

Solution Manual of Digital Logic And Computer Design 2nd Edition Morris Mano

Digital Control System (Tribhuvan Vishwavidalaya)

Solution Manual of Digital Logic &

Computer Design (2th Ed.)

Morris Mano

Ch#1 - Ch#10

Published By: Muhammad Hassan Riaz Yousufi

To Read Online & Download: WWW.ISSUU.COM/SHEIKHUHASSAN

Logic Computer Design Fundamentals, Ed. 2

CHAPTER 1

© 2000 by Prentice-Hall, Inc.

1-1.

Decimal, Binary, Octal and Hexadecimal Numbers from (16)₁₀ to (31)₁₀

Dec	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Bin	1 0000	1 0001	1 0010	1 0011	1 0100	1 0101	1 0110	1 0111	1 1000	1 1001	1 1010	1 1011	1 1100	1 1101	1 1110	1 1111
Oct	20	21	22	23	24	25	26	27	30	31	32	33	34	35	36	37
Hex	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F

1-4.

$$(1101001)_2 = 2^6 + 2^5 + 2^3 + 2^0 = 105$$

$$(10001011.011)_2 = 2^7 + 2^3 + 2^1 + 2^0 + 2^{-2} + 2^{-3} = 139.375$$

$$(10011010)_2 = 2^7 + 2^4 + 2^3 + 2^1 = 154$$

1-7.

Decimal	Binary	Octal	Hexadecimal
369.3125	101110001.0101	561.24	171.5
189.625	10111101.101	275.5	BD.A
214.625	11010110.101	326.5	D6.A
62407.625	1111001111000111.101	171707.5	F3C7.A

1-9.

$$945 + 2/8$$
 \rightarrow 2

$$0.45 \times 8 =$$

$$0.60 \times 8 =$$

$$0.80 \times 8 = 0.20x8 =$$

3

3.2

$$(7562.45)_{10} = (16612.3463)_8$$

b)
$$(1938.257)_{10} = (792.41CA)_{16}$$

c)
$$(175.175)_{10}$$
 = $(10101111.001011)_2$

1-11.

a)
$$(673.6)_8 = (110\ 111\ 011.110)_2$$

 $(1\mathrm{BB.C})_{16}$

b)
$$(E7C.B)_{16} = (1110\ 0111\ 1100.1011)_2$$

 $(7174.54)_8$

c)
$$(310.2)_4 = (11\ 01\ 00.10)_2$$

 $(64.4)_{8}$

1-15.

a)
$$(BEE)_r = (2699)_{10}$$

 $11 \times r^2 + 14 \times r^1 + 14 \times r^0 = 2699$
 $11 \times r^2 + 14 \times r - 2685 = 0$

By the quadratic equation: r = 15 or $r \approx -16.27$

ANSWER: r = 15

b)
$$(365)_r = (194)_{10}$$

$$3 \times r^2 + 6 \times r^1 + 5 \times r^0 = 194$$

$$3 \times r^2 + 6 \times r - 189 = 0$$

By the quadratic equation: r = -9 or 7

ANSWER: r = 7

1-17.

1-20.

a) $(0100\ 1000\ 0110\ 0111)_{BCD}$ $(4867)_{10}$

 $(1001100000011)_2$

b) $(0011\ 0111\ 1000.0111\ 0101)_{BCD}$ $(378.75)_{10}$

 $(101111010.11)_2$

1-23.

- $(101101101)_2$ a)
- $(0011\ 0110\ 0101)_{\mbox{\footnotesize BCD}}$ b)
- c) 0011 0011 0011 0110 0011 0101_{ASCII}

1-25.

BCD Digits with Odd and Even Parity

	0	1	2	3	4	5	6	7	8	9
Odd	1 0000	0 0001	0 0010	1 0011	0 0100	1 0101	1 0110	0 0111	0 1000	1 1001
Even	0 0000	1 0001	1 0010	0 0011	1 0100	0 0101	0 0110	1 0111	1 1000	0 1001

2

Logic Computer Design Fundamentals, Ed. 2

CHAPTER 2

© 2000 by Prentice-Hall, Inc.

2-1.

$$\mathbf{a)} \quad \overline{XYZ} = \overline{X} + \overline{Y} + \overline{Z}$$

Verification of DeMorgan's Theorem

X	Y	Z	XYZ	\overline{XYZ}	$\overline{X}+\overline{Y}+\overline{Z}$
0	0	0	0	1	1
0	0	1	0	1	1
0	1	0	0	1	1
0	1	1	0	1	1
1	0	0	0	1	1
1	0	1	0	1	1
1	1	0	0	1	1
1	1	1	1	0	0

b)
$$X + YZ = (X + Y) \cdot (X + Z)$$

The Second Distributive Law

X	Y	Z	YZ	X+YZ	X+Y	X+Z	(X+Y)(X+Z)
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

c)
$$\overline{XY} + \overline{YZ} + X\overline{Z} = X\overline{Y} + Y\overline{Z} + XZ$$

X	Y	Z	$\overline{X}Y$	$\overline{Y}Z$	$X\overline{Z}$	$\overline{X}Y + \overline{Y}Z + X\overline{Z}$	$X\overline{Y}$	$Y\overline{Z}$	$\overline{X}Z$	$X\overline{Y}+Y\overline{Z}+\overline{X}Z$
0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0	0	1	1
0	1	0	1	0	0	1	0	1	0	1
0	1	1	1	0	0	1	0	0	1	1
1	0	0	0	0	1	1	1	0	0	1
1	0	1	0	1	0	1	1	0	0	1
1	1	0	0	0	1	1	0	1	0	1
1	1	1	0	0	0	0	0	0	0	0

2-2.

a)
$$\overline{X} \overline{Y} + \overline{X}Y + XY = \overline{X} + Y$$

 $= (\overline{X}Y + \overline{X} \overline{Y}) + (\overline{X} Y + XY)$
 $= \overline{X}(Y + \overline{Y}) + Y(X + \overline{X}) + \overline{X} + Y$

b)
$$\overline{A} B + \overline{B} \overline{C} + AB + \overline{B} C = 1$$

= $(\overline{A} B + AB) + (\overline{B} \overline{C} + \overline{B} C)$
= $B(A + \overline{A}) + \overline{B}(C + \overline{C})$
= $B + \overline{B}$
= 1

c)
$$Y + \overline{X}Z + X\overline{Y} = X + Y + Z$$

 $= Y + X\overline{Y} + \overline{X}Z$
 $= (Y + X)(Y + \overline{Y}) + \overline{X}Z$
 $= Y + X + \overline{X}Z$
 $= Y + (X + \overline{X})(X + Z)$
 $= X + Y + Z$

d)
$$\overline{X} \ \overline{Y} + \overline{Y} Z + XZ + XY + Y \overline{Z} = \overline{X} \ \overline{Y} + XZ + Y \overline{Z}$$

$$= \overline{X} \ \overline{Y} + \overline{Y} Z(X + \overline{X}) + XZ + XY + Y \overline{Z}$$

$$= \overline{X} \ \overline{Y} + X \ \overline{Y} Z + \overline{X} \ \overline{Y} Z + XZ + XY + Y \overline{Z}$$

$$= \overline{X} \ \overline{Y} (1 + Z) + X \ \overline{Y} Z + XZ + XY + Y \overline{Z}$$

$$= \overline{X} \ \overline{Y} + XZ(1 + \overline{Y}) + XY + Y \overline{Z}$$

$$= \overline{X} \ \overline{Y} + XZ + XY (Z + \overline{Z}) + Y \overline{Z}$$

$$= \overline{X} \ \overline{Y} + XZ + XY Z + Y \overline{Z} (1 + X)$$

$$= \overline{X} \ \overline{Y} + XZ(1 + Y) + Y \overline{Z}$$

$$= \overline{X} \ \overline{Y} + XZ + Y \overline{Z}$$

2-7.

a)
$$\overline{X} \overline{Y} + XYZ + \overline{X}Y = \overline{X} + XYZ = (\overline{X} + XY)(\overline{X} + Z)$$

 $= (\overline{X} + X)(\overline{X} + Y)(\overline{X} + Z) = (\overline{X} + Y)(\overline{X} + Z) = \overline{X} + YZ$
b) $X + Y(Z + \overline{X}\overline{Z}) = X + YZ + \overline{X}Y\overline{Z} = X + (YZ + \overline{X})(YZ + Y\overline{Z}) = X + Y(\overline{X} + Y)(\overline{X} + Y)(\overline{X}$

b)
$$X + Y(Z + \overline{X}\overline{Z}) = X + YZ + \overline{X}Y\overline{Z} = X + (YZ + \overline{X})(YZ + Y\overline{Z}) = X + Y(\overline{X} + YZ)$$

= $X + \overline{X}Y + YZ = (X + \overline{X})(X + Y) + YZ = X + Y + YZ = X + Y$

c)
$$\overline{W}X(\overline{Z} + \overline{Y}Z) + X(W + \overline{W}YZ) = \overline{W}X\overline{Z} + \overline{W}X\overline{Y}Z + WX + \overline{W}XYZ$$

= $WX + \overline{W}X\overline{Z} + \overline{W}XZ = WX + \overline{W}X = X$

d)
$$(AB + \overline{AB})(CD + \overline{CD}) + \overline{AC}$$

$$= AB\overline{CD} + ABCD + \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{A} + \overline{C}$$

$$= \overline{A} + \overline{C} + ABCD$$

$$= \overline{A} + \overline{C} + A(BCD)$$

$$= \overline{A} + \overline{C} + BCD$$

$$= \overline{A} + \overline{C} + C(BD)$$

$$= \overline{A} + \overline{C} + BD$$

2-9.

a)
$$\overline{F} = (\overline{A} + B)(A + \overline{B})$$

b)
$$\overline{F} = ((V + \overline{W})\overline{X} + \overline{Y})Z$$

c)
$$\overline{F} = [\overline{W} + \overline{X} + (Y + \overline{Z})(\overline{Y} + Z)][W + X + Y\overline{Z} + \overline{Y}Z]$$

d)
$$\overline{F} = \overline{A}B\overline{C} + (A+B)\overline{C} + \overline{A}(B+C)$$

2

2-10.

Truth Tables a, b, c

0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0	X	Y	Z	a	_	Α	В	C	b	_	W	X	Y	Z	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	0	0		0	0	0	1		0	0	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	1	0		0	0	1	1		0	0	0	1	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1	0	0		0	1	0	0		0	0	1	0	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1	1	1		0	1	1	1		0	0	1	1	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0	0	0		1	0	0	0		0	1	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0	1	1		1	0	1	0		0	1	0	1	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	0	1		1	1	0	0		0	1	1	0	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	1	1		1	1	1	1		0	1	1	1	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											1	0	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											1	0	0	1	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											1	0	1	0	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											1	0	1	1	0
1 1 1 0 1											1	1	0	0	1
											1	1	0	1	1
1 1 1 1 1											1	1	1	0	1
											1	1	1	1	1

a) Sum of Minterms: $\overline{X}YZ + X\overline{Y}Z + XY\overline{Z} + XYZ$

Product of Maxterms: $(X + Y + Z)(X + Y + \overline{Z})(X + \overline{Y} + Z)(\overline{X} + Y + Z)$

b) Sum of Minterms: $\overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} C + \overline{A} B C + A B C$

Product of Maxterms: $(A + \overline{B} + C)(\overline{A} + B + C)(\overline{A} + B + \overline{C})(\overline{A} + \overline{B} + C)$

c) Sum of Minterms: $\overline{W} \overline{X} Y \overline{Z} + \overline{W} X Y \overline{Z} + W \overline{X} Y \overline{Z} + W X \overline{Y} \overline{Z} + W X \overline{Y} \overline{Z} + W X \overline{Y} \overline{Z} + W X Y \overline{Z}$

+WXYZ

Product of Maxterms: $(W + X + Y + Z)(W + X + Y + \overline{Z})(W + X + \overline{Y} + \overline{Z})$

 $(W + \overline{X} + Y + Z)(W + \overline{X} + Y + \overline{Z})(W + \overline{X} + \overline{Y} + \overline{Z})$

 $(\overline{W} + X + Y + Z)(\overline{W} + X + Y + \overline{Z})(\overline{W} + X + \overline{Y} + \overline{Z})$

2-12.

- a) $(AB + C)(B + \overline{C}D) = AB + BC + AB\overline{C}D = AB + BC$ s.o.p. = B(A + C) p.o.s.
- **b)** $\overline{X} + X ((X + \overline{Y})(Y + \overline{Z})) = (\overline{X} + X)(\overline{X} + (X + \overline{Y})(Y + \overline{Z}))$ = $(\overline{X} + X + \overline{Y})(\overline{X} + Y + \overline{Z}) = \overline{X} + Y + \overline{Z}$ s.o.p. and p.o.s.
- c) $(A + B\overline{C} + CD)(\overline{B} + EF) = (A + B + C)(A + B + D)(A + \overline{C} + D)(\overline{B} + E)(\overline{B} + F)$ p.o.s. $(A + B\overline{C} + CD)(\overline{B} + EF) = A(\overline{B} + EF) + B\overline{C}(\overline{B} + EF) + CD(\overline{B} + EF)$ = $A\overline{B} + AEF + B\overline{C}EF + \overline{B}CD + CDEF$ s.o.p.

2-15.

2-18.

 $\Sigma m(3, 5, 6, 7)$

$$\Sigma m(3, 4, 5, 7, 9, 13, 14, 15)$$

 $\Sigma m(0, 2, 6, 7, 8, 10, 13, 15)$

2-19.

Using K-maps:

- a) Prime = XZ, WX, $\overline{X}\overline{Z}$, $W\overline{Z}$ Essential = XZ, $\overline{X}\overline{Z}$
- **b**) Prime = CD, AC, \overline{B} \overline{D} , $\overline{A}BD$, $\overline{B}C$ Essential = AC, \overline{B} \overline{D} , $\overline{A}BD$
- c) Prime = AB, AC, AD, $B\overline{C}$, $\overline{B}D$, $\overline{C}D$ Essential = AC, $B\overline{C}$, $\overline{B}D$

2-22.

Using K-maps:

- a) s.o.p. $CD + A\overline{C} + \overline{B}D$ p.o.s. $(\overline{C} + D)(A + D)(A + \overline{B} + C)$
- **b**) s.o.p. \overline{A} \overline{C} + \overline{B} \overline{D} + A \overline{D} p.o.s.(\overline{C} + \overline{D})(\overline{A} + \overline{D})(A + \overline{B} + \overline{C})
- c) s.o.p. \overline{B} \overline{D} + $\overline{A}BD$ + ($\overline{A}BC$ or $\overline{A}C\overline{D}$) p.o.s.(\overline{A} + \overline{B})(B + \overline{D})(\overline{B} + C + D)

2-25.

a)

Primes = AB, AC, BC, \overline{A} \overline{B} \overline{C} Essential = AB, AC, BC

F = AB + AC + BC

Primes = \overline{X} \overline{Z} , XZ, $\overline{W}X\overline{Y}$, WXY, \overline{W} \overline{Y} \overline{Z} , $WY\overline{Z}$ Essential = \overline{X} \overline{Z}

 $F = \overline{X} \, \overline{Z} + \overline{W} X \overline{Y} + W X Y$

 $\begin{array}{c|c} & \underline{D} & \\ \text{Primes} = \overline{AB}, \ C, \ A\overline{D}, \ B\overline{D} \\ \text{Essential} = C, \ A\overline{D} \end{array}$

 $F = C + A\overline{D} + (B\overline{D} \text{ or } \overline{A}B)$

2-28.

a)

b)

2-30.

2-34.

$$X \oplus Y = X\overline{Y} + \overline{X}Y$$
Dual $(X \oplus Y) = \text{Dual } (X\overline{Y} + \overline{X}Y)$

$$= (X + \overline{Y})(\overline{X} + Y)$$

$$\overline{X\overline{Y} + \overline{X}Y} = (\overline{X} + Y)(X + \overline{Y})$$

$$= (X + \overline{Y})(\overline{X} + Y)$$

2-37.

2-39.

$$4 \times 0.5 = 2 \text{ ns}$$

2-44.

					P-Logic		N-Logic					
X	Y	NAND	NOR	X	Y	NAND	NOR	X	Y	NAND	NOR	
L	L	Н	Н	0	0	1	1	1	1	0	0	
L	Н	Н	L	0	1	1	0	1	0	0	1	
Н	L	Н	L	1	0	1	0	0	1	0	1	
Н	Н	L	L	1	1	0	0	0	0	1	1	

Logic Computer Design Fundamentals, Ed. 2

CHAPTER 3

© 2000 by Prentice-Hall, Inc.

3-2.

$$T1 = BC, T2 = \overline{A}D$$

$$T3 = 1, T4 = \overline{D} + BC$$

$$X = T3T4$$

$$= \overline{D} + BC$$

$$Y = T2T4$$

$$= \overline{A}D(\overline{D} + BC) = \overline{A}BCD$$

X	Y	Z	T1	T2	T3	T4	T5	F
0	0	0	1	1	1	1	1	0
0	0	1	1	1	1	0	0	1
0	1	0	1	1	0	1	1	0
0	1	1	1	1	0	1	1	0
1	0	0	1	0	1	1	1	0
1	0	1	1	0	1	1	0	1
1	1	0	0	1	1	1	1	0
1	1	1	0	1	1	0	0	1
	X -		'	-	T2			u
				╓┖	ア <u>ニ</u>	∃)∽	1T4 —	_
		Г		╙┍	$\setminus \mid \mid$) – F
	Υ_) ^十 3	⊸(ا	T5	
	Z-					<u>ー</u> ノ		

3-3.

X	Y	T1	T2	T3	F
0	0	1	0	0	1
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

3-6.

$$M = A\overline{S} + BS$$

$$T_I = Z\overline{Y} + \overline{Z}Y$$

$$\begin{split} F &=& Y\overline{X} + T_{l}X &=& Y\overline{X} + X(Z\overline{Y} + \overline{Z}Y) \\ &=& \overline{X}Y + X\overline{Y}Z + XY\overline{Z} \end{split}$$

$$\begin{aligned} \mathbf{G} &=& \overline{T}_{J}\overline{X} + ZX &=& XZ + \overline{X}(\overline{Z} + Y)(Z + \overline{Y}) \\ &=& XZ + \overline{X}(YZ + \overline{Y}\,\overline{Z}) &=& XZ + \overline{X}YZ + \overline{X}\,\overline{Y}\,\overline{Z} \end{aligned}$$

3-11.

3-13.

3-15.

3-20.

D3	D2	D1	D0	A1	A0	V
0	0	0	0	X	X	0
X	X	X	1	0	0	1
X	X	1	0	0	1	1
X	1	0	0	1	0	1
1	0	0	0	1	X 0 1 0	1

V = D0 + D1 + D2 + D3 $A0 = D1 + \overline{D0} \overline{D2}$

 $A1 = \overline{D0} \, \overline{D1}$

3-25.

3-29.

	A	В	C	D	F		Α	В	C	D
	0	0	0	0	0		1	0	0	0
	0	0	0	1	1	D	1	0	0	1
	0	0	1	0	0	ש	1	0	1	0
	0	0	1	1	1		1	0	1	1
•	0	1	0	0	1	\overline{CD}	1	1	0	0
	0	1	0	1	0		1	1	0	1
	0	1	1	0	0		1	1	1	0
	0	1	1	1	0		1	1	1	1
•						•				

0101011

3-35.

$$\begin{split} C_1 &= \overline{T_3 + T_2} = \overline{T_1 \overline{C}_0 + T_2} = \overline{A_0 B_0} \overline{C_0} + \overline{A_0 + B_0} = \overline{(\overline{A}_0 + \overline{B}_0)} \overline{C}_0 + \overline{A}_0 \overline{B}_0 = (A_0 B_0 + C_0)(A_0 + B_0) \\ C_1 &= A_0 B_0 + A_0 C_0 + B_0 C_0 \\ S_0 &= C_0 \oplus T_4 = C_0 \oplus T_1 \overline{T}_2 = C_0 \oplus \overline{A_0 B_0} (A_0 + B_0) = C_0 \oplus (\overline{A}_0 + \overline{B}_0)(A_0 + B_0) = C_0 \oplus A_0 \overline{B}_0 + \overline{A}_0 B_0 \\ S_0 &= A_0 \oplus B_0 \oplus C_0 \end{split}$$

3-38.

																																								0
																																								1
0)	1	1	0	1	0	0	0	0	1	1	0	0	1	1	1	0	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

43

3-41.

3-45.

	S	A	В	C4	S 3	S2	S 1	S 0
a)	0	0111	0110	0	1	1	0	1
b) c)	0	0100	0101	0	1	0	0	1
c)	1	1100	1010	1	0	0	1	0
d)	1	0101	1010	0	1	0	1	1
e)	1	0000	0010	0	1	1	1	0

3-49. 78430258 98989899 09580089 99999999

3-52.

BCD EXCESS-3 D E A В 0 0 0 0 0 $H = \overline{D}$ G = C $G = \overline{C}$ $F = \overline{B}C + B\overline{C}$ $F = \overline{B}$ $E = \overline{A}\overline{B}\overline{C}$ $E = \overline{A}$ Gates: Gates: Literals: Literals:

3-55.

3-58.

3-62.

```
From 3-2: F = X Z + Z \overline{Y}

Using Nand Gates:

...

signal T: std_logic_vector(0 to 2);

begin

g0: NOT1 port map (Y, T(0));

g1: NAND2 port map (X, Z, T(1));

g2: NAND2 port map (Z, T(0), T(2));

g3: NAND2 port map (T(1), T(2), F);

end
```

3-66.

	0.0 50ns 	100ns	200ns	300ns 350ns
BA3(hex)#4F18		<u>/2</u>	<u> </u>	(8
BB3(hex)#4F18	1	<u> </u>	<u> </u>	<u>(8</u>
i C0F0				
B S3(hex)#4 0	2	<u> </u>	<u>//8</u>	χο
o C4				

3-69.

3-72.

3-76.

```
//Fucntion F from problem 3-2 = X Z + Z Y

module cicuit_3_76(X, Y, Z, F);

input X, Y, Z;

output F;

assign F = (X \& Z) | (Z \& \sim Y);

endmodule
```


3-80.

	p.o. pons	hoons hoons	koons kaons	Booms '
	<u>Inndondondon</u>	<u>lmulmulmulmu</u>	<u>lmulmulmulmu</u>	<u>luuluuluulu</u>
B A3(hex)#4 F0 8	1	<u> (2</u>	<u>/4</u>	(8
B B3(hex)#4 F0 8	1	<u>/2</u>	<u>/4</u>)(8
i C0				
B S3(hex)#4 0	2	<u>/4</u>	<u>/(8</u>	<u>(o</u>
o C4				

Logic Computer Design Fundamentals, Ed. 2

CHAPTER 4

© 2000 by Prentice-Hall, Inc.

4-3. (All simulations performed using Xilinx Foundation Series software.)

4-4.

4-5.

4-6.

4-10.

J	K	Q(t)	Q(t+1)		S	R	Q(t)	Q(t+1)		D	Q(t)	Q(t+1)		T	Q(t)	Q(t+1)
0	0	0	0	_	0	0	0	0		0	0	0		0	0	0
0	0	1	1		0	0	1	1		0	1	0		0	1	1
0	1	0	0		0	1	0	0		1	0	1		1	0	1
0	1	1	0		0	1	1	0		1	1	1		1	1	0
1	0	0	1		1	0	0	1								
1	0	1	1		1	0	1	1								
1	1	0	1		1	1	0	X		Q((+1)	= D		$Q(t \cdot$	+1):	$= T \oplus Q$
1	1	1	0		1	1	1	X								
								'			J	A = B	K	$_{A} = I$	$3\overline{X}$	
												$B = \overline{X}$			λ X +	$\overline{A}X$
$Q(t \cdot$	+ 1)	$=J\bar{\zeta}$	$\bar{Q} + \bar{K}Q$	Ç	2(t	+ 1)	= S	$+ \bar{R}Q$			- 1	ь		Б		
			A(t+1	$J = J_A \overline{A}$	+ Ī	$\overline{\zeta}_{A}A$			=	В	A+ B	A +XA				
				$J = J_{\mathbf{p}} \overline{B}$:	=	\bar{x}	<u>B</u> +	$ABX + \overline{A}$	$B\overline{X}$			

4-12.

Pre	sent s	tate	Input	Ne	Next state				
Α	В	C	X	A	В	В			
0	0	0	0	1	0	0			
0	0	0	1	0	0	0			
0	0	1	0	0	0	0			
0	0	1	1	1	0	0			
0	1	0	0	0	0	1			
0	1	0	1	1	0	1			
0	1	1	0	1	0	1			
0	1	1	1	0	0	1			
1	0	0	0	1	1	0			
1	0	0	1	0	1	0			
1	0	1	0	0	1	0			
1	0	1	1	1	1	0			
1	1	0	0	0	1	1			
1	1	0	1	1	1	1			
1	1	1	0	1	1	1			
1	1	1	1	0	1	1			

State diagram is the combination of the above two diagrams.

4-17.

Preser	nt state	Input	Next	state	Output
A	В	X	Α	В	Y
0	0	0	0	1	0
0	0	1	0	0	1
0	1	0	1	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	0	1	0
1	1	0	1	1	0
1	1	1	1	0	1

Format: X/Y

4-19.

Preser	nt state	Input	Next stat	
Α	В	X	A	В
0	0	0	0	0
0	0	1	1	0
0	1	0	0	1
0	1	1	0	0
1	0	0	1	0
1	0	1	1	1
1	1	0	1	1
1	1	1	0	1

D_A			I	3
		1		
A	1	1	1	
		,	V	

$$D_A = A\overline{B} + AX + \overline{B}X$$

$$D_B = AX + B\overline{X}$$

4-20.

Present state	Inp	uts	Next state	Output
Q(t)	X	Y	Q(t+1)	Z
0	0	0	0	0
0	0	1	0	X
0	1	0	1	1
0	1	1	0	X
1	0	0	1	1
1	0	1	0	X
1	1	0	1	0
1	1	1	0	X

Format: XY/Z (x = unspecified)

4-24.

Preser	t state	Input	Next	Output	
A	В	X	A	В	Y
0	0	0	0	1	1
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	0	0	0
1	1	0	1	0	0
1	1	1	1	1	0

$$D_B = BX + \overline{A} \, \overline{X}$$

$$Y = \overline{A} \overline{B}$$

4-25.

Present state	Inj	out	Next state
Α	J	Κ	A
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

$$D_A = \overline{A}J + A\overline{K}$$

4-30.

Preser	sent state Input Ne		Next	state		FF Inputs					
A	В	X	A	В	J_A	K _A	J_B	K _B			
0	0	0	0	1	0	X	1	X			
0	0	1	0	0	0	X	0	X			
0	1	0	0	1	0	X	X	0			
0	1	1	1	1	1	X	X	0			
1	0	0	1	0	X	1	0	X			
1	0	1	0	0	X	1	0	X			
1	1	0	1	0	X	0	X	1			
1	1	1	1	1	X	0	X	0			

$$\begin{split} &J_{A}=BX\\ &K_{A}=B~X+\overline{B}~\overline{X}\\ &J_{B}=~\overline{A}~\overline{X} \end{split}$$

$K_B = A \overline{X}$

4-33.

Preser	nt state	Inp	uts	Next	state		FF Ir	nputs	
A	В	E	X	A	В	J_A	K_A	J_B	K _B
0	0	0	0	0	0	0	X	0	X
0	0	0	1	0	0	0	X	0	X
0	0	1	0	1	1	1	X	1	X
0	0	1	1	0	1	0	X	1	X
0	1	0	0	0	1	0	X	X	0
0	1	0	1	0	1	0	X	X	0
0	1	1	0	0	0	0	X	X	1
0	1	1	1	1	0	1	X	X	1
1	0	0	0	1	0	X	0	0	X
1	0	0	1	1	0	X	0	0	X
1	0	1	0	0	1	X	1	1	X
1	0	1	1	1	1	X	0	1	X
1	1	0	0	1	1	X	0	X	0
1	1	0	1	1	1	X	0	X	0
1	1	1	0	1	0	X	0	X	1
1	1	1	1	0	0	X	1	X	1

$${\rm J_A} = {\rm E}({\rm BX} + \overline{\rm B} \; \overline{\rm X})$$

$$K_{\rm A} = {\rm E}({\rm BX} + \overline{\rm B}\ \overline{\rm X})$$

$$J_B = E$$

$$K_B = E$$

4-36.

Preser	nt state	Input	Next	state	FF Inputs		
A	В	X	A	В	T_A	T_B	
0	0	0	0	0	0	0	
0	0	1	0	1	0	1	
0	1	0	1	0	1	1	
0	1	1	0	1	0	0	
1	0	0	1	0	0	0	
1	0	1	1	1	0	1	
1	1	0	1	1	0	0	
1	1	1	0	0	1	1	

$$T_{A} = ABX + \overline{A}B\overline{X}$$

$$T_B = ABX + \overline{A}B\overline{X} + \overline{B}X$$

4-37

```
library IEEE;
                                                            architecture mux_4to1_arch of mux_4to1 is
use IEEE.std_logic_1164.all;
                                                            begin
entity mux_4to1 is
                                                            process (S, D)
                                                               begin
    port (
        S: in STD_LOGIC_VECTOR (1 downto 0);
                                                                case S is
        D: in STD_LOGIC_VECTOR (3 downto
                                                                   when "00" => Y <= D(0):
                                                                    when "01" \Rightarrow Y \leq D(1);
0);
                                                                   when "10" => Y <= D(2);
when "11" => Y <= D(3);
        Y: out STD_LOGIC
    );
end mux 4to1;
                                                                   when others \Rightarrow null;
                                                                end case;
-- (continued in the next column)
                                                            end process;
                                                            end mux_4to1_arch;
```

4-40.

```
library IEEE;
                                                                 case J is
use IEEE.std_logic_1164.all;
                                                                     when '0' =>
entity jkff is
                                                                         if K = '1' then
                                                                             q_out <= '0';
  port (
     J,K,CLK: in STD_LOGIC;
                                                                         end if;
     Q: out STD_LOGIC
                                                                     when '1' =>
                                                                         if K = '0' then
end jkff;
                                                                             q_out <= '1';
                                                                         else
architecture jkff_arch of jkff is
                                                                             q_out <= not q_out;
signal q_out: std_logic;
                                                                         end if;
begin
                                                                     when others \Rightarrow null;
                                                                 end case;
state_register: process (CLK)
                                                               end if;
begin
                                                             end process;
 if CLK'event and CLK='0' then --CLK falling edge
                                                             Q \leq q_out;
-- (continued in the next column)
                                                             end jkff_arch;
```


4-45.

```
\begin{array}{lll} \text{module problem\_4\_45 (S, D, Y) ;} & \text{always } @(\text{S or D}) \\ & \text{begin} \\ \\ \text{input [1:0] S ;} \\ & \text{input [3:0] D ;} \\ & \text{output Y;} \\ \text{reg Y ;} & \text{else if (S == 2'b00) Y <= D[0];} \\ & \text{else if (S == 2'b10) Y <= D[1];} \\ & \text{else if (S == 2'b10) Y <= D[2];} \\ & \text{else Y <= D[3];} \\ \\ \end{tend} \end{array}
```

4-47.

Logic Computer Design Fundamentals, Ed. 2

CHAPTER 5

© 2000 by Prentice-Hall, Inc.

5-3.

1000, 0100, 1010, 1101 0110, 1011, 1101, 1110

5-6.

Shifts:	0	1	2	3	4
A	0110	1011	0101	0010	1001
В	0011	0001	0000	0000	0000
C	0	0	1	1	0

5-8.

Replace each AND gate in Figure 5-6 with an AND gate with one additional input and connect this input to the following: $S_1 + \overline{S}_0$

This will force the outputs of all the AND gates to zero, and, on the next clock edge, the register will be cleared if S1 is 0 and S0 is logic one.

Also, replace each direct shift input with this equation: $S_1\overline{S}_0$ This will stop the shift operation from interfering with the load parallel data operation.

5-10.

a) 1000, 0100, 0010, 0001, 1000

b) # States = n

5-17.

 $Q_0 = \overline{Q}_0 E$

 $Q_1 = (Q_0 \overline{Q}_1 + \overline{Q}_0 Q_1)E$

 $Q_2 = (Q_0Q_1\overline{Q}_2 + \overline{Q}_1Q_2 + \overline{Q}_0Q_2)E$

 $\mathbf{Q}_3 = \quad (\overline{\mathbf{Q}}_2 \mathbf{Q}_3 + \overline{\mathbf{Q}}_1 \mathbf{Q}_3 + \overline{\mathbf{Q}}_0 \mathbf{Q}_3 + \mathbf{Q}_0 \mathbf{Q}_1 \mathbf{Q}_2 \overline{\mathbf{Q}}_3) \mathbf{E}$

5-21.

5-24.

$$\begin{array}{lll} T_{Q8} & = & (Q_1Q_8 + Q_1Q_2Q_4)E \\ T_{Q4} & = & Q_1Q_2E \\ T_{Q2} & = & Q_1\overline{Q}_8E \\ T_{Q1} & = & E \\ Y & = & Q_1Q_8 \end{array}$$

5-26.

Pres	sent s	tate	Ne	Next state			FF Inputs					
A	В	C	A	В	С	J_A	K_A	J_B	K_B	J_{C}	K _C	
	0	0		0	1			0	X	1	X	
	0	1		1	0			1	X	X	1	
	1	1		0	0			X	1	0	X	
0	0	0	0	0	1	0	X	0	X	1	X	
0	0	1	0	1	0	0	X	1	X	X	1	
0	1	0	0	1	1	0	X	X	0	1	X	
0	1	1	1	0	0	1	X	X	1	X	1	
1	0	0	1	0	1	X	0	0	X	1	X	
1	0	1	0	0	0	X	1	0	X	X	1	

a)
$$J_B = C$$

 $K_B = C$
 $J_C = \overline{B}$
 $K_C = 1$

b)
$$J_A = BC$$

$$K_A = C$$

$$J_B = \overline{A}C$$

$$K_B = C$$

$$J_C = 1$$

$$K_C = 1$$

5-29. (All simulations performed using Xilinx Foundation Series software.)

```
library IEEE:
use IEEE.std_logic_1164.all;
entity reg_4_bit is
  port (
      CLEAR, CLK: in STD_LOGIC;
D: in STD_LOGIC_VECTOR (3 downto 0);
Q: out STD_LOGIC_VECTOR (3 downto 0)
end reg_4_bit;
architecture reg_4_bit_arch of reg_4_bit is
process (CLK, CLEAR)
begin
  if CLEAR ='0' then
                                                      --asynchronous RESET active Low
    Q \le "0000";
  elsif (CLK'event and CLK='1') then
                                                      -- CLK rising edge
   Q \leq D;
  end if;
end process;
end reg_4_bit_arch;
```


5-33.

```
library IEEE;
                                                              library IEEE;
use IEEE.std_logic_1164.all;
                                                              use IEEE.std_logic_1164.all;
entity ripple_1_bit is
                                                              entity ripple_4_bit is
   port (
                                                                port (
                                                                  RESET, CLK: in STD_LOGIC;
Q: out STD_LOGIC_VECTOR (3 downto 0)
     RESET, CLK, J, K: in STD_LOGIC;
     Q: out STD_LOGIC
                                                              end ripple_4_bit;
end ripple_1_bit;
architecture ripple_arch of ripple_1_bit is
                                                              architecture ripple_4_bit_arch of ripple_4_bit is
signal Q_out: std_logic;
begin
                                                              component ripple_1_bit
process (CLK, RESET)
                                                                port (
                                                                   RESET, CLK, J, K: in STD_LOGIC;
  if RESET ='1' then -- asynchronous RESET active
                                                                   Q: out STD_LOGIC
                                                              end component;
   elsif (CLK'event and CLK='0') then --CLK falling
                                                              signal logic_1: std_logic;
edge
                                                              signal Q_out: std_logic_vector(3 downto 0);
         if (J = '1') and K = '1') then
                                                              begin
              Q_{out} \le not Q_{out};
                                                                  bit0: ripple_1_bit port map(RESET, CLK, logic_1, logic_1,
         elsif(J = '1' \text{ and } K = '0') \text{ then}
                                                              Q_{out}(0);
              Q_out <= '1';
                                                                  bit1: ripple_1_bit port map(RESET, Q_out(0), logic_1, logic_1,
         elsif (J = '0') and K = '1') then
                                                              Q_out(1));
              Q_{out} \le '0';
                                                                  bit2: ripple_1_bit port map(RESET, Q_out(1), logic_1, logic_1,
         end if;
                                                              Q_out(2));
    end if;
                                                                  bit3: ripple_1_bit port map(RESET, Q_out(2), logic_1, logic_1,
end process;
Q <= Q_out;
                                                              Q_out(3));
                                                              logic_1 <= '1';
Q <= Q_out;
end ripple_arch;
-- (Continued in next column)
                                                              end ripple_4_bit_arch;
```


5-35.

```
\begin{array}{ll} module\ register\_4\_bit\ (D,\ CLK,\ CLR,\ Q)\ ; \\ input\ [3:0]\ D\ ; \\ input\ CLK,\ CLR\ ; \\ output\ [3:0]\ Q\ ; \\ reg\ [3:0]\ Q\ ; \\ always\ @(posedge\ CLK\ or\ negedge\ CLR) \\ begin \\ if\ (\ \ \ \ \ ) \\ Q=4'b0000; \\ else \\ Q=D; \\ end \\ endmodule \\ \end{array}
```


5-39.

// (continued in next column)

```
module reg_4_bit (CLK, CLR, Q);
module jk_1_bit (J, K, CLK, CLR, Q);
                                                                                     input CLK, CLR;
input J, K, CLK, CLR;
output Q; reg Q;
                                                                                     output [3:0] Q;
                                                                                     reg [3:0] Q;
                                                                                    jk_1_bit
always @(negedge CLK or posedge CLR)
                                                                                          g1(1'b1, 1'b1, CLK, CLR, Q[0]),
begin
  regin

if (CLR)

Q \le 1'b0;

else if ((J == 1'b1) && (K == 1'b1))

Q \le \sim Q;

else if (J == 1'b1 && K == 1'b0)
                                                                                          g2(1'b1, 1'b1, Q[0], CLR, Q[1]),
g3(1'b1, 1'b1, Q[1], CLR, Q[2]),
                                                                                          g4(1'b1, 1'b1, Q[2], CLR, Q[3]);
                                                                                    endmodule
  Q \le 1'b1;
else if (J == 1'b0 \&\& K == 1'b1)
     Q \le 1'b0;
end
endmodule
```

| 0.0 | 50ns | 150ns | 250ns | 250ns | 300ns | 150ns | 250ns | 300ns | 150ns | 250ns | 300ns | 250ns | 300ns | 250ns | 300ns | 250ns | 300ns | 250ns | 250ns | 300ns | 250ns | 250ns | 250ns | 300ns | 250ns |

Logic Computer Design Fundamentals, Ed. 2

CHAPTER 6

© 2000 by Prentice-Hall, Inc.

6-1.

a) A = 13, D = 32

b) A = 18, D = 64

c) A = 25, D = 32 d) A = 32, D = 8

6-3.

 $(633)_{10} = (10\ 0111\ 1001)_2, \quad (2731)_{10} = (0000\ 1010\ 1010\ 1011)_2$

6-9.

a) 32

b) 20,15

c) 5, 5-to-32

6-15.

PTE	RM	IN	INPUTS			OUTPUTS			
	Ţ			Z	A	B	C	D	
ΥZ	1	-	1	1	1	1	-	1	
ΧY	2	1	1	-	1	-	-	-	
$\overline{X} Y$	3	0	1	-	-	1	1	1	
$X \overline{Y} \overline{Z}$	4	1	0	0	_	-	1	1	

6-18.

PTE	RM		INP	UTS	
		Α	В	C	D
A	1	1	ı	•	-
BC	2	-	1	1	1
BD	3	-	1-	-	1
BC	4	-	0	1	-
$\overline{\mathrm{B}}\mathrm{D}$	5	-	0	-	1
$B\overline{C}\overline{D}$	6	-	1	0	0
CD	7	-	-	1	1
$\overline{C}\overline{D}$	8	-	-	0	0
-	-	-	ı	ı	ı
D	9	-	_	_	0
-	-	_	_	_	_
-	-	_	-	-	-

Logic Computer Design Fundamentals, Ed. 2

CHAPTER 7

© 2000 by Prentice-Hall, Inc.

7-1.

7-3. Errata: Interchange statements "Transfer R1 to R2" and "Clear R2 synchronously with the clock."

7-6.

7-9.

0101 1110 1100 0101 0100 0100 AND 1101 1111 OR 1001 1011 XOR

7-11.

sl 1001 1010

sr 0010 0110

7-14.

b) Source Registers -> Destination a) Destination <- Source Registers R0 <- R1, R2 R0 -> R4 R1 -> R0, R3 R1 <- R4 R2 <- R3, R4 R2 -> R0, R4 R3 -> R2 R4 -> R1, R2 R3 <- R1 R4 <- R0, R2

c) The minimum number of buses needed for operation of the transfers is three since transfer Cb requires three different sources.

7-19.

$$\begin{aligned} & C = C_8 \\ & V = C_8 \oplus C_7 \\ & Z = \overline{F_7 + F_6 + F_5 + F_4 + F_3 + F_2 + F_1 + F_0} \\ & N = F_7 \end{aligned}$$

7-22.

7-24.

a) XOR = 00, NAND = 01, NOR = 10 XNOR = 11
Out =
$$S_1 \overline{A} \overline{B} + S_0 \overline{A} \overline{B} + \overline{S}_1 \overline{A} B + S_0 A B + \overline{S}_1 \overline{S}_0 A \overline{B}$$

b) The above is a simplest result.

7-26.

(a) 1011

(b) 1010 (c) 0001

(d) 1100

7-28.

(a)	$R5 \leftarrow R4 \wedge R5$	$R5 = 0000\ 0100$	(d)	$R5 \leftarrow DataIn$	$R5 = 0001\ 0010$
(b)	$R6 \leftarrow R2 + \overline{R4} + 1$	R6 = 1111 1110	(e)	$R4 \leftarrow R4 \oplus Constant$	$R4 = 0001\ 0101$
(c)	$R5 \leftarrow srR0$	$R5 = 0000\ 0000$	(f)	$R3 \leftarrow R0 \oplus R0$	$R3 = 0000\ 0000$

7-31												
Clock	AA	BA	MB	OF/EX:A	OF/EX:B	FS	EX/WB:F	EX/WB:DI	MD	RW	DA	R[DA]
1	2	3	0	_	_	_	_	_	_	_	_	_
2	0	6	0	02	03	5	_	_	_	_	_	_
3	7	0	0	00	06	18	FF	_	0	1	1	_
4	0	0	1	07	00	01	0C	_	0	1	4	FF
5	0	3	0	00	02	02	08	_	0	1	7	0C
6	0	0	0	00	03	00	02	_	0	1	1	08
7	0	0	0	00	00	00	00	_	0	0	0	02
8	_	_	_	00	00	0C	00	Data	1	1	4	_

The contents of registers that change for a given clock cycle are shown in the next clock cycle. Values are given in hexadecimal.

00

Data 00

Logic Computer Design Fundamentals, Ed. 2

CHAPTER 8

© 2000 by Prentice-Hall, Inc.

8-1.

8-2.

8-5.

8-8.

 $ST1(t+1) = ST1 \cdot \overline{A} + ST2 \cdot B \cdot C + ST3, \quad ST2(t+1) = ST1 \cdot A, \quad ST3(t+1) = ST2 \cdot (\overline{B} + \overline{C}), \quad Z = ST2 \cdot B + ST3$ For the D flip-flops, DSTi = STi(t+1) and STi = Q(STi). Reset initializes the flip-flops: ST1 = 1, ST2 = ST3 = 0.

8-9.

8-12.

100110 (38)	100110	
` '		
$\times 110101 \ (\times 53)$	<u> 110101</u>	
100110	000000	Init PP
000000	<u>100110</u>	Add
100110	100110	After Add
000000	0100110	After Shift
100110	00100110	After Shift
100110	<u>100110</u>	Add
11111011110 (2014)	10111110	After Add
	010111110	After Shift
	0010111110	After Shift
	<u>100110</u>	Add
	1100011110	After Add
	01100011110	After Shift
	<u>100110</u>	Add
	11111011110	After Add
	011111011110	After Shift

8-17.

8-20.

```
library IEEE;
use IEEE.std_logic_1164.all;
  entity asm_820 is
port (
A, B, C, CLK, RESET: in STD_LOGIC;
Z: out STD_LOGIC
   end asm_820;
  architecture asm_820_arch of asm_820 is
type state_type is (ST1, ST2, ST3);
signal state, next_state: state_type;
    state_register: process (CLK, RESET)
  if RESET='1' then --asynchronous RESET active High state <= ST1;
elsif (CLK'event and CLK='1') then --CLK rising edge state <= next_state;
end if;
end process;
  next_state_func: process (A, B, C, state)
begin
case (state) is
when ST1 =>
if A = 0' then
next_state <= ST1;
else
next_state <= ST2;
                      eise next_state <= ST1;

end if;
when ST3 => next_state <= ST1;
end case;
end process;
  -Output Z only depends on the state and input 'B' output_func: process (B, state) begin case (state) is when ST1 => Z <= 0; when ST2 => if (B = '1') then Z <= '1'; else Z <= '0'; when ST3 => Z <= 1; end if; when ST3 => Z <= 1; end case;
  end case;
end process;
   end asm_820_arch;
```


NOTE: State hex value 4 cooresponds to ST1, 2 to ST2 and 1 to ST3.

8-21. Errata: A, B, C should be ST1, ST2, ST3.

NOTE: State hex value 0 cooresponds to ST1, 1 to ST2 and 2 to ST3.

8-28.

Total = 1024 words x 28 bits/word = 28,672 bits

8-32.

a) Opcode = 8 bits , b) 16 bits c) 65,536 d) -32768 to +32767

8-39	8-39. Errata: Problem 8-39(d): $C \leftarrow 0$ should be $C = 0$.												
	ADDR NXT MS	MC	IL	PI	PL	TD TA	A TB	MB	FS	MD	RW	MM	MW
	a) — 17 NXT	NXA	NLI	NLP	NLP	DR SA	A SB	Register	F = A - B	FnUt	WR	_	NW
	— 17 001	0	0	0	0	0 0	0	0	00101	0	1	0	0
	DR = 3, $SA = 1$, SB	= 2											
	b) — — CNT	_	NLI	NLP	NLP	DR SA	A —	Register	F = lsr A	FnUt	WR	_	NW
	000	0	0	0	0	0 0	0	0	10100	0	1	0	0
	DR = 5, $SA = 5$												
	c) — 21 BNZ	NXA	NLI	NLP	NLP		_	_	_	_	_	_	_
	— 21 111	0	0	0	0	0 0	0	0	00000	0	0	0	0
	d) — — CNT	_	NLI	NLP	NLP	DR SA	Α —	Register	F = A	FnUt	WR	_	NW
	— — 000	0	0	0	0	0 0	0	0	00000	1	1	0	0
	DR = 6, SA = 6 N	ote: For F	R6 + 0, C	$\dot{z} = 0.$									

8-47.

Pipeline Fill 3 cycles Execution Write-Backs 22 cycles Final Register Load 1 cycle

TOTAL 26 cycles or $26 \times 5 = 130 \text{ ns}$

6

Logic Computer Design Fundamentals, Ed. 2

CHAPTER 9

© 2000 by Prentice-Hall, Inc.

9-2.

a)	LD	R1, A	b) MOV	T1, A	c)	LD	A
	LD	R2, B	ADD	T1, C		ADD	C
	LD	R3, C	MOV	T2, B		ST	T1
	LD	R4, D	MUL	T2, D		LD	В
	ADD	R3, R1, R3	MOV	T3, A		MUL	D
	ADD	R1, R1, R2	ADD	T3, B		ST	T2
	MUL	R2, R2, R4	MUL	T3, T1		LD	A
	MUL	R1, R3, R1	SUB	T3, T2		ADD	В
	SUB	R1, R1, R2	MOV	Y, T3		MUL	T1
	ST	Y, R1				SUB	T2
						ST	Y

9-3.

A)
$$(A+B) \times (A+C) - (B \times D) = AB + CA + \times BD \times -$$

B,C)

PUSH A	PUSH B	ADD	PUSH A	PUSH C	ADD
A	В	A+B	A	C	A+C
	A		A+B	A	A+B
				A+R	

MUL	PUSH B	PUSH D	MUL	SUB
(A+B)x(A+C)	В	D	BxD	(A+B)x(A+C) - BxD
	(A+B)x(A+C)	В	(A+B)x(A+C)	
		(A+B)x(A+C)		

9-6.

a)
$$X = 200 - 208 - 1 = -9$$
 b) $X = 1111 1111 1111 0111$

9-9.

address field = 0

9-11.

- a) 3 Register Fields x 5 bits/Field = 15 bits. 32 bits 15 bits = 17 bit. $2^{17} = 131,072$
- b) 256 = 8 bits. 2 Register Fields x 5 bits/Field = 10 bits. 32 bits 8 bits 10 bits = 14 Memory Bits

9-13.

Read and Write of the FIFO work in the following manner:

Write: $M[WC] \leftarrow DATA$

Read: $DST \leftarrow M[RC]$

 $ASC \leftarrow ASC + 1$

 $ASC \leftarrow ASC - 1$

 $WC \leftarrow WC + 1$

 $RC \leftarrow RC + 1$

	WC	RC	ASC
WR	1	0	1
WR	2	0	2
RD	2	1	1
RD	2	2	0

9-17.

a) ADD R0, R4

ADC R1, R5

ADC R2, R6

ADC R3, R7

b) $R0 \leftarrow 8C + 5C$, R0 = E8, C = 0

 $R1 \leftarrow 35 + FE + 0$, R1 = 33, C = 1

 $R2 \leftarrow D7 + 68 + 1$, R2 = 40, C = 1

 $R3 \leftarrow 2B + 11 + 1$, R3 = 3D, C = 0

9-20.

	D 1	
	Result	
OPP	Register	C
SHR	0101 1101	1
SHL	1011 1010	1
SHRA	1101 1101	1
SHLA	1011 1010	1
ROR	0101 1101	1
ROL	1011 1010	1
RORC	1101 1101	0
ROLC	1011 1010	1

9-22.

 $\times 2^{-255}$ Smallest Number = 0.5

Largest Number = $(1 - 2^{-26}) \times 2^{+255}$

9-24.

Е	e	(e) ₂
+8	15	1111
+7	14	1110
+6	13	1101
+5	12	1100
+4	11	1011
+3	10	1010
+2	9	1001
+1	8	1000
0	7	0111
-1	6	0110
-2	5	0101
-3	4	0100
-4	3	0011
-5	2	0010
-6	1	0001
-7	0	0000

Downloaded by Farhan Ishrak (farhanishrak5@gmail.com)

9-27.

TEST R, $(0001)_{16}$ (AND Immediate 1 with Register R) BNZ ADRS (Branch to ADRS if Z = 0)

9-29.

a)
$$A = 0011 0101$$
 53
 $B = 0011 0100$ - 52
 $A - B = 0000 0001$ 1

- b) C (borrow) = 0, Z = 0
- c) BH, BHE, BNE

9-31.

		PC	SP	TOS
a)	Initially	2000	2735	3250
b)	After Call	2147	2734	2002
c)	After Return	2002	2735	3250

9-34.

External Interrupts:

- 1) Hard Disk
- 2) Mouse
- 3) Keyboard
- 4) Modem
- 5) Printer

Internal Interrupts:

- 1) Overflow
- 2) Divide by zero
- 3) Invalid opcode
- 4) Memory stack overflow
- 5) Protection violation

A software interrupt provides a way to call the interrupt routines normally associated with external or internal interrupts by inserting an instruction into the code. Privileged system calls for example must be executed through interrupts in order to switch from user to system mode. Procedure calls do not allow this change.

Logic Computer Design Fundamentals, Ed. 2

CHAPTER 10

© 2000 by Prentice-Hall, Inc.

10-1.

a) $PC \leftarrow M[SP]$, $SP \leftarrow SP + 1$

b) $R6 \leftarrow 0F0F_{16}$

c) $R2 \leftarrow M[255 + R3], M[255 + R3] \leftarrow R2$

d) $M[SP] \leftarrow PC + 2$, $SP \leftarrow SP-1$, $PC \leftarrow M[M[PC + 2 + 00F0_{16}]]$

PC and *SP* are the value at the time of the instruction fetch.

10-4.

Register: R3, Register Indirect: 3, Immediate: 2002₁₀, Direct: 1000₁₀,

Indexed: 1003₁₀, Indexed Indirect: 1003₁₀, Relative: 3003₁₀, Relative Indirect: 3003₁₀

10-10.

	Sym	RT	MC	MM/ LS	MR/ PS	DSA/ MS	SB	MA	MB	MD	FS/ NA	МО
a)	SHRA0	$R9 \leftarrow SD$	0	0	0	09	0D	0	0	0	10	0
	1	$R9 \leftarrow R9$ (Set MSTS)	0	0	0	09	0	0	0	0	00	F
	2	$z: CAR \leftarrow SHRA6$	3	0	0	6	00	0	0	0	SHRA6	0
	3	$DD \leftarrow DD(15) DD(15:1)$	0	0	0	0F	0F	0	0	0	15	0
	4	$R9 \leftarrow R9 - 1$	0	0	0	09	00	0	0	0	06	F
	5	$z: CAR \leftarrow SHRA3$	3	0	1	6	00	0	0	0	SHRA3	0
	6	$DD \leftarrow DD, CAR \leftarrow WB0(ROM)$	2	1	4	0F	00	0	0	0	00	D
b)	RLC0	$R9 \leftarrow SD$	0	0	0	09	0D	0	0	0	10	0
	1	$R9 \leftarrow R9 \text{ (Set MSTS)}$	0	0	0	09	0	0	0	0	00	F
	2	$z: CAR \leftarrow RLC6$	3	0	0	6	00	0	0	0	RLC6	0
	3	$DD \leftarrow DD(14:0) C, C \leftarrow DD(15)$	0	0	0	0F	0F	0	0	0	1B	D
	4	$R9 \leftarrow R9 - 1$	0	0	0	09	00	0	0	0	06	F
	5	\bar{z} : $CAR \leftarrow RLC2$	3	0	1	6	00	0	0	0	RLC2	0
	6	$DD \leftarrow DD, CAR \leftarrow WB0(ROM)$	2	1	4	0F	00	0	0	0	00	D
c)	BV0	$V: CAR \leftarrow BRA$	3	0	0	4	00	0	0	0	BRA	0
	1	$CAR \leftarrow INTO(ROM)$	2	1	5	00	00	0	0	0	00	0

10-12.

Sym	RT	МС	MM /LS	MR /PS	DSA /MS	SB	MA	МВ	MD	FS /NA	мо
MUL0	R9 ← 16	0	0	0	09	10	0	2	0	10	0
1	$R10 \leftarrow DD$	0	0	0	0A	0F	0	0	0	10	0
2	$DD \leftarrow R0$	0	0	0	0F	00	0	0	0	10	0
3	$SD \leftarrow rorc(SD)$	0	0	0	0D	0D	0	0	0	17	D
4	\overline{C} : $CAR \leftarrow MUL6$	3	0	1	3	00	0	0	0	MUL6	0
5	$DD \leftarrow DD + R10$	0	0	0	0F	0A	0	0	0	02	D
6	$DD \leftarrow rorc(DD)$	0	0	0	0F	0F	0	0	0	17	D
7	$R9 \leftarrow R9 - 1$	0	0	0	09	00	0	0	0	06	F
8	$z: CAR \leftarrow MWB0$	3	0	0	6	00	0	0	0	MWB0	0
9	$CAR \leftarrow MUL3$	3	0	0	0	00	0	0	0	MUL3	0

MWB0 is the write back routine for the Multiply Operation.

10-17.

Cycle 1: PC = 10F

Cycle 2: $PC_{-1} = 110$, $IR = 4418 \ 2F01_{16}$

Cycle 3: PC₋₂ = 110, RW = 1, DA = 01, MD = 0, BS = 0, PS = X, MW = 0, FS = 02, SH = 01, MA = 0, MB = 1

BUS A = 0000 001F, BUS B = 0000 2F01

Cycle 4: RW = 1, DA = 01, MD = 0, D0 = 0000 2F20, D1 = XXXX XXXX, D2 = 0000 00000

Cycle 5: R1 = 0000 2F20

10-21.

10-23.

a) MOV R7, R6

SUB R8, R8, R6

NOP

ADD R8, R8, R7

b) SUB R7, R7, R6

NOP

BNZ R7, 000F

NOP

NOP

AND R8, R7 OR R5, R7

10-28.

a) LD R1, INDEX

LD R2, ADDRESS

ADD R3, R2, R1

LD R4, R3

SBI R4, R4, 1

ST R3, R4

Time = 10 RISC Clock Cycles

b) IF = 2 CISC Clock Cycles

1OF = 4 CISC Clock Cycles

EX = 1 CISC Clock Cycles

WB = 2 CISC Clock Cycles

INT = 1 CISC Clock Cycles

Time = 10 CISC Clock Cycles

Time = 30 RISC Clock Cycles