The What and the Why of Neural Modeling

The moment-to-moment operation of the nervous system involves the generation, propagation and interaction of electrical and chemical signals that are distributed in space and time.

Empirically-based modeling is needed to test hypotheses about the mechanisms that govern these signals and how nervous system function emerges from these phenomena.

Topics

- 1. How to create and use models of neurons and networks of neurons
 - Specifying anatomical and biophysical properties
 - Controling, displaying, and analyzing models and simulation results
- 2. How NEURON works
- 3. How to add user-defined mechanisms

Ion channels, synaptic mechanisms, chemical signals, artificial spiking neurons . . .

Physical System

Conceptual model

a simplified representation of the physical system

Conceptual model

a simplified representation of the physical system

Computational model

an accurate representation of the conceptual model

Hierarchies of Complexity Structure

Single compartment

Stylized

Anatomically detailed

Network

Hierarchies of Complexity Mechanism

Passive and Active currents
HH-style
kinetic scheme

Synaptic transmission continuous spike-triggered

Gap junctions

Extracellular fields, Linear circuits

Diffusion, buffers, transport & exchange

Artificial spiking cells ("integrate & fire")

Fundamental Concepts

Signals	What moves	Driving force	What is conserved
Electrical	charge carriers	voltage gradient	charge
Chemical	solute	concentration gradient	mass

Conservation of Charge

The Model Equations

$$c_{j} \frac{dv_{j}}{dt} + i_{ion_{j}} = \sum_{k} \frac{v_{k} - v_{j}}{r_{jk}}$$

```
    v<sub>j</sub> membrane potential in compartment j
    i<sub>ion<sub>j</sub></sub> net transmembrane ionic current in compartment j
    c<sub>j</sub> membrane capacitance of compartment j
    r<sub>jk</sub> axial resistance between the centers of compartment j
    and
    adjacent compartment k
```

Separating Anatomy and Biophysics from Purely Numerical Issues

section

a continuous length of unbranched cable

Anatomical data from A.I. Gulyás

Mathematical description of a section

What we want:

$$c_{j} \frac{dv_{j}}{dt} + i_{ion_{j}} = \sum_{k} \frac{v_{k} - v_{j}}{r_{jk}}$$

What a new section gives us:

$$c_{j} \frac{dv_{j}}{dt} = \sum_{k} \frac{v_{k} - v_{j}}{r_{jk}}$$

i.e. membrane capacitance and axial resistance, but no ionic current.

How can we add ion channels, pumps, reactions . . . ?

Adding mechanisms to sections

Density mechanisms distributed channels ion accumulation

Point processes electrodes, synapses

Described by differential equations kinetic schemes algebraic equations

Constructed with NMODL
Channel Builder (rxd discussed later)

hoc

Python

```
from neuron import h
                                     soma = h.Section(name='soma')
create soma, dend
                                     dend = h.Section(name='dend')
connect dend(0), soma(1)
                                     dend.connect(soma(1))
soma {
  L = 50 // [um] length
                                     soma.L = 50 \# [um] length
  diam = 50 // [um] diameter
                                     soma.diam = 50
  nseq = 1
                                     soma.nseg = 1
  insert hh // HH mechanism
                                     soma.insert('hh')
dend {
 L = 200
                                     dend.L = 200
  diam = 2
                                     dend.diam = 2
  nseg = 3
                                     dend.nseg = 3
                                     dend.insert('pas')
  insert pas // passive channels
                                     dend.e_pas = -65
  e_pas = -65
```

Range Variables

Name	Meaning	Units
diam	diameter	[µm]
cm	specific membrane capacitance	[µf/cm ²]
g_pas (hoc) pas.g (Py)	specific conductance of the pas mechanism	[siemens/cm ²]
V	membrane potential	[mV]

range

normalized position along the length of a section $0 \le range \le 1$

any variable name can be used for range, e.g. x

nseg

the number of points in a section at which v is calculated by integrating the discretized cable equation

nseg

the number of points in a section at which v is calculated by integrating the discretized cable equation

Example: axon.nseg = 3

nseg

the number of points in a section at which v is calculated by integrating the discretized cable equation

Example: axon.nseg = 3

```
To test spatial resolution

for sec in h.allsec():

sec.nseg *= 3

and repeat the simulation
```

hoc: forall nseg *= 3

```
Syntax:
  secname(range).rangevar
     Translation: "in secname
     at the location specified by range
     access the value of rangevar"
Examples:
  dend(0.5).v # v at middle of dend
               # hoc: dend.v(0.5)
               # shortcut: dend.v
  # at each point in dend where v is calculated
      print range, distance from 0 end, and v
  for seg in dend.allseg():
    print(seg.x, seg.x*dend.L, dend(seg.x).v)
(less typing:
    print(seg.x, seg.x*dend.L, seg.v)
```

Category	Variable	Units
Time	t	[ms]
Distance	diam, L	[µm]
Voltage	V	[mV]
Current		
specific	i	[mA/cm ²] (density)
absolute		[nA] (point process)
Capacitance		
specific	cm	[µf/cm ²]
absolute		[nf] (point process)
Conductance		
specific	g	[S/cm ²] (density)
absolute		[μS] (point process)
Cytoplasmic resi	stivity Ra	$[\Omega \text{ cm}]$
Resistance	SEClamp.rs	$[10^6\Omega]$
Concentration	cai, nao, etc.	[mM]