סמנטיקה בתחשיב היחסים

סמנטיקה מול סינטקס

- כמו בתחשיב הפסוקים גם בתחשיב היחסים יש שתי מערכות מקבילות:
 - סינטקס מערכת של הוכחות
 - סמנטיקה מערכת של משמעויות
- גם בתחשיב היחסים יש שקילות בין שתי המערכות:
 - משפט הנאותות
 - משפט השלמות
 - הוכחת שני המשפטים מורכבת יותר מבתחשיב
 הפסוקים ולא נוכיח אותם כאן

סינטקס בתחשיב היחסים

- תהי Γ (גאמה) קבוצת נוסחאות ותהי ψ נוסחה. הביטוי $\Gamma \vdash \psi$ אומר שקיימת הוכחה של ψ שכוללת נוסחאות מתוך Γ .
 - $\Gamma dash \psi$ אם מצאנו הוכחה כזאת אנו יודעים בוודאות ש

מודל - הגדרה

- יהי $(\mathcal{P},\mathcal{F})$ מילון. מודל $(\mathcal{P},\mathcal{F})$
- 1. קבוצה לא ריקה $A^{\mathcal{M}}$ עולם הערכים או קבוצת התחום
- $f^{\mathcal{M}} \in A$ מתאים אבר $f^{(0)} \in \mathcal{F}$ מתאים אבר 2.
 - מתאימה n>0 ארית $f^{(n)}\in\mathcal{F}$ כך ש n>0 מתאימה לכל פונקציה $f^{\mathcal{M}}:A^n\to A$ פונקציה
- $P^{\mathcal{M}}\subseteq A^n$ ארי $P^{(n)}\in\mathcal{P}$ כך ש n>0 מתאים יחס -4.

דוגמה 1: מצבי תוכנית מחשב

```
יהיו \mathcal{P}=\{I^{(1)},R^{(2)}\} ו \mathcal{F}=\{i^{(0)}\} נגדיר מודל \mathcal{P}=\{i^{(0)}\} יהיו \mathcal{P}=\{i^{(0)}\} קבוצת המצבים של תוכנית מחשב A^{\mathcal{M}}=\{a,b,c\} - המצב ההתחלתי - i^{\mathcal{M}}=\{a\} - מעברים חוקיים - R^{\mathcal{M}}=\{(a,a),(a,b),(a,c),(b,c),(c,c)\} - מצבים סופיים חוקיים - P^{\mathcal{M}}=\{b,c\} נבדוק את ערך האמת של כמה נוסחאות:
```

false
$$\forall x \forall y \forall z (R(x,y) \land R(y,z) \rightarrow x = z)$$
true $\exists x R(i,x)$ true $\forall x \forall y \forall z (R(x,y) \land R(y,z) \rightarrow R(x,z))$ true $\exists x R(x,i)$ true $\forall x \exists y R(x,y)$ false $\forall x P(x)$

דוגמה 1: מצבי תוכנית מחשב

```
יהיו \mathcal{M} ו \mathcal{F}=\{i^{(0)}\} נגדיר מודל \mathcal{F}=\{i^{(0)}\} יהיו \mathcal{F}=\{i^{(0)}\} ו \mathcal{F}=\{i^{(0)}\} יהיו \mathcal{F}=\{a,b,c\} קבוצת המצבים של תוכנית מחשב i^{\mathcal{M}}=\{a,b,c\} - המצב ההתחלתי i^{\mathcal{M}}=\{a\} - מעברים חוקיים i^{\mathcal{M}}=\{a,a\} - מצבים סופיים חוקיים i^{\mathcal{M}}=\{b,c\} נבדוק את ערך האמת של כמה נוסחאות:
```

```
false\forall y R(y, y)true\exists y \forall x R(x, y)false\forall x \forall y (R(x, y) \lor R(y, x))true\exists x \forall y R(x, y)
```

דוגמה 2: מחרוזות בינאריות

יהיו $\mathcal{F} = \{e^{(0)}, \cdot^{(2)}\}$ ו $\mathcal{F} = \{e^{(0)}, \cdot^{(2)}\}$ ויהיו $\mathcal{F} = \{e^{(0)}, \cdot^{(2)}\}$ ומר, הסימן ממוקם בין שני "infix notation" הארגומנטים.

:נגדיר מודל ${\mathcal M}$ כך

 $\{0,1\}$ כל המחרוזות מעל - $A^{\mathcal{M}}$

המחרוזת הריקה - $e^{\mathcal{M}} = \epsilon$

שרשור מחרוזות - \mathcal{M}

y של (prefix) אתחלה (x,y) כך שx התחלה (x,y) אל (בעברית זה נקרא "רישא").

נבדוק את ערך האמת של כמה נוסחאות:

דוגמה 2: מחרוזות בינאריות

true	$\forall x (x \le x)$
true	$\forall x \forall y (x \cdot y \le x \longrightarrow y = \epsilon)$
true	$\forall x \forall y \forall z (x \cdot y \le x \cdot z \longrightarrow y \le z)$
false	$\exists y \forall x (x \le y)$
true	$\exists y \forall x (y \le x)$
true	$\forall y \exists x (x \le y)$
true	$\forall y \exists x (y \le x)$

false $\forall y \exists x \exists z (!(x = e) \land !(z = e) \land x \cdot z = y)$

עקרונות בניית מודל

- ניתן להגדיר כמעט כל מודל שרוצים.
- מודל צריך לשקף בצורה מדויקת ככל האפשר את המציאות שאותה רוצים לתאר.
 - . אין טעם לכלול במודל היבטים לא רלוונטיים

בדיקת ערך האמת של נוסחה

- ערך האמת של נוסחה בתחשיב היחסים תלוי בדרך כלל במודל.
 - $orall x \phi$ למשל, נניח שרוצים לברר את ערך האמת של $(\mathcal{P},\mathcal{F})$ במודל \mathcal{M} המוגדר על מילון
- יש לבדוק האם הנוסחה ϕ מתקיימת לכל ערך a שנציב בכל מקום שבו x חופשי
 - a בעצם מתכוונים לבדוק את ההצבה $\phi[a\,/\,x]$ לכל ערך \mathcal{M} בקבוצת התחום של
 - אינו ערך בקבוצת $\phi[a\,/\,x]$ אינו נכון, כי $\phi[a\,/\,x]$ אינו ערך בקבוצת התחום של
 - יש צורך במושג של הצבה שמתאים למודלים •

הגדרה: טבלת חיפוש

(environment) או סביבה (look-up table) טבלת חיפוש עבור קבוצת תחום $A^{\mathcal{M}}$ של מודל \mathcal{M} היא פונקציה

 $\ell : \text{var} \to A$

המשתנים

יהי $a\in A^{\mathcal{M}}$ ותהי ℓ טבלת חיפוש. נגדיר טבלת חיפוש $a\in A^{\mathcal{M}}$ חדשה ℓ $[x\mapsto a]$ שמעתיקה את ℓ f f g ולכל משתנה אחר g היא מעתיקה את g ל g g . ℓ

 ℓ כלומר, ההבדל בין ℓ ל ℓ ל ℓ הוא רק בערך שמקבל.

הגדרה: ערך אמת של נוסחה

נתונה נוסחה ϕ במילון $(\mathcal{P},\mathcal{F})$. נתון מודל \mathcal{M} המוגדר על המילון $(\mathcal{P},\mathcal{F})$ ונתונה טבלת חיפוש \mathcal{P} . נגדיר ש \mathcal{P} מחושבת המילון \mathcal{P} ביחס לסביבה \mathcal{M} , ונסמן זאת $\mathcal{M} \models_{\ell} \phi$ ביחס לסביבה \mathcal{M} , ונסמן זאת לבאופן אינדוקטיבי לפי הכללים הבאים:

(נוסחה אטומית), $P(t_1,t_2,...,t_n)$ מהצורה ϕ מהצורה $t_1,t_2,...,t_n$ בכל המשתנים ב ℓ בכל הערכים של ℓ בכל הערכים ב ℓ אם ורק ומקבלים א $\mathcal{M} \vDash_\ell P(t_1,t_2,...,t_n)$ ואז $e_1,a_2,...,a_n \in A$ אם ורק עם $e_1,a_2,...,e_n \in \mathcal{A}$ אם ורק אם $e_1,a_2,...,e_n \in \mathcal{A}$

הגדרה: ערך אמת של נוסחה (המשך)

 $\mathcal{M} dash_{\ell[x\mapsto a]} \psi$ אם ורק אם $\mathcal{M} dash_{\ell} \ \forall x \psi$ כלל $a \in A$ מתקיים לכל

 $\mathcal{M} dash_{\ell[x\mapsto a]} \psi$ אם ורק אם $\mathcal{M} dash_{\ell} \exists x \psi$ כלל $a \in A$ אם ורק אם $a \in A$ מתקיים עבור איזה שהוא

לא $\mathcal{M} dash_\ell \psi$ אם ורק אם $\mathcal{M} dash_\ell \neg \psi$ לא מתקיים.

כלל ψ_1 מתקיים $\psi_1 \lor \psi_2$ אם ורק אם ורק אוווא $\mathcal{M} \vDash_\ell \psi_1 \lor \psi_2$ כלל $\mathcal{M} \vDash_\ell \psi_1 \lor \psi_2$ מתקיים $\mathcal{M} \vDash_\ell \psi_2$

כלל $\mathcal{M} \vDash_\ell \psi_1$ מתקיים $\mathcal{M} \vDash_\ell \psi_1 \land \psi_2$ אם ורק אם $\mathcal{M} \vDash_\ell \psi_1 \land \psi_2$ וגם $\mathcal{M} \vDash_\ell \psi_2$

 $\mathcal{M} dash_\ell \psi_2$ מתקיים $\mathcal{M} dash_\ell \psi_1 o \psi_2$ אם ורק אם : o כלל מתקיים בכל פעם ש $\mathcal{M} dash_\ell \psi_1 \psi_1$ מתקיים בכל פעם ש $\mathcal{M} dash_\ell \psi_1 \psi_1$

הערות

- משמעות ההגדרה היא ש ϕ "נכונה" אם מציבים לתוך המשתנים החופשיים ערכים לפי מה שמוגדר ב ℓ
 - $\mathcal{M}
 ot\models_\ell \phi$:אם לא מתקיים $\mathcal{M}
 ot\models_\ell \phi$ נסמן זאת כך
- אם ℓ' ן ℓ' נותנים ערכים זהים על המשתנים החופשיים $\mathcal{M} \models_\ell \phi$ אם ורק אם $\mathcal{M} \models_\ell \phi$ אז ϕ ב

ערך אמת שאינו תלוי בטבלת חיפוש

 ϕ נתונה נוסחה ϕ במילון $(\mathcal{P},\mathcal{F})$. נתון מודל ϕ המוגדר על ϕ המילון ℓ אם ℓ אם ℓ לכל טבל ℓ ת חיפוש ℓ נאמר ש ℓ נאמר ש ℓ מחושב ל ℓ במודל ℓ ונסמן זאת ℓ ונסמן ℓ ונסמן ℓ

למשל, אם ב ϕ אין משתנים חופשיים, אז לא מתבצעות . ℓ לכל $\mathcal{M}
ot\models_\ell \phi$ או ש ℓ לכל $\mathcal{M}
ot\models_\ell \phi$ לכל

גרירה סמנטית בתחשיב היחסים

<u>הגדרה:</u>

תהי Γ קבוצת נוסחאות ותהי ψ נוסחה. מתקיימת גרירה סמנטית $\Gamma \models \psi$ אם ורק אם לכל מודל \mathcal{M} ולכל טבלת חיפוש \emptyset כך ש $\mathcal{M} \models_\ell \phi$ לכל $\emptyset \models_\ell \psi$ מתקיים $\emptyset \models_\ell \phi$. במקרה כזה אומרים ש Γ גוררת סמנטית את \emptyset .

16

בדיקת קיום גרירה סמנטית

- בתחשיב הפסוקים, במקרה ש Γ קבוצה סופית, בדיקת קיום $\psi \models \psi$ היא תהליך סופי הכרוך בבניית טבלאות האמת של כל הפסוקים המעורבים.
 - $\Gamma \vDash \psi$ ן $\mathcal{M} \vDash_{\ell} \phi$ בתחשיב היחסים בדיקת זהויות כמו $\mathcal{M} \vDash_{\ell} \phi$ ולכן לא היא תהליך אינסופי, כי יש אינסוף מודלים, ולכן לא אפשרי מבחינה חישובית.
 - לפעמים אפשר להוכיח קיום גרירה סמנטית באמצעות
 טיעון לוגי כללי.

מושגים סמנטיים בתחשיב היחסים

<u>הגדרה:</u>

נוסחה ψ נקראת ספיקה אם <u>קיימים</u> מודל ψ וטבלת $\mathcal{M} \models_\ell \psi$ ריפוש ℓ המוגדרת על $\mathcal{M} \models_\ell \psi$ כך ש

 \mathcal{M} קבוצת נוסחאות Γ נקראת ספיקה אם <u>קיימים</u> מודל $\phi \in \Gamma$ וטבלת חיפוש ℓ המוגדרת על $\mathcal{M} \models_\ell \phi$ כך ש $\ell \mapsto \mathcal{M} \models_\ell \phi$ לכל

עוסחה ψ נקראת תקפה אם לכל מודל \mathcal{M} שרלוונטי ל $\mathcal{M} \models_{\ell} \psi$ מתקיים $\mathcal{M} \models_{\ell} \psi$ ולכל טבלת חיפוש ℓ המוגדרת על

דוגמה לקיום גרירה סמנטית

$$\forall x (P(x) \to Q(x)) \models \forall x P(x) \to \forall x Q(x)$$

נניח שעבור מודל ${\mathcal M}$ וסביבה ℓ מתקיים

$$\mathcal{M} \vDash_{\ell} \forall x \big(P(x) \to Q(x) \big)$$

 $\mathcal{M} \models_{\ell} \forall x P(x) \rightarrow \forall x Q(x)$ צריך להראות ש

 $\mathcal{M} \not\models_{\ell} \forall x P(x) \rightarrow \forall x Q(x)$ נניח בשלילה ש

. $\mathcal{M} \not\models_{\ell} \forall x Q(x)$ ו $\mathcal{M} \models_{\ell} \forall x P(x)$ מתקיים \rightarrow לפי כלל

 $a \in P^{\mathcal{M}}$ מתקיים \mathcal{M} מתקיים של בקבוצת התחום של $a \in P^{\mathcal{M}}$

 $a.\ b
otin Q^{\mathcal{M}}$ וקיים ערך b בקבוצת התחום של

 $\mathcal{M}
ot
olimits_{\ell[x \mapsto b]} P(x) o Q(x)$ עבור אותו b מתקיים

!ולכן $\mathcal{M} \not\models_{\ell} \forall x \big(P(x) \rightarrow Q(x) \big)$ ולכן

דוגמה נוספת

$$\exists x \big(P(x) \to \forall y P(y) \big)$$

הסבר: יהי ${\mathcal M}$ מודל כלשהו

$$\mathcal{M} \vDash \forall y P(y)$$
 א. אם

אז $A \models P(x) \to \forall y P(y)$ ללא תלות בערך של x, ובפרט $\mathcal{M} \models \exists x \big(P(x) \to \forall y P(y) \big)$

$$\mathcal{M} \nvDash \forall y P(y)$$
 ב. אם

F אז קיים x שעבורו P(x) לא נכון, כלומר, הערך של P(x) הוא P(x) עבור אותו ערך של P(x). ולכן ל P(y) יש ערך אמת P(x) עבור אותו ערך של P(x). ומכאן, שוב

$$\mathcal{M} \vDash \exists x \Big(P(x) \longrightarrow \forall y P(y) \Big)$$

דוגמה לאי-גרירה סמנטית

 $?\ orall xP(x)
ightarrow orall xQ(x) dash arphi xig(P(x)
ightarrow Q(x)ig)$ האם מתקיים גם $\mathcal{M}
otin _\ell \ orall xP(x)$ שוב על דוגמה שבה $\mathcal{M}
otin _\ell \ orall xP(x)
ightarrow orall xQ(x)$ ולכן $\mathcal{M}
otin _\ell \ orall xP(x)
ightarrow orall xQ(x)$

ומצד שני קיימים ערכים b בקבוצת התחום של ${\mathcal M}$ שעבורם

$$\mathcal{M} \not\models_{\ell[x \mapsto b]} P(x) \to Q(x)$$

דוגמה: קבוצת התחום: המספרים הטבעיים.

המספרים הזוגיים - $P^{\mathcal{M}}$

המספרים האי-זוגיים - $Q^{\mathcal{M}}$

סיכום: גרירה סמנטית בתחשיב היחסים

- באופן כללי, קשה מאוד לקבוע ערך אמת של טענה $\Gamma \vDash \psi$ מהסוג קיוון שיש לבדוק אותה על כל המודלים האפשריים, כולל מודלים שאין להם שום משמעות נראית לעין.
- עבור מילון $(\mathcal{P},\mathcal{F})$ ניתן להגדיר את קבוצת התחום, היחסים והפונקציות בכל דרך אפשרית, כולל כאלה שאין להן איזו שהיא משמעות מעניינת.
 - יש תמיד אותה הגדרה: רק ליחס = יש תמיד אותה

$$(=^{\mathcal{M}}) := \{(a, a) \mid a \in A\}$$

דוגמאות נוספות

$$x=y,\,y=z\vDash x=z$$
 מתקיימת גרירה סמנטית •

?האם מתקיימת גרירה סמנטית

$$R(x, y), R(y, z) \models R(x, z)$$

$$\forall x (P(x) \rightarrow Q(x)), P(y) \models Q(y)$$

$$\forall x (P(x) \land Q(x)) \vDash \forall x (P(x) \rightarrow Q(x))$$

$$\forall x \forall y (P(y) \rightarrow Q(x)) \models \exists y P(y) \rightarrow \forall x Q(x)$$

$$\forall x \exists y (P(y) \to Q(x)) \vDash \exists y P(y) \to \forall x Q(x)$$

משפטי הנאותות והשלמות

משפט הנאותות לתחשיב היחסים , ערכל קבוצת נוסחאות Γ ולכל נוסחה $\Gamma \models \psi$ אם $\Gamma \vdash \psi$ אם $\Gamma \vdash \psi$

משפט השלמות לתחשיב היחסים , ψ לכל קבוצת נוסחאות Γ ולכל נוסחה $\Gamma \vdash \psi$ אם $\Gamma \models \psi$

לא נוכיח משפטים אלה בקורס.

קבוצה ספיקה

תזכורת: אם בנוסחה אין משתנים חופשיים היא נקראת פסוק

 \mathcal{M} תזכורת: קבוצת נוסחאות Γ היא ספיקה אם קיימים מודל $\psi \in \Gamma$ וסביבה ℓ כך ש $\psi \neq \emptyset$ לכל ℓ .

הגדרה:

 \mathcal{M} קבוצת פסוקים Γ היא ספיקה אם קיים מודל $\psi \in \Gamma$ לכל $\mathcal{M} \models \psi$

משפט הקומפקטיות

משפט הקומפקטיות

תהי Γ קבוצת פסוקים בתחשיב היחסים. Γ ספיקה אם ורק אם כל תת-קבוצה Γ סופית של Γ היא ספיקה.

הוכחת משפט הקומפקטיות

- י נניח בשלילה ש Γ לא ספיקה, אבל כל תת-קבוצה סופית שלה ספיקה.
 - מודל Γ אין ל Γ מודל הכיוון ש Γ לא ספיקה מתקיים לא ספיקה מתקיים רולכן $\Gamma \models \bot$ מתקיים באופן ריק.)
 - $\Gamma dash ot$ לפי משפט השלמות מתקיים •
- Γ מכיוון שהוכחה היא סופית, רק תת-קבוצה סופית מתוך משתתפת בהוכחה של \bot . Γ . נקרא לתת-קבוצה זו Δ
 - מתקיים ⊥ ⊢ ∆ ולפי משפט הנאותות $\bot ⊨ ∆$. לכן ∆ לא ספיקה.
- . סתירה לכך שכל תת-הקבוצות הסופיות של Γ הן ספיקות.