Final Project Data Checkpoint Munjot Singh

Project Code:

https://github.com/munjotks/FinalProject-Munjotks.git

Data Sources:

- User will be searching for an Amazon product through the user interface. In order to retrieve the information from amazon, I will be scraping Amazon using cache → https://www.amazon.com/
- The URL for what page to scrape will be generated from https://www.amazon.com/s?k=[SEARCHTERM] & ref=nb_sb_noss_1 and that specific page will be scraped.

```
def create_url(searchterm):
    if ' ' in searchterm:
        searchterm = searchterm.replace(' ', '+')
    url = 'https://www.amazon.com/s?k=' + searchterm + '&ref=nb_sb_noss_1'
    return url
```

- The data I will be collecting from the specific pages will be
 - Search Term | Product Name | # of star out of 5 | Product Price | # of Reviews | # of results

\$68.99

 Caching will be used every time the same search term is used in the user interface (Same URL)

```
FinalProject.py
Users > munjotsingh > Documents > SI507-Python2 > FinalProject > ₱ FinalProject.py > ...
       from bs4 import BeautifulSoup
       import requests
       import json
       header = {
           'User-Agent': 'UMSI 507 Course Final Project - Python Scraping',
           'From': 'Munjotks@umich.edu',
           'Course-Info': 'https://si.umich.edu/programs/courses/507'
       def load_cache():
           try:
               cache_file = open(CACHE_FILE_NAME, 'r')
               cache_file_contents = cache_file.read()
               cache = json.loads(cache_file_contents)
               cache_file.close()
 23
           except:
               cache = {}
           return cache
       def save_cache(cache):
           cache_file = open(CACHE_FILE_NAME, 'w')
           contents_to_write = json.dumps(cache)
           cache_file.write(contents_to_write)
           cache_file.close()
       def make_url_request_using_cache(url, cache):
           if (url in cache.keys()):
               print("Using Cache")
               return cache[url]
           else:
               print("Fetching")
               response = requests.get(url, headers=headers)
 40
               cache[url] = response.text
               save_cache(cache)
               return cache[url]
       CACHE_DICT = load_cache()
```

Database:

- I will be creating a database from the information collected from scraping the search term pages. My two tables will consist of the following fields.
 - o Product Table
 - Search Term Category | Product Name | # of Stars | # of Reviews
 - o Category (search term) Table
 - Search Term Category | # of Results

EXAMPLE:

Search Term	Product Name	Product Price	# of Stars	# of Reviews
Category			51 5 (41)	
Camera	Fujifilm Instax Mini 11 Instant Camera - Lilac Purple	69.00	4.8	2,528
Camera	Digital Camera, Lecran FHD 1080P 36.0 Mega Pixels Vlogging Camera with 16X Digital Zoom, LCD Screen, Compact Portable	48.99	4.3	83
Camera	All-new Blink Outdoor – wireless, weather-resistant HD security camera with two-year battery life and motion detection	59.99	4.3	4,619
Camera	Digital Camera, Lecran FHD 1080P 36.0 Mega Pixels Vlogging Camera	82.98	4.2	83

EXAMPLE:

Search Term Category	# of Results		
Camera	10,000+		
Pen	3,000		

Interaction and Presentation Plans

User will be asked:

- What would you like to search on Amazon?
- User Response: Camera
- How would you like the results displayed?

- User Response: top 10 by stars
 Displays top 10 results
 User can request a scatterplot;

 Product price vs. # of stars
 Product price vs. # of reviews