ST 314 R Functions

CDFs, PDFs, and Percentiles of Named Distributions

Distribution	Function	Function Values	What does it do?
Binomial	<pre>dbinom(x,n,p)</pre>	x = value of interestn = number of trialsp = probability of success	This is the probability mass function for a binomial distribution. $P(X=x)$
Binomial	<pre>pbinom(x,n,p)</pre>	x = value of interest n = number of trials p = probability of success	This is the cumulative distribution function for a binomial distribution. $P(X \leq x)$
Poisson	<pre>dpois(x,lambda)</pre>	x = value of interest lambda = rate parameter	This is the probability mass function for a Poisson distribution. $P(X=x)$
Poisson	<pre>ppois(x,lambda)</pre>	x = value of interest lambda = rate parameter	This is the cumulative distribution function for a Poisson distribution. $P(X \leq x)$

Gamma	pgamma(x,shape,rate)	x = value of interest shape = α rate = $1/\beta$	This is the cumulative distribution function for a Gamma distribution. $P(X \leq x)$
Gamma	qgamma(p,shape,rate)	p = proportion that falls below x shape = α	This is the inverse cumulative distribution function. Finds percentiles for the Gamma distribution. That is, finds x_p for the expression $P(X \leq x_p) = p$
Exponential	pexp(x,lambda)	rate = $1/\beta$ $x = \text{value of interest}$ $lambda = \lambda$	This is the cumulative distribution function for an Exponential distribution. $P(X \leq x)$
Exponential	qexp(p,lambda)	p = proportion that falls below x	This is the inverse cumulative distribution function. Finds percentiles for the

			Exponential distribution. That is, finds x_p for the expression $P(X \leq x_p) = p$
Normal	<pre>pnorm(x,mu,sigma)</pre>	x = value of interest mu = mean sigma = standard deviation	This is the cumulative distribution function for a Normal distribution. $P(X \leq x)$
Normal	<pre>qnorm(p,mu,sigma)</pre>	p = proportion that falls below x mu = mean sigma = standard deviation	This is the inverse cumulative distribution function. Finds percentiles for the Normal distribution. That is, finds x_p for the expression $P(X \leq x_p) = p$
•	pt(x,df)	x = value of interest df = degrees of freedom	This is the cumulative distribution function for a t distribution. $P(X \leq x)$
t	qt(p,df)	p = proportion that falls below x df = degrees of freedom	This is the inverse cumulative distribution function. Finds percentiles for the t distribution. That is, finds x_p for the expression $P(X \leq x_p) = p$
F	pf(x,v1,v2)	x = value of interest v1 = numerator degrees of freedom	This is the cumulative distribution function for an <i>F</i> distribution.

		v2 = denominator degrees of freedom	$P(X \leq x)$
F	qf(p,v1,v2)	v1 = numerator degrees of freedom	This is the inverse cumulative distribution function. Finds percentiles for the F distribution. That is, finds x_p for the expression $P(X \leq x_p) = p$

Organizing Data

- Create a vector of values for a single variable:
 - Use the c() function to combine values into a single vector.
 - o Example: variable <- c(12, 15, 13, 11, 10, 14)</pre>
- Create a data frame from a vector(s):
 - Use the data.frame() function.
 - Within the function, define the name you want a column to have in quotes and then set equal to the vector you want to use for that variable.
 - Example: dataframe <- data.frame("values" = variable).
 - If you want your data frame to include more than on column, include new variables in the same way as above, separated by a comma.
 - Example: dataframe <- data.frame("values" = variable, "var2" = variable2)
- Referencing a specific column within a data frame:
 - To reference a column, first define the data frame you want to use, then specify the column name. The data frame name and column should be separated by \$
 - Example: dataframe\$values
- Check the type of an object stored in R:
 - Use the str() function. str is short for structure.

- Possible outputs may include: num a vector of numeric values, chr a vector where store values are characters, Factor a vector where store values are defined categories, data.frame object is defined as a data frame
- Examples: str(variable) or str(dataframe)

Summarizing Data

Function	What does it do?	Example (using variable and dataframe from above)
mean()	Calculates the mean from a vector of values.	mean(variable)
median()	Calculates the median from a vector of values.	median(variable)
sd()	Calculates the standard deviation from a vector of values.	sd(variable)
summary()	Calculates the five-number summary (min, Q1, median, Q3, max) and the mean from a vector of values.	summary(variable)
length()	Calculates the number of values stored in a vector.	<pre>length(variable)</pre>
nrow()	Calculates the number of rows in a data frame.	nrow(dataframe)