Past Year JEE Questions

Questions

Quetion: 01

The derivative of

$$\tan^{-1}\left(\frac{\sqrt{1+x^2}}{x}\right)$$
 with

respect to $\tan^{-1}\left(\frac{2x\sqrt{1-x}}{1-2x^2}\right)$ at $x = \frac{1}{2}$ is:

- A. $\frac{2\sqrt{5}}{3}$ B. $\frac{2\sqrt{5}}{5}$ C. $\frac{\sqrt{5}}{10}$ D. $\frac{\sqrt{5}}{12}$

Solutions

Solution: 01

Explanation

Let
$$f = \tan^{-1} \left(\frac{\sqrt{1+x^2}}{x} \right)$$

Put x =
$$\tan \theta \Rightarrow \theta = \tan^{-1} x$$

$$f = \tan^{-1} \left(\frac{\sec \theta}{\tan \theta} \right)^{1}$$

$$\Rightarrow$$
 f = tan⁻¹ $\left(\frac{1-\cos\theta}{\sin\theta}\right)^{\theta} = \frac{\theta}{2}$

$$\Rightarrow$$
 f = $\frac{\tan x}{2}$

$$\therefore \frac{df}{dx} = \frac{1}{2(1+x^2)}...(1)$$

Let g =
$$\tan^{-1} \left(\frac{2x\sqrt{1-x}}{1-2x^2} \right)$$

Put
$$x = \sin \theta \Rightarrow \theta = \sin^{-1} x$$

$$\Rightarrow g = \tan^{-1} \left(\frac{2 \sin \theta \cos \theta}{1 - 2 \sin \theta} \right)^{\theta}$$

$$\Rightarrow$$
 g = tan⁻¹ (tan 2 θ) = 2 θ

$$\Rightarrow$$
 g = 2sin⁻¹ x

$$\Rightarrow \frac{dg}{dx} = \frac{2}{\sqrt{1-x}} 2...(2)$$

Using (i) and (ii),

$$\therefore \frac{df}{dg} = \frac{1}{2(1+x^2)} \frac{\sqrt{1-x^2}}{2}$$

At
$$x = \frac{1}{2}$$
, $\left(\frac{df}{dg}\right)_{x=\frac{1}{2}} = \frac{\sqrt{3}}{10}$