信息安全数学基础

中山大学 计算机学院

《信息安全数学基础》与《现代密码学》

- 《信息安全数学基础》可以分为"初等数论"和"抽象代数"两个部分, 是《现代密码学》的最重要的先修课程,应按照教学要求理解之掌握之, 否则难以开展《现代密码学》的学习。
- "初等数论"部分包括整除、同余、同余方程、原根与指标和素性检验等,是理解和实现各种密码算法的基础,要求熟练掌握相关计算问题的求解方法,理解相关数学概念、定理及其证明过程。
- "抽象代数"部分包括群、环和域的基本概念和一些最基本的性质,是深入理解和研究密码学原理的必备知识,要求了解以"群环域"为核心的抽象代数的基本知识体系,理解其中一些重要的数学概念、定理及其证明过程,熟悉群同态的基本概念,以及循环群和有限域的基本性质。

教材和参考资料

- 教材:
 - 陈恭亮: 《信息安全数学基础》(第二版),清华大学出版社
- 参考书:
 - 覃中平, 张焕国: 《信息安全数学基础》, 清华大学出版社
 - 柯召, 孙琦: 《数论讲义》(上册), 等教育出版社, 2001
 - 潘承洞,潘承彪: 《初等数论》(第2版),北京大学出版社

初等数论第一章整数的可除性

中山大学 计算机学院

• 整除:

设a,b是任意两个整数,若存在一个 $q \in \mathbb{Z}$ 使得: a = bq成立,则称b整除a,或者说a被b整除,记作: b|a

- 整除:
 - 设a,b是任意两个整数,若存在一个 $q \in \mathbb{Z}$ 使得: a = bq成立,则称b整除a,或者说a被b整除,记作: b|a
- 这样b就叫做a的因子(因数), a叫做b的倍数
- 对应的,q也是a的因子,当我们讨论的对象主要是a,b时,我们可以将q写成 $\frac{a}{b}$ (在讨论整除的性质时,一般都默认因子b不为0,因此不会显式写出 $q \neq 0$)

- 整除:
 - 设a,b是任意两个整数,若存在一个 $q \in \mathbb{Z}$ 使得: a = bq成立,则称b整除a,或者说a被b整除,记作: b|a
- 这样b就叫做a的因子(因数), a叫做b的倍数
- 对应的,q也是a的因子,当我们讨论的对象主要是a,b时,我们可以将q写成 $\frac{a}{b}$ (在讨论整除的性质时,一般都默认因子b不为0,因此不会显式写出 $q \neq 0$)
- 另外,0是任意非0整数b的倍数($0 = b \cdot 0$,即取q = 0)
- 1是任意整数的因数 $(a = 1 \cdot a, \quad \text{即取} q = a)$

• 整除:

设a,b是任意两个整数,若存在一个 $q \in \mathbb{Z}$ 使得: a = bq成立,则称b整除a,或者说a被b整除,记作: b|a

- 这样b就叫做a的因子(因数), a叫做b的倍数
- 对应的,q也是a的因子,当我们讨论的对象主要是a,b时,我们可以将q写成 $\frac{a}{b}$ (在讨论整除的性质时,一般都默认因子b不为0,因此不会显式写出 $q \neq 0$)
- 另外,0是任意非0整数b的倍数($0 = b \cdot 0$,即取q = 0)
- 1是任意整数的因数 $(a = 1 \cdot a, \quad \mathbb{P} \mathbb{P} \mathbb{P} q = a)$
- 任意非0整数a是他自身的因数($a=a\cdot 1$,即取q=1),这也就意味着a是他自身的因数

• 整除:

设a,b是任意两个整数,若存在一个 $q \in \mathbb{Z}$ 使得: a = bq成立,则称b整除a,或者说a被b整除,记作: b|a

- 这样b就叫做a的因子(因数), a叫做b的倍数
- 对应的,q也是a的因子,当我们讨论的对象主要是a,b时,我们可以将q写成 $\frac{a}{b}$ (在讨论整除的性质时,一般都默认因子b不为0,因此不会显式写出 $q \neq 0$)
- 另外,0是任意非0整数b的倍数 $(0 = b \cdot 0$,即取q = 0)
- 1是任意整数的因数 $(a = 1 \cdot a, \quad \text{即取} q = a)$
- 任意非0整数a是他自身的因数 $(a=a\cdot 1, \ \mathbb{D}\mathbb{D}\mathbb{D}q=1)$,这也就意味着a是他自身的因数
- 如果不存在整数q使得a = bq成立,则称b不能整除a,a不能被b整除,记作 $b \nmid a$

易见以下整除的性质:

(1) 如果a = bq, 则有a = (-b)(-q)成立, 也就是说, 如果b是a的因子, 则-b也是a的因子:

$$b|a \Longrightarrow (-b)|a;$$

例如: 3是12的因子, 那么-3也是12的因子。

(2) 如果a = bq,则有(-a) = b(-q)成立,也就是说,如果b是a的因子,则b也是-a的因子:

$$b|a \Longrightarrow b|(-a);$$

例如: 3是12的因子,那么3也是-12的因子。

(3) 如果a = bq,则有(-a) = (-b)q成立,也就是说,如果b是a的因子,则-b也是-a的因子:

$$b|a \Longrightarrow (-b)|(-a);$$

例如: 3是12的因子,那么-3也是-12的因子。

(4) 整除的传递性:

如果c整除b, b整除a, 那么c也能够整除a:

$$c|b,b|a \Longrightarrow c|a$$

使用整除的定义,可以看出这个结论是显然的:

$$\because b=cp, a=bq$$

$$\therefore a = (cp)q = c(pq)$$

例如: 3整除6,6整除12,那么3也能够整除12

(5) 如果c整除a, c整除b, 那么c也能够整除 $a \pm b$, 即:

$$c|a,c|b \Longrightarrow c|(a\pm b)$$

使用整除的定义,可以看出这个结论是显然的:

$$\therefore a = cp, b = cq$$

$$\therefore a \pm b = cp \pm cq = c(p \pm q)$$

 \Diamond

例如: 3整除9,3整除6,那么3也能够整除(9+6),3也能够整除(9-6)

更进一步,如果c整除a,c整除b,那么c也能够整除 $sa \pm tb(s,t)$ 任意整数):

$$c|a,c|b \Longrightarrow c|(sa \pm tb)$$

使用整除的定义,可以看出这个结论是显然的:

$$\therefore a = cp, b = cq$$

$$\therefore sa = scp, tb = tcq$$

$$\therefore sa \pm tb = scp \pm tcq = c(sp \pm tq)$$

$$\diamond$$

例如: 3整除9,3整除6,那么3也能够整除 $(4\cdot 9+2\cdot 6)$,3也能够整除 $(4\cdot 9-2\cdot 6)$ 类似可证:

$$c|a_1,c|a_2,\cdots,c|a_n \Longrightarrow c|(s_1a_1 \pm s_2a_2 \pm \cdots \pm s_na_n).$$

再进一步,已知c整除a,c整除b,而且存在整数x,y,使得xa + yb = 1,那么 $c = \pm 1$:

$$c|a,c|b,xa+yb=1\Longrightarrow c=\pm 1$$

使用整除的定义,可以看出这个结论是显然的:

事实上,我们也知道条件: $\exists x, y \in \mathbb{Z}, s.t.(such\ that): xa + yb = 1,$ 也就是说a与b互素(互素的概念下面就会学到)。所以,a与b的公因子也就是 ± 1 了。

(6) $a|b,b|a \Longrightarrow a = \pm b$ 用整除的定义,可以看出这个结论是显然的:

$$\therefore a = bp, b = aq$$

$$\therefore a = (aq)p = a(pq)$$

$$\therefore pq = 1$$

$$\therefore p = \pm 1, q = \pm 1$$

$$\therefore a = \pm b$$

2. 素数

给定非零整数p,且 $p \neq \pm 1$,如果p除了平凡因子(即 $\pm 1, \pm p$)外,没有其他因子,那么这种整数称为<mark>素数(也叫质数,或不可约数)</mark>

比如11,其因子只有 \pm 1, \pm 11,所以11是素数. 11是素数,-11也是素数了。

一般的,p是素数,那么-p也是素数。 p不是素数,那么-p也不是素数,不是素数的数称为合数。 比如12和-12

由于这种对称性,我们一般考虑的素数是非负整数. 比如考虑2,3,5,7,而不考虑-2,-3,-5,-7

2. 素数

给定非零整数p,且 $p \neq \pm 1$,如果p除了平凡因子(即 $\pm 1, \pm p$)外,没有其他因子,那么这种整数称为<mark>素数(也叫质数,或不可约数)</mark>

比如11,其因子只有 \pm 1, \pm 11,所以11是素数. 11是素数,-11也是素数了。

一般的,p是素数,那么-p也是素数。 p不是素数,那么-p也不是素数,不是素数的数称为合数。 比如12和-12

由于这种对称性,我们一般考虑的素数是非负整数. 比如考虑2,3,5,7,而不考虑-2,-3,-5,-7

0是不是素数? 为什么?

定理

如果p > 1是合数n的所有正因子中最小的那一个,那么p一定是素数,并且 $p \le \sqrt{n}$.

证明: 如果p不是素数的话,那么p就是合数,根据合数的定义,那么p一定会有一个非平凡的正因子q,且q < p. 根据整除的传递性,q也是n的因子,这与p是n的最小正因子矛盾,从而p一定是素数.

进一步,还可以将p与n的关系写成: $n = p \cdot n_1$. 这样p与 n_1 都是n的非平凡因子,而p是最小的那个非平凡因子,所以有:

$$p \le n_1$$

这样就有:

$$n = p \cdot n_1 \ge p \cdot p = p^2.$$

这个结论给出了最小素因子的一个上界, 即 $p \leq \sqrt{n}$. \diamond

推论

对于小于等于 \sqrt{n} 的任意素数p,如果p都不能整除n,那么n必定是素数.

定理

素数一定有无穷多个.

证明: 因为如果有有限多个的话,比如为: p_1, p_2, \dots, p_n 令

$$N = p_1 p_2 \cdots p_n + 1$$

则N一定是个合数(因为素数只有n个),从而它的大于1的最小正因子p是个素数,所以p是 p_1, p_2, \cdots, p_n 中的一个,比如说: $p = p_j$ 这样:

$$p \mid N, p \mid (p_1 p_2 \cdots p_n)$$

所以应该有:

$$p \mid (N - p_1 p_2 \cdots p_n)$$

即: p|1. 矛盾. ◊

类似地,还可以证明形如4k + 3或6k + 5的素数有无穷多个,这里k为非负整数.

如果对所有小于等于 \sqrt{n} 的素数p来说,p都不能整除n,那么n必定是素数.这个结论给出了<mark>查找素数的方法</mark>:

- 计算 \sqrt{n} ;
- 小于等于 \sqrt{n} 的素数, 比如就是: p_1, p_2, p_3, p_4 ;
- 在小于等于n的数字中,删去所有 p_1 的倍数,这样剩下的任意数字都不是 p_1 的 倍数;
- 在小于等于n的数字中,删去所有 p_2 的倍数,这样剩下的任意数字都不是 p_2 的倍数;
- 在小于等于n的数字中,删去所有 p_3 的倍数,这样剩下的任意数字都不是 p_3 的 倍数;
- 在小于等于n的数字中,删去所有 p_4 的倍数,这样剩下的任意数字都不是 p_4 的倍数;
- 对剩下的任意数字m来说,满足 $2 \le m \le n$,所有小于等于 $\sqrt{m} (\le \sqrt{n})$ 的素数都不能整除m,所以m一定是素数.

示例:找出所有不超过n = 100的素数 $\sqrt{n} = 10$; 不超过10的素数是2,3,5,7

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

在不超过100的数字中删去2的倍数:

	3	5	7	9	
11	13	15	17	19	
21	23	25	27	29	
31	33	35	37	39	
41	43	45	47	49	
51	53	55	57	59	
61	63	65	67	69	
71	73	75	77	79	
81	83	85	87	89	
91	93	95	97	99	

再删去3的倍数:

		5	7		
11	13		17	19	
	23	25		29	
31		35	37		
41	43		47	49	
51	53	55		59	
61		65	67		
71	73		77	79	
	83	85		89	
91		95	97		

注意,这里漏删了一个3的倍数!

再删去5的倍数:

19	
29	
49	
59	
79	
89	
	29 49 59 79

再删去7的倍数:

			7		l
11	13		17	19	l
	23			29	1
31			37		l
41	43		47		l
	53			59	1
61			67		l
71	73			79	l
	83			89	l
			97		

现在所剩的数就是小于100的素数了.这个找素数的方法叫做Eratosthenes(爱拉托色尼)筛法

我们得到小于100的素数个数为26个.

一般情形:不超过x的素数个数记为 $\pi(x)$,这个数字与 $\frac{x}{\ln x}$ 差不多大,即有契比雪夫不等式(chebyshev inequality):

$$\frac{\ln 2}{3} \frac{x}{\ln x} < \pi(x) < 6 \ln 2 \frac{x}{\ln x}$$

(证明略...)

比如:
$$\ln(100) = 4.60517019$$
, $\frac{100}{\ln(100)} = 21.7147$

进一步还可以证明,

$$\lim_{x \to \infty} \frac{\pi(x)}{x/\ln x} = 1.$$

该等式被称为素数定理.

3. 欧几里德除法

定理

$$a \in \mathbb{Z}, b \in \mathbb{Z}^+, \exists (q, r), s.t. \ a = bq + r, \quad 0 \le r < b$$

这是很显然的:

对于整数a

常数为6的区间将所有整数分成一段一段:

这样a必定落在一个区间内,比如:

$$qb \le a < (q+1)b$$

令
$$r = a - bq$$
,则有:

$$a = bq + r$$
, $0 \le r < b$

进一步我们可以说明上述的使得 $a = bq + r(0 \le r < b)$ 成立的(q, r)是唯一的: 事实上, 如果有(q, r)和 (q_1, r_1) 使得:

$$a = bq + r \qquad a = bq_1 + r_1$$

两者相减,有

$$0 = b(q - q_1) + (r - r_1)$$

此时, q必定等于 q_1 , 因为, 如果不等的话, 则必定 $|b(q-q_1)| \ge b$ 但是

$$0 \le r, r_1 < b$$

所以

$$|r - r_1| < b$$

两个绝对值不相等的数加在一起不可能得到0, 所以 $q=q_1$,从而 $r=r_1$. \diamond

对于 $a \in \mathbb{Z}, b \in \mathbb{Z}^+$, 存在唯一的(q, r)使得a = bq + r, 0 < r < b成立, 我们将这种关系 称为欧几里德除法, 也叫带余除法,

这里的q叫做(a被b除所得的)不完全商, r叫做(a被b除所得的)余数

可以看到. 如果这里r = 0的话. 那么a就被b整除: 反之. 如果a被b整除的话. 那 $\Delta r = 0$.

欧几里德除法的变形:

 $a \in \mathbb{Z}, b \in \mathbb{Z}^+$, 对任意的整数c, 存在唯一的(q,r)使得 $a = bq + r, c \le r < b + c$ 成立. 这也是显然的:

长度为b的区间将所有整数分成一段一段:

这样a必定落在其中一个区间内, 比如

$$qb + c \le a < (q+1)b + c$$

 $\diamondsuit r = a - bq$, 则有

$$a = bq + r, \quad (c \le r < b + c).$$

绝对值最小余数

 $a \in \mathbb{Z}, b \in \mathbb{Z}^+$, 对任意的整数c, 存在唯一的(q,r)使得 $a = bq + r, c \le r < b + c$ 成立.

在欧几里得除法的变形形式中, c取特定的值, 就得到特定的"余数类型".

例如,当c=0,就是我们最常用的最小非负余数.

又例如,

- **①** 当b为偶数时,令 $c = -\frac{b}{2}$,得到 $b + c = \frac{b}{2}$ 以及 $-\frac{b}{2} \le r \le \frac{b-2}{2} < \frac{b}{2}$;
- ③ 当b为偶数时,令 $c=-\frac{b-2}{2}$,得到 $b+c=\frac{b+2}{2}$ 以及 $-\frac{b}{2}<-\frac{b-2}{2}\leq r\leq \frac{b}{2}$;
- ③ 当b为奇数时,令 $c = -\frac{b-1}{2}$,得到 $b + c = \frac{b+1}{2}$ 以及 $-\frac{b}{2} < -\frac{b-1}{2} \le r \le \frac{b-1}{2} < \frac{b}{2}$. 总之有,

$$-\frac{b}{2} \le r < \frac{b}{2}$$
 $\vec{\mathfrak{g}}$ $-\frac{b}{2} < r \le \frac{b}{2}$.

这时的余数r叫做绝对值最小余数.

符号: [x]

给定实数x, 符号[x]表示小于等于x的最大整数,

比如
$$[3.14] = 3, [-3.14] = -4$$

这样, $a \in \mathbb{Z}, b \in \mathbb{Z}^+, \exists (q,r), s.t., a = bq + r, 0 \le r < b$ 中的不完全商q和余数r可以写成:

$$q = \left[\frac{a}{b}\right] \qquad r = a - b\left[\frac{a}{b}\right]$$

欧几里德除法的应用: 正整数的b进制表示

对1 < b ∈ \mathbb{Z}^+ , 任意正整数n可以表示成

$$n = a_k b^k + a_{k-1} b^{k-1} + \ldots + a_1 b + a_0$$

的形式, 这里 $0 \le a_i < b(i = 1, 2, ..., k)$.

事实上,使用欧几里德除法可以很容易得到验证.

首先, 用b去除 $n \Longrightarrow n = bq_0 + a_0, (0 \le a_0 < b)$,

再用b去除 $q_0 \Longrightarrow q_0 = bq_1 + a_1, (0 \le a_1 < b),$

再用b去除 $q_1 \Longrightarrow q_1 = bq_2 + a_2, (0 \le a_2 < b),$

一直下去,.....

因为不完全商 q_i 越来越小,一定会达到一种情况,那就是 $0 \le q_{k-1} < b$,这时:

$$q_{k-2} = bq_{k-1} + a_{k-1}, (0 \le a_{k-1} < b)$$

$$q_{k-1} = b \cdot 0 + a_k, (i.e., 0 \le q_{k-1} = a_k < b)$$

将这些式子一次次代换就会得到:

$$n = bq_0 + a_0$$

$$= b(bq_1 + a_1) + a_0$$

$$= b^2q_1 + ba_1 + a_0$$

$$= b^2(bq_2 + a_2) + ba_1 + a_0$$

$$= b^3q_2 + b^2a_2 + ba_1 + a_0$$

$$= \dots$$

$$= b^kq_{k-1} + b^{k-1}a_{k-1} + b^{k-2}a_{k-2} + \dots + ba_1 + a_0$$

$$= b^ka_k + b^{k-1}a_{k-1} + b^{k-2}a_{k-2} + \dots + ba_1 + a_0$$

$$(0 \le a_k, a_{k-1}, a_{k-2}, \dots, a_2, a_1, a_0 < b)$$

对1 < b ∈ \mathbb{Z}^+ , 任意正整数n可以表示成

$$n = a_k b^k + a_{k-1} b^{k-1} + \ldots + a_1 b + a_0$$

的形式, 这里 $0 \le a_i < b(i = 1, ..., k)$. 这种表示形式是唯一的:

如果有两组系数 $\{a_i\}$, $\{c_i\}$ (如果两组个数不等长的话, 短的那组补0使得一样长)使得

$$n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b + a_0 \quad (0 \le a_i < b(i = 0, 1, 2, \dots, k))$$

$$n = c_k b^k + c_{k-1} b^{k-1} + \dots + c_1 b + c_0 \quad (0 \le c_i < b(i = 0, 1, 2, \dots, k))$$

从而

$$0 = (a_k - c_k)b^k + (a_{k-1} - c_{k-1})b^{k-1} + \dots + (a_1 - c_1)b + (a_0 - c_0)$$

这时(如果 $a_0 = c_0$ 的话考虑 $a_1 - c_1$, 依次类推)

$$a_0 - c_0 = -[(a_k - c_k)b^k + (a_{k-1} - c_{k-1})b^{k-1} + \dots + (a_1 - c_1)b]$$

从而

$$b|a_0-c_0 \quad \therefore |a_0-c_0| \ge b$$

而

$$0 \le a_0 < b, 0 \le c_0 < b \Longrightarrow |a_0 - c_0| < b$$

对1 < b ∈ \mathbb{Z}^+ , 任意正整数n可以表示成

$$n = a_k b^k + a_{k-1} b^{k-1} + \ldots + a_1 b + a_0$$

的形式, 这里 $0 \le a_i < b(i = 1, ..., k)$. 这种表示形式是唯一的, 可以将n写成

$$n = (a_k a_{k-1} a_{k-2} \dots a_1 a_0)_b$$

的形式 $(0 \le a_0 < b(i = 1, 2, ..., k))$, 称为n的b进制表示. 比如二进制(n = 642):

$$642 = 2 \cdot 321 + 0 \quad (i.e., a_0 = 0)$$

$$321 = 2 \cdot 160 + 1 \quad (i.e., a_1 = 1)$$

$$160 = 2 \cdot 80 + 0 \quad (i.e., a_2 = 0)$$

$$80 = 2 \cdot 40 + 0 \quad (i.e., a_3 = 0)$$

$$40 = 2 \cdot 20 + 0 \quad (i.e., a_4 = 0)$$

$$20 = 2 \cdot 10 + 0 \quad (i.e., a_5 = 0)$$

$$10 = 2 \cdot 5 + 0 \quad (i.e., a_6 = 0)$$

$$5 = 2 \cdot 2 + 1 \quad (i.e., a_7 = 1)$$

$$2 = 2 \cdot 1 + 0 \quad (i.e., a_8 = 0)$$

$$1 = 2 \cdot 0 + 1 \quad (i.e., a_9 = 1)$$

所以642的二进制表示就是 $(1010000010)_2$ 类似可以求出642的8进制, 16进制表示. 我们都知道, 16进制用0 – 9, A(10), B(11), C(12), D(13), E(14), F(15)表示. 比如(ABC9)₁₆即为10进制的43796(= $A \cdot 16^6 + B \cdot 16^2 + C \cdot 16^1 + 8 \cdot 16^0$)

0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
A	1010
B	1011
C	1100
D	1101

1110 1111

E

16进制与2进制相互之间可以比较容易的转换:

比如 $(ABC8)_{16} = (1010\ 1011\ 1100\ 1000)_2$ (101\ 1101\ 1111\ 1110\ 1001)_2 = (5DFE9)_{16}

4. 最大公因数与互素

给定整数 a_1, a_2, \ldots, a_n , 如果:

$$d|a_1,d|a_2,\ldots,d|a_n$$

则称d为 a_1, a_2, \ldots, a_n 的公因数.

如果 a_1, a_2, \ldots, a_n 不全为0, 那么它们的公因数中存在最大的一个, 这个公因数称为 a_1, a_2, \ldots, a_n 的最大公因数(greatest common divisor, gcd), 记做(a_1, a_2, \ldots, a_n).

按照这个定义, 可以看到, $(a_1,a_2,\ldots,a_n)=(a_{i_1},a_{i_2},\ldots,a_{i_n})$ 这里, i_1,i_2,\ldots,i_n 从1到n取值各不相同)。 如果 a_1,a_2,\ldots,a_n 的最大公因数为1的话, 称 a_1,a_2,\ldots,a_n 互素, 互质.

比如, 14的因数为 ± 1 , ± 2 , ± 7 , ± 14 ,21的因数为 ± 1 , ± 3 , ± 7 , ± 21 , 它们的公因数为 ± 1 , ± 7 , 最大公因数为7 -15和21的公因数为 ± 1 , ± 3 , 最大公因数为3. 14, -15, 21的最大公因数为1, 即14, -15, 21互素. 7和14的最大公因数就是7本身.

一般地, 如果 $a,b \in \mathbb{Z}^+, b|a$, 那么(a,b) = b.

小结论

(1) 给定一个整数a和一个素数p, 如果a不是p的倍数的话, 它一定和p互素.

事实上, 假设(a, p) = d, 则有d|p.

所以d = 1或p.

如果d = p的话, 就会有p|a, 这与条件矛盾. \diamond

使用公因数和最大公因数的定义马上就可得到下面几个显然的结论:

- (2) a_1, a_2, \ldots, a_n 的公因数与 $|a_1|, |a_2|, \ldots, |a_n|$ 的公因数相同
- (3) $(a_1, a_2, \dots, a_n) = (|a_1|, |a_2|, \dots, |a_n|)$
- (4) (a,b) = (a,-b) = (-a,b) = (-a,-b)
- (5) (0,b) = |b|
- (6) $a = bq + c \Longrightarrow (a, b) = (b, c)$

证明: 设d = (a, b), d' = (b, c)

要说明d = d', 只需要说明 $d \le d'$, $d' \le d$ 即可:

事实上,

$$d|a, d|b \Longrightarrow d|(a - bq) \Longrightarrow d|c \Longrightarrow d \le d'$$

 $d'|b, d'|c \Longrightarrow d'|(bq + c) \Longrightarrow d'|a \Longrightarrow d' \le d$

(当然这里也有 $a = bq + c \Longrightarrow (a,q) = (q,c)$ 成立.)

利用这个结论可以很方便的帮助我们求任意两个整数的最大公因数。

辗转相除法

比如给定任意两个正整数a,b,使用欧几里德除法存在如下式子成立:

$$a = bq_1 + r_2 \quad (0 \le r_2 < b)$$

这时我们知道 $(a,b) = (b,r_2)$ 所以要求(a,b), 只需要求 (b,r_2) . 而要求 (b,r_2) , 可以类似求(a,b)的做法:

$$b = r_2 q_2 + r_3 \quad (0 \le r_3 < r_2)$$

这时我们知道 $(a,b) = (b,r_2) = (r_2,r_3)$ 所以要求(a,b), 只需要求 (r_2,r_3) . 而要求 (r_2,r_3) , 可以类似求 (b,r_2) 的做法:

$$r_2 = r_3 q_3 + r_4 \quad (0 \le r_4 < r_3)$$

这时我们知道 $(a,b) = (b,r_2) = (r_2,r_3) = (r_3,r_4)$ 所以要求(a,b),只需要求 (r_3,r_4) . 可以看到余数越来越小, 所以继续这个过程一定会有下面的情况出现:

$$r_{n-2} = r_{n-1}q_{n-1} + r_n \quad (0 \le r_n < r_{n-1})$$

$$r_{n-1} = r_nq_n \quad (i.e., r_{n+1} = 0)$$

这时我们知道

$$(a,b) = (b,r_2) = (r_2,r_3) = (r_3,r_4) = \dots = (r_{n-2},r_{n-1}) = (r_{n-1},r_n) = r_n$$

可见,使用这种方法,无论给定多么大的整数a和b,都可以经过有限步求出他们的最大公因数,而按照最大公因数的定义求任意两个数的最大公因数的话,必须将给定的数进行分解,但对大数进行分解是件困难的事.

上面这种求最大公因数的方法叫做辗转相除法,也叫广义欧几里德除法.

示例: 求(-1859, 1573) (-1859, 1573) = (1859, 1573) $1859 = 1 \cdot 1573 + 286 \Longrightarrow (1859, 1573) = (1573, 286)$ $1573 = 5 \cdot 286 + 143 \Longrightarrow (1573, 286) = (286, 143)$ $286 = 2 \cdot 143 \Longrightarrow (286, 143) = 143$

(-1859, 1573) = 143

示例: 求(46480, 39423)

$$46480 = 1 \cdot 39423 + 7057$$

$$39423 = 5 \cdot 7057 + 4138$$

$$7057 = 1 \cdot 4138 + 2919$$

$$4138 = 1 \cdot 2919 + 1219$$

$$2919 = 2 \cdot 1219 + 481$$

$$1219 = 2 \cdot 481 + 257$$

$$481 = 1 \cdot 257 + 224$$

$$257 = 1 \cdot 224 + 33$$

$$224 = 6 \cdot 33 + 26$$

$$33 = 1 \cdot 26 + 7$$

$$26 = 3 \cdot 7 + 5$$

$$7 = 1 \cdot 5 + 2$$

$$5 = 2 \cdot 2 + 1$$

$$2 = 2 \cdot 1$$

$$\therefore (46480,39423) = 1$$

注: $\bar{x}a_1, a_2, \ldots, a_n$ 的最大公因数

$$(a_1,a_2,\ldots,a_n)$$

可以先求出

$$d_2 = (a_1, a_2)$$

再求出

$$d_3 = (d_2, a_3)$$

再求出

$$d_4 = (d_3, a_4)$$

再求出

$$d_5 = (d_4, a_5)$$

.

最后求出

$$d_n = (d_{n-1}, a_n)$$

则有

$$d_n = (a_1, a_2, \dots, a_n)$$

注: 给定两个正整数a,b, 利用欧几里德除法我们知道:

$$\exists q \in \mathbb{Z}, r(0 \le r < b), s.t., a = bq + r \Longrightarrow 2^{a} = 2^{r} \cdot 2^{bq}$$

$$\Longrightarrow 2^{a} - 1 = 2^{r}(2^{bq} - 1) + (2^{r} - 1)$$

$$\Longrightarrow 2^{a} - 1 = 2^{r}(2^{b} - 1)(q_{1}) + (2^{r} - 1)$$

$$\Longrightarrow 2^{a} - 1 = (2^{b} - 1)(2^{r} \cdot q_{1}) + (2^{r} - 1)$$

$$\Longrightarrow 2^{a} - 1 = (2^{b} - 1)q' + (2^{r} - 1) \quad (q' \in \mathbb{Z}, 0 \le 2^{r} - 1 < 2^{b} - 1)$$

令 $a = r_0$, $b = r_1$, 下面反复利用这个事实, 我们有

$$a = bq + r_2(0 \le r_2 < b) \Longrightarrow 2^a - 1 = (2^b - 1)q'_1 + (2^{r_2} - 1)(0 \le 2^{r_2} - 1 < 2^b - 1)$$

类似地, 我们得到:

$$b = r_2 q_2 + r_3 (0 \le r_3 < r_2) \Longrightarrow 2^b - 1 = (2^{r_2} - 1) q_2' + (2^{r_3} - 1) (0 \le 2^{r_3} - 1 < 2^{r_2} - 1)$$

 $r_2 = r_3 q_3 + r_4 (0 \le r_4 < r_3) \Longrightarrow 2^{r_2} - 1 = (2^{r_3} - 1) q_3' + (2^{r_4} - 1) (0 \le 2^{r_4} - 1 < 2^{r_3} - 1)$
这个过程一直持续下去,如果左边的余数 $r_i \ne 0$ 的话,右边的余数 $2^{r_i} - 1 \ne 0$.
最终在我们到达 $a = b$ 的最大公因数 $r_n = (a, b)$ 的时候,也就得到了 $2^a - 1 = 2^b - 1$ 的最

大公因数, 也就是 $2^{r_n}-1$, 即 $2^{(a,b)}-1$.

4□ > 4回 > 4 至 > 4 至 > 至 のQで

由前, 我们有:

$$(2^a - 1, 2^b - 1) = 2^{(a,b)} - 1$$

因此, 如果a与b互素的话, 有

$$(a,b) = 1 \Longrightarrow 2^{(a,b)} - 1 = 1 \Longrightarrow (2^a - 1, 2^b - 1) = 1$$

反之, 如果 $2^a - 1$ 与 $2^b - 1$ 互素的话, 有

$$(2^{a} - 1, 2^{b} - 1) = 1 \Longrightarrow 2^{(a,b)} - 1 = 1 \Longrightarrow (a,b) = 1$$

即

$$(a,b) = 1 \iff (2^a - 1, 2^b - 1) = 1$$