- 1) Find the orders of each element of the additive group $\mathbb{Z}/12\mathbb{Z}$.
- \to For any group (G,*) the order of $a \in G$ is defined as the least positive integer n such that $a^n = 1$. For the additive group $\mathbb{Z}/12\mathbb{Z}$, we must find n such that $\overline{na} = \overline{0}$. The following table summarizes the orders of each integer.

element	Ō	1	$\bar{2}$	3	$\bar{4}$	$\bar{5}$	$\bar{6}$	$\bar{7}$	8	9	10	11
order	1	12	6	4	3	12	2	12	3	4	6	12

- 2) Find the orders of the following elements of the multiplicative group $(\mathbb{Z}/36\mathbb{Z})^{\times}$: $\overline{1}$, $\overline{-1}$, $\overline{5}$, $\overline{-13}$, $\overline{17}$.
- \to To find the orders of the elements of the group $(\mathbb{Z}/36\mathbb{Z})^{\times}$, we determine the least n such that $\bar{a}^n = \overline{a^n} = \bar{1}$. They are as follows:

order
$$(\overline{1}) = 1$$

order $(\overline{-1}) = 2$
order $(\overline{5}) = 6$
order $(\overline{-13}) = 6$
order $(\overline{17}) = 2$

3) Let (A, \star) and (B, \diamond) be groups. Let $A \times B$ be the Cartesian product of A and B. Define an operation * on $A \times B$ by

$$(a_1, b_1) * (a_2, b_2) = (a_1 * a_2, b_1 \diamond b_2).$$

Show that $(A \times B, *)$ is a group.

Proof

We prove the following properties:

i) Observe that

$$[(a_1, b_1) * (a_2, b_2)] * (a_3, b_3) = ((a_1 * a_2) * a_3, (b_1 \diamond b_2) \diamond b_3)$$
$$= (a_1 * (a_2 * a_3), b_1 \diamond (b_2 \diamond b_3))$$
$$= (a_1, b_1) * [(a_2, b_2) * (a_3, b_3)]$$

since \star and \diamond are associative binary operations on A and B, respectively.

- ii) Since (A, \star) and (B, \diamond) are groups, they must have identities $\mathbb{1}_{(A, \star)}$ and $\mathbb{1}_{(B, \diamond)}$. Thus, we see that $(A \times B, *)$ has an identity element $\mathbb{1} = (\mathbb{1}_{(A, \star)}, \mathbb{1}_{(B, \diamond)})$ since $(a, b) * \mathbb{1} = (a \star \mathbb{1}_{(A, \star)}, b \diamond \mathbb{1}_{(B, \diamond)}) = (a, b)$.
- iii) Finally, since each element $a \in A$ and $b \in B$ have unique inverses a^{-1} and b^{-1} under \star and \diamond , respectively, we see that $(a,b) \in A \times B$ has inverse (a^{-1},b^{-1}) under *, observing that $(a,b)*(a^{-1},b^{-1})=(a\star a^{-1},b\diamond b^{-1})=(\mathbb{1}_{(A,\star)},\mathbb{1}_{(B,\diamond)})=\mathbb{1}$.

4) Let A be the set of 2×2 matrices with real number entries. Let

$$M = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

and let

$$B = \{X \in A : XM = MX\}$$

1) Determine which of the following elements of A lies in B

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

 \rightarrow Observe the following:

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} M = M^2 = M \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} M = M \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} M = \mathbb{1}_{2 \times 2} M = M \mathbb{1}_{2 \times 2} = M \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

Hence, the matrices

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

are elements of B.

2) Prove that if $P, Q \in B$, then $P + Q \in B$.

Proof

Notice that PM = MP and QM = MQ. Hence, PM + QM = MP + MQ or (P+Q)M = M(P+Q).

3) Prove that if $P, Q \in B$, then $PQ \in B$.

Proof

Notice that PM = MP. Multiplying on the right by Q, we have PMQ = MPQ. Since QM = MQ, we have PQM = MPQ.

4) Is the set B with matrix addition a group?

Proof

We show that B is a group under matrix addition. Since B is a set of matrices and matrix addition is associative, it immediately follows that B is associative under matrix addition. Additionally, we have trivially that

$$\mathbb{1}_+ = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Finally, it is easy to see that for any matrix P that its inverse is -P since P + (-P) = P - P = 0 (the zero matrix).

5) Is the set B with matrix multiplication a group?

Proof

It is easy to observe that B is not a group under matrix multiplication. Matrix multiplication is associative generally and

$$\mathbb{1}_{\times} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

is the identity for 2×2 matrix multiplication, but we cannot find a unique inverse for each $P \in B$ since P is invertible iff $\det(P) \neq 0$. A counterexample may be

$$P = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

which has a determinant which is trivally zero.

Note: If we impose an additional restriction on B such that only matrices which are invertible are elements of B, then B would be a group under matrix multiplication.

5[2.1.2]) Let θ be a real number and define

$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

(a) R_{θ} is called a rotation matrix. Can you explain why?

Consider rotating a point $(x, y) = (r \cos \phi, r \sin \phi)$ to a point (x', y') by an angle θ . Then

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} r\cos(\phi + \theta) \\ r\sin(\phi + \theta) \end{bmatrix} = \begin{bmatrix} r\cos\phi\cos\theta - r\sin\phi\sin\theta \\ r\cos\phi\sin\theta + r\sin\phi\cos\theta \end{bmatrix} = \begin{bmatrix} x\cos\theta - y\sin\theta \\ x\sin\theta + y\cos\theta \end{bmatrix}$$

$$= \underbrace{\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}}_{R_{\theta}} \begin{bmatrix} x \\ y \end{bmatrix}$$

It is seen then that the rotation matrix rotates points in the xy-plane through an angle θ , or alternatively, it can be viewed as rotating the axes by $-\theta$.

(b) Show $R_{\theta}R_{\mu} = R_{?}, \ R_{\theta}^{-1} = R_{?}.$

Notice that

$$\begin{split} R_{\theta}R_{\mu} &= \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\mu & -\sin\mu \\ \sin\mu & \cos\mu \end{bmatrix} \\ &= \begin{bmatrix} \cos\theta\cos\mu - \sin\theta\sin\mu & -[\cos\theta\sin\mu + \sin\theta\cos\mu] \\ \sin\theta\cos\mu + \cos\theta\sin\mu & -\sin\theta\sin\mu + \cos\theta\cos\mu \end{bmatrix} \\ &= \begin{bmatrix} \cos(\theta+\mu) & -\sin(\theta+\mu) \\ \sin(\theta+\mu) & \cos(\theta+\mu) \end{bmatrix} = R_{\theta+\mu}, \end{split}$$

and

$$R_{\theta}R_{-\theta} = \begin{bmatrix} \cos(\theta - \theta) & -\sin(\theta - \theta) \\ \sin(\theta - \theta) & \cos(\theta - \theta) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1,$$

meaning $R_{\theta}R_{\mu} = R_{\theta+\mu}$ and $R_{\theta}^{-1} = R_{-\theta}$.

(c) Let $G = \{R_{\theta} | \theta \in \mathbb{R}\}$. Show that G is a group under matrix multiplication.

Proof

Since the elements of G are matrices and matrix multiplication is associative, it follows that G is associative. We also see that R_0 is the identity element in G since it is also the 2×2 identity matrix. We showed in part (b) that $R_{\theta}^{-1} = R_{-\theta}$. It also suffices to show that $\det(R_{\theta}) = \cos^2 \theta + \sin^2 \theta = 1 \neq 0$, implying that each matrix in G has an inverse.

6[2.1.3]) Let \mathbb{Z} denote the set of integers, and let

$$G = \{ \begin{bmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} | a \in \mathbb{Z} \}.$$

Prove that G together with the usual matrix multiplication forms a group.

Proof

Observe that G is associative since its elements are matrices and matrix multiplication is generally associative. Also, the element of G with a=1 serves as the identity since

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & b & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & b & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

for any $b \in \mathbb{Z}$. Finally, we see that

$$\begin{vmatrix} 1 & a & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{vmatrix} = 1,$$

so every matrix in G has a unique inverse.

7[2.2.1]) Let G be a group. Prove that $(ab)^{-1} = a^{-1}b^{-1}$ for all a and b in G if and only if G is abelian.

Proof

(\Leftarrow) We have proven that $(ab)^{-1}=b^{-1}a^{-1}$ for any group. If G is abelian, then it follows that $b^{-1}a^{-1}=a^{-1}b^{-1}$.

(\Rightarrow) Suppose that $(ab)^{-1}=a^{-1}b^{-1}$. We have also proven that $(ab)^{-1}=b^{-1}a^{-1}$. Hence, $(ab)^{-1}=(ba)^{-1}$ for all $a,b\in G$. This implies that ab=ba (since each element has a unique inverse) and that G is abelian.

8[2.2.2]) Let G be a group. Show that, for all $a, b \in G$, we have $(ab)^2 = a^2b^2$ if and only if G is abelian.

Proof

 (\Leftarrow) Let G be an abelian group. Then ab = ba for all $a, b \in G$, and $(ab)^2 = abab = aabb = a^2b^2$.

 (\Rightarrow) Assume for all $a, b \in G$ that $(ab)^2 = a^2b^2$. Then abab = aabb. Multiplying on the left by a^{-1} and on the right by b^{-1} we have $a^{-1}(abab)b^{-1} = ba$ and $a^{-1}(aabb)b^{-1} = ab$. That is, ba = ab or G is abelian.

9[2.2.3]) If G is a group in which $a^2 = 1$ for all $a \in G$, show that G is abelian.

Proof

Observe that each element in G is its own inverse. That is $a = a^{-1}$. Thus, $ab = (ab)^{-1} = b^{-1}a^{-1} = ba$, proving that G is abelian.

10[2.2.4])

(a) If G is a finite group of even order, show that there must be an element $a \neq 1$, such that $a^{-1} = a$.

Proof

Since G is finite and even we have $G = \{1, a_2, a_3, \ldots, a_n\}$ where n is even. Suppose that for each element $a \neq 1$ that $a^{-1} \neq a$. However, there are n-1 elements which are not the identity, and since $2 \not\mid n-1$, it is impossible that each element has a unique inverse. Thus, it must be the case that there exists at least one $a \neq 1$ in G such that $a^{-1} = a$.

(b) Give an example to show that the conclusion of part (a) does not hold for groups of odd order.

 \rightarrow Consider a cyclic group of order 3: $\{1, a, a^2\}$. It is clear that $a^{-1} = a^2$ and $(a^2)^{-1} = a$. As a concrete example consider $(\mathbb{Z}/5\mathbb{Z})^{\times}$ and $\langle \overline{2} \rangle = \{\overline{2}, \overline{4}, \overline{1}\}$. This is a group of order three with $\overline{1}^{-1} = \overline{1}$, $\overline{2}^{-1} = \overline{4}$, and $\overline{4}^{-1} = \overline{2}$.