

Tentamen i Linjär algebra för civilingenjörer

MA503G, 2019-03-22, kl. 08:15-13:15

Hjälpmedel: Skrivdon

Betygskriterier: Framgår av separat dokument publicerat på Blackboard. Uppgifterna är fördelade på två nivåer. En grundläggande nivå om totalt 36 poäng bestående av uppgifterna 1-6 (var och en värd 6 poäng), och en fördjupad nivå om totalt 24 poäng bestående av uppgifterna 7-9 (var och en värd 8 poäng). Totalt kan man få 60 poäng. Betyg 3 respektive 4 ges till den som erhåller minst 30 respektive 40 poäng på tentan. För betyg 5 krävs minst 50 poäng på tentan samt att minst två av uppgifterna är belönade med full poäng.

Anvisningar: Motivera väl, redovisa alla väsentliga beräkningssteg och svara exakt. Svara på högst en uppgift per blad.

Skrivningsresultat: Meddelas inom 15 arbetsdagar.

Examinator: Johan Andersson

Lycka till!

Grundläggande nivå

1. På denna uppgift ska endast svar anges, lämna alltså inte in några beräkningar. Skriv svaren på alla deluppgifter på samma blad. En triangel har hörn i punkterna A: (1,-2,3), B: (1,0,5) samt C: (2,-2,4).

(a) Bestäm vektorerna
$$\overrightarrow{AB}$$
 och \overrightarrow{AC} . (2p)

(b) Bestäm
$$\overrightarrow{AB} \times \overrightarrow{AC}$$
 samt $\overrightarrow{AB} \cdot \overrightarrow{AC}$. (2p)

2. Bestäm för vilka värden på konstanterna a, b, c, d som ekvationssystemet

$$\begin{cases} x + z + w = a \\ x + y + z = b \\ y + z = c \\ 2x + z + w = d \end{cases}$$

är konsistent. Lös ekvationssystemet då a = 3, b = 4, c = 2 samt d = 5. (6p)

3. Låt

$$A = \begin{pmatrix} -1 & -2 & 3 & 0 \\ 3 & 6 & 3 & 4 \\ 1 & 2 & 0 & 1 \\ 2 & 4 & 3 & 3 \end{pmatrix}.$$

Bestäm baser för kolonnrummet K(A), radrummet R(A) samt nollrummet N(A). Verifiera dimensionssatsen (the rank-nullity theorem) för matrisen A. (6p)

- 4. Avgör om vektorerna $\mathbf{p_1} = 1 2x + x^2$ och $\mathbf{p_2} = 1 + 2x + 3x^2$ spänner upp vektorrummet \mathcal{P}_2 av polynom av gradtal högst 2. Ligger vektorerna $\mathbf{p} = 3 2x + 5x^2$ respektive $\mathbf{q} = -1 + 2x + 6x^2$ i det linjära höljet av dessa vektorer? Skriv i så fall vektorn \mathbf{p} respektive \mathbf{q} som en linjärkombination av vektorerna $\mathbf{p_1}$ och $\mathbf{p_2}$. (6p)
- 5. Bestäm egenvärdena till matrisen

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 2 & 3 \end{pmatrix}$$

samt baser för de tillhörande egenrummen. Bestäm också en diagonal matris D samt en (6p) inverterbar matris P så att $A = PDP^{-1}$.

- **6.** (a) Beräkna determinanten $\begin{bmatrix} 1 & 2 & 1 & -1 \\ 2 & 0 & 1 & -1 \\ -1 & 3 & 2 & 1 \\ 3 & 0 & -2 & 2 \end{bmatrix}.$ (3p)
 - (b) Låt $B = \{\mathbf{u_1}, \mathbf{u_2}\}$ och $B' = \{\mathbf{v_1}, \mathbf{v_2}\}$ vara baser för \mathbb{R}^2 där

$$\mathbf{u_1} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad \mathbf{u_2} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \quad \mathbf{v_1} = \begin{pmatrix} -1 \\ 3 \end{pmatrix} \quad \text{och} \quad \mathbf{v_2} = \begin{pmatrix} 1 \\ -4 \end{pmatrix}.$$

(3p)

Finn basbytesmatrisen från B till B'.

Fördjupad nivå

- 7. Planet π_1 innehåller punkten (1,1,1) och har normalvektorn (1,-1,-1). Planet π_2 ges av ekvationen x+y-3z=1. Bestäm en ekvation på parameterform för den linje l som ges av skärningen mellan planen π_1 och π_2 . Bestäm också avståndet från punkten (1,2,3) till linjen l, samt den punkt på linjen l där avståndet antags. (8p)
- 8. För den linjära avbildningen $S: \mathbb{R}^3 \to \mathbb{R}^3$ gäller det att

$$S \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, \qquad S \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \qquad \text{samt} \qquad S \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

Avbildningen $T: \mathbb{R}^3 \to \mathbb{R}^3$ ges av projektion i planet x+z=0. Bestäm avbildningsmatriserna [S], [T] samt $[T \circ S]$.

9. Låt

$$A = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 3 & 1 \\ 0 & 1 & 2 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}.$$

Bestäm alla matriser X som uppfyller matrisekvationen $B^TXA = C + XA$. (8p)