Министерство образования Республики Беларусь Учреждение образования Гомельский государственный технический университет имени П.О. Сухого

Кафедра "Материаловедение"

Отчёт по лабораторной работе N3 "Определение твёрдости и ударной вазкости татериалов"

> Выполнил студент гр. ТА-21 Пилипенко А.С. Проверил преподаватель Грудина Н.В.

Лабораторная работа 3

Определение твёрдости и ударной вязкости татериалов

Чель работы: освоить методы измерения деформационно-прочностных свойств материалов.

Т вердость— это способность материала сопротивляться упругопластической деформаили при внедрении в него более твердого тела

Определение твердости материалов по Бринеллю (ТОСТ 9012-59)

Метод предложен в 1899-1900 гг. шведским инженером Бринеллем. Метод Бринелля заключается в том, что в испытываемый материал вдавливается стальной закаленный шарик, определенного диаметра, под действием стандартизированной нагрузки. После снятия нагрузки с индентора измеряется диаметр отпечатка, и по его размеру подсчитывается условная площадь поверхности отпечатка шарика.

Наиболее распространенным прибором для испытания на твердость по Бринеллю является рычажный пресс типа TU-2.B шпиндель пресса над столиком закрепляется наконечник с шариком требуемого диаметра, выбирается нагрузка и время выдержки образиа под нагрузкой. На столик пресса устанавливается образеи. Вращая маховик, соединенный со столиком пресса, поднимают столик с образиом к индентору до упора. Инденторами могут быть стальные закаленные шарики диаметром (1; 2; 2,5; 5; 10 Vmm). На шарик диаметром $\mathcal D$ действует нагрузка $\mathcal P$, от которой шарик вдавливается в испытываемый материал за период времени $\mathcal P$ на глубину $\mathcal P$ (рис. $\mathcal P$)

Рис. 1. Схема вдавливания стального шарика при испытании твердости по Бринеллю

Определение твердости материалов по Роквеллу (TOCT — 9013-59)
Испытания на твердость по Роквеллу производят вдавливанием виспытываемый образец (деталь) алмазного или твердостлавного конуса с углом при вершине 1200 (шкалы А и С) или стального закаленного шарика диаметром 1,588 мм (шкала В) под действием последовательно прилагаемых предварительной (Ро) и основной (Рг) нагрузок.

На основании ТОСТа В.О64-94 проведена корректировка шкалы С иуточнены переводные числа твердости НРС в числа твердости НРСЭ, которая и используется сейчас в промышленности.

Твердость по Роквеллу измеряют на стационарных твердомерах (приборах Роквелла) с механическим и электрическим приводами (ТК-21H, ТК-14-250).

Характеристики измерения твердости способами Роквелла приведены в таблице

Обозначе- ние шкалы	Рорма индентора	Обозначе- ние твердо- сти по шкале	Нагруз ка в кгс	Допускаемые пределы измерения	Пример- ная твер- дость, НВ	Область применения
A	∇	HRA	60	70 – 85	Свыше 700	Твердые сплавы, поверхность после XTO
С	∇	HRC	150	22 – 68	250 - 100	Закаленные стали
В	0	HB	100	25 – 100	60 - 250	Мягкие металлы и стлавы

Определение ударной вазкости материалов (ТОСТ 9454-78)

Сопромивление материалов ударным нагрузкам карактеризуется ударной вязкостью. Под ударной вязкостью следует понимать работу удара, отнесенную к начальной площади поперечного сечения образиа в месте концентратора (надреза).

TOCT 9454 предусматривает 20 типов образиов длиной от 55 до 140 мм различного поперечного сечения (от 10×8 мм до 2×11 мм) и с различной формой концентратора (U, V, T), как показано на рис. 2.

Рис. 2. Рормы и размеры концентраторов

Выбор вида концентратора зависит от требования к изделию:

- -U при обычных испытаниях материалов;
- -V- для конструкций повышенной степени надежности (летательные аппараты, транс-портные средства, трубопроводы, сосуды под давлением).
- Т для особо ответственных конструкций.

Чем острее надрег, тем сильнее действует концентратор напражения

Практическая часть

Экспериментальные данные измерения твердости по Бринеллю

No n/n		Условия испытаний	1	Результаты испытаний			
	Нагрузка Р, кгс	Диаметр шарика Д, мм	Врема Выдержки +, с	Диалетр отпечатка d мм	Твердость по Бринеллю, НВ	Предел прочности	
2							
3							

Экспериментальные данные измерения твердости по Роквеллу

N N	Условия ис	Результаты испытаний			
	Индентор	Нагрузка, кгс	Т <i>вердость,</i> НРС	Т <i>вердость,</i> НКСЭ	Твердость НВ
1					
2					
3					

Результаты испытаний

N Nn	Материал образ- иов	B, mn	HI, mm	Ко, Дж	KI, Dæ	К, Дж	KC, Axelon	Примечание
l								
2								
3								