Lecture 10 AC Power

Power Factor Improvement

EXAMPLE

Estimate real, reactive powers and pf

Given, $V_m \angle \theta = 230\sqrt{2} \angle 0^0$, $Z = 4 + j3 = 5 \angle tan^{-1}(3/4) = 5 \angle 36.87^0$

Then, $I_m \angle \phi = 230\sqrt{2} \angle 0 / 5 \angle 36.87^0 = 46\sqrt{2} \angle - 36.87^0$

$$\theta = 0^{\circ}$$
 but $\phi = -36.87^{\circ} = > \theta - \phi = 36.87^{\circ}$

Power Factor = $cos(\theta - \phi) = cos(36.87^{\circ}) = 0.8$ lagging

Real Power,
$$P = \frac{1}{2} \times 230 \sqrt{2} \times 46 \sqrt{2} \cos(36.87^{0})$$

= V x I x cos(36.87°) = 230 x 46 x 0.8 = 8464 W
Real power = P= I² R= 46x46x4= 8464 W
Apparent Power |S|= VxI = P/ $\cos(\theta - \phi)$ = 10580 VA
Also, |S|= V x I = 230 x 46 = 10580 VA

Reactive Power Q = VxIxSin(36.87) = 6348 VARAlso, Px tan(θ - ϕ) = 8464x0.75= 6348 VAR Reactive power = Q= $I^2 X_1$ = 46x46x3= 6348 W

Power Factor Improvement

Power Factor to be 0.9 lagging from 0.8 lagging

Power Factor Improvement

Power Factor Improvement

 $v = 20\sqrt{2} \sin(\omega t)$ where f = 50 Hz

Power Factor to be 0.9 lagging

Given values in rms:

$$V = 20 L0^{0}$$
 and $Z = 4+j3 = 5 \angle 36.87^{0}$

Then,
$$I = V/Z = 4 \angle -36.87^{\circ}$$

The power factor angle is: θ - ϕ = 36.87°

PF is: $cos(0-(-36.87^0)) = 0.8$ lagging.

Real power = $P = I^2 R = VIcos(36.87^0) = 20x4x0.8 = 64 W$

Reactive power=Q = $I^2 X_L$ =VIsin(36.87°) = 48 VAR

For Power Factor to be 0.9 lagging

Real power remains same => VI = 64/0.9 = 71.11 VA

$$cos(\phi_n) = 0.9 => \phi_n = 25.84^0$$

Reactive power has to be $=> VI \sin(25.84^{\circ}) = 31 \text{ VAR}$

For improving the power factor, following scheme is adopted.

The capacitor has to generate

$$Qc = (48 - 31) = 17 VAR$$

$$Qc = V^2 / Xc = 17 => \omega CV^2 = 17$$

$$C = 17/(2x\pi x 50x 400) = 135.3 \mu F$$