

Simulação e Modelação

Trabalho nº 1 – Mapas logísticos e árvore de grafos

Introdução

Este relatório encontra-se dividido em duas partes: a primeira diz respeito a um mapa logístico e a segunda a uma árvore de grafos.

Um mapa logístico (ou aplicação logística) é um mapa polinomial de grau 2 que associa um número x_{n+1} a um dado número x_n através da seguinte equação:

$$x_{n+1} = Rx_n(1 - x_n)$$

, sendo R um parâmetro. É um mapa polinomial de grau 2, normalmente utilizado como exemplo de como um comportamento complexo e caótico pode surgir de simples equações dinâmicas. Analisando o comportamento da expressão, vai ser possível traçar um diagrama das bifurcações.

Uma árvore de grafos é um diagrama que une vários pontos num único componente, minimizando o comprimento das ligações. Esta árvore de grafos pode ter várias aplicações, como por exemplo as redes elétricas e de telecomunicações.

Métodos

Todos os dados foram criados e analisados usando o Microsoft Office Excel ou o Matlab. A sintaxe usada para os criar encontra-se nos ficheiros em anexo.

Parte I

Utilizando o Excel, foi pedido para estudar a sequência $\{x_n\}$ definida pela equação de recorrência (1), tendo em atenção que o parâmetro R e a condição inicial x_0 deverão ser facilmente alteradas. Por fim, foi adaptado o algoritmo anterior de modo a obter o diagrama das bifurcações.

Começou-se por definir x_0 e R, tendo em atenção que estes parâmetros devem ter valores nos intervalos]0,1[e [1,4] respetivamente. De seguida, para um mesmo valor de x_0 e diferentes valores de R foram calculados vários valores de x_{n+1} através da equação (1). Por fim, foi feito um gráfico de dispersão com os valores de R para o eixo xx e os valores de x_{n+1} para o eixo yy, obtendo assim um diagrama das bifurcações.

<u>Parte II</u>

Utilizando o Matlab, foram desenhados um conjunto de pontos aleatoriamente distribuídos dentro de um quadrado. Pretende-se ligar todos esses pontos num único caminho, minimizando os comprimentos das ligações realizadas entre eles.

Para isso foram sendo seguidos os seguintes passos:

a) Gerar N pontos aleatórios e desenha-los numa figura;

- b) Encontrar o par de pontos à menor distância possível e desenhar um segmento de reta que os une;
- c) Exibir a animação da árvore a ser construída à medida que lhe são adicionadas mais ligações;
- d) Determinar como cresce a extensão total da árvore com o número de pontos N.

Por fim, foi executado o programa várias vezes para vários valores de N e analisados os resultados.

Resultados

Parte I

Para vários valores de R, com um incremento de 0,1 até R=3, 0,05 ate R=3,4 e 0,01 ate R=4 foi obtido o seguinte diagrama das bifurcações:

Foram sendo utilizados incrementos de R cada vez mais pequenos para ser possível observar melhor as bifurcações que iam ocorrendo com as variações de R.

Analisando o gráfico 1, podemos observar com clareza bifurcações em vários pontos do intervalo. No ponto R=3 ocorre a primeira bifurcação. No ponto R=3,4 ocorrem mais duas bifurcações e até R=4 vão ocorrendo cada vez mais bifurcações, com intervalos cada vez mais pequenos entre elas.

Analisando o gráfico 2, podemos observar que quando R>4 os pontos são bastantes próximos de zero, acabando com as bifurcações. Ou seja, daqui conclui-se que o R só pode variar entre os valores 1 e 4.

Parte II

Como pedido, foram gerados N pontos aleatoriamente dentro de um quadrado de lado 1 e foi calculada a menor distância possível entre dois dos pontos e desenhado um segmento de reta entre eles – Figura 1.

Figura 1

Em seguida, através de mais um ciclo for, foi sendo repetido o processo e foi encontrada a árvore de menor extensão (com N=10) – Figura 2.

Figura 2

Em seguida, foi testado o programa, aumentando cada vez mais o número total de pontos (N) – Figuras 3, 4, 5 e 6.

Figura 3 - N=100

Figura 5 - N=1000

Figura 4 - N=600

Figura 6 - N=3000

Ao observar as animações, podemos ver que a árvore cresce de forma recursiva, ou seja, o programa vai percorrendo todos os pontos ligados e, no ultimo ponto ligado calcula a distância para todos os outros pontos que faltam ligar. Caso a distância menor seja com o ponto anterior a esse, o programa vai fazer o mesmo, mas para o ponto anterior, calculando a distância entre esse ponto e outro qualquer que ainda não faça parte da arvore. Assim, é possível otimizar ao máximo a distância entre todos os pontos ao uni-los num único componente.

Discussão

Na parte I conclui-se que analisando o comportamento expressão dada (1) é possível obter um diagrama das bifurcações. Neste diagrama, dando um valor para x_0 e fazendo variar o valor do parâmetro R, é possível observar que a partir de um certo valor (R=3) começam a formar-se bifurcações e que quanto mais pequeno for o incremento de R, melhor é possível observa-las.

Na parte II, analisando as animações e as figuras, conclui-se quanto maior o N (nº de pontos) mais tempo demora a árvore a ser formada. Conclui-se também que este método é, de facto, uma boa maneira de minimizar os comprimentos das ligações entre pontos aleatoriamente distribuídos, sendo essa ligação feita de forma recursiva.

Conclusão

Em suma, através do mapa logístico é possível traçar um diagrama das bifurcações e analisar o seu comportamento. Conclui-se também que o método utilizado na parte II é uma boa maneira de minimizar os comprimentos das ligações entre pontos, e que essa ligação tem um comportamento recursivo.

Foi um trabalho bem realizado, pois foi possível trabalhar usando o Excel e o Matlab, sendo os resultados obtidos os previstos no guião.