Practical - 2

Implement functions to print nth Fibonacci number using iteration and recursive method. Compare the performance of two methods by counting number of steps executed on various inputs. Also draw a comparative chart. (Fibonacci series 1, 1, 2, 3, 5, 8..... Here 8 is the 6th Fibonacci number)

Code:

```
#include<stdio.h>
int count_it=0;
int count_rec=0;
void itfibonacci(int n)
intfirst=0,second=1,third,i; count_it++;
for(i=2;i <= n;i++)
count_it++; third=first+second; count_it++;
first=second;
count it++;
second=third;
count_it++;
} printf("%d",third); count it++;
int recfibonacci(intn){ if(n<=1){ count_rec++; count_rec++;</pre>
return n;
Else
count_rec++;
return recfibonacci(n-1)+recfibonacci(n-2);
} }
void main()
printf("21012021003_AMIT GOSWAMI\n");
int n,i;
printf("Enter the number of element : ");
scanf("%d",&n);
printf("\nFibonacci series using iteration");
itfibonacci(n); printf("\nCount(iteration) : %d",count_it);
printf("\n\nFibonacci series using recursion : ");
printf("%d",recfibonacci(n));
printf("\nCount(recursion) : %d",count_rec); }
```

Output:

21012021003_AMIT GOSWAMI

Enter the number of element : 5

Fibonacci series using iteration : 5 | Fibonacci series using iteration : 55

Count(iteration) : 18

Fibonacci series using recursion : 5

Count(recursion): 23

21012021003_AMIT GOSWAMI

Enter the number of element : 10

Count(iteration): 38

Fibonacci series using recursion : 55

Count(recursion): 266

21012021003_AMIT GOSWAMI

Enter the number of element : 15

Fibonacci series using iteration : 610

Count(iteration) : 58

Fibonacci series using recursion : 610

Count(recursion) : 2960

21012021003_AMIT GOSWAMI

Enter the number of element : 20

Fibonacci series using iteration : 6765

Count(iteration): 78

Fibonacci series using recursion : 6765

Count(recursion): 32837

21012021003_AMIT GOSWAMI 21012021003_AMIT GOSWAMI

Enter the number of element : 30 Enter the number of element : 25

Fibonacci series using iteration : 75025 Fibonacci series using iteration : 832040

Count(iteration) : 118 Count(iteration): 98

Fibonacci series using recursion : 75025 Fibonacci series using recursion : 832040

Count(recursion): 4038806 Count(recursion) : 364178

Analysis:

Position of number	Count with recursive method	Count with iteration method
5	23	18
10	266	38
15	2960	58
20	32837	78
25	364178	98
30	4038806	118

Conclusion:

From the above practical we got to know that recursion is a fast process for smaller numbers, but as we increase the numbers, it can be quite a lengthy method, and to avoid that iteration can be a more reliable method.