DCG, Wintersemester 2023/24

Lecture 1 (4 pages)

Basic notions and Radon's lemma

Anne Driemel updated: October 7, 2024

1 Basic notions

We start by introducing some basic notions that help us to mathematically describe basic geometric objects, such as points, lines and planes. Let \mathbb{R}^d denote the *d*-dimensional Euclidean space. A point is a *d*-tuple of real numbers $x = (x_1, \ldots, x_d)$.

Definition 1.1 (Linear hull). For points $p_1, \ldots, p_n \in \mathbb{R}^d$ and values $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ the point

$$\sum_{i=1}^{n} \alpha_i p_i$$

is a linear combination. The set of points p_1, \ldots, p_n is linearly dependent if there exists an index $i \in \{1, \ldots, n\}$ such that p_i can be written as a linear combination of the other points in the set. We call the set linearly independent otherwise. The set of all linear combinations of a set of points

$$\lim(p_1,\ldots,p_n) = \left\{ \sum_{i=1}^n \alpha_i p_i \mid \alpha_i \in \mathbb{R} \right\}$$

is called the linear hull (also called the linear span).

Definition 1.2 (Affine hull). For points $p_1, \ldots, p_n \in \mathbb{R}^d$ and values $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ with $\sum_{i=1}^n \alpha_i = 1$ the point

$$\sum_{i=1}^{n} \alpha_i p_i$$

is an affine combination. The set of points p_1, \ldots, p_n is affinely dependent if there exists an index $i \in \{1, \ldots, n\}$ such that p_i can be written as an affine combination of the other points in the set. We call the set affinely independent otherwise. The set of all affine combinations of a set of points

$$\operatorname{aff}(p_1, \dots, p_n) = \left\{ \sum_{i=1}^n \alpha_i p_i \mid \alpha_i \in \mathbb{R}, \sum_{i=1}^n \alpha_i = 1, \right\}$$

is called the affine hull.

An affine combination is a linear combination with the additional constraint that the sum of coefficients is 1. Using affine combinations we can describe lines, planes and hyperplanes.

Example 1.3. The affine hull of two points $p_1, p_2 \in \mathbb{R}^2$ is

$$\{ \alpha_1 p_1 + \alpha_2 p_2 \mid \alpha_1, \alpha_2 \in \mathbb{R}, \alpha_1 + \alpha_2 = 1 \}$$

which is equivalent to

$$\{ tp_1 + (1-t)p_2 \mid t \in \mathbb{R} \}$$

This is the set of all points that lie on the line that contains p_1 and p_2 .

Example 1.4. The affine hull of three points $p_1, p_2, p_3 \in \mathbb{R}^2$, such that the three points do not lie on a common line, is equal to \mathbb{R}^2 .

Lemma 1.5. Any set of d+2 points in \mathbb{R}^d is affinely dependent.

Proof. We derive the statement from the fact that d+1 points in \mathbb{R}^d are linearly dependent. Let $A = \{p_1, \ldots, p_{d+2}\}$. Consider an arbitrary index $i \in \{1, \ldots, d+2\}$ fixed and consider the d+1 points $q_j = p_j - p_i$ for $i \neq j$. Since d+1 points are linearly dependent, we can rewrite one of them as a linear combination of the others. That is, there exist values β_j and an index $r \in \{1, \ldots, d+2\}$ with $r \neq i$, such that

$$q_r = \sum_{\substack{j \in \{1, \dots, d+2\}\\ j \neq i \text{ and } j \neq r}} \beta_j q_j.$$

Therefore

$$p_r = q_r + p_i = \left(\sum_{j \neq i \text{ and } j \neq r} \beta_j q_j\right) + p_i = \sum_{j \neq i \text{ and } j \neq r} \beta_j p_j - \left(\sum_{i \neq j \text{ and } j \neq r} \beta_j\right) p_i + p_i$$

Now we define $\beta_i = -\left(\sum_{j\neq i \text{ and } j\neq r} \beta_j\right) + 1$ and we have $\sum_{j\neq r} \beta_j = 1$ which satisfies the conditions of an affine combination.

Definition 1.6 (Convex hull). For points $p_1, \ldots, p_n \in \mathbb{R}^d$ and values $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ with $\sum_{i=1}^n \alpha_i = 1$ and $\alpha_i \geq 0$ for all $1 \leq i \leq n$ the point

$$\sum_{i=1}^{n} \alpha_i p_i$$

is a convex combination. The set of points p_1, \ldots, p_n is convexly dependent if there exists an index $i \in \{1, \ldots, n\}$ such that p_i can be written as a convex combination of the other points in the set. Otherwise we say points lie in convex position. The set of all convex combinations of a set of points

$$conv(p_1, \dots, p_n) = \left\{ \sum_{i=1}^n \alpha_i p_i \mid \alpha_i \in \mathbb{R}, \sum_{i=1}^n \alpha_i = 1, \alpha_i \ge 0 \right\}$$

is called the convex hull.

Example 1.7. The convex hull of two points $p_1, p_2 \in \mathbb{R}^2$ is the set

$$\{ tp_1 + (1-t)p_2 \mid t \in [0,1] \}.$$

This is the line segment with endpoints p_1 and p_2 .

Example 1.8. The convex hull of three points $p_1, p_2, p_3 \in \mathbb{R}^2$ is the set

$$\{ \alpha_1 p_1 + \alpha_2 p_2 + \alpha_3 p_3 \mid \alpha_1, \alpha_2, \alpha_3 \geq 0 \text{ and } \alpha_1 + \alpha_2 + \alpha_3 = 1 \}.$$

This is the triangle with corners p_1, p_2 , and p_3 .

2 Radon's lemma

Lemma 1.9 (Radon's lemma). For any set A of d+2 points in \mathbb{R}^d there are subsets $A_1, A_2 \subseteq A$ with $A_1 \cap A_2 = \emptyset$ and a point q, such that $q \in \text{conv}(A_1) \cap \text{conv}(A_2)$. We call such a point q a Radon point.

Proof. Let $A = \{p_1, \ldots, p_{d+2}\}$. Since we have d+2 points, these are affinely dependent. Thus, there exists a $p_i \in A$ which can be expressed as an affine combination of the other points. That is, there exist values α_j for $1 \le j \le n$ with $i \ne j$, such that

$$p_i = \sum_{i \neq j} \alpha_j p_j$$
 with $\sum_{i \neq j} \alpha_j = 1$

Now let $\alpha_i = -1$. We can add $\alpha_i p_i$ to both sides of the equality and obtain

$$0 = \sum_{j=1}^{d+2} \alpha_j p_j \quad \text{mit} \quad \sum_{j=1}^{d+2} \alpha_j = 0.$$

We now define two index sets $I_1 = \{ i \mid \alpha_i > 0 \}$ and $I_2 = \{ i \mid \alpha_i < 0 \}$. We have

$$-\sum_{i \in I_2} \alpha_i p_i = \sum_{i \in I_1} \alpha_i p_i \quad \text{ and } \quad -\sum_{i \in I_2} \alpha_i = \sum_{i \in I_1} \alpha_i$$

Now let $\gamma = \sum_{i \in I_1} \alpha_i$, and define $q_1 = \sum_{i \in I_1} \beta_i p_i$ with $\beta_i = \frac{\alpha_i}{\gamma}$. This is a convex combination of the points of A which have index in I_1 . Similarly we can define $q_2 = \sum_{i \in I_2} \beta_i p_i$ with $\beta_i = -\frac{\alpha_i}{\gamma}$. This is a convex combination of the points in A which have index in I_2 . At the same time we have $q_1 = q_2$ and $I_1 \cap I_2 = \emptyset$. This implies the lemma.

Example 1.10 (Radon point). For 4 distinct points a, b, c, d in the plane there are essentially two possibilities for the two subsets in the above lemma.

(b) $A_1 = \{a, b\}, A_2 = \{c, d\}.$ Two line segments $a\overline{b}$ and \overline{cd} intersect in one point. The point of intersection is a Radon point.

3 More affine notions

Definition 1.11 (Linear subspace). A set $A \subseteq \mathbb{R}^d$ is a linear subspace of \mathbb{R}^d if and only if

- (i) $\forall x, y \in A : x + y \in A$
- (ii) $\forall \alpha \in \mathbb{R}, x \in A : \alpha x \in A$

Definition 1.12 (Affine subspace). Let L be a linear subspace of \mathbb{R}^d and let $x \in \mathbb{R}^d$. Then,

$$A = \{ x + y \mid y \in L \}$$

is an affine subspace of \mathbb{R}^d .

We can interpret these sets geometrically. Any line that passes through the origin is a linear subspace. Any line (not necessarily passing through the origin) is an affine subspace.

Definition 1.13 (Affine mapping). An affine mapping has the form $f : \mathbb{R}^k \to \mathbb{R}^d$ with $f : y \mapsto By + c$, where B is a $d \times k$ matrix and $c \in \mathbb{R}^d$. It is a composition of a linear map and a translation.

Definition 1.14 (Hyperplane). Let $a \in \mathbb{R}^d \setminus \{0\}$ and $b \in \mathbb{R}$. The set

$$\left\{ x \in \mathbb{R}^d \mid \langle a, x \rangle = b \right\}$$

is a hyperplane. It is a (d-1)-dimensional affine subspace of \mathbb{R}^d . Using the definition of the inner product

$$\langle a, x \rangle = a_1 x_1 + a_2 x_2 + \dots + a_d x_d$$

we can see that a hyperplane is the set of solutions to a linear equality. A hyperplane can also be given as the image of an affine mapping.

Definition 1.15 (k-flat). A k-flat is a k-dimensional affine subspace of \mathbb{R}^d . It can be given either as an intersection of hyperplanes, or as the image of an affine mapping.

(a) k-flat given as intersection of two hyperplanes for k = 1 and d = 3.

(b) k-flat given as the image of an affine mapping for k = 1 and d = 3.

Definition 1.16 (Halfspace). A halfspace is a set bounded by a hyperplane. Given $a \in \mathbb{R}^d \setminus \{0\}$ and $b \in \mathbb{R}$, the set

$$\left\{ \ x \in \mathbb{R}^d \ \middle| \ \langle a, x \rangle \geq b \ \right\}$$

is a halfspace bounded by the hyperplane given by a and b.

References

• Jiří Matouŝek, Chapter 1, Lectures on Discrete Geometry, Springer Graduate Texts in Mathematics.