Assignment-12

Ankur Aditya - EE20RESCH11010

Abstract—This document contains the problem related to basis and dimensions.(Hoffman:- Page-49,Q-12)

Download the latex-file codes from

https://github.com/ankuraditya13/EE5609—Assignment12

1 Problem

Prove that the space of all mxn matrices over the field F has dimension mn, by exhibiting a basis for this space.

2 Solution

Let M be the space of all $m \times n$ matrices. Let, $M_{ij} \in M$ be,

$$\mathbf{M}_{ij} = \begin{cases} 0 & m \neq i, n \neq j \\ 1 & m = i, n = j \end{cases}$$
 (2.0.1)

For example,

$$\mathbf{M}_{12} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}_{mxn}$$
 (2.0.2)

(2.0.3)

Let $A \in M$ given as,

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{pmatrix}_{m \times n}$$
(2.0.4)

Now clearly,

$$\mathbf{a}_{11} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$
(2.0.5)

$$\implies \mathbf{a}_{11} = \mathbf{A}\mathbf{M}_{11} \tag{2.0.6}$$

$$\therefore \mathbf{A} = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} M_{ij}$$
 (2.0.7)

 \implies **M**_{ij} span **M**. Also from equation (2.0.7), **A**= 0 if and only if all elements are zero, that is,

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$
(2.0.8)

$$\implies a_{ii} = 0 \tag{2.0.9}$$

Hence, \mathbf{M}_{ij} are linearly independent as well. Hence, \mathbf{M}_{ij} constitutes a basis for \mathbf{M} . and number of elements in basis are mn. Hence dimension of space of all mxn matrices \mathbf{M} is mn.

Hence Proved.