TOÁN RỜI RẠC

Chương 4

HỆ THỨC ĐỆ QUY

Nội dung

Chương 4. HỆ THỨC ĐỆ QUY

- 1. Giới thiệu
- 2. Hệ thức đệ quy tuyến tính với hệ số hằng
- 3. Nghiệm của hệ thức đệ quy tuyến tính thuần nhất

4.1. Giới thiệu

Ví dụ. Tháp Hà Nội

Có 3 cọc A,B,C và n đĩa với đường kính đôi một khác nhau. Nguyên tắc đặt đĩa vào cọc là: mỗi đĩa chỉ được chồng lên đĩa lớn hơn nó.

Ban đầu, cả n đĩa được đặt chồng lên nhau ở cọc A, hai cọc B và C để trống. Vấn đề đặt ra là chuyển cả n đĩa ở cọc A sang cọc C (có thể qua trung gian cọc B), mỗi lần chỉ chuyển được một đĩa. Ta gọi x_n là số lần chuyển đĩa, tìm x_n ?

Giải. Với n = 1, ta có $x_1 = 1$.

Với n>1, trước hết ta chuyển n-1 đĩa bên trên sang cọc B qua trung gian cọc C (giữ nguyên đĩa thứ n dưới cùng ở cọc A). Số lần chuyển n-1 đĩa đó là x_{n-1} . Sau đó ta chuyển đĩa thứ n từ cọc A sang cọc C. Cuối cùng ta chuyển n-1 đĩa từ cọc B sang cọc C (cọc A làm trung gian). Số lần chuyển n-1 đĩa đó lại là x_{n-1} .

Như vậy số lần chuyển toàn bộ n đĩa từ A sang C là:

$$x_{n-1} + 1 + x_{n-1} = 2x_{n-1} + 1.$$

Nghĩa là

$$\begin{cases} x_1 &= 1 \\ x_n &= 2x_{n-1} + 1 \quad \text{v\'oi } n > 1 \end{cases}$$

${\bf V}{\bf i}$ dụ. Một cầu thang có n bậc. Mỗi bước đi gồm 1 hoặc 2 bậc. Gọi x_n là số cách đi hết cầu thang. Tìm $x_n?$

Giải. Với n = 1, ta có $x_1 = 1$. Với n = 2, ta có $x_2 = 2$.

Với n>2, để khảo sát x_n ta chia thành hai trường hợp loại trừ lẫn nhau:

- Trường hợp 1. Bước đầu tiên gồm 1 bậc. Khi đó, cầu thang còn n-1 bậc nên số cách đi hết cầu thang là x_{n-1} .
- Trường hợp 2. Bước đầu tiên gồm 2 bậc. Khi đó, cầu thang còn n-2 bậc nên số cách đi hết cầu thang trong là x_{n-2} .

Theo nguyên lý cộng, số cách đi hết cầu thang là $x_{n-1}+x_{n-2}$. Do đó ta có:

$$x_n = x_{n-1} + x_{n-2}$$

Như vậy

$$\left\{ \begin{array}{l} x_1 = 1, x_2 = 2; \\ x_n = x_{n-1} + x_{n-2} \quad \text{v\'oi} \ n > 2. \end{array} \right.$$

4.2. Hệ thức đệ quy tuyến tính với hệ số hằng

Định nghĩa. Một $h\hat{e}$ thức $d\hat{e}$ quy tuyến tính cấp k với $h\hat{e}$ số hằng là một hệ thức có dạng:

$$a_0x_n + a_1x_{n-1} + \ldots + a_kx_{n-k} = f_n$$
 (1)

trong đó

- $a_0 \neq 0, a_1, \ldots, a_k$ là các hệ số thực;
- $\{f_n\}$ là một dãy số thực cho trước;
- $\{x_n\}$ là dãy ẩn nhận các giá trị thực.

Trường hợp dãy $f_n = 0$ với mọi n thì (1) trở thành

$$a_0x_n + a_1x_{n-1} + \ldots + a_kx_{n-k} = 0$$
 (2)

Ta nói (2) là một $h\hat{e}$ thức $d\hat{e}$ quy tuyến tính thuần nhất cấp k với $h\hat{e}$ số hằng.

Ví du.

- $2x_n 5x_{n-1} + 2x_{n-2} = -n^2 2n + 3 \longrightarrow \text{tuy\'en tính cấp } 2.$
- $x_n 3x_{n-1} + 2x_{n-3} = 20 + n2^{n-2} + 3^n \longrightarrow \text{tuy\'en tính cấp } 3.$
- $2x_{n+2} + 5x_{n+1} + 2x_n = (35n + 51)3^n \longrightarrow \text{tuy\'en tính cấp 2}.$
- $x_{n+2} 2x_{n+1} + x_n = 0 \longrightarrow \text{tuy\'en tính thuần nhất cấp } 2.$

Định nghĩa. Xét hệ thức đệ quy tuyến tính cấp k

$$a_0 x_n + a_1 x_{n-1} + \ldots + a_k x_{n-k} = f_n \tag{1}$$

Mỗi dãy $\{x_n\}$ thỏa (1) được gọi là một nghiệm của (1).

Nhận xét rằng mỗi nghiệm $\{x_n\}$ của (1) được hoàn toàn xác định bởi k giá trị ban đầu $x_0, x_1, \ldots, x_{k-1}$.

Họ dãy số $\{x_n = x_n(C_1, C_2, \dots, C_k)\}$ phụ thuộc vào k họ tham số C_1, C_2, \dots, C_k được gọi là **nghiệm tổng quát** của (1) nếu mọi dãy của họ này đều là nghiệm của (1).

Với k giá trị ban đầu $y_0, y_1, \ldots, y_{k-1}$, tồn tại duy nhất các giá trị của k tham số C_1, C_2, \ldots, C_k sao cho nghiệm $\{x_n\}$ tương ứng thỏa

$$x_0 = y_0, \ x_1 = y_1, \ \dots, x_{k-1} = y_{k-1}$$
 (*)

Khi đó, nghiệm $\{x_n\}$ tương ứng được gọi là $nghiệm\ riêng$ ứng với điều kiện ban đầu (*).

Giải một hệ thức đệ quy là đi **tìm nghiệm tổng quát** của nó; nhưng nếu hệ thức đệ quy có kèm theo điều kiện ban đầu, ta phải **tìm nghiệm** thỏa điều kiện ban đầu đó.

Ví du.

• $2x_n - 3x_{n-1} = 0$ có nghiệm tổng quát là $x_n = C\left(\frac{3}{2}\right)^n$.

$$\begin{cases} x_n - 5x_{n-1} + 6x_{n-2} = 0; \\ x_0 = 4; \\ x_1 = 9. \end{cases}$$
 có nghiệm là $x_n = 3 \cdot 2^n + 3^n$.

Lưu ý. Trong phạm vi của chương trình ta chỉ xét các hệ thức đệ quy tuyến tính (cấp 1 và 2) với hệ số hằng.

4.3. Nghiệm của HTĐQTT thuần nhất

Xét hệ thức đệ quy tuyến tính thuần nhất

$$a_0x_n + a_1x_{n-1} + \ldots + a_kx_{n-k} = 0$$
 (1)

Phương trình đặc trưng của (1) là phương trình bậc k định bởi

$$a_0 \lambda^k + a_1 \lambda^{k-1} + \ldots + a_k = 0 \tag{*}$$

 \triangleright Trường hợp k=1. Phương trình đặc trưng (*) trở thành

$$a_0\lambda + a_1 = 0$$

nên có nghiệm là

$$\lambda_0 = -\frac{a_1}{a_0}.$$

Khi đó, (1) có nghiệm tổng quát là: $x_n = C \cdot \lambda_0^n$.

ightharpoonup Trường hợp k=2. Phương trình đặc trưng (*) trở thành

$$a_0\lambda^2 + a_1\lambda + a_2 = 0 \tag{*}$$

Người ta chứng minh được kết quả sau:

• Nếu (*) có hai nghiệm thực phân biệt λ_1 và λ_2 thì (1) có nghiệm tổng quát là:

$$x_n = C_1 \cdot \lambda_1^n + C_2 \cdot \lambda_2^n$$

• Nếu (*) có nghiệm kép thực λ_0 thì (1) có nghiệm tổng quát là

$$x_n = (C_1 + nC_2) \cdot \lambda_0^n$$

• Nếu (*) có hai nghiệm phức liên hợp được viết dưới dạng

$$\lambda = r(\cos\varphi \pm i\,\sin\varphi)$$

thì (1) có nghiệm tổng quát là

$$x_n = r^n (A\cos n\varphi + B\sin n\varphi)$$

Ví dụ. Giải hệ thức đệ quy
$$\begin{cases} x_n - 2x_{n-1} = 0 \\ x_0 = 5. \end{cases}$$
 (1)

Giải. Phương trình đặc trưng là $\lambda - 2 = 0$ có nghiệm là $\lambda = 2$. Suy ra (1) có nghiệm tổng quát là $x_n = C \cdot 2^n$.

Từ điều kiện $x_0 = 5$ ta có C = 5. Suy ra nghiệm của (*) là $x_n = 5 \cdot 2^n$.

Ví dụ. Tìm nghiệm của
$$\begin{cases} x_n = 5x_{n-1} - 6x_{n-2}; \\ x_0 = 4; \\ x_1 = 9. \end{cases}$$

Giải.
$$x_n = 5x_{n-1} - 6x_{n-2}$$

 $\Leftrightarrow x_n - 5x_{n-1} + 6x_{n-2} = 0$

Phương trình đặc trung

$$\lambda^2 - 5\lambda + 6 = 0$$

có 2 nghiệm thực phân biệt $\lambda_1=2$ và $\lambda_2=3$. Suy ra (2) có nghiệm tổng quát là

$$x_n = C_1 \cdot 2^n + C_2 \cdot 3^n.$$

Vì $x_0 = 4$; $x_1 = 9$ nên $\begin{cases} C_1 + C_2 = 4; \\ 2C_1 + 3C_2 = 9. \end{cases}$ Suy ra $C_1 = 3, C_2 = 1$. Vậy nghiệm của hệ thức đệ quy là

$$x_n = 3 \cdot 2^n + 3^n.$$

Ví dụ. Tìm nghiệm của
$$\begin{cases} 4x_{n+1} - 12x_n + 9x_{n-1} = 0; \\ x_0 = 2; \\ x_1 = 9. \end{cases}$$
 (3)

Giải. Phương trình đặc trưng

$$4\lambda^2 - 12\lambda + 9 = 0$$

có 1 nghiệm thực kép là $\lambda_0 = 3/2$. Suy ra (3) có nghiệm tổng quát là

$$x_n = (C_1 + nC_2) \left(\frac{3}{2}\right)^n.$$

Vì $x_0 = 2$; $x_1 = 9$ nên $\begin{cases} C_1 = 2; \\ \frac{3}{2}(C_1 + C_2) = 9. \end{cases}$ Suy ra $C_1 = 2, C_2 = 4$. Vậy nghiêm của hệ thức đệ quy là

$$x_n = (2+4n)\left(\frac{3}{2}\right)^n.$$