

In the Claims:

Claims 1 to 10 (Canceled).

1 11. (New) Semifinished product of composite material,
2 consisting of a metallic matrix material (11) and of high
3 tensile strength fibers (12) embedded in the matrix
4 material (11), whereby the metallic matrix material (11) is
5 formed of titanium or a titanium based alloy, characterized
6 in that ceramic particles (13) are encased or embedded in
7 the matrix material (11) for increasing the strength of the
8 semifinished product with respect to torsional loading or
9 transverse loading.

1 12. (New) Semifinished product according to claim 11,
2 characterized in that the embedded ceramic particles (13)
3 comprise a size in the micron range to the nanometer range.

1 13. (New) Semifinished product according to claim 11,
2 characterized in that the embedded ceramic particles (13)
3 are uniformly distributed in the matrix material (11).

1 14. (New) Semifinished product according to claim 11,
2 characterized in that the embedded high tensile strength
3 fibers (12) are silicon carbide fibers.

1 17. (New) Method according to claim 16, characterized in that
2 the coating of the high tensile strength fibers (12) with
3 titanium or the titanium based alloy is carried out under
4 a reactive atmosphere.

1 18. (New) Method according to claim 17, characterized in that
2 the coating of the high tensile strength fibers (12) with
3 titanium or the titanium based alloy is carried out under
4 a nitrogen atmosphere, whereby nitrogen atoms together with
5 titanium particles or particles of the titanium based alloy
6 deposit ceramic particles (13) into the coating.

1 **19.** (New) Method according to claim 18, characterized in that
2 ceramic particles (13) in the form of titanium nitrides are
3 deposited into the coating.

1 **20.** (New) Method according to claim 16, characterized in that
2 the coating is carried out as PVD coating, preferably as
3 sputtering.

[REMARKS FOLLOW ON NEXT PAGE]