ECE 340 Midterm 2 Review Questions

Sanat, Alex

Fall 2019

1 P-N Junctions in Equilibrium

Table 1: Parameters of P-N Junction

Parameter	Value
T	300 K
n_i	$2 \times 10^{13} \ {\rm cm}^{-3}$
ϵ_r	20
N_D on n-side	$4 \times 10^{18} \text{ cm}^{-3}$
N_A on p-side	$1 \times 10^{18} \text{ cm}^{-3}$

This problem asks about a germanium ($E_G = 0.66$ eV) pn junction in equilibrium with the parameters from Table 1. Assume the junction occurs at x = 0, with the p region existing in x < 0 and the n region existing in x > 0.

- 1.1 Determine the built-in potential, V_0 , given that $kT \approx 0.03 \text{ eV}$ and $ln(10) \approx 2$.
- 1.2 Determine the depletion width, W, given that $\frac{\epsilon}{q} \approx 1 \times 10^7 \text{ V}^{-1} \text{ cm}^{-1} \text{ and } \sqrt{15} \approx 4.$

 $^{^{1}\}mathrm{All}$ values are rounded to one significant figure. Use the rounded values in your calculations.

Table 1: Parameters of P-N Junction

Parameter	Value
T	300 K
n_i	$2 \times 10^{13} \text{ cm}^{-3}$
ϵ_r	20
N_D on n-side	$4 \times 10^{18} \text{ cm}^{-3}$
N_A on p-side	$1 \times 10^{18} \text{ cm}^{-3}$

This problem asks about a germanium ($E_G = 0.66 \text{ eV}$) pn junction in equilibrium with the parameters from Table 1. Assume the junction occurs at x = 0, with the p region existing in x < 0 and the n region existing in x > 0.

- 1.3 Sketch a quantitative band diagram, assuming $ln(2) \approx$ 1. Label **all** relevant distances on the x and y axes.
- 1.4 Plot the corresponding charge diagram on the same horizontal scale and label minima and maxima.
- 1.5 Plot the electric field vs position on the same horizontal scale and label minima and maxima.

Table 1: Parameters of P-N Junction

Parameter	Value
T	300 K
n_i	$2 \times 10^{13} \text{ cm}^{-3}$
ϵ_r	20
N_D on n-side	$4 \times 10^{18} \text{ cm}^{-3}$
N_A on p-side	$1 \times 10^{18} \text{ cm}^{-3}$

This problem asks about a germanium ($E_G = 0.66$ eV) pn junction in equilibrium with the parameters from Table 1. Assume the junction occurs at x = 0, with the p region existing in x < 0 and the n region existing in x > 0.

- 1.6 For each of the following, list whether each of the built-in potential and depletion width would decrease, increase, or stay the same. Explain why.
- 1.6.1 The temperature is decreased to 150 K.
- 1.6.2 N_D on the n side is decreased to 3×10^{18} cm⁻³.
- 1.6.3 The material is replaced with silicon ($E_G = 1.1 \text{ eV}, \epsilon_r \approx 10$).

2 P-N Junctions Under Bias

- 2.1 Sketch a qualitative energy band diagram, including quasi-fermi levels, for the previous pn junction under (a) forward bias and (b) reverse bias.
- 2.2 Plot δp_n for $x > x_n$, the excess hole concentration on the n side of the junction.
- 2.3 Add a second trace to 2.2 for the case when N_D was decreased.

- 2.4 Explain the method of avalanche breakdown and the conditions under which it occurs. Additionally, explain why it is useful in creating photodetectors.
- 2.5 Explain the method of zener breakdown and the conditions under which it occurs.

3 Metal-Semiconductor Junctions

Figure 1: Metal-Semiconductor Band Diagram

- 3.1 Is the semiconductor p-type, n-type, or intrinsic?
- 3.2 Is the work function of the semiconductor or metal greater?
- 3.3 Is the junction rectifying or ohmic?

4 Optoelectronics

- 4.1 Sketch the I-V characteristic of an illuminated pn junction with light of energy $h\nu > E_G$.
- 4.2 Mark the quadrants where each of photodetectors, solar cells, and LEDs operate.
- 4.3 What are the conditions for lasing, and how does the emission change as lasing begins?