

MULTIMEDIA

UNIVERSITY

STUDENT ID NO

--	--	--	--	--	--	--	--	--	--

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2018/2019

DET5038 – POWER ELECTRONICS
(Diploma in Electronic Engineering)

6 MARCH 2019
2:30 pm – 4:30 pm
(2 Hours)

INSTRUCTIONS TO STUDENT

1. This question paper consists of 6 pages excluding cover page.
2. Answer **ALL** questions. All necessary working steps must be shown.
3. Write all your answers in the answer booklet provided.

QUESTION 1 [20 marks]

- (a) Explain the differences between power diode and SCR. (4 marks)
- (b) Sketch the $V-I$ characteristic of SCR clearly indicating the holding current, maximum reverse voltage and forward bias on-state current. (6 marks)
- (c) Draw the circuit diagram of a single phase half wave uncontrolled rectifier operating from a 230 V, 50 Hz supply, with purely resistive load of 20Ω . Sketch the waveforms of its source voltage, output voltage, output current and source current. (10 marks)

QUESTION 2 [20 marks]

- (a) Draw the circuit diagram of a Boost DC-DC Converter and explain how its output voltage can be controlled. Also, explain the effect of duty cycle and switching frequency on the ripple voltage of the output voltage. (10 marks)
- (b) Draw the circuit diagram of a single phase PWM full-bridge DC-AC inverter and explain its operation. Sketch its output voltage and current waveforms for a duty cycle of 0.5 for a purely resistive load. (10 marks)

Continued ...

QUESTION 3 [20 marks]

- (a) A power MOSFET is used as a switch to supply power to a purely inductive load, as shown in Figure 1. Assume that the switch is in the on-state and off-state for the same time duration at a switching frequency of 100 kHz. Using the data given, determine the total power loss in the MOSFET. (17 marks)

Drain-source on state resistance, $R_{DS-on} = 0.05 \Omega$

Reverse leakage current, $I_{DSS} = 200 \mu A$

DC power supply, $V_{DD} = 200 V$

Turn on time, $\tau_{on} = 50 \text{ ns}$;

Turn off time, $\tau_{off} = 200 \text{ ns}$

On state current, $I_{DS-on} = 20$

Figure 1

- (b) Determine the total power loss if the load is purely resistive. (3 marks)

Continued ...

QUESTION 4 [20 marks]

- (a) A single phase full wave diode-bridge rectifier operating from a 230 V, 50 Hz main, supplies power to a purely inductive load, represented by a constant current of 20 A. Find the
- (i) average output voltage (2 marks)
 - (ii) average output current (2 marks)
 - (iii) RMS output voltage (2 marks)
 - (iv) ripple voltage (2 marks)
 - (v) ripple voltage factor. (2 marks)
- (b) A DC-DC Buck-Boost converter is operating from a 10 V DC voltage source. It supplies 45 W power to a 5Ω load resistor under continuous conduction mode at a switching frequency of 10 kHz. Assume that the filter capacitance is $220 \mu\text{F}$ and the diode is ideal. Determine the
- (i) output voltage and duty ratio (4 marks)
 - (ii) minimum inductance value needed for this converter for continuous conduction mode of operation (3 marks)
 - (iii) percentage ripple in the output voltage. (3 marks)

Continued ...

QUESTION 5 [20 marks]

- (a) A single phase half-bridge inverter with a DC input voltage (V_P) of 100 V is required to produce an AC square wave output voltage at 50 Hz across a resistive load of 100 Ω .

- (i) Draw the circuit diagram and label the components (3 marks)
- (ii) Calculate the RMS value of the output voltage, $V_{0, \text{RMS}}$ (2 marks)
- (iii) Calculate the power output (2 marks)
- (iv) Calculate the total harmonic distortion in the output voltage (3 marks)

Hint: $V_{1, \text{RMS}} = 0.9 V_P$

- (b) A half-bridge resonant inverter with unidirectional switch is as shown in Figure 2. The capacitor voltage at time $t = 0$ s is given as 120 V. Determine the following:

- (i) Damping factor, α . (2 marks)
- (ii) Angular resonant frequency, ω_o (2 marks)
- (iii) Angular ringing frequency, ω_r (3 marks)
- (iv) The expression for the instantaneous load current, $i(t)$. (3 marks)

$$\text{Hint: } i(t) = \frac{V_s + V_{C0}}{L\omega_r} e^{-\alpha t} \sin \omega_r t$$

Figure 2

End of Page

APPENDIX

Table 1 Switching power loss of power BJT

	Resistive Load	Inductive Load
ON state	$P_{on} = [V_{CE(sat)}I_{C(on)} + V_{BE(on)}I_{B(on)}] \frac{t_{on}}{T}$	$P_{on} = [V_{CE(sat)}I_{C(on)} + V_{BE(on)}I_{B(on)}] \frac{t_{on}}{T}$
OFF state	$P_{off} = [V_{CC}I_{C(leak)}] \frac{t_{off}}{T}$	$P_{off} = [V_{CC}I_{C(leak)}] \frac{t_{off}}{T}$
Turn On	$P_{turn-on} = V_{CC}I_{C(on)} \frac{\tau_{on}}{6T}$	$P_{turn-on} = V_{CC}I_{C(on)} \frac{\tau_{on}}{2T}$
Turn Off	$P_{turn-off} = V_{CC}I_{C(on)} \frac{\tau_{off}}{6T}$	$P_{turn-off} = V_{CC}I_{C(on)} \frac{\tau_{off}}{2T}$

Table 2 Switching power loss of power MOSFET

	Resistive Load	Inductive Load
ON state	$P_{on} = I_{D(on)}^2 R_{DS(on)} \frac{t_{on}}{T}$	$P_{on} = I_{D(on)}^2 R_{DS(on)} \frac{t_{on}}{T}$
OFF state	$P_{off} = I_{D(off)} V_{DD} \frac{t_{off}}{T}$	$P_{off} = I_{D(off)} V_{DD} \frac{t_{off}}{T}$
Turn On	$P_{turn-on} = \frac{V_{DD} I_{D(on)} \tau_{on}}{6T}$	$P_{turn-on} = \frac{V_{DD} I_{D(on)} \tau_{on}}{2T}$
Turn Off	$P_{turn-off} = \frac{V_{DD} I_{D(on)} \tau_{off}}{6T}$	$P_{turn-off} = \frac{V_{DD} I_{D(on)} \tau_{off}}{2T}$

Half wave rectifier: $V_{0\text{avg}} = V_m/\pi$; $V_{0\text{rms}} = V_m/2$ where $V_m = 1.414 V_{\text{rms}}$

Full wave rectifier: $V_{0\text{avg}} = 2V_m/\pi$; $V_{0\text{rms}} = V_m/1.414$

Table 3 Useful equations of DC to DC converters

Buck Converter	Boost Converter	Buck-Boost Converter
$V_o = DV_s$	$D = 1 - \frac{V_s}{V_o}$	$D = \frac{V_o}{V_s + V_o}$
$I_L = \frac{V_o}{R}$ $(\Delta i_L)_{close} = \frac{V_s - V_o}{L} DT$ $(\Delta i_L)_{open} = -\frac{V_o}{L} (1-D)T$	$I_L = \frac{V_s}{R(1-D)^2}$ $(\Delta i_L)_{close} = \frac{V_s}{L} DT$ $(\Delta i_L)_{open} = \frac{V_s - V_o}{L} (1-D)T$	$I_L = \frac{V_s D}{R(1-D)^2}$ $(\Delta i_L)_{close} = \frac{V_s}{L} DT$ $(\Delta i_L)_{open} = -\frac{V_o}{L} (1-D)T$
$L = \frac{(1-D)R}{2f}$	$L = \frac{D(1-D)^2 R}{2f}$	$L = \frac{(1-D)^2 R}{2f}$
$C_{min} = \frac{1-D}{8Lf^2 \frac{\Delta V_o}{V_o}}$	$C = \frac{D}{Rf \frac{\Delta V_o}{V_o}}$	$C = \frac{D}{Rf \frac{\Delta V_o}{V_o}}$