Σύνολα

Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου

Επιμέλεια διαφανειών: Δ. Φωτάκης

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εθνικό Μετσόβιο Πολυτεχνείο

Ορισμός Συνόλου

- Σύνολο είναι μια συλλογή διακεκριμένων αντικειμένων.
 - Π.χ. {Δημήτρης, Ανδρέας, Άρης}, {α, β}, {α, {α}, {{α}}},
 N = {0, 1, ... }, {1, 3, 5, 7, ... }, {2, 3, 5, 7, 11, 13, ...}
 - Αντικείμενα όχι κατ΄ ανάγκη ομοειδή
 π.χ. {Δημήτρης, 1, a, 1041, {α, β, γ}, {{}}, PC1}
 - Mέλη ή στοιχεία του συνόλου: $x \in \{x, y, z\}$, $a \notin \{x, y, z\}$
 - Κάθε αντικείμενο είτε είναι μέλος ενός συνόλου είτε όχι.
- Σύνολο ορίζεται:
 - με απαρίθμηση των στοιχείων του, π.χ. {α, β, γ}
 - με χαρακτηριστική ιδιότητα των στοιχείων του, $π.χ. E = {x ∈ N: x άρτιος}, A = {x ∈ U: P(x)}$
 - ως αποτέλεσμα πράξεων σε σύνολα που έχουν ήδη ορισθεί.

Ορισμός Συνόλου

- Στοιχεία ενός συνόλου:
 - Δεν επαναλαμβάνονται, π.χ. {α, β} και όχι {α, α, β}.
 - Επανάληψη στοιχείων: πολυσύνολα.
 - Δεν υπάρχει διάταξη, π.χ. $\{a, \beta, \gamma\} = \{\gamma, \beta, a\} = \{\beta, a, \gamma\}$
- Πληθικός αριθμός συνόλου Α: #στοιχείων Α, |A|.
 - Πεπερασμένα και άπειρα σύνολα.
- □ Σύνολα Α και Β **ταυτίζονται** (A = B) ανν περιέχουν τα ίδια ακριβώς στοιχεία.

Υποσύνολα και Κενό Σύνολο

- - $\Pi.\chi. \{a,b\} \subseteq \{a,b,...,z\}, \mathbb{N} \subseteq \mathbb{R}, \{2,4,6,8,10\} \not\subseteq \{1,2,3,4,5\}$
 - Για κάθε σύνολο Α, A ⊆ A.
 - \blacksquare A = B avv A \subseteq B kal B \subseteq A.
 - Av A ⊆ B, τότε ισχύει ότι |A| ≤ |B|
 - **A** γνήσιο υποσύνολο B (A \subset B): A \subseteq B και A \neq B.
 - Υπάρχουν σύνολα Α, Β, τ.ω. Β ⊂ Α και ισάριθμα;
 - Σύνολο Α ἀπειρο ανν υπάρχει Β ⊂ Α τ.ω. Α και Β είναι ισάριθμα(!)
- \square **Κενό** σύνολο ($\{\ \}$ ή \emptyset): σύνολο χωρίς κανένα στοιχείο.
 - $|\varnothing| = 0.$
 - Για κάθε σύνολο Α, Ø ⊆ Α (απόδειξη;).
 - Κενό σύνολο είναι μοναδικό (απόδειξη;).

Δυναμοσύνολο

- **Δυναμοσύνολο** συνόλου Α, P(A) ή 2^A, είναι σύνολο με στοιχεία όλα τα υποσύνολα του A: $P(A) = \{B : B \subseteq A\}$
 - $P(\{1, 2\}) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}.$
 - $2^{\{a, \beta, \gamma\}} = \{\emptyset, \{a\}, \{\beta\}, \{\gamma\}, \{a, \beta\}, \{a, \gamma\}, \{\beta, \gamma\}, \{$ $\{a, \beta, \gamma\}\}$
 - \emptyset ∈ P(A) και A ∈ P(A), για κάθε σύνολο A.
 - $2^{\emptyset} = {\emptyset}. 2^{P(\emptyset)} = ?. 2^{P(\{\emptyset\})} = ?.$
- Για κάθε πεπερασμένο σύνολο A, $|2^A| = 2^{|A|}$.
 - Απόδειξη με επαγωγή και με συνδυαστικό επιχείρημα.
- □ ⊆ και ∈. Ποια από τα παρακάτω αληθεύουν;

John Run

Διαγράματα Venn

Αναπαριστούν σύνολα και σχέσεις μεταξύ συνόλων.

Ορθογώνιο αναπαριστά σύμπαν *U* που περιέχει όλα τα αντικείμενα. Ελλείψεις αναπαριστούν σύνολα υπό μελέτη.

John View

Διαγράματα Venn

Αναπαριστούν σύνολα και σχέσεις μεταξύ συνόλων.

Β (γνήσιο) υποσύνολο Α

John View

Διαγράματα Venn

Αναπαριστούν σύνολα και σχέσεις μεταξύ συνόλων.

Α και Β δεν έχουν κοινά στοιχεία (ξένα μεταξύ τους)

- □ 'Ενωση συνόλων Α και Β, Α ∪ Β:
 - Σύνολο με στοιχεία που ανήκουν στο Α ή στο Β (ή και στα δύο).
 - $\Pi.\chi. \{1, 2, 3\} \cup \{2, 3, 4\} = \{1, 2, 3, 4\}.$ $\{0, 2, 4, 6, ...\} \cup \{1, 3, 5, 7, ...\} = N.$
 - Αντιμεταθετική, προσεταιριστική, $A \cup \emptyset = A$, $A \cup A = A$, ορίζεται η ένωση $n \ge 2$ συνόλων.
 - $A \subseteq B$ avv $A \cup B = B$. Ειδικά $A \cup U = U$.
 - $A \subseteq A \cup B$, για κάθε B.
 - Aν A, B \subseteq C, τότε A \cup B \subseteq C.

- □ Τομή συνόλων Α και Β, Α ∩ Β:
 - Σύνολο με κοινά στοιχεία A και B.
 - $\Pi.\chi. \{1, 2, 3\} \cap \{2, 3, 4\} = \{2, 3\}.$ $\{0, 2, 4, 6, ...\} \cap \{1, 3, 5, 7, ...\} = \emptyset$
 - Αντιμεταθετική, προσεταιριστική, $A \cap U = A$, $A \cap A = A$, ορίζεται η τομή $n \ge 2$ συνόλων.
 - $A \subseteq B$ ανν $A \cap B = A$. Ειδικά $A \cap \emptyset = \emptyset$.
 - A ∩ B ⊆ A, για κάθε B.
 Av A, B ⊆ C, τότε A ∩ B ⊆ A ∪ B ⊆ C.
 - Επιμεριστική ιδιότητα τομής ως προς ένωση και ένωσης ως προς τομή.
 - Αν $A \cap B = \emptyset$, A και B **ξένα** ή διαζευγμένα σύνολα.

- □ Διαφορά συνόλου Α από σύνολο Β, A B:
 - Σύνολο με στοιχεία του Α που δεν ανήκουν στο Β.
 - $\Pi.\chi. \{1, 2, 3\} \{2, 3, 4\} = \{1\},$ $\{2, 3, 4\} - \{1, 2, 3\} = \{4\},$ $N - \{0, 2, 4, 6, ...\} = \{1, 3, 5, 7, ...\}.$
 - 'Οχι αντιμεταθετική!
- lacksquare Συμπλήρωμα συνόλου Α, \overline{A} :
 - Σύνολο με στοιχεία που δεν ανήκουν στο A, U A.
 - Συμπλήρωμα \emptyset = U. Συμπλήρωμα U = \emptyset .
 - $A B = A \cap \overline{B}$

- **Συμμετρική διαφορά** συνόλων Α και Β, Α \oplus Β:
 - Σύνολο με στοιχεία που ανήκουν είτε στο Α είτε στο Β αλλά όχι και στα δύο.
 - $\blacksquare \quad \mathsf{A} \oplus \mathsf{B} = (\mathsf{A} \cup \mathsf{B}) (\mathsf{A} \cap \mathsf{B})$

Διαμέριση Συνόλου

- Μη κενό σύνολο Α. Συλλογή Α₁, Α₂, ..., Α_n μη κενών υποσυνόλων του Α αποτελεί διαμέριση του Α ανν:
 - $\blacksquare \quad \mathsf{A} = \mathsf{A}_1 \cup \mathsf{A}_2 \cup \ldots \cup \mathsf{A}_\mathsf{n}$
 - Ta A₁, A₂, ..., A_n είναι ανά δύο ξένα μεταξύ τους.
- Παραδείγματα:
 - Ta {0, 2, 4, ... } και {1, 3, 5, ...} αποτελούν διαμέριση του Ν.
 - Ta {-1, -2, -3, ...}, {0},{1, 2, 3, ...} αποτελούνδιαμέριση του Ζ.

Ιδιότητες Πράξεων Συνόλων

Αντιμεταθετική	$A \cup B = B \cup A$ $A \cap B = B \cap A$		
Προσεταιριστική	$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$		
Επιμεριστική	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$		
Κανόνας συμπλήρωσης	$\overline{\overline{A}} = A$		

Ιδιότητες Πράξεων Συνόλων (ΙΙ)

Ουδέτερο στοιχείο	$A \cup \emptyset = A$ $A \cap U = A$		
Απορροφητικό στοιχείο	$A \cap \emptyset = \emptyset$ $A \cup U = U$		
Αυτοπάθεια	$A \cup A = A$ $A \cap A = A$		
Κανόνας Απορρόφησης	$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$		
Κανόνας De Morgan	$\overline{\frac{A \cup B}{A \cap B}} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$		

- Αντιστοιχία πράξεων συνόλων με λογικούς συνδέσμους.
 - Στοιχεία συνόλου Α έχουν ιδιότητα (α).
 - Στοιχεία συνόλου Β έχουν ιδιότητα (β).
 - Π.χ. στοιχεία συνόλου $A \cup B$ έχουν ιδιότητα (a) \vee (β).
- □ Ιδιότητες πράξεων συνόλων και σχέσεων μεταξύ συνόλων ελέγχονται / αποδεικνύονται με membership tables.
 - Πίνακες που εξετάζουν όλα τα ενδεχόμενα για το που ανήκει ένα στοιχείο.
 - Ισοδύναμο των πινάκων αλήθειας.

Παράδειγμα Membership Table

 Παράδειγμα membership table για επιμεριστική ιδιότητα της τομής ως προς την ένωση.

A	В	C	$B \cup C$	$A \cap (B \cup C)$	$A \cap B$	$A \cap C$	$(A \cap B) \cup (A \cap C)$
1	1	1	1	1	1	1	1
1	1	0	1	1	1	0	1
1	0	1	1	1	0	1	1
1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0

Παραδείγματα

- \square N. δ .o. $(A \cup B) \cap \overline{B} = A \Leftrightarrow A \cap B = \emptyset$
 - Αρκεί ν.δ.ο. A B = A ανν $A \cap B = \emptyset$, αφού

$$(A \cup B) \cap \overline{B} = (A \cap \overline{B}) \cup (B \cap \overline{B})$$
$$= A \cap \overline{B}$$
$$= A - B$$

lueble N. δ .o. $\overline{(\overline{A} \cup \overline{B})} \cap \overline{A} = A$

$$\overline{(\overline{A} \cup \overline{B}) \cap \overline{A}} = \overline{\overline{A}} = A$$

- \square N. δ .o. $P(A) \cap P(B) = P(A \cap B)$.
- □ N.δ.ο. $P(A) \cup P(B) \subseteq P(A \cup B)$. Να δώσετε παράδειγμα όπου το 1° είναι γνήσιο υποσύνολο του 2°.

Παραδείγματα

N.S.o. (A - B) - C = A - (B
$$\cup$$
 C)

$$(A - B) - C = (A \cap \overline{B}) \cap \overline{C}$$

$$= A \cap (\overline{B} \cap \overline{C})$$

$$= A \cap (\overline{B} \cup \overline{C})$$

$$□ N.δ.o. (A - B) - C = (A - C) - B$$

$$■ (A - B) - C = A - (B ∪ C)$$

$$= A - (C ∪ B)$$

$$= (A - C) - B$$

Παραδείγματα

N.
$$\delta$$
. o. $(A - B) - C = (A - C) - (B - C)$

$$(A - C) - (B - C) = (A \cap \overline{C}) \cap (\overline{B} \cap \overline{C})$$

$$= (A \cap \overline{C}) \cap (\overline{B} \cup C)$$

$$= (A \cap \overline{C} \cap \overline{B}) \cup (\overline{A \cap \overline{C} \cap C})$$

$$= (A \cap \overline{B}) \cap \overline{C}$$

$$= (A - B) - C$$