Tutorial Problems set-IV

Note: All these problems can be solved using the results of Chapter-4.

[0.0.1] *Exercise* A matrix $A \in \mathbb{M}_n(\mathbb{F})$ is said to be **nilpotent** if $A^k = 0_n$ for some positive integer k. Show that A is nilpotent if and only if the eigenvalues of A are 0.

[0.0.2] Exercise Let A be nilpotent.

- 1. If $A \neq 0_n$, show that A is not diagonalizable.
- 2. What can you say about the minimal polynomial of A?

[0.0.3] Exercise Let $A, B \in \mathbb{M}_n(\mathbb{C})$ and let C = AB - BA. Show that I - C is not nilpotent.

[0.0.4] Exercise What is the minimal polynomial of
$$A = \begin{bmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{bmatrix}$$
?

[0.0.5] Exercise Let $C = \begin{bmatrix} A & 0_n \\ 0_n & B \end{bmatrix}$ be a block diagonal matrix where $A, B \in \mathbb{M}_n(\mathbb{C})$. Prove that the minimal polynomial of C is the L.C.M (least common multiple) of the minimal polynomial of A and B.

[0.0.6] *Exercise* Let $A \in \mathbb{M}_n(\mathbb{C})$. Show that $\{I, A, A^2, \dots, A^n\}$ is a linearly dependent set in the vector space $\mathbb{M}_n(\mathbb{C})$.

[0.0.7] Exercise Let $A = uu^*$ where u is a non-zero column vector.

- 1. Show that the distinct eigenvalues of A are 0 and u^*u .
- 2. Show that u^*u is a simple eigenvalue of A.
- 3. Write down the $E_{(\lambda=0)}$ and $E_{(\lambda=u^*u)}$.
- 4. Compute the minimal polynomial of A.
- 5. Show that A is diagonalizable.

[0.0.8] *Exercise* The characteristic polynomial of a matrix $A \in M_5(\mathbb{R})$ is given by $x^5 + \alpha x^4 + \beta x^3$, where α and β are non-zero real numbers. What are the possible values of the rank of A?

[0.0.9] Exercise Write down all the eigenvalues (along with their multiplicities) of the matrix $A = (a_{ij}) \in M_n(\mathbb{R})$ where $a_{ij} = 1$ for all $1 \leq i, j \leq n$.

[0.0.10] Exercise Let $A \in M_3(\mathbb{C})$ be a matrix such that $A^3 = I$. Then prove that A is diagonalizable.

[0.0.11] *Exercise* Let $A \in \mathbb{M}_3(\mathbb{C})$ be a matrix such that $A^2 = A$ (idempotent matrix). Then prove that A is diagonalizable.

[0.0.12] Exercise Let $A \in \mathbb{M}_3(\mathbb{C})$ be a matrix such that $A^2 = I$ (idempotent matrix). Then prove that A is diagonalizable.

[0.0.13] *Exercise* Find the minimal polynomial of the following matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$.

[0.0.14] Exercise Let $A \in \mathbb{M}_n(\mathbb{C})$. Then show that the following are equivalent.

- 1. A is diagonalizable.
- 2. P(A) is nilpotent $\implies P(A) = 0_n$ for any polynomial P with complex co-efficient.

[0.0.15] *Exercise* Let $A, B \in \mathbb{M}_n(\mathbb{C})$.

- 1. If $AX XB = 0_n$, then show that $P(A)X XP(B) = 0_n$ for any polynomial P.
- 2. If A and B do not have common eigenvalues, then show that $AX XB = 0_n \implies X = 0_n$.

Sol. Let
$$P(x) = a_k x^k + a_{k-1} x^{k-1} + \dots + a_0$$
.

[0.0.16] Exercise Let $A, B \in \mathbb{M}_n(\mathbb{C})$ such that A = AB - BA. Let v be an eigenvector of B with eigenvalue λ

- 1. Prove that either Av is zero or an eigenvector of B.
- 2. Prove that there exists a natural k such that $A^k v = 0_n$.