This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

DIALOG(R)File 352:Derwent WPI

(c) 2001 Derwent Info Ltd. All rts. reserv.

010077359 **Image available**
WPI Acc No: 1994-345072/199443

Related WPI Acc No: 1994-345073; 1999-087751; 2000-682210; 2000-682211;

2001-011025

XRAM Acc No: C97-113558 XRPX Acc No: N97-291185

Thin film transistor manufacture using crystallisation catalysts - in the semiconductor layer to promote crystallisation at low temperatures

avoiding distortion of the substrate

Patent Assignee: SEMICONDUCTOR ENERGY LAB (SEME); SEMICONDUCTOR ENERGY RES CO LTD (SEME); SEMICONDUCTOR ENERGY LAB CO INC (SEME)

Inventor: TAKAYAMA T; TAKEMURA Y; ZHANG H Number of Countries: 005 Number of Patents: 013

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date V	Veek
JP 6267978	Α	19940922	JP 9378997	Α	19930312	199443 B
US 5595944 ·	Α	19970121	US 94207182	Α	19940308	199710
			US 94360600	Α	19941221	
TW 236711	Α	19941211	TW 94101957	7 A	19940307	7 199510
CN 1108004	Α	19950906	CN 94104268	Α	19940312	199732
US 5646424	Α	19970708	US 94207182	Α	19940308	199733
			US 95477941	Α	19950607	
US 5773846	Α	19980630	US 94207182	Α	19940308	199833
			US 95449669	Α	19950524	
CN 1215224	Α	19990428	CN 94104268	Α	19940312	199935
			CN 98116322	Α	19940312	
US 6060725	Α	20000509	US 94207182	Α	19940308	200030
			US 95449669	Α,	19950524	
			US 97933342	Α	19970919	
KR 194448	B1	19990701	KR 983945	Α	19980211	200063
			KR 9854318	Α	19981211	
KR 194450	B1	19990701	KR 944944	Α	19940312	200063
			KR 983945	Α	19980211	
KR 203982	B1	19990615	KR 944944	Α	19940312	200063
CN 1275813	Α	20001206	CN 94104268	Α	19940312	200118
			CN 98116321	Α	19940312	
US 6261875 -	B 1	20010717	US 94207182	Α	19940308	200148
			US 95449669	Α	19950524	
			US 97933342	Α	19970919	
			US 99432109	Α	19991102	

Priority Applications (No Type Date): JP 9378997 A 19930312; JP 9378998 A 19930312

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

JP 6267978 A 5 H01L-021/336

US 5595944 A 13 H01L-021/265 Div ex application US 94207182 patent JP 6267978

TW 236711	Α	H01L-021/331	
CN 1108004	Α	H01L-029/36	patent JP 6267978
US 5646424	Α	11 H01L-029/76	Cont of application US 94207182
			patent JP 6267978
US 5773846	Α	H01L-029/76	Div ex application US 94207182
CN 1215224	Α	H01L-021/336	Div ex application CN 94104268
US 6060725	Α	H01L-029/76	Div ex application US 94207182
			Div ex application US 95449669
			Div ex patent US 5773846
KR 194448	B1	H01L-029/786	Div ex application KR 983945
KR 194450	B1	H01L-029/786	Div ex application KR 944944
KR 203982	B1	H01L-029/78	
CN 1275813	Α	H01L-029/786	Div ex application CN 94104268
US 6261875	B 1	H01L-021/00	Div ex application US 94207182
			Div ex application US 95449669
			Div ex application US 97933342
			Div ex patent US 5773846
			Div ex patent US 6060725

Abstract (Basic): JP 6267978 A Dwg.1/2 US 5646424 A

A semiconductor device comprises: a semiconductor layer having a crystallinity formed on a substrate; a pair of impurity regions of P or N type conductivity formed in the semiconductor layer, wherein the semiconductor layer contains a catalyst at a concn. <1x 1020 atoms/cm3 for promoting a crystallisation thereof. An inner edge of at least one of the impurity regions is substantially aligned with at least one edge of a gate electrode. Also claimed is a transistor.

USE - Fabrication of a thin film transistor device through steps of crystallisation and thermal activation annealing.

ADVANTAGE - Increased productivity by increased throughput by activation at a relatively low temp. for a short time; shrinkage and warping avoided; improved reliability and maintenance of transistor characteristics.

Dwg.1E/4

US 5595944 A

Insulated gate field effect transistor mfd. by: (i) forming a gate electrode on a glass substrate and a gate insulating layer on the electrode; (ii) forming over the gate insulating layer an amorphous silicon semiconductor layer, containing no more than 1 x 1020 atoms cm-3 of crystallisation catalyst; (iii) forming on the semiconductor layer, a mask, self-aligned with the gate electrode; (iv) optionally forming a metal film on the semiconductor layer, removing portions overlying the mask; (v) implanting metal ions either side of the mask, forming first (7a) and second regions (7b) or in the presence of the film, implanting the first region only.

Also claimed is a structure, the gate insulating layer and electrode being formed on the semiconductor layer.

USE - This invention relates to the fabrication of a thin film transistor, in particular one fabricated by crystallisation and thermal annealing.

ADVANTAGE - Prior art methods of producing crystallisation in thin film transistors, involves the use of process temperatures in excess of the substrate deformation temperature, i.e. 600 - 1000 deg. C for periods of 24 hours or more resulting in the shrinkage and warping of glass substrates.]This invention incorporates a catalyst to allow crystallisation to occur below the substrate deformation temperature, reducing process temperatures to at most 550 deg. C and times to at most 8 hours, avoiding substrate distortions and more efficient processing. Dwg.1D/4

Title Terms: THIN; FILM; TRANSISTOR; MANUFACTURE; CRYSTAL; CATALYST;

SEMICONDUCTOR; LAYER; PROMOTE; CRYSTAL; LOW; TEMPERATURE; AVOID;

DISTORT; SUBSTRATE

Derwent Class: L03; U11; U12

International Patent Class (Main): H01L-021/00; H01L-021/265; H01L-021/331; H01L-021/336; H01L-029/36; H01L-029/76; H01L-029/78; H01L-029/786

International Patent Class (Additional): H01L-021/20; H01L-021/324;

H01L-021/84; H01L-027/01; H01L-029/04; H01L-029/772; H01L-029/784

File Segment: CPI; EPI

DIALOG(R)File 347:JAPIO

(c) 2001 JPO & JAPIO. All rts. reserv.

04596078 **Image available**

THIN FILM TRANSISTOR AND MANUFACTURE THEREOF

PUB. NO.:

06-267978 [JP 6267978 A]

PUBLISHED:

September 22, 1994 (19940922)

INVENTOR(s): CHIYOU KOUYUU

TAKAYAMA TORU

TAKEMURA YASUHIKO

APPLICANT(s): SEMICONDUCTOR ENERGY LAB CO LTD [470730] (A Japanese

Company or Corporation), JP (Japan)

APPL. NO.:

05-078997 [JP 9378997]

FILED:

March 12, 1993 (19930312)

INTL CLASS:

[5] H01L-021/336; H01L-029/784; H01L-021/20; H01L-021/265;

H01L-021/324

JAPIO CLASS: 42.2 (ELECTRONICS -- Solid State Components)

JAPIO KEYWORD: R004 (PLASMA); R044 (CHEMISTRY -- Photosensitive Resins);

R096 (ELECTRONIC MATERIALS -- Glass Conductors); R097

(ELECTRONIC MATERIALS -- Metal Oxide Semiconductors, MOS);

R100 (ELECTRONIC MATERIALS -- Ion Implantation)

JOURNAL:

Section: E, Section No. 1647, Vol. 18, No. 673, Pg. 27,

December 19, 1994 (19941219)

ABSTRACT

PURPOSE: To lower crystallization temperature and shorten a crystallization time by forming a gate electrode, a gate insulating film and a semiconductor layer on a substrate, an active region sandwiched by a pair of impurity regions is provided on the semiconductor layer and concentration of a catalytic element promoting crystallization in the impurity region is made larger than that of the active region.

CONSTITUTION: A gate electrode 2 is formed on a substrate and an anode oxide 3 is formed on the gate electrode 2. Further, a silicon nitride film

is formed as a gate insulating film by a plasma CVD method, continuously an amorphous silicon film is piled up by a plasma CVD method for forming a semiconductor layer 5 by patterning. Then, a pair of impurity regions 7a, 7b are formed on the semiconductor layer 5 for being further recrystallized by a crystallization promoting catalytic action of nickel larger than the active region. Continuously, a silicon oxide film 8 is formed as an interlayer insulator for forming the source/drain regions 9a, 9b. Thereby, process of crystallization can be performed at lower temperature of a crystallization process so as to shorten crystallization.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-267978

(43)公開日 平成6年(1994)9月22日

(51)Int.Cl. ⁵ H 0 1 L	21/336 29/784	識別記号	庁内整理番号	FI		技術表示箇所	
	21/20		8122-4M 9056-4M 8617-4M 審査請求		29/78 3 1 1 P 21/265 P 頁の数 9 FD(全 5 頁)	最終頁に続く	
(21)出願番号		特顯平5-78997		(71)出願人	、 000153878 株式会社半導体エネルギー研究所		
(22)出願日	平成5年(1993)3	月12日		神奈川県厚木市長谷398番地	1		
			(72)発明者	張 宏勇 神奈川県厚木市長谷398番地 導体エネルギー研究所内	1 株式会社半		
			(72)発明者	高山 徹 神奈川県厚木市長谷398番地 導体エネルギー研究所内	1 株式会社半		
			(72)発明者	竹村 保彦 神奈川県厚木市長谷398番地 導体エネルギー研究所内	1 株式会社半		

(54)【発明の名称】 薄膜トランジスタおよびその作製方法

(57)【要約】

【目的】 信頼性と特性に優れたアモルファスシリコン の活性層を有する逆スタガー型薄膜トランジスタ (TFT) および、そのようなTFTを安価に製造する方法を提供する。

【構成】 基板上にゲイト電極、ゲイト絶縁膜、アモルファスシリコン膜を形成し、アモルファスシリコン膜に不純物を注入して、不純物領域(ソース、ドレイン領域)を形成した後、結晶化を促進する触媒元素を有する被膜を不純物領域に密着させるか、あるいは触媒元素をイオンドーピング法等の手段で不純物領域に導入し、しかる後に、基板の歪み温度よりも低い温度でアニールしてドーピング不純物の活性化をおこなう。

1

【特許請求の範囲】

【請求項1】 基板上に形成されたゲイト電極と、ゲイト電極上に形成されたゲイト絶縁膜と、ゲイト絶縁膜上に形成された半導体層を有し、該半導体層には1対の不純物領域と不純物領域に挟まれた活性領域が設けられ、該不純物領域中の結晶化を促進する触媒元素の濃度は、活性領域のものより大きいことを特徴とする薄膜トランジスタ。

【請求項2】 請求項1において、触媒元素は、ニッケル、鉄、コバルト、白金の少なくとも1つであることを特徴とする薄膜トランジスタ。

【請求項3】 請求項1において、不純物領域の触媒元素の濃度は、活性領域の濃度ものの10倍以上であることを特徴とする薄膜トランジスタ。

【請求項4】 請求項1において、活性領域は実質的に アモルファスシリコンであることを特徴とする薄膜トランジスタ。

【請求項 5 】 基板上に形成されたゲイト電極と、ゲイト電極上に形成されたゲイト絶縁膜と、ゲイト絶縁膜上に形成された半導体層を有し、該半導体層には1対の不純物領域と不純物領域に挟まれた活性領域が設けられ、該不純物領域中の結晶化を促進する触媒元素の濃度が1×10¹⁷ c m⁻³もしくはそれを越える濃度であることを特徴とする薄膜トランジスタ。

【請求項6】 請求項5において、触媒元素の濃度は2次イオン質量分析法によって測定された最低値であることを特徴とする薄膜トランジスタ。

【請求項7】 基板上にゲイト電極を形成する第1の工程と.

前記ゲイト電極を覆って、ゲイト絶縁膜を形成する第2 の工程と、

前記ゲイト絶縁膜上にアモルファスシリコン膜を形成する第3の工程と、

前記ゲイト電極の形状に合わせて、前記アモルファスシリコン膜にドーピング不純物および結晶化を促進する触媒元素を添加する第4の工程と、を有することを特徴とする薄膜トランジスタの作製方法。

【請求項8】 基板上にゲイト電極を形成する第1の工 思と

前記ゲイト電極を**覆って、ゲイト絶縁**膜を形成する第2の工程と、

前記ゲイト絶縁膜上にアモルファスシリコン膜を形成する第3の工程と、

前記ゲイト電極の形状に合わせて、前記アモルファスシリコン膜にドーピング不純物を添加する第4の工程と、前記アモルファスシリコン膜上に触媒元素を有する材料を被着させる第5の工程とを有することを特徴とする薄膜トランジスタの作製方法。

【請求項9】 請求項8において、触媒元素を有する材料は、触媒元素とシリコンの化合物であることを特徴と

する薄膜トランジスタ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、薄膜トランジスタ(TFT)およびその作製方法に関するものである。本発明によって作製される薄膜トランジスタは、ガラス等の絶縁基板上、単結晶シリコン等の半導体基板上、いずれにも形成される。特に本発明は、熱アニールによる結晶化、活性化を経て作製される薄膜トランジスタに関する。

2

[0002]

【従来の技術】最近、絶縁基板上に、薄膜状の活性層 (活性領域ともいう)を有する絶縁ゲイト型の半導体装置の研究がなされている。特に、薄膜状の絶縁ゲイトトランジスタ、いわゆる薄膜トランジスタ(TFT)が熱心に研究されている。これらは、透明な絶縁基板上に形成され、マトリクス構造を有する液晶等の表示装置において、各画素の制御用に利用することや駆動回路に利用することが目的であり、利用する半導体の材料・結晶状20 態によって、アモルファスシリコンTFTや結晶性シリコンTFTというように区別されている。

【0003】中でも、アモルファスシリコンTFTの作製には高温を必要としないので、大面積基板に作製した場合の歩留りが高く、既に実用化されている。一般的に実用化されているアモルファスシリコンTFTの構造は逆スタガー型(もしくはボトムゲイト型)と呼ばれるもので、ゲイト電極が活性領域の下に位置する。

【0004】その作製方法は以下のようなものである。まず、基板上にゲイト電極を形成した後に、ゲイト絶縁30 膜、活性層としてのアモルファスシリコン膜を形成する。そして、ソース、ドレイン領域としてN型の微結晶シリコン膜をアモルファスシリコン上に形成する。しかしながら、この際、N型のシリコン膜と下地のアモルファスシリコン膜とのエッチングレートの差がほとんどないため、エッチングストッパーを設ける等の工夫が必要であった。

【0005】この問題を解決するためには、イオンドーピング法のような高速イオンを注入することによって、アモルファスシリコン膜に直接、ドーピング不純物を導 40 入して、これをソース、ドレインにする方法が提案されている。

[0006]

【発明が解決しようとする課題】しかしながら、このような高速イオンが注入された領域は結晶性が著しく悪いので、導電率が低く、そのままでは使用できないという問題を抱えていた。結晶性を高めるにはレーザー等の光エネルギーによってアニールをおこなう方法が提案されていたが母産実用化の目処がついていない。

【0007】現在、実用的に採用できる考えられる方法 50 は、熱によってアモルファスシリコンを結晶化させる方

30

3

法である。しかし、最低でも600 $\mathbb C$ の温度でのアニールが要求され、基板の問題かう実用的でない。すなわち、アモルファスシリコンTFTに使用される無アルカリガラス基板は、その歪み温度が600 $\mathbb C$ 以下(コーニング 7059 の場合は593 $\mathbb C$)であるので、600 $\mathbb C$ でのアニールでは、基板の収縮やソリが問題となる。

【0008】また、600℃のアニールが要求されるのでは、低温で作製できるアモルファスシリコンTFTの特徴を生かすことができず、活性領域も結晶化してしまうので、アモルファスシリコンTFTの低リーク電流と 10 いう特徴が失われてしまう。そこで、結晶化のプロセスはより低温(好ましくはガラスの歪み温度より50℃以上低い温度)でおこなうことが望まれていた。本発明はこのような困難な課題に対して解答を与えんとするものである。本発明は、量産性を維持しつつ、上記の問題点を解決することを課題とする。

[0009]

【課題を解決するための手段】本発明者の研究の結果、実質的にアモルファス状態のシリコン被膜に微量の触媒材料を添加することによって結晶化を促進させ、結晶化温度を低下させ、結晶化時間を短縮できることが明らかになった。触媒材料としては、ニッケル(Ni)、鉄(Fe)、コバルト(Co)、白金(Pt)の単体、もしくはそれらの珪化物等の化合物が適している。具体的には、これらの触媒元素を有する膜、粒子、クラスターには、これらの触媒元素を有する膜、粒子、クラスターで形成し、あるいはイオン注入法等の方法によって形成し、あるいはイオン注入法等の方法によって形成し、あるいはイオン注入法等の方法によって形成し、あるいはイオン注入法等の方法によって必要で表し、の後、これを適当な温度、典型的には550℃以下の温度で熱アニールすることによって結晶化させることができる。

【0010】当然のことであるが、アニール温度が高いほど結晶化時間は短いという関係がある。また、ニッケル、鉄、コバルト、白金の濃度が大きいほど結晶化温度が低く、結晶化時間が短いという関係がある。本発明人の研究では、結晶化を進行させるには、これらのうちの少なくとも1つの元素の濃度が $10^{17}\,\mathrm{cm}^{-3}$ 以上、好ましくは $5\times10^{18}\,\mathrm{cm}^{-3}$ 以上存在することが必要であることがわかった。

【0011】一方、上記触媒材料はいずれもシリコンにとっては好ましくない材料であるので、できるだけその 濃度が低いことが望まれる。本発明人の研究では、これらの触媒材料の濃度は合計して $10^{20}\,\mathrm{cm^{-3}}$ を越えないことが望まれる。特に活性層として利用する場合には、十分な信頼性および特性を得るために $1\times10^{18}\,\mathrm{cm^{-3}}$ 以下、好ましくは $1\times10^{17}\,\mathrm{cm^{-3}}$ 以下の濃度であることが必要とされる。

【0012】本発明人は、この触媒元素の効果に着目し、これを利用することによって上記の問題を解決できることを見出した。本発明におけるTFTの作製プロセ 50

スは、概ね以下のようなものである。

- ゲイト電極の形成
- 一 ゲイト絶縁膜の成膜
- アモルファスシリコン膜の成膜
- ー ドーピング不純物の導入 (イオン注入もしくはイオンドーピング法による)
- ^{一,}触媒元素を有する物質のシリコン膜への成膜
- 一 ドーピング不純物の活性化 (550℃以下、8時間 以内)
- ソース、ドレイン電極の形成

【0013】あるいは、

- ゲイト電極の形成
- 一 ゲイト絶縁膜の成膜
- アモルファスシリコン膜の成膜
- ー ドーピング不純物の導入 (イオン注入もしくはイオンドーピング法による)
- 一, 触媒元素の導入 (イオン注入もしくはイオンドーピング法による)
- 一 ドーピング不純物の活性化 (550℃以下、8時間 の 以内)
 - 一 ソース、ドレイン電極の形成

【0014】これらの工程において、一および一、はその順序を逆転させることも可能である。本発明において、上記工程一、によって主としてソース、ドレイン領域に導入された触媒元素は、その領域の結晶化を著しく促進する。そのため、活性化のためには、550℃以下、典型的には500℃以下の温度で十分であり、また、アニール時間も8時間以内、典型的には4時間以内で十分である。特に、後者のようにイオン注入法やイオンドーピング法によって最初から均等に触媒元素が分布している場合には、極めて結晶化が進行しやすかった。この場合、触媒元素の導入には、ドーピング不純物の導入に使用するマスクを使用すればよい。このようなマスクは、ゲイト電極を裏面から露光することによって自己整合的に得ることができる。

【0015】本発明の優れた点は、シリコンに有害な触媒元素をTFTに添加するものの、その濃度は活性領域では著しく低い(1×10¹⁸ cm⁻³以下)ことである。すなわち、いずれのプロセスを採用しても、活性領域の上にドーピングに使用されるマスクが存在するので、活性領域にじかに触媒元素が密着したり、注入されたりすることはない。その結果、TFTの信頼性、特性は何ら損なわれることはない。特に、不純物領域と活性領域のニッケルの濃度比を10倍以上にすれば、アニール温度と時間の最適化によって、活性領域のアモルファス性を保ちつつ、不純物領域の活性化をおこなうことができた。以下に実施例を用いて、より詳細に本発明を説明する。

[0016]

【実施例】

4

[実施例1] 図1に本実施例の作製工程の断面図を示 す。まず、基板(コーニング7059)1上に厚さ30 00~8000A、例えば5000Aのタンタル膜を形 成し、これをパターニングしてゲイト電極2を形成し た。さらに、タンタルの表面を陽極酸化して、陽極酸化 物3を厚さ1000~3000A、例えば2000A形 成した。さらに、ブラズマCVD法によってゲイト絶縁 膜として厚さ1000~5000Å、例えば1500Å の窒化珪素膜4を堆積し、引き続きプラズマCVD法に よって、厚さ200~1500A、例えば500Aの真 10 性(I型)のアモルファスシリコン膜を堆積し、パター ニングして半導体領域5とした。(図1(A))

【0017】次に、基板表面にフォトレジストを塗布 し、基板裏面からの露光によって、ゲイト電極のパター ンに合わせてマスク6を形成した。(図1(B)) そして、このマスク6を用いて、イオンドーピング法に よって、半導体領域5に不純物(燐)を注入した。ドー ピングガスとして、フォスフィン(PH3)を用い、加 速電圧を60~90kV、例えば80kVとした。ドー ズ量は $1 \times 10^{15} \sim 8 \times 10^{15} \text{ c m}^{-2}$ 、例えば、 2×1 0^{15} c m⁻²とした。この結果、N型の不純物領域7 a、 7 bが形成された。(図1 (C))

【0018】さらに、イオンドーピング法によって、マ スク6を用いて、今度はニッケルイオンを注入した。ド ーズ量は2×10¹³~2×10¹⁴cm⁻²、例えば5×1 0¹³cm⁻²とした。この結果、N型の不純物領域26 a、26bのニッケルの濃度は、5×10¹⁸cm⁻³程度 になった。(図1(D))

【0019】その後、水素雰囲気(好ましくは水素の分 圧が0.1~1気圧)中500℃で4時間アニールする ことによって、不純物を活性化させた。このとき、先に ニッケルイオンが注入された不純物領域はニッケルの結 晶化促進触媒作用によって再結晶化が容易に進行した。 こうして不純物領域?a、?bを活性化した。

【0020】続いて、厚さ3000Aの酸化珪素膜8を 層間絶縁物としてプラズマCVD法によって形成し、こ れにコンタクトホールを形成して、金属材料、例えば、 窒化チタンとアルミニウムの多層膜によってTFTのソ ース領域、ドレイン領域の電極・配線9a、9bを形成 した。以上の工程によって薄膜トランジスタが完成し た。(図1(E))

得られた薄膜トランジスタの不純物領域、活性領域の二 ッケルの濃度を2次イオン質量分析(SIMS)法によ って測定したところ、前者は、1×10¹⁸~5×10¹⁸ cm⁻³、後者は測定限界 (1×10¹⁶cm⁻³) 以下であ った。

【0021】〔実施例2〕 図2に本実施例の作製工程 の断面図を示す。まず、基板(コーニング7059)1 1上に厚さ3000~8000Å、例えば5000Åの

極12を形成した。さらに、タンタルの表面を陽極酸化 して、陽極酸化物13を厚さ1000~3000点、例 えば2000A形成した。さらに、プラズマCVD法に よってゲイト絶縁膜として厚さ1000~5000Å、 例えば1500Aの窒化珪素膜14を堆積し、引き続き プラズマCVD法によって、厚さ200~1500A、 例えば500Aの真性(I型)のアモルファスシリコン 膜を堆積し、パターニングして半導体領域15とした。 (図2(A))

【0022】次に、基板表面にフォトレジストを塗布 し、基板裏面からの露光によって、ゲイト電極のパター ンに合わせてマスク16を形成した。(図2(B)) そして、このマスク16を用いて、イオンドーピング法 によって、半導体領域5に不純物(燐)を注入した。ド ーピングガスとして、フォスフィン(PH₃)を用い、 加速電圧を60~90kV、例えば80kVとした。ド ーズ量は1×10¹⁵~8×10¹⁵cm⁻²、例えば、2× 10¹⁵cm⁻²とした。この結果、N型の不純物領域17 a、17bが形成された。(図2(C))

【0023】次に、スパッタリング法によって、平均的 に厚さ5~200Å、例えば20Åの珪化ニッケル膜 (化学式NiSi_x、0.4≦x≦2.5、例えば、x = 2. 0) 18を図に示すように全面に形成した。20 A程度の厚さでは膜は連続的なものではなく、どちらか というと粒子の集合体の様相を呈していたが、本実施例 では問題はない。(図2(D))

【0024】その後、水素雰囲気(好ましくは水素の分 圧が0.1~1気圧)中450℃で4時間アニールする ことによって、不純物を活性化させた。このとき、N型 不純物領域17aおよび17bには、珪化ニッケル膜1 8からニッケル原子が拡散し、ニッケルの結晶化促進触 媒作用によって再結晶化が容易に進行した。こうして不 純物領域17a、17bを活性化した。

【0025】続いて、厚さ3000Aの酸化珪素膜19 を層間絶縁物としてプラズマCVD法によって形成し、 これにコンタクトホールを形成して、金属材料、例え ば、窒化チタンとアルミニウムの多層膜によってTFT のソース領域、ドレイン領域の電極・配線20a、20 bを形成した。以上の工程によって薄膜トランジスタが 40 完成した。(図2(E))

得られた薄膜トランジスタの不純物領域、活性領域の二 ッケルの濃度を2次イオン質量分析(SIMS)法によ って測定したところ、前者は、1×10¹⁹~3×10¹⁹ cm^{-3} 、後者は $1 \times 10^{16} \sim 5 \times 10^{16} cm^{-3}$ であっ た。

[0026]

【発明の効果】本発明は、従来は、N型シリコン膜の成 膜によって作製されていたソース、ドレイン領域を、イ オンドーピング法によって行ううえでは欠かすことので タンタル膜を形成し、これをパターニングしてゲイト電 50 来ない技術である。本発明が、他の競合する技術、例え

ばレーザーアニール技術、に比較して歩留り、信頼性の 点で優れていることは先に示したとおりである。このよ うに本発明は工業上有益な発明である。

【図面の簡単な説明】

実施例1の作製工程断面図を示す。 【図1】

実施例2の作製工程断面図を示す。 【図2】

【符号の説明】

1・・・基板

2・・・ゲイト電極 (タンタル)

3・・・陽極酸化物 (酸化タンタル)

4・・・ゲイト絶縁膜(窒化珪素)

5・・・半導体領域 (アモルファスシリコン)

6・・・マスク

7・・・ソース、ドレイン領域

8・・・層間絶縁物(酸化珪素)

9・・・金属配線・電極(窒化チタン/アルミニウム)

【図2】

フロントページの続き

(51) Int. Cl. 5

識別記号

庁内整理番号

FΙ

技術表示箇所

H O 1 L 21/265

21/324

Z = 8617 - 4M