Лабораторная работа №1

Выполнила Мосева Алеся Сергеевна БВТ2001

Tema 1. Первичный анализ данных с Pandas

Практическое задание. Анализ данных пассажиров "Титаника"

**Заполните код в клетках (где написано "Ваш код здесь")

Requirement already satisfied: numpy in c:\users\lesya\appdata\local\programs\p ython\python310\lib\site-packages (1.24.2)Note: you may need to restart the ker nel to use updated packages.

```
[notice] A new release of pip available: 22.2.2 -> 23.0
[notice] To update, run: python.exe -m pip install --upgrade pip
```

Note: you may need to restart the kernel to use updated packages.Requirement al ready satisfied: pandas in c:\users\lesya\appdata\local\programs\python\python3 10\lib\site-packages (1.5.3)

Requirement already satisfied: numpy>=1.21.0 in c:\users\lesya\appdata\local\pr ograms\python\python310\lib\site-packages (from pandas) (1.24.2)

Requirement already satisfied: pytz>=2020.1 in c:\users\lesya\appdata\local\pro grams\python\python310\lib\site-packages (from pandas) (2022.7.1)

Requirement already satisfied: python-dateutil>=2.8.1 in c:\users\lesya\appdata \roaming\python\python310\site-packages (from pandas) (2.8.2)

Requirement already satisfied: six>=1.5 in c:\users\lesya\appdata\roaming\python\python310\site-packages (from python-dateutil>=2.8.1->pandas) (1.16.0)

```
[notice] A new release of pip available: 22.2.2 -> 23.0
[notice] To update, run: python.exe -m pip install --upgrade pip
```

```
Collecting matplotlib
         Downloading matplotlib-3.7.0-cp310-cp310-win_amd64.whl (7.6 MB)
            ----- 7.6/7.6 MB 11.1 MB/s eta 0:00:00
       Requirement already satisfied: numpy>=1.20 in c:\users\lesya\appdata\local\prog
       rams\python\python310\lib\site-packages (from matplotlib) (1.24.2)
       Requirement already satisfied: packaging>=20.0 in c:\users\lesya\appdata\roamin
       g\python\python310\site-packages (from matplotlib) (23.0)
       Collecting cycler>=0.10
          Downloading cycler-0.11.0-py3-none-any.whl (6.4 kB)
       Collecting pillow>=6.2.0
         Downloading Pillow-9.4.0-cp310-cp310-win_amd64.whl (2.5 MB)
            ----- 2.5/2.5 MB 17.5 MB/s eta 0:00:00
       Collecting fonttools>=4.22.0
         Downloading fonttools-4.38.0-py3-none-any.whl (965 kB)
            ----- 965.4/965.4 kB 15.4 MB/s eta 0:00:00
       Collecting kiwisolver>=1.0.1
          Downloading kiwisolver-1.4.4-cp310-cp310-win amd64.whl (55 kB)
            ----- 55.3/55.3 kB ? eta 0:00:00
       Requirement already satisfied: python-dateutil>=2.7 in c:\users\lesya\appdata\r
       oaming\python\python310\site-packages (from matplotlib) (2.8.2)
       Collecting pyparsing>=2.3.1
         Using cached pyparsing-3.0.9-py3-none-any.whl (98 kB)
       Collecting contourpy>=1.0.1
         Downloading contourpy-1.0.7-cp310-cp310-win amd64.whl (162 kB)
            ----- 163.0/163.0 kB 10.2 MB/s eta 0:00:00
       Requirement already satisfied: six>=1.5 in c:\users\lesya\appdata\roaming\pytho
       n\python310\site-packages (from python-dateutil>=2.7->matplotlib) (1.16.0)
       Installing collected packages: pyparsing, pillow, kiwisolver, fonttools, cycle
       r, contourpy, matplotlib
       Successfully installed contourpy-1.0.7 cycler-0.11.0 fonttools-4.38.0 kiwisolve
       r-1.4.4 matplotlib-3.7.0 pillow-9.4.0 pyparsing-3.0.9
       Note: you may need to restart the kernel to use updated packages.
        [notice] A new release of pip available: 22.2.2 -> 23.0
       [notice] To update, run: python.exe -m pip install --upgrade pip
In [ ]: import numpy as np
       import pandas as pd
       import matplotlib.pyplot as plt
       %matplotlib inline
       Считаем данные из файла в память в виде объекта Pandas.DataFrame
```

Данные представлены в виде таблицы. Посмотрим на первые 5 строк:

```
In [ ]: data.head(5)
```

Out[]:		Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabir
	PassengerId										
	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN
	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85
	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN
	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123
	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN
4											•

In []:	data.describe())

Out[]:	Survived		Survived Pclass		SibSp	Parch	Fare	
	count	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000	
	mean	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208	
	std	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429	
	min	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000	
	25%	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400	
	50%	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200	
	75%	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000	
	max	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200	

Для примера отберем пассажиров, которые сели в Cherbourg (Embarked=C) и заплатили более 200 у.е. за билет (fare > 200).

Убедитесь, что Вы понимаете, как эта конструкция работает. Если нет – посмотрите, как вычисляется выражение в квадратных в скобках.

```
In [ ]: data[(data['Embarked'] == 'C') & (data.Fare > 200)].head()
```

Out[]:		Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cak
	PassengerId										
	119	0	1	Baxter, Mr. Quigg Edmond	male	24.0	0	1	PC 17558	247.5208	B B
	259	1	1	Ward, Miss. Anna	female	35.0	0	0	PC 17755	512.3292	Ni
	300	1	1	Baxter, Mrs. James (Helene DeLaudeniere Chaput)	female	50.0	0	1	PC 17558	247.5208	B B
	312	1	1	Ryerson, Miss. Emily Borie	female	18.0	2	2	PC 17608	262.3750	В В В
	378	0	1	Widener, Mr. Harry Elkins	male	27.0	0	2	113503	211.5000	С

Можно отсортировать этих людей по убыванию платы за билет.

	8 2 27											
Out[]:		Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	E
	PassengerId											
	259	1	1	Ward, Miss. Anna	female	35.0	0	0	PC 17755	512.3292	NaN	
	680	1	1	Cardeza, Mr. Thomas Drake Martinez	male	36.0	0	1	PC 17755	512.3292	B51 B53 B55	
	738	1	1	Lesurer, Mr. Gustave J	male	35.0	0	0	PC 17755	512.3292	B101	
	312	1	1	Ryerson, Miss. Emily Borie	female	18.0	2	2	PC 17608	262.3750	B57 B59 B63 B66	
	743	1	1	Ryerson, Miss. Susan Parker "Suzette"	female	21.0	2	2	PC 17608	262.3750	B57 B59 B63 B66	
											1	

Пример создания признака.

```
In [ ]: def age_category(age):
            < 30 -> 1
            >= 30, <55 -> 2
            >= 55 -> 3
            if age < 30:
               return 1
            elif age < 55:
                return 2
            else:
                return 3
In [ ]: age_categories = [age_category(age) for age in data.Age]
In [ ]: data['Age_category'] = age_categories
        Другой способ – через apply.
In [ ]: data['Age_category'] = data['Age'].apply(age_category)
In [ ]: data['Age category'].value counts()
Out[ ]: 1
             384
             288
        2
             219
        Name: Age_category, dtype: int64
        1. Сколько мужчин / женщин находилось на борту?
         • 314 мужчин и 577 женщин
In [ ]: data.groupby(['Sex']).Sex.count()
Out[]: Sex
        female
                  314
        male
                  577
        Name: Sex, dtype: int64
        2. Выведите распределение переменной Pclass (социально-экономический
        статус) и это же распределение, только для мужчин / женщин по отдельности.
        Сколько было мужчин 2-го класса?
         • 108
        print(data.groupby(['Pclass']).Pclass.count())
In [ ]:
        print(data.groupby(['Pclass', 'Sex']).Pclass.count())
```

```
Pclass
    216
    184
3
    491
Name: Pclass, dtype: int64
Pclass Sex
       female
                 94
       male
                122
                 76
2
       female
       male
                 108
3
       female
                 144
       male
                 347
Name: Pclass, dtype: int64
```

- 3. Каковы медиана и стандартное отклонение платежей (Fare)? Округлите до 2 десятичных знаков.
 - Медиана 14.45, стандартное отклонение 49.69

```
In []: print('Медиана: {:.2f}'.format(data['Fare'].median()))
    print('Стандартное отклонение: {:.2f}'.format(data['Fare'].std()))

Медиана: 14.45
    Стандартное отклонение: 49.69
```

- 4. Правда ли, что люди моложе 30 лет выживали чаще, чем люди старше 60 лет? Каковы доли выживших в обеих группах?
 - 40.6% среди молодых и 22.7% среди старых

```
In []: print('Выживали моложе 30 лет {:.1f}%'.format(data[data['Age'] < 30]['Survived'] print('Выживали старше 60 {:.1f}%'.format(data[data['Age'] > 60]['Survived'].mea

Выживали моложе 30 лет 40.6%
Выживали старше 60 22.7%
```

- 5. Правда ли, что женщины выживали чаще мужчин? Каковы доли выживших в обеих группах?
 - 18.9% среди мужчин и 74.2% среди женщин

```
In []: print('Выживали мужчины {:.1f}%'.format(data[data['Sex'] == 'male']['Survived']. print('Выживали женщины {:.1f}%'.format(data[data['Sex'] == 'female']['Survived']. Выживали мужчины 18.9% Выживали женщины 74.2%
```

- 6. Найдите самое популярное имя среди пассажиров Титаника мужского пола?
 - William

```
import copy
new_data = copy.deepcopy(data)
new_names = [name.split(' ')[2] for name in new_data.Name]
new_data['Name'] = new_names
new_data = new_data[['Name', 'Sex']]
new_data.head()
new_data[(new_data['Sex'] == 'male')].value_counts()
```

```
Out[]: Name
                  Sex
        William male
                          35
        John
                  male
                          25
                          14
        George
                 male
        Charles
                 male
                          13
        Thomas
                          13
                 male
                          . .
        Hudson
                 male
                          1
        Husein
                 male
        Ignjac
                  male
                           1
        Iisakki
                 male
        hoef,
                  male
                           1
        Length: 281, dtype: int64
```

7. Сравните графически распределение стоимости билетов и возраста у спасенных и у погибших. Средний возраст погибших выше, верно?

• Да

```
In [ ]: new_data = copy.deepcopy(data)[['Survived', 'Age', 'Fare']]
In [ ]: new_data[new_data['Survived'] == 0]['Age'].hist(color = 'red')
    new_data[new_data['Survived'] == 1]['Age'].hist(color = 'green')
    plt.title('Age')
    plt.legend()

No artists with labels found to put in legend. Note that artists whose label s
    tart with an underscore are ignored when legend() is called with no argument.
```

Out[]: <matplotlib.legend.Legend at 0x1a4cd1f6b60>


```
In [ ]: new_data[new_data['Survived'] == 1]['Fare'].hist(color = 'green')
new_data[new_data['Survived'] == 0]['Fare'].hist(color = 'red')
```

```
plt.title('Age')
plt.legend()
```

No artists with labels found to put in legend. Note that artists whose label s tart with an underscore are ignored when legend() is called with no argument.

Out[]: <matplotlib.legend.Legend at 0x1a4cd194520>


```
In [ ]: new_data.groupby(['Survived'])['Age'].mean()
```

Out[]: Survived

0 30.626179 1 28.343690

Name: Age, dtype: float64

8. Как отличается средний возраст мужчин / женщин в зависимости от класса обслуживания? Выберите верные утверждения:

- В среднем мужчины 1-го класса старше 40 лет
- Мужчины всех классов в среднем старше женщин того же класса
- В среднем люди в 1 классе старше, чем во 2-ом, а те старше представителей 3го класса

```
In [ ]: data.groupby(['Pclass', 'Sex'])['Age'].mean()
```

Out[]:	Pclas	s Se	X	
		1	fer	nale	34.611765
			ma.	le	41.281386
		2	fer	nale	28.722973
			ma.	le	30.740707
		3	fer	nale	21.750000
			ma.	le	26.507589
		Name:	Age,	dtype:	float64