Apuntes de Diseño de Centrales Eléctricas

Bogurad Barañski Barañska Adrián Teixeira de Uña

29 de marzo de 2024

Capítulo 1

Recursos Energéticos y la Producción de Electricidad.

1.1. Introducción.

- *Recursos energéticos:* principalmente son combustibles fósiles y nuestra sociedad se ha hecho extraordinariamente dependiente de ellos para su desarrollo.
- *Combustibles fósiles:* comprenden principalmente el petróleo y sus derivados (gasolinas, gasóleos, gases licuados del petróleo, etc.), el gas natural, el carbón mineral y el uranio. Al principio de la explotación de estos recursos, se consideraban ilimitados y su impacto ambiental era despreciable.
- Consumo masivo de hidrocarburos: está produciendo alteraciones en la atmósfera a nivel mundial por la emisión de gases de efecto invernadero, originando un calentamiento global y un cambio climático.
- Esquema de consumo energético actual: no es sustentable por:
 - Razones económicas: próxima escasez de hidrocarburos.
 - Razones ecológicas: alteración de la atmósfera y el suelo.

Es imperativo el **desarrollo de nuevas alternativas energéticas** más eficientes y menos agresivas contra el medio ambiente:

- Incremento de las fuentes de energía renovable, consideradas como inagotables.
- Resurgimiento de la energía nuclear.

1.2. Fuentes de energía no renovable.

- *Definición:* energía que está almacenada en cantidades fijas, comúnmente en el subsuelo. A medida que se consume un recurso no renovable, se va agotando.
- Reservas: sujetas a la factibilidad técnica y económica de su explotación, al descubrimiento de nuevos yacimientos y al ritmo de extracción y consumo.

1.2.1. Fuentes de energía fósil.

Se llama energía fósil la que se obtiene de la combustión (oxidación) de ciertas substancias que, según la geología, se produjeron en el subsuelo a partir de la acumulación de grandes cantidades de residuos de seres vivos, hace millones de años. Son los siguientes recursos:

- Petróleo y derivados: el petróleo es una mezcla de una gran variedad de hidrocarburos (compuestos de carbono e hidrógeno) en fase líquida, mezclados con una gran variedad de impurezas. Por destilación y otros procesos, se obtienen las diversas gasolinas, el diésel, etc.
- *Gas natural:* está compuesto principalmente por metano y corresponde a la fracción más ligera de los hidrocarburos, por lo que se encuentra en los yacimientos en forma gaseosa.

- *Carbón mineral*: es principalmente carbono, también de origen fósil, que se encuentra en grandes yacimientos en el subsuelo.

1.2.2. Fuentes de energía nuclear.

Son aquellas que provienen de la desintegración de átomos mediante fisión o la fusión de isótopos para producir energía.

- *Uranio*: elemento radiactivo natural. Se encuentra en la naturaleza en casi todas las rocas y suelos.
- Torio: tiene usos muy similares al Uranio.
- *Energía de fusión nuclear:* pretende imitar el comportamiento de las reacciones que se producen en el Sol. Fusionando un isótopo de Deuterio con otro de Tritio se obtiene un átomo de Helio, un neutrón y energía.

1.3. Fuentes de energía renovable.

Se llama energía renovable la que puede explotarse ilimitadamente, es decir, su cantidad disponible (en la Tierra) no disminuye a medida que se aprovecha. La principal fuente de energía renovable es el Sol:

- Es una esfera gaseosa, cuyos componentes principales son el hidrógeno, el helio y el carbono. Su masa es 330.000 veces la de la Tierra.
- Se comporta como una perfecta central nuclear y en su seno se desarrollan reacciones termonucleares de fusión de núcleos de hidrógeno en helio.
- En su núcleo, fusiona 620 millones de toneladas métricas (620 · 10^9 kg) de hidrógeno por segundo: $4H \longrightarrow 1He + Energía$.

Algunos datos sobre el efecto del Sol sobre la Tierra:

- Como la masa del Sol es del orden de $2\cdot 10^{30}$ kg y contiene el $30\,\%$ de hidrógeno, si todo el hidrógeno solar se convirtiera en helio se obtendría una energía de $3.75\cdot 10^{44}$ J.
- La Tierra recibe una irradiancia de $1370 \frac{W}{m^2}$ (constante solar) en la parte exxterna de la atmósfera, y como la distancia media del Sol a la Tierra es de $1.5 \cdot 10^{11}$ m, el Sol emita una radiación igual a:

$$4\pi (1.5 \cdot 10^{11})^2 \cdot 1370 = 3.8 \cdot 10^{26} \frac{J}{s}$$

La Tierra podrá alimentarse de radiaciones durante $3,13 \cdot 10^{10}$ años.

- No toda la radiación interceptada por la Tierra es absorbida; una fracción de la energía incidente es reflejada de regreso al espacio, principalmente por las nubes ($\simeq 20\,\%$), por los constituyentes atmosféricos ($\simeq 6\,\%$) y por la superficie terrestre ($\simeq 4\,\%$).
- En la superficie terrestre llega una irradiancia alrededor de los $1{,}000\frac{W}{m^2}$

1.3.1. Energía solar.

Está constituida simplemente por la porción de la luz que emite el Sol y que es interceptada por la Tierra. Puede ser:

- <u>Directa:</u> una de las aplicaciones de la energía solar es directamente como luz solar, por ejemplo, para la iluminación de recintos. En este sentido, cualquier ventana es un colector solar.
- <u>Térmica</u>: se denomina térmica la energía solar cuyo aprovechamiento se logra por medio del calentamiento de algún medio: agua o aceite. Pueden ser:
 - De baja temperatura: con colectores para producción de ACS (Agua Caliente Sanitaria).
 - *De alta temperatura:* centrales termosolares para producción de energía eléctrica mediante espejos parabólicos o con heliostatos con receptor central en torre.

- <u>Fotovoltaica</u>: es el aprovechamiento de la energía solar por medio de células fotoeléctricas, capaces de convertir la luz en potencial eléctrico, sin pasar por un efecto térmico. El conjunto de células fotoeléctricas se denomina panel fotovoltaico. Se encuentra en las centrales fotovoltaicas.

1.3.2. Energía eólica.

Es la energía que se extrae del viento que procede de la energía solar y del movimiento de rotación de la Tierra. La aplicación más importante es con la utilización de aerogeneradores en parque eólicos (onshore y offshore).

1.3.3. Energía de la biomasa.

Definición de biomasa: conjunto de materiales de origen biológico, vegetal, animal o procedente de la transformación natural o artificial de estos materiales, utilizados para la producción de energía eléctrica o térmica.

Es un tipo de producción de energía gestionable. Depende de la disponibilidad de biomasa. Se utiliza en:

- Centrales térmicas de combustión de biomasa con turbinas de vapor.
- Centrales térmicas de gasificación de biomasa con cogeneración:
 - MACI (Motores Alternativos de Combustión Interna).
 - Turbina de gas.

1.3.4. Energías marinas.

- *Diferencia de temperatura oceánica* (*OTEC*): Consiste en aprovechar la diferencia de temperatura que existe entre la superficie del océano (unos 20 °C o más en las zonas tropicales) y la correspondiente a unas decenas de metros debajo de la superficie (cercana a 4 °C).
- *Energía de las olas: central undimotriz:* También se puede aprovechar el vaivén de las olas del mar para generar energía eléctrica. Las olas son, a su vez, producidas en parte ,por el efecto del viento sobre el agua y por el movimiento rotacional de la Tierra.
- *Energía de las mareas: central mareomotriz:* Depende de la atracción gravitatoria del Sol y la Luna En algunas regiones costeras se dan unas mareas especialmente altas y bajas. La amplitud de la marea en algunos puntos de la Tierra puede alcanzar los 10 m.
- Energía de las corrientes marinas: A profundidades de 20 a 30 m existen unas corrientes marinas de baja velocidad (2 a 3 m/s) que dependen de los ciclos de las mareas.
- *Gradiente salino o Potencia osmótica*: Aprovechar la diferencia de salinidad entre el agua de los océanos y el agua de los ríos.

1.3.5. Energía hidráulica.

Se obtiene a partir de caídas de agua, artificiales o naturales. Estrictamente, también esta es una forma derivada de la energía solar, porque el Sol provee la fuerza impulsora del ciclo hidrológico. Se dividen en grandes y pequeñas centrales hidroeléctricas.

1.3.6. Hidrógeno. Pila de combustible.

El uso del hidrógeno como portador energético para complementar los mercados de la electricidad y combustibles líquidos presenta ventajas de versatilidad de fuentes de suministro, almacenamiento eficaz y bajas emisiones en los puntos de consumo.

La pila de combustible combina hidrógeno y oxígeno a través de una membrana de intercambio protónico, puede generar energía eléctrica obteniéndose como único residuo agua.

Para conseguir hidrógeno hay que consumir energía eléctrica. El hidrógeno se puede obtener:

- Blanco: en estado bruto en el subsuelo.
- Verde: del agua mediante electrolisis con energías renovables y biometano.

- Rosa: del agua mediante electrolisis con energía nuclear.
- Gris: del gas natural.
- Azul: del gas natural, pero se captura el CO_2 residual.
- Marrón: del carbón.

Para transformar de vuelta el hidrógeno en electricidad hay dos métodos:

- *Grupo electrógeno*: utilizando un motor de combustión interna.
- Pila de combustible: $H_2 + \frac{1}{2}O_2 \longrightarrow H_2O$ + Calor + Energía Eléctrica.

1.3.7. Energía geotérmica.

La energía geotérmica es un tipo de energía renovable que se basa en el aprovechamiento del calor que existe en el subsuelo de nuestro planeta. Es decir, utilizar el calor de las capas internas de la Tierra y con él genera energía.

La temperatura de la Tierra va a aumentando conforme descendemos y nos acercamos al núcleo terrestre. El gradiente térmico hace aumentar la temperatura del suelo entre 2 °C y 4 °C por cada 100 metros que descendemos. Hay diversas zonas del planeta donde este gradiente es mucho mayor y se debe a que la corteza terrestre es más delgada en ese punto.

1.4. Combustibles fósiles.

1.4.1. Reservas y recursos mundiales.

Las cantidades de materia prima energética que pueden aprovecharse para su transformación en energía útil en condiciones económicas rentables se denominan reservas (explotables). Cuando hay razones suficientes para la existencia de cantidades mayores, a estas se les denomina recursos (previsibles).

La evaluación de las reservas energéticas existentes en nuestro planeta se estimaban en $33000 \cdot 10^{18}$ J, a los cuales habría que añadir $349395 \cdot 10^{18}$ J correspondientes a recursos de difícil explotación.

1.4.2. Evolución de las reservas de petróleo y gas.

	1984	1994	2004	2020	Duración Reservas	Evolución R/P	
Petróleo - 10 ⁹ barriles	761	1017	1185	1732	42 años	31 a 42 años	
Petróleo - %	100	134	156	-	42 01105	51 a 42 anos	
Gas - $10^{12} m^3$	96	142	179	200	67 años	59 a 67 años	
Gas - %	100	148	186	-	07 anos	39 a 67 anos	

1.5. Concepto de energía primaria, final y útil.

- *Energía primaria*: son todas las formas de energía disponibles en la naturaleza antes de ser convertidas o transformadas. Consisten en la energía contenida en los combustibles crudos, la energía solar, la eólica, la biomasa, la hidráulica, etc.
- *Energía final*: proviene de las energías primarias, a la que llega después de sufrir transformaciones tecnológicas.
- Energía útil: la deseada por el consumidor.

1.6. Formas prácticas de la energía.

Pueden ser el agua almacenada en un embalse, una barra de material fisionable o un combustible que al quemarse proporciona calor. No todos los combustibles proporcionan la misma cantidad de calor por unidad de masa (1 kg de gasolina \neq 1 kg carbón).

Para poder relacionar y comparar unos con otros tendremos que referirnos a la cantidad específica de energía por unidad de masa (o de volumen), desprendida en un proceso de combustión,

llamada **poder calorífico** o **densidad energética** o entalpía
$$\left(\frac{MJ}{kg}, \frac{MJ}{l}, \frac{MJ}{Nm^3}\right)$$
.

Los combustibles que dan agua como resultado de la combustión poseen o

Los combustibles que dan agua como resultado de la combustión poseen dos poderes caloríficos, el inferior (**PCI**) y el superior (**PCS**). Las fuentes energéticas más buscadas son aquellas en las que la energía está muy concentrada (mucha energía por unidad de masa).

	PCI		
Combustible	MJ	kWh	
	kg	kg	
Hidrógeno	141.0	39.2	
Gas natural	46.4	12.9	
Gasolina	43.3	12.0	
Gasóleo	42.7	11.9	
Fuel-oil	40.8	11.3	
Antracita	35.1	9.8	
Lignito	25.6	7.1	

1.7. Concepto de eficiencia o rendimiento.

El rendimiento es un concepto termodinámico. En ingeniería suele utilizarse preferentemente la eficiencia, que establece la relación entre la energía útil y la primaria. A veces se llama COP (Coefficient of Performance)

Las distintas transformaciones energéticas implican una serie de pérdidas y consumos internos tanto en la generación como en el transporte.

Aunque no es exactamente lo mismo, no se diferencia la energía mecánica de la energía eléctrica puesto que la conversión puede hacerse con factores cercanos a la unidad (el rendimiento de un generador síncrono puede llegar al 90 %)

$$1 \, kWh_e \approx 1 \, kWh_m$$

Sin embargo, no ocurre lo mismo con la energía eléctrica y la energía térmica. Pueden necesitarse hasta 3 o más kWh_t para obtener un kWh_e .

1.8. Unidades de energía.

La **Agencia Internacional de la Energía (AIE)** expresa sus balances de energía en una unidad común que es la **tonelada equivalente de petróleo (tep o toe)**:

Valores medios de eficiencias de diferentes tipos de centrales					
Hidroeléctrica	85 %				
Térmica de Carbón	40%				
Nuclear	32 %				
Ciclo Combinado	52 %				
Solar fotovoltaica	18%				
Cogeneración	80 %				

Rendimiento de varios tipos de convertidores					
Tipo de convertidor	η_{aprox}				
Motor de combustión	30 %				
Turbina de gas	29 %				
Turbina Pelton	92 %				
Célula de combustión	80 %				
Célula fotovoltaica	12 %				
Panel solar fototérmico	70 %				
Motor eléctrico	95 %				

- Una tep se define como la energía liberada en la combustión de una tonelada de crudo de petróleo tipo de $10^4 \frac{kcal}{kg}$ de poder calorífico:

$$1 tep = 10^7 kcal = 41860MJ$$

 $0,086 tep = 1 MWh$
 $1 tep = 11,63 MWh$

- La conversión de unidades habituales a tep se hace en base a los poderes caloríficos inferiores de cada uno de los combustibles considerados.

La **tonelada equivalente de carbón (tec)** se define como la energía liberada en la combustión de una tonelada de hulla estándar de $7000 \, \frac{kcal}{kg}$ de poder calorífico. La equivalencia viene dada por:

$$1 \, tec = 7 \cdot 10^6 \, kcal = 0.7 \, tep$$

En las estadísticas de comercio internacional es frecuente hablar de barriles de petróleo (bbl):

$$1 \, bbl = 159 \, l = 0.146 \, tep$$

La U.S. Energy Information Administration (EIA) utiliza el BTU (British Thermal Unit) como unidad de energía: $1 \, kWh = 3412 \, BTU$

1 therm =
$$10^5 BTU$$

 Unidades de energía

 1 tep
 $10^7 kcal$

 1 kcal
 4184 J

 1 MWh
 0.086 tep

 1 tec
 0.7 tep

 1 bbl
 0.146 tep

 1 kWh
 3412 BTU

1.9. Unidades de energía en combustibles gaseosos.

Es frecuente referir el **PCI** (**poder calorífico inferior**) a la unidad de volumen (m^3) , pero si no están definidas las condiciones, carecería de significado.

1 therm $10^5 BTU$

- *Condiciones normales:* corresponden a 0 °C y 1 atm. Se suele indicar con la letra N al lado de la unidad de volumen, v.g. $3{,}4\,Nm^3$.

$$10^3 \, \text{Nm}^3_{Gas \ Natural} = 0.9 \, \text{tep}$$

- *Condiciones estándar:* corresponden a 15 °C y 1 atm. Se suele indicar con la letra S al lado de la unidad de volumen, v.g. $3.4 \, Sm^3$.
- *Thermia* (th): unidad de energía, equivalente a 1 millón de calorías. Se usa en el suministro de gas natural para calcular las facturas. Como el gas suministrado tiene un poder calorífico algo variable, el cobro se hace en termias en vez de m^3 .

Referido a un gas con PCS =
$$10^4 \frac{kcal}{Nm^3} = 10 \frac{th}{Nm^3}$$

1.10. Consumo mundial de energía primaria.

El WEC (World Energy Council, fundado en 1923, considera tres escenarios hasta el 2020 en su estudio "Energía para el mundo del mañana" que publicó en 1993. En todos ellos se considera que para el año 2020 la población mundial será de 8100 millones (según Naciones Unidas). En el año 2022 hay 8.000 millones. Para el año 2030 se estima en 8.500 millones.

Existen diversos escenarios atendiendo al balance entre crecimiento económico y orientación ecológica:

- **Escenario de referencia**: Crecimiento económico medio. La economía mundial crece moderadamente a una media del 3.3 % anual, resultando una demanda de energía primaria mundial en 2020 de 13.4 *Gtep*, y una aportación de las renovables nuevas para ese año del 4.5 % (0.6 *Gtep*).

Considerando este estudio y con estos niveles de consumo de energía primaria y unos valores de reserva aproximados a los indicados anteriormente, se puede estimar el tiempo de duración de los distintos combustibles en años:

Fuente de Energía	Duración (años)
Petróleo	42,2
Carbón	224
Gas Natural	62,2
Uranio	100
— Uranio	100

Las reservas totales de uranio se sitúan en unos 6,14 millones de toneladas. La demanda de las 442 unidades nucleares en funcionamiento (año 2011) fue de 68.875 toneladas de uranio.

- **Escenario de alto crecimiento económico**: el crecimiento económico es del 3,8 % y la demanda de energía primaria en el 2020 de unas 17 *Gtep* y una aportación de las renovables nuevas del 4.5 % (0.8 *Gtep*).
- **Escenario ecológico:** crecimiento económico medio con orientación ecológica. El crecimiento se supone del 3.3 %, pero la demanda de energía primaria crece sólo a 11.3 *Gtep* en el 2020, y una aportación de las renovables del 11.5 % (1.3 *Gtep*).

Todos los estudios indican un **crecimiento potencial de las renovables**. Según estimaciones de Naciones Unidas, se calcula la aportación de las renovables en el 30 % de las necesidades mundiales en el 2025, y el 45 % en el 2050.

Evolución del consumo energético en España:

(1) Saldo de intercambios internacionales de energía eléctrica (Importaciones-Exportaciones).

1.11. Intensidad energética primaria y de energía final.

1.11.1. Intensidad energética primaria.

Se define como el cociente entre el consumo de energía primaria y el PIB en un año concreto. Tiene unidades de $\frac{ktep}{MF}$.

En España, a partir del 2005, se constató una mejora notable en la intensidad energética primaria, lo que significa que para producir una unidad de riqueza cada vez se necesita menor cantidad de energía (mayor eficiencia energética). Ha habido una ralentización del consumo energético y un crecimiento del PIB. España se encuentra en el puesto 34 de los 196 países.

1.11.2. Intensidad de energía final.

Se define como el cociente entre el consumo de energía final y el PIB.

La intensidad de energía final ha disminuido progresivamente. Esta mejora se debe sobre todo a las mejoras tecnológicas y de gestión, así como a la mejora de la estructura productiva y de la Ley de Energías Renovables y Eficiencia Energética.

En el año 2020 hubo una caída del PIB del 11 % junto con una bajada de consumo de energía primaria debido a la pandemia de COVID-19.

1.12. Contribución de las energías renovables a la reducción del consumo de energías primarias.

1.12.1. Plan de fomento de las energías renovables (PFER, 2005-2010)

Objetivo para el 2010: Reducción del consumo de energía primaria un 12 %. A finales del 2010 el grado de cumplimiento fue del 11.3 %

1.12.2. Plan de fomento de las energías renovables (PANER, 2011-2020)

Objetivo para el 2020: Reducción del 20 % el consumo total de energía primaria (cumplido).

Fuente de Energía	Potencia Dic. 2019 (MW)	Potencia Dic. 2020 (MW)	Δ 19/20 (%)
↑ Energías renovables	58.269	62.517	7,3
↑ Eólica	25.583	27.259	6,6
↑ Fotovoltaica	8.973	11.547	28,7
= Otras renovables	23.713	23.711	-0,01
↓ Carbón	8.972	4.342	-51,6

Fuente de Energía	Gen. Bruta 2019 (GWh)	Gen. Bruta 2020 (GWh)	Δ19/20 (%)
Energías renovables	100.988	113.008	11,9
Eólica	55.647	56.273	1,1
Fotovoltaica	9.420	15.552	65,1
Otras renovables	35.921	41.183	14,6
Carbón	13.982	5.911	<i>-57,7</i>

1.12.3. Plan nacional integrado de energía y clima (PNIEC, 2011-2030)

Objetivos fijados para 2030:

- Reducción de un 23 % de emisiones de gases de efecto invernadero (GEI) respecto a 1990.
 - Emisiones totales brutas de GEI pasen de 319,3 $MtCO_{2-eq}$ previstos para 2020 a 221,8 $MtCO_{2-eq}$ en 2030. En lo que se refiere a generación eléctrica, reducción de 36 $MtCO_{2-eq}$.
 - Las centrales de carbón cesan de aportar energía al sistema como tarde en 2030.
- **Subir el uso de energías renovables a un 42** % sobre el total de la generación mediante varias estrategias: bombas de calor, vehículo eléctrico, biocarburantes, sistemas de acumulación de energía eléctrica, etc.
- Mejora de la eficiencia energética en un 39.5 % mediante:
 - Renovación del parque edificatorio público.
 - Auditorías energéticas.
- Aumentar el porcentaje de generación de energía eléctrica a un 74 %. El Plan prevé para el año 2030 una potencia total instalada en el sector eléctrico según se muestra en la siguiente tabla.

Fuente de Energía	Capacidad (GW)
Energía eólica	50
Solar fotovoltaica	39
Ciclos combinados de gas	27
Hidráulica	16
Bombeo	9,5
Solar termoeléctrica	7
Nuclear	3

La reducción del consumo de energía primaria propuesta en este PNIEC equivale a un $1.9\,\%$ anual desde 2017 que, ligado a un incremento previsto del PIB en ese mismo periodo del orden del $1.7\,\%$, tendrá como resultado una mejora de la intensidad energética primaria de la economía del $3.5\,\%$ anual hasta 2030.

- Reducción de la dependencia energética: la dependencia en energía primaria tiene importantes repercusiones económicas. Así, en el año 2017, el saldo del comercio exterior de energía fue desfavorable para nuestro país por valor de más de 20.000 M€.Como resultado de las medidas contempladas en el PNIEC, 2021-2030, la ratio de dependencia energética de España disminuye 12 puntos porcentuales, pasando del 73 % en 2017 al 61 % en 2030.

Año	2015	2020*	2025*	2030*
Producción nacional	33,564 (27%)	37,499 (29%)	41,909 (35 %)	40,646 (39%)
Carbón	1,246	1,105	0	0
Productos petrolíferos	236	146	147	148
Gas natural	54	49	49	49
Nuclear	14,903	15,118	15,118	6,500
Energías renovables	16,873	20,611	26,150	33,501
Residuos no renovables	252	470	445	448
Neto importado/exportado	89,366 (73 %)	91,008 (71 %)	76,513 (65 %)	63,453 (61%)
Carbón	12,337	7,979	3,743	2,133
Productos petrolíferos	52,809	55,473	49,155	40,498
Gas natural	24,484	26,641	24,208	24,389
Electricidad	-11	762	-1,202	-3,448
Energías renovables	-253	153	610	-119
Total Energía Primaria	122,930	128,507	118,422	104,099

1.13. Evolución de la potencia renovable instalada en régimen regulado en España.

Año	Solar FV	Solar Térmica	Eólica	Mini Hidráulica	Biomasa	Otras Renov.	Total
1990			2	640			643
1995	1		98	998	40		1,137
2000	2		2,296	1,466	148		3,911
2005	47		10,095	1,768	500		12,410
2010	3,830	532	19,700	2,005	709		26,776
2011	4,233	999	21,063	2,010	736	0	29,042
2012	4,524	1,950	22,630	2,012	810	0	31,927
2013	4,646	2,299	22,966	2,068	754	5	32,738
2014	4,655	2,299	22,984	2,092	793	5	32,828
2015	4,665	2,299	23,000	2,103	801	5	32,873
2016	4,672	2,299	23,063	2,105	805	5	32,949
2017	4,676	2,299	23,091	2,106	805	5	32,982
2018	4,699	2,299	23,191	2,098	821	5	33,113
2019	8,052	2,299	24,423	2,144	921	5	37,845
2020	10,748	2,299	26,845	2,145	1,023	5	43,064
2021	14,287	2,299	27,964	2,145	1,026	5	47,725
2022	19,785	2,304	29,994	2,145	1,024	5	70,452

1.14. Potencia instalada y evolución de la demanda en España.

	Sistema p	eninsular	Sistema	no peninsular		Nacional	
	MW	%22/21	MW	%22/21	MW	%22/21	2024 (MW)
Hidráulica	17,093	0.0	2	0.0	17,094	0.0	17,097
Hidroeólica	-	-	11	0.0	11	0.0	11
Eólica	29,417	4.9	577	2.4	29,994	4.9	30,793
Solar fotovoltaica	19,348	29.4	437	31.4	19,785	29.4	25,084
Solar térmica	2,304	0.0	_	-	2,304	0.0	2,304
Otras renovables	1,087	0.0	6	0.0	1,093	0.0	1,094
Residuos renovables	132	0.0	38	0.0	170	0.0	170
Renovables	69,381	9.1	1,071	12.4	70,452	9.1	
Turbinación bombeo	3,331	0.0	_	-	3,331	0.0	3,331
Nuclear	7,117	0.0	_	-	7,117	0.0	7,117
Carbon	3,223	-8.5	241	-	3,464	-8.0	2,061
Fuel + Gas	8	0.0	2,400	0.0	2,408	0.0	8
Ciclo combinado	24,562	0.0	1,688	-	26,250	0.0	26,250
Cogeneración	5,593	-0.3	50	-	5,643	-0.3	5,631
Residuos no renov.	387	-4.8	38	0.0	426	-4.4	426
No Renovables	44,222	-0.8	4,418	0.0	48,639	-0.7	
Total	113,602	5.0	5,489	2.2	119,091	4.9	123,718

1.15. Balance de producción de energía eléctrica en España.

Datos en *GWh*.

	2018	2019	2020	2021	2022	2024
Hidráulica	34.117	24.719	30.632	29.626	17.863	146
Eólica	49.581	54.245	54.906	60.526	61.176	134
Solar fotovoltaica	7.766	9.252	15.302	20.981	27.864	171
Solar térmica	4.424	5.166	4.538	4.706	4.123	6
Hidroeólica	24	23	20	23	23	0
Otras renovables	3.557	3.618	4.482	4.720	4.656	10
Residuos renovables	874	890	726	878	878	2
Generación renovable	100.344	97.913	110.605	121.459	116.583	
Turbinación bombeo	1.994	1.646	2.751	2.649	3.776	12
Nuclear	53.198	55.824	55.758	54.041	55.984	169
Ciclo combinado	30.044	55.242	44.023	44.500	68.138	70
Carbón	37.277	12.671	5.021	4.983	7.765	7
Motores diésel	3.178	2.836	2.399	2.517	2.548	6
Turbina de gas	1.049	671	407	424	657	1
Turbina de vapor	2.455	2.189	1.388	1.108	1.207	3
Fuel + Gas	-0	-0	0	-0	0	
Cogeneración	29.007	29.615	27.030	26.090	17.758	56
Residuos no renovables	2.435	2.222	2.016	2.239	1.900	4
Generación no renovable	160.637	162.915	140.794	138.552	159.732	
Consumos en bombeo	-3.198	-3.027	-4.628	-4.318	-6.092	
Saldo I. internacionales	11.102	6.862	3.280	852	-19.802	
Generación total						697
Demanda en b.c.	268.886	264.664	250.051	256.546	250.421	

1.16. Balance de intercambios internacionales.

Datos en GWh.

País	Importación (%)	Exportación (%)	Saldo
Francia	54	46	145
Portugal	23.7	76.3	-775
Andorra	0	100	-35
Marruecos	26.2	73.8	-106

1.17. Evolución de las pérdidas de energía eléctrica en España

1.18. Cobertura de la demanda de energía eléctrica en España.

Datos de Febrero de 2024, Red Eléctrica de España.

1.19. Emisiones y factor de emisión de CO_2 equivalente asociado a la generación de energía eléctrica en España (2023).

1.20. Clasificación de las centrales eléctricas según el tipo de energía primaria.

- Centrales hidroeléctricas:
 - Centrales hidráulicas convencionales.
 - Centrales hidráulicas reversibles de bombeo.
- Centrales termoeléctricas:
 - Centrales de carbón
 - Centrales de fuel-oil o gasoil.
 - Centrales de ciclo combinado de gas natural.
 - Centrales de cogeneración con gas natural.
- Centrales nucleares:
 - Centrales nucleares de agua a presión (PWR).
 - Centrales nucleares de agua en ebullición (BWR).
- Centrales con energías renovables.
 - Centrales eólicas.
 - Centrales termoeléctricas solares.
 - Centrales fotovoltaicas.
 - Centrales de biomasa (combustión y gasificación) y residuos sólidos urbanos (RSU).
 - Centrales de energías marinas.
 - Centrales geotérmicas.
 - Centrales hidráulicas de tipo fluyente (desviaciones de ríos).

1.21. Emplazamiento de las centrales eléctricas en España.

1.22. Clasificación de las centrales termoeléctricas según el tipo de ciclo termodinámico.

- Ciclo de Rankine (Agua-Vapor): para las centrales térmicas de carbón y nucleares de > 1000 MW con turbinas de vapor.
- Ciclo de Brayton-Erikson: para centrales de gas natural con turbinas de gas.
- Ciclo combinado Brayton-Rankine: centrales gas-aire y agua-vapor con turbinas de gas natural y turbinas de vapor.
- Ciclos de Otto y Diesel: para cogeneración hasta 1 MW con motores de combustión interna.

1.23. Clasificación de las centrales según la misión que realizan dentro del sistema eléctrico.

- *Centrales de base*: proporcionan la parte de energía que se consume de forma permanente en el sistema. **Centrales nucleares, térmicas, termosolares con acumulación, biomasa e hidráulicas de tipo fluyente.**
- *Centrales de puntas:* suministran la energía necesaria para atender las puntas de consumo. **Centrales hidroeléctricas, térmicas de gas natural y fuel-oil.**
- *Centrales intermedias:* suelen funcionar bajo programa (consigna de producción variable en función de la hora del día) de acuerdo con las previsiones de la demanda realizadas por las compañías. *Centrales hidráulicas y térmicas de gas natural*.
- Centrales de reserva: entran en servicio en caso de avería o revisión de otras centrales.
- Centrales de reserva rodante: están en funcionamiento a baja carga. Centrales de ciclo combinado e hidráulicas.
- *Centrales de socorro*: pequeñas unidades transportables. **Grupos electrógenos de gasoil o fuel-oil.**
- *Centrales de acumulación:* consumen energía durante las horas de menor consumo. **Centrales hidráulicas de bombeo.**

1.24. Fuentes de energía primaria fósil.

1.24.1. Petróleo (crudo de petróleo).

Es un aceite mineral de color oscuro o negro, menos denso que el agua y de un olor acre característico. Es una mezcla homogénea de compuestos orgánicos principalmente hidrocarburos insolubles en agua acompañados de azufre, oxígeno y nitrógeno en cantidades variables.

Formación del petróleo.

El petróleo en el subsuelo se encuentra atrapado en los pequeños espacios o poros de ciertas rocas sedimentarias, a la manera del agua en una esponja. Con el paso del tiempo, agua y petróleo van filtrándose a través de la roca madre, hasta encontrarse con una roca impermeable. La roca porosa está recubierta de una capa de roca impermeable. Si ésta tiene forma de bóveda, agua y petróleo se van acumulando gradualmente bajo ella.

El crudo se separa del agua por diferencia de densidad y finalmente se sitúa en la parte superior de la roca porosa. A menudo se encuentra una capa de gas natural por encima de todo, coronando la bóveda.

Yacimientos de petróleo en el mundo.

Extracción del petróleo.

Extracción tradicional

- 1. El crudo que brota espontáneamente por la presión interior del yacimiento recibe el nombre de **primario**.
- 2. Cuando la presión desciende se puede aumentar inyectando agua, vapor de agua o gas en el interior. Así se obtiene el petróleo secundario.
 - La proporción entre el primario y el secundario depende de la porosidad de la roca y de la propia viscosidad del crudo. Suele ser un 25 % el primario.
- 3. Una vez explotado mediante este procedimiento se puede extraer más crudo reduciendo la viscosidad del petróleo inyectando vapor de agua para aumentar la temperatura, o por medio de productos químicos para diluirlo. Este es el petróleo terciario.

Fracking (fractura hidráulica).

Es una técnica para posibilitar o aumentar la extracción de petróleo y gas del subsuelo. El proceso es el siguiente:

- 1. Se realiza la perforación vertical de un pozo, atravesando capas de roca y acuíferos, desde la plataforma en la superficie hacia donde se encuentra la capa de pizarra, que puede estar a varios kilómetros.
- 2. Antes de llegar a la capa de pizarra comienza la perforación horizontal o dirigida.
- 3. Dibujando una larga curva penetra finalmente en el estrato de pizarra, donde se extiende horizontalmente una media de 1-1.5 km. Como las distancias horizontales son muy largas, el proceso de fracking se lleva a cabo en varias etapas independientes.
- 4. Una vez alcanzado el estrato deseado se utilizan explosivos para crear pequeñas grietas.
- 5. Se bombea un fluido, mezcla de agua y químicos, a elevada presión para abrir y extender las grietas.
- 6. Al reducir la presión el fluido retorna a la superficie junto al gas y otras sustancias presentes en la roca, como metales pesados y partículas radiactivas.
- 7. La mezcla es procesada para separar todas las sustancias. Se estima que entre un 15 y un 80 % del fluido inyectado emerge de nuevo a la superficie, mientras el resto permanece bajo tierra.

El proceso de fracking consume enormes cantidades de agua. Se ha calculado que se requieren entre 9000 y 29000 m^3 de agua para las operaciones de un solo pozo.

Alternativas a la producción de crudo de petróleo.

- Licuefacción del carbón. También conocido como proceso de Pott-Broche. Es un proceso químico que converte el carbón directamente en una mezcla de hidrocarburos líquidos y luego se añade hidrógeno para realizar un hidrocraqueo en presencia de un catalizador. El producto obtenido es un crudo sintético que hay que refinar, consumiendo más hidrógeno. Las cantidades obtenidas aún son poco importantes.
- *Licuefacción indirecta*. Consiste en generar un gas de síntesis que luego es convertido en hidrocarburos líquidos mediante la reacción de Fischer-Tropsch.
- Reservas de pizarras, arenas bituminosas o arenas de alquitrán. Se separa el betún de la arena obteniendo un combustible fósil de baja graduación que require ser sometido a un proceso energético intensivo para convertirlo en crudo de petróleo sintético, parecido al crudo de petróleo convencional. Se hace añadiendo hidrógeno o quitando carbono. Muchas reservas pero poca producción.

Grados API del petróleo.

El carácter más importante de los crudos es su densidad. Se puede dar en g/cm^3 o en grados API. Los grados API son una medida de cuánto pesa un producto de petróleo en relación al agua a temperaturas iguales. Si el producto del petróleo es más liviano que el algua y flota sobre ésta, su grado API es mayor que 10.

$$1\frac{g}{cm^3}=10^\circ API$$
 (crudos extra pesados (menor PCI))
$$0.77\frac{g}{cm^3}=50^\circ API$$
 (crudos ligeros (mayor PCI))

Los grados API se utilizan para determinar el precio de un crudo determinado, ya que cuanto mayor es el valor en grados API mayor es la proporción de crudo utilizable. El 60 % de las reservas mundiales de petróleo tiene densidades inferiores a 33°API y contenidos de S superiores al 1.5 %. Por tanto, existe una oferta creciente de crudos pesados y ácidos.

Densidad relativa y gravedad específica.

$$\rho_r = \frac{\rho_{petroleo}[kg/m^3]}{\rho_{agua}[kg/m^3]} = GE \text{ (Gravedad específica)} = \rho \cdot g = \frac{m}{V} \cdot g$$

$$GE = \frac{141.5}{API + 131.5} \Rightarrow API = \frac{141.5}{GE} - 131.5$$

Infraestructura de la red de transporte y distribución de productos petrolíferos.

Las empresas que cuentan con plantas de refino en españa son REPSOL, CAMPSA y Petronor, que forman las tres el grupo REPSOL-YPF (Yacimientos Petrolíferos Fiscales), CEPSA/Elf y BP.

La distribuciuón y comercialización queda a cargo de CLH (Compañía Logística de Hidrocarburos), integrada en el grupo REPSOL. Se transporta en grandes buques petroleros, que pueden transportar hasta 300.000 toneladas.

Procedencia del crudo de petróleo en España.

x1000 t	2000	2010	2020	2021	2022
Angola	664	1112	1696	679	2316
Argelia	1476	1010	827	1660	3172
Guinea Ecuatorial	0	0	735	1065	1238
Libia	6901	6826	1966	6270	4997
Nigeria	9165	5579	10840	10275	8123
Total África	22804	18872	17888	21251	20608
Brasil	30	667	3070	2063	5401
Canadá	0	169	523	1435	2670
Colombia	0	74	456	145	974
Estados Unidos	0	0	3095	4096	6639
México	7622	5928	8443	7648	6125
Venezuela	1562	789	1403	0	727
Total América	9214	7699	17397	15688	23459
Azerbaiyán	138	750	1769	1342	1942
Kazajistán	0	557	4519	4201	3298
Noruega	249	691	996	1600	1031
Reino Unido	2039	405	1017	502	1104
Rusia	5141	6665	979	2569	698
Total Europa y Eurasia	8282	9331	10518	11540	9230
Arabia Saudí	6628	6571	5542	3942	4773
Iraq	5995	1905	3507	3751	5212
Irán	3880	7671	0	0	0
Total Oriente Medio	17157	16559	9049	7693	10298
Total Mundo	57457	52461	54852	56172	63596
Saldo Producción	12580	12758	-5407	-4919	-2437
Total Saldo importador	70037	65219	49445	51253	61158

Capítulo 2

Energía eléctrica y desarrollo sostenible.

2.1. Introducción al desarrollo sostenible.

El desarrollo nació en los años 70 en los países nórdicos y se define como:

- El que satisface nuestras necesidades actuales sin poner en peligro la capacidad de las generaciones futuras para satisfacer sus propias necesidades abarcando:
 - El capital social
 - El capital ambiental
 - El capital económico

2.1.1. Cumbres climáticas.

- Rio de Janeiro (1992): Se crea la Comisión del Desarrollo Sostenible para impulsar la sostenibilidad de las políticas de desarrollo humano y gestionar sus riesgos.
- Cumbre del Protocolo de Kyoto (1997): Se adquiere un compromiso entre los países industrializados con el **objetivo** de reducir las emisiones de gases de efecto invernadero un 5,9 % en el periodo 2008 2012 con respecto a 1990 (año base). En una fase inicial no incluía a países en desarrollo como China e India por su baja contaminación per capita.
- Cumbre de París (2015): Se comprometen los países a que la temperatura mundial no aumente más de 2°C respecto a los niveles preindustriales y limitarlo a 1,5°C para el 2020.
- Cumbre de Marrakech (2016): Se ratifican los acuerdos de la Cumbre de París y se compromete reducir el 80 % de las emisiones de CO₂ para 2050.
- **Cumbre de Katowice (2018):** Limitar a un incremento a final de siglo de 1,5 a 2°C respecto a los niveles preindustriales.
- Cumbre de Chile celebrada en Madrid (2019): Los grandes contaminadores se niegan a intensificar los esfuerzos para mantener la temperatura por debajo de 1,5°C.
- Cumbre de Glasgow (2021): Se mantiene el objetivo de 1,5°C para 2030. Acuerdo China -USA para reducir las emisiones de metano. Compromiso de 130 países para poner fin a la deforestación.
- Cumbre de Sharm el-Sheij en Egipto (2022): Se acuerdan:
 - Una alianza global contra la sequía.
 - Una coalición contra la deforestación.
 - Impulsar el hidrógeno verde.
 - Impulsar la energía eólica marina.
- Cumbre de Dubai(2021): Se acuerda reducir las emisiones mundiales de gases de efecto invernadero un 43 % hasta 2030 y un 60 % hasta 2035 en relación con los niveles de 2019, y emisiones netas de dióxido de carbono cero para 2050.

2.2. Gases de efecto invernadero.

2.2.1. CO_2 equivalente.

Es una forma de poder reducir el impacto climático a una unidad común y así, poder compararlos. Para calcularlo se emplea el valor \mathbf{GWP} (Global Warming Potencial) o \mathbf{PCG} (Potencial de calentamiento global) que miden cuanto calor atrapan en comparación con el CO_2 para un periodo de tiempo.

Este valor depende de:

- La absorción de radiación infrarroja.
- La ubicación del espectro de absorción.

2.2.2. Dióxido de carbono (CO₂).

Es la sustancia que más contribuye al efecto invernadero. Absorbe gran parte de la radiación solar incidente.

2.2.3. Óxido nitroso (N_2O) y óxidos de nitrógeno (NO_x) .

Son los gases de efecto invernadero más destructivos con la capa de ozono. Relacionados con el sector agrario y la quema de combustible.

2.2.4. Metano (CH₄).

Tiene un potencial de calentamiento muy elevado GWP = 25. Se emite por el sector ganadero, el el de tratamiento de residuos y durante el transporte de hidrocarburos.

2.2.5. Hidrofluorocarbonos (HFC).

Son gases empleados como refrigerantes. No dañan al ozono pero tienen un GWP = 1000 y una larga permanencia en la atmósfera.

2.2.6. Perfluororcarburos (PFC).

Similares a los HFC.

2.2.7. Hexafluoruro de azufre (SF_6) .

Se emplea para equipos de distribución de energía eléctrica. Tiene propiedades similares a los HFC y PFC.

	CO_2	ClFCs	\mathbf{CH}_4	N_2O
Importancia	Más del 50 %	20 % aprox.	12 a 14 %	6 a 7 %
según con-				
tribución				
al efecto				
invernadero				
Tiempo de	50 - 200 años	75 - 100 años	7 a 10 años	150 años
permanen-				aprox.
cia en la				
atmósfera				
Tasa de	0,5	4-5	1	0,35
crecimiento				
anual (%)				
Principal	Combustión	Aerosoles y	Pantanos	Fertilizantes
origen de la	del petróleo,	disolventes	Ganadería	Combustible
contamina-	carbón y gas	Espumas	Minería	fósiles
ción	deforesta-	industriales		
	ción	Equipos de		
		refrigeración		

2.3. Efecto invernadero.

Como consecuencia de los gases de efecto invernadero se absorbe una mayor cantidad de radiación infrarroja que escaparía de la tierra y, por tanto, aumentando la temperatura atmosférica.

2.3.1. Forzamiento radiactivo o climático.

Es la diferencia entre la radiación solar absorbida por la Tierra y la energía irradiada de vuelta al espacio. Esta diferencia se contempla mediante el RCP donde:

- RCP = 2 es un escenario con el indicador muy bajo.
- RCP = 8,5 es un escenario con el indicador muy alto.

Escenario	Forz. Radiat. (W/m² en 2100)	GC		GtCO ₂	
		Media	Rango	Media	Rango
RCP2.6	2.8	270	140 a 410	990	510 a 1505
RCP4.5	4.5	780	595 a 1005	2880	2180 a 3690
RCP6.0	6	1060	840 a 1250	3885	3080 a 4585
RCP8.5	8.5	1685	1415 a 1910	6180	5163 a 7005

	Escenario		2046-2065		2081-2100
		Media	Rango probable	Media	Rango probable
Cambio en la	RCP2,6	1	0,4 a 1,6	1	0,3 a 1,7
temperatura media global	RCP4,5	1,4	0,9 a 2,0	1,8	1,1 a 2,2
del aire en superficie	RCP6	1,3	0,8 a 1,8	2,2	1,4 a 3,1
(en °C)	RCP8,5	2	1,4 a 2,6	3,7	2,6 a 4,8
Elevación media mundial	RCP2,6	0,24	0,17 a 0,32	0,4	0,26 a 0,55
del nivel del mar	RCP4,5	0,26	0.19 a 0,33	0,47	0,32 a 0,63
(en metros)	RCP6	0,25	0.18 a 0,32	0,48	0,33 a 0,63
	RCP8,5	0,3	0,22 a 0,38	0,63	0,45 a 0,82

2.3.2. Evolución de las emisiones de CO₂ equivalente en España.

España se comprometió con la unión europea en reducir emisiones para el periodo 2008 - 2012 en un $15\,\%$ respecto a 1990 (Fase I y II). Para el periodo 2013 - 2020 se comprometió a reducir emisiones en un $20\,\%$ respecto a los niveles del año base.

En cuanto a las emisiones asociadas a la generación eléctrica:

tCO ₂ × 1.000.000	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Carbón	41,0	51,1	37,5	41,1	50,0	35,4	42,8	36,0	12,4	4,9	4,9	7,5
Fuel + Gas	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Motores diésel	2,9	2,9	2,7	2,6	2,7	2,8	2,7	2,2	2,0	1,6	1,7	1,7
Turbina de gas	0,9	1,0	0,7	0,8	0,7	0,5	0,7	1,0	0,7	0,4	0,5	0,7
Turbina de vapor	2,3	2,4	2,2	1,8	2,0	2,3	2,4	2,2	2,0	1,3	1,0	1,1
Ciclo combinado	21,0	16,4	11,4	10,5	12,0	12,0	14,9	11,8	21,2	17,1	17,4	26,2
Cogeneración	11,6	12,3	11,7	9,2	9,6	9,8	10,7	11,0	11,3	10,1	9,7	6,6
Residuos no renovables	0,3	0,4	0,4	0,5	0,6	0,6	0,6	0,6	0,5	0,7	0,8	0,6
Total Emisiones	80,1	86,4	66,6	66,5	77,6	63,5	74,9	64,9	50,0	36,1	35,9	44,4
Factor de emision de CO ₂ (tCO ₂ /MWh)	0,29	0,31	0,24	0,25	0,29	0,24	0,29	0,25	0,19	0,15	0,14	0,16

En cuanto a los rendimientos de diversas plantas de generación eléctrica:

	Eficiencia conversión	Emisio	ones en	gramos/kWh
	(%)	NOx	SO2	CO2
Carbón pulverizado (sin descontaminar S)	36	1.29	17.2	884
Carbón pulverizado (con descontaminación S)	36	1.29	0.86	884
Carbón en lecho fluidificado	37	0.42	0.84	861
Ciclo combinado de carbón gasificado	42	0.11	0.3	758
Turbina de gas	39	0.23	0	470
Ciclo combinado de turbina de gas	53	0.1	0	345

2.4. Protocolo de Kioto.

El Protocolo de Kioto estableció 3 vías para su cumplimiento:

2.4.1. Políticas y medidas.

Directiva 2033/87 CE de Comercio de Derechos de Emisión de gases de efecto invernadero en la Unión Europea.

2.4.2. Creación de sumideros.

Se consideran sumideros todos los sistemas por los que se extraen gases de la atmósfera. Se consideran sumideros actividades como la reforestación.

2.4.3. Mecanismos flexibles.

- 1. Comercio de derechos de emisión (CDE): Establece una asignación de una determinada cantidad de derechos de emisión gratuitos para las centrales térmicas y el sector industrial que equivalen a 1 tonelada de CO₂. Un país que haya conseguido reducir sus emisiones podrá vender a otro país que no llegue a su objetivo previsto. En España se llama PNA (Plan Nacional de Asignación).
- 2. **Mecnismo de desarrollo limpio (MDL):** El país desarrollado invierte en tecnologías limpias en países en vías de desarrollo.
- 3. **Aplicación conjunta (AC):** Un país desarrollado invierte en otro país desarrollado en un proyecto de energía limpia.

2.5. PNA.

La Directiva de la Unión Europea sobre Comercio de Emisiones (2003/87/CE) establece que cada Estado miembro deberá elaborar un Plan Nacional de Asignación (PNA) en el que se determinen la cantidad total de derechos a asignar durante un periodo y el procedimiento de asignación aplicado.

Actualmente en España se asigna mediante el PNA IV donde se permiten unas emisiones de ${\rm CO}_2 = 44\,{\rm MtCO}_{2-eq}$

2.6. Precio de emisión.

SENDECO2 es la plataforma que proporciona a todos los empresarios un lugar donde intercambiar Derechos de Emisión (EUAs) por Créditos de carbono (CERs) que certifican que se deja de emitir una tonelada de $\rm CO_2$.

2.6.1. Evolución del precio del derecho de emisión.

2.6.2. Influencia coste de emisión en el mercado eléctrico.

Desde el año 2021 las centrales térmicas no tienen cantidades asignadas gratuitas y por ello, tienen que comprar derechos de emisión. Este coste repercute en el coste de la generación ofertado y, por tanto el precio de la energía como se puede ver en la figura inferior.

2.6.3. Factor de emisión.

El factor de emisión (fe) representa la cantidad de CO_2 que se genera por MWh de electricidad producida en bornes de la central:

$$fe = \frac{tCO_{2-eq}}{MWhe} = \frac{tCO_{2-eq}}{TJ}$$

Los factores de emisión se actualizan anualmente.

2.6.4. Cálculo del factor de emisión.

Para el cálculo se emplea la siguiente expresión:

$$f\left(\frac{tCO_2}{MWh}\right) = \frac{tCO_2}{TJ} \cdot \frac{3,6TJ}{1000MWh} \cdot \frac{100}{\eta}$$

 Centrales térmicas de carbón: El carbón es un combustible con un alto contenido en carbono y por ello genera una cantidad elevada de CO₂ por MWhe. El tep (tonelada equivalente petróleo) es una unidad para referir la energía con respecto a la obtenida con una tonelada de petróleo.

Combustible	ktCO2/ktep	TJ/ktep	Factor de Emisión combustible (tCO2/TJ)	Rendimiento eléctrico (%)	(tCO2/MWh)
Hulla + Antracita nacional	4,032	41,868	96,303	36 %	0,96
Carbón importado	4,032	41,868	96,303	36 %	0,96
Lignito negro	3,861	41,868	92,218	36 %	0,92
Lignito pardo	3,983	41,868	95,132	36 %	0,95

2. **Centrales térmicas de ciclo combinado con gas natural:** Utilizan gas natural, un combustible con menor contenido en carbono que junto a su elevado rendimiento hace que tenga un menor factor de emisión.

Combustible	ktCO2/ktep	TJ/ktep	Factor de Emi- sión combustible (tCO2/TJ)		(tCO2/MWh)
Gas natural	2,337	41,868	55,818	54 %	0,37

27

3. **Centrales térmicas de fuel-gas:** Debido a su heterogeneidad se utilizan valores medios empíricos para este conjunto de centrales.

Combustible	(tCO2/MWh)
Gas natural	0,77

4. **Centrales hidráulicas, renovables y nuclear:** No emiten CO₂ para generar electricidad.

Combustible	(tCO2/MWh)
Centrales hidráulicas, renovables y nuclear	0

5. **Cogeneración:** Consiste en la producción combinada de calor y electricidad, lo que permite conseguir un rendimiento conjunto superior.

Combustible	(tCO2/MWh)
Cogeneración	0,37

6. **Residuos:** Como existe una gran heterogeneidad en los combustibles empleados se toma un valor medio. En el caso de la biomasa su factor de emisión es nulo porque son neutros a nivel de emisiones. Además las emisiones de N_2O asociadas a los residuos no son significativas a nivel de cálculos del factor de emisión.

Combustible	Rendimiento eléctrico (%)	(tCO2/MWh)
Residuos	25 %	0,24
Biomasa	-	0

2.6.5. Emisiones en la combustión.

Las fuentes de combustión que producen emisiones de CO_2 se calculan multiplicando el contenido de energía por un factor de emisión y oxidación (se asume igual a 1 el factor de oxidación).

Emisiones CO_2 = Datos de la actividad × Factor de emisión × Factor de oxidación

Los datos de actividad se expresan como el contenido de energía neto del combustible consumido [TJ] durante un periodo.

Contenido de energía [TJ] = Combustible consumido [t o m³]×Poder calorífico combustible [TJ/t o TJ/m³]

El poder calorífico neto es un valor representativo de la energía liberada en la combustión en forma de calor. Esta magnitud tiene límite superior (PCS) e inferior (PCI) en función de la humedad del combustible.

$$[PCI]_s(kcal/kg) = [PCS]_s - 597 \cdot (9H + H_2O)$$

- $H \rightarrow \%$ de hidrógeno contenido en el combustible (base seca).
- $H_2O \rightarrow \%$ de humedad del combustible.

2.6.6. Emisiones evitadas con las energías renovables.

Las energías renovables en España permitieron reducir la emisión de 55,6 millones de tCO₂ y cubrieron el 42,2 % de la demanda eléctrica.

2.7. Combustibles fósiles.

2.7.1. Combustible sólidos.

a

1. **Biomasa:** El combustible esta compuesto de materia vegetal que había sido creada a través de la fotosíntesis:

$$6CO_2 + 6H_2O + 112kcal/mol \rightarrow C_6(H_2O)_6 + 6O_2(Glucosa)$$

Por tanto, la fotosíntesis fija al año $18.000~{\rm Mt}$ de ${\rm CO_2}$ y por tanto, quemar esta planta no produce más ${\rm CO_2}$ que el que liberaría al morir por fermentación. De esta manera, se podría considerar renovable.

2. **Carbón:** Es una roca de fácil combustión con aproximadamente el 50 % del peso en carbono. No obstante, en función del porcentaje de carbono cambia el poder calorífico:

	Lignito	Hulla	Lignito
Densidad	1,1-1,3	1,2-1,5	1,4-1,8
Humedad (%)	20-50	3-25	3-5
% C	27-31	37-86	89-98
% Volátiles	25-55	25-50	2-14
PC (kcal/kg)	2000-4000	3500-7500	7000-8350

El carbón esta formado por distintos elementos que condicionan su comportamiento como combustible:

- *a*) Carbón fijo (65-95%):
- *b*) Hidrógeno (3-6%):
- c) Azufre (0,2-11%):
- *d*) Humedad (1-60%):
- e) Nitrógeno (1-1,5%):
- f) Oxígeno (2-30%):
- g) Materia volátil (5-40 %):
- *h*) Cenizas (30%):

2.7.2. Combustible líquidos.

2.7.3. Combustible gaseosos.

Capítulo 3

Tecnologías más eficientes. Captura de ${\bf CO}_2$

Capítulo 4

Cobertura de la demanda. Mercado eléctrico.