Functional Analysis

${\bf Code 2 Hack}$

Contents

1	Metric Spaces		2
	1.1	Metric Space	2
	1.2	Further Examples of Metric Spaces	2
	1.3	Open Set, Closed Set, Neighborhood	2
	1.4	Convergence, Cauchy Sequence, Completeness	3

1 Metric Spaces

1.1 Metric Space

(P18) Definition 1.1.1 (Metric space, metric)

A metric space is a pair (X, d) where X is a set and $d: X \times X \to R$

- 1. d is real-valued, finite and nonnegative.
- 2. d(x, y) = 0 iff x=y.
- 3. d(x,y) = d(y,x)
- 4. $d(x,y) \le d(x,z) + d(z,y)$ (Triangle inequality).

Examples

Example 1.1.6

- $x = (\xi_i)$
- $|\xi_j| \le c_x$, where c_x is a real number may depend on x, but not on j.
- $d(x,y) = \sup_{j \in N} |\xi_j \eta_j|$

Example 1.1.7 X is the set of all real-valued functions defined on closed interval J = [a, b] and

$$d(x,y) = \max_{t \in J} |x(t) - y(t)|,$$

1.2 Further Examples of Metric Spaces

(P24)

Example 1.2.1 In contrast with 6,

1.3 Open Set, Closed Set, Neighborhood

Definition 1.3.1 (Ball and sphere)

Definition 1.3.2 (Open set, closed set)

A subset M of a metric space is *open* if it contains a ball about each of its points. A subset K is closed if $K^c = X - K$ is open.

Remark (Topological Space) For the collection of all the open subsets of X called \mathcal{T} :

- (T1) $\emptyset \in \mathcal{T}, X \in \mathcal{T}$.
- (T2) The union of any members of \mathcal{J} is a member of \mathcal{T} .
- (T3) The intersection of **finitely** many members of \mathcal{T} is a member of it.

Definition 1.3.3 (Continuous mapping)

For X=(X,d) and $Y=(Y,\tilde{d}),$ $T:X\longrightarrow Y$ is continuous at point x_0 if for every $\epsilon>0$ there's a $\delta>0$ such that

Theorem 1.3.4 (Continuous mapping) A mapping $T: X \longrightarrow Y$ is continuous iff the inverse image of any open subset of Y is an open subset of X.

Definition 1.3.5 (Dense set, separable space)

A subset M of a metric space X is dense in X if

$$\bar{M} = X$$

X is *separable* if it has a **countable** subset which is dense in X.

Examples (P37)

1.4 Convergence, Cauchy Sequence, Completeness

Definition 1.4.1 (Convergence of a sequence, limit)

Lemma 1.4.2 (Boundedness, limit) (a) A convergent sequence in X is bounded and its limit is unique.

(b) If $x_n \to x$ and $y_n \to y$ in X, then $d(x_n,y_n) \to d(x,y)~$.