Lin Chen

Email: Lin.Chen@ttu.edu

Grader: zulfi.khan@ttu.edu

☐ Handicapped machines

DFA limitations

- Tape head moves only one direction
- Tape is read-only
- Tape length is a constant

PDA limitations

- Tape head moves only one direction
- Tape is read-only, but stack is writable
- Stack has only LIFO(last-in, first-out) access
- Tape length is constant, but stack is not bounded.

• What about

- Writable, 2-way tape?
- Random-access 'stack?

- Head can both read and write, and move in both directions
- Tape has unbounded length.
- □ is blank symbol. In practice, all but a finite number of tape squares are blank.

A **Turing machine** is a 7-tuple, $(K, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where K, Σ, Γ are all finite sets and

- 1. K is the set of states,
- 2. Σ is the input alphabet not containing the *blank symbol* \Box ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta : K \times \Gamma \longrightarrow K \times \Gamma \times \{L, R\}$ is the transition function,
- **5.** $q_0 \in \mathbf{R}$ is the start state,
- **6.** $q_{\text{accept}} \in \mathbf{K}$ is the accept state, and
- 7. $q_{\text{reject}} \in K$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

Example:

Consider the Turing Machine $M = (K, \Sigma, \delta, s, H)$, where

$$K = \{q_0, h\}$$

 $\Sigma = \{a, \sqcup, \triangleright\}$
 $s = q_0$
 $H = \{h\}$
and δ is given by
the right table.

q	σ	$\delta(q,\sigma)$
q_{0}	a	(q_0,\leftarrow)
q_{O}		(h,\sqcup)
q_{O}	\triangleright	$ (q_0, \rightarrow) $

(The machine goes into a loop if no ⊔ care stop!)

□ Turing Machines Configuration

Definition: A configuration of a TM $M = (K, \Sigma, \delta, s, H)$ is a member of $K \times \triangleright \Sigma^* \times (\Sigma^*(\Sigma - \{\sqcup\}) \cup \{e\})$.

Remark:

ullet A configuration whose state component is in H will be called halted configuration.

• A simplified notation of configuration:

$$(q, wa, u) \Rightarrow (q, w\underline{a}u)$$

Example of configuration:

Remark:

• For any Turing Machine M, let \vdash_M^* be the Reflexive, transitive closure of \vdash_M .

Configuration C_1 yields configuration C_2 if $C_1 \vdash_M^* C_2$.

• A **computation** by M is a sequence of configuration C_0 , C_1 , \cdots , C_n , for some $n \ge 0$ such that

$$C_0 \vdash_M C_1 \vdash_M \cdots \vdash_M C_n$$

we say that the computation is of length n or that it has n steps, denoted by $C_0 \vdash_M^n C_n$.

Run a Turing machine on an input, the Turing machine may:

- Accept (enter q_{accept})
- Reject (enter q_{reject})
- Loop (running forever)

Run a Turing machine on an input, the Turing machine may:

- Accept (enter q_{accept})
- Reject (enter q_{reject})
- Loop (running forever)
 - M accepts $w \in (\sum -\{\sqcup, \triangleright\})^*$ if $(s, \triangleright \underline{\sqcup} w)$ yields an accepting configuration; M rejects w if $(s, \triangleright \underline{\sqcup} w)$ yields an rejecting configuration.
 - Let $\Sigma_0 \subseteq (\Sigma \{ \sqcup, \triangleright \})$ be a alphabet input alphabet of M.

M decides $L \subseteq \sum_{0}^{*}$ if $\forall w \in \sum_{0}^{*}$ the following is true:

- $\square \ w \in L \ \text{iff} \ M \ \text{accepts} \ w;$
- \square $w \notin L$ iff M rejects w.

```
M decides L \subseteq \sum_0^* if \forall w \in \sum_0^* the following is true: \Box w \in L iff M accepts w; \Box w \not\in L iff M rejects w.
```

A language is Turing-decidable or simply decidable if some Turing machine decides it.

```
M decides L \subseteq \Sigma_0^* if \forall w \in \Sigma_0^* the following is true: \Box w \in L iff M accepts w; \Box w \not\in L iff M rejects w.
```

A language is Turing-decidable or simply decidable if some Turing machine decides it.

The collection of the strings that a Turing machine accepts is the language recognized by the machine.

A language is Turing-recognizable (or semi-decidable) if some Turing machine recognizes it.

Can we use Turing machine as checker for the language it recognizes/decides?

Turing machine (TM) M_1 that decides $B = \{w \# w | w \in \{0,1\}^*\}$

 $M_1 =$ "On input string w:

- 1. Zig-zag across the tape to corresponding positions on either side of the # symbol to check whether these positions contain the same symbol. If they do not, or if no # is found, reject. Cross off symbols as they are checked to keep track of which symbols correspond.
- 2. When all symbols to the left of the # have been crossed off, check for any remaining symbols to the right of the #. If any symbols remain, reject; otherwise, accept."

Turing machine (TM) M_1 that decides $B = \{w \# w | w \in \{0,1\}^*\}$

```
о́ 1 1 0 0 0 # 0 1 1 0 0 0 u ...
 х 1 1 0 0 0 # 0 1 1 0 0 0 u ...
 х 1 1 0 0 0 # x 1 1 0 0 0 u ...
 x 1 1 0 0 0 # x 1 1 0 0 0 u ...
 x x 1 0 0 0 # x 1 1 0 0 0 u ...
 accept
```

Turing machine (TM) M_1 that decides $B = \{w \# w | w \in \{0,1\}^*\}$

Incomplete, move to a reject state once lacking out-edge

Turing machine (TM) M_2 that decides $A = \{0^{2^n} | n \ge 0\}$

 M_2 = "On input string w:

- 1. Sweep left to right across the tape, crossing off every other 0.
- 2. If in stage 1 the tape contained a single 0, accept.
- **3.** If in stage 1 the tape contained more than a single 0 and the number of 0s was odd, *reject*.
- **4.** Return the head to the left-hand end of the tape.
- 5. Go to stage 1."

Turing machine (TM) M_2 that decides $A = \{0^{2^n} | n \ge 0\}$

Turing machine (TM) M_2 that decides $A = \{0^{2^n} | n \ge 0\}$

)()	$\sqcup q_5\mathbf{x}0\mathbf{x}\sqcup$	$\sqcup \mathbf{x} q_5 \mathbf{x} \mathbf{x} \sqcup$
00	q_5 u ${f x}$ 0 ${f x}$ u	$\sqcup q_5\mathbf{x}\mathbf{x}\mathbf{x}\sqcup$
00	$\sqcup q_2 \mathbf{x} 0 \mathbf{x} \sqcup$	q_5 uxxxu
10	ப $\mathbf{x}q_2$ 0 \mathbf{x} ப	ы $q_2 \mathbf{x} \mathbf{x} \mathbf{x}$ ы
q_3 \sqcup	ы $\mathbf{x}\mathbf{x}q_{3}\mathbf{x}$ ы	$\sqcup \mathbf{x} q_2 \mathbf{x} \mathbf{x} \sqcup$
5 X U	ы $xxxq_3$ ப	$\sqcup \mathbf{x} \mathbf{x} q_2 \mathbf{x} \sqcup$
\mathbf{x}	ы $\mathbf{x}\mathbf{x}q_{5}\mathbf{x}$ ы	$\sqcup \mathbf{x}\mathbf{x}\mathbf{x}q_2 \sqcup$
		\sqcup ххх $\sqcup q_{ m accept}$

Can we strengthen a Turing machine by equipping it with more "resources"?

Can we strengthen a Turing machine by equipping it with more "resources"?

Multi-tape Turing machine: Turing machine has only one read/write tape, what if we allow multiple tapes?

$$\delta: Q \times \Gamma^k \longrightarrow Q \times \Gamma^k \times \{L, R, S\}^k$$

$$\delta(q_i, a_1, \ldots, a_k) = (q_i, b_1, \ldots, b_k, L, R, \ldots, L)$$

Can we strengthen a Turing machine by equipping it with more "resources"?

Multi-tape Turing machine: Turing machine has only one read/write tape, what if we allow multiple tapes?

$$\delta \colon Q \times \Gamma^k \longrightarrow Q \times \Gamma^k \times \{L, R, S\}^k$$

$$\delta(q_i, a_1, \ldots, a_k) = (q_i, b_1, \ldots, b_k, L, R, \ldots, L)$$

Can multi-tape Turing machine decides/recognizes more languages than Turing machine?

Every multitape Turing machine has an equivalent single-tape Turing machine.

We can simulate a multi-tape Turing machine using a single-tape Turing machine.

Every multitape Turing machine has an equivalent single-tape Turing machine.

A language is Turing-recognizable if and only if some multitape Turing machine recognizes it.

Can we strengthen a Turing machine by equipping it with non-determinism?

Nondeterministic Turing machine: from transition function to transition relation.

$$\delta \colon Q \times \Gamma \longrightarrow \mathcal{P}(Q \times \Gamma \times \{L, R\})$$

Every nondeterministic Turing machine has an equivalent deterministic Turing machine.

We can simulate a non-deterministic Turing machine using a deterministic Turing machine.

Every nondeterministic Turing machine has an equivalent deterministic Turing machine.

We can simulate a non-deterministic Turing machine using a deterministic Turing machine.

- 1. Initially tape 1 contains the input w, and tapes 2 and 3 are empty.
- 2. Copy tape 1 to tape 2.
- **3.** Use tape 2 to simulate N with input w on one branch of its nondeterministic computation. Before each step of N consult the next symbol on tape 3 to determine which choice to make among those allowed by N's transition function. If no more symbols remain on tape 3 or if this nondeterministic choice is invalid, abort this branch by going to stage 4. Also go to stage 4 if a rejecting configuration is encountered. If an accepting configuration is encountered, accept the input.
- 4. Replace the string on tape 3 with the lexicographically next string. Simulate the next branch of N's computation by going to stage 2.

Every nondeterministic Turing machine has an equivalent deterministic Turing machine.

A language is Turing-recognizable if and only if some nondeterministic Turing machine recognizes it.