2. Popravni Kolokvij iz Moderne fizike 2 2. 9. 2013

- 1. Trenutni delež uranovih izotopov na Zemlji je 99.28 % (238 U) in 0.72 % (235 U), ustrezna razpolovna časa pa sta 7.04 · 10⁸ let (235 U) in 4.468 · 10⁹ let (238 U). Izračunaj razmerje med pogostnostjo teh izotopov v trenutku nastanka Zemlje (pred 4.5 · 10⁹ leti).
- 2. Razmerje med številom molekul vodika (H_2) v drugem in tretjem čisto rotacijskem stanju pri temperaturi T je 1.25. Izračunaj razmerje števila molekul v prvem vzbujenem čisto vibracijskem in prvem čisto rotacijskem stanju. Ravnovesna razdalja med atomoma v molekuli H_2 je 74.1 pm, konstanta vzmeti pa 573 N/m.
- 3. a) Določi razmerje

$$\frac{\Gamma[\chi_{b2} \to \Upsilon(1S) \ \gamma]}{\Gamma[\chi_{b1} \to \Upsilon(1S) \ \gamma]}$$

ob predpostavki, da sta matrična elementa $\langle \chi_{b1} | \vec{p_e} | \Upsilon \rangle$ in $\langle \chi_{b2} | \vec{p_e} | \Upsilon \rangle$ enaka. Mase stanj so $m_{\Upsilon(1S)}c^2 = 9460$ MeV, $m_{\chi_{b1}}c^2 = 9893$ MeV, $m_{\chi_{b2}}c^2 = 9912$ MeV.

- b) Kolikšen je izospin mezona $\phi = \bar{s}s$? Ali lahko razpada v K^+K^- ? Če lahko: nariši diagram razpada na kvarkovskem nivoju in navedi, preko katere interakcije poteka ustrezni razpad. Mase stanj so $m_{\phi}c^2 = 1019$ MeV, $m_{K^{\pm}}c^2 = 494$ MeV, medtem ko je $J^P[\phi] = 1^-$, $J^P[K^{\pm}] = 0^-$.
- c) Nariši diagram za razpad $B^0 \to D^- \pi^+$, povej, preko katere interakcije poteka, in zapiši matrični element zanj (sklopitvene konstante, propagator). Kvarkovska sestava delcev je $B^0 = \bar{b}d$, $D^- = \bar{d}u$.
- 4. a) Nov hadron Z opazimo pri razpadu $Z \to J/\psi \pi$, presek za tvorbo delca Z pa je največji, ko ima pion energijo $E_{\pi}^* = 722$ MeV v težišcnem sistemu. Kolikšna je masa delca Z?
 - b) V laboratorijskem sistemu ima Z gibalno količno $\vec{p}_Z=200$ MeV in razpada v letu. Kolikšna je gibalna količina piona v laboratorijskem sistemu ($|\vec{p}_{\pi}|=?$) in kam kaže ($\vec{\theta}_{\pi}=?$), ko je kot $\theta^*=30^\circ$ (θ^* je kot med \vec{p}_{π}^* v težiščnem sistemu in \vec{p}_Z v laboratorijskem sistemu).

Podatki: $m_{J/\psi}c^2=3097$ MeV, $m_\pi c^2=140$ MeV. Računaj relativistično in ne zanemari mase nobenega od delcev.

