

Design and Analysis of Algorithm (CS 412)

Instructor: Dr. Ayesha Enayet

Date:		
	CS 6th	

SIS ID:	Name:

Note: Attempt all the questions

A. Choose the correct answer

- 1. The best-case complexity of the merge sort is ______. [1]
 - a) Ω(n)
 - b) Ω(nlgn)

c) $\Omega(n^2)$

- d) $\Omega(2^n)$
- 2. The solution to a recurrence T(n)=2T(n/2)+1 is:
- b) O(nlgn)

a) O(n)c) O(n²)

- d) O(2ⁿ)
- B. Consider the following recurrence tree of an algorithm, where the size of each subproblem is n/3 and the complexity of the driving function f(n) is O(n):
 - 1. Find out the worst-case time complexity of the algorithm.

[1]

[1]

2. Verify your solution with the help of the Master theorem.

[1]

3. The total cost of all the internal nodes of the tree (including the root node)?[Hint: use summation to define the solution] [1]

$$T(n)=3T(n/3)+n$$
 $T(n/3)=3T(n/3^2)+n/3$
 $T(n)=3[3T(n/3^2)+n/3]+n$
 $T(n)=3[3T(n/3^2)]+n+n$
 $T(n)=3^3T(n/3^3)]+n+n+n$
.....
 $T(n)=3^kT(n/3^k)]+k.n$
 $K=lg_3n$
 $T(n)=3^kT(n/3^k)]+n.(lg_3n)$
 $T(n)=O(n.(lg_3n))$

Case 2:f(n)= n^{lg_ba}

- If y>-1 then $T(n)=\Theta(n^x l g^{y+1} n)$
- $T(n) = \Theta(nlgn)$

$$\sum_{k=0}^{\lg_3 n-1} 3^k T(\frac{n}{3^k})$$