STACKY APPROACH TO MOTIVIC PERIODS

MILTON LIN

Contents

Notations and conventions	1
1. Introduction	2
1.1. Periods	2
1.2. Goal	3
1.3. The de Rham unipotent homotopy groups	3
1.4. Further directions	4
2. Recollection on Chen's theorem	5
2.1. Differential forms on loop space	5
2.2. Relation to Malcev–Lie algebra	5
3. Recollection on Stacks Approach	5
3.1. Stacks approach to unipotent group scheme	5
3.2. Homotopy and hypercomplete sheaves	6
3.3. Representability results of Toën	7
3.4. Nori's unipotent scheme	7
4. Betti Analytic Stack	7
References	9

NOTATIONS AND CONVENTIONS

- Any sections with to be written/added are only sketched.
- \mathcal{S} denotes the ∞ -category of anima. For \mathcal{C} an ∞ -category, and $X,Y\in\mathcal{C}$ we let $\mathrm{Map}_{\mathcal{C}}(X,Y)\in\mathcal{S}$ denote the mapping space.

Fix base R, a discrete commutative ring. We consider the following homotopy rings:

• CAlg := CAlg(Sp), the ∞ -category of \mathbb{E}_{∞} algebra. This has two full subcategories, the *coconnective* and *connective* algebras.

$$\begin{array}{c} \operatorname{CAlg^{ccn}} := \operatorname{CAlg}_{\leq 0} & \stackrel{\tau_{\leq 0}}{\longleftrightarrow} \operatorname{CAlg} & \stackrel{\operatorname{CAlg}_{\geq 0}}{\longleftrightarrow} \operatorname{CAlg}_{\geq 0} := \operatorname{CAlg^{cn}} \\ \operatorname{Sym^{co}} \downarrow & \downarrow & \operatorname{Sym} \uparrow \downarrow \\ \operatorname{Mod}_{\leq 0} & \stackrel{\tau_{\leq 0}}{\longleftrightarrow} \operatorname{Mod} & \stackrel{\longleftarrow}{\longleftrightarrow} \operatorname{Mod}_{\geq 0} \end{array}$$

Date: April 1, 2024.

• SCR the ∞ -category of simplicial commutative rings. This is the sifted completion of the category of polynomial algebra $\operatorname{Poly}_{\mathbb{Z}}$. Dually, we have coSCR , the ∞ -category of co-simplicial rings. Importantly, there is are Dold Kan and co dual Dold-Kan inducing

$$\theta: SCR \to CAlg^{cn}$$

 $co\theta: coSCR \to CAlg^{ccn}$

these are equivalences when we consider relative over a base field k of characteristic zero.

- All three categories have the ordinary category of discrete rings, $\operatorname{CAlg}^{\heartsuit}$ embedding to it. We let $\operatorname{Aff}_R^{\heartsuit} := (\operatorname{CAlg}_R^{\operatorname{op}})^{\heartsuit} \hookrightarrow \operatorname{Aff}_R$ be the ordinary category of affine schemes over R.
- \bullet CAlg^aug}_R := (CAlg^cn}_R)_{/R}, be the $\infty\text{-category of augmented R-algebra}.$
- $\operatorname{Stk}_R := \operatorname{Shv}_R := \operatorname{Shv}_S(\operatorname{CAlg}_R^{\heartsuit}, \tau) \hookrightarrow \operatorname{PStk}_R$ denotes the ∞ category of stacks^1 and prestacks over R. Unless stated otherwise, τ is the fpqc-topology. Let the category of $\operatorname{pointed}$ stacks be denoted as $(\operatorname{Stk}_R)_* := (\operatorname{Shv}_R)_*$.
- $dStk_R := Shv_S(Aff_R, \tau)$, the category of derived stacks.

Remark 0.1. One can formulate a similar theory for Cdga, the ∞ -category of commutative differential graded algebra (we use cohomological grading, as per convention here).

If $R \in \operatorname{Cdga}^{\heartsuit}$, there are equivalences $\operatorname{Cdga}_R \simeq \operatorname{CAlg}_R$, with the ∞ -category of \mathbb{E}_{∞} -algebras over R. We will freely interchange between the variations in this case. Cdga_R is not as useful outside of characteristic zero, as there does not exist model categories.

1. Introduction

Let $X \in \operatorname{Sch}^{\operatorname{sm,proj}}_{\mathbb{Q}}$, and $X^{\circ}: X \setminus D$, where D is a divisor with normal crossing.

Example 1.1. $X^{\circ} = \mathbb{P}^1 \setminus \{0, 1, \infty\}$, studied in [Del89].

1.1. **Periods.** Periods are classically integrals of rational differential forms:

$$\log(2) = \int_{1 \le z \le 2} \frac{dz}{z}, \quad \zeta(2) = \int_{0 \le t_1 \le t_2 \le 1} \frac{dt_1}{1 - t_1} \frac{dt_2}{t_2}$$

More generally, they are the matrix coefficient from Grothendieck's comparison theorem

$$H^*_{\mathrm{dR}}(X) \otimes_{\mathbb{Q}} \mathbb{C} \xrightarrow{\simeq} H^*_{\mathrm{Betti}}(X) \otimes_{\mathbb{Q}} \mathbb{C}$$

with respect to the \mathbb{Q} structure of de-Rham and Betti cohomology (of $X(\mathbb{C})$) are periods associated to X. These periods along with their enhancements through Hodge structures, has a natural action of "Galois group" which should govern the arithmetic structure of periods.

¹we simply refer sheaves as stacks, which is not the convention. Often these require some *geometric* context, see [Toë06], [Lur11a].

²For instance, in the approach of Deligne, he defined a systems of realizations [Del89]

1.2. Goal. We will study the pro unipotent homotopy groups

$$\pi_1^{U,?}(X^{\circ},x)$$

in various realization $? \in \{\text{\'et}, \text{Betti}, \text{dR}, \text{cris}\}.$ We discuss the de Rham version in Section 1.3.

1.3. The de Rham unipotent homotopy groups. In this section k would be a field of characteristic 0. What should be $\pi_1^{U,dR}$? We propose a definition in Definition 1.2. In Proposition 1.1 we prove its equivalence to a classical definition. For a stack X one can associate its unipotent homotopy type $\mathbf{U}(X)$ see Section 3.1.

Definition 1.1. Denote the de Rham complex functor

where on smooth discrete algebras,

$$dR(A) = \Omega_{A/k}^*$$

is the algebraic de Rham complex. This is then left Kan extended to $CAlg_k^{cn}$.

Lemma 1.1. $A \in Poly_k \hookrightarrow CAlg_k^{\heartsuit}$, a finitely generated polynomial algebra over k. then

$$(\operatorname{Spec} A)^{dR} \simeq \operatorname{Spec} dRA$$

where

$$(-)^{dR}: \operatorname{Shv}_k \to \operatorname{Shv}_k$$

is the associated endo fuentor of de Rham stack functor in Example 3.1, and Spec is the Yoneda embedding, see Proposition 3.1.

Proof. This is [Mon22, Lem 2.0.5] combined with [Mon22, Thm 2.0.1]. \square

Definition 1.2. For a pointed cohomologically connected scheme $X \in (Sch_k)_*$, we let

$$\pi_1^{u,\mathrm{dR}}(X) := \pi_1(\mathbf{U}(X^{\mathrm{dR}}), *)$$

be its unipotent de Rham fundamental group scheme.

Proposition 1.1. If X° is $\left(Aff_{\mathbb{Q}}^{\mathbb{Q},ft}\right)_{*}$, a finite type pointed, connected, affine scheme over \mathbb{Q} , then

$$\pi_1^{u,dR}(X^\circ) \simeq \operatorname{Spec} H^0(B(dR(X^\circ)))$$

in $Grp(Sch_{\mathbb{Q}})$, where the right hand side is the Bar complex construction definition of Haine [Hai87] the right-hand object being what is classically used to define the unipotent de Rham homotopy group, [Bro14].

Proof. Let $A := dR(X^{\circ})$. Consider the homotopy sheaf Definition 3.3,

$$(\pi_1 \operatorname{Spec} A : R \mapsto \pi_1(\operatorname{Map}_{\operatorname{CAlg}_k}(A, R), *)) \in \operatorname{Shv}_{\operatorname{Set}}(\operatorname{CAlg}_k^{\circ}, \operatorname{fpqc})$$

By Toën's representability Theorem 3.1 and hypercompleteness of affine stacks Proposition 3.2 this sheaf is representable by pro-unipotent group scheme, $\pi_1^u(\operatorname{Spec} A, *) \in \operatorname{Grp}(\operatorname{Aff}_k)$. By [Ols16, Ch.6] we have

$$\pi_1(\mathbf{U}(\operatorname{Spec} A), *) \simeq \pi_1^u \operatorname{Spec} A \simeq \operatorname{Spec} H^0 B A$$

where first equivalence is by Definition 3.2. Lastly,

$$\operatorname{Spec} A \simeq (X^{\circ})^{\mathrm{dR}}$$

by Lemma 1.1.

Remark 1.1. We would hope the proof generalize to schemes with log structures. A definition of de Rham homotopy of scheme with log structures can be found in [Shi00].

- Conjecture 1.1. (1) There exists X^{an} which is the (analytic) Betti stack of X, see Section 4, such that the unipotent Betti homotopy group $\pi_1^{u,Betti}(X(\mathbb{C}),x)$ as defined in [Bro17] is isomorphic to $\pi_1(U(X^{an}))$.
 - (2) A logarithmic Riemann-Hilbert comparison should induce Chen's comparison theorem [Hai01, Thm 3.1]

$$\pi_1^{u,dR}(X,x) \simeq \pi_1^{u,Betti}(X(\mathbb{C}),x) \otimes \mathbb{C}$$

Remark 1.2. this is a little different to the comparison theorem as suggested [Toë06, Ch. 3.5]. In this case X° is only smooth, but *not projective*.

1.4. Further directions. By similar techniques of [Bha23], we should recover Haine's theorem: the pro-unipotent completion of de Rham fundamental group admits a mixed Hodge structure. ³ We collect a few examples below that suggests avenues with a view towards p-adic cohomology theories, such as X^{\triangle} , X^{crys} and X^{dR} . (prismatic, crsytalline and de Rham stack, respectively). We hope that such work can spark new techniques and new phenomena, such as those used in p-adic integration theory, [Vol01].

In the examples below, let V be a complete discrete valuation ring with a perfect residue field of characteristic p > 0 and fraction field K, $K_0 := \operatorname{Frac}W(k) \hookrightarrow K$. $X \in \operatorname{Sch}_V^{\operatorname{sm,prop}}$.

Example 1.2. $\pi_1^{u,\text{crys}}$ has a Tannakian description as given in Shiho's [Shi00]. Part of the strategy is formal: for one Tannakian category when can consider the *nilpotent* part. In *op.cit. Ch.5* one constructs a unipotent crystalline de-Rham comparison map,

$$\pi_1^{u,\operatorname{crys}}(X_V^{\circ},x)\otimes_{K_0}K\simeq\pi_1^{u,\operatorname{dR}}(X_K^{\circ},x)$$

which has been shown in the case of cohomologies by Berthelot and Ogus.

³This is important in Brown's approach, where he reduced his study of motivic periods to mixed Hodge periods [Bro17, p. 3].

2. Recollection on Chen's Theorem

Morgan showed that the homotopy Lie algebra of a smooth complex algebraic variety has a mixed Hodge structure by using Sullivan's minimal models. Haine [Hai87] generalized this result to arbitrary complex variety, the key result was using Chen's theorem, Theorem 2.1. We begin by discussing an interpretation of Chen's theorem, Section 2.1.

2.1. **Differential forms on loop space.** To be written. References: [Che73]. Our goal is to briefly review the proof of the following theorem.

Theorem 2.1. Let $x, y \in X^{\circ}(\mathbb{C})$. For all integer N > 0,

(1)
$$\mathcal{O}(\pi_{1N}^{uni,dR}(BdR(X^{\circ})) \otimes \mathbb{C} \simeq \mathcal{O}(\pi_{1N}^{Betti}(X^{\circ},x,y)) \otimes \mathbb{C}$$

where

$$\mathcal{O}(\pi_{1,N}^{uni,dR}(BdR(X^\circ)) := L_N B(dR(X^\circ))$$

 L_N being the length filtration on the bar complex. taking colimit along N, we induce

$$\mathcal{O}(\pi_1^{uni,dR}(BdR(X^\circ))\otimes \mathbb{C} \simeq \mathcal{O}(\pi_1^{uni,Betti}(X^\circ,x,y))\otimes \mathbb{C}$$

The proof follows by using a combinatorial presentation of relative cohomology.

2.2. Relation to Malcev-Lie algebra.

3. Recollection on Stacks Approach

Various cohomology theories – crystalline cohomology, syntomic cohomology, and Dolbeaut cohomology – admit a factorization to the category of stacks over some affine scheme $\operatorname{Spec} R$,

$$\operatorname{Sch}_{\mathbb{Z}}^{\operatorname{sep,ft}} \to \operatorname{Stk}_R \to D(R)$$
$$X \mapsto X^? \mapsto \Gamma(X^?, \mathcal{O}_{X^?})$$

Example 3.1. The *de Rham stack* X^{dR} over \mathbb{Q} , has points given by $X^{dR}(A) := X(A_{red})$ for any \mathbb{Q} -algebra A (cf. [GR14]).

This is often referred to as a *stacky approach* [Dri22] or *transmutation* [Bha23], which allows one to use six functor formalism and geometric techniques.

3.1. Stacks approach to unipotent group scheme. We recall the work of [MR23]. Let $(X,x) \in (\operatorname{Sch}_k)_*$ such that it is cohomologically connected ⁴ A classical homotopical invariant for schemes is the étale fundamental group introduced by Grothendieck. Nori, upgraded this definition to that of a *group scheme*, $\pi_1^N(X,x)$, which is constructed using Tannakian methods. One can associate a unipotent homotopy type $\mathbf{U}(X)$, which recovers Nori's unipotent homotopy group scheme, Definition 3.2,

(2)
$$\pi_1(\mathbf{U}(X), x) \stackrel{\simeq}{\to} \pi_1^{U,N}(X, x)$$

This is proved in [MR23, §3.1.].

 $^{^{4}}H^{0}(X,k) \simeq k.$

Proposition 3.1. We have an adjunction [Toë06, Cor. 2.2.4]

$$CAlg_k^{\heartsuit} \xrightarrow{\text{Spec}} PShv(CAlg_k^{\heartsuit})$$

$$(CAlg_k^{ccn})^{op} \xleftarrow{U} PShv(CAlg_k^{\heartsuit})$$

The right adjoint is alternatively denoted as $\Gamma(-,\mathcal{O})$, the global sections functor.

Definition 3.1. An object in the essential image of Spec in Proposition 3.1 is an *affine* stack, and the right adjoint **U** is called the *affinization*.

From the results of [Toë06], discussed in Section 3.3, we can define the homotopy groups:

Definition 3.2. Let $X \in (\operatorname{Sch}_k)_*$ which is cohomologically connected. Define

$$\pi_i^u(X) := \pi_i(\mathbf{U}(X), *) \in \mathrm{Grp}(\mathrm{Aff}_k)$$

as the unipotent homotopy groups of X, where U is as defined in Proposition 3.1.

Remark 3.1. The unipotent type can be defined for $(Stk_R)_*$. But they are not necessarily representable, see [Mon22, p. 5].

Proposition 3.2. Spec factors through Shv_k^{\wedge} .

Proof. By faithfully flat descent, Spec factors through Shv_k . For hypercompleteness see [Lur11b, Appendix D].

Example 3.2. $K(\mathbb{G}_a, i) := \operatorname{Spec} \operatorname{Sym}_k^{\operatorname{co}} k[-i]$ for i > 0 are affine stacks.

Example 3.3. Zero truncated quasi-affine stacks are *not* affine.

3.2. Homotopy and hypercomplete sheaves. Let $X \in \operatorname{Stk}_k$, $R \in \operatorname{CAlg}^{\heartsuit}$ in this section. In this paper, we would only be considering hypercomplete sheaves.

Definition 3.3. Let $n \geq 0$, then

$$\pi_n(X, *) \in \operatorname{Shv}_{\operatorname{Set}}(\operatorname{CAlg}_R^{\heartsuit}, \operatorname{fpqc})$$

is the sheafification of the presheaf

$$A \mapsto \pi_n(X(A), *)$$

We will be interested in hypercomplete sheaves, see [CM21] for a discusscusion in the prestable setting.

Definition 3.4. A morphism $f: X \to Y$ in an ∞ -topos \mathfrak{X} is ∞ -connective if

(1) it is an effective epimorphism.

(2)
$$\pi_k f = * \text{ for } k \ge 0.$$

Definition 3.5. $X \in \mathfrak{X}$ is hypercomplete iff it is local to ∞ -connective morphism. We denote the hypercomplete objects as \mathfrak{X}^{\wedge} , fitting into an adjunction

$$\mathfrak{X}^{\wedge} \stackrel{\longleftarrow}{\longrightarrow} \mathfrak{X}$$

Hypercompleteness can also be characterized by hypercoverings.

Example 3.4. Let (C, τ) be an ∞ -stie, [Lur09, Ch.6]. Let \mathcal{D} be an (n+1,1) category for $n \geq 0$, [Lur09, 2.3.4]. Then $F \in \text{Fun}(C^{\text{op}}, D)$ satisfies descent for coverings iff it satisfies descent for hypercovering. In particular, this is useful when (C, τ) is an ordinary category as the representables factors through Set $\hookrightarrow \mathcal{S}$.

3.3. Representability results of Toën.

Theorem 3.1. [Toë06, Thm. 2.4.1, 2.4.5] Let $X \in (Shv_k^{\wedge})_*$, such that $\pi_0 X \simeq *$, then X is an affine stack iff $\pi_i(X,*)$ is representable by an affine group scheme $\pi_i^u X$ for all i > 0.

Remark 3.2. [Toë06, Thm. 2.4.], if $H^0(B) \simeq k$, for $B \in (CAlg_k^{ccn})_*$, then Spec B is pointed connected.

3.4. Nori's unipotent scheme. To be written.

4. Betti Analytic Stack

To be written. Such stacks was discussed in [KpT08], [PY16]. The name Betti analytic stack can be misleading. This is stack X^{an} is designed so that

$$\pi_1(X^{\mathrm{an}}, *) \simeq \pi_1(|X(\mathbb{C})|, *)$$

where $X(\mathbb{C})$ is given the analytic topology. ⁵ But here we recall the construction. The natural map $\pi: \mathrm{Aff}_{\mathbb{C}} \to *$, induces a geometric morphism

$$\operatorname{Stk}_{\mathbb{C}} \xrightarrow{\pi^*} \mathcal{S}$$

Definition 4.1. (Stn_C, τ_{an}), denote the category of Stein complex analytic spaces with the analytic topology: this consists coverings $\{U_i \to X\}_{i \in I}$, where $U_i \hookrightarrow_{\text{open}} X$ are open immersions, and $\bigsqcup_{i \in I} U_i \to X$ is a surjection. Let $AnStk_{\mathbb{C}} := Shv_{\mathcal{S}}(Stn_{\mathbb{C}}, \tau_{\text{\'et}})$.

Proposition 4.1. There is an analytification functor

$$(-)^{an}: \left(Af_{\mathbb{C}}^{lfp}, \tau_{\acute{e}t}\right) \to (Stn_{\mathbb{C}}, \tau_{an})$$

Proof. See [Lur11a], [Por18].

⁵The reason for this (bad) choice is also not to be confused with recent works, [SC23].

⁶One can also consider with respect to the $\tau_{\text{\'et}}$ étale topology, i.e. $U_i \to X$

In particular there is a well defined functor

$$\operatorname{Stk}_{\mathbb{C}} \to \mathcal{S}$$

$$X \mapsto |X(\mathbb{C})|$$

sending a stack to its underlying analytic topology.

Definition 4.2. we let $X^{\mathrm{an}} := \pi^*(|X(\mathbb{C})|) \in \mathrm{Stk}_{\mathbb{C}}$ be the *Betti analytic stack*.

Lemma 4.1. (1) $*^{an} \simeq \operatorname{Spec} \mathbb{C}$.

(2) For Spec $A \in Stk_{\mathbb{C}}$, $QCoh(X^{an} \times \operatorname{Spec} A) \simeq Fun(|X(\mathbb{C})|, Mod_A)$.

Proof. (1) π^* is left exact, so it preserves the terminal object.

(2) This is by induction. Write $|X(\mathbb{C})|$ as the colimit of a tower cells,

$$|X(\mathbb{C})| \simeq \operatorname{colim}_{n \in \mathbb{N}} X_n$$

Then use that $\pi^*(-)$, QCoh(-), and $Fun(-, Mod_A)$ commutes with colimits in their variables

Note that Fun($|X(\mathbb{C})|$, Mod_A) identify with the locally constant sheaves on Op($|X(\mathbb{C})|$), the site of open subsets of $X(\mathbb{C})$. This implies that $\mathcal{O}_{X^{\mathrm{an}}}$ corresponds to the constant sheaf. In particular $\pi_*\mathcal{O}_{X^{\mathrm{an}}} \simeq R\Gamma(|X(\mathbb{C})|, \mathbb{C})$, where $\pi_* : \mathrm{QCoh}(X^{\mathrm{an}}) \to \mathrm{QCoh}(*) \simeq \mathrm{Mod}_{\mathbb{C}}$.

REFERENCES 9

References

- [Bha23] Bhatt, Bhargav. Prismatic F-gauges. 2023 (cit. on pp. 4, 5).
- [Bro14] Brown, Francis. Motivic periods and the projective line minus three points. 2014. arXiv: 1407.5165 [math.NT]. URL: https://arxiv.org/abs/1407.5165 (cit. on p. 3).
- [Bro17] Brown, Francis. "Notes on motivic periods". In: Commun. Number Theory Phys. 11.3 (2017), pp. 557-655. ISSN: 1931-4523,1931-4531. URL: https://doi.org/10.4310/CNTP.2017.v11.n3.a2 (cit. on p. 4).
- [Che73] Chen, Kuo-tsai. "Iterated integrals of differential forms and loop space homology". In: Ann. of Math. (2) 97 (1973), pp. 217–246. ISSN: 0003-486X. URL: https://doi.org/10.2307/1970846 (cit. on p. 5).
- [CM21] Clausen, Dustin and Mathew, Akhil. "Hyperdescent and étale K-theory". In: 225.3 (2021) (cit. on p. 6).
- [Del89] Deligne, Par P. "Le groupe fondamental de la droite projective moins trois points". In: Galois Groups over Q Proceedings of a Workshop Held March 23–27, 1987. Springer. 1989, pp. 79–297 (cit. on p. 2).
- [Dri22] Drinfeld, Vladimir. A stacky approach to crystals. 2022. arXiv: 1810.11853 [math.AG]. URL: https://arxiv.org/abs/1810.11853 (cit. on p. 5).
- [GR14] Gaitsgory, Dennis and Rozenblyum, Nick. Crystals and D-modules. 2014. arXiv: 1111.2087 [math.AG]. URL: https://arxiv.org/abs/1111.2087 (cit. on p. 5).
- [Hai01] Hain, Richard. Iterated Integrals and Algebraic Cycles: Examples and Prospects. 2001. arXiv: math/0109204 [math.AG]. URL: https://arxiv.org/abs/math/0109204 (cit. on p. 4).
- [Hai87] Hain, Richard M. "The de Rham homotopy theory of complex algebraic varieties. I". In: *K-Theory* 1.3 (1987), pp. 271–324. ISSN: 0920-3036. URL: https://doi.org/10.1007/BF00533825 (cit. on pp. 3, 5).
- [KpT08] Katzarkov, L., pantev, T., and Toën, B. "Schematic homotopy types and non-abelian Hodge theory". In: (2008) (cit. on p. 7).
- [Lur09] Lurie, Jacob. *Higher topos theory*. Vol. 170. Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2009, pp. xviii+925. ISBN: 978-0-691-14049-0; 0-691-14049-9. URL: https://doi.org/10.1515/9781400830558 (cit. on p. 7).
- [Lur11a] Lurie, Jacob. "DAGV: Structured Spaces". In: (2011) (cit. on pp. 2, 7).
- [Lur11b] Lurie, Jacob. "Spectral Algebraic Geometry". In: (2011) (cit. on p. 6).
- [Mon22] Mondal, Shubhodip. "Reconstruction of the stacky approach to de Rham cohomology". In: *Math. Z.* 302.2 (2022), pp. 687–693. ISSN: 0025-5874,1432-1823. URL: https://doi.org/10.1007/s00209-022-03082-9 (cit. on pp. 3, 6).
- [MR23] Mondal, Shubhodip and Reinecke, Emanuel. *Unipotent homotopy theory of schemes*. 2023. arXiv: 2302.10703 [math.AG] (cit. on p. 5).
- [Ols16] Olsson, Martin. "The Bar Construction and Affine Stacks". In: Communications in Algebra 44 (2016), pp. 3088-3121. URL: https://api.semanticscholar.org/CorpusID:783338 (cit. on p. 4).
- [Por18] Porta, Mauro. Derived complex analytic geometry I: GAGA theorems. 2018. arXiv: 1506.09042 [math.AG]. URL: https://arxiv.org/abs/1506.09042 (cit. on p. 7).

10 REFERENCES

- [PY16] Porta, Mauro and Yu, Tony Yue. Higher analytic stacks and GAGA theorems. 2016. arXiv: 1412.5166 [math.AG]. URL: https://arxiv.org/abs/1412.5166 (cit. on p. 7).
- [SC23] Scholze, Peter and Clausen, Dustin. "Youtube lectures on Analytic Stacks". In: (2023) (cit. on p. 7).
- [Shi00] Shiho, Atsushi. "Crystalline fundamental groups. I. Isocrystals on log crystalline site and log convergent site". In: *J. Math. Sci. Univ. Tokyo* 7.4 (2000), pp. 509–656. ISSN: 1340-5705 (cit. on p. 4).
- [Toë06] Toën, Bertrand. "Champs affines". In: Selecta Math. (N.S.) 12.1 (2006), pp. 39–135. ISSN: 1022-1824,1420-9020. URL: https://doi.org/10.1007/s00029-006-0019-z (cit. on pp. 2, 4, 6, 7).
- [Vol01] Vologodsky, Vadim. Hodge structure on the fundamental group and its application to p-adic integration. 2001. arXiv: math/0108109 [math.AG] (cit. on p. 4).