Методы Оптимизации, ДЗ №1

Начинкин Илья, 695

13 сентября 2018 г.

Задача 1

Множество Афинно ⇔ его пересечение с любой прямой афинно

Решение:

Покажем сначала, что пересечение афинных множеств афинно. Если пересечение содержит всего одну точку или пусто, то доказано. Если есть хотя бы две точки, то так как точки лежат в каждом из множеств, значит и вся прямая, проходящая через эти две точки, лежит в каждом из множеств, а, значит, и в пересечении. Следовательно, доказано - пересечение афинных множеств афинно.

Теперь покажем наше утверждение:

- ⇒: Прямая очевидно является афинным множеством, а пересечение афинных афинно, значит пересечение афинного множества с любой прямой будет афинным.
- \Leftarrow : Если, \mathcal{X} пустое или состоит из одной точки, то оно афинно. Пусть $x,y \in \mathcal{X}$. Через две точки проходит прямая, а пересечение с любой прямой афинно, значит, так как $x,y \in$ $\mathcal{X}\cap \Pi$ рямая, следовательно, вся прямая, проходящая через x,y лежит в пересечении \mathcal{X} и себя самой. Значит, прямая лежит в \mathcal{X} . А следовательно, \mathcal{X} - афинно.

Задача 2

 S_1, S_2, \dots, S_k - непустые множества из \mathbb{R}^n . Доказать, что $\mathbf{cone}(\bigcup_{i=1}^k S_i) = \sum_{i=1}^k \mathbf{cone}(S_i)$. $\mathbf{conv}(\sum_{i=1}^k S_i) = \sum_{i=1}^k \mathbf{conv}(S_i)$

Решение:

1ое равенство:

- Тое равенство: \subseteq : Пусть $x \in \mathbf{cone}(\bigcup_{i=1}^k S_i)$. То есть $x = \sum_{i=1}^m \theta_i x_i, \forall i \theta_i \geq 0, \exists j x_i \in S_j, m \leq k$. Следовательно, $x \in \sum_{i=1}^m \theta_{j_i} S_{n_i} \subseteq \sum_{n=1}^k \theta_i S_i$ действительно, для оставшихся S_i возьмем $\theta_i = 0$. Т.к. $\forall i = 1 \dots k$, $\theta_i S_i \subseteq \mathbf{cone}(S_i)$, то $x \in \sum_{i=1}^k \mathbf{cone}(S_i)$. Доказано. \supseteq : Пусть $x \in \sum_{i=1}^k \mathbf{cone}(S_i)$. $x = \sum_{i=1}^k \sum_{j=1}^{m_i} \theta_{ij} x_{ij}$, где $\forall i \forall j \ \theta_{ij} \geq 0, x_{ij} \in S_i \subseteq \bigcup_{i=1}^k S_i$.
- Следовательно, $x \in \mathbf{cone}(\bigcup_{i=1}^k S_i)$. Доказано.

- **20е равенство:** \subseteq : Пусть $x \in \mathbf{conv}(\sum_{i=1}^k S_i)$. Значит, $x = \sum_{i=1}^m \theta_i \sum_{j=1}^k x_{ij} = \sum_{i=1}^k \sum_{i=1}^m \theta_i x_{ij}$, где $\theta_i \ge 0$, $\sum_{i=1}^m \theta_i = 1$, $x_{ij} \in S_j$. А значит, $x \in \sum_{i=1}^k \mathbf{conv}(S_i)$. Доказано. \supseteq : Пусть $x \in \sum_{i=1}^k \mathbf{conv}(S_i)$. Значит, $x = \sum_{i=1}^k \sum_{j=1}^{m_i} \theta_{ij} x_{ij}$, где $\theta_{ij} \ge 0$, $\sum_{i=1}^k \sum_{j=1}^{m_i} \theta_{ij} = 1$, $x_{ij} \in S_i$. Аналогично переворачиваем суммы, дополняя перед этим множества θ нулями,
- так чтобы все m_i были одинаковы и получаем ответ. Доказано.

Задача 3

$$S \subseteq \mathbb{R}^n$$
 - выпукло $\iff (\alpha + \beta)S = \alpha S + \beta S$ для всех неотрицательных α, β \implies : \subseteq : Пусть $x \in (\alpha + \beta)S$, т.е. $x = (\alpha + \beta)x_1 = \alpha x_1 + \beta x_1, x_1 \in S$. Доказано.

 \supseteq Пусть $x \in \alpha S + \beta S$, т.е. $x = \alpha x_1 + \beta x_2$, $x_1, x_2 \in S$. Так как S - выпукло, то $\forall \theta \in [0,1]\theta x_1 + (1-\theta)x_2 \in S$. Возьмем $\theta = \frac{\alpha}{\alpha+\beta}$, тогда $\alpha x_1 + \beta x_2 = (\alpha+\beta)(\theta x_1 + (1-\theta)x_2) \in (\alpha+\beta)S$. Доказано.