DAS ISING-MODELL - TEIL II

CARLOTTA GERSTEIN

- *Definition* 1 Es gibt bei (β, h) eine Zustandsänderung erster Ordnung, falls für ein Tupel (β, h) mindestens zwei Gibbs-Zustände konstruiert werden können.
 - Satz 2 Es gelten folgende Aussagen:
 - 1. Für alle $d \geq 1$ gilt: Falls $h \neq 0$ gibt es einen eindeutigen Gibbs-Zustand für alle $\beta \in \mathbb{R}_{\geq 0}$
 - 2. Für d=1 gibt es einen eindeutigen Gibbs-Zustand für jedes $(\beta,h)\in\mathbb{R}_{\geq 0}\times\mathbb{R}$
 - 3. Falls h=0 und $d\geq 2$ gibt es ein $\beta_c=\beta_c(d)\in (0,\infty)$ sodass: Falls $\beta<\beta_c$ ist der Gibbs-Zustand bei $(\beta,0)$ eindeutig Falls $\beta>\beta_c$ gibt es mindestens zwei Gibbs-Zustände

$$\langle \cdot \rangle_{\beta;h}^+ \neq \langle \cdot \rangle_{\beta;h}^-$$

- *Satz* 3 Sei $(\beta, h) \in \mathbb{R}_{>0} \times \mathbb{R}$. Die folgenden Aussagen sind äquivalent:
 - 1. Es gibt einen eindeutigen Gibbs-Zustand bei (β, h)
 - 2. $\langle \cdot \rangle_{\beta;h}^+ = \langle \cdot \rangle_{\beta;h}^-$
 - 3. $\langle \sigma_0 \rangle_{\beta;h}^+ = \langle \sigma_0 \rangle_{\beta;h}^-$
- *Proposition 4* Für jede Folge $\Lambda \uparrow \mathbb{Z}^d$ existieren die Grenzwerte

$$m^+(\beta,h) := \lim_{\Lambda \uparrow \mathbb{Z}^d} m_{\Lambda}^+(\beta,h) \qquad m^-(\beta,h) := \lim_{\Lambda \uparrow \mathbb{Z}^d} m_{\Lambda}^-(\beta,h)$$

und es gilt

$$m^{+}(\beta,h) = \langle \sigma_0 \rangle_{\beta;h}^{+}$$
 $m^{-}(\beta,h) = \langle \sigma_0 \rangle_{\beta;h}^{-}$

Zudem ist $h \mapsto m^+(\beta, h)$ rechtsstetig und $h \mapsto m^-(\beta, h)$ linksstetig.

Definition 5 Die kritische inverse Temperatur ist definiert als

$$\beta_c(d) := \inf \{ \beta \ge 0 : m^*(\beta) > 0 \} = \sup \{ \beta \ge 0 : m^*(\beta) = 0 \}$$

Satz 6 Es gelten die folgenden Aussagen für alle $\beta \ge 0$ und $h \in \mathbb{R}$:

$$\frac{\partial \psi}{\partial h^{+}}(\beta, h) = m^{+}(\beta, h) \qquad \frac{\partial \psi}{\partial h^{-}}(\beta, h) = m^{-}(\beta, h)$$

Insbesondere ist $h \mapsto \psi(\beta, h)$ differenzierbar in h genau dann, wenn es in (β, h) einen eindeutigen Gibbs-Zustand gibt.

- Notation $I(i,E) := |\{j \in \mathbb{Z}^d : \{i,j\} \in E\}|$ $\mathbf{E}_{\Lambda}^{+,g} := \{E \subset \mathcal{E}_{\Lambda}^b : I(i,E) \text{ ist gerade für alle } i \in \Lambda\}$ $\mathbf{E}_{\Lambda}^{+,0} := \{E \subset \mathcal{E}_{\Lambda}^b : I(i,E) \text{ ist gerade für alle } i \in \Lambda \setminus \{0\} \text{ aber } I(0,E) \text{ ist ungerade}\}$
- Grundlage des
 Vortrags
 Friedli, Sacha and Yvan Velenik. Statistical Mechanics of Lattice Systems: A
 Concrete Mathematical Introduction. Cambridge, United Kingdom; New
 York, NY: Cambridge University Press, 2017