

Modèles de parallélisme

Programmation parallèle

Distributed systems

Last update: Fév. 2024

MODÈLES DE PARALLÉLISME

VUE GLOBALE SUR LES MODÈLES DE PROGRAMMATION PARALLÈLE

MODÈLES DE MÉMOIRE PARTAGÉE

- Dans ce modèle de programmation, les processus/tâches partagent un espace d'adressage commun, qu'ils lisent et écrivent de manière asynchrone.
- Divers mécanismes tels que les verrous et les sémaphores sont utilisés pour contrôler l'accès à la mémoire partagée, résoudre les conflits et prévenir les conditions de course et les blocages.

MODÈLES DE MÉMOIRE PARTAGÉE

Exemple d'implémentation

- Sur les machines autonomes à mémoire partagée, les systèmes d'exploitation natifs, les compilateurs et/ou le matériel fournissent un support pour la programmation en mémoire partagée
- Norme POSIX fournit une API pour l'utilisation de la mémoire partagée, et UNIX fournit des segments de mémoire partagée (shmget, shmat, shmctl, etc.)

THREADING

Dans le modèle THREAD, un seul processus "lourd" peut avoir plusieurs voies d'exécution concurrentes (threads) "légères".

- PAR EXEMPLE, DANS CETTE FIGURE NOUS AVONS 6 THREAD POUR UN PROGRAMME A.OUT.
- LES THREADS SE PARTAGEANT LA MÉMOIRE GLOBALE DU PROCESSUS (A.OUT), ET AVEC CHACUN POSSÈDE SA MÉMOIRE LOCALE.

THREADING

Exemple d'implémentation

- POSIX Threads
- OpenMP
- Microsoft threads
- Java, Python threads
- CUDA threads pour GPUs

LE MODÈLE MÉMOIRE DISTRIBUÉE-PASSAGE DE MESSAGE

- Un ensemble de tâches utilisent leur propre mémoire locale pendant le calcul.
- Plusieurs tâches peuvent résider sur la même machine physique et/ou sur un nombre arbitraire de machines.
- Échange de données par le biais de communications en envoyant et en recevant des messages.
- Transfert de données nécessitant des opérations coopératives de réception correspondante (rendez-vous).
- MPI est un exemple de ce modèle.

LE MODÈLE MÉMOIRE DISTRIBUÉE-PASSAGE DE MESSAGE

Exemple d'implémentation

• MPI est un exemple de ce modèle

MODÈLE DE DONNÉES PARALLÈLES

TRAITEMENT PARALLÈLE D'UN TABLEAU DE 1000 ÉLÉMENTS DIVISION EN N TÂCHES, AVEC CHACUNE 100 ÉLÉMENTS À TRAITER

- Espace d'adressage traité globalement
- Ensemble de tâches travaillant collectivement sur la même structure de données, avec chaque tâche opérant sur une partition différente de la même structure de données
- Les tâches effectuent la même opération sur leur partition de travail

MODÈLE DE DONNÉES PARALLÈLES

TRAITEMENT PARALLÈLE D'UN TABLEAU DE 1000 ÉLÉMENTS DIVISION EN N TÂCHES, AVEC CHACUNE 100 ÉLÉMENTS À TRAITER

Sur les <u>architectures à mémoire</u> <u>partagée</u>, toutes les tâches peuvent avoir accès à la structure de données via la mémoire globale.

Sur les <u>architectures à mémoire</u> distribuée, la structure de données globale peut être divisée logiquement et/ou physiquement entre les tâches.

MODÈLE DE DONNÉES PARALLÈLES

TRAITEMENT PARALLÈLE D'UN TABLEAU DE 1000 ÉLÉMENTS DIVISION EN N TÂCHES, AVEC CHACUNE 100 ÉLÉMENTS À TRAITER

Exemples d'implémentation

- Coarray Fortran
- Unified Parallel C (UPC)
- Global Arrays
- X10
- Chapel

SPMD - MPMD

SPMD: Single Program Multiple Data

SPMD est un modèle de programmation de "haut niveau" qui peut être construit à partir de n'importe quelle combinaison des modèles de programmation parallèle mentionnés précédemment.

MPMD: Multiple Program Multiple Data

MPMD est en fait un modèle de programmation de "haut niveau" qui peut être construit à partir de n'importe quelle combinaison des modèles de programmation parallèle mentionnés précédemment.

SPMD - MPMD

SPMD: Single Program Multiple Data

 Les tâches peuvent exécuter différents programmes simultanément.

• Les programmes peuvent être de type "threads", "message passing", "data parallel" ou hybride.

MPMD: Multiple Program Multiple Data

- Toutes les tâches exécutent simultanément leur copie du même programme.
- Ce programme peut être de type "threads", "message passing", "data parallel" ou hybride.

SPMD - MPMD

SPMD: Single Program Multiple Data

 Les tâches peuvent exécuter différents programmes simultanément.

• Les programmes peuvent être de type "threads", "message passing", "data parallel" ou hybride.

MPMD: Multiple Program Multiple Data

- Toutes les tâches exécutent simultanément leur copie du même programme.
- Ce programme peut être de type "threads", "message passing", "data parallel" ou hybride.

AUTRES MODÈLES: HYBRIDE

Les modèles hybrides sont des combinaisons de plusieurs modèles simples

MODÈLE HYBRIDE MPI - CUDA

AUTRES MODÈLES: HYBRIDE

Les modèles hybrides sont des combinaisons de plusieurs modèles simples

MODÈLE HYBRIDE MPI - OPENMPI