Зміст

Вступ	2
Огляд літератури	2
Постановка задачі	2
Основні результати	2
Доведення	3 3 4
Прикладна частина	5
Висновки	5
Список використаних джерел	5

Вступ

Огляд літератури

Постановка задачі

Ми розглядаємо модель суміші зі змінними концентраціями. Об'єкти спостереження $O_j, j=1,\ldots,n$ належать до m компонент з невідомими індексами $\kappa_j \in \{1,\ldots,m\}$, але наперед заданими ймовірностями $p_{j;n}^k = P\{\kappa_j = k\}$, які ще називають імовірностями змішення або концентраціями k-тої компоненти суміші під час j-ого спостереження.

Для об'єкта О аналізуємо модель лінійної регресії вигляду

$$y(O) = \sum_{i=1}^{d} \theta_{f,i}^{(\kappa(O))} x^{i}(O) + \varepsilon(O),$$

де $\xi(O)=\left(y(O),\ x_1(O),\ \dots,\ x_d(O)\right)$, x(O) вектор регресорів та $\varepsilon(O)$ – це помилка з нульовим середнім, що не залежить від x(O). Дана вибірка $\{\xi_j=(x_j,y_j)\}$, задача оцінити параметри $\theta_{f,k}$ та θ_p , використовуючи функціонал якості

$$L = \sum_{k=1}^{m} \sum_{i=1}^{n} a_{i;n}^{k}(\theta_{p}) \left(y_{i} - f_{k}^{\theta_{f,k}}(x_{i}) \right)^{2},$$

де $a_{i;n}^k(\theta_p)=\sum_{t=1}^m p_{i;m}^t\Gamma_{t;m}^{-1}$ – мінімаксні коефіцієнти, $\Gamma_n=P_nP_n^T$ та $P_n=(p_{i;n}^k)_{i=1,k=1}^{n,m}$ [1].

Основні результати

Були знайдені такі обмеження L, які можуть бути диференційовані відносно θ_p , θ_f , щоб забезпечити оптимізацію.

$$|L| \le \|\Gamma_n^{-1}\|_F \sum_{k=1}^m \sum_{i=1}^n \sqrt{\sum_{t=1}^m (p_{i;m}^t)^2} \left(y_i - f_k^{\theta_{f,k}}(x_i)\right)^2,$$

$$|L| \le \|\Gamma_n^{-1}\|_F \sqrt{\sum_{k=1}^n \sum_{i=1}^m \sum_{i=1}^n p_{i;n}^t \left(y_i - f_k^{\theta_{f,k}}(x_i)\right)^2}.$$

В особливому випадку m=2 отримано:

$$|L| \le \|\Gamma_n^{-1}\|_F \sqrt{\sum_{k=1}^2 \left(\sum_{i=1}^n p_{i;n}^k \left(y_i - f_k^{\theta_{f,k}}(x_i)\right)^2\right)^2}.$$

Доведення

Задана функція втрат:

$$L = \sum_{k=1}^{m} \sum_{i=1}^{n} a_{i,n}^{k}(\theta_{p}) \left(y_{i} - f_{k}^{\theta_{f,k}}(x_{i}) \right)^{2}.$$

де $a_{i;n}^k(\theta_p)$ визначені як: $a_{i;n}^k(\theta_p)=\sum_{t=1}^m p_{i;m}^t\cdot (\Gamma_n^{-1})_{t;k}.$

Перше обмеження

$$|L| \le \|\Gamma_n^{-1}\|_F \sum_{k=1}^m \sum_{i=1}^n \sqrt{\sum_{t=1}^m (p_{i;m}^t)^2} \cdot \left(y_i - f_k^{\theta_{f,k}}(x_i)\right)^2$$

Доведення.

$$L = \sum_{k=1}^{m} \sum_{i=1}^{n} a_{i,n}^{k}(\theta_{p}) \left(y_{i} - f_{k}^{\theta_{f,k}}(x_{i}) \right)^{2}.$$

Застосуємо нерівність Коші-Буняковського до векторів

$$\vec{p}_{i;m} = (p_{i;m}^1, p_{i;m}^2, \dots, p_{i;m}^m)$$
 ra $\vec{g}_k = ((\Gamma_n^{-1})_{1k}, (\Gamma_n^{-1})_{2k}, \dots, (\Gamma_n^{-1})_{mk})$

де перший вектор — це вектор ймовірностей для спостереження i, а другий — k-ий стовпець матриці $\Gamma_n^{-1}.$ Тоді маємо:

$$\left| \sum_{t=1}^{m} p_{i;m}^{t}(\Gamma_{n}^{-1})_{t;k} \right| \leq \sqrt{\sum_{t=1}^{m} (p_{i;m}^{t})^{2}} \cdot \sqrt{\sum_{t=1}^{m} \left((\Gamma_{n}^{-1})_{t;k} \right)^{2}}.$$

Зауважимо, що $\sqrt{\sum_{t=1}^m \left((\Gamma_n^{-1})_{t;k}\right)^2} \leq \|\Gamma_n^{-1}\|_F$, де $\|\cdot\|_F$ норма Фробеніуса, оскільки $\left((\Gamma_n^{-1})_{t;k}\right)^2 = \sqrt{\sum_{k=1}^n \sum_{t=1}^m \left((\Gamma_n^{-1})_{t;k}\right)^2}$. Отже, справджується нерівність $a_{i;n}^k(\theta_p) \leq \sqrt{\sum_{t=1}^m (p_{i;m}^t)^2} \cdot \|\Gamma_n^{-1}\|_F$. Підставимо в обмеження :

$$|L| \le \|\Gamma_n^{-1}\|_F \sum_{k=1}^m \sum_{i=1}^n \sqrt{\sum_{t=1}^m (p_{i;m}^t)^2} \cdot \left(y_i - f_k^{\theta_{f,k}}(x_i)\right)^2.$$

Матриця Грама Γ_n є симетричною і додатньо-визначеною, тому $\|\Gamma_n^{-1}\|_F$ можна виразити через власні числа Γ_n , позначені $\lambda_1,\dots,\lambda_m$, як

$$\|\Gamma_n^{-1}\|_F = \sqrt{\operatorname{tr}\left((\Gamma_n^{-1})^\top \Gamma_n^{-1}\right)} = \sqrt{\sum_{i=1}^m \frac{1}{\lambda_i^2}},$$

де $tr(\cdot)$ – слід матриці, сума діагональних елеменів.

Друге обмеження

$$|L| \le \|\Gamma_n^{-1}\|_F \cdot \sqrt{\sum_{k=1}^m \sum_{t=1}^m \left(\sum_{i=1}^n p_{i;n}^t \cdot \left(y_i - f_k^{\theta_{f,k}}(x_i)\right)^2\right)^2}$$

Доведення. Змінемо порядок сум в функції L

$$L = \sum_{k=1}^{m} \sum_{t=1}^{m} \sum_{i=1}^{n} (\Gamma_n^{-1})_{k;t} \cdot p_{i;n}^t \cdot \left(y_i - f_k^{\theta_{f,k}}(x_i) \right)^2.$$

Для зручності позначимо $U_{t;k}:=(\Gamma_n^{-1})_{t;k}, \quad V_{t;k}:=\sum_{i=1}^n p_{i;n}^t\cdot \left(y_i-f_k^{\theta_{f,k}}(x_i)\right)^2,$ тоді

$$L = \sum_{k=1}^{m} \sum_{t=1}^{m} U_{t;k} \cdot V_{t;k}.$$

Застосуємо нерівність Коші-Буняковського

$$\left| \sum_{k=1}^{m} \sum_{t=1}^{m} U_{t;k} V_{t;k} \right| \leq \sqrt{\sum_{k=1}^{m} \sum_{t=1}^{m} U_{t;k}^{2}} \cdot \sqrt{\sum_{k=1}^{m} \sum_{t=1}^{m} V_{t;k}^{2}}.$$

$$\sqrt{\sum_{k=1}^{m} \sum_{t=1}^{m} U_{t;k}^{2}} = \|\Gamma_{n}^{-1}\|_{F}.$$

$$\sum_{k=1}^{m} \sum_{t=1}^{m} V_{t;k}^{2} = \sum_{k=1}^{m} \sum_{t=1}^{m} \left(\sum_{i=1}^{n} p_{i;n}^{t} \cdot \left(y_{i} - f_{k}^{\theta_{f,k}}(x_{i})\right)^{2}\right)^{2}.$$

Отримаємо обмеження

$$|L| \le \|\Gamma_n^{-1}\|_F \cdot \sqrt{\sum_{k=1}^m \sum_{t=1}^m \left(\sum_{i=1}^n p_{i;n}^t \cdot \left(y_i - f_k^{\theta_{f,k}}(x_i)\right)^2\right)^2}.$$

Третє обмеження

$$|L| \le \|\Gamma_n^{-1}\|_F \cdot \sqrt{\sum_{k=1}^2 \left(\sum_{i=1}^n p_{i;n}^k \left(y_i - f_k^{\theta_{f,k}}(x_i)\right)^2\right)^2}$$

Доведення. Розглянемо випадок m=2. Нагадаємо, що розмір матриці $\Gamma_n^{-1}-m\times m$, в цьому випадку 2×2 .

$$\Gamma_n^{-1} = \begin{pmatrix} (\Gamma_n^{-1})_{1;1} & (\Gamma_n^{-1})_{1;2} \\ (\Gamma_n^{-1})_{2;1} & (\Gamma_n^{-1})_{2;2} \end{pmatrix},$$
 де $(\Gamma_n^{-1})_{1;2} = (\Gamma_n^{-1})_{2;1}.$

Функція L набуває вигляду

$$L = \sum_{i=1}^{n} \sum_{k=1}^{2} \left(\sum_{t=1}^{2} p_{i;n}^{t} \cdot (\Gamma_{n}^{-1})_{t;k} \right) \left(y_{i} - f_{k}^{\theta_{f,k}}(x_{i}) \right)^{2}$$

$$= \sum_{i=1}^{n} \left[p_{i;n}^{1} \cdot (\Gamma_{n}^{-1})_{1;1} \left(y_{i} - f_{1}^{\theta_{f,1}}(x_{i}) \right)^{2} + p_{i;n}^{2} \cdot (\Gamma_{n}^{-1})_{2;1} \left(y_{i} - f_{1}^{\theta_{f,1}}(x_{i}) \right)^{2} + p_{i;n}^{1} \cdot (\Gamma_{n}^{-1})_{1;2} \left(y_{i} - f_{2}^{\theta_{f,2}}(x_{i}) \right)^{2} + p_{i;n}^{2} \cdot (\Gamma_{n}^{-1})_{2;2} \left(y_{i} - f_{2}^{\theta_{f,2}}(x_{i}) \right)^{2} \right].$$

Згрупуємо доданки
$$L = \sum_{i=1}^{n} \left[\left(p_{i;n}^{1} \cdot (\Gamma_{n}^{-1})_{1;1} + p_{i;n}^{2} \cdot (\Gamma_{n}^{-1})_{2;1} \right) \left(y_{i} - f_{1}^{\theta_{f,1}}(x_{i}) \right)^{2} + \left(p_{i;n}^{1} \cdot (\Gamma_{n}^{-1})_{1;2} + p_{i;n}^{2} \cdot (\Gamma_{n}^{-1})_{2;2} \right) \left(y_{i} - f_{2}^{\theta_{f,2}}(x_{i}) \right)^{2} \right].$$

Нехай $V_k=\sum_{i=1}^n p_{i;n}^k \left(y_i-f_k^{\theta_{f,k}}(x_i)\right)^2$, для k=1,2. Підставимо V_k і отримаємо

$$\begin{split} L &= (\Gamma_n^{-1})_{1;1} V_1 + (\Gamma_n^{-1})_{2;1} V_1 + (\Gamma_n^{-1})_{1;2} V_2 + (\Gamma_n^{-1})_{2;2} V_2 \\ &= V_1 \left((\Gamma_n^{-1})_{1;1} + (\Gamma_n^{-1})_{2;1} \right) + V_2 \left((\Gamma_n^{-1})_{1;2} + (\Gamma_n^{-1})_{2;2} \right). \end{split}$$

Елементи матриці Грама розміру 2 × 2, що розташовані на побічній діагоналі є недодатними $((\Gamma_n^{-1})_{1;2}, (\Gamma_n^{-1})_{2;1} \le 0)$, тому справджується обмеження $L \le (\Gamma_n^{-1})_{1;1} V_1 + (\Gamma_n^{-1})_{2;2} V_2$.

$$V = \begin{pmatrix} V_1 \\ V_2 \end{pmatrix}, \quad \Gamma = \begin{pmatrix} (\Gamma_n^{-1})_{1;1} \\ (\Gamma_n^{-1})_{2;2} \end{pmatrix}, \quad L \le \langle \Gamma, V \rangle.$$

Застосуємо нерівність Коші-Буняковського $|L| \leq \|\Gamma\|_F \cdot \|V\|_F$,

$$||V||_F = \sqrt{V_1^2 + V_2^2}, \quad ||\Gamma||_F = \sqrt{(\Gamma_n^{-1})_{1;1}^2 + (\Gamma_n^{-1})_{2;2}^2}.$$

 $\|\Gamma\|_F \leq \|\Gamma_n^{-1}\|_F \Rightarrow |L| \leq \|\Gamma_n^{-1}\|_F \cdot \|V\|_F.$ Запишемо явно норму V і отримаємо

$$|L| \le \|\Gamma_n^{-1}\|_F \cdot \sqrt{\sum_{k=1}^2 \left(\sum_{i=1}^n p_{i,n}^k \left(y_i - f_k^{\theta_{f,k}}(x_i)\right)^2\right)^2},$$

що і треба було довести.

Прикладна частина

Висновки

Список використаних джерел

[1] Miroshnichenko V., Maiboroda R. Asymptotic normality of modified LS estimator for mixture of nonlinear regressions. Modern Stochastics: Theory and Applications, Vol. 7, No. 4, pp. 435–448, 2020.