Ejercicios verano

Gonzalo Esteban

31 de julio de 2019

1 Bloque 2. Aspectos cualitativos de la Química (tema 3 del libro)

- **1.1** (4) Sabemos que 40 uma es la masa del átomo de calcio. Calcula:
 - a) La masa en gramos de 1 átomo de Ca.
 - b) ¿Cuál de las siguientes cantidades tienen mayor número de átomos? 40 g de Ca; 0,20 moles de Ca; 5 · 10²³ átomos de Ca.
- **1.2** (5) Si tenemos en cuenta que 56 uma es la masa del átomo de hierro, calcula:
 - a) La masa atómica en gramos de 1átomo de Fe.
 - b) Cuál de las siguientes cantidades tiene mayor número de átomos de Fe: 56 g, 0,20 moles o 5 · 10²³ átomos.
- **1.3** (6) Responde a las siguientes cuestiones:
 - a) ¿En cuál de las siguientes cantidades de los elementos que se enumeran a continuación existe un mayor número de moles: 100 g de hierro, 100 g de oxígeno molecular, 100 g de cinc o 100 g de níquel?
 - b) ¿Y un mayor número de átomos?
- **1.4** (10) Sabiendo que un gas a 1,5 atm y 290 K tiene una densidad de 1,178 g/L, calcula su masa molecular.
- **1.5** (11) Calcula la densidad del metano (CH_4) a 700 mmHg y 75 °C.
- **1.6** (12) Calcula el número de moléculas de CO₂ que habrá en 10 L del mismo gas medidos en condiciones normales.

- **1.7** (13) Calcula la masa en gramos de un mol de SO₂ sabiendo que exactamente 5 cm³ de dicho gas, medidos en condiciones normales, tienen una masa de 0,014 28 g.
- **1.8** (14) La masa de 1,20 mg de una sustancia gaseosa pura equivale a 1,2 · 10¹⁹ moléculas. Calcula la masa en gramos de 1 mol de dicha sustancia.
- **1.9** (15) Se introducen, en un recipiente de 5,0 L, 10 g de alcohol etílico (C₂H₅OH) y 10 g de acetona (C₃H₆O) y posteriormente se calienta el reactor a 200 °C, con lo cual ambos líquidos pasan a la fase gaseosa. Calcula la presión en el interior del reactor, suponiendo comportamiento ideal, y la presión parcial de cada componente.
- **1.10** (16) Calcula la composición centesimal de la molécula de propano (C_3H_8) .
- **1.11** (18) Calcula la fracción molar de cada uno de los componentes de una disolución que se ha preparado mezclando 90 g de alcohol etílico (C₂H₅₀H) y 110 g de agua.
- **1.12** (20) Una disolución de hidróxido de sodio en agua que contiene un 25% de hidróxido tiene una densidad de 1,25 g/mL. Calcula su molaridad y su normalidad.
- **1.13** (22) ¿Cuál es la molaridad de una disolución de ácido sulfúrico del 26% de riqueza y densidad 1,19 g/mL?

1.14 (23) El alcanfor puro tiene un punto de fusión de 178 °C y una constante crioscópica de 40 °C kg/mol. La disolución resultante de añadir 2 g de un soluto no volátil a 10 g de alcanfor congela a 158 °C. Calcula la masa molecular del soluto añadido.

1.15 (24) Tenemos 100 mL de una disolución acuosa que contiene 0,25 g de un polisacárido. Dicha disolución a 25 °C, ejerce una presión osmótica de 23,9 mmHg. El polisacárido tiene la siguiente fórmula empírica $(C_6H_{10}O_5)_n$. Calcula el valor de la masa molecular del polisacárido.

1.1 Problemas propuestos

1.1.1 Leyes de los volúmenes de combinación. Hipótesis de Avogadro. Concepto de molécula. Mol

1.16 (8) Determina la masa, *M*, de un mol de un gas en los siguientes casos:

- a) Su densidad en CN es de 3,17 g/L.
- b) Su densidad es de 2,4 g/L a 20 °C y 1 atm de presión.
- c) Dos gramos de dicho gas ocupan un volumen de 600 mL, medido a 17 °C y 1,8 atm de presión.

1.17 (9) Realiza los siguientes cálculos numéricos:

- a) Los átomos de oxígeno que hay en 0,25 moles de sulfato de potasio (K₂SO₄).
- b) Las moléculas de gasolina (C_8H_{18}) que hay en un depósito de 40 L ($d = 0.76 \,\mathrm{g/mL}$).
- c) Los gramos de calcio que hay en 60 g de un carbonato de calcio (CaCO₃) del 80% de riqueza.
- d) De una sustancia pura, sabemos que 1,75 · 10¹⁹ moléculas corresponden a una masa de 2,73 mg. ¿Cuál será la masa de 1 mol?

1.18 (10) Disponemos de 3 moles de sulfuro de hidrógeno. Calcula, sabiendo que las masas atómicas son S = 32 y H = 1:

a) Cuántos gramos de H₂S hay en esos 3 moles.

- b) El número de moléculas de H₂S que forman los 3 moles.
- c) Los moles de H₂ y de S que tenemos en los 3 moles de H₂S.

1.19 (12) ¿Dónde crees que habrá más moléculas, en 15 g de H_2 o en 15 g de O_2 ? Justifica la respuesta.

1.20 (13) ¿Cuál será el volumen de HCl, medido en CN, que podremos obtener con $6 \cdot 10^{22}$ moléculas de cloro?

1.21 (14) Calcula los gramos de amoniaco que podrías obtener con 10 L de N₂, medidos en CN.

1.22 (15) A 20 °C la presión de un gas encerrado en un volumen V constante es de 850 mmHg. ¿Cuál será el valor de la presión si bajamos la temperatura a 0 °C?

1.1.2 Leyes de los gases

1.23 (17) Diez litros de un gas medidos en CN, ¿qué volumen ocuparán si cambiamos las condiciones a 50 °C y 4 atm de presión?

1.24 (18) En un matraz de 5 L hay 42 g de N₂ a 27 °C. Se abre el recipiente hasta que su presión se iguala con la presión atmosférica, que es de 1 atm.

- a) ¿Cuántos gramos de N₂ han salido a la atmósfera?
- b) ¿A qué T deberíamos poner el recipiente para igualar la presión inicial?

1.25 (20) En una bombona se introducen 0,21 moles de N₂, 0,12 moles de H₂ y 2,32 moles de NH₃. Si la presión total es de 12,4 atm, ¿cuál es la presión parcial de cada componente?

1.26 (21) En CNTP, 1 mol de NH_3 ocupa 22,4 L y contiene $6,02 \cdot 10^{23}$ moléculas. Calcula:

- a) ¿Cuántas moléculas habrá en 37 g de amoniaco a 142 °C y 748 mmHg?
- b) ¿Cuál es la densidad del amoniaco a 142 °C y 748 mmHg?

- **1.27** (22) Resuelve los siguientes ejercicios referidos a la ecuación de Clapeyron:
 - a) Un gas ocupa un volumen de 15 L a 60 °C y 900 mmHg. ¿Qué volumen ocuparía en CN?
 - b) En una bombona de 15,0 L hay gas helio a 20 °C. Si el manómetro marca 5,2 atm, ¿cuántos gramos de helio hay en la bombona? ¿A qué T estaría el gas si la presión fuera la atmosférica?
 - c) Una cierta cantidad de aire ocupa un volumen de 10 L a 47 °C y 900 mmHg. Si la densidad del aire es de 1,293 g/L, ¿qué masa de aire hay en el recipiente?

1.1.3 Composición centesimal. Fórmulas moleculares y empíricas

- **1.28** (23) Un compuesto orgánico tiene la siguiente composición centesimal: C = 24,24%, H = 4,05%, Cl = 71,71%. Calcula:
 - a) La fórmula empírica.
 - b) Su fórmula molecular, sabiendo que 0,942 g de dicho compuesto ocupan un volumen de 213 mL medidos a 1 atm y 0 °C.
- 1.29 (24) Resuelve los siguientes ejercicios:
 - a) Entre dos minerales de fórmulas Cu₅FeS₄ y Cu₂S, ¿cuál es más rico en cobre?
 - b) De los siguientes fertilizantes indica cuál es más rico en nitrógeno: NH₄NO₃ o (NH₄)₃PO₃.
 - c) Halla la composición centesimal del arseniato de cobre(II) y del sulfato de sodio decahidratado.

1.1.4 Disoluciones y propiedades coligativas

- **1.30** (26) Calcula la fracción molar de agua y alcohol etílico en una disolución preparada agregando 50 g de alcohol etílico y 100 g de agua.
- **1.31** (29) Un ácido sulfúrico diluido tiene una densidad de 1,10 g/mL y una riqueza del 65% en masa. Calcula la molaridad y la normalidad de la disolución.

- **1.32** (30) Calcula los gramos de hidróxido de sodio comercial de un 85% de riqueza en masa que harán falta para preparar 250 mL de una disolución de NaOH 0,5 M.
- **1.33** (31) Una disolución de ácido sulfúrico está formada por 12,0 g de ácido, 19,2 g de agua y ocupa un volumen de 27 mL. Calcula la densidad de la disolución, la concentración centesimal, la molaridad y la molalidad.
- **1.34** (32) En la etiqueta de un frasco de HCl dice: densidad 1,19 g/mL, riqueza 37,1% en peso. Calcula:
 - a) Masa de 1L de esta disolución.
 - b) Concentración del ácido en g/L.
 - c) Molaridad del ácido.
- **1.35** (33) Cuando se agrega 27,8 g de una sustancia a 200 cm³ de agua, la presión de vapor baja de 23,7 mmHg a 22,9 mmHg. Calcula la masa molecular de la sustancia.
- **1.36** (34) Una disolución compuesta por 24 g de azúcar en 75 cm³ de agua, congela a -1,8 °C. Calcula:
 - a) La masa molecular del azúcar.
 - b) Si su fórmula empírica es CH_2O , ¿cuál es su fórmula molecular? Dato: $K_c = 1,86 \, ^{\circ}C \, \text{kg/mol}$.
- **1.37** (35) Una disolución que contiene 25 g de albúmina de huevo por litro ejerce una presión osmótica de 13,5 mmHg a 25 °C. Determina la masa molecular de esa proteína.
- **1.38** (36) Cuando llega el invierno y bajan las temperaturas decidimos fabricar nuestro propio anticongelante añadiendo 3 L de etilenglicol (C₂H₆O₂), cuya densidad es de 1,12 g/cm³ a 8 L de agua que vertemos al radiador del coche. ¿A qué temperatura podrá llegar la disolución del radiador sin que se congele?

Datos: constante crioscópica molal del agua K_c = 1,86 °C kg/mol.

1.1.5 Aplica lo aprendido

- **1.39** (38) Razona en cuál de las siguientes cantidades habrá un mayor número de átomos:
 - a) 20 g de hierro.
 - b) 20 g de azufre.
 - c) 20 g de oxígeno molecular.
 - d) Todas tienen la misma cantidad de átomos.
- **1.40** (39) Una determinada cantidad de aire a la presión de 2 atm y temperatura de 298 K ocupa un volumen de 10 L. Calcula la masa molecular media del aire, sabiendo que el contenido del mismo en el matraz tiene una masa de 23,6 g.
- **1.41** (43) Si tenemos encerrado aire en un recipiente de cristal, al calentarlo a 20 °C la presión se eleva a 1,2 atm. ¿Cuánto marcará el barómetro si elevamos la temperatura 10 °C?
- **1.42** (44) Se queman completamente 1,50 g de un compuesto orgánico formado por carbono, hidrógeno y oxígeno. En la combustión se obtuvieron 0,71 g de agua y 1,74 g de CO₂. Determina las fórmulas empírica y molecular del compuesto si 1,03 g del mismo ocupan un volumen de 350 mL a 20 °C y 750 mmHg.
- **1.43** (45) Sabiendo que la densidad del aire en CN es de 1,293 g/L, calcula la masa de aire que contiene un recipiente de 25 L, si hemos medido que la presión interior, cuando la temperatura es de 77 °C, es de 1,5 atm. Calcula, asimismo, el número de moles de aire que tenemos.
- **1.44** (46) A partir de los siguientes datos, determina la fórmula empírica y molecular de:
 - a) Un hidrocarburo con 82,76% de C; si su densidad en CN es de 2,59 g/L.
 - b) Un hidrocarburo formado por un 85,7% de C; si 651 g contienen 15,5 moles del mismo
 - c) Un compuesto con 57,1% de C, 4,8% de H y 38,1% de S; si en 10 g hay $3,6 \cdot 10^{22}$ moléculas.
 - d) Un compuesto con 55% de Cl, 37,2% de C y 7,8% de H; si 2,8 g del compuesto ocupan un volumen de 1,15 L a 27 °C y 0,93 atm de presión.

- **1.45** (49) Se dispone de tres recipientes que contienen 1L de CH₄ gas, 2L de N₂ gas y 15L de O₂ gas, respectivamente, en condiciones normales de presión y temperatura. Indica razonadamente:
 - a) Cuál contiene mayor número de moléculas.
 - b) Cuál contiene mayor número de átomos.
 - c) Cuál tiene mayor densidad.

Datos: masas atómicas: H = 1; C = 12; N = 14; O = 16.

- **1.46** (50) Un frasco de 1,0 L de capacidad está lleno de dióxido de carbono gaseoso a 27 °C. Se hace vacío hasta que la presión del gas es 10 mmHg. Indica razonadamente:
 - a) Cuántos gramos de dióxido de carbono contiene el frasco.
 - b) Cuántas moléculas hay en el frasco.

Datos: R = 0.082 atmL/mol/K; masas atómicas: C = 12; O = 16.

2 BLOQUE 5. QUÍMICA DEL CARBONO (tema 5 del libro)

- 2.1 (7) Formula los siguientes alcanos:
 - a) n-pentano
 - b) 2,3,5-trimetilheptano
 - c) 4-etil-2,6-dimetiloctano
 - d) 4,6-dietil-2,4,8-trimetilnonano
 - e) 4-etil-2,2,5,8-tetrametil-6-propildecano
 - f) 3,7-dietil-5-isopropildecano
- **2.2** (9) Formula los siguientes hidrocarburos insaturados:
 - a) But-1-eno
 - b) Pent-2-eno
 - c) Hexa-2,4-dieno
 - d) 3-butilhexa-1,4-dieno
 - e) But-2-ino
 - f) 3,4-dimetilpent-1-ino
 - g) 3,6-dimetilnona-1,4,7-triino
 - h) Pent-1-en-3-ino
 - i) Hept-3-en-1,6-diino
 - j) 4-etilhexa-1,3-dien-5-ino
- **2.3** (11) Formula los siguientes hidrocarburos cíclicos:
 - a) Etilciclohexano
 - b) Ciclopenteno
 - c) Ciclohexino
 - d) 1,1,4,4-tetrametilciclohexano
 - e) 3-etilciclopenteno
 - f) 2,3-dimetilciclohexeno
 - g) 4-ciclobutilpent-1-ino
 - h) 3-ciclohexil-5-metilhex-2-eno
 - i) Ciclohexa-1,3-dieno
 - j) 3-ciclopentilprop-1-eno

2.4 (12) Nombra los siguientes hidrocarburos cíclicos:

a) ____

b)

c) CH_2-CH_3 CH_3

d)

e) $CH_3 - CH - CH_3$

f) $CH_3 - CH - CH_2 - CH_2 - CH_3$ $CH_3 - CH_2 - CH_2 - CH_3$ $CH_3 - CH_3 - CH_3$

g) $CH_3-CH-CH=CH_2$

- **2.5** (13) Formula los siguientes hidrocarburos aromáticos:
 - a) Metilbenceno (tolueno)
 - b) Etenilbenceno
 - c) 1,3-dietilbenceno
 - d) 1-butil-4-isopropilbenceno

e) para-propiltolueno

f) 3-fenil-5-metilheptano

g) 4-fenilpent-1-eno

h) 2,4-difenil-3-metilhexano

2.6 (15) Formula los siguientes derivados halogenados:

- a) 2-cloropropano
- b) 1,3-dibromobenceno
- c) 1,1,2,2-tetrafluoretano
- d) 1,4-diclorociclohexano
- e) 4-bromopent-1-ino
- f) 3-flúor-5-metilhex-2-eno
- g) 1,4-dibromo-6-ciclopentiloct-2-eno
- h) 4-yodo-3,5-difenilpent-1-ino
- i) 4-clorobut-1-eno
- j) 1,2-dibromobenceno

2.7 (17) Formula los siguientes alcoholes y éteres:

- a) 3-metilpentan-1-ol
- b) Butano-1,2,3-triol
- c) 2-fenilpropano-1,3-diol
- d) Ciclohexanol
- e) Hexa-3,5-dien-2-ol
- f) Fenol (Hidroxibenceno)
- g) 2-etilpentan-1-ol
- h) Pent-3-en-1-ol
- i) Etilisopropiléter
- j) Etenilfeniléter
- k) Dimetiléter
- l) Butilciclopentiléter

2.8 (18) Nombra los siguientes alcoholes y éteres:

a) CH₃OH

b)
$$\operatorname{CH_2OH} - \operatorname{CH_2} - \operatorname{CH} - \operatorname{CH} = \operatorname{CH_2}$$
 $\operatorname{CH_2}$ $\operatorname{CH_3}$

c) CH₃-CHOH-CHBr-CH₂OH

d)
$$CH_3 - CH_2 - CH - CHOH - CH_3$$

 CH_3

e) $CH_2 = CH - CHOH - CH_2OH$

f)
$$CH_3 - CH_2 - CH_2 - O - CH_2 - CH_2 - CH_3$$

g)
$$CH_2 = CH - O - CH - CH_3$$

 CH_3

h)
$$CH_3 - (CH_2)_3 - CH_2 - O - C = CH$$

2.9 (19) Formula los siguientes aldehídos y cetonas:

- a) Etanal (acetaldehído)
- b) Benzaldehído
- c) 3-metilpentanal
- d) 2-metilpentanodial
- e) Propenal
- f) Hex-2-endial
- g) 5-ciclohexilpent-3-inal
- h) 3-metilpent-2-enal
- i) Hex-2-endial
- j) Pentan-2-ona
- k) Hexa-2,4-diona
- l) 3-clorobutanona
- m) 1,4-difenilpentan-2-ona
- n) Hexa-1,5-dien-3-ona

2.10 (20) Nombra los siguientes aldehídos y cetonas:

- a) HCHO
- b) CH₃-CH₂-CH₂-CHO
- c) OHC-CH=CH-CHO

d)
$$CH_2 = C - CH_2 - (CH_2)_4 - CHO$$

- e) OHC-CH=CH-CH₂-CH(CH₃)-CHO
- f) $CH_3 CH CH = CH CHO$ $C_6^{\dagger}H_5$
- g) $CHO-CH_2-C=C-CH_2-CH_2-CHO$
- h) $CH_3-CO-CH_2-CH_3$

i)
$$CH_3-CH=CH-CH_2-CO-CH_3$$

j)
$$CH_3-CO-CH_2-CH_2-CH_2-CO-CH_3$$

k)
$$CH_3-CH(CH_3)-CO-CH_2-CH(CH_3)-CH_3$$

2.11 (21) Formula los siguientes ácidos y ésteres:

- a) Ácido etanoico (ácido acético)
- b) Ácido 3-metilhexanoico
- c) Ácido 2-fenilpentanodioico
- d) Ácido tricloroetanoico
- e) Ácido but-3-enoico
- f) Ácido hepta-2,4-dienoico
- g) Ácido pent-2-enodioico
- h) Ácido benzoico
- i) Butanoato de metilo
- j) Propanoato de etilo
- k) Benzoato de propilo
- l) Etanoato de octilo
- m) 3-cloropentanoato de etenilo
- n) But-3-enoato de isopropilo

2.12 (23) Formula los siguientes compuest os con funciones nitrogenadas:

- a) Isopropilamina
- b) Pentan-3-amina
- c) Buta-1,3-diamina
- d) 3-etilhexan-3-amina
- e) 3.5-dimetilhexan-1-amina
- f) Pent-3-en-2-amina
- g) N-metilfenilamina
- h) N-ciclopentilbutilamina
- i) Etanamida
- j) N-metiletanamida
- k) 4-fenilpentanamida
- l) N-etilhex-4-enamida

2.13 (24) Nombra los siguientes compuestos nitrogenados:

a)
$${\rm CH_3} - {\rm CH} - {\rm CH_2} - {\rm CH_3}$$

 ${\rm NH_2}$

b)
$$CH_3-CH_2-CH_2-NH_2$$

c)
$${\rm CH_3-CH-CH_2-CH-CH_2-CH_2} \\ {\rm I} \\ {\rm NH_2} \\ {\rm NH_2} \\ {\rm NH_2}$$

d)
$$CH_3 - CH - NH - CH = CH_2$$

$$CH_3$$

f)
$$CH_3-CH_2-CH_2-CH_2-CH_2-CO-NH_2$$

g)
$$CH_3-CH=CH-CH_2-CO-NH_2$$

h)
$$CH_3-CH_2-CHBr-CH_2-CH_2-CO-NH-CH_3$$

2.14 (25) Formula los siguientes compuestos orgánicos:

- a) 2,2-dimetilpentano
- b) Hepta-1,5-dieno
- c) 1-fenilpent-2-ino
- d) 3-isopropilciclohexeno
- e) 1-butil-3-metilbenceno
- f) Butano-1,3-diol
- g) Butileteniléter
- h) But-3 enal
- i) Hex-5-in-2-ona
- j) Ácido 3-isopropilhexanoico
- k) Pentanoato de metilo
- l) 5-meilhexan-2.4-diamina
- m) N-metiletilamina
- n) N,N-dietilbutilamina
- o) Hex-3-enamida
- p) N-metilbutanamida

2.15 (27) Formula y nombra:

- a) Dos hidrocarburos alifáticos que presenten isomería de cadena.
- b) Dos aminas con isomería de posición.
- c) Dos compuestos oxigenados con isomería de función.

2.16 (28) Escribe y nombra:

a) Todos los isómeros de cadena de fórmula ${\rm C_5H_{12}}.$

b) Cuatro isómeros de función de fórmula C_4H_{80} .

c) Tres isómeros de posición de la amina $C_5H_{13}N.$

2.17 (29) Dados los siguientes compuestos, formúlalos y justifica cuáles de ellos presentan isomería geométrica y cuáles isomería óptica:

- a) 2-clorobutano
- b) Pent-3-en-2-ol
- c) Pentan-3-amina
- d) 2-fenilpent-2-eno

2.1 Problemas propuestos

2.1.1 Grupos funcionales y series homólogas

2.18 (7) Escribe el número de carbonos y el grupo funcional al que corresponden los siguientes compuestos:

- a) Octano
- b) Butanamina
- c) Pentinamida
- d) Ácido decanoico
- e) Hexenal
- f) Propanona
- g) Butino
- h) Hepteno
- i) Metanol
- j) Dietiléter

2.19 (8) Indica si la estructura de cada pareja representa el mismo compuesto o compuestos diferentes, identificando los grupos funcionales presentes:

- a) CH₃CH₂OCH₃ y CH₃OCH₂CH₃
- b) CH₃CH₂OCH₃ y CH₃CHOHCH₃
- c) CH₃CH₂CH₂OH y CH₃CHOHCH₃

2.20 (9) Contesta a cada uno de los siguientes apartados referidos a compuestos de cadena abierta:

a) ¿Qué grupos funcionales pueden tener los compuestos de fórmula molecular $C_nH_{2n+2}O$?

b) ¿Qué compuestos tienen por fórmula molecular C_nH_{2n-2} ?

2.21 (10) Nombra y formula los siguientes compuestos orgánicos:

- a) CH₃-CH₂-COOH
- b) CH₃−CH₂−C≡CH
- c) CH₃-CHOH-CH₂-CH₂-CH₃
- d) $CH_3-CH_2-CO-CH_2-CH_2-CH_3$
- e) C₆H₁₄
- f) Metil etil éter.
- g) Metanoato de propilo.
- h) Dietilamina.
- i) Pentanal.
- j) Metilpropeno.

2.22 (13) Formula las siguientes especies químicas:

- a) 1-bromo-2,2-diclorobutano
- b) Trimetilamina
- c) 2-metilhex-1,5-dien-3-ino
- d) Butanoato de 2-metilpropilo
- e) Tolueno (metilbenceno)
- f) Propanamida
- g) 2,3-dimetilbut-1-eno
- h) Ácido 2,3-dimetilpentanodioico

2.23 (14) Nombra las siguientes especies químicas:

- a) $H_2C=CH-CH=CH-CHO$
- b) H₃C-CO-CO-CH₃
- c) $H_2C = CH CH = CH CH_2 COOH$
- d) $H_3C-CH_2-NH-CH_2-CH_3$
- e) $CH \equiv C CH_2 COOH$
- f) CH₃-CH₂-CH(CH₃)-CONH₂
- g) $H_3C-C(OH)_2-CH_2-CH_2OH$

2.24 (15) Nombra y/o formula los siguientes compuestos:

- a) CHCl₃
- b) CH_3-CH_2-CHO
- c) CH₃-CH₂-CH₂-CO-NH₂
- d) $(CH_3)_2$ -CHOH
- e) 2,2-dimetilbutano
- f) Para-diaminobenceno
- g) Ciclohexano
- h) Etil propil éter

2.25 (16) Formula o nombra, según corresponda:

- a) 1-etil-3-metilbenceno
- b) 2-metilpropan-2-ol
- c) 2-metil-propanoato de etilo
- d) Pent-3-en-1-amina
- e) ClCH=CH-CH₃
- f) $CH_3 CH_2 O CH_2 CH_3$
- g) $CH_3-CH(CH_3)-CO-CH_2-CH(CH_3)-CH_3$
- h) $CH_2 = CH CH_2 CO NH CH_3$

2.26 (20) Formula o nombra los siguientes compuestos:

- a) Cromato de cobre(II)
- b) Hidruro de magnesio
- c) Hidrogenosulfuro de bario
- d) Etanamina
- e) Propan-1,2-diol
- f) Fe(OH)₂
- g) H₂SO₃
- h) N_2O_5

2.27 (21) Formula o nombra los siguientes compuestos orgánicos:

- a) 3-etil-2-metilhexano
- b) 1-bromopent-2-ino
- c) 3-etilhe xano-1,5-diol
- d) 3-metilpentan-2,4-diamina
- e) $CH_2 = CH CH_2 CO O CH_3$
- f) $C_6H_5 O C_6H_5$
- g) $CH_3-CH_2-CO-NH-CH_2-CH_3$
- h) COOH-CH₂-CH₂-CHBr-COOH

2.1.2 Isomería estructural y espacial

2.28 (23) Formula los siguientes compuestos orgánicos:

- a) But-3-en-2-ona
- b) Buta-1,3-dien-2-ol
- c) Dietiléter

¿Cuáles de ellos son isómeros entre sí?

2.29 (24) Escribe y nombra cinco isómeros de cadena de fórmula molecular C₆H₁₄.

2.30 (25) Escribe y nombra cuatro isómeros de función de fórmula molecular C₄H₈O.

2.31 (28) Escribe y nombra todos los isómeros estructurales de fórmula C_5H_{10}

2.32 (30) Formula y nombra:

- a) Dos isómeros de posición de fórmula C₃H₈O
- b) Dos isómeros de función de fórmula C₃H₈O
- c) Dos isómeros geométricos de fórmula C₄H₈
- d) Un compuesto que tenga dos carbonos quirales (asimétricos) de fórmula C₄H₈BrCl

2.33 (31) Un derivado halogenado etilénico que presenta isomería cis-trans está formado en un 22,4% de C, un 2,8% de H y un 74,8% de bromo. Además, a 130 °C y 1 atm de presión, una muestra de 12,9 g ocupa un volumen de 2 L. Halla su fórmula molecular y escribe los posibles isómeros.

- **2.34** (32) Un alcohol monoclorado está formado en un 38,1% de C, un 7,4% de H, un 37,6% de Cl y el resto es oxígeno. Escribe su fórmula semidesarrollada sabiendo que tiene un carbono asimétrico y que su fórmula molecular y su fórmula empírica coinciden.
- **2.35** (33) Un hidrocarburo monoinsaturado tiene un 87,8% de carbono. Si su densidad en condiciones normales es 3,66 g/L, determina sus fórmulas empírica y molecular.

3 BLOQUE 4. Transformaciones energéticas y espontaneidad (tema 6 del libro)

- **3.1** (5) Determina la variación de energía interna que sufre un sistema cuando:
 - a) Realiza un trabajo de 600 J y cede 40 cal al entorno.
 - b) Absorbe 300 cal del entorno y se realiza un trabajo de compresión de 5 kJ.
- **3.2** (13) La descomposición térmica del clorato de potasio (KClO₃) origina cloruro de potasio (KCl) y oxígeno molecular. Calcula el calor que se desprende cuando se obtienen 150 L de oxígeno medidos a 25 °C y 1 atm de presión.

Datos: ΔH_f^0 (kJ/mol): KClO_{3(s)} = -91,2; KCl_(s) = -436

- **3.3** (14) Las entalpías estándar de formación del propano (g), dióxido de carbono (g) y agua (l), son respectivamente: -103,8 kJ/mol, -393,5 kJ/mol y -285,8 kJ/mol. Calcula:
 - a) La entalpía de la reacción de combustión del propano.
 - b) Las calorías generadas en la combustión de una bombona de propano de 1,80 L a 25 °C y 4 atm de presión.
- **3.4** (15) En la reacción del oxígeno molecular con el cobre para formar óxido de cobre(II) se desprenden 2,30 kJ por cada gramo de cobre que reacciona, a 298 K y 760 mmHg. Calcula:
 - a) La entalpía de formación del óxido de cobre(II).
 - b) El calor desprendido a presión constante cuando reaccionan 100 L de oxígeno, medidos a 1,5 atm y 27 °C
- **3.5** (16) En la combustión completa de 1,00 g de etanol (CH₃-CH₂OH) se desprenden 29,8 kJ y en la combustión de 1,00 g de ácido etanoico (CH₃-COOH) se desprenden 14,5 kJ. Determina numéricamente:
 - a) Cuál de las dos sustancias tiene mayor entalpía de combustión.

b) Cuál de las dos sustancias tiene mayor entalpía de formación.

3.6 (24) Calcula la entalpía de la reacción: $CH_{4(g)} + Cl_{2(g)} \longrightarrow CH_3Cl_{(g)} + HCl_{(g)}$ a partir de:

- a) Las energías de enlace.
- b) Las entalpías de formación.

Datos:

- Energías de enlace (kJ/mol): C-H = 414;
 Cl-Cl = 244; C-Cl = 330; H-Cl = 430.
- Entalpías de formación (kJ/mol): (CH₄) = -74,9; (CH₃Cl) = -82,0; ΔH_f^0 (HCl) = -92,3.

3.7 (25) El eteno se hidrogena para dar etano, según: $CH_2=CH_{2(g)}+H_{2(g)}\longrightarrow CH_3-CH_{3(g)}$ $\Delta H_R^0=-130$ kJ Calcula la energía del enlace C=C, si las energías de los enlaces C-C, H-H y C-H son, respectivamente, 347 kJ/mol, 436 kJ/mol y 414 kJ/mol.

3.8 (26) A partir de los siguientes datos:

- Entalpía estándar de sublimación del C_(s) = 717 kJ/mol.
- Entalpía de formación del CH₃-CH_{3(g)} = -85,0 kJ/mol.
- Entalpía media del enlace H-H = 436 kJ/mol.
- Entalpía media del enlace C-C = 347 kJ/mol.

Responde a las siguientes cuestiones:

- a) Calcula la variación de entalpía de la reacción: 2 C_(g) + 3 H_{2(s)} → CH₃-CH_{3(g)} e indica si es exotérmica o endotérmica.
- b) Determina el valor medio del enlace C-H.

3.1 Problemas resueltos

3.1.1 Entalpias de formación, de reacción y de combustión

3.9 (4) El sulfuro de carbono reacciona con el oxígeno según:

$$CS_{2(l)} + 3O_{2(g)} \longrightarrow CO_{2(g)} + 2SO_{2(g)} \Delta H_R = -1072 \text{ kJ}$$

- a) Calcula la entalpía de formación del CS₂
- b) Halla el volumen de SO₂ emitido a la atmósfera, a 1atm y 25°C, cuando se ha liberado una energía de 6000 kJ

Datos:
$$\Delta H_f^0$$
 (kJ/mol): $CO_{2(g)} = -393,5$; $SO_{2(g)} = -296,4$.

3.10 (5) El dióxido de manganeso se reduce a manganeso metal reaccionando con el aluminio según:

$$MnO_{2(s)} + Al_{(s)} \longrightarrow Al_2O_{3(s)} + Mn_{(s)}$$

- a) Halla la entalpía de esa reacción sabiendo que las entalpías de formación valen: $\Delta H_f^0(Al_2O_3) = -1676 \text{ kJ/mol}; \Delta H_f^0(MnO_2) =$
- b) ¿Qué energía se transfiere cuando reaccionan 10,0 g MnO₂ con 10,0 g de Al?
- 3.11 (6) Durante la fotosíntesis, las plantas verdes sintetizan la glucosa según la siguiente reacción:

$$6 CO_{2(g)} + 6 H_2O_{(l)} \longrightarrow C_6H_{12}O_{6(s)} + 6 O_{2(g)} \Delta H_R = 2815 \text{ kJ/s}$$

- a) ¿Cuál es la entalpía de formación de la glucosa?
- b) ¿Qué energía se requiere para obtener 50,0 g de glucosa?
- c) ¿Cuántos litros de oxígeno, en condiciones estándar, se desprenden por cada gramo de glucosa formado?

Datos:
$$\Delta H_f^0$$
 (kJ/mol): $H_2O_{(l)} = -285,8$; $CO_{2(g)} = -393,5$

- **3.12** (7) Las entalpías de combustión del etano y del eteno son -1560 kJ/mol y 1410 kJ/mol, respectivamente. Determina:
 - a) El valor de ΔH_f^0 para el etano y el eteno.
 - b) Razona si el proceso de hidrogenación del eteno a etano es un proceso endotérmico o exotérmico.

c) Calcula el calor que se desprende en la combustión de 50,0 g de cada gas.

Datos:
$$\Delta H_f^0$$
 (kJ/mol): $CO_{2(g)} = -393,5$; $H_2O_{(l)} = -285,9$

- **3.13** (8) La gasolina es una mezcla compleja de hidrocarburos que vamos a considerar como si estuviera formada únicamente por hidrocarburos saturados de fórmula (C₈H₁₈)
 - a) Calcula el calor que se desprende en la combustión de 50,0 L litros de gasolina (d =0,78 g/mL).
 - b) Halla la masa de CO₂ que se emite a la atmósfera en esa combustión.
 - c) Si el consumo de un vehículo es de 7,00 L por cada 100 km, ¿qué energía necesita por cada km recorrido?

Datos:
$$\Delta H_f^0$$
 (kJ/mol): $CO_{2(g)} = -394$; $H_2O_{(l)} = -286$; $C_8H_{18(l)} = -250$

- **3.14** (10) Se quema benceno (C_6H_6) en exceso de oxígeno, liberando energía.
 - a) Formula la reacción de combustión del benceno.
- $6 \text{ CO}_{2(g)} + 6 \text{ H}_2 \text{O}_{(l)} \longrightarrow \text{C}_6 \text{H}_{12} \text{O}_{6(s)} + 6 \text{ O}_{2(g)} \quad \Delta H_R = 2815 \text{ kJ/mol}$ Calcula la entalpía de combustión estándar de un mol de benceno líquido.
 - c) Calcula el volumen de oxígeno, medido a 25°C y 5 atm, necesario para quemar 1L de benceno líquido.
 - d) Calcula el calor necesario para evaporar 10 L de benceno líquido.

Datos:
$$\Delta H_f^0$$
 (kJ/mol): $C_6H_{6(l)} = +49$; $C_6H_{6(v)} = +83$; $H_2O_{(l)} = -286$; $CO_{2(g)} = -393$
Densidad benceno_(l) = 0,879 g/cm³

3.1.2 Ley de Hess

- **3.15** (11) El motor de una máquina cortacésped funciona con una gasolina que podemos considerar de composición única octano (C₈H₁₈). Calcula:
 - a) La entalpía estándar de combustión del octano, aplicando la ley de Hess.

b) El calor que se desprende en la combustión de 2,00 kg de octano.

Datos: ΔH_f^0 (kJ/mol): $CO_{2(g)} = -393.8$; $C_8H_{18(l)} = -264.0$; $H_2O_{(l)} = -285.8$.

3.16 (12) Sabiendo que las entalpías estándar de combustión del hexano (l), del carbono (s) y del hidrógeno (g) son respectivamente: -4192 kJ/mol, -393,5 kJ/mol y -285,8 kJ/mol, halla:

- a) La entalpía de formación del hexano líquido en esas condiciones.
- b) Los gramos de carbono consumidos en la formación del hexano cuando se han intercambiado 50,0 kJ.

3.17 (14) El calor desprendido en el proceso de obtención del benceno a partir de etino es:

$$3 C_2 H_{2(g)} \longrightarrow C_6 H_{6(l)} \Delta H_R^0 = -631 \text{ kJ}$$

- a) Calcula la entalpía estándar de combustión del benceno, sabiendo que la del etino es -1302 kJ/mol.
- b) ¿Qué volumen de etino, medido a 26°C y 15 atm, se necesita para obtener 0,25 L de benceno?

Datos: densidad del benceno = 880 g/L

3.1.3 Entalpías de enlace

3.18 (18) Calcula la variación de entalpía estándar de la hidrogenación del etino a etano:

- a) A partir de las energías de enlace.
- b) A partir de las entalpías de formación.

Datos: Energías de enlace (kJ/mol): C-H = 415; H-H = 436; C-C = 350: C=C = 825. ΔH_f^0 (kJ/mol): etino = 227; etano = -85,0

3.1.4 Entropía y espontaneidad

3.19 (20) Dadas las siguientes ecuaciones termoquímicas:

$$2 H_2 O_{2(l)} \longrightarrow 2 H_2 O_{(l)} + O_{2(g)} \Delta H = -196 \text{ kJ}$$

 $N_{2(g)} + 3 H_{2(g)} \longrightarrow 2 NH_{3(g)} \Delta H = -92,4 \text{ kJ}$

 a) Define el concepto de entropía y explica el signo más probable de ΔS en cada una de ellas. Explica si esos procesos serán o no espontáneos a cualquier temperatura, a temperaturas altas, a temperaturas bajas, o no serán nunca espontáneos.

3.20 (21) Dada la reacción: $N_2O_{(g)} \longrightarrow N_{2(g)} + \frac{1}{2} O_{2(g)}$ siendo $\Delta H^0 = 43.0 \text{ kJ/mol y } \Delta S^0 = 80.0 \text{ J/(mol K)}$

- a) Justifica el signo positivo de la variación de entropía.
- b) ¿Será espontánea a 25 °C? ¿A qué temperatura estará en equilibrio?

3.21 (23) Se pretende obtener etileno (eteno) a partir de grafito e hidrógeno, a 25 °C y 1 atm, según la reacción:

$$2 C_{(s)} + 2 H_{2(g)} \longrightarrow C_2 H_{4(g)}$$

Calcula:

- a) La entalpía de reacción en condiciones estándar. ¿La reacción es endotérmica o exotérmica?
- b) La variación de energía libre de Gibbs en condiciones estándar. ¿Es espontánea la reacción en esas condiciones?

Datos: S^0 [J/(mol K)]: $C_{(s)} = 5,70$; $H_{2(g)} = 130,6$; $C_2H_{4(g)} = 219,2$ ΔH_f^0 (kJ/mol): $C_2H_{4(g)} = +52,5$

3.1.5 Aplica lo aprendido

3.22 (35) El acetileno o etino (C₂H₂) se hidrogena para producir etano. Calcula a 298 K:

- a) La entalpía estándar de reacción.
- b) La energía de Gibbs estándar de reacción.
- c) La entropía estándar de reacción.
- d) La entropía molar del hidrógeno.

Comp.	ΔH_f^0 (kJ/mol)	ΔG_f^0 (kJ/mol)	S ⁰ (kJ K/mol)
C ₂ H ₂	227	209	200
C ₂ H ₆	-85	-33	230