Hoja nº 5.a

Relaciones de Equivalencia

1. Considerar la relación definida sobre \mathbb{R} por:

$$x \sim y \iff x^4 = y^4$$
.

Se pide comprobar que es una relación de equivalencia y describir las clases de equivalencia.

2. Consideremos la relación definida en $\mathbb{N} \times \mathbb{N}$ por:

$$(a,b) \sim (c,d) \iff ad = bc.$$

Se pide demostrar que es una relación de equivalencia y describir el conjunto cociente, identificándolo con un subconjunto conocido de \mathbb{R} .

3. Considerar la relación definida sobre el plano \mathbb{R}^2 por:

$$(x,y)\mathcal{R}(x',y') \iff xy = x'y'.$$

Estudiar si es una relación de equivalencia y, en caso afirmativo, describir las clases de equivalencia.

4. Indicar cuáles de las siguientes funciones están bien definidas.

- a) $f: \mathbb{Z}/n\mathbb{Z} \longrightarrow \mathbb{Z}$, f([m]) = m.
- b) $g: \mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z}$, g(m) = [m].
- c) $G: \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z}$, G([m], [k]) = [m+k].
- d) $H: \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z}$, H([m], [k]) = [mk].
- 5. Definimos en $\mathbb{N}\times\mathbb{N}$ la relación

$$(n,m)\mathcal{R}(n',m') \iff \max\{n,m\} = \max\{n',m'\}.$$

- a) Demuestra que \mathcal{R} es una relación de equivalencia.
- b) Describe la clase de equivalencia del elemento (2, 2).
- c) Describe el conjunto cociente.
- d) ¿Tienen todas las clases de equivalencia el mismo cardinal? ¿Cuál es el cardinal del conjunto cociente?
- 6. Sea F el conjunto de todas las funciones de \mathbb{R} en \mathbb{R} . En F se define la siguiente relación:

$$f\mathcal{R}g \iff existe \ r \in \mathbb{R}, \ r > 0 \ tal \ que \ f(x) = g(x) \ para \ |x| < r.$$

Demostrar que \mathcal{R} es una relación de equivalencia sobre F.

7. Considerar las relaciones en \mathbb{Z} definidas por:

$$m\mathcal{R}_1 n \Longleftrightarrow 5|(m+2n),$$

 $m\mathcal{R}_2 n \Longleftrightarrow 4|(9m+3n).$

- a) Decidir si \mathcal{R}_1 y \mathcal{R}_2 son relaciones de equivalencia.
- b) En el caso de que lo sean, describir las clases de equivalencia y los conjuntos cocientes.

8. Sea B un subconjunto finito de un conjunto A. En $\mathcal{P}(A)$ definimos la relación:

$$X\mathcal{R}Y \iff \operatorname{Card}(X \cap B) = \operatorname{Card}(Y \cap B).$$

- a) Demostrar que \mathcal{R} es una relación de equivalencia.
- b) Describir las clases de equivalencias y el conjunto cociente. ¿Cuál es el cardinal del conjunto cociente?
- 9. En $\mathcal{P}(\mathbb{N}) \setminus \{\emptyset\}$ se define la siguiente relación: $X\mathcal{R}Y \iff \min X = \min Y$.
- a) Demostrar que ${\mathcal R}$ es una relación de equivalencia.
- b) ¿Cuál es el cardinal de cada una de las clases de equivalencia?
- c) ¿Cuál es el cardinal del conjunto cociente?