2023

Alessandro Zanatta

University of Pisa

Reference paper (DOI): 10.1109/ACCESS.2020.2969474

What is Proverie?

• Symbolic verification tool:

- Symbolic verification tool:
 - \circ Attacker \rightarrow Dolev-Yao;

Proverif

- Symbolic verification tool:
 - \circ Attacker \rightarrow Dolev-Yao;
 - \circ Cryptographic primitives \rightarrow black-box;

Proverif

- Symbolic verification tool:
 - \circ Attacker \rightarrow Dolev-Yao;
 - $\circ \ \ Cryptographic \ primitives \rightarrow black-box;$
 - Perfect cryptography assumption:

- Symbolic verification tool:
 - \circ Attacker \rightarrow Dolev-Yao;
 - Cryptographic primitives → black-box;
 - Perfect cryptography assumption:
 - e.g. can decrypt enc $(m, k) \iff k$ is known

- Symbolic verification tool:
 - ∘ Attacker → Dolev-Yao;
 - Cryptographic primitives → black-box;
 - Perfect cryptography assumption:
 - e.g. can decrypt enc $(m, k) \iff k$ is known
- Based on applied π -calculus;

5G EAP-TLS protocol entities

- Home Network (HN):
 - Authentication Server Function (AUSF)
 - Certificate CERT_{AUSF}
 - o Unified Data Management (UDM)

5G EAP-TLS protocol entities

- Home Network (HN):
 - Authentication Server Function (AUSF)
 - Certificate CERT_{AUSF}
 - Unified Data Management (UDM)
- User Equipment (UE):
 - Subscription Permanent Identifier (SUPI)
 - Public asymmetric keys pk_{AUSF}, pk_{UDM}
 - Certificate CERT_{UE}

- Home Network (HN):
 - Authentication Server Function (AUSF)
 - Certificate CERT_{AUSF}
 - Unified Data Management (UDM)
- User Equipment (UE):
 - Subscription Permanent Identifier (SUPI)
 - Public asymmetric keys pk_{AUSF}, pk_{UDM}
 - Certificate CERT_{IJE}
- Serving Network (SN):
 - Security Anchor Function (SEAF)

5G EAP-TLS protocol entities

Involved entities:

- Home Network (HN):
 - Authentication Server Function (AUSF)
 - Certificate CERT_{AUSF}
 - Unified Data Management (UDM)
- User Equipment (UE):
 - Subscription Permanent Identifier (SUPI)
 - Public asymmetric keys *pk*_{AUSF}, *pk*_{UDM}
 - Certificate CERT_{UE}
- Serving Network (SN):
 - Security Anchor Function (SEAF)

Assumptions:

HN ↔ SN communications are secure

Required security properties

• Authentication properties:

- A1. Both the home network and the subscriber should agree on the identity of each other after successful termination
- A2. Both the home network and the subscriber should agree on the pre-master key R_{prekey} after successful termination

Required security properties

Authentication properties:

- A1. Both the home network and the subscriber should agree on the identity of each other after successful termination
- A2. Both the home network and the subscriber should agree on the pre-master key R_{prekey} after successful termination

Secrecy properties:

- S1. The attacker cannot obtain the identity *SUPI* of an honest subscriber
- S2. The attacker cannot obtain the pre-master key $R_{\it prekey}$ of an honest subscriber
- S3. The attacker cannot obtain the session key $K_{session}$ of an honest subscriber

It's **DEMO** time!!

• Authentication properties:

- A1. Both the home network and the subscriber should agree on the identity of each other after successful termination
- A2. Both the home network and the subscriber should agree on the pre-master key R_{prekey} after successful termination

• Secrecy properties:

- S1. The attacker cannot obtain the identity *SUPI* of an honest subscriber
- S2. The attacker cannot obtain the pre-master key $R_{\it prekey}$ of an honest subscriber
- S3. The attacker cannot obtain the session key $K_{session}$ of an honest subscriber

Fixing the protocol

