

LG

ИНСТРУКЦИЯ ПО СЕРВИСНОМУ
ОБСЛУЖИВАНИЮ ТЕЛЕФОНА

Model : C2200

ИНСТРУКЦИЯ ПО СЕРВИСНОМУ ОБСЛУЖИВАНИЮ ТЕЛЕФОНА

C2200

СОДЕРЖАНИЕ

1. ВВЕДЕНИЕ	5
1.1 Назначение	5
1.2 Регламентирующие положения	5
1.3 Список сокращений	7
2. РАБОЧИЕ ХАРАКТЕРИСТИКИ	9
2.1 Аппаратные характеристики	9
2.2 Технические характеристики	11
3. КРАТКАЯ ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ	15
3.1 Общее описание	15
3.2 Приемное устройство	15
3.3 Синтезатор частот	17
3.4 Блок передатчика	18
3.5 Электропитание и сигналы управления.....	20
3.6 Описание НЧ части модели С2200.....	20
4. УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ	40
4.1 Проблемы приема сигнала.....	40
4.2 Проблемы передачи.....	48
4.3 Проблемы включения.....	56
4.4 Проблемы зарядного устройства.	57
4.5 Проблемы ЖКД.....	59
4.6 Проблемы динамика.	61
4.7 Проблемы громкоговорителя.	63
4.8 Проблемы микрофона.	65
4.9 Проблемы виброзвонка.	66
4.10 Проблемы светодиодов подсветки клавиатуры.....	68
4.11 Проблемы с обнаружением SIM-карты.....	70
4.12 Проблемы гарнитуры.....	71
4.13 Проблемы фотокамеры.	74
5. ПОРЯДОК РАЗБОРКИ	77
6. ЗАГРУЗКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И КАЛИБРОВКА	84
6.1 Загрузка программного обеспечения	84
6.2 Калибровка	91
7. БЛОК-СХЕМА	94
8. СХЕМЫ СОЕДИНЕНИЙ	95
9. РАСПОЛОЖЕНИЕ ЭЛЕМЕНТОВ НА ПЕЧАТНОЙ ПЛАТЕ	101
10. ИНЖЕНЕРНОЕ МЕНЮ	103
10.1 Проверка НЧ части (Меню 1).....	104
10.2 Проверка РЧ тракта (МЕНЮ 2) ...	105
10.3 Заводской тест (МЕНЮ 3).....	105
10.4 Параметр трассировки (МЕНЮ 4)	106
10.5 Таймер (МЕНЮ 5)	106
10.6 Заводской сброс (МЕНЮ 6)	106
10.7 Версия программного обеспечения (МЕНЮ 7)	106
11. ТЕСТ «STAND ALONE».....	107
11.1 Введение	107
11.2 Метод настройки.....	107
11.3 Методика тестирования	108

12. АВТОМАТИЧЕСКАЯ КАЛИБРОВКА	110
12.1 Описание	110
12.2 Необходимое оборудование	110
12.3 Меню и настройки	110
12.4 АРУ	112
12.5 АРМ	112
12.6 АЦП	112
12.7 Настройки	112
12.8 Как провести калибровку	112
13. Сборочный чертеж и список заменяемых деталей	113
13.1 Сборочный чертеж	113
13.2 Заменяемые компоненты	
<Механические компоненты>	115
<Основные компоненты>	118
13.3 Принадлежности	133

1. ВВЕДЕНИЕ

1.1 Назначение

В данном руководстве приводится необходимая информация для выполнения ремонта, калибровки, а также для загрузки программного обеспечения для этой модели.

1.2 Регламентирующие положения

A. Безопасность

Коммутационное мошенничество, т. е. несанкционированное использование телекоммуникационной системы неуполномоченной стороной (например, лицами, не являющимися служащими компании, ее представителями, субподрядчиками, либо действующими от имени компании) может стать причиной представления необоснованных счетов за пользование телекоммуникационными услугами.

Пользователи системы несут ответственность за безопасность собственной системы. Имеется определенный риск коммутационного мошенничества в отношении Вашей телекоммуникационной системы. Пользователи системы несут ответственность за программирование и конфигурирование своего оборудования с целью предотвращения несанкционированного использования системы. Изготовитель не может гарантировать защищенность данного изделия в отношении вышеупомянутых случаев, и его возможностей по предотвращению несанкционированного пользования телекоммуникационными услугами коммерческих линий связи путем получения доступа или подключения оборудования. Изготовитель не несет ответственности за любые расходы, понесенные в результате подобного несанкционированного пользования телекоммуникационными услугами.

B. Причинение ущерба

В случае если компания телефонной связи определит, что предоставленное клиенту оборудование является неисправным и его использование может нанести ущерб или нарушить работу телефонной сети связи, компания может временно приостанавливать оказание услуг телефонной связи на время необходимое для ремонта.

C. Изменения предоставляемых услуг

Местная компания телефонной связи может вносить изменения в свое оборудование связи и изменять порядок его работы. При наличии оснований полагать, что такие изменения способны оказать воздействие на работу данного телефонного аппарата, либо его совместимость с телефонной сетью, компании телефонной связи следует заранее письменно уведомить об этих изменениях пользователя, предоставляя тем самым ему возможность предпринять необходимые меры с целью продолжения пользования услугами телефонной связи.

D. Ограничения на выполнение техобслуживания

Некоторые работы по техническому обслуживанию данной модели могут быть выполнены только предприятием-изготовителем, либо его уполномоченными представителями. Следует иметь в виду, что любые несанкционированные модификации либо ремонт могут повлечь изменение нормативного статуса системы и стать основанием для аннулирования всего периода гарантии.

1. ВВЕДЕНИЕ

E. Уведомление о наличии излучения

Настоящее изделие соответствует действующим в стране законодательным нормативам в отношении высокочастотного излучения. Согласно этим положениям, необходимая информация должна быть предоставлена потребителю.

F. Иллюстрации

Иллюстрации в настоящем руководстве приведены исключительно для наглядности. Реальное оборудование может выглядеть несколько иначе.

G. Помехи и подавление сигнала

Телефон может создавать помехи в работе чувствительного лабораторного оборудования, медицинского оборудования и т.п. На работу самого телефона могут оказывать влияние помехи, исходящие от машин и электродвигателей, не оборудованных устройствами подавления помех.

H. Приборы, чувствительные к электростатическим разрядам

ВНИМАНИЕ

Платы, детали которых чувствительны к электростатическим разрядам, обозначены следующей пиктограммой . Ниже приведена информация о порядке работы с такими деталями:

- Выполняя замену плат системы, технические специалисты должны иметь закрепленную на кисти руки линию заземления+
- При выполнении работ на системной плате специалист должен стоять на антистатическом покрытии (также заземленном)+
- Паяльник (соответствующий выполняемой работе) должен быть заземлен+
- Чувствительные к статическому электричеству детали следует хранить в защитной упаковке вплоть до их непосредственного использования+
- Перед отправкой на завод системные платы, а также электрически перепрограммируемые ПЗУ и им подобные детали необходимо упаковать указанным способом.

1.3 Список сокращений

В настоящем Руководстве используются следующие сокращения:

APC	Автоматическая регулировка мощности
BB	Низкочастотная часть
BER	Частота ошибок по битам
CC-CV	Постоянный ток-постоянное напряжение
DAC	Цифро-аналоговый преобразователь (ЦАП)
DCS	Система цифровой связи
дБм	дБ на 1 милливатт (дБм)
DSP	Цифровой сигнальный процессор
EEPROM	Программируемая память предназначенная только для чтения, допускающая стирание
ESD	Электростатический разряд
FPCB	Гибкая печатная плата
GMSK	Модуляция GMSK
GPIB	Интерфейс общего назначения
GSM	Глобальная система мобильной связи
IPUI	Международный код абонента мобильной связи
IF	Промежуточная частота (ПЧ)
LCD	Жидкокристаллический дисплей (ЖКД)
LDO	Стабилизатор напряжения
LED	Светоизлучающий диод
OPLL	Схема фазовой автоподстройки частоты (ФАПЧ)
PAM	Усилитель мощности
PCB	Печатная плата
PGA	Усилитель с программируемым усилением
PLL	Система фазовой автоподстройки частоты (система ФАПЧ)
PSTN	Коммутируемая телефонная сеть общего пользования
RF	Радиочастота (РЧ)
RLR	Номинал громкости приема
RMS	Среднеквадратичное действующее значение (СДЗ)
RTC	Генератор импульсов реального времени
SAW	Поверхностная акустическая волна (ПАВ)
SIM	Модуль идентификации абонента

1. ВВЕДЕНИЕ

SLR	Номинал громкости передачи
SRAM	Статическое запоминающее устройство с произвольной выборкой
PSRAM	Псевдостатическое запоминающее устройство с произвольной выборкой
STMR	Противоместный эффект
TA	Зарядное устройство
TDD	Дуплекс временного разделения
TDMA	Множественный доступ с временным разделением
UART	Универсальный асинхронный интерфейс приема/передачи
VCO	Генератор, управляемый напряжением (ГУН)
VCTCXO	Термостабилизированный генератор, управляемый напряжением
WAP	Протокол WAP (для распространения данных по Internet)

2. РАБОЧИЕ ХАРАКТЕРИСТИКИ

2.1 Аппаратные характеристики

Наименование	Характеристики
Стандартная батарея	Ионно-литиевая, 780 мА/ч; Габариты: 42.00 x 34.00 x 5.0 мм; Масса: 17.20 г
Потребляемый ток в дежурном режиме	В условиях минимального расхода электроэнергии (период опроса сети 9) потребляемый ток в дежурном режиме не превышает 4 мА.
Продолжительность разговора	До 3 часов (GSM, уровень передачи 7)
Продолжительность работы в дежурном режиме	До 200 часов (период опроса сети: 9, уровень сигнала RSSI: -85 дБм)
Продолжительность подзарядки	2.3 часа
Чувствительность приемного устройства	GSM, EGSM: -105дБм, DCS: -105дБм
Выходная мощность передатчика	GSM, EGSM: 32дБм(Уровень 5) DCS: 29дБм(Уровень 0)
Совместимость GPRS	Класс 10
Тип SIM-карты	Малая, 3В
Дисплей	Основной: 128 X 160 пикселей ЖКД 65000 цветов Дополнительный: монохромный 96 X 64 пикселей STN
Индикация состояния и клавиатура	Контрастные пиктограммы. Клавиатура: 0 - 9, #, *, навигационная клавиша (Положения: «Вверх», «Вниз»), кнопка подтверждения «OK», кнопки «Сброс», «Отправить», и «Окончание»/ВКЛ, две программируемые клавиши
Антенна	Внешняя
Разъем гарнитуры	Есть
Разъем для соединения с ПК	Есть
Речевые кодеки	EFR/FR/HR
Передача данных и факс	Есть
Виброзвонок	Есть
Громкая связь	Есть
Диктофон	Есть

2. РАБОЧИЕ ХАРАКТЕРИСТИКИ

Наименование	Характеристики
Отдельный микрофон	Есть
Ресивер	Есть
Зарядное устройство	Есть
Дополнительно	Ремешок, гарнитура, комплект для передачи данных

2.2 Технические характеристики

Номер	Наименование	Характеристики																																																																																																																	
1	Диапазон частот	GSM Передача: $890 + n \times 0,2 \text{ МГц}$ Прием: $935 + n \times 0,2 \text{ МГц}$ ($n = 1 \dots 124$) EGSM Передача: $890 + (n-1024) \times 0,2 \text{ МГц}$ Прием: $935 + (n-1024) \times 0,2 \text{ МГц}$ ($n = 975 \dots 1024$) DCS Передача: $1710 + (n - 512) \times 0,2 \text{ МГц}$ Прием: $1805 + (n - 512) \times 0,2 \text{ МГц}$ ($n = 512 \dots 885$)																																																																																																																	
2	Фазовая погрешность	RMS < 5 градусов; Пиковая < 20 градусов																																																																																																																	
3	Погрешность по частоте	< 0,1 промилле																																																																																																																	
4	Уровень мощности	GSM, EGSM <table border="1"> <thead> <tr> <th>Уровень</th> <th>Мощность</th> <th>Допустимое отклонение</th> <th>Уровень</th> <th>Мощность</th> <th>Допустимое отклонение</th> </tr> </thead> <tbody> <tr><td>5</td><td>33 дБм</td><td>± 2дБ</td><td>13</td><td>17 дБм</td><td>± 3дБ</td></tr> <tr><td>6</td><td>31 дБм</td><td>± 3дБ</td><td>14</td><td>15 дБм</td><td>± 3дБ</td></tr> <tr><td>7</td><td>29 дБм</td><td>± 3дБ</td><td>15</td><td>13 дБм</td><td>± 3дБ</td></tr> <tr><td>8</td><td>27 дБм</td><td>± 3дБ</td><td>16</td><td>11 дБм</td><td>± 5дБ</td></tr> <tr><td>9</td><td>25 дБм</td><td>± 3дБ</td><td>17</td><td>9 дБм</td><td>± 5дБ</td></tr> <tr><td>10</td><td>23 дБм</td><td>± 3дБ</td><td>18</td><td>7 дБм</td><td>± 5дБ</td></tr> <tr><td>11</td><td>21 дБм</td><td>± 3дБ</td><td>19</td><td>5 дБм</td><td>± 5дБ</td></tr> <tr><td>12</td><td>19 дБм</td><td>± 3дБ</td><td></td><td></td><td></td></tr> </tbody> </table> DCS <table border="1"> <thead> <tr> <th>Уровень</th> <th>Мощность</th> <th>Допустимое отклонение</th> <th>Уровень</th> <th>Мощность</th> <th>Допустимое отклонение</th> </tr> </thead> <tbody> <tr><td>0</td><td>30 дБм</td><td>± 2дБ</td><td>8</td><td>14 дБм</td><td>± 3дБ</td></tr> <tr><td>1</td><td>28 дБм</td><td>± 3дБ</td><td>9</td><td>12 дБм</td><td>± 4дБ</td></tr> <tr><td>2</td><td>26 дБм</td><td>± 3дБ</td><td>10</td><td>10 дБм</td><td>± 4дБ</td></tr> <tr><td>3</td><td>24 дБм</td><td>± 3дБ</td><td>11</td><td>8 дБм</td><td>± 4дБ</td></tr> <tr><td>4</td><td>22 дБм</td><td>± 3дБ</td><td>12</td><td>6 дБм</td><td>± 4дБ</td></tr> <tr><td>5</td><td>20 дБм</td><td>± 3дБ</td><td>13</td><td>4 дБм</td><td>± 4дБ</td></tr> <tr><td>6</td><td>18 дБм</td><td>± 3дБ</td><td>14</td><td>2 дБм</td><td>± 5дБ</td></tr> <tr><td>7</td><td>16 дБм</td><td>± 3дБ</td><td>15</td><td>0 дБм</td><td>± 5дБ</td></tr> </tbody> </table>						Уровень	Мощность	Допустимое отклонение	Уровень	Мощность	Допустимое отклонение	5	33 дБм	± 2дБ	13	17 дБм	± 3дБ	6	31 дБм	± 3дБ	14	15 дБм	± 3дБ	7	29 дБм	± 3дБ	15	13 дБм	± 3дБ	8	27 дБм	± 3дБ	16	11 дБм	± 5дБ	9	25 дБм	± 3дБ	17	9 дБм	± 5дБ	10	23 дБм	± 3дБ	18	7 дБм	± 5дБ	11	21 дБм	± 3дБ	19	5 дБм	± 5дБ	12	19 дБм	± 3дБ				Уровень	Мощность	Допустимое отклонение	Уровень	Мощность	Допустимое отклонение	0	30 дБм	± 2дБ	8	14 дБм	± 3дБ	1	28 дБм	± 3дБ	9	12 дБм	± 4дБ	2	26 дБм	± 3дБ	10	10 дБм	± 4дБ	3	24 дБм	± 3дБ	11	8 дБм	± 4дБ	4	22 дБм	± 3дБ	12	6 дБм	± 4дБ	5	20 дБм	± 3дБ	13	4 дБм	± 4дБ	6	18 дБм	± 3дБ	14	2 дБм	± 5дБ	7	16 дБм	± 3дБ	15	0 дБм	± 5дБ
Уровень	Мощность	Допустимое отклонение	Уровень	Мощность	Допустимое отклонение																																																																																																														
5	33 дБм	± 2дБ	13	17 дБм	± 3дБ																																																																																																														
6	31 дБм	± 3дБ	14	15 дБм	± 3дБ																																																																																																														
7	29 дБм	± 3дБ	15	13 дБм	± 3дБ																																																																																																														
8	27 дБм	± 3дБ	16	11 дБм	± 5дБ																																																																																																														
9	25 дБм	± 3дБ	17	9 дБм	± 5дБ																																																																																																														
10	23 дБм	± 3дБ	18	7 дБм	± 5дБ																																																																																																														
11	21 дБм	± 3дБ	19	5 дБм	± 5дБ																																																																																																														
12	19 дБм	± 3дБ																																																																																																																	
Уровень	Мощность	Допустимое отклонение	Уровень	Мощность	Допустимое отклонение																																																																																																														
0	30 дБм	± 2дБ	8	14 дБм	± 3дБ																																																																																																														
1	28 дБм	± 3дБ	9	12 дБм	± 4дБ																																																																																																														
2	26 дБм	± 3дБ	10	10 дБм	± 4дБ																																																																																																														
3	24 дБм	± 3дБ	11	8 дБм	± 4дБ																																																																																																														
4	22 дБм	± 3дБ	12	6 дБм	± 4дБ																																																																																																														
5	20 дБм	± 3дБ	13	4 дБм	± 4дБ																																																																																																														
6	18 дБм	± 3дБ	14	2 дБм	± 5дБ																																																																																																														
7	16 дБм	± 3дБ	15	0 дБм	± 5дБ																																																																																																														

2. РАБОЧИЕ ХАРАКТЕРИСТИКИ

Номер	Наименование	Характеристики	
5	Спектр РЧ на выходе (из-за модуляции)	GSM, EGSM	
		Смещение от несущей (кГц)	Макс. дБ ниже несущей
		100	+0,5
		200	-30
		250	-33
		400	-60
		600~ <1.200	-60
		1.200~ <1.800	-60
		1.800~ <3.000	-63
		3.000~ <6.000	-65
		6.000	-71
		DCS	
		Смещение от несущей (кГц)	Макс. дБ ниже несущей
		100	+0,5
6	Спектр РЧ на выходе (из-за переходного процесса при коммутации)	GSM, EGSM	
		Смещение от несущей (кГц)	Макс. дБ ниже несущей
		400	-19
		600	-21
		1.200	-21
		1.800	-24
		DCS	
		Смещение от несущей (кГц)	Макс. дБ ниже несущей
		400	-22
		600	-24
		1.200	-24
		1.800	-27
7	Помехи	Проводимость, излучение	

2. РАБОЧИЕ ХАРАКТЕРИСТИКИ

Номер	Наименование	Характеристики		
8	Частота ошибок по битам (ЧОБ)	GSM, EGSM BER (ЧОБ) (Класс II) < 2,439% при -102 дБм; DCS BER (ЧОБ) (Класс II) < 2,439% при -100 дБм		
9	Точность информации об уровне приема	± 3 дБ		
10	SLR	8 ± 3 дБ		
11	Частотная характеристика передачи	Частота (Гц)	Макс. (дБ)	Мин. (дБ)
		100	-12	-
		200	0	-
		300	0	-12
		1.000	0	-6
		2.000	4	-6
		3.000	4	-6
		3.400	4	-9
		4.000	0	-
12	RLR	2 ± 3 дБ		
13	Частотная характеристика приема	Частота (Гц)	Макс. (дБ)	Мин. (дБ)
		100	-12	-
		200	0	-
		300	2	-7
		500	*	-5
		1.000	0	-5
		3.000	2	-5
		3.400	2	-10
		4.000	2	
* Означает прямую между 300 Гц и 1.000 Гц, принятую в качестве максимального уровня в данном диапазоне.				
14	STMR	13 ± 5 дБ		
15	Запас устойчивости	> 6 дБ		
16	Искажение сигнала	дБ к приемлемому уровню надежности (дБ)	Соотношение уровня (дБ)	
		-35	17,5	
		-30	22,5	
		-20	30,7	
		-10	33,3	
		0	33,7	
		7	31,7	
		10	25,5	
17	Искажение побочного тона	Третья гармоника < 10%		

2. РАБОЧИЕ ХАРАКТЕРИСТИКИ

Номер	Наименование	Характеристики	
18	Допустимое отклонение частоты (13 МГц) в сети	$\leq 2,5$ промилле	
19	Допустимое отклонение (32.768 кГц)	≤ 30 промилле	
20	Громкость звонка	Не менее 80 дБ при следующих условиях: 1. Звонок установлен в режим «Звонок» 2. Измерение производится на расстоянии 50 см	
21	Ток подзарядки	Быстрая зарядка : < 500 мА Медленная зарядка: < 80 мА	
22	Индикатор приема	Кол-во делений индикатора приема	Мощность
		5	-85 дБм ~
		4	-90 дБм ~ -86 дБм
		3	-95 дБм ~ -91 дБм
		2	-100 дБм ~ -96 дБм
		1	-105 дБм ~ -101 дБм
23	Индикатор заряда батареи	Кол-во делений индикатора приема	Мощность
		0	~ 3,65В
		1	3,65 ~ 3,71В
		2	3,71 ~ 3,78В
		3	3,78 ~ 3,91В
		4	3,92В ~
24	Предупреждение о разрядке аккумулятора	$3,5 \pm 0,03$ В (В режиме разговора)	
		$3,62 \pm 0,03$ В (В режиме ожидания)	
25	Напряжение принудительного отключения	$3,35 \pm 0,03$ В	
26	Тип батареи	1 Ионно-литиевая батарея Стандартное напряжение = 3.7 В Напряжение полного заряда = 4.2 В Емкость: 780 мА/ч-	
27	Зарядное устройство	Импульсное зарядное устройство Входное напряжение: 100 ~ 240 В, 50/60 Гц Выходное напряжение: 5.2 В, 800 мА	

3. КРАТКАЯ ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

3.1 Общее описание

Радиочастотная часть состоит из передающего и приемного устройства, генератора частоты, источника питания и ТГУНа. Приемопередатчик Aero обеспечивает двух- и трехдиапазонную GSM/GPRS беспроводную связь. Схема содержит приемник с низкой ПЧ (100КГц) и передатчик, основанный на архитектуре петлевой модуляции и содержит двухдиапазонный приемопередатчик, со встроенным ГУН. В приемопередатчике применяется трехпроводный последовательный интерфейс, для подключения внешних систем управления, записи управляющих регистров делителей, регулировки коэффициента усиления, настройки режима выключения питания, и осуществления другого управления.

3.2 Приемное устройство

Рис. 3-1 Блок-схема приемного устройства

(1) Входной РЧ каскад

Радиочастотный входной каскад состоит из антенного переключателя (FL501), двух ПАВ фильтров (FL500, FL502) и двухдиапазонного малошумящего усилителя, интегрированного в приемопередатчик (U502). Принимаемые РЧ сигналы (EGSM 925MHz ~ 960MHz, DCS 1805MHz ~ 1880MHz) подаются на антенный переключатель или коммутатор. Антenna соглашающая цепь находится между антенным переключателем и антенным коммутатором. Антенный переключатель (FL501) служит для управления радиоканалами приема и передачи. Управляющие входные сигналы VC1 и VC2 подаются от контроллера низкочастотной части для переключения радиотракта либо на прием, либо на передачу. Антенный переключатель (FL501) является антенным переключателем для двухдиапазонных телефонов. Логические уровни и параметры тока приведены в таблице 3-1.

3. КРАТКАЯ ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

	VC1	VC2
GSM, DCS Rx	L	L
GSM Tx	L	H
DCS Tx	H	L

Табл. 3-1. Логические уровни для Антенного переключателя

В приемном устройстве используется приемник с низкой ПЧ, размещенный на одном кристалле с фильтром выбора каналов, устраниющий необходимость применения фильтров подавления боковых гармоник и фильтра ПАВ ПЧ, являющихся элементами обычной, супергетеродинной схемы. Микросхема Si4205-BM [U502] включает в себя три малошумящих усилителя с дифференциальными входами, согласованными с 200-омными симметричными выходами фильтров через внешние согласующие LC-цепи.

(2) Сигналы промежуточной частоты

Квадратурный смеситель с подавлением зеркальной частоты с помощью РЧ сигнала, поступающего с гетеродина, преобразует входной РЧ сигнал в промежуточную частоту 100 кГц. Частота РЧ гетеродина находится в пределах от 1737.8 МГц до 1989.9 МГц, и делится на 2, для режимов GSM 850 и E-GSM 900. Выходной сигнал смесителя, усиливается при помощи аналогового усилителя с программируемым коэффициентом усиления, который управляемся при помощи битов AGAIN[2:0] в регистре 05h.

Квадратурный сигнал ПЧ оцифровывается с высоким разрешением при помощи аналого-цифровой преобразователя (АЦП). Выходной сигнал аналого-цифровой преобразователя преобразуется, при помощи цифрового квадратурного генератора (100КГц) и подается на низкочастотную часть. Цифровая обработка сигнала и БИХ-фильтры (с бесконечной импульсной характеристикой) применяются для выбора канала с целью устранения блокировки и помех. Чувствительность БИХ-фильтра может быть установлена в один из двух режимов: высоко избирательный (CSEL = 0) или мало избирательный (CSEL = 1). После выбора канала, цифровой сигнал усиливается при помощи цифрового усилителя с программируемым коэффициентом усиления, который управляемся при помощи битов DGAIN [5:0] в регистре 05h

(3) Демодулятор и обработка сигналов в низкочастотной части

Усиленный цифровой выходной сигнал проходит через цифро-аналоговые преобразователи, с которых дифференциальный аналоговый сигнал поступает на выводы RXIP, RXIN, RXQP и RXQN для сопряжения с интегральными схемами НЧ части стандартного аналогового АЦП. В НЧ части не требуется специальная обработка для компенсации сдвига, либо расширенного динамического диапазона. По сравнению с архитектурой прямого преобразования, архитектура низкой ПЧ в намного большей степени устойчива к смещениям постоянной составляющей, вызываемым самопреобразованием местного РЧ гетеродина, искажениями второго порядка блокинг-генераторов, и 1/f шумом устройства.

3.3 Синтезатор частот

В приемопередатчик Aero I интегрированы две полные системы ФАПЧ, включающие в себя ГУН, варактор, резонатор, контурные фильтры, делители опорной частоты и делители частоты ГУН, фазовые детекторы. РЧ ФАПЧ использует два совмещенных ГУН. РЧ1 ГУН используется в режиме приема, а РЧ2 ГУН – в режиме передачи. ПЧ ФАПЧ используется только в режиме передачи. Все катушки ГУН также интегрированы. Частоты выходных ПЧ и РЧ сигналов устанавливаются регистров N-Divider N[RF1], N[RF2], и N[IF]. Установка регистров N-Divider для любого из РЧ1 или РЧ2 автоматически выбирается подходящий ГУН. Частоты выходных сигналов для каждого ФАПЧ вычисляется по следующей формуле:

$$f_{\text{out}} = N * f_0$$

Бит DIV2 в регистре 31h управляет программированием делителя на контакте XIN, позволяя использовать опорную частоту 13 или 26 МГц. Для режима приема, частоты обновления фазового детектора РЧ1 ФАПЧ ($f_{\text{ш}}$), должны быть запрограммированы на $f_{\text{ш}} = 100\text{кГц}$ для диапазонов DCS 1800 или PCS 1900 и $f_{\Delta\#} = 200\text{ кГц}$ для диапазонов GSM 850 и EGSM 900. Для режима передачи, частоты обновления фазового детектора РЧ2 и ПЧ ФАПЧ всегда используют $f_{\text{ш}} = 200\text{кГц}$.

Рисунок 3.2 Схема блока синтезатора частот

3.4 Блок передатчика

Блок передатчика состоит из повышающего преобразователя сигналов I/Q НЧ части, схемы фазовой автоподстройки частоты (ФАПЧ) и двух выходных буферов приводящих в действие внешние усилители мощности (УМ) – один для диапазона GSM 850 (от 824 до 849 МГц) и E-GSM 900 (от 880 до 915 МГц), а другой для DCS 1800 (от 1710 до 1785 МГц) и PCS 1900 (от 1850 до 1910 МГц).

Системе ФАПЧ не требуется внешний дуплексер для погашения помех передатчика или паразитных сигналов в диапазоне приема, что позволяет снизить стоимость телефона и потребление энергии. Кроме того, сигнал ГУН (TC-ГУН) является сигналом с постоянной огибающей, а это облегчает проблему расширения спектра, вызванную нелинейностью усилителя мощности. Квадратурный смеситель при помощи местного гетеродина преобразует с повышением частоты дифференцированные синфазные сигналы (TXIP, TXIN) и квадратурные сигналы (TXQP, TXQN) в сигнал ПЧ с одной боковой полосой, который затем фильтруется и используется для прямого соединения со схемой фазовой автоподстройки частоты. Вырабатываемая частота местного гетеродина находится в интервале от 766 до 896 МГц. Эта частота делится пополам и таким образом полученные квадратурные сигналы местного гетеродина подаются на квадратурный модулятор. В результате значение ПЧ находится в интервале от 383 до 448 МГц. Для диапазона E-GSM 900 требуются две различные частоты местного гетеродина. Система ФАПЧ состоит из преобразователя частоты обратной связи, фазового детектора, контурного фильтра и полностью интегрированного ГУН (генератора управляемого напряжением) передатчика.

Частота ГУН передатчика расположена по центру между диапазонами DCS 1800 и PCS 1900, а его выходной сигнал делится пополам для диапазонов GSM 850 и E-GSM 900.

Сигнал местного гетеродина РЧ генерируется на частоте между 1272 и 1483 МГц. Для того, чтобы единственный ГУН мог быть использован местным гетеродином РЧ, применяется подача сигнала в верхней части диапазонов GSM 850 и E-GSM 900, и в нижней части диапазонов DCS 1800 и PCS 1900.

Сигналы I и Q автоматически меняются при переключении диапазонов. Кроме того, можно использовать бит SWAP в регистре 03h, для того чтобы вручную поменять сигналы I и Q.

Низкочастотные фильтры перед фазовым детектором системы ФАПЧ снижают гармоническую составляющую квадратурного модулятора и выходных сигналов преобразователя частоты обратной связи.

Рисунок 3.3 Блок-схема канала РЧ передатчика.

(1) Модулятор промежуточной частоты

НЧ преобразователь(BBC), расположенный в чипе GSM, создает НЧ сигналы I и Q для передающего векторного модулятора. Модулятор обеспечивает более 40 dBc для несущей частоты, подавление нежелательной боковой частоты и обработку модулированного сигнала GMSK. Программные средства НЧ части используются для подавления смещения постоянного тока в НЧ сигналах I/Q, вызванных неоднородностями в ЦАП. Модулятор передатчика выполняет квадратурную модуляцию. Квадратурный смеситель преобразует дифференцированные синфазные (TXIP, TXIN) и квадратурные (TXQP, TXQN) сигналы с повышением частоты при помощи гетеродина для создания SSB ПЧ сигнала, который затем фильтруется и используется для прямого соединения со схемой ФАПЧ.

(2) Фазовая автоподстройка частоты (ФАПЧ)

Система ФАПЧ состоит из преобразователя частоты обратной связи, фазового детектора, контурного фильтра и полностью интегрированного ГУН передатчика.

Частота ГУН передатчика равна средней частоте между DCS 1800 и PCS 1900, а его выходной сигнал делится на 2 для диапазонов GSM 850 и E-GSM 900. Si4133T генерирует частоту местного гетеродина РЧ между 1272 и 1483 МГц. Для того, чтобы обеспечить использование единственного ГУН для местного гетеродина РЧ, используется высокая подача сигнала для диапазонов GSM 850 и E-GSM 900, и низкая подача для диапазонов DCS 1800 и PCS 1900.

Низкочастотные фильтры перед фазовым детектором системы ФАПЧ снижают гармоническую составляющую квадратурного модулятора и выходных сигналов преобразователя частоты обратной связи. Частота фильтров программируется FIF (3:0) битами в регистре 04h.

Системе ФАПЧ не требуется внешний дуплексер для ослабления помех при передаче и паразитных сигналов в диапазоне приема. Кроме того, на выходе ГУН (ГУН передачи) создается сигнал с постоянной огибающей, который уменьшает проблему расширения спектра, создаваемую нелинейностью усилителя мощности.

(3) Усилитель мощности

RF3133 [U503] является трехдиапазонным (GSM/DCS/PCS) модулем усилителя мощности, использующим метод непрямого регулирования мощности по замкнутому циклу. Непрямое регулирование по замкнутому циклу полностью автономно, и не требует оптимизации схемы. Оно может регулироваться непосредственно с выхода цифроаналогового преобразователя в цепи НЧ части.

Встроенное регулирование мощности обеспечивает диапазон регулирования свыше 37 дБ с аналоговым входом (Vramp). Его эффективность составляет 55% в диапазоне GSM и 52% в диапазоне DCS.

3.5 Электропитание и сигналы управления

В телефоне имеются два стабилизатора для обеспечения электропитанием РЧ части. Один из них расположен в AD6537B (U100)

ИС управления электропитанием формирует напряжение питания для термостабилизированного генератора, управляемого напряжением (X500). Другой обеспечивает электропитанием остальные РЧ схемы.

3.6 Описание НЧ части модели C2200

(1) Блок-схема C2200

Это общая блок-схема модели C2200. Блок-схема состоит из 2-х частей: НЧ и РЧ. В данном телефоне используются следующие детали:

1. AD6527 : ADI цифровой процессор
2. AD6537B : ADI аналоговый процессор и менеджер питания
3. Si4205 : микросхема РЧ приемопередатчика
4. YM762 : микросхема Yamaha Midi
5. RD38F3350LLZDQ0: Флэш-память 128Mb + SRAM 64Mb Intel Memory Chipset
6. Прочее.
 - A. Клавиатура из 24 клавиш и 2 боковых клавиши
 - B. ЖК модуль 128 x 160, 65000 цветов, TFT
 - C. Виброзвонок

- D. Микрофон
- E. Громкоговоритель + Динамик
- F. Разъем для гарнитуры
- G. Разъем SIM-карты
- H. Разъем батареи
- I. Фотокамера

(2) Блок-схема НЧ части

В телефоне С2200 применяется одна общая печатная плата.

Main PCB

Рисунок 3-4. Блок-схема основной ПП

(3) Логическая схема

AD6527

Рисунок 3-5. Блок-схема верхнего уровня внутренней архитектуры AD6527

1) Подсистема доступа к общей шине.

- I. Является «перекрестком» доступа к данным между тремя основными шинами.
 - II. Шина EBUS предназначена для внешнего доступа, в основном к кодам и данным флэш-памяти, предназначенным для процессора MCU (основной блок управления) и DSP (цифровой процессор сигналов).
 - III. RBUS – для внутреннего доступа к ОЗУ.
 - IV. PBUS – для доступа к внутренним периферийным модулям, в том числе UART, RTC и SIM, и Контроллеру прерываний.
- Помимо этих трех основных системных шин также имеются шины SBUS, IOBUS и DMABUS.

2) Подсистема цифрового процессора сигналов.

- I. Включает в себя цифровой процессор сигналов ADI, сопроцессор Витерби, блок кодирования и систему кэш-памяти/контроллера.
- II. Цифровой процессор сигналов может работать при максимальной частоте тактового генератора 91 МГц при напряжении питания 1.8 В.
- III. Сопроцессор Витерби и ускорители шифрования эффективно обеспечивают процессы выравнивания канала, кодирования и декодирования.

3) Подсистема основного блока управления (MCU).

- I. Состоит из центрального процессора ARM7TDMI, ПЗУ загрузчика, блока генератора тактовых импульсов и управления доступом.
- II. Частота системного тактового генератора для процессора ARM7TDMI составляет 13 МГц при напряжении 1,8В. Блок тактового генератора и BS (выбор шины) включает в себя умножитель частоты с 4-х кратным коэффициентом умножения, что дает максимальную частоту тактового генератора 52 МГц. Это позволяет оптимизировать частоту тактового генератора для работы основного блока управления и памяти.
- III. Аппаратный загрузчик имеет код основного блока управления для осуществления базовой связи между ARM и одним из последовательных портов подсистемы универсального системного соединителя (USC).

4) Периферийная подсистема.

- I. Включает в себя четыре основные группы компонентов.
- II. Группа интерфейса пользователя (MMI) сочетает в себе все функциональные элементы пользовательского интерфейса, включая клавиатуру, дисплей, подсветку, часы реального времени, устройство ввода/вывода общего назначения и пр.
- III. Вспомогательная группа объединяет три отдельных подмодуля: следящий таймер, контроллер прерываний для MCU (основной блок управления), ЦПС(цифровой процессор сигналов) и DMA (блока прямого доступа к памяти), а так же таймеры общего назначения.
- IV. Группа системы GSM состоит из генератора, а также интерфейса синтезатора, формирующего радиоуправление.
- V. Интерфейс Блока прямого доступа к памяти (DMA) позволяет вспомогательным подсистемам осуществлять прямой доступ к ЦПС, внутренней программной памяти и внутренней памяти хранения данных.

3. КРАТКАЯ ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

Рисунок 3-6: Межэлементные соединения внешнего интерфейса AD6527/6527B.

5) Межэлементные соединения с внешними устройствами

I. Интерфейс блока часов реального времени.

- Управляется с помощью внешнего кварцевого резонатора.
- Кварцевый резонатор частотой 32,768 кГц.

II. Интерфейс модуля ЖКД

- Управляется через порты _LCD_CS, LCD_RESET, L_ADD01, LCD_ID, L_WR, L_RD, L_DATA [00...15]
- LCD_CS: Запуск микросхемы ЖКД
- LCD_RESET: Сброс модуля ЖКД.
- L_ADD01: Этот вывод определяет, являются ли поступающие на модуль ЖКД данные управляющими, либо информационными.
- L_WR, L_RD : Управление записью/считыванием
- L_DATA [00...15] : Параллельная шина данных.

III. Интерфейс памяти.

- DATA[0...15] : 16-битный параллельный интерфейс
- Адресация ADD01 ~ ADD23.

IV. Интерфейс РЧ.

- AD6527 осуществляет управление РЧ компонентами подачей управляющих сигналов RF_PWR_DWN, ANT_SW1, ANT_SW2, PA_EN, PA_BAND, VSYNTHEN, S_EN, S_DATA, S_CLK и т.д.
- RF_PWR_DWN : контролирует энергопотребление РЧ приемопередатчика.
- ANT_SW[1:2] : выбор передача/прием
- PA_EN: Включение/выключение усилителя мощности
- PA_BAND: выбор частотного диапазона (GSM или DCS)
- VSYNTHEN: Сигнал включения синтезатора частот
- S_EN : включение системы ФАПЧ
- S_DATA : Последовательные данные к системе ФАПЧ.
- S_CLK : Тактовые импульсы системы ФАПЧ.

V. Интерфейс SIM

- AD6225 периодически проверяет статус в режиме вызова - установлена ли SIM-карта.
- Интерфейс осуществляется через SIM_DATA, SIM_CLK, SIM_RST
- SIM_DATA: Этот вывод получает и отправляет данные на SIM-карту. C2200 поддерживает только SIM-карты с интерфейсом 3,0 В
- SIM_CLK: Тактовый генератор частоты 3,5 МГц.
- SIM_RST: Сброс блока SIM.

VI. Интерфейс клавиатуры.

- Имеет 5 вертикальных и 5 горизонтальных рядов.
- AD6527 определяет нажатую кнопку по сигналу прерывания.

VII. Прерывание AD6537B.

- AD6537B производит исходящий сигнал прерывания высокого уровня.
- Сигналы прерывания генерируются вспомогательными АЦП, аудио модулем и модулем подзарядки.

AD6537B

Рисунок 3-7. Функциональная блок-схема AD6537B

6) Передача сигнала в НЧ части

- I. AD6537B создана для поддержки GMSK, как для одноканальных, так и для многоканальных приложений.
- II. 6537B содержит цифровой GMSK модулятор, используемый для приложений GSM. Канал передачи состоит из цифрового модулятора, согласованной пары 10-разрядных ЦАП и согласованной пары восстанавливающих фильтров.

Рисунок 3-8. Секция передачи сигнала в НЧ части процессора AD6537B

7) Прием сигнала в НЧ части.

- Данный участок включает в себя два идентичных канала АЦП, обрабатывающие синфазные (I) и квадратурные (Q) входные сигналы НЧ части.
- Каждый канал имеет грубый фильтр на переключаемых конденсаторах для устранения эффектов наложения спектров (Anti-Alias), после которого стоит цифровой фильтр низких частот.

Рисунок 3-9. Секция приема сигнала в НЧ части процессора AD6537B

8) Вспомогательный участок

- I. Эта секция включает в себя ЦАП автоматического управления частотой, буферы подачи опорного напряжения, вспомогательный АЦП, контроллеры подсветки.
- II. Эта секция также включает в себя вспомогательный АЦП и буферы подачи опорного напряжения.
 - ЦАП автоматического управления частотой: 13-разрядный
 - Вспомогательный АЦП обеспечивает:
 - два дифференциальных входа для считывания температуры.
 - дифференциальный вход для считывания тока зарядки
 - несимметричный выход для измерения напряжения батареи.
 - несимметричный выход для определения типа батареи.
 - два несимметричных выхода для обнаружения микрофона и рычажного переключателя, по одному для каждого из 2-х аналоговых входных аудио каналов.
 - два внешних входа общего назначения.
 - REF,
 - REFOUT,
 - REFCHG, и
 - REFADC и REFADC/2, и AGND1 входы для измерения смещения и усиления

Рисунок 3-10. Вспомогательный участок процессора AD6537B

9) Секция канала обработки речевого сигнала

- I. Получает звуковой сигнал с микрофона. C2200 использует дифференциальную конфигурацию.
 - II. Посыпает звуковой сигнал на громкоговоритель. C2200 использует дифференциальную конфигурацию.
 - III. Обеспечивает аудио кодек (кодирование/декодирование) при помощи ЦАП и АЦП. Также сюда входит контроллер громкости звука звонка, интерфейс микрофона, многоканальные аналоговые вход и выход.
 - IV. Связывает между собой такие внешние устройства как главный микрофон, главный громкоговоритель и разъем устройства «свободные руки» через порты AIN1N, AIN1P, AIN2N, AIN2P, AIN3N, AIN3P, AOUT1P, AOUT1N, AOUT2P, AOUT2N, AOUT3P, AOUT3N, AOUT3N.
- AIN1P, AIN1N: положительный/отрицательный вывод главного микрофона.
 - AOUT1P, AOUT1N: положительный/отрицательный вывод главного громкоговорителя.
 - AIN2P, AIN2N : положительный/отрицательный вывод микрофона гарнитуры.
 - AOUT3P, AOUT3N: положительный/отрицательный вывод наушника гарнитуры.

Рисунок 3-11. Аудио секция процессора AD6537B

10) Управление системой электропитания

Рисунок 3-12. Секция управления системой электропитания процессора AD6537B

[1] Логическая схема последовательности включения питания.

- A. AD6537B управляет последовательностью включения питания.
- B. Последовательность включения питания.
 - Если батарея установлена, то она подает питание на 8 стабилизаторов.
 - Затем, при обнаружении сигнала POWERONKEY, включается выход стабилизаторов.
 - Также поступает разрешающий сигнал REFOUT.
 - Генерируется сигнал сброса и посыпается на AD6527.

Рисунок 3-15. Секция менеджера питания AD6537B

[2] Блок стабилизаторов.

А. В AD6537B имеются 8 стабилизаторов.

- VCORE : (1.8В, 80mA) подается на ядро цифрового НЧ процессора и цифровое ядро процессора AD6537.
- VMEM : (1.8В или 2.8В, 150mA) подается на внешнюю память и интерфейс внешней памяти цифрового НЧ процессора.
- VEXT : (2.8В, 170mA) подается на цифровой радио интерфейс и высоковольтный интерфейс.
- VSIM : (1.8В или 2.85В, 20mA) подается на цепи интерфейса SIM в цифровом процессоре и SIM-карте.
- VRTC : (1.8 В, 200 мА) подается на модуль часов реального времени.
- VABB : подается на аналоговые части AD6537B.
- VMIC : (2.5 В, 1 мА) подается на цепи интерфейса микрофона.
- VVCXO : (2.75 В, 10 мА) подается на генератор с кварцевой стабилизацией (частоты)

3. КРАТКАЯ ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

[3] Блок зарядки батареи.

I. Может быть использован для зарядки ионно-литиевых батарей. Аппаратура выполняет управление инициализацией зарядного устройства, процессом непрерывной подзарядки малым током, зарядкой ионно-литиевой батареи.

II. Процесс подзарядки.

- Проверка подключения зарядного устройства.
- Исключение: Если напряжение батареи ниже 3,2 В, то сначала начинается предварительная зарядка (режим зарядки слабым током).
- Когда напряжение батареи достигает 3,2 В, начинается зарядка постоянным током/постоянным напряжением.

III. Используемые для подзарядки выводы.

- VCHG : напряжение зарядного устройства.
- GATEDRIVE : выход ЦАП (для управления процессами зарядки)
- ISENSE : вход для измерения тока зарядки
- VBATSENSE : напряжение батареи
- BATTYPE : вход для идентификации типа батареи
- REFCHG : выход опорного напряжения
- TEMP1: канал датчика температуры, вход/выход

IV. Зарядное устройство.

- Напряжение на входе: переменный ток 85 В - 260 В, 50 60 Гц.
- Напряжение на выходе: постоянный ток 5,2 В (- 0,2 В).
- Выходной ток: макс. 800 мА (- 50 мА).

V. Батарея

- Ионно-литиевая батарея (макс. 4,2 В, номинальное - 3,7 В)
- Стандартная батарея: Емкость - 830 мА

Рисунок 3-16 Блок стабилизаторов AD6537B

Память

**Память
(128/128 + 64 PSRAM)**

Рисунок 3-17. Схема памяти 128+64

- 1) 128Мб флэш-память + 64Мб PSRAM Intel Memory
- 2) 16-разрядная шина параллельно передаваемых данных
- 3) ADD01 – ADD23
- 4) флэш-памяти хранит данные РЧ калибровки

3. КРАТКАЯ ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

Рисунок 3-18. Схема ЖКД модуля

- 1) Два ЖК-дисплея: Основной: 128 x 160 точек , 65000 цветов, TFT-LCD
Дополнительный: монохромный 96 x 64 точек STN
- 2) Драйвер : HITACHI(RENESAS) HD66791
- 3) Подсветка - белый светодиод : 3 шт. (200 Cd)
- 4) Драйвер светодиода подсветки : AAT3123ITP-T1 (ANALOGIC Tech.)
- 5) Напряжение смещения ЖКД: 2V8_VEXT от AD6537B

Блок Аудио

Рисунок 3-19. Схема блока Аудио

- 1) Микрофон и наушник работают в дифференциальном режиме и используют выводы AIN1P/N и AOUT1P/N процессора AD6537B.
- 2) Напряжение смещения микрофона: 2.5 VMIC подается от AD6537B
- 3) Наушник работает в несимметричном режиме, используя выводы AIN2P, AOUT3P.

3. КРАТКАЯ ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

Рисунок 3-20. Логическая схема Аудио части AD6537B

3. КРАТКАЯ ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

MIDI (цифровой интерфейс музыкальных инструментов)

Рисунок 3-21. Схема MIDI

- 1) Выход громкоговорителя : симметричный режим работы обеспечивают сигналы SPOUT1 и SPOUT2 чипа YMU762.
 - 2) Интерфейс чипа MIDI :
 - Управляется портами _MIDI_CS, _MIDI_RST, _MIDI_IRQ, _WR, _RD, DATA [08...15]
 - _MIDI_CS : сигнал разрешения чипа MIDI
 - _MIDI_RST : сброс чипа MIDI
 - _MIDI_IRQ : сигнал прерывания микросхемы MIDI для основного блока управления
 - _WR, _RD: управление записью/чтением
 - DATA [08...15]: линия параллельной передачи данных
 - 3) U203(YMU762) - это чип MIDI. U202(MAX4684) - это аналоговый переключатель для выбора между Аудио и MIDI.

Блок зарядки батареи

Рисунок 3-22. Схема блока заряда батареи AD6537B

- A. VCHARGE : Напряжение от зарядного устройства, подключенного к системному разъему.
- B. ISENSE : Определяет момент прекращения подзарядки и значение тока зарядки, посредством измерения этого тока.
- C. TPCF8102 (PMOSFET) : Осуществляет функцию заряда с постоянным током-постоянным напряжением посредством изменения напряжения на GATEDRIVE.
- D. CUS02 (диод Шоттки) Защищает от разряда батареи через ключ.

Камера

4. УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

4.1 Проблемы приема сигнала

(1) Проверка цепи стабилизатора.

Точки проверки

Принципиальная схема

Последовательность проверки

4. УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

(2) Проверка цепи термостабилизированного генератора управляемого напряжением (ГУН)

Точки проверки

Последовательность проверки

X500. 4 X500. 3

Рис. 4-3

Принципиальная схема

Осциллографма

График 4-1(a)

График 4-1(b)

(3) Проверка управляющего сигнала системы фазовой автоподстройки частоты (ФАПЧ).

Рис. 4-4

График 4-2(a)

График 4-2(b)

4. УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

(4) Проверка антенного переключателя и антенного коммутатора.

Точки проверки

Рис. 4-5

Принципиальная схема

Осциллографма

ANT SW Control GSM& DCS RX Mode

График 4-3

Последовательность проверки**Таблица 4-1**

ANT SW	VC1	VC2
DCS TX	0	1
EGSM TX	1	0
EGSM, DCS RX	0	0

4. УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

(5) Проверка ПАВ фильтра.

Точки проверки

Рис.4-6

Принципиальная схема

Последовательность проверки

(6) Проверка приема IQ сигналов.

Точки проверки

C537
C538

Принципиальная схема

Рис.4-7

Осциллографма

График 4-4

Последовательность проверки

Проверить C537, C538.
Проверить есть ли
значительное различие.
• См. график 6-1

4.2 Проблемы передачи

Рис. 4-8

Последовательность проверки

(1) Проверка цепи стабилизатора.

Точки проверки

Рис. 4-9

Принципиальная схема

Последовательность проверки

4. УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

(2) Проверка цепи термостабилизированного генератора управляемого напряжением (ТСГУН)

X500. 4 X500. 3

Рис. 4-10

Осциллографма

График 4-5(а)

График 4-5(б)

Принципиальная схема

(3) Проверка управляющего сигнала системы фазовой автоподстройки частоты.

Рис. 4-11

График 4-6(a)

График 4-6(b)

4. УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

(4) Проверка антенного переключателя и антенного коммутатора.

Рис. 4-12

Осциллографмма

Последовательность проверки

Таблица 4-2

ANT SW	VC1	VC2
DCS TX	0	1
EGSM TX	1	0
EGSM, DCS RX	0	0

4. УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

(5) Проверка управляющих сигналов усилителя мощности.

Точки проверки

Рис. 4-13

Осциллографма

График 4-8

Последовательность проверки

Проверить TX_RAMP и PA_EN.
Проверить имеется ли какое-либо
значительное различие.
• См. график 5-11.

(6) Проверка передачи сигналов I и Q.

Точки проверки

Рис. 4-14

Осциллографма

График 4-9

Принципиальная схема

4.3 Проблемы включения.

4.4 Проблемы зарядного устройства.

Направление тока зарядки

4. УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

4.5 Проблемы ЖКД.

4. УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

4.6 Проблемы динамика.

4. УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

4.7 Проблемы громкоговорителя.

4. УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

ПОДГОТОВКА: Подсоединить PIF к телефону, включить питание. Войти в сервисный режим, установить «Melody on» в меню «BB Test - Buzzer».

4.8 Проблемы микрофона.

4.9 Проблемы виброзвонка.

ПОДГОТОВКА: После инициализации Agilent 8960, подсоединить PIF к телефону, включить питание. Войти в сервисный режим, установить «Vibrator on» в меню “BB Test-Vibrator”.

4.10 Проблемы светодиодов подсветки клавиатуры.

ПОДГОТОВКА: Подсоединить PIF к телефону, включить питание.
Войти в сервисный режим, установить «Backlight On» в меню «BB Test-Backlight».

4. УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

4.11 Проблемы с обнаружением SIM-карты.

ПОДГОТОВКА: Вставить SIM-карту в J300. Подсоединить PIF к телефону, включить питание.

4.12 Проблемы гарнитуры.

Принципиальная схема

Точки проверки

4. УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

Последовательность проверки

Проблема принимающего канала гарнитуры

Неисправность определения гарнитуры

Проблема передающего канала гарнитуры

4.13 Проблемы фотокамеры.

• Работа фотокамеры

- U401(Чип фотокамеры) управляет DBB.
- Питание поступает на U402(2.85В).

• Прохождение сигнала фотокамеры

- С сенсора фотокамеры сигнал идет на МС фотокамеры (U401).

• Подготовка к определению неисправности

- Войдите в сервисный режим.
- Войдите в меню “BB test -> Camera -> Preview”

• Процесс поиска неисправности

- Проверьте подачу питания (2.85В).
- Проверьте соединение камеры с разъемом.

• Сигналы фотокамеры с DBB

- _LCD_CS, CAM_HOLD, CAM_INT, _WR, _RD, CAM_RST, ADD(01), ADD(01)~ADD(06), DATA(00) ~ DATA(15).

4. УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ

5. ПОРЯДОК РАЗБОРКИ

5. ПОРЯДОК РАЗБОРКИ

5. ПОРЯДОК РАЗБОРКИ

5. ПОРЯДОК РАЗБОРКИ

5. ПОРЯДОК РАЗБОРКИ

6. ЗАГРУЗКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И КАЛИБРОВКА

6.1 Загрузка программного обеспечения

A. Схема соединений для загрузки программного обеспечения.

На рис. 6-1 показана Схема соединений для загрузки программного обеспечения.
(Если у вас есть батарея, то зарядное устройство не требуется)

Рис. 6-1. Схема соединений для загрузки программного обеспечения.

B. Порядок загрузки программного обеспечения.

1. Войдите в программу загрузчика ПО ПК и выберите Erase (Стирание). (Не отмечайте пункт OWCD)

2. Нажмите Start и дождитесь окончания Erase (Стирание).

6. ЗАГРУЗКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И КАЛИБРОВКА

3. Измените адрес и размер (Адрес: 18000000, Размер:0x800000) Нажмите Start и дождитесь окончания Erase (Стирание).

4. Нажмите Write (Запись) для начала загрузки и нажмите клавишу [...], чтобы выбрать ПО (AlchemyData.mot)

6. ЗАГРУЗКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И КАЛИБРОВКА

5. Выберите ПО

6. Подождите пока закончится конвертация из MOT в BIF (Не отмечайте пункт OWCD)

6. ЗАГРУЗКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И КАЛИБРОВКА

7. Нажмите Start и включите питание телефона, установив переключатель устройства JIG в положение ON (вкл.)(Переключатель 1)

8. Подождите заполнения строки состояния отправки данных(Sending Block)

6. ЗАГРУЗКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И КАЛИБРОВКА

9. Нажмите Write (Запись) для начала загрузки и нажмите клавишу [...] для выбора ПО (CodeData.mot)

10. Выберите ПО

6. ЗАГРУЗКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И КАЛИБРОВКА

11. Подождите заполнения строки состояния отправки данных(Sending Block)

6.2 Калибровка

A. Список необходимого оборудования для калибровки.

Таблица 6-1. Список необходимого для калибровки оборудования.

Необходимое для калибровки оборудование	Тип/Модель	Изготовитель
Измерительное устройство для радиотелефонного оборудования (GSM-тестер).	HP-8960	Agilent
Кабель RS-232 и устройство JIG.		LG
РЧ кабель.		LG
Источник питания.	HP-66311B	Agilent
Интерфейсная плата GPIB	HP-GPIB	Agilent
Программное обеспечение для калибровки и заключительного испытания.		LG
Тестовая SIM.		
ПК (для установки программного обеспечения)	Pentium II, не менее 300 МГц	

B. Схема подключения оборудования.

Рис. 6-2 Подключение оборудования

6. ЗАГРУЗКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И КАЛИБРОВКА

Рис. 6-3 Вид устройства JIG сверху.

C. Выполнение операций с использованием JIG.

Таблица 6-2. Список необходимого для калибровки оборудования.

Источник питания	Описание
Подаваемое электропитание	Обычно 4,0 В
Зарядное устройство	Используйте зарядное устройство TA-20G (24-х контактное)

Таблица 6-3. Список необходимого для калибровки оборудования.

№ переключателя	Наименование	Функциональная характеристика
Переключатель 1	ADI-REMOTE	В положении ВКЛ телефон переходит в активное состояние. Используется ADI chipset.
Переключатель 2	TI-REMOTE	В положении ВКЛ телефон переходит в активное состояние. Используется TI chipset.
Переключатель 3	VBAT	К телефону подается питание от батареи.
Переключатель 4	PS	К телефону подается питание от источника питания.

6. ЗАГРУЗКА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И КАЛИБРОВКА

Таблица 6-4. Список необходимого для калибровки оборудования.

№ светодиода	Наименование	Функциональная характеристика
LED 1	POWER	Подача питания на JIG.
LED 2	TA	Индикация уровня зарядки батареи телефона.
LED 3	UART	Индикация состояния передачи данных через порт UART.
LED 4	MON	Индикация состояния передачи данных через порт MON.

1. Выполнить соединение как указано на Рис. 6-2 (последовательный кабель RS232 соединяет порт COM компьютера с портом MON устройства JIG).
2. Подключить питание 4,0 В.
3. Установить 3-й и 4-й микропереключатели DIP в положение ON (ВКЛ).
4. Нажать кнопку включения питания телефона+ если используется дистанционное включение – поставить 1-й переключатель DIP в положение ON (ВКЛ).

D. Процедура выполнения.

1. Выполнить соединение как указано на Рис. 6-2 (последовательный кабель RS232 соединяет порт COM компьютера с портом MON устройства JIG).
2. Включить питание ПК, загрузить операционную программу Windows 98 (Примечание: допускается работа в Windows 2000).
3. Запустить AUTOCAL.exe, на экране появится окно приложения AUTOCAL.

7. БЛОК-СХЕМА

8. СХЕМЫ СОЕДИНЕНИЙ

LGIC(42)-A-5505-10.01

LG Electronics Inc.

8. СХЕМЫ СОЕДИНЕНИЙ

8. СХЕМЫ СОЕДИНЕНИЙ

8. СХЕМЫ СОЕДИНЕНИЙ

LGIC(42)-A-5505-10:01

LG Electronics Inc.

8. СХЕМЫ СОЕДИНЕНИЙ

LGIC(42)-A-5505-10:01

LG Electronics Inc.

8. СХЕМЫ СОЕДИНЕНИЙ

9. РАСПОЛОЖЕНИЕ ЭЛЕМЕНТОВ НА ПЕЧАТНОЙ ПЛАТЕ

9. РАСПОЛОЖЕНИЕ ЭЛЕМЕНТОВ НА ПЕЧАТНОЙ ПЛАТЕ

10. ИНЖЕНЕРНОЕ МЕНЮ

A. Об инженерном меню.

Инженерное меню дает возможность специалисту по ремонту/техническому обслуживанию проверить и протестировать основные функции аппарата.

B. Коды доступа.

Последовательность нажатия кнопок для входа в инженерное меню – 2945#*#. При нажатии END устройство возвращается из сервисного режима в обычный режим.

C. Использование кнопок.

Для выбора пунктов меню используются кнопки «Up» («Вверх») и «Down» («Вниз»), для перехода к очередным операциям – кнопка «Select» («Выбор»). При нажатии кнопки «Back» происходит возврат к начальному меню проверки.

D. Структура инженерного меню

10.1 Проверка НЧ части (Меню 1)

Проверка низкочастотной части.

10.1.1 Фотокамера

Это меню для проверки камеры

- Preview : включение камеры.

10.1.2 Подсветка

Это меню предназначено для проверки подсветки ЖКД и подсветки кнопок.

- Backlight on: одновременно включена подсветка ЖКД и подсветка кнопок.
- Backlight off: одновременно выключена подсветка ЖКД и подсветка кнопок.
- Backlight value: служит для изменения яркости подсветки. При входе в меню на дисплее индицируется яркость подсветки дисплея на данный момент. Для настройки уровня яркости используются кнопки Влево/Вправо. Последнее установленное значение яркости подсветки сохраняется в памяти энергонезависимого ЗУПВ.

10.1.3 Сигнал вызова

Данное меню предназначено для проверки музыкального сигнала вызова.

- Melody on: через громкоговоритель воспроизводится музыкальный сигнал.
- Melody off: музыкальный сигнал не воспроизводится.

10.1.4 Виброзвонок

Это меню предназначено для проверки режима виброзвонка.

- Vibrator on: виброзвонок включен.
- Vibrator off: виброзвонок выключен.

10.1.5 АЦП (Аналого-цифровой преобразователь)

Указывает параметр каждого АЦП.

- MVBAT ADC (АЦП батареи основного напряжения)
- AUX ADC (вспомогательный АЦП).
- TEMPER ADC (АЦП датчика температуры)

10.1.6 Батарея

- Bat Cal:

Указывает значение калибровки батареи.

Следующие пункты меню индицируются на дисплее в приведенном порядке:
BATLEV_4V, BATLEV_3_LIMIT, BATLEV_2_LIMIT, BATLEV_1_LIMIT,
BAT_IDLE_LIMIT, BAT_INCALL_LIMIT, SHUT_DOWN_VOLTAGE,
BAT_RECHARGE_LMT

- TEMP:

Указывает значение калибровки температуры.

Следующие пункты меню индицируются на дисплее в приведенном порядке:
TEMP_LOW_LIMIT, TEMP_LOW_RECHARGE_LMT,
TEMP_HIGH_RECHARGE_LMT, TEMP_HIGH_LIMIT

10.1.7 Аудио

Данное меню предназначено для установки регистра управления в микросхеме кодека речевого канала НЧ части. Фактическое значение может быть переписано, однако система возвращается к значению по умолчанию при выключении и включении телефона.

- VbControl1: установка значений регистра VbControl1.
- VbControl2: установка значений регистра VbControl2.
- VbControl3: установка значений регистра VbControl3.
- VbControl4: установка значений регистра VbControl4.
- VbControl5: установка значений регистра VbControl5.
- VbControl6: установка значений регистра VbControl6.

10.1.8 ЦАИ (Цифровой аудио-интерфейс)

Это меню предназначено для установки режима цифрового аудио-интерфейса для речевого транскодера и акустического тестирования.

- DAI AUDIO: Аудио режим ЦАИ.
- DAI UPLINK: тестирование речевого кодера.
- DAI DOWNLINK: тестирование речевого декодера.
- DAI OFF: выключение режима ЦАИ.

10.2 Проверка РЧ тракта (МЕНЮ 2)

Radio Frequency Test

10.2.1 Проверка степени поглощения

- SAR Test On: Телефон непрерывно излучает передающий сигнал. Оборудование (GSM-тестер) не требуется.
- SAR Test Off: Излучение передающего сигнала выключено.

10.3 Заводской тест (МЕНЮ 3)

Заводской тест предназначен для автоматического тестирования НЧ части. При выборе данного меню тестирование будет произведено автоматически, и по его завершении на дисплей будет выведено предшествующее меню.

10.3.1 Полная автоматическая проверка

Производится тестирование ЖКД, светодиодов, подсветки, vibrозвонка, звонка, клавиатуры, микрофона и динамика, камеры.

10.3.2 Подсветка

Подсветки ЖКД и клавиатуры включаются примерно на 1,5 секунды одновременно, затем выключаются.

10.3.3 Звуковой сигнал

Данное меню предназначено для проверки громкости музыкального сигнала. Последовательность уровней громкости сигнала следующая: Уровень 1, Уровень 2, Уровень 3, Уровень 0 (без звука), Уровень 4, Уровень 5.

10.3.4 Vibrозвонок

Vibrозвонок включается примерно на 1,5 секунды.

10.3.5 ЖКД

Производится тестирование с выводом на экран горизонтального разрешения главного и дополнительного ЖКД.

10.3.6 Клавиатура

При появлении «всплывающего» сообщения «Press any key» («Нажмите любую кнопку»), Вы можете нажать любую кнопку, включая боковые, кроме кнопки «Soft Key 2». Если кнопка работает нормально, ее название отображается на экране. Тестирование закончится автоматически в течение 15 секунд, после чего на дисплей будет выведено предшествующее меню.

10.3.7 Проверка микрофона и громкоговорителя

Проверяется тракт прохождения аудиосигнала через микрофон и динамик.

10.3.8 Фотокамера

Включен режим предварительного просмотра

10.4 Параметр трассировки (МЕНЮ 4)

Это меню НЕ является необходимым ни для специалистов технического обслуживания, ни для пользователей.

10.5 Таймер (МЕНЮ 5)

- 1) Все звонки: Отображает общее время разговора. Пользователи не могут изменять этот параметр.
- 2) Сброс таймера: Сброс общего времени разговора на (00:00:00).

10.6 Заводской сброс (МЕНЮ 6)

Этот пункт меню форматирует блок данных в флэш-памяти и возвращает телефон к заводским настройкам

- 1) Функция возврата к заводским настройкам должна использоваться только в процессе производства.
- 2) Специалисты сервисных центров не должны использовать эту функцию, так как это может повлечь потерю данных, таких как настройки, данные РЧ калибровки, и т.д. Эти данные невозможно восстановить.

10.7 Версия программного обеспечения (МЕНЮ 7)

Здесь отображается версия ПО, установленного в телефоне

11. ТЕСТ «STAND ALONE»

11.1 Введение

Данная инструкция объясняет, как проверить статус приемника и передатчика данной модели

A. Тест передающего устройства

Тест передатчика - проверка нормальной работы передатчика телефона

B. Тест приемного устройства

Тест приемника- проверка нормальной работы приемника телефона

11.2 Метод настройки

A. Последовательный порт

а. Передвиньте курсор мыши на кнопку “Connect”, нажмите правую кнопку мыши и выберите “Com setting”.

б “Dialog Menu” выберите значения показанные ниже.

Порт: выберите нужный последовательный порт

Скорость передачи: 38400

Остальные параметры оставьте без изменений

B. Передатчик

1. Выбор канала

- Выберите один из диапазонов GSM или DCS , и один из каналов

2. Выбор значения ARU

а. Выберите любой уровень мощности или масштабный коэффициент.

б. Уровень мощности

- Введите подходящее значение для GSM (между 5~19) или для DCS (между 0~15)

с. Масштабный коэффициент

- ‘Ramp Factor’ показывается на экране

- Вы можете регулировать форму импульса или ввести значения напрямую.

C. Приемник

1. Выберите канал

- Выберите один из диапазонов GSM или DCS , и один из каналов

2. Индекс усиления (0~ 26) и уровень RSSI

- Проверьте, что значение RSSI близко к -16дБм, при изменении значения коэффициента усиления (Gain Control Index) в пределах 0 ~ 26

- Телефон в нормальном состоянии должен показывать значение RSSI близкое к -16дБм.

11.3 Методика тестирования

- a. Выберите COM порт
- b. Выберите режим приема или передачи (Rx или Tx)
- c. Выберите диапазон и канал
- d. После выполнения всех предыдущих настроек нажмите кнопку connect
- e. Нажмите кнопку start

Рис. 11-1 Программа проверки оборудования

Рис. 11-2 Настройки проверки оборудования

Рис. 11-3 Форма сигнала

12. АВТОМАТИЧЕСКАЯ КАЛИБРОВКА

12.1 Описание

AutoCal (Auto Calibration – Автоматическая калибровка) это компьютерная программа, предназначенная для калибровки передающего и принимающего устройств, калибровки батареи с помощью Agilent 8960(инструмент настройки GSM) и Tektronix PS2521G(Программируемый источник питания). AutoCal создает калибровочные данные, соединяется с телефоном и измерительным оборудованием, а затем записывает эти данные в флэш-память телефона GSM

12.2 Необходимое оборудование

ПК или ноутбук с установленной операционной системой Microsoft Windows 98/ME/2000/XP

Программа авто калибровки (Autocal.exe)

GSM телефон

LGE PIF JIG, последовательный кабель, кабель данных

Agilent 8960(GSM-тестер)

- Tektronix PS2521G(Программируемый источник питания)

12.3 Меню и настройки

- Меню файл Очистить экран : очищает окно статуса калибровки
- Меню файл Сохранить экран : сохраняет содержимое окно статуса калибровки
- Меню файл Сохранить настройки: сохранение данных настроек в файл настроек (*.cal)
- Меню файл загрузить настройки: загрузка сохраненных настроек калибровки
- Меню файл Создать BIN: создание бинарного файла после завершения калибровки
- Меню файл BIN только BAT.cal : Создать только бинарный файл данных калибровки батареи после завершения калибровки
- Меню файл Создать и Записать BIN : Создать бинарный файл и, после завершения калибровки, загрузить во флэш-память телефона
- Меню Вид Инструменты : Показать/скрыть панель инструментов
- Меню Вид Статус : Показать/скрыть строку состояния
- Подключения подключение: подключите телефон к ПК. Данная процедура проверяет подключен ли ПК к "ag8960 ". после этого выполняется процедура синхронизации с телефоном. Если синхронизация прошла успешно, колонка состояния меняется на SETUP, иначе отключите телефон и попробуйте ещё раз с самого начала и также проверьте подключение полностью. Все изменения переходят в состояние SETUP.
- Подключения настройка портов: показывает диалог настройки COM портов и скорости передачи, которые вы можете изменять.
- GPIB подключение: подключает карту Ag8960 GPIB к ПК

Рис. 12-1 Программа авто калибровки

Экран - Потери в кабеле: введите значение потерь РЧ кабеля для GSM и DCS

Экран - GPIB(основной адрес) вводится SS(Ag8960) и PS(Tektronix PS2521G) GPIB адрес

Экран - АЦП канал: Канал АЦП калибровки по умолчанию

Экран - Пункты авто калибровки: настройки калибровки по умолчанию для передатчика, приемника, АЦП и записи бинарного файла

12.4 АРУ

Данная процедура предназначена для калибровки приемника

Эта опция отображает корректные значения RSSI. Установите диапазон EGSM и нажмите кнопку Start, в окне результата отобразится правильное значение для каждого уровня мощности и кода усиления и для каждой частоты.

12.5 АРМ

Данная опция предназначена для калибровки передатчика

Используя эту опцию, вы можете измерить корректные значения коэффициент масштабирования и уровень мощности

12.6 АЦП

Данная процедура предназначена для калибровки батареи

Вы получите таблицу конфигурации батареи и таблицу температурной конфигурации.

12.7 Настройки

Проверьте последовательный порт и подключение кабеля. Выберите элемент автоматической калибровки. Вы можете провести калибровку одного конкретного элемента, отменив проверку всех остальных.

12.8 Как провести калибровку

Подключите телефон к последовательному порту ПК, используя интерфейсный кабель

Подключите оборудование Agilent 8960, программируемый источник питания и телефон.

Установите правильный порт и скорость передачи

Нажмите кнопку «Start». Программа AutoCal автоматически проведет процедуру калибровки

i. АРУ EGSM

ii. АРУ DCS

iii. АРМ EGSM

iv. АРМ DCS

v. АЦП

После завершения всех измерений, телефон автоматически перейдет в меню SETUP.

Будет создан и записан в телефон файл .CAL с калибровочными данными, затем телефон перезапустится.

13. Сборочный чертеж и список заменяемых деталей

13.1 Сборочный чертеж

	품명	품번	수량
1	DECO SPEAKER	MDAND001801	1
2	WINDOW LCD	MWACD04101	1
3	TAPE WINDOW	MTAE0016501	1
4	FILTER SPEAKER	MFBCD019801	1
5	BUNPER	MBHYD009901	2
6	CAP SCREW	MCCHD023301	2
7	SCREW MACHINE	GMZZD0012301	2
8	COVER FOLDER(LOWER)	MCJHD0019801	1
9	PAD LCD	MPBGD0023901	1
10	VIBRATOR MOTOR	SJMYD003601	1
11	SPEAKER	SUSYD006202	1
12	HINGE FOLDER	MHDD005901	1
13	MAGNET SWITCH	MMAAD000601	1
14	CAMERA	SVCYD003601	1
15	PCB ASSY FLEXIBLE	SACYD023501	1
16	LCD NODULE	SVLM0009701	1
17	GASKET SHIELD FORM	MGADD059201	3
18	PAD CAMERA	MPBTD008701	3
19	PAD LCD(SUB)	MPBQD016001	1
20	COVER FOLDER(UPPER)	MCJD0025901	1
21	LENS CAMERA	MLCDD003201	1
22	TAPE DECO	MTAAD0054501	1
23	DECORATION	MDADD006801	1
24	TAPE DECORATION	MTAA0054601	1
25	TAPE WINDOW(SUB)	MTAE0016501	1
26	DECORATION(UPPER)	MDAE0023501	1
27	WINDOW LCD(SUB)	MWAFD0029801	1
28	BUTTON SIDE	MBJL0011701	1
29	STOPPER	MSGYD005301	1
30	DECORATION HINGE_L	MDAJD006302	1
31	DECORATION HINGE_R	MDAJD006301	1
32	INDICATOR	MIAAD0011501	1
33	COVER FRONT	MCJKD028401	1
34	PAD	MPBZD055801	1
35	GASKET SHIELD FORM	MGADD061301	1
36	BUTTON ASSY DIAL	ABGA0002702	1
37	PAD MIKE	MPBH0003901	1
38	DOME ASSY METAL	ADCA0021701	1
39	PCB ASSY MAIN	SAFYD109701	1
40	PAD	MPBZD021501	1
41	PAD	MPBZD056501	1
42	GASKET SHIELD FORM	MGADD062101	1
43	CONTACT ASSY ANTENNA	ACFYD002601	1
44	CAP EARPHONE JACK	MCCCD0113902	1
45	ANTENNA GSN FIXED	SNGFD0003703	1
46	COVER REAR	MCJND0025301	1
47	SCREW MACHINE	MCCHD023301	5
48	CAP MOBILE SWITCH	MCCC0013902	1
49	SPRING LOCKER	MSDCD0001301	1
50	LOCKER BATTERY	MLEAD0015502	1
51	BATTERY PACK LI-ION	SBPLD0072192	1

**13.2 Заменяемые компоненты
<Механические компоненты>**

Примечание: Эта глава может быть использована только для справки, заказ деталей производится по файлам SBOM с сайта GCSC

№	№ Позиции	Описание	№ Детали	Поставляемость	Цвет	Примечания
1		GSM(FOLDER)	TGFF0041608	C2200 ETSBL	Blue	
2	APEY00	PHONE	APEY0144308	C2200 ETSBL	Blue	
3	ABGA00	BUTTON ASSY,DIAL	ABGA0002704	C2200 OPEN. To see detail, open ABGA0002701 and UADS.	Silver	36
3	ACGG00	COVER ASSY,FOLDER	ACGG0044402	C2200 ETSBL.	Blue	
4	ACGH00	COVER ASSY, FOLDER(LOWER)	ACGH0024301	C2200 TMDBL, SILVER	Metalic Silver	
5	MBHY00	BUMPER	MBHY0009901	C2200 TMDBL, Silver	Silver	5
5	MCJH00	COVER,FOLDER(LOWER)	MCJH0019801	C2200 TMDBL, Silver	Metalic Silver	8
5	MFBC00	FILTER,SPEAKER	MFBC0010001	C2200 TMDBL	Black	4
5	MMAA00	MAGNET,SWITCH	MMAA0000601	LG-G510,511,512 common use, DIA : 3.0mm+1.5t	Silver	13
5	MPBG00	PAD,LCD	MPBG0023901	C2200 TMDBL, 0.7t	Black	9
5	MPBT00	PAD,CAMERA	MPBT0008701	C2200 TMDBL. 5X8X2t	Black	
5	MTAD00	TAPE,WINDOW	MTAD0025801	C2200 TMDBL, 0.15t		
4	ACGJ00	COVER ASSY, FOLDER(UPPER)	ACGJ0034801	C2200 TMDBL, BLUE	Blue	
5	MCJJ00	COVER,FOLDER(UPPER)	MCJJ0025901	C2200 TMDBL. BLUE	Blue	20
5	MDAE00	DECO,FOLDER(UPPER)	MDAE0023501	C2200 TMDBL, AL(0.5t)	Silver	26
5	MGAD00	GASKET,SHIELD FORM	MGAD0059201	C2200 TMDBL, GND with FPCB. 4.5X7X2.2t.	Gold	17
5	MPBQ00	PAD,LCD(SUB)	MPBQ0016001	C2200 TMDBL, 0.7t	Black	19
5	MPBT00	PAD,CAMERA	MPBT0008701	C2200 TMDBL. 5X8X2t	Black	18
5	MTAA00	TAPE,DEC0	MTAA0054601	C2200 TMDBL, 0.2t		24
5	MTAB00	TAPE,PROTECTION	MTAB0001403	C2200 UPPER PROTECTION TAPE.		
5	MTAE00	TAPE,WINDOW(SUB)	MTAE0016501	C2200 TMDBL, 0.2t		3, 25
4	ACGK00	COVER ASSY,FRONT	ACGK0038001	C2200 TMDBL, SILVER	Metalic Silver	
5	MBJL00	BUTTON,SIDE	MBJL0011701	C1200 TMDBD	Silver	28
5	MCJK00	COVER,FRONT	MCJK0028401	C2200 TMDBL, SILVER	Metalic Silver	33
5	MDAJ00	DECO,HINGE	MDAJ0006301	C1200 TMDBD, SILVER	Silver	31
5	MDAJ01	DECO,HINGE	MDAJ0006302	C2200 TMDBL, LEFT	Silver	30
5	MGAD00	GASKET,SHIELD FORM	MGAD0048301	C1200 TMDBD, 14X3.5X0.7t	Gold	

13. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	Цвет	Примечания
5	MGAD01	GASKET,SHIELD FORM	MGAD0061301	C2200 TMDBL, 4X4X1.5t	Gold	35
5	MGAD02	GASKET,SHIELD FORM	MGAD0061401	C2200 TMDBL, 3X1.5X0.1t	Gold	
5	MIAA00	INDICATOR,LED	MIAA0011501	C2200 TMDBL		32
5	MIDZ00	INSULATOR	MIDZ0041402	G4020 ATTCO 20 X 6 X 0.1t	Blue	
5	MPBH00	PAD,MIKE	MPBH0003901	FRONT PAD		37
5	MPBZ00	PAD	MPBZ0055801	C2200 LED PAD.	Black	34
5	MPBZ01	PAD	MPBZ0060801	C2200, SIDEKEY PAD.	Black	
5	MSGY00	STOPPER	MSGY0005301	C1200 TMDBD, SILVER	Silver	29
5	MTAA00	TAPE,DECO	MTAA0042501	C1200 TMDBD, 0.2t		
5	MTAA01	TAPE,DECO	MTAA0042502	C2200 TMDBD. Hinge Deco Left Tape.		
4	GMZZ00	SCREW MACHINE	GMZZ0012301	1.4 mm,3.1 mm,MSWR3(FN) ,N ,STR ,-, . M1.4X3.1, HEAD t=1.0, HEAD PI=3.1	Silver	
4	MCCH00	CAP,SCREW	MCCH0023301	C1200 TMDBD, SILVER	Silver	6, 47
4	MDAD00	DEC0,CAMERA	MDAD0006801	C2200 TMDBL, CAMERA DECO.	Silver	23
4	MDAN00	DEC0,SPEAKER	MDAN0001801	C2200 TMDBL	Silver	1
4	MHFD00	HINGE,FOLDER	MHFD0005901	Pi5.8 5Kgf, CAN Type, Prexco(Head R1.0)	Deep Silver	12
4	MIDZ00	INSULATOR	MIDZ0041401	C1300 CGRSV 9 X 5.5 X 0.05t	Blue	
4	MLAC00	LABEL,BARCODE	MLAC0003401	EZ LOOKS(user for mechanical)		
4	MLCD00	LENS,CAMERA	MLCD0003201	C2200 TMDBL, ACRYL(1.0t)		21
4	MPBZ00	PAD	MPBZ0062301	C2200 LCD Driver IC PAD, 0.4t	Black	
4	MTAA00	TAPE,DECO	MTAA0054501	C2200 TMDBL, CAMERA DECO TAPE, 0.15t		22
4	MTAB00	TAPE,PROTECTION	MTAB0044101	C1200, LCD protection tape, 0.05t		
4	MWAC00	WINDOW,LCD	MWAC0041101	C2200 TMDBL. LG logo. 0.8t	Silver	2
4	MWAF00	WINDOW,LCD(SUB)	MWAF0020802	C2200 open. LG logo only. To see detail, open MWAF0020801 and UADS.	Silver	27
3	ACGM00	COVER ASSY,REAR	ACGM0037201	C2200 TMDBL	Blue	
4	ACFY00	CONTACT ASSY, ANTENNA	ACFY0002601	C1200 TMDBD	Gold	43
4	MCCC00	CAP,EARPHONE JACK	MCCC0013902	C2200 TMDBL, BLUE. To see detail, open MCCC0013901.	Blue	44, 48
4	MCJN00	COVER,REAR	MCJN0025301	C2200 TMDBL, BLUE	Blue	46
4	MGAD00	GASKET,SHIELD FORM	MGAD0062101	C2200 TMDBL, 14 X 5.5 X 1.5 t	Gold	42
4	MLEA00	LOCKER,BATTERY	MLEA0015502	C2200 TMDBL. BLUE. To see detail, open MLEA0015501.	Blue	50
4	MPBZ00	PAD	MPBZ0021501	REAR PAD		40

13. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
4	MPBZ01	PAD	MPBZ0056501	6.0X4.2X1.0t	Black	41
4	MSDC00	SPRING,LOCKER	MSDC0001301	C1300 CGRSV Cone Type 1.8PI, 2.5PI, 5.0 Length	Silver White	49
4	SNGF00	ANTENNA,GSM,FIXED	SNGF0003703	3.0 ,-2.0 dBd,BLUE ,GSM+DCS,C1100,COATING		45
3	GMZZ00	SCREW MACHINE	GMZZ0012301	1.4 mm,3.1 mm,MSWR3(FN) ,N ,STR ,-. M1.4X3.1, HEAD t=1.0, HEAD PI=3.1	Silver	7
3	MCCF00	CAP,MOBILE SWITCH	MCCF0014102	C2200 TMDBL. BLUE. To see detail, open MCCF0014101.	Blue	
3	MLAK00	LABEL,MODEL	MLAK0011701	C2200 TMDBL.		

13. Сборочный чертеж и список заменяемых деталей

13.2 Заменяемые компоненты <Основные компоненты>

Примечание: Эта глава может быть использована только для справки, заказ деталей производится по файлам SBOM с сайта GCSC

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
4	SACY00	PCB ASSY,FLEXIBLE	SACY0023501			15
5	SACA00	PCB ASSY, FLEXIBLE,AUTO	SACA0001501			
6	BAT1	BATTERY,CELL,LITHIUM	SBCL0001303	2 V,1 mAh,COIN ,SOLDER TYPE BACKUP BATTERY		
6	C1	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
6	C11	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C12	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C13	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C14	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
6	C4	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
6	C5	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
6	C6	CAP,TANTAL,CHIP,MAKER	ECTZ0005201	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		
6	C7	CAP,TANTAL,CHIP,MAKER	ECTZ0005201	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		
6	C9	CAP,TANTAL,CHIP,MAKER	ECTZ0005201	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		
6	CN1	CONNECTOR,BOARD TO BOARD	ENBY0013405	40 PIN,0.4 mm,STRAIGHT ,Au ,B to B CNT BOSS		
6	CN2	CONNECTOR,BOARD TO BOARD	ENBY0013407	60 PIN,0.4 mm,STRAIGHT ,AU ,WLL LM-D100		
6	CN3	CONNECTOR,BOARD TO BOARD	ENBY0013409	20 PIN,0.4 mm,ETC ,AU ,		
6	FB1	FILTER,BEAD,CHIP	SFBH0007102	10 ohm,1005 ,Ferrite Bead		
6	R1	RES,CHIP	ERHY0000254	4.7K ohm,1/16W,J,1005,R/TP		
6	R2	RES,CHIP	ERHY0000254	4.7K ohm,1/16W,J,1005,R/TP		
6	R3	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
6	R4	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	R5	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
6	SPCY00	PCB,FLEXIBLE	SPCY0041601	POLYI ,4.5 mm,DOUBLE ,		
6	VA1	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
6	VA10	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
6	VA11	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
6	VA12	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
6	VA13	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		

13. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	Цвет	Примечания
6	VA2	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
6	VA5	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
6	VA6	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
6	VA7	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
6	VA8	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
6	VA9	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
4	SBCL00	BATTERY,CELL,LITHIUM	SBCL0001303	2 V,1 mAh,COIN ,SOLDER TYPE BACKUP BATTERY		
4	SJMY00	VIBRATOR,MOTOR	SJMY0003601	3.0 V,0.085 A,10 * 25 ,G5200 VIBRATOR		10
4	SUSY00	SPEAKER	SUSY0006202	ASSY ,8 ohm,92 dB,17 mm,G5400 DUAL SPEAKER		11
4	SVCY00	CAMERA	SVCY0003601	CMOS ,VGA ,		14
4	SVLM00	LCD MODULE	SVLM0009701	M:128*160 S:96*64 ,36.2*48.7*5.5 ,Main TFT Sub 4-Gray(96*64) TM		16
3	SAFY00	PCB ASSY,MAIN	SAFY0109701			39
4	ADCA00	DOME ASSY,METAL	ADCA0021701	C2200 TMDBL	Silver	38
4	SAFA00	PCB ASSY,MAIN,AUTO	SAFA0042001			
5	C100	CAP,CERAMIC,CHIP	ECCH0004902	220 nF,10V ,Z ,Y5V ,TC ,1005 ,R/TP		
5	C101	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C102	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
5	C103	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C104	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C105	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C106	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C107	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
5	C108	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
5	C109	CAP,CERAMIC,CHIP	ECCH0000276	1 uF,10V,Z,Y5V,HD,1608,R/TP		
5	C110	CAP,CERAMIC,CHIP	ECCH0000276	1 uF,10V,Z,Y5V,HD,1608,R/TP		
5	C111	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
5	C112	CAP,CERAMIC,CHIP	ECCH0000276	1 uF,10V,Z,Y5V,HD,1608,R/TP		
5	C113	CAP,CERAMIC,CHIP	ECCH0000276	1 uF,10V,Z,Y5V,HD,1608,R/TP		
5	C114	CAP,CERAMIC,CHIP	ECCH0000165	68 nF,6.3V,K,X5R,HD,1005,R/TP		
5	C115	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C116	CAP,TANTAL,CHIP,MAKER	ECTZ0005201	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		

13. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
5	C117	CAP,CERAMIC,CHIP	ECCH0000276	1 uF,10V,Z,Y5V,HD,1608,R/TP		
5	C118	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
5	C119	CAP,CERAMIC,CHIP	ECCH0000276	1 uF,10V,Z,Y5V,HD,1608,R/TP		
5	C120	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
5	C121	CAP,CERAMIC,CHIP	ECCH0004903	1 uF,6.3V ,Z ,Y5V ,TC ,1005 ,R/TP		
5	C122	CAP,CERAMIC,CHIP	ECCH0005801	2.2 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
5	C123	CAP,CERAMIC,CHIP	ECCH0000276	1 uF,10V,Z,Y5V,HD,1608,R/TP		
5	C124	CAP,CERAMIC,CHIP	ECCH0000276	1 uF,10V,Z,Y5V,HD,1608,R/TP		
5	C125	CAP,CERAMIC,CHIP	ECCH0000276	1 uF,10V,Z,Y5V,HD,1608,R/TP		
5	C126	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C127	CAP,CERAMIC,CHIP	ECCH0000276	1 uF,10V,Z,Y5V,HD,1608,R/TP		
5	C128	CAP,CERAMIC,CHIP	ECCH0000280	0.22 uF,10V ,K ,X7R ,HD ,1608 ,R/TP		
5	C129	CAP,CERAMIC,CHIP	ECCH0005801	2.2 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
5	C130	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
5	C133	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
5	C134	CAP,CERAMIC,CHIP	ECCH0000128	100 pF,50V,J,NP0,TC,1005,R/TP		
5	C135	CAP,CERAMIC,CHIP	ECCH0000128	100 pF,50V,J,NP0,TC,1005,R/TP		
5	C136	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
5	C137	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
5	C138	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
5	C139	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
5	C140	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
5	C141	CAP,CERAMIC,CHIP	ECCH0000163	47 nF,10V,K,X5R,HD,1005,R/TP		
5	C142	CAP,TANTAL,CHIP	ECTH0001701	10 uF,6.3V ,M ,L_ESR ,2012 ,R/TP		
5	C200	CAP,CERAMIC,CHIP	ECCH0003401	10 uF,6.3V ,Z ,Y5V ,HD ,2012 ,R/TP		
5	C202	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C208	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C209	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C210	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C211	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C212	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		

13. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
5	C213	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
5	C214	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C215	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C216	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
5	C217	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
5	C218	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
5	C219	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C220	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C221	CAP,CERAMIC,CHIP	ECCH0000138	390 pF,50V,K,X7R,HD,1005,R/TP		
5	C222	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C223	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
5	C224	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C225	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C226	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C227	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C228	CAP,TANTAL,CHIP,MAKER	ECTZ0005201	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		
5	C229	CAP,TANTAL,CHIP,MAKER	ECTZ0005201	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		
5	C302	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
5	C303	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C304	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C305	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C306	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C307	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C308	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C309	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C310	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C311	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C313	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C314	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C315	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C317	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		

13. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
5	C318	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C319	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C320	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
5	C321	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C322	CAP,CERAMIC,CHIP	ECCH0004904	1 uF,6.3V ,K ,X5R ,TC ,1005 ,R/TP		
5	C323	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C324	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
5	C325	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
5	C326	CAP,CERAMIC,CHIP	ECCH0000107	6 pF,50V,D,NP0,TC,1005,R/TP		
5	C327	CAP,CERAMIC,CHIP	ECCH0004902	220 nF,10V ,Z ,Y5V ,TC ,1005 ,R/TP		
5	C328	CAP,CERAMIC,CHIP	ECCH0005801	2.2 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
5	C329	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C330	CAP,CERAMIC,CHIP	ECCH0000122	47 pF,50V,J,NP0,TC,1005,R/TP		
5	C331	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
5	C400	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C401	CAP,CERAMIC,CHIP	ECCH0000182	0.1 uF,10V ,K ,X5R ,HD ,1005 ,R/TP		
5	C402	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C403	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C404	CAP,TANTAL,CHIP,MAKER	ECTZ0005201	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		
5	C405	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
5	C406	CAP,CERAMIC,CHIP	ECCH0000276	1 uF,10V,Z,Y5V,HD,1608,R/TP		
5	C407	CAP,CERAMIC,CHIP	ECCH0000276	1 uF,10V,Z,Y5V,HD,1608,R/TP		
5	C408	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
5	C409	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C410	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C411	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C412	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C501	CAP,CERAMIC,CHIP	ECCH0000110	10 pF,50V,D,NP0,TC,1005,R/TP		
5	C502	CAP,CERAMIC,CHIP	ECCH0006201	4.7 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
5	C503	CAP,CERAMIC,CHIP	ECCH0000155	10 nF,16V,K,X7R,HD,1005,R/TP		
5	C504	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		

13. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
5	C505	CAP,CERAMIC,CHIP	ECCH0000171	3.3 pF,16V ,J ,NP0 ,TC ,1005 ,R/TP		
5	C506	CAP,CERAMIC,CHIP	ECCH0000110	10 pF,50V,D,NP0,TC,1005,R/TP		
5	C507	CAP,CERAMIC,CHIP	ECCH0006201	4.7 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
5	C508	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
5	C509	CAP,CERAMIC,CHIP	ECCH0000102	1 pF,50V,C,NP0,TC,1005,R/TP		
5	C510	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C511	CAP,CERAMIC,CHIP	ECCH0000102	1 pF,50V,C,NP0,TC,1005,R/TP		
5	C512	CAP,CERAMIC,CHIP	ECCH0000102	1 pF,50V,C,NP0,TC,1005,R/TP		
5	C513	CAP,CERAMIC,CHIP	ECCH0000102	1 pF,50V,C,NP0,TC,1005,R/TP		
5	C514	CAP,CERAMIC,CHIP	ECCH0000103	1.5 pF,50V,C,NP0,TC,1005,R/TP		
5	C515	CAP,CERAMIC,CHIP	ECCH0000103	1.5 pF,50V,C,NP0,TC,1005,R/TP		
5	C516	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C517	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
5	C518	CAP,CERAMIC,CHIP	ECCH0000104	3 pF,50V,C,NP0,TC,1005,R/TP		
5	C519	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C520	CAP,TANTAL,CHIP,MAKER	ECTZ0003101	33 uF,10V ,M ,STD ,ETC ,R/TP		
5	C521	CAP,CERAMIC,CHIP	ECCH0005801	2.2 uF,6.3V ,K ,X5R ,TC ,1608 ,R/TP		
5	C522	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		
5	C523	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
5	C524	CAP,CERAMIC,CHIP	ECCH0000159	22 nF,16V,K,X7R,HD,1005,R/TP		
5	C525	CAP,CERAMIC,CHIP	ECCH0000128	100 pF,50V,J,NP0,TC,1005,R/TP		
5	C526	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
5	C527	CAP,CERAMIC,CHIP	ECCH0000128	100 pF,50V,J,NP0,TC,1005,R/TP		
5	C528	CAP,CERAMIC,CHIP	ECCH0000159	22 nF,16V,K,X7R,HD,1005,R/TP		
5	C529	CAP,CERAMIC,CHIP	ECCH0000105	4 pF,50V,C,NP0,TC,1005,R/TP		
5	C531	CAP,CERAMIC,CHIP	ECCH0000110	10 pF,50V,D,NP0,TC,1005,R/TP		
5	C532	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C533	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C534	CAP,CERAMIC,CHIP	ECCH0000113	18 pF,50V,J,NP0,TC,1005,R/TP		
5	C535	CAP,CERAMIC,CHIP	ECCH0000110	10 pF,50V,D,NP0,TC,1005,R/TP		
5	C536	CAP,CERAMIC,CHIP	ECCH0000143	1 nF,50V,K,X7R,HD,1005,R/TP		

13. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
5	C537	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C538	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C600	CAP,CERAMIC,CHIP	ECCH0004903	1 uF,6.3V,Z,Y5V,TC,1005,R/TP		
5	C601	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C602	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C603	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
5	C604	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
5	C605	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
5	C606	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
5	C607	CAP,CERAMIC,CHIP	ECCH0000276	1 uF,10V,Z,Y5V,HD,1608,R/TP		
5	C608	CAP,CERAMIC,CHIP	ECCH0000115	22 pF,50V,J,NP0,TC,1005,R/TP		
5	C609	CAP,CERAMIC,CHIP	ECCH0000276	1 uF,10V,Z,Y5V,HD,1608,R/TP		
5	C610	CAP,CERAMIC,CHIP	ECCH0000276	1 uF,10V,Z,Y5V,HD,1608,R/TP		
5	C611	CAP,CERAMIC,CHIP	ECCH0000276	1 uF,10V,Z,Y5V,HD,1608,R/TP		
5	C613	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C614	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C615	CAP,CERAMIC,CHIP	ECCH0000120	39 pF,50V,J,NP0,TC,1005,R/TP		
5	C616	CAP,TANTAL,CHIP,MAKER	ECTZ0005201	10 uF,6.3V,M,L_ESR,1608,R/TP		
5	C617	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C618	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C619	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C620	CAP,CERAMIC,CHIP	ECCH0000117	27 pF,50V,J,NP0,TC,1005,R/TP		
5	C621	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C622	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C623	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C624	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C625	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C626	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C627	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C628	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C629	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		

13. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	Цвет	Примечания
5	C630	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C631	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C632	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C633	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	C634	CAP,TANTAL,CHIP,MAKER	ECTZ0005201	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		
5	C635	CAP,CERAMIC,CHIP	ECCH0000110	10 pF,50V,D,NP0,TC,1005,R/TP		
5	C636	CAP,TANTAL,CHIP,MAKER	ECTZ0005201	10 uF,6.3V ,M ,L_ESR ,1608 ,R/TP		
5	C637	CAP,CERAMIC,CHIP	ECCH0000167	0.1 uF,6.3V,K,X5R,HD,1005,R/TP		
5	CN300	CONNECTOR,I/O	ENRY0002202	24 PIN,0.5 mm,ETC ,AU ,OFFSET TYPE		
5	CN600	CONNECTOR,BOARD TO BOARD	ENBY0013408	60 PIN,0.4 mm,STRAIGHT ,AU ,WLL LM-D100		
5	D100	DIODE,SWITCHING	EDSY0005701	EMT3 ,80 V,4 A,R/TP ,		
5	D101	DIODE,SWITCHING	EDSY0012101	US-FLAT ,30 V,1 A,R/TP ,2.5*1.25*0.6(t)		
5	D300	DIODE,SWITCHING	EDSY0005301	SC-70 ,80 V,0.1 A,R/TP ,		
5	FB401	FILTER,BEAD,CHIP	SFBH0007101	120 ohm,1005 ,Ferrite Bead		
5	FB600	FILTER,BEAD,CHIP	SFBH0007101	120 ohm,1005 ,Ferrite Bead		
5	FB601	FILTER,BEAD,CHIP	SFBH0007101	120 ohm,1005 ,Ferrite Bead		
5	FL500	FILTER,SAW	SFSY0021301	942.5 MHz,2.0*1.4*0.68 ,SMD ,		
5	FL501	FILTER,SEPERATOR	SFAY0003702	900 ,1800 ,1.3 dB,1.5 dB,30 dB,25 dB,4532 ,Antenna switch		
5	FL502	FILTER,SAW	SFSY0021302	1842.5 MHz,2.0*1.4*0.68 ,SMD ,		
5	FL600	VARISTOR	SEVY0005501	18 V, ,SMD ,4ch. R-Varistor Array(100Ohm,15pF)		
5	FL601	VARISTOR	SEVY0005501	18 V, ,SMD ,4ch. R-Varistor Array(100Ohm,15pF)		
5	FL602	VARISTOR	SEVY0005501	18 V, ,SMD ,4ch. R-Varistor Array(100Ohm,15pF)		
5	FL603	VARISTOR	SEVY0005501	18 V, ,SMD ,4ch. R-Varistor Array(100Ohm,15pF)		
5	FL604	VARISTOR	SEVY0005501	18 V, ,SMD ,4ch. R-Varistor Array(100Ohm,15pF)		
5	FL605	VARISTOR	SEVY0005501	18 V, ,SMD ,4ch. R-Varistor Array(100Ohm,15pF)		
5	FL606	VARISTOR	SEVY0005501	18 V, ,SMD ,4ch. R-Varistor Array(100Ohm,15pF)		
5	FL607	VARISTOR	SEVY0005501	18 V, ,SMD ,4ch. R-Varistor Array(100Ohm,15pF)		
5	FL608	VARISTOR	SEVY0005501	18 V, ,SMD ,4ch. R-Varistor Array(100Ohm,15pF)		
5	J200	CONN,JACK/PLUG, EARPHONE	ENJE0002301	3,5 PIN,G7000 EAR JACK 3 pole, 5 pin KSD		
5	J300	CONN,SOCKET	ENSY0009301	6 PIN,ETC ,G510 mold cutting ,2.54 mm,2.95T, GUIDE SMD TYPE		
5	L500	INDUCTOR,CHIP	ELCH0005006	33 nH,J ,1005 ,R/TP ,		

13. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
5	L502	INDUCTOR,CHIP	ELCH0005006	33 nH,J ,1005 ,R/TP ,		
5	L504	INDUCTOR,CHIP	ELCH0005005	27 nH,J ,1005 ,R/TP ,		
5	L506	INDUCTOR,CHIP	ELCH0001408	6.8 nH,S,1005,R/TP		
5	L507	INDUCTOR,CHIP	ELCH0001004	8.2 nH,J,1005,R/TP		
5	L508	INDUCTOR,CHIP	ELCH0001413	22 nH,J ,1005 ,R/TP ,		
5	L509	INDUCTOR,CHIP	ELCH0005002	2.7 nH,S ,1005 ,R/TP ,		
5	L510	INDUCTOR,CHIP	ELCH0001402	18 nH,J,1005,R/TP		
5	LD300	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
5	LD301	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
5	LD302	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
5	LD303	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
5	LD304	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
5	LD305	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
5	LD306	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
5	LD307	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
5	LD308	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
5	LD309	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
5	LD310	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
5	LD311	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
5	LD312	DIODE,LED,CHIP	EDLH0004502	BLUE ,1608 ,R/TP ,0.35T		
5	LD313	DIODE,LED,CHIP	EDLH0007901	RED ,1608 ,R/TP ,Indicator,0.4T Red LED		
5	MLAB00	LABEL,A/S	MLAB0000601	HUMIDITY STICKER		
5	MLAC00	LABEL,BARCODE	MLAC0003301	EZ LOOKS(use for PCB ASSY MAIN(hardware))		
5	Q100	TR,FET,P-CHANNEL	EQFP0004201	2.9*1.9*0.8(t) ,0.7 W,20 V,-6.0 A,R/TP ,NDC652P upgrade(substitution) item		
5	Q300	TR,BJT,NPN	EQBN0007101	EMT3 ,0.15 W,R/TP ,LOW FREQUENCY		
5	Q400	TR,FET,P-CHANNEL	EQFP0004501	SOT-323 ,0.29 W,1.8 V,0.86 A,R/TP ,P-Chanel MOSFET		
5	Q401	TR,BJT,NPN	EQBN0004801	SMT6 ,0.2 W,R/TP ,		
5	Q402	TR,BJT,NPN	EQBN0007101	EMT3 ,0.15 W,R/TP ,LOW FREQUENCY		
5	R101	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
5	R104	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R107	RES,CHIP	ERHY0000512	10M ohm,1/16W,J,1608,R/TP		

13. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
5	R108	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R112	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
5	R114	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R115	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R116	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
5	R117	RES,CHIP	ERHY0000230	330 ohm,1/16W,J,1005,R/TP		
5	R118	RES,CHIP	ERHY0001102	0.2 ohm,1/4W ,F ,2012 ,R/TP		
5	R200	RES,CHIP	ERHY0000296	1M ohm,1/16W,J,1005,R/TP		
5	R201	RES,CHIP	ERHY0000202	4.7 ohm,1/16W,J,1005,R/TP		
5	R202	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R206	RES,CHIP	ERHY0000247	2.2K ohm,1/16W,J,1005,R/TP		
5	R207	RES,CHIP	ERHY0000293	510K ohm,1/16W,J,1005,R/TP		
5	R208	RES,CHIP	ERHY0000296	1M ohm,1/16W,J,1005,R/TP		
5	R209	RES,CHIP	ERHY0000202	4.7 ohm,1/16W,J,1005,R/TP		
5	R211	RES,CHIP	ERHY0000202	4.7 ohm,1/16W,J,1005,R/TP		
5	R212	RES,CHIP	ERHY0000202	4.7 ohm,1/16W,J,1005,R/TP		
5	R215	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R216	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R217	RES,CHIP	ERHY0000284	150K ohm,1/16W,J,1005,R/TP		
5	R218	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
5	R219	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R220	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R221	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R222	RES,CHIP	ERHY0000266	22K ohm,1/16W,J,1005,R/TP		
5	R223	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R225	RES,CHIP	ERHY0000250	3.3K ohm,1/16W,J,1005,R/TP		
5	R226	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R227	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R228	RES,CHIP	ERHY0000247	2.2K ohm,1/16W,J,1005,R/TP		
5	R229	RES,CHIP	ERHY0000247	2.2K ohm,1/16W,J,1005,R/TP		
5	R230	RES,CHIP	ERHY0000241	1K ohm,1/16W,J,1005,R/TP		

13. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
5	R300	RES,CHIP	ERHY0000205	15 ohm,1/16W,J,1005,R/TP		
5	R301	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R302	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
5	R303	RES,CHIP	ERHY0000241	1K ohm,1/16W,J,1005,R/TP		
5	R304	RES,CHIP	ERHY0000225	200 ohm,1/16W,J,1005,R/TP		
5	R305	RES,CHIP	ERHY0000225	200 ohm,1/16W,J,1005,R/TP		
5	R306	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
5	R307	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R308	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
5	R309	RES,CHIP	ERHY0000225	200 ohm,1/16W,J,1005,R/TP		
5	R310	RES,CHIP	ERHY0000225	200 ohm,1/16W,J,1005,R/TP		
5	R311	RES,CHIP	ERHY0000225	200 ohm,1/16W,J,1005,R/TP		
5	R312	RES,CHIP	ERHY0000225	200 ohm,1/16W,J,1005,R/TP		
5	R313	RES,CHIP	ERHY0000225	200 ohm,1/16W,J,1005,R/TP		
5	R315	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R316	RES,CHIP	ERHY0000225	200 ohm,1/16W,J,1005,R/TP		
5	R317	RES,CHIP	ERHY0000225	200 ohm,1/16W,J,1005,R/TP		
5	R320	RES,CHIP	ERHY0000225	200 ohm,1/16W,J,1005,R/TP		
5	R321	RES,CHIP	ERHY0000225	200 ohm,1/16W,J,1005,R/TP		
5	R322	RES,CHIP	ERHY0000265	20K ohm,1/16W,J,1005,R/TP		
5	R323	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R325	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R326	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R327	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R328	RES,CHIP	ERHY0000225	200 ohm,1/16W,J,1005,R/TP		
5	R329	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
5	R330	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
5	R331	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
5	R332	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
5	R333	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
5	R334	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		

13. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
5	R335	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
5	R336	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
5	R337	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
5	R338	RES,CHIP	ERHY0000237	680 ohm,1/16W,J,1005,R/TP		
5	R339	RES,CHIP	ERHY0000225	200 ohm,1/16W,J,1005,R/TP		
5	R340	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R341	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R342	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
5	R343	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R344	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R345	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R346	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R347	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R349	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R350	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R351	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R400	RES,CHIP	ERHY0000274	51K ohm,1/16W,J,1005,R/TP		
5	R401	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R405	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
5	R406	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R407	RES,CHIP	ERHY0000244	1.5K ohm,1/16W,J,1005,R/TP		
5	R408	RES,CHIP	ERHY0000901	0 ohm,1/10W,J,2012,R/TP		
5	R409	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
5	R411	RES,CHIP	ERHY0000241	1K ohm,1/16W,J,1005,R/TP		
5	R412	RES,CHIP	ERHY0001305	33 ohm,1/8W,J,2012,R/TP		
5	R413	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
5	R414	RES,CHIP	ERHY0000249	2.7K ohm,1/16W,J,1005,R/TP		
5	R415	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
5	R416	RES,CHIP	ERHY0000244	1.5K ohm,1/16W,J,1005,R/TP		
5	R418	RES,CHIP	ERHY0000228	270 ohm,1/16W,J,1005,R/TP		
5	R438	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		

13. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
5	R439	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
5	R501	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R503	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R504	RES,CHIP	ERHY0004301	130 ohm,1/16W ,J ,1005 ,R/TP		
5	R505	RES,CHIP	ERHY0004301	130 ohm,1/16W ,J ,1005 ,R/TP		
5	R506	RES,CHIP	ERHY0000263	15K ohm,1/16W,J,1005,R/TP		
5	R507	RES,CHIP	ERHY0000296	1M ohm,1/16W,J,1005,R/TP		
5	R508	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R509	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R510	RES,CHIP	ERHY0006603	36 ohm,1/16W ,J ,1005 ,R/TP		
5	R511	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
5	R512	RES,CHIP	ERHY0000223	150 ohm,1/16W,J,1005,R/TP		
5	R513	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R514	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	R515	RES,CHIP	ERHY0000263	15K ohm,1/16W,J,1005,R/TP		
5	R600	RES,CHIP	ERHY0000261	10K ohm,1/16W,J,1005,R/TP		
5	R601	RES,CHIP	ERHY0000254	4.7K ohm,1/16W,J,1005,R/TP		
5	R602	RES,CHIP	ERHY0000254	4.7K ohm,1/16W,J,1005,R/TP		
5	R603	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R604	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R606	RES,CHIP	ERHY0000216	68 ohm,1/16W,J,1005,R/TP		
5	R607	RES,CHIP	ERHY0000216	68 ohm,1/16W,J,1005,R/TP		
5	R608	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R609	RES,CHIP	ERHY0000216	68 ohm,1/16W,J,1005,R/TP		
5	R610	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R612	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R620	RES,CHIP	ERHY0000262	12K ohm,1/16W,J,1005,R/TP		
5	R621	RES,CHIP	ERHY0000262	12K ohm,1/16W,J,1005,R/TP		
5	R622	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
5	R623	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		
5	R624	RES,CHIP	ERHY0000201	0 ohm,1/16W,J,1005,R/TP		

13. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	цвет	Примечания
5	R625	RES,CHIP	ERHY0000241	1K ohm,1/16W,J,1005,R/TP		
5	R628	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
5	R629	RES,CHIP	ERHY0000257	6.8K ohm,1/16W,J,1005,R/TP		
5	R631	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R632	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
5	R634	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R636	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
5	R637	RES,CHIP	ERHY0000280	100K ohm,1/16W,J,1005,R/TP		
5	R638	RES,CHIP	ERHY0000213	47 ohm,1/16W,J,1005,R/TP		
5	R639	RES,CHIP	ERHY0000220	100 ohm,1/16W,J,1005,R/TP		
5	SPFY00	PCB,MAIN	SPFY0084101	FR-4 ,1 mm,BUILD-UP 8 ,		
5	SW300	SWITCH,TACT	ESCY0002501	12 V,0.05 A,HORIZONTAL ,220 G,G5200 TACK S/W		
5	SW301	SWITCH,TACT	ESCY0002501	12 V,0.05 A,HORIZONTAL ,220 G,G5200 TACK S/W		
5	SW500	CONN,RF SWITCH	ENWY0003001	STRAIGHT ,SMD ,0.6 dB,3.8X3.0X3.6T		
5	U100	IC	EUSY0169301	148-TERMINAL BGA ,148 PIN,R/TP ,GSM ANALOG BASEBAND / TYPHOON B		
5	U101	IC	EUSY0181502	CSP BGA ,204 PIN,R/TP ,GSM/GPRS DIGITAL BASEBAND PROCESSOR / ART7TDMI DSP		
5	U201	IC	EUSY0077701	SC70-5 ,5 PIN,R/TP ,		
5	U202	IC	EUSY0119001	10 uMAX ,10 PIN,R/TP ,DUAL SPDT ANALOG SWITCHES		
5	U203	IC	EUSY0111601	32-PIN QFN ,32 PIN,R/TP ,MA-3 / 40 TONES / FM + WAVEFORM TABLE		
5	U300	IC	EUSY0206101	80-ACTIVE BALL STACKED CSP ,88 PIN,R/TP ,128 MLC NOR (L30 : TYAX) / 64-PSRAM		
5	U400	IC	EUSY0129502	LEADLESS CHIP ,6 PIN,R/TP ,HALL-EFFECT SWITCH IC / 2.0*3.0*0.8		
5	U401	IC	EUSY0205301	, PIN,R/TP ,RD6130 First silicon		
5	U402	IC	EUSY0118602	SOT23 ,5 PIN,R/TP ,2.85V/150mA Low Noise uCap LDO Regulator		
5	U403	IC	EUSY0077301	SC70-6 ,6 PIN,R/TP ,SPDT Analog switch		
5	U500	IC	EUSY0118602	SOT23 ,5 PIN,R/TP ,2.85V/150mA Low Noise uCap LDO Regulator		
5	U501	IC	EUSY0077201	SOT(DCK) ,5 PIN,R/TP ,		
5	U502	IC	EUSY0161301	8x8 LGA ,28 PIN,R/TP ,		
5	U503	PAM	SMPY0004001	35 dBm,53 %,50 mA,50 dBc,28 dB,10x7x1.4 ,SMD ,		
5	U600	IC	EUSY0167601	TSSOPJW12 ,12 PIN,R/TP ,Charge Pump IC for White LED Driver		
5	U601	IC	EUSY0077301	SC70-6 ,6 PIN,R/TP ,SPDT Analog switch		

13. Сборочный чертеж и список заменяемых деталей

№	№ Позиции	Описание	№ Детали	Поставляемость	Цвет	Примечания
5	VA200	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
5	VA201	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
5	VA202	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
5	VA203	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
5	VA300	VARISTOR	SEVY0000702	14 V,10% ,SMD ,		
5	VA301	VARISTOR	SEVY0000702	14 V,10% ,SMD ,		
5	VA305	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
5	VA306	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
5	VA600	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
5	VA601	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
5	VA602	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
5	VA603	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
5	VA604	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
5	VA605	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
5	VA606	RES,VARIABLE,ETC	ERVZ0000101	ohm, PIN, ,SMD ,R/TP ,1005 SIZE CHIP VARISTOR		
5	X100	X-TAL	EXXY0004601	.032768 MHz,20 PPM,7 pF,65000 ohm,SMD ,6.9*1.4*1.3 ,		
5	X500	VCTCXO	EXSK0003501	13 MHz,2.5 PPM,10 pF,SMD ,5.0*3.2*1.5 ,		
4	SUMY00	MICROPHONE	SUMY0003803	PIN ,42 dB,4*1.5 ,FPCB		

13.3 Принадлежности

Примечание: Эта глава может быть использована только для справки, заказ деталей производится по файлам SBOM с сайта GCSC

№	№ Позиции	Описание	№ Детали	Поставляемость	Цвет	Примечания
2	MHBY00	HANDSTRAP	MHBY0001101	Neck Strap 380mm	Gray	
2	SBPL00	BATTERY PACK,LI-ION	SBPL0072192	3.7 V,820 mAh,1 CELL,PRISMATIC ,423450, C2200(TMDBL) BATTERY PACK	Blue	51
2	SGEY00	EAR PHONE/EAR MIKE SET	SGEY0002901	G7000,G5200 Common use, 3P EAR MIC		
2	SSAD00	ADAPTOR,AC-DC	SSAD0007828	100-240V ,60 Hz,5.2 V,800 mA,CE,CB,GOST ,EU PLUG(24P),STD		

Note
