Trabalho Prático 1

Introdução a Banco de Dados

Data de Entrega: 2 de junho de 2025

1 Introdução

Este trabalho tem por objetivo a sedimentação dos conhecimentos vistos em sala relativos a bancos de dados relacionais, especialmente álgebra relacional e a linguagem SQL, por meio de contato prático com SGBDs relacionais. Conforme detalhado adiante, o trabalho consiste na elaboração de consultas SQL a partir de expressões em álgebra relacional e linguagem natural das informações que se pretende recuperar. Este trabalho utilizará o módulo VPL (Virtual Programming Lab) do Moodle e o SGBD SQLite.

2 Esquema Relacional

O banco de dados a ser utilizado contempla dados históricos reais da Fórmula 1 entre 1950 e 2018, com um esquema elaborado especialmente para este trabalho, conforme exibido na Figura 1. Arquivos contendo o banco de dados (database.sql) e uma descrição detalhada das tabelas e campos (dicionario.pdf) podem ser baixados no Moodle.

3 Especificação das Consultas

Para submissão, deverão ser elaboradas 10 (dez) consultas na linguagem SQL, sendo 5 (cinco) selecionadas da Seção 3.1 e outras 5 (cinco) da Seção 3.2.

3.1 Especificações em Álgebra Relacional

Neste bloco, você deverá elaborar consultas SQL equivalentes a expressões em álgebra relacional. Selecione as 5 (cinco) consultas da lista a seguir correspondentes aos 5 <u>primeiros</u> dígitos de seu número de matrícula, prefixados com A. Caso haja algum dígito repetido dentre esses, considere a consulta posterior¹ mais próxima ainda não selecionada. Por exemplo, para o número de matrícula <u>20150</u>21992, as consultas seriam A2 (correspondente ao 1° dígito), A0 (2°), A1 (3°), A5 (4°) e A3 (5°, considerando que as consultas A0, A1, e A2 já teriam sido selecionadas).

- A0. $\pi_{\text{NOME_PAIS, NOME_CIRCUITO}}$ (PAIS \bowtie CIRCUITO \bowtie $\sigma_{\text{ANO_CORRIDA}=1987}$ (CORRIDA))
- A1. $\pi_{\text{NOME_CONSTRUTOR}}(\text{CONSTRUTOR} \bowtie \text{RESULTADO} \bowtie \sigma_{(\text{DESC_STATUS='Yelas'} \lor \text{DESC_STATUS='Turbo'})}(\text{STATUS}))$

¹Considere o número 0 como posterior ao 9.

Figura 1: Esquema do banco de dados.

- A2. $\pi_{\text{NOME_PILOTO}}$, NACIONALIDADE_PILOTO (PILOTO M $\sigma_{\text{(VALOR_POS_TERMINO=1 \land VALOR_POS_LARGADA=1 \land VALOR_POSICAO_VMR=1)}}$ (RESULTADO)
- A3. $\pi_{\text{NOME_PAIS, NOME_CIRCUITO}}$ (PAIS \bowtie CIRCUITO)
- A4. $\pi_{\text{NACIONALIDADE_PILOTO}}(\text{PILOTO}) \cap \pi_{\text{NACIONALIDADE_CONSTRUTOR}}(\text{CONSTRUTOR})$
- A5. $\pi_{\text{NOME_CIRCUITO}}$, ano_corrida, nome_piloto (CIRCUITO $\bowtie \sigma_{\text{VALOR_POS_TERMINO}=1}$ (RESULTADO) \bowtie

- $\sigma_{\text{NACIONALIDADE_PILOTO} = \text{'Brasileira'}}(\text{PILOTO}) \bowtie \\ \sigma_{\text{(ANO_CORRIDA} \ge 1971 \land \text{ANO_CORRIDA} \le 1980)}(\text{CORRIDA}))$
- A6. $\pi_{\text{NOME_PILOTO}}(\text{PILOTO} \bowtie \sigma_{\text{ANO_CORRIDA}=1991}(\text{CORRIDA}) \bowtie \sigma_{\text{QTE_VITORIAS}>4}(\text{CLASSIFICACAO_PILOTO}))$
- A7. $\pi_{\text{ID_CORRIDA, DURACAO_PITSOP}}(\sigma_{\text{DURACAO_PITSTOP}<14.0}(\text{PITSTOP}))$
- A8. $\pi_{\text{ANO_CORRIDA, NOME_PILOTO}}$ (PILOTO $\bowtie \sigma_{\text{VALOR_POS_TERMINO}=1}$ (RESULTADO) $\bowtie \sigma_{\text{ID_CIRCUITO}=5}$ (CORRIDA))
- A9. $\pi_{\text{ANO_CORRIDA, NOME_CONSTRUTOR, QTE_PONTOS}}$ (CONSTRUTOR $\bowtie \sigma_{\text{QTE_PONTOS}>10}$ (RESULTADO_CONSTRUTOR) $\bowtie \sigma_{\text{ID_CIRCUITO}=10 \land \text{ANO_CORRIDA} \geq 2016}$ (CORRIDA))

3.2 Especificações em Linguagem Natural

Neste bloco, você deverá elaborar consultas SQL equivalentes a expressões em linguagem natural. Selecione as 5 (cinco) consultas da lista a seguir correspondentes aos 5 <u>últimos</u> dígitos de seu número de matrícula, prefixados com B. Caso haja algum dígito repetido dentre esses, considere a consulta posterior² mais próxima ainda não selecionada. Por exemplo, para o número de matrícula 20150<u>21992</u>, as consultas seriam B2 (correspondente ao 6° dígito), B1 (7°), B9 (8°), B0 (9°, considerando que a consulta B9 já teria sido selecionada) e B3 (10°, considerando que a consulta B2 já teria sido selecionada).

- B0. Listar (1) o nome do circuito e (2) nome do piloto vencedor de cada corrida de 2017;
- B1. Pole position é quando o piloto larga da 1^{a} posição. Listar (1) nome, (2) nacionalidade e (3) número de pole positions do piloto que mais vezes largou em 1^{o} em 2015;
- B2. Liste (1) nome da equipe e (2) a duração do pit stop mais curto registrado na base;
- B3. Liste (1) o nome dos pilotos brasileiros que nunca pisaram no pódio, i.e. nunca terminaram uma corrida entre as 3 primeiras posições;
- B4. Liste (1) as nacionalidades e (2) o número de abandonos das equipes que já tiveram pelo menos 10 abandonos de prova por culpa da embreagem;
- B5. Liste (1) o nome dos países que já receberam mais de uma prova em uma mesma temporada;
- B6. Liste (1) o ano e (2) o nome do circuito de todas as corridas que já aconteceram em um mês de dezembro.
- B7. Liste (1) ano, (2) nome e (3) quantidade de pontos do piloto campeão de cada ano desde 2001.
- B8. Liste (1) os anos em que a última prova do ano foi disputada em um circuito do Brasil
- B9. Liste (1) os nomes dos circuitos nos quais o piloto Lewis Hamilton já venceu corridas e (2) quantas vitórias ele tem em cada um deles.

²Considere o número 0 como posterior ao 9.

4 Instruções para Submissão

Para submissão, as consultas elaboradas deverão ser incluídas em um único arquivo submission.sql, conforme template fornecido na tarefa criada para este trabalho prático no Moodle. A seguir, apresentamos um exemplo desse arquivo, considerando o número de matrícula 2015021992 utilizado nos exemplos da Seção 3.

```
-- 2015021992
-- A2
SELECT ...;
-- AO
SELECT ...;
-- A1
SELECT ...;
-- A5
SELECT ...;
-- A3
SELECT ...;
-- B2
SELECT ...;
-- B1
SELECT ...;
-- B9
SELECT ...;
-- B0
SELECT ...;
-- B3
SELECT ...;
```

Note que a primeira linha contém um comentário (denotado por -- no início da linha) incluindo o número de matrícula do aluno. Em seguida, são listadas as 10 consultas elaboradas conforme a Seção 3, cada uma precedida por seu código correspondente (A2, A0, etc.) e encerrada com ponto-e-vírgula (;). O arquivo submission.sql completo deverá ser submetido via Moodle VPL para avaliação automática.

IMPORTANTE: Antes de submeter as consultas para avaliação automática no VPL, é aconselhável que você as teste localmente. Para tanto, você deverá criar e popular localmente o banco de dados a partir do script database. sql fornecido. Como preparação para as próximas atividades da disciplina, em particular o TP2, recomendamos que utilize o Jupyter Notebook⁴ para desenvolvimento, conforme visto nas aulas.

5 Avaliação

Este trabalho utilizará um modelo de avaliação automática via Moodle VPL. O avaliador segue as seguintes premissas básicas:

³Isso é fundamental, pois o arquivo será executado como uma lista única de comandos SQL.

⁴https://jupyter.org/

- 1. Serão avaliadas somente as 10 consultas selecionadas para cada aluno conforme seu número de matrícula (vide Seção 3), devidamente identificadas conforme o formato de submissão descrito (vide Seção 4).
- 2. As consultas elaboradas deverão executar sem erro no SQLite (sqlite3).
- 3. Cada consulta deverá retornar exatamente as colunas definidas e na ordem definida na especificação, conforme determinadas pela operação de projeção na Seção 3.1 ou explicitamente listadas na Seção 3.2.

Respeitadas as premissas, cada consulta será avaliada automaticamente quanto à correspondência do conjunto de resultados retornados R em relação ao conjunto de resultados esperados G. Para medida de correspondência, o avaliador utiliza o índice de Jaccard:⁵

$$J(R,G) = \frac{|R \cap G|}{|R \cup G|}.$$
 (1)

Note que $J(R,G) \in [0,1]$, o que permite atribuir pontuação parcial a cada uma das 10 consultas submetidas. A nota final do trabalho prático será a soma das notas atribuídas às 10 consultas, totalizando o máximo de 5 pontos (0,5 ponto por consulta).

5.1 Solicitação de Avaliação

Não há limite quanto ao número de submissões permitidas ao longo da duração do trabalho. Entretanto, somente a versão mais recente do arquivo submission.sql será avaliada. Para solicitar uma avaliação, o aluno deverá clicar no botão de avaliar disponível no editor do VPL, conforme Figura 2, ou na tela de "Visualizar envios", conforme Figura 3.

Figura 2: Editor do VPL e botão avaliar.

Após a execução da avaliação, a nota atribuída, bem como as mensagens de erro/sucesso poderão ser conferidas no painel da direita, no caso do editor do VPL (Figura 4), ou diretamente na tela de "Visualizar envios" (Figura 5). Caso deseje, o aluno poderá utilizar o feedback provido por essa avaliação para melhorar seu trabalho, realizar nova submissão e nova avaliação. O aluno poderá solicitar até 5 (cinco) avaliações sem desconto na nota. A partir da 6ª avaliação será descontado 0,5 (meio) ponto da nota final a cada nova solicitação. A nota final será a nota da última avaliação realizada.

 $^{^5}$ https://en.wikipedia.org/wiki/Jaccard_index

Figura 3: Botão "Avaliar" da tela "Visualizar envios".

Figura 4: Resultado da avaliação na tela do editor VPL.

Figura 5: Resultado da avaliação na tela "Visualizar envios".

5.2 Exemplo de Avaliação

A título de exemplo somente, o trecho a seguir mostra a saída produzida pelo avaliador para um arquivo de teste em que somente 4 consultas foram submetidas. A saída foi

editada para omitir o texto das consultas, substituídas pelo texto "[OMITIDO]". As saídas produzidas são explicadas na sequência.

```
______
PREPARANDO AVALIACAO
_____
PROCESSANDO O ARQUIVO SUBMETIDO
_____
 ______
ATRIBUINDO NOTA AO TRABALHO
```

Matr. 2015021992 (consultas-alvo: A2, A0, A1, A5, A3, B2, B1, B9, B0, B3)

AO => [CONSULTA EXECUTADA COM SUCESSO: [OMITIDO]]

pontos: 0.00 / 0.50

A1 => [CONSULTA EXECUTADA COM SUCESSO: [OMITIDO]]

pontos: 0.50 / 0.50

A2 => [CONSULTA EXECUTADA COM SUCESSO: [OMITIDO]]

pontos: 0.50 / 0.50

A3 => [CONSULTA EXECUTADA COM SUCESSO: [OMITIDO]]

pontos: 0.40 / 0.50

A5 => [CONSULTA COM ERROS NA EXECUCAO: [OMITIDO]] pontos: 0.00 / 0.50 # Numero de colunas incorreto: 1

BO => [CONSULTA NAO ENCONTRADA]

pontos: 0.00 / 0.50

B1 => [CONSULTA NAO ENCONTRADA]

pontos: 0.00 / 0.50

B2 => [CONSULTA NAO ENCONTRADA]

pontos: 0.00 / 0.50

B3 => [CONSULTA NAO ENCONTRADA]

pontos: 0.00 / 0.50

B9 => [CONSULTA NAO ENCONTRADA]

pontos: 0.00 / 0.50

TOTAL (antes dos descontos): 1.40 / 5.00

A consulta "A0" não levantou erros de execução e tinha as colunas corretas, por isso o avaliador informa sua execução com sucesso. No entanto, como nenhuma linha produzida coincidiu com o esperado, a nota atribuída foi 0 (zero) de 0,5 ponto possível.

As consultas "A1" e "A2" não continham erros e retornaram o resultado esperado, por isso receberam nota total de 0,5 ponto.

A consulta "A3" não continha erros e especificava as colunas corretamente, no entanto o coeficiente de similaridade de Jaccard entre o conjunto das linhas retornadas e esperadas foi 0,4 e a nota atribuída foi proporcional.

A consulta "A5" especificava incorretamente a quantidade de colunas frente ao solicitado e por isso recebeu avaliação 0 (zero).

As consultas "B1", "B2", "B3" e "B9" não estavam presentes no arquivo.

A nota exibida na última linha é a soma das notas individuais, sem contar eventuais descontos por solicitações adicionais de avaliação. No exemplo, a submissão obteve a nota não descontada de 1,40 de um total de 5 pontos possíveis.