Families of Commuting Normal Matrices

Definition M.1 (Notation)

i) $\mathbb{C}^n = \{ \mathbf{v} = (v_1, \dots, v_n) \mid v_i \in \mathbb{C} \text{ for all } 1 \leq i \leq n \}$

ii) If $\lambda \in \mathbb{C}$ and $\mathbf{v} = (v_1, \dots, v_n)$, $\mathbf{w} = (w_1, \dots, w_n) \in \mathbb{C}^n$, then

$$\lambda \mathbf{v} = (\lambda v_1, \dots, \lambda v_n) \in \mathbb{C}^n$$

$$\mathbf{v} + \mathbf{w} = (v_1 + w_1, \dots, v_n + w_n) \in \mathbb{C}^n$$

$$\langle \mathbf{v}, \mathbf{w} \rangle = \sum_{j=1}^n \bar{v}_j w_j \in \mathbb{C}$$

The ⁻ means complex conjugate.

- iii) Two vectors $\mathbf{v}, \mathbf{w} \in \mathbb{C}^n$ are said to be orthogonal (or perpendicular, denoted $\mathbf{v} \perp \mathbf{w}$) if $\langle \mathbf{v}, \mathbf{w} \rangle = 0$.
- iv) If $\mathbf{v} \in \mathbb{C}^n$ and A is the $m \times n$ matrix whose (i, j) matrix element is $A_{i,j}$, then $A\mathbf{v}$ is the vector in \mathbb{C}^m with

$$(A\mathbf{v})_i = \sum_{j=1}^n A_{i,j} v_j$$
 for all $1 \le i \le m$

- v) A linear subspace V of \mathbb{C}^n is a subset of \mathbb{C}^n that is closed under addition and scalar multiplication. That is, if $\lambda \in \mathbb{C}$ and $\mathbf{v}, \mathbf{w} \in V$, then $\lambda \mathbf{v}, \mathbf{v} + \mathbf{w} \in V$.
- vi) If V is a subset of \mathbb{C}^n , then its orthogonal complement is

$$V^{\perp} = \left\{ \mathbf{v} \in \mathbb{C}^n \mid \mathbf{v} \perp \mathbf{w} \text{ for all } \mathbf{w} \in V \right. \right\}$$

Problem M.1 Let $V \subset \mathbb{C}^n$. Prove that V^{\perp} is a linear subspace of \mathbb{C}^n .

Lemma M.2 Let V be a linear subspace of \mathbb{C}^n of dimension at least one. Let A be an $n \times n$ matrix that maps V into V. Then A has an eigenvector in V.

Proof: Let $\mathbf{e}_1, \dots, \mathbf{e}_d$ be a basis for V. As A maps V into itself, there exist numbers $a_{i,j}, 1 \leq i, j \leq d$ such that

$$A\mathbf{e}_j = \sum_{i=1}^d a_{i,j}\mathbf{e}_i$$
 for all $1 \le j \le d$