OCE 313 TÉCNICAS DE ANÁLISIS NO PARAMÉTRICO

CLASE 9 – ANÁLISIS DE SOBREVIVENCIA

Dr. José Gallardo

Mayo 2021

Contenidos de la clase

- Conceptos generales análisis de supervivencia.
- Método de Kaplan-Meier.
- Test estadístico.
- Estudios de caso
- Interpretar resultados R

Análisis de supervivencia

Conjunto de herramientas estadísticas <u>No paramétricas</u> utilizadas para analizar la probabilidad de que un evento (muerte) ocurra en un determinado tiempo.

Ejemplos

Tiempo de sobrevivencia a depredadores (meses).

ind1	ind2	ind3	ind4	ind5	ind6	ind7	ind8	ind9	ind10
11	13	13	8	5	24	4	1	24	24

- Tiempo de sobrevivencia a un patógeno (días).

ind1	ind2	ind3	ind4	ind5	ind6	ind7	ind8	ind9	ind10
15	6	4	8	5	15	4	7	15	3

Variable respuesta: tiempo de supervivencia.

Tiempo de supervivencia: Tiempo entre que se incorpora un individuo al estudio y la fecha en la que ocurre el evento en ese individuo.

Observaciones censuradas: Individuos para los que no ha ocurrido el evento.

– Censuras a la derecha: individuos en los que no ha ocurrido el evento al finalizar el estudio, o individuos perdidos en el seguimiento por otras Causas. En este caso se registra el tiempo trascurrido entre la fecha de incorporación al estudio y la fecha de la última observación.

Ejemplo: Sobrevivencia sin depredadores

Ind.	Tiempo	Status 0=censura 1=evento
1		
2		
3		
4		
5		
6		
7		
8		

x – evento

o – censurado

Método de kaplan - Meier.

El método de Kaplan-Meier es un método no paramétrico que estima las probabilidades de supervivencia S(t) en los instantes en los que ha ocurrido el evento.

$$\hat{S}(t) = \prod_{t_i < t} rac{n_i - d_i}{n_i}.$$

d_i, el número de muertes en el momento t_i y n_i, el número de sujetos en riesgo justo antes de t_i.

Probabilidad de sobrevivir

Tiempo	Probabilidad de sobrevivir	Estimador K-M
5	5/5 = 1	1
10	5/6 = 0,833	0,833
20	5/6 = 0,833	0,694
30	5/6 = 0,833	0,578
40	4/4 = 1	0,578
50	3/3 = 1	0,578

Gráfica de probabilidad de sobrevivir (predicción)

Tiempo	Estimador K-M
5	1
10	0,833
20	0,694
30	0,578
40	0,578
50	0,578

Test estadístico no paramétrico Long rank test

	Grupo 1	Grupo 2
Muerte	24	8
No muerte	10	32

Hipótesis

$$H_0: S_{g1} = S_{g2}$$

$$H_1: S_{g1} \neq S_{g2}$$

Log-rank test statistic =
$$\frac{(0_1 - E_1)^2}{E_1} + \frac{(0_2 - E_2)^2}{E_2}$$

$$G = 2 \sum_i O_i \cdot \ln iggl(rac{O_i}{E_i}iggr),$$

Estudio de caso 1. Sobrevivencia a patógenos

Survival curves according to the following factors: (**A**) type of infection, (**B**) sex and (**C**) population of fish. Significances were obtained from the non-parametric, Kruskal-Wallis rank sum test. Abbreviations: CAL+PS: coinfection with both *C*. rogercresseyi and *P. salmonis*; PS: single infection with *P. salmonis*; F10: Population 1, L20: Population 2.

Estudio de caso 2 Análisis de vida media o tiempo de falla

Tiempo de retención de un etiquetas.

https://www.int-res.com/articles/feature/m433p001.pdf

Retención de etiqueta por tipo de cabezal

Probabilidad de retención

Interpretar resultados análisis de sobrevivencia R

Librería survival y funciones clave

Surv {survival} # Create a Survival Object, usually used as a response variable in a model formula.

survdiff {survival} # Test Survival Curve Differences

Description

Tests if there is a difference between two or more survival curves using the *G-rho* family of tests, or for a single curve against a known alternative.

survfit {survival} # Create survival curves

Description

This function creates survival curves from either a formula (e.g. the Kaplan-Meier), a previously fitted Cox model, or a previously fitted accelerated failure time model.

Comparación grupos vacunado y no vacunado

#SURVIVAL OF FISH (VACUNADO; NO VACUNADO)

summary(ps)

		TVDE	COLLABITAN	IT stas	L ~ CCDOI	UDS NO W	ACCINATED			TYPE:	=COHABITAN	NT. strat	ta(GROUP) VACCINA
			=COHABITAN	•	-	_		time	n risk			,	lower 95% CI uppe
time	n.risk	n.event	survival	std.err	lower	95% CI t	upper 95% CÍ	20	496	1		0.00201	
34	335	2	0.994	0.00421		0.986	1.000	33	495	1		0.00285	
35	333	4	0.982	0.00725		0.968	0.996	34	494	1	0.994	0.00348	
36	329	7	0.961	0.01055		0.941	0.982	35	493	10	0.974	0.00717	0.960
37	322	12	0.925	0.01436		0.898	0.954	36	483	18	0.938	0.01087	0.916
38	310	20	0.866	0.01863		0.830	0.903	37	465	20	0.897	0.01364	0.871
39	290	22		0.02185		0.758	0.844	38	445	29	0.839	0.01651	0.807
								39	416	37	0.764	0.01906	0.728
40	268	24		0.02430		0.682	0.778	40	379	25	0.714	0.02030	0.675
41	244	24	0.657	0.02594		0.608	0.710	41	354	38	0.637	0.02159	0.596
42	220	9	0.630	0.02638		0.580	0.684	42	316	13	0.611	0.02189	0.569
43	211	9	0.603	0.02673		0.553	0.658	43	303	22	0.567	0.02225	0.525

Comparaciones (test) por grupo y tipo

#Comparación sobrevivencia segun metodo de Kaplan-meier survdiff(Surv(STIME, STATUS)~TYPE+strata(GROUP), data = SURVIVAL DATA) survdiff(Surv(STIME, STATUS)~GROUP+strata(TYPE), data = SURVIVAL DATA)

```
> survdiff(Surv(STIME, STATUS)~TYPE+strata(GROUP), data = SURVIVAL_DATA)
Call:
survdiff(formula = Surv(STIME, STATUS) ~ TYPE + strata(GROUP),
    data = SURVIVAL_DATA)
                   N Observed Expected (0-E)^2/E (0-E)^2/V
                          348
                                   131
                                             358
                                                       609
TYPE=COHABITANT 831
TYPE=CONTROL
                1233
                                   217
                                             217
                                                       609
Chisq= 609 on 1 degrees of freedom, p= 0
> survdiff(Surv(STIME, STATUS)~GROUP+strata(TYPE), data = SURVIVAL_DATA)
Call:
survdiff(formula = Surv(STIME, STATUS) ~ GROUP + strata(TYPE),
    data = SURVIVAL_DATA)
                       N Observed Expected (0-E)^2/E (0-E)^2/V
GROUP=NO_VACCINATED 1062
                              133
                                       143
                                               0.645
                                                          1.17
GROUP=VACCINATED
                              215
                                       205
                    1002
                                               0.448
                                                          1.17
 Chisq= 1.2 on 1 degrees of freedom, p= 0.28
```


Resumen de la clase

- Revisión de análisis de supervivencia y tiempos de vida media o falla.
- Cálculo de probabilidad mediante método de Kaplan-Meier.
- Interpretación resultados test de supervivencia con R

