

ZH-40242A 24 路交流电流采集模块(穿孔式)

使用说明书

关键词:交流电流检测、多路电流检测、RS485 通讯、MODBUS 协议、直有效值测量、电流采集模块

一、产品概述

本产品为一款实时测量 24 路交流电流的数据采集模块,采用高精密电流互感器实现信号的隔离与传感,信号测量采用专用的真有效值测量芯片,可准确测量各种波形的电流真有效值,且精度高,稳定性好;采用标准 RS-485 总线接口和 MODBUS-RTU 协议。广泛应用于路灯监控、生产自动化检测、LED 灯老化检测等。本产品具有特点以下:

- ▶ 24 路同步采样相互独立 A/D, 0.1 秒完成 24 路所有通道的数据采集更新;
- ▶ 精度高, 采用 24 位 A/D 采样, 线性动态范围可以到达 1000:1;
- ▶ 稳定性好,测量精度不受环境温度影响;
- ▶ 真有效值测量,测量准确,适用于各种波形;
- ▶ 通讯地址和波特率具有拔码开关设置与软件设置两种方式可选;

二、产品型号

ZH-40242A-14F2 (24 路穿孔式输入) ZH-40122A-14F2 (12 路穿孔式输入)

三、性能指标

- ▶ 精度等级: 0.2%FS:
- ▶ 电流量程: 0-5A/0-10A/0-15A/0-20A AC (或订制);
- 申流输入孔径: Φ5mm:
- ▶ 工作温度: -20℃~+60℃;
- ▶ 数据更新时间: 100mS;
- ▶ 隔离耐压: >2500V DC:
- ▶ 辅助电源: +9V~30V;
- ▶ 额定功耗: <2W;
- ➤ 输出接口: RS485 (MODBUS-RTU 协议);
- ▶ 数据输出: 24 路电流值,输出 10000 对应电流量程额定值;
- ▶ 通讯波特率: 4800、9600、19200、38400、115200 bps;
- ▶ 数据格式: 奇校验/偶校验/无校验(默认)、8个数据位、1个停止位;
- ▶ 通讯设置:通讯地址和波特率具有拔码开关设置与软件设置两种方式可选,默认为开 关设置方式;

四、产品外观与安装尺寸

图一、产品实物图

安装方式: 螺钉固定或导轨固定;

五、产品接线说明

图四、产品接线参考图

说明: 电流输入通过互感器穿孔输入,互感器孔径为 5mm,必须保证电流的线头与线径小于 5mm, 否则电流导线无线穿入。

表一、引脚定义

引脚	1	2	3	4	5	6
名称	VCC	GND	INIT	G	D+	D-
描述	供电电源正	供电电源地	初始化引脚	初始化接地	RS485 正	RS485 负

说明: 初始化端为地址与波特率初始化, 短接后给产品上电, 地址与波特率将初始化为 1 与 9600。

六、MODBUS 通讯协议

1、报文格式

(1)、功能码 0x03---查询从设备寄存器内容

主设备报文

从设备地址	(0x01-0xFF	1字节)
功能码	(0x03	1字节)
起始寄存器地址	(2字节)	
寄存器个数	(2字节)	
CRC 校验码	(2字节)	

从设备正确报文

从设备地址	(0x0)	-0xFF	1 字节)		
功能码	(0x03)	1 字节)			
数据区字节数	(2*寄存器个数1字节)				
数据区	(寄存器内容 2	*寄存器	个数字节)		
CRC 校验码	(2字	节)			

(2)、功能码 0x10---对从设备寄存器置数

主设备报文

从设备地址	(0x01-0xFF	1字节)
功能码	(0x10	1字节)
起始寄存器地址	(2字节)	
寄存器个数	(2字节)	
数据区字节数	(2*寄存器个数	女 1 字节)
写入寄存器的数据	(2*寄存器个数	女个字节)
CRC 校验码	(2字节)	

从设备正确报文

从设备地址	(0x01-0xFF	1 字节)
功能码	(0x10	1字节)
起始寄存器地址	(2字节)	
寄存器个数	(2字节)	
CRC 校验码	(2字节)	

- 注: 1、CRC 检验码低位在前、高位在后, 寄存器地址, 寄存器个数, 数据均为高位在前、低位在后;
 - 2、寄存器字长为16bit(两个字节)

2、寄存器说明与命令格式

(1)、电参量数据寄存器定义表

寄存器地址(Hex)	寄存器内容	寄存器个数	寄存器状态	数据范围
0000	放 01 通道电流值	1	只读	0~10000
0001	放 02 通道电流值	1	只读	0~10000
0002	放 03 通道电流值	1	只读	0~10000
0003	放 04 通道电流值	1	只读	0~10000
0004	放 05 通道电流值	1	只读	0~10000
0005	放 06 通道电流值	1	只读	0~10000
0006	放 07 通道电流值	1	只读	0~10000
0007	放 08 通道电流值	1	只读	0~10000
0008	放 09 通道电流值	1	只读	0~10000
0009	放 10 通道电流值	1	只读	0~10000
000A	放 11 通道电流值	1	只读	0~10000
000B	放 12 通道电流值	1	只读	0~10000

000C	放 13 通道电流值	1	只读	0~10000
000D	放 14 通道电流值	1	只读	0~10000
000E	放 15 通道电流值	1	只读	0~10000
000F	放 16 通道电流值	1	只读	0~10000
0010	放 17 通道电流值	1	只读	0~10000
0011	放 18 通道电流值	1	只读	0~10000
0012	放 19 通道电流值	1	只读	0~10000
0013	放 20 通道电流值	1	只读	0~10000
0014	放 21 通道电流值	1	只读	0~10000
0015	放 22 通道电流值	1	只读	0~10000
0016	放 23 通道电流值	1	只读	0~10000
0017	放 24 通道电流值	1	只读	0~10000

数据范围说明: 0~10000 为额定范围值,最大输出数据为 12000。

(2)、模块名、地址与波特率寄存器定义表

寄存器地址(Hex)	寄存器内容	寄存器个数	寄存器状态	数据范围
0030Н	地址与 波特率	1	写	地址(0-256) 波特率(0-3)
0031Н	奇偶校验	1	写	0-无校验 1-寄校验 2-偶校验 3-不校验,9 位为 1 4-不校验,9 位为 0

(3)、命令举例

命令中所有寄存器地址字节、寄存器个数字节、数据字节高位在前,低位在后; CRC 校验码低位字节 在前,高位字节在后;

A: 读所有 24 组电流数据发送命令举例:

I	从设备地址	功能码	起始寄存器地址		寄存器个数		CRC-L	CRC-H
Ī	01H	03H	00Н	00Н	00H	18H	45H	СОН

说明:从寄存器0开始连续读24个寄存器数据,每一路电流数据占用一个寄存器; 数据返回格式:

从设备地址	功能码	数据区字节个数	返回数据区	CRC-L	CRC-H
01H	03H	30Н	•••••	XX	XX

说明:数据区总共有24组数据,48个字节;CRC校验码要根据实际数据得出;

B: 修改地址与波特率发送命令举例: (地址由原来的 01 号变为 02 号, 波特率改为 9600<代码为 01>)

从设备	功能	起	始寄	寄存器		数据字	写入寄存		CRC-	CRC
地址	码	存器	地址	个数		节个数	器的数据		L	-Н
01H	10H	00Н	30H	00Н	01H	02Н	02H	01H	63H	00Н

说明:"写入寄存器的数据"第一字节为修改后的地址码(此数据为02H);第二字节为修改后的波特 率代码:代码定义: 0--115200bps 1--9600bps 2--19200bps 3--38400bps 4--2400bps 5--4800bps 数据返回格式:

从设备地址	功能码	起始寄存	F器地址	寄存器个数		CRC-L	CRC-H
01H	10H	00Н	30H	00Н	01H	85H	CFH

3、数据说明与数据还原计算

(1)、读到的所有数据格式如下表(例: 电流输入量程等于 5A 时):

序号	通道 代码	输入 电流	读到的十六 进制数据(Id) 高字节 低字节		十进制数据	备注	
1	I1	5A	27	10	10000	真有效值	
1	11	JA	21	10	10000	共行双阻	
2	I2	5A	27	10	10000	真有效值	
3	I3	5A	27	10	10000	真有效值	
•••	•••						
23	I23	5A	27	10	10000	真有效值	
24	I24	5A	27	10	10000	真有效值	

(2): 实际电流值计算方法

I=Id/10000*电流量程 (AAC)

其中: Id----从设备读到的电流数据(将二字节转为十进制数据)

如:模块电流量程为 5A,从模块中读到的数据值 Id=2708H(+六进制)=9992D(+进制),即实际电流值 I=9992/10000*5=4.996A。

七、硬件拨盘地址与软件地址选择功能

1、硬件或软件设置功能选择

本板内部设有一个硬件地址和软件地址选择开关,当 DZ01 短接时,为硬件设置通讯地址和波特率方式; 不插短接块时为软件设置通讯地址和波特率方式。

硬件设置地址和波特率: 开关短接

软件设置地址和波特率: 开关断开

2、拔码开关设置地址与波特率说明

本板内部再设有一个 8 位 DIP 双列拨盘开关, 当选择硬件设置通讯地址和波特率方式时, 用于地址和波特率设定, 开关位于 "ON "时为 "0"; "OFF" 时为 "1"。

1~6 为地址设置,可选地址为: 00H~3FH(十六进制)0~63D(十进制)

 7^{8} 为波特率设置,可选波特率为, $00H^{2}03H$ (十六进制) $0^{3}D$ (十进制)

代码定义: 0--115200bps 1--9600bps 2--19200bps 3--38400bps

附 1: 地址码对照表

开关地址设置(8421 编码原则)	地址码 (HEX)	地址码 (十进制)	波特率设置	波特率
1号 OFF 状态, 2-6号 ON 状态	01	1	7、8号 ON	115200
2号 OFF 状态, 1/3-6号 ON 状态	02	2	7号OFF,8号ON	9600
1/2 号 OFF 状态, 3-6 号 ON 状态	03	3	7号ON,8号OFF	19200
3号 OFF 状态, 1-2/4-6号 ON 状态	04	4	7、8号 OFF	38400
1/3 号 OFF 状态, 2/4-6 号 ON 状态	05	5		
2/3 号 OFF 状态, 1/4-6 号 ON 状态	06	6		

	•••	•••	
2号ON状态, 1/3-6号OFF状态	3D	61	
1号ON状态, 2-6号OFF状态	3E	62	
1-6 号 FF 状态	3F	63	

附 1: MODBUS CRC16 检验码计算方法

循环冗余校验CRC区为2字节,含一个16位二进制数据。由发送设备计算CRC值,并把计算值附在信息 中,接收设备在接收信息时,重新计算CRC值,并把计算值与接收的在CRC区中实际值进行比较,若两者不 相同,则产生一个错误。

CRC开始时先把寄存器的16位全部置成"1",然后把相邻2个8位字节的数据放入当前寄存器中,只有 每个字符的8位数据用作产生CRC, 起始位, 停止位和奇偶校验位不加到CRC中。

产生CRC期间,每8位数据与寄存器中值进行异或运算,其结果向右移一位(向LSB方向),并用"0"填 入MSB,检测LSB,若LSB为"1"则与预置的固定值异或,若LSB为"0"则不作异或运算。

重复上述处过程,直至移位8次,完成第8次移位后,下一个8位数据,与该寄存器的当前值异或,在 所有信息处理完后, 寄存器中的最终值为CRC值。 产生CRC的过程:

- 1. 把16位CRC寄存器置成FFFFH.
- 第一个8位数据与CRC寄存器低8位进行异或运算,把结果放入CRC寄存器。
- CRC寄存器向右移一位, MSB填零, 检查LSB. 3.
- 4. (若LSB为0):重复3,再右移一位。 (若LSB为1):CRC寄存器与A001 H 进行异或运算
- 重复3和4直至完成8次移位,完成8位字节的处理。
- 重复2至5步,处理下一个8位数据,直至全部字节处理完毕。 6.
- CRC寄存器的最终值为CRC值。
- 把CRC值放入信息时,高8位和低8位应分开放置。

把CRC值放入信息中

发送信息中的16 位CRC值时,先送低8位,后送高8位。 若CRC值为1241(0001 0010 0100 0001):

Addr	Func	Data	Data	Data	Data	Data	CR	CR
		Count					C_{Lo}	Сні
	•						41	12

图1: CRC字节顺序

版本: V1605; 修改波特率,增加115200、38400 bps;

版本: V1610: 增加奇偶校验设置方式说明: