Clustering

James Sharpnack

Lecture adapted from notes of Sontag, Blei, L. Mackey, R.J. Tibshirani

Motivations

- Compressed representations to save storage and computation
- Reduce noise, deal with missingness
- Visualization and exploratory data analysis
- Semi-supervised learning: create features that are used in supervised learning (label propagation)
- Dictionary learning: learning basis elements that provide sparse representations in supervised learning

Setting, objective, and algorithm

Properties

- Objective always converges (may be exponential time)
- Can use many dissimilarities, L2, L1, hamming distance
- ☐ Choosing k is not clear: **Gap statistic**
- Convergence may be slow: K-means++ run Lloyd's algorithm with random initialization, or use random restarts
- Cluster centers are not usually data point.
- Can make transformations as before!

Example: Image Segmentation

- (1) Each pixel has an RGB value (3 floats)
- (2) Calculate color based distance between pixels (far apart pixels can be nearby in color distance!)
- (3) Use k-means on pixel features
- (4) Pixels are grouped according to colors

FIGURE 14.9. Sir Ronald A. Fisher (1890 – 1962) was one of the founders of modern day statistics, to whom we owe maximum-likelihood, sufficiency, and many other fundamental concepts. The image on the left is a 1024×1024 grayscale image at 8 bits per pixel. The center image is the result of 2×2 block VQ, using 200 code vectors, with a compression rate of 1.9 bits/pixel. The right image uses only four code vectors, with a compression rate of 0.50 bits/pixel

[Figure from Hastie et al. book]

Feature engineering

What do you want distinguishing the clusters?

- Cluster pixels based on color, distance, or a combination
- Word content for documents: tf-idf similarity
- Switch role of words and documents and cluster the words based on document counts

Clustering words

Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5	Cluster 6	Cluster 7
employe fmla leav	applic claim file invent patent provision	action affirm american discrimin job minor opportun peopl women	cadmaz consult copyright custom design manag project sect servic	cfr contain cosmet ey hair ingredi label manufactur product regul	amend bankruptci code court creditor debtor petition properti section secur truste	anim commod cpg except fat fe food fruit level ppm refer top veget

Figure 34. The seven smallest clusters found in the document set. These are stemmed words.

[Jain et al. "Data clustering: a review", 1999]

[Morsdorff et al. "LIDAR-based geometric reconstruction...", 2004]

[Morsdorff et al. "LIDAR-based geometric reconstruction...", 2004]

[Morsdorff et al. "LIDAR-based geometric reconstruction...", 2004]

[Morsdorff et al. "LIDAR-based geometric reconstruction...", 2004]

Agglomerative clustering

- → Agglomerative: bottom-up clustering
- Divisive: top-down
- **☐** Dendrograms, cluster similarities, algorithms

Clustering gene expression data

Mouse tumor data from [Hastie et al.]

Summary

You should start by asking: what do I want my clustering to do?

This impacts: feature engineering, similarity measure, algorithm selection, visualization!