A General Neural Operator Transformer for Operator Learning

Self Attention

· Self Alkention is just a sequence to sequence operation:

Weighted Aug over all input $y_i = \sum_i w_{ij} x_j$

· Weights are not learnable parameters: Wij = xixj ⇒ Wij = softman (Wij) -00 to 00 0 to 1

- Three things happening here: \rightarrow Each x_i is compared to every other vector to establish weights for its own output y_i \rightarrow Each x_i is compared to every other vector to establish weights for other outputs y_i \rightarrow Each x_i is used as a part of weighted sum to get each output vector
- · Can we somehow come up with a clever way to get these 3 things done?

Self Attention

· Self Alkention is just a sequence to sequence operation:

Newal Nets

Weighted Ang over all input y; = \(\subseteq W_{ij} \times_{j} \)

Wij = xtxj Wij = Softmon (Wij) · Weights are not learnable parameters -∞ to ∞ 0 to 1

· Three things happening here: q; = Wq xi

Ki = WK xi

 \rightarrow Each x_i is compared to every other vector to establish weights for its own output y_i \rightarrow Each x_i is compared to every other vector to establish weights for other outputs y_i \rightarrow Each x_i is used as a part of weighted sum to get each output vector: $V_i = W_{V} x_i$

$$W'_{ij} = q_i^T K_j$$
 \Rightarrow $W'_{ij} = \frac{q_i^T K_j}{V K}$ Scaling dot product $W_{ij} = \text{Softmox}(W_{ij})$ $\forall i = \sum_{i \in S} W_{ij} V_j$ Length

Multi Head Attention

• $\chi_{t \times K} \longrightarrow Self$ Altention $\longrightarrow \chi_{t \times K}$

GNOT Architecture

GNOT: A General Neural Operator Transformer for Operator Learning

Figure 2. Overview of the model architecture. First, we encode input query points and input functions with different MLPs. Then we update features of query points using a heterogenous normalized cross-attention layer and a normalized self-attention layer. We use a gate network using geometric coordinates of query points to compute a weighted average of multiple expert FFNs. We output the features after processing them using N layers of the attention block.

Problem Formulation

· Query Points x;

· Input function 20

· Boundary Shape x;

· Final Solution U

Task is to map 20 -> 2 using domain Knowledge xi

 $(y^{\circ},x_{i}^{\prime})$

GNOT

General Input Encoding

- · Query Points x; 1 < i < Ng
- Input function u° (x_i, u_i°) ; $i < N_i$
- · Boundary Shape x;
 - General Input Encoding resolves this issue
 - IXNe · x; NN q
 - Ngxne

• $(x_i, u_i^\circ) \xrightarrow{NN} K$

All different dimensions

These NN are called Encoders

GNOT

Heterogeneous Normalised Attention

• From Encoder NNs we have
$$\{q_i\}_{i \leq N}$$
 $\{K_i\}_{i \leq M}$ $\{V_i\}_{i \leq M}$

N ne Mine

$$\frac{Z_{t}}{i} = \sum_{\substack{e \neq h \ (q_{t}, K_{i}/T) \\ j \text{ dimensions of Embeddings}}} \frac{e \times h(q_{t}, K_{i}/T)}{i} \qquad \text{dimensions of Embeddings}$$

· Here is the proposed Modification:

$$\widehat{q}_{i}^{*} = \operatorname{Softmax}(q_{i}) = \underbrace{\operatorname{exh}(q_{i})}_{\text{ch}(q_{i})}$$
; $j \leq n_{e}$

$$\underbrace{\operatorname{cxh}(q_{i})}_{\text{ch}(q_{i})}$$

$$Z_{t} = \underbrace{\underbrace{\widetilde{q}_{t} \cdot \widetilde{K}_{i}}_{\xi \widetilde{q}_{t} \widetilde{K}_{i}}}_{N_{0} \times m_{e} \text{ lisation}} \underbrace{\underbrace{\widetilde{q}_{t} \cdot \widetilde{K}_{i}}_{i} \cdot V_{i}}_{V_{i}} = \underbrace{\underbrace{\widetilde{q}_{t} \cdot \widetilde{K}_{i}}_{\xi \widetilde{q}_{t} \cdot \widetilde{K}_{i}}}_{N_{0} \times m_{e} \text{ lisation}} \underbrace{\underbrace{\widetilde{q}_{t} \cdot \widetilde{K}_{i}}_{\zeta \widetilde{q}_{t} \cdot \widetilde{K}_{i}}}_{N_{0} \times m_{e} \text{ lisation}} \underbrace{\underbrace{\widetilde{q}_{t} \cdot \widetilde{K}_{i}}_{\zeta \widetilde{q}_{t} \cdot \widetilde{K}_{i}}}_{N_{0} \times m_{e} \text{ lisation}} \underbrace{\underbrace{\widetilde{q}_{t} \cdot \widetilde{K}_{i}}_{\zeta \widetilde{q}_{t} \cdot \widetilde{K}_{i}}}_{N_{0} \times m_{e} \text{ lisation}} \underbrace{\underbrace{\widetilde{q}_{t} \cdot \widetilde{K}_{i}}_{\zeta \widetilde{q}_{t} \cdot \widetilde{K}_{i}}}_{N_{0} \times m_{e} \text{ lisation}} \underbrace{\underbrace{\widetilde{q}_{t} \cdot \widetilde{K}_{i}}_{\zeta \widetilde{q}_{t} \cdot \widetilde{K}_{i}}}_{N_{0} \times m_{e} \text{ lisation}} \underbrace{\underbrace{\widetilde{q}_{t} \cdot \widetilde{K}_{i}}_{\zeta \widetilde{q}_{t} \cdot \widetilde{K}_{i}}}_{N_{0} \times m_{e} \text{ lisation}} \underbrace{\underbrace{\widetilde{q}_{t} \cdot \widetilde{K}_{i}}_{\zeta \widetilde{q}_{t} \cdot \widetilde{K}_{i}}}_{N_{0} \times m_{e} \text{ lisation}} \underbrace{\underbrace{\widetilde{q}_{t} \cdot \widetilde{K}_{i}}_{\zeta \widetilde{q}_{t} \cdot \widetilde{K}_{i}}}_{N_{0} \times m_{e} \text{ lisation}} \underbrace{\underbrace{\widetilde{q}_{t} \cdot \widetilde{K}_{i}}_{\zeta \widetilde{q}_{t} \cdot \widetilde{K}_{i}}}_{N_{0} \times m_{e} \text{ lisation}} \underbrace{\underbrace{\widetilde{q}_{t} \cdot \widetilde{K}_{i}}_{\zeta \widetilde{q}_{t} \cdot \widetilde{K}_{i}}}_{N_{0} \times m_{e} \times m_{e} \text{ lisation}} \underbrace{\underbrace{\widetilde{q}_{t} \cdot \widetilde{K}_{i}}_{\zeta \widetilde{q}_{t} \cdot \widetilde{K}_{i}}}_{N_{0} \times m_{e} \times$$

• We have Oueries, Keys and values from different embeddings.
$$Z_{t} = \widetilde{\gamma}_{t} + \frac{1}{L} \sum_{l=1}^{L} \langle \hat{\gamma}_{t}^{l}, (\sum_{i} \tilde{\kappa}_{i}^{l} \otimes v_{i}^{l}) \rangle = 0 ((N + \sum_{l} N_{l}) n_{e}^{2})$$

Geometric Gating

· Inspired from domain decomposition techniques where each Net is made expert in a specific domain.

Soft domain Decomposition

· Query Points Kdiff NN Gibes

$$Z_t = Z_t + \sum_{i=1}^{K} P_i(x_t) \cdot E_i(Z_t)$$

- · We can learn Gating as NN on fix them with prior Knowledge
- · Also used in XPINNs

Conclusions

GNOT: A General Neural Operator Transformer for Operator Learning

Dataset	Type		MIONet	FNO(-interp)	GK-Transformer	Geo-FNO	OFormer	Ours
	Challenge	Subset						
Darcy2d	-	-	5.45e-2	1.09e-2	8.40e-3	1.09e-2	1.24e-2	1.05e-2
NS2d	_	part	-	1.56e-1	1.40e-1	1.56e-1	1.71e-1	1.38e-1
	-	full	_	8.20e-2	7.92e-2	8.20e-2	6.46e-2	4.43e-2
Elasticity	A	-	9.65e-2	5.08e-2	2.01e-2	2.20e-2	1.83e-2	8.65e-3
NS2d-c	A, C	u	2.74e-2	6.56e-2	1.52e-2	1.41e-2	2.33e-2	6.73e-3
		v	5.51e-2	1.15e-1	3.15e-2	2.98e-2	4.83e-2	1.55e-2
		p	2.74e-2	1.11e-2	1.59e-2	1.62e-2	2.43e-2	7.41e-3
NACA	A, C	-	1.32e-1	4.21e-2	1.61e-2	1.38e-2	1.83e-2	7.57e-3
Inductor2d	A, C	A_z	3.10e-2	_	2.56e-1	_	2.23e-2	1.21e-2
		B_x	3.49e-2	_	3.06e-2	_	2.83e-2	1.92e-2
		B_y	6.73e-2	_	4.45e-2	_	4.28e-2	3.62e-2
Heat	A, B, C	part	1.74e-1	_	_	_	_	4.13e-2
		full	1.45e-1	_	_	_	_	2.56e-2
Heatsink	A, B, C	T	4.67e-1	_	I—I	_	_	2.53e-1
		u	3.52e-1	_	-	_	_	1.42e-1
		v	3.23e-1	_	-	_	_	1.81e-1
		w	3.71e-1	_	_	_	_	1.88e-1

Table 1. Our main results of operator learning on several datasets from multiple areas. The types like u, v are the physical quantities to predict and types like "part" denotes the size of the dataset. "-" means that the method is not able to handle this dataset. Lower scores mean better performance and the best results are **bolded**.