QF Group Theory CC2022 By Zaiku Group

Lecture 01 SOLUTIONS

Delivered by Bambordé Baldé

Friday, 25/02/2022

Binary Operation on a Set

Definition 1.0

Let S be a nonempty set. Informally, a binary operation * on S is a rule that takes any two elements $a, b \in S$ to generate another element $a*b \in S$.

- More formally, a binary operation * on S is a map $*: S \times S \longrightarrow S$.
- Hence, given $(a, b) \in S \times S$, a * b is just an abbreviation for *((a, b)) i.e. a * b is an abuse of notation!
- It is possible to equip a set S with more than one binary operation! For example, the algebraic structures of rings and fields are obtained that way.

Definition 1.1

Let S be a nonempty set. A binary operation * on S is said to be commutative (or abelian) if a*b=b*a for any pairs $a,b\in S$. Otherwise, whenever we have $a*b\neq b*a$ for some $a,b\in S$, we say that * is a noncommutative (or non-abelian) binary operation on S.

Binary Operation Examples (Part A)

Example 1

Let S be the set of natural numbers \mathbb{N} and let the operation * be the ordinary addition of natural numbers +.

• + defines a binary operation on N right? Yes and Vabes In and ES

Example 2

Let us consider $S = \{a \in \mathbb{N} \mid a \text{ is odd } \}$ and * be the ordinary multiplication of natural numbers \times .

Example 3

Let consider again $S = \{a \in \mathbb{N} \mid a \text{ is odd }\}$ and let now * be the ordinary addition of natural numbers +.

• Does + also define a binary operation on 5?

(2n+1)+(2m+1) = 2n+2m+2 · No, * on 5 vs not ∞ Browny Operation

Binary Operation Examples (Part B)

Example 1

Let A be a non-empty set and let $S = \{f : A \longrightarrow A \mid f \text{ is a bijection }\}$. Now suppose that * is the composition \circ of maps in S.

• Is \circ a binary operation on S? If yes, is it abelian or non-abelian?

Example 2

Let S be the set $M_n(\mathbb{C})$ of $n \times n$ matrices with complex entries and let the operation * be the ordinary matrix multiplication.

• Is * also a binary operation on $M_n(\mathbb{C})$? Is it abelian or non-abelian?

Example 3

Let S be the set denote $GL(n, \mathbb{C})$ of invertible $n \times n$ matrices with complex entries and let the operation * be still the ordinary matrix multiplication.

- Is * also a binary operation on $GL(n,\mathbb{C})$? Is it abelian or non-abelian?
- What if * is now the ordinary addition of matrices?

o=f-f'(=q), f:A = A, g: A = A fog: A = A

Simu famol g are logedire also (fog) is logedire

Simu famol g are logedire also (fog) is logedire Yes, e is a binary operation on S. (fog: A > A). It is Not abelian cause fog # g of $\frac{\xi_{XZ}}{A_1B_2}M_n(C) \qquad A_1BES \qquad + = A\times B \qquad A_{n\times n}\times B_{n\times n} = C_{n\times n} \qquad C_nES \qquad -$ Yes, * is a believe sperosoon on 5. It is not obelien comen AB #BA The General Linear group of inventible materix over C As pur 6x2 * is a banary operation. $A_n \cdot B_n \in GL$ $A_n + B_n = C_n \cdot C_n \in GL$ and $A_n + B_n = B_n + A_n$ If * = + then * is a known operation and it is subellion cause

Ex1 f. A > A fis higherine Bijective = input he and surjective = | Impletive - Va, b & A f(a) = f(b) iff a = b

Semigroup Structure

Definition 1.2

A semigroup is a pair (S,*) where S is a nonempty set and * is a binary operation on S such that a*(b*c)=(a*b)*c for all $a,b,c\in S$.

- The condition a*(b*c) = (a*b)*c for all $a,b,c \in S$ is called the 'associativity law' and we say that the operation * is associative.
- Whenever the operation * is understood from the context and fixed, we just say S is a semigroup and we omit writing the pair (S,*).
- A semigroup (S,*) is said to be abelian or non-abelian if * is a abelian or non-abelian binary operation respectively.

Definition 1.3

Let (S,*) be a semigroup and $S' \subseteq S$. Then S' is said to be subsemigroup of (S,*) if (S',*) is also a semigroup.

• Obviously, (S, *) is trivially a subsemigroup of itself!

2) his it is a sunigroup.

and addition. Mn (c) it is not abelian under multipliation (AxB#BxA) but it is a belian under addition

3) GL(1, C) à la Simigrayo under multaplication E and addition. L

Example 1

Let A be a non-empty set and let $S = \{f : A \longrightarrow A \mid f \text{ is a bijection } \}$. Now suppose that * is the composition \circ of maps in S.

• Is S a semigroup under \circ ? If yes, is it abelian or non-abelian?

Example 2

Let S be the set $M_n(\mathbb{C})$ of $n \times n$ matrices with complex entries and let the operation * be the ordinary matrix multiplication.

• Is $M_n(\mathbb{C})$ a semigroup under matrix multiplication? Is it abelian or non-abelian? What about under matrix addition?

Example 3

Let S be the set denote $GL(n,\mathbb{C})$ of invertible $n \times n$ matrices with complex entries and let the operation * be still the ordinary matrix multiplication.

• Is $GL(n,\mathbb{C})$ a semigroup under matrix multiplication? What about under matrix addition?

(1.9) h = 1.(9.h) No it is not abolion

1) Ms, it is a sunigroup

Semigroups Structure Challenge

- 1 Let (S,*) be a semigroup and let $S' = \{a \in S \mid a*x = x*a \text{ for all } x \in S\}$. Is it true that (S',*) is a subsemigroup of (S,*)? $\mathcal{A}_{\mathcal{S}}$
- Let $(S_1, *_1)$ and $(S_2, *_2)$ be two semigroups. Construct a semigroup structure on the Cartesian product $S_1 \times S_2$ using the respective semigroup structure. Can you generalise your construction to $(S_1, *_1), (S_2, *_2), \dots, (S_n, *_n)$? $((S_1 \otimes S_2), (*_1 \circ *_2))$
- 3 Assuming that $(S_1, *_1)$ is abelian and $(S_2, *_2)$ is non-abelian, is your constructed semigroup structure on $S_1 \times S_2$ abelian or non-abelian?
- **1** Identify at least a nontrivial subsemigroup structure for the constructed semigroup structure on $S_1 \times S_2$ above.
- **1** Let $\mathbb{Z}_2 = \{0,1\}$, $\mathbb{Z}_3 = \{0,1,2\}$ and $\mathbb{Z}_4 = \{0,1,3\}$. Identify at least a semigroup structure for \mathbb{Z}_2 , \mathbb{Z}_3 and \mathbb{Z}_4 .
- oldentify at least a subsemigroup structure (if any) from the identified semigroup structures on \mathbb{Z}_2 , \mathbb{Z}_3 and \mathbb{Z}_4 above.

GitHub: github.com/quantumformalism

YouTube: youtube.com/ZaikuGroup

Discord: discord.gg/SPcmcsXMD2

Twitter: twitter.com/ZaikuGroup

LinkedIn: linkedin.com/company/zaikugroup