информация о выпускаемой продукции на данных цехах.

Загрузим данные из Factories.csv в df_factories, а данные из Products.csv в df_products. Разделитель - запятая (по умолчанию), поэтому sep не прописываем.

```
In [88]: df_factories = pd.read_csv("C:\\Users\\Kopюн\\Desktop\\Factories.csv", encodir
In [89]: df_products = pd.read_csv("C:\\Users\\Kopюн\\Desktop\\Products.csv", encoding=
```

Шаг 3. Предварительно взглянем на данные в датафрейме df factories:

- Размерность (50 строк, 6 колонок).
- Есть некорректные типы данных. У колонки 'дата_открытия' тип данных object, а должен быть datetime64. У колонки 'количество_сотрудников' тип данных float64, а должен быть int64.
- Есть 5 строк с NaN значениями.

```
In [90]: df_factories.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 6 columns):

		- /	
#	Column	Non-Null Count	Dtype
0	id_цеха	50 non-null	int64
1	город	50 non-null	object
2	дата_открытия	50 non-null	object
3	количество_сотрудников	45 non-null	float64
4	площадь_зала	50 non-null	float64
5	температура_зала	50 non-null	float64

dtypes: float64(3), int64(1), object(2)

memory usage: 2.5+ KB

Шаг 4. Аналогично взглянем на данные в датафрейме df products:

- Размерность (1500 строк, 4 колонки).
- Есть некорректные типы данных. У колонок 'количество_произведено' и 'количество_брака' типы данных float64, а должны быть int64.
- Есть 70 строк с NaN значениями.

```
In [91]: df products.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 1500 entries, 0 to 1499
       Data columns (total 4 columns):
           Column
                                  Non-Null Count Dtype
       --- ----
                                  -----
        0
           id цеха
                                  1500 non-null
                                                 int64
        1 наименование продукта 1430 non-null object
           количество_произведено 1430 non-null float64
        2
                                 1430 non-null float64
        3
           количество брака
       dtypes: float64(2), int64(1), object(1)
       memory usage: 47.0+ KB
```

Шаг 5. Для начала обработаем в обоих датафреймах NaN значения:

Какие есть способы?

- Заполнить (например, обнулить их).
- Удалить их.
- Сохранить как отдельную категорию (иногда это необходимо) и т. д.

В рамках данного исследования в сохранении или заполнении NaN-значений нет необходимости, поэтому выберем стратегию удаления. После удаления строк с NaN значениями появятся пробелы между индексами из-за сохранения старого порядка, что для нас не столь важно. Однако, если необходимо обновить индексы и избежать пропусков между ними, можно использовать конструкцию df_factories.dropna().reset_index(drop=True).

```
In [92]: df_factories.dropna(inplace=True)
In [93]: df_products.dropna(inplace=True)
```

Шаг 6. Проверим колонку df_factories['id_цеха'] на наличие или отсутствие дубликатов, при налчии - удалим их:

В результате проверки дубликаты не обнаружены. Дубликаты в остальных колонках, а также дубликаты в df_products в рамках данного исследования допустимы.

```
In [94]: df_factories['id_μexa'].duplicated().sum()
Out[94]: np.int64(0)
```

Шаг 7. В пунктах 3 и 4 были выявлены некорректные типы данных. Исправим это:

```
df factories['дата открытия'] = df factories['дата открытия'].astype('datetime
In [96]:
        df factories['количество сотрудников'] = df factories['количество сотрудников'
In [97]:
         df products['количество произведено'] = df products['количество произведено'].
In [98]:
         df products['количество брака'] = df products['количество брака'].astype('int6
         Убедимся, что типы данных обновились на корректные:
In [99]:
        df factories.dtypes
                                            int64
Out[99]: id_цеха
         город
                                           object
                                   datetime64[ns]
         дата открытия
         количество_сотрудников
                                            int64
                                          float64
         площадь зала
                                          float64
         температура зала
         dtype: object
In [100... df products.dtypes
                                    int64
Out[100... id_цеха
         наименование продукта
                                   object
         количество произведено
                                    int64
         количество брака
                                    int64
         dtype: object
         Шаг 8. Округлим колонки df factories['площадь зала'] и
         df factories['температура зала'] до двух знаков после запятой:
        df factories[['площадь зала', 'температура зала']] = df factories[['площадь за
In [101...
         Шаг 9. Теперь датафреймы можно объединить по общей колонке
         id_цexa:
In [102...
         result df = pd.merge(df factories, df products, on='id uexa', how='left')
         Шаг 10. Для удобства и наглядности выполним сортировку:
In [103...
         result_df.sort_values(['id_цexa', 'количество_произведено'], ascending=[True,
         Шаг 11. Взглянем на общую статистику по числовым данным:
         Сразу можно заметить аномально большое значение в колонке
         result_df['площадь_зала'], где максимальное значение достигает 46230.61.
         Вспомним, что по условию мы исследуем российские цеха с площадью до
         2500 кв.м.
```

Что можно с этим сделать?

- Можно отфильтровать result_df и исключить из анализа все строки, где result_df['площадь_зала'] = 46230.61.
- А можно их сразу удалить, так как мы исследуем лишь те цеха, площадь зала которых < 2500. Так и сделаем.

In [104	result_df.describe()				
Out[104		id_цеха	дата_открытия	количество_сотрудников	площадь_зал
	count	1296.000000	1296	1296.000000	1296.00000
	mean	125.680556	2022-03-26 09:48:53.333333504	424.728395	2834.90171
	min	100.000000	2018-04-16 00:00:00	130.000000	384.70000
	25%	112.000000	2020-03-11 00:00:00	240.500000	1124.10000
	50%	127.000000	2022-12-05 00:00:00	422.000000	1630.61000
	75%	138.000000	2024-03-30 00:00:00	607.000000	2288.40000
	max	150.000000	2024-10-23 00:00:00	797.000000	46230.61000
	std	15.463090	NaN	199.982347	6796.75433

Выявить аномалии и выбросы можно также визуальным путём. Одним из таких способов является построение фигуры boxplot ("Ящик с усами"). По построенному графику невооружённым глазом видны сразу 2 выброса с большими значениями.

Шаг 12. Найдем топ 3 уникальных максимальных значений в колонке result df['площадь зала'], где было обнаружено аномальное значение:

```
In [106...
         unique values = np.sort(result df['площадь зала'].unique())[-3:][::-1]
In [107...
         unique_values
Out[107... array([46230.61, 16493.64, 2454.92])
         Заметим, что лишь 2 уникальных значения привышают 2500. Выделим их с
         помощью среза в отдельный массив:
In [108...
         values to remove = unique values[:2]
In [109...
         values to remove
Out[109... array([46230.61, 16493.64])
         Удалим из result df те строки, где колонка result df['площадь зала'] равна
         значениям из массива values to remove.
         result df = result df.query("площадь зала not in @values to remove")
In [110...
         Убедимся теперь, что аномальные значения (которые больше 2500) в колонке
         result_df['площадь_зала'] отсутствуют.
In [111... result df['площадь зала'].max()
Out[111... np.float64(2454.92)
         Для наглядности ещё раз выведем boxplot и убедимся, что выбросы
         устранены.
In [112... plt.figure(figsize=(13, 3))
         plt.boxplot(result_df['площадь_зала'],
                      patch_artist=True,
                      vert=False)
```

```
plt.xlabel('Площадь зала', labelpad=5)
plt.grid(linestyle='--', alpha=0.7)
plt.show()
```

Шаг 13. Выведем города с общим количеством произведенной продукции и долей брака:

In [113... gr_df1 = result_df.groupby('город')[['количество_произведено', 'количество_бра Добавим также колонку с долей брака по каждому городу:

In [114... gr_df1['% брака'] = (100 * gr_df1['количество_брака']/gr_df1['количество_произ
In [115... gr_df1 = gr_df1.reset_index()
In [116... gr_df1

Out[116...

	город	количество_произведено	количество_брака	% брака
0	Челябинск	88559	3073	3.47
1	Новосибирск	186350	9436	5.06
2	Омск	194630	7992	4.11
3	Москва	213711	9845	4.61
4	Казань	288560	13636	4.73
5	Самара	332975	18074	5.43
6	Ростов-на-Дону	369857	14047	3.80
7	Екатеринбург	381566	14434	3.78
8	Санкт-Петербург	494236	23408	4.74
9	Нижний Новгород	566979	22899	4.04

Добавим визуализацию в виде столбчатой диаграммы (barh):

```
In [117... gr_df1 = gr_df1.sort_values('количество_произведено', ascending=True)
    plt.figure(figsize=(13, 6))
```

```
ax1 = plt.barh(gr_df1['город'], gr_df1['количество_произведено'], color='light ax2 = plt.barh(gr_df1['город'], gr_df1['количество_брака'], color='salmon', la plt.bar_label(ax1, fontsize=9, padding=1) plt.bar_label(ax2, padding=3, fontsize=9)

plt.xlabel('Количество продукции', fontsize=10) plt.title('Объём производства и брака по городам', fontsize=12, pad=10) plt.legend() plt.legend() plt.tight_layout() plt.show()
```


Наибольшая доля брака среди всех городов:

Наименьшая доля брака среди всех городов:

Выводы по данной группировке (gr_df1):

- Наибольшее количество продукции производится в Нижнем Новгороде, а наименьшее в Челябинске.
- Наибольшее количество брака в долях от общего количества

продукции в Самаре, а наименьшее в Челябинске.

Шаг 14. Посчитаем общее количество продукта в каждой категории и количество брака по всем цехам вместе взятым. Для удобства сбросим мультииндексы и отсортируем полученный список по убыванию количества продукции:

```
In [120...
        gr_df2 = result_df.groupby('наименование_продукта').agg({
             'количество произведено': 'sum',
             'количество брака': 'sum'
         }).reset_index().sort_values('количество_произведено', ascending=False)
         Добавим также колонку с долей брака по каждому продукту:
```

```
In [121... gr df2['% брака'] = (100 * gr df2['количество брака']/gr df2['количество произ
In [122... gr df2
```

	наименование_продукта	количество_произведено	количество_брака	бра
15	Продукт_23	150053	6658	4
0	Продукт_1	131223	4866	3
18	Продукт_26	125289	4983	3
26	Продукт_6	123641	5510	4
23	Продукт_30	121939	6241	5
17	Продукт_25	121287	4094	3
24	Продукт_4	119093	4869	4
10	Продукт_19	114890	4937	4
27	Продукт_7	113965	5283	4
9	Продукт_18	112262	5688	5
8	Продукт_17	109631	5657	5
22	Продукт_3	109406	4942	4
2	Продукт_11	108200	4436	4
11	Продукт_2	105134	4369	4
29	Продукт_9	103104	5036	4
21	Продукт_29	102781	4567	4
4	Продукт_13	102337	3843	3
3	Продукт_12	102319	3880	3
19	Продукт_27	94282	4479	4
28	Продукт_8	94240	4828	5
5	Продукт_14	94202	4451	4
1	Продукт_10	92186	3683	4
12	Продукт_20	89278	3987	4
13	Продукт_21	88412	4338	4
14	Продукт_22	84822	3002	3
16	Продукт_24	82325	5261	6
6	Продукт_15	81745	3205	3
7	Продукт_16	81410	3260	4
25	Продукт_5	79117	3487	4
20	Продукт_28	78850	3004	3

Добавим визуализацию в виде столбчатой диаграммы (barh):

```
In [123... plt.figure(figsize=(13, 10))
    ax1 = plt.barh(gr_df2['наименование_продукта'], gr_df2['количество_произведенс ax2 = plt.barh(gr_df2['наименование_продукта'], gr_df2['количество_брака'], cc plt.bar_label(ax1, padding=3, fontsize=9)
    plt.bar_label(ax2, labels=[f'{x}%' for x in gr_df2['% брака']], padding=3, for

    plt.xlabel('Количество продукции', fontsize=10)
    plt.title('Объем производства и процент брака по продуктам', pad=10, fontsize=plt.grid(axis='x', alpha=0.3)
    plt.gca().invert_yaxis()
    plt.tight_layout()
    plt.show()
```


Наибольшая доля брака среди всех продуктов:

```
      In [124...
      gr_df2[gr_df2['% брака'] == gr_df2['% брака'].max()]

      Out[124...
      наименование_продукта количество_произведено количество_брака брата

      16
      Продукт_24
      82325
      5261
      6
```

Наименьшая доля брака среди всех продуктов:

```
      In [125... gr_df2[gr_df2['% брака'] == gr_df2['% брака'].min()]

      Out[125... наименование_продукта количество_произведено количество_брака брака

      17
      Продукт_25
      121287
      4094
      3
```

Выводы по данной группировке (gr_df2):

- Наибольшее количество производимого продукта у Продукт_23, а наименьшее у Продукт_28.
- Наибольшая доля брака у Продукт_24, а наименьшая у -Продукт 25.

Шаг 15. Посчитаем общее количество произведённого продукта, брака и долю брака по каждому цеху. Для удобства сбросим мультииндексы и отсортируем полученный список по убыванию количества продукции:

Добавим также колонку с долей брака по каждому цеху:

```
In [127... gr_df3['% брака'] = (100 * gr_df3['количество_брака']/gr_df3['количество_произ
In [128... gr_df3
```

	id_цеха	количество_произведено	количество_брака	% брака
28	134	98504	4096	4.16
42	149	97732	4712	4.82
0	100	95989	3456	3.60
41	148	95032	3272	3.44
31	137	94740	3665	3.87
3	103	94272	4859	5.15
4	104	92100	2835	3.08
40	147	91896	2022	2.20
27	133	88559	3073	3.47
23	128	87892	4663	5.31
26	132	81388	2770	3.40
17	121	80611	3842	4.77
32	138	79915	3392	4.24
29	135	78621	4206	5.35
12	114	78448	3438	4.38
8	109	77952	3365	4.32
13	116	76918	2056	2.67
30	136	76010	5308	6.98
5	105	75244	2390	3.18
7	107	75146	2119	2.82
20	125	74729	1945	2.60
39	146	74043	2305	3.11
33	140	71281	4153	5.83
37	144	70537	5773	8.18
38	145	68895	2102	3.05
22	127	68393	3878	5.67
10	112	67804	2945	4.34
18	122	67432	2732	4.05
24	129	66131	4394	6.64
6	106	66111	2734	4.14
36	143	65868	3551	5.39

	id_цеха	количество_произведено	количество_брака	% брака
11	113	60234	2104	3.49
2	102	58303	3158	5.42
16	120	56396	1798	3.19
19	123	56066	1745	3.11
34	141	54205	1883	3.47
9	111	52492	2990	5.70
35	142	52470	3676	7.01
25	131	51546	3887	7.54
21	126	51357	1395	2.72
14	117	50615	3937	7.78
1	101	47867	1817	3.80
15	118	47679	2403	5.04

Визуализируем результаты в виде тепловой карты. Отсортируем цеха в порядке возрастания процента брака и выведем результаты.

Наибольшая доля брака среди всех цехов:

Наименьшая доля брака среди всех цехов:

```
In [131... gr_df3[gr_df3['% брака'] == gr_df3['% брака'].min()]

Out[131... id_цеха количество_произведено количество_брака % брака

40 147 91896 2022 2.2
```

Выводы по данной группировке (gr_df3):

- Наибольшее количество продукта произведено в цехе 134, а наименьшее в цехе 118.
- Наибольшая доля брака у цеха 144, а наименьшая у цеха 147.

Шаг 16. Корреляционный анализ:

```
In [132...
         corr matrix = result_df[['количество_сотрудников',
                          'площадь_зала',
                          'температура зала',
                          'количество_произведено',
                          'количество_брака']].corr()
In [133...
         corr_matrix
Out[133...
                                    количество_сотрудников площадь_зала температу
          количество_сотрудников
                                                     1.000000
                                                                     0.001628
                                                                     1.000000
                                                    0.001628
                    площадь_зала
                                                    0.064015
                                                                    -0.174884
                температура_зала
                                                                    -0.022393
         количество_произведено
                                                    -0.023894
                                                    0.014704
                                                                    -0.045526
                количество_брака
In [134...
         plt.figure(figsize=(10, 8))
         sns.heatmap(corr matrix, annot=True, cmap='coolwarm', center=0)
         plt.title('Матрица корреляций числовых показателей')
         plt.show()
```


Выводы и рекомендации:

- Существует слабая положительная связь между температурой производственного зала и количеством брака. Рост температуры зала приводит к росту количества брака. Рекомендуется проверить причинно-следственную связь: от плохого сырья до перегрева станков.
- Кроме того, наблюдается слабая положительная связь между количеством производимой продукции и количеством брака. Стоит провести оценку нагрузки.