W algebrze Boole'a B definiujemy relację \leq następująco:

$$\forall_{x,y \in B} \ x \leqslant y \iff x \lor y = y.$$

Twierdzenie

Niech B będzie algebrą Boole'a i niech $x,y\in B$. Wtedy

- $x \leqslant y \iff x \land y = x$
- $2 x \land y \leqslant x \leqslant x \lor y$
- **3** $0 \le x \le 1$

Ponadto (B,\leqslant) jest kratą (tzn. zbiorem częściowo uporządkowanym, w którym każdy dwuelementowy podzbiór ma supremum i infimum).

Niech B będzie zbiorem z działaniami binarnymi \land , \lor , działaniem unarnym \neg i niech $0,1\in B,\ 0\neq 1.$ Szóstkę $(B,\land,\lor,\lnot,0,1)$ nazywamy **algebrą Boole'a** wtedy i tylko wtedy, gdy dla dowolnych $x,y,z\in B$ mamy

- $\bullet \ x \land y = y \land x, \ x \lor y = y \lor x,$
- $(x \wedge y) \wedge z = x \wedge (y \wedge z), (x \vee y) \vee z = x \vee (y \vee z),$
- $x \lor (y \land z) = (x \lor y) \land (x \lor z), \quad x \land (y \lor z) = (x \land y) \lor (x \land z),$
- \bullet $1 \land x = x, \quad 0 \lor x = x,$
- $\bullet \neg x \land x = 0, \neg x \lor x = 1$
- Działania można interpretować następująco: ∧ to mnożenie, ∨ to dodawanie,
 a ¬ to dopełnienie.
- Jeżeli operacje są z góry określone, to $(B, \wedge, \vee, \neg, 0, 1)$ oznaczamy w skrócie przez B.

Definicia

- Wielomianem boolowskim W zmiennych x_1,x_2,\ldots,x_n nazywamy formułę zdaniową zbudowaną wyłącznie z x_1,x_2,\ldots,x_n oraz spójników \wedge,\vee i $\neg.$
- Wartościowanie logiczne wielomianu boolowskiego W nazywamy n-argumentową funkcją boolowską $f=W(x_1,x_2,\ldots,x_n)$ i mówimy wtedy, że W generuje f.
- Zbiór wszystkich n-argumentowych fukcji boolowskich oznaczamy przez Bool(n).

Przykład

Podać przykład wielomianu boolowskiego zmiennych x,y,z. Ustalić jego wartościowanie logiczne.

Rozpatrzmy wielomian $(x\vee y)\wedge (\neg z)$ generujący funkcję $f(x,y,z)=(x\vee y)\wedge (\neg z)$. Mamy

$$f(0,0,0) = 0$$
 $f(1,0,0) = 1$
 $f(0,0,1) = 0$ $f(1,0,1) = 0$
 $f(0,1,0) = 1$ $f(1,1,0) = 1$

Algebry Boole'a i funkcje boolowskie

Twierdzenie

Każdy niezerowy element skończonej algebry Boole'a jest sumą różnych atomów tej algebry. Przedstawienie to jest jednoznaczne z dokładnościa do kolejności czynników.

Dokładniej, jeżeli niezerowy element algebry Boole'a nie jest atomem, to jest suma wszystkich atomów mniejszych od niego.

Wniosek

Każdy niejedynkowy element skończonej algebry Boole'a jest iloczynem różnych co-atomów tej algebry. Przedstawienie to jest jednoznaczne z dokładnością do kolejności czynników.

Przykład

Zapisać (1,0,1,1,0) jako sumę atomów i jako iloczyn co-atomów.

$$(1,0,1,1,0) = (1,0,0,0,0) \lor (0,0,1,0,0) \lor (0,0,0,1,0)$$

$$(1,0,1,1,0) = (1,0,1,1,1) \land (1,1,1,1,0)$$

Niech B_1 , B_2 będą algebrami Boole'a. Funkcję $f:B_1\to B_2$ nazywamy izomorfizmem B_1 i B_2 wtedy i tylko wtedy, gdy dla każdych $x,y\in B_1$ mamy

- f jest bijekcją,
- $f(x \wedge y) = f(x) \wedge f(y),$
- $f(x \vee y) = f(x) \vee f(y),$
- **5** f(0) = 0,
- f(1) = 1

Zatem izomorfizm to bijekcja, która zachowuje wszystkie działania.

Niech B będzie nietrywialną algebrą Boole'a.

- Niezerowy element $a \in B$ nazywamy **atomem** B wtedy i tylko wtedy, gdy dla każdych $b, c \in B$ z równania $a = b \lor c$ wynika, że a = b lub a = c.
- Niejedynkowy element $a \in B$ nazywamy **co-atomem** B wtedy i tylko wtedy, gdy dla każdych $b, c \in B$ z równania $a = b \wedge c$ wynika, że a = b lub a = c.

Zauważmy, że co-atom to dopełnienie atomu.

Wniosek

- Niezerowy element $a \in B$ jest atomem algebry B wtedy i tylko wtedy, gdy nie istnieje $x \in B$ taki, że 0 < x < a.
- Niejedynkowy $a \in B$ jest co-atomem algebry B wtedy i tylko wtedy, gdy nie istnieje $x \in B$ taki, że a < x < 1.

Analogicznie:

Twierdzenie

Każdy co-atom Bool(n) jest generowany przez dokładnie jeden maxterm.

Wniosek

Każda funkcja boolowska jest generowana przez iloczyn maxtermów.

Reprezentacja wielomianu boolowskiego w postaci iloczynu maxtermów jest nazywana jego koniunkcyjną postacią normalną (CNF).

Uwaga!

Każda funkcja boolowska może być generowana przez nieskończenie wiele wielomianów boolowskich

Generowanie funkcji boolowskich przez wielomiany

Twierdzenie

Każdy atom Bool(n) jest generowany przez dokładnie jeden minterm.

Wniosek

Każda funkcja boolowska jest generowana przez sumę mintermów.

Reprezentacja wielomianu boolowskiego w postaci sumy mintermów jest nazywana jego dysjunkcyjną (alternatywną) postacią normalną (DNF).

Zastosowanie do układów elektrycznych

- Switch (łącznik) to urządzenie dwustanowe. Może być ustawiony albo w pozycji otwartej (wartość 0, prąd nie płynie) lub zamkniętej (wartość 1, prąd płynie).
- (Prosty) system przełączający (obwód elektryczny) składa się ze źródła energii, wyjścia oraz switchów.
- Dwa podstawowe sposoby łączenia switchów to równoległy (∨)
 i szeregowy (∧). Czasami konieczne jest użycie switcha, który zawsze jest
 w pozycji odwrotnej do ustalonego (¬).
- Prosty system przełączający nie zawiera pętli, więc wyjście zależy tylko od sposobu połączenia switchy (nie od czasu).

Zatem wszystkie połączenia switchów w systemie przełączającym można opisać wielomianem boolowskim, a wyjście — funkcją boolowską generowaną przez ten wielomian.

Przykład

Wygenerować funkcję $f \in \text{Bool}(3)$ daną wzorem

$$f(x, y, z) = \neg (x \land (\neg y \Leftrightarrow z)) \Rightarrow y$$

za pomocą wielomianu DNF.

Zapiszmy tabelę wartości funkcji f, aby sprawdzić, kiedy przyjmuje ona wartość 1:

x	y	z	f(x,y,z)		
0	0	0	0		
0	0	1	0		
0	1	0	1	\rightarrow	$\neg x \wedge y \wedge \neg z$
0	1	1	1	\rightarrow	$\neg x \wedge y \wedge z$
1	0	0	0		
1	0	1	1	\rightarrow	$x \wedge \neg y \wedge z$
1	1	0	1	\rightarrow	$x \wedge y \wedge \neg z$
1	1	1	1	\rightarrow	$x \wedge y \wedge z$

Zatem funkcja f w postaci wielomianu DNF to

$$(\neg x \land y \land \neg z) \lor (\neg x \land y \land z) \lor (x \land \neg y \land z) \lor (x \land y \land \neg z) \lor (x \land y \land z)$$

Digrafy

dr inż. Bartłomiej Pawlik

14 sierpnia 2024

- Dowolną orientację grafu pełnego nazywamy turniejem.
- Digraf D jest r-regularny, jeżeli równania

$$outdeg v = indeg v = r$$

zachodzą dla każdego $v \in V(D)$.

Przykład 9

Grafy D_1 i D_2 z przykładu 7 są jedynymi turniejami rzędu 3 (a zarazem jedynymi orientacjami grafu K_3). Ponadto graf D_2 jest grafem 1-regularnym.

Ile jest turniejów rzędu 4? Są cztery takie turnieje:

 $T_{4.3}$

 $T_{4.4}$

Zauważmy, że turnieje mogą mieć źródła i ujścia, co sugeruje że na ogół nie są one digrafami hamiltonowskimi. Zachodzi jednak następujące twierdzenie:

Twierdzenie (Rédei, Camion)

Każdy turniej jest trasowalny lub hamiltonowski.

Dowód. (1/2)

Aby teza była prawdziwa, wystarczy aby turniej zawierał ścieżkę Hamiltona. Niech T będzie turniejem i niech

$$P = (v_1, v_2, \dots, v_k)$$

będzie najdłuższą ścieżką w T. Jeżeli P nie jest ścieżką Hamiltona, to $1 \leqslant k < n$ oraz istnieje wierzchołek $v \in V(T)$ taki, że $v \notin P$. Z faktu, że P jest najdłuższą ścieżką otrzymujemy, że

$$(v, v_1), (v_k, v) \notin E(T).$$

Zatem, na mocy faktu że T jest turniejem, mamy

$$(v_1, v), (v, v_k) \in E(T).$$

23 / 25

- Stopniem wyjściowym out $\deg v$ wierzchołka v w digrafie D nazywamy liczbę krawędzi, których początkiem jest v.
- Stopniem wejściowym $\operatorname{indeg} v$ wierzchołka v w digrafie D nazywamy liczbę krawędzi, których końcem jest v.

Przykład 2

Stopnie wierzchołków digrafu z przykładu 1 to:

outdeg
$$(1) = 1$$
, outdeg $(2) = 0$, outdeg $(3) = 1$,
indeg $(1) = 0$, indeg $(2) = 1$, indeg $(3) = 0$,
outdeg $(4) = 2$, outdeg $(5) = 0$, outdeg $(6) = 0$,
indeg $(4) = 1$, indeg $(5) = 2$, indeg $(6) = 0$.

4 / 25

B. Pawlik Digrafy

Podstawowe twierdzenie teorii digrafów

Dla każdego digrafu D zachodzi

$$\sum_{v \in V(D)} \operatorname{outdeg} v = \sum_{v \in V(D)} \operatorname{indeg} v = |E(D)|.$$

Dowód.

Podczas dodawania stopni wyjściowych każdy łuk jest liczony tylko raz — podobnie jak podczas dodawania stopni wejściowych.

Powyższe twierdzenie jest digrafowym odpowiednikiem lematu o uściskach dłoni.

Macierzą sąsiedztwa (multi)digrafu D to macierz $A_D = [s_{ij}]$, w której a_{ij} określa liczbę łuków od i-tego do j-tego wierzchołka.

Przykład 3

Macierzą sąsiedztwa digrafu przedstawionego w przykładzie 1 jest

6 / 25

Grafem pierwotnym digrafu D nazywamy graf otrzymany przez zastąpienie każdego łuku (u,v) lub symetrycznej pary łuków (u,v) i (v,u) przez krawędź $\{u,v\}$.

Przykład 6

Poniższe digrafy D_1 i D_2 mają taki sam graf pierwotny (G).

10 / 25

Macierz incydencji digrafu D to macierz $B_D = [b_{ij}]$, w której

$$B_{ij} = \left\{ \begin{array}{ll} 1, & \text{gdy wierzchołek } v_i \text{ jest początkiem łuku } e_j \\ -1, & \text{gdy wierzchołek } v_i \text{ jest końcem łuku } e_j \\ 0, & \text{gdy wierzchołek } v_i \text{ nie jest incydentny z łukiem } e_j \end{array} \right..$$

Wniosek

- Suma elementów w i-tym wierszu macierzy incydencji digrafu D wynosi out $\deg v_i + \mathrm{indeg}\,v_i$.
- ullet Suma elementów w j-tej kolumnie macierzy incydencji digrafu D wynosi 0.

B. Pawlik Digrafy 14 sierpnia 2024

Definicia

- ullet Jeżeli w digrafie D istnieje cykl niewłaściwy d przechodzący przez każdą krawędź digrafu D dokładnie jeden raz, to d nazywamy **cyklem Eulera**, a digraf D — digrafem eulerowskim.
- ullet Jeżeli digraf D nie jest digrafem eulerowskim i istnieje ścieżka d przechodząca przez każdą krawędź digrafu D dokładnie jeden raz, to d nazywamy ścieżką Eulera, a digraf D — digrafem jednobieżnym (półeulerowskim).

Przykład 11

Rozważmy turnieje rzędu 3 (przykład 7). D_2 jest eulerowski, natomiast D_1 nie jest ani eulerowski ani jednobieżny.

18 / 25

B Pawlik Digrafy

Turniej T jest **przechodni**, jeżeli z tego, że (u,v) i (v,w) są łukami w T wynika, że (u,w) również jest łukiem w T.

Przykład 10

Które turnieje rzędu 4 (przykład 9) są przechodnie?

Jedynym przechodnim turniejem rzędu 4 jest $T_{4,4}$.

15 / 25

B. Pawlik Digrafy 14 sierpnia 2024