1 Trasformazione del PDA in grammatica

Prendiamo il seguente esempio:

Trasformiamo il PDA per il linguaggio $\{0^n1^n \mid n \geq 0\}$ in grammatica:

1.1 Analisi del PDA

Prima di procedere con la trasformazione, analizziamo brevemente il PDA dato:

- L'automa a pila riconosce il linguaggio $\{0^n1^n \mid n \ge 0\}$
- Il PDA ha 4 stati: q_0 (iniziale), q_1 , q_2 e q_3 (finale)
- In q_1 , per ogni '0' letto, viene inserito un '0' nello stack
- In q_2 , per ogni '1' letto, viene rimosso un '0' dallo stack
- Il PDA accetta se, dopo aver letto tutti i simboli di input, raggiunge q_3 svuotando lo stack

1.2 Trasformazione formale in CFG

Per trasformare un PDA in una grammatica context-free, usiamo l'algoritmo standard basato sui tripli di stati. Per ogni coppia di stati q_i e q_j e ogni simbolo di stack X, definiamo un non-terminale A_{ij}^X che genera tutte le stringhe w tali che, partendo da q_i con solo X in cima allo stack, il PDA può raggiungere q_j con lo stack esattamente come era prima di X, consumando esattamente w.

Formalmente, per il nostro PDA:

- 1. Definiamo i non-terminali A^X_{ij} per ogni $i,j\in\{0,1,2,3\}$ e ogni $X\in\{\$,0\}$
- 2. Il simbolo iniziale della grammatica sarà $S = A_{03}^{\$}$, che rappresenta tutte le stringhe che portano dal primo all'ultimo stato, consumando il simbolo di fondo pila
- 3. Applichiamo le regole di trasformazione per ogni transizione del PDA

Seguendo l'algoritmo, otteniamo la seguente grammatica:

$$\begin{array}{l} A_{03}^{\$} \to A_{13}^{\$} \quad \text{(dalla transizione } q_0 \to q_1 \text{ con } \varepsilon, \varepsilon \mapsto \$) \\ A_{13}^{\$} \to A_{12}^{\$} A_{23}^{\$} \quad \text{(decomposizione in sottoproblemi)} \\ A_{13}^{\$} \to \varepsilon \quad \text{(caso } \varepsilon, \text{ se } n = 0) \\ A_{12}^{\$} \to 0 A_{11}^{0} \quad \text{(dalla transizione } q_1 \to q_1 \text{ con } 0, \varepsilon \mapsto 0) \\ A_{11}^{0} \to 0 A_{11}^{0} A_{11}^{0} \mid \varepsilon \quad \text{(per concatenare più '0')} \\ A_{23}^{\$} \to \varepsilon \quad \text{(dalla transizione } q_2 \to q_3 \text{ con } \varepsilon, \$ \mapsto \varepsilon) \\ A_{12}^{0} \to 1 \quad \text{(dalla transizione } q_1 \to q_2 \text{ con } 1, 0 \mapsto \varepsilon) \\ A_{22}^{0} \to 1 \quad \text{(dalla transizione } q_2 \to q_2 \text{ con } 1, 0 \mapsto \varepsilon) \\ A_{22}^{0} \to 1 \quad \text{(dalla transizione } q_2 \to q_2 \text{ con } 1, 0 \mapsto \varepsilon) \end{array}$$

Possiamo semplificare questa grammatica attraverso sostituzioni e eliminazioni di produzioni ridondanti:

$$S \to A$$
$$A \to 0A1 \mid \varepsilon$$

Questa grammatica genera esattamente il linguaggio $\{0^n1^n \mid n \geq 0\}$.

1.3 Passi dettagliati della trasformazione

Vediamo in dettaglio come applicare l'algoritmo di trasformazione da PDA a CFG:

- 1. Per ogni tripla (q_i, X, q_j) , creiamo un non-terminale A_{ij}^X
- 2. Per ogni transizione del PDA, aggiungiamo una produzione alla grammatica

Consideriamo le transizioni del nostro PDA:

Transizione	Da	\mathbf{A}	Input, Stack	Nuovo Stack
T_1	q_0	q_1	ε, ε	\$
T_2	q_1	q_1	$0, \varepsilon$	0
T_3	q_1	q_2	1,0	arepsilon
T_4	q_2	q_2	1,0	arepsilon
T_5	q_2	q_3	$\varepsilon,\$$	arepsilon

Da queste transizioni, deriviamo le produzioni della grammatica:

- 1. Da T_1 : Se andiamo da q_0 a q_1 inserendo \$, otteniamo $A_{03}^\$ \to A_{13}^\$$
- 2. Da T_2 : Se in q_1 leggiamo '0' e inseriamo '0' nello stack, poi continuiamo a elaborare, otteniamo $A_{1j}^X \to 0 A_{1k}^0 A_{kj}^X$ per ogni j,k,X
- 3. Da T_3 e T_4 : Se in q_1 o q_2 leggiamo '1' e rimuoviamo '0' dallo stack, otteniamo $A^0_{12}\to 1$ e $A^0_{22}\to 1$
- 4. Da T_5 : Se da q_2 a q_3 rimuoviamo \$, otteniamo $A_{23}^\$ \to \varepsilon$

Inoltre, aggiungiamo le produzioni per gestire le transizioni "vuote", ovvero quelle che non consumano input e non modificano lo stack:

$$A^X_{ii} \to \varepsilon \quad \text{per ogni stato } i$$
e simbolo di stack X

E le produzioni per decomporre il problema in sottoproblemi:

$$A_{ij}^X \to A_{ik}^X A_{kj}^{\varepsilon}$$
 per ogni i, j, k, X

Dopo aver applicato queste regole e semplificato la grammatica (rimuovendo i nonterminali inutili e le produzioni ridondanti), arriviamo alla forma semplificata:

$$S \to A$$
$$A \to 0A1 \mid \varepsilon$$

1.4 Verifica della correttezza

Per verificare che la grammatica ottenuta generi effettivamente il linguaggio $\{0^n1^n \mid n \geq 0\}$, consideriamo alcune derivazioni:

1. Per n=0, generiamo ε :

$$S \Rightarrow A$$
$$\Rightarrow \varepsilon$$

2. Per n = 1, generiamo 01:

$$S \Rightarrow A$$
$$\Rightarrow 0A1$$
$$\Rightarrow 0\varepsilon 1$$
$$\Rightarrow 01$$

3. Per n=2, generiamo 0011:

$$S \Rightarrow A$$

$$\Rightarrow 0A1$$

$$\Rightarrow 00A11$$

$$\Rightarrow 00\varepsilon 11$$

$$\Rightarrow 0011$$

In generale, per ogni $n \geq 0$, la grammatica genera esattamente la stringa $0^n 1^n$, come richiesto.

2 Conclusione

Abbiamo trasformato con successo il PDA che riconosce il linguaggio $\{0^n1^n\mid n\geq 0\}$ in una grammatica context-free equivalente. La grammatica risultante, dopo la semplificazione, è:

$$S \to A$$
$$A \to 0A1 \mid \varepsilon$$

Questa grammatica è semplice ed elegante, e genera esattamente il linguaggio desiderato.