Bevezetés

Üzleti Intelligencia

10. Előadás: Visszacsatolásos neurális hálózatok

Kuknyó Dániel Budapesti Gazdasági Egyetem

> 2023/24 1 félév

Bevezetés

Visszacsatolásos hálózatok

STM hálózatok

Bevezetés 00●00000

STM hálózatok

Input

Visszacsatolasos	neuralis	halozatok	alapjai

Output

"Milyen szép időnk van ma!"

Alkalmazás

Beszédfelismerés

Videók elemzése

Nevek felismerése

Szemantikai értelmezés

"Ez egy rossz film volt."

Tegnap Józsi letörölte a

termelési adatbázist.

AGCCCTGTACTAG

"Szeretnél velem táncolni?"

Tegnap Józsi letörölte a

termelési adatbázist.

AGCCCTGTACTAG

Eutás

Visszacsatolásos hálózatok: nevek felismerése a szövegben

Input: Tegnap Józsi letörölte a termelési adatbázist.

Input reprezentáció: $X = [x_1, x_2, x_3, ..., x_t, ..., x_6]$

Output reprezentáció: $Y = [y_1, y_2, y_3, ..., y_t, ..., y_6]$

Output: [0, 1, 0, 0, 0, 0]

Szavak reprezentálása 1-hot vektorokkal

Osztály		Macska	Kutya	Teknős
Macska		1	0	0
Kutya	\longrightarrow	0	1	0
Teknős		0	0	1

Az egyes szavak ilyen módon való kódolása lehetővé teszi, hogy egy neurális hálózat felépítse a saját **szókincsét**, majd különböző szekvenciákat bináris, azonos hosszúságú vektorok halmazaként reprezentáljon.

Szavak reprezentálása beágyazóvektorokkal

Beágyazás

Egy szó beágyazása egy magas dimenziójú vektortérben való numerikus reprezentáció. Ezek a vektorok tartalmazzák a szavak struktúráját, szemantikáját, és szintaktikai szerkezetét.

Ezáltal képesek a mélytanuló modellek elsajátítani a szavak közötti hasonlóságokat és az egyes szavak jelentését.

Jelölése: e_x .

	Férfi	Nő	Király	Királynő	Alma
Nem	-1	1	-0.95	0.97	0.0
Előkelő	0.01	0.02	0.93	0.95	-0.01
Kor	0.03	0.02	0.7	0.68	0.03
Étel	0.04	0.01	0.02	0.01	0.96

Tehát ebben az esetben például a férfi szó beágyazóvektora:

$$e_{f\acute{e}rfi} = [-1, 0.01, 0.03, 0.04]$$

Miért alkalmatlanok szekvencia feldolgozásra a hagyományos hálózatok?

Hagyományos előrecsatolásos hálózatok:

- Nem képesek változó hosszúságú inputot feldolgozni, mert az input szekvenciák hossza előre meghatározott.
- Nem képesek azonos szekvenciák között súlyokat megosztani.

Ezzel szemben az RNN hálózatok:

- Változó hosszúságú sorozatokkal működnek.
- Hosszútávú függőségeket is képesek megtanulni.
- Megőrzik az input vektor rendezettségét.
- Képesek paramétereket megosztani sorozatok között.

Bevezetés

Visszacsatolásos hálózatok

STM hálózatok

Mélyhálózatok (DNN) vs. visszacsatolásos hálózatok (RNN)

Visszacsatolásos mélyhálózat jelölése **RNN**

Reprezentáció

A visszacsatolásos neurális hálókat kétféle módon lehet jelölni: összehajtott és lehajtott állapotban. Az összehajtott jóval kompaktabb, a lehajtott viszont egy tiszta és intuitív nézőpontot ad a hálózat architektúrájára.

Súlyok és kapcsolatok

- x_t : Input vektor t. eleme.
- \hat{y}_t : Output vektor t. eleme.
- h_t : Rejtett réteg aktivációja (cella állapota) t időben.
- W_x : Input súlyai (időben állandó, tanítható).
- W_y: Output súlyai (időben állandó, tanítható).

Ebben az esetben az output

$$\hat{y}_t = f(x_t, h_{t-1})$$

 x_t aktuális input és h_{t-1} előző állapot függvénye.

Számítások az RNN-ben

Reitett állapot számítása

$$h_t = tanh \left(W_h \cdot h_{t-1} + W_x \cdot x_t + b_h \right)$$

Ahol $tanh(\cdot)$ a hiperbolikus tangens függvény, h_{t-1} az előző cella állapota, x_t az input vektor aktuális eleme, b pedig a cella torzítása.

Output számítása

$$\hat{y} = tanh \left(W_y \cdot h_t + b_y \right)$$

A hiperbolikus tangens függvény

A hiperbolikus tangens függvény az egyik gyakori aktivációs függvény visszacsatolásos neurális hálózatokban. Előnyei a nemlinearitás, erős gradiens, nulla középpontúság.

Hiperbolikus tangens függvény

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Ahol $e \approx 2.71828$ a természetes logaritmus értéke.

Hiba visszaáramoltatás hagyományos hálózatok esetén

- Köteg előre áramoltatása a hálózaton.
- Költség kiszámítása.
- Költség gradiensének meghatározása minden paraméter szerint.
- Paraméterek frissítése a költség minimalizálása érdekében.

Hiba visszaáramoltatás hagyományos hálózatok esetén

- Köteg előre áramoltatása a hálózaton.
- Költség kiszámítása.
- Költség gradiensének meghatározása minden paraméter szerint.
- Paraméterek frissítése a költség minimalizálása érdekében.

Hiba kiszámítása RNN esetén: előre áramoltatás

Előre áramoltatás során az RNN az input szekvencia elemeit **egyesével dolgozza fel időlépésenként**.

Minden t időlépésben kiszámolja L_t költséget, amelyet a végén aggregál valamilyen módszerrel, például **átlagolással vagy összegzéssel**.

Hiba kiszámítása RNN esetén: időbeni visszaáramoltatás

- Az output értékek kiszámítása minden időlépésre.
- A hálózatot lehajtva minden időlépésre a költség kiszámítása.
- A hálózatot feltekerve frissíteni a paramétereket.
- Ismétlés a meghatározott lépésszámig.

Egy az egyhez

Több az egyhez

Output szerint becsatolt

Bevezeté:

Visszacsatolásos hálózatok

3 LSTM hálózatok

Hagyományos RNN hálózat

A hagyományos LSTM hálózat két bemenete az x_t input vektor aktuális eleme és a h_{t-1} előző cella aktiváció. Ez alapján állítja elő az aktuális cella állapotot:

$$h_t = tanh \left(W_h \cdot h_{t-1} + W_x \cdot x_t + b_h \right)$$

Ennek az architektúrának több hátránya is van:

- Igazából csak egy nagyon mély hálózat.
- A hiperbolikus tangens függvény gradiensei a szélsőértékek felé haladva eltűnnek.

LSTM mint az RNN kiterjesztése

LSTM architektúra

Az LSTM (Long Short Term Memory) egy speciális neurális hálózat architektúra szekvenciális adatok feldolgozására.

Memóriacellákból és különböző kapukból (input, felejtés, output) áll amelyek segítik az információfolyam irányítását.

LSTM cella felépítése

Cella output

A cella outputja (h_t) a hálózat aktivációja t időlépésben.

A cella outputja az input vektor t. eleme és az előző cella aktivációja h_{t-1} alapján áll elő és a következő, t+1-edik cella inputjául szolgál.

Elemi műveletek az LSTM cellában

Cella állapot

A cella állapot (C_t) LSTM hálózatokban egy hosszútávú memória ami több időlépésen keresztül képes információt eltárolni.

A cella **állapot kapukon keresztül képes változni**, amik meghatározzák, hogyan adódik hozzá vagy vonódik ki információ a cella állapotból.

Elemi műveletek az LSTM cellában

A cella állapot két operátora:

$$a \otimes b = [a_1 \cdot b_1, a_2 \cdot b_2, \dots, a_n \cdot b_n]$$

• H: Elemenkénti összeadás:

$$a \oplus b = [a_1 + b_1, a_2 + b_2, \dots, a_n + b_n]$$

Felejtési kapu

A felejtési kapu az LSTM cellában egy matematikai kapu, amely két inputot fogad: h_{t-1} előző cella állapotot és x_t aktuális állapotot.

A kapu segítségével a modell szelektíven tud törölni információt az előző cella állapotából. A felejtési kapu outputja:

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

Ahol σ a szigmoid függvény, W_f a kapu súlymátrixa és b_f a torzítása.

A szigmoid függvény célja, hogy]0,1[intervallumba szorítsa be az input értékeket. Például felejtés esetén a 0 közeli érték azt jelenti, hogy az információ nem fontos.

Input kapu

Az input kapu eldönti, melyik új információ adódik hozzá a memóriához az input vektor aktuális eleme alapján.

 Input kapu: az új információ memóriába áramlását irányítja:

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

 Cellaállapot jelölt kapu: a már meglévő információ memóriába áramlását irányítja:

$$\tilde{C}_t = tanh\left(W_{\tilde{C}} \cdot [h_{t-1}, x_t] + b_{\tilde{C}}\right)$$

Cellaállapot előállítása

Az előző cellaállapot C_{t-1} és az aktuális cellaállapot jelölt \tilde{C}_t alapján. Ez a komponens adja a cella memóriáját, és feladata a fontos információk hosszú szakaszokon át való megtartása.

$$C_t = f_t \otimes C_{t-1} \oplus i_t \otimes \tilde{C}_t$$

Output kapu

Az output kapu képes szelektíven átadni fontos információt a következő cella inputjának.

 Output kapu kimenete: megadja a cella állapotából mi mentődjön át a következő cella állapotába:

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$

 Rejtett állapot: a cella állapota t időlépésben:

$$h_t = o_t \otimes tanh\left(\tilde{C}_t\right)$$

Példa LSTM használatára: képfeliratozás

Példa LSTM használatára: videó feliratozás

