Sorting

2020 Spring: AP Computer Science A

February 5th, 2020

Today

- Sorting
- Selection sort
- Bubble sort
- Insertion sort
- Merge sort
- Quick sort
- Sorting Java objects

Sorting

We will try to sort an array of integers in increasing order

- Given an array of integers of size n, the returned array must satisfy
 - $arr[0] \leq arr[1] \leq \ldots \leq arr[n-1]$

Selection Sort

- 각 루프마다
 - 최대 원소를 찾는다
 - 최대 원소와 맨 오른쪽 원소를 교환한다
 - 맨 오른쪽 원소를 제외한다
- 하나의 원소만 남을 때까지 위의 루프를 반복

Finding the Recursive Structure

✓ 수행시간:
$$(n-1) + (n-2) + \dots + 2 + 1 = \Theta(n^2)$$
 Worst case Average case

✓ 수행시간:

- 1)의 for 루프는 n-1 번 반복
- ②에서 가장 큰 수를 찾기 위한 비교횟수: n-1, n-2, ..., 2, 1
- ③의 교환은 상수 시간 작업

$$\checkmark (n-1) + (n-2) + \dots + 2 + 1 = \Theta(n^2)$$

Bubble Sort

(a) Pass 1

Initial array:

(b) Pass 2

37	13	29	14	10
2-	4.5	20	1.1	4.0
37	13	29	14	10
37	13	29	14	10
37	(29)	13	14	10

✓ 수행시간:
$$(n-1) + (n-2) + \cdots + 2 + 1 = \Theta(n^2)$$
 ‡

Worst caseAverage case

```
for last ← n downto 2 ----- 1
      for i ← 1 to last-1 ----- ②
         if (A[i] > A[i+1])
          then A[i] ↔ A[i+1]; > 원소 교환 -- ③
✓ 수행시간:
  - (1)의 for 루프는 n-1 번 반복
  - ②의 for 루프는 각각 n-1, n-2, ..., 2, 1 번 반복
  一③은 상수 시간 작업
```

$$\checkmark (n-1) + (n-2) + \dots + 2 + 1 = \Theta(n^2)$$

정렬할 배열이 주어짐

3 31 48 73 8 11 20 29 65 15

왼쪽부터 시작해 이웃한 쌍들을 비교해간다

순서대로 되어 있지 않으면 자리 바꾼다

 3
 31
 48
 8
 11
 20
 29
 65
 15
 73

맨 오른쪽 수(73)를 대상에서 제외한다

3 31 48 8 11 20 29 65 15 73

Bubble Sort의 작동 예

앞의 작업을 반복하면서 계속 제외해 나간다

. . .

3	8	11	15	20	29	31	48	65	73
---	---	----	----	----	----	----	----	----	----

두개짜리 배열의 처리를 끝으로 정렬이 완료된다

	`								
3	8	11	15	20	29	31	48	65	73
									_
3	8	11	15	20	29	31	48	65	73

Insertion Sort

✓ 수행시간: $\Theta(n^2)$ Worst case: $1+2+\cdots+(n-2)+(n-1)$ Average case: ½ $(1+2+\cdots+(n-2)+(n-1))$

- ✓ 수행시간:
 - ①의 for 루프는 n-1 번 반복
 - -(2)의 삽입은 최악의 경우 i-1 회 비교

✓ Worst case: $1 + 2 + \cdots + (n - 2) + (n - 1) = \Theta(n^2)$ ✓ Average case: $\frac{1}{2}(1 + 2 + \cdots + (n - 2) + (n - 1)) = \Theta(n^2)$

Merge Sort

```
mergeSort(A[ ], p, r) ▷ A[p ... r]을 정렬한다
{
   if (p < r) then {
      q ← (p+q)/2; ----- ① ▷ p, q의 중간 지점 계산
      mergeSort(A, p, q); ----- ② ▷ 전반부 정렬
      mergeSort(A, q+1, r); ----- ③ ▷ 후반부 정렬
      merge(A, p, q, r); ----- ④ ▷ 병합
merge(A[ ], p, q, r) {
   정렬되어 있는 두 배열 A[p ... q]와 A[q+1 ... r]을 합하여
   정렬된 하나의 배열 A[p ... r]을 만든다.
```

Mergesort의 작동 예

정렬할 배열이 주어짐

31	3	65	73	8	11	20	29	48	15

배열을 반반으로 나눈다

31	3 65	73	8	11	20	29	48	15	
----	------	----	---	----	----	----	----	----	--

각각 독립적으로 정렬한다

	3	8	31	65	73	11	15	20	29	48	-2 3
--	---	---	----	----	----	----	----	----	----	----	------

병합한다 (정렬완료)

3	8	11	15	20	29	31	48	65	73	4
---	---	----	----	----	----	----	----	----	----	---

Merge의 작동 예

		31	65	73		15	20	29	48
		i			_	j			
3	8	11							
			t	Ţ					
		31	65	73			20	29	48
		i					→ j		
3	8	11	15						
				t					
		31	65	73				29	48
		i						j	
3	8	11	15	20					
					t				

		31	65	73					48			
		i							→ j			
3	8	11	15	20	29							
				1		t						
			65	73					48			
	→ i											
3	8	11	15	20	29	31						
				1			t					
			65	73								
			i						—			
3	8	11	15	20	29	31	48					
								t				

Animation (Mergesort)

1 2 3 4 6 7 8 9

✓ 수행시간: $\Theta(n \log n)$

Quicksort

```
quickSort(A[], p, r) ▷ A[p ... r]을 정렬한다
   if (p < r) then {
     quickSort(A, p, q-1); ▷ 왼쪽 부분배열 정렬
     quickSort(A, q+1, r); ▷ 오른쪽 부분배열 정렬
partition(A[], p, r) {
   배열 A[p ... r]의 원소들을
  A[p](또는 아무거나 하나)을 기준으로 양쪽으로 재배치하고
  A[p]가 자리한 위치를 return 한다;
```

```
partition(A[], p, r) {
     x \leftarrow A[p]; // pivot
      lastS_1 \leftarrow p; // sets S_1 \& S_2 are empty
     for i \leftarrow p+1 to r
            if (A[i] < x) {
                  lastS<sub>1</sub>++;
                 A[lastS_1] \leftrightarrow A[i];
            }
     A[lastS_1] \leftrightarrow A[p];
      return lastS<sub>1</sub>;
}
```


Animation (Quicksort)

12345689

- ✓ 평균 수행시간: $\Theta(n \log n)$
- ✓ 최악의 경우 수행시간: $\Theta(n^2)$

Quicksort의 작동 예

정렬할 배열이 주어짐. 첫번째 수를 기준으로 삼는다.

	15	8	48	73	11	3	20	29	65	31
L										

기준보다 작은 수는 기준의 왼쪽에 나머지는 기준의 오른쪽에 오도록 재배치한다

기준(31) 왼쪽과 오른쪽을 각각 독립적으로 정렬한다 (정렬완료)

3	8 11	15 20	29 31	48 65	73	— (b)
---	------	-------	-------	-------	----	-------

Partition의 예

p									ŀ
15	8	48	73	11	3	20	29	65	31
lastS ₁	i								
15	8	48	73	11	3	20	29	65	31
	lastS ₁	i							
15	8	48	73	11	3	20	29	65	31
	lastS ₁		i						_
15	8	48	73	11	3	20	29	65	31
	lastS ₁			i					
15	8	11	73	48	3	20	29	65	31
		lastS ₁			i				
15	8	11	3	48	73	20	29	65	31
			lastS ₁						

						i			
15	8	11	3	48	73	20	29	65	31
lastS ₁									
15	8	11	3	48	73	20	29	65	31
lastS ₁									
15	8	11	3	48	73	20	29	65	31
lastS ₁									i
15	8	11	3	48	73	20	29	65	31
lastS ₁									
3	8	11	15	48	73	20	29	65	31
			$lastS_1$						