		-4-
		in line 17, cancel ", on the other hand,";
		in line 19, replace "the factor" witha factor of; and
		below line 25, insert
		The above-described method and device are illustrative of the principles
22	5	of the present invention. Numerous modifications and adaptions thereof will be
		readily apparent to those skilled in this art without departing from the spirit and
		scope of the present invention
13		IN THE CLAIMS:
		On page 7, at line 1, replace "Patent Claims" withWHAT IS
u. U	10	CLAIMED IS:;
U 师		Please amend claims 1-9 as follows:
j		
",=" "		1. (Amended) <u>A device</u> [Device] for converting data sequences between
		frame relay (FR) format and asynchronous transfer mode (ATM) format,
		comprising:
	15	[-] an FR communication module [(PIM)] for connecting to at least one FR
		communication link; [,]
		[-] an ATM communication module for connecting to an ATM
		communication link; [,]
		[-] a central computer [(FP)] for controlling said [the] FR communication
	20	module and said [the] ATM communication module; [,] and
		[-] a buffer memory [(PSSM)], which is connected via an internal
		communication link to said [the] central computer [(FP)], said [the] FR
		communication module [(PIM)] and said [the] ATM communication module.
		2. (Amended) A conversion [Conversion] device according to claim 1,
	25	wherein said [characterized in that the] internal communication link is a bus link.

5

15

20

25

- 3. (Amended) <u>A conversion</u> [Conversion] device according to claim 2, wherein said [characterized in that the] bus link is a PCI bus link.
- 4. (Amended) A conversion [Conversion] device according to claim 1, wherein said internal communication link comprises [one of the claims 1 through 3, characterized in that] two separate bus links [are provided] for driving said [the] FR communication module [(PIM)].
- 5. (Amended) A conversion [Conversion] device according to claim 1, wherein said [one of the claims 1 through 4, characterized in that the] central computer [(FP)] controls [the] data transmission between said [the] FR communication module, said [the] ATM communication module, said [the] central computer [(FP)] and said [the] buffer memory [(PSSM)].
 - 6. (Amended) A conversion [Conversion] device according to claim 1, wherein said [one of the claims 1 though 5, characterized in that the] buffer memory [(PSSM) is divided into] comprises a reception unit and a transmission unit.
 - 7. (Amended) A conversion [Conversion] device according to claim 6, further comprising an additional [characterized in that respectively one separate] central computer which controlls [(FP) is provided for purposes of controlling] a [the] conversion of said [the] data sequences from the FR format into the ATM format and said central computer controls a conversion of said data sequences from the FR format into the ATM format [vice-versa].
 - 8. (Amended) A method [Method] for converting data sequences from an FR format into an ATM format comprising the steps of: [by means of] providing a conversion device, comprising an FR communication module [(PIM)

for connecting to an FR communication link], an ATM communication module [for connecting to an ATM communication link], a central computer [(FP) for controlling the FR communication module (PIM) and the ATM communication module], and a buffer memory; [(PSSM), comprising the steps]

connecting said FR communication module to an FR communication link;

connecting said ATM communication module to an ATM communication link;

controlling, with said central computer, said FR communication module and said ATM communication module;

[-] reading[-]in [the] FR data sequences into <u>said</u> [the] FR communication module [(PIM)] <u>as read in data;</u> [,]

[-] storing <u>said read in</u> [the] data in <u>said</u> [the] buffer memory; [(PSSM),]

[-] converting <u>said stored</u> [the] data <u>into</u> [in] ATM format; [and] reading out <u>said</u> [the same] data <u>converted into ATM format via said</u> [by means of the] ATM communication module; <u>and</u> [,]

[- whereby the] <u>providing a non-interrupted</u> operation of <u>said</u> [the] central computer [(FP) is not interrupted] by <u>said</u> the read_in and read_out process into/from <u>said</u> [the] buffer memory [(PSSM)].

9. (Amended) A method [Method] for converting data sequences from an ATM format into an FR format comprising the steps of: [by means of]

providing a conversion device, comprising an FR communication module [(PIM) for connecting to an FR communication link], an ATM communication module [for connecting to an ATM communication link], a central computer [(FP) for controlling the FR communication module (PIM) and the ATM communication module], and a buffer memory; [(PSSM), comprising the steps]

connecting said FR communication module to an FR communication

15

20

25

10

5