EXERCICE 1

3.1. Monocouche à renfort unidirectionnel

3.1.1. Données de base dans le repère d'orthotropie

On a une monocouche composée d'une matrice en résine polyester renforcée par de fibres d'aramide bas module.

E_f = 71 000 MPa : Module d'élasticité des fibres

 $v_f = 0.20$: Coefficient de Poisson des fibres

 $V_f = 0.353$: Fraction volumique des fibres

E_m = 3 000 MPa : Module d'élasticité de la matrice

 $v_m = 0,4$: Coefficient de Poisson de la matrice

Xt = 1000 MPa : Limite admissible en traction suivant (0,X)

Xc = -650 MPa : Limite admissible en compression suivant (0,X)

12 MPa ≤ Yt ≤ 40 MPa : Limite admissible en traction suivant (0,Y)

-135 MPa ≤ Yc ≤ -110 MPa : Limite admissible en compression suivant (0,Y)

35 MPa ≤ T ≤ 55 MPa : Limite admissible en cisaillement dans (0,1,2)

Pour un renfort unidirectionnel, la valeur du coefficient Fo est nulle.

3.1.2. Constantes pratiques

En tenant compte de la variation de l'angle θ , Remplir le tableau suivant	En tenant com	pte de la va	ariation de l'	angle θ . Re	emplir le ta	bleau suivant
---	---------------	--------------	----------------	---------------------	--------------	---------------

		0°	10°	30°	60°	90°
E ₁	[MPa]	27004.00	21672.29	10105.28	7693.54	10093.49
E ₂	[MPa]	10093.49	9574.65	7693.54	10105.28	27004.00
G ₁₂	[MPa]	2450.66	2637.86	4496.61	4496.61	2450.66
V12		0.33	0.42	0.59	0.45	0.12
V16		0.00	1.09	0.81	-0.21	0.00
V26		0.00	-0.28	-0.21	0.81	0.00

Commentaire avec les courbes des constantes pratiques en fonction de θ :

À θ = 0°, E₁ = 27 004 MPa : les fibres sont parfaitement alignées avec la direction de sollicitation longitudinale, elles portent presque toute la charge, ce qui explique ce module très élevé. E₂ suit la tendance inverse, augmente avec θ , atteignant 27 004 MPa à 90°.

À $\theta = 90^{\circ}$, E₁ chute à ~10 000 MPa : les fibres ne contribuent plus à la rigidité longitudinale, c'est la matrice plus souple qui prédomine.

Inversement, E_2 augmente avec l'angle θ , car la direction de sollicitation se rapproche du sens des fibres.

Le module de cisaillement G₁₂ est maximal autour de 30°–60°, zone où les efforts de cisaillement sont le mieux transmis entre fibres et matrice.

Les coefficients de Poisson (v_{12} , v_{16} , v_{26}) traduisent des effets de couplage entre directions principales et hors-plan. Les valeurs négatives observées vers 60° indiquent un effet de distorsion inverse : une traction dans une direction provoque une contraction inattendue dans une autre. Ces effets sont typiques des matériaux anisotropes.

3.1.3. Contraintes admissibles uniaxiales et biaxiales dans le repère de sollicitation

Prenons Yc = -120 MPa, Yt = 30 MPa, T = 45 MPa. En tenant compte de la variation de l'angle θ , remplir le tableau suivant :

	0°	10°	30°	60°	90°
σ1t [MPa]	1000.00	242.16	72.28	36.21	30.00
σ1c [MPa]	-650.00	-256.55	-125.17	-111.07	-120.00
σ2t [MPa]	30.00	30.61	36.21	72.28	1000.00
σ2c [MPa]	-120.00	-118.50	-111.07	-125.17	-650.00
σ 6+ [MPa]	45.00	56.42	97.04	97.04	45.00
σ 6- [MPa]	-45.00	-37.80	-30.84	-30.84	-45.00
σb+ [MPa]	30.39	30.39	30.39	30.39	30.39
σь- [MPa]	-118.45	-118.45	-118.45	-118.45	-118.45

Commentaire avec les courbes des contraintes admissibles en fonction θ :

 σ_{1t} chute drastiquement : de 1000 MPa à 0°, elle tombe à 30 MPa à 90°. Cela reflète la perte de capacité en traction quand les fibres ne sont plus alignées à la direction de sollicitation.

 σ_{2t} suit la tendance inverse.

 σ_{6+} (cisaillement) est maximal à 30°–60°, cohérent avec les observations précédentes sur G12.

 $\sigma_{b\pm}$ restent constants, car les critères biaxiaux utilisés ne varient pas avec θ .

3.2. Monocouche à renfort par tissu équilibré

3.2.1. Données de base dans le repère d'orthotropie

On a un monocouche composé d'une matrice en résine polyester renforcée par de fibres d'aramide bas module croisées à 90°.

$$\begin{array}{lll} E_f & = & 72\,000 & \text{MPa} \\ \\ v_f & = & 0,20 \\ \\ V_f & = & 0,34 & \text{Fraction volumique du tissu} \\ \\ A_1 & = & 0,5 & \text{Proportion des fibres suivant (0X)} \\ \\ E_m & = & 3\,000 & \text{MPa} \\ \\ v_m & = & 0,4 \\ \end{array}$$

$$Xt = Yt = 650 \text{ MPa}$$
 $Xc = Yc = -650 \text{ MPa}$
 $T = 50 \text{ MPa}$

Pour un tissu équilibré, on prendra Fo = -0,5.

3.2.2. Constantes pratiques

En tenant compte de la variation de l'angle θ , remplir le tableau :

		0°	10°	30°	60°	90°
E ₁	[MPa]	18841.21	16209.50	9231.62	9231.62	18841.21
E ₂	[MPa]	18841.21	16209.50	9231.62	9231.62	18841.21
G ₁₂	[MPa]	2382.57	2595.74	5032.15	5032.15	2382.57
V12		0.18	0.29	0.60	0.60	0.18
V16		0.00	0.77	0.59	-0.59	0.00
V26		0.00	-0.77	-0.59	0.59	0.00

Commentaires des constantes pratiques en fonction de θ :

 $E_1 = E_2$ pour tous les angles (c'est pour cela qu'ils sont confondus sur le graphique) : le matériau est symétrique dans son plan, car les fibres sont disposées à 0° et 90° en proportions égales.

Les modules suivent une forme en V inversé, atteignant un minimum à 30°-60°, mais la variation reste modérée (entre ~9200 et ~18 800 MPa).

 G_{12} suit la même tendance que dans le cas unidirectionnel, avec un pic au milieu. Les coefficients de Poisson (\mathbf{v}) présentent une symétrie angulaire, avec des valeurs opposées autour de 45°.

3.2.3. Contraintes admissibles uniaxiales et biaxiales dans le repère de sollicitation

En tenant compte de la variation de l'angle θ , remplir le tableau

	0°	10°	30°	60°	90°
σ1t [MPa]	650.00	268.64	114.68	114.68	650.00
σ1c [MPa]	-650.00	-268.64	-114.68	-114.68	-650.00
σ2t [MPa]	650.00	268.64	114.68	114.68	650.00
σ2c [MPa]	-650.00	-268.64	-114.68	-114.68	-650.00
σ 6+ [MPa]	50.00	53.15	97.44	97.44	50.00
σ 6- [MPa]	-50.00	-53.15	-97.44	-97.44	-50.00
σb+ [MPa]	650.00	650.00	650.00	650.00	650.00
σь- [MPa]	-650.00	-650.00	-650.00	-650.00	-650.00

Commentaire des contraintes admissibles en fonction de θ :

 $\sigma_1 t = \sigma_2 t$, et $\sigma_1 c = \sigma_2 c$, pour tous les angles (ils sont confondus sur le graphique à cause de leur égalité) : la résistance est symétrique et équivalente dans toutes les directions principales.

Ces valeurs ne varient que modérément avec θ (de 650 à 115 MPa), ce qui reflète une bonne tenue dans toutes les directions.

Le cisaillement admissible $\sigma_{6}\pm$ présente un pic à 30°-60°, comme précédemment. Les contraintes biaxiales $\sigma_{_{}}\pm$ sont parfaitement constantes, confirmant l'uniformité du comportement mécanique.