Email Author Identification

SMAI Project, Monsoon 2017

Dr. Vineet Gandhi Ishit Mehta

TEAM 15

Aditya Srivastava Karthik Chintapalli Kritika Prakash Vighnesh Chenthil Kumar

Objective

- Identify authors of emails from the ENRON dataset.
- ENRON dataset:
 - ~500,000 emails
 - 153 unique authors employees of ENRON
 - Released into the public domain after an investigation led to the closure of the company

Approach

- Familiarizing with existing state-of-the-art document classification techniques
- Studying existing approaches to ENRON specific document classification
- Formalizing the final approach and further experiments to try and improve upon the existing models

Phase 1: Data Preparation

- Fixed the number of author to allow more experimentation with features
- Number chosen such that
 - the number of emails per author is maximized
 - emails/author ratio is similar across all authors
- This value was found to be **10** authors with **800-1000** emails each

Phase 1: Data Preparation

- Cleaning the corpus
 - The ENRON data consists of raw, unparsed, unclean e-mails
 - Extracting only the Body for every email
 - Removing chains of forwarded messages
 - Word, sentence and paragraph-level tokenization
 - Case normalization

Phase 2: Existing Neural Models

- Explore the state-of the art techniques in document classification and implement them on our dataset
- The models implemented include
 - CNN-based model
 - Bi-LSTM based model
 - Hierarchical Bi-LSTM based model

Phase 2.1: CNN-based Model

- Implementation of ideas from "Convolutional Neural Networks for Sentence Classification" - Yoon Kim
- CNNs are known to capture localized chunks of information this can be useful to find phrasal units within long texts
- Can identify key, commonly used groups of words by an author

Phase 2.1: CNN-based Model

- The Embedding layer generates a sequence of word-embeddings from a sequence of words.
- Each Conv layer has 128 5x5 filters
- The Dense layer is used for classification

Phase 2.2: Bi-LSTM-based Model

- Standard, commonly used technique in text classification
- LSTMs are a special kind of RNN which are more capable of remembering long term dependencies in a sequence
- Helps in author classification as it keeps track of past events while processing a sequence of text

Phase 2.2: Bi-LSTM-based Model

- The Embedding layer generates a sequence of word-embeddings from a sequence of words
- The Bidirectional LSTM generates e-mail embeddings
 from the sequence of word embeddings
- The Dense layer is for the classification

Phase 2.3: Hierarchical Bi-LSTM Model

- Idea based on "Hierarchical Attention Networks for Document Classification" Yang et. al.
- LSTMs are known to work best for a sequence length of 10-15 elements
- In a Hierarchical LSTM,
 - The first level generates sentence-embeddings from word-embeddings
 - The second level generates email-embeddings from sentence-embeddings

Phase 2.3: Hierarchical Bi-LSTM Model

- The Embedding layer generates a sequence of word-embeddings from a sequence of words
- The first Bidirectional LSTM generates sentence embeddings from the sequence of word embeddings
- The second Bidirectional LSTM generates e-mail embeddings from sentence embeddings
- The Dense layer is for the classification

Phase 2.4: Results

• The best validation accuracies obtained for each of the models are given below

CNN model	56.43%
Bi-LSTM	73.54%
Hierarchical Bi-LSTM	77.04 %

As anticipated, the Hierarchical Bi-LSTM model performs the best

Phase 3: Stylometric Features

- Models tried so far are generally useful for document classification tasks
- Emails stand apart from documents in two major ways
 - Short text length
 - Lack of topical difference
- So, existing work specific to the ENRON dataset rely on stylometric features.
- Stylometric features capture certains writing styles specific to authors
- We attempt to augment our Hierarchical Bi-LSTM model with these stylometric features in an attempt to improve performance.

Phase 3.1: Stylometric Feature Extraction

- The following stylometric features were extracted per author per e-mail:
- Lexical:
 - Average sentence-length
 - Average word-length
 - Total number of words
 - Ratio of unique words to total number of words
 - Total number of characters

Syntactic:

- Total number of function words
- Total number of personal pronouns
- Total number of adjectives

Phase 3.2: Augmenting Hierarchical Bi-LSTM Model

- The stylometric features are appended in the Hierarchical Bi-LSTM model, before the final email embedding is passed on to the Dense layer for classification
- The classification is then done on these augmented email-embeddings

Phase 3.3: Final Results

- The most discriminating features were found to be
 - Ratio of unique words to total words
 - Number of adjectives
 - Average word-length
 - Average sentence-length
- The best validation accuracy obtained was ~78% (~1% increase over the basic Hierarchical Bi-LSTM model)

References:

- <u>CEAI: CCM-based email authorship identification model</u> Serwat Nizamani, Nasrullah
- <u>Writeprints: A stylometric approach to identity-level identification and similarity detection in cyberspace</u> Ahmed Abbasi, Hsinchun Chen
- Detection of Fraudulent Emails by Authorship Extraction A. Pandian, Mohamed Abdul Karim

Thank you!