Rat DCIS study

Anne Trinh

2020 - 11 - 07

Contents

1	\mathbf{Pre}	erequisites	5								
	1.1	Packages and Software	5								
	1.2	External software	6								
	1.3	Annotations	7								
2	Cohort summary										
	2.1	Calculating growth rates	11								
	2.2	FACS data	17								
	2.3	Summary Table	20								
3	Wh	nole-slide imaging	23								
	3.1	Associate the frequencies with other data types	23								
	3.2	Cellular composition	25								
	3.3	Associate composition with other covariates	29								
	3.4	Estimate tumor size	32								
	3.5	Correlations between different subpopulations									
	3.6	Associations between CD8 counts with other clinical variables	34								
4	Spa	atial statistics	37								
	4.1	knn-Distances:	37								
	4.2	The interacting fraction	44								
	4.3	M-H distances	50								
	4.4	Comparison between metrics	57								
	4.5	Other cell types	61								
5	Exp	pression data	65								
	5.1^{-}	Running alignment	65								
	5.2	RNA Initial QC	66								
	5.3	Normalisation	69								
	5.4	Processing files for external software	72								
6	RN	A data: preliminary plots	73								
	6.1	PCA plots	73								
	6.2	Expression patterns by cell type	79								

1	CONTENTS
-	CONTENTS

7	DES	Seq analysis	83
	7.1	DN vs Ep	83
	7.2	Set-up the comparisons	86
	7.3	PCA plots	89
	7.4	GSEA	98
	7.5	CD45 comparisons	99
	7.6	DN comparisons	99
8		Seq analysis Focus mainly on growing vs stable:	101 102
Th	nis is a	a summary of the code required in the study: 'insert study name'	

Chapter 1

Prerequisites

1.1 Packages and Software

The following packages are required to conduct the analyses described below.

In house scripts are deposited in the rscript folder.

```
library(AnnotationHub)
library(biomaRt)
library(Biostrings)
library(colorspace)
library(DESeq2)
library(dplyr)
library(DT)
library(ensembldb)
library(EnsDb.Hsapiens.v86)
library(GenVisR)
library(GenomicFeatures)
library(ggplot2)
library(gplots)
library(GSEABase)
library(GSVA)
library(heatmap.plus)
library(HTSanalyzeR2)
#library(kableExtra)
library(limma)
library(matrixStats)
library(pamr)
library(reshape2)
library(RColorBrewer)
library(scales)
```

```
library(spatstat)
library(tcR)
library(vcfR)
library(xlsx)
library(writexl)
DiffCols=hue_pal()(8)
palette(brewer.pal(9, "Set1"))
RdBu=brewer.pal(11, "RdBu")
SetCols=brewer.pal(12, "Set3")
source("../rscript/cnFreq_fn.R") #modified version of GenVisR
source("../rscript/merge_contig.R")
source("../rscript/gseaCode.R")
source("../rscript/ContingencyTable.R")
source("../rscript/PvalueHeatMap.R")
source("../rscript/BootstrapShannonIdx.R")
source("../rscript/CreateRnor87db.R")
source("../rscript/FindRatAAHomolog.R")
firstup <- function(x) {</pre>
  substr(x, 1, 1) <- toupper(substr(x, 1, 1))</pre>
}
ColMerge=matrix(c("#FFC82F", "#FFEDBC", "#73FDFE", "#D2FFFF", "#FF41FF", "#FECAFF", "#5
rownames(ColMerge)=c("LY","PDL1", "PDL1+LY","Vehicle")
Hsedb<-EnsDb.Hsapiens.v86
```

1.2 External software

The following external software was utilised:

Software	Function
bwa	Alignment of WGS data to reference
GATK4	Mutation calling, done by NYGC. Mutation calling from RNA
	(Haplotype caller)
strelka	Mutation calling, done by NYGC
BICseq	CNV calling
GEM3	create mappability files for CNV calling
STAR	Alignment of RNAseq data
RSEM	Calculate RSEM, TPM, FPKM from RNAseq data
TRUST4	assignment of T and B cell clonotypes from RNA-seq data

Software	Function
Oncotato	r Annotation of genetic variants
QuPath	Tool for cell segmentation and extraction of features from IF
	images
samtools,	querying and dispalying information from bam files, extracting
bcftools	allelic depth at specific genomic locations
CIBERSO	ORTerring immune composition from RNA
lumpy	structural variants
PAM50	code from parker et al 2009 to infer PAM50 subtypes

1.3 Annotations

1.3.1 Genomic properties

Information on chromosome sizes, cytobands and centromere locations were obtained from the UCSC genome browser.

The following annotation data for the hg19/b37/GRCh37 genome is required:

Data Type	Download link
ref. genome	http://hgdownload.soe.ucsc.edu/goldenPath/rn6
refSeq annot	/bigZips/rn6.fa.gz http://hgdownload.soe.ucsc.edu/goldenPath/rn6
	/bigZips/genes/rn6.refGene.gtf.gz
refSeq annot	http://hgdownload.soe.ucsc.edu/goldenPath/rn6
	/bigZips/genes/rn6.ncbiRefSeq.gtf.gz
gff3 file	for TRUST4 (ftp://ftp.ensembl.org/pub/release-
	100/gff3/rattus_norvegicus/Rattus_norvegicus.
	$Rnor_6.0.100.gff3.gz)$
gene lengths	Extracted from GRCh37.75.gtf file from ensembl
hg19cytoBand	ucsc server of all cytoband locations
chromosome sizes	uscs genome browser
biomart	conversion between gene symbol, ensbl and entrez was faciliated using biomart package

Below is the summary of chromosome sizes and centromere locations:

##		${\tt chrom}$	${\tt chromStart}$	${\tt chromEnd}$	name	gieStain
##	1	chr1	0	10704345	p13	gneg
##	2	chr1	10704345	25618263	p12	gvar
##	3	chr1	25618263	40652454	p11	gneg
##	4	chr1	40652454	51356799	q11	gpos
##	5	chr1	51356799	73607402	q12	gneg
##	6	chr1	73607402	95016091	g21	gpos

Create a TxDb object from a gtf file and save information: Not sure which version to use??

Below is an example of the gene annotation files

GRanges object with 6 ranges and 2 metadata columns:

##		seqnames	ranges	strand	1	gene_id	gene_width
##		<rle></rle>	Ranges	<rle></rle>	1	<character></character>	<integer></integer>
##	Vom2r3	chr1	396700-409676	+	1	Vom2r3	12977
##	Lrp11	chr1	1702696-1731210	+		Lrp11	28515
##	Nup43	chr1	1771721-1781554	+	1	Nup43	9834
##	Lats1	chr1	1784078-1817310	+	1	Lats1	33233
##	Katna1	chr1	1826170-1867786	+	1	Katna1	41617
##	Ppil4	chr1	1897350-1930311	+		Ppil4	32962
##		_					

seqinfo: 22 sequences from an unspecified genome; no seqlengths

1.3.2 Gene name homologs between organisms

Biomart was used to convert between rat, mouse and human gene symbols and ensembl ids. Below is an example of the human gene names mapped to the rat homolog

Figure out what is required here for later analysis

RGD.symbol	HGNC.symbol		##
Tab1	TAB1	1	##
Phf1	PHF1	2	##
Rnf39	RNF39	3	##
Igsf10	IGSF10	4	##
Tmem130	TMEM130	5	##
Efnb1	EFNB1	6	##

1.3.3 Gene signatures and data-bases

Gene sets/signatures were obtained from the following sources:

Source	Description
IEDB	database of immune epitopes
MsigDB	c2, c5, hallmark set of curated pathway gene sets
Metacore	Process Networks and Pathway Maps data bases
COSMIC	database of concensus oncogenes
ImmPort	List of immune related genes
InnateDB	List of genes associated with innate immune system
Rosenthal 2019	genes associated with MHC-I presentation
Thorsson 2018	Immune gene signatures curated from studies by Wolf,
	Calabro, Teschendorff, Beck, Chang

Source	Description
Pardoll, Wykes gil del alcazar 2017 Bailey 2018 Chang 2018	Immune checkpoint genes Supplementary table 5: list of activation, dysfunction gene signatures List of 10 most comon tumor pathways Common mutation locations in cancer

The PAM50 signature was implemented using the scripts provided in supplementary from Parker et al 2010. These gene lists can be found in the annotations folder

1.3.3.1 Human gene homologs

Below, lists of common mutations in cancer are loaded and the "homolog" in rat is determined using an in-house script. The steps involved are:

- determine the amino acid context in human (find 5 a.a. prior and after)
- find the region with most amino acid homology in rat (2 or less differences)
- check whether the amino acid of interest is present in rat

An example of the output is shown

##		Gene	AAno	AA1	Variant	RatGene	Sequence	HumProt	RatProt
##	1	NRAS	61	Q	R	Nras	LDTAGQEEYSA	ENSP00000358548	ENSRNOP00000036381
##	2	NRAS	61	Q	K	Nras	LDTAGQEEYSA	ENSP00000358548	ENSRNOP00000036381
##	3	NRAS	61	Q	L	Nras	LDTAGQEEYSA	ENSP00000358548	ENSRNOP00000036381
##	4	NRAS	61	Q	H	Nras	LDTAGQEEYSA	ENSP00000358548	ENSRNOP00000036381
##	5	NRAS	61	Q	P	Nras	LDTAGQEEYSA	ENSP00000358548	ENSRNOP00000036381
##	6	NRAS	61	Q	*	Nras	LDTAGQEEYSA	ENSP00000358548	ENSRNOP00000036381
##		RatA	Ano Ra	atSec	quence				
##	1		61 LI	OTAGO	QEEYSA				
##	2		61 LI	OTAGO	QEEYSA				
##	3		61 LI	OTAGO	QEEYSA				
##	4		61 LI	OTAGO	QEEYSA				
##	5		61 LI	OTAGO	QEEYSA				
##	6		61 LI	OTAGO	QEEYSA				

1.3.3.2 GSEA compendiums

For pathway analysis, the c2 (pathway), Hallmark and c5 (Gene Ontology). In addition, metacore pathways (pathway maps and process networks) were obtained and loaded below. This gives a list of 7 different data-sets to interrogate CHECK: When GSVA is run, which input is required??

Chapter 2

Cohort summary

Below we assess summary statistics on clinico-pathological features of this data set. This includes information on:

- treatment
- tumor size
- growth rates (mm/week)
- number of tumors per rat

2.1 Calculating growth rates

In this section, we estimate the growth rates of the samples: Below is a plot of the tumor size per week for each recorded tumor, color-coded according to treatment. Time is measured at the first time point at which a tumor is palpated. Spontaneous large tumors are assumed to have a tumor size of 0 or 1 one week prior to palpating.

Tumor size over time

These tumors doesn't have growth rate data: 17N_B.

We can then compute the growth rate for the above samples by considering the change in size over a given period of time using a linear regression model. Below is the histogram of growth rates:

distribution of growth rates (mm/week)

Based on the above distribution, a cut-off of 2 mm/week may be an optimal cut-off to separate growing and stable tumors. Below are growth rates of tumors under different treatments:

We can calculate the p.values below, using a t.test. The growth rates comparing the treatment to the controls are:

```
## [1] "LY samples"
##
##
   Wilcoxon rank sum test with continuity correction
##
## data: d1$growthrate[d1$treatment == "LY"] and d1$growthrate[d1$treatment == "Vehic
## W = 165.5, p-value = 0.1718
\#\# alternative hypothesis: true location shift is not equal to 0
## [1] "PDL1 samples"
##
##
   Wilcoxon rank sum test with continuity correction
## data: d1$growthrate[d1$treatment == "PDL1"] and d1$growthrate[d1$treatment == "Veh
## W = 103, p-value = 0.051
## alternative hypothesis: true location shift is not equal to 0
## [1] "PDL1+LY samples"
##
##
   Wilcoxon rank sum test with continuity correction
##
## data: d1$growthrate[d1$treatment == "PDL1+LY"] and d1$growthrate[d1$treatment == "
## W = 154.5, p-value = 0.006713
## alternative hypothesis: true location shift is not equal to 0
```

This shows a smaller growth-rate in PDL1 single and double treated cases compared to the vehicles.

Overall the distribution of growing vs stable tumors is shown below:

```
## grow stable
## 47 31
```

We can replot the previous graphs according to growth, and color code according to whether it is a fast or slow growing tumor

As a sanity check, compare these growth rates with differences in tumour size at different time points:

- comparing the growth rate according to classifications (growing, stable)
- tumor size at time of sacrifice
- rate of tumor development from the time of NMU injection

```
## Warning in wilcox.test.default(x = c(3.54285714285714, 15, 20, 11.7, 5.8, :
## cannot compute exact p-value with ties

## Warning in wilcox.test.default(x = c(20, 15, 20, 47, 30, 12, 32, 35, 4, : cannot
## compute exact p-value with ties

## Warning in wilcox.test.default(x = c(0.238095238095238, 0.178571428571429, :
## cannot compute exact p-value with ties
```


Is there an association with treatment? Calculate below using chi-squared test:

```
##
## Pearson's Chi-squared test
##
## data: table(factor(d1$treatment), d1$growthrate_cutoff2)
## X-squared = 6.8181, df = 3, p-value = 0.07793
```

new rates Chisq = 0.08

Overall, it appears that there is an association between growth rate and treatment

2.2. FACS DATA 17

2.2 FACS data

The immune (CD45) fractions from a number of samples were collected, and assessed using FACs. The major cell types detected are:

Leukocytes:

- Tregs
- CD8 T cells
- Thelper cells
- B cells
- NK T cells
- gamma delta T cells

Myeloid cells:

- Macrophages M1
- Macrophages M2
- Dendritic cells
- Monocytes
- Neutrophils

We can look at the:

- types of cells
- distributions

Note that in a number of samples the leukocyte population could not be inferred with confidence, and proportions are normalised to the myeloid population

##		type	11ND		8LI)		8RCU			12L	D 6F	RB	11RD	
##	1	Leukocytes	913.84000000	379.5	6000000	829	9.570	00000	298	3.830	00000	O N	IA	NA	
##	2	leukocytes	NA		NA	1		NA			N	A N	ΙA	NA	
##	3		NA		NA	1		NA			N	A N	ΙA	NA	
##	4	Th	0.18237328	0.1	2232585	5 (0.123	97989	(0.054	42783	5 N	ΙA	NA	
##	5	Tregs	0.10207476	0.3	8225840) (0.057	01749	(0.070	03075	3 N	ΙA	NA	
##	6	CD8 T cells	0.05586317	0.0	3293287	7 (0.0248	38036	(0.02	39935	7 N	ΙA	NA	
##		14ND	14NC		31	ΙB		3R	C		10	LC			10RB
##	1	291.43000000	576.74000000	1.11	8820e+0	3 6	16.38	00000	0 4:	14.7	50000	00 8	399	.6000	0000
##	2	NA	NA		ľ	ΙA		N	Α			NA			NA
##	3	NA	NA		ľ	ΙA		N	Α			NA			NA
##	4	0.15032769	0.13704616	9.64	1408e-0)2	0.098	30077	2	0.08	33230	86	0	.1489	9956
##	5	0.07030848	0.04386725	1.72	2261e-0)1	0.13	92971	9	0.16	60723	33	0	.1387	3944
##	6	0.06811241	0.04036481	6.28	9662e-0)2	0.043	38203	7	0.0	20132	61	0	.0435	7492
##		11LB	11RC	15LB	15NC 1	.5RD	16LD	2RA	2RC	5NA	6RD	8RCI			
##	1	1.243790e+03	204.89000000	NA	NA	NA	NA	NA	NA	NA	NA	NA	1		
##	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1		
##	3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1		
##	4	9.106039e-02	0.04543902	NA	NA	NA	NA	NA	NA	NA	NA	NA	1		
##	5	2.633885e-02	0.02923520	NA	NA	NA	NA	NA	NA	NA	NA	NA	1		

6 8.868057e-03 0.01883938 NA NA NA NA NA NA NA NA NA

We can look solely at the myeloid population (and normalise to this total), and color according to growth

2.2. FACS DATA 19

Similarly, we can look at the leukocyte population. Note that the Treg population in some of these samples is very high.

2.3 Summary Table

Firstly, look at the total number of samples:

Feature	Levels	N
Total No Tumors	All	143
-	Characterisation	33
-	Prevention	8
-	Progression	84
Total No Rats	All	69
-	Characterisation	18
-	Prevention	8
-	Progression	42
No tumours per rat	-	1.84 (1, 3)

2.3.1 Compare the characterisation vs progression cohort

Feature	Levels	Characterisation	Progression
Total No tumours		59	102
Treatments	Vehicle	64	27
-	Untreated	4	
-	LY		17
-	PDL1		17
-	PDL1+LY		23
-	NA	18	18
Histology	diff. adenocarcinomas	41	76
-	mucinous carcinoma	0	3
-	Fibroadenoma	0	4
-	NA	18	19
Age Injection	32-36	8	84
-	35	27	0
-	49	6	0
-	NA	18	18
Time (days)	NMU 2 Sac	98.59 (54, 160)	149.37 (79, 248.7)
-	Cases with NA	30	18
-	NMU 2 Tumor		100.62 (44.2, 182.7)
-	Cases with NA	59	18
-	Tum Spec Surv		48.75 (9.5, 92)
-	Cases with NA	59	18
Growth Rate/Size (mm)	overall size @ sac	6.67 (1.4, 12.4)	19.52(3,40)
-	Growing No.		47
-	Growing size @ sac		27.7 15, 28, 40
-	Stable		31
-	Stable size @ sac		9.58 (1, 6, 24)

Feature	Levels	Characterisation	Progression		
-	NA	59	24		
Spatial Pattern					
-	Infiltrating	0	26		
-	Restricted	0	33		
-	NA	59	43		
RNA samples	any fraction	14	46		
-	Ep	14	21		
-	DN	0	33		
-	CD45	10	36		
Imaging Data	No tumors		64		
-	No tumors with RNA	A	38		
FACS data	Comprehensive		22		
-	EpCAM/CD45	0	82		

TO INCLUDE: - trichrome data?

2.3.2 Summary of the RNA data

Below is a table of the samples with RNA information

Feature	Levels	Characterisation	Progre
RNA samples	any fraction	14	46
-	Ep	14	21
-	DN	0	33
-	CD45	10	36
Treatments Char/Prev	Vehicle	13	15
-	Untreat (char)	1	
-	LY		9
-	PDL1		11
-	PDL1+LY		11
-	NA	0	0
Time	NMU 2 Sac	106.9 (54.9, 160)	113.85
Growth Rate/Size (mm)	overall size @ sac	7.1 (3.9, 12.2)	21.96
-	Growing No.		33
-	Growing size @ sac		27.64
-	Stable		12
-	Stable size @ sac		7.17(3
_	NA	14	1
Growth and Treatment: comparing small/stable vs large/growing			
Vehicle	N s/l		2, 13
LY	N s/l		2, 7
PDL1 and Treatment	N s/l		4, 6
PDL1+LY	N s/l		4, 7

Chapter 3

Whole-slide imaging

In this section, we will be looking at the composition and spatial distribution of cells in whole slide images. These sections have previously been assessed using an external script. Save this somewhere

The following markers have been used:

- EpCAM (tumor cells)
- SMA (fibroblasts or myeopithelial cells)
- CD8 (T cells)

Note that in some images a double positive EpCAM+/SMA+ population exists. Some CD8 cells have Epcam+ or SMA+ staining, however, we consider all of these to be simply CD8+

3.1 Associate the frequencies with other data types

Note there are 47 samples with imaging data. 33 of these samples have FACS data, manual counts and TIMER scores

Correlate the following information:

- "CD8.WSI": CD8 total counts
- "CD8Frac.WSI": CD8 fraction (normalised by cell count)
- "CD8_EPorSMARatio.WSI": CD8/EP+SMA ratio (any EpCAM or SMA + cell)
- "CD8_AnySMARatio.WSI": CD8/Any EPcam+ cell
- "CD8 EPRatio.WSI": CD8 to EpCAM+SMA- ratio
- "CD8normTumSize": normalised CD8 counts per mm of tumor size at sac
- "CD8.EpBoundingBox": approx area per CD8 cell (density)

UPDATE THE CIBERSORT INFORMATION.

Below are heatmaps which show the correlation between two variables (red is correlated and blue is anti-correlated), and the p.value is indicated in the middle of the square.

It appears that CD8 whole-slide imaging associates well with:

- FACS data (both CD8 and CD45)
- Manual scoring (Fig 4) of CD8 cells
- Some CD8 gene signature scores (mainly in EPC, TIMER)

CD8 WSI correlation with Pvalues

WSI vs FACS w Pvalues

3.2 Cellular composition

Here, we look at the raw distributions of the different cell types and see if there are associations with:

- tumor size
- growth rate
- growth rate (categorical)
- treatment
- stromal restricted or infiltrating

Below are the total cell counts:

Here, the same data is shown and normalised according to total cell count:

3.3 Associate composition with other covariates

We can collapse the above data into boxplots to see if there is an association with treatments, performed using non-parametric wilcoxon test.

Compared to the vehicle, LY treated samples have a lower "stromal" fraction (unclassed DAPI+ cells) and PDL1 treated samples are more likely to have a EpCAM+SMA+ double positive fraction

When comparing these fractions to growth, there is no association:

```
## Warning in wilcox.test.default(Cdata[Cdata$Growth2 == "growing", i],
## Cdata[Cdata$Growth2 == : cannot compute exact p-value with ties
## Warning in wilcox.test.default(Cdata[Cdata$Growth2 == "growing", i],
## Cdata[Cdata$Growth2 == : cannot compute exact p-value with ties
```


not (by manual inspection)

Warning in wilcox.test.default(Cdata[Cdata\$InfiltratingVsRestricted == ## "Infiltrating", : cannot compute exact p-value with ties

Warning in wilcox.test.default(Cdata[Cdata\$InfiltratingVsRestricted == ## "Infiltrating", : cannot compute exact p-value with ties

We can also use linear regression models to assess:

- correlation between growth rate and cell fractions (no associations)
- correlation between final tumor size and cell fractions (no association)

3.4 Estimate tumor size

Using WSI data, we can estimate a tumor size for each tissue sample and compare to the final tumor sizes. This will be based on the distribution of EpCAM+cells. This estimate is also used to normalise CD8 counts earlier on.


```
##
## Pearson's product-moment correlation
##
## data: TareaSum and Tdiameter
## t = 1.6859, df = 54, p-value = 0.09759
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.04174574 0.45949702
## sample estimates:
## cor
## 0.2236089
```

3.5 Correlations between different subpopulations

Look for correlates between different subpopulations: Naturally, we would expect a negative correlation since this should sum to 1. Below are heatmaps showing correlations between different cell types, and significant associations are linearly shown.

Note the following negative correlations:


```
## EpCAM: SMA -0.1268947 -0.1595219 1.0000000 -0.2171477 -0.1783030
## SMA
              -0.0344095 -0.5597908 -0.2171477
                                                1.0000000 -0.4946850
              -0.1107879 -0.1898428 -0.1783030 -0.4946850 1.0000000
## Unclass
##
                          [,2]
                                    [,3]
                                                  [,4]
             [,1]
                                                              [,5]
## [1,] 0.0000000 1.891064e-01 0.3513624 8.012235e-01 0.416293560
## [2,] 0.1891064 0.000000e+00 0.2402481 7.272201e-06 0.161096722
## [3,] 0.3513624 2.402481e-01 0.0000000 1.079270e-01 0.188588161
## [4,] 0.8012235 7.272201e-06 0.1079270 0.000000e+00 0.000106427
## [5,] 0.4162936 1.610967e-01 0.1885882 1.064270e-04 0.000000000
```

3.6 Associations between CD8 counts with other clinical variables

Below we assess whether any of the CD8-variables described in section 3.1 is associated with

- treatment
- growth
- spatial pattern

Note that CD8 normalised by tumor size is associated with growth (but this could a reflection of the size of the tumor), and there is a borderline differ-

3.6. ASSOCIATIONS BETWEEN CD8 COUNTS WITH OTHER CLINICAL VARIABLES35

ence once normalised by epithelial content. In addition the CD8 total count is associated with pdl1+ly treatment.

Note that p=0.05 is designated by a value of 1.3 $\,$

Chapter 4

Spatial statistics

Below, we use three different metrics to compare spatial distributions:

- k-nearest neighbour distances
- the interacting fraction
- morisita-horn distances

These are compared to manual inspection of the result

4.1 knn-Distances:

The k-nearest neighbour distances looks at the average distance from a given cell type of class A to a cell type of class B. In this section, the reference class A is the CD8 T cell, and we will look at the mean distance to SMA, Epcam, double positive and unclassified cells in each image.

To account for potential fluctuations due to misclassified cells, or isolated single cells, k values of 1, 3, 5 will be used. I.e. for each cell, we will compute the mean distance from each Cd8Tcell to its 1, 3, and 5 nearest neighbours.

4.1.1 Comparison to manual classification, treatment, growth

Overall, we see that the differences in infiltrating vs restricted are similar. We see statistical differences (using anova followed by Tukey's test) between:

- epcam and SMA-epcam in both cases (higher distances to EpCAM on average)
- SMA-Epcam to SMA (CD8s are closer to SMA+)
- Unclass to Epcam-SMA (CD8s closer to unclass)

In the infiltrating case:

• Unclass to Epcam (CD8s closer to unclass, borderline significant)

In the restricted cases, we see:

- Unclass to SMA (higher distance to unclass in the restricted case)
- SMA to epcam (CD8s are closer to the SMA)

This last result is consistent with what we expect for a CD8+ cell which is stroma-restricted.

39

Infiltrating Mean Distance from CD 85% family-wise confidence level 95% family-wise confidence level

Differences in mean levels of NearestCellTyr

Differences in mean levels of NearestCellTyr

4.1.2 Associations with outcome

We can also see if there is an association between these distances with growth and treatment

Treatment:

- CD8 cells in PDL1 sample are further away to SMA+ cells and EpCAM+ (compared to vehicle or double agent)
- CD8 cells in LY treated samples are further away from unclassified cells (compared to any of the other treatments)

4.1.3 Growth

All 95% confidence lines cross 0, but it appears that stable cases have a closer unclass-CD8 interaction distance compared to growing.

Based on the above distributions, knn1, knn3, and knn5 analyses give similar results. In the following section, we will make comparisons using knn3 results.

4.1.4 Association between distance and content

The spatial differences could be influenced by CD8 content. Here, we test if the distances from CD8Tcells to celltype B could be influenced by this.

We see that there is a correlation between CD8 fraction and the SMA proportion (both SMA and double positive). But we don't see an association with epcam+cells or unclassified stromal cells

CD8-Epcam distances are looked at in greater detail below. Here, we look at whether there is an association with CD8 fraction in a growing and stable tumors.

In growing or spatially restricted tumors, there is an association between the CD8-epcam distances with the CD8 fraction, but not in infiltrating or stable tumours.

Do any of the below metrics correlate with manual scoring:

- We can assess the distances from CD8 cells which come automatically:
 - Ep-distance
 - SMA distance
 - Ep:SMA distance
 - SMA distance.
- EpMIN: distance to any Epcam expressing cell (includes EP+SMA+)
- Ratios between Epcam and SMA: There are different values depending on whether the double positive fraction is used or not
 - (Ratio 1): Ep/any SMA
 - (Ratio 2): EP/SMA
 - (Ratio 3): Any Ep / Any SMA
 - (Ratio 4): Any Ep/SMA

Whilst the manual scorings associate strongly with CD8-EPcam distances, there is no association with any other cell type.

4.2 The interacting fraction

The interacting fraction uses the knn-distances and determines the proportion of CD8 cells which are within a proximity of r um from celltype B.

4.2.1 Comparison to manual & select optimal r

Below are plots of the proportion of CD8 cells within an "interacting distance" as we increase r. This looks at both the interacting fraction of CD8 cells with Epcam+ and SMA+ cells. Lines are color coded according to the manual spatial-infiltration annotation.

We notice from the line plots for each single sample that the restricted samples generally have low interacting fractins with EpCAM and SMA compared to the infiltrating samples. In addition, there is a statistical difference in EpCAM measurements compared to SMA.

CD8-EpCAM interacting fraction: spatial manual

Using the boxplots as a guide, we can determine optimal "interacting distances" at which to perform downstream analysis. The best separation between restricted and infiltrating for EpCAM appears at:

1-nn: 10-15 um3-nn: 15 um5-nn: 20 um

The interacting fraction does not distinguish SMA fractions (all restricted boxplots overlap with the infiltrating boxplots)

The following plots use 3NN analysis with an interacting distance of 15um. We can firstly check if there is an association between different "interacting fraction" types and manual scoring, similar to what was performed for knn-analysis. Only

CD8-EpCAM interacting distances is associated with manual scoring. All other metrics are not significant.

Again, association between CD8 content and interacting fraction was observed ONLY in the growing samples or restricted cases.

4.2.2 Growth

Here, we check if there is an association between the spatial pattern and tumor growth.

None of the above metrics associate with growth. (P value by wilcox test shown)

4.2.3 Treatment

Similarly, compare the distances with treatment:

There appears to be a difference in CD8-unclass interactions in LY treated samples (LY, PDL1+LY), but not in the other cases

4.3 M-H distances

The M-H distance (or Morisita Horn index) can be considered as a correlation coefficient in spatial distribution between cell type A and cell type B. To calculate this metric, the whole slide image is divided into grids of size 50 to 500um. Within each grid, the total number of cells A and B are determined.

The M-H index is thus determined as:

$$\frac{2\sum_{i=1}^n a_ib_i}{(D_a+D_b)AB}$$

where a_i and b_i are the number of cells in grid i,

A

and

B

the total number of cells, and

 D_x

is the Simpson's index.

4.3.1 Comparison to Manual Scoring

Similar to the interacting fraction, we plot the MH index for increasing values of gridsize to determine an optimal metric to compare spatial patterns. Ideally, we would pick a metric has the following properties:

- good separation of the different values
- a reasonable number of cells within each grid (avoid too small grids which give counts of 0)
- avoid plateauing of MH values because the grid size is too large

MH index with CD8: spatial manual

grid size

With increasing grid size, optimal differences between infiltrating and restricted appear at the following sizes:

- epCAML 100um+
- epcam:SMA most significant at 350+
- SMA: 150+Unclass:200+

We probably want to use a metric/gridsize of 250 um as the expected/mean number of cells in each grid is 10 here. Other notes:

- \bullet double positive cells (EpCAM+SMA+) appear in predominantly the restricted cases?
- higher SMA- stromal cells in restricted

Below, we check whether these metrics can differentiate between infiltrating and restricted tumors:

The above analysis shows that the MH-index shows differences in mixing between CD8 cells and mixing with most cell types. However MH-CD8-to-Epcam to MH-CD8-to-stroma ratios do not support this difference.

4.3.2 Growth

Below are the MH indices with increasing grid-size for individual samples. In general, there is a subset of stable samples which have very high intermixing

Although the MH values for growing vs stable are not different, we can compare the mixing in epcam vs stroma in matched samples:

MH index with CD8: stable p=0.23, growing p=0.01

4.3.3 Treatment

There is no difference between the different spatial metrics compared to the vehicle, however, we can compare for a given treatment if there is a difference between the epcam and the stromal interaction scores. It appears that there

Treatment

is a difference only in the control, where SMA mixing is higher than EPcam mixing:

4.4 Comparison between metrics

After assessing optimal parameters for each metric, in this section we assess which metric could be the best for spatial analysis.

Below is a table of the different metrics and their values for each sample

	1 13 0434	ID D CANE	MILE CAR	m ,	Q 1	T C1	OD00
10T D	knn.EpCAM	IF.EpCAM	MH.EpCAM	Treatment	Growth	Infil	CD8fr
10LB	39.96193	0.2236555	0.4598790	PDL1	growing	Infiltrating	0.02289
10LC	17.87345	0.4768745	0.5432610	PDL1	growing	Infiltrating	0.01003
10LD	34.33110	0.2944373	0.6867357	PDL1	stable	Infiltrating	0.068108
10NA	23.80977	0.4808547	0.4764461	PDL1	NA	restricted	0.04656
10ND	26.20801	0.4408878	0.4181843	PDL1	stable	restricted	0.02271
10RBL	44.92703	0.2213380	0.5857603	PDL1	growing	restricted	0.02027
10RBU	87.12901	0.0816202	0.3840030	PDL1	NA	restricted	0.06706
11LB	69.10296	0.2080105	0.2992537	PDL1	growing	NA	0.15217
11ND	92.98237	0.0079816	0.5643066	PDL1	stable	Infiltrating	0.38006
11RC	153.33513	0.0386688	0.0388372	PDL1	growing	restricted	0.050413
11RD	73.82461	0.2323507	0.3847338	PDL1	growing	restricted	0.02244
12LD	355.94915	0.0002809	0.1642608	PDL1	stable	Infiltrating	0.022369
13NA	70.80101	0.1279338	0.3039013	Vehicle	growing	restricted	0.03558
14NB	49.22243	0.2540062	0.4353436	PDL1+LY	growing	restricted	0.10615
14NC	44.46686	0.1239597	0.3670808	PDL1+LY	stable	restricted	0.054129
14RD	31.50346	0.1681860	0.6214897	PDL1+LY	stable	Infiltrating	0.01033
15LB	32.69579	0.2226772	0.4642353	PDL1+LY	growing	restricted	0.01296
15NC-D	39.22818	0.1299775	0.4756601	PDL1+LY	growing	restricted	0.01078
15ND	15.54429	0.6025030	0.6063571	PDL1+LY	stable	Infiltrating	0.01047
15RD	91.07517	0.1578969	0.3729870	PDL1+LY	growing	restricted	0.03283
16LA	31.26867	0.2750368	0.3355138	PDL1+LY	NA	Infiltrating	0.01715
16LC	71.64542	0.2411490	0.0623470	PDL1+LY	stable	Infiltrating	0.04769
16LD	38.85862	0.3001624	0.5734648	PDL1+LY	stable	Infiltrating	0.03161
16ND	29.84045	0.2842939	0.5094333	PDL1	stable	Infiltrating	0.07533
16RD	56.31604	0.2354937	0.3920871	PDL1	stable	Infiltrating	0.03064
17NA	61.86642	0.0907525	0.3510232	Vehicle	growing	restricted	0.04726
17ND	111.85371	0.0029328	0.6112631	Vehicle	stable	Infiltrating	0.11152
17RB	16.70828	0.6275561	0.4630693	Vehicle	growing	Infiltrating	0.04110
2N	35.15413	0.2448721	0.3766073	Vehicle	growing	restricted	0.03010
2RA	132.80795	0.0452766	0.3252085	Vehicle	growing	restricted	0.085819
2RD	38.61221	0.1979009	0.6791816	Vehicle	growing	restricted	0.074219
3LA	46.09601	0.2865240	0.4162200	Vehicle	growing	restricted	0.05312
3NB	32.31159	0.4377911	0.7061056	Vehicle	stable	Infiltrating	0.276829
3RB	42.63162	0.2910751	0.4645950	Vehicle	growing	restricted	0.02665
3RC	32.11938	0.2962108	0.4965437	Vehicle	growing	Infiltrating	0.023213
4LB	30.99117	0.2903294	0.5447258	Vehicle	growing	Infiltrating	0.02444
4NC	15.33106	0.6851436	0.0901870	Vehicle	growing	restricted	0.00813
4ND	20.75556	0.4768080	0.5809047	Vehicle	growing	Infiltrating	0.00762
4RB	53.31478	0.1765476	0.3445324	Vehicle	growing	restricted	0.028009
$\frac{116D}{5LA}$	41.12871	0.2471295	0.3724930	Vehicle	stable	Infiltrating	0.04539
5LB	41.91177	0.2807178	0.4690510	Vehicle	growing	restricted	0.02578
$\frac{5LC}{5LC}$	82.68448	0.2307178	0.1980203	Vehicle	growing	restricted	0.02370
$\frac{5LC}{5LD}$	91.41539	0.1103343	0.1980203	Vehicle	stable	restricted	0.034810
5RB	39.00602	0.0733101	0.2028472	Vehicle	growing	restricted	0.05966
6LDU	111.44785	0.1994819	0.4479302	LY	growing	restricted	0.05562
$\frac{6\text{ND}}{6}$	28.41556	0.1092889	0.4251078	LY	growing	NA	0.03362
$\frac{6RB}{}$	76.37955	0.2730028	0.4231078	LY	growing	Infiltrating	0.08139
$\frac{6RB}{6RC}$				LY		0	
	50.21453	0.1966022	0.5496400		growing	restricted	0.07880
7NB	80.17580	0.0728176	0.1877309	LY	growing	restricted	0.020673
7NC	89.34399	0.0531233	0.2103338	LY	growing	restricted	0.04794
7RA	33.35958	0.2251296	0.4269972	LY	stable	restricted	0.03193
7RB	34.39737	0.1917334	0.7110689	LY	growing	NA	0.01694
7RD	44.13770	0.2386457	0.4019270	LY	stable	Infiltrating	0.032169

Firstly, we can compare the different metrics to determine how similar or different they are:

Do any of these metrics associate with growth or treatments?

We can also compare this to raw tumor size or growth rate data as well:

4.5 Other cell types

We noted that the proportion of Unclassified cells seemed to be different between the treatments. Assess here whether the MH index for this cell type is associated with growth or treatment here:

MH index with Unclass: growth

MH index with Unclass: growth

Chapter 5

Expression data

This file looks at loading and pre-processing data for:

- differential gene expression analysis
- PAM50 subtyping
- uploading into CIBERSORT/TIMER

5.1 Running alignment

Samples were mapped in star using the following parameters. Note that the first two batches of samples run had shorter read lengths (\sim 75 bp) whereas batch 3 had lengths of \sim 150bp

```
## Not run here
STAR \
     --readFilesCommand zcat \
     --genomeDir /n/scratch2/at268/rn6_v2 \
     --sjdbGTFfile /n/scratch2/at268/rn6_v2/rn6.refGene.gtf \
     --runThreadN 10 \
     --runMode alignReads \
     --genomeLoad NoSharedMemory\
     --outSAMattributes NH HI AS nM NM\
     --outSAMstrandField intronMotif\
     --outFilterMultimapNmax 20\
     --alignSJoverhangMin 8\
     --readFilesIn $1 $2 \
     --alignSJDBoverhangMin 1\
     --outFilterMismatchNmax 999\
     --outFilterMismatchNoverLmax 0.1
     --alignIntronMin 20\
     --alignIntronMax 1000000\
```

```
--alignMatesGapMax 1000000\
--outFilterType BySJout\
--outFilterScoreMinOverLread 0.33 \
--outFilterMatchNminOverLread 0.33 \
--limitSjdbInsertNsj 1200000 \
--outFilterIntronMotifs None \
--alignSoftClipAtReferenceEnds Yes\
--outSAMattrRGline ID:$4 SM:$4 \
--chimSegmentMin 15 \
--chimJunctionOverhangMin 15\
--limitBAMsortRAM 0\
--outSAMtype BAM SortedByCoordinate\
--outSAMunmapped Within \
--quantMode GeneCounts transcriptomeSAM \
--quantTranscriptomeBan IndelSoftclipSingleend \
--outFileNamePrefix $3 \
--twopassMode Basic
```

In addition, RSEM was run to obtain TPM, rsem and FPKM counts. Note: rn6.refGene.gtf.gz was used to generate the RSEM library!(This is the may version)

5.2 RNA Initial QC

Default output from R showing the number of unique reads compared to multimapped, unmapped etc. This is shown for each batch. Note that batch 3 has differences (high percentage of unmapped) compared to the other batches, possibly due to DNA contamination.

Below we check for three measures:

- mapped million reads (ideally, 10M+ reads)
- Gene Sparsity: This is a measurement of the number of genes which have non-zero values. Ideally, would be greater than 10K, but values which are too high may also suggest contamination from DNA (unexpressed genes are also counted)
- Varability: standard deviation of the transcriptomic counts. If this value is too low, would suggest that high DNA contamination, non-representative transcriptome.

Gene Variability N = 116 Bandwidth = 750.3

Samples to remove from analysis:

The thresholds indicated below are based on the above density plots, and removes cases which are $<1.5~\mathrm{SD}$ of the mean

• low total number of mapped reads (under 1.5M)

• sparsity: less than 8K genes

• variability: threshold under 500

The omitted samples are:

	MappedReadsM	GeneSparsityK	Batch	GeneVariabilityCounts	Type	r
6R_C_CD45	2.287110	5.585	2	1063.38925	CD45	(
10L_B_DN	0.864838	3.308	2	559.30659	DN	1
NMU1_LL_Ep	1.032440	16.708	3	69.82645	Ep	
NMU5_LA_Ep	0.500429	15.707	3	35.56084	Ep	
Control1Ep	8.224593	5.800	1	3164.00515	Ep	
NMU13_RAU_Ep	3.049733	7.242	1	1069.99912	Ep	I

We are left with 110 samples.

There are 47, 32, 31 samples in the CD45, Ep, DN fractions.

There are 20, 49, 41 samples from batches 1, 2 and 3 respectively.

5.3 Normalisation

Run through DESEq and normalise the library. Using all samples, we run the model:

 $expression \sim Celltype + factor (Batch)$

and keep the genes which have a total count of at least half the number of samples. ie. $\sum_{j=1}^{n} s_{j} > N_{samples}$

5.3.1 preliminary visualisation (to remove outliers)

Below are PCA plots based on:

- Batch
- \bullet CellType

Batches in general separate out well, however, some samples appear to be outliers in comparison to the main group. We look in closer detail the CD45, DN and EpCAM populations.

In the CD45 population, narrow down to only immune related genes to see if there is a difference.

CD45 only Treatment: immune only genes

PC1: 54% variance

Based on the above plots, we remove the following outliers and re-run the normalisation:

- $2R_DDDN$
- 4L_B_CD45

5.4 Processing files for external software

We also process these files for external software:

Software	RNA-data
PAM50	rsem data after quantile normalised, genes converted to human
TIMER	TPM values, retain rat ids
xcell	rsem data, genes converted ti human
cibersort	tpm?? convert to rat genes and use lm22 rat

named integer(0)

named integer(0)

Save the mouse names for TIMER cistrome: check that this is actually required for TIMER

Chapter 6

RNA data: preliminary plots

Prior to doing any comparative analysis, we will look at the following plots to get an overview of the data.

6.1 PCA plots

We can check the new PCA plots, and overlay parameters of interest including treatment, growth, tumor size, CD8 fraction, spatial distribution.

In addition, we can look at the CD45 population and the distributions based on CD8 content and spatial infiltration $\,$

6.2 Expression patterns by cell type

Below, we check whether the different fractions are expressing expected markers. The cell types are:

Red: Cd45Epcam: greenDN:blue

Reference Genes:

purple: immuneblue: epithelialgreen: stroma

orange: myoepithelialred: endothelial

Below, we see that the CD45 cells separate from the Ep/DN populations have high expression of immune related genes including CD3, CD4, IFNG.

However, the DN/Ep fractions are more intermixed. The DN fraction has expression of keratins, as well as fibroblast markers (Acta1), and myeoepithelial markers (Tp63)

Chapter 7

DESeq analysis

This document sets up DESeq runs to compare:

- DN vs Ep samples
- growing vs stable samples (all 3 fractions)
- treatments (all 3 fractions)
- spatial patterns (all 3 fractions)

The outputs of these analyses will be used for Gene Set Enrichment Analysis, using MSigDB databases (c2, c5, hallmark), alongside pathways from Metacore (Process Networks, Pathway Maps)

7.1 DN vs Ep

What is the difference between DN and Ep fractions? Select for genes with p value cut off of 0.05 and log2 fold change of 1.5. Also, when visualising top genes, select for base expression greater than 100

```
##
## out of 15301 with nonzero total read count
## adjusted p-value < 0.1
## LFC > 0 (up) : 2172, 14%
## LFC < 0 (down) : 1188, 7.8%
## outliers [1] : 463, 3%
## low counts [2] : 779, 5.1%
## (mean count < 2)
## [1] see 'cooksCutoff' argument of ?results
## [2] see 'independentFiltering' argument of ?results</pre>
```

	baseMean	log2FoldChange	lfcSE	stat	pvalue	padj
Fap	147.505781	3.791943	0.6564706	5.776257	0.0000000	0.0000009
Vim	13706.172521	1.832658	0.3361022	5.452680	0.0000000	0.0000035
RGD1565355	4.841686	-2.427252	0.8547683	-2.839661	0.0045162	0.0307470
Mme	214.622521	2.418161	0.5763311	4.195784	0.0000272	0.0005517
Cnn1	618.403495	1.572872	0.4698537	3.347578	0.0008152	0.0081399
Tp63	145.596811	2.047668	0.4768123	4.294494	0.0000175	0.0003907
Cdh5	114.363936	1.899697	0.6674752	2.846093	0.0044259	0.0302941
Itgam	289.807818	-2.251148	0.5564127	-4.045824	0.0000521	0.0009532
Col1a1	35939.383628	4.962384	0.7227443	6.866031	0.0000000	0.0000000
Krt14	949.200864	1.834436	0.4774425	3.842214	0.0001219	0.0018837
Acta2	489.516373	1.678424	0.4013367	4.182086	0.0000289	0.0005810
Cd38	370.418350	1.897076	0.4719555	4.019608	0.0000583	0.0010370
Cdh3	100.102955	1.705776	0.4293903	3.972553	0.0000711	0.0012132

7.1. DN VS EP 85

Note that there seems to be two main groups of Ep cells:

The first one is enriched for canonical tumour progression pathways: eg. expression of wnt, fox1a etc. The second one doesn't seem to have as high expression of these genes, but have high immune related signalling pathways

7.2 Set-up the comparisons

Separate out the tables into CD45, DN and Ep fractions. Compare

- 1. Differences based on treatment (and treatment vs control)
- 2. Specific treatments vs control
- 3. Growing vs stable (overall)
- 4. Growing vs stable (in each subgroup)

Check there are enough samples in each subgroup:

```
## [1] "number of samples for each treatment and growth rate"
##
        = growing
##
##
##
          LY PDL1 PDL1+LY Vehicle
##
     CD45
          5
                5
                         5
                                11
     DN
           3
                5
                         4
                                 9
##
##
     Еp
           3
                4
                         2
                                 2
```

```
##
##
      = stable
##
##
##
          LY PDL1 PDL1+LY Vehicle
##
     CD45 2
                2
                        3
##
     DN
                2
                        4
                                 2
           1
                3
                        3
##
     Ер
           1
```


Setup the following comparisons for each cell type:

expression \sim growing + treatment + batch (exclude 1) (start with vehicle vs some treatment)

4 categories only: immunotherapy vs non-immuno

Separate out the tables into CD45, DN and Ep fractions. Compare:

- 1. Treatment (EpddsTreat)
- 2. Comp4: Growth + any immunotherapy treatment (Epdds)
- 3. Comp8: Growth + immunotherapy (EpddsTreatG)
- 4. Growth alone: (EpddsGrowth)
- 5. MH index: (EpddsStrMH)
- 6. Interacting Fraction (EpddsStrIF)
- 7. knn values (EpddsStrknn)
- 8. CD8 content (EpddsCD8)
- 9. Manual scoring spatial (EpddsSpatMan)
- 10. MH index + CD8 frac (Epddscd8MH)

We remove genes which have 0 counts in more than half the samples, and genes which have a row sum less than $10^{(\log 10(\text{mean(rowsums)})-\log 10(\text{sd(rowsums)}))}$

temp insertion: do comparison of differences in spatial with outcome:

7.3 PCA plots

check whether these are needed?

Also check the variance with the different samples

Ep population: growth: kinetics vs final tum size

CD45 population: treatment

CD45 treatment (immune vs control) + growth

PC1: 60% variance

7.3.1 Results: differences in the epithelial fraction

Save to file the differences in the epithelial fractions

7.4 GSEA

• may need to convert gene names into HUGO symbols

Prepare for GSEA: This takes approximately 15 minutes

7.5 CD45 comparisons

7.6 DN comparisons

Chapter 8

DESeq analysis

8.0.1 Summary plots

Quick plot of the differences in number of differential genes:

##		Frac	dir	variable	value
##	1	<na></na>	<na></na>	stablecontrol_vs_growingcontrol	2
##	2	<na></na>	<na></na>	stablecontrol_vs_growingcontrol	2
##	3	<na></na>	<na></na>	stablecontrol_vs_growingcontrol	1
##	4	<na></na>	<na></na>	stablecontrol_vs_growingcontrol	11
##	5	<na></na>	<na></na>	stablecontrol_vs_growingcontrol	2
##	6	<na></na>	<na></na>	stablecontrol_vs_growingcontrol	9

Any commonly changed genes in any of the lists? Plot lists: * Pearson correlation of all the samples * Unlist all, and pick out genes which are impacted in at least 1 comparison

CD45 comparisons

DN samples:

8.1 Focus mainly on growing vs stable:

Check: Is the difference between stable and growing just MHC expression?

8.1.1 comapre DN samples: PAM50 Lum vs Basal/Normal?