PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-166148

(43)Date of publication of application : 11.06.2002

2/00

(51)Int.Cl.

1/00 B01F 3/04 R01F 5/00

B01F // A23L

BEST AVAILABLE COPY 5/04

(21)Application number: 2000-

403595

(71)Applicant: TOKYO FLOW

METER

KENKYUSHO:KK

(22)Date of filing:

29.11.2000 (72)Inventor: KANEDA KENJI

(54) CARBONIC ACID GAS MIXING APPARATUS TO BE EMPLOYED FOR CARBONATED WATER PRODUCTION

(57)Abstract:

PROBLEM TO BE SOLVED: To save the installation space and lower the cost without decreasing the concentration of carbonic acid gas in the case of dissolving carbonic acid gas in drinking carbonated water.

SOLUTION: A mixing apparatus comprising a mechanism capable of evenly mixing carbonic acid gas with drinking water in fine bubbles and a mechanism for carrying out mixing of the bubbles and making the bubbles reach the mixing part before the bubbles grow.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]
[Date of final disposal for application]
[Patent number]
[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-166148 (P2002-166148A)

(43)公開日 平成14年6月11日(2002.6.11)

		F I デーマコート*(参考)
(51) Int.Cl.7	識別配号	B 0 1 F 1/00 B 4 B 0 1 7
	00	3/04 F 4G035
	04	5/00 D
5,	00	5/04
5,	/04	T
# A 2 3 L 2	/00	A 2 3 L 2/00 1 1 1 2 3 頁) 審査請求 未請求 請求項の数 2 書面 (全 3 頁)
(21)出順番号	特顧2000-403595(P2000-403595)	株式芸化米がノビノ
(22)出願日	平成12年11月29日(2000, 11, 29)	東京都日野市南平4丁目3番地の17 (72)発明者 全田 覧二 東京都日野市南平4丁目3番17号 株式会 社東京フローメータ研究所内
		Fターム(参考) 4B017 LC09 LT01 4Q035 AA06 AA08 AB20 AB27

(54) 【発明の名称】 炭酸水製造に用いる炭酸ガス混合器

(57)【要約】

【課題】 飲料用炭酸水の炭酸ガス溶解を炭酸ガスの濃 度を落とすこと無く、省スペース化、及びコスト低減を 行う。

【解決手段】飲料水へ炭酸ガスを微細な気泡状態で均一 に混入できる機構と、混入後に気泡が成長する前に混合 部に到達し、ミキシングされる機構が一体化された混合 器を用いる。

【特許請求の範囲】

【請求項1】 炭酸ガスの吸い込み、及び、飲料水との 混合溶解までを行うものであって、飲料水の通路にはオ リフィス (1)、炭酸ガスの吸い込み口(2)、拡散部 (3) 、及び、混合部(4) が一体化され、混合部

- (4) の各ミキサエレメントの連結部 (5) が開口部
- (7) と流体位置移動面 (6) が向かい合うように交互 に組み合わされ、この連結部 (5) が各ミキサエレメン ト間の流路の確保と共に、ミキサエレメント間の相対位 置の変動を防止することができ、かつ、ミキサエレメン 10 ト数の変更が可能なことを特徴とする炭酸ガス混合器。 【請求項2】 炭酸ガスの吸い込み、及び、飲料水との

混合溶解までを行うものであって、飲料水の通路にはオ リフィス (1) 、炭酸ガスの吸い込み口 (2) 、拡散部 (3)、及び、混合部(4)が一体化され、炭酸ガスの 引き込み口 (2) の形状は、主流体の流路に垂直方向に は広く、水平方向に短い形状とし、かつ、オリフィス

(1) と一定断面積をもった拡散部 (3) の間に設けら れたことを特徴とする炭酸ガス混合器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、食品関係、例えば カップ販売用やディスペンサの炭酸飲料水を製造する場 合に、効率良く炭酸ガスを溶解する混合器である。

[0002]

【従来の技術】従来の炭酸飲料ディスペンサにおける炭 酸ガスの溶解は、炭酸ガスを用いて、0.4~0.6M Paに加圧された容器に、飲料水をシャワー状に注入し て、加圧溶解された炭酸水を炭酸ガスの圧力によって抽 出する方法が取られていた。

[0003]

【発明が解決しようとする課題】この炭酸ガスによる加 圧容器を用いたディスペンサは、炭酸ガス濃度の安定を 図るため、1~1.5Lの容積が必要であった。

【0004】また、炭酸ガスの高濃度化の為に、加圧容 器の冷却の為に冷却水槽に埋没させる場合もあり、加圧 容器の冷却が容易では無かった。

【0005】また、この方法は加圧による溶解が主体 で、プロコンポンプ等の高圧ポンプで、飲料水をシャワ ー状、かつ、高流速で供給し、飲料水と炭酸ガスの接触 40 面積を多くする必要があった。

【0006】さらに、一定の容積をもった加圧容器は、 ンステムを小型化する上で支障となったり、また、容器 内の炭酸水の量を測定するための液面計や、リリーフ弁 等の付属部品が必要となり、省スペース化やコスト削減 の妨げとなっていた。

【0007】本発明は、上記の問題点を解決する為にな されたものであって、炭酸ガスの混入部とその炭酸ガス を効率よく飲料水に溶解する混合部が一体化された混合 器を提供することを目的とする。

[00008]

【課題を解決する為の手段】上記の目的を達成する為 に、本発明では炭酸ガスの混入方法を飲料水との接触面 積が多く均一に混入する為に、飲料水の流路方向に垂直 方向は広く、水平方向は短い引き込み口の形状とした。 【0009】また、飲料水が通路内のオリフィスを通過 後に乱流が発生し、炭酸ガスの巻き込みが有効に働くよ うに、飲料水への炭酸ガス拡散部の断面積は、そのオリ フィス部の断面積の4~8倍とし、一様な断面積通路に 到達する前に炭酸ガスを巻き込みが完了する様にしたガ ス導入部を設ける。

【0010】次に、巻き込まれた炭酸ガスは拡散部を通 過中に飲料水に均一、かつ、微細な気泡状態で分散す

【0011】飲料水中に分散された炭酸ガス気泡は、気 泡成長する前に混合部に到達し、剪断、位置移動、重ね 合わせがエレメント数だけ繰り返さる。この繰り返し回 数 (エレメント数) を調整することで、混合部の最終段 ではその時の温度と圧力に比例した炭酸ガスの溶解度が 20 得られる。

【0012】また、本発明の炭酸ガス混合器は、通常の 加圧容器の10~15分の1と小さく、省スペース化が できるとともに、液面計やリリーフ弁等が不要となり、

部品点数の削減ができる。

[0013] 【発明の実施の形態】本発明の炭酸ガス混合器の実施の 形態を図1を参照して説明する。図1は飲料水の流量が 毎分2Lと小流量の場合に対して、炭酸ガスを溶解する 場合の混合器の断面図の例である。

【0014】昇圧ポンプから押し出された飲料水は、一 旦4℃以下まで冷却され、混合器に導入される。この導 入された飲料水はオリフィス(1)で流速が増加し、オ リフィス (1) を通過直後に炭酸ガス吸い込み口 (2) から炭酸ガスを巻き込み乱流状態となる。

【0015】炭酸ガスの吸い込み口(2)は、飲料水の 流入圧、流量、オリフィス径によって、適正な炭酸ガス 量が導入されるように、調整された形状と開口面積とな っている。

【0016】この乱流状態の炭酸ガスは、拡散部(3) を通過する間に配管全域に微細な気泡状態なって均一に 分散され、気泡が大きく成長する前に混合部 (4) に到 達することによって、炭酸ガスと飲料水の接触面積が減 少することなく溶解を進行することができる。

【0017】この様に微細に分散した炭酸ガスの混ざっ た飲料水は、各ミキサエレメントを通過するごとに炭酸 ガスの溶解が進行し、やがてその時の流体温度と圧力に よって定まる濃度で飽和し一定となり、混合器から排出 される。

【0018】この様にして得られる炭酸水の炭酸濃度 50 は、炭酸ガスボリューム値で3.8~4.0となり、炭 酸飲料として十分な値を得ることができる。

【0019】一方、カップ販売などで使用されている炭 酸水ディスペンサで使用されている、炭酸ガス混合用の 加圧容器とシリーズに接続することにより、炭酸ガスボ リューム値で4.5以上の高濃度炭酸水を製造すること も可能となる。

3

[0020]

【発明の効果】以上詳細に説明した様に、本発明の炭酸 ガス混合器を組み込むことによって、システムの省スペ ース化、部品点数を含めたコスト低減が可能となる。ま 10 た、現状のシステムに追加する構成とした場合には、炭 酸水ガスボリューム値で見た場合に10%以上の高濃度

炭酸水が得られる。

【図面の簡単な説明】 【図1】本発明の実施の形態として、飲料水の流量を毎 分2 Lとしオリフィス (1) やエレメント数等が調整さ れ、小口径の接続部に合わせ2分割可能なようにした混*

* 合器の実施例である。

【図2】図1の炭酸ガス吸い込み口(2)方向から見た 時の、吸い込み口(2)の上面図である。(a)の吸い 込み口(2)は、長穴の形状で、(b)は小口径の穴を 1~数個並べた場合の上面図である。

【図3】ミキサエレメント単体の構造で、開口部(7) が周辺に設けられ、エレメントの表面と裏面で角度の異 なる半円状の連結部(5)があり、隣り合う連結部 (5) どおしをつなぎ合わせ混合部の構造とする。

【符号の説明】

- 1. オリフィス 2. 炭酸ガス吸い込み口
- 3. 拡散部
- 4. 混合溶解部
- 5. 連結部
- 6. 流体位置移動面
- 7. 開口部

【図3】 [図2] [図1]

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Г	defects in the images include but are not limited to the items checked:
	□ BLACK BORDERS
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	☐ FADED TEXT OR DRAWING
	☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
	SKEWED/SLANTED IMAGES
	COLOR OR BLACK AND WHITE PHOTOGRAPHS
	☐ GRAY SCALE DOCUMENTS
	☐ LINES OR MARKS ON ORIGINAL DOCUMENT,
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	□ OTHER.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.