Тема. Скалярний добуток векторів

<u>Мета:</u> ознайомитися з поняттями кута між векторами, скалярного добутку як способу множення векторів та властивостями цього добутку, вчитися знаходити скалярний добуток векторів

Пригадайте

- Що таке вектор, які він має характеристики?
- Які вектори називають колінеарними?
- Які дії з векторами ви вмієте виконувати?

Ознайомтеся з інформацією

Нехай \overline{a} і \overline{b} — два ненульових та неспівнапрямлених вектори (рис. 1). Від довільної точки O відкладімо вектори \overline{OA} і \overline{OB} , відповідно, рівні векторам \overline{a} і \overline{b} . Величину кута AOB називатимемо кутом між векторами \overline{a} і \overline{b} .

Кут між векторами \overline{a} і \overline{b} позначають так: $\angle(\overline{a,b})$. Наприклад, на рисунку $1 \angle(\overline{a,b}) = 120^\circ$, а на рисунку $2 \angle(\overline{a,b}) = 180^\circ$.

Рис. 2. Кут між протилежно напрямленими векторами

Якщо вектори \overline{a} і \overline{b} **співнапрямлені** (рис. 3), то вважають, що $\angle(\overline{a}, \overline{b}) = 0^\circ$. Якщо хоча б один із векторів \overline{a} або \overline{b} **нульовий**, то також вважають, що $\angle(\overline{a}, \overline{b}) = 0^\circ$.

Рис. 3. Кут між співнапрямленими векторами

Вектори \overline{a} і \overline{b} називають **перпендикулярними**, якщо кут між ними дорівнює 90° . Записують: \overline{a} $\bot \overline{b}$.

Отже, для будь-яких векторів \underline{a} і \underline{b} справджується нерівність: $0^{\circ} \le \angle(\overline{a}, \overline{b}) \le 180^{\circ}$.

Скалярним добутком двох векторів називають добуток їхніх модулів і косинуса кута між ними. Скалярний добуток векторів \overline{a} і \overline{b} позначають так: $\overline{a} \cdot \overline{b}$.

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \angle (\vec{a}, \vec{b})$$

Якщо хоча б один із векторів \overline{a} або \overline{b} нульовий, то їх добуток дорівнюватиме нулю, тобто $\overline{a}\cdot\overline{b}=0$.

Якщо обидва вектори рівні один одному, тобто кут між ними дорівнює нуль градусів, а модулі однакові, то їх добуток буде рівний квадрату модуля одного із векторів.

Нехай
$$\overline{a} = \overline{b}$$
. Тоді $\overline{a} \cdot \overline{b} = \overline{a} \cdot \overline{a} = |\overline{a}| |\overline{a}| \cos 0^{\circ} = |\overline{a}|^{2}$.

Скалярний добуток двох однакових векторів $\overline{a} \cdot \overline{a}$ називають **скалярним квадратом вектора** \overline{a} і позначають його як $\overline{a}^{\,2}$.

Скалярний квадрат вектора дорівнює квадрату його модуля. Тобто, $\bar{a}^{\,2} = |\; \bar{a}\;|^2.$

Однією з найважливіших теорем зі скалярним добутком векторів є **теорема про перпендикулярність**. Вона звучить так: скалярний добуток двох ненульових векторів дорівнює нулю тоді й тільки тоді, коли ці вектори перпендикулярні.

$$\overline{a} \cdot \overline{b} = |\overline{a}| |\overline{b}| \cos 0^{\circ} = 0$$

Скалярний добуток векторів $\overline{a}(a_1;a_2)$ і $\overline{b}(b_1;b_2)$ можна обчислити за формулою:

$$\overrightarrow{a}\cdot\overrightarrow{b}=a_1b_1+a_2b_2$$

Для будь-яких векторів \overline{a} , \overline{b} , \overline{c} і будь-якого числа k виконуються рівності:

- 1) $\overline{a} \cdot \overline{b} = \overline{b} \cdot \overline{a}$ переставна властивість;
- 2) $(k \, \overline{a} \,) \cdot \overline{b} = k (\, \overline{a} \, \cdot \overline{b})$ сполучна властивість;
- 3) $(\overline{a} + \overline{b}) \cdot \overline{c} = \overline{a} \cdot \overline{c} + \overline{b} \cdot \overline{c}$ розподільна властивість.

Косинус кута між ненульовими векторами $\overline{a}(a_1; a_2)$ і $\overline{b}(b_1; b_2)$ можна обчислити за формулою:

$$\cos \angle \left(\overrightarrow{a}, \overrightarrow{b}\right) = \frac{a_1 b_1 + a_2 b_2}{\sqrt{a_1^2 + a_2^2} \cdot \sqrt{b_1^2 + b_2^2}}$$

Скалярний добуток векторів доцільно використовувати в таких випадках:

1. Для доведення перпендикулярності прямих (променів, відрізків) — у цьому разі достатньо показати, що скалярний добуток відповідних векторів дорівнює нулю.

$$\overline{a} \cdot \overline{b} = |\overline{a}| |\overline{b}| \cos 90^{\circ} = 0$$

2. Для знаходження величини кута — у цьому випадку вектори, якими задано шуканий або даний кут, розкладають за двома неколінеарними векторами, довжини або відношення довжин яких відомі, й обчислюють косинус шуканого кута.

$$\cos \angle (\,\overline{a}\,,\,\,b\,\,) = \frac{a_1b_1 + a_2b_2}{\sqrt{a_1^2 + a_2^2} \cdot \sqrt{b_1^2 + b_2^2}}$$

Розв'язування задач

Задача 1

Визначте взаємне розміщення двох ненульових векторів \overline{a} і \overline{b} , якщо:

- 1) $\overline{a} \cdot \overline{b} = |\overline{a}| |\overline{b}|$;
- 2) $\overline{a} \cdot \overline{b} = |\overline{a}| |\overline{b}|$.

Розв'язання

- 1) $\overline{a} \cdot \overline{b} = |\overline{a}| |\overline{b}|$. Оскільки $\overline{a} \cdot \overline{b} = |\overline{a}| |\overline{b}| \cos \angle (\overline{a}, \overline{b})$, то звідси $\cos \angle (\overline{a}, \overline{b}) = 1$, тоді кут між векторами $\angle (\overline{a}, \overline{b}) = 0^\circ$, отже $\overline{a} \uparrow \uparrow \overline{b}$;
- 2) $\underline{\overline{a}} \cdot \overline{b} = -|\underline{\overline{a}}| |\overline{b}|$. Оскільки $\underline{\overline{a}} \cdot \overline{b} = |\underline{\overline{a}}| |\overline{b}| \cos \angle (\overline{a}, \overline{b})$, то звідси $\cos \angle (\overline{a}, \overline{b}) = -1$, тоді кут між векторами $\angle (\overline{a}, \overline{b}) = 180^\circ$, отже $\overline{a} \uparrow \downarrow \overline{b}$.

Відповідь: 1) $\overline{a} \uparrow \uparrow \overline{b}$ — співнапрямлені; 2) $\overline{a} \uparrow \downarrow \overline{b}$ — протилежно напрямлені.

Задача 2

У трикутнику ABC відомо, що $\angle C=90^\circ$, $\angle A=30^\circ$, CB=2. Знайдіть скалярний добуток векторів \overline{AC} і \overline{BC} .

Розв'язання

Зауважмо, що вектори \overline{AC} і \overline{BC} перпендикулярні, оскільки $\angle C = 90^\circ$, а отже, їх скалярний добуток рівний 0° . Проте, все одно проведімо подальші розрахунки для підтвердження цього висновку.

$$tg\ 30^{\circ} = \frac{CB}{AC}, \ \frac{1}{\sqrt{3}} = \frac{2}{AC}, \ AC = |\overline{AC}| = 2\sqrt{3}$$

$$\frac{CB}{AC} = |\overline{CB}| = 2$$

$$\overline{AC} \cdot \overline{BC} = |\overline{AC}| \cdot |\overline{BC}| \cdot \cos 90^{\circ} = 2\sqrt{3} \cdot 2 \cdot 0 = 0$$

Відповідь: $\overline{AC} \cdot \overline{BC} = 0$.

Пригадайте

- Як можна помножити два вектори?
- Як визначити кут між двома векторами?

Домашне завдання

- Опрацювати конспект і §10
- Розв'язати (письмово): №3-5
 - 3. Знайдіть скалярний добуток векторів \overline{a} і \overline{b} , якщо

$$|ar{a}|=3, |ar{b}|=2\sqrt{2}, \angle\left(ar{a},ar{b}
ight)=135\degree.$$

4. Знайдіть скалярний добуток векторів \overline{a} і \overline{b} , якщо

$$\bar{a}(\frac{3}{2};-1), \bar{b}(6;9).$$

Фото виконаних робіт надсилайте у HUMAN або на електронну пошту nataliartemiuk.55@gmail.com

Джерела

- Істер О.С. Геометрія: 9 клас. Київ: Генеза, 2017
- Всеукраїнська школа онлайн