

MATH 120 - Linear Algebra with Differential Equations Fall 2013-14 BS (Hons)

Instructor	Faqir M Bhatti and M. Saqib Khan		
Room No.	9-251A, Room will be announced later for M. Saqib.		
Office Hours	TBA		
Email	fmbhatti@lums.edu.pk,		
Telephone	042-35608013/ or ext 8013		
TA	TBA		
TA Office Hours	TBA		
	http://math.lums.edu.pk/moodle or		
Course URL (if any)	http://lms.lums.edu.pk		

Course Basics				
Credit Hours	3			
Lecture(s)	Nbr of Lec(s) Per Week	2	Duration	75min
Recitation/Lab (per week)	Nbr of Lec(s) Per Week		Duration	
Tutorial (per week)	Nbr of Lec(s) Per Week		Duration	

Course Distribution	
Core	
Elective	
Open for Student Category	All students
Close for Student Category	None

COURSE DESCRIPTION

This is the first course of a two semester sequence in linear algebra. This course gives a working knowledge of: systems of linear equations, matrix algebra, determinants, eigenvectors and eigenvalues, finite-dimensional vector spaces, matrix representations of linear transformations, matrix diagonalization, changes of basis, Separable and first-order linear equations with applications, 2nd order linear equations with constant coefficients, method of undetermined coefficients, Systems of linear ODE's with constant coefficients, Solution by eigenvalue/eigenvectors, Nonhomogeneous linear systems.

COURSE Anti-PREREQUISITE(S)		
•	Math in A-levels, FSc, or the equivalent	

COURSE OBJECTIVES			
•	To acquire a good understanding of the concepts and methods of linear algebra To develop the ability to solve problems using the techniques of linear algebra To develop critical reasoning by writing short proofs based on the axiomatic method To compute the solution of first order and higher order Ordinary differential equations To solve system of linear ODEs using eigen values and eigen vectors		

Learning Outcomes			
	Students will learn to		
•	Set up and solve systems of linear equations		
•	Perform matrix operations as appropriate		
•	Evaluate determinants and use their properties Understand and use linear transformations		
	Work in real vector spaces		

Use the concepts of subspace, basis, dimension, row space, column space, row rank, column rank, and

nullity Use inner products
Use and construct orthonormal
bases Perform QR decompositions

Apply linear algebra for best approximation and least squares fitting

Evaluate and apply eigenvectors and eigenvalues

Understand the features of general linear transformations such as kernel, range, inverses, matrix representations, similarity,

and isomorphism

Solve first and higher order ODEs

Solve system of linear ODEs using eigen values and eigen vectors Use Mathematica and Maple to solve ODEs and system of ODEs

Grading Breakup and Policy

Attendance: 5% Home Work(3): 10% Quizzes: (4): 15% Webwork(4): 15% Midterm Examination: 25 Final Examination: 30

Examination Detail			
Midterm Exam	Yes/No: Yes Combine/Separate: Duration: 90min Preferred Date6 Mar 2013 Exam Specifications: No notes/No books/No calculators		
Final Exam	Yes/No: Yes Combine: Duration: 180min Exam Specifications: No notes/No books/No calculators		

COURSE OVERVIEW				
Week/ Lecture/ Module	Topics	Recommended Readings	Objectives/ Application	
Part (i)	Systems of linear equations	Chapter 1	Systems of linear equations and matrices	
•	Gaussian elimination	Chapter 1 Section 1.1 1.2	Systems of linear equations and matrices	
•	Matrices and matrix operations	Chapter 1 Section 1.3	Systems of linear equations and matrices	
•	Matrix arithmetic	Chapter 1 Section 1.4	Systems of linear equations and matrices	
•	Inverses	Chapter 1 Section 1.4	Systems of linear equations and matrices	
•	Elementary matrices and inverses	Chapter 1 Section 1.5	Systems of linear equations and matrices	
•	Further results on systems of linear equations and inverses	Chapter 1 Section 1.6	Systems of linear equations and matrices	
•	Diagonal, Triagonal, and symmetric matrices	Chapter 1 Section 1.7	Systems of linear equations and matrices	
•	Determinants	Chapter 2	Determinants	
•	Cofactor expansion	Section 2.1 and 2.2	Determinants	

•	Properties of determinants	Section 2.3	Determinants
	Euclidean vector spaces	Chapter 4	Euclidean vector spaces
•	Euclidean n-space	Section 4.1	Euclidean vector spaces
•	Linear transformations from R ^m to R ⁿ	Section 4.2 and 4.3	Euclidean vector spaces
•	Linear transformations and polynomials	Section 4.4	Euclidean vector spaces
•	General Vector Space	Chapter 5	
•	Real vector spaces	Section 5.1	Vector spaces
•	Subspaces	Section 5.2	Vector spaces
•	Basis and dimension	Section 5.4	Vector spaces
•	Row space, column space, null space	Section 5.5	Vector spaces
•	Rank and nullity	Section 5.6	Vector spaces
•	Inner Product Spaces	Chapter 6	
•	Inner product spaces	Section 6.1	Inner product spaces
•	Angle and orthogonality	Section 6.2	Inner product spaces
•	Orthonormal basis	Section 6.3	Inner product spaces
•	Gram-Schmidt process	Section 6.3	Inner product spaces
•	Change of basis	Section 6.5	Inner product spaces
•	Orthogonal matrices	Section 6.6	Inner product spaces
•	Eigenvalues and eigenvectors	Chapter 7	
•	Eigenvalues and eigenvectors	Section 7.1	Eignvalues and eigenvectors
•	Diago nalization	Section 7.2	Eigenvalues and eigenvectors
•	Orthogonal diagonalization	Section 7.3	Eigenvalues and eigenvectors
Part (ii)	Ordinary differential equations		Differential equations with boundary value problems by Dennis G Zill
	Introduction to differential equations	Chapter 1	
	Basic definitions and terminology	Sections 1.1, 1.2	
	First order differential equations	Chapter 2	
•	Separable and first-order linear equations with applications,	Section 2.1,2.2, 2.3	First order differential equations
•	Differential equations of higher order	Chapter 4	
•	Homogeneoue equations, Nonhomogeneous equation	Section 4.1, 4.2	Differential equations of higher order
•	Higher order linear equations with constant coefficients	Section 4.3	Differential equations of higher order
•	Systems of linear first order differential equations	Chapter 8	
•	Homogeneous linear systems with constant coefficients	Section 8.1, 8.2	Systems of linear first order differential equations
•	Solution by eigenvalue/eigenvectors, nonhomogenous linear systems	Section 8.2, 8.3	Systems of linear first order differential equations

Textbook(s)/Supplementary Readings

There is no required text but the following texts will be used for reference.

- 1. Elementary linear algebra (2005) Howard Anton, $9^{\mbox{th}}$ edition, John Wiley and Sons
- 2. Differential equations with boundary-value problems by Dennis G. Zill and Michael R. Cullin (5th Edition Brooks/Cole)

Handouts on topics will also been uploaded on the LUMS website

Helping Software's:

Mathematica

A first course in linear algebra, RA Beezer, http://linear.ups.edu/