Chapitre 1. Nombres réels.

§1.1. Ensembles.

Ensemble = " Collection des objets définis et distincts" G. Cantor

X

a Bdy

$$X = \{a, b, c, d\}$$

 $Y = \{ \beta, c, d \}$

Y est un sous-ensemble de X.

Notations:

be Y so b appartient à Y

a & Y \rightarrow a n'appartient pas à Y

₩ pour tout

∃

il existe

Y C X \improx Y est un sous-ensemble de X

$$Y \subset X \stackrel{\text{dif}}{=} Y \stackrel{\text{def}}{=} Y \stackrel{\text{def}}{=}$$

Supposons que les sous-ensembles considerés sont sous-ensembles d'un ensemble runiverselle U.

Opérations ensemblistes. Soient X, Y, Z C U

1 Réunion: $XVY \stackrel{\text{dif}}{=} \{a \in U : a \in X \text{ on } a \in Y\}$

$$\frac{E_X}{X}$$
 $\frac{1}{x}$ $\frac{$

 $XUY = \{a, b, c, d, e\}$

On a:
$$(X \cup Y) \cup Z = X \cup (Y \cup Z)$$
 $X, Y, Z \in U$

$$X \cup Y = Y \cup X$$

$$X \cup X = X$$

$$X \cup X = X$$

Intersection
$$X \cap Y = \{a \in U : a \in X \text{ et } a \in Y\}$$

 $X, Y, Z \subset U$

On a:
$$(X \cap Y) \cap Z = X \cap (Y \cap Z)$$

 $X \cap Y = Y \cap X$
 $X \cap \emptyset = \emptyset$
 $X \cap X = X$

3 Différence: $X \setminus Y = \{a \in U : a \in X \text{ et } a \notin Y\}$ X a b c d y $\underbrace{E_{\times}}_{X} \times \underbrace{(\emptyset \setminus X)}_{X} \neq \underbrace{(X \setminus \emptyset) \setminus X}_{X}$ $Y \setminus X = \{d, e\}$ $X \setminus Y = \{a, b\}$ En général $X \setminus (Y \setminus Z) \neq (X \setminus Y) \setminus Z$ $X \setminus Y \neq Y \setminus X$ \times \vee \bigcirc = \times $X \setminus X = \emptyset$. Proposition $X, Y, Z \subset U$ alors $X \setminus (Y \cap Z) = (X \setminus Y) \cup (X \setminus Z)$ Dém: A gauche: $\{a \in U : a \in X \text{ et } a \notin (Y \cap Z)\} =$ $= \begin{cases} a \in \mathcal{U} : a \in X \text{ et } (a \notin Y, ou a \notin Z) \end{cases}$ A droite: $\{a \in \mathcal{U} : a \in (X \setminus Y), ou a \in (X \setminus Z)\} = \begin{bmatrix} Z \\ Z \end{bmatrix}$ = $\{a \in U : (a \in X \text{ et } a \notin Y), \text{ on } (a \in X \text{ et } a \notin Z)\} =$ $= \left\{ a \in \mathcal{U} : a \in X \left(a \notin Y \text{ ou } a \notin Z \right) \right\} /$

§ 1.2 Nombres naturels, rationnels, réels.

Les nombres naturels $M = \{0, 1, 2, \dots \}$

avec "+" " Alors on dif que $a \le b$, $a, b \in \mathbb{N}$ $= \exists c \in \mathbb{N}: a + c = b$

Propriété de bon ordre: Tont sous-ensemble non-vide de N contient un plus petit élément.

Les enfiers relatifs $Z = \{0, \pm 1, \pm 2, \dots\}$

 \mathbb{Z} possède un élément réciproque par rapport à l'addition $\forall x \in \mathbb{Z}$. $\forall x \in \mathbb{Z} \ \exists y \in \mathbb{Z} : x+y=0$. Notation : y=-x.

Les nombres rationnels. $Q = \begin{cases} \frac{P}{q}, P, q \in \mathbb{Z}, q \neq 0 \end{cases} / \frac{P}{q} = \frac{t}{s} \text{ si } P \cdot s = t \cdot q \end{cases}$

 $\forall x \neq 0, x \in Q \quad \exists y \in Q \stackrel{\circ}{U} x \cdot y = 1.$

Notation: $y = \frac{1}{x}$

§ 1.3 Nombres réels.

Proposition
$$\sqrt{2} \notin \mathbb{Q}$$

$$\left(X: \quad X^2 = 2\right)$$

<u>Dém:</u> par absurde.

Supposons que
$$\sqrt{2} = \frac{P}{q}$$
 $P, q \in \mathbb{Z}$, $q > 0$.

tels que q est le plus petit possible (q existe par la propriété de bon ordre).

 $\ell \times . \qquad \left(\frac{18}{15} = \frac{6}{5} = > P = 6, q = 5 \right).$

Alors
$$2 = \frac{p^2}{g^2} \implies 2g^2 = p^2 \implies p^2 \text{ est pair } \implies p \text{ est pair}$$

$$\left(S; \quad p = 2k + l \implies p^2 = 4k^2 + 4k + 1 \text{ impair }\right) \implies p = 2m, m \in \mathbb{Z}$$

$$= 2q^2 = (2m)^2 = 2q^2 = 4m^2 = par le même argument$$

$$q^2 = 2m^2 \qquad qet pair$$

=>
$$g = 2n$$
, $n \in \mathbb{Z}$ => $\frac{P}{g} = \frac{2m}{2n} = \frac{m}{n}$ absurde, puisque $0 < n < g$ contredit le choix de g le plus petit possible, $g > 0$.

Définition axiomatique de R.

1 R est un corps: ensemble avec +, satisfaisant les axiomes suivants Pour tout $x, y, z \in R$ on a:

$$(\cdot) \quad (x+y)+z = x+(y+z)$$

$$(\cdot) \quad (x \cdot y) \cdot z = x \cdot (y \cdot z)$$

$$(\cdot) \qquad \qquad \times + \ \, \checkmark \qquad = \ \, \gamma \, + \, \chi$$

$$(\cdot)$$
 $\times \cdot \times = \times \times$

$$(\cdot) \quad \exists \ 0 \in \mathbb{R} : \ x + 0 = x$$

(·)
$$\exists 1 \in \mathbb{R} : 1 \neq 0, x \cdot 1 = x$$

(·)
$$\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} : x + y = 0$$

(·)
$$\forall x \in \mathbb{R}, x \neq 0, \exists y \in \mathbb{R} : x \cdot y = 1$$

$$(\cdot) \qquad X \cdot (y + z) = X \cdot y + X \cdot z$$

- 2 Restructorps ordonné: I une relation d'ordre \leq tel que pour tout couple d'éléments $x, y \in \mathbb{R}$, on a
 - (1) $X \le Y$ ou $Y \subseteq X$. Si $X \le Y$ et $Y \subseteq X => X = Y$ pour tout triple d'éléments $X, Y, Z \in \mathbb{R}$ on a

(1)
$$X \leq Y$$
 et $Y \leq Z \Rightarrow X \leq Z$

Notation:

Si $x \le y$ et $x \ne y => x < y$ Si $x \ge y$ et $x \ne y => x > y$ 3 Axiome de la borne inférieure.

Pour tout sous-ensemble S non-vide de $\{x \in \mathbb{R} : x > 0\}$, $S \subset \{x \in \mathbb{R} : x > 0\}$ il existe un nombre $a \in \mathbb{R}$, $a \ge 0$ tel que

 $(1) \quad \alpha \leq X \qquad \forall x \in S$

(2) Quel que soit $\varepsilon > 0$, il existe un élément $x_{\varepsilon} \in S$ tel que $x_{\varepsilon} - a = \varepsilon$ (=> $a + \varepsilon > x_{\varepsilon}$).

 $\frac{\chi_{\varepsilon}}{\alpha}$

On dit que a eR est l'infimum (= la borne inférieure) de l'ensemble S Alors Rest un corps commutatif, ordonné et complet

Borne inférieure et borne supérieure.

Déf Soit $S \subset \mathbb{R}$, $S \neq \emptyset$. On dit que $b \in \mathbb{R}$ ($a \in \mathbb{R}$) est un majorant (un minorant) de S si $\forall x \in S$ on a $X \subseteq b$ ($x \ge a$).

Si S admet ren majorant (un ninorant), alors S est majoré (minoré). Si S est majoré et minoré, alors S est borné.

Soit S run sous-ensemble non-vide de R. Un nombre réel b (resp a) vérifiant les propriétés suivantes: $(\cdot) \quad \forall x \in S \quad , \quad x \in \mathcal{B} \quad (x \ge \alpha)$ tel que $b-x_{\varepsilon} \leq \varepsilon$ (resp. $x_{\varepsilon}-\alpha \leq \varepsilon$) (·) $\forall \epsilon \in \mathbb{R}$, $\epsilon > 0$, il existe un élément x_{ϵ} est le supremum l'informem de S $b = \sup S$ borne supérieure de S.

Borne inférieure de S $\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \sum_{n$ $(1) 1 = \sup S$ (1) $1 \ge \frac{1}{n} \quad \forall n \in \mathbb{N}^* \quad Vrai$ (2) Soit $\varepsilon > 0$ Trouver $x_{\varepsilon} \in S: 1-x_{\varepsilon} \leq \varepsilon$. On peut prendre $x_{\varepsilon} = 1$ pour tout choix de $\varepsilon > 0$. Vrai (2) O = in f S.(1) $0 \le \frac{1}{n} \quad \forall n \in \mathbb{N}^* \quad Vrai$ (2) Soit $\varepsilon > 0$ Trouver $x_{\varepsilon} \in S: x_{\varepsilon} - 0 \le \varepsilon$ $\angle = \rangle$ trouver $n \in \mathbb{N}^*$: $\frac{1}{n} - 0 \le \mathcal{E}$ $\angle = \rangle$ $\frac{1}{n} \le \mathcal{E}$ $\angle = \rangle$ $n \geqslant \frac{1}{\mathcal{E}} = \rangle$ On peut prendre $\left[\frac{1}{\varepsilon}\right] + 1 = n \in \mathbb{N}^* = n = \left[\frac{1}{\varepsilon}\right] + 1 \ge \frac{1}{\varepsilon} = n \in \mathbb{N}$.

Partie entière $= n \in \mathbb{N}^* = n = \left[\frac{1}{\varepsilon}\right] + 1 \ge \frac{1}{\varepsilon} = n \in \mathbb{N}$.