Olimpiada de Madrid 2005- 2ª prueba

PROBLEMAS ABIERTOS

A. Se ha medido el campo magnético B en el centro de una espira de 5,0 cm de radio, variando la intensidad que circula por ella. Representar gráficamente los datos de la tabla para obtener una recta de regresión y obtener el valor de μ_0 a partir de la gráfica:

I(A)	10	30	50	70	100
B (mT)	0.13	0.37	0.64	0.85	1.27

B. Para determinar el valor de la constante elástica k de un resorte se ejercen en su extremo fuerzas de valor conocido F que provocan deformaciones x. Los valores de F se han medido con una incertidumbre de \pm 0,05 N, mientras que la incertidumbre de x ha sido de \pm 0,1cm.

F (N)	0	0,25	0,50	0,75	1,00	1,25	1,50	1,75	2,00
x (cm)	0	5,0	9,9	15,0	20,3	24,7	30,0	35,3	40,2

A partir de estos datos se pide:

- a) Dibujar los puntos situando las correspondientes barras de error.
- b) Determinar el valor de la constante elástica *k* en unidades SI.
- c) Estimar la incertidumbre del valor obtenido para k.

PRUEBA DE OPCIÓN MÚLTIPLE

1. Una	partícula	de 4,0	kg realiza	un n	novimiento	armónico	simple;	en el	mom	ento	inicia	al t= () s su
desplaz	amiento 1	respecto	del punto	de e	quilibrio es	s 4,3 cm y	su ener	gía to	tal 79	,5 J.	En	t = 0,4	4 s su
desplaz	amiento r	especto	al punto de	e equ	ilibrio expr	esado en c	m es:						

a) 2,4 b) 3,3 c) -2,2 d) -3,9

2. Inicialmente un cuerpo se cuelga de dos muelles idénticos colocados paralelamente y se hace oscilar el sistema; posteriormente se cuelga el mismo cuerpo de esos mismos muelles pero colocados en serie, un muelle a continuación del otro, y de nuevo se hace oscilar el sistema. La relación entre el período de oscilación de la segunda asociación respecto al período de la primera es igual a:

a)1/2 b) 2 c) 4 d) 8

3. Una masa de 600 g oscila en el extremo de un resorte vertical con f= 1 Hz y A= 5 cm. Cuando se añade otra masa de 300 g la frecuencia se reduce a 0,5 Hz. Si la energía mecánica del sistema no varía, la nueva amplitud expresada en cm es:

a) 2,9 b) 6,7 c) 8,2 d) 10

5. Un extremo de una cuerda tensa de longitud 6,00 m oscila transversalmente con un <i>MAS</i> de f= 60 Hz. Si las ondas generadas alcanzan el otro extremo de la cuerda en 0,5 s, la diferencia de fase entre dos puntos de la cuerda separados 10 cm es:									
a) π/2	b) π	c) 3π/4	d) 2π						
6. Por definición, la distancia Tierra–Sol es una Unidad Astronómica (UA) y el período de rotación de la Tierra un año. Si la fuerza gravitatoria fuese proporcional a $1/r^3$ en vez de serlo a $1/r^2$, y se colocase un satélite artificial en órbita alrededor del Sol con un período de 8 años, el radio de la órbita del satélite expresado en UA sería:									
a) 1,7	b) 2,0	c) 2,8	d) 8,0						
masa que realiza la	7. El perihelio de un cometa está a 0,60 UA del Sol y su afelio a 7,20 UA. El trabajo por unidad de masa que realiza la fuerza de atracción del Sol para llevar al cometa desde el afelio al perihelio expresado en J, es: (Datos: M_S = 2,0x10 ³⁰ kg, G= 6,67x10 ⁻¹¹ N m ² kg ⁻² ; 1 UA= 1,50x10 ⁸ km)								
a) 1,24x10 ⁸ ;	b) 1,36x10 ⁹	c) 1,49x10 ⁹	d) 1,61x10 ⁶						
			elocidad triple que la de escape. La se: $g_0 = 9.81 \text{ m/s}^2$; $R_T = 6366 \text{ km}$)						
a) 7,9	b) 15,8	c) 21,1	d) 31,6						
9. Un cuadrado de lado D está sobre los ejes XY con un vértice en el origen; en los tres vértices distintos del origen hay tres cargas de $+$ 3,0 μ C. La carga que debe colocarse en el vértice en el origen para que la fuerza que actúe sobre la carga en el vértice opuesto sea nula, expresada en μ C es: (Datos: $K = 9x10^9$ N m^2 C^{-2})									
a) - 4,2	b) - 8,5	c) +6,0	d) +12						
10. Una gota de aceite de radio r y carga q está en equilibrio en un campo eléctrico vertical uniforme E; si otra gota del mismo aceite, de radio 2r y carga 2q, está también en equilibrio en otro campo eléctrico vertical y uniforme E', la relación entre las intensidades de ambos campos E'/E es:									
a) 1	b) 2	c) 4	d) 8						

4. La velocidad de una onda sonora armónica en el aire está dada por $v=(CT)^{1/2}$, donde C es una constante y T la temperatura termodinámica del aire; cuando T=100 K la longitud de onda es λ . Para

c) 400

d) 500

que la longitud de onda pase a ser 2λ , la temperatura, expresada en kelvin debe incrementarse en:

b) 300

a) 200

	a) 0,029	b) 0,039	c) 0,048	d) 0,062					
12. Si se deja en reposo una esfera de 1,0 g cargada con 100 μ C en un punto donde el potencial eléctrico es de 12 kV , cuando llegue a otro punto donde su valor es de - 8 kV, su velocidad expresada en m/s, será:									
	a) 28,2	b) 44,7	c) 63,2	d) 66,3					
Si un	n protón entra con una a partícula con relació elocidad que expresada	n q/m mitad que la del	i (m/s) en un campo ma protón recorre la misi	agnético $\mathbf{B} = -2x10^{-2} \mathbf{k}$ (T) ma trayectoria que éste, tiene					
	a) $0.5 \times 10^7 i$	b) - 10 ⁷ i	c) $2x10^7$ i	d) - $4x10^7$ i					
c <i>amp</i> veloc	14. Un electrón penetra con velocidad v= $2x10^6$ j m/s en una región en la que existen superpuestos un campo eléctrico E = 1000 i N/C y un campo magnético B tal que el electrón mantiene constante su velocidad. Si un protón penetrase con la misma velocidad que el electrón en esa región, para que no variase su velocidad el campo B debería ser ahora, expresado en mT:								
	a) 0,5 k	b) 2 k	c) - 0,5 k	d) 2 k					
15. Si por dos conductores rectos y paralelos, separados una distancia D, circulan intensidades de corriente doble por uno que por otro y en sentidos opuestos, el punto donde el campo magnético B neto es nulo se encuentra a una distancia del conductor de menor intensidad igual a:									
	a) D/2	b) D	c) 3D/2	d) 2D					
16. Si se coloca una bobina de 200 vueltas y 0,1 m de radio, perpendicularmente a un campo magnético uniforme B que varia linealmente con el tiempo tal que dB/dt = 0,5 T s ⁻¹ , la <i>f.e.m.</i> inducida expresada en V, es: a) - 6,3 b) - 3,1 c) 1,6 d) 4,7									
17. El ángulo de incidencia que debe tener un rayo luminoso sobre la cara lateral de un prisma de vidrio, de índice de refracción n= 1,52, y, ángulo α=50°, para obtener la desviación mínima es:									
	a) 15°	b) 25°	c) 30°	d) 40°					

11. Se dispone de un péndulo simple con una bolita de masa m colgada de un hilo de longitud L. Si

la bolita se carga con una carga +q y el péndulo se dispone en un campo eléctrico uniforme vertical y hacia abajo de $E = 10^3$ N/C, el período del péndulo se hace la mitad. La relación q/m de la bolita expresada en C/kg, es: $(g=9.81 \text{ m s}^{-2})$

18. Un objeto esférico aumento lateral de la i cóncavo con el mismo sería:	magen de un objeto	a 5,0 cm del espejo	es +1/4; si se utiliza	como espejo			
a) - 1/3	b) - 4/10	c) -1/2	d) - 2				
19. Cuando un objeto luminoso se coloca a 6,0 m de una pantalla, una lente forma sobre la pantalla una imagen invertida y cuatro veces mayor que el objeto. Si a continuación se desplaza la lente y se obtiene sobre la misma pantalla otra imagen nítida, diferente de la anterior, la distancia objeto expresada en m, será:							

20. Sea una lente convergente de focal f. La distancia a la que hay que colocar un objeto para que la distancia entre la imagen real y el objeto sea mínima es:

c) 4,8

d) 5,4

a)f/2 b) 2f/3 c) 3f/2 d) 2f

b) 3,0

a) 1,2