1 Домашнее задание

1. (2 балла) Пусть дано уравнение авторегрессии порядка 2:

$$u_t = \beta_1 u_{t-1} + \beta_2 u_{t-2} + \varepsilon_t.$$

Известно, что $u_0=0,~\{\varepsilon_t\}$ - н.о.р., $E\varepsilon_1^2<\infty,~\beta_1,\beta_2\in R$. Нужно построить оптимальный среднекв. прогноз u_{n+1}^* (на один шаг), а также посчитать его среднекв. ошибку.

2. (2 балла) Дано уравнение

$$u_t = \varepsilon_t - \alpha \varepsilon_{t-1}, \ t = 1, 2, ..., n.$$

Известно, что $\varepsilon_0 = 0$, $\{\varepsilon_t; t \geq 1\}$ - н.о.р., ε_1 имеет стандартное нормальное распределение N(0,1). Необходимо выписать уравнение правдоподобия для оценивания α (решать его не нужно).

3. (3 балла) Пусть дана схема засорения следующего вида:

$$\begin{cases} u_t = \beta u_{t-1} + \varepsilon_t, \ t \in Z, \ |\beta| < 1 \\ y_t = u_t + z_t^{\gamma} \xi_t \end{cases}$$

Известно, что $\{\varepsilon_t\}$ - н.о.р., $E\varepsilon_1=0,\,0< E\varepsilon_1^2<\infty.$ Пусть $\beta\neq 0.$ // Оценка β_n^* ищется как корень уравнения

$$\sum_{t=1}^{n} y_{t-2}(y_t - \theta y_{t-1}) = 0.$$

Будет ли оценка β_n^* робастна по смещению?

4. (3 балла) Пусть дана схема засорения следующего вида:

$$\begin{cases} u_t = \alpha + \varepsilon_t \\ y_t = u_t + z_t^{\gamma} \xi_t \end{cases}$$

Известно, что $\{\varepsilon_t\}$ - н.о.р. с плотностью вероятности g(x), для которой верно, что g(x)=g(-x), g(0)>0.

По $y_1,y_2,...,y_n$ строят оценку α , которая равна корню уравнения

$$\sum_{t=1}^{n} \psi(y_t - \theta) = 0,$$

где ψ - нечетная функция, которая ограничена по модулю, строго возрастает и дифференцируема $\forall x.$ Требуется узнать, будет ли оценка a_n^* робастна по смещению?