KUPC2020 spring F: ボタンの木 解説

writer: drafear

2020年3月20日

まず、a,b については差分のみ考えれば良いので目標変化量 d を $d_i = b_i - a_i$ とします。

次に、辺 (i,j) を合計して移動する美しさ c_{ij} を考えます *1 。辺 (i,j) を取り除いたときに分かれる 2 つの木に含まれる頂点の集合をそれぞれ I,J $(i\in I,j\in J)$ とすると

$$c_{ij} = -\sum_{v \in I} d_v = \sum_{v \in J} d_v$$

が成り立つので、 $\sum_{v\in I} d_v$ または $-\sum_{v\in J} d_v$ を計算することで、すべての辺 (i,j) について c_{ij} を求めることができます。これは、入力で与えられた木を頂点 1 を根とした根付き木として考えると、頂点 i の部分木に含まれる頂点集合と I、または頂点 j の部分木に含まれる頂点集合と J が一致するので、深さ優先探索により各頂点 i についてその部分木に含まれる d_v の総和を計算することにより、線形時間で求められます。

今度は各頂点iのボタンを押す回数 x_i を考えます。すると

$$x_i - x_j = c_{ij}$$

が成り立ちます。したがって、i=1,2,...,N について頂点 i のボタンを押す回数 x_i は、頂点 1 のボタンを押す回数 x_1 とある定数 k_i を用いて $x_i=x_1+k_i$ の形で表せます。ここで、 $k_1,...,k_N$ は頂点 1 から深さ優先探索で求めることができます。 $k_1,...,k_N$ が求まると、 $x_1,...,x_N$ が解となる条件は $x_1,...,x_N \geq 0$ なので、 $x_1=-\min_i\{k_i\}$ とすれば $\sum_i x_i=Nx_1+\sum_i k_i$ は条件を満たす中で最小になります。

 $^{^{*1}}$ c_{ij} が負のときは j から i に $-c_i$ 移動すると考えます。 つまり $c_{ij} = -c_{ij}$ が成り立ちます。