Assignment 2 (1/5)

Subhadip Chowdhury

- This homework is due at the beginning of class on Friday 1/12. You may cite results from class as appropriate. Unless otherwise stated, you must provide a complete explanation for your solutions, not simply an answer. You are encouraged to work together on these problems, but you must write up your solutions independently.
- Hand in the exercises only, not the reading material part. You are encouraged to think about the exercises marked with a (⋆) or (†) if
 you have time, but you don't need to hand them in. If you correctly solve a (†)-marked problem, you will get a candy!
- Remember that you can always use the result of the previous assignment problems without proof to solve the new assignment problems.
- We are currently covering Chapter 12 from Stewart.

Important Points and Reading Materials

- Vectors:
 - What is a vector an object with a magnitude and a direction.
 - Two vectors are parallel iff they are scalar multiple of each other.
 - What is the unit vector in the direction of a vector \vec{u} ?
- Dot Products:
 - Two ways of defining.
 - Use dot products to find angle between vectors.
 - Understand the scalar projection, $comp_{\vec{v}}\vec{u}$ and vector projection $Proj_{\vec{v}}\vec{u}$ of \vec{u} onto \vec{v} . How do you compute these? What do they mean geometrically?
 - How do the direction cosines relate to projections on to $\hat{i}, \hat{j}, \hat{k}$?

Problems

Exercise 1

(12.2.8) If three vectors \vec{u} , \vec{v} and \vec{w} satisfy $||\vec{u}|| = ||\vec{v}|| = 1$, $\vec{u} \perp \vec{v}$, and $\vec{u} + \vec{v} + \vec{w} = 0$, then what is $||\vec{w}||$?

Exercise 2

Find a unit vector that has the same direction as $3\hat{i} - 4\hat{j} + 12\hat{k}$. Find another vector in the same direction that has length 4.

Exercise 3

(12.3.4,10) Find $\vec{a} \cdot \vec{b}$ where

- 1. $\vec{a} = \langle 6, -2, 3 \rangle, \vec{b} = \langle 2, 5, -1 \rangle$
- 2. $\|\vec{a}\| = 80, \|\vec{b}\| = 50$, the angle between \vec{a} and \vec{b} is $3\pi/4$.

Exercise 4

(12.3.27) Find a unit vector that is orthogonal to both $\hat{i} + \hat{j}$ and $\hat{i} + \hat{k}$.

Exercise 5

(12.3.32) The angle between two curves is the angle between their tangent lines at the point of intersection. Find the acute angle between the curves $y = \sin x$ and $y = \cos x$ at the point of their intersection in $[0, \pi/2]$.

[HINT: derivative is same as slope of the tangent.]

Exercise 6

Suppose \vec{a} and \vec{b} are two unit vectors such that $\vec{u} = 3\vec{a} + 2\vec{b}$ and $\vec{v} = \vec{a} - 4\vec{b}$ are perpendicular. Find $\vec{a} \cdot \vec{b}$ and the angle between \vec{a} and \vec{b} .

Exercise 7

Consider the plane \mathscr{P} that passes through the point A = (3,4,5) and is perpendicular to the vector $\vec{n} = \hat{i} + 2\hat{j} + 3\hat{k}$. Let B be the point (6,6,6) and let D be the foot of the perpendicular from B to \mathscr{P} .

- 1. Find the vector \overrightarrow{AB} .
- 2. Find the projection of \overrightarrow{AB} onto \overrightarrow{n} .

[HINT: Use the projection formula. This is the vector AD.]

3. What is the length of \overline{BD} ?

[HINT: $\triangle ABD$ is a right angled triangle. Use Pythagoras.]

Note that you do not need to use equation of lines/planes for this problem.

Exercise 8

Suppose the three sides of an acute angled triangle $\triangle ABC$ are given by $\overrightarrow{BC} = \vec{a}$, $\overrightarrow{CA} = \vec{b}$, and $\overrightarrow{AB} = \vec{c}$ respectively. Express the following vectors in terms of \vec{a} , \vec{b} , and \vec{c} only.

- 1. \overrightarrow{AD} where *D* is the midpoint of \overline{BC} .
- 2. \overrightarrow{AD} where *D* is the foot of the perpendicular from *A* to \overline{BC} .
- 3. (†) \overrightarrow{AD} where *D* is the point in \overrightarrow{BC} such that $\angle BAD = \angle DAC$.