Inference and Comparison of Mean Vectors

Confidence Intervals/Region

Mean Vector

Hotelling's I-Square

Multivariate Analysis o

Multivariate Analysis o Variance

Lecture 4

Inference and Comparison of Mean Vectors

Readings: Johnson & Wichern 2007, Chapter 5.1-5.4; 6.1-6.4; 6.8

DSA 8070 Multivariate Analysis

Whitney Huang Clemson University

Agenda

- Confidence Intervals/Region for Population Means
- 2 Hypothesis Testing for Mean Vector
- Multivariate Paired Hotelling's T-Square
- Comparisons of Two Mean Vectors
- Multivariate Analysis of Variance

Inference and Comparison of Mean Vectors

Intervals/Region for Population Means

lultivariate Paired

Comparisons of Two

Multivariate Analysis of Variance

Inference on Mean Vectors

This Week's Topics:

- Single Mean Vector: inference on μ (multivariate one-sample t-test)
- Paired Mean Vectors: differences between paired observations ⇒ reduce to one-sample Hotelling's T² on differences
- Two Independent Mean Vectors: Hotelling's T^2 two-sample test
- Several Mean Vectors: MANOVA (multivariate extension of ANOVA)

Analogy with Univariate Methods:

- One-sample t-test \rightarrow single μ
- Paired t-test → paired mean vectors
- Two-sample t-test → two mean vectors
- ANOVA → MANOVA

Intervals/Region for Population Means

Multivariate Paired

Comparisons of Two Mean Vectors

Multivariate Analysis of Variance

Suppose X_1, X_2, \dots, X_n is a random sample from a univariate population distibution with mean $\mathbb{E}(X) = \mu$ and variance $Var(X) = \sigma^2$. The sample mean \bar{X}_n is a function of random sample and therefore has a distribution

- $\bar{X}_n \sim N(\mu, \frac{\sigma^2}{n})$ when the sample size n is "sufficiently" large ⇒ This is the central limit theorem (CLT)
- The result above is exact if the population follows a normal distribution, i.e., $X \sim N(\mu, \sigma^2)$
- The standard error $\sqrt{\operatorname{Var}(\bar{X}_n)} = \frac{\sigma}{\sqrt{n}}$ provides a measure estimation precision. In practice, we use $\frac{s}{\sqrt{n}}$ instead where s is the sample standard deviation

Sampling Distribution of Multivariate Sample Mean Vector $ar{m{X}}_n$

Inference and Comparison of Mean Vectors

Suppose X_1, X_2, \dots, X_n is a random sample from a multivariate population distibution with mean vector $\mathbb{E}(X) = \mu$ and covariance matrix = Σ .

- $\bar{X}_n \stackrel{.}{\sim} \mathrm{N}(\mu, \frac{1}{n}\Sigma)$ when the sample size n is "sufficiently" large \Rightarrow This is the multivariate version of CLT
- The result above is exact if the population follows a normal distribution, i.e., $X \sim N(\mu, \Sigma)$
- ullet Again, the estimation precision improves with a larger sample size. Like the univariate case we would need to replace Σ by its estimate S, the sample covariaone matrix

Intervals/Region for Population Means

Multivariate Paired

Comparisons of Two Mean Vectors

Multivariate Analysis of Variance

Comparisons of Two

ultivariate Analysis o ariance

The general format of a confidence interval (CI) estimate of a population mean is

Sample mean \pm multiplier \times standard error of mean.

For variable X, a CI estimate of its population mean μ is

$$\bar{X}_n \pm t_{n-1,\frac{\alpha}{2}} \frac{s}{\sqrt{n}},$$

Here the multiplier value is a function of the confidence level, $\alpha,$ the sample size n

Constructing Confidence Intervals for Mean Vector

We will still use the general recipe

Sample mean \pm multiplier \times standard error of mean.

The multiplier value also depends the strategy used for dealing with the multiple inference issue

• One at a Time CIs: a CI for μ_j is computed as

$$\bar{x}_j \pm t_{n-1,\frac{\alpha}{2}} \frac{s_j}{\sqrt{n}}, \quad j = 1, \dots, p$$

• Bonferroni Method: a CI for μ_j is computed as

$$\bar{x}_j \pm t_{n-1,\frac{\alpha}{2p}} \frac{s_j}{\sqrt{n}}, \quad j = 1, \dots, p$$

• Simultaneous CIs: a CI for μ_j is computed as

$$\bar{x}_j \pm \sqrt{\frac{(n-1)p}{n-p}} F_{p,n-p,\alpha} \frac{s_j}{\sqrt{n}}, \quad j = 1, \dots, p$$

Inference and Comparison of Mean

Confidence Intervals/Region for Population Means

Multivariate Paired

Comparisons of Two

fultivariate Analysis of ariance

Example: Mineral Content Measurements [source: Penn Stat Univ. STAT 505]

Vectors

CLEMS IN Y

UNIVERSITY

Comparison of Mean

Confidence Intervals/Region for Population Means

Mean Vector

Comparisons of Two

Multivariate Analysis o

This example uses a dataset that includes mineral content measurements at two different arm bone locations for n=64 women. We will determine confidence intervals for the two population means. The sample means and standard deviations for the two variables are:

Variable	Sample size	Mean	Std Dev
domradius (X_1)	n = 64	$\bar{x}_1 = 0.8438$	$s_1 = 0.1140$
domhumerus (X_2)	n = 64	$\bar{x}_2 = 1.7927$	$s_2 = 0.2835$

Let's apply the three methods we learned to construct 95% CIs

CLEMS N UNIVERSITY

Comparisons of Two

Multivariate Analysis o

• One at a Time CIs: $\bar{x}_j \pm t_{n-1,\alpha/2} \frac{s_j}{\sqrt{n}}, \quad j=1,\cdots,p.$ Therefore 95% CIs for μ_1 and μ_2 are:

$$\mu_1: 0.8438 \pm \underbrace{1.998}_{t_{63,0.025}} \times \frac{0.1140}{\sqrt{64}} = [0.815, 0.872]$$
 $\mu_2: 1.7927 \pm 1.998 \times \frac{0.2835}{\sqrt{64}} = [1.722, 1.864]$

• Bonferroni Method: $\bar{x}_j \pm t_{n-1,\alpha/2p} \frac{s_j}{\sqrt{n}}, \quad j=1,\cdots,p.$

$$\mu_1: 0.8438 \pm \underbrace{2.296}_{t_{63.0.0125}} \times \frac{0.1140}{\sqrt{64}} = [0.811, 0.877]$$

$$\mu_2: \quad 1.7927 \pm 2.296 \times \frac{0.2835}{\sqrt{64}} = \quad \left[1.711, 1.874\right]$$

• Simultaneous CIs: $\bar{x}_j \pm \sqrt{\frac{(n-1)p}{n-p}} F_{p,n-p,\alpha} \frac{s_j}{\sqrt{n}}, \quad j=1,\cdots,p$

$$\begin{array}{lll} \mu_1: & 0.8438 \pm 2.528 \times \frac{0.1140}{\sqrt{64}} = & \left[0.808, 0.880\right] \\ \mu_2: & 1.7927 \pm 2.528 \times \frac{0.2835}{\sqrt{64}} = & \left[1.703, 1.882\right] \end{array}$$

95 % Cls Based on Three Methods

Inference and Comparison of Mean Vectors

Confidence Intervals/Region for

Mean Vector

Comparisons of Two

Multivariate Analysis o Variance

Confidence Ellipsoid

A confidence ellipsoid for μ is the set of μ satisfying

$$n(\bar{\boldsymbol{X}}_n - \boldsymbol{\mu})^T \boldsymbol{S}^{-1}(\bar{\boldsymbol{X}} - \boldsymbol{\mu}) \leq \frac{(n-1)p}{n-p} F_{p,n-p,\alpha}$$

Inference and Comparison of Mean Vectors

Intervals/Region for Population Means

Multivariate Paired

Comparisons of Two Mean Vectors

Multivariate Analysis of Variance

Hypothesis Testing for Mean

Recall: for univariate data, t statistic

$$t = \frac{\bar{X}_n - \mu_0}{s/\sqrt{n}} \Rightarrow t^2 = \frac{\left(\bar{X}_n - \mu_0\right)^2}{s^2/n} = n\left(\bar{X}_n - \mu_0\right)\left(s^2\right)^{-1}\left(\bar{X}_n - \mu_0\right)$$

Under H_0 : μ = μ_0

$$t \sim t_{n-1}, \quad t^2 \sim F_{1,n-1}$$

• Extending to multivariate by analogy:

$$T^2 = n \left(\bar{\boldsymbol{X}}_n - \boldsymbol{\mu}_0 \right)^T \boldsymbol{S}^{-1} \left(\bar{\boldsymbol{X}}_n - \boldsymbol{\mu}_0 \right)$$

Under $H_0: \boldsymbol{\mu} = \boldsymbol{\mu}_0$

$$\frac{(n-p)}{(n-1)p}T^2 \sim F_{p,n-p}$$

Note: T^2 here is the so-called Hotelling's T-Square

CLEMS N UNIVERSITY

Intervals/Region for Population Means

Mean Vector

lotelling's T-Square

Multivariate Analysis o

State the null

- $H_0: \boldsymbol{\mu} = \boldsymbol{\mu}_0$
- and the alternative
- $H_a: \boldsymbol{\mu} \neq \boldsymbol{\mu}_0$
- Compute the test statistic

$$F = \frac{n-p}{(n-1)p} n \left(\bar{\boldsymbol{X}}_n - \boldsymbol{\mu}_0 \right)^T \boldsymbol{S}^{-1} \left(\bar{\boldsymbol{X}}_n - \boldsymbol{\mu}_0 \right)$$

- **Outpute Outpute Outp**
- **Draw a conclusion**: We do (or do not) have enough statistical evidence to conclude $\mu \neq \mu_0$ at α significant level

The recommended intake and a sample mean for all women between 25 and 50 years old are given below:

Variable	Recommended Intake (μ_0)	Sample Mean $(ar{m{x}}_n)$
Calcium	1000 mg	624.0 mg
Iron	15 mg	11.1 mg
Protein	60 <i>g</i>	65.8 <i>g</i>
Vitamin A	800 μg	839.6 μg
Vitamin C	75 <i>mg</i>	78.9 mg

Here we would like to test, at α = 0.01 level, if the μ = μ_0

Intervals/Region for Population Means

weari vector

otelling's T-Square

Comparisons of Two Mean Vectors

Multivariate Analysis of /ariance State the null

$$H_0: \boldsymbol{\mu} = \boldsymbol{\mu}_0$$

and the alternative

$$H_a: \boldsymbol{\mu} \neq \boldsymbol{\mu}_0$$

Compute the test statistic

$$F = \frac{n-p}{(n-1)p} n (\bar{x}_n - \mu_0)^T S^{-1} (\bar{x}_n - \mu_0) = 349.80$$

- Ocompute the P-value. Under $H_0: F \sim F_{p,n-p} \Rightarrow$ p-value = $\mathbb{Pr}(F_{p,n-p} > 349.80) = 3 \times 10^{-191} < \alpha = 0.01$
- **Oraw a conclusion**: We do have enough statistical evidence to conclude $\mu \neq \mu_0$ at $\alpha = 0.01$ significant level

Profile Plots

- Standardize each of the observations by dividing their hypothesized means
- Plot either simultaneous or Bonferroni CIs for the population mean of these standardized variables

Inference and Comparison of Mean Vectors

Intervals/Region for Population Means

lultivariate Paired

omparisons of Two

lultivariate Analysis of ariance

- A sample (n = 30) of husband and wife pairs are asked to respond to each of the following questions:
 - What is the level of passionate love you feel for your partner?
 - What is the level of passionate love your partner feels for you?
 - What is the level of companionate love you feel for your partner?
- What is the level of companionate love your partner feels for you?

Responses were recorded on a typical five-point scale: 1) None at all 2) Very little 3) Some 4) A great deal 5) Tremendous amount.

We will try to address the following question: Do the husbands respond to the questions in the same way as their wives?

CLEMS N

Confidence Intervals/Region for Population Means

Multivariate Paired

Comparisons of Two Mean Vectors

lultivariate Analysis of ariance

Let X_F and X_M be the responses to these 4 questions for females and males, respectively. Here the quantities of interest are $\mathbb{E}(D) = \mu_D$, the average differences across all husband and wife pairs.

- State the null $H_0: \mu_D = 0$ and the alternative hypotheses $H_a: \mu_D \neq \mathbf{0}$
- Compute the test statistic

$$F = \frac{n-p}{(n-1)p} n \bar{\boldsymbol{D}}_n^T \boldsymbol{S}_{\boldsymbol{D}}^{-1} \bar{\boldsymbol{D}}_n$$

- **Outpute P-value**. Under $H_0: F \sim F_{p,n-p}$
- **Oraw a conclusion**: We do (or do not) have enough statistical evidence to conclude $\mu_D \neq 0$ at α significant level

State the null

- $H_0: \boldsymbol{\mu}_D = \mathbf{0}$
- and the alternative
- $H_a: \boldsymbol{\mu}_D \neq \mathbf{0}$
- Compute the test statistic

$$F = \frac{n-p}{(n-1)p} n \bar{\boldsymbol{D}}_n^T \boldsymbol{S}_{\boldsymbol{D}}^{-1} \bar{\boldsymbol{D}}_n = 2.942$$

- Ompute the P-value. Under $H_0: F \sim F_{p,n-p} \Rightarrow$ p-value = $\mathbb{Pr}(F_{p,n-p} >) = 0.0394 < \alpha = 0.05$
- **Oraw a conclusion**: We do have enough statistical evidence to conclude $\mu_D \neq 0$ at 0.05 significant level

Suppose there are two distinct populations for 1000 franc Swiss Bank Notes:

- The first population is the population of Genuine Bank Notes
- The second population is the population of Counterfeit Bank Notes

For both populations the following measurements were taken:

- Length of the note
- Width of the Left-Hand side of the note
- Width of the Right-Hand side of the note
- Width of the Bottom Margin
- Width of the Top Margin
- O Diagonal Length of Printed Area

We want to determine if counterfeit notes can be distinguished from the genuine Swiss bank notes

Inference and Comparison of Mean Vectors

Intervals/Region for Population Means

Multivariate Paired

Comparisons of Two Mean Vectors

Multivariate Analysis of ariance

CLEMS NO TO THE REST TO THE RE

Confidence Intervals/Region for Population Means

Multivariate Paired

Comparisons of Two Mean Vectors

Multivariate Analysis o Variance

Suppose we have data from a single variable from population 1: $X_{11}, X_{12}, \cdots, X_{1n_1}$ and population 2: $X_{21}, X_{22}, \cdots, X_{2n_2}$. Here we would like to draw inference about their population means μ_1 and μ_2 .

Assumptions:

- Homoscedasticity: The data from both populations have common variance σ^2
- Independence: The subjects from both populations are independently sampled $\Rightarrow \{X_{1i}\}_{i=1}^{n_1}$ and $\{X_{2j}\}_{j=1}^{n_2}$ are independent to each other
- Normality: The data from both populations are normally distributed (not that crucial for "large" sample)

Here we are going to consider testing $H_0: \mu_1 = \mu_2$ against $H_a: \mu_1 \neq \mu_2$

Comparisons of Two

We define the sample means for each population using the following expression:

$$\bar{x}_1 = \frac{\sum_{j=1}^{n_1} x_{1j}}{n_1}, \quad \bar{x}_2 = \frac{\sum_{j=1}^{n_2} x_{2j}}{n_2}.$$

We denote the sample variance

$$s_1^2 = \frac{\sum_{j=1}^{n_1} (x_{1j} - \bar{x}_1)^2}{n_1 - 1}, \quad s_2^2 = \frac{\sum_{j=1}^{n_2} (x_{2j} - \bar{x}_2)^2}{n_2 - 1}.$$

Under the homoscedasticity assumption, we can "pool" two samples to get the pooled sample variance

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

Test statistic

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \stackrel{H_0}{\sim} t_{n_1 + n_2 - 2}$$

We can use this result to construct confidence intervals and to perform hypothesis tests

$$\boldsymbol{X}_{ij} = \begin{bmatrix} X_{ij1} \\ X_{ij2} \\ \vdots \\ X_{ijp} \end{bmatrix}$$

to infer the relationship between μ_1 and μ_2 , where

$$\boldsymbol{\mu}_i = \begin{bmatrix} \mu_{i1} \\ \mu_{i2} \\ \vdots \\ \mu_{ip} \end{bmatrix}$$

Assumptions

- Both populations have common covariance matrix, i.e., $\Sigma_1 = \Sigma_2$
- Independence: The subjects from both populations are independently sampled
- Normality: Both populations are normally distributed

Inference and Comparison of Mean Vectors

ntervals/Region for Population Means

Multivariate Paired

Comparisons of Two Mean Vectors

Multivariate Analysis o Variance

Comparisons of Two

Here we are testing

$$H_0: \begin{bmatrix} \mu_{11} \\ \mu_{12} \\ \vdots \\ \mu_{1p} \end{bmatrix} = \begin{bmatrix} \mu_{21} \\ \mu_{22} \\ \vdots \\ \mu_{2p} \end{bmatrix}, \quad H_a: \mu_{1k} \neq \mu_{2k} \text{ for at least one } k \in \{1,2,\cdots,p\}$$

Under the common covariance assumption we have

$$S_p = \frac{(n_1 - 1)S_1 + (n_2 - 1)S_2}{n_1 + n_2 - 2},$$

where

$$S_i = \frac{1}{n_i - 1} \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)(x_{ij} - \bar{x}_i)^T, \quad i = 1, 2$$

$$t^{2} = (\bar{x}_{1} - \bar{x}_{2})^{T} \left[s_{p}^{2} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}} \right) \right]^{-1} (\bar{x}_{1} - \bar{x}_{2}).$$

Under H_0 , $t^2 \sim F_{1,n_1+n_2-2}$. We can use this result to perform a hypothesis test

We can extend this to the multivariate situation:

$$T^2 = (\bar{x}_1 - \bar{x}_2)^T \left[S_p \left(\frac{1}{n_1} + \frac{1}{n_2} \right) \right]^{-1} (\bar{x}_1 - \bar{x}_2)$$

Under H_0 , we have

$$F = \frac{n_1 + n_2 - p - 1}{p(n_1 + n_2 - 2)} T^2 \sim F_{p, n_1 + n_2 - p - 1}$$

We can use this result to perform inferences for multivariate cases

Inference and Comparison of Mean Vectors

Intervals/Region for Population Means

fultivariate Paired

Comparisons of Two Mean Vectors

Multivariate Analysis of Variance

```
Inference and
Comparison of Mean
Vectors
```

```
CLEMS#N
```

```
Confidence
Intervals/Region for
Population Means
```

Multivariate Paired

Comparisons of Two Mean Vectors

Multivariate Analysis o Variance

```
> (xbar1 <- colMeans(dat[real, -1]))</pre>
                                      ۷6
     V2
                     ٧4
                             V5
                                              ٧7
214.969 129.943 129.720 8.305 10.168 141.517
> (xbar2 <- colMeans(dat[fake, -1]))</pre>
     V2
        V3 V4 V5
                                      ۷6
                                              V7
214.823 130.300 130.193 10.530 11.133 139.450
> Sigma1 <- cov(dat[real, -1])</pre>
> Sigma2 <- cov(dat[fake, -1])</pre>
> n1 <- length(real); n2 <- length(fake); p <- dim(dat[, -1])[2]</pre>
> Sp <- ((n1 - 1) * Sigma1 + (n2 - 1) * Sigma2) / (n1 + n2 - 2)
> # Test statistic
> T.squared <- as.numeric(t(xbar1 - xbar2) %*% solve(Sp * (1 / n1 + 1
/ n2)) %*% (xbar1 - xbar2))
> Fobs <- T.squared * ((n1 + n2 - p - 1) / ((n1 + n2 - 2) * p))
> # p-value
> pf(Fobs, p, n1 + n2 - p - 1, lower.tail = F)
Γ17 3.378887e-105
```

Conclusion

The counterfeit notes can be distinguished from the genuine notes on at least one of the measurements ⇒ which ones?

Simultaneous Confidence Intervals

$$\bar{x}_{1k} - \bar{x}_{2k} \pm \sqrt{\frac{p(n_1 + n_2 - 2)}{n_1 + n_2 - p - 1}} F_{p,n_1 + n_2 - p - 1,\alpha} \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) s_{k,p}^2},$$

where $s_{k,p}^2$ is the pooled variance for the variable k

Variable	95% CI
Length of the note	(-0.04, 0.34)
Width of the Left-Hand note	(-0.52, -0.20)
Width of the Right-Hand note	(-0.64, -0.30)
Width of the Bottom Margin	(-2.70, -1.75)
Width of the Top Margin	(-1.30, -0.63)
Diagonal Length of Printed Area	(1.81, 2.33)

Inference and Comparison of Mean Vectors

Dontidence Intervals/Region for Population Means

Iultivariate Paired

Comparisons of Two

Multivariate Analysis of Ariance

Checking Model Assumptions

Assumptions:

ullet Homoscedasticity: The data from both populations have common covariance matrix Σ

Will return to this in next slide

• Independence:

This assumption may be violated if we have clustered, time-series, or spatial data

Normality:

Multivariate QQplot, univariate histograms, bivariate scatter plots

Intervals/Region for Population Means

fultivariate Paired

Comparisons of Two Mean Vectors

Multivariate Analysis of Ariance

- Bartlett's test can be used to test if $\Sigma_1 = \Sigma_2$ but this test is sensitive to departures from normality
- As as crude rule of thumb: if $s_{1,k}^2 > 4s_{2,k}^2$ or $s_{2,k}^2 > 4s_{1,k}^2$ for some $k \in \{1,2,\cdots,p\}$, then it is likely that $\Sigma_1 \neq \Sigma_2$
- Life gets difficult if we cannot assume that $\Sigma_1 = \Sigma_2$ However, if both n_1 and n_2 are "large", we can use the following approximation to conduct inferences:

$$T^{2} = (\bar{X}_{1} - \bar{X}_{2})^{T} \left[\frac{1}{n_{1}} S_{1} + \frac{1}{n_{2}} S_{2} \right]^{-1} (\bar{X}_{1} - \bar{X}_{2}) \stackrel{H_{0}}{\sim} \chi_{p}^{2}$$

Comparing More Than Two Populations: Romano-British Pottery Example (source: PSU stat 505)

- Pottery shards are collected from four sites in the British Isles:
 - Llanedyrn (L)
 - Caldicot (C)
 - Isle Thorns (I)
 - Ashley Rails (A)
- The concentrations of five different chemicals were be used
 - Aluminum (Al)
 - Iron (Fe)
 - Magnesium (Mg)
 - Calcium (Ca)
 - Sodium (Na)
- Objective: to determine whether the chemical content of the pottery depends on the site where the pottery was obtained

Inference and Comparison of Mean Vectors

Intervals/Region for Population Means

lultivariate Paired

Comparisons of Two Mean Vectors

Iultivariate Analysis of ariance

Review: (Univariate) Analysis of Variance (ANOVA)

• $H_0: \mu_1 = \mu_2 = \cdots = \mu_g$ $H_a:$ At least one mean is different

Source	df	SS	MS	F statistic
Treatment	g-1	SSTr	$MSTr = \frac{SSTr}{g-1}$	$F = \frac{\text{MSTr}}{\text{MSE}}$
Error	N-g	SSE	$MSE = \frac{SSE}{N-g}$	
Total	N-1	SSTo		

• Test Statistic: $F^* = \frac{\text{MSTr}}{\text{MSE}}$. Under H_0 , $F^* \sim F_{df_1 = g-1, df_2 = N-g}$

Assumptions:

- The distribution of each group is normal with equal variance (i.e. $\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_g^2$)
- Responses for a given group are independent to each other

Inference and Comparison of Mean Vectors

Intervals/Region for Population Means

ultivariate Paired

Comparisons of Two Mean Vectors

Iultivariate Analysis of ariance

Multivariate Paired

Comparisons of Two

Multivariate Analysis of Variance

Group	1	2	 g
1	$Y_{11} = \begin{bmatrix} Y_{111} \\ Y_{112} \\ \vdots \\ Y_{11p} \end{bmatrix}$	$\boldsymbol{Y}_{21} = \begin{bmatrix} Y_{211} \\ Y_{212} \\ \vdots \\ Y_{21p} \end{bmatrix}$	 $\boldsymbol{Y}_{g1} = \begin{bmatrix} Y_{g11} \\ Y_{g12} \\ \vdots \\ Y_{g1p} \end{bmatrix}$
2	$\mathbf{Y}_{21} = \begin{bmatrix} Y_{121} \\ Y_{122} \\ \vdots \\ Y_{12p} \end{bmatrix}$	$m{Y}_{22} = egin{bmatrix} Y_{221} \\ Y_{222} \\ \vdots \\ Y_{22p} \end{bmatrix}$	 $\boldsymbol{Y}_{g2} = \begin{bmatrix} Y_{g21} \\ Y_{g22} \\ \vdots \\ Y_{g2p} \end{bmatrix}$
- :	:		 :
n_i	$\boldsymbol{Y}_{1n_i} = \begin{bmatrix} Y_{1n_i1} \\ Y_{1n_i2} \\ \vdots \\ Y_{1n_ip} \end{bmatrix}$	$\boldsymbol{Y}_{2n_i} = \begin{bmatrix} Y_{2n_i1} \\ Y_{2n_i2} \\ \vdots \\ Y_{2n_ip} \end{bmatrix}$	 $\boldsymbol{Y_{gn_i}} = \begin{bmatrix} Y_{gn_i1} \\ Y_{gn_i2} \\ \vdots \\ Y_{gn_ip} \end{bmatrix}$

• **Notation**: Y_{ij} is the vector of variables for subject j in group i; n_i is the sample size in group i; $N = n_1 + n_2 + \cdots + n_g$ the total sample size

• Assumptions: 1) common covariance matrix Σ ; 2) Independence; 3) Normality

 We are interested in testing the null hypothesis that the group mean vectors are all equal

$$H_0: \boldsymbol{\mu}_1 = \boldsymbol{\mu}_2 = \cdots = \boldsymbol{\mu}_g.$$

The alternative hypothesis:

 $H_a: \mu_{ik} \neq \mu_{jk}$ for at least one $i \neq j$ and at least one variable k

Mean vectors:

- Sample Mean Vector: $\bar{\boldsymbol{y}}_{i.} = \frac{1}{n_i} \boldsymbol{Y}_{ij}, \quad i = 1, \cdots, g$
- Grand Mean Vector: $\bar{\boldsymbol{y}}_{\cdot \cdot} = \frac{1}{N} \sum_{i=1}^{g} \sum_{j=1}^{n_i} \boldsymbol{Y}_{ij}$

Total Sum of Squares:

$$T = \sum_{i=1}^{g} \sum_{j=1}^{n_i} (Y_{ij} - \bar{y}_{..})(Y_{ij} - \bar{y}_{..})^T$$

Confidence Intervals/Region for Population Means

Multivariate Paired

Comparisons of Two Mean Vectors

Vectors

 $T = \sum_{i=1}^{g} \sum_{j=1}^{n_i} (Y_{ij} - y_{..}) (Y_{ij} - \bar{y})^T$ $= \sum_{i=1}^{g} \sum_{j=1}^{n_i} [(Y_{ij} - \bar{y}_{i.}) + (\bar{y}_{i.} - \bar{y}_{..})] [(Y_{ij} - \bar{y}_{i.}) + (\bar{y}_{i.} - \bar{y}_{..})]^T$ $= \sum_{i=1}^{g} \sum_{j=1}^{n_i} (Y_{ij} - \bar{y}_{i.}) (Y_{ij} - \bar{y}_{i.})^T + \sum_{i=1}^{g} n_i (\bar{y}_{i.} - \bar{y}_{..}) (\bar{y}_{i.} - \bar{y}_{..})^T$ E

MANOVA Table

Source	df	SS
Treatment	g - 1	H
Error	N-g	$oldsymbol{E}$
Total	N-1	\overline{T}

Reject $H_0: \mu_1 = \mu_2 = \dots = \mu_g$ if the matrix ${\pmb H}$ is "large" relative to the matrix ${\pmb E}$

There are several different test statistics for conducting the hypothesis test:

Wilks Lambda

$$\Lambda^* = \frac{|\boldsymbol{E}|}{|\boldsymbol{H} + \boldsymbol{E}|}$$

Reject H_0 if Λ^* is "small"

Hotelling-Lawley Trace

$$T_0^2 = \operatorname{trace}(\boldsymbol{H}\boldsymbol{E}^{-1})$$

Reject H_0 if T_0^2 is "large"

Pillai Trace

$$V = \operatorname{trace}(\boldsymbol{H}(\boldsymbol{H} + \boldsymbol{E})^{-1})$$

Reject H_0 if V is "large"

```
CLEMS#N
```

Confidence Intervals/Region for Population Means

Multivariate Paired

Comparisons of Two Mean Vectors

Multivariate Analysis o ⁄ariance

```
> dat <- read.table("pottery.txt", header = F)</pre>
> out <- manova(cbind(V2, V3, V4, V5, V6) ~ V1, data = dat)
> summary(out, test = "Wilks")
               Wilks approx F num Df den Df
          3 0.012301 13.088 15 50.091 1.84e-12 ***
V1
Residuals 22
               0 '***, 0.001 '**, 0.01 '*, 0.02 '., 0.1 ', 1
Sianif. codes:
> summary(out)
         Df Pillai approx F num Df den Df Pr(>F)
V1
          3 1.5539 4.2984
                               15 60 2.413e-05 ***
Residuals 22
               0 (***, 0.001 (**, 0.01 (*, 0.05 (, 0.1 (, 1
Signif. codes:
```

⇒ at least one of the chemicals differs among the sites

In this lecture, we learned about:

- Confidence Intervals/Regions for Mean Vector
- Hypothesis Testing for Mean Vector
- Multivariate Version of Paired Tests
- Hypothesis Testing for Two Mean Vectors
- MANOVA

In the next two lectures, we will learn about Multivariate Regression