

Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas IFSULDEMINAS — Campus Poços de Caldas

Trabalho Prático de Inteligência Artificial — Análise Preditiva da Qualidade de Vinhos

Aluno: Alessandro Augusto **Professor:** Douglas Castilho

Julho de 2025

Este relatório detalha o processo de análise, pré-processamento e modelagem preditiva realizado sobre a base de dados de qualidade de vinhos, conforme as diretrizes do Trabalho Prático da disciplina de Inteligência Artificial.

Parte 1: Análise e Pré-Processamento de Dados

1. Identificação do Atributo Alvo (Saída)

- Atributo Original: O atributo alvo original presente na base de dados é a coluna quality, uma variável numérica discreta que representa uma pontuação de 3 a 9 para cada vinho.
- Transformação Aplicada: Para criar um problema de classificação com maior aplicabilidade prática e para lidar com o desbalanceamento inerente às notas, a variável quality foi discretizada em três categorias ordinais.
- Atributo Alvo Final: O atributo alvo final, utilizado para treinar e avaliar os modelos, é a coluna quality_category, com as seguintes classes nominais: ruim (notas de 3 a 4), normal (notas de 5 a 6) e bom (notas de 7 a 9).
- **Justificativa no Código:** A lógica para esta transformação está implementada na função processar_dados_para_modelagem() do ficheiro cli.py e na função _preprocess_data() do ficheiro engine.py, onde o método pd.cut é utilizado para criar as categorias.

2. Identificação dos Tipos de Dados dos Atributos de Entrada

- Atributo Qualitativo: O projeto identifica corretamente um único atributo de entrada como qualitativo (ou categórico): color (cujos valores são 'red' ou 'white').
- Atributos Quantitativos: Os 11 atributos restantes são corretamente identificados como quantitativos (numéricos), pois representam medições físico-químicas: fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide, density, pH, sulphates, alcohol.
- **Justificativa no Código:** O código confirma esta distinção na etapa de préprocessamento. A função pd.get_dummies é aplicada exclusivamente à coluna

color para converter seus valores textuais ('red'/'white') num formato numérico (0/1). Este passo é característico do tratamento de dados qualitativos nominais, enquanto os atributos quantitativos, por já serem numéricos, são processados diretamente por outras técnicas como a padronização.

3. Identificação da Escala de Dados dos Atributos de Entrada

- Escala Nominal: O atributo qualitativo color está nesta escala. Seus valores ('red'
 e 'white') são rótulos que nomeiam categorias sem uma ordem ou hierarquia
 intrínseca.
- Escala Intervalar: O atributo quantitativo pH pertence a esta escala. É uma medida logarítmica onde os intervalos entre os valores são consistentes (a diferença entre pH 3 e 4 é a mesma que entre pH 5 e 6), mas não existe um ponto zero absoluto que represente a "ausência de acidez".
- **Escala Racional:** Os outros 10 atributos quantitativos estão nesta escala. Todos eles (fixed acidity, residual sugar, alcohol, etc.) possuem um zero absoluto e significativo (um valor 0 significa a ausência total daquela substância). Portanto, as razões entre os valores são válidas (ex: 10 g/L de açúcar é o dobro de 5 g/L).

4. Exploração dos Dados Através de Medidas de Localidade

A análise de medidas de localidade, como média e mediana (quartil 50%), foi realizada pela função analise_exploratoria no cli.py. A execução desta função (opção 1 no menu CLI) gerou a seguinte tabela de estatísticas descritivas, que resume a tendência central de cada atributo:

Medidas de localidade e espalhamento (Itens 4 a 5)								
	Count	Mean	Std	Min	25%	50%	75%	Max
Fixed acidity	6497. 0	7.215307	1.296434	3.8000 0	6.40000	7.00000	7.70000	15.90000
Volatile acidity	6497. 0	0.339666	0.164636	0.0800	0.23000	0.29000	0.40000	1.58000
Citric acid	6497. 0	0.318633	0.145318	0.0000	0.25000	0.31000	0.39000	1.66000
Residual sugar	6497. 0	5.443235	4.757804	0.6000	1.80000	3.00000	8.10000	65.80000
Chloride s	6497. 0	0.056034	0.035034	0.0090	0.03800	0.04700	0.06500	0.61100
Free súlfur dioxide	6497. 0	30.525319	17.74940 0	1.0000	17.0000 0	29.00000	41.00000	289.0000 0
Total súlfur dioxide	6497. 0	115.74457 4	56.52185 5	6.0000	77.0000 0	118.0000 0	156.0000 0	440.0000
Density	6497. 0	0.994697	0.002999	0.9871 1	0.99234	0.99489	0.99699	1.03898

pН	6497. 0	3.218501	0.160787	2.7200 0	3.11000	3.21000	3.32000	4.01000
Sulfates	6497. 0	0.531268	0.148806	0.2200	0.43000	0.51000	0.60000	2.00000
Alchool	6497. 0	10.491801	1.192712	8.0000	9.50000	10.30000	11.30000	14.90000
Quality	6497. 0	5.818378	0.873255	3.0000	5.00000	6.00000	6.00000	9.00000

Observa-se, por exemplo, que a nota de qualidade (quality) média é de 5.82, enquanto a mediana é 6.0, indicando uma leve assimetria na distribuição das notas.

5. Exploração dos Dados Através de Medidas de Espalhamento

A mesma tabela acima, gerada pela função analise_exploratoria, também fornece as medidas de espalhamento: desvio padrão (std), valor mínimo (min), valor máximo (max) e os quartis (25%, 50%, 75%), que compõem o intervalo interquartil. Essas medidas mostram a variabilidade dos dados. Por exemplo, o atributo total sulfur dioxide apresenta um desvio padrão alto (56.52) e uma grande amplitude (diferença entre max e min), sugerindo uma alta dispersão dos seus valores.

6. Exploração dos Dados Através de Medidas de Distribuição

A distribuição dos dados foi explorada visualmente através da função visualizar_distribuicoes (opção 2 no CLI), que gera histogramas para cada atributo numérico, segmentados por cor de vinho. A versão cli_manual.py oferece uma alternativa em texto que também cumpre o objetivo, mostrando a frequência de valores em diferentes faixas (bins). Essa análise permite identificar a forma da distribuição (ex: simétrica, assimétrica) de cada atributo.

7. Identificação e Separação do Conjunto de Teste

O conjunto de teste foi separado na função processar_dados_para_modelagem utilizando a função train_test_split da biblioteca scikit-learn.

- **Técnica:** Foi utilizado o método **Hold-Out**, com 20% dos dados sendo reservados para o conjunto de teste (test_size=0.2).
- **Representatividade:** Para garantir que o conjunto de teste fosse representativo, foi aplicada a **estratificação**. Notavelmente, foi criada uma coluna auxiliar (stratify_col) que combina a categoria de qualidade (quality_category) e a cor do vinho (color_white). Ao usar esta coluna para a estratificação, o código garante que a proporção de cada categoria de qualidade, tanto para vinhos tintos quanto para brancos, seja a mesma nos conjuntos de treino e teste. Esta é uma abordagem robusta que preserva as características da população completa.

8. Identificação e Eliminação de Atributos Não Necessários

No pré-processamento, os únicos atributos eliminados diretamente foram quality (o alvo original, substituído por quality_category), quality_category e stratify_col (que cumpriram seus papéis e não são atributos de entrada para os modelos).

Para a análise de redundância, a **Matriz de Correlação** (opção 3 no CLI) foi gerada. Observando a matriz, nota-se uma correlação muito forte (0.72) entre free sulfur dioxide e total sulfur dioxide. Embora não tenham sido eliminados manualmente, essa alta correlação justifica a aplicação de uma técnica de redução de dimensionalidade como o PCA, que é oferecida como uma opção no sistema.

9. Identificação e Eliminação de Exemplos Não Necessários

A análise de exemplos não necessários focou na remoção de dados duplicados.

- **Identificação e Ação:** Na função processar_dados_para_modelagem, o código df.drop_duplicates(inplace=True) é executado.
- **Resultado:** A saída do terminal confirma a eficácia desta etapa: 1. Removendo 1177 linhas duplicadas.... Isso indica que uma quantidade significativa de exemplos redundantes foi corretamente identificada e removida, melhorando a qualidade do conjunto de dados para o treinamento.

10. Análise e Aplicação de Técnicas de Amostragem de Dados

A base de dados original possui 6497 exemplos, um volume considerado suficiente para o treinamento dos modelos propostos, não exigindo uma técnica de amostragem para reduzir o tamanho do dataset. No entanto, uma técnica de amostragem foi aplicada para resolver outro problema, o de desbalanceamento, conforme detalhado no próximo item.

11. Identificação e Aplicação de Técnicas para Minimizar Problemas de Desbalanceamento

Após a discretização do atributo alvo quality nas categorias 'ruim', 'normal' e 'bom', o dataset tornou-se desbalanceado. A classe 'normal' é majoritária, enquanto 'ruim' e 'bom' são minoritárias.

- Análise: O desbalanceamento pode levar os modelos a terem um bom desempenho na classe majoritária, mas falharem em prever corretamente as classes minoritárias, que são muitas vezes as de maior interesse.
- **Técnica Aplicada:** Para mitigar este problema, a técnica **SMOTE** (**Synthetic Minority Over-sampling Technique**) foi corretamente aplicada. Na função processar_dados_para_modelagem, a linha X_train_balanced, y_train_balanced = smote.fit_resample(X_train_final, y_train) realiza o rebalanceamento.

• **Justificativa:** É crucial notar que o SMOTE foi aplicado **apenas no conjunto de treino**, o que é a prática correta para evitar o vazamento de dados (data leakage) e garantir que o conjunto de teste permaneça uma representação real e não vista do problema.

12. Limpeza de Dados

- a. Identificação e Eliminação de Ruídos ou Outliers: A função
 visualizar_distribuicoes gera boxplots para cada atributo, que são uma
 ferramenta visual padrão para a identificação de outliers. Embora o código
 permita a visualização, ele não aplica uma regra automática para remoção, o que
 é uma decisão de projeto válida, pois nem todo outlier é um erro e pode
 representar uma característica importante do domínio.
- **b. Identificação e Eliminação de Dados Inconsistentes:** Nenhuma inconsistência óbvia foi encontrada nos dados. Os valores estão dentro dos intervalos esperados para as medições físico-químicas de vinhos.
- c. Identificação e Eliminação de Dados Redundantes: Conforme detalhado no item 9, 1177 linhas duplicadas foram identificadas e removidas.
- d. Identificação e Resolução de Dados Incompletos (Ausentes): A análise inicial na função analise_exploratoria (saída do terminal) mostrou que df.isnull().sum() retorna 0 para todas as colunas. Portanto, não havia dados ausentes, e nenhuma técnica de preenchimento foi necessária.

13. Identificação e Conversão dos Tipos de Dados

• a. Conversão de Tipos:

Nominal para Binário: O atributo color (categórico nominal) foi convertido para um formato numérico binário (0 para 'red', 1 para 'white') usando pd.get dummies.

Numérico para Ordinal: O atributo quality (numérico) foi convertido para quality_category (categórico ordinal: ruim < normal < bom) usando pd.cut.

• **b. Normalização dos Dados:** Foi utilizada a **Padronização (Standardization)** através do StandardScaler do Scikit-learn. Esta técnica transforma os dados para que tenham média 0 e desvio padrão 1. A padronização é essencial para algoritmos sensíveis à escala das features, como o K-NN (que se baseia em distâncias) e Redes Neurais (para uma convergência mais rápida e estável do gradiente).

14. Análise e Aplicação de Técnica para Redução de Dimensionalidade

O projeto investigou a redução de dimensionalidade como uma etapa experimental.

- Técnica Aplicada: Foi utilizada a Análise de Componentes Principais (PCA).
 O PCA é uma técnica de extração de características que transforma o conjunto original de atributos correlacionados em um novo conjunto de atributos não correlacionados (componentes principais), ordenados pela quantidade de variância que explicam.
- Implementação: A opção 9 do menu CLI ativa o pipeline com PCA. A linha pca = PCA(n_components=0.95) no código indica que o objetivo é manter 95% da variância original dos dados.
- **Resultado:** A saída do terminal informa: PCA selecionou 9 componentes dos 12 originais. Isso significa que foi possível reduzir a dimensionalidade do problema em 25% (de 12 para 9 atributos) perdendo apenas 5% da informação de variância, o que pode levar a modelos mais simples e rápidos sem uma perda significativa de performance.

Parte 2: Análise Preditiva

1. Definição da Técnica de Validação

O projeto utilizou duas técnicas de validação de forma apropriada:

- 1. **Hold-Out:** Na avaliação principal dos modelos (opções 4 a 9), foi usada uma única divisão dos dados em 80% para treino e 20% para teste. Esta abordagem é rápida e eficaz para uma avaliação inicial.
- 2. Validação Cruzada (Cross-Validation): Na opção 10, foi utilizada a Validação Cruzada Estratificada com 5 Folds (StratifiedKFold). Este método divide o conjunto de treino em 5 partes, usando 4 para treinar e 1 para validar, repetindo o processo 5 vezes. O resultado é a média e o desvio padrão da performance, fornecendo uma estimativa muito mais robusta e confiável da capacidade de generalização do modelo e de sua estabilidade.

2. Definição das Métricas de Avaliação

O projeto utilizou um conjunto abrangente de métricas para uma avaliação completa:

- Matriz de Confusão: Apresentada para todos os modelos, detalhando os acertos e erros por classe.
- **Acurácia:** Percentual geral de acertos.
- **Precisão:** Dos que foram classificados como uma classe, quantos realmente eram.

- **Recall (Sensibilidade):** De todos que pertenciam a uma classe, quantos foram corretamente classificados.
- **F1-Score:** Média harmônica entre precisão e recall, útil para dados desbalanceados.
- **Especificidade:** Média da capacidade do modelo de identificar corretamente os verdadeiros negativos. Foi implementada uma função calcular_especificidade_media para esta métrica.

A apresentação das métricas de forma ponderada (weighted avg) e por tipo de vinho (tinto vs. branco) enriquece enormemente a análise.

3. Definição e Análise do Algoritmo Baseline

- **Definição:** O algoritmo DummyClassifier com a estratégia "most_frequent" foi usado como baseline. Este modelo simplesmente classifica todos os exemplos como pertencentes à classe mais frequente nos dados de treino.
- Análise (Pipeline Padrão): O baseline obteve uma acurácia de 0.1898. Como ele prevê apenas a classe "bom" (que era a mais frequente *após o SMOTE* no treino), sua precisão e recall para as classes "normal" e "ruim" são 0. Este resultado é fundamental, pois estabelece o limiar mínimo de performance: qualquer modelo útil deve superar significativamente este valor.

4-6. Criação de Modelos Preditivos

Foram criados e avaliados três modelos de aprendizado de máquina, com hiperparâmetros pré-definidos:

- **K-NN** (**K-Nearest Neighbors**): n_neighbors=7, weights='distance', metric='manhattan'.
- **Árvore de Decisão:** max_depth=8, min_samples_split=5, criterion='gini'.
- **Rede Neural (MLP):** Duas camadas ocultas com 50 e 30 neurônios, ativação 'relu', otimizador 'adam'.

7-8. Análise dos Resultados

A análise comparativa dos resultados (obtidos pela opção 8 do CLI) permite extrair as seguintes conclusões:

Pipeline Padrão (Sem PCA):

Modelo	Acurácia geral	F1-score (ponderado)	Acurácia (brancos)	Acurácia (tintos)
Baseline	0.1898	0.06	0.2083	0.1360
K-NN	0.6109	0.65	0.6048	0.6287

Árvore de decisão	0.5451	0.59	0.5253	0.6029
Rede neural (MLP)	0.6898	0.71	0.6705	0.7463

- **Melhor Modelo:** A **Rede Neural (MLP)** foi o modelo com o melhor desempenho geral, alcançando a maior acurácia (69%) e F1-Score (71%).
- **Desempenho por Cor:** Interessantemente, todos os modelos tiveram um desempenho notavelmente superior na classificação de **vinhos tintos** em comparação com os brancos. A MLP, por exemplo, alcançou 74.6% de acurácia nos vinhos tintos. Isso pode sugerir que os atributos físico-químicos são melhores preditores da qualidade em vinhos tintos.
- Análise das Classes: Todos os modelos tiveram dificuldade em classificar a classe "ruim", que possui o menor número de amostras, mesmo após o SMOTE. O recall para esta classe foi baixo em todos os cenários, indicando que os modelos ainda tendem a confundi-la com as outras.

Pipeline com PCA:

Modelo	Acurácia geral (com PCA)
Baseline	0.1898
K-NN	0.6006
Árvore de decisão	0.5846
Rede neural (MLP)	0.6917

• Impacto do PCA: A aplicação do PCA teve um impacto misto. Para o K-NN, a performance caiu ligeiramente. Para a Árvore de Decisão, houve uma melhora. Para a MLP, a performance se manteve praticamente a mesma (uma leve melhora de ~0.2%). O resultado mais importante aqui é que a MLP conseguiu manter (e até melhorar um pouco) seu desempenho superior utilizando 3 atributos a menos, o que a torna um modelo mais eficiente.

Análise de Estabilidade (Validação Cruzada):

Modelo	Acurácia média (CV)	Desvio padrão (CV)	
K-NN	0.7834	± 0.0065	
Árvore de decisão	0.7580	± 0.0120	
Rede neural (MLP)	0.7834	± 0.0089	

- Acurácia no Treino vs. Teste: A validação cruzada, realizada nos dados de treino (antes do SMOTE), mostra acurácias mais altas (em torno de 78%) do que as obtidas no conjunto de teste final (~69% para MLP). Isso é esperado e evidencia a importância do conjunto de teste para avaliar a generalização real.
- **Estabilidade:** O K-NN e a MLP apresentaram não apenas as maiores acurácias médias, mas também os menores desvios padrão, indicando que são modelos

mais estáveis e consistentes em diferentes subconjuntos dos dados. A Árvore de Decisão, com um desvio padrão maior, mostrou-se um pouco mais instável.

Conclusão Final do Projeto

O projeto foi executado com sucesso, seguindo um pipeline de pré-processamento e análise de dados completo e bem fundamentado. As etapas de limpeza, transformação e balanceamento foram cruciais para a obtenção de resultados significativos.

Dentre os modelos avaliados, a **Rede Neural** (**MLP**) demonstrou ser o algoritmo mais eficaz para a tarefa de classificar a qualidade dos vinhos, tanto no pipeline padrão quanto no pipeline com redução de dimensionalidade via PCA. Os resultados da validação cruzada também reforçam a robustez do modelo MLP. A análise demonstrou que, embora a predição da qualidade do vinho seja uma tarefa complexa, os modelos de aprendizado de máquina conseguem um desempenho consideravelmente superior a uma classificação aleatória ou de base, com destaque para a performance na distinção da qualidade de vinhos tintos.