

Lösungsblatt 3

1 Stetigkeit mit dem $\epsilon - \delta$ -Kriterium

Zeigen Sie mit dem $\epsilon - \delta$ -Kriterium, dass folgende Funktionen im Punkt x_0 stetig sind:

- (a) $f:(0,2) \to \mathbb{R}, x \mapsto x^3 \text{ mit } x_0 \in (0,2).$
- (b) $f(x): (-1,1) \to \mathbb{R}, x \mapsto \sqrt{1-x^2}$ mit $x_0 \in (-1,1)$. Tipp: Dritte Binomische Formel.

Lösung:

Um Stetigkeit mit dem $\epsilon - \delta$ -Kriterium zu zeigen muss man $\delta(x_0, \epsilon)$ finden. Wir gehen dazu rückwärts vor:

- (1) Schätze $|f(x) f(x_0)|$ möglichst gut ab, so dass $|x x_0|$ vorkommt. In den anderen Termen darf ein x_0 stehen, falls ein x vorkommt schätze weiter ab.
- (2) Setze $|x x_0| < \delta$ ein und lösen nach δ auf.
- (3) Erhalte $\delta(x_0, \epsilon)$ und schreibe den Beweis nochmal vorwärts auf.
- (a) Wir fangen mit (1) an und schätzen $|f(x) f(x_0)|$ ab:

$$|f(x) - f(x_0)| = |x^3 - x_0^3| = |x - x_0||x^2 + xx_0 + x_0^2|$$

$$\stackrel{\Delta - Ungl.}{\leq} |x - x_0| (|x|^2 + |xx_0| + |x_0|^2) \stackrel{|x| \leq 2}{\leq} (4 + 2x_0 + x_0^2)|x - x_0| \stackrel{!}{\leq} \epsilon$$

Nun (2): Setzen man $|x-x_0|<\delta$ ein und löst nach δ auf erhält man:

$$|f(x) - f(x_0)| = (4 + 2x_0 + x_0^2)|x - x - 0| \stackrel{|x - x_0| < \delta}{<} (4 + 2x_0 + x_0^2)\delta \stackrel{!}{\le} \epsilon$$

und erhält damit $\delta = \delta(x_0, \epsilon) = \frac{\epsilon}{4 + 2x_0 + x_0^2}$. Nun (3): Für alle $\epsilon > 0$ wähle $\delta = \frac{\epsilon}{4 + 2x_0 + x_0^2}$ und es gilt für alle $x, x_0 \in (0, 2)$:

$$|x-x_0| < \delta \Rightarrow |f(x)-f(x_0)| = \dots < \epsilon$$

(b) Wir fangen mit (1) an und schätzen $|f(x) - f(x_0)|$ ab:

$$|f(x) - f(x_0)| = \left| \sqrt{1 - x^2} - \sqrt{1 - x_0^2} \right|$$

$$3.B_{\underline{inom.}} \left| \frac{\left(\sqrt{1 - x^2} - \sqrt{1 - x_0^2} \right) \left(\sqrt{1 - x^2} + \sqrt{1 - x_0^2} \right)}{\sqrt{1 - x^2} + \sqrt{1 - x_0^2}} \right|$$

$$= \left| \frac{x_0^2 - x^2}{\sqrt{1 - x^2} + \sqrt{1 - x_0^2}} \right| \stackrel{*,3.B_{inom.}}{\leq} \frac{|x - x_0||x + x_0|}{\sqrt{1 - x_0^2}} \stackrel{x,x_0 \in (-1,1)}{\leq} |x - x_0| \frac{2}{\sqrt{1 - x_0^2}} \stackrel{!}{\leq} \epsilon$$

wobei bei * zusätzlich $\frac{1}{a+b} \leq \frac{1}{b} \forall a,b \in \mathbb{R}^+$ genutzt wurde. Nun (2): Setzen man $|x-x_0| < \delta$ ein und löst nach δ auf erhält man: $\delta = \epsilon \frac{\sqrt{1-x_0^2}}{2}$ Nun (3): Für alle $\epsilon > 0$ wähle $\delta = \epsilon \frac{\sqrt{1-x_0^2}}{2}$ und es gilt für alle $x, x_0 \in (-1,1)$:

$$|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| = \dots < \epsilon$$

2 Glm Stetigkeit

Zeige: Jede lineare Funktion f(x) = ax + b mit $a, b \in \mathbb{R}$ ist glm. stetig auf \mathbb{R} . Benutzen Sie die Definition von glm. stetig.

Lösung:

Wir wollen zeigen:

$$\forall \epsilon > 0 : \exists \delta > 0 : \forall x, x_0 : |x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon$$

wobei $\delta = \delta(\epsilon)$, insbesondere also unabhängig von x, x_0 für alle $x, x_0 \in \mathbb{R}$. Betrachten wir also wieder den zweiten Teil der Implikation näher:

$$|f(x) - f(x_0)| = |ax + b - (ax_0 + b)| = a \cdot |x - x_0| \stackrel{!}{<} \epsilon$$

Unter der Voraussetzung $|x - x_0| < \delta$ erhält man:

$$|f(x) - f(x_0)| = a \cdot |x - x_0| \stackrel{|x - x_0| < \delta}{<} a \cdot \delta \stackrel{!}{\leq} \epsilon$$

Damit lautet der Vollständige Beweis: Für alle $\epsilon > 0$ wählt man $\delta = \frac{\epsilon}{a}$ und es gilt für alle $x, x_0 \in \mathbb{R}$:

$$|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| = a|x - x_0| \stackrel{|x - x_0| < \delta}{<} a\delta = \epsilon$$

und da $\delta = \delta(\epsilon)$ unaghängig von $x, x_0 \in \mathbb{R}$ ist f(x) schon glm. stetig.

3 Beweis zur Stetigkeit

Sei $f: D \to \mathbb{R}$ stetig in $x_0 \in D$. Weiterhin sei $f(x_0) > 0$. Zeige, dass dann gilt:

$$\exists \delta > 0 : \forall x \in (x_0 - \delta, x_0 + \delta) \cap D : f(x) > 0 \tag{1}$$

Tipp: Benutzen Sie das $\epsilon - \delta$ -Kriterium. Lösen sie den Betrag $|f(x) - f(x_0)|$ auf und stellen Sie geschickt um.

Lösung:

Veranschaulichen wir uns zuerst die Aussage (1):

Abbildung 1: Hier: Störung im Punkt $x_0 = 0$ simuliert durch eine Gauß-Glocke. Da die Funktion stetig ist gibt es aufgrund $f(x_0) > 0$ eine Umgebung um x_0 in der f(x) > 0 gilt.

Die Idee hinter der Aussage (1) ist: Eine stetige Funktion kann ihre Funktionswerte nicht sprungartig ändern, ist Sie an einer Stelle x_0 größer 0, so muss Sie aufgrund Stetigkeit in einer Umgebung um x_0 ebenfalls größer 0 sein. Mathematisch beweist man dies wie folgt:

Setze $\epsilon = f(x_0) > 0$. Da f stetig ist, existiert ein $\delta > 0$, so dass gilt:

$$|f(x) - f(x_0)| < \epsilon \, \forall x \in (x_0 - \delta, x_0 + \delta) \cap D$$

$$\Leftrightarrow -\epsilon < |f(x) - f(x_0)| < \epsilon \, \forall x \in (x_0 - \delta, x_0 + \delta) \cap D$$

Den Betrag lösen wir mit einer Fallunterscheidung auf:

$$f(x) \ge f(x_0) : \Rightarrow -\epsilon < f(x) - f(x_0) < \epsilon$$

$$f(x) < f(x_0) : \Rightarrow -\epsilon < f(x_0) - f(x) < \epsilon$$

In beiden Fällen können wir so umstellen, dass wir:

$$\Rightarrow f(x) > f(x_0) - \epsilon = 0 \,\forall x \in (x_0 - \delta, x_0 + \delta) \cap D$$

erhalten, was gerade Aussage (1) ist.

4 Grenzwertarithmetik

Bestimmen Sie folgende Grenzwerte falls existent ohne den Satz von l'Hôpital.

(a)
$$\lim_{x \to 0} \frac{\sin(x)\cos(x)}{x\cos(x) - x^2 - 3x}$$

(b)
$$\lim_{x\to\infty} \frac{2x-3}{x-1}$$

(c)
$$\lim_{x \to \infty} \left(\sqrt{x+1} - \sqrt{x} \right)$$

(d)
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{x^2}\right)$$

(e)
$$\lim_{x\to 0} \left(\sqrt{x}\sin\left(\frac{1}{x}\right)\right)$$

(f)
$$\lim_{x \to \infty} \left(2x - \sqrt{4x^2 - x}\right)$$

(g)
$$\lim_{x \to \frac{\pi}{2}} \left(\tan^2(x) - \frac{1}{\cos^2(x)} \right)$$

Lösung:

(a) Es gilt:

$$\lim_{x \to 0} \frac{\sin(x)\cos(x)}{x\cos(x) - x^2 - 3x} = \left(\lim_{x \to 0} \frac{\sin(x)}{x}\right) \left(\lim_{x \to 0} \frac{\cos(x)}{\cos(x) - x - 3)}\right) = 1 \cdot \frac{1}{1 - 0 - 3} = -\frac{1}{2}$$

Den Grenzwert $\lim_{x\to 0} \frac{\sin(x)}{x}$ kann man zB. mit der Taylorreihenentwicklung einsehen:

$$\left(T_0^2 \frac{\sin(x)}{x}\right)(x) = 1 - \frac{x^2}{6} + \mathcal{O}(x^4)$$

(b) Es gilt $2x - 3 = (x - 1) \cdot 2 - 1$. Damit folgt:

$$\lim_{x \to \infty} \frac{2x - 3}{x - 1} = \lim_{x \to \infty} \left(2\frac{x - 1}{x - 1} - \frac{1}{x - 1} \right) = 2$$

(c) Es gilt: $\sqrt{x+1} - \sqrt{x} = \frac{(\sqrt{x+1} - \sqrt{x})(\sqrt{x+1} + \sqrt{x})}{\sqrt{x+1} + \sqrt{x}} = \frac{1}{\sqrt{x+1} + \sqrt{x}}$ Damit erhält man, da die Wurzelfunkiton stetig ist:

$$\lim_{x \to \infty} \left(\sqrt{x+1} - \sqrt{x} \right) = \lim_{x \to \infty} \frac{1}{\sqrt{x+1} + \sqrt{x}} = \left(\lim_{x \to \infty} \frac{1}{\sqrt{x}} \right) \left(\frac{1}{\sqrt{\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)} + 1} \right) = 0 \cdot \frac{1}{2} = 0$$

- (d) Es gilt $\lim_{x\to 0} \left(\frac{1}{x} \frac{1}{x^2}\right) = \lim_{x\to 0} \frac{x-1}{x^2} = -\infty$, da der Nenner positiv ist und gegen null konvergiert, der Zähler aber gegen -1.
- (e) Wir benutzen das Sandwichkirterium. Weil $|\sin(y)| \le 1 \quad \forall y \in \mathbb{R}$ gilt, können wir abschätzen:

$$-\sqrt{x} \le \sqrt{x} \sin\left(\frac{1}{x}\right) \le \sqrt{x}$$

und wegen $\lim_{x\to 0} \pm \sqrt{x} = 0$ gilt $\lim_{x\to 0} \sqrt{x} \sin(\frac{1}{x}) = 0$.

(f) Wir erweitern mit der dritten binomischen Formel und erhalten

$$\lim_{x \to \infty} 2x - \sqrt{4x^2 - x} = \frac{4x^2 - 4x^2 + x}{2x + \sqrt{x^2 - x}} = \lim_{x \to \infty} \frac{x}{x\left(2 + \sqrt{4 - \frac{1}{x}}\right)} = \frac{1}{4}$$

(g) Wir formen um:

$$\tan^2(x) - \frac{1}{\cos^2(x)} = \frac{\sin^2(x)}{\cos^2(x)} - \frac{1}{\cos^2(x)} = \frac{-\cos^2(x)}{\cos^2(x)} = -1$$

und damit ist der Grenzwert: $\lim_{x \to \frac{\pi}{2}} \tan^2(x) - \frac{1}{\cos^2(x)} = -1$

5 Fixpunktsatz - Revisited

Zeigen Sie mithilfe des Zwischenwertsatzes:

(a) Die Gleichung $\varphi(x) = x$ mit

$$\varphi: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \sqrt{\frac{x^2 + 2x - \cos(\pi x) + 7}{1 + x^2}} \end{cases}$$

besitzt eine Lösung in \mathbb{R} .

(b) Jede stetige Funktion $\varphi : [a,b] \to [a,b]$ mit a < b beistzt einen Fixpunkt, es gibt also ein $x^* \in [a,b]$ mit $\varphi(x^*) = x^*$.

Lösung:

(a) Der Ausdruck in der Wurzel ist für alle $x \in \mathbb{R}$ wohldefiniert und damit ist φ als Verknüpfung stetiger Funktionen stetig. Man definiert die stetige Hilfsfunktion $f(x) = \varphi(x) - x$ und findet:

$$f(0) = \sqrt{\frac{-1+7}{1}} - 0 > 0$$

$$f(2) = \sqrt{\frac{4+4-1+7}{1+4}} - 2 < 0$$

also gib es nach dem Zwischenwertsatz ein $x^* \in (0,2)$ mit $f(x^*) = 0$, umgestellt $\varphi(x^*) = x^*$, es gibt also einen Fixpunkt, welcher in Abbildung (2) graphisch ermittelt wurde:

Abbildung 2: In Gelb $\varphi(x)$, in blau y=x und in Grün die Differenz $f(x)=\varphi(x)-x$.

(b) Sei $f(x) = \varphi(x) - x$, dann ist auch f stetig. Weiter ist $f(a) \in [0, b - a]$ und $f(b) \in [a - b, 0]$ und damit gilt: $f(a) \ge 0 \ge f(b)$ wegen a < b. Nach dem Zwischenwertsatz gibt es also ein $x^* \in [a, b]$ mit $f(x^*) = 0$, umgestellt $\varphi(x^*) = x^*$.

6 Satz vom Maximum und Minimum

Zeige, dass die Funktion $f(x) = \frac{6x^2 + x}{x^3 + x^2 + x + 1}$ auf $[1, \infty)$ ein Maximum, aber kein Minimum besitzt. Tipp: Konstruieren Sie eine Kompakte Menge.

Lösung:

Zunächst ist f als Verknüpfung von Polynomen auf $[1,\infty)$ stetig, da der Nenner dort Nullstellenfrei ist. Weiter gilt f(x) > 0 für $x \ge 1$, $f(1) = \frac{7}{4} > 1$, sowie:

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{6x^2 + x}{x^3 + x^2 + x + 1} = \lim_{x \to \infty} \frac{\frac{6}{x} + \frac{1}{x^2}}{1 + \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3}} = 0$$

Daher gibt es ein $x_0 > 1$ mit f(x) < 1 für alle $x > x_0$ (Definition des Grenzwertes). Damit ist f(x) auf dem kompakten Intervall $[1, x_0]$ stetig und nimmt damit sein Maximum an. f besitzt kein Minimum, denn: Es gilt f > 0 auf $[1, \infty)$. Die Null wird als Funktionswert

nicht angenommen. Wegen $\lim_{x\to\infty} f(x) = 0$ und der Stetigkeit nimmt f aber alle Werte zwischen $[0, \max(f(x))]$ an, also besitzt die Funktion kein Minimum (Das Infimum wäre 0).

7 Ableitungen

Berechnen Sie die Ableitungen der folgenden Funktionen:

- (a) $\exp(-x^2)$
- (b) $\frac{x^2+4}{\sin(x)}$
- (c) tan(x)
- (d) $\arctan(x)$
- (e) $\sin^n(x), n \in \mathbb{N}$
- (f) $\ln\left(\frac{\exp(x)}{1+x^2}\right)$

Lösung

- (a) $-2x \cdot \exp(-x^2)$
- (b) $\frac{2x\sin(x)-(x^2+4)\cos(x)}{\sin^2(x)}$
- (c) $\left(\frac{\sin(x)}{\cos(x)}\right)' = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)} = \frac{1}{\cos^2(x)} = 1 + \tan^2(x)$
- (d) $\frac{1}{\tan'(\arctan(x))} = \frac{1}{1+\tan^2(\arctan(x))} = \frac{1}{1+x^2}$
- (e) $n\sin^{n-1}(x)\cos(x)$
- (f) $\ln\left(\frac{\exp(x)}{1+x^2}\right) = x \ln(1+x^2)$, also ist die Ableitung $1 \frac{2x}{1+x^2}$

8 l'Hôpital

Berechnen Sie mit Begründung:

- (a) $\lim_{x \to 0} \frac{\sin(x)}{x}$
- (b) $\lim_{x \to 1} \frac{x-1}{\ln(x)}$
- (c) $\lim_{x\to 0^+} \exp\left(\frac{1/x^2}{\exp(1/x)}\right)$

Lösung

- (a) Wegen $\sin(0) = 0 = x|_0$ gilt $\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{\cos(x)}{1} = 1$
- (b) Auch gilt $1 1 = 0 = \ln(1)$, also $\lim_{x \to 1} \frac{x 1}{\ln(x)} = \lim_{x \to 1} \frac{1}{1/x} = 1$

(c) Da die Exponentialfunktion stetig ist, genügt es zunächst $\lim_{x\to 0^+} \frac{1/x^2}{\exp(1/x)} = \lim_{x\to 0^+} \frac{-2/x^3}{(-1/x^2)\cdot\exp(1/x)} = \lim_{x\to 0^+} \frac{2/x}{\exp(1/x)} = \lim_{x\to 0^+} \frac{2/x}{\exp(1/x)} = \lim_{x\to 0^+} \frac{2}{\exp(1/x)} = 0$ zu berechnen. Dabei wurde zwei mal l'Hôpital wegen $\lim_{x\to 0^+} \frac{1}{x^2} = \lim_{x\to 0^+} \frac{1}{x} = \lim_{x\to 0^+} \exp(1/x) = \infty$ verwendet.

Damit folgt $\lim_{x\to 0^+} \exp\left(\frac{x^2}{\exp(1/x)}\right) = 1$

9 Taylorpolynome

Entwickeln Sie bis zu n-ten Ordnung um x_0 :

(a)
$$f(x) = x^2$$
, $n = 2$, $x_0 = 2$

(b)
$$g(x) = \frac{1}{1-x^2}$$
, $n = 4$, $x_0 = 0$

(c)
$$\exp(x+2)$$
, $n=6$, $x_0=0$

(d)
$$\frac{1}{\sqrt{1-x^2}}$$
, $n=4$, $x_0=0$

Lösung

- (a) Mit f'(x) = 2x und f''(x) = 2 gilt $T_2^2(x) = 4 + 4(x-2) + (x-2)^2$. Dies ist gleich der ursprünglichen Funktion.
- (b) Hier kann man entweder Ableitungen ausrechnen oder einfach in die geometrische Reihe einsetzen. Für x<1 gilt:

$$\frac{1}{1 - x^2} = \sum_{k=0}^{\infty} x^{2k}$$

Damit ist $T_0^4(x) = 1 + x^2 + x^4$.

- (c) Nachdem man die Funktion zunächst zu $\exp(x+2)=e^2\exp(x)$ umschreibt setzt man die bekannte Taylorreihe der Exponentialfunktion ein und bricht nach dem sechsten Term ab: $T_0^6(x)=e^2\cdot(1+x+x^2/2+x^3/3!+x^4/4!+x^5/5!+x^6/6!)$
- (d) Hier bietet es sich wieder an zunächst das Taylorpolynom bis zur zweiten Ordnung von $\frac{1}{\sqrt{1-x}}$ zu bestimmen und anschließend x^2 einzusetzen. Die erste Ableitung dieser Funktion lautet $\frac{1/2}{\sqrt{1-x^3}}$, die zweite $\frac{3/4}{\sqrt{1-x^5}}$. Damit ergibt sich das gesuchte Polynom zu $T_0^4(x)=1+\frac{x^2}{2}+\frac{3x^4}{8}$

10 Taylorreihe

Finden Sie die Taylorreihe der folgenden Funktionen um $x_0 = 0$:

- (a) $\exp(-x^2/2)$
- (b) $\frac{1}{1-x}$
- (c) $x^4 + 3x^2 + 2x + 1$

(d)
$$\begin{cases} \frac{\sin(x)}{x} & x \neq 0 \\ 1 & x = 0 \end{cases}$$

Lösung

- (a) Einsetzen in die bekannte Taylorreihre der exp-Funktion liefert: $\sum_{k=0}^{\infty} \frac{(-x)^{2k}}{2^k \cdot k!}$
- (b) Die Taylorreihe ist eindeutig und damit gleich der bekannten geometrischen Reihe: $\sum_{k=0}^{\infty} x^k$
- (c) Die angegebene Funktion ist bereits eine Taylorreihe um den Entwicklungspunkt 0.
- (d) Teilt man die bekannte Taylorreihe des Sinus durch x erhält man $\sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k+1)!}$. Auf $\mathbb{R}\setminus\{0\}$ ist diese damit gleich der gegebenen Funktion. In der Null ist die Reihe ebenfalls gleich der Funktion.