Time Series Analysis Modeling Heteroskedasticity

Nicoleta Serban, Ph.D.

Professor

Stewart School of Industrial and Systems Engineering

ARCH Model

About This Lesson

Modeling Heteroskedasticity

In a generic ARMA model, the model reduces to $\phi(B)Y_t = \theta(B)Z_t$ with $\mathrm{E}[Z_t] = 0$, $\mathrm{E}[Z_t^2] = \sigma^2$, $\mathrm{E}[Z_tZ_r] = 0$, for $r \neq t$.

- Under the ARMA modeling the unconditional variance of Z_t is assumed constant. However, in most real data studies, the conditional variance of Z_t could change with time.
- We can rewrite the residual process characteristics as $Z_t = \sigma_t R_t$ with $\mathrm{E}[R_t] = 0$, $\mathrm{E}[R_t^2] = 1$ where $\sigma_t = \sigma_{t|t-1,t-2,\dots,1}$ can be a deterministic or random function R_t is a sequence of iid random variables.

 Z_t is white noise hence Y_t is weakly stationary

Modeling Volatility: Simple but Important

- In 1982, Robert Engle developed the autoregressive conditional heteroskedasticity (ARCH) models to model the time-varying volatility often observed in economical time series data. For this contribution, he won the 2003 Nobel Prize in Economics (*Clive Granger shared the prize for cointegration)
- ARCH models assume the variance of the current residual term or innovation to be a function of the actual sizes of the previous time periods' residual terms: often the variance is related to the squares of the previous innovations.

Robert F. Engle (born 1942) currently teaches at NYU.

The ARCH Family of Models

The Autoregressive Conditional Heteroskedasticity (ARCH) model:

If σ_t is a linear function with lagged values of the mean equation residuals, then the time-series dynamic of volatility is like an AR process.

$$Z_t^2 = \gamma_0 + \gamma_1 Z_{t-1}^2 + \ldots + \omega_t$$
 AR process
$$E[\omega_t] = 0, \quad E[\omega_t^2] = \lambda^2, \quad E[\omega_t \omega_r] = 0, \quad \text{for } r \neq t.$$

Conditional on the past history
$$F_{t-1} = \{Z_{t-1}, Z_{t-2}, ...\}$$
 we have $E[Z_t^2 | F_{t-1}] = \sigma_t^2 \Rightarrow \gamma_0 + \gamma_1 Z_{t-1}^2 + \gamma_2 Z_{t-2}^2 + ...$

Reference: Robert Engle. "Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation." *Econometrica*, 50, pages 987:1007 (July 1982)

ARCH vs AR Model

For example, we consider the ARCH(1) model:

$$Y_t = \mu + Z_t$$
, $Z_t | F_{t-1} \sim N(0, \sigma_t^2)$ and $\sigma_t^2 = \gamma_0 + \gamma_1 Z_{t-1}^2$

 σ_t is a deterministic estimate of volatility. Since we do not observe volatility with certainty, the true volatility of Z_t is defined as:

$$Z_t^2 = \sigma_t^2 + \omega_t (Z_t = \sigma_t R_t)$$
 with $E[\omega_t] = 0$ and $E[\omega_t^2] = 1 (E[R_t] = 0$ and $E[R_t^2] = 1)$

Then the above equation for σ_t can be re-expressed as:

$$Z_t^2 - \omega_t = \gamma_0 + \gamma_1 Z_{t-1}^2 (1 - \lambda_1 B) Z_t^2 = \gamma_0 + \omega_t$$

This is an AR(1) in Z_t^2 where ω_t is the error between the true conditional variance σ_t^2 and actual volatility Z_t^2 .

ARCH Model: Interpretation

Consider the simple equation of ARCH(1):

$$Z_t^2 = \sigma_t^2 + \omega_t (Z_t = \sigma_t R_t)$$
 with $E[\omega_t] = 0$ and $E[\omega_t^2] = 1$ ($E[R_t] = 0$ and $E[R_t^2] = 1$)

The propagation effect:

- If Z_{t-1} has an unusually large absolute value, then σ_t larger than usual;
- When Z_t has a large deviation that makes σ_t^2 large, so that Z_{t+1} tends to be large, and so on
- Volatility in Z_t tends to persist throughout for a long time

Stationarity of ARCH(1)

The stationarity conditions are:

- $E[Y_t] = \mu$
- $\mathrm{E}[Y_t^2] = \mathrm{E}[Z_t^2]$ computed as below $(1-\gamma_1)\mathrm{E}[Z_t^2] = \gamma_0$ $\mathrm{E}[Z_t^2] = \gamma_0/(1-\gamma_1)$
- $Cov(Y_t, Y_{t-1}) = E[Z_t Z_{t-1}] = 0$

The weak stationarity condition is that $\gamma_1 < 1$.

Kurtosis under ARCH(1)

The fourth moment of Z_t imposes an additional constraint on γ_1

$$E[Z_t^4] = \frac{3\gamma_0(1+\gamma_1)}{(1-\gamma_1)(1-3\gamma_1^2)},$$

which requires that $1 - 3\gamma_1^2 > 0$.

The unconditional kurtosis of Z_t is defined and is derived in Tsay (2005):

$$\frac{E[Z_t^4]}{[Var(Z_t)]^4} = 3\left(\frac{1-\gamma_1^2}{1-3\gamma_1^2}\right) > 3$$

This means that an ARCH(1) model for Z_t has 'fat' tails and thus it is more likely to produce outliers than simple (normal) white noise (kurtosis = 3).

Kurtosis under ARCH(1)

Examples of Joint ARCH models

AR-ARCH models: for example, AR(1)-ARCH(1) is defined by the set of equations below

$$Y_{t} = \mu + \phi Y_{t-1} + Z_{t}$$

$$\sigma_{t}^{2} = \gamma_{0} + \gamma_{1} Z_{t-1}^{2}$$

ARMA-ARCH models: for example, ARMA(1,1)-ARCH(2) is defined by the set of equations below

$$Y_{t} = \mu + \phi Y_{t-1} + Z_{t} + \theta Z_{t-1}$$

$$\sigma_{t}^{2} = \gamma_{0} + \gamma_{1} Z_{t-1}^{2} + \gamma_{2} Z_{t-2}^{2}$$

Estimation of ARCH Models

The parameter vector for an ARCH(p) model is $\Gamma = \{\gamma_0, \gamma_1, \dots, \gamma_p\}$.

The *unconditional likelihood* for an ARCH of order p is:

$$f(y_T,...,y_{p+1},y_p,...; \Gamma) = f(y_T,...,y_{p+1}|y_p,...; \Gamma) f(y_p,...; \Gamma)$$

where the last term is the joint distribution of the first p RV's in the time series. Except for the small order ARCH models, this last term is difficult to express, and therefore, ignored if p is much smaller than T.

The *conditional likelihood* for an ARCH of order p is:

$$f(y_T,...,y_{p+1}|y_p,...; \Gamma) = \prod_{t=n+1}^{r} f(y_t|y_{t-1},...; \Gamma)$$

Summary

