Декодирование сигналов мозга и прогнозирование намерений

Теленков Дмитрий Сергеевич

Московский физико-технический институт Сколковский институт науки и технологий

Курс: Численные методы обучения по прецедентам (практика, В. В. Стрижов)/Группа 694, весна 2019

Цель исследования

Цель работы

Создать алгоритм выбора признаков, альтернативный PLS и учитывающий неортогональную структуру взаимозависимости признаков.

Проблема

Для понижения размерности признаков, полученных из кортикограммы используется PLS, который является недостаточно точным.

Метод решения

Использовать алгоритм иерархической смеси экспертов над моделью PLS

Постановка задачи

Дана выборка размера т:

$$D_n = \{x_i, y_i\}_{i=1}^m$$

где $x_i \in \mathbb{R}^n$ - вектор признаков, $y_i \in \mathbb{R}^5$. Будем также говорить, что у нас есть матрица параметров X и матрица ответов Y Выборка разбита на обучение и контроль:

$$D_{\tau} = \{x_i, y_i\}_{i \in \tau} \ D_{\theta} = \{x_i, y_i\}_{i \in \theta} \ \tau \sqcup \theta = [1, 2, \dots, m]$$

Требуется научиться предсказывать значения y_i по x_i на обучении и проверить точность на контроле

Базовый алгоритм. PLS

Понижение размерности

Векторы признаков x_i имеют высокую размерность. Для ее понижения применяется метод partial least squares

PLS

Находит переход из пространства параметров \mathbb{R}^n в пространство более низкой размерности - \mathbb{R}^k , k < n, основываясь на корреляции между параметрами и ответами. Таким образом у нас появляется матрица перехода - $W_{n \times k}$

Новая задача

Задача линейной регрессии переходит в нахождении $Q \in \mathbb{R}^k$, что:

$$Y = TQ + E = XWQ + E$$

Е - шум.

Базовый алгоритм. NIPALS

Для решения задачи PLS используем алгоритм NIPALS:

$$A_1 = X^T Y, M_1 = X^T X, C_1 = I.$$

На *i*-й итерации алгоритма происходит:

- lacktriangle вычислим q_i , доминантный собственный вектор $A_i^T A_i$
- ② $w_i = C_i A_i q_i, \ w_i = \frac{w_i}{||w_i||}$. Положим w_i в W, как i-ю колону
- **3** $p_i = M_i w_i, \ c_i = w_i^T M_i w_i, \ p_i = \frac{p_i}{c_i}$
- $q_i = rac{A_i^I \ w_i}{c_i}$. Положим q_i в Q, как i-ю колону
- **6** $C_{i+1} = C_i w_i p_i^T$

Чтобы перейти к размерности k необходимо сделать k итераций.

Вычислительный эксперимент. Данные

Получение

Датасет взят из схожей работы [1]. В нем показаниям с 64 каналов кортикограммы сопоставлялись натяжения во всех пяти пальцах руки испытуемой. Частота сэмплирования - 1к Γ ц, полоса пропускания каналов - 0.15-200 Γ ц.

Датасет

Датасет состоит из элементов:

$$D_n = \{x_i, y_i\}_{i=1}^{4 \cdot 10^6},$$

где $x_i \in \mathbb{R}^{64}$ - вектор признаков, $y_i \in \mathbb{R}^5$.

Вычислительный эксперимент. Базовый алгоритм

Вычислительный эксперимент. Базовый алгоритм

Список литературы

- [1] Schalk, G., Kubanek, J., Miller, K.J., Anderson, N.R., Leuthardt, E.C., Ojemann, J.G., Limbrick, D., Moran, D.W., Gerhardt, L.A., and Wolpaw, J.R. Decoding TwoDimensional Movement Trajectories Using Electrocorticographic Signals in Humans, J Neural Eng, 4: 264-275, 2007.
- [2] Decoding Ipsilateral Finger Movements from ECoG Signals in Humans
- [3] J. Wolpaw, N. Birbaumer, D. McFarland, G. Pfurtscheller, and T. Vaughan. Brain-computer interfaces for communication and control. Clinical neurophysiology, 113(6):767–791, 2002.
- [4] G. Pfurtscheller, C. Guger, G. Muller, G. Krausz, and C. Neuper. Brain oscillations control hand orthosis in a tetraplegic. Neuroscience letters, 292(3):211–214, 2000.
- [5] J. Wolpaw and D. McFarland. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proceedings of the National Academy of Sciences of the United States of America, 101(51):17849, 2004.

Заключение