Al Fairness 360

IBM AI Research

Presented by: (Ethan) Yuqiang Heng, Dave Van Veen

Al Fairness is Important

- Al used to make decisions in increasingly more and higher-stake aspects of our life: credit, employment, admission, sentencing
 - Objectionable when places privileged groups at systematic advantage and unprivileged groups at systematic disadvantage
- What is fairness and how to make models fair?
 - Al fairness research has produced dozens of metrics and algorithms
 - Confusing and overwhelming for practitioners!

https://dumielauxepices.net/sites/default/files/injustice-clipart-religion-discrimination-648162-3448199.jpg

Existing Tools

Fairness Measures	Framework to test given algorithm on variety of datasets and fairness metrics	https://github.com/megantosh/fairness_measures_code
Fairness Comparison	Extensible test-bed to facilitate direct comparisons of algorithms with respect to fairness measures. Includes raw & preprocessed datasets	https://github.com/algofairness/fairness- comparison
Themis-ML	Python library built on scikit-learn that implements fairness-aware machine learning algorithms	https://github.com/cosmicBboy/themis-ml
FairML	Looks at significance of model inputs to quantify prediction dependence on inputs	https://github.com/adebayoj/fairml
Aequitas	Web audit tool as well as python lib. Generates bias report for given model and dataset	https://github.com/dssg/aequitas
Fairtest	Tests for associations between algorithm outputs and protected populations	https://github.com/columbia/fairtest
Themis	Takes a black-box decision-making procedure and designs test cases automatically to explore where the procedure might be exhibiting group-based or causal discrimination	https://github.com/LASER-UMASS/Themis
Audit-Al	Python library built on top of scikit-learn with various statistical tests for classification and regression tasks	https://github.com/pymetrics/audit-ai
	Screenshot from IBM presentation https://www.voutube.com/watch?v=X1NsrcaROTE	

Screenshot from IBM presentation https://www.youtube.com/watch?v=X1NsrcaRQTE

There isn't an all-in-one solution!

Al Fairness 360: Is it fair and how do I make it fair?

What does it offer?

- Datasets
- Fairness Toolbox
 - 30+ fairness metrics
 - Fairness metric explanations
 - 9+ bias mitigation algorithms
- Guidance
 - Which metric and algorithm to consider based on your scenario
- Industry-specific tutorials

What differentiates it from competition?

- Comprehensive set of both metrics and bias mitigation algorithms (some unique from IBM research and exclusive to this toolbox)
- Designed to be extensible and easily adopted (scikit-learn style)
- Translate results from research labs to industry practitioners

Workflow for Building Fair Models

Workflow for AI Fairness 360

Dataset Class

- Standardize loading raw dataset from CSV format
 - Provides interface for data 'cleaning': converting categorical features, specifying features, labels, protected attributes, privileged status, favorable status, etc.
- Includes common datasets
 - Adult Census Income (Kohavi, 1996), German Credit (Dheeru & Karra Taniskidou, 2017), ProPublica Recidivism (COMPAS) (Angwin et al., 2016), Bank Marketing (Moro et al., 2014), and three versions of Medical Expenditure Panel Surveys (AHRQ, 2015; 2016)
- Includes common functions
 - o split, compare, converting to Pandas DF, tracking previous versions

Metric Class

- Metric either applies to single dataset to get group or individual fairness measures or compares original and transformed datasets
- Individual vs. Group Fairness, or both
- Fairness in Data vs. Model
- We're All Equal vs. What You See is What You Get
- Ratios vs. Differences

Explainer Class

- Explainer associated with metric class, provides:
 - Text description and explanation of metric
 - Fine-grained localization
 - finds critical values in protected attributes for
 - privileged vs unprivileged groups
 - compare fairness measure across attributes

Algorithms Class

- Pre-Processing: allowed to modify training data
 - Reweighing (Kamiran & Calders, 2012), Optimized preprocessing (Calmon et al., 2017),
 Learning fair representations (Zemel et al., 2013), Disparate impact remover (Feldman et al., 2015)
- In-Processing: allowed to change the learning procedure
 - Adversarial debiasing (Zhang et al., 2018), Prejudice remover (Kamishima et al., 2012)
- Post-Processing: treat learned model as black box without modifying training data or algorithm
 - Equalized odds postprocessing (Hardt et al., 2016), Calibrated equalized odds postprocessing (Pleiss et al., 2017), Reject option classification (Kamiran et al., 2012)

Adoption and Maintenance

Adoption

- Web interactive demo with intuitive visualizations for consumers without programming background
- Notebook tutorials, guidance and community forum for new developers

Maintain Quality of Code

 Unit and integration tests to ensure code quality and API compliance while allowing contributions and extensions

Before mitigation

After adversarial debiasing mitigation

AIF360 Demo

Two Philosophies

- WAE: We're All Equal
 - All groups have similar abilities w.r.t. the task
- WYSIWYG: What You See Is What You Get
 - Observations reflect abilities w.r.t. the task

- Example SAT scores
 - <u>WYSIWYG</u>: Score correlates well with success → score can be used to compare abilities across applicants
 - <u>WAE</u>: SAT may contain structural biases → different distribution across groups should not be mistaken for difference in ability

Metrics Examples

disparity_impact

% classified as favorable, ratio of unprivileged:privileged [fair = 1]

statistical_parity_difference

% classified as favorable, difference of unprivileged minus privileged [fair = 0]

equal_opportunity_difference

TP / (TP + FN), difference of unprivileged minus privileged [fair = 0]

FAIRNESS TREE

